diff --git a/.gitignore b/.gitignore index 5a06d236..cb64c9d8 100644 --- a/.gitignore +++ b/.gitignore @@ -319,3 +319,5 @@ notebooks/saved-results/out **/*.bbl **/*.blg **/*.out +auxiliary_packages/ibex_tests/num_constraint_test +auxiliary_packages/ibex_tests/num_constraint_test.o diff --git a/auxiliary_packages/funman_benchmarks/src/funman_benchmarks/_version.py b/auxiliary_packages/funman_benchmarks/src/funman_benchmarks/_version.py index 1388158e..3bca77a1 100644 --- a/auxiliary_packages/funman_benchmarks/src/funman_benchmarks/_version.py +++ b/auxiliary_packages/funman_benchmarks/src/funman_benchmarks/_version.py @@ -1,4 +1,4 @@ """Version information.""" # The following line *must* be the last in the module, exactly as formatted: -__version__ = "1.8.0" +__version__ = "1.9.0" diff --git a/auxiliary_packages/funman_demo/setup.py b/auxiliary_packages/funman_demo/setup.py index e9925015..8bf72f8f 100644 --- a/auxiliary_packages/funman_demo/setup.py +++ b/auxiliary_packages/funman_demo/setup.py @@ -22,7 +22,7 @@ license="MIT", packages=find_packages("src"), package_dir={"": "src"}, - install_requires=["funman", "matplotlib", "jupyter"], + install_requires=["funman", "matplotlib", "jupyter", "seaborn"], tests_require=["unittest"], zip_safe=False, ) diff --git a/auxiliary_packages/funman_demo/src/funman_demo/_version.py b/auxiliary_packages/funman_demo/src/funman_demo/_version.py index 1388158e..3bca77a1 100644 --- a/auxiliary_packages/funman_demo/src/funman_demo/_version.py +++ b/auxiliary_packages/funman_demo/src/funman_demo/_version.py @@ -1,4 +1,4 @@ """Version information.""" # The following line *must* be the last in the module, exactly as formatted: -__version__ = "1.8.0" +__version__ = "1.9.0" diff --git a/auxiliary_packages/funman_demo/src/funman_demo/box_plotter.py b/auxiliary_packages/funman_demo/src/funman_demo/box_plotter.py index ab2cce75..20ea4ab3 100644 --- a/auxiliary_packages/funman_demo/src/funman_demo/box_plotter.py +++ b/auxiliary_packages/funman_demo/src/funman_demo/box_plotter.py @@ -209,6 +209,7 @@ def plot_add_patch(self, box: Box, color="r"): linewidth=1, edgecolor=color, facecolor="none", + zorder=box.timestep().lb * box.timestep().lb, ) # Add the patch to the Axes @@ -235,6 +236,7 @@ def plot_add_point(self, point: Point, color="r", shape="x", alpha=0.2): marker=shape, alpha=alpha, s=3, + zorder=point.timestep(), ) self.fig.canvas.draw() self.fig.canvas.flush_events() @@ -311,6 +313,7 @@ def plotNDBox(self, box, color="g", alpha=0.2): y_limits.ub, color=color, alpha=alpha, + zorder=box.timestep().lb * box.timestep().lb, ) plt.show(block=False) diff --git a/auxiliary_packages/funman_demo/src/funman_demo/example/pde.py b/auxiliary_packages/funman_demo/src/funman_demo/example/pde.py index d09715d4..641b2afb 100644 --- a/auxiliary_packages/funman_demo/src/funman_demo/example/pde.py +++ b/auxiliary_packages/funman_demo/src/funman_demo/example/pde.py @@ -8,10 +8,11 @@ import pandas as pd import seaborn as sns from IPython.display import HTML -from sklearn import preprocessing from funman.server.query import FunmanResults +# from sklearn import preprocessing + def animate_heat_map(my_df, frames): fig = plt.figure() diff --git a/auxiliary_packages/funman_demo/src/funman_demo/parameter_space_plotter.py b/auxiliary_packages/funman_demo/src/funman_demo/parameter_space_plotter.py index c8c788a4..6a1fbf8a 100644 --- a/auxiliary_packages/funman_demo/src/funman_demo/parameter_space_plotter.py +++ b/auxiliary_packages/funman_demo/src/funman_demo/parameter_space_plotter.py @@ -1,5 +1,5 @@ import logging -from typing import Dict +from typing import Dict, List import matplotlib.pyplot as plt import numpy as np @@ -15,6 +15,7 @@ class ParameterSpacePlotter: def __init__( self, parameter_space: ParameterSpace, + boxes: List[Box] = None, plot_bounds: Box = None, title: str = "Feasible Regions", color_map: Dict[str, str] = { @@ -27,6 +28,7 @@ def __init__( plot_points=False, parameters=None, dpi=100, + synthesized_parameters=None, ): if isinstance(parameter_space, ParameterSpace): self.ps = parameter_space @@ -34,16 +36,13 @@ def __init__( # FIXME this is a hack to accept ParameterSpace objects from the openapi client self.ps = ParameterSpace.model_validate(parameter_space.to_dict()) - # TODO this should be easier to access - values = [] - true_points = self.ps.true_points() - false_points = self.ps.false_points() - if len(true_points) > 0: - values = true_points[0].values - elif len(false_points) > 0: - values = false_points[0].values + self.boxes = boxes - self.parameters = [k for k in values if parameters and k in parameters] + # Expect that parameters are available in the parameter space + self.parameters = parameters # [k for k in scenario_parameters if parameters and k in parameters] + self.synthesized_parameters = ( + synthesized_parameters if synthesized_parameters else None + ) self.dim = len(self.parameters) self.plot_points = plot_points @@ -80,7 +79,7 @@ def initialize_figure(self, plot_diagonal): dim_to_plot, squeeze=False, dpi=self.dpi, - figsize=(10, 10), + figsize=(20, 20), ) self.fig = fig self.axs = axs @@ -90,15 +89,16 @@ def initialize_figure(self, plot_diagonal): MEDIUM_SIZE = 10 BIGGER_SIZE = 12 - plt.rc("font", size=SMALL_SIZE) # controls default text sizes + # plt.rc("font", size=SMALL_SIZE) # controls default text sizes plt.rc("axes", titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc("axes", labelsize=TINY_SIZE) # fontsize of the x and y labels plt.rc("xtick", labelsize=TINY_SIZE) # fontsize of the tick labels plt.rc("ytick", labelsize=TINY_SIZE) # fontsize of the tick labels - plt.rc("legend", fontsize=SMALL_SIZE) # legend fontsize - plt.rc("figure", titlesize=BIGGER_SIZE) # fontsize of the figure title + # plt.rc("legend", fontsize=SMALL_SIZE) # legend fontsize + # plt.rc("figure", titlesize=BIGGER_SIZE) # fontsize of the figure title - self.fig.tight_layout(pad=3.0) + # self.fig.tight_layout(pad=3.0) + self.fig.tight_layout(pad=2) self.data = [[None] * self.dim] * self.dim for i in range(self.dim): @@ -121,20 +121,36 @@ def initialize_figure(self, plot_diagonal): plt.legend(self.custom_lines, ["true", "false"]) def plot(self, show=False, plot_diagonal=False): - self.initialize_figure(plot_diagonal) + self.initialize_figure((plot_diagonal or len(self.parameters) == 1)) t = "true" f = "false" - for b in self.ps.false_boxes: - self.plotNDBox(b, self.color_map[f], plot_diagonal=plot_diagonal) - for b in self.ps.true_boxes: - self.plotNDBox(b, self.color_map[t], plot_diagonal=plot_diagonal) + if self.boxes: + for b in self.boxes: + self.plotNDBox( + b, + self.color_map[b.label], + plot_diagonal=(plot_diagonal or len(self.parameters) == 1), + ) + else: + for b in self.ps.false_boxes: + self.plotNDBox( + b, + self.color_map[f], + plot_diagonal=(plot_diagonal or len(self.parameters) == 1), + ) + for b in self.ps.true_boxes: + self.plotNDBox( + b, + self.color_map[t], + plot_diagonal=(plot_diagonal or len(self.parameters) == 1), + ) if self.plot_points: for p in self.ps.false_points(): self.plot_add_point( p, self.color_map[f], self.shape_map[f], - plot_diagonal=plot_diagonal, + plot_diagonal=(plot_diagonal or len(self.parameters) == 1), ) true_points = self.ps.true_points() for p in true_points: @@ -142,7 +158,7 @@ def plot(self, show=False, plot_diagonal=False): p, self.color_map[t], self.shape_map[t], - plot_diagonal=plot_diagonal, + plot_diagonal=(plot_diagonal or len(self.parameters) == 1), ) if show: plt.show(block=False) @@ -174,11 +190,14 @@ def plot_add_point( marker=shape, alpha=alpha, s=10, + zorder=point.timestep(), ) # self.fig.canvas.draw() # self.fig.canvas.flush_events() - def plotNDBox(self, box, color="g", alpha=0.2, plot_diagonal=False): + def plotNDBox( + self, box, color="g", alpha=0.2, plot_diagonal=False, max_width=100000 + ): for i in range(self.dim): for j in range(self.dim): i_coord, j_coord = self.map_param_idx_to_plot_loc( @@ -189,6 +208,12 @@ def plotNDBox(self, box, color="g", alpha=0.2, plot_diagonal=False): if j_coord > i_coord: continue + if self.synthesized_parameters and ( + self.parameters[i] not in self.synthesized_parameters + or self.parameters[j] not in self.synthesized_parameters + ): + continue + x_limits = box.bounds[self.parameters[i]] y_limits = box.bounds[self.parameters[j]] @@ -204,11 +229,11 @@ def plotNDBox(self, box, color="g", alpha=0.2, plot_diagonal=False): else: # Plot a box if ( - abs(float(x_limits.lb)) < 1000 - and abs(float(x_limits.ub)) < 1000 + abs(float(x_limits.lb)) < max_width + and abs(float(x_limits.ub)) < max_width ): x = np.linspace( - float(x_limits.lb), float(x_limits.ub), 1000 + float(x_limits.lb), float(x_limits.ub), max_width ) self.axs[i_coord, j_coord].fill_between( x, @@ -216,4 +241,15 @@ def plotNDBox(self, box, color="g", alpha=0.2, plot_diagonal=False): y_limits.ub, color=color, alpha=alpha, + zorder=box.timestep().lb, + ) + self.axs[i_coord, j_coord].text( + (x_limits.lb + x_limits.ub) / 2, + (y_limits.lb + y_limits.ub) / 2, + # f"[{box.timestep().lb}, {box.timestep().ub}]", + f"{box.timestep().lb}", + ha="center", + va="center", + fontsize=8, + color="blue", ) diff --git a/auxiliary_packages/funman_demo/src/funman_demo/plot.py b/auxiliary_packages/funman_demo/src/funman_demo/plot.py index d894c51c..ca11e269 100644 --- a/auxiliary_packages/funman_demo/src/funman_demo/plot.py +++ b/auxiliary_packages/funman_demo/src/funman_demo/plot.py @@ -3,6 +3,7 @@ from typing import Dict import matplotlib.pyplot as plt +from funman_demo.parameter_space_plotter import ParameterSpacePlotter from IPython.display import clear_output from matplotlib.lines import Line2D @@ -68,17 +69,19 @@ def plot_cached_search(search_path, alpha: float = 0.2): ) -def summarize_results(variables, results, ylabel="Height"): +def summarize_results( + variables, + results, + ylabel="Height", + parameters_to_plot=None, + label_color={"true": "g", "false": "r"}, + synthesized_parameters=None, + print_last_time=False, +) -> str: points = results.points() boxes = results.parameter_space.boxes() - l.info("*" * 80) - l.info("*" * 80) - l.info("* Analysis Summary ") - l.info("*" * 80) - l.info( - f"{len(points)} Points (+:{len(results.parameter_space.true_points())}, -:{len(results.parameter_space.false_points())}), {len(boxes)} Boxes (+:{len(results.parameter_space.true_boxes)}, -:{len(results.parameter_space.false_boxes)})" - ) + point_info = "" if points and len(points) > 0: point: Point = points[-1] parameters: Dict[Parameter, float] = results.point_parameters(point) @@ -88,15 +91,48 @@ def summarize_results(variables, results, ylabel="Height"): xlabel="Time", ylabel=ylabel, legend=variables, - label_color={"true": "g", "false": "r"}, + label_color=label_color, ) parameter_values = {p: point.values[p.name] for p in parameters} - l.info(f"Parameters = {parameter_values}") - l.info(parameters) - l.info(results.dataframe([point])) + point_info = f"""Parameters = {parameter_values} + # {parameters} + {results.dataframe([point])} + """ else: # if there are no points, then we have a box that we found without needing points - l.info(f"Found box with no points") box = boxes[0] - l.info(json.dumps(box.explain(), indent=4)) - l.info("*" * 80) + point_info = f"""Found box with no points + {json.dumps(box.explain(), indent=4)} + """ + + boxes = ( + results.parameter_space.boxes() + if not print_last_time + else results.parameter_space.last_boxes() + ) + + if parameters_to_plot is None: + parameters_to_plot = results.model._parameter_names() + if not print_last_time: + parameters_to_plot += ["timestep"] + if len(boxes) > 0 and len(parameters_to_plot) > 1: + ParameterSpacePlotter( + results.parameter_space, + parameters=parameters_to_plot, + dpi=len(parameters_to_plot) * 20, + plot_points=True, + synthesized_parameters=synthesized_parameters, + ).plot(show=True) + + divider = "*" * 80 + + summary = f"""{divider} +{divider} +* Analysis Summary +{divider} +{len(points)} Points (+:{len(results.parameter_space.true_points())}, -:{len(results.parameter_space.false_points())}), {len(boxes)} Boxes (+:{len(results.parameter_space.true_boxes)}, -:{len(results.parameter_space.false_boxes)}) +{point_info} +{divider} + """ + + return summary diff --git a/auxiliary_packages/funman_dreal/setup.py b/auxiliary_packages/funman_dreal/setup.py index 8545bce8..cd2549ae 100644 --- a/auxiliary_packages/funman_dreal/setup.py +++ b/auxiliary_packages/funman_dreal/setup.py @@ -23,7 +23,7 @@ packages=find_packages("src"), package_dir={"": "src"}, install_requires=["funman", "docker", "tenacity", "pyparsing"], - extras_require={"dreal": ["dreal"]}, + # extras_require={"dreal": ["dreal"]}, tests_require=["unittest"], zip_safe=False, ) diff --git a/auxiliary_packages/funman_dreal/src/funman_dreal/_version.py b/auxiliary_packages/funman_dreal/src/funman_dreal/_version.py index 1388158e..3bca77a1 100644 --- a/auxiliary_packages/funman_dreal/src/funman_dreal/_version.py +++ b/auxiliary_packages/funman_dreal/src/funman_dreal/_version.py @@ -1,4 +1,4 @@ """Version information.""" # The following line *must* be the last in the module, exactly as formatted: -__version__ = "1.8.0" +__version__ = "1.9.0" diff --git a/auxiliary_packages/funman_dreal/src/funman_dreal/converter.py b/auxiliary_packages/funman_dreal/src/funman_dreal/converter.py index 41c753da..a50a3e70 100644 --- a/auxiliary_packages/funman_dreal/src/funman_dreal/converter.py +++ b/auxiliary_packages/funman_dreal/src/funman_dreal/converter.py @@ -88,28 +88,47 @@ def __init__(self, env=None): self.identifier_map = {"and": "&", "or": "|", "==": "="} - self.rules = [ - Rule(r"(pow)", PowOpAdapter(self.mgr.Pow, 80), False), # pow - Rule( - r"(and)", InfixOpAdapter(self.AndOrBVAnd, 40), False - ), # conjunction - Rule( - r"(or)", InfixOpAdapter(self.OrOrBVOr, 30), False - ), # disjunction - Rule( - r"(abs)", UnaryOpAdapter(self.mgr.Abs, 50), False - ), # absolute value - Rule( - r"(b\()", BinaryLiteralExpr(self.BinaryLiteral, 50), False - ), # b() - Rule(r"(==)", InfixOpAdapter(self.mgr.Equals, 60), False), # eq - Rule( - r"(-?\d+\.\d+e\+?\d+)", self.real_constant, True - ), # decimals scientific - Rule( - r"(-?\d+\.\d+e-?\d+)", self.real_constant, True - ), # decimals scientific - ] + self.rules + self.rules = ( + [ + Rule(r"(pow)", PowOpAdapter(self.mgr.Pow, 80), False), # pow + Rule( + r"(and)", InfixOpAdapter(self.AndOrBVAnd, 40), False + ), # conjunction + Rule( + r"(or)", InfixOpAdapter(self.OrOrBVOr, 30), False + ), # disjunction + Rule( + r"(abs)", UnaryOpAdapter(self.mgr.Abs, 50), False + ), # absolute value + Rule( + r"(b\()", BinaryLiteralExpr(self.BinaryLiteral, 50), False + ), # b() + Rule( + r"(==)", InfixOpAdapter(self.mgr.Equals, 60), False + ), # eq + Rule( + r"(-?\d+e\+?\d+)", self.real_constant, True + ), # decimals scientific + Rule( + r"(-?\d+?e-?\d+)", self.real_constant, True + ), # decimals scientific + Rule( + r"(-?\d+\.\d+e\+?\d+)", self.real_constant, True + ), # decimals scientific + Rule( + r"(-?\d+\.\d+e-?\d+)", self.real_constant, True + ), # decimals scientific + ] + + self.rules[0:-1] + + [ + Rule( + r"(([A-Za-z_]|[^\u0000-\u007F])([A-Za-z_]|[^\u0000-\u007F])*)", + self.identifier, + True, + ), # unicode identifiers + ] + + self.rules[-1:] + ) self.compile() def BinaryLiteral(self, x): @@ -184,7 +203,7 @@ def rewrite_dreal_formula(self, formula: dreal.Formula) -> str: return str_formula def create_dreal_symbols(self, rewritten_formula: str) -> List[Symbol]: - patterns = ["(disj[0-9]+)", "(conj[0-9]+)", "neg"] + patterns = ["(disj[0-9]+)", "(conj[0-9]+)", "neg", "ITE[0-9]*"] symbol_names = [ q for p in patterns for q in list(re.findall(p, rewritten_formula)) ] @@ -222,6 +241,22 @@ def walk_implies(self, formula, args, **kwargs): # self._check_term_result(res) return res + def walk_ite(self, formula, args, **kwargs): + converted_args = [] + for arg in args: + if isinstance(arg, Fraction): + converted_args.append(float(arg)) + elif isinstance(arg, dreal.Variable): + converted_args.append(dreal.Expression(arg)) + else: + converted_args.append(arg) + + res = dreal.if_then_else( + converted_args[0], converted_args[1], converted_args[2] + ) + # self._check_term_result(res) + return res + def walk_or(self, formula, args, **kwargs): res = functools.reduce(lambda a, b: dreal.Or(a, b), args) # self._check_term_result(res) @@ -272,7 +307,8 @@ def walk_times(self, formula, args, **kwargs): def walk_pow(self, formula, args, **kwargs): exponent = float(args[1]) if isinstance(args[1], Fraction) else args[1] - res = dreal.pow(args[0], exponent) + base = float(args[0]) if isinstance(args[0], Fraction) else args[0] + res = dreal.pow(base, exponent) return res def walk_abs(self, formula, args, **kwargs): diff --git a/auxiliary_packages/funman_dreal/src/funman_dreal/solver.py b/auxiliary_packages/funman_dreal/src/funman_dreal/solver.py index 76f30589..7f175dcd 100644 --- a/auxiliary_packages/funman_dreal/src/funman_dreal/solver.py +++ b/auxiliary_packages/funman_dreal/src/funman_dreal/solver.py @@ -20,7 +20,7 @@ ) from pysmt.formula import FNode from pysmt.logics import QF_NRA -from pysmt.shortcuts import BOOL, Bool, Real, get_env +from pysmt.shortcuts import BOOL, TRUE, Bool, Real, get_env from pysmt.smtlib.parser import SmtLibParser from pysmt.smtlib.script import SmtLibCommand from pysmt.smtlib.solver import SmtLibOptions, SmtLibSolver @@ -443,6 +443,11 @@ def __init__( self.model = None self.log_level = dreal.LogLevel.OFF if "solver_options" in options: + if ( + "preferred" in options["solver_options"] + and len(options["solver_options"]["preferred"]) > 0 + ): + self.config.preferred = options["solver_options"]["preferred"] if "dreal_precision" in options["solver_options"]: self.config.precision = options["solver_options"][ "dreal_precision" @@ -614,9 +619,12 @@ def get_value(self, symbol_pair): isinstance(ub, int) or isinstance(lb, int) ): return Real(lb) if isinstance(lb, int) else Real(ub) - elif mid == lb or mid == ub: + elif mid == lb: # Midpoint is not representable return Real(lb) if ub == 0.0 else Real(ub) + elif mid == ub: + # Midpoint is not representable + return Real(ub) if lb == 0.0 else Real(lb) elif not math.isinf(mid): return Real(mid) else: diff --git a/auxiliary_packages/ibex_tests/Makefile b/auxiliary_packages/ibex_tests/Makefile index 57d7ee30..d8f18b58 100644 --- a/auxiliary_packages/ibex_tests/Makefile +++ b/auxiliary_packages/ibex_tests/Makefile @@ -1,11 +1,19 @@ .DEFAULT_GOAL := all -num_constraint_test.o: src/num_constraint_test.cc - g++ -c -g src/num_constraint_test.cc -I/usr/include/ibex -libex +build: + mkdir -p build -num_constraint_test: num_constraint_test.o - g++ -g num_constraint_test.o -libex -o num_constraint_test +build/num_constraint_test.o: src/num_constraint_test.cc + g++ -c -g -pg src/num_constraint_test.cc -I/usr/include/ibex -L/root/ibex-lib/__build__/src/libibex.so -o build/num_constraint_test.o -test: num_constraint_test +build/num_constraint_test: build/num_constraint_test.o + g++ -g -pg build/num_constraint_test.o -L/root/ibex-lib/__build__/src/libibex.so -libex -o build/num_constraint_test -all: test \ No newline at end of file +test: build/num_constraint_test + build/num_constraint_test + +profile: test + gprof --flat-profile build/num_constraint_test + +all: build test + \ No newline at end of file diff --git a/auxiliary_packages/ibex_tests/src/num_constraint_test.cc b/auxiliary_packages/ibex_tests/src/num_constraint_test.cc index e7787de1..0b4d8618 100644 --- a/auxiliary_packages/ibex_tests/src/num_constraint_test.cc +++ b/auxiliary_packages/ibex_tests/src/num_constraint_test.cc @@ -10,7 +10,7 @@ using std::chrono::duration_cast; using std::chrono::high_resolution_clock; using std::chrono::milliseconds; -NumConstraint func(const Array &args, const ExprCtr &expr) +NumConstraint func(const Array &args, const ExprCtr expr) { cout << "size = " << args.size() << endl; switch (args.size()) @@ -93,15 +93,16 @@ NumConstraint func(const Array &args, const ExprCtr &expr) // cout << "Made constraint c2: " << c2 << endl; // } -duration make_constraint(const ExprNode *expr, Array &vars, bool use_opt) +duration make_constraint(const ExprCtr e, Array &vars, bool use_opt) { auto t1 = high_resolution_clock::now(); // cout << vars.size() << endl; - cout << "done expr" << endl; + cout << "make_constraint(" << use_opt << ") - start" << endl; - NumConstraint c1 = use_opt ? func(vars, (*expr < 0)) : NumConstraint(vars, (*expr < 0)); + // cout << "expr = " << e << endl; + NumConstraint c1 = use_opt ? func(vars, e) : NumConstraint(vars, e); - cout << "done expr" << endl; + cout << "make_constraint(" << use_opt << ") - end" << endl; auto t2 = high_resolution_clock::now(); duration ms_double = t2 - t1; return ms_double; @@ -117,16 +118,12 @@ const ExprNode *make_expr(Array &x) return expr; } -void make_vars(Array *vars) +void make_vars(Array &vars, Variable *x) { - int num_vars = vars->size(); - Variable x[num_vars]; - cout << "num_vars: " << num_vars << endl; - - for (int i = 0; i < num_vars; i++) + int num_vars = vars.size(); + for (int i = 0; i < vars.size(); i++) { - cout << "i = " << i << endl; - vars->set_ref(i, x[i]); + vars.set_ref(i, x[i]); } } @@ -142,46 +139,87 @@ int main() // NumConstraint c(x, x + 1 <= 0); // cout << "Made constraint: " << c << endl; cout << "Starting: " << endl; - int num_vars = 20; - Variable x[num_vars]; - Array vars(num_vars); - - // cout << "Made vars: " << vars.size() << endl; - make_vars(&vars); - cout << vars[0] << endl; - cout << "Made vars: " << vars.size() << endl; - const ExprNode *expr = make_expr(vars); - cout << "Made expr" << endl; - cout << (*expr) << endl; - auto time_with = make_constraint(expr, vars, true); - auto time_without = make_constraint(expr, vars, false); - // summary(vars.size(), time_with.count(), time_without.count()); - delete expr; - - // auto t1 = high_resolution_clock::now(); - // c1(); - // auto t2 = high_resolution_clock::now(); - // // c2(); - - // auto t3 = high_resolution_clock::now(); - - // /* Getting number of milliseconds as an integer. */ - // auto ms_int = duration_cast(t2 - t1); - - // /* Getting number of milliseconds as a double. */ - // duration ms_double = t2 - t1; - - // std::cout << ms_int.count() << "ms\n"; - // std::cout << ms_double.count() << "ms\n"; - - // /* Getting number of milliseconds as an integer. */ - // auto ms_int1 = duration_cast(t3 - t2); - - // /* Getting number of milliseconds as a double. */ - // duration ms_double1 = t3 - t2; - - // // std::cout << ms_int1.count() << "ms\n"; - // // std::cout << ms_double1.count() << "ms\n"; - + for (int num_vars = 20; num_vars <= 20; num_vars++) + { + // int num_vars = 10; + Variable x1[num_vars]; + Variable x2[num_vars]; + Array vars1(num_vars); + Array vars2(num_vars); + + make_vars(vars1, x1); + make_vars(vars2, x2); + + // for (int i = 0; i < num_vars; i++) + // { + // // cout << "i = " << i << endl; + // vars1.set_ref(i, x1[i]); + // vars2.set_ref(i, x2[i]); + // } + + // const ExprNode *expr = &(vars1[0] + 1); + // for (int i = 1; i < num_vars; i++) + // expr = &(*expr + vars1[i]); + const ExprNode *expr1 = make_expr(vars1); + const ExprCtr &e1 = (*expr1 < 0); + const ExprNode *expr2 = make_expr(vars2); + const ExprCtr &e2 = (*expr2 < 0); + + // const ExprNode expr = ; + // const ExprCtr e1 = (vars1[0] + vars1[1] + vars1[2] + vars1[3] + vars1[4] + vars1[5] + vars1[6] + vars1[7] + vars1[8] + vars1[9]) < 0; + cout << "e1 = " << e1 << endl; + // const ExprCtr e2 = (vars2[0] + vars2[1] + vars2[2] + vars2[3] + vars2[4] + vars2[5] + vars2[6] + vars2[7] + vars2[8] + vars2[9]) < 0; + cout << "e2 = " << e2 << endl; + + // auto ctr = func(vars, e); + // auto ctr = NumConstraint(vars1[0], vars1[1], vars1[2], vars1[3], vars1[4], vars1[5], vars1[6], vars1[7], vars1[8], vars1[9], e1); + // auto ctr = NumConstraint(vars, e); + // cout << "Made ctr: " << ctr << endl; + + auto time_without = make_constraint(e1, vars1, false); + auto time_with = make_constraint(e2, vars2, true); + // delete expr1; + // delete expr2; + + // cout << "Made e" << endl; + // const ExprNode *expr1 = &(vars[0] + 1); + // for (int i = 1; i < num_vars; i++) + // expr1 = &(*expr1 + vars[i]); + // cout << (*expr1) << endl; + // cout << endl; + + // const ExprNode *expr1 = make_expr(vars); + // cout << "Made expr1" << endl; + // cout << (*expr) << endl; + // const ExprCtr &e1 = (*expr < 0); + + summary(vars1.size(), time_with.count(), time_without.count()); + // delete expr; + + // auto t1 = high_resolution_clock::now(); + // c1(); + // auto t2 = high_resolution_clock::now(); + // // c2(); + + // auto t3 = high_resolution_clock::now(); + + // /* Getting number of milliseconds as an integer. */ + // auto ms_int = duration_cast(t2 - t1); + + // /* Getting number of milliseconds as a double. */ + // duration ms_double = t2 - t1; + + // std::cout << ms_int.count() << "ms\n"; + // std::cout << ms_double.count() << "ms\n"; + + // /* Getting number of milliseconds as an integer. */ + // auto ms_int1 = duration_cast(t3 - t2); + + // /* Getting number of milliseconds as a double. */ + // duration ms_double1 = t3 - t2; + + // // std::cout << ms_int1.count() << "ms\n"; + // // std::cout << ms_double1.count() << "ms\n"; + } return 0; } diff --git a/auxiliary_packages/pde2petri/src/pde2petri/_version.py b/auxiliary_packages/pde2petri/src/pde2petri/_version.py index 29654eec..0a0a43a5 100644 --- a/auxiliary_packages/pde2petri/src/pde2petri/_version.py +++ b/auxiliary_packages/pde2petri/src/pde2petri/_version.py @@ -1 +1 @@ -__version__ = "1.8.0" +__version__ = "1.9.0" diff --git a/docker/base/Dockerfile b/docker/base/Dockerfile index e0df38f6..689938dc 100644 --- a/docker/base/Dockerfile +++ b/docker/base/Dockerfile @@ -32,11 +32,11 @@ ENV PATH="$VIRTUAL_ENV/bin:$PATH" ARG AUTOMATES_COMMIT_TAG # Install automates -RUN git clone --depth=1 https://github.com/danbryce/automates.git automates \ - && cd automates \ - && git fetch --depth=1 origin ${AUTOMATES_COMMIT_TAG} \ - && git checkout ${AUTOMATES_COMMIT_TAG} -RUN pip install -e automates +# RUN git clone --depth=1 https://github.com/danbryce/automates.git automates \ +# && cd automates \ +# && git fetch --depth=1 origin ${AUTOMATES_COMMIT_TAG} \ +# && git checkout ${AUTOMATES_COMMIT_TAG} +# RUN pip install -e automates RUN pip install --no-cache-dir z3-solver RUN pip install --no-cache-dir graphviz diff --git a/docker/dev/root/Dockerfile.root b/docker/dev/root/Dockerfile.root index 8e5d76b2..c77e3cf2 100644 --- a/docker/dev/root/Dockerfile.root +++ b/docker/dev/root/Dockerfile.root @@ -52,11 +52,11 @@ RUN pip install --no-cache-dir openapi-python-client WORKDIR /root # Install automates -RUN git clone --depth=1 https://github.com/danbryce/automates.git automates \ - && cd automates \ - && git fetch --depth=1 origin e5fb635757aa57007615a75371f55dd4a24851e0 \ - && git checkout e5fb635757aa57007615a75371f55dd4a24851e0 -RUN pip install -e automates +# RUN git clone --depth=1 https://github.com/danbryce/automates.git automates \ +# && cd automates \ +# && git fetch --depth=1 origin e5fb635757aa57007615a75371f55dd4a24851e0 \ +# && git checkout e5fb635757aa57007615a75371f55dd4a24851e0 +# RUN pip install -e automates RUN pip install --no-cache-dir z3-solver RUN pip install --no-cache-dir graphviz diff --git a/docker/dev/user/Dockerfile b/docker/dev/user/Dockerfile index 89f22f7f..19f1c636 100644 --- a/docker/dev/user/Dockerfile +++ b/docker/dev/user/Dockerfile @@ -50,20 +50,21 @@ RUN pip install --no-cache-dir build RUN pip install --no-cache-dir pylint RUN pip install --no-cache-dir black RUN pip install --no-cache-dir uvicorn -RUN pip install --no-cache-dir pydantic>=2.3.0 -RUN pip install --no-cache-dir fastapi>=0.103.1 +RUN pip install --no-cache-dir pydantic==2.3.* +RUN pip install --no-cache-dir pydantic-settings +RUN pip install --no-cache-dir fastapi==0.103.* RUN pip install --no-cache-dir pre-commit RUN pip install --no-cache-dir pycln RUN pip install --no-cache-dir openapi-python-client WORKDIR /home/$UNAME -# Install automates -RUN git clone --depth=1 https://github.com/danbryce/automates.git automates \ - && cd automates \ - && git fetch --depth=1 origin e5fb635757aa57007615a75371f55dd4a24851e0 \ - && git checkout e5fb635757aa57007615a75371f55dd4a24851e0 -RUN pip install -e automates +# # Install automates +# RUN git clone --depth=1 https://github.com/danbryce/automates.git automates \ +# && cd automates \ +# && git fetch --depth=1 origin e5fb635757aa57007615a75371f55dd4a24851e0 \ +# && git checkout e5fb635757aa57007615a75371f55dd4a24851e0 +# RUN pip install -e automates RUN pip install --no-cache-dir z3-solver RUN pip install --no-cache-dir graphviz diff --git a/docker/docker-bake.hcl b/docker/docker-bake.hcl index 34ebeb02..3e55db84 100644 --- a/docker/docker-bake.hcl +++ b/docker/docker-bake.hcl @@ -20,7 +20,7 @@ variable "DREAL_REPO_URL" { default = "https://github.com/danbryce/dreal4.git" } variable "DREAL_COMMIT_TAG" { - default = "cc1a4519cdea5ecec94033b178351424a405b472" + default = "43706295350b9676b786e2d9d8607b1c6e19afee" } variable "AUTOMATES_COMMIT_TAG" { default = "e5fb635757aa57007615a75371f55dd4a24851e0" diff --git a/docker/ibex/Makefile.ibex b/docker/ibex/Makefile.ibex index 83c660b7..ff74a820 100644 --- a/docker/ibex/Makefile.ibex +++ b/docker/ibex/Makefile.ibex @@ -15,11 +15,11 @@ DEPS_WORKSPACE=/tmp/ibex-deps ifneq ($(ENABLE_DEBUG),no) IBEX_DEBUGGING=--with-debug MATHLIB_DEBUGGING=--enable-debug -GAOL_DEBUGGING= +GAOL_DEBUGGING=--enable-debug else IBEX_DEBUGGING= MATHLIB_DEBUGGING= -GAOL_DEBUGGING= +GAOL_DEBUGGING=--disable-debug endif LP_LIB_ARGS= diff --git a/notebooks/README.md b/notebooks/README.md new file mode 100644 index 00000000..9eceaa0f --- /dev/null +++ b/notebooks/README.md @@ -0,0 +1,4 @@ +This directory contains notebooks that illustrate how to use FUNMAN. The notebooks include: + +- [pde_as_petrinet.ipynb](pde_as_petrinet.ipynb) +- [funman_terrarium_demo.ipynb](funman_terrarium_demo.ipynb) \ No newline at end of file diff --git a/notebooks/funman_july_2024_demo.ipynb b/notebooks/funman_july_2024_demo.ipynb new file mode 100644 index 00000000..0ca00a6d --- /dev/null +++ b/notebooks/funman_july_2024_demo.ipynb @@ -0,0 +1,517 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# This notebook illustrates handling the July 2024 Demo of the 6mo Hackathon Scenario 2, described at: https://github.com/DARPA-ASKEM/program-milestones/issues/74\n", + "\n", + "# Import funman related code\n", + "import os\n", + "from funman.api.run import Runner\n", + "from funman_demo import summarize_results\n", + "from funman import FunmanWorkRequest, EncodingSchedule \n", + "import json\n", + "from funman.representation.constraint import LinearConstraint, ParameterConstraint, StateVariableConstraint\n", + "from funman.representation import Interval\n", + "import pandas as pd\n", + "\n", + "RESOURCES = \"../resources\"\n", + "SAVED_RESULTS_DIR = \"./out\"\n", + "\n", + "EXAMPLE_DIR = os.path.join(RESOURCES, \"amr\", \"petrinet\",\"monthly-demo\", \"2024-07\")\n", + "MODEL_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"SEIRHD_vacc_petrinet.json\"\n", + ")\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"SEIRHD_vacc_petrinet_request.json\"\n", + ")\n", + "\n", + "request_params = {}\n", + "\n", + "# %load_ext autoreload\n", + "# %autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Constants for the scenario\n", + "STATES = [\"S_u\", \"I_u\", \"E_u\", \"S_v\", \"E_v\", \"I_v\", \"H\", \"R\", \"D\"]\n", + "\n", + "MAX_TIME=28\n", + "STEP_SIZE=7\n", + "timepoints = list(range(0, MAX_TIME+STEP_SIZE, STEP_SIZE))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Helper functions to setup FUNMAN for different steps of the scenario\n", + "\n", + "def get_request():\n", + " with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " return funman_request\n", + "\n", + "def set_timepoints(funman_request, timepoints):\n", + " funman_request.structure_parameters[0].schedules = [EncodingSchedule(timepoints=timepoints)]\n", + "\n", + "def unset_all_labels(funman_request):\n", + " for p in funman_request.parameters:\n", + " p.label = \"any\"\n", + " \n", + "def set_config_options(funman_request, debug=False):\n", + " # Overrides for configuration\n", + " #\n", + " funman_request.config.substitute_subformulas = True\n", + " # funman_request.config.use_transition_symbols = True\n", + " funman_request.config.use_compartmental_constraints=False\n", + " if debug:\n", + " funman_request.config.save_smtlib=\"./out\"\n", + " funman_request.config.tolerance = 0.01\n", + " funman_request.config.dreal_precision = 1000\n", + " # funman_request.config.verbosity = 10\n", + " # funman_request.config.dreal_log_level = \"debug\"\n", + " # funman_request.config.dreal_prefer_parameters = [\"beta\",\"NPI_mult\",\"r_Sv\",\"r_EI\",\"r_IH_u\",\"r_IH_v\",\"r_HR\",\"r_HD\",\"r_IR_u\",\"r_IR_v\"]\n", + "\n", + "def get_synthesized_vars(funman_request):\n", + " return [p.name for p in funman_request.parameters if p.label == \"all\"]\n", + "\n", + "def run(funman_request, plot=False):\n", + " to_synthesize = get_synthesized_vars(funman_request)\n", + " return Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SEIRHD Hackathon 6mo\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " dump_plot=plot,\n", + " print_last_time=True,\n", + " parameters_to_plot=to_synthesize\n", + " )\n", + "\n", + "def setup_common(funman_request, synthesize=False, debug=False):\n", + " set_timepoints(funman_request, timepoints)\n", + " if not synthesize:\n", + " unset_all_labels(funman_request)\n", + " set_config_options(funman_request, debug=debug)\n", + " \n", + "\n", + "def set_compartment_bounds(funman_request, upper_bound=9830000.0, error=0.01):\n", + " # Add bounds to compartments\n", + " for var in STATES:\n", + " funman_request.constraints.append(StateVariableConstraint(name=f\"{var}_bounds\", variable=var, interval=Interval(lb=0, ub=upper_bound, closed_upper_bound=True),soft=False))\n", + "\n", + " # Add sum of compartments\n", + " funman_request.constraints.append(LinearConstraint(name=f\"compartment_bounds\", variables=STATES, additive_bounds=Interval(lb=upper_bound-error, ub=upper_bound+error, closed_upper_bound=False), soft=True))\n", + "\n", + "def relax_parameter_bounds(funman_request, factor = 0.1):\n", + " # Relax parameter bounds\n", + " parameters = funman_request.parameters\n", + " for p in parameters:\n", + " interval = p.interval\n", + " width = float(interval.width())\n", + " interval.lb = interval.lb - (factor/2 * width)\n", + " interval.ub = interval.ub + (factor/2 * width)\n", + "\n", + "def plot_last_point(results):\n", + " pts = results.parameter_space.points() \n", + " print(f\"{len(pts)} points\")\n", + "\n", + " if len(pts) > 0:\n", + " # Get a plot for last point\n", + " df = results.dataframe(points=pts[-1:])\n", + " ax = df[STATES].plot()\n", + " ax.set_yscale(\"log\")\n", + "\n", + "def get_last_point_parameters(results):\n", + " pts = results.parameter_space.points()\n", + " if len(pts) > 0:\n", + " pt = pts[-1]\n", + " parameters = results.model._parameter_names()\n", + " param_values = {k:v for k, v in pt.values.items() if k in parameters }\n", + " return param_values\n", + "\n", + "def pretty_print_request_params(params):\n", + " # print(json.dump(params, indent=4))\n", + " if len(params)>0:\n", + "\n", + " df = pd.DataFrame(params)\n", + " print(df.T)\n", + "\n", + "\n", + "def report(results, name):\n", + " plot_last_point(results)\n", + " param_values = get_last_point_parameters(results)\n", + " print(f\"Point parameters: {param_values}\")\n", + " if param_values is not None:\n", + " request_params[name] = param_values\n", + " pretty_print_request_params(request_params)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Automatic initialization of gaol... done\n", + "[9830000.00000, 9830000.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "[0.30000, 0.30000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "2024-07-24 18:45:00,403 - funman.api.run - INFO - Dumping results to ./out/30859b53-7cf9-40f3-8066-675251190783.json\n", + "2024-07-24 18:45:06,166 - funman.scenario.consistency - INFO - 4{28}:\t[+]\n", + "2024-07-24 18:45:06,177 - funman.server.worker - INFO - Completed work on: 30859b53-7cf9-40f3-8066-675251190783\n", + "2024-07-24 18:45:10,451 - funman.server.worker - INFO - Worker.stop() acquiring state lock ....\n", + "2024-07-24 18:45:10,710 - funman.server.worker - INFO - FunmanWorker exiting...\n", + "2024-07-24 18:45:10,711 - funman.server.worker - INFO - Worker.stop() completed.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 points\n", + "Point parameters: {'N': 9830000.0, 'NPI_mult': 1.0, 'beta': 0.15249999999999997, 'vacc_mult': 0.30000000000000004, 'r_Sv': 10000.0, 'r_SvSu': 0.002, 'r_EI': 0.13160484699686698, 'r_IH_u': 0.00435, 'r_IH_v': 0.0013499999999999999, 'r_HR': 0.17341744342913468, 'r_HD': 0.011, 'r_IR_u': 0.185, 'r_IR_v': 0.185}\n", + " N NPI_mult beta r_EI r_HD r_HR \\\n", + "unconstrained 9830000.0 1.0 0.1525 0.131605 0.011 0.173417 \n", + "\n", + " r_IH_u r_IH_v r_IR_u r_IR_v r_Sv r_SvSu vacc_mult \n", + "unconstrained 0.00435 0.00135 0.185 0.185 10000.0 0.002 0.3 \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAG0CAYAAADpSoetAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABs20lEQVR4nO3deXhb5Z03/O/Rvlpe5H3PHmdxyGbClqSEhjCEPaWFliS0mbbjdGjzdOYpvC20M5TMwPNSSuuSdzoTwvSBNqVTQgdKWiYlhEIgJCF7nMSOkzjxvsrat/P+IVmWbHmXdST7+7muc0k65+icn2VZ+vqc+76PIIqiCCIiIqIEIZO6ACIiIqJwDCdERESUUBhOiIiIKKEwnBAREVFCYTghIiKihMJwQkRERAmF4YSIiIgSCsMJERERJRSGEyIiIkooDCdERESUUBhOiIiIKKEo4r3Dc+fO4cEHH4x4/Otf/xr33HPPiJ7v9/vR0NAAo9EIQRAmqEoiIiKKJVEU0dPTg7y8PMhkQx8bEaS88J/VakVJSQkuX74MvV4/oudcvXoVhYWFE1wZERERTYT6+noUFBQMuU7cj5yE+8Mf/oBbb711xMEEAIxGI4DAD5eSkjJRpREREVEMWSwWFBYWhr7HhzLqcHLgwAE899xzOHLkCBobG/HGG28MOCVTVVWF5557Dk1NTSgvL8fPfvYzLF++fMC2fvvb3+KRRx4Z1f57T+WkpKQwnBARESWZkTTJGHWDWJvNhvLyclRVVUVdvnv3bmzbtg1PPfUUjh49ivLycqxduxYtLS0R61ksFnz00Ue44447htyfy+WCxWKJmIiIiGjyGnU4WbduHZ5++mnce++9UZc///zz2LJlCzZv3oyysjLs2LEDOp0OO3fujFjvzTffxOc//3loNJoh97d9+3aYTKbQxPYmREREk1tMuxK73W4cOXIEa9as6duBTIY1a9bg4MGDEev+9re/jei1M5jHH38c3d3doam+vj6WJRMREVGCiWmD2La2Nvh8PmRnZ0fMz87ORnV1dehxd3c3Dh06hP/6r/8adptqtRpqtTqWZRIREVECk2QQNpPJhObmZqhUqhE/p6qqCmVlZVi2bNkEVkZERERSi2k4MZvNkMvlaG5ujpjf3NyMnJyccW27srISZ86cwaeffjqu7RAREVFii2k4UalUWLJkCfbt2xea5/f7sW/fPqxYsSKWuyIiIqJJatRtTqxWK2pqakKP6+rqcOzYMaSnp6OoqAjbtm3Dxo0bsXTpUixfvhwvvPACbDYbNm/ePK5Cq6qqUFVVBZ/PN67tEBERUWIb9fD1+/fvx+rVqwfM37hxI3bt2gUA+PnPfx4ahG3RokV48cUXUVFREZOCLRYLTCYTuru7OQgbERFRkhjN97ek19YZC4YTIiKi5DOa729JeuuMBXvrEBERTQ08ckJEREQTbjTf35JelTiR+Kw2+Lu7oi8c7CJF0eYPd0GjYS94NNzzh9v8ePc/yDpj+VkH3fw4a5zo5VFe5EGfMhHvgVG836KuGcf9R61pjO8LIqJeDCdB3W/uQfM/Py11GUQEjD8gjzOgjSr0TUCtw8a7sfx8Mfwna8z1xeofnxH9kxVt1gS8LoM+f/DSBq1lzPsaX13Rakm5az0yKyuHKHBiJU04meiuxIJcDmG4YfKHOwM2zPJhz5+Nc/uDLo82P7nO5tFUI/F7Vuq/Dqn3T+Tr6JR0/2xzQqMy7NslAZcP+oyxfAGOZfkgz4k+W9qAOu6Pg1gE5OFC/rCvwQhnjnH/Y3oPDv4mjMv+B38PRlt30A2Pa18jXT7o73c0fy8T8jscxWsVdfvxew/G4jVUmM1QFRUNXccosc0JTZiYtGmJs8SriIiIhpI0XYmJiIhoakiacMJxToiIiKYGtjkhIiKiCTcpR4glIiKiqYHhhIiIiBIKwwkRERElFIYTIiIiSihJE07YW4eIiGhqYG8dIiIimnDsrUNERERJi+GEiIiIEgrDCRERESUUhhMiIiJKKAwnRERElFCSJpywKzEREdHUwK7ERERENOHYlZiIiIiSFsMJERERJRSF1AUQ0dj1Pyvb/yRt/3O2A9YfsLz/84fe/sB6Bpk/YE9Drdt/vdHVHGVXcd3/gH0N+zsZ5vlR1hlsW4F1x/c7i7b/wbYzkv0Pve5I1xzuOWPb16h+1nE+fzTGXeuI9jH0WmaDGoXpuhFsaWIwnAT94XgDfvFeTdRl4b/DoT6sxYj5Q3ygjeE5g9UQMX+I91r4tgfbbv9tR1/ef7sD9hS9tkFqGaqewWoe6sN+Ir58B31ZR/ABEuuwQEQUDxtXFONHd8+XbP8MJ0Fddjeqm3qkLoOIkpAg9HscdZ1ocwdbt/86Q++g/zai7WrANoZct/86wpDLh6tnsO2MdP8j2c5IthH9aSN/XYZ/1tDPj/Y7GGw/sXgNoj9vZPNSdaoxbT9WGE6C1szNxjSzIWJe+C8s4nc3xAfHoM9B5JtpsPUGvkn6fSgM+6E0+IdI5D6j1zJg7yN4zlAfpGP5OQd/jhB1/lB1Dr6/wQ34eYb5YB7ui2TYL65xPn/YL45BthNtX1HricH+R/sajff5Iw0HI32txvpFQERjw3ASlJeqRV6qVuoyiIiIpjz21iEiIqKEkjThhCPEEhERTQ0cIZaIiIgmHEeIJSIioqTFcEJEREQJheGEiIiIEgrDCRERESUUjnMSdPbsWXz88cfj2kaStS2eEHwNaKrj38DQxvv6xOL1TYQaJnL7sahv/vz5uOWWW8a9nbFiOAnq6enB5cuXpS6DiIhIclarVdL9M5wEzZgxAxs2bBj3djjMNV8DomQn9d9wLPY/3m1M9edLPVQHw0lQeno60tPTpS6DiIhoymODWCIiIkookoSTuro6rF69GmVlZViwYAFsNpsUZRAREVECkuS0zqZNm/D000/j5ptvRkdHB9RqtRRlEBERUQKKezg5ffo0lEolbr75ZgBgOw8iIiKKMOrTOgcOHMD69euRl5cHQRCwZ8+eAetUVVWhpKQEGo0GFRUVOHToUGjZhQsXYDAYsH79eixevBjPPPPMuH4AIiIimlxGHU5sNhvKy8tRVVUVdfnu3buxbds2PPXUUzh69CjKy8uxdu1atLS0AAC8Xi8++OAD/OIXv8DBgwfx7rvv4t133x3fT0FERESTxqjDybp16/D000/j3nvvjbr8+eefx5YtW7B582aUlZVhx44d0Ol02LlzJwAgPz8fS5cuRWFhIdRqNe644w4cO3Zs0P25XC5YLJaIiYiIiCavmPbWcbvdOHLkCNasWdO3A5kMa9aswcGDBwEAy5YtQ0tLCzo7O+H3+3HgwAHMnTt30G1u374dJpMpNBUWFsayZCIiIkowMQ0nbW1t8Pl8yM7OjpifnZ2NpqYmAIBCocAzzzyDW265BQsXLsTMmTNx5513DrrNxx9/HN3d3aGpvr4+liUTERFRgpGkK/G6deuwbt26Ea2rVqvZ1ZiIiGgKiemRE7PZDLlcjubm5oj5zc3NyMnJGde2q6qqUFZWhmXLlo1rO0RERJTYYhpOVCoVlixZgn379oXm+f1+7Nu3DytWrBjXtisrK3HmzBl8+umn4y2TiIiIEtioT+tYrVbU1NSEHtfV1eHYsWNIT09HUVERtm3bho0bN2Lp0qVYvnw5XnjhBdhsNmzevDmmhRMREdHkNOpwcvjwYaxevTr0eNu2bQCAjRs3YteuXXjwwQfR2tqKJ598Ek1NTVi0aBH27t07oJHsaFVVVaGqqgo+n29c2yEiIqLEJoiiKEpdxGhYLBaYTCZ0d3cjJSVF6nKIiIhoBEbz/S3JVYmJiIiIBpM04YS9dYiIiKYGntYhIiKiCcfTOkRERJS0GE6IiIgooSRNOGGbEyIioqmBbU6IiIhowrHNCRERESUthhMiIiJKKEkTTtjmhIiIaGpgmxMiIiKacGxzQkREREmL4YSIiIgSCsMJERERJRSGEyIiIkooSRNO2FuHiIhoamBvHSIiIppw7K1DRERESYvhhIiIiBIKwwkRERElFIYTIiIiSigMJ0RERJRQkiacsCsxERHR1MCuxERERDTh2JWYiIiIkhbDCRERESUUhhMiIiJKKAwnRERElFAYToiIiCihMJwQERFRQmE4ISIiooTCcEJEREQJJWnCCUeIJSIimho4QiwRERFNOI4QS0REREmL4YSIiIgSCsMJERERJRSGEyIiIkooDCdERESUUBhOiIiIKKEwnBAREVFCYTghIiKihMJwQkRERAlFIcVOS0pKkJKSAplMhrS0NLz33ntSlEFEREQJSJJwAgAfffQRDAaDVLsnIiKiBMXTOkRERJRQRh1ODhw4gPXr1yMvLw+CIGDPnj0D1qmqqkJJSQk0Gg0qKipw6NChiOWCIGDlypVYtmwZXn311TEXT0RERJPPqMOJzWZDeXk5qqqqoi7fvXs3tm3bhqeeegpHjx5FeXk51q5di5aWltA6f/3rX3HkyBH84Q9/wDPPPIMTJ06M/ScgIiKiSUUQRVEc85MFAW+88Qbuueee0LyKigosW7YMP//5zwEAfr8fhYWF+Na3voXvfe97A7bxD//wD5g3bx42bdoUdR8ulwsulyv02GKxoLCwcESXXCYiIqLEYLFYYDKZRvT9HdM2J263G0eOHMGaNWv6diCTYc2aNTh48CCAwJGXnp4eAIDVasVf/vIXzJs3b9Btbt++HSaTKTQVFhbGsmQiIiJKMDENJ21tbfD5fMjOzo6Yn52djaamJgBAc3MzbrrpJpSXl+P666/HI488gmXLlg26zccffxzd3d2hqb6+PpYlExERUYKJe1fiadOm4fjx4yNeX61WQ61Wo6qqClVVVfD5fBNYHREREUktpkdOzGYz5HI5mpubI+Y3NzcjJydnXNuurKzEmTNn8Omnn45rO0RERJTYYhpOVCoVlixZgn379oXm+f1+7Nu3DytWrIjlroiIiGiSGvVpHavVipqamtDjuro6HDt2DOnp6SgqKsK2bduwceNGLF26FMuXL8cLL7wAm82GzZs3j6tQntYhIiKaGkbdlXj//v1YvXr1gPkbN27Erl27AAA///nP8dxzz6GpqQmLFi3Ciy++iIqKipgUPJquSERERJQYRvP9Pa5xTqTAcEJERJR8JBvnhIiIiGi8kiacVFVVoaysbMgxUYiIiCj58bQOERERTTie1iEiIqKklTThhKd1iIiIpgae1iEiIqIJx9M6RERElLQYToiIiCihMJwQERFRQkmacMIGsURERFMDG8QSERHRhGODWCIiIkpaDCdERESUUBhOiIiIKKEkTThhg1giIqKpgQ1iiYiIaMKxQSwRERElLYYTIiIiSigMJ0RERJRQGE6IiIgooTCcEBERUUJhOCEiIqKEkjThhOOcEBERTQ0c5ySou/sY2trfG2atYV6qYV/KoZcP/4uY2P0H1hjv22G8NQ639UR/uyZ6fRMsBh8nE/4eHPY9Otzi8f6dSf03Eu/993s8YPtiv0fDPX/gHoeuIex+2L4HXScacZQ1DvMzj+p3NOKaoz9nZPsb+Bxz5hoUFnxl+OeNwmi+vxUx3XMSs/ScxKVLP5e6DCIiIsnp9KWS7p/hJMign42CEaVEYVzLheGeLwy3/eGMc/8j2sUEvwYT/hpNdsn/+gz/E4z3PTLRfycTXd/E7j/2P3/Y47B9CyNYJ/qaQy+Pvo3+zxhmGxHPD685+vzh9jm6/Y3kZ+z//KH2N7LfR/jzdDqGk4SQlrYcaWnLpS6DiIhoykuaBrFEREQ0NTCcEBERUUJhOCEiIqKEwnBCRERECYXhhIiIiBJK0oQTjhBLREQ0NXCEWCIiIppwo/n+TpojJ0RERDQ1cBA2IiKiZCKKgM8dnDwTc79oBTDvHsl+RIYTIiKiXn5/2Jd02OR19/sid0V+qQ+73BUWAHpvXQNDgTfKvP73/Z6Jfx1EP8MJERFNEaII+L1hX9jhX/6ufl/0rn5f2EMtd2NgCIg2r/82+80TfVK/QmMgAAo1IFcDcmVwUoVNyij3o80Lu18gbecThhMiIgoQRcDjANw2wGML3LptgNva7749yvzgY48d8Dj7vvS9/UOCG0AS9cOQKcK+9INf4IrwL3J15Je6Qh14jkIdfXnE8/sHg94puE+FOnpw6H9fJpf6VYo5hhMiomQkioEve7c1MLmsfffDA4OrJ0rI6H8btlz0x/kHCfuvX9HvSzr0OPglrVD3+xKPMm/Y5/QPB6roQUKhBmRKQMZ+I1JgOCEiiofwMOHq6bt1WQF3T1i4sPUtd9v6lofu2/oe+70TV69SD6gGmwyAUtd3P3y+SgcoNAO/9CPuhwcIfg3RQHxXEBENRhT7jii4evqm3iMVLktkyHD1RAaN0G3wORMVJiKCggFQ9w8M/R6Hlke71QWCCY8YkIQYToho8vF5goHBEhkqIuZZo8zrH0B6MCHtI5T6YEAIhgK1MSw0GPoeq3rXM4bd1wcehweMSdjmIFH5/X643W6py0hISqUScnls3ouShRO73Y65c+diw4YN+D//5/9IVQYRJRKfJ3j6IhgWnJaw8BBtXvC2/zyvM7Z1CbJgIAiGglCYMPZNEeEiJey+ISxMBAMFw0RScrvdqKurg98f73Y5ySM1NRU5OTkQBGFc25EsnPz4xz/G9ddfL9XuiWgkettJeB2BXhy9k9cZdr//Mkegt4bHHlwv/H7/dfqtH+tunEpdlACREjkvNKX0Cx9hYUSpA8b5YUvJTRRFNDY2Qi6Xo7CwEDKe9oogiiLsdjtaWloAALm5uePaniTh5MKFC6iursb69etx6tQpKUogSm5+f9iXvX2Q2/DgYI8MEL3zvM5+z3P2W+aAJN0+5WpAk9IvOKSEzQvealL6lvU+VhmCt0Y2tqSY8Xq9sNvtyMvLg06nk7qchKTVagEALS0tyMrKGtcpnlH/5R44cADPPfccjhw5gsbGRrzxxhu45557ItapqqrCc889h6amJpSXl+NnP/sZli9fHlr+3e9+F8899xw++uijMRdOlLB83kECQ5R57iGCxVDzvI74/1yCPHAEQakBlFpAoQ3cKrWB3hm9y0Lzg/MUmrD1tP3W0fZbrgmc9lCo4//zEQ3B5wsc1VOpVBJXEjuiKEL0+yGKfoj+vvt+vwi5QgGlevR/h73BzePxxDec2Gw2lJeX49FHH8V99903YPnu3buxbds27NixAxUVFXjhhRewdu1anDt3DllZWXjzzTcxa9YszJo1i+GEpNHbriEUDoJT77zQIFSOwEBUHkdwvfD74c+zR67ri3NjObk6+OXeGxz0fV/2oUnXL0SEr6/rFx600R/LlfH9uYgS0HjbUozV4EHC37esd4pYNxA2eu9HrCsOflRUZ0qFUp056jpj9fqMOpysW7cO69atG3T5888/jy1btmDz5s0AgB07duDtt9/Gzp078b3vfQ8ff/wxfvOb3+D111+H1WqFx+NBSkoKnnzyyajbc7lccLlcoccWi2W0JdNkZu8A2mv6pu6rfQNK9QYGtz0yiMTjuhQAAKHvi1+l6xcKer/09f3maaLMC18/yjw2riRKOJEhIBgQwgLDgPmDhYmwQDJRBEGAIBMgCDIIMhkEQQa5QtpTojHdu9vtxpEjR/D444+H5slkMqxZswYHDx4EAGzfvh3bt28HAOzatQunTp0aNJj0rv+jH/0olmVSsnFZgY6LwQBSGxlGnF1j364gD5xCUOrCwkO/+0pt3zqhZWGhIuJ54aFCFzg1wUaUREnD5/XAZbfD7XDA7bDD7QzeOhxwudyAKQ22rk54lAqIfjFw1CIiVPhHdFRiXITA92p4kBBkAgSZDLLeeeFBQyYLho+w58iEAesmmpiGk7a2Nvh8PmRnZ0fMz87ORnV19Zi2+fjjj2Pbtm2hxxaLBYWFheOqkxKQ3wd0XgLazoeFj2AQ6Wkc+rkpBUDG9MCUWhzsaREeOvSRIaM3UMhVDA9ESU4URXhcTrjsNrjtgTDhctgDocIeDBj2sHmOsMDRbz2fZ/Cjqrp0MxZ/aTPslm54RtGWIhQMwkPCIEFCJhsYOPoHCgiCZKeW4knS4zabNm0adh21Wg21Wo2qqipUVVWFGiVRkvK6A0dBWqsDQaS1Gmg9B7RdCFwkbDC6DCBjRmBKnxZ5X8WW80TJRhRFeN2uQEiw24KTHW67LRAawoOG3QZXb6iw2wNBxNG3HDE+SqFQqaHSaoOTDiqtFrp0M5RqNbQGI9RqdTBUyAOhISJUhAeNxDgq0draiieffBJvv/02mpubkZaWhvLycjz55JO48cYbpS4vqpiGE7PZDLlcjubm5oj5zc3NyMnJGde2KysrUVlZCYvFApPJNK5tURx4nED7hUDwaD3XF0I6agcfwluhBcwzgIyZwfAxvS+A6NLjWz8RDUr0++F2OsLChCNwGwwNvUEjcDQjfLkdLkdfCPHH8J9NQSaDWqeHSquDWquFSqcLBAtN3311MGgEAkff/dD6msA8WZQjI06nE3V1dTCkZ0Cj0cSs7ni4//774Xa78corr2DatGlobm7Gvn370N7ePmBdURThD178US5he7aYhhOVSoUlS5Zg3759oe7Ffr8f+/btw9atW2O5K0oUfl/gSEjTSaD5FNByNhBEOi8NfnVTlQHInA1kzom8NRXxeh5EE8zv84WORjhttr7QELq1hgJG7+mQ8Pu9p0BidrRCEAKhQRcMDzo91L1hIjxU6HTB8BEMFL1BRBcIFAqVOq6nO0RRhMMjzZF8rVI+4p+1s7MTH3zwAf6878+ouKkCXr8XxmwjSueXwit6cbXnKrx+L3yiL3QriiIytBlwtjpRWlqKzz77DIsWLQIAdHV1IS0tDe+99x5WrVo1YT/jqMOJ1WpFTU1N6HFdXR2OHTuG9PR0FBUVYdu2bdi4cSOWLl2K5cuX44UXXoDNZgv13hkrntZJAM5uoPk00HQKaD4ZuG05O/iYGxoTkDkXyJwVGURS8tnWg2gMRFGE1+WC026F226H02aDy26Fy2YLTL2nR3rvhwcLmxUuux0eV+yG9pfJFVDr+gWFiJChD1uuDdxGzNNBpdFASMJ/ShweH8qe/JMk+z71o9ugUiAiVHj9XnhFL3x+X8R9l9sFnV6HX/32VzDPNkOlHtk4Lf7B/rmMk1GHk8OHD2P16tWhx72NVTdu3Ihdu3bhwQcfDJ3fampqwqJFi7B3794BjWRHi6d14sjvBzrrAkdCwsNI15Xo6yu0QHYZkD0PyJ4fDCJzAEMWQwhRGFEU4fW44bJa4bLb4Oy9tVkD4cEWvB88ghEKGWHBI1anQhQqdTBM6KHR6UNHJnrnqaMeyYi8r5hEA5Ilk3Pt56BRjSzQyRVy/PhnP8ZT257Cb1/5LeYtnIcVN63A3RvuxoIFC6CQKaAQFJDL5H23MgVkggyX2i5N7A8yhFGHk1WrVg3bRWrr1q1JdxqnydaEM+1nMDN1JvKN+YFW0VOB3xdojNpwFLh2BGg8AbScCVyRNZqU/EAAyZkfvF0QaBPCsTZoihBFMXDaw2aF02aF02qF09YTCBrBeX0hwxacZwuGDyt83kHaXI2CIJNBrTdAo9NDre89EmGIvB8eMkJHMXpDiA5yBQfVGw+tUo4z/7R2yHV8fh98oj90ZMMXPKIReNx3xMMnekfV9VitDPTYCQ8T/e8rZH2BY+6mufjGl76BDz74AB9//DHeeecd7PjpDvz7v//7iDqmSCFpLjwx0ad1Pmr4CE999BQAQCPXoNRUihmpMzA9dTpmps3E9NTpyNXnJndoEcXA0Y+Go8C14NR4LHoQkauBrDlA9oK+IJI9jw1TadLwut1wWnuCkxUOW999Vyh09N7vCQSRYMgQx3lV2gHhove+wQC1Tg+NPnAbWKaHWtt3X6MzQKGOb/sK6iOKYihU+BG49fg9YaGjbxr21IgMUMgABQQAga7CCpmibxoicMgE2ajeAxqNBrfddhtuu+02/OAHP8DXvvY1PPXUU0OGk96LG4YHJ88Q3a1jKWnCyUSf1lHJVZiTPgcXuy7C6XPibMdZnO04G7GOVqHFdNN0TE+djhmpMzAjbQZmpM5Ati47MT8obG3BEHKkL5DY2waup9QBueVA/hIgd1EgjGTM5EXTKCl4XE44enpCQcPR0wOXzQpHWPAIhIuw+1YrvO4huq6PgFypDIQIvQEavQEagyH0uHeeWq+PeqvUaBPzM2MKE0URXa4utNhb0GJvQZujDS32FrQ6WtHmaIPX7cUD5gfg6/JBUI78dycIQkTY6B8+wh/H85/fsrIy7NmzZ8h1MjMDw9c3NjbiuuuuAwAcO3ZsgisL4LdP0J3T7sSd0+6Ez+9DfU89artqUdNVE7jtrkFddx0cXgdOtZ/CqfbIKykblAZMS52GGakzMCttFuakz8HstNkwqAzx+wE8zkAIuXa476hId5Q2IjJF4AhI/hIgbzGQvxgwz2YQIUn5/T54nK7QYFrOnp6+cNFjCdzv6YHDaoEzGER653k9Y7+WkSDIAqHCYOy71Qduw0NH4L6+b5nBAKWKFydMFi6fKxQ6eqdme3MgfNhb0WxvRqu9FW7/4O+lXFUufOk+iBAhQIg4oqGUKSNDR1j4GO0Rjlhrb2/Hhg0b8Oijj2LhwoUwGo04fPgwnn32Wdx9991DPler1eL666/Hv/zLv6C0tBQtLS34/ve/H5e6+Y3Uj1wmR4mpBCWmEtxafGtovsfvQb2lvi+wBG8vWy7D6rHiROsJnGg9EbGtQmMh5qTPiZgytZmxeaO6eoD6T4DLHwWma0eiXHBOAMwzgyFkSSCIZM8PXL+FaJR6B83yuFzwOB3wOJ1wO53wuJzwRLl1hz92ueB1OeF2OkIhpHe+Z5iROUdCJpdDYzBCa0wJhoyUUNjQhgUPtd4Q8Vil0SZlTxHqY/fY0WRrQpOtCc325tBtb/hosbegy9U14u2la9KRqc2EWWdGpjYzMOkyka3MRoYjA8UpxTDoDElzit9gMKCiogI/+clPUFtbC4/Hg8LCQmzZsgVPPPHEsM/fuXMnvvrVr2LJkiWYPXs2nn32WXz+85+f8LoFccIuABBb4W1Ozp8/j+7ubqSkpEhdFjw+Dy5ZLqG2qxYXui7gfMd5nO04i2Z7c9T10zXpAwJLkbFo+MFubG3AlYPA5YPA5Q+BphMDxxExZAOFy4NBJHiKRiP9a0TxJYoifB4P3E4HvC5XMBA4Q7cepyMiVAw23+N0BMKDqy+ExHokzv4EQQaVTgttb7gwpgTChNE4YF4giBihNRp5mmSScvlcaLYFAkeTvSkUQsIf97h7RrQtlUyFLF0WsnRZyNZlh+5n6fseZ2ozoZJH74HUOwhbaWlp0g3CFk9DvU69zTJG8v2dNOGk12h+OCl1OjtR3VGNcx3ncLbjLM51nEOdpS5qAymtQhs6HTQvYx4WmBdgmqCC7MongSBy+SOg7dzAnaSVAEU3AMXBKX0au+4mIZ/XExyK2xEKCIHA0Hd0wu2wB0NDcLkjcnlgfl8IGW+DzeEoVGooNRoo1RqogrdKjSY0L3Sr1kCpVkOp0UKpUYfmqfqtp1CrodJoIVcqGTKmiN42Hg22BjRaG9FgbUCDrQEN1obQ0Y8OZ8eItmVQGpCjz0G2Phs5usBteADJ1mUjRZUyrvcWw8nIxCqc8LTOBEnTpGFF3gqsyFsRmufwOlDTWRMKK9Ud1TjfeR4OrwPHW4/jeOvx0LoGvx/zXG4sdLmw0OnGApkMGRmz+4JI0QrAlC/FjzbleT2eQFhwOkKhwt1732kPBASHIxQwQsHD5QxdcCxwPzDf7xt/19LBKJSqYGjQBgJBKBSEPQ7d10YNDr2hQ6XRQqlWQ6FWQ8au4zQMv+hHm6MNDdYGNNqC4SMYQBqtjWiwNcAx2ACOYTRyTUTwyNGHTcHHcW3fN4m8+uqr+PrXvx51WXFxMU6fPh3nivownMSRVqHFgswFWJC5APB5gPpD8F34My7X/gnVPZdxVqXCKbUKp9UqWGUyfKLV4BNtX/LMN6RioVGBBXIHFrrbMNc3+CFI6hN+gbHwq5K6HA54greh+c5geIgIHOHPm7gw0RskVFpt8EhDIBCogveVmuCFyILhonddVdi64bdKtSbqNUKIohFFEW6/Gw6PAw5v32T32uH0OiPm9U5OrxN2r33A/FZ7KxptjfD4h29LZNaakafPQ64hF3n6POQZ8pCrzw0FkPEe8aDB3XXXXaioqIi6TKmUdhwchpN4sjQCNf8DXPgzcHE/4LJADmAagGkQcEfqXGDaKniLrket0Yzj3TU42XYSJ1tP4mL3RVyzXsM16zW8c+kdAIBCpsDc9LlYYA4EnnJzOQqMBVPmD9nn9aC7pRmdjdfQ2XANnY0N6G5tjggSbmfg6qbiBAzFHLpyqUYLpVYLtVbXFyiCVzRVhsKFNjJIaCPnK9UayBX8c6Thefwe2D32UHBweB2Rjz2OiGURU5TgEf441kOWywQZsnXZyNXnhkJHviE/FERyDblQy9nrSSpGoxFGo1HqMqJKmk/DpLy2TvDoCGreBS78T2AI+HDadGDGGmDmbcD0zwF6M4DAL2U2gNk5i/GF2V8AAPS4e3Cq7RROtp3EidYTONl2Eh3OjkB4aTsJVAc2maHJwLKcZaGpJKUkqcOK6Pejp6M9EEAaG4K3gam7pXl0bSsEISw4BIbm7g0V4ZdGDw8SgVtdZNgILuNRCRqK1++F3WuPCA6h+/3mDbpelPDhHeyq3jGklCmhVWhHNGkUmsh5Si0yNBnIM+QhS5cFpYwj0dLosUFsrPUeHal5F6jdD7i6wxYKge68M24LBJK868Y87LsoirhmvRYKKidaT+Bsx9kBh1EztZlYmrMUy3KWYXnOchQZixIyrLjsdnRcq0dHw9WwIyHX0NnUOORgWUq1Bmm5+UjLzUNaXj5MWTnBETXDLpUevFWq1Ow2SlF5/V7YPLaIoBB+a/PYQiGh//zeoxX9nzfUmBmxoJApoFVooVPoArdKXSgg9M7rDQsD5vU+VkYPHApZ0vzfGjdsEDsybBCbSLrqgVP/FZiaIsc6CRwduTUQSGbcGjo6Ml6CIKDAWIACYwHumHYHAMDtc+Nk20kcajqEw02HcazlGFodrXin7h28Uxc4FZSlywocVckOhJV4nwZyWq1ov1aP9qtX0HHtCtqv1qPt6hVY26OMXBskk8thys4NBJDcfKT3hpHcfOjT0hMybNHEcvvcsHlsoak3KPQPGOHL+wcKu6dvnYkMEgqZAjqFDjqlLiJI6BS60PxQYAjeH2p+761SziMSNHkxnIyVrR04swc4+TvgykeRy/IWB46MzLgtcKQkTj0bVHIVlmQvwZLsJUB5YIyAE60n8GnTpzjUdAgnWk+gxd6Cty++jbcvvg0AyNZlh46qLM1ZigJDbMKKo8eC9voraA8GkParV9B+rR62zsG7BurT0pGRX4C03ILA0ZC8QAAxZWbzFMok5fP70OpoRYO1Ades19BgbUC7sz10pCIigHjssHkD9yfq1IZKpoJOqYNeqY8aIvRKfeiIQ3jg6J3fGyJCz2eIIBoTntYZDZcVOPcOcPJ1oHYfEPqAFIDiG4EFDwBz7gQMmfGta4ScXieOtx7Hp02f4tOmT3Gi7cSAD/l8Qz5WFqzEqsJVWJq9dNgPVo/bhfYrl9FyuQ6tl+vQXn8Z7dfqYe/uGvQ5xoxMZBQUIqOgEOn5RcgoKEJGfiE0BnYHnGx6w0dv8Oi97b3fZG8aV9DQyDWh0NAbEHrv9wYEvVIfWEcRuA0PFOGhQqfUsX0EDYqndUZmyp3WkaxBrM8D1OwLBJJzfwQ89r5lOQuBBRuA+fcBpoL41jUGGoUGFbkVqMgNdB1zeB041nIsFFZOtZ3CNes1vFb9Gl6rfg0GpQE35N2AVYWrcFPeTVA6/Gi9XBcKIq2XLqKzsWHQnjApmdnBEBIIHxmFRUjPK4Rap4vnj00TSBRFdLo6Ud9Tj6s9V1HfUx8RQJpsTfCKQ4cPhaBAtj4b+YZ85BnykKnNjAgcvaEiPHT0Bgy2jSCanHjkJBq/H6j/OBBITu8BHGGnItJKA4FkwQNA5uyJ2b9E7B47Pm78GO9ffg9Hz34IeasdaT0qpFuUSO9RQeOOfmpFm2JCZnFpYCoqgbmwGOl5BVDyv4tJwev3otHWGAofoVtr4NbmsQ35fIWgQI4+JxQ+8gx5ofv5hnxkajOHv3wDJSy/X4TH5YPH6YPH5YXH5YMgE6BUyaFUByaFWg6ZLLnbhiXrkZNNmzahq6tr2CsQx8qUO3Iy0RwWF6w1p2Fq+m+oqn8LWK72LdRnAfPvD4SS/MWTaoh4n9eDtiuX0VhzHk0159FyqRapV+uxyqcDEHmEww8RFoMHHUYP/Jk6TJu5ECvKb8PyGTdxMLgk5/a5Ud9Tj0uWS6i31EeEj0Zr47BHP7J0WSg0FqLQWIh8Q35o6j0SwvCROPrChBduZyBUuF3eQLjonecKTG5ncL7LF5zv7bvvDNz3ukfWnV+ukAWDiiwiuPSGl955it75KjmUmrD76sBjRb/nyhXsgTcZMZwEXXr9Zfzl01kAboZWNh+pylaYzCqYppUgddZcmHIMMJm1UCVxMBH9fnQ2NaCp5jyaai8Ewsjli1GvCKvW6fuOhhSXAlkGnBRrUdv0IQ41HYLH34a/Oq7gPz9+C8ajRtyUfxNWFazCTQU3IUWVgF28CX7RjyZbEy5ZLuGy5TIuWy7jkuUSLnVfQqOtccgBuFQyFfKN+aEAUmgsRIGhIBBGjPkcSGuC+Xz+QIgIhgV3xP2+W7fDC3fvUYxg0AgtDwaSkYaJ0RJkAlTB8CD6RXjcPnhdvtC1In1eP3xePzD0gbZRk8mFiLASfVL0BZ1ok6ZvPYUqEJ6E4Y70iGLkaf54Uupi/k9ySUkJvv3tb+Pb3/52aN6iRYtwzz334Ic//GFM9zUSDCdBvtTZ0Mq64PCb4PCnweFKQ+M1ANcAfHA2tJ4uRQVTlhapWbqIW1OmDkp1Yv132NPRFhFEmi/WwGUf+Mmg0RuQM2MWcmbMQnbpDGQWlyIlM2tAr50FuAEPLfgKbB4bPmr4CPvr9+ODqx+g09UZ6q6slCmxunA17p5xN27Iu4FtAuKs92JqvcGjN4TUddehvqceLt/gY8bolXqUpJSgyFiEAmMgePTeZumykuYS8YlCFEV4PX64Hf3CQ+h+b3Dou+92+oLreENHJ9xOH3ye2AeK3jCh1Mih0iigVMuDjxVQhb60+77UVZq+L3lV6AtdEZwvh1wpG/CZEbhCth8ed9/RGK+r77HX5Qvcd/pCYcbTO88V9jh8Ci7zewOpx+8T4bJ74bLHsAeXgIijNUq1HLp0OfKXKNDT4YRbLULw2mF8aVrs9jkaTzQAKr00+44TfnMEzb/3Fsz/Gytcoh7dLXZ0tzjQFbztbrWjq8UBp9UDu8UNu8WNxpruAdvQm1RIzdEhLUePtLBbfap6wsfi8DidaLhQjaaa82isOY/m2vOwRum2q1CpkVU6HTnTZyJnxizkTp8FU3bOqOrTK/W4rfg23FZ8G3x+H062ncR79e9hf/1+XOy+iD9f/jP+fPnPMGvNWD9tPe6ecTemp06P4U9Loiii1dGK2q7awNRdi4tdF1HbXYtu18D3Zi+FTIEiYxGKU4pRklKC4pTiwH1TCTI0GRwzJsjn9feFBEcgMLgcgSDhcoQFCEe/QOGIDBqiP7ZN+uQKGVTaYFjQKgKhojdcBG9VoTARHix6l/cFimhhItYEQYBCFTiaoo1xZzyfzx89vAw3hU5beQfOc/sAEYCI0DJYAvvTWGTIXmCC2+GF6JEBHg+kGvhdFEVM9r9UhpNeMjmgMUENIKs4BVnFA09NuOwedLU4AuGltS+8dLXY4bJ5Yet2w9btxrVzXRHPU2rkSMsOhpVcHdKyA7cpmVrI5WP7b9Rlt+HauTO4euYUrp49heaLNfD368kkyGQwFxaHgkjO9FkwFxbHdMwQuUyORVmLsChrEb6z5Duo7qjGmzVv4u2Lb6PN0YaXT7+Ml0+/jAXmBbh7+t24vfR2mNSmmO1/shNFEc32ZtR21aKmqwYXuy+itisQRHo8PYM+L0efEwof4be5htxJfzTL6/FFBAp3cAq/73b44HKGPw5f7gucfogVAaHQEAgUvWFBAZVW3m9Zv5ChCV+f7SvCyeUyyHUyqHWx6/4t+oNHu5xeeN2+vvY3Th+cLidc8k7oTCqolGqIPiV6vnkRol+EKAKiP/D32nvrD87HRPQ5afRBkPVAkAUCoCATIAgI3gqQyYTAMpkArydwOs1p80CQCZCFP6f3eQn4T0nSfEolwrV11DolskuUyC4ZGFycNg+6Wuzoarajs9GOziYbOpsCIcbj9KHlcg9aLkd+mchkAkxZWqTl6JGao0N6jg7peQak5eqgUEYGCLulG9fOnsbVs6dw9exptFy+OOBNb8gwI3/WXOTOnI3s6TORXTI97j1m5qTPwZzlc7BtyTYcuHYAb9a8iQ+ufhC6BtC/fvqv+FzR53D39LuxIm/FpP+iHClRFNFib8G5znO42HUxIojYvdHPa8sEGYqMRZieOh3TTNNCtyWmEmgV2jj/BLEhioHGmm5H4DB9b2Bw2fvd9t53Rs5z270xDRZ9RyiCt8EAodL2hQm1NhAc1L3hQht2P3jkIhE//GkgQdbXfqW/QC8UC7QGFTSa3jZWw/+dBQJLb4ARowaYiPnR1vH3bSdiuz4gcKhncN5go2VLm2Pwn1sQAFGAtcuJjkYbBJkAtVYBT5T2iPGSNN8MlZWVqKysDHVFSjQavRI5pSbklEbW5vP60d3qCISVRjs6m3tv7fC6fOhssqOzKfLLRxAAQ5oXKk0L/J56WNvr0NPeMGCfabl5yJ8zHwVz56Fg7vyo7USkopQrcWvRrbi16Fa0O9rxx7o/Yk/NHpzvPI8/XfoT/nTpT8jSZuHO6Xfi7ul3Y1qqROduJeDxeXCx+yLOdZ7DuY7g1HkOXa6uqOsrBAWKUgIhZHrqdEw3Tce01GkoSSlJul5Sol+EvceNnnZnYOpwwtJ7v92Bng5nzBpshgJDKFAooNYFb8PCReCxoi98BMOFUqNI+u6vJD1BECDIY/M+EkUREHtDS1jwGSTk+EURMoUs1Gg4MvBEBp30tAw0NTXC6w4cALA7rKirq4tJ3WORNOEkWckVMqTn6pGeqweu65sviiKsna7QEZaWS01oPH8CXc0X4HXWw9ExsN2ATGGGLrUU5qLZKJw3D/kzC5CRb4DGkNijWmZoM/CVsq/gy3O/HDjtUxs47dPiaMHOUzux89ROLDQvxN0z7sbakrWT6rRPt6sb5zrOobqjOhRGartro46KKhfkKEkpwYy0GZhumh4KI0XGoqQZAt3vF2HvdoUFjr7QYWl3wtrhGtGRDZlMgErXFxzUurAAEXZf3e9+7/oMFjQZCYIACIAAYcRXRVFp5FA65UjLGdiAtjfM+P0i1tx2K371f/8T995/D0wpJvzzM/8EuYSXDWE4kYgo+tHTVof6k4dx8bPDaKmrjVxBEGDMKITGUAy/mAe7NQOiXwOvD2iqA5rqWvEpWgEEGuJm5BsCU4EBWcVGpGbphu8KF2eCIGBuxlzMzZgbOO1zNXja59oHONF2AifaTuC5T5/DF2Z/AZvnb4ZZG5uLJMaDKIpotDXiVNspVHdU43zneVR3VKPZ3hx1fYPSgFlpszAnfQ5mp8/G7LTZmJ46HRpF4g/u5HZ6YWlzwtLqQHebA5bg1N3qQE+7E37f0IeZBQHQp6phzNAEpnQNUjK0MKYHHutMKp4KIYoDQSaEgs73f/D/4Er9Zdz3wD0wmUz453/+Z1y+fEm62jhCbPzYLd24dPwo6j47jEvHj8JpjWyDkj1tJooXlKOgbAHyZs2NGObd7/Ojq8WB9mvW4GRD+zUretqdUfel1MiRWWhEZlFgStTAAgBtjja8ffFt7KnZg5quGgCBa6YkckjpcnbhVPspnGw7iVNtp3Cq7RQ6nNEvalhgKAgFkFnpgUCSp89L2C9f0S/C1u1Cd2tv8HCG3XfA0TP0eWiZTIAhXR0KHsZg8EgJhhF9mnrMDcGJpJKsI8TGW6xGiGU4mUCi34/mizWoO3YEdZ8dRmPt+YhGrGq9HiULF6P0uqUoKV8MfWraqPfhdnjR0RgIKu1XrWit70FbvRXeKOMiJHpgEUURHzZ8iJeOvYQTbScAJEZIcXgdqO6oxsnWQBA52XYSV61XB6ynkCkwK20W5qbP7QsjabNgUCXeBQ1FUYSty4WuFge6mu3obrH39URrc4TGkBiMRq9EilkDU6YWKWYtUoK3pkwt9KlqnlKhSYfhZGQYThI0nDitVlw60Xd0pP/VeTNLpqF00RKUXrcUeTPnxLRbby+/z4/OJjtar/Sg5UoPWi9bRhxYsktSYMrSSvpffbSQopar8YXZX8Cj8x+d0JDi9XtR21UbCiGn2k6hpqsGPnFgL7GSlBLMN8/HfPN8LDAvwOz02Qk1UqooinBaPf0CSF8IGarhqUwmwJARFj7MGpjCQohayzPCNLUkczi5cuUKysrKBl1+5swZFBUVxWRfDCcJFE7slm6cP/hXVH90AA3nzkZcpVel1aJ4wXWBoyOLFsOYLs1//6MJLFqjEjnTTMiZbkLu9FRkFRkhV8b/MLwoivio4SP84tgvJiykOL1OnGw7icPNh3Gk+QhOtJ6Awzuwy51Za8YC8wIsMC/AfPN8zDPPS5hh+n1eP7pa+rqwdzUHurR3tzqGHDVTkAlIMWuQmqXrG/E4WwdTphaGNDVkPPVCFJLM4cTr9eLSpUuDLi8pKYFCEZt/OBhOJA4nHqcTNUc+QfVf9+PS8aMRA6BlFBSh9LqlmHbdUuTNngu5IjF7WkQLLK1XrAN6U8gVMmQVG8MCiwlaY/y6sIZCyvFf4ETr+EKK3WPHsZZjoTBysu0kPP7INhR6pR7zM/qOiMwzz0O2LlvyNiIelw9dzXZ0NNrQ2WgL3AbH0hl0JFIBMKSpQwEkNbvvsgtGs4ZtP4hGKJnDSTwxnEgQTvw+Hy6fPIazf92PmkMH4XH1NUbNnjYDc25ciVkVNyIlMyuudcWSz+NHa30PGmu60VjbhaaL3VEbQKZm60JBJWeaCWk5ugn/8h4spGyYtQGPzn8UmbrMAc+xuC34rPmzUBg5035mwCmaTG0mlmYvxZLsJViSvQTTUqdJeh0Zl92DzqbwEBI4IjJY42cg0F0wLbfvsgmh6z5laqFQJdY1n4iSEcPJyEy5cBI+Quz58+fjFk5EUURTzXmc/et+nDv4QUQbElN2DubetApzblyJjPzCCa9FCqIoorvFgcbabjTVdqGxtnvAoHEAoNYrkDvNhNwZqSicmw5zgWHCGtqKooiDDQdRdbxqQEh5YNYDuNh9EUeaj+BI8xGc6zgHsd8IivmGfCzJXhIKJIXGQkmOivh8fnQ12dF21Rpq0Nx2zQp7t3vQ52iNyuBlEAJBJD1Xj7QcPfSpKsmP7BBNZgwnIzPlwkmveB056Wi4hrN/3Y/qD/ejq6kxNF9rTMHsG27G3JtWIXfmnCn5heC0edB0sTsYWLrRfMky4KqpWqMSBbPTUFiWjsK56TCkxf6PuTek/OL4L3C89fig65WklISOiizNXopcQ27MaxmO3eIOhY/e285G26BjghjS1AMCSFquDlpDco0ISzRZMJyMTKzCCZvch7F1daL6wwM4+9f9aL54ITRfoVZjxtLrMffmVShecB3kMWo4lKw0eiVKFphRsiDQ1sPnDZwKaqrtxrVznbh2vguOHg8uHG7BhcMtAIC0HB0K5waCSt6sVKg0438NBUHADfk3YEXeChxsPIiXjr2E463HMSNtBpZkLcGSnEAYiWcXZJ/Xj84mWzCA2NB+tQdt12xwWKIfDVFp5MgoMMAcHEAvI9+A9Fw9VOwNQ0RTGD8Bgz5547f4cPf/DfW0EWQylCy8DnNvWoXpy66HSpOcF1KLB7lCFrqu0KI1RfB5/Wiu60b92U5cOdOB1suW0DWETrx3FTKZgJzpJhTOTUPh3AxkFhvHNS6GIAi4Ie8G3JB3A7x+b9wuJuj3+dHRaEfLZQtaLlnQcrkH7des0Y+GCEBqlg4Z+Xpk5BtgDgYRY4ZmSh59IyIaCsNJkLmoGKLoR+7M2Zh70yrMXnEzdKZUqctKSnKFDHkz05A3Mw0Vd02D0+bB1epO1Fd3oP5MB3ranWi40IWGC1345A91UOsUEaeAUsxjD4ITFUxEv4iuFnvw6tIWtFzqQVt9T9Su2CqtAhn5epgLjKHb9Dx91CudEhHRQAwnQSXli/HVn/4SqTnxb48w2Wn0SsxYkoUZS7ICDWxbHbh6tgP1ZztxtboDLrsXtZ+1ovazwLWCMouMmL44E9Ovy0Jqtm6YrceeKIroaXf2BZHLFrRe7oHbOXAgNqVGjqxiI7KKUpBVkoKsYiOPhhBRwti0aRNeeeWVAfPXrl2LvXv3SlDRyDCcBMkVSgaTOBAEITTmxvyVBfD7/Gi53IP6s4GjKk0Xu9F6pQetV3rw8Z6LyCgwYMbiTExfnBX1qpqx4HX70HzJEuw+3Y3WK5ao3acVShnMhYFh/3uDSCIN/09EFM3tt9+Ol19+OWKeWp04o1lHw3BCkpLJZYHB3aaZsOxvSuHocePisVbUHm3B1XNdaL8a6N3yyR/qkJ6nx/TFWZi+OBMZeWO/Xk2ot1FNFxoudKPlimXAtWRkcgEZ+YaIIJKeq+eoqUQEIHCENdpo0vGgVYzuEiNqtRo5OTmj2selS5dQWlqKzz77DIsWLQIAdHV1IS0tDe+99x5WrVo1qu2NFsMJJRStUYV5N+dj3s35cFo9uHg8GFTOdqKjwYaOhjp8+lYd0nJ0mL44cKooPU8/5B+qtdMVCCI1XWis6UJ7gw39hj6BzqRC3oxU5M4wIbvEhIwCPRRKthEhougcXgcqXquQZN+fPPQJdMr4n/KOJ4YTSlgagxJlN+ah7MY8OG0eXDrRhpqjLag/04HOJjsO//ESDv/xElKzdZh+XSamL8mCucCArmY7Gi50hUa5tbQNHFk1NVuH3BmmUCBJMUt7sUMioony1ltvwWCIPNr8xBNP4IknnpCoouExnFBS0OiVmLMiF3NW5MLl8OLSiTbUHm3BldMd6Gq248jeyziy9zIUKtmAq+0KAmAuNIaCSO6MVOhSOJgZEY2dVqHFJw99Itm+R2P16tV46aWXIualp6fHsqSYYzihpKPWKjC7IgezK3Lgdnhx6VQbao+24vKpdnjdfsiVMmSXpCBvZiCM5EwzxWTQNyKiXoIgJM2pFb1ejxkzZozqOTJZoH1d+CDyHs/AjgITJe6f2F1dXVizZg28Xi+8Xi8ee+wxbNmyJd5l0CSh0iowa1kOZi3LgdvphaXNibRsHeRKNlwlIhqrzMzAhVQbGxtx3XXXAQCOHTsWt/3HPZwYjUYcOHAAOp0ONpsN8+fPx3333YeMjIx4l0KTjEqjgLlg7L14iIgmI5fLhaampoh5CoUCZvPgl/bQarW4/vrr8S//8i8oLS1FS0sLvv/97090qSFx//dSLpdDpwscCnO5XBBFEUl27UEiIqKksXfvXuTm5kZMN91007DP27lzJ7xeL5YsWYJvf/vbePrpp+NQbcCow8mBAwewfv165OXlQRAE7NmzZ8A6VVVVKCkpgUajQUVFBQ4dOhSxvKurC+Xl5SgoKMA//MM/DJneiIiIaGx27doVOggQPlVXVw/73Llz5+Kjjz6C3W7HZ599httuuw2iKE74GCfAGMKJzWZDeXk5qqqqoi7fvXs3tm3bhqeeegpHjx5FeXk51q5di5aWltA6qampOH78OOrq6vDaa6+hubl50P25XC5YLJaIiYiIiCavUYeTdevW4emnn8a9994bdfnzzz+PLVu2YPPmzSgrK8OOHTug0+mwc+fOAetmZ2ejvLwcH3zwwaD72759O0wmU2gqLCwcbclEREQU5tVXX4XBYIg6zZs3T+ryYtsg1u1248iRI3j88cdD82QyGdasWYODBw8CAJqbm6HT6WA0GtHd3Y0DBw7gm9/85qDbfPzxx7Ft27bQY4vFwoBCREQ0DnfddRcqKqKPcKtUKuNczUAxDSdtbW3w+XzIzs6OmJ+dnR06v3X58mX87d/+bei817e+9S0sWLBg0G2q1eqEv0ARERFRMjEajTAajVKXMai4dyVevnz5mPpKV1VVoaqqCj7fwMvWExER0eQR067EZrMZcrl8QAPX5ubmUV8Rsb/KykqcOXMGn3766bi2Q0RERIktpuFEpVJhyZIl2LdvX2ie3+/Hvn37sGLFiljuioiIiCapUZ/WsVqtqKmpCT2uq6vDsWPHkJ6ejqKiImzbtg0bN27E0qVLsXz5crzwwguw2WzYvHnzuArlaR0iIqKpQRBHOTzr/v37sXr16gHzN27ciF27dgEAfv7zn+O5555DU1MTFi1ahBdffHHQVsGjZbFYYDKZ0N3djZSUlJhsk4iIaChOpxN1dXUoLS2FRqORupyENdTrNJrv71EfOVm1atWww81v3boVW7duHe2mJSWKIgRBkLoMIiKiKS9pLt1aVVWFsrIyLFu2bEK277rYjab/9zA636yB43Qb/A7vhOyHiIgonlpbW/HNb34TRUVFUKvVyMnJwdq1a/Hhhx9KXdqg4t6VeKwqKytRWVkZOiwUa66aLnhbHfC2OmA72AgIgLLACM30VKhnpEJdnAJBmTRZjoiICABw//33w+1245VXXsG0adPQ3NyMffv2ob29XerSBpU04WSiGW8pgKrAAGdNVyioeOp74KnvQc/+ekAhg7okBeoZqdDMSIUyzwBBxtNARERTkSiKEB0OSfYtaLUjbobQ1dWFDz74APv378fKlSsBAMXFxVi+fPmwz33ooYfg8/mwe/fu0DyPx4Pc3Fw8//zzeOSRR8b2A4wAw0mQTKuAdp4Z2nmBKyR7u11wBYOKs6YL/h536LEFgKBVQDPdFDiqMiMNigwN26wQEU0RosOBc4uXSLLv2UePQNDpRrRu7/Vy9uzZg+uvv35UI64//PDD2LBhA6xWKwwGAwDgT3/6E+x2+6DX14uVpAkn8e5KrDCpoViSDf2SbIiiCG+LPRRUXBe7ITq8cJxqh+NU4LCYPFUN9fRUaOakQzM7DTKVPC51EhERDUahUGDXrl3YsmULduzYgcWLF2PlypX44he/iIULFw753LVr10Kv1+ONN97AV77yFQDAa6+9hrvuumvCh74fdVdiqSVCV2LRJ8J9rQeuC11w1XbBddkC+MJeRoUMmllp0M7LgHZuOmQ66S+iREREY9e/i2yynNbp5XQ68cEHH+Djjz/GO++8g0OHDuHf//3fsWnTpiGfV1lZidraWuzduxc2mw1ZWVn4zW9+g/Xr1w+6n1h0JWY4iQG/2wf3JQuc5zvhONMOX4ezb6FMgHqaCdr5GdCWmSFPUUlXKBERjclkG+fka1/7Gt59911cvnx5yPU++ugjrFy5EteuXcO7776Lxx57DI2NjYNeuViycU5oIJlKDs2sNGhmpcH0N6XwNNnhONUG5+k2eJrsobYqXW/WQlVohHa+Gdp5GVBkaKUunYiIpqCysjLs2bNn2PVuuOEGFBYWYvfu3XjnnXewYcOGQYNJLDGcxJggCFDl6qHK1cN0WzG8bQ44TrfDcboN7is9oan7j3VQ5uoDp37mm6HI1rFBLRERxVR7ezs2bNiARx99FAsXLoTRaMThw4fx7LPP4u677x7RNh566CHs2LED58+fx3vvvTfBFQckTThJ1mvrKMxaGFcWwLiyAL5uFxxn2uE43Q7XxS54Gm3wNNpg+Z8rUGRooJlnhq48E6p8g9RlExHRJGAwGFBRUYGf/OQnqK2thcfjQWFhIbZs2YInnnhiRNt4+OGH8eMf/xjFxcW48cYbJ7jiALY5kYjP5oGzuiNw+udCJ+Dt+zUoCwwwVORCW57JXj9ERAlgsrU5mShsc5Lk5Hol9MGuyn6XD85zHXCcbIPjTDs8V63ovHoBXW9dhG5xFgwVuVDm6KUumYiIKC4YThKATC2HbmEmdAsz4bO6YT/SDOuhJvjanbAdbITtYCNUxSnQL8+BbqEZgpJHU4iIaHxeffVVfP3rX4+6rLi4GKdPn45zRX0YThKM3KCCcWUhDDcXwFXbBdsnjXCc6YD7sgXuyxZ0vXUR+sVZ0FfkQpk1shECiYiI+rvrrrtQUVERdVk8euQMJWnCSbI2iB0rQSZAMzMNmplp8FncsB1ugu1QE3xdLlg/bID1wwaoSlMCbVPmmyEoeFFCIiIaOaPROOEjvY4VG8QmEdEvwnm+E7ZPGuGs7gCCvzmZXgHdkmzol+dCaebYKUREscYGsSPDBrFTkCAToJ2TDu2cdHi7XLB92gT7p03wWdywHrgG64Fr0MxJh+n2EjagJSKipMVwkqQUqWqYbitGyueK4KzugO1QI5znO+Gs7oDzXAd0S7Jhuq0YctPIr0BJRESUCBhOkpwgFwKjzM7LgKfNAcufLsFxsg32w81wHG+F4aZ8GFcWQKbhr5qIiJIDv7EmEaVZi4yH58J1xYLut+vgvmxBz3v1sB1qQsqaIuiX50CQs+EsERElNn5TTULqohRkfmMhMr48FwqzFn6bB11v1qL5J0fhONWGJGsDTUREU0zShJOqqiqUlZVh2bJlUpeSFARBgHa+GdnfWYzUu6dDplfC2+ZA+/89i9YdJ+C6bJG6RCIimmCbNm2CIAgDpttvv13q0obErsRThN/pRc/7V2H96zWIHj8AQLvADNPaEijY/ZiIaEjJ2pV406ZNaG5uxssvvxwxX61WIy0tLeb7Y1diGhWZRgHT2hIYrs9F97uXYT/SHLiWz+l2GK7PhfHWIsj10o4ISESULERRhNftl2TfCpUMgiCMeH21Wo2cnJxR7eOhhx6Cz+fD7t27Q/M8Hg9yc3Px/PPP45FHHhnV9kaL4WSKkZvUSH9gFow35aPrj3Vwne+E9aMG2I40w7i6EMYb83jtHiKiYXjdfvzbY+9Lsu+//elKKNUT+zn98MMPY8OGDbBarTAYDACAP/3pT7Db7bj33nsndN9AErU5odhS5uiR+eh8mL86H8pcPUSXD5a9l9D0k6PwNNukLo+IiGLkrbfegsFgiJieeeaZIZ+zdu1a6PV6vPHGG6F5r732Gu666664DHnPIydTnGZmGtTfSoX9eCsse+vg63Ci5aXjyPhyGTQzUqUuj4goISlUMvztT1dKtu/RWL16NV566aWIeenp6UPvQ6HAF77wBbz66qv4yle+ApvNhjfffBO/+c1vRl3vWDCcEASZAP11WdDMSkP7f56B+7IFbTtPIe3+mdAvyZa6PCKihCMIwoSfWokVvV6PGTNmjPp5Dz/8MFauXImWlha8++670Gq1cevlw9M6FCLXK5H5tQXQLjQDfhGdr59H97uXOS4KEdEUdMMNN6CwsBC7d+/Gq6++ig0bNkCpjE/HCR45oQiCUob0L86BJf0SevZfRc++K/B1OJF2/0wICmZZmhiiT4SrrhuO020QlHKY1pZAkI+8NwIRDc7lcqGpqSlinkKhgNlsHva5Dz30EHbs2IHz58/jvffem6gSB2A4oQEEmQDT7aWQp2vQtacG9s9a4Ot2IePLcyHTsbsxxYbo88NV2w3HqTY4TrfBb/OGlglKGUy3FUtYHdHksXfvXuTm5kbMmz17Nqqrq4d97sMPP4wf//jHKC4uxo033jhRJQ6QNIOwVVVVoaqqCj6fD+fPn+cgbHHiPN+J9lfPQnT5oMjUwrx5PhTpyTMAESUW0euHs6YrMMbOmXaIjr5AItMpoCpOgfNsByAA5q8tgGZ6qnTFEoVJ1kHY4i1Wg7AlTTjpxRFi48/daEP7rlPwdbshMyiR8UgZ1EV87WlkRI8fzgudgSMkZ9ohOn2hZTKDMnBV7QVmqEtTIcgFdLx+HvYjzZClqJD92GIODkgJgeFkZDhCLMWNKlePrMpFaNt1Gp4GG1r/7SQyvjgb2vnDn6+kqUn0+OA81wn7qTY4z3ZAdIUFEqMS2vlmaOeboS41QZBFti1JvXs63Fcs8LY60Pn6eWRsLBvVaJhENLxXX30VX//616MuKy4uxunTp+NcUSSGExoReYoamV8vR8drZ+E8FzjVY7qjFIab8vnFQQACjVqd1e2wH2+Fs7oDYtjQ3vIUFbQLzNAuMENVlDIgkISTqeRI/9IctPziGJzVHbB+2ADjTfnx+BGIpoy77roLFRUVUZfFq0fOUBhOaMRkajkyHpmHrv+uhe3jRnS/XQdvhxOpd05nz4opzNfjhu1QE2yHGuHrdofmy1PVgSMkC81QFRiHDCT9qfIMSP2baeh6sxbd79RBXWqCKt8wEeUTTUlGozEuI72OFcMJjYogF5B693Qo0jXofqcOtoON8HW6kP6lOZAlyYBENH6iKMJ9pQfWgw1wnGwDfIGmazK9ErolWdAtyISywDCuo2r663PhvNAF55l2dPy6GlnfWgSZmh9ZRFMB/9Jp1ARBgPGWAsjTNOjYfQ7O6g60/n/HYd40D/IUtdTl0QTyu31wHGuF9WADPI1912BSFRmhX5EH3QJzzMbDEQQB6Q/MRPNPrfC2OdC1pxbpD86OybaJKLExnNCY6RaYITep0P7KGXgabGipOg7z5nlQ5uilLo1izNvmgPXjRtgON0N0Brv/KmTQLcqEYUXehJ1ykemUSP/SbLT+fydg/6wF6hmpvKQC0RTAcELjoi5KQdbflaNt12l4Wx1o2XEcOd9ZArmJR1CSnegX4TzXAevBRrjOd4bmy9M1MFyfC92S7Lh081WXmJCyphiWdy+j680aqIqMUGbqJny/RCQdhhMaN0WGFlnfLEfrL0/C02hDz4cNSL2jVOqyaIx8Ng/sh5tg/TjQnggAIACaWWnQr8iDZlbaqBq3xoJxdSFctV1wXewOtD/5u0W8nALRJMZwQjEh0ymRsrYE7btOw/ZJI1I+VwiZhm+vZOLrdqH73cuwH2sFvIFuwIJWAf2ybBgqcqHI0EpWmyATkP7F2Wj+6VF4GmzofqcOqeunS1YPEU0sfntQzGhmpUGRpYO3xQ7bJ00wriyQuiQaAdHjQ88H19DzXj1ETyCUKPMNMFyfC215JmSqxOiFJU9RI23DbLTvOg3rhw1QT0+FtixD6rKIEtqmTZvQ1dWFPXv2SF3KqMT9uGh9fT1WrVqFsrIyLFy4EK+//nq8S6AJIsgEGG8JDJbV8+E1iF7/MM8gKYmiCPvJNjQ9fwSWP1+G6PFDVZyCzG8sRNbWRdAvy0mYYNJLOycdhuCAbJ2/Ow9vt0viiohoIsT9yIlCocALL7yARYsWoampCUuWLMEdd9wBvZ49PCYD3aIsdP/5MvwWN+zHWqFfyp4VicjdaEP3f9fCdbEbACA3qWBaVwpteWbCj/hrur0ErrpueK5Z0fGbc8jcsiDubWCIRFGE1yVNOFao1TH9O/23f/s3/PCHP8TVq1chk/Uds7j77ruRkZGBnTt3xmxfIxX3cJKbmxu6dHNOTg7MZjM6OjoYTiYJQSGD8cY8dL9zCT0fXIVucRa/OBKIz+aB5c+XYDvUBIgAFDIYVxbAuLIg4Y6SDEZQyALD27/4Gdx13ej5yxWkrCmWuiyaYrwuF17c+IAk+/77V34HZQwvPrhhwwZ861vfwnvvvYdbb70VANDR0YG9e/fij3/8Y8z2MxqjPq1z4MABrF+/Hnl5eRAEIep5rKqqKpSUlECj0aCiogKHDh2Kuq0jR47A5/OhsLBw1IVT4tJX5EJQy+FttsMZ1gWVpCP6/Oj56zU0PXcYtk8CwUS70Iyc/7UEptuKkyaY9FKatUi7dwYAwLLvSugIEBGNXlpaGtatW4fXXnstNO93v/sdzGYzVq9eLUlNoz5yYrPZUF5ejkcffRT33XffgOW7d+/Gtm3bsGPHDlRUVOCFF17A2rVrce7cOWRlZYXW6+jowCOPPIJf/vKXQ+7P5XLBFXbozGKxjLZkijOZRgF9RQ6sB66h5/2r0M5Jl7qkKc15vhNd/10Lb6sDAKDM1SN1/XSop5kkrmx8dNdlwXmhE/ajLej4TTWyHlscl3FXiIDAqZW/f+V3ku071h5++GFs2bIFv/jFL6BWq/Hqq6/ii1/8YsRpnngadThZt24d1q1bN+jy559/Hlu2bMHmzZsBADt27MDbb7+NnTt34nvf+x6AQOC455578L3vfQ833HDDkPvbvn07fvSjH422TJKY4cZ8WP/aAHddN9z1PVAVJu4FpiYrT6sd3W/XwVndASBw3ZuUtcXQL82ZNKfaUu+eAfeVHnjbHOj83XlkPFKW8G1maHIQBCGmp1aktn79eoiiiLfffhvLli3DBx98gJ/85CeS1RPTSOR2u3HkyBGsWbOmbwcyGdasWYODBw8CCDQi2rRpEz73uc/hK1/5yrDbfPzxx9Hd3R2a6uvrY1kyTRCFSQ3dokwAQM+BqxJXM7X4nV50/fEiml84GggmMgGGm/KR892lMCzPnTTBBAhcKTv9oTmAXIDzbAdsHzVIXRJRUtJoNLjvvvvw6quv4te//jVmz56NxYsXS1ZPTBvEtrW1wefzITs7sodGdnY2qqurAQAffvghdu/ejYULF4baq/zqV7/CggULom5TrVZDPQGHsGjiGW8pgP1oCxyn2uBtd0g6iNdUIIoi7Ieb0f2nS/BbPQAAzew0mO6cNqmHe1flGZB6Rym6/vsiuv5YB1WpCaq8ibnWD9Fk9vDDD+POO+/E6dOn8eUvf1nSWuLeW+emm26C3z/68S+qqqpQVVUFn883AVXRRFDm6KGZnQbnuU70fHANaffMkLqkSUv0i+j6Qy1sHzcCABSZWpj+ZtqUae+jvyEPzpouOM92oOO1amR/ezGHtycapc997nNIT0/HuXPn8NBDD0laS0z/es1mM+RyOZqbmyPmNzc3IycnZ1zbrqysxJkzZ/Dpp5+OazsUX4ZbAqPE2g43w2d1S1zN5CT6RHS+fj4QTAQgZW0Jsh9bPGWCCRA4/5/2wCwIGjm8bQ64G6xSl0SUEHbt2jXi0WFlMhkaGhogiiKmTZs2sYUNV0ssN6ZSqbBkyRLs27cvNM/v92Pfvn1YsWJFLHdFSUI9zQRlgQHw+mE92Ch1OZOO6PGj/dWzsH/WAsiA9AdnI2V14ZQ8aiDXKyHr7a0jSlsLEY3PqD/BrFYrjh07hmPHjgEA6urqcOzYMVy5cgUAsG3bNvzyl7/EK6+8grNnz+Kb3/wmbDZbqPfOWFVVVaGsrAzLli0b13YovgRBgLH36MnBBvjdPC0XK36XD22vnIbzTDugEJDx5TLoFmUN/0QimlKuXLkCg8Ew6NT7/Z1IRt3m5PDhwxGDsmzbtg0AsHHjRuzatQsPPvggWltb8eSTT6KpqQmLFi3C3r17BzSSHa3KykpUVlbCYrHAZEru8RmmGu08M+TpGvg6nLAfaYZhRZ7UJSU9v92Dtl2n4b7SA0ElR8bGMmimp0pdFhEloLy8vNABhcGWJ5pRh5NVq1ZBFIc+Zrp161Zs3bp1zEXR5CLIBRhvzkfXm7Xo+eBaYATZSdSdNd58PW60/cdJeJrsELQKZD46n+PIENGgFAoFZsxIrg4JSXNimqd1kptuSTZkOgV8HU44TrVJXU7S8nY60brjODxNdsiMSmR9fSGDCRFNOkkTTthbJ7nJVHLog6dzeg5cHfboGw3kabWjdcdxeNudkKepkfWNcihzeMFMIpp8kiacUPIzrMgFFDJ4rlp5obZRcl+zonXHCfi63VBkapH5jXIOakdEkxbDCcWN3KCCfmmgYbSVQ9qPmOtSN1p/eQJ+mwfKfAMyv74QChNHTSaiyStpwgnbnEwOxpvyAQFwnuuEp8kmdTkJz3m+E23/cQqi0wdVSQoytyyA3KCSuiwiogmVNOGEbU4mB4VZC+18MwBeEHA49pNtaHvlNESPH5rZaTA/Oh8yTdyvOEFEFHdJE05o8ugdlM1+rBXebpfE1SQm2+FmdLx2FvCJ0C4wI+MrZZCp5FKXRURJZtOmTbjnnnsGzN+/fz8EQUBXV1fcaxoJhhOKO1WhEarSFMAvwvrhNanLSTg9f72Gzt+dB0RAtzQb6V+aMyWHoyeiqStpjhHzqsSTi3FlIdrrTsP2SRNSPlfE0xUARFFEz74rsPxPYChpw035MP1NKQSBA9YRJRpRFCF6/JLsW1DKJv3nQtJ8I3D4+slFMysNiiwdvC122D5phHFlodQlSc55pj0UTFJuK4bxc4WT/gMo1vhqUbyIHj8anvxIkn3n/dMNECb5ad6kCSc0uQgyAcZb8tH5uwvo+bABhhvzp/ypC9vhZgCA4YY8pNxaJHE1SY6D/BGFvPXWWzAYDBHzEv0sBMMJSUa3KAvdf74Mv8UN+7HW0BgoU5Hf7oHzfCcAQF+RI3E1RDQcQSlD3j/dINm+R2P16tV46aWXIuZ98skn+PKXvxzLsmKK4YQkIyhkMN6Yh+53LqHnwFXoFmdN2QsCOk61Az4RyhwdlNkckp4o0QmCkDSnVvR6/YAL/129mthDOUzt4+gkOX1FLgS1HN4We+jIwVRkP94CANAuypK4EiIi6SVNOOEIsZOTTKMIncboeT+xk/xE8VncoWsN6RZmSlwNEZH0kiaccITYyctwYz4gE+Cu64a7vkfqcuLOfqIVEAFVkRGKdI3U5RARSY5tTkhyCpMaukWZsB9tQc+Bq8h4eK7UJcWV/XgrgEADYSKiWNq1a1fU+atWrYKYwL3akubICU1uvUPaO061wdvhlLia+PG2OeCp7wEEQLvALHU5REQJgeGEEoIyRw9ljh4QAU+LXepy4qb3qIl6RirkRl5tmIgIYDihRKKYWt2IRVEM9dLRlfOUDhFRL4YTIol4Gm3wtjgAhQDt/AypyyEiShhJE07YlZgmG0fwlI52djovfEhEFCZpwgm7EtNkIvrFUHsT7SKObRIzvFAi0aSQNOGEaDJxX7HA1+WCoJZDOydd6nKIiBIKwwmRBEJHTeZlQFAmx/U5iIjiheGEKM5EnwjHiTYAgK6cp3SIiPpjOCGKM1dtF/w2D2R6BdQzUqUuh4go4TCcEMWZ/VjwCsQLMiHI+SdIRBNn06ZNEAQBgiBAqVSitLQU//iP/winM7FH4mb/RaI4Ej0+OE63AwB07KVDRHFw++234+WXX4bH48GRI0ewceNGCIKAf/3Xf5W6tEExnBDFkaO6E6LLB7lJDVVRitTlENEYiaIIj8cjyb6VSiWEUXSbV6vVyMnJAQAUFhZizZo1ePfddxlOiCjAERyuXrsoE4KMY3IQJSuPx4NnnnlGkn0/8cQTUKnGdi2uU6dO4aOPPkJxcXGMq4qtpAknVVVVqKqqgs/nk7oUojHxO71wVHcAYC8dIoqft956CwaDAV6vFy6XCzKZDD//+c+lLmtISRNOKisrUVlZCYvFApPJJHU5RKPmON0OeEUosrRQ5uqlLoeIxkGpVOKJJ56QbN+jsXr1arz00kuw2Wz4yU9+AoVCgfvvv3+CqouNpAknRMmud+A1XXnWqM4XE1HiEQRhzKdW4k2v12PGjBkAgJ07d6K8vBz/8R//ga9+9asSVzY49mMkigOf1Q1XTScAntIhIunIZDI88cQT+P73vw+HwyF1OYNiOCGKA8fJNsAPKAsMUJi1UpdDRFPYhg0bIJfLUVVVJXUpg2I4IYoD+7G+UzpERFJSKBTYunUrnn32WdhsNqnLiYrhhGiCeTudcF+2AAKgKzdLXQ4RTSG7du3Cnj17Bsz/3ve+h5aWFuj1idk4n+GEaIL1NoRVl5ogT1FLXA0RUeJjOCGaYI5gONFyuHoiohFhOCGaQJ5mGzyNNkAuQDefp3SIiEaC4YRoAvWe0tHMSoNMN7qBk2gcRKkLIKLxYDghmiCiKIYNvMZTOkREIyVJOLn33nuRlpaGBx54QIrdE8WF56oVvnYnBKUMmrIMqcshIkoakoSTxx57DP/5n/8pxa6J4sZ+LHAFYk1ZBmQqucTVEBElD0nCyapVq2A0GqXYNSUDMfkbDIh+EfYTbQB4SoeIaLRGHU4OHDiA9evXIy8vD4IgRB3cpaqqCiUlJdBoNKioqMChQ4diUStNdpPoYniui93w97ghaBXQzEqTuhwioqQy6nBis9lQXl4+6Jj8u3fvxrZt2/DUU0/h6NGjKC8vx9q1a9HS0jKmAl0uFywWS8RElOh6xzbRLTBDULDdORHRaIz6U3PdunV4+umnce+990Zd/vzzz2PLli3YvHkzysrKsGPHDuh0OuzcuXNMBW7fvh0mkyk0FRYWjmk7RPEiev2wnwqc0tHylE58TZ6Db0QxsWnTJgiCAEEQoFQqkZ2djdtuuw07d+6E3++XurxBxfRfOrfbjSNHjmDNmjV9O5DJsGbNGhw8eHBM23z88cfR3d0dmurr62NVLtGEcJ7vhOjwQpaigrrUJHU5RDTF3X777WhsbMSlS5fwzjvvYPXq1Xjsscdw5513wuv1Sl1eVIpYbqytrQ0+nw/Z2dkR87Ozs1FdXR16vGbNGhw/fhw2mw0FBQV4/fXXsWLFiqjbVKvVUKt5PRJKHqGxTRZmQpDxX3miyUgURfj9Dkn2LZNpIYyijZ5arUZOTg4AID8/H4sXL8b111+PW2+9Fbt27cLXvva1iSp1zGIaTkbqf/7nf0b9nKqqKlRVVcHn801ARUSx4Xf54DzTDoC9dIgmM7/fgf3vL5Bk36tWnoRcrhvXNj73uc+hvLwcv//97xMynMT0tI7ZbIZcLkdzc3PE/Obm5lBqG6vKykqcOXMGn3766bi2QzSRnGfbIXr8UGRooCwwSF0OEdGg5syZg0uXLkldRlQxPXKiUqmwZMkS7Nu3D/fccw8AwO/3Y9++fdi6dWssd0WUkOzHglcgLs8c1WFXIkouMpkWq1aelGzfsSCKYsJ+To06nFitVtTU1IQe19XV4dixY0hPT0dRURG2bduGjRs3YunSpVi+fDleeOEF2Gw2bN68eVyF8rQOJTqfzQPn+U4AgG5RlsTVENFEEgRh3KdWpHb27FmUlpZKXUZUow4nhw8fxurVq0OPt23bBgDYuHEjdu3ahQcffBCtra148skn0dTUhEWLFmHv3r0DGsmOVmVlJSorK2GxWGAysQcEJR7nmXbAL0KZq4cyK7k/tIhocvvLX/6CkydP4jvf+Y7UpUQ16nCyatUqiMMML75161aexqEpx2dxAwBUhbw0AxElDpfLhaamJvh8PjQ3N2Pv3r3Yvn077rzzTjzyyCNSlxeVJL11xoKndYhoxJL/8kxEMbN3717k5uZCoVAgLS0N5eXlePHFF7Fx40bIZIk5gnXShBOe1iEiIhqdXbt2YdeuXVKXMWqJGZloauN/vUREUxrDCSWMxOzQRkRE8ZY04aSqqgplZWVYtmyZ1KUQERHRBEqacMIRYomIiKaGpAknREREUhtuKI2pLlavD8MJERHRMORyOQDA7XZLXElis9vtAAClUjmu7SRNV2KOc0JERFJRKBTQ6XRobW2FUqlM2PFBpCKKIux2O1paWpCamhoKc2OVNOGE45wQEZFUBEFAbm4u6urqcPnyZanLSVipqanIyckZ93aSJpwQERFJSaVSYebMmTy1MwilUjnuIya9GE6IiIhGSCaTQaPRSF3GpMeTZkRERJRQGE6IiIgooSRNOOEIsURERFND0rQ56e2t093djdTUVFgsFqlLohjrcVjhdtmgtPbAYxlfH3kpWGw96HHZ4LNbIef7UxI9Tiu8LifUPd1QW3i1JqJE0vu9PZKB2gQxyYa7u3r1KgoLC6Uug4iIiMagvr4eBQUFQ66TdOHE7/ejoaEBRqMRghDb/4wsFgsKCwtRX1+PlJSUmG57KuDrN358DceHr9/48TUcH75+gxNFET09PcjLyxt2ELukOa3TSyaTDZu4xislJYVvqnHg6zd+fA3Hh6/f+PE1HB++ftGNdBDVpGkQS0RERFMDwwkRERElFIaTMGq1Gk899RTUarXUpSQlvn7jx9dwfPj6jR9fw/Hh6xcbSdcgloiIiCY3HjkhIiKihMJwQkRERAmF4YSIiIgSCsMJERERJRSGk6CqqiqUlJRAo9GgoqIChw4dkrqkpPHDH/4QgiBETHPmzJG6rIR14MABrF+/Hnl5eRAEAXv27IlYLooinnzySeTm5kKr1WLNmjW4cOGCNMUmqOFew02bNg14T95+++3SFJuAtm/fjmXLlsFoNCIrKwv33HMPzp07F7GO0+lEZWUlMjIyYDAYcP/996O5uVmiihPLSF6/VatWDXgPfuMb35Co4uTDcAJg9+7d2LZtG5566ikcPXoU5eXlWLt2LVpaWqQuLWnMmzcPjY2Noemvf/2r1CUlLJvNhvLyclRVVUVd/uyzz+LFF1/Ejh078Mknn0Cv12Pt2rVwOp1xrjRxDfcaAsDtt98e8Z789a9/HccKE9v777+PyspKfPzxx3j33Xfh8Xjw+c9/HjabLbTOd77zHfz3f/83Xn/9dbz//vtoaGjAfffdJ2HViWMkrx8AbNmyJeI9+Oyzz0pUcRISSVy+fLlYWVkZeuzz+cS8vDxx+/btElaVPJ566imxvLxc6jKSEgDxjTfeCD32+/1iTk6O+Nxzz4XmdXV1iWq1Wvz1r38tQYWJr/9rKIqiuHHjRvHuu++WpJ5k1NLSIgIQ33//fVEUA+85pVIpvv7666F1zp49KwIQDx48KFWZCav/6yeKorhy5Urxsccek66oJDflj5y43W4cOXIEa9asCc2TyWRYs2YNDh48KGFlyeXChQvIy8vDtGnT8PDDD+PKlStSl5SU6urq0NTUFPF+NJlMqKio4PtxlPbv34+srCzMnj0b3/zmN9He3i51SQmru7sbAJCeng4AOHLkCDweT8T7cM6cOSgqKuL7MIr+r1+vV199FWazGfPnz8fjjz8Ou90uRXlJKeku/BdrbW1t8Pl8yM7OjpifnZ2N6upqiapKLhUVFdi1axdmz56NxsZG/OhHP8LNN9+MU6dOwWg0Sl1eUmlqagKAqO/H3mU0vNtvvx333XcfSktLUVtbiyeeeALr1q3DwYMHIZfLpS4vofj9fnz729/GjTfeiPnz5wMIvA9VKhVSU1Mj1uX7cKBorx8APPTQQyguLkZeXh5OnDiB//2//zfOnTuH3//+9xJWmzymfDih8Vu3bl3o/sKFC1FRUYHi4mL89re/xVe/+lUJK6Op6otf/GLo/oIFC7Bw4UJMnz4d+/fvx6233iphZYmnsrISp06dYjuxMRrs9fvbv/3b0P0FCxYgNzcXt956K2prazF9+vR4l5l0pvxpHbPZDLlcPqAVenNzM3JyciSqKrmlpqZi1qxZqKmpkbqUpNP7nuP7MbamTZsGs9nM92Q/W7duxVtvvYX33nsPBQUFofk5OTlwu93o6uqKWJ/vw0iDvX7RVFRUAADfgyM05cOJSqXCkiVLsG/fvtA8v9+Pffv2YcWKFRJWlrysVitqa2uRm5srdSlJp7S0FDk5ORHvR4vFgk8++YTvx3G4evUq2tvb+Z4MEkURW7duxRtvvIG//OUvKC0tjVi+ZMkSKJXKiPfhuXPncOXKFb4PMfzrF82xY8cAgO/BEeJpHQDbtm3Dxo0bsXTpUixfvhwvvPACbDYbNm/eLHVpSeG73/0u1q9fj+LiYjQ0NOCpp56CXC7Hl770JalLS0hWqzXiv6e6ujocO3YM6enpKCoqwre//W08/fTTmDlzJkpLS/GDH/wAeXl5uOeee6QrOsEM9Rqmp6fjRz/6Ee6//37k5OSgtrYW//iP/4gZM2Zg7dq1EladOCorK/Haa6/hzTffhNFoDLUjMZlM0Gq1MJlM+OpXv4pt27YhPT0dKSkp+Na3voUVK1bg+uuvl7h66Q33+tXW1uK1117DHXfcgYyMDJw4cQLf+c53cMstt2DhwoUSV58kpO4ulCh+9rOfiUVFRaJKpRKXL18ufvzxx1KXlDQefPBBMTc3V1SpVGJ+fr744IMPijU1NVKXlbDee+89EcCAaePGjaIoBroT/+AHPxCzs7NFtVot3nrrreK5c+ekLTrBDPUa2u128fOf/7yYmZkpKpVKsbi4WNyyZYvY1NQkddkJI9prB0B8+eWXQ+s4HA7x7/7u78S0tDRRp9OJ9957r9jY2Chd0QlkuNfvypUr4i233CKmp6eLarVanDFjhvgP//APYnd3t7SFJxFBFEUxnmGIiIiIaChTvs0JERERJRaGEyIiIkooDCdERESUUBhOiIiIKKEwnBAREVFCYTghIiKihMJwQkRERAmF4YSIiIgSCsMJEcXF/v37IQjCgIvJERH1xxFiiWhCrFq1CosWLcILL7wAAHC73ejo6EB2djYEQZC2OCJKaLzwHxHFhUqlQk5OjtRlEFES4GkdIoq5TZs24f3338dPf/pTCIIAQRCwa9euiNM6u3btQmpqKt566y3Mnj0bOp0ODzzwAOx2O1555RWUlJQgLS0Nf//3fw+fzxfatsvlwne/+13k5+dDr9ejoqIC+/fvl+YHJaIJwSMnRBRzP/3pT3H+/HnMnz8f//RP/wQAOH369ID17HY7XnzxRfzmN79BT08P7rvvPtx7771ITU3FH//4R1y8eBH3338/brzxRjz44IMAgK1bt+LMmTP4zW9+g7y8PLzxxhu4/fbbcfLkScycOTOuPycRTQyGEyKKOZPJBJVKBZ1OFzqVU11dPWA9j8eDl156CdOnTwcAPPDAA/jVr36F5uZmGAwGlJWVYfXq1Xjvvffw4IMP4sqVK3j55Zdx5coV5OXlAQC++93vYu/evXj55ZfxzDPPxO+HJKIJw3BCRJLR6XShYAIA2dnZKCkpgcFgiJjX0tICADh58iR8Ph9mzZoVsR2Xy4WMjIz4FE1EE47hhIgko1QqIx4LghB1nt/vBwBYrVbI5XIcOXIEcrk8Yr3wQENEyY3hhIgmhEqlimjIGgvXXXcdfD4fWlpacPPNN8d020SUONhbh4gmRElJCT755BNcunQJbW1toaMf4zFr1iw8/PDDeOSRR/D73/8edXV1OHToELZv34633347BlUTUSJgOCGiCfHd734XcrkcZWVlyMzMxJUrV2Ky3ZdffhmPPPII/tf/+l+YPXs27rnnHnz66acoKiqKyfaJSHocIZaIiIgSCo+cEBERUUJhOCEiIqKEwnBCRERECYXhhIiIiBIKwwkRERElFIYTIiIiSigMJ0RERJRQGE6IiIgooTCcEBERUUJhOCEiIqKEwnBCRERECeX/Bwdj4JcLjBGZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Find a single parameterization of the model that allows H <= 3000 for all timepoints.\n", + "# Do not assume the default compartmental constraints because model has vital dynamics.\n", + "# The chosen parameters result in an impossibly large value for some compartments.\n", + "# Further runs need to eliminate these impossible values.\n", + "\n", + "funman_request = get_request()\n", + "setup_common(funman_request)\n", + "results = run(funman_request)\n", + "report(results, \"unconstrained\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-07-24 18:45:11,106 - funman.server.worker - INFO - FunmanWorker running...\n", + "2024-07-24 18:45:11,109 - funman.server.worker - INFO - Starting work on: 4fb6b7ce-21b0-4f02-b255-eb94134dba6d\n", + "[9830000.00000, 9830000.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "[0.30000, 0.30000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "2024-07-24 18:45:18,791 - funman.api.run - INFO - Dumping results to ./out/4fb6b7ce-21b0-4f02-b255-eb94134dba6d.json\n", + "2024-07-24 18:45:18,804 - funman.scenario.consistency - INFO - 4{28}:\t[+]\n", + "2024-07-24 18:45:18,818 - funman.server.worker - INFO - Completed work on: 4fb6b7ce-21b0-4f02-b255-eb94134dba6d\n", + "2024-07-24 18:45:28,831 - funman.server.worker - INFO - Worker.stop() acquiring state lock ....\n", + "2024-07-24 18:45:28,900 - funman.server.worker - INFO - FunmanWorker exiting...\n", + "2024-07-24 18:45:28,902 - funman.server.worker - INFO - Worker.stop() completed.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 points\n", + "Point parameters: {'N': 9830000.0, 'NPI_mult': 1.0, 'beta': 0.15250000000000002, 'vacc_mult': 0.30000000000000004, 'r_Sv': 10000.0, 'r_SvSu': 0.002, 'r_EI': 0.1508337675718892, 'r_IH_u': 0.00435, 'r_IH_v': 0.00135, 'r_HR': 0.1549189131819147, 'r_HD': 0.011, 'r_IR_u': 0.185, 'r_IR_v': 0.185}\n", + " N NPI_mult beta vacc_mult r_Sv \\\n", + "unconstrained 9830000.0 1.0 0.1525 0.3 10000.0 \n", + "compartmental_constrained 9830000.0 1.0 0.1525 0.3 10000.0 \n", + "\n", + " r_SvSu r_EI r_IH_u r_IH_v r_HR \\\n", + "unconstrained 0.002 0.131605 0.00435 0.00135 0.173417 \n", + "compartmental_constrained 0.002 0.150834 0.00435 0.00135 0.154919 \n", + "\n", + " r_HD r_IR_u r_IR_v \n", + "unconstrained 0.011 0.185 0.185 \n", + "compartmental_constrained 0.011 0.185 0.185 \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAG1CAYAAAAiFlQIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzYklEQVR4nO3deXhb5Z02/vto32XL+xo7e5zFzmogQBIIhFBCA5ShhSkJ0HTahm55O/MWpi3Q0tKB+VGG4sLLO4X0nYGSQgu0UGiZkIUlCyQ4C1mcxY7teN8ka1/O+f0hW7ZseYslS7Lvz3XpknTWrxXF5/ZznvMcQZIkCUREREQJQhbvAoiIiIj6YzghIiKihMJwQkRERAmF4YSIiIgSCsMJERERJRSGEyIiIkooDCdERESUUBhOiIiIKKEwnBAREVFCYTghIiKihMJwQkRERAllwsPJ6dOnUVZWFnpotVq88cYbE10GERERJSghnjf+s9vtKCoqwoULF6DX60e1jiiKaGhogNFohCAIMa6QiIiIokGSJHR3dyM3Nxcy2fBtI4oJqimiP//5z7j22mtHHUwAoKGhAQUFBTGsioiIiGKlrq4O+fn5wy4z5nCyd+9ePPHEEzh06BAaGxvx+uuvY+PGjWHLVFRU4IknnkBTUxNKS0vx61//GitWrBi0rT/84Q+4++67x7R/o9EIIPjDmUymsZZPREREcWCz2VBQUBA6jg9nzOHE4XCgtLQU9957L2699dZB83fs2IFt27bhueeeQ3l5OZ566imsW7cOp0+fRmZmZliRH3/8MV555ZVh9+fxeODxeELvu7u7AQAmk4nhhIiIKMmMpkvGmDvErl+/Ho8++ihuueWWiPOffPJJbNmyBffccw9KSkrw3HPPQafT4YUXXghb7s0338T1118PjUYz7P4ee+wxmM3m0IOndIiIiCa3qF6t4/V6cejQIaxdu7ZvBzIZ1q5di3379oUt+4c//AF33HHHiNt84IEHYLVaQ4+6urpolkxEREQJJqodYtva2hAIBJCVlRU2PSsrC6dOnQq9t1qtOHjwIP74xz+OuE21Wg21Wh3NMomIiCiBxeVqHbPZjObm5jGtU1FRgYqKCgQCgVEtHwgE4PP5LqW8SU+pVEIul8e7DCIiooiiGk7S09Mhl8sHBY/m5mZkZ2ePa9tbt27F1q1bYbPZYDabh1xOkiQ0NTWhq6trXPub7FJSUpCdnc2xYoiIKOFENZyoVCosXboUO3fuDF1eLIoidu7cifvvvz+auxpSbzDJzMyETqfjwXcASZLgdDrR0tICAMjJyYlzRUREROHGHE7sdjvOnj0bel9dXY3KykpYLBYUFhZi27Zt2LRpE5YtW4YVK1bgqaeegsPhwD333DOuQkdzWicQCISCSVpa2rj2N5lptVoAQEtLCzIzM3mKh4iIEsqYh6/fvXs31qxZM2j6pk2bsH37dgDAM888ExqEraysDE8//TTKy8ujUnDvaR2r1TponBO3243q6moUFRWFDsAUmcvlQk1NDYqLi0e8nJuIiGi8hjt+DxTXe+tcitGEEx5wR8bPioiIJtJYwsmE35WYiIiIaDhJE04qKipQUlKC5cuXx7sUIiIiiqGkCSdbt27FiRMn8Mknn8S7FCIiIoqhuAzCloikQADSKAd4G9YlXrrc2tqKhx55BH995x00NzcjNTUVixYtwo//9V+x8oorIu9qHPVJfj+kQAD+zk74VaqIy4w4bchdjLBsXOZHXifyomP4+Ue77BDrR5waq89nlHXx8nsiijeGkx6Bri74Ghvjtv/bNm2C1+/H8w8/jOL8fDS3t2P3gQNoOnoUnhhcFu0RRfhbW3Hh29+BLI4/NyW5WAS54ab3zh6hrPGGxpgEzGh8LqOcP6bQG5MwPlRdE/fvMtKXJGItl7KvMdU6hjom8HOJ9AeJ6Qs3If0b/xR5GxMgacLJWIev7yVJEly+kdfx+0T4/NG7cEmrEEb9F2iXzYaPDh/G3154EVf19KkpzM3D8oWLBiw5uL4LFy9i3g03YN+rr6J07tzQ9nJXrsS7L7yAq9lHh2Ip0sV+E3ABYCJdYphItRBFi7+1Na77T5pwMtrh6wdy+QIo+cnfYlhZZCd+ug5a1eg+XqXfD4PBgHeOHsGqO78yphsdagyG4PPMmdAuWAAA8PQM3a8uLg5NG0hwu6FUKlH8zl9HvJQ44tXmQx2ARjowXcr8CNOG3MoE7X+o6ZEXHcNnNZbPNeL+x3moHOf+h1o/8ndoyCLGta/xfgdi8m84pu9QDD6rKMwffV0J8B2KuI0J/P822s9lvP/fhqphvJ8LAEVmVsTpEyVpwslkplAosH37dmzZsgXPPfcclixZglWrVuHLX/4yFi0a2Hoy8SK2AMW5XwJ7RRARTV6TPpxolXKc+Om6uOx3LG677TZ84QtfwAcffID9+/fjnXfeweOPP47//M//xObNm2NTJBERUQKa9OFEEAToRnl6Jd40Gg2uu+46XHfddfjxj3+Mr33ta3jooYeGDScyWfBq8P5Nez6fL9alEhERxUzSjHMyFQdhKykpgcPhGHaZjIwMAEBjvytuKisrY1kWERFRTCVHkwIuvUNsMmhvb8ftt9+Oe++9F4sWLYLRaMSnn36Kxx9/HF/84heHXVer1eKyyy7DL3/5SxQXF6OlpQU/+tGPJqhyIiKi6EuacDKZGQwGlJeX41e/+hXOnTsHn8+HgoICbNmyBQ8++OCI67/wwgu47777sHTpUsyZMwePP/44rr/++gmonIiIKPp4V+Ipip8VERFNJN6VmIiIiJIWw0mCe+mll2AwGCI+5s+fH+/yiIiIoi5p+pxc6vD1ye7mm29GeXl5xHlKpXKCqyEiIoq9pAknk/lqneEYjUYYjcZ4l0FERDRheFqHiIiIEgrDCRERESUUhhMiIiJKKAwnRERElFAYToiIiCihMJwQERFRQkmacDLZ70q8efNmbNy4Md5lEBERxV3ShJOtW7fixIkT+OSTT+JdChEREcVQ0oSTSyZJgNcx8Y8Y3U+xqKgITz31VNi0srIyPPzwwzHZHxER0URLmhFiL5nPCfwid+L3+2ADoNJP/H6JiIiS3OQPJ0REFDXSgFbhgY3EI7UZD1x/0Pwh14u0bOSlx9twPdL6Q+13uPUjrTHUZzHyZzjSAkNNHjxjqG2plTLoVPGLCJM/nCh1wVaMEXS7fehy+kLvx3tSRrJJgODoez/CBu1uP5zeAGraHEMuIwHwixLa7V5U91vO6xfR6QyfFtzn0DsN+Dxo6/ag4tVKdHr6rzPE636fSPj0CEWOcZ3+dUqhaUMs3zNDGjxp0D4Hzov4fphaRjKaX5Zj3d9wn+elrD94/2P7fAaVM8b9jWqfI24jup/p4J85tv8GkfbZt+zIB4uR64nt50NT06bLp+GRLy6I2/4nfzgRhFGdXvF4Pej0R3G//rFtzBcQ4Q+IsLl9wy8oCHD7/Ojut5zH54PXL4ZNG4nkD8DtF/FZbRcudk+tOz0TEVFim/zhZJT0KgVyU7RjWkcYzw6F8Jc6tRw+lRz5qQNrCN9LVmYmPLZ25KfqAAA2mw2NdRdg0iiRn6obuqYBM7weGfxWJR68cR78QvjXQBCEiKsJYTULEacPtw5Gvc4o9j9o/QEf6BDbHrj9yPOH2XbE+QM3ML71B9U34vLDFzDm/Y2w/ZF+nkjG/JmO+zMcVMEY1x/8Qw31Y0b6+cf6GQ3++RPrOzrkdhD9z2rYDQyzndFsYry1hq83/AKjqXGs6w+1z8jLjmYfQy81zvLHjeGkh1Ylh1Ylj9v+1Qo5VHIZLHr1sMtdv/ZabN++HbffuhEpKSn4yU9+Ark8WLtFrxr1/twyER0qBa4tzoJGoxlv+URERFHDcJJkHnjgAVRXV+Omm26C2WzGz372M1RXV8e7LCIioqgRpLH0AIyjiooKVFRUIBAIoKqqClarFSaTKWwZt9uN6upqFBcXszVgBPysiIhoItlsNpjN5ojH74GSZhA2jhBLREQ0NSRNOJkKamtrYTAYhnzU1tbGu0QiIqKYY5+TBJKbm4vKysph5xMREU12DCcJRKFQYObMmfEug4iIKK54WoeIiIgSCsMJERERJRSe1unh8XjgdrvjXcaE8Xq9cLlc2LNnDwKB6A1fnyRXphMlrKn+fygRfv541xDv/QNAcXExFi1aFLf9M5z08Pv9cDiGvuneZOP3++HxeHDs2DHY7fZ4l0NERAlEqVQynCQCpVIJg8EQ7zImjNfrhUajwbJlyyCKYrzLCTPc/R6IaGTJ/n8oEepPhBrGY7z15+TkRKmSS8Nw0kOlUkGlGv29aZKd2+2GRqPBvHnzOEIsERElFHaITRCbN2+GIAiDHjfccEO8SyMiIppQbDlJIDfccANefPHFsGlq9fB3KSYiIppsJn04kSQJLr9rwverVWjHfM5PrVYjOzt7TOvU1NSguLgYn332GcrKygAAXV1dSE1Nxa5du7B69eoxbY+IiCje4hJOqqurce+996K5uRlyuRz79++HXq+Pyb5cfhfKXy6PybaHc+DOA9ApdRO+XyIiomQXlz4nmzdvxk9/+lOcOHECe/bs4amLHm+99dagm/394he/iHdZREREE2rCW04+//xzKJVKXHXVVQAAi8US0/1pFVocuPNATPcx1H7Has2aNXj22WfDpsX68yEiIko0Y2452bt3LzZs2IDc3FwIgoA33nhj0DIVFRUoKiqCRqNBeXk5Dh48GJp35swZGAwGbNiwAUuWLIl5y4AgCNApdRP+uJRrzPV6PWbOnBn2GCmcyGTBf8L+Iwr6fL4x75uIiChRjDmcOBwOlJaWoqKiIuL8HTt2YNu2bXjooYdw+PBhlJaWYt26dWhpaQEQHJn0gw8+wG9+8xvs27cP7733Ht57770h9+fxeGCz2cIe1CcjIwMA0NjYGJpWWVkZp2qIiIjGb8zhZP369Xj00Udxyy23RJz/5JNPYsuWLbjnnntQUlKC5557DjqdDi+88AIAIC8vD8uWLUNBQQHUajVuvPHGYQ+mjz32GMxmc+hRUFAw1pKThsfjQVNTU9ijra1t2HW0Wi0uu+wy/PKXv8TJkyexZ88e/OhHP5qgiomIiKIvqh1ivV4vDh06hLVr1/btQCbD2rVrsW/fPgDA8uXL0dLSgs7OToiiiL1792LevHlDbvOBBx6A1WoNPerq6qJZckJ59913kZOTE/a48sorR1zvhRdegN/vx9KlS/G9730Pjz766ARUS0REFBtR7RDb1taGQCCArKyssOlZWVk4depUcIcKBX7xi1/g6quvhiRJuP7663HTTTcNuU21Wj0lrubZvn07tm/ffknrzps3Dx9//HHYtES4qyUREdGliMs4J+vXr8f69evHtE5FRQUqKioQCARiVBURERElgqie1klPT4dcLkdzc3PY9Obm5jGPfDrQ1q1bceLECXzyySfj2k6yeemllwaNfdL7mD9/frzLIyIiirqotpyoVCosXboUO3fuxMaNGwEAoihi586duP/++6O5qynj5ptvRnl55BFulUrlBFdDREQUe2MOJ3a7HWfPng29r66uRmVlJSwWCwoLC7Ft2zZs2rQJy5Ytw4oVK/DUU0/B4XDgnnvuGVehU/W0jtFohNFojHcZREREE0aQxthzcvfu3VizZs2g6Zs2bQp16HzmmWfwxBNPoKmpCWVlZXj66aeH/Ot/rGw2G8xmM6xWK0wmU9g8t9uN6upqFBcXQ6PRRGV/kxU/KyIimkjDHb8HGnPLyerVq0e8EuT+++/naRwiIiK6JHG58R8RERHRUJImnFRUVKCkpATLly+PdylEREQUQ0kTTqbqpcRERERTTdKEEyIiIpoaGE4SRGtrK775zW+isLAQarUa2dnZWLduHT766KN4l0ZERDSh4jJ8/aWY7OOc3HbbbfB6vfjd736H6dOno7m5GTt37kR7e3u8SyMiIppQYx7nJN7GOs6JJEmQXK4Jr1PQaiEIwqiW7erqQmpqKnbv3o1Vq1aNaT933nknAoEAduzYEZrm8/mQk5ODJ598EnfffXfE9TjOCRERTaSYjnOSbCSXC6eXLJ3w/c45fAiCTjeqZXvvlfPGG2/gsssuG9NdmO+66y7cfvvtsNvtMBgMAIC//e1vcDqduOWWWy6pdiIionhin5MEoFAosH37dvzud79DSkoKVq5ciQcffBBHjx4dcd1169ZBr9fj9ddfD017+eWXcfPNN3PYeyIiSko8rRMjYzmt08vtduODDz7A/v378c477+DgwYP4z//8T2zevHnY9bZu3Ypz587h3XffhcPhQGZmJl555RVs2LBh2H3xtA4REU2UsZzWSZpw0r9DbFVV1ZS4t87XvvY1vPfee7hw4cKwy3388cdYtWoVLl68iPfeew/f/e530djYOOxdiyfbZ0VERIltLOEkaU7rTMVB2EpKSuBwOEZc7oorrkBBQQF27NiBl156CbfffvuwwYSIiCiRTfoOscmgvb0dt99+O+69914sWrQIRqMRn376KR5//HF88YtfHNU27rzzTjz33HOoqqrCrl27YlwxERFR7DCcJACDwYDy8nL86le/wrlz5+Dz+VBQUIAtW7bgwQcfHNU27rrrLvz85z/HtGnTsHLlyhhXTEREFDtJ0+ek11g7xFJk/KyIiGgiTco+J0RERDQ1JE04qaioQElJCZYvXx7vUibUSy+9FBqkbeBj/vz58S6PiIgo6nhaJ8F1d3ejubk54jylUolp06Zd0nYn42dFRESJi8PXTyJGo5EjvRIR0ZSSNKd1iIiIaGpgOCEiIqKEwnBCRERECYXhhIiIiBIKwwkREREllKQJJ1N1nBMiIqKpJmnCyWS/K/HmzZshCMKgxw033BDv0oiIiCYUxzlJIDfccANefPHFsGlqtTpO1RAREcXHpA8nkiTB7xUnfL8KlQyCIIxpHbVajezs7DGtc+eddyIQCGDHjh2haT6fDzk5OXjyySdx9913j2l7RERE8Tbpw4nfK+L57+6Z8P1+/T9WQamWx3w/d911F26//XbY7XYYDAYAwN/+9jc4nU7ccsstMd8/ERFRtCVNn5Op4K233hp0c79f/OIXw66zbt066PV6vP7666FpL7/8Mm6++WYOe09ERElp0recKFQyfP0/VsVlv2O1Zs0aPPvss2HTLBbL8PtRKPAP//APeOmll/DVr34VDocDb775Jl555ZUx75+IiCgRTPpwIgjChJxeiQa9Xo+ZM2eOeb277roLq1atQktLC9577z1otVpe5UNERElr0oeTqeCKK65AQUEBduzYgXfeeQe33347lEplvMsiIiK6JAwnCcTj8aCpqSlsmkKhQHp6+ojr3nnnnXjuuedQVVWFXbt2xapEIiKimGOH2ATy7rvvIicnJ+xx5ZVXjmrdu+66CydOnEBeXh5WrlwZ40qJiIhiJ2nCyWQfvn779u2QJGnQ49SpU6Naf968eZAkCTU1NWMeX4WIiCiRJE04mezD1xMREVFQ0oSTqeqll14aNPZJ72P+/PnxLo+IiCjq2CE2wd18880oLy+POI9X5BAR0WTEcJLgjEYjR3olIqIphad1iIiIKKEwnBAREVFCYTghIiKihMJwQkRERAmF4YSIiIgSCsMJERERJRSGkwSxefNmbNy4Md5lEBERxR3DCRERESWUuAzCVlRUBJPJBJlMhtTUVOzatStm+5IkCX6PJ2bbH4pCrY76Dfief/55PPzww6ivr4dM1pcrv/jFLyItLQ0vvPBCVPdHREQUD3EbIfbjjz+GwWCI+X78Hg+e3vSlmO9noO/87jUoNZqobvP222/Ht7/9bezatQvXXnstAKCjowPvvvsu/vrXv0Z1X0RERPHC0zpJJDU1FevXr8fLL78cmvbaa68hPT0da9asiWNlRERE0TPmlpO9e/fiiSeewKFDh9DY2IjXX399UEfOiooKPPHEE2hqakJpaSl+/etfY8WKFaH5giBg1apVkMlk+N73voe77rpr3D/IUBRqNb7zu9ditv3h9hsLd911F7Zs2YLf/OY3UKvVeOmll/DlL3857DQPERFRMhtzOHE4HCgtLcW9996LW2+9ddD8HTt2YNu2bXjuuedQXl6Op556CuvWrcPp06eRmZkJAPjwww+Rl5eHxsZGrF27FgsXLsSiRYsi7s/j8cDTr8+IzWYbU72CIET99Eo8bdiwAZIk4e2338by5cvxwQcf4Fe/+lW8yyIiIoqaMf+5vX79ejz66KO45ZZbIs5/8sknsWXLFtxzzz0oKSnBc889B51OF9ZZMy8vDwCQk5ODG2+8EYcPHx5yf4899hjMZnPoUVBQMNaSJxWNRoNbb70VL730En7/+99jzpw5WLJkSbzLIiIiipqongvwer04dOgQ1q5d27cDmQxr167Fvn37AARbXrq7uwEAdrsd77//PubPnz/kNh944AFYrdbQo66uLpolJ6W77roLb7/9Nl544YWYnhIjIiKKh6herdPW1oZAIICsrKyw6VlZWTh16hQAoLm5OdTqEggEsGXLFixfvnzIbarVaqhj1H8jWV1zzTWwWCw4ffo07rzzzniXQ0REFFUTfinx9OnTceTIkTGvV1FRgYqKCgQCgRhUFX/bt28f9bIymQwNDQ2xK4aIiCiOonpaJz09HXK5HM3NzWHTm5ubkZ2dPa5tb926FSdOnMAnn3wyru0QERFRYotqOFGpVFi6dCl27twZmiaKInbu3InLL788mrualGpra2EwGIZ81NbWxrtEIiKimBvzaR273Y6zZ8+G3ldXV6OyshIWiwWFhYXYtm0bNm3ahGXLlmHFihV46qmn4HA4cM8994yr0Ml+WgcAcnNzUVlZOex8IiKiyU6QJEkaywq7d++OOBrppk2bQv0mnnnmmdAgbGVlZXj66adRXl4elYJtNhvMZjOsVitMJlPYPLfbjerqahQXF0MzicY2iQV+VkRENJGGO34PNOaWk9WrV2OkPHP//ffj/vvvH+umiYiIiHhvHSIiIkosSRNOKioqUFJSMuyYKERERJT8kiac8FJiIiKiqSFpwgkRERFNDQwnRERElFCSJpxM9j4nmzdvxsaNGwdN3717NwRBQFdX14TXREREFA9JE07Y54SIiGhqmPAb/000SZIg+cQJ36+glEEQhAnfLxERUbKb/OHEJ6LhJx9P+H5zf3oFBJV8wvdLRESU7CZ9OEkmb731FgwGQ9i0yXwvISIiokiSJpxc6o3/BKUMuT+9IkZVDb/fsVqzZg2effbZsGkHDhzAP/7jP0arLCIiooSXNOFk69at2Lp1a+jGQaMlCELSnF7R6/WYOXNm2LT6+vo4VUNERBQfSXO1DhEREU0NDCdERESUUBhOiIiIKKEkTZ+TyW779u0Rp69evRqSJE1sMURERHGUNC0nk334eiIiIgpKmnDC4euJiIimhqQJJ0RERDQ1MJwQERFRQmE4ISIiooTCcEJEREQJheGEiIiIEgrDCRERESWUpAknHOeEiIhoahCkJBt+tPeuxFarFSaTKWye2+1GdXU1iouLodFoxrRdSQpAkgLRLDUGhv+nGsu/pNvtQU3NBeTm6qBW979r8/i+DiN/ncY3XxpnfTGXXP+dYiD+P/+4vyPj/jeM83c85vWPtPYI61/y74jB04fc1zg/g4jbjbjN0dc64vZH3Nfotz+m/Q6xL40mB3r9zEvaz1CGO34PxOHre/h8XXC7G+K2/29+80d4+eU/AwAUCgVyczOxceP1+Nd/3QqNRh31/Xm9ErzeFlQeeQSiGL+fm4iIEk9+/lcxZ/bDcds/w0l/gjAROxly+tq1V+LZZx+Fz+dDZeUJfOMb/wqZTIaf/nRb9KsQRAAC5DIdBMEwYN5In0Ns549//5T84v0dGd/6wnj3P+7fRYlaf6Tpg6eNuP9RlTfKfY2p1vHNH/l7O/rtj/wZje/fQK3KHn77MTbpw4kkSfD5fKNY0giN2hi1/SqVyjF9EZXKFOj1wMyZqwAA8+atxWuv7cGePZ/BaJwftbp6ud1uaDQKzJv35phPgREREcXSpA8nPp8Pv/jFLyZ8vw8++CBUKtUlr3/8+HF8/PHHmDZtWhSrIiIiSnyTPpwkk7feegsGgwF+vx8ejwcymQzPPPNMvMsiIiKaUJM+nCiVSjz44INx2e9YrVmzBs8++ywcDgd+9atfQaFQ4LbbbotBdURERIlr0ocTQRDGdXplIun1esycGbx064UXXkBpaSl++9vf4r777otzZURERBMnaQZhm2pkMhkefPBB/OhHP4LL5Yp3OURERBOG4SSB3X777ZDL5aioqIh3KURERBMmacLJVBy+XqFQ4P7778fjjz8Oh8MR73KIiIgmBIevn6L4WRER0UQay/D1SdNyQkRERFMDwwkREREllEl/KTEREVFMiCIg+gEpAIiBvuew173zxWGm+cPXkcRRTgsMUUOkffVuIzBgn2KEbQaAWdcDSzfF7aNlOCEiovHxuQBXF+DqBNxdgN8zxAF6mAN32DL+voPmUOuGDrBDHOAjHXDHFRoihIDJzJgT190znBARERDwA25rMGD0hgxXZ3joCHvdb17AE8/KE5MgAwQ5IJMDMkXP637ThJ7pg6bJg+vKFCMsN2BapH2EpvVuUx42T4IAbwCwO/xwuHywO7ywO7xwOD3IxwLMiuPHx3BCRDSZBPzB8ODs6AsaoUekaZ2AsxPwWMe3X0EOaFMATQqg0PQcAOUDDpSywQfNsIPywGmKIaYPOBiHHYQHTlOEH5yH3Xf/ZQfsO9K0/j/TwPXHcFf6WPC53bB3dcDR0QF7ZzvsnR2wd3bA0Rl87+jsgL2jAz6PO+L6gbS5DCdERDSAJAFee0/I6OgLG2HvBz53Ah7b+ParNvWFDG1q8LU2ted9/9ep4cupjXE/IE8FkiTBbe9Gd3sb7B3tsHe0o7ujLey9vaMdHufox8ZS6/TQp1pg6HnoLWnIm1MSw59iZAwnRESx1j9oONv7Pfd79AaM0PtOIOC99H1qzD0Bov/DMniart80jRmQj/2mpRQdkijCYe1Cd3trMHS0t8Pe0RYKIPb2YPDw+0b3vVCqNTBYLD3BIy0sgBhS06C3WGBIsUCZgGNdMZwQEY1VwBcMEI42wNnW87q973Xo0S9sXGrQkKt7AoSlL0iEvR/43NOyIeev90TjcTrR3daC7vY22Npa0d3eiu62Vth6nrvb2yEG/KPaltZkhtGSDkNaGoyWNBgs6TCmpcNgSYMhNQ0GSxpUWi2EJG3N4reXiMjvCQYNR2tf4Ah77gif5r7E/hlyNaBPD4YIXVrwoe33Wmfpm9cbNpQ6ni5JAqIYgL2jHbaWFthCAST43N3WCltbK7wu54jbEQQZ9KmpoaARDCDpPQEkDca0dOhT06BQTu4WLoaTBLF582b87ne/AxC8p47FYsGiRYvwla98BZs3b4ZMxvHyiEZNDARPizha+z3ahnjdfmmdQQVZX7DQp4c/69IHhw1dGoNGEhMDgWDgaG2Gra0V1pZm2Fpbet4HQ4gYGPnyYo3BCGNaOozpGTClZ8CYlgFjegaMaekwpWfAkJoGmVw+AT9RYotbOHE6nZg3bx5uv/12/Pu//3u8ykgoN9xwA1588UUEAgE0Nzfj3XffxXe/+1289tpr+POf/wyFglmSprCALxgm7C39nlsAe2vPc0tf4HC2B8fJGAuZAtBnBINFWNhIB/T9AkfvNG1K8MoMmhR6Wz6szU2wtjTD2i942FqD4UMSh/9OyeQKmNIzYMrIgDEts18A6QkjaRkJ2b8jEcXtaPfzn/8cl112Wcz3I0kSRNEV8/0MJJON/VyfWq1GdnY2ACAvLw9LlizBZZddhmuvvRbbt2/H1772tViUSpOFJPU8egaQksTwhxjoNz/CMiPNl8SewanEYbYxcH7/5aQI+xu4nAR4uwcHDntLsMPoWGktwcChzwiGioive95rzGzVmOS8bheszU3oamnqCSFN6GoOvra1NiPgH76/h1yhgCkjE6aMrOBzeibMve8zM6FPSYWMgTUq4hJOzpw5g1OnTmHDhg04fvx4TPclii7s3rMwpvuIZPWqY5DLdePezjXXXIPS0lL86U9/YjgZihgAOmuAlpNAV23fKI79D3hhB8LAOA62w223//x+B+KIyww3P8JDHLjdCMECSXWD8UsjyINBwpAJ6DN7njP6ve8NG5nBVg52Cp1SJEmCo7MDXc2NwdDRE0K6mhthbWmG09o17PoyuQLmzGDYMPcGkMysUAjRp6RC4Cn2CTHm/7l79+7FE088gUOHDqGxsRGvv/46Nm7cGLZMRUUFnnjiCTQ1NaG0tBS//vWvsWLFitD8H/zgB3jiiSfw8ccfj/sHmArmzp2Lo0ePxruM+BNFwFoHtJ4CWk4ALT3PbVWAP/JAQjQEQdY3gmXodc9DNuB92DJCv0GmBs4X+g1INXAbwzxk8r51BVmwX8agwNETRLSWYH00ZUmSBFe3DZ2NDehsvIiupobg66YGdDU2DDmoWC+NwQhzZjZSsrJhzsrueZ2DlKxsGNLS2PKRIMYcThwOB0pLS3Hvvffi1ltvHTR/x44d2LZtG5577jmUl5fjqaeewrp163D69GlkZmbizTffxOzZszF79uxRhROPxwOPp29oZJttbAMMyWRarF51bEzrRINMpo3atiRJStrLwS6JJAHdjcGWkJaTQGvv8+ngWBGRKLRAxmzAMgNQqMMPlgMPwDL5KOZHmCcbcJCONA+RDt4jrDto/SGCw2jqDlt/mJ+NKMG5HXZ09QSQzt4A0tiArqaGYQcYE2QymNIzYO4JHH1BJAfmzCxo9IYJ/CnoUo05nKxfvx7r168fcv6TTz6JLVu24J577gEAPPfcc3j77bfxwgsv4Ic//CH279+PV155Ba+++irsdjt8Ph9MJhN+8pOfRNzeY489hkceeWSsZYYIghCV0yvxdPLkSRQXF8e7jNjwuYKtH03Heh7Hg2FkqEs15SogbRaQOQ/InAtklgAZc4HUInZOJEoykijC1taC9ot16KivQ/vFenQ01KOzoR6u7uH/EDWmZyA1OxepOblIzclDSs9rc2YW5IrJfZntVBDVE7JerxeHDh3CAw88EJomk8mwdu1a7Nu3D0AwbDz22GMAgO3bt+P48eNDBhMAeOCBB7Bt27bQe5vNhoKCgmiWndDef/99HDt2DN///vfjXcr4OTuApqPBENLY89xWFfnunoIcSJsZHkAy5wGW6RzBkijJ+H0+dDVeDIaPi3XoaKhH+8U6dDZchN879E0D9SmpPaEjLxhCegNIdg6UKvUE/gQ00aIaTtra2hAIBJCVlRU2PSsrC6dOnbqkbarVaqjVU+NL6PF40NTUFHYp8WOPPYabbroJd999d7zLGz1JArou9LWG9AYRW33k5XXpQM4iIHshkLUQyCoJBhPF1Ph3J0p2YiAAt8MOV7cN7u5udDU3BltDeh5dzU1DXoYrVyiQkp2LtLwCWPILYMkrgKUnjKi0yd3qTZcurl3ZN2/ePOplKyoqUFFRgcAoBrlJVu+++y5ycnKgUCiQmpqK0tJSPP3009i0aVPiDsImScErZC4eCj4aKoNBZKhBrVKLgyEkZxGQ3fMwZrMfBFECkCQJHqcD7u5uuOw2uO12uLttcNm74bZ3w9UdfA69dnTD3d09qpvMqbS6YADJyw8GkLwCpOXlw5yZzUHH4sTpc6LZ2Rx8OILPLc4WNDuasbpgNW6bfVvcaotqOElPT4dcLkdzc3PY9Obm5tD4HZdq69at2Lp1K2w2G8xm87i2lYi2b9+O7du3x7uMkbm6gIbDQH1PGLn4aXAcioFkyuBpmOxF/VpFFgAa04SXTDQVSaLY05rRHWzRsNvgsgWDRrCFwwZXt63f/ODzSAONDUet1wevhsnIRGpuMHwEQ0gB9KmWqdWxP44kSYLNawsLHf2DR+/0bl/3kNtI16XjNkyScKJSqbB06VLs3LkzdHmxKIrYuXMn7r///mjuiiaC3ws0H+9rFan/FGg/M3g5mSIYPPKXAblLgmEkfQ6gUE18zUSTkCRJ8LldwTBhs8HZbQ0GjW4bXDYrXN02OHvf9zw8djuksY6S20Op1kBjMEJjNEJrMEJjMEJrDD4HX5ugMRigMZj6pusNbAGZIG6/G02OJjQ6GtHkaAq97n3f7GyGyz+6wUcNSgMydZnI0mUhS58Vep5nmRfjn2J4Yw4ndrsdZ8+eDb2vrq5GZWUlLBYLCgsLsW3bNmzatAnLli3DihUr8NRTT8HhcISu3rlUU+G0Tlz1np6pO9jXItJ4FAhE6KyWWgTkLQPylgYDSfYiQMkhmYlGSxJFuJ0OOK1dwXBhs8Fp64LTZoXTau0LGba+1wGf75L2pdbpQyFDazRBYzRBazQF35tMoYARnGeE1mCCQsU/LOJFlES0udr6woa9CU3OJjTa+8JHp6dzVNtKVacGg0dv6OgJHpm6TGTrspGpy4RBlZiXVguSJI1pWMndu3djzZo1g6Zv2rQpdFrimWeeCQ3CVlZWhqeffhrl5eVRKbj3tI7VaoXJFH6KwO12o7q6GsXFxdDw/gXDcrtcqD53BsWez6G5sAuo+Shyh1VtajCE5C3tCyT6tIkvmCiBSZIEr8sJR1cXnLZg4HBarcHnnofL1hVs3eh5fymnTxQqNbSmnnBhNEFnMgdfh5775gVbN4yQ855cCUWURLQ6W9HgaMBF+0U02BvQYO973ehohE8cOYhqFVrk6HOQo89Btj570HOmLhMaRWIdB4c7fg805nASbwwnl0iSgqOoeu2Axw63oxvV9Y0o/uh/QWOvCy4jUwA5pcEQkt8TRCzT2VmVpiQxEAieLrF2wWHtgqvn2WmzwtkTQpzWLjitVjhtXZfUsqHW6aEzm6E1moPPJnNP4DBDazJB1xs8ekKHUs3fa4lOlES0OFsGBY5QEHE0wC+OcA8fQR5s3dBnhwLHwPBhUpmSrg/PWMLJpIzUl5K37F47Gh2N0Cl00Cq10Cl0UMvVSfePHyJJwQHOvPZQIOk/nogk9nxGOYuBnK8A064AClYAKn2cCiaKPVEMBE+hWLvg6OoMPZzWzmCrR+i5Cy57d/D/0RiotFroTCnQmoMhQ2fqDRwp0JlM0JpT+k03cbCwJOXyu3Cx+yLquutQb68PPncHny/aL47Y8iEX5MjWZyPXkItcfS7yDHnB14bg60xdJhSySXl4HrWk+elH0+dEqQz+R3c6ndBqxzZ8vNPvhDfghTfgRZenCwAgE2TQKrTQKrTQKXXQKrSJ+4WRJMDnDIYQrx3wOgYPbibIAKUeUBvgdAQAswbKL28H2ImNkljwlIoLjq4OODo7egJHFxzWTjh7A4i1C86uTjit1rF1EhUEaI0m6M0p0JnN0JlTg+HCnNLvYYbenAqt2cyBwSYJSZLQ7m4PBY767vqwENLqinCFYj+94WNg6OgNIhm6jMQ9liSISXVaBwAaGxvR1dWFzMxM6HS6Ubd8+EU/PH4PXH4XPAEP3H43RAz+JaaUKaFVaKGWq6FRaOLbuhLw9wURrwOQBjYVygGlFlDpgjdTU2ogQYDT6URLSwtSUlKQk5MTl9KJRiJJEtwOezBwdHbC0dUBe2cwgNi7OnuCSHCa3zP0KKOD9AaOlFToU1KhM6cEX5tToOt93xM8tCYTbwQ3SUmShA53B2q7a1FjrUFtdy0u2C7ggu0C6rrrRrzaxag0It+YjwJjwaDnLF0Ww0cEU/q0Tu94Ki0tLePajiAJwb/IAl74Aj54RW/E84SCIEAlU0EpV0IlU0ElV0EmxGjANEkCAj7A7wJ87sFX0ggyQKEJjqyqUAfHGhECALp7Hn1SUlLGPfYMTV2iGEDA64Pf54Xf5w2+9nrg9/n63vu8CPi8wWleD/xeX897LwI+H/ze4LyAzwu/t2eaz9sTSIJhZCz9OFRaLfQpFuhTU6E39wSPntARep0SbPngJa9Th81rQ62tL3j0PmpttcOO8yFAQLY+Ozx8GPpCiFk9+cbbSiSTLpwIgoCcnBxkZmbCd4mX3g2l29uN0x2ncarjFKo6qlDVVQWnzzloueKUYixMX4hF6YswP20+9OPpx+HqAuoOBK+mqd0HuAdcQpY2Cyi8Aii6InhJ7yjuO6NUKiHnL+ekJ0kSAn5/6OAeeoQO9n3vA14vfAOmhS3TGzR6p/W+7gkQ4cv7IAaG79AXTRq9AfpUC/QpqTCkWnpeB0NI73tDigVKdoKfsvyiH/Xd9ThvPY/z1vNhLSEd7o4h1+sNINNM08IehcZC5BnyoOR9vOImaU7r9O9zUlVVNapmoVgLiAGct57H0dajONJ6BJWtlai2VoctIxNkKLGUYHnOcqzIXoElmUugUw5zvwhRBBorgbP/A5z5e3DMkf7nyFVGYMZqYOZ1wMy1gDkvJj8bjY0kiqEDeP+Df7DFYJhpXk9PK4InYsDofQwMFb3PY+2wGQsyuRwKlQpypQoKpQpypQIKlRoKVe97Zb/5yuA0Vc9z77R+81U6HfQpFhhSU6FPsXDMDQpx+924YLuA89bzONd1Duet51FtrcYF24VhO6Gma9NRaCxEkbko+GwqQqGpEAXGgoS73HYym7KXEieCNlcbPmn6BAebDuJg40HUdteGzVcICixIX4Dl2cuxImcFyjLKoBHkwPndwOevBwPJwOHgM+cDs9YGA0lBOUdeHQUxEAg74Pu8Hvg9/YNCeEDwe73wheaPHCgGTr/UAbKiSaFShw70CpU6FApCB/6esND/WR42Tdm3nEoNhUrZLzwEty0fsA25UslTJBR1Nq8N57uCwaO3NeR813lctF+EhMiHLI1cgyJzEYrNxSg2F6PIVBRqBUnUgcamGoaTBNLkaAoLKw2OhrD5Sggo9fqxwtGN5W4PSt0eKFUGYPpqYFZv60h+fIpPYJIowtbWivb6WrTVXUB73QW01dXC2tIEn8cNMY4jCfe2JPS2HvQd8FVQhgUHdWh68OCv6ve+X4AYGCx6gkP/7cgViuS97J2mLG/Ai2prNao6q3Cm8wyquqpwpuMMWlxD9xk0qUyYbp6O6SnTMd08HcXmYkw3T0euITd2/f0oKhhOEpUkof7s3/DJ8f/GwZbPcFAhomXA6I16uQZX5K3E6sJrcFXeVUjVpMap2MQgSRIcnR3BABIKIrVoq6+Fzz26e0eEH/T7BQK1ekAoUA9aTjnE9P6hQTlgPlsSiMJJkoQmRxPOdJ1BVWdVKIzUWGvgH3SVYVCmNhPFKcHgMcM8A9NTgkEkTZPGIJ6kGE4STfPnwPE/Bh+dNaHJktqMC3OuxcHM6fjE34WDzZ+Gdd6SCTKUZpRiVf4qrC5Yjenm6ZP6P6XL3o22C9Voq6/taQkJBhG3wx5xeZlcAUtePtILpiG9YBrS8guRmpMHlU7bFyIUSggy/jVFFCuiJMIv+oMPyQ9fwIe67rqwEHKm88yQV8YYVUbMSpmF2amzMSs1+DwjZQaMKuME/yQUa5MynCRih9hhtZ8Djv8pGEhaT/ZNV+qAOeuBBV8CZl4bvOS3hyiJ+Lztc+yu3409dXtwuvN02CbzDflYXbAaqwtWY0nWEihlydmTXJIkdLe3oqX6PFpqzqGlphotNefQ3RZ5YCNBkCElJxfpBYU9ISQYRlKyc3jfEEoq/Q/kPtEHv+hHQAr0Hdx7p0v+sGn9D/7DTR9qm5HWDUiB0PIR1xm4vBgIho/effS8F0c5qJ1CUKDIXBQWQmanzkaWLmtS/9FFfSZlOOmV0C0n1ovBTq3HXwMaPuubLlcFO7MuuDUYTEZ5aXGjvRF76vdgd/1uHGw8GNYb3ag0YmXeSqwqWIWr8q5K2GvuxUAAHQ31aKk5j5bqc2i9cB4tNdVw2yP/FWXKyEJ6YTB8pOcXIq1gGiy5+bxiYwqLdEDvf1CNdHAeNH/AwXao9SPOHyIQjDlEjOFAnuyydFmYlTorFEJmpczCdPN0Xpo7xTGcTCRJAi58DOz/DXD6r32X/QoyoHgVsPBLwNybAG3KuHbj8Dmwr2EfdtftxgcXPwg7/SMX5CjLLMPq/NW4tvBaFJgKxrWvS+XzuNF6oQYtNefRWhNsFWmrvQC/zztoWZlcjrT8QmQWTUdm0XRkFE1HxrRiaPTsVT+VuP1unO48jc/bPseJ9hM40XECLc6W4ME/4JsSB3S5IIdCpuh7CH2vlTLl4PkRlhty2miWkSkgF+RQypQjTxcUkMvkodp6lxm4fbaEUCQMJxPB7wmestn/G6DpWN/0gsuCgaRkI2DIiMmuA2IAx9qOBVtV6nbjbNfZsPmLMxdjw4wNuH7a9TFrUZFEER0N9Wg8cxpN56rQeKYKrbXVEW8Dr9RokVlUjIxp05FZPB2ZRTOQll8IhZJ/RU0lnoAHVR1V+Lz9c3zeHgwj57rOITDwHlCjEPGg2+/Aq5QroRAUEQ+4A9cdePAduHxo/hD7VMqUQ9cjU0ApRKiBB3KaghhOYqm7Gfj0BeDT3/aNR6LQAqV3AOXfADLnTXhJF+0XsbtuN3bV7cInTZ+E/tJUyVRYXbAaN8+4GVfkXTGuPiqOrs5+QeQ0ms6dgdc1eHRcfUpqsDWkeEYojKRkZrNT6hTjDXhR1VkVbBHpOIET7SdwtvNsxCsz0jRpKEkrwfz0+SixlGCaaVrkUMEDOlFSYziJhYZK4MBzwdaSQM9pCmMusGILsHQzoLNMXC3DaHG24K/n/4o3z70Z1qJi0VhwY/GN2DBjA+ZZ5g37y93ncaO5+hyazpxG49kqNJ49HbGzqkKtRvb0WcieORs5s+Yge8ZsGNPSeeCYYiRJQl13HSpbK1HZUonjbcdxpvNMxCBi0ViCQSRtPkrSSlCSVsIOkURTxKQMJ3G5WkcMAKfeDoaSCx/1Tc9fDlz2TWDezaO6l008SJKE052n8edzf8bb598O66MyM2UmNszYgC8UfwFZ+iw4ujpRd+IY6k9+joaqk2irrRl8ekYQkJ5fGAwiM+cge+ZspBdM45geU5A34MWJ9hOobKnEZy2fobK1MuL9S1LVqShJL0GJJdgqMj9tPoMI0RQ2KcNJrwlpOXF1AZ/9F3DweaCrZ/h5mSLYj+SybwL5y2Kz3xjxi3583PAx/nLuL3i/9n0oHAFkd2iQ3aFBkc0MlXXwOX99qgU5M2cje+acYBiZMRMq7TD3BKJJq8PdgcqWYKtIZWslPm/7HF4xvJOzUqbE/LT5WJy5GAszFmJ+2nzk6HMYRIgoZCzHbw4S0cPj9MFVexbms7+FcORlwOcIztBagGX3AMu/Bphy41vkJZAkCY62NljOenHtiTzMOrEI3a39T9EEIEFCl8kPbXEOlixZg5VL18OYnsEDyxQkSiKqrdX4rOUzfNbyGY60HsEF24VBy1k0FpRllKEsswyLMxdjXto8qOXqCFukyU6SJIgBCQG/GHz4JCB0/5vg7xBBCL3seR/+u6X/fAHCgGX7XoQmD9yW0G9ypO3032TPBsOW5e+6hMNw0uPCH7bjvf0zoBRWI10xDRmmLmQsmIuMK9YgJd8CuTw5OnRKkoSupgbUnTiO+pPHUX/iOLrbw/uLCIIMmcUzkDJzGmrMVrznP4jzngYADXil+RAWHfw77l14L9YUrOG9KiY5SZJQ312PfY37sL9xPz5p+gRdnq5By80wzwgFkbLMMhQaC/kLPU4kqTcISAj4egOB2BcO/BICvkDw2d9vuk8cNE3sCRMBvwh/zzKif8C2BrwWI2xvUgkLOgOCTITg0z/kDAxQ/QNR2H+XAdsJnxchPI1mO737HGlb/RboH/zC3gOYvSILS28oQrwwnPRwaadDDi98kg6NvvlobAewB8Ceo5ArZEjL0yO90IiMguAjLU8PhSox+ls4bVbUHDmM6s8+Rd2JY3B0hp//l8nlyJoxCwXzFiC/ZCFyZ8+DWtd3imarJOFI6xG8cfYNvHX+LRxtO4rv7foeppun494F9+LG6Tcm7Wi0NFi7qx0Hmw7iQOMB7G/cj4v2i2HzNXINFmYsDLWMlGaUJuwgfxNFEiUEAn0HZL8vANEvwe8bePAfEBQGBILe5UVfTxjoFw4irzsgIPhEiIHEPhMvyAQIMvQ1nkh9LyH1u6dwov4YUr+nnl4Pg0tN1OKjx9E1eHyqicQ+J70kCWLbeXR6s9Ba1422Wnvwua4bXvfgPhmCTEBqtg4ZvYGl0ID0fCNU2tjnPUkU0Xz+LM5/9ilqKg+h8VxV6D8RAMgVCmTPnIOCkgXIn7cQubPnQqnRjGrbba42vHzyZbxy6pXQvTBy9DnYNH8Tbp11K7QKbUx+Joodp8+Jwy2Hsb9hP/Y37h90WwSFTIHSjFKU55Tj8pzLMT99fsKEUUmSIIo9LQS+fgd4X/jBvne+P0JA8Pe0Bvh7g4Iv0C9kDL18WJjwJ+6vSZlCgEIhg1wpg1whg0wRfJYrhJ5nGRTKftOVfdPl/ZdVDp7Wt86AZQdNF0L7lsnG3qIWOgwNF2RCi0gDAsSAbfTfTm+46P/PJ/Vso/d1/9UGbKNv3cHb6V9zv5JDK4deD7F9SRpcS/h2pLDlhtxG/58pUi39A9YQ9UkYvKwhRY3U7NGNZj5a7BAbRZIowdrmQludHa21wbDSWtcNV7cv4vKp2TpkFZuQVWxG9nQTLDl6yKJwSshl78aFntaR6iOH4bJZw+ZnFE1HcdlSFC1ajOxZc6BUje/8f7e3G384/Qf814n/Qru7HUDw6ou75t2FL8/98pT/SzqR+UU/jrcdx/7GYBg50noEfjH8st7ZqbNxWc5luCznMizNWgqdMj6dnT0uP9rru9FWb0dbnR1t9XY4rJ6wMJKIv6EGHdAHHtiVfaEgdDBXDp7f91qIOF8RChzhQaP3tUwh8PQaJQ2GkxiTJAmOLm+oZaW1NhhY7B2eQcsq1HJkTTMiq9jcE1pM0JtHDg6SJKGl5nwwjFQeQmPVKUj9hvFWabWYtmgxisuWoahsCYyW9Kj+jL08AQ/ePPsmXjz+Iurt9QAAnUKHf5jzD/hqyVeRqcuMyX5pbDrdnWED8dl94XdyztHn4PLcy3FZzmVYkb0Cadq0Ca0veLNHd08A6Qkj9XZ0t7vHtJ2BrQRyZb+Ddf9pA95HOuD3TRegUMiD2x5inYFBgYGAaOwmZThJhrsSu+xeNFfb0FxtQ9N5K5prbPBFOCVkTNMgu6d1JWu6CRn5RsiVMnicDlw4+lnwdM2Rw4P6jqQXTENR2VJMX7wMuXPmQa6YuKZ3v+jH32v+jt8e/y2qOqsABC8fvXnGzbh3wb0oNBVOWC0U1GBvwPu172Nn7U4cbjkcdg8ak8qE8pzyUOtIgbFgwg6ofm8AHY2Ofq0h3Wivt0c8PQoABosa6flGpOcbkJ5vgCldC4UqQvhQyCBcwikDIkoMkzKc9EqElpPREkUJnU2OYGA5b0VTtQ0djY4B5wV9kALnIZedhdt2FlK/+4wo1RoULixFcdkyFC9eClN6/FspJEnCBxc/wG+P/RaHWw4DAGSCDNdNuw73LbgP89Imfvj+qUKSJJzpOoP3a9/H+7Xv42THybD5cy1zcU3BNbg6/2rMtcyFXBb7DtsBv4j2i3a01NjQfKEbLTU2dDY5IYmDf63IFAIsOfqeEBIMI2n5Bmj0idG/hYhii+EkgXldfjSc68Cpjw6g7tg+2NpOAlJf/xVBlgqZshgp2fNQVFqKgpJ05M5KgdagimPVkR1uPozfHv8t9tbvDU27Ku8qPFD+AAqM8bkz8mQjSiKOtB4JtZDUddeF5skEGRZnLsY1BdfgmsJrkG/Mj2ktkiihq8WJ5hobWmq60XLBhrY6e8RLSTUGZaglJL0gGERSsnVJc0k+EUUfw0kCEsUA6k8cx6mP9uDMgY/hdvT1CTCmZyFr+lKoDSXobNaio8ExaP20PAPyZqcgb3YqcmenJNRfm6c7TuOF4y/g3Zp3IUoitAotvrP4O7hz3p0cJ+USeANeHGg8gPfr3seu2l2hDslA8GaOl+dejmsKr8HqgtWwaGJzTydJkmDv9KClxoaWCzY013Sj9YIt4qkZtU6BzCITsopMyJxmREahCfoUFftlEFEYhpMEIUkSms5W4dRHe3B6/4dhfUj0KamYc/lVmLtyFbJnzg77Re60edFwpgsNVZ2or+pCZ+OAsCIEw0p+T1DJnZUYYeWC7QIe2fcIPmn6BACwOHMxHrniERSbi+NcWeILiAHsb9yPN8+9ib31e+Hw9f2bG5QGXJ1/Na4pvAZX5l0JvTK6l/cBwX4izTU2NJ4N9pVqrrHBZRs8zoFCKUNGoRGZRSZkFhmRVWSCKV3LIEJEI2I4ibO22hqc+ngvTn28F9bmptB0jd6AWeVXYO7KVcgvWQDZKPsEOG1eXKzqRENVFy5WdaKzyRm+gACk5xuQNycV+T2PeA0QJ0oiXqt6Df/fp/8fnH4n1HI1tpZtxVdLvgqFjGP+DXTRfhFvnH0Db5x9A02Ovu9KhjYDawrW4NrCa7E8ezmUUb7BpMfpQ+M5KxrPdqHhjBUtF2yDBvcSZALS8vTBVpFpwTASrUvjiWjqYTiJA6fNimPv/x2nPtyNtrq+e5Eo1GrMXHYZ5q68GkWlS6JyhY3D6kHDmS5cPN2Ji1Vd6GoODysKpQz58ywoWpiGaQvSYUid+HueNNgb8Mi+R/Bxw8cAgAVpC/CzlT/DzNSZE15LovEGvHi/7n38qepP2N+4PzQIk0llwhemfwE3Ft+IRRmLonpKzNHlQcPZLjSe6ULDWSvaG+yDBrnUmVXInZmC7OlmZBaZkF5ggDJBRkEmouTHcDKB2mprcOivf8bJD3ch4At2bJXJFShevBRzr7gaM5aWj3p01kvl6PLg4plOXDzVidoTHbB3ho+3kl5gQNHCdBQtTEfmNOOEXY4pSRLeOPsGnvjkCXT7uqGQKfCNRd/AvQvvTZgRSCfSmc4z+NOZP+Gt82+F3b+mPLsct866FddOuzYqN8+TJAldzU40nrUGA8nZLtjaBo8nYs7UIndmCnJmpiB3lpmnZ4gophhOYkwSRVQfOYRDb7+J2mOVoelZ02dh0dobMLt8JTQGQ3xqkyS0X7Sj5mg7ao61obnGFvYXstaoxLSF6ShakIaCeZYJGW6/2dGMn+3/GfbU7wEQvOT1Zyt/hrmWuTHfd7w5fA68U/0OXj/zOo62HQ1Nz9RlYuPMjdg4c2NUrmzq7nCj9vN21J3sQMOZrkEjGAsCkJZvCIWRnJnmUQ0GSEQULQwnMeJzu/H53vdx+J0/o7MhOFqqIMgwa8XlWHLjF5E7Z17C/eXptHlR+3kwqNSe6AgbFE4mF5A7KyXYqrIoDeaM2A1hLkkS3q5+G788+EtYPVYoBAXuW3gfvr7o61DJE+8y6fGQem6k+Mczf8Tfav4Gl98FAFAICqwqWIVbZ92KlbkrxzUOic8bQENVF2pPtKPuRMegfkhyhQyZRcZgGJkVPFWjnoAgSkQ0FIaTKOtub8Nnf3sLx/7n3dAlwCqtDguvuR6Lb9gAc2bWhNQxXgG/iMazXag51o6ao22wtrrC5qdm61Bcmo7ZK7KRlheblp82Vxt+ceAXeO/CewCAmSkz8bOVP8OC9AUx2d9E6vZ2409n/oQ/nvkjqq3VoelFpiLcNus23DTjJqRrL+02A5IkoaPBgdoTHag70Y6GM9aw8UUEAcgqNqFwfhry5qQic5oRCiX7ixBR4piU4SQew9c3nj2NQ2+/iar9H0ISgwcCc1Y2lqy/GQtWr4VKG5+bpUVLV7MTNcfaUHOsDY1nrBD7jeqZlmfA7PIszF6eHZMOtX+v+Tt+fuDn6HB3QCbIsGn+Jnyr9FvQKGLbPycW7F47Xjr5En534nfo9gbv5KxVaHH9tOtx2+zbUJZRdkktam67D3WnOnoCSQccXeF9iQypahSWWFBQkob8uakJcTk5EdFQJmU46RXrlhMxEMDZT/bh0NtvoqGqb3jwgpKFWHLjFzF96fJRXwKcTDwuP2o/b8fZT1tQc6yt77JSAcifk4rZK7IxY3FGVPuodLo78cuDv8Rfq/8KINjC8NOVP8XizMVR20csOX1OvHzqZWz/fDusnuBdoqebp+MfS/4R64vWw6AaW+uTJEporrHhwufBUzUD+wvJlTLkzUpB4fw0FJRYkJqtS7jTiEREQ2E4uQRuhx3H3/87PvvbW7C1tgAIXnUz78pVWLz+ZmQVz4javhKd2+HD2UMtqDrYhMaz1tB0uVKG4tJ0zCnPRkGJJWpDke+q3YWf7f8ZWl2tkAky/NtV/4Ybim+IyrZjwelzYsfpHXjx+Ivo9HQCCAarb5Z+E+uK1o2pL4kkSmg8b8W5Qy04d7gFDmv4wGeWXD0KSiwoLLEgd2ZK3MavISIaL4aTS7Br+/M4/M6fAQBaowml19+Isuu/AH1KatT2kYxsbS5UHWzG6QNNYeOpaAxKzFqWhdnlWcgqMo37L3ib14ZH9z2Kd2regUKmwG+u/Q0uz718vOVHlcvvwh9O/wEvHH8BHe7gaL+FxkJ8o/QbuLH4xlGHkuECiUojR0FJGgrnW1AwzwKjJflOcxERRcJwcgk6Gy/iL08+hsXrb8a8K1dDoZpcV5CMlyRJaK3txukDTTjzSXPYparmTC3mlGdj9oqscV3xExAD+Je9/4K/X/g7dAodXlj3Auanz49G+ePiCXjw6ulX8dvjv0Wbqw0AkG/IxzdKv4EvTP/CqEa+HSmQFJWmY+bSLBTOs0Cu5AisRDT5MJxcIkmSeA5/FMSAiLpTnag60ITzla3we/uuGsmZYUbp2gIUl2ZAdgmDvXkDXnxr57dwoPEALBoL/t/6/4dppmnRLH9MtfzxzB/xn0f/Ey2u4Km+PEMevr7o69gwY8OIA8lJooSm81acPdSCc5+1hnVoZSAhoqmG4YQmjNftR/WRNpw+0IT6kx3o/TaZM7VYfF0h5lyWPeZLWh0+B+559x6c7DiJPEMe/t/6/4dMXWYMqo/MF/Dh9bOv4/mjz6PZ2QwAyNZn4+uLvo6NMzYOe58bBhIiosgYTiguHF0eHNtTj+N7LsLj9AMAtCYVFq3Jx4Kr88Z0qWu7qx13v3M3artrMSt1FrbfsB0mVWz/vf2iH2+cfQPPH30ejY5GAMGRXL++8Ou4ZdYtww4WZ+904/MPGnDy40YGEiKiCBhOKK68bj9OftSIyp21sHcED9QKtRzzV+aidG3BqDt51nfX46vvfBVtrjYsyVyC/3Pd/4nZOCgX7RfxL3v/BUdbg0PMZ2gzcN/C+/Cl2V8a8n43kiTh4ulOHNtzEdVH2iD1jBPDQEJENBjDCSWEQEDE2U9b8Nnfa9F+MTiyriATMGtZJhZfX4j0fOOI2zjdcRqb390Mu8+ONQVr8OTqJ0fVAXUs/lbzNzzy8SPo9nXDqDTiG6XfwD/M+Ychg5DX5cep/U04vqc+bNj43FkpWLAqD9NLMxhIiIgGYDihhCJJEupOduCzv9ei/lRnaHpBiQWLry9E/pzUYTsif9r0Kf7pvX+CV/Ti1lm34uHLH45Kx2WX34V/O/hv+OOZPwIAyjLK8G9X/xtyDbkRl2+/aMexPRdx+kAT/J7gPYqUajnmlGdjwaq8mA35T0Q0GTCcUMJqre3GZ3+/gLOHWkKdZzMKjVh8XSFmLMmAbIiB3XbW7sS23dsgSiK2LNyC7yz5zrjqON1xGv+y919w3noeAgR8beHX8K2ybw1qlQn4RZyvbMWx3fVhA9KlZuuwcHU+5pRnT8idnYmIkh3DCSU8W5sLlf9Th5MfNcDvC16KbEzTYPF1hSi5Kjfi6LN/rPojHt73MADghyt+iLvm3TXm/UqShFdOv4J//+Tf4RW9yNBm4LGrHkN5TnnYcvZODz7/4CJOfNgApy04JokgEzC9LB0LV+Ujd3YKLzsnIhqDhA4nXV1dWLt2Lfx+P/x+P7773e9iy5Yto16f4WRycdm9OL7nIo7uqofbHhzYLS3fgDX/OBdZRYP/fZ8/+jx+/dmvAQD/dtW/4cbpN456X1aPFT/56Cd4v+59AMDV+VfjZyt/BovGAqCng2tVF47vrsf5fh1cdWYV5l+Zi5Ir82JyE0QioqkgocNJIBCAx+OBTqeDw+HAggUL8OmnnyItLW1U6zOcTE4+bwCnPm7Egb+ch8fhhyAAC9fko/zm6VBp+k6bSJKEXx78JV4+9TIUMgUqrqnAFXlXjLj9T5s+xQ8/+CGanc1QypTYtnQb7pp3V6j1o+m8FR+9dhZN5/tO3YQ6uC7OiNp9hIiIpqqEDif9dXR0YMmSJfj000+Rnp4+qnUYTiY3V7cXH756BlUHg4OfGSxqrPrKHBQt7Pt+iJKIH+79Id6peQdahRa/vf63WJixMOL2/KIfzx99Hv/n6P+BKImYZpqGx69+HCVpJQCCp5f2vXEOZz8NjgCrUMow9/IcdnAlIoqysRy/x/zn4N69e7Fhwwbk5uZCEAS88cYbg5apqKhAUVERNBoNysvLcfDgwbD5XV1dKC0tRX5+Pv75n/951MGEJj+tUYXr7p2PDd8uhTFNA3uHB29XHMXf//N4qO+HTJDh51f+HJfnXA6X34Vv7fwWqq3Vg7bV5GjCfX+7D88eeRaiJOLmGTdjx007UJJWArfDh49eO4OXHt4fDCYCMO+KHNz108ux6s45DCZERHE05nDicDhQWlqKioqKiPN37NiBbdu24aGHHsLhw4dRWlqKdevWoaWlJbRMSkoKjhw5gurqarz88stobm4ecn8ejwc2my3sQZNf4fw0fOUn5ShbWwBBAM582oKXH96Pkx83QJIkKOVK/GrNrzA/bT66PF34p/f+Cc2Ovu/R+7Xv40t/+RIOtxyGTqHDY1c9hp9f+XNoBC2O7KzDf/9kHyr/pw6iX0LBvFTc8a/Lcc3d89inhIgoAYzrtI4gCHj99dexcePG0LTy8nIsX74czzzzDABAFEUUFBTg29/+Nn74wx8O2sa3vvUtXHPNNfjSl74UcR8PP/wwHnnkkUHTeVpn6mi5YMOu/z6FtrrgQG55c1Kw+s65SMnSocPdgU3vbEKNrQYzU2bi+euex/NHn8crp18BAMxPm4/Hr34cBcYCnP+sFR+/fg62VhcAwJKrxxW3zURhiYVX3hARxdiE9TkZGE68Xi90Oh1ee+21sMCyadMmdHV14c0330RzczN0Oh2MRiOsVitWrlyJ3//+91i4MHKfAY/HA4+n714lNpsNBQUFDCdTjBgQUbmzDp/8pRp+nwi5UoblXyhC2XWFaHI14u6/3o0WVwuUMiV8YvCqn00lm/DdJd9Fe60TH792Fo3ngp1dtSYVyjcUY94VOUOOq0JERNE1lnAS1dGj2traEAgEkJWVFTY9KysLp06dAgBcuHABX//61yFJEiRJwre//e0hgwkAqNVqqNVsap/qZHIZllw/DTMWZ2LPy6dQd7IT+984jzOfNGP1P87Fs9c9i83vbka3txsWjQWPrnwUpZpl2PXiaZzp19m17LpCLL6+MOwKICIiSiwT/ht6xYoVqKysHPN6FRUVqKioQCAQiH5RlDTMGVps+E4Zqg404cNXz6L9ogN/fPwQFq3Ox/9d/Vvsad6FLxbciprddry0az9EvwQIwNzLc1C+YTr7lBARJYGohpP09HTI5fJBHVybm5uRnZ09rm1v3boVW7duDTUL0dQlCALmXJaDwgVp+OjVszh9oAlHd9XDUKnGkvJ1eOe/quBx+AEA+XNTccVtM5FRMPJNBomIKDFE9YS7SqXC0qVLsXPnztA0URSxc+dOXH755dHcFRG0BhXW3lOCDd8phSldA3unB4fevQCPw4/UHD1uur8UN3+3jMGEiGgEUkCEv8MNz3krHJ+1wFMb3ytjx9xyYrfbcfbs2dD76upqVFZWwmKxoLCwENu2bcOmTZuwbNkyrFixAk899RQcDgfuueeecRXK0zo0lMKSNHz5x+X45O1q1H7egYWr89jZlYiohyRJkFx++Ls8CPQ8gq/dofeBbi/Q7/IYw8pcqAvjd9HJmK/W2b17N9asWTNo+qZNm7B9+3YAwDPPPIMnnngCTU1NKCsrw9NPP43y8vJB61wKjhBLRETURxIliN1e+Dvd8Hd6EOh0DwogklcceUMKAYoUDeQpamhL0mC4IjeqdSbN8PWXguGEiIimEkmSINp98He4EegXQPydbgQ6PfB3uoHAyIdymUEJeYoaCrMa8hQ15D1BRJEafC/TK2M65lPcLiVOZpJfhBSQIFPL410KERFNMaLbD3+7G/52V4QQ4gH8I7R8yAB5igaKFDXkqZpQ4OgNIQqzCoIyeY5vSRNOYt3nxF3Vifb/PglVvgHq6Waoi81QFZkgUyfNR0RERAlKEiWIdm9PAHHD3+HqeXYj0O6C6PQPvwEBkJv7BY9UDRSWvtdykxqCfPKMdM3TOj2s711A987a8IkyQJVnhGq6ORhYppkg4+BdREQUgRSQEOh0w9fuQqBfK4i/PdgSIvmGb/2QGZTBwJGmhTxVDUWqBnKLJvhsVkFI8k7+7HNyiXovo/JUW+E534VApyd8ARmgzDVAPT0lGFaKGFaIiKYSSZIgdvvga3XC3+YKf3SM0Pej99RLmiYUQhQWDeQ9z5O9WwH7nFwihSX4hdEvCw6/7+/sCSs9gSXQ4Yav3g5fvR32vfWAACjzDFAX97SsFJkh0/IjJSJKdqLLHwodvv4BpNUFyTtM9wKFLBg+0rQ9zxooLMHX8hR10rd+TJSkOZLGY5wTRaoGiqUa6Jf2hJUuT7BV5VxXMKy09wsrH1wEBEBVYIRmjgWauRYoc/W82y0RUYIKtoJ44Wt2wtfihL+l57nVBdHuG3pFAZBbNFCma6Ho/8jQBvt+yPh7f7x4Wmcc/FYPvKHTQFb421xh82VGFTRzUqGda4F6Vgo71xIRxYEkSghYPcHgMSCISO6h/+CVGVVQpGuhzBgQQiwaCAq2gIwV+5zEid/qgft0B9ynOuE52xk+6I1cgLrY3NOqkgplhi5+hRIRTUKS2NMhtTeA9D63OocehEyG4CmYDB2UWTooM3VQZARbQfgHZXQxnCQAyS/CU22F+1QH3Kc64G93h81XpGlCp3/U081M4UREYyC6/fA1OeBrdPR7dg7dH0QuBFtBsnThQSRdy9+/E4ThJAH5Wp1wn+6E+1QHPNXWsB7dgkoG9czU4CmgkjTIjao4VkpElDgkUYK/3dUXQHrCyKCrKXspBCh7woeiN4Bk6qCwaCfVOCDJaFKGk/4dYquqqpIunPQnevzwnO2C+1QnXKc7INq8fTMFQD0zBbrSTGgXpPFSZSKaMkRPAL4Ge/DR5IS30Q5/s3PI8UHkZjWUOXoos/XB5xw9FGkMIYlqUoaTXsnacjIUSZLga3AE+6qc7IC3rrtvpkKAdl4adGUZ0MyxsOmRiCYN0RuAr9EBb303fPV2eC92w9/qCrszbi9BKQu2gmTroeoJIcpsPWQ65cQXTpeM45wkEUEQoMozQJVngOmaQvjbXXAeaYWzsgX+Fhdcx9rgOtYGQaOAbmE6tGUZUBebeakaESUNySfC1xQMIt56O3wXu+FrdkYMInKzCspcQ1iLiCJNy995UwxbThKUJEnwNTrgrGyBq7IVgX6nfuQmFbRlGdCVZnIsFSJKGJIoQfKL8Lc44b1oh++iPdgy0uQExMGHGplRGbxFSL4BynwjVHkG9rmbxHhaZ5KRRAmeaitcla1wHmuD5O67QZQiUwtdWSZ0pRlQpGnjWCURxVrvwR8BKXQndQTE0OvI8yRIARHoeR56uZ7Xvdvqnd5/udC88O31To8UQHrJ9MpgCMkzQJUfDCRyk3oCPz2KN4aTSUzyi3Cf7oCzshWukx1ht9FWFRqhW5oF/ZLMpLo1NlEikcTwg7rk7z34RjjQDzjIS34x7AAu+YcICP5+8wYd/AcEgX77iHQaJBHJdIpgCAm1ihggN6vZyjvFTco+J/EYvj4RCQoZtPPToZ2fDtHth+t4O5xHWuA52wVvbTe8td2w/b0G+styYbg8B3IDm0gpeYgePwJWb/hBf+CB2z8gBAxaJsL83nkRWxjCAwiGv3FsYpELEBSy4NUpPc+CXAZBIQByWd+8Qcv1LKuQhc8bbroiuO3+00PL9d+nXICgljOI0Liw5WSSCNi8cB5pgX1fIwIdPQO+KQToyjJhvCoPyix9fAskiiDg8MFbY4Wn2gZPjRW+i/bEax0YeGDvFwKgiBwGBh7cw9/3rBfxAD/cwX9gYBAYACip8LTOFCYFJLhOtMH+wUV4a/suS9bMSYXhqjyoZ6TwFxrFTcDac/PMais8NTb4m52DlhE0cghKWeiAPKgVQNE3fdBBu/+yioEBov/6/YJCaN3+6/drJeD/F6KomJSndWh0BLkA3cIM6BZmwHPBhu699XCfaA+OTnu6E8ocPQxX5UG3KIPjplBMSZKEQLs7LIyEWvX6UWTqoC42QV1shqrIDEUKO0kSTXVsOZkC/G0udH90Ec5Pm0MjLcpMKhiuyIVhRTYHMqKokCQJ/hYnPL136q62QuwecNt5AVDmGqAuNkNdbIKqyAy5nt8/oqmAp3UoItHpg/1AI+wfN4QOGoJKBv2ybBiuzIPCoolzhZRsRJcf7rNd8FR1wl3VgYDVG76AXICqwNgTRsxQFRp5SwaiKYrhhIYl+UU4K1vR/UF93zl/AdAuSIfx6nyoCozxLZASliRK8DXY4a7qhLuqE95aW/jVLQpZ8BRNUU8YKTBCUPL0IRGxzwmNQFDIoF+WBd3STHjOdKH7g3p4znSFhsrXL8+G6YYiNrcTACBg98JzpisUSERH+KkaRYYWmtmp0MyxQF1s4hg7RDRuSRNOOM5J9AmCEDyozE6Fr8mB7t11cFa2wvFJE1wn2mBePx26pZm8WmGKkQISvPXdwZtRVnUOurxXUMmhnpkCzZxUaGal8nQgEUUdT+tQGE+NFZ2vnw2d7lEVm5C6cSbHSZnkJF8ArlOdcB1rhbuqK+wWCQCgzNEHw8jsVKgKTbzSi4jGjH1OaFykgAj7hxdh+5/a4NU9MgHGq/NgvKYQMhWb7CcLySfCXdUJ57FWuE90QPL2tUrKdAqoZwXDiGZWKuQmjjRMROPDPic0LoJcBuOqAmgXZaDrz+fgPtmB7t31cB5pRcrNM6CdlxbvEukSSX4R7rNdcB1phetEOyRPXyCRp6ihXZQB7YI0qPKNvEU9EcUNwwkNSZGqQfqm+XB93o6uP59DoNOD9t+dgGZ+GlI2zOBgWUlCCojwnLPCeaQVrs/bw07ZyE2qYCBZlB68sob9i4goATCc0Ii089OgnpkC285a2D+8CPfn7Wg+0wnT2mkwrMwNDvNNCUUKSPBUd8F1tA2u420QnX2BRGZUQrewJ5AUmthCQkQJh+GERkWmliPlxmLol2Si8/Wz8F6wwfrXajgPtyDllplQT2P/n3iTJAneGluwheR4G0R73yW/Mr0S2oXp0C5Mh7rYzEBCRAmNHWJpzCRRgvNQM6zvVIf+ItevyIb5hiIOhR8HojcA5+EW2Pc1hN1IT6ZTQLugJ5BMTwne9I6IKE7YIZZiSpAJ0C/PhqYkDdZ3quH8tBmOg01wfd4G800zoF+cGe8SpwR/uwv2fY1wfNoEyR3s2CooZdAuyoBuUTrUM1N4yo2IkhLDCV0yuV4Jy5dmQ78sKzQ2SueO0wi0u2BaOy3e5U1KkijBc6YT9n2NcJ/uCA2OpkjTQH95LvRLsyDT8r81ESU3/hajcVMXmZH1ncWw7axF9/t1wfFRRAmm66bx6o8oEd1+OA41w7GvEf42V2i6Zk4q9JfnQjM7lf1IiGjSSJpwwuHrE5sgl8F8fRFkGgWsf61G9/t1gASYrmdAGQ9fixP2fQ1wHmoJDZImqOXQL8uC/vJcKNO1ca6QiCj62CGWoq77w4uwvnUeAGBYlQ/zDUUMKGMgiRLcpzpg/7gBnrNdoemKTB0MV+RAtzgLMjVH6iWi5MIOsRRXxivzIMgFdL15DvY99UBAgvkLxQwoIxC9ATj2N8K+rwGBTk9wogBo5qXBcEUu1DPM/AyJaEpgOKGYMFyeCwgCut44C/uHFwFRgnnDdB5cI5BECc4jrbC9U42AzQsgeBmwbnk2DOU5vOsvEU05DCcUM4bLciDIBHS+fgb2jxsgiRJSbp7Bjpv9eGptsP7lPLx13QAAeaoapmsKoSvLgKDkqRsimpoYTiim9CuyARnQ+cczcOxvBCQJKV+cOeUDir/LA+u71XBVtgIABJUcxmsKYFyZB0HJsUmIaGpjOKGY0y/LBgQBna9VwXGgCVJAQuqts6ZkQBG9AXTvqYd9bz0knwgIgG5pFszXF0FuUsW7PCKihMBwQhNCvzQLgkxAxx9Ow/lpMyABqbdNnYAiiRKclS2wvlsDsadfiarIhJQNM6DKM8S5OiKixMJwQhNGtzgTkAno2HEKzkPNgCgh9fbZkz6geC7Y0PWXc/DV2wEE+5WYb5wO7YI0dhAmIoqA4YQmlK40A5ABHb8/DednLZBECZZ/mDMpb0rn73LD+k4NXEfYr4SIaCwYTmjC6RZmQBAEtL98Cq4jregQJVi+PGfS3KRO9ATQvacO3XsvAv5+/UrWFUFuZL8SIqKRMJxQXGgXpCPtH+eh/aWTcB1rCwaUr8yFoEjegCKJEpyftcD6t379SopNSLmJ/UqIiMYieY8ElPS0JWlI+2oJIBfg+rwd7S+fguQX413WJZF8IjpeOYXOV6sg2ryQWzSw3DUPGV9fxGBCRDRGEx5O6urqsHr1apSUlGDRokV49dVXJ7oESiDauRak310CKAS4T7Sj/b9PQgokV0ARnT60/vYYXEfbAJkA07oiZH9/KXQL09nhlYjoEkz4jf8aGxvR3NyMsrIyNDU1YenSpaiqqoJerx/V+rzx3+TkPtOJtt+dAPwiUv9hNvRLsuJd0qj4211o2/45/K0uCGo50r46D5qZqfEui4go4Yzl+D3hLSc5OTkoKysDAGRnZyM9PR0dHR0TXQYlGM2sVJhW5wMAnIdb4lzN6HjrutHymyPwt7ogN6uR+c1SBhMioigYczjZu3cvNmzYgNzcXAiCgDfeeGPQMhUVFSgqKoJGo0F5eTkOHjwYcVuHDh1CIBBAQUHBmAunyUfX01riOdcFf5cnztUMz/V5O1qfPwrR4YMyR4/MraVQZo+u9Y+IiIY35nDicDhQWlqKioqKiPN37NiBbdu24aGHHsLhw4dRWlqKdevWoaUl/K/hjo4O3H333Xj++eeH3Z/H44HNZgt70OSksGigKjYDEuD8rDne5QzJ/tFFtP/3CUg+EerZqcj4xiLITep4l0VENGmMOZysX78ejz76KG655ZaI85988kls2bIF99xzD0pKSvDcc89Bp9PhhRdeCC3j8XiwceNG/PCHP8QVV1wx7P4ee+wxmM3m0IOtLJObfmkmAMB5qAUT3B1qRJIooeut8+j6y3lACt7UMH3TfMjUvCKfiCiaotrnxOv14tChQ1i7dm3fDmQyrF27Fvv27QMASJKEzZs345prrsFXv/rVEbf5wAMPwGq1hh51dXXRLJkSjHZhOgSlDP42F7x13fEuJ0TyBdDx8knYP7wIADCtK0LKLTMn5ci2RETxFtVw0tbWhkAggKys8CstsrKy0NTUBAD46KOPsGPHDrzxxhsoKytDWVkZjh07NuQ21Wo1TCZT2IMmL5laAe38NAAI3n8nAQQcPrT+32NwHW8H5AIsX54D05oCXiZMRBQjE94efeWVV0IUxz6ORUVFBSoqKhAIBGJQFSUS3dIsOCtb4TzShpSbZsT1PjT+NhfaXjwOf7sbgkaB9LvnQT09JW71EBFNBVH9rZ+eng65XI7m5vC/eJubm5GdnT2ubW/duhUnTpzAJ598Mq7tUOJTz0iB3KSC5PbDdbI9bnV4LtjQ8ptK+NvdkKeqkfmtUgYTIqIJENVwolKpsHTpUuzcuTM0TRRF7Ny5E5dffnk0d0WTmCAToFvS0zE2TmOeOI+1ofX/HoPo9EOZZ0Dmt8qgzNTFpRYioqlmzKd17HY7zp49G3pfXV2NyspKWCwWFBYWYtu2bdi0aROWLVuGFStW4KmnnoLD4cA999wT1cJpctMtyUL37nq4qzoQ6PZO2N18JUmC/cMGWP8avCJHM88Cy1fmQqaST8j+iYjoEsLJp59+ijVr1oTeb9u2DQCwadMmbN++HXfccQdaW1vxk5/8BE1NTSgrK8O77747qJPsWLHPydSizNRBWWCEr64bzspWGK/Ki/k+JVGC9a3zsH/cAADQX5aDlJtnQJCx4ysR0USa8HvrjBfvrTN12Pc1oOvNc1Dm6JH13SUx35/1bzXo3hW8VN18YzEMV+XxihwioihJ6HvrEI2WrjQDkAvwNTrgbbDHdF8Bmzc0hknql2bBeHU+gwkRUZwkTTipqKhASUkJli9fHu9SaILIdEpo51kAxL5jrG1XLSSfCFWhEbqlyXFHZCKiySppwgkvJZ6aem8G6KxsgRQY+/g4o+HvdMNxMDhIoOn6IraYEBHFWdKEE5qaNHNSIdMrIdp9cFd1xmQftp21QECCeoYZmpkpMdkHERGNHsMJJTRBLoOuLANAbE7t+NpccB4ODhpour4o6tsnIqKxS5pwwj4nU1fvqR3XiXaITl9Ut2177wIgApq5Fqin8eovIqJEkDThhH1Opi5lrh7KbB0QkOA82hq17fqaHHD1bM903bSobZeIiMYnacIJTV2CIPR1jD0UvVM71r9fACRAuzAdqjxD1LZLRETjw3BCSUG3OBOQAd66bvhanePenreuG+4T7YDAVhMiokTDcEJJQW5UQTMrFUB0Wk+s710AEAw9vKEfEVFiSZpwwg6x1Ds4mvOzZkjipd91wVNthaeqE5AJMF1bGK3yiIgoSpImnLBDLGnnpUHQKBCweuE533VJ25AkCda/1QAA9MuzoEjTRq9AIiKKiqQJJ0SCUgZdaTqASz+14znTBW+NDVAIMF7DVhMiokTEcEJJJTTmyfE2iB7/mNaVJAnWv9cAAAyX5UJhVke7PCIiigKGE0oqqkIjFOlaSD4RrmPtY1rXfaIdvno7BJUMxtX5MaqQiIjGi+GEkkpwzJNMAAgNOz8akigFxzUBYFiZB7lBFZP6iIho/JImnPBqHeqlW5IJCIDnvBX+Dveo1nEdbYW/2QlBI4fxqrwYV0hEROORNOGEV+tQL0WKBurpZgCA87ORO8ZKAQm2/6kFABivyodMp4xpfUREND5JE06I+gsNZ3+4GZI0/JgnzsPN8Le5INMrYLgydyLKIyKicWA4oaSkXZAOQSWDv90N7wXbkMtJfhG2nT2tJqsLIFMrJqpEIiK6RAwnlJRkajm0C3rGPDk89Kkdx8EmBLo8kJlUMFyWM1HlERHRODCcUNIKndo50grJFxg0X/QGYNsVbDUxXVMAQSmf0PqIiOjSMJxQ0lJPN0OeoobkCcB1YvCYJ459jRC7fZCnqqFflh2HComI6FIwnFDSEmQCdIt7xzwJP7Ujuv3o3lMHADCtnQZBwa86EVGySJrf2BznhCLpHZDNXdWJgM0bmm7/8CJEpx+KDC10ZZnxKo+IiC5B0oQTjnNCkSgzdFAVGgEJcFYGW08CDh+6P7gIADBdNw2CXIhniURENEZJE06IhqJbGuwY6zgUHPPEvrcekicAZY4+dEUPERElD4YTSnq6RRmAQoC/2Qn36U7YP24A0NNqImOrCRFRsmE4oaQn0yqgLUkDAHT8/hQknwhVgRGaeZY4V0ZERJeC4YQmhd4xTyRPcLwT07ppEAS2mhARJSOGE5oUNLNSITMEb+innm6GekZKfAsiIqJLxnBCk4IgF2BaOw2KNA3MN01nqwkRURLjXdBo0jBclsP75xARTQJsOSEiIqKEwnBCRERECSVpwgmHryciIpoaBEmSpHgXMRY2mw1msxlWqxUmkyne5RAREdEojOX4nTQtJ0RERDQ1MJwQERFRQmE4ISIiooTCcEJEREQJheGEiIiIEgrDCRERESUUhhMiIiJKKAwnRERElFAYToiIiCihMJwQERFRQlHEu4Cx6h1t32azxbkSIiIiGq3e4/Zo7pqTdOGku7sbAFBQUBDnSoiIiGisuru7YTabh10m6W78J4oiGhoaYDQaIQhCVLdts9lQUFCAuro63lTwEvDzGz9+huPDz2/8+BmODz+/oUmShO7ubuTm5kImG75XSdK1nMhkMuTn58d0HyaTiV+qceDnN378DMeHn9/48TMcH35+kY3UYtKLHWKJiIgooTCcEBERUUJhOOlHrVbjoYceglqtjncpSYmf3/jxMxwffn7jx89wfPj5RUfSdYglIiKiyY0tJ0RERJRQGE6IiIgooTCcEBERUUJhOCEiIqKEwnDSo6KiAkVFRdBoNCgvL8fBgwfjXVLSePjhhyEIQthj7ty58S4rYe3duxcbNmxAbm4uBEHAG2+8ETZfkiT85Cc/QU5ODrRaLdauXYszZ87Ep9gENdJnuHnz5kHfyRtuuCE+xSagxx57DMuXL4fRaERmZiY2btyI06dPhy3jdruxdetWpKWlwWAw4LbbbkNzc3OcKk4so/n8Vq9ePeg7+I1vfCNOFScfhhMAO3bswLZt2/DQQw/h8OHDKC0txbp169DS0hLv0pLG/Pnz0djYGHp8+OGH8S4pYTkcDpSWlqKioiLi/McffxxPP/00nnvuORw4cAB6vR7r1q2D2+2e4EoT10ifIQDccMMNYd/J3//+9xNYYWLbs2cPtm7div379+O9996Dz+fD9ddfD4fDEVrm+9//Pv7yl7/g1VdfxZ49e9DQ0IBbb701jlUnjtF8fgCwZcuWsO/g448/HqeKk5BE0ooVK6StW7eG3gcCASk3N1d67LHH4lhV8njooYek0tLSeJeRlABIr7/+eui9KIpSdna29MQTT4SmdXV1SWq1Wvr9738fhwoT38DPUJIkadOmTdIXv/jFuNSTjFpaWiQA0p49eyRJCn7nlEql9Oqrr4aWOXnypARA2rdvX7zKTFgDPz9JkqRVq1ZJ3/3ud+NXVJKb8i0nXq8Xhw4dwtq1a0PTZDIZ1q5di3379sWxsuRy5swZ5ObmYvr06bjrrrtQW1sb75KSUnV1NZqamsK+j2azGeXl5fw+jtHu3buRmZmJOXPm4Jvf/Cba29vjXVLCslqtAACLxQIAOHToEHw+X9j3cO7cuSgsLOT3MIKBn1+vl156Cenp6ViwYAEeeOABOJ3OeJSXlJLuxn/R1tbWhkAggKysrLDpWVlZOHXqVJyqSi7l5eXYvn075syZg8bGRjzyyCO46qqrcPz4cRiNxniXl1SampoAIOL3sXcejeyGG27ArbfeiuLiYpw7dw4PPvgg1q9fj3379kEul8e7vIQiiiK+973vYeXKlViwYAGA4PdQpVIhJSUlbFl+DweL9PkBwJ133olp06YhNzcXR48exf/+3/8bp0+fxp/+9Kc4Vps8pnw4ofFbv3596PWiRYtQXl6OadOm4Q9/+APuu+++OFZGU9WXv/zl0OuFCxdi0aJFmDFjBnbv3o1rr702jpUlnq1bt+L48ePsJ3aJhvr8vv71r4deL1y4EDk5Obj22mtx7tw5zJgxY6LLTDpT/rROeno65HL5oF7ozc3NyM7OjlNVyS0lJQWzZ8/G2bNn411K0un9zvH7GF3Tp09Heno6v5MD3H///Xjrrbewa9cu5Ofnh6ZnZ2fD6/Wiq6srbHl+D8MN9flFUl5eDgD8Do7SlA8nKpUKS5cuxc6dO0PTRFHEzp07cfnll8exsuRlt9tx7tw55OTkxLuUpFNcXIzs7Oyw76PNZsOBAwf4fRyH+vp6tLe38zvZQ5Ik3H///Xj99dfx/vvvo7i4OGz+0qVLoVQqw76Hp0+fRm1tLb+HGPnzi6SyshIA+B0cJZ7WAbBt2zZs2rQJy5Ytw4oVK/DUU0/B4XDgnnvuiXdpSeEHP/gBNmzYgGnTpqGhoQEPPfQQ5HI5vvKVr8S7tIRkt9vD/nqqrq5GZWUlLBYLCgsL8b3vfQ+PPvooZs2aheLiYvz4xz9Gbm4uNm7cGL+iE8xwn6HFYsEjjzyC2267DdnZ2Th37hz+5V/+BTNnzsS6deviWHXi2Lp1K15++WW8+eabMBqNoX4kZrMZWq0WZrMZ9913H7Zt2waLxQKTyYRvf/vbuPzyy3HZZZfFufr4G+nzO3fuHF5++WXceOONSEtLw9GjR/H9738fV199NRYtWhTn6pNEvC8XShS//vWvpcLCQkmlUkkrVqyQ9u/fH++SksYdd9wh5eTkSCqVSsrLy5PuuOMO6ezZs/EuK2Ht2rVLAjDosWnTJkmSgpcT//jHP5aysrIktVotXXvttdLp06fjW3SCGe4zdDqd0vXXXy9lZGRISqVSmjZtmrRlyxapqakp3mUnjEifHQDpxRdfDC3jcrmkb33rW1Jqaqqk0+mkW265RWpsbIxf0QlkpM+vtrZWuvrqqyWLxSKp1Wpp5syZ0j//8z9LVqs1voUnEUGSJGkiwxARERHRcKZ8nxMiIiJKLAwnRERElFAYToiIiCihMJwQERFRQmE4ISIiooTCcEJEREQJheGEiIiIEgrDCRERESUUhhMimhC7d++GIAiDbiZHRDQQR4glophYvXo1ysrK8NRTTwEAvF4vOjo6kJWVBUEQ4lscESU03viPiCaESqVCdnZ2vMsgoiTA0zpEFHWbN2/Gnj178B//8R8QBAGCIGD79u1hp3W2b9+OlJQUvPXWW5gzZw50Oh2+9KUvwel04ne/+x2KioqQmpqK73znOwgEAqFtezwe/OAHP0BeXh70ej3Ky8uxe/fu+PygRBQTbDkhoqj7j//4D1RVVWHBggX46U9/CgD4/PPPBy3ndDrx9NNP45VXXkF3dzduvfVW3HLLLUhJScFf//pXnD9/HrfddhtWrlyJO+64AwBw//3348SJE3jllVeQm5uL119/HTfccAOOHTuGWbNmTejPSUSxwXBCRFFnNpuhUqmg0+lCp3JOnTo1aDmfz4dnn30WM2bMAAB86Utfwn/913+hubkZBoMBJSUlWLNmDXbt2oU77rgDtbW1ePHFF1FbW4vc3FwAwA9+8AO8++67ePHFF/GLX/xi4n5IIooZhhMiihudThcKJgCQlZWFoqIiGAyGsGktLS0AgGPHjiEQCGD27Nlh2/F4PEhLS5uYooko5hhOiChulEpl2HtBECJOE0URAGC32yGXy3Ho0CHI5fKw5foHGiJKbgwnRBQTKpUqrCNrNCxevBiBQAAtLS246qqrorptIkocvFqHiGKiqKgIBw4cQE1NDdra2kKtH+Mxe/Zs3HXXXbj77rvxpz/9CdXV1Th48CAee+wxvP3221GomogSAcMJEcXED37wA8jlcpSUlCAjIwO1tbVR2e6LL76Iu+++G//rf/0vzJkzBxs3bsQnn3yCwsLCqGyfiOKPI8QSERFRQmHLCRERESUUhhMiIiJKKAwnRERElFAYToiIiCihMJwQERFRQmE4ISIiooTCcEJEREQJheGEiIiIEgrDCRERESUUhhMiIiJKKAwnRERElFD+fyan624ctQaOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Add bounds [0, N] to the STATE compartments. \n", + "# Add bounds sum(STATE) in [N-e, N+e], for a small e.\n", + "\n", + "funman_request = get_request()\n", + "setup_common(funman_request, debug=True)\n", + "set_compartment_bounds(funman_request)\n", + "results = run(funman_request)\n", + "report(results, \"compartmental_constrained\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-07-24 18:45:29,268 - funman.server.worker - INFO - FunmanWorker running...\n", + "2024-07-24 18:45:29,271 - funman.server.worker - INFO - Starting work on: ecbf77a9-062b-4470-b67f-48928653308b\n", + "[9830000.00000, 9830000.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "[0.30000, 0.30000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "2024-07-24 18:45:35,834 - funman.api.run - INFO - Dumping results to ./out/ecbf77a9-062b-4470-b67f-48928653308b.json\n", + "2024-07-24 18:45:35,855 - funman.scenario.consistency - INFO - 4{28}:\t[+]\n", + "2024-07-24 18:45:35,867 - funman.server.worker - INFO - Completed work on: ecbf77a9-062b-4470-b67f-48928653308b\n", + "2024-07-24 18:45:45,875 - funman.server.worker - INFO - Worker.stop() acquiring state lock ....\n", + "2024-07-24 18:45:45,919 - funman.server.worker - INFO - FunmanWorker exiting...\n", + "2024-07-24 18:45:45,924 - funman.server.worker - INFO - Worker.stop() completed.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 points\n", + "Point parameters: {'N': 9830000.0, 'NPI_mult': 1.0, 'beta': 0.15239796545843914, 'vacc_mult': 0.30000000000000004, 'r_Sv': 10000.0, 'r_SvSu': 0.002, 'r_EI': 0.14105188985883776, 'r_IH_u': 0.004350000000000001, 'r_IH_v': 0.00135, 'r_HR': 0.14635253130970075, 'r_HD': 0.011, 'r_IR_u': 0.185, 'r_IR_v': 0.185}\n", + " N NPI_mult beta vacc_mult r_Sv \\\n", + "unconstrained 9830000.0 1.0 0.152500 0.3 10000.0 \n", + "compartmental_constrained 9830000.0 1.0 0.152500 0.3 10000.0 \n", + "relaxed_bounds 9830000.0 1.0 0.152398 0.3 10000.0 \n", + "\n", + " r_SvSu r_EI r_IH_u r_IH_v r_HR \\\n", + "unconstrained 0.002 0.131605 0.00435 0.00135 0.173417 \n", + "compartmental_constrained 0.002 0.150834 0.00435 0.00135 0.154919 \n", + "relaxed_bounds 0.002 0.141052 0.00435 0.00135 0.146353 \n", + "\n", + " r_HD r_IR_u r_IR_v \n", + "unconstrained 0.011 0.185 0.185 \n", + "compartmental_constrained 0.011 0.185 0.185 \n", + "relaxed_bounds 0.011 0.185 0.185 \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAG3CAYAAABv3vUDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3YklEQVR4nO3dd3ic1YEv/u/0XjQadUuWZLnJRa6S6RgMtgmmhpiFBBsScncjSHGSTeDuQpKbG3Zhb0II2vDb3YA3CQTSIISAWWJs7IBxxca2bLnJlqwyatN7eX9/jDTSqJeRZkb6fp7nfWbmrWfGsuarc857jkgQBAFEREREKUKc7AIQERER9cVwQkRERCmF4YSIiIhSCsMJERERpRSGEyIiIkopDCdERESUUhhOiIiIKKUwnBAREVFKYTghIiKilMJwQkRERCmF4YSIiIhSypSHk7q6Oixbtiy2qFQqvPHGG1NdDCIiIkpRomRO/OdyuVBcXIxLly5Bo9EkqxhERESUQpLarPPmm2/ixhtvZDAhIiKiGOlYD9izZw+eeeYZHD58GC0tLXj99ddxxx13xO1TU1ODZ555Bq2traioqMDPfvYzVFZWDjjXb3/7WzzwwANjun4kEkFzczN0Oh1EItFYi09ERERJIAgCnE4n8vPzIRaPUDcijNHbb78t/O///b+FP/7xjwIA4fXXX4/b/uqrrwpyuVx48cUXhZMnTwoPP/ywYDQaBYvFEref3W4XsrKyBK/XO6brNzY2CgC4cOHChQsXLmm4NDY2jvhdP6E+JyKRaEDNSVVVFVavXo3nn38eQLSmo7CwEI8++ii++93vxvb71a9+hXfffRe//vWvh72G3++H3++Pvbbb7SgqKkJjYyP0ev14i05ERERTyOFwoLCwEDabDQaDYdh9x9ysM5xAIIDDhw/jsccei60Ti8VYt24d9u3bF7fvb3/7W3z5y18e8ZxPPfUUvv/97w9Yr9frGU6IiIjSzGi6ZCS0Q2xHRwfC4TBycnLi1ufk5KC1tTX22m6348CBA1i/fv2I53zsscdgt9tjS2NjYyKLTERERCkmoTUno2UwGGCxWEa1r0KhgEKhmOQSERERUapIaM2J2WyGRCIZEDwsFgtyc3MndO6amhqUl5dj9erVEzoPERERpbaE1pzI5XKsXLkSO3fujHWSjUQi2LlzJx555JEJnbu6uhrV1dVwOBwjdqQBgHA4jGAwOKFrTlcymQwSiSTZxSAiIhrUmMOJy+XCuXPnYq/r6+tx9OhRmEwmFBUVYdu2bdiyZQtWrVqFyspKPPvss3C73XjwwQcTWvChCIKA1tZW2Gy2KbleujIajcjNzeVYMURElHLGHE4OHTqEtWvXxl5v27YNALBlyxZs374dmzdvRnt7O5544gm0trZi2bJl2LFjx4BOsmNVU1ODmpoahMPhYffrCSbZ2dlQq9X88u1HEAR4PB60tbUBAPLy8pJcIiIionhJnVtnPHqadex2+4BbicPhMM6cOYPs7GxkZmYmqYTpobOzE21tbZg3bx6beIiIaNIN9/3dX1Ln1km0nj4marU6ySVJfT2fEfvlEBFRqplW4aQHm3JGxs+IiIhSVdqEE95KTERENDOkTTiprq5GbW0tDh48mOyiEBER0SRKm3Ay3bW3t+Mf/uEfUFRUBIVCgdzcXKxfvx4ffvhhsotGREQ0pZIyfH0qEsJhCCPcpjwq4+zLcfdddyEQCOClX/wCpSUlsLS14f3330e7xYJIn06r4+4p0q9cQigEIRJByGZDSC4fdt+hTznEfiMdP57tgx4z+HkG33UMZR319QdfP+ieE73+GPZlfyIiSncMJ93CNhuCLS1JubbN4cDev/0N7774Iq7MywN8PuTq9ajoHmXXX1c35LGXmpqwcMMG7Pvd71CxYEHsfPlXXYUdL76Ia4foo+OPRBBqb8elRx6FOEnvm1LAJISjoY6flNCWTqFx8KMn5b0OWDfgZf8VI7wea7mGOnywDZPxMzhIGcb8nif6Xkf7B9Wk/Qz2fzman5Pe1/qNG5D5xS8Ofr0pkDbhZLSDsPUnCAK8wZGPCQUjCIYSN+SLSioa9V+wWo0GWrUaf35/FyorlkHRvyYDaTUUDaWTwYY5mqShj5L9U5zs6xOlE1VFRVKvnzbhZKxz6/TwBsMof+LdSSzZ4Gp/sB4q+eg/3u2//CUefvhh/Nfvf4cVK1bguuuuw7333oulS5cOe5xSq40+lpVBtXgxAMDfPXS/oqQktq4/kc8HmUyGknfehlKpjK0fdEy+sXyBTfD4Eb9ARvrinISyDn3JKfqsMMS/y2jPOZZrjeX6g+468feacv8u/V4P+CwGnGYy3utQx49y5WT9DA6265D/MOP8dxnz5z+Baw2zfvT/B4Y67/ivP+J7HnCeif97y/LzBz/HFEmbcDLd3X333fjMZz6DvXv34uOPP8Y777yDp59+Gv/1X/+FrVu3Tlk5Bq3tmcI+DOwtQURE0z6cqGQS1P5gfVKuO1ZKpRI33XQTbrrpJvzzP/8zvvSlL+HJJ58cNpyIxdEbrvoma476SkRE6WzahxORSAT1GJpXUkl5eTneeOONYffJysoCALS0tGD58uUAgKNHj05yyYiIiCZP2nxrj7dDbDro7OzEPffcg4ceeghLly6FTqfDoUOH8PTTT+P2228f9liVSoU1a9bgX/7lX1BSUoK2tjb80z/90xSVnIiIKPHSJpyMt0NsOtBqtaiqqsJPfvITnD9/HsFgEIWFhXj44Yfx+OOPj3j8iy++iC9+8YtYuXIl5s+fj6effho333zzFJSciIgo8UTCqG8DSA3DTbns8/lQX1+PkpKSuDtQaCB+VkRENJWG+/7uj8PXExERUUphOElxL7/8MrRa7aDLokWLkl08IiKihEubPicz1W233YaqqqpBt8lksikuDRER0eRjOElxOp0OOp0u2cUgIiKaMmnTrFNTU4Py8nKsHmIiOyIiIpoe0iacVFdXo7a2FgcPHkx2UYiIiGgSpU04ISIiopmB4YSIiIhSCsMJERERpRSGEyIiIkopDCcpYuvWrbjjjjuSXQwiIqKkYzghIiKilJI24YTjnEQVFxfj2WefjVu3bNkyfO9730tKeYiIiBItbUaIra6uRnV1dWxWw1ETBCDombyCDUWmBkSiqb8uERFRmkubcDJuQQ/wo/ypv+7jzYBcM/XXJSIiSnNp06xDREREM8P0rzmRqaO1GMm47iQQi8UQBCFuXTAYnJRrERERJcP0Dyci0bRqXsnKykJLS0vstcPhQH19fRJLRERElFjTP5yMUjgSQSjSXSMhDL/vKHcZlZ7zhCMCwhEB3kB42Ktde931+OWvfombN9wCg9GA//P970MikSAYjsATCI260L5ACIFQBCeb7YDEO2CnvpUzfd9rz/q+tTeDbY+uH/wk/T+7wY4Z+vrCwHMMcc24c/S76GDnHKlsg+0x/Hn7bxuibEOUZTDDnXPQ7cOUb7DrDfd2R1f+/icYRRkHHDB8mQa+xzHuP2B7gj/zCR4/8PqTe70Jf/6jfD+DrR7Nz8twJxjqoxvrv+lozjuWso50/t79hjh+DOccrAyjuf5Iu6wpzcRtFUnor9mN4aSb1RNEs8078o6TxOENwu0P4Wybc9j97nywGsdPn8Wdd9wGrU6P6m/9b5w5dx5d7gDOtblGfT0hFECb04/vvfkJmpyDBSIiIpqpZGIRw0kqEAEQ97n1d8ibgMdwd7BomFf9PfXTFwbsNtgRGUYjfvL/bY9bd/e994++eN07RAQxpGIR8gwqSGSRuLue+55DNNRnMkw5e46JP0/f/UUD1o3peFH8eQaef8AJ418Ov3l073/ANYcuwMjXEw25fbh9R/r8Rn/9iR0/4Cd92M+z7/qh38tIn9HIn/HkfgYDrz/6z2Dw7SMcP4HPfFzXG3D88L9ZRvz3GmK/wa411H5jKc9Q5x1s5WSVdajzjnTccNca6qCJlmuwfZfMGsOQHZOA4aRbplaBTK0i2cWYMj6fDyKXEr/+0kIolcpkF4eIiCiGtxKnkIaGBmi12iGXhoaGZBeRiIho0rHmJIXk5+fj6NGjw24nIiKa7tImnNTU1KCmpgbh8PTtvCmVSlFWVpbsYhARESVV2jTrVFdXo7a2FgcPHkx2UYiIiGgSpU04ISIiopmB4YSIiIhSCsMJERERpRSGEyIiIkopDCdERESUUhhOUsTWrVshEokGLBs2bEh20YiIiKZU2oxzMtk8Hg+czuEn3ZtMXq8Xa9euxU9/+tO49XK5HBaLJeHXCwaDcDgc+OUvfwmvN3kTHk43I82GSqlvpv8bTof3n+z3kOzrJ8Ly5ctx4403Ju36DCfdBEFI6gBvgiBALpcjMzNzwLbhytXY2Ig1a9bg3XffxeLFiwEAdrsd5eXl+N3vfocrr7xy0OMikQgikQgcDgdcrtHPZkxERNOf3+9P6vWnfTgRBAHe0Mg1A4JUgNqgTth1lRLlqGbO7KFQKIYMJ8Ppqe0xGo2xYyUSCQBAr9cPeT6/3w+73Y677roLUmn8j8FYyk3TD//9J26mf4ap8P5ToQwTkezyq9WJ+z4cj2kfTrwhL6peqZry6+6/bz/UstH/40okErz99tsDwsTjjz+Oxx9/fMjjFIroTMpyuTz2fLB1/QmCAKlUivz8fM5KTEREKWXah5N0snbtWvz85z+PW2cymZJUGiIiouSY9uFEJVVh/337k3LdsdJoNGOe+E8sjt5w1bcDVjAYHPO1iYiIUsW0DycikWhMzSvpJisrCwDQ0tKC5cuXAwCOHj2axBIRERFNTFLCSX19PR566CFYLBZIJBJ8/PHH0Gg0yShKSvH7/WhtbY1bJ5VKYTabhzxGpVJhzZo1+Jd/+ReUlJSgra0N//RP/zTZRSUiIpo0SRmEbevWrfjBD36A2tpafPDBB0N22pxpduzYgby8vLjl6quvHvG4F198EaFQCCtXrsTXv/51/PCHP5yC0hIREU2OKa85OXnyJGQyGa655hoA7PDZY/v27di+ffu4jl24cCE++uijuHXTYRAgIiKamcZcc7Jnzx5s2rQJ+fn5EIlEeOONNwbsU1NTg+LiYiiVSlRVVeHAgQOxbWfPnoVWq8WmTZuwYsUK/OhHP5rQGyAiIqLpZczhxO12o6KiAjU1NYNuf+2117Bt2zY8+eSTOHLkCCoqKrB+/Xq0tbUBAEKhEPbu3Yt///d/x759+/Dee+/hvffem9i7mMZefvllaLXaQZdFixYlu3hEREQJN+ZmnY0bN2Ljxo1Dbv/xj3+Mhx9+GA8++CAA4IUXXsBf/vIXvPjii/jud7+LgoICrFq1CoWFhQCAW265BUePHsVNN9006Pn8fn/cMLoOh2OsRU5rt912G6qqBh9ETiaTTXFpiIiIJl9C+5wEAgEcPnwYjz32WGydWCzGunXrsG/fPgDA6tWr0dbWBqvVCoPBgD179uB//a//NeQ5n3rqKXz/+99PZDHTik6ng06nS3YxiIiIpkxC79bp6OhAOBxGTk5O3PqcnJzYLbJSqRQ/+tGPcO2112Lp0qWYO3cubr311iHP+dhjj8Fut8eWxsbGRBaZiIiIUkxSxjkZqWmoL4VCwVuNiYiIZpCE1pyYzWZIJBJYLJa49RaLBbm5uRM6d01NDcrLy7F69eoJnYeIiIhSW0LDiVwux8qVK7Fz587Yukgkgp07d+KKK66Y0Lmrq6tRW1uLgwcPTrSYRERElMLG3Kzjcrlw7ty52Ov6+nocPXoUJpMJRUVF2LZtG7Zs2YJVq1ahsrISzz77LNxud+zuHSIiIqLhjDmcHDp0CGvXro293rZtGwBgy5Yt2L59OzZv3oz29nY88cQTaG1txbJly7Bjx44BnWSJiIiIBjPmZp3rr78egiAMWPoOvf7II4/g0qVL8Pv92L9//5DjdIzFdO9z0t7ejn/4h39AUVERFAoFcnNzsX79enz44YfJLhoREdGUSsrdOuNRXV2N6upqOBwOGAyGZBcn4e6++24EAgH893//N0pLS2GxWLBz5050dnYmu2hERERTKm3CyXRms9mwd+9e7N69G9dddx0AYPbs2aisrBzx2Pvuuw/hcBivvfZabF0wGEReXh5+/OMf44EHHpi0chMREU2GtAknNTU1qKmpQTgcHtNxgiBA8HonqVRDE6lUEIlEo9q3Z66cN954A2vWrBnTuC73338/7rnnHrhcLmi1WgDAu+++C4/HgzvvvHNcZSciIkomkSAIQrILMRY9zTp2ux16vT5um8/nQ319PUpKSqBUKgEAEY8HdStWTnk55x85DLFaPer9//CHP+Dhhx+G1+vFihUrcN111+Hee+/F0qVLhz0uFArFakm+8IUvAIjWpkQiEbz66qtDHjfYZ0VERDRZhvv+7i+h45zQ+N19991obm7Gm2++iQ0bNmD37t1YsWJFXEfjwUilUnzuc5/Dyy+/DCA6a/Sf/vQn3H///VNQaiIiosSb9jUn6dCsM5QvfelLeO+993Dp0qVh9/voo49w3XXXoampCe+99x6+9rWvoaWlZdhZi1lzQkREU2ksNSdp0+dkvEQiEURjaF5JJeXl5XjjjTdG3O/KK69EYWEhXnvtNbzzzju45557hg0mREREqSxtwsl4O8Smg87OTtxzzz146KGHsHTpUuh0Ohw6dAhPP/00br/99lGd47777sMLL7yAM2fOYNeuXZNcYiIioskz7Zt10oHf78f3vvc9/M///A/Onz+PYDCIwsJC3HPPPXj88cehUqlGPMepU6dQXl6O2bNno76+fsQmpXT9rIiIKD2NpVmH4WSG4mdFRERTiXfrEBERUdpiOElxL7/8cmyQtv7LokWLkl08IiKihGOH2BR32223DTlxIu/IISKi6Shtwsl0n/hvKDqdDjqdLtnFICIimjJs1iEiIqKUwnBCREREKYXhhIiIiFIKwwkRERGlFIYTIiIiSilpE05qampQXl6O1atXJ7soRERENInSJpxUV1ejtrYWBw8eTHZRJsXWrVujMyj3WzZs2JDsohEREU2ptBnnZCbYsGEDXnrppbh1CoUiSaUhIiJKjrSpOZkJFAoFcnNz45aMjIxhj7nvvvuwefPmuHXBYBBmsxm//OUvJ7O4REREk2La15wIgoBQIDLl15XKxRCJRJN+nfvvvx/33HMPXC4XtFotAODdd9+Fx+PBnXfeOenXJyIiSrRpH05CgQj+42sfTPl1v/zT6yBTSMZ0zFtvvRULGD0ef/xxPP7440Mes379emg0Grz++uv4whe+AAB45ZVXcNttt3HYeyIiSkvTPpykk7Vr1+LnP/953DqTyTTsMVKpFJ/73Ofw8ssv4wtf+ALcbjf+9Kc/4dVXX53MohIREU2aaR9OpHIxvvzT65Jy3bHSaDQoKysb83H3338/rrvuOrS1teG9996DSqXiXT5ERJS2pn04EYlEY25eSTdXXnklCgsL8dprr+Gdd97BPffcA5lMluxiERERjUvahJOamhrU1NQgHA4nuyiTxu/3o7W1NW6dVCqF2Wwe8dj77rsPL7zwAs6cOYNdu3ZNVhGJiIgmXdrcSjzdB2EDgB07diAvLy9uufrqq0d17P3334/a2loUFBTgqquumuSSEhERTZ60CSfT3fbt2yEIwoDl9OnTozp+4cKFEAQBFy9enJJbmImIiCYLwwkRERGlFIaTFPfyyy9Dq9UOuixatCjZxSMiIkq4tOkQO1PddtttqKqqGnQb78ghIqLpiOEkxel0Oo70SkREMwqbdYiIiCilMJwQERFRSmE4ISIiopTCcEJEREQpheGEiIiIUkrahJOamhqUl5dj9erVyS4KERERTaK0CSfTfW6drVu34o477kh2MYiIiJIubcIJERERzQwMJ2nkP/7jP5Cfn49IJBK3/vbbb8dDDz2UpFIREREl1rQfIVYQBIT8/im/rlShSPjswPfccw8effRR7Nq1CzfeeCMAoKurCzt27MDbb7+d0GsREREly7QPJyG/H89t+eyUX/er//17yJTKhJ4zIyMDGzduxCuvvBILJ7///e9hNpuxdu3ahF6LiIgoWdisk2buv/9+/OEPf4C/uzbo5Zdfxr333guxmP+UREQ0PUz7mhOpQoGv/vfvk3LdybBp0yYIgoC//OUvWL16Nfbu3Yuf/OQnk3ItIiKiZJj24UQkEiW8eSWZlEol7rrrLrz88ss4d+4c5s+fjxUrViS7WERERAkz7cPJdHT//ffj1ltvxcmTJ/H5z38+2cUhIiJKKHZUSEM33HADTCYT6urqcN999yW7OERERAnFmpMUsX379lHvKxaL0dzcPHmFISIiSiLWnBAREVFKYThJIQ0NDdBqtUMuDQ0NyS4iERHRpEtKs05xcTH0ej3EYjEyMjKwa9euZBQj5eTn5+Po0aPDbiciIpruktbn5KOPPoJWq03W5VOSVCpFWVlZsotBRESUVGzWISIiopQy5nCyZ88ebNq0Cfn5+RCJRHjjjTcG7FNTU4Pi4mIolUpUVVXhwIEDcdtFIhGuu+46rF69Gi+//PK4C09ERETTz5jDidvtRkVFBWpqagbd/tprr2Hbtm148sknceTIEVRUVGD9+vVoa2uL7fO3v/0Nhw8fxptvvokf/ehH+PTTT8f/DoiIiGhaGXM42bhxI374wx/izjvvHHT7j3/8Yzz88MN48MEHUV5ejhdeeAFqtRovvvhibJ+CggIAQF5eHm655RYcOXJkyOv5/X44HI64hYiIiKavhPY5CQQCOHz4MNatW9d7AbEY69atw759+wBEa16cTicAwOVy4f3338eiRYuGPOdTTz0Fg8EQWwoLCxNZZCIiIkoxCQ0nHR0dCIfDyMnJiVufk5OD1tZWAIDFYsHVV1+NiooKrFmzBg888ABWr1495Dkfe+wx2O322NLY2JjIIhMREVGKmfJbiUtLS3Hs2LFR769QKKBQKCaxRKlh69atsNlsAzoY7969G2vXroXVaoXRaExK2YiIiKZSQmtOzGYzJBIJLBZL3HqLxYLc3NwJnbumpgbl5eXD1rIQERFR+ktoOJHL5Vi5ciV27twZWxeJRLBz505cccUVEzp3dXU1amtrcfDgwYkWk4iIiFLYmJt1XC4Xzp07F3tdX1+Po0ePwmQyoaioCNu2bcOWLVuwatUqVFZW4tlnn4Xb7caDDz6Y0IKPliAIEIKRKb+uSCaGSCSa8usSERGluzGHk0OHDmHt2rWx19u2bQMAbNmyBdu3b8fmzZvR3t6OJ554Aq2trVi2bBl27NgxoJPsVBGCETQ/8dGUXzf/B1dCJJeM6Zi33nprwJD+4XA4kcUiIiJKeWMOJ9dffz0EQRh2n0ceeQSPPPLIuAs1mJqaGtTU1EzrL+u1a9fi5z//edy6/fv34/Of/3ySSkRERDT1kjbx31hVV1ejuroaDocDBoNh1MeJZGLk/+DKSSzZ0NcdK41GM2Div8uXLyeqSERERGkhbcLJeIlEojE3rxAREVHycFZiIiIiSilpE044zgkREdHMIBJG6t2aYnr6nNjtduj1+rhtPp8P9fX1KCkpgVKpTFIJ0wM/KyIimkrDfX/3lzY1J0RERDQzMJwQERFRSkmbcMI+J0RERDND2oQTzq1DREQ0M6RNOCEiIqKZgeGEiIiIUgrDCREREaUUhhMiIiJKKWkTTni3DhER0cyQNuGEd+sQERHNDGkTTqa7rVu3RmdQFokgk8lQUlKCf/zHf4TP50t20YiIiKaUNNkFoF4bNmzASy+9hGAwiMOHD2PLli0QiUT413/912QXjYiIaMqw5iSFKBQK5ObmorCwEHfccQfWrVuH9957L9nFIiIimlLTvuZEEAQEg8Epv65MJoNIJBr38SdOnMBHH32E2bNnJ7BUREREqS9twklNTQ1qamoQDofHdFwwGMSPfvSjSSrV0B5//HHI5fIxHfPWW29Bq9UiFArB7/dDLBbj+eefn6QSEhERpaa0CSfV1dWorq6Gw+GAwWBIdnEmxdq1a/Hzn/8cbrcbP/nJTyCVSnH33Xcnu1hERERTKm3CyXjJZDI8/vjjSbnuWGk0GpSVlQEAXnzxRVRUVOAXv/gFvvjFLya6eERERClr2ocTkUg05uaVVCAWi/H4449j27ZtuO+++6BSqZJdJCIioinBu3VS2D333AOJRIKamppkF4WIiGjKMJykMKlUikceeQRPP/003G53sotDREQ0JUSCIAjJLsRY9HSItdvt0Ov1cdt8Ph/q6+tRUlICpVKZpBKmB35WREQ0lYb7/u6PNSdERESUUhhOiIiIKKWkTTipqalBeXk5Vq9eneyiEBER0SRKm3BSXV2N2tpaHDx4MNlFISIiokk07cc5Ga1QyIlAwDrIlnTqLzz6svr9YQQCnTh9+kWIRLY+ZxjpHBPcPkL/65GvP9Llk/3vNbHrT/j9T1iyr49J+hkZ5JghrpP8/wMjSfb/wTFuF/o+FYbYr+9O8ccPfUzfQ/qvH/k68ccMd/xgL0fYf4j3M5r3Mvpj+n1Ow76fwcs23OdWkL8ZZWXfGeY8k4vhpFskEkAoZE92MaZMOCwgEvHBZv8YkUhzsotDREQpJBzxJvX6DCfdJBINlMr8ZBdjFMY/03G8AGSyAOaUfhNSaf9Zm0e4xoibRyrjBLePMNvzyNefbMm+fpJNYDbu2Ckm+WdkpOMnfv2RNo/n/EMcM8h7nfj/wZEOH+vnJxr8eZ/zDF/mftv6XX/wYyd4zSH3G+r5aM89eFlGfZ3xfGajvk7va6ls+Ft9JxvDSTeJRAmJZOaM9xGJ+CCRWJGdvYHjnBARUUpJmw6xRERENDMwnBAREVFKYThJEVu3boVIJIJIJIJMJkNOTg5uuukmvPjii4hEIskuHhER0ZRhOEkhGzZsQEtLCy5evIh33nkHa9euxde+9jXceuutCIVCyS4eERHRlGCH2BSiUCiQm5sLACgoKMCKFSuwZs0a3Hjjjdi+fTu+9KUvJbmEREREk2/ahxNBEBBJwv3aYrEKogTcUnnDDTegoqICf/zjHxlOiIhoRkibcFJTU4OamhqEw+ExHReJeLH7gyWTVKqhXX/dcUgk6oSca8GCBfj0008Tci4iIqJUlzZ9Tmby3DqCICSkFoaIiCgdpE3NyXiJxSpcf93xpFw3UU6dOoWSkpKEnY+IiCiVTftwIhKJEta8kgzvv/8+jh8/jm984xvJLgoREdGUmPbhJJ34/X60trYiHA7DYrFgx44deOqpp3DrrbfigQceSHbxiIhoMgkCEAkBIX90Cfc8Bsa5LjBw24DHvvsFgJAvum3lVuDm/5O0j4LhJIXs2LEDeXl5kEqlyMjIQEVFBZ577jls2bIFYnHadA8iIkov4VDvl3jI3/sFHfL1+eL2xX95x4UAX3wQiH35+4YODX3P0/c4CMn+NKIC7qRenuEkRWzfvh3bt29PdjGIiKaOIPT7cvb1CQg9IaHvtr5f+EOtGyxI+DBk8Aj5AGFsd4FOGbEUkCgAqbz3UaocYp0ckCoGbpMoouuH2xY7ts85VBlJfesMJ0RENDJBAPwOwGsDfLbhH4PePoGgf0DoGxz8SXs7QxKJ+3yhK/sFgr5f5sp+wUA5RAjou65fGOi7vu85e9aJJcn+NJKG4YSIaCYJeqMBwmvtXXx9X9v6rLP1ebRPfg1DTwiQ9QsDPUGhfwgYsL7fl/tQ4aJ/WOh7Dgm/FlMB/xWIiNKNIAABV2+g8HR1P++KDxh9Q0hPAAn5JnZtiQJQGQGlMfqoyuh93vMoU/cJEX0CQux1/6ChBCQygOM5JYUgCAj6ffA67PA47PA6HdBlZiGrqDhpZWI4ISJKpqAvGio8XfGPsdBhiw8ePUEkEhz/NUWS3mARCxfdz2MhIyM+cMSCR+LGcKLJIUQi8LldsaDhddjhdTiir7vXeXrWOe3wORwIBQNx51hxy+1Yu+XhJL0DhhMiosToqc3wdHYv1n6ho7NfALFG1wU947+mRA6oTIDaFB8uVKY+zzMGhhCFjrUUaUQQBAS8HnjsNngcDngcNnjt9uhrpx0eux1ehw0ee2/NhxCJjPk6EpkMKr0Bap0BGiM7xCacIKTIrVgpjJ8R0QgCnj6hojtYxJ53Dr4+HBj5vIMRSaKhQZ3Z/WjqDhjGPsHD1Gdbd9iQqRky0lQ4FILXYYfbbouGjO7FbbfBa7fB47B3hw0bvA47wqHQmK8hV6mh1hug0uuh0hug0um7Xxt61/dZJ1MoU2aqlGkVTmQyGQDA4/FApWLV43A8nuhfaz2fGdG0JgjRPhfuTsDTAbg7+jx2xa/rCRvjrdGQKrtDhglQd4cKdWZv4Ig9ZvZuV+gBjmWU9kLBIDx2K9w2azRo2LpDh8MGj603fHjsNvhczjGfX6ZUQa3XQ603QmUwQK03Rl8bjNGA0fOojwYOiTR9f78nLZx4PB4sXLgQ99xzD/7t3/4tIeeUSCQwGo1oa2sDAKjV6pRJgalCEAR4PB60tbXBaDRCIpm5t6pRGhOE6N0j7g7A3d5n6egXPrrDiKczOvLmWIll3SGiO1zEnmcOvV6evtNl0ECRSBhehyMaOGxWuO02uG3W2OLpeW63wu8e28BlIpEYKr0eGoMRamNGLGSoDcbuJdrEojYYodLrIVMoJ+ldpp6khZP/+3//L9asWZPw8+bm5gJALKDQ4IxGY+yzIppykUi0CaTvEvID4SDgd8YHDk/nwADi7hhfh1C5DtBkAmozoDH3BgqNeeA6dSb7ZkxjoUAAblsXXFYr3LYuuK1dcFm74LZGg0ZP8PDY7RCE0fffkEilUBuiQUNjNPYJHBlQG6PPe8KISquDiDVmg0pKODl79ixOnz6NTZs24cSJEwk9t0gkQl5eHrKzsxEMTqA3+zQmk8lYYzITRMK9Q2f3DwCx+TS6h9wOB+P37btfONBn3/FsDw4sx3hqMQaj0EcDhSare+kbMszdQaQ7jKgzo+Nn0LQW9PngsnbCbbXCZYuGDZe1M1q7Ye2KPfrcrtGfVCSKCxWaPovamAGNofe1QqNhjX0CjDmc7NmzB8888wwOHz6MlpYWvP7667jjjjvi9qmpqcEzzzyD1tZWVFRU4Gc/+xkqKytj27/1rW/hmWeewUcffTThNzAUiUTCL2CaGpFI/ORag02wNWBdcJBj+k7S1TdADLEu7pg+QaPneaoOyT2YnmG6JTJArh0YOGLPs6KBQ5MVDRwMGzNGJByG226Fq6sTLmtX9LGrE25rF5x9nvs9o29akchk0BhN0GRkQJthgsZogjbDBLXRCK3RFAsiar0BYn6fTKkxhxO3242Kigo89NBDuOuuuwZsf+2117Bt2za88MILqKqqwrPPPov169ejrq4O2dnZ+NOf/oR58+Zh3rx5kxpOaAbydAFd9X3m4wgM8gU/woycY53BM+xPXC3AZJPIexdpdxCIDZ0t6w0HPaNnxp73bJN3j74pT8D2fgurtme0gM8LZ2cHXJ2dcHZ1xIKHy9oJV1cXXNZOeGy2UTevSBWKWNjQZJi6n2f0WZcBbUYmazlSmEiYwD2lIpFoQM1JVVUVVq9ejeeffx4AEIlEUFhYiEcffRTf/e538dhjj+HXv/41JBIJXC4XgsEgvvnNb+KJJ54Y9Bp+vx9+f+/8Cw6HA4WFhbDb7dDr9eMtOqWzcAjoPAdYTkSX1hOA5STgbE52yaJ6vpyl/b+kFfFfzv0n3BrN86FCRd9QMOhzOftOUFIEvB44Ozvh7GyPBo/uABINIx1wdnWMuiOpSCyOhgxTJrQZmdCaTN2Pmb2PpkzIVSqGjhTkcDhgMBhG9f2d0D4ngUAAhw8fxmOPPRZbJxaLsW7dOuzbtw8A8NRTT+Gpp54CEJ2J98SJE0MGk579v//97yeymJROPF3R4BELISeA9tNDD8GtL+geOnuwmTZHmLVzIvvFAghDAM0M4VCwu/+GNdbHI9rBNNrk4uyMBpCAd3S3ZMtVKugys2IBQ2fKhCaj73MT1AYDxDN4MryZJKHhpKOjA+FwGDk5OXHrc3JycPr06XGd87HHHsO2bdtir3tqTmiaiUQAaz3QcrS3JsRyAnA0Db6/TAPkLIouuYuBnCVA9kJAydo0oonofxeLq6ur+26W+I6lXqdj1OdUaDTQmczQZpqhM2VCazJDZzZDZzJDl2mG1mSGQs1bsKlXUgdh27p164j7KBQKKBSKyS8MTR1BAKwXgeZPokvLUaD5GOC3D76/sSgaPnIXdweSxUBGCfspEI2BEInA47DHdSbt26ejZ91YBgcTS6RxnUk1GSZojRndIcQMbWYmdJlmyJUcFJPGJqHhxGw2QyKRwGKxxK23WCwTHlOjpqYGNTU1CIfT6A4EigYRe2N3EDnaG0h8toH7ShTdAWQxkLsk+phTDigNU11qorQSCga7m1Lau/txRIOHu6sLTmvPnSxWRMKj67wtlcmhyciI3b2i6elQasqM3jLb3clUqdWxbwdNioSGE7lcjpUrV2Lnzp2xTrKRSAQ7d+7EI488MqFzV1dXo7q6OtahhlKQIACO5u6akE96F0/nwH0l8mgtSP7y3iVrQbTvBhHF9A8ejs4OuLo7lDo7o3e2eOy20Z1MJILGYIyGi+6+HL0dSqPrNKZMKDVahg5KqjGHE5fLhXPnzsVe19fX4+jRozCZTCgqKsK2bduwZcsWrFq1CpWVlXj22Wfhdrvx4IMPJrTglAJCAaD1ONC4H2j8GGg8ADhbBu4nlgLZ5fFBJLs82smUaAaLRMJwW61wdLTD2dEWfexsH1fwkMrk0Jmj/Td6OpVqM3o7k/bUekik02pKNZqmxvxTeujQIaxduzb2uqez6pYtW7B9+3Zs3rwZ7e3teOKJJ9Da2oply5Zhx44dAzrJUhpydwKXDwAN3UGk+cjAu2ZEkmjH1PxlfYLIIg6WRTNSwOeFs6Mdjvbe4BENItFHV1cHIqNoqpbKFdB199/QmszQZWZBl9ndsTQzurCJhaaTCY1zMpX69jk5c+YMxzmZbJEI0HGmt0akcX90bJH+VCagsAoorIw+5i/nxGc0IwiCAL/bDXu7BY52C+xtFjja22Bvt8DZHUBGM0S6WCKB1mSG3pwFvTkLOnNWd+CI3larM2exmYWmhbGMc5I24aTHWN4cjUHID1w+CFzaFw0ilw9EZ33tL2tBbxAprAIyyziuB01bfo+7N3S0dYeQ9rZYGBnNGB4KjQb6zGjo0GdlQ5fZE0Kyoc/KgsaYwbE7aEZI2iBslEYi4ejdM/UfAPV7ok01IW/8PjI1ULCyN4jMWhWdHp5omgiHQnB0tMHe2gKbpRW2tlbYLa3RZph2y6hqPtQGI/RZ2dBn5cCQnQN9d+iIBpJsjt9BNA4MJ932t+zHvx36N1RkVcSWQl3h9KlKFQSg7VQ0iNR/AFz8cOC4IppsoPhqoGhNtHYkZzHvnqG05/e4YbO0wm5p6X5sha37ubOjfcT5WlQ6fTR4ZGVDn50DQ1YO9NnZ0UdzNmRK9qciSrS0CSeTPc7JkbYjON11Gqe7TuO1utcAACalCUvNS1GRHQ0rizIXQS1Lk7+CegY666kZqd8DuNvj91EYomGk9Dqg5Npok810CWM0YwiCAK/TAWtLM6wtTbC1tsBmaYG9rRU2Syt8I4xkKpUrYMjOgTE3D4bs3O6lN4xwADGiqcc+J906vB04bDmMY+3HcKz9GE51nkIwEozbRyKSYF7GvGjNSndgmaWdlTq1K05Ldxj5ALiwB7A3xG+XqoDZV0SDSMl1QF4FwLZuShM+twu2lmZYW6MhxNrSDFtrM6wtzfB7hp84Tm0wRgNITh4MOXkw5uTCkJMLY04eNMaM1Pk/TDSNsUNsAgTCAdR21sbCyrH2Y2jztA3Yz6Q0xTUFLTYvhlI6RdW8ghCdf6ZuB1D3dvTW3r7EUmDW6t4wMmtVdHI6ohQjRCIIBvwI+nxw26xxwcPa0gRrazO8jiGmN+imM2chIzcfGXn50QCS3RNAciFXpUmNJ9E0xnAySVrdrTjafhTH2rprV7pOIRSJHw5aLpZjadZSVOZWYnXuaizNWgq5JIGDjYX8wMW90UByZkd0aPi+cpd2N9NcH+07otAm7to0o/UNEEG/H0GfF0G/D0Gfv/vRG13v93Xv4xv89YD9/AgF/KMqg8aYgYy8Ahi7Q0hGXj4ycvNhyM2DTM7gTZTKGE6miD/sj9audIeVo+1H0eHtiNtHKVGiIrsClbmVqMytxKLMRZCNtZOpuxM4+y5Q9w5w/n0g0OcOAqkSKF0LzN8AzNsA6CY2hxGlv0g4jKDfh4DPGw0OsRDhQ6AnJPQEhO5tAV+fANH3ub/3mJB/dAFiopRaXSx0ZOQVwBh7ns8aEKJJEA5F4LL64erywWn1wdXlR3axDkXlmQm9zrQMJ+kwCJsgCLjouIiDrQdxsPUgDrQeQJevK24flVSF5dnLsTp3NSpzK1GeWQ6pWNr/RNEB0OreiS6XDwB97yjQ5kSDyPyN0eYaDnqWlgRBQMjv7w4Rvthj0OdFoE9ICMTChbdfiIh/Heg+NhwMjnzxCZIplJAplZApFJApVdHH2DrloK+lI2yXKZWQyRUQcbZpooSJdhgPwtUdOpyxAOKDyxp97XEEgH5JYMn1s3DtvfMSWpZpGU56pFLNyUgEQcAF+wUcaD0QCyw2vy1uH41MgxXZK1CZsxqrIceCyycgObsD6LoQf7KcJdEwMn8DkLcc4C/wKSUIAsLBYHeA8CLg7Q4GXg8Cfh8CXm+fsODtEzi6ayl83fv4++7jiwbRSSKWSHq//LsDhFyp6rMu+ijvu4+yJ2z0Bgi5sm+IUEIqlzNAEKWISDha6+Hs9MHZ5YOj+9HV1f1o9SMcHP52eQCQyMTQZiigMymhNSlRuDAD81Yntiae4SRFRYQIztnORWtVWg7gkOUQHIH42xyN4TCu9vpwrS+IK7NWwLDgVmDeesBYlKRSp6e+tRKB7jAR9PY89/QGhD7remsvesNH39dCZOT/4OMlUyghV3WHApWqT2BQ9gYKpQryWIjo2aaETNG9f59wIVcqIZFyjBqidBcOR3prPDq90fDRZ3HZ/BAiI3yNiwCNXg6tSQlthhI6kwJakxK6DCW0pmggUWplk37XGkeITVFikRjzMuZhntSA+202hO2HcaarBQeUShxSKnBIpYJNIsFbWg3e0gISXMKyrg9x7WUJrhWuxRzjHN7y2EcoEEDn5Qa0X6qPLVZLCwKeaNAYaXCt8ZJ210DEhQZVb3CQq1R9QkVvcOipgZCr1PGhg00ZRDOWEBHgcQRgb/fC0eGFvcMLZ4cPjk4vnJ0+uG3+EStYxVIRdCYl9JlK6DJV0JmU0GUqYzUhGqMCEml6/Y5hzclUCbiB038Bjr0KXNjV24dELAXm3gws3YxQ2ToctZ7GnqY92NO4B+ft5+NOUaAtwDUF1+DaWdeiMq8SCsnMuDtBEAS4bda4ENJ+qR5dzZdHVZsRCw99HntCglypitVURLer417Hhw01ZEoF50EhojEJBsJwdHjhaPfC0eGDvcPb+7rTN2Kzi0Qqhi4zGj60mT0hRAl9pgq6TCXUOjlE4tT/w3VaNuukQ4fYASLh6IBox14DTv0ZCPYZKGrWamDpZmDRXYBm8B7RTa4m7Lm8Bx9c/gAHWw4iEAnEtqmkKlTlVuGaWdGwkquZHnfphENBdF5ujA8iDReHHONCqdUha3ZJdCkqRuasIig02mgIUalYK0FEk04QBPjcQdjbvLC3eWBr7wkfPjg6vNEOp8MQiUXQmRTQm1XQZ6mg7xM80il8jGRahpMeKV9zIghA63Hg09eA478HXK292zKKgaX3Aks/B2TOGdNpPUEPDrQewAeXP8Cey3sGDAg3P2M+rp11LdYWrsVi8+K0aP4Jh4LoaLgEy4VzaL1wFpbz59DReAmRcGjAviKRGBl5+b1BpHvRmjLT4r0SpbNQJARPyANPMLq4g264Q+7Yc0/QA0+o+3nIA5PShDmGOSgzlqFAVwCxaHr8geBzBWFr88De7o0+docRe7sXfs/A31t9KdTSaPgwq2DIUsae680qaE0KSCTT4zMaDsNJMni6gE9+FW22aavtXa/KiNaOLN0cnUwvAV+kgiCgzlqHPZf3YM/lPfi0/VMIfe4DK9QVYmPJRnym5DMoNZZO+HqJEAmH0Xm5IRZCLBfOov1SPcKhgf+hFWoNzEXFsQCSPbsEmYVFkCk4wRrRaESEyKAhomfxBD1wh/o879k2RODwh8c/xo1SokSJoQRlxjLMMc6JPeZr81MytPg9QVgtvcHD1uaFvT36fKQAos1QwJCtgiFLDUNWT/iIBhGlhh3UGU6mUtcF4OOfA5/8Ggh6ousk8ug4JEs3R/uTSBM4QuxgRfB14cOmD7G7cTf2Nu2FN+SNbVtgWoCNJRuxsXgj8rR5k1qOHpFIGNbmJrSePxurFWm/WD/oKKAKjQY5pXORW1qGnDlzkVNSBn1WNmtDaMYJRUKxUOAKuuLCRNwScsMdcMfCxWBL398BiSQVS6GRaaCRaqCWqaGWqWPPNTINVFIV1FI1LB4LztvOo95eH9cc3ZdKqkKpoRRlxrK44JKryZ30//9CRICzywdrqwc2iwfWVjesrR5YLR54R2iC0RgVMGarYMiOBhBjtro7kKgglbM/2nAYTqZC40Hgo+eA02/1dm7NWQKs/iKw6I5ojUkSeIIe7GrchXfq38GHTR8iJPQm/RXZK3BLyS24ufhmZCgTVz63zYrms6fRXHcKrefOwFJ/HkHfwF+OcpUKOSXdIaS0DLmlc2HImfxfRESTRRAE+MN+uIIuuALRQOEKuuAKuuJChiswyLp+AWQyAoVUJI0FB41MEwsTsefd6zUyDdTS+P3iXnc/H+vo1qFICJedl3Hedh7nbOeij/ZzuGi/OGBi1R5qqRplGWVYkLEA803zo3c4Zswb14zwQX84Gj4s0fBha/VEH9s8w3ZCVRvksdDRGz6iYUSmYAAZL4aTyRIJRyfY++hnQOP+3vVl64ArHgFKr09Is02i2Hw2/M+l/8E79e/gkOVQbL1UJMUV+VdgY8lG3FB0AzQyzajPKUQi6LzcgOYzp9FUV4vmM6dga20ZsJ9UoUBOyZy4WpGM3Hx2TqWUIAgCApEAnAFnLDw4g064A73hon/Y6BsyYuEi4I77AyARZGIZtDIt1DI1tDJtXIAYbOnZt/9zjUwDuViekuE/FAmhwdkQF1rO287jov3ioJ+nCCIU6YswL2Me5mfMxwJTNLjkqHMgEong94ZgbXGjs8mFrmZ3rCbEZR26OUosFcGYrUZGjhrGXDUycjXIyFXDmK2GXMVRNiYDw0miBTzA0ZeBfTWAtT66TiyLNttcUQ3klE9NOSag1d2Kdy++i79c+AtOdZ2KrVdKlLi+8HpsLNmIqwuuHjBJYcDnReu5M2iuO4WmM6fQcub0oNPTZ84qQsH8cuTNW4DcOXNhKpjFW25pUgiCAE/IA2fAGQsLzoAz7rFnfSx09AkWPev6T9o5ESKIokFCHm3y0Mq1gwaMnn0GrOsTNhI6UWiaCUaCaHA04Iz1DE53nUadtQ5nus6g3dsOAJCG5cjw5iDDkwuTJw/ZvkKYfQWQe4f+A0uplSEjtyeEaGJhRJ+phHgGdEJNJdMynCTlVmJXG3DgP4CD/wV4rdF1SmO06abyy2k7yV69vR7v1L+Dt+vfxiXHpdh6nVyHjZlrcQ2WItJkQ1NdLdov1Q8YS0SqUCCvbD4K5i9E/ryFyJu7AEotZz+m8bP77ThnO4dz1nOweCxxIcMRcAwIGpEEDbAngigaELrDRE940Ml0A8KEVqaFVq6Nre8JFTq5DkqpMiU7d6arcDACq8WDruZoTUjrZSvam5wIWCMABq8Jcsts6FK3wKa2QGqOILcgA2XFRVhSWI55xnljn3CVEm5ahpMeU1Jz0nYa2Pd89HbgcHfnKOPsaNPN8vsB+eibQVKZIAg4cuFjvP+3P6Dp5AlktAFa78DqTF1mFvK7g0jB/IXIml0CsYS1IjR23pAXF2wXcNZ2Fues53DOdg5nbWcH3Bo/GlKRFFq5Fjq5DlpZ72PPOo2sO2T0CRt99+mp2WCoSC6PI4COy050NLrQcdmFjkYnbG3eIYdkV+lkMOVrYMhVIWx0o1PVgouSOtR5alHXVTdgShAg2lQ2P2M+FpkXYVHmIiw2L0apoRQS1u5OKQ5fPw4eux9dR/bBfOk/obz4Vu+GWauBKx8FFtwKTIMfZJ/bhcu1J9Bw4hgaThxD5+UGiAEUdv8oCCKgUx9AW4YPbUY/JLNMuHvlDbiu7A7o5LrkFp7SRk/1/Fnr2bgg0uhsjLvtva88TR7mZszFLO0s6OS6+LAh00UDRZ/nSokyJftT0OCEiAB7uxftjc7uEOJCx2UnPPbB745RqKUw5Wlgyu9ZtDDlaaDWD9bstSl6DUGAxWPByc6TONlxMvrYeRJ2vx0nOk/gROeJ2BEqqQoLTQtRnlmOxebFWJS5CEX6IobVFMGak26n/vN5vH842ndEJ7EgK8OLrPK5MC9ZiKxCHdSG1OxYNpJgwI/m06fQcOIoGk4cg+XC+fg5Z0QiZBeXomhxBYoWV6BgQTk6Qla8evpV/P7s7+EMOAFEe9DfUXYH7lt4H2brZyfp3VAqsvlsOG09jdOdp3Gq6xTO2s6i3l4/ZJ8Ok9KEuca5KMsoi91GWmYsg1bOpsHpIhgIo6vJ3adGxImOJjdC/vDAnUWAMVsN8ywtzIVamGfpkFmggcaoSMjvXEEQcNl1ORZWTnScQG1nLTwhz4B9dTJdLKwsz16OZdnLYFAYJlwGimKzzjjU/vkjHN7RAEc4e9DtKp0MWUU6mAt1yCrUwVyohcGsSrkhhSPhMFrPn0HDiU/RcOIYms+cQjgYf8teRv4sFC1aiqIlFSgsXwKVbvDP0RP04K0Lb+HlUy/jgv1CbP01Bdfg8ws/jyvyr0jLwEbjIwgCWtwtONV1Cqe7TseWVnfroPtrZJpY8JibMTf2PFM1+HQNNDghIiASFhAORxAJC32W3tfx24Z+Hh7i+Mgg5w5Hht7W/3m473GhCNzWwSerk8jEyCyIhpCsWVqYC3Uw5WsgV05tJX5EiOCi/WIsrJzsPInTXacHHWyu1FCK5dnLY0uhrpC/98aJ4WS8vDb4IppYu2d7oxPtDS7YWt2D/keTKyUwdweVrEIdsop0yMhVT3kPcLfNigtHDuL84QNoPHkMAW/8eAlaU2asZqRocQV0meYxnV8QBOxr2YeXT72MPZf3xNaXGkpx/8L7cWvpreMag4BSVygSQr29Pi6EnO46PWh7PhAdlXiBaQEWmhZiXsY8zM2YizxNXlJ/iQuCACES/8UZCQ39RR4ODfalO/gXc/y+owsKA84fEQbZNvC86fUbupdKJ4v+fuxTI2LMVqXsHTLBSBAXbBdwouMEjrUfwydtn+Ci4+KA/TKVmViWvSwWVhaaFrKz7SgxnCRYMBBGZ1O0jbS9wYmORic6m9wIhwbeMSCVi5FVpENOiQE5xXrklOihzUhM9WQPQRDQ2XgJ5w8fwPnD+9Fy7gz6/gZTanUoXLQERYuXoWjxUmTkFSTs+pccl/Cb07/B62dfj1WL6uQ63D33bvzdgr9DvjY/IdehqROOhHHBHv2lfLzjOE51RptmBvsrUiqWosxYhvkZ87Ewc2F0vImM+RNqkomEo3dmdDa50HnZDY/d3x0ohv5i7x84+n7Z9913uhKLRRBLehZxn+f9X4shkfZbL+59LhnimMHOJxluP3H8Op1JmbZN4X1ZfVYcbTuKT9o/wSeWT3Cy8+SAweMUEkWsGWh59nJUZFWwKWgIDCdTIByOwNri6VPDEu3kFfQNbFNVG+TIKdYjtzQaWLJm68ZcjRkOhdB0+iTOH9qP84f3w95midueO2cuSldWonT5amQXl076YGeugAtvnHsDr5x+BY3ORgCAWCTGuqJ1+OqKr7JfSorq6TB4vOM4jnccj1Zpd5wctP1dLVVjgWlB3DLHOGdC43B4nQF0NLnQeTm6dDS5YG3xDBr0J4NIhOgXaJ8v7KG+oAf7UpdIB345Swb7MpcOsX4sX/j9zy3tLUe6f+mnK3/Yj9rOWnzSFg0rR9uPwua3DdivzFiGNXlrsCZvDVblrhrTQJfT2bQMJ0kZ52SMhIgAa6sHlot2WOodsFx0oLPJPeCWOJEIMOVrumtWDMgp0SMjTwNxv/4rPrcL9UcP4/yh/bh49HDc4GcSmQyzlyzDnJVVKF2xGlpTctrxw5Ew9jbtxa9P/Rr7W6Kj5kpFUty74F78fcXf8y+IJHMGnDjZeRLH23vDSM+AVn2ppCosNi/GYvNilGeWY6FpIQp1heO+cyEcjsDW6kFHdwjpbIoGkaHuzJApJMgs0CBzlq57cKzBA0Lsy1oa/0UuGTRYDNyean3EKL0JgoB6Rz2Oth3FEcsRHG0/Gjd2FABIRBIsMS/Bmvw1qMqtQkVWxYxtBpqW4aRHqtScjFbQH0Z7g7M7rERDy2BDKssUEmTP1sGYHUQ4cAEdjZ+iua4WkXBvTYxKb8CclZUoXVmJ4iXLIVOm1iy9Z6xn8OzhZ7G3aS8AwKAw4CsVX8E98++BTDwz/zNOpVAkhDprXSyIHO84jnp7/YD9JCIJ5mbMxWLzYiw1L53wmA/BQBidl11ou+RA+yUn2i+7YG1xD9msos9SwTxLG+0YWaBF5iwt9JlKBgeaFjq9nThsOYyPWz7Gxy0fx2qWe6ikKqzMWRmrWZmbMXfG3L7McJLi3HZ/NKx0B5bW883wu04iHDgFIdwRt69Kn4vCxSux5PqrUbSkPC2GhP+w6UM8c/AZnLefBwCUGErw7VXfxjWzrklyyaYXf9iP4+3HcaTtCI5YjuCTtk8GbZ4p0BZgsXkxlpiXYIl5CRZmLoRKqhrXNUOBMDouu9B2yYn2BgfaLjlhbRm6w3hmdwjJLNDCPEublDsziJKpydWE/S378XHzx9jfuh9dvq647SalCZW5ldGwkr8GBdqCpJQz4g0hcNmJQIMTgUYnVEvN0KzISeg1GE7SQMDnxdn9H6F2z/toOPlpb4dWkRgyZSEElEAsK4VYYuxeD2QWaFEw14j87kWlS905OEKREP5w5g+oOVoDqz869P9V+VfhW6u+hbKMsiSXLj25Ai4cbY9WHx+2HMbxjuMDOudpZVoszVoaCyKLzYvHfetuKBgNIu2XnGhrcKL9khNdLQObKQFArZcja7YO2d2325tnaaHL5CBpRH1FhAjOWs/i45aPsb9lPw5ZDg2YjXqWdhbW5K/B9bOuR1VeFZTSxNeQC2EBwVY3Ao1OBBocCDQ6EWqPL4d6RTZMn5uf0OsynKSoSCSMhuPHULt3F84e+Aghf2/zTsGCRSi/di3mVl0FlVYHZ5cPzWdtaD5jRfM5O2yWgX8RZ+Sqo0FlnhH5ZRnQZiim8u2MiiPgwH9++p/49alfIxQJQSwS45559+Ary74Ck9KU7OKltC5fVyyIHLYcRp21bsCcMpnKTKzIWYGVOSuxMmcl5hrnjqt5JhIRonOYXLCj7VJ3jUizG5FBgohKJ0P2bH0sjGQV6aExpv+dGURTLRgO4tOOT6M1Ky0f49P2TxEW+jTlS1W4Mv9KrC1ci+tmXQej0jjmawiCgLA9gECjozuMOBFsckEIDuyELjEpIS/SQV6og6LEAHl+YgdGZDhJMe2X6lG7dxdO/203XNbeKr2MvHwsvGYtyq9ZC0P28JMIuu1+NJ+1oeWsDU1nbehqHjgzsD5LhVnzjChalIlZCzKgUKdOP48GRwN+fPjH2NmwE0B0JMYvL/0y7lt434yehbWvDm8HPm75OBZGBusvUqAtiAWRlTkrUaQrGlco8HuCsNQ70HLBjtbzdlguOga90yw6+KAe2bOj4/hkz9YlbOROIornDrpx2HIYey7vwe7G3bB4eu/KFIvEWJG9AmsL12Jt0VoU6goHPUckEEbwshP+7uaZQIMTEefAjugipQTywmgQkRfpIZ+lhUQ7ub+LGU5SgMvahdN/243avbvQfqn3S0ap1WH+ldei/Jq1yJs7f9y/5H2uIJrP2aK1K2dt6Gh0xrX7i8Qi5JboUbTIhKJFmcgq1KVEh8ODrQfxzMFncKrrFIDo4F3fXPlN3FB0w4z7wguEA/ik7RN82Pwh9jXvw+mu0wP2KTOWxYLIiuwVyNGMvQ1YEATYLB60XnCg9YIdrRfs6Gpxo/8UNzKlJDY2T/ZsPbKKdAkfo4eIRkcQBNR21WJXwy7satyFM9YzcdvLjGVYW7gWN+SuRakjH8GLTvjr7QhcdgL9O6OLAVmupjuM6CEv0kGahBHOGU6SJOjz4dzBfajduwuXPj0am8NGLJFizspKLLx2LUqXr4JEmvgaDb83hJZzNlw+ZUVDbSesrfHNQEqtDEXl0aBSuNA0xORZUyMcCePN82/iuU+eQ4c32gF4Vc4q/OPqf8TCzIVJK9dkEwQBFx0X8VHzR/iw6cNB25sXmhaiKq8KK7JXYHn28nFV4wb9YbRdjNaKWC7Y0XrBAZ87OGA/Q5YKuaUG5M4xILfUAFP+wNvZiSg1XHZexu7G3dh34UMELzmxyD0Hiz1lKPMVQoL4plyxXg5FUXeNSKEOsgItxPLk30zBcDLFHB3tOPLOmzi+c0fc0PH58xai/Nq1mHfFNVBpp3ZGX0eHFw21XWg42YnLddYBVfZZRbpYWMkp1UOShCGl3UE3fnH8F/hl7S/hD/shggh3lN2B71R+Z9oMWuQIOLC/ZT8+bIrWjjS7m+O2m1VmXJl/Ja7MvxJX5F8xrn44AV8ILefsaKqzoumMFe2NrgGdViUyMbJn66JhpHtJZkAlotEJuwLw1zsQqLfDX29HsHVgrWeLrAMn1GdxXH0W5/XNmFuyELeU3oJrZl2TUsM4MJxMkbaLF3DorddR99Ge2HgkhpxclF+zFguvWYuM3NQYyj0cjsBywY5LJ6NhpaPRFbddrpRg1kITispNmL04E9qMqR0/pcXVgp8c+QneqX8HQLS68rkbnhuyTTWVhSIhnOg4gX3N+/Bh84c43nE8rhOrTCzDypyVsUAyL2PemJtNQsEwWi840FRnxeXTVrRddAzouKoxKpBbakBed62IuVALiXRmjKVAlM7CrgD8523wX4iGkVCbd8A+UrMKilIDFCUGoEiJw95j2NW4C7sbd8cNspihyMAtpbfgtjm3YaFpYdKbaBlOJpEgCLj06Sc49NbruPTpJ7H1hYuWYvWmu1BcsWLSh46fKLfdj8ZTXWg42YXG2q4BVf45JXqUrczGnBXZ0JmmLqgcthzGtz/4Ntq97TAqjPjx9T/G6tzVU3b98fKFfPio+SP89dJf8cHlDwZMjldqKI2FkVW5q8Y8xkg4HEHbRSea6rpwuc6K1vOOAcO96zKVmDU/AwXzM5A/1zil/25ENH5CWECg0QFfnRW+M1YEm1wD9pHmqGNhRFFigGSIYSQiQgQnO07i3Yvv4q0Lb6HT1xnbNjdjLm6fczs+U/oZmFVjm/w1URhOJkE4FELdR3tw6M9/RHvDRQCASCzGvDVXY/Wmu5BTmp5jd0QiAtobnGg42YmGk51orXfEVRnmlOgxZ0U25qzIgj5zfAN3jYXFbcHXdn0NJztPQiqS4rGqx/C5+Z+b9OuOlSfowd6mvfjrpb9iz+U9cYOf6eV6rMlbg6sKrsKV+VciVzP8nVj9RSICOhqduFxnRVOdDc3nbAj545vl1AZ5LIzMmp8BvXny/22IKDFCdj/8Z6JhxHfWCqFfs7ssTxMNI6UGyIsNkGjG3jQTioTwUfNHePP8m9jVsAuBSPSOHYlIgivzr8RtZbdhbeFaKCRTNwTFtAwnyZpbx+/x4NOdO3DknTfh6ox23pQplFhyw81YccvtMGQndgS9ZHPb/Dj/STvOH2lD8zlbXFDJnq3DnJXZKFuRPalfhr6QD0989ESsmWfz/M34TuV3kt526gw4sbtxN/566a/4sPnDuFl7czW5WFe0DjfNvgkVWRVjHmvEbffj0vFOXDrRiaYzVvg9objtSo0MBfONsUBizFEnvYqWiEZHCEXgv+iA74wV/jNdCPa7YUGslkIxNwPKedFlqJqR8bL77Xj34rt48/ybONZ+LLZeJ9dhQ/EG3DbnNlRkVUz675RpGU56TFXNibOzA0feeROf/nUHAt7oD5LGmIHlGzZh6U0bp7yDazK47X5c6AkqZ21xtypnz9ZhzopslK2cnKAiCAJ+ceIXeO7IcxAgoDK3Ev/vuv83rrtXJsLqs2JX4y68d+k9fNzyMUKR3tBQqCvETbNvwk2zb8KizEVj+o8tCAI6Gl24eLwDFz/tQNslZ9x2uVKC/HkZKJhnxKwFGcjM16bEreBENDqhLh98Z7rgq7PCf94GIdCnKVYEyGfpoJyfAcW8DMhnTd1QD/X2evz5/J/x5wt/Rqu7Nba+WF+MTXM2YVPpJuRp8ybl2gwnE9B+qR6H3nodpz/8INbJ1VRQiFWb7sTCq9dCKkudns9TyeMI4MInbTh3pA3NZ+KDSlaRLtZHxZCV2KCyq2EXvrv3u/CEPJilnYXnb3wec4xzEnqN/jq8Hdh5aSfea3gPh1oPxY3YWGoojQWSsXZmDQbCaDptRf3xDlz6tAPufjP0ZhfrUbwkE0Xlmcgq0kKchDuoiGh8BEFA8LILnuPt8NV2IdQR35FVrJVFa0bmZ0BRljGupppEiggRHGg9gDfPvYm/Nvw1NqyBCCJU5lbinvn3YH3x+oRek+FkHC6fOoH9r/8WF48dia2bVb4YqzfdjZJlK1O+k+tU8jgCuHA0WqPSVGcdUKNSfnU+5q7OSdgEb2esZ/DV97+KJlcTNDIN/vWaf8V1hdcl5Nw93EE33ql/B38+/2d80vYJhD7tWQtMC2JNNqXG0jGd12X14+LxDlw63oHG01aE+wwZLVVIULggA8VLzZi9OBMaQ+pNP0BEQ+sbSLyfdiBs6zPjvBiQz9ZDOc8E5bwMyPI0KVv76Q668d6l9/Dm+TdxsPUgAODuuXfje1d+L6HXYTgZhwN/+j32vrIdIpEYc9dchdW33oncsnkJO/905XVGg8q5w21oOmOLja8hU0owvzIXi67Nh3nWxJvArD4rtu3ehkOWQxBBhK+t+BoeWvzQhNpIBUHAyc6T+P2Z3+Od+nfiOrUuMS/ButnrcFPRTSjUj/6WZiEioK3BGWuu6X/bttakQMkSM2YvNaNgnhFSWfIHRiKi0RsukIjkYigXZkK1OBPKuRkQp+EM3E2uJvz5/J9xTcE1WGRelNBzM5yMg8/twr7f/wbLN2yCMWdsd1dQlNcZQN3+Vpzc2xw3UWFOiR6LrilA2apsyCYwSmEwHMRTB57C7878DgBwa+mt+N6V3xtzb3NHwIG/XPgL/nDmD6iz1sXWz9bPxl1z78LG4o1janMVBAFtl5w4s78V5460wdO3uUYE5BTrUbzUjOIlZmQWaNiRlSjNjCaQqJeYoZyfARH/4BgSwwkllSAIaDpjw8k9TbjwSXtsgDCFWor5a3Kx6JoCmPLGPwLsq6dfxb8c+BeEhTCWmJfgp2t/iix11ohl+qTtE/zh7B/wPxf/B76wDwAgF8txU/FNuHvu3ViVs2pMwcHe7sGZAxbU7W+Fvc9ASTKFJDqg3ZJocw1HYiVKPwwkicdwQinD4wjg1EfNOLm3Gc5OX2x9/lwjFl2TjznLsyGRjb0/z8ctH+Obu78JR8CBbHU2nlv73KBVkFafFW+efxN/PPtHXLBfiK0vM5bhs/M+i1tLb4VBYRj1db3OAM4easOZA62w1PcOtiaViVFSYca8ylwULjSN6z0RUfIFml3wHG1jIJkEDCeUcoSIgMZTXTixpwkXj3fG+qYotTIsuCIPi67OhzFHPaZzNjoa8cj7j+CC/QIUEgX+z1X/BxtLNiIiRHCw9SD+cOYP+GvDXxGMREfAVUlV2FC8AXfPuxtLzUtHXUsS9IdRf6wdZw5Y0FDbFSu7SATMWmjC/MoclCzLSlgHYCKaWpFAGN5PO+Da34JgY+9t/QwkicVwQinNZfXj1EfNqP1bM1zW3r9MZi3IwOJrC1C6LGvUvdpdARe+s/c72HN5DwDglpJbcLzjOBqdjbF9yjPLcffcu3FLyS3QyrWjOm8kHMHl01bUHWjFhaMdcSO0Zs/WYV5lLspWZfMOG6I0FmzzwL2/Be7DbRB83WMYSURQlWdCXZHFQJJgDCeUFiLhCC6d7MLJPU24dLIzNhptZoEGlZtKUVJhHlXtRjgSxk8/+SleOvFSbJ1WpsVnSj+Du+fejYWZC0dVnr4dW88essDr7J1zSG9WYl5lLuZV5iAjd3rMmEw0EwmhCLwnO+He3wL/BXtsvcSkhKYyF5pVOZBo2U9sMjCcUNpxdHhR+7dmHP+gCQFv9C+Y7Nk6VN1eisKFplGFlHfq38E79e/ghqIbcPPsm6GWja6ZKByK4NzhNhzb2Yj2ht4qXaVGhrmrsjGvKhc5JXreZUOUxkJdPrgPtMJ9qBURV/cfHiJAuTAT2qpcKOZmpOw4JNMFwwmlLZ87iE/ea8Cn7zci1D3cc/5cI6puL0V+mTHh1zq5twnHd12OjdYqkYlRWmHGvKpcFJabIOEorURpS4gI8J3ugnt/C3xnrLHaWbFOHq0lWZ0LqZFNs1OF4YTSnscRwOEdF3FiTxMioeiPaNGiTKy5vRRZRRMb1M1m8eDY+404va8lFoDUejmWXD8Li67Nh4pVukRpLezww33QAveBVoTtvf3aFHON0FblQbnQBBH/8JhyDCc0bTi7fDj09kWc+qgldpfMnOVZqNxUClP+6Pt+9Iy9cmxnIy4e7+jt3zJLi2XrCjF3ZQ5v/yVKc8E2Dxw7G+A93g50zxQhVkuhXpULbWUupJM4mzqNLKXDic1mw7p16xAKhRAKhfC1r30NDz/88KiPZziZmWxtHhx8qx5nDlqiwUIEzK/Mxepbi2HIGrpvSTgUwblDFhzd2Rg3lHzxkkxUrCtCwTwj+5IQpbmQ1QfHXxvgOWKJ/eEhL9ZDW5UH1WIzRPzDIyWkdDgJh8Pw+/1Qq9Vwu91YvHgxDh06hMzMzFEdz3Ays3U2uXDgz/W4cLQdACAWi7DgqjysvqUY2gxlbD+fK4gTe5twfPfl2HDyUpkYC67Iw9IbZvGOG6JpIOwMwLmrEa79LUC4e+yk8kzo1xVBnj+6YQNo6ozl+3vKR42SSCRQq6N/6fr9fgiCgDRrWaIkyizQYuPfL0HbJQf2/+kCGmq7ULu3GXX7WrH42uj8Pac/bkXdvhaEumcAVhvkWLp2FhZdXQClNrnTlBPRxEU8QTj3NMH1YROE7v/nijkG6NcXQ1HEP1qngzHXde3ZswebNm1Cfn4+RCIR3njjjQH71NTUoLi4GEqlElVVVThw4EDcdpvNhoqKCsyaNQvf/va3YTabx/0GaGbKnq3Hpq8uw53fXIG8MgPCoQiOvd+IPzx9GCf3NCEUjMBcqMW6B8vxwP+9Eis3FDOYEKW5SCAMx65GtDx9CM7djRCCEcgKdTB/aTGyHl7KYDKNjLnmxO12o6KiAg899BDuuuuuAdtfe+01bNu2DS+88AKqqqrw7LPPYv369airq0N2djYAwGg04tixY7BYLLjrrrvw2c9+Fjk5ORN/NzTj5M814s5vrkBjbRf2v3kBbQ1OFC8xY9mNhchnfxKiaUEIReDe3wLHrsbYGCXSHDUMNxdDWT66cZAovUyoz4lIJMLrr7+OO+64I7auqqoKq1evxvPPPw8AiEQiKCwsxKOPPorvfve7A87xla98BTfccAM++9nPDnoNv98Pv7/3VjCHw4HCwkL2OaFBCRGBAykRTRNCWIDnEwscf22ITcInMSlhuGk2VBWjn+aCUsNY+pwktAtzIBDA4cOHsW7dut4LiMVYt24d9u3bBwCwWCxwOqOjcNrtduzZswfz588f8pxPPfUUDAZDbCksLExkkWma4S8rovQnRAR4Pm2H5dnDsP7+LMI2P8R6OYx3liH3myuhXp7N/+vTXEI7xHZ0dCAcDg9oosnJycHp06cBAJcuXcKXv/zlWEfYRx99FEuWLBnynI899hi2bdsWe91Tc0JERNOP76wV9h0XEWyK3vovVkuhu74Q2ivyOAnfDDLld+tUVlbi6NGjo95foVBAoeDwwkRE05kQjMD29gW497UAAEQKCXTXFEB7dQHEyin/qqIkS+i/uNlshkQigcViiVtvsViQm5s7oXPX1NSgpqYG4XB45J2JiChtBNs96HrlNIItbgCA9sp86G4sgkTDO+xmqoT2OZHL5Vi5ciV27twZWxeJRLBz505cccUVEzp3dXU1amtrcfDgwYkWk4iIUoT7sAVtP/sEwRY3xBoZzA8ugvG2OQwmM9yYa05cLhfOnTsXe11fX4+jR4/CZDKhqKgI27Ztw5YtW7Bq1SpUVlbi2WefhdvtxoMPPpjQghMRUfqK+EOwvXEenk/aAEQHUTNtXgCJnhNv0jjCyaFDh7B27drY657Oqlu2bMH27duxefNmtLe344knnkBrayuWLVuGHTt2THgcEzbrEBFND4EmF7p+cxqhDi8gBvTrZkN3fSHvwKEYzkpMRERTQhAEuD5qhv3teiAsQGJQwPR386EoNiS7aDQFUnpuHSIimnnC7iCsvz8D36kuANEJ+kyfnQuxmn1LaCCGEyIimlT+eju6Xj2NsD0ASEQwfqYUmivyOOw8DSltwslk9znxX7TD/s5FKEoNUJQaIJ+th1jOAX+IiMZLiAhw7mqE46+XAAGQmlUw3bcA8nxtsotGKY59TnrO+9dLcPy1oXeFRAT5LB0Uc6JhRTFbz9EJiYhGKezwo+vVOvgv2AEA6hXZMN5eBrGCv0dnKvY5GQf1qlxIjAr4z9vhv2BD2B5A4JIDgUsOON9vjIaVQl00qMwxQlGkY1ghIhqEt64L1t/WIeIOQSQXw3h7GTQrOfM8jR5rTgYhCALCXT74L9ijy3kbwo5A/E4SEeRFOihKjdHAUqSHSJbQMe2IiFKaEBEQcQURdvgRdgYQdgYQvOyC+0ArAECWp4HpvgWQZamTXFJKBaw5mSCRSARppgrSTBU0q3OjYaUzGlZ8F2zwn7cj4gwgUO9AoN4B504AUhEURXoo5hqhnG+CLE/Dzl5ElJaEcARhVxARRwBhRyAWPCJ9nocdfkRcQWCIP2+1V+bDsLGEf7TRuKRNzUnfDrFnzpxJ6jgngiAg1OHtrVm5YEPEGYzbR6KXQ7nABOV8ExRlRrazElHSCYKAiCcUDRwOPyL26GO4J4TYozUgEffQoWMAESDWyiHRyyHRRR9VizKhnG+a1PdC6WcsNSdpE056pOIgbLGwcs4GX50V/vM2CMFI7w4SERSlBijnm6BcYILMrEpeYYloWhJCkd6A4fAjbA/EQkgsfDj8QGiUv/LFIkh0Moj1imjo0Mm6w4cC4p4gopNDrJVxZFcaFYaTJBOCEfgv2OA93QVfnRXhLl/cdqlZBeX8DCgXmKAoMUAkZbUnEQ0tLnh0LyFbTwDxI2zrbmIZJbFGColeEa3tMEQfxXp57zq9HGI1QwclFvucJJlIJo7Wksw3RWtV2r3w1XXBd7oL/noHQh1euDq8cH3YDJFcDEVZBpQLMqCab4LEoEh28YloCgkRIdqHw+ZH2OZD2DaB4CEVxcKGRK+AxBAfOHqe8w8iSnUMJ5NMJBJBlq2GLFsN3TWzEPGF4D/XU6vShYgzCF9tJ3y1nbABkM3SQl2RBfXSLAYVomkg4g/1Bo4+S6g7iITtASAyigpsqRhSQ3dNR2zp89qogFgtZUd8mhbSplknlTrEJooQERBsccPXHVQCjc7eTmgiQF5sgLoiC6olZkg0nH+CKNXEOphafQhZfQhb/dHHWADxQ/CGRj6RWBQNGkYlpMaesNFd09H9msGD0h37nKSpsCsA7/EOeI61I3DR0btBDCjKMqJBZVEmxEpWeBFNBUEQIHhDCFn9AwJIqCv6XAiMPKWGSCmNho6MaNiQGrtDR3cYEevk7N9B0x7DyTQQsvng/TQaVIJNrt4NUhFU801QLcuCaoGJo9QSTZAQjETDRqc3Gji6fL1hpMsHwT9y+BDrZJBmKCHJUEKaEQ0dEqMi+tyg4B8URGA4mXaC7R54j7XDc6wdoXZvbL1ILoFqUSZUFVlQzjVCJGEnN6L+Yk0vXb0BJNTpQ6jLi3Cnb+Doz4MQa2Wx4BEXQkzRmg/+kUA0MoaTaUoQon1UeoJK2OaPbROrpVAtNkO9Ihvy2Xq2TdOM0nPHS6jdG18D0ulFqHPk2g+RQgKpSQmpSQlJprI3gJiiNSCcoZxo4hhOZgBBEBBocEaDyqftcbcayvI00F6VD3VFFv+io2lDEARE3EGEOrz9lmgIiRv4cBBivTwaQDJV3Y/KaM2HSQmxRsZATzTJGE5mGCEswH/BBs/RaI0KQtFf0mK1FJrKXGjW5EFqVCa5lESjE/EEo80uHV4E+wWRYWtAxKJY6JBmqmLBQ5oZfWRQJ0quaRlOpuOtxJMh7A7Cc6gVrn0tvc0+IkC1KBPaK/MhLzHwL0RKGUI4gmCLG/5LDgS6l7B9mD4gIkBiUECaFZ2YU2rus2Qo2O+KKIVNy3DSgzUnoyOEBfhOdcL1UTP8F+yx9bJcDbRX5kO1LIvt6DTlwu4gAo1OBC464L/kQPCyc9DmGLFODqlZBVksfCijjyYVZ7klSlMMJxQn2OqGa18zPEfaYl8EIpUUmtW50K7Jg9TEJh9KvJ6pGwKXHLGakb53m/UQqaRQFOkgn62PLrO0ECt46y3RdMNwQoOKeIJwH7LA9XFL72SEIkC5MNrko5jDJh8aPyEUQaDRCf/F7iaaBgcinoGjo0qzVJAX6aEojoYRqVnFAciIZgCGExqWEBHgO90VbfI5Z4utl+aoobu6AOoVORBJ+GVBwxMiAoLNLvjP2+A7Z0PgomNgE41UDHmhForZBshn6yAv0nMqBqIZiuGERi3Y5oHro2Z4jlggBKJfLNIcNQy3lEA5L4M1KRQjCAJCbR74z9vhO2eD/4Idgi++ZkSslUFRYoB8th6K2XrI8jScAZeIADCc0DhEvCG4D7bCubsxVhWvKDPCcEsJ5PnaJJeOkiXU5YvWjJy3wX/ehogzGLddpJBAUWqAYo4RyjIjpDlqBloiGhTDCY1bxBuCY1cDXB82A2EBEAHqlTkw3DwbEr0i2cWjSRZ2BeA/b4P/nB2+87bevkk9pGIoivWxMCLL17IJkIhGZSzf32nTJb7vOCc0ecQqKYy3lEK7Jh/2HfXRyQcPWeA91g7ttbOgu24Wb0GeRgRBQMjigfdUJ3y1XQhcdgJ9/1wRA/JCPRRzorUjiiI9b+UloknHmhMalr/BAftf6hG45AAQHX/CcPNsqFfm8A6LNCWEIvDX2+E71QXvqU6Erf647bI8TTSIlBmhKNHztl4iSgg261BCCYIA74kO2N+5GKvml+VqYPhMCZRzM5JcOhqNiCcIb50VvlOd8NVZ44eBl4qhLDNCudAE1QITJAY23xFR4k3LZh1KHpFIBPWSLKgWZsK1rxmOnY0ItrrR8YsTUMzLgPGWEshyNckuJvUTbPfEakcClxxAn7t8xVoZlAtMUC3MhGKukU11RJRSGE5o1ERSMXTXzIJmZQ4cOxvg+rgF/jNWWM5aoVmdC/1NsyHRyZNdzBlLiAgINDjgre2E71TXgNFYZblqKBdmQrnQBPksHZvliChlsVmHxi3U4Y12mj3RCQAQySXQrZ0F3XWF/OKbQsE2DzyftMHzSVvvZI8AIBFBUWqAaoEJyoWZnKaAiJKKzTo0JaRmFTI/Xw7/RTtsf6lHsNEJx7uX4L9gR+bfLYBYzZFAJ0vYGYDnWDs8n7Qh2OSKrRcpJFCVR2tHlPMyIFbyvzgRpR/WnFBCCBEBnk/aYHvjHIRgBBKTEuYHytkXJYEigTB8tZ3wfNIG31lrbx8SsQjK+RlQL8+GaqEJIhn7jxBR6mHNCU05kVgEzcocyPK16PxVLcJdPrTVHEXGPfOgXpqV7OKlLSEiwH/BBs+RNnhPdEII9N5lIyvUQbM8G6qlZki07OtDRNMHwwkllDxPg+zqZeh69TT8Z23oeuU0gs0u6G8uZj+UMQi2uuE+0gbv0TaEHYHYeolJCfWyLKiXZ0OWpU5iCYmIJg/DCSWcRCODeeti2N+th2tPE5y7LyPQ7EbmvfPZD2UYEU8Q7kMWeI60Idjqjq0XKaVQV5ihXp4N+Ww9564hommP4YQmhUgigvGWUsjztbD+4Sz8Z6xoqzmKzAfKIcthP5S+Qp1euD5shvtgK4Rgd0cSiQjKBSZolmdDucDEmX2JaEZJm3DCuXXSk3pZNqRZanT+qhahTh/aao7B9Ll5UC02J7toSedvcMC1twneEx2x+WxkuRpo1uRBvdTMWiYimrF4tw5NibA7iK6XT8F/wQ4A0N1QCP262TOuH4oQEeA71QnnnqbYfEUAoJiXAd01BVCUGdlsQ0TTEu/WoZQj0chg/uIS2N++ANeHzXC+34hgsxume+fPiLE4IoEwPEcscO1tQqgzOj8RJCKol2VDd00Bb7kmIupj+n8rUMoQSUQwbpoDWYEW1j+ehe90V7QfyhfKIcuenneehJ0BuPY1w/1xCyKeEIBoB1ftmjxor8yDRM9J9oiI+mM4oSmnWZEDWXZ3P5R2L9pqjsK0eT5U5ZnJLlrCBNs8cO1tgvsTCxCKtpxKTErorsqHelUuxAoOlEZENBT2OaGkCbsC6Hz5FAL10b4X+nVF0N1QlLb9UARBgP+CHa69TfCd7oqtlxfqoL22AKpF5rR9b0REE8U+J5QWJFo5sr60BLa3LsC9rwWOvzZEx0P5uwUQydLr1tlghxe2N8/Df8YaXSEClAszobu2gGOTEBGNEcMJJZVIIkbG7WWQF2hhff0cfLWdsL97EcZbS5NdtFGJBMJw7mqEc89lICwAEhE0q3KgvWYWZGZVsotHRJSWGE4oJWhW5UKslqHzl7VwfdgEVbkJilJjsos1JEEQ4DvZCdtbFxC2+QFEbwc23jaHoYSIaIIYTihlqMozoVmdC/fBVnT97gxyvrYiJW8z7t+EIzEqYLy1FMpFmWy+ISJKgNT7zU8zmuHWEvjOWRG2+mF76wJMn52X7CLFDNaEo7t2FnRrCyGW8+4bIqJEYTihlCJWSGG6Zx7a//M4PIcsUC3KhGphcm8xjjXh/PkCwvZoE45yfgYMm9iEQ0Q0GRhOKOUoSo3QXlUA19+aYP3DWci/oYdEk5x5ZoLtnmgTzlkbgO4mnE1zoCw3sQmHiGiSMJxQSjKsL4bvjBWhNg9sb5yD6b4FUxoGIoEwnO83wrm3TxPOdbOgu55NOEREk43hhFKSSCaG6XPz0Pbvx+A93gHvsXaol2VP+nUFQYD3RCfsb8U34Rg3zYGUTThERFNiyke6amxsxPXXX4/y8nIsXboUv/vd76a6CJQm5LN00N9QCACwvnE+FhYmS8jqQ8eLJ9D18imE7X5IMhTIfKAcmVsXMZgQEU2hKR++vqWlBRaLBcuWLUNraytWrlyJM2fOQKMZ3aysHL5+ZhHCEbT9/BiCl11QzDXC/NDiSWneCTS70PHSCUScQUAqgu66QuivnwWRjE04RESJMJbv7ymvOcnLy8OyZcsAALm5uTCbzejq6hr+IJqxRBIxTJ+bD0jF8J+1wb2/JeHX8J2zov3/+xQRZxCyXA1yv74ShptmM5gQESXJmMPJnj17sGnTJuTn50MkEuGNN94YsE9NTQ2Ki4uhVCpRVVWFAwcODHquw4cPIxwOo7CwcMwFp5lDlq2GYUMxAMD+l3qEOrwJO7fnaBs6XjoJwR+GotSArL9fyiYcIqIkG3M4cbvdqKioQE1NzaDbX3vtNWzbtg1PPvkkjhw5goqKCqxfvx5tbW1x+3V1deGBBx7Af/zHf4yv5DSjaK/Mh6LUACEYQddv6yBEJt4a6dxzGV2v1gFhAaqlZpgfWpySI9ISEc00E+pzIhKJ8Prrr+OOO+6IrauqqsLq1avx/PPPAwAikQgKCwvx6KOP4rvf/S4AwO/346abbsLDDz+ML3zhC8New+/3w+/v7QjpcDhQWFjIPiczUMjqg+XZIxD8Yeg3FEN//fhq3ISIAPvb9XD9rQkAoL0qH4bPlEIk5rglRESTJWl9TgKBAA4fPox169b1XkAsxrp167Bv3z4A0Vs1t27dihtuuGHEYAIATz31FAwGQ2xhE9DMJc1QwrgpOlux471LCLS4x3wOIRRB12t1sWBiuKUEhlsZTIiIUklCw0lHRwfC4TBycnLi1ufk5KC1tRUA8OGHH+K1117DG2+8gWXLlmHZsmU4fvz4kOd87LHHYLfbY0tjY2Mii0xpRr0yB8qFJiAswPpaHYRQZNTHRnwhdLx4At5j7YBEBNPm+dBdO4sjvRIRpZgpb2C/+uqrEYmM/gtFoVBAoVBMYokonYhEImTcNReWZw8j2OqG468Nsc6ywwk7/Oh48SSCrW6I5BJkfmEhlHMzJr/AREQ0ZgmtOTGbzZBIJLBYLHHrLRYLcnNzJ3TumpoalJeXY/Xq1RM6D6U/iU6OjDvnAgCcHzTCf8kx7P7BNg/a/v0Ygq1uiLUyZP2vpQwmREQpLKHhRC6XY+XKldi5c2dsXSQSwc6dO3HFFVdM6NzV1dWora3FwYMHJ1pMmgZUi81QL88GBKDrt3WIBMKD7ue/5ED7C8cQtvkhNauQ/ZVlkBdop7i0REQ0FmNu1nG5XDh37lzsdX19PY4ePQqTyYSioiJs27YNW7ZswapVq1BZWYlnn30WbrcbDz74YEILTmS8bQ78F2wId/pgf7seGXeUxW331nai85XTQCgCeaEOmVsXJW12YyIiGr0xh5NDhw5h7dq1sdfbtm0DAGzZsgXbt2/H5s2b0d7ejieeeAKtra1YtmwZduzYMaCT7FjV1NSgpqYG4fDgfyHTzCNWSZHx2Xno+MUJuD9ugao8E8p50eYa1/4W2N44BwiAcoEJpvsWcDZhIqI0MeVz60wU59ah/qx/Ogf3vhZI9HLkfH0FnH9rgvP96F1d6lU5yLhzLkQS3pFDRJRMY/n+5nCYlPYMG0vgP2tDqMMLy0+PIGwPAAB0NxZBv66ItwoTEaWZKZ/4jyjRxHIJMj43DxAhGkxEgPHOsujkfQwmRERpJ23CCW8lpuEoivQw3FoKqVmFzM+XQ1uVl+wiERHROLHPCREREU26pM2tQ0RERDRRDCdERESUUhhOiIiIKKWkTThhh1giIqKZgR1iiYiIaNKxQywRERGlLYYTIiIiSikMJ0RERJRS0iacsEMsERHRzMAOsURERDTp2CGWiIiI0hbDCREREaUUhhMiIiJKKQwnRERElFKkyS7AWPX033U4HEkuCREREY1Wz/f2aO7DSbtw4nQ6AQCFhYVJLgkRERGNldPphMFgGHaftLuVOBKJoLm5GTqdDiKRKKHndjgcKCwsRGNjI29THgd+fhPHz3Bi+PlNHD/DieHnNzRBEOB0OpGfnw+xePheJWlXcyIWizFr1qxJvYZer+cP1QTw85s4foYTw89v4vgZTgw/v8GNVGPSgx1iiYiIKKUwnBAREVFKYTjpQ6FQ4Mknn4RCoUh2UdISP7+J42c4Mfz8Jo6f4cTw80uMtOsQS0RERNMba06IiIgopTCcEBERUUphOCEiIqKUwnBCREREKYXhpFtNTQ2Ki4uhVCpRVVWFAwcOJLtIaeN73/seRCJR3LJgwYJkFytl7dmzB5s2bUJ+fj5EIhHeeOONuO2CIOCJJ55AXl4eVCoV1q1bh7NnzyansClqpM9w69atA34mN2zYkJzCpqCnnnoKq1evhk6nQ3Z2Nu644w7U1dXF7ePz+VBdXY3MzExotVrcfffdsFgsSSpxahnN53f99dcP+Bn8+7//+ySVOP0wnAB47bXXsG3bNjz55JM4cuQIKioqsH79erS1tSW7aGlj0aJFaGlpiS1/+9vfkl2klOV2u1FRUYGamppBtz/99NN47rnn8MILL2D//v3QaDRYv349fD7fFJc0dY30GQLAhg0b4n4mf/Ob30xhCVPbBx98gOrqanz88cd47733EAwGcfPNN8Ptdsf2+cY3voE///nP+N3vfocPPvgAzc3NuOuuu5JY6tQxms8PAB5++OG4n8Gnn346SSVOQwIJlZWVQnV1dex1OBwW8vPzhaeeeiqJpUofTz75pFBRUZHsYqQlAMLrr78eex2JRITc3FzhmWeeia2z2WyCQqEQfvOb3yShhKmv/2coCIKwZcsW4fbbb09KedJRW1ubAED44IMPBEGI/szJZDLhd7/7XWyfU6dOCQCEffv2JauYKav/5ycIgnDdddcJX/va15JXqDQ342tOAoEADh8+jHXr1sXWicVirFu3Dvv27UtiydLL2bNnkZ+fj9LSUtx///1oaGhIdpHSUn19PVpbW+N+Hg0GA6qqqvjzOEa7d+9GdnY25s+fj3/4h39AZ2dnsouUsux2OwDAZDIBAA4fPoxgMBj3c7hgwQIUFRXx53AQ/T+/Hi+//DLMZjMWL16Mxx57DB6PJxnFS0tpN/FfonV0dCAcDiMnJydufU5ODk6fPp2kUqWXqqoqbN++HfPnz0dLSwu+//3v45prrsGJEyeg0+mSXby00traCgCD/jz2bKORbdiwAXfddRdKSkpw/vx5PP7449i4cSP27dsHiUSS7OKllEgkgq9//eu46qqrsHjxYgDRn0O5XA6j0Ri3L38OBxrs8wOA++67D7Nnz0Z+fj4+/fRTfOc730FdXR3++Mc/JrG06WPGhxOauI0bN8aeL126FFVVVZg9ezZ++9vf4otf/GISS0Yz1b333ht7vmTJEixduhRz5szB7t27ceONNyaxZKmnuroaJ06cYD+xcRrq8/vyl78ce75kyRLk5eXhxhtvxPnz5zFnzpypLmbamfHNOmazGRKJZEAvdIvFgtzc3CSVKr0ZjUbMmzcP586dS3ZR0k7Pzxx/HhOrtLQUZrOZP5P9PPLII3jrrbewa9cuzJo1K7Y+NzcXgUAANpstbn/+HMYb6vMbTFVVFQDwZ3CUZnw4kcvlWLlyJXbu3BlbF4lEsHPnTlxxxRVJLFn6crlcOH/+PPLy8pJdlLRTUlKC3NzcuJ9Hh8OB/fv38+dxAi5fvozOzk7+THYTBAGPPPIIXn/9dbz//vsoKSmJ275y5UrIZLK4n8O6ujo0NDTw5xAjf36DOXr0KADwZ3CU2KwDYNu2bdiyZQtWrVqFyspKPPvss3C73XjwwQeTXbS08K1vfQubNm3C7Nmz0dzcjCeffBISiQR/93d/l+yipSSXyxX311N9fT2OHj0Kk8mEoqIifP3rX8cPf/hDzJ07FyUlJfjnf/5n5Ofn44477kheoVPMcJ+hyWTC97//fdx9993Izc3F+fPn8Y//+I8oKyvD+vXrk1jq1FFdXY1XXnkFf/rTn6DT6WL9SAwGA1QqFQwGA774xS9i27ZtMJlM0Ov1ePTRR3HFFVdgzZo1SS598o30+Z0/fx6vvPIKbrnlFmRmZuLTTz/FN77xDVx77bVYunRpkkufJpJ9u1Cq+NnPfiYUFRUJcrlcqKysFD7++ONkFyltbN68WcjLyxPkcrlQUFAgbN68WTh37lyyi5Wydu3aJQAYsGzZskUQhOjtxP/8z/8s5OTkCAqFQrjxxhuFurq65BY6xQz3GXo8HuHmm28WsrKyBJlMJsyePVt4+OGHhdbW1mQXO2UM9tkBEF566aXYPl6vV/jKV74iZGRkCGq1WrjzzjuFlpaW5BU6hYz0+TU0NAjXXnutYDKZBIVCIZSVlQnf/va3BbvdntyCpxGRIAjCVIYhIiIiouHM+D4nRERElFoYToiIiCilMJwQERFRSmE4ISIiopTCcEJEREQpheGEiIiIUgrDCREREaUUhhMimhK7d++GSCQaMF8LEVF/HISNiCbF9ddfj2XLluHZZ58FAAQCAXR1dSEnJwcikSi5hSOilMa5dYhoSsjlcs5oS0SjwmYdIkq4rVu34oMPPsBPf/pTiEQiiEQibN++Pa5ZZ/v27TAajXjrrbcwf/58qNVqfPazn4XH48F///d/o7i4GBkZGfjqV7+KcDgcO7ff78e3vvUtFBQUQKPRoKqqCrt3707OGyWiScGaEyJKuJ/+9Kc4c+YMFi9ejB/84AcAgJMnTw7Yz+Px4LnnnsOrr74Kp9OJu+66C3feeSeMRiPefvttXLhwAXfffTeuuuoqbN68GQDwyCOPoLa2Fq+++iry8/Px+uuvY8OGDTh+/Djmzp07pe+TiCYHwwkRJZzBYIBcLodarY415Zw+fXrAfsFgED//+c8xZ84cAMBnP/tZ/OpXv4LFYoFWq0V5eTnWrl2LXbt2YfPmzWhoaMBLL72EhoYG5OfnAwC+9a1vYceOHXjppZfwox/9aOreJBFNGoYTIkoatVodCyYAkJOTg+LiYmi12rh1bW1tAIDjx48jHA5j3rx5cefx+/3IzMycmkIT0aRjOCGipJHJZHGvRSLRoOsikQgAwOVyQSKR4PDhw5BIJHH79Q00RJTeGE6IaFLI5fK4jqyJsHz5coTDYbS1teGaa65J6LmJKHXwbh0imhTFxcXYv38/Ll68iI6Ojljtx0TMmzcP999/Px544AH88Y9/RH19PQ4cOICnnnoKf/nLXxJQaiJKBQwnRDQpvvWtb0EikaC8vBxZWVloaGhIyHlfeuklPPDAA/jmN7+J+fPn44477sDBgwdRVFSUkPMTUfJxhFgiIiJKKaw5ISIiopTCcEJEREQpheGEiIiIUgrDCREREaUUhhMiIiJKKQwnRERElFIYToiIiCilMJwQERFRSmE4ISIiopTCcEJEREQpheGEiIiIUgrDCREREaWU/x/R3cHDdHKH8AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Relax the bounds on the parameters to allow additional parameterizations\n", + "\n", + "funman_request = get_request()\n", + "setup_common(funman_request)\n", + "set_compartment_bounds(funman_request)\n", + "relax_parameter_bounds(funman_request, factor = 0.75)\n", + "results = run(funman_request)\n", + "report(results, \"relaxed_bounds\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-07-24 18:45:46,223 - funman.server.worker - INFO - FunmanWorker running...\n", + "2024-07-24 18:45:46,225 - funman.server.worker - INFO - Starting work on: a654ce35-3219-47bc-9515-4acdbed918ea\n", + "[9830000.00000, 9830000.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "[0.30000, 0.30000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "2024-07-24 18:45:48,239 - funman.api.run - INFO - Dumping results to ./out/a654ce35-3219-47bc-9515-4acdbed918ea.json\n", + "2024-07-24 18:46:11,345 - funman.api.run - INFO - Dumping results to ./out/a654ce35-3219-47bc-9515-4acdbed918ea.json\n", + "2024-07-24 18:46:11,366 - funman.search.box_search - INFO - progress: 0.20000\n", + "2024-07-24 18:46:11,384 - funman.api.run - INFO - Creating plot of point trajectories: ./out/a654ce35-3219-47bc-9515-4acdbed918ea_points.png\n", + "2024-07-24 18:46:11,418 - funman.search.box_search - INFO - progress: 0.40000\n", + "2024-07-24 18:46:11,475 - funman.search.box_search - INFO - progress: 0.60000\n", + "2024-07-24 18:46:11,548 - funman.search.box_search - INFO - progress: 0.80000\n", + "2024-07-24 18:46:11,630 - funman.search.box_search - INFO - progress: 1.00000\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqYAAAIjCAYAAADRBtn0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSdUlEQVR4nO3de3xT9eH/8fdJ0qaF3ijlKgXKVURuoqIwAYWBeJmyzdsPlJs6FWHI123gVEQ3wcsc6hw4p4AbDOcFdDIvQ7nMC8yKyEVE7vc7tKWUXpJzfn+UHhrKpZeUfCCvJ488TnJy8s6nSdO8zyXBchzHEQAAABBhnkgPAAAAAJAopgAAADAExRQAAABGoJgCAADACBRTAAAAGIFiCgAAACNQTAEAAGAEiikAAACMQDEFAACAESimAM4ZPXv2VM+ePSM9jLDYtGmTLMvStGnTIj2UShk8eLCaNm0a6WEAOMtQTAFEzLRp02RZlnuKi4tTq1atdP/992v37t1ndCwzZ87UpEmTTrvcY489FjLmk51ML8g7duzQY489pmXLlkV6KADgshzHcSI9CADRadq0aRoyZIgef/xxZWRkKD8/X5999pn+9re/qUmTJlq5cqVq1KhR7rzCwkJJUmxsbIXHct1112nlypXatGnTKZdbvny5li9f7l7Ozc3Vvffeq/79++unP/2pO79evXr68Y9/XOFxlHAcRwUFBYqJiZHX6610zslkZmbqkksu0dSpUzV48OCw5xcVFcm2bfn9/rBnAzh3+SI9AADo16+fLr74YknSnXfeqdq1a+u5557Tu+++q9tuu63cOZUppBXVvn17tW/f3r28b98+3XvvvWrfvr0GDhx40tvl5+crNjZWHk/5dlSVbEE+2xw+fFg1a9ZUTExMpIcC4CzErnwAxrnqqqskSRs3bpQkBQIBPfHEE2revLn8fr+aNm2qhx56SAUFBSG3O/4Y0wULFsiyLP3zn//U73//ezVq1EhxcXHq1auX1q1bF3K7uXPnavPmze6u+KocH1lyv7NmzdLDDz+s8847TzVq1FBOTo4OHDigBx98UO3atVNCQoKSkpLUr18/ffvttyEZJzvG9Pvvv9fPf/5zpaamKi4uThdffLHee++9MmPIysrSAw88oKZNm8rv96tRo0a64447tG/fPi1YsECXXHKJJGnIkCHuz1z6vt5880117txZ8fHxSktL08CBA7V9+/aQ+xg8eLASEhK0fv16XXPNNUpMTNSAAQPc645/DG3b1qRJk9S2bVvFxcWpXr16+sUvfqGDBw+GLJeZmam+ffsqLS1N8fHxysjI0NChQyvyFAA4S7HFFIBx1q9fL0mqXbu2pOKtqNOnT9fPf/5z/d///Z+WLFmiCRMmaPXq1Zo9e/Zp8yZOnCiPx6MHH3xQ2dnZevrppzVgwAAtWbJEkvTb3/5W2dnZ2rZtm/74xz9KkhISEqr8czzxxBOKjY3Vgw8+qIKCAsXGxuq7777TnDlzdNNNNykjI0O7d+/Wyy+/rB49eui7775Tw4YNT5q3atUqdevWTeedd57GjBmjmjVr6p///KduvPFGvf322+rfv7+k4sMLrrjiCq1evVpDhw7VRRddpH379um9997Ttm3b1KZNGz3++ON69NFHdffdd+uKK66QJHXt2lXSsUMsLrnkEk2YMEG7d+/W888/r88//1zffPONUlJS3DEFAgH17dtXP/rRj/Tss8+e8tCLX/ziF272yJEjtXHjRv3pT3/SN998o88//1wxMTHas2eP+vTpozp16mjMmDFKSUnRpk2b9M4771T5+QBwFnAAIEKmTp3qSHLmzZvn7N2719m6dasza9Ysp3bt2k58fLyzbds2Z9myZY4k58477wy57YMPPuhIcj799FN3Xo8ePZwePXq4l+fPn+9Ictq0aeMUFBS4859//nlHkrNixQp33rXXXus0adKkwj/D3r17HUnOuHHjytxvs2bNnLy8vJDl8/PznWAwGDJv48aNjt/vdx5//PGQeZKcqVOnuvN69erltGvXzsnPz3fn2bbtdO3a1WnZsqU779FHH3UkOe+8806Z8dq27TiO43z11Vdl8h3HcQoLC526des6F154oXPkyBF3/vvvv+9Ich599FF33qBBgxxJzpgxY8rcz6BBg0Iez//+97+OJGfGjBkhy3344Ych82fPnu1Icr766qsymQDOfezKBxBxvXv3Vp06dZSenq5bb71VCQkJmj17ts477zz9+9//liSNHj065Db/93//J0maO3fuafOHDBkScvxpyRbCDRs2hOtHOKFBgwYpPj4+ZJ7f73ePMw0Gg9q/f78SEhLUunVrLV269KRZBw4c0Keffqqbb75Zhw4d0r59+7Rv3z7t379fffv21dq1a91d7W+//bY6dOjgbkEtzbKsU445MzNTe/bs0X333RdyjOu1116r888//4SP97333nvKTKn40IDk5GT9+Mc/dse+b98+de7cWQkJCZo/f74kuVtj33//fRUVFZ02F8C55ZwpposWLdL111+vhg0byrIszZkzp8IZjuPo2WefVatWreT3+3Xeeefp97//ffgHCyDESy+9pP/85z+aP3++vvvuO23YsEF9+/aVJG3evFkej0ctWrQIuU39+vWVkpKizZs3nza/cePGIZdr1aolSWWObQy3jIyMMvNs29Yf//hHtWzZUn6/X2lpaapTp46WL1+u7Ozsk2atW7dOjuPokUceUZ06dUJO48aNkyTt2bNHUvGhEBdeeGGlxlzyeLZu3brMdeeff36Zx9vn86lRo0anzV27dq2ys7NVt27dMuPPzc11x96jRw/97Gc/0/jx45WWlqYbbrhBU6dOLXM8MYBz0zlzjOnhw4fVoUMHDR06NOQrWyril7/8pT7++GM9++yzateunQ4cOKADBw6EeaQAjnfppZe6n8o/mdNt6TuVk33dklPN35Z3/NZSSXryySf1yCOPaOjQoXriiSeUmpoqj8ejUaNGybbtk2aVXPfggw+6pf14x5f3M6H0FuBTsW1bdevW1YwZM054fZ06dSQVP89vvfWWFi9erH/961/66KOPNHToUP3hD3/Q4sWLw3LsLwBznTPFtF+/furXr99Jry8oKNBvf/tb/eMf/1BWVpYuvPBCPfXUU+4neFevXq3Jkydr5cqV7paCE23tAHBmNWnSRLZta+3atWrTpo07f/fu3crKylKTJk3Ccj9VKb4V8dZbb+nKK6/Uq6++GjI/KytLaWlpJ71ds2bNJEkxMTHq3bv3Ke+jefPmWrly5SmXOdnPW/J4rlmzxv12hBJr1qyp9OPdvHlzzZs3T926dTthYT/eZZddpssuu0y///3vNXPmTA0YMECzZs3SnXfeWan7B3B2OGd25Z/O/fffry+//FKzZs3S8uXLddNNN+nqq6/W2rVrJUn/+te/1KxZM73//vvKyMhQ06ZNdeedd7LFFIiwa665RpLK/K9Mzz33nKTiYx/DoWbNmqfclR4uXq+3zJbaN998s8xXMR2vbt266tmzp15++WXt3LmzzPV79+51z//sZz/Tt99+e8JvLCi575o1a0oqLsSlXXzxxapbt66mTJkSsvv8gw8+0OrVqyv9eN98880KBoN64oknylwXCATccRw8eLDM49OxY0dJYnc+EAXOmS2mp7JlyxZNnTpVW7Zscb+K5cEHH9SHH36oqVOn6sknn9SGDRu0efNmvfnmm3r99dcVDAb1wAMP6Oc//7k+/fTTCP8EQPTq0KGDBg0apL/85S/KyspSjx499L///U/Tp0/XjTfeqCuvvDIs99O5c2e98cYbGj16tC655BIlJCTo+uuvD0t2adddd50ef/xxDRkyRF27dtWKFSs0Y8YMd4voqbz00kv60Y9+pHbt2umuu+5Ss2bNtHv3bn355Zfatm2b+12ov/rVr/TWW2/ppptu0tChQ9W5c2cdOHBA7733nqZMmaIOHTqoefPmSklJ0ZQpU5SYmKiaNWuqS5cuysjI0FNPPaUhQ4aoR48euu2229yvi2ratKkeeOCBSv3cPXr00C9+8QtNmDBBy5YtU58+fRQTE6O1a9fqzTff1PPPP6+f//znmj59uv785z+rf//+at68uQ4dOqRXXnlFSUlJ7koKgHNXVBTTFStWKBgMqlWrViHzCwoK3O9JtG1bBQUFev31193lXn31VXXu3Flr1qw54QcBAJwZf/3rX9WsWTNNmzZNs2fPVv369TV27Fj3Qz/hcN9992nZsmWaOnWq/vjHP6pJkybVUkwfeughHT58WDNnztQbb7yhiy66SHPnztWYMWNOe9sLLrhAmZmZGj9+vKZNm6b9+/erbt266tSpkx599FF3uYSEBP33v//VuHHjNHv2bE2fPl1169ZVr1693A8qxcTEaPr06Ro7dqzuueceBQIBTZ06VRkZGRo8eLBq1KihiRMn6je/+Y1q1qyp/v3766mnngr5DtOKmjJlijp37qyXX35ZDz30kHw+n5o2baqBAweqW7dukuSueMyaNUu7d+9WcnKyLr30Us2YMYPDq4AoYDnVffR/BFiWpdmzZ+vGG2+UJL3xxhsaMGCAVq1aVeZDEAkJCapfv77GjRunJ598MuTrSY4cOaIaNWro448/rtL/eQ0AFbV+/Xq1aNFCf/vb3075X50CwLkkKraYdurUScFgUHv27HG/v/B43bp1UyAQ0Pr169W8eXNJ0g8//CBJYftwBQCUV8lxpKf6QBQAnGvOmS2mubm57v993alTJz333HO68sorlZqaqsaNG2vgwIH6/PPP9Yc//EGdOnXS3r179cknn6h9+/a69tprZdu2e1zZpEmTZNu2hg8frqSkJH388ccR/ukARJPXXntNr732mr755htt3769SrvPAeBscs4U0wULFpzwQxCDBg3StGnTVFRUpN/97nd6/fXXtX37dqWlpemyyy7T+PHj1a5dO0nSjh07NGLECH388ceqWbOm+vXrpz/84Q9KTU090z8OgCjm8/nUqlUrPfvss3zgB0BUOWeKKQAAAM5uUfM9pgAAADAbxRQAAABGOKs/lW/btnbs2KHExMQz9t8JAgAAoPwcx9GhQ4fUsGFDeTyn3iZ6VhfTHTt2KD09PdLDAAAAwGls3brV/U8+TuasLqaJiYmSin/QpKSkCI8GAAAAx8vJyVF6errb207lrC6mJbvvk5KSKKYAAAAGK89hl3z4CQAAAEagmAIAAMAIFFMAAAAYgWIKAAAAI1BMAQAAYASKKQAAAIxAMQUAAIARKKYAAAAwAsUUAAAARqCYAgAAwAgUUwAAABiBYgoAAAAjRLyYbt++XQMHDlTt2rUVHx+vdu3aKTMzM9LDAgAAwBnmi+SdHzx4UN26ddOVV16pDz74QHXq1NHatWtVq1atSA4LAAAAERDRLaZPPfWU0tPTNXXqVF166aXKyMhQnz591Lx580gO66SGzR4ma7ylYbOHhSVv5NyRssZbGjl3ZFjyqiMz2vIAAEDkRLSYvvfee7r44ot10003qW7duurUqZNeeeWVky5fUFCgnJyckNOZNH/L/JBpVX2y6ZOQqYmZ0ZZnenGeuGiifI/7NHHRxLDkVUem6XkAAHNFdFf+hg0bNHnyZI0ePVoPPfSQvvrqK40cOVKxsbEaNGhQmeUnTJig8ePHR2CkxTZnbZYkbczaqIQnE+SxPLJkybIseeWVPJLH8sgrryzr6HzLK4/HI6/lLT55iqcxVozWH1gvSVp/cL26vdpNMd4Y+b1+dxrrjZXf6y++jcerOE+cEmITFBcTpxq+GqoRW0MxnhjVjKmpWG+savprKq8oT5JUFChSfn6+4uLiIvZ4nY1ML87zNs5T0Alq3sZ5GtN9jJGZpudNXDRRDy94WL/r+buoyJu1YpbumXuPplw7Rbe2u9W4vOrKBHB2imgxtW1bF198sZ588klJUqdOnbRy5UpNmTLlhMV07NixGj16tHs5JydH6enp1TrGYbOHuVtIbdnu/MNFh8N2HwXBAn2x7Yuw5UnS2qy1in8qPmx53+37TtZ465zIs3Ty5Rw5bp73cW/IbUrfzrIsd6XEvd46toxlWfJYHuUW5kqSftj3g1q92EoeyyOf5StegfF45fP45PP43JUPn+VTjCdGPs/RqdenWG+sYjwx8vv8WrNvjSRp7f61emzBY/J7/IqLiZPf61d8bLzivfHy+/yq4auhBH+CavpqqkZsDSXEJigpNklxvjj5fBF92Uec6cU53HmLtixSdkG2Fm1ZFJbSF+686sg0vYybnrds5zKN+miUJvWdpI4NOhqXh3NbRN+hGjRooAsuuCBkXps2bfT222+fcHm/3y+/338mhuZ6bflrZ/T+UP1Kyufp2I598ivLF+EKKKC1B9ZW7EansOXQFo1fGN69B59s+iSsKwtnKu/4FY0yly0rZBqwA26e/3f+YysdluQ5enSTZVnF5y0d2zMiSx6Px72uZP7+vP2SpM+3fq7mzzcv3ktydMWjZA+Ju7ekZAXEc3SFwzq68uGJLV4Z8cbou73fSSreQzP1m6mK8cQU7z3x+d09KXG+OMX6YhXnjXMv1/DVcOf7PD55PBH/0pWIMb2Mm563at8qLdy8UKv2rQpLkQx3XnUUXdPLuOl54RTRYtqtWzetWbMmZN4PP/ygJk2aRGhEZQ1tP9TdYro5a7Ns2fLIoyYpxWO8svGVerX/q+XOGzl3pLtb94f9PyjgBOSzfGpVu5UkqVfTXnrh2hdOmZGfn6+s/Cxl5WcppyhHT372pL7e8bVs2dqZu1OOHFmyVDuutmzZSk9MV9fGXVUQLFDQDqogWKDCYKEKggUqChYpYAdCphuzNupQ4SE5clRkF7n36zv66xLrjVVSXJIcx1FQweICZ0tBBeU4jhw5bqlzHEf5gfyQrc0n4rW8ZQqj45y4/ZW3WCI6lPm9Of73wzluWkphsDBs48gP5mtD1oaw5a3LWqeh7w0NW97kzMmanDm52vNOtkfCnW8Vn7cdu8xzNTlzsqZkTpFUvELg8/jK7Jk4fgXC3Xuh4r0UlmW5eyqmLpuq2d/Plkcedy9GyTIlKxcey+MebuWxjk1L7t9jebThYPHz+u7372r9wfXFh2N5YkL2dHg93jJ7O2I8McdWOnwxxXtEvDH6dte3kqTVe1fr9WWvK84XpxhvjOJ8xXs/Yn2xISsh8b54+Ty+4j0eR/eylJyicQUk3EW3OjKjLS+cIlpMH3jgAXXt2lVPPvmkbr75Zv3vf//TX/7yF/3lL3+J5LBClC6dzZ5vpo1ZG9UkpYk2/LJyb0ClS2fbl9rqu33fqVXtVlo1fFW5M+Li4lQ/rr7qq74kac5tc8pktklrU6HMkynJuyDtgnM2LxwrC9WZN3HRRM3bOE+StGT7EuUW5SohJkFdzusiSeqd0VujLxutfDtfuYW5yjqSpbxAnvKK8nSk6IiOBI4cmwaOqDBQqA/XfqgfDv4g27a1I3eHO8a0GmmyHVt1a9RV89TmCtiBkFORU6RAMKCgE1TADihoF6+Y7D68u/jwFqf40JSSwhFrxcqRoxhfjGr4asg5+s+2bbeYOHKKV2iOrtRIUmGgULbKFpfSvJa3zMrLiZZnRebMOtnj7c4/zdNRslzQCSoYDFZpLPmBfO3K3VWljNJ25O7QjtwdYctbsHmBFmxeELa841cWvFbx4UjHH2ZUei9BSfF3nOINCpZluXsVhr47VL/41y9kyXK37JcU/JKckLJvHduTUBQsUmGwUJYs99C3Ef8eoYc/fVgeeVQzpqYS/YnubbyeYysEJ1o58HiOHQZV8nmPV75+RQs3LSw+HOrobXxen7uXwp3v8RxbkSiZ7zm2JyPGE6Ml25dIkpZsXaI4b5x72xhvjLt8yYqHe9jV0etivbHuvJI9FvlF+ZIkx+bvT0VFtJhecsklmj17tsaOHavHH39cGRkZmjRpkgYMGBDJYSHKhGNloTrzxnQf4x5r2Ht6b32y6RN1Oa+L5g2aF7JcrIq3ZDdManjazAe6PuCeL8ns0aRHmczKKMnr1bSXMXnlKfcVOZ4zEnm//tGvFbADyg/ku6eCYIHyA/nKK8pTYaBQhcFC5Qfz9emGT7VizwoF7aCW71mufUf2KTUuVa3SWskJOjov+Ty1qdPG3VNSaBcqGAyqyClS0A4qEAyoyC5SkV2koBPU5oObte/IPjmOo315+5QfzJff61ctfy3ZspUQm6CU+BR3RSXoFO89KZnajq2gHXT3pjiOo9zCXHclpjBYWFyKZCnWGyvHcYpLgS9Gco4e3+/o2EqMjq3ElKycFAQLTvs4e6yjWxed6FiJCTpHi30lf6zCYOGxvQpFp162PA7mH9TB/INVDzpq4eaFWrh5YdjyJOnFr17Ui1+9GLa82+fcrtvn3H7S64//7ELpeSW/25ZluXsh75h9hwbPGSxLllusS3/mofSeA/f80esCdvFGBUuWCgLFr5d/r/23e/9t09oasfU04p+CuO6663TddddFehjlcmXjK7Uxa6OubHxlWPJ6Ne2l7/Z9p15Ne4Ulrzoyoy0P56bylnvT82I9sYr1xSpJSafMu7bVte75++bep8mZk3XLhbfoz9f+uVLjK60kb2inoWHJK515z8X3VDpz1opZWrRlkSTpo3UfaUPWBjVLaaa+LfpKkro37l6h4y/PVF6f5n1kO7a6pndV//P7q9AuLF5ZCBSqIFCg/GC+CgLFh1/lFeWp0C6ev2DTAq3cs1KO42jFnhXad2Sf6tWop471O8qWrdaprdWlURd35SJoB4vP28GQPR5Bp3hFZPuh7dqdu1u2Y2tD1gat3rdarVNbq1FSI9mylexPVkp8imzbVsAOuCsgJSsjtnNsvu3YysrPKj4kzHG0/8h+7c3bq7T4NCX5k2TLlt/rV5wvzl1RcVdiZLsZJSs1tmNrd+5uFdonP/TGa3mV6E90bxOyEuMcW4lxV2ocnTKvhCWrWldYSmef7PC10ndf8nhIUpGKpKrtVNDMFTM1c8VMSVKPJj20YPCCqgWGQcSL6dnk1f6vVuh40tN54doXKrRLNxKZ0ZZnenHundFbCzYvUO+M3mHJq45M0/Nwbrq13a1uUSwpun1b9K100TU9r3+b/u75kryfXvDTsKwszFgxQwPfGahHej6iAe2qvgezJG9Sv0mVzlu2c5lW7Sve6/Txuo/1+vLXdUf7O9SnRR9JldvaV9VM27Zly3ZXJL7Z9Y2+2/OdAk5ACzYt0Dvfv6MbWt2gyxpdpqATVJPkJmqe2lxBJ6jCYKGKgkWyHTtkhaEoeOz8+oPrtT1nu4J2UKv2rlLmzkx1rt9ZzWs1ly1btWvUVp0addwVhIATkG3b7oqHe/7o/L15e3XwyEE5jqOduTu1JWeLbm93u/q27Ov+vCagmAKlmF6cS29ZMzXT9DzTi3O487o37q6ZK2aqe+PuRuZVVybOLR0bdAwpia8vf119WvSpUnGuaqbH45FHHveDaT2a9lCPpj0kSak1UvXO9+/opgtvCmu5f6DrA2HN69uyb1jywoliCiCqmF6cw51XekudiXnVkWl6GTc9r21aW/Vo0iNsW9DCnYdzG8UUAHBOMb2Mm57XsUHHsB5rGO686ii6ppdx0/PCyXJOerSt+XJycpScnKzs7GwlJZ36wwAAAAA48yrS16Lvm3kBAABgJIopAAAAjEAxBQAAgBEopgAAADACxRQAAABGoJgCAADACBRTAAAAGIFiCgAAACNQTAEAAGAEiikAAACMQDEFAACAESimAAAAMALFFAAAAEagmAIAAMAIFFMAAAAYgWIKAAAAI1BMAQAAYASKKQAAAIxAMQUAAIARKKYAAAAwAsUUAAAARqCYAgAAwAgUUwAAABiBYgoAAAAjUEwBAABgBIopAAAAjEAxBQAAgBEopgAAADACxRQAAABGoJgCAADACBRTAAAAGIFiCgAAACNQTAEAAGAEiikAAACMQDEFAACAESimAAAAMALFFAAAAEagmAIAAMAIFFMAAAAYgWIKAAAAI1BMAQAAYASKKQAAAIxAMQUAAIARKKYAAAAwAsUUAAAARqCYAgAAwAgUUwAAABiBYgoAAAAjUEwBAABgBIopAAAAjEAxBQAAgBEopgAAADACxRQAAABGoJgCAADACBRTAAAAGCGixfSxxx6TZVkhp/PPPz+SQwIAAECE+CI9gLZt22revHnuZZ8v4kMCAABABES8Bfp8PtWvX79cyxYUFKigoMC9nJOTU13DAgAAwBkW8WNM165dq4YNG6pZs2YaMGCAtmzZctJlJ0yYoOTkZPeUnp5+BkcKAACA6mQ5juNE6s4/+OAD5ebmqnXr1tq5c6fGjx+v7du3a+XKlUpMTCyz/Im2mKanpys7O1tJSUlncugAAAAoh5ycHCUnJ5err0W0mB4vKytLTZo00XPPPadhw4addvmK/KAAAAA48yrS1yK+K7+0lJQUtWrVSuvWrYv0UAAAAHCGGVVMc3NztX79ejVo0CDSQwEAAMAZFtFi+uCDD2rhwoXatGmTvvjiC/Xv319er1e33XZbJIcFAACACIjo10Vt27ZNt912m/bv3686deroRz/6kRYvXqw6depEclgAAACIgIgW01mzZkXy7gEAAGAQo44xBQAAQPSimAIAAMAIFFMAAAAYgWIKAAAAI1BMAQAAYASKKQAAAIxAMQUAAIARKKYAAAAwAsUUAAAARqCYAgAAwAgUUwAAABiBYgoAAAAjUEwBAABgBIopAAAAjEAxBQAAgBEopgAAADACxRQAAABGoJgCAADACBRTAAAAGIFiCgAAACNQTAEAAGAEiikAAACMQDEFAACAESimAAAAMALFFAAAAEagmAIAAMAIFFMAAAAYgWIKAAAAI1BMAQAAYASKKQAAAIxAMQUAAIARKKYAAAAwAsUUAAAARqCYAgAAwAgUUwAAABiBYgoAAAAjUEwBAABgBIopAAAAjEAxBQAAgBEopgAAADACxRQAAABGoJgCAADACBRTAAAAGIFiCgAAACNQTAEAAGAEiikAAACMQDEFAACAESimAAAAMALFFAAAAEagmAIAAMAIFFMAAAAYgWIKAAAAI1BMAQAAYASKKQAAAIxAMQUAAIARKKYAAAAwAsUUAAAARqCYAgAAwAgUUwAAABjBmGI6ceJEWZalUaNGRXooAAAAiAAjiulXX32ll19+We3bt4/0UAAAABAhES+mubm5GjBggF555RXVqlUr0sMBAABAhES8mA4fPlzXXnutevfufdplCwoKlJOTE3ICAADAucEXyTufNWuWli5dqq+++qpcy0+YMEHjx4+v5lEBAAAgEiK2xXTr1q365S9/qRkzZiguLq5ctxk7dqyys7Pd09atW6t5lAAAADhTLMdxnEjc8Zw5c9S/f395vV53XjAYlGVZ8ng8KigoCLnuRHJycpScnKzs7GwlJSVV95ABAABQQRXpaxHbld+rVy+tWLEiZN6QIUN0/vnn6ze/+c1pSykAAADOLRErpomJibrwwgtD5tWsWVO1a9cuMx8AAADnvoh/Kh8AAACQIvyp/OMtWLAg0kMAAABAhLDFFAAAAEagmAIAAMAIFFMAAAAYgWIKAAAAI1BMAQAAYASKKQAAAIxAMQUAAIARKKYAAAAwAsUUAAAARqCYAgAAwAgUUwAAABiBYgoAAAAjUEwBAABgBIopAAAAjEAxBQAAgBEopgAAADACxRQAAABGoJgCAADACBRTAAAAGIFiCgAAACNQTAEAAGAEiikAAACMQDEFAACAESimAAAAMALFFAAAAEagmAIAAMAIFFMAAAAYgWIKAAAAI1BMAQAAYASKKQAAAIxAMQUAAIARKKYAAAAwQqWK6e7du3X77berYcOG8vl88nq9IScAAACgonyVudHgwYO1ZcsWPfLII2rQoIEsywr3uAAAABBlKlVMP/vsM/33v/9Vx44dwzwcAAAARKtK7cpPT0+X4zjhHgsAAACiWKWK6aRJkzRmzBht2rQpzMMBAABAtKrUrvxbbrlFeXl5at68uWrUqKGYmJiQ6w8cOBCWwQEAACB6VKqYTpo0KczDAAAAQLSrVDEdNGhQuMcBAACAKFepYipJwWBQc+bM0erVqyVJbdu21U9+8hO+xxQAAACVUqlium7dOl1zzTXavn27WrduLUmaMGGC0tPTNXfuXDVv3jysgwQAAMC5r1Kfyh85cqSaN2+urVu3aunSpVq6dKm2bNmijIwMjRw5MtxjBAAAQBSo1BbThQsXavHixUpNTXXn1a5dWxMnTlS3bt3CNjgAAABEj0ptMfX7/Tp06FCZ+bm5uYqNja3yoAAAABB9KlVMr7vuOt19991asmSJHMeR4zhavHix7rnnHv3kJz8J9xgBAAAQBSpVTF944QU1b95cl19+ueLi4hQXF6du3bqpRYsWev7558M9RgAAAESBSh1jmpKSonfffVdr167V999/L0lq06aNWrRoEdbBAQAAIHpU+ntMJally5Zq2bJluMYCAACAKFbuYjp69Gg98cQTqlmzpkaPHn3KZZ977rkqDwwAAADRpdzF9JtvvlFRUZF7HgAAAAgny3EcJ9KDqKycnBwlJycrOztbSUlJkR4OAAAAjlORvlapT+UPHTr0hN9jevjwYQ0dOrQykQAAAIhylSqm06dP15EjR8rMP3LkiF5//fUqDwoAAADRp0Kfys/JyXG/UP/QoUOKi4tzrwsGg/r3v/+tunXrhn2QAAAAOPdVqJimpKTIsixZlqVWrVqVud6yLI0fPz5sgwMAAED0qFAxnT9/vhzH0VVXXaW3335bqamp7nWxsbFq0qSJGjZsGPZBAgAA4NxXoWLao0cPSdLGjRuVnp4uj6dSh6gCAAAAZVTqf35q0qSJJCkvL09btmxRYWFhyPXt27ev+sgAAAAQVSq1yXPv3r267rrrlJiYqLZt26pTp04hp/KaPHmy2rdvr6SkJCUlJenyyy/XBx98UJkhAQAA4CxXqWI6atQoZWVlacmSJYqPj9eHH36o6dOnq2XLlnrvvffKndOoUSNNnDhRX3/9tTIzM3XVVVfphhtu0KpVqyozLAAAAJzFKvU/PzVo0EDvvvuuLr30UiUlJSkzM1OtWrXSe++9p6efflqfffZZpQeUmpqqZ555RsOGDTvtsvzPTwAAAGar9v/56fDhw+73ldaqVUt79+6VJLVr105Lly6tTKSCwaBmzZqlw4cP6/LLLz/hMgUFBcrJyQk5AQAA4NxQqWLaunVrrVmzRpLUoUMHvfzyy9q+fbumTJmiBg0aVChrxYoVSkhIkN/v1z333KPZs2frggsuOOGyEyZMUHJysntKT0+vzPABAABgoErtyv/73/+uQCCgwYMH6+uvv9bVV1+tAwcOKDY2VtOmTdMtt9xS7qzCwkJt2bJF2dnZeuutt/TXv/5VCxcuPGE5LSgoUEFBgXs5JydH6enp7MoHAAAwVEV25VeqmB4vLy9P33//vRo3bqy0tLQqZfXu3VvNmzfXyy+/fNplOcYUAADAbBXpa5X6HtPj1ahRQxdddFE4omTbdshWUQAAAESHchfT0aNHlzv0ueeeK9dyY8eOVb9+/dS4cWMdOnRIM2fO1IIFC/TRRx+V+74AAABwbih3Mf3mm2/KtZxlWeW+8z179uiOO+7Qzp07lZycrPbt2+ujjz7Sj3/843JnAAAA4NwQlmNMI4VjTAEAAMxW7d9jCgAAAIRbpT78dOWVV55yl/2nn35a6QEBAAAgOlWqmHbs2DHkclFRkZYtW6aVK1dq0KBB4RgXAAAAokyliukf//jHE85/7LHHlJubW6UBAQAAIDqF9RjTgQMH6rXXXgtnJAAAAKJEWIvpl19+qbi4uHBGAgAAIEpUalf+T3/605DLjuNo586dyszM1COPPBKWgQEAACC6VKqYJicnh1z2eDxq3bq1Hn/8cfXp0ycsAwMAAEB0qVQxnTp1arjHAQAAgChXqWJaIjMzU6tXr5YkXXDBBercuXNYBgUAAIDoU6lium3bNt122236/PPPlZKSIknKyspS165dNWvWLDVq1CicYwQAAEAUqNSn8u+8804VFRVp9erVOnDggA4cOKDVq1fLtm3deeed4R4jAAAAooDlOI5T0RvFx8friy++UKdOnULmf/3117riiiuUl5cXtgGeSk5OjpKTk5Wdna2kpKQzcp8AAAAov4r0tUptMU1PT1dRUVGZ+cFgUA0bNqxMJAAAAKJcpYrpM888oxEjRigzM9Odl5mZqV/+8pd69tlnwzY4AAAARI9K7cqvVauW8vLyFAgE5PMVf36q5HzNmjVDlj1w4EB4RnoC7MoHAAAwW0X6WqU+lT9p0qTK3AwAAAA4qUoV00GDBoV7HAAAAIhylf6C/WAwqDlz5rhfsN+2bVv95Cc/kdfrDdvgAAAAED0qVUzXrVuna665Rtu3b1fr1q0lSRMmTFB6errmzp2r5s2bh3WQAAAAOPdV6lP5I0eOVPPmzbV161YtXbpUS5cu1ZYtW5SRkaGRI0eGe4wAAACIApXaYrpw4UItXrxYqamp7rzatWtr4sSJ6tatW9gGBwAAgOhRqS2mfr9fhw4dKjM/NzdXsbGxVR4UAAAAok+liul1112nu+++W0uWLJHjOHIcR4sXL9Y999yjn/zkJ+EeIwAAAKJApYrpCy+8oBYtWqhr166Ki4tTXFycunXrphYtWuj5558P9xgBAAAQBSp0jKlt23rmmWf03nvvqbCwUDfeeKMGDRoky7LUpk0btWjRorrGCQAAgHNchYrp73//ez322GPq3bu34uPj9e9//1vJycl67bXXqmt8AAAAiBIV2pX/+uuv689//rM++ugjzZkzR//61780Y8YM2bZdXeMDAABAlKhQMd2yZYuuueYa93Lv3r1lWZZ27NgR9oEBAAAgulSomAYCAcXFxYXMi4mJUVFRUVgHBQAAgOhToWNMHcfR4MGD5ff73Xn5+fm65557VLNmTXfeO++8E74RAgAAICpUqJgOGjSozLyBAweGbTAAAACIXhUqplOnTq2ucQAAACDKVeoL9gEAAIBwo5gCAM4ps1bMUsrEFM1aMYu8Sli2c5l6TuupZTuXRUVedWRGW144UUyBs8jERRPle9yniYsmGptJnll5ppeg6shctGWRsguytWjLIvIqYdW+VVq4eaFW7VsVFXnVkRlteeFUoWNMo92w2cP02vLXNLT9UL3a/9Uq542cO1IvZr6oEReP0AvXvhCGEYY/kzyz8uZtnKegE9S8jfM0pvuYKudVRyZ5ZuWVLi23trvVuLzqyoSZbNuWLfu00xMu69hyHEd7D+2VJO08tFNr9q2R7Ry77vjlpeJvFCpZxnZsOXLKZK7YtUKStGLXCn0Q90HIMqVv78g5dl/O0ettxx1zyfwvtn4hSfp0w6fKLcg94W1LX5Z0ymW+3f2tJOmtVW/p+73fu+M6/rYlj0HJdSebv2b/muLx2s6ZeNorhGJaAfO3zA+ZVtUnmz4JmZqYSZ5ZeaickjeYQCCgomDx9y4fCRzRhgMblF+YryIVKa8wTwE7oIATUGFRoQrtQhUECxQIBlQYLFSRU6SAHVBhoFBFdpGCTlBFdpE2HNwgSVq3f51+/fGvZTt28fXBYPEyweJlA05AtmMrYAcUdIIK2sHiy05Atm0r6BRf/nrn15KkFXtWaNi7w9w3qZLrg04w5LLthL4Rh7xpOrZW71stSZq9era+3f3tsTesUm+4IW9acsrMlyP3/O7c3ZKkv3/7d3247sOQ27j/Sr9ZHj1//HWlzx8qPCRJevWbV/WPlf8IecMtWdadOqGXS5YLBIsfV0luSZicOVkvZ74sSbIsS17L6962dG6pGe68kjf00iZnTtbkzMnuZUtWOX77TnJfJ8irqsmZkzUlc4o7No/HE/I4nmwcJc/d8Qa+M1AD3wnfN++EO+9X//mVfvWfX4UtT5Ke+uIpPfXFU2HLe23Za3ptWfj+2/Y5a+Zozpo5Ycv7cP2HsjzFv8dt09qqY4OOYcuuLMs5/rf2LJKTk6Pk5GRlZ2crKSmp2u+v2fPNtDFrozJSMrThlxuqnNf2pbb6bt93uiDtAq0aHp7N6VXNzM/PV77ylZ+fr6z8LF0z6xptzN6o9MR0vdjvRR0uPKxCu1B5RXkKBAM6UnREhwOHFQgGlG/nKxAonhYGChV0gsoP5Mt2bBUEC1QULNJnWz5TXiBPcb44darXSUXBouI3WztYXBycgPuGXfqNt/QbsRwpqOI35wNHDsiRI0uWEmMTJanMmmTpN82Sy+4bkBP6hzrgBNzzHqv4SJeKvkRO9AdekjxHj5w52fWnuw4AcGYdv/JhWWVXRkqWKVkxOpUYT0zx8lbZ/NLzJakgUHDK9wSPPKoRW8PNKD224+dZspRTkHPKMfZo0kMLBi847c9QGRXpaxTT0xg2e5i7hXRj1sZquQ8AMMWJtgKWZ4XJI0/Im+qJckq/8QbsQJnrj+f3+kNuV+ZNvPiMLFkhW0yDTtBdYfV5incM+jw++X1+WUf/ScVv2pZV6rKOXT4SOOJuXS8IFijoBOW1vIr3xRePzedXkj9JlmW5K53u7S1LHsvjXvZYHmXlZ+lw4WFZsnSo8JAK7ULFemOV7E+WJUtJ/iTVS6gnjzzFt/EU395jeeS1vCGZHo9HO7N36kD+AVmWpV25u5QXyFNqfKra1WknWVKr1Fa6PP3y4tuUKixej1ceeULmey2vNmdt1racbZKkb3Z9owWbF+iqplepc4PO8lgepSen6/y0891xlPzMXo+3+PLRU8njunb/Wm04uEEey6Mvtn6h99e+rxta3aAfNfmRJKllaku1r9feHUfJbT3yyOM5ll9yfuWelfph/w+yLEufbvxUM1fO1IB2A9SneR955NGFdS+s8Na+ZTuXucdYfrzuY72+/HXd0f4O9WnRR1LFtyBGW15FVKSvsSv/NF5bHr5N8EAJz2k+d+ixjr3JB+3gadeaY7wx7uXSb7SSjr0RW8fe4AsDhQraR9/EdWwN2mcV/0mI8caoZkxNN6v0G27peSVvKtlHsnUkeESWLBUEC9xSEOeLK96aHZOo+kn1j73pHn0T81qhb2ol8zZlb9L+I/tlyVJ2QbZbCmrH15YlS/UT6+ui+hfJ4/HIZ/nk8/jk8/rklVc+r08+y6cYb4y8Hq9iPDFatHmR1h5YK4882pSzSYXB4lLQslZLeeRRp4adNLDdQPm8PsV54hQTEyO/x69Yb6ziY+IV64lVnC9OPp9PPvn07JfPav6m+bJkacn2JcotylVCTIK6nNdFktQ7o3eFjg+duGii5m2cJ0lhyZu1Ypb7QZiP1n2kDVkb1Cylmfq26CtJ6t64e4WO5Qx3XnVllrhv7n2anDlZ91x8j/587Z8rlXGivLs73x3WvGGdhoU175a2t4Qlb8aKGVqweYGGXjRUA9oNqFTGxQ0vDsl7f+37uunCmyqd171pd3Vv2l2SFBcTp5krZ6pfy36VzpOkjg06hhSx15e/rj4t+lQ6M9ryqgvF9DSGth962i2mXssr6bi1eeu4MnBUUbDIPf6ptJJlYqwYJcQmqHjjg+WuKZeUAI9VvDbptYrXer0er3bn7lZeIK843y5yM+N8cZKk2v7aaluvrbyWVzG+GPksn2K9sfJ7/fJ6vPJ7/fJZPsXFxMln+fTJxk+0MXujLFnam7fXLRmNEhvJI48ubnixHu75sFLiUhSnuOJpXNxJH8ORc0e6x1j+sP8HBZyAfJZPrWq3kiT1atqrQh8Mira80npP761PNn2iXk17ad6geZXKqO7Mkryrml4V1ryeTXpWOm/MFcdKXUneFelXVDrv4R4P6+EeD4fkdTmvS+XH132MWzzDkXdru1vdUldSWvq26Fvp0hLuvOrKBHD2o5ieRulP30fDMaYny2uT1qbSeaVLWEleq9qtyANQLbo37q6ZK2aqe+Pu5FVC27S26tGkh9qmtY2KvOrIjLa8cOJ7TIGzSO+M3vJaXvXO6G1sJnlm5XVv3F3J/uSwlqBw5lVH5q3tblXWmKywffVUtOV1bNBRCwYvCNvxhqbnVUdmtOWFlXMWy87OdiQ52dnZZ+T+hr4z1NFjcoa+MzQseSPeH+HoMTkj3h8RlrzqyCTPrDwAAM42FelrfCofAAAA1aYifY1d+QAAADACxRQAAABGoJgCAADACBRTAAAAGIFiCgAAACNQTAEAAGAEiikAAACMQDEFAACAESimAAAAMALFFAAAAEagmAIAAMAIFFMAAAAYgWIKAAAAI0S0mE6YMEGXXHKJEhMTVbduXd14441as2ZNJIcEAACACIloMV24cKGGDx+uxYsX6z//+Y+KiorUp08fHT58OJLDAgAAQARYjuM4kR5Eib1796pu3bpauHChunfvftrlc3JylJycrOzsbCUlJZ2BEQIAAKAiKtLXfGdoTOWSnZ0tSUpNTT3h9QUFBSooKHAv5+TknJFxAQAAoPoZ8+En27Y1atQodevWTRdeeOEJl5kwYYKSk5PdU3p6+hkeJQAAAKqLMbvy7733Xn3wwQf67LPP1KhRoxMuc6Itpunp6ezKBwAAMNRZtyv//vvv1/vvv69FixadtJRKkt/vl9/vP4MjAwAAwJkS0WLqOI5GjBih2bNna8GCBcrIyIjkcAAAABBBES2mw4cP18yZM/Xuu+8qMTFRu3btkiQlJycrPj4+kkMDAADAGRbRY0wtyzrh/KlTp2rw4MGnvT1fFwUAAGC2s+YYU0M+dwUAAAADGPN1UQAAAIhuFFMAAAAYgWIKAAAAI1BMAQAAYASKKQAAAIxAMQUAAIARKKYAAAAwAsUUAAAARqCYAgAAwAgUUwAAABiBYgoAAAAjUEwBAABgBIopAAAAjEAxBQAAgBEopgAAADACxRQAAABGoJgCAADACBRTAAAAGIFiCgAAACNQTAEAAGAEiikAAACMQDEFAACAESimAAAAMALFFAAAVJtlO5ep57SeWrZzmZF51ZEZbXnhRDHFWS3cL66Rc0fKGm9p5NyRRuZNXDRRvsd9mrhoYljyqiOTPLPyZq2YpZSJKZq1YpaRedWRSV7VhPvv6qp9q7Rw80Kt2rfKyLzqyIy2vHDyRXoAZ5OWk1pqXfY6tUhuobWj1lY5r8OfOmj5/uVqX7u9vr3/2zCMMPyZpufd9MZNWpe9Tje9cVNYnpO/rfibO33h2heMy/vr0r8q6AT116V/1ZjuY6qcVx2Z5JmV9+rSV5VdkK1Xl76qW9vdalxedWSSVzVz187Vws0LNXftXHVs0LHKeZsObgqZmpZ3fKZt2wrYARXahQrYgZBT0A6GXnaKLxcFi45d7wQ0b908SdJHaz9SQkyCu2zQDqrILlLQDrqXTzcN2AEt2rRIkjT5q8n6esfXCtpB2Y6toBOUbRdPS9/OduyQ60MuO7bW7i9+v9x4YGPYHsNwoZhWwMbsjSHTqlp9cHXI1MRM0/M2H9ocMq2qw0WHQ6am5e3P3x8yNTGTPLPyduTukCRtP7RdATtQ/CYl233zDdgB2bIVCAQUUMCdH7SDkqSAU7yM4zgK2AGtP7hekrTuwDr9d9N/5ah4fsAJSJJ7e9spvp9gMHjs/o4uU/Lm6NiOgk5Qq/YWb7VZuXelXljyQsgYg05QjpziZRV0p6WXceQcy3Qcfb3ra0lS5s5M3T/3/uL5ctw3Z8cpdf7ofEkh1zmOU5zv2Fq8fbEkafG2xbrhHze415fc1pFz7HZyJEeydWyZkvGXLFcyvs+2faYur3Rx54dMj56XVPY6J/T6kuckc2emRn4wMqSsHF9eShcUt9zYx+bbjq3v9nwnSXrpq5f08fqPQ64r/TiXPD4hj+fR+UeKjig/kC9Hjg4VHJIkPb7ocf3hyz/IkSOv5VWMNyb0MT/Jz+jIcQuXJBUFiyRJj8x/RI8teMz9XbcsK/Rxk+NeVzLv+PnHe3j+w3p4/sOneVWV399W/M3dQBEOn2/9XJ9v/TxseR+u/1AZqRmSpLZpbcOyIlJVllP62TrL5OTkKDk5WdnZ2UpKSqq2+wkEAvJ4PPI94ZMjR5YsLR66WHlFeSqyi5QfzFd+Ub7yA/kqCBQoYAdUYBeoIFCgwmDxGteRoiPFa1bBgAqdQgUCAb2y7BX3Pm5qc5OCTlBFwaJja1Sl14RKrQUFnMCxP7JH14SCdvEf/7UHjm01bJzUuPhFXfIHpOQPpVPqD7Fs94+oHJX5o5hblOvm1fDVcK+XVGZa/Pe41Dx39rFfsZI/LJLksUKPJDnZr+Kp/ogAAHC28FgeWbIkFRfpU50vKfYn47W8So5LliWrONey3PySjJL5liztyt2lgmDBSfN6NOmhBYMXhMyzbVseT9WP+qxIX4uqLaa2bZ9wfsmDXnK9x+Nxz7eY1EKbD22WJSukdHV5rUtYx/bm6jfDmidJW3K2hDUvL5AX1ryScgwACL+SonPK645OyvP32Gt5T55nhd5XyZZsKXTjQsn9euSR1xuaV3q8x48vEAy4OaU3cJSMyWN5FOOJOXbb4370Mo+FJXdDUElmyYYnn6e4Gvksn/w+/4l/XlmyPKGZ+YF8BezivQJFwSI3L8ZbPC6fx6c4X9wJ8054H5Z12jxJ7h6D023D8Xq8ilVsSF5GSoaubnG1JKl74+5lbhOOUlpRbDE9DWv8yV/YAAAA54ITbTENF7aYhlGL5BbuMaVBBU+z9ImV3jxfnrXS43dxn064MyORd6o18eOVXls+GZ9V/l/tkuPezlSeTz7Fx8aXOy8/kO+u1ds69lh6jn6phtfjrdBaeHkyfZ6Tbyk4kZJDWMgLb16ct/h5rRFbQ2nxaeXOyynI0ZHAEUlSdkG2Oz/Zn1yc56uhRH9iufMOFRxy87IKstz5Kf4USVK8L15J/qQyW6lOmZl/SHnB4r0wWfmlMuOKM2t4aygp7tgb2Km2/klSdn72qfN8NZQcl1yhvMOBw+75kq1VJRk1fTWVHJ8ccptTZWYdyTptXkp8SmjGKYZ48MhB5RUd+3kdOfJZPrWu3VqS1CCxgVrWbhlyG8dxyoyxZKvf3sN7dfDIQUnFx/ruyt2l+gn11TatrSSpVnwt1alZ5+QDUuhW03DklbYvb19Y80qP0bKssGSW/plX7Vt1VuR1a9RN9156ryS5uZFGMT2N0p/09o33KaigvPIqMO70ZeZ0Yp+IVZFdpBhPjAofKaxyXnVkkmdWXq2JtZRVkKUUf4oOjjlY5bzqyCTPrLy2L7XVd/u+0wVpF2jV8Kp/NUy486ojs7ry2qS1MTqvVe1WWjl8ZZXz7pt7nyZnTlb/8/vrz9f+ucp5v1/0ez08/2Hdf8n9+m333xqXVx2ZZ0tev5b9NKDdgCrnhRPfY4qzWskWKk+YfpUTYhJCpqblpcalhkxNzCTPrLyGCQ1DpqblVUcmeVVzXuJ5IdOqalqracjUtLzqyIy2vHCimFZARnJGyLSq2tRqEzI1MdP0vIvqXRQyraqB7QaGTE3Lu+uiu+S1vLrrorvCklcdmeSZlTfsomFK9idr2EXDjMyrjkzyqubalteqR5MeurbltWHJa5vWVj2a9AjbruJw51VHZrTlhRMffgIAAEC1qUhfY4spAAAAjEAxBQAAgBEopgAAADACxRQAAABGoJgCAADACBRTAAAAGIFiCgAAACNQTAEAAGAEiikAAACMQDEFAACAESimAAAAMALFFAAAAEagmAIAAMAIFFMAAAAYgWIKAAAAI1BMAQAAYASKKQAAAIxAMQUAAIARKKYAAAAwAsUUAAAARqCYAgAAwAgUUwAAABiBYgoAAAAjUEwBAABgBIopAAAAjBDRYrpo0SJdf/31atiwoSzL0pw5cyI5HAAAAERQRIvp4cOH1aFDB7300kuRHAYAAAAM4Ivknffr10/9+vUr9/IFBQUqKChwL+fk5FTHsAAAABABZ9UxphMmTFBycrJ7Sk9Pj/SQAAAAECZnVTEdO3assrOz3dPWrVsjPSQAAACESUR35VeU3++X3++P9DAAAABQDc6qLaYAAAA4d1FMAQAAYISI7srPzc3VunXr3MsbN27UsmXLlJqaqsaNG0dwZAAAADjTIlpMMzMzdeWVV7qXR48eLUkaNGiQpk2bFqFRAQAAIBIiWkx79uwpx3EiOQQAAAAYgmNMAQAAYASKKQAAAIxAMQUAAIARKKYAAAAwAsUUAAAARqCYAgAAwAgUUwAAABiBYgoAAAAjUEwBAABgBIopAAAAjEAxBQAAgBEopgAAADACxRQAAABGoJgCAADACBRTAAAAGIFiCgAAACNQTAEAAGAEiikAAACMQDEFAACAESimAAAAMALFFAAAAEagmAIAAMAIFFMAAAAYgWIKAAAAI1BMAQAAYASKKQAAAIxAMQUAAIARKKYAAAAwAsUUAAAARqCYAgAAwAgUUwAAABiBYgoAAAAjUEwBAABgBIopAAAAjEAxBQAAgBEopgAAADACxRQAAABGoJgCAADACBRTAAAAGIFiCgAAACNQTAEAAGAEiikAAACMQDEFAACAESimAAAAMALFFAAAAEagmAIAAMAIFFMAAAAYgWIKAAAAI1BMAQAAYASKKQAAAIxAMQUAAIARKKYAAAAwAsUUAAAARqCYAgAAwAgUUwAAABiBYgoAAAAjUEwBAABgBIppBQybPUzWeEvDZg8LS97IuSNljbc0cu7IsORVRyZ5ZuVNXDRRvsd9mrhoYljyqiOTPLPyZq2YpZSJKZq1YpaRedWRSV7VLNu5TD2n9dSyncuiIq86MqMtL5wsx3GcSA+isnJycpScnKzs7GwlJSVV+/1Z4y33vDOu6g+b/3G/Cp1CxVqxKni0oMp51ZEZMz5GAQXkk09F44qqnBfux9A33qeggvLKq8C4QJXzwv34hTsvdWKqDhYcVC1/LR0Yc6DKedWRaXpezd/VVF4wTzW8NXT44cNVzot7Ik4FdoH8Hr/yH8mvcl7s+FgVqUgxilHhuMIq56X/IV3bcrepUUIjbf2/rcblVUdm3afrau+RvaoTX0d7fr2HvArqM72P/rPpP/px0x/r40Efn/N51ZF5yz9v0T9X/1M3t7lZb9z8xjmfdzoV6Wu+ah9NObz00kt65plntGvXLnXo0EEvvviiLr300kgP65Q6/rljlTMKnUJ3Go68U2XasiuVF1DAnbb/c/sqj6+0cOQFFXSn4cgr/fiFO6/v632rnHew4KA7DUdedWSeMs+SVMH1kXCPLy+Y507DkVdgF7jTcOQVqcidjvj3iCrnbcvd5k5NzKuOzL1H9rrT0nm2U7m/g6Xzhs8dHtbx3Tf3vrDmzVgxo8p5X27/0p3OWDFDjl21jQil8/7+7d/DOr5w5FVH5scbPnanJuf9d8t/q5wVbhHfYvrGG2/ojjvu0JQpU9SlSxdNmjRJb775ptasWaO6deue8rZnYovpsNnDNH/LfEnSxqyN1XIfAAAAZ5rf8uvV/q9KktqmtVXHBh2r5X4q0tciXky7dOmiSy65RH/6058kSbZtKz09XSNGjNCYMWNOedvqKKaFhYXyeDzy+XyybVveJ7xhyQUAADBV0+Sm2jiqejbAVaSvRfTDT4WFhfr666/Vu3dvd57H41Hv3r315Zdfllm+oKBAOTk5Iadwi42Nlc/nc8cCAABwrtuUvemk19l25Q6DqYyINq99+/YpGAyqXr16IfPr1aunXbt2lVl+woQJSk5Odk/p6elnaqgAAEQ9q5z/wplVHXnlzfRYnnKfzvY8v9cfcrl0GT2TG+qM+PBTeY0dO1ajR492L+fk5FR7OW2R3EIbs4s3bZd80EaSvCrexZ+RnKG1o9aWOy91QqoOFh486fW1YmvpwNiKffI43Jn1nqqnPfkn/2Rn3bi62v2b3eXO6/CnDlp9cLUkqcg+9sn+GE+MJKlNrTb69v5vy52X/my6th/eLklySn2SpuQPzXk1z9PWB8v/yd5wP37hzms5qWVYfwerI9P0vK5/6aple5dJko4Ejrjz433xkqSOdTrqi7u/KHfe1dOv1pKdSyRJWQVZ7vwUf4okqUuDLvpw0Iflzrvtn7dp0dZFkqQduTvc+Q0TGkqSuqd31z9u/ke580bOHalPNn0iSfpu33fu/AvSLpAk9WraSy9c+0LE8qojc+KiiZq3cZ4kubklOZLUO6O3xnQ/9eFh0Zy3bOcyrdq3SpJ013t36UjgiOJ98XrlJ69Iqvjxh6bnlTezfb3iD8GWp5jNWjFLi7YUv45f+foVBZyAfJZPd3W+S5LUvXF33dru1nKPLxJ5pUVqr3FEjzEtLCxUjRo19NZbb+nGG2905w8aNEhZWVl69913T3n7s/3rosKdVx2Z5J3bedWRSR55kc4kr2pM/zqrcOdVR2a05Z3OWXOMaWxsrDp37qxPPjm2tmfbtj755BNdfvnlERwZAJwbSrYKl0xNy6uOzMSYxJApeRXTsV7HkOm5nlcdmc1SmoVMz/W8cIr4p3tGjx6tV155RdOnT9fq1at177336vDhwxoyZEikh1ZGi+QWIdOqqhVbK2RqYmbduLoh06pqX7t9yLSqGtVsFDKtqnA/fuHOC/fvYHVkmp53eYPLQ6ZV1bdp35BpVd3a5taQaVXd2fHOkKlpedWR+dCPHpLX8uqhHz1EXiU83edp9WjSQ0/3eToq8qojc9Tlo5TsT9aoy0dFRV44RfzroiTpT3/6k/sF+x07dtQLL7ygLl26nPZ2Z3pXPgAAACrmrPoe06qgmAIAAJjtrDnGFAAAAChBMQUAAIARKKYAAAAwAsUUAAAARqCYAgAAwAgUUwAAABiBYgoAAAAjUEwBAABgBIopAAAAjEAxBQAAgBEopgAAADACxRQAAABGoJgCAADACL5ID6AqHMeRJOXk5ER4JAAAADiRkp5W0ttO5awupocOHZIkpaenR3gkAAAAOJVDhw4pOTn5lMtYTnnqq6Fs29aOHTuUmJgoy7Kq/f5ycnKUnp6urVu3KikpqdrvD6fHc2IenhOz8HyYh+fEPDwn1ctxHB06dEgNGzaUx3Pqo0jP6i2mHo9HjRo1OuP3m5SUxC+uYXhOzMNzYhaeD/PwnJiH56T6nG5LaQk+/AQAAAAjUEwBAABgBIppBfj9fo0bN05+vz/SQ8FRPCfm4TkxC8+HeXhOzMNzYo6z+sNPAAAAOHewxRQAAABGoJgCAADACBRTAAAAGIFiCgAAACNQTCvgpZdeUtOmTRUXF6cuXbrof//7X6SHFLUee+wxWZYVcjr//PMjPayosWjRIl1//fVq2LChLMvSnDlzQq53HEePPvqoGjRooPj4ePXu3Vtr166NzGCjxOmek8GDB5d5zVx99dWRGWwUmDBhgi655BIlJiaqbt26uvHGG7VmzZqQZfLz8zV8+HDVrl1bCQkJ+tnPfqbdu3dHaMTnvvI8Jz179izzOrnnnnsiNOLoRDEtpzfeeEOjR4/WuHHjtHTpUnXo0EF9+/bVnj17Ij20qNW2bVvt3LnTPX322WeRHlLUOHz4sDp06KCXXnrphNc//fTTeuGFFzRlyhQtWbJENWvWVN++fZWfn3+GRxo9TvecSNLVV18d8pr5xz/+cQZHGF0WLlyo4cOHa/HixfrPf/6joqIi9enTR4cPH3aXeeCBB/Svf/1Lb775phYuXKgdO3bopz/9aQRHfW4rz3MiSXfddVfI6+Tpp5+O0IijlINyufTSS53hw4e7l4PBoNOwYUNnwoQJERxV9Bo3bpzToUOHSA8DjuNIcmbPnu1etm3bqV+/vvPMM8+487Kyshy/3+/84x//iMAIo8/xz4njOM6gQYOcG264ISLjgePs2bPHkeQsXLjQcZzi10RMTIzz5ptvususXr3akeR8+eWXkRpmVDn+OXEcx+nRo4fzy1/+MnKDgsMW03IoLCzU119/rd69e7vzPB6PevfurS+//DKCI4tua9euVcOGDdWsWTMNGDBAW7ZsifSQIGnjxo3atWtXyOslOTlZXbp04fUSYQsWLFDdunXVunVr3Xvvvdq/f3+khxQ1srOzJUmpqamSpK+//lpFRUUhr5Pzzz9fjRs35nVyhhz/nJSYMWOG0tLSdOGFF2rs2LHKy8uLxPCili/SAzgb7Nu3T8FgUPXq1QuZX69ePX3//fcRGlV069Kli6ZNm6bWrVtr586dGj9+vK644gqtXLlSiYmJkR5eVNu1a5cknfD1UnIdzryrr75aP/3pT5WRkaH169froYceUr9+/fTll1/K6/VGenjnNNu2NWrUKHXr1k0XXnihpOLXSWxsrFJSUkKW5XVyZpzoOZGk//f//p+aNGmihg0bavny5frNb36jNWvW6J133ongaKMLxRRnpX79+rnn27dvry5duqhJkyb65z//qWHDhkVwZICZbr31Vvd8u3bt1L59ezVv3lwLFixQr169Ijiyc9/w4cO1cuVKjoM3yMmek7vvvts9365dOzVo0EC9evXS+vXr1bx58zM9zKjErvxySEtLk9frLfNpyd27d6t+/foRGhVKS0lJUatWrbRu3bpIDyXqlbwmeL2YrVmzZkpLS+M1U83uv/9+vf/++5o/f74aNWrkzq9fv74KCwuVlZUVsjyvk+p3sufkRLp06SJJvE7OIIppOcTGxqpz58765JNP3Hm2beuTTz7R5ZdfHsGRoURubq7Wr1+vBg0aRHooUS8jI0P169cPeb3k5ORoyZIlvF4Msm3bNu3fv5/XTDVxHEf333+/Zs+erU8//VQZGRkh13fu3FkxMTEhr5M1a9Zoy5YtvE6qyemekxNZtmyZJPE6OYPYlV9Oo0eP1qBBg3TxxRfr0ksv1aRJk3T48GENGTIk0kOLSg8++KCuv/56NWnSRDt27NC4cePk9Xp12223RXpoUSE3NzdkC8LGjRu1bNkypaamqnHjxho1apR+97vfqWXLlsrIyNAjjzyihg0b6sYbb4zcoM9xp3pOUlNTNX78eP3sZz9T/fr1tX79ev36179WixYt1Ldv3wiO+tw1fPhwzZw5U++++64SExPd40aTk5MVHx+v5ORkDRs2TKNHj1ZqaqqSkpI0YsQIXX755brssssiPPpz0+mek/Xr12vmzJm65pprVLt2bS1fvlwPPPCAunfvrvbt20d49FEk0l8LcDZ58cUXncaNGzuxsbHOpZde6ixevDjSQ4pat9xyi9OgQQMnNjbWOe+885xbbrnFWbduXaSHFTXmz5/vSCpzGjRokOM4xV8Z9cgjjzj16tVz/H6/06tXL2fNmjWRHfQ57lTPSV5entOnTx+nTp06TkxMjNOkSRPnrrvucnbt2hXpYZ+zTvRcSHKmTp3qLnPkyBHnvvvuc2rVquXUqFHD6d+/v7Nz587IDfocd7rnZMuWLU737t2d1NRUx+/3Oy1atHB+9atfOdnZ2ZEdeJSxHMdxzmQRBgAAAE6EY0wBAABgBIopAAAAjEAxBQAAgBEopgAAADACxRQAAABGoJgCAADACBRTAAAAGIFiCgAAACNQTAHgDBs8eDD/PSsAnIAv0gMAgHOJZVmnvH7cuHF6/vnnxX+6BwBlUUwBIIx27tzpnn/jjTf06KOPas2aNe68hIQEJSQkRGJoAGA8duUDQBjVr1/fPSUnJ8uyrJB5CQkJZXbl9+zZUyNGjNCoUaNUq1Yt1atXT6+88ooOHz6sIUOGKDExUS1atNAHH3wQcl8rV65Uv379lJCQoHr16un222/Xvn37zvBPDADhQzEFAANMnz5daWlp+t///qcRI0bo3nvv1U033aSuXbtq6dKl6tOnj26//Xbl5eVJkrKysnTVVVepU6dOyszM1Icffqjdu3fr5ptvjvBPAgCVRzEFAAN06NBBDz/8sFq2bKmxY8cqLi5OaWlpuuuuu9SyZUs9+uij2r9/v5YvXy5J+tOf/qROnTrpySef1Pnnn69OnTrptdde0/z58/XDDz9E+KcBgMrhGFMAMED79u3d816vV7Vr11a7du3cefXq1ZMk7dmzR5L07bffav78+Sc8XnX9+vVq1apVNY8YAMKPYgoABoiJiQm5bFlWyLyST/vbti1Jys3N1fXXX6+nnnqqTFaDBg2qcaQAUH0opgBwFrrooov09ttvq2nTpvL5+FMO4NzAMaYAcBYaPny4Dhw4oNtuu01fffWV1q9fr48++khDhgxRMBiM9PAAoFIopgBwFmrYsKE+//xzBYNB9enTR+3atdOoUaOUkpIij4c/7QDOTpbDfz8CAAAAA7BaDQAAACNQTAEAAGAEiikAAACMQDEFAACAESimAAAAMALFFAAAAEagmAIAAMAIFFMAAAAYgWIKAAAAI1BMAQAAYASKKQAAAIzw/wGTmhoWv27IlQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-07-24 18:46:11,728 - funman.api.run - INFO - Creating plot of parameter space: ./out/a654ce35-3219-47bc-9515-4acdbed918ea_parameter_space.png\n", + "2024-07-24 18:46:12,675 - funman.server.worker - INFO - Completed work on: a654ce35-3219-47bc-9515-4acdbed918ea\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAe6CAYAAAAzV+hFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdfZiWZZ0//vfM4IAIAyU4PDgwIiHrA6g8jGwqfpONsHWzyBRtISpcS02dbJXvr0B6gpRw9thIzFT6pf7yYbPaTSmjsExIA0nDNCANZWAAWxkeVsZgfn94eLsTDMI4MKCv13Fcx3Hf5/W5z/Nz3szcx6Hvue6rqLGxsTEAAAAAAAAA8DZX3NYNAAAAAAAAAMCBQIAOAAAAAAAAABGgAwAAAAAAAEASAToAAAAAAAAAJBGgAwAAAAAAAEASAToAAAAAAAAAJBGgAwAAAAAAAECSpF1bN3Cw2rFjR2pra9O5c+cUFRW1dTtw0GpsbMymTZvSq1evFBf7mx4AAAAAAADajgC9hWpra1NRUdHWbcBbxvPPP58jjzyyrdsAAAAAAADgbUyA3kKdO3dO8mroV1ZW1sbdwMGrvr4+FRUVhd8pAAAAAAAAaCsC9BZ67Wvby8rKBOjQCtwKAQAAAAAAgLbmhsMAAAAAAAAAEAE6AAAAAAAAACQRoAMAAAAAAABAEgE6AAAAAAAAACQ5QAL02bNnp7KyMh06dEhVVVUeffTRZmuXLVuWsWPHprKyMkVFRampqdmp5tprr01RUVGTY+DAgU1qzjjjjJ1qLr744tbeGgAAAAAAAAAHiTYP0O+6665UV1dn6tSpWbJkSQYPHpzRo0dn3bp1u6zfunVr+vXrlxkzZqRHjx7NznvcccdlzZo1hePhhx/eqWbSpElNaq677rpW2xcAAAB87GMfS2VlZeH5c889l6KiosycOfMNX/vaH4e/VZxxxhk544wz2roNAAAA2K02D9BnzZqVSZMmZeLEiTn22GMzZ86cdOzYMbfeeusu64cNG5brr78+559/ftq3b9/svO3atUuPHj0KR7du3Xaq6dixY5OasrKyVtsXAAAA+8/cuXN3+pax145rrrmmrds7IPzte9SuXbv07t07H/vYx7J69eq2bg8AAAAOCO3acvGGhoYsXrw4kydPLowVFxdn1KhRWbhw4Zuae/ny5enVq1c6dOiQESNGZPr06enTp0+TmjvuuCO33357evTokbPPPjtf+MIX0rFjx13Ot23btmzbtq3wvL6+fo/62PrK1mx8eWPLNwIHuc7tO6dTaae2bgMAgLeJL37xiznqqKOajB1//PFt1E1y8803Z8eOHW22/q689h69/PLLWbRoUebOnZuHH344v//979OhQ4d9tu5Pf/rTfTY3AAAAtJY2DdA3bNiQ7du3p7y8vMl4eXl5nn766RbPW1VVlblz5+aYY47JmjVrMm3atJx22mn5/e9/n86dOydJLrjggvTt2ze9evXKE088kauvvjrPPPNMvv/97+9yzunTp2fatGl73cuaTWuydO3SlBSXtHg/cLDavmN7jjviuAzsNrCtWwEA4G1izJgxGTp0aFu3UXDIIYe0dQs7+d/v0Sc/+cl069YtX/va1/KjH/0oH/nIR/bZuqWlpftsbgAAAGgtbRqg7ytjxowpPB40aFCqqqrSt2/f3H333fnEJz6RJLnooosKNSeccEJ69uyZM888MytXrszRRx+905yTJ09OdXV14Xl9fX0qKir2qJ+SopJUlO1ZLbyVrK73NZAAABxYHnjggXz1q1/NkiVLUlxcnNNPPz3XXXddjjvuuELNE088kVmzZuWXv/xlamtr07Vr15x11lm5/vrrc/jhhxfqNm3alC984Qv5wQ9+kDVr1qRLly4ZPHhwvva1r+Xkk09O8uo90BcsWJDnnntup15uuOGG1NTUZN26dRk+fHhmz569R1fL33777bnhhhvy1FNP5dBDD8173/veXH/99Xv836h/67TTTsvXvva1rFy5ssn4008/nc9//vP5+c9/nq1bt+b444/PlClT8k//9E9N6p544olcdtllefTRR3P44Yfn4osvTu/evfPxj388zz77bOEe8K/d/3zBggWF165bty6TJ0/Of/3Xf2Xjxo055phjUl1dnQkTJhRqnnvuuRx11FG5/vrrU1ZWlq997Wt54YUXMmjQoHzzm9/MsGHDCrVr167N5MmT8+CDD2b9+vV55zvfmeHDh+ff/u3fmtyLHgAAAJrTpgF6t27dUlJSkrq6uibjdXV16dGjR6ut07Vr1wwYMCArVqxotqaqqipJsmLFil0G6O3bt9/tPdcBAABoexs3bsyGDRuajHXr1i1J8t3vfjcTJkzI6NGj87WvfS1bt27NjTfemFNPPTWPP/54IWB98MEH86c//SkTJ05Mjx49smzZsnzrW9/KsmXLsmjRohQVFSVJLr744tx777259NJLc+yxx+bFF1/Mww8/nD/84Q+FAL05/+//+/9m06ZNueSSS/Lyyy/n3/7t3/Ke97wnTz755E7f0va/feUrX8kXvvCFfOQjH8knP/nJrF+/Pv/+7/+e008/PY8//ni6du261+/Za+H+O97xjsLYsmXL8u53vzu9e/fONddck8MOOyx33313zjnnnPzHf/xHPvjBDyZJVq9enf/zf/5PioqKMnny5Bx22GH59re/vUf//fw///M/OeOMM7JixYpceumlOeqoo3LPPffkYx/7WF566aVcfvnlTervvPPObNq0Kf/yL/+SoqKiXHfddfnQhz6UP/3pT4Ur/ceOHZtly5blsssuS2VlZdatW5cHH3wwq1atEqADAACwR9o0QC8tLc2QIUMyf/78nHPOOUmSHTt2ZP78+bn00ktbbZ3Nmzdn5cqV+ed//udma5YuXZok6dmzZ6utCwAAwP41atSoncYaGxuzefPmfOYzn8knP/nJfOtb3yqcmzBhQo455ph89atfLYx/+tOfzmc/+9kmc5xyyikZN25cHn744Zx22mlJkh//+MeZNGlSvv71rxfq/vVf/3WP+lyxYkWWL1+e3r17J0ne9773paqqKl/72tcya9asXb7mz3/+c6ZOnZovf/nL+b//9/8Wxj/0oQ/lpJNOyje/+c0m48157Y8MXn755fzmN7/JtGnT0r59+/zjP/5joebyyy9Pnz598thjjxXC8E9/+tM59dRTc/XVVxcC9K997Wv57//+7yxZsiQnnnhikmTixIl517ve9YZ9fOtb38of/vCH3H777bnwwguTvPpHCSNHjsznP//5fPzjHy/chi1JVq1aleXLlxeC/mOOOSYf+MAH8pOf/CT/+I//mJdeeimPPPJIrr/++lx11VWF102ePPkNewEAAIDXFLd1A9XV1bn55pvzne98J3/4wx/yqU99Klu2bMnEiROTJOPHj2/yH7sNDQ1ZunRpli5dmoaGhqxevTpLly5tcnX5VVddlYceeijPPfdcHnnkkXzwgx9MSUlJxo0blyRZuXJlvvSlL2Xx4sV57rnn8qMf/Sjjx4/P6aefnkGDBu3fNwAAAIBWM3v27Dz44INNjuTVq8pfeumljBs3Lhs2bCgcJSUlqaqqyi9+8YvCHIceemjh8csvv5wNGzbklFNOSZIsWbKkcK5r1675zW9+k9ra2r3u85xzzimE50kyfPjwVFVV5f7772/2Nd///vezY8eOfOQjH2myhx49euRd73pXkz3szqhRo9K9e/dUVFTkwx/+cA477LD86Ec/ypFHHpkk+ctf/pKf//zn+chHPpJNmzYV1nnxxRczevToLF++PKtXv3q7pnnz5mXEiBGF8DxJ3vnOdxYC8d25//7706NHj8J/qyev3jP+M5/5TDZv3pyHHnqoSf15553X5Cr51/6Q4U9/+lOSV//dSktLs2DBgvz3f//3Hr0XAAAA8Lfa/B7o5513XtavX58pU6Zk7dq1OfHEEzNv3rzCV9atWrUqxcWv5/y1tbU56aSTCs9nzpyZmTNnZuTIkYX7qL3wwgsZN25cXnzxxXTv3j2nnnpqFi1alO7duyd59cr3n/3sZ6mpqcmWLVtSUVGRsWPH5vOf//z+2zgAAACtbvjw4Rk6dOhO48uXL0+SvOc979nl68rKygqP//KXv2TatGn53ve+l3Xr1jWp27hxY+HxddddlwkTJqSioiJDhgzJWWedlfHjx6dfv35v2OeurtAeMGBA7r777mZfs3z58jQ2NjZ7dfdrX2P+RmbPnp0BAwZk48aNufXWW/PLX/6yyVeur1ixIo2NjfnCF76QL3zhC7ucY926dendu3f+/Oc/Z8SIETud79+//xv28ec//znvete7mvw3f5L83d/9XeH8/9anT58mz18L018Ly9u3b5+vfe1r+exnP5vy8vKccsop+cd//MeMHz++VW8TBwAAwFtbmwfoSXLppZc2+5Xtr4Xir6msrExjY+Nu5/ve97632/MVFRU7/SU7AAAAb107duxI8up90HcVprZr9/p/Hn/kIx/JI488ks997nM58cQT06lTp+zYsSPve9/7CvO8Vnfaaaflvvvuy09/+tNcf/31+drXvpbvf//7GTNmzD7ZQ1FRUR544IGUlJTsdL5Tp057NM///iODc845J6eeemouuOCCPPPMM4W9Jq9+u9vo0aN3OceeBOStbVd7TtLk/xFcccUVOfvss/ODH/wgP/nJT/KFL3wh06dPz89//vMmf4wPAAAAzTkgAnQAAADYl44++ugkyRFHHLHL+6S/5r//+78zf/78TJs2LVOmTCmMv3YF+9/q2bNnPv3pT+fTn/501q1bl5NPPjlf+cpX3jBA39V8f/zjH1NZWbnbPTQ2Nuaoo47KgAEDdjv/niopKcn06dPzf/7P/8k3vvGNXHPNNYUr6A855JDdvldJ0rdv3ya3VHvNrsZ29donnngiO3bsaHIV+tNPP1043xJHH310PvvZz+azn/1sli9fnhNPPDFf//rXc/vtt7doPgAAAN5e2vwe6AAAALCvjR49OmVlZfnqV7+aV155Zafz69evT/L6Vc5/+81nNTU1TZ5v3769yde5J6+G87169cq2bdvesJ8f/OAHhfuIJ8mjjz6a3/zmN7sN3j/0oQ+lpKQk06ZN26m/xsbGvPjii2+47q6cccYZGT58eGpqavLyyy/niCOOyBlnnJGbbropa9as2an+tfcqefV9XbhwYZYuXVoY+8tf/pI77rjjDdc966yzsnbt2tx1112Fsb/+9a/593//93Tq1CkjR47cq31s3bo1L7/8cpOxo48+Op07d96jfxMAAABIXIEOAADA20BZWVluvPHG/PM//3NOPvnknH/++enevXtWrVqVH//4x3n3u9+db3zjGykrK8vpp5+e6667Lq+88kp69+6dn/70p3n22WebzLdp06YceeSR+fCHP5zBgwenU6dO+dnPfpbHHnssX//619+wn/79++fUU0/Npz71qWzbti01NTU5/PDD86//+q/Nvuboo4/Ol7/85UyePDnPPfdczjnnnHTu3DnPPvts7rvvvlx00UW56qqrWvT+fO5zn8u5556buXPn5uKLL87s2bNz6qmn5oQTTsikSZPSr1+/1NXVZeHChXnhhRfyu9/9Lknyr//6r7n99tvzD//wD7nsssty2GGH5dvf/nb69OmTv/zlLykqKmp2zYsuuig33XRTPvaxj2Xx4sWprKzMvffem1//+tepqalJ586d92oPf/zjH3PmmWfmIx/5SI499ti0a9cu9913X+rq6nL++ee36H0BAADg7UeADgAAwNvCBRdckF69emXGjBm5/vrrs23btvTu3TunnXZaJk6cWKi78847c9lll2X27NlpbGzMe9/73jzwwAPp1atXoaZjx4759Kc/nZ/+9Kf5/ve/nx07dqR///755je/mU996lNv2Mv48eNTXFycmpqarFu3LsOHD883vvGN9OzZc7evu+aaazJgwIDccMMNmTZtWpKkoqIi733ve/NP//RPLXxnXr26/eijj87MmTMzadKkHHvssfntb3+badOmZe7cuXnxxRdzxBFH5KSTTmry1fYVFRX5xS9+kc985jP56le/mu7du+eSSy7JYYcdls985jPp0KFDs2seeuihWbBgQa655pp85zvfSX19fY455pjcdttt+djHPrbXe6ioqMi4ceMyf/78fPe73027du0ycODA3H333Rk7dmxL3hYAAADehooa//Z739gj9fX16dKlSzZu3JiysrJm61b+ZWWerHsyFV0q9mN3cGBYXb86A7oNyMBuA5ut2dPfJQAA4OBxxRVX5KabbsrmzZsLX4sPAAAABwP3QAcAAABa7H/+53+aPH/xxRfz3e9+N6eeeqrwHAAAgIOOr3AHAAAAWmzEiBE544wz8nd/93epq6vLLbfckvr6+nzhC19o69YAAABgrwnQAQAAgBY766yzcu+99+Zb3/pWioqKcvLJJ+eWW27J6aef3tatAQAAwF4ToAMAAAAt9tWvfjVf/epX27oNAAAAaBXugQ4AAAAAAAAAEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkOUAC9NmzZ6eysjIdOnRIVVVVHn300WZrly1blrFjx6aysjJFRUWpqanZqebaa69NUVFRk2PgwIG7nK+xsTFjxoxJUVFRfvCDH7TSjgAAAAAAAAA42LR5gH7XXXeluro6U6dOzZIlSzJ48OCMHj0669at22X91q1b069fv8yYMSM9evRodt7jjjsua9asKRwPP/zwLutqampSVFTUKnsBAAAAAAAA4ODV5gH6rFmzMmnSpEycODHHHnts5syZk44dO+bWW2/dZf2wYcNy/fXX5/zzz0/79u2bnbddu3bp0aNH4ejWrdtONUuXLs3Xv/71ZtcCAAAAAAAA4O2jTQP0hoaGLF68OKNGjSqMFRcXZ9SoUVm4cOGbmnv58uXp1atX+vXrlwsvvDCrVq1qcn7r1q254IILMnv27N1eyf6abdu2pb6+vskBAAAAAAAAwFtHmwboGzZsyPbt21NeXt5kvLy8PGvXrm3xvFVVVZk7d27mzZuXG2+8Mc8++2xOO+20bNq0qVBz5ZVX5u///u/zgQ98YI/mnD59erp06VI4KioqWtwfAAAAAAAAAAeedm3dwL4wZsyYwuNBgwalqqoqffv2zd13351PfOIT+dGPfpSf//znefzxx/d4zsmTJ6e6urrwvL6+XogOAAAAAAAA8BbSplegd+vWLSUlJamrq2syXldXt0dfq76nunbtmgEDBmTFihVJkp///OdZuXJlunbtmnbt2qVdu1f/jmDs2LE544wzdjlH+/btU1ZW1uQAAAAAAAAA4K2jTQP00tLSDBkyJPPnzy+M7dixI/Pnz8+IESNabZ3Nmzdn5cqV6dmzZ5LkmmuuyRNPPJGlS5cWjiS54YYbctttt7XaugAAAAAAAAAcPNr8K9yrq6szYcKEDB06NMOHD09NTU22bNmSiRMnJknGjx+f3r17Z/r06UmShoaGPPXUU4XHq1evztKlS9OpU6f0798/SXLVVVfl7LPPTt++fVNbW5upU6empKQk48aNS5L06NFjl1e49+nTJ0cdddT+2DYAAAAAAAAAB5g2D9DPO++8rF+/PlOmTMnatWtz4oknZt68eSkvL0+SrFq1KsXFr18oX1tbm5NOOqnwfObMmZk5c2ZGjhyZBQsWJEleeOGFjBs3Li+++GK6d++eU089NYsWLUr37t33694AAAAAAAAAOHgUNTY2NrZ1Ewej+vr6dOnSJRs3btzt/dBX/mVlnqx7MhVdKvZjd3BgWF2/OgO6DcjAbgObrdnT3yUAAAAAAADY19r0HugAAAAAAAAAcKAQoAMAAAAAAABABOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkOQACdBnz56dysrKdOjQIVVVVXn00UebrV22bFnGjh2bysrKFBUVpaamZqeaa6+9NkVFRU2OgQMHNqn5l3/5lxx99NE59NBD071793zgAx/I008/3dpbAwAAAAAAAOAg0eYB+l133ZXq6upMnTo1S5YsyeDBgzN69OisW7dul/Vbt25Nv379MmPGjPTo0aPZeY877risWbOmcDz88MNNzg8ZMiS33XZb/vCHP+QnP/lJGhsb8973vjfbt29v1f0BAAAAAAAAcHBo19YNzJo1K5MmTcrEiROTJHPmzMmPf/zj3Hrrrbnmmmt2qh82bFiGDRuWJLs8/5p27drtNmC/6KKLCo8rKyvz5S9/OYMHD85zzz2Xo48+uqXbAQAAAAAAAOAg1aZXoDc0NGTx4sUZNWpUYay4uDijRo3KwoUL39Tcy5cvT69evdKvX79ceOGFWbVqVbO1W7ZsyW233ZajjjoqFRUVu6zZtm1b6uvrmxwAAAAAAAAAvHW0aYC+YcOGbN++PeXl5U3Gy8vLs3bt2hbPW1VVlblz52bevHm58cYb8+yzz+a0007Lpk2bmtR985vfTKdOndKpU6c88MADefDBB1NaWrrLOadPn54uXboUjuaCdgAAAAAAAAAOTm1+D/R9YcyYMTn33HMzaNCgjB49Ovfff39eeuml3H333U3qLrzwwjz++ON56KGHMmDAgHzkIx/Jyy+/vMs5J0+enI0bNxaO559/fn9sBQAAAAAAAID9pE3vgd6tW7eUlJSkrq6uyXhdXd1u71++t7p27ZoBAwZkxYoVTcZfu5r8Xe96V0455ZS84x3vyH333Zdx48btNEf79u3Tvn37VusJAAAAAAAAgANLm16BXlpamiFDhmT+/PmFsR07dmT+/PkZMWJEq62zefPmrFy5Mj179my2prGxMY2Njdm2bVurrQsAAAAAAADAwaNNr0BPkurq6kyYMCFDhw7N8OHDU1NTky1btmTixIlJkvHjx6d3796ZPn16kqShoSFPPfVU4fHq1auzdOnSdOrUKf3790+SXHXVVTn77LPTt2/f1NbWZurUqSkpKSlcWf6nP/0pd911V9773veme/fueeGFFzJjxowceuihOeuss9rgXQAAAAAAAACgrbV5gH7eeedl/fr1mTJlStauXZsTTzwx8+bNS3l5eZJk1apVKS5+/UL52tranHTSSYXnM2fOzMyZMzNy5MgsWLAgSfLCCy9k3LhxefHFF9O9e/eceuqpWbRoUbp3754k6dChQ371q1+lpqYm//3f/53y8vKcfvrpeeSRR3LEEUfsv80DAAAAAAAAcMAoamxsbGzrJg5G9fX16dKlSzZu3JiysrJm61b+ZWWerHsyFV0q9mN3cGBYXb86A7oNyMBuA5ut2dPfJQAAAAAAANjX2vQe6AAAAAAAAABwoBCgAwAAAAAAAEDe5D3Qt27dmlWrVqWhoaHJ+KBBg95UUwAAAAAAAACwv7UoQF+/fn0mTpyYBx54YJfnt2/f/qaaAgAAAAAAAID9rUVf4X7FFVfkpZdeym9+85sceuihmTdvXr7zne/kXe96V370ox+1do8AAAAAAAAAsM+16Ar0n//85/nhD3+YoUOHpri4OH379s0//MM/pKysLNOnT8/73//+1u4TAAAAAAAAAPapFl2BvmXLlhxxxBFJkne84x1Zv359kuSEE07IkiVLWq87AAAAAAAAANhPWhSgH3PMMXnmmWeSJIMHD85NN92U1atXZ86cOenZs2erNggAAAAAAAAA+0OLvsL98ssvz5o1a5IkU6dOzfve977ccccdKS0tzdy5c1uzPwAAAAAAAADYL1oUoH/0ox8tPB4yZEj+/Oc/5+mnn06fPn3SrVu3VmsO9saP/jP54rRk5szkjDN2Pv+rXyU1Ncn2HUn//sm11yadDtvPTQIAAAAAAAAHrBZ9hfsXv/jFbN26tfC8Y8eOOfnkk3PYYYfli1/8Yqs1B3uqdk1y333J8Sfs+vzW/0m++KXk619PfnBf0r178u1v798eAQAAAAAAgANbiwL0adOmZfPmzTuNb926NdOmTXvTTcHe2NGYfOlLyb9+Lik9ZNc1j/w6OeaYpLLy1efnnpv85Cf7rUUAAAAAAADgINCiAL2xsTFFRUU7jf/ud7/LO9/5zjfdFOyNO25PBg9O/u7vmq9Zuzbp2fP15716Jhs2JH/dvu/7AwAAAAAAAA4Oe3UP9He84x0pKipKUVFRBgwY0CRE3759ezZv3pyLL7641ZuE5qxYmcz/efLtm9u6EwAAAAAAAOBgt1cBek1NTRobG/Pxj38806ZNS5cuXQrnSktLU1lZmREjRrR6k9CcpY8na2qTcz746vMXX0y+/JVXry7/8Idfr+vRI1n0m9ef165JunVL2pXs334BAAAAAACAA9deBegTJkxIkhx11FF597vfnXbt9url0Oo+/OGmQflFFyUXXJCccUbTuhF/n8z4WvLcc6/eB/2ee5LR792PjQIAAAAAAAAHvBbdA33kyJH585//nM9//vMZN25c1q1blyR54IEHsmzZslZtEFpqzpzk3v949fFhHZMvfCH57GeTc85J1tUln/xkm7YHAAAAAAAAHGBadAn5Qw89lDFjxuTd7353fvnLX+YrX/lKjjjiiPzud7/LLbfcknvvvbe1+4Q98q1vvf744oubnht5+qsHAAAAAAAAwK606Ar0a665Jl/+8pfz4IMPprS0tDD+nve8J4sWLWq15gAAAAAAAABgf2lRgP7kk0/mgx/84E7jRxxxRDZs2PCmmwIAAAAAAACA/a1FAXrXrl2zZs2ancYff/zx9O7d+003BQAAAAAAAAD7W4sC9PPPPz9XX3111q5dm6KiouzYsSO//vWvc9VVV2X8+PGt3SMAAAAAAAAA7HMtCtC/+tWvZuDAgamoqMjmzZtz7LHH5rTTTsvf//3f5/Of/3xr9wgAAAAAAAAA+1y7lryotLQ0N998c6ZMmZInn3wyW7ZsyUknnZT+/fu3dn8AAAAAAAAAsF+0KEBPkltuuSU33HBDli9fniR517velSuuuCKf/OQnW605AAAAAAAAANhfWhSgT5kyJbNmzcpll12WESNGJEkWLlyYK6+8MqtWrcoXv/jFVm0SAAAAAAAAAPa1FgXoN954Y26++eaMGzeuMPZP//RPGTRoUC677DIBOgAAAAAAAAAHneKWvOiVV17J0KFDdxofMmRI/vrXv77ppgAAAAAAAABgf2tRgP7P//zPufHGG3ca/9a3vpULL7zwTTcFAAAAAAAAAPvbHn+Fe3V1deFxUVFRvv3tb+enP/1pTjnllCTJb37zm6xatSrjx49v/S4BAAAAAAAAYB/b4yvQH3/88cLx5JNPZsiQIenevXtWrlyZlStXplu3bjn55JOzbNmyvW5i9uzZqaysTIcOHVJVVZVHH3202dply5Zl7NixqaysTFFRUWpqanaqufbaa1NUVNTkGDhwYOH8X/7yl1x22WU55phjcuihh6ZPnz75zGc+k40bN+517wAAAAAAAAC8NezxFei/+MUv9kkDd911V6qrqzNnzpxUVVWlpqYmo0ePzjPPPJMjjjhip/qtW7emX79+Offcc3PllVc2O+9xxx2Xn/3sZ4Xn7dq9vtXa2trU1tZm5syZOfbYY/PnP/85F198cWpra3Pvvfe27gYBAAAAAAAAOCjscYC+r8yaNSuTJk3KxIkTkyRz5szJj3/849x666255pprdqofNmxYhg0bliS7PP+adu3apUePHrs8d/zxx+c//uM/Cs+PPvrofOUrX8lHP/rR/PWvf20StgMAAAAAAADw9rDHX+G+LzQ0NGTx4sUZNWpUYay4uDijRo3KwoUL39Tcy5cvT69evdKvX79ceOGFWbVq1W7rN27cmLKysmbD823btqW+vr7JAQAAAAAAAMBbR5sG6Bs2bMj27dtTXl7eZLy8vDxr165t8bxVVVWZO3du5s2blxtvvDHPPvtsTjvttGzatKnZPr70pS/loosuanbO6dOnp0uXLoWjoqKixf0BAAAAAAAAcOBp0wB9XxkzZkzOPffcDBo0KKNHj87999+fl156KXffffdOtfX19Xn/+9+fY489Ntdee22zc06ePDkbN24sHM8///w+3AEAAAAAAAAA+1ub3uy7W7duKSkpSV1dXZPxurq6Zu9f3hJdu3bNgAEDsmLFiibjmzZtyvve97507tw59913Xw455JBm52jfvn3at2/faj0BAAAAAAAAcGBp0yvQS0tLM2TIkMyfP78wtmPHjsyfPz8jRoxotXU2b96clStXpmfPnoWx+vr6vPe9701paWl+9KMfpUOHDq22HgAAAAAAAAAHnza9Aj1JqqurM2HChAwdOjTDhw9PTU1NtmzZkokTJyZJxo8fn969e2f69OlJkoaGhjz11FOFx6tXr87SpUvTqVOn9O/fP0ly1VVX5eyzz07fvn1TW1ubqVOnpqSkJOPGjUvyeni+devW3H777amvr099fX2SpHv37ikpKdnfbwMAAAAAAAAAbazNA/Tzzjsv69evz5QpU7J27dqceOKJmTdvXsrLy5Mkq1atSnHx6xfK19bW5qSTTio8nzlzZmbOnJmRI0dmwYIFSZIXXngh48aNy4svvpju3bvn1FNPzaJFi9K9e/ckyZIlS/Kb3/wmSQqh+2ueffbZVFZW7sMdAwAAAAAAAHAgKmpsbGxs6yYORvX19enSpUs2btyYsrKyZutW/mVlnqx7MhVdKvZjd3BgWF2/OgO6DcjAbgObrdnT3yUAAAAAAADY19r0HugAAAAAAAAAcKAQoAMAAAAAAABABOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJBOgAAAAAAAAAkESADgAAAAAAAABJDoAAffbs2amsrEyHDh1SVVWVRx99tNnaZcuWZezYsamsrExRUVFqamp2qrn22mtTVFTU5Bg4cGCTmm9961s544wzUlZWlqKiorz00kutvCsAAAAAAAAADjZtGqDfddddqa6uztSpU7NkyZIMHjw4o0ePzrp163ZZv3Xr1vTr1y8zZsxIjx49mp33uOOOy5o1awrHww8/vNM873vf+/J//+//bdX9AAAAAAAAAHDwateWi8+aNSuTJk3KxIkTkyRz5szJj3/849x666255pprdqofNmxYhg0bliS7PP+adu3a7TZgv+KKK5IkCxYsaHnzAAAAAAAAALyltNkV6A0NDVm8eHFGjRr1ejPFxRk1alQWLlz4puZevnx5evXqlX79+uXCCy/MqlWr3my72bZtW+rr65scAAAAAAAAALx1tFmAvmHDhmzfvj3l5eVNxsvLy7N27doWz1tVVZW5c+dm3rx5ufHGG/Pss8/mtNNOy6ZNm95Uv9OnT0+XLl0KR0VFxZuaDwAAAAAAAIADS5veA31fGDNmTM4999wMGjQoo0ePzv3335+XXnopd99995uad/Lkydm4cWPheP7551upYwAAAAAAAAAOBG12D/Ru3bqlpKQkdXV1Tcbr6up2e//yvdW1a9cMGDAgK1aseFPztG/fPu3bt2+lrgAAAAAAAAA40LTZFeilpaUZMmRI5s+fXxjbsWNH5s+fnxEjRrTaOps3b87KlSvTs2fPVpsTAAAAAAAAgLeeNrsCPUmqq6szYcKEDB06NMOHD09NTU22bNmSiRMnJknGjx+f3r17Z/r06UmShoaGPPXUU4XHq1evztKlS9OpU6f0798/SXLVVVfl7LPPTt++fVNbW5upU6empKQk48aNK6y7du3arF27tnBV+pNPPpnOnTunT58+eec737k/3wIAAAAAAAAADhBtGqCfd955Wb9+faZMmZK1a9fmxBNPzLx581JeXp4kWbVqVYqLX79Ivra2NieddFLh+cyZMzNz5syMHDkyCxYsSJK88MILGTduXF588cV07949p556ahYtWpTu3bsXXjdnzpxMmzat8Pz0009Pktx222352Mc+tg93DAAAAAAAAMCBqqixsbGxrZs4GNXX16dLly7ZuHFjysrKmq1b+ZeVebLuyVR0qdiP3cGBYXX96gzoNiADuw1stmZPf5cAAAAAAABgX2uze6ADAAAAAAAAwIFEgA4AAAAAAAAAEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkOUAC9NmzZ6eysjIdOnRIVVVVHn300WZrly1blrFjx6aysjJFRUWpqanZqebaa69NUVFRk2PgwIFNal5++eVccsklOfzww9OpU6eMHTs2dXV1rb01AAAAAAAAAA4SbR6g33XXXamurs7UqVOzZMmSDB48OKNHj866det2Wb9169b069cvM2bMSI8ePZqd97jjjsuaNWsKx8MPP9zk/JVXXpn//M//zD333JOHHnootbW1+dCHPtSqewMAAAAAAADg4NHmAfqsWbMyadKkTJw4Mccee2zmzJmTjh075tZbb91l/bBhw3L99dfn/PPPT/v27Zudt127dunRo0fh6NatW+Hcxo0bc8stt2TWrFl5z3vekyFDhuS2227LI488kkWLFrX6HgEAAAAAAAA48LVry8UbGhqyePHiTJ48uTBWXFycUaNGZeHChW9q7uXLl6dXr17p0KFDRowYkenTp6dPnz5JksWLF+eVV17JqFGjCvUDBw5Mnz59snDhwpxyyik7zbdt27Zs27at8Ly+vn6Pe9m2fVu2/XXbGxfCW0zD9oa2bgEAAAAAAAD2WJsG6Bs2bMj27dtTXl7eZLy8vDxPP/10i+etqqrK3Llzc8wxx2TNmjWZNm1aTjvttPz+979P586ds3bt2pSWlqZr1647rbt27dpdzjl9+vRMmzZtr3spLipOWfuybNy2sSVbgYPaYaWHpaSopK3bAAAAAAAAgD3SpgH6vjJmzJjC40GDBqWqqip9+/bN3XffnU984hMtmnPy5Mmprq4uPK+vr09FRcUbvq5Plz7pflj3Fq0JbwUd2nVo6xYAAAAAAABgj7RpgN6tW7eUlJSkrq6uyXhdXV169OjRaut07do1AwYMyIoVK5IkPXr0SENDQ1566aUmV6Hvbt327dvv9p7rzSkpLkmn0k4t6hsAAAAAAACA/ae4LRcvLS3NkCFDMn/+/MLYjh07Mn/+/IwYMaLV1tm8eXNWrlyZnj17JkmGDBmSQw45pMm6zzzzTFatWtWq6wIAAAAAAABw8Gjzr3Cvrq7OhAkTMnTo0AwfPjw1NTXZsmVLJk6cmCQZP358evfunenTpydJGhoa8tRTTxUer169OkuXLk2nTp3Sv3//JMlVV12Vs88+O3379k1tbW2mTp2akpKSjBs3LknSpUuXfOITn0h1dXXe+c53pqysLJdddllGjBiRU045pQ3eBQAAAAAAAADaWpsH6Oedd17Wr1+fKVOmZO3atTnxxBMzb968lJeXJ0lWrVqV4uLXL5Svra3NSSedVHg+c+bMzJw5MyNHjsyCBQuSJC+88ELGjRuXF198Md27d8+pp56aRYsWpXv31+9FfsMNN6S4uDhjx47Ntm3bMnr06Hzzm9/cP5sGAAAAAAAA4IBT1NjY2NjWTRyM6uvr06VLl2zcuDFlZWVt3Q4ctPwuAQAAAAAAcKBo03ugAwAAAAAAAMCBQoAOAAAAAAAAADkA7oF+sHrtm+/r6+vbuBM4uL32O+RuEgAAAAAAALQ1AXoLbdq0KUlSUVHRxp3AW8OmTZvSpUuXtm4DAAAAAACAt7GiRpd9tsiOHTtSW1ubzp07p6ioqNm6+vr6VFRU5Pnnn09ZWdk+7emtutb+Xs/e9u96jY2N2bRpU3r16pXiYneVAAAAAAAAoO24Ar2FiouLc+SRR+5xfVlZ2X4JLN/Ka+3v9ext/63nynMAAAAAAAAOBC73BAAAAAAAAIAI0AEAAAAAAAAgiQB9n2vfvn2mTp2a9u3bW+sgWc/eDt71AAAAAAAA4M0oamxsbGzrJgAAAAAAAACgrbkCHQAAAAAAAAAiQAcAAAAAAACAJAJ0AAAAAAAAAEgiQAcAAAAAAACAJAL0NzR79uxUVlamQ4cOqaqqyqOPPtps7bJlyzJ27NhUVlamqKgoNTU1O9VMnz49w4YNS+fOnXPEEUfknHPOyTPPPLPTWuXl5enSpUs6deqUsWPHpq6ubp+sVVxcnKKioibHxRdfvNdr3XjjjRk0aFDKyspSVlaWESNG5IEHHmjyPvbt2zft2rVLu3btcuihh+5yX62xXmvv7X+bMWNGioqKcsUVV+yzve1uvdbe27XXXrvTPAMHDtxne3uj9ZLkjDPOeMO9AQAAAAAAwL4gQN+Nu+66K9XV1Zk6dWqWLFmSwYMHZ/To0Vm3bt0u67du3Zp+/fplxowZ6dGjxy5rHnrooVxyySVZtGhRHnzwwbzyyit573vfm+985zuFtT7wgQ9ky5Yt2bFjR+67777U1tbmQx/60D5Za8iQIRk4cGC6dOmSJ598MmvWrMl1112312sdeeSRmTFjRhYvXpzf/va3ec973pMPfOADWbZsWeF97NevX7p37573ve99OeSQQ/LnP/95p3292fVmzpzZ6nt7zWOPPZabbropgwYNKozti701t97//nlszb0dd9xxWbNmTeF4+OGH9+nemlvvf5s0aVKTmr/dGwAAAAAAAOwTjTRr+PDhjZdccknh+fbt2xt79erVOH369Dd8bd++fRtvuOGGN6xbt25dY5LGv/u7v2u85JJLGl966aXGQw45pPGuu+4qrPWHP/yhMUnjwoULW3WtxsbGxpEjRzZ+5jOfafV9NTY2Nr7jHe9o/Pa3v904fPjwxkmTJjUecsghjffcc0/hfayurt7tvlqy3lFHHbVP9rZp06bGd73rXY0PPvhg48iRIxsvv/zyxsbGxn22t12t979/Hltrb1OnTm0cPHjwLl+zL/a2u/Ve87/fXwAAAAAAANifXIHejIaGhixevDijRo0qjBUXF2fUqFFZuHBhq62zcePGJMkf//jHjBo1KosXLy5cKf7aWgMHDkyfPn3e9Lp/u9Zr7rzzzrz44ov56le/msmTJ2fr1q1vap3t27fne9/7XrZs2ZIhQ4Zk8eLFOfLII/PKK69k1KhRhfdxxYoVrbKv19bbvHlzVq1atU/2dskll+T9739/k7lf+xnZF3v72/W2b9++089ja+1t+fLl6dWrV/r165cLL7wwq1at2qd729V6f+uOO+5It27dcvzxx7fKzyQAAAAAAADsiXZt3cCBasOGDdm+fXvKy8ubjJeXl+fpp59ulTV27NiRK664IkOHDs1vf/vblJeX59lnn01paWm6du3aZK3y8vKsXbu2VddKkgsuuCB9+/bN9773vfzqV7/Kd7/73TzzzDP5/ve/v9drPPnkkxkxYkRefvnldOrUKffdd1+OOOKIbN++PY2NjYV9vbafp59++k3t62/Xu+WWWzJ+/PhW39v3vve9LFmyJI899liT8dd+Rlp7b7ta73/+53+a/Dy21t6qqqoyd+7cHHPMMVmzZk2mTZuW0047LQ8++OA+2Vtz6/3+979P586dm+ytV69eeeKJJ3L11Ve3+GcSAAAAAAAA9oYAvQ1dcskl+f3vf5977703w4YNa5O1LrrooiTJ/Pnzc/jhh2f69Ok588wzs3Llyhx99NF7tcYxxxyTpUuXZuPGjbn33nszYcKE3HPPPa26j92td/nllzc53xp7e/7553P55ZfnwQcfTIcOHVp9Dy1dr7X+3caMGVN4PGjQoFRVVaVv3775z//8z5ZvogXr3X333fnEJz6R5PW9JckJJ5yQnj17tvhnEgAAAAAAAPaGAL0Z3bp1S0lJSerq6pqM19XVpUePHm96/ksvvTT/9V//lV/+8pfp3bt3Ya0ePXqkoaEhL730UpO13sy6za21q31VVVUlSVasWLHXYWVpaWn69++fJBkyZEgee+yx3H777SkpKUlRUVFhX127di2st3Tp0hbv62/X+81vfpMFCxa06t4WL16cdevW5eSTTy6Mbd++Pb/85S/z7//+762+t+bWe+ihh5Ika9asabW97UrXrl0zYMCA1NXV7bN/t12tt2LFimZrWmtvAAAAAAAA8EbcA70ZpaWlGTJkSObPn18Y27FjR+bPn58RI0a0eN7GxsZceumlue+++/Lzn/88Rx11VJO1hgwZkkMOOSQPPvhgYa1nnnkmq1at2ut132itXe1r6dKlSZKePXu2eI//e96//vWvGTJkSF544YUccsghmT9/fmG9/v37t2hfu3P44Ye36t7OPPPMPPnkk1m6dGnhGDp0aC688ML87ne/a/W9NbfeRz/60Zxwwgn5xS9+0Wp725XNmzdn5cqVOfLII/fLv9tr6+2u79b8mQQAAAAAAIDdcQX6blRXV2fChAkZOnRohg8fnpqammzZsiUTJ05MkowfPz69e/fO9OnTkyQNDQ156qmnCo9Xr16dpUuXplOnToUrpS+55JLceeed+eEPf5jOnTsX7iN96aWXZtKkSRk6dGg+9KEP5eMf/3iS5OSTT87EiRPTrVu3/PCHP8wpp5zSamv16dMnzz//fF544YVs2rQpvXr1yvjx43PEEUfk//v//r8MGjRoj9eaPHlyxowZkz59+mTTpk258847s2DBgvzkJz/JX/7yl0yYMCGnnnpqLrvsssydOzf19fV56KGHMmLEiHzzm9/MD3/4w716H5tbb/Lkyfn617/eanvr3Llzjj/++CY/F4cddlgOP/zwHH/88YWfkdba2+7W+3/+n/8nEyZMaNV/t6uuuipnn312+vbtm9ra2kydOjUlJSUZN25cysvLW/3fbXfrJcnKlStz55135qyzzsrhhx+eJ554IldeeWVOP/30wr4AAAAAAABgn2lkt/793/+9sU+fPo2lpaWNw4cPb1y0aFHh3MiRIxsnTJhQeP7ss882JtnpGDlyZKFmV+eTNN52221N1jriiCMaO3fu3NixY8fGD37wg40jRoxo9bV69+7dWFRU1FhSUtJ4yCGHNPbv37/xc5/7XOOpp56612t9/OMfb+zbt29jaWlpY/fu3RvPPPPMxp/+9KdN3seKiorG4uLixpKSksb27ds3fvCDH2xcs2ZNi97H3a3X2nv7WyNHjmy8/PLL99nedrdea+/tvPPOa+zZs2djaWlpY+/evRvPO++8xhUrVuyzvb3ReqtWrWo8/fTTG9/5znc2tm/fvrC3jRs3Nvv+AAAAAAAAQGspamxsbGzdSB4AAAAAAAAADj7ugQ4AAAAAAAAAEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaADAAAAAAAAQBIBOgAAAAAAAAAkEaDzNlBZWZmioqKdjhkzZiRJnnvuuRQVFWXp0qVt2ygAAAAAAADQptq1dQPwZjU0NKS0tHS3NV/84hczadKkJmOdO3fel20BAAAAAAAABxkBOgedM844I8cff3zatWuX22+/PSeccEJ+8Ytf7PY1nTt3To8ePfZThwAAAAAAAMDBSIDOQek73/lOPvWpT+XXv/51W7cCAAAAAAAAvEW4BzoHpXe961257rrrcswxx+SYY455w/qrr746nTp1anL86le/2g+dAgAAAAAAAAcLV6BzUBoyZMhe1X/uc5/Lxz72sSZjvXv3bsWOAAAAAAAAgIOdAJ2D0mGHHbZX9d26dUv//v33UTcAAAAAAADAW4GvcAcAAAAAAACAuAKdt4lNmzZl7dq1TcY6duyYsrKyNuoIAAAAAAAAONC4Ap23hSlTpqRnz55Njn/9139t67YAAAAAAACAA0hRY2NjY1s3AQAAAAAAAABtzRXoAAAAAAAAABABOge5O+64I506ddrlcdxxx7V1ewAAAAAAAMBBxFe4c1DbtGlT6urqdnnukEMOSd++ffdzRwAAAAAAAMDBSoAOAAAAAAAAAPEV7gAAAAAAAACQRIAOAAAAAAAAAEkE6AAAAAAAAACQRIAOAAAAAAAAAEkE6AAAAAAAAACQRIAOAAAAAAAAAEkE6AAAAAAAAACQRIAOAAAAAAAAAEkE6AAAAAAAAACQRIAOAAAAAAAAAEmSdm3dwMFqx44dqa2tTefOnVNUVNTW7cBBq7GxMZs2bUqvXr1SXOxvev43nzPQOnzOAAAAAACwpwToLVRbW5uKioq2bgPeMp5//vkceeSRbd3GAcXnDLQunzMAAAAAALwRAXoLde7cOcmr/zO+rKysjbuBg1d9fX0qKioKv1O8zucMtA6fMwAAAAAA7CkBegu99nXKZWVlgi1oBb6ifGc+Z6B1+ZwBAAAAAOCNuBEoAAAAAAAAAESADgAAAAAAAABJBOgAAAAAAAAAkOQACdBnz56dysrKdOjQIVVVVXn00UebrV22bFnGjh2bysrKFBUVpaamZqeaa6+9NkVFRU2OgQMHNqk544wzdqq5+OKLW3trwAHAZwwAAAAAAAB7os0D9LvuuivV1dWZOnVqlixZksGDB2f06NFZt27dLuu3bt2afv36ZcaMGenRo0ez8x533HFZs2ZN4Xj44Yd3qpk0aVKTmuuuu67V9gUcGHzGAAAAAAAAsKfatXUDs2bNyqRJkzJx4sQkyZw5c/LjH/84t956a6655pqd6ocNG5Zhw4YlyS7Pv6Zdu3a7Db+SpGPHjm9YAxzcfMYAAAAAAACwp9r0CvSGhoYsXrw4o0aNKowVFxdn1KhRWbhw4Zuae/ny5enVq1f69euXCy+8MKtWrdqp5o477ki3bt1y/PHHZ/Lkydm6dWuz823bti319fVNDuDAdjB9xiQ+ZwAAAAAAANpam16BvmHDhmzfvj3l5eVNxsvLy/P000+3eN6qqqrMnTs3xxxzTNasWZNp06bltNNOy+9///t07tw5SXLBBRekb9++6dWrV5544olcffXVeeaZZ/L9739/l3NOnz4906ZN2+teXtz6YtZvXd/ivcDB7vBDD0/3w7q3ydoH02dM0vLPmRfqX8jmhs0t3g8czIpTnF5lvdKptFNbtwIAAAAAwFtAm3+F+74wZsyYwuNBgwalqqoqffv2zd13351PfOITSZKLLrqoUHPCCSekZ8+eOfPMM7Ny5cocffTRO805efLkVFdXF57X19enoqLiDXt56eWX8tvVv03n9p3fzJbgoLRp26YM7T20zQL0fWVffMYkLf+cefa/n82fX/qzzxnell7Z/ko6t+8sQAcAAAAAoFW0aYDerVu3lJSUpK6ursl4XV1dq943uGvXrhkwYEBWrFjRbE1VVVWSZMWKFbsMt9q3b5/27du3aP1OpZ1yZNmRLXotHMxW169u0/UPps+YpOWfM8VFxTnisCNyeMfD9/q1cLB7fuPzbd0CAAAAAABvIW16D/TS0tIMGTIk8+fPL4zt2LEj8+fPz4gRI1ptnc2bN2flypXp2bNnszVLly5Nkt3WAAcXnzEAAAAAAADsjTb/Cvfq6upMmDAhQ4cOzfDhw1NTU5MtW7Zk4sSJSZLx48end+/emT59epKkoaEhTz31VOHx6tWrs3Tp0nTq1Cn9+/dPklx11VU5++yz07dv39TW1mbq1KkpKSnJuHHjkiQrV67MnXfembPOOiuHH354nnjiiVx55ZU5/fTTM2jQoDZ4F4B9xWcMAAAAAAAAe6rNA/Tzzjsv69evz5QpU7J27dqceOKJmTdvXsrLy5Mkq1atSnHx6xfK19bW5qSTTio8nzlzZmbOnJmRI0dmwYIFSZIXXngh48aNy4svvpju3bvn1FNPzaJFi9K9+6v3YS4tLc3PfvazQpBWUVGRsWPH5vOf//z+2ziwX/iMAQAAAAAAYE8VNTY2NrZ1Ewej+vr6dOnSJRs3bkxZWVmzdSv/sjJP1j2Zii4V+7E7ODCsrl+dAd0GZGC3gc3W7Onv0tvRnr43v17162xp2OIe6LwtPb/x+VQdWZWenZu/PYLPGQAAAAAA9lSb3gMdAAAAAAAAAA4UAnQAAAAAAAAAiAAdAAAAAAAAAJII0AEAAAAAAAAgiQAdAAAAAAAAAJII0AEAAAAAAAAgiQAdAAAAAAAAAJII0AEAAAAAAAAgiQAdAAAAAAAAAJII0AEAAAAAAAAgiQAdAAAAAAAAAJII0AEAAAAAAAAgiQAdAAAAAAAAAJII0AEAAAAAAAAgiQAdAAAAAAAAAJII0AEAAAAAAAAgiQAdAAAAAAAAAJII0AEAAAAAAAAgiQAdAAAAAAAAAJII0IG3gdmzZ6eysjIdOnRIVVVVHn300WZrly1blrFjx6aysjJFRUWpqanZqebaa69NUVFRk2PgwIFNal5++eVccsklOfzww9OpU6eMHTs2dXV1rb01AAAAAAAAWpEAHXhLu+uuu1JdXZ2pU6dmyZIlGTx4cEaPHp1169btsn7r1q3p169fZsyYkR49ejQ773HHHZc1a9YUjocffrjJ+SuvvDL/+Z//mXvuuScPPfRQamtr86EPfahV9wYAAAAAAEDrEqADb2mzZs3KpEmTMnHixBx77LGZM2dOOnbsmFtvvXWX9cOGDcv111+f888/P+3bt2923nbt2qVHjx6Fo1u3boVzGzduzC233JJZs2blPe95T4YMGZLbbrstjzzySBYtWtTqewQAAAAAAKB1CNCBt6yGhoYsXrw4o0aNKowVFxdn1KhRWbhw4Zuae/ny5enVq1f69euXCy+8MKtWrSqcW7x4cV555ZUm6w4cODB9+vTZ7brbtm1LfX19kwMAAAAAAID9R4AOvGVt2LAh27dvT3l5eZPx8vLyrF27tsXzVlVVZe7cuZk3b15uvPHGPPvssznttNOyadOmJMnatWtTWlqarl277tW606dPT5cuXQpHRUVFi3sEAAAAAABg7wnQAfbSmDFjcu6552bQoEEZPXp07r///rz00ku5++6739S8kydPzsaNGwvH888/30odAwAAAAAAsCfatXUDAPtKt27dUlJSkrq6uibjdXV16dGjR6ut07Vr1wwYMCArVqxIkvTo0SMNDQ156aWXmlyF/kbrtm/ffrf3XQcAAAAAAGDfcgU68JZVWlqaIUOGZP78+YWxHTt2ZP78+RkxYkSrrbN58+asXLkyPXv2TJIMGTIkhxxySJN1n3nmmaxatapV1wUAAAAAAKB1uQIdeEurrq7OhAkTMnTo0AwfPjw1NTXZsmVLJk6cmCQZP358evfunenTpydJGhoa8tRTTxUer169OkuXLk2nTp3Sv3//JMlVV12Vs88+O3379k1tbW2mTp2akpKSjBs3LknSpUuXfOITn0h1dXXe+c53pqysLJdddllGjBiRU045pQ3eBQAAAAAAAPaEAB14SzvvvPOyfv36TJkyJWvXrs2JJ56YefPmpby8PEmyatWqFBe//mUctbW1OemkkwrPZ86cmZkzZ2bkyJFZsGBBkuSFF17IuHHj8uKLL6Z79+459dRTs2jRonTv3r3wuhtuuCHFxcUZO3Zstm3bltGjR+eb3/zm/tk0AAAAAAAALVLU2NjY2NZNHIzq6+vTpUuXbNy4MWVlZc3WrfzLyjxZ92QqulTsx+7gwLC6fnUGdBuQgd0GNluzp79Lb0d7+t78etWvs6VhSw7vePh+7A4ODM9vfD5VR1alZ+eezdb4nAEAAAAAYE8dEPdAnz17diorK9OhQ4dUVVXl0UcfbbZ22bJlGTt2bCorK1NUVJSampqdaq699toUFRU1OQYO3HWA19jYmDFjxqSoqCg/+MEPWmlHAAAAAAAAABxs2jxAv+uuu1JdXZ2pU6dmyZIlGTx4cEaPHp1169btsn7r1q3p169fZsyYkR49ejQ773HHHZc1a9YUjocffniXdTU1NSkqKmqVvQAAAAAAAABw8GrzAH3WrFmZNGlSJk6cmGOPPTZz5sxJx44dc+utt+6yftiwYbn++utz/vnnp3379s3O265du/To0aNwdOvWbaeapUuX5utf/3qzawEAAAAAAADw9tGmAXpDQ0MWL16cUaNGFcaKi4szatSoLFy48E3NvXz58vTq1Sv9+vXLhRdemFWrVjU5v3Xr1lxwwQWZPXv2bq9kf822bdtSX1/f5AAAAAAAAADgraNNA/QNGzZk+/btKS8vbzJeXl6etWvXtnjeqqqqzJ07N/PmzcuNN96YZ599Nqeddlo2bdpUqLnyyivz93//9/nABz6wR3NOnz49Xbp0KRwVFRUt7g8AAAAAAACAA0+7tm5gXxgzZkzh8aBBg1JVVZW+ffvm7rvvzic+8Yn86Ec/ys9//vM8/vjjezzn5MmTU11dXXheX18vRAcAAAAAAAB4C2nTK9C7deuWkpKS1NXVNRmvq6vbo69V31Ndu3bNgAEDsmLFiiTJz3/+86xcuTJdu3ZNu3bt0q7dq39HMHbs2Jxxxhm7nKN9+/YpKytrcgAAAAAAAADw1tGmAXppaWmGDBmS+fPnF8Z27NiR+fPnZ8SIEa22zubNm7Ny5cr07NkzSXLNNdfkiSeeyNKlSwtHktxwww257bbbWm1dAAAAAAAAAA4ebf4V7tXV1ZkwYUKGDh2a4cOHp6amJlu2bMnEiROTJOPHj0/v3r0zffr0JElDQ0OeeuqpwuPVq1dn6dKl6dSpU/r3758kueqqq3L22Wenb9++qa2tzdSpU1NSUpJx48YlSXr06LHLK9z79OmTo446an9sGwAAAAAAAIADTJsH6Oedd17Wr1+fKVOmZO3atTnxxBMzb968lJeXJ0lWrVqV4uLXL5Svra3NSSedVHg+c+bMzJw5MyNHjsyCBQuSJC+88ELGjRuXF198Md27d8+pp56aRYsWpXv37vt1bwAAAAAAAAAcPNo8QE+SSy+9NJdeeukuz70Wir+msrIyjY2Nu53ve9/73l738EZzAgAAAAAAAPDW1qb3QAcAAAAAAACAA4UAHQAAAAAAAAAiQAcAAAAAAACAJAJ0AAAAAAAAAEgiQAcAAAAAAACAJAJ0AAAAAAAAAEgiQAcAAAAAAACAJAJ04G1g9uzZqaysTIcOHVJVVZVHH3202dply5Zl7NixqaysTFFRUWpqanY794wZM1JUVJQrrriiyfgZZ5yRoqKiJsfFF1/cCrsBAAAAAABgXxGgA29pd911V6qrqzN16tQsWbIkgwcPzujRo7Nu3bpd1m/dujX9+vXLjBkz0qNHj93O/dhjj+Wmm27KoEGDdnl+0qRJWbNmTeG47rrr3vR+AAAAAAAA2HcE6MBb2qxZszJp0qRMnDgxxx57bObMmZOOHTvm1ltv3WX9sGHDcv311+f8889P+/btm5138+bNufDCC3PzzTfnHe94xy5rOnbsmB49ehSOsrKyVtkTAAAAAAAA+4YAHXjLamhoyOLFizNq1KjCWHFxcUaNGpWFCxe+qbkvueSSvP/9728y99+644470q1btxx//PGZPHlytm7duts5t23blvr6+iYHAAAAAAAA+0+7tm4AYF/ZsGFDtm/fnvLy8ibj5eXlefrpp1s87/e+970sWbIkjz32WLM1F1xwQfr27ZtevXrliSeeyNVXX51nnnkm3//+95t9zfTp0zNt2rQW9wUAAAAAAMCbI0AH2AvPP/98Lr/88jz44IPp0KFDs3UXXXRR4fEJJ5yQnj175swzz8zKlStz9NFH7/I1kydPTnV1deF5fX19KioqWq95AAAAAAAAdkuADrxldevWLSUlJamrq2syXldXlx49erRozsWLF2fdunU5+eSTC2Pbt2/PL3/5y3zjG9/Itm3bUlJSstPrqqqqkiQrVqxoNkBv3779bu+7DgAAAAAAwL7lHujAW1ZpaWmGDBmS+fPnF8Z27NiR+fPnZ8SIES2a88wzz8yTTz6ZpUuXFo6hQ4fmwgsvzNKlS3cZnifJ0qVLkyQ9e/Zs0boAAAAAAADse65AB97SqqurM2HChAwdOjTDhw9PTU1NtmzZkokTJyZJxo8fn969e2f69OlJkoaGhjz11FOFx6tXr87SpUvTqVOn9O/fP507d87xxx/fZI3DDjsshx9+eGF85cqVufPOO3PWWWfl8MMPzxNPPJErr7wyp59+egYNGrQfdw8AAAAAAMDeEKADb2nnnXde1q9fnylTpmTt2rU58cQTM2/evJSXlydJVq1aleLi17+Mo7a2NieddFLh+cyZMzNz5syMHDkyCxYs2KM1S0tL87Of/awQ1ldUVGTs2LH5/Oc/36p7AwAAAAAAoHUJ0IG3vEsvvTSXXnrpLs/9bSheWVmZxsbGvZr/b+eoqKjIQw89tFdzAAAAAAAA0PbcAx0AAAAAAAAAIkAHAAAAAAAAgCQCdAAAAAAAAABIIkAHAAAAAAAAgCQCdAAAAAAAAABIIkAHAAAAAAAAgCQCdAAAAAAAAABIIkAHAAAAAAAAgCQCdAAAAAAAAABIIkAHAAAAAAAAgCQCdAAAAAAAAABIIkAHAAAAAAAAgCQHSIA+e/bsVFZWpkOHDqmqqsqjjz7abO2yZcsyduzYVFZWpqioKDU1NTvVXHvttSkqKmpyDBw4sEnNv/zLv+Too4/OoYcemu7du+cDH/hAnn766dbeGgAAAAAAAAAHiTYP0O+6665UV1dn6tSpWbJkSQYPHpzRo0dn3bp1u6zfunVr+vXrlxkzZqRHjx7NznvcccdlzZo1hePhhx9ucn7IkCG57bbb8oc//CE/+clP0tjYmPe+973Zvn17q+4PAAAAAAAAgINDu7ZuYNasWZk0aVImTpyYJJkzZ05+/OMf59Zbb80111yzU/2wYcMybNiwJNnl+de0a9dutwH7RRddVHhcWVmZL3/5yxk8eHCee+65HH300S3dDgAAAAAAAAAHqTa9Ar2hoSGLFy/OqFGjCmPFxcUZNWpUFi5c+KbmXr58eXr16pV+/frlwgsvzKpVq5qt3bJlS2677bYcddRRqaio2GXNtm3bUl9f3+QAAAAAAAAA4K2jTQP0DRs2ZPv27SkvL28yXl5enrVr17Z43qqqqsydOzfz5s3LjTfemGeffTannXZaNm3a1KTum9/8Zjp16pROnTrlgQceyIMPPpjS0tJdzjl9+vR06dKlcDQXtAMAAAAAAABwcGrze6DvC2PGjMm5556bQYMGZfTo0bn//vvz0ksv5e67725Sd+GFF+bxxx/PQw89lAEDBuQjH/lIXn755V3OOXny5GzcuLFwPP/88/tjKwAAAAAAAADsJ20aoHfr1i0lJSWpq6trMl5XV7fb+5fvra5du2bAgAFZsWJFk/EuXbrkXe96V04//fTce++9efrpp3Pfffftco727dunrKysyQEcHGbPnp3Kysp06NAhVVVVefTRR5utXbZsWcaOHZvKysoUFRWlpqZmt3PPmDEjRUVFueKKK5qMv/zyy7nkkkty+OGHp1OnThk7duxOn3UAAAAAAAAcWNo0QC8tLc2QIUMyf/78wtiOHTsyf/78jBgxotXW2bx5c1auXJmePXs2W9PY2JjGxsZs27at1dYF2t5dd92V6urqTJ06NUuWLMngwYMzevTorFu3bpf1W7duTb9+/TJjxow3/EOexx57LDfddFMGDRq007krr7wy//mf/5l77rknDz30UGpra/OhD32oVfYEAAAAAADAvtHmX+FeXV2dm2++Od/5znfyhz/8IZ/61KeyZcuWTJw4MUkyfvz4TJ48uVDf0NCQpUuXZunSpWloaMjq1auzdOnSJleXX3XVVXnooYfy3HPP5ZFHHskHP/jBlJSUZNy4cUmSP/3pT5k+fXoWL16cVatW5ZFHHsm5556bQw89NGedddb+fQOAfWrWrFmZNGlSJk6cmGOPPTZz5sxJx44dc+utt+6yftiwYbn++utz/vnnp3379s3Ou3nz5lx44YW5+eab8453vKPJuY0bN+aWW27JrFmz8p73vCdDhgzJbbfdlkceeSSLFi1q1f0BAAAAAADQeto8QD/vvPMyc+bMTJkyJSeeeGKWLl2aefPmpby8PEmyatWqrFmzplBfW1ubk046KSeddFLWrFmTmTNn5qSTTsonP/nJQs0LL7yQcePG5ZhjjslHPvKRHH744Vm0aFG6d++eJOnQoUN+9atf5ayzzkr//v1z3nnnpXPnznnkkUdyxBFH7N83ANhnGhoasnjx4owaNaowVlxcnFGjRmXhwoVvau5LLrkk73//+5vM/ZrFixfnlVdeaXJu4MCB6dOnz27X3bZtW+rr65scAAAAAAAA7D/t2rqBJLn00ktz6aWX7vLcggULmjyvrKxMY2Pjbuf73ve+t9vzvXr1yv33379XPQIHnw0bNmT79u2FP8h5TXl5eZ5++ukWz/u9730vS5YsyWOPPbbL82vXrk1paWm6du2607pr165tdt7p06dn2rRpLe4LAAAAAACAN6fNr0AHOJg8//zzufzyy3PHHXekQ4cOrTr35MmTs3HjxsLx/PPPt+r8AAAAAAAA7N4BcQU6wL7QrVu3lJSUpK6ursl4XV1devTo0aI5Fy9enHXr1uXkk08ujG3fvj2//OUv841vfCPbtm1Ljx490tDQkJdeeqnJVehvtG779u13e991AAAAAAAA9q03FaBv3bo1q1atSkNDQ5PxQYMGvammAFpDaWlphgwZkvnz5+ecc85JkuzYsSPz589v9rYRb+TMM8/Mk08+2WRs4sSJGThwYK6++uqUlJRkyJAhOeSQQzJ//vyMHTs2SfLMM89k1apVGTFixJvaEwAAAAAAAPtOiwL09evXZ+LEiXnggQd2eX779u1vqimA1lJdXZ0JEyZk6NChGT58eGpqarJly5ZMnDgxSTJ+/Pj07t0706dPT5I0NDTkqaeeKjxevXp1li5dmk6dOqV///7p3Llzjj/++CZrHHbYYTn88MML4126dMknPvGJVFdX553vfGfKyspy2WWXZcSIETnllFP24+4BAAAAAADYGy0K0K+44oq89NJL+c1vfpMzzjgj9913X+rq6vLlL385X//611u7R4AWO++887J+/fpMmTIla9euzYknnph58+alvLw8SbJq1aoUFxcX6mtra3PSSScVns+cOTMzZ87MyJEjs2DBgj1e94YbbkhxcXHGjh2bbdu2ZfTo0fnmN7/ZavsCAAAAAACg9RU1NjY27u2LevbsmR/+8IcZPnx4ysrK8tvf/jYDBgzIj370o1x33XV5+OGH90WvB5T6+vp06dIlGzduTFlZWbN1K/+yMk/WPZmKLhX7sTs4MKyuX50B3QZkYLeBzdb87e/SE088sUdzvx1uFbGnnzO/XvXrbGnYksM7Hr4fu4MDw/Mbn0/VkVXp2blnszV7+rsEAAAAAAAtugJ9y5YtOeKII5Ik73jHO7J+/foMGDAgJ5xwQpYsWdKqDQJvLyeeeGKKioqyq7/teW28qKjIrSIAAAAAAABodS0K0I855pg888wzqayszODBg3PTTTelsrIyc+bMSc+ezV8BBvBGnn322bZuAQAAAAAAgLepFgXol19+edasWZMkmTp1at73vvfljjvuSGlpaebOndua/QFvM3379m3rFgAAAAAAAHibKm7Jiz760Y/mYx/7WJJkyJAh+fOf/5zHHnsszz//fM4777zW7A/22I/+Mxk6NFmwYNfnf/WrZOzY5JwPJld9Ltm8Zb+2xx667rrr8j//8z+F57/+9a+zbdu2wvNNmzbl05/+dFu0Bj5nAAAAAADgLa5FAfoXv/jFbN26tfC8Y8eOOfnkk3PYYYfli1/8Yqs1B3uqdk1y333J8Sfs+vzW/0m++KXk619PfnBf0r178u1v798e2TOTJ0/Opk2bCs/HjBmT1atXF55v3bo1N910U1u0xtuczxkAAAAAAHjra1GAPm3atGzevHmn8a1bt2batGlvuinYGzsaky99KfnXzyWlh+y65pFfJ8cck1RWvvr83HOTn/xkv7XIXmhsbNztc2gLPmcAAAAAAODtoUUBemNjY4qKinYa/93vfpd3vvOdb7op2Bt33J4MHpz83d81X7N2bdKz5+vPe/VMNmxI/rp93/cHHPx8zgAAAAAAwNtDu70pfsc73pGioqIUFRVlwIABTUL07du3Z/Pmzbn44otbvUlozoqVyfyfJ9++ua07Ad6qfM4AAAAAAMDbx14F6DU1NWlsbMzHP/7xTJs2LV26dCmcKy0tTWVlZUaMGNHqTUJzlj6erKlNzvngq89ffDH58ldeverzwx9+va5Hj2TRb15/Xrsm6dYtaVeyf/tlz3z7299Op06dkiR//etfM3fu3HTr1i1JmtwfHfYHnzMAAAAAAPD2sVcB+oQJE5IkRx11VN797nenXbu9ejm0ug9/uGmAddFFyQUXJGec0bRuxN8nM76WPPfcq/cnvueeZPR792Oj7LE+ffrk5ptfv9S3R48e+e53v7tTDewvPmcAAAAAAODto0UJ+MiRI7Ny5crcdtttWblyZf7t3/4tRxxxRB544IH06dMnxx13XGv3CXttzpykW/fkw2OTwzomX/hC8tnPJtu3J0cfnUyb1tYdsivPPfdcW7cAe8znDAAAAAAAvLW0KEB/6KGHMmbMmLz73e/OL3/5y3zlK1/JEUcckd/97ne55ZZbcu+997Z2n7BHvvWt1x9ffHHTcyNPf/XgreWEE07I/fffn4qKirZuhbcJnzMAAAAAAPDWVdySF11zzTX58pe/nAcffDClpaWF8fe85z1ZtGhRqzUH8Eaee+65vPLKK23dBgAAAAAAAG8BLQrQn3zyyXzwgx/cafyII47Ihg0b3nRTAAAAAAAAALC/tShA79q1a9asWbPT+OOPP57evXu/6aYAAAAAAAAAYH9rUYB+/vnn5+qrr87atWtTVFSUHTt25Ne//nWuuuqqjB8/vrV7BAAAAAAAAIB9rkUB+le/+tUMHDgwFRUV2bx5c4499ticdtpp+fu///t8/vOfb+0eAQAAAAAAAGCfa1GAXlpamptvvjl/+tOf8l//9V+544478sc//jHf/e53U1JS0to9Am8zr7zySs4888wsX768rVsBAAAAAADgbaRFAXqS3HLLLRkzZkw++MEP5qMf/WjOOeecfPvb327N3oC3qUMOOSRPPPHEHtXedNNNKS8v323N7NmzU1lZmQ4dOqSqqiqPPvpos7XLli3L2LFjU1lZmaKiotTU1OxUc+ONN2bQoEEpKytLWVlZRowYkQceeKBJzRlnnJGioqImx8UXX7xHewIAAAAAAKBttChAnzJlSi6//PKcffbZueeee3LPPffk7LPPzpVXXpkpU6a0do/A29BHP/rR3HLLLW9Yd8EFF+Swww5r9vxdd92V6urqTJ06NUuWLMngwYMzevTorFu3bpf1W7duTb9+/TJjxoz06NFjlzVHHnlkZsyYkcWLF+e3v/1t3vOe9+QDH/hAli1b1qRu0qRJWbNmTeG47rrr3nA/AAAAAAAAtJ12LXnRjTfemJtvvjnjxo0rjP3TP/1TBg0alMsuuyxf/OIXW61B4O3pr3/9a2699db87Gc/y5AhQ3YKyWfNmrVH88yaNSuTJk3KxIkTkyRz5szJj3/849x666255pprdqofNmxYhg0bliS7PJ8kZ599dpPnX/nKV3LjjTdm0aJFOe644wrjHTt2bDaEBwAAAAAA4MDTogD9lVdeydChQ3caHzJkSP7617++6aYAfv/73+fkk09Okvzxj39scq6oqGiP5mhoaMjixYszefLkwlhxcXFGjRqVhQsXtkqf27dvzz333JMtW7ZkxIgRTc7dcccduf3229OjR4+cffbZ+cIXvpCOHTs2O9e2bduybdu2wvP6+vpW6REAAAAAAIA906IA/Z//+Z9z44037nQF6Le+9a1ceOGFrdIY8Pb2i1/84k3PsWHDhmzfvn2ne6SXl5fn6aefflNzP/nkkxkxYkRefvnldOrUKffdd1+OPfbYwvkLLrggffv2Ta9evfLEE0/k6quvzjPPPJPvf//7zc45ffr0TJs27U31BQAAAAAAQMvtcYBeXV1deFxUVJRvf/vb+elPf5pTTjklSfKb3/wmq1atyvjx41u/S4ADzDHHHJOlS5dm48aNuffeezNhwoQ89NBDhRD9oosuKtSecMIJ6dmzZ84888ysXLkyRx999C7nnDx5cpPP2vr6+lRUVOzbjQAAAAAAAFBQvKeFjz/+eOF48sknM2TIkHTv3j0rV67MypUr061bt5x88slZtmzZXjcxe/bsVFZWpkOHDqmqqsqjjz7abO2yZcsyduzYVFZWpqioKDU1NTvVXHvttSkqKmpyDBw4sHD+L3/5Sy677LIcc8wxOfTQQ9OnT5985jOfycaNG/e6d+DA1a1bt5SUlKSurq7JeF1d3Zu+N3lpaWn69++fIUOGZPr06Rk8eHD+7d/+rdn6qqqqJMmKFSuarWnfvn3KysqaHAAAAAAAAOw/e3wFemt8nfKu3HXXXamurs6cOXNSVVWVmpqajB49Os8880yOOOKIneq3bt2afv365dxzz82VV17Z7LzHHXdcfvaznxWet2v3+lZra2tTW1ubmTNn5thjj82f//znXHzxxamtrc29997buhsE2kxpaWmGDBmS+fPn55xzzkmS7NixI/Pnz8+ll17aqmvt2LGjyf3L/9bSpUuTJD179mzVdQEAAAAAAGg9LboHemuaNWtWJk2alIkTJyZJ5syZkx//+Me59dZbc8011+xUP2zYsAwbNixJdnn+Ne3atWv2CtPjjz8+//Ef/1F4fvTRR+crX/lKPvrRj+avf/1rk7AdOLhVV1dnwoQJGTp0aIYPH56ampps2bKl8Jkzfvz49O7dO9OnT0+SNDQ05Kmnnio8Xr16dZYuXZpOnTqlf//+SV79qvUxY8akT58+2bRpU+68884sWLAgP/nJT5IkK1euzJ133pmzzjorhx9+eJ544olceeWVOf300zNo0KA2eBcAAAAAAADYE22aFDc0NGTx4sWZPHlyYay4uDijRo3KwoUL39Tcy5cvT69evdKhQ4eMGDEi06dPT58+fZqt37hxY8rKypoNz7dt29bk6tL6+vo31R+wf5x33nlZv359pkyZkrVr1+bEE0/MvHnzUl5eniRZtWpViotfv5tFbW1tTjrppMLzmTNnZubMmRk5cmQWLFiQJFm3bl3Gjx+fNWvWpEuXLhk0aFB+8pOf5B/+4R+SvHrl+89+9rNCWF9RUZGxY8fm85///P7bOAAAAAAAAHutTQP0DRs2ZPv27YUg6zXl5eV5+umnWzxvVVVV5s6dm2OOOSZr1qzJtGnTctppp+X3v/99OnfuvMs+vvSlL+Wiiy5qds7p06dn2rRpLe4JaDuXXnpps1/Z/loo/prKyso0Njbudr5bbrllt+crKiry0EMP7VWPAAAAAAAAtL3iNy45+IwZMybnnntuBg0alNGjR+f+++/PSy+9lLvvvnun2vr6+rz//e/Psccem2uvvbbZOSdPnpyNGzcWjueff34f7gAAAAAAAACA/a1Nr0Dv1q1bSkpKUldX12S8rq6u2fuXt0TXrl0zYMCArFixosn4pk2b8r73vS+dO3fOfffdl0MOOaTZOdq3b5/27du3Wk8AAAAAAAAAHFja9Ar00tLSDBkyJPPnzy+M7dixI/Pnz8+IESNabZ3Nmzdn5cqV6dmzZ2Gsvr4+733ve1NaWpof/ehH6dChQ6utBwAAAAAAAMDBp02vQE+S6urqTJgwIUOHDs3w4cNTU1OTLVu2ZOLEiUmS8ePHp3fv3pk+fXqSpKGhIU899VTh8erVq7N06dJ06tQp/fv3T5JcddVVOfvss9O3b9/U1tZm6tSpKSkpybhx45K8Hp5v3bo1t99+e+rr61NfX58k6d69e0pKSvb32wAAAAAAAP8/e/ceV2WZ7///vTgukYMltgBFl2fygBjgCsfUKSayviUz7MbIBmU7uO0r7XRNWfQwzA4bx8jowEQ1kU07v5JN2czW6ICjTYla2CqlcqujYcJaajMCYoLB/fujn6tWgCKiHHw9H4/r4bqv+3Nf1+daI9f04ON93wAAoJN1egF9xowZOnz4sLKzs+V0OhUTE6Pi4mJZLBZJUkVFhby8frhRvrKyUuPHj3cf5+bmKjc3V1OmTNHGjRslSV9//bVSU1P1zTffqF+/fpo0aZK2bNmifv36SZK2b9+urVu3SpK76H7Kvn37ZLVaz+OKAQAAAAAAAAAAAABdUacX0CUpMzNTmZmZLZ47VRQ/xWq1yjCM0463evXq056fOnXqGccAAAAAAAAAAAAAAFxcOvUd6AAAAAAAAAAAAAAAdBUU0AEAAAAAAAAAAAAAEAV0AAAAAAAAAAAAAAAkUUAHAAAAAAAAAAAAAEASBXQAAAAAAAAAAAAAACRRQAcAAAAAAAAAAAAAQBIFdAAAAAAAAAAAAAAAJFFABwAAAAAAAAAAAABAEgV0AAAAAAAAAAAAAAAkUUAHAAAAAAAAAAAAAEASBXQAAAAAAAAAAAAAACRRQAcAAAAAAAAAAAAAQBIFdAAXgfz8fFmtVpnNZtlsNm3btq3V2PLycqWkpMhqtcpkMikvL69ZzDPPPKPo6GgFBwcrODhYCQkJeuuttzxiTpw4ofnz56tv374KDAxUSkqKXC5XRy8NAAAAAAAAAAAAHYgCOoAeraioSHa7XUuWLNH27ds1btw4JSUl6dChQy3GHz9+XEOGDNGyZcsUFhbWYsyAAQO0bNkylZWV6eOPP9bVV1+t6dOnq7y83B2zcOFC/fWvf9WaNWu0adMmVVZW6le/+tV5WSMAAAAAAAAAAAA6BgV0AD3aihUrlJGRofT0dI0aNUoFBQUKCAhQYWFhi/Hx8fF69NFHdcstt8jf37/FmBtvvFHXX3+9hg8frhEjRuiRRx5RYGCgtmzZIkmqrq7WCy+8oBUrVujqq69WbGysXnzxRW3evNkdAwAAAAAAAAAAgK6HAjqAHquhoUFlZWVKTEx093l5eSkxMVGlpaUdMkdjY6NWr16turo6JSQkSJLKysp08uRJj3mjoqI0cODA085bX1+vmpoajwYAAAAAAAAAAIALhwI6gB7ryJEjamxslMVi8ei3WCxyOp3nNPaOHTsUGBgof39/zZs3T2+88YZGjRolSXI6nfLz81OfPn3Oat6cnByFhIS4W2Rk5DnlCAAAAAAAAAAAgLNDAR0A2mHkyJFyOBzaunWrbr/9ds2aNUuff/75OY2ZlZWl6upqdztw4EAHZQsAAAAAAAAAAIC28OnsBADgfAkNDZW3t7dcLpdHv8vlUlhY2DmN7efnp2HDhkmSYmNj9dFHH+mJJ57Qs88+q7CwMDU0NOjo0aMed6GfaV5/f/9W37sOAAAAAAAAAACA84870AH0WH5+foqNjVVJSYm7r6mpSSUlJe73lXeUpqYm1dfXS/q+oO7r6+sx765du1RRUdHh8wIAAAAAAAAAAKDjcAc6gB7Nbrdr1qxZiouL04QJE5SXl6e6ujqlp6dLktLS0tS/f3/l5ORIkhoaGtyPYm9oaNDBgwflcDgUGBjovuM8KytL06ZN08CBA1VbW6tVq1Zp48aNevvttyVJISEhmjNnjux2uy699FIFBwfrjjvuUEJCgq688spO+BYAAAAAAAAAAADQFhTQAfRoM2bM0OHDh5WdnS2n06mYmBgVFxfLYrFIkioqKuTl9cPDOCorKzV+/Hj3cW5urnJzczVlyhRt3LhRknTo0CGlpaWpqqpKISEhio6O1ttvv61f/OIX7usef/xxeXl5KSUlRfX19UpKStIf/vCHC7NoAAAAAAAAAAAAtIvJMAyjs5PojmpqahQSEqLq6moFBwe3Grf3n3u1w7VDkSGRFzA7oGs4WHNQI0JHKCo0qtWYtv4sXYza+t18WPGh6hrq1Deg7wXMDugaDlQfkG2ATeFB4a3GsM8AAAAAAAAAANqKd6ADAAAAAAAAAAAAACAK6AAAAAAAAAAAAAAASKKADgAAAAAAAAAAAACAJAroAAAAAAAAAAAAAABIooAOAAAAAAAAAAAAAIAkCugAAAAAAAAAAAAAAEiigA4AAAAAAAAAAAAAgKQuUEDPz8+X1WqV2WyWzWbTtm3bWo0tLy9XSkqKrFarTCaT8vLymsU88MADMplMHi0qKsoj5rnnntPUqVMVHBwsk8mko0ePdvCqAAAAAAAAAAAAAADdTacW0IuKimS327VkyRJt375d48aNU1JSkg4dOtRi/PHjxzVkyBAtW7ZMYWFhrY47evRoVVVVudsHH3zQbJzrrrtO9913X4euBwAAAAAAAAAAAADQffl05uQrVqxQRkaG0tPTJUkFBQVat26dCgsLde+99zaLj4+PV3x8vCS1eP4UHx+f0xbYFyxYIEnauHFj+5MHAAAAAAAAAAAAAPQonXYHekNDg8rKypSYmPhDMl5eSkxMVGlp6TmNvXv3bkVERGjIkCGaOXOmKioqzjVd1dfXq6amxqMBAAAAAAAAAAAAAHqOTiugHzlyRI2NjbJYLB79FotFTqez3ePabDatXLlSxcXFeuaZZ7Rv3z5dddVVqq2tPad8c3JyFBIS4m6RkZHnNB4AAAAAAAAAAAAAoGvp1Hegnw/Tpk3TzTffrOjoaCUlJWn9+vU6evSoXn311XMaNysrS9XV1e524MCBDsoYAAAAAAAAAAAAANAVdNo70ENDQ+Xt7S2Xy+XR73K5Tvv+8rPVp08fjRgxQnv27Dmncfz9/eXv799BWQEAAAAAAAAAAAAAuppOuwPdz89PsbGxKikpcfc1NTWppKRECQkJHTbPsWPHtHfvXoWHh3fYmAAAAAAAAAAAAACAnqfT7kCXJLvdrlmzZikuLk4TJkxQXl6e6urqlJ6eLklKS0tT//79lZOTI0lqaGjQ559/7v588OBBORwOBQYGatiwYZKku+66SzfeeKMGDRqkyspKLVmyRN7e3kpNTXXP63Q65XQ63Xel79ixQ0FBQRo4cKAuvfTSC/kVAAAAAAAAAAAAAAC6iE4toM+YMUOHDx9Wdna2nE6nYmJiVFxcLIvFIkmqqKiQl9cPN8lXVlZq/Pjx7uPc3Fzl5uZqypQp2rhxoyTp66+/Vmpqqr755hv169dPkyZN0pYtW9SvXz/3dQUFBVq6dKn7ePLkyZKkF198UbNnzz6PKwYAAAAAAAAAAAAAdFUmwzCMzk6iO6qpqVFISIiqq6sVHBzcatzef+7VDtcORYZEXsDsgK7hYM1BjQgdoajQqFZj2vqzdDFq63fzYcWHqmuoU9+AvhcwO6BrOFB9QLYBNoUHtf6qFvYZAAAAAAAAAEBbddo70AEAAAAAAAAAAAAA6EoooAPo8fLz82W1WmU2m2Wz2bRt27ZWY8vLy5WSkiKr1SqTyaS8vLxmMTk5OYqPj1dQUJAuu+wyJScna9euXR4xU6dOlclk8mjz5s3r6KUBAAAAAAAAAACgA1FAB9CjFRUVyW63a8mSJdq+fbvGjRunpKQkHTp0qMX448ePa8iQIVq2bJnCwsJajNm0aZPmz5+vLVu26N1339XJkyd17bXXqq6uziMuIyNDVVVV7rZ8+fIOXx8AAAAAAAAAAAA6jk9nJwAA59OKFSuUkZGh9PR0SVJBQYHWrVunwsJC3Xvvvc3i4+PjFR8fL0ktnpek4uJij+OVK1fqsssuU1lZmSZPnuzuDwgIaLUIDwAAAAAAAAAAgK6HO9AB9FgNDQ0qKytTYmKiu8/Ly0uJiYkqLS3tsHmqq6slSZdeeqlH/yuvvKLQ0FCNGTNGWVlZOn78+GnHqa+vV01NjUcDAAAAAAAAAADAhcMd6AB6rCNHjqixsVEWi8Wj32Kx6Msvv+yQOZqamrRgwQL97Gc/05gxY9z9t956qwYNGqSIiAh99tlnuueee7Rr1y69/vrrrY6Vk5OjpUuXdkheAAAAAAAAAAAAOHsU0AHgHMyfP187d+7UBx984NE/d+5c9+exY8cqPDxc11xzjfbu3auhQ4e2OFZWVpbsdrv7uKamRpGRkecncQAAAAAAAAAAADRDAR1AjxUaGipvb2+5XC6PfpfL1SHvJs/MzNT//M//6P3339eAAQNOG2uz2SRJe/bsabWA7u/vL39//3POCwAAAAAAAAAAAO3DO9AB9Fh+fn6KjY1VSUmJu6+pqUklJSVKSEho97iGYSgzM1NvvPGGNmzYoMGDB5/xGofDIUkKDw9v97wAAAAAAAAAAAA4v7gDHUCPZrfbNWvWLMXFxWnChAnKy8tTXV2d0tPTJUlpaWnq37+/cnJyJEkNDQ36/PPP3Z8PHjwoh8OhwMBADRs2TNL3j21ftWqV3nzzTQUFBcnpdEqSQkJC1KtXL+3du1erVq3S9ddfr759++qzzz7TwoULNXnyZEVHR3fCtwAAAAAAAAAAAIC2oIAOoEebMWOGDh8+rOzsbDmdTsXExKi4uFgWi0WSVFFRIS+vHx7GUVlZqfHjx7uPc3NzlZubqylTpmjjxo2SpGeeeUaSNHXqVI+5XnzxRc2ePVt+fn5677333MX6yMhIpaSkaPHixed3sQAAAAAAAAAAADgnFNAB9HiZmZnKzMxs8dypovgpVqtVhmGcdrwznY+MjNSmTZvOKkcAAAAAAAAAAAB0Pt6BDgAAAAAAAAAAAACAKKADAAAAAAAAAAAAACCJAjoAAAAAAAAAAAAAAJIooAMAAAAAAAAAAAAAIIkCOgAAAAAAAAAAAAAAkiigAwAAAAAAAAAAAAAgiQI6AAAAAAAAAAAAAACSKKADAAAAAAAAAAAAACCJAjoAAAAAAAAAAAAAAJIooAMAAAAAAAAAAAAAIIkCOgAAAAAAAAAAAAAAkiigAwAAAAAAAAAAAAAgiQI6AAAAAAAAAAAAAACSKKADAAAAAAAAAAAAACCJAjoAAAAAAAAAAAAAAJIooAMAAAAAAAAAAAAAIIkCOgAAAAAAAAAAAAAAkiigAwAAAAAAAAAAAAAgqYsU0PPz82W1WmU2m2Wz2bRt27ZWY8vLy5WSkiKr1SqTyaS8vLxmMQ888IBMJpNHi4qK8og5ceKE5s+fr759+yowMFApKSlyuVwdvTQAXUBH7zE5OTmKj49XUFCQLrvsMiUnJ2vXrl0eMewxAAAAAAAAAAAA3U+nF9CLiopkt9u1ZMkSbd++XePGjVNSUpIOHTrUYvzx48c1ZMgQLVu2TGFhYa2OO3r0aFVVVbnbBx984HF+4cKF+utf/6o1a9Zo06ZNqqys1K9+9asOXRuAznc+9phNmzZp/vz52rJli959912dPHlS1157rerq6twx7DEAAAAAAAAAAADdj09nJ7BixQplZGQoPT1dklRQUKB169apsLBQ9957b7P4+Ph4xcfHS1KL50/x8fFptfhVXV2tF154QatWrdLVV18tSXrxxRd1+eWXa8uWLbryyivPdVkAuojzsccUFxd7HK9cuVKXXXaZysrKNHnyZPYYAAAAAAAAAACAbqpTC+gNDQ0qKytTVlaWu8/Ly0uJiYkqLS09p7F3796tiIgImc1mJSQkKCcnRwMHDpQklZWV6eTJk0pMTHTHR0VFaeDAgSotLW2xuFVfX6/6+nr3cU1NTZtzOdZwTP/69l/nsBqge6qpb/vPyflwPveYH6uurpYkXXrppZLat8dI7d9nmowm/evEv+Rl6vSHigAX3HdN33V2CgAAAAAAAACAHqRTC+hHjhxRY2OjLBaLR7/FYtGXX37Z7nFtNptWrlypkSNHqqqqSkuXLtVVV12lnTt3KigoSE6nU35+furTp0+zeZ1OZ4tj5uTkaOnSpWedi9nHrMg+kTLJ1J6lAN1aZJ9I9fLp1Wnzn6895seampq0YMEC/exnP9OYMWMkqV17jNT+febSXpeqSU3sM7gohQWGyd/Hv7PTAAAAAAAAAAD0EJ3+CPfzYdq0ae7P0dHRstlsGjRokF599VXNmTOnXWNmZWXJbre7j2tqahQZGXnG6/oH91f/4P7tmhNA1zd//nzt3LlTH3zwwTmP1d59ZvRlo895bgAAAAAAAAAAAHRyAT00NFTe3t5yuVwe/S6Xq9X3l7dHnz59NGLECO3Zs0eSFBYWpoaGBh09etTjDtHTzevv7y9/f+5wA7qT873HZGZm6n/+53/0/vvva8CAAe7+9uwxEvsMAAAAAAAAAABAZ+vUF+b6+fkpNjZWJSUl7r6mpiaVlJQoISGhw+Y5duyY9u7dq/DwcElSbGysfH19PebdtWuXKioqOnReAJ3rfO0xhmEoMzNTb7zxhjZs2KDBgwd7nGePAQAAAAAAAAAA6J46/RHudrtds2bNUlxcnCZMmKC8vDzV1dUpPT1dkpSWlqb+/fsrJydHktTQ0KDPP//c/fngwYNyOBwKDAzUsGHDJEl33XWXbrzxRg0aNEiVlZVasmSJvL29lZqaKkkKCQnRnDlzZLfbdemllyo4OFh33HGHEhISdOWVV3bCtwDgfDkfe8z8+fO1atUqvfnmmwoKCnK/1zwkJES9evVijwEAAAAAAAAAAOimOr2APmPGDB0+fFjZ2dlyOp2KiYlRcXGxLBaLJKmiokJeXj/cKF9ZWanx48e7j3Nzc5Wbm6spU6Zo48aNkqSvv/5aqamp+uabb9SvXz9NmjRJW7ZsUb9+/dzXPf744/Ly8lJKSorq6+uVlJSkP/zhDxdm0QAumPOxxzzzzDOSpKlTp3rM9eKLL2r27NmS2GMAAAAAAAAAAAC6I5NhGEZnJ9Ed1dTUKCQkRNXV1QoODu7sdIBui5+l1vHdAB2DnyUAAAAAAAAAQFt16jvQAQAAAAAAAAAAAADoKiigAwAAAAAAAAAAAACgLvAO9O7q1JPva2pqOjkToHs79TPE2ySaY58BOgb7DAAAAAAAAACgrSigt1Ntba0kKTIyspMzAXqG2tpahYSEdHYaXQr7DNCx2GcAAAAAAAAAAGdiMrgdq12amppUWVmpoKAgmUymVuNqamoUGRmpAwcOKDg4+AJmyPzM3z3mNwxDtbW1ioiIkJcXb5X4sbbsM93hf2PmZ/7Onp99BgAAAAAAAADQVtyB3k5eXl4aMGBAm+ODg4M7pbjA/MzfHebnjtCWnc0+09X/N2Z+5u/s+dlnAAAAAAAAAABtwW1YAAAAAAAAAAAAAACIAjoAAAAAAAAAAAAAAJIooJ93/v7+WrJkifz9/Zmf+ZkfHa6zv2PmZ/6LeX4AAAAAAAAAQM9jMgzD6OwkAAAAAAAAAAAAAADobNyBDgAAAAAAAAAAAACAKKADAAAAAAAAAAAAACCJAjoAAAAAAAAAAAAAAJIooAMAAAAAAAAAAAAAIOkiL6Dn5+fLarXKbDbLZrNp27Ztp41fs2aNoqKiZDabNXbsWK1fv97jvGEYys7OVnh4uHr16qXExETt3r27xbHq6+s1YMAAmUwm+fv7u+ffuHGjpk+frvDwcPXu3VsxMTF65ZVXms0/cOBADRgwwCOXCzW/r6+vTCaTRzObzR0y/65du/Tzn/9cFotFZrNZQ4YM0eLFi3Xy5MkLsv62zH8+1/9je/bsUVBQkPr06XPB/vdvy/wdtf6YmBiZTCY5HA53//79+5uNbTKZtGXLFo/rz/Sz2JWwz7DPsM+wzwAAAAAAAAAAuhHjIrV69WrDz8/PKCwsNMrLy42MjAyjT58+hsvlajH+ww8/NLy9vY3ly5cbn3/+ubF48WLD19fX2LFjhztm2bJlRkhIiLF27Vrj008/NW666SZj8ODBxrfffttsvOuuu84wmUyGJOO1115zz5+VlWUsXrzY+PDDD409e/YYeXl5hpeXl7F8+XL3/K+88ophMpkMb29v480333TnsmDBggsy/yOPPGL4+fkZvr6+xt/+9jejqqrKcDqdHbL+rVu3GoWFhYbD4TD2799vvPnmm8Zll11m/OY3v7kg62/L/Odz/af+/jU0NBhxcXHGtGnTjJCQEI+/f+dz/W2ZvyPW/5//+Z/GtGnTDEnGJ5984u7ft2+fIcl47733jKqqKndraGhwx7TlZ7GrYJ9hn2GfYZ8BAAAAAAAAAHQvF20BfcKECcb8+fPdx42NjUZERISRk5PTYvyvf/1r44YbbvDos9lsxn/8x38YhmEYTU1NRlhYmPHoo4+6zx89etTw9/c3/t//+38e161fv94wm81Gamqq+xf7p5v/+uuvN6xWq3v+U7n8eP4JEyYYAQEBF2T+F1980QgJCblg61+4cKERGhraaev/6fwXYv2LFi0ybrvtNvdcP/77dyHWf7r5O2L9UVFRRnl5eauFrR/3/dSZfha7EvYZ9hn2GfYZAAAAAAAAAED3clE+wr2hoUFlZWVKTEx093l5eSkxMVGlpaUtXlNaWuoRL0lJSUnu+H379snpdHrEhISEyGazeYzpcrn029/+VidPntTUqVPbNH91dbW++eYb99incvnx/DabTcePH78g80vSsWPH9MUXX6iwsFDTp0/X22+/fV7Wv2fPHhUXF6uhoaFT1t/S/Od7/Rs2bNCaNWuUn5/vPv/jv3/ne/1nmv9c15+RkaGXX35ZAQEBas1NN92kyy67TJMmTdJf/vIXj3Nn+lnsKthn2GfYZ9hnAAAAAAAAAADdz0VZQD9y5IgaGxtlsVg8+i0Wi5xOZ4vXOJ3O08af+vN0MYZhaPbs2Zo5c6YaGxsVGhp6xvlfffVVffTRR/r222/dY5/K5cfxfn5+F2z+kSNHqrCwUPPnz1dgYKCampqUkpLSofNPnDhRZrNZw4cP11VXXXXB13+6+c/n+r/++mvNnj1bK1euVHBwsPvcj//+nc/1t2X+c13/vHnzFBcXp5YEBgbqscce05o1a7Ru3TpNmjRJycnJHsWtM/0sdhXsM+wz7DPsMwAAAAAAAACA7ueiLKB3lqeeekq1tbW644472hT/t7/9Tenp6Xr++edlMpm6zPwJCQlKS0vTgAED5Ovrq9dff12XXHJJh85fVFSk7du3a9WqVVq3bp2ampralPOFmP98rn/fvn269dZbNXny5LYt6ix01Pznuv6srKxWY0JDQ2W322Wz2RQfH69ly5bptttu06OPPnrG8fE99hn2GfYZ9hkAAAAAAAAAQPtdlAX00NBQeXt7y+VyefS7XC6FhYW1eE1YWNhp40/9ebqYDRs2qLS0VFarVZJ08803S5Li4uI0a9Ysj9hNmzbpxhtv1OOPP660tDSP+U99/nF8Q0PDBZv/p2P7+vpq7NixHTp/ZGSkRo0apdTUVC1btkxNTU2qqqq6YOs/3fznc/21tbXKzc2Vj4+PfHx8NGfOHFVXV+vkyZPuuyPP5/rbMv+5rt/f318+Pj4aNmyYx/ytsdls2rNnj/v4TD+LXQX7zLnN/9Ox2WfYZ9hnAAAAAAAAAAAXwkVZQPfz81NsbKxKSkrcfU1NTSopKVFCQkKL1yQkJHjES9K7777rjh88eLDCwsI8YmpqarR161Z3zJNPPqlPP/1Un376qcaOHav/83/+j6Tv70J86KGH3PNv3LhRN9xwg37/+99r7ty5zeY/9fnH83/00UcKCAi4IPP/dP2NjY36xz/+0WHz/9SpuzIv1PrPNP/5XP8dd9whh8Phbg8++KCCgoKUlJSkf/3rX+d9/W2Z/1zXf2rs9evXu+d/5JFHmn3vpzgcDoWHh7uPz/Sz2FWwz7DPsM+wzwAAAAAAAAAAuiHjIrV69WrD39/fWLlypfH5558bc+fONfr06WM4nU7DMAzjN7/5jXHvvfe64z/88EPDx8fHyM3NNb744gtjyZIlhq+vr7Fjxw53zLJly4w+ffoYb775pvHZZ58Z06dPNwYPHmx8++23Lc7v5+dnSDL+/Oc/u+d/7bXXjICAAGPMmDFGZmamUVVVZVRVVRlvvfWWe/5Vq1YZJpPJ8Pb2Nt588013LgsWLLgg82dmZhq33Xab4evraxQVFRm33HKLYTabjYULF57z/Pn5+UZRUZFx0003GfPmzTOKioqMiIgI49prr70g62/L/Odz/T/9+/fiiy8aISEhHn//zuf62zJ/R6zfMAxj3759hiTjk08+cfetXLnSWLVqlfHFF18YX3zxhfHII48YXl5eRmFhoTumLT+LXQX7DPsM+wz7DAAAAAAAAACge7loC+iGYRhPPfWUMXDgQMPPz8+YMGGCsWXLFve5KVOmGLNmzfKIf/XVV40RI0YYfn5+xujRo41169Z5nG9qajLuv/9+w2KxGP7+/sY111xj7Nq1q9X5H3jgAUOS4evr655/1qxZhqRmbcqUKR7zR0ZGGhERER65XKj5vb29DV9fX8PHx8ewWCzG9ddfb2zfvr1D5l+9erVxxRVXGF5eXoaPj48xatQo47/+67+Mb7/99oKsvy3zn8/1n3Lq79+pwpJhGBdk/W2Zv6PW31ph6/LLLzcCAgKM4OBgY8KECcaaNWuaXXumn8WuhH2GfYZ9hn0GAAAAAAAAANB9mAzDMDr+vnYAAAAAAAAAAAAAALqXi/Id6AAAAAAAAAAAAAAA/BQFdAAAAAAAAAAAAAAARAEdAAAAAAAAAAAAAABJFNABAAAAAAAAAAAAAJBEAR0AAAAAAAAAAAAAAEkU0AEAAAAAAAAAAAAAkEQBHQAAAAAAAAAAAAAASRTQAQAAAAAAAAAAAACQRAEdAAAAAAAAAAAAAABJFNDRzVmtVuXl5bV6fMoDDzygmJiYC5YXgJ6DfQYAAAAAAAAAgIsHBXR0aQ0NDZ2dAoAejn0GAAAAAAAAAACcQgEdXcrUqVOVmZmpBQsWKDQ0VElJSZ2Sw4IFCzz6kpOTNXv27AueC4COxz4DAAAAAAAAAABa49PZCQA/9dJLL+n222/Xhx9+2NmpAOih2GcAAAAAAAAAAEBLKKCjyxk+fLiWL1/e7uvvueceLV682KOvoaFBo0aNOtfUAPQQ7DMAAAAAAAAAAKAlFNDR5cTGxp7T9XfffXezxyA/+eSTev/9989pXAA9B/sMAAAAAAAAAABoCQV0dDm9e/c+p+tDQ0M1bNgwj75LL720zdd7eXnJMAyPvpMnT55TTgC6FvYZAAAAAAAAAADQEq/OTgDoavr166eqqir3cWNjo3bu3NmJGQHoadhnAAAAAAAAAADomiigAz9x9dVXa926dVq3bp2+/PJL3X777Tp69GhnpwWgB2GfAQAAAAAAAACga+IR7sBP/Pu//7s+/fRTpaWlycfHRwsXLtTPf/7zzk4LQA/CPgMAAAAAAAAAQNdkMn76ElYAAAAAAAAAAAAAAC5CPMIdAAAAAAAAAAAAAABRQEcX9sorrygwMLDFNnr06HaP29qYgYGB+vvf/96BKwDQ1bHPAAAAAAAAAACAH+MR7uiyamtr5XK5Wjzn6+urQYMGtWvcPXv2tHquf//+6tWrV7vGBdD9sM8AAAAAAAAAAIAfo4AOAAAAAAAAAAAAAIB4hDsAAAAAAAAAAAAAAJIooAMAAAAAAAAAAAAAIIkCOgAAAAAAAAAAAAAAkiigAwAAAAAAAAAAAAAgiQI6AAAAAAAAAAAAAACSKKADAAAAAAAAAAAAACCJAjoAAAAAAAAAAAAAAJIooAMAAAAAAAAAAAAAIIkCOgAAAAAAAAAAAAAAkiigAwAAAAAAAAAAAAAgSfLp7AS6q6amJlVWViooKEgmk6mz0wG6LcMwVFtbq4iICHl58W96fox9BugY7DMtY48BOg77DAAAAAAAQM9BAb2dKisrFRkZ2dlpAD3GgQMHNGDAgM5Oo0thnwE6FvuMJ/YYoOOxzwAAAAAAAHR/FNDbKSgoSNL3vyQLDg7u5GyA7qumpkaRkZHunyn8gH0G6BjsMy1jjwE6DvsMAAAAAABAz0EBvZ1OPeo0ODiYXzoDHYDHBzfHPgN0LPYZT+wxQMdjnwEAAAAAAOj+eEEfAAAAAAAAAAAAAACigA4AAAAAAAAAAAAAgCQK6AAAAAAAAAAAAAAASOoiBfT8/HxZrVaZzWbZbDZt27at1djy8nKlpKTIarXKZDIpLy+vWcwDDzwgk8nk0aKiojxipk6d2ixm3rx5Hb00AF0AewyA0zmbPUKS1qxZo6ioKJnNZo0dO1br16/3OG8YhrKzsxUeHq5evXopMTFRu3fvbnGs+vp6xcTEyGQyyeFwuPv379/fbA8xmUzasmXLWeUCAAAAAAAAADg7nV5ALyoqkt1u15IlS7R9+3aNGzdOSUlJOnToUIvxx48f15AhQ7Rs2TKFhYW1Ou7o0aNVVVXlbh988EGzmIyMDI+Y5cuXd9i6AHQN7DEATuds94jNmzcrNTVVc+bM0SeffKLk5GQlJydr586d7pjly5frySefVEFBgbZu3arevXsrKSlJJ06caDbeokWLFBER0Wp+7733nsc+Ehsbe1a5AAAAAAAAAADOTqcX0FesWKGMjAylp6dr1KhRKigoUEBAgAoLC1uMj4+P16OPPqpbbrlF/v7+rY7r4+OjsLAwdwsNDW0WExAQ4BETHBzcYesC0DWwxwA4nbPdI5544gldd911uvvuu3X55ZfroYce0hVXXKGnn35a0vd3n+fl5Wnx4sWaPn26oqOj9ac//UmVlZVau3atx1hvvfWW3nnnHeXm5raaX9++fT32EV9f3zbnAgAAAAAAAAA4e51aQG9oaFBZWZkSExPdfV5eXkpMTFRpaek5jb17925FRERoyJAhmjlzpioqKprFvPLKKwoNDdWYMWOUlZWl48ePtzpefX29ampqPBqArq077TES+wxwobVnjygtLfWIl6SkpCR3/L59++R0Oj1iQkJCZLPZPMZ0uVzKyMjQyy+/rICAgFZzvOmmm3TZZZdp0qRJ+stf/nJWufwUewwAAAAAAAAAnJlPZ05+5MgRNTY2ymKxePRbLBZ9+eWX7R7XZrNp5cqVGjlypKqqqrR06VJdddVV2rlzp4KCgiRJt956qwYNGqSIiAh99tlnuueee7Rr1y69/vrrLY6Zk5OjpUuXnnUuX9d8rb3/3NvutQDdnbWPVYP6DOqUubvTHiO1f5/Z4dqhf377z3avB+jOvExeGn3ZaF3a69KzvrY9e4TT6Wwx3ul0us+f6mstxjAMzZ49W/PmzVNcXJz279/fbJ7AwEA99thj+tnPfiYvLy/9+c9/VnJystauXaubbrqpTbn8VHv3mIbGBjmqHPr2u2/P+lqgJ/D38df4sPHy92n9yTQAAAAAAADoOTq1gH6+TJs2zf05OjpaNptNgwYN0quvvqo5c+ZIkubOneuOGTt2rMLDw3XNNddo7969Gjp0aLMxs7KyZLfb3cc1NTWKjIw8Yy7139XrQPUBhQW2/i5loKdyHnPKEmg5c2A3cz72GKn9+8zRE0flOuZqVwER6O6OnjiqYZcO6+w0zspTTz2l2tpaZWVltRoTGhrqsR/Ex8ersrJSjz76qLuAfrbau8d81/Sd/nnin2psapS/NwVEXFzqG+tVd7JOJ5tOyl/8/QcAAAAAALgYdGoBPTQ0VN7e3nK5XB79LpdLYWEdV3Du06ePRowYoT179rQaY7PZJEl79uxpsbjl7+9/2vchn06gX6Au6XVJu64FurPjJ0//yPLzrTvtMVL79xkvk5f6mPuwz+CidKzhWLuvbc8eERYWdtr4U3+6XC6Fh4d7xMTExEiSNmzYoNLS0mY/73FxcZo5c6ZeeumlFue22Wx6991325zLT53Lf8tIUh9zH5l9zO2+HuiO6r+r19H6o52dBgAAAAAAAC6gTn0Hup+fn2JjY1VSUuLua2pqUklJiRISEjpsnmPHjmnv3r0ev8j+KYfDIUmnjQHQvbDHADid9uwRCQkJHvGS9O6777rjBw8erLCwMI+Ympoabd261R3z5JNP6tNPP5XD4ZDD4dD69eslSUVFRXrkkUdazdfhcHjsIWfKBQAAAAAAAABw9jr9Ee52u12zZs1SXFycJkyYoLy8PNXV1Sk9PV2SlJaWpv79+ysnJ0eS1NDQoM8//9z9+eDBg3I4HAoMDNSwYd8/wvWuu+7SjTfeqEGDBqmyslJLliyRt7e3UlNTJUl79+7VqlWrdP3116tv37767LPPtHDhQk2ePFnR0dGd8C0AOF/YYwCcztnuEXfeeaemTJmixx57TDfccINWr16tjz/+WM8995wkyWQyacGCBXr44Yc1fPhwDR48WPfff78iIiKUnJwsSRo4cKBHDoGBgZKkoUOHasCAAZKkl156SX5+fho/frwk6fXXX1dhYaH++Mc/uq87Uy4AAAAAAAAAgLPX6QX0GTNm6PDhw8rOzpbT6VRMTIyKi4tlsXz/3uSKigp5ef1wo3xlZaX7l8mSlJubq9zcXE2ZMkUbN26UJH399ddKTU3VN998o379+mnSpEnasmWL+vXrJ+n7O87ee+899y/JIyMjlZKSosWLF1+4hQO4INhjAJzO2e4REydO1KpVq7R48WLdd999Gj58uNauXasxY8a4YxYtWqS6ujrNnTtXR48e1aRJk1RcXCyz+ewef/7QQw/pq6++ko+Pj6KiolRUVKR/+7d/O6tcAAAAAAAAAABnx2QYhtHZSXRHNTU1CgkJUXV1tYKDg1uN2/vPvdrh2qHIkMgLmB3QNRysOagRoSMUFRrVakxbf5YuRm39bj6s+FB1DXXqG9D3AmYHdA0Hqg/INsCm8KDWX4/APtOytn4vx08e1/tfva8gvyDegY6Lzql3oE8eNFmBfoGtxrHPAAAAAAAA9Byd+g50AAAAAAAAAAAAAAC6CgroAAAAAAAAAAAAAACIAjoAAAAAAAAAAAAAAJIooAMAAAAAAAAAAAAAIIkCOgAAAAAAAAAAAAAAkiigAwAAAAAAAAAAAAAgiQI6AAAAAAAAAAAAAACSKKADAAAAAAAAAAAAACCJAjoAAAAAAAAAAAAAAJIooAMAAAAAAAAAAAAAIIkCOgAAAAAAAAAAAAAAkiigAwAAAAAAAAAAAAAgiQI6AAAAAAAAAAAAAACSKKADAAAAAAAAAAAAACCJAjoAAAAAAAAAAAAAAJIooAMAAAAAAAAAAAAAIIkCOgAAAAAAAAAAAAAAkiigAwAAAAAAAAAAAAAgiQI6gItAfn6+rFarzGazbDabtm3b1mpseXm5UlJSZLVaZTKZlJeX1yzmgQcekMlk8mhRUVEeMSdOnND8+fPVt29fBQYGKiUlRS6Xq6OXBgAAAAAAAAAAgA5EAR1Aj1ZUVCS73a4lS5Zo+/btGjdunJKSknTo0KEW448fP64hQ4Zo2bJlCgsLa3Xc0aNHq6qqyt0++OADj/MLFy7UX//6V61Zs0abNm1SZWWlfvWrX3Xo2gAAAAAAAAAAANCxKKAD6NFWrFihjIwMpaena9SoUSooKFBAQIAKCwtbjI+Pj9ejjz6qW265Rf7+/q2O6+Pjo7CwMHcLDQ11n6uurtYLL7ygFStW6Oqrr1ZsbKxefPFFbd68WVu2bOnwNQIAAAAAAAAAAKBjUEAH0GM1NDSorKxMiYmJ7j4vLy8lJiaqtLT0nMbevXu3IiIiNGTIEM2cOVMVFRXuc2VlZTp58qTHvFFRURo4cOBp562vr1dNTY1HAwAAAAAAAAAAwIVDAR1Aj3XkyBE1NjbKYrF49FssFjmdznaPa7PZtHLlShUXF+uZZ57Rvn37dNVVV6m2tlaS5HQ65efnpz59+pzVvDk5OQoJCXG3yMjIducIAAAAAAAAAACAs0cBHQDO0rRp03TzzTcrOjpaSUlJWr9+vY4ePapXX331nMbNyspSdXW1ux04cKCDMgZwOvn5+bJarTKbzbLZbNq2bdtp49esWaOoqCiZzWaNHTtW69ev9zhvGIays7MVHh6uXr16KTExUbt3725xrPr6esXExMhkMsnhcLQYs2fPHgUFBTX7RzkrV66UyWTyaGazuc3rBgAAAAAAAAA0RwEdQI8VGhoqb29vuVwuj36Xy6WwsLAOm6dPnz4aMWKE9uzZI0kKCwtTQ0ODjh49elbz+vv7Kzg42KMBOL+Kiopkt9u1ZMkSbd++XePGjVNSUpIOHTrUYvzmzZuVmpqqOXPm6JNPPlFycrKSk5O1c+dOd8zy5cv15JNPqqCgQFu3blXv3r2VlJSkEydONBtv0aJFioiIaDW/kydPKjU1VVdddVWL54ODg1VVVeVuX3311Vl+AwAAAAAAAACAH6OADqDH8vPzU2xsrEpKStx9TU1NKikpUUJCQofNc+zYMe3du1fh4eGSpNjYWPn6+nrMu2vXLlVUVHTovADO3YoVK5SRkaH09HSNGjVKBQUFCggIUGFhYYvxTzzxhK677jrdfffduvzyy/XQQw/piiuu0NNPPy3p+7vP8/LytHjxYk2fPl3R0dH605/+pMrKSq1du9ZjrLfeekvvvPOOcnNzW81v8eLFioqK0q9//esWz5tMJoWFhbnbT19ZAQAAAAAAAAA4OxTQAfRodrtdzz//vF566SV98cUXuv3221VXV6f09HRJUlpamrKystzxDQ0Ncjgccjgcamho0MGDB+VwONx3l0vSXXfdpU2bNmn//v3avHmzfvnLX8rb21upqamSpJCQEM2ZM0d2u11/+9vfVFZWpvT0dCUkJOjKK6+8sF8AgFY1NDSorKxMiYmJ7j4vLy8lJiaqtLS0xWtKS0s94iUpKSnJHb9v3z45nU6PmJCQENlsNo8xXS6XMjIy9PLLLysgIKDFuTZs2KA1a9YoPz+/1TUcO3ZMgwYNUmRkpKZPn67y8vJWY+vr61VTU+PRAAAAAAAAAACefDo7AQA4n2bMmKHDhw8rOztbTqdTMTExKi4udt+lWVFRIS+vH/4tUWVlpcaPH+8+zs3NVW5urqZMmaKNGzdKkr7++mulpqbqm2++Ub9+/TRp0iRt2bJF/fr1c1/3+OOPy8vLSykpKaqvr1dSUpL+8Ic/XJhFA2iTI0eOqLGxsdld2xaLRV9++WWL1zidzhbjnU6n+/ypvtZiDMPQ7NmzNW/ePMXFxWn//v3N5vnmm280e/Zs/fd//3err3MYOXKkCgsLFR0drerqauXm5mrixIkqLy/XgAEDmsXn5ORo6dKlLY4FAAAAAAAAAPgeBXQAPV5mZqYyMzNbPHeqKH6K1WqVYRinHW/16tVnnNNsNis/P/+0d44CuDg99dRTqq2t9Xj6xU9lZGTo1ltv1eTJk1uNSUhI8HgtxMSJE3X55Zfr2Wef1UMPPdQsPisrS3a73X1cU1OjyMjIdq4CAAAAAAAAAHomHuEOAAAuSqGhofL29pbL5fLod7lcCgsLa/GasLCw08af+vN0MRs2bFBpaan8/f3l4+OjYcOGSZLi4uI0a9Ysd0xubq58fHzk4+OjOXPmqLq6Wj4+Pq2+n93X11fjx4/3eOXEj/n7+ys4ONijAQAAAAAAAAA8dYkCen5+vqxWq8xms2w2m7Zt29ZqbHl5uVJSUmS1WmUymZSXl9cs5oEHHpDJZPJoUVFRLY5nGIamTZsmk8mktWvXdtCKAABAV+fn56fY2FiVlJS4+5qamlRSUuJxZ/ePJSQkeMRL0rvvvuuOHzx4sMLCwjxiampqtHXrVnfMk08+qU8//VQOh0MOh0Pr16+XJBUVFemRRx6R9P271k+ddzgcevDBBxUUFCSHw6Ff/vKXLebW2NioHTt2KDw8vJ3fCAAAAAAAAACg0x/hXlRUJLvdroKCAtlsNuXl5SkpKUm7du3SZZdd1iz++PHjGjJkiG6++WYtXLiw1XFHjx6t9957z33s49PyUvPy8mQymc59IQAAoNux2+2aNWuW4uLiNGHCBOXl5amurk7p6emSpLS0NPXv3185OTmSpDvvvFNTpkzRY489phtuuEGrV6/Wxx9/rOeee06SZDKZtGDBAj388MMaPny4Bg8erPvvv18RERFKTk6WJA0cONAjh8DAQEnS0KFD3e8uv/zyyz1iPv74Y3l5eWnMmDHuvgcffFBXXnmlhg0bpqNHj+rRRx/VV199pd/+9rcd/0UBAAAAAAAAwEWi0wvoK1asUEZGhvsX1QUFBVq3bp0KCwt17733NouPj49XfHy8JLV4/hQfH59WH796isPh0GOPPaaPP/6Yu7UAALgIzZgxQ4cPH1Z2dracTqdiYmJUXFwsi8UiSaqoqJCX1w8P7Jk4caJWrVqlxYsX67777tPw4cO1du1aj8L2okWLVFdXp7lz5+ro0aOaNGmSiouLZTabOzT3f/3rX8rIyJDT6dQll1yi2NhYbd68WaNGjerQeQAAAAAAAADgYtKpBfSGhgaVlZUpKyvL3efl5aXExESVlpae09i7d+9WRESEzGazEhISlJOT43HH1/Hjx3XrrbcqPz//jIV2Saqvr1d9fb37uKam5pzyAwAAXUNmZqYyMzNbPLdx48ZmfTfffLNuvvnmVsczmUx68MEH9eCDD7ZpfqvVKsMwThsze/ZszZ4926Pv8ccf1+OPP96mOQAAAAAAAAAAbdOp70A/cuSIGhsb3Xd5nWKxWOR0Ots9rs1m08qVK1VcXKxnnnlG+/bt01VXXaXa2lp3zMKFCzVx4kRNnz69TWPm5OQoJCTE3SIjI9udHwAAAAAAAAAAAACg6+n0R7ifD9OmTXN/jo6Ols1m06BBg/Tqq69qzpw5+stf/qINGzbok08+afOYWVlZstvt7uOamhqK6AAAAAAAAAAAAADQg3TqHeihoaHy9vaWy+Xy6He5XG16rHpb9enTRyNGjNCePXskSRs2bNDevXvVp08f+fj4yMfn+39HkJKSoqlTp7Y4hr+/v4KDgz0aAAAAAAAAAAAAAKDn6NQCup+fn2JjY1VSUuLua2pqUklJiRISEjpsnmPHjmnv3r0KDw+XJN1777367LPP5HA43E36/l2iL774YofNCwAAAAAAAAAAAADoPjr9Ee52u12zZs1SXFycJkyYoLy8PNXV1Sk9PV2SlJaWpv79+ysnJ0eS1NDQoM8//9z9+eDBg3I4HAoMDNSwYcMkSXfddZduvPFGDRo0SJWVlVqyZIm8vb2VmpoqSQoLC2vxDveBAwdq8ODBF2LZAAAAAAAAAAAAAIAuptML6DNmzNDhw4eVnZ0tp9OpmJgYFRcXy2KxSJIqKirk5fXDjfKVlZUaP368+zg3N1e5ubmaMmWKNm7cKEn6+uuvlZqaqm+++Ub9+vXTpEmTtGXLFvXr1++Crg0AAAAAAAAAAAAA0H10egFdkjIzM5WZmdniuVNF8VOsVqsMwzjteKtXrz7rHM40JgAAAAAAAAAAAACgZ+vUd6ADAAAAAAAAAAAAANBVUEAHAAAAAAAAAAAAAEAU0AEAAAAAAAAAAAAAkEQBHQAAAAAAAAAAAAAASRTQAQAAAAAAAAAAAACQRAEdAAAAAAAAAAAAAABJFNABAAAAAAAAAAAAAJBEAR3ARSA/P19Wq1Vms1k2m03btm1rNba8vFwpKSmyWq0ymUzKy8s77djLli2TyWTSggULPPqnTp0qk8nk0ebNm9cBqwEAAAAAAAAAAMD5QgEdQI9WVFQku92uJUuWaPv27Ro3bpySkpJ06NChFuOPHz+uIUOGaNmyZQoLCzvt2B999JGeffZZRUdHt3g+IyNDVVVV7rZ8+fJzXg8AAAAAAAAAAADOHwroAHq0FStWKCMjQ+np6Ro1apQKCgoUEBCgwsLCFuPj4+P16KOP6pZbbpG/v3+r4x47dkwzZ87U888/r0suuaTFmICAAIWFhblbcHBwh6wJAAAAAAAAAAAA5wcFdAA9VkNDg8rKypSYmOju8/LyUmJiokpLS89p7Pnz5+uGG27wGPunXnnlFYWGhmrMmDHKysrS8ePHTztmfX29ampqPBoAAAAAAAAAAAAuHJ/OTgAAzpcjR46osbFRFovFo99isejLL79s97irV6/W9u3b9dFHH7Uac+utt2rQoEGKiIjQZ599pnvuuUe7du3S66+/3uo1OTk5Wrp0abvzAgAAAAAAAAAAwLmhgA4AZ+HAgQO688479e6778psNrcaN3fuXPfnsWPHKjw8XNdcc4327t2roUOHtnhNVlaW7Ha7+7impkaRkZEdlzwAAAAAAAAAAABOiwI6gB4rNDRU3t7ecrlcHv0ul0thYWHtGrOsrEyHDh3SFVdc4e5rbGzU+++/r6efflr19fXy9vZudp3NZpMk7dmzp9UCur+//2nfuw4AAAAAAAAAAIDzi3egA+ix/Pz8FBsbq5KSEndfU1OTSkpKlJCQ0K4xr7nmGu3YsUMOh8Pd4uLiNHPmTDkcjhaL55LkcDgkSeHh4e2aFwAAAAAAAAAAAOcfd6AD6NHsdrtmzZqluLg4TZgwQXl5eaqrq1N6erokKS0tTf3791dOTo4kqaGhQZ9//rn788GDB+VwOBQYGKhhw4YpKChIY8aM8Zijd+/e6tu3r7t/7969WrVqla6//nr17dtXn332mRYuXKjJkycrOjr6Aq4eAAAAAAAAAAAAZ4M70AH0aDNmzFBubq6ys7MVExMjh8Oh4uJiWSwWSVJFRYWqqqrc8ZWVlRo/frzGjx+vqqoq5ebmavz48frtb3/b5jn9/Pz03nvv6dprr1VUVJR+97vfKSUlRX/96187fH0Azl1+fr6sVqvMZrNsNpu2bdt22vg1a9YoKipKZrNZY8eO1fr16z3OG4ah7OxshYeHq1evXkpMTNTu3btbHKu+vl4xMTEymUzuJ1X81J49exQUFKQ+ffqcdS4AAAAAAAAAgLNDAR1Aj5eZmamvvvpK9fX12rp1q/t95JK0ceNGrVy50n1stVplGEaztnHjxlbH37hxo/Ly8tzHkZGR2rRpk7755hudOHFCu3fv1vLlyxUcHHweVgfgXBQVFclut2vJkiXavn27xo0bp6SkJB06dKjF+M2bNys1NVVz5szRJ598ouTkZCUnJ2vnzp3umOXLl+vJJ59UQUGBtm7dqt69eyspKUknTpxoNt6iRYsUERHRan4nT55UamqqrrrqqnblAgAAAAAAAAA4OxTQAQDARWvFihXKyMhQenq6Ro0apYKCAgUEBKiwsLDF+CeeeELXXXed7r77bl1++eV66KGHdMUVV+jpp5+W9P3d53l5eVq8eLGmT5+u6Oho/elPf1JlZaXWrl3rMdZbb72ld955R7m5ua3mt3jxYkVFRenXv/71WecCAAAAAAAAADh7FNABAMBFqaGhQWVlZUpMTHT3eXl5KTExUaWlpS1eU1pa6hEvSUlJSe74ffv2yel0esSEhITIZrN5jOlyuZSRkaGXX35ZAQEBLc61YcMGrVmzRvn5+e3K5afq6+tVU1Pj0QAAAAAAAAAAniigAwCAi9KRI0fU2Ngoi8Xi0W+xWOR0Olu8xul0njb+1J+nizEMQ7Nnz9a8efMUFxfX4jzffPONZs+erZUrV7b6+ocz5fJTOTk5CgkJcbfIyMgW4wAAAAAAAADgYkYBHQAA4AJ66qmnVFtbq6ysrFZjMjIydOutt2ry5MkdNm9WVpaqq6vd7cCBAx02NgAAAAAAAAD0FBTQAQDARSk0NFTe3t5yuVwe/S6XS2FhYS1eExYWdtr4U3+eLmbDhg0qLS2Vv7+/fHx8NGzYMElSXFycZs2a5Y7Jzc2Vj4+PfHx8NGfOHFVXV8vHx8f9fvYz5fJT/v7+Cg4O9mgAAAAAAAAAAE8U0AEAwEXJz89PsbGxKikpcfc1NTWppKRECQkJLV6TkJDgES9J7777rjt+8ODBCgsL84ipqanR1q1b3TFPPvmkPv30UzkcDjkcDq1fv16SVFRUpEceeUTS9+83P3Xe4XDowQcfVFBQkBwOh375y1+2KRcAAAAAAAAAwNnz6ewEAAAAOovdbtesWbMUFxenCRMmKC8vT3V1dUpPT5ckpaWlqX///srJyZEk3XnnnZoyZYoee+wx3XDDDVq9erU+/vhjPffcc5Ikk8mkBQsW6OGHH9bw4cM1ePBg3X///YqIiFBycrIkaeDAgR45BAYGSpKGDh2qAQMGSJIuv/xyj5iPP/5YXl5eGjNmjLvvTLkAAAAAAAAAAM4eBXQAAHDRmjFjhg4fPqzs7Gw5nU7FxMSouLhYFotFklRRUSEvrx8e2DNx4kStWrVKixcv1n333afhw4dr7dq1HoXtRYsWqa6uTnPnztXRo0c1adIkFRcXy2w2d2jubckFAAAAAAAAAHB2TIZhGJ2dRHdUU1OjkJAQVVdXn/Ydonv/uVc7XDsUGRJ5AbMDuoaDNQc1InSEokKjWo1p68/Sxait382HFR+qrqFOfQP6XsDsgK7hQPUB2QbYFB4U3moM+0zL2vq9HD95XO9/9b6C/IJk9unYfwQAdHX139XraP1RTR40WYF+ga3Gsc8AAAAAAAD0HLwDHQAAAAAAAAAAAAAAUUAHAAAAAAAAAAAAAEASBXQAAAAAAAAAAAAAACR1kQJ6fn6+rFarzGazbDabtm3b1mpseXm5UlJSZLVaZTKZlJeX1yzmgQcekMlk8mhRUZ7vYP6P//gPDR06VL169VK/fv00ffp0ffnllx29NAAAAAAAAAAAAABAN9HpBfSioiLZ7XYtWbJE27dv17hx45SUlKRDhw61GH/8+HENGTJEy5YtU1hYWKvjjh49WlVVVe72wQcfeJyPjY3Viy++qC+++EJvv/22DMPQtddeq8bGxg5dHwAAAAAAAAAAAACge/Dp7ARWrFihjIwMpaenS5IKCgq0bt06FRYW6t57720WHx8fr/j4eElq8fwpPj4+py2wz5071/3ZarXq4Ycf1rhx47R//34NHTq0vcsBAAAAAAAAAAAAAHRTnXoHekNDg8rKypSYmOju8/LyUmJiokpLS89p7N27dysiIkJDhgzRzJkzVVFR0WpsXV2dXnzxRQ0ePFiRkZEtxtTX16umpsajAQAAAAAAAAAAAAB6jk4toB85ckSNjY2yWCwe/RaLRU6ns93j2mw2rVy5UsXFxXrmmWe0b98+XXXVVaqtrfWI+8Mf/qDAwEAFBgbqrbfe0rvvvis/P78Wx8zJyVFISIi7tVZoBwAAAAAAAAAAAAB0T53+DvTzYdq0abr55psVHR2tpKQkrV+/XkePHtWrr77qETdz5kx98skn2rRpk0aMGKFf//rXOnHiRItjZmVlqbq62t0OHDhwIZYCAAAAAAAAAAAAALhAOrWAHhoaKm9vb7lcLo9+l8t12veXn60+ffpoxIgR2rNnj0d/SEiIhg8frsmTJ+u1117Tl19+qTfeeKPFMfz9/RUcHOzRAHQP+fn5slqtMpvNstls2rZtW6ux5eXlSklJkdVqlclkUl5e3mnHXrZsmUwmkxYsWODRf+LECc2fP199+/ZVYGCgUlJSmu11AAAAAAAAAAAA6Fp8OnNyPz8/xcbGqqSkRMnJyZKkpqYmlZSUKDMzs8PmOXbsmPbu3avf/OY3rcYYhiHDMFRfX99h8wLofEVFRbLb7SooKJDNZlNeXp6SkpK0a9cuXXbZZc3ijx8/riFDhujmm2/WwoULTzv2Rx99pGeffVbR0dHNzi1cuFDr1q3TmjVrFBISoszMTP3qV7/Shx9+2GFrAy5WS+1L3Z/rGuq0uvdqBfgGuPsKCws7Iy0AAAAAAAAAQA/Q6Y9wt9vtev755/XSSy/piy++0O233666ujqlp6dLktLS0pSVleWOb2hokMPhkMPhUENDgw4ePCiHw+Fxd/ldd92lTZs2af/+/dq8ebN++ctfytvbW6mpqZKkf/zjH8rJyVFZWZkqKiq0efNm3XzzzerVq5euv/76C/sFADivVqxYoYyMDKWnp2vUqFEqKChQQEBAqwW2+Ph4Pfroo7rlllvk7+/f6rjHjh3TzJkz9fzzz+uSSy7xOFddXa0XXnhBK1as0NVXX63Y2Fi9+OKL2rx5s7Zs2dKh6wMuRrXVte5WV1Onbw5/ow0bNuj111/X0aNHOzs9AAAAAAAAAEA31ql3oEvSjBkzdPjwYWVnZ8vpdComJkbFxcWyWCySpIqKCnl5/VDnr6ys1Pjx493Hubm5ys3N1ZQpU7Rx40ZJ0tdff63U1FR988036tevnyZNmqQtW7aoX79+kiSz2ay///3vysvL07/+9S9ZLBZNnjxZmzdvbvGOVADdU0NDg8rKyjz+EY6Xl5cSExNVWlp6TmPPnz9fN9xwgxITE/Xwww97nCsrK9PJkyeVmJjo7ouKitLAgQNVWlqqK6+8ssUx6+vrPZ6CUVNTc045Aj1V7gu57s8Hqg/INsAmS2+Lbr/9dg0dOrQTMwMAAAAAAAAAdHedXkCXpMzMzFYf2X6qKH6K1WqVYRinHW/16tWnPR8REaH169efVY4Aup8jR46osbHR/Q9yTrFYLPryyy/bPe7q1au1fft2ffTRRy2edzqd8vPzU58+fZrN63Q6Wx03JydHS5cubfU8gNZ5eXnJbrdr6tSpWrRoUWenAwAAAAAAAADopjr9Ee4A0J0cOHBAd955p1555RWZzeYOHTsrK0vV1dXuduDAgQ4dH+jp9u7dq++++66z0wAAAAAAAAAAdGNd4g50ADgfQkND5e3tLZfL5dHvcrkUFhbWrjHLysp06NAhXXHFFe6+xsZGvf/++3r66adVX1+vsLAwNTQ06OjRox53oZ9pXn9//9O+dx3A91Y8sML9ubahVut7r1fNNzVat26dZs2a1YmZAQAAAAAAAAC6u3MqoB8/flwVFRVqaGjw6I+Ojj6npACgI/j5+Sk2NlYlJSVKTk6WJDU1NamkpKTV10acyTXXXKMdO3Z49KWnpysqKkr33HOPvL29FRsbK19fX5WUlCglJUWStGvXLlVUVCghIeGc1gRA2rVzl/tzfWO9/tXrX+of1l+PPfaY/v3f/70TMwMAAAAAAAAAdHftKqAfPnxY6enpeuutt1o839jYeE5JAUBHsdvtmjVrluLi4jRhwgTl5eWprq5O6enpkqS0tDT1799fOTk5kqSGhgZ9/vnn7s8HDx6Uw+FQYGCghg0bpqCgII0ZM8Zjjt69e6tv377u/pCQEM2ZM0d2u12XXnqpgoODdccddyghIUFXXnnlBVw90DM9+9qz7s8Hqg/INsCm8KDwZnEffvih4uLiLmRqAAAAAAAAAIBurl0F9AULFujo0aPaunWrpk6dqjfeeEMul0sPP/ywHnvssY7OEQDabcaMGTp8+LCys7PldDoVExOj4uJiWSwWSVJFRYW8vLzc8ZWVlRo/frz7ODc3V7m5uZoyZYo2btzY5nkff/xxeXl5KSUlRfX19UpKStIf/vCHDlsXgDObNm2aHA6HQkNDOzsVAAAAAAAAAEA30a4C+oYNG/Tmm28qLi5OXl5eGjRokH7xi18oODhYOTk5uuGGGzo6TwAXic8++6xNcWfzqojMzMxWH9n+06K41WqVYRhtHrulMSTJbDYrPz9f+fn5ZzUWgI5ztj/LAAAAAAAAAAC0q4BeV1enyy67TJJ0ySWX6PDhwxoxYoTGjh2r7du3d2iCAC4uMTExMplMLRa+TvWbTCZeFQEAAAAAAAAAAIAO164C+siRI7Vr1y5ZrVaNGzdOzz77rKxWqwoKChQe3vwdpADQVvv27evsFAAAAAAAAAAAAHCRalcB/c4771RVVZUkacmSJbruuuv0yiuvyM/PTytXruzI/ABcZAYNGtTZKQAAAAAAAAAAAOAi5dWei2677TbNnj1bkhQbG6uvvvpKH330kQ4cOKAZM2Z0ZH5Am/3lr1JcnNTC66glSX//u5SSIiX/UrrrbulY3QVND220fPlyffvtt+7jDz/8UPX19e7j2tpa/d//+387IzWAfaabMZlMbYrLz8+X1WqV2WyWzWbTtm3bThu/Zs0aRUVFyWw2a+zYsVq/fr3HecMwlJ2drfDwcPXq1UuJiYnavXt3i2PV19e7X13hcDjc/bt27dLPf/5zWSwWmc1mDRkyRIsXL9bJkyfdMStXrpTJZPJoZrO5TWtG18U+AwAAAAAAAHSudhXQH3zwQR0/ftx9HBAQoCuuuEK9e/fWgw8+2GHJAW1VWSW98YY0ZmzL549/Kz34kPTYY9LaN6R+/aQ//vHC5oi2ycrKUm1trft42rRpOnjwoPv4+PHjevbZZzsjNVzk2Ge6H8MwzhhTVFQku92uJUuWaPv27Ro3bpySkpJ06NChFuM3b96s1NRUzZkzR5988omSk5OVnJysnTt3umOWL1+uJ598UgUFBdq6dat69+6tpKQknThxotl4ixYtUkRERLN+X19fpaWl6Z133tGuXbuUl5en559/XkuWLPGICw4OVlVVlbt99dVXZ1wzui72GQAAAAAAAKDztauAvnTpUh07dqxZ//Hjx7V06dJzTgo4G02G9NBD0qK7JT/flmM2fyiNHClZrd8f33yz9PbbFyxFnIWfFrzaUgADzjf2me6ptrZWQ4YMOW3MihUrlJGRofT0dI0aNUoFBQUKCAhQYWFhi/FPPPGErrvuOt199926/PLL9dBDD+mKK67Q008/Len7PSsvL0+LFy/W9OnTFR0drT/96U+qrKzU2rVrPcZ666239M477yg3N7fZPEOGDFF6errGjRunQYMG6aabbtLMmTP197//3SPOZDIpLCzM3SwWy1l8Q+hK2GcAAAAAAACArqFd70A3DKPFx6J++umnuvTSS885KeBsvPLf0rhx0uWXtx7jdErh4T8cR4RLR45I3zVKPt7nP0cA3Rv7TNdw67W3Nvvvj5ONJxXgFyBfrx8qjtu3b2/TeA0NDSorK1NWVpa7z8vLS4mJiSotLW3xmtLSUtntdo++pKQkd3F83759cjqdSkxMdJ8PCQmRzWZTaWmpbrnlFkmSy+VSRkaG1q5dq4CAgDPmumfPHhUXF+tXv/qVR/+xY8c0aNAgNTU16YorrtB//dd/afTo0S2OUV9f7/FKjJqamjPOiwuHfQYAAAAAAADoGs6qgH7JJZe437E5YsQIj19iNzY26tixY5o3b16HJwm0Zs9eqWSD9MfnOzsTAD0V+0zXMfW6qe7PhmFo5dMrde2vr1VUZJSC/IPOerwjR46osbGx2V3bFotFX375ZYvXOJ3OFuOdTqf7/Km+1mIMw9Ds2bM1b948xcXFaf/+/a3mOHHiRG3fvl319fWaO3eux6tyRo4cqcLCQkVHR6u6ulq5ubmaOHGiysvLNWDAgGZj5eTk8KSgLop9BgAAAAAAAOg6zqqAnpeXJ8Mw9O///u9aunSpQkJC3Of8/PxktVqVkJDQ4UkCrXF8IlVVSsm//P74m2+khx/5/m6sf/u3H+LCwqQtW384rqySQkO5W6ur+uMf/6jAwEBJ0nfffaeVK1cqNDRUkjzejw5cCOwzXcdc+1yP41eefUX/5zf/R9MTpis8KLyVq7qep556SrW1tR53vremqKhItbW1+vTTT3X33XcrNzdXixYtkiQlJCR4/HfXxIkTdfnll+vZZ5/VQw891GysrKwsj7vna2pqFBkZ2QErwrlinwEAAAAAAAC6jrMqoM+aNUuSNHjwYP3sZz+Tj0+7ngAPdJh/+zfPXyzPnSvdeqs0dapnXMJEadnvpf37v39v6Jo1UtK1FzBRtNnAgQP1/PM/3IIXFhaml19+uVkMcKGwz/RcoaGh8vb2lsvl8uh3uVwKCwtr8ZqwsLDTxp/60+VyKfxHz9p2uVyKiYmRJG3YsEGlpaXy9/f3GCcuLk4zZ87USy+95O47VeAeNWqUGhsbNXfuXP3ud7+Tt3fziqmvr6/Gjx+vPXv2tJi7v79/sznRNbDPAAAAAAAAAF2HV3sumjJlir766istXrxYqampOnTokCTprbfeUnl5eYcmCLRXQYH02p+//9w7QLr/ful3v5OSk6VDLum3v+3U9NCK/fv3a9++fWdsQFfAPtO9+fn5KTY2ViUlJe6+pqYmlZSUtPpEnYSEBI94SXr33Xfd8YMHD1ZYWJhHTE1NjbZu3eqOefLJJ/Xpp5/K4XDI4XBo/fr1kr6/2/yRRx5pNd+mpiadPHlSTU1NLZ5vbGzUjh07PAr36P7YZwAAAAAAAIALq123kG/atEnTpk3Tz372M73//vt65JFHdNlll+nTTz/VCy+8oNdee62j8wTa5Lnnfvg8b57nuSmTv2/oWcaOHav169fzGGJcMOwzPYvdbtesWbMUFxenCRMmKC8vT3V1dUpPT5ckpaWlqX///srJyZEk3XnnnZoyZYoee+wx3XDDDVq9erU+/vhjPff//8UwmUxasGCBHn74YQ0fPlyDBw/W/fffr4iICCUnJ0tq/hSNU6+sGDp0qPvd5a+88op8fX01duxY+fv76+OPP1ZWVpZmzJghX19fSdKDDz6oK6+8UsOGDdPRo0f16KOP6quvvtJvqah2e+wzAAAAAAAAQOdpVwH93nvv1cMPPyy73a6goCB3/9VXX62nn366w5IDgDPZv3+/Tp482dlpALgAVr+w2uO4sbFRG9Zu0GHHYYWYQ9z9//mf/9nmMWfMmKHDhw8rOztbTqdTMTExKi4ulsVikSRVVFTIy+uHB/ZMnDhRq1at0uLFi3Xfffdp+PDhWrt2rcaMGeOOWbRokerq6jR37lwdPXpUkyZNUnFxscxmc5vz8vHx0e9//3v97//+rwzD0KBBg5SZmamFCxe6Y/71r38pIyNDTqdTl1xyiWJjY7V582aNGjWqzfMAAAAAAAAAADyZDMMwzvaiwMBA7dixQ4MHD1ZQUJA+/fRTDRkyRPv371dUVJROnDhxPnLtUmpqahQSEqLq6moFBwe3Grf3n3u1w7VDkSHcHYuLz8GagxoROkJRoVGtxrT1Z6k1P96Depq2fjcfVnyouoY69Q3oewGzAy68m668qVnfd03fyd/HX96m798JbjKZ9I9//MMj5lz3mZ6qrd/L8ZPH9f5X7yvIL0hmn7b/IwCgJ6j/rl5H649q8qDJCvQLbDWOfQYAAAAAAKDnaNcd6H369FFVVZUGDx7s0f/JJ5+of//+HZIYAADAj/1ly1+a9R2oPiDbAJvCg3jvNwAAAAAAAADg3HmdOaS5W265Rffcc4+cTqdMJpOampr04Ycf6q677lJaWlpH5wgAAAAAAAAAAAAAwHnXrjvQ/+u//kvz589XZGSkGhsbNWrUKH333XeaOXOmFi9e3NE5AgAANHsHuiT969t/aUefHe1+BzoAAAAAAAAAAD/WrgK6n5+fnn/+eWVnZ2vHjh2qq6vT+PHjNWzYsI7OD8BF6OTJk7ruuutUUFCg4cOHd3Y6ALqIVc+vatbX0jvQKaADAAAAAAAAANqrXY9wl6QXXnhB06ZN0y9/+UvddtttSk5O1h//+MeOzA3ARcrX11efffZZm2KfffZZWSyW08bk5+fLarXKbDbLZrNp27ZtrcaWl5crJSVFVqtVJpNJeXl5zWKeeeYZRUdHKzg4WMHBwUpISNBbb73lETN16lSZTCaPNm/evDatCUDL/rLlL83as+8+q607tmrfvn3at2+f/vGPf3R2mgAAAAAAAACAbqxdBfTs7GzdeeeduvHGG7VmzRqtWbNGN954oxYuXKjs7OyOzhHARei2227TCy+8cMa4W2+9Vb179271fFFRkex2u5YsWaLt27dr3LhxSkpK0qFDh1qMP378uIYMGaJly5YpLCysxZgBAwZo2bJlKisr08cff6yrr75a06dPV3l5uUdcRkaGqqqq3G358uVnXA+AjjN27FgdOHCgs9MAAAAAAAAAAHQj7XqE+zPPPKPnn39eqamp7r6bbrpJ0dHRuuOOO/Tggw92WIIALk7fffedCgsL9d577yk2NrZZkXzFihVtGmfFihXKyMhQenq6JKmgoEDr1q1TYWGh7r333mbx8fHxio+Pl6QWz0vSjTfe6HH8yCOP6JlnntGWLVs0evRod39AQECrRXgA59/+/ft18uTJzk4DAAAAAAAAANCNtKuAfvLkScXFxTXrj42N1XfffXfOSQHAzp07dcUVV0iS/vd//9fjnMlkatMYDQ0NKisrU1ZWlrvPy8tLiYmJKi0t7ZA8GxsbtWbNGtXV1SkhIcHj3CuvvKL//u//VlhYmG688Ubdf//9CggIaHWs+vp61dfXu49ramo6JEcAAAAAAAAAAAC0TbsK6L/5zW/0zDPPNLsD9LnnntPMmTM7JDEAF7e//e1v5zzGkSNH1NjY2Owd6RaLRV9++eU5jb1jxw4lJCToxIkTCgwM1BtvvKFRo0a5z996660aNGiQIiIi9Nlnn+mee+7Rrl279Prrr7c6Zk5OjpYuXXpOeQEAAAAAAAAAAKD92lxAt9vt7s8mk0l//OMf9c477+jKK6+UJG3dulUVFRVKS0vr+CwBoIsZOXKkHA6Hqqur9dprr2nWrFnatGmTu4g+d+5cd+zYsWMVHh6ua665Rnv37tXQoUNbHDMrK8tjr62pqVFkZOT5XQgAAAAAAAAAAADcvNoa+Mknn7jbjh07FBsbq379+mnv3r3au3evQkNDdcUVV6i8vPysk8jPz5fVapXZbJbNZtO2bdtajS0vL1dKSoqsVqtMJpPy8vKaxTzwwAMymUweLSoqyn3+n//8p+644w6NHDlSvXr10sCBA/Wf//mfqq6uPuvcAXRdoaGh8vb2lsvl8uh3uVzn/G5yPz8/DRs2TLGxscrJydG4ceP0xBNPtBpvs9kkSXv27Gk1xt/fX8HBwR4NAAAAAAAAAAAAF06b70DviMcpt6SoqEh2u10FBQWy2WzKy8tTUlKSdu3apcsuu6xZ/PHjxzVkyBDdfPPNWrhwYavjjh49Wu+995772Mfnh6VWVlaqsrJSubm5GjVqlL766ivNmzdPlZWVeu211zp2gQA6jZ+fn2JjY1VSUqLk5GRJUlNTk0pKSpSZmdmhczU1NXm8v/ynHA6HJCk8PLxD5wUuNt+d/E53zLxDWcuyNHDIwM5OBwAAAAAAAADQw7TrHegdacWKFcrIyFB6erokqaCgQOvWrVNhYaHuvffeZvHx8fGKj4+XpBbPn+Lj49PqHaZjxozRn//8Z/fx0KFD9cgjj+i2227Td99951FsB9C92e12zZo1S3FxcZowYYLy8vJUV1fn3nPS0tLUv39/5eTkSJIaGhr0+eefuz8fPHhQDodDgYGBGjZsmKTvH7U+bdo0DRw4ULW1tVq1apU2btyot99+W5K0d+9erVq1Stdff7369u2rzz77TAsXLtTkyZMVHR3dCd8C0HP4+Ppo9xe72xT77LPPymKxqLGx8TxnBQAAAAAAAADoKTq1UtzQ0KCysjJlZWW5+7y8vJSYmKjS0tJzGnv37t2KiIiQ2WxWQkKCcnJyNHBg63eqVVdXKzg4uNXieX19vcfdpTU1NeeUH4ALY8aMGTp8+LCys7PldDoVExOj4uJiWSwWSVJFRYW8vH54m0VlZaXGjx/vPs7NzVVubq6mTJmijRs3SpIOHTqktLQ0VVVVKSQkRNHR0Xr77bf1i1/8QtL3d76/99577mJ9ZGSkUlJStHjx4gu3cKAHm/araXpz9Zu64747Tht36623SuL/swEAAAAAAAAAbdepBfQjR46osbHRXcg6xWKx6Msvv2z3uDabTStXrtTIkSNVVVWlpUuX6qqrrtLOnTsVFBTUYh4PPfSQ5s6d2+qYOTk5Wrp0abtzAtB5MjMzW31k+6mi+ClWq1WGYZx2vBdeeOG05yMjI7Vp06azyhFA2zU2Nuq1P72mbX/fpsiRkXrrsrfU26+3+/yKFSs6MTsAAAAAAAAAQHfWI59VPm3aNPfn6Oho2Ww2DRo0SK+++qrmzJnjEVtTU6MbbrhBo0aN0gMPPNDqmFlZWbLb7R7XRUZGdnjuAADg9PZ+uVdRY6IkSZVfVeqY85j8vP0kSSaTqTNTAwAAAAAAAAB0c51aQA8NDZW3t7dcLpdHv8vlavX95e3Rp08fjRgxQnv27PHor62t1XXXXaegoCC98cYb8vX1bXUMf39/+fv7d1hOAACgfZ597Vn35wPVB2QbYFN4UHgnZgQAAAAAAAAA6Cm8zhxy/vj5+Sk2NlYlJSXuvqamJpWUlCghIaHD5jl27Jj27t2r8PAffrleU1Oja6+9Vn5+fvrLX/4is9ncYfMBAAAAAAAAAAAAALqfTn+Eu91u16xZsxQXF6cJEyYoLy9PdXV1Sk9PlySlpaWpf//+ysnJkSQ1NDTo888/d38+ePCgHA6HAgMDNWzYMEnSXXfdpRtvvFGDBg1SZWWllixZIm9vb6Wmpkr6oXh+/Phx/fd//7dqampUU1MjSerXr5+8vb0v9NcAAAAAAAAAAAAAAOhknV5AnzFjhg4fPqzs7Gw5nU7FxMSouLhYFotFklRRUSEvrx9ulK+srNT48ePdx7m5ucrNzdWUKVO0ceNGSdLXX3+t1NRUffPNN+rXr58mTZqkLVu2qF+/fpKk7du3a+vWrZLkLrqfsm/fPlmt1vO4YgAAAAAAAAAAAABAV9TpBXRJyszMVGZmZovnThXFT7FarTIM47TjrV69+rTnp06desYxAAAAAAAAAAAAAAAXl059BzoAAAAAAAAAAAAAAF0FBXQAAAAAAAAAAAAAAEQBHQAAXOTy8/NltVplNptls9m0bdu208avWbNGUVFRMpvNGjt2rNavX+9x3jAMZWdnKzw8XL169VJiYqJ2797d4lj19fWKiYmRyWSSw+Fw9+/atUs///nPZbFYZDabNWTIEC1evFgnT548q1wAAAAAAAAAAGeHAjoAALhoFRUVyW63a8mSJdq+fbvGjRunpKQkHTp0qMX4zZs3KzU1VXPmzNEnn3yi5ORkJScna+fOne6Y5cuX68knn1RBQYG2bt2q3r17KykpSSdOnGg23qJFixQREdGs39fXV2lpaXrnnXe0a9cu5eXl6fnnn9eSJUvOKhcAAAAAAAAAwNmhgA4AAC5aK1asUEZGhtLT0zVq1CgVFBQoICBAhYWFLcY/8cQTuu6663T33Xfr8ssv10MPPaQrrrhCTz/9tKTv7z7Py8vT4sWLNX36dEVHR+tPf/qTKisrtXbtWo+x3nrrLb3zzjvKzc1tNs+QIUOUnp6ucePGadCgQbrppps0c+ZM/f3vf29zLgAAAAAAAACAs0cBHQAAXJQaGhpUVlamxMREd5+Xl5cSExNVWlra4jWlpaUe8ZKUlJTkjt+3b5+cTqdHTEhIiGw2m8eYLpdLGRkZevnllxUQEHDGXPfs2aPi4mJNmTKlzbn8VH19vWpqajwaAAAAAAAAAMATBXQAAHBROnLkiBobG2WxWDz6LRaLnE5ni9c4nc7Txp/683QxhmFo9uzZmjdvnuLi4k6b48SJE2U2mzV8+HBdddVVevDBB9ucy0/l5OQoJCTE3SIjI087NwAAAAAAAABcjCigAwAAXEBPPfWUamtrlZWVdcbYoqIibd++XatWrdK6detafNx7W2VlZam6utrdDhw40O6xAAAAAAAAAKCn8unsBAAAADpDaGiovL295XK5PPpdLpfCwsJavCYsLOy08af+dLlcCg8P94iJiYmRJG3YsEGlpaXy9/f3GCcuLk4zZ87USy+95O47dZf4qFGj1NjYqLlz5+p3v/udvL29z5jLT/n7+zebEwAAAAAAAADgiTvQAQDARcnPz0+xsbEqKSlx9zU1NamkpEQJCQktXpOQkOARL0nvvvuuO37w4MEKCwvziKmpqdHWrVvdMU8++aQ+/fRTORwOORwOrV+/XtL3d5s/8sgjrebb1NSkkydPqqmpqU25AAAAAAAAAADOHnegAwCAi5bdbtesWbMUFxenCRMmKC8vT3V1dUpPT5ckpaWlqX///srJyZEk3XnnnZoyZYoee+wx3XDDDVq9erU+/vhjPffcc5Ikk8mkBQsW6OGHH9bw4cM1ePBg3X///YqIiFBycrIkaeDAgR45BAYGSpKGDh2qAQMGSJJeeeUV+fr6auzYsfL399fHH3+srKwszZgxQ76+vm3KBQAAAAAAAABw9iigAwCAi9aMGTN0+PBhZWdny+l0KiYmRsXFxbJYLJKkiooKeXn98MCeiRMnatWqVVq8eLHuu+8+DR8+XGvXrtWYMWPcMYsWLVJdXZ3mzp2ro0ePatKkSSouLpbZbG5zXj4+Pvr973+v//3f/5VhGBo0aJAyMzO1cOHCs8oFAAAAAAAAAHB2eIQ7gB4vPz9fVqtVZrNZNptN27ZtazW2vLxcKSkpslqtMplMysvLaxbzzDPPKDo6WsHBwQoODlZCQoLeeustj5gTJ05o/vz56tu3rwIDA5WSktLsXcUAuobMzEx99dVXqq+v19atW2Wz2dznNm7cqJUrV3rE33zzzdq1a5fq6+u1c+dOXX/99R7nTSaTHnzwQTmdTp04cULvvfeeRowY0er8VqtVhmG435EufV/YLysrU21trY4dO6by8nJlZWU1K8KfKRcAAAAAAAAAwNmhgA6gRysqKpLdbteSJUu0fft2jRs3TklJSTp06FCL8cePH9eQIUO0bNkyhYWFtRgzYMAALVu2TGVlZfr444919dVXa/r06SovL3fHLFy4UH/961+1Zs0abdq0SZWVlfrVr351XtYIAAAAAAAAAACAjkEBHUCPtmLFCmVkZCg9PV2jRo1SQUGBAgICVFhY2GJ8fHy8Hn30Ud1yyy3y9/dvMebGG2/U9ddfr+HDh2vEiBF65JFHFBgYqC1btkiSqqur9cILL2jFihW6+uqrFRsbqxdffFGbN292xwAAAAAAAAAAAKDroYAOoMdqaGhQWVmZEhMT3X1eXl5KTExUaWlph8zR2Nio1atXq66uTgkJCZKksrIynTx50mPeqKgoDRw48LTz1tfXq6amxqMBAAAAAAAAAADgwqGADqDHOnLkiBobG2WxWDz6LRaLnE7nOY29Y8cOBQYGyt/fX/PmzdMbb7yhUaNGSZKcTqf8/PzUp0+fs5o3JydHISEh7hYZGXlOOQIAAAAAAAAAAODsUEAHgHYYOXKkHA6Htm7dqttvv12zZs3S559/fk5jZmVlqbq62t0OHDjQQdkCAAAAAAAAAACgLXw6OwEAOF9CQ0Pl7e0tl8vl0e9yuRQWFnZOY/v5+WnYsGGSpNjYWH300Ud64okn9OyzzyosLEwNDQ06evSox13oZ5rX39+/1feuAwAAAAAAAAAA4PzjDnQAPZafn59iY2NVUlLi7mtqalJJSYn7feUdpampSfX19ZK+L6j7+vp6zLtr1y5VVFR0+LwAAAAAAAAAAADoONyBDqBHs9vtmjVrluLi4jRhwgTl5eWprq5O6enpkqS0tDT1799fOTk5kqSGhgb3o9gbGhp08OBBORwOBQYGuu84z8rK0rRp0zRw4EDV1tZq1apV2rhxo95++21JUkhIiObMmSO73a5LL71UwcHBuuOOO5SQkKArr7yyE74FAAAAAAAAAAAAtAUFdAA92owZM3T48GFlZ2fL6XQqJiZGxcXFslgskqSKigp5ef3wMI7KykqNHz/efZybm6vc3FxNmTJFGzdulCQdOnRIaWlpqqqqUkhIiKKjo/X222/rF7/4hfu6xx9/XF5eXkpJSVF9fb2SkpL0hz/84cIsGgAAAAAAAAAAAO1CAR1Aj5eZmanMzMwWz50qip9itVplGMZpx3vhhRfOOKfZbFZ+fr7y8/PbnCcAAAAAAAAAAAA6F+9ABwAAAAAAAAAAAABAFNABAAAAAAAAAAAAAJBEAR0AAAAAAAAAAAAAAEkU0AEAAAAAAAAAAAAAkEQBHQAAAAAAAAAAAAAASRTQAQAAAAAAAAAAAACQRAEdAAAAAAAAAAAAAABJXaCAnp+fL6vVKrPZLJvNpm3btrUaW15erpSUFFmtVplMJuXl5TWLeeCBB2QymTxaVFSUR8xzzz2nqVOnKjg4WCaTSUePHu3gVQEAAAAAAAAAAAAAuptOLaAXFRXJbrdryZIl2r59u8aNG6ekpCQdOnSoxfjjx49ryJAhWrZsmcLCwlodd/To0aqqqnK3Dz74oNk41113ne67774OXQ8AAAAAAAAAAAAAoPvy6czJV6xYoYyMDKWnp0uSCgoKtG7dOhUWFuree+9tFh8fH6/4+HhJavH8KT4+PqctsC9YsECStHHjxvYnDwAAAAAAAAAAAADoUTrtDvSGhgaVlZUpMTHxh2S8vJSYmKjS0tJzGnv37t2KiIjQkCFDNHPmTFVUVJxruqqvr1dNTY1HAwAAAAAAAAAAAAD0HJ1WQD9y5IgaGxtlsVg8+i0Wi5xOZ7vHtdlsWrlypYqLi/XMM89o3759uuqqq1RbW3tO+ebk5CgkJMTdIiMjz2k8AAAAAAAAAAAAAEDX0qnvQD8fpk2bpptvvlnR0dFKSkrS+vXrdfToUb366qvnNG5WVpaqq6vd7cCBAx2UMQAAAAAAAAAAAACgK+i0AnpoaKi8vb3lcrk8+l0u12nfX362+vTpoxEjRmjPnj3nNI6/v7+Cg4M9GgAA6P7y8/NltVplNptls9m0bdu208avWbNGUVFRMpvNGjt2rNavX+9x3jAMZWdnKzw8XL169VJiYqJ2797d4lj19fWKiYmRyWSSw+Fw92/cuFHTp09XeHi4evfurZiYGL3yyise165cuVImk8mjmc3m9n0JAAAAAAAAAABJnVhA9/PzU2xsrEpKStx9TU1NKikpUUJCQofNc+zYMe3du1fh4eEdNiYAAOgZioqKZLfbtWTJEm3fvl3jxo1TUlKSDh061GL85s2blZqaqjlz5uiTTz5RcnKykpOTtXPnTnfM8uXL9eSTT6qgoEBbt25V7969lZSUpBMnTjQbb9GiRYqIiGhxnujoaP35z3/WZ599pvT0dKWlpel//ud/POKCg4NVVVXlbl999dU5fiMAAAAAAAAAcHHr1Ee42+12Pf/883rppZf0xRdf6Pbbb1ddXZ3S09MlSWlpacrKynLHNzQ0yOFwyOFwqKGhQQcPHpTD4fC4u/yuu+7Spk2btH//fm3evFm//OUv5e3trdTUVHeM0+n0uG7Hjh1yOBz65z//eYFWDgAAuoIVK1YoIyND6enpGjVqlAoKChQQEKDCwsIW45944gldd911uvvuu3X55ZfroYce0hVXXKGnn35a0vd3n+fl5Wnx4sWaPn26oqOj9ac//UmVlZVau3atx1hvvfWW3nnnHeXm5jab57777tNDDz2kiRMnaujQobrzzjt13XXX6fXXX/eIM5lMCgsLczeLxdIxXwwAAAAAAAAAXKQ6tYA+Y8YM5ebmKjs7WzExMXI4HCouLnb/8reiokJVVVXu+MrKSo0fP17jx49XVVWVcnNzNX78eP32t791x3z99ddKTU3VyJEj9etf/1p9+/bVli1b1K9fP3dMQUGBxo8fr4yMDEnS5MmTNX78eP3lL3+5QCsHAACdraGhQWVlZUpMTHT3eXl5KTExUaWlpS1eU1pa6hEvSUlJSe74ffv2yel0esSEhITIZrN5jOlyuZSRkaGXX35ZAQEBbcq3urpal156qUffsWPHNGjQIEVGRmr69OkqLy9v9fr6+nrV1NR4NAAAAAAAAACAJ5/OTiAzM1OZmZktntu4caPHsdVqlWEYpx1v9erVZ5zzgQce0AMPPNDWFAEAQA905MgRNTY2Nrtr22Kx6Msvv2zxGqfT2WK80+l0nz/V11qMYRiaPXu25s2bp7i4OO3fv/+Mub766qv66KOP9Oyzz7r7Ro4cqcLCQkVHR6u6ulq5ubmaOHGiysvLNWDAgGZj5OTkaOnSpWecCwAAAAAAAAAuZp16BzoAXAj5+fmyWq0ym82y2Wzatm1bq7Hl5eVKSUmR1WqVyWRSXl5es5icnBzFx8crKChIl112mZKTk7Vr1y6PmKlTp8pkMnm0efPmdfTSAHRDTz31lGpraz1eU3M6f/vb35Senq7nn39eo0ePdvcnJCQoLS1NMTExmjJlil5//XX169fPo8j+Y1lZWaqurna3AwcOdMh6AAAAAAAAAKAnoYAOoEcrKiqS3W7XkiVLtH37do0bN05JSUk6dOhQi/HHjx/XkCFDtGzZMoWFhbUYs2nTJs2fP19btmzRu+++q5MnT+raa69VXV2dR1xGRoaqqqrcbfny5R2+PgDtFxoaKm9vb7lcLo9+l8vV6s9/WFjYaeNP/Xm6mA0bNqi0tFT+/v7y8fHRsGHDJElxcXGaNWuWx3WbNm3SjTfeqMcff1xpaWmnXY+vr6/Gjx+vPXv2tHje399fwcHBHg0AAAAAAAAA4IkCOoAebcWKFcrIyFB6erpGjRqlgoICBQQEqLCwsMX4+Ph4Pfroo7rlllvk7+/fYkxxcbFmz56t0aP/P/buPayqOv3//2tzFhEsUQ6Kgkc8Y6CIlVoyQ45TOjlm5IzGmI6ONCqZRT/FtBycJCXLpJPSTPnRnMpm0ihDsSlRS90eJ0cZFRPZHgpQzI3C+v3R1107DgICW/H5uK51ufd73ev9vteqfV/Kzdqru3r37q309HTl5uZqx44ddnGenp7y9/e3bTSrgOuLm5ubwsPDlZmZaRsrKytTZmamoqKiKjwmKirKLl6SNmzYYIsPCQmRv7+/XUxRUZG2bdtmi1myZIl2794ts9kss9ms9evXS/rhF37mz59vOy4rK0vDhg3TX//6V02cOPGq51NaWqq9e/cqICCgmlcAAAAAAAAAAPBzDn8GOgDUl5KSEu3YscPua5KdnJwUHR2t7OzsOlunsLBQknTrrbfajb/99tt666235O/vr3vvvVezZ8+Wp6dnpfNYrVZZrVbb+6KiojrLEUDFEhISNG7cOEVERKhfv35KTU1VcXGx4uLiJEljx45V69atlZycLEmaOnWqBg0apOeff17Dhg3TqlWr9NVXX+nVV1+VJJlMJk2bNk3PPvusOnXqpJCQEM2ePVuBgYEaMWKEJKlt27Z2OXh5eUmSOnToYHt2+aZNm/TrX/9aU6dO1ciRI23PT3dzc7PVmnnz5ql///7q2LGjCgoKtHDhQh07dkyPPPJI/V40AAAAAAAAAGjEaKADaLTOnDmj0tJS+fn52Y37+fnp66+/rpM1ysrKNG3aNN1+++3q0aOHbfyhhx5Su3btFBgYqD179uiJJ57QwYMH9d5771U6V3JysubOnVsneQGontGjR+v06dNKSkpSfn6+wsLClJGRYasbubm5cnL68Qt7BgwYoJUrV2rWrFl66qmn1KlTJ61du9bu8z9z5kwVFxdr4sSJKigo0B133KGMjAx5eHhUO68333xTFy5cUHJysq15L0mDBg1SVlaWJOm7777ThAkTlJ+fr1tuuUXh4eHasmWLunXrdo1XBQAAAAAAAABuXjTQAeAaTJkyRfv27dPnn39uN/7Tr1vu2bOnAgICNGTIEOXk5KhDhw4VzpWYmKiEhATb+6KiIgUFBdVP4gBs4uPjFR8fX+G+K83qnxo1apRGjRpV6Xwmk0nz5s3TvHnzqrV+cHCwDMOwG0tPT1d6enqVxy1evFiLFy+u1hoAAAAAAAAAgOqhgQ6g0fL19ZWzs7MsFovduMVikb+//zXPHx8frw8//FCfffaZ7WuXKxMZGSlJOnz4cKUNdHd390qfuw4AAAAAAAAAAID653T1EAC4Mbm5uSk8PFyZmZm2sbKyMmVmZioqKqrW8xqGofj4eL3//vvauHGjQkJCrnqM2WyWJAUEBNR6XQAAAAAAAAAAANQv7kAH0KglJCRo3LhxioiIUL9+/ZSamqri4mLFxcVJksaOHavWrVvbnjFcUlKiAwcO2F6fOHFCZrNZXl5e6tixo6QfvrZ95cqV+uCDD9SsWTPl5+dLknx8fNSkSRPl5ORo5cqV+tWvfqUWLVpoz549mj59ugYOHKhevXo54CoAAAAAAAAAAACgOmigA2jURo8erdOnTyspKUn5+fkKCwtTRkaG/Pz8JEm5ublycvrxyzjy8vLUp08f2/uUlBSlpKRo0KBBtmchL1u2TJI0ePBgu7VWrFihhx9+WG5ubvr0009tzfqgoCCNHDlSs2bNqt+TBQAAAAAAAAAAwDWhgQ6g0YuPj1d8fHyF+640xa8IDg6WYRhVzne1/UFBQdq8eXONcgQAAAAAAAAAAIDj8Qx0AAAAAAAAAAAAAABEAx0AAAAAAAAAAAAAAEk00AEAAAAAAAAAAAAAkEQDHQAAAAAAAAAAAAAASTTQAQAAAAAAAAAAAACQRAMdAAAAAAAAAAAAAABJNNABAAAAAAAAAAAAAJBEAx0AAAAAAAAAAAAAAEk00AEAAAAAAAAAAAAAkEQDHQAAAAAAAAAAAAAASTTQAQAAAAAAAAAAAACQRAMdAAAAAAAAAAAAAABJNNABAAAAAAAAAAAAAJBEAx0AAAAAAAAAAAAAAEk00AEAAAAAAAAAAAAAkEQDHQAAAAAAAAAAAAAASTTQAQAAAAAAAAAAAACQRAMdAAAAAAAAAAAAAABJNNABAAAAAAAAAAAAAJB0nTTQly5dquDgYHl4eCgyMlLbt2+vNHb//v0aOXKkgoODZTKZlJqaWi7m6aeflslksttCQ0PtYi5evKgpU6aoRYsW8vLy0siRI2WxWOr61ABcB+q6xiQnJ6tv375q1qyZWrVqpREjRujgwYN2MdQY4MZRkxohSWvWrFFoaKg8PDzUs2dPrV+/3m6/YRhKSkpSQECAmjRpoujoaB06dKjCuaxWq8LCwmQymWQ2m23jWVlZGj58uAICAtS0aVOFhYXp7bffrnEuAAAAAAAAAICacXgDffXq1UpISNCcOXO0c+dO9e7dWzExMTp16lSF8RcuXFD79u21YMEC+fv7Vzpv9+7ddfLkSdv2+eef2+2fPn26/vWvf2nNmjXavHmz8vLydP/999fpuQFwvPqoMZs3b9aUKVO0detWbdiwQZcuXdIvf/lLFRcX22KoMcCNoaY1YsuWLYqNjdX48eO1a9cujRgxQiNGjNC+fftsMc8995yWLFmitLQ0bdu2TU2bNlVMTIwuXrxYbr6ZM2cqMDCwwnV69eqld999V3v27FFcXJzGjh2rDz/8sEa5AAAAAAAAAABqxmQYhuHIBCIjI9W3b1+99NJLkqSysjIFBQXp0Ucf1ZNPPlnlscHBwZo2bZqmTZtmN/70009r7dq1dndy/VRhYaFatmyplStX6re//a0k6euvv1bXrl2VnZ2t/v37XzXvoqIi+fj4qLCwUN7e3pXG5Xybo72WvQryCbrqnEBjc6LohDr7dlaob2ilMdX9LNVWfdSYnzt9+rRatWqlzZs3a+DAgXVSY6TqX5svcr9QcUmxWni2qNa8QGNyvPC4IttEKqBZQKUxVX2WalojRo8ereLiYrtGdv/+/RUWFqa0tDQZhqHAwEA99thjmjFjhqQf/t7h5+en9PR0Pfjgg7bjPvroIyUkJOjdd99V9+7dtWvXLoWFhVV6HsOGDZOfn5+WL19erVyupro15sKlC/rs2Gdq5tZMHi4eV50XaEysl60qsBZoYLuB8nLzqjSuvv8+AwAAAAAAgIbj4sjFS0pKtGPHDiUmJtrGnJycFB0drezs7Gua+9ChQwoMDJSHh4eioqKUnJystm3bSpJ27NihS5cuKTo62hYfGhqqtm3bVtrcslqtslqttvdFRUXVzuV8yXl9U/TNNZwNcGM6Zz3n0PXrs8b8VGFhoSTp1ltvlVS7GiPVvs6UGWU6VXxK31/+vranANywLpddrvWxtakR2dnZSkhIsBuLiYnR2rVrJUlHjhxRfn6+3effx8dHkZGRys7OtjXQLRaLJkyYoLVr18rT07Na+RYWFqpr167VzuXnruXvMpL0TdE3NNBx0ykpLVFTt6aOTgMAAAAAAAANyKEN9DNnzqi0tFR+fn52435+fvr6669rPW9kZKTS09PVpUsXnTx5UnPnztWdd96pffv2qVmzZsrPz5ebm5uaN29ebt38/PwK50xOTtbcuXNrnMstTW5Rv9b9anMaQKNwq+etDlu7vmrMT5WVlWnatGm6/fbb1aNHD0mqVY2Ral9nQm4JkV9Tv6sHAo2QyWSSt3vt7vasTY3Iz8+vMP7KZ/vKn1XFGIahhx9+WJMmTVJERISOHj161Vzfeecdffnll3rllVeqncvP1bbGuDu7q9OtnVRaVlrjY4HGwMnkxC+PAAAAAAAA3EQc2kCvL0OHDrW97tWrlyIjI9WuXTu98847Gj9+fK3mTExMtLvLq6ioSEFBV/9a9lub3KpbmziugQigfk2ZMkX79u3T559/fs1z1bbOtPFuc81rA2g4L774os6dO2d353tVNm3apLi4OL322mvq3r17rdetbY1xdnJWh1s71HpdAAAAAAAAALiROLSB7uvrK2dnZ1ksFrtxi8Uif3//OlunefPm6ty5sw4fPixJ8vf3V0lJiQoKCuzuEK1qXXd3d7m7u9dZTgDqX33XmPj4eH344Yf67LPP1KbNj03s2tQYiToDNLTa1Ah/f/8q46/8abFYFBAQYBdz5fnmGzduVHZ2drnPe0REhMaMGaM333zTNrZ582bde++9Wrx4scaOHVujXH6OGgMAAAAAAAAAV+fkyMXd3NwUHh6uzMxM21hZWZkyMzMVFRVVZ+ucP39eOTk5th9kh4eHy9XV1W7dgwcPKjc3t07XBeBY9VVjDMNQfHy83n//fW3cuFEhISF2+6kxwI2hNjUiKirKLl6SNmzYYIsPCQmRv7+/XUxRUZG2bdtmi1myZIl2794ts9kss9ms9evXS5JWr16t+fPn247LysrSsGHD9Ne//lUTJ06scS4AAAAAAAAAgJpz+Fe4JyQkaNy4cYqIiFC/fv2Umpqq4uJixcXFSZLGjh2r1q1bKzk5WZJUUlKiAwcO2F6fOHFCZrNZXl5e6tixoyRpxowZuvfee9WuXTvl5eVpzpw5cnZ2VmxsrCTJx8dH48ePV0JCgm699VZ5e3vr0UcfVVRUlPr37++AqwCgvtRHjZkyZYpWrlypDz74QM2aNbM9b9jHx0dNmjShxgA3kJrWiKlTp2rQoEF6/vnnNWzYMK1atUpfffWVXn31VUk/PJN92rRpevbZZ9WpUyeFhIRo9uzZCgwM1IgRIyRJbdu2tcvBy8tLktShQwfbt1ls2rRJv/71rzV16lSNHDnSVmfc3Nx06623VisXAAAAAAAAAEDNObyBPnr0aJ0+fVpJSUnKz89XWFiYMjIy5OfnJ0nKzc2Vk9OPN8rn5eWpT58+tvcpKSlKSUnRoEGDlJWVJUn65ptvFBsbq7Nnz6ply5a64447tHXrVrVs2dJ23OLFi+Xk5KSRI0fKarUqJiZGL7/8csOcNIAGUx81ZtmyZZKkwYMH2621YsUKPfzww5KoMcCNoqY1YsCAAVq5cqVmzZqlp556Sp06ddLatWvVo0cPW8zMmTNVXFysiRMnqqCgQHfccYcyMjLk4eFR7bzefPNNXbhwQcnJybbmvSS7WlSdXAAAAAAAAAAANWMyDMNwdBI3oqKiIvn4+KiwsFDe3t6OTge4YfFZqhzXBqgbfJYqxnUB6g6fJwAAAAAAgMbDoc9ABwAAAAAAAAAAAADgekEDHQAAAAAAAAAAAAAAXQfPQL9RXfnm+6KiIgdnAtzYrnyGeJpEedQZoG5QZypGjQHqDnUGAAAAAACg8aCBXkvnzp2TJAUFBTk4E6BxOHfunHx8fBydxnWFOgPULeqMPWoMUPeoMwAAAAAAADc+k8FtErVSVlamvLw8NWvWTCaTqdK4oqIiBQUF6fjx4/L29m7ADFmf9W+M9Q3D0Llz5xQYGCgnJ54q8VPVqTM3wn9j1md9R69PnakYf5dhfdavu/WpMwAAAAAAAI0Hd6DXkpOTk9q0aVPteG9vb4f80I/1Wf9GWJ87tSpWkzpzvf83Zn3Wd/T61Jny+LsM67N+3a5PnQEAAAAAAGgcuD0CAAAAAAAAAAAAAADRQAcAAAAAAAAAAAAAQBIN9Hrn7u6uOXPmyN3dnfVZn/VR5xx9jVmf9W/m9W8Wjr7OrM/6N/P6AAAAAAAAaHgmwzAMRycBAAAAAAAAAAAAAICjcQc6AAAAAAAAAAAAAACigQ4AAAAAAAAAAAAAgCQa6AAAAAAAAAAAAAAASKKBDgAAAAAAAAAAAACApJu8gb506VIFBwfLw8NDkZGR2r59e5Xxa9asUWhoqDw8PNSzZ0+tX7/ebr9hGEpKSlJAQICaNGmi6OhoHTp0yC5m/vz5GjBggDw9PdWkSZNy6+/evVuxsbEKCgpSkyZN1LVrV73wwgvl1m/fvr06dOggd3d3dezYUenp6Q22vpubm0wmU7nt5MmT17z+2bNndc899ygwMFDu7u4KCgpSfHy8ioqKGuT8q7N+fZ7/T509e1Zt2rSRyWRSQUFBg5x/ddavq/Nv3ry5KlLR3KtWrbKLycrK0m233WZ3/tcr6gx1hjpDnalP1BhqDDWGGgMAAAAAAIA6ZtykVq1aZbi5uRnLly839u/fb0yYMMFo3ry5YbFYKoz/4osvDGdnZ+O5554zDhw4YMyaNctwdXU19u7da4tZsGCB4ePjY6xdu9bYvXu3cd999xkhISHG999/b4tJSkoyFi1aZAwbNsyQVG79xYsXG3/+85+NrKwsIycnx/j73/9uNGnSxJg+fbpt/U8++cRwcXExnJycjA8++MB48cUXDWdnZ+MPf/hDg6yfnp5uSDJcXV2NTZs2GSdPnjROnjxpJCcnX/P6Bw8eNF5++WXjyy+/NI4ePWp8+umnRpcuXYzo6OgGOf/qrF+f5//T//+GDx9uDB061JBkZGRkNMj5V2f9ujj/hIQEw8fHp8LPmiRjxYoVtnlPnjxpN8f//vc/w9PT00hISDAOHDhgO/+MjIwK53Mk6gx1hjpDnalP1BhqDDWGGgMAAAAAAIC6d9M20Pv162dMmTLF9r60tNQIDAw0kpOTK4x/4IEHjGHDhtmNRUZGGn/84x8NwzCMsrIyw9/f31i4cKFtf0FBgeHu7m783//9X7n52rdvb7i5uVVr/T/96U9Gq1atbOvPnDnT6N69u936DzzwgOHm5tYg62/atMmQZERERDTI+b/wwgtGkyZNHHb+P1+/Ic7/5ZdfNgYNGmRkZmYakozf/OY3DXr+Va1fF+e/YsWKKn/o/P7771e476fn/1OjR482YmJiKj3GUagz1BnqDHWmPlFjqDHUGGoMAAAAAAAA6t5N+RXuJSUl2rFjh6Kjo21jTk5Oio6OVnZ2doXHZGdn28VLUkxMjC3+yJEjys/Pt4vx8fFRZGRkuTlLSkp09OhRubi4VGv9wsJCnTt3zjb3lVx+uv5tt92mkpKSBln/ikOHDumNN97QL37xC61Zs6Zezj8vL0/vvfeeTCaTQ86/ovXr+/wPHDigefPm6W9/+5ucnH74iG7fvr3Bzv9q61/r+VfHlClT5Ovrq379+mn58uUyDMO272qfxesFdYY6Q52hztQnagw1hhpDjQEAAAAAAED9uCkb6GfOnFFpaan8/Pzsxv38/JSfn1/hMfn5+VXGX/mzOnOeOXNGZWVlMplMV43dsmWLVq9erUuXLtnmvpLLT+OdnZ0lSd7e3vW+fkBAgNLS0jRp0iQ1a9ZMQUFBeuihh+r0/GNjY+Xp6anWrVvL29u7wc+/qvXr8/xPnjyp2NhYLVy4UG3btrXtO3XqVIOcf3XWv9bzv5p58+bpnXfe0YYNGzRy5Ej96U9/0osvvmjbX9lnsaioSN9//32N1qpP1BnqDHWGOlOfqDHUGGoMNQYAAAAAAAD146ZsoN8o9u3bp+HDh2vOnDnlfkDoyPW7dOmiP/7xj2rbtq1cXV21fPly9ejRo07XXrx4sXbu3KkPPvhAOTk5Ki0trdP5r2X9+jz/48ePq2vXrvrd735XJ/PVx/r1/d9/9uzZuv3229WnTx898cQTmjlzphYuXFhn88MedYY609CoMzcXagw1pqFRYwAAAAAAAHCtbsoGuq+vr5ydnWWxWOzGLRaL/P39KzzG39+/yvgrf1ZnTl9fXzk5Odl9lePPYw8cOKAhQ4Zo4sSJmjVrlt36V17/NP7KD0WLiorqff2K4vv27Vun5+/v76/Q0FDdd999euWVV1RWVqZDhw412PlXtX59nv+FCxe0Zs0aubi4yMXFRUOGDJEkXbp0Senp6fV+/tVZ/1rPv6YiIyP1zTffyGq1Sqr8s+jt7a0mTZpc01p1iTpDnaHOUGfqEzWGGkONocYAAAAAAACgftyUDXQ3NzeFh4crMzPTNlZWVqbMzExFRUVVeExUVJRdvCRt2LDBFh8SEiJ/f3+7mKKiIm3btq3cnG5ubgoODtbly5crXH///v266667NG7cOM2fP7/c+lde/3R9s9ksNze3Blm/ovM/cuSI3N3d62T9nysrK5Mkbd68uUHO/2rr1+f5T5w4Ubt375bZbJbZbNbrr78uSRoyZIjth8T1ef7VWf9az7+mzGazbrnlFrm7u9udf2W5XC+oM9QZ6gx1pj5RY6gx1BhqDAAAAAAAAOqJcZNatWqV4e7ubqSnpxsHDhwwJk6caDRv3tzIz883DMMwfv/73xtPPvmkLf6LL74wXFxcjJSUFOM///mPMWfOHMPV1dXYu3evLWbBggVG8+bNjQ8++MDYs2ePMXz4cCMkJMT4/vvvbTHHjh0zdu3aZYwaNcqQZMydO9d49913jbi4OKN58+bGpk2bjJYtWxohISFGfHy8cfLkSePkyZPGhx9+aFt/w4YNhouLi+Hk5GR88MEHxtKlSw1nZ2fjD3/4Q4Os/+STTxqjR482XF1djffee8+YOnWq4eTkZDzyyCPXvP5bb71lLF++3Lj33nuNyZMnGx9++KHRtWtXo2fPng1y/tVZvz7P/+f//23atMmQZGRkZDTI+Vdn/bo4/7lz5xpeXl7Grl27jF27dhnnzp0zDMMw/vnPfxqvvfaasXfvXuPQoUPGyy+/bHh6ehpJSUm2Of73v/8Znp6exuOPP2785z//sZ1/RkZGTctAvaPOUGeoM9SZ+kSNocZQY6gxAAAAAAAAqHs3bQPdMAzjxRdfNNq2bWu4ubkZ/fr1M7Zu3WrbN2jQIGPcuHF28e+8847RuXNnw83Nzejevbuxbt06u/1lZWXG7NmzDT8/P8Pd3d0YMmSIcfDgQbuYcePGGZLKbaGhocbWrVuNOXPmVLi/Xbt2dusHBwcb7du3N9zc3Iz27dsbK1asaLD1nZ2dDVdXV8PV1dW49dZbjcGDBxsbN26sk/U3btxoREVFGc7OzoaTk5PRqVMn44knnjC+++67Bjn/6qxfn+f/8///rvzQt6HOvzrr18f5b9q0yTAMw/joo4+MsLAww8vLy2jatKnRu3dvIy0tzSgtLbWbZ9OmTUZYWJjd+V+vqDPUGeoMdaY+UWOoMdQYagwAAAAAAADqlskwfvZdhgAAAAAAAAAAAAAA3IRuymegAwAAAAAAAAAAAADwczTQAQAAAAAAAAAAAAAQDXQAAAAAAAAAAAAAACTRQAcAAAAAAAAAAAAAQBINdAAAAAAAAAAAAAAAJNFABwAAAAAAAAAAAABAEg10AAAAAAAAAAAAAAAk0UAHAAAAAAAAAAAAAEASDXQAAAAAAAAAAAAAACTRQEcjEBwcrNTU1ErfX/H0008rLCyswfIC0DhQYwDUN+oMAAAAAAAAcP2ggY7rXklJiaNTANCIUWMA1DfqDAAAAAAAAHDjoIGO687gwYMVHx+vadOmydfXVzExMQ26/ieffCIPDw8VFBTYjU+dOlV33313g+YCoO5RYwDUN+oMAAAAAAAAcOOigY7r0ptvvik3Nzd98cUXSktLa9C1hwwZoubNm+vdd9+1jZWWlmr16tUaM2ZMg+YCoH5QYwDUN+oMAAAAAAAAcGOigY7rUqdOnfTcc8+pS5cu6tKlS42Pf+KJJ+Tl5WW3/eUvf6nWsc7OznrwwQe1cuVK21hmZqYKCgo0cuTIGucC4PpDjQFQ36gzAAAAAAAAwI3JxdEJABUJDw+/puMff/xxPfzww3ZjS5Ys0WeffVat48eMGaP+/fsrLy9PgYGBevvttzVs2DA1b978mvICcH2gxgCob9QZAAAAAAAA4MZEAx3XpaZNm17T8b6+vurYsaPd2K233lrt4/v27asOHTpo1apVmjx5st5//32lp6dfU04Arh/UGAD1jToDAAAAAAAA3JhooAOVGDNmjN5++221adNGTk5OGjZsmKNTAtCIUGMA1DfqDAAAAAAAAFBzPAMdqMSYMWO0c+dOzZ8/X7/97W/l7u7u6JQANCLUGAD1jToDAAAAAAAA1BwNdKASHTt2VL9+/bRnzx6NGTPG0ekAaGSoMQDqG3UGAAAAAAAAqDmTYRiGo5MAAAAAAAAAAAAAAMDRuAMdAAAAAAAAAAAAAADRQMd17u2335aXl1eFW/fu3Ws9b2Vzenl56d///ncdngGA6xk1BkB9o84AAAAAAAAANxa+wh3XtXPnzslisVS4z9XVVe3atavVvIcPH650X+vWrdWkSZNazQvgxkKNAVDfqDMAAAAAAADAjYUGOgAAAAAAAAAAAAAA4ivcAQAAAAAAAAAAAACQRAMdAAAAAAAAAAAAAABJNNABAAAAAAAAAAAAAJBEAx0AAAAAAAAAAAAAAEk00AEAAAAAAAAAAAAAkEQDHQAAAAAAAAAAAAAASTTQAQAAAAAAAAAAAACQRAMdAAAAAAAAAAAAAABJNNABAAAAAAAAAAAAAJBEAx0AAAAAAAAAAAAAAEmSi6MTuFGVlZUpLy9PzZo1k8lkcnQ6wA3LMAydO3dOgYGBcnLid3p+ijoD1A3qTMWoMUDdoc5UjDoD1A1qDAAAAAA0LBrotZSXl6egoCBHpwE0GsePH1ebNm0cncZ1hToD1C3qjD1qDFD3qDP2qDNA3aLGAAAAAEDDoIFeS82aNZP0wz9gvb29HZwNcOMqKipSUFCQ7TOFH1FngLpBnakYNQaoO9SZilFngLpBjQEAAACAhkUDvZaufAWht7c3PwwC6gBf61kedQaoW9QZe9QYoO5RZ+xRZ4C6RY0BAAAAgIbBw7MAAAAAAAAAAAAAABANdAAAAAAAAAAAAAAAJNFABwAAAAAAAAAAAABA0nXSQF+6dKmCg4Pl4eGhyMhIbd++vdLY/fv3a+TIkQoODpbJZFJqamq5mKefflomk8luCw0NtYsZPHhwuZhJkybV9akBuA5QYwBUpSY1QpLWrFmj0NBQeXh4qGfPnlq/fr3dfsMwlJSUpICAADVp0kTR0dE6dOhQhXNZrVaFhYXJZDLJbDbbxo8ePVquhphMJm3durVGuQBwPEfUmPnz52vAgAHy9PRU8+bNK1ynohqzatUqu5isrCzddtttcnd3V8eOHZWenl7j8wcAAAAAALjROLyBvnr1aiUkJGjOnDnauXOnevfurZiYGJ06darC+AsXLqh9+/ZasGCB/P39K523e/fuOnnypG37/PPPy8VMmDDBLua5556rs/MCcH2gxgCoSk1rxJYtWxQbG6vx48dr165dGjFihEaMGKF9+/bZYp577jktWbJEaWlp2rZtm5o2baqYmBhdvHix3HwzZ85UYGBgpfl9+umndnUkPDy8RrkAcCxH1ZiSkhKNGjVKkydPrjK/FStW2NWYESNG2PYdOXJEw4YN01133SWz2axp06bpkUce0ccff3xtFwUAAAAAAOB6ZzhYv379jClTptjel5aWGoGBgUZycvJVj23Xrp2xePHicuNz5swxevfuXeWxgwYNMqZOnVrDbH9UWFhoSDIKCwtrPQeA+v8s3ag1xjCoM0BdqeqzVNMa8cADDxjDhg2zG4uMjDT++Mc/GoZhGGVlZYa/v7+xcOFC2/6CggLD3d3d+L//+z+749avX2+EhoYa+/fvNyQZu3btsu07cuRIubGa5nI11Big7lT2eXJkjTEMw1ixYoXh4+NT4VqSjPfff7/Sc5o5c6bRvXt3u7HRo0cbMTExlR7zc9QZoG7wWQIAAACAhuXioL69pB/ujNixY4cSExNtY05OToqOjlZ2dvY1zX3o0CEFBgbKw8NDUVFRSk5OVtu2be1i3n77bb311lvy9/fXvffeq9mzZ8vT07PC+axWq6xWq+19UVFRtfK4XHZZFy+Xv+MMuFl4uHjIxckxpeZGqjFS7euM9bJVl8ou1e5EgEbA09VTTqaaf6lObWpEdna2EhIS7MZiYmK0du1aST/csZmfn6/o6Gjbfh8fH0VGRio7O1sPPvigJMlisWjChAlau3ZtlXXhvvvu08WLF9W5c2fNnDlT9913X7Vz+bna1hhJunDpgsqMsmrHA42Jk8lJnq6Vf04r48gaU11TpkzRI488ovbt22vSpEmKi4uTyWSy5fLTda7kMm3atErnq22dMQxDxZeKa5Q70Ji4OrnK3cXd0WkAAAAAAP4fhzbQz5w5o9LSUvn5+dmN+/n56euvv671vJGRkUpPT1eXLl108uRJzZ07V3feeaf27dunZs2aSZIeeughtWvXToGBgdqzZ4+eeOIJHTx4UO+9916FcyYnJ2vu3Lk1zuV44XH958x/an0uwI2u062d1KlFJ4esfSPVGKn2dWaPZY9OXzhd6/MBbmSuTq7q5ddLfl5+Vw/+mdrUiPz8/Arj8/PzbfuvjFUWYxiGHn74YU2aNEkRERE6evRouXW8vLz0/PPP6/bbb5eTk5PeffddjRgxQmvXrrU10a+Wy8/VtsZcvHxRX+Z9qeISmlu4OTV1baq+rfvWuInuqBpTXfPmzdPdd98tT09PffLJJ/rTn/6k8+fP689//nOVuRQVFen7779XkyZNys1Z2zpz5sIZ7c7frZKykhofCzQGtza5Vf3b9Hd0GgAAAACA/8ehDfT6MnToUNvrXr16KTIyUu3atdM777yj8ePHS5ImTpxoi+nZs6cCAgI0ZMgQ5eTkqEOHDuXmTExMtLsbpKioSEFBQVfNpcwo03nrebXxbnMtpwTckPLO5anUKHV0GnWuPmqMVPs6c/HyRRmGoVs8bqntKQE3rLxzeTfcndEvvviizp07Z3dX6s/5+vra1YO+ffsqLy9PCxcutLsLvSau5e8y31/6Xk1cmsjdmbvjcHMpKS1R8aXiG67OVMfs2bNtr/v06aPi4mItXLjQ1kCvjWupM4XWQgV4BdR6beBG9d3F72S9bL16IAAAAACgwTi0ge7r6ytnZ2dZLBa7cYvFIn9//zpbp3nz5urcubMOHz5caUxkZKQk6fDhwxU2t9zd3eXuXrsfGrs5u/F1bLgpuTm7OXT9G6nGSLWvM04mJ772ETeta3lERG1qhL+/f5XxV/60WCwKCAiwiwkLC5Mkbdy4UdnZ2eU+7xERERozZozefPPNCteOjIzUhg0bqp3Lz13L32Uk/j6Dm9eFyxdqdZyjakxtRUZG6plnnpHVapW7u3uluXh7e1d497l0bXXG2eRMjcFNiV9OAwAAAIDrT80fGFqH3NzcFB4erszMTNtYWVmZMjMzFRUVVWfrnD9/Xjk5OXY/ZPo5s9ksSVXGALixUGMAVKU2NSIqKsouXpI2bNhgiw8JCZG/v79dTFFRkbZt22aLWbJkiXbv3i2z2Syz2az169dLklavXq358+dXmq/ZbLarIVfLBYBjOarG1JbZbNYtt9xia4BTYwAAAAAAwM3K4V/hnpCQoHHjxikiIkL9+vVTamqqiouLFRcXJ0kaO3asWrdureTkZElSSUmJDhw4YHt94sQJmc1meXl5qWPHjpKkGTNm6N5771W7du2Ul5enOXPmyNnZWbGxsZKknJwcrVy5Ur/61a/UokUL7dmzR9OnT9fAgQPVq1cvB1wFAPWFGgOgKjWtEVOnTtWgQYP0/PPPa9iwYVq1apW++uorvfrqq5Ikk8mkadOm6dlnn1WnTp0UEhKi2bNnKzAwUCNGjJAktW3b1i4HLy8vSVKHDh3Ups0Pj3x588035ebmpj59+kiS3nvvPS1fvlyvv/667bir5QLA8RxRYyQpNzdX3377rXJzc1VaWmr7Rb6OHTvKy8tL//rXv2SxWNS/f395eHhow4YN+stf/qIZM2bY5pg0aZJeeuklzZw5U3/4wx+0ceNGvfPOO1q3bl3DXDwAAAAAAAAHcXgDffTo0Tp9+rSSkpKUn5+vsLAwZWRkyM/PT9IPP/xxcvrxRvm8vDzbD5MlKSUlRSkpKRo0aJCysrIkSd98841iY2N19uxZtWzZUnfccYe2bt2qli1bSvrhbpBPP/3U9gOsoKAgjRw5UrNmzWq4EwfQIKgxAKpS0xoxYMAArVy5UrNmzdJTTz2lTp06ae3aterRo4ctZubMmSouLtbEiRNVUFCgO+64QxkZGfLw8KhRbs8884yOHTsmFxcXhYaGavXq1frtb39bo1wAOJajakxSUpLd4yCu/N1m06ZNGjx4sFxdXbV06VJNnz5dhmGoY8eOWrRokSZMmGA7JiQkROvWrdP06dP1wgsvqE2bNnr99dcVExNTb9cLAAAAAADgemAyDMNwdBI3oqKiIvn4+KiwsFDe3t6VxuV8m6O9lr0K8glqwOyA68OJohPqpsa4WAABAABJREFU7NtZob6hlcZU97N0M6rutfki9wsVlxSrhWeLBswOuD4cLzyuyDaRCmhW+eMRqDMVq+51uXDpgj479pmauTWTh0vNfgkAuNFZL1tVYC3QwHYD5eXmVWkcdaZi1b0ulvMWZR/P5t9MuCl99/13cnV21aDgQZXGUGMAAAAAoGE59BnoAAAAAAAAAAAAAABcL2igAwAAAAAAAAAAAAAgGugAAAAAAAAAAAAAAEiigQ4AAAAAAAAAAAAAgCQa6AAAAAAAAAAAAAAASKKBDgAAAAAAAAAAAACAJBroAAAAAAAAAAAAAABIooEOAAAAAAAAAAAAAIAkGugAAAAAAAAAAAAAAEiigQ4AAAAAAAAAAAAAgCQa6AAAAAAAAAAAAAAASKKBDgAAAAAAAAAAAACAJBroAAAAAAAAAAAAAABIooEOAAAAAAAAAAAAAIAkGugAAAAAAAAAAAAAAEiigQ4AAAAAAAAAAAAAgCQa6AAAAAAAAAAAAAAASKKBDgAAAAAAAAAAAACAJBroAG4CS5cuVXBwsDw8PBQZGant27dXGrt//36NHDlSwcHBMplMSk1NLRfz9NNPy2Qy2W2hoaF2MRcvXtSUKVPUokULeXl5aeTIkbJYLHV9agAAAAAAAAAAAKhDNNABNGqrV69WQkKC5syZo507d6p3796KiYnRqVOnKoy/cOGC2rdvrwULFsjf37/Sebt3766TJ0/ats8//9xu//Tp0/Wvf/1La9as0ebNm5WXl6f777+/Ts8NAAAAAAAAAAAAdYsGOoBGbdGiRZowYYLi4uLUrVs3paWlydPTU8uXL68wvm/fvlq4cKEefPBBubu7Vzqvi4uL/P39bZuvr69tX2Fhod544w0tWrRId999t8LDw7VixQpt2bJFW7durfNzBAAAAAAAAAAAQN2ggQ6g0SopKdGOHTsUHR1tG3NyclJ0dLSys7Ovae5Dhw4pMDBQ7du315gxY5Sbm2vbt2PHDl26dMlu3dDQULVt27bKda1Wq4qKiuw2AAAAAAAAAAAANBwa6AAarTNnzqi0tFR+fn52435+fsrPz6/1vJGRkUpPT1dGRoaWLVumI0eO6M4779S5c+ckSfn5+XJzc1Pz5s1rtG5ycrJ8fHxsW1BQUK1zBAAAAAAAAAAAQM3RQAeAGho6dKhGjRqlXr16KSYmRuvXr1dBQYHeeeeda5o3MTFRhYWFtu348eN1lDGAqixdulTBwcHy8PBQZGSktm/fXmX8mjVrFBoaKg8PD/Xs2VPr16+3228YhpKSkhQQEKAmTZooOjpahw4dqnAuq9WqsLAwmUwmmc3mCmMOHz6sZs2alfulnPT0dJlMJrvNw8Oj2ucNoGE4osbMnz9fAwYMkKenZ7na8XNnz55VmzZtZDKZVFBQYBvPysoqV2NMJtM1/RIiAAAAAADAjYAGOoBGy9fXV87OzrJYLHbjFotF/v7+dbZO8+bN1blzZx0+fFiS5O/vr5KSErsfQldnXXd3d3l7e9ttAOrX6tWrlZCQoDlz5mjnzp3q3bu3YmJidOrUqQrjt2zZotjYWI0fP167du3SiBEjNGLECO3bt88W89xzz2nJkiVKS0vTtm3b1LRpU8XExOjixYvl5ps5c6YCAwMrze/SpUuKjY3VnXfeWeF+b29vnTx50rYdO3ashlcAQH1yVI0pKSnRqFGjNHny5KvmOH78ePXq1avS/QcPHrSrM61atarBFQAAAAAAALjx0EAH0Gi5ubkpPDxcmZmZtrGysjJlZmYqKiqqztY5f/68cnJyFBAQIEkKDw+Xq6ur3boHDx5Ubm5una4L4NotWrRIEyZMUFxcnLp166a0tDR5enpq+fLlFca/8MILuueee/T444+ra9eueuaZZ3TbbbfppZdekvTDnaGpqamaNWuWhg8frl69eulvf/ub8vLytHbtWru5PvroI33yySdKSUmpNL9Zs2YpNDRUDzzwQIX7TSaT/P39bdvPH1kBwLEcVWPmzp2r6dOnq2fPnlXmt2zZMhUUFGjGjBmVxrRq1cquzjg58U9IAAAAAADQuPHTDwCNWkJCgl577TW9+eab+s9//qPJkyeruLhYcXFxkqSxY8cqMTHRFl9SUiKz2Syz2aySkhKdOHFCZrPZdne5JM2YMUObN2/W0aNHtWXLFv3mN7+Rs7OzYmNjJUk+Pj4aP368EhIStGnTJu3YsUNxcXGKiopS//79G/YCAKhUSUmJduzYoejoaNuYk5OToqOjlZ2dXeEx2dnZdvGSFBMTY4s/cuSI8vPz7WJ8fHwUGRlpN6fFYtGECRP097//XZ6enhWutXHjRq1Zs0ZLly6t9BzOnz+vdu3aKSgoSMOHD9f+/fsrjbVarSoqKrLbANQfR9aY6jhw4IDmzZunv/3tb1U2xcPCwhQQEKBf/OIX+uKLL6qckzoDAAAAAAAaAxroABq10aNHKyUlRUlJSQoLC5PZbFZGRobtLs3c3FydPHnSFp+Xl6c+ffqoT58+OnnypFJSUtSnTx898sgjtphvvvlGsbGx6tKlix544AG1aNFCW7duVcuWLW0xixcv1q9//WuNHDlSAwcOlL+/v957772GO3EAV3XmzBmVlpaWu2vbz8+v0mf85ufnVxl/5c+qYgzD0MMPP6xJkyYpIiKiwnXOnj2rhx9+WOnp6ZU+zqFLly5avny5PvjgA7311lsqKyvTgAED9M0331QYn5ycLB8fH9sWFBRUYRyAuuGoGlMdVqtVsbGxWrhwodq2bVthTEBAgNLS0vTuu+/q3XffVVBQkAYPHqydO3dWOi91BgAAAAAANAYujk4AAOpbfHy84uPjK9yXlZVl9z44OFiGYVQ536pVq666poeHh5YuXVrlnaMAbk4vvviizp07Z/ftFz83YcIEPfTQQxo4cGClMVFRUXaPhRgwYIC6du2qV155Rc8880y5+MTERCUkJNjeFxUV0dwCblKJiYnq2rWrfve731Ua06VLF3Xp0sX2fsCAAcrJydHixYv197//vdJ5qTMAAAAAAOBGxx3oAADgpuTr6ytnZ2dZLBa7cYvFIn9//wqP8ff3rzL+yp9VxWzcuFHZ2dlyd3eXi4uLOnbsKEmKiIjQuHHjbDEpKSlycXGRi4uLxo8fr8LCQrm4uFT67GRXV1f16dPH7pETP+Xu7i5vb2+7DUD9cVSNqY4rj4i4UmOGDBliy3nOnDmVHtevX79Ka4xEnQEAAAAAAI3DddFAX7p0qYKDg+Xh4aHIyEht37690tj9+/dr5MiRCg4OlslkUmpqarmYp59+WiaTyW4LDQ2tcD7DMDR06FCZTCatXbu2js4IAABc79zc3BQeHq7MzEzbWFlZmTIzM+3u7P6pqKgou3hJ2rBhgy0+JCRE/v7+djFFRUXatm2bLWbJkiXavXu3zGazzGaz1q9fL0lavXq15s+fL+mH5yBf2W82mzVv3jw1a9ZMZrNZv/nNbyrMrbS0VHv37lVAQEAtrwiAuuSoGlMd7777rl0dev311yVJ//73vzVlypRKjzObzdQYAAAAAADQ6Dn8K9xXr16thIQEpaWlKTIyUqmpqYqJidHBgwfVqlWrcvEXLlxQ+/btNWrUKE2fPr3Sebt3765PP/3U9t7FpeJTTU1NlclkuvYTAQAAN5yEhASNGzdOERER6tevn1JTU1VcXKy4uDhJ0tixY9W6dWslJydLkqZOnapBgwbp+eef17Bhw7Rq1Sp99dVXevXVVyVJJpNJ06ZN07PPPqtOnTopJCREs2fPVmBgoEaMGCFJ5Z437OXlJUnq0KGD2rRpI0nq2rWrXcxXX30lJycn9ejRwzY2b9489e/fXx07dlRBQYEWLlyoY8eO6ZFHHqn7CwWgVhxRYyQpNzdX3377rXJzc1VaWiqz2SxJ6tixo7y8vNShQwe7PM+cOSPph9rTvHlzST/8OykkJETdu3fXxYsX9frrr2vjxo365JNP6vGKAQAAAAAAOJ7DG+iLFi3ShAkTbD9ESktL07p167R8+XI9+eST5eL79u2rvn37SlKF+69wcXG56tcYms1mPf/88/rqq6+4kwIAgJvQ6NGjdfr0aSUlJSk/P19hYWHKyMiQn5+fpB+aUE5OP35hz4ABA7Ry5UrNmjVLTz31lDp16qS1a9faNbZnzpyp4uJiTZw4UQUFBbrjjjuUkZEhDw+POs39u+++04QJE5Sfn69bbrlF4eHh2rJli7p161an6wCoPUfVmKSkJL355pu293369JEkbdq0SYMHD65W7iUlJXrsscd04sQJeXp6qlevXvr000911113XcslAQAAAAAAuO6ZDMMwHLV4SUmJPD099Y9//MPujolx48apoKBAH3zwQZXHBwcHa9q0aZo2bZrd+NNPP62FCxfKx8dHHh4eioqKUnJyst0dXxcuXFBERISSk5M1fPhwmUwmvf/++3Z5/JTVapXVarW9LyoqUlBQkAoLC6t8tl/Otznaa9mrIJ+gKs8FaIxOFJ1QZ9/OCvWt+BEK0g+fJR8fn6t+lm5G1b02X+R+oeKSYrXwbNGA2QHXh+OFxxXZJlIBzSr/RTjqTMWqe10uXLqgz459pmZuzeThUre/BABc76yXrSqwFmhgu4HycvOqNI46U7HqXhfLeYuyj2fzbybclL77/ju5OrtqUPCgSmOoMQAAAADQsBz6DPQzZ86otLTUdgfGFX5+fsrPz6/1vJGRkUpPT1dGRoaWLVumI0eO6M4779S5c+dsMdOnT9eAAQM0fPjwas2ZnJwsHx8f2xYUxA93AAAAAAAAAAAAAKAxcfhXuNeHoUOH2l736tVLkZGRateund555x2NHz9e//znP7Vx40bt2rWr2nMmJiYqISHB9v7KHegAAAAAAAAAAAAAgMbBoXeg+/r6ytnZWRaLxW7cYrFc9fnlNdG8eXN17txZhw8fliRt3LhROTk5at68uVxcXOTi8sPvEYwcObLSZwK6u7vL29vbbgMAAAAAAAAAAAAANB4ObaC7ubkpPDxcmZmZtrGysjJlZmYqKiqqztY5f/68cnJyFBDww/NRn3zySe3Zs0dms9m2SdLixYu1YsWKOlsXAAAAAAAAAAAAAHDjcPhXuCckJGjcuHGKiIhQv379lJqaquLiYsXFxUmSxo4dq9atWys5OVmSVFJSogMHDthenzhxQmazWV5eXurYsaMkacaMGbr33nvVrl075eXlac6cOXJ2dlZsbKwkyd/fv8I73Nu2bauQkJCGOG0AAAAAAAAAAAAAwHXG4Q300aNH6/Tp00pKSlJ+fr7CwsKUkZEhPz8/SVJubq6cnH68UT4vL099+vSxvU9JSVFKSooGDRqkrKwsSdI333yj2NhYnT17Vi1bttQdd9yhrVu3qmXLlg16bgAAAAAAAAAAAACAG4fDG+iSFB8fr/j4+Ar3XWmKXxEcHCzDMKqcb9WqVTXO4WpzAgAAAAAAAAAAAAAaN4c+Ax0AAAAAAAAAAAAAgOsFDXQAAAAAAAAAAAAAAEQDHQAAAAAAAAAAAAAASTTQAQAAAAAAAAAAAACQRAMdAAAAAAAAAAAAAABJNNABAAAAAAAAAAAAAJBEAx3ATWDp0qUKDg6Wh4eHIiMjtX379kpj9+/fr5EjRyo4OFgmk0mpqalVzr1gwQKZTCZNmzbNbnzw4MEymUx226RJk+rgbAAAAAAAAAAAAFBfaKADaNRWr16thIQEzZkzRzt37lTv3r0VExOjU6dOVRh/4cIFtW/fXgsWLJC/v3+Vc3/55Zd65ZVX1KtXrwr3T5gwQSdPnrRtzz333DWfDwAAAAAAAAAAAOoPDXQAjdqiRYs0YcIExcXFqVu3bkpLS5Onp6eWL19eYXzfvn21cOFCPfjgg3J3d6903vPnz2vMmDF67bXXdMstt1QY4+npKX9/f9vm7e1dJ+cEAAAAAAAAAACA+kEDHUCjVVJSoh07dig6Oto25uTkpOjoaGVnZ1/T3FOmTNGwYcPs5v65t99+W76+vurRo4cSExN14cKFKue0Wq0qKiqy2wAAAAAAAAAAANBwXBydAADUlzNnzqi0tFR+fn52435+fvr6669rPe+qVau0c+dOffnll5XGPPTQQ2rXrp0CAwO1Z88ePfHEEzp48KDee++9So9JTk7W3Llza50XAAAAAAAAAAAArg0NdACogePHj2vq1KnasGGDPDw8Ko2bOHGi7XXPnj0VEBCgIUOGKCcnRx06dKjwmMTERCUkJNjeFxUVKSgoqO6SBwAAAAAAAAAAQJVooANotHx9feXs7CyLxWI3brFY5O/vX6s5d+zYoVOnTum2226zjZWWluqzzz7TSy+9JKvVKmdn53LHRUZGSpIOHz5caQPd3d29yueuAwAAAAAAAAAAoH7xDHQAjZabm5vCw8OVmZlpGysrK1NmZqaioqJqNeeQIUO0d+9emc1m2xYREaExY8bIbDZX2DyXJLPZLEkKCAio1boAAAAAAAAAAACof9yBDqBRS0hI0Lhx4xQREaF+/fopNTVVxcXFiouLkySNHTtWrVu3VnJysiSppKREBw4csL0+ceKEzGazvLy81LFjRzVr1kw9evSwW6Np06Zq0aKFbTwnJ0crV67Ur371K7Vo0UJ79uzR9OnTNXDgQPXq1asBzx4AAAAAAAAAAAA1QQMdQKM2evRonT59WklJScrPz1dYWJgyMjLk5+cnScrNzZWT049fxpGXl6c+ffrY3qekpCglJUWDBg1SVlZWtdZ0c3PTp59+amvWBwUFaeTIkZo1a1adnhsAAAAAAAAAAADqFl/hDqDRi4+P17Fjx2S1WrVt2zbb88glKSsrS+np6bb3wcHBMgyj3FZV8zwrK0upqam290FBQdq8ebPOnj2rixcv6tChQ3ruuefk7e1dD2cH4FotXbpUwcHB8vDwUGRkpLZv315l/Jo1axQaGioPDw/17NlT69evt9tvGIaSkpIUEBCgJk2aKDo6WocOHapwLqvVqrCwMJlMJtujHn7u8OHDatasmZo3b17jXAA4niNqzPz58zVgwAB5enpWWDt+6uzZs2rTpo1MJpMKCgrs9mVlZem2226Tu7u7OnbsaPd3JgAAAAAAgMaKBjoAALhprV69WgkJCZozZ4527typ3r17KyYmRqdOnaowfsuWLYqNjdX48eO1a9cujRgxQiNGjNC+fftsMc8995yWLFmitLQ0bdu2TU2bNlVMTIwuXrxYbr6ZM2cqMDCw0vwuXbqk2NhY3XnnnbXKBYBjOarGlJSUaNSoUZo8efJVcxw/fnyFj5g5cuSIhg0bprvuuktms1nTpk3TI488oo8//rgWVwIAAAAAAODGQQMdAADctBYtWqQJEyYoLi5O3bp1U1pamjw9PbV8+fIK41944QXdc889evzxx9W1a1c988wzuu222/TSSy9J+uHO0NTUVM2aNUvDhw9Xr1699Le//U15eXlau3at3VwfffSRPvnkE6WkpFSa36xZsxQaGqoHHnigxrkAcDxH1Zi5c+dq+vTp6tmzZ5X5LVu2TAUFBZoxY0a5fWlpaQoJCdHzzz+vrl27Kj4+Xr/97W+1ePHi2l8QAAAAAACAGwANdAAAcFMqKSnRjh07FB0dbRtzcnJSdHS0srOzKzwmOzvbLl6SYmJibPFHjhxRfn6+XYyPj48iIyPt5rRYLJowYYL+/ve/y9PTs8K1Nm7cqDVr1mjp0qW1yuXnrFarioqK7DYA9ceRNaY6Dhw4oHnz5ulvf/ubnJzK/7OwpjVGos4AAAAAAIDGgQY6AAC4KZ05c0alpaXy8/OzG/fz81N+fn6Fx+Tn51cZf+XPqmIMw9DDDz+sSZMmKSIiosJ1zp49q4cffljp6eny9vauVS4/l5ycLB8fH9sWFBRUYRyAuuGoGlMdVqtVsbGxWrhwodq2bVujXIqKivT9999XeAx1BgAAAAAANAY00AEAABrQiy++qHPnzikxMbHSmAkTJuihhx7SwIED62zdxMREFRYW2rbjx4/X2dwAbiyJiYnq2rWrfve739X5vNQZAAAAAABwo6OBDgAAbkq+vr5ydnaWxWKxG7dYLPL396/wGH9//yrjr/xZVczGjRuVnZ0td3d3ubi4qGPHjpKkiIgIjRs3zhaTkpIiFxcXubi4aPz48SosLJSLi4vt2clXy+Xn3N3d5e3tbbcBqD+OqjHVceUREVdqzJAhQ2w5z5kzp8pcvL291aRJkwrnpc4AAAAAAIDGgAY6AAC4Kbm5uSk8PFyZmZm2sbKyMmVmZioqKqrCY6KiouziJWnDhg22+JCQEPn7+9vFFBUVadu2bbaYJUuWaPfu3TKbzTKbzVq/fr0kafXq1Zo/f76kH549fGW/2WzWvHnz1KxZM5nNZv3mN7+pVi4AHMtRNaY63n33Xbs69Prrr0uS/v3vf2vKlCnVygUAAAAAAKCxcnF0AgAAAI6SkJCgcePGKSIiQv369VNqaqqKi4sVFxcnSRo7dqxat26t5ORkSdLUqVM1aNAgPf/88xo2bJhWrVqlr776Sq+++qokyWQyadq0aXr22WfVqVMnhYSEaPbs2QoMDNSIESMkqdzzhr28vCRJHTp0UJs2bSRJXbt2tYv56quv5OTkpB49etjGrpYLAMdzRI2RpNzcXH377bfKzc1VaWmpzGazJKljx47y8vJShw4d7PI8c+aMpB9qT/PmzSVJkyZN0ksvvaSZM2fqD3/4gzZu3Kh33nlH69atq8crBgAAAAAA4Hg00AEAwE1r9OjROn36tJKSkpSfn6+wsDBlZGTIz89P0g9NKCenH7+wZ8CAAVq5cqVmzZqlp556Sp06ddLatWvtGtszZ85UcXGxJk6cqIKCAt1xxx3KyMiQh4dHneZenVwAOJajakxSUpLefPNN2/s+ffpIkjZt2qTBgwdXK/eQkBCtW7dO06dP1wsvvKA2bdro9ddfV0xMzLVcEgAAAAAAgOueyTAMw9FJ3IiKiork4+OjwsLCKp/tl/NtjvZa9irIJ6gBswOuDyeKTqizb2eF+oZWGlPdz9LNqLrX5ovcL1RcUqwWni0aMDvg+nC88Lgi20QqoFlApTHUmYpV97pcuHRBnx37TM3cmsnDpW5/CQC43lkvW1VgLdDAdgPl5eZVaRx1pmLVvS6W8xZlH8/m30y4KX33/XdydXbVoOBBlcZQYwAAAACgYfEMdAAAAAAAAAAAAAAARAMdAAAAAAAAAAAAAABJNNABAAAAAAAAAAAAAJB0nTTQly5dquDgYHl4eCgyMlLbt2+vNHb//v0aOXKkgoODZTKZlJqaWi7m6aeflslksttCQ+2fwfzHP/5RHTp0UJMmTdSyZUsNHz5cX3/9dV2fGgAAAAAAAAAAAADgBuHwBvrq1auVkJCgOXPmaOfOnerdu7diYmJ06tSpCuMvXLig9u3ba8GCBfL396903u7du+vkyZO27fPPP7fbHx4erhUrVug///mPPv74YxmGoV/+8pcqLS2t0/MDAAAAAAAAAAAAANwYXBydwKJFizRhwgTFxcVJktLS0rRu3TotX75cTz75ZLn4vn37qm/fvpJU4f4rXFxcqmywT5w40fY6ODhYzz77rHr37q2jR4+qQ4cOtT0dAAAAAAAAAAAAAMANyqF3oJeUlGjHjh2Kjo62jTk5OSk6OlrZ2dnXNPehQ4cUGBio9u3ba8yYMcrNza00tri4WCtWrFBISIiCgoIqjLFarSoqKrLbAAAAAAAAAAAAAACNh0Mb6GfOnFFpaan8/Pzsxv38/JSfn1/reSMjI5Wenq6MjAwtW7ZMR44c0Z133qlz587Zxb388svy8vKSl5eXPvroI23YsEFubm4VzpmcnCwfHx/bVlmjHQAAAAAAAAAAAABwY3L4M9Drw9ChQzVq1Cj16tVLMTExWr9+vQoKCvTOO+/YxY0ZM0a7du3S5s2b1blzZz3wwAO6ePFihXMmJiaqsLDQth0/frwhTgUAAAAAAAAAAAAA0EAc2kD39fWVs7OzLBaL3bjFYqny+eU11bx5c3Xu3FmHDx+2G/fx8VGnTp00cOBA/eMf/9DXX3+t999/v8I53N3d5e3tbbcBuDEsXbpUwcHB8vDwUGRkpLZv315p7P79+zVy5EgFBwfLZDIpNTW1yrkXLFggk8mkadOm2Y1fvHhRU6ZMUYsWLeTl5aWRI0eWq3UAAAAAAAAAAAC4vrg4cnE3NzeFh4crMzNTI0aMkCSVlZUpMzNT8fHxdbbO+fPnlZOTo9///veVxhiGIcMwZLVa62xdAI63evVqJSQkKC0tTZGRkUpNTVVMTIwOHjyoVq1alYu/cOGC2rdvr1GjRmn69OlVzv3ll1/qlVdeUa9evcrtmz59utatW6c1a9bIx8dH8fHxuv/++/XFF1/U2bkBN6u5CXNtr4tLirWq6Sp5unraxpYvX+6ItAA0In8a/ScNvX+obv/l7VLFT3gCAAAAAABAI+Xwr3BPSEjQa6+9pjfffFP/+c9/NHnyZBUXFysuLk6SNHbsWCUmJtriS0pKZDabZTabVVJSohMnTshsNtvdXT5jxgxt3rxZR48e1ZYtW/Sb3/xGzs7Oio2NlST973//U3Jysnbs2KHc3Fxt2bJFo0aNUpMmTfSrX/2qYS8AgHq1aNEiTZgwQXFxcerWrZvS0tLk6elZaYOtb9++WrhwoR588EG5u7tXOu/58+c1ZswYvfbaa7rlllvs9hUWFuqNN97QokWLdPfddys8PFwrVqzQli1btHXr1jo9P+BmdK7wnG0rLirW2dNntXHjRr333nsqKChwdHoAGoH2XdrrpQUv6d6Ie/WXP/9FH/7zQ126dMnRaQEAAAAAAKABOPQOdEkaPXq0Tp8+raSkJOXn5yssLEwZGRny8/OTJOXm5srJ6cc+f15envr06WN7n5KSopSUFA0aNEhZWVmSpG+++UaxsbE6e/asWrZsqTvuuENbt25Vy5YtJUkeHh7697//rdTUVH333Xfy8/PTwIEDtWXLlgrvSAVwYyopKdGOHTvsfgnHyclJ0dHRys7Ovqa5p0yZomHDhik6OlrPPvus3b4dO3bo0qVLio6Oto2Fhoaqbdu2ys7OVv/+/Suc02q12n0LRlFR0TXlCDRWKW+k2F4fLzyuyDaR8mvqp8mTJ6tDhw4OzAxAYzFj3gwlPJ2gz7M+17r31umP4/+oP038k377299qzJgxGjRokKNTBAAAAAAAQD1xeANdkuLj4yv9yvYrTfErgoODZRhGlfOtWrWqyv2BgYFav359jXIEcOM5c+aMSktLbb+Qc4Wfn5++/vrrWs+7atUq7dy5U19++WWF+/Pz8+Xm5qbmzZuXWzc/P7/SeZOTkzV37txK9wOonJOTkxISEjR48GDNnDnT0ekAaAScnJwUOTBSXSK7qJ9fP236eJPmz5+vN954Q6WlpY5ODwAAAAAAAPXE4V/hDgA3kuPHj2vq1Kl6++235eHhUadzJyYmqrCw0LYdP368TucHGrucnBxdvnzZ0WkAaGS+Pf2t3nj1Df31r3/Vnj171LdvX0enBAAAAAAAgHp0TXegX7hwQbm5uSopKbEb79Wr1zUlBQB1wdfXV87OzrJYLHbjFotF/v7+tZpzx44dOnXqlG677TbbWGlpqT777DO99NJLslqt8vf3V0lJiQoKCuzuQr/auu7u7lU+dx3ADxY9vcj2+lzJOa1vul5FZ4u0bt06jRs3zoGZAWgszp87r43rN2r9e+u1a+suhYSE6Pe/+71Wr17NoyIAAAAAAAAauVo10E+fPq24uDh99NFHFe7nKw0BXA/c3NwUHh6uzMxMjRgxQpJUVlamzMzMSh8bcTVDhgzR3r177cbi4uIUGhqqJ554Qs7OzgoPD5erq6syMzM1cuRISdLBgweVm5urqKioazonANLBfQdtr62lVn3X5Du19m+t559/Xn/4wx8cmBmAxiImLEbNfJrp7l/frd9N/53G/3q8vNy8HJ0WAAAAAAAAGkCtGujTpk1TQUGBtm3bpsGDB+v999+XxWLRs88+q+eff76ucwSAWktISNC4ceMUERGhfv36KTU1VcXFxYqLi5MkjR07Vq1bt1ZycrIkqaSkRAcOHLC9PnHihMxms7y8vNSxY0c1a9ZMPXr0sFujadOmatGihW3cx8dH48ePV0JCgm699VZ5e3vr0UcfVVRUlPr379+AZw80Tq/84xXb6+OFxxXZJlIBzQLKxX3xxReKiIhoyNQANBLPr3he/e7op0tll1RgLag0jjoDAAAAAADQ+NSqgb5x40Z98MEHioiIkJOTk9q1a6df/OIX8vb2VnJysoYNG1bXeQK4SezZs6dacdV9VMTo0aN1+vRpJSUlKT8/X2FhYcrIyJCfn58kKTc3V05OTrb4vLw89enTx/Y+JSVFKSkpGjRokLKysqp9HosXL5aTk5NGjhwpq9WqmJgYvfzyy9U+HsC1Gzp0qMxms3x9fR2dCoAbTP+B/+8X3sqqjqPOAAAAAAAAND61aqAXFxerVatWkqRbbrlFp0+fVufOndWzZ0/t3LmzThMEcHMJCwuTyWSSYRjl9l0ZN5lMNXpURHx8fKVf2f7zpnhwcHCFa1elosa6h4eHli5dqqVLl9ZoLgB1p6afZQCoKeoMAAAAAABA41OrBnqXLl108OBBBQcHq3fv3nrllVcUHBystLQ0BQSU/wpVAKiuI0eOODoFAAAAAAAAAAAA3KRq1UCfOnWqTp48KUmaM2eO7rnnHr399ttyc3NTenp6XeYH4CbTrl07R6cAAAAAAAAAAACAm5TT1UPK+93vfqeHH35YkhQeHq5jx47pyy+/1PHjxzV69Oi6zA/ATea5557T999/b3v/xRdfyGq12t6fO3dOf/rTnxyRGgAAAAAAAAAAABq5WjXQ582bpwsXLtjee3p66rbbblPTpk01b968OksOqIl//kuKiJAqeBy1JOnf/5ZGjpRG/Eaa8bh0vrhB00M1JSYm6ty5c7b3Q4cO1YkTJ2zvL1y4oFdeecURqQHUmRuMyWSqVtzSpUsVHBwsDw8PRUZGavv27VXGr1mzRqGhofLw8FDPnj21fv16u/2GYSgpKUkBAQFq0qSJoqOjdejQoQrnslqtCgsLk8lkktlsto0fPHhQd911l/z8/OTh4aH27dtr1qxZunTpki0mPT1dJpPJbvPw8KjWOeP6RZ25sVSnzjiixsyfP18DBgyQp6enmjdvXm6Ns2fP6p577lFgYKDc3d0VFBSk+Ph4FRUV2WKysrLK1RiTyaT8/PyrnjOuX9QYAAAAAACurlYN9Llz5+r8+fPlxi9cuKC5c+dec1JATeWdlN5/X+rRs+L9F76X5j0jPf+8tPZ9qWVL6fXXGzZHVI9hGFW+BxyFOnPjqU79WL16tRISEjRnzhzt3LlTvXv3VkxMjE6dOlVh/JYtWxQbG6vx48dr165dGjFihEaMGKF9+/bZYp577jktWbJEaWlp2rZtm5o2baqYmBhdvHix3HwzZ85UYGBguXFXV1eNHTtWn3zyiQ4ePKjU1FS99tprmjNnjl2ct7e3Tp48aduOHTt21XPG9Ys6c+O5Wp1xVI0pKSnRqFGjNHny5ArXcXJy0vDhw/XPf/5T//3vf5Wenq5PP/1UkyZNKhd78OBBuzrTqlWr6lwaXIeoMQAAAAAAVE+tGuiGYVR4t8Xu3bt16623XnNSQE2UGdIzz0gzH5fcXCuO2fKF1KWLFBz8w/tRo6SPP26wFAHc4KgzN6Zz586pffv2VcYsWrRIEyZMUFxcnLp166a0tDR5enpq+fLlFca/8MILuueee/T444+ra9eueuaZZ3TbbbfppZdekvTD35FSU1M1a9YsDR8+XL169dLf/vY35eXlae3atXZzffTRR/rkk0+UkpJSbp327dsrLi5OvXv3Vrt27XTfffdpzJgx+ve//20XZzKZ5O/vb9v8/PxqcIVwPaHO3JiuVmccVWPmzp2r6dOnq2fPijult9xyiyZPnqyIiAi1a9dOQ4YM0Z/+9KdyNUaSWrVqZVdnnJxq9U9IOBg1BgAAAACA6nOpSfAtt9xi++q+zp072zXRS0tLdf78+QrvWgDq09tvSb17S127Vh6Tny8FBPz4PjBAOnNGulwquTjXf44AbmzUmevDQ798qNwv8F0qvSRPN0+5Ov3YDdi5c2e15ispKdGOHTuUmJhoG3NyclJ0dLSys7MrPCY7O1sJCQl2YzExMbbG1ZEjR5Sfn6/o6Gjbfh8fH0VGRio7O1sPPvigJMlisWjChAlau3atPD09r5rr4cOHlZGRofvvv99u/Pz582rXrp3Kysp022236S9/+Yu6d+9e4RxWq1VWq9X2/qdf1QzHo85cH35eZwzDUKlRKi83LzmZfmwcV6fOOLLG1FReXp7ee+89DRo0qNy+sLAwWa1W9ejRQ08//bRuv/32Suehzly/qDEAAAAAAFRfjRroqampMgxDf/jDHzR37lz5+PjY9rm5uSk4OFhRUVF1niRQmcM5UuZG6fXXHJ0J6tLrr78uLy8vSdLly5eVnp4uX19fSbJ7PjrQEKgz14/B9wy2vTYMQ+kvpeuXD/xSoUGhauberMbznTlzRqWlpeXu2vbz89PXX39d4TH5+fkVxl95JvCVP6uKMQxDDz/8sCZNmqSIiAgdPXq00hwHDBignTt3ymq1auLEiZo3b55tX5cuXbR8+XL16tVLhYWFSklJ0YABA7R//361adOm3FzJyck8auc6RZ25flRUZ4Y+OFQ92vWQm7NbjeZyVI2pidjYWH3wwQf6/vvvde+99+r1n3xfd0BAgNLS0hQRESGr1arXX39dgwcP1rZt23TbbbdVOB915vpEjQEAAAAAoGZq1EAfN26cJCkkJES33367XFxqdDhQ58y7pJN50ojf/PD+7Fnp2fk/3Cnx29/+GOfvL23d9uP7vJOSry93UlyP2rZtq9de+/Gne/7+/vr73/9eLgZoKNSZ68fEhIl2799+5W39+ve/1vCo4QpoFlDJUdefF198UefOnbO7K7Uyq1ev1rlz57R79249/vjjSklJ0cyZMyVJUVFRdr+4OGDAAHXt2lWvvPKKnnnmmXJzJSYm2t3ZWlRUpKCgoDo4I1wr6sz14+d15q1X3tJ9Y+/T6DtHy8vNy0FZ1Z/Fixdrzpw5+u9//2urES+//LKkH35Jp0uXLrbYAQMGKCcnR4sXLy73d7MrqDPXJ2oMAAAAAAA1U6sO+KBBg5STk6MVK1YoJydHL7zwglq1aqWPPvpIbdu2rfSrQ4G69tvf2v/QZ+JE6aGHpMGD7eOiBkgL/iodPfrDM/3WrJFiftmAiaLaqroTE3AE6kzj5evrK2dnZ1ksFrtxi8Uif3//Co/x9/evMv7KnxaLRQE/+R5ci8WisLAwSdLGjRuVnZ0td3d3u3kiIiI0ZswYvfnmm7axK42nbt26qbS0VBMnTtRjjz0mZ+fy3QxXV1f16dNHhw8frjB3d3f3cmvi+kCdaZwcVWNq4spzzUNDQ3Xrrbfqzjvv1OzZs+3m/ql+/frp888/r3Q+6sz1iRoDAAAAAEDNOF09pLzNmzerZ8+e2rZtm9577z2dP39ekrR7927NmTOnThMEaistTfrHuz+8buopzZ4tPfaYNGKEdMoiPfKIQ9NDHenZs6eOHz/u6DRwk6LO3Njc3NwUHh6uzMxM21hZWZkyMzMrfSRNVFSUXbwkbdiwwRYfEhIif39/u5iioiJt27bNFrNkyRLt3r1bZrNZZrNZ69evl/TD3ebz58+vNN+ysjJdunRJZWVlFe4vLS3V3r17K2184cZEnblxOarG1NaV2vLTZ5j/nNlspsY0MtQYAAAAAADKq9Ud6E8++aSeffZZJSQkqFmzH585evfdd+ull16qs+SAmnr11R9fT5pkv2/QwB82NC5Hjx7VpUuXHJ0GbiLUmcYlISFB48aNU0REhPr166fU1FQVFxcrLi5OkjR27Fi1bt1aycnJkqSpU6dq0KBBev755zVs2DCtWrVKX331lV79f/9jmEwmTZs2Tc8++6w6deqkkJAQzZ49W4GBgRoxYoSk8o+h8PL64WuhO3ToYHt2+dtvvy1XV1f17NlT7u7u+uqrr5SYmKjRo0fL1dVVkjRv3jz1799fHTt2VEFBgRYuXKhjx47pEbodNzzqTOPhiBojSbm5ufr222+Vm5ur0tJSmc1mSVLHjh3l5eWl9evXy2KxqG/fvvLy8tL+/fv1+OOP6/bbb1dwcLAkKTU1VSEhIerevbsuXryo119/XRs3btQnn3zSYNcP9YMaAwAAAABA1WrVQN+7d69WrlxZbrxVq1Y6c+bMNScFAADwc6veWGX3vrS0VBvXbtRp82n5ePjYxv/85z9Xe87Ro0fr9OnTSkpKUn5+vsLCwpSRkSE/Pz9JPzShnJx+/MKeAQMGaOXKlZo1a5aeeuopderUSWvXrlWPHj1sMTNnzlRxcbEmTpyogoIC3XHHHcrIyJCHh0e183JxcdFf//pX/fe//5VhGGrXrp3i4+M1ffp0W8x3332nCRMmKD8/X7fccovCw8O1ZcsWdevWrdrrALBXrs5cLtWn73+qb3d/K3eXH7+avLp1xlE1Jikpye5xEH369JEkbdq0SYMHD1aTJk302muvafr06bJarQoKCtL999+vJ5980nZMSUmJHnvsMZ04cUKenp7q1auXPv30U911113VOncAAAAAAIAblckwDKOmB7Vp00bvvPOOBgwYoGbNmmn37t1q37693n//fc2YMUM5OTn1ket1paioSD4+PiosLJS3t3elcTnf5mivZa+CfIIaMDvg+nCi6IQ6+3ZWqG9opTHV/SxV5qc1qLGp7rX5IvcLFZcUq4VniwbMDmh49/W/r9zY5bLLcndxl7Pph2eCm0wm/e9//7OLudY601hV97pcuHRBnx37TM3cmsnDpfq/BADciH5eZwzDUJnK5OHsIZPJJIk6UxPVvS6W8xZlH8/m30y4KX33/XdydXbVoOBBlcZQYwAAAACgYdXqDvQHH3xQTzzxhNasWSOTyaSysjJ98cUXmjFjhsaOHVvXOQIAAOifW/9Zbux44XFFtolUQDOeyQvg2v28zlgvW1VgLdDAdgPl5ebloKwAAAAAAADQkJyuHlLeX/7yF4WGhiooKEjnz59Xt27ddOedd2rAgAGaNWtWXecIAAAAAAAAAAAAAEC9q9Ud6G5ubnrttdeUlJSkvXv3qri4WH369FHHjh3rOj8AN6FLly7pnnvuUVpamjp16uTodABcJ37+bGLph6893dt8b62fgQ4AP/XzOnO57LK+v/y99t+yv1bPQAcAAAAAAMCNp1YNdEl64403tHjxYh06dEiS1KlTJ02bNk2PPPJInSUH4Obk6uqqPXv2VCv2lVdekZ+fXz1nBOB6sPK1leXGKnoGOo0tALX18zpT2TPQqTMAAAAAAACNV60a6ElJSVq0aJEeffRRRUVFSZKys7M1ffp05ebmat68eXWaJICbz+9+9zu98cYbWrBgQZVxDz300FXnWrp0qRYuXKj8/Hz17t1bL774ovr161dh7P79+5WUlKQdO3bo2LFjWrx4saZNm2YXs2zZMi1btkxHjx6VJHXv3l1JSUkaOnSoLWbw4MHavHmz3XF//OMflZaWdtV8AVSMZ6ADqG88Ax0AAAAAAAC1aqAvW7ZMr732mmJjY21j9913n3r16qVHH32UBjqAa3b58mUtX75cn376qcLDw9W0aVO7/YsWLarWPKtXr1ZCQoLS0tIUGRmp1NRUxcTE6ODBg2rVqlW5+AsXLqh9+/YaNWqUpk+fXuGcbdq00YIFC9SpUycZhqE333xTw4cP165du9S9e3db3IQJE+zqoaenZ7VyBlA3evbsqfXr18vHx+fqwQBQC9QZAAAAAACAxqdWDfRLly4pIiKi3Hh4eLguX758zUkBwL59+3TbbbdJkv773//a7bvyFarVsWjRIk2YMEFxcXGSpLS0NK1bt07Lly/Xk08+WS6+b9++6tu3ryRVuF+S7r33Xrv38+fP17Jly7R161a7Brqnp6f8/f2rnSuAunX06FFdunTJ0WkAaMSoMwAAAAAAAI1PrRrov//977Vs2bJyd4C++uqrGjNmTJ0kBuDmtmnTpmueo6SkRDt27FBiYqJtzMnJSdHR0crOzr7m+SWptLRUa9asUXFxse2RFle8/fbbeuutt+Tv7697771Xs2fPrvIudKvVKqvVantfVFRUJzkCAAAAAAAAAACgeqrdQE9ISLC9NplMev311/XJJ5+of//+kqRt27YpNzdXY8eOrfssAaAWzpw5o9LSUvn5+dmN+/n56euvv76muffu3auoqChdvHhRXl5eev/999WtWzfb/oceekjt2rVTYGCg9uzZoyeeeEIHDx7Ue++9V+mcycnJmjt37jXlBQAAAAAAAAAAgNqrdgN9165ddu/Dw8MlSTk5OZIkX19f+fr6av/+/XWYHgBcn7p06SKz2azCwkL94x//0Lhx47R582ZbE33ixIm22J49eyogIEBDhgxRTk6OOnToUOGciYmJdr+sVFRUpKCgoPo9EQAAAAAAAAAAANg4VTdw06ZN1do2btxY4ySWLl2q4OBgeXh4KDIyUtu3b680dv/+/Ro5cqSCg4NlMpmUmppaLubpp5+WyWSy20JDQ237v/32Wz366KPq0qWLmjRporZt2+rPf/6zCgsLa5w7gOuXr6+vnJ2dZbFY7MYtFss1P5vczc1NHTt2VHh4uJKTk9W7d2+98MILlcZHRkZKkg4fPlxpjLu7u7y9ve02AAAAAAAAAAAANJxqN9Dry+rVq5WQkKA5c+Zo586d6t27t2JiYnTq1KkK4y9cuKD27dtrwYIFVTbAunfvrpMnT9q2zz//3LYvLy9PeXl5SklJ0b59+5Senq6MjAyNHz++zs8PgOO4ubkpPDxcmZmZtrGysjJlZmaWe175tSorK7N7fvnPmc1mSVJAQECdrgvcbC5fuqzJD0xW7v9yHZ0KgEaKOgMAAAAAAHBzq/ZXuNeXRYsWacKECYqLi5MkpaWlad26dVq+fLmefPLJcvF9+/ZV3759JanC/Ve4uLhU2mDv0aOH3n33Xdv7Dh06aP78+frd736ny5cvy8XF4ZcFQB1JSEjQuHHjFBERoX79+ik1NVXFxcW2mjN27Fi1bt1aycnJkqSSkhIdOHDA9vrEiRMym83y8vJSx44dJf3wVetDhw5V27Ztde7cOa1cuVJZWVn6+OOPJf3waIuVK1fqV7/6lVq0aKE9e/Zo+vTpGjhwoHr16uWAqwA0Hi6uLjr0n0PVin3llVfk5+en0tLSes4KQGNCnQEAAAAAALi5OfQO9JKSEu3YsUPR0dG2MScnJ0VHRys7O/ua5j506JACAwPVvn17jRkzRrm5Vd9BUlhYKG9v70qb51arVUVFRXYbgOvf6NGjlZKSoqSkJIWFhclsNisjI0N+fn6SpNzcXJ08edIWn5eXpz59+qhPnz46efKkUlJS1KdPHz3yyCO2mFOnTmns2LHq0qWLhgwZoi+//FIff/yxfvGLX0j64c73Tz/9VL/85S8VGhqqxx57TCNHjtS//vWvhj15oJEaev9QfbDqg6vGPfTQQ2ratGkDZASgsaHOAAAAAAAA3Lwceqv1mTNnVFpaamtkXeHn56evv/661vNGRkYqPT1dXbp00cmTJzV37lzdeeed2rdvn5o1a1ZhHs8884wmTpxY6ZzJycmaO3durXMC4Djx8fGKj4+vcF9WVpbd++DgYBmGUeV8b7zxRpX7g4KCtHnz5hrlCKD6SktL9Y+//UPb/71dQV2C9FGrj9TU7ccG1qJFixyYHYDG4Eqd2frZVoV0C9F6v/Vyc3az7afOAAAAAAAANF6N8rvKhw4danvdq1cvRUZGql27dnrnnXfKPee8qKhIw4YNU7du3fT0009XOmdiYqISEhLsjgsKCqrz3AEAQNVyvs5RaI9QSVLesTydzz9va2yZTCZHpgagkbhSZ8qMMp04ekLF+cVyNjlLos4AAAAAAAA0dg5toPv6+srZ2VkWi8Vu3GKxVPr88tpo3ry5OnfurMOHD9uNnzt3Tvfcc4+aNWum999/X66urpXO4e7uLnd39zrLCQAA1M4r/3jF9vp44XFFtolUQLMAB2YEoLG5Umesl60qsBZoYLuB8nLzcnBWAAAAAAAAaAgOfQa6m5ubwsPDlZmZaRsrKytTZmamoqKi6myd8+fPKycnRwEBP/5wvaioSL/85S/l5uamf/7zn/Lw8Kiz9QAAAAAAAAAAAAAANx6Hf4V7QkKCxo0bp4iICPXr10+pqakqLi5WXFycJGns2LFq3bq1kpOTJUklJSU6cOCA7fWJEydkNpvl5eWljh07SpJmzJihe++9V+3atVNeXp7mzJkjZ2dnxcbGSvqxeX7hwgW99dZbKioqUlFRkSSpZcuWcnZ2bujLAAAAAAAAAAAAAABwMIc30EePHq3Tp08rKSlJ+fn5CgsLU0ZGhvz8/CRJubm5cnL68Ub5vLw89enTx/Y+JSVFKSkpGjRokLKysiRJ33zzjWJjY3X27Fm1bNlSd9xxh7Zu3aqWLVtKknbu3Klt27ZJkq3pfsWRI0cUHBxcj2cMAAAAAAAAAAAAALgeObyBLknx8fGKj4+vcN+VpvgVwcHBMgyjyvlWrVpV5f7BgwdfdQ4AAAAAAAAAAAAAwM3Foc9ABwAAAAAAAAAAAADgekEDHQAAAAAAAAAAAAAA0UAHAAA3uaVLlyo4OFgeHh6KjIzU9u3bq4xfs2aNQkND5eHhoZ49e2r9+vV2+w3DUFJSkgICAtSkSRNFR0fr0KFDFc5ltVoVFhYmk8kks9lsGz948KDuuusu+fn5ycPDQ+3bt9esWbN06dKlGuUCwPEcUWPmz5+vAQMGyNPTU82bNy+3xtmzZ3XPPfcoMDBQ7u7uCgoKUnx8vIqKiuzisrKydNttt8nd3V0dO3ZUenp6ra4BAAAAAADAjYQGOgAAuGmtXr1aCQkJmjNnjnbu3KnevXsrJiZGp06dqjB+y5Ytio2N1fjx47Vr1y6NGDFCI0aM0L59+2wxzz33nJYsWaK0tDRt27ZNTZs2VUxMjC5evFhuvpkzZyowMLDcuKurq8aOHatPPvlEBw8eVGpqql577TXNmTOnRrkAcCxH1ZiSkhKNGjVKkydPrnAdJycnDR8+XP/85z/13//+V+np6fr00081adIkW8yRI0c0bNgw3XXXXTKbzZo2bZoeeeQRffzxx3V0dQAAAAAAAK5PJsMwDEcncSMqKiqSj4+PCgsL5e3tXWlczrc52mvZqyCfoAbMDrg+nCg6oc6+nRXqG1ppTHU/Szej6l6bL3K/UHFJsVp4tmjA7IDrw/HC44psE6mAZgGVxlT1WYqMjFTfvn310ksvSZLKysoUFBSkRx99VE8++WS5uUaPHq3i4mJ9+OGHtrH+/fsrLCxMaWlpMgxDgYGBeuyxxzRjxgxJUmFhofz8/JSenq4HH3zQdtxHH32khIQEvfvuu+revbt27dqlsLCwSs8jISFBX375pf79739XK5erqW6NuXDpgj479pmauTWTh4vHVecFGhPrZasKrAUa2G6gvNy8Ko2r7PPkyBojSenp6Zo2bZoKCgqueq5LlizRwoULdfz4cUnSE088oXXr1tk17x988EEVFBQoIyPjqvNVdV1+znLeouzj2fybCTel777/Tq7OrhoUPKjSGP7NBAAAAAANizvQAQDATamkpEQ7duxQdHS0bczJyUnR0dHKzs6u8Jjs7Gy7eEmKiYmxxR85ckT5+fl2MT4+PoqMjLSb02KxaMKECfr73/8uT0/Pq+Z6+PBhZWRkaNCgH3+4frVcfs5qtaqoqMhuA1B/HFljaiovL0/vvffeNdUYiToDAAAAAAAaBxroAADgpnTmzBmVlpbKz8/PbtzPz0/5+fkVHpOfn19l/JU/q4oxDEMPP/ywJk2apIiIiCpzHDBggDw8PNSpUyfdeeedmjdvXrVz+bnk5GT5+PjYtqAg7vQE6pOjakxNxMbGytPTU61bt5a3t7def/31q+ZSVFSk77//vsL5qDMAAAAAAKAxoIEOAADQgF588UWdO3dOiYmJV41dvXq1du7cqZUrV2rdunVKSUmp9bqJiYkqLCy0bVe+phnAzWvx4sXauXOnPvjgA+Xk5CghIeGa5qPOAAAAAACAxsDF0QkAAAA4gq+vr5ydnWWxWOzGLRaL/P39KzzG39+/yvgrf1osFgUEBNjFXHm++caNG5WdnS13d3e7eSIiIjRmzBi9+eabtrErd29269ZNpaWlmjhxoh577DE5OztfNZefc3d3L7cmgPrjqBpTE/7+/vL391doaKhuvfVW3XnnnZo9e7YCAgIqzcXb21tNmjSpcD7qDAAAAAAAaAy4Ax0AANyU3NzcFB4erszMTNtYWVmZMjMzFRUVVeExUVFRdvGStGHDBlt8SEiI/P397WKKioq0bds2W8ySJUu0e/dumc1mmc1mrV+/XtIPd5vPnz+/0nzLysp06dIllZWVVSsXAI7lqBpTW1dqi9VqrVYuAAAAAAAAjRV3oAMAgJtWQkKCxo0bp4iICPXr10+pqakqLi5WXFycJGns2LFq3bq1kpOTJUlTp07VoEGD9Pzzz2vYsGFatWqVvvrqK7366quSJJPJpGnTpunZZ59Vp06dFBISotmzZyswMFAjRoyQJLVt29YuBy8vL0lShw4d1KZNG0nS22+/LVdXV/Xs2VPu7u766quvlJiYqNGjR8vV1bVauQBwPEfUGEnKzc3Vt99+q9zcXJWWlspsNkuSOnbsKC8vL61fv14Wi0V9+/aVl5eX9u/fr8cff1y33367goODJUmTJk3SSy+9pJkzZ+oPf/iDNm7cqHfeeUfr1q1rsOsHAAAAAADgCDTQAQDATWv06NE6ffq0kpKSlJ+fr7CwMGVkZMjPz0/SD00oJ6cfv7BnwIABWrlypWbNmqWnnnpKnTp10tq1a9WjRw9bzMyZM1VcXKyJEyeqoKBAd9xxhzIyMuTh4VHtvFxcXPTXv/5V//3vf2UYhtq1a6f4+HhNnz69RrkAcCxH1ZikpCS7x0H06dNHkrRp0yYNHjxYTZo00Wuvvabp06fLarUqKChI999/v5588knbMSEhIVq3bp2mT5+uF154QW3atNHrr7+umJiYerteAAAAAAAA1wOTYRiGo5O4ERUVFcnHx0eFhYXy9vauNC7n2xzttexVkE9QA2YHXB9OFJ1QZ9/OCvUNrTSmup+la7F06VItXLhQ+fn56t27t1588UX169evwtj9+/crKSlJO3bs0LFjx7R48WJNmzbNLmbZsmVatmyZjh49Kknq3r27kpKSNHToUFvMxYsX9dhjj2nVqlWyWq2KiYnRyy+/bPuBeXVU99p8kfuFikuK1cKzRbXnBhqL44XHFdkmUgHNAiqNaYg6cyOq7nW5cOmCPjv2mZq5NZOHS/V/CQBoDKyXrSqwFmhgu4HycvOqNI46U7HqXhfLeYuyj2fzbybclL77/ju5OrtqUPCgSmOoMQAAAADQsHgGOoBGbfXq1UpISNCcOXO0c+dO9e7dWzExMTp16lSF8RcuXFD79u21YMEC+fv7VxjTpk0bLViwQDt27NBXX32lu+++W8OHD9f+/fttMdOnT9e//vUvrVmzRps3b1ZeXp7uv//+ejlHAAAAAAAAAAAA1A0a6AAatUWLFmnChAmKi4tTt27dlJaWJk9PTy1fvrzC+L59+2rhwoV68MEH5e7uXmHMvffeq1/96lfq1KmTOnfurPnz58vLy0tbt26VJBUWFuqNN97QokWLdPfddys8PFwrVqzQli1bbDEAAAAAAAAAAAC4/tBAB9BolZSUaMeOHYqOjraNOTk5KTo6WtnZ2XWyRmlpqVatWqXi4mJFRUVJknbs2KFLly7ZrRsaGqq2bdtWua7ValVRUZHdBgAAAAAAAAAAgIZDAx1Ao3XmzBmVlpaWe+64n5+f8vPzr2nuvXv3ysvLS+7u7po0aZLef/99devWTZKUn58vNzc3NW/evEbrJicny8fHx7YFBfEcUAAAAAAAAAAAgIZEAx0AaqFLly4ym83atm2bJk+erHHjxunAgQPXNGdiYqIKCwtt2/Hjx+soWwAAAAAAAAAAAFSHi6MTAID64uvrK2dnZ1ksFrtxi8Uif3//a5rbzc1NHTt2lCSFh4fryy+/1AsvvKBXXnlF/v7+KikpUUFBgd1d6Fdb193dvdLnrgMAAAAAAAAAAKD+cQc6gEbLzc1N4eHhyszMtI2VlZUpMzPT9rzyulJWViar1Srph4a6q6ur3boHDx5Ubm5una8LAAAAAAAAAACAusMd6AAatYSEBI0bN04RERHq16+fUlNTVVxcrLi4OEnS2LFj1bp1ayUnJ0uSSkpKbF/FXlJSohMnTshsNsvLy8t2x3liYqKGDh2qtm3b6ty5c1q5cqWysrL08ccfS5J8fHw0fvx4JSQk6NZbb5W3t7ceffRRRUVFqX///g64CgAAAAAAAAAAAKgOGugAGrXRo0fr9OnTSkpKUn5+vsLCwpSRkSE/Pz9JUm5urpycfvwyjry8PPXp08f2PiUlRSkpKRo0aJCysrIkSadOndLYsWN18uRJ+fj4qFevXvr444/1i1/8wnbc4sWL5eTkpJEjR8pqtSomJkYvv/xyw5w0AAAAAAAAAAAAaoUGOoBGLz4+XvHx8RXuu9IUvyI4OFiGYVQ53xtvvHHVNT08PLR06VItXbq02nkCAAAAAAAAAADAsXgGOgAAAAAAAAAAAAAAooEOAAAAAAAAAAAAAIAkGugAAAAAAAAAAAAAAEiigQ4AAAAAAAAAAAAAgCQa6AAAAAAAAAAAAAAASKKBDgAAAAAAAAAAAACApOuggb506VIFBwfLw8NDkZGR2r59e6Wx+/fv18iRIxUcHCyTyaTU1NRyMU8//bRMJpPdFhoaahfz6quvavDgwfL29pbJZFJBQUEdnxUAAAAAAAAAAAAA4Ebj0Ab66tWrlZCQoDlz5mjnzp3q3bu3YmJidOrUqQrjL1y4oPbt22vBggXy9/evdN7u3bvr5MmTtu3zzz8vN88999yjp556qk7PBwAAAAAAAAAAAABw43Jx5OKLFi3ShAkTFBcXJ0lKS0vTunXrtHz5cj355JPl4vv27au+fftKUoX7r3BxcamywT5t2jRJUlZWVu2TBwAAAAAAAAAAAAA0Kg67A72kpEQ7duxQdHT0j8k4OSk6OlrZ2dnXNPehQ4cUGBio9u3ba8yYMcrNzb3WdGW1WlVUVGS3AQAAAAAAAAAAAAAaD4c10M+cOaPS0lL5+fnZjfv5+Sk/P7/W80ZGRio9PV0ZGRlatmyZjhw5ojvvvFPnzp27pnyTk5Pl4+Nj24KCgq5pPgAAAAAAAAAAAADA9cWhz0CvD0OHDtWoUaPUq1cvxcTEaP369SooKNA777xzTfMmJiaqsLDQth0/fryOMgYAAAAAAAAAAAAAXA8c9gx0X19fOTs7y2Kx2I1bLJYqn19eU82bN1fnzp11+PDha5rH3d1d7u7udZQVAAAAAAAAAAAAAOB647A70N3c3BQeHq7MzEzbWFlZmTIzMxUVFVVn65w/f145OTkKCAioszkBAEDjsXTpUgUHB8vDw0ORkZHavn17lfFr1qxRaGioPDw81LNnT61fv95uv2EYSkpKUkBAgJo0aaLo6GgdOnSowrmsVqvCwsJkMplkNptt41lZWRo+fLgCAgLUtGlThYWF6e2337Y7Nj09XSaTyW7z8PCo3UUAUG8cUWPmz5+vAQMGyNPTU82bNy+3xu7duxUbG6ugoCA1adJEXbt21QsvvGAXk5WVVa7GmEyma3rcFgAAAAAAwI3AoV/hnpCQoNdee01vvvmm/vOf/2jy5MkqLi5WXFycJGns2LFKTEy0xZeUlMhsNstsNqukpEQnTpyQ2Wy2u7t8xowZ2rx5s44ePaotW7boN7/5jZydnRUbG2uLyc/Ptztu7969MpvN+vbbbxvozAEAwPVg9erVSkhI0Jw5c7Rz50717t1bMTExOnXqVIXxW7ZsUWxsrMaPH69du3ZpxIgRGjFihPbt22eLee6557RkyRKlpaVp27Ztatq0qWJiYnTx4sVy882cOVOBgYEVrtOrVy+9++672rNnj+Li4jR27Fh9+OGHdnHe3t46efKkbTt27Ng1XhEAdclRNaakpESjRo3S5MmTK1xnx44datWqld566y3t379f/9//9/8pMTFRL730UrnYgwcP2tWZVq1aXeNVAQAAAAAAuL6ZDMMwHJnASy+9pIULFyo/P19hYWFasmSJIiMjJUmDBw9WcHCw0tPTJUlHjx5VSEhIuTkGDRqkrKwsSdKDDz6ozz77TGfPnlXLli11xx13aP78+erQoYMt/umnn9bcuXPLzbNixQo9/PDD1cq7qKhIPj4+KiwslLe3d6VxOd/maK9l7//P3t2HRVXn/x9/DfciN5YoN4qAopK3KChhKbaxkeu2uuu6ZrbeZLq22opkJvtVSMvFFJUsv9Kd4mZ+1bay3dUoxbQtSUud8mYzdU1MBLUEFBQUzu8Pf842ciMgOIDPx3WdS+bMez7nPafmdTHnwzlH/p7+1RoXaEpOFpxUJ69OCvEKqbSmup+l21F1981nWZ+psKRQLV1b3sLugIbhRP4JRbSNkK975VeaqeqzFBERoT59+lgmjcrKyuTv768nn3xSM2fOLDfWiBEjVFhYaDWRfffddys0NFSpqakyDEN+fn566qmnNH36dElSfn6+vL29lZaWpocfftjyug8++EBxcXF655131LVrV+3du1ehoaGVvo/BgwfL29tbK1askHT1DPTY2Fjl5eXdcD/VdL/8VNHlIn1y/BO5O7nLxYEz3HF7Kb5SrLziPA0IGCA3J7dK6yr7PNkyY6Sa5cTkyZP173//W1u3bpV09Qz0++67T+fOnavwLPbqqG7O5F7IVeaJTL4z4bZ07uI5Odo7KiowqtIavjMBAAAAwK1l0zPQJWnKlCk6fvy4iouLtXPnTsvkuXT1oM21yXNJCgwMlGEY5ZZrk+eStHbtWmVnZ6u4uFjff/+91q5dazV5Ll2dQK9onOpOngMAgMavpKREu3fvVnR0tGWdnZ2doqOjlZmZWeFrMjMzreolKSYmxlJ/7Ngx5eTkWNV4enoqIiLCaszc3FxNmDBBb775plxdXavVb35+vu68806rdRcuXFBAQID8/f01ZMgQHThwoNLXFxcXq6CgwGoBUH9smTG1UVHGSFJoaKh8fX3185//XJ999lmVY5AzAAAAAACgKbD5BDoAAIAtnD17VqWlpfL29rZa7+3tXek9fnNycqqsv/ZvVTXX/mhv0qRJCg8Pr1av69ev1xdffGG5zY0kde7cWStWrND777+v1atXq6ysTP369dP3339f4RhJSUny9PS0LP7+nOkJ1CdbZUxt7NixQ+vWrdPEiRMt63x9fZWamqp33nlH77zzjvz9/TVw4EDt2bOn0nHIGQAAAAAA0BQwgQ6gyVu2bJkCAwPl4uKiiIgI7dq1q9LaAwcOaNiwYQoMDJTJZFJKSkq5mqSkJPXp00fu7u5q3bq1hg4dqkOHDlnVDBw4UCaTyWqZNGlSXb81AI3QSy+9pPPnzys+Pr5a9R9//LHGjRun1157TV27drWsj4yM1OjRoxUaGqqoqCi9++67atWqlV555ZUKx4mPj1d+fr5lOXHiRJ28HwCN2/79+zVkyBAlJibqgQcesKzv3Lmz/vCHPygsLEz9+vXTihUr1K9fPy1ZsqTSscgZAAAAAADQFDCBDqBJW7duneLi4pSYmKg9e/aoZ8+eiomJ0enTpyusLyoqUvv27TV//nz5+PhUWLN9+3ZNnjxZn3/+uTZv3qzLly/rgQceUGFhoVXdhAkTdOrUKcuyYMGCOn9/AGrPy8tL9vb2ys3NtVqfm5tb6effx8enyvpr/1ZVs3XrVmVmZsrZ2VkODg4KDg6WJIWHh2vMmDFWr9u+fbseeughLVmyRKNHj67y/Tg6OqpXr146cuRIhc87OzvLw8PDagFQf2yVMTVx8OBB3X///Zo4caJmzZp1w/q+fftWmjESOQMAAAAAAJoGJtABNGmLFy/WhAkTNG7cOHXp0kWpqalydXXVihUrKqzv06ePFi5cqIcffljOzs4V1qSnp2vs2LHq2rWrevbsqbS0NGVlZWn37t1Wda6urvLx8bEsHEQGGhYnJyeFhYUpIyPDsq6srEwZGRmKjIys8DWRkZFW9ZK0efNmS31QUJB8fHysagoKCrRz505LzdKlS/XVV1/JbDbLbDZr06ZNkq7+wc+8efMsr9u2bZsGDx6sF154weqyypUpLS3Vvn375OvrW809AKA+2SpjquvAgQO67777NGbMGKvsqYrZbCZjAAAAAABAk+dg6wYAoL6UlJRo9+7dVpdJtrOzU3R0tDIzM+tsO/n5+ZKkO++802r9W2+9pdWrV8vHx0cPPfSQZs+eLVdX10rHKS4uVnFxseVxQUFBnfUIoGJxcXEaM2aMwsPD1bdvX6WkpKiwsNByr/HRo0erTZs2SkpKkiRNnTpVUVFRWrRokQYPHqy1a9fqyy+/1KuvvipJMplMio2N1fPPP6+OHTsqKChIs2fPlp+fn4YOHSpJateunVUPbm5ukqQOHTqobdu2kq5etv2Xv/ylpk6dqmHDhlnubezk5GTJmrlz5+ruu+9WcHCw8vLytHDhQh0/flyPP/54/e40ANVmi4yRpKysLP3444/KyspSaWmpzGazJCk4OFhubm7av3+/fvaznykmJkZxcXGWjLG3t1erVq0kSSkpKQoKClLXrl116dIlvf7669q6das++uijW7T3AAAAAAAAbIMJdABN1tmzZ1VaWipvb2+r9d7e3vrmm2/qZBtlZWWKjY3VPffco27dulnWP/LIIwoICJCfn5++/vprPfPMMzp06JDefffdSsdKSkrSnDlz6qQvANUzYsQInTlzRgkJCcrJyVFoaKjS09MtuZGVlSU7u/9esKdfv35as2aNZs2apT//+c/q2LGjNmzYYPX5nzFjhgoLCzVx4kTl5eXp3nvvVXp6ulxcXKrd16pVq1RUVKSkpCTLxJokRUVFadu2bZKkc+fOacKECcrJydEdd9yhsLAw7dixQ126dLnJvQKgrtgqYxISErRq1SrL4169ekm6+sc5AwcO1N/+9jedOXNGq1ev1urVqy11AQEB+u677yRd/UPEp556SidPnpSrq6t69OihLVu26L777quXfQUAAAAAANBQmAzDMGzdRGNUUFAgT09P5efnV3lZ5qM/HtW+3H3y9/S/hd0BDcPJgpPq5NVJIV4hldZU97NUG9nZ2WrTpo127NhhdVnTGTNmaPv27dq5c2eVrw8MDFRsbKxiY2MrrXniiSf0wQcf6NNPP7WcOVqRrVu36v7779eRI0fUoUOHCmsqOgPd39//hvvms6zPVFhSqJauLat8P0BTdCL/hCLaRsjXvfJLCtdnzjRm1d0vRZeL9MnxT+Tu5C4Xh+r/EQDQFBRfKVZecZ4GBAyQm5NbpXXkTMWqu19yL+Qq80Qm35lwWzp38Zwc7R0VFRhVaQ0ZAwAAAAC3FmegA2iyvLy8ZG9vr9zcXKv1ubm58vHxuenxp0yZon/+85/65JNPqpw8l6SIiAhJqnIC3dnZudL7rgMAAAAAAAAAAKD+2d24BAAaJycnJ4WFhSkjI8OyrqysTBkZGVZnpNeUYRiaMmWK3nvvPW3dulVBQUE3fM21e4/6+lZ+liwAAAAAAAAAAABsizPQATRpcXFxGjNmjMLDw9W3b1+lpKSosLBQ48aNkySNHj1abdq0sdxjuKSkRAcPHrT8fPLkSZnNZrm5uSk4OFiSNHnyZK1Zs0bvv/++3N3dlZOTI0ny9PRUs2bNdPToUa1Zs0a/+MUv1LJlS3399deaNm2aBgwYoB49ethgLwAAAAAAAAAAAKA6mEAH0KSNGDFCZ86cUUJCgnJychQaGqr09HR5e3tLkrKysmRn99+LcWRnZ6tXr16Wx8nJyUpOTlZUVJS2bdsmSVq+fLkkaeDAgVbbWrlypcaOHSsnJydt2bLFMlnv7++vYcOGadasWfX7ZgEAAAAAAAAAAHBTmEAH0ORNmTJFU6ZMqfC5a5Pi1wQGBsowjCrHu9Hz/v7+2r59e416BAAAAAAAAAAAgO1xD3QAAAAAAAAAAAAAAMQEOgAAAAAAAAAAAAAAkphABwAAAAAAAAAAAABAEhPoAAAAAAAAAAAAAABIYgIdAAAAAAAAAAAAAABJTKADAAAAAAAAAAAAACCJCXQAAAAAAAAAAAAAACQxgQ4AAAAAAAAAAAAAgCQm0AEAAAAAAAAAAAAAkMQEOgAAAAAAAAAAAAAAkphABwAAAAAAAAAAAABAEhPoAAAAAAAAAAAAAABIYgIdAAAAAAAAAAAAAABJTKADAAAAAAAAAAAAACCJCXQAAAAAAAAAAAAAACQxgQ4AAAAAAAAAAAAAgCQm0AEAAAAAAAAAAAAAkMQEOgAAAAAAAAAAAAAAkhrIBPqyZcsUGBgoFxcXRUREaNeuXZXWHjhwQMOGDVNgYKBMJpNSUlLK1Tz77LMymUxWS0hIiFXNpUuXNHnyZLVs2VJubm4aNmyYcnNz6/qtAWgA6jpjkpKS1KdPH7m7u6t169YaOnSoDh06ZFVDxgCNR00yQpLefvtthYSEyMXFRd27d9emTZusnjcMQwkJCfL19VWzZs0UHR2tw4cPVzhWcXGxQkNDZTKZZDabLeu3bdumIUOGyNfXV82bN1doaKjeeuutGvcCwPZskTHz5s1Tv3795OrqqhYtWpTbxldffaWRI0fK399fzZo101133aUXX3yxXN22bdvUu3dvOTs7Kzg4WGlpaTV+/wAAAAAAAI2NzSfQ161bp7i4OCUmJmrPnj3q2bOnYmJidPr06Qrri4qK1L59e82fP18+Pj6Vjtu1a1edOnXKsnz66adWz0+bNk3/+Mc/9Pbbb2v79u3Kzs7Wb37zmzp9bwBsrz4yZvv27Zo8ebI+//xzbd68WZcvX9YDDzygwsJCSw0ZAzQONc2IHTt2aOTIkRo/frz27t2roUOHaujQodq/f7+lZsGCBVq6dKlSU1O1c+dONW/eXDExMbp06VK58WbMmCE/P78Kt9OjRw+98847+vrrrzVu3DiNHj1a//znP2vUCwDbslXGlJSUaPjw4XriiScq3M7u3bvVunVrrV69WgcOHND//M//KD4+Xi+//LKl5tixYxo8eLDuu+8+mc1mxcbG6vHHH9eHH35YR3sHAAAAAACgYTIZhmHYsoGIiAj16dPHcrCmrKxM/v7+evLJJzVz5swqXxsYGKjY2FjFxsZarX/22We1YcMGqzO5fio/P1+tWrXSmjVr9Nvf/laS9M033+iuu+5SZmam7r777hv2XVBQIE9PT+Xn58vDw6PSuqM/HtW+3H3y9/S/4ZhAU3Oy4KQ6eXVSiFdIpTXV/SzVVn1kzPXOnDmj1q1ba/v27RowYECdZIxU/X3zWdZnKiwpVEvXltUaF2hKTuSfUETbCPm6+1ZaU9VnqaYZMWLECBUWFlpNZN99990KDQ1VamqqDMOQn5+fnnrqKU2fPl3S1d87vL29lZaWpocfftjyug8++EBxcXF655131LVrV+3du1ehoaGVvo/BgwfL29tbK1asqFYvN1LdjCm6XKRPjn8idyd3uTi43HBcoCkpvlKsvOI8DQgYIDcnt0rrKvs82TJjJCktLU2xsbHKy8u74XudPHmy/v3vf2vr1q2SpGeeeUYbN260mrx/+OGHlZeXp/T09BuOV9V+uV7uhVxlnsjkOxNuS+cunpOjvaOiAqMqranv70wAAAAAAGs2PQO9pKREu3fvVnR0tGWdnZ2doqOjlZmZeVNjHz58WH5+fmrfvr1GjRqlrKwsy3O7d+/W5cuXrbYbEhKidu3aVbrd4uJiFRQUWC0AGrb6zJifys/PlyTdeeedkmqXMRI5A9xqtcmIzMxMq3pJiomJsdQfO3ZMOTk5VjWenp6KiIiwGjM3N1cTJkzQm2++KVdX12r1m5+fb8mZ6vRyPTIGuLVsmTG1cbMZI5EzAAAAAACgaXCw5cbPnj2r0tJSeXt7W6339vbWN998U+txIyIilJaWps6dO+vUqVOaM2eO+vfvr/3798vd3V05OTlycnIqdz9Ab29v5eTkVDhmUlKS5syZU6t+So1SfV/wfa1eCzRmV8qu2HT79ZUxP1VWVqbY2Fjdc8896tatmyTVKmOkm8gZk3S+5LwuXrlY89cCjZyDXe1/lalNRuTk5FRYf+2zfe3fqmoMw9DYsWM1adIkhYeH67vvvrthr+vXr9cXX3yhV155pdq9XO9mfpdxtHNUzoWcm9rfQGN0peyKPJ09a/VaW2VMbezYsUPr1q3Txo0bb9hLQUGBLl68qGbNmpUb56Zyxt6R70y4LV0puyLv5t43LgQAAAAA3DJN8ijooEGDLD/36NFDERERCggI0Pr16zV+/PhajRkfH6+4uDjL44KCAvn73/gSg77uvmru1LxW2wSaAncnd1u3UK8mT56s/fv369NPP73psWqbM11bdVWHOzrc9PaBxsgkk+5sdueNCxuQl156SefPn1d8fHy16j/++GONGzdOr732mrp27Vrr7dY2Y5o5NFMP7x4qNUprvW2gMbM32au5Y9P9fX7//v0aMmSIEhMT9cADD9zUWLXNmTub3alwv3AZsundxQCbcbZ3tnULAAAAAICfsOkEupeXl+zt7ZWbm2u1Pjc3Vz4+PnW2nRYtWqhTp046cuSIJMnHx0clJSXKy8uzOkO0qu06OzvL2bnmX2pdHV3l6li9S7MCqFv1nTFTpkzRP//5T33yySdq27atZX1tMkaqfc60cGlxwxoA5dUmI3x8fKqsv/Zvbm6ufH19rWqu3d9869atyszMLPd5Dw8P16hRo7Rq1SrLuu3bt+uhhx7SkiVLNHr06Br1cr3aZozJZFKr5q1q/DrgdmerjKmJgwcP6v7779fEiRM1a9asavXi4eFR4dnnUu1zxtHeUd5unIELAAAAAAAaBpveA93JyUlhYWHKyMiwrCsrK1NGRoYiIyPrbDsXLlzQ0aNHLQeZwsLC5OjoaLXdQ4cOKSsrq063C8C26itjDMPQlClT9N5772nr1q0KCgqyep6MARqH2mREZGSkVb0kbd682VIfFBQkHx8fq5qCggLt3LnTUrN06VJ99dVXMpvNMpvN2rRpkyRp3bp1mjdvnuV127Zt0+DBg/XCCy9o4sSJNe4FgG3ZKmOq68CBA7rvvvs0ZswYq+ypbi8AAAAAAABNlc0v4R4XF6cxY8YoPDxcffv2VUpKigoLCzVu3DhJ0ujRo9WmTRslJSVJkkpKSnTw4EHLzydPnpTZbJabm5uCg4MlSdOnT9dDDz2kgIAAZWdnKzExUfb29ho5cqQkydPTU+PHj1dcXJzuvPNOeXh46Mknn1RkZKTuvvtuG+wFAPWlPjJm8uTJWrNmjd5//325u7tb7jnq6empZs2akTFAI1LTjJg6daqioqK0aNEiDR48WGvXrtWXX36pV199VdLVs7VjY2P1/PPPq2PHjgoKCtLs2bPl5+enoUOHSpLatWtn1YObm5skqUOHDparWXz88cf65S9/qalTp2rYsGGWnHFyctKdd95ZrV4A2J4tMkaSsrKy9OOPPyorK0ulpaUym82SpODgYLm5uWn//v362c9+ppiYGMXFxVkyxt7eXq1aXb3ixKRJk/Tyyy9rxowZeuyxx7R161atX7/e6j7pAAAAAAAATZLRALz00ktGu3btDCcnJ6Nv377G559/bnkuKirKGDNmjOXxsWPHDEnllqioKEvNiBEjDF9fX8PJyclo06aNMWLECOPIkSNW27x48aLxxz/+0bjjjjsMV1dX49e//rVx6tSpavecn59vSDLy8/Nr/b4B3JrPUl1nTEXPSzJWrlxpqbnZjDEMcgaoKzf6LNUkIwzDMNavX2906tTJcHJyMrp27Wps3LjR6vmysjJj9uzZhre3t+Hs7Gzcf//9xqFDhyrt71ru7N2717JuzJgxN8yi6vRSFTIGqDtVfZ5skTGVZcjHH39sGIZhJCYmVvh8QECA1Tgff/yxERoaajg5ORnt27e3+l3nZvcLgOrjswQAAAAAt5bJMAyj/qbnm66CggJ5enoqPz9fHh4etm4HaLT4LFWOfQPUDT5LFWO/AHWHz1PF2C9A3eCzBAAAAAC3lk3vgQ4AAAAAAAAAAAAAQEPBBDoAAAAAAAAAAAAAAJIcbN1AY3XtyvcFBQU27gRo3K59hribRHnkDFA3yJmKkTFA3SFnKkbOAHWDjAEAAACAW4sJ9Fo6f/68JMnf39/GnQBNw/nz5+Xp6WnrNhoUcgaoW+SMNTIGqHvkjDVyBqhbZAwAAAAA3Bomgz9hrpWysjJlZ2fL3d1dJpOp0rqCggL5+/vrxIkT8vDwuIUdVo2+aq6h9tZQ+5Kq15thGDp//rz8/PxkZ8ddJX6qOjnT2P/72wJ91VxD7a26fZEzFeN3mfrTUHtrqH1JDbc3cubmkDP1p6H2Rl81x3cmAAAAAGh4OAO9luzs7NS2bdtq13t4eDS4L+oSfdVGQ+2tofYl3bg3zqKoWE1ypjH/97cV+qq5htpbdfoiZ8rjd5n611B7a6h9SQ23N3KmdsiZ+tdQe6OvmuM7EwAAAAA0HPzpMgAAAAAAAAAAAAAAYgIdAAAAAAAAAAAAAABJTKDXO2dnZyUmJsrZ2dnWrVihr5prqL011L6kht1bU9GQ93FD7Y2+aq6h9tZQ+2pqGup+bqh9SQ23t4bal9Rwe2uofTU1DXU/N9S+pIbbG33VXEPuDQAAAABuVybDMAxbNwEAAAAAAAAAAAAAgK1xBjoAAAAAAAAAAAAAAGICHQAAAAAAAAAAAAAASUygAwAAAAAAAAAAAAAgiQl0AAAAAAAAAAAAAAAkMYEOAAAAAAAAAAAAAIAkJtBrbNmyZQoMDJSLi4siIiK0a9euSmsPHDigYcOGKTAwUCaTSSkpKeVqnn32WZlMJqslJCTE5n1J0smTJ/Xoo4+qZcuWatasmbp3764vv/zS5r1de+76ZfLkyTbtq7S0VLNnz1ZQUJCaNWumDh066LnnnpNhGDXqqz56O3/+vGJjYxUQEKBmzZqpX79++uKLL+q1r9dee039+/fXHXfcoTvuuEPR0dHl6g3DUEJCgnx9fdWsWTNFR0fr8OHDNe6rqSFnyJn6zpmGmjE17Y2cqZ2GmjH10ZtUNznTUDOmPnojZ6yRM7VDzjSdnGmoGVMfvfGdCQAAAABwDRPoNbBu3TrFxcUpMTFRe/bsUc+ePRUTE6PTp09XWF9UVKT27dtr/vz58vHxqXTcrl276tSpU5bl008/tXlf586d0z333CNHR0d98MEHOnjwoBYtWqQ77rjD5r198cUXVvtr8+bNkqThw4fbtK8XXnhBy5cv18svv6x///vfeuGFF7RgwQK99NJL1e6rvnp7/PHHtXnzZr355pvat2+fHnjgAUVHR+vkyZP11te2bds0cuRIffzxx8rMzJS/v78eeOABq20uWLBAS5cuVWpqqnbu3KnmzZsrJiZGly5dqnZfTQ05Q87Ud8401IypTW/kTM011Iypr97qImcaasbUV2/kjDVypubImaaTMw01Y+qrN74zAQAAAAAsDFRb3759jcmTJ1sel5aWGn5+fkZSUtINXxsQEGAsWbKk3PrExESjZ8+eDa6vZ555xrj33ntvqq/66u16U6dONTp06GCUlZXZtK/Bgwcbjz32mNW63/zmN8aoUaOq3Vd99FZUVGTY29sb//znP63W9+7d2/if//mfW9KXYRjGlStXDHd3d2PVqlWGYRhGWVmZ4ePjYyxcuNBSk5eXZzg7Oxv/93//V+2+mhpypmH0dr2mlDMNNWNutjfDIGeqo6FmTH31Vhc501Azpr56I2eqRs7cGDnTMPq6XlP6XaY+euM7EwAAAADgpzgDvZpKSkq0e/duRUdHW9bZ2dkpOjpamZmZNzX24cOH5efnp/bt22vUqFHKysqyeV9///vfFR4eruHDh6t169bq1auXXnvttRqNUZ/77KfbWL16tR577DGZTCab9tWvXz9lZGTo22+/lSR99dVX+vTTTzVo0KBqj1EfvV25ckWlpaVycXGxWt+sWbNqn7lTF30VFRXp8uXLuvPOOyVJx44dU05OjtWYnp6eioiIqLP/PxobcoacuZGbzZmGmjF11Rs5U7WGmjH12dvN5kxDzZj67I2cqRo5UzVypunkTEPNmPrqje9MAAAAAICfYgK9ms6ePavS0lJ5e3tbrff29lZOTk6tx42IiFBaWprS09O1fPlyHTt2TP3799f58+dt2td//vMfLV++XB07dtSHH36oJ554Qn/605+0atWqao9RX7391IYNG5SXl6exY8favK+ZM2fq4YcfVkhIiBwdHdWrVy/FxsZq1KhRNu3N3d1dkZGReu6555Sdna3S0lKtXr1amZmZOnXq1C3r65lnnpGfn5/l4M+119Xn/x+NDTlDztzIzeZMQ82YuuqNnKlaQ82Y+uztZnOmoWZMffZGzlSNnKkaOdN0cqahZkx99cZ3JgAAAADATznYuoHb3U//0r5Hjx6KiIhQQECA1q9fr/Hjx9usr7KyMoWHh+svf/mLJKlXr17av3+/UlNTNWbMGJv1db033nhDgwYNkp+fn61b0fr16/XWW29pzZo16tq1q8xms2JjY+Xn52fzffbmm2/qscceU5s2bWRvb6/evXtr5MiR2r179y3Z/vz587V27Vpt27at3FkdqH/kzM0hZ27M1hkjkTO21FAzRmocOdOQMkYiZ6pCztgOOXNzGlLONNSMkWyfM2QMAAAAADQcnIFeTV5eXrK3t1dubq7V+tzcXPn4+NTZdlq0aKFOnTrpyJEjNu3L19dXXbp0sVp311131ehSifW9z44fP64tW7bo8ccfr9Hr6quvp59+2nJGRffu3fX73/9e06ZNU1JSks1769Chg7Zv364LFy7oxIkT2rVrly5fvqz27dvXe1/JycmaP3++PvroI/Xo0cOy/trr6vsz1ZiQM+TMjdxszjTUjLnZ3siZ6mmoGVOfvd1szjTUjKnP3siZipEz1UPOXNUUcqahZkx99sZ3JgAAAADANUygV5OTk5PCwsKUkZFhWVdWVqaMjAxFRkbW2XYuXLigo0ePytfX16Z93XPPPTp06JDVum+//VYBAQHVHqO+99nKlSvVunVrDR48uEavq6++ioqKZGdn/ZGyt7dXWVmZzXu7pnnz5vL19dW5c+f04YcfasiQIfXa14IFC/Tcc88pPT1d4eHhVs8FBQXJx8fHasyCggLt3LmzTj9TjQk5Q87cyM3mTEPNmJvpjZypvoaaMfXZ283mTEPNmPrsjZwpj5ypPnLmqqaQMw01Y+qzt2v4zgQAAAAAkIFqW7t2reHs7GykpaUZBw8eNCZOnGi0aNHCyMnJMQzDMH7/+98bM2fOtNQXFxcbe/fuNfbu3Wv4+voa06dPN/bu3WscPnzYUvPUU08Z27ZtM44dO2Z89tlnRnR0tOHl5WWcPn3apn3t2rXLcHBwMObNm2ccPnzYeOuttwxXV1dj9erVNt9nhmEYpaWlRrt27YxnnnmmRv3UZ19jxowx2rRpY/zzn/80jh07Zrz77ruGl5eXMWPGDJv3lp6ebnzwwQfGf/7zH+Ojjz4yevbsaURERBglJSX11tf8+fMNJycn429/+5tx6tQpy3L+/HmrmhYtWhjvv/++8fXXXxtDhgwxgoKCjIsXL9ZonzUl5Aw5U98501Azpja9kTM111Azpr56q4ucaagZU1+9kTPkzM0iZ5pOzjTUjKmv3vjOBAAAAAC4hgn0GnrppZeMdu3aGU5OTkbfvn2Nzz//3PJcVFSUMWbMGMvjY8eOGZLKLVFRUZaaESNGGL6+voaTk5PRpk0bY8SIEcaRI0ds3pdhGMY//vEPo1u3boazs7MREhJivPrqqzXuq756+/DDDw1JxqFDh2rVU330VVBQYEydOtVo166d4eLiYrRv3974n//5H6O4uNjmva1bt85o37694eTkZPj4+BiTJ0828vLy6rWvgICACvtKTEy01JSVlRmzZ882vL29DWdnZ+P++++/qf+mTQU5U3PkTM1ypqFmTE17I2dqp6FmTH30Zhh1kzMNNWPqozdyhpypC+RM08mZhpox9dEb35kAAAAAANeYDMMwBAAAAAAAAAAAAADAbY57oAMAAAAAAAAAAAAAICbQAQAAAAAAAAAAAACQxAQ6AAAAAAAAAAAAAACSmEAHAAAAAAAAAAAAAEASE+gAAAAAAAAAAAAAAEhiAh0AAAAAAAAAAAAAAElMoAMAAAAAAAAAAAAAIIkJdAAAAAAAAAAAAAAAJDGBjiYoMDBQKSkp5dY/++yzCg0NtXpsMplkMplkb28vf39/TZw4UT/++OOtaxZAo0TOAKhv5AyA+kbOAAAAAABQMQdbNwDUVElJiZycnOpkrK5du2rLli0qLS3Vv//9bz322GPKz8/XunXr6mR8AI0TOQOgvpEzAOobOQMAAAAAQO0wgY4Gb+DAgerWrZscHBy0evVqde/eXR9//HGdjO3g4CAfHx9JUps2bTR8+HCtXLmyTsYG0HiQMwDqGzkDoL6RMwAAAAAA1A0m0NEorFq1Sk888YQ+++yzetvGd999pw8//LDOztIA0LiQMwDqGzkDoL6RMwAAAAAA3Dwm0NEodOzYUQsWLKh2/TPPPKNZs2ZZrSspKVGXLl2s1u3bt09ubm4qLS3VpUuXJEmLFy+++YYBNDrkDID6Rs4AqG/kDAAAAAAAN48JdDQKYWFhNap/+umnNXbsWKt1S5cu1SeffGK1rnPnzvr73/+uS5cuafXq1TKbzXryySdvtl0AjRA5A6C+kTMA6hs5AwAAAADAzbOzdQNAdTRv3rxG9V5eXgoODrZa7rzzznJ1Tk5OCg4OVrdu3TR//nzZ29trzpw5ddU2gEaEnAFQ38gZAPWNnAEAAAAA4OYxgQ78xKxZs5ScnKzs7GxbtwKgiSJnANQ3cgZAfSNnAAAAAABNGRPowE9ERkaqR48e+stf/mLrVgA0UeQMgPpGzgCob+QMAAAAAKApYwIduM60adP0+uuv68SJE7ZuBUATRc4AqG/kDID6Rs4AAAAAAJoqk2EYhq2bAAAAAAAAAAAAAADA1jgDHQAAAAAAAAAAAAAAMYGORuatt96Sm5tbhUvXrl1t3R6AJoCcAVDfyBkA9Y2cAQAAAACg9riEOxqV8+fPKzc3t8LnHB0dFRAQcIs7AtDUkDMA6hs5A6C+kTMAAAAAANQeE+gAAAAAAAAAAAAAAIhLuAMAAAAAAAAAAAAAIIkJdAAAAAAAAAAAAAAAJDGBDgAAAAAAAAAAAACAJCbQAQAAAAAAAAAAAACQxAQ6AAAAAAAAAAAAAACSmEAHAAAAAAAAAAAAAEASE+gAAAAAAAAAAAAAAEhiAh0AAAAAAAAAAAAAAElMoAMAAAAAAAAAAAAAIIkJdAAAAAAAAAAAAAAAJEkOtm6gsSorK1N2drbc3d1lMpls3Q7QaBmGofPnz8vPz092dvxNz0+RM0DdIGcqRsYAdYecqRg5A9QNMqZy5AxQN8gZAAAAa0yg11J2drb8/f1t3QbQZJw4cUJt27a1dRsNCjkD1C1yxhoZA9Q9csYaOQPULTKmPHIGqFvkDAAAwFVMoNeSu7u7pKu/WHp4eNi4G6DxKigokL+/v+Uzhf8iZ4C6Qc5UjIwB6g45UzFyBqgbZEzlyBmgbpAzAAAA1phAr6Vrlwbz8PDgSxpQB7jcXnnkDFC3yBlrZAxQ98gZa+QMULfImPLIGaBukTMAAABXcVMbAAAAAAAAAAAAAADEBDoAAAAAAAAAAAAAAJKYQAcAAAAAAAAAAAAAQBIT6AAAAAAAAAAAAAAASGogE+jLli1TYGCgXFxcFBERoV27dlVae+DAAQ0bNkyBgYEymUxKSUkpV/Pss8/KZDJZLSEhIVY1AwcOLFczadKkun5rABoAMgZAVWqSEZL09ttvKyQkRC4uLurevbs2bdpk9bxhGEpISJCvr6+aNWum6OhoHT58uMKxiouLFRoaKpPJJLPZbFn/3XfflcsQk8mkzz//vEa9ALA9W2TMvHnz1K9fP7m6uqpFixYVbqeijFm7dq1VzbZt29S7d285OzsrODhYaWlpNX7/AJqOmuTZa6+9pv79++uOO+7QHXfcoejo6HL1NfmdCQAAAABuJZtPoK9bt05xcXFKTEzUnj171LNnT8XExOj06dMV1hcVFal9+/aaP3++fHx8Kh23a9euOnXqlGX59NNPy9VMmDDBqmbBggV19r4ANAxkDICq1DQjduzYoZEjR2r8+PHau3evhg4dqqFDh2r//v2WmgULFmjp0qVKTU3Vzp071bx5c8XExOjSpUvlxpsxY4b8/Pwq7W/Lli1WORIWFlajXgDYlq0ypqSkRMOHD9cTTzxRZX8rV660ypihQ4danjt27JgGDx6s++67T2azWbGxsXr88cf14Ycf3txOAdAo1TTPtm3bppEjR+rjjz9WZmam/P399cADD+jkyZOWmpr8zgQAAAAAt5RhY3379jUmT55seVxaWmr4+fkZSUlJN3xtQECAsWTJknLrExMTjZ49e1b52qioKGPq1Kk17Pa/8vPzDUlGfn5+rccAUP+fpcaaMYZBzgB1parPUk0z4ne/+50xePBgq3URERHGH/7wB8MwDKOsrMzw8fExFi5caHk+Ly/PcHZ2Nv7v//7P6nWbNm0yQkJCjAMHDhiSjL1791qeO3bsWLl1Ne3lRsgYoO5U9nmyZcYYhmGsXLnS8PT0rHBbkoz33nuv0vc0Y8YMo2vXrlbrRowYYcTExFT6muuRM0DdaAifpZv5XmUYhnHlyhXD3d3dWLVqlWEYNc+zyjSEfQM0BXyWAAAArDnYZNb+/yspKdHu3bsVHx9vWWdnZ6fo6GhlZmbe1NiHDx+Wn5+fXFxcFBkZqaSkJLVr186q5q233tLq1avl4+Ojhx56SLNnz5arq2uF4xUXF6u4uNjyuKCgoFp9FJYUqqC4erVAU+Tu7C43JzebbLsxZYxU+5w5d/GcLl3hLA3cvlq6tpSTvVONX1ebjMjMzFRcXJzVupiYGG3YsEHS1TM2c3JyFB0dbXne09NTERERyszM1MMPPyxJys3N1YQJE7Rhw4Yqc+FXv/qVLl26pE6dOmnGjBn61a9+Ve1erlfbjDEMQ6cLT6vMKKtWPdDU2Jns1Lp5a5lMphq9zpYZU12TJ0/W448/rvbt22vSpEkaN26c5X1mZmZabedaL7GxsZWOV9ucuVx6WWeLztaod6ApcXZw1p3N7rR1G5Wqi+9VRUVFunz5su688+r7rG2ecWwGqB1bHpsBAABojGw6gX727FmVlpbK29vbar23t7e++eabWo8bERGhtLQ0de7cWadOndKcOXPUv39/7d+/X+7u7pKkRx55RAEBAfLz89PXX3+tZ555RocOHdK7775b4ZhJSUmaM2dOjXvJuZCjvaf2ysHOprsasIkrZVfUzbubQrxCblxcDxpTxki1z5mDZw/qVMEpcga3JXs7e4X7hcvX3bfGr61NRuTk5FRYn5OTY3n+2rrKagzD0NixYzVp0iSFh4fru+++K7cdNzc3LVq0SPfcc4/s7Oz0zjvvaOjQodqwYYNlEv1GvVyvthlz8cpF7cvdp7xLeeQMbjtXyq7I08VTkf6RNT7obKuMqa65c+fqZz/7mVxdXfXRRx/pj3/8oy5cuKA//elPVfZSUFCgixcvqlmzZuXGrG3O/HjxR+3O3q0rZVdq/FqgsbtSdkXebt7qH9Df1q1Uqi6+Vz3zzDPy8/OzTJjXNs9qmzOnLpyS+ZSZ32VwW7pSdkU9vHuok1cnW7cCAADQaDTJbw6DBg2y/NyjRw9FREQoICBA69ev1/jx4yVJEydOtNR0795dvr6+uv/++3X06FF16NCh3Jjx8fFWZ4MUFBTI39+/Wv042DnI37N6tUBTcrLg5I2LGqH6yBjpJnLGkDycPdTStWUt3xHQeJ3IP2HrFmrspZde0vnz563O4rqel5eXVR706dNH2dnZWrhwodVZ6DVxM7/LXDGuyNfdVy4OLrXaNtBYFV8pVl5xnq3bqBezZ8+2/NyrVy8VFhZq4cKFlgn02ripnCm7wncm3JbOXTzX5K/yMn/+fK1du1bbtm2Ti8vN/S5R25wxDEOO9o5q69H2prYPNEbfF3wvQ4at2wAAAGhU7Gy5cS8vL9nb2ys3N9dqfW5urnx8fOpsOy1atFCnTp105MiRSmsiIiIkqdIaZ2dneXh4WC0AGrbGlDESOQPcarXJCB8fnyrrr/1bVc3WrVuVmZkpZ2dnOTg4KDg4WJIUHh6uMWPGVNpvRESEVYbcqJfrkTHArWWrjKmtiIgIff/995ZLI1fWi4eHR4Vnn0vkDNBU3cz3quTkZM2fP18fffSRevToYVlf2zwjZwAAAADcCjadQHdyclJYWJgyMjIs68rKypSRkaHIyMg6286FCxd09OhR+fpWfnlXs9ksSVXWAGhcyBgAValNRkRGRlrVS9LmzZst9UFBQfLx8bGqKSgo0M6dOy01S5cu1VdffSWz2Syz2axNmzZJktatW6d58+ZV2q/ZbLbKkBv1AsC2bJUxtWU2m3XHHXfI2dm5Wr0AuH3U9nvVggUL9Nxzzyk9PV3h4eFWz9VnngEAAADAzbL5Jdzj4uI0ZswYhYeHq2/fvkpJSVFhYaHGjRsnSRo9erTatGmjpKQkSVJJSYkOHjxo+fnkyZMym81yc3OznME1ffp0PfTQQwoICFB2drYSExNlb2+vkSNHSpKOHj2qNWvW6Be/+IVatmypr7/+WtOmTdOAAQOs/iIaQONHxgCoSk0zYurUqYqKitKiRYs0ePBgrV27Vl9++aVeffVVSZLJZFJsbKyef/55dezYUUFBQZo9e7b8/Pw0dOhQSVK7du2senBzu3pf5Q4dOqht26uXFV21apWcnJzUq1cvSdK7776rFStW6PXXX7e87ka9ALA9W2SMJGVlZenHH39UVlaWSktLLX/IFxwcLDc3N/3jH/9Qbm6u7r77brm4uGjz5s36y1/+ounTp1vGmDRpkl5++WXNmDFDjz32mLZu3ar169dr48aNt2bnAWhQappnL7zwghISErRmzRoFBgZa7mvu5uYmNze3aucZAAAAANiCzSfQR4wYoTNnzighIUE5OTkKDQ1Venq6vL29JV09+GNn998T5bOzsy0Hk6WrlwNLTk5WVFSUtm3bJkn6/vvvNXLkSP3www9q1aqV7r33Xn3++edq1aqVpKt/Pb1lyxbLFz5/f38NGzZMs2bNunVvHMAtQcYAqEpNM6Jfv35as2aNZs2apT//+c/q2LGjNmzYoG7dullqZsyYocLCQk2cOFF5eXm69957lZ6eXuN7fj733HM6fvy4HBwcFBISonXr1um3v/1tjXoBYFu2ypiEhAStWrXK8vja7zYff/yxBg4cKEdHRy1btkzTpk2TYRgKDg7W4sWLNWHCBMtrgoKCtHHjRk2bNk0vvvii2rZtq9dff10xMTH1tr8ANFw1zbPly5erpKTE6ncXSUpMTNSzzz4rqe5+ZwIAAACAumYyDMOwdRONUUFBgTw9PZWfn1/lPbeO/nhU+3L3yd/T/xZ2BzQMJwtOqpNXJ4V4hVRaU93P0u2ouvvms6zPVFhSqJauLW9hd0DDcCL/hCLaRsjXvfLbI5AzFavufim6XKRPjn8idyd3uThwQBu3l+IrxcorztOAgAFyc3KrtI6cqVh190vuhVxlnsjkOxNuS+cunpOjvaOiAqMqrSFjKlfdfXP4h8M6eOag2nq0vYXdAQ3D9wXfK8QrRJ29OldaQ84AAABYs+k90AEAAAAAAAAAAAAAaCiYQAcAAAAAAAAAAAAAQEygAwAAAAAAAAAAAAAgiQl0AAAAAAAAAAAAAAAkMYEOAAAAAAAAAAAAAIAkJtABAAAAAAAAAAAAAJDEBDoAAAAAAAAAAAAAAJKYQAcAAAAAAAAAAAAAQBIT6AAAAAAAAAAAAAAASGICHQAAAAAAAAAAAAAASUygAwAAAAAAAAAAAAAgiQl0AAAAAAAAAAAAAAAkMYEOAAAAAAAAAAAAAIAkJtABAAAAAAAAAAAAAJDEBDoAAAAAAAAAAAAAAJKYQAcAAAAAAAAAAAAAQBIT6AAAAAAAAAAAAAAASGICHQAAAAAAAAAAAAAASUygA7gNLFu2TIGBgXJxcVFERIR27dpVae2BAwc0bNgwBQYGymQyKSUlpVzNs88+K5PJZLWEhIRY1Vy6dEmTJ09Wy5Yt5ebmpmHDhik3N7eu3xoAAAAAAAAAAADqEBPoAJq0devWKS4uTomJidqzZ4969uypmJgYnT59usL6oqIitW/fXvPnz5ePj0+l43bt2lWnTp2yLJ9++qnV89OmTdM//vEPvf3229q+fbuys7P1m9/8pk7fGwAAAAAAAAAAAOoWE+gAmrTFixdrwoQJGjdunLp06aLU1FS5urpqxYoVFdb36dNHCxcu1MMPPyxnZ+dKx3VwcJCPj49l8fLysjyXn5+vN954Q4sXL9bPfvYzhYWFaeXKldqxY4c+//zzOn+PAAAAAAAAAAAAqBtMoANoskpKSrR7925FR0db1tnZ2Sk6OlqZmZk3Nfbhw4fl5+en9u3ba9SoUcrKyrI8t3v3bl2+fNlquyEhIWrXrl2V2y0uLlZBQYHVAgAAAAAAAAAAgFuHCXQATdbZs2dVWloqb29vq/Xe3t7Kycmp9bgRERFKS0tTenq6li9frmPHjql///46f/68JCknJ0dOTk5q0aJFjbablJQkT09Py+Lv71/rHgEAAAAAAAAAAFBzTKADQA0NGjRIw4cPV48ePRQTE6NNmzYpLy9P69evv6lx4+PjlZ+fb1lOnDhRRx0DqMqyZcsUGBgoFxcXRUREaNeuXVXWv/322woJCZGLi4u6d++uTZs2WT1vGIYSEhLk6+urZs2aKTo6WocPH65wrOLiYoWGhspkMslsNldYc+TIEbm7u5f7o5y0tDSZTCarxcXFpdrvG8CtYYuMmTdvnvr16ydXV9dy2XG9H374QW3btpXJZFJeXp5l/bZt28pljMlkuqk/QgQAAAAAAGgMmEAH0GR5eXnJ3t5eubm5Vutzc3Pl4+NTZ9tp0aKFOnXqpCNHjkiSfHx8VFJSYnUQujrbdXZ2loeHh9UCoH6tW7dOcXFxSkxM1J49e9SzZ0/FxMTo9OnTFdbv2LFDI0eO1Pjx47V3714NHTpUQ4cO1f79+y01CxYs0NKlS5WamqqdO3eqefPmiomJ0aVLl8qNN2PGDPn5+VXa3+XLlzVy5Ej179+/wuc9PDx06tQpy3L8+PEa7gEA9clWGVNSUqLhw4friSeeuGGP48ePV48ePSp9/tChQ1Y507p16xrsAQAAAAAAgMaHCXQATZaTk5PCwsKUkZFhWVdWVqaMjAxFRkbW2XYuXLigo0ePytfXV5IUFhYmR0dHq+0eOnRIWVlZdbpdADdv8eLFmjBhgsaNG6cuXbooNTVVrq6uWrFiRYX1L774oh588EE9/fTTuuuuu/Tcc8+pd+/eevnllyVdPTM0JSVFs2bN0pAhQ9SjRw/99a9/VXZ2tjZs2GA11gcffKCPPvpIycnJlfY3a9YshYSE6He/+12Fz5tMJvn4+FiW629ZAcC2bJUxc+bM0bRp09S9e/cq+1u+fLny8vI0ffr0Smtat25tlTN2dnyFBAAAAAAATRtHPwA0aXFxcXrttde0atUq/fvf/9YTTzyhwsJCjRs3TpI0evRoxcfHW+pLSkpkNptlNptVUlKikydPymw2W84ul6Tp06dr+/bt+u6777Rjxw79+te/lr29vUaOHClJ8vT01Pjx4xUXF6ePP/5Yu3fv1rhx4xQZGam777771u4AAJUqKSnR7t27FR0dbVlnZ2en6OhoZWZmVviazMxMq3pJiomJsdQfO3ZMOTk5VjWenp6KiIiwGjM3N1cTJkzQm2++KVdX1wq3tXXrVr399ttatmxZpe/hwoULCggIkL+/v4YMGaIDBw5UWltcXKyCggKrBUD9sWXGVMfBgwc1d+5c/fWvf61yUjw0NFS+vr76+c9/rs8++6zKMckZAAAAAADQFDCBDqBJGzFihJKTk5WQkKDQ0FCZzWalp6dbztLMysrSqVOnLPXZ2dnq1auXevXqpVOnTik5OVm9evXS448/bqn5/vvvNXLkSHXu3Fm/+93v1LJlS33++edq1aqVpWbJkiX65S9/qWHDhmnAgAHy8fHRu+++e+veOIAbOnv2rEpLS8udte3t7V3pPX5zcnKqrL/2b1U1hmFo7NixmjRpksLDwyvczg8//KCxY8cqLS2t0ts5dO7cWStWrND777+v1atXq6ysTP369dP3339fYX1SUpI8PT0ti7+/f4V1AOqGrTKmOoqLizVy5EgtXLhQ7dq1q7DG19dXqampeuedd/TOO+/I399fAwcO1J49eyodl5wBAAAAAABNgYOtGwCA+jZlyhRNmTKlwue2bdtm9TgwMFCGYVQ53tq1a2+4TRcXFy1btqzKM0cB3J5eeuklnT9/3urqF9ebMGGCHnnkEQ0YMKDSmsjISKvbQvTr10933XWXXnnlFT333HPl6uPj4xUXF2d5XFBQwOQWcJuKj4/XXXfdpUcffbTSms6dO6tz586Wx/369dPRo0e1ZMkSvfnmm5WOS84AAAAAAIDGjjPQAQDAbcnLy0v29vbKzc21Wp+bmysfH58KX+Pj41Nl/bV/q6rZunWrMjMz5ezsLAcHBwUHB0uSwsPDNWbMGEtNcnKyHBwc5ODgoPHjxys/P18ODg6V3jvZ0dFRvXr1srrlxE85OzvLw8PDagFQf2yVMdVx7RYR1zLm/vvvt/ScmJhY6ev69u1bacZI5AwAAAAAAGgaGsQE+rJlyxQYGCgXFxdFRERo165dldYeOHBAw4YNU2BgoEwmk1JSUsrVPPvsszKZTFZLSEhIheMZhqFBgwbJZDJpw4YNdfSOAABAQ+fk5KSwsDBlZGRY1pWVlSkjI8PqzO6fioyMtKqXpM2bN1vqg4KC5OPjY1VTUFCgnTt3WmqWLl2qr776SmazWWazWZs2bZIkrVu3TvPmzZN09T7I1543m82aO3eu3N3dZTab9etf/7rC3kpLS7Vv3z75+vrWco8AqEu2ypjqeOedd6xy6PXXX5ck/etf/9LkyZMrfZ3ZbCZjgNtYXR+7OX/+vGJjYxUQEKBmzZqpX79++uKLL+rxHQAAAABA9dj8Eu7r1q1TXFycUlNTFRERoZSUFMXExOjQoUNq3bp1ufqioiK1b99ew4cP17Rp0yodt2vXrtqyZYvlsYNDxW81JSVFJpPp5t8IAABodOLi4jRmzBiFh4erb9++SklJUWFhocaNGydJGj16tNq0aaOkpCRJ0tSpUxUVFaVFixZp8ODBWrt2rb788ku9+uqrkiSTyaTY2Fg9//zz6tixo4KCgjR79mz5+flp6NChklTufsNubm6SpA4dOqht27aSpLvuusuq5ssvv5SdnZ26detmWTd37lzdfffdCg4OVl5enhYuXKjjx4/r8ccfr/sdBaBWbJExkpSVlaUff/xRWVlZKi0tldlsliQFBwfLzc1NHTp0sOrz7Nmzkq5mT4sWLSRd/Z4UFBSkrl276tKlS3r99de1detWffTRR/W4xwA0VPVx7Obxxx/X/v379eabb8rPz0+rV69WdHS0Dh48qDZt2tT3WwIAAACAStl8An3x4sWaMGGC5SBSamqqNm7cqBUrVmjmzJnl6vv06aM+ffpIUoXPX+Pg4HDDyxiazWYtWrRIX375JWdSAABwGxoxYoTOnDmjhIQE5eTkKDQ0VOnp6fL29pZ0dRLKzu6/F+zp16+f1qxZo1mzZunPf/6zOnbsqA0bNlhNbM+YMUOFhYWaOHGi8vLydO+99yo9PV0uLi512vu5c+c0YcIE5eTk6I477lBYWJh27NihLl261Ol2ANSerTImISFBq1atsjzu1auXJOnjjz/WwIEDq9V7SUmJnnrqKZ08eVKurq7q0aOHtmzZovvuu+9mdgmARqquj91cvHhR77zzjt5//30NGDBA0tWrCf7jH//Q8uXL9fzzz9fjuwEAAACAqtl0Ar2kpES7d+9WfHy8ZZ2dnZ2io6OVmZl5U2MfPnxYfn5+cnFxUWRkpJKSkqzO+CoqKtIjjzyiZcuWVet+gcXFxSouLrY8LigouKn+AABAwzBlyhRNmTKlwue2bdtWbt3w4cM1fPjwSsczmUyaO3eu5s6dW63tBwYGyjCMKmvGjh2rsWPHWq1bsmSJlixZUq1tALAdW2RMWlqa0tLSqt3jwIEDy+XQjBkzNGPGjGqPAaDpqo9jN1euXFFpaWm5PzBs1qyZPv3000pfx7EZAAAAALeCTe+BfvbsWZWWllrOwLjG29tbOTk5tR43IiJCaWlpSk9P1/Lly3Xs2DH1799f58+ft9RMmzZN/fr105AhQ6o1ZlJSkjw9PS2Lv79/rfsDAAAAAABoDOrj2I27u7siIyP13HPPKTs7W6WlpVq9erUyMzN16tSpSl/HsRkAAAAAt4JNJ9Dry6BBgzR8+HD16NFDMTEx2rRpk/Ly8rR+/XpJ0t///ndt3bpVKSkp1R4zPj5e+fn5luXEiRP11D0AAAAAAEDT9uabb8owDLVp00bOzs5aunSpRo4caXVri+txbAYAAADArWDTS7h7eXnJ3t5eubm5Vutzc3OrdVn16mrRooU6deqkI0eOSJK2bt2qo0ePqkWLFlZ1w4YNU//+/Su8lKKzs7OcnZ3rrCcAAAAAAICGrr6O3XTo0EHbt29XYWGhCgoK5OvrqxEjRqh9+/aVvoZjMwAAAABuBZuege7k5KSwsDBlZGRY1pWVlSkjI0ORkZF1tp0LFy7o6NGj8vX1lSTNnDlTX3/9tcxms2WRrt5LdOXKlXW2XQAAAAAAgMasvo/dNG/eXL6+vjp37pw+/PDDat9qDwAAAADqi03PQJekuLg4jRkzRuHh4erbt69SUlJUWFiocePGSZJGjx6tNm3aKCkpSZJUUlKigwcPWn4+efKkzGaz3NzcFBwcLEmaPn26HnroIQUEBCg7O1uJiYmyt7fXyJEjJUk+Pj4V/pV0u3btFBQUdCveNgAAAAAAQKNQH8duPvzwQxmGoc6dO+vIkSN6+umnFRISYhkTAAAAAGzF5hPoI0aM0JkzZ5SQkKCcnByFhoYqPT1d3t7ekqSsrCyr+19lZ2erV69elsfJyclKTk5WVFSU5dLr33//vUaOHKkffvhBrVq10r333qvPP/9crVq1uqXvDQAAAAAAoLGrj2M3+fn5io+P1/fff68777xTw4YN07x58+To6HhL3xsAAAAAXM/mE+iSNGXKFE2ZMqXC566/H3lgYKAMw6hyvLVr19a4hxuNCQAAAAAAcLuq62M3v/vd7/S73/2urtoDAAAAgDpj03ugAwAAAAAAAAAAAADQUDCBDgAAAAAAAAAAAACAmEAHAAAAAAAAAAAAAEASE+gAAAAAAAAAAAAAAEhiAh0AAAAAAAAAAAAAAElMoAMAAAAAAAAAAAAAIIkJdAC3gWXLlikwMFAuLi6KiIjQrl27Kq09cOCAhg0bpsDAQJlMJqWkpFQ59vz582UymRQbG2u1fuDAgTKZTFbLpEmT6uDdAAAAAAAAAAAAoL4wgQ6gSVu3bp3i4uKUmJioPXv2qGfPnoqJidHp06crrC8qKlL79u01f/58+fj4VDn2F198oVdeeUU9evSo8PkJEybo1KlTlmXBggU3/X4AAAAAAAAAAABQf5hAB9CkLV68WBMmTNC4cePUpUsXpaamytXVVStWrKiwvk+fPlq4cKEefvhhOTs7VzruhQsXNGrUKL322mu64447KqxxdXWVj4+PZfHw8KiT9wQAAAAAAAAAAID6wQQ6gCarpKREu3fvVnR0tGWdnZ2doqOjlZmZeVNjT548WYMHD7Ya+3pvvfWWvLy81K1bN8XHx6uoqKjKMYuLi1VQUGC1AAAAAAAAAAAA4NZxsHUDAFBfzp49q9LSUnl7e1ut9/b21jfffFPrcdeuXas9e/boiy++qLTmkUceUUBAgPz8/PT111/rmWee0aFDh/Tuu+9W+pqkpCTNmTOn1n0BAAAAAAAAAADg5jCBDgA1cOLECU2dOlWbN2+Wi4tLpXUTJ060/Ny9e3f5+vrq/vvv19GjR9WhQ4cKXxMfH6+4uDjL44KCAvn7+9dd8wAAAAAAAAAAAKgSE+gAmiwvLy/Z29srNzfXan1ubq58fHxqNebu3bt1+vRp9e7d27KutLRUn3zyiV5++WUVFxfL3t6+3OsiIiIkSUeOHKl0At3Z2bnK+64DAAAAAAAAAACgfnEPdABNlpOTk8LCwpSRkWFZV1ZWpoyMDEVGRtZqzPvvv1/79u2T2Wy2LOHh4Ro1apTMZnOFk+eSZDabJUm+vr612i4AAAAAAAAAAADqH2egA2jS4uLiNGbMGIWHh6tv375KSUlRYWGhxo0bJ0kaPXq02rRpo6SkJElSSUmJDh48aPn55MmTMpvNcnNzU3BwsNzd3dWtWzerbTRv3lwtW7a0rD969KjWrFmjX/ziF2rZsqW+/vprTZs2TQMGDFCPHj1u4bsHAAAAAAAAAABATTCBDqBJGzFihM6cOaOEhATl5OQoNDRU6enp8vb2liRlZWXJzu6/F+PIzs5Wr169LI+Tk5OVnJysqKgobdu2rVrbdHJy0pYtWyyT9f7+/ho2bJhmzZpVp+8NAAAAAAAAAAAAdYtLuANo8qZMmaLjx4+ruLhYO3futNyPXJK2bdumtLQ0y+PAwEAZhlFuqWryfNu2bUpJSbE89vf31/bt2/XDDz/o0qVLOnz4sBYsWCAPD496eHcAbtayZcsUGBgoFxcXRUREaNeuXVXWv/322woJCZGLi4u6d++uTZs2WT1vGIYSEhLk6+urZs2aKTo6WocPH65wrOLiYoWGhspkMllu9XC9I0eOyN3dXS1atKhxLwBszxYZM2/ePPXr10+urq4VZsdP/fDDD2rbtq1MJpPy8vKsntu2bZt69+4tZ2dnBQcHW/3OBAAAAAAA0FQxgQ4AAG5b69atU1xcnBITE7Vnzx717NlTMTExOn36dIX1O3bs0MiRIzV+/Hjt3btXQ4cO1dChQ7V//35LzYIFC7R06VKlpqZq586dat68uWJiYnTp0qVy482YMUN+fn6V9nf58mWNHDlS/fv3r1UvAGzLVhlTUlKi4cOH64knnrhhj+PHj6/wFjPHjh3T4MGDdd9998lsNis2NlaPP/64Pvzww1rsCQAAAAAAgMaDCXQAAHDbWrx4sSZMmKBx48apS5cuSk1Nlaurq1asWFFh/YsvvqgHH3xQTz/9tO666y4999xz6t27t15++WVJV88MTUlJ0axZszRkyBD16NFDf/3rX5Wdna0NGzZYjfXBBx/oo48+UnJycqX9zZo1SyEhIfrd735X414A2J6tMmbOnDmaNm2aunfvXmV/y5cvV15enqZPn17uudTUVAUFBWnRokW66667NGXKFP32t7/VkiVLar9DAAAAAAAAGgEm0AEAwG2ppKREu3fvVnR0tGWdnZ2doqOjlZmZWeFrMjMzreolKSYmxlJ/7Ngx5eTkWNV4enoqIiLCaszc3FxNmDBBb775plxdXSvc1tatW/X2229r2bJlterlesXFxSooKLBaANQfW2ZMdRw8eFBz587VX//6V9nZlf9aWNOMkcgZAAAAAADQNDCBDgAAbktnz55VaWmpvL29rdZ7e3srJyenwtfk5ORUWX/t36pqDMPQ2LFjNWnSJIWHh1e4nR9++EFjx45VWlqaPDw8atXL9ZKSkuTp6WlZ/P39K6wDUDdslTHVUVxcrJEjR2rhwoVq165djXopKCjQxYsXK3wNOQMAAAAAAJoCJtABAABuoZdeeknnz59XfHx8pTUTJkzQI488ogEDBtTZduPj45Wfn29ZTpw4UWdjA2hc4uPjddddd+nRRx+t83HJGQAAAAAA0NgxgQ4AAG5LXl5esre3V25urtX63Nxc+fj4VPgaHx+fKuuv/VtVzdatW5WZmSlnZ2c5ODgoODhYkhQeHq4xY8ZYapKTk+Xg4CAHBweNHz9e+fn5cnBwsNw7+Ua9XM/Z2VkeHh5WC4D6Y6uMqY5rt4i4ljH333+/pefExMQqe/Hw8FCzZs0qHJecAQAAAAAATQET6AAA4Lbk5OSksLAwZWRkWNaVlZUpIyNDkZGRFb4mMjLSql6SNm/ebKkPCgqSj4+PVU1BQYF27txpqVm6dKm++uormc1mmc1mbdq0SZK0bt06zZs3T9LVew9fe95sNmvu3Llyd3eX2WzWr3/962r1AsC2bJUx1fHOO+9Y5dDrr78uSfrXv/6lyZMnV6sXAAAAAACApsrB1g0AAADYSlxcnMaMGaPw8HD17dtXKSkpKiws1Lhx4yRJo0ePVps2bZSUlCRJmjp1qqKiorRo0SINHjxYa9eu1ZdffqlXX31VkmQymRQbG6vnn39eHTt2VFBQkGbPni0/Pz8NHTpUksrdb9jNzU2S1KFDB7Vt21aSdNddd1nVfPnll7Kzs1O3bt0s627UCwDbs0XGSFJWVpZ+/PFHZWVlqbS0VGazWZIUHBwsNzc3dejQwarPs2fPSrqaPS1atJAkTZo0SS+//LJmzJihxx57TFu3btX69eu1cePGetxjAAAAAAAAtscEOgAAuG2NGDFCZ86cUUJCgnJychQaGqr09HR5e3tLujoJZWf33wv29OvXT2vWrNGsWbP05z//WR07dtSGDRusJrZnzJihwsJCTZw4UXl5ebr33nuVnp4uFxeXOu29Or0AsC1bZUxCQoJWrVpledyrVy9J0scff6yBAwdWq/egoCBt3LhR06ZN04svvqi2bdvq9ddfV0xMzM3sEgAAAAAAgAbPZBiGYesmGqOCggJ5enoqPz+/ynv7Hf3xqPbl7pO/p/8t7A5oGE4WnFQnr04K8QqptKa6n6XbUXX3zWdZn6mwpFAtXVvewu6AhuFE/glFtI2Qr7tvpTXkTMWqu1+KLhfpk+OfyN3JXS4OdftHAEBDV3ylWHnFeRoQMEBuTm6V1pEzFavufsm9kKvME5l8Z8Jt6dzFc3K0d1RUYFSlNWRM5aq7bw7/cFgHzxxUW4+2t7A7oGH4vuB7hXiFqLNX50pryBkAAABr3AMdAAAAAAAAAAAAAAAxgQ4AAAAAAAAAAAAAgKQGMoG+bNkyBQYGysXFRREREdq1a1eltQcOHNCwYcMUGBgok8mklJSUcjXPPvusTCaT1RISYn0J6T/84Q/q0KGDmjVrplatWmnIkCH65ptv6vqtAQAAAAAANHp1feymtLRUs2fPVlBQkJo1a6YOHTroueeeE3caBAAAAGBrNp9AX7duneLi4pSYmKg9e/aoZ8+eiomJ0enTpyusLyoqUvv27TV//nz5+PhUOm7Xrl116tQpy/Lpp59aPR8WFqaVK1fq3//+tz788EMZhqEHHnhApaWldfr+AAAAAAAAGrP6OHbzwgsvaPny5Xr55Zf173//Wy+88IIWLFigl156qT7fCgAAAADckM0n0BcvXqwJEyZo3Lhx6tKli1JTU+Xq6qoVK1ZUWN+nTx8tXLhQDz/8sJydnSsd18HBQT4+PpbFy8vL6vmJEydqwIABCgwMVO/evfX888/rxIkT+u677+ry7QEAAAAAADRq9XHsZseOHRoyZIgGDx6swMBA/fa3v9UDDzxQ5ZntAAAAAHAr2HQCvaSkRLt371Z0dLRlnZ2dnaKjo5WZmXlTYx8+fFh+fn5q3769Ro0apaysrEprCwsLtXLlSgUFBcnf37/CmuLiYhUUFFgtAAAAAAAATVl9Hbvp16+fMjIy9O2330qSvvrqK3366acaNGhQpa/h2AwAAACAW8GmE+hnz55VaWmpvL29rdZ7e3srJyen1uNGREQoLS1N6enpWr58uY4dO6b+/fvr/PnzVnX/+7//Kzc3N7m5uemDDz7Q5s2b5eTkVOGYSUlJ8vT0tCyVTbQDAAAAAAA0FfV17GbmzJl6+OGHFRISIkdHR/Xq1UuxsbEaNWpUpa/h2AwAAACAW8Hml3CvD4MGDdLw4cPVo0cPxcTEaNOmTcrLy9P69eut6kaNGqW9e/dq+/bt6tSpk373u9/p0qVLFY4ZHx+v/Px8y3LixIlb8VYAAAAAAACanPXr1+utt97SmjVrtGfPHq1atUrJyclatWpVpa/h2AwAAACAW8GmE+heXl6yt7dXbm6u1frc3Fz5+PjU2XZatGihTp066ciRI1brPT091bFjRw0YMEB/+9vf9M033+i9996rcAxnZ2d5eHhYLQAah2XLlikwMFAuLi6KiIio8p56Bw4c0LBhwxQYGCiTyaSUlJQqx54/f75MJpNiY2Ot1l+6dEmTJ09Wy5Yt5ebmpmHDhpXLOgAAAABo6Orr2M3TTz9tOQu9e/fu+v3vf69p06YpKSmp0tdwbAYAAADArWDTCXQnJyeFhYUpIyPDsq6srEwZGRmKjIyss+1cuHBBR48ela+vb6U1hmHIMAwVFxfX2XYB2N66desUFxenxMRE7dmzRz179lRMTIxOnz5dYX1RUZHat2+v+fPn3/Bg0BdffKFXXnlFPXr0KPfctGnT9I9//ENvv/22tm/fruzsbP3mN7+pk/cEAAAAALdKfR27KSoqkp2d9WEpe3t7lZWV1XpMAAAAAKgLDrZuIC4uTmPGjFF4eLj69u2rlJQUFRYWaty4cZKk0aNHq02bNpa/QC4pKdHBgwctP588eVJms1lubm4KDg6WJE2fPl0PPfSQAgIClJ2drcTERNnb22vkyJGSpP/85z9at26dHnjgAbVq1Urff/+95s+fr2bNmukXv/iFDfYCgPqyePFiTZgwwZIpqamp2rhxo1asWKGZM2eWq+/Tp4/69OkjSRU+f82FCxc0atQovfbaa3r++eetnsvPz9cbb7yhNWvW6Gc/+5kkaeXKlbrrrrv0+eef6+67766rtwfclubEzbH8XFhSqLXN18rV0dWybsWKFbZoC0AT8scRf9Sg3wzSPQ/cIznZuhsAsL36OHbz0EMPad68eWrXrp26du2qvXv3avHixXrsscds8yYBAAAA4P+z+QT6iBEjdObMGSUkJCgnJ0ehoaFKT0+Xt7e3JCkrK8vqL5Kzs7PVq1cvy+Pk5GQlJycrKipK27ZtkyR9//33GjlypH744Qe1atVK9957rz7//HO1atVKkuTi4qJ//etfSklJ0blz5+Tt7a0BAwZox44dat269a178wDqVUlJiXbv3q34+HjLOjs7O0VHRyszM/Omxp48ebIGDx6s6OjochPou3fv1uXLlxUdHW1ZFxISonbt2ikzM7PSCfTi4mKrq2AUFBTcVI9AU3U+/7zl54uXL8quyE6ff/O58vLyLH+0AgA3o33n9np5/sua/+f5Ch8YroLxBRo2ZJgcHR1t3RoA2ER9HLt56aWXNHv2bP3xj3/U6dOn5efnpz/84Q9KSEi4pe8NAAAAAK5n8wl0SZoyZYqmTJlS4XPXvlhdExgYKMMwqhxv7dq1VT7v5+enTZs21ahHAI3P2bNnVVpaajmoc423t7e++eabWo+7du1a7dmzR1988UWFz+fk5MjJyUktWrQot92cnJxKx01KStKcOXMqfR7AVclvJFt+PpF/QhFtI+Td3FtPPPGEOnToYMPOADQV0+dOV9yzcfp026fa+O5G/WH8H/THiX/Ub3/7W40aNUpRUVG2bhEAbrm6Pnbj7u6ulJQUpaSk1FGHAAAAAFA3bHoPdABobE6cOKGpU6fqrbfekouLS52OHR8fr/z8fMty4sSJOh0faMrs7OwUFxenJUuW2LoVAE2EnZ2dIgZEKO6FOB09cVSvvPKKdu3axZUuAAAAAAAAmrgGcQY6ANQHLy8v2dvbKzc312p9bm6ufHx8ajXm7t27dfr0afXu3duyrrS0VJ988olefvllFRcXy8fHRyUlJcrLy7M6C/1G23V2dpazs3Ot+gIgHT16VFeuXLF1GwCamB/P/Kg33n9Db699W19//bX69u1r65YAoE6cPHlSbdq0sXUbAAAAANDg3NQEelFRkbKyslRSUmK1vkePHjfVFADUBScnJ4WFhSkjI0NDhw6VJJWVlSkjI6PSSw/eyP333699+/ZZrRs3bpxCQkL0zDPPyN7eXmFhYXJ0dFRGRoaGDRsmSTp06JCysrIUGRl5U+8JgLT42cWWn8+XnNem5ptU8EOBNm7cqDFjxtiwMwBNxYXzF7R101ZteneT9n6+V0FBQfr9o7/XunXruFUEgEYvJydH8+bN0xtvvKGioiJbtwMAAAAADU6tJtDPnDmjcePG6YMPPqjw+dLS0ptqCgDqSlxcnMaMGaPw8HD17dtXKSkpKiws1Lhx4yRJo0ePVps2bZSUlCRJKikp0cGDBy0/nzx5UmazWW5ubgoODpa7u7u6detmtY3mzZurZcuWlvWenp4aP3684uLidOedd8rDw0NPPvmkIiMjdffdd9/Cdw80TYf2H7L8XFxarHPNzqmNTxstWrRIjz32mA07A9BUxITGyN3TXT/75c/06LRHNf6X4+Xm5GbrtgCg2s6dO6c//vGP2rx5s5ycnDRz5kxNmTJFzz77rJKTk9WjRw+tXLnS1m0CAAAAQINUqwn02NhY5eXlaefOnRo4cKDee+895ebm6vnnn9eiRYvqukcAqLURI0bozJkzSkhIUE5OjkJDQ5Weni5vb29JUlZWluzs7Cz12dnZ6tWrl+VxcnKykpOTFRUVpW3btlV7u0uWLJGdnZ2GDRum4uJixcTE6H//93/r7H0Bt7NX/vaK5ecT+ScU0TZCvu6+5eo+++wzhYeH38rWADQRi1YuUt97++py2WXlFedVWkfOAGioZs6cqR07dmjs2LH68MMPNW3aNKWnp8vOzk5bt27lD3sBAAAAoAq1mkDfunWr3n//fYWHh8vOzk4BAQH6+c9/Lg8PDyUlJWnw4MF13SeA28TXX39drbqa3CpiypQplV6y/fpJ8cDAQBmGUe2xKxpDklxcXLRs2TItW7asRmMBqDuDBg2S2WyWl5eXrVsB0MjcPeD/TyyVVV1HzgBoqD744AOlpaXpZz/7maZMmaL27dsrNDRUf/nLX2zdGgAAAAA0eLWaQC8sLFTr1q0lSXfccYfOnDmjTp06qXv37tqzZ0+dNgjg9hIaGiqTyVThJPa19SaTiVtFALihmv4xDADUFDkDoKHKzs7WXXfdJenqHwm7uLjo0UcftXFXAAAAANA41GoCvXPnzjp06JACAwPVs2dPvfLKKwoMDFRqaqp8fctfQhUAquvYsWO2bgEAAAAAGjXDMOTg8N9DPvb29mrWrJkNOwIAAACAxqNWE+hTp07VqVOnJEmJiYl68MEH9dZbb8nJyUlpaWl12R+A20xAQICtWwAAAACARs0wDN1///2WSfSLFy/qoYcekpOTk1UdVxEEAAAAgPLsavOiRx99VGPHjpUkhYWF6fjx4/riiy904sQJjRgxoi77A6rt7/+QwsOlCm5HLUn617+kYcOkob+Wpj8tXSi8pe2hmhYsWKCLFy9aHn/22WcqLi62PD5//rz++Mc/2qI1gJwBUO/IGQD1iYy5fSQmJmrYsGEaMmSIhgwZotmzZ2v48OGWx9cWoK6RMwAAAGgKajWBPnfuXBUVFVkeu7q6qnfv3mrevLnmzp1bZ80B1ZV9SnrvPalb94qfL7oozX1OWrRI2vCe1KqV9Prrt7ZHVE98fLzOnz9veTxo0CCdPHnS8rioqEivvPKKLVrDbY6caXxMJlO16pYtW2a5N2hERIR27dpVZf3bb7+tkJAQubi4qHv37tq0aZPV84ZhKCEhQb6+vmrWrJmio6N1+PDhCscqLi5WaGioTCaTzGazZf2hQ4d03333ydvbWy4uLmrfvr1mzZqly5cvW2rS0tJkMpmsFhcXl2q9ZzRM5EzjU52csUXGzJs3T/369ZOrq6tatGhRbhs//PCDHnzwQfn5+cnZ2Vn+/v6aMmWKCgoKLDXbtm0rlzEmk0k5OTk3fM9omMiY20tiYmK1FqAukTMAAABoKmo1gT5nzhxduHCh3PqioiLNmTPnppsCaqLMkJ57TprxtOTkWHHNjs+kzp2lwMCrj4cPlz788Ja1iBowDKPKx4AtkDONU3XyY926dYqLi1NiYqL27Nmjnj17KiYmRqdPn66wfseOHRo5cqTGjx+vvXv3aujQoRo6dKj2799vqVmwYIGWLl2q1NRU7dy5U82bN1dMTIwuXbpUbrwZM2bIz8+v3HpHR0eNHj1aH330kQ4dOqSUlBS99tpr5Q50e3h46NSpU5bl+PHjN3zPaJjImcbpRjljq4wpKSnR8OHD9cQTT1S4HTs7Ow0ZMkR///vf9e233yotLU1btmzRpEmTytUeOnTIKmdat25dnV2DBoaMAVDfyBkAAAA0JbW6B7phGBWebfHVV1/pzjvvvOmmgJp4a7XUs6d0112V1+TkSL6+/33s5yudPStdKZUc7Ou/RwCNGznTOF27msVPz6i83uLFizVhwgSNGzdOkpSamqqNGzdqxYoVmjlzZrn6F198UQ8++KCefvppSdJzzz2nzZs36+WXX1ZqaqoMw1BKSopmzZpluSzqX//6V3l7e2vDhg16+OGHLWN98MEH+uijj/TOO+/ogw8+sNpO+/bt1b59e8vjgIAAbdu2Tf/617+s6kwmk3x8fGqyW9BAkTON041yxlYZc+2PmtPS0irs64477rCaXA8ICNAf//hHLVy4sFxt69atKzyLHY0LGXP76dWrV7WuksE90FFXyBkAAAA0JTWaQL/jjjssl+7r1KmT1Zex0tJSXbhwocKzFoD6cuSolLFVev01W3cCoKkiZxqORx54pNyB4Mull+Xq5CpHu/+e5lLdA8ElJSXavXu34uPjLevs7OwUHR2tzMzMCl+TmZmpuLg4q3UxMTHasGGDJOnYsWPKyclRdHS05XlPT09FREQoMzPTMrmVm5urCRMmaMOGDXJ1db1hr0eOHFF6erp+85vfWK2/cOGCAgICVFZWpt69e+svf/mLunbtWuEYxcXFKi4utjyu6g8LcGuRMw3H9TljGIZKjVK5ObnJzvTfi3dVJ2dsmTE1lZ2drXfffVdRUVHlngsNDVVxcbG6deumZ599Vvfcc0+l45AzDRMZc3saOnSo5WfDMJSUlKRJkyZx0gPqBTkDAACApqZGE+gpKSkyDEOPPfaY5syZI09PT8tzTk5OCgwMVGRkZJ03CVTGvFc6lS0N/fXVxz/8ID0/7+pfMP/2t/+t8/GRPt/538fZpyQvL/7CuaF6/fXX5ebmJkm6cuWK0tLS5OXlJUlW90cHbgVypuEY+OBAy8+GYSjt5TQ98LsHFOIfIndn9xqPd/bsWZWWlsrb29tqvbe3t7755psKX5OTk1Nh/bV7Al/7t6oawzA0duxYTZo0SeHh4fruu+8q7bFfv37as2ePiouLNXHiRM2dO9fyXOfOnbVixQr16NFD+fn5Sk5OVr9+/XTgwAG1bdu23FhJSUncaqeBImcajopyZtDDg9QtoJuc7J1qNJatMqYmRo4cqffff18XL17UQw89pNd/ciNaX19fpaamKjw8XMXFxXr99dc1cOBA7dy5U717965wPHKmYSJjbk/X3/Zl0aJFmjp1qtUVboC6Qs4AAACgqanRBPqYMWMkSUFBQbrnnnvk4FCrK8ADdea3v7X+MjZxovTII9LAgdZ1kf2k+S9I33139V5bb78txTxwCxtFtbVr106vvfbfP1v38fHRm2++Wa4GuFXImYZjYtxEq8dvvfKWfvn7X2pI5BD5uvtW8qqG56WXXtL58+etzkqtzLp163T+/Hl99dVXevrpp5WcnKwZM2ZIkiIjI63+cLFfv36666679Morr+i5554rN1Z8fLzVma0FBQXy9/evg3eEm0XONBzX58zqV1brV6N/pRH9R8jNyc1GXdWfJUuWKDExUd9++60lI/73f/9X0tU/0uncubOltl+/fjp69KiWLFlS7neza8iZhomMAVDfyBkAAAA0NbWaAY+KitLRo0e1cuVKHT16VC+++KJat26tDz74QO3atav00qHArZSaKnm1kn47TGruKs2eLT31lFRaKnXoIHFyTMNU1ZmYQENDzjRuXl5esre3V25urtX63NzcSu8r7uPjU2X9tX9zc3Pl+5MbPObm5io0NFSStHXrVmVmZsrZ2dlqnPDwcI0aNUqrVq2yrLs28dSlSxeVlpZq4sSJeuqpp2RvX/40HUdHR/Xq1UtHjhypsHdnZ+dy20TDR840XrbKmJrw8fGRj4+PQkJCdOedd6p///6aPXu21dg/1bdvX3366aeVjkfOND5kDID6Rs4AAACgMarVBPr27ds1aNAg3XPPPfrkk080b948tW7dWl999ZXeeOMN/e1vf6vrPoFqefXV//48aZL1c1EDri5oWrp3765NmzZxdhNuGXKm6XByclJYWJgyMjIs9wktKytTRkaGpkyZUuFrIiMjlZGRodjYWMu6zZs3W84EDwoKko+PjzIyMiyTWQUFBdq5c6eeeOIJSdLSpUv1/PPPW16fnZ2tmJgYrVu3ThEREZX2W1ZWpsuXL6usrKzCCfTS0lLt27dPv/jFL2qyG9AAkTNNg60yprbKysokyeoe5tczm82VTq6j8SBjANQ3cgYAAACNXa0m0GfOnKnnn39ecXFxcnf/7z1Hf/azn+nll1+us+YA4Ea+++47Xb582dZtAGik4uLiNGbMGIWHh6tv375KSUlRYWGhxo0bJ0kaPXq02rRpo6SkJEnS1KlTFRUVpUWLFmnw4MFau3atvvzyS736/48SmkwmxcbG6vnnn1fHjh0VFBSk2bNny8/PzzKBdv1tKNzcrl4WukOHDpZ7l7/11ltydHRU9+7d5ezsrC+//FLx8fEaMWKEHB0dJUlz587V3XffreDgYOXl5WnhwoU6fvy4Hn/88XrfbwCqxxYZI0lZWVn68ccflZWVpdLSUpnNZklScHCw3NzctGnTJuXm5qpPnz5yc3PTgQMH9PTTT+uee+5RYGCgJCklJUVBQUHq2rWrLl26pNdff11bt27VRx99dMv2H4DaW7p0qdXjK1euKC0tTV5eXlbr//SnP93KtgAAAACgUajVBPq+ffu0Zs2acutbt26ts2fP3nRTAAAA11v7xlqrx6Wlpdq6YavOmM/I08XTsr4mB4JHjBihM2fOKCEhQTk5OQoNDVV6erq8vb0lXZ2EsrOzs9T369dPa9as0axZs/TnP/9ZHTt21IYNG9StWzdLzYwZM1RYWKiJEycqLy9P9957r9LT0+Xi4lLtvhwcHPTCCy/o22+/lWEYCggI0JQpUzRt2jRLzblz5zRhwgTl5OTojjvuUFhYmHbs2KEuXbpUezsArJXLmSul2vLeFv341Y9ydvjvpcmrmzO2ypiEhASr20H06tVLkvTxxx9r4MCBatasmV577TVNmzZNxcXF8vf3129+8xvNnDnT8pqSkhI99dRTOnnypFxdXdWjRw9t2bJF9913X7XeOwDbWrJkidVjHx8fvfnmm1brTCYTE+gAAAAAUAGTYRhGTV/Utm1brV+/Xv369ZO7u7u++uortW/fXu+9956mT5+uo0eP1kevDUpBQYE8PT2Vn58vDw+PSuuO/nhU+3L3yd+Ty0vj9nOy4KQ6eXVSiFdIpTXV/SxV5qcZ1NRUd998lvWZCksK1dK15S3sDrj1fnX3r8qtu1J2Rc4OzrI3Xb2kuclk0n/+8x+rmpvNmaaquvul6HKRPjn+idyd3OXiUP0/AgAao+tzxjAMlalMLvYuMplMksiZmqjufsm9kKvME5l8Z8Jt6dzFc3K0d1RUYFSlNWRM5aq7bw7/cFgHzxxUW4+2t7A7oGH4vuB7hXiFqLNX50pryBkAAABrtToD/eGHH9Yzzzyjt99+WyaTSWVlZfrss880ffp0jR49uq57BAAA0N8//3u5dSfyTyiibYR83bknL4Cbd33OFF8pVl5xngYEDJCbk5uNugKA+te9e3dt2rRJ/v78IQsAAAAA2N24pLy//OUvCgkJkb+/vy5cuKAuXbqof//+6tevn2bNmlXXPQIAAAAAAKCefPfdd7p8+bKt2wAAAACABqFWZ6A7OTnptddeU0JCgvbt26fCwkL16tVLwcHBdd0fgNvQ5cuX9eCDDyo1NVUdO3a0dTsAGojr700sXb3s6b4W+2p9D3QA+Knrc+ZK2RVdvHJRB+44UKt7oAMAAAAAAKDxqdUEuiS98cYbWrJkiQ4fPixJ6tixo2JjY/X444/XWXMAbk+Ojo76+uuvq1X7yiuvyNvbu8qaZcuWaeHChcrJyVHPnj310ksvqW/fvhXWHjhwQAkJCdq9e7eOHz+uJUuWKDY21qpm+fLlWr58ub777jtJUteuXZWQkKBBgwZZagYOHKjt27dbve4Pf/iDUlNTq/W+AJS35rU15dZVdA90JrYA1Nb1OVPZPdDJGQAAAAAAgKarVhPoCQkJWrx4sZ588klFRkZKkjIzMzVt2jRlZWVp7ty5ddokgNvPo48+qjfeeEPz58+vsu6RRx6p8vl169YpLi5OqampioiIUEpKimJiYnTo0CG1bt26XH1RUZHat2+v4cOHa9q0aRWO2bZtW82fP18dO3aUYRhatWqVhgwZor1796pr166WugkTJljloaura5W9Aqga90AHUN+4BzoAAAAAAABqNYG+fPlyvfbaaxo5cqRl3a9+9Sv16NFDTz75JBPoAG7alStXtGLFCm3ZskVhYWFq3ry51fOLFy+u1jiLFy/WhAkTNG7cOElSamqqNm7cqBUrVmjmzJnl6vv06aM+ffpIUoXPS9JDDz1k9XjevHlavny5Pv/8c6sJdFdXV/n4+FSrTwB1r3v37tq0aZM8PT1vXAwAtUDOAAAAAAAAND12tXnR5cuXFR4eXm59WFiYrly5ctNNAcD+/fvVu3dvubu769tvv9XevXsti9lsrtYYJSUl2r17t6Kjoy3r7OzsFB0drczMzDrps7S0VGvXrlVhYaHlihzXvPXWW/Ly8lK3bt0UHx+voqKiKscqLi5WQUGB1QKg9r777jtdvnzZ1m0AaMLIGQAN2eXLl3X//fdbbr0HAAAAAKieWp2B/vvf/17Lly8vdwboq6++qlGjRtVJYwBubx9//PFNj3H27FmVlpaWu0e6t7e3vvnmm5sae9++fYqMjNSlS5fk5uam9957T126dLE8/8gjjyggIEB+fn76+uuv9cwzz+jQoUN69913Kx0zKSlJc+bMuam+AAAAAECSHB0d9fXXX1er9pVXXin3vQkAAAAAblfVnkCPi4uz/GwymfT666/ro48+0t133y1J2rlzp7KysjR69Oi67xIAGpjOnTvLbDYrPz9ff/vb3zRmzBht377dMok+ceJES2337t3l6+ur+++/X0ePHlWHDh0qHDM+Pt4qawsKCuTv71+/bwQAAABAk/Xoo4/qjTfe0Pz586use+SRR25RRwAAAADQ8FX7Eu4/vXzyvn37FBYWplatWuno0aM6evSovLy81Lt3bx04cKDGTSxbtkyBgYFycXFRRESEdu3aVWntgQMHNGzYMAUGBspkMiklJaVczbPPPiuTyWS1hISEWJ7/8ccf9eSTT6pz585q1qyZ2rVrpz/96U/Kz8+vce8AGi4vLy/Z29srNzfXan1ubu5N35vcyclJwcHBCgsLU1JSknr27KkXX3yx0vqIiAhJ0pEjRyqtcXZ2loeHh9UCAAAAALV15coVLV++XOHh4frDH/6guLg4q6Um6vrYzbXnrl8mT55c07cJAAAAAHWq2meg18XllCuybt06xcXFKTU1VREREUpJSVFMTIwOHTqk1q1bl6svKipS+/btNXz4cE2bNq3Scbt27aotW7ZYHjs4/PetZmdnKzs7W8nJyerSpYuOHz+uSZMmKTs7W3/729/q9g0CsBknJyeFhYUpIyNDQ4cOlSSVlZUpIyNDU6ZMqdNtlZWVqbi4uNLnr9233dfXt063CwAAAACV2b9/v3r37i1J+vbbb62eM5lM1R6nPo7dfPHFFyotLbXq9ec//7mGDx9e7b4AAAAAoD7U6h7odWnx4sWaMGGCxo0bJ0lKTU3Vxo0btWLFCs2cObNcfZ8+fdSnTx9JqvD5axwcHCo9w7Rbt2565513LI87dOigefPm6dFHH9WVK1esJtsBNG5xcXEaM2aMwsPD1bdvX6WkpKiwsNCSOaNHj1abNm2UlJQkSSopKdHBgwctP588eVJms1lubm4KDg6WdPVS64MGDVK7du10/vx5rVmzRtu2bdOHH34oSTp69KjWrFmjX/ziF2rZsqW+/vprTZs2TQMGDFCPHj1ssBeApuPK5St6ctSTip8fr3bt29m6HQBN0E9zxrsd9wMG0LjV1ckQ9XHsplWrVlaP58+frw4dOigqKqpOegYAAACA2rLpTHFJSYl2796t+Ph4yzo7OztFR0crMzPzpsY+fPiw/Pz85OLiosjISCUlJaldu8oPtOfn58vDw6PSyfPi4mKrs0sLCgpuqj8At8aIESN05swZJSQkKCcnR6GhoUpPT5e399UD4llZWbKz++/dLLKzs9WrVy/L4+TkZCUnJysqKkrbtm2TJJ0+fVqjR4/WqVOn5OnpqR49eujDDz/Uz3/+c0lXz3zfsmWLZbLe399fw4YN06xZs27dGweaKAdHBx3+9+Fq1b7yyivy9va2OrMJAG6EnAEAa/V57Oan21i9erXi4uKqPDOeYzMAAAAAbgWbTqCfPXtWpaWllomsa7y9vfXNN9/UetyIiAilpaWpc+fOOnXqlObMmaP+/ftr//79cnd3r7CP5557ThMnTqx0zKSkJM2ZM6fWPQGwnSlTplR6yfZrk+LXBAYGyjCMKsd74403qnze399f27dvr1GPAKpv0G8G6f217+vJPz9ZZd0jjzwiiQOrAGruWs5MnFH59wOJnAFwe6ivYzc/tWHDBuXl5Wns2LFV1nFsBgAAAMCt0CSvVT5o0CDLzz169FBERIQCAgK0fv16jR8/3qq2oKBAgwcPVpcuXfTss89WOmZ8fLzi4uKsXufv71/nvQMAgKqVlpbqb3/9m3b9a5f8O/vrg9YfqLlTc8vzixcvtmF3AJqCaznz+SefK6hLkDZ5b5KTvZPleXIGAOrWG2+8oUGDBsnPz6/KOo7NAAAAALgVbDqB7uXlJXt7e+Xm5lqtz83NrfT+5bXRokULderUSUeOHLFaf/78eT344INyd3fXe++9J0dHx0rHcHZ2lrOzc531BAAAaufoN0cV0i1EkpR9PFsXci5YJraquuQnAFTXtZwpM8p08ruTKswplL3JXhI5A+D2U9/Hbo4fP64tW7bo3XffvWEtx2YAAAAA3Ao2nUB3cnJSWFiYMjIyNHToUElSWVmZMjIyKr3ccm1cuHBBR48e1e9//3vLuoKCAsXExMjZ2Vl///vf5eLiUmfbAwAA9eeVv71i+flE/glFtI2Qr7uvDTsC0NRcy5niK8XKK87TgIABcnNys3FXAGAb9X3sZuXKlWrdurUGDx5802MBAAAAQF2w+SXc4+LiNGbMGIWHh6tv375KSUlRYWGhxo0bJ0kaPXq02rRpo6SkJElSSUmJDh48aPn55MmTMpvNcnNzU3BwsCRp+vTpeuihhxQQEKDs7GwlJibK3t5eI0eOlHR18vyBBx5QUVGRVq9erYKCAst9C1u1aiV7e/tbvRsAAAAAAAAapPo4diNdnYhfuXKlxowZIwcHmx+iAgAAAABJDWACfcSIETpz5owSEhKUk5Oj0NBQpaeny9vbW5KUlZUlOzs7S312drZ69epleZycnKzk5GRFRUVp27ZtkqTvv/9eI0eO1A8//KBWrVrp3nvv1eeff65WrVpJkvbs2aOdO3dKktUXN0k6duyYAgMD6/EdAwAAAAAANB71cexGkrZs2aKsrCw99thjt+y9AAAAAMCN2HwCXZKmTJlS6WW/fvrFSpICAwNlGEaV461du7bK5wcOHHjDMQAAAAAAAHBVXR+7kaQHHniA4zMAAAAAGhy7G5cAAAAAAAAAAAAAAND0MYEOAAAAAAAAAAAAAICYQAcAAAAAAAAAAAAAQBIT6AAA4Da3bNkyBQYGysXFRREREdq1a1eV9W+//bZCQkLk4uKi7t27a9OmTVbPG4ahhIQE+fr6qlmzZoqOjtbhw4crHKu4uFihoaEymUwym82W9YcOHdJ9990nb29vubi4qH379po1a5YuX75co14A2J4tMmbevHnq16+fXF1d1aJFi3Lb+OGHH/Tggw/Kz89Pzs7O8vf315QpU1RQUGBVt23bNvXu3VvOzs4KDg5WWlparfYBAAAAAABAY8IEOgAAuG2tW7dOcXFxSkxM1J49e9SzZ0/FxMTo9OnTFdbv2LFDI0eO1Pjx47V3714NHTpUQ4cO1f79+y01CxYs0NKlS5WamqqdO3eqefPmiomJ0aVLl8qNN2PGDPn5+ZVb7+joqNGjR+ujjz7SoUOHlJKSotdee02JiYk16gWAbdkqY0pKSjR8+HA98cQTFW7Hzs5OQ4YM0d///nd9++23SktL05YtWzRp0iRLzbFjxzR48GDdd999MpvNio2N1eOPP64PP/ywjvYOAAAAAABAw2QyDMOwdRONUUFBgTw9PZWfny8PD49K647+eFT7cvfJ39P/FnYHNAwnC06qk1cnhXiFVFpT3c/S7ai6++azrM9UWFKolq4tb2F3QMNwIv+EItpGyNfdt9Kaqj5LERER6tOnj15++WVJUllZmfz9/fXkk09q5syZ5cYaMWKECgsL9c9//tOy7u6771ZoaKhSU1NlGIb8/Pz01FNPafr06ZKk/Px8eXt7Ky0tTQ8//LDldR988IHi4uL0zjvvqGvXrtq7d69CQ0MrfR9xcXH64osv9K9//atavdxIdTOm6HKRPjn+idyd3OXi4HLDcYGmpPhKsfKK8zQgYIDcnNwqravs82TLjJGktLQ0xcbGKi8v74bvdenSpVq4cKFOnDghSXrmmWe0ceNGq8n7hx9+WHl5eUpPT7/heFXtl+vlXshV5olMvjPhtnTu4jk52jsqKjCq0hq+M1Wuuvvm8A+HdfDMQbX1aHsLuwMahu8LvleIV4g6e3WutIacAQAAsMYZ6AAA4LZUUlKi3bt3Kzo62rLOzs5O0dHRyszMrPA1mZmZVvWSFBMTY6k/duyYcnJyrGo8PT0VERFhNWZubq4mTJigN998U66urjfs9ciRI0pPT1dU1H8Prt+ol+sVFxeroKDAagFQf2yZMTWVnZ2td99996YyRiJnAAAAAABA08AEOgAAuC2dPXtWpaWl8vb2tlrv7e2tnJycCl+Tk5NTZf21f6uqMQxDY8eO1aRJkxQeHl5lj/369ZOLi4s6duyo/v37a+7cudXu5XpJSUny9PS0LP7+nOkJ1CdbZUxNjBw5Uq6urmrTpo08PDz0+uuv37CXgoICXbx4scLxyBkAAAAAANAUMIEOAABwC7300ks6f/684uPjb1i7bt067dmzR2vWrNHGjRuVnJxc6+3Gx8crPz/fsly7TDOA29eSJUu0Z88evf/++zp69Kji4uJuajxyBgAAAAAANAUOtm4AAADAFry8vGRvb6/c3Fyr9bm5ufLx8anwNT4+PlXWX/s3NzdXvr6+VjXX7m++detWZWZmytnZ2Wqc8PBwjRo1SqtWrbKsu3b2ZpcuXVRaWqqJEyfqqaeekr29/Q17uZ6zs3O5bQKoP7bKmJrw8fGRj4+PQkJCdOedd6p///6aPXu2fH19K+3Fw8NDzZo1q3A8cgYAAAAAADQFnIEOAABuS05OTgoLC1NGRoZlXVlZmTIyMhQZGVnhayIjI63qJWnz5s2W+qCgIPn4+FjVFBQUaOfOnZaapUuX6quvvpLZbJbZbNamTZskXT3bfN68eZX2W1ZWpsuXL6usrKxavQCwLVtlTG1dy5bi4uJq9QIAAAAAANBUcQY6AAC4bcXFxWnMmDEKDw9X3759lZKSosLCQo0bN06SNHr0aLVp00ZJSUmSpKlTpyoqKkqLFi3S4MGDtXbtWn355Zd69dVXJUkmk0mxsbF6/vnn1bFjRwUFBWn27Nny8/PT0KFDJUnt2rWz6sHNzU2S1KFDB7Vt21aS9NZbb8nR0VHdu3eXs7OzvvzyS8XHx2vEiBFydHSsVi8AbM8WGSNJWVlZ+vHHH5WVlaXS0lKZzWZJUnBwsNzc3LRp0ybl5uaqT58+cnNz04EDB/T000/rnnvuUWBgoCRp0qRJevnllzVjxgw99thj2rp1q9avX6+NGzfesv0HAAAAAABgC0ygAwCA29aIESN05swZJSQkKCcnR6GhoUpPT5e3t7ekq5NQdnb/vWBPv379tOb/sXfncVnV+f//nxcoILKYoiyKorngjoESjqkVIzZOkzOOmWPjMoZp0qRMmfQxcMnBXGmxyMplpvy6TGVOGmUobaIWepVLOuqomAqugGKCwvn94c9ruuK6EBC8WB732+3c5Drndd7ndc7N87qd67yvc94rV2ratGl67rnn1K5dO61bt05dunSxxEyZMkX5+fkaN26ccnJy1KdPH6WkpMjNza3MedWrV08vvvii/vOf/8gwDLVq1UoxMTGaPHlyuXIB4FiOqjHx8fFWw0H06NFDkrRlyxb1799fDRo00JtvvqnJkyeroKBAgYGB+sMf/qCpU6da1mndurU2bNigyZMn66WXXlKLFi301ltvKSoqqsqOFwAAAAAAQHVgMgzDcHQSNVFeXp68vb2Vm5srLy8vu3GHzx/W7uzdCvQOvI3ZAdXDibwTau/TXsE+wXZjynou3YrFixdr3rx5ysrKUvfu3fXKK6+oV69eNmP37t2r+Ph4ZWRk6NixY1q0aJEmTZpkFfP666/r9ddf19GjRyVJnTt3Vnx8vB544AFLzJUrV/S3v/1Nq1atUkFBgaKiovTaa69ZbpiXRVmPzdeZXyu/MF9N3JuUuW2gtjiee1zhLcLl7+lvN+Z21JmaqKzH5fLVy/ri2BfydPGUW72y/wgAqA0KrhUopyBHfVv1lYeLh9046oxtZT0u2ZeylX48ne9MqJMu/HRB9Z3rq19QP7sx1Bj7ynpsDp47qH1n9qmFV4vbmB1QPfyY96OCfYLVwaeD3RjqDAAAgDXGQAdQq61evVqxsbFKSEjQzp071b17d0VFRen06dM24y9fvqw2bdpozpw58vPzsxnTokULzZkzRxkZGfr2229133336aGHHtLevXstMZMnT9a///1vrV27Vp9//rlOnjypP/zhD1WyjwAAAAAAAAAAAKgcdKADqNUWLlyo6OhojRkzRp06dVJycrLc3d21dOlSm/E9e/bUvHnz9Mgjj8jV1dVmzIMPPqjf/OY3ateundq3b6/Zs2fLw8ND27ZtkyTl5ubq7bff1sKFC3XfffcpNDRUy5Yt09atWy0xAAAAAAAAAAAAqH7oQAdQaxUWFiojI0ORkZGWeU5OToqMjFR6enqlbKOoqEirVq1Sfn6+IiIiJEkZGRm6evWq1XaDg4PVsmXLUrdbUFCgvLw8qwkAAAAAAAAAAAC3Dx3oAGqts2fPqqioqMS4476+vsrKyrqltnfv3i0PDw+5urpq/Pjx+uCDD9SpUydJUlZWllxcXNSoUaNybTcxMVHe3t6WKTCQcUABAAAAAAAAAABuJzrQAaACOnToILPZrO3bt2vChAkaNWqU9u3bd0ttxsXFKTc31zIdP368krIFAAAAAAAAAABAWdRzdAIAUFV8fHzk7Oys7Oxsq/nZ2dny8/O7pbZdXFzUtm1bSVJoaKi++eYbvfTSS3rjjTfk5+enwsJC5eTkWD2FfrPturq62h13HQAAAAAAAAAAAFWPJ9AB1FouLi4KDQ1VamqqZV5xcbFSU1Mt45VXluLiYhUUFEi63qFev359q+0eOHBAmZmZlb5dAAAAAAAAAAAAVB6eQAdQq8XGxmrUqFEKCwtTr169lJSUpPz8fI0ZM0aSNHLkSDVv3lyJiYmSpMLCQsur2AsLC3XixAmZzWZ5eHhYnjiPi4vTAw88oJYtW+rixYtauXKl0tLS9Mknn0iSvL29NXbsWMXGxqpx48by8vLSk08+qYiICN19990OOAoAAAAAAAAAAAAoCzrQAdRqw4YN05kzZxQfH6+srCyFhIQoJSVFvr6+kqTMzEw5Of3vZRwnT55Ujx49LJ/nz5+v+fPnq1+/fkpLS5MknT59WiNHjtSpU6fk7e2tbt266ZNPPtGvf/1ry3qLFi2Sk5OThgwZooKCAkVFRem11167PTsNAAAAAAAAAACACqEDHUCtFxMTo5iYGJvLbnSK3xAUFCTDMEpt7+23377pNt3c3LR48WItXry4zHkCAAAAAAAAAADAsRgDHQAAAAAAAAAAAAAA0YEOAAAAAAAAAAAAAIAkOtABAAAAAAAAAAAAAJBEBzoAAAAAAAAAAAAAAJLoQAcAAAAAAAAAAAAAQBId6AAAAAAAAAAAAAAASKoGHeiLFy9WUFCQ3NzcFB4erh07dtiN3bt3r4YMGaKgoCCZTCYlJSWViJk+fbpMJpPVFBwcbBWzZMkS9e/fX15eXjKZTMrJyankvQIAAAAAAKg9Kvv+jSSdOHFCjz76qJo0aaIGDRqoa9eu+vbbb6toDwAAAACgbBzagb569WrFxsYqISFBO3fuVPfu3RUVFaXTp0/bjL98+bLatGmjOXPmyM/Pz267nTt31qlTpyzTV199VaKdgQMH6rnnnqvU/QEAAAAAAKhtquL+zYULF/SrX/1K9evX18cff6x9+/ZpwYIFuuOOO6pyVwAAAADgpuo5cuMLFy5UdHS0xowZI0lKTk7Whg0btHTpUk2dOrVEfM+ePdWzZ09Jsrn8hnr16pXawT5p0iRJUlpaWsWTBwAAAAAAqAOq4v7Niy++qMDAQC1btswyr3Xr1lWQPQAAAACUj8OeQC8sLFRGRoYiIyP/l4yTkyIjI5Wenn5LbR88eFABAQFq06aNRowYoczMzFtNVwUFBcrLy7OaAAAAAAAAarOqun+zfv16hYWFaejQoWrWrJl69OihN998s9R1uDcDAAAA4HZwWAf62bNnVVRUJF9fX6v5vr6+ysrKqnC74eHhWr58uVJSUvT666/ryJEjuueee3Tx4sVbyjcxMVHe3t6WKTAw8JbaAwAAAAAAqO6q6v7Nf//7X73++utq166dPvnkE02YMEF//etftWLFCrvrcG8GAAAAwO3g0DHQq8IDDzygoUOHqlu3boqKitLGjRuVk5OjNWvW3FK7cXFxys3NtUzHjx+vpIwBAAAAAADqluLiYt111136+9//rh49emjcuHGKjo5WcnKy3XW4NwMAAADgdnDYGOg+Pj5ydnZWdna21fzs7OxSxy8vr0aNGql9+/Y6dOjQLbXj6uoqV1fXSsoKAAAAAACg+quq+zf+/v7q1KmT1byOHTvqvffes7sO92YAAAAA3A4OewLdxcVFoaGhSk1NtcwrLi5WamqqIiIiKm07ly5d0uHDh+Xv719pbQIAgNpj8eLFCgoKkpubm8LDw7Vjx45S49euXavg4GC5ubmpa9eu2rhxo9VywzAUHx8vf39/NWjQQJGRkTp48KDNtgoKChQSEiKTySSz2WyZn5aWpoceekj+/v5q2LChQkJC9O6771qtu3z5cplMJqvJzc2tYgcBQJVxRI2ZPXu2evfuLXd3dzVq1KjENr777jsNHz5cgYGBatCggTp27KiXXnrJKiYtLa1EjTGZTLf0umYANVNV3b/51a9+pQMHDljN+89//qNWrVpVuE0AAAAAqAwOfYV7bGys3nzzTa1YsUI//PCDJkyYoPz8fI0ZM0aSNHLkSMXFxVniCwsLZTabZTabVVhYqBMnTshsNls9Xf7000/r888/19GjR7V161b9/ve/l7Ozs4YPH26JycrKslpv9+7dMpvNOn/+/G3acwAAUB2sXr1asbGxSkhI0M6dO9W9e3dFRUXp9OnTNuO3bt2q4cOHa+zYsdq1a5cGDx6swYMHa8+ePZaYuXPn6uWXX1ZycrK2b9+uhg0bKioqSleuXCnR3pQpUxQQEGBzO926ddN7772n77//XmPGjNHIkSP10UcfWcV5eXnp1KlTlunYsWO3eEQAVCZH1ZjCwkINHTpUEyZMsLmdjIwMNWvWTO+884727t2r//u//1NcXJxeffXVErEHDhywqjPNmjW7xaMCoCaqivs3kydP1rZt2/T3v/9dhw4d0sqVK7VkyRJNnDjxtu8fAAAAAPycyTAMw5EJvPrqq5o3b56ysrIUEhKil19+WeHh4ZKk/v37KygoSMuXL5ckHT16VK1bty7RRr9+/ZSWliZJeuSRR/TFF1/o3Llzatq0qfr06aPZs2frzjvvtMRPnz5dM2bMKNHOsmXLNHr06DLlnZeXJ29vb+Xm5srLy8tu3OHzh7U7e7cCvQPL1C5Qm5zIO6H2Pu0V7BNsN6as51JdVNZj83Xm18ovzFcT9ya3MTugejiee1zhLcLl72n/TTOlnUvh4eHq2bOnpdOouLhYgYGBevLJJzV16tQSbQ0bNkz5+flWHdl33323QkJClJycLMMwFBAQoL/97W96+umnJUm5ubny9fXV8uXL9cgjj1jW+/jjjxUbG6v33ntPnTt31q5duxQSEmJ3PwYNGiRfX18tXbpU0vUn0CdNmqScnJybHqfyHpefu3z1sr449oU8XTzlVo8n3FG3FFwrUE5Bjvq26isPFw+7cfbOJ0fWGKl8dWLixIn64YcftHnzZknXn0C/9957deHCBZtPsZdFWetM9qVspR9P5zsT6qQLP11Qfef66hfUz25MdfnOVNn3byTpo48+UlxcnA4ePKjWrVsrNjZW0dHRZc6prMfm4LmD2ndmn1p4tShz20Bt8WPejwr2CVYHnw52Y6pLnQEAAKguHDYG+g0xMTGKiYmxueznX6okKSgoSDfr71+1atVNtzl9+nRNnz69rCkCAIBaqLCwUBkZGVZPSzk5OSkyMlLp6ek210lPT1dsbKzVvKioKK1bt06SdOTIEWVlZSkyMtKy3NvbW+Hh4UpPT7d0bmVnZys6Olrr1q2Tu7t7mfLNzc1Vx44dreZdunRJrVq1UnFxse666y79/e9/V+fOnW2uX1BQoIKCAsvnvLy8Mm0XQMU4ssZURG5urho3blxifkhIiAoKCtSlSxdNnz5dv/rVr+y2QZ0BarfKvn8jSb/97W/129/+tjLSAwAAAIBK49BXuAMAADjK2bNnVVRUJF9fX6v5vr6+dsf4zcrKKjX+xr+lxRiGodGjR2v8+PEKCwsrU65r1qzRN998Y3lNqiR16NBBS5cu1Ycffqh33nlHxcXF6t27t3788UebbSQmJsrb29syBQbypCdQlRxVYypi69atWr16tcaNG2eZ5+/vr+TkZL333nt67733FBgYqP79+2vnzp1226HOAAAAAACA2oAOdAC13uLFixUUFCQ3NzeFh4drx44ddmP37t2rIUOGKCgoSCaTSUlJSSViEhMT1bNnT3l6eqpZs2YaPHiwDhw4YBXTv39/mUwmq2n8+PGVvWsAaqBXXnlFFy9etHoqtTRbtmzRmDFj9Oabb1o9XR4REaGRI0cqJCRE/fr10/vvv6+mTZvqjTfesNlOXFyccnNzLdPx48crZX8A1Gx79uzRQw89pISEBA0YMMAyv0OHDnr88ccVGhqq3r17a+nSperdu7cWLVpkty3qDAAAAAAAqA3oQAdQq61evVqxsbFKSEjQzp071b17d0VFRen06dM24y9fvqw2bdpozpw58vPzsxnz+eefa+LEidq2bZs2bdqkq1evasCAAcrPz7eKi46O1qlTpyzT3LlzK33/AFScj4+PnJ2dlZ2dbTU/Ozvb7vnv5+dXavyNf0uL2bx5s9LT0+Xq6qp69eqpbdu2kqSwsDCNGjXKar3PP/9cDz74oBYtWqSRI0eWuj/169dXjx49dOjQIZvLXV1d5eXlZTUBqDqOqjHlsW/fPt1///0aN26cpk2bdtP4Xr162a0xEnUGAAAAAADUDnSgA6jVFi5cqOjoaI0ZM0adOnVScnKy3N3dtXTpUpvxPXv21Lx58/TII4/I1dXVZkxKSopGjx6tzp07q3v37lq+fLkyMzOVkZFhFefu7i4/Pz/LxE1koHpxcXFRaGioUlNTLfOKi4uVmpqqiIgIm+tERERYxUvSpk2bLPGtW7eWn5+fVUxeXp62b99uiXn55Zf13XffyWw2y2w2a+PGjZKu/+Bn9uzZlvXS0tI0aNAgvfjii1avVbanqKhIu3fvlr+/fxmPAICq5KgaU1Z79+7Vvffeq1GjRlnVntKYzWZqDAAAAAAAqPXqOToBAKgqhYWFysjIsHpNspOTkyIjI5Wenl5p28nNzZUkNW7c2Gr+u+++q3feeUd+fn568MEH9fzzz8vd3d1uOwUFBSooKLB8zsvLq7QcAdgWGxurUaNGKSwsTL169VJSUpLy8/MtY42PHDlSzZs3V2JioiTpqaeeUr9+/bRgwQINGjRIq1at0rfffqslS5ZIkkwmkyZNmqQXXnhB7dq1U+vWrfX8888rICBAgwcPliS1bNnSKgcPDw9J0p133qkWLVpIuv7a9t/+9rd66qmnNGTIEMvYxi4uLpZaM3PmTN19991q27atcnJyNG/ePB07dkyPPfZY1R40AGXmiBojSZmZmTp//rwyMzNVVFQks9ksSWrbtq08PDy0Z88e3XfffYqKilJsbKylxjg7O6tp06aSpKSkJLVu3VqdO3fWlStX9NZbb2nz5s369NNPb9PRAwAAAAAAcAw60AHUWmfPnlVRUZF8fX2t5vv6+mr//v2Vso3i4mJNmjRJv/rVr9SlSxfL/D/96U9q1aqVAgIC9P333+vZZ5/VgQMH9P7779ttKzExUTNmzKiUvACUzbBhw3TmzBnFx8crKytLISEhSklJsdSNzMxMOTn974U9vXv31sqVKzVt2jQ999xzateundatW2d1/k+ZMkX5+fkaN26ccnJy1KdPH6WkpMjNza3Mea1YsUKXL19WYmKipWNNkvr166e0tDRJ0oULFxQdHa2srCzdcccdCg0N1datW9WpU6dbPCoAKoujakx8fLxWrFhh+dyjRw9J13+c079/f/3rX//SmTNn9M477+idd96xxLVq1UpHjx6VdP2HiH/729904sQJubu7q1u3bvrss8907733VsmxAgAAAAAAqC5MhmEYjk6iJsrLy5O3t7dyc3NLfS3z4fOHtTt7twK9A29jdkD1cCLvhNr7tFewT7DdmLKeSxVx8uRJNW/eXFu3brV6remUKVP0+eefa/v27aWuHxQUpEmTJmnSpEl2YyZMmKCPP/5YX331leXJUVs2b96s+++/X4cOHdKdd95pM8bWE+iBgYE3PTZfZ36t/MJ8NXFvUur+ALXR8dzjCm8RLn9P+68Urso6U5OV9bhcvnpZXxz7Qp4unnKrV/YfAQC1QcG1AuUU5Khvq77ycPGwG0edsa2sxyX7UrbSj6fznQl10oWfLqi+c331C+pnN4YaY19Zj83Bcwe178w+tfCy/50NqK1+zPtRwT7B6uDTwW4MdQYAAMAaT6ADqLV8fHzk7Oys7Oxsq/nZ2dny8/O75fZjYmL00Ucf6Ysvvii181ySwsPDJanUDnRXV1e7464DAAAAAAAAAACg6jndPAQAaiYXFxeFhoYqNTXVMq+4uFipqalWT6SXl2EYiomJ0QcffKDNmzerdevWN13nxtij/v72n5IFAAAAAAAAAACAY/EEOoBaLTY2VqNGjVJYWJh69eqlpKQk5efna8yYMZKkkSNHqnnz5pYxhgsLC7Vv3z7L3ydOnJDZbJaHh4fatm0rSZo4caJWrlypDz/8UJ6ensrKypIkeXt7q0GDBjp8+LBWrlyp3/zmN2rSpIm+//57TZ48WX379lW3bt0ccBQAAAAAAAAAAABQFnSgA6jVhg0bpjNnzig+Pl5ZWVkKCQlRSkqKfH19JUmZmZlycvrfyzhOnjypHj16WD7Pnz9f8+fPV79+/ZSWliZJev311yVJ/fv3t9rWsmXLNHr0aLm4uOizzz6zdNYHBgZqyJAhmjZtWtXuLAAAAAAAAAAAAG4JHegAar2YmBjFxMTYXHajU/yGoKAgGYZRans3Wx4YGKjPP/+8XDkCAAAAAAAAAADA8RgDHQAAAAAAAAAAAAAA0YEOAAAAAAAAAAAAAIAkOtABAAAAAAAAAAAAAJBEBzoAAAAAAAAAAAAAAJLoQAcAAAAAAAAAAAAAQBId6AAAAAAAAAAAAAAASKIDHQAAAAAAAAAAAAAASXSgAwAAAAAAAAAAAAAgiQ50AAAAAAAAAAAAAAAk0YEOAAAAAAAAAAAAAIAkOtABAAAAAAAAAAAAAJBEBzoAAAAAAAAAAAAAAJLoQAcAAAAAAAAAAAAAQBId6AAAAAAAAAAAAAAASKIDHQAAAAAAAAAAAAAASXSgAwAAAAAAAAAAAAAgiQ50AAAAAAAAAAAAAAAk0YEOAAAAAAAAAAAAAICkatKBvnjxYgUFBcnNzU3h4eHasWOH3di9e/dqyJAhCgoKkslkUlJSUomY6dOny2QyWU3BwcFWMVeuXNHEiRPVpEkTeXh4aMiQIcrOzq7sXQNQDVR2jUlMTFTPnj3l6empZs2aafDgwTpw4IBVDDUGqDnKUyMkae3atQoODpabm5u6du2qjRs3Wi03DEPx8fHy9/dXgwYNFBkZqYMHD9psq6CgQCEhITKZTDKbzZb5aWlpeuihh+Tv76+GDRsqJCRE7777brlzAeB4jqgxs2fPVu/eveXu7q5GjRqV2MZ3332n4cOHKzAwUA0aNFDHjh310ksvlYhLS0vTXXfdJVdXV7Vt21bLly8v9/4DqD0cce8GAAAAABzB4R3oq1evVmxsrBISErRz5051795dUVFROn36tM34y5cvq02bNpozZ478/Pzsttu5c2edOnXKMn311VdWyydPnqx///vfWrt2rT7//HOdPHlSf/jDHyp13wA4XlXUmM8//1wTJ07Utm3btGnTJl29elUDBgxQfn6+JYYaA9QM5a0RW7du1fDhwzV27Fjt2rVLgwcP1uDBg7Vnzx5LzNy5c/Xyyy8rOTlZ27dvV8OGDRUVFaUrV66UaG/KlCkKCAiwuZ1u3brpvffe0/fff68xY8Zo5MiR+uijj8qVCwDHclSNKSws1NChQzVhwgSb28nIyFCzZs30zjvvaO/evfq///s/xcXF6dVXX7XEHDlyRIMGDdK9994rs9msSZMm6bHHHtMnn3xSSUcHQE3iqHs3AAAAAOAIJsMwDEcmEB4erp49e1pu1hQXFyswMFBPPvmkpk6dWuq6QUFBmjRpkiZNmmQ1f/r06Vq3bp3Vk1w/l5ubq6ZNm2rlypX64x//KEnav3+/OnbsqPT0dN199903zTsvL0/e3t7Kzc2Vl5eX3bjD5w9rd/ZuBXoH3rRNoLY5kXdC7X3aK9jH/lMEZT2XKqoqaswvnTlzRs2aNdPnn3+uvn37VkqNkcp+bL7O/Fr5hflq4t6kTO0Ctcnx3OMKbxEuf09/uzGlnUvlrRHDhg1Tfn6+VUf23XffrZCQECUnJ8swDAUEBOhvf/ubnn76aUnXrzt8fX21fPlyPfLII5b1Pv74Y8XGxuq9995T586dtWvXLoWEhNjdj0GDBsnX11dLly4tUy43U9Yac/nqZX1x7At5unjKrZ7bTdsFapOCawXKKchR31Z95eHiYTfO3vnkyBojScuXL9ekSZOUk5Nz032dOHGifvjhB23evFmS9Oyzz2rDhg1WnfePPPKIcnJylJKSctP2Sjsuv5R9KVvpx9P5zoQ66cJPF1Tfub76BfWzG1PV35nKwhH3bsqirMfm4LmD2ndmn1p4tajwtoCa6se8HxXsE6wOPh3sxlSHOgMAAFCd1HPkxgsLC5WRkaG4uDjLPCcnJ0VGRio9Pf2W2j548KACAgLk5uamiIgIJSYmqmXLlpKuP3Fx9epVRUZGWuKDg4PVsmVLu51bBQUFKigosHzOy8srcy4FRQW6cq3kU2dAbVdQVHDzoCpUlTXm53JzcyVJjRs3llSxGiNVvM4UG8XUGdRZ14qvVXjditSI9PR0xcbGWs2LiorSunXrJF1/YjMrK8vq/Pf29lZ4eLjS09MtnVvZ2dmKjo7WunXr5O7uXqZ8c3Nz1bFjxzLn8ku3ci0jiRqDOqmwqLDi6zqwxlREbm6u5VrmRi4/386NXEr7YeGt1Jkio4g6gzqpoKhA9Z3rOzqNUjnq3o0tt1Jnrly7Qp1BnVRwzbH3ZgAAAGoih3agnz17VkVFRfL19bWa7+vrq/3791e43fDwcC1fvlwdOnTQqVOnNGPGDN1zzz3as2ePPD09lZWVJRcXlxLjAfr6+iorK8tmm4mJiZoxY0a5c3EyOcnbzVsXCy9WZFeAGs3T1VPOJmeHbb+qaszPFRcXa9KkSfrVr36lLl26SFKFaoxU8TrToF4D5TvnU2dQJzVyayQnU8VGpKlIjcjKyrIZf+PcvvFvaTGGYWj06NEaP368wsLCdPTo0ZvmumbNGn3zzTd64403ypzLL93KtYx7fXddvnpZVwuvlnt9oKZr6NKwQnXGUTWmIrZu3arVq1drw4YNN80lLy9PP/30kxo0aFCinVupM43cGnEtgzrJ2clZDeqVPJ+qE0fdu7GlonXG2cmZezOos7zcvBx6bwYAAKAmcmgHelV54IEHLH9369ZN4eHhatWqldasWaOxY8dWqM24uDirp0Hy8vIUGHjzVwy29G6pZg2bVWibQG1Q21/3O3HiRO3Zs6dSxuqraJ3p7tf9lp6QA2oyk8lU7W86/9Irr7yiixcvWj3FVZotW7ZozJgxevPNN9W5c+cKb7eiNcatnpt6Ne+louKiCm8bqMmcnZxr9fXMnj179NBDDykhIUEDBgy4pbYqWmd83H0UERghB48uBjhMdX8CvapU5N5NRetMK+9W8m3oe9M4oLaqzdcyAAAAVcGhHeg+Pj5ydnZWdna21fzs7Gz5+flV2nYaNWqk9u3b69ChQ5IkPz8/FRYWKicnx+oJ0dK26+rqKldX13Jv29nJWQ1dGlYobwC3pqprTExMjD766CN98cUXatHif2PpVaTGSBWvM/Wd69fZm27ArahIjfDz8ys1/sa/2dnZ8vf3t4q5Mb755s2blZ6eXuJ8DwsL04gRI7RixQrLvM8//1wPPvigFi1apJEjR5Yrl1+qaI2RuOEGVISjakx57Nu3T/fff7/GjRunadOmlSkXLy8vm0+fSxWvMyaTSe71yzacBYDbz1H3bmzh3gwAAACA26Fi7zytJC4uLgoNDVVqaqplXnFxsVJTUxUREVFp27l06ZIOHz5suckUGhqq+vXrW233wIEDyszMrNTtAnCsqqoxhmEoJiZGH3zwgTZv3qzWrVtbLafGADVDRWpERESEVbwkbdq0yRLfunVr+fn5WcXk5eVp+/btlpiXX35Z3333ncxms8xmszZu3ChJWr16tWbPnm1ZLy0tTYMGDdKLL76ocePGlTsXAI7lqBpTVnv37tW9996rUaNGWdWesuYCoO5w1L0bAAAAAHAUh7/CPTY2VqNGjVJYWJh69eqlpKQk5efna8yYMZKkkSNHqnnz5kpMTJQkFRYWat++fZa/T5w4IbPZLA8PD7Vt21aS9PTTT+vBBx9Uq1atdPLkSSUkJMjZ2VnDhw+XJHl7e2vs2LGKjY1V48aN5eXlpSeffFIRERG6++67HXAUAFSVqqgxEydO1MqVK/Xhhx/K09PTMuaot7e3GjRoQI0BapDy1oinnnpK/fr104IFCzRo0CCtWrVK3377rZYsWSLp+lOUkyZN0gsvvKB27dqpdevWev755xUQEKDBgwdLklq2bGmVg4eHhyTpzjvvtLzNYsuWLfrtb3+rp556SkOGDLHUGRcXFzVu3LhMuQBwPEfUGEnKzMzU+fPnlZmZqaKiIpnNZklS27Zt5eHhoT179ui+++5TVFSUYmNjLTXG2dlZTZs2lSSNHz9er776qqZMmaK//OUv2rx5s9asWWM1TjqAusMR924AAAAAwGGMauCVV14xWrZsabi4uBi9evUytm3bZlnWr18/Y9SoUZbPR44cMSSVmPr162eJGTZsmOHv72+4uLgYzZs3N4YNG2YcOnTIaps//fST8cQTTxh33HGH4e7ubvz+9783Tp06Veacc3NzDUlGbm5uhfcbwO05lyq7xthaLslYtmyZJeZWa4xhUGeAynKzc6k8NcIwDGPNmjVG+/btDRcXF6Nz587Ghg0brJYXFxcbzz//vOHr62u4uroa999/v3HgwAG7+d2oO7t27bLMGzVq1E1rUVlyKQ01Bqg8pZ1Pjqgx9mrIli1bDMMwjISEBJvLW7VqZdXOli1bjJCQEMPFxcVo06aN1bXOrR4XAGVXXc4lR9y7uZnqcmyAmo5zCQAAwJrJMAyjCvrla728vDx5e3srNzdXXl5ejk4HqLE4l+zj2ACVg3PJNo4LUHk4n2zjuACVg3PJPo4NUDk4lwAAAKw5dAx0AAAAAAAAAAAAAACqCzrQAQAAAAAAAAAAAACQVM/RCdRUN958n5eX5+BMgJrtxjnEaBIlUWeAykGdsY0aA1Qe6oxt1BmgclBj7KPOAJWDOgMAAGCNDvQKunjxoiQpMDDQwZkAtcPFixfl7e3t6DSqFeoMULmoM9aoMUDlo85Yo84AlYsaUxJ1Bqhc1BkAAIDrTAY/LayQ4uJinTx5Up6enjKZTHbj8vLyFBgYqOPHj8vLy+s2Zlg5yN+x6kL+hmHo4sWLCggIkJMTo0r8XFnqTF34P1Kdkb9jlTV/6oxtXMvUDOTvWNSZW0OdqRnI37H4znRr+M5UM9T0fagL+VNnAAAArPEEegU5OTmpRYsWZY738vKqkRfZN5C/Y9X2/Pl1s23lqTO1/f9IdUf+jlWW/KkzJXEtU7OQv2NRZyqGOlOzkL9j8Z2pYvjOVLPU9H2o7flTZwAAAP6HnxQCAAAAAAAAAAAAACA60AEAAAAAAAAAAAAAkEQHepVzdXVVQkKCXF1dHZ1KhZC/Y5E/bqamH2PydyzyR1nU9ONM/o5F/iiLmn6cyd+xyB83U9OPcU3PX6r5+0D+AAAAdY/JMAzD0UkAAAAAAAAAAAAAAOBoPIEOAAAAAAAAAAAAAIDoQAcAAAAAAAAAAAAAQBId6AAAAAAAAAAAAAAASKIDHQAAAAAAAAAAAAAASXSgW1m8eLGCgoLk5uam8PBw7dixo9T4tWvXKjg4WG5uburatas2btxotfz999/XgAED1KRJE5lMJpnN5hJtXLlyRRMnTlSTJk3k4eGhIUOGKDs72yomMzNTgwYNkru7u5o1a6ZnnnlG165dqzH5m0ymEtOqVauqRf5LlixR//795eXlJZPJpJycnBIx58+f14gRI+Tl5aVGjRpp7NixunTpUo3JPygoqMTxnzNnjsPzP3/+vJ588kl16NBBDRo0UMuWLfXXv/5Vubm5VnFl/f9fU1TX85Q6U3X5U2cclz91pnqdp9SZqsufOuO4/Otinamu52h5jnF13Yey1Jnqeo7WlRrjiH2gzlSfc5RrmarLnzrjuPzrYo0BAAAoEwOGYRjGqlWrDBcXF2Pp0qXG3r17jejoaKNRo0ZGdna2zfivv/7acHZ2NubOnWvs27fPmDZtmlG/fn1j9+7dlph//OMfxowZM4w333zTkGTs2rWrRDvjx483AgMDjdTUVOPbb7817r77bqN3796W5deuXTO6dOliREZGGrt27TI2btxo+Pj4GHFxcTUif8MwDEnGsmXLjFOnTlmmn376qVrkv2jRIiMxMdFITEw0JBkXLlwoETNw4ECje/fuxrZt24wvv/zSaNu2rTF8+PAak3+rVq2MmTNnWh3/S5cuOTz/3bt3G3/4wx+M9evXG4cOHTJSU1ONdu3aGUOGDLHElPX/f01RXc9T6ozjz1PqTNXkT52pPucpdcbx5yl1pmryr2t1prqeo+U5xtV1Hwzj5nWmOp+jdaHGOGofqDPV4xzlWsbx52ldqDPUGAAAgOqDDvT/X69evYyJEydaPhcVFRkBAQFGYmKizfiHH37YGDRokNW88PBw4/HHHy8Re+TIEZsXqTk5OUb9+vWNtWvXWub98MMPhiQjPT3dMAzD2Lhxo+Hk5GRkZWVZYl5//XXDy8vLKCgoqPb5G8b1L2kffPCBzTwcmf/PbdmyxeaXnH379hmSjG+++cYy7+OPPzZMJpNx4sSJap+/YVz/krZo0SK761aH/G9Ys2aN4eLiYly9etUwjLL//68pqut5Sp2hzlBnqDM/R52hzlS3/A2DOlNdVNdztDzHuLrug2HcvM44+v94Xa8x1WEfbqDO/E91qzPVNX/D4FrGkfkbBtcyAAAANQ2vcJdUWFiojIwMRUZGWuY5OTkpMjJS6enpNtdJT0+3ipekqKgou/G2ZGRk6OrVq1btBAcHq2XLlpZ20tPT1bVrV/n6+lptJy8vT3v37q32+d8wceJE+fj4qFevXlq6dKkMw7Asc1T+ZZGenq5GjRopLCzMMi8yMlJOTk7avn17tc//hjlz5qhJkybq0aOH5s2bZ/WareqUf25urry8vFSvXj3Ldm72/7+mqM7nKXWGOlMZqDOOV53PU+oMdaYyUGccqzqfo2U9xtV5H26wV2eq0/9xW9up7TVGql77QJ35n+pUZ6pz/jdwLeOY/G/gWgYAAKDmqOfoBKqDs2fPqqioyOpCUJJ8fX21f/9+m+tkZWXZjM/KyirzdrOysuTi4qJGjRrZbcfedm4sq+75S9LMmTN13333yd3dXZ9++qmeeOIJXbp0SX/9618dmn9ZZGVlqVmzZlbz6tWrp8aNGzv8+JfVX//6V911111q3Lixtm7dqri4OJ06dUoLFy6sVvmfPXtWs2bN0rhx4266nRvLapLqfJ5SZ6gzt4o6Uz1U5/OUOkOduVXUGcerzudoWY9xdd4HqfQ6U13+j9vbTm2vMdVpH6gz1qpTnanO+Utcy9hrt7rUmeqSf22uMQAAAOVBBzqq3PPPP2/5u0ePHsrPz9e8efMsX9JQtWJjYy1/d+vWTS4uLnr88ceVmJgoV1dXB2b2P3l5eRo0aJA6deqk6dOnOzod1EDUGceizqAuoM44FnUGdQF1xnFqQo2RqDO4NdQYx6oJdYYaAwAA8D+8wl2Sj4+PnJ2dlZ2dbTU/Oztbfn5+Ntfx8/MrV7y9NgoLC5WTk2O3HXvbubGsuudvS3h4uH788UcVFBQ4NP+y8PPz0+nTp63mXbt2TefPn3f48a+o8PBwXbt2TUePHpXk+PwvXryogQMHytPTUx988IHq169/0+3cWFaTVOfzlDpDnals1BnHqM7nKXWGOlPZqDO3X3U+R8t6jKvzPtjy8zrj6P/jpakLNUZy/D5QZ6p/nanO+dvCtUz1qjOOzr8u1BgAAIDyoANdkouLi0JDQ5WammqZV1xcrNTUVEVERNhcJyIiwipekjZt2mQ33pbQ0FDVr1/fqp0DBw4oMzPT0k5ERIR2795t9UVh06ZN8vLyUqdOnap9/raYzWbdcccdll/YOir/soiIiFBOTo4yMjIs8zZv3qzi4mKFh4dX+/xtMZvNcnJysrz+zJH55+XlacCAAXJxcdH69evl5uZWYjs3+/9fU1Tn85Q6Q52pbNQZx6jO5yl1hjpT2agzt191PkfLeoyr8z7Y8vM6U53P0bpQYyTqzO1Qnc9RrmWoM5WNaxkAAIBqzoBhGIaxatUqw9XV1Vi+fLmxb98+Y9y4cUajRo2MrKwswzAM489//rMxdepUS/zXX39t1KtXz5g/f77xww8/GAkJCUb9+vWN3bt3W2LOnTtn7Nq1y9iwYYMhyVi1apWxa9cu49SpU5aY8ePHGy1btjQ2b95sfPvtt0ZERIQRERFhWX7t2jWjS5cuxoABAwyz2WykpKQYTZs2NeLi4mpE/uvXrzfefPNNY/fu3cbBgweN1157zXB3dzfi4+OrRf6nTp0ydu3aZbz55puGJOOLL74wdu3aZZw7d84SM3DgQKNHjx7G9u3bja+++spo166dMXz48BqR/9atW41FixYZZrPZOHz4sPHOO+8YTZs2NUaOHOnw/HNzc43w8HCja9euxqFDh4xTp05ZpmvXrhmGUfb//zVFdT1PqTPUGeoMdYY6Q52pzvlTZ6qP6nqOlucYV9d9KEudqa7nqGHUjRrjqH2gzlSPc5RrGeoM1zK1o8YAAACUFR3oP/PKK68YLVu2NFxcXIxevXoZ27Ztsyzr16+fMWrUKKv4NWvWGO3btzdcXFyMzp07Gxs2bLBavmzZMkNSiSkhIcES89NPPxlPPPGEcccddxju7u7G73//e6uLcMMwjKNHjxoPPPCA0aBBA8PHx8f429/+Zly9erVG5P/xxx8bISEhhoeHh9GwYUOje/fuRnJyslFUVFQt8k9ISLAZs2zZMkvMuXPnjOHDhxseHh6Gl5eXMWbMGOPixYs1Iv+MjAwjPDzc8Pb2Ntzc3IyOHTsaf//7340rV644PP8tW7bYXC7JOHLkiKWdsv7/rymq43lqGNSZqsyfOuO4/Kkz1ec8NQzqTFXmT51xXP51sc5Ux3PUMMp3jKvjPpS1zlTHc9Qw6k6NccQ+UGeqxzlqGFzLVGX+1BnH5V8XawwAAEBZmAzDMAQAAAAAAAAAAAAAQB3HGOgAAAAAAAAAAAAAAIgOdAAAAAAAAAAAAAAAJNGBDgAAAAAAAAAAAACAJDrQAQAAAAAAAAAAAACQRAc6AAAAAAAAAAAAAACS6EAHAAAAAAAAAAAAAEASHegAAAAAAAAAAAAAAEiiAx0AAAAAAAAAAAAAAEl0oAMAAAAAAAAAAAAAIIkOdNRCQUFBSkpKKjF/+vTpCgkJsfpsMplkMplUr149+fj4qG/fvkpKSlJBQcHtSxhAjUOdAVCVqDEAqhp1BkBVo84AAACgJqMDHTVOYWFhpbXVuXNnnTp1SpmZmdqyZYuGDh2qxMRE9e7dWxcvXqy07QCoWagzAKoSNQZAVaPOAKhq1BkAAADUZvUcnQBwM/3791eXLl1Ur149vfPOO+ratau2bNlSKW3Xq1dPfn5+kqSAgAB17dpVv/71r9W9e3e9+OKLeuGFFyplOwCqN+oMgKpEjQFQ1agzAKoadQYAAAB1CU+go0ZYsWKFXFxc9PXXXys5OblKtxUcHKwHHnhA77//fpVuB0D1Qp0BUJWoMQCqGnUGQFWjzgAAAKCu4Al01Ajt2rXT3Llzyxz/7LPPatq0aVbzCgsL1alTpzKtHxwcrE8//bRcOQKo2agzAKoSNQZAVaPOAKhq1BkAAADUFXSgo0YIDQ0tV/wzzzyj0aNHW817+eWX9cUXX5RpfcMwZDKZyrVNADUbdQZAVaLGAKhq1BkAVY06AwAAgLqCDnTUCA0bNixXvI+Pj9q2bWs1r3HjxmVe/4cfflDr1q3LtU0ANRt1BkBVosYAqGrUGQBVjToDAACAuoIx0IFf2L9/v1JSUjRkyBBHpwKglqLOAKhK1BgAVY06A6CqUWcAAADgSDyBjjrt2rVrysrKUnFxsc6dO6e0tDS98MILCgkJ0TPPPOPo9ADUAtQZAFWJGgOgqlFnAFQ16gwAAACqGzrQUaft3btX/v7+cnZ2lre3tzp16qS4uDhNmDBBrq6ujk4PQC1AnQFQlagxAKoadQZAVaPOAAAAoLoxGYZhODoJAAAAAAAAAAAAAAAcjTHQAQAAAAAAAAAAAAAQHeioYd599115eHjYnDp37uzo9ADUAtQZAFWJGgOgqlFnAFQ16gwAAABqO17hjhrl4sWLys7Otrmsfv36atWq1W3OCEBtQ50BUJWoMQCqGnUGQFWjzgAAAKC2owMdAAAAAAAAAAAAAADxCncAAAAAAAAAAAAAACTRgQ4AAAAAAAAAAAAAgCQ60AEAAAAAAAAAAAAAkEQHOgAAAAAAAAAAAAAAkuhABwAAAAAAAAAAAABAEh3oAAAAAAAAAAAAAABIogMdAAAAAAAAAAAAAABJdKADAAAAAAAAAAAAACCJDnQAAAAAAAAAAAAAACTRgQ4AAAAAAAAAAAAAgCSpnqMTqKmKi4t18uRJeXp6ymQyOTodoMYyDEMXL15UQECAnJz4Tc/PUWeAykGdsY0aA1Qe6oxt1BmgclBj7KPOAJWDOmMfdQaoHNQZADUNHegVdPLkSQUGBjo6DaDWOH78uFq0aOHoNKoV6gxQuagz1qgxQOWjzlijzgCVixpTEnUGqFzUmZKoM0Dlos4AqCnoQK8gT09PSdcLvpeXl4OzAWquvLw8BQYGWs4p/A91Bqgc1BnbqDFA5aHO2EadASoHNcY+6gxQOagz9lFngMpBnQFQ09CBXkE3Xtnj5eXFxRNQCXgNVknUGaByUWesUWOAykedsUadASoXNaYk6gxQuagzJVFngMpFnQFQUzDYBAAAAAAAAAAAAAAAogMdAAAAAAAAAAAAAABJdKADAAAAAAAAAAAAACCpmnSgL168WEFBQXJzc1N4eLh27NhhN3bv3r0aMmSIgoKCZDKZlJSUVCJm+vTpMplMVlNwcLBVTP/+/UvEjB8/vrJ3DUA1QI0BUJry1AhJWrt2rYKDg+Xm5qauXbtq48aNVssNw1B8fLz8/f3VoEEDRUZG6uDBgzbbKigoUEhIiEwmk8xms2X+0aNHS9QQk8mkbdu2lSsXAI7niBoze/Zs9e7dW+7u7mrUqJHN7diqMatWrbKKSUtL01133SVXV1e1bdtWy5cvL/f+A6g9ylPP3nzzTd1zzz264447dMcddygyMrJEfHmumQA4VmVfz7z//vsaMGCAmjRpUuK7kCSdP39eTz75pDp06KAGDRqoZcuW+utf/6rc3FyruMzMTA0aNEju7u5q1qyZnnnmGV27ds0qhusZAABQEQ7vQF+9erViY2OVkJCgnTt3qnv37oqKitLp0/Mz2mYAAQAASURBVKdtxl++fFlt2rTRnDlz5OfnZ7fdzp0769SpU5bpq6++KhETHR1tFTN37txK2y8A1QM1BkBpylsjtm7dquHDh2vs2LHatWuXBg8erMGDB2vPnj2WmLlz5+rll19WcnKytm/froYNGyoqKkpXrlwp0d6UKVMUEBBgN7/PPvvMqo6EhoaWKxcAjuWoGlNYWKihQ4dqwoQJpea3bNkyqxozePBgy7IjR45o0KBBuvfee2U2mzVp0iQ99thj+uSTT27toACokcpbz9LS0jR8+HBt2bJF6enpCgwM1IABA3TixAlLTHmumQA4TlVcz+Tn56tPnz568cUXbbZx8uRJnTx5UvPnz9eePXu0fPlypaSkaOzYsZaYoqIiDRo0SIWFhdq6datWrFih5cuXKz4+3hLD9QwAAKgww8F69eplTJw40fK5qKjICAgIMBITE2+6bqtWrYxFixaVmJ+QkGB079691HX79etnPPXUU+XM9n9yc3MNSUZubm6F2wBQ9edSTa0xhkGdASpLaedSeWvEww8/bAwaNMhqXnh4uPH4448bhmEYxcXFhp+fnzFv3jzL8pycHMPV1dX4f//v/1mtt3HjRiM4ONjYu3evIcnYtWuXZdmRI0dKzCtvLjdDjQEqj73zyZE1xjAMY9myZYa3t7fNbUkyPvjgA7v7NGXKFKNz585W84YNG2ZERUXZXeeXqDNA5agO59KtfK8yDMO4du2a4enpaaxYscIwjPLXM3uqw7EBaoPb+Z3p58ryveeGNWvWGC4uLsbVq1cNw7j+fcrJycnIysqyxLz++uuGl5eXUVBQYBgG1zNAdcK5BKCmcegT6IWFhcrIyFBkZKRlnpOTkyIjI5Wenn5LbR88eFABAQFq06aNRowYoczMzBIx7777rnx8fNSlSxfFxcXp8uXLdtsrKChQXl6e1QSgeqtJNUaizgC3W0VqRHp6ulW8JEVFRVnijxw5oqysLKsYb29vhYeHW7WZnZ2t6Oho/fOf/5S7u7vdHH/3u9+pWbNm6tOnj9avX1+uXH6JGgPcXo6sMWU1ceJE+fj4qFevXlq6dKkMwyhzLrZQZ4DaqTK+V12+fFlXr15V48aNJVW8nlFngNurKq5nKio3N1deXl6qV6+eZTtdu3aVr6+v1Xby8vK0d+/eCudCnQEAAJJUz5EbP3v2rIqKiqwudCTJ19dX+/fvr3C74eHhWr58uTp06KBTp05pxowZuueee7Rnzx55enpKkv70pz+pVatWCggI0Pfff69nn31WBw4c0Pvvv2+zzcTERM2YMaPcuZy7fE7Zl7JlMpkqvD9ATWUYhpo2bKqmDZs6ZPs1qcZIFa8zmTmZulR4iTqDOslkMqmFVwt5uHiUe92K1IisrCyb8VlZWZblN+bZizEMQ6NHj9b48eMVFhamo0ePltiOh4eHFixYoF/96ldycnLSe++9p8GDB2vdunX63e9+V6ZcfqmiNaaouEj/vfBfXS26Sp1BnWMYhuo711frO1qrnlP5vjo5qsaU1cyZM3XffffJ3d1dn376qZ544gldunRJf/3rX0vNJS8vTz/99JMaNGhQos2K1pn8wnwdzztu1YEP1BWGYci9vruC7ghydCp2Vcb3qmeffVYBAQGWjqyK1rOK1pmzl8/q9KXTXMugTrqVezNVcT1TEWfPntWsWbM0bty4m27nxrLSYqrieuZYzjHlF+ZTZ1An3cq9GQCorhzagV5VHnjgAcvf3bp1U3h4uFq1aqU1a9ZYxsr5+QVX165d5e/vr/vvv1+HDx/WnXfeWaLNuLg4xcbGWj7n5eUpMDDwprnkXMnRzlM75eXqdSu7BNRIeQV5Cmse5rAO9KpSFTVGqnidOZZ7TMdyjlFnUCcVFhXK29W7Rn1Je+WVV3Tx4kXFxcXZjfHx8bGqBz179tTJkyc1b948Swd6eVW0xhQUFejwhcO6WHBRrs6uFdo2UFMVFhXK3cVd/p7+NarOlMXzzz9v+btHjx7Kz8/XvHnzLB3oFVHROnOp8JL2nt6r+k71K7xtoKbKK8hToHdgte5Av1Vz5szRqlWrlJaWJjc3t1tqq6J15sJPF7g3gzorryBPPZv3rLH3ZvLy8jRo0CB16tRJ06dPr/LtVbTOHM09quM5x6kzqJOuFl9VI7dGte47E4C6zaEd6D4+PnJ2dlZ2drbV/OzsbPn5+VXadho1aqT27dvr0KFDdmPCw8MlSYcOHbLZueXq6ipX14rdNPZw8VBzr+YVWheo0Rz8lquaVGOkitcZJ5OTmjVspibuTcq9LlDTHc89XuF1K1Ij/Pz8So2/8W92drb8/f2tYkJCQiRJmzdvVnp6eonzPSwsTCNGjNCKFStsbjs8PFybNm0qcy6/dCvXMpIU4Bkgt3q3dtMbqGkKrhUopyCnQus6qsZUVHh4uGbNmqWCggK5urrazcXLy8vm01rSrdUZZ5Mz35lQJ7n/ZH8ol+riVr5XzZ8/X3PmzNFnn32mbt26WeZXtJ7dSp3xdPWkzqBOMvIq/oaXqrieKY+LFy9q4MCB8vT01AcffKD69f/3Yzs/Pz/t2LGjxHZuLCstl6q4nnGSk3w9fNW4QeNyrwvUdMfzKn5vBgCqK4eOge7i4qLQ0FClpqZa5hUXFys1NVURERGVtp1Lly7p8OHDVl/KfslsNktSqTEAahZqDIDSVKRGREREWMVL0qZNmyzxrVu3lp+fn1VMXl6etm/fbol5+eWX9d1338lsNstsNmvjxo2SpNWrV2v27Nl28zWbzVY15Ga5AHAsR9WYijKbzbrjjjssN4ypMQBuqOj3qrlz52rWrFlKSUlRWFiY1bKqrGcAKk9VXM+UVV5engYMGCAXFxetX7++xBssIiIitHv3bp0+fdpqO15eXurUqVOl5gIAAOoeh7/CPTY2VqNGjVJYWJh69eqlpKQk5efna8yYMZKkkSNHqnnz5kpMTJQkFRYWat++fZa/T5w4IbPZLA8PD7Vt21aS9PTTT+vBBx9Uq1atdPLkSSUkJMjZ2VnDhw+XJB0+fFgrV67Ub37zGzVp0kTff/+9Jk+erL59+1r9IhpAzUeNAVCa8taIp556Sv369dOCBQs0aNAgrVq1St9++62WLFki6fq4X5MmTdILL7ygdu3aqXXr1nr++ecVEBCgwYMHS5JatmxplYOHx/VXnN15551q0aKFJGnFihVycXFRjx49JEnvv/++li5dqrfeesuy3s1yAeB4jqgxkpSZmanz588rMzNTRUVFlh/ytW3bVh4eHvr3v/+t7Oxs3X333XJzc9OmTZv097//XU8//bSljfHjx+vVV1/VlClT9Je//EWbN2/WmjVrtGHDhttz8ABUK+WtZy+++KLi4+O1cuVKBQUFWcYj9vDwkIeHR5nrGQDHq+zrGUmW65STJ09Kkg4cOCDp+hPjfn5+ls7zy5cv65133lFeXp7y8q6/5rBp06ZydnbWgAED1KlTJ/35z3/W3LlzlZWVpWnTpmnixImWHwRyPQMAACrK4R3ow4YN05kzZxQfH6+srCyFhIQoJSVFvr6+kq7f/HFy+t+D8idPnrTcTJauvw5s/vz56tevn9LS0iRJP/74o4YPH65z586padOm6tOnj7Zt26amTa+P9ePi4qLPPvvMcsEXGBioIUOGaNq0abdvxwHcFtQYAKUpb43o3bu3Vq5cqWnTpum5555Tu3bttG7dOnXp0sUSM2XKFOXn52vcuHHKyclRnz59lJKSUu4xP2fNmqVjx46pXr16Cg4O1urVq/XHP/6xXLkAcCxH1Zj4+Hir4SBuXNts2bJF/fv3V/369bV48WJNnjxZhmGobdu2WrhwoaKjoy3rtG7dWhs2bNDkyZP10ksvqUWLFnrrrbcUFRVVZccLQPVV3nr2+uuvq7Cw0OraRZISEhIsYxhX1jUTgKpVFdcz69evt3TAS9Ijjzwi6X81YufOndq+fbskWR5muOHIkSMKCgqSs7OzPvroI02YMEERERFq2LChRo0apZkzZ1piuZ4BAAAVZTIMo+ID4dRheXl58vb2Vm5urry8vOzGHT5/WLuzdyvQO/A2ZgdUDyfyTqi9T3sF+wTbjSnruVQXlfXYfJ35tfIL8xkDHXXS8dzjCm8RLn9P+8MjUGdsK+txuXz1sr449oU8XTwZAx11zo0x0Pu26isPFw+7cdQZ28p6XLIvZSv9eDrfmVAnXfjpguo711e/oH52Y6gx9pX12Bw8d1D7zuxTC68WtzE7oHr4Me9HBfsEq4NPB7sx1Bn7ynpsvjz2pa5cu8IY6KiTjucd190t7pafh5/dGOoMgJrGoWOgAwAAAAAAAAAAAABQXdCBDgAAAAAAAAAAAACA6EAHAAAAAAAAAAAAAEASHegAAAAAAAAAAAAAAEiiAx0AAAAAAAAAAAAAAEl0oAMAAAAAAAAAAAAAIIkOdAAAAAAAAAAAAAAAJNGBDgAAAAAAAAAAAACAJDrQAQAAAAAAAAAAAACQRAc6AAAAAAAAAAAAAACS6EAHAAAAAAAAAAAAAEASHegAAAAAAAAAAAAAAEiiAx0AAAAAAAAAAAAAAEl0oAMAAAAAAAAAAAAAIIkOdAAAAAAAAAAAAAAAJNGBDgAAAAAAAACwY/HixQoKCpKbm5vCw8O1Y8eOUuPXrl2r4OBgubm5qWvXrtq4caPV8vfff18DBgxQkyZNZDKZZDabS7SxZMkS9e/fX15eXjKZTMrJybFanpaWJpPJZHP65ptvJElHjx61uXzbtm23dDwAAEDtRwc6AAAAAAAAAKCE1atXKzY2VgkJCdq5c6e6d++uqKgonT592mb81q1bNXz4cI0dO1a7du3S4MGDNXjwYO3Zs8cSk5+frz59+ujFF1+0u93Lly9r4MCBeu6552wu7927t06dOmU1PfbYY2rdurXCwsKsYj/77DOruNDQ0AocCQAAUJfUc3QCAAAAAAAAAIDqZ+HChYqOjtaYMWMkScnJydqwYYOWLl2qqVOnloh/6aWXNHDgQD3zzDOSpFmzZmnTpk169dVXlZycLEn685//LOn6E+L2TJo0SdL1J81tcXFxkZ+fn+Xz1atX9eGHH+rJJ5+UyWSyim3SpIlVLAAAwM3wBDoAAAAAAAAAwEphYaEyMjIUGRlpmefk5KTIyEilp6fbXCc9Pd0qXpKioqLsxleW9evX69y5c5aO/p/73e9+p2bNmqlPnz5av359qe0UFBQoLy/PagIAAHUPHegAar3yjNW1d+9eDRkyREFBQTKZTEpKSioRM3369BLjZwUHB1vFXLlyRRMnTlSTJk3k4eGhIUOGKDs7u7J3DQAAAAAAoEqcPXtWRUVF8vX1tZrv6+urrKwsm+tkZWWVK76yvP3224qKilKLFi0s8zw8PLRgwQKtXbtWGzZsUJ8+fTR48OBSO9ETExPl7e1tmQIDA6s0bwAAUD3RgQ6gVivvWF2XL19WmzZtNGfOnFJf79W5c2er8bO++uorq+WTJ0/Wv//9b61du1aff/65Tp48qT/84Q+Vum8AAAAAAAB13Y8//qhPPvlEY8eOtZrv4+Oj2NhYhYeHq2fPnpozZ44effRRzZs3z25bcXFxys3NtUzHjx+v6vQBAEA1xBjoAGq18o7V1bNnT/Xs2VOSbC6/oV69enY72HNzc/X2229r5cqVuu+++yRJy5YtU8eOHbVt2zbdfffdt7pbAAAAAAAAVcrHx0fOzs4l3qiXnZ1t956In59fueIrw7Jly9SkSRP97ne/u2lseHi4Nm3aZHe5q6urXF1dKzM9AABQA/EEOoBaqyJjdZXVwYMHFRAQoDZt2mjEiBHKzMy0LMvIyNDVq1etthscHKyWLVuWul3G2QIAAAAAANWFi4uLQkNDlZqaaplXXFys1NRURURE2FwnIiLCKl6SNm3aZDf+VhmGoWXLlmnkyJGqX7/+TePNZrP8/f2rJBcAAFB70IEOoNaqyFhdZREeHq7ly5crJSVFr7/+uo4cOaJ77rlHFy9elHR9vC8XFxc1atSoXNtlnC3AMRYvXqygoCC5ubkpPDxcO3bsKDV+7dq1Cg4Olpubm7p27aqNGzdaLTcMQ/Hx8fL391eDBg0UGRmpgwcP2myroKBAISEhMplMMpvNNmMOHTokT0/PEjVl+fLlMplMVpObm1uZ9xvA7eGIGjN79mz17t1b7u7uJWrHL507d04tWrSQyWRSTk6OZX5aWlqJGmMymap8/FIAAFC9xMbG6s0339SKFSv0ww8/aMKECcrPz7e86W/kyJGKi4uzxD/11FNKSUnRggULtH//fk2fPl3ffvutYmJiLDHnz5+X2WzWvn37JEkHDhyQ2Wy2us7IysqS2WzWoUOHJEm7d++W2WzW+fPnrfLbvHmzjhw5oscee6xE7itWrND/+3//T/v379f+/fv197//XUuXLtWTTz5ZeQcIAADUSnSgA0A5PfDAAxo6dKi6deumqKgobdy4UTk5OVqzZs0ttcs4W8Dtt3r1asXGxiohIUE7d+5U9+7dFRUVpdOnT9uM37p1q4YPH66xY8dq165dGjx4sAYPHqw9e/ZYYubOnauXX35ZycnJ2r59uxo2bKioqChduXKlRHtTpkxRQECA3fyuXr2q4cOH65577rG53MvLS6dOnbJMx44dK+cRAFCVHFVjCgsLNXToUE2YMOGmOY4dO1bdunWzu/zAgQNWdaZZs2blOAIAAKCmGzZsmObPn6/4+HiFhITIbDYrJSXF8rBCZmamTp06ZYnv3bu3Vq5cqSVLlqh79+7617/+pXXr1qlLly6WmPXr16tHjx4aNGiQJOmRRx5Rjx49lJycbIlJTk5Wjx49FB0dLUnq27evevToofXr11vl9/bbb6t3794KDg62mf+sWbMUGhqq8PBwffjhh1q9erWl8x8AAMAeOtAB1FoVGaurIho1aqT27dtbfhXt5+enwsJCq6e4yrJdV1dXeXl5WU0AqtbChQsVHR2tMWPGqFOnTkpOTpa7u7uWLl1qM/6ll17SwIED9cwzz6hjx46aNWuW7rrrLr366quSrj8ZmpSUpGnTpumhhx5St27d9I9//EMnT57UunXrrNr6+OOP9emnn2r+/Pl285s2bZqCg4P18MMP21xuMpnk5+dnmX75xg0AjuWoGjNjxgxNnjxZXbt2LTW/119/XTk5OXr66aftxjRr1syqzjg58RUSAIC6JiYmRseOHVNBQYG2b9+u8PBwy7K0tDQtX77cKn7o0KE6cOCACgoKtGfPHv3mN7+xWj569GgZhlFimj59uiVm+vTpNmNGjx5t1dbKlSv19ddf28x71KhR2rdvn/Lz85Wbm6vt27frj3/84y0dCwAAUDdw9wNArVWRsboq4tKlSzp8+LBlDK3Q0FDVr1/farsHDhxQZmZmlY35BaD8CgsLlZGRocjISMs8JycnRUZGKj093eY66enpVvGSFBUVZYk/cuSIsrKyrGK8vb0VHh5u1WZ2draio6P1z3/+U+7u7ja3tXnzZq1du1aLFy+2uw+XLl1Sq1atFBgYqIceekh79+61G1tQUKC8vDyrCUDVcWSNKYt9+/Zp5syZ+sc//lFqp3hISIj8/f3161//2u7N6RuoMwAAAAAAoDagAx1ArVbesboKCwtlNptlNptVWFioEydOWI25JUlPP/20Pv/8cx09elRbt27V73//ezk7O2v48OGSrt/IHjt2rGJjY7VlyxZlZGRozJgxioiI0N133317DwAAu86ePauioqIST237+vraHeM3Kyur1Pgb/5YWc+OpifHjxyssLMzmds6dO6fRo0dr+fLldt9G0aFDBy1dulQffvih3nnnHRUXF6t379768ccfbcYnJibK29vbMgUGBtqMA1A5HFVjyqKgoEDDhw/XvHnz1LJlS5sx/v7+Sk5O1nvvvaf33ntPgYGB6t+/v3bu3Gm3XeoMAAAAAACoDeo5OgEAqErDhg3TmTNnFB8fr6ysLIWEhJQYq+vnT12dPHlSPXr0sHyeP3++5s+fr379+iktLU2S9OOPP2r48OE6d+6cmjZtqj59+mjbtm1q2rSpZb1FixbJyclJQ4YMUUFBgaKiovTaa6/dnp0GUK298sorunjxotWPd34pOjpaf/rTn9S3b1+7MREREVZvtejdu7c6duyoN954Q7NmzSoRHxcXp9jYWMvnvLw8OreAOiouLk4dO3bUo48+ajemQ4cO6tChg+Vz7969dfjwYS1atEj//Oc/7bZLnQEAAAAAADUdHegAar2YmBjFxMTYXHajU/yGoKAgGYZRanurVq266Tbd3Ny0ePHiUl+9DMCxfHx85OzsrOzsbKv52dnZ8vPzs7mOn59fqfE3/s3OzrYM63Djc0hIiKTrr2ZPT0+Xq6urVTthYWEaMWKEVqxYoc2bN2v9+vWW8dENw1BxcbHq1aunJUuW6C9/+UuJ3OrXr68ePXpYvTHj51xdXUtsE0DVcVSNKYvNmzdr9+7d+te//iVJlmsfHx8f/d///Z9mzJhhc71evXrpq6++stsudQYAAAAAANQG1eIV7osXL1ZQUJDc3NwUHh6uHTt22I3du3evhgwZoqCgIJlMJiUlJZWImT59ukwmk9UUHBxssz3DMPTAAw/IZDJp3bp1lbRHAACgunNxcVFoaKhSU1Mt84qLi5Wammr1ZPfPRUREWMVL0qZNmyzxrVu3lp+fn1VMXl6etm/fbol5+eWX9d1331mGi9i4caMkafXq1Zo9e7ak6+Mg31huNps1c+ZMeXp6ymw26/e//73N3IqKirR7926rTjUAjuOoGlMW7733nlUdeuuttyRJX375pSZOnGh3PbPZTI0B6rDKvndz8eJFTZo0Sa1atVKDBg3Uu3dvffPNN1W4BwAAAABQNg5/An316tWKjY1VcnKywsPDlZSUpKioKB04cEDNmjUrEX/58mW1adNGQ4cO1eTJk+2227lzZ3322WeWz/Xq2d7VpKQkmUymW98RAABQ48TGxmrUqFEKCwtTr169lJSUpPz8fI0ZM0aSNHLkSDVv3lyJiYmSpKeeekr9+vXTggULNGjQIK1atUrffvutlixZIkkymUyaNGmSXnjhBbVr106tW7fW888/r4CAAA0ePFiSSow37OHhIUm688471aJFC0lSx44drWK+/fZbOTk5qUuXLpZ5M2fO1N133622bdsqJydH8+bN07Fjx/TYY49V/oECUCGOqDHS9SFqzp8/r8zMTBUVFclsNkuS2rZtKw8PD915551WeZ49e1bS9drTqFEjSde/J7Vu3VqdO3fWlStX9NZbb2nz5s369NNPq/CIAaiuquLezWOPPaY9e/bon//8pwICAvTOO+8oMjJS+/btU/Pmzat6lwAAAADALod3oC9cuFDR0dGWm0jJycnasGGDli5dqqlTp5aI79mzp3r27ClJNpffUK9ePbuvRrzBbDZrwYIF+vbbb3mSAgCAOmjYsGE6c+aM4uPjlZWVpZCQEKWkpMjX11fS9U4oJ6f/vbCnd+/eWrlypaZNm6bnnntO7dq107p166w6tqdMmaL8/HyNGzdOOTk56tOnj1JSUuTm5lapuV+4cEHR0dHKysrSHXfcodDQUG3dulWdOnWq1O0AqDhH1Zj4+HitWLHC8rlHjx6SpC1btqh///5lyr2wsFB/+9vfdOLECbm7u6tbt2767LPPdO+9997KIQFQQ1X2vZuffvpJ7733nj788EP17dtX0vW3Cf773//W66+/rhdeeKEK9wYAAAAASufQDvTCwkJlZGQoLi7OMs/JyUmRkZFKT0+/pbYPHjyogIAAubm5KSIiQomJiVZPfF2+fFl/+tOftHjx4pt2tEtSQUGBCgoKLJ/z8vJuKT8AAFA9xMTEKCYmxuaytLS0EvOGDh2qoUOH2m3PZDJp5syZmjlzZpm2HxQUZBl/2J7Ro0dr9OjRVvMWLVqkRYsWlWkbABzHETVm+fLlWr58eZlz7N+/f4k6NGXKFE2ZMqXMbQCovari3s21a9dUVFRU4geGDRo00FdffWV3Pe7NAAAAALgdHDoG+tmzZ1VUVGR5AuMGX19fZWVlVbjd8PBwLV++XCkpKXr99dd15MgR3XPPPbp48aIlZvLkyerdu7ceeuihMrWZmJgob29vyxQYGFjh/AAAAAAAAGqCqrh34+npqYiICM2aNUsnT55UUVGR3nnnHaWnp+vUqVN21+PeDAAAAIDbwaEd6FXlgQce0NChQ9WtWzdFRUVp48aNysnJ0Zo1ayRJ69ev1+bNm5WUlFTmNuPi4pSbm2uZjh8/XkXZAwAAAAAA1G7//Oc/ZRiGmjdvLldXV7388ssaPny41dAWv8S9GQAAAAC3g0Nf4e7j4yNnZ2dlZ2dbzc/Ozi7Ta9XLqlGjRmrfvr0OHTokSdq8ebMOHz6sRo0aWcUNGTJE99xzj81XKbq6usrV1bXScgIAAAAAAKjuqurezZ133qnPP/9c+fn5ysvLk7+/v4YNG6Y2bdrYXYd7MwAAAABuB4c+ge7i4qLQ0FClpqZa5hUXFys1NVURERGVtp1Lly7p8OHD8vf3lyRNnTpV33//vcxms2WSro8lumzZskrbLgAAAAAAQE1W1fduGjZsKH9/f124cEGffPJJmYfaAwAAAICq4tAn0CUpNjZWo0aNUlhYmHr16qWkpCTl5+drzJgxkqSRI0eqefPmSkxMlCQVFhZq3759lr9PnDghs9ksDw8PtW3bVpL09NNP68EHH1SrVq108uRJJSQkyNnZWcOHD5ck+fn52fyVdMuWLdW6devbsdsAAAAAAAA1QlXcu/nkk09kGIY6dOigQ4cO6ZlnnlFwcLClTQAAAABwFId3oA8bNkxnzpxRfHy8srKyFBISopSUFPn6+kqSMjMzrca/OnnypHr06GH5PH/+fM2fP1/9+vWzvHr9xx9/1PDhw3Xu3Dk1bdpUffr00bZt29S0adPbum8AAAAAAAA1XVXcu8nNzVVcXJx+/PFHNW7cWEOGDNHs2bNVv37927pvAAAAAPBLDu9Al6SYmBjFxMTYXPbL8ciDgoJkGEap7a1atarcOdysTQAAAAAAgLqqsu/dPPzww3r44YcrKz0AAAAAqDQOHQMdAAAAAAAAAFB9LV68WEFBQXJzc1N4eLh27NhRavzatWsVHBwsNzc3de3aVRs3brRa/v7772vAgAFq0qSJTCaTzGZziTaWLFmi/v37y8vLSyaTSTk5OSVigoKCZDKZrKY5c+ZYxXz//fe655575ObmpsDAQM2dO7fc+w8AAOoeOtABAAAAAAAAACWsXr1asbGxSkhI0M6dO9W9e3dFRUXp9OnTNuO3bt2q4cOHa+zYsdq1a5cGDx6swYMHa8+ePZaY/Px89enTRy+++KLd7V6+fFkDBw7Uc889V2p+M2fO1KlTpyzTk08+aVmWl5enAQMGqFWrVsrIyNC8efM0ffp0LVmypJxHAQAA1DXV4hXuAAAAAAAAAIDqZeHChYqOjtaYMWMkScnJydqwYYOWLl2qqVOnloh/6aWXNHDgQD3zzDOSpFmzZmnTpk169dVXlZycLEn685//LEk6evSo3e1OmjRJUskhIn7J09NTfn5+Npe9++67Kiws1NKlS+Xi4qLOnTvLbDZr4cKFGjduXKntAgCAuo0n0AEAAAAAAAAAVgoLC5WRkaHIyEjLPCcnJ0VGRio9Pd3mOunp6VbxkhQVFWU3/lbNmTNHTZo0UY8ePTRv3jxdu3bNKpe+ffvKxcXFKpcDBw7owoULNtsrKChQXl6e1QQAAOoenkAHAAAAAAAAAFg5e/asioqK5OvrazXf19dX+/fvt7lOVlaWzfisrKxKz++vf/2r7rrrLjVu3Fhbt25VXFycTp06pYULF1pyad26dYlcbiy74447SrSZmJioGTNmVHquAACgZqEDHQAAAAAAAABQo8TGxlr+7tatm1xcXPT4448rMTFRrq6uFWozLi7Oqt28vDwFBgbecq4AAKBmoQMdAAAAAAAAAGDFx8dHzs7Oys7OtpqfnZ1td9xxPz+/csVXpvDwcF27dk1Hjx5Vhw4d7OZyI09bXF1dK9z5DgAAag/GQAdQ6y1evFhBQUFyc3NTeHi4duzYYTd27969GjJkiIKCgmQymZSUlFRq23PmzJHJZNKkSZOs5vfv318mk8lqGj9+fCXsDQAAAAAAQNVzcXFRaGioUlNTLfOKi4uVmpqqiIgIm+tERERYxUvSpk2b7MZXJrPZLCcnJzVr1sySyxdffKGrV69a5dKhQwebr28HAAC4gQ50ALXa6tWrFRsbq4SEBO3cuVPdu3dXVFSUTp8+bTP+8uXLatOmjebMmXPTX0d/8803euONN9StWzeby6Ojo3Xq1CnLNHfu3FveHwAAAAAAgNslNjZWb775plasWKEffvhBEyZMUH5+vsaMGSNJGjlypOLi4izxTz31lFJSUrRgwQLt379f06dP17fffquYmBhLzPnz52U2m7Vv3z5J0oEDB2Q2m63GSc/KypLZbNahQ4ckSbt375bZbNb58+clSenp6UpKStJ3332n//73v3r33Xc1efJkPfroo5bO8T/96U9ycXHR2LFjtXfvXq1evVovvfSS1SvaAQAAbKEDHUCttnDhQkVHR2vMmDHq1KmTkpOT5e7urqVLl9qM79mzp+bNm6dHHnmk1Fd2Xbp0SSNGjNCbb75p91fL7u7u8vPzs0xeXl6Vsk8AAAAAAAC3w7BhwzR//nzFx8crJCREZrNZKSkp8vX1lSRlZmbq1KlTlvjevXtr5cqVWrJkibp3765//etfWrdunbp06WKJWb9+vXr06KFBgwZJkh555BH16NFDycnJlpjk5GT16NFD0dHRkqS+ffuqR48eWr9+vaTrr1pftWqV+vXrp86dO2v27NmaPHmylixZYmnD29tbn376qY4cOaLQ0FD97W9/U3x8vMaNG1d1BwwAANQKjIEOoNYqLCxURkaG1S+hnZycFBkZqfT09Ftqe+LEiRo0aJAiIyP1wgsv2Ix599139c4778jPz08PPvignn/+ebm7u9tts6CgQAUFBZbPeXl5t5QjAAAAAADArYqJibF6gvzn0tLSSswbOnSohg4dare90aNHa/To0aVuc/r06Zo+fbrd5XfddZe2bdtWahuS1K1bN3355Zc3jQMAAPg5OtAB1Fpnz55VUVGR5VfRN/j6+mr//v0VbnfVqlXauXOnvvnmG7sxf/rTn9SqVSsFBATo+++/17PPPqsDBw7o/ffft7tOYmKiZsyYUeG8AAAAAAAAAAAAcGvoQAeAcjh+/Lieeuopbdq0SW5ubnbjfv46sK5du8rf31/333+/Dh8+rDvvvNPmOnFxcVbjcOXl5SkwMLDykgcAAAAAAAAAAECp6EAHUGv5+PjI2dlZ2dnZVvOzs7Pl5+dXoTYzMjJ0+vRp3XXXXZZ5RUVF+uKLL/Tqq6+qoKBAzs7OJdYLDw+XJB06dMhuB7qrq2up464DAAAAAAAAAACgajk5OgEAqCouLi4KDQ1VamqqZV5xcbFSU1MVERFRoTbvv/9+7d69W2az2TKFhYVpxIgRMpvNNjvPJclsNkuS/P39K7RdAAAAAAAAAAAAVD2eQAdQq8XGxmrUqFEKCwtTr169lJSUpPz8fI0ZM0aSNHLkSDVv3lyJiYmSpMLCQu3bt8/y94kTJ2Q2m+Xh4aG2bdvK09NTXbp0sdpGw4YN1aRJE8v8w4cPa+XKlfrNb36jJk2a6Pvvv9fkyZPVt29fdevW7TbuPQAAAAAAAAAAAMqDDnQAtdqwYcN05swZxcfHKysrSyEhIUpJSZGvr68kKTMzU05O/3sZx8mTJ9WjRw/L5/nz52v+/Pnq16+f0tLSyrRNFxcXffbZZ5bO+sDAQA0ZMkTTpk2r1H0DAAAAAAAAAABA5eIV7gBqvZiYGB07dkwFBQXavn27ZTxySUpLS9Py5cstn4OCgmQYRomptM7ztLQ0JSUlWT4HBgbq888/17lz53TlyhUdPHhQc+fOlZeXVxXsHYBbtXjxYgUFBcnNzU3h4eHasWNHqfFr165VcHCw3Nzc1LVrV23cuNFquWEYio+Pl7+/vxo0aKDIyEgdPHjQZlsFBQUKCQmRyWSyDPXwS4cOHZKnp6caNWpU7lwAOJ4jaszs2bPVu3dvubu726wdP3fu3Dm1aNFCJpNJOTk5VsvS0tJ01113ydXVVW3btrW6ZgIAAAAAAKit6EAHAAB11urVqxUbG6uEhATt3LlT3bt3V1RUlE6fPm0zfuvWrRo+fLjGjh2rXbt2afDgwRo8eLD27NljiZk7d65efvllJScna/v27WrYsKGioqJ05cqVEu1NmTJFAQEBdvO7evWqhg8frnvuuadCuQBwLEfVmMLCQg0dOlQTJky4aY5jx461OcTMkSNHNGjQIN17770ym82aNGmSHnvsMX3yyScVOBIAAAAAAAA1Bx3oAACgzlq4cKGio6M1ZswYderUScnJyXJ3d9fSpUttxr/00ksaOHCgnnnmGXXs2FGzZs3SXXfdpVdffVXS9SdDk5KSNG3aND300EPq1q2b/vGPf+jkyZNat26dVVsff/yxPv30U82fP99uftOmTVNwcLAefvjhcucCwPEcVWNmzJihyZMnq2vXrqXm9/rrrysnJ0dPP/10iWXJyclq3bq1FixYoI4dOyomJkZ//OMftWjRooofEAAAAAAAgBqADnQAAFAnFRYWKiMjQ5GRkZZ5Tk5OioyMVHp6us110tPTreIlKSoqyhJ/5MgRZWVlWcV4e3srPDzcqs3s7GxFR0frn//8p9zd3W1ua/PmzVq7dq0WL15coVx+qaCgQHl5eVYTgKrjyBpTFvv27dPMmTP1j3/8Q05OJb8WlrfGSNQZAAAAAABQO9CBDgAA6qSzZ8+qqKhIvr6+VvN9fX2VlZVlc52srKxS42/8W1qMYRgaPXq0xo8fr7CwMJvbOXfunEaPHq3ly5fLy8urQrn8UmJiory9vS1TYGCgzTgAlcNRNaYsCgoKNHz4cM2bN08tW7YsVy55eXn66aefbK5DnQEAAAAAALUBHegAAAC30SuvvKKLFy8qLi7Obkx0dLT+9Kc/qW/fvpW23bi4OOXm5lqm48ePV1rbAGqWuLg4dezYUY8++milt0udAQAAAAAANR0d6AAAoE7y8fGRs7OzsrOzreZnZ2fLz8/P5jp+fn6lxt/4t7SYzZs3Kz09Xa6urqpXr57atm0rSQoLC9OoUaMsMfPnz1e9evVUr149jR07Vrm5uapXr55l7OSb5fJLrq6u8vLyspoAVB1H1ZiyuDFExI0ac//991tyTkhIKDUXLy8vNWjQwGa71BkAAAAAAFAb0IEOAADqJBcXF4WGhio1NdUyr7i4WKmpqYqIiLC5TkREhFW8JG3atMkS37p1a/n5+VnF5OXlafv27ZaYl19+Wd99953MZrPMZrM2btwoSVq9erVmz54t6frYwzeWm81mzZw5U56enjKbzfr9739fplwAOJajakxZvPfee1Z16K233pIkffnll5o4cWKZcgEAAAAAAKit6EAHAAB1VmxsrN58802tWLFCP/zwgyZMmKD8/HyNGTNGkjRy5EirV60/9dRTSklJ0YIFC7R//35Nnz5d3377rWJiYiRJJpNJkyZN0gsvvKD169dr9+7dGjlypAICAjR48GBJUsuWLdWlSxfL1L59e0nSnXfeqRYtWkiSOnbsaBXTvHlzOTk5qUuXLrrjjjvKlAsAx3NEjZGkzMxMmc1mZWZmqqioyNJRfunSJUnX683Pa0zr1q0lXa89zZo1kySNHz9e//3vfzVlyhTt379fr732mtasWaPJkyffjkMHAACqkcWLFysoKEhubm4KDw/Xjh07So1fu3atgoOD5ebmpq5du1p+NHzD+++/rwEDBqhJkyYymUwym80l2liyZIn69+8vLy8vmUwm5eTkWC0/evSoxo4dq9atW6tBgwa68847lZCQoMLCQqsYk8lUYtq2bVuFjwUAAKgb6jk6AQAAAEcZNmyYzpw5o/j4eGVlZSkkJEQpKSny9fWVdL0Tysnpf7837N27t1auXKlp06bpueeeU7t27bRu3Tp16dLFEjNlyhTl5+dr3LhxysnJUZ8+fZSSkiI3N7dKzb0suQBwLEfVmPj4eK1YscLyuUePHpKkLVu2qH///mXKvXXr1tqwYYMmT56sl156SS1atNBbb72lqKioWzkkAACghlm9erViY2OVnJys8PBwJSUlKSoqSgcOHLD88O7ntm7dquHDhysxMVG//e1vtXLlSg0ePFg7d+60XNPk5+erT58+evjhhxUdHW1zu5cvX9bAgQM1cOBAqx8c3rB//34VFxfrjTfeUNu2bbVnzx5FR0crPz9f8+fPt4r97LPP1LlzZ8vnJk2a3MohAQAAdYDJMAzD0UnURHl5efL29lZubm6pY/sdPn9Yu7N3K9A78DZmB1QPJ/JOqL1PewX7BNuNKeu5VBeV9dh8nfm18gvz1cSdL4Coe47nHld4i3D5e/rbjaHO2FbW43L56mV9cewLebp4yq1e5f4IAKjuCq4VKKcgR31b9ZWHi4fdOOqMbWU9LtmXspV+PJ3vTKiTLvx0QfWd66tfUD+7MdQY+8p6bA6eO6h9Z/aphVeL25gdUD38mPejgn2C1cGng92Y0s6l8PBw9ezZU6+++qqk60PSBAYG6sknn9TUqVNLtDVs2DDl5+fro48+ssy7++67FRISouTkZKvYo0ePqnXr1tq1a5dCQkJs5paWlqZ7771XFy5cUKNGjUrd13nz5un111/Xf//73zK3fzNlrTNfHvtSV65dUeMGjSu0HaAmO553XHe3uFt+Hn52Y7ieAVDT8Ap3AAAAAAAAAICVwsJCZWRkKDIy0jLPyclJkZGRSk9Pt7lOenq6VbwkRUVF2Y2vTLm5uWrcuGQH9u9+9zs1a9ZMffr00fr160tto6CgQHl5eVYTAACoe+hABwAAAAAAAABYOXv2rIqKiizDz9zg6+urrKwsm+tkZWWVK76yHDp0SK+88ooef/xxyzwPDw8tWLBAa9eu1YYNG9SnTx8NHjy41E70xMREeXt7W6bAQN6QAwBAXVQtOtAXL16soKAgubm5KTw8XDt27LAbu3fvXg0ZMkRBQUEymUxKSkoqETN9+nSZTCarKTjY+hXSjz/+uO688041aNBATZs21UMPPaT9+/dX9q4BAAAAAADUeJV976aoqEjPP/+8WrdurQYNGujOO+/UrFmzxEiDAMrrxIkTGjhwoIYOHWo1prqPj49iY2Mtr6GfM2eOHn30Uc2bN89uW3FxccrNzbVMx48fvx27AAAAqhmHd6CvXr1asbGxSkhI0M6dO9W9e3dFRUXp9OnTNuMvX76sNm3aaM6cOfLzsz+mRufOnXXq1CnL9NVXX1ktDw0N1bJly/TDDz/ok08+kWEYGjBggIqKiip1/wAAAAAAAGqyqrh38+KLL+r111/Xq6++qh9++EEvvvii5s6dq1deeaUqdwVAOfj4+MjZ2VnZ2dlW87Ozs+2e235+fuWKv1UnT57Uvffeq969e2vJkiU3jQ8PD9ehQ4fsLnd1dZWXl5fVBAAA6h6Hd6AvXLhQ0dHRGjNmjDp16qTk5GS5u7tr6dKlNuN79uypefPm6ZFHHpGrq6vdduvVqyc/Pz/L5OPjY7V83Lhx6tu3r4KCgnTXXXfphRde0PHjx3X06NHK3D0AAAAAAIAarSru3WzdulUPPfSQBg0apKCgIP3xj3/UgAEDSn2yHcDt5eLiotDQUKWmplrmFRcXKzU1VRERETbXiYiIsIqXpE2bNtmNvxUnTpxQ//79LQ9KOTnd/Fa32WyWv79/pecCAABql3qO3HhhYaEyMjIUFxdnmefk5KTIyEilp6ffUtsHDx5UQECA3NzcFBERocTERLVs2dJmbH5+vpYtW6bWrVvbHdemoKBABQUFls95eXm3lB8AAAAAAEB1V1X3bm48Lfqf//xH7du313fffaevvvpKCxcutLsO92aA2y82NlajRo1SWFiYevXqpaSkJOXn52vMmDGSpJEjR6p58+ZKTEyUJD311FPq16+fFixYoEGDBmnVqlX69ttvrZ4OP3/+vDIzM3Xy5ElJ0oEDByTJ8iCUdH0s9aysLMvT4rt375anp6datmypxo0bWzrPW7Vqpfnz5+vMmTOW9m+0sWLFCrm4uKhHjx6SpPfff19Lly7VW2+9VZWHDAAA1AIO7UA/e/asioqK5OvrazXf19f3lsYjDw8P1/Lly9WhQwedOnVKM2bM0D333KM9e/bI09PTEvfaa69pypQpys/PV4cOHbRp0ya5uLjYbDMxMVEzZsyocE4AAAAAAAA1TVXdu5k6dary8vIUHBwsZ2dnFRUVafbs2RoxYoTddbg3A9x+w4YN05kzZxQfH6+srCyFhIQoJSXFUhMyMzOtnvzu3bu3Vq5cqWnTpum5555Tu3bttG7dOnXp0sUSs379eksHvCQ98sgjkqSEhARNnz5dkpScnGx1vvft21eStGzZMo0ePVqbNm3SoUOHdOjQIbVo0cIqZ8MwLH/PmjVLx44dU7169RQcHKzVq1frj3/8YyUdHQAAUFs5tAO9qjzwwAOWv7t166bw8HC1atVKa9as0dixYy3LRowYoV//+tc6deqU5s+fr4cfflhff/213NzcSrQZFxen2NhYy+e8vDy7T6sDAAAAAADAvjVr1ujdd9/VypUr1blzZ5nNZk2aNEkBAQEaNWqUzXW4NwM4RkxMjGJiYmwuS0tLKzFv6NChGjp0qN32Ro8erdGjR5e6zenTp1s60yvaxqhRo+zWEwAAgNI4dAx0Hx8fOTs7Kzs722p+dna25VU7laFRo0Zq37695ZU/N3h7e6tdu3bq27ev/vWvf2n//v364IMPbLbh6uoqLy8vqwlAzbB48WIFBQXJzc1N4eHhpY6pt3fvXg0ZMkRBQUEymUxKSkoqte05c+bIZDJp0qRJVvOvXLmiiRMnqkmTJvLw8NCQIUNK1DoAAAAAqO6q6t7NM888o6lTp+qRRx5R165d9ec//1mTJ0+2vAbaFu7NAAAAALgdHNqB7uLiotDQUKWmplrmFRcXKzU1VREREZW2nUuXLunw4cPy9/e3G2MYhgzDsBpLC0DNt3r1asXGxiohIUE7d+5U9+7dFRUVpdOnT9uMv3z5stq0aaM5c+bc9GbQN998ozfeeEPdunUrsWzy5Mn697//rbVr1+rzzz/XyZMn9Yc//KFS9gkAAFStJ4Y9oX+v/rfyL+Y7OhUAcLiqundz+fJlq9c+S5Kzs7OKi4sr3CYAAAAAVAaHv8I9NjZWo0aNUlhYmHr16qWkpCTl5+dbxsEZOXKkmjdvbvkFcmFhofbt22f5+8SJEzKbzfLw8FDbtm0lSU8//bQefPBBtWrVSidPnlRCQoKcnZ01fPhwSdJ///tfrV69WgMGDFDTpk31448/as6cOWrQoIF+85vfOOAoAKgqCxcuVHR0tKWmJCcna8OGDVq6dKmmTp1aIr5nz57q2bOnJNlcfsOlS5c0YsQIvfnmm3rhhResluXm5urtt9/WypUrdd9990m6PkZXx44dtW3bNt19992VtXtAnTQj9n/j4OUX5mtVw1Vyr+9umbd06VJHpAWgFmnToY1enfOq5jw3R2H9w5Q3Nk9DHhqi+vXrOzo1AHCIqrh38+CDD2r27Nlq2bKlOnfurF27dmnhwoX6y1/+4pidBAAAAID/n8M70IcNG6YzZ84oPj5eWVlZCgkJUUpKinx9fSVJmZmZVr9IPnnypHr06GH5PH/+fM2fP1/9+vWzjLnz448/avjw4Tp37pyaNm2qPn36aNu2bWratKkkyc3NTV9++aWSkpJ04cIF+fr6qm/fvtq6dauaNWt2+3YeQJUqLCxURkaG4uLiLPOcnJwUGRmp9PT0W2p74sSJGjRokCIjI0t0oGdkZOjq1auKjIy0zAsODlbLli2Vnp5utwO9oKDA6i0YeXl5t5QjUFtdzL1o+funqz/J6bKTtu3fppycHMuPVgDgVjw982nFTo/VV2lfacP7G/T42Mf1xLgn9Mc//lEjRoxQv379HJ0iANxWVXHv5pVXXtHzzz+vJ554QqdPn1ZAQIAef/xxxcfH39Z9AwAAAIBfcngHuiTFxMQoJibG5rIbX6xuCAoKkmEYpba3atWqUpcHBARo48aN5coRQM1z9uxZFRUVWW7q3ODr66v9+/dXuN1Vq1Zp586d+uabb2wuz8rKkouLixo1alRiu1lZWXbbTUxM1IwZM+wuB3Dd/LfnW/4+nntc4S3C5dvQVxMmTNCdd97pwMwA1CZOTk4K7xuuDuEd1Mu3l7Z8skWzZ8/W22+/raKiIkenBwC3XWXfu/H09FRSUpKSkpIqKUMAAAAAqBwOHQMdAGqa48eP66mnntK7774rNze3Sm07Li5Oubm5lun48eOV2j5Qmzk5OSk2NlaLFi1ydCoAapnzZ87r7SVv68UXX9T3339vGeoFAGq6EydOODoFAAAAAKiWqsUT6ABQFXx8fOTs7Kzs7Gyr+dnZ2fLz86tQmxkZGTp9+rTuuusuy7yioiJ98cUXevXVV1VQUCA/Pz8VFhYqJyfH6in0m23X1dVVrq6uFcoLgHT48GFdu3bN0WkAqAUuXbykzRs3a+P7G7Vr2y61bt1af370z1q9ejVvugBQ42VlZVneqHH58mVHpwOgkv10+SetWLxCmz/erFPHT8mQoZZBLTVi2Ag9/fTTcnd3d3SKAAAA1d4tdaBfvnxZmZmZKiwstJrfrVu3W0oKACqDi4uLQkNDlZqaqsGDB0uSiouLlZqaavfVgzdz//33a/fu3VbzxowZo+DgYD377LNydnZWaGio6tevr9TUVA0ZMkSSdODAAWVmZioiIuKW9gmAtHD6QsvfFwsvamPDjco7l6cNGzZo1KhRDswMQG0RFRIlT29P3ffb+/To5Ec19rdj5eHi4ei0AKDMLly4oCeeeEKbNm2Si4uLpk6dqpiYGE2fPl3z589Xt27dtGzZMkenCaCSXS28qnFDxunwgcPqfW9v9f11X+VdyVPOjzmaPXu2Pv74Y33xxReqX7++o1MFAACo1irUgX7mzBmNGTNGH3/8sc3ljAkIoLqIjY3VqFGjFBYWpl69eikpKUn5+fkaM2aMJGnkyJFq3ry5EhMTJUmFhYXat2+f5e8TJ07IbDbLw8NDbdu2laenp7p06WK1jYYNG6pJkyaW+d7e3ho7dqxiY2PVuHFjeXl56cknn1RERITuvvvu27j3QO10YM8By98FRQW60OCCmvs114IFC/SXv/zFgZkBqC0WLFugXn166WrxVeUU5NiN+/rrrxUWFnb7EgOAMpo6daq2bt2q0aNH65NPPtHkyZOVkpIiJycnbd68me8lQC31r3/8S6dPndbKT1cqqG2QJOnHvB8V7BMs46yh/v37Kzk5WU8++aRjEwUAAKjmKtSBPmnSJOXk5Gj79u3q37+/PvjgA2VnZ+uFF17QggULKjtHAKiwYcOG6cyZM4qPj1dWVpZCQkKUkpIiX19fSVJmZqacnJws8SdPnlSPHj0sn+fPn6/58+erX79+SktLK/N2Fy1aJCcnJw0ZMkQFBQWKiorSa6+9Vmn7BdRlb/zrDcvfx3OPK7xFuPw9/UvE0bEFoKLu7vv/dywVlx73wAMPyGw2y8fHp+qTAoBy+Pjjj7V8+XLdd999iomJUZs2bRQSEqK///3vjk4NQBXa8vEWjZ001tJ5/nPBwcH6v//7P/3rX/+iAx0AAOAmKtSBvnnzZn344YcKCwuTk5OTWrVqpV//+tfy8vJSYmKiBg0aVNl5Aqgjvv/++zLFlWeoiJiYGLuvbP9lp3hQUJAMwyhz27bakCQ3NzctXrxYixcvLldbACoPHVsAqlp5rxkA4HY5efKkOnbsKOn6dxw3Nzc9+uijDs4KQFX773/+q9CIULvL7733Xs2cOfM2ZgQAAFAzVagDPT8/X82aNZMk3XHHHTpz5ozat2+vrl27aufOnZWaIIC6JSQkRCaTyeYN6RvzTSYTQ0UAuCk6tgAAQF1lGIbq1fvfLR9nZ2c1aNDAgRkBuB0u5l2U9x3edpc3adJEubm5tzEjAACAmqlCHegdOnTQgQMHFBQUpO7du+uNN95QUFCQkpOT5e9f8hWqAFBWR44ccXQKAAAAAFCjGYah+++/39KJ/tNPP+nBBx+Ui4uLVRwPQQC1i1FsyNnZ2e5yJycnHkgAAAAogwp1oD/11FM6deqUJCkhIUEDBw7Uu+++KxcXFy1fvrwy8wNQx7Rq1crRKQAAAABAjZaQkGD1+aGHHnJQJgBuJ8MwNGHYBKtO9KtFV+VWz02u9Vx17do1B2YHAABQc1SoA/3n42aFhobq2LFj2r9/v1q2bMk4o3CY9f+WZs6Q5s+X+vcvufzLL6WkJKmoWGrbVpo+XfJoeJuTxE3NnTtXTz75pOX1gl9//bXCwsLk6uoqSbp48aKeffZZvfbaa45ME3UUdQZAVaPO1Cwmk8nRKQDlQo2pO37ZgQ7cLtQZx4qOjS4xL68gTz7uPvJxv37PdsiQIbc7LaBSUWcAALeDU0VWmjlzpi5fvmz57O7urrvuuksNGzbUzJkzKy05oKxOnpI++EDq0tX28ss/STNnSQsWSOs+kJo2ld566/bmiLKJi4vTxYsXLZ8feOABnThxwvL58uXLeuONNxyRGuo46kzNU9aOrcWLFysoKEhubm4KDw/Xjh07So1fu3atgoOD5ebmpq5du2rjxo1Wyw3DUHx8vPz9/dWgQQNFRkbq4MGDNtsqKChQSEiITCaTzGazZf6BAwd07733ytfXV25ubmrTpo2mTZumq1evWmKWL18uk8lkNbm5uZVpn1E9UWdqHsMwbhrjiBoze/Zs9e7dW+7u7mrUqFGJbZw7d04DBw5UQECAXF1dFRgYqJiYGOXl5Vli0tLSStQYk8mkrKysm+4zqidqDICqRp1xvHGx40pMj0x8RDHPxCghIcEylVdlX8+8//77GjBggJo0aVLiu9ANS5YsUf/+/eXl5SWTyaScnJwSMefPn9eIESPk5eWlRo0aaezYsbp06ZJVzPfff6977rlHbm5uCgwM1Ny5c8u9/6g+qDMAgNulQh3oM2bMKHExIl3v2JoxY8YtJwWUR7EhzZolTXlGcqlvO2br11KHDlJQ0PXPQ4dKn3xy21JEOfzyRnRZbkwDVY06UzOVpX6sXr1asbGxSkhI0M6dO9W9e3dFRUXp9OnTNuO3bt2q4cOHa+zYsdq1a5cGDx6swYMHa8+ePZaYuXPn6uWXX1ZycrK2b9+uhg0bKioqSleuXCnR3pQpUxQQEFBifv369TVy5Eh9+umnOnDggJKSkvTmm2+WuNnl5eWlU6dOWaZjx47ddJ9RPVFnaqaLFy+qTZs2dpc7qsYUFhZq6NChmjBhgs3tODk56aGHHtL69ev1n//8R8uXL9dnn32m8ePHl4g9cOCAVZ1p1qxZWQ8PqhFqTN3To0cP3XXXXTedgMpCnam9quJ6Jj8/X3369NGLL75od7uXL1/WwIED9dxzz9mNGTFihPbu3atNmzbpo48+0hdffKFx48ZZlufl5WnAgAFq1aqVMjIyNG/ePE2fPl1LliypwJGAo1FnAAC3U4Ve4W4Yhs2nur777js1btz4lpMCyuPdd6Tu3aWOHe3HZGVJ/v7/+xzgL509K10rkuo5218PACTqTE11420WP3+i8pcWLlyo6OhojRkzRpKUnJysDRs2aOnSpZo6dWqJ+JdeekkDBw7UM888I0maNWuWNm3apFdffVXJyckyDENJSUmaNm2aZazRf/zjH/L19dW6dev0yCOPWNr6+OOP9emnn+q9997Txx9/bLWdNm3aWHXKtWrVSmlpafryyy+t4kwmk/z8/MpzWFBNUWeqhz8N+JPV9xzDMFRkFMnDxUNOpv/99njnzp1las9RNebGj5qXL19uM6877rjDqnO9VatWeuKJJzRv3rwSsc2aNbP5FDtqFmpM3TN48GDL34ZhKDExUePHj+eeDaoMdaZ6+OW1jGQ9BvoNZb2WkSr/ekaS/vznP0uSjh49ane7kyZNknT9rTi2/PDDD0pJSdE333yjsLAwSdIrr7yi3/zmN5o/f74CAgL07rvvqrCwUEuXLpWLi4s6d+4ss9mshQsXWnW0o2agzgAAbqdydaDfcccdllf3tW/f3uqCrKioSJcuXbL51AJQVQ4dllI3S2+96ehMANRW1Jnqw97NIHcXd9V3+t/Pz8t6M6iwsFAZGRmKi4uzzHNyclJkZKTS09NtrpOenq7Y2FireVFRUVq3bp0k6ciRI8rKytL/x96dx1VZ5v8ffx+QNQQXFFBRcEncQVTESq0YsWzKyXHULJdcRkealEqjMdScwswFKycmc5vSr0uZWZqlmDYlaqmUSzFqKiqCmgGKCgj37w9/nDqxCHiOB/H1fDzOo7jvz7mu676n85773Ne57zsiIsK83svLS2FhYUpKSjJPbmVkZGjUqFFau3at3N3drzvWw4cPa+PGjXr00Uctll+8eFFNmjRRYWGhOnbsqFdeeUVt2rQpsY3c3Fzl5uaa/y7rhwW4uciZqqNn757mfzcMQ0veXKIHBj6gtk3aytnRuUJt2TNjKiotLU1r1qxRjx49iq0LDg5Wbm6u2rZtq6lTp+quu+4qtR1ypmoiY25Pv79rzezZs/X000+XedcMoLLImaqjpGOZyAGRCvALMD8DvSJscTxjLUlJSapVq5Z58lySIiIi5ODgoJ07d+pPf/qTkpKS1L17dzk7/3ocFxkZqVdffVW//PKLateuXaxdjmeqJnIGAHCzVWgCPT4+XoZh6Mknn9S0adPk5eVlXufs7KyAgACFh4dbfZBAaZL3SqfTpL5/uvb3zz9L/3z52i8L//znX+t8faUdO3/9O+205O3NLw+rqnfeeUceHh6SpKtXr2rJkiXy9r72Re+3z0cHbgZypuoo6WRQr7/0UpB/kGq61Kxwe+fOnVNBQYF8fHwslvv4+OjHH38s8T3p6ekl1hc9E7jon2XVGIahYcOGacyYMerUqVOZV11069ZNe/bsUW5urkaPHq2XXnrJvK5ly5ZatGiR2rdvr6ysLM2aNUvdunXTgQMH1KhRo2JtxcXF8aidKoqcqTpGR1teifTev9/Tw0Me1oB7BsjD2aNCbdkrYypi0KBB+uijj3T58mX98Y9/1Du/eUCkn5+fEhIS1KlTJ+Xm5uqdd95Rz549tXPnzlJv+0zOVE1kDABbI2eqjt8fyyz79zI99MRD6hnSUy29W1a4PVscz1hLenp6sUfL1KhRQ3Xq1LE4dgoMDCw2lqJ1JU2gczxTNZEzAICbrUIT6EOHDpUkBQYG6q677lKNGpW6AzxgNX/+s+VB0ujR0mOPST17WtaFd5NmvCodO3btGTirV0uRvW7iQFFujRs31oIFv/6c1NfXV++++26xGuBmIWeqjtJOBj0S/oj8avqV8q6q54033tCFCxcsruIozcqVK3XhwgV99913eu655zRr1ixNnDhRkhQeHm7xw8Vu3bqpVatW+ve//63p06cXaysmJsbiSpDs7Gz5+/tbYYtwo8gZ2MvcuXM1ZcoU/e9//zNnxL/+9S9J136k07Llryfau3XrpiNHjmju3LnFjs2KkDNVExkDwNbIGVQnHM9UTeQMAOBmq9QMeI8ePXTkyBEtXrxYR44c0bx581S/fn19+umnaty4cam3DgVupoQEybue9Od+0h3u0osvSs88IxUUSM2aSfyYtGoq60pMoKohZ25t3t7ecnR0VEZGhsXyjIyMUp8r7uvrW2Z90T8zMjLk95sHr2VkZCg4OFiStGXLFiUlJcnFxcWinU6dOmnw4MFaunSpeVnRiZrWrVuroKBAo0eP1jPPPCNHx+I/n3dyclJISIgOHz5c4thdXFyK9Ymqj5y5ddkrYyrC19dXvr6+CgoKUp06dXTPPffoxRdftGj7t7p06aKvvvqq1PbImVsPGQPA1siZW5stjmesxdfXV2fOnLFYdvXqVZ0/f97i2KmksRStKwnHM7cecgYAYAuVmkDftm2bHnjgAd1111368ssv9fLLL6t+/fr67rvvtHDhQr3//vvWHidQLm+//eu/jxljua5H92svVC/t2rXThg0b+DUwbhpypvpwdnZWaGioEhMT1bdvX0lSYWGhEhMTFRUVVeJ7wsPDlZiYqPHjx5uXbdq0yXwleGBgoHx9fZWYmGiezMrOztbOnTs1duxYSdLrr7+uf/7zn+b3p6WlKTIyUitXrlRYWFip4y0sLFR+fr4KCwtLnEAvKCjQvn379OCDD1ZkN6AKImeqB3tlTGUVFhZKksUzP38vOTm51Ml13DrImNvD66+/bvH37x+NVeTvf//7zRwWbhPkTPVhi+MZawkPD1dmZqZ2796t0NBQSdd+rFxYWGj+XhUeHq5//OMfys/Pl5OTk3ksLVu2LPH27bh1kDMAAFur1AT6888/r3/+85+Kjo5WzZq/PnP0vvvu05tvvmm1wQHA9Rw7dkz5+fn2HgaAW1R0dLSGDh2qTp06qUuXLoqPj1dOTo6GDx8uSRoyZIgaNmyouLg4SdLTTz+tHj16aPbs2erTp49WrFihb7/9Vm///2/vJpNJ48eP1z//+U+1aNFCgYGBevHFF9WgQQPzCaffP4bCw+Pac5WbNWtmfnb5smXL5OTkpHbt2snFxUXffvutYmJiNGDAAPOJn5deekldu3ZV8+bNlZmZqddee03Hjx/XyJEjbb7fgOpqxcIVFn8XXC3Q5g836/x35+VS49crkco74WSPjJGk1NRUnT9/XqmpqSooKFBycrIkqXnz5vLw8NCGDRuUkZGhzp07y8PDQwcOHNBzzz2nu+66SwEBAZKk+Ph4BQYGqk2bNrpy5YreeecdbdmyRZ9//nlldi2Am2zu3LkWf5f0aCyTycQEOlDNFDuWKSjQlg+3KPWbVPl4/Ppc8op89q19PCPJfJySlpYmSUpJSZH0691xpGvPKE9PTzffYWvfvn2qWbOmGjdurDp16qhVq1bq3bu3Ro0apYSEBOXn5ysqKkoDBw5UgwYNJEmPPfaYpk2bphEjRmjSpEnav3+/5s2bVywjAQAAfq9SE+j79u3T8uXLiy2vX7++zp07d8ODAgAA+L0STwat3aKzyWfl5eplXl6Rk0EDBgzQ2bNnFRsbq/T0dAUHB2vjxo3y8bl2cik1NVUODg7m+m7dumn58uWaPHmyXnjhBbVo0UJr165V27ZtzTUTJ05UTk6ORo8erczMTN19993auHGjXF1dyz2uGjVq6NVXX9X//vc/GYahJk2aKCoqShMmTDDX/PLLLxo1apTS09NVu3ZthYaGavv27WrdunW5+wFgafkCy+84devV1RcffaEkxySZTCZJFZtwslfGxMbGWjwOIiQkRJL0xRdfqGfPnnJzc9OCBQs0YcIE5ebmyt/fX48++qief/5583vy8vL0zDPP6NSpU3J3d1f79u21efNm3XvvveXdnQDs6OjRo/YeAgA7KOlYZuu6rfra8Ws5OVz7IW5Ffzxji+OZdevWmSfgJWngwIGSpClTpmjq1KmSpISEBE37zb23u3e/dknx4sWLNWzYMEnXfngcFRWl+++/Xw4ODurXr5/FHTi8vLz0+eefa9y4cQoNDZW3t7diY2M1evTocm8/AAC4PZkMwzAq+qZGjRpp1apV6tatm2rWrKnvvvtOTZs21Ycffqhnn31WR44cscVYq5Ts7Gx5eXkpKytLnp6epdYdOX9E+zL2yd+L20vj9nMq+5Tu9L5TQd5BpdaU97NUmt9mUHVT3n3zderXysnLUV33ujdxdMDN93DXh4stu1p4VS41XORounZLc5PJpJ9++smi5kZzproq7365lH9JXx7/UjWda8q1Rvl/BABUB7lXc5WZm6nuTbrLw9mj1DpypmTl3S8ZFzOUdCKJ70y4Lf1y+Rc5OTqpR0CPUmtuRsbcqo/GKu++OfTzIR08e1CNPBvdxNEBVcPJ7JMK8g5SS++WpdZwLFO68u6b/x7/r65cvaI6bnVu4uiAquFE9gl1bdRVvh6+pdaQMwBuNZW6An3gwIGaNGmSVq9eLZPJpMLCQn399dd69tlnNWTIEGuPEQAAQOt2rCu27ETWCYU1CpNfTZ7JCwAAUFk8Ggu4PRX9eMbLy+v6xQAAALeRSk2gv/LKKxo3bpz8/f1VUFCg1q1b6+rVqxo8eLAmT55s7TECAAAAgM39/lERVwuv6vLVyzpQ+0ClnoEOAABQlfHjGQAAgJJVagLd2dlZCxYsUGxsrPbt26ecnByFhISoefPm1h4fgNtQfn6+evfurYSEBLVo0cLewwFQRfx+Yku6dtvTfbX2VfoZ6ADwW79/bqhhGCpUoVwdXSv1DHQAAAAAAADceio1gS5JCxcu1Ny5c3Xo0CFJUosWLTR+/HiNHDnSaoMDcHtycnLS999/X67af//73/Lx8SmzZv78+XrttdeUnp6uDh066I033lCXLl1KrD1w4IBiY2O1e/duHT9+XHPnztX48eMtat566y299dZbOnbsmCSpTZs2io2N1QMPPGCu6dmzp7Zt22bxvr/+9a9KSEgo13YBKO73E1tSyc9AZ2ILQGX9/lER5X0GOgAAAAAAAKqPSk2gx8bGas6cOXrqqacUHh4uSUpKStKECROUmpqql156yaqDBHD7efzxx7Vw4ULNmDGjzLrHHnuszPUrV65UdHS0EhISFBYWpvj4eEVGRiolJUX169cvVn/p0iU1bdpU/fv314QJE0pss1GjRpoxY4ZatGghwzC0dOlSPfLII9q7d6/atGljrhs1apRFHrq7u5c5VgBl4xnoAKoanhsKAAAAAABQ/VRqAv2tt97SggULNGjQIPOyhx9+WO3bt9dTTz3FBDqAG3b16lUtWrRImzdvVmhoqO644w6L9XPmzClXO3PmzNGoUaM0fPhwSVJCQoLWr1+vRYsW6fnnny9W37lzZ3Xu3FmSSlwvSX/84x8t/n755Zf11ltvaceOHRYT6O7u7vL19S3XOAFYHxNbAGyN54YCqMp4NBYAAAAAVI5DZd6Un5+vTp06FVseGhqqq1ev3vCgAGD//v3q2LGjatasqf/973/au3ev+ZWcnFyuNvLy8rR7925FRESYlzk4OCgiIkJJSUlWGWdBQYFWrFihnJwc8x05iixbtkze3t5q27atYmJidOnSpTLbys3NVXZ2tsULQOUxsQUAAG5n1n40FoBbw9X8qxr7l7FK/SnV3kMBAAC4ZVXqCvQnnnhCb731VrErQN9++20NHjzYKgMDcHv74osvbriNc+fOqaCgoNiJIB8fH/3444831Pa+ffsUHh6uK1euyMPDQx9++KFat25tXv/YY4+pSZMmatCggb7//ntNmjRJKSkpWrNmTaltxsXFadq0aTc0LgAAAAAoYq1HYwG4ddRwqqFDPxwqV23Rj2cKCgpsPCoAAIBbS7kn0KOjo83/bjKZ9M477+jzzz9X165dJUk7d+5UamqqhgwZYv1RAkAV07JlSyUnJysrK0vvv/++hg4dqm3btpkn0UePHm2ubdeunfz8/HT//ffryJEjatasWYltxsTEWGRtdna2/P39bbshAAAAAKotaz0aC8Ct5YFHH9BHKz7SUy88VWZd0Y9nuAMeAACApXLfwv23t0/et2+fQkNDVa9ePR05ckRHjhyRt7e3OnbsqAMHDlR4EPPnz1dAQIBcXV0VFhamXbt2lVp74MAB9evXTwEBATKZTIqPjy9WM3XqVJlMJotXUFCQef358+f11FNPqWXLlnJzc1Pjxo3197//XVlZWRUeO4Cqy9vbW46OjsrIyLBYnpGRccPPJnd2dlbz5s0VGhqquLg4dejQQfPmzSu1PiwsTJJ0+PDhUmtcXFzk6elp8QIAAACAyrLGo7GKWPvcTdG637/GjRtXwa0E8HsFBQV6/z/v64kHntC/pvxLcS/GKTo62vwCAABA2cp9Bbo1bqdckpUrVyo6OloJCQkKCwtTfHy8IiMjlZKSovr16xerv3Tpkpo2bar+/ftrwoQJpbbbpk0bbd682fx3jRq/bmpaWprS0tI0a9YstW7dWsePH9eYMWOUlpam999/37obCMBunJ2dFRoaqsTERPXt21eSVFhYqMTEREVFRVm1r8LCQuXm5pa6vujklJ+fn1X7BQAA1nU1/6qeGvyUYmbEyKcxzwMGcGuz1rkcW5y7+eabbyxuG71//3794Q9/UP/+/a0yZuB2duTHIwpqe+1iorRjaco8lSl3J3dJ1+4sCgAAgLJV6hno1jRnzhyNGjVKw4cPlyQlJCRo/fr1WrRokZ5//vli9Z07d1bnzp0lqcT1RWrUqFHqFaZt27bVBx98YP67WbNmevnll/X444/r6tWrFpPtAG5t0dHRGjp0qDp16qQuXbooPj5eOTk55swZMmSIGjZsqLi4OElSXl6eDh48aP73U6dOKTk5WR4eHmrevLmka7daf+CBB9S4cWNduHBBy5cv19atW/XZZ59Jko4cOaLly5frwQcfVN26dfX9999rwoQJ6t69u9q3b2+HvQBUH7+d2GrctLG9hwOgGuK5oQBQnC3O3dSrV8/i7xkzZqhZs2bq0aOHlUcP3H7+/f6/zf9+MvukgryD1NK7pR1HBAAAcGsp9y3cbSEvL0+7d+9WRESEeZmDg4MiIiKUlJR0Q20fOnRIDRo0UNOmTTV48GClpqaWWZ+VlSVPT89SJ89zc3OVnZ1t8QJQ9Q0YMECzZs1SbGysgoODlZycrI0bN8rH59oVZampqTp9+rS5Pi0tTSEhIQoJCdHp06c1a9YshYSEaOTIkeaaM2fOaMiQIWrZsqXuv/9+ffPNN/rss8/0hz/8QdK1K983b96sXr16KSgoSM8884z69eunjz/++OZuPFANVWZiCwAqqui5odfz2GOPFXueMABUN7Y8d/PbPt577z09+eSTZV4dy7kZAAAAADeDXS+1PnfunAoKCoqd3Pbx8dGPP/5Y6XbDwsK0ZMkStWzZUqdPn9a0adN0zz33aP/+/apZs2aJ45g+fbpGjx5daptxcXGaNm1apccEwH6ioqJKvWX71q1bLf4OCAiQYRhltrdw4cIy1/v7+2vbtm0VGiOA8iua2HrqhafKrHvsscckiROrACqs6LmhO77cocDWgdrgs0HOjs7m9XPmzLHj6ADg5rLVuZvfWrt2rTIzMzVs2LAy6zg3AwAAAOBmsOsV6LbywAMPqH///mrfvr0iIyO1YcMGZWZmatWqVcVqs7Oz1adPH7Vu3VpTp04ttc2YmBhlZWWZXydOnLDhFgAAgNIUTWw98cATemvKW5oaM1XR0dHmFwDcqKLnhrrf4a5Tx07p++++1969e7V3714lJyfbe3gAUO0sXLhQDzzwgBo0aFBmHedmAPuYP3++AgIC5OrqqrCwMO3atavM+tWrVysoKEiurq5q166dNmzYYLF+zZo16tWrl+rWrSuTyVTi8dWVK1c0btw41a1bVx4eHurXr58yMjLM65csWSKTyVTi68yZM5KuXTRR0vr09PQb3ykAAKBas+sV6N7e3nJ0dLQ4+JGkjIyMUp9fXhm1atXSnXfeqcOHD1ssv3Dhgnr37q2aNWvqww8/lJOTU6ltuLi4yMXFxWpjAgAAlVM0sSVJacfTdDH9ovnK0LJu+QkA5VX03NDcq7nKzM1U9ybd5eHsYedRAYB92PrczfHjx7V582atWbPmurWcmwFuvpUrVyo6OloJCQkKCwtTfHy8IiMjlZKSovr16xer3759uwYNGqS4uDg99NBDWr58ufr27as9e/aobdu2kqScnBzdfffd+stf/qJRo0aV2O+ECRO0fv16rV69Wl5eXoqKitKjjz6qr7/+WtK1R/b17t3b4j3Dhg3TlStXio0rJSVFnp6e5r9LGjcAAMBv2XUC3dnZWaGhoUpMTFTfvn0lSYWFhUpMTCz1dsuVcfHiRR05ckRPPPGEeVl2drYiIyPl4uKidevWydXV1Wr9AQAA2yma2JKkE1knFNYoTH41/ew4IgAAgOrL1uduFi9erPr166tPnz433BYA65szZ45GjRql4cOHS5ISEhK0fv16LVq0SM8//3yx+nnz5ql379567rnnJEnTp0/Xpk2b9OabbyohIUGSzOdojx07VmKfWVlZWrhwoZYvX6777rtP0rWsaNWqlXbs2KGuXbvKzc1Nbm5u5vecPXtWW7ZsKfGxe/Xr11etWrUqvQ8AAMDtx+63cI+OjtaCBQu0dOlS/fDDDxo7dqxycnLMB2VDhgxRTEyMuT4vL0/JyclKTk5WXl6eTp06peTkZIury5999llt27ZNx44d0/bt2/WnP/1Jjo6OGjRokKRrk+e9evVSTk6OFi5cqOzsbKWnpys9PV0FBQU3dwcAAAAAAABUYbY4dyNdm4hfvHixhg4dqho17HqNB4AS5OXlaffu3YqIiDAvc3BwUEREhJKSkkp8T1JSkkW9JEVGRpZaX5Ldu3crPz/fop2goCA1bty41Hb+85//yN3dXX/+85+LrQsODpafn5/+8Ic/mK9gL01ubq6ys7MtXgAA4PZj928nAwYM0NmzZxUbG6v09HQFBwdr48aN8vHxkSSlpqbKweHXef60tDSFhISY/541a5ZmzZqlHj16aOvWrZKkkydPatCgQfr5559Vr1493X333dqxY4fq1asnSdqzZ4927twpSWrevLnFeI4ePaqAgAAbbjEAAAAAAMCtwxbnbiRp8+bNSk1N1ZNPPnnTtgVA+Z07d04FBQXmz3oRHx8f/fjjjyW+Jz09vcT6ijx3PD09Xc7OzsWuGi+rnYULF+qxxx6zuCrdz89PCQkJ6tSpk3Jzc/XOO++oZ8+e2rlzpzp27FhiO3FxcZo2bVq5xwoAAKonu0+gS1JUVFSpt/367RcrSQoICJBhGGW2t2LFijLX9+zZ87ptAAAAAAAA4Bprn7uRpF69enF+BsANS0pK0g8//KB3333XYnnLli3VsmVL89/dunXTkSNHNHfu3GK1RWJiYhQdHW3+Ozs7W/7+/rYZOAAAqLKqxAQ6AAAAAAAAAKDq8Pb2lqOjozIyMiyWZ2RkyNfXt8T3+Pr6Vqi+tDby8vKUmZlpcRV6ae288847Cg4OVmho6HXb7tKli7766qtS17u4uMjFxaXcYwUAANWT3Z+BDgAAAAAAAACoWpydnRUaGqrExETzssLCQiUmJio8PLzE94SHh1vUS9KmTZtKrS9JaGionJycLNpJSUlRampqsXYuXryoVatWacSIEeVqOzk5WX5+fuUeCwAAuD1xBToAAAAAAAAAoJjo6GgNHTpUnTp1UpcuXRQfH6+cnBwNHz5ckjRkyBA1bNhQcXFxkqSnn35aPXr00OzZs9WnTx+tWLFC3377rd5++21zm+fPn1dqaqrS0tIkXZscl65dee7r6ysvLy+NGDFC0dHRqlOnjjw9PfXUU08pPDxcXbt2tRjfypUrdfXqVT3++OPFxh4fH6/AwEC1adNGV65c0TvvvKMtW7bo888/t8m+AgAA1QdXoAMAgNva/PnzFRAQIFdXV4WFhWnXrl1l1q9evVpBQUFydXVVu3bttGHDBov1hmEoNjZWfn5+cnNzU0REhA4dOlRiW7m5uQoODpbJZFJycrJ5eUpKiu699175+PjI1dVVTZs21eTJk5Wfn1+hsQCwP3tkzMsvv6xu3brJ3d3d4ranRX7++Wf17t1bDRo0kIuLi/z9/RUVFaXs7GyLuq1bt6pjx45ycXFR8+bNtWTJkkrtAwAAcOsaMGCAZs2apdjYWAUHBys5OVkbN26Uj4+PJCk1NVWnT58213fr1k3Lly/X22+/rQ4dOuj999/X2rVr1bZtW3PNunXrFBISoj59+kiSBg4cqJCQECUkJJhr5s6dq4ceekj9+vVT9+7d5evrqzVr1hQb38KFC/Xoo4+WeMyTl5enZ555Ru3atVOPHj303XffafPmzbr//vuttXsAAEA1xQQ6AAC4ba1cuVLR0dGaMmWK9uzZow4dOigyMlJnzpwpsX779u0aNGiQRowYob1796pv377q27ev9u/fb66ZOXOmXn/9dSUkJGjnzp264447FBkZqStXrhRrb+LEiWrQoEGx5U5OThoyZIg+//xzpaSkKD4+XgsWLNCUKVMqNBYA9mWvjMnLy1P//v01duzYEvtxcHDQI488onXr1ul///uflixZos2bN2vMmDHmmqNHj6pPnz669957lZycrPHjx2vkyJH67LPPrLR3AADArSIqKkrHjx9Xbm6udu7cqbCwMPO6rVu3FvuRXf/+/ZWSkqLc3Fzt379fDz74oMX6YcOGyTCMYq+pU6eaa1xdXTV//nydP39eOTk5WrNmTYnPP9++fbuWLVtW4rgnTpyow4cP6/Lly/r555/1xRdf6N577638jgAAALcNJtABAMBta86cORo1apSGDx+u1q1bKyEhQe7u7lq0aFGJ9fPmzVPv3r313HPPqVWrVpo+fbo6duyoN998U9K1K0Pj4+M1efJkPfLII2rfvr3+85//KC0tTWvXrrVo69NPP9Xnn3+uWbNmFeunadOmGj58uDp06KAmTZro4Ycf1uDBg/Xf//633GMBYH/2yphp06ZpwoQJateuXYn91K5dW2PHjlWnTp3UpEkT3X///frb3/5mkTEJCQkKDAzU7Nmz1apVK0VFRenPf/6z5s6da70dBAAAAAAAUAUxgQ4AAG5LeXl52r17tyIiIszLHBwcFBERoaSkpBLfk5SUZFEvSZGRkeb6o0ePKj093aLGy8tLYWFhFm1mZGRo1KhRevfdd+Xu7n7dsR4+fFgbN25Ujx49yj2W38vNzVV2drbFC4Dt2DNjKiotLU1r1qy5oYyRyBkAAAAAAFA9MIEOAABuS+fOnVNBQYH52X1FfHx8lJ6eXuJ70tPTy6wv+mdZNYZhaNiwYRozZow6depU5hi7desmV1dXtWjRQvfcc49eeumlco/l9+Li4uTl5WV++fv7l9k3gBtjr4ypiEGDBsnd3V0NGzaUp6en3nnnneuOJTs7W5cvXy6xPXIGAAAAAABUB0ygAwAA3ERvvPGGLly4oJiYmOvWrly5Unv27NHy5cu1fv36Em/3Xl4xMTHKysoyv06cOFHptgBUD3PnztWePXv00Ucf6ciRI4qOjr6h9sgZAAAAAABQHdSw9wAAAADswdvbW46OjsrIyLBYnpGRIV9f3xLf4+vrW2Z90T8zMjLk5+dnURMcHCxJ2rJli5KSkuTi4mLRTqdOnTR48GAtXbrUvKzo6s3WrVuroKBAo0eP1jPPPCNHR8frjuX3XFxcivUJwHbslTEV4evrK19fXwUFBalOnTq655579OKLL8rPz6/UsXh6esrNza3E9sgZAAAAAABQHXAFOgAAuC05OzsrNDRUiYmJ5mWFhYVKTExUeHh4ie8JDw+3qJekTZs2mesDAwPl6+trUZOdna2dO3eaa15//XV99913Sk5OVnJysjZs2CDp2tXmL7/8cqnjLSwsVH5+vgoLC8s1FgD2Za+MqayibMnNzS3XWAAAAAAAAKorrkAHAAC3rejoaA0dOlSdOnVSly5dFB8fr5ycHA0fPlySNGTIEDVs2FBxcXGSpKefflo9evTQ7Nmz1adPH61YsULffvut3n77bUmSyWTS+PHj9c9//lMtWrRQYGCgXnzxRTVo0EB9+/aVJDVu3NhiDB4eHpKkZs2aqVGjRpKkZcuWycnJSe3atZOLi4u+/fZbxcTEaMCAAXJycirXWADYnz0yRpJSU1N1/vx5paamqqCgQMnJyZKk5s2by8PDQxs2bFBGRoY6d+4sDw8PHThwQM8995zuuusuBQQESJLGjBmjN998UxMnTtSTTz6pLVu2aNWqVVq/fv1N238AAAAAAAD2wBXoAKq9+fPnKyAgQK6urgoLC9OuXbtKrT1w4ID69eungIAAmUwmxcfHF6t566231L59e3l6esrT01Ph4eH69NNPLWquXLmicePGqW7duvLw8FC/fv2K3QYVgP0NGDBAs2bNUmxsrIKDg5WcnKyNGzfKx8dH0rVJqNOnT5vru3XrpuXLl+vtt99Whw4d9P7772vt2rVq27atuWbixIl66qmnNHr0aHXu3FkXL17Uxo0b5erqWu5x1ahRQ6+++qq6dOmi9u3ba9q0aYqKitI777xTobEAsC97ZUxsbKxCQkI0ZcoUXbx4USEhIQoJCdG3334rSXJzc9OCBQt09913q1WrVpowYYIefvhhffLJJ+Y2AgMDtX79em3atEkdOnTQ7Nmz9c477ygyMtLWuw0AAAAAAMCuTIZhGPYexK0oOztbXl5eysrKkqenZ6l1R84f0b6MffL38r+JowOqhlPZp3Sn950K8g4qtaa8n6XKWrlypYYMGaKEhASFhYUpPj5eq1evVkpKiurXr1+s/ptvvtGqVasUGhqqCRMmaNKkSRo/frxFzccffyxHR0e1aNFChmFo6dKleu2117R37161adNGkjR27FitX79eS5YskZeXl6KiouTg4KCvv/663GMv7775OvVr5eTlqK573XK3DVQXJ7JOKKxRmPxq+pVaY+ucuVWVd79cyr+kL49/qZrONeVao/w/AgCqg9yrucrMzVT3Jt3l4exRah05U7Ly7peMixlKOpHEdybcln65/IucHJ3UI6BHqTVkTOnKu28O/XxIB88eVCPPRjdxdEDVcDL7pIK8g9TSu2WpNeRM6cq7b/57/L+6cvWK6rjVuYmjA6qGE9kn1LVRV/l6+JZaQ84AuNVwBTqAam3OnDkaNWqUhg8frtatWyshIUHu7u5atGhRifWdO3fWa6+9poEDB8rFxaXEmj/+8Y968MEH1aJFC9155516+eWX5eHhoR07dkiSsrKytHDhQs2ZM0f33XefQkNDtXjxYm3fvt1cAwAAAAAAAAAAgKqHCXQA1VZeXp52796tiIgI8zIHBwdFREQoKSnJKn0UFBRoxYoVysnJUXh4uCRp9+7dys/Pt+g3KChIjRs3LrPf3NxcZWdnW7wAAAAAAAAAAABw8zCBDqDaOnfunAoKCszPGS3i4+Oj9PT0G2p737598vDwkIuLi8aMGaMPP/xQrVu3liSlp6fL2dlZtWrVqlC/cXFx8vLyMr/8/bmNKQAAAAAAAAAAwM3EBDoAVELLli2VnJysnTt3auzYsRo6dKgOHjx4Q23GxMQoKyvL/Dpx4oSVRgsAAAAAAAAAAIDyqGHvAQCArXh7e8vR0VEZGRkWyzMyMuTr63tDbTs7O6t58+aSpNDQUH3zzTeaN2+e/v3vf8vX11d5eXnKzMy0uAr9ev26uLiU+tx1AAAAAAAAAAAA2B5XoAOotpydnRUaGqrExETzssLCQiUmJpqfV24thYWFys3NlXRtQt3Jycmi35SUFKWmplq9XwAAAAAAAAAAAFgPE+gAqrXo6GgtWLBAS5cu1Q8//KCxY8cqJydHw4cPlyQNGTJEMTEx5vq8vDwlJycrOTlZeXl5OnXqlJKTk3X48GFzTUxMjL788ksdO3ZM+/btU0xMjLZu3arBgwdLkry8vDRixAhFR0friy++0O7duzV8+HCFh4era9euN3cHAAAAAAAA3ID58+crICBArq6uCgsL065du8qsX716tYKCguTq6qp27dppw4YNFuvXrFmjXr16qW7dujKZTEpOTi7WxpUrVzRu3DjVrVtXHh4e6tevX7E7DJpMpmKvFStWWNRs3bpVHTt2lIuLi5o3b64lS5ZUah8AAIDbCxPoAKq1AQMGaNasWYqNjVVwcLCSk5O1ceNG+fj4SJJSU1N1+vRpc31aWppCQkIUEhKi06dPa9asWQoJCdHIkSPNNWfOnNGQIUPUsmVL3X///frmm2/02Wef6Q9/+IO5Zu7cuXrooYfUr18/de/eXb6+vlqzZs3N23AAAAAAAIAbtHLlSkVHR2vKlCnas2ePOnTooMjISJ05c6bE+u3bt2vQoEEaMWKE9u7dq759+6pv377av3+/uSYnJ0d33323Xn311VL7nTBhgj7++GOtXr1a27ZtU1pamh599NFidYsXL9bp06fNr759+5rXHT16VH369NG9996r5ORkjR8/XiNHjtRnn31W+R0CAABuCzwDHUC1FxUVpaioqBLXbd261eLvgIAAGYZRZnsLFy68bp+urq6aP3++5s+fX+5xAgAAAAAAVCVz5szRqFGjzHfyS0hI0Pr167Vo0SI9//zzxernzZun3r1767nnnpMkTZ8+XZs2bdKbb76phIQESdITTzwhSTp27FiJfWZlZWnhwoVavny57rvvPknXJspbtWqlHTt2WNzdr1atWvL19S2xnYSEBAUGBmr27NmSpFatWumrr77S3LlzFRkZWYm9AQAAbhdcgQ4AAAAAAAAAsJCXl6fdu3crIiLCvMzBwUERERFKSkoq8T1JSUkW9ZIUGRlZan1Jdu/erfz8fIt2goKC1Lhx42LtjBs3Tt7e3urSpYsWLVpkcVFEZcaSm5ur7OxsixcAALj9cAU6AAAAAAAAAMDCuXPnVFBQYH4MXhEfHx/9+OOPJb4nPT29xPr09PRy95ueni5nZ2fVqlWrzHZeeukl3XfffXJ3d9fnn3+uv/3tb7p48aL+/ve/lzmW7OxsXb58WW5ubsX6jouL07Rp08o9VgAAUD0xgQ4AAAAAAAAAuKW8+OKL5n8PCQlRTk6OXnvtNfMEemXExMQoOjra/Hd2drb8/f1vaJwAAODWwy3cAQAAAAAAAAAWvL295ejoqIyMDIvlGRkZpT533NfXt0L1pbWRl5enzMzMCrUTFhamkydPKjc3t8yxeHp6lnj1uSS5uLjI09PT4gUAAG4/TKADAAAAAAAAACw4OzsrNDRUiYmJ5mWFhYVKTExUeHh4ie8JDw+3qJekTZs2lVpfktDQUDk5OVm0k5KSotTU1DLbSU5OVu3ateXi4mK1sQAAgNsTt3AHAAAAAAAAABQTHR2toUOHqlOnTurSpYvi4+OVk5Oj4cOHS5KGDBmihg0bKi4uTpL09NNPq0ePHpo9e7b69OmjFStW6Ntvv9Xbb79tbvP8+fNKTU1VWlqapGuT49K1K8Z9fX3l5eWlESNGKDo6WnXq1JGnp6eeeuophYeHq2vXrpKkjz/+WBkZGeratatcXV21adMmvfLKK3r22WfN/YwZM0ZvvvmmJk6cqCeffFJbtmzRqlWrtH79+puy7wAAwK2LCXQAAAAAAAAAQDEDBgzQ2bNnFRsbq/T0dAUHB2vjxo3y8fGRJKWmpsrB4debnHbr1k3Lly/X5MmT9cILL6hFixZau3at2rZta65Zt26deQJekgYOHChJmjJliqZOnSpJmjt3rhwcHNSvXz/l5uYqMjJS//rXv8zvcXJy0vz58zVhwgQZhqHmzZtrzpw5GjVqlLkmMDBQ69ev14QJEzRv3jw1atRI77zzjiIjI22yrwAAQPVh91u4z58/XwEBAXJ1dVVYWJh27dpVau2BAwfUr18/BQQEyGQyKT4+vljN1KlTZTKZLF5BQUEWNW+//bZ69uwpT09PmUymYs/TAQAAAAAAwK+sff5Gkk6dOqXHH39cdevWlZubm9q1a6dvv/3WRlsAoLKioqJ0/Phx5ebmaufOnQoLCzOv27p1q5YsWWJR379/f6WkpCg3N1f79+/Xgw8+aLF+2LBhMgyj2Kto8lySXF1dNX/+fJ0/f145OTlas2aNxfPPe/furb179+rChQu6ePGikpOT9de//tViMl+Sevbsqb179yo3N1dHjhzRsGHDrLZfAABA9WXXCfSVK1cqOjpaU6ZM0Z49e9ShQwdFRkbqzJkzJdZfunRJTZs21YwZMywOmH6vTZs2On36tPn11VdfFWund+/eeuGFF6y6PQAAAAAAANWNLc7f/PLLL7rrrrvk5OSkTz/9VAcPHtTs2bNVu3ZtW24KAAAAAFyXXW/hXnRbnaJb9iQkJGj9+vVatGiRnn/++WL1nTt3VufOnSWpxPVFatSoUeYE+/jx4yVd+4UkAAAAAAAASmeL8zevvvqq/P39tXjxYvOywMBAG4weAAAAACrGbleg5+Xlaffu3YqIiPh1MA4OioiIUFJS0g21fejQITVo0EBNmzbV4MGDlZqaeqPDVW5urrKzsy1eAAAAAAAA1Zmtzt+sW7dOnTp1Uv/+/VW/fn2FhIRowYIFZb6HczMAAAAAbga7TaCfO3dOBQUF8vHxsVju4+Oj9PT0SrcbFhamJUuWaOPGjXrrrbd09OhR3XPPPbpw4cINjTcuLk5eXl7ml7+//w21BwAAAAAAUNXZ6vzNTz/9pLfeekstWrTQZ599prFjx+rvf/+7li5dWup7ODcDAAAA4Gaw6zPQbeGBBx5Q//791b59e0VGRmrDhg3KzMzUqlWrbqjdmJgYZWVlmV8nTpyw0ogBAAAAAABuL4WFherYsaNeeeUVhYSEaPTo0Ro1apQSEhJKfQ/nZgAAAADcDHZ7Brq3t7ccHR2VkZFhsTwjI6PM55dXVK1atXTnnXfq8OHDN9SOi4uLXFxcrDQqAAAAAACAqs9W52/8/PzUunVri2WtWrXSBx98UOp7ODcDAAAA4Gaw2xXozs7OCg0NVWJionlZYWGhEhMTFR4ebrV+Ll68qCNHjsjPz89qbQIAgOpj/vz5CggIkKurq8LCwrRr164y61evXq2goCC5urqqXbt22rBhg8V6wzAUGxsrPz8/ubm5KSIiQocOHSqxrdzcXAUHB8tkMik5Odm8fOvWrXrkkUfk5+enO+64Q8HBwVq2bJnFe5csWSKTyWTxcnV1rdxOAGAz9siYl19+Wd26dZO7u7tq1apVrI/vvvtOgwYNkr+/v9zc3NSqVSvNmzfPombr1q3FMsZkMt3Q7ZoB3Jpsdf7mrrvuUkpKisWy//3vf2rSpEml2wQAAAAAa7DrLdyjo6O1YMECLV26VD/88IPGjh2rnJwcDR8+XJI0ZMgQxcTEmOvz8vKUnJys5ORk5eXl6dSpU0pOTra4uvzZZ5/Vtm3bdOzYMW3fvl1/+tOf5OjoqEGDBplr0tPTLd63b98+JScn6/z58zdpywEAQFWwcuVKRUdHa8qUKdqzZ486dOigyMhInTlzpsT67du3a9CgQRoxYoT27t2rvn37qm/fvtq/f7+5ZubMmXr99deVkJCgnTt36o477lBkZKSuXLlSrL2JEyeqQYMGJfbTvn17ffDBB/r+++81fPhwDRkyRJ988olFnaenp06fPm1+HT9+/Ab3CABrslfG5OXlqX///ho7dmyJ/ezevVv169fXe++9pwMHDugf//iHYmJi9OabbxarTUlJsciZ+vXr3+BeAXArssX5mwkTJmjHjh165ZVXdPjwYS1fvlxvv/22xo0bd9O3DwAAAAB+y263cJekAQMG6OzZs4qNjVV6erqCg4O1ceNG+fj4SJJSU1Pl4PDrHH9aWppCQkLMf8+aNUuzZs1Sjx49tHXrVknSyZMnNWjQIP3888+qV6+e7r77bu3YsUP16tUzvy8hIUHTpk0z/929e3dJ0uLFizVs2DAbbjEAAKhK5syZo1GjRplP/iYkJGj9+vVatGiRnn/++WL18+bNU+/evfXcc89JkqZPn65NmzbpzTffVEJCggzDUHx8vCZPnqxHHnlEkvSf//xHPj4+Wrt2rQYOHGhu69NPP9Xnn3+uDz74QJ9++qlFPy+88ILF308//bQ+//xzrVmzRg899JB5uclksuqjbwBYl70ypui7zpIlS0oc15NPPmnxd9OmTZWUlKQ1a9YoKirKYl39+vVLvIodwO3FFudvOnfurA8//FAxMTF66aWXFBgYqPj4eA0ePPimbhsAAAAA/J5dJ9AlKSoqqthJmiJFX6qKBAQEyDCMMttbsWLFdfucOnWqpk6dWt4hAgCAaigvL0+7d++2uFrKwcFBERERSkpKKvE9SUlJio6OtlgWGRmptWvXSpKOHj2q9PR0RUREmNd7eXkpLCxMSUlJ5smtjIwMjRo1SmvXrpW7u3u5xpuVlaVWrVpZLLt48aKaNGmiwsJCdezYUa+88oratGlT4vtzc3OVm5tr/js7O7tc/QKoHHtmTGVkZWWpTp06xZYHBwcrNzdXbdu21dSpU3XXXXeV2gY5A1Rv1j5/I0kPPfSQxY8DAQAAAKAqsOst3AEAAOzl3LlzKigoMF85VcTHx6fUZ/ymp6eXWV/0z7JqDMPQsGHDNGbMGHXq1KlcY121apW++eYb81WsktSyZUstWrRIH330kd577z0VFhaqW7duOnnyZIltxMXFycvLy/zy9/cvV98AKsdeGVMZ27dv18qVKzV69GjzMj8/PyUkJOiDDz7QBx98IH9/f/Xs2VN79uwptR1yBgAAAAAAVAdMoAOo9ubPn6+AgAC5uroqLCxMu3btKrX2wIED6tevnwICAmQymRQfH1+sJi4uTp07d1bNmjVVv3599e3bVykpKRY1PXv2lMlksniNGTPG2psG4Bb0xhtv6MKFCxZXpZbliy++0PDhw7VgwQKLq8vDw8M1ZMgQBQcHq0ePHlqzZo3q1aunf//73yW2ExMTo6ysLPPrxIkTVtkeALe2/fv365FHHtGUKVPUq1cv8/KWLVvqr3/9q0JDQ9WtWzctWrRI3bp109y5c0tti5wBAAAAAADVARPoAKq1lStXKjo6WlOmTNGePXvUoUMHRUZG6syZMyXWX7p0SU2bNtWMGTNKfa7wtm3bNG7cOO3YsUObNm1Sfn6+evXqpZycHIu6UaNG6fTp0+bXzJkzrb59ACrP29tbjo6OysjIsFiekZFR6uff19e3zPqif5ZVs2XLFiUlJcnFxUU1atRQ8+bNJUmdOnXS0KFDLd63bds2/fGPf9TcuXM1ZMiQMrfHyclJISEhOnz4cInrXVxc5OnpafECYDv2ypiKOHjwoO6//36NHj1akydPvm59ly5dSs0YiZwBAAAAAADVAxPoAKq1OXPmaNSoURo+fLhat26thIQEubu7a9GiRSXWd+7cWa+99poGDhwoFxeXEms2btyoYcOGqU2bNurQoYOWLFmi1NRU7d6926LO3d1dvr6+5hcnkYGqxdnZWaGhoUpMTDQvKywsVGJiosLDw0t8T3h4uEW9JG3atMlcHxgYKF9fX4ua7Oxs7dy501zz+uuv67vvvlNycrKSk5O1YcMGSdd+8PPyyy+b37d161b16dNHr776qsVtlUtTUFCgffv2yc/Pr5x7AIAt2StjyuvAgQO69957NXToUIvsKUtycjIZAwAAAAAAqj0m0AFUW3l5edq9e7ciIiLMyxwcHBQREaGkpCSr9ZOVlSVJqlOnjsXyZcuWydvbW23btlVMTIwuXbpUZju5ubnKzs62eAGwrejoaC1YsEBLly7VDz/8oLFjxyonJ8f8rPEhQ4ZY3Gr96aef1saNGzV79mz9+OOPmjp1qr799ltFRUVJkkwmk8aPH69//vOfWrdunfbt26chQ4aoQYMG6tu3rySpcePGatu2rfl15513SpKaNWumRo0aSbp22/Y+ffro73//u/r166f09HSlp6fr/Pnz5rG89NJL+vzzz/XTTz9pz549evzxx3X8+HGNHDnyZuw6AOVgj4yRpNTUVCUnJys1NVUFBQXmH+xcvHhR0rXbtt97773q1auXoqOjzRlz9uxZcxvx8fH66KOPdPjwYe3fv1/jx4/Xli1bNG7cuJuw5wAAQFVSkUfjSdLq1asVFBQkV1dXtWvXzvyj4SJr1qxRr169VLduXZlMJiUnJxdr48qVKxo3bpzq1q0rDw8P9evXz+IuPN99950GDRokf39/ubm5qVWrVpo3b55FG1u3bi32eD2TyaT09PTK7wwAAHBbqGHvAQCArZw7d04FBQXy8fGxWO7j46Mff/zRKn0UFhZq/Pjxuuuuu9S2bVvz8scee0xNmjRRgwYN9P3332vSpElKSUnRmjVrSm0rLi5O06ZNs8q4AJTPgAEDdPbsWcXGxio9PV3BwcHauHGjOTdSU1Pl4PDr7w27deum5cuXa/LkyXrhhRfUokULrV271uLzP3HiROXk5Gj06NHKzMzU3XffrY0bN8rV1bXc41q6dKkuXbqkuLg4xcXFmZf36NFDW7dulST98ssvGjVqlNLT01W7dm2FhoZq+/btat269Q3uFQDWYq+MiY2N1dKlS81/h4SESLr245yePXvq/fff19mzZ/Xee+/pvffeM9c1adJEx44dk3Tth4jPPPOMTp06JXd3d7Vv316bN2/Wvffea5N9BQAAqqaiR+MlJCQoLCxM8fHxioyMVEpKiurXr1+sfvv27Ro0aJDi4uL00EMPafny5erbt6/27NljPqbJycnR3Xffrb/85S8aNWpUif1OmDBB69ev1+rVq+Xl5aWoqCg9+uij+vrrryVJu3fvVv369fXee+/J399f27dv1+jRo+Xo6Gj+8WGRlJQUi7sCljRuAACA3zIZhmHYexC3ouzsbHl5eSkrK6vM2zIfOX9E+zL2yd/L/yaODqgaTmWf0p3edyrIO6jUmvJ+liojLS1NDRs21Pbt2y1uazpx4kRt27ZNO3fuLPP9AQEBGj9+vMaPH19qzdixY/Xpp5/qq6++Ml85WpItW7bo/vvv1+HDh9WsWbMSa3Jzc5Wbm2v+Ozs7W/7+/tfdN1+nfq2cvBzVda9b5vYA1dGJrBMKaxQmv5ql31LYljlzKyvvfrmUf0lfHv9SNZ1ryrVG+X8EAFQHuVdzlZmbqe5NusvD2aPUOnKmZOXdLxkXM5R0IonvTLgt/XL5Fzk5OqlHQI9Sa8iY0pV33xz6+ZAOnj2oRp6lf2cDqquT2ScV5B2klt4tS60p67MUFhamzp07680335R07UICf39/PfXUU3r++eeLtTVgwADl5OTok08+MS/r2rWrgoODlZCQYFF77NgxBQYGau/evQoODjYvz8rKUr169bR8+XL9+c9/liT9+OOPatWqlZKSktS1a9cSt2PcuHH64YcftGXLFknXrkC/99579csvv6hWrVql76QylDdn/nv8v7py9YrquNUptQaork5kn1DXRl3l6+Fbag3HMwBuNdzCHUC15e3tLUdHR4tbfElSRkaGfH1LP6Arr6ioKH3yySf64osvypw8l6594ZSkw4cPl1rj4uIiT09PixcAAAAAAIA9VObReElJSRb1khQZGVmhR+nt3r1b+fn5Fu0EBQWpcePGZbaTlZVV7PF6khQcHCw/Pz/94Q9/MF/BXhoerwcAACQm0AFUY87OzgoNDVViYqJ5WWFhoRITEy2uSK8owzAUFRWlDz/8UFu2bFFgYOB131P0PC8/v9KvkgUAAAAAAKgqyno0XmnPEU9PT69QfWltODs7F7tqvKx2tm/frpUrV2r06NHmZX5+fkpISNAHH3ygDz74QP7+/urZs6f27NlTat9xcXHy8vIyv/z9uUMOAAC3I56BDqBai46O1tChQ9WpUyd16dJF8fHxysnJ0fDhwyVJQ4YMUcOGDc3PGM7Ly9PBgwfN/37q1CklJyfLw8NDzZs3l3TtlmDLly/XRx99pJo1a5q/vHl5ecnNzU1HjhzR8uXL9eCDD6pu3br6/vvvNWHCBHXv3l3t27e3w14AAAAAAAConvbv369HHnlEU6ZMUa9evczLW7ZsqZYtf711fbdu3XTkyBHNnTtX7777boltxcTEKDo62vx30eP1AADA7YUJdADV2oABA3T27FnFxsYqPT1dwcHB2rhxo/nX0KmpqXJw+PVmHGlpaQoJCTH/PWvWLM2aNUs9evTQ1q1bJUlvvfWWJKlnz54WfS1evFjDhg2Ts7OzNm/ebJ6s9/f3V79+/TR58mTbbiwAAAAAAICVVObReL6+vjf8KD1fX1/l5eUpMzPT4ir0kto5ePCg7r//fo0ePbpc5126dOmir776qtT1Li4ucnFxKfdYAQBA9cQEOoBqLyoqSlFRUSWuK5oULxIQECDDMMps73rr/f39tW3btgqNEQAAAAAAoCr57aPx+vbtK+nXR+OVdp4lPDxciYmJGj9+vHnZpk2bKvQovdDQUDk5OSkxMVH9+vWTJKWkpCg1NdWinQMHDui+++7T0KFD9fLLL5er7eTkZB6vBwAArosJdAAAAAAAAABAMRV9NN7TTz+tHj16aPbs2erTp49WrFihb7/9Vm+//ba5zfPnzys1NVVpaWmSrk2OS9euPPf19ZWXl5dGjBih6Oho1alTR56ennrqqacUHh6url27Srp22/b77rtPkZGRio6ONj9ez9HRUfXq1ZMkxcfHKzAwUG3atNGVK1f0zjvvaMuWLfr8889vzs4DAAC3LCbQAQAAAAAAAADFVPTReN26ddPy5cs1efJkvfDCC2rRooXWrl2rtm3bmmvWrVtnnoCXpIEDB0qSpkyZoqlTp0qS5s6dKwcHB/Xr10+5ubmKjIzUv/71L/N73n//fZ09e1bvvfee3nvvPfPyJk2a6NixY5KkvLw8PfPMMzp16pTc3d3Vvn17bd68Wffee6/V9xMAAKhemEAHAAAAAAAAAJSoIo/Gk6T+/furf//+pbY3bNgwDRs2rMw+XV1dNX/+fM2fP7/E9VOnTjVPtpdm4sSJmjhxYpk1AAAAJXG4fgkAAAAAAAAAAAAAANUfE+gAAAAAAAAAAAAAAIgJdAAAAAAAAAAAAAAAJDGBDgAAAAAAAAAAAACAJCbQAQAAAAAAAAAAAACQxAQ6AAAAAAAAAAAAAACSmEAHAAAAAAAAAAAAAEASE+gAAAAAAAAAAAAAAEhiAh0AAAAAAAAAAAAAAElMoAMAAAAAAAAAAAAAIIkJdAAAAAAAAAAAAAAAJDGBDgAAAAAAAAAAAACAJCbQAQAAAAAAAAAAAACQxAQ6AAAAAAAAAAAAAACSmEAHAAAAAAAAAAAAAEBSFZlAnz9/vgICAuTq6qqwsDDt2rWr1NoDBw6oX79+CggIkMlkUnx8fLGaqVOnymQyWbyCgoIsaq5cuaJx48apbt268vDwUL9+/ZSRkWHtTQNQBVg7Y+Li4tS5c2fVrFlT9evXV9++fZWSkmJRQ8YAt46KZIQkrV69WkFBQXJ1dVW7du20YcMGi/WGYSg2NlZ+fn5yc3NTRESEDh06VGJbubm5Cg4OlslkUnJysnn51q1b9cgjj8jPz0933HGHgoODtWzZsgqPBYD92SNjXn75ZXXr1k3u7u6qVatWsT6+++47DRo0SP7+/nJzc1OrVq00b968YnVbt25Vx44d5eLioubNm2vJkiUV3n4A1Yc9zt0AqBqsfTyzZs0a9erVS3Xr1i32XahIec6rpKamqk+fPnJ3d1f9+vX13HPP6erVqxY1HM8AAIDKsPsE+sqVKxUdHa0pU6Zoz5496tChgyIjI3XmzJkS6y9duqSmTZtqxowZ8vX1LbXdNm3a6PTp0+bXV199ZbF+woQJ+vjjj7V69Wpt27ZNaWlpevTRR626bQDszxYZs23bNo0bN047duzQpk2blJ+fr169eiknJ8dcQ8YAt4aKZsT27ds1aNAgjRgxQnv37lXfvn3Vt29f7d+/31wzc+ZMvf7660pISNDOnTt1xx13KDIyUleuXCnW3sSJE9WgQYMS+2nfvr0++OADff/99xo+fLiGDBmiTz75pEJjAWBf9sqYvLw89e/fX2PHji2xn927d6t+/fp67733dODAAf3jH/9QTEyM3nzzTXPN0aNH1adPH917771KTk7W+PHjNXLkSH322WdW2jsAbiX2OncDwP5scTyTk5Oju+++W6+++mqp/V7vvEpBQYH69OmjvLw8bd++XUuXLtWSJUsUGxtrruF4BgAAVJbJMAzDngMICwtT586dzSdrCgsL5e/vr6eeekrPP/98me8NCAjQ+PHjNX78eIvlU6dO1dq1a0v89aIkZWVlqV69elq+fLn+/Oc/S5J+/PFHtWrVSklJSeratet1x52dnS0vLy9lZWXJ09Oz1Loj549oX8Y++Xv5X7dNoLo5lX1Kd3rfqSDv0q8iKO9nqbJskTG/d/bsWdWvX1/btm1T9+7drZIxUvn3zdepXysnL0d13euWq12gOjmRdUJhjcLkV9Ov1JqyPksVzYgBAwYoJyfHYiK7a9euCg4OVkJCggzDUIMGDfTMM8/o2WeflXTtuMPHx0dLlizRwIEDze/79NNPFR0drQ8++EBt2rTR3r17FRwcXOp29OnTRz4+Plq0aFG5xnI95c2YS/mX9OXxL1XTuaZca7het12gOsm9mqvM3Ex1b9JdHs4epdaV9nmyZ8ZI0pIlSzR+/HhlZmZed1vHjRunH374QVu2bJEkTZo0SevXr7c42T1w4EBlZmZq48aN122vrP3yexkXM5R0IonvTLgt/XL5Fzk5OqlHQI9Sa2z9nak87HHupjzKu28O/XxIB88eVCPPRpXuC7hVncw+qSDvILX0bllqzc38zvRbx44dU2BgYLHvQuU5r/Lpp5/qoYceUlpamnx8fCRJCQkJmjRpks6ePStnZ+ebejzz3+P/1ZWrV1THrU652gWqkxPZJ9S1UVf5epT+o7mqcDwDABVRw56d5+Xlaffu3YqJiTEvc3BwUEREhJKSkm6o7UOHDqlBgwZydXVVeHi44uLi1LhxY0nXrrjIz89XRESEuT4oKEiNGzcudXIrNzdXubm55r+zs7PLPZaLeRd1/vL5G9ga4NaUnVv+z4kt2DJjfisrK0uSVKfOtS9JlckYqfI5U2gU6pcrv8hkMlV2E4Bb1tXCq9cvKkVlMiIpKUnR0dEWyyIjI7V27VpJ165wSE9Pt/j8e3l5KSwsTElJSebJrYyMDI0aNUpr166Vu7t7ucablZWlVq1alXssv3cjxzKSdP7yeSbQcdvJK8ir9P+/2jNjKiMrK8t8LFM0lt/2UzSWsn5YeCM5U2AU8J0Jt6VfLv8iHw8few+jTPY6d1OSG8mZC7kXyBncli7kXqj0e21xPFMe5TmvkpSUpHbt2pknz4v6GTt2rA4cOKCQkJCbejxTqEIyBretgsICew8BAKzOrhPo586dU0FBgcWBjiT5+Pjoxx9/rHS7YWFhWrJkiVq2bKnTp09r2rRpuueee7R//37VrFlT6enpcnZ2LvY8QB8fH6Wnp5fYZlxcnKZNm1bhsbjWcFXjWo3lYP+75QM3XeNajeVeo3wTQ7Zgq4z5rcLCQo0fP1533XWX2rZtK0mVyhip8jlT162uDBnkDG5L7jXdKz2pW5mMSE9PL7G+6LNd9M+yagzD0LBhwzRmzBh16tRJx44du+5YV61apW+++Ub//ve/yz2W36tsxjg5OMnbzVuXrl4iZ3Dbca3hKtcarnJycKrwe+2VMZWxfft2rVy5UuvXr7/uWLKzs3X58mW5ubkVa6eyOeNSw0W+NX1lFNr15miAXbjUdFFt19r2HkaZ7HXupiSVzRl3J3fOzeC21bhWY93hfEel3muL45nyKM95ldL6KVpXVo0tjme83bxlkomcwW3J3bny52YAoKqy6wS6rTzwwAPmf2/fvr3CwsLUpEkTrVq1SiNGjKhUmzExMRa/nszOzpa///VvMdjQs6EaejasVJ8Aqr5x48Zp//79VnlWX2VzpnX91jfcN4Cb54033tCFCxcsruIoyxdffKHhw4drwYIFatOmTaX7rWzGODk6qVPDTpXuF0DVtn//fj3yyCOaMmWKevXqdUNtVTZnarnW0l3+d91Q3wBuPZU5d8O5GQC2VtmcaVO/8t/VAABA1WPXCXRvb285OjoqIyPDYnlGRoZ8fUt/XkZF1apVS3feeacOHz4sSfL19VVeXp4yMzMtfslYVr8uLi5ycXGx2pgA2J6tMyYqKkqffPKJvvzySzVq9Ouz9CqTMRI5A9xslckIX1/fMuuL/pmRkSE/Pz+LmqJn+m3ZskVJSUnFPu+dOnXS4MGDtXTpUvOybdu26Y9//KPmzp2rIUOGVGgsv0fGADeXvTKmIg4ePKj7779fo0eP1uTJk8s1Fk9PzxKv1pLIGaC6ste5m5KQM8DNZYvjmfIoz3kVX19f7dq1q1g/RevKGgvHMwAA4Hrsek8ZZ2dnhYaGKjEx0byssLBQiYmJCg8Pt1o/Fy9e1JEjR8wnmUJDQ+Xk5GTRb0pKilJTU63aLwD7slXGGIahqKgoffjhh9qyZYsCAwMt1pMxwK2hMhkRHh5uUS9JmzZtMtcHBgbK19fXoiY7O1s7d+4017z++uv67rvvlJycrOTkZG3YsEGStHLlSr388svm923dulV9+vTRq6++qtGjR1d4LADsy14ZU14HDhzQvffeq6FDh1pkT3nHAuD2Ya9zNwDszxbHM+VRnvMq4eHh2rdvn86cOWPRj6enp1q3bm21sQAAgNuUYWcrVqwwXFxcjCVLlhgHDx40Ro8ebdSqVctIT083DMMwnnjiCeP555831+fm5hp79+419u7da/j5+RnPPvussXfvXuPQoUPmmmeeecbYunWrcfToUePrr782IiIiDG9vb+PMmTPmmjFjxhiNGzc2tmzZYnz77bdGeHi4ER4eXu5xZ2VlGZKMrKwsK+wF4PZl68+SLTJm7NixhpeXl7F161bj9OnT5telS5fMNTeaMYZBzgDWUtZnqaIZ8fXXXxs1atQwZs2aZfzwww/GlClTDCcnJ2Pfvn3mmhkzZhi1atUyPvroI+P77783HnnkESMwMNC4fPlyieM7evSoIcnYu3evedmWLVsMd3d3IyYmxiJnfv755wqNpbL7BUDFlPZ5slfGHD9+3Ni7d68xbdo0w8PDw3xsc+HCBcMwDGPfvn1GvXr1jMcff9wiY377femnn34y3N3djeeee8744YcfjPnz5xuOjo7Gxo0bb3i/AKiYqvBZste5m+upCvsGqA5u9nemn3/+2di7d6+xfv16Q5KxYsUKY+/evcbp06fNNdc7r3L16lWjbdu2Rq9evYzk5GRj48aNRr169YyYmBhzDcczQNXBZwnArcbuE+iGYRhvvPGG0bhxY8PZ2dno0qWLsWPHDvO6Hj16GEOHDjX/XXSS+fevHj16mGsGDBhg+Pn5Gc7OzkbDhg2NAQMGGIcPH7bo8/Lly8bf/vY3o3bt2oa7u7vxpz/9yeIg7XoIfMA6bsZnydoZU9J6ScbixYvNNTeaMYZBzgDWcr3PUkUywjAMY9WqVcadd95pODs7G23atDHWr19vsb6wsNB48cUXDR8fH8PFxcW4//77jZSUlFLHV9IE+tChQ6+bReUZS1nIGMB6yvo82SNjSsuQL774wjAMw5gyZUqJ65s0aWLRzhdffGEEBwcbzs7ORtOmTS2OdW50vwAov6ryWbLHuZvrqSr7BrjV3ezvTIsXLy4xI6ZMmWKuKc95lWPHjhkPPPCA4ebmZnh7exvPPPOMkZ+fb1HD8QxQNfBZAnCrMRmGYdzYNey3p+zsbHl5eSkrK0uenp72Hg5wy+KzVDr2DWAdfJZKxn4BrIfPU8nYL4B18FkqHfsGsA4+S6Vj3wDWwWcJwK3Grs9ABwAAAAAAAAAAAACgqmACHQAAAAAAAAAAAAAASTXsPYBbVdGd77Ozs+08EuDWVvQZ4mkSxZEzgHWQMyUjYwDrIWdKRs4A1kHGlI6cAayDnCkdOQNYBzkD4FbDBHolXbhwQZLk7+9v55EA1cOFCxfk5eVl72FUKeQMYF3kjCUyBrA+csYSOQNYFxlTHDkDWBc5Uxw5A1gXOQPgVmEy+MlPpRQWFiotLU01a9aUyWQqtS47O1v+/v46ceKEPD09b+II6Z/+b43+DcPQhQsX1KBBAzk48FSJ3ypPztwK/xvTP/3bu39ypmQcy9A//Vuvf3KmZOQM/dO/dfonY0rHd6ZbYwz0X/X7J2dKR87QP/1bp39yBsCthivQK8nBwUGNGjUqd72np6fdvijRP/1X9f751WHJKpIzVf1/Y/qnf3v3T84Ux7EM/dO/dfsnZ4ojZ+if/q3XPxlTMr4z3VpjoP+q3T85UzJyhv7p33r9kzMAbiX81AcAAAAAAAAAAAAAADGBDgAAAAAAAAAAAACAJCbQbc7FxUVTpkyRi4sL/dM//cPq7L2P6Z/+b+f+bxf23s/0T/+3c/+3C3vvZ/qn/9u5/9uBvfexvfuvCmOg/9u7/9uBvfcx/dP/7dw/ANiKyTAMw96DAAAAAAAAAAAAAADA3rgCHQAAAAAAAAAAAAAAMYEOAAAAAAAAAAAAAIAkJtABAAAAAAAAAAAAAJDEBDoAAAAAAAAAAAAAAJKYQL+u+fPnKyAgQK6urgoLC9OuXbtKrT1w4ID69eungIAAmUwmxcfHF6spWvf717hx48w1V65c0bhx41S3bl25uLjojjvuuKn99+zZs9j6GjVqWKX/goICvfjiiwoMDJSbm5uaNWum6dOnyzAMc41hGIqNjZWfn5+cnJzk5uYmFxeXm9b/sGHDim2/o6OjVfq/cOGCxo8fryZNmsjNzU3dunXTN998Y1Fjy+0vT/+V3f4FCxbonnvuUe3atVW7dm1FREQUq//ttrm5uSkiIkKHDh2yqDl//rwGDx4sT09P1apVSyNGjNDFixdL7fdWR8aQMWQMGWNr5Aw5Q86QM7ZGzpAz5Aw5Y2vkDDlDzpAztkTGkDFkDBkDAL/HBHoZVq5cqejoaE2ZMkV79uxRhw4dFBkZqTNnzpRYf+nSJTVt2lQzZsyQr69viTXffPONTp8+bX5t2rRJktS/f39zzYQJE/Txxx/rb3/7mwzDkK+vr1q1anXT+pekUaNGKSEhQc7Ozpo7d662b99ulf5fffVVvfXWW3rzzTf1ww8/6NVXX9XMmTP1xhtvmGtmzpyp119/XY8//rhMJpOCgoJUr149tW3b9qb0L0m9e/e22P6vvvrKKts/cuRIbdq0Se+++6727dunXr16KSIiQqdOnbop21+e/iu7/Vu3btWgQYP0xRdfKCkpSf7+/urVq1eJ25aQkKCdO3fqjjvuUGRkpK5cuWKuGTx4sA4cOKBNmzbpk08+0ZdffqnRo0eX2OetjowhY8gYMsbWyBlyhpwhZ2yNnCFnyBlyxtbIGXKGnCFnbImMIWPIGDIGAEpkoFRdunQxxo0bZ/67oKDAaNCggREXF3fd9zZp0sSYO3fudeuefvppo1mzZkZhYaFhGIaRmZlpODk5GatXrzb3/8MPPxiSjK+//trm/RuGYfTo0cN4+umnbbL9ffr0MZ588kmLZY8++qgxePBgwzAMo7Cw0PD19TVee+01c/+ZmZmGi4uLsWzZMpv3bxiGMXToUOORRx6x+vZfunTJcHR0ND755BOL5R07djT+8Y9/GIZh2+0vT//W2n7DMIyrV68aNWvWNJYuXVps24oUbdv//d//GYZhGAcPHjQkGd9884255tNPPzVMJpNx6tSpcvV7KyFjyBgyhoyxNXKGnCFnyBlbI2fIGXKGnLE1coacIWfIGVsiY8gYMoaMAYCScAV6KfLy8rR7925FRESYlzk4OCgiIkJJSUlW6+O9997Tk08+KZPJJEnavXu38vPz1b17d3P/QUFBaty4sXbu3Gnz/ou899572rVrl9atW6eYmBhdunTJKtvfrVs3JSYm6n//+58k6bvvvtNXX32lBx54QJJ09OhRpaenq0ePHubt9/LyUlhYmFW2/3r9F/niiy+0a9cuffjhhxo7dqx+/vnnG97+q1evqqCgQK6urhbL3dzc9NVXX0my7faXp/8i1tj+S5cuKT8/X3Xq1LHYtt9+poq2rajNpKQk1apVS506dTLXREREyMHBQTt37qzUdldVZAwZQ8aQMbZGzpAz5Aw5Y2vkDDlDzpAztkbOkDPkDDljS2QMGUPGkDEAUBom0Etx7tw5FRQUyMfHx2K5j4+P0tPTrdLH2rVrlZmZqWHDhpmXpaeny9nZ2fx/dkX9F/Vr6/4l6bHHHtPrr78uSXryySf17rvv6vHHH7cYR2U9//zzGjhwoIKCguTk5KSQkBCNHz9egwcPliRz2zVq1LDJ9l+vf+na7WuKnh/z1FNPadu2bXrggQfM46ls/zVr1lR4eLimT5+utLQ0FRQU6L333lNSUpJOnz5t8+0vT//W3P5JkyapQYMG5gOmoveV9ZlKT09X/fr1LdbXqFFDderUsdp/91UFGUPGSGQMGWNb5Aw5I5Ez5IxtkTPkjETOkDO2Rc6QMxI5Q87YDhlDxkhkDBkDACWrYe8B3M4WLlyoBx54QA0aNKhS/Y8ePVppaWmSpMjISHXv3l3333+/jhw5csN9rlq1SsuWLdPy5cvVpk0bJScna/z48WrQoIGGDh16w+1bo/+BAweat79Hjx76y1/+ombNmmnr1q033P+7776rJ598Ug0bNpSjo6M6duyoQYMGaffu3TfctrX6t8b2z5gxQytWrNDWrVuL/eIRNw8ZQ8aQMbA1coacIWdga+QMOUPOwNbIGXKGnIEtkTFkDBkDALcmrkAvhbe3txwdHZWRkWGxPCMjQ76+vjfc/vHjx7V582aNHDnSYrmvr6/y8vJUo0YNi/6L+rV1/0V+u/1hYWGSpMOHD99w/88995z5V4Dt2rXTE088oQkTJiguLk6SzG1fvXrVJtt/vf6L/Hb7mzZtKm9vb6tsf7NmzbRt2zZdvHhRJ06c0K5du5Sfn6+mTZtKsv32X6//Ijey/bNmzdKMGTP0+eefq3379ublRe8r6zPl6+urM2fOWKy/evWqzp8/b5X/7qsSMoaMIWPIGFsjZ8gZcoacsTVyhpwhZ8gZWyNnyBlyhpyxJTKGjCFjyBgAKA0T6KVwdnZWaGioEhMTzcsKCwuVmJio8PDwG25/8eLFql+/vvr06WOxPDQ0VE5OTvrvf/9r7j8lJUWpqakKCwuzef9Ffrv9ycnJkq7dauVG+y96ls5vOTo6qrCwUJIUGBgoX19fffnll+b+s7OztXPnTqts//X6L/Lb7T958qR+/vlnq2x/kTvuuEN+fn765Zdf9Nlnn+mRRx6RZPvtv17/RSq7/TNnztT06dO1ceNGi+fY/HbbfvuZKtq2ojbDw8OVmZlp8YvILVu2qLCw0HwgX12QMWQMGUPG2Bo5Q86QM+SMrZEz5Aw5Q87YGjlDzpAz5IwtkTFkDBlDxgBAqQyUasWKFYaLi4uxZMkS4+DBg8bo0aONWrVqGenp6YZhGMYTTzxhPP/88+b63NxcY+/evcbevXsNPz8/49lnnzX27t1rHDp0yKLdgoICo3HjxsakSZNK7HfMmDFG48aNjRdffNFwdnY2mjVrZnTo0OGm9H/48GHjpZdeMr799lvjjTfeMJycnIx69eoZnTp1skr/Q4cONRo2bGh88sknxtGjR401a9YY3t7exsSJE801M2bMMGrVqmU8++yzhrOzsxESEmI0bNjQGDFihM37v3DhgvHss88aSUlJ5u1v0qSJ0aRJE6v0v3HjRuPTTz81fvrpJ+Pzzz83OnToYISFhRl5eXk3Zfuv1/+NbP+MGTMMZ2dn4/333zdOnz5tfl24cKHYtn300UfG999/bzzyyCNGYGCgcfnyZXNN7969jZCQEGPnzp3GV199ZbRo0cIYNGhQsf9WqwMyhowhY8gYWyNnyBlyhpyxNXKGnCFnyBlbI2fIGXKGnLElMoaMIWPIGAAoCRPo1/HGG28YjRs3NpydnY0uXboYO3bsMK/r0aOHMXToUPPfR48eNSQVe/Xo0cOizc8++8yQZKSkpJTY5+XLl42//e1vRu3atQ0nJyfDzc3tpvWfmppqdO/e3ahTp47h4uJieHt7G56enlbrPzs723j66aeNxo0bG66urkbTpk2Nf/zjH0Zubq65prCw0HjxxRcNHx8fo0aNGoarq6vh5OR0U/q/dOmS0atXL6NevXqGk5OTUbt2bcPDw8Nq279y5UqjadOmhrOzs+Hr62uMGzfOyMzMtPjfwJbbf73+b2T7mzRpUmL/U6ZMKXHbXFxcjPvvv7/Yf4c///yzMWjQIMPDw8Pw9PQ0hg8fbnEQVt2QMWQMGUPG2Bo5Q86QM+SMrZEz5Aw5Q87YGjlDzpAz5IwtkTFkDBlDxgDA75kMwzAEAAAAAAAAAAAAAMBtjmegAwAAAAAAAAAAAAAgJtABAAAAAAAAAAAAAJDEBDoAAAAAAAAAAAAAAJKYQAcAAAAAAAAAAAAAQBIT6AAAAAAAAAAAAAAASGICHQAAAAAAAAAAAAAASUygAwAAAAAAAAAAAAAgiQl0AAAAAAAAAAAAAAAkMYEOAAAAAAAAAAAAAIAkJtBRDQQEBCg+Pt7ib5PJJJPJJHd3d7Vr107vvPOO/QYI4JZGxgCwNXIGgK2RMwBsjZwBYEtkDADgZmMCHVVeXl5ehd/z0ksv6fTp09q/f78ef/xxjRo1Sp9++qkNRgfgVkfGALA1cgaArZEzAGyNnAFgS2QMAKCqYQIdVU7Pnj0VFRWl8ePHy9vbW5GRkRVuo2bNmvL19VXTpk01adIk1alTR5s2bSrXe6dOnarg4GCLZfHx8QoICKjwOABUPWQMAFsjZwDYGjkDwNbIGQC2RMYAAKq6GvYeAFCSpUuXauzYsfr6669vqJ3CwkJ9+OGH+uWXX+Ts7Gyl0QG41ZExAGyNnAFga+QMAFsjZwDYEhkDAKjKmEBHldSiRQvNnDmz0u+fNGmSJk+erNzcXF29elV16tTRyJEjrThCALcyMgaArZEzAGyNnAFga+QMAFsiYwAAVRm3cEeVFBoaekPvf+6555ScnKwtW7YoLCxMc+fOVfPmza00OgC3OjIGgK2RMwBsjZwBYGvkDABbImMAAFUZV6CjSrrjjjtu6P3e3t5q3ry5mjdvrtWrV6tdu3bq1KmTWrdufd33Ojg4yDAMi2X5+fk3NB4AVQsZA8DWyBkAtkbOALA1cgaALZExAICqjCvQUe35+/trwIABiomJKVd9vXr1lJ6ebnEQlZycbKPRAbjVkTEAbI2cAWBr5AwAWyNnANgSGQMAsDYm0HFbePrpp/Xxxx/r22+/vW5tz549dfbsWc2cOVNHjhzR/Pnz9emnn96EUQK4VZExAGyNnAFga+QMAFsjZwDYEhkDALAmJtBxW2jdurV69eql2NjY69a2atVK//rXvzR//nx16NBBu3bt0rPPPnsTRgngVkXGALA1cgaArZEzAGyNnAFgS2QMAMCaTMbvH/YBAAAAAAAAAAAAAMBtiCvQAQAAAAAAAAAAAAAQE+io4pYtWyYPD48SX23atKlUmw888ECpbb7yyitW3gIAVRkZA8DWyBkAtkbOALA1cgaALZExAICqiFu4o0q7cOGCMjIySlzn5OSkJk2aVLjNU6dO6fLlyyWuq1OnjurUqVPhNgHcmsgYALZGzgCwNXIGgK2RMwBsiYwBAFRFTKADAAAAAAAAAAAAACBu4Q4AAAAAAAAAAAAAgCQm0AEAAAAAAAAAAAAAkMQEOgAAAAAAAAAAAAAAkphABwAAAAAAAAAAAABAEhPoAAAAAAAAAAAAAABIYgIdAAAAAAAAAAAAAABJTKADAAAAAAAAAAAAACCJCXQAAAAAAAAAAAAAACQxgQ4AAAAAAAAAAAAAgCQm0AEAAAAAAAAAAAAAkCTVsPcAblWFhYVKS0tTzZo1ZTKZ7D0c4JZlGIYuXLigBg0ayMGB3/T8FjkDWAc5UzIyBrAecqZk5AxgHWRM6cgZwDrImdKRM4B1kDMlI2MA67F2zjCBXklpaWny9/e39zCAauPEiRNq1KiRvYdRpZAzgHWRM5bIGMD6yBlL5AxgXWRMceQMYF3kTHHkDGBd5IwlMgawPmvlDBPolVSzZk1J1/6H8PT0tPNogFtXdna2/P39zZ8p/IqcAayDnCkZGQNYDzlTMnIGsA4ypnTkDGAd5EzpyBnAOsiZkpExgPVYO2eYQK+kottpeHp6EmyAFXCLmuLIGcC6yBlLZAxgfeSMJXIGsC4ypjhyBrAucqY4cgawLnLGEhkDWJ+1coaHTQAAAAAAAAAAAAAAICbQAQAAAAAAAAAAAACQxAQ6AAAAAAAAAAAAAACSqsgE+vz58xUQECBXV1eFhYVp165dpdYeOHBA/fr1U0BAgEwmk+Lj44vVTJ06VSaTyeIVFBRkUdOzZ89iNWPGjLH2pgGoAsgYAGWpSEZI0urVqxUUFCRXV1e1a9dOGzZssFhvGIZiY2Pl5+cnNzc3RURE6NChQyW2lZubq+DgYJlMJiUnJ5uXHzt2rFiGmEwm7dixo0JjAWB/9siYl19+Wd26dZO7u7tq1apVYj8lZcyKFSssarZu3aqOHTvKxcVFzZs315IlSyq8/QCqj4rk2YIFC3TPPfeodu3aql27tiIiIorVV+SYCYB9Wft4Zs2aNerVq5fq1q1b7LuQJJ0/f15PPfWUWrZsKTc3NzVu3Fh///vflZWVZVGXmpqqPn36yN3dXfXr19dzzz2nq1evWtRwPAPcPuxxrHL+/HkNHjxYnp6eqlWrlkaMGKGLFy/aZPtw6yssLNSVK1d4VfJVUFBwU//3qnFTeyvBypUrFR0drYSEBIWFhSk+Pl6RkZFKSUlR/fr1i9VfunRJTZs2Vf/+/TVhwoRS223Tpo02b95s/rtGjeKbOmrUKL300kvmv93d3W9wawBUNWQMgLJUNCO2b9+uQYMGKS4uTg899JCWL1+uvn37as+ePWrbtq0kaebMmXr99de1dOlSBQYG6sUXX1RkZKQOHjwoV1dXi/YmTpyoBg0a6LvvvitxfJs3b1abNm3Mf9etW7dCYwFgX/bKmLy8PPXv31/h4eFauHBhqeNbvHixevfubf77t5PtR48eVZ8+fTRmzBgtW7ZMiYmJGjlypPz8/BQZGWmlPQTgVlHRPNu6dasGDRqkbt26ydXVVa+++qp69eqlAwcOqGHDhpIqdswEwH5scTyTk5Oju+++W3/5y180atSoYm2kpaUpLS1Ns2bNUuvWrXX8+HGNGTNGaWlpev/99yVJBQUF6tOnj3x9fbV9+3adPn1aQ4YMkZOTk1555RVJHM8AtxN7HasMHjxYp0+f1qZNm5Sfn6/hw4dr9OjRWr58+U3dflR9eXl5Onr0qAoLC+09lFtarVq15OvrK5PJZPvODDvr0qWLMW7cOPPfBQUFRoMGDYy4uLjrvrdJkybG3Llziy2fMmWK0aFDhzLf26NHD+Ppp5+u4Gh/lZWVZUgysrKyKt0GANt/lm7VjDEMcgawlrI+SxXNiL/85S9Gnz59LJaFhYUZf/3rXw3DMIzCwkLD19fXeO2118zrMzMzDRcXF+P//u//LN63YcMGIygoyDhw4IAhydi7d6953dGjR4stq+hYroeMAayntM+TPTPGMAxj8eLFhpeXV4l9STI+/PDDUrdp4sSJRps2bSyWDRgwwIiMjCz1Pb9HzgDWURU+SzfyvcowDOPq1atGzZo1jaVLlxqGUfE8K01V2DdAdXAzvzP9Vnm+9xRZtWqV4ezsbOTn5xuGce37lIODg5Genm6ueeuttwxPT08jNzfXMAyOZ4CqpCqfAzaMyh2rHDx40JBkfPPNN+aaTz/91DCZTMapU6fK1S8Zc3soLCw0jh07Zhw6dMjIyckxLl++zKuCr0uXLhnnzp0zDh48aKSlpZW4n639ebLrLdzz8vK0e/duRUREmJc5ODgoIiJCSUlJN9T2oUOH1KBBAzVt2lSDBw9WampqsZply5bJ29tbbdu2VUxMjC5dulRqe7m5ucrOzrZ4AajabqWMkcgZ4GarTEYkJSVZ1EtSZGSkuf7o0aNKT0+3qPHy8lJYWJhFmxkZGRo1apTefffdMu9O8fDDD6t+/fq6++67tW7dugqN5ffIGODmsmfGlNe4cePk7e2tLl26aNGiRTIMo9xjKQk5A1RP1vhedenSJeXn56tOnTqSKp9n5Axwc9nieKaysrKy5Onpab4DYFJSktq1aycfHx+LfrKzs3XgwIFKj4WcAW499jpWSUpKUq1atdSpUydzTUREhBwcHLRz584S+yFjbk9Xr17VpUuXVK9ePbm7u8vV1ZVXBV9ubm6qW7eu6tevr8zMzJtyO3e73sL93LlzKigosDjQkSQfHx/9+OOPlW43LCxMS5YsUcuWLXX69GlNmzZN99xzj/bv36+aNWtKkh577DE1adJEDRo00Pfff69JkyYpJSVFa9asKbHNuLg4TZs2rcJjOZl9UofPH670tgC3ugCvAAXUDrBL37dSxkiVz5l9Gfv08+WfK709wK3M0eSoNvXbqI5bnQq/tzIZkZ6eXmJ9enq6eX3RstJqDMPQsGHDNGbMGHXq1EnHjh0r1o+Hh4dmz56tu+66Sw4ODvrggw/Ut29frV27Vg8//HC5xvJ7lc2YvII87Tm9R1euXqnwe4HqwMXRRR39OsqlhkuF3mevjCmvl156Sffdd5/c3d31+eef629/+5suXryov//972WOJTs7W5cvX5abm1uxNiubM79c/kX7z+xXgXFzn2cGVBW1XWurg28Hew+jVNb4XjVp0iQ1aNDAfBK6snlW2Zw5kXVCR345UuH3AdVF09pN1dircYXfZ4vjmco4d+6cpk+frtGjR1+3n6J1ZdXY4njm+4zvdf7y+Qq/D6gObuTcjDXY61glPT292O3ha9SooTp16nBuBhZMBSZ5XvVUvvJ1IfeCvYdzSzKZTHJ3cjdfiJSfny9HR0eb9mn3Z6DbwgMPPGD+9/bt2yssLExNmjTRqlWrNGLECEmyOOBq166d/Pz8dP/99+vIkSNq1qxZsTZjYmIUHR1t/js7O1v+/v7XHUvu1VydzDopv5p+N7JJwC0p/WK6fD187T0Mq7NFxkiVz5nMK5k6m3PWbgepgD2du3xOzes0t/cwKuSNN97QhQsXFBMTU2qNt7e3RR507txZaWlpeu2118wT6BVV2Yy5WnhVmVcyVVBYINcaPI8Ut5fcq7m6ZLqk/MJ8uahiE+hV3Ysvvmj+95CQEOXk5Oi1114zT6BXRmVzJq8gT2dyzqiWa61K9w3cqn65/ItMugnP77OjGTNmaMWKFdq6desNP9u8sjlz5eoVzs3gtnX6wmn5edy6/+1nZ2erT58+at26taZOnWrz/iqbM79c+YVzM7ht/XzlZ7UoaGHvYVSaNY9VrqeyGZNfkK9fLv+iQqOQczO3IIfC/38zcJNkyCi7GMUUGoUyGSYZhnFznn3+/9l1At3b21uOjo7KyMiwWJ6RkSFfX+tNutWqVUt33nmnDh8u/UrwsLAwSdLhw4dLnNxycXGRi0vlTpp5OHtwMgi3pZy8HLv2fytljFT5nHEwOcjLxYucwW3pRn61WZmM8PX1LbO+6J8ZGRny8/OzqAkODpYkbdmyRUlJScU+7506ddLgwYO1dOnSEvsOCwvTpk2byj2W37uRYxlJquVaiy9puO3kXs1VZm5mpd5rr4yprLCwME2fPl25ublycXEpdSyenp4lXq0l3VjOOJocOZbBbem3j06oqm7ke9WsWbM0Y8YMbd68We3btzcvr2ye3UjO1HSpSc7gtnQx72Kl32uL45mKuHDhgnr37q2aNWvqww8/lJOTk0U/u3btKtZP0bqyxmKL4xkHOaiWay1yBrelC3n2vaLWXscqvr6+OnPmjEV7V69e1fnz5zk3A0tXJYdcBznIQY4m2141XR05yMEud6yz6zPQnZ2dFRoaqsTERPOywsJCJSYmKjw83Gr9XLx4UUeOHLEIut9LTk6WpDJrANxayBgAZalMRoSHh1vUS9KmTZvM9YGBgfL19bWoyc7O1s6dO801r7/+ur777jslJycrOTlZGzZskCStXLlSL7/8cqnjTU5OtsiQ640FgH3ZK2MqKzk5WbVr1zafzCFjABSp7PeqmTNnavr06dq4caPFs0El2+YZAOuxxfFMeWVnZ6tXr15ydnbWunXril0VGh4ern379llMXm3atEmenp5q3bq1VccCoGqz17FKeHi4MjMztXv3bnPNli1bVFhYaL6YCsCty+63cI+OjtbQoUPVqVMndenSRfHx8crJydHw4cMlSUOGDFHDhg0VFxcnScrLy9PBgwfN/37q1CklJyfLw8NDzZtfu4Xrs88+qz/+8Y9q0qSJ0tLSNGXKFDk6OmrQoEGSpCNHjmj58uV68MEHVbduXX3//feaMGGCunfvbvErIwC3PjIGQFkqmhFPP/20evToodmzZ6tPnz5asWKFvv32W7399tuSrj2PZ/z48frnP/+pFi1aKDAwUC+++KIaNGigvn37SpIaN7Z89qCHh4ckqVmzZmrUqJEkaenSpXJ2dlZISIgkac2aNVq0aJHeeecd8/uuNxYA9mePjJGk1NRUnT9/XqmpqSooKDD/kK958+by8PDQxx9/rIyMDHXt2lWurq7atGmTXnnlFT377LPmNsaMGaM333xTEydO1JNPPqktW7Zo1apVWr9+/c3ZeQCqlIrm2auvvqrY2FgtX75cAQEB5ueAenh4yMPDo9x5BsD+rH08I8l8nJKWliZJSklJkXTtak5fX1/z5PmlS5f03nvvKTs7W9nZ2ZKkevXqydHRUb169VLr1q31xBNPaObMmUpPT9fkyZM1btw48w8COZ4Bbh/2OFZp1aqVevfurVGjRikhIUH5+fmKiorSwIED1aBBA7vsB8Caev+ht9q3b6+Zs2faeyh2YfcJ9AEDBujs2bOKjY1Venq6goODtXHjRvn4+Ei6dvLHweHXC+XT0tLMJ5Ola7fYmDVrlnr06KGtW7dKkk6ePKlBgwbp559/Vr169XT33Xdrx44dqlevnqRrv0javHmzOUT9/f3Vr18/TZ48+eZtOICbgowBUJaKZkS3bt20fPlyTZ48WS+88IJatGihtWvXqm3btuaaiRMnKicnR6NHj1ZmZqbuvvtubdy4scLP0Zo+fbqOHz+uGjVqKCgoSCtXrtSf//znCo0FgH3ZK2NiY2MtHgdRdGzzxRdfqGfPnnJyctL8+fM1YcIEGYah5s2ba86cORo1apT5PYGBgVq/fr0mTJigefPmqVGjRnrnnXcUGRlps/0FoOqqaJ699dZbysvLszh2kaQpU6aYn2FsrWMmALZli+OZdevWmSe1JGngwIGSfs2IPXv2aOfOnZJkvpihyNGjRxUQECBHR0d98sknGjt2rMLDw3XHHXdo6NCheumll8y1HM8Atw97HassW7ZMUVFRuv/+++Xg4KB+/frp9ddft/0GA1WAYRgqKChQjRp2n2q2CZNxKzxwqwrKzs6Wl5eXsrKy5OnpWWrdkfNHtC9jn/y9/G/i6ICq4VT2Kd3pfaeCvINKrSnvZ+l2VN5983Xq18rJy1Fd97o3cXRA1XAi64TCGoXJr2bpj0cgZ0pW3v1yKf+Svjz+pWo61+Q5W7jtFD0DvXuT7vJw9ii1jpwpWXn3S8bFDCWdSOI7E25Lv1z+RU6OTuoR0KPUGjKmdOXdN4d+PqSDZw+qkWejmzg6oGo4mX1SQd5BaundstQacqZ05d03/z3+X125ekV13OrcxNEBVcOJ7BPq2qirfD1Kf944OVOy8u6XnLwcfXn8S3m6eHJu5lZ0VaqRXUP+jf2VkZuhy1cv23U4bjXc1NircZk1fx35Vy17d5nFsoQFCRozaozWfLRGL019SQf2H9BH6z/SsneXKSszSyveX2GunfjMRH3//ffauGmjpGuPVZgza44Wv7NYGRkZat6iuSa9MEl/evRP1x2vYRgqMArk4eyh/Lx8HT16VIGBgcV+eGvtnKmePwsAAAAAAAAAAAAAgCri8tXLupR3yd7DuK6Zs2fq8KHDatW6lV6c8qIkmR99Gzs5Vq/MeEUBgQGqVbtWudqbNXOWVixfoXlvzlOz5s309Vdfa+SwkfL29tY93e+x1WbcECbQAQAAAAAAAAAAAADy8vKSk7OT3N3d5eN77VEIKSkpkqTJsZN1X8R95W4rNzdXs16dpY8//VhhXcMkSYFNA5W0PUmL3lnEBDoAAAAAAAAAAAAA4NbUMbRjheqPHDmiS5cu6eEHH7ZYnpeXpw7BHaw5NKtiAh0AAAAAAAAAAAAAUCb3O9wt/nZwcJBhGBbL8vPzzf+eczFHkvT+2vfVoEEDizoXFxcbjfLGMYEOAAAAAAAAAAAAADbkVsPN3kMo9xicnZxVUFBw3Tpvb28dPHDQYtm+7/ephtO1KeigVkFycXHRyRMnq+zt2kvCBDoAAAAAAAAAAAAA2FBjr8b2HkK5NW7SWN9+862OHzuuOzzuUGFhYYl1PXr2UPyceC1/b7m6hHXRiv9boYMHDqp9cHtJUs2aNfX3CX/XpOcmqbCwUOHdwpWdna2k7Uny9PTU4CcG38zNKjcHew8AAAAAAAAAAAAAAFA1PD3haTk6OqpTcCcFNAzQyRMnS6yL6BWhSS9M0uQXJqvHXT108cJFDRo8yKImdmqsJsVM0qyZsxTaIVR9/9hXn336mZoENLkZm1IpXIEOAAAAAAAAAAAAAJAktbizhbZ8ucVi2eNDHi+xdnLsZE2OnVxqWyaTSeOeGqdxT42z6hhtiSvQAQAAAAAAAAAAAAAQE+gAAAAAAAAAAAAAAEhiAh0AAAAAAAAAAAAAAElMoAMAAAAAAAAAAAAAIIkJdAAAAAAAAAAAAAAAJDGBDgAAAAAAAAAAAACAJCbQAQAAAAAAAAAAAACQxAQ6AAAAAAAAAKAU8+fPV0BAgFxdXRUWFqZdu3aVWb969WoFBQXJ1dVV7dq104YNGyzWr1mzRr169VLdunVlMpmUnJxcrI23335bPXv2lKenp0wmkzIzMy3Wb926VSaTqcTXN998I0k6duxYiet37NhxQ/sDAABUf0ygAwAAAAAAAACKWblypaKjozVlyhTt2bNHHTp0UGRkpM6cOVNi/fbt2zVo0CCNGDFCe/fuVd++fdW3b1/t37/fXJOTk6O7775br776aqn9Xrp0Sb1799YLL7xQ4vpu3brp9OnTFq+RI0cqMDBQnTp1sqjdvHmzRV1oaGgl9gQAALidMIEOAAAAAAAAAChmzpw5GjVqlIYPH67WrVsrISFB7u7uWrRoUYn18+bNU+/evfXcc8+pVatWmj59ujp27Kg333zTXPPEE08oNjZWERERpfY7fvx4Pf/88+ratWuJ652dneXr62t+1a1bVx999JGGDx8uk8lkUVu3bl2LWicnp0rsCQAAbi+GYShqbJT8ff3l4eKh77/7vsz648eOl6vuVsEEOoBqryK3Gjtw4ID69eungIAAmUwmxcfHF6uZOnVqsdt/BQUFWdRcuXJF48aNU926deXh4aF+/fopIyPD2psGAAAAAABgE3l5edq9e7fFRLeDg4MiIiKUlJRU4nuSkpKKTYxHRkaWWm8t69at088//6zhw4cXW/fwww+rfv36uvvuu7Vu3boy28nNzVV2drbFCwCA29GmzzZp2bvLtPrD1Tpy/Ihat2lt7yHdVEygA6jWKnqrsUuXLqlp06aaMWOGfH19S223TZs2Frf/+uqrryzWT5gwQR9//LFWr16tbdu2KS0tTY8++qhVtw0AAAAAAMBWzp07p4KCAvn4+Fgs9/HxUXp6eonvSU9Pr1C9tSxcuFCRkZFq1KiReZmHh4dmz56t1atXa/369br77rvVt2/fMifR4+Li5OXlZX75+/vbdNwAAFRVP/30k3z9fNU1vKt8fH1Uo0YNew/pprq9thbAbee3txqTpISEBK1fv16LFi3S888/X6y+c+fO6ty5sySVuL5IjRo1Sp1gz8rK0sKFC7V8+XLdd999kqTFixerVatW2rFjR6m3HwMAAAAAAEDFnDx5Up999plWrVplsdzb21vR0dHmvzt37qy0tDS99tprevjhh0tsKyYmxuI92dnZTKIDAKzGdDxVunzZvoNwc5PRpHGZJX8d+Vcte3eZJMnDxUONmzTWvDfmaeaMmTp44KAcHR3VJayLZs6eqabNmpbYxi+//KJnxj+jxM2JyrmYo4YNG+rZSc/qiaFPSJJOnjipmEkx2rJ5ixwcHNTtrm6aOXummgQ0se72VhJXoAOotipzq7HyOnTokBo0aKCmTZtq8ODBSk1NNa/bvXu38vPzLfoNCgpS48aNy+yX24QBAAAAAICqwtvbW46OjsUeSZeRkVHqRQW+vr4VqreGxYsXq27duqVOiv9WWFiYDh8+XOp6FxcXeXp6WrwAALCay5dlunTJrq/yTODPnD1Tk6dMVsNGDXXk+BFt+3qbci7lKOrpKH25/Ut9svETOTg4aNBfBqmwsLDENqZPna4ff/hRH677ULu/2634N+JVt25dSVJ+fr4eeegR1axZU59t+UybvtikOzzuUN8/9lVeXp5Vd3llMYEOoNqqzK3GyiMsLExLlizRxo0b9dZbb+no0aO65557dOHCBUnXblfm7OysWrVqVahfbhMGAAAAAACqCmdnZ4WGhioxMdG8rLCwUImJiQoPDy/xPeHh4Rb1krRp06ZS62+UYRhavHixhgwZIicnp+vWJycny8/PzyZjAQCguvDy8lJNj5pydHSUj6+P6tWrp75/6qtH+j6iZs2bqX2H9vrX2//Sgf0H9MMPP5TYxskTJ9UhuIM6hnZUk4Amuvf+e/XgQw9Kkj5Y/YEKCws1P2G+2rZtq6BWQUpYkKCTJ07qv9v+ezM3tVRMoANABT3wwAPq37+/2rdvr8jISG3YsEGZmZnFbhVWUTExMcrKyjK/Tpw4YaURAyjL/PnzFRAQIFdXV4WFhWnXrl1l1q9evVpBQUFydXVVu3bttGHDBov1hmEoNjZWfn5+cnNzU0REhA4dOlRiW7m5uQoODpbJZFJycnKJNYcPH1bNmjWL/ShnyZIlMplMFi9XV9dybzeAm8MeGfPyyy+rW7ducnd3L5Ydv/fzzz+rUaNGMplMyszMNC/funVrsYwxmUw2f34pAACoWqKjo7VgwQItXbpUP/zwg8aOHaucnBzzo/KGDBmimJgYc/3TTz+tjRs3avbs2frxxx81depUffvtt4qKijLXnD9/XsnJyTp48KAkKSUlRcnJyRbHGenp6UpOTjZfLb5v3z4lJyfr/PnzFuPbsmWLjh49qpEjRxYb+9KlS/V///d/+vHHH/Xjjz/qlVde0aJFi/TUU09ZbwcBqDIq8t3rwIED6tevnwICAmQymRQfH1+s5sKFCxo/fryaNGkiNzc3devWTd98841FzbBhw4p9Z+rdu7e1Nw2oEg4fOqxhTwxT25Zt5eftpzZ3tpEknUw9WWL9yNEj9f6q9xXeOVyTYyZrR9IO87p93+/TT0d+km9dX/nU8ZFPHR/5+/rrypUr+umnn27K9lwPE+gAqq3K3GqsMmrVqqU777zT/KXO19dXeXl5Fiehy9MvtwkDbr6VK1cqOjpaU6ZM0Z49e9ShQwdFRkbqzJkzJdZv375dgwYN0ogRI7R371717dtXffv21f79+801M2fO1Ouvv66EhATt3LlTd9xxhyIjI3XlypVi7U2cOFENGjQodXz5+fkaNGiQ7rnnnhLXe3p66vTp0+bX8ePHK7gHANiSvTImLy9P/fv319ixY687xhEjRqh9+/alrk9JSbHImfr161dgDwAAgFvdgAEDNGvWLMXGxio4OFjJycnauHGj+W5/qampOn36tLm+W7duWr58ud5++2116NBB77//vtauXau2bduaa9atW6eQkBD16dNHkjRw4ECFhIQoISHBXJOQkKCQkBCNGjVKktS9e3eFhIRo3bp1FuNbuHChunXrpqCgoBLHP336dIWGhiosLEwfffSRVq5caZ78B1B9VPS716VLl9S0aVPNmDGj1PO1I0eO1KZNm/Tuu+9q37596tWrlyIiInTq1CmLut69e1t8Z/q///s/q28fUBX0f7S/fjn/i9546w198d8v9MVXX0hSqbdc79W7lw4eOqiov0fp9OnTeqj3Q3ph0guSpIsXLyqkY4i279pu8Uren6y/DPzLTdumsjCBDqDaqsytxirj4sWLOnLkiPkWYKGhoXJycrLoNyUlRampqTa7ZRmAypkzZ45GjRql4cOHq3Xr1kpISJC7u7sWLVpUYv28efPUu3dvPffcc2rVqpWmT5+ujh076s0335R07crQ+Ph4TZ48WY888ojat2+v//znP0pLS9PatWst2vr000/1+eefa9asWaWOb/LkyQoKCtJf/lLygaPJZJKvr6/59ftHVgCwL3tlzLRp0zRhwgS1a9euzPG99dZbyszM1LPPPltqTf369S1yxsGBr5AAANxuoqKidPz4ceXm5mrnzp0KCwszr9u6dauWLFliUd+/f3+lpKQoNzdX+/fv14MPPmixftiwYTIMo9hr6tSp5pqpU6eWWDNs2DCLtpYvX66vv/66xHEPHTpUBw8eVE5OjrKysrRz5079+c9/vqF9AaBqquh3r86dO+u1117TwIED5eLiUmz95cuX9cEHH2jmzJnq3r27mjdvrqlTp6p58+Z66623LGpdXFwsvjPVrl3bJtuIauL/sXfvYVWV+f//n4ByEsEUBVQUPASeQVCESi1JdKzRiTE1y0OGWdKolI70MTzl4AEVS5NMzabyq1nm1GiYYtpB0kS3x7J0VFQOagooJijw+8Ofu3bsjYgcFF+P61qXe9/rve71Xqu4r32ve611OzhQ5OhYpQsODrec9q+//sovP//ChOgJPPzIw/i28iXrQtZNt6tfvz6DnxnMshXLmBU3i3eXvQuAn78fR48cpX6D+jRv0dxkcXFxueX8KkKNqk5ARKQiRUVFMXToUAIDA+ncuTPx8fHFXjXWqFEjYmNjget3S914hVh+fj6nT5/GYDDg5OREixYtAHjllVd4/PHHadq0KWlpaUyePBkbGxsGDRoEXJ8fZMSIEURFRVG3bl2cnZ156aWXCA4OpkuXLlVwFkTEnPz8fFJSUkxeN2htbU1oaCjJyclmt0lOTiYqKsqkLCwszDhwdezYMTIyMggNDTWud3FxISgoiOTkZAYOHAhcfyNFREQE69atw9HR0ey+tmzZwpo1azAYDKxdu9ZszKVLl2jatCmFhYV07NiRf/3rX7Rp08ZsbF5eHnl5ecbvOTk5ZuNEpHxUZRtTGocOHWLatGns2LGjxNej+fn5kZeXR9u2bZkyZQoPPPCAxVi1MyIiIiIiUtnK0ve6mWvXrlFQUFBsqjwHBwe+/fZbk7KtW7fSoEED7rvvPh555BFef/116tWrZ7Ze9ZmkqGmTqk6hTO677z7q1qvLu8vexd3dnZMnTzJ50uQSt5k+dTr+/v60at2KvPw8Ejck4uPrA8CAQQNYMG8BA/4+gEkxk2jUqBGpqal8tu4zxr08jkaNG1XGYZVIjw+ISLV2q68aS0tLw9/fH39/f9LT04mLi8Pf399kLq1Tp04xaNAgfHx8ePLJJ6lXrx7ff/899evXN8bMnz+fxx57jPDwcLp27Yq7u7vFATARqRrnzp2joKCg2FPbbm5uFuf4zcjIKDH+xr8lxdx4amLUqFEEBgaa3c+vv/7KsGHDWLFihcXpHHx8fFi+fDn/+c9/+OCDDygsLCQkJIRTp8zPOxQbG4uLi4tx8fT0NBsnIuWjqtqY0sjLy2PQoEHMmTOHJk3Md949PDxISEjgk08+4ZNPPsHT05Pu3buze/dui/WqnRERERERkcpWlr7XzdSuXZvg4GCmT59OWloaBQUFfPDBByQnJ5tcS+7Vqxf//ve/SUpKYtasWWzbto3evXtTUFBgtl71meRuZW1tzXvvv8ee3Xvo3LEzE8dP5PXY10vcxtbWlsmvTaZLYBd69eiFjY0NK95fAYCjoyMbkzbi6enJUwOeIqBDAKOfH82VK1eo7Vy7Eo7o5vQEuohUe5GRkURGRppdt3XrVpPvXl5eFBUVlVjfqlWrbrpPe3t7Fi1axKJFi0qdp4jcG958800uXrxocmf0n0VERPDUU0/RtWtXizHBwcEm00KEhITQqlUr3n77baZPn14sPjo62uTJ1pycHHXURO5R0dHRtGrViqefftpijI+PDz4+PsbvISEhHD16lPnz5/P+++9brFftjIiIiIiIVAfvv/8+zz77LI0aNcLGxoaOHTsyaNAgUlJSjDF/fAtYu3btaN++Pc2bN2fr1q306NGjWJ3qM8ndZPQ/RjP6H6ON3x/u8TApe1NMYi7lXTJ+burV1OT7P6P/yT+j/2mxfjd3N5YsW1KOGZcvPYEuIiIi9yRXV1dsbGzIzMw0Kc/MzMTd3d3sNu7u7iXG3/i3pJgtW7aQnJyMnZ0dNWrUME4PERgYyNChQ40xcXFx1KhRgxo1ajBixAiys7OpUaOGxfm7atasib+/P0eOHDG73s7ODmdnZ5NFRCpOVbUxpXFjiogbbcyNCzuurq5Mnmz5FWydO3e22MaA2hkREREREal8Zel7lUbz5s3Ztm0bly5d4uTJk+zcuZOrV6/SrFkzi9s0a9YMV1dXXZsRqQbuiAH0RYsW4eXlhb29PUFBQezcudNi7MGDBwkPD8fLywsrKyvi4+OLxUyZMgUrKyuTxdfX12x9RUVF9O7dGysrK+PcgiIiIlL92draEhAQQFJSkrGssLCQpKQkkye7/yg4ONgkHmDTpk3GeG9vb9zd3U1icnJy2LFjhzHmjTfeYO/evRgMBgwGAxs2bABg9erVzJgxA7g+D/KN9QaDgWnTplG7dm0MBgN/+9vfzOZWUFDA/v378fDwKOMZEZHyVFVtTGl88sknJu3Q0qVLAfjmm28YPXq0xe0MBoPaGJF7WHlfu7l48SJjx46ladOmODg4EBISwg8//FCBRyAiIiLVUVn6XreiVq1aeHh4cOHCBTZu3Ejfvn0txp46dYpff/1V/SaRaqDKX+G+evVqoqKiSEhIICgoiPj4eMLCwjh8+DANGjQoFn/58mWaNWtG//79GTdunMV627Rpw+bNm43fa9Qwf6jx8fFYWVnd/oGIiIjIXScqKoqhQ4cSGBhI586diY+PJzc3l+HDhwMwZMgQGjVqRGxsLABjxoyhW7duzJ07lz59+rBq1Sp27drFkiXXXzdkZWXF2LFjef3112nZsiXe3t689tprNGzYkH79+gEUm2/YyckJuH5nc+PGjQFo1aqVScyuXbuwtrambdu2xrJp06bRpUsXWrRoQVZWFnPmzOHEiRM899xz5X+iRKRMqqKNAUhNTeX8+fOkpqZSUFCAwWAAoEWLFjg5OdG8eXOTPM+dOwdcb3vq1KkDXO8neXt706ZNG65cucLSpUvZsmULX375ZQWeMRG5U1XEtZvnnnuOAwcO8P7779OwYUM++OADQkNDOXToEI0aNaroQxIREZFq5Fb7Xvn5+Rw6dMj4+fTp0xgMBpycnIxvCty4cSNFRUX4+Phw5MgRxo8fj6+vr7HOS5cuMXXqVMLDw3F3d+fo0aNMmDCBFi1aEBYWVgVnQUTKU5UPoM+bN4+IiAhjo5OQkMD69etZvnw5EydOLBbfqVMnOnXqBGB2/Q01atS46es5DAYDc+fOZdeuXbojSERE5B40YMAAzp49S0xMDBkZGfj5+ZGYmIibmxtwfRDK2vr3F/aEhISwcuVKJk2axKuvvkrLli1Zt26dycD2hAkTyM3NZeTIkWRlZfHggw+SmJiIvb19ueZ+4cIFIiIiyMjI4L777iMgIIDt27fTunXrct2PiJRdVbUxMTExvPfee8bv/v7+AHz11Vd07969VLnn5+fz8ssvc/r0aRwdHWnfvj2bN2/m4Ycfvp1TIiJ3qfK+dvPbb7/xySef8J///IeuXbsC198m+Pnnn7N48WJef/31CjwaERERqW5ute+VlpZm7CcBxMXFERcXR7du3di6dSsA2dnZREdHc+rUKerWrUt4eDgzZsygZs2aANjY2LBv3z7ee+89srKyaNiwIT179mT69OnY2dlV3sGLSIWo0gH0/Px8UlJSiI6ONpZZW1sTGhpKcnLybdX9yy+/0LBhQ+zt7QkODiY2Ntbkia/Lly/z1FNPsWjRolLNg5GXl0deXp7xe05Ozm3lJyIiIneGyMhIIiMjza670Wn6o/79+9O/f3+L9VlZWTFt2jSmTZtWqv17eXlRVFRUYsywYcMYNmyYSdn8+fOZP39+qfYhIlWnKtqYFStWsGLFilLn2L1792Lt0IQJE5gwYUKp6xCR6qsirt1cu3aNgoKCYjcYOjg48O2331rcTtdmRERExJJb6XuV5lrMk08+yZNPPmlxvYODAxs3brzlPOXeVETJ/79J6dzs77Y8Vekc6OfOnaOgoMB4F9ANbm5uZGRklLneoKAgVqxYQWJiIosXL+bYsWM89NBDXLx40Rgzbtw4QkJCSpyv4o9iY2NxcXExLp6enmXOT0RERERERETkblAR125q165NcHAw06dPJy0tjYKCAj744AOSk5NJT0+3uJ2uzYiIiIjIXccKKIKrV69WdSZ3vcuXLwMY3wRRkar8Fe4VoXfv3sbP7du3JygoiKZNm/LRRx8xYsQIPvvsM7Zs2cKePXtKXWd0dDRRUVHG7zk5OeqoiYiIiIiIiIiUwfvvv8+zzz5Lo0aNsLGxoWPHjgwaNIiUlBSL2+jajIiIiIjcdayhoEYB5389T40aNbCysqrqjO4qRRRRUFhA/sV8zp07R506dbCxsanw/VbpALqrqys2NjZkZmaalGdmZpbqteqlVadOHe6//36OHDkCwJYtWzh69Ch16tQxiQsPD+ehhx4y+ypFOzs7zVshIiIiIiIiIveUirp207x5c7Zt20Zubi45OTl4eHgwYMAAmjVrZnEbXZsRERERkbuOFeAEv2X9xsnUkxpAv0VFRUUUFhViV8OOuvfVLdfx45JU6QC6ra0tAQEBJCUl0a9fPwAKCwtJSkqyOFdFWVy6dImjR4/yzDPPADBx4kSee+45k5h27doxf/58Hn/88XLbr4iIiIiIiIjI3ayir93UqlWLWrVqceHCBTZu3Mjs2bNvu04RERERkTuKDRTVLaKgoKCqM7nr5F3L41L+Jbo07YKzg3Ol7bfKX+EeFRXF0KFDCQwMpHPnzsTHx5Obm8vw4cMBGDJkCI0aNSI2NhaA/Px8Dh06ZPx8+vRpDAYDTk5OtGjRAoBXXnmFxx9/nKZNm5KWlsbkyZOxsbFh0KBBALi7u5u9Q6FJkyZ4e3tXxmGLiIiIiIiIiNwVKuLazcaNGykqKsLHx4cjR44wfvx4fH19jXWKiIiIiFQrVtwBo7J3nyKu33hQGa9t/6Mq/081YMAAzp49S0xMDBkZGfj5+ZGYmIibmxsAqampWFtbG+PT0tLw9/c3fo+LiyMuLo5u3boZX71+6tQpBg0axK+//kr9+vV58MEH+f7776lfv36lHpuIiIiIiIiIyN2uIq7dZGdnEx0dzalTp6hbty7h4eHMmDGDmjVrVuqxiYiIiIiI/Jn1zUMqXmRkJCdOnCAvL48dO3YQFBRkXLd161ZWrFhh/O7l5UVRUVGx5Y/zlq9atYq0tDTy8vI4deoUq1atonnz5iXmUFRUZHwVmYiIiIiIiIiI/K68r908+eSTHD16lLy8PNLT01m4cCEuLi6VeEQiUlqLFi3Cy8sLe3t7goKC2LlzZ4nxa9aswdfXF3t7e9q1a8eGDRtM1q9du5aePXtSr149rKysMBgMxepYsmQJ3bt3x9nZGSsrK7KysorFeHl5YWVlZbLMnDnTJGbfvn089NBD2Nvb4+npqWkiREREpFTuiAF0EREREREREREREbmzrF69mqioKCZPnszu3bvp0KEDYWFhnDlzxmz89u3bGTRoECNGjGDPnj3069ePfv36ceDAAWNMbm4uDz74ILNmzbK438uXL9OrVy9effXVEvObNm0a6enpxuWll14yrsvJyaFnz540bdqUlJQU5syZw5QpU1iyZMktngURERG511T5K9xFRERERERERERE5M4zb948IiIiGD58OAAJCQmsX7+e5cuXM3HixGLxCxYsoFevXowfPx6A6dOns2nTJhYuXEhCQgIAzzzzDADHjx+3uN+xY8cCmLy5wpzatWvj7u5udt2HH35Ifn4+y5cvx9bWljZt2mAwGJg3bx4jR44ssV4RERG5t+kJdBERERERERERERExkZ+fT0pKCqGhocYya2trQkNDSU5ONrtNcnKySTxAWFiYxfjbNXPmTOrVq4e/vz9z5szh2rVrJrl07doVW1tbk1wOHz7MhQsXzNaXl5dHTk6OySIiIiL3Hj2BLiIiIiIiIiIiIiImzp07R0FBAW5ubiblbm5u/PTTT2a3ycjIMBufkZFR7vn94x//oGPHjtStW5ft27cTHR1Neno68+bNM+bi7e1dLJcb6+67775idcbGxjJ16tRyz1VERETuLhpAFxEREREREREREZG7SlRUlPFz+/btsbW15fnnnyc2NhY7O7sy1RkdHW1Sb05ODp6enredq4iIiNxdNIAuIiIiIiIiIiIiIiZcXV2xsbEhMzPTpDwzM9PivOPu7u63FF+egoKCuHbtGsePH8fHx8diLjfyNMfOzq7Mg+8iIiJSfWgOdBERERERERERERExYWtrS0BAAElJScaywsJCkpKSCA4ONrtNcHCwSTzApk2bLMaXJ4PBgLW1NQ0aNDDm8vXXX3P16lWTXHx8fMy+vl1ERETkBg2gi0i1t2jRIry8vLC3tycoKIidO3dajD148CDh4eF4eXlhZWVFfHx8iXXPnDkTKysrxo4da1LevXt3rKysTJZRo0aVw9GIiIiIiIiIiFSOqKgo3nnnHd577z1+/PFHXnjhBXJzcxk+fDgAQ4YMITo62hg/ZswYEhMTmTt3Lj/99BNTpkxh165dREZGGmPOnz+PwWDg0KFDABw+fBiDwWAyT3pGRgYGg4EjR44AsH//fgwGA+fPnwcgOTmZ+Ph49u7dy//+9z8+/PBDxo0bx9NPP20cHH/qqaewtbVlxIgRHDx4kNWrV7NgwQKTV7SLiIiImKMBdBGp1lavXk1UVBSTJ09m9+7ddOjQgbCwMM6cOWM2/vLlyzRr1oyZM2fe9PViP/zwA2+//Tbt27c3uz4iIoL09HTjMnv27Ns+HhERERERERGRyjJgwADi4uKIiYnBz88Pg8FAYmIibm5uAKSmppKenm6MDwkJYeXKlSxZsoQOHTrw8ccfs27dOtq2bWuM+eyzz/D396dPnz4ADBw4EH9/fxISEowxCQkJ+Pv7ExERAUDXrl3x9/fns88+A66/an3VqlV069aNNm3aMGPGDMaNG8eSJUuMdbi4uPDll19y7NgxAgICePnll4mJiWHkyJEVd8JERESkWtAc6CJSrc2bN4+IiAjjndEJCQmsX7+e5cuXM3HixGLxnTp1olOnTgBm199w6dIlBg8ezDvvvMPrr79uNsbR0bFS5vgSEREREREREakokZGRJk+Q/9HWrVuLlfXv35/+/ftbrG/YsGEMGzasxH1OmTKFKVOmWFzfsWNHvv/++xLrAGjfvj3ffPPNTeNERERE/khPoItItZWfn09KSgqhoaHGMmtra0JDQ0lOTr6tukePHk2fPn1M6v6zDz/8EFdXV9q2bUt0dDSXL18usc68vDxycnJMFhEREREREREREREREak8egJdRKqtc+fOUVBQYHyt2A1ubm789NNPZa531apV7N69mx9++MFizFNPPUXTpk1p2LAh+/bt45///CeHDx9m7dq1FreJjY1l6tSpZc5LREREREREREREREREbo8G0EVEbsHJkycZM2YMmzZtwt7e3mLcH+fTateuHR4eHvTo0YOjR4/SvHlzs9tER0cTFRVl/J6Tk4Onp2f5JS8iIiIiIiIiIiIiIiIl0gC6iFRbrq6u2NjYkJmZaVKemZlZ5rnJU1JSOHPmDB07djSWFRQU8PXXX7Nw4ULy8vKwsbEptl1QUBAAR44csTiAbmdnh52dXZnyEhERERERERERERERkdunOdBFpNqytbUlICCApKQkY1lhYSFJSUkEBweXqc4ePXqwf/9+DAaDcQkMDGTw4MEYDAazg+cABoMBAA8PjzLtV0RERERERERERERERCqenkAXkWotKiqKoUOHEhgYSOfOnYmPjyc3N5fhw4cDMGTIEBo1akRsbCwA+fn5HDp0yPj59OnTGAwGnJycaNGiBbVr16Zt27Ym+6hVqxb16tUzlh89epSVK1fyl7/8hXr16rFv3z7GjRtH165dad++fSUevYiIiIiIiIiIiIiIiNwKPYEuItXagAEDiIuLIyYmBj8/PwwGA4mJibi5uQGQmppKenq6MT4tLQ1/f3/8/f1JT08nLi4Of39/nnvuuVLv09bWls2bN9OzZ098fX15+eWXCQ8P5/PPPy/34xOR27do0SK8vLywt7cnKCiInTt3lhi/Zs0afH19sbe3p127dmzYsMFkfVFRETExMXh4eODg4EBoaCi//PKL2bry8vLw8/PDysrK+KaKPzty5Ai1a9emTp06t5yLiFS9qmhjZsyYQUhICI6Ojmbbjj/69ddfady4MVZWVmRlZZms27p1Kx07dsTOzo4WLVqwYsWK0h62iIiIiIhIpbqVvtfBgwcJDw/Hy8sLKysr4uPji8VcvHiRsWPH0rRpUxwcHAgJCeGHH34wibmVa0AicnfRALqIVHuRkZGcOHGCvLw8duzYYZyPHK5fGP7jxWAvLy+KioqKLVu3brVY/9atW01+ZHl6erJt2zZ+/fVXrly5wi+//MLs2bNxdnaugKMTkduxevVqoqKimDx5Mrt376ZDhw6EhYVx5swZs/Hbt29n0KBBjBgxgj179tCvXz/69evHgQMHjDGzZ8/mjTfeICEhgR07dlCrVi3CwsK4cuVKsfomTJhAw4YNLeZ39epVBg0axEMPPVSmXESkalVVG5Ofn0///v154YUXbprjiBEjzL4h59ixY/Tp04eHH34Yg8HA2LFjee6559i4cWMZzoSIiIiIiEjFudW+1+XLl2nWrBkzZ87E3d3dbMxzzz3Hpk2beP/999m/fz89e/YkNDSU06dPG2Nu5RqQiNxdNIAuIiIi96x58+YRERHB8OHDad26NQkJCTg6OrJ8+XKz8QsWLKBXr16MHz+eVq1aMX36dDp27MjChQuB63cex8fHM2nSJPr27Uv79u3597//TVpaGuvWrTOp64svvuDLL78kLi7OYn6TJk3C19eXJ5988pZzEZGqV1VtzNSpUxk3bhzt2rUrMb/FixeTlZXFK6+8UmxdQkIC3t7ezJ07l1atWhEZGcnf//535s+fX/YTIiIiIiIiUgFute/VqVMn5syZw8CBA7Gzsyu2/rfffuOTTz5h9uzZdO3alRYtWjBlyhRatGjB4sWLgVu7BiQidx8NoIuIiMg9KT8/n5SUFEJDQ41l1tbWhIaGkpycbHab5ORkk3iAsLAwY/yxY8fIyMgwiXFxcSEoKMikzszMTCIiInj//fdxdHQ0u68tW7awZs0aFi1aVKZc/iwvL4+cnByTRUQqTlW2MaVx6NAhpk2bxr///W+srYt3C2+1jQG1MyIiIiIiUvnK0ve6mWvXrlFQUIC9vb1JuYODA99++y1Qtv6Z+kwidw8NoIuIiMg96dy5cxQUFODm5mZS7ubmRkZGhtltMjIySoy/8W9JMUVFRQwbNoxRo0YRGBhodj+//vorw4YNY8WKFRanf7hZLn8WGxuLi4uLcfH09DQbJyLlo6ramNLIy8tj0KBBzJkzhyZNmtxSLjk5Ofz2229mt1E7IyIiIiIila0sfa+bqV27NsHBwUyfPp20tDQKCgr44IMPSE5OJj09HShb/0x9JpG7hwbQRURERCrRm2++ycWLF4mOjrYYExERwVNPPUXXrl3Lbb/R0dFkZ2cbl5MnT5Zb3SJyd4mOjqZVq1Y8/fTT5V6v2hkREREREakO3n//fYqKimjUqBF2dna88cYbDBo0yOwbvEpLfSaRu4cG0EVEROSe5Orqio2NDZmZmSblmZmZuLu7m93G3d29xPgb/5YUs2XLFpKTk7Gzs6NGjRq0aNECgMDAQIYOHWqMiYuLo0aNGtSoUYMRI0aQnZ1NjRo1jPN33SyXP7Ozs8PZ2dlkEZGKU1VtTGncmCLiRhvTo0cPY86TJ08uMRdnZ2ccHBzM1qt2RkREREREKltZ+l6l0bx5c7Zt28alS5c4efIkO3fu5OrVqzRr1gwoW/9MfSaRu4cG0EVEROSeZGtrS0BAAElJScaywsJCkpKSCA4ONrtNcHCwSTzApk2bjPHe3t64u7ubxOTk5LBjxw5jzBtvvMHevXsxGAwYDAY2bNgAwOrVq5kxYwZwfe7hG+sNBgPTpk2jdu3aGAwG/va3v5UqFxGpWlXVxpTGJ598YtIOLV26FIBvvvmG0aNHlyoXERERERGRO0FZ+l63olatWnh4eHDhwgU2btxI3759gfLrn4nInalGVScgIiIiUlWioqIYOnQogYGBdO7cmfj4eHJzcxk+fDgAQ4YMoVGjRsTGxgIwZswYunXrxty5c+nTpw+rVq1i165dLFmyBAArKyvGjh3L66+/TsuWLfH29ua1116jYcOG9OvXD6DYfMNOTk7A9TubGzduDECrVq1MYnbt2oW1tTVt27Y1lt0sFxGpelXRxgCkpqZy/vx5UlNTKSgowGAwANCiRQucnJxo3ry5SZ7nzp0Drrc9derUAWDUqFEsXLiQCRMm8Oyzz7JlyxY++ugj1q9fX4FnTERERERE5Nbdat8rPz+fQ4cOGT+fPn0ag8GAk5OT8U2BGzdupKioCB8fH44cOcL48ePx9fU11lna/pmI3J30BLqIiIjcswYMGEBcXBwxMTH4+flhMBhITEzEzc0NuD4IlZ6ebowPCQlh5cqVLFmyhA4dOvDxxx+zbt06k4HtCRMm8NJLLzFy5Eg6derEpUuXSExMxN7evlxzL00uIlK1qqqNiYmJwd/fn8mTJ3Pp0iX8/f3x9/dn165dpc7d29ub9evXs2nTJjp06MDcuXNZunQpYWFh5XBmRERE5G6yaNEivLy8sLe3JygoiJ07d5YYv2bNGnx9fbG3t6ddu3bGt27dsHbtWnr27Em9evWwsrIy3uz3R0uWLKF79+44OztjZWVFVlaWyfrjx48zYsQIvL29cXBwoHnz5kyePJn8/HyTGCsrq2LL999/X+ZzISJ3plvte6WlpRn7Senp6cTFxeHv789zzz1njMnOzmb06NH4+voyZMgQHnzwQTZu3EjNmjWNMZV1DUhEKp9VUVFRUVUncTfKycnBxcWF7OzsEuepOHr+KPsz9+Pp4lmJ2YncGU7nnOZ+1/vxdfW1GFPav6V7UWnPzXep35Gbn0s9x3qVmJ3IneFk9kmCGgfhUdvDYozaGfNKe14uX73M1ye+prZtbexrqAMo95a8a3lk5WXRtWlXnGydLMapnTGvtOcl81ImySeT1WeSe9KF3y5Q06Ym3by6WYxRG2NZac/NL7/+wqGzh2js3LgSsxO5M5zKOYWvqy8+rj4WY0r6W1q9ejVDhgwhISGBoKAg4uPjWbNmDYcPH6ZBgwbF6tq+fTtdu3YlNjaWxx57jJUrVzJr1ix2795tvCnw/fff59ixYzRs2JCIiAj27NmDn5+fST3x8fFcuXIFgOjoaC5cuGB8Uw5AYmIiq1evZtCgQbRo0YIDBw4QERHBM888Q1xcHHB9AN3b25vNmzfTpk0b47b16tUzGQArSWnbmW9OfMOVa1eo61C3VPWKVCcnc07SpXEX3J0szzeu3zPmlfa85Obn8vWJr3G2c9a1GbnnXLl2hZy8HLo27Uot21oW48q7ndEr3EVERERERERERESkmHnz5hEREWF8ZXFCQgLr169n+fLlTJw4sVj8ggUL6NWrF+PHjwdg+vTpbNq0iYULF5KQkADAM888A1wf4LZk7NixAGzdutXs+l69etGrVy/j92bNmnH48GEWL15sHEC/oV69eri7Wx7YExEREfkzvcJdREREREREREREREzk5+eTkpJCaGioscza2prQ0FCSk5PNbpOcnGwSDxAWFmYxvjxlZ2dTt27xJ8D/+te/0qBBAx588EE+++yzEuvIy8sjJyfHZBEREZF7jwbQRURERERERERERMTEuXPnKCgoMM4hfIObmxsZGRlmt8nIyLil+PJy5MgR3nzzTZ5//nljmZOTE3PnzmXNmjWsX7+eBx98kH79+pU4iB4bG4uLi4tx8fTUFDMiIiL3ojtiAH3RokV4eXlhb29PUFAQO3futBh78OBBwsPD8fLywsrKivj4+GIxU6ZMwcrKymTx9TWdg/n555+nefPmODg4UL9+ffr27ctPP/1U3ocmIiIiIiIiInLXK+9rNwUFBbz22mt4e3vj4OBA8+bNmT59OkVFRRV4FCJSHZ0+fZpevXrRv39/IiIijOWurq5ERUURFBREp06dmDlzJk8//TRz5syxWFd0dDTZ2dnG5eTJk5VxCCIiInKHqfIB9NWrVxMVFcXkyZPZvXs3HTp0ICwsjDNnzpiNv3z5Ms2aNWPmzJklzl3Tpk0b0tPTjcu3335rsj4gIIB3332XH3/8kY0bN1JUVETPnj0pKCgo1+MTEREREREREbmbVcS1m1mzZrF48WIWLlzIjz/+yKxZs5g9ezZvvvlmRR6KiNwCV1dXbGxsyMzMNCnPzMy0+Lft7u5+S/G3Ky0tjYcffpiQkBCWLFly0/igoCCOHDlicb2dnR3Ozs4mi4iIiNx7qnwAfd68eURERDB8+HBat25NQkICjo6OLF++3Gx8p06dmDNnDgMHDsTOzs5ivTVq1MDd3d24uLq6mqwfOXIkXbt2xcvLi44dO/L6669z8uRJjh8/Xp6HJyIiIiIiIiJyV6uIazfbt2+nb9++9OnTBy8vL/7+97/Ts2fPEp9sF5HKZWtrS0BAAElJScaywsJCkpKSCA4ONrtNcHCwSTzApk2bLMbfjtOnT9O9e3fjg1LW1je/1G0wGPDw8Cj3XERERKR6qVGVO8/PzyclJYXo6GhjmbW1NaGhoSQnJ99W3b/88gsNGzbE3t6e4OBgYmNjadKkidnY3Nxc3n33Xby9vS3Oa5OXl0deXp7xe05Ozm3lJyIiIiIiIiJyp6uoazc3nhb9+eefuf/++9m7dy/ffvst8+bNs7iNrs2IVL6oqCiGDh1KYGAgnTt3Jj4+ntzcXIYPHw7AkCFDaNSoEbGxsQCMGTOGbt26MXfuXPr06cOqVavYtWuXydPh58+fJzU1lbS0NAAOHz4MYHwQCq7PpZ6RkWF8Wnz//v3Url2bJk2aULduXePgedOmTYmLi+Ps2bPG+m/U8d5772Fra4u/vz8Aa9euZfny5SxdurQiT5mIiIhUA1U6gH7u3DkKCgpwc3MzKXdzc7ut+ciDgoJYsWIFPj4+pKenM3XqVB566CEOHDhA7dq1jXFvvfUWEyZMIDc3Fx8fHzZt2oStra3ZOmNjY5k6dWqZcxIRERERERERudtU1LWbiRMnkpOTg6+vLzY2NhQUFDBjxgwGDx5scRtdmxGpfAMGDODs2bPExMSQkZGBn58fiYmJxjYhNTXV5MnvkJAQVq5cyaRJk3j11Vdp2bIl69ato23btsaYzz77zDgADzBw4EAAJk+ezJQpUwBISEgw+Xvv2rUrAO+++y7Dhg1j06ZNHDlyhCNHjtC4cWOTnIuKioyfp0+fzokTJ6hRowa+vr6sXr2av//97+V0dkRERKS6qtIB9IrSu3dv4+f27dsTFBRE06ZN+eijjxgxYoRx3eDBg3n00UdJT08nLi6OJ598ku+++w57e/tidUZHRxMVFWX8npOTY/FpdRERERERERERseyjjz7iww8/ZOXKlbRp0waDwcDYsWNp2LAhQ4cONbuNrs2IVI3IyEgiIyPNrtu6dWuxsv79+9O/f3+L9Q0bNoxhw4aVuM8pU6YYB9PLWsfQoUMtticiIiIiJanSOdBdXV2xsbEhMzPTpDwzM9P4qp3yUKdOHe6//37jK39ucHFxoWXLlnTt2pWPP/6Yn376iU8//dRsHXZ2djg7O5ssInJ3WLRoEV5eXtjb2xMUFFTinHoHDx4kPDwcLy8vrKysiI+PL7HumTNnYmVlxdixY03Kr1y5wujRo6lXrx5OTk6Eh4cXa+tERERERETudBV17Wb8+PFMnDiRgQMH0q5dO5555hnGjRtnfA20Obo2IyIiIiIilaFKB9BtbW0JCAggKSnJWFZYWEhSUhLBwcHltp9Lly5x9OhRPDw8LMYUFRVRVFRkMpeWiNz9Vq9eTVRUFJMnT2b37t106NCBsLAwzpw5Yzb+8uXLNGvWjJkzZ970YtAPP/zA22+/Tfv27YutGzduHJ9//jlr1qxh27ZtpKWl8cQTT5TLMYnc66ZGTTUub/7fm4x7cRzPPvuscRERuV0vDniRz1d/Tu7F3KpORUSkylXUtZvLly+bvPYZwMbGhsLCwjLXKSIiIiIiUh6q/BXuUVFRDB06lMDAQDp37kx8fDy5ubnGeXCGDBlCo0aNjHcg5+fnc+jQIePn06dPYzAYcHJyokWLFgC88sorPP744zRt2pS0tDQmT56MjY0NgwYNAuB///sfq1evpmfPntSvX59Tp04xc+ZMHBwc+Mtf/lIFZ0FEKsq8efOIiIgwtikJCQmsX7+e5cuXM3HixGLxnTp1olOnTgBm199w6dIlBg8ezDvvvMPrr79usi47O5tly5axcuVKHnnkEeD6HF2tWrXi+++/p0uXLuV1eCL3pIvZF42ff7v6G9aXrfn+p+/Jysoy/s2JiNyOZj7NWDhzITNfnUlg90ByRuQQ3jecmjVrVnVqIiJVoiKu3Tz++OPMmDGDJk2a0KZNG/bs2cO8efN0Q6SIiMg9xNvbGysrK4vr//e//1ViNiIiv6vyAfQBAwZw9uxZYmJiyMjIwM/Pj8TERNzc3ABITU01uSM5LS0Nf39/4/e4uDji4uLo1q2bcc6dU6dOMWjQIH799Vfq16/Pgw8+yPfff0/9+vUBsLe355tvviE+Pp4LFy7g5uZG165d2b59Ow0aNKi8gxeRCpWfn09KSgrR0dHGMmtra0JDQ0lOTr6tukePHk2fPn0IDQ0tNoCekpLC1atXCQ0NNZb5+vrSpEkTkpOTLQ6g5+XlmbwFIycn57ZyFKmu4pbFGT+fzD5JUOMg3Gq58cILL9C8efMqzExEqotXpr1C1JQovt36LevXruf5Ec/z4sgX+fvf/87gwYPp1q1bVacoIlKpKuLazZtvvslrr73Giy++yJkzZ2jYsCHPP/88MTExlXpsIiIiUnX+PC3m1atX2bNnD4mJiYwfP75qkhIR4Q4YQAeIjIwkMjLS7LobHasbvLy8KCoqKrG+VatWlbi+YcOGbNiw4ZZyFJG7z7lz5ygoKDBe1LnBzc2Nn376qcz1rlq1it27d/PDDz+YXZ+RkYGtrS116tQptt+MjAyL9cbGxjJ16tQy5yVyL7O2tiYqKoru3bszYcKEqk5HRKoBa2trgroG4RPkQ2e3zny18StmzJjBsmXLKCgoqOr0REQqXXlfu6lduzbx8fHEx8eXU4YiIiJytxkzZozZ8kWLFrFr165KzkZE5HdVOge6iMjd5uTJk4wZM4YPP/wQe3v7cq07Ojqa7Oxs43Ly5MlyrV+kujt69CjXrl2r6jREpJo5f/Y8y5YsY9asWezbt8841YuIyN3u9OnTVZ2CiIiIiFm9e/fmk08+qeo0ROQedkc8gS4iUhFcXV2xsbEhMzPTpDwzMxN3d/cy1ZmSksKZM2fo2LGjsaygoICvv/6ahQsXkpeXh7u7O/n5+WRlZZk8hX6z/drZ2WFnZ1emvETuJfOmzDN+vph/kQ21NpDzaw7r169n6NChVZiZiFQXly5eYsuGLWxYu4E93+/B29ubZ55+htWrV2uqCBG562VkZBjfqHH58uWqTkdEytlvl3/jvUXvseWLLaSfTKeIIpp4NWHwgMG88sorODo6VnWKIiI39fHHH1O3bt2qTkNE7mG3NYB++fJlUlNTyc/PNylv3779bSUlIlIebG1tCQgIICkpiX79+gFQWFhIUlKSxVcP3kyPHj3Yv3+/Sdnw4cPx9fXln//8JzY2NgQEBFCzZk2SkpIIDw8H4PDhw6SmphIcHHxbxyQicPjAYePnvII8LjhcoJF7I+bOncuzzz5bhZmJSHUR5hdGbZfaPPLYIzw97mlGPDYCJ1unqk5LRKTULly4wIsvvsimTZuwtbVl4sSJREZGMmXKFOLi4mjfvj3vvvtuVacpIuXsav5VRoaP5Ojho4Q8HELXR7uScyWHrFNZzJgxgy+++IKvv/6amjVrVnWqIiIA+Pv7Y2VlZfxeVFRERkYGZ8+e5a233qrCzETkXlemAfSzZ88yfPhwvvjiC7PrNSegiNwpoqKiGDp0KIGBgXTu3Jn4+Hhyc3MZPnw4AEOGDKFRo0bExsYCkJ+fz6FDh4yfT58+jcFgwMnJiRYtWlC7dm3atm1rso9atWpRr149Y7mLiwsjRowgKiqKunXr4uzszEsvvURwcDBdunSpxKMXqZ7e/vht4+eT2ScJahyER22PYnHfffcdgYGBlZmaiFQTc9+dS+cHO3O18CpZeVkW49TOiMidauLEiWzfvp1hw4axceNGxo0bR2JiItbW1mzZskX9EpFq6uN/f8yZ9DOs/HIlXi28ADiVcwpfV1+KzhXRvXt3EhISeOmll6o2URGR/9+Nh55usLa2pn79+nTv3h1fX9+qSUpEhDIOoI8dO5asrCx27NhB9+7d+fTTT8nMzOT1119n7ty55Z2jiEiZDRgwgLNnzxITE0NGRgZ+fn4kJibi5uYGQGpqKtbW1sb4tLQ0/P39jd/j4uKIi4ujW7dubN26tdT7nT9/PtbW1oSHh5OXl0dYWJjumhSpZL1798ZgMODq6lrVqYjIXaZL1/9/YKmw5Di1MyJyp/riiy9YsWIFjzzyCJGRkTRr1gw/Pz/+9a9/VXVqIlKBvvriK0aMHWEcPP8jX19f/u///o+PP/5YA+gicseYPHlyqeJmzpzJqFGjTKbLFBGpSGUaQN+yZQv/+c9/CAwMxNramqZNm/Loo4/i7OxMbGwsffr0Ke88ReQesW/fvlLF3cpUEZGRkRZf2f7nQXEvLy+KiopKXbe5OgDs7e1ZtGgRixYtuqW6RKT83OrfsojIrVI7IyJ3qrS0NFq1agVc7+PY29vz9NNPV3FWIlLR/vfz/wgIDrC4/uGHH2batGmVmJGISPn417/+xZNPPqkBdBGpNGUaQM/NzaVBgwYA3HfffZw9e5b777+fdu3asXv37nJNUETuLX5+flhZWZm9IH2j3MrKSlNFiIiIiIiIWFBUVESNGr9f8rGxscHBwaEKMxKRynAx5yIu97lYXF+vXj2ys7MrMSMRkfKhm5dFpLKVaQDdx8eHw4cP4+XlRYcOHXj77bfx8vIiISEBD4/ic5CKiJTWsWPHqjoFERERERGRu1pRURE9evQwDqL/9ttvPP7449ja2prE6SEIkeqlqLAIGxsbi+utra31QIKIiIhIKZRpAH3MmDGkp6cD1+eo6NWrFx9++CG2trasWLGiPPMTkXtM06ZNqzoFERERERGRu9qf5xPt27dvFWUiIpWpqKiIFwa8YDKIfrXgKvY17LGrYce1a9eqMDsRERGRu4d1WTZ6+umnGTZsGAABAQGcOHGCH374gZMnTzJgwIDyzE+k1D77HAIDwcx01AB88w2Eh0O/v8Er4+FSbqWmJ6U0e/ZsfvvtN+P37777jry8POP3ixcv8uKLL1ZFaiJqZ+4yVlZWpYpbtGiRcW7QoKAgdu7cWWL8mjVr8PX1xd7ennbt2rFhwwaT9UVFRcTExODh4YGDgwOhoaH88ssvZuvKy8szTl1hMBiM5YcPH+bhhx/Gzc0Ne3t7mjVrxqRJk7h69aoxZsWKFVhZWZks9vb2pTpmuXOpnbm7lKadqYo2ZsaMGYSEhODo6Gh2jsBff/2VXr160bBhQ+zs7PD09CQyMpKcnBxjzNatW4u1MVZWVmRkZNz0mOXOpTbm3jF58uRSLSLlTe1M1YqIiuCRvzxCt7BuxqVzj8480vsR+vbtS3h4ODExMbdcb3n/nlm7di09e/akXr16xfpCNyxZsoTu3bvj7OyMlZUVWVlZxWLOnz/P4MGDcXZ2pk6dOowYMYJLly6ZxOzbt4+HHnoIe3t7PD09mT179i0fv9xZ1M6IJbfSVh08eJDw8HC8vLywsrIiPj6+WExBQQGvvfYa3t7eODg40Lx5c6ZPn27yOvlhw4YV6zP16tWrIg5PKpHaGYEyDqBPmzaNy5cvG787OjrSsWNHatWqxbRp08otOZHSSkuHTz+Ftu3Mr7/8G0ybDnPnwrpPoX59WLq0cnOU0omOjubixYvG77179+b06dPG75cvX+btt9+uitTkHqd25u5TmvmxVq9eTVRUFJMnT2b37t106NCBsLAwzpw5YzZ++/btDBo0iBEjRrBnzx769etHv379OHDggDFm9uzZvPHGGyQkJLBjxw5q1apFWFgYV65cKVbfhAkTaNiwYbHymjVrMmTIEL788ksOHz5MfHw877zzTrEL3c7OzqSnpxuXEydO3PSY5c6ldubuc7N2pqramPz8fPr3788LL7xgdj/W1tb07duXzz77jJ9//pkVK1awefNmRo0aVSz28OHDJu1MgwYNSnNq5A6kNkZEKpramao3MmpksWXg6IFEjo8s880zFfF7Jjc3lwcffJBZs2ZZ3O/ly5fp1asXr776qsWYwYMHc/DgQTZt2sR///tfvv76a0aOHGlcn5OTQ8+ePWnatCkpKSnMmTOHKVOmsGTJkls6B3LnUDsjltxqW3X58mWaNWvGzJkzcXd3Nxsza9YsFi9ezMKFC/nxxx+ZNWsWs2fP5s033zSJ69Wrl0mf6f/9v/9X7scnlUftjNxQpgH0qVOnFrubD643OlOnTr3tpERuRWERTJ8OE8aDbU3zMdu/Ax8f8PK6/r1/f9i4sdJSlFvw5wvRpRkAE6loamfuThcvXqRZs2YlxsybN4+IiAiGDx9O69atSUhIwNHRkeXLl5uNX7BgAb169WL8+PG0atWK6dOn07FjRxYuXAhcb7Pi4+OZNGkSffv2pX379vz73/8mLS2NdevWmdT1xRdf8OWXXxIXF1dsP82aNWP48OF06NCBpk2b8te//pXBgwfzzTffmMRZWVnh7u5uXNzc3G7hDMmdRO3M3elm7UxVtTFTp05l3LhxtGtnvsd/33338cILLxAYGEjTpk3p0aMHL774YrE2BqBBgwYm7Yy1dZm6kFLF1Mbce/z9/enYseNNF5Hyonam+irv3zMAzzzzDDExMYSGhlrc79ixY5k4cSJdunTKQapyAABqnUlEQVQxu/7HH38kMTGRpUuXEhQUxIMPPsibb77JqlWrSEtLA+DDDz8kPz+f5cuX06ZNGwYOHMg//vEP5s2bdxtnRKqK2pl720MPPYSDg4PF9bfaVnXq1Ik5c+YwcOBA7OzszMZs376dvn370qdPH7y8vPj73/9Oz549iz3ZbmdnZ9Jnuu+++8p+oFKl1M7IH5VpDvSioiKzryvcu3cvdevWve2kRG7Fhx9Ahw7QqpXlmIwM8PD4/XtDDzh3Dq4VQA0by9uJiIDamTvFUz2fKvb742rBVRxtHalp/fuv2t27d5eqvvz8fFJSUoiOjjaWWVtbExoaSnJystltkpOTiYqKMikLCwszDlwdO3aMjIwMkwtBLi4uBAUFkZyczMCBAwHIzMwkIiKCdevW4ejoeNNcjxw5QmJiIk888YRJ+aVLl2jatCmFhYV07NiRf/3rX7Rp08ZsHXl5eSZTYvzxVc1S9dTO3Bn+3M4UFRVRUFSAk60T1la/DxyXpp2pyjbmVqWlpbF27Vq6detWbJ2fnx95eXm0bduWKVOm8MADD1isR+3MnUttzL2nX79+xs9FRUXExsYyatQoXbORCqN25s5gqc90Yw70G6qyz1RekpOTqVOnDoGBgcay0NBQrK2t2bFjB3/7299ITk6ma9eu2NramuQya9YsLly4YHaQS79n7lxqZ+4tu3fvJiYmhv/+978AxaaC+KOytFWlERISwpIlS/j555+5//772bt3L99++22xm3C2bt1KgwYNuO+++3jkkUd4/fXXqVevntk61cbc2dTOyB/d0gD6fffdZ5zH4f777zf5QVZQUMClS5fMvvZPpKIcOQpJW2DpO1WdiYhUV2pn7hzde3U3fi4qKmLFwhX0fLInvp6+1Larfcv1nTt3joKCgmJPbbu5ufHTTz+Z3SYjI8Ns/I05gW/8W1JMUVERw4YNY9SoUQQGBnL8+HGLOYaEhLB7927y8vIYOXKkyVQ5Pj4+LF++nPbt25OdnU1cXBwhISEcPHiQxo0bF6srNjZWbwq6Q6mduXOYa2d6D+xN26ZtsbWxtbyhGVXVxtyKQYMG8Z///IfffvuNxx9/nKV/eO+ch4cHCQkJBAYGkpeXx9KlS+nevTs7duyw+NSq2pk7k9qYe9OfX9E8d+5cxowZc9O384iUhdqZO4e53zJhA8Lw8vDC1dH1luuriN8z5SUjI6PY1DI1atSgbt26Jr+dvL29i+VyY525AXT9nrkzqZ2pnjZu3MimTZuwtbXlueeeo1mzZvz0009MnDiRzz//nLCwsFLVU5a2qjQmTpxITk4Ovr6+2NjYUFBQwIwZMxg8eLAxplevXjzxxBN4e3tz9OhRXn31VXr37k1ycjI2NsVHU9XG3LnUzsif3dIAenx8PEVFRTz77LNMnToVFxcX4zpbW1u8vLwIDg4u9yRFLDHsgfQ06Pe3699//RVen3H9jp+///33OHd3+H7H79/T0sHVVXcE3amWLl2Kk5MTANeuXWPFihW4ul7v6P1xfnSRyqB25s4xMmqkyfcP3/6Qx555jL7BffGo7WFhqzvPm2++ycWLF03ujLZk9erVXLx4kb179zJ+/Hji4uKYMGECAMHBwSa/u0JCQmjVqhVvv/0206dPL1ZXdHS0yZMgOTk5eHp6lsMRye1SO3Pn+HM788HbH/DXIX9lwEMDcLJ1qqKsKs78+fOZPHkyP//8s7GNeOutt4DrN+n4+PgYY0NCQjh69Cjz58/n/fffN1uf2pk7k9oYEaloamfuHJb6TN39u+Pj6mN+IzGh3zN3JrUz1c+yZcuIiIigbt26XLhwgaVLlzJv3jxeeuklBgwYwIEDB2hV0mPAleCjjz7iww8/ZOXKlbRp0waDwcDYsWNp2LAhQ4cOBTB5C1i7du1o3749zZs3Z+vWrfTo0aNYnWpj7lxqZ+TPbmkA/Uaj4O3tzQMPPECNGmV6A7xIufn7300br5Ej4amnoHt307jgEJg5C44fvz43xZo1ENazEhOVUmvSpAnvvPP7bV7u7u7FLtI2adKkstOSe5jamerL1dUVGxsbMjMzTcozMzNxd3c3u427u3uJ8Tf+zczMxOMP73PKzMzEz88PgC1btpCcnFxsjq3AwEAGDx7Me++9Zyy70Ylq3bo1BQUFjBw5kpdfftnsXcw1a9bE39+fI0eOmM3dzs7O4rxeUrXUzlRPVdXG3Iobc/T5+vpSt25dHnroIV577TWTuv+oc+fOfPvttxbrUztzZ1IbIyIVTe1M9VURv2fKi7u7O2fOnDEpu3btGufPnzf57WQulxvrzNHvmTuT2pnqZ8GCBcyaNYvx48fzySef0L9/f9566y32799v9q16JSlLW1Ua48ePZ+LEicZB8nbt2nHixAliY2ONY2V/1qxZM1xdXTly5IjZAXS1MXcutTPyZ9Y3DymuW7dunDhxgkmTJjFo0CDjj5UvvviCgwcPlmuCImWVkAAff3L9cy1HeO01ePll6NcPzmTCc89VaXpiwfHjxzl27NhNF5E7gdqZu5utrS0BAQEkJSUZywoLC0lKSrL4Rp3g4GCTeIBNmzYZ4729vXF3dzeJycnJYceOHcaYN954g71792IwGDAYDMZ5vFavXs2MGTMs5ltYWMjVq1cpLCw0u76goID9+/dbHPiSu5PambtXVbUxZXWjbfnjfHx/ZjAY1MZUM2pjRKSiqZ25u1XE75nyEhwcTFZWFikpKcayLVu2UFhYSFBQkDHm66+/5urVqya5+Pj4mH19u9yd1M7cnY4ePUr//v0BeOKJJ6hRowZz5sy55cFzKFtbVRqXL1/G2tp0CM3GxsbidRmAU6dO8euvv6rfVM2onbk3lekR8m3bttG7d28eeOABvv76a2bMmEGDBg3Yu3cvy5Yt4+OPPy7vPEVKZcmS3z+PGmW6rlvX64tUL+3atWPDhg161Y1UGrUz1UtUVBRDhw4lMDCQzp07Ex8fT25uLsOHDwdgyJAhNGrUiNjYWADGjBlDt27dmDt3Ln369GHVqlXs2rWLJf///xhWVlaMHTuW119/nZYtW+Lt7c1rr71Gw4YN6devH1D8LRo3pqxo3ry5saP44YcfUrNmTdq1a4ednR27du0iOjqaAQMGULNmTQCmTZtGly5daNGiBVlZWcyZM4cTJ07wnH613/XUzlQfVdHGAKSmpnL+/HlSU1MpKCjAYDAA0KJFC5ycnNiwYQOZmZl06tQJJycnDh48yPjx43nggQfw8vICrk/f5e3tTZs2bbhy5QpLly5ly5YtfPnll5V2/qRiqI25N7zxxhsm3/88NdYN//jHPyozLblHqJ2pXsr79wxg/J2SlpYGwOHDh4Hf344D1+coz8jIML5ha//+/dSuXZsmTZpQt25dWrVqRa9evYiIiCAhIYGrV68SGRnJwIEDadiwIQBPPfUUU6dOZcSIEfzzn//kwIEDLFiwgPnz51fOyZMKo3bm7vfbb7/h6OgIXO/n2NnZ3dag8622Vfn5+Rw6dMj4+fTp0xgMBpycnGjRogUAjz/+ODNmzKBJkya0adOGPXv2MG/ePJ599lkALl26xNSpUwkPD8fd3Z2jR48yYcIEWrRoUer52+XOpXZGyjSAPnHiRF5//XWioqKoXbu2sfyRRx5h4cKF5ZaciMjNHD9+3OROYhGpvlYtW2XyvaCggC3rtnDWcBYXexdj+a1cCB4wYABnz54lJiaGjIwM/Pz8SExMxM3NDbg+CPXHu41DQkJYuXIlkyZN4tVXX6Vly5asW7eOtm3bGmMmTJhAbm4uI0eOJCsriwcffJDExETs7e1LnVeNGjWYNWsWP//8M0VFRTRt2pTIyEjGjRtnjLlw4QIRERFkZGRw3333ERAQwPbt22ndunWp9yMipoq1M9cK2PzpZs7vPY9djd9fs1fadqaq2piYmBiT6SD8/f0B+Oqrr+jevTsODg688847jBs3jry8PDw9PXniiSeYOHGicZv8/HxefvllTp8+jaOjI+3bt2fz5s08/PDDpTp2Ealafx4cMjc1lpWVlQbQRaoZs32mT7eQ+kMqbk5uxvKq7jN99tlnxkEt+H0O4cmTJzNlyhQAEhISmDp1qjGma9frIxXvvvsuw4YNA67feBwZGUmPHj2wtrYmPDzc5AYiFxcXvvzyS0aPHk1AQACurq7ExMQwcqTpXPEiUjWWLl1qfKjgdm/2u9W2Ki0tzdhPAoiLiyMuLo5u3bqxdetWAN58801ee+01XnzxRc6cOUPDhg15/vnniYmJAa4/jb5v3z7ee+89srKyaNiwIT179mT69Ol6TbtINWBVVFRUdKsbOTk5sX//fry9valduzZ79+6lWbNmHD9+HF9fX65cuVIRud5RcnJycHFxITs7G2dnZ4txR88fZX/mfjxd9HSs3HtO55zmftf78XX1tRhT2r8lS/7YBlU3pT0336V+R25+LvUc61VidiKV769d/lqs7FrhNexq2GFjdX1OcCsrK/73v/+ZxNxuO1Ndlfa8XL56ma9PfE1t29rY1yj9TQAid6M/tzNFRUUUUoi9jT1WVlaA2plbUdrzknkpk+STyeozyT3pwm8XqGlTk25e3SzGqI2xrLTn5pdff+HQ2UM0dr7118KK3E0s9Zlq2tSkpvX1N1npt8ytKe25+ebEN1y5doW6DnUrMTuRO8PJnJN0adwFdyfL843/+W/Jy8vL2MeyxFx7Vd2Uto3Jzc/l6xNf42znrGszcs+5cu0KOXk5dG3alVq2tSzGlffvmTI9gV6nTh3S09Px9vY2Kd+zZw+NGjW67aRERERE/uyz7z8rVnYy+yRBjYPwqK25pUTk9v25ncm7lkdWXhZdm3bFydapirISEal4mhpLpHow12c6lXMKX1dffFx9qiAjERHzjh8/XtUpiIiUyPrmIcUNHDiQf/7zn2RkZGBlZUVhYSHfffcdr7zyCkOGDCnvHEVEREREREREpIJoaiyRe1O7du04efJkVachIiIicscp0xPo//rXvxg9ejSenp4UFBTQunVrrl27xuDBg5k0aVJ55ygiIiJSbD4/uP7a0/119pd5DnQRkT/6cztzrfAav137jYP3HSzTHOgiIiIidzLdPCMiVeWNN94oVZz6XiJSVco0gG5ra8s777xDTEwM+/fvJzc3F39/f1q0aFHe+YnIPejq1av06tWLhIQEWrZsWdXpiMgdYuU7K4uVmZsDXZ0rESmrP7czluZAVzsjIiIiIiJSdvPnz79pjPpeIlKVyjSADrBs2TLmz5/PL7/8AkDLli0ZO3Yszz33XLklJyL3ppo1a7Jv375Sxb799tu4ubmVGLNo0SLmzJlDRkYGHTp04M0336Rz585mYw8ePEhMTAwpKSmcOHGC+fPnM3bsWJOYxYsXs3jxYuNcPW3atCEmJobevXsbY7p37862bdtMtnv++edJSEgo1XGJSHGaA11EKprmQBcREREREal4x44dq+oURERKVKY50GNiYhgzZgyPP/44a9asYc2aNTz++OOMGzeOmJiY8s5RRO5BTz/9NMuWLbtp3FNPPUWtWrUsrl+9ejVRUVFMnjyZ3bt306FDB8LCwjhz5ozZ+MuXL9OsWTNmzpyJu7u72ZjGjRszc+ZMUlJS2LVrF4888gh9+/bl4MGDJnERERGkp6cbl9mzZ9/0eESk/Gg+PxGpaGpnREREREREKp76XiJS2cr0BPrixYt55513GDRokLHsr3/9K+3bt+ell15i2rRp5ZagiNybrl27xvLly9m8eTMBAQHFBsnnzZtXqnrmzZtHREQEw4cPByAhIYH169ezfPlyJk6cWCy+U6dOdOrUCcDseoDHH3/c5PuMGTNYvHgx33//PW3atDGWOzo6WhyEF5GKp/n8RKSiqZ0RkTuZpsYSERGR6kJ9LxGpbGV6Av3q1asEBgYWKw8ICODatWu3nZSIyIEDB+jYsSO1a9fm559/Zs+ePcbFYDCUqo78/HxSUlIIDQ01lllbWxMaGkpycnK55FlQUMCqVavIzc0lODjYZN2HH36Iq6srbdu2JTo6msuXL5dYV15eHjk5OSaLiIiIiIhIWZT31Fgicne4dvUaLzz5Aqn/S63qVERERETuWmV6Av2ZZ55h8eLFxZ4AXbJkCYMHDy6XxETk3vbVV1/ddh3nzp2joKCg2IUgNzc3fvrpp9uqe//+/QQHB3PlyhWcnJz49NNPad26tXH9U089RdOmTWnYsCH79u3jn//8J4cPH2bt2rUW64yNjWXq1Km3lZeIiIiIiMgNN6bGmjlzZolxTz31VCVlJCIVrUbNGvzy4y+lir1x80xBQUEFZyUiIiJydyn1AHpUVJTxs5WVFUuXLuXLL7+kS5cuAOzYsYPU1FSGDBlS/lmKiNxhfHx8MBgMZGdn8/HHHzN06FC2bdtmHEQfOXKkMbZdu3Z4eHjQo0cPjh49SvPmzc3WGR0dbdLW5uTk4OnpWbEHIiIiIiIi1VZ5TY0lIneX3k/05j+r/sNLr75UYtyNm2f0BjwRERERU6V+hfsfX5+8f/9+AgICqF+/PkePHuXo0aO4urrSsWNHDh48eMtJLFq0CC8vL+zt7QkKCmLnzp0WYw8ePEh4eDheXl5YWVkRHx9fLGbKlClYWVmZLL6+vsb158+f56WXXsLHxwcHBweaNGnCP/7xD7Kzs285dxG5c7m6umJjY0NmZqZJeWZm5m3PTW5ra0uLFi0ICAggNjaWDh06sGDBAovxQUFBABw5csRijJ2dHc7OziaLiIiIiIhIWZXH1Fg3lPe1mxvr/ryMHj36Fo9SRP6soKCAj//9Mc/0foa3Jr9F7GuxREVFGRcRERERKVmpn0Avj9cpm7N69WqioqJISEggKCiI+Ph4wsLCOHz4MA0aNCgWf/nyZZo1a0b//v0ZN26cxXrbtGnD5s2bjd9r1Pj9UNPS0khLSyMuLo7WrVtz4sQJRo0aRVpaGh9//HH5HqCIVBlbW1sCAgJISkqiX79+ABQWFpKUlERkZGS57quwsJC8vDyL629cnPLw8CjX/Yrca65dvcZLg18iemY0TZo1qep0RKQa+mM749ZE8wGLyN2tvK7lVMS1mx9++MHktdEHDhzg0UcfpX///uWSs8i97OhPR/Fte/1horTjaWSdzsKxpiNw/c2iIiJ3gqtXr9KrVy8SEhJo2bJlVacjImKiTHOgl6d58+YRERHB8OHDAUhISGD9+vUsX76ciRMnFovv1KkTnTp1AjC7/oYaNWpYfMK0bdu2fPLJJ8bvzZs3Z8aMGTz99NNcu3bNZLBdRO5uUVFRDB06lMDAQDp37kx8fDy5ubnGNmfIkCE0atSI2NhYAPLz8zl06JDx8+nTpzEYDDg5OdGiRQvg+qvWe/fuTZMmTbh48SIrV65k69atbNy4EYCjR4+ycuVK/vKXv1CvXj327dvHuHHj6Nq1K+3bt6+CsyBSfWg+PxGpaGpnRESKq4hrN/Xr1zf5PnPmTJo3b063bt3KOXuRe8/bH79t/Hwq5xS+rr74uPpUYUYiIsXVrFmTffv2lSr2Rt9LRKSylPoV7hUhPz+flJQUQkNDjWXW1taEhoaSnJx8W3X/8ssvNGzYkGbNmjF48GBSU1NLjM/OzsbZ2dni4HleXh45OTkmi4jc+QYMGEBcXBwxMTH4+flhMBhITEw0/uBKTU0lPT3dGJ+Wloa/vz/+/v6kp6cTFxeHv78/zz33nDHmzJkzDBkyBB8fH3r06MEPP/zAxo0befTRR4HrT75v3ryZnj174uvry8svv0x4eDiff/555R68SDV1Yz6/m3nqqaeKzfMpIlIaamdERH5Xkddu/riPDz74gGeffbbEp2N1bUZERKR6efrpp1m2bNlN49T3EpHKVqWPWp87d46CgoJidw65ubnx008/lbneoKAgVqxYgY+PD+np6UydOpWHHnqIAwcOULt2bbN5TJ8+nZEjR1qsMzY2lqlTp5Y5JxGpOpGRkRZf2b5161aT715eXhQVFZVY381+1Hl6erJt27ZbylFESu/GfH47v9mJp48nXzT4glq2v3ei5s2bV4XZiUh1cKOd+f7r7/Fu7c0Gtw3Y2tga16udEZF7SUVdu/mjdevWkZWVxbBhw0qM07UZERGR6uXatWssX76czZs3ExAQUGyQXH0vEakqVfoEekXp3bs3/fv3p3379oSFhbFhwwaysrL46KOPisXm5OTQp08fWrduzZQpUyzWGR0dTXZ2tnE5efJkBR6BiIiIWHJjPj/HWo6knUjjwL4D7Nmzhz179mAwGKo6PRGpBv7Yzpw+fpp9e/epnRERqUDLli2jd+/eNGzYsMQ4XZsRqRqLFi3Cy8sLe3t7goKC2LlzZ4nxa9aswdfXF3t7e9q1a8eGDRtM1q9du5aePXtSr149rKyszP6+unLlCqNHj6ZevXo4OTkRHh5OZmamcf2KFSuwsrIyu5w5cwa4/tCEufUZGRm3f1JEpFwcOHCAjh07Urt2bX7++Wdjv0t9LxGpalX6BLqrqys2NjYmP34AMjMzLc5fXhZ16tTh/vvv58iRIyblFy9epFevXtSuXZtPP/2UmjVrWqzDzs4OOzu7cstJREREyuaP8/mdzD5JUOMgPGp7VGFGIlLd3Ghn8q7lkZWXRdemXXGydarirEREqkZFX7s5ceIEmzdvZu3atTeN1bUZkcq3evVqoqKiSEhIICgoiPj4eMLCwjh8+DANGjQoFr99+3YGDRpEbGwsjz32GCtXrqRfv37s3r2btm3bApCbm8uDDz7Ik08+SUREhNn9jhs3jvXr17NmzRpcXFyIjIzkiSee4LvvvgOuT9nXq1cvk22GDRvGlStXiuV1+PBhnJ2djd/N5S0iVeOrr76q6hRERMyq0ifQbW1tCQgIICkpyVhWWFhIUlISwcHB5bafS5cucfToUTw8fr+4npOTQ8+ePbG1teWzzz7D3t6+3PYnIiIiIiIiIlIdVPS1m3fffZcGDRrQp0+f265LRMrfvHnziIiIYPjw4bRu3ZqEhAQcHR1Zvny52fgFCxbQq1cvxo8fT6tWrZg+fTodO3Zk4cKFxphnnnmGmJgYQkNDzdaRnZ3NsmXLmDdvHo888ggBAQG8++67bN++ne+//x4ABwcH3N3djYuNjQ1btmxhxIgRxepr0KCBSay1dbV8KauIiIiUoyr/tRAVFcU777zDe++9x48//sgLL7xAbm4uw4cPB2DIkCFER0cb4/Pz8zEYDBgMBvLz8zl9+jQGg8Hk6fJXXnmFbdu2cfz4cbZv387f/vY3bGxsGDRoEPD74Hlubi7Lli0jJyeHjIwMMjIyKCgoqNwTICIiIiIiIiJyB6uIazdwfSD+3XffZejQodSoUaUvSRQRM/Lz80lJSTEZ6La2tiY0NJTk5GSz2yQnJxcbGA8LC7MYb05KSgpXr141qcfX15cmTZpYrOff//43jo6O/P3vfy+2zs/PDw8PDx599FHjE+yW5OXlkZOTY7KIiIjIvafKeycDBgzg7NmzxMTEkJGRgZ+fH4mJibi5uQGQmppqcldgWloa/v7+xu9xcXHExcXRrVs3tm7dCsCpU6cYNGgQv/76K/Xr1+fBBx/k+++/p379+gDs3r2bHTt2ANCiRQuTfI4dO4aXl1cFHrGIiIiIiIiIyN2jIq7dAGzevJnU1FSeffbZSjsWESm9c+fOUVBQYPxbv8HNzY2ffvrJ7DYZGRlm429l3vGMjAxsbW2pU6dOqetZtmwZTz31FA4ODsYyDw8PEhISCAwMJC8vj6VLl9K9e3d27NhBx44dzdYTGxvL1KlTS52riIiIVE9VPoAOEBkZSWRkpNl1f+xYAXh5eVFUVFRifatWrSpxfffu3W9ah4iIiIiIiIiIXFfe124AevbsqeszInLbkpOT+fHHH3n//fdNyn18fPDx8TF+DwkJ4ejRo8yfP79Y7A3R0dFERUUZv+fk5ODp6VkxiYuIiMgd644YQBcRERERERERERGRO4erqys2NjZkZmaalGdmZuLu7m52G3d391uKt1RHfn4+WVlZJk+hW6pn6dKl+Pn5ERAQcNO6O3fuzLfffmtxvZ2dHXZ2dqXOVURERKqnKp8DXURERERERERERETuLLa2tgQEBJCUlGQsKywsJCkpieDgYLPbBAcHm8QDbNq0yWK8OQEBAdSsWdOknsOHD5OamlqsnkuXLvHRRx8xYsSIUtVtMBjw8PAodS4iIiJyb9IAuoiIiNzTFi1ahJeXF/b29gQFBbFz584S49esWYOvry/29va0a9eODRs2mKwvKioiJiYGDw8PHBwcCA0N5ZdffjFbV15eHn5+flhZWWEwGIzlhw8f5uGHH8bNzQ17e3uaNWvGpEmTuHr16i3lIiJVryramBkzZhASEoKjo2OxuUMBfv31V3r16kXDhg2xs7PD09OTyMhIcnJyTOK2bt1Kx44dsbOzo0WLFqxYsaJM50BERETuXlFRUbzzzju89957/Pjjj7zwwgvk5uYyfPhwAIYMGUJ0dLQxfsyYMSQmJjJ37lx++uknpkyZwq5du0ymgDh//jwGg4FDhw4B1/s/BoPBOL+5i4sLI0aMICoqiq+++oqUlBSGDx9OcHAwXbp0Mclv9erVXLt2jaeffrpY7vHx8fznP//hyJEjHDhwgLFjx7JlyxZGjx5d7udJRKrerfS9Dh48SHh4OF5eXlhZWREfH18spqCggNdeew1vb28cHBxo3rw506dPN5l+5lauAYnI3UUD6CIiInLPWr16NVFRUUyePJndu3fToUMHwsLCOHPmjNn47du3M2jQIEaMGMGePXvo168f/fr148CBA8aY2bNn88Ybb5CQkMCOHTuoVasWYWFhXLlypVh9EyZMoGHDhsXKa9asyZAhQ/jyyy85fPgw8fHxvPPOO0yePPmWchGRqlVVbUx+fj79+/fnhRdeMLsfa2tr+vbty2effcbPP//MihUr2Lx5M6NGjTLGHDt2jD59+vDwww9jMBgYO3Yszz33HBs3biynsyMiIiJ3gwEDBhAXF0dMTAx+fn4YDAYSExNxc3MDIDU1lfT0dGN8SEgIK1euZMmSJXTo0IGPP/6YdevW0bZtW2PMZ599hr+/P3369AFg4MCB+Pv7k5CQYIyZP38+jz32GOHh4XTt2hV3d3fWrl1bLL9ly5bxxBNPmL1pMD8/n5dffpl27drRrVs39u7dy+bNm+nRo0d5nR4RuUPcat/r8uXLNGvWjJkzZ1qcYmLWrFksXryYhQsX8uOPPzJr1ixmz57Nm2++aYy5lWtAInJ3sSr64+0yUmo5OTm4uLiQnZ2Ns7Ozxbij54+yP3M/ni6elZidyJ3hdM5p7ne9H19XX4sxpf1buheV9tx8l/odufm51HOsV4nZidwZTmafJKhxEB61Lb+Cr6S/paCgIDp16sTChQuB668j9PT05KWXXmLixInF6howYAC5ubn897//NZZ16dIFPz8/EhISKCoqomHDhrz88su88sorAGRnZ+Pm5saKFSsYOHCgcbsvvviCqKgoPvnkE9q0acOePXvw8/OzeBxRUVH88MMPfPPNN6XK5WZK28ZcvnqZr098TW3b2tjXsL9pvSLVSd61PLLysujatCtOtk4W4yz9PVVlGwOwYsUKxo4dS1ZW1k2P9Y033mDOnDmcPHkSgH/+85+sX7/eZPB+4MCBZGVlkZiYeNP6Sjovf5Z5KZPkk8nqM8k96cJvF6hpU5NuXt0sxqjPZFlpz80vv/7CobOHaOzcuBKzE7kznMo5ha+rLz6uPhZj1M5YVtpz882Jb7hy7Qp1HepWYnYid4aTOSfp0rgL7k7mB6Kh4tuZW+17/ZGXlxdjx45l7NixJuWPPfYYbm5uLFu2zFgWHh6Og4MDH3zwwS33z8wp7XnJzc/l6xNf42znrGszcs+5cu0KOXk5dG3alVq2tSzGlXc7oyfQRURE5J6Un59PSkoKoaGhxjJra2tCQ0NJTk42u01ycrJJPEBYWJgx/tixY2RkZJjEuLi4EBQUZFJnZmYmERERvP/++zg6Ot401yNHjpCYmEi3br9fXL9ZLn+Wl5dHTk6OySIiFacq25hblZaWxtq1a2+rjQG1MyIiIiIiUvnK0vcqjZCQEJKSkvj5558B2Lt3L99++y29e/cGytY/U59J5O6hAXQRERG5J507d46CggLjqwdvcHNzM86992cZGRklxt/4t6SYoqIihg0bxqhRowgMDCwxx5CQEOzt7WnZsiUPPfQQ06ZNK3UufxYbG4uLi4tx8fTUk54iFamq2phbMWjQIBwdHWnUqBHOzs4sXbr0prnk5OTw22+/ma1P7YyIiIiIiFS2svS9SmPixIkMHDgQX19fatasib+/P2PHjmXw4MFA2fpn6jOJ3D00gC4iIiJSid58800uXrxIdHT0TWNXr17N7t27WblyJevXrycuLq7M+42OjiY7O9u43HhNs4jcu+bPn8/u3bv5z3/+w9GjR4mKirqt+tTOiIiIiIhIdfHRRx/x4YcfsnLlSnbv3s17771HXFwc7733XpnrVJ9J5O5Ro6oTEBEREakKrq6u2NjYkJmZaVKemZmJu7v5ebvc3d1LjL/xb2ZmJh4eHiYxN+Y337JlC8nJydjZ2ZnUExgYyODBg006YjfuRG7dujUFBQWMHDmSl19+GRsbm5vm8md2dnbF9ikiFaeq2phb4e7ujru7O76+vtStW5eHHnqI1157DQ8PD4u5ODs74+DgYLY+tTMiIiIiIlLZytL3Ko3x48cbn0IHaNeuHSdOnCA2NpahQ4eWqX+mPpPI3UNPoIuIiMg9ydbWloCAAJKSkoxlhYWFJCUlERwcbHab4OBgk3iATZs2GeO9vb1xd3c3icnJyWHHjh3GmDfeeIO9e/diMBgwGAxs2LABuP60+YwZMyzmW1hYyNWrVyksLCxVLiJStaqqjSmrG21LXl5eqXIRERERERG5E5Sl71Ualy9fxtradAjNxsbG2HeqyP6ZiFQ9PYEuIiIi96yoqCiGDh1KYGAgnTt3Jj4+ntzcXIYPHw7AkCFDaNSoEbGxsQCMGTOGbt26MXfuXPr06cOqVavYtWsXS5YsAcDKyoqxY8fy+uuv07JlS7y9vXnttddo2LAh/fr1A6BJkyYmOTg5OQHQvHlzGjduDMCHH35IzZo1adeuHXZ2duzatYvo6GgGDBhAzZo1S5WLiFS9qmhjAFJTUzl//jypqakUFBRgMBgAaNGiBU5OTmzYsIHMzEw6deqEk5MTBw8eZPz48TzwwAN4eXkBMGrUKBYuXMiECRN49tln2bJlCx999BHr16+vtPMnIiIiIiJSGrfa98rPz+fQoUPGz6dPn8ZgMODk5ESLFi0AePzxx5kxYwZNmjShTZs27Nmzh3nz5vHss88Cpe+ficjdSQPoIiIics8aMGAAZ8+eJSYmhoyMDPz8/EhMTMTNzQ24Pgj1x7uNQ0JCWLlyJZMmTeLVV1+lZcuWrFu3jrZt2xpjJkyYQG5uLiNHjiQrK4sHH3yQxMRE7O3tS51XjRo1mDVrFj///DNFRUU0bdqUyMhIxo0bd0u5iEjVqqo2JiYmxmQ6CH9/fwC++uorunfvjoODA++88w7jxo0jLy8PT09PnnjiCSZOnGjcxtvbm/Xr1zNu3DgWLFhA48aNWbp0KWFhYRV2vkRERERERMriVvteaWlpxn4SQFxcHHFxcXTr1o2tW7cC8Oabb/Laa6/x4osvcubMGRo2bMjzzz9PTEyMcbvyuAYkIncmq6KioqKqTuJulJOTg4uLC9nZ2Tg7O1uMO3r+KPsz9+Pp4lmJ2YncGU7nnOZ+1/vxdfW1GFPav6XbsWjRIubMmUNGRgYdOnTgzTffpHPnzmZjDx48SExMDCkpKZw4cYL58+czduxYk5jFixezePFijh8/DkCbNm2IiYmhd+/expgrV67w8ssvs2rVKvLy8ggLC+Ott94y/mgrjdKem+9SvyM3P5d6jvVKXbdIdXEy+yRBjYPwqO1hMaYy2pm7UWnPy+Wrl/n6xNfUtq2NfQ11AOXeknctj6y8LLo27YqTrZPFOLUz5pX2vGReyiT5ZLL6THJPuvDbBWra1KSbVzeLMWpjLCvtufnl1184dPYQjZ0bV2J2IneGUzmn8HX1xcfVx2KM2hnLSntuvjnxDVeuXaGuQ91KzE7kznAy5yRdGnfB3cnyfONqZ8wr7XnJzc/l6xNf42znrGszcs+5cu0KOXk5dG3alVq2tSzGlXc7oznQRaRaW716NVFRUUyePJndu3fToUMHwsLCOHPmjNn4y5cv06xZM2bOnIm7u/kffY0bN2bmzJmkpKSwa9cuHnnkEfr27cvBgweNMePGjePzzz9nzZo1bNu2jbS0NJ544okKOUYREREREREREREREREpHxpAF5Fqbd68eURERDB8+HBat25NQkICjo6OLF++3Gx8p06dmDNnDgMHDsTOzs5szOOPP85f/vIXWrZsyf3338+MGTNwcnLi+++/ByA7O5tly5Yxb948HnnkEQICAnj33XfZvn27MUZERERERERERERERETuPBpAF5FqKz8/n5SUFEJDQ41l1tbWhIaGkpycXC77KCgoYNWqVeTm5hIcHAxASkoKV69eNdmvr68vTZo0KXG/eXl55OTkmCwiIiIiIiIiIiIiIiJSeTSALiLV1rlz5ygoKCg277ibmxsZGRm3Vff+/ftxcnLCzs6OUaNG8emnn9K6dWsAMjIysLW1pU6dOre039jYWFxcXIyLp6fmARUREREREREREREREalMGkAXESkDHx8fDAYDO3bs4IUXXmDo0KEcOnTotuqMjo4mOzvbuJw8ebKcshUREREREREREREREZHSqFHVCYiIVBRXV1dsbGzIzMw0Kc/MzMTd3f226ra1taVFixYABAQE8MMPP7BgwQLefvtt3N3dyc/PJysry+Qp9Jvt187OzuK86yIiIiIiIiIiIiIiIlLx9AS6iFRbtra2BAQEkJSUZCwrLCwkKSnJOF95eSksLCQvLw+4PqBes2ZNk/0ePnyY1NTUct+viIiIiIiIiEhFWrRoEV5eXtjb2xMUFMTOnTtLjF+zZg2+vr7Y29vTrl07NmzYYLJ+7dq19OzZk3r16mFlZYXBYChWx5UrVxg9ejT16tXDycmJ8PDwYg9IWFlZFVtWrVplErN161Y6duyInZ0dLVq0YMWKFWU6ByIiInJv0QC6iFRrUVFRvPPOO7z33nv8+OOPvPDCC+Tm5jJ8+HAAhgwZQnR0tDE+Pz8fg8GAwWAgPz+f06dPYzAYOHLkiDEmOjqar7/+muPHj7N//36io6PZunUrgwcPBsDFxYURI0YQFRXFV199RUpKCsOHDyc4OJguXbpU7gkQERERERERESmj1atXExUVxeTJk9m9ezcdOnQgLCyMM2fOmI3fvn07gwYNYsSIEezZs4d+/frRr18/Dhw4YIzJzc3lwQcfZNasWRb3O27cOD7//HPWrFnDtm3bSEtL44knnigW9+6775Kenm5c+vXrZ1x37Ngx+vTpw8MPP4zBYGDs2LE899xzbNy4sewnRERERO4JeoW7iFRrAwYM4OzZs8TExJCRkYGfnx+JiYm4ubkBkJqairX17/cSpaWl4e/vb/weFxdHXFwc3bp1Y+vWrQCcOXOGIUOGkJ6ejouLC+3bt2fjxo08+uijxu3mz5+PtbU14eHh5OXlERYWxltvvVU5By0iIiIiIiIiUg7mzZtHRESE8UGEhIQE1q9fz/Lly5k4cWKx+AULFtCrVy/Gjx8PwPTp09m0aRMLFy4kISEBgGeeeQaA48ePm91ndnY2y5YtY+XKlTzyyCPA9YHyVq1a8f3335s8nFCnTh2L0+UlJCTg7e3N3LlzAWjVqhXffvst8+fPJywsrAxnQ0RERO4VGkAXkWovMjKSyMhIs+tuDIrf4OXlRVFRUYn1LVu27Kb7tLe3Z9GiRSxatKjUeYqIiIiIiIiI3Cny8/NJSUkxeXOftbU1oaGhJCcnm90mOTmZqKgok7KwsDDWrVtX6v2mpKRw9epVQkNDjWW+vr40adKE5ORkkwH00aNH89xzz9GsWTNGjRrF8OHDsbKyMubyxzpu5DJ27FiL+87LyzNO0QeQk5NT6rxFRESk+tAAuoiIiIiIiIiIiIiYOHfuHAUFBca3+N3g5ubGTz/9ZHabjIwMs/EZGRml3m9GRga2trbUqVOnxHqmTZvGI488gqOjI19++SUvvvgily5d4h//+EeJueTk5PDbb7/h4OBQbN+xsbFMnTq11LmKiIhI9aQBdBERERERERERERG5q7z22mvGz/7+/uTm5jJnzhzjAHpZREdHmzxBn5OTg6en523lKSIiIncf65uHiIiIiIiIiIiIiMi9xNXVFRsbGzIzM03KMzMzLc477u7ufkvxlurIz88nKyvrluoJCgri1KlTxlewW8rF2dnZ7NPnAHZ2djg7O5ssIiIicu/RALqIiIiIiIiIiIiImLC1tSUgIICkpCRjWWFhIUlJSQQHB5vdJjg42CQeYNOmTRbjzQkICKBmzZom9Rw+fJjU1NQS6zEYDNx3333Y2dmVWy4iIiJyb9Ir3EVERERERERERESkmKioKIYOHUpgYCCdO3cmPj6e3Nxchg8fDsCQIUNo1KgRsbGxAIwZM4Zu3boxd+5c+vTpw6pVq9i1axdLliwx1nn+/HlSU1NJS0sDrg+Ow/Unxt3d3XFxcWHEiBFERUVRt25dnJ2deemllwgODqZLly4AfP7552RmZtKlSxfs7e3ZtGkT//rXv3jllVeM+xk1ahQLFy5kwoQJPPvss2zZsoWPPvqI9evXV8q5ExERkbuXBtBFREREREREREREpJgBAwZw9uxZYmJiyMjIwM/Pj8TERNzc3ABITU3F2vr3l5yGhISwcuVKJk2axKuvvkrLli1Zt24dbdu2NcZ89tlnxgF4gIEDBwIwefJkpkyZAsD8+fOxtrYmPDycvLw8wsLCeOutt4zb1KxZk0WLFjFu3DiKiopo0aIF8+bNIyIiwhjj7e3N+vXrGTduHAsWLKBx48YsXbqUsLCwCjlXIiIiUn1oAF1EREREREREREREzIqMjCQyMtLsuq1btxYr69+/P/3797dY37Bhwxg2bFiJ+7S3t2fRokUsWrTI7PpevXrRq1evEusA6N69O3v27LlpnIiIiMgfVfkc6IsWLcLLywt7e3uCgoLYuXOnxdiDBw8SHh6Ol5cXVlZWxMfHF4uZMmUKVlZWJouvr69JzJIlS+jevTvOzs5YWVmRlZVVzkclIiIiIiIiIlJ9lPf1G4DTp0/z9NNPU69ePRwcHGjXrh27du2qoCMQEREREREpnSodQF+9ejVRUVFMnjyZ3bt306FDB8LCwjhz5ozZ+MuXL9OsWTNmzpyJu7u7xXrbtGlDenq6cfn222+L1dOrVy9effXVcj0eEREREREREZHqpiKu31y4cIEHHniAmjVr8sUXX3Do0CHmzp3LfffdV5GHIiIiIiIiclNV+gr3G/PS3JjzJiEhgfXr17N8+XImTpxYLL5Tp0506tQJwOz6G2rUqFHiAPvYsWMB868YEhERERERERGR31XE9ZtZs2bh6enJu+++ayzz9vaugOxFRERERERuTZU9gZ6fn09KSgqhoaG/J2NtTWhoKMnJybdV9y+//ELDhg1p1qwZgwcPJjU19XbTJS8vj5ycHJNFRERERERERKQ6q6jrN5999hmBgYH079+fBg0a4O/vzzvvvFPiNro2IyIiIiIilaHKBtDPnTtHQUEBbm5uJuVubm5kZGSUud6goCBWrFhBYmIiixcv5tixYzz00ENcvHjxtvKNjY3FxcXFuHh6et5WfSIiIiIiIiIid7qKun7zv//9j8WLF9OyZUs2btzICy+8wD/+8Q/ee+89i9vo2oyIiIiIiFSGKp0DvSL07t2b/v370759e8LCwtiwYQNZWVl89NFHt1VvdHQ02dnZxuXkyZPllLGIiIiIiIiIyL2lsLCQjh078q9//Qt/f39GjhxJREQECQkJFrfRtRkREREREakMVTaA7urqio2NDZmZmSblmZmZJc5ffqvq1KnD/fffz5EjR26rHjs7O5ydnU0WERERufstWrQILy8v7O3tCQoKYufOnSXGr1mzBl9fX+zt7WnXrh0bNmwwWV9UVERMTAweHh44ODgQGhrKL7/8YrauvLw8/Pz8sLKywmAwGMu3bt1K37598fDwoFatWvj5+fHhhx+abLtixQqsrKxMFnt7+7KdBBGpMFXRxsyYMYOQkBAcHR2pU6dOsX3s3buXQYMG4enpiYODA61atWLBggUmMVu3bi3WxlhZWd3W06YicneqqOs3Hh4etG7d2qSsVatWJU7Dp2szIiIiYsmt9L0OHjxIeHg4Xl5eWFlZER8fXyzmxro/L6NHjzbGdO/evdj6UaNGVcThiUglq7IBdFtbWwICAkhKSjKWFRYWkpSURHBwcLnt59KlSxw9ehQPD49yq1NERESqh9WrVxMVFcXkyZPZvXs3HTp0ICwsjDNnzpiN3759O4MGDWLEiBHs2bOHfv360a9fPw4cOGCMmT17Nm+88QYJCQns2LGDWrVqERYWxpUrV4rVN2HCBBo2bGh2P+3bt+eTTz5h3759DB8+nCFDhvDf//7XJM7Z2Zn09HTjcuLEids8IyJSnqqqjcnPz6d///688MILZveTkpJCgwYN+OCDDzh48CD/93//R3R0NAsXLiwWe/jwYZN2pkGDBrd5VkTkblNR128eeOABDh8+bFL2888/07Rp0zLXKSIiIvemW+17Xb58mWbNmjFz5kyLNwT+8MMPJn2hTZs2AdC/f3+TuIiICJO42bNnl+/BiUiVqFGVO4+KimLo0KEEBgbSuXNn4uPjyc3NZfjw4QAMGTKERo0aERsbC1y/EHTo0CHj59OnT2MwGHBycqJFixYAvPLKKzz++OM0bdqUtLQ0Jk+ejI2NDYMGDTLuNyMjg4yMDONT6fv376d27do0adKEunXrVuYpEBERkSo0b948IiIijL89EhISWL9+PcuXL2fixInF4hcsWECvXr0YP348ANOnT2fTpk0sXLiQhIQEioqKiI+PZ9KkSfTt2xeAf//737i5ubFu3ToGDhxorOuLL77gyy+/5JNPPuGLL74w2c+rr75q8n3MmDF8+eWXrF27lscee8xYbmVlVa5v7hGR8lVVbczUqVOB62+qMOfZZ581+d6sWTOSk5NZu3YtkZGRJusaNGhg9il2Ebm3VMT1m3HjxhESEsK//vUvnnzySXbu3MmSJUtYsmRJ1RykiIiI3LVute/VqVMnOnXqBGB2PUD9+vVNvs+cOZPmzZvTrVs3k3JHR0ddmxGphqp0DvQBAwYQFxdHTEwMfn5+GAwGEhMTcXNzAyA1NZX09HRjfFpaGv7+/vj7+5Oenk5cXBz+/v4899xzxphTp04xaNAgfHx8ePLJJ6lXrx7ff/+9SWOXkJCAv78/ERERAHTt2hV/f38+++yzSjpyERERqWr5+fmkpKQQGhpqLLO2tiY0NJTk5GSz2yQnJ5vEA4SFhRnjjx07RkZGhkmMi4sLQUFBJnVmZmYSERHB+++/j6OjY6nyzc7OLnaj36VLl2jatCmenp707duXgwcPWtw+Ly+PnJwck0VEKk5VtjFlYa6NAfDz88PDw4NHH32U7777rsQ61M6IVF8Vcf2mU6dOfPrpp/y///f/aNu2LdOnTyc+Pp7BgwdX+vGJiIjI3assfa+y7OODDz7g2WefxcrKymTdhx9+iKurK23btiU6OprLly9brEd9JpG7R5U+gQ4QGRlZ7CmHG7Zu3Wry3cvLi6KiohLrW7Vq1U33OWXKFKZMmVLaFEVERKQaOnfuHAUFBcYLvze4ubnx008/md0mIyPDbPyNOYFv/FtSTFFREcOGDWPUqFEEBgZy/Pjxm+b60Ucf8cMPP/D2228by3x8fFi+fDnt27cnOzubuLg4QkJCOHjwII0bNy5WR2xsrPGpVBGpeFXVxpTF9u3bWb16NevXrzeWeXh4kJCQQGBgIHl5eSxdupTu3buzY8cOOnbsaLYetTMi1Vt5X78BeOyxx0zeriMiIiJyq8rS97pV69atIysri2HDhpmUP/XUUzRt2pSGDRuyb98+/vnPf3L48GHWrl1rth71mUTuHlX6BLqISGVYtGgRXl5e2NvbExQUxM6dOy3GHjx4kPDwcLy8vLCysiI+Pr5YTGxsLJ06daJ27do0aNCAfv36FZu7r3v37lhZWZkso0aNKu9DE5G70JtvvsnFixeJjo4uVfxXX33F8OHDeeedd2jTpo2xPDg4mCFDhuDn50e3bt1Yu3Yt9evXNxlk/6Po6Giys7ONy8mTJ8vleETk7nbgwAH69u3L5MmT6dmzp7Hcx8eH559/noCAAEJCQli+fDkhISHMnz/fYl1qZ0REREREpDpatmwZvXv3pmHDhiblI0eOJCwsjHbt2jF48GD+/e9/8+mnn3L06FGz9ajPJHL30AC6iFRrq1evJioqismTJ7N79246dOhAWFgYZ86cMRt/+fJlmjVrxsyZMy3OXbNt2zZGjx7N999/z6ZNm7h69So9e/YkNzfXJC4iIoL09HTjMnv27HI/PhEpO1dXV2xsbMjMzDQpz8zMtPj37+7uXmL8jX9LitmyZQvJycnY2dlRo0YN4zyggYGBDB061GS7bdu28fjjjzN//nyGDBlS4vHUrFkTf39/jhw5Yna9nZ0dzs7OJouIVJyqamNuxaFDh+jRowcjR45k0qRJN43v3LmzxTYG1M6IiIiIiEjlK0vf61acOHGCzZs3m0xFY0lQUBCArs2IVAMaQBeRam3evHlEREQwfPhwWrduTUJCAo6OjixfvtxsfKdOnZgzZw4DBw7Ezs7ObExiYiLDhg2jTZs2dOjQgRUrVpCamkpKSopJnKOjI+7u7sZFP4hE7iy2trYEBASQlJRkLCssLCQpKYng4GCz2wQHB5vEA2zatMkY7+3tjbu7u0lMTk4OO3bsMMa88cYb7N27F4PBgMFgYMOGDcD1G35mzJhh3G7r1q306dOHWbNmMXLkyJseT0FBAfv378fDw6OUZ0BEKlJVtTGldfDgQR5++GGGDh1q0vaUxGAwqI0REREREZE7Sln6Xrfi3XffpUGDBvTp0+emsQaDAUD9JpFqoMrnQBcRqSj5+fmkpKSYvCbZ2tqa0NBQkpOTy20/2dnZANStW9ek/MMPP+SDDz7A3d2dxx9/nNdeew1HR0eL9eTl5ZGXl2f8npOTU245ioh5UVFRDB06lMDAQDp37kx8fDy5ubkMHz4cgCFDhtCoUSNiY2MBGDNmDN26dWPu3Ln06dOHVatWsWvXLpYsWQKAlZUVY8eO5fXXX6dly5Z4e3vz2muv0bBhQ/r16wdAkyZNTHJwcnICoHnz5sa5y7/66isee+wxxowZQ3h4uHFuY1tbW2NbM23aNLp06UKLFi3Iyspizpw5nDhxolR3RItI5aiKNgYgNTWV8+fPk5qaSkFBgfEiTosWLXBycuLAgQM88sgjhIWFERUVZWxjbGxsqF+/PgDx8fF4e3vTpk0brly5wtKlS9myZQtffvllJZ09ERERERGR0rnVvld+fj6HDh0yfj59+jQGgwEnJyfjmwLh+kD8u+++y9ChQ6lRw3Q47ejRo6xcuZK//OUv1KtXj3379jFu3Di6du1K+/btK+nIRaSi6Al0Eam2zp07R0FBAW5ubiblbm5uxgvFt6uwsJCxY8fywAMP0LZtW2P5U089xQcffMBXX31FdHQ077//Pk8//XSJdcXGxuLi4mJcPD09yyVHEbFswIABxMXFERMTg5+fHwaDgcTERGO7kZqaSnp6ujE+JCSElStXsmTJEjp06MDHH3/MunXrTP7+J0yYwEsvvcTIkSPp1KkTly5dIjExEXt7+1Ln9d5773H58mViY2Px8PAwLk888YQx5sKFC0RERNCqVSv+8pe/kJOTw/bt22ndunU5nBkRKQ9V1cbExMTg7+/P5MmTuXTpEv7+/vj7+7Nr1y4APv74Y86ePcsHH3xg0sZ06tTJWEd+fj4vv/wy7dq1o1u3buzdu5fNmzfTo0ePij5tIiIicodZtGgRXl5e2NvbExQUxM6dO0uMX7NmDb6+vtjb29OuXTvjW7duWLt2LT179qRevXpYWVkZb/b7oytXrjB69Gjq1auHk5MT4eHhJq9n3rt3L4MGDcLT0xMHBwdatWrFggULTOrYunUrVlZWxZbyuiYkIneOW+17paWlGftJ6enpxMXF4e/vX+yhhM2bN5Oamsqzzz5bbJ+2trZs3ryZnj174uvry8svv0x4eDiff/55xR6siFQKq6KioqKqTuJulJOTg4uLC9nZ2SW+lvno+aPsz9yPp4sGwuTeczrnNPe73o+vq6/FmNL+LZVFWloajRo1Yvv27Sav65kwYQLbtm1jx44dJW7v5eXF2LFjGTt2rMWYF154gS+++IJvv/3W+OSoOVu2bKFHjx4cOXKE5s2bm40x9wS6p6fnTc/Nd6nfkZufSz3HeiUej0h1dDL7JEGNg/CobfnVWBXZztzNSnteLl+9zNcnvqa2bW3sa5T+JgCR6iDvWh5ZeVl0bdoVJ1sni3FqZ8wr7XnJvJRJ8slk9ZnknnThtwvUtKlJN69uFmPUxlhW2nPzy6+/cOjsIRo7W+6ziVRXp3JO4evqi4+rj8WYkv6WVq9ezZAhQ0hISCAoKIj4+HjWrFnD4cOHadCgQbG6tm/fTteuXYmNjeWxxx5j5cqVzJo1i927dxtvCnz//fc5duwYDRs2JCIigj179uDn52dSzwsvvMD69etZsWIFLi4uREZGYm1tzXfffQfA8uXL2bt3L0888QSenp5s376dkSNHMnv2bCIjI4HrA+gPP/wwhw8fNjmuBg0aYG1duufKStvOfHPiG65cu0Jdh7oWY0Sqq5M5J+nSuAvuTpbnG9fvGfNKe15y83P5+sTXONs569qM3HOuXLtCTl4OXZt2pZZtLYtx5d3O6BXuIlJtubq6YmNjY3KHMkBmZibu7pZ/0JVWZGQk//3vf/n6669LHDwHCAoKAihxAN3Ozs7ivOsiIiIiIiIiIpVt3rx5REREGF+DnJCQwPr161m+fDkTJ04sFr9gwQJ69erF+PHjAZg+fTqbNm1i4cKFJCQkAPDMM88AcPz4cbP7zM7OZtmyZaxcuZJHHnkEuD4HcatWrfj+++/p0qVLsadBmzVrRnJyMmvXrjUOoN/QoEED6tSpU+ZzICIiIvcevcJdRKotW1tbAgICSEpKMpYVFhaSlJRk8kT6rSoqKiIyMpJPP/2ULVu24O3tfdNtbryOzMPD8lOyIiIiIiIiIiJ3ivz8fFJSUggNDTWWWVtbExoaSnJystltkpOTTeIBwsLCLMabk5KSwtWrV03q8fX1pUmTJiXWk52dTd26xZ8A9/Pzw8PDg0cffdT4BLsleXl55OTkmCwiIiJy79ET6CJSrUVFRTF06FACAwPp3Lkz8fHx5ObmGu+cHjJkCI0aNSI2Nha43jk8dOiQ8fPp06cxGAw4OTnRokULAEaPHs3KlSv5z3/+Q+3atY1zZ7m4uODg4MDRo0dZuXIlf/nLX6hXrx779u1j3LhxdO3alfbt21fBWRARERERERERuTXnzp2joKDAOIfwDW5ubvz0009mt8nIyDAbfyvzjmdkZGBra1vsqfGS6tm+fTurV69m/fr1xjIPDw8SEhIIDAwkLy+PpUuX0r17d3bs2EHHjh3N1hMbG8vUqVNLnauIiIhUTxpAF5FqbcCAAZw9e5aYmBgyMjLw8/MjMTHR2JlLTU01mfcqLS0Nf39/4/e4uDji4uLo1q0bW7duBWDx4sUAdO/e3WRf7777LsOGDcPW1pbNmzcbB+s9PT0JDw9n0qRJFXuwIiIiIiIiIiL3mAMHDtC3b18mT55Mz549jeU+Pj74+Pw+93tISAhHjx5l/vz5vP/++2brio6OJioqyvg9JycHT0/PikteRERE7kgaQBeRai8yMrLY/Fc33BgUv8HLy4uioqIS67vZek9PT7Zt23ZLOYqIiIiIiIiI3ElcXV2xsbEhMzPTpDwzMxN3d3ez27i7u99SvKU68vPzycrKMnkK3Vw9hw4dokePHowcObJUDy507tyZb7/91uJ6Ozs77OzsSp2riIiIVE+aA11ERERERERERERETNja2hIQEEBSUpKxrLCwkKSkJIKDg81uExwcbBIPsGnTJovx5gQEBFCzZk2Teg4fPkxqaqpJPQcPHuThhx9m6NChzJgxo1R1GwwGPDw8Sp2LiIiI3Jv0BLqIiIiIiIiIiIiIFBMVFcXQoUMJDAykc+fOxunqhg8fDsCQIUNo1KgRsbGxAIwZM4Zu3boxd+5c+vTpw6pVq9i1axdLliwx1nn+/HlSU1NJS0sDrg+Ow/Unz93d3XFxcWHEiBFERUVRt25dnJ2deemllwgODqZLly7A9de2P/LII4SFhREVFWWcG93Gxob69esDEB8fj7e3N23atOHKlSssXbqULVu28OWXX1bOyRMREZG7lgbQRURERERERERERKSYAQMGcPbsWWJiYsjIyMDPz4/ExETc3NwASE1Nxdr695echoSEsHLlSiZNmsSrr75Ky5YtWbduHW3btjXGfPbZZ8YBeICBAwcCMHnyZKZMmQLA/Pnzsba2Jjw8nLy8PMLCwnjrrbeM23z88cecPXuWDz74gA8++MBY3rRpU44fPw5Afn4+L7/8MqdPn8bR0ZH27duzefNmHn744XI/TyIiIlK9aABdRERERERERERERMyKjIwkMjLS7LqtW7cWK+vfvz/9+/e3WN+wYcMYNmxYifu0t7dn0aJFLFq0yOz6KVOmGAfbLZkwYQITJkwoMUZERETEHM2BLiIiIiIiIiIiIiIiIiIiggbQRUREREREREREREREREREAA2gi4iIiIiIiIiIiIiIiIiIABpAFxERERERkf+vvbsPqrLO/z/+OgKHGwURUQ6YINiNZqamRbTftEYGc2lHt5tVF01TczJqJdPUKaO2ab3ZZmy1Zt1pW3VS15s1rTQ1E9FVSc3AvMvVMq0ELIsbRUHg8/uj4fw8AXJ3Lg43z8cM03r4nOt9XUfPc8+5Lm4AAAAAAAAgiQvoAAAAAAAAAAAAAABI4gI6AAAAAAAAAAAAAACSuIAOAAAAAAAAAAAAAIAkLqADAAAAAAAAAAAAACCJC+gAAAAAAAAAAAAAAEjiAjoAAAAAAAAAAAAAAJK4gA4AAAAAAAAAAAAAgCQuoAMAAAAAAAAAAAAAIIkL6AAAAAAAAAAAAAAASOICOgAAAAAAAAAAAAAAkriADgAAAAAAAAAAAACApCZyAf2tt95St27d5Ofnp9jYWO3fv7/atUePHtXDDz+sbt26yWaz6Y033qi05uWXX5bNZnP56NGjh8uaK1euKDk5WR07dlS7du308MMPKzc3192HBqAJcHdj5syZozvvvFOBgYHq3Lmzhg8frhMnTrisoTFA81GXRkjS2rVr1aNHD/n5+al379766KOPXD5vjNFLL72k8PBw+fv7Kz4+XidPnqxyW8XFxerbt69sNpuysrKct6enp2vYsGEKDw9X27Zt1bdvX61YsaLO+wLA8zzRmNdee0333HOPAgICFBwcXGnGoUOHNGrUKHXt2lX+/v7q2bOn/va3v1Val56erjvuuEO+vr668cYbtXTp0jofP4CWwxPnbgA0De5+PfPee+8pISFBHTt2rPReqEJtzqucPXtWiYmJCggIUOfOnTV9+nSVlpa6rOH1DNB6uPu1SsXnfv2RnJzsXMM5YKDl8vgF9NWrV2vq1KlKTU3V559/rj59+mjIkCE6f/58leuLiooUExOjuXPnyuFwVLvdXr16KTs72/mxe/dul88/++yz+vDDD7V27Vrt3LlT586d00MPPeTWYwPgeVY0ZufOnUpOTtann36qbdu26erVq0pISNClS5eca2gM0DzUtRF79+7VqFGjNGHCBGVmZmr48OEaPny4jhw54lwzf/58LVy4UIsXL9a+ffvUtm1bDRkyRFeuXKm0veeff14RERFVzrn99tu1bt06ffHFF3r88cf12GOPaePGjXXaFwCe5anGlJSU6NFHH9XkyZOrnHPw4EF17txZy5cv19GjR/XCCy9o1qxZevPNN51rTp8+rcTERN1///3KyspSSkqKJk6cqK1bt7rp0QHQnHjq3A0Az7Pi9cylS5f0f//3f5o3b161c2s6r1JWVqbExESVlJRo7969WrZsmZYuXaqXXnrJuYbXM0DrYcVrlQMHDri8Ttm2bZsk6dFHH3Wu4Rww0HLZjDHGkzsQGxurO++803mypry8XF27dtUzzzyjmTNnXve+3bp1U0pKilJSUlxuf/nll7Vhw4Yqv3pRkvLz89WpUyetXLlSjzzyiCTpyy+/VM+ePZWRkaG77767xv0uKChQ+/btlZ+fr6CgoGrXffXTVzqce1hd23etcZtAS/N9wfe6OfRm9Qit/rsIavtcqi8rGvNrP/zwgzp37qydO3dq4MCBbmmMVPvHZs/ZPbpUckkdAzrWartAS/Jt/reKvSFW4YHh1a653nOpro0YMWKELl265HIh++6771bfvn21ePFiGWMUERGh5557TtOmTZP0y+uOsLAwLV26VCNHjnTeb/PmzZo6darWrVunXr16KTMzU3379q32OBITExUWFqZ//etftdqXmtS2MUVXi7TrzC4F2gPl5+1X43aBlqS4tFh5xXkaGDVQ7eztql1X3fPJk42RpKVLlyolJUV5eXk1HmtycrKOHz+utLQ0SdKMGTO0adMml5PdI0eOVF5enrZs2VLj9q73uPxa7sVcZXybwXsmtEo/X/5ZPl4+GtRtULVrrH7PVBueOHdTG7V9bE5eOKljPxzTDUE31HsW0Fx9V/CdeoT20C2ht1S7pjHfM13rm2++UXR0dKX3QrU5r7J582Y9+OCDOnfunMLCwiRJixcv1owZM/TDDz/Ibrc36uuZ/575r66UXlGIf0ittgu0JN8WfKu7b7hbjnbVf9FcSzgHnJKSoo0bN+rkyZOy2WyNep3pUskl7TqzS0G+QZybQatzpfSKCooLNDBqoNra21a7zt2d8W7wFhqgpKREBw8e1KxZs5y3tWnTRvHx8crIyGjQtk+ePKmIiAj5+fkpLi5Oc+bMUWRkpKRfvuPi6tWrio+Pd67v0aOHIiMjqw1bcXGxiouLnX8uKCio9b5cLLmo7wq+a8DRAM1TYXGhR+db2Zhr5efnS5JCQn55k1Sfxkj170y5Kdf5S+d1ufRyfQ8BaLZKy0trXlSN+jQiIyNDU6dOdbltyJAh2rBhg6RfvsMhJyfH5fnfvn17xcbGKiMjw3lxKzc3V0888YQ2bNiggICAWu1vfn6+evbsWet9+bWGvJaRfjnxxps0tDbFpcVq51v9hfPr8WRj6iM/P9/5WqZiX66dU7Ev1zup1JDOlJky3jOhVSosLmzyXzziqXM3VWlIZwqLC+kMWqWGnJux4vVMbdTmvEpGRoZ69+7tvHheMWfy5Mk6evSo+vXr16ivZ8pVrtyLuSq6WlTLowRajrLyMo/Ob4xzwCUlJVq+fLmmTp0qm80mqfGvM0mcm0HrVFxarEDfwEaf69EL6D/++KPKyspcXuhIUlhYmL788st6bzc2NlZLly7VLbfcouzsbL3yyiu69957deTIEQUGBionJ0d2u73S7wMMCwtTTk5OlducM2eOXnnllTrvSwf/Drq7a+2+2xRoiTr4dfDYbKsac63y8nKlpKToN7/5jW677TZJqldjpPp3JqZDzHW/+xZoyWyyKci3fl9RWJ9G5OTkVLm+4rld8d/rrTHGaNy4cXryySc1YMAAffPNNzXu65o1a3TgwAH94x//qPW+/Fp9G+Pr5atbOt6iMuPZN8SAp7SxtanXCQpPNaY+9u7dq9WrV2vTpk017ktBQYEuX74sf3//Stupb2cCfQPV19FXRh794WiAxzT1k6CeOndTlfp2pmNAR87NoFWr77kZK17P1EZtzqtUN6fic9dbY8XrmRs73KgugV3qfD+gJWjIuRl3aIxzwBs2bFBeXp7GjRvnvK0xrzP5efupR2gPzs2g1fKyeTX6+yaPXkC3ytChQ53/+/bbb1dsbKyioqK0Zs0aTZgwoV7bnDVrlstXTxYUFKhr15q/SjzEP4Qf3QO0YMnJyTpy5IhbfldffTvTJYg3aEBzsmjRIhUWFrp8ZfT17NixQ48//rjefvtt9erVq95z69sYrzZeiu4QXe+5AJq2I0eOaNiwYUpNTVVCQkKDtlXfzgT4BKh7SPcGzQbQ/NTn3A3nZgBYjXMzAKryzjvvaOjQoYqIiGjQdjg3AzQfHr2AHhoaKi8vL+Xm5rrcnpubK4ej+t+XUVfBwcG6+eabderUKUmSw+FQSUmJ8vLyXL466HpzfX195evr67Z9AmA9qxvz9NNPa+PGjdq1a5duuOH//y69+jRGojNAY6tPIxwOx3XXV/w3NzdX4eHhLmsqfqdfWlqaMjIyKj3fBwwYoKSkJC1btsx5286dO/W73/1OCxYs0GOPPVanffk1GgM0Lk81pi6OHTumwYMHa9KkSXrxxRdrtS9BQUFVfreWRGeAlspT526qQmeAxmXF65naqM15FYfDof3791eaU/G56+0Lr2eAlsXq1ypnzpzRJ598ovfee8/ldq4zAS1bG08Ot9vt6t+/v7Zv3+68rby8XNu3b1dcXJzb5ly8eFFfffWV8yRT//795ePj4zL3xIkTOnv2rFvnAvAsqxpjjNHTTz+t9evXKy0tTdHRrl/9R2OA5qE+jYiLi3NZL0nbtm1zro+OjpbD4XBZU1BQoH379jnXLFy4UIcOHVJWVpaysrL00UcfSZJWr16t1157zXm/9PR0JSYmat68eZo0aVKd9wWAZ3mqMbV19OhR3X///Ro7dqxLe2q7LwBaD0+duwHgeVa8nqmN2pxXiYuL0+HDh3X+/HmXOUFBQbr11lvdti8Amj6rX6ssWbJEnTt3VmJiosvtnAMGWjjjYatWrTK+vr5m6dKl5tixY2bSpEkmODjY5OTkGGOMGTNmjJk5c6ZzfXFxscnMzDSZmZkmPDzcTJs2zWRmZpqTJ0861zz33HMmPT3dnD592uzZs8fEx8eb0NBQc/78eeeaJ5980kRGRpq0tDTz2Wefmbi4OBMXF1fr/c7PzzeSTH5+vhseBaD1svq5ZEVjJk+ebNq3b2/S09NNdna286OoqMi5pqGNMYbOAO5yvedSXRuxZ88e4+3tbV5//XVz/Phxk5qaanx8fMzhw4eda+bOnWuCg4PN+++/b7744gszbNgwEx0dbS5fvlzl/p0+fdpIMpmZmc7b0tLSTEBAgJk1a5ZLZy5cuFCnfanv4wKgbqp7PnmqMWfOnDGZmZnmlVdeMe3atXO+tiksLDTGGHP48GHTqVMnM3r0aJfGXPt+6euvvzYBAQFm+vTp5vjx4+att94yXl5eZsuWLQ1+XADUTVN4Lnnq3E1NmsJjA7QEjf2e6cKFCyYzM9Ns2rTJSDKrVq0ymZmZJjs727mmpvMqpaWl5rbbbjMJCQkmKyvLbNmyxXTq1MnMmjXLuYbXM0DT0RzPARtjTFlZmYmMjDQzZsyoci7XmYCmw93PJ49fQDfGmEWLFpnIyEhjt9vNXXfdZT799FPn5wYNGmTGjh3r/HPFSeZffwwaNMi5ZsSIESY8PNzY7XbTpUsXM2LECHPq1CmXmZcvXzZPPfWU6dChgwkICDC///3vXV6k1YSwAe7RGM8ldzemqs9LMkuWLHGuaWhjjKEzgLvU9FyqSyOMMWbNmjXm5ptvNna73fTq1cts2rTJ5fPl5eVm9uzZJiwszPj6+prBgwebEydOVLt/VV1AHzt2bI0tqs2+XA+NAdznes8nTzSmuobs2LHDGGNMampqlZ+Piopy2c6OHTtM3759jd1uNzExMS6vdRr6uACovabyXPLEuZuaNJXHBmjuGvs905IlS6psRGpqqnNNbc6rfPPNN2bo0KHG39/fhIaGmueee85cvXrVZQ2vZ4CmoTmeAzbGmK1btxpJ1Z7X4ToT0HS4+/lkM8aY+nznemtXUFCg9u3bKz8/X0FBQZ7eHaDZ4rlUPR4bwD14LlWNxwVwH55PVeNxAdyD51L1eGwA9+C5VD0eG8A9eC5VjccFcB93P588+jvQAQAAAAAAAAAAAABoKriADgAAAAAAAAAAAACAJG9P70BzVfGT7wsKCjy8J0DzVvEc4rdJVEZnAPegM1WjMYD70Jmq0RnAPWhM9egM4B50pnp0BnAPOlM1GgO4j7s7wwX0eiosLJQkde3a1cN7ArQMhYWFat++vad3o0mhM4B70RlXNAZwPzrjis4A7kVjKqMzgHvRmcroDOBedMYVjQHcz12dsRm+5KdeysvLde7cOQUGBspms1W7rqCgQF27dtW3337rll9aX1fMZ35Tn2+MUWFhoSIiItSmDb9V4lq16Uxz+DtmPvM9PZ/OVI3XMsxnvvvm05mq0RnmM98982lM9XjP1Dz2gflNfz6dqR6dYT7z3TOfzlSN90zMZ7775ru7M3wHej21adNGN9xwQ63XBwUFeeyNEvOZ39Tn81WHVatLZ5r63zHzme/p+XSmMl7LMJ/57p1PZyqjM8xnvvvm05iq8Z6pee0D85v2fDpTNTrDfOa7bz6dqYz3TMxnvnvnu7MzfKkPAAAAAAAAAAAAAADiAjoAAAAAAAAAAAAAAJK4gG45X19fpaamytfXl/nMZz7cztOPMfOZ35rntxaefpyZz/zWPL+18PTjzHzmt+b5rYGnH2NPz28K+8D81j2/NfD0Y8x85rfm+a2Fpx9n5jO/Nc63GWNMo04EAAAAAAAAAAAAAKAJ4jvQAQAAAAAAAAAAAAAQF9ABAAAAAAAAAAAAAJDEBXQAAAAAAAAAAAAAACRxAR0AAAAAAAAAAAAAAElcQK/RW2+9pW7dusnPz0+xsbHav39/tWuPHj2qhx9+WN26dZPNZtMbb7xRaU3F5379kZyc7Fxz5coVJScnq2PHjvL19VXbtm0bdf59991X6fPe3t5umV9WVqbZs2crOjpa/v7+6t69u1599VUZY5xrjDF66aWXFB4eLh8fH/n7+8vX17fR5o8bN67S8Xt5ebllfmFhoVJSUhQVFSV/f3/dc889OnDggMsaK4+/NvPre/xvv/227r33XnXo0EEdOnRQfHx8pfXXHpu/v7/i4+N18uRJlzU//fSTkpKSFBQUpODgYE2YMEEXL16sdm5zR2NoDI2hMVajM3SGztAZq9EZOkNn6IzV6AydoTN0xko0hsbQGBpjNTpDZ+hM8+sMF9CvY/Xq1Zo6dapSU1P1+eefq0+fPhoyZIjOnz9f5fqioiLFxMRo7ty5cjgcVa45cOCAsrOznR/btm2TJD366KPONc8++6w+/PBDPfXUUzLGyOFwqGfPno02X5KeeOIJLV68WHa7XQsWLNDevXvdMn/evHn6+9//rjfffFPHjx/XvHnzNH/+fC1atMi5Zv78+Vq4cKFGjx4tm82mHj16qFOnTrrtttsaZb4kPfDAAy7Hv3v3brcc/8SJE7Vt2za9++67Onz4sBISEhQfH6/vv/++UY6/NvPre/zp6ekaNWqUduzYoYyMDHXt2lUJCQlVHtvixYu1b98+tW3bVkOGDNGVK1eca5KSknT06FFt27ZNGzdu1K5duzRp0qQqZzZ3NIbG0BgaYzU6Q2foDJ2xGp2hM3SGzliNztAZOkNnrERjaAyNoTFWozN0hs40084YVOuuu+4yycnJzj+XlZWZiIgIM2fOnBrvGxUVZRYsWFDjuilTppju3bub8vJyY4wxeXl5xsfHx6xdu9Y5//jx40aS2bNnj+XzjTFm0KBBZsqUKZYcf2Jiohk/frzLbQ899JBJSkoyxhhTXl5uHA6H+etf/+qcn5eXZ3x9fc2KFSssn2+MMWPHjjXDhg1z+/EXFRUZLy8vs3HjRpfb77jjDvPCCy8YY6w9/trMd9fxG2NMaWmpCQwMNMuWLat0bBUqju3f//63McaYY8eOGUnmwIEDzjWbN282NpvNfP/997Wa25zQGBpDY2iM1egMnaEzdMZqdIbO0Bk6YzU6Q2foDJ2xEo2hMTSGxliNztAZOtM8O8N3oFejpKREBw8eVHx8vPO2Nm3aKD4+XhkZGW6bsXz5co0fP142m02SdPDgQV29elUDBw50zu/Ro4ciIyO1b98+y+dXWL58ufbv368PPvhAs2bNUlFRkVuO/5577tH27dv1v//9T5J06NAh7d69W0OHDpUknT59Wjk5ORo0aJDz+Nu3b6/Y2Fi3HH9N8yvs2LFD+/fv1/r16zV58mRduHChwcdfWlqqsrIy+fn5udzu7++v3bt3S7L2+Gszv4I7jr+oqEhXr15VSEiIy7Fd+5yqOLaKbWZkZCg4OFgDBgxwromPj1ebNm20b9++eh13U0VjaAyNoTFWozN0hs7QGavRGTpDZ+iM1egMnaEzdMZKNIbG0BgaYzU6Q2foTPPtDBfQq/Hjjz+qrKxMYWFhLreHhYUpJyfHLTM2bNigvLw8jRs3znlbTk6O7Ha78x9hxfyKuVbPl6Q//vGPWrhwoSRp/PjxevfddzV69GiX/aivmTNnauTIkerRo4d8fHzUr18/paSkKCkpSZKc2/b29rbk+GuaL/3yYyUqfq/DM888o507d2ro0KHO/anv/MDAQMXFxenVV1/VuXPnVFZWpuXLlysjI0PZ2dmWH39t5rvz+GfMmKGIiAhnyCrud73nVE5Ojjp37uzyeW9vb4WEhLjt331TQWNojERjaIy16AydkegMnbEWnaEzEp2hM9aiM3RGojN0xjo0hsZINIbGWIvO0BmJzjTXznjXeiXc7p133tHQoUMVERHRpOZPmjRJ586dkyQNGTJEAwcO1ODBg/XVV181eOaaNWu0YsUKrVy5Ur169VJWVpZSUlIUERGhsWPHNnj77pg/cuRI5/EPGjRIf/jDH9S9e3elp6c3eP67776r8ePHq0uXLvLy8tIdd9yhUaNG6eDBgw3etrvmu+P4586dq1WrVik9Pb3SVyKh8dAYGkNjYDU6Q2foDKxGZ+gMnYHV6AydoTOwEo2hMTQGVqMzdIbOWIPvQK9GaGiovLy8lJub63J7bm6uHA5Hg7d/5swZffLJJ5o4caLL7Q6HQyUlJfL29naZXzHX6vkVrj3+2NhYSdKpU6caPH/69OnOr87p3bu3xowZo2effVZz5syRJOe2S0tLLTn+muZXuPb4Y2JiFBoa6pbj7969u3bu3KmLFy/q22+/1f79+3X16lXFxMRIsv74a5pfoSHH//rrr2vu3Ln6+OOPdfvttztvr7jf9Z5TDodD58+fd/l8aWmpfvrpJ7f8u29KaAyNoTE0xmp0hs7QGTpjNTpDZ+gMnbEanaEzdIbOWInG0BgaQ2OsRmfoDJ1pvp3hAno17Ha7+vfvr+3btztvKy8v1/bt2xUXF9fg7S9ZskSdO3dWYmKiy+39+/eXj4+P/vvf/zrnnzhxQmfPnlVsbKzl8ytce/xZWVmSfvkRCA2dX/E7Lq7l5eWl8vJySVJ0dLQcDod27drlnF9QUKB9+/a55fhrml/h2uP/7rvvdOHCBbccf4W2bdsqPDxcP//8s7Zu3aphw4ZJsv74a5pfob7HP3/+fL366qvasmWLy++XuPbYrn1OVRxbxTbj4uKUl5fn8pVKaWlpKi8vd/4fbEtBY2gMjaExVqMzdIbO0Bmr0Rk6Q2fojNXoDJ2hM3TGSjSGxtAYGmM1OkNn6Ewz7oxBtVatWmV8fX3N0qVLzbFjx8ykSZNMcHCwycnJMcYYM2bMGDNz5kzn+uLiYpOZmWkyMzNNeHi4mTZtmsnMzDQnT5502W5ZWZmJjIw0M2bMqHLuk08+aSIjI83s2bON3W433bt3N3369GmU+adOnTJ//vOfzWeffWYWLVpkfHx8TKdOncyAAQPcMn/s2LGmS5cuZuPGjeb06dPmvffeM6Ghoeb55593rpk7d64JDg4206ZNM3a73fTr18906dLFTJgwwfL5hYWFZtq0aSYjI8N5/FFRUSYqKsot87ds2WI2b95svv76a/Pxxx+bPn36mNjYWFNSUtIox1/T/IYc/9y5c43dbjf/+c9/THZ2tvOjsLCw0rG9//775osvvjDDhg0z0dHR5vLly841DzzwgOnXr5/Zt2+f2b17t7npppvMqFGjKv1bbQloDI2hMTTGanSGztAZOmM1OkNn6AydsRqdoTN0hs5YicbQGBpDY6xGZ+gMnWmeneECeg0WLVpkIiMjjd1uN3fddZf59NNPnZ8bNGiQGTt2rPPPp0+fNpIqfQwaNMhlm1u3bjWSzIkTJ6qcefnyZfPUU0+ZDh06GB8fH+Pv799o88+ePWsGDhxoQkJCjK+vrwkNDTVBQUFum19QUGCmTJliIiMjjZ+fn4mJiTEvvPCCKS4udq4pLy83s2fPNmFhYcbb29v4+fkZHx+fRplfVFRkEhISTKdOnYyPj4/p0KGDadeunduOf/Xq1SYmJsbY7XbjcDhMcnKyycvLc/k7sPL4a5rfkOOPioqqcn5qamqVx+br62sGDx5c6d/hhQsXzKhRo0y7du1MUFCQefzxx13i2NLQGBpDY2iM1egMnaEzdMZqdIbO0Bk6YzU6Q2foDJ2xEo2hMTSGxliNztAZOtP8OmMzxhgBAAAAAAAAAAAAANDK8TvQAQAAAAAAAAAAAAAQF9ABAAAAAAAAAAAAAJDEBXQAAAAAAAAAAAAAACRxAR0AAAAAAAAAAAAAAElcQAcAAAAAAAAAAAAAQBIX0AEAAAAAAAAAAAAAkMQFdAAAAAAAAAAAAAAAJHEBHQAAAAAAAAAAAAAASVxABwAAAAAAAAAAAABAEhfQ0QJ069ZNb7zxhsufbTabbDabAgIC1Lt3b/3zn//03A4CaPboDAAr0RgAVqMzAKxGZwBYjc4AsBKNwa9xAR1NXklJSZ3v8+c//1nZ2dk6cuSIRo8erSeeeEKbN2+2YO8AtAR0BoCVaAwAq9EZAFajMwCsRmcAWInGoK64gI4m57777tPTTz+tlJQUhYaGasiQIXXeRmBgoBwOh2JiYjRjxgyFhIRo27ZtNd6voKBA/v7+lSK4fv16BQYGqqioqM77AqDpoTMArERjAFiNzgCwGp0BYDU6A8BKNAYNxQV0NEnLli2T3W7Xnj17tHjx4npvp7y8XOvWrdPPP/8su91e4/qgoCA9+OCDWrlypcvtK1as0PDhwxUQEFDvfQHQtNAZAFaiMQCsRmcAWI3OALAanQFgJRqDhvD29A4AVbnppps0f/78et9/xowZevHFF1VcXKzS0lKFhIRo4sSJtbpvUlKSxowZo6KiIgUEBKigoECbNm3S+vXr670/AJoeOgPASjQGgNXoDACr0RkAVqMzAKxEY9AQfAc6mqT+/fs36P7Tp09XVlaW0tLSFBsbqwULFujGG2+s1X1/+9vfysfHRx988IEkad26dQoKClJ8fHyD9glA00JnAFiJxgCwGp0BYDU6A8BqdAaAlWgMGoIL6GiS2rZt26D7h4aG6sYbb9S9996rtWvX6k9/+pOOHTtWq/va7XY98sgjzh+vsXLlSo0YMULe3vzABqAloTMArERjAFiNzgCwGp0BYDU6A8BKNAYNwQV0tHhdu3bViBEjNGvWrFrfJykpSVu2bNHRo0eVlpampKQkC/cQQHNHZwBYicYAsBqdAWA1OgPAanQGgJVoTOvDBXS0ClOmTNGHH36ozz77rFbrBw4cKIfDoaSkJEVHRys2NtbiPQTQ3NEZAFaiMQCsRmcAWI3OALAanQFgJRrTunABHa3CrbfeqoSEBL300ku1Wm+z2TRq1CgdOnSIrwoCUCt0BoCVaAwAq9EZAFajMwCsRmcAWInGtC42Y4zx9E4AAAAAAAAAAAAAAOBpfAc6AAAAAAAAAAAAAADiAjqauBUrVqhdu3ZVfvTq1ate2xw6dGi12/zLX/7i5iMA0NTRGQBWojEArEZnAFiNzgCwGp0BYCUag/rgR7ijSSssLFRubm6Vn/Px8VFUVFSdt/n999/r8uXLVX4uJCREISEhdd4mgOaLzgCwEo0BYDU6A8BqdAaA1egMACvRGNQHF9ABAAAAAAAAAAAAABA/wh0AAAAAAAAAAAAAAElcQAcAAAAAAAAAAAAAQBIX0AEAAAAAAAAAAAAAkMQFdAAAAAAAAAAAAAAAJHEBHQAAAAAAAAAAAAAASVxABwAAAAAAAAAAAABAEhfQAQAAAAAAAAAAAACQJP0/k4+kVRA+6RoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-07-24 18:46:24,876 - funman.server.worker - INFO - Worker.stop() acquiring state lock ....\n", + "2024-07-24 18:46:25,277 - funman.server.worker - INFO - FunmanWorker exiting...\n", + "2024-07-24 18:46:25,279 - funman.server.worker - INFO - Worker.stop() completed.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5 points\n", + "Point parameters: {'N': 9830000.0, 'NPI_mult': 1.0, 'vacc_mult': 0.30000000000000004, 'r_Sv': 10000.0, 'r_SvSu': 0.002, 'beta': 0.15250000000000002, 'r_EI': 0.14691128985675908, 'r_IH_u': 0.00435, 'r_IH_v': 0.00135, 'r_HR': 0.1549189131819147, 'r_HD': 0.011, 'r_IR_u': 0.185, 'r_IR_v': 0.185}\n", + " N NPI_mult beta vacc_mult r_Sv \\\n", + "unconstrained 9830000.0 1.0 0.152500 0.3 10000.0 \n", + "compartmental_constrained 9830000.0 1.0 0.152500 0.3 10000.0 \n", + "relaxed_bounds 9830000.0 1.0 0.152398 0.3 10000.0 \n", + "synthesis 9830000.0 1.0 0.152500 0.3 10000.0 \n", + "\n", + " r_SvSu r_EI r_IH_u r_IH_v r_HR \\\n", + "unconstrained 0.002 0.131605 0.00435 0.00135 0.173417 \n", + "compartmental_constrained 0.002 0.150834 0.00435 0.00135 0.154919 \n", + "relaxed_bounds 0.002 0.141052 0.00435 0.00135 0.146353 \n", + "synthesis 0.002 0.146911 0.00435 0.00135 0.154919 \n", + "\n", + " r_HD r_IR_u r_IR_v \n", + "unconstrained 0.011 0.185 0.185 \n", + "compartmental_constrained 0.011 0.185 0.185 \n", + "relaxed_bounds 0.011 0.185 0.185 \n", + "synthesis 0.011 0.185 0.185 \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAGpCAYAAAAp04QZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqXklEQVR4nO3dd5hc5WEv/u+Z3md2tveilVa9IiRLCFEsIWRTDMimOrq2MXaU2Ak/E4LsXF+cSyD4XpPcRIY4iZCNIXEgLpgiUQVCQiCEykoraVW2aXuZnZkt08/vjzM7O7N9tFN3v5/nmefMnPrO7Oye777nPe8riKIogoiIiCjOZMkuABEREc0ODB1ERESUEAwdRERElBAMHURERJQQDB1ERESUEAwdRERElBAMHURERJQQDB1ERESUEAwdRERElBAMHURERJQQinjs9PDhwzh8+DB+//vf4/nnn0d5efmUtgsEAmhpaYHRaIQgCPEoGhEREcWYKIpwOp0oKCiATDZBfYYYhd7eXnH16tWiXq8Xq6urQ/P/6q/+SrzmmmvE+++/X/R4PKIoiqLf7xcffPDBaHYvNjU1iQD44IMPPvjgg480fDQ1NU14no+qpkOn0+H111/HI488Epp34sQJNDc348CBA3jiiSfwyiuv4J577sEbb7yBrVu3RrN7GI1GAEBTUxNMJlNU2xIREVFyOBwOFBcXh87j44kqdCiVSmRnZ0fMO3ToEDZv3gwA2LJlC55//nncc889eO2117Br164J9+d2u+F2u0OvnU4nAMBkMjF0EBERpZnJmkZMuyGpzWYLBQSz2Yyenh4AwHPPPQe5XD7htk8++STMZnPoUVxcPN3iEBERUYqaduiwWCxwOBwAALvdDqvVOuVtH3vsMdjt9tCjqalpusUhIiKiFDXt0LFu3Tq88847AIB9+/Zh/fr1U95WrVaHLqXwkgoREdHMFvUts1u3bsXx48dx7tw5PPTQQ9i+fTtyc3OxYcMGlJSU4Ac/+EHUhdi1axd27doFv98/pfX9fj+8Xm/Ux5kNVCrVxLcrERERJYkgiqKY7EIMcTgcMJvNsNvtY9Z6iKKItrY29Pb2Jr5waUImk6G8vBwqlSrZRSEiollisvP3kLh0DhYvQ4EjJycHOp2OHYiNMNS5WmtrK0pKSvj5EBFRSkmJ0DGVyyt+vz8UODIzMxNYuvSSnZ2NlpYW+Hw+KJXKZBeHiIgoJCUu/u/YsQM1NTU4cuTIuOsMteHQ6XSJKlZaGrqsMtX2MURERImSEqEjGrxkMDF+PkRElKrSLnQQERFRekqJ0LFr1y4sXLgQq1evTnZRiIiIKE5SInRMpU1HOuvs7MR3v/tdlJSUQK1WIy8vDzfddBMOHjyY7KIRERElTErcvRJvos8HMRCY/o6usL3EnXfcAY/Hg+f//d9RUV6O9o4OvPfee+hsb0dgnE7OruhIgiC9V78fPpsNvpF9dYxX/im+rym1F5lsnbgsHz1v3N2MtSCazyWK7cecG4/3H0X52eaHiJJpVoQOb3s7/DZbUo7d63DgwEcfYd/u3ViXnw+4XMgzmbDs9tsBAO5z58bdtqG5GQu2bMHHL7+MZfPnh/ZXsH499u7ejWvHuBzlDgTg6+xEw59/D7LW1ri8J5olEhjQQouvpEzRHmuK645blum+13gE11h8LlNePtasxP1cxj3UmAWL02c11c9gqsea9PXIxVP752u8MmT9+Z/BtGnT2OvHWUqEjmi7QQek3kkHvVNb3+MLwO+LXcerWoUw5f8YDXo9DDod/vje+7h62XKox+0pNGU6hiWSjNVZcZw7ME6l34JUKgtRLAWCg7QmQ0qEjh07dmDHjh2hblSnYtDrx8L/uS/OJRtbzU9uglY19Y9uz69+hQcffBD/9srLWLlyJTZu3Ii7774bS5cunXA7jcEgTSsroV28GADgDnYBry4vD80LJ7hcUCqVKH/zDWg0mknLNmYv+Fd6splsnSnud9y9XMn+r+D44+1n7NnjHHO6n+tYn8t0T/hRHCu6z2WsdcdcMy7HH/uzGnvVSaNE3L9DU/2sxlkQj+9Qso8/XhnGXDfZ3+FxFiTy5zLdzwWAqmLOODuPv5QIHTPdnXfeiS996Us4cOAADh8+jDfffBNPP/00/u3f/g3bt29PatnGrLFJ8nV/tjogIpqZ0jZ0aJVy1PzkpqQdO1oajQabNm3Cpk2b8Dd/8zf41re+hR//+McTho6h0WLDUzBH1yUionSVtqFDEAToorjEkWoWLlyI3//+9xOuk52dDQBobW3FihUrAADHjx+Pc8mIiIjiIyXO2lfSkDRddHd3Y9u2bfjGN76BpUuXwmg04rPPPsPTTz+N2267bcJttVot1q5di6eeegrl5eXo6OjAj370owSVnIiIKLZSInRcSUPSdGEwGLBmzRo888wzuHjxIrxeL4qLi/Hggw9i586dk26/e/dufPOb38SqVatQVVWFp59+Gps3b05AyYmIiGJLEKfdJD52hkKH3W6HyWSKWOZyuVBXV4fy8vIp3ZUxW/FzIiKiRJvo/B0uJbpBJyIiopmPoSOJXnzxRRgMhjEfixYtSnbxiIiIYiol2nTMVrfeeivWrFkz5jKlUpng0hAREcVXSoSOmXz3ykSMRiOMRmOyi0FERJQQKXF5ZaYPbU9EREQpEjqIiIho5mPoICIiooRg6CAiIqKEYOggIiKihGDoICIiooRg6EiA7du34/bbb092MYiIiJIqJULHrl27sHDhQqxevTrZRSEiIqI4SYnQwX46JGVlZfiHf/iHiHnLly/H//pf/ysp5SEiIoqllOiR9IqIIuAdSM6xlTpAEJJzbCIiojSVvqHDOwD8XUFyjr2zBVDpk3NsIiKiNJW+oYOIiKZFFMURr0csn2T9sdYZb1/SumOvPda60aw31n7HPv54+53e+xpr5Wje65i7HOfNjv6ZTOG4I2YZNUpoVfIx9x9v6Rs6lDqpxmEKuvvcGPBIg8lN8bs9IdEhAkK/9HwKO+xz+TDg8aO+q3/8fQIIQEBXnxt1YesNuNywDXgi5o33ZQQAv9eNLqcbP3/5BHrcYtg2I44X9jr8Sxo5H+O8mNo2o/6gTXoMcYx9jH3MkcvGfI2Ryyf+YU32yxvt/kcdbZrbR12+Sb6bMT/eJNuP99s3nT/Ck5Y51X4mkx4/tt+5qZ7MaXZ5+s6l+Orq4qQcO31DhyBM+RLHIATYfJ7YHdvni2p1rz8Anz8Ah8s74XrmjEw0NzfDGVyvz+lAU0MDPL5AaN5kRJ8fLl8Anzfa0OycXaP2EhHNVuM1M0y11ofpGzqiYNYpoYmiKmnaPyQh8qlOLYdXJUdRhnbCo9x44w34z1+/gLu+cjvMZgue/N+PQ66Qw6RRoihDN365whZ43DL47Ers3LoAPiHyxyuM+FYKEcvC5wvjzB9x2IgZU91GGHNZxDbjlGWsHU60/7GXj9xemGT5yB1Mb/tR5Zt0/YkLEPXxJtn/ZO9nVGmi/Tym/fmNWYoo95HgzyTdvpNRlm/sQo297QSrjirHeOuOf3IdY/so/piPXdaxdzDV9zXWexp/3alvn85mRegwapQwJvH4aoUcKrkMVr16wvV+8j9/hLbLjbh321dgNpvxt3/7t2huaoBWJYdVr5rSsVyyAHpUCtxYnguNRhOL4hMREcWEIE52oTuBHA4HzGYz7HY7TCZTxDKXy4W6ujqUl5fzZDoBfk5ERJRoE52/w6VE52DskZSIiGjmS4nQMRt6JG1sbITBYBj30djYmOwiEhERxdWsaNORCgoKCnD8+PEJlxMREc1kDB0JolAoUFlZmexiEBERJU1KXF4hIiKimY+hg4iIiBKCoYOIiIgSYla06RgYGIDXO7VuxNOdx+PB4OAgPvjgA/j9sesGPYW6cyFKW/w9olSwdOlSlJSUJOXYsyJ0eDweDAwMJLsYCeHz+eB2u1FdXY2+vr5kF4eIiFJMQUEBQ0c8qdVqyGSz40qSx+OBRqPBVVddhUAgkOzijDITxxIgSiT+DtF05efnJ+3YsyJ0aLVaaLXayVeMk+3bt+OXv/zlqPk33XQT9u7dG9NjuVwuaDQaLFiwgN2gExFRSpkVoSMVbNmyBc8//3zEPLV64gHgiIiIZpLZcc0hBajVauTl5UU8MjIyJtymvr4egiBE9GTa29sLQRCwf//++BaYiIgoxtK2pkMURQz6BpNybK1Cy+uqREREUUrb0DHoG8Sal9Yk5dif3PsJdEpdVNu89tprMBgMEfN27tyJnTt3xrJoREREKSsuoePixYt44YUXYDAY8P3vfx9KpTIeh0kr119/PZ599tmIeVarNUmlISIiSryoQofdbsemTZtQU1ODw4cPY/HixQCARx99FIcOHUJZWRl2796Nf/3Xf0VRURHcbndcCg1Ilzg+ufeTuO1/smNHS6/XRz3g29BtvuEdCs2WTs6IiGjmiaohqU6nw+uvv4677rorNO/EiRNobm7GgQMHMH/+fLzyyitwuVy46aabUFRUhA8//DDmhQake9V1Sl1SHolqz5GdnQ0AaG1tDc0Lb1RKRESUTqKq6VAqlaET4ZBDhw5h8+bNAIZvC/3Wt76F559/Hv39/fibv/mbcffndrsjakMcDkc0xUkrbrcbbW1tEfMUCgWysrLG3Uar1WLt2rV46qmnUF5ejo6ODvzoRz+Kd1GJiIjiYtptOmw2W6h3M7PZjJ6eHixfvhzLly+fdNsnn3wSjz/++HSLkBb27t07qhe4qqoqnD17dsLtdu/ejW9+85tYtWoVqqqq8PTTT4dCHhERUTqZduiwWCyhGgq73R5V48jHHnsMDz/8cOi1w+FAcXHxdIuUcvbs2YM9e/Zc0bYLFizAoUOHIuZx0CgiIkpH0+4cbN26dXjnnXcAAPv27cP69eunvK1arYbJZIp4EBER0cwUdejYunUr3nrrLTz44IPYs2cPli9fjtzcXGzYsAGnT5/GnXfeGXUhdu3ahYULF2L16tVRb5vOXnzxRRgMhjEfixYtSnbxiIiIYkoQU6iu3uFwwGw2w263j6r1cLlcqKurQ3l5+YwZyMzpdKK9vX3MZUqlEqWlpVHvcyZ+TkRElNomOn+HS9seSWcCo9EIo9GY7GIQERElREoM+DZbL68QERHNJikROnbs2IGamhocOXIk2UUhIiKiOEmJ0EFEREQzH0MHERERJURKhA626SAiIpr5UiJ0sE0HERHRzJcSoWOm6+zsxHe/+12UlJRArVYjLy8PN910Ew4ePJjsohERESUM++lIgDvvvBMejwe//OUvUVFRgfb2drz77rvo7u5OdtGIiIgSJiVCx65du7Br1y74/f5kFyXment7ceDAAezfvx8bN24EAJSWluLqq6+edNt7770Xfr8fv/nNb0LzvF4v8vPz8bOf/Qxf//rX41ZuIiKiWEuJ0LFjxw7s2LEj1I3qVIiiCHFwMM4lG5ug1UIQhCmtOzSWyu9//3usXbsWarV6yse57777sG3bNvT19cFgMACQBtUbGBjAV77ylSsqOxERUbKkROi4EuLgIM6tXJWUY1d9fhSCTjeldRUKBfbs2YMHH3wQzz33HFauXImNGzfi7rvvxtKlSyfc9qabboJer8fvfvc7PPDAAwCAl156Cbfeeiu7TyciorTDhqQJcOedd6KlpQWvvvoqtmzZgv3792PlypXYs2fPhNspFAp89atfxYsvvggA6O/vxx/+8Afcd999CSg1ERFRbKXtKLPpcnllPN/61rfw9ttvo6GhYcL1Dh06hI0bN6K5uRlvv/02vv/976O1tRVKpXLM9TnKLBERJVpajTJ7JQ1JBUGY8iWOVLRw4UL8/ve/n3S9devWobi4GL/5zW/w5ptvYtu2beMGDiIiolSWEqHjShqSpovu7m5s27YN3/jGN7B06VIYjUZ89tlnePrpp3HbbbdNaR/33nsvnnvuOdTW1uL999+Pc4mJiIjiIyVCx0xmMBiwZs0aPPPMM7h48SK8Xi+Ki4vx4IMPYufOnVPax3333YcnnngCpaWlWL9+fZxLTEREFB9p26aDxsbPiYiIEm2qbTp49woRERElBENHEr344ouhzsNGPhYtWpTs4hEREcVUSrTpmMndoE/k1ltvxZo1a8ZcxjtUiIhopkmJ0DGT716ZiNFoZM+iREQ0a/DyChERESUEQwcRERElBEMHERERJQRDBxERESUEQwcRERElBEMHERERJURKhI5du3Zh4cKFWL16dbKLEhfbt2+XRsUd8diyZUuyi0ZERJQw7KcjQbZs2YLnn38+Yp5arU5SaYiIiBIvJWo6ZgO1Wo28vLyIR0ZGxoTb3Hvvvfja174WMc/r9SIrKwu/+tWv4llcIiKimEuJmo4rIYoifJ5AUo6tUMkgCELcj3Pfffdh27Zt6Ovrg8FgAADs27cPAwMD+MpXvhL34xMREcVS2oYOnyeAX3z/g6Qc+9v/uBFKtTyqbV577bVQcBiyc+dO7Ny5c9xtbrrpJuj1evzud7/DAw88AAB46aWXcOutt7L7dCIiSjtpGzrSzfXXX49nn302Yp7Vap1wG4VCga9+9at48cUX8cADD6C/vx9/+MMf8J//+Z/xLCoREVFcpG3oUKhk+PY/bkzasaOl1+tRWVkZ9Xb33XcfNm7ciI6ODrz99tvQarW864WIiNJS2oYOQRCivsSRjtatW4fi4mL85je/wZtvvolt27Zx2HsiIkpLaRs60o3b7UZbW1vEPIVCgaysrEm3vffee/Hcc8+htrYW77//fryKSEREFFe8ZTZB9u7di/z8/IjHNddcM6Vt77vvPtTU1KCwsBDr16+Pc0mJiIjig6EjAfbs2QNRFEc9zp49O6XtFyxYAFEUUV9fn5BbdYmIiOIhJULHTO8GnYiIiFIkdOzYsQM1NTU4cuRIsouSUC+++CIMBsOYj0WLFiW7eERERDHFhqRJdOutt2LNmjVjLuMdKkRENNMwdCSR0Whkz6JERDRrpMTlFSIiIpr5GDqIiIgoIRg6iIiIKCEYOoiIiCghGDqIiIgoIRg6iIiIKCEYOhJg+/btuP3225NdDCIioqRi6CAiIqKEYOhIEb/4xS9QUFCAQCAQMf+2227DN77xjSSVioiIKHbStkdSURThc7uTcmyFWh3z0V63bduGP//zP8f777+PG2+8EQDQ09ODvXv34o033ojpsYiIiJIhbUOHz+3G//uTu5Jy7O/98hUoNZqY7jMjIwM333wzXnrppVDoeOWVV5CVlYXrr78+psciIiJKhrhcXtmzZw927tyJ3bt3x2P3M9Z9992H//7v/4Y7WIPz4osv4u6774ZMxqtgRESU/qKq6bDb7di0aRNqampw+PBhLF68GADw6KOP4tChQygrK8Pu3bthMpmg1WoxODgYl0ID0iWO7/3ylbjtf7Jjx8Mtt9wCURTx+uuvY/Xq1Thw4ACeeeaZuByLiIgo0aIKHTqdDq+//joeeeSR0LwTJ06gubkZBw4cwBNPPIFXXnkF99xzD+644w787Gc/w6VLl1BRUTHm/txud+i/egBwOBxTLosgCDG/xJFsGo0Gd9xxB1588UVcuHABVVVVWLlyZbKLRUREFBNRhQ6lUons7OyIeYcOHcLmzZsBAFu2bMHzzz+PjIwMHDt2DM3NzSgqKhp3f08++SQef/zxKyj2zHXffffhy1/+Mk6fPo37778/2cUhIiKKmWk3JLXZbMjPzwcAmM1m9PT0YMuWLdiyZcuk2z722GN4+OGHQ68dDgeKi4unW6S0dsMNN8BqteLcuXO49957k10cIiKimJl26LBYLKHLIna7HVardcrbqtVqqOPUPiKV7NmzZ8rrymQytLS0xK8wRERESTLt2yLWrVuHd955BwCwb98+rF+/Pup97Nq1CwsXLsTq1aunWxwiIiJKUVGHjq1bt+Ktt97Cgw8+iD179mD58uXIzc3Fhg0bcPr0adx5551RF2LHjh2oqanBkSNHot42XTQ2NsJgMIz7aGxsTHYRiYiI4irqyytj9Y7505/+NCaFmckKCgpw/PjxCZcTERHNZCnRI+muXbuwa9cu+P3+ZBclbhQKBSorK5NdDCIioqRJia4uZ8PlFSIiotkuJUIHERERzXwMHURERJQQKRE6eMssERHRzJcSoYNtOoiIiGa+lAgdRERENPMxdCTA9u3bcfvtt4+av3//fgiCgN7e3oSXiYiIKNFSInSwTQcREdHMlxKhg206iIiIZr6U6JH0SoiiCNEbSMqxBaUMgiAk5dhERETpKn1DhzeAlv95KCnHLvjJOggqeVTbvPbaazAYDBHzZnK370RERCOlbehIN9dffz2effbZiHmffPIJ7r///iSViIiIKLFSInRcyYBvglKGgp+si2OpJj52tPR6/agB3y5fvhyrIhEREaW8lAgdO3bswI4dO+BwOGA2m6e0jSAIUV/iICIiouRJibtXiIiIaOZj6CAiIqKESInLKzPdnj17xpx/3XXXQRTFxBaGiIgoSVjTQURERAmREqGD3aATERHNfCkROtgNOhER0cyXEqGDiIiIZj6GDiIiIkoIhg4iIiJKCIYOIiIiSgiGDiIiIkoIhg4iIiJKiJQIHeyng4iIaOYTxBTqh3tolFm73Q6TyRSxzOVyoa6uDuXl5dBoNFHtNxDwAQjEsKTR+R//41v41a9eAAAoFAoUFRXirrvuxOOP/zjsvUz8Y5jqT8nlcqO+vgEFBTqo1eGj8E7vxzy1r8lk60zyHqdZxrhLnV+VJEnu+4/J92PaP8Mkf8fjXv4r2eM4+xyzrOMdf/T8Mfc7zfcfr7JO6RhXdKxY7T+S3jAXGnXelI85FROdv8PNirFX3O42eL22pB3f57Pji19cj5///G/h9fpw/HgNvvvdH8HrteEnP/nLmB7L4xHh8XTg+InHEQi0xHTfRESU/hbMfwoFBduScuxZETogCNIj/gcad75arUZeXg4AoLi4AL/5zWvYv/8wBCG2V7gEIQBAgFymgyAYRiyb7DOY7vLJ15l+GSi9pcL3Y3r7EKZbhmn/LUrF8o//ty/q409avCiOFVVZp1yAKI51ZceY/DOa3s9AqTRPvP84StvQIYoivF7vlNaVy7IhV2fH7NhKpTKqL5hSaYFCARiNiwAAp06dwqefnkJpaWloXqy4XC5oNAosWPCHqC9DERERxVPahg6v14u/+7u/S8qxd+7cCZVKFdU2r732GgwGA3w+H9xuN2QyGf75n/85TiUkIiJKPWkbOtLN9ddfj2effRb9/f145plnoFAocOeddya7WERERAmTtqFDqVRi586dSTt2tPR6PSorKwEAu3fvxrJly/Dv//7v+OY3vxnr4hEREaWktA0dgiBEfYkjVchkMuzcuRMPP/ww7r33Xmi12mQXiYiIKO5SonOw2Wjbtm2Qy+XYtWtXsotCRESUEAwdSaJQKPBnf/ZnePrpp9Hf35/s4hAREcVdSvRIumvXLuzatQt+vx+1tbUx75F0NuHnREREiTbVHklToqZjx44dqKmpwZEjR5JdFCIiIoqTlAgdRERENPOl7d0rREREs04gAAS8gN8L+D1AwDfiuSf42hu23tDz4LLCVYC1PCnFZ+ggIqLZRxTDTtZhJ3G/d+L5gbHWGzrZewC/b+rbTrjOyP0E54v+6b/323YxdBARURoLP4mHTqIjnkecZD2jT7gTrh++3DeFfU+yTsCX7E8sduQqQKYE5Iqw50MPFSBTRD7Xx24ssmgxdBARzVbeQWDQBgz2Aq7eCaZD69gBv3uMgBD8Dz3dyYInZnn4VDn2iXy8+bLgiV+uGiMEhO0zdKzxgsIYxwufN7S9TB4x6qwoivC6BtHfaws+etHfa8OA3Raat9pXgOIkfcQMHURE6Szgl8LAoG04HISe28JCg210wPC741gwIezkO/Jkrhp9Qg2fP+rkP876Y53Mh9Yf7+SvUI3Yf1hYiGp4+sTy+3xSeOjtQX9YgOjv7cXA0PPgfJ974p9r5VVrUbxwSYJKHomhg4goFfh9wfDQI4WDgZ4Rz21jPHoBt316xxXkgMYMaC2AxgJoM8Kej5hqzIBSO0YYGOO5TD69cs0SPq8XA7029Nm60W+zoa+3B/22HvTZeqQg0dONvl4bBp0O6RLWFCk1WugtFugtGdCbM6CzZEjPLRkonL8oju9oYgwdRESxJIqAp18KDAPdw4Eh/PlgT+TzQZsUOKZDZRwODFpL8HnwER4mQq8t0lRtTOn/8NNVIOBHf68NfT3dkY+hMBEMFq4+55T3KZPLoTNboLdYhwOFJSxQmIdeW6DSpOaYXgwdRETjEUXA0wf0d0khYaBbegyFhojnPcNBw++58mOqg7UOOmswKASnEa8tI0KFWaploITwDA7AOSpMRL7u7+2FKAamtD+5QgF9hhV6SwYMGZnQZ2RAb7HCkGEdnm/NhNZghCBL7+61GDoSYPv27fjlL38JQBpzxWq1YunSpbjnnnuwfft2yNL8S0SUNnye4eAw0A0MhIWJ/q4Ry7qnFyDkKkCXKYUEXfChDZuOChLBmgiGh6TyuAbh7OqCs7sTzu6usIf0uq+nC57BwSntS5DJQoHBkJEZnFphsGYGA4YUKjQGI4RZUtvE0JEgW7ZswfPPPw+/34/29nbs3bsX3//+9/HKK6/g1VdfhULBHwVR1HweKTj0dw6HhqHn/Z3DYWLoudtxZcdRaABdVjA8ZA5PQ4EiczhEDM1X6XnZIsV4Pe5QoOjr6YazqzMiUDh7uuCe4gCcKq0uIkSEP4zBgKGzWCBj25YIPNMliFqtRl5eHgCgsLAQK1euxNq1a3HjjTdiz549+Na3vpXkEhKlgEBAat/Q3xEMD51AX3Da3xEMEF3BoNF1ZSFCkEmhQJ8VFiCGnmcG5w+Fi+B8lS7275ViShRFuPr74OjsgLOrE46uDjg6O4JT6fWgY2rtZtQ6PYyZWTBmZsEQnBozs6XX1kwYrZlQafmduBJpGzpEUUQgMLUqrliTybQxqQq74YYbsGzZMvz2t79l6KDUEwhIvR+KAem2TNEfnIa9nmjZ0GvRP7wvl32CMBGsoYi2x0VBHgwKWdJ03OfZUoDQWABe0kw7YiCA/l4b7MEg4ezqDAsVHXB0dcLrmvycoNRoQ4HCOCJQSFMGiniKW+jYu3cvfv7zn+PVV1+Ny/4DgUHs/yA59xlft7EacnlsvpTz58/HyZMnY7KvWWfoRBZxkvNPcX5gghPlZCfXOOx/rBP0lZQltGyMY4qB8fc91vrJpM2QQoI+RwoMhpzg66EQkT1cU8EQMWO4+vpg72iDvbMd9vY22Dvapecd7XB0tsPvnbwDMp3ZAlNWNkxZOTBm58CUlSO9Dj5X6/Wzpv1EKooqdNjtdmzatAk1NTU4fPgwFi9eDAB49NFHcejQIZSVlWH37t04f/48HA4HKioq4lLomUQURf4CjOR1AV21QMcZoPMM0HFWmjrbU+ekSACEYG+I8uGpIJMCwHjz1EYpMBiCYUIfDBOG7OGQocuUOnCiGcfrccPR0QF7ZzBQdLTD0dGO3o42ODra4R6YuD2FIJPBmJkVESSMEc+zoVSpE/RuUpsoiugY6ECDowH1jno0OBpCj8eufgzrCtclpVxRhQ6dTofXX38djzzySGjeiRMn0NzcjAMHDuCJJ57AK6+8gra2NgiCgGPHjuHEiRNYtmzZmPtzu91wh/Wc5nBM/fqsTKbFdRuroyl+zMhksbv/+cyZMygvT87AO0nncwNd54HOs8GAEZza6qT/vKdLGHHykw2dAEecKCNOkrJJ1p3KPsLXmWwfI8sYRVnGOsGPV57Q/iYoz0Tva9QyGRtJ0pi8Lhd621vR29YKW1sLettapOftrejr7pp0e53ZAnNOLsw5eTDn5MKUnQtLrvTcmJkNmZwNM8PZ3fZQmBgZLgZ9Y19uumS/lB6hQ6lUIjs7cqCYQ4cOYfPmzQCG79D453/+ZwBAfX39uIEDAJ588kk8/vjj0ZYZACAIQswucSTLe++9h+rqavzlX/5lsosSXwE/0H0BaD8dGTC6L45fY6GxADkLgOz5QM5CIGc+YC6Wbiec8kmUJ0WieHAPDEhhIiJctKK3vRX9tp4Jt1VqtLDk5MIUDBXhAcOcnQulRpOgd5E+fAEfmpxNuNR7CXWOOtTbh8OFzW0bdzu5IEehoRClplKUmkpRZipDqbkUVRlVCSx9pGm36bDZbMjPzwcAmM1m9PQMf+H+4R/+YcJtH3vsMTz88MOh1w6HA8XFyRqGJr7cbjfa2toibpl98skn8eUvfxlf//rXk1282HH3AR01QNtJoK1aerTXAOMkbqjNUqDInh8WMhYAhlyGBqIE8nrcGHTYMehwYMBhx6DDHjZ1YNBpx0BvL3o72ia9C0RjMMKSl4+MvAJY8vJhySuAJTcflrx8aI0mXlIeh8fvQYOjARftF3Gp9xIu9l7EJfslNDga4J1gQL0cXU5ksAg+LzIUQZli/b5MO3RYLJbQZRG73Q6r1TrlbdVqNdTq2XH9be/evcjPz4dCoUBGRgaWLVuG//f//h/+5E/+JD07BxNFoK89GCzCAkb3RQBjjA+g1A3XWOQsHA4XxnyGC6I48Hk8GHD0YsBuH57aezHgsMPldEQGCocdXrcrqv3rzJZQkBgKFhm5+TDn5UNrMMbpXc0Mg75B1NnrcLH3Ymh6yX4JTc4m+Mep/dUqtCg3l6PcXI4yU1lEuNAp06fWf9qhY926dfjZz36Gr3/969i3bx/Wr18f9T527dqFXbt2we+fmY0D9+zZgz179iS7GFcuEJAuj7SdjAwY/Z1jr2/MB3IXA3lLgo+lgLWcA0ARTUMg4IfL6QwFh+GpPSJcDAanU+01M5xcoYDWZJYeRhN0JjO0JhN0RmmezmSGKScXltx8qHXpc6JLFn/AjwZnA2pttajtqcV523mc7z2Plr4WiGP9cwbAoDSgwlKBOeY5mGOZgwpzBSosFcjX50MmpOE/qCNEHTq2bt2K48eP49y5c3jooYewfft25ObmYsOGDSgpKcEPfvCDqAuxY8cO7NixAw6HA2azOertKcYcrUDz0eFHy7GxO2ESZEDWvLBwsQTIXSLdiUBEkxoKEv32XmnYcntwmPLwaXDZoMMx5bE8hsgVCmjNFuhMZujMFuiMptBrrSkYKozm4GszVNrY9EE0G/W6enG+9zzO9ZyTQoatFhd6L8DtH3uYeYvaEgoV4dNsbfaM/hlEHTreeOONUfN++tOfxqQwlAQuuxQqmo8CzZ9LU2fr6PUUWilU5C8dDhg5C6VhrokoRBRFeAYHQiOJ9vfahh+2nmkHCU2wBkJnNkNnsowxDT43W6DS6mb0CSwZfAEf6u31oWBxziaFjI6BjjHX1yq0qLRUYl7GPMzLmIe5GXMxxzIHVs3UmyLMJCnRI+lMv7ySMnxuoP3UcLhoPir1hzGSIJMCReFKoHCV9MheAMhT4utClBSBgB8DdnswQAwNTz7iuV2a+jxj/3c7Hq3RFByy3AKdOSM01Zkt0Jst0tDlZgu0JjPkHKcpYbwBLy7YLqCmuwanu0/jdPdpnLedH7dRZ6GhMBQuqqxVmJcxD0WGIsh5aTkkJb69vLwSJ4M2oPEw0HBIerSdHHvETEvpcLgoXCXVZqj0iS8vURKIoohBpwP9tp7gEOU96LN1S69tPejr6UG/LbqhygFpQDC9JUMaptycERqiXG/JCNZGWBgkUogv4MMl+yWc7pLCRU13Dc71nIMnMPpvpk6hC4WLeRnzMM86D3Mtc2FQGZJQ8vTCb/pM4vdKl0sGbcB/7AQa3seoO0m01siAUbhS6hmSaAbyul1wdndLYaKnC86eoTAhhYv+4MPv801pf4Igky5dWDJgsGRI07AwobcMP2d/E6nLH/Cj3lE/XIPRdRpne87C5R99B49RacTCrIVYlLkIizIXYYF1AQqNhTOiUWcypF3oEMWxW/xOpGuwC3a3HVqFFlqFFjqFDiq5Kr2vdYqiVGvh6ZMe7n7A74boFQG3M3jZRAQy5wKl64DS9UDxaiCjnLeoUtobajfh7O5CX7cUJpzdXejr6ZKGLO/pRl93F1z9fVPep9ZkloYpz7BCn5EJgzXseXC+zmxhj5hpqGuwC8c7juN4x3FUd1XjTM+ZMXvr1Cv1WJgpBYyhabGxOL3PFSkmJULHVNp0KJVSBycDAwPQaqNrvDjgHYDL54LL54INUu9tMkEWCiFahRZapRZKWWp1ohJBFAGfazhgePqAMa4reqACVHrItz4FlK6RxrggSjMe1yCcXV1wdnfC0dUJZ3cnnF2dcAYDRl9315T7lVCqNdLw5NZgeLBmRoQKgzUTeksG5IoU/v2nKQuIAdTZ6/B5x+c43nEcxzqOocnZNGo9rUKLBdYFUrjIkmoxSk2lrMGIM0G8kqqDOBlq02G322EymUYtb21tRW9vL3JycqDTTb1VttfvhcsvhQ633w2XzzXmPdIKQQGNUgONXAO1XA2NQpPcL6DfC3j6hx/iyCpgAVBoAJUOUOoQkGvQ0tYOpVKJkpISpnNKSQG/H322bji7uuAIhYlguAgGC1efc0r70ugNw4EiMwuGjExpiPLga2NmFu/gmOFcPhdOdZ3C8U4pYBzvOA6HJ/IWfwECKjMqsSJ7BZZmL8XirMUoM5WxgWcMTXb+HpISNR1TlZeXBwDo6Bj71qSpkoky+EQfPH4PvAEvPH4PfIHR13QFCFDIFFDKlVDJVFDJVVDI4viRDV0y8Q1KI62ObPQpCIBcDSiCD7kKEABgIPgAZDIZAwdNiyiK8Hu98Hrc8Hnc8Lnd8Hk88Hk88Lrd8HmHX0vL3PAOvR7aJuy1N2z7AXsv+nq6p9QgU63TSwEiKxumrGwYM7NhsGbCmJkNY2YmDNZMKNVsNzHbDF0qGQoYNT01o/5+axVaLMlaguU5y7EiRwoaJtX4J0JKnLQKHYIgID8/Hzk5OfB6x++H/kr0e/pxofcCanulnuNqbbWwuUYPpJOhycDizMVYlLUIi7MWT/96n7MdaDwENHwMNB0BvCP+w8ueD5R8AShZB+QumnTIb5VKlZ7dqtOk/D5f5Enc7QoGA+nkH/Hc7Q4FgOHnnsj5odDgGd42OEWcK0BlcgWMmZlSoMjMhjEYKqRwIQUNtY53UJE0iuqRtiP4uOVjfNL2CRocDaPWydHmhALGipwVmGedl9qXy2exlLi8Et6mo7a2dtLqmUQQRRHtA+2o7qpGdWc1TnSeQHVX9aj7s60aK1blrsKq3FW4KvcqzM2YO/ElGZ8baPwYuPAOcOFdaXC0cForMOcGoPKL0tSYG4d3R7EUCPgjTvReVzAMDAWB8GVu9+iAMGLd8KAQHhgCSejHRpDJoFSroVANPVTB16rQa4VSBYU6bHlo2dB6qtA+tEYTjFnZ0JstEBiOaQwevwcnOk/g45aPcbj1ME53n0YgrGYs/FLJ8pzlWJm7EgX6AtbuJtlUL6+kROgYMtVCJ4vL50J1VzU+a/8MR9uO4kTniVG3WJlUJqzMXYmrcq/CVblXocpaBUV/F3Dmj1LQqPsQ8A4MbyDIpFtXKzdJQaNgOccoiSExEAg78buGT/puV0Qg8AbnDZ38vS5X6KQfPt83xuup3m4ZM4IApUoNhVotncyDJ/3wcBAeDJTqkYEhuEythjIsMESGCek5+4+geAuIAZy3ncfh1sP4uPVjfN7++ag7SyrMFVibvxZfKPgCVuau5KWSFMTQkQBevxenuk/haPtRfNb2GY51HMOAbyBiHb0oYMXgAFa53Fg3OIj5Hi9khlwpYFTeCFRcD+hmZ3e4U+HzeNDTchndTQ1wdHeFahJCNQojQ0KwlsHrdsPncsHnHaMztDiSTv6a0MldOeKErlRrpHWCoUGqGVBDEbZNeDhQqofXk15rIFco+F8dpbW2/jZ83PIxPm79GJ+0foIeV0/E8ixtFtbmrw09cvWs8U11DB1J4OvrwJlj/46jl/bis4FmfK5WwymPrELOVJlxTfF1uKboGnwh/wswq9kDKwD4fV7YWprRdbkR3Zcb0dXYgO7Ljehta416bIrxjA4EmtBJXRl2glcG1xs+6WsiQkMoOIwMBso07/uFKE68AS+Oth/Fe43v4eOWj1HvqI9YrlVocVXuVaHajEpLJX+X0gxDR6IM9gJnXwdO/xa4tB8Ia0XtL1iO85XX4TNzFj61n8cnrZ9E1ITIBTmWZS/DhqINuKbwGlRlVM34X7SA3w9bawu6Lzegq0kKGN2XG2FrbR63zYJGb0BmcSksuXlQajTDgSD4XKkODwzh8yLDwUz/bIlSicvnwqGWQ3i38V3sb9ofcRurTJBhcdZiKWTkfwHLspdBKWfDz3SWVqEjFRuSTsjlAGr3Aqd+C1x8N/LW1rwlwKKvSA9rRcRmXr8Xn3d8jgOXD+Cj5o9w0X4xYnmONgfrC9djQ9EGrM1fC6PKmIh3EzcDDjs66+vQ0XAJnfWX0NlYD1vL5XHbQKi0OmQWlyCrqARZxaXILCpFZnEJ9JYMBgaiNOD0OPHh5Q/xbuO7+Kj5o4i2GRnqDNxQcgM2FG7A6vzVbJcxw6RV6BiS0jUdnv7hoHH+bcAfNopk9gJg8R1S0MiaO+VdtvS14KPmj3Dg8gF80vZJxC+oQlBgec5yXFN4DTYUbcBcy9yUPfGKgQB6O9rQWX8JHfV16Gy4hI76S+jr6R5zfaVag8yiYmQWlyKrqESaFpfCYM1M2fdIRGPrGuzC/qb9eKfxHXzS+klEnxn5+nzcWHIjbiy5EStyVrAzrhmMoSNW2k4Bn/4CqH458q6TzLnDQSNnwbQP4/a7cbT9aKgWZOQ1z1xdLq4vvh5bK7ZiWfaypPWU6vN40NXUgI76S8FwUYfOhjp4XaPHMQCAjPwCZJdWIKesAlklZcgqLoUpK5u3S85wQ7ecn+k+g7O2szjbfRbnbOfQ7+2HTJBBISggk8kgF+SQCdJULsgj5ikEBWSCTFoui5wnF+SheUPPR+0ruF34a5kgg0KmGHO7keWK2N/I/csijzXy9ZS2CytbeBnSIXg39zXj3YZ38W7juzjWcSyih+cKc4UUNEpvxELrwrR4PzR9DB3T4fcBZ1+TwkbDweH5GWXAojuksJG7OK4DpzU5m0K1IJ+2fQp3WM1Kvj4fW8q3YGv51ri2A/F5vehsuIS2C7Vou1CL9rqL6Gm5DDEwumGnQqlCVkkpsssqkFNageyyCmSXlEKl1cWlbJQ6fAEfGhwNONNzBud6zoWmve7eZBctLYVCl0wRGYYmCS5jBp2w56F9hM8LD2BjzRsR9tx+Nz5q/ghnes5ElHlR5iJ8sfSLuKHkBlSYK8Z5ZzSTMXRcif4u4Oge4LPdgKNZmifIgQW3AGseknoGTUJqd/lc+LTtU+yt24t3G9+NaIxabi7HzWU34+bym1FmLrviY4iBAGxtLWi7UIvWC7Vou1iLzvpLY7a/0BhNyCmTai9ySsuRXVYBa0ERR9+cBQZ9gzhvO4+zPWdDj/O282MOCS4X5KiwVGCBdQGqMqow3zofVo0VftGPgBhAQAzAJ/oQEAPwB/wRr4fm+UV/aH1fIGxZcJ5f9IfWC38dvo5P9CEQCETsKzQdcYyJ9hVab4x9RWw3ch9jHCvdyQQZVuWuwo0lN+KG4huQb8hPdpEoyRg6otFyDPjkF8Cp/x5uq6HLAlZtB676BmAuTFxZJuHyufDh5Q+xt34vPmj6AJ7AcCPWBdYF2Fq+FVvKtyBPnzfhfvp7bVK4uFCL1gvn0H7xPNwD/aPW0xhNyK+ch7w585BbUYmc8goYMtj2YjbwBry4YLuA6q5qnOw8iVNdp1DnqIvoHXKITqFDlbUKVRlVWJC5AFXWKlRaKqGWq5NQ8tQ3MpyMF4wi1gn4RoWmoSA21YA01vrhwW+8bYeWAcDS7KW4rvg6WDXsX4iGpVXoSMrdKz4PcOZV4JN/AS5/Ojy/YKVUq7HwdkCZ2oNJ9Xn68F7Te3ij7g0cbjkc8R/UypyVuLn8Zmwu2wyTzBAKF60XzqHtwnk4uztH7U+hVCGnfA7y50ohI6+yCuacXAaMWUAURbT0t4S6/a/uqsaZ7jNj1mBkajIxP3O+VINhrcIC6wIUG4s5JDjRLJZWoWNIQmo6nO3A0eelSyh97dI8mVJqELrmIaDoqvgcN856XD14p+EdvFH3Bk40f44cmxq5PRrk2TTI7lVDNvKfU0FAZmEx8irnIb+yCnmV85BVXMpur2cJh8eBU12ncKrrFKo7q3Gy6+SoXiEBwKgyYknWEizOWoylWUuxKGsRsrRZSSgxEaWyGTm0/ZXqt7kgtpyA/sy/Qqj5PTA0aJshF7jqm9JllDQeWG2wz4mes+eRc8aJTWcysLSubFRjz0GVH92ZPuRXVuHGNV/BksVfYCPPWSIgBnCp9xKOth/Fya6TqO6qRp29btR6CkGBKmsVlmQtwZLsJViStQSlplLWYMwwoijC7wvA5w7A6/HD5/HD6w5OPQH43H5pvtsPrzsAnze43O2HzxuATC5AoZJDoZRBoZJBrhx6LodCJZOeK4PPVXLIlbJRy2Vyfqdmq1kROo7//F9wvGkJNMKXkKVchKwMF7KWLELW6g2wFJkhT7NfgP5eGy6fOY3LZ06h+cwpdDY1jBqK3JSdg6L5i6Atz0eNtgX7e/ej3nkZQBt+XfMhrnNehwcWPoCrcq/i5ZMZJiAGUGurxWdtn+Gz9s/wefvnsLlto9YrMhSFwsWSrCVYkLmAbTBShCiK8HulUOB1DYWA4OtgAPCGhwX3iOUR08BwiAhOk12/LZMLEUFErpRDqZJBrpRBORRUQiElLMyo5MPzVZHhZni7yH3IZPz7lkpmxeWV9376Ms5etEDE6LsrZAoB1nw9soqNyCoyhB5qXep0ydvfa0ND9XFcrqnG5TOnYWttHrVORkERihYsQtGCxSiavwim7JyI5aIo4uOWj/HCmRfwUfNHofnzrfNx/4L7cXP5zVDJVXF/LxR7voAPZ3vO4rO2z3C0/SiOdhyF0+OMWEcj12BZzjIsz16OpdlLsThrMRsCxoAYEEed6IdCgtc9HBA8Yc+97rAQ4faFQkF4mEhUMJApBCiDJ3KlWh46YSvU8uBUFrFcrpQh4Bfh9/rh8wTg80i1Hz5vIOJ1aLk3fF5sxlCKllwhGz+0qORQDAUeVdj7HxFohoPN8DYjl832cMM2HeFcdvhcbvTYNei63Ieupj50XXai63IfvK6xb18zZmrCQogRWcUGGDM1CakVCPj9aD1/DvUnjqLu+FG0X7oQuYIgILukTAoYCxahcP4i6C0ZU97/pd5LePHMi3j14quhhoJWjRV3V92NbVXbeM0+xXn9XpzuPo3P2qWajOMdx9HvjbzzSKfQYUXuClyVexWuyr0KizIXzfqxLfy+QCgIeF1DocA3PC/84Ro5b+z1fJ74n0iH/vsfCgBKdTAghIKBPDhfFhYeguuFB4fQetJzhUqW0FpeMRC8rDMURDzSpZuI8DLmPH9kqPFIocYbNvV5/KGaIWl54gNOeC3LqFqaocAy9LNRDQeg0PzgukM/v5H7UqrkEFI42DB0TIEYEOHodqH7ch86LzvRHQwkzp7RLfYBQKNXIqfMiJxSE3LLTMgpM0Fnik3tQF9PN+pPfI6640fRUH0M7v7Ik0hO2RyULFmGogWLUVi1EBqDYdrHtLvteKX2FfzH2f9A+4DUqFYpU2Jr+VY8sPABVFmrpn0Mmr6AGEBNdw0ONh/EkfYjONl5MqLLfAAwKo1YmbtSChl5V2G+dT4UsvS9ehoIiGEnfx88QyHAFXny94SHgzGX+UL7Cfjj+KdOQMQJXamWQxX2XBkeEIZO/prhE86o5WGvZ/t/0FdCDIjw+QLwe4bbrfi8gVC7lOHgI4WUobAyZhgab53gPhMpFEDHCidj1VSpwoPocIixFuihN8f2UipDxzS4+r3obg7WiDT3oavJiZ6W/jH/aBmsauSWSgEkt8yE7FIjVJrJ/9j7fT601J5B/XGpNqOzIbJhn8ZgROnSFShfvgply1ZGVZMRLW/Ai3cb3sULNS/gZNfJ0Pyr867G/Qvux7VF13LMhASzu+041HIIBy4fwMGWg6PuLLGoLViVuyoUMuZa5qbsz2jA4UFPSx96Wvsx6PTC4/KFahLCg4HHNRwc4lmDIFfKIk/86okeish1wrYJ1SZopIaUbBs1+wyFm1AwcfsjQ0l46PEMt60ZCj3hQWboez9yfjx+F667rwqLNsS2/6m0Ch3pMMqs3xtAd0sf2usc6GhwoL3eCVtbPzDy0xOAjDw9ckuNyAnWhmQVGiBXyuDo6pQumRw7isZTx+EZDPtvVRCQV1GJsuVXoXz5KuRVzoUsCSeRE50n8OuaX+PthrdD/X4UG4tx34L7cHvl7dAr9Qkv02wQEAM423M21PX9ya6TEZ1w6ZV6rM1fizX5a3BV7lWYY5mTcneVeFw+9LT0o7u5T5q29KOnpQ+DTu8V71MmE6STvCYYANRyqDTDJ/tR8yaaH3zwzglKJ+MHm2AjYbdfqplxD19qGgowocDjHg4yXrcfa2+rQPmy7JiWM61Cx5BUqemYKs+gD52NTrTXDwURB/p63BHrBPw9EH3ngMBFeF0dEcu0JjPKlq1E+bKVKF22EjqTOZHFn1Bbfxv+4+x/4JXaV+DwOABIQ1P/xaq/wO2Vt6fcCS8dOT1OfNzyMQ40S4P8dQ12RSyvtFRiQ+EGbCjagOXZy1OmTYbfG4CtfSAULnpa+tDd3D/uZUkIgClLi8wCPQwWNZQaqfZgOBAopOeasKAQXCZXsAaBKB0wdCTJgMODS8cu4OzBD9F24TO4+9vClgoQ5PmQK8tgzpuPksXzUTg3A/lzLTBlapNW5okMeAfw2qXX8KuaX6HB0QAAWJK1BD9c80MsylqU5NKlF1EUUWurlWozmg/geMfxiF5ktQot1uavxTWF12BD4YaUGM9i0OlBZ5MTnY1Sw+vuy33o7RiEGBj7z4berIK10ABrgR6ZBXpkFhqQkaeHUp2al36IKDYYOhLM0dWJ2sMf4dyhD9F28XxovkwuR+H8pcgsXgEI5eho9KCnZfQYJ4YMNfIrLSiYa0FBpQUZ+bqU+g/PG/DipTMv4dkTz6Lf2w8BAu6Yewe+v/L7yNDEr71JuhNFESe7TuLNujfxTsM7oQa7Q8rN5dhQuAHXFF6DVbmrknbbsiiK6LO50dnoRGeTE11NfehsdKK/1z3m+mqdIhgsggGjUA9rvgEaQ2rUxhBRYjF0JEB/rw21hz/C2UMH0HKuJjRfEGQoXrwUVV/YgLlr1kFrMEZs5+rzovViL1ou2NFyvhddjU4ERvznqNErkV9pRsFcC/IrLcguNqTEtejOgU48c/QZ/PHSHwEAJpUJ31vxPdw1766UbciYDLW2WrxZ9yberHsTzX3D/apo5BpcnX91KGgUGYsSXjYxIKK3Y0AKF419Uk1GkxPu/tEjCkMALDk6ZBUbkB3sy8ZaYIDeokqpUExEycXQESeDTgfOf3II5z7+EE2nT0EcauwnCCisWoj5667F3DXrorrbxOv2o63OjtbzvWi50Iv2S45Rt2Ip1HIUVFpQssiK0kWZMOdok/pH//P2z/HEJ0+g1lYLQOpk7IdrfojlOcuTVqZka3I04c16KWhc6B3uW0Wr0OL64uuxtXwr1hasTWivn6Iowt45iPY6qc1RZ4MTXc198LlH908jkwnIKNAju8SI7GJDqMO8qdyNRUSzG0NHDHldLtR+chBnD32IxurjCPiH/2DnV1ahat0GzFt7DYyZselUy+8LoLPRiZYLvWi9YEfrhV64ByL/CzVmalCy0IqSRZkoqsqASpv4E4Mv4MPLtS/jn479U6gHzFvn3Iq/XPWXs6aDsY6BDuyr34c3695EdVd1aL5SpsSGwg24ueJmbCzaCK0iMW123IM+dNQ50F5vR1udA+2XHHD1j757RKGUIbPIEAwYRmSXGGHN10OuTH5tGhGlH4aOGLB3tOP4W6+j+r19EZ11ZZdVYP66a1H1hWtgzsmLeznEgIjulj401djQWNONlgu9CPiGf2wymYC8OWYUL5RqQbKKDAntua7H1YN//Pwf8dvzvwUAGJQG/OnyP8Xd8++GUjbzrvHb3Xa83fA23qx7E0fajkAM3jctE2RYk7cGN5ffjBtLb4RJFd/vcCAgoqelH+11drTXOdBW5xjzNm6ZQkBOiRG5ZWZkl0oBw5KrY6dTRBQzDB1XSBRFNJ2uxrG9r+LiZ5+GLp+Yc/Ow6NobUbVuA6wFib8OH87r9qO51obGmh40nu6GvSOyd0qtUYnihVaULMxE8QJrzHpNnUx1ZzWe+OQJnO4+DUC65XPnmp1Ynbc6IcePp0HfIN5tfBd76/biYMtB+ALDNU/Ls5fj5vKbsblsc1xreAYcHrTXBWsw6uzoqHfCO8ZlElOWBrnlZuRVmJBbZkZWkYE1GEQUVwwdUfK6XTjz0X4ce/OP6GpqCM0vXboCK7bcgvIVq5LSWddU2DsH0VTTjcaaHlw+axt1IsouMaJ4oRXlS7OQW2aKay1IQAzgd+d/h3/4/B/Q6+4FANxcdjMevuph5OnjXysUa+397fjPc/+Jl2tfht1tD82vyqjCzeU3Y0v5FhQaYtuz35B+uxst53vRfM6G5tpe9LYPjFpHqZEjt8yE3HITcsvNyI1h1/xERFPF0DHVY3Z2SJdQ3t0HV38fAECp1mDhxhux4qYvI7OoOCHliBW/L4C2S3Y0nu5BY003upr6IpYbMtSYsyoHlatypAASp8aodrcd/3Tsn/By7csIiAFoFVrsWL4DX1/49bS46+FU1ym8UPMC3qp/Cz5RqtUoNBTiyxVfxtbyraiwVMT8mAMOD5prpYDRUmuDrW1EyBAAa74eeUMBo9yEjHw9L5MQUdKlVehIdDfooiji8plTOPbmH3HhyOHhSyg5uVix5RYsuu6L0OinP6BaKui3u3H5TA8aTnWjvro7ohbEYFWjclUuKlfmIKfMGJcwcKb7DP7uk7/D8c7jAIBt87bhh2t+mJK31/oCPrzX+B5+febXONZxLDR/Ve4qPLDgAVxXfF1Myz0UMlpqe9E8TsjIKjKgcF4GCudJt05r9DOvjQwRpb+0Ch1D4l3T4fW4cfajD3DszVfR2Vgfml+yZDlW3nwLyldclbKXUGLB5/GjsaYHF452oO5kV8Rtk8ZMDSpX5qDyqhxkl8Q2gIiiiP84+x946tOnIELElrIt+Ltr/i5luvV2epz47fnf4qUzL6GlvwUAoJApcHPZzbhv4X1YlBmbnlcHHB7pckmwNsPWOqKTuKGQMTcDhVUMGUSUPhg6wvfb1YETb72Bk+/ug6tPurVToVZj0bU3YPlNX0ZWcWnMjpUufB4/Gk/34MLRdtRVd0cEEFOWBpWrcjBnZWwDyN76vXjswGPwBXy4pvAa/Oy6nyXsVtKxNDoa8eKZF/H7C7/HgE+qZchQZ2Bb1TZ8repryNHlTGv/YkBER4MT9dVdaDjVjc5GZ+QKYSGjYJ7UGy1DBhGlI4aOML95/K9xueYUAMCUnYsVN30Ji6/fDI1hZlxCmS6vx4/GU924cLQD9dVdEUMpSwEkF5WrcpBVbJh2APmo+SP85ft/CZffhRU5K/DPN/5z3G8tDSeKIo60HcELZ17AB00fhG53rbRU4v4F9+NLFV+CRqG54v17Bn1orOlBwykpaIwcYTWzyIDCeRYUzstgyCCiGYOhI8y5jz/CyXfewIott6Ji1eoZfQllurxuPxpOdePC0XY0VHdH9IyakafD4o1FmL82b1qdkR3rOIYd7+yA0+vEfOt8PPvFZ+PemZjH78EbdW/g1zW/xjnbudD8DYUb8MDCB7A2f+0VB6re9gHUV3ehvrobred7I7q0V2nkKF6YibIlmShZlMk7S4hoRmLoCCOKYlrcMZFqPC4fGk514+LRDtSf6oY/GECUajmq1uZhycYiWAv0V7Tvcz3n8NDbD6Hb1Y1SUyl+sekXKDAUxLL4IR9e/hBPffoUmpxNAKRuyW+dcyvuW3Afys3lUe/P7wug5UIvGk52o/5U16h+Uiy5OpQuyUTZkizkV5ohT4Exc4iI4omhg2LKM+jD2cNtqN5/OaK/iMIqC5ZcV4TypVlRD0jX4GjAt9/6Nlr6W5Cry8UvNv8CFebY3Yra5GzC33/69/jg8gcAgGxtNu5feD/unHsnzGpzVPty9XlRd7ITDdXdaDzTA69ruA2MTC6gYK4FZUuyULo4E5ZcXczeAxFROmDooLgQRRGXz9lQ/f5l1J/swtC3x5ChxqINhVh4TUFUlxDa+9vx7be/jUv2S8hQZ+DZTc9O+24Rl8+Ffz/179hdvRuegAcKQYEHFj2A7yz9DnTKqQcCn8eP+upunPukDY2nuxHwD/+qaE0qlC6WLpsUz7cmZewbIqJUwdBBcefsceHUh82o+agFrj6pwaRMLqByVQ6WXFeE3PKpdT5mc9nwp+/8KU51n4Jeqcc/3fBPV9R1uiiKeK/pPfz0yE9Dw8mvzV+Lx9Y8NuUalEBAREutDec+bcelzzvgCavRyCw0oHx5FsqWZCGnxJjQ8W2IiFIZQwcljM/rx8WjHaj+oBntdY7Q/OwSIxZvLMS81blQqCZuvNvv7cf33vsePm37FCqZCv/3uv+L64qvm3IZGhwNePLTJ3Gw+SAAIE+fh0euegSbSjdNGnxEUUR3cx/OfdKO85+2od/uCS0zWNWYd3Ue5l2di8wC3u1ERDQWhg5Kio4GB6r3X8b5Ix3w+6SGp2q9AgvWFWDJxkKYssbvl8Ptd+ORDx7B+03vQy7I8bfr/xa3zLllwuMNeAfwb9X/hj2n98Ab8EIhU2D7ou14cMmDk15Kcfa4UPtpG2o/bUdPy3BHXWqdAnNW5aDq6lzkz7GwRoOIaBIMHZRUg30enDnYilMfNMPZ4wIAyGQCFl9XiNVfKh+3fwpfwIcfH/oxXr34KgDgsasfw70L7h21niiKeLvhbfz0s5+irb8NALC+cD3+evVfo8xcNm65XP1eXPy8A7WftqPlfG9ovkwhoHxJFuZdnYfSxZkclZWIKAoMHZQSAgERDae6cfK9Jlw+awMg1SSs/lI5Fm8shFwx+uQeEAN4+sjTePHMiwCAHct34KGlD4Uuk1zqvYQnP30Sh1sPAwAK9AX4q6v/CjcU3zDmpRRRFNFY04Oaj1pQX92FgG/4K18w14KqNXmoWJHNjrqIiK4QQwelnKaaHhz87/PobpYuZZiztVh3RyXKl2eNCguiKOK5k8/h58d/DgC4f8H92LF8B35x8hd4oeYF+EQfVDIVvrHkG/jG4m+M2Z263xfA+SPtOPZ2Y8TlE2uBHlVr8jB3dS6M1ivvfZSIiCQMHZSSAgERZw+14vCrlzDokBpsFsy1YP1dlcgpHf0zf/HMi3jq06cASJ16Dfqkjrg2Fm3Eo6sfRbGpeNQ27kEfTh9oxsn3LqO/1w1A6tBswfp8LFhXgKwiNgglIoqlpIaO2tpavP766zh//jx+8pOfICtral1cM3TMHh6XD5/va8Dxd5pCPZ1WrcnD2tsrYMiIrH3448U/4m8O/g38oh9FhiL89dV/jY3FG0fts8/mwol3m3D6o5ZQ5106swrLbijGog0FUOt4+YSIKB6mev6Oqkcju92OTZs2oaamBocPH8bixYsBAI8++igOHTqEsrIy7N69G/PmzcOxY8dw4MABKJX8Q0+jqTQKrL1tDhZtKMThP1xE7SftOPdJGy5+3oHlm0qwYnMJVBrp63nLnFtQaCjEhd4LuK3yNqjl6oh9dV3uw/G3G3H+SHto3JOMfD1WbCrGvNV5bBRKRJQioqrp8Hq96O3txSOPPIIf/OAHWLx4MU6cOIGf/vSn+PWvf40nnngCFRUVuOeeewAAb7zxBoqLi7FkyZIx9+d2u+F2u0OvHQ4HiouLWdMxC7XXO3DwlfNovWAHAOhMKqy5rQLzv5AP2Ri3rIqiiMtnbTj+diMaa3pC8wvmWrBicwlKF2XyVlciogSJS02HUqlEdnZ2xLxDhw5h8+bNAIAtW7bg+eefR25uLj777DNcvHgRjz/++Lj7e/LJJydcTrNHbpkJX/n/VuLS8U4c+u1FODoH8f4LZ3HyvctYf1clihdYAQABfwAXjnbg2NuN6GrqAwAIAjBnZQ6WbypBbhnDKhFRqpr2gBE2mw35+fkAALPZjJ6eHtxwww244YYbJt32sccew8MPPxx6PVTTQbOTIAiYsyIHZUuyUL3/Mj57ox7dzX149R+Po3RJJgrmWlC9/zL6eqTaMYVKhgXrCrDsxmKYs8fvdIyIiFLDtEOHxWKBwyF1fW2322G1Wqe8rVqthlqtnnxFmlXkChmWf7EE89fm48gbdTi1vxkN1d1oqO4GAGiNSiy9vgiLry2CxsA2Q0RE6WLaoWPdunX42c9+hq9//evYt28f1q9fH/U+du3ahV27dsHv90++Ms0aGoMSG746D0s2FuHw7y/C3jWIxdcWomptHhTKicdyISKi1BP1LbNbt27F8ePHUVpaioceegjbt2/HI488gsOHD6OkpATPP/88VKqpD20ejrfMEhERpR92DkZEREQJMdXzd0p0YLBr1y4sXLgQq1evTnZRiIiIKE5Y00FERETTklY1HURERDTzzYrQEXD7IPoCyS4GERHRrDbtW2ZjId63zPYdaIbzg8tQlZqgrjBDXWGGqsgIQTErMhcREVFKmBVtOrp+eRquMz0R8wSlTAoh5cEQUswQQkREdCXiMvZKusp8YCF8HQNwX7LDXWeH+1IvAv0+uC/0wn2hV1pJIYO6xBisCbFIIYSjkxIREcXMrAgdgkyAMk8PZZ4ehnUFEEVxOIQEg0igzxt6DTQCCgHqEulyjKrcDHWJiSGEiIhoGlIidCS6G3RBEKDM1UOZq4fhC8EQ0jkI96XeUPCIDCGQQki5GZr5VmjnW6HI5ABjRERE0ZgVbTqiJYoifF2DwzUhl+wIOD0R6yiytNDMt0IzPwPqMjPbgxAR0azFbtBjaKgmxHW2B66zPXDXO4DA8McmqORQz7VAO98KTZUVctOVjT1DRESUjtiQNIYEQYAyRwdljg7Ga4sQcPngOt8rhZBzPQj0eeE63Q3XaWnodWWhAZqqDGjmW6Vbc2VCkt8BERFR8rGmY5rEgAhvSx9cZ3sweM4G72UnEPaJyvQKaOZZpUsxVRmQaZjziIhoZkmrmo5ENySNJUEmQFVkhKrICNMXS+Hv88B1zgbXuR64am0I9PswcKwDA8c6AIUM2oVW6JblQFOVwXYgRJQWRFEEfCJErx+CRsHaW7pirOmII9EfgKfBgcGzNrjOdMPXORhaJmgV0C3Jgm55NlRlZv4SE1FMiaII0ROA6PYh4PZDdPml6dBrtz80HX4+etnQNNSOTSZAblJBblZDblFLU7MKirDXMr2Sf9NmGTYkTTGiKMLb0o+B4x0YONGJgGP4bhi5WQXtshzolmdDma+HIPCXlWi2En2BYEjwDU9dQwHAJ01dYYHA5UPAMxQqwpZ7/BGXehNKLowZRoaCisKihqBV8G/dDMLQkcLEgAj3JTsGjndg8FQXRNfwZSVFjg66FdnQLcuBwqpJYimJKBoRYcHlR8A1FADCpi5/RKCQwkN4TYQP8MX4T7IACGo5ZGpFcCqHoJFDppJDUMsjl2nkEFTBdULL5BA0CmmqkCHQ74XP7oa/1w2/3Q2/3SNNe93w2d1S9wJTeAuCWi4FkAxNcBoMJxYNFBlqyAwq1pakEYaONCF6A3Cd65ECyNmeiD84qlITdMuzoV2SBbmBt+ESxYMoihC9gciwEJyGPx+eFwwKQ7UNwXmI8UjWgkoGQa2QgoBaDplGIQWC8Nfq4YAgUyukMDHitaCUJbRGQfQH4Hd6hkNJrxRKQkGl141Av3fyHcmFUK2I3BIWTDI0UFg1kJvVDCUphKEjDQVcPgye6sLA8U64L/YO/7cgE6CZa4F+dR40CzP5i0YURvQFhsOAy4fA4MjnYYEhfFlYrUR4vzvTFREWNNI0orYgOJVpwkJCaFkwLKjkEOQz9/c84PGHAoiv1wW/Lfjc5pLmO9zAZBlOFgwl1mAIydBAYR0OJTK9kpdvEiitQkf43Su1tbWzNnSE8zvcGDjRhYETHfBe7gvNl2dqYLymELpVuZCp5EksIVFshELDoPQQXf5QWJBeDy8bK1iI3hjVMAgIhYVQINAoINMOPx+qYQgPFKFt1NLzmRwWEkX0i/A7hkKJG/5gGPHZpIDis7kA/8SnLkElCwWQ4VCigSJTmgpK/v2MpbQKHUNme03HeLydAxg42oH+T1sRGPABkO5+MazJh2FdAXtApZQliiL8Njfc9XZ46h3w291hgSK2oSHUJkGjGBUWpNdhQWFoXnh4UMn5n3GaEAOidAmn2wWfzQVfjwv+Hum5v8cFv8Mz6T7kZhUUmVoosrRSEMnUQp4pPec/dNFj6JiBAh4/Bo62o++jZvi6XdJMuQDdsmwYNhRBla9PbgFp1gsNnlgnjd7sqZOCxlSE1yxIgSH4XCMf8ToYJrSRwYGXHWmI6A1Il216RoSSHhd83S7pFuAJyIyqUBBRZAWnQ4GEHTyOiaFjBhMDIlxnuuH8sBmeBkdovnquBcYNRVDPtfA/NkoI0S/C29oHd50jWJthR6DfF7mSTICq0ABVuRnKbK0UILSKyIChljM0UEKIoojAgA++7kH4ul3wdQ3CP/S8ezBUmzwemUEJRbYWymwdFNlaKLJ1UGZrIc/QzOrvMEPHLOFudKDvQDMGT3WFGp4qcnUwbiiEbnkOez2lmBK9AXguO+Gut8Nd54CnwTHqv0ZBKYOq2AhVuRnqchNUJSZWV1PaCAx4QwFk5DTQN8FdN3IBiiwtlFlSEJECiRROZNqZXzvC0DHL+Hpc6DvYjP4jbRA90jVymVEJwxcKoF+TD7lemeQSUjoSAyK8rf1w1drgqrXB0+QY1Y+EoJFDXWaGqswEdbkZqkIDwy7NSAGXD76uQfg6B+HtHICvM/i8a3DCW6Yja0d0UObqoMzTQWZUzZhaaYaOWSow6EP/p63oO9gSakwlKGXQrcqF8doidjhGk/L3e+E+bwsFjZH/3ckMSqjLzVCXmaRLJnn6WV2tTCQGROnumq5BeDsGgsFkAN7OwYjep0cSNIpQAFHm6KDI1UOZp0vLfpkYOmY50RfAQHUX+j68DG9rvzRTIcB0fQmMG4v4nyiFiH4RnstOaZDC872jRkoWVDKo51igqcqAeo4FiiztjPnvjCjeRtWOdAzA2z4AX/fguH2RyPQKKHP1UOQGa0Vy9VDm6iDTpW6NdVqFDvbTET+iKMJ90Q7ne41wX7IDABRZWlhur4Sm0pLcwlHS+O3uUE2G63wvRFdk4zllnh7qqgxo5mVAXWpiSCWKMdEXgLdzEL72fnjbB4KPfvh7XON2Iy8zKqUAUqCHqsAAZb4eiixdSvQNk1ahYwhrOuJHFEUMnuhE72uXQtXluuXZMH+pAnJj+lXlUXREvwh3vR2ucza4a3vgbRuIWC5oFdDMtUAzTwoacpM6SSUlmt0CHr9UK9LWL12qaZNCib93nFvPFTIo8/VQ5UthRJkvhZFEN95m6KAxBQZ9sL9Vj/7DrYAoNQI0bymD/up8XpefYcSACHedHYMnOzF4qjtyvAsBUBYZQyFDVWRMif+WiGhsAbdPqg1p64e3tR/eln54W/tCNw5EEKQabWW+HsoCQ6hWJJ7/YDJ00IQ8TU7Yfn8B3mapi3VlsREZt1dCVWhIcsloOsSACE+DAwMnOzF4qgsB53DQkOkU0My3SpdM5mbwjiaiNCcGRPh6XPC29IVCiKelXxrpdwwyoxLKfAMM6wqgnW+NaVkYOmhSYkBE/8ctsL/VIPW1IACGdQUwbSplr3tpRAyI8DQ5MXiyEwPVXRGt5QWNAtrFmdAtzYZ6jhmCnG0ziGY6v9MDb2s/PC19wVqRPvi6BkNtRTK2zYN+VW5Mj8nQQVPmd7jR+9olDJ7sAgDITCpYbqmAdnEW71JIUaIownu5T6rRONkV0dW4oJZDuygT2qXZ0FRa2AiUiBDw+KVLMy390MzPgMIS2+4TGDooaq5aG2x/uAB/cFwX9bwMZNw2B4pMbZJLRkAwaLT0h2o0/D2u0DJBJYd2oVUKGvMyGDSIKKEYOuiKiN4AHPub4NzfJA0drZDBdH0x+/ZIIn+/FwOftaP/SJtURRokKGXQLLBCtzQbmqoMDtVNREkz1fM3L9xTBEEpg3lTKXTLs9H7h4twX+iF4+0GDBzvQMZX5kJdYU52EWcNT0sf+g61YOB4Z6iLZUEpg2a+FdolWdDMt3JMEyJKK6zpoHGN6ttDJiDz3vnQLs5KdtFmLNEfwODpbvQdaoGnfngEYWW+XmpxvjQbMjWDBhGlFtZ00LQJggDd8hxoqqyw/e48Bk92ofulM7DePR+6pdnJLt6M4nd60P9pG/o+aR2++0QmQLs4E4Z1BVCVmtiol4jSXkqEjvBu0Cn1yLQKWO+eD5uiFgOfd6DnP88CARG65TnJLlpaE0XpVtf+Qy0YqO6S2tBAGlBNvyYfhjV57BmUiGYUXl6hKRMDImy/PY+Bz9oBAcj4ahX0Kxg8oiV6Axg42Ym+j1vgvdwXmq8qMUqXUBZnsdEuEaUVXl6hmBNkAjLumAtBJqD/0zbY/uscEBBj3snMTOXrdaP/k1b0f9qKQH9wgDWFAN3SbOkSSpExuQUkIoozhg6KiiATYLm9EpAJ6D/cCtsrtVLwWJ2X7KKlLL/TA8fbDej/rC00lLXcrIZ+bT70q3MhN3DAPSKaHRg6KGqCTIDltjkQZAL6DrXA9t/nIQZEGNbkJ7toKUX0BuA82Azn+01SN/MA1BVmGNYVQLMgkwOsEdGsw9BBV0QQBJhvqQAEoO9gC3p/dwEIiDB8oSDZRUs6URQxeKoL9jfrQ72GKosMsHy5Auoy9nNCRLMXQwddMUEQYP5yBSAT0HegGb1/uAgxIMK4vjDZRUsaT3Mfev94MdTHhsykgvmmMuhW5ECQsWaDiGY3hg6aFkEQYN5aDkEmwPnBZdj/eAkIAMYNsyt4+B0e2PfVY+DzdmkkR4UMxo1FMG4sYq+hRERBDB00bYIgwLSlDJAJcL7fBPvrl4CACOPGomQXLe5Erx/OA81w7m+C6JFaiWqXZ8O8pSzmozgSEaU7hg6KCUEQYNpcKgWPdxthf7MOYkCE6friZBctLkRRxODJTqndRq80rLyq2AjzLRVQl7CPGSKisTB0UMwIggDzplIIMgGOtxvg2FcPBESYbixJdtFiytPkRO9rl+BpkNptyM1qmG8ug3ZZNrsqJyKaAEMHxZzpxhJAJsCxrx6OtxukGo8vlqT9Cdlnd8Oxtx4DxzoASCO+Gq8rhmFDIdttEBFNAUMHxYXp+mIIMgH2N+vgfLdRqvHYXJq2waPvcCvsr1+C6JXabehW5sB8UxnkZo6NQkQ0VQwdFDfGjUWATID99Utwvt8EiIB5S1myixUVMSDC/mYd+g40AwBUZSZYvlzBLsuJiK4AQwfFlXFDIQQZ0PvHS3Dub4JueTaUefpkF2tKRK8fPb85h8FT3QAA002lMF5XnLa1NUREyRaXoSzfeust/P3f/z0eeugheL3eeByC0ohhfSE0CzMBAP2ftye5NFPj7/Og81+rpcAhF2C9uwqm69O/XQoRUTJFFTrsdjuuvvpqGAwGnDp1KjT/0UcfxYYNG/DAAw/A6/Vi8+bNePTRR6HX6+HxeGJeaEo/+lU5AICBYx0Q/WKSSzMxb+cAOn5+Ap5GJwStAtnfXALd8pxkF4uIKO1FFTp0Oh1ef/113HXXXaF5J06cQHNzMw4cOID58+fjlVdeAQA899xz2Lx5M/T68avS3W43HA5HxINmJk2VFTKdAgGnF64LtmQXZ1zuejs6nz0Bf48LcqsGOX+6DOoKjpdCRBQLUYUOpVKJ7OzsiHmHDh3C5s2bAQBbtmzBwYMH8dxzz+Gdd97B2bNnYbONf4J58sknYTabQ4/i4pnZkRQBgkIWqi0YOJqal1gGTnSi81+rERjwQVlsRM6fLoMyW5fsYhERzRjTbkhqs9mQny8NaW42m9HT04PvfOc7+M53vjPpto899hgefvjh0GuHw8HgMYPpVuag71ALBmu6ERj0QaZNjXbMoijC+cFlOPbWAwA0izJh/VoV+94gIoqxaf/Vt1gsocsidrsdVqt1ytuq1Wqo1eznYLZQFhqgyNHB1zGAgZOdMKzJT3aRIPpF9P7hAvo/bQMAGNYXwPylCo4IS0QUB9O+e2XdunV45513AAD79u3D+vXro97Hrl27sHDhQqxevXq6xaEUJgjCcIPSzzuSXBog4Pah65enpcAhAOZbKmC5ZQ4DBxFRnEQdOrZu3Yq33noLDz74IPbs2YPly5cjNzcXGzZswOnTp3HnnXdGXYgdO3agpqYGR44ciXpbSi+6FTmAAHgaHPB1DSatHH67G53PnYS71gZBKUPm/QthXF+YtPIQEc0GgiiKKXP/osPhgNlsht1uh8nEkTpnqs7dp+CutcF4QzHMm8sSfnxPaz+6nz8Fv8MDmUGJrD9ZBFUxexglIrpSUz1/x6VzMKKJ6FcOX2IRA4nNvK5aGzqfOwG/wwNFjhY5f7qcgYOIKEFSInSwTcfsol2UCUEth7/XDXedPWHH7T/Shq49pyC6/VBXmJHznWVQWDUJOz4R0WzHyyuUFLb/Po/+I23QrcqFddu8uB/P+eFl2N+oAyC1K8m4cy4ERUpkbiKitMfLK5TSdMG7WAaruxDw+ON6LJ/dDftb9QAA4/XFyPjqPAYOIqIkSIm/vLy8MvuoSk2QZ2ogevwYPNUV12M532sEfCJUZSaYNpdy0DYioiRJidDBW2ZnH0EQoF8R/z47fF2D6D8idbtuvqmMgYOIKIlSInTQ7KRbmQsAcF/sha/XHZdj2N9pAAIiNFUZUJdz4DYiomRi6KCkUVg1UJWbAREYOBb7QeA8rf0YPNEJADAloT8QIiKKlBKhg206Zq9Qnx1HOxDrG6kcb9UDIqBdkgVVoSGm+yYiouilROhgm47ZS7skC4JSBl/XIDxNzpjt193ogOtMDyAApk2lMdsvERFduZQIHTR7yTQKaBdlAohtg1LHvnoAgG5VLpQ5upjtl4iIrhxDByWdbpXUoHTgRCdEX2Da+3Odt8F90Q7IBZhuLJn2/oiIKDYYOijp1HMskJtUEAd9GDzTPa19iaIIe7CWw7AmH4oMdnNORJQqUiJ0sCHp7CbIBOjCGpROh6umG97LfRBUMhivL45F8YiIKEZSInSwISkN9dnhqu2B3+m5on2IARH2txoAAIb1hZAbVTErHxERTV9KhA4iZY4OymIjEAAGjnde0T4GTnTC1z4AQaOA8dqiGJeQiIimi6GDUkaoz47Po+8oTPQF4HhbquUwXlcEmVYR07IREdH0MXRQytAtywbkAryt/fC09EW1bf9nbfD3uCAzKGFYVxCnEhIR0XQwdFDKkOmU0C6wAoiuz46Axw/Hu00AANMNJZCp5HEpHxERTU9KhA7evUJDhhqUDhzvgOifWp8d/R+3IuD0QJ6hhv7qvHgWj4iIpiElQgfvXqEhmqoMyPRKBPq8cNXaJl0/4PLB+UGwluOLpRAUKfGVJiKiMfAvNKUUQS6Dbnk2gKldYnEeaEZgwAdFjha6FTnxLh4REU0DQwelnKFLLIM13QgMeMddz9/nQd+BZgCAaVMZBJmQkPIREdGVYeiglKMs0EOZpwP8IgZOdo27nnP/ZYgeP5SFBmgXZyawhEREdCUYOijlCIIw3KB0nD47fL1u9B1uAQCYbyqDILCWg4go1TF0UErSrcgBZICn0Qlv58Co5c73GgGfCFW5Geq5lsQXkIiIosbQQSlJblRBMzcDwOgGpd6uQfR/1gYAMN9UyloOIqI0kRKhg/100Fh0q4YusXRADIih+Y63G4AAoJlvhbrMnKziERFRlFIidLCfDhqLdkEmBI0Cfrsb7ku9AABPSx8GT0gDwpk2lyaxdEREFK2UCB1EYxGUMuiWZQEABo5Kl1gcwaHrtcuyoSowJK1sREQUPYYOSmmhPjtOdcFVa4PrbA8gA0xfLElyyYiIKFoMHZTSVCVGKLK0EL0BdL94BgCgX5UHZbYuySUjIqJoMXRQSpP67JC6NxfdfkAhwHgjazmIiNIRQwelvKHQAQCGtQVQWNRJLA0REV0phg5KeQqLBoZ1BVAWGWC8rijZxSEioiukSHYBiKbCcuucZBeBiIimiTUdRERElBAMHURERJQQKRE62A06ERHRzCeIoihOvlpiOBwOmM1m2O12mEymZBeHiIiIpmCq5++UqOkgIiKimY+hg4iIiBKCoYOIiIgSgqGDiIiIEoKhg4iIiBKCoYOIiIgSgqGDiIiIEoKhg4iIiBKCoYOIiIgSgqGDiIiIEiKlhrYf6pHd4XAkuSREREQ0VUPn7clGVkmp0OF0OgEAxcXFSS4JERERRcvpdMJsNo+7PKUGfAsEAmhpaYHRaIQgCDHbr8PhQHFxMZqamjiQ3BXiZzg9/Pymj5/h9PEznB5+fuMTRRFOpxMFBQWQycZvuZFSNR0ymQxFRUVx27/JZOIXZZr4GU4PP7/p42c4ffwMp4ef39gmquEYwoakRERElBAMHURERJQQsyJ0qNVq/PjHP4ZarU52UdIWP8Pp4ec3ffwMp4+f4fTw85u+lGpISkRERDPXrKjpICIiouRj6CAiIqKEYOggIiKihJgVoePRRx/Fhg0b8MADD8Dr9Sa7OGmnvr4e2dnZuO6663Ddddehs7Mz2UVKC3a7HVdffTUMBgNOnToFAHj55Zexbt063Hjjjbh8+XKSS5j6xvoM586dG/ouvv3220kuYWr79NNP8YUvfAHXXnst7rnnHni9Xn4HozDW58fv3zSJM9zx48fF++67TxRFUfzf//t/iy+99FKSS5R+6urqxDvvvDPZxUg7Ho9H7OjoEP/kT/5ErK6uFr1er7h27VrR7XaLH330kfjtb3872UVMeSM/Q1EUxVWrViW5VOmjpaVFHBgYEEVRFP/6r/9afPnll/kdjMJYnx+/f9Mz42s6Dh06hM2bNwMAtmzZgoMHDya5ROnp4MGD2LBhA3bu3DnpgD4kUSqVyM7ODr0+f/48FixYAJVKhfXr1+PkyZNJLF16GPkZAkBfXx82btyIe++9Fz09PUkqWXrIz8+HVqsFAKhUKpw7d47fwSiM/PxkMhm/f9M040OHzWYLdVdrNpv5JbkC+fn5uHDhAj788EN0dHTgt7/9bbKLlJbCv4sA4Pf7k1ia9HXw4EF88MEH2LJlC3784x8nuzhpoaGhAW+99RauueYafgevwNDnd8stt/D7N00zPnRYLJbQkLt2ux1WqzXJJUo/arUaer0egiDgjjvuwIkTJ5JdpLQU/l0EALlcnsTSpK/MzEwAwF133cXv4hQ4HA488MAD2LNnD7Kzs/kdjFL456dUKvn9m6YZHzrWrVuHd955BwCwb98+rF+/PsklSj9OpzP0/MCBA6isrExiadLX3LlzcebMGXg8Hhw6dAhLly5NdpHSjsfjgdvtBsDv4lT4fD7cfffd+PGPf4yqqip+B6M08vPj92/6ZkWPpI888ggOHz6MkpISPP/881CpVMkuUlp588038aMf/Qg6nQ7l5eXYvXs3FIqUGqA4ZW3duhXHjx9HaWkpHnroIWi1WvzjP/4jNBoNfvnLX6K4uDjZRUx54Z/h7bffjv/6r/+CXq+HWq3G7t27+RlO4IUXXsBf/MVfYMmSJQCA7373uwDA7+AUjfX5Pf300/z+TcOsCB1ERESUfDP+8goRERGlBoYOIiIiSgiGDiIiIkoIhg4iIiJKCIYOIiIiSgiGDiIiIkoIhg4iion6+nq89dZbAICHHnooyaUholTE0EFEMREeOv7lX/4lyaUholTEzsGIKCa+9rWv4dChQ5gzZw4aGxtx6dIlbN++HWq1GrW1tZgzZw5KS0vxxhtvYP369fg//+f/oKurC9/61rfgcDiQn5+PX/3qVxwPhGgGY00HEcXEd7/7XXzta1/D/v37IwZWvPbaa/H++++jpqYGS5cuxccff4wPPvgAXq8XTz31FL73ve/hvffew9KlS/G73/0uie+AiOKNA2gQUVwNDSpWUFAQep6bmwuHw4Gamhp88skn+MlPfoLBwUE88MADySwqEcUZQwcRxYRSqYTf7x81XxCEMZ+Looj58+fjK1/5CjZs2AAA8Hq98S8oESUNL68QUUwsWbIER48exbZt29Db2zulbX74wx/imWeewQ033IAbbrgBJ06ciG8hiSip2JCUiIiIEoI1HURERJQQDB1ERESUEAwdRERElBAMHURERJQQDB1ERESUEAwdRERElBAMHURERJQQDB1ERESUEAwdRERElBAMHURERJQQDB1ERESUEP8/SUJIJDxcPbsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "funman_request = get_request()\n", + "setup_common(funman_request, synthesize=True)\n", + "set_compartment_bounds(funman_request)\n", + "# relax_parameter_bounds(funman_request, factor=0.75)\n", + "# funman_request.config.verbosity=10\n", + "results = run(funman_request, plot=True)\n", + "report(results, \"synthesis\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# import pandas as pd\n", + "# df1 = pd.DataFrame({\"ltp\": ltp, \"gtp\": gtp})\n", + "\n", + "# # df2 = \n", + "# # df1.ltp.N == df1.gtp.N\n", + "# # df2.loc[df2].sort_index()[0:60]\n", + "\n", + "# #(= H_10 (+ H_8 (* 2 (+ (* r_HD (- 1) H_8) (* r_HR (- 1) H_8) (* r_IH_v I_v_8) (* r_IH_u I_u_8)))))\n", + "\n", + "# df1['same'] = df1['ltp'] == df1[\"gtp\"]\n", + "# df1[0:20]\n", + "# # df1.loc[df1.index.str.endswith(\"_6\")].sort_values(by=\"same\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# # Get points (trajectories generated)\n", + "# pts = results.parameter_space.points() \n", + "# print(f\"{len(pts)} points\")\n", + "\n", + "# # Get a plot for last point\n", + "# df = results.dataframe(points=pts[-1:])\n", + "# ax = df[STATES].plot()\n", + "# ax.set_yscale(\"log\")\n", + "\n", + "\n", + "# # Get the values of the point\n", + "# gtp=pts[-1].values\n", + "\n", + "\n", + "# # Output the model diagram\n", + "# #\n", + "# # results_unconstrained_point.model.to_dot()\n", + "# # gtp" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "funman_venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/funman_single_scenario.ipynb b/notebooks/funman_single_scenario.ipynb new file mode 100644 index 00000000..a71c4451 --- /dev/null +++ b/notebooks/funman_single_scenario.ipynb @@ -0,0 +1,2061 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# This notebook illustrates example outputs from Funman, and how to work with the ParameterSpace object it creates.\n", + "\n", + "# The file scratch/hackathon/hackathon_fall_2023_demo_terarrium.py was used to generate the outputs rendered here.\n", + "\n", + "SAVED_RESULTS_DIR = \"./out\"\n", + "\n", + "# Import funman related code\n", + "import os\n", + "from funman.api.run import Runner\n", + "from funman_demo import summarize_results\n", + "from funman_demo.example.pde import plot_spatial_timeseries\n", + "from IPython.display import HTML\n", + "import matplotlib.pyplot as plt\n", + "import itertools\n", + "from funman import FunmanWorkRequest, EncodingSchedule, POS_INFINITY\n", + "\n", + "import json\n", + "from funman.representation.constraint import LinearConstraint, ParameterConstraint, StateVariableConstraint\n", + "from funman.representation import Interval\n", + "from funman import FUNMANConfig\n", + "import logging\n", + "from funman_demo import summarize_results\n", + "\n", + "\n", + "\n", + "RESOURCES = \"../resources\"\n", + "\n", + "EXAMPLE_DIR = os.path.join(RESOURCES, \"amr\", \"petrinet\", \"terrarium-tests\")\n", + "EXAMPLE_DIR = os.path.join(RESOURCES, \"amr\", \"petrinet\", \"terrarium-tests\")\n", + "MODEL_PATH = os.path.join(\n", + " EXAMPLE_DIR,\"seird.json\"\n", + ")\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"seird_request.json\"\n", + ")\n", + "\n", + "\n", + "# EXAMPLE_DIR = os.path.join(RESOURCES, \"amr\", \"petrinet\", \"stratified\")\n", + "# MODEL_PATH = os.path.join(\n", + "# EXAMPLE_DIR,\"model_amr.json\"\n", + "# )\n", + "# REQUEST_PATH = os.path.join(\n", + "# EXAMPLE_DIR, \"model_amr_request.json\"\n", + "# )\n", + "\n", + "\n", + "# %load_ext autoreload\n", + "# %autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-03-20 13:43:05,132 - funman.server.worker - INFO - FunmanWorker running...\n", + "2024-03-20 13:43:05,135 - funman.server.worker - INFO - Starting work on: e056aa4b-6a9d-4306-a94f-c6f7b4078bd0\n", + "2024-03-20 13:43:05,282 - funman.scenario.consistency - INFO - 1{10}:\t[-]\n", + "2024-03-20 13:43:05,283 - funman.server.worker - INFO - Completed work on: e056aa4b-6a9d-4306-a94f-c6f7b4078bd0\n", + "2024-03-20 13:43:07,142 - funman.server.worker - INFO - Worker.stop() acquiring state lock ....\n", + "2024-03-20 13:43:07,296 - funman.server.worker - INFO - FunmanWorker exiting...\n", + "2024-03-20 13:43:07,297 - funman.server.worker - INFO - Worker.stop() completed.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "********************************************************************************\n", + "********************************************************************************\n", + "* Analysis Summary\n", + "********************************************************************************\n", + "0 Points (+:0, -:0), 1 Boxes (+:0, -:1)\n", + "Found box with no points\n", + " {\n", + " \"box\": {\n", + " \"beta\": {\n", + " \"lb\": 1.6,\n", + " \"ub\": 1.6,\n", + " \"closed_upper_bound\": true,\n", + " \"original_width\": 0.0\n", + " },\n", + " \"epsilon\": {\n", + " \"lb\": 0.33333,\n", + " \"ub\": 0.33333,\n", + " \"closed_upper_bound\": true,\n", + " \"original_width\": 0.0\n", + " },\n", + " \"gamma\": {\n", + " \"lb\": 0.125,\n", + " \"ub\": 0.125,\n", + " \"closed_upper_bound\": true,\n", + " \"original_width\": 0.0\n", + " },\n", + " \"alpha\": {\n", + " \"lb\": 0.006,\n", + " \"ub\": 0.006,\n", + " \"closed_upper_bound\": true,\n", + " \"original_width\": 0.0\n", + " },\n", + " \"p_UnVax_Vax\": {\n", + " \"lb\": 0.0,\n", + " \"ub\": 0.0,\n", + " \"closed_upper_bound\": true,\n", + " \"original_width\": 0.0\n", + " },\n", + " \"p_Vax_UnVax\": {\n", + " \"lb\": 0.1,\n", + " \"ub\": 0.1,\n", + " \"closed_upper_bound\": true,\n", + " \"original_width\": 0.0\n", + " },\n", + " \"lambda\": {\n", + " \"lb\": 120480.0,\n", + " \"ub\": 120480.0,\n", + " \"closed_upper_bound\": true,\n", + " \"original_width\": 0.0\n", + " },\n", + " \"mu\": {\n", + " \"lb\": 0.012048000000000001,\n", + " \"ub\": 0.012048000000000001,\n", + " \"closed_upper_bound\": true,\n", + " \"original_width\": 0.0\n", + " },\n", + " \"City\": {\n", + " \"lb\": 1.0,\n", + " \"ub\": 1.0,\n", + " \"closed_upper_bound\": true,\n", + " \"original_width\": 0.0\n", + " },\n", + " \"timestep\": {\n", + " \"lb\": 1.0,\n", + " \"ub\": 1.0,\n", + " \"closed_upper_bound\": true,\n", + " \"original_width\": 0.0\n", + " }\n", + " },\n", + " \"relevant_constraints\": [],\n", + " \"expression\": \"(((((((((((((((((((((((((((Deceased_Vax_10 = (Deceased_Vax_0 + (10.0 * (((-1.0 * (Deceased_Vax_0 * p_Vax_UnVax)) + (Infected_Vax_0 * alpha)) + (Deceased_UnVax_0 * p_UnVax_Vax))))) & (Deceased_UnVax_10 = (Deceased_UnVax_0 + (10.0 * (((Deceased_Vax_0 * p_Vax_UnVax) + (alpha * Infected_UnVax_0)) - (Deceased_UnVax_0 * p_UnVax_Vax)))))) & (Recovered_Vax_10 = (Recovered_Vax_0 + (10.0 * (((-1.0 * (p_Vax_UnVax * Recovered_Vax_0)) + (Infected_Vax_0 * gamma)) + (p_UnVax_Vax * Recovered_UnVax_0)))))) & (Recovered_UnVax_10 = (Recovered_UnVax_0 + (10.0 * (((p_Vax_UnVax * Recovered_Vax_0) - (p_UnVax_Vax * Recovered_UnVax_0)) + (Infected_UnVax_0 * gamma)))))) & (Exposed_Vax_10 = (Exposed_Vax_0 + (10.0 * ((((-1.0 * (p_Vax_UnVax * Exposed_Vax_0)) + (((Infected_Vax_0 * (Total_population_0 ^ -1.0)) * Susceptible_Vax_0) * beta)) + (p_UnVax_Vax * Exposed_UnVax_0)) - (Exposed_Vax_0 * epsilon)))))) & (Deceased_Vax_0 = 0.0)) & (p_Vax_UnVax = 10000000000000001/100000000000000000)) & (Infected_Vax_0 = 1/2)) & (alpha = 30000000000000001/5000000000000000000)) & (Deceased_UnVax_0 = 0.0)) & (p_UnVax_Vax = 0.0)) & (Infected_UnVax_0 = 1/2)) & (Recovered_Vax_0 = 0.0)) & (gamma = 1/8)) & (Recovered_UnVax_0 = 0.0)) & (Exposed_Vax_0 = 10000.0)) & (epsilon = 16666500000000001/50000000000000000)) & (Total_population_0 = 10000000.0)) & (Susceptible_Vax_0 = 9979999/2)) & (beta = 16000000000000001/10000000000000000)) & (Exposed_UnVax_0 = 10000.0)) & ((((((((((((((((((((((((((Deceased_Vax_10 < 0.0) | (Deceased_UnVax_10 < 0.0)) | (Recovered_Vax_10 < 0.0)) | (Recovered_UnVax_10 < 0.0)) | (Exposed_Vax_10 < 0.0)) | (! (Deceased_Vax_10 = (Deceased_Vax_0 + (10.0 * (((-1.0 * (Deceased_Vax_0 * p_Vax_UnVax)) + (Infected_Vax_0 * alpha)) + (Deceased_UnVax_0 * p_UnVax_Vax))))))) | (! (Deceased_UnVax_10 = (Deceased_UnVax_0 + (10.0 * (((Deceased_Vax_0 * p_Vax_UnVax) + (alpha * Infected_UnVax_0)) - (Deceased_UnVax_0 * p_UnVax_Vax))))))) | (! (Recovered_Vax_10 = (Recovered_Vax_0 + (10.0 * (((-1.0 * (p_Vax_UnVax * Recovered_Vax_0)) + (Infected_Vax_0 * gamma)) + (p_UnVax_Vax * Recovered_UnVax_0))))))) | (! (Recovered_UnVax_10 = (Recovered_UnVax_0 + (10.0 * (((p_Vax_UnVax * Recovered_Vax_0) - (p_UnVax_Vax * Recovered_UnVax_0)) + (Infected_UnVax_0 * gamma))))))) | (! (Exposed_Vax_10 = (Exposed_Vax_0 + (10.0 * ((((-1.0 * (p_Vax_UnVax * Exposed_Vax_0)) + (((Infected_Vax_0 * (Total_population_0 ^ -1.0)) * Susceptible_Vax_0) * beta)) + (p_UnVax_Vax * Exposed_UnVax_0)) - (Exposed_Vax_0 * epsilon))))))) | (! (Deceased_Vax_0 = 0.0))) | (! (p_Vax_UnVax = 10000000000000001/100000000000000000))) | (! (Infected_Vax_0 = 1/2))) | (! (alpha = 30000000000000001/5000000000000000000))) | (! (Deceased_UnVax_0 = 0.0))) | (! (p_UnVax_Vax = 0.0))) | (! (Infected_UnVax_0 = 1/2))) | (! (Recovered_Vax_0 = 0.0))) | (! (gamma = 1/8))) | (! (Recovered_UnVax_0 = 0.0))) | (! (Exposed_Vax_0 = 10000.0))) | (! (epsilon = 16666500000000001/50000000000000000))) | (! (Total_population_0 = 10000000.0))) | (! (Susceptible_Vax_0 = 9979999/2))) | (! (beta = 16000000000000001/10000000000000000))) | (! (Exposed_UnVax_0 = 10000.0)))) & (! (Deceased_Vax_10 < 0.0))) & (! (Deceased_UnVax_10 < 0.0))) & (! (Recovered_Vax_10 < 0.0))) & (! (Recovered_UnVax_10 < 0.0))) & (! (Exposed_Vax_10 < 0.0)))\"\n", + "}\n", + " \n", + "********************************************************************************\n", + " \n" + ] + } + ], + "source": [ + "# Feb 2024 Hackathon Scenario 3 (SEIRD) from Terrarium\n", + "\n", + "EXAMPLE_DIR = os.path.join(RESOURCES, \"amr\", \"petrinet\", \"terrarium-tests\")\n", + "MODEL_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"stratified_seird_model.json\"\n", + ")\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"stratified_seird_request.json\"\n", + ")\n", + "\n", + "\n", + "\n", + "N = \"Total_population\"\n", + "STATES_Vax = [\"Susceptible_Vax\", \"Exposed_Vax\", \"Infected_Vax\", \"Recovered_Vax\", \"Deceased_Vax\"]\n", + "STATES_UnVax = [\"Susceptible_UnVax\", \"Exposed_UnVax\", \"Infected_UnVax\", \"Recovered_UnVax\", \"Deceased_UnVax\"]\n", + "STATES = STATES_UnVax + STATES_Vax\n", + "COMPARTMENTS = STATES_Vax + STATES_UnVax + [N]\n", + "MAX_TIME=80\n", + "STEP_SIZE=10\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " # funman_request.structure_parameters[0].schedules= []\n", + " # for t in range(0, MAX_TIME, STEP_SIZE):\n", + " # funman_request.structure_parameters[0].schedules.append(EncodingSchedule(timepoints=list(range(0, t+STEP_SIZE, STEP_SIZE))))\n", + " \n", + "\n", + " # # funman_request.config.substitute_subformulas = True\n", + " # # funman_request.config.use_transition_symbols = True\n", + " # funman_request.config.use_compartmental_constraints=True\n", + " # funman_request.config.save_smtlib=\"./out\"\n", + " # funman_request.config.tolerance = 0.01\n", + " # funman_request.config.verbosity = 20\n", + " # funman_request.config.dreal_log_level = \"info\"\n", + "\n", + " # factor = 1.6 \n", + " to_synthesize = [\"beta\"]\n", + " # keep_constant = [\"p_Vax_UnVax\", \"p_UnVax_Vax\"]\n", + " # for p in [po for po in funman_request.parameters if po.name not in keep_constant # if po.name in to_synthesize\n", + " # ]:\n", + " # param = funman_request.parameter(p.name)\n", + " # param.interval.lb = max(p.interval.lb-factor, 0)\n", + " # param.interval.ub = min(p.interval.ub+factor, max(1, p.interval.ub+factor))\n", + " # # param.label = \"all\" if p.name in to_synthesize else \"any\"\n", + " # param.label = \"any\"\n", + " # print(param)\n", + "\n", + " # # Susceptible is decreasing, dS/dt <= 0, S_{t+1} - S_t <= 0\n", + " # c1 = LinearConstraint(name=\"c1\", additive_bounds=Interval(ub=0, closed_upper_bounds=True), variables=[\"Susceptible\"], derivative=True)\n", + " # funman_request.constraints.append(c1)\n", + "\n", + " # # # R is increasing, dR/dt >= 0, R_{t+1} - R_t >= 0\n", + " # c2 = LinearConstraint(name=\"c2\", additive_bounds=Interval(lb=0), variables=[\"Recovered\"], derivative=True)\n", + " # funman_request.constraints.append(c2)\n", + "\n", + " # # # D is increasing, dD/dt >= 0, dD/dt >= 0, D_{t+1} - D_t >= 0\n", + " # c3 = LinearConstraint(name=\"c3\", additive_bounds=Interval(lb=0), variables=[\"Deceased\"], derivative=True)\n", + " # funman_request.constraints.append(c3)\n", + "\n", + " # # # Population size maintained\n", + " # # c4 = LinearConstraint(name=\"compartment\", additive_bounds=Interval(lb=0, ub=0, closed_upper_bound=True), variables=COMPARTMENTS, weights=[1, 1, 1, 1, 1, -1])\n", + " # # funman_request.constraints.append(c4)\n", + "\n", + " # # # Infected peak\n", + " # # c5 = LinearConstraint(name=\"Infected_peak\", additive_bounds=Interval(lb=50), variables=[\"Infected\"], timepoints=Interval(lb=40, ub=40, closed_upper_bound=True))\n", + " # # funman_request.constraints.append(c5)\n", + "\n", + " # # for sv in STATES:\n", + " # # funman_request.constraints.append(StateVariableConstraint(name=f\"{sv}_bounds\", variable=sv, interval=Interval(lb=0, ub=100, closed_upper_bound=True)))\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SEIRD demo\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Automatic initialization of gaol... done\n", + "2024-03-15 21:31:50,369 - /root/funman/src/funman/search/smt_check.py - DEBUG - Solving schedule: timepoints=[0, 10, 20]\n", + "2024-03-15 21:31:50,372 - funman_dreal.solver - DEBUG - Created new Solver ...\n", + "2024-03-15 21:31:50,402 - /root/funman/src/funman/translate/petrinet.py - DEBUG - Encoding step: 0 to 10\n", + "2024-03-15 21:31:50,502 - /root/funman/src/funman/translate/petrinet.py - DEBUG - Encoding step: 10 to 20\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "name='beta' interval={'lb': 0, 'ub': 1.833, 'closed_upper_bound': True, 'original_width': 0.0} label='any'\n", + "name='epsilon' interval={'lb': 0, 'ub': 1.3333333333333335, 'closed_upper_bound': True, 'original_width': 0.0} label='any'\n", + "name='gamma' interval={'lb': 0, 'ub': 1.125, 'closed_upper_bound': True, 'original_width': 0.0} label='any'\n", + "name='alpha' interval={'lb': 0, 'ub': 1.006, 'closed_upper_bound': True, 'original_width': 0.0} label='any'\n", + "name='lambda' interval={'lb': 120479.0, 'ub': 120481.0, 'closed_upper_bound': True, 'original_width': 0.0} label='any'\n", + "name='mu' interval={'lb': 0, 'ub': 1.012048, 'closed_upper_bound': True, 'original_width': 0.0} label='any'\n", + "name='City' interval={'lb': 0.0, 'ub': 2.0, 'closed_upper_bound': True, 'original_width': 0.0} label='any'\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-03-15 21:31:55,309 - funman.api.run - INFO - Dumping results to ./out/7d5e7746-c011-4d17-a50e-5647db2c0b91.json\n", + "2024-03-15 21:31:55,323 - funman.scenario.consistency - INFO - 2{20}:\t[+]\n", + "2024-03-15 21:31:55,333 - funman.server.worker - INFO - Completed work on: 7d5e7746-c011-4d17-a50e-5647db2c0b91\n", + "2024-03-15 21:32:05,342 - funman.server.worker - INFO - Worker.stop() acquiring state lock ....\n", + "2024-03-15 21:32:05,344 - funman.server.worker - INFO - FunmanWorker exiting...\n", + "2024-03-15 21:32:05,347 - funman.server.worker - INFO - Worker.stop() completed.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total # of ibex-fwdbwd Pruning @ Pruning level = 210127\n", + "Total # of ibex-fwdbwd Pruning (zero-effect) @ Pruning level = 159490\n", + "Total time spent in Pruning @ Pruning level = 0.265446 sec\n", + "Total time spent in making constraints @ Pruning level = 0.000000 sec\n", + "Total # of Convert @ Ibex Converter = 30\n", + "Total time spent in Converting @ Ibex Converter = 0.000721 sec\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAIjCAYAAAAZajMiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf5ElEQVR4nO3deVwV9f7H8fdBVkHAjU1RUXHJxH1Bc0lxK0vN7Oq1RHMp09TMUis1s0JNU1NL67p1sywrzXLpmltlirmmaWhekkwBlwBxAYH5/eGPczuxCIgcGF/Ph+fx4Mx85zufMwyHN1+/M8diGIYhAAAAwAQc7F0AAAAAUFgItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwDwF+3bt1f79u3tXUah+O2332SxWLR8+XJ7l1IgAwcOVLVq1exdBoAShnALoERbvny5LBaL9eHq6qpatWpp5MiRiouLK9JaPvzwQ82dO/em7V5++WWbmnN6FPeQfebMGb388ss6ePCgvUsBACuLYRiGvYsAgIJavny5Bg0apFdeeUVBQUG6du2avv/+e/373/9W1apVdeTIEZUuXTrP/aWmpkqSnJ2d811L9+7ddeTIEf3222+5tvvpp5/0008/WZ8nJydr+PDh6tWrlx566CHrcl9fX3Xq1CnfdWQyDEMpKSlycnJSqVKlCtxPTvbu3atmzZpp2bJlGjhwYKH3f/36dWVkZMjFxaXQ+wZgXo72LgAACkO3bt3UtGlTSdKQIUNUvnx5vfnmm/riiy/Ur1+/PPdTkFCbXyEhIQoJCbE+P3/+vIYPH66QkBA9+uijOW537do1OTs7y8Ehb//pljmSXdJcvnxZ7u7ucnJysncpAEogpiUAMKUOHTpIkqKjoyVJaWlpmjZtmmrUqCEXFxdVq1ZNL7zwglJSUmy2+/uc2+3bt8tiseiTTz7Ra6+9psqVK8vV1VUdO3bUr7/+arPd+vXrderUKeu0gluZL5q531WrVumll15SpUqVVLp0aSUlJenixYsaN26c6tevLw8PD3l6eqpbt246dOiQTR85zbn95Zdf9PDDD6tcuXJydXVV06ZNtW7duiw1JCQk6JlnnlG1atXk4uKiypUra8CAATp//ry2b9+uZs2aSZIGDRpkfc1/3dfq1avVpEkTubm5qUKFCnr00Uf1xx9/2Oxj4MCB8vDw0MmTJ3XfffepTJky6t+/v3Xd349hRkaG5s6dq3r16snV1VW+vr564okn9Oeff9q027t3r7p06aIKFSrIzc1NQUFBevzxx/PzLQBQQjFyC8CUTp48KUkqX768pBujuStWrNDDDz+sZ599VpGRkYqIiNCxY8e0Zs2am/Y3ffp0OTg4aNy4cUpMTNTMmTPVv39/RUZGSpJefPFFJSYm6vTp05ozZ44kycPD45Zfx7Rp0+Ts7Kxx48YpJSVFzs7OOnr0qNauXas+ffooKChIcXFxWrx4sdq1a6ejR48qICAgx/5+/vlntW7dWpUqVdKECRPk7u6uTz75RD179tRnn32mXr16SboxVaJNmzY6duyYHn/8cTVu3Fjnz5/XunXrdPr0adWtW1evvPKKJk+erGHDhqlNmzaSpFatWkn633SRZs2aKSIiQnFxcZo3b5527typAwcOyNvb21pTWlqaunTponvuuUezZs3KdRrJE088Ye171KhRio6O1oIFC3TgwAHt3LlTTk5Oio+PV+fOnVWxYkVNmDBB3t7e+u233/T555/f8vcDQAlgAEAJtmzZMkOS8c033xjnzp0zfv/9d2PVqlVG+fLlDTc3N+P06dPGwYMHDUnGkCFDbLYdN26cIcnYunWrdVm7du2Mdu3aWZ9v27bNkGTUrVvXSElJsS6fN2+eIck4fPiwddn9999vVK1aNd+v4dy5c4YkY8qUKVn2W716dePKlSs27a9du2akp6fbLIuOjjZcXFyMV155xWaZJGPZsmXWZR07djTq169vXLt2zbosIyPDaNWqlREcHGxdNnnyZEOS8fnnn2epNyMjwzAMw/jxxx+z9G8YhpGammr4+PgYd999t3H16lXr8q+++sqQZEyePNm6LDw83JBkTJgwIct+wsPDbY7nd999Z0gyVq5cadNu06ZNNsvXrFljSDJ+/PHHLH0CMD+mJQAwhbCwMFWsWFGBgYHq27evPDw8tGbNGlWqVEkbNmyQJI0dO9Zmm2effVaStH79+pv2P2jQIJv5uJkjlf/9738L6yVkKzw8XG5ubjbLXFxcrPNu09PTdeHCBXl4eKh27drav39/jn1dvHhRW7du1SOPPKJLly7p/PnzOn/+vC5cuKAuXbroxIkT1mkDn332mRo0aGAdyf0ri8WSa8179+5VfHy8nnrqKZs5v/fff7/q1KmT7fEePnx4rn1KN6Y5eHl5qVOnTtbaz58/ryZNmsjDw0Pbtm2TJOuo8FdffaXr16/ftF8A5sK0BACmsHDhQtWqVUuOjo7y9fVV7dq1rQHw1KlTcnBwUM2aNW228fPzk7e3t06dOnXT/qtUqWLzvGzZspKUZa5nYQsKCsqyLCMjQ/PmzdPbb7+t6OhopaenW9dlTsPIzq+//irDMDRp0iRNmjQp2zbx8fGqVKmSTp48qd69exeo5szjWbt27Szr6tSpo++//95mmaOjoypXrnzTfk+cOKHExET5+Phkuz4+Pl6S1K5dO/Xu3VtTp07VnDlz1L59e/Xs2VP//Oc/ufMCcAcg3AIwhebNm1vvlpCTm4045ianW2kZt/luin8ftZWk119/XZMmTdLjjz+uadOmqVy5cnJwcNCYMWOUkZGRY1+Z68aNG6cuXbpk2+bvfwAUhb+OROcmIyNDPj4+WrlyZbbrK1asKOnG9/nTTz/V7t279eWXX+rrr7/W448/rtmzZ2v37t2FMhcaQPFFuAVgelWrVlVGRoZOnDihunXrWpfHxcUpISFBVatWLZT93Ep4zo9PP/1U9957r5YsWWKzPCEhQRUqVMhxu+rVq0uSnJycFBYWlus+atSooSNHjuTaJqfXm3k8o6KirHetyBQVFVXg412jRg198803at26dbah/+9atmypli1b6rXXXtOHH36o/v37a9WqVRoyZEiB9g+gZGDOLQDTu++++yQpy6eHvfnmm5JuzAUtDO7u7kpMTCyUvnJTqlSpLCPGq1evznKbrb/z8fFR+/bttXjxYp09ezbL+nPnzlm/7t27tw4dOpTtnSQy9+3u7i7pRqj+q6ZNm8rHx0eLFi2yudXaxo0bdezYsQIf70ceeUTp6emaNm1alnVpaWnWOv78888sx6dhw4aSlOXWbwDMh5FbAKbXoEEDhYeH691331VCQoLatWunPXv2aMWKFerZs6fuvffeQtlPkyZN9PHHH2vs2LFq1qyZPDw89MADDxRK33/VvXt3vfLKKxo0aJBatWqlw4cPa+XKldaR2dwsXLhQ99xzj+rXr6+hQ4eqevXqiouL065du3T69GnrvXKfe+45ffrpp+rTp48ef/xxNWnSRBcvXtS6deu0aNEiNWjQQDVq1JC3t7cWLVqkMmXKyN3dXS1atFBQUJBmzJihQYMGqV27durXr5/1VmDVqlXTM888U6DX3a5dOz3xxBOKiIjQwYMH1blzZzk5OenEiRNavXq15s2bp4cfflgrVqzQ22+/rV69eqlGjRq6dOmS3nvvPXl6elr/0AFgXoRbAHeEf/3rX6pevbqWL1+uNWvWyM/PTxMnTtSUKVMKbR9PPfWUDh48qGXLlmnOnDmqWrXqbQm3L7zwgi5fvqwPP/xQH3/8sRo3bqz169drwoQJN932rrvu0t69ezV16lQtX75cFy5ckI+Pjxo1aqTJkydb23l4eOi7777TlClTtGbNGq1YsUI+Pj7q2LGj9eIvJycnrVixQhMnTtSTTz6ptLQ0LVu2TEFBQRo4cKBKly6t6dOna/z48XJ3d1evXr00Y8YMm3vc5teiRYvUpEkTLV68WC+88IIcHR1VrVo1Pfroo2rdurUkWf94WbVqleLi4uTl5aXmzZtr5cqV2V6gB8BcLMbtvhoCAGAXJ0+eVM2aNfXvf/8714/1BQAzYc4tAJhU5rza3C4yAwCzYVoCAJjQ0qVLtXTpUpUuXVotW7a0dzkAUGQYuQUAExo2bJguXryo1atX39IcVwAoaZhzCwAAANNg5BYAAACmQbgFAACAaXBBmW58XvmZM2dUpkyZIvv4TAAAAOSdYRi6dOmSAgIC5OCQ8/gs4VbSmTNnFBgYaO8yAAAAcBO///679cNkskO4lVSmTBlJNw6Wp6ennasBAADA3yUlJSkwMNCa23JCuJWsUxE8PT0JtwAAAMXYzaaQckEZAAAATINwCwAAANMg3AIAAMA0CLcAAAAwDcItAAAATINwCwAAANMg3AIAAMA0CLcAAAAwDcItAAAATINwCwAAANMg3AIAAMA0CLcAAAAwDcItAAAATINwCwAAANOwa7j99ttv9cADDyggIEAWi0Vr1661WW8YhiZPnix/f3+5ubkpLCxMJ06csGlz8eJF9e/fX56envL29tbgwYOVnJxchK8CAAAAxYVdw+3ly5fVoEEDLVy4MNv1M2fO1FtvvaVFixYpMjJS7u7u6tKli65du2Zt079/f/3888/avHmzvvrqK3377bcaNmxYUb0EAAAAFCMWwzAMexchSRaLRWvWrFHPnj0l3Ri1DQgI0LPPPqtx48ZJkhITE+Xr66vly5erb9++OnbsmO666y79+OOPatq0qSRp06ZNuu+++3T69GkFBATkad9JSUny8vJSYmKiPD09b8vry2QYhq5cv3Jb9wEAAFAUSjuVlsViKZJ95TWvORZJNQUQHR2t2NhYhYWFWZd5eXmpRYsW2rVrl/r27atdu3bJ29vbGmwlKSwsTA4ODoqMjFSvXr2y7TslJUUpKSnW50lJSbfvhfzNletX5BHhUWT7AwAAuF2SJybL3dnd3mXYKLYXlMXGxkqSfH19bZb7+vpa18XGxsrHx8dmvaOjo8qVK2dtk52IiAh5eXlZH4GBgYVcPQAAAOyh2I7c3k4TJ07U2LFjrc+TkpKKLOCWdiqt5Ilc8AYAAEq+0k6l7V1CFsV25NbPz0+SFBcXZ7M8Li7Ous7Pz0/x8fE269PS0nTx4kVrm+y4uLjI09PT5gEAAICSr9iO3AYFBcnPz09btmxRw4YNJd0YYY2MjNTw4cMlSaGhoUpISNC+ffvUpEkTSdLWrVuVkZGhFi1a2Kv0XDHnFgAAmEVxnHNr13CbnJysX3/91fo8OjpaBw8eVLly5VSlShWNGTNGr776qoKDgxUUFKRJkyYpICDAekeFunXrqmvXrho6dKgWLVqk69eva+TIkerbt2+e75QAAAAA87DrrcC2b9+ue++9N8vy8PBwLV++XIZhaMqUKXr33XeVkJCge+65R2+//bZq1aplbXvx4kWNHDlSX375pRwcHNS7d2+99dZb8vDI++gotwIDAADIv+J4K7Bic59beyrKcAsAAID8y2teK7YXlAEAAAD5RbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmUazDbXp6uiZNmqSgoCC5ubmpRo0amjZtmgzDsLYxDEOTJ0+Wv7+/3NzcFBYWphMnTtixagAAANhLsQ63M2bM0DvvvKMFCxbo2LFjmjFjhmbOnKn58+db28ycOVNvvfWWFi1apMjISLm7u6tLly66du2aHSsHAACAPViMvw6DFjPdu3eXr6+vlixZYl3Wu3dvubm56YMPPpBhGAoICNCzzz6rcePGSZISExPl6+ur5cuXq2/fvnnaT1JSkry8vJSYmChPT8/b8loAAABQcHnNa8V65LZVq1basmWLjh8/Lkk6dOiQvv/+e3Xr1k2SFB0drdjYWIWFhVm38fLyUosWLbRr164c+01JSVFSUpLNAwAAACWfo70LyM2ECROUlJSkOnXqqFSpUkpPT9drr72m/v37S5JiY2MlSb6+vjbb+fr6WtdlJyIiQlOnTr19hQMAAMAuivXI7SeffKKVK1fqww8/1P79+7VixQrNmjVLK1asuKV+J06cqMTEROvj999/L6SKAQAAYE/FeuT2ueee04QJE6xzZ+vXr69Tp04pIiJC4eHh8vPzkyTFxcXJ39/ful1cXJwaNmyYY78uLi5ycXG5rbUDAACg6BXrkdsrV67IwcG2xFKlSikjI0OSFBQUJD8/P23ZssW6PikpSZGRkQoNDS3SWgEAAGB/xXrk9oEHHtBrr72mKlWqqF69ejpw4IDefPNNPf7445Iki8WiMWPG6NVXX1VwcLCCgoI0adIkBQQEqGfPnvYtHgAAAEWuWIfb+fPna9KkSXrqqacUHx+vgIAAPfHEE5o8ebK1zfPPP6/Lly9r2LBhSkhI0D333KNNmzbJ1dXVjpUDAADAHor1fW6LCve5BQAAKN5McZ9bAAAAID8ItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQc7V0AAAAoHtLT03X9+nV7l4E7lJOTk0qVKnXL/RBuAQC4wxmGodjYWCUkJNi7FNzhvL295efnJ4vFUuA+CLcAANzhMoOtj4+PSpcufUvBAigIwzB05coVxcfHS5L8/f0L3BfhFgCAO1h6ero12JYvX97e5eAO5ubmJkmKj4+Xj49PgacocEEZAAB3sMw5tqVLl7ZzJcD/zsNbmftNuAUAAExFQLFQGOch4RYAAACmQbgFAAAoRgYOHKiePXtan7dv315jxozJdZtq1app7ty5t7WukoJwCwAASqRz585p+PDhqlKlilxcXOTn56cuXbpo586d9i4tT3777TdZLBYdPHjQZvm8efO0fPlyu9RkBtwtAQAAlEi9e/dWamqqVqxYoerVqysuLk5btmzRhQsX7F3aLfHy8rJ3CSUaI7cAAMCGYRi6nHq5yB+GYeS5xoSEBH333XeaMWOG7r33XlWtWlXNmzfXxIkT9eCDD2Y7KpqQkCCLxaLt27dLkv7880/1799fFStWlJubm4KDg7Vs2TJr+9OnT6tfv34qV66c3N3d1bRpU0VGRlrXf/HFF2rcuLFcXV1VvXp1TZ06VWlpadb1FotF77zzjrp16yY3NzdVr15dn376qXV9UFCQJKlRo0ayWCxq3769pKzTEiQpLS1NI0eOlJeXlypUqKBJkyblerwSEhI0ZMgQVaxYUZ6enurQoYMOHTqU5+NbkjFyCwAAbFy5fkUeER5Fvt/kiclyd3bPU1sPDw95eHho7dq1atmypVxcXPK9v0mTJuno0aPauHGjKlSooF9//VVXr169UUtystq1a6dKlSpp3bp18vPz0/79+5WRkSFJ+u677zRgwAC99dZbatOmjU6ePKlhw4ZJkqZMmWKzj+nTp2vevHn697//rb59++rw4cOqW7eu9uzZo+bNm+ubb75RvXr15OzsnGOtK1as0ODBg7Vnzx7t3btXw4YNU5UqVTR06NBs2/fp00dubm7auHGjvLy8tHjxYnXs2FHHjx9XuXLl8n2sShLCLQAAKHEcHR21fPlyDR06VIsWLVLjxo3Vrl079e3bVyEhIXnqIyYmRo0aNVLTpk0l3bgoK9OHH36oc+fO6ccff7SGwZo1a1rXT506VRMmTFB4eLgkqXr16po2bZqef/55m3Dbp08fDRkyRJI0bdo0bd68WfPnz9fbb7+tihUrSpLKly8vPz+/XGsNDAzUnDlzZLFYVLt2bR0+fFhz5szJNtx+//332rNnj+Lj462hf9asWVq7dq0+/fRTawg3K8ItAACwUdqptJInJttlv/nRu3dv3X///fruu++0e/dubdy4UTNnztS//vUv63/x52b48OHq3bu39u/fr86dO6tnz55q1aqVJOngwYNq1KhRjqOchw4d0s6dO/Xaa69Zl6Wnp+vatWu6cuWK9cMIQkNDbbYLDQ3NcgFZXrRs2dLmHrChoaGaPXu20tPTs3yS16FDh5ScnJzlE+euXr2qkydP5nvfJQ3hFgAA2LBYLHmeHmBvrq6u6tSpkzp16qRJkyZpyJAhmjJlir777jtJspmX+vdPverWrZtOnTqlDRs2aPPmzerYsaNGjBihWbNmWT8KNifJycmaOnWqHnrooWxrsqfk5GT5+/tb5xb/lbe3d5HXU9S4oAwAAJjGXXfdpcuXL1v/y//s2bPWddmNmFasWFHh4eH64IMPNHfuXL377ruSpJCQEB08eFAXL17Mdj+NGzdWVFSUatasmeXh4PC/eLV7926b7Xbv3q26detKknWObXp6+k1f118vZMvsJzg4OMuobWZtsbGxcnR0zFJbhQoVbrqvko6RWwAAUOJcuHBBffr00eOPP66QkBCVKVNGe/fu1cyZM9WjRw+5ubmpZcuWmj59uoKCghQfH6+XXnrJpo/JkyerSZMmqlevnlJSUvTVV19Zg2e/fv30+uuvq2fPnoqIiJC/v78OHDiggIAAhYaGavLkyerevbuqVKmihx9+WA4ODjp06JCOHDmiV1991bqP1atXq2nTprrnnnu0cuVK7dmzR0uWLJEk+fj4yM3NTZs2bVLlypXl6uqa423AYmJiNHbsWD3xxBPav3+/5s+fr9mzZ2fbNiwsTKGhoerZs6dmzpypWrVq6cyZM1q/fr169eplnWNsVozcAgCAEsfDw0MtWrTQnDlz1LZtW919992aNGmShg4dqgULFkiSli5dqrS0NDVp0kRjxoyxCZ3SjZHTiRMnKiQkRG3btlWpUqW0atUq67r//Oc/8vHx0X333af69etr+vTp1pHSLl266KuvvtJ//vMfNWvWTC1bttScOXNUtWpVm31MnTpVq1atUkhIiN5//3199NFHuuuuuyTduCjurbfe0uLFixUQEKAePXrk+HoHDBigq1evqnnz5hoxYoRGjx6d44VhFotFGzZsUNu2bTVo0CDVqlVLffv21alTp+Tr61uwA16CWIz83FTOpJKSkuTl5aXExER5enrauxwAAIrMtWvXFB0draCgILvPFTUbi8WiNWvWZLlnLXKW2/mY17zGyC0AAABMo9iH2z/++EOPPvqoypcvLzc3N9WvX1979+61rjcMQ5MnT5a/v7/c3NwUFhamEydO2LFiAAAA2EuxDrd//vmnWrduLScnJ23cuFFHjx7V7NmzVbZsWWubmTNn6q233tKiRYsUGRkpd3d3denSRdeuXbNj5QAA4E5nGAZTEuygWN8tYcaMGQoMDLT5nOfMz2GWbpw0c+fO1UsvvWSdhP3+++/L19dXa9euVd++fYu8ZgAAANhPsR65XbdunZo2bao+ffrIx8dHjRo10nvvvWddHx0drdjYWIWFhVmXeXl5qUWLFtq1a1eO/aakpCgpKcnmAQAAgJKvWIfb//73v3rnnXcUHBysr7/+WsOHD9eoUaO0YsUKSVJsbKwkZbmtha+vr3VddiIiIuTl5WV9BAYG3r4XAQAAgCJTrMNtRkaGGjdurNdff12NGjXSsGHDNHToUC1atOiW+p04caISExOtj99//72QKgYAAIA9Fetw6+/vb73Rcaa6desqJiZGkuTn5ydJiouLs2kTFxdnXZcdFxcXeXp62jwAAABQ8hXrcNu6dWtFRUXZLDt+/Lj10z+CgoLk5+enLVu2WNcnJSUpMjJSoaGhRVorAAAA7K9Yh9tnnnlGu3fv1uuvv65ff/1VH374od59912NGDFC0o1P/sj8OL1169bp8OHDGjBggAICArj1BgAAKJHat2+vMWPG2LuMEqtYh9tmzZppzZo1+uijj3T33Xdr2rRpmjt3rvr3729t8/zzz+vpp5/WsGHD1KxZMyUnJ2vTpk18hCAAACY3cOBAWSyWLI+uXbvauzTYUbG+z60kde/eXd27d89xvcVi0SuvvKJXXnmlCKsCAADFQdeuXW3uhy/duLYGd65iPXILAACKnmEYupx6ucgfhmHku1YXFxf5+fnZPMqWLavt27fL2dlZ3333nbXtzJkz5ePjY70QvX379ho5cqRGjhwpLy8vVahQQZMmTbKp488//9SAAQNUtmxZlS5dWt26ddOJEyes60+dOqUHHnhAZcuWlbu7u+rVq6cNGzZY1x85ckTdunWTh4eHfH199dhjj+n8+fPW9ZcvX9aAAQPk4eEhf39/zZ49O9/HALaK/cgtAAAoWleuX5FHhEeR7zd5YrLcnd0Lpa/MeauPPfaYDh06pP/+97+aNGmSVq9ebXN//BUrVmjw4MHas2eP9u7dq2HDhqlKlSoaOnSopBtTH06cOKF169bJ09NT48eP13333aejR4/KyclJI0aMUGpqqr799lu5u7vr6NGj8vC4cewSEhLUoUMHDRkyRHPmzNHVq1c1fvx4PfLII9q6dask6bnnntOOHTv0xRdfyMfHRy+88IL279+vhg0bFspxuBMRbgEAQIn11VdfWcNkphdeeEEvvPCCXn31VW3evFnDhg3TkSNHFB4ergcffNCmbWBgoObMmSOLxaLatWvr8OHDmjNnjoYOHWoNtTt37lSrVq0kSStXrlRgYKDWrl2rPn36KCYmRr1791b9+vUlSdWrV7f2vWDBAjVq1Eivv/66ddnSpUsVGBio48ePKyAgQEuWLNEHH3ygjh07SroRtitXrnxbjtWdokDhNi4uTuPGjdOWLVsUHx+f5b8R0tPTC6U4AABQ9Eo7lVbyxGS77De/7r33Xr3zzjs2y8qVKydJcnZ21sqVKxUSEqKqVatqzpw5WbZv2bKlLBaL9XloaKhmz56t9PR0HTt2TI6OjmrRooV1ffny5VW7dm0dO3ZMkjRq1CgNHz5c//nPfxQWFqbevXsrJCREknTo0CFt27YtS/iWpJMnT+rq1atKTU216b9cuXKqXbt2vo8D/qdA4XbgwIGKiYnRpEmT5O/vb3NSAACAks1isRTa9IDbzd3dXTVr1sxx/Q8//CBJunjxoi5evCh398J9XUOGDFGXLl20fv16/ec//1FERIRmz56tp59+WsnJyXrggQc0Y8aMLNv5+/vr119/LdRacEOBwu3333+v7777jvkgAACg2Dp58qSeeeYZvffee/r4448VHh6ub775Rg4O/7uePjIy0mab3bt3Kzg4WKVKlVLdunWVlpamyMhI67SECxcuKCoqyuYTVAMDA/Xkk0/qySef1MSJE/Xee+/p6aefVuPGjfXZZ5+pWrVqcnTMGrlq1KghJycnRUZGqkqVKpJuXMB2/PhxtWvX7nYckjtCge6WEBgYWKArGgEAAApTSkqKYmNjbR7nz59Xenq6Hn30UXXp0kWDBg3SsmXL9NNPP2W5G0FMTIzGjh2rqKgoffTRR5o/f75Gjx4tSQoODlaPHj00dOhQff/99zp06JAeffRRVapUST169JAkjRkzRl9//bWio6O1f/9+bdu2TXXr1pUkjRgxQhcvXlS/fv30448/6uTJk/r66681aNAgpaeny8PDQ4MHD9Zzzz2nrVu36siRIxo4cKBN+Eb+FWjkdu7cuZowYYIWL16satWqFXJJAAAAebNp0yb5+/vbLKtdu7b++c9/6tSpU/rqq68k3ZgG8O6776pfv37q3LmzGjRoIEkaMGCArl69qubNm6tUqVIaPXq0hg0bZu1r2bJlGj16tLp3767U1FS1bdtWGzZskJOTk6Qb1xmNGDFCp0+flqenp7p27Wqd2xsQEKCdO3dq/Pjx6ty5s1JSUlS1alV17drVGmDfeOMN6/SFMmXK6Nlnn1ViYuJtP25mZjEKMARbtmxZXblyRWlpaSpdurT1G5zp4sWLhVZgUUhKSpKXl5cSExPl6elp73IAACgy165dU3R0tIKCgu64T/ds3769GjZsqLlz59q7FPy/3M7HvOa1Ao/cAgAAAMVNgcJteHh4YdcBAAAA3LICf4hDenq61q5da73PW7169fTggw+qVKlShVYcAADA7bJ9+3Z7l4DboEDh9tdff9V9992nP/74w3qj4YiICAUGBmr9+vWqUaNGoRYJAAAA5EWB7jUxatQo1ahRQ7///rv279+v/fv3KyYmRkFBQRo1alRh1wgAAADkSYFGbnfs2KHdu3dbP95OuvFxdNOnT1fr1q0LrTgAAAAgPwo0cuvi4qJLly5lWZ6cnCxnZ+dbLgoAAAAoiAKF2+7du2vYsGGKjIyUYRgyDEO7d+/Wk08+qQcffLCwawQAAADypEDh9q233lKNGjUUGhoqV1dXubq6qnXr1qpZs6bmzZtX2DUCAAAAeVKgcOvt7a0vvvhCUVFR+vTTT/Xpp58qKipKa9askZeXV2HXCAAAcMtiY2PVqVMnubu7y9vb297lZFGtWjU+KKsQFPg+t5IUHBys4ODgwqoFAAAgzwYOHKiEhAStXbs2T+3nzJmjs2fP6uDBg4U2GFetWjWNGTNGY8aMKZT+cOvyHG7Hjh2radOmyd3dXWPHjs217ZtvvnnLhQEAABSmkydPqkmTJgzMmVyepyUcOHBA169ft36d2wMAAJRchmHocurlIn8YhlHgmtu3b69Ro0bp+eefV7ly5eTn56eXX37Zur5atWr67LPP9P7778tisWjgwIGSpISEBA0ZMkQVK1aUp6enOnTooEOHDtn0/eWXX6pZs2ZydXVVhQoV1KtXL+s+T506pWeeeUYWi0UWi8W6zffff682bdrIzc1NgYGBGjVqlC5fvmxdHx8frwceeEBubm4KCgrSypUrC/zaYSvPI7fbtm3L9msAAGAuV65fkUeER5HvN3listyd3Qu8/YoVKzR27FhFRkZq165dGjhwoFq3bq1OnTrpxx9/1IABA+Tp6al58+bJzc1NktSnTx+5ublp48aN8vLy0uLFi9WxY0cdP35c5cqV0/r169WrVy+9+OKLev/995WamqoNGzZIkj7//HM1aNBAw4YN09ChQ611nDx5Ul27dtWrr76qpUuX6ty5cxo5cqRGjhypZcuWSboxpeLMmTPatm2bnJycNGrUKMXHx9/C0UOmAl1Q9vjjj2d7n9vLly/r8ccfv+WiAAAA8iskJERTpkxRcHCwBgwYoKZNm2rLli2SpIoVK8rFxUVubm7y8/OTl5eXvv/+e+3Zs0erV69W06ZNFRwcrFmzZsnb21uffvqpJOm1115T3759NXXqVNWtW1cNGjTQxIkTJUnlypVTqVKlVKZMGfn5+cnPz0+SFBERof79+2vMmDEKDg5Wq1at9NZbb+n999/XtWvXdPz4cW3cuFHvvfeeWrZsqSZNmmjJkiW6evWqfQ6cyRTogrIVK1Zo+vTpKlOmjM3yq1ev6v3339fSpUsLpTgAAFD0SjuVVvLEZLvs91aEhITYPPf39891NPTQoUNKTk5W+fLlbZZfvXpVJ0+elCQdPHjQZlQ2Lw4dOqSffvrJZqqBYRjKyMhQdHS0jh8/LkdHRzVp0sS6vk6dOsXyDg4lUb7CbVJSkvVDGy5duiRXV1fruvT0dG3YsEE+Pj6FXiQAACg6FovllqYH2IuTk5PNc4vFooyMjBzbJycny9/fX9u3b8+yLjNoZk5fyI/k5GQ98cQTGjVqVJZ1VapU0fHjx/PdJ/IuX+HW29vbOmG6Vq1aWdZbLBZNnTq10IoDAAC4XRo3bqzY2Fg5OjqqWrVq2bYJCQnRli1bNGjQoGzXOzs7Kz09PUu/R48eVc2aNbPdpk6dOkpLS9O+ffvUrFkzSVJUVJQSEhIK/FrwP/kKt9u2bZNhGOrQoYM+++wzlStXzrrO2dlZVatWVUBAQKEXCQAAUNjCwsIUGhqqnj17aubMmapVq5bOnDljvYisadOmmjJlijp27KgaNWqob9++SktL04YNGzR+/HhJN+7C8O2336pv375ycXFRhQoVNH78eLVs2VIjR47UkCFD5O7urqNHj2rz5s1asGCBateura5du+qJJ57QO++8I0dHR40ZM6ZAo8TIKl/htl27dpKk6OhoBQYGysGhQNejAQAA2J3FYtGGDRv04osvatCgQTp37pz8/PzUtm1b+fr6Srpxu6/Vq1dr2rRpmj59ujw9PdW2bVtrH6+88oqeeOIJ1ahRQykpKTIMQyEhIdqxY4defPFFtWnTRoZhqEaNGvrHP/5h3W7ZsmUaMmSI2rVrJ19fX7366quaNGlSkR8DM7IYt3BTuStXrigmJkapqak2y/8+obu4S0pKkpeXlxITE+Xp6WnvcgAAKDLXrl1TdHS0goKCbK6lAewht/Mxr3mtQHdLOHfunAYNGqSNGzdmu/7vc08AAACAolCgeQVjxoxRQkKCIiMj5ebmpk2bNmnFihUKDg7WunXrCrtGAAAAIE8KNHK7detWffHFF2ratKkcHBxUtWpVderUSZ6enoqIiND9999f2HUCAAAAN1WgkdvLly9b72dbtmxZnTt3TpJUv3597d+/v/CqAwAAAPKhQOG2du3aioqKkiQ1aNBAixcv1h9//KFFixbJ39+/UAsEAAAA8qpA0xJGjx6ts2fPSpKmTJmirl27auXKlXJ2dtby5csLsz4AAAAgzwoUbh999FHr102aNNGpU6f0yy+/qEqVKqpQoUKhFQcAAADkR4HC7d+VLl1ajRs3LoyuAAAAgALLc7gdO3Zsnjt98803C1QMAAAAcCvyHG4PHDiQp3YWi6XAxQAAAKBgli9fbv0sgjtZnsPttm3bbmcdAAAA+TJw4ECtWLFCkuTo6KjKlSurT58+euWVV/go4TtYocy5BQAAsIeuXbtq2bJlun79uvbt26fw8HBZLBbNmDHD3qUVSHp6uiwWixwcCnS3VqiA97m999571aFDhxwfAACg5DIMQ5dTLxf5wzCMfNfq4uIiPz8/BQYGqmfPngoLC9PmzZslSRkZGYqIiFBQUJDc3NzUoEEDffrppzbb//zzz+revbs8PT1VpkwZtWnTRidPnrRu/8orr6hy5cpycXFRw4YNtWnTJuu2rVq10vjx4236O3funJycnPTtt99KklJSUjRu3DhVqlRJ7u7uatGihbZv325tv3z5cnl7e2vdunW666675OLiopiYmJtul7ltlSpVVLp0afXq1UsXLlzI9/EzowKN3DZs2NDm+fXr13Xw4EEdOXJE4eHhhVEXAACwkyvXr8gjwqPI95s8MVnuzu4F3v7IkSP64YcfVLVqVUlSRESEPvjgAy1atEjBwcH69ttv9eijj6pixYpq166d/vjjD7Vt21bt27fX1q1b5enpqZ07dyotLU2SNG/ePM2ePVuLFy9Wo0aNtHTpUj344IP6+eefFRwcrP79+2vmzJmaPn269Zqjjz/+WAEBAWrTpo0kaeTIkTp69KhWrVqlgIAArVmzRl27dtXhw4cVHBwsSbpy5YpmzJihf/3rXypfvrx8fHxuul1kZKQGDx6siIgI9ezZU5s2bdKUKVNu5fCbhsUoyJ9JOXj55ZeVnJysWbNmFVaXRSIpKUleXl5KTEyUp6envcsBAKDIXLt2TdHR0QoKCrLOU72cerlEhNuBAwfqgw8+kKurq9LS0pSSkiIHBwd98skn6t69u8qVK6dvvvlGoaGh1m2GDBmiK1eu6MMPP9QLL7ygVatWKSoqSk5OTln6r1SpkkaMGKEXXnjBuqx58+Zq1qyZFi5cqHPnzikgIEBbt261htlWrVqpbdu2mj59umJiYlS9enXFxMQoICDA2kdYWJiaN2+u119/XcuXL9egQYN08OBBNWjQQJLytN0///lPJSYmav369db1ffv21aZNm0r0BWXZnY+Z8prXCnXO7aOPPqrmzZuXuHALAAD+p7RTaSVPTLbLfvPr3nvv1TvvvKPLly9rzpw5cnR0VO/evfXzzz/rypUr6tSpk0371NRUNWrUSJJ08OBBtWnTJttgm5SUpDNnzqh169Y2y1u3bq1Dhw5JkipWrKjOnTtr5cqVatOmjaKjo7Vr1y4tXrxYknT48GGlp6erVq1aNn2kpKSofPny1ufOzs4KCQmxPs/LdseOHVOvXr1s1oeGhtpMm7hTFWq43bVrF1cnAgBQwlkslluaHlCU3N3dVbNmTUnS0qVL1aBBAy1ZskR33323JGn9+vWqVKmSzTYuLi6SJDc3t1vef//+/TVq1CjNnz9fH374oerXr6/69etLkpKTk1WqVCnt27dPpUqVstnOw+N/I+Nubm42t1LN63bIXoHC7UMPPWTz3DAMnT17Vnv37tWkSZMKpTAAAID8cHBw0AsvvKCxY8fq+PHj1ouz2rVrl237kJAQrVixQtevX88yeuvp6amAgADt3LnTZvudO3eqefPm1uc9evTQsGHDtGnTJn344YcaMGCAdV2jRo2Unp6u+Ph467SFvMjLdnXr1lVkZKTNst27d+d5H2ZWoHDr5eVl89zBwUG1a9fWK6+8os6dOxdKYQAAAPnVp08fPffcc1q8eLHGjRunZ555RhkZGbrnnnuUmJionTt3ytPTU+Hh4Ro5cqTmz5+vvn37auLEifLy8tLu3bvVvHlz1a5dW88995ymTJmiGjVqqGHDhlq2bJkOHjyolStXWvfn7u6unj17atKkSTp27Jj69etnXVerVi31799fAwYM0OzZs9WoUSOdO3dOW7ZsUUhIiO6///5sX0Neths1apRat26tWbNmqUePHvr666+ZkpDJgJGYmGhIMhITE+1dCgAARerq1avG0aNHjatXr9q7lHwLDw83evTokWV5RESEUbFiRSM5OdmYO3euUbt2bcPJycmoWLGi0aVLF2PHjh3WtocOHTI6d+5slC5d2ihTpozRpk0b4+TJk4ZhGEZ6errx8ssvG5UqVTKcnJyMBg0aGBs3bsyyvw0bNhiSjLZt22ZZl5qaakyePNmoVq2a4eTkZPj7+xu9evUyfvrpJ8MwDGPZsmWGl5dXvrczDMNYsmSJUblyZcPNzc144IEHjFmzZmXbV0mS2/mY17x2S3dL2Lt3r44dOyZJuuuuu9SkSZPCSdxFjLslAADuVLldnQ4UNbvdLeH06dPq16+fdu7cKW9vb0lSQkKCWrVqpVWrVqly5coF6RYAAAC4JQX6hLIhQ4bo+vXrOnbsmC5evKiLFy/q2LFjysjI0JAhQwq7RgAAACBPCjRyu2PHDv3www+qXbu2dVnt2rU1f/78fF0NCAAAABSmAo3cBgYG6vr161mWp6en23ySBgAAAFCUChRu33jjDT399NPau3evddnevXs1evRoPp0MAAAAdlOguyWULVtWV65cUVpamhwdb8xsyPza3d32E00uXrxYOJXeRtwtAQBwp+JuCShO7Ha3hLlz5xZkMwAAAOC2KlC4DQ8PL+w6AAAAgFtWoHAr3bh4bO3atdYPcahXr54efPBBlSpVqtCKAwAAAPKjQBeU/frrr6pbt64GDBigzz//XJ9//rkeffRR1atXTydPnizsGgEAAPAXv/32mywWiw4ePGjvUoqdAoXbUaNGqUaNGvr999+1f/9+7d+/XzExMQoKCtKoUaMKu0YAAIAsBg4cKIvFIovFIicnJ/n6+qpTp05aunSpMjIy7F0e7KRA4XbHjh2aOXOmypUrZ11Wvnx5TZ8+XTt27Ci04gAAAHLTtWtXnT17Vr/99ps2btyoe++9V6NHj1b37t2VlpZm7/JgBwUKty4uLrp06VKW5cnJyXJ2dr7logAAgP0YhqHLqZeL/FGAu5PKxcVFfn5+qlSpkho3bqwXXnhBX3zxhTZu3Kjly5dLkhISEjRkyBBVrFhRnp6e6tChgw4dOmTTz5dffqlmzZrJ1dVVFSpUUK9evazrUlJSNG7cOFWqVEnu7u5q0aKFtm/fbl1/4cIF9evXT5UqVVLp0qVVv359ffTRRzb9f/rpp6pfv77c3NxUvnx5hYWF6fLly9b1//rXv1S3bl25urqqTp06evvtt22237Nnjxo1aiRXV1c1bdpUBw4cyPexulMU6IKy7t27a9iwYVqyZImaN28uSYqMjNSTTz6pBx98sFALBAAARevK9SvyiPAo8v0mT0yWu7P7zRveRIcOHdSgQQN9/vnnGjJkiPr06SM3Nzdt3LhRXl5eWrx4sTp27Kjjx4+rXLlyWr9+vXr16qUXX3xR77//vlJTU7VhwwZrfyNHjtTRo0e1atUqBQQEaM2aNeratasOHz6s4OBgXbt2TU2aNNH48ePl6emp9evX67HHHlONGjXUvHlznT17Vv369dPMmTPVq1cvXbp0Sd999501zK9cuVKTJ0/WggUL1KhRIx04cEBDhw6Vu7u7wsPDlZycrO7du6tTp0764IMPFB0drdGjR9/ycTKrAn2IQ0JCggYOHKgvv/zS5kMcHnzwQS1fvlxeXl6FXujtxIc4AADuVNndNP9y6uUSEW4HDhyohIQErV27Nsu6vn376qefftK7776r+++/X/Hx8XJxcbGur1mzpp5//nkNGzZMrVq1UvXq1fXBBx9k6ScmJkbVq1dXTEyMAgICrMvDwsLUvHlzvf7669nW1r17d9WpU0ezZs3S/v371aRJE/3222+qWrVqlrY1a9bUtGnT1K9fP+uyV199VRs2bNAPP/ygd999Vy+88IJOnz5t/R4tWrRIw4cP14EDB9SwYcO8HrJir8g/xCEjI0NvvPGG1q1bp9TUVPXs2VPh4eGyWCyqW7euatasWbBXAgAAio3STqWVPDHZLvstLIZhyGKx6NChQ0pOTlb58uVt1l+9etV6h6eDBw9q6NCh2fZz+PBhpaenq1atWjbLU1JSrH2mp6fr9ddf1yeffKI//vhDqampSklJUenSN15PgwYN1LFjR9WvX19dunRR586d9fDDD6ts2bK6fPmyTp48qcGDB9vUkJaWZh0sPHbsmEJCQmzCXmho6C0eIfPKV7h97bXX9PLLLyssLExubm7asGGDvLy8tHTp0ttVHwAAKGIWi6VQpgfY07FjxxQUFKTk5GT5+/vbzJHN5O3tLUlyc3PLsZ/k5GSVKlVK+/bty3Ivfw+PG6Pbb7zxhubNm6e5c+eqfv36cnd315gxY5SamipJKlWqlDZv3qwffvhB//nPfzR//ny9+OKLioyMtAbg9957Ty1atLDpn88OKJh8hdv3339fb7/9tp544glJ0jfffKP7779f//rXv+TgUKBr0wAAAArV1q1bdfjwYT3zzDOqXLmyYmNj5ejoqGrVqmXbPiQkRFu2bNGgQYOyrGvUqJHS09MVHx+vNm3aZLv9zp071aNHDz366KOSbvxP9/Hjx3XXXXdZ21gsFrVu3VqtW7fW5MmTVbVqVa1Zs0Zjx45VQECA/vvf/6p///7Z9l+3bl39+9//1rVr16yjt7t3787PIbmj5CvcxsTE6L777rM+DwsLk8Vi0ZkzZ1S5cuVCLw4AACA3KSkpio2NVXp6uuLi4rRp0yZFRESoe/fuGjBggBwcHBQaGqqePXtq5syZqlWrls6cOWO9iKxp06aaMmWKOnbsqBo1aqhv375KS0vThg0bNH78eNWqVUv9+/fXgAEDNHv2bDVq1Ejnzp3Tli1bFBISovvvv1/BwcH69NNP9cMPP6hs2bJ68803FRcXZw23kZGR2rJlizp37iwfHx9FRkbq3Llzqlu3riRp6tSpGjVqlLy8vNS1a1elpKRo7969+vPPPzV27Fj985//1IsvvqihQ4dq4sSJ+u233zRr1ix7HvbizcgHBwcHIz4+3maZh4eH8d///jc/3RQ7iYmJhiQjMTHR3qUAAFCkrl69ahw9etS4evWqvUvJt/DwcEOSIclwdHQ0KlasaISFhRlLly410tPTre2SkpKMp59+2ggICDCcnJyMwMBAo3///kZMTIy1zWeffWY0bNjQcHZ2NipUqGA89NBD1nWpqanG5MmTjWrVqhlOTk6Gv7+/0atXL+Onn34yDMMwLly4YPTo0cPw8PAwfHx8jJdeeskYMGCA0aNHD8MwDOPo0aNGly5djIoVKxouLi5GrVq1jPnz59u8lpUrV1r3X7ZsWaNt27bG559/bl2/a9cuo0GDBoazs7PRsGFD47PPPjMkGQcOHLgNR9Z+cjsf85rX8nW3BAcHB3Xr1s3masMvv/xSHTp0kLv7/+bmfP7554UWvosCd0sAANypcrs6HShqRX63hPDw8CzLMueXAAAAAPaWr3C7bNmy21VHnkyfPl0TJ07U6NGjNXfuXEk3Ev6zzz6rVatWKSUlRV26dNHbb78tX19fu9YKAACAoldibnHw448/avHixQoJCbFZ/swzz+jLL7/U6tWrtWPHDp05c0YPPfSQnaoEAACAPZWIcJucnKz+/fvrvffeU9myZa3LExMTtWTJEr355pvq0KGDmjRpomXLlumHH37gFhkAAAB3oBIRbkeMGKH7779fYWFhNsv37dun69ev2yyvU6eOqlSpol27duXYX0pKipKSkmweAAAAKPnyNefWHlatWqX9+/frxx9/zLIuNjZWzs7O1k8YyeTr66vY2Ngc+4yIiNDUqVMLu1QAAADYWbEeuf399981evRorVy5slBvTzJx4kQlJiZaH7///nuh9Q0AAAD7Kdbhdt++fYqPj1fjxo3l6OgoR0dH7dixQ2+99ZYcHR3l6+ur1NRUJSQk2GwXFxcnPz+/HPt1cXGRp6enzQMAAAAlX7GeltCxY0cdPnzYZtmgQYNUp04djR8/XoGBgXJyctKWLVvUu3dvSVJUVJRiYmIUGhpqj5IBAABgR8V65LZMmTK6++67bR7u7u4qX7687r77bnl5eWnw4MEaO3astm3bpn379mnQoEEKDQ1Vy5Yt7V0+AAAwEYvForVr19q7jHz57bffZLFYdPDgwWLRT1Eo1uE2L+bMmaPu3burd+/eatu2rfz8/Ercx/8CAIC8s1gsuT5efvnlHLctSSHNXgYOHKiePXvaLAsMDNTZs2d1991326eofCjW0xKys337dpvnrq6uWrhwoRYuXGifggAAQJE6e/as9euPP/5YkydPVlRUlHWZh4eHPcoytVKlSuV6PVNxUuJHbgEAQOEyDEOXUy8X+cMwjDzV5+fnZ314eXnJYrFYn/v4+OjNN99U5cqV5eLiooYNG2rTpk3WbYOCgiRJjRo1ksViUfv27SXd+CTUTp06qUKFCvLy8lK7du20f//+Ah2/zNHhVatWqVWrVnJ1ddXdd9+tHTt22LTbsWOHmjdvLhcXF/n7+2vChAlKS0uzrm/fvr1GjhypkSNHysvLSxUqVNCkSZNsjlN2UyW8vb21fPnybGtLT0/X4MGDFRQUJDc3N9WuXVvz5s2zrn/55Ze1YsUKffHFF9aR8O3bt2c74p2X+keNGqXnn39e5cqVk5+fX66j6oWlxI3cAgCA2+vK9SvyiCj60c/kiclyd3a/pT7mzZun2bNna/HixWrUqJGWLl2qBx98UD///LOCg4O1Z88eNW/eXN98843q1asnZ2dnSdKlS5cUHh6u+fPnyzAMzZ49W/fdd59OnDihMmXKFKiW5557TnPnztVdd92lN998Uw888ICio6NVvnx5/fHHH7rvvvs0cOBAvf/++/rll180dOhQubq62gTAFStWaPDgwdqzZ4/27t2rYcOGqUqVKho6dGiBasrIyFDlypW1evVqlS9fXj/88IOGDRsmf39/PfLIIxo3bpyOHTumpKQkLVu2TJJUrlw5nTlzxqaf/NQ/duxYRUZGateuXRo4cKBat26tTp06Faj+vCDcAgAA05g1a5bGjx+vvn37SpJmzJihbdu2ae7cuVq4cKEqVqwoSSpfvrzNf7N36NDBpp93331X3t7e2rFjh7p3716gWkaOHGm9m9M777yjTZs2acmSJXr++ef19ttvKzAwUAsWLJDFYlGdOnV05swZjR8/XpMnT5aDw43/XA8MDNScOXNksVhUu3ZtHT58WHPmzClwuHVycrL5IKugoCDt2rVLn3zyiR555BF5eHjIzc1NKSkpuU5DyGv9ISEhmjJliiQpODhYCxYs0JYtWwi3AACg6JR2Kq3kicl22e+tSEpK0pkzZ9S6dWub5a1bt9ahQ4dy3TYuLk4vvfSStm/frvj4eKWnp+vKlSuKiYkpcD1/vS2po6OjmjZtqmPHjkmSjh07ptDQUFksFps6k5OTdfr0aVWpUkWS1LJlS5s2oaGhmj17ttLT01WqVKkC1bVw4UItXbpUMTExunr1qlJTU9WwYcN89ZHX+kNCQmy28/f3V3x8fIHqzivCLQAAsGGxWG55ekBJEx4ergsXLmjevHmqWrWqXFxcFBoaqtTUVHuXliuLxZJlrvL169dzbL9q1SqNGzdOs2fPVmhoqMqUKaM33nhDkZGRt6U+JyenLPVmZGTcln1l4oIyAABgCp6engoICNDOnTttlu/cuVN33XWXJFnn2Kanp2dpM2rUKN13332qV6+eXFxcdP78+VuqZ/fu3dav09LStG/fPtWtW1eSVLduXe3atcsmmO7cuVNlypRR5cqVrcv+Hjp3796t4OBg66htxYoVbe4eceLECV25ciXHmnbu3KlWrVrpqaeeUqNGjVSzZk2dPHnSpo2zs3OW4/N3ea3fHgi3AADANJ577jnNmDFDH3/8saKiojRhwgQdPHhQo0ePliT5+PjIzc1NmzZtUlxcnBITEyXdmA/673//W8eOHVNkZKT69+8vNze3W6pl4cKFWrNmjX755ReNGDFCf/75px5//HFJ0lNPPaXff/9dTz/9tH755Rd98cUXmjJlisaOHWudrypJMTExGjt2rKKiovTRRx9p/vz51tci3ZgrvGDBAh04cEB79+7Vk08+mWW09K+Cg4O1d+9eff311zp+/LgmTZqkH3/80aZNtWrV9NNPPykqKkrnz5/PdiQ4r/XbA+EWAACYxqhRozR27Fg9++yzql+/vjZt2qR169YpODhY0o25r2+99ZYWL16sgIAA9ejRQ5K0ZMkS/fnnn2rcuLEee+wxjRo1Sj4+PrdUy/Tp0zV9+nQ1aNBA33//vdatW6cKFSpIkipVqqQNGzZoz549atCggZ588kkNHjxYL730kk0fAwYM0NWrV9W8eXONGDFCo0eP1rBhw6zrZ8+ercDAQLVp00b//Oc/NW7cOJUunfPc5SeeeEIPPfSQ/vGPf6hFixa6cOGCnnrqKZs2Q4cOVe3atdW0aVNVrFgxy0h4fuq3B4uR15vKmVhSUpK8vLyUmJgoT09Pe5cDAECRuXbtmqKjoxUUFCRXV1d7l2MKv/32m4KCgnTgwIF8X6j1V+3bt1fDhg01d+7cQqutuMvtfMxrXmPkFgAAAKZBuAUAAMiH119/XR4eHtk+unXrZu/y7njcCgwAACAfnnzyST3yyCPZrnNzc1OlSpXy/FHCudm+ffst93EnItwCAADkQ7ly5VSuXDl7l4EcMC0BAAAUykgjcKsK4zwk3AIAcAfLvCdqbjf+B4pK5nmY2716b4ZpCQAA3MFKlSolb29vxcfHS5JKly4ti8Vi56pwpzEMQ1euXFF8fLy8vb2tn8BWEIRbAADucH5+fpJkDbiAvXh7e1vPx4Ii3AIAcIezWCzy9/eXj49Pth+1ChQFJyenWxqxzUS4BQAAkm5MUSiMcAHYExeUAQAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADCNYh1uIyIi1KxZM5UpU0Y+Pj7q2bOnoqKibNpcu3ZNI0aMUPny5eXh4aHevXsrLi7OThUDAADAnop1uN2xY4dGjBih3bt3a/Pmzbp+/bo6d+6sy5cvW9s888wz+vLLL7V69Wrt2LFDZ86c0UMPPWTHqgEAAGAvFsMwDHsXkVfnzp2Tj4+PduzYobZt2yoxMVEVK1bUhx9+qIcffliS9Msvv6hu3bratWuXWrZsmad+k5KS5OXlpcTERHl6et7OlwAAAIACyGteK9Yjt3+XmJgoSSpXrpwkad++fbp+/brCwsKsberUqaMqVapo165dOfaTkpKipKQkmwcAAABKvhITbjMyMjRmzBi1bt1ad999tyQpNjZWzs7O8vb2tmnr6+ur2NjYHPuKiIiQl5eX9REYGHg7SwcAAEARKTHhdsSIETpy5IhWrVp1y31NnDhRiYmJ1sfvv/9eCBUCAADA3hztXUBejBw5Ul999ZW+/fZbVa5c2brcz89PqampSkhIsBm9jYuLk5+fX479ubi4yMXF5XaWDAAAADso1iO3hmFo5MiRWrNmjbZu3aqgoCCb9U2aNJGTk5O2bNliXRYVFaWYmBiFhoYWdbkAAACws2I9cjtixAh9+OGH+uKLL1SmTBnrPFovLy+5ubnJy8tLgwcP1tixY1WuXDl5enrq6aefVmhoaJ7vlAAAAADzKNa3ArNYLNkuX7ZsmQYOHCjpxoc4PPvss/roo4+UkpKiLl266O233851WsLfcSswAACA4i2vea1Yh9uiQrgFAAAo3kx5n1sAAAAgN4RbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKbhaO8C7jSnk05r4Z6FKuVQSg4WB5WylFIph1IqZfn/5///9c3WF1bbvG6XXR8OFv42AgAAxQvhtoiduXRG03dOt3cZhSan4JtwLUE+7j63HKTzGsw/+OkDDWo4qND/MCjoHwO5bVcYx8Risdj7Ww8UGcMwZMjI8WvD+P/n///17V6fW9vbvd2dtO/i8n2057mQ3z7m75mvEc1GFHjf+d3/R0c+0icPf6I+9fqoODFNuF24cKHeeOMNxcbGqkGDBpo/f76aN29u77Ky8HX31egWo5Weka4MI0PpRrrt139/nsvX6cb/P8/m68LoIy8ya76ecT3LuvjL8YV9+HK17OCyIt2fPVlkue2j/Fuit6hrza553y678K4bQTxzpN8ii/V55tcWi+V/y/+/fWZ4z2wnyaZd5jGwHo//X/eXAyQZsrY1DEMWi+XGm7Xxv/WSrG/gN1YZ1i4yjAzr+r++uWf+/GQYGdafF+vXOSzPMDL07v53NajhoJu2K0jfOa07+edJBXkHFVnYSUpJUhnnMoX6ix1A/iz8cWGR7u+nuJ+KXbi1GJnvNCXYxx9/rAEDBmjRokVq0aKF5s6dq9WrVysqKko+Pj433T4pKUleXl5KTEyUp6dnEVRcMhiGcUvhOLewnZ8wnpaRdiNAp19XWkZalkd6RrrSjDSlpacpzUiz2eav69Mz/rfvtIw0ZWTc2EeakZallsz60jLSsoSGdCNdGRn/HyyUNWhktskMQpkPQ8aN7ZRhsy7zF3lmGwDFy1//qPr785zW/f2PMuv6bP5Is/laFt34l3X77L7OsZ/M9X+tx5J7fX/t86/b/r3dX/84za6PzD9SC1pzYbzuvG53K/3ezr5v9+suzDqbV2qu0MBQFYW85jVThNsWLVqoWbNmWrBggSQpIyNDgYGBevrppzVhwoSbbl+U4fbkxZNasGfB/0KPMmRk/P+IkDKyhCRrEMohFGVukxlEJdkGqv8PTtt+26Y2VdpYtzEMw7pN5td/7euvYctmn5nLDcO23d+2iU2OVcXSFXNtk+O6v4z2EPbubJlvnoWJcwooGQrz599isUiGlKGMIrtexCKL0o10m/399TX99b3o7681c112xyC3dXndX2HJMDL0j3r/0KqHVxV639nJa14r8dMSUlNTtW/fPk2cONG6zMHBQWFhYdq1a1e226SkpCglJcX6PCkp6bbXmemb/36juZFzi2x/f/VdzHdFur9zV84V6f5gPgRR4M5VmD//fx3Hy5xyVFTMvr+YxJgi3V9elPjL3c+fP6/09HT5+vraLPf19VVsbGy220RERMjLy8v6CAwMLIpSJUnl3coX2b4AAABup7Etx9q7hCxK/MhtQUycOFFjx/7vm5GUlFRkAbf3Xb2VPDG5SPYFAABwO5V2Km3vErIo8eG2QoUKKlWqlOLi4myWx8XFyc/PL9ttXFxc5OLiUhTlZWGxWOTu7G6XfQMAAJhdiZ+W4OzsrCZNmmjLli3WZRkZGdqyZYtCQ4vm6j0AAAAUDyV+5FaSxo4dq/DwcDVt2lTNmzfX3LlzdfnyZQ0aNMjepQEAAKAImSLc/uMf/9C5c+c0efJkxcbGqmHDhtq0aVOWi8wAAABgbqa4z+2t4kMcAAAAire85rUSP+cWAAAAyES4BQAAgGkQbgEAAGAahFsAAACYBuEWAAAApkG4BQAAgGkQbgEAAGAahFsAAACYBuEWAAAApkG4BQAAgGkQbgEAAGAahFsAAACYBuEWAAAApuFo7wKKA8MwJElJSUl2rgQAAADZycxpmbktJ4RbSZcuXZIkBQYG2rkSAAAA5ObSpUvy8vLKcb3FuFn8vQNkZGTozJkzKlOmjCwWy23fX1JSkgIDA/X777/L09Pztu+vpOC45Ixjkz2OS844NtnjuOSMY5M9jkv27HFcDMPQpUuXFBAQIAeHnGfWMnIrycHBQZUrVy7y/Xp6evKDkg2OS844NtnjuOSMY5M9jkvOODbZ47hkr6iPS24jtpm4oAwAAACmQbgFAACAaRBu7cDFxUVTpkyRi4uLvUspVjguOePYZI/jkjOOTfY4Ljnj2GSP45K94nxcuKAMAAAApsHILQAAAEyDcAsAAADTINwCAADANAi3AAAAMA3C7W2ycOFCVatWTa6urmrRooX27NmTa/vVq1erTp06cnV1Vf369bVhw4YiqrRoREREqFmzZipTpox8fHzUs2dPRUVF5brN8uXLZbFYbB6urq5FVHHRefnll7O8zjp16uS6jdnPF0mqVq1aluNisVg0YsSIbNub+Xz59ttv9cADDyggIEAWi0Vr1661WW8YhiZPnix/f3+5ubkpLCxMJ06cuGm/+X2fKm5yOy7Xr1/X+PHjVb9+fbm7uysgIEADBgzQmTNncu2zID+PxdHNzpmBAwdmeZ1du3a9ab9mPmckZfueY7FY9MYbb+TYpxnOmbz8jr527ZpGjBih8uXLy8PDQ71791ZcXFyu/Rb0velWEW5vg48//lhjx47VlClTtH//fjVo0EBdunRRfHx8tu1/+OEH9evXT4MHD9aBAwfUs2dP9ezZU0eOHCniym+fHTt2aMSIEdq9e7c2b96s69evq3Pnzrp8+XKu23l6eurs2bPWx6lTp4qo4qJVr149m9f5/fff59j2TjhfJOnHH3+0OSabN2+WJPXp0yfHbcx6vly+fFkNGjTQwoULs10/c+ZMvfXWW1q0aJEiIyPl7u6uLl266Nq1azn2md/3qeIot+Ny5coV7d+/X5MmTdL+/fv1+eefKyoqSg8++OBN+83Pz2NxdbNzRpK6du1q8zo/+uijXPs0+zkjyeZ4nD17VkuXLpXFYlHv3r1z7beknzN5+R39zDPP6Msvv9Tq1au1Y8cOnTlzRg899FCu/RbkvalQGCh0zZs3N0aMGGF9np6ebgQEBBgRERHZtn/kkUeM+++/32ZZixYtjCeeeOK21mlP8fHxhiRjx44dObZZtmyZ4eXlVXRF2cmUKVOMBg0a5Ln9nXi+GIZhjB492qhRo4aRkZGR7fo75XyRZKxZs8b6PCMjw/Dz8zPeeOMN67KEhATDxcXF+Oijj3LsJ7/vU8Xd349Ldvbs2WNIMk6dOpVjm/z+PJYE2R2b8PBwo0ePHvnq5048Z3r06GF06NAh1zZmPGf+/js6ISHBcHJyMlavXm1tc+zYMUOSsWvXrmz7KOh7U2Fg5LaQpaamat++fQoLC7Muc3BwUFhYmHbt2pXtNrt27bJpL0ldunTJsb0ZJCYmSpLKlSuXa7vk5GRVrVpVgYGB6tGjh37++eeiKK/InThxQgEBAapevbr69++vmJiYHNveiedLamqqPvjgAz3++OOyWCw5trtTzpe/io6OVmxsrM054eXlpRYtWuR4ThTkfcoMEhMTZbFY5O3tnWu7/Pw8lmTbt2+Xj4+PateureHDh+vChQs5tr0Tz5m4uDitX79egwcPvmlbs50zf/8dvW/fPl2/ft3m+1+nTh1VqVIlx+9/Qd6bCgvhtpCdP39e6enp8vX1tVnu6+ur2NjYbLeJjY3NV/uSLiMjQ2PGjFHr1q11991359iudu3aWrp0qb744gt98MEHysjIUKtWrXT69OkirPb2a9GihZYvX65NmzbpnXfeUXR0tNq0aaNLly5l2/5OO18kae3atUpISNDAgQNzbHOnnC9/l/l9z885UZD3qZLu2rVrGj9+vPr16ydPT88c2+X357Gk6tq1q95//31t2bJFM2bM0I4dO9StWzelp6dn2/5OPGdWrFihMmXK3PS/3s12zmT3Ozo2NlbOzs5Z/jC8WbbJbJPXbQqL423tHcjGiBEjdOTIkZvOSQoNDVVoaKj1eatWrVS3bl0tXrxY06ZNu91lFplu3bpZvw4JCVGLFi1UtWpVffLJJ3kaMbgTLFmyRN26dVNAQECObe6U8wX5d/36dT3yyCMyDEPvvPNOrm3vlJ/Hvn37Wr+uX7++QkJCVKNGDW3fvl0dO3a0Y2XFx9KlS9W/f/+bXphqtnMmr7+jizNGbgtZhQoVVKpUqSxXEMbFxcnPzy/bbfz8/PLVviQbOXKkvvrqK23btk2VK1fO17ZOTk5q1KiRfv3119tUXfHg7e2tWrVq5fg676TzRZJOnTqlb775RkOGDMnXdnfK+ZL5fc/POVGQ96mSKjPYnjp1Sps3b8511DY7N/t5NIvq1aurQoUKOb7OO+mckaTvvvtOUVFR+X7fkUr2OZPT72g/Pz+lpqYqISHBpv3Nsk1mm7xuU1gIt4XM2dlZTZo00ZYtW6zLMjIytGXLFptRpb8KDQ21aS9JmzdvzrF9SWQYhkaOHKk1a9Zo69atCgoKyncf6enpOnz4sPz9/W9DhcVHcnKyTp48mePrvBPOl79atmyZfHx8dP/99+druzvlfAkKCpKfn5/NOZGUlKTIyMgcz4mCvE+VRJnB9sSJE/rmm29Uvnz5fPdxs59Hszh9+rQuXLiQ4+u8U86ZTEuWLFGTJk3UoEGDfG9bEs+Zm/2ObtKkiZycnGy+/1FRUYqJicnx+1+Q96ZCc1svV7tDrVq1ynBxcTGWL19uHD161Bg2bJjh7e1txMbGGoZhGI899pgxYcIEa/udO3cajo6OxqxZs4xjx44ZU6ZMMZycnIzDhw/b6yUUuuHDhxteXl7G9u3bjbNnz1ofV65csbb5+3GZOnWq8fXXXxsnT5409u3bZ/Tt29dwdXU1fv75Z3u8hNvm2WefNbZv325ER0cbO3fuNMLCwowKFSoY8fHxhmHcmedLpvT0dKNKlSrG+PHjs6y7k86XS5cuGQcOHDAOHDhgSDLefPNN48CBA9ar/qdPn254e3sbX3zxhfHTTz8ZPXr0MIKCgoyrV69a++jQoYMxf/586/ObvU+VBLkdl9TUVOPBBx80KleubBw8eNDmfSclJcXax9+Py81+HkuK3I7NpUuXjHHjxhm7du0yoqOjjW+++cZo3LixERwcbFy7ds3ax512zmRKTEw0SpcubbzzzjvZ9mHGcyYvv6OffPJJo0qVKsbWrVuNvXv3GqGhoUZoaKhNP7Vr1zY+//xz6/O8vDfdDoTb22T+/PlGlSpVDGdnZ6N58+bG7t27revatWtnhIeH27T/5JNPjFq1ahnOzs5GvXr1jPXr1xdxxbeXpGwfy5Yts7b5+3EZM2aM9Rj6+voa9913n7F///6iL/42+8c//mH4+/sbzs7ORqVKlYx//OMfxq+//mpdfyeeL5m+/vprQ5IRFRWVZd2ddL5s27Yt25+fzNefkZFhTJo0yfD19TVcXFyMjh07ZjlmVatWNaZMmWKzLLf3qZIgt+MSHR2d4/vOtm3brH38/bjc7OexpMjt2Fy5csXo3LmzUbFiRcPJycmoWrWqMXTo0Cwh9U47ZzItXrzYcHNzMxISErLtw4znTF5+R1+9etV46qmnjLJlyxqlS5c2evXqZZw9ezZLP3/dJi/vTbeD5f+LAQAAAEo85twCAADANAi3AAAAMA3CLQAAAEyDcAsAAADTINwCAADANAi3AAAAMA3CLQAAAEyDcAsAAADTINwCQAk1cOBA9ezZ095lAECx4mjvAgAAWVksllzXT5kyRfPmzRMfMgkAtgi3AFAMnT171vr1xx9/rMmTJysqKsq6zMPDQx4eHvYoDQCKNaYlAEAx5OfnZ314eXnJYrHYLPPw8MgyLaF9+/Z6+umnNWbMGJUtW1a+vr567733dPnyZQ0aNEhlypRRzZo1tXHjRpt9HTlyRN26dZOHh4d8fX312GOP6fz580X8igGgcBBuAcBEVqxYoQoVKmjPnj16+umnNXz4cPXp00etWrXS/v371blzZz322GO6cuWKJCkhIUEdOnRQo0aNtHfvXm3atElxcXF65JFH7PxKAKBgCLcAYCINGjTQSy+9pODgYE2cOFGurq6qUKGChg4dquDgYE2ePFkXLlzQTz/9JElasGCBGjVqpNdff1116tRRo0aNtHTpUm3btk3Hjx+386sBgPxjzi0AmEhISIj161KlSql8+fKqX7++dZmvr68kKT4+XpJ06NAhbdu2Ldv5uydPnlStWrVuc8UAULgItwBgIk5OTjbPLRaLzbLMuzBkZGRIkpKTk/XAAw9oxowZWfry9/e/jZUCwO1BuAWAO1jjxo312WefqVq1anJ05FcCgJKPObcAcAcbMWKELl68qH79+unHH3/UyZMn9fXXX2vQoEFKT0+3d3kAkG+EWwC4gwUEBGjnzp1KT09X586dVb9+fY0ZM0be3t5ycOBXBICSx2Lw8TYAAAAwCf4sBwAAgGkQbgEAAGAahFsAAACYBuEWAAAApkG4BQAAgGkQbgEAAGAahFsAAACYBuEWAAAApkG4BQAAgGkQbgEAAGAahFsAAACYxv8Bd7N3cGldXGAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAADHwAAAxcCAYAAABhCCk7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOzdZ5iV1b03/u+mlwFUUASHpkZJLNgQC0bEEnvHdoySmGgOlkMez2PBvzGaRIzm5MjRYCxRE43HghLRWNFARD3EgoqoKDoGBkSkSBdh3P8XOczjhDYg42z087mufV177rXW7/6tvfF+IfNlFYrFYjEAAAAAAAAAAAAAAACUjAb13QAAAAAAAAAAAAAAAAA1CXwAAAAAAAAAAAAAAACUGIEPAAAAAAAAAAAAAACAEiPwAQAAAAAAAAAAAAAAUGIEPgAAAAAAAAAAAAAAAEqMwAcAAAAAAAAAAAAAAECJEfgAAAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJUbgAwAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJQYgQ8AAAAAAAAAAAAAAIASI/ABAAAAAAAAAAAAAABQYgQ+AAAAAAAAAAAAAAAASozABwAAAAAAAAAAAAAAQIlpVN8NUL9atmyZpUuXZrPNNqvvVgA2ODNmzEjjxo2zcOHC+m4FAAAAAAAAAAAAgK8YgY+vuaVLl6aqqqq+2wDYIHl+AgAAAAAAAAAAAFBXBD6+5paf7FFZWVnPnQBseMrLy+u7BQAAAAAAAAAAAAC+ohrUdwMAAAAAAAAAAAAAAADUJPABAAAAAAAAAAAAAABQYgQ+AAAAAAAAAAAAAAAASozABwAAAAAAAAAAAAAAQIkR+AAAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlRuADAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlBiBDwAAAAAAAAAAAAAAgBIj8AEAAAAAAAAAAAAAAFBiBD4AAAAAAGADcPvtt6dQKNTq1adPn/pu9wsbNWpU9X7ef//9FcaXj91+++3rfI/1UeOL6N+//0q/v0aNGqVt27bZa6+98pOf/CTTpk2rl/5qa03fFQAAAAAAsG4EPgAAAAAAAEpIVVVVZs+eneeffz4/+9nP8s1vfjOPPPJIfbcFAAAAAAB8yRrVdwMAAAAAAMDaeeSRR7LPPvuscrxhw4ZfYjesD/Pnz69+v3jx4rzzzju54YYbcuedd2bevHnp169f3nrrrXTq1KkeuwQAAAAAAL5MAh8AAAAAALCBad68ecrKyuq7jTrVp0+fFIvF+m7jS/P577OsrCybbrpp9tprr2y00Ua5/vrrs2jRogwdOjSDBw+uxy5X7uv2XQEAAAAAwJelQX03AAAAAAAAwMpdfPHF1e+fffbZeuwEAAAAAAD4sgl8AAAAAADA18DcuXMzePDg7LXXXmnXrl2aNm2ajh075thjj80TTzyx2rXjx4/PlVdemT59+qR9+/Zp3LhxWrdunR133DHnn39+pkyZstr1CxcuzNVXX5299torm2yySRo3bpxNN9003/rWt9KvX7/cfPPNWbhwYY01o0aNSqFQSKFQyPvvv7/a+lVVVbnuuuuy++67Z6ONNkpZWVl69uyZ66+/PlVVVbX6fFblk08+yfXXX5/9998/m222WZo0aZLNNtsshxxySO699946P9miY8eOad26dZJkxowZq5xXVVWVP/zhDznssMPSoUOHNGnSJG3btk2fPn1y0003ZdmyZau9z+LFi/Pzn/88O+ywQ1q0aFG99u67706S/PSnP02hUEjXrl1XWFvb7+r555/Pd7/73XTt2jXNmjXLRhttlF122SWXXXZZZs+evcp1/fv3T6FQSJ8+fZIkr732Wk499dSUl5enadOm2WKLLdK/f/+8++67q93jI488kmOPPTadOnVK06ZN06pVq2y55ZbZd999c/nll+fNN99c7XoAAAAAAPiyNarvBgAAAAAAgLr117/+Nccdd1xmzpxZ4/oHH3yQ4cOHZ/jw4TnzzDMzdOjQNGzYsMacV199NTvttNMKNefPn5/x48dn/Pjxufnmm3P//ffnwAMPXGHeBx98kH333TfvvPNOjeszZ87MzJkz8+abb2bYsGHZeeeds9tuu6313pYuXZqDDz44I0eOrHH9xRdfzIsvvphhw4blz3/+c1q2bLnWtSdMmJAjjjgiFRUVNa5/9NFHeeyxx/LYY4/lzjvvzN13350WLVqsdf3aWh4q2WijjVY6XllZmaOOOiovv/xyjeuzZ8/O6NGjM3r06Nx66615+OGH065duxXWf/jhh+nbt2/eeOON6muLFy+uXvvkk0+mU6dOX6j/Cy64IL/61a9qXF+yZEnGjRuXcePG5Te/+U1GjBiRvfbaa7W17rnnnpx++ulZsmRJ9bVp06bl97//fUaMGJHRo0dnhx12WGHdueeem+uvv77GtU8//TQLFixIRUVF/vrXv+ajjz5aYQ4AAAAAANQnJ3wAAAAAAMBX2CuvvJLvfOc7mTlzZnbYYYfceeedqaioyOzZs/Pqq69m4MCBKRQKuemmm3LFFVessL5QKKRv37659tprM3r06Lz99tuZNWtW3nrrrfzxj3/Mbrvtlvnz5+fEE0/M9OnTV1h/wQUX5J133knDhg1z6aWX5pVXXsmMGTMyY8aMjBs3LkOHDk2fPn1SKBTWaX+DBw/OyJEjc/bZZ+e1117LzJkzM3bs2PTr1y9JMnr06Jx11llrXbeysjJ9+vRJRUVFunTpkhtvvDFvv/12Zs+enTfffDOXX355mjZtmoceeij/+q//uk6918bUqVMzf/78JMn222+/wvi8efPSt2/fvPzyy2nXrl3+4z/+IxMmTMjs2bPz7rvvZsiQIWnTpk3Gjh2bE044IZ999lmN9cViMf369csbb7yRQqGQc889N6+99lpmzZqVF198MaeeempuvfXW3Hnnneu8h6uvvro67NGrV688/vjjmTFjRioqKnLttdemdevWmTVrVg455JAVwjWfN2nSpJx++unp1atXnnjiicyYMSNTpkzJtddem6ZNm2bOnDkr/a6feuqp6iDHgQcemMcffzyTJ0/OnDlzMmnSpAwfPjw/+MEPUlZWts57BAAAAACAulAo1vVZ45S08vLyJP/4iysA1o5nKAAAAPBluv322/O9730vSfLII49kn332Wem8QqFQ4zSLnXfeOa+88kr222+/PProo2natOkKa2644YYMGDAgTZo0yfvvv58OHTrUuq9ly5alT58+efbZZ/OTn/wkl19+eY3xtm3bZvbs2fnxj3+cX//617WuO2rUqOy3335JkoqKinTt2nWFfS7305/+NJdddtkKNU477bTccccdSZK//e1v6dmz50pr3Hbbbenfv3+NsaOPPjoPPvhgtttuuzzzzDPZeOONV6j/6KOP5tBDD03yjxNFdt1111rvL0n69++f3//+90n+3yke/+zss8/O0KFDUygU8tJLL2XnnXeuMT5w4MAMGTIkHTp0yPPPP58uXbqsUOOVV17JHnvskSVLlmTYsGE57rjjqseGDRtWHY75+c9/nksuuWSF9T/60Y9y4403Jkm6dOmS999/v8b46r6rGTNmpHPnzlmyZEn23HPPPP3002nWrFmN9WPHjs0+++yTpUuX5rjjjsuwYcNW+TkdfPDBeeihh9KoUc1D7H/961/n/PPPT5K8+eab6d69e/XY+eefn1//+tdp3759pkyZksaNG6+wRwAAAAAAKEVO+AAAAAAAgA3MoYcemlatWq30tcUWW1TPGzVqVF555ZUUCoXceOONKw17JP/4hf4tt9wyn376ae6777616qVRo0Y55ZRTkiRPPvnkCuPLli1LknTs2HGt6tZWx44dM2jQoJWO/frXv06TJk2SJLfeemuta1ZUVGTEiBFJkmuvvXalYY8kOeSQQ9KnT58kyR//+Me16HpFCxYsqH599NFHee6553LaaadVhz2uv/76FcIeCxcuzC233JIkueKKK1Ya9kiSnXbaKSeffPJK+7ztttuS/ONzvPDCC1e6/pe//GWaN2++Tvu64447smTJkiTJf/3Xf60Q9kj+cerHGWeckST505/+lI8++miV9YYMGbJC2CNJjcDOCy+8UGNs+Z/Bdu3aCXsAAAAAALBBEfgAAAAAAICvqJEjRyZJttpqq3To0KFGqODzr4ULF6ZHjx5JVvxl+eWGDx+eE044IVtttVVatmyZQqFQ/Tr77LOTJBMnTlxh3U477ZQkueaaa/LnP/85VVVV63WPRxxxxCp/ib9du3bZd999kyTPPvtsrWs+9dRTKRaLadasWXbfffdVfm4LFiyo3t+qPrfa+nxoZ7PNNsvee++dO+64I1tssUXGjRuXAQMGrLDm+eefz8KFC5Mkffr0WW2fO+644wp9FovFPPfcc0mSww47bKVBiiRp06ZN9ee4tp555pkkSbdu3bLbbrutct6JJ56YJKmqqsrzzz+/0jlbbrllttlmm5WObbLJJtl0002TJNOnT68xtvw7mjBhQi655JLMnj17rfYAAAAAAAD1ZeX/5x4AAAAAAChZf/nLX6pPllidt956K0kyadKktGrVqla1//l0hUWLFuXYY4/N448/vsa1c+fOXeHaVVddlT59+mTGjBk5/PDD07Zt23z7299O7969s//++1cHTdbVN7/5zdWOf+tb38qTTz6Z999/v9Y1l39un3zySdq0aVOrNas7leKLmDp1agYOHJg///nPadGiRY2x5X0myTe+8Y1a1ft8n3Pnzs3HH3+cJNl2221Xu6579+557LHHatn1//P3v/89yT++h9XZbrvtqt+v6rta0ykxyz+fRYsW1bh+6qmn5vrrr8/LL7+cK6+8MldffXV69uyZffbZJ/vuu2/69u270pNHAAAAAACgvjnhAwAAAAAAvqJWFsBYk08++aTGz+eff3512OP000/Pww8/nEmTJmXmzJmZP39+5s+fn6FDhybJSk/v2HPPPfM///M/Ofroo9O4cePMmjUrw4cPz/nnn5+ddtop22+/ff785z+vw+7+oaysrFbjCxYsqHXN9fG5ra1isVj9mjlzZh599NHsvvvuSZJRo0bl3HPPXS99LlmypPr95z+T2n6Oa2v+/PlJssbA0efHl6/5Zw0bNqzVPYvFYo2fGzdunFGjRmXQoEHZfPPNs2zZsjz//PO5+uqrc9hhh6V9+/YZNGhQjc8GAAAAAABKgcAHAAAAAAB8RS3/Jf1ddtmlRqBgda9Ro0ZVr1+0aFFuv/32JMmFF16Y22+/PYcddli22mqrtG3bNmVlZSkrK1tj2GHnnXfO8OHDM2fOnDz11FP5+c9/nm9/+9spFAqZMGFCDj/88Nx///3rtMc1BTmWj69NYGH53E022aTWn9vanCCyJm3bts3BBx+cv/zlL9lxxx2TJLfeemvGjBmz0j6TZN68ebXudWXrFy5cuNqe1iYw83nLgxy1/Z4+v2Z9atWqVX7xi19k2rRpGT9+fG666aaccsopadOmTebNm5fBgwenX79+6/2+AAAAAADwRQh8AAAAAADAV9SWW26ZJKmoqMhnn3221uvfeuut6jDHySefvMp548ePr1W9li1bpm/fvrnkkksyevTovPLKK2nbtm2S5Iorrljr/pLkzTffXO34G2+8kSTp2rVrrWsu/9zmzJmT2bNnr1Nf60OLFi1y6623plAoJEkuuuiiGuPL+0ySd999d63rt2nTJhtttFGSZOLEiaudu6bxVVn+uU+YMGG1815//fUV1tSFQqGQ7bffPj/84Q/zxz/+MVOnTs0xxxyTJHnooYcybty4Ors3AAAAAACsLYEPAAAAAAD4ivrOd76T5B/BhSeeeGKt1y9ZsqT6fVVV1UrnLFiwIH/605/Wqb8dd9wxJ554YpJ/hEvWxUMPPZSlS5eudGzmzJkZPXp0kmTvvfeudc2DDjooSVIsFnPvvfeuU1/ry6677lr9GT377LN56qmnqsf23XffNG3aNEly9913r3XtQqGQPffcM0ny5z//OcuWLVvpvHnz5tU4+WVt7LPPPkn+ETp6+eWXVznvvvvuS5I0bNgwe+211zrda120bNkyF198cfXP6/rnEAAAAAAA6oLABwAAAAAAfEUdeOCB2XHHHZMkAwYMyNSpU1c7/8MPP8ycOXOqf+7WrVv1+wcffHCF+cViMeedd16NNZ+3cOHCTJkyZbX3XH4yxfKTPtbWtGnTMnjw4JWO/Z//83/y6aefJkm+//3v17rmtttum8MPPzxJcskll6zxdIp58+blgw8+qHX9tXXZZZelYcOGSZKf/exn1ddbt26dH/7wh0mSa6+9Nn/5y19WW+eTTz7J3//+9xrX+vfvnySZOnVqfvWrX6103cUXX5zFixevU++nnnpqdSjl3/7t32qEiJZ74YUXcvPNNydJjjnmmLRr126d7rUqazqd5POno6zrn0MAAAAAAKgLAh8AAAAAAPAVVSgU8vvf/z4tWrRIRUVFdtpppwwePDivvvpqZs+enZkzZ+b111/PH/7wh5xwwgnp0qVLjV9+33zzzbPvvvsmSQYPHpzLL788EydOzKxZs/LXv/41RxxxRG677bZ861vfWun9P/roo2y55ZY56qijctttt2X8+PGZOXNmpk+fnueeey6nnXZaHn/88STJySefvE577NatWy677LKcc845ef311zN79uy8+OKLOfHEE3PHHXckSf7lX/4lPXv2XKu6Q4cOTfv27TN79uz06tUrgwYNyt/+9rfMnDkzs2bNyltvvZV77rkn/fv3T3l5eZ599tl16r82unfvnlNOOSVJMnr06DzzzDPVY7/4xS/yzW9+M0uWLMlBBx2Us88+O88880xmzJiROXPmZNKkSfnTn/6Us88+O506dao+SWO5448/vvpEjUGDBmXgwIGZMGFC5syZk5dffjmnn356hg4dmq222mqdet9ss81y+eWXJ0nGjBmT/fbbL08++WRmzpyZv//977nuuuty4IEHZunSpWndunWuueaadbrP6px11lnZfvvt8/Of/zyjR4/OtGnTMmfOnLz11lsZMmRIfvSjHyVJOnbsmG9/+9vr/f4AAAAAALCuGtV3AwAAAAAAQN3Zaaed8pe//CX9+vXL5MmTM2jQoAwaNGiV8xs3blzj59/+9rfp3bt3Zs2alZ/+9Kf56U9/WmP8xBNPzEEHHZQzzjhjpfWWLVuWESNGZMSIEau85wEHHJArrrii9pv6nIsuuij33ntvfvOb3+Q3v/nNCuP77rtvbrzxxrWu26lTpzzzzDM57rjjMn78+AwePHiVJ4kkSZMmTdb6HmvjJz/5Sf77v/87y5YtyxVXXJEnn3wyyT9O+fjLX/6SE088MaNHj87QoUMzdOjQWvfZoEGDDBs2LH379q0OQAwZMqTGnP79+6dz58654oor0qjR2v/V0gUXXJCZM2fmV7/6VZ5//vkcdNBBK8xp27ZtHnzwwXTt2nWt69fGhAkTcumll65yvG3bthk2bFiaNWtWJ/cHAAAAAIB14YQPAAAAAAD4itt9990zceLE/Pa3v80hhxySDh06pEmTJmnWrFk6d+6cQw45JL/85S8zadKk9OjRo8ba7t2756WXXsoPfvCDbLHFFmncuHE23XTT9O3bN3fccUfuvvvuNGiw8r9u6Ny5c5599tlcfvnl2X///bPVVlulZcuWadKkScrLy3PkkUfmnnvuyRNPPJGWLVuu096aNGmSxx57LP/5n/+ZXXfdNa1atUrLli2z66675rrrrstTTz21zrW/8Y1vZNy4cfnjH/+YY445JuXl5WnatGmaNGmSjh07pm/fvrnsssvy6quv5sgjj1yne9TW1ltvndNOOy1JMnLkyPzP//xP9Vj79u0zatSoPPzwwzn55JPTtWvXNG/ePI0bN85mm22W3r1758ILL8xzzz2X8847b4XaHTp0yEsvvZTLL7883/rWt9KsWbNsvPHG2WeffXLHHXfktttuy4IFC5L8I2CytgqFQq655po899xz+Zd/+Zd07tw5TZs2TevWrbPzzjvn0ksvzdtvv5299957HT+d1fv973+fm2++OSeddFJ22GGHtGvXLg0bNsxGG22UXr16VZ9cs+eee9bJ/QEAAAAAYF0VisVisb6boP6Ul5cnSSorK+u5E4ANj2coAAAAAF8XRx11VEaMGJEjjjhitae1AAAAAAAA648TPgAAAAAAAFil+fPn5+mnn06S7LrrrvXcDQAAAAAAfH0IfAAAAAAAAHyNffzxx/nss89WOf7v//7vWbBgQZLkxBNP/LLaAgAAAACArz2BDwAAAAAAgK+xkSNHZocddsiQIUPy2muvZfbs2Zk+fXoef/zxHHroobnpppuSJKeeemq6d+9ez90CAAAAAMDXR6P6bgAAAAAAAID69cYbb2TgwIGrHN9///0zdOjQL68hAAAAAABA4AMAAAAAAODrbN99981//ud/5vHHH8/EiRMzc+bMLFmyJG3bts2uu+6aU045JSeeeGIaNHBwPAAAAAAAfJkKxWKxWN9NUH/Ky8uTJJWVlfXcCcCGxzMUAAAAAAAAAAAAgLrin2ICAAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJUbg45/cd9996dOnTzbeeOO0bNkyPXr0yNVXX52lS5euU72XXnop/fr1S/v27dOsWbN069Yt5557bmbMmFHrGlOnTs3GG2+cQqGQRo0arVMfAAAAAAAAAAAAAADAhkPg43MGDhyYE044Ic8++2x23333HHzwwZk8eXIuvPDC9O3bN4sXL16resOGDcsee+yRYcOGpUuXLjnqqKPSoEGDXH/99dlxxx0zadKkWtX54Q9/mLlz567LlgAAAAAAAAAAAAAAgA2QwMf/+tOf/pQhQ4akrKwsY8eOzeOPP577778/77zzTnbYYYeMGTMml156aa3rTZs2LaeffnqWLVuWG2+8MX/7299yzz335O23386pp56aDz/8MKecckqKxeJq69xyyy159NFHc/bZZ3/RLQIAAAAAAAAAAAAAABsIgY//deWVVyZJLrroouyyyy7V19u1a5ehQ4cmSa6//vpan7Rx7bXXZtGiRTnggANy5plnVl9v2LBhbrjhhrRp0yYvvPBCnnjiiVXW+Pvf/57/83/+T/bYY4/8+Mc/XpdtAQAAAAAAAAAAAAAAGyCBjyRTp07NCy+8kCQ55ZRTVhjv3bt3OnXqlCVLluSRRx6pVc3hw4evsl5ZWVmOPPLIJMkDDzyw0vXFYjHf//738+mnn+bWW29Ngwa+KgAAAAAAAAAAAAAA+LqQIkgybty4JMkmm2ySbt26rXTObrvtVmPu6syfPz+TJk2qsW5t6w0dOjRPP/10Lrvssnzzm99c4z0BAAAAAAAAAAAAAICvDoGPJBUVFUmSzp07r3JOp06dasxdnffff7/6/apqrq7eu+++mwsvvDC77rpr/u///b9rvB8AAAAAAAAAAAAAAPDV0qi+GygF8+fPT5K0bNlylXPKysqSJPPmzat1vdXVXFW9zz77LP3798+nn36a2267LY0affGvqLy8fJVjH3zwQTp06PCF7wEAAAAAAAAAAAAAAKw/TvgoMddee23GjBmT/+//+/+yww471Hc7AAAAAAAAAAAAAABAPXDCR5JWrVolSRYuXLjKOQsWLEiStG7dutb1ltds06ZNrepNnDgxl1xySXr06JGLL764ds3XQmVl5SrHVnf6BwAAAAAAAAAAAAAAUD8EPpJ07do1STJlypRVzlk+tnzu6nTp0qX6/eTJk1d6UsfK6j366KP55JNPsnDhwhx44IE15n/yySdJkqqqqvTp0ydJctFFF+Xggw9eYz8AAAAAAAAAAAAAAMCGReAjyc4775wkmTVrVioqKtKtW7cV5rz44otJkl122WWN9Vq3bp2tt946kyZNyosvvrjSwMfq6k2aNCmTJk1aZf3Ro0cnSfr377/GXgAAAAAAAAAAAAAAgA1Pg/puoBSUl5enZ8+eSZK77rprhfExY8ZkypQpadq0aQ499NBa1TzmmGNWWW/BggV56KGHkiTHHnts9fWBAwemWCyu9FVRUZEkadiwYfU1gQ8AAAAAAAAAAAAAAPhqEvj4X4MGDUqSXHXVVXn55Zerr8+aNSsDBgxIkpxzzjlp06ZN9djw4cPTvXv37L///ivUGzhwYFq0aJGRI0fm5ptvrr5eVVWVAQMG5OOPP07Pnj1z0EEH1dWWAAAAAAAAAAAAAACADZTAx/86+uijc95552XBggXZY489csghh+T444/P1ltvnfHjx2fvvffOz372sxpr5s6dm4kTJ+bdd99doV7Hjh1z++23p2HDhjnzzDOzxx575KSTTso222yTO+64I+3bt89dd92VQqHwZW0RAAAAAAAAAAAAAADYQAh8fM6QIUNyzz33ZM8998xzzz2XRx55JOXl5bnqqqvy9NNPp3nz5mtVr1+/fhk7dmyOPfbYvPfeexk+fHiqqqpy9tln59VXX83WW29dRzsBAAAAAAAAAAAAAAA2ZIVisVis7yaoP+Xl5UmSysrKeu4EYMPjGQoAAAAAAAAAAABAXXHCBwAAAAAAAAAAAAAAQIkR+AAAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlRuADAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlBiBDwAAAAAAAAAAAAAAgBIj8AEAAAAAAAAAAAAAAFBiBD4AAAAAAAAAAAAAAABKjMAHAAAAAAAAAAAAAABAiRH4AAAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACVG4AMAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACUGIEPAAAAAAAAAAAAAACAEiPwAQAAAAAAAAAAAAAAUGIEPgAAAAAAAAAAAAAAAEqMwAcAAAAAAAAAAAAAAECJEfgAAAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJUbgAwAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJQYgQ8AAAAAAAAAAAAAAIASI/ABAAAAAAAAAAAAAABQYgQ+AAAAAAAAAAAAAAAASozABwAAAAAAAAAAAAAAQIkR+AAAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlRuADAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlBiBDwAAAAAAAAAAAAAAgBIj8AEAAAAAAAAAAAAAAFBiBD4AAAAAAAAAAAAAAABKjMAHAAAAAAAAAAAAAABAiRH4AAAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACVG4AMAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACUGIEPAAAAAAAAAAAAAACAEiPwAQAAAAAAAAAAAAAAUGIEPgAAAAAAAAAAAAAAAEqMwAcAAAAAAAAAAAAAAECJEfgAAAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJUbgAwAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJQYgQ8AAAAAAAAAAAAAAIASI/ABAAAAAAAAAAAAAABQYgQ+AAAAAAAAAAAAAAAASozABwAAAAAAAAAAAAAAQIkR+Pgn9913X/r06ZONN944LVu2TI8ePXL11Vdn6dKl61TvpZdeSr9+/dK+ffs0a9Ys3bp1y7nnnpsZM2asdP7kyZNz44035thjj02XLl3StGnTlJWVpUePHhk0aFA++uijL7I9AAAAAAAAAAAAAABgA1AoFovF+m6iVAwcODBDhgxJo0aN0rdv35SVleXpp5/Oxx9/nN69e+eJJ55I8+bNa11v2LBhOfnkk7Ns2bL07Nkz3bp1y4svvpj33nsv7du3z5gxY7L11lvXWNO7d+88++yzadSoUXbeeedsueWWmT17dsaOHZt58+Zl0003zRNPPJGddtppvey5vLw8SVJZWble6gF8nXiGAgAAAAAAAAAAAFBXBD7+15/+9Kccc8wxKSsry+jRo7PLLrskSWbOnJm+fftm/PjxOf/88/OrX/2qVvWmTZuWb3zjG1m0aFFuvPHGnHnmmUmSqqqq9O/fP3feeWd69uyZsWPHplAoVK878cQTs+eee+a73/1u2rZtW339o48+ygknnJBRo0blG9/4Rt588800bNjwC+/bLysDrDvPUAAAAAAAAAAAAADqisDH/9p9993zwgsv5Oc//3kuueSSGmNjxozJPvvsk6ZNm+bDDz9MmzZt1ljvggsuyDXXXJMDDjggTz75ZI2xBQsWpLy8PHPnzs1jjz2W73znO7XqsbKyMp06dUqSPPPMM+ndu3ctd7dqflkZYN15hgIAAAAAAAAAAABQVxrUdwOlYOrUqXnhhReSJKeccsoK4717906nTp2yZMmSPPLII7WqOXz48FXWKysry5FHHpkkeeCBB2rdZ3l5edq1a5ckmTJlSq3XAQAAAAAAAAAAAAAAGxaBjyTjxo1LkmyyySbp1q3bSufstttuNeauzvz58zNp0qQa675IveVmzpyZOXPmJEk6dOhQ63UAAAAAAAAAAAAAAMCGReAjSUVFRZKkc+fOq5zTqVOnGnNX5/33369+v6qaa1NvuV/96lepqqpKhw4dstdee9V6HQAAAAAAAAAAAAAAsGFpVN8NlIL58+cnSVq2bLnKOWVlZUmSefPm1bre6mquTb0kGTlyZH71q18lSf7jP/4jTZo0qdW6JCkvL1/l2AcffOC0EAAAAAAAAAAAAAAAKDFO+NgAjB8/Pv369UtVVVXOPffcnHzyyfXdEgAAAAAAAAAAAAAAUIec8JGkVatWSZKFCxeucs6CBQuSJK1bt651veU127Rps8713nrrrRxwwAH5+OOP873vfS9DhgxZ4/3/WWVl5SrHVnf6BwAAAAAAAAAAAAAAUD+c8JGka9euSZIpU6ascs7yseVzV6dLly7V7ydPnrzO9d5+++307ds3M2bMyGmnnZZbbrklhUJhjfcHAAAAAAAAAAAAAAA2bAIfSXbeeeckyaxZs1JRUbHSOS+++GKSZJdddlljvdatW2frrbeusW5t673zzjvZb7/98sEHH+TUU0/NbbfdlgYNfF0AAAAAAAAAAAAAAPB1IEGQpLy8PD179kyS3HXXXSuMjxkzJlOmTEnTpk1z6KGH1qrmMcccs8p6CxYsyEMPPZQkOfbYY1cYf/fdd7Pffvtl2rRpOfXUU/P73/9e2AMAAAAAAAAAAAAAAL5GpAj+16BBg5IkV111VV5++eXq67NmzcqAAQOSJOecc07atGlTPTZ8+PB07949+++//wr1Bg4cmBYtWmTkyJG5+eabq69XVVVlwIAB+fjjj9OzZ88cdNBBNdZVVFRkv/32y9SpU/Pd735X2AMAAAAAAAAAAAAAAL6GCsVisVjfTZSKf/u3f8t//dd/pXHjxtl///3TsmXLPPXUU/n444+z995758knn0zz5s2r599+++353ve+ly5duuT9999fod59992Xk08+OVVVVenVq1e6du2aF154Ie+9917at2+fMWPGZOutt66xZpdddsm4cePStGnTnHDCCasMe/zgBz9I7969v/Cey8vLkySVlZVfuBbA141nKAAAAAAAAAAAAAB1pVF9N1BKhgwZkr333ju/+c1v8txzz2Xp0qXZaqutctFFF+XHP/5xmjRpslb1+vXrly233DJXXnllnnnmmYwbNy4dOnTI2WefnUsvvTTt27dfYc3s2bOTJEuWLMkdd9yxytp9+vRZL4EPAAAAAAAAAAAAAACg9Djh42vOv04PsO48QwEAAAAAAAAAAACoKw3quwEAAAAAAAAAAAAAAABqEvgAAAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJUbgAwAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJQYgQ8AAAAAAAAAAAAAAIASI/ABAAAAAAAAAAAAAABQYgQ+AAAAAAAAAAAAAAAASozABwAAAAAAAAAAAAAAQIkR+AAAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlRuADAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlBiBDwAAAAAAAAAAAAAAgBIj8AEAAAAAAAAAAAAAAFBiBD4AAAAAAAAAAAAAAABKjMAHAAAAAAAAAAAAAABAiRH4AAAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACVG4AMAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACUGIEPAAAAAAAAAAAAAACAEiPwAQAAAAAAAAAAAAAAUGIEPgAAAAAAAAAAAAAAAEqMwAcAAAAAAAAAAAAAAECJEfgAAAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJUbgAwAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJQYgQ8AAAAAAAAAAAAAAIASI/ABAAAAAAAAAAAAAABQYgQ+AAAAAAAAAAAAAAAASozABwAAAAAAAAAAAAAAQIkR+AAAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlRuADAAAAAAAAAAAAAACgxDT6Mm4yd+7czJs3L8VicaXjnTt3/jLaAAAAAAAAAAAAAAAA2CDUWeBjzpw5+clPfpL77rsvH3300SrnFQqFLFu2rK7aAAAAAAAAAAAAAAAA2ODUSeBj7ty52WOPPTJp0qQ0bNgwzZs3z6JFi9KhQ4dMnz49xWIxhULByR4AAAAAAAAAAAAAAAAr0aAuil5zzTV55513ctppp2Xu3Lk5/vjjUygUMnXq1MyfPz833HBDNtpoo+y7776pqKioixYAAAAAAAAAAAAAAAA2WHVywseIESPSrl273HDDDWnWrFkKhUL1WIsWLXLWWWelR48e6d27d/baa6+ceeaZddEGAAAAAAAAAAAAAADABqlOTvh47733suuuu6ZZs2ZJUh34qKqqqp6zxx57ZM8998zvfve7umgBAAAAAAAAAAAAAABgg1UngY8k2Xjjjavft2jRIkkyZ86cGnM6d+6ct956q65aAAAAAAAAAAAAAAAA2CDVSeCjY8eOmTp1avXPnTt3TpK89tprNea99957adSoUV20AAAAAAAAAAAAAAAAsMGqk8DHDjvskIkTJ1b/vM8++6RYLOayyy7L/PnzkyR33nlnxo4dm29961t10QIAAAAAAAAAAAAAAMAGq04CHwcffHBmzJiRv/zlL0mSPffcM3vvvXeeffbZbLLJJmnbtm1OP/30FAqFXHDBBXXRAgAAAAAAAAAAAAAAwAarTgIfJ598cp555plss8021dceeOCBHH744UmSOXPmZKONNsqvf/3rHHHEEXXRAgAAAAAAAAAAAAAAwAarUCwWi1/mDRctWpS5c+emffv2adCgTvImrIXy8vIkSWVlZT13ArDh8QwFAAAAAAAAAAAAoK40+rJv2KJFi7Ro0eLLvi0AAAAAAAAAAAAAAMAGo06O2GjYsGHOOOOMNc774Q9/mEaNvvTMyWrdd9996dOnTzbeeOO0bNkyPXr0yNVXX52lS5euU72XXnop/fr1S/v27dOsWbN069Yt5557bmbMmLHadR9++GHOOeecdOvWLU2bNk379u3Tr1+/vPzyy+vUBwAAAAAAAAAAAAAAsOGok8BHsVhMsVis9dxSMXDgwJxwwgl59tlns/vuu+fggw/O5MmTc+GFF6Zv375ZvHjxWtUbNmxY9thjjwwbNixdunTJUUcdlQYNGuT666/PjjvumEmTJq103dtvv50dd9wxv/nNb9KgQYMcffTR6dKlS4YNG5ZevXpl+PDh62O7AAAAAAAAAAAAAABAiaqTwEdtLVq0KI0bN67PFqr96U9/ypAhQ1JWVpaxY8fm8ccfz/3335933nknO+ywQ8aMGZNLL7201vWmTZuW008/PcuWLcuNN96Yv/3tb7nnnnvy9ttv59RTT82HH36YU045ZYXAS7FYzEknnZQZM2bku9/9bt5+++3cc889+dvf/pYbb7wxy5Yty2mnnZbp06ev748AAAAAAAAAAAAAAAAoEfUW+Pj4448zZsyYdOjQob5aqOHKK69Mklx00UXZZZddqq+3a9cuQ4cOTZJcf/31mTt3bq3qXXvttVm0aFEOOOCAnHnmmdXXGzZsmBtuuCFt2rTJCy+8kCeeeKLGukcffTTjxo3LRhttlKFDh6Zhw4bVY2eeeWb233//LFiwIEOGDFnnvUKpKxaLWby05ok6i5cuLqkTgQAAAAAAAAAAAAAA6tJ6C3xsueWW1a8kGTZsWI1rn3917tw5m222WSorK3PIIYesrxbW2dSpU/PCCy8kSU455ZQVxnv37p1OnTplyZIleeSRR2pVc/jw4ausV1ZWliOPPDJJ8sADD6x03ZFHHpmysrIV1i6v98/r4KuiWCxm8JjBOfbeYzP3k38ErOZ+MjfH3ntsBo8ZLPQBAAAAAAAAAAAAAHwtNFpfhd5///3q94VCIQsWLMiCBQtWOb9JkyY5+uijq0/WqE/jxo1LkmyyySbp1q3bSufstttumTJlSsaNG5eTTz55tfXmz5+fSZMmVa9bVb077rij+t7/3Mvq1iXJO++8k4ULF6Zly5ar7QU2JMvDHtf/7fokyUn3n5QbD78xZz18Vl6d/mpenf5qkuTi3henUCjUZ6sAAAAAAAAAAAAAAHVqvQU+KioqkvzjF7a33HLLHH/88bnmmmtWOrdJkybZdNNN06jRerv9F7K8986dO69yTqdOnWrMXZ3Ph19WVXNV9dbUy/J1xWIx77//frbbbrs19gMbik+WfZJnJj9T/fOr01/NHrfsUWPOM5OfyY+X/TjNGzf/stsDAAAAAAAAAAAAAPjSrLfERZcuXarfn3766dlnn31qXCtl8+fPT5LVnpZRVlaWJJk3b16t662u5qrqramX5etq20uSlJeXr3Lsgw8+SIcOHWpVB+pa88bNc/dxd+ek+0+qPs3j83ps3iN3H3e3sAcAAAAAAAAAAAAA8JVXJ0ds3HbbbXVRFvgaaNOsTW48/MYVTvZIkhsPvzFtmrWph64AAAAAAAAAAAAAAL5cdRL4WK5YLObRRx/Nc889l48++ii9evXK97///STJRx99lDlz5mSrrbZKw4YN67KNNWrVqlWSZOHChaucs2DBgiRJ69ata11vec02bVb8BfVV1WvVqlVmz569yl6Wr6ttL0lSWVm5yrHVnf4B9WHuJ3Nz1sNnrXTsrIfPyt3H3S30AQAAAAAAAAAAAAB85TWoq8KvvvpqvvnNb+aII47IlVdemVtuuSVjxoypHn/yySfzzW9+M4888khdtVBrXbt2TZJMmTJllXOWjy2fuzpdunSpfj958uS1qrf85zWtKxQKNe4DXwWLly7OSfeflFenv7rS8Venv5qT7j8pi5cu/pI7AwAAAAAAAAAAAAD4ctVJ4KOysjIHHHBA3n777RxyyCG5+uqrUywWa8w5+uij07hx4zz44IN10cJa2XnnnZMks2bNSkVFxUrnvPjii0mSXXbZZY31Wrduna233rrGutrWW/7zmtZ94xvfSFlZ2Rp7gQ1Js0bNsk/nfap/7rF5j/zPD/4nPTbvUX1tn877pFmjZvXRHgAAAAAAAAAAAADAl6ZOAh9XXnllZs2alWuvvTYPP/xw/v3f/32FOS1atEiPHj3ywgsv1EULa6W8vDw9e/ZMktx1110rjI8ZMyZTpkxJ06ZNc+ihh9aq5jHHHLPKegsWLMhDDz2UJDn22GNXum7EiBFZuHDhCmuX1/vndfBVUCgUcnHvi3PO7uekx+Y9cvdxd6dzm865+7i702PzHjln93Nyce+LUygU6rtVAAAAAAAAAAAAAIA6VSeBj8ceeyzdu3fPeeedt9p5Xbt2zQcffFAXLay1QYMGJUmuuuqqvPzyy9XXZ82alQEDBiRJzjnnnLRp06Z6bPjw4enevXv233//FeoNHDgwLVq0yMiRI3PzzTdXX6+qqsqAAQPy8ccfp2fPnjnooINqrDvkkEOy88475+OPP86AAQNSVVVVPXbTTTflqaeeSllZWf7t3/5t/WwcSszy0McDJzyQNs3+8d9bm2Zt8sAJDwh7AAAAAAAAAAAAAABfG3US+Jg2bVp22GGHNc4rFAqZN29eXbSw1o4++uicd955WbBgQfbYY48ccsghOf7447P11ltn/Pjx2XvvvfOzn/2sxpq5c+dm4sSJeffdd1eo17Fjx9x+++1p2LBhzjzzzOyxxx456aSTss022+SOO+5I+/btc9ddd63wy+uFQiH//d//nU033TR/+MMfss022+Skk05Kr169ctZZZ6VRo0b5wx/+kM0337xOPw+oT4VCIc0bN69xrXnj5sIeAAAAAAAAAAAAAMDXRp0EPlq2bJmPPvpojfMqKiqyySab1EUL62TIkCG55557sueee+a5557LI488kvLy8lx11VV5+umn07x58zUX+Zx+/fpl7NixOfbYY/Pee+9l+PDhqaqqytlnn51XX301W2+99UrXbbvttnnttddy9tlnp6qqKsOHD09FRUWOPfbYjB07Nsccc8z62C4AAAAAAAAAAAAAAFCiCsVisbi+i/bp0yfjxo3Lu+++m3bt2iVJGjRokP79++fWW29Nkvz973/PtttumwMPPDAPPfTQ+m6BWiovL0+SVFZW1nMnABsez1AAAAAAAAAAAAAA6kqdnPBx6qmnZv78+fnBD36QRYsWrTD+6aefZsCAAVm6dGlOPfXUumgBAAAAAAAAAAAAAABgg9WoLop+73vfyx//+MeMGDEi3bt3z8EHH5wkefXVV3PeeedlxIgRmTx5cg444ICceOKJddECAAAAAAAAAAAAAADABqtQLBaLdVF4wYIFOeuss3L33XdnZbc47rjjctttt6WsrKwubk8tlZeXJ0kqKyvruROADY9nKAAAAAAAAAAAAAB1pc4CH8u99dZbeeSRR/Lee+/ls88+S6dOnXLIIYdkp512qsvbUkt+WRlg3XmGAgAAAAAAAAAAAFBXGtX1Dbp3757u3bvX9W0AAAAAAAAAAAAAAAC+MhrUdwMAAAAAAAAAAAAAAADUVKcnfMycOTO33HJLRo0alcrKyhSLxZSXl2e//fbL97///Wy22WZ1eXsAAAAAAAAAAAAAAIANUqFYLBbrovCDDz6Y733ve5k7d27++RaFQiGtWrXKbbfdlmOOOaYubk8tlZeXJ0kqKyvruROADY9nKAAAAAAAAAAAAAB1pU5O+Bg7dmz69euXZcuWZbfddstpp52Wbt26JUnef//9/OEPf8gLL7yQE088Mc8880x69epVF20AAAAAAAAAAAAAAABskOrkhI/DDjssjz32WK6++uqcf/75K53zn//5nzn//PNz6KGH5uGHH17fLVBL/nV6gHXnGQoAAAAAAAAAAABAXamTwMfGG2+czp0759VXX13tvB49emTy5MmZM2fO+m6BWvLLygDrzjMUAAAAAAAAAAAAgLrSoC6KLl26NDvssMMa522//fZZunRpXbQAAAAAAAAAAAAAAACwwaqTwEf37t0zZcqUNc6bOnVqtt1227poAQAAAAAAAAAAAAAAYINVJ4GPs846K2PGjMno0aNXOWf06NF55plnctZZZ9VFCwAAAAAAAAAAAAAAABusRnVR9Ic//GHeeuutHHbYYfnRj36U0047Ld26dUuSVFRU5I477sgNN9yQgQMH5swzz6yLFgAAAAAAAAAAAAAAADZYhWKxWPyiRRo2bLjuDRQKWbZs2RdtgXVUXl6eJKmsrKznTgA2PJ6hAAAAAAAAAAAAANSV9XLCxxfJjKyHvAkAAAAAAAAAAAAAAMBXynoJfHz22WfrowwAAAAAAAAAAAAAAABJGtR3AwAAAAAAAAAAAAAAANQk8AEAAAAAAAAAAAAAAFBiBD4AAAAAAAAAAAAAAABKjMAHAAAAAAAAAAAAAABAiRH4AAAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACVG4AMAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACUGIEPAAAAAAAAAAAAAACAEiPwAQAAAAAAAAAAAAAAUGIEPgAAAAAAAAAAAAAAAEqMwAcAAAAAAAAAAAAAAECJEfgAAAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJUbgAwAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJQYgQ8AAAAAAAAAAAAAAIASI/ABAAAAAAAAAAAAAABQYgQ+AAAAAAAAAAAAAAAASozABwAAAAAAAAAAAAAAQIkR+AAAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlRuADAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlBiBDwAAAAAAAAAAAAAAgBIj8AEAAAAAAAAAAAAAAFBiBD4AAAAAAAAAAAAAAABKjMAHAAAAAAAAAAAAAABAiRH4AAAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACVG4AMAAAAAAAAAAAAAAKDECHz8r/nz52fQoEHZdttt07x587Rr1y6HHXZYnn766XWu+dlnn+XGG29Mr1690qpVq7Rq1Sq9evXKTTfdlGKxuNL5zz33XH7yk5+kd+/eadu2bRo3bpx27drlwAMPzB//+MeVrgMAAAAAAAAAAAAAAL5aCkUJgsyYMSP77LNP3n777XTo0CG9e/fOhx9+mGeeeSZJMmTIkJx77rlrVbOqqionnHBCHnjggbRo0SL7779/kmTkyJFZvHhx+vXrl7vvvjsNGvy/zM2kSZPyjW98I0myySabZLfddsvGG2+c9957Ly+88EKS5PDDD8/999+fJk2arI+tp7y8PElSWVm5XuoBfJ14hgIAAAAAAAAAAABQV5zwkeTMM8/M22+/nf333z+TJk3Kvffem9GjR+fhhx9OgwYNMnDgwLz22mtrVfO6667LAw88kC222CKvv/56RowYkREjRmTChAnp2LFj7rvvvgwdOrTGmkKhkL59++bRRx/NjBkz8vjjj+fuu+/O3/72t4waNSotW7bMww8/nKuuump9bh8AAAAAAAAAAAAAACgxX/sTPt54441st912adiwYd5999106dKlxvgPfvCD/O53v8tJJ52U//7v/65Vzc8++yxbbLFFpk+fnjvvvDP/8i//UmP8zjvvzHe/+9107NgxU6ZMqXHKx+r8/Oc/z6WXXpqtttoqkyZNqt0G18C/Tg+w7jxDAQAAAAAAAAAAAKgrX/sTPoYPH54k2XvvvVcIeyTJKaeckiR56KGHsnTp0lrVfP755zN9+vQ0bdo0xx133Arjxx13XJo0aZJp06Zl7Nixte515513TpJMmTKl1msAAAAAAAAAAAAAAIANz9c+8DFu3LgkyW677bbS8eXXFy5cmHfeeWetam633XZp1qzZCuPNmzfPdtttV2NubSy/f4cOHWq9BgAAAAAAAAAAAAAA2PB87QMfFRUVSZLOnTuvdLx169Zp3bp1jblftGaSdOrUaa1qLlq0KP/1X/+VJCs9NQQAAAAAAAAAAAAAAPjqaFTfDdS3+fPnJ0latmy5yjllZWWZN29e5s2bt15rJql1zQEDBqSioiIdO3bMoEGDarVmufLy8lWOffDBB04MAQAAAAAAAAAAAACAErNBBz4uuOCCjBgxYq3X3XLLLendu3cddFQ3fvazn+X3v/99mjVrlnvvvTdt27at75YAAAAAAAAAAAAAAIA6tEEHPqZNm5aJEyeu9boFCxZUv2/VqlWSZOHChWuc37p161rVX581f/3rX+cnP/lJmjZtmuHDh2fvvfeuVQ+fV1lZucqx1Z3+AQAAAAAAAAAAAAAA1I8G9d3AF3HnnXemWCyu9evggw+urtG1a9ckyeTJk1d6j3nz5mXevHk15q7JmmomyZQpU9ZY87rrrsv555+fJk2a5P7776/RNwAAAAAAAAAAAAAA8NW1QQc+1odddtklSfLiiy+udHz59ZYtW2abbbZZq5oTJkzIJ598ssL44sWLM2HChBpz/9lvfvObnHfeedVhj8MOO6xW9wYAAAAAAAAAAAAAADZ8X/vAx9FHH50kefbZZ1d6Isddd92VJDniiCPSuHHjWtXcc889s/nmm2fJkiW5//77Vxi///778+mnn6Zjx47p1avXCuO//e1vc84551SHPQ4//PC12BEAAAAAAAAAAAAAALCh+9oHPrbbbrscddRRqaqqyhlnnJHFixdXjz366KO5/fbb06BBg1x88cUrrD3ttNPSvXv3XH/99TWuN2jQIBdeeGGS5MILL0xFRUX1WEVFRS666KIkycUXX5wGDWp+BTfffHMGDBgg7AEAAAAAAAAAAAAAAF9jjeq7gVJw00035Y033sjIkSOz1VZbZZ999smMGTMyevToFIvFDBkyJDvuuOMK6yZPnpyJEydm5syZK4yde+65+etf/5rhw4dn++23zwEHHJAkGTlyZBYtWpTjjz8+AwYMqLHmlVdeyVlnnZVisZgtt9wyw4YNy7Bhw1ba8+233/7FNw4AAAAAAAAAAAAAAJQkgY8km222WV588cUMHjw4999/fx588MG0bNky3/nOd/Lv//7v2X///de6ZsOGDTNs2LDcfPPNueWWW/LUU08l+ceJImeccUbOPPPMFAqFGms+/vjjFIvFJMlbb72Vt956a5X1BT4AAAAAAAAAAAAAAOCrq1BcnjDga6m8vDxJUllZWc+dAGx4PEMBAAAAAAAAAAAAqCsN6rsBAAAAAAAAAAAAAAAAahL4AAAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACVG4AMAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACUGIEPAAAAAAAAAAAAAACAEiPwAQAAAAAAAAAAAAAAUGIEPgAAAAAAAAAAAAAAAEqMwAcAAAAAAAAAAAAAAECJEfgAAAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJUbgAwAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJQYgQ8AAAAAAAAAAAAAAIASI/ABAAAAAAAAAAAAAABQYgQ+AAAAAAAAAAAAAAAASozABwAAAAAAAAAAAAAAQIkR+AAAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlRuADAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlBiBDwAAAAAAAAAAAAAAgBIj8AEAAAAAAAAAAAAAAFBiBD4AAAAAAAAAAAAAAABKjMAHAAAAAAAAAAAAAABAiRH4AAAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACVG4AMAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACUGIEPAAAAAAAAAAAAAACAEiPwAQAAAAAAAAAAAAAAUGIEPgAAAAAAAAAAAAAAAEqMwAcAAAAAAAAAAAAAAECJEfgAAAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJUbgAwAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJQYgQ8AAAAAAAAAAAAAAIASI/ABAAAAAAAAAAAAAABQYgQ+AAAAAAAAAAAAAAAASozABwAAAAAAAAAAAAAAQIkR+AAAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlRuADAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlBiBDwAAAAAAAAAAAAAAgBIj8AEAAAAAAAAAAAAAAFBiBD4AAAAAAAAAAAAAAABKjMAHAAAAAAAAAAAAAABAiRH4+F/z58/PoEGDsu2226Z58+Zp165dDjvssDz99NPrXPOzzz7LjTfemF69eqVVq1Zp1apVevXqlZtuuinFYrHWdYYOHZpCoZBCoZAf/OAH69wPAAAAAAAAAAAAAACwYRD4SDJjxozstttuGTx4cObPn58jjjgi2223XR599NEccMABue6669a6ZlVVVfr165cf/ehHef3117Pffvtlv/32y/jx43PWWWflxBNPzGeffbbGOu+9914uuOCCFAqFddkaAAAAAAAAAAAAAACwARL4SHLmmWfm7bffzv77759Jkybl3nvvzejRo/Pwww+nQYMGGThwYF577bW1qnndddflgQceyBZbbJHXX389I0aMyIgRIzJhwoR07Ngx9913X4YOHbraGp999ln69++fQqGQ00477YtsEQAAAAAAAAAAAAAA2IB87QMfb7zxRh588ME0bNgwv/vd79KiRYvqsUMPPTT9+/fPZ599lsGDB9e65meffZZf/vKXSZJf/vKX6datW/VYt27dqscGDx682lM+hgwZkmeeeSa//OUv07Vr17XcGQAAAAAAAAAAAAAAsKH62gc+hg8fniTZe++906VLlxXGTznllCTJQw89lKVLl9aq5vPPP5/p06enadOmOe6441YYP+6449KkSZNMmzYtY8eOXWmNiRMn5pJLLsm+++6bf/3Xf63tdgAAAAAAAAAAAAAAgK+Ar33gY9y4cUmS3XbbbaXjy68vXLgw77zzzlrV3G677dKsWbMVxps3b57tttuuxtzPq6qqyumnn55CoZDf/e53KRQKtbovAAAAAAAAAAAAAADw1fC1D3xUVFQkSTp37rzS8datW6d169Y15n7RmknSqVOnVda85pprMnbs2PziF7/IVlttVat7AgAAAAAAAAAAAAAAXx2N6ruB+jZ//vwkScuWLVc5p6ysLPPmzcu8efPWa80kK9R8/fXXc9lll2WvvfbKeeedV6v7rUl5efkqxz744IN06NBhvdwHAAAAAAAAAAAAAABYPzbowMcFF1yQESNGrPW6W265Jb17966Djr6YZcuW5fTTT0+DBg1y6623pkGDr/0BLAAAAAAAAAAAAAAA8LW0QQc+pk2blokTJ671ugULFlS/b9WqVZJk4cKFa5zfunXrWtVf15q/+MUv8vLLL+eXv/xltt1221rdqzYqKytXOba60z8AAAAAAAAAAAAAAID6sUEHPu68887ceeedX6hG165d8/LLL2fy5MkrHZ83b17mzZtXPbe2NZOssmaSTJkyZYWaw4cPT5I89NBDeeSRR2rMf//995Mkf/7zn9OnT58kyahRo2rVDwAAAAAAAAAAAAAAsGHZoAMf68Muu+ySBx54IC+++OJKx5dfb9myZbbZZpta10ySCRMm5JNPPkmzZs1qjC9evDgTJkyoMffzxowZs8ra06dPz/Tp02vVBwAAAAAAAAAAAAAAsGFqUN8N1Lejjz46SfLss8+u9ESOu+66K0lyxBFHpHHjxrWqueeee2bzzTfPkiVLcv/9968wfv/99+fTTz9Nx44d06tXr+rrr7zySorF4kpfl112WZLkjDPOqL4GAAAAAAAAAAAAAAB8NX3tAx/bbbddjjrqqFRVVeWMM87I4sWLq8ceffTR3H777WnQoEEuvvjiFdaedtpp6d69e66//voa1xs0aJALL7wwSXLhhRemoqKieqyioiIXXXRRkuTiiy9OgwZf+68AAAAAAAAAAAAAAAD4J43qu4FScNNNN+WNN97IyJEjs9VWW2WfffbJjBkzMnr06BSLxQwZMiQ77rjjCusmT56ciRMnZubMmSuMnXvuufnrX/+a4cOHZ/vtt88BBxyQJBk5cmQWLVqU448/PgMGDKjzvQEAAAAAAAAAAAAAABsex0sk2WyzzfLiiy/moosuSllZWR588MG89tpr+c53vpORI0fmvPPOW+uaDRs2zLBhw/Lb3/423/rWt/LUU0/lqaeeynbbbZff/va3uffee53uAQAAAAAAAAAAAAAArFShWCwW67sJ6k95eXmSpLKysp47AdjweIYCAAAAAAAAAAAAUFccMQEAAAAAAAAAAAAAAFBiBD4AAAAAAAAAAAAAAABKjMAHAAAAAAAAAAAAAABAiRH4AAAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACVG4AMAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACUGIEPAAAAAAAAAAAAAACAEiPwAQAAAAAAAAAAAAAAUGIEPgAAAAAAAAAAAAAAAEqMwAcAAAAAAAAAAAAAAECJEfgAAAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJUbgAwAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJQYgQ8AAAAAAAAAAAAAAIASI/ABAAAAAAAAAAAAAABQYgQ+AAAAAAAAAAAAAAAASozABwAAAAAAAAAAAAAAQIkR+AAAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlRuADAAAAAAAAAAAAAACgxAh8AAAAAAAAAAAAAAAAlBiBDwAAAAAAAAAAAAAAgBIj8AEAAAAAAAAAAAAAAFBiBD4AAAAAAAAAAAAAAABKjMAHAAAAAAAAAAAAAABAiRH4AAAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACVG4AMAAAAAAAAAAAAAAKDECHwAAAAAAAAAAAAAAACUGIEPAAAAAAAAAAAAAACAEiPwAQAAAAAAAAAAAAAAUGIEPgAAAAAAAAAAAAAAAEqMwAcAAAAAAAAAAAAAAECJEfgAAAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJUbgAwAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJQYgQ8AAAAAAAAAAAAAAIASUygWi8X6boL606RJk1RVVaVDhw713QrABueDDz5Iw4YN8+mnn9Z3KwAAAAAAAAAAAAB8xTSq7waoX40bN/7S7vXBBx8kyQYdLrGH+reh95/YQ6lYH3to2LDhl/ocBQAAAAAAAAAAAODrwwkffGnKy8uTJJWVlfXcybqzh/q3ofef2EOp+CrsAQAAAAAAAAAAAICvrgb13QAAAAAAAAAAAAAAAAA1CXwAAAAAAAAAAAAAAACUGIEPAAAAAAAAAAAAAACAEiPwAQAAAAAAAAAAAAAAUGIEPgAAAAAAAAAAAAAAAEqMwAcAAAAAAAAAAAAAAECJKRSLxWJ9NwEAAAAAAAAAAAAAAMD/44QPAAAAAAAAAAAAAACAEiPwAQAAAAAAAAAAAAAAUGIEPgAAAAAAAAAAAAAAAEqMwAcAAAAAAAAAAAAAAECJEfgAAAAAAAAAAAAAAAAoMQIfAAAAAAAAAAAAAAAAJUbgg9W677770qdPn2y88cZp2bJlevTokauvvjpLly5d55oPPvhgjjzyyGy++eZp0qRJNttss+y111654oorVrlm0qRJ6d+/f8rLy9O0adOUl5enf//+ee+990p+DwsXLsxdd92V888/P3369Enr1q1TKBSy9dZb1+pe9d3/xIkTc+211+bQQw/NFltskSZNmqR169bp2bNnBg8enAULFpT8Ht54440MHDgw3/72t9O5c+e0aNEizZs3z9Zbb50zzjgj48ePL/k9rMyrr76aJk2a1PrPU33vYdSoUSkUCqt9/fa3vy3pPXzeX//615x00knVz6V27dpl1113zY9//OMv1A8AAAAAAAAAAAAAJEmhWCwW67sJStPAgQMzZMiQNGrUKH379k1ZWVmefvrpfPzxx+ndu3eeeOKJNG/evNb1Pv3005x66qm577770rx58+y5555p3759pk+fngkTJqSqqiozZ85cYd2zzz6bgw46KIsWLcp2222X7bffPq+//nomTJiQli1bZuTIkdljjz1Kdg+vvPJKdt555xVqbbXVVpk0adJq71cK/ZeXl2fq1Klp1qxZdtttt5SXl+fDDz/M888/n08++SRbbbVVnn766XTu3Llk93DLLbfkhz/8Ydq3b59tt902m2++eRYtWpTx48fn73//exo1apQ//OEPOfnkk0t2Dyur0bNnz4wfPz7FYnGNf55KYQ+jRo3Kfvvtl/bt2+fggw9ead3TTz89++23X8nuIUmKxWJ+/OMfZ8iQIWncuHF69eqVTp06ZebMmXnzzTdTWVmZ+fPnp6ysrNa9AAAAAAAAAAAAAMAKirASw4cPLyYplpWVFV966aXq6/8/e/cep3VZ54//NZyREYRF0BwQxARXWARBUVER7CCWxzR1WcVMWfEQVn4zXcqoNX5qJkkeMk+1uRimqEUhBzXRVAzCwyYegDgIclCQgZDT/fujZdYJBkZgmBt6Ph+PeTzu+VzX9f68L8Y+d3/cr/tavHhxoUuXLoUkha997Wsfq+Z5551XSFI49dRTC4sXL640tn79+sIf/vCHTdasXLmy8IlPfKKQpPDNb36z0tg3v/nNQpJCmzZtCqtWrSraPbz11luFCy64oHDrrbcWJk+eXPj1r39dSFLo0KHDFu9VLP337du3cPfddxdWrFhR6fqsWbMKhxxySCFJ4fjjjy/qPcyaNavw5z//eZPr69evL9x4442FJIU99tij8N577xXtHv7etddeW0hSuOyyy7b631Ox7OHJJ58sJCkcd9xxH+texbSHQqFQ+Na3vlVIUjjqqKMKs2fP3mT8xRdfLKxdu/Zj9QIAAAAAAAAAAAAAf88JH2zW4YcfnilTpuR73/terr322kpjkydPzjHHHJOGDRvm3XffTbNmzbZab+LEiTnhhBPSuXPnTJ06NfXr169WH7fddlsuvfTSHHTQQfnzn/+cOnXqVIxt2LAhBx98cN54443ccccdGTRoUFHu4e9tPOVgaycyFGv/m+sjSebOnZuysrJdbg/J305bmTlzZh577LF8/vOfL/o9TJkyJUceeWROP/30DB48eKv/PRXLHjb+t3/cccflqaeeqtaaYtvDjBkz0rlz5/zTP/1TXn/99ey1114fax8AAAAAAAAAAAAAUF11tj6FfzTz58/PlClTkiTnnnvuJuO9e/dOmzZt8uGHH2bs2LHVqnnrrbcmSYYMGfKxPuD+yCOPJEnOPvvsSmGPJKlTp06++MUvJkkefvjhot3DtthV+u/WrVvF67lz51Ya21X2kCT16tVLkjRs2LDS9WLcw+rVq3P++eenefPmGTly5FbnF+MePq5i2sPtt9+edevW5aKLLhL2AAAAAAAAAAAAAKBG1avtBig+06ZNS5K0aNEi7du33+ycHj16ZO7cuZk2bVrOOeecLdZbv359Jk6cmCQ59thjs3DhwowaNSozZsxIw4YN061bt5xxxhkpLS2tspcePXpU2cdH5xXjHrbFrtL/m2++WfF633333SX38JOf/CRvvPFGWrVqlV69ehX9HoYOHZo///nPeeCBB9KqVav8z//8zxbvWYx7ePfddzNs2LDMnz8/jRo1SqdOnXLSSSelbdu2Rb+HcePGVaxbtmxZHnzwwbz88supU6dOOnfunDPOOCMtW7bc4v0BAAAAAAAAAAAAoDoEPtjErFmzkqTKD18nSZs2bSrN3ZKZM2emvLw8SfL8889n8ODBFb9vdNVVV2XUqFHp27dvxbUVK1Zk6dKlW+xlYx+LFy/OypUr06RJk6Law7baVfofPnx4kqR79+5p165d0e9h1apVGTx4cJJk+fLlefXVV/PWW2+ldevWGT16dJo2bVrUe3juuedy880355RTTtlqqKFY95Akr7/+er797W9XulavXr1cfvnlueGGGypOXCm2PaxZsyYzZsyouM+AAQOyaNGiSuu+/vWv56677srZZ5+91T4AAAAAAAAAAAAAYEvq1HYDFJ8VK1YkSUV4YnM2fvP9Bx98sNV6G0MbSXLhhRfmsMMOy5QpU7JixYr86U9/Sv/+/bN48eKccsoplU6M2NjHlnr56Dfwf7SXYtnDttoV+r/vvvvy4IMPpm7duhkxYsQusYc1a9bk/vvvz/33358xY8bkrbfeygEHHJBRo0blmGOOKeo9rFq1KgMHDkyzZs1y++23b/VexbiHZs2aZciQIXn66aezYMGCrFy5Mi+//HKuvPLKlJSU5Ic//GFFIKcY9/Dee++lUCgkSS677LLss88+eeqpp/LBBx/k9ddfz8CBA1NeXp4BAwbkmWee2WofAAAAAAAAAAAAALAlAh/UuI0fkE6S/fbbL+PGjUuPHj1SWlqarl275rHHHkvnzp1TXl5ecWJEsdnV97Cj+584cWIGDRqUJLnhhhvSu3fvGut9ox2xh7322iuFQiGFQiELFy7M2LFjs/fee+f444/PVVddVdR7uPrqq/Pmm2/mlltuyb777lvjvVZle/bQrVu3/PCHP8yxxx6bffbZJ3vssUe6dOmSm2++OaNGjUqS3HXXXfnTn/5UlHv46LrGjRtnwoQJOe6447LnnnumY8eOuffee3PiiSdm/fr1ue6662p0DwAAAAAAAAAAAADs/gQ+2MSee+6ZJFm5cmWVc8rLy5MkTZs2rXa9JBk4cGAaNmxYabxu3boV4YEJEyZsdl1VvWzs4+97KZY9bKti7n/y5Mk55ZRTsmbNmnz729/OV7/61V1uD0nSunXrnHjiifn973+fQw89NDfddFN+/etfF+UennrqqYwcOTL9+/fPeeedt9X7bO6etb2HrTn99NNz6KGHJkkef/zxzd6ztvfw0XWnn3569t57701qbzyh5JlnnsmaNWu22gsAAAAAAAAAAAAAVEXgg020a9cuSTJ37twq52wc2zh3a/VKSkqSJAcccMBm52y8vmDBgopre+65Z1q0aJEkmTNnzhb7aNmyZZo0aVJ0e9hWxdr/c889l/79+2flypW59tprt3iKQbHu4e81aNAg//qv/5okeeSRRza550f73JydsYcxY8akUChkzpw56dOnT6WfIUOGJEnmz59fce2jJ2QUyx6q4+CDD06SzJs3b5N7frTPzdkZeygtLa0IeWxt3dq1a7NkyZKt9gIAAAAAAAAAAAAAVRH4YBPdunVLkixdujSzZs3a7JyXXnopSdK9e/et1istLU3Hjh2TpMoPQG+8XlpaWun6xvob71fdPoppD9uiGPt//vnn89nPfjYrVqzINddck+9973u73B6qsjEstGjRokrXi20Pr776ap5++ulKP9OnT0+SrF69uuLasmXLinYPW7J06dIklU/SSIprD4cddli11m1uLQAAAAAAAAAAAAB8HAIfbKKsrCw9e/ZMkjzwwAObjE+ePDlz585Nw4YN079//2rVPPPMM5MkEyZM2Oz4+PHjkySHH354peunnXZakmTUqFHZsGFDpbENGzbkwQcfTJKcfvrpRbuHbVFs/b/44ov5zGc+UxH2+M///M9dbg9bMnHixCTJQQcdVOl6sezhlltuSaFQ2OzPk08+mSTp0KFDxbU+ffoU3R62Zv78+XnmmWc2u66Y9rBx3aRJkzZ5Jn10XceOHdO0adNq9QIAAAAAAAAAAAAAm1WAzXjkkUcKSQqlpaWFP/7xjxXXlyxZUujSpUshSeFrX/tapTUPP/xwoWPHjoW+fftuUm/x4sWF5s2bF5IU7rjjjkpj//3f/10oKSkpJCn85je/qTS2cuXKwic+8YlCksI111xTaeyaa64pJCmUlZUVVq1aVbR7+HtPPvlkIUmhQ4cOW5xXLP1PmTKl0KxZs83+DbamWPbwwx/+sDBnzpxN6q1cubLw3e9+t5CkUK9evcIrr7xStHuoSnX+eyqWPdxyyy2FxYsXb1Jv+vTphW7dulXsY/Xq1UW7hw8//LDQoUOHQpLCtddeW1i/fn3F2KRJkwp77LFHIUnhxz/+8Sb3BAAAAAAAAAAAAICPo6RQKBRqNFHCLusrX/lKfvSjH6V+/frp169fmjRpkokTJ2bZsmU5+uijM378+DRu3Lhi/n333ZcLLrgg+++/f2bPnr1JvfHjx+fkk0/O6tWrc8ghh+Tggw/O22+/nWnTpiVJhg4dmmHDhm2y7tlnn82nP/3prFq1Kp07d07nzp3z6quv5tVXX02TJk0yYcKE9OrVq6j3cNppp2XBggVJkg8++CB//vOf07Bhwxx66KEVc7785S/ny1/+ctH136JFi7z//vvZa6+9csopp2z23zlJrr766nTq1GmT68Wwh3bt2mXOnDk5+OCD07FjxzRq1CgLFizI9OnT8/7776dhw4a566678m//9m+b3Vsx7KEqTz31VI4//vh06NAhb731VpXzimEPe+21V8rLy3PooYemffv2qVOnTsWaDRs2pG3btvnd736Xgw8+uGj3kCQvv/xyjj/++Lz33nvp0KFDDj300MyfPz8vvvhiNmzYkPPPPz/33ntvSkpKqvx7AAAAAAAAAAAAAMDWCHywRb/85S/z4x//OH/605+ydu3adOjQIQMGDMiVV16ZBg0aVJq7tQ9XJ8kbb7yR66+/PhMmTMiiRYvStGnTHHHEEfnKV76ST3/601X28dZbb+W73/1uJkyYkMWLF2fvvffOCSeckG9961vp0KFD0e+hXbt2+ctf/rLFPr/97W/nuuuuK7r+q/uh9SeffDJ9+vTZ7Fht7+GBBx7IE088kZdeeikLFy7MsmXL0qRJk3To0CH9+vXLJZdckgMOOGCL+6vtPVSluoGPYtjDjTfemGeffTavvfZaFi9enJUrV6Zp06b553/+55xyyikZNGhQ9txzz6Lew0YLFizIf/7nf+Y3v/lN3nnnneyxxx7p1q1bLr744px99tlb3AMAAAAAAAAAAAAAVIfABwAAAAAAAAAAAAAAQJGpU9sNAAAAAAAAAAAAAAAAUJnABwAAAAAAAAAAAAAAQJER+AAAAAAAAAAAAAAAACgyAh8AAAAAAAAAAAAAAABFRuADAAAAAAAAAAAAAACgyAh8AAAAAAAAAAAAAAAAFBmBDwAAAAAAAAAAAAAAgCIj8AEAAAAAAAAAAAAAAFBkBD4AAAAAAAAAAAAAAACKjMAHAAAAAAAAAAAAAABAkRH4AAAAAAAAAAAAAAAAKDICHwAAAAAAAAAAAAAAAEVG4AMoetddd11KSkpy3XXXVbr+1FNPpaSkJH369KmVvgAAAAAAAAAAAAAAaorABwAAAAAAAAAAAAAAQJGpV9sNAGzNZZddlrPPPjstW7as7VYAAAAAAAAAAAAAAHYKgQ+g6LVs2VLYAwAAAAAAAAAAAAD4h1KnthsAistf//rX/OAHP0ivXr2y1157pVGjRunYsWP+3//7f1m6dGmluffdd19KSkoycODALF26NJdeemnatm2bhg0bZv/998+VV16Z999/f7P3mTBhQj7/+c+ndevWqV+/fpo3b55PfvKTGTBgQH7/+99XmnvdddelpKQk11133cfay+uvv54LLrgg+++/fxo2bJgWLVqkX79++eUvf7nZ+R+9z+LFi3PppZemTZs2adCgQdq0aZPLL788y5Yt+1g9AAAAAAAAAAAAAABsCyd8ABXeeeedfPazn80rr7ySFi1apGfPntlzzz0zderU3HjjjRk9enSeeuqp7L///pXWvf/++zniiCOydOnS9OnTJyUlJXnqqadyyy235Le//W2eeeaZ7L333hXz77///lxwwQVJksMPPzzHH398/vrXv2bevHkZNWpUWrZsmWOPPXa79vKb3/wmX/jCF7J69ep07Ngxp59+ehYtWpSnn346kyZNyrhx43L33Xdvdu3cuXPTvXv3rF27NkcffXRWr16dZ599NiNHjswLL7yQZ599NvXr19+u/gAAAAAAAAAAAAAAtkTgA0iSFAqFnHXWWXnllVdy4YUX5oc//GH23HPPJMm6dety9dVX5wc/+EEuuOCCTJo0qdLaxx57LL169cqLL76YFi1aJEmWLVuWk046Kc8991yuuOKK/Pd//3fF/O985zspFAp55pln0rt370q1Fi1alPnz52/XXt59993867/+a1avXp3vfe97ueaaa1JSUpIkeemll/LpT38699xzT3r16pWLLrpok/X33HNPBg4cmDvuuCMNGzZM8rcQyJFHHpkpU6bkoYceyjnnnLNdPQIAAAAAAAAAAAAAbEmd2m4AKA7jxo3Ls88+m0MPPTR33HFHRdgjSerVq5cbbrghnTt3zpNPPplXX311k/W33357RdgjSfbaa6/ccccdKSkpyS9/+cvMmzevYuzdd99Ns2bNNgl7JEmrVq3SrVu37drLXXfdleXLl+ewww7LtddeWxH2SJIePXrk2muvTZLceOONm11fVlaWH//4xxVhjyRp06ZNLr/88iTJhAkTtqs/AAAAAAAAAAAAAICtEfgAkiS/+c1vkiRnnHFG6tXb9PCfOnXq5Nhjj02SPPfcc5XGunbtmkMPPXSTNV26dEm3bt2yYcOG/P73v6+4fvjhh2f58uU577zz8sc//jEbNmzYgTtJnnrqqSTJ+eefv9nxCy+8MEny5ptv5p133tlkvF+/ftljjz02uX7wwQcnyXafQAIAAAAAAAAAAAAAsDUCH0CSZObMmUmSoUOHpqSkZLM/t912W5Jk8eLFlda2b9++yrobxz56wsdtt92WAw44ID//+c/To0eP7LXXXunXr1/+8z//M3PmzNnuvWwMZFTV11577VVxGslH+9qobdu2m13XtGnTJMnq1au3u0cAAAAAAAAAAAAAgC3Z9Gv8gX9IG0/Z6N27dzp06LDFuYcccsjHrl8oFCpeH3zwwZkxY0aeeOKJTJo0Kc8991yeeeaZTJo0KcOGDcvdd9+dAQMGfOx77Ch16sjCAQAAAAAAAAAAAAC1S+ADSJK0adMmSXLKKafk61//+sdaO2vWrCrHZs+enSQpKyurdL1evXrp379/+vfvnyT54IMPcvPNN+c73/lOBg0alNNOOy1NmjT5WH1stN9+++X111+vOLXk7y1fvjzvvfdexVwAAAAAAAAAAAAAgGLja+yBJMmJJ56YJBk9enSl0ziq4+WXX87LL7+8yfXXXnstU6dOTZ06dXLsscdusUbTpk1z3XXXZa+99sqqVavyxhtvfKwePqpPnz5Jkvvvv3+z4/fcc0+S5JOf/KTABwAAAAAAAAAAAABQlAQ+gCR/O9mjZ8+eefHFF3PBBRdk8eLFm8x5//33c8cdd2TdunWVrhcKhVxyySV5//33K64tX748l1xySQqFQs4444yKE0RWrVqVm2++ebP1n3nmmSxbtix169bd5ESQj+Oiiy5K06ZNM3Xq1Fx//fWVAizTpk3L9773vSTJVVddtc33AAAAAAAAAAAAAACoSfVquwGgONSpUydjxozJSSedlPvvvz8PPfRQunbtmrZt22bNmjWZOXNmXnnllaxfvz4DBw5MvXr/9/g4+eST8+qrr+aAAw7I8ccfn5KSkjz11FN577338slPfjIjR46smLtmzZp87Wtfy1VXXZUuXbrkk5/8ZOrXr5/Zs2fn+eefT5Jce+212Xvvvbd5L61bt84vfvGLnHnmmbn22mvz85//PN26dcuiRYvy9NNPZ926dbngggty0UUXbfs/GAAAAAAAAAAAAABADXLCB1DhE5/4RJ5//vnccccdOfzwwzNjxow89NBDmTx5cpLk3//93zNu3Lg0atSo0rrmzZvn+eefzxe/+MVMmTIlv/71r9OkSZNcccUVef7559OqVauKuaWlpbnjjjvyxS9+MR9++GHGjx+fMWPGZNGiRTn99NMzceLEfOc739nuvXzuc5/L1KlTc/7556e8vDwPPfRQ/vjHP+aYY47JqFGjcs8992z3PQAAAAAAAAAAAAAAakpJoVAo1HYTwK7pvvvuywUXXJDzzz8/9913X223AwAAAAAAAAAAAACw23DCBwAAAAAAAAAAAAAAQJER+AAAAAAAAAAAAAAAACgyAh8AAAAAAAAAAAAAAABFpqRQKBRquwkAAAAAAAAAAAAAAAD+jxM+AAAAAAAAAAAAAAAAiozABwAAAAAAAAAAAAAAQJER+AAAAAAAAAAAAAAAACgyAh8AAAAAAAAAAAAAAABFRuADAAAAAAAAAAAAAACgyAh8AAAAAAAAAAAAAAAAFBmBDwAAAAAAAAAAAAAAgCIj8AEAAAAAAAAAAAAAAFBkBD4AAAAAAAAAAAAAAACKjMAHAAAAAAAAAAAAAABAkRH4AAAAAAAAAAAAAAAAKDICHwAAAAAAAAAAAAAAAEVG4AMAAAAAAAAAAAAAAKDICHwAAAAAAAAAAAAAAAAUGYEPAAAAAAAAAAAAAACAIiPwAQAAAAAAAAAAAAAAUGQEPgAAAAAAAAAAAAAAAIqMwAcAAAAAAAAAAAAAAECREfgAAAAAAAAAAAAAAAAoMgIfAAAAAAAAAAAAAAAARUbgAwAAAAAAAAAAAAAAoMgIfAAAAAAAAAAAAAAAABSZerXdALWrSZMmWbt2bVq1alXbrQDschYtWpT69etn5cqVtd0K28j7IMD28V4IAAAAAAAAAAA1R+DjH9zatWuzfv362m4DYJfk+bnr8z4IsH08QwEAAAAAAAAAoOYIfPyD2/iN5vPmzavlTgB2PWVlZbXdAtvJ+yDA9vFeCAAAAAAAAAAANadObTcAAAAAAAAAAAAAAABAZQIfAAAAAAAAAAAAAAAARUbgAwAAAAAAAAAAAAAAoMgIfAAAAAAAAAAAAAAAABQZgQ8AAAAAAAAAAAAAAIAiI/ABAAAAAAAAAAAAAABQZAQ+AAAAAAAAAAAAAAAAiozABwAAAAAAAAAAAAAAQJER+AAAAAAAAAAAAAAAACgyAh8AQCWjR49Onz590rx58zRp0iRdu3bNDTfckLVr125zzUcffTQnn3xy9tlnnzRo0CCtWrXKUUcdlWHDhm1x3e9///ucffbZKSsrS8OGDdOyZcscdthhufLKK7erHwAAAAAAAAAAAIBiV1IoFAq13QS1p6ysLEkyb968Wu4EYNezOz5DhwwZkhEjRqRevXrp27dvSktLM2nSpCxbtiy9e/fOE088kcaNG1e73po1azJgwICMHj06jRs3zpFHHpnWrVtn4cKFee2117J+/fosWbJkk3WFQiFXXnllRowYkfr16+eII45ImzZtsmTJkvz5z3/OvHnzsmLFipSWlm7XfnfHvyHAzuQ5CgAAAAAAAAAANadebTcAABSHMWPGZMSIESktLc3TTz+d7t27J0mWLFmSvn37ZvLkyRk6dGhuuummate86KKLMnr06Jx66qm566670rJly4qxDRs25MUXX9zsuuuuuy4jRozIUUcdlQceeCD7779/pfEpU6akUaNG27BLAAAAAAAAAAAAgF2DEz7+wflGXoBtt7s9Qw8//PBMmTIl3/ve93LttddWGps8eXKOOeaYNGzYMO+++26aNWu21XoTJ07MCSeckM6dO2fq1KmpX79+tfqYMWNGOnfunH/6p3/K66+/nr322mtbtlMtu9vfEGBn8xwFAAAAAAAAAICaU6e2GwAAat/8+fMzZcqUJMm55567yXjv3r3Tpk2bfPjhhxk7dmy1at56661JkiFDhlQ77JEkt99+e9atW5eLLrqoRsMeAAAAAAAAAAAAAMWsXm03AADUvmnTpiVJWrRokfbt2292To8ePTJ37txMmzYt55xzzhbrrV+/PhMnTkySHHvssVm4cGFGjRqVGTNmpGHDhunWrVvOOOOMlJaWbrJ23LhxFeuWLVuWBx98MC+//HLq1KmTzp0754wzzkjLli23Z7sAAAAAAAAAAAAARU/gAwDIrFmzkiRt27atck6bNm0qzd2SmTNnpry8PEny/PPPZ/DgwRW/b3TVVVdl1KhR6du3b8W1NWvWZMaMGRX3GTBgQBYtWlRp3de//vXcddddOfvss6uxMwAAAAAAAAAAAIBdU53abgAAqH0rVqxIkjRp0qTKORtP4/jggw+2Wm/p0qUVry+88MIcdthhmTJlSlasWJE//elP6d+/fxYvXpxTTjklb775ZsXc9957L4VCIUly2WWXZZ999slTTz2VDz74IK+//noGDhyY8vLyDBgwIM8880y19lZWVlblz4IFC6pVAwAAAAAAAAAAAGBnE/gAAHa4jaGNJNlvv/0ybty49OjRI6WlpenatWsee+yxdO7cOeXl5Rk+fPhm1zVu3DgTJkzIcccdlz333DMdO3bMvffemxNPPDHr16/PddddtzO3BAAAAAAAAAAAALBTCXwAANlzzz2TJCtXrqxyTnl5eZKkadOm1a6XJAMHDkzDhg0rjdetWzeDBg1KkkyYMGGz604//fTsvffem9QePHhwkuSZZ57JmjVrttrLvHnzqvzZd999t7oeAAAAAAAAAAAAoDYIfAAAadeuXZJk7ty5Vc7ZOLZx7tbqlZSUJEkOOOCAzc7ZeH3BggUV10pLSytCHltbt3bt2ixZsmSrvQAAAAAAAAAAAADsigQ+AIB069YtSbJ06dLMmjVrs3NeeumlJEn37t23Wq+0tDQdO3ZMkipDGRuvl5aWVrp+2GGHVWvd5tYCAAAAAAAAAAAA7C4EPgCAlJWVpWfPnkmSBx54YJPxyZMnZ+7cuWnYsGH69+9frZpnnnlmkmTChAmbHR8/fnyS5PDDD9/sukmTJmXDhg1VruvYsWOaNm1arV4AAAAAAAAAAAAAdjUCHwBAkuSaa65JkgwfPjxTp06tuL506dIMHjw4SXLZZZelWbNmFWOPPPJIOnXqlH79+m1S74orrkjz5s0zduzY3HnnnZXGRo0alV/84hcV8z5qwIAB6dChQ1599dV861vfqhT6ePLJJ3PzzTdvdh0AAAAAAAAAAADA7qSkUCgUarsJak9ZWVmSZN68ebXcCcCuZ3d8hn7lK1/Jj370o9SvXz/9+vVLkyZNMnHixCxbtixHH310xo8fn8aNG1fMv++++3LBBRdk//33z+zZszepN378+Jx88slZvXp1DjnkkBx88MF5++23M23atCTJ0KFDM2zYsE3Wvfzyyzn++OPz3nvvpUOHDjn00EMzf/78vPjii9mwYUPOP//83HvvvSkpKdmu/e6Of0OAnclzFAAAAAAAAAAAao4TPgCACiNGjMiDDz6YI488Ms8991zGjh2bsrKyDB8+PJMmTaoU9qiOT33qU5k+fXrOP//8LFu2LI8++mjmzJmT/v37Z9y4cZsNeyTJv/zLv+TVV1/NpZdemvXr1+fxxx/P66+/nuOOOy7//d//nfvuu2+7wx4AAAAAAAAAAAAAxcwJH//gfCMvwLbzDN31+RsCbB/PUQAAAAAAAAAAqDlO+AAAAAAAAAAAAAAAACgyAh8AAAAAAAAAAAAAAABFRuADAAAAAAAAAAAAAACgyAh8AAAAAAAAAAAAAAAAFBmBDwAAAAAAAAAAAAAAgCIj8AEAAAAAAAAAAAAAAFBkBD4AAAAAAAAAAAAAAACKjMAHAAAAAAAAAAAAAABAkRH4AAAAAAAAAAAAAAAAKDICHwAAAAAAAAAAAAAAAEVG4AMAAAAAAAAAAAAAAKDICHwAAAAAAAAAAAAAAAAUGYEPAAAAAAAAAAAAAACAIiPw8XdGjx6dPn36pHnz5mnSpEm6du2aG264IWvXrt2men/84x9z5plnpnXr1mnUqFHat2+fyy+/PIsWLap2jfnz56d58+YpKSlJvXr1tqkPAAAAAAAAAAAAAABg1yHw8RFDhgzJWWedlWeffTaHH354PvvZz2bOnDn5xje+kb59++avf/3rx6r30EMPpVevXnnooYey//7755RTTkmdOnUycuTI/Mu//EveeuutatW56KKLsnz58m3ZEgAAAAAAAAAAAAAAsAsS+PhfY8aMyYgRI1JaWpoXXngh48aNy69+9au8+eab6dKlSyZPnpyhQ4dWu94777yT888/P+vWrcudd96ZF198MQ8++GDeeOONDBgwIO+++27OPffcFAqFLdb56U9/mt/+9re59NJLt3eLAAAAAAAAAAAAAADALkLg439df/31SZKrr7463bt3r7jesmXL3HbbbUmSkSNHVvukjVtuuSWrVq3KCSeckIsvvrjiet26dXP77benWbNmmTJlSp544okqa/zlL3/JV7/61fTq1StXXnnltmwLAAAAAAAAAAAAAADYBQl8JJk/f36mTJmSJDn33HM3Ge/du3fatGmTDz/8MGPHjq1WzUceeaTKeqWlpTn55JOTJA8//PBm1xcKhXzpS1/KmjVrcs8996ROHX8qAAAAAAAAAAAAAAD4RyFFkGTatGlJkhYtWqR9+/abndOjR49Kc7dkxYoVeeuttyqt+7j1brvttkyaNCnf/va3c/DBB2/1ngAAAAAAAAAAAAAAwO5D4CPJrFmzkiRt27atck6bNm0qzd2S2bNnV7yuquaW6r399tv5xje+kcMOOyxXXXXVVu8HAAAAAAAAAAAAAADsXurVdgPFYMWKFUmSJk2aVDmntLQ0SfLBBx9Uu96WalZVb8OGDRk4cGDWrFmTe++9N/Xqbf+fqKysrMqxBQsWZN99993uewAAAAAAAAAAAAAAADuOEz6KzC233JLJkyfnP/7jP9KlS5fabgcAAAAAAAAAAAAAAKgFTvhIsueeeyZJVq5cWeWc8vLyJEnTpk2rXW9jzWbNmlWr3owZM3Lttdema9eu+eY3v1m95qth3rx5VY5t6fQPAAAAAAAAAAAAAACgdgh8JGnXrl2SZO7cuVXO2Ti2ce6W7L///hWv58yZs9mTOjZX77e//W1Wr16dlStX5lOf+lSl+atXr06SrF+/Pn369EmSXH311fnsZz+71X4AAAAAAAAAAAAAAIBdi8BHkm7duiVJli5dmlmzZqV9+/abzHnppZeSJN27d99qvaZNm+bAAw/MW2+9lZdeemmzgY8t1Xvrrbfy1ltvVVn/6aefTpIMHDhwq70AAAAAAAAAAAAAAAC7njq13UAxKCsrS8+ePZMkDzzwwCbjkydPzty5c9OwYcP079+/WjVPO+20KuuVl5fn8ccfT5KcfvrpFdeHDBmSQqGw2Z9Zs2YlSerWrVtxTeADAAAAAAAAAAAAAAB2TwIf/+uaa65JkgwfPjxTp06tuL506dIMHjw4SXLZZZelWbNmFWOPPPJIOnXqlH79+m1Sb8iQIdljjz0yYcKE3HXXXRXX169fn8GDB2fZsmXp2bNnPv3pT9fUlgAAAAAAAAAAAAAAgF2UwMf/OvXUU3PFFVekvLw8vXr1yoknnpgvfOELOfDAA/PKK6/k6KOPzne/+91Ka5YvX54ZM2bk7bff3qTeJz7xidx3332pW7duLr744vTq1Stnn312DjrooPz85z9P69at88ADD6SkpGRnbREAAAAAAAAAAAAAANhFCHx8xIgRI/Lggw/myCOPzHPPPZexY8emrKwsw4cPz6RJk9K4ceOPVe/MM8/MCy+8kNNPPz0zZ87MI488kvXr1+fSSy/N9OnTc+CBB9bQTgAAAAAAAAAAAAAAgF1ZSaFQKNR2E9SesrKyJMm8efNquROAXY9n6K7P3xBg+3iOAgAAAAAAAABAzXHCBwAAAAAAAAAAAAAAQJER+AAAAAAAAAAAAAAAACgyAh8AAAAAAAAAAAAAAABFRuADAAAAAAAAAAAAAACgyAh8AAAAAAAAAAAAAAAAFBmBDwCgktGjR6dPnz5p3rx5mjRpkq5du+aGG27I2rVrt7nmo48+mpNPPjn77LNPGjRokFatWuWoo47KsGHDNpn71FNPpaSkZIs/d9xxx/ZsEQAAAAAAAAAAAKDo1avtBgCA4jFkyJCMGDEi9erVS9++fVNaWppJkyblG9/4Rh5//PE88cQTady4cbXrrVmzJgMGDMjo0aPTuHHjHHnkkWndunUWLlyY1157LT/60Y/yrW99a7NrW7dunc9+9rObHevYseM27Q8AAAAAAAAAAABgVyHwAQAkScaMGZMRI0aktLQ0Tz/9dLp3754kWbJkSfr27ZvJkydn6NChuemmm6pd86KLLsro0aNz6qmn5q677krLli0rxjZs2JAXX3yxyrWdOnXKfffdt837AQAAAAAAAAAAANiV1antBgCA4nD99dcnSa6++uqKsEeStGzZMrfddluSZOTIkVm+fHm16k2cODE/+9nP0rlz5/zyl7+sFPZIkjp16qRXr147qHsAAAAAAAAAAACA3YvABwCQ+fPnZ8qUKUmSc889d5Px3r17p02bNvnwww8zduzYatW89dZbkyRDhgxJ/fr1d1yzAAAAAAAAAAAAAP8A6tV2AwBA7Zs2bVqSpEWLFmnfvv1m5/To0SNz587NtGnTcs4552yx3vr16zNx4sQkybHHHpuFCxdm1KhRmTFjRho2bJhu3brljDPOSGlpaZU13n333QwbNizz589Po0aN0qlTp5x00klp27btNu4SAAAAAAAAAAAAYNch8AEAZNasWUmyxTBFmzZtKs3dkpkzZ6a8vDxJ8vzzz2fw4MEVv2901VVXZdSoUenbt+9ma7z++uv59re/XelavXr1cvnll+eGG25IvXr+bwwAAAAAAAAAAACw+6pT2w0AALVvxYoVSZImTZpUOWfjaRwffPDBVustXbq04vWFF16Yww47LFOmTMmKFSvypz/9Kf3798/ixYtzyimn5M0336y0tlmzZhkyZEiefvrpLFiwICtXrszLL7+cK6+8MiUlJfnhD3+YwYMHV3tvZWVlVf4sWLCg2nUAAAAAAAAAAAAAdiaBDwBghysUChWv99tvv4wbNy49evRIaWlpunbtmsceeyydO3dOeXl5hg8fXmltt27d8sMf/jDHHnts9tlnn+yxxx7p0qVLbr755owaNSpJctddd+VPf/rTztwSAAAAAAAAAAAAwE4l8AEAZM8990ySrFy5sso55eXlSZKmTZtWu16SDBw4MA0bNqw0Xrdu3QwaNChJMmHChGr3efrpp+fQQw9Nkjz++OPVWjNv3rwqf/bdd99q3xsAAAAAAAAAAABgZxL4AADSrl27JMncuXOrnLNxbOPcrdUrKSlJkhxwwAGbnbPx+oIFCz5Gp8nBBx+c5G9BDgAAAAAAAAAAAIDdlcAHAJBu3bolSZYuXZpZs2Ztds5LL72UJOnevftW65WWlqZjx45JkiVLlmx2zsbrpaWlH6vXpUuXJql8iggAAAAAAAAAAADA7kbgAwBIWVlZevbsmSR54IEHNhmfPHly5s6dm4YNG6Z///7VqnnmmWcmSSZMmLDZ8fHjxydJDj/88Gr3OX/+/DzzzDMfex0AAAAAAAAAAADArkbgAwBIklxzzTVJkuHDh2fq1KkV15cuXZrBgwcnSS677LI0a9asYuyRRx5Jp06d0q9fv03qXXHFFWnevHnGjh2bO++8s9LYqFGj8otf/KJi3keNGDFis6eCvPzyy/n85z+fv/71r+nQoUNOOeWUbdwpAAAAAAAAAAAAQPErKRQKhdpugtpTVlaWJJk3b14tdwKw69kdn6Ff+cpX8qMf/Sj169dPv3790qRJk0ycODHLli3L0UcfnfHjx6dx48YV8++7775ccMEF2X///TN79uxN6o0fPz4nn3xyVq9enUMOOSQHH3xw3n777UybNi1JMnTo0AwbNqzSmr322ivl5eU59NBD0759+9SpU6dizYYNG9K2bdv87ne/y8EHH7zd+90d/4YAO5PnKAAAAAAAAAAA1Jx6td0AAFA8RowYkaOPPjo//vGP89xzz2Xt2rXp0KFDrr766lx55ZVp0KDBx6r3qU99KtOnT8/111+fCRMm5NFHH03Tpk3Tv3//fOUrX8mnP/3pTdZce+21efbZZ/Paa69l/PjxWblyZZo2bZqjjjoqp5xySgYNGpQ999xzR20ZAAAAAAAAAAAAoCg54eMfnG/kBdh2nqG7Pn9DgO3jOQoAAAAAAAAAADWnTm03AAAAAAAAAAAAAAAAQGUCHwAAAAAAAAAAAAAAAEVG4AMAAAAAAAAAAAAAAKDICHwAAAAAAAAAAAAAAAAUGYEPAAAAAAAAAAAAAACAIiPwAQAAAAAAAAAAAAAAUGQEPgAAAAAAAAAAAAAAAIqMwAcAAAAAAAAAAAAAAECREfgAAAAAAAAAAAAAAAAoMgIfAAAAAAAAAAAAAAAARUbgAwAAAAAAAAAAAAAAoMgIfAAAAAAAAAAAAAAAABQZgQ8AAAAAAAAAAAAAAIAiI/ABAAAAAAAAAAAAAABQZAQ+AAAAAAAAAAAAAAAAiozABwAAAAAAAAAAAAAAQJER+AAAAAAAAAAAAAAAACgyAh8AAAAAAAAAAAAAAABFRuADAAAAAAAAAAAAAACgyAh8AAAAAAAAAAAAAAAAFBmBDwAAAAAAAAAAAAAAgCIj8AEAAAAAAAAAAAAAAFBkBD4AAAAAAAAAAAAAAACKjMAHAAAAAAAAAAAAAABAkRH4AAAAAAAAAAAAAAAAKDICHwAAAAAAAAAAAAAAAEVG4AMAAAAAAAAAAAAAAKDICHz8ndGjR6dPnz5p3rx5mjRpkq5du+aGG27I2rVrt6neH//4x5x55plp3bp1GjVqlPbt2+fyyy/PokWLNjt/zpw5ufPOO3P66adn//33T8OGDVNaWpquXbvmmmuuyeLFi7dnewAAAAAAAAAAAAAAwC6gpFAoFGq7iWIxZMiQjBgxIvXq1Uvfvn1TWlqaSZMmZdmyZendu3eeeOKJNG7cuNr1HnrooZxzzjlZt25devbsmfbt2+ell17KzJkz07p160yePDkHHnhgpTW9e/fOs88+m3r16qVbt2454IAD8t577+WFF17IBx98kL333jtPPPFEDj300B2y57KysiTJvHnzdkg9gH8knqG7Pn9DgO3jOQoAAAAAAAAAADXHCR//a8yYMRkxYkRKS0vzwgsvZNy4cfnVr36VN998M126dMnkyZMzdOjQatd75513cv7552fdunW588478+KLL+bBBx/MG2+8kQEDBuTdd9/Nueeem7/P2+y333754Q9/mIULF+bFF1/MqFGj8sQTT+Stt95Knz59snjx4px11llZv379jv4nAAAAAAAAAAAAAAAAioQTPv7X4YcfnilTpuR73/terr322kpjkydPzjHHHJOGDRvm3XffTbNmzbZa7//9v/+XG2+8MSeccELGjx9faay8vDxlZWVZvnx5fve73+Uzn/lMtXqcN29e2rRpkyR55pln0rt372rurmq+kRdg23mG7vr8DQG2j+coAAAAAAAAAADUHCd8JJk/f36mTJmSJDn33HM3Ge/du3fatGmTDz/8MGPHjq1WzUceeaTKeqWlpTn55JOTJA8//HC1+ywrK0vLli2TJHPnzq32OgAAAAAAAAAAAAAAYNci8JFk2rRpSZIWLVqkffv2m53To0ePSnO3ZMWKFXnrrbcqrdueehstWbIk77//fpJk3333rfY6AAAAAAAAAAAAAABg1yLwkWTWrFlJkrZt21Y5p02bNpXmbsns2bMrXldV8+PU2+imm27K+vXrs+++++aoo46q9joAAAAAAAAAAAAAAGDXUq+2GygGK1asSJI0adKkyjmlpaVJkg8++KDa9bZU8+PUS5IJEybkpptuSpL84Ac/SIMGDaq1LknKysqqHFuwYIHTQgAAAAAAAAAAAAAAoMg44WMX8Morr+TMM8/M+vXrc/nll+ecc86p7ZYA2I2NHj06ffr0SfPmzdOkSZN07do1N9xwQ9auXbvNNR999NGcfPLJ2WeffdKgQYO0atUqRx11VIYNG1at9dOnT0+DBg1SUlKSAw88cJv7AAAAAAAAAAAAANhVOOEjyZ577pkkWblyZZVzysvLkyRNmzatdr2NNZs1a7bN9V5//fWccMIJWbZsWS644IKMGDFiq/f/e/PmzatybEunfwDwj2fIkCEZMWJE6tWrl759+6a0tDSTJk3KN77xjTz++ON54okn0rhx42rXW7NmTQYMGJDRo0encePGOfLII9O6dessXLgwr732Wn70ox/lW9/61lZrnHfeeVm3bt32bg8AAAAAAAAAAABgl+GEjyTt2rVLksydO7fKORvHNs7dkv3337/i9Zw5c7a53htvvJG+fftm0aJFOe+88/LTn/40JSUlW70/AGyLMWPGZMSIESktLc0LL7yQcePG5Ve/+lXefPPNdOnSJZMnT87QoUM/Vs2LLrooo0ePzqmnnpo5c+Zk4sSJeeCBBzJp0qQsWLAgv/71r7daY9iwYXn55Zdz6aWXbuvWAAAAAAAAAAAAAHY5Ah9JunXrliRZunRpZs2atdk5L730UpKke/fuW63XtGnTHHjggZXWfdx6b775Zo4//vgsWLAgAwYMyL333ps6dfy5AKg5119/fZLk6quvrvT+1LJly9x2221JkpEjR2b58uXVqjdx4sT87Gc/S+fOnfPLX/4yLVu2rDRep06d9OrVa4s1pkyZkuHDh+fMM8/MGWec8XG2AwAAAAAAAAAAALBLkyBIUlZWlp49eyZJHnjggU3GJ0+enLlz56Zhw4bp379/tWqedtppVdYrLy/P448/niQ5/fTTNxl/++23c/zxx+edd97JgAEDcv/99wt7AFCj5s+fnylTpiRJzj333E3Ge/funTZt2uTDDz/M2LFjq1Xz1ltvTZIMGTIk9evX/9g9rV69Oueff36aN2+ekSNHfuz1AAAAAAAAAAAAALsyKYL/dc011yRJhg8fnqlTp1ZcX7p0aQYPHpwkueyyy9KsWbOKsUceeSSdOnVKv379Nqk3ZMiQ7LHHHpkwYULuuuuuiuvr16/P4MGDs2zZsvTs2TOf/vSnK62bNWtWjj/++MyfPz//9m//JuwBwE4xbdq0JEmLFi3Svn37zc7p0aNHpblbsn79+kycODFJcuyxx2bhwoW55ZZbcskll2TIkCG5//77U15evsUaQ4cOzZ///Of86Ec/SqtWrT7OdgAAAAAAAAAAAAB2efVqu4Ficeqpp+aKK67Ij370o/Tq1Sv9+vVLkyZNMnHixCxbtixHH310vvvd71Zas3z58syYMSOrV6/epN4nPvGJ3HfffTnnnHNy8cUX5+677067du0yZcqUzJw5M61bt84DDzyQkpKSSuvOOOOMitNEkuRLX/rSZvv98pe/nN69e++g3QPwj27WrFlJkrZt21Y5p02bNpXmbsnMmTMrAh3PP/98Bg8evEnA46qrrsqoUaPSt2/fTdY/99xzufnmm3PKKafknHPOqfY+AAAAAAAAAAAAAHYXAh8fMWLEiBx99NH58Y9/nOeeey5r165Nhw4dcvXVV+fKK69MgwYNPla9M888MwcccECuv/76PPPMM5k2bVr23XffXHrppRk6dGhat269yZr33nsvSfLhhx/m5z//eZW1+/TpI/ABwA6zYsWKJEmTJk2qnFNaWpok+eCDD7Zab+nSpRWvL7zwwhx11FG56aab0qlTp7z99tu55pprMnbs2JxyyimZOnVqPvnJT1bMX7VqVQYOHJhmzZrl9ttv39YtVSgrK6tybMGCBdl33323+x4AAAAAAAAAAAAAO5rAx98566yzctZZZ1Vr7sCBAzNw4MAtzjnssMPyq1/9qtr3nz17drXnAkCxKhQKFa/322+/jBs3ruL0qq5du+axxx7LoYcemldffTXDhw/P3XffXTH/6quvzptvvpn7779fGAMAAAAAAAAAAAD4hyXwAQBkzz33TJKsXLmyyjnl5eVJkqZNm1a7XvK3gOTGsMdGdevWzaBBg3L55ZdnwoQJFdefeuqpjBw5Mv3798955533sfZQlXnz5lU5tqXTPwAAAAAAAAAAAABqk8AHAJB27dolSebOnVvlnI1jG+durV5JSUkKhUIOOOCAzc7ZeH3BggUV18aMGZNCoZA5c+akT58+leYvW7YsSTJ//vyKsVtuuSWHHnroVvsBAAAAAAAAAAAA2NUIfAAA6datW5Jk6dKlmTVrVtq3b7/JnJdeeilJ0r17963WKy0tTceOHfP6669nyZIlm52z8XppaekmY6+++mqVtVevXp2nn346yf+FQAAAAAAAAAAAAAB2N3VquwEAoPaVlZWlZ8+eSZIHHnhgk/HJkydn7ty5adiwYfr371+tmmeeeWaSZMKECZsdHz9+fJLk8MMPr7h2yy23pFAobPbnySefTJJ06NCh4trfnwICAAAAAAAAAAAAsLsQ+AAAkiTXXHNNkmT48OGZOnVqxfWlS5dm8ODBSZLLLrsszZo1qxh75JFH0qlTp/Tr12+TeldccUWaN2+esWPH5s4776w0NmrUqPziF7+omAcAAAAAAAAAAABAZQIfAECS5NRTT80VV1yR8vLy9OrVKyeeeGK+8IUv5MADD8wrr7ySo48+Ot/97ncrrVm+fHlmzJiRt99+e5N6LVu2zIMPPphGjRrl3//939O5c+eceeaZ6d69e84555wUCoUMHTq02ieGAAAAAAAAAAAAAPwjEfgAACqMGDEiDz74YI488sg899xzGTt2bMrKyjJ8+PBMmjQpjRs3/lj1PvWpT2X69Ok5//zzs2zZsjz66KOZM2dO+vfvn3HjxmXYsGE1tBMAAAAAAAAAAACAXVtJoVAo1HYT1J6ysrIkybx582q5E4Bdj2fors/fEGD7eI4CAAAAAAAAAEDNccIHAAAAAAAAAAAAAABAkRH4AAAAAAAAAAAAAAAAKDICHwAAAAAAAAAAAAAAAEVG4AMAAAAAAAAAAAAAAKDICHwAAAAAAAAAAAAAAAAUGYEPAAAAAAAAAAAAAACAIiPwAQAAAAAAAAAAAAAAUGQEPgAAAAAAAAAAAAAAAIqMwAcAAAAAAAAAAAAAAECREfgAAAAAAAAAAAAAAAAoMgIfAAAAAAAAAAAAAAAARUbgAwAAAAAAAAAAAAAAoMgIfAAAAAAAAAAAAAAAABQZgQ8AAAAAAAAAAAAAAIAiU6+2GwAAtmz9+vV56KGHMmHChMyfPz+rV6/e7LySkpJMnDhxJ3cHAAAAAAAAAAAAQE0Q+ACAIrZ8+fJ85jOfyZQpU1IoFLY4t6SkZCd1BQAAAAAAAAAAAEBNE/gAgCI2dOjQvPjii9lvv/1y+eWX5+CDD07Tpk1ruy0AAAAAAAAAAAAAapjABwAUsTFjxmSvvfbK888/n/3226+22wEAAAAAAAAAAABgJ6lT2w0AAFV79913c/TRRwt7AAAAAAAAAAAAAPyDEfgAgCLWunXrNGrUqLbbAAAAAAAAAAAAAGAnE/gAgCL2+c9/Ps8++2zWrl1b260AAAAAAAAAAAAAsBMJfABAEfvOd76TevXq5ZJLLsnq1atrux0AAAAAAAAAAAAAdpJ6td0AAFC12267LZ/+9Kdz7733Zvz48enXr1/atm2bOnU2zWyWlJRk6NChtdAlAAAAAAAAAAAAADtaSaFQKNR2E9SesrKyJMm8efNquROAXc/OeIbWqVMnJSUl2dLb9cbxkpKSrF+/vsZ62R15HwTYPp6jAAAAAAAAAABQc5zwAQBF7Nvf/nZttwAAAAAAAAAAAABALRD4AIAiJvABAAAAAAAAAAAA8I+pTm03AAAAAAAAAAAAAAAAQGVO+ACAXcjChQszb968JMl+++2Xfffdt5Y7AgAAAAAAAAAAAKAm7JTAx/Lly/PBBx+kUChsdrxt27Y7ow0A2GXdfffdufHGG/Pmm29Wun7QQQflqquuype+9KVa6gwAAAAAAAAAAACAmlBjgY/3338/3/rWtzJ69OgsXry4ynklJSVZt25dTbUBALu8iy66KPfcc09FcLJFixZJkvfeey8zZszIRRddlD/84Q+56667arNNAAAAAAAAAAAAAHagOjVRdPny5enVq1duu+22vPfee2ncuHEKhUL22WefJKn4wGrbtm3Tpk2bmmgBAHYLo0ePzt1335299torN910U95///0sWbIkS5YsybJly/KDH/wgzZs3zz333JOHHnqottsFAAAAAAAAAAAAYAepkcDHjTfemDfffDPnnXdeli9fni984QspKSnJ/Pnzs2LFitx+++3Za6+9ctxxx2XWrFk10QIA7BbuvPPO1KtXL+PHj89Xv/rVNGvWrGKsadOmufLKKzN+/PjUrVs3d955Zy12CgAAAAAAAAAAAMCOVK8mij722GNp2bJlbr/99jRq1CglJSUVY3vssUcGDRqUrl27pnfv3jnqqKNy8cUX10QbALDLmzZtWo477rh07969yjndunXLcccdl6lTp+7EzgAAAAAAAAAAAACoSTVywsfMmTNz2GGHpVGjRklSEfhYv359xZxevXrlyCOPzN13310TLQDAbmHlypVp1arVVue1atUqK1eu3AkdAQAAAAAAAAAAALAz1EjgI0maN29e8XqPPfZIkrz//vuV5rRt2zavv/56TbUAALu8ffbZJ9OmTdvqvGnTpqV169Y7oSMAAAAAAAAAAAAAdoYaCXx84hOfyPz58yt+b9u2bZLk5ZdfrjRv5syZqVevXk20AAC7heOPPz4zZszI8OHDq5zz/e9/PzNmzEi/fv12YmcAAAAAAAAAAAAA1KQaCXx06dIlM2bMqPj9mGOOSaFQyLe//e2sWLEiSfJf//VfeeGFF/LP//zPNdECAOwWrr766jRs2DDXXnttjjjiiPz4xz/O2LFjM3bs2IwcOTI9e/bMf/zHf6RRo0b5xje+sUPuOXr06PTp0yfNmzdPkyZN0rVr19xwww1Zu3btNtd89NFHc/LJJ2efffZJgwYN0qpVqxx11FEZNmzYJnP/53/+J0OGDMmxxx6btm3bZo899kjjxo1z4IEH5sILL8wrr7yyPdsDAAAAAAAAAAAA2CWUFAqFwo4uetddd2XQoEGZOHFijj/++CR/C308++yzqVu3bpo2bZply5YlScaMGZPPf/7zO7oFqqmsrCxJMm/evFruBGDXs7Oeob/5zW/yr//6r/nggw9SUlJSaaxQKKRp06b5xS9+kZNOOmm77zVkyJCMGDEi9erVS9++fVNaWppJkyZl2bJl6d27d5544ok0bty42vXWrFmTAQMGZPTo0WncuHGOPPLItG7dOgsXLsxrr72W9evXZ8mSJZXW/PSnP81FF12U1q1bp2PHjtlnn32yatWqvPLKK/nLX/6SevXq5Wc/+1nOOeec7d6v90GA7eM5CgAAAAAAAAAANadGAh/l5eWZPn162rVrl/322y9Jsnjx4lx44YX57W9/m/Xr16d58+b51re+la985Ss7+vZ8DD6gBbDtduYzdNGiRfnJT36Sp59+OvPnz0+S7LfffunTp08uuuiitGrVarvvMWbMmJx22mkpLS3N008/ne7duydJlixZkr59++aVV17J1772tdx0003Vrnn++efnZz/7WU499dTcddddadmyZcXYhg0b8uKLL6ZXr16V1syePTurV69Op06dKl3fsGFDbr755lx11VXZY489Mm/evDRv3nw7dux9EGB7eY4CAAAAAAAAAEDNqZHAx5asWrUqy5cvT+vWrVOnTp2deWs2wwe0ALbd7vYMPfzwwzNlypR873vfy7XXXltpbPLkyTnmmGPSsGHDvPvuu2nWrNlW602cODEnnHBCOnfunKlTp6Z+/fo7pM8OHTpk5syZeeyxx7b7lLDd7W8IsLN5jgIAAAAAAAAAQM3Z6YmLPfbYI/vuu6+wBwAUkfnz52fKlClJknPPPXeT8d69e6dNmzb58MMPM3bs2GrVvPXWW5MkQ4YM2WFhjySpV69ekqRhw4Y7rCYAAAAAAAAAAABAsamR1EXdunVz4YUXbnXeRRddVPGhzWIxevTo9OnTJ82bN0+TJk3StWvX3HDDDVm7du021fvjH/+YM888M61bt06jRo3Svn37XH755Vm0aNEW17377ru57LLL0r59+zRs2DCtW7fOmWeemalTp25THwCwJdOmTUuStGjRIu3bt9/snB49elSauyXr16/PxIkTkyTHHntsFi5cmFtuuSWXXHJJhgwZkvvvvz/l5eUfu8+f/OQneeONN9KqVav06tXrY68HAAAAAAAAAAAA2FXUSNqiUCikUChUe26xGDJkSEaMGJF69eqlb9++KS0tzaRJk/KNb3wjjz/+eJ544ok0bty42vUeeuihnHPOOVm3bl169uyZ9u3b56WXXsrIkSMzevToTJ48OQceeOAm6954440cc8wxWbRoUQ444ICceuqpmTVrVh566KGMGTMmv/zlL3PaaaftyK0DUCT69u27zWtLSkoqQhYf16xZs5Ikbdu2rXJOmzZtKs3dkpkzZ1YEOp5//vkMHjx4k4DHVVddlVGjRlW551WrVmXw4MFJkuXLl+fVV1/NW2+9ldatW2f06NFp2rTp1jcGAAAAAAAAAAAAsIuq1eM1Vq1alfr169dmCxXGjBmTESNGpLS0NE8//XS6d++eJFmyZEn69u2byZMnZ+jQobnpppuqVe+dd97J+eefn3Xr1uXOO+/MxRdfnORv33g+cODA/Nd//VfOPffcvPDCCykpKalYVygUcvbZZ2fRokX5t3/7t9x7772pW7dukr99q/mgQYNy3nnn5c0338w+++yzg/8VAKhtTz311Dav/ej7yce1YsWKJEmTJk2qnFNaWpok+eCDD7Zab+nSpRWvL7zwwhx11FG56aab0qlTp7z99tu55pprMnbs2JxyyimZOnVqPvnJT25SY82aNbn//vsrXTvggANy991355hjjqnWvpKkrKysyrEFCxZk3333rXYtAAAAAAAAAAAAgJ2l1gIfy5Yty+TJk4vmQ5bXX399kuTqq6+uCHskScuWLXPbbbflmGOOyciRIzN06NA0a9Zsq/VuueWWrFq1KieccEJF2CNJ6tatm9tvvz2PP/54pkyZkieeeCKf+cxnKsZ/+9vfZtq0adlrr71y2223VYQ9kuTiiy/OL3/5y0ycODEjRozI97///R2xdSg6hUIhq9etTuP6/3eizl/X/jWN6jXarg+0w67gySefrO0WdoiPnuC13377Zdy4cWnYsGGSpGvXrnnsscdy6KGH5tVXX83w4cNz9913b1Jjr732qqjz7rvvZurUqfnOd76T448/Pl//+tdz44037pzNQC3wXggAAAAAAAAAAMAOC3wccMABlX5/6KGHqvyW8nXr1mXhwoVZv359Bg0atKNa2Gbz58/PlClTkiTnnnvuJuO9e/dOmzZtMnfu3IwdOzbnnHPOVms+8sgjVdYrLS3NySefnJ///Od5+OGHKwU+Nq47+eSTK75J/aPOPffcTJw4MQ8//LDAB7ulQqGQ70/+fp6Z80xGnTEqzRo1y/LVy3P2r87OMW2PyTd7f9MHXdmtHXfccbVy3z333DNJsnLlyirnlJeXJ0maNm1a7XpJMnDgwIqwx0Z169bNoEGDcvnll2fChAlbrde6deuceOKJ6devX4444ojcdNNNOe644/K5z31uq2vnzZtX5diWTv+A2uK9EAAAAAAAAAAAgCSps6MKzZ49u+KnpKQk5eXlla599GfevHmpU6dOzjjjjIqTNWrTtGnTkiQtWrRI+/btNzunR48eleZuyYoVK/LWW29VWlfdeht/39q6N998c4sfyoVd0cYPuI58cWSmL5yes391duYsn5Ozf3V2pi+cnpEvjsz3J3+/0skBwI7Rrl27JMncuXOrnLNxbOPcrdXb+IH0vw+FbrTx+oIFC6rdZ4MGDfKv//qvSf4vJAm7E++FAAAAAAAAAAAAbLTDTviYNWtWkr99SO2AAw7IF77whdx4442bndugQYPsvffeqVdvh91+u2zsvW3btlXOadOmTaW5WzJ79uyK11XVrKre1nrZuK5QKGT27Nk55JBDttoP7CpWr1udZ+Y8U/H79IXT0+unvSrNeWbOM7ly3ZVpXL/xzm4PdmvdunVLkixdujSzZs3abADypZdeSpJ07959q/VKS0vTsWPHvP7661myZMlm52y8vrkTrbakSZMmSZJFixZ9rHWwK/BeCAAAAAAAAAAAwEY7LHGx//77V7w+//zzc8wxx1S6VsxWrFiR5P8+QLo5Gz+M+sEHH1S73pZqVlVva7189EOx1eklScrKyqocW7BgQfbdd99q1YGa1rh+44w6Y1TFt5j/va77dM2oM0b5gCu7tWHDhiVJLrvssrRo0aLi9+ooKSnJ0KFDt+m+ZWVl6dmzZ6ZMmZIHHngg1157baXxyZMnZ+7cuWnYsGH69+9frZpnnnlmvvvd72bChAm58sorNxkfP358kuTwww//WL1OnDgxSXLQQQd9rHWwK/BeCAAAAAAAAAAAwEY1csTGvffeWxNlgX8AzRo1y52fu3OTbzNPkjs/d2eaNWpWC13BznPdddelpKQkZ599dlq0aFHxe6FQqHLNxvHtCXwkyTXXXJPTTjstw4cPz4knnlhxksfSpUszePDgJH8LojRr9n//O3zkkUfyzW9+M/vtt19FEGOjK664IiNHjszYsWNz5513ZtCgQRVjo0aNyi9+8YuKeR91yy235Iwzzqg41WqjVatW5eabb86vfvWr1KtXLxdccME27xWKmfdCAAAAAAAAAAAAkhoKfGxUKBTy29/+Ns8991wWL16cI444Il/60peSJIsXL87777+fDh06pG7dujXZxlbtueeeSZKVK1dWOae8vDxJ0rRp02rX21jzox+M3Vq9PffcM++9916VvWxcV91ekmTevHlVjm3p9A+oDctXL8+gXw/a7NigXw/KqDNG+aAru7VvfetbKSkpScuWLSv9vjOceuqpueKKK/KjH/0ovXr1Sr9+/dKkSZNMnDgxy5Yty9FHH53vfve7ldYsX748M2bMyOrVqzep17Jlyzz44IM5+eST8+///u+59dZbc/DBB+ftt9/OtGnTkiRDhw7d5MSQW265JV/96ldz8MEHp2PHjmnUqFEWLFiQ6dOn5/3330/Dhg1z1113pXPnzjX3jwG1yHshAAAAAAAAAAAASQ0GPqZPn54vfvGLefPNNyu+dXzt2rUVgY/x48fn3/7t3zJmzJh8/vOfr6k2qqVdu3ZJkrlz51Y5Z+PYxrlbsv/++1e8njNnTrp06VLteu3atct7772XOXPmbLGPkpKSSveB3cFf1/41Z//q7ExfOH2z49MXTs/Zvzo7D5/1cBrXb7yTu4Od47rrrtvi7zVtxIgROfroo/PjH/84zz33XNauXZsOHTrk6quvzpVXXpkGDRp8rHqf+tSnMn369Fx//fWZMGFCHn300TRt2jT9+/fPV77ylXz605/eZM3111+fJ554Ii+99FJ+//vfZ9myZWnSpEk6dOiQCy+8MJdcckkOOOCAHbVlKCreCwEAAAAAAAAAANioTk0UnTdvXk444YS88cYbOfHEE3PDDTekUChUmnPqqaemfv36efTRR2uihY+lW7duSZKlS5dm1qxZm53z0ksvJUm6d+++1XpNmzbNgQceWGlddett/H1r6z75yU+mtLR0q73ArqRRvUY5pu0xFb933adrnv/y8+m6T9eKa8e0PSaN6jWqjfbgH8ZZZ52Vp59+OsuXL8+qVavyyiuv5Bvf+MZmwx4DBw5MoVDI7Nmzq6x30EEH5b777su8efOyZs2aLFmyJL/5zW82G/ZIknPPPTf33XdfXn311SxZsiTr1q3L8uXLM3Xq1Nx4443CHuzWvBcCAAAAAAAAAACwUY0EPq6//vosXbo0t9xyS37961/n61//+iZz9thjj3Tt2jVTpkypiRY+lrKysvTs2TNJ8sADD2wyPnny5MydOzcNGzZM//79q1XztNNOq7JeeXl5Hn/88STJ6aefvtl1jz32WFauXLnJ2o31/n4d7A5KSkryzd7fzGWHX5au+3TNqDNGpW2zthl1xqh03adrLjv8snyz9zdTUlJS261CUfjrX/+a6dOnZ+nSpbXdCrCDeC8EAAAAAAAAAABgoxoJfPzud79Lp06dcsUVV2xxXrt27bJgwYKaaOFju+aaa5Ikw4cPz9SpUyuuL126NIMHD06SXHbZZWnWrFnF2COPPJJOnTqlX79+m9QbMmRI9thjj0yYMCF33XVXxfX169dn8ODBWbZsWXr27LnJt5ufeOKJ6datW5YtW5bBgwdn/fr1FWM/+clPMnHixJSWluYrX/nKjtk4FJmNH3R9+KyH06zR3/731qxRszx81sM+4Mo/pGeeeSZf/epXM3369ErXH3jggbRq1Srdu3fPvvvum2HDhtVSh8CO5r0QAAAAAAAAAACApIYCH++88066dOmy1XklJSX54IMPaqKFj+3UU0/NFVdckfLy8vTq1SsnnnhivvCFL+TAAw/MK6+8kqOPPjrf/e53K61Zvnx5ZsyYkbfffnuTep/4xCdy3333pW7durn44ovTq1evnH322TnooIPy85//PK1bt84DDzywyQf2SkpK8t///d/Ze++987Of/SwHHXRQzj777BxxxBEZNGhQ6tWrl5/97GfZZ599avTfA2pTSUlJGtdvXOla4/qNfcCVf0g/+clPMnLkyOy3334V1+bOnZsvfelLWblyZZo1a5Z169blO9/5Tp5++ula7BTYkbwXAgAAAAAAAAAAUCOBjyZNmmTx4sVbnTdr1qy0aNGiJlrYJiNGjMiDDz6YI488Ms8991zGjh2bsrKyDB8+PJMmTUrjxo23XuQjzjzzzLzwwgs5/fTTM3PmzDzyyCNZv359Lr300kyfPj0HHnjgZtd17NgxL7/8ci699NKsX78+jzzySGbNmpXTTz89L7zwQk477bQdsV0AdgEvvPBCunbtmpYtW1Zc+/nPf541a9bkuuuuy3vvvVcR9Ljttttqq00AAAAAAAAAAAAAdrCSQqFQ2NFF+/Tpk2nTpuXtt9+u+IBqnTp1MnDgwNxzzz1Jkr/85S/p2LFjPvWpT+Xxxx/f0S1QTWVlZUmSefPm1XInALuenfEMbdGiRY477rg88sgjFddOOOGETJ48OUuWLElpaWmS5Oijj87ixYvzxhtv1FgvuyPvgwDbx3MUAAAAAAAAAABqTo2c8DFgwICsWLEiX/7yl7Nq1apNxtesWZPBgwdn7dq1GTBgQE20AAC7hfLy8konTBUKhUyZMiU9evSoCHskSbt27fLOO+/URosAAAAAAAAAAAAA1IB6NVH0ggsuyC9+8Ys89thj6dSpUz772c8mSaZPn54rrrgijz32WObMmZMTTjghX/ziF2uiBQDYLbRo0SKzZ8+u+H3atGlZsWJFjjrqqErz1q5dmwYNGuzk7gAAAAAAAAAAAACoKTVywkfdunXz+OOP55xzzsn8+fPz05/+NMnfPqQ6cuTIzJkzJ2eccUYefvjhmrg9AOw2evbsmRdffDF/+MMfkiQjRoxISUlJ+vbtW2nem2++mX333bc2WgQAAAAAAAAAAACgBpQUCoVCTd7g9ddfz9ixYzNz5sxs2LAhbdq0yYknnphDDz20Jm9LNZWVlSVJ5s2bV8udAOx6dsYzdMKECfnMZz6TJGnWrFmWL1+eAw44IDNmzEidOn/LbS5ZsiT77LNPzj777PzXf/1XjfWyO/I+CLB9PEcBAAAAAAAAAKDm1KvpG3Tq1CmdOnWq6dsAwG7phBNOyD333JPvfOc7WbRoUY477rjcdtttFWGPJPn5z3+eDRs25LjjjqvFTgEAAAAAAAAAAADYkWr8hA+Km2/kBdh2xfIM/etf/5o1a9aktLQ0devWrdVedjXF8jcE2FV5jgIAAAAAAAAAQM2p0RM+lixZkp/+9Kd56qmnMm/evBQKhZSVleX444/Pl770pbRq1aombw8A/xAaN26cxo0b13YbAAAAAAAAAAAAAOxANRb4ePTRR3PBBRdk+fLl+eghIn/+858zYcKEDB8+PPfee29OO+20mmoBAHYr77zzTn7/+99XClEee+yx2W+//Wq7NQAAAAAAAAAAAAB2sBoJfLzwwgs588wzs27duvTo0SPnnXde2rdvnySZPXt2fvazn2XKlCn54he/mGeeeSZHHHFETbQBALuFpUuX5oorrsgvf/nLbNiwodJYnTp18oUvfCG33nprWrZsWUsdAgAAAAAAAAAAALCjlRQ+evzGDnLSSSfld7/7XW644YZ87Wtf2+ycH/7wh/na176W/v3759e//vWOboFqKisrS5LMmzevljsB2PXsjGfosmXLctRRR2XGjBlJkm7dulUKUU6dOjVJctBBB+UPf/hD9tprrxrrZXfkfRBg+3iOAgAAAAAAAABAzalTE0Wfe+65dO7cucqwR5JceeWV6dKlS5599tmaaAEAdgvDhg3L66+/niOPPDLTp0/PSy+9lNGjR2f06NGZMmVKXn755Rx99NF54403MmzYsNpuFwAAAAAAAAAAAIAdpEYCH2vXrk2XLl22Oq9z585Zu3ZtTbQAALuFhx9+OC1atMjYsWPTuXPnTcYPOeSQPP7442nevHkefvjhWugQAAAAAAAAAAAAgJpQI4GPTp06Ze7cuVudN3/+/HTs2LEmWgCA3cLChQvTp0+fNG3atMo5zZo1S58+ffLuu+/uxM4AAAAAAAAAAAAAqEk1EvgYNGhQJk+enKeffrrKOU8//XSeeeaZDBo0qCZaAIDdQuvWrVMoFLY6r1AopFWrVjuhIwAAAAAAAAAAAAB2hhoJfFx00UUZMmRITjrppHz961/Pyy+/nBUrVmTFihV5+eWXc9VVV+Wkk07KkCFDcvHFF9dECwCwW/jc5z6Xp556KsuXL69yzrJly/Lkk0/mpJNO2omdAQAAAAAAAAAAAFCTSgrV+drwrahbt+62N1BSknXr1m1vC2yjsrKyJMm8efNquROAXc/OeIa+9957OeKII9K6devcfvvt6dKlS6XxV199NZdcckkWLlyY559/Pv/0T/9UY73sjrwPAmwfz1EAAAAAAAAAAKg59XZEke3JjOyAvAkA7La+/vWvp3Pnznn00Udz6KGHpmvXrmnfvn2SZNasWXn55ZdTKBRy8skn56qrrqq0tqSkJHfffXdttA0AAAAAAAAAAADAdtohJ3yw6/KNvADbbmc8Q+vUqZOSkpJtCkiWlJRk/fr1NdDV7sP7IMD28RwFAAAAAAAAAICas0NO+AAAasa9995b2y0AAAAAAAAAAAAAUAsEPgCgiJ1//vm13QIAAAAAAAAAAAAAtUDgAwB2Ef/zP/+T5557LosXL84hhxySk08+OUmyYcOGrFu3Lg0aNKjlDgEAAAAAAAAAAADYUerUdgMAwJbNnTs3J5xwQrp06ZJBgwblP/7jPzJmzJiK8bvuuiuNGzfOxIkTa69JAAAAAAAAAAAAAHYogQ8AKGLvvfdejjvuuEyaNCmHHHJILrnkkhQKhUpzzjrrrNSpUyePPfZYLXUJAAAAAAAAAAAAwI4m8AEARez/+//+v8yePTtf//rXM3369IwcOXKTOc2bN0+XLl0yefLkWugQAAAAAAAAAAAAgJog8AEARezRRx9Nu3btMnz48JSUlFQ574ADDsg777yzEzsDAAAAAAAAAAAAoCYJfABAEfvLX/6S7t27p06dLb9lN2jQIO+9995O6goAAAAAAAAAAACAmibwAQBFrFGjRlmxYsVW582ZMyfNmjXbCR0BAAAAAAAAAAAAsDMIfABAEevUqVOmTp2alStXVjlnyZIlmT59ev7lX/5lJ3YGAAAAAAAAAAAAQE0S+ACAIvaFL3whS5cuzVe/+tVs2LBhs3OuuuqqrFq1Kl/84hd3cncAAAAAAAAAAAAA1JR6td0AAFC1Sy+9NPfff39++tOf5o9//GNOP/30JMnbb7+dm2++OaNHj86LL76YQw89NAMHDqzdZgEAAAAAAAAAAADYYZzwAQBFrFGjRhk3blyOPPLITJ06NUOHDk2STJ48OVdddVVeeOGF9OjRI7/+9a9Tv379HXLP0aNHp0+fPmnevHmaNGmSrl275oYbbsjatWu3ueajjz6ak08+Ofvss08aNGiQVq1a5aijjsqwYcM2mTtjxozccsst6d+/f/bbb780aNAgTZs2Tc+ePfP9738/5eXl27M9AAAAAAAAAAAAgF1CSaFQKNR2E9SesrKyJMm8efNquROAXc/OfoaOGzcuv/nNbzJz5sxs2LAhbdq0yYknnphTTjklJSUlO+QeQ4YMyYgRI1KvXr307ds3paWlmTRpUpYtW5bevXvniSeeSOPGjatdb82aNRkwYEBGjx6dxo0b58gjj0zr1q2zcOHCvPbaa1m/fn2WLFlSaU1ZWVnmz5+fRo0apUePHikrK8u7776bP/zhD1m9enU6dOiQSZMmpW3bttu9X++DANvHcxQAAAAAAAAAAGpOvdpuAACons985jP5zGc+U2P1x4wZkxEjRqS0tDRPP/10unfvniRZsmRJ+vbtm8mTJ2fo0KG56aabql3zoosuyujRo3PqqafmrrvuSsuWLSvGNmzYkBdffHGTNR07dsywYcNy1llnpbS0tOL67Nmz87nPfS6vvfZaBg4cmEmTJm3HbgEAAAAAAAAAAACKmxM+/sH5Rl6Abbe7PUMPP/zwTJkyJd/73vdy7bXXVhqbPHlyjjnmmDRs2DDvvvtumjVrttV6EydOzAknnJDOnTtn6tSpqV+//nb3uLGPJJk7d27F32Bb7W5/Q4CdzXMUAAAAAAAAAABqTp3abgAAqH3z58/PlClTkiTnnnvuJuO9e/dOmzZt8uGHH2bs2LHVqnnrrbcmSYYMGbJDwh5J0q1bt4rXc+fO3SE1AQAAAAAAAAAAAIpRvdpuAACofdOmTUuStGjRIu3bt9/snB49emTu3LmZNm1azjnnnC3WW79+fSZOnJgkOfbYY7Nw4cKMGjUqM2bMSMOGDdOtW7ecccYZKS0t/Vh9vvnmmxWv991334+1FgAAAAAAAAAAAGBXIvABAGTWrFlJkrZt21Y5p02bNpXmbsnMmTNTXl6eJHn++eczePDgit83uuqqqzJq1Kj07du32n0OHz48SdK9e/e0a9eu2usAAAAAAAAAAAAAdjV1arsBAKD2rVixIknSpEmTKudsPI3jgw8+2Gq9pUuXVry+8MILc9hhh2XKlClZsWJF/vSnP6V///5ZvHhxTjnllEqndmzJfffdlwcffDB169bNiBEjqrUmScrKyqr8WbBgQbXrAAAAAAAAAAAAAOxMAh8AwA5XKBQqXu+3334ZN25cevTokdLS0nTt2jWPPfZYOnfunPLy8opTO7Zk4sSJGTRoUJLkhhtuSO/evWusdwAAAAAAAAAAAIBiUK+2GwAAat+ee+6ZJFm5cmWVc8rLy5MkTZs2rXa9JBk4cGAaNmxYabxu3boZNGhQLr/88kyYMGGLtSZPnpxTTjkla9asybe//e189atf3er9P2revHlVjpWVlX2sWgAAAAAAAAAAAAA7ixM+AIC0a9cuSTJ37twq52wc2zj3/2fvzqO0qq59Yf+qaAqoAoRwBLWQTkUjhoCgELAJqFFirxj1eCPG2ASVYDxGYmIakyh6HbkSjcaYRhP1oqjYnOBVgSOR2IEiNjkSUYyAoILS2iG83x85VZ+VKqAUtN6C5xmjhsVea809J5t3r2SMPd+9sXglJSVJku7du9c5p+r4okWL1hvnkUceybBhw7J69ep8//vfz49//OONnhsAAAAAAAAAAABgS6DhAwBInz59kiRLly7NvHnz6pwzc+bMJEnfvn03Gq+ioiI9e/ZMkixZsqTOOVXHKyoq6hx/7LHHcvDBB2flypW58MIL87Of/Wyj5wUAAAAAAAAAAADYUmj4AABSWVmZ/v37J0luueWWWuPTp0/P/PnzU1ZWlmHDhtUr5vDhw5MkkydPrnP8wQcfTJLstddetcaeeOKJfOUrX6lu9vj5z39er3MCAAAAAAAAAAAAbCk0fAAASZILL7wwSTJ27Ng89dRT1ceXLl2akSNHJknOPvvstG3btnps4sSJ2XXXXTN06NBa8UaNGpV27dpl0qRJue6662qMjR8/PjfffHP1vI+aOXNmDjrooKxYsUKzBwAAAAAAAAAAALDVatrQCQAAxeHII4/MqFGj8stf/jIDBgzI0KFDU15enilTpmTZsmUZNGhQfvrTn9ZYs3z58syZMyfvvfderXgdOnTIrbfemsMPPzxnnnlmrrrqquy222556aWXMmvWrCTJRRddVOuNIQcddFCWL1+ebbbZJgsXLsyIESPqzHfMmDHZddddN0/xAAAAAAAAAAAAAEVGwwcAUG3cuHEZNGhQfvWrX+WRRx7JmjVr0qNHj4wZMybnnntumjdv/rHiHXjggZk9e3YuueSSTJ48OXfffXfatGmTYcOG5dvf/nYOOuigWmvefvvtJMmyZcty4403rjf2iBEjNHwAAAAAAAAAAAAAW6ySQqFQaOgkaDiVlZVJkgULFjRwJgCNj3to4+caAmwa91EAAAAAAAAAAPj0lDZ0AgAAAAAAAAAAAAAAANSk4QMAAAAAAAAAAAAAAKDIaPj4HytXrsyFF16Ynj17pmXLlunQoUO++tWvZurUqZ845rp163Lddddl7733TuvWrdO6devsvffe+c1vfpNCoVDn/EceeSQ//OEPM3jw4Hzuc59Ls2bN0qFDhxx44IG5+eab61wHAAAAAAAAAAAAAABsWUoKOgjyxhtvZJ999snf//73bLfddhk8eHBef/31PPzww0mScePG5ZxzzvlYMdeuXZvjjjsud955Z1q1apWhQ4cmSSZPnpx33303w4cPz/jx41Na+v/33MydOzc777xzkqR9+/bp169f2rVrl5dffjkzZsxIkhx66KG544470rx5881ReiorK5MkCxYs2CzxALYm7qGNn2sIsGncRwEAAAAAAAAA4NPjDR9JTj/99Pz973/P0KFDM3fu3Nx2222ZNm1a/vM//zOlpaUZPXp0nnnmmY8V86qrrsqdd96ZHXbYIc8991zuueee3HPPPXn++eez/fbbZ8KECbnmmmtqrCkpKcmQIUNy33335Y033sj999+f8ePH54knnshDDz2U8vLy/Od//mfGjh27OcsHAAAAAAAAAAAAAACKzFbf8PG3v/0td999d5o0aZLf/e53adWqVfXYsGHDMmLEiKxbty6XXnppvWOuW7cul112WZLksssuS7du3arHunXrVj126aWXZt26ddVjPXr0yJQpU3LwwQenSZMmNWLut99+GTNmTJLkj3/848cvFAAAAAAAAAAAAAAAaDS2+oaPiRMnJkkGDRqULl261Bo/8cQTkyT33ntv1qxZU6+Yjz76aBYvXpyysrIcc8wxtcaPOeaYNG/ePK+99loef/zxeufap0+fJMn8+fPrvQYAAAAAAAAAAAAAAGh8tvqGj1mzZiVJ+vXrV+d41fHVq1fnxRdf/Fgxd99997Ro0aLWeMuWLbP77rvXmFsfVeffbrvt6r0GAAAAAAAAAAAAAABofLb6ho958+YlSXbcccc6x9u0aZM2bdrUmLupMZOkc+fOHyvmO++8k1/+8pdJUudbQwAAAAAAAAAAAAAAgC1H04ZOoKGtXLkySVJeXr7eORUVFVmxYkVWrFixWWMmqXfMkSNHZt68edl+++1z4YUX1mtNlcrKyvWOLVq0yBtDAAAAAAAAAAAAAACgyDTqho/vfve7ueeeez72ut/+9rcZPHjwp5DRp+OnP/1pbrzxxrRo0SK33XZbPve5zzV0SgAAAAAAAAAAAAAAwKeoUTd8vPbaa5kzZ87HXrdq1arq31u3bp0kWb169Ubnt2nTpl7xN2fMX/ziF/nhD3+YsrKyTJw4MYMGDapXDh+1YMGC9Y5t6O0fAAAAAAAAAAAAAABAwyht6AQ2xU033ZRCofCxfw4++ODqGF27dk2SvPrqq3WeY8WKFVmxYkWNuRuzsZhJMn/+/I3GvOqqq3LeeeelefPmueOOO2rkDQAAAAAAAAAAAAAAbLkadcPH5tC3b98kycyZM+scrzpeXl6eXXbZ5WPFfP755/Pee+/VGn/33Xfz/PPP15j7r371q19l1KhR1c0eX/3qV+t1bgAAAAAAAAAAAAAAoPHb6hs+jjzyyCTJX//61zrfyHHLLbckSQ477LA0a9asXjEHDhyYTp065f33388dd9xRa/yOO+7IBx98kO233z577713rfFf//rXOfvss6ubPQ499NCPUREAAAAAAAAAAAAAANDYbfUNH7vvvnuOOOKIrF27Nqeeemrefffd6rH77rsvN9xwQ0pLS/O9732v1tqvf/3r2XXXXXP11VfXOF5aWpoLLrggSXLBBRdk3rx51WPz5s3LmDFjkiTf+973Ulpa8xJcf/31GTlypGYPAAAAAAAAAAAAAADYijVt6ASKwW9+85v87W9/y+TJk9OjR4/ss88+eeONNzJt2rQUCoWMGzcuX/jCF2qte/XVVzNnzpwsWbKk1tg555yTv/zlL5k4cWJ69eqVAw44IEkyefLkvPPOOzn22GMzcuTIGmuefvrpnHHGGSkUCunevXtuv/323H777XXmfMMNN2x64QAAAAAAAAAAAAAAQFHS8JFk2223zcyZM3PppZfmjjvuyN13353y8vJ85StfyX/8x39k6NChHztmkyZNcvvtt+f666/Pb3/720yZMiXJP98ocuqpp+b0009PSUlJjTXLli1LoVBIkrzwwgt54YUX1htfwwcAAAAAAAAAAAAAAGy5SgpVHQZslSorK5MkCxYsaOBMABof99DGzzUE2DTuowAAAAAAAAAA8OkpbegEAAAAAAAAAAAAAAAAqEnDBwAAAAAAAAAAAAAAQJHR8AEAAAAAAAAAAAAAAFBkNHwAAAAAAAAAAAAAAAAUGQ0fAAAAAAAAAAAAAAAARUbDBwAAAAAAAAAAAAAAQJHR8AEAAAAAAAAAAAAAAFBkNHwAAAAAAAAAAAAAAAAUGQ0fAAAAAAAAAAAAAAAARUbDBwAAAAAAAAAAAAAAQJHR8AEAAAAAAAAAAAAAAFBkNHwAAAAAAAAAAAAAAAAUGQ0fAAAAAAAAAAAAAAAARUbDBwAAAAAAAAAAAAAAQJHR8AEAAAAAAAAAAAAAAFBkNHwAAAAAAAAAAAAAAAAUGQ0fAAAAAAAAAAAAAAAARUbDBwBQw4QJE7L//vunXbt2KS8vT+/evXP55ZdnzZo1nzjm3XffncMPPzydOnVK8+bNs+222+ZLX/pSLr744lpzV69enVtuuSXnnXde9t9//7Rp0yYlJSXZaaedNqUsAAAAAAAAAAAAgEalpFAoFBo6CRpOZWVlkmTBggUNnAlA47Ml3kNHjx6dcePGpWnTphkyZEgqKioyderULFu2LIMHD84DDzyQli1b1jveBx98kJNOOikTJkxIy5YtM3DgwHTs2DGLFy/O888/n7Vr12bJkiU11jz99NPp06dPrVg9evTI3LlzN7nGj9oSryHAZ8l9FAAAAAAAAAAAPj1NGzoBAKA43HXXXRk3blwqKioybdq09O3bN0myZMmSDBkyJNOnT89FF12UK664ot4xTzvttEyYMCFHHnlkrr/++nTo0KF6bN26dXniiSdqrWndunVOOeWU9O3bN3369MmyZcty6KGHbnqBAAAAAAAAAAAAAI2IN3xs5XwjL8Ant6XdQ/faa6/MmDEjP/vZz/L973+/xtj06dOzzz77pKysLK+//nratm270XhTpkzJAQcckF69euWpp55Ks2bNPlFeDz30UL785S97wwdAEXIfBQAAAAAAAACAT09pQycAADS8hQsXZsaMGUmSE088sdb44MGD07lz57z//vuZNGlSvWJeddVVSZLRo0d/4mYPAAAAAAAAAAAAgK1V04ZOAABoeLNmzUqStG/fPt26datzTr9+/TJ//vzMmjUrJ5xwwgbjrV27NlOmTEmS7Lvvvlm8eHHGjx+fOXPmpKysLH369MkxxxyTioqKzVsIAAAAAAAAAAAAwBZCwwcAkHnz5iVJdtxxx/XO6dy5c425G/Lyyy9n1apVSZLHHnssI0eOrP5zlfPPPz/jx4/PkCFDPmnaAAAAAAAAAAAAAFus0oZOAABoeCtXrkySlJeXr3dO1ds4VqxYsdF4S5curf791FNPzZ577pkZM2Zk5cqVefrppzNs2LC8+eabOeKII/Liiy9uYvYbVllZud6fRYsWfarnBgAAAAAAAAAAAPikNHwAAJtdoVCo/n2HHXbI/fffn379+qWioiK9e/fOPffck169emXVqlUZO3ZsA2YKAAAAAAAAAAAAUJyaNnQCAEDDa926dZJk9erV652zatWqJEmbNm3qHS9JRowYkbKyshrjTZo0yRlnnJFzzjknkydP/iQp19uCBQvWO1ZZWfmpnhsAAAAAAAAAAADgk/KGDwAgXbt2TZLMnz9/vXOqxqrmbixeSUlJkqR79+51zqk6vmjRoo+RKQAAAAAAAAAAAMDWQcMHAJA+ffokSZYuXZp58+bVOWfmzJlJkr59+240XkVFRXr27JkkWbJkSZ1zqo5XVFR87HwBAAAAAAAAAAAAtnQaPgCAVFZWpn///kmSW265pdb49OnTM3/+/JSVlWXYsGH1ijl8+PAkyeTJk+scf/DBB5Mke+211ydJGQAAAAAAAAAAAGCLpuEDAEiSXHjhhUmSsWPH5qmnnqo+vnTp0owcOTJJcvbZZ6dt27bVYxMnTsyuu+6aoUOH1oo3atSotGvXLpMmTcp1111XY2z8+PG5+eabq+cBAAAAAAAAAAAAUFPThk4AACgORx55ZEaNGpVf/vKXGTBgQIYOHZry8vJMmTIly5Yty6BBg/LTn/60xprly5dnzpw5ee+992rF69ChQ2699dYcfvjhOfPMM3PVVVdlt912y0svvZRZs2YlSS666KI63xhy1FFHZdGiRUmSFStWJEkWLFiQAQMGVM/55je/mW9+85ubrX4AAAAAAAAAAACAYqLhAwCoNm7cuAwaNCi/+tWv8sgjj2TNmjXp0aNHxowZk3PPPTfNmzf/WPEOPPDAzJ49O5dcckkmT56cu+++O23atMmwYcPy7W9/OwcddFCd62bNmpV//OMfNY69//77efzxx6v/fPDBB3/8AgEAAAAAAAAAAAAaiZJCoVBo6CRoOJWVlUn++a3pAHw87qGNn2sIsGncRwEAAAAAAAAA4NNT2tAJAAAAAAAAAAAAAAAAUJOGDwAAAAAAAAAAAAAAgCKj4QMAAAAAAAAAAAAAAKDIaPgAAAAAAAAAAAAAAAAoMho+AAAAAAAAAAAAAAAAioyGDwAAAAAAAAAAAAAAgCKj4QMAAAAAAAAAAAAAAKDIaPgAAAAAAAAAAAAAAAAoMho+AAAAAAAAAAAAAAAAioyGDwAAAAAAAAAAAAAAgCKj4QMAAAAAAAAAAAAAAKDIaPgAAAAAAAAAAAAAAAAoMho+AAAAAAAAAAAAAAAAioyGDwAAAAAAAAAAAAAAgCKj4QMAAAAAAAAAAAAAAKDIaPj4HytXrsyFF16Ynj17pmXLlunQoUO++tWvZurUqZ845rp163Lddddl7733TuvWrdO6devsvffe+c1vfpNCoVDvONdcc01KSkpSUlKSb37zm584HwAAAAAAAAAAAAAAoHHQ8JHkjTfeSL9+/XLppZdm5cqVOeyww7L77rvnvvvuywEHHJCrrrrqY8dcu3Zthg8fnjPPPDPPPfdcvvzlL+fLX/5ynn322Zxxxhn52te+lnXr1m00zssvv5zvfve7KSkp+SSlAQAAAAAAAAAAAAAAjZCGjySnn356/v73v2fo0KGZO3dubrvttkybNi3/+Z//mdLS0owePTrPPPPMx4p51VVX5c4778wOO+yQ5557Lvfcc0/uueeePP/889l+++0zYcKEXHPNNRuMsW7duowYMSIlJSX5+te/viklAgAAAAAAAAAAAAAAjchW3/Dxt7/9LXfffXeaNGmS3/3ud2nVqlX12LBhwzJixIisW7cul156ab1jrlu3LpdddlmS5LLLLku3bt2qx7p161Y9dumll27wLR/jxo3Lww8/nMsuuyxdu3b9mJUBAAAAAAAAAAAAAACN1Vbf8DFx4sQkyaBBg9KlS5da4yeeeGKS5N57782aNWvqFfPRRx/N4sWLU1ZWlmOOOabW+DHHHJPmzZvntddey+OPP15njDlz5uT73/9+9ttvv3zrW9+qbzkAAAAAAAAAAAAAAMAWYKtv+Jg1a1aSpF+/fnWOVx1fvXp1XnzxxY8Vc/fdd0+LFi1qjbds2TK77757jbkftXbt2px88skpKSnJ7373u5SUlNTrvAAAAAAAAAAAAAAAwJZhq2/4mDdvXpJkxx13rHO8TZs2adOmTY25mxozSTp37rzemP/7f//vPP744/n5z3+eHj161OucAAAAAAAAAAAAAADAlqNpQyfQ0FauXJkkKS8vX++cioqKrFixIitWrNisMZPUivncc8/lRz/6Ub70pS9l1KhR9TrfxlRWVq53bNGiRdluu+02y3kAAAAAAAAAAAAAAIDNo1E3fHz3u9/NPffc87HX/fa3v83gwYM/hYw2zYcffpiTTz45paWl+f3vf5/S0q3+BSwAAAAAAAAAAAAAALBVatQNH6+99lrmzJnzsdetWrWq+vfWrVsnSVavXr3R+W3atKlX/E8a8+c//3meeuqpXHbZZenZs2e9zlUfCxYsWO/Yht7+AQAAAAAAAAAAAAAANIxG3fBx00035aabbtqkGF27ds1TTz2VV199tc7xFStWZMWKFdVz6xszyXpjJsn8+fNrxZw4cWKS5N57782kSZNqzH/llVeSJH/+85+z//77J0keeuiheuUDAAAAAAAAAAAAAAA0Lo264WNz6Nu3b+68887MnDmzzvGq4+Xl5dlll13qHTNJnn/++bz33ntp0aJFjfF33303zz//fI25HzV9+vT1xl68eHEWL15crzwAAAAAAAAAAAAAAIDGqbShE2hoRx55ZJLkr3/9a51v5LjllluSJIcddliaNWtWr5gDBw5Mp06d8v777+eOO+6oNX7HHXfkgw8+yPbbb5+99967+vjTTz+dQqFQ58+PfvSjJMmpp55afQwAAAAAAAAAAAAAANgybfUNH7vvvnuOOOKIrF27Nqeeemrefffd6rH77rsvN9xwQ0pLS/O9732v1tqvf/3r2XXXXXP11VfXOF5aWpoLLrggSXLBBRdk3rx51WPz5s3LmDFjkiTf+973Ulq61V8CAAAAAAAAAAAAAADgXzRt6ASKwW9+85v87W9/y+TJk9OjR4/ss88+eeONNzJt2rQUCoWMGzcuX/jCF2qte/XVVzNnzpwsWbKk1tg555yTv/zlL5k4cWJ69eqVAw44IEkyefLkvPPOOzn22GMzcuTIT702AAAAAAAAAAAAAACg8fF6iSTbbrttZs6cmTFjxqSioiJ33313nnnmmXzlK1/J5MmTM2rUqI8ds0mTJrn99tvz61//Op///OczZcqUTJkyJbvvvnt+/etf57bbbvN2DwAAAAAAAAAAAAAAoE4lhUKh0NBJ0HAqKyuTJAsWLGjgTAAaH/fQxs81BNg07qMAAAAAAAAAAPDp8YoJAAAAAAAAAAAAAACAIqPhAwAAAAAAAAAAAAAAoMho+AAAAAAAAAAAAAAAACgyGj4AgBomTJiQ/fffP+3atUt5eXl69+6dyy+/PGvWrPnEMe++++4cfvjh6dSpU5o3b55tt902X/rSl3LxxRevd83cuXMzYsSIVFZWpqysLJWVlRkxYkRefvnlT5wHAAAAAAAAAAAAQGNRUigUCg2dBA2nsrIySbJgwYIGzgSg8dkS76GjR4/OuHHj0rRp0wwZMiQVFRWZOnVqli1blsGDB+eBBx5Iy5Yt6x3vgw8+yEknnZQJEyakZcuWGThwYDp27JjFixfn+eefz9q1a7NkyZJa6/7617/moIMOyjvvvJPdd989vXr1ynPPPZfnn38+5eXlmTx5cgYMGLDJ9W6J1xDgs+Q+CgAAAAAAAAAAn56mDZ0AAFAc7rrrrowbNy4VFRWZNm1a+vbtmyRZsmRJhgwZkunTp+eiiy7KFVdcUe+Yp512WiZMmJAjjzwy119/fTp06FA9tm7dujzxxBO11rzzzjs57rjj8s477+R73/teLrnkkuqxCy+8MJdeemmOO+64zJkz52M1nwAAAAAAAAAAAAA0JqUNnQAAUByqGivGjBlT3eyRJB06dMg111yTJLn66quzfPnyesWbMmVK/vjHP6ZXr1657bbbajR7JElpaWmdb+m44YYb8tprr2WXXXbJz372sxpjP/vZz7LLLrtk/vz5+eMf//ix6gMAAAAAAAAAAABoTDR8AABZuHBhZsyYkSQ58cQTa40PHjw4nTt3zvvvv59JkybVK+ZVV12VJBk9enSaNWtW71wmTpyYJDn++ONTWlrzf6qUlpbma1/7WpLkzjvvrHdMAAAAAAAAAAAAgMamaUMnAAA0vFmzZiVJ2rdvn27dutU5p1+/fpk/f35mzZqVE044YYPx1q5dmylTpiRJ9t133yxevDjjx4/PnDlzUlZWlj59+uSYY45JRUXFenPp16/fevP46DwAAAAAAAAAAACALZGGDwAg8+bNS5LsuOOO653TuXPnGnM35OWXX86qVauSJI899lhGjhxZ/ecq559/fsaPH58hQ4ZUH1u5cmWWLl26wVyq8njzzTezevXqlJeXbzQfAAAAAAAAAAAAgMamtKETAAAa3sqVK5Nkg80TVW/jWLFixUbjVTVtJMmpp56aPffcMzNmzMjKlSvz9NNPZ9iwYXnzzTdzxBFH5MUXX6yVx4Zy+ehbQeqTS2Vl5Xp/Fi1atNH1AAAAAAAAAAAAAA1BwwcAsNkVCoXq33fYYYfcf//96devXyoqKtK7d+/cc8896dWrV1atWpWxY8c2YKYAAAAAAAAAAAAAxalpQycAADS81q1bJ0lWr1693jmrVq1KkrRp06be8ZJkxIgRKSsrqzHepEmTnHHGGTnnnHMyefLkOtetL5eqPOqby4IFC9Y7VllZudH1AAAAAAAAAAAAAA3BGz4AgHTt2jVJMn/+/PXOqRqrmruxeCUlJUmS7t271zmn6viiRYuqj7Vu3Trt27dPkrz66qsbzKNDhw4pLy/faC4AAAAAAAAAAAAAjZGGDwAgffr0SZIsXbo08+bNq3POzJkzkyR9+/bdaLyKior07NkzSbJkyZI651Qdr6ioqHG8Kn7V+TYlDwAAAAAAAAAAAIDGSsMHAJDKysr0798/SXLLLbfUGp8+fXrmz5+fsrKyDBs2rF4xhw8fniSZPHlyneMPPvhgkmSvvfaqcfyoo45KkowfPz7r1q2rMbZu3brceuutSZKjjz66XnkAAAAAAAAAAAAANEYaPgCAJMmFF16YJBk7dmyeeuqp6uNLly7NyJEjkyRnn3122rZtWz02ceLE7Lrrrhk6dGiteKNGjUq7du0yadKkXHfddTXGxo8fn5tvvrl63keNGDEi22+/ff7+97/noosuqjF20UUX5e9//3sqKyvz9a9/fROqBQAAAAAAAAAAAChuJYVCodDQSdBwKisrkyQLFixo4EwAGp8t8R767W9/O7/85S/TrFmzDB06NOXl5ZkyZUqWLVuWQYMG5cEHH0zLli2r599www055ZRT0qVLl7zyyiu14j344IM5/PDD895772X33XfPbrvtlpdeeimzZs1K8s8GjosvvrjWur/+9a856KCD8s4776RXr17p1atXnnvuuTz33HMpLy/P5MmTM2DAgE2ud0u8hgCfJfdRAAAAAAAAAAD49HjDBwBQbdy4cbn11lszcODAPPLII5k0aVIqKyszduzYTJ06tUazR30ceOCBmT17dk4++eQsW7Ysd999d1599dUMGzYs999/f53NHkkyaNCgzJ49O1//+tfz1ltv5Y477shbb72Vr3/965k9e/ZmafYAAAAAAAAAAAAAKGbe8LGV8428AJ+ce2jj5xoCbBr3UQAAAAAAAAAA+PR4wwcAAAAAAAAAAAAAAECR0fABAAAAAAAAAAAAAABQZDR8AAAAAAAAAAAAAAAAFBkNHwAAAAAAAAAAAAAAAEVGwwcAAAAAAAAAAAAAAECR0fABAAAAAAAAAAAAAABQZDR8AAAAAAAAAAAAAAAAFBkNHwAAAAAAAAAAAAAAAEVGwwcAAAAAAAAAAAAAAECR0fABAAAAAAAAAAAAAABQZDR8AAAAAAAAAAAAAAAAFBkNHwAAAAAAAAAAAAAAAEVGwwcAAAAAAAAAAAAAAECR0fABAAAAAAAAAAAAAABQZDR8AAAAAAAAAAAAAAAAFBkNHwAAAAAAAAAAAAAAAEVGwwcAAAAAAAAAAAAAAECR0fABAAAAAAAAAAAAAABQZDR8AAAAAAAAAAAAAAAAFBkNHwAAAAAAAAAAAAAAAEWmpFAoFBo6CRpO8+bNs3bt2my33XYNnQpAo7No0aI0adIkH3zwQUOnwidkHwTYNPZCAAAAAAAAAAD49DRt6ARoWM2aNWvoFDaLRYsWJckW8cDullLLllJHopZiVQy1NGnSZIu5j26ttpTrVwyfh81FLcVJLcWpGGqxFwIAAAAAAAAAwKfHGz7YIlRWViZJFixY0MCZbLotpZYtpY5ELcVqS6oFNtWW9HlQS3FSS3HakmoBAAAAAAAAAABqK23oBAAAAAAAAAAAAAAAAKhJwwcAAAAAAAAAAAAAAECR0fABAAAAAAAAAAAAAABQZDR8AAAAAAAAAAAAAAAAFBkNHwAAAAAAAAAAAAAAAEVGwwcAAAAAAAAAAAAAAECRKSkUCoWGTgIAAAAAAAAAAAAAAID/nzd8AAAAAAAAAAAAAAAAFBkNHwAAAAAAAAAAAAAAAEVGwwcAAAAAAAAAAAAAAECR0fABAAAAAAAAAAAAAABQZDR8AAAAAAAAAAAAAAAAFBkNHwAAAAAAAAAAAAAAAEVGwwefmgkTJmT//fdPu3btUl5ent69e+fyyy/PmjVrPlG8J598MsOHD0/Hjh3TokWLdOvWLeecc07eeOONOue/8sorKSkp2eDPmDFj1nu+Rx55JF/72tfSuXPnNG3aNE2aNEmTJk3SvHnz7L777o2qlscffzzHHntsOnXqlKZNm6asrCxlZWVp1arVZ35dPmr27Nn5xje+kW7duqVFixZp165d9thjj3zrW9/K0qVL61yzcuXKXHjhhenZs2eaN2+eZs2apVmzZmnZsmWjqmXSpEn58Y9/nMMOOyzbb7999XXcZpttGuTz8klreeONN/LHP/4xJ554Ynbeeee0aNGi+t9WixYtGtW/sRUrVuSiiy7KV7/61fTo0SNt27ZN8+bNs/322+eII47In//850+UP1s3e2Hx1GIvLL5attS9sFmzZtWflWbNmmW33XZrFHXYBwEAAAAAAAAAoPiUFAqFQkMnwZZn9OjRGTduXJo2bZohQ4akoqIiU6dOzbJlyzJ48OA88MADadmyZb3j3X777TnhhBPy4Ycfpn///unWrVtmzpyZl19+OR07dsz06dOz00471VjzyiuvpFu3bikvL8+xxx5bZ9yvfvWrGT58eK3j11xzTc4+++wUCoV87nOfy9KlS1NSUpImTZrkww8/TElJSQqFQqOo5Te/+U1GjhyZtWvXpl27dnn77berx0pLS9OqVausWrXqM6ulyhVXXJExY8akUChkzz33TI8ePbJ8+fK8+OKLmTt3bp599tn06tWrxpo33ngj++yzT/7+97+nVatWeeedd6qvRZK0bNky7777bqOoZZtttsny5ctrxdp3333ToUOHz/zz8klrOemkk3LzzTentLQ0vXr1yrvvvpsXX3yxerxJkyZp2bJlo/g3Nnfu3Oy8886pqKhIr169st1226W0tDRz587N7NmzkyQjR47Mr371q3rnz9bNXlg8tdgLi7OWLXEvbN++fZYsWZKSkpI0bdq0RpNHsddhHwQAAAAAAAAAgCJUgM1s4sSJhSSFioqKwpNPPll9/M033yzssccehSSF8847r97xFi5cWGjVqlUhSeG6666rPv7hhx8WTjrppEKSQv/+/Qvr1q2rsW7evHmFJIUuXbp8rPwXL15caN68eSFJ4ZxzzqlRy4oVKwoHHXRQ9bFir2X27NmFJk2aFJIUTjnllBq1/P73vy8kKbRu3brw+c9//jOrpVAoVJ+7Z8+ehWeffbbW+HPPPVdYtmxZreNHHHFEIUnhC1/4Qo1a/vznPxeaNGlSKCkpKey8886NopZTTjmlcMkllxR++MMfFpJU/8yfP79QKHz2n5dPWss555xT+MlPflJYsGBBjc/+ww8/XDj++OMLSQrbbLNNo/g3tnLlysKjjz5aWLNmTa35U6dOrc7l//2//1fvGth62QuLpxZ7YfHWsqXthb/97W9rXJOVK1dW74VV/waLuQ77IAAAAAAAAAAAFB8NH2x2/fv3LyQp/OxnP6s19vDDDxeSFMrKyup88K8u559/fiFJ4YADDqg1tnLlykLbtm3rfPjskz4YevvttxeSFD7/+c/XWctf//rXQpLqh96KuZbTTz+9kKSw33771VnLUUcdVUhS+PrXv/6Z1fLWW28V2rRpU2jZsmXhpZdeqnctzz//fPUDk717965Vy6mnnlpIUhg6dGjR1/JRVdflXx9yLRQ+28/L5qyl6rqsXr260Lp160KSwg9+8INGVUtdvvGNbxSSFL7zne9stphsueyFxVOLvbA4a/moLWUvrOvf10f3wsZSx/rYBwEAAAAAAAAA4LNXGtiMFi5cmBkzZiRJTjzxxFrjgwcPTufOnfP+++9n0qRJ9Yo5ceLE9carqKjI4YcfniS58847P2naNbRo0SJJsmbNmg3W0qlTp6KvpSr/vfbaq85aDjjggCTJE0888ZnVcuONN2bFihU55phj0r1793rXUnW+fv36Zfbs2bXOXfX7Y489VvS1VPno56Uun+XnZXPWUnXuVq1apWfPntW/N5Za1qdp06ZJkrKyss0Wky2TvXDD7IX2wo/aUvbC9X3uP7oXtm3btujr2BD7IAAAAAAAAAAAfPY0fLBZzZo1K0nSvn37dOvWrc45/fr1qzF3Q1auXJm5c+fWWPdx461evTpjx47NmWeemXPOOSdXXnll5syZs95zDhw4MG3bts2LL75Yq5ZVq1blJz/5SZLkjDPOKPpaVq1aVeO//3pdOnTokCSZM2dOvvjFL34mtdx///1Jkn333Tfvvvtu/vSnP2XUqFE566yzcuWVV2b+/Pl1xquKs91229VZS9X5Vq9eXf1gZbHW8q81tW/ffr1zPqt/Y5uzlqrrsmbNmrzyyitJ/nndGkstdZkxY0ZuvfXWlJSU5LDDDvvY69m62AuLqxZ7YXHW8q81Nfa9cH2f+4/uhT169Cj6OtbHPggAAAAAAAAAAA2jaUMnwJZl3rx5SZIdd9xxvXM6d+5cY+6GVD0gt6GYG4u3ZMmSfO9736tx7Dvf+U7+/d//Pddee20qKipqjLVv3z433nhjjjvuuHzwwQd55513ctxxx2X16tV59NFHkyQ///nPc/7552f06NFFXcu2226bF198sfpB2H8978svv5wkKRQKadOmzWdSyzPPPJPknw8y9urVqzqHKhdccEEuvfTSfOc736lxvCpOaWlpnedt06ZN2rRpkxUrVqRly5ZFXcu/1rTjjjvmrbfe+ljnrkux1FLld7/7XZYsWZKWLVvmkEMOqX4gtdhrSZIf/vCHefXVV/Puu+9m3rx5mTFjRpo3b55f/vKXGThw4EbzZ+tmLyyuWuyFxVnLv9bU2PfC9X3uP7oX9u3bN0899VRR11HFPggAAAAAAAAAAMXBGz7YrFauXJkkKS8vX++cqgcxV6xYUe94G4q5vnhlZWU57bTTcv/992f+/Pl555138vzzz+enP/1pWrVqlZtuuinHHHNMCoVCrZhHHHFEvvnNbyZJ3nvvvUyYMCGTJk3K22+/nf79+2fQoEEpKSkp+lqGDBmS5J/fyvyv512zZk1+//vfV/+5SZMmn0ktS5cuTZKMGTMma9euzb333pu33347L730Ui644IKsWbMm5513Xv7v//2/dZ5z3bp16z1v1TmrHoQt1lr+9dzF8HnZ3LU8++yzOf/885MkF110UTp27NhoakmSe+65JzfeeGNuu+22zJgxIxUVFbn66qvzrW99a6O5QzF9tu2F9sJireVfz10Mn5dNqaWuOv51L9x2222Lvo4q9kEAAAAAAAAAACgOGj7YYm233Xb5zW9+k4MOOiiVlZVp2bJlPv/5z+cHP/hBpk6dmiZNmuSBBx7I3XffXWvttddem1//+tdJkl69emX58uWZP39+fvWrX+Wxxx7LkCFDcsMNNxR9LWeddVY6dOhQ/dDgqlWrsnr16syePTuHHnpojW+PLikp+UxqqXoQd926dZk0aVIOPfTQbLPNNunevXvGjh2bM888M0nygx/84DPJZ1OopW4LFizIYYcdllWrVuXwww/PmDFjPtXc/9XmqOXpp59OoVDI8uXL88QTT+Twww/P6aefnoMOOqjGQ7hQ7OyF9sJPm1rq1pB7oX0QAAAAAAAAAAC2HBo+2Kxat26dJFm9evV656xatSpJ0qZNm3rH21DMjxOvyl577ZXDDjssSXLvvffWGPvrX/+akSNHVn9rctOmTdOmTZtUVlZm5MiRue6667Ju3bqMHj26+huUi7WWjh075s9//nPatm2bJJk9e3YqKiryxS9+MQ8//HCuvfba6rlVDwd+2rVUrd1nn33y+c9/vta6kSNHJklefvnlzJs3r9a6qm8sr+u8Vees+ubzYq3lX9cXw+dlc9WyfPnyDB06NP/4xz/yla98Jbfddlv1A9SNpZaPatOmTfr375+bb745I0eOzNSpU/OTn/xko/mzdSumz/aG2AvthQ1Zy7+uL4bPy6bU8tE6Fi9eXOde2Bjq+Ff2QQAAAAAAAAAAaFgaPtisunbtmiSZP3/+eudUjVXN3ZAuXbpU//7qq69ucryP2m233ZL88xuYP6rq28r33nvvGvGrHHvssWnevHmWL1+e5557rt7nbohakn8+BPvb3/42SdKiRYucccYZufzyyzNnzpzss88+SZLy8vKsWLGi3ufelFq6d+9e47//6qPHFy1aVP17VZy1a9fWiF9lxYoV1TW88847dZ67Lg1RS5Vi+rxsrlr++7//O3//+99zwAEH5K677kpZWdlGz12XhqxlfU455ZQkycSJE+u9hq1TMX22N8ZeaC9MimP/KIbPy6bUUhXr1VdfzZAhQ+rcCxtDHRtiHwQAAAAAAAAAgM+ehg82qz59+iRJli5dut5vDJ45c2aSpG/fvhuN16ZNm+y000411m1KvI+q+kbyj36DcvL/P1RX9aDdv9bStGnTlJeXJ0leeOGFep+7IWqpMmDAgCTJe++9lwsuuCDnn39+OnfunIcffjhJ8uUvfzlPPvlkvc+9KbXsueeeSZIlS5bUue6jx6u+Wf6jcRYvXpyk9nWpOl95eXn+/ve/F3UtVT76eVmfz+rzsqm17Ljjjkn++RDyl770pdxzzz1p0aJFo6xlfao+92+88Ua917B1sheun73wn+yF/78tZS+squOtt97Kf//3f2fo0KG19sLGUMeG2AcBAAAAAAAAAOCzp+GDzaqysjL9+/dPktxyyy21xqdPn5758+enrKwsw4YNq1fMo446ar3xVq1alXvvvTdJcvTRR9c7z9WrV1ev22uvvWqM7bDDDkmSv/3tb3XWMmfOnLz99ttJ/vlwYjHXUqWu6/Lhhx9m3LhxSZL999//M7suw4cPT5I89thjWb16da21Dz74YJJ/PoBY9W3tSXLkkUcm+efDjb1796517qrfBwwYUPS1VPnodanLZ/l52ZRalixZkpNOOqn6zwceeGBatmzZKGvZkClTpiRJdtlll3qvYetkLyyuWqrYC4urlipbyl7YokWL6r2ve/fuuffee2vshY2ljg2xDwIAAAAAAAAAQAMowGY2ceLEQpJCRUVF4cknn6w+vmTJksIee+xRSFI477zzaqy58847Cz179iwMGTKkVryFCxcWWrVqVUhS+M1vflN9/MMPPyz8r//1vwpJCv379y+sW7euxrrrrruu8Oqrr9aK9/LLLxeGDh1aSFLYZpttCm+++WaN8T//+c+FJIUkha9//es1ann99dcLgwYNKiQpNG/evOhrKRQKhRkzZhTWrFlT47pMnTq1cOyxxxaSFI4++ujP9LoUCoXCPvvsU0hSGDFiROG9996rPj579uxCp06dCkkK559/fq11RxxxRCFJ4Qtf+EKN6zJp0qRCkyZNCiUlJYWdd965UdRSpeq6VP3Mnz+/UCh89p+XT1rL0qVLq6/Hv16XKo2llptvvrkwc+bMWrHWrVtXuOOOOwpt27YtJCn8+te/rjUH/pW9sHhqKRTshcVaS5UtaS8shs/9J63DPggAAAAAAAAAAMVHwwefilGjRhWSFJo1a1Y4+OCDC8ccc0xhm222KSQpDBo0qPDOO+/UmP+HP/yhkKTQpUuXOuPddttthSZNmhSSFPbee+/C1772tUL37t0LSQodO3YsvPjii7XW9O7du1BSUlLo1atX4eijjy4cf/zxhb333rtQVlZWSFL43Oc+V5g2bVqd5zvjjDOqH9qreritpKSkOoeSkpJGU0vv3r0LHTp0KAwZMqSwyy671HigslOnTp/5dSkUCoVXX3210LVr10KSwg477FA48sgjC/vuu2/1g8MHHnhgjYcTq7z++uvVD7FWPQBZdS2SFFq2bNloarn44osLe++9d2HvvfcudOzYsbqG1q1bF9q1a1edS7HXctRRR1Vfh+OOO66w2267FZIUSktLCzvssEOhS5cu1euLvZaTTz65kKRQWVlZGDZsWOHEE08sfOUrXyl06dKl+vqcddZZdT5YC3WxFxZPLfbC4qxlS9wLq65NXfvgrrvuWtR12AcBAAAAAAAAAKD4aPjgU3PrrbcW9t1330KbNm0KLVu2LPTq1aswduzYwvvvv19r7sYedisUCoWZM2cWjj766MK//du/FZo3b17o0qVL4ayzziosXry4zvm/+93vCscdd1xh1113LbRv377QtGnTwjbbbFPo379/4Uc/+lHh9ddf32D+d911V+Gwww4rbLfddoUmTZoUSktLC6WlpYWmTZsWevbs2Whqueqqqwr7779/Ydttty00a9as+iHKli1bNsh1qbJs2bLCmDFjCrvsskuhrKys0Lp168KAAQMK1157beHDDz9c77rly5cXxowZU9h5550LTZs2rf4pKytrVLVUPVS5oZ9u3boVfS377bffRutIUhg6dGjR1zJ9+vTCqFGjCv369St06tSp0KxZs0KrVq0Ku+yyS+Hkk08uPPzwwxs8H9TFXlgctdgLi7OWrW0v/MEPflDUddgHAQAAAAAAAACg+JQUCoVCAAAAAAAAAAAAAAAAKBqlDZ0AAAAAAAAAAAAAAAAANWn4AAAAAAAAAAAAAAAAKDIaPgAAAAAAAAAAAAAAAIqMhg8AAAAAAAAAAAAAAIAio+EDAAAAAAAAAAAAAACgyGj4AAAAAAAAAAAAAAAAKDIaPgAAAAAAAAAAAAAAAIqMhg8AAAAAAAAAAAAAAIAio+EDAAAAAAAAAAAAAACgyGj4AAAAAAAAAAAAAAAAKDIaPgAAAAAAAAAAAAAAAIqMhg8AAAAAAAAAAAAAAIAio+EDAAAAAAAAAAAAAACgyGj4AAAAAAAAAAAAAAAAKDIaPgAAAAAAAAAAAAAAAIqMhg8AAAAAAAAAAAAAAIAio+EDyHPPPZdjjjkmHTp0SKtWrbLHHnvkyiuvzLp169K1a9eUlJTklVdeqZ7/t7/9LT/60Y8yaNCg7LDDDmnevHk+97nP5YADDshtt91W5zkeeuihlJSUZP/998/777+fn/zkJ9lll13SokWL7Ljjjrngggvy3nvvJUmWL1+e//iP/0j37t3TokWLdO3aNT/+8Y/z4Ycf1oo7YsSIlJSU5IYbbsicOXPyta99Ldtuu23Ky8vTv3//3H333dVzH3/88Rx++OH5t3/7t7Rs2TIDBw7MlClT6sz3iSeeyHe/+93stdde6dSpU5o3b56OHTvmsMMOy+TJkzfhbxuAYmQvrM1eCAAAAAAAAAAA0LBKCoVCoaGTABrOtGnTcsghh+Tdd99Njx490r9//yxdujTTpk3LUUcdlcceeyz/+Mc/Mm/evHTt2jVJ8s1vfjO/+93vsuuuu6ZLly7ZZptt8uqrr+bxxx/PunXrcu655+YXv/hFjfM89NBD+fKXv5yBAwemefPmmTVrVvbff/+sW7cuDz/8cJYvX55DDz00N954Y770pS/lrbfeyr777puVK1fmL3/5S957772ceeaZufbaa2vEHTFiRG688cacc845+f3vf5/Kysr06dMn//jHP/Loo4+mpKQkt912W5o2bZrjjjsuvXr1yi677JIXXnghs2fPTtOmTfNf//VfGTx4cI24BxxwQP7rv/4ru+++ezp37pzy8vK89NJLeeqpp5IkV155Zb797W9/ehcGgM+MvdBeCAAAAAAAAAAAUIw0fMBW7N13383OO++chQsX5rzzzsvll1+e0tJ/vvjnb3/7W4YMGZLXX389SWo85Dpt2rR07tw53bt3rxFvzpw5OeCAA7JgwYI8/vjj2WuvvarHqh5yTZK99torkyZNyuc+97kkyT/+8Y/06dMnb7/9dvbYY4907do148ePT6tWrZIkM2fOzMCBA7Nu3brMmzcvO+64Y3Xcqodck+RnP/tZLrzwwpSUlCRJrrrqqowaNSqVlZVZvXp1xo0bl//1v/5X9dpzzz03V155ZQ444IA8+OCDNWq577778sUvfjHbbbddjeOPPvpoDj744Lz77ruZN29edthhh0/wNw9AsbAX2gsBAAAAAAAAAACKVWlDJwA0nNtvvz0LFy5Mly5dcumll1Y/4Jokn//853PRRRfVuW6//far9YBrkvTs2bN6ze23317n2pKSkvzud7+rfsA1Sbp06VL98Om8efPy29/+tvoB1yTp169fDjnkkKxbty4PPfRQnXH32muvGg+4Jsm3vvWttG/fPgsWLMgBBxxQ4wHXJPnBD36QJPnLX/6SNWvW1Bg75JBDaj3gmiQDBw7MWWedlTVr1uTuu++uMxcAGg97ob0QAAAAAAAAAACgWDVt6ASAhjNt2rQkyfDhw9OsWbNa4//+7/+es88+u861q1atyn333ZdZs2ZlyZIl+eCDD5IkixYtSvLPbzivy4477phevXrVOr7zzjsnSfbcc89su+226x1/7bXX6ox7yCGH1HjANUmaNm2abt265a233sqwYcNqrfnc5z6X9u3b56233srSpUvTqVOnGuNLly7Nn//85zz33HN5++23qx+EffHFFzdYIwCNh73QXggAAAAAAAAAAFCsNHzAVmzBggVJkq5du9Y5vs0226Rt27ZZvnx5jeP33ntvTjnllCxdunS9sVesWFHn8R133LHO4xUVFRscb926dZLkvffe2+xx33rrrVpxr7/++px77rlZvXp1neuS9dcIQONhL7QXAgAAAAAAAAAAFKvShk4AaHj/+m3gGxpbuHBhvva1r2Xp0qX57ne/m9mzZ2f58uVZu3ZtCoVC7r///iRJoVCoM15p6YZvOxsb/6TrPk7cJ598MmeccUbef//9XHbZZfnb3/6WVatWZd26dSkUCrnuuuuSrL9GABofe2FN9kIAAAAAAAAAAICG5w0fsBXbYYcdkiSvvPJKnePLly/PsmXLahy799578+677+aoo47KZZddVmvNiy++uLnT/MxNmDAhhUIh55xzTr773e/WGt8SagTgn+yFdbMXAgAAAAAAAAAANDxv+ICt2L777pvknw91fvjhh7XGb7nlllrH3nrrrSRJly5dao0VCoU61zQ2G6rxvffeyx133PFZpwTAp8ReWDd7IQAAAAAAAAAAQMPT8AFbseHDh2e77bbLK6+8ku9///tZt25d9dgLL7yQiy++uNaa3XbbLUly++23Z9GiRdXH165dmx/+8Id55JFHPv3EP2VVNd54441ZuXJl9fH33nsvI0eOzLx58xoqNQA2M3th3eyFAAAAAAAAAAAADU/DB2zFWrVqlZtuuiktWrTI5Zdfnp49e+aEE07IV77ylfTu3Tv77LNPdtxxxyRJ8+bNkySHHXZY9txzzyxYsCC77LJLDj300Hzta19Ljx49ctlll+WCCy5oyJI2i1NOOSVdunTJrFmz0q1btxx11FE59thj06VLl9x+++359re/3dApArCZ2AvrZi8EAAAAAAAAAABoeBo+YCs3ZMiQPP744znqqKPy1ltv5a677sqCBQvy85//PDfddFMWL16c0tLStG/fPknStGnTPPTQQ7nwwguzww47ZMqUKXnooYfSp0+fPProozn44IMbuKJNt80222TmzJkZOXJkttlmm9x333159NFHc9BBB+Wpp57KF7/4xYZOEYDNyF5Ym70QAAAAAAAAAACg4ZUUCoVCQycBFKe//OUv2W+//bLHHnvkmWeeaeh0AOAzZy8EAAAAAAAAAACgoXjDB2zl3nzzzcybN6/W8eeeey6nnXZakuSUU075rNMCgM+MvRAAAAAAAAAAAIBi5A0fsJV76KGH8uUvfzmf//zn071797Rs2TLz5s3LU089lXXr1uXAAw/MpEmT0rRp04ZOFQA+FfZCAAAAAAAAAAAAipGGD9jKvfbaa7nkkksybdq0LFy4MCtXrkzr1q2z++6758QTT8xpp53mAVcAtmj2QgAAAAAAAAAAAIqRhg8AAAAAAAAAAAAAAIAiU9rQCQAAAAAAAAAAAAAAAFCThg8AAAAAAAAAAAAAAIAio+EDAAAAAAAAAAAAAACgyGj4AAAAAAAAAAAAAAAAKDIaPgAAAAAAAAAAAAAAAIqMhg8AAAAAAAAAAAAAAIAio+EDAAAAAAAAAAAAAACgyGj4AAAAAAAAAAAAAAAAKDIaPgAAAAAAAAAAAAAAAIqMhg8AAAAAAAAAAAAAAIAio+EDAAAAAAAAAAAAAACgyGj4AAAAAAAAAAAAAAAAKDIaPgAAAAAAAAAAAAAAAIqMhg8AAAAAAAAAAAAAAIAio+EDAAAAAAAAAAAAAACgyGj4AAAAAAAAAAAAAAAAKDIaPgAAAAAAAAAAAAAAAIqMhg8AAAAAAAAAAAAAAIAio+EDAAAAAAAAAAAAAACgyGj4AAAAAAAAAAAAAAAAKDIaPgAAAAAAAAAAAAAAAIqMhg8AAAAAAAAAAAAAAIAi07ShE6BhlZeXZ82aNdl2220bOhWARueNN95Is2bNsnr16oZOhU/IPgiwaeyFjZ+9EGDT2AsBAAAAAACAT5OGj63cmjVrsnbt2oZOA6BRcv9s/OyDAJvGPbTxsxcCbBr3UAAAAAAAAODTpOFjK1f1La4LFixo4EwAGp/KysqGToFNZB8E2DT2wsbPXgiwaeyFAAAAAAAAwKeptKETAAAAAAAAAAAAAAAAoCYNHwAAAAAAAAAAAAAAAEVGwwcAAAAAAAAAAAAAAECR0fABAAAAAAAAAAAAAABQZDR8AAAAAAAAAAAAAAAAFBkNHwAAAAAAAAAAAAAAAEVGwwcAAAAAAAAAAAAAAECR0fABAAAAAAAAAAAAAABQZDR8AAA1TJgwIfvvv3/atWuX8vLy9O7dO5dffnnWrFnziWPefffdOfzww9OpU6c0b9482267bb70pS/l4osv3uC6v/zlLzn++ONTWVmZsrKydOjQIXvuuWfOPffcTcoHAAAAAAAAAAAAoNiVFAqFQkMnQcOprKxMkixYsKCBMwFofLbEe+jo0aMzbty4NG3aNEOGDElFRUWmTp2aZcuWZfDgwXnggQfSsmXLesf74IMPctJJJ2XChAlp2bJlBg4cmI4dO2bx4sV5/vnns3bt2ixZsqTWukKhkHPPPTfjxo1Ls2bNsvfee6dz585ZsmRJ/vu//zsLFizIypUrU1FRsUn1bonXEOCz5D7a+LmGAJvGfRQAAAAAAAD4NDVt6AQAgOJw1113Zdy4camoqMi0adPSt2/fJMmSJUsyZMiQTJ8+PRdddFGuuOKKesc87bTTMmHChBx55JG5/vrr06FDh+qxdevW5Yknnqhz3Y9//OOMGzcuX/rSl3LLLbekS5cuNcZnzJiRFi1afIIqAQAAAAAAAAAAABoHb/jYyvkWQoBPbku7h+61116ZMWNGfvazn+X73/9+jbHp06dnn332SVlZWV5//fW0bdt2o/GmTJmSAw44IL169cpTTz2VZs2a1SuPOXPmpFevXvnc5z6XF154Idtss80nKadetrRrCPBZcx9t/FxDgE3jPgoAAAAAAAB8mkobOgEAoOEtXLgwM2bMSJKceOKJtcYHDx6czp075/3338+kSZPqFfOqq65KkowePbrezR5Jcu211+bDDz/Maaed9qk2ewAAAAAAAAAAAAAUs6YNnQAA0PBmzZqVJGnfvn26detW55x+/fpl/vz5mTVrVk444YQNxlu7dm2mTJmSJNl3332zePHijB8/PnPmzElZWVn69OmTY445JhUVFbXW3n///dXrli1blltvvTXPPPNMSktL06tXrxxzzDHp0KHDppQLAAAAAAAAAAAAUPQ0fAAAmTdvXpJkxx13XO+czp0715i7IS+//HJWrVqVJHnssccycuTI6j9XOf/88zN+/PgMGTKk+tgHH3yQOXPmVJ/npJNOyhtvvFFj3X/8x3/k+uuvz/HHH1+PygAAAAAAAAAAAAAap9KGTgAAaHgrV65MkpSXl693TtXbOFasWLHReEuXLq3+/dRTT82ee+6ZGTNmZOXKlXn66aczbNiwvPnmmzniiCPy4osvVs996623UigUkiRnn312OnXqlIceeigrVqzICy+8kBEjRmTVqlU56aST8vDDD9ertsrKyvX+LFq0qF4xAAAAAAAAAAAAAD5rGj4AgM2uqmkjSXbYYYfcf//96devXyoqKtK7d+/cc8896dWrV1atWpWxY8fWua5ly5aZPHly9ttvv7Ru3To9e/bMH/7whxxyyCFZu3ZtfvzjH3+WJQEAAAAAAAAAAAB8pjR8AABp3bp1kmT16tXrnbNq1aokSZs2beodL0lGjBiRsrKyGuNNmjTJGWeckSSZPHlyneuOPvro/Nu//Vut2CNHjkySPPzww/nggw82msuCBQvW+7PddtttdD0AAAAAAAAAAABAQ9DwAQCka9euSZL58+evd07VWNXcjcUrKSlJknTv3r3OOVXHFy1aVH2soqKiusljY+vWrFmTJUuWbDQXAAAAAAAAAAAAgMZIwwcAkD59+iRJli5dmnnz5tU5Z+bMmUmSvn37bjReRUVFevbsmSTrbcqoOl5RUVHj+J577lmvdXWtBQAAAAAAAAAAANhSaPgAAFJZWZn+/fsnSW655ZZa49OnT8/8+fNTVlaWYcOG1Svm8OHDkySTJ0+uc/zBBx9Mkuy11151rps6dWrWrVu33nU9e/ZMmzZt6pULAAAAAAAAAAAAQGOj4QMASJJceOGFSZKxY8fmqaeeqj6+dOnSjBw5Mkly9tlnp23bttVjEydOzK677pqhQ4fWijdq1Ki0a9cukyZNynXXXVdjbPz48bn55pur533USSedlB49euS5557LD3/4wxpNH//1X/+VX/ziF3WuAwAAAAAAAAAAANiSaPgAAJIkRx55ZEaNGpVVq1ZlwIABOeSQQ3Lsscdmp512yrPPPptBgwblpz/9aY01y5cvz5w5c/LSSy/VitehQ4fceuutadGiRc4888z06tUrw4cPT9++fXPCCSekUCjkoosuqvXGkObNm+fOO+9M+/bt8/Of/zy77LJLjj322AwcODAHHHBA3nnnnZx88sn51re+9an+fQAAAAAAAAAAAAA0JA0fAEC1cePG5dZbb83AgQPzyCOPZNKkSamsrMzYsWMzderUtGzZ8mPFO/DAAzN79uycfPLJWbZsWe6+++68+uqrGTZsWO6///5cfPHFda77whe+kOeeey5nnXVW1q5dm3vvvTcvvPBC9ttvv/zf//t/c8MNN6SkpGRzlAwAAAAAAAAAAABQlEoKhUKhoZOg4VRWViZJFixY0MCZADQ+7qGNn2sIsGncRxs/1xBg07iPAgAAAAAAAJ8mb/gAAABgizNhwoTsv//+adeuXcrLy9O7d+9cfvnlWbNmzSeK9+STT2b48OHp2LFjWrRokW7duuWcc87JG2+8sdG1s2fPzje+8Y1069YtLVq0SLt27bLHHnvkW9/6VpYuXVpj7ooVK3LRRRflq1/9anr06JG2bdumefPm2X777XPEEUfkz3/+8yfKHwAAAAAAAACAxscbPrZyvoUQ4JNzD238XEOATVOs99HRo0dn3Lhxadq0aYYMGZKKiopMnTo1y5Yty+DBg/PAAw+kZcuW9Y53++2354QTTsiHH36Y/v37p1u3bpk5c2ZefvnldOzYMdOnT89OO+1U59orrrgiY8aMSaFQyJ577pkePXpk+fLlefHFFzN37tw8++yz6dWrV/X8uXPnZuedd05FRUV69eqV7bbbLqWlpZk7d25mz56dJBk5cmR+9atfbdpf0v8o1msI0Fi4jwIAAAAAAACfpqYNnQAAAABsLnfddVfGjRuXioqKTJs2LX379k2SLFmyJEOGDMn06dNz0UUX5YorrqhXvNdeey0nn3xyPvzww1x33XU5/fTTkyRr167NiBEjctNNN+XEE0/M448/npKSkhpr//CHP+T8889Pz549c/vtt9do7EiS559/vvpB4SqdOnXKo48+mn79+qVp05r/l/2//uu/cuihh+aaa67J4Ycfnq985Ssf6+8GAAAAAAAAAIDGpbShEwAAAIDN5ZJLLkmSjBkzprrZI0k6dOiQa665Jkly9dVXZ/ny5fWKd+WVV+add97JAQccUN3skSRNmjTJtddem7Zt22bGjBl54IEHaqx7++23M3r06LRs2TKTJk2q1eyRJLvvvnvatm1b41hFRUUGDBhQq9kjSb785S/n+OOPT5Ja5wMAAAAAAAAAYMuj4QMAAIAtwsKFCzNjxowkyYknnlhrfPDgwencuXPef//9TJo0qV4xJ06cuN54FRUVOfzww5Mkd955Z42xG2+8MStWrMgxxxyT7t27f6w6NqSqEaSsrGyzxQQAAAAAAAAAoDhp+AAAAGCLMGvWrCRJ+/bt061btzrn9OvXr8bcDVm5cmXmzp1bY119491///1Jkn333Tfvvvtu/vSnP2XUqFE566yzcuWVV2b+/Pn1qKimGTNm5NZbb01JSUkOO+ywj70eAAAAAAAAAIDGpWlDJwAAAACbw7x585IkO+6443rndO7cucbcDXnllVeqf19fzPXFe+aZZ5L8s2mkV69eefnll2uMX3DBBbn00kvzne98Z73n/+EPf5hXX3017777bubNm5cZM2akefPm+eUvf5mBAwduNH8AAAAAAAAAABo3DR8AAABsEVauXJkkKS8vX++cioqKJMmKFSvqHW9DMdcXb+nSpUmSMWPGZPvtt8+9996bwYMH56233spvfvObXH755TnvvPOy3Xbb5YQTTqgz9j333JPZs2fXONcvfvGLfOMb39ho7h9VWVm53rFFixZlu+22+1jxAAAAAAAAAAD4bJQ2dAIAAACwpSkUCkmSdevWZdKkSTn00EOzzTbbpHv37hk7dmzOPPPMJMkPfvCD9cZ4+umnUygUsnz58jzxxBM5/PDDc/rpp+eggw6q0YwCAAAAAAAAAMCWScMHAAAAW4TWrVsnSVavXr3eOatWrUqStGnTpt7xNhRzffGq1u6zzz75Zc00pAABAABJREFU/Oc/X2vdyJEjkyQvv/xy5s2bt8E82rRpk/79++fmm2/OyJEjM3Xq1PzkJz/ZaP5VFixYsN4fb/cAAAAAAAAAACheGj4AAADYInTt2jVJMn/+/PXOqRqrmrshXbp0qf791Vdf/VjxunfvXuO//+qjxxctWrTRXKqccsopSZKJEyfWew0AAAAAAAAAAI2Thg8AAAC2CH369EmSLF26dL1vzZg5c2aSpG/fvhuN16ZNm+y000411tU33p577pkkWbJkSZ3rPnq8oqJio7lUKS8vT5K88cYb9V4DAAAAAAAAAEDjpOEDAACALUJlZWX69++fJLnllltqjU+fPj3z589PWVlZhg0bVq+YRx111HrjrVq1Kvfee2+S5Oijj64xNnz48CTJY489ltWrV9da++CDDyb5Z7PHbrvtVq9ckmTKlClJkl122aXeawAAAAAAAAAAaJw0fAAAALDFuPDCC5MkY8eOzVNPPVV9fOnSpRk5cmSS5Oyzz07btm2rxyZOnJhdd901Q4cOrRVv9OjRadWqVSZPnpzrr7+++vjatWszcuTILFu2LP37989BBx1UY92QIUOyzz775I033sjZZ5+d999/v3rsmWeeyQ9+8IMkybe+9a00a9aseuyWW27Jk08+WSuPQqGQO++8s3rd6aefXv+/FAAAAAAAAAAAGiUNH/9iwoQJ2X///dOuXbuUl5end+/eufzyy7NmzZpPFO/JJ5/M8OHD07Fjx7Ro0SLdunXLOeeckzfeeKPeMRYuXJh27dqlpKQkTZs2/UR5AAAAbA2OPPLIjBo1KqtWrcqAAQNyyCGH5Nhjj81OO+2UZ599NoMGDcpPf/rTGmuWL1+eOXPm5KWXXqoVb/vtt88NN9yQJk2a5PTTT8+AAQNy/PHHZ5dddsmf/vSndOzYMbfccktKSkpqrb355pvTtWvX3HDDDenRo0eOOuqo7Lfffunfv38WL16cAw88sFYuDzzwQPr165fOnTvnq1/9av793/89Bx98cLp165Zjjjkmy5cvz1lnnaXhAwAAAAAAAABgK6Dh4yNGjx6d4447Ln/961+z11575eCDD86rr76aCy64IEOGDMm77777seLdfvvtGTBgQG6//fZ06dIlRxxxREpLS3P11VfnC1/4QubOnVuvOKeddlqWL1/+SUoCAADY6owbNy633nprBg4cmEceeSSTJk1KZWVlxo4dm6lTp6Zly5YfK97w4cPz+OOP5+ijj87LL7+ciRMnZu3atTnrrLMye/bs7LTTTnWu69y5c55++umMGTMm5eXlue+++zJr1qz07ds31157be67776UlZXVWHPaaadl1KhR6dSpU5566qlMmDAhDz/8cMrKynLyySfn4YcfztVXX11ngwkAAAAAAAAAAFuWkkKhUGjoJIrBXXfdlaOOOioVFRWZNm1a+vbtmyRZsmRJhgwZkmeffTbnnXderrjiinrFe+2117LzzjvnnXfeyXXXXVf97atr167NiBEjctNNN6V///55/PHHN/igzm9/+9ucdtppOfvss3P11VenSZMm+fDDDze94P9RWVmZJFmwYMFmiwmwtXAPbfxcQ4BN4z7a+LmGAJvGfRQAAAAAAAD4NHnDx/+45JJLkiRjxoypbvZIkg4dOuSaa65Jklx99dX1ftPGlVdemXfeeScHHHBAdbNHkjRp0iTXXntt2rZtmxkzZuSBBx5Yb4x//OMf+c53vpMBAwbk3HPP/SRlAQAAAAAAAAAAAAAAjZCGjyQLFy7MjBkzkiQnnnhirfHBgwenc+fOef/99zNp0qR6xZw4ceJ641VUVOTwww9Pktx55511ri8UCvnGN76RDz74IL///e9TWupSAQAAAAAAAAAAAADA1kIXQZJZs2YlSdq3b59u3brVOadfv3415m7IypUrM3fu3BrrPm68a665JlOnTs2PfvSj7Lbbbhs9JwAAAAAAAAAAAAAAsOXQ8JFk3rx5SZIdd9xxvXM6d+5cY+6GvPLKK9W/ry/mhuK99NJLueCCC7Lnnnvm/PPP3+j5AAAAAAAAAAAAAACALUvThk6gGKxcuTJJUl5evt45FRUVSZIVK1bUO96GYq4v3rp16zJixIh88MEH+cMf/pCmTTf9ElVWVq53bNGiRdluu+02+RwAAAAAAAAAAAAAAMDm4w0fRebKK6/M9OnT84Mf/CB77LFHQ6cDAAAAAAAAAAAAAAA0AG/4SNK6deskyerVq9c7Z9WqVUmSNm3a1DteVcy2bdvWK96cOXPy/e9/P7179873vve9+iVfDwsWLFjv2Ibe/gEAAAAAAAAAAAAAADQMDR9JunbtmiSZP3/+eudUjVXN3ZAuXbpU//7qq6/W+aaOuuLdd999ee+997J69eoceOCBNea/9957SZK1a9dm//33T5KMGTMmBx988EbzAQAAAAAAAAAAAAAAGhcNH0n69OmTJFm6dGnmzZuXbt261Zozc+bMJEnfvn03Gq9NmzbZaaedMnfu3MycObPOho8NxZs7d27mzp273vjTpk1LkowYMWKjuQAAAAAAAAAAAAAAAI1PaUMnUAwqKyvTv3//JMktt9xSa3z69OmZP39+ysrKMmzYsHrFPOqoo9Ybb9WqVbn33nuTJEcffXT18dGjR6dQKNT5M2/evCRJkyZNqo9p+AAAAAAAAAAAAAAAgC2Tho//ceGFFyZJxo4dm6eeeqr6+NKlSzNy5Mgkydlnn522bdtWj02cODG77rprhg4dWive6NGj06pVq0yePDnXX3999fG1a9dm5MiRWbZsWfr375+DDjro0yoJAAAAAAAAAAAAAABopDR8/I8jjzwyo0aNyqpVqzJgwIAccsghOfbYY7PTTjvl2WefzaBBg/LTn/60xprly5dnzpw5eemll2rF23777XPDDTekSZMmOf300zNgwIAcf/zx2WWXXfKnP/0pHTt2zC233JKSkpLPqkQAAAAAAAAAAAAAAKCR0PDxEePGjcutt96agQMH5pFHHsmkSZNSWVmZsWPHZurUqWnZsuXHijd8+PA8/vjjOfroo/Pyyy9n4sSJWbt2bc4666zMnj07O+2006dUCQAAAAAAAAAAAAAA0JiVFAqFQkMnQcOprKxMkixYsKCBMwFofNxDGz/XEGDTuI82fq4hwKZxHwUAAAAAAAA+Td7wAQAAAAAAAAAAAAAAUGQ0fAAAAAAAAAAAAAAAABQZDR8AAAAAAAAAAAAAAABFRsMHAAAAAAAAAAAAAABAkdHwAQAAAAAAAAAAAAAAUGQ0fAAANUyYMCH7779/2rVrl/Ly8vTu3TuXX3551qxZ84lj3n333Tn88MPTqVOnNG/ePNtuu22+9KUv5eKLL64196GHHkpJSckGf379619vSokAAAAAAAAAAAAARa9pQycAABSP0aNHZ9y4cWnatGmGDBmSioqKTJ06NRdccEHuvffePPDAA2nZsmW9433wwQc56aSTMmHChLRs2TIDBw5Mx44ds3jx4jz//PP55S9/mR/+8Id1ru3YsWMOPvjgOsd69uz5ieoDAAAAAAAAAAAAaCw0fAAASZK77ror48aNS0VFRaZNm5a+ffsmSZYsWZIhQ4Zk+vTpueiii3LFFVfUO+Zpp52WCRMm5Mgjj8z111+fDh06VI+tW7cuTzzxxHrX7rrrrrnhhhs+cT0AAAAAAAAAAAAAjVlpQycAABSHSy65JEkyZsyY6maPJOnQoUOuueaaJMnVV1+d5cuX1yvelClT8sc//jG9evXKbbfdVqPZI0lKS0szYMCAzZQ9AAAAAAAAAAAAwJZFwwcAkIULF2bGjBlJkhNPPLHW+ODBg9O5c+e8//77mTRpUr1iXnXVVUmS0aNHp1mzZpsvWQAAAAAAAAAAAICtQNOGTgAAaHizZs1KkrRv3z7dunWrc06/fv0yf/78zJo1KyeccMIG461duzZTpkxJkuy7775ZvHhxxo8fnzlz5qSsrCx9+vTJMccck4qKivXGeP3113PxxRdn4cKFadGiRXbdddd89atfzY477vgJqwQAAAAAAAAAAABoPDR8AACZN29ekmywmaJz58415m7Iyy+/nFWrViVJHnvssYwcObL6z1XOP//8jB8/PkOGDKkzxgsvvJAf/ehHNY41bdo055xzTi6//PI0bep/xgAAAAAAAAAAAABbrtKGTgAAaHgrV65MkpSXl693TtXbOFasWLHReEuXLq3+/dRTT82ee+6ZGTNmZOXKlXn66aczbNiwvPnmmzniiCPy4osv1ljbtm3bjB49OtOmTcuiRYuyevXqPPPMMzn33HNTUlKS//N//k9GjhxZ79oqKyvX+7No0aJ6xwEAAAAAAAAAAAD4LGn4AAA2u0KhUP37DjvskPvvvz/9+vVLRUVFevfunXvuuSe9evXKqlWrMnbs2Bpr+/Tpk//zf/5P9t1333Tq1CmtWrXKHnvskV/84hcZP358kuT666/P008//VmWBAAAAAAAAAAAAPCZ0vABAKR169ZJktWrV693zqpVq5Ikbdq0qXe8JBkxYkTKyspqjDdp0iRnnHFGkmTy5Mn1zvPoo4/OF7/4xSTJvffeW681CxYsWO/PdtttV+9zAwAAAAAAAAAAAHyWNHwAAOnatWuSZP78+eudUzVWNXdj8UpKSpIk3bt3r3NO1fFFixZ9jEyT3XbbLck/GzkAAAAAAAAAAAAAtlQaPgCA9OnTJ0mydOnSzJs3r845M2fOTJL07dt3o/EqKirSs2fPJMmSJUvqnFN1vKKi4mPlunTp0iQ13yICAAAAAAAAAAAAsKXR8AEApLKyMv3790+S3HLLLbXGp0+fnvnz56esrCzDhg2rV8zhw4cnSSZPnlzn+IMPPpgk2Wuvveqd58KFC/Pwww9/7HUAAAAAAAAAAAAAjY2GDwAgSXLhhRcmScaOHZunnnqq+vjSpUszcuTIJMnZZ5+dtm3bVo9NnDgxu+66a4YOHVor3qhRo9KuXbtMmjQp1113XY2x8ePH5+abb66e91Hjxo2r860gzzzzTA477LC8++676dGjR4444ohPWCkAAAAAAAAAAABA8Wva0AkAAMXhyCOPzKhRo/LLX/4yAwYMyNChQ1NeXp4pU6Zk2bJlGTRoUH7605/WWLN8+fLMmTMn7733Xq14HTp0yK233prDDz88Z555Zq666qrstttueemllzJr1qwkyUUXXVTrjSE/+tGPct555+WLX/xiunXrltLS0uo169aty4477ph77703ZWVln95fBgAAAAAAAAAAAEAD0/ABAFQbN25cBg0alF/96ld55JFHsmbNmvTo0SNjxozJueeem+bNm3+seAceeGBmz56dSy65JJMnT87dd9+dNm3aZNiwYfn2t7+dgw46qNaa73//+/nrX/+a559/Pg8++GBWr16dNm3a5Etf+lKOOOKInHHGGWnduvXmKhkAAAAAAAAAAACgKJUUCoVCQydBw6msrEySLFiwoIEzAWh83EMbP9cQYNO4jzZ+riHApnEfBQAAAAAAAD5NpQ2dAAAAAAAAAAAAAAAAADVp+AAAAAAAAAAAAAAAACgyGj4AAADY4kyYMCH7779/2rVrl/Ly8vTu3TuXX3551qxZ84niPfnkkxk+fHg6duyYFi1apFu3bjnnnHPyxhtvbHTt7Nmz841vfCPdunVLixYt0q5du+yxxx751re+laVLl9aY+8Ybb+SPf/xjTjzxxOy8885p0aJFWrVqlV133TWjRo3KK6+88onyBwAAAAAAAACg8SkpFAqFhk6ChlNZWZkkWbBgQQNnAtD4uIc2fq4hwKYp1vvo6NGjM27cuDRt2jRDhgxJRUVFpk6dmmXLlmXw4MF54IEH0rJly3rHu/3223PCCSfkww8/TP/+/dOtW7fMnDkzL7/8cjp27Jjp06dnp512qnPtFVdckTFjxqRQKGTPPfdMjx49snz58rz44ouZO3dunn322fTq1at6/kknnZSbb745paWl6dWrV3r27JnVq1dnxowZefPNN1NeXp6JEyfmwAMP3OS/p6R4ryFAY+E+CgAAAAAAAHyamjZ0AgAAALC53HXXXRk3blwqKioybdq09O3bN0myZMmSDBkyJNOnT89FF12UK664ol7xXnvttZx88sn58MMPc9111+X0009PkqxduzYjRozITTfdlBNPPDGPP/54SkpKaqz9wx/+kPPPPz89e/bM7bffXqOxI0mef/756geFq7Rv3z4/+clPcuqpp2aHHXaoPr5q1aqcdtppGT9+fI4//vjMnTs37dq1+9h/PwAAAAAAAAAANB7e8LGV8y2EAJ+ce2jj5xoCbJpivI/utddemTFjRn72s5/l+9//fo2x6dOnZ5999klZWVlef/31tG3bdqPxvvvd7+Z//+//nQMOOCAPPvhgjbFVq1alsrIyy5cvz//7f/8vX/nKV6rH3n777XTt2jVr1qzJc889l+7du29ybe+88046deqUlStX5k9/+lNOOumkTY5ZjNcQoDFxHwUAAAAAAAA+TaUNnQAAAABsDgsXLsyMGTOSJCeeeGKt8cGDB6dz5855//33M2nSpHrFnDhx4nrjVVRU5PDDD0+S3HnnnTXGbrzxxqxYsSLHHHPMZmn2SJJWrVqlZ8+eSZL58+dvlpgAAAAAAAAAABQvDR8AAABsEWbNmpUkad++fbp16/b/sXfnYVXW+f/HXweQRY6gxIgoIKClpmWiuAQugWlZmkuUmpNaqUXqYOVIms2UjZL5a8R11CxtcSxUVBocF0xHMg2TNG1yA0ZQzEBZ3RDO74++nIkB5CAii8/HdXHNOZ/P+/O+3/c519z3eM15358yY7p06VIi9kZyc3N18uTJEusszbd161ZJUq9evXT58mV98sknmjx5sl5++WXNnz//pho2CgoKlJKSIklyd3ev9HoAAAAAAAAAAAAAAADULTY1XQAAAAAAALdCcnKyJMnLy6vcGE9PzxKxN1LcXHGjnOXlO3z4sKRfm0Y6dOigpKSkEvPTpk3TnDlz9Morr1RYR7GVK1cqIyNDDg4OevTRRy1eBwAAAAAAAAAAAAAAgLqJHT4AAAAAAPVCbm6uJMnR0bHcGKPRKEnKycmxON+NcpaXLzMzU5IUHh6uwsJCxcTE6OLFizp16pSmTZumgoICvfrqq/r73/9eYR2S9MMPP2jq1KmSpJkzZ8rNzc2idZLk4eFR7l96errFeQAAAAAAAAAAAAAAAHB70fABAAAAAMAtZjKZJElFRUWKjY3V448/rsaNG8vX11cRERF68cUXJUlvvPFGhbnS0tI0cOBA5eXladCgQQoPD6/W2gEAAAAAAAAAAAAAAFA70PABAAAAAKgXGjVqJEnKz88vNyYvL0+S5OTkZHG+G+UsL1/x2p49e+ree+8ttS40NFSSlJSUpOTk5HJrOHfunIKDg/Wf//xH/fv31xdffCGDwVBh7b+VlpZW7p+7u3ulcgEAAAAAAAAAAAAAAOD2oeEDAAAAAFAveHt7S5JSU1PLjSmeK469kZYtW5pfnz59ulL5fH19S/zn//rteHp6epkx58+fV1BQkI4fP66+fftq48aNsrOzq7BuAAAAAAAAAAAAAAAA1A80fAAAAAAA6oVOnTpJkjIzM8vdNePAgQOSJD8/vwrzOTk5qXXr1iXWWZqvc+fOkqSMjIwy1/123Gg0lpr/5ZdfFBQUpH//+98KDg7W5s2bZW9vX2HNAAAAAAAAAAAAAAAAqD9o+AAAAAAA1AseHh7y9/eXJK1Zs6bUfHx8vFJTU2VnZ6cBAwZYlHPIkCHl5svLy1NMTIwkaejQoSXmQkJCJEn79u1Tfn5+qbXbt2+X9GuzR7t27UrMZWRkKCgoSEePHlVwcLBiYmLk4OBgUb0AAAAAAAAAAAAAAACoP2j4AAAAAADUG9OnT5ckRURE6ODBg+bxzMxMhYaGSpImTpwoZ2dn81x0dLTatm2r4ODgUvnCwsLUsGFD7dixQytWrDCPFxYWKjQ0VFlZWfL391e/fv1KrAsKClLPnj11/vx5TZw4UVevXjXPHT58WG+88YYk6aWXXlKDBg3McxcuXFBwcLCOHDmivn370uwBAAAAAAAAAAAAAABwBzOYTCZTTReBmuPh4SFJSktLq+FKAKDu4Rpa9/EdAkDV1Nbr6B/+8ActWLBADRo0UHBwsBwdHRUXF6esrCwFBARo+/btJZooVq1apbFjx6ply5ZKSUkplS8qKkojRoxQYWGhunXrJm9vbyUkJCgpKUlubm6Kj49X69atS61LTU1Vr169lJKSohYtWsjf318XLlzQvn37dO3aNT388MOKiYmRnZ2dec3QoUMVHR0tg8GgkJCQcps9Bg8erMGDB1f5s6qt3yEA1BVcRwEAAAAAAAAAAABUJ5uaLgAAAAAAgFspMjJSAQEBWrx4sfbu3auCggK1atVK4eHhmjJlimxtbSuVLyQkRL6+vpo9e7b27NmjxMREubu76+WXX9bMmTPl5uZW5jpPT099//33ioiI0IYNG7RlyxbZ2trKz89Po0eP1rhx42RtbV1izYULFyRJJpNJX3zxRbk1eXt735KGDwAAAAAAAAAAAAAAANRe7PBxh+MphABw87iG1n18hwBQNVxH6z6+QwCoGq6jAAAAAAAAAAAAAKqTVU0XAAAAAAAAAAAAAAAAAAAAAAAAgJJo+AAAAAAAAAAAAAAAAAAAAAAAAKhlaPgAAAAAAAAAAAAAAAAAAAAAAACoZWj4AAAAAAAAAAAAAAAAAAAAAAAAqGVo+AAAAAAAAAAAAAAAAAAAAAAAAKhlaPgAAAAAAAAAAAAAAAAAAAAAAACoZWj4AAAAAAAAAAAAAAAAAAAAAAAAqGVo+AAAAAAAAAAAAAAAAAAAAAAAAKhlaPj4H1FRUerTp4+aNGkiR0dHdezYUXPnzlVBQcFN5fvuu+8UEhIiNzc32dvby8fHR5MmTdL58+fLjD99+rSWLVumoUOHqmXLlrKzs5PRaFTHjh01ffp0/fLLL1U5PQAAAAAAAAAAAAAAAAAAAAAAUAcYTCaTqaaLqC3CwsIUGRkpGxsbBQUFyWg0aufOncrKylJgYKC2bdsmBwcHi/OtW7dOI0aM0PXr1+Xv7y8fHx8dOHBASUlJcnNzU3x8vFq3bl1iTWBgoL7++mvZ2NioU6dO8vX11YULF7R//37l5OTod7/7nbZt26YHHnjglpyzh4eHJCktLe2W5AOAOwnX0LqP7xAAqobraN3HdwgAVcN1FAAAAAAAAAAAAEB1YoeP/7Nx40ZFRkbKaDRq//792rp1q9avX68TJ07ovvvuU3x8vGbOnGlxvrNnz2r06NG6fv26li1bpm+//Vaff/65jh8/rlGjRunnn3/WyJEj9b/9Ni1atNBf//pXnTt3Tt9++63Wrl2rbdu26eTJk+rTp49++eUXPfXUUyosLLzVHwEAAAAAAAAAAAAAAAAAAAAAAKglaPj4P7Nnz5YkhYeHy8/Pzzzu6uqqJUuWSJIWLVqk7Oxsi/LNnz9fly5dUt++fTV+/HjzuLW1tZYuXSpnZ2clJCRo27ZtJdZ9/vnnCgsL01133VVi/He/+50++eQTSdKJEyf0zTffVP4kAQAAAAAAAAAAAAAAAAAAAABAnUDDh6QzZ84oISFBkjRy5MhS84GBgfL09NTVq1cVGxtrUc7o6Ohy8xmNRg0aNEiStGHDBovr9PDwkKurqyQpNTXV4nUAAAAAAAAAAAAAAAAAAAAAAKBuoeFDUmJioiTJxcVFPj4+ZcZ06dKlROyN5Obm6uTJkyXWVSVfsYyMDF28eFGS5O7ubvE6AAAAAAAAAAAAAAAAAAAAAABQt9DwISk5OVmS5OXlVW6Mp6dnidgbSUlJMb8uL2dl8hWbN2+eCgsL5e7urgcffNDidQAAAAAAAAAAAAAAAAAAAAAAoG6xqekCaoPc3FxJkqOjY7kxRqNRkpSTk2NxvhvlrEw+SdqxY4fmzZsnSfp//+//ydbW1qJ1kuTh4VHuXHp6OruFAAAAAAAAAAAAAAAAAAAAAABQy7DDRx3www8/KCQkRIWFhZo0aZJGjBhR0yUBAOqxqKgo9enTR02aNJGjo6M6duyouXPnqqCg4KZzbtq0SYMGDVKzZs1ka2urpk2b6sEHH9Tbb79t0fpDhw7J1tZWBoNBrVu3vuk6AAAAAAAAAAAAAAAAAAAA6gp2+JDUqFEjSVJ+fn65MXl5eZIkJycni/MV53R2dr7pfD/99JP69u2rrKwsjR07VpGRkRUe/3+lpaWVO3ej3T8AAHeesLAwRUZGysbGRkFBQTIajdq5c6emTZummJgYbdu2TQ4ODhbnu3btmkaNGqWoqCg5ODioR48ecnNz07lz53T06FEtWLBAb775ZoU5nn32WV2/fr2qpwcAAAAAAAAAAAAAAAAAAFBnsMOHJG9vb0lSampquTHFc8WxN9KyZUvz69OnT990vuPHjysoKEjnz5/Xs88+qw8++EAGg6HC4wMAcDM2btyoyMhIGY1G7d+/X1u3btX69et14sQJ3XfffYqPj9fMmTMrlXPcuHGKiorS4MGDdfr0acXFxWnNmjXauXOn0tPT9eWXX1aY4+2339bhw4f18ssv3+ypAQAAAAAAAAAAAAAAAAAA1Dk0fEjq1KmTJCkzM1PJycllxhw4cECS5OfnV2E+JycntW7dusS6yuY7ceKEHnroIaWnp2vUqFH66KOPZGXF1wUAqD6zZ8+WJIWHh5e4P7m6umrJkiWSpEWLFik7O9uifHFxcfr444/VoUMHffHFF3J1dS0xb2Vlpe7du98wR0JCgiIiIhQSEqJhw4ZV5nQAAAAAAAAAAAAAAAAAAADqNDoIJHl4eMjf31+StGbNmlLz8fHxSk1NlZ2dnQYMGGBRziFDhpSbLy8vTzExMZKkoUOHlpo/deqUHnroIZ09e1ajRo3S6tWrafYAAFSrM2fOKCEhQZI0cuTIUvOBgYHy9PTU1atXFRsba1HOhQsXSpLCwsLUoEGDStd05coVjR49Wk2aNNGiRYsqvR4AAAAAAAAAAAAAAAAAAKAuo4vg/0yfPl2SFBERoYMHD5rHMzMzFRoaKkmaOHGinJ2dzXPR0dFq27atgoODS+ULCwtTw4YNtWPHDq1YscI8XlhYqNDQUGVlZcnf31/9+vUrsS45OVkPPfSQzpw5o9///vc0ewAAbovExERJkouLi3x8fMqM6dKlS4nYGyksLFRcXJwkqVevXjp37pzmz5+vl156SWFhYVq9erXy8vJumGPmzJn697//rQULFqhp06aVOR0AAAAAAAAAAAAAAAAAAIA6z6amC6gtBg8erMmTJ2vBggXq3r27goOD5ejoqLi4OGVlZSkgIECzZs0qsSY7O1vHjh3TlStXSuVr3ry5Vq1apREjRmj8+PFauXKlvL29lZCQoKSkJLm5uWnNmjUyGAwl1g0bNsy8m4gkPffcc2XW+8ILLygwMPAWnT0A4E6XnJwsSfLy8io3xtPTs0TsjSQlJZkbOvbt26fQ0NBSDR5Tp07V2rVrFRQUVGr93r179f777+uJJ57QiBEjLD4PAAAAAAAAAAAAAAAAAACA+oKGj9+IjIxUQECAFi9erL1796qgoECtWrVSeHi4pkyZIltb20rlCwkJka+vr2bPnq09e/YoMTFR7u7uevnllzVz5ky5ubmVWnPhwgVJ0tWrV/XJJ5+Um7tPnz40fAAAbpnc3FxJkqOjY7kxRqNRkpSTk1NhvszMTPPr559/Xg8++KDmzZuntm3b6tSpU5o+fbpiY2P1xBNP6ODBg7r77rvN8ZcuXdKYMWPk7OyspUuX3uwpmXl4eJQ7l56eLnd39yofAwAAAAAAAAAAAAAAAAAA4Faj4eN/PPXUU3rqqacsih0zZozGjBlzw5jOnTtr/fr1Fh8/JSXF4lgAAGork8lkft2iRQtt3brVvHtVx44dtXnzZj3wwAM6cuSIIiIitHLlSnN8eHi4Tpw4odWrV9OMAQAAAAAAAAAAAAAAAAAA7lg0fAAAADVq1EiSlJ+fX25MXl6eJMnJycnifNKvDZLFzR7FrK2tNWHCBE2aNEk7duwwj+/atUuLFi3SgAED9Oyzz1bqHMqTlpZW7tyNdv8AAAAAAAAAAAAAAAAAAACoSTR8AAAAeXt7S5JSU1PLjSmeK46tKJ/BYJDJZJKvr2+ZMcXj6enp5rGNGzfKZDLp9OnT6tOnT4n4rKwsSdKZM2fMc/Pnz9cDDzxQYT0AAAAAAAAAAAAAAAAAAAB1DQ0fAABAnTp1kiRlZmYqOTlZPj4+pWIOHDggSfLz86swn9FoVJs2bfTTTz8pIyOjzJjicaPRWGruyJEj5ea+cuWKdu/eLem/TSAAAAAAAAAAAAAAAAAAAAD1jVVNFwAAAGqeh4eH/P39JUlr1qwpNR8fH6/U1FTZ2dlpwIABFuUMCQmRJO3YsaPM+e3bt0uSunbtah6bP3++TCZTmX9fffWVJKlVq1bmsf/dBQQAAAAAAAAAAAAAAAAAAKC+oOEDAABIkqZPny5JioiI0MGDB83jmZmZCg0NlSRNnDhRzs7O5rno6Gi1bdtWwcHBpfJNnjxZTZo0UWxsrJYtW1Zibu3atfrss8/McQAAAAAAAAAAAAAAAAAAACiJhg8AACBJGjx4sCZPnqy8vDx1795djz76qJ588km1bt1aP/zwgwICAjRr1qwSa7Kzs3Xs2DGdOnWqVD5XV1d9/vnnsre314svvqgOHTooJCREfn5+GjFihEwmk2bOnGnxjiEAAAAAAAAAAAAAAAAAAAB3Eho+AACAWWRkpD7//HP16NFDe/fuVWxsrDw8PBQREaGdO3fKwcGhUvkefvhhHTp0SKNHj1ZWVpY2bdqk06dPa8CAAdq6davefvvtajoTAAAAAAAAAAAAAAAAAACAus1gMplMNV0Eao6Hh4ckKS0trYYrAYC6h2to3cd3CABVw3W07uM7BICq4ToKAAAAAAAAAAAAoDqxwwcAAAAAAAAAAAAAAAAAAAAAAEAtQ8MHAAAAAAAAAAAAAAAAAAAAAABALUPDBwAAAAAAAAAAAAAAAAAAAAAAQC1DwwcAAAAAAAAAAAAAAAAAAAAAAEAtQ8MHAAAAAAAAAAAAAAAAAAAAAABALUPDBwAAAACg3omKilKfPn3UpEkTOTo6qmPHjpo7d64KCgpuKt93332nkJAQubm5yd7eXj4+Ppo0aZLOnz9f4dpDhw7pueeek4+Pj+zt7dWkSRPdd999eumll5SZmVkqPjY2Vn/+8581cOBANW/eXAaDQQaDQWlpaTdVOwAAAAAAAAAAAAAAAOomg8lkMtV0Eag5Hh4eksQPhwDgJnANrfv4DgGgamrrdTQsLEyRkZGysbFRUFCQjEajdu7cqaysLAUGBmrbtm1ycHCwON+6des0YsQIXb9+Xf7+/vLx8dGBAweUlJQkNzc3xcfHq3Xr1mWunTdvnsLDw2UymdS5c2e1atVK2dnZOnHihE6ePKkffvhBHTp0KLGmcePGys7OLpUrNTXV/JnfKrX1OwSAuoLrKAAAAAAAAAAAAIDqZFPTBQAAAAAAcKts3LhRkZGRMhqN2r17t/z8/CRJGRkZCgoKUnx8vGbOnKl58+ZZlO/s2bMaPXq0rl+/rmXLlmn8+PGSpMLCQo0ZM0affvqpRo4cqf3798tgMJRY+9FHH2nq1Klq06aN1q1bV6qx4+jRo2U2cAwdOlR33323/Pz85Ofnp6ZNm97MRwEAAAAAAAAAAAAAAIA6jh0+7nA8hRAAbh7X0LqP7xAAqqY2Xke7du2qhIQEvfPOO5oxY0aJufj4ePXs2VN2dnb6+eef5ezsXGG+P/7xj3rvvffUt29fbd++vcRcXl6ePDw8lJ2drX/+85/q37+/ee7ixYvy9vZWQUGBjhw5Il9f35s+p+JGEnb4AIDah+soAAAAAAAAAAAAgOpkVdMFAAAAAABwK5w5c0YJCQmSpJEjR5aaDwwMlKenp65evarY2FiLckZHR5ebz2g0atCgQZKkDRs2lJhbvXq1cnJyNGzYsCo1ewAAAAAAAAAAAAAAAODORcMHAAAAAKBeSExMlCS5uLjIx8enzJguXbqUiL2R3NxcnTx5ssQ6S/Nt3bpVktSrVy9dvnxZn3zyiSZPnqyXX35Z8+fPV2pqqgVnBAAAAAAAAAAAAAAAgDuZTU0XAAAAAAC4M6Snp2vTpk06duyYcnJyZDKZSsUYDAatXLnypvInJydLkry8vMqN8fT0LBF7IykpKebX5eUsL9/hw4cl/do00qFDByUlJZWYnzZtmubMmaNXXnmlwjoAAAAAAAAAAAAAAABwZ6LhAwAAAABQ7RYuXKipU6eqoKDAPFbc8GEwGMzvq9LwkZubK0lydHQsN8ZoNEqScnJyLM53o5zl5cvMzJQkhYeHq3nz5oqJiVFgYKAuXLig5cuXa+7cuXr11Vfl7u6uESNGVFhLVXh4eJQ7l56eLnd392o9PgAAAAAAAAAAAAAAAG6OVU0XAAAAAACo3+Li4vSHP/xB9vb2Cg8PV48ePSRJy5Yt06uvvipvb29JUlhYmD788MMarPTWKW5mKSoqUmxsrB5//HE1btxYvr6+ioiI0IsvvihJeuONN2qyTAAAAAAAAAAAAAAAANRi7PABAEAtV1hYqHXr1mnHjh06c+aMrly5UmacwWBQXFzcba4OAICKRUZGymAwaOvWrerWrZvGjh2rb775RuPGjZMkvfPOO3rppZf04Ycf6uDBgzd9nEaNGkmS8vPzy43Jy8uTJDk5OVmcrzins7OzxfkaNWqkzMxM9ezZU/fee2+pdaGhoVq6dKmSkpKUnJwsHx+fCuu5WWlpaeXO3Wj3DwAAAAAAAAAAAAAAANQsGj4AAKjFsrOz1b9/fyUkJJifFF4eg8Fwm6oCAKByvv32W/n5+albt25lztvZ2Wnp0qWKjY3V22+/rVWrVt3UcYp3CklNTS03pniuOPZGWrZsaX59+vRp3XfffRbn8/X1VWZmpnx9fcvM/dvx9PT0am34AAAAAAAAAAAAAAAAQN1EwwcAALXYzJkz9e2336pFixaaNGmS2rVrZ9ETyQEAqE0uXryoPn36mN83aNBAknT58mU5ODhI+rXpo2fPnlXarapTp06SpMzMzHJ3zThw4IAkyc/Pr8J8Tk5Oat26tU6ePKkDBw6U2fBRXr7OnTsrISFBGRkZZeb+7bjRaKywFgAAAAAAAAAAAAAAANx5aPgAAKAW27hxoxo3bqx9+/apRYsWNV0OAAA3xcXFRfn5+eb3TZo0kfTrrhlt2rQxjxcWFiozM/Omj+Ph4SF/f38lJCRozZo1mjFjRon5+Ph4paamys7OTgMGDLAo55AhQ/Tee+9pzZo1Gjt2bIm5vLw8xcTESJKGDh1aYi4kJER/+9vftG/fPuXn58vR0bHE/Pbt2yX92uzRrl27Sp0nAAAAAAAAAAAAAAAA7gxWNV0AAAAo388//6yAgACaPQAAdZqXl5dSU1PN7zt06CCTyaQvv/zSPJaXl6c9e/bIw8OjSseaPn26JCkiIkIHDx40j2dmZio0NFSSNHHiRDk7O5vnoqOj1bZtWwUHB5fKFxYWpoYNG2rHjh1asWKFebywsFChoaHKysqSv7+/+vXrV2JdUFCQevbsqfPnz2vixIm6evWqee7w4cN64403JEkvvfSSeccTAAAAAAAAAAAAAAAA4LfY4QMAgFrMzc1N9vb2NV0GAABV0rt3b/31r3/Vzz//LDc3Nz322GNydHTU9OnTde7cOXl5eWn16tW6cOGChg8fXqVjDR48WJMnT9aCBQvUvXt3BQcHy9HRUXFxccrKylJAQIBmzZpVYk12draOHTumK1eulMrXvHlzrVq1SiNGjND48eO1cuVKeXt7KyEhQUlJSXJzc9OaNWtkMBhKrf3ss8/Uq1cvrVq1Stu3b5e/v78uXLigffv26dq1a3r44YdL1SJJs2bN0j/+8Y9S44MGDZKtra0kyc/PT0uWLLnZjwkAAAAAAAAAAAAAAAB1AA0fAADUYgMHDlR0dLQKCgp4+jcAoM4KCQlRYmKivv/+e/Xv318uLi56//339eKLL+r999+XJJlMJnl7e+utt96q8vEiIyMVEBCgxYsXa+/evSooKFCrVq0UHh6uKVOmmJsmKlO/r6+vZs+erT179igxMVHu7u56+eWXNXPmTLm5uZW5ztPTU99//70iIiK0YcMGbdmyRba2tvLz89Po0aM1btw4WVtbl1p36tQp7d+/v9R4YmKi+TUNoQAAAAAAAAAAAAAAAPWfwWQymWq6CNQcDw8PSVJaWloNVwIAdc/tuIZmZGTIz89P/fr106JFi/hx5y3GfRAAqqaq19GDBw8qKipKFy5cULt27TR27Fg5OzvfyhJRAe6FAFA1XEcBAAAAAAAAAAAAVCd2+AAAoBZbsmSJ+vXrp48++kjbt29XcHCwvLy8ZGVlVSrWYDBo5syZNVAlAAA3x8/PT35+fjVdBgAAAAAAAAAAAAAAAFArscPHHY6nEALAzbsd11ArKysZDAbd6HZdPG8wGFRYWFhttdRH3AcBoGq4jtZ9fIcAUDVcRwEAAAAAAAAAAABUJ3b4AACgFvvTn/5U0yUAAHBLFRYWKjMzU1euXCk3xsvL6zZWBAAAAAAAAAAAAAAAANRONHwAAFCL0fABAKgv9u7dq7feekv/+te/dO3atXLjDAaDrl+/fhsrAwAAAAAAAAAAAAAAAGonGj4AAAAAANVq586devTRR1VQUCBJcnFxUaNGjWq4KgAAAAAAAAAAAAAAAKB2o+EDAIA65Ny5c0pLS5MktWjRQu7u7jVcEQAAFXvjjTdUUFCgsLAwvfHGG3JxcanpkgAAAAAAAAAAAAAAAIBa77Y0fGRnZysnJ0cmk6nMeS8vr9tRBgAAddbKlSv13nvv6cSJEyXG77nnHk2dOlXPPfdcDVUGAEDFvv/+ez3wwAN6//33a7oUAAAAAAAAAAAAAAAAoM6otoaPixcv6s0331RUVJR++eWXcuMMBoOuX79eXWUAAFDnjRs3Th9++KG5cbL4qegXLlzQsWPHNG7cOH3zzTdasWJFTZYJAEC5jEaj2rZtW9NlAAAAAAAAAAAAAAAAAHWKVXUkzc7OVvfu3bVkyRJduHBBDg4OMplMatasmSSZf7Dq5eUlT0/P6igBAIB6ISoqSitXrlTjxo01b948Xbx4URkZGcrIyFBWVpb+3//7f2rSpIk+/PBDrVu3rqbLBQCgTN27d9fx48drugwAAAAAAAAAAAAAAACgTqmWho/33ntPJ06c0LPPPqvs7Gw9+eSTMhgMOnPmjHJzc7V06VI1btxYvXv3VnJycnWUAABAvbBs2TLZ2Nho+/bteuWVV+Ts7Gyec3Jy0pQpU7R9+3ZZW1tr2bJlNVgpAADlmzFjhn744QetWbOmpksBAAAAAAAAAAAAAAAA6gyb6ki6efNmubq6aunSpbK3t5fBYDDPNWzYUBMmTFDHjh0VGBioBx98UOPHj6+OMgAAqPMSExPVu3dv+fn5lRvTqVMn9e7dWwcPHryNlQEAYLlu3brp888/1wsvvKCYmBg9+uij8vLykpVV2c8g6NWr122uEAAAAAAAAAAAAAAAAKh9qqXhIykpST179pS9vb0kmRs+CgsLZW1tLUnq3r27evTooZUrV9LwAQBAOfLz89W0adMK45o2bar8/PzbUBEAADensLBQDRs21BdffKEvvvii3DiDwaDr16/fxsoAAAAAAAAAAAAAAACA2qlaGj4kqUmTJubXDRs2lCRdvHhRrq6u5nEvLy99+eWX1VUCAAB1XrNmzZSYmFhhXGJiotzc3G5DRQAAVN7mzZv19NNPq6ioSC4uLvLx8ZHRaKzpsgAAAAAAAAAAAAAAAIBarVoaPpo3b64zZ86Y33t5eUmSDh8+rKCgIPN4UlKSbGyqrecEAIA676GHHtLHH3+siIgIhYeHlxkzZ84cHTt2TKNHj77N1QEAYJl33nlHJpNJCxYs0EsvvWTe+REAAAAAAAAAAAAAAABA+ayqI+l9992nY8eOmd/37NlTJpNJf/rTn5SbmytJ+vTTT7V//37de++91VECAAD1Qnh4uOzs7DRjxgx169ZNixcvVmxsrGJjY7Vo0SL5+/vrjTfekL29vaZNm3ZLjhkVFaU+ffqoSZMmcnR0VMeOHTV37lwVFBTcdM5NmzZp0KBBatasmWxtbdW0aVM9+OCDevvtt0vF/vjjjwoLC1OvXr3k5eWlhg0bysHBQa1bt9bzzz+vH374oSqnBwCoAT/++KN69OihiRMn0uwBAAAAAAAAAAAAAAAAWMhgMplMtzrpihUrNGHCBMXFxemhhx6S9GvTx9dffy1ra2s5OTkpKytLkrRx40YNHDjwVpcAC3l4eEiS0tLSargSAKh7btc19B//+IeeeeYZ5eTkyGAwlJgzmUxycnLSZ599pscee6zKxwoLC1NkZKRsbGwUFBQko9GonTt3KisrS4GBgdq2bZscHBwsznft2jWNGjVKUVFRcnBwUI8ePeTm5qZz587p6NGjKiwsVEZGRok1H3zwgcaNGyc3Nze1adNGzZo106VLl/TDDz/oP//5j2xsbPTxxx9rxIgRVT5f7oMAUDWWXkfd3NzUt29fffbZZ7ejLFQC90IAqBquowAAAAAAAAAAAACqk011JB0xYoTuvfdeeXt7m8c2bNig559/Xlu2bNHFixfVpEkTvfnmmzR7AABQgccee0zHjx/X8uXLtXv3bp05c0aS1KJFC/Xp00fjxo1T06ZNq3ycjRs3KjIyUkajUbt375afn58kKSMjQ0FBQYqPj9fMmTM1b948i3OOGzdOUVFRGjx4sFasWCFXV1fzXFFRkb799ttSa/r27at///vfatu2bYnxoqIivf/++5o6dapeeOEFPfLII2rSpMlNni0A4Hbq06ePEhMTa7oMAAAAAAAAAAAAAAAAoE6plh0+buTSpUvKzs6Wm5ubrKysbuehUQaeQggAN6++XUO7du2qhIQEvfPOO5oxY0aJufj4ePXs2VN2dnb6+eef5ezsXGG+uLg49e3bVx06dNDBgwfVoEGDW1Jnq1atlJSUpM2bN1e5cbS+fYcAcLtZeh09fvy4OnfurBkzZig8PPx2lAYLcS8EgKrhOgoAAAAAAAAAAACgOlXLDh830rBhQzVs2PB2HxYAANzAmTNnlJCQIEkaOXJkqfnAwEB5enoqNTVVsbGxGjFiRIU5Fy5cKEkKCwu7Zc0ekmRj8+v/fLGzs7tlOQEA1Wvfvn167rnnNGPGDG3evFmPPPKIvLy8yn0IwLPPPnubKwQAAAAAAAAAAAAAAABqn2pp+LC2ttaYMWO0cuXKG8aNGzdOH330ka5fv14dZdyUqKgoLV68WIcOHdK1a9fUunVrPfPMM5oyZcpN/Vj1u+++U0REhP71r38pOztb7u7uevzxxzVz5kw1bdq03HU///yzZs2apX/84x86e/asGjdurF69eun111+Xn59fVU4RAIBSEhMTJUkuLi7y8fEpM6ZLly5KTU1VYmJihQ0fhYWFiouLkyT16tVL586d09q1a3Xs2DHZ2dmpU6dOGjZsmIxGY6XqXL58uY4fP66mTZuqe/fulVoLAKg5Y8aMkcFgkMlk0r59+7R///4bxtPwAQAAAAAAAAAAAAAAAFRTw4fJZJLJZLI4trYICwtTZGSkbGxsFBQUJKPRqJ07d2ratGmKiYnRtm3b5ODgYHG+devWacSIEbp+/br8/f3l4+OjAwcOaNGiRYqKilJ8fLxat25dat3x48fVs2dPnT9/Xr6+vho8eLCSk5O1bt06bdy4UV988YWGDBlyK08dAFBLBAUF3fRag8FgbrKorOTkZEmSl5dXuTGenp4lYm8kKSlJeXl5kn59qntoaKj5fbGpU6dq7dq15Z7zpUuXFBoaKknKzs7WkSNHdPLkSbm5uSkqKkpOTk4VnxgAoFZ49tlnZTAYaroMAAAAAAAAAAAAAAAAoE6ploYPS126dOmmds2oDhs3blRkZKSMRqN2795t3kUjIyNDQUFBio+P18yZMzVv3jyL8p09e1ajR4/W9evXtWzZMo0fP17Sr088HzNmjD799FONHDlS+/fvL/HDJ5PJpOHDh+v8+fP6/e9/r48++kjW1taSfn2q+YQJE/Tss8/qxIkTatas2S3+FAAANW3Xrl03vbYqP6TNzc2VJDk6OpYbU7wbR05OToX5MjMzza+ff/55Pfjgg5o3b57atm2rU6dOafr06YqNjdUTTzyhgwcP6u677y6V49q1a1q9enWJMV9fX61cuVI9e/a06LwkycPDo9y59PR0ubu7W5wLAHBzVq1aVdMlAAAAAAAAAAAAAAAAAHVOjTV8ZGVlKT4+vtb8yHL27NmSpPDwcHOzhyS5urpqyZIl6tmzpxYtWqSZM2fK2dm5wnzz58/XpUuX1LdvX3OzhyRZW1tr6dKliomJUUJCgrZt26b+/fub57ds2aLExEQ1btxYS5YsMTd7SNL48eP1xRdfKC4uTpGRkZozZ86tOHWg1jGZTLpy/YocGvx3R53LBZdlb2PPk6FR73311Vc1XcIt8dsdvFq0aKGtW7fKzs5OktSxY0dt3rxZDzzwgI4cOaKIiAitXLmyVI7GjRub8/z88886ePCg3nrrLT300EN67bXX9N57792ekwFqAPdCAMCdjnshAAAAAAAAAAAAAAC3sOHD19e3xPt169aV+5Ty69ev69y5cyosLNSECRNuVQk37cyZM0pISJAkjRw5stR8YGCgPD09lZqaqtjYWI0YMaLCnNHR0eXmMxqNGjRokD755BNt2LChRMNH8bpBgwaZn6T+WyNHjlRcXJw2bNhAwwfqJZPJpDnxc7Tn9B6tHbZWzvbOyr6SreHrh6unV0+9Hvg6P+5Bvda7d+8aOW6jRo0kSfn5+eXG5OXlSZKcnJwszidJY8aMMTd7FLO2ttaECRM0adIk7dixo8J8bm5uevTRRxUcHKxu3bpp3rx56t27tx5//PEK16alpZU7d6PdP4Cawr0QAHCn414IAAAAAAAAAAAAAMCvblnDR0pKivm1wWBQXl6e+YehZbG1tdXgwYPNO2vUpMTEREmSi4uLfHx8yozp0qWLUlNTlZiYWGHDR25urk6ePGleV16+Tz75xHzs/63lRusk6cSJE8rPz5ejo+MNawHqkuIf9Sz6dpEkafj64Vr2+DJN+HKCDp07pEPnDkkSP+4BqoG3t7ckKTU1tdyY4rni2IryGQwGmUymUk2hxYrH09PTLa7T1tZWzzzzjL7//ntFR0db1PAB1CXcC1HfpaWladeuXTp79qyuXLlSZozBYNDMmTNvc2UAagvuhQAAAAAAAAAAAAAA/Ncta/hITk6WJPMPO5988km99957Zcba2trqd7/7nWxsbtnhq6S4di8vr3JjPD09S8TeyG+bX8rLWV6+imopXmcymZSSkqL27dtXWA9QV1y5fkV7Tu8xvz907pC6f9C9RMye03s05foUOTRwuN3lAfVap06dJEmZmZlKTk4uswHywIEDkiQ/P78K8xmNRrVp00Y//fSTMjIyyowpHi9rR6sbKW52PH/+fKXWAXUB90LUV4WFhZo8ebKWL1+uoqIiSb/+m+a3ihsFafgA7mzcCwEAAAAAAAAAAAAA+K9b1nHRsmVL8+vRo0erZ8+eJcZqs9zcXEm64W4ZxT9GzcnJsTjfjXKWl6+iWn77o1hLapEkDw+PcufS09Pl7u5uUR6gujk0cNDaYWs1fP1w81Nbf6tjs45aO2wtP+pBvfb2229LkiZOnCgXFxfze0tU5QeyHh4e8vf3V0JCgtasWaMZM2aUmI+Pj1dqaqrs7Ow0YMAAi3KGhIRo1qxZ2rFjh6ZMmVJqfvv27ZKkrl27VqrWuLg4SdI999xTqXVAXcC9EPXVO++8o6VLl8rGxkaPP/647r77bjVq1KimywJQC3EvBAAAAAAAAAAAAADgv6pli42PPvqoOtICuAM42ztr2ePLSj3BVZKWPb5MzvbONVAVcPv8+c9/lsFg0PDhw+Xi4mJ+/79PQf+tW/VE9OnTp2vIkCGKiIjQo48+at7JIzMzU6GhoZJ+bURxdv7vfw+jo6P1+uuvq0WLFuZGjGKTJ0/WokWLFBsbq2XLlmnChAnmubVr1+qzzz4zx/3W/PnzNWzYMPOuVsUuXbqk999/X+vXr5eNjY3Gjh170+cK1GbcC1EfrVq1Sg4ODtqzZ49FO0UBuLNxLwQAAAAAAAAAAAAA4FfV0vBRzGQyacuWLdq7d69++eUXdevWTc8995wk6ZdfftHFixfVqlUrWVtbV2cZFSp+smx+fn65MXl5eZIkJycni/MV5/ztD2MryteoUSNduHCh3FqK11laiySlpaWVO3ej3T+AmpB9JVsTvpxQ5tyELydo7bC1/LgH9dqbb74pg8EgV1fXEu9vh8GDB2vy5MlasGCBunfvruDgYDk6OiouLk5ZWVkKCAjQrFmzSqzJzs7WsWPHdOXKlVL5XF1d9fnnn2vQoEF68cUXtXDhQrVr106nTp1SYmKiJGnmzJmldgyZP3++XnnlFbVr105t2rSRvb290tPTdejQIV28eFF2dnZasWKFOnToUH0fBlCDuBeiPjp37pz69OlDswcAi3AvBAAAAAAAAAAAAADgV9XW8HHo0CE9/fTTOnHihPmp4wUFBeaGj+3bt+v3v/+9Nm7cqIEDB1ZXGRbx9vaWJKWmppYbUzxXHHsjLVu2NL8+ffq07rvvPovzeXt768KFCzp9+vQN6zAYDCWOA9QHlwsua/j64Tp07lCZ84fOHdLw9cO14akNcmjgcJurA26PP//5zzd8X90iIyMVEBCgxYsXa+/evSooKFCrVq0UHh6uKVOmyNbWtlL5Hn74YR06dEizZ8/Wjh07tGnTJjk5OWnAgAH6wx/+oH79+pVaM3v2bG3btk0HDhzQv/71L2VlZcnR0VGtWrXS888/r5deekm+vr636pSBWoV7Ieqr5s2bl2iMB4DycC8EAAAAAAAAAAAAAOC/rKojaVpamvr27avjx4/r0Ucf1dy5c2UymUrEDB48WA0aNNCmTZuqo4RK6dSpkyQpMzNTycnJZcYcOHBAkix6Iq2Tk5Nat25dYp2l+YrfV7Tu7rvvltForLAWoC6xt7FXT6+e5vcdm3XUvhf2qWOzjuaxnl49ZW9jXxPlAXeMp556Srt371Z2drYuXbqkH374QdOmTSuz2WPMmDEymUxKSUkpN98999yjVatWKS0tTdeuXVNGRob+8Y9/lNnsIUkjR47UqlWrdOTIEWVkZOj69evKzs7WwYMH9d5779HsgXqNeyHqqyFDhuhf//qXrl69WtOlAKjluBcCAAAAAAAAAAAAAPBf1dLwMXv2bGVmZmr+/Pn68ssv9dprr5WKadiwoTp27KiEhITqKKFSPDw85O/vL0las2ZNqfn4+HilpqbKzs5OAwYMsCjnkCFDys2Xl5enmJgYSdLQoUPLXLd582bl5+eXWluc73/XAfWBwWDQ64Gva2LXierYrKPWDlsrL2cvrR22Vh2bddTErhP1euDrMhgMNV0qUCtcvnxZhw4dUmZmZk2XAuAW4V6I+urNN99U48aNNXz4cGVkZNR0OQBqMe6FAAAAAAAAAAAAAAD8l8H0v1tv3AK+vr6yt7fXjz/+aB6zsrLSmDFj9OGHH5rHnn76aX311Vc6f/78rS6h0jZu3KghQ4bIaDRq9+7d5p02MjMz9dBDD+mHH37Qq6++qnnz5pnXREdH6/XXX1eLFi0UFxdXIt/Zs2d1991369KlS1q+fLnGjRsnSSosLNTYsWP1ySefyN/fX/v37y/xIwWTyaTOnTsrMTFRzz77rD788ENZW1tLkpYvX64JEybIaDTqxIkTatasWZXP28PDQ9Kvu7IAtYXJZNKV61fk0MDBPHa54LLsbez5UQ9qldtxDd2zZ4+io6M1evRodez436car1mzRhMmTNClS5dkbW2tN954Q2+++Wa11VFfcR9EbcW9EHVFZa6jFy9eVJ8+fZSSkqLOnTvLy8tLVlaln0FgMBi0cuXKW14rysa9ELUV90LUFVxHAQAAAAAAAAAAAFQnm+pIevbsWT3xxBMVxhkMBuXk5FRHCZU2ePBgTZ48WQsWLFD37t0VHBwsR0dHxcXFKSsrSwEBAZo1a1aJNdnZ2Tp27JiuXLlSKl/z5s21atUqjRgxQuPHj9fKlSvl7e2thIQEJSUlyc3NTWvWrCn1IwWDwaC///3v6tmzpz7++GPFx8fL399fycnJ+vbbb2VjY6OPP/74ljR7ALWVwWAo8aMeSaXeA3eK5cuX6/PPP9f06dPNY6mpqXruued07do1NW7cWFlZWXrrrbfUu3dv9e7duwarBXCrcC9EfXP16lWNGTNGR44ckclk0q5du8qNpeEDgMS9EAAAAAAAAAAAAAAAqZoaPhwdHfXLL79UGJecnCwXF5fqKOGmREZGKiAgQIsXL9bevXtVUFCgVq1aKTw8XFOmTJGtrW2l8oWEhMjX11ezZ8/Wnj17lJiYKHd3d7388suaOXOm3NzcylzXpk0bHT58WO+8846+/PJLRUdHy9nZWUOHDtWMGTPMu48AAOq//fv3q2PHjnJ1dTWPffLJJ7p27Zr+/Oc/680339SePXvUp08fLVmyhIYPAECt9Kc//UkxMTFq0qSJfv/73+vuu++W0Wis6bIAAAAAAAAAAAAAAACAWs1gMplMtzppnz59lJiYqFOnTpl/oGplZaUxY8boww8/lCT95z//UZs2bfTwww8rJibmVpcAC3l4eEiS0tLSargSAKh7bsc11MXFRb1791Z0dLR5rG/fvoqPj1dGRob5x7IBAQH65ZdfdPz48WqrpT7iPggAVWPpdbRly5bKzc3VoUOH5OnpeTtKg4W4FwJA1XAdBQAAAAAAAAAAAFCdrKoj6ahRo5Sbm6sXXnhBly5dKjV/7do1hYaGqqCgQKNGjaqOEgAAqBfy8vLk4OBgfm8ymZSQkKAuXbqUeDK6t7e3zp49WxMlAgBQofPnz6tnz540ewAAAAAAAAAAAAAAAACVUC0NH2PHjlXv3r21efNmtW3bVuPHj5ckHTp0SJMnT9Y999yjLVu2KDg4WE8//XR1lAAAQL3g4uKilJQU8/vExETl5ubqwQcfLBFXUFAgW1vb21wdAACW8fLykpVVtfzzs1xRUVHq06ePmjRpIkdHR3Xs2FFz585VQUHBTeX77rvvFBISIjc3N9nb28vHx0eTJk3S+fPnK1x76NAhPffcc/Lx8ZG9vb2aNGmi++67Ty+99JIyMzPLXJObm6vp06erTZs2cnBwkKurqx577DHt3LnzpuoHAAAAAAAAAAAAAABA3VMtv7ixtrZWTEyMRowYoTNnzuiDDz6Q9OuPVBctWqTTp09r2LBh2rBhQ3UcHgCAesPf31/ffvutvvnmG0lSZGSkDAaDgoKCSsSdOHFC7u7uNVEiAAAVGjlypHbt2qWsrKzbcrywsDA99dRT+vrrr9W1a1c98sgjOn36tKZNm6agoCBdvny5UvnWrVun7t27a926dWrZsqWeeOIJWVlZadGiRbr//vt18uTJctfOmzdPnTt31urVq/W73/1OQ4YMUY8ePXTlyhX97W9/U3p6eqk158+fV5cuXTRnzhzl5uZq4MCBat++vbZs2aK+fftq4cKFlf5MAAAAAAAAAAAAAAAAUPcYTCaTqToP8NNPPyk2NlZJSUkqKiqSp6enHn30UT3wwAPVeVhYyMPDQ5KUlpZWw5UAQN1zO66hO3bsUP/+/SVJzs7Oys7Olq+vr44dO2Z+UnpGRoaaNWum4cOH69NPP622Wuoj7oMAUDWWXkevXbum/v376+rVq1q5cqXatWtXbTVt3LhRQ4YMkdFo1O7du+Xn5yfp1/tlUFCQfvjhB7366quaN2+eRfnOnj2ru+++W5cuXdKyZcvMO1gWFhZqzJgx+vTTT+Xv76/9+/fLYDCUWPvRRx/pueeeU5s2bbRu3Tp16NChxPzRo0fl4eEhZ2fnEuODBw/Wpk2bFBwcrM2bN6thw4aSpNjYWA0aNEgmk0mJiYm6//77b+oz+i3uhQBQNVxHAQAAAAAAAAAAAFSnam/4QO3G/ykNADfvdl1DV69erbfeekvnz59X165dtWTJErVt29Y8/9e//lWvvvqqli1bpnHjxlVrLfUN90EAqBpLr6NBQUG6du2a9u7dKysrK3l5ecnLy8vcvPhbBoNBcXFxN11T165dlZCQoHfeeUczZswoMRcfH6+ePXvKzs5OP//8c6lGi7L88Y9/1Hvvvae+fftq+/btJeby8vLk4eGh7Oxs/fOf/zQ3aUrSxYsX5e3trYKCAh05ckS+vr4W1f/jjz+qffv2sra21qlTp9SyZcsS8y+88IJWrlyp4cOH6+9//7tFOW+EeyEAVA3XUQAAAAAAAAAAAADVyaamCwAAADc2evRojR49utz5F198Uc8995yMRuNtrAoAAMvt2rXL/LqoqEgpKSlKSUkpM/Z/d8mojDNnzighIUGSNHLkyFLzgYGB8vT0VGpqqmJjYzVixIgKc0ZHR5ebz2g0atCgQfrkk0+0YcOGEg0fq1evVk5OjkaNGmVxs8dvjxcQEFCq2aO4jpUrVyomJkYFBQVq0KCBxbkBAAAAAAAAAAAAAABQt1Rrw0dGRoY++OAD7dq1S2lpaTKZTPLw8NBDDz2k5557Tk2bNq3OwwMAcEdwcHCQg4NDTZcBAEC5vvrqq9tynMTEREmSi4uLfHx8yozp0qWLUlNTlZiYWGHDR25urk6ePGleV16+Tz75xHzsYlu3bpUk9erVS5cvX9a6deuUkJCgwsJC3X333Ro2bJg8PT3LPYcbHU+S8vPzdeLECd177703PAcAAAAAAAAAAAAAAADUXdXW8LFp0yaNHTtW2dnZMplM5vF///vf2rFjhyIiIvTRRx9pyJAh1VUCAAD1ytmzZ/Wvf/2rRBNlr1691KJFi5ouDQCAG+rdu/dtOU5ycrIkycvLq9yY4iaL4tgb+e0uJOXlLC/f4cOHJf3aNNKhQwclJSWVmJ82bZrmzJmjV155pVLn4OTkJCcnJ+Xk5Cg5OZmGDwAAAAAAAAAAAAAAgHqsWho+9u/fr5CQEF2/fl1dunTRs88+a366akpKij7++GMlJCTo6aef1p49e9StW7fqKAMAgHohMzNTkydP1hdffKGioqISc1ZWVnryySe1cOFCubq61lCFAADUDrm5uZIkR0fHcmOMRqMkKScnx+J8N8pZXr7MzExJUnh4uJo3b66YmBgFBgbqwoULWr58uebOnatXX31V7u7uJXYasfQccnJyLDoHSfLw8Ch3Lj09Xe7u7hblAQAAAAAAAAAAAAAAwO1VLQ0fb7/9tgoLC/Xee+/p1VdfLTX/8ssv669//ateffVVzZo1S19++WV1lAEAQJ2XlZWlnj176tixY5KkTp06lWiiPHjwoL744gt9//33+uabb9S4ceMarBYAABQr3umyqKhIsbGx5p04GjdurIiICOXk5Gjp0qV64403SjR8AAAAAAAAAAAAAAAAAMWqpeFj79696tChQ5nNHsWmTJmiVatW6euvv66OEgAAqBfefvtt/fTTT3rwwQf1t7/9TR06dCgxf/ToUb300kv6+uuv9fbbb+v999+voUoBAKjYgQMHtG7dOh07dkw5OTnmpojfMhgMiouLu6n8jRo1kiTl5+eXG5OXlydJcnJysjhfcU5nZ2eL8zVq1EiZmZnq2bOnudnjt0JDQ7V06VIlJSUpOTnZ3NB5q89BktLS0sqdu9HuHwAAAAAAAAAAAAAAAKhZ1dLwUVBQoPvuu6/CuA4dOujUqVPVUQIAAPXChg0b5OLiotjY2DJ/1Nm+fXvFxMSoVatW2rBhAw0fAIBa67XXXtNf//pXc5OHwWAo0fBR/N5gMNz0Mby9vSVJqamp5cYUzxXH3kjLli3Nr0+fPl3mv3PLy+fr66vMzEz5+vqWmfu34+np6eaGD29vbx08eFCnT58uc11OTo5ycnIsPgcAAAAAAAAAAAAAAADUXVbVkbRt27Y3/IFNsTNnzqhNmzbVUQIAAPXCuXPn1KdPnxs+wdvZ2Vl9+vTRzz//fBsrAwDAclFRUXr//ffVokULLVu2TP369ZMkbd26VYsWLVKPHj1kMpkUHh6unTt33vRxOnXqJEnKzMxUcnJymTEHDhyQJPn5+VWYz8nJSa1bty6xztJ8nTt3liRlZGSUue6340aj0fy6OE9Fx3N0dNQ999xT4TkAAAAAAAAAAAAAAACg7qqWho8JEyYoPj5eu3fvLjdm9+7d2rNnjyZMmFAdJQAAUC+4ubmVePp5eUwmk5o2bXobKgIAoPKWL18ua2trxcXFady4cXJ3d5ckPfzwwwoNDdXXX3+tGTNm6P3335ezs/NNH8fDw0P+/v6SpDVr1pSaj4+PV2pqquzs7DRgwACLcg4ZMqTcfHl5eYqJiZEkDR06tMRcSEiIJGnfvn3Kz88vtXb79u2Sfm32aNeunXl88ODBkqSvv/66zF0+iusYOHCgGjRoYNE5AAAAAAAAAAAAAAAAoG6qloaPcePGKSwsTI899phee+01HT58WLm5ucrNzdXhw4c1depUPfbYYwoLC9P48eOrowQAAOqFxx9/XLt27VJ2dna5MVlZWfrqq6/02GOP3cbKAACwXGJiorp166a777673Ji33npL7u7ueuedd6p0rOnTp0uSIiIidPDgQfN4ZmamQkNDJUkTJ04s0VgSHR2ttm3bKjg4uFS+sLAwNWzYUDt27NCKFSvM44WFhQoNDVVWVpb8/f3Nu5YUCwoKUs+ePXX+/HlNnDhRV69eNc8dPnxYb7zxhiTppZdeKtG40b59ez3xxBMqLCzU888/r8uXL5vntmzZolWrVsnKykqvv/76TX0+AAAAAAAAAAAAAAAAqDsMJkseG14Ba2vrmy/AYND169erWgJukoeHhyQpLS2thisBgLrndlxDL1y4oG7dusnNzU1Lly7VfffdV2L+yJEjeumll3Tu3Dnt27dPd911V7XVUh9xHwSAqrH0OmpnZ6dhw4aZd6eYMGGCPvjgA2VnZ8toNJrjhg8frt27dys9Pb1Kdf3hD3/QggUL1KBBAwUHB8vR0VFxcXHKyspSQECAtm/fLgcHB3P8qlWrNHbsWLVs2VIpKSml8kVFRWnEiBEqLCxUt27d5O3trYSEBCUlJcnNzU3x8fFq3bp1qXWpqanq1auXUlJS1KJFC/n7++vChQvat2+frl27pocfflgxMTGys7Mrse78+fMKDAzUiRMn5O7ubm4c2b17t0wmkyIjIzV58uQqfUbFuBcCQNVwHQUAAAAAAAAAAABQnWxuRZKq9Izcgn4TAADqrddee00dOnTQpk2b9MADD6hjx47y8fGRJCUnJ+vw4cMymUwaNGiQpk6dWmKtwWDQypUra6JsAABK+N3vfqesrCzze1dXV0lSSkqKOnToYB7Pz89XTk5OlY8XGRmpgIAALV68WHv37lVBQYFatWql8PBwTZkyRba2tpXKFxISIl9fX82ePVt79uxRYmKi3N3d9fLLL2vmzJlyc3Mrc52np6e+//57RUREaMOGDdqyZYtsbW3l5+en0aNHa9y4cWU+QKFp06Y6cOCA5syZo/Xr12vTpk1ydHRU//799dprr5W5EwkAAAAAAAAAAAAAAADqn1uywwfqLp5CCAA373ZcQ62srGQwGG6qQdJgMKiwsLAaqqo/uA8CQNVYeh0NDAzUxYsXdfToUUnSunXr9NRTTyk8PFyzZ8+WJJ07d0733HOPPDw89OOPP1Zv4TDjXggAVcN1FAAAAAAAAAAAAEB1uiU7fAAAgOrx0Ucf1XQJAABUWXBwsN555x2lpKTI29tbjz76qFxcXPTuu+/qxIkT8vLy0rp165Sfn69hw4bVdLkAAAAAAAAAAAAAAABArUDDBwAAtdjo0aNrugQAAKps+PDhOnv2rFJTU+Xt7S1HR0d99NFHGj58uNavX2+O69y5s15//fUarBQAAAAAAAAAAAAAAACoPWj4AACgjvjxxx+1d+9e/fLLL2rfvr0GDRokSSoqKtL169dla2tbwxUCAFC2du3aacWKFSXGBg4cqBMnTigmJkYXLlxQu3btNHDgQFlbW9dQlQAAAAAAAAAAAAAAAEDtQsMHAAC1XGpqqsaOHauvvvrKPDZ69Ghzw8eKFSsUGhqqbdu2KTg4uKbKBACg0po3b64JEybUdBkAAAAAAAAAAAAAAABArUTDBwAAtdiFCxfUu3dvpaSkqEOHDurVq5eWLFlSIuapp57SxIkTtXnzZho+AAC10unTpy2Ks7W1lYuLC7tWAQAAAAAAAAAAAAAAAKLhAwCAWu3dd99VSkqKXnvtNb377rsyGAylGj6aNGmi++67T/Hx8TVUJQAAN+bt7S2DwWBRrJWVldq3b6/nnntOEydOlJWVVTVXBwAAAAAAAAAAAAAAANRO/HIGAIBabNOmTfL29lZERMQNfyjr6+urs2fP3sbKAACwnJeXl7y8vGQymcx/Tk5OcnZ2LjHm6ekpa2trHT58WFOmTNFjjz2moqKimi4fAAAAAAAAAAAAAAAAqBE0fAAAUIv95z//kZ+fX4VPN7e1tdWFCxduU1UAAFROcnKyunfvLjc3Ny1atEgXL17UxYsXdeHCBWVlZWnx4sVq1qyZunfvrtzcXO3atUutW7fWtm3b9MEHH9R0+QAAAAAAAAAAAAAAAECNoOEDAIBazN7eXrm5uRXGnT59Ws7OzrehIgAAKm/BggXauHGjvvrqK4WGhpa4Zzk5Oemll17Szp07tXHjRi1atEi9evXS+vXrZTAY9Nlnn9Vg5QAAAAAAAAAAAAAAAEDNoeEDAIBarG3btjp48KDy8/PLjcnIyNChQ4d0//3338bKAACw3MqVK9W7d2+1bdu23Ji2bduqT58++vDDDyVJHTp0kJ+fn44ePXq7ygQAAAAAAAAAAAAAAABqFRo+AACoxZ588kllZmbqlVdeUVFRUZkxU6dO1aVLl/T000/f5uoAALDMqVOndNddd1UY5+LioqSkJPN7Hx8fi3a6AgAAAAAAAAAAAAAAAOojm5ouAAAAlO/ll1/W6tWr9cEHH+i7777T0KFDJf36w9n3339fUVFR+vbbb/XAAw9ozJgxNVssAADlaNiwoRISEm4YYzKZdODAATVs2NA8dvnyZTVq1Ki6ywMAAAAAAAAAAAAAAABqJXb4AACgFrO3t9fWrVvVo0cPHTx4UDNnzpQkxcfHa+rUqdq/f7+6dOmiL7/8Ug0aNLglx4yKilKfPn3UpEkTOTo6qmPHjpo7d64KCgpuOuemTZs0aNAgNWvWTLa2tmratKkefPBBvf3226Vijx07pvnz52vAgAFq0aKFbG1t5eTkJH9/f82ZM0d5eXlVOT0AQA3o1auXTp06pWnTpqmwsLDUfFFRkV5//XWdPHlSvXv3No8nJSWpRYsWt7NUAAAAAAAAAAAAAAAAoNYwmEwmU00XgZrj4eEhSUpLS6vhSgCg7rnd19CtW7fqH//4h5KSklRUVCRPT089+uijeuKJJ2QwGG7JMcLCwhQZGSkbGxsFBQXJaDRq586dysrKUmBgoLZt2yYHBweL8127dk2jRo1SVFSUHBwc1KNHD7m5uencuXM6evSoCgsLlZGRUWKNh4eHzpw5I3t7e3Xp0kUeHh76+eef9c033+jKlStq1aqVdu7cKS8vryqfL/dBAKgaS6+jR48eVdeuXXXlyhW1bNlSISEh8vb2lsFgUEpKiqKiopSSkiJ7e3vt379fHTp0UEpKinx9fTVx4kQtWLDgdpzOHYl7IQBUDddRAAAAAAAAAAAAANXJpqYLAAAAlunfv7/69+9fbfk3btyoyMhIGY1G7d69W35+fpKkjIwMBQUFKT4+XjNnztS8efMszjlu3DhFRUVp8ODBWrFihVxdXc1zRUVF+vbbb0utadOmjd5++2099dRTMhqN5vGUlBQ9/vjjOnr0qMaMGaOdO3dW4WwBALdT+/btFRsbq2eeeUYpKSml7iUmk0nu7u769NNP1aFDB0mS0WjUV199pXvuuacmSgYAAAAAAAAAAAAAAABqHDt83OF4CiEA3Lz6dg3t2rWrEhIS9M4772jGjBkl5uLj49WzZ0/Z2dnp559/lrOzc4X54uLi1LdvX3Xo0EEHDx5UgwYNqlxjcR2SlJqaav4OblZ9+w4B4Har7HX0ypUrWrdunXbv3m1e06JFC/Xq1UshISGV2kUKtwb3QgCoGq6jAAAAAAAAAAAAAKoTO3wAAACdOXNGCQkJkqSRI0eWmg8MDJSnp6dSU1MVGxurESNGVJhz4cKFkqSwsLBb0uwhSZ06dTK/vhUNHwCA28ve3l6jRo3SqFGjaroUAAAAAAAAAAAAAAAAoNaj4QMAACgxMVGS5OLiIh8fnzJjunTpotTUVCUmJlbY8FFYWKi4uDhJUq9evXTu3DmtXbtWx44dk52dnTp16qRhw4bJaDRWqs4TJ06YX7u7u1dqLQAAAAAAAAAAAAAAAAAAQF1CwwcAAFBycrIkycvLq9wYT0/PErE3kpSUpLy8PEnSvn37FBoaan5fbOrUqVq7dq2CgoIsrjMiIkKS5OfnJ29vb4vXAQAAAAAAAAAAAAAAAAAA1DVWNV0AAACoebm5uZIkR0fHcmOKd+PIycmpMF9mZqb59fPPP6/OnTsrISFBubm5+v777zVgwAD98ssveuKJJ0rs2nEjq1at0ueffy5ra2tFRkZatEaSPDw8yv1LT0+3OA8AAAAAAAAAAAAAAAAAAMDtRMMHAAC45Uwmk/l1ixYttHXrVnXp0kVGo1EdO3bU5s2b1aFDB+Xl5Zl37biRuLg4TZgwQZI0d+5cBQYGVlvtAAAAAAAAAAAAAAAAAAAAtYFNTRcAAABqXqNGjSRJ+fn55cbk5eVJkpycnCzOJ0ljxoyRnZ1diXlra2tNmDBBkyZN0o4dO26YKz4+Xk888YSuXbumP/3pT3rllVcqPP5vpaWllTvn4eFRqVwAAAAAAAAAAAAAAAAAAAC3Czt8AAAAeXt7S5JSU1PLjSmeK46tKJ/BYJAk+fr6lhlTPJ6enl5unr1792rAgAHKz8/XjBkz9Oc//7nCYwMAAAAAAAAAAAAAAAAAANQHNHwAAAB16tRJkpSZmank5OQyYw4cOCBJ8vPzqzCf0WhUmzZtJEkZGRllxhSPG43GMuf37dunRx55RLm5uZo+fbreeeedCo8LAAAAAAAAAAAAAAAAAABQX9DwAQAA5OHhIX9/f0nSmjVrSs3Hx8crNTVVdnZ2GjBggEU5Q0JCJEk7duwoc3779u2SpK5du5aa+/bbb9W/f39zs8df/vIXi44JAAAAAAAAAAAAAAAAAABQX9DwAQAAJEnTp0+XJEVEROjgwYPm8czMTIWGhkqSJk6cKGdnZ/NcdHS02rZtq+Dg4FL5Jk+erCZNmig2NlbLli0rMbd27Vp99tln5rjfOnDggPr166ecnByaPQAAAAAAAAAAAAAAAAAAwB3LpqYLAAAAtcPgwYM1efJkLViwQN27d1dwcLAcHR0VFxenrKwsBQQEaNasWSXWZGdn69ixY7py5UqpfK6urvr88881aNAgvfjii1q4cKHatWunU6dOKTExUZI0c+bMUjuG9OvXT9nZ2WrcuLHOnDmjMWPGlFlveHi42rZte2tOHgAAAAAAAAAAAAAAAAAAoJah4QMAAJhFRkYqICBAixcv1t69e1VQUKBWrVopPDxcU6ZMka2tbaXyPfzwwzp06JBmz56tHTt2aNOmTXJyctKAAQP0hz/8Qf369Su15uLFi5KkrKwsrV69utzcY8aMoeEDAAAAAAAAAAAAAAAAAADUWwaTyWSq6SJQczw8PCRJaWlpNVwJANQ9XEPrPr5DAKgarqN1H98hAFQN11EAAAAAAAAAAAAA1cmqpgsAAAAAAAAAAAAAAAAAAAAAAABASTR8AAAAAAAAAAAAAAAAAAAAAAAA1DI0fPyf3NxcTZ8+XW3atJGDg4NcXV312GOPaefOnTeds6ioSMuWLVO3bt3UqFEjNWrUSN26ddPy5ctlMpnKjN+7d6/efPNNBQYG6q677lKDBg3k6uqqhx9+WJ999lmZ6wAAAAAAAAAAAAAAAAAAAAAAQP1iU9MF1Abnz59Xz549dfz4cbm7u2vgwIH6+eeftWXLFm3ZskWRkZGaNGlSpXIWFhbqqaee0oYNG9SwYUMFBwdLknbs2KEJEyZox44dWrt2rays/ttzk5SUpICAAEmSi4uLunTpoiZNmigpKUk7duwwr1m/fr1sbW1v3QcAAAAAAAAAAAAAAAAAAAAAAABqFXb4kDR+/HgdP35cwcHBOnnypL744gvt3r1bX375paysrBQWFqbDhw9XKufChQu1YcMGtWjRQkeOHNHmzZu1efNmHT16VM2bN1dUVJSWLFlSYo3BYFBQUJC2bNmi8+fPa+vWrVq7dq2+/fZb7dq1S46Ojvryyy8VERFxK08fAAAAAAAAAAAAAAAAAAAAAADUMnd8w8ePP/6oTZs2ydraWitXrlTDhg3NcwMGDNCYMWNUVFSkOXPmWJyzqKhI7777riTp3XfflY+Pj3nOx8fHPDdnzhwVFRWZ51q1aqW4uDg98sgjsra2LpGzd+/eCg8PlyR9/PHHlT9RAAAAAAAAAAAAAAAAAAAAAABQZ9zxDR/R0dGSpICAALVs2bLU/MiRIyVJMTExKigosCjnN998o3PnzsnOzk7Dhg0rNT9s2DDZ2trq7Nmz2r9/v8W1durUSZKUmppq8RoAAAAAAAAAAAAAAAAAAAAAAFD33PENH4mJiZKkLl26lDlfPJ6fn68TJ05UKmf79u1lb29fat7BwUHt27cvEWuJ4uO7u7tbvAYAAAAAAAAAAAAAAAAAAAAAANQ9d3zDR3JysiTJy8urzHknJyc5OTmViK1qTkny9PSsVM5Lly5pwYIFklTmriEAAAAAAAAAAAAAAAAAAAAAAKD+uOMbPnJzcyVJjo6O5cYYjUZJUk5OTo3lDA0NVXJyspo3b67p06dbtKaYh4dHuX/p6emVygUAAAAAdUFUVJT69OmjJk2ayNHRUR07dtTcuXNVUFBwU/m+++47hYSEyM3NTfb29vLx8dGkSZN0/vz5MuNTUlJkMBhu+BceHl7u8fbv368nn3xSzZo1k62trVq0aKFRo0bpxx9/vKn6AQAAAAAAAAAAAAAAUPfY1HQBVfHHP/5RmzdvrvS6Dz74QIGBgdVQUfWYNWuWVq9eLXt7e33xxRe66667arokAAAAAKi1wsLCFBkZKRsbGwUFBcloNGrnzp2aNm2aYmJitG3bNjk4OFicb926dRoxYoSuX78uf39/+fj46MCBA1q0aJGioqIUHx+v1q1bl7nW0dFRTz75ZJlznTt3LnN8+fLlCg0NVWFhodq1a6fAwECdOHFCn332mdatW6eNGzfqkUcesbh+AAAAAAAAAAAAAAAA1E11uuHj7NmzOnbsWKXX5eXlmV83atRIkpSfn19hvJOTk0X5b2XO999/X2+++abs7OwUHR2tgIAAi2r4rbS0tHLnPDw8Kp0PAAAAAGqrjRs3KjIyUkajUbt375afn58kKSMjQ0FBQYqPj9fMmTM1b948i/KdPXtWo0eP1vXr17Vs2TKNHz9eklRYWKgxY8bo008/1ciRI7V//34ZDIZS611dXbVq1SqL6z98+LC52eP999/XlClTzHMfffSRnnvuOQ0fPlwnT56Uq6urxXkBAAAAAAAAAAAAAABQ91jVdAFV8emnn8pkMlX677dPQvX29pYknT59usxj5OTkKCcnp0RsRSrKKUmpqakV5ly4cKFeffVV2draav369TzBFQAAAAAqMHv2bElSeHi4udlD+rXxYsmSJZKkRYsWKTs726J88+fP16VLl9S3b19zs4ckWVtba+nSpXJ2dlZCQoK2bdt2S+pfvHixCgsL1bt37xLNHpI0duxYDRkyRNnZ2YqMjLwlxwMAAAAAAAAAAAAAAEDtVacbPm6F4h8AHThwoMz54nFHR0fdc889lcp59OhRXblypdT85cuXdfTo0RKx/2vx4sWaPHmyudnjscces+jYAAAAAHCnOnPmjBISEiRJI0eOLDUfGBgoT09PXb16VbGxsRbljI6OLjef0WjUoEGDJEkbNmy42bJLKK6/b9++Zc4Xj69bt+6WHA8AAAAAAAAAAAAAAAC11x3f8DF48GBJ0tdff13mjhxr1qyRJA0cOFANGjSwKGePHj3UrFkzXb16VevXry81v379el27dk3NmzdXt27dSs3/7W9/08SJE83NHo8//nglzggAAAAA7kyJiYmSJBcXF/n4+JQZ06VLlxKxN5Kbm6uTJ0+WWFfZfPn5+YqIiNCLL76oSZMmaf78+Tp27Fi5x8zLy5Mk3XXXXWXOu7q6SpKOHTum/Pz8Cs8BAAAAAAAAAAAAAAAAddcd3/DRvn17PfHEEyosLNTzzz+vy5cvm+e2bNmiVatWycrKSq+//nqptc8++6zatm2rRYsWlRi3srLStGnTJEnTpk1TcnKyeS45OVnh4eGSpNdff11WViW/ghUrVig0NJRmDwAAAACopOJ/e3l5eZUb4+npWSL2RlJSUsyvy8tZUb6MjAy9/vrrWrZsmRYtWqQpU6aoXbt2+v3vf29u7vitpk2bSpKSkpLKzFc8bjKZStQHAAAAAAAAAAAAAACA+sempguoDZYvX64ff/xRO3bsUKtWrdSzZ0+dP39eu3fvlslkUmRkpO6///5S606fPq1jx44pIyOj1NykSZP0r3/9S9HR0erQoYP69u0rSdqxY4cuXbqkJ598UqGhoSXWfP/995owYYJMJpN8fX21bt06rVu3rsyaV61aVfUTBwAAAIB6JDc3V5Lk6OhYbozRaJQk5eTkWJzvRjnLy2dnZ6dx48bpySef1L333qu77rpLycnJ2rBhgyIiIvTpp5/q/Pnz+uc//ymDwWBeFxQUpK+//lqfffaZ3nrrLTVs2NA8V1BQoA8//ND83pJzkCQPD49y59LT0+Xu7m5RHgAAAAAAAAAAAAAAANxeNHzo1yeoHjhwQHPmzNH69eu1adMmOTo6qn///nrttdcUHBxc6ZzW1tZat26dVqxYoQ8++EBxcXGSft1R5Pnnn9f48eNL/KhHkrKysmQymSRJP/30k3766ady89PwAQAAAAC1l7u7u5YvX15i7N5779W9996rfv366cEHH9S2bdu0adMmDR482Bzz8ssva+nSpUpPT1f//v31/vvv695779XJkyf1xz/+scSuHv+7YyQAAAAAAAAAAAAAAADqFxo+/o+Tk5PmzJmjOXPmWLxm165dN5y3srLShAkTNGHCBIvy9enTx9zwAQAAAAConEaNGkmS8vPzy43Jy8uT9Ou/AS3NV5zT2dm5SvmKde3aVQMHDtTGjRsVExNTouHDzc1N//jHPzR06FDFx8era9eu5jkHBwctXbpUL7zwgiTJxcXFouOlpaWVO3ej3T8AAAAAAAAAAAAAAABQs2j4AAAAAADUC97e3pKk1NTUcmOK54pjb6Rly5bm16dPn9Z9991XpXy/1a5dO23cuLHMZoyuXbvqxIkTio6OVkJCgi5fvqxWrVpp+PDhunz5siTJ0dFRvr6+lTomAAAAAAAAAAAAAAAA6hYaPgAAAAAA9UKnTp0kSZmZmUpOTpaPj0+pmAMHDkiS/Pz8Kszn5OSk1q1b6+TJkzpw4ECZDR+VyfdbmZmZkkruIvJbDg4OGjlypEaOHFlifOXKlZKkhx56SNbW1pU6JgAAAAAAAAAAAAAAAOoWq5ouAAAAAACAW8HDw0P+/v6SpDVr1pSaj4+PV2pqquzs7DRgwACLcg4ZMqTcfHl5eYqJiZEkDR061OI68/Pzzeu6du1q8brr168rMjJSkjRx4kSL1wEAAAAAAAAAAAAAAKBuouEDAAAAAFBvTJ8+XZIUERGhgwcPmsczMzMVGhoq6ddmCWdnZ/NcdHS02rZtq+Dg4FL5wsLC1LBhQ+3YsUMrVqwwjxcWFio0NFRZWVny9/dXv379Sqxbvny5UlNTS+VLTk7WE088ofT0dDVu3FjPPfdcqZgDBw7o+vXrJcYuXLigESNG6IcfftCIESPUv39/Sz4OAAAAAAAAAAAAAAAA1GE2NV0AAAAAAAC3yuDBgzV58mQtWLBA3bt3V3BwsBwdHRUXF6esrCwFBARo1qxZJdZkZ2fr2LFjunLlSql8zZs316pVqzRixAiNHz9eK1eulLe3txISEpSUlCQ3NzetWbNGBoOhxLolS5boxRdfVPv27XXPPffI1tZWycnJ+v7773X16lXddddd2rBhg1xdXUsd84UXXtCZM2d0//33y83NTRkZGdq7d6/y8/P1+OOP68MPP7y1HxoAAAAAAAAAAAAAAABqJXb4AAAAAADUK5GRkfr888/Vo0cP7d27V7GxsfLw8FBERIR27twpBweHSuULCQnR/v37NXToUCUlJSk6OlqFhYV6+eWXdejQIbVu3brUmsmTJyskJETXr1/Xrl27tG7dOh07dkz333+//vSnP+nHH39Ur169yjzeCy+8oA4dOujIkSNat26dEhMTFRgYqLVr1yomJkb29vY39bkAAAAAAAAAAAAAAACgbjGYTCZTTReBmuPh4SFJSktLq+FKAKDu4Rpa9/EdAkDVcB2t+/gOAaBquI4CAAAAAAAAAAAAqE7s8AEAAAAAAAAAAAAAAAAAAAAAAFDL0PABAAAAAAAAAAAAAAAAAAAAAABQy9DwAQAAAAAAAAAAAAAAAAAAAAAAUMvQ8AEAAAAAAAAAAAAAAAAAAAAAAFDL0PABAAAAAAAAAAAAAAAAAAAAAABQy9DwAQAAAAAAAAAAAAAAAAAAAAAAUMvQ8AEAAAAAAAAAAAAAAAAAAAAAAFDL0PABAAAAAAAAAAAAAAAAAAAAAABQy9DwAQAAAAAAAAAAAAAAAAAAAAAAUMvQ8AEAAAAAAAAAAAAAAAAAAAAAAFDL0PABAABKiIqKUp8+fdSkSRM5OjqqY8eOmjt3rgoKCm4656ZNmzRo0CA1a9ZMtra2atq0qR588EG9/fbbpWLz8/O1Zs0avfrqq+rTp4+cnJxkMBjUunXrqpwWAAAAAAAAAAAAAAAAAABAnWJT0wUAAIDaIywsTJGRkbKxsVFQUJCMRqN27typadOmKSYmRtu2bZODg4PF+a5du6ZRo0YpKipKDg4O6tGjh9zc3HTu3DkdPXpUCxYs0JtvvllizYkTJ/TMM8/c6lMDAAAAAAAAAAAAAAAAAACoU2j4AAAAkqSNGzcqMjJSRqNRu3fvlp+fnyQpIyNDQUFBio+P18yZMzVv3jyLc44bN05RUVEaPHiwVqxYIVdXV/NcUVGRvv3221JrGjVqpLFjx8rPz0+dOnVSVlaWHn/88aqfIAAAAAAAAAAAAAAAAAAAQB1iVdMFAACA2mH27NmSpPDwcHOzhyS5urpqyZIlkqRFixYpOzvbonxxcXH6+OOP1aFDB33xxRclmj0kycrKSt27dy+1rlWrVvrwww81ceJEBQQEyNHR8WZPCQAAAAAAAAAAAAAAAAAAoM6i4QMAAOjMmTNKSEiQJI0cObLUfGBgoDw9PXX16lXFxsZalHPhwoWSpLCwMDVo0ODWFQsAAAAAAAAAAAAAAAAAAHAHsKnpAgAAQM1LTEyUJLm4uMjHx6fMmC5duig1NVWJiYkaMWLEDfMVFhYqLi5OktSrVy+dO3dOa9eu1bFjx2RnZ6dOnTpp2LBhMhqNt/ZEAAAAAAAAAAAAAAAAAAAA6gkaPgAAgJKTkyVJXl5e5cZ4enqWiL2RpKQk5eXlSZL27dun0NBQ8/tiU6dO1dq1axUUFHSzZQMAAAAAAAAAAAAAAAAAANRbVjVdAAAAqHm5ubmSJEdHx3JjinfjyMnJqTBfZmam+fXzzz+vzp07KyEhQbm5ufr+++81YMAA/fLLL3riiSd04sSJKlZ/Yx4eHuX+paenV+uxAQAAAAAAAAAAAAAAAAAAbhYNHwAA4JYzmUzm1y1atNDWrVvVpUsXGY1GdezYUZs3b1aHDh2Ul5eniIiIGqwUAAAAAAAAAAAAAAAAAACgdrKp6QIAAEDNa9SokSQpPz+/3Ji8vDxJkpOTk8X5JGnMmDGys7MrMW9tba0JEyZo0qRJ2rFjx82UbLG0tLRy5zw8PKr12AAAAAAAAAAAAAAAAAAAADeLHT4AAIC8vb0lSampqeXGFM8Vx1aUz2AwSJJ8fX3LjCkeT09Pr0SlAAAAAAAAAAAAAAAAAAAAdwYaPgAAgDp16iRJyszMVHJycpkxBw4ckCT5+flVmM9oNKpNmzaSpIyMjDJjiseNRmOl6wUAAAAAAAAAAAAAAAAAAKjvaPgAAADy8PCQv7+/JGnNmjWl5uPj45Wamio7OzsNGDDAopwhISGSpB07dpQ5v337dklS165db6ZkAAAAAAAAAAAAAAAAAACAeo2GDwAAIEmaPn26JCkiIkIHDx40j2dmZio0NFSSNHHiRDk7O5vnoqOj1bZtWwUHB5fKN3nyZDVp0kSxsbFatmxZibm1a9fqs88+M8cBAAAAAAAAAAAAAAAAAACgJJuaLgAAANQOgwcP1uTJk7VgwQJ1795dwcHBcnR0VFxcnLKyshQQEKBZs2aVWJOdna1jx47pypUrpfK5urrq888/16BBg/Tiiy9q4cKFateunU6dOqXExERJ0syZM8vcMWTIkCFKT0+XJOXk5EiS0tLS1L17d3PMCy+8oBdeeOGWnT8AAAAAAAAAAAAAAAAAAEBtQsMHAAAwi4yMVEBAgBYvXqy9e/eqoKBArVq1Unh4uKZMmSJbW9tK5Xv44Yd16NAhzZ49Wzt27NCmTZvk5OSkAQMG6A9/+IP69etX5rrExET95z//KTF29epV7d+/3/z+kUceqfwJAgAAAAAAAAAAAAAAAAAA1BEGk8lkqukiUHM8PDwk/frUdABA5XANrfv4DgGgariO1n18hwBQNVxHAQAAAAAAAAAAAFQnq5ouAAAAAAAAAAAAAAAAAAAAAAAAACXR8AEAAAAAAAAAAAAAAAAAAAAAAFDL0PABAAAAAAAAAAAAAAAAAAAAAABQy9DwAQAAAAAAAAAAAAAAAAAAAAAAUMvQ8AEAAAAAAAAAAAAAAAAAAAAAAFDL0PABAAAAAAAAAAAAAAAAAAAAAABQy9DwAQAAAAAAAAAAAAAAAAAAAAAAUMvQ8AEAAAAAAAAAAAAAAAAAAAAAAFDL0PABAAAAAAAAAAAAAAAAAAAAAABQy9DwAQAAAAAAAAAAAAAAAAAAAAAAUMvQ8AEAAAAAAAAAAAAAAAAAAAAAAFDL0PABAAAAAKh3oqKi1KdPHzVp0kSOjo7q2LGj5s6dq4KCgpvK99133ykkJERubm6yt7eXj4+PJk2apPPnz5cZn5KSIoPBcMO/8PDwco+3d+9ePf300/L09JStra0cHR113333adq0aeUeEwAAAAAAAAAAAAAAAPWLTU0XAAAAAADArRQWFqbIyEjZ2NgoKChIRqNRO3fu1LRp0xQTE6Nt27bJwcHB4nzr1q3TiBEjdP36dfn7+8vHx0cHDhzQokWLFBUVpfj4eLVu3brMtY6OjnryySfLnOvcuXOZ40uWLNHEiRNlMpnUoUMH9ejRQ3l5edq3b5/mzp2rVatWaffu3Wrbtq3F5wAAAAAAAAAAAAAAAIC6h4YPAAAAAEC9sXHjRkVGRspoNGr37t3y8/OTJGVkZCgoKEjx8fGaOXOm5s2bZ1G+s2fPavTo0bp+/bqWLVum8ePHS5IKCws1ZswYffrppxo5cqT2798vg8FQar2rq6tWrVplcf0///yzpkyZIpPJpFWrVmn06NHmudzcXD355JPatm2bwsLC9M9//tPivAAAAAAAAAAAAAAAAKh7rGq6AAAAAAAAbpXZs2dLksLDw83NHtKvjRdLliyRJC1atEjZ2dkW5Zs/f74uXbqkvn37mps9JMna2lpLly6Vs7OzEhIStG3btltSf3x8vK5du6Z77723RLOHJDVq1Eh/+tOfJEnffPPNLTkeAAAAAAAAAAAAAAAAai8aPv5Pbm6upk+frjZt2sjBwUGurq567LHHtHPnzpvOWVRUpGXLlqlbt25q1KiRGjVqpG7dumn58uUymUwW51myZIkMBoMMBoNeeOGFm64HAAAAAOqzM2fOKCEhQZI0cuTIUvOBgYHy9PTU1atXFRsba1HO6OjocvMZjUYNGjRIkrRhw4abLbsEe3t7i+JcXV1vyfEAAAAAAAAAAAAAAABQe9HwIen8+fPq0qWL5syZo9zcXA0cOFDt27fXli1b1LdvXy1cuLDSOQsLCxUSEqIXX3xRR44c0UMPPaSHHnpIP/zwgyZMmKCnn35aRUVFFeZJSkrSH//4RxkMhps5NQAAAAC4YyQmJkqSXFxc5OPjU2ZMly5dSsTeSG5urk6ePFliXWXz5efnKyIiQi+++KImTZqk+fPn69ixY+Ues0ePHnJ2dtaPP/6o1atXl5jLy8vTW2+9JUmaMGFChfUDAAAAAAAAAAAAAACgbrOp6QJqg/Hjx+v48eMKDg7W5s2b1bBhQ0lSbGysBg0apLCwMPXu3Vv333+/xTkXLlyoDRs2qEWLFtqzZ4/5x0bJyckKDAxUVFSUevXqpYkTJ5abo6ioSGPGjJHBYNCzzz5b6sc+AAAAAID/Sk5OliR5eXmVG+Pp6Vki9kZSUlLMr8vLWVG+jIwMvf766yXGXnnlFT3zzDNaunSpjEZjiTkXFxetXr1azzzzjMaMGaN58+apXbt2ys/P1zfffCNJ+stf/qKpU6dWWD8AAAAAAAAAAAAAAADqtjt+h48ff/xRmzZtkrW1tVauXGlu9pCkAQMGaMyYMSoqKtKcOXMszllUVKR3331XkvTuu++WeLKsj4+PeW7OnDk33OUjMjJSe/bs0bvvvitvb+9KnhkAAAAA3Flyc3MlSY6OjuXGFDdY5OTkWJzvRjnLy2dnZ6dx48Zp69atSk1N1aVLl3T06FHNmjVLDRs21Keffqphw4bJZDKVyvnEE09o9+7datWqlY4cOaKoqCjFxsbq4sWL8vf3V0BAQKV2gfTw8Cj3Lz093eI8AAAAAAAAAAAAAAAAuL3u+IaP6OhoSVJAQIBatmxZan7kyJGSpJiYGBUUFFiU85tvvtG5c+dkZ2enYcOGlZofNmyYbG1tdfbsWe3fv7/MHMeOHdOMGTPUu3dvvfTSS5aeDgAAAACgFnB3d9fy5cvVr18/eXh4yMHBQffee6/eeOMN7dy5U9bW1tq2bZs2bdpUau3SpUvVo0cP3XXXXdq1a5eys7OVmpqqxYsXa9++fQoKCtKqVatu/0kBAAAAAAAAAAAAAADgtrrjGz4SExMlSV26dClzvng8Pz9fJ06cqFTO9u3by97evtS8g4OD2rdvXyL2twoLCzV69GgZDAatXLmyUk9uBQAAAIA7VaNGjST9+u+38uTl5UmSnJycLM53o5yVyVesa9euGjhwoKRfHy7wW19//bVCQ0Pl6uqqbdu2qXfv3nJycpKHh4dCQ0O1bNkyFRUVKSwsTFlZWRYdLy0trdw/d3d3i+sGAAAAAAAAAAAAAADA7XXHN3wkJydLkry8vMqcd3JyMv9wpzi2qjklydPTs9yc7733nvbv36+//OUvatWqlUXHBID/z969x0VZ7f3/fw8gpxlBiCJ1UFHzUKiJYppabjBTK49hat5bO2mhsrF+pVnULttut9vv3lF2MLd728k7D4nlHeUxTbIMFTWtLBMTPIRAIOAJ8fr90c3cjDAwgDoDvp6PB4/wWmt9Zn1YrOuTD2fNBQAAcLVr1aqVJCkzM9Nhn7K2sr5VKf8UyMOHD9c5XnkdO3aU9PthjPLKntwxePBgBQYGVhh37733ytvbWwUFBUpLS6vRawIAAAAAAAAAAAAAAKB+8XL1BFytsLBQkmQ2mx32sVgsOnnypE6ePHlJY0qqEHPv3r16/vnndeuttyo+Pt6p16uO1Wp12Hbs2DE+0RUAAABAg9C1a1dJUm5urjIyMhQeHl6hz/bt2yVJkZGR1cYLCAhQ27ZtdeDAAW3fvl2dOnWqU7zycnNzJdk/RUT6v4Mljp4Y4uXlJbPZrHPnzikvL69GrwkAAAAAAAAAAAAAAID6pV4/4eOpp55Shw4davyVmprq6qlX6vz58xo/frw8PDz073//Wx4e9Xp5AAAAAOCKslqtioqKkiQtWbKkQntqaqoyMzPl4+OjwYMHOxVz+PDhDuMVFRVp9erVkqQRI0Y4Pc/i4mLbuB49eti1NW/eXJK0bdu2Ssfu379fv/32myRVeqAFAAAAAAAAAAAAAAAADUe9PlFw9OhR7d+/v8ZfRUVFthhln6ZaXFzs8HXK+jv6hNWL1TbmX/7yF+3cuVMvvPCC2rdv79RrOSMrK8vhF0/3AAAAANCQzJw5U5I0Z84c7dy503Y9NzdXcXFxkqQpU6YoMDDQ1pacnKwOHTooJiamQryEhAT5+/tr/fr1Wrhwoe16aWmp4uLilJ+fr6ioKA0YMMBu3FtvvaXMzMwK8TIyMjR06FAdO3ZMTZo00YMPPmjXfu+990qStm7dqr///e8yDMPWlp2drYceekiS1K5dO3Xv3t25HwoAAAAAAAAAAAAAAADqJS9XT6Au3nvvPb333nt1itGqVSvt3LlThw8frrT95MmTOnnypK2vszElOYwpyfbGn/Ixk5OTJUmrV69WSkqKXf9Dhw5Jkj755BP169dPkrRp0yan5gMAAAAAV4thw4YpPj5er7zyinr27KmYmBiZzWZt2LBB+fn56t27t2bNmmU3pqCgQPv379eZM2cqxGvWrJkWL16sMWPGaOLEiVq0aJFatWqltLQ0HTx4UKGhoVqyZIlMJpPduNdff12PPvqobrrpJrVr107e3t7KyMjQrl27dPbsWV1zzTVauXKlQkJC7MYNHjxYkyZN0oIFC/TUU0/prbfeUufOnVVYWKht27bp5MmTatKkid59912eCgkAAAAAAAAAAAAAANDA1esDH5dCZGSkVq5cqe3bt1faXnbdbDarXbt2TseUpH379unMmTPy9fW1az99+rT27dtn17e81NRUh7GPHz+u48ePOzUPAAAAALgaJSUlqXfv3nrttde0detWlZSUqE2bNpoxY4amTZsmb2/vGsWLjY1V69atNXv2bG3ZskXp6elq2rSpJk+erMTERIWGhlYYEx8frzVr1mjPnj3atGmTTp48KYvFos6dO2vw4MGKi4vTddddV+nrvfnmmxo0aJAWLVqk7du3a/Xq1fLy8lJ4eLjuvPNOPf7447JarbX62QAAAAAAAAAAAAAAAKD+MBmGYbh6Eq60b98+RUREyNPTUwcPHlSLFi3s2h9++GEtWrRIo0eP1n//9387FfPChQtq3ry5jh8/rvfee0/333+/Xft7772n//qv/1KzZs2UmZnp1Key/vnPf9YLL7yghx56SP/617+cT7AaZW8SysrKumQxAeBqwT20/mMNAaBuuI/Wf6whANQN91EAAAAAAAAAAAAAl1P1Jw0auJtuuklDhw5VaWmpHnroIZ0+fdrW9umnn2rx4sXy8PDQ008/XWHsH//4R3Xo0EHz58+3u+7h4aHp06dLkqZPn66MjAxbW0ZGhmbMmCFJevrpp5067AEAAAAAAAAAAAAAAAAAAAAAAK4uXq6egDt466239N1332n9+vVq06aN+vbtq+zsbG3evFmGYSgpKUmdO3euMO7w4cPav3+/cnJyKrRNnTpVX3zxhZKTkxUREaH+/ftLktavX69Tp07p3nvvVVxc3GXPDQAAAAAAAAAAAAAAAAAAAAAA1D88XkLSddddp+3bt2vGjBmyWCz66KOPtGfPHt15551av3694uPjaxzT09NTK1as0Jtvvqkbb7xRGzZs0IYNG3TTTTfpzTff1LJly3i6BwAAAAAAAAAAAAAAAAAAAAAAqJTJMAzD1ZOA61itVklSVlaWi2cCAPUP99D6jzUEgLrhPlr/sYYAUDfcRwEAAAAAAAAAAABcTjxiAgAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAA2Fm+fLn69eunoKAgmc1mdenSRXPnzlVJSUmtY3700UcaMmSIrr/+enl7e+u6667TrbfeqhdffNHhmAMHDmjChAmyWq3y8fGR1WrVhAkTdPDgwVrPAwAAAAAAAAAAAAAAAAAAoL4wGYZhuHoScB2r1SpJysrKcvFMAKD+aYj30ISEBCUlJcnLy0vR0dGyWCzauHGj8vPz1adPH61du1Z+fn5Oxzt37pzGjRun5cuXy8/PT7169VJoaKiOHz+uffv2qbS0VDk5ORXGffnllxowYIBOnTqlm266SREREdq7d6/27dsns9ms9evXq2fPnnXOtyGuIQBcSdxH6z/WEADqhvsoAAAAAAAAAAAAgMvJy9UTAAAA7mHVqlVKSkqSxWLR5s2bFRkZKUnKyclRdHS0UlNTlZiYqHnz5jkd85FHHtHy5cs1bNgwLVy4UCEhIba2Cxcu6Jtvvqkw5tSpUxo1apROnTqlp59+WrNnz7a1zZw5U3/96181atQo7d+/v0aHTwAAAAAAAAAAAAAAAAAAAOoTD1dPAAAAuIeygxUzZsywHfaQpJCQEL3++uuSpPnz56ugoMCpeBs2bNA777yjiIgILVu2zO6whyR5eHhU+pSOxYsX6+jRo2rXrp1eeuklu7aXXnpJ7dq1U2Zmpt55550a5QcAAAAAAAAAAAAAAAAAAFCfcOADAADoyJEjSktLkySNHTu2QnufPn0UFhams2fPKiUlxamYr776qiQpISFBjRo1cnouycnJkqTRo0fLw8P+f1U8PDx03333SZJWrlzpdEwAAAAAAAAAAAAAAAAAAID6xsvVEwAAAK6Xnp4uSQoODlZ4eHilfbp3767MzEylp6drzJgxVcYrLS3Vhg0bJEm33Xabjh8/rg8++ED79++Xj4+PunbtqpEjR8pisTicS/fu3R3Oo3w/AAAAAAAAAAAAAAAAAACAhogDHwAAQBkZGZKkFi1aOOwTFhZm17cqBw8eVFFRkSTp66+/VlxcnO3PZZ588kl98MEHio6Otl0rLCxUbm5ulXMpm8eJEydUXFwss9lc7XwAAAAAAAAAAAAAAAAAAADqGw9XTwAAALheYWGhJFV5eKLsaRwnT56sNl7ZoQ1Jeuihh9StWzelpaWpsLBQu3bt0uDBg3XixAkNHTpUP/30U4V5VDWX8k8FcWYuVqvV4dexY8eqHQ8AAAAAAAAAAAAAAAAAAOAKHPgAAACXnGEYtu+bN2+uNWvWqHv37rJYLOrSpYs+/vhjRUREqKioSHPmzHHhTAEAAAAAAAAAAAAAAAAAANyTl6snAAAAXK9x48aSpOLiYod9ioqKJEkBAQFOx5OkCRMmyMfHx67d09NTkyZN0tSpU7V+/fpKxzmaS9k8nJ1LVlaWwzar1VrteAAAAAAAAAAAAAAAAAAAAFfgCR8AAECtWrWSJGVmZjrsU9ZW1re6eCaTSZLUunXrSvuUXT927JjtWuPGjRUcHCxJOnz4cJXzCAkJkdlsrnYuAAAAAAAAAAAAAAAAAAAA9REHPgAAgLp27SpJys3NVUZGRqV9tm/fLkmKjIysNp7FYlH79u0lSTk5OZX2KbtusVjsrpfFL3u9uswDAAAAAAAAAAAAAAAAAACgvuLABwAAkNVqVVRUlCRpyZIlFdpTU1OVmZkpHx8fDR482KmYsbGxkqT169dX2r5u3TpJUo8ePeyuDx8+XJL0wQcf6MKFC3ZtFy5c0NKlSyVJI0aMcGoeAAAAAAAAAAAAAAAAAAAA9REHPgAAgCRp5syZkqQ5c+Zo586dtuu5ubmKi4uTJE2ZMkWBgYG2tuTkZHXo0EExMTEV4sXHxysoKEgpKSlasGCBXdsHH3yg999/39avvAkTJqhZs2b68ccflZiYaNeWmJioH3/8UVarVX/84x/rkC0AAAAAAAAAAAAAAAAAAIB783L1BAAAgHsYNmyY4uPj9corr6hnz56KiYmR2WzWhg0blJ+fr969e2vWrFl2YwoKCrR//36dOXOmQryQkBAtXbpUQ4YM0aOPPqpXX31VHTt21M8//6z09HRJvx/guPiJIf7+/lq2bJkGDBig2bNn6+OPP1ZERIT27t2rvXv3ymw2a/ny5fLz87t8PwwAAAAAAAAAAAAAAAAAAAAX4wkfAADAJikpSUuXLlWvXr20detWpaSkyGq1as6cOdq4cWOND1nccccd2r17t8aPH6/8/Hx99NFHOnz4sAYPHqw1a9boxRdfrHRc7969tXv3bv3xj39UXl6ePvzwQ+Xl5emPf/yjdu/erZ49e16KdAEAAAAAAAAAAAAAAAAAANyWyTAMw9WTgOtYrVZJUlZWlotnAgD1D/fQ+o81BIC64T5a/7GGAFA33EcBAAAAAAAAAAAAXE484QMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNmAzDMFw9CbiOt7e3SktL1bRpU1dPBQDqnWPHjsnT01Pnzp1z9VRQS9RBAKgbamH9Ry0EgLqhFgIAAAAAAAAAAAC4nLxcPQG4VqNGjS77axw7dkySGsQbiBpKLg0lD6nh5NJQ8pAaTi7O5OHp6XlF7qO4fK7U+jWUfSE1nFwaSh5Sw8mFPNwPtfDqQC2smYaSh9RwcmkoeUgNJ5eGkodELQQAAAAAAAAAAADgejzhA5ed1WqVJGVlZbl4JnXXUHJpKHlIDSeXhpKH1HByaSh5wD00pN+nhpJLQ8lDaji5kIf7aUi5wPUayu9TQ8lDaji5NJQ8pIaTS0PJQ2pYuQAAAAAAAAAAAAConzxcPQEAAAAAAAAAAAAAAAAAAAAAAADY48AHAAAAAAAAAAAAAAAAAAAAAACAm+HABwAAAAAAAAAAAAAAAAAAAAAAgJvhwAcAAAAAAAAAAAAAAAAAAAAAAICb4cAHAAAAAAAAAAAAAAAAAAAAAACAm+HABwAAAAAAAAAAAAAAAAAAAAAAgJsxGYZhuHoSAAAAAAAAAAAAAAAAAAAAAAAA+D884QMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNcOCjgVu+fLn69eunoKAgmc1mdenSRXPnzlVJSUmt4u3YsUOxsbEKDQ2Vr6+vwsPDNXXqVGVnZ1fav7S0VCtWrNDTTz+tAQMG6JprrpHJZJKXl1e1r5WSkqI///nPuueeexQUFCSTySSTySR/f3+n8sjOztaMGTMUEREhi8Uis9msNm3aaMyYMXrvvfdckkezZs1seTRp0qTaNdm6davuu+8+hYWFydvbW2azWZ06ddL06dNtc71Sa5Kdna133nlHY8eO1Q033KBGjRrJ09NTnp6eatSokTp27Fjlmpw7d05/+9vf1KVLF5nNZgUFBalfv35asWKFS/Pw9fWVj4+P/P395evr6/D3q6CgQMuXL9dDDz2kG2+80da/devWevDBB/Xtt9/a+taXNbl4Dr169bL9fqamprr9mlwcw9F+37Fjh0tz8ff3V4cOHRQfH69Dhw5VOd6ZPY+aoxZSCy9VLtRCaqE75+EO+5066L6ohe5VC2uaR3V7w93rR5nq6qDk/vXD2VpYX9bk4jlcXAddmQu1kFoIAAAAAAAAAAAA4H8ZaLD+9Kc/GZIMLy8vY8CAAcaIESOMJk2aGJKMPn36GKdOnapRvOXLlxteXl6GJCMqKsoYNWqU0bp1a0OSERoaavz0008Vxvz222+GpApfnp6e1b5eYGBgpWMHDRpUbR4bN2609Wnbtq0xcuRIY/jw4UbXrl0Nk8lkeHh4uDyP2267rco1ee211wyTyWRIMiIiIozY2Fhj0KBBRlBQkCHJuO6664yXX375iq3J/fffb0gyPDw8jJCQEEOSYTKZjEaNGtnFqWxNiouLjVtvvdWQZDRp0sQYMWKEMWDAANvc77nnHpfk0blzZ+OGG26oMN5isVTI5ZlnnrH1adeunTFixAhj6NChhtVqNSQZjRo1MhYvXnxF90ld1uRic+bMsY2XZLz44otuvyZlqtrvHh4exoMPPuiyXGJjY43Bgwcb1157rSHJMJvNxtq1aysd68ye//7776t8fVRELaQWust9l1rofmtyMXephbXJw132O3XQPVELXb836pJHdXsjICDA7euHYVRfB5944ol6UT+cqYWTJ0+uF2tysYvr4JYtW+rFmpRxl/1OLQQAAAAAAAAAAABwqXHgo4FKTk42JBkWi8XYsWOH7fqJEyeMTp062d5Q4awjR44Y/v7+hiRjwYIFtuvnz583xo0bZ/tH8wsXLtiNKyoqMu6//35j3rx5xsaNG41du3Y5/YaYBx54wBbbbDbb/nE9MzOzyjz27dtn+Pn5GRaLxVi5cmWFPPz8/K54HrNnzzaee+45uzcJZGZmGoZR+ZocP37c8Pb2NiQZixcvtot38uRJY8CAAbbXv1K5TJ061XjhhReMf/3rX3a/W4WFhcbo0aPt5nPxmpS9yaxTp07GiRMnbNe3b99u+7260nlkZWXZ7ZMtW7bY8mjSpIlx44032uUye/Zs4/HHHzd+/PFHu3jnzp0zpk2bZntzz5X8/arLmpS3d+9ew8fHx7j77ruNli1bGpIMX19ft18Tw6h6vxuGYaSnp7tkTbKysuyul1+T4OBgIy8vz67d2T1/5513Vvn6sEctpBa6032XWuh+a1Keu9TC2uThTvudOuh+qIXusTdqm0d1e+O2226rF/XDMKqug2UHEnx8fNz+vutMLawva1JeZXUwOTn5iu53aiG1EAAAAAAAAAAAAEDlOPDRQEVFRRmSjJdeeqlC25YtW2xvpsjPz3cq3pNPPmlIMvr371+hrbCw0PZppZ999lmVcTIyMpx+Q8zFeVz85lBHefTt29eQZCxZssRt8iify8V5VJbLihUrDEnGjTfeWGmsL7/80hbHlWtSpri42GjcuLFtTuXXJC8vz/amhdTU1Arx+vTpY0gyAgMDr2geleVSPo9nn33W6X1SWlpqtGvXrt6sSXklJSVGt27djCZNmhhHjhyxvbnH1fvE2TWpar8bhmv3/MXK5/Luu+/atTm75wMCAmr9+lcjaiG10F3uu9TCy59LQ6mFtcnDXff7xaiDrkEtdK+9UdM8qtsbY8eOdfj67lQ/qquDs2bNqlf3XUdKS0ttT2Jo06bNFc2jslycremO6uCYMWPqzZq4436vDLUQAAAAAAAAAAAAQG14CA3OkSNHlJaWJkkaO3ZshfY+ffooLCxMZ8+eVUpKilMxk5OTHcazWCwaMmSIJGnlypW1nXYFtclj165d2rJli8LCwjR69Gi3yEOyz6UyF+fi6+vrdGx3WBN/f3+1b99ekhQYGGi3JikpKTp37pxatGih3r17V4iZmZkpSSooKNDRo0evSB6Ocimfh7+/v9P7xMPDQ507d7b92d3XpLzZs2drx44d+sc//qFmzZrZtblynzizJtXtd8l1e74y5XMp+70v4+yeDwkJueTzaqiohdRCd7rvUgt/505rUp671MLa5OGu+70y1MErj1roXnujNnlUtze++OILSVJwcHCFNneqH9XVwfI/j8GDB1+xXOpaPy7m4eGhkpISSZLVaq3Q7k5rUp6jOrhlyxa7eFciF2ph9aiFAAAAAAAAAAAAwNWHAx8NUHp6uqTf3/QRHh5eaZ/u3bvb9a1KYWGhDhw4YDeuLvGcVZs81qxZI0nq27evTCaT1qxZo6eeekqTJk3Ss88+65I8yser7I04lb12r169FBgYqO+++05vv/22Xb+ioiIlJiZWGFdVvEvF0ZqUlJTo0KFDkqQ2bdrY9S37b2XzLCws1C+//GL7865duyr0uRJrUpZL+TyaNm1ao9f+4YcfbN+7+5qU2bVrl1566SXdeeedeuCBByRJFy5cqDDfi7nLmlS132fNmqUvvvjCZXu+MhfnUl51e/6FF16QJE2aNOmyz7OhoBZSCy+Od6lQCx2jFtZNbfJw1/1eGerglUctdK+9UZs8qtobx44dU1ZWliTp/vvvdyrepVLT+lFVHZSka6+91va9j49PpX3c5b5blcLCQhUVFUmSOnbsWGkfd1mTMpXVwTJlv1/usE+ohdRCAAAAAAAAAAAA4Grm5eoJ4NLLyMiQJLVo0cJhn7CwMLu+VSn7x+iqYtYknrNqk8eePXskSU2aNNEdd9yh9evXVzouNDTUqXiXSvlc8vLyqn3t4OBgvf3227r//vs1YcIEzZs3Tx07dlRxcbG++uorlZaW2sa5w5osWrRIOTk58vPzU2RkpHbu3GnrW9U6lv/dcjTXK7EmZcrnMWjQINsbPqp77c8++0x79+61/dnd10SSzp07p/Hjx8vX11dvvfWW7fr58+ddkkf5eM6uyZEjRyRVv98vjlne5cqlMhfnUl51e16S/vKXv+jJJ5+87PNsKKiF1MKL412OPMqjFlILXZGHu+73ylAHrzxqoXvtjdrkUdXeSE1NtY17/vnnnYp3qdS0fpQdpHOUe/nfrVOnTlXax13uu1V57733bN+PGzeu0j7usiaS4zp4MXfY79RCaiEAAAAAAAAAAABwNeMJHw1QYWGhJMlsNjvsY7FYJEknT550Ol5VMWsSz1m1ySM3N1eStHDhQm3dulWvvvqqjhw5ouzsbM2cOdM27plnnnEq3qVSm1yGDh2qzZs3q02bNtq7d6+WL1+ulJQU/fbbb+rQoYNtnKvX5Ntvv7W94SAxMVHXXXed3etWlXv53y1Hc71Sa3JxHqGhoU699tGjR/XQQw/ZXXP3NZGkF154QXv27NHf//53uzfTlP9U8yuZh1TzNalqv//73/+Wv7+/y3K5WGW5XKyqPR8VFaXevXvLZDJd1nk2JNRCamFl8S4FamFF1MJLozZ5uOt+vxh10DWohe61N2q7Ho72Rvk+ZeOciXcp1LR+VJd7+d+tM2fOVNrHXe67jhw9elTPPfec7c+33HJLpf3cZU0kx3XwYq7e79RCaiEAAAAAAAAAAABwtePABxoUwzAkSSUlJfrnP/+pKVOmqFmzZrr22mt111132fotWrSowidqu5s33nhDvXr10jXXXKNNmzapoKBAmZmZeu211+w+QduVsrKydM8996ioqEhDhgzRjBkzXD2lWqltHidPntTdd9+to0ePqmPHjpd5ls5xJpdvvvlGf/vb3xQdHa2JEye6YJbVcyaPqvb7Aw88YDfGlfvd2d+vqvb8119/rejoaC1evPjKTh71ErXwyqIWUgsvl7rWQnfZ79RBuEJ92BvOcrQ3nnjiCVuft99+22Xzayh1UKp7LczJybnMM3ROQ6mDErWQWggAAAAAAAAAAABA4sBHg9S4cWNJUnFxscM+RUVFkqSAgACn41UVsybxnFWbPMrGNGrUSA8++GCl8aTf3xDw+eefVxvvUqlpLl9++aXi4uIUEhKitWvX6vbbb1dAQICsVqvi4uL0/PPP28YdOXKk2niXSvk8jh8/rpiYGP3yyy+68847tWzZMplMJodrUlnu5dfE0Vwv95oUFBRUmkd1r11UVKRBgwYpPT1dXbt21cKFC21trtonzqzJmTNnNGHCBPn6+upf//pXhU8H9fD4v7JwJfMon4uza1LVfpekYcOG2b5fs2ZNpa95uXIp42hNLlbdnl+wYIEuXLighIQE5efnX5a5NjTUQmrhxfEuFWqh/byohe7xu+Vu+70MddC1qIXutTdqk0dVe2P8+PG2cY8//nile8Nd6kd1uZdfE19f30r7uMt9t7J5ldXC8k8fc+e/S5nN5irr4MWohXVDLQQAAAAAAAAAAABQVxz4aIBatWolScrMzHTYp6ytrG9VWrZsafv+8OHDdY7nrNrk0bp1a0lSWFiYvLy87PqWz0OSjh07Vm28S6WmuZR9YuPgwYMVGBhYoe/DDz9s+97RG9kv55ocPnxY0dHR+vHHH9W/f3+tWrVKPj4+lb5u+TEXu3hNKpvr5V6T77//vtI8qnrt4uJi3XXXXdq6das6d+6sdevWqVOnTrZ2V+wTZ9fkhx9+0Pfffy8/Pz898MAD6tevn91Xbm6uLXZMTIzmzJlzRfIoH8/ZNalqv0v2v1/79++v9DUvVy6SlJ2d7XBNLlbdnr/33nvl7e2tgoICpaWlXfK5NkTUQmrhxfEuFWrh76iFrs9Dct/9LlEH3QG10L32Rm3yqGpvlM/j5MmTle4Nd6kfVdVByT4XPz+/Svu4y323vItr4aeffmpru5J7pHw8Z9akcePGVdbB48eP28Uuf8j2cudCLaQWAgAAAAAAAAAAAKio4jtkUe917dpVkpSbm6uMjAyFh4dX6LN9+3ZJUmRkZLXxAgIC1LZtWx04cEDbt2+3ezNfbeI56+I8KnPx63br1s025mLl85Aki8VSbbxLpXwujpR/7bJ/6Hf0CZPBwcHy8PDQhQsXlJ6eXm28S6Usj7y8POXl5SkmJkYff/yx3aewXvy6Zf8tu15eQECAWrZsqV9++cUu/uXOQ5JatGghSSotLdWtt95aIQ9Hr33q1Cnddddd+uKLL9S5c2dt2LBB11xzjSS5dJ/UZE0kKScnR5s3b64y9o4dOxQREVHhurusSdknsDvaVwEBAfLy8tL58+eVk5NTaZ/LlcuJEycUHR2t77//vtI1uVjZG8Ic7XkvLy+ZzWadO3dOeXl5l3SuDRW1kFp4cbxLhVpILXQUr65qk4e77nfqoHugFrrX3qhNHlXtjYvzqGxvuEv9uHDhgt21i5X/f/Vz585V2sdd7rtlKquFISEhLtkjUs3WpOxJJM7UQUkODxe4y5q4436XqIUAAAAAAAAAAAAALiEDDVJUVJQhyXjppZcqtG3ZssWQZPj4+Bj5+flOxXvyyScNSUb//v0rtBUWFhpNmjQxJBmfffZZlXEyMjIMSYanp2eN85BkSDIyMzMd5nHy5EnD39/fkGR88803FeI99NBDtjhfffXVFcujfC4X51FZLg888IAhybj11lsrjfXDDz/Y4vTo0aNC++XK5cSJE4afn58hyWjdurVx6tQpu/bK1iQvL8/w9vY2JBmpqakVYvbp08eQZAQGBl7RPCIiImw/w+eff75Cn8pyOXXqlPGHP/zBkGR07tzZOHHihN0YV+yT2qxJVVq2bGn7uVzpPGq6JtXt9/3799viRUVFuSSXmJiYCmtSmZrs+W3btlUbD7+jFlIL3eW+Sy28/Lk0lFpY0zzccb9TB90LtdB99kZt8qhub5TP4+K94U71o7o6OGvWrHpz3zWMqmuhq+pgbWq6I2V1cMyYMfViTdxxv1MLAQAAAAAAAAAAAFxKHPhooJKTkw1JhsViMXbs2GG7npOTY3Tq1MmQZDzxxBN2Y1auXGm0b9/eiI6OrhDvyJEjtn9Af+utt2zXz58/b/zXf/2X7Q3VFy5cqHJeNX1DTPk8yr8hpqo8YmNjDUlG48aNjSNHjtjl3qNHD1ucK5lH+VwufmNPZbl88skntn7XXnut3Zr8+uuvRu/evQ1JhslkumK55ObmGp07d7bNqya/W3fddZdtTE5Oju36jh07bL9Xrsij7L/O5HL69Gmjf//+tjeX9O3bt0LsK71P6rImjvZ72Zt7fH193X5NDMMwEhMTbWvSu3dvu/59+/Y1JBkeHh4uyaV///5OvbHHMOz3/Ny5c+3mU37Pt2vXzigtLXUqJqiF1EL3uu9SC91vTdy1FtY0D3fa79RB90MtdI+9Uds8yu+Ntm3bVtgb3bt3t7W/+eablz2Puvx/+5/+9KdK68eOHTtsPw8fHx+3v++ePn3aLveLDz66sg7WdE0Mo/L9XlYHk5OT601Nd6f9Ti0EAAAAAAAAAAAAcKlx4KMBi4+PNyQZjRo1MgYOHGiMHDnS9smFvXv3rvCPzv/5z38MSUbLli0rjbds2TLD09PTkGTccsstxn333We0bt3akGSEhoYaP/30U6XjHnvsMeOWW24xbrnlFuPmm2+2/QN22bVbbrnFePHFFyuMe/HFF41bbrnFCA0NtXtzaJMmTWzzuP766yvksXDhQlvfgIAAY8CAAcbgwYON4OBgQ5IREhLikjwuzqVx48ZGUFCQbS4Xr8mkSZNsfb28vIwRI0YYd9xxhxEQEGD7OcyePfuK5TJ8+HDbG2tvuOEGQ/r9jfTNmzc3WrZsafvE1g4dOlRYkzfffNP2GkFBQcbIkSONgQMHGo0aNTIkGXfffbdL8hg1apTRsWNHh7mUX5Np06bZ/R6azWZj/PjxFb4mTZpUL9bE0X4ve3PPiy++6PZrYhiGcfbsWdubfkwmU4X93rJlS2P+/Pkuy6Wy35Hx48cbycnJFV6v/J5v27ZtpXueT3KtOWohtdBd7rvUQvdbE3ethTXNw532O3XQPVELXb836pJHv379qtwb/v7+bl8/DMMwiouLjTZt2tj6X1wHH3/88Sv6u1Xb+275Wujn51fpPe7222+3HTp35zUxjMr3e1kd3LJlS71YE8Nwr/1OLQQAAAAAAAAAAABwqXHgo4FbunSpcdtttxkBAQGGn5+fERERYcyZM8c4e/Zshb7VvbHHMAxj+/btxogRI4xrr73W8Pb2Nlq2bGlMnjzZOH78uMMxt99+u90bWir7Gj9+fIVx48ePr3ZcZZ8sXZZHcHCw0aNHD8NisRi+vr5Gx44djZkzZxq5ublul0d4eHilazJ16lRD+v0TJBs1amT4+fkZN954ozFt2jTbp6JfqVycGSPJePbZZx2uSZMmTYyIiAjDz8/PCAwMNG677TZj2bJlbplHTEyM3Zo4s45lr+duuVS1Jo7e5Lplyxa3y+PiNSmzaNEiQ5Lh7e1d6X43DPf7/Xr++ecrfc1Vq1YZ99xzj9G0aVOHex41Ry2kFl6qXKiF1EJ3zsMd9jt10H1RC+tHLawqDz8/P4d7w932uKP/by97U35ZDhfXQcNwv1p48X3X2Vp49913u1UejtakugMf9WFNyufhDvudWggAAAAAAAAAAADgUjMZhmEIAAAAAAAAAAAAAAAAAAAAAAAAbsPD1RMAAAAAAAAAAAAAAAAAAAAAAACAPQ58AAAAAAAAAAAAAAAAAAAAAAAAuBkOfAAAAAAAAAAAAAAAAAAAAAAAALgZDnwAAAAAAAAAAAAAAAAAAAAAAAC4GQ58AAAAAAAAAAAAAAAAAAAAAAAAuBkOfAAAAAAAAAAAAAAAAAAAAAAAALgZDnwAAAAAAAAAAAAAAAAAAAAAAAC4GQ58AAAAAAAAAAAAAAAAAAAAAAAAuBkOfAAAAAAAAAAAAAAAAAAAAAAAALgZDnwAAAAAAAAAAAAAAAAAAAAAAAC4GQ58AAAAAAAAAAAAAAAAAAAAAAAAuBkOfAAAAAAAAAAAAAAAAAAAAAAAALgZDnwAuKw2bdokk8mkfv36XbKYJpNJJpPpksUDAOByohYCAK521EIAAAAAAAAAAAAAAGqHAx8AAAAAAAAAAAAAAAAAAAAAAABuhgMfAAAAAAAAAAAAAAAAAAAAAAAAboYDHwAAAAAAAAAAAAAAAAAAAAAAAG6GAx8AauSbb77RU089pR49euj666+Xt7e3QkNDdc8992j9+vVOxzl06JBMJpNatWql8+fPa+7cubrpppvk5+enkJAQjRo1Sj/88EO1cT788EP16dNHAQEBMpvN6t27t1JSUirt+9133+n5559X79691bx5c3l7e+uaa65R//79tWzZMqfnDgC4ulELAQBXO2ohAAAAAAAAAAAAAABXBgc+ANTIzJkz9f/+3//TmTNn1K1bNw0bNkxWq1X/8z//ozvuuENJSUk1jnnffffp2WefVbNmzTRs2DAFBgZq+fLlioqK0ldffeVw3PPPP6/Y2FhJ0uDBg3XDDTdo69atuvvuu5WcnFyh/z/+8Q+9+OKLysvLU6dOnTRixAi1b99en3/+ue677z49/vjjNZ47AODqQy0EAFztqIUAAAAAAAAAAAAAAFwZJsMwDFdPAkD98emnn+rmm29W06ZN7a5/9dVXGjhwoE6fPq2MjAw1b95ckrRp0yb94Q9/0O23365NmzbZ+h86dEjh4eGSpJCQEG3YsEGdO3eWJJWWlmratGl69dVX1bJlS+3fv18+Pj62sSaTSZLUpEkTffbZZ7rllltsbX/+85/1wgsvqF27dtq/f7/dHDdv3qywsDC1bt3a7vr+/fvVv39/ZWVladu2berRo0cdf0oAgIaMWggAuNpRCwEAAAAAAAAAAAAAuDJ4wgeAGhk0aFCFN/VIUq9evTR58mSVlJToo48+qlHMZ5991vamHkny9PTU3//+dzVv3ly//PKLPvzww0rHvfjii3Zv6pGkp59+WoGBgfrxxx+VmZlp13b77bdXeFOPJLVv316JiYmSpBUrVtRo7gCAqw+1EABwtaMWAgAAAAAAAAAAAABwZXi5egIA6p/c3Fx98skn2rt3r3777TeVlJRIkn766SdJqvAJqtUZP358hWs+Pj6677779I9//EObNm3S2LFjK/S55557Kh3XunVrpaen68iRIwoLC7NrLyoq0qeffqr09HTl5OTo3LlzkqRjx47Vau4AgKsTtRAAcLWjFgIAAAAAAAAAAAAAcPlx4ANAjSxcuFDTpk1TcXGxwz4nT550Ol6TJk3UpEmTStvCw8MlSVlZWZW2t2jRotLrAQEBkqQzZ87YXV+9erUeeOAB5ebmOpxPTeYOALg6UQsBAFc7aiEAAAAAAAAAAAAAAFeGh6snAKD+2LFjhyZNmqSzZ8/qb3/7m7777jsVFRXpwoULMgxDCxYskCQZhnFJX9dRPA8P529hR44c0X333afc3Fw99dRT2r17twoKClRaWirDMLRmzZoqXwsAAIlaCAAAtRAAAAAAAAAAAAAAgCuHJ3wAcNry5ctlGIamTp2qp556qkL7Tz/9VOOY+fn5ys/Pr/TTXA8dOiRJslqtNY57sdWrV+v06dMaPny4/va3v1Vor83cAQBXH2ohAOBqRy0EAAAAAAAAAAAAAODK4QkfAJyWl5cnSWrZsmWFtjNnzujDDz+sVdx33323wrVz585p6dKlkqR+/frVKm55Vc3dMAwtWbKkzq8BAGj4qIUAgKsdtRAAAAAAAAAAAAAAgCuHAx8AnNaxY0dJ0ttvv63CwkLb9TNnziguLk4ZGRm1ijtr1izt3bvX9ucLFy5o+vTpysrKUlhYmEaOHFm3iev/5r5ixQodO3bMdr20tFTPPfectm7dWufXAAA0fNRCAMDVjloIAAAAAAAAAAAAAMCV4+XqCQCoPx544AElJSUpPT1d4eHh6tu3rzw9PbVlyxadPn1af/rTn5SUlFSjmC1atFC3bt0UGRmpfv366ZprrlFaWpp+/vlnmc1mLVmyRL6+vnWe+z333KNu3bppx44dateunW6//XaZzWZt27ZNR48e1fTp0/W3v/2tzq8DAGjYqIUAgKsdtRAAAAAAAAAAAAAAgCuHJ3wAcFqTJk20fft2xcXFqUmTJvr000/11VdfacCAAdq5c6duvvnmGsc0mUxatmyZ/vznPyszM1PJycn67bffNHLkSH3zzTfq06fPJZm7l5eXNm3apJkzZ6p58+basGGDNm3apK5du+qrr77SwIEDL8nrAAAaNmohAOBqRy0EAAAAAAAAAAAAAODKMRmGYbh6EgCuPocOHVJ4eLhatmypQ4cOuXo6AABccdRCAMDVjloIAAAAAAAAAAAAAEDVeMIHAAAAAAAAAAAAAAAAAAAAAACAm+HABwAAAAAAAAAAAAAAAAAAAAAAgJvhwAcAAAAAAAAAAAAAAAAAAAAAAICbMRmGYbh6EgAAAAAAAAAAAAAAAAAAAAAAAPg/POEDAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNcOADAAAAAAAAAAAAAAAAAAAAAADAzXDgAwAAAAAAAAAAAAAAAAAAAAAAwM1w4AMAAAAAAAAAAAAAAAAAAAAAAMDNeLl6AnAts9mskpISXXfdda6eCgDUO9nZ2WrUqJGKi4tdPRXUEnUQAOqGWlj/UQsBoG6ohfUftRAA6oZaCAAAAAAAAACXFwc+rnIlJSUqLS119TQAoF7i/ln/UQcBoG64h9Z/1EIAqBvuofUftRAA6oZ7KAAAAAAAAABcXhz4uMqVfXJdVlaWi2cCAPWP1Wp19RRQR9RBAKgbamH9Ry0EgLqhFtZ/1EIAqBtqIQAAAAAAAABcXh6ungAAAAAAAAAAoHLLly9Xv379FBQUJLPZrC5dumju3LkqKSmpVbwdO3YoNjZWoaGh8vX1VXh4uKZOnars7OxK+5eWlmrFihV6+umnNWDAAF1zzTUymUzy8qr6s4Sys7P1zjvvaOzYsbrhhhvk6+srf39/dejQQfHx8Tp06FCV47du3ar77rtPYWFh8vb2ltlsVqdOnTR9+nSHcwUAAAAAAAAAAAAaGpNhGIarJwHXKfvkJT7BDgBqjnto/ccaAkDdcB+t/1hDAKiby30fTUhIUFJSkry8vBQdHS2LxaKNGzcqPz9fffr00dq1a+Xn5+d0vBUrVmjMmDE6f/68oqKiFB4eru3bt+vgwYMKDQ1Vamqq2rZtazcmPz9fQUFBFWJ5enrq/PnzDl9r3Lhxev/99+Xh4aGIiAi1b99excXFSktL04kTJ2Q2m5WcnKw77rijwtjXX39dU6ZMkWEYioiIUMeOHVVUVKSvv/5av/32m6677jpt3rxZHTp0cDp3R6iFAFA33EcBAAAAAAAA4PLiCR8AAAAAAAAA4GZWrVqlpKQkWSwWbdu2TWvWrNGHH36on376SZ06dVJqaqoSExOdjnf06FGNHz9e58+f14IFC/TNN99o6dKl+vHHHzVu3Dj9+uuvGjt2rC7+fKBGjRrp/vvv17x587Rx40bt2rXLqdcLDg7WCy+8oMOHD2v37t1atmyZPvnkEx08eFCjR49WcXGxRo8erd9++81u3K+//qpp06bJMAwtXrxY3377rZYtW6aUlBT98ssvGjBggLKzs5WQkOB07gAAAAAAAAAAAEB9xRM+rnJ88hIA1B730PqPNQSAuuE+Wv+xhgBQN5fzPtqjRw+lpaXppZde0jPPPGPXlpqaqr59+8rHx0e//vqrAgMDq4331FNP6e9//7v69++vdevW2bUVFRXJarWqoKBAn332me68806HcQ4dOqTw8PBqn/BRlVOnTun6669XYWGh3n33XY0bN87W9uGHH+ree+/VjTfeqH379lUYu3XrVvXu3VsBAQEqKCio1euXRy0EgLrhPgoAAAAAAAAAlxdP+AAAAAAAAAAAN3LkyBGlpaVJksaOHVuhvU+fPgoLC9PZs2eVkpLiVMzk5GSH8SwWi4YMGSJJWrlyZW2n7TR/f3+1b99ekpSZmWnX5uvr61SMkJCQSz4vAAAAAAAAAAAAwN1w4AMAAAAAAAAA3Eh6erokKTg4WOHh4ZX26d69u13fqhQWFurAgQN24+oSr65KSkp06NAhSVLTpk3t2nr16qXAwEB99913evvtt+3aioqK9MILL0iSJk2adNnnCQAAAAAAAAAAALgaBz4AAAAAAAAAwI1kZGRIklq0aOGwT1hYmF3fqpQdrqgqZk3i1dWiRYuUk5MjPz8/DRo0yK4tODhYb7/9tsxmsyZMmKBOnTpp1KhRuuuuu9SiRQulpaXpL3/5i5588snLPk8AAAAAAAAAAADA1bxcPQEAAAAAAAAAwP8pLCyUJJnNZod9LBaLJOnkyZNOx6sqZk3i1cW3335rO6yRmJio0NDQCn2GDh2qzZs367777tPevXu1d+9eW9uAAQPUu3dvmUwmp1/TarU6bDt27FiFp4wAAAAAAAAAAAAA7oInfAAAAAAAAAAALrusrCzdc889Kioq0pAhQzRjxoxK+73xxhvq1auXrrnmGm3atEkFBQXKzMzUa6+9pq+//lrR0dFavHjxlZ08AAAAAAAAAAAA4AIc+AAAAHaWL1+ufv36KSgoSGazWV26dNHcuXNVUlJS65gfffSRhgwZouuvv17e3t667rrrdOutt+rFF1+sctwXX3yh0aNHy2q1ysfHRyEhIerWrZumTZtWp/kAAAAAgDtr3LixJKm4uNhhn6KiIklSQECA0/GqilmTeLVx/PhxxcTE6JdfftGdd96pZcuWVfqUji+//FJxcXEKCQnR2rVrdfvttysgIEBWq1VxcXFasGCBLly4oISEBOXn5zv12llZWQ6/eLoHAAAAAAAAAAAA3BkHPgAAgE1CQoJGjRqlL7/8Uj169NDAgQN1+PBhTZ8+XdHR0Tp9+nSN4p07d06jRo3SsGHDtH79et1000269957FRERoZ9//lmvvPJKpeMMw1BCQoJuv/12rVy5UuHh4Ro5cqQiIyOVnZ2tl19+WWfPnr0UKQMAAACA22nVqpUkKTMz02GfsrayvlVp2bKl7fvDhw/XOV5NZWdnKzo6Wj/++KP69++vVatWycfHp9K+ZU/uGDx4sAIDAyu033vvvfL29lZBQYHS0tIu+VwBAAAAAAAAAAAAd+Ll6gkAAAD3sGrVKiUlJclisWjz5s2KjIyUJOXk5Cg6OlqpqalKTEzUvHnznI75yCOPaPny5Ro2bJgWLlyokJAQW9uFCxf0zTffVDruz3/+s5KSknTrrbdqyZIldm9OkqS0tDT5+vrWIksAAAAAcH9du3aVJOXm5iojI0Ph4eEV+mzfvl2SbH93q0pAQIDatm2rAwcOaPv27erUqVOd4tXEiRMnFB0dre+//14xMTH6+OOPq/z7XNmBFEdPGvHy8pLZbNa5c+eUl5d3SecKAAAAAAAAAAAAuBue8AEAACRJs2fPliTNmDHD7g0+ISEhev311yVJ8+fPV0FBgVPxNmzYoHfeeUcRERFatmyZ3WEPSfLw8FDPnj0rjNu/f79mz56t0NBQffLJJxUOe0hSVFSUvLw4twoAAACgYbJarYqKipIkLVmypEJ7amqqMjMz5ePjo8GDBzsVc/jw4Q7jFRUVafXq1ZKkESNG1HbaFZR9gMC+ffsUExOj1atXy8/Pr8oxzZs3lyRt27at0vb9+/frt99+k6RKD8IAAAAAAAAAAAAADQkHPgAAgI4cOaK0tDRJ0tixYyu09+nTR2FhYTp79qxSUlKcivnqq69KkhISEtSoUSOn5/LGG2/o/PnzeuSRR9SkSROnxwEAAABAQzJz5kxJ0pw5c7Rz507b9dzcXMXFxUmSpkyZosDAQFtbcnKyOnTooJiYmArxEhIS5O/vr/Xr12vhwoW266WlpYqLi1N+fr6ioqI0YMCASzL/vLw8xcTEaO/everfv79Thz0k6d5775Ukbd26VX//+99lGIatLTs7Ww899JAkqV27durevfslmSsAAAAAAAAAAADgrvhobAAAoPT0dElScHCww09I7d69uzIzM5Wenq4xY8ZUGa+0tFQbNmyQJN122206fvy4PvjgA+3fv18+Pj7q2rWrRo4cKYvFUmHsmjVrbOPy8/O1dOlS7dmzRx4eHoqIiNDIkSMrPC0EAAAAABqaYcOGKT4+Xq+88op69uypmJgYmc1mbdiwQfn5+erdu7dmzZplN6agoED79+/XmTNnKsRr1qyZFi9erDFjxmjixIlatGiRWrVqpbS0NB08eFChoaFasmSJTCZThbFxcXG2Qydnz56V9Pvf+8o/tfGuu+5SYmKi7c8PP/yw9uzZI5PJpODgYD322GMO8xw2bJjtz4MHD9akSZO0YMECPfXUU3rrrbfUuXNnFRYWatu2bTp58qSaNGmid999Vx4efJ4RAAAAAAAAAAAAGjYOfAAAAGVkZEiSWrRo4bBPWFiYXd+qHDx4UEVFRZKkr7/+WnFxcbY/l3nyySf1wQcfKDo62nbt3Llz2r9/v+11xo0bp+zsbLtx/9//9/9p4cKFGj16tBOZAQAAAED9lZSUpN69e+u1117T1q1bVVJSojZt2mjGjBmaNm2avL29axQvNjZWrVu31uzZs7Vlyxalp6eradOmmjx5shITExUaGlrpuO+++07btm2rcL38tQ4dOti15eXlSZIMw9CyZcsczqlVq1Z2Bz4k6c0339SgQYO0aNEibd++XatXr5aXl5fCw8N155136vHHH5fVanU2bQAAAAAAAAAAAKDe4sAHAABQYWGhJMlsNjvsU/Y0jpMnT1YbLzc31/b9Qw89pFtvvVXz5s1Thw4d9PPPP2vmzJlKSUnR0KFDtXPnTt1www2Sfn9DkGEYkqQpU6aoY8eOWrZsmSIjI3X06FHNmTNHixcv1rhx49S8eXP17du32rlU9SagY8eOqWnTptXGAAAAAABXGTVqlEaNGuVU3wkTJmjChAlV9unWrZs+/PDDGs1h06ZNNepf2zHlDR06VEOHDq1TDAAAAAAAAAAAAKC+45n3AADgkis7tCFJzZs315o1a9S9e3dZLBZ16dJFH3/8sSIiIlRUVKQ5c+ZUOs7Pz0/r16/X7bffrsaNG6t9+/b6z3/+o0GDBqm0tFR//vOfr2RKAAAAAAAAAAAAAAAAAAAAVxQHPgAAgBo3bixJKi4udtinqKhIkhQQEOB0POn3T5j18fGxa/f09NSkSZMkSevXr6903IgRI3TttddWiB0XFydJ2rJli86dO1ftXLKyshx+8XQPAAAAAAAAAAAAAAAAAADgrjjwAQAA1KpVK0lSZmamwz5lbWV9q4tnMpkkSa1bt660T9n1Y8eO2a5ZLBbbIY/qxpWUlCgnJ6fauQAAAAAAAAAAAAAAAAAAANRHHPgAAADq2rWrJCk3N1cZGRmV9tm+fbskKTIystp4FotF7du3lySHhzLKrlssFrvr3bp1c2pcZWMBAAAAAAAAAAAAAAAAAAAaCg58AAAAWa1WRUVFSZKWLFlSoT01NVWZmZny8fHR4MGDnYoZGxsrSVq/fn2l7evWrZMk9ejRo9JxGzdu1IULFxyOa9++vQICApyaCwAAAAAAAAAAAAAAAAAAQH3DgQ8AACBJmjlzpiRpzpw52rlzp+16bm6u4uLiJElTpkxRYGCgrS05OVkdOnRQTExMhXjx8fEKCgpSSkqKFixYYNf2wQcf6P3337f1K2/cuHFq06aN9u7dq+eee87u0Mfnn3+uf/zjH5WOAwAAAAAAAAAAAAAAAAAAaEg48AEAACRJw4YNU3x8vIqKitSzZ08NGjRI9957r9q2batvv/1WvXv31qxZs+zGFBQUaP/+/fr5558rxAsJCdHSpUvl6+urRx99VBEREYqNjVVkZKTGjBkjwzCUmJhY4Ykh3t7eWrlypYKDg/WXv/xF7dq107333qtevXqpf//+OnXqlMaPH6/HHnvssv48AAAAAAAAAAAAAAAAAAAAXIkDHwAAwCYpKUlLly5Vr169tHXrVqWkpMhqtWrOnDnauHGj/Pz8ahTvjjvu0O7duzV+/Hjl5+fro48+0uHDhzV48GCtWbNGL774YqXjOnfurL1792ry5MkqLS3V6tWr9cMPP+j222/Xf//3f2vx4sUymUyXImUAAAAAAAAAAAAAAAAAAAC3ZDIMw3D1JOA6VqtVkpSVleXimQBA/cM9tP5jDQGgbriP1n+sIQDUDffR+o81BIC64T4KAAAAAAAAAJcXT/gAAAAAADQ4y5cvV79+/RQUFCSz2awuXbpo7ty5KikpqVW8HTt2KDY2VqGhofL19VV4eLimTp2q7Ozsasfu3r1bDz74oMLDw+Xr66ugoCB16tRJjz32mHJzc+36njx5UomJibrrrrvUpk0bBQYGytvbW82aNdPQoUP1ySef1Gr+AAAAAAAAAAAAAAAAqH848AEAAAAAaFASEhI0atQoffnll+rRo4cGDhyow4cPa/r06YqOjtbp06drFG/FihXq2bOnVqxYoZYtW2ro0KHy8PDQ/Pnz1blzZx04cMDh2Hnz5qlbt256++23de2112r48OHq1auXzpw5ozfffFPHjh2z65+dna2XXnpJX3zxha677jrFxMRoyJAhuu666/Txxx/r7rvv1uTJk2v1cwEAAAAAAAAAAAAAAED94uXqCQAAAAAAcKmsWrVKSUlJslgs2rx5syIjIyVJOTk5io6OVmpqqhITEzVv3jyn4h09elTjx4/X+fPntWDBAk2cOFGSVFpaqgkTJui9997T2LFjtW3bNplMJrux//nPf/Tkk0+qffv2WrFihSIiIuza9+3bJ6vVanft+uuv11dffaXu3bvLy8v+r+yff/657r77br3++usaMmSI7rzzzhr9bAAAAAAAAAAAAAAAAFC/8IQPAAAAAECDMXv2bEnSjBkzbIc9JCkkJESvv/66JGn+/PkqKChwKt7LL7+sU6dOqX///rbDHpLk6empN954Q4GBgUpLS9PatWvtxv32229KSEiQn5+fUlJSKhz2kKSbbrpJgYGBdtcsFot69uxZ4bCHJP3hD3/Q6NGjJanC6wEAAAAAAAAAAAAAAKDh4cAHAAAAAKBBOHLkiNLS0iRJY8eOrdDep08fhYWF6ezZs0pJSXEqZnJyssN4FotFQ4YMkSStXLnSru3tt9/WyZMnNXLkSLVu3bpGeVSl7CCIj4/PJYsJAAAAAAAAAAAAAAAA98SBDwAAAABAg5Ceni5JCg4OVnh4eKV9unfvbte3KoWFhTpw4IDdOGfjrVmzRpJ022236fTp03r33XcVHx+vyZMn6+WXX1ZmZqYTGdlLS0vT0qVLZTKZdM8999R4PAAAAAAAAAAAAAAAAOoXL1dPAAAAAACASyEjI0OS1KJFC4d9wsLC7PpW5dChQ7bvHcV0FG/Pnj2Sfj80EhERoYMHD9q1T58+XX/961/1+OOPO3z95557TocPH9bp06eVkZGhtLQ0eXt765VXXlGvXr2qnT8AAAAAAAAAAAAAAADqNw58AAAAAAAahMLCQkmS2Wx22MdisUiSTp486XS8qmI6ipebmytJmjFjhpo1a6bVq1erT58+ysvL01tvvaW5c+fqiSeeUNOmTTVmzJhKY3/88cfavXu33Wv94x//0IMPPljt3MuzWq0O244dO6amTZvWKB4AAAAAAAAAAAAAAACuDA9XTwAAAAAAgIbGMAxJ0oULF5SSkqK7775bTZo0UevWrTVnzhw9+uijkqRnn33WYYxdu3bJMAwVFBTom2++0ZAhQzRx4kQNGDDA7jAKAAAAAAAAAAAAAAAAGiYOfAAAAAAAGoTGjRtLkoqLix32KSoqkiQFBAQ4Ha+qmI7ilY3t27evbrzxxgrj4uLiJEkHDx5URkZGlfMICAhQVFSU3n//fcXFxWnjxo164YUXqp1/maysLIdfPN0DAAAAAAAAAAAAAADAfXHgAwAAAADQILRq1UqSlJmZ6bBPWVtZ36q0bNnS9v3hw4drFK9169Z2/71Y+evHjh2rdi5lHnjgAUlScnKy02MAAAAAAAAAAAAAAABQP3HgAwAAAADQIHTt2lWSlJub6/CpGdu3b5ckRUZGVhsvICBAbdu2tRvnbLxu3bpJknJyciodV/66xWKpdi5lzGazJCk7O9vpMQAAAAAAAAAAAAAAAKifOPABAAAAAGgQrFaroqKiJElLliyp0J6amqrMzEz5+Pho8ODBTsUcPny4w3hFRUVavXq1JGnEiBF2bbGxsZKkr7/+WsXFxRXGrlu3TtLvhz06duzo1FwkacOGDZKkdu3aOT0GAAAAAAAAAAAAAAAA9RMHPgAAAAAADcbMmTMlSXPmzNHOnTtt13NzcxUXFydJmjJligIDA21tycnJ6tChg2JiYirES0hIkL+/v9avX6+FCxfarpeWliouLk75+fmKiorSgAED7MZFR0erb9++ys7O1pQpU3T27Flb2549e/Tss89Kkh577DE1atTI1rZkyRLt2LGjwjwMw9DKlStt4yZOnOj8DwUAAAAAAAAAAAAAAAD1Egc+LrJ8+XL169dPQUFBMpvN6tKli+bOnauSkpJaxduxY4diY2MVGhoqX19fhYeHa+rUqcrOznY6xpEjRxQUFCSTySQvL69azQMAAAAArgbDhg1TfHy8ioqK1LNnTw0aNEj33nuv2rZtq2+//Va9e/fWrFmz7MYUFBRo//79+vnnnyvEa9asmRYvXixPT09NnDhRPXv21OjRo9WuXTu9++67Cg0N1ZIlS2QymSqMff/999WqVSstXrxYbdq00fDhw3X77bcrKipKx48f1x133FFhLmvXrlX37t0VFhamu+66S/fff78GDhyo8PBwjRw5UgUFBZo8eTIHPgAAAAAAAAAAAAAAAK4CHPgoJyEhQaNGjdKXX36pHj16aODAgTp8+LCmT5+u6OhonT59ukbxVqxYoZ49e2rFihVq2bKlhg4dKg8PD82fP1+dO3fWgQMHnIrzyCOPqKCgoDYpAQAAAMBVJykpSUuXLlWvXr20detWpaSkyGq1as6cOdq4caP8/PxqFC82Nlbbtm3TiBEjdPDgQSUnJ6u0tFSTJ0/W7t271bZt20rHhYWFadeuXZoxY4bMZrM+/fRTpaenKzIyUm+88YY+/fRT+fj42I155JFHFB8fr+uvv147d+7U8uXLtWXLFvn4+Gj8+PHasmWL5s+fX+kBEwAAAAAAAAAAAAAAADQsJsMwDFdPwh2sWrVKw4cPl8Vi0ebNmxUZGSlJysnJUXR0tL799ls98cQTmjdvnlPxjh49qhtuuEGnTp3SggULbJ++WlpaqgkTJui9995TVFSUtm3bVuUbdf71r3/pkUce0ZQpUzR//nx5enrq/PnzdU/4f1mtVklSVlbWJYsJAFcL7qH1H2sIAHXDfbT+Yw0BoG64j9Z/rCEA1A33UQAAAAAAAAC4vHjCx/+aPXu2JGnGjBm2wx6SFBISotdff12SNH/+fKeftPHyyy/r1KlT6t+/v+2whyR5enrqjTfeUGBgoNLS0rR27VqHMX755Rc9/vjj6tmzp6ZNm1abtAAAAAAAAAAAAAAAAAAAAAAAQD3EgQ9JR44cUVpamiRp7NixFdr79OmjsLAwnT17VikpKU7FTE5OdhjPYrFoyJAhkqSVK1dWOt4wDD344IM6d+6c/v3vf8vDg6UCAAAAAAAAAAAAAAAAAAAAAOBqwSkCSenp6ZKk4OBghYeHV9qne/fudn2rUlhYqAMHDtiNq2m8119/XRs3btTzzz+vjh07VvuaAAAAAAAAAAAAAAAAAAAAAACg4eDAh6SMjAxJUosWLRz2CQsLs+tblUOHDtm+dxSzqng///yzpk+frm7duunJJ5+s9vUAAAAAAAAAAAAAAAAAAAAAAEDD4uXqCbiDwsJCSZLZbHbYx2KxSJJOnjzpdLyqYjqKd+HCBU2YMEHnzp3Tf/7zH3l51X2JrFarw7Zjx46padOmdX4NAAAAAAAAAAAAAAAAAAAAAABw6fCEDzfz8ssvKzU1Vc8++6w6derk6ukAAAAAAAAAAAAAAAAAAAAAAAAX4Akfkho3bixJKi4udtinqKhIkhQQEOB0vLKYgYGBTsXbv3+/nnnmGXXp0kVPP/20c5N3QlZWlsO2qp7+AQAAAAAAAAAAAAAAAAAAAAAAXIMDH5JatWolScrMzHTYp6ytrG9VWrZsafv+8OHDlT6po7J4n376qc6cOaPi4mLdcccddv3PnDkjSSotLVW/fv0kSTNmzNDAgQOrnQ8AAAAAAAAAAAAAAAAAAAAAAKhfOPAhqWvXrpKk3NxcZWRkKDw8vEKf7du3S5IiIyOrjRcQEKC2bdvqwIED2r59e6UHPqqKd+DAAR04cMBh/M2bN0uSJkyYUO1cAAAAAAAAAAAAAAAAAAAAAABA/ePh6gm4A6vVqqioKEnSkiVLKrSnpqYqMzNTPj4+Gjx4sFMxhw8f7jBeUVGRVq9eLUkaMWKE7XpCQoIMw6j0KyMjQ5Lk6elpu8aBDwAAAAAAAAAAAAAAAAAAAAAAGiYOfPyvmTNnSpLmzJmjnTt32q7n5uYqLi5OkjRlyhQFBgba2pKTk9WhQwfFxMRUiJeQkCB/f3+tX79eCxcutF0vLS1VXFyc8vPzFRUVpQEDBlyulAAAAAAAAAAAAAAAAAAAAAAAQD3FgY//NWzYMMXHx6uoqEg9e/bUoEGDdO+996pt27b69ttv1bt3b82aNctuTEFBgfbv36+ff/65QrxmzZpp8eLF8vT01MSJE9WzZ0+NHj1a7dq107vvvqvQ0FAtWbJEJpPpSqUIAAAAAAAAAAAAAAAAAAAAAADqCQ58lJOUlKSlS5eqV69e2rp1q1JSUmS1WjVnzhxt3LhRfn5+NYoXGxurbdu2acSIETp48KCSk5NVWlqqyZMna/fu3Wrbtu1lygQAAAAAAABAQ7B8+XL169dPQUFBMpvN6tKli+bOnauSkpJaxduxY4diY2MVGhoqX19fhYeHa+rUqcrOzq60f2lpqVasWKGnn35aAwYM0DXXXCOTySQvL68qXyc7O1vvvPOOxo4dqxtuuEG+vr7y9/dXhw4dFB8fr0OHDlU71+zsbM2YMUMRERGyWCwym81q06aNxowZox07dtQmfQAAAAAAAAAAAKBeMRmGYbh6EnAdq9UqScrKynLxTACg/uEeWv+xhgBQN9xH6z/WEADq5nLfRxMSEpSUlCQvLy9FR0fLYrFo48aNys/PV58+fbR27doafUjNihUrNGbMGJ0/f15RUVEKDw/X9u3bdfDgQYWGhio1NbXCh9Tk5+crKCioQixPT0+dP3/e4WuNGzdO77//vjw8PBQREaH27duruLhYaWlpOnHihMxms5KTk3XHHXdUOv7zzz/XiBEjlJ+fr7Zt26pLly66cOGCDh06pN27dyspKUlTpkxxOndHqIUAUDfcRwEAAAAAAADg8qr6Y9gAAAAAAAAAAFfcqlWrlJSUJIvFos2bNysyMlKSlJOTo+joaKWmpioxMVHz5s1zKt7Ro0c1fvx4nT9/XgsWLNDEiRMl/f4EjwkTJui9997T2LFjtW3bNplMJtu4Ro0a6f7771fXrl0VGRmp4OBg3XzzzdW+XnBwsF544QU99NBDat68ue16UVGRHnnkEX3wwQcaPXq0Dhw4UOFAyXfffae77rpLnp6eWrlypYYPH27Xfvz4cZ06dcqpvAEAAAAAAAAAAID6jCd8XOX45CUAqD3uofUfawgAdcN9tP5jDQGgbi7nfbRHjx5KS0vTSy+9pGeeecauLTU1VX379pWPj49+/fVXBQYGVhvvqaee0t///nf1799f69ats2srKiqS1WpVQUGBPvvsM915550O4xw6dEjh4eHVPuGjKqdOndL111+vwsJCvfvuuxo3bpxd+2233aYtW7ZoyZIlGjNmTK1ew1nUQgCoG+6jAAAAAAAAAHB5ebh6AgAAAAAAAACA/3PkyBGlpaVJksaOHVuhvU+fPgoLC9PZs2eVkpLiVMzk5GSH8SwWi4YMGSJJWrlyZW2n7TR/f3+1b99ekpSZmWnXtmvXLm3ZskVhYWEaPXr0ZZ8LAAAAAAAAAAAA4M448AEAAAAAAAAAbiQ9PV2SFBwcrPDw8Er7dO/e3a5vVQoLC3XgwAG7cXWJV1clJSU6dOiQJKlp06Z2bWvWrJEk9e3bVyaTSWvWrNFTTz2lSZMmadasWdqxY8dlnx8AAAAAAAAAAADgLrxcPQEAAAAAAAAAwP/JyMiQJLVo0cJhn7CwMLu+VSk7XFFVzJrEq6tFixYpJydHfn5+GjRokF3bnj17JElNmjTRHXfcofXr19u1P/fcc7r//vu1aNEi+fj4XPa5AgAAAAAAAAAAAK7EEz4AAICd5cuXq1+/fgoKCpLZbFaXLl00d+5clZSU1DrmRx99pCFDhuj666+Xt7e3rrvuOt1666168cUXK/TdtGmTTCZTlV9vvvlmXVIEAAAAALdWWFgoSTKbzQ77WCwWSdLJkyedjldVzJrEq4tvv/1WTz75pCQpMTFRoaGhdu25ubmSpIULF2rr1q169dVXdeTIEWVnZ+vf//63AgIC9P777ys+Pt7p17RarQ6/jh07dumSAwAAAAAAAAAAAC4xnvABAABsEhISlJSUJC8vL0VHR8tisWjjxo2aPn26Vq9erbVr18rPz8/peOfOndO4ceO0fPly+fn5qVevXgoNDdXx48e1b98+vfLKK3ruuecqHRsaGqqBAwdW2ta+ffta5QcAAAAAcJ2srCzdc889Kioq0pAhQzRjxowKfQzDkCSVlJRo/vz5mjhxoq3tgQcekNls1n333ad//etfevrpp9WqVasrNX0AAAAAAAAAAADgiuPABwAAkCStWrVKSUlJslgs2rx5syIjIyVJOTk5io6OVmpqqhITEzVv3jynYz7yyCNavny5hg0bpoULFyokJMTWduHCBX3zzTcOx3bo0EGLFy+udT4AAAAAUF81btxYklRcXOywT1FRkSQpICDA6XhlMQMDA+sUrzaOHz+umJgY/fLLL7rzzju1bNkymUwmh3Nt1KiRHnzwwQrto0aN0uTJk5WTk6PPP/9cDzzwQLWvnZWV5bDNarXWIAsAAAAAAAAAAADgyvJw9QQAAIB7mD17tiRpxowZtsMekhQSEqLXX39dkjR//nwVFBQ4FW/Dhg165513FBERoWXLltkd9pAkDw8P9ezZ8xLNHgAAAAAajrKnVmRmZjrsU9bmzBMuWrZsafv+8OHDdY5XU9nZ2YqOjtaPP/6o/v37a9WqVfLx8am0b+vWrSVJYWFh8vKq/POKwsPDJUnHjh275HMFAAAAAAAAAAAA3AkHPgAAgI4cOaK0tDRJ0tixYyu09+nTR2FhYTp79qxSUlKcivnqq69KkhISEtSoUaNLN1kAAAAAaOC6du0qScrNzVVGRkalfbZv3y5Jdgf2HQkICFDbtm3txtUlXk2cOHFC0dHR+v777xUTE6OPP/5Yvr6+Dvt369ZN0u+5O5KTkyNJslgsl3SuAAAAAAAAAAAAgLvhwAcAAFB6erokKTg42PZJqRfr3r27Xd+qlJaWasOGDZKk2267TcePH9fLL7+sxx57TAkJCXr77bdVVFRUZYxff/1VL774oiZNmqQ//elPeuONNxx+Ei0AAAAANCRWq1VRUVGSpCVLllRoT01NVWZmpnx8fDR48GCnYg4fPtxhvKKiIq1evVqSNGLEiNpOu4KcnBxFR0dr3759iomJ0erVq+Xn51flmMGDB8vf318FBQW2DyYo78cff9Qvv/wiSerRo8clmysAAAAAAAAAAADgjjjwAQAAbJ8Y26JFC4d9wsLC7PpW5eDBg7YDHV9//bVuuOEGTZs2TW+++aaSkpI0YcIEtW7dWhs3bnQY44cfftDzzz+vt956S6+88ori4uLUpk0bPf744zp//nxN0gMAAACAemfmzJmSpDlz5mjnzp2267m5uYqLi5MkTZkyRYGBgba25ORkdejQQTExMRXiJSQkyN/fX+vXr9fChQtt10tLSxUXF6f8/HxFRUVpwIABl2T+eXl5iomJ0d69e9W/f3+nDntIUuPGjfXEE09Ikh577DEdPXrU1pabm6uHH35YFy5cUI8ePdSzZ89LMlcAAAAAAAAAAADAXXm5egIAAMD1CgsLJUlms9lhH4vFIkk6efJktfFyc3Nt3z/00EO69dZbNW/ePHXo0EE///yzZs6cqZSUFA0dOlQ7d+7UDTfcYOsfGBiohIQEDR8+XO3atVNAQIB+/vln/ec//9H8+fP1z3/+U0VFRXrrrbecys1qtTpsO3bsmJo2bepUHAAAAAC4koYNG6b4+Hi98sor6tmzp2JiYmQ2m7Vhwwbl5+erd+/emjVrlt2YgoIC7d+/X2fOnKkQr1mzZlq8eLHGjBmjiRMnatGiRWrVqpXS0tJ08OBBhYaGasmSJTKZTBXGxsXF2Q6dnD17VtLvB0XKH7i46667lJiYaPvzww8/rD179shkMik4OFiPPfaYwzyHDRtmd+3ZZ5/V9u3b9emnn6pjx47q2bOnvLy89PXXXysvL08tW7bUBx984NwPEgAAAAAAAAAAAKjHOPABAAAuOcMwbN83b95ca9askY+PjySpS5cu+vjjj3XzzTdr7969mjNnjhYtWmTr37VrV3Xt2tUuXqdOnfSPf/xDffr00ciRI7Vw4ULFxcXp5ptvviL5AAAAAIArJCUlqXfv3nrttde0detWlZSUqE2bNpoxY4amTZsmb2/vGsWLjY1V69atNXv2bG3ZskXp6elq2rSpJk+erMTERIWGhlY67rvvvtO2bdsqXC9/rUOHDnZteXl5kn7/++GyZcsczqlVq1YVDnx4e3vrf/7nf7RgwQItXrxYW7du1fnz5xUeHq5HH31UTzzxhIKDg51NGwAAAAAAAAAAAKi3OPABAADUuHFjSVJxcbHDPkVFRZKkgIAAp+NJ0oQJE2yHPcp4enpq0qRJmjp1qtavX+/0PEeMGKGbb75Zu3bt0urVq5068JGVleWwraqnfwAAAACAOxg1apRGjRrlVN8JEyZowoQJVfbp1q2bPvzwwxrNYdOmTTXqX9sx5Xl4eOixxx5z+GQQAAAAAAAAAAAA4Grg4eoJAAAA12vVqpUkKTMz02GfsrayvtXFM5lMkqTWrVtX2qfs+rFjx2owU6ljx46Sqj7IAQAAAAAAAAAAAAAAAAAAUN9x4AMAAKhr166SpNzcXGVkZFTaZ/v27ZKkyMjIauNZLBa1b99ekpSTk1Npn7LrFoulRnPNzc2VZP8UEQAAAAAAAAAAAAAAAAAAgIaGAx8AAEBWq1VRUVGSpCVLllRoT01NVWZmpnx8fDR48GCnYsbGxkqS1q9fX2n7unXrJEk9evRwep5HjhzRli1bajwOAAAAAAAAAAAAAAAAAACgvuHABwAAkCTNnDlTkjRnzhzt3LnTdj03N1dxcXGSpClTpigwMNDWlpycrA4dOigmJqZCvPj4eAUFBSklJUULFiywa/vggw/0/vvv2/qVl5SUVOlTQfbs2aN77rlHp0+fVps2bTR06NBaZgoAAAAAAAAAAAAAAAAAAOD+vFw9AQAA4B6GDRum+Ph4vfLKK+rZs6diYmJkNpu1YcMG5efnq3fv3po1a5bdmIKCAu3fv19nzpypEC8kJERLly7VkCFD9Oijj+rVV19Vx44d9fPPPys9PV2SlJiYWOGJIc8//7yeeOIJ3XzzzQoPD5eHh4dtzIULF9SiRQutXr1aPj4+l++HAQAAAAAAAAAAAAAAAAAA4GIc+AAAADZJSUnq3bu3XnvtNW3dulUlJSVq06aNZsyYoWnTpsnb27tG8e644w7t3r1bs2fP1vr16/XRRx8pICBAgwcP1p/+9CcNGDCgwphnnnlGX375pfbt26d169apuLhYAQEBuvXWWzV06FBNmjRJjRs3vlQpAwAAAAAAAAAAAAAAAAAAuCWTYRiGqycB17FarZKkrKwsF88EAOof7qH1H2sIAHXDfbT+Yw0BoG64j9Z/rCEA1A33UQAAAAAAAAC4vDxcPQEAAAAAAAAAAAAAAAAAAAAAAADY48AHAAAAAAAAAAAAAAAAAAAAAACAm+HABwAAAACgwVm+fLn69eunoKAgmc1mdenSRXPnzlVJSUmt4u3YsUOxsbEKDQ2Vr6+vwsPDNXXqVGVnZ1c7dvfu3XrwwQcVHh4uX19fBQUFqVOnTnrssceUm5tr1zc7O1vvvPOOxo4dqxtuuEG+vr7y9/dXhw4dFB8fr0OHDtVq/gAAAAAAAAAAAAAAAKh/OPABAAAAAGhQEhISNGrUKH355Zfq0aOHBg4cqMOHD2v69OmKjo7W6dOnaxRvxYoV6tmzp1asWKGWLVtq6NCh8vDw0Pz589W5c2cdOHDA4dh58+apW7duevvtt3Xttddq+PDh6tWrl86cOaM333xTx44ds+v/+OOPa/z48Vq6dKn8/f01ZMgQ/eEPf1BeXp5effVVRUREaN26dbX6uQAAAAAAAAAAAAAAAKB+8XL1BAAAAAAAuFRWrVqlpKQkWSwWbd68WZGRkZKknJwcRUdHKzU1VYmJiZo3b55T8Y4eParx48fr/PnzWrBggSZOnChJKi0t1YQJE/Tee+9p7Nix2rZtm0wmk93Y//znP3ryySfVvn17rVixQhEREXbt+/btk9VqtbsWHBysF154QQ899JCaN29uu15UVKRHHnlEH3zwgUaPHq0DBw4oKCioxj8fAAAAAAAAAAAAAAAA1B884QMAAAAA0GDMnj1bkjRjxgzbYQ9JCgkJ0euvvy5Jmj9/vgoKCpyK9/LLL+vUqVPq37+/7bCHJHl6euqNN95QYGCg0tLStHbtWrtxv/32mxISEuTn56eUlJQKhz0k6aabblJgYKDdtVdeeUXPPfec3WEPSbJYLFq0aJEaN26svLw8ffLJJ07NHwAAAAAAAAAAAAAAAPUXBz4AAAAAAA3CkSNHlJaWJkkaO3ZshfY+ffooLCxMZ8+eVUpKilMxk5OTHcazWCwaMmSIJGnlypV2bW+//bZOnjypkSNHqnXr1jXKwxF/f3+1b99ekpSZmXlJYgIAAAAAAAAAAAAAAMB9ceADAAAAANAgpKenS5KCg4MVHh5eaZ/u3bvb9a1KYWGhDhw4YDfO2Xhr1qyRJN122206ffq03n33XcXHx2vy5Ml6+eWXa3Vgo6SkRIcOHZIkNW3atMbjAQAAAAAAAAAAAAAAUL94uXoCAAAAAABcChkZGZKkFi1aOOwTFhZm17cqZYcrqorpKN6ePXsk/X5oJCIiQgcPHrRrnz59uv7617/q8ccfr3YeZRYtWqScnBz5+flp0KBBTo8DAAAAAAAAAAAAAABA/cQTPgAAAAAADUJhYaEkyWw2O+xjsVgkSSdPnnQ6XlUxHcXLzc2VJM2YMUOlpaVavXq1fvvtN/3888+aPn26SkpK9MQTT+i///u/q52HJH377bd68sknJUmJiYkKDQ11apwkWa1Wh1/Hjh1zOg4AAAAAAAAAAAAAAACuLA58AAAAAABwiRmGIUm6cOGCUlJSdPfdd6tJkyZq3bq15syZo0cffVSS9Oyzz1YbKysrS/fcc4+Kioo0ZMgQzZgx47LOHQAAAAAAAAAAAAAAAO6BAx8AAAAAgAahcePGkqTi4mKHfYqKiiRJAQEBTserKqajeGVj+/btqxtvvLHCuLi4OEnSwYMHlZGR4XAOx48fV0xMjH755RfdeeedWrZsmUwmU7VzLy8rK8vhV9OmTWsUCwAAAAAAAAAAAAAAAFcOBz4AAAAAAA1Cq1atJEmZmZkO+5S1lfWtSsuWLW3fHz58uEbxWrdubfffi5W/fuzYsUr7ZGdnKzo6Wj/++KP69++vVatWycfHp9p5AwAAAAAAAAAAAAAAoGHgwAcAAAAAoEHo2rWrJCk3N9fhUzO2b98uSYqMjKw2XkBAgNq2bWs3ztl43bp1kyTl5ORUOq78dYvFUqH9xIkTio6O1vfff6+YmBh9/PHH8vX1rXbOAAAAAAAAAAAAAAAAaDg48AEAAAAAaBCsVquioqIkSUuWLKnQnpqaqszMTPn4+Gjw4MFOxRw+fLjDeEVFRVq9erUkacSIEXZtsbGxkqSvv/5axcXFFcauW7dO0u+HPTp27GjXlpOTo+joaO3bt08xMTFavXq1/Pz8nJovAAAAAAAAAAAAAAAAGg4OfAAAAAAAGoyZM2dKkubMmaOdO3farufm5iouLk6SNGXKFAUGBtrakpOT1aFDB8XExFSIl5CQIH9/f61fv14LFy60XS8tLVVcXJzy8/MVFRWlAQMG2I2Ljo5W3759lZ2drSlTpujs2bO2tj179ujZZ5+VJD322GNq1KiRrS0vL08xMTHau3ev+vfvz2EPAAAAAAAAAAAAAACAq5iXqycAAAAAAMClMmzYMMXHx+uVV15Rz549FRMTI7PZrA0bNig/P1+9e/fWrFmz7MYUFBRo//79OnPmTIV4zZo10+LFizVmzBhNnDhRixYtUqtWrZSWlqaDBw8qNDRUS5YskclkqjD2/fff12233abFixdr3bp1ioqKUl5enr7++mudO3dOd9xxR4W5PPzww9qzZ49MJpOCg4P12GOPOcxz2LBhtf9BAQAAAAAAAAAAAAAAwO1x4AMAAAAA0KAkJSWpd+/eeu2117R161aVlJSoTZs2mjFjhqZNmyZvb+8axYuNjVXr1q01e/ZsbdmyRenp6WratKkmT56sxMREhYaGVjouLCxMu3bt0pw5c7Ry5Up9+umn8vb2VmRkpMaPH69HHnlEnp6edmPy8vIkSYZhaNmyZQ7n1KpVKw58AAAAAAAAAAAAAAAANHAmwzAMV08CrmO1WiVJWVlZLp4JANQ/3EPrP9YQAOqG+2j9xxoCQN1wH63/WEMAqBvuowAAAAAAAABweXm4egIAAAAAAAAAAAAAAAAAAAAAAACwx4EPAAAAAAAAAAAAAAAAAAAAAAAAN8OBDwAAAAAAAAAAAAAAAAAAAAAAADfDgQ8AAAAAAAAAAAAAAAAAAAAAAAA3w4EPAAAAAAAAAAAAAAAAAAAAAAAAN8OBDwAAAAAAAAAAAAAAAAAAAAAAADfDgQ8AAAAAAAAAAAAAAAAAAAAAAAA3w4EPAAAAAAAAAAAAAAAAAAAAAAAAN8OBj4ssX75c/fr1U1BQkMxms7p06aK5c+eqpKSkVvF27Nih2NhYhYaGytfXV+Hh4Zo6daqys7Mr7X/48GEtWLBAI0aMUMuWLeXj4yOLxaIuXbpo5syZOnHiRF3SAwAAAAAAAAAAAAAAAAAAAAAA9QAHPspJSEjQqFGj9OWXX6pHjx4aOHCgDh8+rOnTpys6OlqnT5+uUbwVK1aoZ8+eWrFihVq2bKmhQ4fKw8ND8+fPV+fOnXXgwIEKY8aOHatHH31Uq1evVmhoqIYPH65bb71Vhw4d0l//+lfddNNN2rVr1yXKGAAAAAAAAAAAAAAAAAAAAAAAuCMOfPyvVatWKSkpSRaLRdu2bdOaNWv04Ycf6qefflKnTp2UmpqqxMREp+MdPXpU48eP1/nz57VgwQJ98803Wrp0qX788UeNGzdOv/76q8aOHSvDMOzGNW/eXP/85z91/PhxffPNN/rggw+0du1aHThwQP369dOJEyc0atQolZaWXuofAQAAAAAAAAAAAAAAAAAAAAAAcBMc+Phfs2fPliTNmDFDkZGRtushISF6/fXXJUnz589XQUGBU/FefvllnTp1Sv3799fEiRNt1z09PfXGG28oMDBQaWlpWrt2rd24pUuXKiEhQddcc43d9WuvvVbvvvuuJOmnn37SV199VfMkAQAAAAAAANQry5cvV79+/RQUFCSz2awuXbpo7ty5KikpqVW8HTt2KDY2VqGhofL19VV4eLimTp2q7OzsSvuXlpZqxYoVevrppzVgwABdc801MplM8vLyqvJ1srOz9c4772js2LG64YYb5OvrK39/f3Xo0EHx8fE6dOiQ03MuLS1Vr169ZDKZZDKZlJqaWpOUAQAAAAAAAAAAgHqLAx+Sjhw5orS0NEnS2LFjK7T36dNHYWFhOnv2rFJSUpyKmZyc7DCexWLRkCFDJEkrV650ep5Wq1UhISGSpMzMTKfHAQAAAAAAAKh/EhISNGrUKH355Zfq0aOHBg4cqMOHD2v69OmKjo7W6dOnaxRvxYoV6tmzp1asWKGWLVtq6NCh8vDw0Pz589W5c2cdOHCgwpjCwkLFxsZqzpw5WrdunfLy8px6rccff1zjx4/X0qVL5e/vryFDhugPf/iD8vLy9OqrryoiIkLr1q1zKta8efP09ddfy2Qy1ShfAAAAAAAAAAAAoL7jwIek9PR0SVJwcLDCw8Mr7dO9e3e7vlUpLCy0/eNo2bi6xCuTk5Oj3377TZLUtGlTp8cBAAAAAAAAqF9WrVqlpKQkWSwWbdu2TWvWrNGHH36on376SZ06dVJqaqoSExOdjnf06FGNHz9e58+f14IFC/TNN99o6dKl+vHHHzVu3Dj9+uuvGjt2rAzDsBvXqFEj3X///Zo3b542btyoXbt2OfV6wcHBeuGFF/T/s3fncVXW6f/H3weURY6gZCKKCKipiZkkLrkGpmlpLmlqTS6lJqlh5ogWTWVjVI4jZpqapS2OCYpLUamYJpkKiVo2uQQkuKSgrKYCnt8f/jhfGRYPArL0ej4e5zHn3J/rc93XDY+5747c1/05efKkDh06pHXr1unLL79UfHy8Ro4cqezsbI0cOdL8753FOXLkiP7xj3/okUcekbu7u8XHCwAAAAAAAAAAANQENHxISkhIkKQS/2DYtGnTArElSUxMNL8vLmdp8uWbP3++8vLy5Orqqvvvv9/ieQAAAAAAAACql3nz5kmSgoKC5OPjY97eoEEDLVmyRJK0ePFipaenW5Rv4cKFunTpkvr06aOJEyeat1tbW2vp0qVycnJSTEyMtm7dWmCeg4ODPv30U82YMUMPPPCAnJycLNrfokWL9Morr6hJkyYFthuNRq1cuVJ169bVhQsX9OWXXxabIzc3V2PGjJG9vb2WLVtm0X4BAAAAAAAAAACAmoSGD11fkUO6/sfL4hiNRklSRkaGxflKylmafJK0fft2zZ8/X5L0r3/9SzY2NhbNkyQ3N7diX2fOnLE4DwAAAAAAAICKd+rUKcXExEiSRo8eXWi8e/fuatq0qa5cuaLIyEiLckZERBSbz2g0atCgQZKkDRs23GrZFqtTp45atWolSUpKSio2bt68efrxxx+1YMECNW7cuMLrAgAAAAAAAAAAAKoaGj6qgZ9++knDhw9XXl6epk6dqlGjRlV2SQCAGiwsLEy9e/dW/fr15eDgoPbt2+vtt99WTk7OLefctGmTBg0apEaNGsnGxkYNGzbU/fffr9dff92i+YcOHZKNjY0MBoNatGhxy3UAAAAAQHUQFxcnSXJ2dpanp2eRMR07diwQW5LMzEydOHGiwLyy5CurnJwc8yrJrq6uRcYcPHhQb7zxhvr166dx48ZVeE0AAAAAAAAAAABAVVSrsguoCurWrStJys7OLjYmKytLkuTo6GhxvvycTk5Ot5zv119/VZ8+fZSWlqZx48YpNDT0pvv/X8nJycWOubm5lTofAKDmCgwMVGhoqGrVqiU/Pz8ZjUbt2LFDs2bN0pYtW7R161bZ29tbnO/q1at68sknFRYWJnt7e3Xt2lUuLi46e/asjhw5okWLFumVV165aY6nnnpKubm5ZT08AAAAAKgWEhISJEnu7u7FxjRt2rRAbEnymytKylmafGW1cuVKpaSkyN7eXv379y80fvXqVY0ZM0Z2dnZavnx5hdcDAAAAAAAAAAAAVFU0fEjy8PCQJCUlJRUbkz+WH1uSZs2amd+fPHlS7dq1u6V8x44dk5+fn86dO6ennnpKH3zwgQwGw033DwDArdi4caNCQ0NlNBq1a9cu+fj4SJJSUlLk5+en6OhoBQcHa/78+RbnnDBhgsLCwjR48GCtWLFCDRo0MI9du3ZN+/fvv2mO119/XYcPH9aUKVO0ePHi0h8YAAAAAFQzmZmZkiQHB4diY4xGoyQpIyPD4nwl5SxNvrL46aefNHPmTElScHCwXFxcCsW89tprOnz4sN5///0Sm14sVdJDb86cOVPsKiMAAAAAAAAAAABAZbOq7AKqgg4dOkiSUlNTi32CXWxsrCSZb34tiaOjo1q0aFFgXmnzHT9+XA888IDOnDmjJ598Uh999JGsrPh1AQAqzrx58yRJQUFBBa5PDRo00JIlSyRJixcvVnp6ukX5oqKi9PHHH8vb21vr1q0r0OwhSVZWVurSpUuJOWJiYhQSEqLhw4dr2LBhpTkcAAAAAEAVk5ycrIEDByorK0uDBg1SUFBQoZj9+/frrbfekp+fnyZOnFgJVQIAAAAAAAAAAABVBx0Euv6EN19fX0nSmjVrCo1HR0crKSlJtra2GjBggEU5hwwZUmy+rKwsbdmyRZI0dOjQQuO//fabHnjgAZ0+fVpPPvmkVq9eTbMHAKBCnTp1SjExMZKk0aNHFxrv3r27mjZtqitXrigyMtKinO+++64kKTAwULVr1y51TZcvX9aYMWNUv359VvYAAAAA8JdSt25dSVJ2dnaxMVlZWZKuP3zG0nwl5SxNvltx9uxZ+fv76/fff1e/fv20bt26QqsZX758WWPHjpWdnV25rnacnJxc7IvVPQAAAAAAAAAAAFCV0UXw/82ZM0eSFBISogMHDpi3p6amKiAgQJI0ZcoUOTk5mcciIiLUunVr+fv7F8oXGBioOnXqaPv27VqxYoV5e15engICApSWliZfX1/17du3wLyEhAQ98MADOnXqlP72t7/R7AEAuC3i4uIkSc7OzvL09CwypmPHjgViS5KXl6eoqChJUs+ePXX27FktXLhQkydPVmBgoFavXm2+mag4wcHB+u9//6tFixapYcOGpTkcAAAAAKjWPDw8JElJSUnFxuSP5ceWpFmzZub3J0+eLHO+0jp37pz8/Px07Ngx9enTRxs3bpStrW2huF9//VX//e9/ZW9vr3Hjxql3794FXmfPnpUkTZ06Vb1791ZISEi51woAAAAAAAAAAABUJbUqu4CqYvDgwZo2bZoWLVqkLl26yN/fXw4ODoqKilJaWpq6deumuXPnFpiTnp6uo0eP6vLly4XyNW7cWKtWrdKoUaM0ceJErVy5Uh4eHoqJiVF8fLxcXFy0Zs2aQk+pGzZsmHk1EUkaP358kfU+88wz6t69ezkdPQDgry4hIUGS5O7uXmxM06ZNC8SWJD4+3tzQsXfvXgUEBBRq8Jg5c6bWrl0rPz+/QvP37NmjBQsW6NFHH9WoUaMsPg4AAAAAqAk6dOgg6frDaBISEopszI+NjZUk+fj43DSfo6OjWrRooRMnTig2Nlbt2rUrU77SOH/+vPz8/PTf//5X/v7+2rx5s+zs7Eqck5KSol27dhU7fvDgQUkV05wCAAAAAAAAAAAAVCUsHXGD0NBQff755+ratav27NmjyMhIubm5KSQkRDt27JC9vX2p8g0fPlz79u3T0KFDFR8fr4iICOXl5em5557ToUOH1KJFi0JzLly4IEm6cuWKPvnkE61evbrI14kTJ8rlmAEAkKTMzExJkoODQ7ExRqNRkpSRkXHTfKmpqeb3Tz/9tO677z7FxMQoMzNTBw8e1IABA3T+/Hk9+uijOn78eIG5ly5d0tixY+Xk5KSlS5feyuEU4ObmVuzrzJkzZc4PAAAAAOXNzc1Nvr6+kqQ1a9YUGo+OjjY/NGbAgAEW5RwyZEix+bKysrRlyxZJ0tChQ2+17EJSUlLk5+enI0eOyN/fX1u2bCnx31jvvfdemUymYl/5K5Xs3r1bJpNJq1atKrdaAQAAAAAAAAAAgKqIho//MWLECO3atUvp6em6dOmSfvrpJ82aNUs2NjaFYseOHSuTyaTExMRi8913331av369zp07pytXrigxMVGLFy+Wi4tLkfGJiYkl/lEz/zV27NhyOmIAAMqfyWQyv2/SpIm++eYbdezYUUajUe3bt9fmzZvl7e2trKwshYSEFJgbFBSk48ePa+HChXJ1db3dpQMAAABAlTBnzhxJUkhIiA4cOGDenpqaqoCAAEnSlClT5OTkZB6LiIhQ69at5e/vXyhfYGCg6tSpo+3bt2vFihXm7Xl5eQoICFBaWpp8fX3Vt2/fcqn/woUL8vf3188//6w+ffrctNkDAAAAAAAAAAAAQGG1KrsAAABQ+erWrStJys7OLjYmKytLkuTo6GhxPul6g6StrW2BcWtra02aNElTp07V9u3bzdt37typxYsXa8CAAXrqqadKdQzFSU5OLnbMzc2tXPYBAAAAAOVt8ODBmjZtmhYtWqQuXbrI399fDg4OioqKUlpamrp166a5c+cWmJOenq6jR4/q8uXLhfI1btxYq1at0qhRozRx4kStXLlSHh4eiomJUXx8vFxcXLRmzRoZDIZCcwMCAsxNJ1euXJF0vVGkS5cu5piHH35YwcHB5s/PPPOMDh8+LIPBIGdnZ02ePLnY4xw8eHCpfz4AAAAAAAAAAADAXwENHwAAQB4eHpKkpKSkYmPyx/Jjb5bPYDDIZDLJy8uryJj87WfOnDFv27hxo0wmk06ePKnevXsXiE9LS5MknTp1yjy2cOFC3XvvvTetBwAAAACqo9DQUHXr1k3vvfee9uzZo5ycHDVv3lxBQUGaPn16kasSl2T48OHy8vLSvHnztHv3bsXFxcnV1VXPPfecgoODi12V+JdfftG+ffsKbb9xW+vWrQuMXbhwQdL1FSDXrVtXbE0eHh40fAAAAAAAAAAAAADFoOEDAACoQ4cOkqTU1FQlJCTI09OzUExsbKwkycfH56b5jEajWrVqpV9//VUpKSlFxuRvNxqNhcZ+/vnnYnNfvnxZu3btkvR/TSAAAAAAUFONGDFCI0aMsCh27NixGjt2bIkx9913n9avX1+qGnbu3Fmq+FudczOJiYnlnhMAAAAAAAAAAACoyqwquwAAAFD53Nzc5OvrK0las2ZNofHo6GglJSXJ1tZWAwYMsCjn8OHDJUnbt28vcnzbtm2SpE6dOpm3LVy4UCaTqcjXt99+K0lq3ry5edv/rgICAAAAAAAAAAAAAAAAAABQU9DwAQAAJElz5syRJIWEhOjAgQPm7ampqQoICJAkTZkyRU5OTuaxiIgItW7dWv7+/oXyTZs2TfXr11dkZKSWLVtWYGzt2rX67LPPzHEAAAAAAAAAAAAAAAAAAAAoiIYPAAAgSRo8eLCmTZumrKwsdenSRf3799djjz2mFi1a6KefflK3bt00d+7cAnPS09N19OhR/fbbb4XyNWjQQJ9//rns7Oz07LPPytvbW8OHD5ePj49GjRolk8mk4OBgi1cMAQAAAAAAAAAAAAAAAAAA+Cuh4QMAAJiFhobq888/V9euXbVnzx5FRkbKzc1NISEh2rFjh+zt7UuV78EHH9ShQ4c0ZswYpaWladOmTTp58qQGDBigb775Rq+//noFHQkAAAAAAAAAAAAAAAAAAED1ZjCZTKbKLgKVx83NTZKUnJxcyZUAQPXDObT643cIAGXDebT643cIAGXDebT643cIAGXDeRQAAAAAAAAAKhYrfAAAAAAAAAAAAAAAAAAAAAAAAFQxNHwAAAAAAAAAAAAAAAAAAAAAAABUMTR8AAAAAAAAAAAAAAAAAAAAAAAAVDE0fAAAAAAAAAAAAAAAAAAAAAAAAFQxNHwAAAAAAAAAAAAAAAAAAAAAAABUMTR8AAAAAABqnLCwMPXu3Vv169eXg4OD2rdvr7fffls5OTm3lO/HH3/U8OHD5eLiIjs7O3l6emrq1Kk6d+7cTeceOnRI48ePl6enp+zs7FS/fn21a9dOkydPVmpqaqH4yMhIvfrqqxo4cKAaN24sg8Egg8Gg5OTkW6odAAAAAAAAAAAAAAAA1VOtyi4AAAAAAIDyFBgYqNDQUNWqVUt+fn4yGo3asWOHZs2apS1btmjr1q2yt7e3OF94eLhGjRql3Nxc+fr6ytPTU7GxsVq8eLHCwsIUHR2tFi1aFDl3/vz5CgoKkslk0n333acuXbooPT1dx48f1/vvv6/nnntOd9xxR4E5o0ePVnp6epl+BgAAAAAAAAAAAAAAAKj+aPgAAAAAANQYGzduVGhoqIxGo3bt2iUfHx9JUkpKivz8/BQdHa3g4GDNnz/fonynT5/WmDFjlJubq2XLlmnixImSpLy8PI0dO1affvqpRo8erX379slgMBSY+9FHH2nmzJlq1aqVwsPD5e3tXWD8yJEjcnNzK7TPoUOHqmXLlvLx8ZGPj48aNmx4Kz8KAAAAAAAAAAAAAAAAVHNWlV0AAAAAAADlZd68eZKkoKAgc7OHJDVo0EBLliyRJC1evNjiFTQWLlyoS5cuqU+fPuZmD0mytrbW0qVL5eTkpJiYGG3durXAvIsXLyowMFD29vaKjIws1OwhSW3btpWTk1Oh7R9++KFmz56tfv366c4777SoTgAAAAAAAAAAAAAAANQ8NHwAAAAAAGqEU6dOKSYmRpI0evToQuPdu3dX06ZNdeXKFY2n/LoAAQAASURBVEVGRlqUMyIioth8RqNRgwYNkiRt2LChwNjq1auVkZGhYcOGycvLq1THAQAAAAAAAAAAAAAAAEg0fAAAAAAAaoi4uDhJkrOzszw9PYuM6dixY4HYkmRmZurEiRMF5lma75tvvpEk9ezZU3/++ac++eQTTZs2Tc8995wWLlyopKQkC44IAAAAAAAAAAAAAAAAf2W1KrsAAAAAAMBfw5kzZ7Rp0yYdPXpUGRkZMplMhWIMBoNWrlx5S/kTEhIkSe7u7sXGNG3atEBsSRITE83vi8tZXL7Dhw9Lut404u3trfj4+ALjs2bN0ptvvqkXXnjhpnUAAAAAAAAAAAAAAADgr4mGDwAAAABAhXv33Xc1c+ZM5eTkmLflN3wYDAbz57I0fGRmZkqSHBwcio0xGo2SpIyMDIvzlZSzuHypqamSpKCgIDVu3FhbtmxR9+7ddeHCBS1fvlxvv/22ZsyYIVdXV40aNeqmtZSFm5tbsWNnzpyRq6trhe4fAAAAAAAAAAAAAAAAt8aqsgsAAAAAANRsUVFRev7552VnZ6egoCB17dpVkrRs2TLNmDFDHh4ekqTAwEB9+OGHlVhp+clvZrl27ZoiIyP1yCOPqF69evLy8lJISIieffZZSdLLL79cmWUCAAAAAAAAAAAAAACgCmOFDwAAqri8vDyFh4dr+/btOnXqlC5fvlxknMFgUFRU1G2uDgCAmwsNDZXBYNA333yjzp07a9y4cfrhhx80YcIESdIbb7yhyZMn68MPP9SBAwdueT9169aVJGVnZxcbk5WVJUlydHS0OF9+TicnJ4vz1a1bV6mpqerRo4fuvvvuQvMCAgK0dOlSxcfHKyEhQZ6enjet51YlJycXO1bS6h8AAAAAAAAAAAAAAACoXDR8AABQhaWnp6tfv36KiYkxPym8OAaD4TZVBQBA6ezfv18+Pj7q3LlzkeO2trZaunSpIiMj9frrr2vVqlW3tJ/8lUKSkpKKjckfy48tSbNmzczvT548qXbt2lmcz8vLS6mpqfLy8ioy943bz5w5U6ENHwAAAAAAAAAAAAAAAKieaPgAAKAKCw4O1v79+9WkSRNNnTpVbdq0seiJ5AAAVCUXL15U7969zZ9r164tSfrzzz9lb28v6XrTR48ePcq0WlWHDh0kSampqcWumhEbGytJ8vHxuWk+R0dHtWjRQidOnFBsbGyRDR/F5bvvvvsUExOjlJSUInPfuN1oNN60FgAAAAAAAAAAAAAAAPz10PABAEAVtnHjRtWrV0979+5VkyZNKrscAABuibOzs7Kzs82f69evL+n6qhmtWrUyb8/Ly1Nqauot78fNzU2+vr6KiYnRmjVr9NJLLxUYj46OVlJSkmxtbTVgwACLcg4ZMkTvvPOO1qxZo3HjxhUYy8rK0pYtWyRJQ4cOLTA2fPhwvf/++9q7d6+ys7Pl4OBQYHzbtm2Srjd7tGnTplTHCQAAAAAAAAAAAAAAgL8Gq8ouAAAAFO+PP/5Qt27daPYAAFRr7u7uSkpKMn/29vaWyWTSF198Yd6WlZWl3bt3y83NrUz7mjNnjiQpJCREBw4cMG9PTU1VQECAJGnKlClycnIyj0VERKh169by9/cvlC8wMFB16tTR9u3btWLFCvP2vLw8BQQEKC0tTb6+vurbt2+BeX5+furRo4fOnTunKVOm6MqVK+axw4cP6+WXX5YkTZ482bziCQAAAAAAAAAAAAAAAHAjVvgAAKAKc3FxkZ2dXWWXAQBAmfTq1Uv//ve/9ccff8jFxUUPP/ywHBwcNGfOHJ09e1bu7u5avXq1Lly4oJEjR5ZpX4MHD9a0adO0aNEidenSRf7+/nJwcFBUVJTS0tLUrVs3zZ07t8Cc9PR0HT16VJcvXy6Ur3Hjxlq1apVGjRqliRMnauXKlfLw8FBMTIzi4+Pl4uKiNWvWyGAwFJr72WefqWfPnlq1apW2bdsmX19fXbhwQXv37tXVq1f14IMPFqpFkubOnasvv/yy0PZBgwbJxsZGkuTj46MlS5bc6o8JAAAAAAAAAAAAAAAA1QANHwAAVGEDBw5URESEcnJyePo3AKDaGj58uOLi4nTw4EH169dPzs7OWrBggZ599lktWLBAkmQymeTh4aHXXnutzPsLDQ1Vt27d9N5772nPnj3KyclR8+bNFRQUpOnTp5ubJkpTv5eXl+bNm6fdu3crLi5Orq6ueu655xQcHCwXF5ci5zVt2lQHDx5USEiINmzYoK+++ko2Njby8fHRmDFjNGHCBFlbWxea99tvv2nfvn2FtsfFxZnf0xAKAAAAAAAAAAAAAABQ8xlMJpOpsotA5XFzc5MkJScnV3IlAFD93I5zaEpKinx8fNS3b18tXryYmzvLGddBACibsp5HDxw4oLCwMF24cEFt2rTRuHHj5OTkVJ4l4ia4FgJA2XAerf74HQJA2XAeBQAAAAAAAICKxQofAABUYUuWLFHfvn310Ucfadu2bfL395e7u7usrKwKxRoMBgUHB1dClQAA3BofHx/5+PhUdhkAAAAAAAAAAAAAAABAlUTDBwAAVdirr74qg8Egk8mkpKQkrVq1qlBM/jgNHwAAAABwe8TGxio8PFypqakymUzy8/MrFGMwGBQVFVUJ1QEAAAAAAAAAAACoKWj4AACgCvvHP/5R2SUAAFCu8vLylJqaqsuXLxcb4+7ufhsrAgCgdF588UX9+9//lslkkslkkiTt3LnTPH5jUz4AAAAAAAAAAAAAlAUNHwAAVGE0fAAAaoo9e/botdde03fffaerV68WG2cwGJSbm3sbKwMAwHJhYWFasGCB3NzcFBwcrKlTp+rKlSv65ptvdPz4cX322Wf64YcfFBQUpH79+lV2uQAAAAAAAAAAAACqORo+AAAAAAAVaseOHerfv79ycnIkSc7Ozqpbt24lVwUAQOktX75c1tbWioqKUsuWLRUYGChJevDBB/Xggw8qICBAwcHBeueddzRixIjKLRYAAAAAAAAAAABAtUfDBwAA1cjZs2eVnJwsSWrSpIlcXV0ruSIAAG7u5ZdfVk5OjgIDA/Xyyy/L2dm5sksCAOCWxMXFqXPnzmrZsmWxMa+99po+/fRTvfHGGwoPD7+N1QEAAAAAAAAAAACoaW5Lw0d6eroyMjJkMpmKHHd3d78dZQAAUG2tXLlS77zzjo4fP15g+1133aWZM2dq/PjxlVQZAAA3d/DgQd17771asGBBZZcCAECZZGZmFvlvmVlZWTIajZIkKysrde7cWbt27brd5QEAAAAAAAAAAACoYSqs4ePixYt65ZVXFBYWpvPnzxcbZzAYlJubW1FlAABQ7U2YMEEffvihuXEy/6noFy5c0NGjRzVhwgT98MMPWrFiRWWWCQBAsYxGo1q3bl3ZZQAAUGZ33nmn0tLSzJ+trKwkSYmJifL29jZvz87OVkZGxu0uDwAAAAAAAAAAAEANY1URSdPT09WlSxctWbJEFy5ckL29vUwmkxo1aiRJ5htW3d3d1bRp04ooAQCAGiEsLEwrV65UvXr1NH/+fF28eFEpKSlKSUlRWlqa/vWvf6l+/fr68MMPFR4eXtnlAgBQpC5duujYsWOVXQYAAGXm4eGh33//3fzZxsZGkrRmzRrztrNnz2rXrl1q1qzZba8PAAAAAAAAAAAAQM1SIQ0f77zzjo4fP66nnnpK6enpeuyxx2QwGHTq1CllZmZq6dKlqlevnnr16qWEhISKKAEAgBph2bJlqlWrlrZt26YXXnhBTk5O5jFHR0dNnz5d27Ztk7W1tZYtW1aJlQIAULyXXnpJP/30U4GbYQEAqI78/f3166+/KjExUZJka2srKysrvfXWWxo+fLhmzJihzp07Kzs7W8OGDavcYgEAAAAAAAAAAABUe7UqIunmzZvVoEEDLV26VHZ2djIYDOaxOnXqaNKkSWrfvr26d++u+++/XxMnTqyIMgAAqPbi4uLUq1cv+fj4FBvToUMH9erVSwcOHLiNlQEAYLnOnTvr888/1zPPPKMtW7aof//+cnd3l5VV0c8g6Nmz522uEAAAy4wcOVKnT59WUlKSPDw8ZGVlpXr16uny5ctav369Oe6+++7T7Nmzy2WfYWFheu+993To0CFdvXpVLVq00BNPPKHp06erdu3apc73448/KiQkRN99953S09Pl6uqqRx55RMHBwWrYsGGh+Ly8PEVEROjHH380vy5cuCBra2vl5uYWu59z587p66+/1tdff62YmBglJSXJyspK7u7u6tu3r1544QV5eHgUmpeenq6tW7fq66+/1g8//KDExERdu3ZNjRs3Vu/evTV9+nS1a9eu1McNAAAAAAAAAAAAVEcGk8lkKu+kRqNRPXr00FdffSVJGj9+vFavXq2rV6/K2traHNejRw9dvXpV+/btK+8SYCE3NzdJUnJyciVXAgDVz+04h9rZ2WnYsGH67LPPSox74okntH79el2+fLnCaqmJuA4CQNmU5jy6fv16TZ8+XadOnSoxzmAwlHjzKMoX10IAKJv88+j+/fu1ZcsWXbhwQW3atNHAgQML/DvorQoMDFRoaKhq1aolPz8/GY1G7dixQ2lpaerevbu2bt0qe3t7i/OFh4dr1KhRys3Nla+vrzw9PRUbG6v4+Hi5uLgoOjpaLVq0KDAnLS1N9evXL5TrZg0fTz75pD777DNZWVnJ29tbrVq1UnZ2tmJiYnT+/Hk5ODgoIiJCDz74YIF5L7/8sv75z39Kku666y55e3srLy9PP/74o5KTk1W7dm2tWLFCY8aMsfi4S8K1EADKhvMoAAAAAAAAAFSsClnhQ1KBPwLWqVNHknTx4kU1aNDAvN3d3V1ffPFFRZUAAEC116hRI8XFxd00Li4uTi4uLrehIgAASm/z5s16/PHHde3aNTk7O8vT01NGo7GyywIAoNw0btxYkyZNKtecGzduVGhoqIxGo3bt2mVe+TElJUV+fn6Kjo5WcHCw5s+fb1G+06dPa8yYMcrNzdWyZcvMqy7n5eVp7Nix+vTTTzV69Gjt27evwIrNtWvX1hNPPKEOHTrIx8dHzs7Ouvfee2+6P2dnZ7322mt6+umn1aRJE/P2rKwsTZgwQWvXrtXIkSN14sSJAv+W7ODgoBdeeEHPPvusWrZsad6ek5OjWbNm6d///rcmTpyobt26FWpOAQAAAAAAAAAAAGoaq4pI2rhx4wJPbXV3d5ckHT58uEBcfHy8atWqsJ4TAACqvQceeEBHjx5VSEhIsTFvvvmmjh49Kn9//3LZZ1hYmHr37q369evLwcFB7du319tvv62cnJxbzrlp0yYNGjRIjRo1ko2NjRo2bKj7779fr7/+eqHYX375RYGBgerZs6fc3d1Vp04d2dvbq0WLFnr66af1008/leXwAACV4I033pDJZNKiRYv0xx9/KCYmRt9++22xLwAAIM2bN0+SFBQUZG72kKQGDRpoyZIlkqTFixcrPT3donwLFy7UpUuX1KdPH3Ozh3R9pY6lS5fKyclJMTEx2rp1a4F5Dg4O+vTTTzVjxgw98MADcnJysmh/ixYt0iuvvFKg2UO6vjr0ypUrVbduXV24cEFffvllgfHZs2frX//6V4FmD+l648n8+fN111136erVq1q7dq1FdQAAAAAAAAAAAADVWYU0fLRr105Hjx41f+7Ro4dMJpP+8Y9/KDMzU5L06aefat++fbr77rsrogQAAGqEoKAg2dra6qWXXlLnzp313nvvKTIyUpGRkVq8eLF8fX318ssvy87OTrNmzSrz/gIDAzVixAh9//336tSpkx566CGdPHlSs2bNkp+fn/78889S5bt69apGjBihwYMHa/v27Wrbtq0ee+wxeXt767ffftOiRYsKzdmzZ49CQ0N17NgxeXp6auDAgerTp49yc3P14YcfysfHR//5z3/KfKwAgNvnl19+UdeuXTVlyhRZW1tXdjkAAJSLU6dO6erVq7py5Yq+++67Il9lyR0TEyNJGj16dKHx7t27q2nTprpy5YoiIyMtyhkREVFsPqPRqEGDBkmSNmzYcKtlW6xOnTpq1aqVJCkpKcnieVZWVrrnnntKPQ8AAAAAAAAAAACoripkeY2HHnpIERER+vbbb/XAAw+oa9eu6tatm77//ns5OzvL0dFRaWlpMhgM+vvf/14RJQAAUCO0atVKYWFheuKJJxQTE6PY2NgC4yaTSY6Ojvrss8/MN8vcqo0bNyo0NFRGo1G7du0yP0E2JSVFfn5+io6OVnBwsObPn29xzgkTJigsLEyDBw/WihUr1KBBA/PYtWvXtH///kJz+vTpo//+979q3bp1ge3Xrl3TggULNHPmTD3zzDN66KGHVL9+/Vs8WgDA7eTg4KBmzZpVdhkAAJSLTZs2KSgoSMeOHdO1a9ckXV+d8X8ZDAbl5ube0j7i4uIkSc7OzvL09CwypmPHjkpKSlJcXJxGjRpVYr7MzEydOHHCPK+4fJ988ol53xUpJydHiYmJkiRXV9dSzT1+/PgtzQMAAAAAAAAAAACqowpp+Bg1apTuvvtueXh4mLdt2LBBTz/9tL766itdvHhR9evX1yuvvKKBAwdWRAkAANQYDz/8sI4dO6bly5dr165dOnXqlCSpSZMm6t27tyZMmKCGDRuWeT/z5s2TdH1VkfxmD0lq0KCBlixZoh49emjx4sUKDg6Wk5PTTfNFRUXp448/lre3t9atW6fatWsXGLeyslKXLl0Kzbvxvx/+N/7FF1/U0qVLFR8fr+joaP47AgCqid69e9+Wm0cBAKhoX331lYYNG6Zr167JyclJ2dnZMhgMuv/++8t1PwkJCZIkd3f3YmOaNm1aILYk+c0VJeUsTb6yWrlypVJSUmRvb6/+/ftbPO/rr7/WoUOHZDAYNHTo0AqsEAAAAAAAAAAAAKgaKqThw2g0qlu3bgW23Xnnndq8ebMuXbqk9PR0ubi4yMrKqiJ2DwBAjdOwYUO9/PLLevnllysk/6lTpxQTEyNJGj16dKHx7t27q2nTpkpKSlJkZORNnx4rSe+++64kKTAwsFCzR1nUqnX9P19sbW3LLScAoGLNnTtX9913n0JCQhQUFFTZ5QAAcMv++c9/6tq1a3r11VcVFBQkLy8vSdK3335brvvJzMyUdH2VrOIYjUZJUkZGhsX5SspZmnxl8dNPP2nmzJmSpODgYLm4uFg07/Tp03r66aclXV9N8p577rF4n25ubsWOnTlzhtVCAAAAAAAAAAAAUGVVSMNHSerUqaM6derc7t0CAIAS5D913dnZWZ6enkXGdOzYUUlJSYqLi7tpw0deXp6ioqIkST179tTZs2e1du1aHT16VLa2turQoYOGDRtmvqHIUsuXL9exY8fUsGHDIlcHAQBUTXv37tX48eP10ksvafPmzXrooYfk7u5e7EMAnnrqqdtcIQAAljl48KDuvfdevfLKK5VdSrWUnJysgQMHKisrS4MGDbK4ETQjI0OPPPKITp8+rU6dOik0NLSCKwUAAAAAAAAAAACqhgpp+LC2ttbYsWO1cuXKEuMmTJigjz76SLm5uRVRxi0JCwvTe++9p0OHDunq1atq0aKFnnjiCU2fPv2Wnk7+448/KiQkRN99953S09Pl6uqqRx55RMHBwWrYsGGx8/744w/NnTtXX375pU6fPq169eqpZ8+emj17tnx8fMpyiAAAFJKQkCBJcnd3LzamadOmBWJLEh8fr6ysLEnXb/INCAgwf843c+ZMrV27Vn5+fkXmuHTpkgICAiRJ6enp+vnnn3XixAm5uLgoLCxMjo6ONz8wAECVMHbsWBkMBplMJu3du1f79u0rMZ6GDwBAVWVtba3WrVtX+H7q1q0rScrOzi42Jv87liXfjfLz5ed0cnIqU75bcfbsWfn7++v3339Xv379tG7dOhkMhpvOy8rKUv/+/RUXF6cOHTro66+/lp2dXan2nZycXOxYSat/AAAAAAAAAAAAAJWtQho+TCaTTCaTxbFVRWBgoEJDQ1WrVi35+fnJaDRqx44dmjVrlrZs2aKtW7fK3t7e4nzh4eEaNWqUcnNz5evrK09PT8XGxmrx4sUKCwtTdHS0WrRoUWjesWPH1KNHD507d05eXl4aPHiwEhISFB4ero0bN2rdunUaMmRIeR46AKCKKK75wRIGg8G8qkZpZWZmSpIcHByKjclfjSMjI+Om+VJTU83vn376ad1///2aP3++Wrdurd9++01z5sxRZGSkHn30UR04cEAtW7YslOPq1atavXp1gW1eXl5auXKlevToYdFxSSXfvHPmzBm5urpanAsAcGueeuopi27oBACgqrvnnntKbB4oLx4eHpKkpKSkYmPyx/JjS9KsWTPz+5MnT6pdu3Zlylda586dk5+fn44dO6Y+ffpo48aNsrW1vem87OxsPfzww9qzZ4/uuecebdu2TfXr1y/3+gAAAAAAAAAAAICqqkIaPix16dKlW1o1oyJs3LhRoaGhMhqN2rVrl3kVjZSUFPn5+Sk6OlrBwcGaP3++RflOnz6tMWPGKDc3V8uWLdPEiRMlSXl5eRo7dqw+/fRTjR49Wvv27Stw45PJZNLIkSN17tw5/e1vf9NHH30ka2trSdLy5cs1adIkPfXUUzp+/LgaNWpUzj8FAEBl27lz5y3PrUo30t7Y0NmkSRN988035pt52rdvr82bN+vee+/Vzz//rJCQkCJXBatXr545zx9//KEDBw7otdde0wMPPKAXX3xR77zzzu05GABAma1ataqySwAAoFwEBgZqxIgRio2NVceOHStsPx06dJB0vZk+ISFBnp6ehWJiY2MlyaLVgB0dHdWiRQudOHFCsbGxRTZ8lCZfaZw/f15+fn7673//K39/f23evNmiFTouXbqkhx9+WN99953uueceRUVF6Y477ijX2gAAAAAAAAAAAICqzqqydpyWlqbo6Ogq81TtefPmSZKCgoIK/FGzQYMGWrJkiSRp8eLFSk9PtyjfwoULdenSJfXp08fc7CFJ1tbWWrp0qZycnBQTE6OtW7cWmPfVV18pLi5O9erV05IlS8zNHpI0ceJE+fv7KysrS6Ghobd8rEBVZzKZ9GfOnwW2/ZnzZ5VaEQioKN9+++0tv3bs2HHL+61bt66k609PLU5WVpak6zcKWZpPksaOHVvoya3W1taaNGmSJGn79u03zefi4qL+/fvru+++07333qv58+friy++uOk8SUpOTi72VVX+OwT4X1wLAQB/dVwLUVUNGzZMwcHB6tevn5YsWaLc3NwK2Y+bm5t8fX0lSWvWrCk0Hh0draSkJNna2mrAgAEW5cxfMbiofFlZWdqyZYskaejQobdadiH5D9M5cuSI/P39tWXLFotWUP7zzz/1yCOPaNeuXeZmjwYNGpRbXUB1wLUQAAAAAAAAAABI5djw4eXlZX5JUnh4eIFtN77c3d3VsGFDJScnq3///uVVwi07deqUYmJiJEmjR48uNN69e3c1bdpUV65cUWRkpEU5IyIiis1nNBo1aNAgSdKGDRuKnDdo0CAZjcZCc/Pz/e88oKYwmUx6M/pNDV03VOmXrzdYpV9O19B1Q/Vm9Jv8QRM1Xq9evcr0ulUeHh6SpKSkpGJj8sfyY2+WL3/Fkfz/Nvhf+dvPnDljcZ02NjZ64oknJP3fNROoabgWAgD+6rgWoiqxtrYu9Jo7d67S0tI0depU/fHHHzp16lSRcbVqlW1x5Tlz5kiSQkJCdODAAfP21NRUBQQESJKmTJkiJycn81hERIRat24tf3//QvkCAwNVp04dbd++XStWrDBvz8vLU0BAgNLS0uTr66u+ffuWqe58Fy5ckL+/v37++Wf16dPH4maPy5cva9CgQfr2229p9sBfFtdCAAAAAAAAAACQr2x/dbxBYmKi+b3BYFBWVpb5SeBFsbGx0eDBg80ra1SmuLg4SZKzs7M8PT2LjOnYsaOSkpIUFxenUaNGlZgvMzNTJ06cMM8rLt8nn3xi3vf/1lLSPEk6fvy4srOz5eDgUGItQHWS/4fMxfsXS5JGrh+pZY8s06QvJunQ2UM6dPaQJGl299nmG8kBlI8OHTpIun7jUEJCQpHXw9jYWEkqsBJWcYxGo1q1aqVff/1VKSkpRcbkby+qwbEk+de+c+fOlWoeUB1wLURNl5ycrJ07d+r06dO6fPlykTEGg0HBwcG3uTIAVQXXQlQ1lt5UXVRcWW/IHjx4sKZNm6ZFixapS5cu8vf3l4ODg6KiopSWlqZu3bpp7ty5Beakp6fr6NGjRV5nGzdurFWrVmnUqFGaOHGiVq5cKQ8PD8XExCg+Pl4uLi5as2ZNkf/fCggIMDedXLlyRdL1RpEuXbqYYx5++OEC1/BnnnlGhw8flsFgkLOzsyZPnlzscQ4ePNj8ec6cOeaVIN3d3fXiiy8WOa979+565plnihwDqjOuhQAAAAAAAAAA4Ebl1vCRkJAg6fofI7y8vPTYY4/pnXfeKTLWxsZGd955Z5mfclde8mt3d3cvNqZp06YFYktyY/NLcTmLy3ezWvLnmUwmJSYmqm3btjetB6guLude1u6Tu82fD509pC4fdCkQs/vkbk3PnS772jd/IiQAy7m5ucnX11cxMTFas2aNXnrppQLj0dHRSkpKkq2trQYMGGBRzuHDh2vu3Lnavn27pk+fXmh827ZtkqROnTqVqtaoqChJ0l133VWqeUB1wLUQNVVeXp6mTZum5cuX69q1a5IK3wRrMBhkMplo+AD+4rgWoqrJv24Vx83NTdL1psaKEBoaqm7duum9997Tnj17lJOTo+bNmysoKEjTp0+XjY1NqfINHz5cXl5emjdvnnbv3q24uDi5urrqueeeU3BwsFxcXIqc98svv2jfvn2Ftt+4rXXr1gXGLly4IOn6NX/dunXF1uTh4VGg4SN/niR98cUXJR4PDR+oibgWAgAAAAAAAACAG5Vbx0WzZs3M78eMGaMePXoU2FaVZWZmSlKJq2XkP308IyPD4nwl5Swu381qufEp6JbUIv3fH56LcubMGbm6ulqUB6ho9rXttXbYWo1cP9L8pLobtW/UXmuHreUPmajRXn/9dUnSlClT5OzsbP5sibLeIDtnzhwNGTJEISEh6t+/v3klj9TUVAUEBJjrcnJyMs+JiIjQ7Nmz1aRJE3MjRr5p06Zp8eLFioyM1LJlyzRp0iTz2Nq1a/XZZ5+Z4260cOFCDRs2zNzkmO/SpUtasGCB1q9fr1q1amncuHG3fKxAVcW1EDXVG2+8oaVLl6pWrVp65JFH1LJlS9WtW7eyywJQBXEtBAobMWKERowYYVHs2LFjNXbs2BJj7rvvPq1fv75UNezcubNU8bc6R5JWrVqlVatW3dJcoCbgWggAAAAAAAAAAG5UIUtsfPTRRxWRFsBfgJOdk5Y9sqzQU+skadkjy+Rk51TELKDmePXVV2UwGDRy5Eg5OzubP//vU9BvVF5PRB88eLCmTZumRYsWqUuXLvL395eDg4OioqKUlpambt26ae7cuQXmpKen6+jRo7p8+XKhfA0aNNDnn3+uQYMG6dlnn9W7776rNm3a6LffflNcXJwkKTg4uNCKIQsXLtQLL7ygNm3aqFWrVrKzs9OZM2d06NAhXbx4Uba2tlqxYoW8vb1v+ViBqoxrIWqiVatWyd7eXrt37zY3FAJAcbgWAgD+6rgWAgAAAAAAAACAfBXS8JHPZDLpq6++0p49e3T+/Hl17txZ48ePlySdP39eFy9eVPPmzWVtbV2RZdxU/pNls7Ozi43JysqSJDk6OlqcLz/njU9Cv1m+unXr6sKFC8XWkj/P0lokKTk5udixklb/ACpD+uV0TfpiUpFjk76YpLXD1vIHTdRor7zyigwGgxo0aFDg8+0SGhqqbt266b333tOePXuUk5Oj5s2bKygoSNOnT5eNjU2p8j344IM6dOiQ5s2bp+3bt2vTpk1ydHTUgAED9Pzzz6tv376F5sybN09bt25VbGysvvvuO6WlpcnBwUHNmzfX008/rcmTJ8vLy6u8DhmocrgWoiY6e/asevfuTbMHAItwLUR1kJOTo/Xr1+vixYvKy8vTww8/LDc3N/Xu3VvDhg0r9XcnALgR10IAAAAAAAAAAJCvwho+Dh06pMcff1zHjx83P3U8JyfH3PCxbds2/e1vf9PGjRs1cODAiirDIh4eHpKkpKSkYmPyx/JjS9KsWTPz+5MnT6pdu3YW5/Pw8NCFCxd08uTJEuswGAwF9gPUBH/m/KmR60fq0NlDRY4fOntII9eP1IYRG2Rf2/42VwfcHq+++mqJn2+HESNGaMSIERbFjh07VmPHji0x5q677tKqVass3v/o0aM1evRoi+OBmoRrIWqqxo0bF2iMB4DicC1EdbBv3z6NGjVKv//+u65duyZJ+uqrryRJH3zwgebMmaM1a9aoa9eulVkmgGqKayEAAAAAAAAAALiRVUUkTU5OVp8+fXTs2DH1799fb7/9tkwmU4GYwYMHq3bt2tq0aVNFlFAqHTp0kCSlpqYqISGhyJjY2FhJsuiJtI6OjmrRokWBeZbmy/98s3ktW7aU0Wi8aS1AdWJXy0493HuYP7dv1F57n9mr9o3am7f1cO8hu1p2lVEeAAAVjmshaqohQ4bou+++05UrVyq7FABVHNdCVHVHjx7Vgw8+qMTERDVu3FhGo1FOTk569913NWPGDDVp0kS///67+vXrp19//bWyywVQDXEtBAAAAAAAAAAAN6qQho958+YpNTVVCxcu1BdffKEXX3yxUEydOnXUvn17xcTEVEQJpeLm5iZfX19J0po1awqNR0dHKykpSba2thowYIBFOYcMGVJsvqysLG3ZskWSNHTo0CLnbd68WdnZ2YXm5uf733lATWAwGDS7+2xN6TRF7Ru119pha+Xu5K61w9aqfaP2mtJpimZ3ny2DwVDZpQJVwp9//qlDhw4pNTW1sksBUE64FqKmeuWVV1SvXj2NHDlSKSkplV0OgCqMayGquldeeUVZWVmaNm2afvvtNzk5OcloNOq5557TO++8o99++03PP/+8srKy9I9//KOyywVQDXEtBAAAAAAAAAAANzKY/nfpjXLg5eUlOzs7/fLLL+ZtVlZWGjt2rD788EPztscff1zffvutzp07V94llNrGjRs1ZMgQGY1G7dq1y7zSRmpqqh544AH99NNPmjFjhubPn2+eExERodmzZ6tJkyaKiooqkO/06dNq2bKlLl26pOXLl2vChAmSpLy8PI0bN06ffPKJfH19tW/fvgJ/mDGZTLrvvvsUFxenp556Sh9++KGsra0lScuXL9ekSZNkNBp1/PhxNWrUqMzH7ebmJun6qixAVWEymXQ597Lsa9ubt/2Z86fsatnxh0xUKbfjHLp7925FRERozJgxat/+/57kuGbNGk2aNEmXLl2StbW1Xn75Zb3yyisVVkdNxXUQVRXXQlQXpTmPXrx4Ub1791ZiYqLuu+8+ubu7y8qq8DMIDAaDVq5cWe61omhcC1FVcS1EVXXnnXeqXr16OnbsmAwGQ5HnUZPJpLvuuktpaWk6f/58ZZUKC3EtRFXFtRDVBedRAAAAAAAAAKhYtSoi6enTp/Xoo4/eNM5gMCgjI6MiSii1wYMHa9q0aVq0aJG6dOkif39/OTg4KCoqSmlpaerWrZvmzp1bYE56erqOHj2qy5cvF8rXuHFjrVq1SqNGjdLEiRO1cuVKeXh4KCYmRvHx8XJxcdGaNWsK/WHGYDDoP//5j3r06KGPP/5Y0dHR8vX1VUJCgvbv369atWrp448/LpdmD6CqMhgMBf6QKanQZ+CvYvny5fr88881Z84c87akpCSNHz9eV69eVb169ZSWlqbXXntNvXr1Uq9evSqxWgDlhWshaporV65o7Nix+vnnn2UymbRz585iY2n4ACBxLUTVlZ2drb59+5Z4s7XBYJCvr682btx4+woDUONwLQQAAAAAAAAAAFIFNXw4ODhY9PS6hIQEOTs7V0QJtyQ0NFTdunXTe++9pz179ignJ0fNmzdXUFCQpk+fLhsbm1LlGz58uLy8vDRv3jzt3r1bcXFxcnV11XPPPafg4GC5uLgUOa9Vq1Y6fPiw3njjDX3xxReKiIiQk5OThg4dqpdeesm8+ggAoObbt2+f2rdvrwYNGpi3ffLJJ7p69apeffVVvfLKK9q9e7d69+6tJUuW0PABAKiS/vGPf2jLli2qX7++/va3v6lly5YyGo2VXRYAAKXm5eWllJSUm8alpqbK09PzNlQEAAAAAAAAAAAAoCarkIaPdu3a6ccff1RKSkqBG1Rv9Pvvv+vQoUN68MEHK6KEWzZixAiNGDHCotixY8dq7NixJcbcd999Wr9+fanraNSokRYvXqzFixeXei4AoOZISUlR27ZtC2zbsWOHbGxs9MILL0iSevTooS5duiguLq4ySgQA4Kb+85//qF69ejp48KCaNm1a2eUAAHDLnnrqKb3yyis6cuRIoe9q+Y4cOaKdO3fqtddeu83VAQAAAAAAAAAAAKhprCoi6ZNPPqnMzEw988wzunTpUqHxq1evKiAgQDk5OXryyScrogQAAGqErKws2dvbmz+bTCbFxMSoY8eOBZ6M7uHhodOnT1dGiQAA3NS5c+fUo0cPmj0AANXejBkz9Mgjj8jPz0+LFy/WtWvXzGMZGRl677335O/vr4EDB+rvf/97JVYKAAAAAAAAAAAAoCaokIaPcePGqVevXtq8ebNat26tiRMnSpIOHTqkadOm6a677tJXX30lf39/Pf744xVRAgAANYKzs7MSExPNn+Pi4pSZman777+/QFxOTo5sbGxuc3UAAFjG3d1dVlYV8vWzWGFhYerdu7fq168vBwcHtW/fXm+//bZycnJuKd+PP/6o4cOHy8XFRXZ2dvL09NTUqVN17ty5m849dOiQxo8fL09PT9nZ2al+/fpq166dJk+erNTU1CLnZGZmas6cOWrVqpXs7e3VoEEDPfzww9qxY8ct1Q8AKB8tW7bUgQMHdP78eT3//PM6c+aMTp8+rTvuuEP169fXtGnTdP78ef34449q0aKFvLy8zK/mzZtXdvkAAAAAAAAAAAAAqpkKuePG2tpaW7Zs0ahRo3Tq1Cl98MEHkq7fpLp48WKdPHlSw4YN04YNGypi9wAA1Bi+vr7av3+/fvjhB0lSaGioDAaD/Pz8CsQdP35crq6ulVEiAAA3NXr0aO3cuVNpaWm3ZX+BgYEaMWKEvv/+e3Xq1EkPPfSQTp48qVmzZsnPz09//vlnqfKFh4erS5cuCg8PV7NmzfToo4/KyspKixcv1j333KMTJ04UO3f+/Pm67777tHr1at15550aMmSIunbtqsuXL+v999/XmTNnCs05d+6cOnbsqDfffFOZmZkaOHCg2rZtq6+++kp9+vTRu+++W+qfCQCgfCQmJpqb8k0mk/l/L168KJPJZH79/vvv5tgbXwAAAAAAAAAAAABQGgZT/l8mK8ivv/6qyMhIxcfH69q1a2ratKn69++ve++9tyJ3Cwu5ublJkpKTkyu5EgCofm7HOXT79u3q16+fJMnJyUnp6eny8vLS0aNHzU9KT0lJUaNGjTRy5Eh9+umnFVZLTcR1EADKxtLz6NWrV9WvXz9duXJFK1euVJs2bSqspo0bN2rIkCEyGo3atWuXfHx8JF2/Xvr5+emnn37SjBkzNH/+fIvynT59Wi1bttSlS5e0bNky8wqWeXl5Gjt2rD799FP5+vpq3759MhgMBeZ+9NFHGj9+vFq1aqXw8HB5e3sXGD9y5Ijc3Nzk5ORUYPvgwYO1adMm+fv7a/PmzapTp44kKTIyUoMGDZLJZFJcXJzuueeeW/oZ3YhrIQCUzu+//17gc+fOnSVJ+/bts2h+s2bNyr0mlA3XQgAoG86jAAAAAAAAAFCxKrzhA1Ub/xAPALfudp1DV69erddee03nzp1Tp06dtGTJErVu3do8/u9//1szZszQsmXLNGHChAqtpabhOggAZWPpedTPz09Xr17Vnj17ZGVlJXd3d7m7u5ubF29kMBgUFRV1yzV16tRJMTExeuONN/TSSy8VGIuOjlaPHj1ka2urP/74o1CjRVH+/ve/65133lGfPn20bdu2AmNZWVlyc3NTenq6vv76a3OTpiRdvHhRHh4eysnJ0c8//ywvLy+L6v/ll1/Utm1bWVtb67fffit0Y/AzzzyjlStXauTIkfrPf/5jUc6ScC0EgLLhPFr98TsEgLLhPAoAAAAAAAAAFatWZRcAAABKNmbMGI0ZM6bY8WeffVbjx4+X0Wi8jVUBAGC5nTt3mt9fu3ZNiYmJSkxMLDL2f1fJKI1Tp04pJiZGkjR69OhC4927d1fTpk2VlJSkyMhIjRo16qY5IyIiis1nNBo1aNAgffLJJ9qwYUOBho/Vq1crIyNDTz75pMXNHjfur1u3bkU+BX706NFauXKltmzZopycHNWuXdvi3AAAAAAAAAAAAAAAAKheKrThIyUlRR988IF27typ5ORkmUwmubm56YEHHtD48ePVsGHDitw9AAB/Cfb29rK3t6/sMgAAKNa33357W/YTFxcnSXJ2dpanp2eRMR07dlRSUpLi4uJu2vCRmZmpEydOmOcVl++TTz4x7zvfN998I0nq2bOn/vzzT4WHhysmJkZ5eXlq2bKlhg0bpqZNmxZ7DCXtT5Kys7N1/Phx3X333SUeAwAAAAAAAAAAAAAAAKqvCmv42LRpk8aNG6f09HSZTCbz9v/+97/avn27QkJC9NFHH2nIkCEVVQIAADXK6dOn9d133xVoouzZs6eaNGlS2aUBAFCiXr163Zb9JCQkSJLc3d2LjclvssiPLcmNq5AUl7O4fIcPH5Z0vWnE29tb8fHxBcZnzZqlN998Uy+88EKpjsHR0VGOjo7KyMhQQkICDR8AUMH8/PxKHD9//nyxcQaDQVFRURVSFwAAAAAAAAAAAIC/hgpp+Ni3b5+GDx+u3NxcdezYUU899ZT56aqJiYn6+OOPFRMTo8cff1y7d+9W586dK6IMAABqhNTUVE2bNk3r1q3TtWvXCoxZWVnpscce07vvvqsGDRpUUoUAAFQNmZmZkiQHB4diY4xGoyQpIyPD4nwl5SwuX2pqqiQpKChIjRs31pYtW9S9e3dduHBBy5cv19tvv60ZM2bI1dW1wEojlh5DRkaGRccgSW5ubsWOnTlzRq6urhblAYC/op07d5Y4nv+gm6LiDAZDBVQEAAAAAAAAAAAA4K+kQho+Xn/9deXl5emdd97RjBkzCo0/99xz+ve//60ZM2Zo7ty5+uKLLyqiDAAAqr20tDT16NFDR48elSR16NChQBPlgQMHtG7dOh08eFA//PCD6tWrV4nVAgCAfPk3AF+7dk2RkZHmlTjq1aunkJAQZWRkaOnSpXr55ZcLNHwAAKqWb7/9tsTxxx57TJIUHh5+O8oBAAAAAAAAAAAA8BdTIQ0fe/bskbe3d5HNHvmmT5+uVatW6fvvv6+IEgAAqBFef/11/frrr7r//vv1/vvvy9vbu8D4kSNHNHnyZH3//fd6/fXXtWDBgkqqFACAm4uNjVV4eLiOHj2qjIwMc1PEjQwGg6Kiom4pf926dSVJ2dnZxcZkZWVJkhwdHS3Ol5/TycnJ4nx169ZVamqqevToYW72uFFAQICWLl2q+Ph4JSQkmBs6y/sYJCk5ObnYsZJW/wAASL169Spx3NbW1qI4AAAAAAAAAAAAALgVFdLwkZOTo3bt2t00ztvbW7/99ltFlAAAQI2wYcMGOTs7KzIyssibOtu2bastW7aoefPm2rBhAw0fAIAq68UXX9S///1vc5OHwWAo0PCR/9lgMNzyPjw8PCRJSUlJxcbkj+XHlqRZs2bm9ydPnizye25x+by8vJSamiovL68ic9+4/cyZM+aGDw8PDx04cEAnT54scl5GRoYyMjIsPgYAAAAAAAAAAAAAAABUX1YVkbR169Yl3mCT79SpU2rVqlVFlAAAQI1w9uxZ9e7du8QneDs5Oal37976448/bmNlAABYLiwsTAsWLFCTJk20bNky9e3bV5L0zTffaPHixeratatMJpOCgoK0Y8eOW95Phw4dJEmpqalKSEgoMiY2NlaS5OPjc9N8jo6OatGiRYF5lua77777JEkpKSlFzrtxu9FoNL/Pz3Oz/Tk4OOiuu+666TEAACrGmTNn9P777ystLU0XL17U+PHjC72efvrpyi4TAAAAAAAAAAAAQDVXIQ0fkyZNUnR0tHbt2lVszK5du7R7925NmjSpIkoAAKBGcHFxKfD08+KYTCY1bNjwNlQEAEDpLV++XNbW1oqKitKECRPk6uoqSXrwwQcVEBCg77//Xi+99JIWLFggJyenW96Pm5ubfH19JUlr1qwpNB4dHa2kpCTZ2tpqwIABFuUcMmRIsfmysrK0ZcsWSdLQoUMLjA0fPlyStHfvXmVnZxeau23bNknXmz3atGlj3j548GBJ0vfff1/kKh/5dQwcOFC1a9e26BgAAOXr3Xfflaenp5577jllZ2fr0qVLWrVqlVatWqXVq1dr9erV5s8AAAAAAAAAAAAAUBYV0vAxYcIEBQYG6uGHH9aLL76ow4cPKzMzU5mZmTp8+LBmzpyphx9+WIGBgZo4cWJFlAAAQI3wyCOPaOfOnUpPTy82Ji0tTd9++60efvjh21gZAACWi4uLU+fOndWyZctiY1577TW5urrqjTfeKNO+5syZI0kKCQnRgQMHzNtTU1MVEBAgSZoyZUqBxpKIiAi1bt1a/v7+hfIFBgaqTp062r59u1asWGHenpeXp4CAAKWlpcnX19e8akk+Pz8/9ejRQ+fOndOUKVN05coV89jhw4f18ssvS5ImT55coHGjbdu2evTRR5WXl6enn35af/75p3nsq6++0qpVq2RlZaXZs2ff0s8HAFA2UVFRev7552VnZ6egoCDZ2NhIkpYtW6YZM2bIw8ND0vXrx4cffliJlQIAAAAAAAAAAACoCQwmSx4bfhPW1ta3XoDBoNzc3LKWgFvk5uYmSUpOTq7kSgCg+rkd59ALFy6oc+fOcnFx0dKlS9WuXbsC4z///LMmT56ss2fPau/evbrjjjsqrJaaiOsgAJSNpedRW1tbDRs2zLw6xaRJk/TBBx8oPT1dRqPRHDdy5Ejt2rVLZ86cKVNdzz//vBYtWqTatWvL399fDg4OioqKUlpamrp166Zt27bJ3t7eHL9q1SqNGzdOzZo1U2JiYqF8YWFhGjVqlPLy8tS5c2d5eHgoJiZG8fHxcnFxUXR0tFq0aFFoXlJSknr27KnExEQ1adJEvr6+unDhgvbu3aurV6/qwQcf1JYtW2Rra1tg3rlz59S9e3cdP35crq6u5saRXbt2yWQyKTQ0VNOmTSvTzygf10IAKJ1Bgwbpyy+/1J49e9S5c2c5ODjo0qVL5pUZr1y5osmTJ2vDhg06cOCAvLy8Krli3AzXQgAoG86jAAAAAAAAAFCxapVHkrL0jJRDvwkAADXWiy++KG9vb23atEn33nuv2rdvL09PT0lSQkKCDh8+LJPJpEGDBmnmzJkF5hoMBq1cubIyygYAoIA777xTaWlp5s8NGjSQJCUmJsrb29u8PTs7WxkZGWXeX2hoqLp166b33ntPe/bsUU5Ojpo3b66goCBNnz7d/DR2Sw0fPlxeXl6aN2+edu/erbi4OLm6uuq5555TcHCwXFxcipzXtGlTHTx4UCEhIdqwYYO++uor2djYyMfHR2PGjNGECROKfIBCw4YNFRsbqzfffFPr16/Xpk2b5ODgoH79+unFF18sciUSAMDtsX//fvn4+Khz585Fjtva2mrp0qWKjIzU66+/rlWrVt3eAgEAAAAAAAAAAADUKOWywgeqL568BAC37nacQ62srGQwGG6pQdJgMCgvL68Cqqo5uA4CQNlYeh7t3r27Ll68qCNHjkiSwsPDNWLECAUFBWnevHmSpLNnz+quu+6Sm5ubfvnll4otHGZcCwGgdGxtbTVkyBCtXbtWkswrfFy6dKnA6lHDhw/X3r17lZSUVFmlwkJcCwGgbDiPAgAAAAAAAEDFKpcVPgAAQMX46KOPKrsEAADKzN/fX2+88YYSExPl4eGh/v37y9nZWW+99ZaOHz8ud3d3hYeHKzs7W8OGDavscgEAKJazs7Oys7PNn62srCRJJ0+eVKtWrczb8/LylJqaetvrAwAAAAAAAAAAAFCz0PABAEAVNmbMmMouAQCAMhs5cqROnz6tpKQkeXh4yMHBQR999JFGjhyp9evXm+Puu+8+zZ49uxIrBQCgZO7u7gVW7ahdu7Yk6YsvvjA3fGRlZWn37t3mJ54DAAAAAAAAAAAAwK2i4QMAgGril19+0Z49e3T+/Hm1bdtWgwYNkiRdu3ZNubm5srGxqeQKAQAoWps2bbRixYoC2wYOHKjjx49ry5YtunDhgtq0aaOBAwfK2tq6kqoEAODmevXqpX//+9/6448/5OLiIjs7OxkMBs2ZM0dnz56Vu7u7Vq9erQsXLmjkyJGVXS4AAAAAAAAAAACAao6GDwAAqrikpCSNGzdO3377rXnbmDFjzA0fK1asUEBAgLZu3Sp/f//KKhMAgFJr3LixJk2aVNllAABgseHDhysuLk4HDx5Uv379ZGVlJScnJ2VkZGjBggWSJJPJJA8PD7322muVXC0AAAAAAAAAAACA6o6GDwAAqrALFy6oV69eSkxMlLe3t3r27KklS5YUiBkxYoSmTJmizZs30/ABAKiSTp48aVGcjY2NnJ2dWbUKAFBl+fr6atu2bQW2OTg4KCoqSmFhYeZVq8aNGycnJ6dKqhIAAAAAAAAAAABATUHDBwAAVdhbb72lxMREvfjii3rrrbdkMBgKNXzUr19f7dq1U3R0dCVVCQBAyTw8PGQwGCyKtbKyUtu2bTV+/HhNmTJFVlZWFVwdAABl5+PjIx8fn8ouAwAAAAAAAAAAAEANw50zAABUYZs2bZKHh4dCQkJKvFHWy8tLp0+fvo2VAQBgOXd3d7m7u8tkMplfjo6OcnJyKrCtadOmsra21uHDhzV9+nQ9/PDDunbtWmWXDwAAAAAAAAAAAAAAAFQKGj4AAKjCfv/9d/n4+Nz06eY2Nja6cOHCbaoKAIDSSUhIUJcuXeTi4qLFixfr4sWLunjxoi5cuKC0tDS99957atSokbp06aLMzEzt3LlTLVq00NatW/XBBx9UdvkAAAAAAAAAAAAAAABApaDhAwCAKszOzk6ZmZk3jTt58qScnJxuQ0UAAJTeokWLtHHjRn377bcKCAgocM1ydHTU5MmTtWPHDm3cuFGLFy9Wz549tX79ehkMBn322WeVWDkAAAAAAAAAAAAAAABQeWj4AACgCmvdurUOHDig7OzsYmNSUlJ06NAh3XPPPbexMgAALLdy5Ur16tVLrVu3LjamdevW6t27tz788ENJkre3t3x8fHTkyJHbVSYAAAAAAAAAAAAAAABQpdDwAQBAFfbYY48pNTVVL7zwgq5du1ZkzMyZM3Xp0iU9/vjjt7k6AAAs89tvv+mOO+64aZyzs7Pi4+PNnz09PS1a6QoAgJosLCxMvXv3Vv369eXg4KD27dvr7bffVk5Ozi3l+/HHHzV8+HC5uLjIzs5Onp6emjp1qs6dO1dkfF5ensLDwzV79mz17dtXd9xxhwwGg2rVqlXifs6dO6ePP/5Yo0ePVsuWLWVnZ6c6deqodevWmjZtmhITE0ucf/XqVb311ltq3769HBwcVL9+ffXu3Vvh4eG3dNwAAAAAAAAAAABAdWQwmUymyi4ClcfNzU2SlJycXMmVAED1czvOoZcvX1anTp105MgRdejQQUOHDtXLL7+sHj166NFHH1VYWJj279+ve++9V3v37lXt2rUrrJaaiOsgAJSNpefRO++8U/Xr19exY8eKjTGZTGrVqpUuXryo8+fPS5IGDRqkPXv2KCUlpfyKRgFcCwGgbCr6PBoYGKjQ0FDVqlVLfn5+MhqN2rFjh9LS0tS9e3dt3bpV9vb2FucLDw/XqFGjlJubK19fX3l6eio2Nlbx8fFycXFRdHS0WrRoUWBOWlqa6tevXyiXtbW1cnNzi93Xk08+qc8++0xWVlby9vZWq1atlJ2drZiYGJ0/f14ODg6KiIjQgw8+WGjupUuX9OCDD2rPnj2qV6+e/Pz8lJWVpR07dig3N1czZszQ/PnzLT7uknAtBICy4TwKAAAAAAAAABWLFT4AAKjC7Ozs9M0336hr1646cOCAgoODJUnR0dGaOXOm9u3bp44dO+qLL74ot2aP8n56rCRt2rRJgwYNUqNGjWRjY6OGDRvq/vvv1+uvv14o9ujRo1q4cKEGDBigJk2ayMbGRo6OjvL19dWbb76prKysshweAKAS9OzZU7/99ptmzZqlvLy8QuPXrl3T7NmzdeLECfXq1cu8PT4+Xk2aNLmdpQIAUGVs3LhRoaGhMhqN2rdvn7755hutX79ex48fV7t27RQdHW3+jmiJ06dPa8yYMcrNzdWyZcu0f/9+ff755zp27JiefPJJ/fHHHxo9erT+9/lAtWvX1hNPPKH58+drx44dOnjwoEX7c3Z21muvvaaTJ0/q0KFDWrdunb788kvFx8dr5MiRys7O1siRI3Xx4sVCc+fMmaM9e/aoXbt2On78uNavX69vvvlGe/fuldFo1L/+9S998cUXFh87AAAAAAAAAAAAUF2xwsdfHE9eAoBbd7vPod9884355phr166padOm6t+/vx599FEZDIZy2Ud5Pz326tWrevLJJxUWFiZ7e3t17dpVLi4uOnv2rI4cOaK8vLxCT213c3PTqVOnZGdnp44dO8rNzU1//PGHfvjhB12+fFnNmzfXjh075O7uXubj5ToIAGVj6Xn0yJEj6tSpky5fvqxmzZpp+PDh8vDwkMFgUGJiosLCwpSYmCg7Ozvt27dP3t7eSkxMlJeXl6ZMmaJFixbdjsP5S+JaCABlU5Hn0U6dOikmJkZvvPGGXnrppQJj0dHR6tGjh2xtbfXHH3/Iycnppvn+/ve/65133lGfPn20bdu2AmNZWVlyc3NTenq6vv76a/Xr16/YPImJifL09LzpCh8luXTpkho1aqTMzEx98sknevLJJ81jFy9eVKNGjXT16lVFR0erW7duBea+8cYbCg4OVpcuXfTDDz/c0v5vxLUQAMqG8ygAAAAAAAAAVKxalV0AAACwTL9+/Uq86aasbnx67K5du+Tj4yNJSklJkZ+fn/npsfPnz7c454QJExQWFqbBgwdrxYoVatCggXns2rVr2r9/f6E5rVq10uuvv64RI0bIaDSatycmJuqRRx7RkSNHNHbsWO3YsaMMRwsAuJ3atm2ryMhIPfHEE0pMTCx0LTGZTHJ1ddWnn34qb29vSZLRaNS3336ru+66qzJKBgCgUp06dUoxMTGSpNGjRxca7969u5o2baqkpCRFRkZq1KhRN80ZERFRbD6j0ahBgwbpk08+0YYNGyr0u6ck1alTR61atVJsbKySkpIKjEVGRurq1atyd3cv1OwhXa8/ODhYe/fu1enTp9W4ceMKrRUAAAAAAAAAAACoTFaVXQAAAKga5s2bJ0kKCgoyN3tIUoMGDbRkyRJJ0uLFi5Wenm5RvqioKH388cfy9vbWunXrCjR7SJKVlZW6dOlS5Lzx48cXaPaQJA8PD73//vuSpG+//ZanBgJANdOrVy+dOHFCH3/8scaPH6++ffuqb9++GjdunFatWqUTJ07ogQceMMc3aNBAvXr1kqurayVWDQBA5YiLi5MkOTs7y9PTs8iYjh07FogtSWZmpk6cOFFgXlnylVVOTo4SExMlqdC1Pn//xdXp5eUlZ2dnSdLBgwcrrEYAAAAAAAAAAACgKmCFDwAAUCFPj3333XclSYGBgapdu3a51NmhQwfz+6SkJLm5uZVLXgDA7WFnZ6cnn3xSTz75ZGWXAgBAlZaQkCBJcnd3LzamadOmBWJLkt9cUVLO0uQrq5UrVyolJUX29vbq379/gTFLjt3NzU0XLly4LbUCAAAAAAAAAAAAlYmGDwAAYPHTY5OSkhQXF3fTho+8vDxFRUVJknr27KmzZ89q7dq1Onr0qGxtbdWhQwcNGzas0CoeN3P8+HHze574DgAAAKCmyszMlCQ5ODgUG5P/fSojI8PifCXlLE2+svjpp580c+ZMSVJwcLBcXFwKjJf3sUsq8WEBZ86c4fslAAAAAAAAAAAAqiwaPgAAQLk/PTY+Pl5ZWVmSpL179yogIMD8Od/MmTO1du1a+fn5WVxnSEiIJMnHx0ceHh4WzwMAAAAAVL7k5GQNHDhQWVlZGjRokIKCgiq7JAAAAAAAAAAAAKBKo+EDAACU+xNUU1NTze+ffvpp3X///Zo/f75at26t3377TXPmzFFkZKQeffRRHThwQC1btrxpzlWrVunzzz+XtbW1QkNDbxqfjye5AgAAAKhu6tatK0nKzs4uNia/qd7R0dHifPk5nZycypTvVpw9e1b+/v76/fff1a9fP61bt04Gg6HYWsvr2KXrjSbFKek7IwAAAAAAAAAAAFDZrCq7AAAAUPOYTCbz+yZNmuibb75Rx44dZTQa1b59e23evFne3t7Kysoyr9pRkqioKE2aNEmS9Pbbb6t79+4VVjsAAAAAVLb8FQ2TkpKKjckfs2T1w2bNmpnfnzx5ssz5SuvcuXPy8/PTsWPH1KdPH23cuFG2trZFxubvv7g6pf9r4GDlRwAAAAAAAAAAANR0NHwAAIAKfXrs2LFjC93IY21tbW7g2L59e4m5oqOj9eijj+rq1av6xz/+oRdeeOGm+79RcnJysS9W9wAAAABQFXXo0EHS9dUTExISioyJjY2VJPn4+Nw0n6Ojo1q0aFFgXlnylcb58+fl5+en//73v/L399fmzZtlZ2dXbHz+/ourMz4+XhcuXJD0fz8nAAAAAAAAAAAAoKai4QMAAJT702M9PDxkMBgkSV5eXkXG5G8/c+ZMsXn27NmjAQMGKDs7Wy+99JJeffXVm+4bAAAAAKo7Nzc3+fr6SpLWrFlTaDw6OlpJSUmytbXVgAEDLMo5ZMiQYvNlZWVpy5YtkqShQ4featmFpKSkyM/PT0eOHJG/v7+2bNkie3v7EucMGDBANjY2OnnypL7//vtC4/n1d+nSRY0bNy63WgEAAAAAAAAAAICqiIYPAABQ7k+PNRqNatWqlaTrN/gUJX+70Wgscnzv3r166KGHlJmZqTlz5uiNN9646X4BAAAAoKaYM2eOJCkkJEQHDhwwb09NTVVAQIAkacqUKXJycjKPRUREqHXr1vL39y+ULzAwUHXq1NH27du1YsUK8/a8vDwFBAQoLS1Nvr6+6tu3b7nUf+HCBfn7++vnn39Wnz59LGr2kKT69etr8uTJkqSAgAClpqaaxw4cOKC33npLkvTSSy+VS50AAAAAAAAAAABAVVarsgsAAACVL//psTExMVqzZk2hG2du5emxw4cP19y5c7V9+3ZNnz690Pi2bdskSZ06dSo0tn//fvXr18/c7PHPf/7zFo4KAAAAAKqvwYMHa9q0aVq0aJG6dOkif39/OTg4KCoqSmlpaerWrZvmzp1bYE56erqOHj2qy5cvF8rXuHFjrVq1SqNGjdLEiRO1cuVKeXh4KCYmRvHx8XJxcdGaNWvMqzXeKCAgwNx0cuXKFUnXG0W6dOlijnn44YcVHBxs/vzMM8/o8OHDMhgMcnZ2NjdxFHWcgwcPLrBt3rx52r9/v3744Qe1bNlSfn5+ys7OVlRUlHJycvTCCy/okUcesewHCQAAAAAAAAAAAFRjNHwAAABJ158eO2TIEIWEhKh///7mlTxu9vTY2bNnq0mTJoqKiiqQb9q0aVq8eLEiIyO1bNkyTZo0yTy2du1affbZZ+a4G8XGxqpv377KyMig2QMAAADAX1poaKi6deum9957T3v27FFOTo6aN2+uoKAgTZ8+XTY2NqXKN3z4cHl5eWnevHnavXu34uLi5Orqqueee07BwcFycXEpct4vv/yiffv2Fdp+47bWrVsXGLtw4YIkyWQyad26dcXW5OHhUajho06dOtq5c6cWLFigzz77TJGRkbKxsVHXrl01ZcoUDR8+3NJDBgAAAAAAAAAAAKo1g8lkMlV2Eag8bm5ukqTk5ORKrgQAqp+aeA59/vnntWjRItWuXbvIp8du27ZN9vb25vhVq1Zp3LhxatasmRITEwvl27ZtmwYNGqTLly+rbdu2atOmjX777TfFxcVJkoKDg/X6668XmOPs7KyLFy+qXr16evTRR4utNSgoqNANRaVVE3+HAHA7cR6t/vgdAkDZcB6t/vgdAkDZcB4FAAAAAAAAgIrFCh8AAMCsvJ8e++CDD+rQoUOaN2+etm/frk2bNsnR0VEDBgzQ888/r759+xaac/HiRUlSWlqaVq9eXWzusWPHlrnhAwAAAAAAAAAAAAAAAAAAoKpihY+/OJ68BAC3jnNo9cfvEADKhvNo9cfvEADKhvNo9cfvEADKhvMoAAAAAAAAAFQsq8ouAAAAAAAAAAAAAAAAAAAAAAAAAAXR8AEAAAAAAAAAAAAAAAAAAAAAAFDF0PDx/2VmZmrOnDlq1aqV7O3t1aBBAz388MPasWPHLee8du2ali1bps6dO6tu3bqqW7euOnfurOXLl8tkMhUZv2fPHr3yyivq3r277rjjDtWuXVsNGjTQgw8+qM8++6zIeQAAAAAAAAAAAAAAAAAAAAAAoGapVdkFVAXnzp1Tjx49dOzYMbm6umrgwIH6448/9NVXX+mrr75SaGiopk6dWqqceXl5GjFihDZs2KA6derI399fkrR9+3ZNmjRJ27dv19q1a2Vl9X89N/Hx8erWrZskydnZWR07dlT9+vUVHx+v7du3m+esX79eNjY25fcDAAAAAAAAAAAAAAAAAAAAAAAAVQorfEiaOHGijh07Jn9/f504cULr1q3Trl279MUXX8jKykqBgYE6fPhwqXK+++672rBhg5o0aaKff/5Zmzdv1ubNm3XkyBE1btxYYWFhWrJkSYE5BoNBfn5++uqrr3Tu3Dl98803Wrt2rfbv36+dO3fKwcFBX3zxhUJCQsrz8AEAAAAAAAAAAAAAAAAAAAAAQBXzl2/4+OWXX7Rp0yZZW1tr5cqVqlOnjnlswIABGjt2rK5du6Y333zT4pzXrl3TW2+9JUl666235OnpaR7z9PQ0j7355pu6du2aeax58+aKiorSQw89JGtr6wI5e/XqpaCgIEnSxx9/XPoDBQAAAAAAAAAAAAAAAAAAAAAA1cZfvuEjIiJCktStWzc1a9as0Pjo0aMlSVu2bFFOTo5FOX/44QedPXtWtra2GjZsWKHxYcOGycbGRqdPn9a+ffssrrVDhw6SpKSkJIvnAAAAAAAAAAAAAAAAAAAAAACA6ucv3/ARFxcnSerYsWOR4/nbs7Ozdfz48VLlbNu2rezs7AqN29vbq23btgViLZG/f1dXV4vnAAAAAAAAAAAAAAAAAAAAAACA6ucv3/CRkJAgSXJ3dy9y3NHRUY6OjgViy5pTkpo2bVqqnJcuXdKiRYskqchVQwAAAAAAAAAAAAAAAAAAAAAAQM3xl2/4yMzMlCQ5ODgUG2M0GiVJGRkZlZYzICBACQkJaty4sebMmWPRnHxubm7Fvs6cOVOqXAAAAABQHYSFhal3796qX7++HBwc1L59e7399tvKycm5pXw//vijhg8fLhcXF9nZ2cnT01NTp07VuXPnioxPTEyUwWAo8RUUFFTs/vbt26fHHntMjRo1ko2NjZo0aaInn3xSv/zyyy3VDwAAAAAAAAAAAAAAgOqnVmUXUBZ///vftXnz5lLP++CDD9S9e/cKqKhizJ07V6tXr5adnZ3WrVunO+64o7JLAgAAAIAqKzAwUKGhoapVq5b8/PxkNBq1Y8cOzZo1S1u2bNHWrVtlb29vcb7w8HCNGjVKubm58vX1laenp2JjY7V48WKFhYUpOjpaLVq0KHKug4ODHnvssSLH7rvvviK3L1++XAEBAcrLy1ObNm3UvXt3HT9+XJ999pnCw8O1ceNGPfTQQxbXDwAAAAAAAAAAAAAAgOqpWjd8nD59WkePHi31vKysLPP7unXrSpKys7NvGu/o6GhR/vLMuWDBAr3yyiuytbVVRESEunXrZlENN0pOTi52zM3NrdT5AAAAAKCq2rhxo0JDQ2U0GrVr1y75+PhIklJSUuTn56fo6GgFBwdr/vz5FuU7ffq0xowZo9zcXC1btkwTJ06UJOXl5Wns2LH69NNPNXr0aO3bt08Gg6HQ/AYNGmjVqlUW13/48GFzs8eCBQs0ffp089hHH32k8ePHa+TIkTpx4oQaNGhgcV4AAAAAAAAAAAAAAABUP1aVXUBZfPrppzKZTKV+3fgkVA8PD0nSyZMni9xHRkaGMjIyCsTezM1ySlJSUtJNc7777ruaMWOGbGxstH79ep7gCgAAAAA3MW/ePElSUFCQudlDut54sWTJEknS4sWLlZ6eblG+hQsX6tKlS+rTp4+52UOSrK2ttXTpUjk5OSkmJkZbt24tl/rfe+895eXlqVevXgWaPSRp3LhxGjJkiNLT0xUaGlou+wMAAAAAAAAAAAAAAEDVVa0bPspD/g1AsbGxRY7nb3dwcNBdd91VqpxHjhzR5cuXC43/+eefOnLkSIHY//Xee+9p2rRp5maPhx9+2KJ9AwAAAMBf1alTpxQTEyNJGj16dKHx7t27q2nTprpy5YoiIyMtyhkREVFsPqPRqEGDBkmSNmzYcKtlF5Bff58+fYocz98eHh5eLvsDAAAAAAAAAAAAAABA1fWXb/gYPHiwJOn7778vckWONWvWSJIGDhyo2rVrW5Sza9euatSoka5cuaL169cXGl+/fr2uXr2qxo0bq3PnzoXG33//fU2ZMsXc7PHII4+U4ogAAAAA4K8pLi5OkuTs7CxPT88iYzp27FggtiSZmZk6ceJEgXmlzZedna2QkBA9++yzmjp1qhYuXKijR48Wu8+srCxJ0h133FHkeIMGDSRJR48eVXZ29k2PAQAAAAAAAAAAAAAAANXXX77ho23btnr00UeVl5enp59+Wn/++ad57KuvvtKqVatkZWWl2bNnF5r71FNPqXXr1lq8eHGB7VZWVpo1a5YkadasWUpISDCPJSQkKCgoSJI0e/ZsWVkV/BWsWLFCAQEBNHsAAAAAQCnlf/dyd3cvNqZp06YFYkuSmJhofl9czpvlS0lJ0ezZs7Vs2TItXrxY06dPV5s2bfS3v/3N3Nxxo4YNG0qS4uPji8yXv91kMhWoDwAAAAAAAAAAAAAAADVPrcouoCpYvny5fvnlF23fvl3NmzdXjx49dO7cOe3atUsmk0mhoaG65557Cs07efKkjh49qpSUlEJjU6dO1XfffaeIiAh5e3urT58+kqTt27fr0qVLeuyxxxQQEFBgzsGDBzVp0iSZTCZ5eXkpPDxc4eHhRda8atWqsh84AAAAANQgmZmZkiQHB4diY4xGoyQpIyPD4nwl5Swun62trSZMmKDHHntMd999t+644w4lJCRow4YNCgkJ0aeffqpz587p66+/lsFgMM/z8/PT999/r88++0yvvfaa6tSpYx7LycnRhx9+aP5syTFIkpubW7FjZ86ckaurq0V5AAAAAAAAAAAAAAAAcHvR8KHrT1CNjY3Vm2++qfXr12vTpk1ycHBQv3799OKLL8rf37/UOa2trRUeHq4VK1bogw8+UFRUlKTrK4o8/fTTmjhxYoGbeiQpLS1NJpNJkvTrr7/q119/LTY/DR8AAAAAUHW5urpq+fLlBbbdfffduvvuu9W3b1/df//92rp1qzZt2qTBgwebY5577jktXbpUZ86cUb9+/bRgwQLdfffdOnHihP7+978XWNXjf1eMBAAAAAAAAAAAAAAAQM1Cw8f/5+joqDfffFNvvvmmxXN27txZ4riVlZUmTZqkSZMmWZSvd+/e5oYPAAAAAEDp1K1bV5KUnZ1dbExWVpak698BLc2Xn9PJyalM+fJ16tRJAwcO1MaNG7Vly5YCDR8uLi768ssvNXToUEVHR6tTp07mMXt7ey1dulTPPPOMJMnZ2dmi/SUnJxc7VtLqHwAAAAAAAAAAAAAAAKhcNHwAAAAAAGoEDw8PSVJSUlKxMflj+bEladasmfn9yZMn1a5duzLlu1GbNm20cePGIpsxOnXqpOPHjysiIkIxMTH6888/1bx5c40cOVJ//vmnJMnBwUFeXl6l2icAAAAAAAAAAAAAAACqFxo+AAAAAAA1QocOHSRJqampSkhIkKenZ6GY2NhYSZKPj89N8zk6OqpFixY6ceKEYmNji2z4KE2+G6WmpkoquIrIjezt7TV69GiNHj26wPaVK1dKkh544AFZW1uXap8AAAAAAAAAAAAAAACoXqwquwAAAAAAAMqDm5ubfH19JUlr1qwpNB4dHa2kpCTZ2tpqwIABFuUcMmRIsfmysrK0ZcsWSdLQoUMtrjM7O9s8r1OnThbPy83NVWhoqCRpypQpFs8DAAAAAAAAAAAAAABA9UTDBwAAAACgxpgzZ44kKSQkRAcOHDBvT01NVUBAgKTrzRJOTk7msYiICLVu3Vr+/v6F8gUGBqpOnTravn27VqxYYd6el5engIAApaWlydfXV3379i0wb/ny5UpKSiqULyEhQY8++qjOnDmjevXqafz48YViYmNjlZubW2DbhQsXNGrUKP30008aNWqU+vXrZ8mPAwAAAAAAAAAAAAAAANVYrcouAAAAAACA8jJ48GBNmzZNixYtUpcuXeTv7y8HBwdFRUUpLS1N3bp109y5cwvMSU9P19GjR3X58uVC+Ro3bqxVq1Zp1KhRmjhxolauXCkPDw/FxMQoPj5eLi4uWrNmjQwGQ4F5S5Ys0bPPPqu2bdvqrrvuko2NjRISEnTw4EFduXJFd9xxhzZs2KAGDRoU2uczzzyjU6dO6Z577pGLi4tSUlK0Z88eZWdn65FHHtGHH35Yvj80AAAAAAAAAAAAAAAAVEms8AEAAAAAqFFCQ0P1+eefq2vXrtqzZ48iIyPl5uamkJAQ7dixQ/b29qXKN3z4cO3bt09Dhw5VfHy8IiIilJeXp+eee06HDh1SixYtCs2ZNm2ahg8frtzcXO3cuVPh4eE6evSo7rnnHv3jH//QL7/8op49exa5v2eeeUbe3t76+eefFR4erri4OHXv3l1r167Vli1bZGdnd0s/FwAAAAAAAAAAAAAAAFQvBpPJZKrsIlB53NzcJEnJycmVXAkAVD+cQ6s/focAUDacR6s/focAUDacR6s/focAUDacRwEAAAAAAACgYrHCBwAAAAAAAAAAAAAAAAAAAAAAQBVDwwcAAAAAAAAAAAAAAAAAAAAAAEAVQ8MHAAAAAAAAAAAAAAAAAAAAAABAFUPDBwAAAAAAAAAAAAAAAAAAAAAAQBVDwwcAAAAAAAAAAAAAAAAAAAAAAEAVQ8MHAAAAAAAAAAAAAAAAAAAAAABAFUPDBwAAAAAAAAAAAAAAAAAAAAAAQBVDwwcAAAAAAAAAAAAAAAAAAAAAAEAVQ8MHAAAAAAAAAAAAAAAAAAAAAABAFUPDBwAAKCAsLEy9e/dW/fr15eDgoPbt2+vtt99WTk7OLefctGmTBg0apEaNGsnGxkYNGzbU/fffr9dff71QbHZ2ttasWaMZM2aod+/ecnR0lMFgUIsWLcpyWAAAAABQLZX3d7Qff/xRw4cPl4uLi+zs7OTp6ampU6fq3LlzRcbn5eUpPDxcs2fPVt++fXXHHXfIYDCoVq1aN91XZGSkXn31VQ0cOFCNGzeWwWCQwWBQcnLyTefu2bNHjz/+uJo2bSobGxs5ODioXbt2mjVrVrG1AgAAAAAAAAAAADWNwWQymSq7CFQeNzc3SbLoj6wAgIJq4jk0MDBQoaGhqlWrlvz8/GQ0GrVjxw6lpaWpe/fu2rp1q+zt7S3Od/XqVT355JMKCwuTvb29unbtKhcXF509e1ZHjhxRXl6eUlJSCsw5ePCgOnToUChX8+bNdeLEiTIf441q4u8QAG4nzqPVH79DACibij6Plvd3tPDwcI0aNUq5ubny9fWVp6enYmNjFR8fLxcXF0VHRxdqtk9LS1P9+vUL5bK2tlZubm6J+6tXr57S09MLbU9KSjL/7IqyZMkSTZkyRSaTSd7e3mrTpo2ysrK0d+9eXbx4UQ0bNtSuXbvUunVrC4+8eFwLAaBsOI8CAAAAAAAAQMW6+WPYAADAX8LGjRsVGhoqo9GoXbt2ycfHR5KUkpIiPz8/RUdHKzg4WPPnz7c454QJExQWFqbBgwdrxYoVatCggXns2rVr2r9/f6E5devW1bhx4+Tj46MOHTooLS1NjzzySNkPEAAAAACqkfL+jnb69GmNGTNGubm5WrZsmSZOnCjp+goeY8eO1aeffqrRo0dr3759MhgM5nm1a9fWE088oQ4dOsjHx0fOzs669957Ldrn0KFD1bJlS/n4+MjHx0cNGza86Zw//vhD06dPl8lk0qpVqzRmzBjzWGZmph577DFt3bpVgYGB+vrrry2qAwAAAAAAAAAAAKiuWOHjL44nLwHAratp59BOnTopJiZGb7zxhl566aUCY9HR0erRo4dsbW31xx9/yMnJ6ab5oqKi1KdPH3l7e+vAgQOqXbv2LdW1c+dOPfDAA6zwAQBVEOfR6o/fIQCUTUWeR8v7O9rf//53vfPOO+rTp4+2bdtWYCwrK0tubm5KT0/X119/rX79+hWbJzExUZ6enhat8PG/8htJSlrhY/369Xrsscd0991368iRI4XG9+zZo27dusnR0bHI1UNKi2shAJQN51EAAAAAAAAAqFhWlV0AAACofKdOnVJMTIwkafTo0YXGu3fvrqZNm+rKlSuKjIy0KOe7774rSQoMDLzlZg8AAAAA+CuqiO9oERERxeYzGo0aNGiQJGnDhg23Wna5sLOzsyjuxhUkAQAAAAAAAAAAgJqKhg8AAKC4uDhJkrOzszw9PYuM6dixY4HYkuTl5SkqKkqS1LNnT509e1YLFy7U5MmTFRgYqNWrVysrK6ucqgcAAACAmqW8v6NlZmaaV0zMn1eWfBWpa9eucnJy0i+//KLVq1cXGMvKytJrr70mSZo0aVJllAcAAAAAAAAAAADcVrUquwAAAFD5EhISJEnu7u7FxjRt2rRAbEni4+PNDR179+5VQEBAoQaPmTNnau3atfLz87vVsgEAAACgRirv72iJiYnm98XlLE2+iuTs7KzVq1friSee0NixYzV//ny1adNG2dnZ+uGHHyRJ//znPzVz5sxKrRMAAAAAAAAAAAC4HWj4AAAAyszMlCQ5ODgUG2M0GiVJGRkZN82Xmppqfv/000/r/vvv1/z589W6dWv99ttvmjNnjiIjI/Xoo4/qwIEDatmyZRmPoHhubm7Fjp05c0aurq4Vtm8AAAAAuBXl/R0tP19JOUuTr6I9+uij2rVrlx5//HH9/PPP+vnnn81jffv2Vbdu3WQwGCzOx/dCAAAAAAAAAAAAVFdWlV0AAACoeUwmk/l9kyZN9M0336hjx44yGo1q3769Nm/eLG9vb2VlZSkkJKQSKwUAAAAAVDVLly5V165ddccdd2jnzp1KT09XUlKS3nvvPe3du1d+fn5atWpVZZcJAAAAAAAAAAAAVDhW+AAAAKpbt64kKTs7u9iYrKwsSZKjo6PF+SRp7NixsrW1LTBubW2tSZMmaerUqdq+ffutlGyx5OTkYsdKesorAAAAAFSWivyOlp2dLScnpzLlq0jff/+9AgIC5Orqqq1bt5prdXR0VEBAgJydnTVq1CgFBgZq8ODBqlev3k1z8r0QAAAAAAAAAAAA1RUrfAAAAHl4eEiSkpKSio3JH8uPvVk+g8EgSfLy8ioyJn/7mTNnSlEpAAAAANR85f0drVmzZub3J0+eLHO+ipS/cseAAQOKbEx57LHHZGNjo/T0dMXExNzm6gAAAAAAAAAAAIDbi4YPAACgDh06SJJSU1OVkJBQZExsbOz/Y+/Ow6qs8/+Pvw4gi2wuJIq44G6ijgsuqWXiFuYubjXKZKnhEk0zic7YZmPW+JsJd3SctNJxx6VoNLQsNA3X0hpcwBG3SEwFNBW4f3/45QzHc8CDGwd8Pq6L6zrcn/vzvj9vbu/zvvDwvm9JUsuWLW8bz8vLSw0bNpQknT9/3uY++du9vLyKvV4AAAAAKMvu9e9oPj4+qlevnsW8u4l3P+U3pBT2pBEXFxd5enpKki5cuPDA1gUAAAAAAAAAAACUBBo+AACAAgMDFRISIklavny51XhiYqLS0tLk5uamsLAwu2KGh4dLkhISEmyOf/7555KkNm3a3MmSAQAAAKDMuh+/o/Xv37/QeFlZWdq0aZMkacCAAXe67HuievXqkqTdu3fbHE9OTtYvv/wiSQoKCnpg6wIAAAAAAAAAAABKAg0fAABAkjRlyhRJ0owZM7Rv3z7z9oyMDEVGRkqSxo8fL19fX/NYXFycGjVqpNDQUKt4EydOVMWKFRUfH6/Y2FiLsRUrVmjZsmXm/QAAAAAAlu7172hRUVEqX768EhIStGjRIvP23NxcRUZG6uLFiwoJCVH37t3vV0p2GTRokCRp586d+utf/yrDMMxj6enpGjVqlCSpQYMGat26dYmsEQAAAAAAAAAAAHhQXEp6AQAAwDH069dPEydO1KxZs9SuXTuFhobK09NTW7du1cWLF9WhQwdNmzbNYs6lS5eUnJysX3/91Sqen5+fVq5cqT59+mjs2LGaPXu2GjdurOPHj2v//v2SpKlTp9q8G23//v119uxZSdLly5clSadOnVK7du3M+zz//PN6/vnn71n+AAAAAOBI7vXvaAEBAVqyZImGDRum0aNHa/Hixapdu7aSkpKUkpIif39/LV++XCaTyWpuZGSkuenk2rVrkm42ihT8Ha1Xr16aOnWqxbxp06bp008/tYrXp08fubq6SpJatmypefPmmcfCwsI0ZswYxcbG6tVXX9XChQvVrFkzZWZmavfu3bp8+bIqVKigjz76SE5O3M8IAAAAAAAAAAAAZRsNHwAAwCwmJkYdOnTQ3LlztXPnTt24cUN169ZVdHS0Xn75ZfMf5NirW7duOnjwoKZPn66EhARt2LBBPj4+CgsL00svvVTonWP379+v//73vxbbrl27pt27d5u/79mzZ/ETBAAAAIBS5F7/jhYeHq46depo+vTp+vrrr7V//35Vq1ZN48aN09SpU+Xv729z3g8//GDx+1i+gtsaNWpkNX78+HGb8/JvAiBJ7u7uVuMLFizQU089pcWLF2vPnj3atGmTXFxcFBQUpB49euj3v/+9AgMD7coZAAAAAAAAAAAAKM1MhmEYJb0IlJz8D0ZPnTpVwisBgNKH99DSj3MIAHeH99HSj3MIAHeH99HSj3MIAHeH91EAAAAAAAAAuL945j0AAAAAAAAAAAAAAAAAAAAAAICDoeEDAAAAAAAAAAAAAAAAAAAAAADAwdDwAQAAAAAAAAAAAAAAAAAAAAAA4GBo+AAAAAAAAAAAAAAAAAAAAAAAAHAwNHwAAAAAAAAAAAAAAAAAAAAAAAA4GBo+AAAAAAAAAAAAAAAAAAAAAAAAHAwNHwAAAAAAAAAAAAAAAAAAAAAAAA6Ghg8AAAAAAAAAAAAAAAAAAAAAAAAHQ8MHAAAAAAAAAAAAAAAAAAAAAACAg6HhAwAAAAAAAAAAAAAAAAAAAAAAwMHQ8AEAAAAAAAAAAAAAAAAAAAAAAOBgaPgAAAAAAJQ5q1evVufOnVWxYkV5enqqefPmeu+993Tjxo07ird3716Fh4fL399f7u7uCgoK0oQJE5Senm5z/xMnTshkMhX5FR0dXejxdu7cqSFDhqhGjRpydXWVp6enmjZtqkmTJhV6TAAAAAAAAAAAAAAAAJQtLiW9AAAAAAAA7qWoqCjFxMTIxcVFXbp0kZeXl7Zt26ZJkyZp06ZN2rJlizw8POyOt2bNGg0bNkw5OTkKCQlRUFCQ9uzZozlz5mj16tVKTExUvXr1bM719PTUoEGDbI61atXK5vZ58+Zp/PjxMgxDwcHBat++vbKysrRr1y699957WrJkibZv365GjRrZnQMAAAAAAAAAAAAAAABKHxo+AAAAAABlxvr16xUTEyMvLy9t375dLVu2lCSdP39eXbp0UWJioqZOnaqZM2faFe/MmTMaOXKkcnJyFBsbq9GjR0uScnNzFRERoY8//ljDhw/X7t27ZTKZrOb7+flpyZIldq//p59+0ssvvyzDMLRkyRKNHDnSPJaZmalBgwZpy5YtioqK0r///W+74wIAAAAAAAAAAAAAAKD0cSrpBQAAAAAAcK9Mnz5dkhQdHW1u9pBuNl7MmzdPkjRnzhxdunTJrnjvv/++rly5oq5du5qbPSTJ2dlZ8+fPl6+vr5KSkrRly5Z7sv7ExERdv35djz76qEWzhyR5e3vr9ddflyR988039+R4AAAAAAAAAAAAAAAAcFw0fAAAAAAAyoTTp08rKSlJkjR8+HCr8Y4dO6pGjRq6du2a4uPj7YoZFxdXaDwvLy/16dNHkrRu3bo7XbYFd3d3u/bz8/O7J8cDAAAAAAAAAAAAAACA46Lh4/9kZmZqypQpatiwoTw8POTn56devXpp27ZtdxwzLy9PsbGxatu2rby9veXt7a22bdtq4cKFMgzD7jjz5s2TyWSSyWTS888/f8frAQAAAICybP/+/ZKkSpUqKSgoyOY+rVu3tti3KJmZmTp27JjFvOLGy87O1owZMzR27FhNmDBB77//vpKTkws9Zvv27eXr66sffvhBS5cutRjLysrSm2++KUkaM2bMbdcPAAAAAAAAAAAAAACA0s2lpBfgCNLT09WpUycdOXJE1apVU+/evfXTTz/ps88+02effaaYmBhNmDChWDFzc3M1ePBgrVu3TuXLl1doaKgkKSEhQWPGjFFCQoJWrFghJ6eie25SUlL06quvymQyFatJBAAAAAAeNqmpqZKkmjVrFrpPjRo1LPYtyokTJ8yvC4t5u3jnz5/X5MmTLbb9/ve/1zPPPKP58+fLy8vLYqxSpUpaunSpnnnmGUVERGjmzJlq3LixsrOz9c0330iS/vKXv+iPf/zjbdcPAAAAAAAAAAAAAACA0o0nfEgaPXq0jhw5otDQUB07dkyrVq3S9u3b9cknn8jJyUlRUVH67rvvihVz9uzZWrdunapXr65Dhw5p48aN2rhxow4fPqyAgACtXr1a8+bNKzJGXl6eIiIiZDKZNGLEiLtJEQAAAADKvMzMTEmSp6dnofvkN1hcvnzZ7nhFxSwsnpubm1544QVt3rxZaWlpunLlig4fPqxp06apfPny+vjjjzVw4ECbjf19+/bV9u3bVbduXR06dEirV69WfHy8fvnlF4WEhKhDhw4ymUy3XX++wMDAQr/Onj1rdxwAAAAAAAAAAAAAAAA8WA99w8cPP/ygDRs2yNnZWYsXL1b58uXNY2FhYYqIiFBeXp7eeecdu2Pm5eXp3XfflSS9++67CgoKMo8FBQWZx9555x3l5eUVGicmJkZff/213n33XdWuXbuYmQEAAAAASkq1atW0cOFCde/eXYGBgfLw8NCjjz6qP//5z9q2bZucnZ21ZcsWbdiwwWru/Pnz1b59e1WuXFlffvmlLl26pLS0NM2dO1e7du1Sly5dtGTJkgefFAAAAAAAAAAAAAAAAB6oh77hIy4uTpLUoUMH1apVy2p8+PDhkqRNmzbpxo0bdsX85ptvdO7cObm5uWngwIFW4wMHDpSrq6vOnDmj3bt324yRnJysP/3pT3riiSf04osv2psOAAAAADy0vL29JUnZ2dmF7pOVlSVJ8vHxsTteUTGLEy9fmzZt1Lt3b0k3f9csaMeOHYqMjJSfn5+2bNmiJ554Qj4+PgoMDFRkZKRiY2OVl5enqKgoXbx40a7jnTp1qtCvatWq2b1uAAAAAAAAAAAAAAAAPFgPfcPH/v37JUmtW7e2OZ6/PTs7W0ePHi1WzCZNmsjd3d1q3MPDQ02aNLHYt6Dc3FyNHDlSJpNJixcvlslksuu4AAAAAPAwy38yYlpaWqH75I/Z8xTFgjcFOHny5F3HK6hx48aSbjZjFJT/5I6wsDD5+vpazRs0aJBcXV116dIlJSUlFeuYAAAAAAAAAAAAAAAAKF0e+oaP1NRUSVLNmjVtjvv4+Jjv1Jq/793GlKQaNWoUGvOvf/2rdu/erb/85S+qW7euXccEAAAAgIddixYtJEkZGRmF/v62Z88eSVLLli1vG8/Hx0f16tWzmHc38QrKyMiQZPkUEel/jSWFPTHExcVFnp6ekqQLFy4U65gAAAAAAAAAAAAAAAAoXR76ho/MzExJMv/BjC1eXl6SpMuXL9/3mIcOHdLrr7+uxx57TBMnTrTreLcTGBhY6NfZs2fvyTEAAAAAoKQFBgYqJCREkrR8+XKr8cTERKWlpcnNzU1hYWF2xezfv3+h8bKysrRp0yZJ0oABA+xeZ3Z2tnlemzZtLMaqV68uSdq9e7fNucnJyfrll18kSUFBQXYfEwAAAAAAAAAAAAAAAKVPqW74ePXVV9WoUaNifyUmJpb00m3KycnRyJEj5eTkpH/+859ycirVpwcAAAAAHrgpU6ZIkmbMmKF9+/aZt2dkZCgyMlKSNH78ePn6+prH4uLi1KhRI4WGhlrFi4qKUvny5ZWQkKBFixaZt+fm5ioyMlIXL15USEiIunfvbjFv4cKFSktLs4qXmpqqvn376uzZs6pQoYKee+45i/FBgwZJknbu3Km//vWvMgzDPJaenq5Ro0ZJkho0aKDWrVvb90MBAAAAAAAAAAAAAABAqeRS0gu4G2fOnFFycnKx52VlZZlfe3t7S7p5h9Xb7e/j42NX/DuN+Ze//EX79u3Tu+++q4YNG9p1LHucOnWq0LHAwMB7dhwAAAAAKGn9+vXTxIkTNWvWLLVr106hoaHy9PTU1q1bdfHiRXXo0EHTpk2zmHPp0iUlJyfr119/tYoXEBCgJUuWaNiwYRo9erQWL16s2rVrKykpSSkpKfL399fy5ctlMpks5s2bN09jx45VkyZN1KBBA7m6uio1NVUHDhzQtWvXVLlyZa1bt05+fn4W88LCwjRmzBjFxsbq1Vdf1cKFC9WsWTNlZmZq9+7dunz5sipUqKCPPvqImwQAAAAAAAAAAAAAAACUcaW64ePjjz/Wxx9/fFcxateurX379unkyZM2xy9fvqzLly+b97U3pqRCY0oy3+m1YMy4uDhJ0qZNmxQfH2+x/4kTJyRJn376qTp37ixJ+vLLL+1aDwAAAAA8TGJiYtShQwfNnTtXO3fu1I0bN1S3bl1FR0fr5Zdflqura7HihYeHq06dOpo+fbq+/vpr7d+/X9WqVdO4ceM0depU+fv7W82ZOHGiNm/erO+++05ffvmlLl++LC8vLzVr1kxhYWGKjIxUlSpVbB5vwYIFeuqpp7R48WLt2bNHmzZtkouLi4KCgtSjRw/9/ve/p3kfAAAAAAAAAAAAAADgIWAyDMMo6UWUpL/85S/685//rMcff1zbt2+3Gt+2bZv5jrC//PKLypUrd9uYO3bsUMeOHeXm5qaLFy/K3d3dYvzq1auqUKGCrl+/rp07d6p9+/aSpN/85jc6ePCg3Wu/F6cu/4+EinoKCADANt5DSz/OIQDcHd5HSz/OIQDcHd5HSz/OIQDcHd5HAQAAAAAAAOD+cirpBZS0fv36SbrZpGHriRzLly+XJPXu3duuZg9Jat++vapWrapr165p7dq1VuNr167V9evXFRAQoLZt25q3HzhwQIZh2Px6/fXXJUmjRo0ybwMAAAAAAAAAAAAAAAAAAAAAAGXTQ9/w0aRJE/Xt21e5ubkaNWqUrl69ah777LPPtGTJEjk5OWny5MlWc0eMGKFGjRppzpw5FtudnJw0adIkSdKkSZOUmppqHktNTVV0dLQkafLkyXJyeuhPAQAAAAAAAAAAAAAAAAAAAAAAuIVLSS/AESxcuFA//PCDEhISVLduXXXq1Enp6enavn27DMNQTEyMmjVrZjXv5MmTSk5O1vnz563GJkyYoK+++kpxcXEKDg5W165dJUkJCQm6cuWKBg0apMjIyPueGwAAAAAAAAAAAAAAAAAAAAAAKH14vISkKlWqaM+ePYqOjpaXl5c2bNig7777Tj169FBCQoImTpxY7JjOzs5as2aNFixYoEcffVRbt27V1q1b1aRJEy1YsECrVq3i6R4AAAAAAAAAAAAAAAAAAAAAAMAmk2EYRkkvAiUnMDBQknTq1KkSXgkAlD68h5Z+nEMAuDu8j5Z+nEMAuDu8j5Z+nEMAuDu8jwIAAAAAAADA/cUjJgAAAAAAAAAAAAAAAAAAAAAAABwMDR8AAAAAAAAAAAAAAAAAAAAAAAAOhoYPAAAAAAAAAAAAAAAAAAAAAAAAB0PDBwAAsLB69Wp17txZFStWlKenp5o3b6733ntPN27cuOOYGzZsUJ8+fVS1alW5urqqSpUqeuyxx/TWW28VOufYsWOKiIhQYGCg3NzcFBgYqIiICKWkpNzxOgAAAAAAAAAAAAAAAAAAAEoLGj4AAIBZVFSUBg8erB07dqhNmzbq2bOnTp48qUmTJqlLly66evVqseJdv35dgwcPVr9+/ZSQkKAmTZpo0KBBCg4O1vHjxzVr1iyb83bs2KHmzZtr6dKlqlChgvr3768KFSpo6dKlatasmXbt2nUv0gUAAAAAAAAAAAAAAAAAAHBYNHwAAABJ0vr16xUTEyMvLy/t3r1bmzdv1tq1a3X06FE1bdpUiYmJmjp1arFivvDCC1q9erX69eunkydPauvWrVq+fLm2bdums2fP6pNPPrGac+XKFQ0ePFhXrlzR5MmTdejQIa1YsUKHDh3S5MmTlZ2drcGDBxe7+QQAAAAASqN7/RTGvXv3Kjw8XP7+/nJ3d1dQUJAmTJig9PR0m/vn5uZqzZo1mjx5srp3767KlSvLZDLJxcXltseKj4/XG2+8od69eysgIEAmk0kmk0mnTp2ya63p6emKjo5WcHCwvLy85Onpqbp162rYsGHau3dvsfIGAAAAAAAAAAAASiOTYRhGSS8CJScwMFCS7P6QFQDwP2XtPbRNmzZKSkrS22+/rT/96U8WY4mJierUqZPc3Nz0008/ydfX97bxtm7dqq5duyo4OFj79u1TuXLl7FrHvHnzNG7cODVo0EA//vijnJz+15+al5enxo0b68iRI1qwYIHGjBlTvCRvUdbOIQA8aLyPln6cQwC4O/f7fTQqKkoxMTFycXFRly5d5OXlpW3btunixYvq2LGjtmzZIg8PD7vjrVmzRsOGDVNOTo5CQkIUFBSkPXv2KCUlRf7+/kpMTFS9evUs5ly8eFEVK1a0iuXs7KycnJwij1ehQgVdunTJantaWpr5Z1eYL774QgMGDNDFixdVr149NW/eXHl5eTpx4oQOHjyomJgYjR8/3o6si0YtBIC7w/soAAAAAAAAANxfPOEDAADo9OnTSkpKkiQNHz7carxjx46qUaOGrl27pvj4eLtizp49W9LNP1Cyt9lDkuLi4iRJQ4cOtWj2kCQnJycNGTJEkrRu3Tq7YwIAAABAaXOvn8J45swZjRw5Ujk5OYqNjdW3336rlStX6siRI3r22Wf1008/afjw4br1/kDlypXTM888o5kzZ2rbtm06cOCA3cccMGCApk+frn//+9+FPkHElh9++EG9evVSTk6O1q1bp6NHj2rNmjVat26d9u3bp9OnTyssLMzueAAAAAAAAAAAAEBp5VLSCwAAACVv//79kqRKlSopKCjI5j6tW7dWWlqa9u/fr2HDhhUZLzc3V1u3bpUkPf744zp37pxWrFih5ORkubm5qUWLFho4cKC8vLwKXUvr1q0LXUfB/QAAAACgLJo+fbokKTo6Wi1btjRv9/Pz07x589SpUyfNmTNHU6dOtespjO+//76uXLmirl27avTo0ebtzs7Omj9/vjZt2qSkpCRt2bJFPXr0MI97enrq448/Nn9/4sQJu3P45z//afe+BY0dO1ZXr17V8uXL1b9/f6vxqlWr3lFcAAAAAAAAAAAAoLThCR8AAECpqamSpJo1axa6T40aNSz2LUpKSoqysrIkSbt27VL9+vX18ssva8GCBYqJiVFERITq1Kmjbdu2WczLzMxURkZGkWvJX8fPP/+s7Ozs264FAAAAAEqb+/EUxvynKdqK5+XlpT59+kgq+acpHjhwQF9//bVq1KihoUOHluhaAAAAAAAAAAAAgJJGwwcAAFBmZqakm3duLUz+0zguX75823j5TRuSNGrUKLVq1UpJSUnKzMzUgQMHFBYWpp9//ll9+/bV0aNHrdZR1FoKPhXEnrUEBgYW+nX27NnbzgcAAACAB83epzAW3LcomZmZOnbsmMW8u4l3P23evFmS1KlTJ5lMJm3evFmvvvqqxowZo2nTpmnv3r0luj4AAAAAAAAAAADgQXIp6QUAAICyxzAM8+vq1atr8+bNcnNzkyQ1b95cGzdu1G9+8xsdOnRIM2bM0OLFi0tqqQAAAADgcO71UxhPnDhhfn27pynaE+9++u677yRJFSpUULdu3ZSQkGAx/tprr+mZZ57R4sWLzb9nAgAAAAAAAAAAAGUVDR8AAEDe3t6SpOzs7EL3ycrKkiT5+PjYHU+SIiIirP4Ix9nZWWPGjNGECRMs/nin4LzC1pK/DnvXcurUqULHAgMDbzsfAAAAAB60e/0UxuI8TdGeePdT/hMjFy1apHLlymn27NkaMGCAypUrp08++URRUVFatmyZPD09FRsba1fMon73O3v2rKpVq3ZP1g4AAAAAAAAAAADca04lvQAAAFDyateuLUlKS0srdJ/8sfx9bxfPZDJJkurUqWNzn/ztZ8+eNW/z9vZWpUqVJEknT54sch1+fn5F/vETAAAAAKD0yX9i5I0bN/T3v/9d48ePV0BAgB555BH97ne/06JFiyRJ//jHPyyeXAIAAAAAAAAAAACURTR8AAAAtWjRQtLNO6mmpqba3GfPnj2SpJYtW942npeXlxo2bChJOn/+vM198rfn30U2X378/OPdzToAAAAAoDS6n09hvN3TFO2Jdz/lr7VcuXJ67rnnrMYHDx4sPz8/5eXl6YsvvrAr5qlTpwr94ukeAAAAAAAAAAAAcGQ0fAAAAAUGBiokJESStHz5cqvxxMREpaWlyc3NTWFhYXbFDA8PlyQlJCTYHP/8888lSW3atLHY3r9/f0nSihUrlJeXZzGWl5enlStXSpIGDBhg1zoAAAAAoLS5109hrFWrlvn17Z6maE+8+yn/aZA1atSQi4uLzX2CgoIkWT4xEgAAAAAAAAAAACiLaPgAAACSpClTpkiSZsyYoX379pm3Z2RkKDIyUpI0fvx4+fr6msfi4uLUqFEjhYaGWsWbOHGiKlasqPj4eMXGxlqMrVixQsuWLTPvV1BERIQCAgJ05MgRTZ061WJs6tSpOnLkiAIDAzVixIi7yBYAAAAAHNe9fgqjj4+P6tWrZzHvbuLdT61atZJ0M/fCFPbESAAAAAAAAAAAAKCsoeEDAABIkvr166eJEycqKytL7dq101NPPaVBgwapXr16+v7779WhQwdNmzbNYs6lS5eUnJys48ePW8Xz8/PTypUr5e7urrFjxyo4OFjh4eFq2bKlhg0bJsMwNHXqVKsnhpQvX16rVq1S+fLlNX36dDVt2lTDhg1T06ZNNX36dHl6emr16tXy8PC4rz8PAAAAACgp9+MpjPlPU7QVLysrS5s2bZJU8k9TDAsLU/ny5XXp0iUlJSVZjR85ckT//e9/JVk/MRIAAAAAAAAAAAAoa2j4AAAAZjExMVq5cqXat2+vnTt3Kj4+XoGBgZoxY4a2bdtW7CaLbt266eDBgxo5cqQuXryoDRs26OTJkwoLC9PmzZv11ltv2ZzXoUMHHTx4UCNGjNCFCxe0du1aXbhwQSNGjNDBgwfVrl27e5EuAAAAADise/0UxqioKJUvX14JCQlatGiReXtubq4iIyN18eJFhYSEqHv37vcrJbt4e3vrlVdekSS9+OKLOnPmjHksIyNDzz//vPLy8tSmTRt+NwQAAAAAAAAAAECZZzIMwyjpRaDkBAYGSpJOnTpVwisBgNKH99DSj3MIAHeH99HSj3MIAHfnfr+PvvTSS5o1a5bKlSun0NBQeXp6auvWrbp48aI6dOigzz//3KIxf8mSJfrd736nWrVq6cSJE1bxVq9erWHDhik3N1dt27ZV7dq1lZSUpJSUFPn7+ysxMVH16tWzmhcZGWluOrl27ZoOHDggSWrbtq15n169emnq1KkW86ZNm6ZPP/3U/P3u3bslSS1atJCrq6skqWXLlpo3b57FvOvXr6tfv3767LPP5OPjo3bt2snFxUW7du3ShQsXVKtWLX3xxRcKCgoqxk/TNmohANwd3kcBAAAAAAAA4P5yKekFAAAAAAAAAACsxcTEqEOHDpo7d6527typGzduqG7duoqOjtbLL79sbpqwV3h4uOrUqaPp06fr66+/1v79+1WtWjWNGzdOU6dOlb+/v815P/zwg7lZo6CC2xo1amQ1fvz4cZvz9u/fb37t7u5uNe7q6qpPPvlEsbGxWrJkiXbu3KmcnBwFBQVp7NixeuWVV1SpUiW7cgYAAAAAAAAAAABKM57w8ZDjzksAcOd4Dy39OIcAcHd4Hy39OIcAcHd4Hy39OIcAcHd4HwUAAAAAAACA+8uppBcAAAAAAAAAAAAAAAAAAAAAAAAASzR8AAAAAAAAAAAAAAAAAAAAAAAAOBgaPgAAAAAAAAAAAAAAAAAAAAAAABwMDR8AAAAAAAAAAAAAAAAAAAAAAAAOhoYPAAAAAAAAAAAAAAAAAAAAAAAAB0PDBwAAAAAAAAAAAAAAAAAAAAAAgIOh4QMAAAAAAAAAAAAAAAAAAAAAAMDB0PABAAAAAAAAAAAAAAAAAAAAAADgYGj4AAAAAAAAAAAAAAAAAAAAAAAAcDA0fAAAAAAAAAAAAAAAAAAAAAAAADgYGj4AAAAAAAAAAAAAAAAAAAAAAAAcDA0fAAAAAAAAAAAAAAAAAAAAAAAADoaGDwAAAAAAAAAAAAAAAAAAAAAAAAdDwwcAAAAAAAAAAAAAAAAAAAAAAICDoeEDAAAAAAAAAAAAAAAAAAAAAADAwdDwAQAAAAAAAAAAAAAAAAAAAAAA4GBo+AAAAAAAAAAAAAAAAAAAAAAAAHAwJsMwjJJeBEqOq6urcnNzVa1atZJeCgCUOmfPnpWzs7OuX79e0kvBHaIOAsDdoRaWftRCALg71MLSj1oIAHeHWggAAAAAAAAA95dLSS8AJatcuXLm12fPnpWkMvHhJrk4JnJxTORy55ydnS3eR1H63Hr+uB4cE7k4JnJxTNRCFBe1sHQgF8dELo6JWojiohaWDuTimMjF8ZREHtRCAAAAAAAAALi/eMIHzAIDAyVJp06dKuGV3D1ycUzk4pjIBfifsvRviFwcE7k4JnIB/qcs/RsiF8dELo6JXID/KUv/hsjFMZGLYyoruZSVPAAAAAAAAAAA/+NU0gsAAAAAAAAAAAAAAAAAAAAAAACAJRo+AAAAAAAAAAAAAAAAAAAAAAAAHAwNHwAAAAAAAAAAAAAAAAAAAAAAAA6Ghg8AAAAAAAAAAAAAAAAAAAAAAAAHQ8MHAAAAAAAAAAAAAAAAAAAAAACAg6HhAwAAAAAAAAAAAAAAAAAAAAAAwMGYDMMwSnoRAAAAAAAAAAAAAAAAAAAAAAAA+B+e8AEAAAAAAAAAAAAAAAAAAAAAAOBgaPgAAAAAAAAAAAAAAAAAAAAAAABwMDR8AAAAAAAAAAAAAAAAAAAAAAAAOBgaPgAAAAAAAAAAAAAAAAAAAAAAABwMDR8AAAAAAAAAAAAAAAAAAAAAAAAOhoYPAAAAAAAAAAAAAAAAAAAAAAAAB0PDBwAAAAAAAAAAAAAAAAAAAAAAgIOh4eMBS05O1uzZsxUREaGmTZvKxcVFJpNJb7/9dqFz0tLSFBsbq9GjR6tVq1Zyc3OTyWTS888/X+zjx8fHy2QyyWQyqWvXrkXue+zYMUVERCgwMFBubm4KDAxURESEUlJSisxl6tSpmjJliho2bCgPDw/5+fmpV69e2rZtW5G55OXlKTY2Vm3btpW3t7e8vb3Vtm1bLVy4UIZhmNe1YcMG9enTR1WrVpWrq6uqVKmixx57TG+99VapySU7O1vvvPOOWrduLR8fH5UrV05Vq1bV008/rY0bNz7Q85KQkKCdO3fqtddeU8eOHVW5cmWVK1dOfn5+6tatmz766CMtWLCgyPOyd+9ehYeHy9/fX+7u7goKCtKECROUnp5eZC4//fSTxo8fr6CgILm5ucnf31/h4eHat29fkbm8+eabevfdd9W8eXN5enqqYsWK6ty5s1atWlVkLsuWLdOqVavUuXNnVaxYUZ6enmrevLnee+89ffvtt3rnnXcUGhoqf39/lStXThUrVlSnTp00d+5c3bhxo9Sdl4JK8tq/V7ncj2u/MJmZmYVe+0Wx933sYUctpBZSC/+HWkgtpBY+nKiF1EJq4f9QC6mF1MKHE7WQWng/a2FR/75sXdthYWGaPXt2kbUjNze3yFyog45bO/JRB6mDAAAAAAAAAFBqGXigXnrpJUOS1de0adMKnfP3v//d5pxRo0YV69gXLlwwAgICDJPJZEgyQkNDC903MTHRKF++vCHJaNKkiTFkyBCjSZMmhiTD09PT+OabbwrNpXLlyoYko1q1akZ4eLjx+OOPGyaTyTCZTEb//v1tznnuueeMAQMGGJKM8uXLG7179zZ69+5teHh4GJKM8PBw4+rVq0Z4eLghyfDw8DC6dOliDBs2zHjyySeNKlWqGJUrVy4VufTp08d49NFHDUmGl5eX0b17d2Pw4MFGy5YtzTEmTpz4wHIpuE+lSpWM7t27G0OGDDFCQkIsxjw8PGyel5UrVxouLi6GJCMkJMQYPHiwUadOHUOS4e/vbxw9etRmLsnJyUaVKlUMSUadOnWMwYMHm4/p4uJirFu3rtBcatSoYUgyKlSoYAwYMMDo3r27eQ325OLs7Gx0797dGDBggFGhQgWLMS8vL+PJJ580hg4danTs2NFwdnY2JBlt2rQxfvnll1JzXnJzcx3m2r/bXO7ntW/LTz/9ZDRo0KDQa3/WrFk25+Xk5Nz2fazgeXmYUQuphdTCm6iF1EJq4cOLWkgtpBbeRC2kFlILH17UQmrh/ayFgwcPtrmmSZMm2by27XmPqlq1aqG5tG/fnjrogLWDOkgdBAAAAAAAAICygoaPB2zRokXGH/7wB2PZsmXGjz/+aPz2t7+97YeZ69evNyZMmGB88MEHxsGDB40//elPd/Rh5jPPPGM4OzsbL774YpEfamRnZxsBAQGGJGPy5MkWY5MnTzZ/oDR37lybueTHzs7ONs/79NNPDWdnZ8NkMhnDhg2zyqVt27aGJKN69epGSkqKeV5KSop5LW3atDEkGf369TN+/vlni3Xl5uba/HDCUXORZLRq1crIyMiwWNOnn35q/mDu1nzuVy5OTk6GJGPevHlGTk6ORdxx48aZ50ZFRdnMxdXV1ZBkxMbGmsdzcnKMZ5991vwhZ15enkXcvLw8o0WLFoYk47e//a3FcWNjY80fLM6cObPQXJo2bWrx72DPnj3mD6/eeOMNq1ymTZtmnjtmzBjz9p9//tkIDg42JBlPP/208euvv1rM++6774xq1aoZkozf/e53xq0c9bzMnj3bvL2kr/27zeV+XvtXrlyxmtu3b98ir30nJyfj4MGDVvPy//CkqGu/4Hl5mFELqYXUQmohtbB4uVALyx5qIbWQWkgtpBYWLxdqYdlDLaQW3s9aWLFiRSMqKsoqj0aNGtnM5R//+IchyTCZTMa+ffssYn755ZfmOuft7W2Vi7+/vzkX6qBj1Q7qIHUQAAAAAAAAAMoKGj5K2MiRI2/7YeatXn/99WJ/mLlu3TpDkvHHP/7R+OCDD4r8UGPu3LmGJKNBgwZWd1vKzc0139lpwYIFFmP5HwKYTCbjxIkTVnFHjRplSDKGDh1qlUv+HZ4+/vhjq3kfffSR+QOP4OBg4/r163bn7ci5rFixwuaau3XrZkgy/va3v5VYLvkx8+9cJ8moW7duobnY+reUmZlp+Pr6GpKMf//73xZjn376qSHdvANdZmam1dzQ0FBDkhEdHW2xfdiwYeZjJiYmWs3L/9CyXbt2VmMF75Z2ay5ff/21Iclwc3MzLl68aDU3P1cPDw+rf3+Oel4CAgKM3Nxch732i5PLg7z2Dx8+bEg373J4p7kUde3nnxdYohZSC29FLaQWGga1sGAu1MKyj1pILbwVtZBaaBjUwoK5UAvLPmohtfBW97IW5v/7utNr28vLy5BkVKlSxWpeWFiYId1sfrx1PdRB6uC9yoU6CAAAAAAAAAAPNyehzDt//rzGjh2rhg0b6q233rrt/nFxcZKkoUOHysnJ8p+Ik5OThgwZIklat26dxdjJkyclSTVr1lStWrWs4g4fPlyStGnTJt24ccNi7OrVq3Jzc9PAgQOt5g0cOFAmk0mS1Lt3b5UrV+62OZSGXI4dO1bk2v38/Eo0l2+++Ubnzp2Ti4uLJCktLc0ql3xt27a1iuvl5aU+ffrYXFN+Ln369JGXl1eha7p13qlTpyRJvr6+6tChQ6Hzdu3apTNnzpi3nz59WklJSebvb82lY8eOqlGjhq5du6b4+HiruC1atJB089yeP3/eZi6OdF5cXV115swZbd682aGvfXtyedDXfv68Dh063FEuRV37+edl9+7ddueBe4da6Ji5UAuphRK1kFqIB4Va6Ji5UAuphRK1kFqIB4Va6Ji5PKhamO9Oru2srCxJ0sWLF63mJScnS5KuX79udW1TB6mD9yIX6iAAAAAAAAAAgIaPh8CLL76o8+fPa/HixXJ3d7/t/vv375cktW7d2uZ4/vb8/fJduHBBklS9evUi52VnZ+vo0aNW402aNLG5PldXV/OHGq6urjp37pzef/99vfjii4qKitLSpUvNH7o5ei4eHh7y9/eXJC1cuNB8nHzx8fH64osvVLVqVfOHgSWVS36cqlWrSpKqVatmMS8nJ8dmPHvWZG8uR48eVXZ2tt251KlTR5UqVZIkHThwwOp45cuXt5lLUWvNX4d0899ffvzi5vKgzouHh4eaNGkiSfrTn/7k0Nf+7XIpiWvf3nmF5VLUtZ9/Xmz9G8P9Ry10nFyohZaxqYXUwqJyoRbiXqIWOk4u1ELL2NRCamFRuVALcS9RCx0nl5KohbeO25tLwTi3vkdlZmbq+PHjNve93Xqog9RBe3KhDgIAAAAAAAAAJBo+yrwVK1ZozZo1mjBhgs07ft0qMzNTGRkZkm7ejcqWGjVqSJJ+/vlniw+bMjMzJUkVKlSwOc/Hx0c+Pj6SpNTUVKvxwo6XkpKivLw8SdK3336r+vXr6+WXX9aCBQsUExOjiIgI1alTR9u2bXP4XCSpZcuWkm7e9atWrVrq2bOnhg4dqtatW6tXr15q27atvvzyS/n6+pZoLvmv8z+suvWuXCdOnLA6RmFruvVnlP/97XIxDMPmcQr+bG4VGBhYaC75f4xk6w5jha3VMAy99957kqSnn35abm5uFutxtPNS8Jj79+936Gv/drmUxLV/u3+bt8ulqGu/sH9juP+ohY6Vi0QtLPg9tZBaWFQu1ELcK9RCx8pFohYW/J5aSC0sKhdqIe4VaqFj5SI9+Fp4uzUVlsuRI0fMr4uqg7fOu3U91EHqIHWQOggAAAAAAAAAd4qGjzLs3LlzGjdunOrWravp06fbNafgH2h4enra3KfgI+YvX75sfp3/+O6iHiueP7fgvNsdL/+DCUnavHmzWrVqpaSkJGVmZurAgQMKCwvTzz//rL59+1rcUcoRc5H+96FPs2bNlJ2drc2bN2vlypXau3evKleurK5du1rdCawkcsk/5pUrVxQQEKApU6YUuqarV6/aHbfg3DvNxdXV9Y5yuX79us1cilrrm2++qW+++UZeXl6aMWOGzTzuJpd7fV4kydnZWdLND98c+dq/XS4lce3f7t/m7XIp7jzcf9RCx8tFohYWnEstpBZK1ELcX9RCx8tFohYWnEstpBZK1ELcX9RCx8tFevC10J412crl3//+t6SbTycoqg4WdjzqIHXw1rnUQeogAAAAAAAAABQXDR9l2OjRo/XLL7/oH//4h/lR7aWRYRjm156entq8ebNat24tLy8vNW/eXBs3blRwcLCysrKsPnByRPl/BHP48GG9/fbbSklJUVZWlr799lu1atVKb775pjp27Fjo3VEflH379km6+eHYqlWrVLly5RJdz93Iv8OZk5NTsXL58MMP9dZbb8nJyUn//Oc/Vb9+/fu5TLvYc16+/fZbSdLjjz/u0Nf+7XIpa9c+Sga10DFRCx88aqFjohbiQaAWOiZq4YNHLXRM1EI8CNRCx1QaauG0adPMf0TfsWNH6iB18J6jDgIAAAAAAAAA7EHDRxm1dOlSbdq0SWPHjlXnzp3tnuft7W1+beuR95KUlZVlfp3/6G7pf3evyr+bVVFzC8673fEKrqlp06YWj4yXbn4YMmbMGElSQkKCzXmOkoskJSYmSpI6dOigKVOmKCgoSJ6engoJCdEnn3yipk2b6uDBg5o5c2aJ5fK3v/1Ne/fulSS1adPG5iPvC67Jw8PDrri3zr3TXK5fv16sXLZu3SpJql27ts1cbM1bvXq1nnvuOUnSokWLFB4ebjXHEc/L0qVLdfr0aUlSo0aNCo19K0fMpSSu/dv927SVy93Mw/1FLXTMXCRqYcG51EJqoUQtxP1DLXTMXCRqYcG51EJqoUQtxP1DLXTMXKQHXwvtWVPBXP72t7/ptddeMz8pwtZTCwqup7DjUQepg7fOpQ5SBwEAAAAAAACguGj4KKPi4uIkSUlJSercubPFV/6dnvbu3Wvedu7cOUk3/1O+UqVKkqSTJ0/ajJ2WliZJ8vPzs/igK/9x3BcvXrQ57/Lly+ZHddeuXdtqvLDjFdy3Xr16NvepU6eOJOns2bPmbY6Yy+nTp/Xzzz9Lkrp162Y1Xq5cOQ0aNEiS9Qc0DyqX2bNn65VXXjF/mHnt2jWb82rVqmV1jMLWdOvPKP/72+ViMplsHufSpUs250nSqVOnrHJxcXG57byCa123bp2GDx+uvLw8xcbGmj/YvJUjnpf8a1+S1q9f75DXvr25lMS1f7t/m4Vd+7ebV/CYtt4zcH9QCx0zF2qhLL6nFlILi8qFWoi7RS10zFyohbL4nlpILSwqF2oh7ha10DFzKYlaeLs1Fcxlx44deuWVV+Tq6qrnn3++0HkF65Nk+2dAHaQO3k0u1EEAAAAAAAAAgETDR5m3Z88ebd++3eIrOTlZ0s0PH/K3/frrr+Y5LVu2NM8tLGbB/fLlP248/+5Zhc3z9PRUgwYNrMYPHz5ssY58+R96SFKFChVsxj5//rwk6z8wcbRcjh49an7drl07m7F9fX0lSRcuXLDY/iBy2bp1qyZOnChXV1dNnz69yFzy71om3fzgsThrsjeX+vXrW5zT2+WSkpJi/rkdPHjQnMuiRYskSRkZGUpNTS3ymLm5uRo6dKhyc3M1f/58vfDCCzb3L24uD+q85Obmml8fO3bM4a794uRSEte+vfNuvfbz5xWWy9WrV3X48GGbx8T9Ry10rFyohcXLhVpILcxHLcTdoBY6Vi7UwuLlQi2kFuajFuJuUAsdK5eSqIW3jhe23dXVVe+8845cXV21du1a/fa3vy00Fx8fH9WtW9dqbfashzpIHaQOAgAAAAAAAADsRcNHGbV+/XoZhmHz64MPPpAkhYaGmrcVvKNS//79JUkrVqxQXl6eRdy8vDytXLlSkjRgwACLsZo1a0q6eQcnW3dxWr58uSSpd+/eFn8UIkkeHh66du2a1q5dazWv4LaCHwYW9Pnnn0u6+ejzghwtlwMHDphfF/zgqaBdu3ZJkoKCgh5oLo0bN9ZLL71k/jDzD3/4g6pWrWrXedm9e7fVeFZWljZt2mRzTfm5bNy40eYj3vPXdOu8wMBASTfvRLdjx45C5wUFBelPf/qTOZeIiAiFhIRY7FNQYmKi0tLS5OLiojlz5ignJ0fz58/XmDFjrPa9laOdlyFDhkiSAgIClJub61DX/t38G3tQ136/fv0k3byTY3Gu/fbt2982l+vXrysgIEBt27a1mQvuPWqhY+ZCLbTMhVpILaQW4n6iFjpmLtRCy1yohdRCaiHuJ2qhY+ZSErUw3+2u7evXr5vfo55++unbXtsNGzaUdLNR5NZrmzpIHbzbXKiDAAAAAAAAAABJkoESNXLkSEOSMW3aNLvnvP7664YkY9SoUXd0zA8++MCQZISGhtocz87ONgICAgxJxpQpUyzGpkyZYkgyAgMDjStXrliM5eciyejatavFeHx8vOHs7Gw4OTkZBw8etMqlbdu2hiSjevXqRkpKink8JSXFqF69uiHJKF++vCHJWLBggcVx//Wvfxkmk8mQZHz66aelIhdJRuPGjY3U1FSL43700UfmXD766KMHlovJZDJMJpPh6upqbNq0yTz+97///ba5uLq6GpKMhQsXmsdzcnKM3/72t4YkIyQkxMjLy7NYU15entGiRQtDkjFixAgjJyfHPBYbG2tIMry8vIyzZ88WmkuzZs2M8+fPm8f27t1reHl5GZJs5hIXF2eOu3fvXvP28+fPG02bNjUkmX8WsbGxhr0c9bzMnj3baq0lee3fTS4P8to3DMPo27dvsa794uRi67yAWkgtTLU4LrWQWmgY1MJbc6EWln3UQmphQdRCaqFhUAtvzYVaWPZRC6mFBd3rWpifR6NGjQrNJf945cqVs3iPMoyir+2qVauac6EOOlbtoA5SBwEAAAAAAACgrDAZhmEID8y+ffsUGRlp/v748eM6f/68AgMDVb16dfP2uLg4VatWTZJ09uxZ892YJOnUqVM6ffq0HnnkEdWpU8e8fd68eXY9CnvJkiX63e9+p9DQUCUkJNjcZ8eOHerevbuuXLmi4OBgBQcH69ChQzp06JA8PT2VkJAgV1dXm7m4uLgoJydH5cqVk7e3txo2bKhdu3bJMAy99dZb+vTTT23mkpOTo19++UVOTk7q2LGjKlSooISEBF25ckWDBg3S888/r379+unXX39VkyZN1LhxYx0/flz79++XJE2dOlVvvfWWw+fSrVs37d+/X+fPn5e7u7vatWsnPz8//fjjj+ZHmj/77LP68MMPZTKZHkguJpNJhmGoUaNGFnfXMgxDX375pU6ePClnZ2f16tVLkizOy6BBg/TMM88oNzdXbdu2Ve3atZWUlKSUlBT5+/srMTFR9erVszovycnJ6tSpk37++WfVqVNHISEhSk1N1bfffisXFxetWrVKtWrVspmLq6urrl+/LmdnZ/n6+qpZs2basWOHbty4Yd731lwk6dtvv9WPP/4ok8mkHj16yNPTU1u3btXFixfNP4PAwECFhoZarTffzJkz5efn5/DnZeXKlXJysnyIU0le+3eTy/289tu1a2c1Lz09XR07dtTRo0dVrVo1derUSenp6dq+fbsMw1BMTIwmTpxoNS83N1fh4eGKi4tT+fLl1bVrV7vOy8OIWkgtpBbeRC2kFtqbC7Ww7KEWUguphTdRC6mF9uZCLSx7qIXUwvtZC+fOnav58+db5REQEKALFy7o119/Vbly5dSzZ09lZmbqyy+/NO9rq3YUfJ+ydW23a9dOSUlJ1EEHqx3UQeogAAAAAAAAAJQZ97Z/BLfzxRdfmO/0VNRXwbuapaam2jXniy++sGsNt7uLVb6jR48aI0aMMAICAoxy5coZAQEBxogRI4xjx44VKxdfX1+jZ8+eRkJCgt25uLu7G56enkZISIixYMEC8x3QkpOTjZEjRxrVq1c3ypUrZ1SuXNkICwszNm/eXKpyOXfunDFp0iSjWbNmhqenp+Hi4mI88sgjRo8ePYyVK1c+0Fxmzpxp1/6SDE9PT5vnZc+ePcaAAQOMRx55xHB1dTVq1apljBs3zjh37lyRuZw9e9YYN26cUatWLcPV1dV45JFHjAEDBpjvMGdvLt7e3sbjjz9uvoOgPV8+Pj6Gh4eHERwcbLz66qt2z7v1joOOfF5uVVLX/r3I5X5d+4W5dOmSER0dbdSvX99wc3MzKlWqZL72i5Kbm2ssWLDAaN26td3n5WFELaQWUgv/h1pILbQ3F2ph2UItpBZSC/+HWkgttDcXamHZQi2kFt7PWmhvHq6urkalSpWMkJAQu9+jCru2qYOOWTtuRR2kDgIAAAAAAABAacQTPgAAAAAAAAAAAAAAAAAAAAAAABwMz00GAAAAAAAAAAAAAAAAAAAAAABwMDR8AAAAAAAAAAAAAAAAAAAAAAAAOBgaPgAAAAAAAAAAAAAAAAAAAAAAABwMDR8AAAAAAAAAAAAAAAAAAAAAAAAOhoYPAAAAAAAAAAAAAAAAAAAAAAAAB0PDBwAAAAAAAAAAAAAAAAAAAAAAgIOh4QMAAAAAAAAAAAAAAAAAAAAAAMDB0PABAAAAAAAAAAAAAAAAAAAAAADgYGj4AAAAAAAAAAAAAAAAAAAAAAAAcDA0fAAAAAAAAAAAAAAAAAAAAAAAADgYGj4AAAAAAAAAAAAAAAAAAAAAAAAcDA0fAAAAAAAAAAAAAAAAAAAAAAAADoaGDwCqXbu2TCaTTpw4UdJLsemNN96QyWTSG2+8cU/jfvnllzKZTOrcufM9jQsAKH2ohZ3vaVwAQOlDLex8T+MCAEoX6mDnexoXAAAAAAAAAADcOzR8AAAAAAAAAAAAAAAAAAAAAAAAOBgaPgAAAAAAAAAAAAAAAAAAAAAAABwMDR8AAAAAAAAAAAAAAAAAAAAAAAAOhoYPADb997//1bvvvqsuXbqoZs2acnNzU4UKFdSxY0fFxsYqLy/Pas6JEydkMplUu3Zt5eXladasWWrWrJnKly+vatWqaezYsbpw4YIk6dq1a5o2bZoaNWokDw8PBQQE6KWXXlJ2dvZt1zVixAhVq1ZN7u7uatCggd544w1dvXq10DkffvihQkJCVL58eVWqVEk9e/bU119/XeRx1q1bp+eff17BwcGqWLGi3N3dFRQUpOeee07Jycl2/AQBAKUdtZBaCAAPO2ohtRAAHmbUQeogAAAAAAAAAACOgIYPADZ99NFHio6O1okTJ9SgQQMNGDBAv/nNb5SUlKSxY8cqPDxchmEUOv/ZZ59VdHS0qlevrh49eigvL0+xsbHq2rWrsrOz1bVrV82cOVMNGzZU165ddeXKFc2aNUvh4eGFxkxNTVWrVq20ZcsWderUSd26ddOZM2f05ptvqlu3bvr111+t5rz00ksaOXKk9u3bp5CQEPXo0UNpaWnq3Lmz1q9fX+ixBg8erH/961/y8PBQly5d1KNHDzk5OemDDz5Qq1attHPnzmL9PAEApQ+1kFoIAA87aiG1EAAeZtRB6iAAAAAAAAAAAA7BAPDQq1WrliHJSE1NNW/79ttvje+//95q39OnTxvNmzc3JBmrVq2yGEtNTTUkGZKMunXrGidOnDCPnT9/3qhfv74hyWjatKnRpk0b4/z58+bxlJQUo2LFioYkIzEx0SLu66+/bo7bt29f48qVK+axtLQ0o0GDBoYkIzo62mLeJ598YkgyPD09ja+++spibPr06eaYTzzxhFWeK1asMLKysiy25eXlGXPnzjUkGU2aNDHy8vKs5gEASidq4RNWeVILAeDhQi18wipPaiEAPDyog09Y5UkdBAAAAAAAAADAMfCEDwA2hYSEKDg42Gp7QECA3nvvPUnS6tWrC50/a9Ys1apVy/x95cqV9eKLL0qSDh06pMWLF6ty5crm8aCgID377LOSpK1bt9qM6eHhoQULFsjDw8O8LTAwUP/v//0/SdK8efMs7mL3/vvvS5LGjx+vTp06WcSaPHmyfvOb3xS6/iFDhsjT09Nim8lkUmRkpNq3b6/Dhw/rxx9/LHQ+AKD0oxZSCwHgYUctpBYCwMOMOkgdBAAAAAAAAADAEbiU9AIAOK5r165py5YtSkpKUnp6uq5duybDMJSZmSlJSk5OtjnPxcVF3bt3t9pev359SVLNmjVtfliaP37mzBmbcbt3766qVatabX/66adVuXJlZWRkaN++fXrssceUk5OjxMRESTJ/UHqrESNG6MCBAzbHJOnYsWP697//rWPHjikzM1O5ubmSpJ9++knSzfwfffTRQucDAEo/aiG1EAAedtRCaiEAPMyog9RBAAAAAAAAAABKGg0fAGzatWuXhgwZopMnTxa6z+XLl21ur1atmlxcrN9evLy8JN38QNMWb29vSbK4C11BQUFBha6ldu3aysjI0KlTpyRJGRkZ5jiFzStse25ursaPH6/Y2FgZhlHoMQvLHwBQNlALqYUA8LCjFlILAeBhRh2kDgIAAAAAAAAA4AicSnoBABzPlStX1K9fP508eVK/+93v9O233+rChQvKycmRYRjmO9cV9mGfk1PRby23G78bRX0Aaa+YmBgtWLBA/v7+Wr58uU6cOKGrV6/KMAwZhqFhw4bds2MBABwTtZBaCAAPO2ohtRAAHmbUQeogAAAAAAAAAACOgid8ALDy1Vdf6aefflLLli31z3/+02r86NGjJbAqKTU1tdCxEydOSJICAwMlSZUrV5abm5uuXbumEydOqEmTJoXOudWqVaskSbGxserTp4/VeEnlDwB4cKiF1EIAeNhRC6mFAPAwow5SBwEAAAAAAAAAcBQ84QOAlQsXLkiSatasaXP8448/fpDLMduyZYvS09OttsfHxysjI0Pe3t5q1aqVJMnFxUUdOnSQJC1btsxmvI8++sjm9vz8a9WqZTV2+PBhHThw4E6WDwAoRaiF1EIAeNhRC6mFAPAwow5SBwEAAAAAAAAAcBQ0fACw0rhxY0nS1q1b9cMPP1iMLVy4UCtXriyJZenq1at68cUXdfXqVfO2M2fO6JVXXpEkjR07Vu7u7uaxqKgoSdLs2bO1c+dOi1jvvfee9u3bZ/M4+fnPnTtXeXl55u1nz57ViBEjlJOTc0/yAQA4LmohtRAAHnbUQmohADzMqIPUQQAAAAAAAAAAHAUNHwCstGjRQn379lVmZqZatGihHj16aNiwYWrcuLHGjh2rKVOmlMi6RowYoS+//FJ16tTR4MGD1adPHzVo0ED/+c9/1L59e7355psW+/fu3Vvjxo1TVlaWOnXqpCeffFLDhw9XcHCwJk+erJdeesnmcaZMmSJXV1ctWrRIDRs21JAhQ/TUU0+pbt26unbtmvr37/8g0gUAlCBqIbUQAB521EJqIQA8zKiD1EEAAAAAAAAAABwFDR8AbFq9erX++te/qmHDhkpMTNSWLVtUs2ZNbd68Wc8//3yJrCkoKEh79uzRk08+qa+++kqbN29WtWrV9NprrykhIUEeHh5Wc+bMmaN//vOfatGihXbt2qX4+HhVq1ZNW7duVb9+/Wwep23bttqzZ4/69Omj7Oxsbdy4UcePH9eECRP0zTffyMfH5z5nCgBwBNRCaiEAPOyohdRCAHiYUQepgwAAAAAAAAAAOAKTYRhGSS8CAAAAAAAAAAAAAAAAAAAAAAAA/8MTPgAAAAAAAAAAAAAAAAAAAAAAABwMDR8AAAAAAAAAAAAAAAAAAAAAAAAOhoYPAAAAAAAAAAAAAAAAAAAAAAAAB0PDBwAAAAAAAAAAAAAAAAAAAAAAgIOh4QMAAAAAAAAAAAAAAAAAAAAAAMDB0PABAAAAAAAAAAAAAAAAAAAAAADgYGj4AAAAAAAAAAAAAAAAAAAAAAAAcDA0fAAAAAAAAAAAAAAAAAAAAAAAADgYGj4AAAAAAAAAAAAAAAAAAAAAAAAcDA0fAAAAAAAAAAAAAAAAAAAAAAAADoaGDwAAAAAAAAAAAAAAAAAAAAAAAAdDwwcAAAAAAAAAAAAAAAAAAAAAAICDoeEDAAAAAAAAAAAAAAAAAAAAAADAwdDwAQAAAAAAAAAAAAAAAAAAAAAA4GBo+AAAAAAAAAAAAAAAAAAAAAAAAHAwNHwAAAAAAAAAAAAAAAAAAAAAAAA4GBo+AAAAAAAAAAAAAAAAAAAAAAAAHAwNHwAAAAAAAAAAAAAAAAAAAAAAAA6Ghg8AAAAAAAAAAAAAAAAAAAAAAAAHQ8MHAAAAAAAAAAAAAAAAAAAAAACAg6HhAwAAAAAAAAAAAAAAAAAAAAAAwMHQ8AEAAAAAAAAAAAAAAAAAAAAAAOBgaPgAAAAAAAAAAAAAAAAAAAAAAABwMDR8AAAAAAAAAAAAAAAAAAAAAAAAOBgaPgAAAAAAAAAAAAAAAAAAAAAAAByMS0kvACXL09NTN27cUJUqVUp6KQBQ6qSnp6tcuXLKzs4u6aXgDlEHAeDuUAtLP2ohANwdamHpRy0EgLtDLSz9qIUAcOeogwAAAACAB4GGj4fcjRs3lJubW9LLAIBSiffP0o86CAB3h/fQ0o9aCAB3h/fQ0o9aCAB3h/fQ0o9aCAB3jvdPAAAAAMCDQMPHQy7/bj2nTp0q4ZUAQOkTGBhY0kvAXaIOAsDdoRaWftRCALg71MLSj1oIAHeHWlj6UQsB4M5RBwEAAAAAD4JTSS8AAAAAAAAAAGDb6tWr1blzZ1WsWFGenp5q3ry53nvvPd24ceOO4u3du1fh4eHy9/eXu7u7goKCNGHCBKWnp9vcPzc3V2vWrNHkyZPVvXt3Va5cWSaTSS4uRd9LKD09XR9++KGGDx+u+vXry93dXeXLl1ejRo00ceJEnThxosj5O3fu1JAhQ1SjRg25urrK09NTTZs21aRJkwpdKwAAAAAAAAAAAFDWmAzDMEp6ESg5+Xec4K49AFB8vIeWfpxDALg7vI+WfpxDALg79/t9NCoqSjExMXJxcVGXLl3k5eWlbdu26eLFi+rYsaO2bNkiDw8Pu+OtWbNGw4YNU05OjkJCQhQUFKQ9e/YoJSVF/v7+SkxMVL169SzmXLx4URUrVrSK5ezsrJycnEKP9eyzz2rZsmVycnJScHCwGjZsqOzsbCUlJennn3+Wp6en4uLi1K1bN6u58+bN0/jx42UYhoKDg9W4cWNlZWVp165d+uWXX1SlShVt375djRo1sjv3wlALAeDu8D5a+nEOAeDO8R4KAAAAAHgQeMIHAAAAAAAAADiY9evXKyYmRl5eXtq9e7c2b96stWvX6ujRo2ratKkSExM1depUu+OdOXNGI0eOVE5OjmJjY/Xtt99q5cqVOnLkiJ599ln99NNPGj58uG69P1C5cuX0zDPPaObMmdq2bZsOHDhg1/EqVaqkN998UydPntTBgwe1atUqffrpp0pJSdHQoUOVnZ2toUOH6pdffrGY99NPP+nll1+WYRhasmSJvv/+e61atUrx8fH673//q+7duys9PV1RUVF25w4AAAAAAAAAAACUVjR8AAAAAAAAAICDmT59uiQpOjpaLVu2NG/38/PTvHnzJElz5szRpUuX7Ir3/vvv68qVK+ratatGjx5t3u7s7Kz58+fL19dXSUlJ2rJli8U8T09Pffzxx3rllVf05JNPytfX167jzZo1S6+99pqqV69usd3Ly0uLFy+Wt7e3Lly4oE8//dRiPDExUdevX9ejjz6qkSNHWox5e3vr9ddflyR98803dq0DAAAAAAAAAAAAKM1o+AAAAAAAAAAAB3L69GklJSVJkoYPH2413rFjR9WoUUPXrl1TfHy8XTHj4uIKjefl5aU+ffpIktatW3eny7Zb+fLl1bBhQ0lSWlqaxZi7u7tdMfz8/O75ugAAAAAAAAAAAABHQ8MHAAAAAAAAADiQ/fv3S5IqVaqkoKAgm/u0bt3aYt+iZGZm6tixYxbz7ibe3bpx44ZOnDghSapWrZrFWPv27eXr66sffvhBS5cutRjLysrSm2++KUkaM2bMfV8nAAAAAAAAAAAAUNJo+AAAAAAAAAAAB5KamipJqlmzZqH71KhRw2LfouQ3VxQVszjx7tbixYt1/vx5eXh46KmnnrIYq1SpkpYuXSpPT09FRESoadOmGjx4sHr16qWaNWsqKSlJf/nLX/THP/7xvq8TAAAAAAAAAAAAKGkuJb0AAAAAAAAAAMD/ZGZmSpI8PT0L3cfLy0uSdPnyZbvjFRWzOPHuxvfff29u1pg6dar8/f2t9unbt6+2b9+uIUOG6NChQzp06JB5rHv37urQoYNMJpPdxwwMDCx07OzZs1ZPGQEAAAAAAAAAAAAcBU/4AAAAAAAAAADcd6dOnVLv3r2VlZWlPn36KDo62uZ+8+fPV/v27VW5cmV9+eWXunTpktLS0jR37lzt2rVLXbp00ZIlSx7s4gEAAAAAAAAAAIASQMMHAACwsHr1anXu3FkVK1aUp6enmjdvrvfee083bty445gbNmxQnz59VLVqVbm6uqpKlSp67LHH9NZbbxU576uvvtLQoUMVGBgoNzc3+fn5qVWrVnr55Zfvaj0AAAAA4Mi8vb0lSdnZ2YXuk5WVJUny8fGxO15RMYsT706cO3dOoaGh+u9//6sePXpo1apVNp/SsWPHDkVGRsrPz09btmzRE088IR8fHwUGBioyMlKxsbHKy8tTVFSULl68aNexT506VegXT/cAAAAAAAAAAACAI6PhAwAAmEVFRWnw4MHasWOH2rRpo549e+rkyZOaNGmSunTpoqtXrxYr3vXr1zV48GD169dPCQkJatKkiQYNGqTg4GAdP35cs2bNsjnPMAxFRUXpiSee0Lp16xQUFKSBAweqZcuWSk9P1/vvv69r167di5QBAAAAwOHUrl1bkpSWllboPvlj+fsWpVatWubXJ0+evOt4xZWenq4uXbroyJEj6tq1q9avXy83Nzeb++Y/uSMsLEy+vr5W44MGDZKrq6suXbqkpKSke75WAAAAAAAAAAAAwJG4lPQCAACAY1i/fr1iYmLk5eWl7du3q2XLlpKk8+fPq0uXLkpMTNTUqVM1c+ZMu2O+8MILWr16tfr166dFixbJz8/PPJaXl6dvv/3W5rw33nhDMTExeuyxx7R8+XKLP06SpKSkJLm7u99BlgAAAADg+Fq0aCFJysjIUGpqqoKCgqz22bNnjySZf3crio+Pj+rVq6djx45pz549atq06V3FK46ff/5ZXbp00Y8//qjQ0FBt3LixyN/n8htSCnvSiIuLizw9PXX9+nVduHDhnq4VAAAAAAAAAAAAcDQ84QMAAEiSpk+fLkmKjo62+AMfPz8/zZs3T5I0Z84cXbp0ya54W7du1Ycffqjg4GCtWrXKotlDkpycnNSuXTurecnJyZo+fbr8/f316aefWjV7SFJISIhcXOhbBQAAAFA2BQYGKiQkRJK0fPlyq/HExESlpaXJzc1NYWFhdsXs379/ofGysrK0adMmSdKAAQPudNlW8m8gcPjwYYWGhmrTpk3y8PAock716tUlSbt377Y5npycrF9++UWSbDbCAAAAAAAAAAAAAGUJDR8AAECnT59WUlKSJGn48OFW4x07dlSNGjV07do1xcfH2xVz9uzZkqSoqCiVK1fO7rXMnz9fOTk5euGFF1ShQgW75wEAAABAWTJlyhRJ0owZM7Rv3z7z9oyMDEVGRkqSxo8fL19fX/NYXFycGjVqpNDQUKt4UVFRKl++vBISErRo0SLz9tzcXEVGRurixYsKCQlR9+7d78n6L1y4oNDQUB06dEhdu3a1q9lDkgYNGiRJ2rlzp/7617/KMAzzWHp6ukaNGiVJatCggVq3bn1P1goAAAAAAAAAAAA4Km6NDQAAtH//fklSpUqVCr1DauvWrZWWlqb9+/dr2LBhRcbLzc3V1q1bJUmPP/64zp07pxUrVig5OVlubm5q0aKFBg4cKC8vL6u5mzdvNs+7ePGiVq5cqe+++05OTk4KDg7WwIEDrZ4WAgAAAABlTb9+/TRx4kTNmjVL7dq1U2hoqDw9PbV161ZdvHhRHTp00LRp0yzmXLp0ScnJyfr111+t4gUEBGjJkiUaNmyYRo8ercWLF6t27dpKSkpSSkqK/P39tXz5cplMJqu5kZGR5qaTa9euSbr5e1/Bpzb26tVLU6dONX///PPP67vvvpPJZFKlSpX04osvFppnv379zN+HhYVpzJgxio2N1auvvqqFCxeqWbNmyszM1O7du3X58mVVqFBBH330kZycuJ8RAAAAAAAAAAAAyjYaPgAAgFJTUyVJNWvWLHSfGjVqWOxblJSUFGVlZUmSdu3apcjISPP3+f74xz9qxYoV6tKli3nb9evXlZycbD7Os88+q/T0dIt5f/jDH7Ro0SINHTrUjswAAAAAoPSKiYlRhw4dNHfuXO3cuVM3btxQ3bp1FR0drZdfflmurq7FihceHq46depo+vTp+vrrr7V//35Vq1ZN48aN09SpU+Xv729z3g8//KDdu3dbbS+4rVGjRhZjFy5ckCQZhqFVq1YVuqbatWtbNHxI0oIFC/TUU09p8eLF2rNnjzZt2iQXFxcFBQWpR48e+v3vf6/AwEB70wYAAAAAAAAAAABKLRo+AACAMjMzJUmenp6F7pP/NI7Lly/fNl5GRob59ahRo/TYY49p5syZatSokY4fP64pU6YoPj5effv21b59+1S/fn1JN/8gyDAMSdL48ePVuHFjrVq1Si1bttSZM2c0Y8YMLVmyRM8++6yqV6+uTp063XYtRf0R0NmzZ1WtWrXbxgAAAACAkjJ48GANHjzYrn0jIiIUERFR5D6tWrXS2rVri7WGL7/8slj73+mcgvr27au+ffveVQwAAAAAAAAAAACgtOOZ9wAA4J7Lb9qQpOrVq2vz5s1q3bq1vLy81Lx5c23cuFHBwcHKysrSjBkzbM7z8PBQQkKCnnjiCXl7e6thw4b64IMP9NRTTyk3N1dvvPHGg0wJAAAAAAAAAAAAAAAAAADggaLhAwAAyNvbW5KUnZ1d6D5ZWVmSJB8fH7vjSTfvMOvm5mYx7uzsrDFjxkiSEhISbM4bMGCAHnnkEavYkZGRkqSvv/5a169fv+1aTp06VegXT/cAAAAAAAAAAAAAAAAAAACOioYPAACg2rVrS5LS0tIK3Sd/LH/f28UzmUySpDp16tjcJ3/72bNnzdu8vLzMTR63m3fjxg2dP3/+tmsBAAAAAAAAAAAAAAAAAAAojWj4AAAAatGihSQpIyNDqampNvfZs2ePJKlly5a3jefl5aWGDRtKUqFNGfnbvby8LLa3atXKrnm25gIAAAAAAAAoPZKTkzV79mxFRESoadOmcnFxkclk0ttvv21z/7y8PO3cuVOvvfaaOnbsqMqVK6tcuXLy8/NTt27dtGzZMhmGcdvjbtiwQX369FHVqlXl6uqqKlWq6LHHHtNbb71V6Jxjx44pIiJCgYGBcnNzU2BgoCIiIpSSklLksTIzMzVlyhQ1bNhQHh4e8vPzU69evbRt27Yi5+Xl5Sk2NlZt27aVt7e3vL291bZtWy1cuNCuHAEAAAAAAACUDTR8AAAABQYGKiQkRJK0fPlyq/HExESlpaXJzc1NYWFhdsUMDw+XJCUkJNgc//zzzyVJbdq0sTlv27ZtysvLK3Rew4YN5ePjY9daAAAAAAAAADie+fPna+LEiVq6dKkOHTqk3NzcIvdPSUlRhw4dNG3aNP34449q3bq1Bg4cqDp16ighIUHPPvus+vTpo+vXr9ucf/36dQ0ePFj9+vVTQkKCmjRpokGDBik4OFjHjx/XrFmzbM7bsWOHmjdvrqVLl6pChQrq37+/KlSooKVLl6pZs2batWuXzXnp6elq3bq13nnnHWVmZqp3795q0qSJPvvsM3Xt2lWzZ8+2OS83N1fh4eEaO3asDh06pCeffFJPPvmkvv/+e40ZM0ZDhgyx+X+nAAAAAAAAAMoeGj4AAIAkacqUKZKkGTNmaN++febtGRkZioyMlCSNHz9evr6+5rG4uDg1atRIoaGhVvEmTpyoihUrKj4+XrGxsRZjK1as0LJly8z7FfTss8+qbt26OnTokF577TWLDy6/+OIL/e1vf7M5DwAAAAAAAEDpEhwcrD/84Q9atmyZfvzxR/32t78tcn+TyaQuXbros88+U3p6ujZv3qwVK1bo22+/1ZdffilPT0998sknmjFjhs35L7zwglavXq1+/frp5MmT2rp1q5YvX65t27bp7Nmz+uSTT6zmXLlyRYMHD9aVK1c0efJkHTp0SCtWrNChQ4c0efJkZWdna/Dgwbp69arV3NGjR+vIkSMKDQ3VsWPHtGrVKm3fvl2ffPKJnJycFBUVpe+++85q3uzZs7Vu3TpVr15dhw4d0saNG7Vx40YdPnxYAQEBWr16tebNm2fnTxkAAAAAAABAaUbDBwAAkCT169dPEydOVFZWltq1a6ennnpKgwYNUr169fT999+b75xX0KVLl5ScnKzjx49bxfPz89PKlSvl7u6usWPHKjg4WOHh4WrZsqWGDRsmwzA0depUqyeGuLq6at26dapUqZL+8pe/qEGDBho0aJDat2+vrl276sqVKxo5cqRefPHF+/rzAAAAAAAAAHB/Pf/88/rrX/+q4cOHq1GjRnJyKvqjy7p162rr1q3q2bOnnJ2dLcaeeOIJRUdHS5I+/PBDq7lbt27Vhx9+qODgYK1atUp+fn4W405OTmrXrp3VvCVLlujMmTNq0KCB3n77bYuxt99+Ww0aNFBaWprVMX/44Qdt2LBBzs7OWrx4scqXL28eCwsLU0REhPLy8vTOO+9YzMvLy9O7774rSXr33XcVFBRkHgsKCjKPvfPOOzzlAwAAAAAAAHgI0PABAADMYmJitHLlSrVv3147d+5UfHy8AgMDNWPGDG3btk0eHh7FitetWzcdPHhQI0eO1MWLF7VhwwadPHlSYWFh2rx5s9566y2b85o1a6ZDhw5p3Lhxys3N1aZNm/Sf//xHTzzxhP71r39pyZIlMplM9yJlAAAAAAAAAGVEixYtJElpaWlWY7Nnz5YkRUVFqVy5cnbHjIuLkyQNHTrUqiHFyclJQ4YMkSStW7fO5rwOHTqoVq1aVnGHDx8uSdq0aZNu3Lhh3v7NN9/o3LlzcnNz08CBA63mDRw4UK6urjpz5ox2795tdx4AAAAAAAAASieXkl4AAABwLIMHD9bgwYPt2jciIkIRERFF7tOgQQMtWbKk2OuoVq2a5syZozlz5hR7LgAAAAAAAICHz9GjRyXd/L/FgnJzc7V161ZJ0uOPP65z585pxYoVSk5Olpubm1q0aKGBAwfKy8vLKub+/fslSa1bt7Z5zPzt+fsVd152draOHj2qRx991GJekyZN5O7ubjXPw8NDTZo00f79+7V//361b9/eZnwAAAAAAAAAZQNP+AAAAAAAlDmrV69W586dVbFiRXl6eqp58+Z67733LO6aWhx79+5VeHi4/P395e7urqCgIE2YMEHp6em3nXvw4EE999xzCgoKkru7uypWrKimTZvqxRdfVEZGhsW+ly9f1tSpU9WrVy/VrVtXvr6+cnV1VUBAgPr27atPP/30jtYPAAAAAGXdlStXNGvWLEmyejJGSkqKsrKyJEm7du1S/fr19fLLL2vBggWKiYlRRESE6tSpo23btlnMy8zMNP/eVrNmTZvHrVGjhiTp559/VnZ2tnl7ampqkfN8fHzk4+Njsa898woes+A8AAAAAAAAAGUTDR8AAAAAgDIlKipKgwcP1o4dO9SmTRv17NlTJ0+e1KRJk9SlSxddvXq1WPHWrFmjdu3aac2aNapVq5b69u0rJycnzZkzR82aNdOxY8cKnTtz5ky1atVKS5cu1SOPPKL+/furffv2+vXXX7VgwQKdPXvWYv/09HS9/fbb+uqrr1SlShWFhoaqT58+qlKlijZu3Kinn35a48aNu6OfCwAAAACUZZGRkUpNTVVAQICmTJliMVaw2X7UqFFq1aqVkpKSlJmZqQMHDigsLEw///yz+vbta35KiHSz4SOfp6enzeMWfCrI5cuXreYWNq/g3HsxryiBgYGFft36eykAAAAAAAAAx+JS0gsAAAAAAOBeWb9+vWJiYuTl5aXt27erZcuWkqTz58+rS5cuSkxM1NSpUzVz5ky74p05c0YjR45UTk6OYmNjNXr0aElSbm6uIiIi9PHHH2v48OHavXu3TCaTxdwPPvhAf/zjH9WwYUOtWbNGwcHBFuOHDx9WYGCgxbaqVavqm2++UevWreXiYvkr+xdffKGnn35a8+bNU58+fdSjR49i/WwAAAAAoKyaNm2ali5dKnd3d61atUqVK1e2GDcMw/y6evXq2rx5s9zc3CRJzZs318aNG/Wb3/xGhw4d0owZM7R48eIHun4AAAAAAAAAKAxP+AAAAAAAlBnTp0+XJEVHR5ubPSTJz89P8+bNkyTNmTNHly5dsive+++/rytXrqhr167mZg9JcnZ21vz58+Xr66ukpCRt2bLFYt4vv/yiqKgoeXh4KD4+3qrZQ5KaNGkiX19fi21eXl5q166dVbOHJD355JMaOnSoJFkdDwAAAAAeVn/729/02muvyc3NTXFxcerQoYPVPt7e3ubXERER5maPfM7OzhozZowkKSEhwea87Oxsm8fPysoyv/bx8bGaW9i8gnPvxbyinDp1qtCvatWq2RUDAAAAAAAAQMmg4QMAAAAAUCacPn1aSUlJkqThw4dbjXfs2FE1atTQtWvXFB8fb1fMuLi4QuN5eXmpT58+kqR169ZZjC1dulSXL1/WwIEDVadOnWLlUZT8RpBb/zgJAAAAAB5Gs2fP1iuvvCJXV1etXbtWPXv2tLlf7dq1zU9lLOx3tPztZ8+eNW/z9vZWpUqVJEknT560OS8tLU3SzRsNeHp6WhyzqHmXL1/W5cuXLfa1Z17BYxacBwAAAAAAAKBsouEDAAAAAFAm7N+/X5JUqVIlBQUF2dyndevWFvsWJTMzU8eOHbOYZ2+8zZs3S5Ief/xxXb16VR999JEmTpyocePG6f333zf/cU5xJCUlaeXKlTKZTOrdu3ex5wMAAABAWTJ37lxNnDjR3OzRq1evQvf18vJSw4YNJUnnz5+3uU/+di8vL4vt+U+P3LNnj815+dsLPmWyOPM8PT3VoEEDq3mHDx/Wr7/+ajXv6tWrOnz4sM1jAgAAAAAAACh7aPgAAAAAAJQJqampkqSaNWsWuk+NGjUs9i3KiRMnzK8Li1lYvO+++07SzaaR4OBgjRgxQrNnz9a8efP08ssvq169evrb3/5W5PFfe+01RUREaMiQIWrTpo3atGmjq1evatasWWrfvv1t1w8AAAAAZdWCBQs0fvx4c7PH008/fds54eHhkqSEhASb459//rkkqU2bNhbb+/fvL0lasWKF8vLyLMby8vK0cuVKSdKAAQMsxvr16ydJ2rFjh82ndSxfvlyS1Lt3b5UrV868vX379qpataquXbumtWvXWs1bu3atrl+/roCAALVt29Z2sgAAAAAAAADKDBo+AAAAAABlQmZmpqSbd0ctTP6dWi9fvmx3vKJiFhYvIyNDkhQdHa3c3Fxt2rRJv/zyi44fP65Jkybpxo0beuWVV/Svf/2r0ONv3LhRS5cu1apVq5SUlCQvLy/NmTNHL7744m3XXlBgYGChX2fPni1WLAAAAAAoaYsWLVJkZGSxmj0kaeLEiapYsaLi4+MVGxtrMbZixQotW7bMvF9BERERCggI0JEjRzR16lSLsalTp+rIkSMKDAzUiBEjLMaaNGmivn37Kjc3V6NGjdLVq1fNY5999pmWLFkiJycnTZ482WKek5OTJk2aJEmaNGmSxQ0GUlNTFR0dLUmaPHmynJz4qBcAAAAAAAAo61xKegEAAAAAAJQ1hmFIunm31/j4eD366KOSpAoVKmjGjBm6fPmy5s+frz//+c8aNmyYzRgHDhyQdLOZJDk5We+//75Gjx6tFStWaP369fL29n4guQAAAADA/bJv3z5FRkaavz9+/LgkKTY2Vp988ol5e1xcnKpVq6YDBw5ozJgxMgxDderU0Zo1a7RmzRqbsZcsWWLxvZ+fn1auXKk+ffpo7Nixmj17tho3bqzjx49r//79km42cISFhVnMK1++vFatWqXu3btr+vTp2rhxo4KDg3Xo0CEdOnRInp6eWr16tTw8PKzWsHDhQv3www9KSEhQ3bp11alTJ6Wnp2v79u0yDEMxMTFq1qyZ1bwJEyboq6++UlxcnIKDg9W1a1dJN59OcuXKFQ0aNMji5wYAAAAAAACg7KLhAwAAAABQJuQ3QGRnZxe6T1ZWliTJx8fH7nj5MX19fe2O5+3trYyMDHXq1Mnc7FFQZGSk5s+fr5SUFKWmpiooKKjQdfj4+CgkJETLli1ThQoVNG/ePL355puaOXPmbXOQpFOnThU6FhgYaFcMAAAAALgfLl++rN27d1ttP3XqlMXvMteuXZMkXbx40dxg/5///Ef/+c9/Co19a8OHJHXr1k0HDx7U9OnTlZCQoA0bNsjHx0dhYWF66aWX1L17d5uxOnTooIMHD2ratGlKSEjQ2rVr9cgjj2jEiBF67bXXVLduXZvzqlSpoj179uidd97R2rVrtWHDBnl6eqpHjx76wx/+oNDQUJvznJ2dtWbNGi1atEj/+Mc/tHXrVkk3nxoyatQojR49WiaTqdDcAQAAAAAAAJQdNHwAAAAAAMqE2rVrS5LS0tIK3Sd/LH/fotSqVcv8+uTJk2ratKnd8erUqaOMjAzVqVPHZuyC28+ePVtkw0dBv/vd7zRv3jzFxcXZ3fABAAAAAI6qc+fO5gaO+7G/LQ0aNLDZDHI79erV09KlS4s9z8fHR++8847eeeedYs1zcnLSmDFjNGbMmGIfEwAAAAAAAEDZ4VTSCwAAAAAA4F5o0aKFJCkjI0Opqak299mzZ48kqWXLlreN5+Pjo3r16lnMszdeq1atJEnnz5+3Oa/gdi8vr9uuJZ+np6ckKT093e45AAAAAAAAAAAAAAAAKJ1o+AAAAAAAlAmBgYEKCQmRJC1fvtxqPDExUWlpaXJzc1NYWJhdMfv3719ovKysLG3atEmSNGDAAIux8PBwSdKuXbuUnZ1tNffzzz+XdLPZo3HjxnatRZK2bt0q6eYdaQEAAAAAAAAAAAAAAFC20fABAAAAACgzpkyZIkmaMWOG9u3bZ96ekZGhyMhISdL48ePl6+trHouLi1OjRo0UGhpqFS8qKkrly5dXQkKCFi1aZN6em5uryMhIXbx4USEhIerevbvFvC5duqhTp05KT0/X+PHjde3aNfPYd999pz//+c+SpBdffFHlypUzjy1fvlx79+61WodhGFq3bp153ujRo+3/oQAAAAAAAAAAAAAAAKBUouHjFqtXr1bnzp1VsWJFeXp6qnnz5nrvvfd048aNO4q3d+9ehYeHy9/fX+7u7goKCtKECROUnp5ud4zTp0+rYsWKMplMcnFxuaN1AAAAAMDDoF+/fpo4caKysrLUrl07PfXUUxo0aJDq1aun77//Xh06dNC0adMs5ly6dEnJyck6fvy4VbyAgAAtWbJEzs7OGj16tNq1a6ehQ4eqQYMG+uijj+Tv76/ly5fLZDJZzV22bJlq166tJUuWqG7duurfv7+eeOIJhYSE6Ny5c+rWrZvVWrZs2aLWrVurRo0a6tWrl5555hn17NlTQUFBGjhwoC5duqRx48bR8AEAAAAAAAAAAAAAAPAQoOGjgKioKA0ePFg7duxQmzZt1LNnT508eVKTJk1Sly5ddPXq1WLFW7Nmjdq1a6c1a9aoVq1a6tu3r5ycnDRnzhw1a9ZMx44dsyvOCy+8oEuXLt1JSgAAAADw0ImJidHKlSvVvn177dy5U/Hx8QoMDNSMGTO0bds2eXh4FCteeHi4du/erQEDBiglJUVxcXHKzc3VuHHjdPDgQdWrV8/mvBo1aujAgQOKjo6Wp6enPvvsM+3fv18tW7bU/Pnz9dlnn8nNzc1izgsvvKCJEyeqatWq2rdvn1avXq2vv/5abm5uGjlypL7++mvNmTPHZoMJAAAAAAAAAAAAAAAAyhaTYRhGSS/CEaxfv179+/eXl5eXtm/frpYtW0qSzp8/ry5duuj777/XK6+8opkzZ9oV78yZM6pfv76uXLmi2NhY891Xc3NzFRERoY8//lghISHavXt3kX+o849//EMvvPCCxo8frzlz5sjZ2Vk5OTl3n/D/CQwMlCSdOnXqnsUEgIcF76GlH+cQAO4O76OlH+cQAO4O76OlH+cQAO4O76OlH+cQAO4c76EAAAAAgAeBJ3z8n+nTp0uSoqOjzc0ekuTn56d58+ZJkubMmWP3kzbef/99XblyRV27djU3e0iSs7Oz5s+fL19fXyUlJWnLli2Fxvjvf/+r3//+92rXrp1efvnlO0kLAAAAAAAAAAAAAAAAAAAAAACUQjR8SDp9+rSSkpIkScOHD7ca79ixo2rUqKFr164pPj7erphxcXGFxvPy8lKfPn0kSevWrbM53zAMPffcc7p+/br++c9/ysmJUwUAAAAAAAAAAAAAAAAAAAAAwMOCLgJJ+/fvlyRVqlRJQUFBNvdp3bq1xb5FyczM1LFjxyzmFTfevHnztG3bNr3++utq3LjxbY8JAAAAAAAAAAAAAAAAAAAAAADKDho+JKWmpkqSatasWeg+NWrUsNi3KCdOnDC/LixmUfGOHz+uSZMmqVWrVvrjH/942+MBAAAAAAAAAAAAAAAAAAAAAICyxaWkF+AIMjMzJUmenp6F7uPl5SVJunz5st3xiopZWLy8vDxFRETo+vXr+uCDD+TicvenKDAwsNCxs2fPqlq1and9DAAAAAAAAAAAAAAAAAAAAAAAcO/whA8H8/777ysxMVF//vOf1bRp05JeDgAAAAAAAAAAAAAAAAAAAAAAKAE84UOSt7e3JCk7O7vQfbKysiRJPj4+dsfLj+nr62tXvOTkZP3pT39S8+bNNXnyZPsWb4dTp04VOlbU0z8AAAAAAAAAAAAAAAAAAAAAAEDJoOFDUu3atSVJaWlphe6TP5a/b1Fq1aplfn3y5EmbT+qwFe+zzz7Tr7/+quzsbHXr1s1i/19//VWSlJubq86dO0uSoqOj1bNnz9uuBwAAAAAAAAAAAAAAAAAAAAAAlC40fEhq0aKFJCkjI0OpqakKCgqy2mfPnj2SpJYtW942no+Pj+rVq6djx45pz549Nhs+iop37NgxHTt2rND427dvlyRFRETcdi0AAAAAAAAAAAAAAAAAAAAAAKD0cSrpBTiCwMBAhYSESJKWL19uNZ6YmKi0tDS5ubkpLCzMrpj9+/cvNF5WVpY2bdokSRowYIB5e1RUlAzDsPmVmpoqSXJ2djZvo+EDAAAAAAAAAAAAAAAAAAAAAICyiYaP/zNlyhRJ0owZM7Rv3z7z9oyMDEVGRkqSxo8fL19fX/NYXFycGjVqpNDQUKt4UVFRKl++vBISErRo0SLz9tzcXEVGRurixYsKCQlR9+7d71dKAAAAAAAAAAAAAAAAAAAAAACglKLh4//069dPEydOVFZWltq1a6ennnpKgwYNUr169fT999+rQ4cOmjZtmsWcS5cuKTk5WcePH7eKFxAQoCVLlsjZ2VmjR49Wu3btNHToUDVo0EAfffSR/P39tXz5cplMpgeVIgAAAAAAAIBSZvXq1ercubMqVqwoT09PNW/eXO+9955u3LhxR/H27t2r8PBw+fv7y93dXUFBQZowYYLS09Nt7p+bm6s1a9Zo8uTJ6t69uypXriyTySQXF5cij5Oenq4PP/xQw4cPV/369eXu7q7y5curUaNGmjhxok6cOHHbtaanpys6OlrBwcHy8vKSp6en6tatq2HDhmnv3r13kj4AAAAAAAAAAABQqtDwUUBMTIxWrlyp9u3ba+fOnYqPj1dgYKBmzJihbdu2ycPDo1jxwsPDtXv3bg0YMEApKSmKi4tTbm6uxo0bp4MHD6pevXr3KRMAAAAAAAAApV1UVJQGDx6sHTt2qE2bNurZs6dOnjypSZMmqUuXLrp69Wqx4q1Zs0bt2rXTmjVrVKtWLfXt21dOTk6aM2eOmjVrpmPHjlnNyczMVHh4uGbMmKHPP/9cFy5csOtYv//97zVy5EitXLlS5cuXV58+ffTkk0/qwoULmj17toKDg/X5558XOv+LL75Qw4YN9e677+ratWvq2bOnevToIV9fX61atUrffPNNsXIHAAAAAAAAAAAASiOTYRhGSS8CJScwMFCSdOrUqRJeCQCUPryHln6cQwC4O7yPln6cQwC4O/fzfXT9+vXq37+/vLy8tH37drVs2VKSdP78eXXp0kXff/+9XnnlFc2cOdOueGfOnFH9+vV15coVxcbGavTo0ZJuPsEjIiJCH3/8sUJCQrR7926LpxJnZ2drzJgxatGihVq2bKlKlSrpN7/5jZydnZWTk1Po8SZOnCg/Pz+NGjVK1atXN2/PysrSCy+8oBUrVqhSpUo6duyYKlasaDH3hx9+UOvWreXs7KwPP/xQ/fv3txg/d+6crly5ojp16tiVe1GohQBwd3gfLf04hwBw53gPBQAAAAA8CDzhAwAAAAAAAAAczPTp0/X/2bvzsKjr9f/jr0FlX5RIQgHBveOWuKShaeCWprmkKXWUFjVJDSuPaGGn7KiVpyOuqcfSLI8LiophKlomWYqKllaumOASgsrqgjC/P/wxXycWQUGQno/rmuuaeb/f9/25P3g1nxjm/rwlKSQkxNTsIUkuLi6aN2+eJGnOnDlKTU0tVr6ZM2cqKytLXbp0MTV7SFKVKlU0f/58OTk5KTY2Vlu2bDGLs7Oz0xdffKE33nhDTzzxhJycnIp1vFmzZmny5MlmzR6SZG9vr8WLF8vBwUEXL17UV199lS/2lVde0ZUrV7Rw4cJ8zR6S9NBDD5VKswcAAAAAAAAAAABQ0dHwAQAAAAAAAAAVyJkzZxQbGytJCggIyDffoUMHeXh46Nq1a4qKiipWzoiIiELz2dvbq0+fPpKktWvX3mnZxWZra6tGjRpJkhISEszmDhw4oJ07d8rDw0ODBw8u81oAAAAAAAAAAACAioyGDwAAAAAAAACoQOLi4iRJzs7O8vb2LnBN69atzdYWJT09XcePHzeLu5t8dys7O1unTp2SJLm5uZnNbd68WZLUsWNHGQwGbd68Wf/4xz80cuRITZkyRfv27Svz+gAAAAAAAAAAAICKomp5FwAAAAAAAAAA+D/x8fGSJE9Pz0LXeHh4mK0tSl5zRVE5S5Lvbi1evFjJycmysbHRk08+aTb3008/SZKqV6+url27Kjo62mx+8uTJeu6557R48WJZWVmVea0AAAAAAAAAAABAeWKHDwAAYGb16tXq3LmzatSoITs7O7Vo0UIffvihsrOz7zjn+vXr1adPHz300EOytLRUzZo19dhjj+m9997Lt/bbb7+VwWAo8vHJJ5/czSkCAAAAQIWWnp4uSbKzsyt0jb29vSQpLS2t2PmKylmSfHfj559/1vjx4yVJoaGhcnV1NZtPSUmRJC1atEi7du3S7NmzdebMGSUlJenTTz+Vo6OjvvzyS40dO7bYx3R3dy/0ce7cudI7OQAAAAAAAAAAAKCUscMHAAAwCQ4OVlhYmKpWrSo/Pz/Z29tr+/btmjBhgiIjI7VlyxbZ2NgUO9/169f1/PPPa/Xq1bKxsVH79u3l6uqq8+fP6/Dhw5o1a5YmT55cYKyrq6t69OhR4FyjRo3u6PwAAAAAAOUnMTFRvXv3VkZGhvr06aOQkJB8a4xGoyQpOztbc+bM0YgRI0xzL7zwguzs7PTss8/qv//9ryZOnCgvL697VT4AAAAAAAAAAABwz9HwAQAAJEnr1q1TWFiY7O3ttWPHDvn4+EiSkpOT5efnp5iYGIWGhmrGjBnFzjl8+HCtXr1affv21aJFi+Ti4mKay83N1Z49ewqNbdy4sZYsWXLH5wMAAAAA9ysHBwdJUmZmZqFrMjIyJEmOjo7FzpeX08nJ6a7y3Ynz58/L399fv//+u7p3765Vq1bJYDAUWmu1atX04osv5psfNGiQXn31VSUnJ+ubb77RCy+8cNtjJyYmFjrn7u5egrMAAAAAAAAAAAAA7i2L8i4AAABUDFOnTpUkhYSEmJo9JMnFxUXz5s2TJM2ZM0epqanFyrdt2zZ9/vnnatq0qVatWmXW7CFJFhYWateuXSlVDwAAAACVR96uFQkJCYWuyZsrzg4XderUMT0/ffr0XecrqaSkJPn5+eno0aPq0qWL1q1bJysrqwLX1q1bV5Lk4eGhqlULvl+Rt7e3JOncuXOlXisAAAAAAAAAAABQkdDwAQAAdObMGcXGxkqSAgIC8s136NBBHh4eunbtmqKiooqVc/bs2ZKk4OBgVatWrfSKBQAAAIBKrmXLlpKklJQUxcfHF7hm7969kmTWsF8YR0dH1a9f3yzubvKVxIULF+Tn56dff/1V/v7+2rBhg6ytrQtd36pVK0k3z70wycnJkiR7e/tSrRUAAAAAAAAAAACoaGj4AAAAiouLkyQ5Ozub7pT6Z61btzZbW5ScnBxt27ZNkvT444/r/PnzmjlzpkaNGqXg4GAtXbpUGRkZReb4448/9N5772nkyJF67bXXNH/+/ELvRAsAAAAAlYm7u7vatGkjSVq+fHm++ZiYGCUkJMjKyko9e/YsVs5+/foVmi8jI0ORkZGSpP79+99p2fkkJyfLz89Phw8flr+/vyIjI2VjY1NkTM+ePWVra6vU1FTTjQludfToUf3++++SpLZt25ZarQAAAAAAAAAAAEBFRMMHAAAw3THW09Oz0DUeHh5ma4ty8uRJU0PHjz/+qAYNGmjcuHH65JNPFBYWpsDAQNWtW1fbt28vNMdvv/2md955RwsXLtSsWbMUFBSkevXq6fXXX9eNGzdKcnoAAAAAcN+ZNGmSJGn69Onav3+/aTwlJUVBQUGSpNGjR8vJyck0FxERocaNG8vf3z9fvuDgYNna2io6OlqLFi0yjefk5CgoKEiXL19WmzZt1K1bt1Kp/+LFi/L399ehQ4fUpUuXYjV7SJKDg4PeeOMNSdKoUaN09uxZ01xKSopefvll5ebmqm3btmrXrl2p1AoAAAAAAAAAAABUVFXLuwAAAFD+0tPTJUl2dnaFrrG3t5ckpaWl3TZfSkqK6flLL72kxx57TDNmzFDjxo114sQJTZo0SVFRUXr66ae1f/9+NWjQwLTeyclJwcHB6tevnxo2bChHR0edOHFCn332mebMmaP//Oc/ysjI0MKFC4t1bu7u7oXOnTt3Tm5ubsXKAwAAAAD3Ut++fTV27FjNmjVL7dq1k7+/v+zs7LRt2zZdvnxZvr6+mjJlillMamqqjhw5oqtXr+bLV6tWLS1ZskRDhgzRiBEjtHjxYnl5eSk2NlYnT56Uq6urli9fLoPBkC82KCjI1HRy7do1STcbRW5tuOjVq5dCQ0NNr19++WX99NNPMhgMcnZ21qhRowo9z759+5qNvf3229q7d682bdqkhx9+WO3atVPVqlX1448/6uLFi6pTp45WrFhRvB8kAAAAAAAAAAAAcB+j4QMAAJQ6o9Foel67dm1t3rxZVlZWkqQWLVpow4YNeuSRR3To0CFNnz5dixcvNq1v2bKlWrZsaZavWbNm+vjjj9WhQwcNGDBAixYtUlBQkB555JF7cj4AAAAAUB7CwsLk6+uruXPnateuXcrOzla9evUUEhKicePGydLSskT5Bg4cqLp162rq1KnauXOn4uLi5ObmpldffVWhoaFydXUtMO6XX37R7t27843fOta4cWOzuYsXL0q6+fvhqlWrCq3Jy8srX8OHpaWlNm7cqAULFmjJkiXatWuXbty4IW9vb73yyit644035OzsXNzTBgAAAAAAAAAAAO5bNHwAAAA5ODhIkjIzMwtdk5GRIUlydHQsdj5JCgwMNDV75KlSpYpGjhypMWPGKDo6uth19u/fX4888ogOHDigyMjIYjV8JCYmFjpX1O4fAAAAAFARDBo0SIMGDSrW2sDAQAUGBha5plWrVlqzZk2Javj2229LtP5OY25lYWGhUaNGFbozCAAAAAAAAAAAAPBXYFHeBQAAgPLn5eUlSUpISCh0Td5c3trb5TMYDJKkunXrFrgmb/zcuXMlqFR6+OGHJRXdyAEAAAAAAAAAAAAAAAAAAHC/o+EDAACoZcuWkqSUlBTFx8cXuGbv3r2SJB8fn9vms7e3V6NGjSRJycnJBa7JG7e3ty9RrSkpKZLMdxEBAAAAAAAAAAAAAAAAAACobGj4AAAAcnd3V5s2bSRJy5cvzzcfExOjhIQEWVlZqWfPnsXKOXDgQElSdHR0gfNbt26VJLVt27bYdZ45c0Y7d+4scRwAAAAAAAAAAAAAAAAAAMD9hoYPAAAgSZo0aZIkafr06dq/f79pPCUlRUFBQZKk0aNHy8nJyTQXERGhxo0by9/fP1++sWPHqkaNGoqKitKCBQvM5lasWKEvv/zStO5WYWFhBe4K8tNPP6l37966cuWK6tWrp6effvoOzxQAAAAAAAAAAAAAAAAAAKDio+EDAABIkvr27auxY8cqIyND7dq105NPPqlnnnlG9evX188//yxfX19NmTLFLCY1NVVHjhzRiRMn8uVzcXHRypUrZW1trVdeeUVNmzbVwIED5ePjoyFDhshoNCo0NDTfjiHvvPOOHnroIbVu3VoDBw7Us88+q9atW6tly5aKi4uTp6enIiMjZWVlVaY/DwAAAAAAAABl68iRI5o9e7YCAwPVrFkzVa1aVQaDQe+//36B63Nzc7Vr1y5NnjxZHTp00AMPPKBq1arJxcVFXbt21Zdffimj0Vjs40dFRclgMMhgMKhLly5Frj1+/LgCAwPl7u4uKysrubu7KzAwUCdPniwyLj09XZMmTVKjRo1kY2MjFxcX9erVS9u3by8yLjc3VwsWLNCjjz4qBwcHOTg46NFHH9XChQtLdI4AAAAAAAAA7m9Vy7sAAABQcYSFhcnX11dz587Vrl27lJ2drXr16ikkJETjxo2TpaVlifJ17dpVBw8e1NSpUxUdHa3169fL0dFRPXv21GuvvaZu3brli3nrrbf0/fff6/Dhw9q6dasyMzPl6Oioxx57TE8//bRGjhwpBweH0jplAAAAAAAAAOVk/vz5CgsLK/b6kydPytfXV5Lk7Oys1q1bq0aNGjp58qSio6MVHR2tFStWaM2aNbf9LPPSpUsaPny4DAbDbRsovv/+e3Xr1k1ZWVlq0qSJOnTooEOHDmnp0qUKDw9XdHS02rVrly8uKSlJHTt21NGjR+Xm5qbevXvrjz/+0KZNm7Rp0yaFhYVpzJgx+eJycnI0aNAgrV27Vra2tqYdlqOjozVy5EjTeVpYcG8/AAAAAAAAoLKj4QMAAJgZNGiQBg0aVKy1gYGBCgwMLHJNw4YNtWTJkmIff/z48Ro/fnyx1wMAAAAAAAC4PzVt2lRvvvmmWrZsKR8fH02dOlXLli0rdL3BYJCfn5/Gjx+vrl27qkqVKqa5HTt2qFevXtq4caOmT5+uyZMnF3nsMWPG6I8//tArr7yi+fPnF7ouKytLgwYNUlZWliZOnKipU6ea5iZNmqRp06Zp0KBBOnLkiGxsbMxiR4wYoaNHj8rf318bNmyQra2tpJs7i/Tp00fBwcHq1KmTmjdvbhY3e/ZsrV27VrVr19bOnTvl7e0tSYqPj1eHDh20evVqPf744xo9enSR5wgAAAAAAADg/sdtXwAAAAAAAAAAAADccy+//LI++ugjBQQEqHHjxrfdsaJevXratm2bevToYdbsIUmdOnVSSEiIJOnzzz8vMk9ERIS+/PJLvf7662rbtm2Ra5csWaKzZ8+qYcOGev/9983m3n//fTVs2FAJCQn5jvnLL79o/fr1qlKlihYvXmxq9pCknj17KjAwULm5uZo2bZpZXG5urj744ANJ0gcffGBq9pAkb29v09y0adOUm5tbZO0AAAAAAAAA7n80fAAAAAAAAAAAAAC477Vs2VKSlJCQUOia5ORkvfLKK2rUqJHee++92+aMiIiQJA0ePDhfQ4qFhYWeffZZSdLatWsLjPP19VWdOnXy5Q0ICJAkRUZGKjs72zT+ww8/6Pz587KystKAAQPyxQ0YMECWlpY6e/asdu/efdv6AQAAAAAAANzfaPgAAAAAAAAAAAAAcN87duyYJMnNza3QNaNGjVJycrIWL14sa2vr2+aMi4uTJLVu3brA+bzxvHUljcvMzDTVfWtckyZNCqzPxsZGTZo0KfCYAAAAAAAAACofGj4AAAAAAJXO6tWr1blzZ9WoUUN2dnZq0aKFPvzwQ7O7ppbEvn37NHDgQLm6usra2lre3t4aM2aMkpKSbht78OBBvfjii/L29pa1tbVq1KihZs2aadSoUUpJSTFbm5SUpM8//1wBAQFq0KCBrK2tZWtrq8aNG2vs2LE6derUHdUPAAAAAJVdVlaWZs2aJUkF7owhSStWrFB4eLjGjBkjX1/f2+ZMT083/d7m6elZ4BoPDw9J0oULF5SZmWkaj4+PLzLO0dFRjo6OZmuLE3frMW+NAwAAAAAAAFA50fABAAAAAKhUgoODNWjQIH3//fdq27atevToodOnT2vChAny8/PTlStXSpQvPDxc7dq1U3h4uOrUqaOnn35aFhYWmjNnjpo3b67jx48XGjtjxgy1atVKS5cu1YMPPqh+/fqpffv2unr1qj755BOdO3fObP3rr7+uYcOGaeXKlbK1tVWfPn30xBNP6OLFi5o9e7aaNm2qrVu33tHPBQAAAAAqs6CgIMXHx6tWrVqaNGlSvvnz58/r1VdfVb169TR16tRi5UxPTzc9t7OzK3CNvb296XlaWlq+2MLibo0tjbiiuLu7F/r48++lAAAAAAAAACqWquVdAAAAAAAApWXdunUKCwuTvb29duzYIR8fH0lScnKy/Pz8FBMTo9DQUM2YMaNY+c6ePathw4bpxo0bWrBggUaMGCFJysnJUWBgoL744gsFBARo9+7dMhgMZrGfffaZxo8fr0aNGik8PFxNmzY1mz98+LDc3d3NxpydnfXuu+/qpZdeUu3atU3jGRkZGj58uFasWKHBgwfr+PHjqlGjRol/PgAAAABQGU2ZMkVLly6VtbW1Vq1apQceeCDfmhEjRujSpUtas2aNbG1ty6FKAAAAAAAAACg5dvgAAAAAAFQaeXdpDQkJMTV7SJKLi4vmzZsnSZozZ45SU1OLlW/mzJnKyspSly5dTM0eklSlShXNnz9fTk5Oio2N1ZYtW8ziLl26pODgYNnY2CgqKipfs4ckNWnSRE5OTmZjs2bN0uTJk82aPaSbd29dvHixHBwcdPHiRX311VfFqh8AAAAAKruPP/5YkydPlpWVlSIiIuTr65tvzdKlSxUZGalXXnlFnTt3LnZuBwcH0/PMzMwC12RkZJieOzo65ostLO7W2NKIK0piYmKhDzc3t2LlAAAAAAAAAFA+aPgAAAAAAFQKZ86cUWxsrCQpICAg33yHDh3k4eGha9euKSoqqlg5IyIiCs1nb2+vPn36SJLWrl1rNrd06VKlpaVpwIABqlu3bonOozC2trZq1KiRJCkhIaFUcgIAAADA/Wz27Nl64403ZGlpqTVr1qhHjx4Frsv73S42NladO3c2e0yfPl2StG/fPtPY+fPnJd1svnB2dpYknT59usDceb+fubi4yM7OzjTu5eVVZFxaWprS0tLM1hYn7tZj3hoHAAAAAAAAoHKqWt4FAAAAAABQGuLi4iRJzs7O8vb2LnBN69atlZCQoLi4OA0ZMqTIfOnp6Tp+/LgprrB8y5YtMx07z+bNmyVJjz/+uK5cuaLw8HDFxsYqJydHDRo00IABA+Th4VGi88vOztapU6ckiTuwAgAAAPjLmzt3rsaOHWtq9ujVq9dtY/bu3Vvo3OXLl7Vjxw5J0tWrV03jPj4+io6O1t69e9W7d+9Cc966y2Te67Vr1xZ6zLxxOzs7NWzY0CxOkg4fPqyrV6/K2traLO7KlSs6fPhwgccEAAAAAAAAUPmwwwcAAAAAoFKIj4+XJHl6eha6Jq/JIm9tUfKaK4rKWVi+n376SdLNppGmTZtq6NChmj17tubNm6dx48apfv36+vjjj29bw60WL16s5ORk2djY6MknnyxRLAAAAABUJp988olGjx5tavZ46qmnily/bt06GY3GAh+fffaZJMnf3980duvOGf369ZMkrVixQrm5uWZ5c3NztXLlSklS//79zeb69u0rSfr+++8L3K1j+fLlkqTevXurWrVqpvH27dvroYce0rVr17RmzZp8cWvWrNH169dVq1YtPfroo0WeNwAAAAAAAID7Hw0fAAAAAIBKIT09XdLNu6MWxt7eXpKUlpZW7HxF5SwsX0pKiiQpJCREOTk5ioyM1KVLl3TixAlNmDBB2dnZeuONN/S///3vtnVI0s8//6zx48dLkkJDQ+Xq6lqsOElyd3cv9HHu3Lli5wEAAACAimDRokUKCgoqdrPH3QoMDFStWrV09OhRhYaGms2Fhobq6NGjcnd319ChQ83mmjRpoqefflo5OTl66aWXdOXKFdPcpk2btGTJEllYWGjixIlmcRYWFpowYYIkacKECWY3GIiPj1dISIgkaeLEibKw4E+9AAAAAAAAQGVXtbwLAAAAAACgsjEajZJu3u01KipKf/vb3yRJ1atX1/Tp05WWlqb58+fr7bff1pAhQ4rMlZiYqN69eysjI0N9+vQxfbkHAAAAAO53+/fvV1BQkOn1iRMnJEkLFizQxo0bTeMRERFyc3PTgQMHNHLkSBmNRtWtW1fh4eEKDw8vMPeSJUtKpUZbW1utWrVK3bp109SpU7VhwwY1bdpUhw4d0qFDh2RnZ6fVq1fLxsYmX+zChQv1yy+/KDo6WvXq1VPHjh2VlJSkHTt2yGg0KiwsTM2bN88XN2bMGH333XeKiIhQ06ZN1aVLF0lSdHS0srKy9Mwzz5j93AAAAAAAAABUXjR8AAAAAAAqBQcHB0lSZmZmoWsyMjIkSY6OjsXOl5fTycmp2PkcHByUkpKijh07mpo9bhUUFKT58+fr5MmTio+Pl7e3d4E1nD9/Xv7+/vr999/VvXt3rVq1SgaD4ba13yoxMbHQOXd39xLlAgAAAIDSlJaWpt27d+cbT0xMNPtd5tq1a5Kky5cvmxrsf/vtN/3222+F5i6thg9J8vX11cGDBzVlyhRFR0drzZo1evDBBzV06FBNnjxZ9erVKzCuZs2a2rt3r6ZNm6Y1a9Zo/fr1srOzU/fu3fXmm2/K39+/wLgqVaooPDxcixYt0n//+19t27ZN0s1dQ1566SWNGDGixL8bAgAAAAAAALg/0fABAAAAAKgUvLy8JEkJCQmFrsmby1tblDp16pienz59Ws2aNSt2vrp16yolJUV169YtMPet4+fOnSuw4SMpKUl+fn46evSounTponXr1snKyuq2dQMAAADA/aJz586mBo6yWF8cgYGBCgwMvO26+vXra+nSpSXO7+joqGnTpmnatGklirOwsNDIkSM1cuTIEh8TAAAAAAAAQOVhUd4FAAAAAABQGlq2bClJSklJUXx8fIFr9u7dK0ny8fG5bT5HR0fVr1/fLK64+Vq1aiVJSk5OLjDu1nF7e/t88xcuXJCfn59+/fVX+fv7a8OGDbK2tr5tzQAAAAAAAAAAAAAAAKg8aPgAAAAAAFQK7u7uatOmjSRp+fLl+eZjYmKUkJAgKysr9ezZs1g5+/XrV2i+jIwMRUZGSpL69+9vNjdw4EBJ0o8//qjMzMx8sVu3bpV0s9nj4YcfNptLTk6Wn5+fDh8+LH9/f0VGRsrGxqZY9QIAAAAAAAAAAAAAAKDyoOEDAAAAAFBpTJo0SZI0ffp07d+/3zSekpKioKAgSdLo0aPl5ORkmouIiFDjxo3l7++fL19wcLBsbW0VHR2tRYsWmcZzcnIUFBSky5cvq02bNurWrZtZnJ+fnzp27KikpCSNHj1a165dM8399NNPevvttyVJo0aNUrVq1UxzFy9elL+/vw4dOqQuXbrQ7AEAAAAAAAAAAAAAAPAXVrW8CwAAAAAAoLT07dtXY8eO1axZs9SuXTv5+/vLzs5O27Zt0+XLl+Xr66spU6aYxaSmpurIkSO6evVqvny1atXSkiVLNGTIEI0YMUKLFy+Wl5eXYmNjdfLkSbm6umr58uUyGAz5Yr/88ks9/vjjWrJkibZu3ao2bdro4sWL+vHHH3X9+nV17do1Xy0vv/yyfvrpJxkMBjk7O2vUqFGFnmffvn3v/AcFAAAAAAAAAAAAAACACo+GDwAAAABApRIWFiZfX1/NnTtXu3btUnZ2turVq6eQkBCNGzdOlpaWJco3cOBA1a1bV1OnTtXOnTsVFxcnNzc3vfrqqwoNDZWrq2uBcR4eHjpw4ICmT5+utWvXatOmTbK0tJSPj4+GDRum4cOHq0qVKmYxFy9elCQZjUatWrWq0Jq8vLxo+AAAAAAAAAAAAAAAAKjkDEaj0VjeRaD8uLu7S5ISExPLuRIAuP/wHnr/498QAO4O76P3P/4NAeDu8D56/+PfEADuDu+j9z/+DQHgzvEeCgAAAAC4FyzKuwAAAAAAAAAAAAAAAAAAAAAAAACYo+EDAAAAAAAAAAAAAAAAAAAAAACggqHhAwAAAAAAAAAAAAAAAAAAAAAAoIKh4QMAAAAAAAAAAAAAAAAAAAAAAKCCoeEDAAAAAAAAAAAAAAAAAAAAAACggqHhAwAAAAAAAAAAAAAAAAAAAAAAoIKh4QMAAAAAAAAAAAAAAAAAAAAAAKCCoeEDAAAAAAAAAAAAAAAAAAAAAACggqHh409Wr16tzp07q0aNGrKzs1OLFi304YcfKjs7+47y7du3TwMHDpSrq6usra3l7e2tMWPGKCkpqcD1p0+f1oIFC9S/f3/VqVNHVlZWsre3V4sWLTRp0iRduHDhbk4PAAAAAAAAAAAAAAAAAAAAAADcB2j4uEVwcLAGDRqk77//Xm3btlWPHj10+vRpTZgwQX5+frpy5UqJ8oWHh6tdu3YKDw9XnTp19PTTT8vCwkJz5sxR8+bNdfz48XwxAQEBeuWVVxQZGSlXV1f169dPjz32mE6dOqVp06apSZMmOnDgQCmdMQAAAAAAAAAAAAAAAAAAAAAAqIho+Pj/1q1bp7CwMNnb22v37t3avHmz1qxZo2PHjqlZs2aKiYlRaGhosfOdPXtWw4YN040bN7RgwQLt2bNHK1eu1NGjR/X888/rjz/+UEBAgIxGo1lc7dq19Z///Efnz5/Xnj17tGLFCm3ZskXHjx9X586ddeHCBQ0aNEg5OTml/SMAAAAAAAAAAAAAAAAAAAAAAAAVBA0f/9/UqVMlSSEhIfLx8TGNu7i4aN68eZKkOXPmKDU1tVj5Zs6cqaysLHXp0kUjRowwjVepUkXz58+Xk5OTYmNjtWXLFrO4lStXKjg4WA888IDZ+IMPPqhly5ZJko4dO6Yffvih5CcJAAAAAAAA4L6yevVqde7cWTVq1JCdnZ1atGihDz/8UNnZ2XeUb9++fRo4cKBcXV1lbW0tb29vjRkzRklJSQWuz8nJUXh4uCZOnKhu3brpgQcekMFgUNWqVYs8TlJSkj7//HMFBASoQYMGsra2lq2trRo3bqyxY8fq1KlTxa45JydH7du3l8FgkMFgUExMTElOGQAAAAAAAAAAALhv0fAh6cyZM4qNjZUkBQQE5Jvv0KGDPDw8dO3aNUVFRRUrZ0RERKH57O3t1adPH0nS2rVri12nu7u7XFxcJEkJCQnFjgMAAAAAAABw/wkODtagQYP0/fffq23bturRo4dOnz6tCRMmyM/PT1euXClRvvDwcLVr107h4eGqU6eOnn76aVlYWGjOnDlq3ry5jh8/ni8mPT1dAwcO1PTp07V161ZdvHixWMd6/fXXNWzYMK1cuVK2trbq06ePnnjiCV28eFGzZ89W06ZNtXXr1mLlmjFjhn788UcZDIYSnS8AAAAAAAAAAABwv6PhQ1JcXJwkydnZWd7e3gWuad26tdnaoqSnp5v+OJoXdzf58iQnJ+vSpUuSJDc3t2LHAQAAAAAAALi/rFu3TmFhYbK3t9fu3bu1efNmrVmzRseOHVOzZs0UExOj0NDQYuc7e/ashg0bphs3bmjBggXas2ePVq5cqaNHj+r555/XH3/8oYCAABmNRrO4atWq6bnnntOMGTO0fft2HThwoFjHc3Z21rvvvqvTp0/r4MGDWrVqlb766iudPHlSgwcPVmZmpgYPHmz6vLMwhw8f1jvvvKOnnnpKnp6exT5fAAAAAAAAAAAAoDKg4UNSfHy8JBX5B0MPDw+ztUU5deqU6XlhOUuSL8+MGTOUk5MjNzc3PfbYY8WOAwAAAAAAAHB/mTp1qiQpJCREPj4+pnEXFxfNmzdPkjRnzhylpqYWK9/MmTOVlZWlLl26aMSIEabxKlWqaP78+XJyclJsbKy2bNliFmdnZ6cvvvhCb7zxhp544gk5OTkV63izZs3S5MmTVbt2bbNxe3t7LV68WA4ODrp48aK++uqrQnPcuHFDw4YNk42NjRYsWFCs4wIAAAAAAAAAAACVCQ0furkjh3Tzj5eFsbe3lySlpaUVO19ROUuST5Kio6M1Y8YMSdK///1vWVpaFitOktzd3Qt9nDt3rth5AAAAAAAAAJS9M2fOKDY2VpIUEBCQb75Dhw7y8PDQtWvXFBUVVaycERERheazt7dXnz59JElr166907KLzdbWVo0aNZIkJSQkFLpu6tSp2rdvnz7++GPVqlWrzOsCAAAAAAAAAAAAKhoaPu4DP//8swYOHKicnByNGTNGQ4YMKe+SAACV2OrVq9W5c2fVqFFDdnZ2atGihT788ENlZ2ffcc7169erT58+euihh2RpaamaNWvqscce03vvvVes+IMHD8rS0lIGg0H169e/4zoAAAAA4H4QFxcnSXJ2dpa3t3eBa1q3bm22tijp6ek6fvy4Wdzd5Ltb2dnZpl2S3dzcClxz4MABvf/+++revbteeOGFMq8JAAAAAAAAAAAAqIiqlncBFYGDg4MkKTMzs9A1GRkZkiRHR8di58vL6eTkdMf5fvvtN3Xp0kWXL1/WCy+8oLCwsNse/88SExMLnXN3dy9xPgBA5RUcHKywsDBVrVpVfn5+sre31/bt2zVhwgRFRkZqy5YtsrGxKXa+69ev6/nnn9fq1atlY2Oj9u3by9XVVefPn9fhw4c1a9YsTZ48+bY5hg4dqhs3btzt6QEAAADAfSE+Pl6S5OnpWegaDw8Ps7VFyWuuKCpnSfLdrcWLFys5OVk2NjZ68skn881fv35dw4YNk7W1tRYuXFjm9QAAAAAAAAAAAAAVFQ0fkry8vCRJCQkJha7Jm8tbW5Q6deqYnp8+fVrNmjW7o3xHjx6Vn5+fkpKSNHToUP33v/+VwWC47fEBALgT69atU1hYmOzt7bVjxw75+PhIkpKTk+Xn56eYmBiFhoZqxowZxc45fPhwrV69Wn379tWiRYvk4uJimsvNzdWePXtum+O9997TTz/9pNGjR2vOnDklPzEAAAAAuM+kp6dLkuzs7ApdY29vL0lKS0srdr6icpYk3934+eefNX78eElSaGioXF1d861599139dNPP+mTTz4psumluIq66c25c+cK3WUEAAAAAAAAAAAAKG8W5V1ARdCyZUtJUkpKSqF3sNu7d68kmb78WhRHR0fVr1/fLK6k+Y4dO6YnnnhC586d0/PPP6/PPvtMFhb8cwEAys7UqVMlSSEhIWbXJxcXF82bN0+SNGfOHKWmphYr37Zt2/T555+radOmWrVqlVmzhyRZWFioXbt2ReaIjY3V9OnTNXDgQA0YMKAkpwMAAAAAqGASExPVu3dvZWRkqE+fPgoJCcm3Zs+ePfrggw/k5+enESNGlEOVAAAAAAAAAAAAQMVBB4Fu3uGtTZs2kqTly5fnm4+JiVFCQoKsrKzUs2fPYuXs169fofkyMjIUGRkpSerfv3+++RMnTuiJJ57Q2bNn9fzzz2vp0qU0ewAAytSZM2cUGxsrSQoICMg336FDB3l4eOjatWuKiooqVs7Zs2dLkoKDg1WtWrUS13T16lUNGzZMNWrUYGcPAAAAAH8pDg4OkqTMzMxC12RkZEi6efOZ4uYrKmdJ8t2J8+fPy9/fX7///ru6d++uVatW5dvN+OrVqwoMDJS1tXWp7nacmJhY6IPdPQAAAAAAAAAAAFCR0UXw/02aNEmSNH36dO3fv980npKSoqCgIEnS6NGj5eTkZJqLiIhQ48aN5e/vny9fcHCwbG1tFR0drUWLFpnGc3JyFBQUpMuXL6tNmzbq1q2bWVx8fLyeeOIJnTlzRn//+99p9gAA3BNxcXGSJGdnZ3l7exe4pnXr1mZri5KTk6Nt27ZJkh5//HGdP39eM2fO1KhRoxQcHKylS5eavkxUmNDQUP3666+aNWuWatasWZLTAQAAAID7mpeXlyQpISGh0DV5c3lri1KnTh3T89OnT991vpJKSkqSn5+fjh49qi5dumjdunWysrLKt+63337Tr7/+KhsbG73wwgvq3Lmz2eP8+fOSpDFjxqhz586aPn16qdcKAAAAAAAAAAAAVCRVy7uAiqJv374aO3asZs2apXbt2snf3192dnbatm2bLl++LF9fX02ZMsUsJjU1VUeOHNHVq1fz5atVq5aWLFmiIUOGaMSIEVq8eLG8vLwUGxurkydPytXVVcuXL893l7oBAwaYdhORpBdffLHAel9++WV16NChlM4eAPBXFx8fL0ny9PQsdI2Hh4fZ2qKcPHnS1NDx448/KigoKF+Dx/jx47VixQr5+fnli9+1a5c+/vhjPf300xoyZEixzwMAAAAAKoOWLVtKunkzmvj4+AIb8/fu3StJ8vHxuW0+R0dH1a9fX8ePH9fevXvVrFmzu8pXEhcuXJCfn59+/fVX+fv7a8OGDbK2ti4yJjk5WTt27Ch0/sCBA5LKpjkFAAAAAAAAAAAAqEjYOuIWYWFhWrlypdq3b69du3YpKipK7u7umj59urZv3y4bG5sS5Rs4cKB2796t/v376+TJk4qIiFBOTo5effVVHTx4UPXr188Xc/HiRUnStWvXtGzZMi1durTAx/Hjx0vlnAEAkKT09HRJkp2dXaFr7O3tJUlpaWm3zZeSkmJ6/tJLL6lVq1aKjY1Venq6Dhw4oJ49e+rChQt6+umndezYMbPYrKwsBQYGysnJSfPnz7+T0zEIiGKAAAEAAElEQVTj7u5e6OPcuXN3nR8AAAAASpu7u7vatGkjSVq+fHm++ZiYGNNNY3r27FmsnP369Ss0X0ZGhiIjIyVJ/fv3v9Oy80lOTpafn58OHz4sf39/RUZGFvkZ6yOPPCKj0VjoI2+nkp07d8poNGrJkiWlVisAAAAAAAAAAABQEdHw8SeDBg3Sjh07lJqaqqysLP3888+aMGGCLC0t860NDAyU0WjUqVOnCs3XqlUrrVmzRklJSbp27ZpOnTqlOXPmyNXVtcD1p06dKvKPmnmPwMDAUjpjAABKn9FoND2vXbu2Nm/erNatW8ve3l4tWrTQhg0b1LRpU2VkZGj69OlmsSEhITp27JhmzpwpNze3e106AAAAAFQIkyZNkiRNnz5d+/fvN42npKQoKChIkjR69Gg5OTmZ5iIiItS4cWP5+/vnyxccHCxbW1tFR0dr0aJFpvGcnBwFBQXp8uXLatOmjbp161Yq9V+8eFH+/v46dOiQunTpcttmDwAAAAAAAAAAAAD5VS3vAgAAQPlzcHCQJGVmZha6JiMjQ5Lk6OhY7HzSzQZJKysrs/kqVapo5MiRGjNmjKKjo03j3377rebMmaOePXtq6NChJTqHwiQmJhY65+7uXirHAAAAAIDS1rdvX40dO1azZs1Su3bt5O/vLzs7O23btk2XL1+Wr6+vpkyZYhaTmpqqI0eO6OrVq/ny1apVS0uWLNGQIUM0YsQILV68WF5eXoqNjdXJkyfl6uqq5cuXy2Aw5IsNCgoyNZ1cu3ZN0s1GkXbt2pnW9OrVS6GhoabXL7/8sn766ScZDAY5Oztr1KhRhZ5n3759S/zzAQAAAAAAAAAAAP4KaPgAAADy8vKSJCUkJBS6Jm8ub+3t8hkMBhmNRtWtW7fANXnj586dM42tW7dORqNRp0+fVufOnc3WX758WZJ05swZ09zMmTP1yCOP3LYeAAAAALgfhYWFydfXV3PnztWuXbuUnZ2tevXqKSQkROPGjStwV+KiDBw4UHXr1tXUqVO1c+dOxcXFyc3NTa+++qpCQ0ML3ZX4l19+0e7du/ON3zrWuHFjs7mLFy9KurkD5KpVqwqtycvLi4YPAAAAAAAAAAAAoBA0fAAAALVs2VKSlJKSovj4eHl7e+dbs3fvXkmSj4/PbfPZ29urUaNG+u2335ScnFzgmrxxe3v7fHOHDh0qNPfVq1e1Y8cOSf/XBAIAAAAAldWgQYM0aNCgYq0NDAxUYGBgkWtatWqlNWvWlKiGb7/9tkTr7zTmdk6dOlXqOQEAAAAAAAAAAICKzKK8CwAAAOXP3d1dbdq0kSQtX74833xMTIwSEhJkZWWlnj17FivnwIEDJUnR0dEFzm/dulWS1LZtW9PYzJkzZTQaC3x88803kqR69eqZxv68CwgAAAAAAAAAAAAAAAAAAEBlQcMHAACQJE2aNEmSNH36dO3fv980npKSoqCgIEnS6NGj5eTkZJqLiIhQ48aN5e/vny/f2LFjVaNGDUVFRWnBggVmcytWrNCXX35pWgcAAAAAAAAAAAAAAAAAAABzNHwAAABJUt++fTV27FhlZGSoXbt2evLJJ/XMM8+ofv36+vnnn+Xr66spU6aYxaSmpurIkSM6ceJEvnwuLi5auXKlrK2t9corr6hp06YaOHCgfHx8NGTIEBmNRoWGhhZ7xxAAAAAAAAAAAAAAAAAAAIC/Eho+AACASVhYmFauXKn27dtr165dioqKkru7u6ZPn67t27fLxsamRPm6du2qgwcPatiwYbp8+bLWr1+v06dPq2fPntq8ebPee++9MjoTAAAAAAAAAAAAAAAAAACA+xsNHwAAwMygQYO0Y8cOpaamKisrSz///LMmTJggS0vLfGsDAwNlNBp16tSpQvM1bNhQS5YsUWJioq5fv67k5GR99dVX6tatW4nq6ty5s4xGo44fP17SUwIAAAAAAABQAR05ckSzZ89WYGCgmjVrpqpVq8pgMOj9998vcH1ubq527dqlyZMnq0OHDnrggQdUrVo1ubi4qGvXrvryyy9lNBoLjI2Li9O0adPk7+8vV1dXVatWTTVq1FDHjh01d+5cZWdnF1nr8ePHFRgYKHd3d1lZWcnd3V2BgYE6efJkkXHp6emaNGmSGjVqJBsbG7m4uKhXr17avn17kXG5ublasGCBHn30UTk4OMjBwUGPPvqoFi5cWOg5AgAAAAAAAKh8qpZ3AQAAAAAAAAAAAAD+eubPn6+wsLBirz958qR8fX0lSc7OzmrdurVq1KihkydPKjo6WtHR0VqxYoXWrFljdgObGzduyMfHR5Jkb2+vNm3ayNXVVYmJifrhhx8UExOjzz//XJs3b1b16tXzHff7779Xt27dlJWVpSZNmqhDhw46dOiQli5dqvDwcEVHR6tdu3b54pKSktSxY0cdPXpUbm5u6t27t/744w9t2rRJmzZtUlhYmMaMGZMvLicnR4MGDdLatWtla2srf39/SVJ0dLRGjhxpOk8LC+7tBwAAAAAAAFR2fAoIAAAAAAAAAAAA4J5r2rSp3nzzTX355Zf69ddf9fe//73I9QaDQX5+ftq0aZOSkpK0efNmrVixQnv27NG3334rOzs7bdy4UdOnT88X26pVK61atUrJycnavn27/ve//2nnzp2Ki4uTm5ub9uzZo9dffz1fXFZWlgYNGqSsrCxNnDhRhw4d0ooVK3To0CFNnDhRmZmZGjRokK5cuZIvdsSIETp69Kj8/f11/PhxrVq1Sjt27NDGjRtlYWGh4OBg/fTTT/niZs+erbVr16p27do6dOiQNmzYoA0bNujw4cOqVauWVq9erXnz5pXgJw0AAAAAAADgfkXDBwAAAAAAAAAAAIB77uWXX9ZHH32kgIAANW7c+LY7VtSrV0/btm1Tjx49VKVKFbO5Tp06KSQkRJL0+eefm81VrVpVe/fu1cCBA2VlZWU216xZM3344YeSpBUrVig7O9tsfsmSJTp79qwaNmyo999/32zu/fffV8OGDZWQkJDvmL/88ovWr1+vKlWqaPHixbK1tTXN9ezZU4GBgcrNzdW0adPM4nJzc/XBBx9Ikj744AN5e3ub5ry9vU1z06ZNU25ubhE/LQAAAAAAAACVAQ0fAAAAAAAAAAAAAO57LVu2lCQlJCTcUdyVK1eUnJxsNhcRESFJGjx4cL6GFAsLCz377LOSpLVr1xYY5+vrqzp16uQ7ZkBAgCQpMjLSrMnkhx9+0Pnz52VlZaUBAwbkixswYIAsLS119uxZ7d69u0TnCQAAAAAAAOD+Q8MHAAAAAKDSWb16tTp37qwaNWrIzs5OLVq00IcffpjvTq3FtW/fPg0cOFCurq6ytraWt7e3xowZo6SkpNvGHjx4UC+++KK8vb1lbW2tGjVqqFmzZho1apRSUlLyrY+KitI///lP9e7dW7Vq1ZLBYJDBYFBiYuId1Q4AAAAAfxXHjh2TJLm5ud1RnKWlpZydnc3m4uLiJEmtW7cuMDZvPG9dSeMyMzNNx781rkmTJrK2ts4XZ2NjoyZNmhR4TAAAAAAAAACVDw0fAAAAAIBKJTg4WIMGDdL333+vtm3bqkePHjp9+rQmTJggPz8/XblypUT5wsPD1a5dO4WHh6tOnTp6+umnZWFhoTlz5qh58+Y6fvx4obEzZsxQq1attHTpUj344IPq16+f2rdvr6tXr+qTTz7RuXPn8sUEBATo3Xff1caNGwucBwAAAADkl5WVpVmzZklSgTtjFMZoNOrDDz+UJD311FOysrIyzaWnp5sa9T09PQuM9/DwkCRduHBBmZmZpvH4+Pgi4xwdHeXo6Gi2tjhxtx7z1jgAAAAAAAAAlVPV8i4AAAAAAIDSsm7dOoWFhcne3l47duyQj4+PJCk5OVl+fn6KiYlRaGioZsyYUax8Z8+e1bBhw3Tjxg0tWLBAI0aMkCTl5OQoMDBQX3zxhQICArR7924ZDAaz2M8++0zjx49Xo0aNFB4erqZNm5rNHz58WO7u7vmO2b9/fzVo0EA+Pj7y8fFRzZo17+RHAQAAAAB/KUFBQYqPj1etWrU0adKkYse9++67+uGHH2Rvb6/p06ebzaWnp5ue29nZFRhvb29vep6WlmZalxdbWFxebFpamtLS0vId83ZxeccrjoJ+98xz7ty5Eu+IAgAAAAAAAODeYYcPAAAAAEClMXXqVElSSEiIqdlDklxcXDRv3jxJ0pw5c5SamlqsfDNnzlRWVpa6dOliavaQpCpVqmj+/PlycnJSbGystmzZYhZ36dIlBQcHy8bGRlFRUfmaPSSpSZMmcnJyyjf+6aefauLEierevbsefPDBYtUJAAAAAH9lU6ZM0dKlS2Vtba1Vq1bpgQceKFbc559/rvfee08WFhb69NNP1aBBgzKuFAAAAAAAAABKhoYPAAAAAEClcObMGcXGxkqSAgIC8s136NBBHh4eunbtmqKiooqVMyIiotB89vb26tOnjyRp7dq1ZnNLly5VWlqaBgwYoLp165boPAAAAAAAxffxxx9r8uTJsrKyUkREhHx9fYsVt3r1ar344ouSpEWLFmngwIH51jg4OJieZ2ZmFpgnIyPD9NzR0TFfbGFxt8aWRlxREhMTC32wuwcAAAAAAABQsdHwAQAAAACoFOLi4iRJzs7O8vb2LnBN69atzdYWJT09XcePHzeLK26+zZs3S5Ief/xxXblyRcuWLdPYsWP16quvaubMmUpISCjGGQEAAAAAijJ79my98cYbsrS01Jo1a9SjR49ixa1du1YBAQHKzc3VggULTI0ff+bg4CBnZ2dJ0unTpwtck/f7nYuLi+zs7EzjXl5eRcalpaUpLS3NbG1x4m495q1xAAAAAAAAAConGj4AAAAAAJVCfHy8JMnT07PQNR4eHmZri3Lq1CnT88JyFpbvp59+knSzaaRp06YaOnSoZs+erXnz5mncuHGqX7++Pv7449vWAAAAAAAo2Ny5czV27FhTs0evXr2KFbdu3ToNHjxYOTk5mj9/voYPH17keh8fH0nS3r17C5zPG89bV9I4Ozs7NWzYMF/c4cOHdfXq1XxxV65c0eHDhws8JgAAAAAAAIDKp2p5FwAAAAAA+Gs4d+6c1q9fryNHjigtLU1GozHfGoPBoMWLF99R/vT0dEkyu6Pqn9nb20uS6S6qxclXVM7C8qWkpEiSQkJCVKtWLUVGRqpDhw66ePGiFi5cqA8//FBvvPGG3NzcNGTIkNvWcjfc3d0LnTt37pzc3NzK9PgAAAAAUNo++eQTjR492tTs8dRTTxUrLjIyUoMGDdKNGzc0f/58jRw58rYx/fr1U3R0tFasWKF33nlHFhb/dz+93NxcrVy5UpLUv39/s7i+ffvq7bff1vfff6/Tp0/nu5HA8uXLJUm9e/dWtWrVTOPt27fXQw89pPPnz2vNmjV67rnnzOLWrFmj69evq1atWnr00UeLdd4AAAAAAAAA7l80fAAAAAAAytzs2bM1fvx4ZWdnm8byGj4MBoPp9d00fFQkeeeWm5urqKgo/e1vf5MkVa9eXdOnT1daWprmz5+vt99+u8wbPgAAAADgTv32229FNu1nZWXJ1tb2nta0aNEiBQUFlbjZIyoqSs8884xu3LihTz75RCNGjChWXGBgoP71r3/p6NGjCg0N1b/+9S/TXGhoqI4ePSp3d3cNHTrULK5JkyZ6+umntX79er300kvasGGDbGxsJEmbNm3SkiVLZGFhoYkTJ5rFWVhYaMKECRo3bpwmTJigxx57TN7e3pJu7i4ZEhIiSZo4caJZ8wkAAAAAAACAyomGDwAAKricnByFh4crOjpaZ86c0dWrVwtcZzAYtG3btntcHQAAt7dt2za99tprcnR01BtvvKEdO3bohx9+0IIFC3T06FGtXbtWp06dUnBwsFq0aHHHx3FwcJAkZWZmFromIyNDkuTo6FjsfHk5nZycip3PwcFBKSkp6tixo6nZ41ZBQUGaP3++Tp48qfj4eNOXd8pCYmJioXNF7f4BAAAA4K/rxx9/1IgRI3T48OFC1xiNRhmNxrtq+Ni/f7+CgoJMr0+cOCFJWrBggTZu3Ggaj4iIkJubmw4cOKCRI0fKaDSqbt26Cg8PV3h4eIG5lyxZYnqelJSk/v376/r163J3d9euXbu0a9euAuNmzJghFxcX02tbW1utWrVK3bp109SpU7VhwwY1bdpUhw4d0qFDh2RnZ6fVq1ebmjlutXDhQv3yyy+Kjo5WvXr11LFjRyUlJWnHjh0yGo0KCwtT8+bN88WNGTNG3333nSIiItS0aVN16dJFkhQdHa2srCw988wzZj83AAAAAAAAAJUXDR8AAFRgqamp6t69u2JjYwu8g96t8u6ODgBARRMWFiaDwaDNmzfr0Ucf1QsvvKAffvhBw4cPlyS9//77GjVqlD799FPt37//jo/j5eUlSUpISCh0Td5c3tqi1KlTx/T89OnTatasWbHz1a1bVykpKapbt26BuW8dP3fuXJk2fAAAAABASRw9elRdu3ZVZmam2rdvrz/++EPx8fEaPHiwjh07pgMHDignJ0f9+vXT119/fVfHSktL0+7du/ONJyYmmjWvX7t2TZJ0+fJl0+ekv/32m3777bdCc9/a8JGVlWXKkZiYqKVLlxYa989//tOs4UOSfH19dfDgQU2ZMkXR0dFas2aNHnzwQQ0dOlSTJ09WvXr1CsxVs2ZN7d27V9OmTdOaNWu0fv162dnZqXv37nrzzTfl7+9fYFyVKlUUHh6uRYsW6b///a/pRj9NmjTRSy+9pBEjRvB5MAAAAAAAAPAXQcMHAAAVWGhoqPbs2aPatWtrzJgxevjhh4t1R3IAACqSPXv2yMfHR48++miB81ZWVpo/f76ioqL03nvvmX0ppyRatmwpSUpJSSl014y9e/dKknx8fG6bz9HRUfXr19fx48e1d+/eAhs+CsvXqlUrxcbGKjk5ucDct47b29vfthYAAAAAuFc++OADZWZmat68eXrllVf0wgsvKD4+Xl9++aUk6fDhwxo6dKiOHTtW4E6IJdG5c+fb3ujmbtbn8fLyuqO4W9WvX7/IRpHCODo6atq0aZo2bVqJ4iwsLDRy5EiNHDmyxMcEAAAAAAAAUHnQ8AEAQAW2bt06Va9eXT/++KNq165d3uUAAHBHLl26pM6dO5teV6tWTZJ05coV2djYSLrZ9NGxY0fTXUvvhLu7u9q0aaPY2FgtX75cb731ltl8TEyMEhISZGVlpZ49exYrZ79+/fTRRx9p+fLleuGFF8zmMjIyFBkZKUnq37+/2dzAgQP1ySef6Mcff1RmZqbs7OzM5rdu3SrpZrPHww8/XKLzBAAAAICy9M0336hevXp65ZVXCpxv0qSJNm7cqPr168vCwuKumz4AAAAAAAAAAIWzKO8CAABA4f744w/5+vrS7AEAuK85OzsrMzPT9LpGjRqSpNOnT5uty8nJUUpKyl0da9KkSZKk6dOna//+/abxlJQUBQUFSZJGjx5t9oWkiIgINW7cWP7+/vnyBQcHy9bWVtHR0Vq0aJFZrUFBQbp8+bLatGmjbt26mcX5+fmpY8eOSkpK0ujRo3Xt2jXT3E8//aS3335bkjRq1ChTAwwAAAAAVATnzp1T06ZNTa+rVKkiSbp+/bppzM3NTZ06ddLVq1fveX0AAAAAAAAA8FfCDh8AAFRgrq6usra2Lu8yAAC4K56enkpISDC9btq0qYxGozZu3KhGjRpJurlbxs6dO+Xu7n5Xx+rbt6/Gjh2rWbNmqV27dvL395ednZ22bdumy5cvy9fXV1OmTDGLSU1N1ZEjRwr8olKtWrW0ZMkSDRkyRCNGjNDixYvl5eWl2NhYnTx5Uq6urlq+fLkMBkO+2C+//FKPP/64lixZoq1bt6pNmza6ePGifvzxR12/fl1du3bNV4skTZkyRV999VW+8T59+sjS0lKS5OPjo3nz5t3pjwkAAAAACmVjY6OqVf/vT4gODg6Sbt6cxsPDwzTu6OionJyce14fAAAAAAAAAPyV0PABAEAF1rt3b0VERCg7O5u7fwMA7ludOnXSf/7zH/3xxx9ydXVVr169ZGdnp0mTJun8+fPy9PTU0qVLdfHiRQ0ePPiujxcWFiZfX1/NnTtXu3btUnZ2turVq6eQkBCNGzfO1DRRXAMHDlTdunU1depU7dy5U3FxcXJzc9Orr76q0NBQubq6Fhjn4eGhAwcOaPr06Vq7dq02bdokS0tL+fj4aNiwYRo+fLjpTrm3OnHihHbv3p1vPC4uzvSchlAAAAAAZaV27dpmOzLWr19fkvTDDz+YGj6MRqP2799fYPM7AAAAAAAAAKD0GIxGo7G8i0D5ybt7bmJiYjlXAgD3n3vxHpqcnCwfHx9169ZNc+bM4cudpYzrIADcneK+j8bGxmrSpEl688031b17d0nSokWL9Morr5jWGI1GeXl5ae/evXJ2di67omGGayEA3B3eR+9//BsCQH4vv/yyVq5cqaSkJNnY2OjEiRNq2LChHnroIS1cuFCenp6aO3euFi1aJEtLSz3wwAO8j97HuBYCwJ3jPRQAAAAAcC+wwwcAABXYvHnz1K1bN3322WfaunWr/P395enpKQsLi3xrDQaDQkNDy6FKAACK1qZNG23dutVsbPjw4WrVqpVWr16tixcv6uGHH9YLL7wgJyencqoSAAAAACBJPXv21NKlS7Vx40YNHDhQ9erV04gRI7RgwQL16dNH0s2mfSsrKzk6OpZztQAAAAAAAABQubHDx18cd5wAgDt3L95DLSwsZDAYVNTlOm/eYDAoJyenzGqpjLgOAsDd4X30/se/IQDcmb179yo8PFxhYWEyGo167LHH8q0xGAzatm1bOVSHkuBaCADFk5ubq5kzZ5o17U+aNEn9+/eXxPvo/YxrIQDcOd5DAQAAAAD3Ajt8AABQgb3zzjvlXQIAAAAA4BZvvvmm/vOf/8hoNJqa87/99lvT/K1N+QAAVBYWFhZ6/fXX9frrr5d3KQAAAAAAAADwl0LDBwAAFRgNHwCAyiYnJ0cpKSm6evVqoWs8PT3vYUUAABTf6tWr9fHHH8vd3V2hoaEaM2aMrl27ps2bN+vYsWP68ssv9cMPPygkJETdu3cv73IBAAAAAAAAAAAA3Odo+AAAAAAAlLldu3bp3Xff1Xfffafr168Xus5gMOjGjRv3sDIAAIpv4cKFqlKlirZt26YGDRooODhYktS1a1d17dpVQUFBCg0N1UcffaRBgwaVb7EAAAAAAAAAAAAA7ns0fAAAcB85f/68EhMTJUm1a9eWm5tbOVcEAMDtbd++XU8++aSys7MlSc7OznJwcCjnqgAAKLm4uDg9+uijatCgQaFr3n33XX3xxRd6//33FR4efg+rAwDgzvj5+d1xbHJyslxcXEqxGgAAAAAAAADArWj4AADgPrB48WJ99NFHOnbsmNl4w4YNNX78eL344ovlVBkAALf39ttvKzs7W8HBwXr77bfl7Oxc3iUBAHBH0tPT5enpmW88IyND9vb2kiQLCws9+uij2rFjx70uDwCAO/Ltt98WOG4wGCRJRqOx0PE/zwEAAAAAAAAAStc9afhITU1VWlpaoR/6FvRHUgAAcNPw4cP16aefmq6jeV+SvXjxoo4cOaLhw4frhx9+0KJFi8qzTAAACnXgwAE98sgj+vjjj8u7FAAA7sqDDz6oy5cvm15bWFhIkk6dOqWmTZuaxjMzM5WWlnavywMA4I588803+cbWrVunsLAwPfLIIxo6dKi8vb0l3bzmff7554qLi1NwcLCWLVt2r8sFAAAAAAAAgL+UMmv4uHTpkiZPnqzVq1frwoULha4zGAy6ceNGWZUBAMB9bfXq1Vq8eLFq1Kiht956Sy+99JKcnJwkSWlpaVq8eLH+9a9/6dNPP1X37t31zDPPlHPFAADkZ29vr8aNG5d3GQAA3DUvLy/9/vvvpteWlpaSpOXLl2vq1KmSpPPnz2vHjh2qU6dOudQIAEBJderUyex1TEyM5syZo2nTpmnChAn51r/22mv68MMP9dZbb6l69er3qEoAAAAAAAAA+GuyKIukqampateunebNm6eLFy/KxsZGRqNRDz30kKT/2/rZ09NTHh4eZVECAACVwoIFC1S1alVt3bpVr7/+uqnZQ5IcHR01btw4bd26VVWqVNGCBQvKsVIAAArXrl07HT16tLzLAADgrvn7++u3337TqVOnJElWVlaysLDQBx98oIEDB+qNN97Qo48+qszMTA0YMKB8iwUA4A7961//UuPGjQts9sjzj3/8Q40bN1Z6evo9rAwAAAAAAAAA/nrKpOHjo48+0rFjxzR06FClpqbqmWeekcFg0JkzZ5Senq758+erevXq6tSpk+Lj48uiBAAAKoW4uDh16tRJPj4+ha5p2bKlOnXqpP3799/DygAAKL633npLP//8s5YvX17epQAAcFcGDx6sF198UQkJCZIkCwsLVa9eXdbW1lqzZo3+85//KCEhQT4+Ppo4cWI5VwsAwJ3Zs2ePmjdvftt1zZs31/Xr1+9BRQAAAAAAAADw11W1LJJu2LBBLi4umj9/vqytrWUwGExztra2GjlypFq0aKEOHTroscce04gRI8qiDAAA7nuZmZmqWbPmbdfVrFlTmZmZ96AiAABK7tFHH9XKlSv18ssvKzIyUk8++aQ8PT1lYVHwPQgef/zxe1whAADF8/DDD2vRokVmYzY2Nvr5558VGRmpixcv6uGHH1bv3r1VpUqVUjnm6tWrNXfuXB08eFDXr19X/fr19dxzz2ncuHGqVq1aifPt27dP06dP13fffafU1FS5ubnpqaeeUmhoaIG/f+bk5CgiIkL79u0zPS5evKgqVaroxo0bhR4nKSlJX3/9tb7++mvFxsYqISFBFhYW8vT0VLdu3fT666/Ly8srX1xqaqq2bNmir7/+Wj/88INOnTql3Nxc1apVS507d9a4cePUrFmzEp83AKD4rl69qrNnz9523blz5+5BNQAAAAAAAADw12YwGo3G0k5qb2+vjh07atOmTZKkF198UUuXLtX169fN/tDZsWNHXb9+Xbt37y7tElBM7u7ukqTExMRyrgQA7j/34j3Uy8tLtra2+uWXX4pc97e//U2ZmZn6/fffy6yWyojrIADcnZK8j65Zs0bjxo3TmTNnilxnMBiK/PIoShfXQgC4O2X9PhocHKywsDBVrVpVfn5+sre31/bt23X58mV16NBBW7ZskY2NTbHzhYeHa8iQIbpx44batGkjb29v7d27VydPnpSrq6tiYmJUv359s5jLly+rRo0a+XLdruHj+eef15dffikLCws1bdpUjRo1UmZmpmJjY3XhwgXZ2dkpIiJCXbt2NYt7++239a9//UuS1LBhQzVt2lQ5OTnat2+fEhMTVa1aNS1atEjDhg0r9nkXhWshAOTXpk0bHThwQDt27NBjjz1W4JoffvhBHTt2lIWFhWrWrMn76H2MayEA3DneQwEAAAAA90KZ7PAhyeyPgLa2tpKkS5cuycXFxTTu6empjRs3llUJAADc95544gl9/vnnmj59ukJCQgpcM23aNB05cqTUvuwCAEBp27Bhg5599lnl5ubK2dlZ3t7esre3L++yAACo0NatW6ewsDDZ29trx44d8vHxkSQlJyfLz89PMTExCg0N1YwZM4qV7+zZsxo2bJhu3LihBQsWmHZdzsnJUWBgoL744gsFBARo9+7dZjs2V6tWTc8995xatmwpHx8fOTs765FHHrnt8ZydnfXuu+/qpZdeUu3atU3jGRkZGj58uFasWKHBgwfr+PHjZp8l29nZ6fXXX9crr7yiBg0amMazs7M1YcIE/ec//9GIESPk6+ubrzkFAFA6xowZo8DAQPXo0UNjxozRc889J29vb0nSqVOn9OWXX2r27NkyGo2ys7Mr52oBAAAAAAAAoHIrkx0+GjZsKDc3N+3YsUOS9OGHH2rixInaunWr/Pz8TOvat2+vo0ePKiUlpbRLQDFxxwkAuHP34j30yJEjatmypa5du6bWrVtr6NChpj+unjx5UkuXLtX+/ftlbW2t/fv3q1GjRnd9zNWrV2vu3Lk6ePCgrl+/rvr16+u5557TuHHjVK1atTvKuX79ei1evFh79uzRxYsXVb16ddWvX189evTQ5MmTzdb+8ssvWrhwofbv369Tp04pOTlZRqNRtWvXVqdOnRQcHKxmzZrd9XlKXAcB4G4V9320bdu22rdvn8LCwjRq1CiznR9RvrgWAsCdO3PmjFq2bCmj0ag1a9YUuObxxx+/4/xt27ZVbGys3n//fb311ltmczExMerYsaOsrKz0xx9/yMnJ6bb5/vGPf+ijjz5Sly5dtHXrVrO5jIwMubu7KzU1VV9//bW6d+9eaJ5Tp07J29v7tjt8FCUrK0sPPfSQ0tPTtWzZMj3//PPFisvNzdXDDz+so0ePasqUKXr77bfv6Pi34loIAAV77bXXNHv2bLMmwFsZjUaNHj1aa9eulcT76P2MayEA3DneQwEAAAAA94JFWSRt1qyZjhw5YnrdsWNHGY1GvfPOO0pPT5ckffHFF9q9e7f+9re/lUUJAABUCo0aNdLq1avl4OCg2NhYjR07Vr1791bv3r312muvad++fXJwcNCqVatKpdkjODhYgwYN0vfff6+2bduqR48eOn36tCZMmCA/Pz9duXKlRPmuX7+uQYMGqW/fvoqOjlaTJk30zDPPqGnTpjpx4oRmzZqVL2bXrl0KCwvT0aNH5e3trd69e6tLly66ceOGPv30U/n4+Oh///vfXZ8rAODe+eWXX9S+fXuNHj2aZg8AwH1v/fr1evjhh+Xp6akLFy4oOTlZTzzxRL7HrTe+KakzZ84oNjZWkhQQEJBvvkOHDvLw8NC1a9cUFRVVrJwRERGF5rO3t1efPn0kyfTF3bJka2tr+h02ISGh2HEWFhZq3rx5ieMAACUXFhamyMhI+fn5ycrKSkajUUajUZaWlnriiSe0YcOGAj/bAwAAAAAAAACUrqplkbRHjx6KiIjQN998oyeeeELt27eXr6+vvv/+ezk7O8vR0VGXL1+WwWDQP/7xj7IoAQCASqNXr146evSoFi5cqB07dujMmTOSpNq1a6tz584aPny4atasedfHWbduncLCwmRvb68dO3bIx8dHkpScnCw/Pz/FxMQoNDRUM2bMKHbO4cOHa/Xq1erbt68WLVokFxcX01xubq727NmTL6ZLly769ddf1bhxY7Px3Nxcffzxxxo/frxefvll9ejRQzVq1LjDswUA3Et2dnaqU6dOeZcBAMBd27RpkwYMGKDc3Fw5OTkpMzNTBoNBjz32WKkeJy4uTpLk7Oxs2uXxz1q3bq2EhATFxcVpyJAhReZLT0/X8ePHTXGF5Vu2bJnp2GUpOztbp06dkiS5ubmVKPbYsWN3FAcAKLlevXqpV69eysnJUUpKiiTpgQceoJEfAAAAAAAAAO6hMmn4GDJkiP72t7/Jy8vLNLZ27Vq99NJL2rRpky5duqQaNWpo8uTJ6t27d1mUAABApVKzZk29/fbbevvtt8vsGFOnTpUkhYSEmJo9JMnFxUXz5s1Tx44dNWfOHIWGhsrJyem2+bZt26bPP/9cTZs21apVq1StWjWzeQsLC7Vr1y5f3K3///Dn9W+++abmz5+vkydPKiYmhv+PAID7ROfOne/Jl0cBAChr//rXv5Sbm6t//vOfCgkJUd26dSVJ33zzTakeJz4+XpLk6elZ6BoPDw+ztUXJa64oKmdJ8t2txYsXKzk5WTY2NnryySeLHff111/r4MGDMhgM6t+/fxlWCAC4VZUqVUrlhjMAAAAAAAAAgJIrk4YPe3t7+fr6mo09+OCD2rBhg7KyspSamipXV1dZWFiUxeEBAEAJnTlzRrGxsZKkgICAfPMdOnSQh4eHEhISFBUVddu7x0rS7NmzJUnBwcH5mj3uRtWqN//3xcrKqtRyAgDK1pQpU9SqVStNnz5dISEh5V0OAAB37MCBA3rkkUc0efLkMj1Oenq6pJu7ZBXG3t5ekpSWllbsfEXlLEm+u/Hzzz9r/PjxkqTQ0FC5uroWK+7s2bN66aWXJN3cTbJ58+bFPqa7u3uhc+fOnWO3EAAowvXr17V//34lJibKaDTK3d1drVq1kqWlZXmXBgAAAAAAAAB/CWXS8FEUW1tb2dra3uvDAgCAIuTddd3Z2Vne3t4FrmndurUSEhIUFxd324aPnJwcbdu2TZL0+OOP6/z581qxYoWOHDkiKysrtWzZUgMGDDB9oai4Fi5cqKNHj6pmzZoF7g4CAKiYfvzxR7344ot66623tGHDBvXo0UOenp6F3gRg6NCh97hCAACKp0qVKmrcuHF5l3HfSkxMVO/evZWRkaE+ffoUuxE0LS1NTz31lM6ePau2bdsqLCysjCsFAFy/fl3vvvuu5s2bl68Z0MHBQaNGjdI///nP8ikOAAAAAAAAAP5CyqTho0qVKgoMDNTixYuLXDd8+HB99tlnunHjRlmUcUdWr16tuXPn6uDBg7p+/brq16+v5557TuPGjbuju5Pv27dP06dP13fffafU1FS5ubnpqaeeUmhoaJHbX//xxx+aMmWKvvrqK509e1bVq1fX448/rokTJ8rHx+duThEAUIH5+fndcazBYDA1WZRUfHy8JMnT07PQNR4eHmZri3Ly5EllZGRIuvkl36CgINPrPOPHj9eKFSsKPeesrCwFBQVJklJTU3Xo0CEdP35crq6uWr16tRwdHW9/YgCACiEwMFAGg0FGo1E//vijdu/eXeR6Gj4AABVV8+bNlZiYWObHcXBwkCRlZmYWuibvd6zi/G6Uly8vp5OT013luxPnz5+Xv7+/fv/9d3Xv3l2rVq2SwWC4bVxGRoaefPJJxcXFqWXLlvr6669lbW1domMX9W9W1O4fAPBXdfXqVXXr1k3ff/+9jEajHnjgAXl5eUmSTp06pZSUFH344YeKiYmR0Wgs1vs5AAAAAAAAAODOlEnDh9FolNFoLPbaiiI4OFhhYWGqWrWq/Pz8ZG9vr+3bt2vChAmKjIzUli1bZGNjU+x84eHhGjJkiG7cuKE2bdrI29tbe/fu1Zw5c7R69WrFxMSofv36+eKOHj2qjh07KikpSXXr1lXfvn0VHx+v8PBwrVu3TqtWrVK/fv1K89QBABXEt99+e8exd/OH1fT0dEmSnZ1doWvyduP48x39CpKSkmJ6/tJLL+mxxx7TjBkz1LhxY504cUKTJk1SVFSUnn76ae3fv18NGjTIl+P69etaunSp2VjdunW1ePFidezYsVjnJRX95Z1z587Jzc2t2LkAAHdm6NChfAEIAFApBAcHa9CgQdq7d69at25dZsfJ+1JtQkJCoWvy5vLWFqVOnTqm56dPn1azZs3uKl9JJSUlyc/PT0ePHlWXLl20bt06WVlZ3TYuMzNTvXr10q5du9S8eXNt3bpVNWrUKPX6AADmPvjgA8XExKhhw4b697//rV69epnNR0VF6Y033tCuXbtkZ2fHjVkAAAAAAAAAoAyVScNHcWVlZd3RrhllYd26dQoLC5O9vb127Nhh2kUjOTlZfn5+iomJUWhoqGbMmFGsfGfPntWwYcN048YNLViwQCNGjJAk5eTkKDAwUF988YUCAgK0e/dusy8+GY1GDR48WElJSfr73/+uzz77TFWqVJEkLVy4UCNHjtTQoUN17NgxPfTQQ6X8UwAAlLdvvvmmvEsoFbc2dNauXVubN282fZmnRYsW2rBhgx555BEdOnRI06dPL3BXsOrVq5vy/PHHH9q/f7/effddPfHEE3rzzTf10Ucf3ZuTAQDctSVLlpR3CQAAlIoBAwYoNDRU3bt315QpU3Tjxg1VrVr6H7G2bNlS0s1m+vj4eHl7e+dbs3fvXkkq1m7Ajo6Oql+/vo4fP669e/cW2PBRknwlceHCBfn5+enXX3+Vv7+/NmzYUKwdOrKystSrVy999913at68ubZt26YHHnigVGsDABRs+fLlppui1apVK998z5499cgjj6hRo0a6cuUKDR8AAAAAAAAAUIbKreHj8uXLiomJqTB31Z46daokKSQkxOyPmi4uLpo3b546duyoOXPmKDQ0VE5OTrfNN3PmTGVlZalLly6mZg9JqlKliubPn6/IyEjFxsZqy5Yt6t69u2l+06ZNiouLU/Xq1TVv3jxTs4ckjRgxQqtWrdK2bdsUFhamadOmlcapAxWO0WjU1RtXZVPt/3bUuZJ9RdZVrbkzNCq9Tp06lctxHRwcJN28e2phMjIyJKlYf8DNyydJgYGB+e7cWqVKFY0cOVJjxoxRdHT0bfO5urrqySeflL+/vx599FHNmDFDnTp10lNPPXXb2MTExELnitr9AyhPXAsBAH91XAtRUdz62dyfjRkzRrm5uYWuMxgMunHjxh0d193dXW3atFFsbKyWL1+ut956y2w+JiZGCQkJsrKyUs+ePYuVs1+/fvroo4+0fPlyvfDCC2ZzGRkZioyMlCT179//jmouSN7NdA4fPix/f39FRkYWawflK1eu6KmnntKOHTtMzR4uLi6lVhdwP+BaiPJ0+vRpdevWrcBmjzy1atWSn5+fNmzYcA8rA/BXwrUQAAAAAADgJovSSlS3bl3TQ5LCw8PNxm59eHp6qmbNmkpMTNSTTz5ZWiXcsTNnzig2NlaSFBAQkG++Q4cO8vDw0LVr1xQVFVWsnBEREYXms7e3V58+fSRJa9euLTCuT58+sre3zxebl+/PcUBlYTQaNS1mmvqv6q/Uq6mSpNSrqeq/qr+mxUwz2zUAQOnx8vKSJCUkJBS6Jm8ub+3t8uX9wSXv/w3+LG/83Llzxa7T0tJSzz33nKT/u2YClQ3XQgDAXx3XQlQkRqOxyEdR6/KaQe7UpEmTJEnTp0/X/v37TeMpKSkKCgqSJI0ePdrs5jQRERFq3Lix/P398+ULDg6Wra2toqOjtWjRItN4Tk6OgoKCdPnyZbVp00bdunW7q7rzXLx4Uf7+/jp06JC6dOlS7GaPq1evqk+fPvrmm29o9sBfFtdClLcaNWoU6z3b2tpaFhal9qdGADDhWggAAAAAAPB/Sm2Hj1OnTpmeGwwGZWRkmO4EXhBLS0v17dvXtLNGeYqLi5MkOTs7y9vbu8A1rVu3VkJCguLi4jRkyJAi86Wnp+v48eOmuMLyLVu2zHTsP9dSVJwkHTt2TJmZmbKzsyuyFuB+kvfh7Zw9cyRJg9cM1oKnFmjkxpE6eP6gDp4/KEma2GEid+4BSlnLli0l3fziUHx8fIHXw71790qS2U5YhbG3t1ejRo3022+/KTk5ucA1eeMFNTgWJe/al5SUVKI44H7AtRCVXWJior799ludPXtWV69eLXCNwWBQaGjoPa4MQEXBtRAVze2aNvJ2DSxqZ8E71bdvX40dO1azZs1Su3bt5O/vLzs7O23btk2XL1+Wr6+vpkyZYhaTmpqqI0eOFHidrVWrlpYsWaIhQ4ZoxIgRWrx4sby8vBQbG6uTJ0/K1dVVy5cvL/C/raCgIFPTybVr1yTdbBRp166daU2vXr3MruEvv/yyfvrpJxkMBjk7O2vUqFGFnmffvn1NrydNmmTaCdLT01NvvvlmgXEdOnTQyy+/XOAccD/jWoiKoEuXLoqOjta1a9fy7dyb5+rVq9q5c2eh8wBwp7gWAgAAAAAAmCu1ho/4+HhJNz+AqVu3rp555hl99NFHBa61tLTUgw8+qKpVS+3wdyWvdk9Pz0LXeHh4mK0tyq3NL4XlLCzf7WrJizMajTp16pSaNGly23qA+8XVG1e18/RO0+uD5w+q3X/bma3ZeXqnxt0YZ7Z9M1CZvPfee5Ju3qXV2dnZ9Lo47uYLsu7u7mrTpo1iY2O1fPlyvfXWW2bzMTExSkhIkJWVlXr27FmsnAMHDtSUKVMUHR2tcePG5ZvfunWrJKlt27YlqnXbtm2SpIYNG5YoDrgfcC1EZZWTk6OxY8dq4cKFpi/O/vlOjAaDQUajkYYP4C+OayFgLiwsTL6+vpo7d6527dql7Oxs1atXTyEhIRo3bpwsLS1LlG/gwIGqW7eupk6dqp07dyouLk5ubm569dVXFRoaKldX1wLjfvnlF+3evTvf+K1jjRs3Npu7ePGipJvX/FWrVhVak5eXl1nDR16cJG3cuLHI86HhA5UR10JUBO+//742bdqkgIAAzZ8/XzVr1jSbT05O1iuvvKLs7Gw5OjqWU5UAKiuuhQAAAAAAAOYMxjLY7/SFF15Qx44d9eKLL5Z26jIxdepUvfXWW/L19VVMTEyBa9566y1NnTpV3bp10+bNm4vMt2vXLvn6+kqSsrOzC2xs2bp1q7p16yZLS0vTXfGkm80w2dnZ2rp1q7p06ZIvLjs72/SH3F27dql9+/a3Pb+8Ow0W5Ny5c3JzcyuTuxACdyL1aqoGrxlsujvPrVo81EIrBqyQk7VTOVQG5FcWd3K1sLCQwWDQr7/+qoYNG5peF3W5vvULsjk5OXd87HXr1qlfv36yt7fXjh07TDt5pKSk6IknntDPP/+sN954QzNmzDDFREREaOLEiapdu7apESNPcnKyGjZsqEuXLumTTz7RyJEjTXMrVqxQQECAjEajvvrqK7MmkpkzZ2rAgAGmJsc8WVlZ+vjjjxUaGqqqVasqLi5OTZs2vePzlcr2brzAneJaiPtJcd9H3333Xb377ruqWrWqnnzySTVo0EAODg6Frn/nnXdKtU4UjmshKiKuhbif8D56/+PfEBUR10LcawXddObkyZP6/PPPZWtrq27dupl2BI6Pj9eWLVt05coVDR06VGvWrJGjoyPvo/cxroWoiLgW4n7BeygAAAAA4F4oky02Pvvss7JIC+AvwMnaSQueWpDvTj2StOCpBXx4i0pv8uTJMhgMcnFxMXt9L/Tt21djx47VrFmz1K5dO/n7+8vOzk7btm3T5cuX5evrqylTppjFpKam6siRI7p69Wq+fC4uLlq5cqX69OmjV155RbNnz9bDDz+sEydOKC4uTpIUGhqab8eQmTNn6vXXX9fDDz+sRo0aydraWufOndPBgwd16dIlWVlZadGiRXfd7AFUVFwLURktWbJENjY22rlzp6mhEAAKw7UQ94Ps7GytWbNGly5dUk5Ojnr16iV3d3d17txZAwYMKPHOGwBwK66FuNf++c9/5rvpTN5nkllZWVq3bl2BcUuXLpXRaGSXDwCljmshAAAAAADA/ymTho88RqNRmzZt0q5du3ThwgU9+uijpl0/Lly4oEuXLqlevXqqUqVKWZZxW3l3ls3MzCx0TUZGhiQV60PrW+9Um5mZKSen/B84FZbPwcFBFy9eLLSWvLji1iIVfTeJonb/AMpD6tVUjdw4ssC5kRtHcsceVHr//Oc/i3xd1sLCwuTr66u5c+dq165dys7OVr169RQSEqJx48aV+EtLXbt21cGDBzV16lRFR0dr/fr1cnR0VM+ePfXaa6+pW7du+WKmTp2qLVu2aO/evfruu+90+fJl2dnZqV69enrppZc0atQo1a1bt7ROGahwuBaiMjp//rw6d+5MsweAYuFaiIpu9+7dGjJkiH7//Xfl5uZKkjZt2iRJ+u9//6tJkyZp+fLlxdqZFwAKwrUQ99rd7LL473//uxQrAYCbuBYCAAAAAAD8nzJr+Dh48KCeffZZHTt2TEajUQaDQdnZ2aaGj61bt+rvf/+71q1bp969e5dVGcXi5eUlSUpISCh0Td5c3tqi1KlTx/T89OnTatasWbHzeXl56eLFizp9+nSRdRgMBrPjAJXBlewrhW7PLEkHzx/U4DWDtXbQWtlUs7nH1QF/HYMGDdKgQYOKtTYwMFCBgYFFrmnYsKGWLFlS7OMHBAQoICCg2OuByoRrISqrWrVqmTXGA0BhuBaiojty5Ii6du2qjIwM1a5dW5cvX1aVKlX0r3/9S6dOndLKlSv1+++/q3v37tqzZ48aN25c3iUDuM9wLUR5uJuGj0WLFpViJQDAtRAAAAAAAODPLMoiaWJiorp06aKjR4/qySef1Icffmi2DbQk9e3bV9WqVdP69evLooQSadmypSQpJSVF8fHxBa7Zu3evJBXrjrSOjo6qX7++WVxx8+W9vl1cgwYNZG9vf9tagPuJdVVrdfTsaHrd4qEW+vHlH9XioRamsY6eHWVd1bo8ygMqnCtXrujgwYNKSUkp71IAlBKuhais+vXrp++++07Xrl0r71IAVHBcC1HRTZ48WRkZGRo7dqxOnDghJycn2dvb69VXX9VHH32kEydO6LXXXlNGRsZdfXkWwF8X10IAwF8d10IAAAAAAABzZdLwMXXqVKWkpGjmzJnauHGj3nzzzXxrbG1t1aJFC8XGxpZFCSXi7u6uNm3aSJKWL1+ebz4mJkYJCQmysrJSz549i5WzX79+hebLyMhQZGSkJKl///4Fxm3YsEGZmZn5YvPy/TkOqAwMBoMmdpio0W1Hq8VDLbRiwAp5OnlqxYAVavFQC41uO1oTO0yUwWAo71KBe2bnzp16/fXXdfCg+Z2sli9frpo1a8rHx0dubm567733yqlCAKWJayEqq8mTJ6t69eoaPHiwkpOTy7scABUY10JUdNu3b1e9evX0n//8R5aWlvnmq1Wrpo8//lj16tXT9u3by6FCAPc7roUAgL86roUAAAAAAADmDMY/b71RCurWrStra2v98ssvpjELCwsFBgbq008/NY09++yz+uabb5SUlFTaJZTYunXr1K9fP9nb22vHjh2mnTZSUlL0xBNP6Oeff9Ybb7yhGTNmmGIiIiI0ceJE1a5dW9u2bTPLd/bsWTVo0EBZWVlauHChhg8fLknKycnRCy+8oGXLlqlNmzbavXu32YdRRqNRrVq1UlxcnIYOHapPP/1UVapUkSQtXLhQI0eOlL29vY4dO6aHHnrors/b3d1d0s1dWYCKwmg06uqNq2bbMF/JviLrqtZ8eIsK5V68h/7973/XypUrdfbsWbm4uEiSEhIS1KBBA12/fl3Vq1fX5cuXZTAYtH37dnXq1KnMaqmMuA6iouJaiPtFSd5HL126pM6dO+vUqVNq1aqVPD09ZWGR/x4EBoNBixcvLvVaUTCuhaiouBaiorK1tVW/fv305ZdfSir8fTQgIEDr1q1TVlbWPa8RJcO1EBUV10JUBD/88IO2bdums2fP6urVqwWuWblypWrUqHHH76NHjhzRli1btG/fPu3bt0+//vqrcnJyNGXKFL399tv51ufm5urHH3/U119/re3bt+vXX39VWlqanJyc1LJlSwUGBiogIKDI/0727dun6dOn67vvvlNqaqrc3Nz01FNPKTQ0VDVr1iw07o8//tCUKVP01Vdf6ezZs6pevboef/xxTZw40fR3xYJcv35d//nPf7R8+XIdP35clpaWatGihUaPHq1nnnmmyJ/P6tWrNXfuXB08eFDXr19X/fr19dxzz2ncuHGqVq1akbHFxbUQFRXXQtwPeA8FAAAAANwLVcsi6dmzZ/X000/fdp3BYFBaWlpZlFBiffv21dixYzVr1iy1a9dO/v7+srOz07Zt23T58mX5+vpqypQpZjGpqak6cuRIgR9y16pVS0uWLNGQIUM0YsQILV68WF5eXoqNjdXJkyfl6uqq5cuX5/swymAw6H//+586duyozz//XDExMWrTpo3i4+O1Z88eVa1aVZ9//nmpNHsAFZXBYDD78FZSvtfAX8Xu3bvVokULU7OHJC1btkzXr1/XP//5T02ePFk7d+5U586dNW/ePBo+gEqCayEqm2vXrikwMFCHDh2S0WjUt99+W+haGj4ASFwLUXHVrVu3WLtVpaSkyNvb+x5UBKCy4lqI8pSVlaVBgwZp06ZNkm5+6bowRqNRNWrUuONjzZ8/X2FhYcVef/LkSfn6+kqSnJ2d1bp1a9WoUUMnT55UdHS0oqOjtWLFCq1Zs6bA3bjCw8M1ZMgQ3bhxQ23atJG3t7f27t2rOXPmaPXq1YqJiVH9+vXzxR09elQdO3ZUUlKS6tatq759+yo+Pl7h4eFat26dVq1apX79+uWLy8rKUteuXbVr1y5Vr15dPXr0UEZGhrZv364dO3bku9ncrYKDgxUWFqaqVavKz89P9vb22r59uyZMmKDIyEht2bJFNja8L6Dy4loIAAAAAABwU5k0fNjZ2enChQu3XRcfHy9nZ+eyKOGOhIWFydfXV3PnztWuXbuUnZ2tevXqKSQkROPGjSvwg+GiDBw4UHXr1tXUqVO1c+dOxcXFyc3NTa+++qpCQ0Pl6upaYFyjRo30008/6f3339fGjRsVEREhJycn9e/fX2+99VaRdwkCAFQuycnJatKkidnY9u3bZWlpqddff12S1LFjR7Vr105xcXHlUSIAALf1zjvvKDIyUjVq1NDf//53NWjQQPb29uVdFgAAJTZ06FBNnjxZhw8fzve7Wp7Dhw/r22+/1bvvvnuPqwMAoHRMmjRJUVFRqlGjhp5//nk1aNBADg4OBa4NDg6+q2M1bdpUb775plq2bCkfHx9NnTpVy5YtK3S9wWCQn5+fxo8fr65du6pKlSqmuR07dqhXr17auHGjpk+frsmTJ5vFnj17VsOGDdONGze0YMECjRgxQpKUk5OjwMBAffHFFwoICNDu3bvNbthmNBo1ePBgJSUl6e9//7s+++wz03EXLlyokSNHaujQoTp27Fi+G7ZNmjRJu3btUrNmzbR9+3bTjX327dunzp0769///rc6d+6sp556yixu3bp1CgsLk729vXbs2GH622BycrL8/PwUExOj0NDQQptFAAAAAAAAAFQeBmNRt+W5Q507d1ZcXJxOnDhh+uDSwsJCgYGB+vTTTyVJv//+uxo1aqSuXbsqMjKytEtAMbHFKADcuXvxHmppaalnnnlGy5cvl3Tzj4vVq1dXs2bNFBMTY1r33HPPaf369crIyCizWiojroMAcHeK+z5ap04dpaen6+DBg/Lw8LgXpaGYuBYCQMnk5OTo2Wef1c6dOxUaGqqpU6fKwsJCiYmJSktL07JlyzRlyhR16NBBq1atkoWFRXmXjNvgWggA+dWuXVtXrlxRXFyc6tSpU+Ta0n4fDQwM1NKlSzVlyhS9/fbbJY5///33FRoaqnr16un48eNmc//4xz/00UcfqUuXLtq6davZXEZGhtzd3ZWamqqvv/5a3bt3N81FRUWpV69eql69uhISEvLdwKBLly7atm2bQkJCNG3aNNP4pUuX9NBDD+n69euKiYkx7Uzy51rbtWunH374wWyubdu2io2N1fvvv6+33nrLbC4mJkYdO3aUlZWV/vjjDzk5OZX453QrroUAcOd4DwUAAAAA3Atl8hfH559/Xunp6Xr55ZeVlZWVb/769esKCgpSdna2nn/++bIoAQCASsHZ2VmnTp0yvY6Li1N6eroee+wxs3XZ2dkl3okKAIB7JSkpSR07dqTZAwBw32vQoIH279+vCxcu6LXXXtO5c+d09uxZPfDAA6pRo4bGjh2rCxcuaN++fapfv77q1q1retSrV6+8ywcAoFguXbqkjh073rbZoyJq2bKlJCkhISHfXEREhCQpICAg35y9vb369OkjSVq7dm2BcX369Clwt8q8fH+Oi4qK0vXr1+Xp6Zmv2ePWuB9//FFnz541jZ85c0axsbGF1tqhQwd5eHjo2rVrioqKyjcPAAAAAAAAoHIpk4aPF154QZ06ddKGDRvUuHFj05bIBw8e1NixY9WwYUNt2rRJ/v7+evbZZ8uiBAAAKoU2bdpoz549pju8hYWFyWAwyM/Pz2zdsWPH5ObmVh4lAgBwW56envf8DuerV69W586dVaNGDdnZ2alFixb68MMPlZ2dfUf59u3bp4EDB8rV1VXW1tby9vbWmDFjlJSUdNvYgwcP6sUXX5S3t7esra1Vo0YNNWvWTKNGjVJKSkqBMenp6Zo0aZIaNWokGxsbubi4qFevXtq+ffsd1Q8AKB2nTp0yNeXnbZxsNBp16dIlGY1G0+P33383rb31AQDA/aBOnTr37S5Vx44dk6R8n5Wmp6ebdvxo3bp1gbF543FxcWbjea9vF3fs2DFlZmYWO65u3bpydnaWJB04cCBfnLOzs7y9vUtUKwAAAAAAAIDKp0w+ra1SpYoiIyM1ZMgQnTlzRv/9738l3fzQcc6cOTp9+rQGDBiQ7043AADA3GuvvSaj0agOHTrI2dlZX3zxherWratu3bqZ1iQnJ+vnn3823b0OAICKJiAgQN9++60uX758T44XHBysQYMG6fvvv1fbtm3Vo0cPnT59WhMmTJCfn5+uXLlSonzh4eFq166dwsPDVadOHT399NOysLDQnDlz1Lx5c9OXhgoyY8YMtWrVSkuXLtWDDz6ofv36qX379rp69ao++eQTnTt3Ll9MUlKSWrdurWnTpik9PV29e/dWkyZNtGnTJnXp0kWzZ88u8c8EAFA64uPjzR6urq5ydXXNN17Q4+TJk+VdPgAAxXKvf4crLVlZWZo1a5YkacCAAWZztzZeenp6FhiftytlfHy82Xje69vFGY1Gs+PcLk6S3N3d8x2zOHGF1QoAAAAAAACg8qlaVont7e315ZdfKjQ0VFFRUTp58qRyc3Pl4eGhJ598Uo888khZHRoAgEqjS5cu+vTTT/Xuu+8qKSlJnTp10rx588zusLds2TLl5uaqU6dO5VgpAACFmzhxor799lv17NlTixcv1sMPP1xmx1q3bp3CwsJkb2+vHTt2yMfHR9LNBkk/Pz/FxMQoNDRUM2bMKFa+s2fPatiwYbpx44YWLFhg2sEyJydHgYGB+uKLLxQQEKDdu3fLYDCYxX722WcaP368GjVqpPDwcDVt2tRs/vDhw6Yv99xqxIgROnr0qPz9/bVhwwbZ2tpKkqKiotSnTx8FBwerU6dOat68eYl/PgCAu1OnTh2z11WrVi1wHACA+9mECRO0ZcsWPfnkk/r000/L9He40hQUFKT4+HjVqlVLkyZNMptLT083Pbezsysw3t7eXpKUlpZWYOzt4v4ce7u4wo55p3FFKeh3zzznzp1j92gAAAAAAACgAiuzho88jRs3VuPGjcv6MAAAVFrDhg3TsGHDCp1/5ZVX9OKLL5r9YREAgIqkR48eys7O1o8//qhmzZrJ09NTnp6eZg2MeQwGg7Zt23bHx5o6daokKSQkxNTsIUkuLi6aN2+eOnbsqDlz5ig0NFROTk63zTdz5kxlZWWpS5cupmYP6ebOlvPnz1dkZKRiY2O1ZcsWde/e3TR/6dIlBQcHy8bGRlFRUapbt26+3E2aNMk39ssvv2j9+vWqUqWKFi9ebGr2kKSePXsqMDBQixcv1rRp0/S///2veD8UAAAAACgBS0tLbd68We3bt7/t73DJyclycXEphyrNTZkyRUuXLpW1tbVWrVqlBx54oLxLAgAAAAAAAIBSUeYNHwAAoGzZ2NjIxsamvMsAAKBQ3377rel5bm6uTp06pVOnThW49s+7ZJTEmTNnFBsbK0kKCAjIN9+hQwd5eHgoISFBUVFRGjJkyG1zRkREFJrP3t5effr00bJly7R27Vqzho+lS5cqLS1Nzz//fIHNHrc7nq+vb4F3iw8ICNDixYsVGRmp7OxsVatWrdi5AQAAAKA4Ll26pK5du+rQoUMyGo1F/g5nNBrvbXEF+PjjjzV58mRZWVkpIiJCvr6++dY4ODiYnmdmZhZ4A4CMjAxJkqOjY77YixcvKjMzs8Dj58X9OTbvmIXFFXbMO40rSmJiYqFzRe3+AQAAAAAAAKD8lWnDR3Jysv773//q22+/VWJiooxGo9zd3fXEE0/oxRdfVM2aNcvy8AAAVCpnz57Vd999Z3ZNffzxx1W7du3yLg0AgCJ988039+Q4cXFxkiRnZ2d5e3sXuKZ169ZKSEhQXFzcbRs+0tPTdfz4cVNcYfmWLVtmOnaezZs3S5Ief/xxXblyReHh4YqNjVVOTo4aNGigAQMGyMPDo9BzKOp40s0v/hw7dkx/+9vfijwHAMDd8fPzK3L+woULha67212rAAAoL5MmTdL+/fvVoEEDjRo1Sg0aNCh0d+FnnnnmHldnbvbs2XrjjTdkaWmpNWvWqEePHgWuu7Wh/vTp02rWrFm+NQkJCZIkLy8vs3EvLy9dvHhRp0+fLjB3XpzBYDA7Tl6ewuKk/2vEuPWYec/z8hZ1zD/XCgAAAAAAAKDyKbOGj/Xr1+uFF15Qamqq2d19fv31V0VHR2v69On67LPP1K9fv7IqAQCASiElJUVjx47VqlWrlJubazZnYWGhZ555RrNnz5aLi0s5VQgAQNE6dep0T44THx8vSfL09Cx0TV6TRd7aotx6B9vCchaW76effpJ0s2mkadOmOnnypNn8hAkTNG3aNL3++uslOgdHR0c5OjoqLS1N8fHxNHwAQBm7dZeqguR97lnQurvZtQr/j707D6uy2v///9qADIKoRCKKCmoOgXZEcQgtA9PCnMXUOkk5Falhk0OHzinNofp2Qs1Ss7DSj4mKU3o0sDyhaZCmoR1MwQTFVBQZnGH//vDHPu7D4GZQBp+P6+K6Nvda632/73tf3MuNvNcCAFSm9evXy83NTbt371b9+vVL7GtnZ3eHsirso48+0qRJk0zFHn379i22r7Ozs1q2bKkjR44oISGhyIKPhIQESZKvr6/ZcV9fX+3du9fUXty4/y2MKYhT3Ljk5GSdO3dOktShQwfT8YLXGRkZSklJKXJBg+JyBQAAAAAAAFDz3JaCjz179ig4OFjXr19Xp06d9Mwzz5h+GXns2DF98cUXio+P15NPPqkffvhBXbp0uR1pAABQ7WVmZqpHjx5KSkqSdOM/+26eU/fu3atVq1bpl19+0Y8//qh69epVYrYAAFSu7OxsSZKjo2OxfQr++CYrK8vieCXFLC5eRkaGJGnq1Klq1KiRNm7cqO7du+vcuXNavHix3n33Xb3yyityd3c322nE0mvIysqy6BokycPDo9i29PR0ubu7WxQHAO5Gt9qlqmBV89WrV9+JdAAAuCMuXLigxx577JbFHpXpk08+0YQJE0zFHk888cQtxwwaNEjvvfeeVqxYoWeffdasLScnRxs3bpQkDR48uNC4Tz/9VBs2bFBubm6hz2srVqwoclxQUJBsbW11/Phx7dy5U/7+/kWO69q1qxo1amQ67uHhIT8/P8XHx2vFihV64403zMbFxcUpNTVVdnZ2CgoKuuV1AwAAAAAAAKjebkvBx9tvv628vDy99957euWVVwq1v/jii/rnP/+pV155RTNmzNCmTZtuRxoAAFR7b7/9tv7zn//owQcf1CeffCIfHx+z9oMHD+qFF17Qzp079fbbb+uDDz6opEwBAMDNClZ8z8/P1+bNm007cdSrV09z5sxRVlaWPv74Y/3tb38zK/gAAFQtt9qlqmBV8zu1mxUAAHdCy5Ytdfny5cpOo1hLlixRaGhoqYo9JCksLEwfffSRYmJitGTJEo0dO1aSlJeXp9DQUGVmZsrPz0+9e/c2G/f444+rQ4cO2rdvn0JDQ/XZZ5/J2tpakrR48WLFxsbKyclJL730ktm4+vXr64UXXlBERIRCQ0O1fft23XPPPZKkvXv3au7cuZJUqKBDkqZPn65BgwZpzpw5evzxx007eWRkZCg0NFSSNGHCBNWtW9fS2wYAAAAAAACgmrotBR+7du2Sj49PkcUeBSZPnqzIyEjt3LnzdqQAAECNsHbtWrm4uGjz5s1ydnYu1O7t7a2NGzeqRYsWWrt2LQUfAIAqLSEhQatXr1ZSUpKysrJMRRE3MxgMio2NLVP8OnXqSJJyc3OL7ZOTkyNJRc6rxcUriFnUH9IUF69OnTrKyMhQjx49TMUeNwsNDdXHH3+s5ORkpaSkmHbwquhrkKS0tLRi20ra/QMAAADA3Wn06NGaPn260tLSbvtnhr1795oKGCTp6NGjkqRFixaZLRgXHR0td3d3/fLLLxo/fryMRqOaN2+u1atXF7vTVmRkpNn3jRo1UmRkpEaMGKFx48Zp6dKl8vT0VHx8vJKTk+Xm5qYVK1bIYDCYjTMYDPq///s/9ejRQ1988YXi4uLk5+enlJQU/fTTT7KxsdEXX3yhhg0bFsph1qxZ+umnn/Tjjz/qvvvuU0BAgHJzcxUbG6tr167p5ZdfLrJgZeDAgZo0aZLmzZunrl27KjAwUI6OjoqNjVVmZqb8/f01Y8YMi+8zAAAAAAAAgOrrthR8XLt2Te3atbtlPx8fH9MvbgEAQGGnTp3SE088UeIfdNatW1c9e/bUN998cwczAwCgdF599VX985//NBV5GAwGs4KPgu//9w9rSsPT01OSlJqaWmyfgraCviVp1qyZ6fXx48eL/JxbXLzmzZsrIyNDzZs3LzL2zcfT09NNBR+enp7au3evjh8/XuS4rKwsZWVlWXwNAIDbIz09XevXr1dmZqaMRqOee+65Qn0MBoOWLl1aCdkBAFA+EydO1J49exQQEKD58+fr0UcflZWV1W05V1ZWlvbs2VPoeFpamlnx+pUrVyTJNPdK0n/+8x/95z//KTb2/xZ8SFJwcLCaN2+uWbNm6YcfftC+ffvk7u6uF198UeHh4XJzcysyVuvWrXXgwAHNnDlTmzZtUnR0tOrWravBgwfrjTfeMO3A8b9q166t77//Xh988IGWL1+uzZs3y9bWVt26ddOECRMUHBxcbP4RERHy9/fXRx99pF27dunatWtq0aKFpk6dqsmTJ8vW1rbYsQAAAAAAAABqjttS8NGmTZsS/8CmwIkTJ9S6devbkQIAADWCm5tbkauf/y+j0agGDRrcgYwAACi9qKgoffDBB/Lw8FB4eLjWrFmjb7/9Vlu3btXvv/+u5cuX68cff9TUqVPVp0+fMp+nQ4cOkqSMjAyzXTNulpCQIEnF/jHOzZydndWyZUsdOXJECQkJRRZ8FBevY8eOio+P19mzZ4uMffNxJycn02tfX1+tXbvWFLe48zk6OqpVq1a3vAYAQMWbP3++XnvtNV27dk35+fmS/vsHpQWFiwVFjBR8AACqoxYtWkiSjh07pqCgINnY2Mjd3b3Ioo9Tp04VubOFpXr27GnR7z/L2r8oHTt21Jo1a0o9rmHDhlqwYIEWLFhQqnG2traaOnWqpk6dWupzDhs2TMOGDSv1OAAAAAAAAAA1x21Zjmf8+PGKi4vTjh07iu2zY8cO/fDDDxo/fvztSAEAgBrhiSee0Pfff68LFy4U2yczM1Pfffed+vbtewczAwDAcosXL5a1tbViY2M1duxYubu7S5IeffRRhYaGaufOnXrjjTf0wQcfqG7dumU+j4eHh/z8/CRJK1asKNQeFxen1NRU2dnZKSgoyKKYgwYNKjZeTk6ONm7cKEkaPHiwWVvBKq27d+9Wbm5uobHffvutpBvFHm3btjUdHzhwoCRp586dRe7yUZBHv379VKtWLYuuAQBQcWJjY/XSSy/J3t5eU6dONa2svWjRIr3yyium3ZfCwsL02WefVWKmAACU3bFjx3Ts2DFJN4oYr127puPHj5uO3/yVl5dXuckCAAAAAAAAQA13Wwo+xo4dq7CwMPXt21evvvqqDhw4oOzsbGVnZ+vAgQN67bXX1LdvX4WFhWncuHG3IwUAAGqEGTNmyMXFRX379tWvv/5aqD0xMVH9+vXTPffcoxkzZlRChgAA3Nq+ffvUpUsX3XfffcX2eeutt+Tu7q6ZM2eW61zTp0+XJM2ZM0d79+41Hc/IyFBoaKgkacKECWaFJdHR0WrTpo0CAwMLxQsLC1Pt2rUVExOjJUuWmI7n5eUpNDRUmZmZ8vPzU+/evc3GBQQEqEePHjp9+rQmTJigK1eumNoOHDigv/3tb5KkF154waxww9vbWwMGDFBeXp5Gjx6tS5cumdq2bNmiyMhIWVlZadq0aWW6PwCA8omIiJDBYNDWrVv1zjvvyMbmxgbKY8eO1XvvvadDhw5p1KhR+uyzz9SjR49KzhYAgLJJSUmx+MvNza2y0wUAAAAAAACAGs1gLO++x5Ksra3LnoDBoOvXr5c3BZSRh4eHJCktLa2SMwGA6udOPEOfe+45nT9/XuvXr5fBYNADDzwgLy8vSTf+4/XAgQMyGo3q37+/6tevbzbWYDBo6dKlty23moB5EADKx9LnqJ2dnYYMGWLanWL8+PH69NNPdeHCBTk5OZn6DR8+XDt27FB6enq58nrppZc0b9481apVS4GBgXJ0dFRsbKwyMzPl7++vb7/9Vg4ODqb+kZGRevbZZ9WsWTPTKrY3i4qK0ogRI5SXl6cuXbrI09NT8fHxSk5Olpubm+Li4tSyZctC41JTU/XQQw/p2LFjaty4sfz8/HTu3Dnt3r1bV69e1aOPPqqNGzfKzs7ObNzp06fVvXt3/f7773J3dzcVjuzYsUNGo1ERERGaNGlSue5RAeZCACidhg0bqkmTJoqPj5ckOTo66uLFi7r5V6xXrlxRs2bN9NhjjykyMrKSMoWlmAsBoHx4jlZ/vIcAUHY8QwEAAAAAd4JNRQQpT81IBdSbAABQY0VGRspgMEi6MWf+8ssv+uWXXwr1W79+faFjFHwAAKqKe++9V5mZmabvXV1dJUnHjh2Tj4+P6Xhubq6ysrLKfb6IiAj5+/vro48+0q5du3Tt2jW1aNFCU6dO1eTJk2Vra1uqeMHBwWrevLlmzZqlH374Qfv27ZO7u7tefPFFhYeHF7uibZMmTfTLL79ozpw5Wrt2rbZs2SJbW1v5+vpq1KhRGjt2bJELKDRo0EAJCQmaPXu21qxZo/Xr18vR0VF9+vTRq6++WuROJACAO+P8+fPq2bNnoeOXLl0yFRPa2dmpR48eio2NvcPZAQAAAAAAAAAAAKhpKqTgIz8/vyLCAACA//H5559XdgoAAJSbp6en/vjjD9P3HTp0kNFo1IoVKzRr1ixJ0qlTp7Rjxw41a9asQs45bNgwDRs2zKK+ISEhCgkJKbFPx44dtWbNmlLnUbduXc2ePVuzZ88u1ThnZ+cyjQMA3F4uLi7Kzc01fW9lZSVJOn78uFq3bm06npeXp4yMjDueHwAAAAAAAAAAAICapUIKPgAAwO0xatSoyk4BAIByCwwM1MyZM3Xs2DF5enrq8ccfl4uLi+bOnavff/9dTZs21erVq5Wbm6shQ4ZUdroAABSradOmSk1NNX1fq1YtSdKmTZtMBR85OTn64Ycf5OHhUSk5AgBQUdasWaOoqCglJSUpKytLRqOxUJ9Tp06pYcOGlZAdAAAAAAAAANwdKPgAAKCaOHTokHbt2qUzZ87I29tb/fv3l3Rjp63r16/L1ta2kjMEAKBow4cP18mTJ5WamipPT085Ojrq888/1/Dhw812zejYsaOmTZtWiZkCAFCyhx9+WP/85z/1559/ys3NTfb29jIYDJo+fbpOnTqlpk2batmyZTp37pyGDx9e2ekCAFAmRqNRw4YN09q1a4ss8pAkg8Ego9FYbDsAAAAAAAAAoGJYVXYCAACgZKmpqerVq5fatWun8ePH629/+5vWrVtnal+yZIkcHBwUGxtbeUkCAFCCtm3basmSJerRo4fpWL9+/fT777/r448/1jvvvKO1a9dq9+7dql27diVmCgBAyYKDg9WzZ0/98ssvkiQrKyvVrVtX169f1wcffKCwsDDt3btXzZo101tvvVW5yQIAUEZLlizRmjVr1L59e23dulWDBw+WwWBQUlKSNm3apCeffFKS9Le//U1ubm6VnC0AAAAAAAAA1Gzs8AEAQBV27tw5Pfzwwzp27Jh8fHz00EMPaeHChWZ9hg0bpgkTJmjDhg0KDAyspEwBACi9Ro0aafz48ZWdBgAAFvPz89O3335rdszR0VGxsbGKiorSuXPn1LZtWz377LOqW7duJWUJAED5fPnll7Kzs9OWLVvUsGFDrVixQpJ033336b777lNQUJAeeeQRhYaGqn79+rKx4b8bAQAAAAAAAOB24TewAABUYXPnztWxY8f06quvau7cuTIYDIUKPurXr6927dopLi6ukrIEAKBkx48ft6ifra2tXFxcZGtre5szAgCgYvn6+srX17ey0wAAoEIkJiaqW7duatiwoSTJYDBIkoxGo+n1uHHj9OGHHyo5OVl2dnaVlisAAAAAAAAA1HQUfAAAUIWtX79enp6emjNnjuk/U4vSvHlz7dy58w5mBgCA5Tw9PUucx25mZWUlb29vPffcc5owYYKsrKxuc3YAAAAAgJtdunRJ7u7upu8LCjqysrLMdrD6y1/+oqSkpDueHwAAAAAAAADcTfjLGQAAqrA//vhDvr6+t/xjV1tbW507d+4OZQUAQOk0bdpUTZs2ldFoNH05Ozurbt26ZseaNGkia2trHThwQJMnT1bfvn2Vn59f2ekDAAAAwF3Fzc1NZ86cMX3foEEDSdKRI0fM+p07d05Go/GO5gYAAAAAAAAAdxsKPgAAqMLs7e2VnZ19y37Hjx83W10PAICqJCUlRV27dpWbm5sWLFig8+fP6/z58zp37pwyMzP10UcfqWHDhuratauys7P1/fffq2XLltq2bZs+/fTTyk4fAAAAAO4qLVu2VHJysul7Pz8/GY1GffLJJ6Zjv/32m77//nvZ2NhURooAAAAAAAAAcNeg4AMAgCqsTZs22rt3r3Jzc4vtc/bsWe3fv1/t27e/g5kBAGC5efPmad26dfruu+8UGhpqVqTo7OysF154Qdu3b9e6deu0YMECPfTQQ1qzZo0MBoOWL19eiZkDAAAAwN2nd+/eSklJ0aFDh0zfN2nSRJ999pn8/Pw0ZMgQdevWTdeuXZODg0MlZwsAAAAAAAAANRsFHwAAVGFDhw5VRkaGXn75ZeXn5xfZ57XXXtPFixf15JNP3uHsAACwzNKlS/Xwww+rTZs2xfZp06aNevbsqc8++0yS5OPjI19fXx08ePBOpQkAAAAAkDRixAi9/fbbunTpkiTJ1tZWX3/9te699179/PPPio6OVlZWlvr37y8nJ6dKzhYAAAAAAAAAajYKPgAAqMJefPFF+fj46NNPP1Xnzp01a9YsSdLRo0f1wQcfqFu3bvriiy/0l7/8RSEhIZWbLAAAxTh69KjuueeeW/ZzcXFRcnKy6XsvLy9lZ2ffztQAAKjyoqKi1LNnT9WvX1+Ojo564IEH9O677+ratWtlivfzzz8rODhYbm5usre3l5eXlyZOnKjTp08X2T8vL0+rV6/WtGnT1Lt3b91zzz0yGAyysbEp8TynT5/WF198oZEjR+q+++6Tvb29ateurTZt2mjSpEk6duxYieOvXr2quXPn6oEHHpCjo6Pq16+vnj17avXq1WW6bgCA5Zo2bao33nhDHTt2NB3r2rWrUlJStGXLFi1fvlx79+5VdHS0DAZDJWYKAAAAAAAAADWfwWg0Gis7CVQeDw8PSVJaWlolZwIA1c+deoamp6crODhYu3btksFgkNFoNP1HqtFolJ+fn9atWyd3d/fbmkdNxDwIAOVj6XP03nvvVf369XX48OFi+xiNRrVu3Vrnz5/XmTNnJEn9+/fXrl27dPbs2YpLGmaYCwGgfG73czQsLEwRERGysbFRQECAnJyctH37dmVmZqp79+7atm2bHBwcLI63evVqjRgxQtevX5efn5+8vLyUkJCg5ORkubm5KS4uTi1btjQbk5mZqfr16xeKZW1trevXrxd7rqefflrLly+XlZWVfHx81Lp1a+Xm5io+Pl5nzpyRo6OjoqOj9eijjxYae/HiRT366KPatWuX6tWrp4CAAOXk5Gj79u26fv26XnnlFb3//vsWX3dJmAsBoHx4jlZ/vIcAUHY8QwEAAAAAd0LJy7ABAIBK5+7urri4OG3dulXffPONkpOTlZ+fryZNmujxxx/XgAEDKnQlvaioKH300Ufav3+/rl69qpYtW+qpp57S5MmTVatWrTLFXL9+vZYuXaqffvpJ586dU7169dSyZUs99thjevPNN836JiUlacuWLdq2bZv279+vM2fOyN7eXq1bt9bgwYM1ceJEOTk5VcSlAgDukIceekjr1q3TlClTNGvWLFlbW5u15+fna/r06Tpy5IgGDx5sOp6cnKzGjRvf6XQBAKgS1q1bp4iICDk5OWnHjh3y9fWVJJ09e1YBAQGKi4tTeHi4xYUPJ0+e1KhRo3T9+nUtWrRI48aNk3RjB4+QkBB99dVXGjlypPbs2WP2GbNWrVp66qmn1KFDB/n6+srFxUV/+ctfbnk+FxcXvfXWWxo9erTZfJ6Tk6OxY8dq5cqVGj58uI4cOVKooGT69OnatWuX2rVrp+3bt8vV1VXSjd1Jevbsqf/3//6fevbsqSeeeMKiawcAlOz48eNlHnv9+vVb7voEAAAAAAAAACg7dvi4y7HiBACUXU18hlb06rFXr17V008/raioKDk4OKhbt25yc3PTqVOndPDgQeXl5RVatd3Dw0MnTpyQvb29OnXqJA8PD/3555/68ccfdfnyZbVo0ULbt29X06ZNy329NfE9BIA7ydLn6MGDB9W5c2ddvnxZzZo1U3BwsDw9PWUwGHTs2DFFRUXp2LFjsre31549e+Tj46Njx46pefPmmjBhgubNm3cnLueuxFwIAOVzO5+jnTt3Vnx8vGbOnKk33njDrC0uLk49evSQnZ2d/vzzT9WtW/eW8V5//XW999576tWrl7799luztpycHHl4eOjChQv617/+pT59+hQb59ixY/Ly8rrlDh8luXjxoho2bKjs7Gx9+eWXevrpp01t58+fV8OGDXX16lXFxcXJ39/fbOzMmTMVHh6url276scffyzT+W/GXAgAkpWVVZkXlMnPz1fjxo15jlZjzIUAUHY8QwEAAAAAdwJL7gAAAEkVv3qsJI0dO1ZRUVEaOHCglixZYlqVVbrxn8E//fRToTGtW7fW22+/rWHDhpnt5HHs2DE98cQTOnjwoEJCQrR9+/ZyXC0A4E7y9vbW5s2b9dRTT+nYsWOF5hKj0Sh3d3d99dVX8vHxkSQ5OTnpu+++U6tWrSojZQAAKtWJEycUHx8vSRo5cmSh9u7du6tJkyZKTU3V5s2bNWLEiFvGjI6OLjaek5OT+vfvry+//FJr164tseCjItSuXVutW7dWQkKCUlNTzdo2b96sq1evqmnTpoWKPaQb+YeHh2v37t06efKkGjVqdFtzBYC7QdOmTctc8PG/z3EAAAAAAAAAQMWi4AMAAEiSZs2aJUmaOnWqqdhDklxdXbVw4UL16NFDCxYsUHh4uEWrx8bGxuqLL76Qj4+PVq1apVq1apm1W1lZqWvXrkWOK4qnp6c++eQT9ejRQ999953S0tJMKycBAKq+hx9+WEeOHNHq1au1Y8cO06p3jRs31kMPPaTg4GCzXaRcXV318MMPV1a6AABUqn379kmSXFxc5OXlVWSfTp06KTU1Vfv27btlwUd2draOHDliGldcvC+//NJ07tvp2rVrOnbsmCTJ3d3drK3g/MXl2bx5c7m4uOjcuXP65ZdfKPgAgApQ8EwuC34/BwAAAAAAAAC3FwUfAADgtqweO3/+fElSWFhYoWKPsurQoYPpdWpqKv+hDADVjL29vZ5++mk9/fTTlZ0KAABVWkpKiqQbK64Xp0mTJmZ9S3LzH/IWF7M08cpr6dKlOnv2rBwcHPT444+btVly7R4eHjp37twdyRUAAAAAAAAAAACoTBR8AACACl89Ni8vz7RTx0MPPaRTp05p5cqVSkpKkp2dnTp06KAhQ4bIycmpVHn+/vvvptf/uwosAAAAANQU2dnZkiRHR8di+xR8nsrKyrI4XkkxSxOvPH799Ve99tprkqTw8HC5ubmZtVf0tUslrz6fnp7O50sAAAAAAAAAAABUWRR8AACACl89Njk5WTk5OZKk3bt3KzQ01PR9gddee00rV65UQECAxXnOmTNHkuTr6ytPT0+LxwEAAAAAKl9aWpr69eunnJwc9e/fX1OnTq3slAAAAAAAAAAAAIAqjYIPAABQ4SuoZmRkmF6PHj1aDz74oN5//321adNGR48e1fTp07V582YNGDBAe/fu1X333XfLmJGRkfr6669lbW2tiIiIW/YvwEquAAAAAKqbOnXqSJJyc3OL7VNQVO/s7GxxvIKYdevWLVe8sjh16pQCAwP1xx9/qE+fPlq1apUMBkOxuVbUtUs3Ck2KU9JnRgAAAAAAAAAAAKCyWVV2AgAAoOYxGo2m140bN9bWrVvVqVMnOTk56YEHHtCGDRvk4+OjnJwc064dJYmNjdX48eMlSe+++666d+9+23IHAAAAgMpWsKNhampqsX0K2izZ/bBZs2am18ePHy93vNI6ffq0AgICdPjwYfXq1Uvr1q2TnZ1dkX0Lzl9cntJ/CzjY+REAAAAAAAAAAAA1HQUfAADgtq4eGxISUugPeaytrU0FHDExMSXGiouL04ABA3T16lX9/e9/18svv3zL898sLS2t2C929wAAAABQFXXo0EHSjd0TU1JSiuyTkJAgSfL19b1lPGdnZ7Vs2dJsXHnilcaZM2cUEBCg3377TYGBgdqwYYPs7e2L7V9w/uLyTE5O1rlz5yT99z4BAAAAAAAAAAAANRUFHwAAoMJXj/X09JTBYJAkNW/evMg+BcfT09OLjbNr1y4FBQUpNzdXb7zxhv7xj3/c8twAAAAAUN15eHjIz89PkrRixYpC7XFxcUpNTZWdnZ2CgoIsijlo0KBi4+Xk5Gjjxo2SpMGDB5c17ULOnj2rgIAAHTx4UIGBgdq4caMcHBxKHBMUFCRbW1sdP35cO3fuLNRekH/Xrl3VqFGjCssVAAAAAAAAAAAAqIoo+AAAABW+eqyTk5Nat24t6cYf+BSl4LiTk1OR7bt379Zjjz2m7OxsTZ8+XTNnzrzleQEAAACgppg+fbokac6cOdq7d6/peEZGhkJDQyVJEyZMUN26dU1t0dHRatOmjQIDAwvFCwsLU+3atRUTE6MlS5aYjufl5Sk0NFSZmZny8/NT7969KyT/c+fOKTAwUImJierVq5dFxR6SVL9+fb3wwguSpNDQUGVkZJja9u7dq7lz50qS3njjjQrJEwAAAAAAAAAAAKjKbCo7AQAAUPkKVo+Nj4/XihUrCv3hTFlWjw0ODtaMGTMUExOjyZMnF2r/9ttvJUmdO3cu1PbTTz+pT58+pmKPd955pwxXBQAAAADV18CBAzVp0iTNmzdPXbt2VWBgoBwdHRUbG6vMzEz5+/trxowZZmMuXLigpKQkXb58uVC8Ro0aKTIyUiNGjNC4ceO0dOlSeXp6Kj4+XsnJyXJzc9OKFStMuzXeLDQ01FR0cuXKFUk3CkW6du1q6tO3b1+Fh4ebvh8zZowOHDggg8EgFxcXUxFHUdc5cOBAs2OzZs3STz/9pB9//FH33XefAgIClJubq9jYWF27dk0vv/yynnjiCctuJAAAAAAAAAAAAFCNUfABAAAk3Vg9dtCgQZozZ44ef/xx004et1o9dtq0aWrcuLFiY2PN4k2aNEkLFizQ5s2btWjRIo0fP97UtnLlSi1fvtzU72YJCQnq3bu3srKyKPYAAAAAcFeLiIiQv7+/PvroI+3atUvXrl1TixYtNHXqVE2ePFm2tralihccHKzmzZtr1qxZ+uGHH7Rv3z65u7vrxRdfVHh4uNzc3Iocd+jQIe3Zs6fQ8ZuPtWnTxqzt3LlzkiSj0ahVq1YVm5Onp2ehgo/atWvr+++/1wcffKDly5dr8+bNsrW1Vbdu3TRhwgQFBwdbeskAAAAAAAAAAABAtWYwGo3Gyk4ClcfDw0OSlJaWVsmZAED1UxOfoS+99JLmzZunWrVqFbl67LfffisHBwdT/8jISD377LNq1qyZjh07Vijet99+q/79++vy5cvy9vZW27ZtdfToUe3bt0+SFB4errfffttsjIuLi86fP6969eppwIABxeY6derUQn9QVFo18T0EgDuJ52j1x3sIAOXDc7T64z0EgPLhOVr98R4CQNnxDAUAAAAA3Ans8AEAAEwqevXYRx99VPv379esWbMUExOj9evXy9nZWUFBQXrppZfUu3fvQmPOnz8vScrMzNSyZcuKjR0SElLugg8AAAAAAAAAAAAAAAAAAICqioIPAABgZtiwYRo2bJhFfUNCQhQSElJin1atWikyMtLi87P5GAAAAAAAAAAAAAAAAAAAgGRV2QkAAAAAAAAAAAAAAAAAAAAAAADAHAUfAAAAAAAAAAAAAAAAAAAAAAAAVQwFH/+/7OxsTZ8+Xa1bt5aDg4NcXV3Vt29fbd++vcwx8/PztWjRInXp0kV16tRRnTp11KVLFy1evFhGo7HI/rt27dKbb76p7t2765577lGtWrXk6uqqRx99VMuXLy9yHAAAAAAAAAAAAAAAAAAAAAAAqFko+JB0+vRpderUSbNnz1Z2drb69esnb29vbdmyRb169dL8+fNLHTMvL0/BwcF6/vnnlZiYqEceeUSPPPKIfv31V40fP15PPvmk8vPzzcYkJyfL399fM2bM0G+//aZOnTppyJAhat68uWJiYvT000+rf//+unr1akVdOgAAAAAAAAAAAFApkpKSNH/+fIWEhKhdu3aysbGRwWDQzJkzix2TmpqqRYsWady4cerYsaPs7OxkMBg0ZsyYW54vNzdXs2fPVqdOneTs7KxatWqpYcOGeuKJJ7Rhw4YSxx45ckQhISHy8PCQnZ2dPDw8FBISouTk5BLHlXXRudIuLAcAAAAAAACgZrKp7ASqgnHjxunw4cMKDAzUhg0bVLt2bUnS5s2b1b9/f4WFhenhhx9W+/btLY45f/58rV27Vo0bN9YPP/wgLy8vSVJKSoq6d++uqKgoPfTQQ5owYYJpjMFgUEBAgF577TU9+uijsra2NrXt2LFDffv21aZNmzRnzhy9+eabFXT1AAAAAAAAAAAAwJ338ccfKyIiolRj1qxZo8mTJ5f6XBkZGXrooYd06NAhOTk56cEHH1S9evV05MgRffPNN/rmm280adKkIvPZuXOnevfurYsXL8rb21vdu3dXYmKili1bptWrVysmJkZdu3YtNO706dPq0aOHDh8+LHd3d/Xr109//vmntmzZoi1btigiIkITJ04sNC4vL0/Dhg3T2rVrVbt2bQUGBkqSYmJiNH78eMXExGjlypWysmJtPwAAAAAAAKCmu+t/C3jo0CGtX79e1tbWWrp0qanYQ5KCgoIUEhKi/Px8zZ492+KY+fn5mjt3riRp7ty5pmIPSfLy8jK1zZ4922yXjxYtWig2NlaPPfaYWbGHJD388MOaOnWqJOmLL74o/YUCAAAAAAAAAAAAVYiPj49effVVLV++XL/99pv++te/3nKMl5eXJk6cqM8//1z79+/XG2+8YdG53n77bR06dEgdO3bUH3/8oa1bt+rrr7/Wzz//rG+++UY2NjaaN2+edu/ebTbu4sWLGjZsmC5evKhp06YpMTFRK1euVGJioqZNm6bc3FwNGzZMly5dKnTOmxedO3LkiFatWqUdO3Zo06ZNsrKyUlhYmA4cOFBo3M0LyyUmJmrDhg3asGGDDh48qEaNGikqKkoLFy606LoBAAAAAAAAVG93fcFHdHS0JMnf31/NmjUr1D5y5EhJ0saNG3Xt2jWLYv744486deqU7OzsNGTIkELtQ4YMka2trU6ePKk9e/ZYnGuHDh0k3diqGgAAAAAAAAAAAKjOxowZo/fee08jR45UmzZtLNqxYsCAAZo3b55CQkLUvn172djYWHSu7du3S5KmTJkiFxcXs7agoCA98sgjkm78P9/NIiMjdfLkSbVq1UozZ840a5s5c6ZatWql1NTUQgu2lXXRubIuLAcAAAAAAACgZrrrCz727dsnSerUqVOR7QXHc3Nz9fvvv5cqpre3t+zt7Qu1Ozg4yNvb26yvJQrO7+7ubvEYAAAAAAAAAAAA4G5X1P/ZFcXV1dXs+4LF44YPH16oIMXKykpPPvmkJGnt2rVFjivtonO3a2E5AAAAAAAAANXTXV/wkZKSIklq2rRpke3Ozs5ydnY261vemJLUpEmTUsW8ePGi5s2bJ0lF/nIXAAAAAAAAAAAAQNEef/xxSTd2zTh37pxZ2+bNm/Xdd9+pYcOG6t+/v1mbpYvH/e8ib2VddO52LSwHAAAAAAAAoHq66ws+srOzJUmOjo7F9nFycpIkZWVlVVrM0NBQpaSkqFGjRpo+fbpFYwp4eHgU+5Wenl6qWAAAAABQHURFRalnz56qX7++HB0d9cADD+jdd981WzW1NH7++WcFBwfLzc1N9vb28vLy0sSJE3X69Oki+x87dkwGg6HEr6lTpxZ7vj179mjo0KFq2LChbG1t1bhxYz399NM6dOhQmfIHAAAAgLvdlClT1KdPH/38889q1qyZHnvsMQ0fPlydOnVS37591aVLF33//feqW7euaUx2drYyMjIkFb/QW8Eib2fOnFFubq7peFkXnbsdC8sBAAAAAAAAqL5sKjuB8nj99de1YcOGUo/79NNP1b1799uQ0e0xY8YMLVu2TPb29lq1apXuueeeyk4JAAAAAKqssLAwRUREyMbGRgEBAXJyctL27ds1ZcoUbdy4Udu2bZODg4PF8VavXq0RI0bo+vXr8vPzk5eXlxISErRgwQJFRUUpLi5OLVu2LHKso6Ojhg4dWmRbx44dizy+ePFihYaGKi8vT23btlX37t31+++/a/ny5Vq9erXWrVunxx57zOL8AQAAAAA3Pp9t3LhR06dP1//7f/9PW7duNbXdc8896tWrlxo3bmw2pmCRt4LxRSlY5E26sdBbQT9LF4jLysoyWyDudiws5+HhUWxbenq63N3dLYoDAAAAAAAA4M6r1gUfJ0+eVFJSUqnH5eTkmF7XqVNHksxW3Cmuf8EqO7dSkTE/+OADvfnmm7Kzs1N0dLT8/f0tyuFmaWlpxbaV9AteAAAAAKhu1q1bp4iICDk5OWnHjh3y9fWVJJ09e1YBAQGKi4tTeHi43n//fYvinTx5UqNGjdL169e1aNEijRs3TpKUl5enkJAQffXVVxo5cqT27Nkjg8FQaLyrq6siIyMtzv/AgQOmYo8PPvhAkydPNrV9/vnneu655zR8+HAdOXJErq6uFscFAAAAgLtdenq6BgwYoAMHDmjmzJkaMWKEGjRooEOHDulvf/ub3nrrLa1bt04//PCD6f/6AAAAAAAAAKCyWVV2AuXx1VdfyWg0lvrr5pVQPT09JUnHjx8v8hw3r6pT0PdWbhVTklJTU28Zc/78+XrllVdka2urNWvWsIIrAAAAANzCrFmzJElTp041FXtINwovFi5cKElasGCBLly4YFG8Dz/8UBcvXlSvXr1MxR6SZG1trY8//lh169ZVfHy8tm3bViH5f/TRR8rLy9PDDz9sVuwhSc8++6wGDRqkCxcuKCIiokLOBwAAAAB3i1GjRik+Pl4zZszQ9OnT5eXlJUdHR/n5+WnTpk1q166d9u/fb7ZAwM2FH8Ut9HbzQnM3L/RW1gXibsdidWlpacV+sbsHAAAAAAAAULVV64KPilDwB0AJCQlFthccd3R0VKtWrUoV8+DBg7p8+XKh9kuXLungwYNmff/XRx99pEmTJpmKPfr27WvRuQEAAADgbnXixAnFx8dLkkaOHFmovXv37mrSpImuXLmizZs3WxQzOjq62HhOTk7q37+/JGnt2rVlTdtMQf69evUqsr3g+OrVqyvkfAAAAABwNzhx4oS+/fZbSdKIESMKtdeqVUtDhw6VJMXExJiO16lTRy4uLpKKX+itYJE3V1dXOTo6mo6XddG5ilpYDgAAAAAAAEDNcNcXfAwcOFCStHPnziJ/cbpixQpJUr9+/VSrVi2LYnbr1k0NGzbUlStXtGbNmkLta9as0dWrV9WoUSN16dKlUPsnn3yiCRMmmIo9nnjiiVJcEQAAAADcnfbt2ydJcnFxkZeXV5F9OnXqZNa3JNnZ2Tpy5IjZuNLGy83N1Zw5c/T8889r4sSJ+vDDD5WUlFTsOQtWab3nnnuKbHd1dZUkJSUllbjaKwAAAADgv27+P8DidsWoW7euJOncuXNmxy1dPO5/F3kr66JzFbGwHAAAAAAAAICa464v+PD29taAAQOUl5en0aNH69KlS6a2LVu2KDIyUlZWVpo2bVqhsc8884zatGmjBQsWmB23srLSlClTJElTpkxRSkqKqS0lJUVTp06VJE2bNk1WVuZvwZIlSxQaGkqxBwAAAACUUsFnr6ZNmxbbp0mTJmZ9S3Ls2DHT6+Ji3ire2bNnNW3aNC1atEgLFizQ5MmT1bZtW/31r381FXfcrEGDBpKk5OTkIuMVHDcajWb5AQAAAACK17hxY9PrPXv2FNln9+7dklRoAYFBgwZJklauXKn8/Hyztvz8fH399deSpMGDB5u1lXXRufIuLAcAAAAAAACgZrnrCz4kafHixbrvvvsUExOjFi1a6Mknn9Qjjzyivn37Ki8vT//85z/Vvn37QuOOHz+upKQknT17tlDbxIkTNWjQIJ04cUI+Pj4aMGCABgwYIB8fH504cUJDhw5VaGio2ZhffvlF48ePl9FoVPPmzbV69WqFhIQU+QUAAAAAMJednS3pxuqoxXFycpIkZWVlWRyvpJjFxbOzs9PYsWO1detWpaam6uLFizp48KBmzJih2rVr66uvvtKQIUNkNBrNxgUEBEiSli9frosXL5q1Xbt2TZ999pnpe0uuQZI8PDyK/UpPT7coBgAAAABUZ02bNpWfn58k6aWXXipUQP/VV1+ZCjdGjhxp1hYSEqJGjRrp8OHDCg8PN2sLDw/X4cOH5eHhoWeeecasrayLzpVnYTkAAAAAAAAANY9NZSdQFTRo0EAJCQmaPXu21qxZo/Xr18vR0VF9+vTRq6++qsDAwFLHtLa21urVq7VkyRJ9+umnio2NlXTjl7ujR4/WuHHjZDAYzMZkZmaa/tjnP//5j/7zn/8UGz8yMrLUOQEAAAAA7gx3d3ctXrzY7Nj999+v+++/X71799aDDz6obdu2af369aZVXyXpxRdf1Mcff6z09HT16dNHH3zwge6//34dOXJEr7/+utkfJfGHPQAAAACqu71795otkHb06FFJ0qJFi7Rp0ybT8ejoaLm7u0uS0tPTTbtuSFJaWpokacOGDeratavp+MKFC+Xr62v6/rPPPtMjjzyi3377TW3btlXXrl3l6uqq3377TQcPHpQkPf3003rqqafMcqxdu7ZWrVql3r17a9asWdqwYYN8fHyUmJioxMREOTo6KioqSg4ODoWub/HixTp06JBp0bkePXro9OnT2rFjh4xGoyIiIopcdG7ixIn697//rejoaPn4+KhXr16SpJiYGF28eLHIheUAAAAAAAAA1EwUfPz/nJ2dNXv2bM2ePdviMd9//32J7VZWVho/frzGjx9vUbyePXsWWt0VAAAAAGCZOnXqSJJyc3OL7ZOTkyPpxmdAS+MVxKxbt2654hXo3Lmz+vXrp3Xr1mnjxo1mBR9ubm765ptvNHjwYMXFxalz586mNgcHB3388ccaM2aMJMnFxcWi8xX88VNRPDw8LM4bAAAAACpaVlaW9uzZU+h4Wlqa2WeZK1eumL0uasyZM2d05swZs9g3KyjS+Oc//6ktW7YoPj5eV65cUf369dWnTx8999xzGjZsWJF5+vv7a//+/ZoxY4ZiYmK0Zs0a3XvvvXrmmWf05ptvqkWLFkWOK+uic2VZWA4AAAAAAABAzUTBBwAAAACgRvD09JQkpaamFtunoK2gb0maNWtmen38+HG1a9euXPFu1rZtW61bt67IYozOnTvr999/V3R0tOLj43Xp0iW1aNFCw4cP16VLlyRJjo6Oat68eanOCQAAAABVTVkWQ/P09CzzAmpubm6aM2eO5syZU+qxLVu21LJly0o9riyLzkmlX1gOAAAAAAAAQM1EwQcAAAAAoEbo0KGDJCkjI0MpKSny8vIq1CchIUGS5Ovre8t4zs7OatmypY4cOaKEhIQiCz5KE+9mGRkZksx3EbmZg4ODRo4cqZEjR5odX7p0qSTpkUcekbW1danOCQAAAAAAAAAAAAAAgOrFqrITAAAAAACgInh4eMjPz0+StGLFikLtcXFxSk1NlZ2dnYKCgiyKOWjQoGLj5eTkaOPGjZKkwYMHW5xnbm6uaVznzp0tHnf9+nVFRERIkiZMmGDxOAAAAAAAAAAAAAAAAFRPFHwAAAAAAGqM6dOnS5LmzJmjvXv3mo5nZGQoNDRU0o1iibp165raoqOj1aZNGwUGBhaKFxYWptq1aysmJkZLliwxHc/Ly1NoaKgyMzPl5+en3r17m41bvHixUlNTC8VLSUnRgAEDlJ6ernr16um5554r1CchIUHXr183O3bu3DmNGDFCv/76q0aMGKE+ffpYcjsAAAAAAAAAAAAAAABQjdlUdgIAAAAAAFSUgQMHatKkSZo3b566du2qwMBAOTo6KjY2VpmZmfL399eMGTPMxly4cEFJSUm6fPlyoXiNGjVSZGSkRowYoXHjxmnp0qXy9PRUfHy8kpOT5ebmphUrVshgMJiNW7hwoZ5//nl5e3urVatWsrW1VUpKin755RdduXJF99xzj9auXStXV9dC5xwzZoxOnDih9u3by83NTWfPntWuXbuUm5urJ554Qp999lnF3jQAAAAAAAAAAAAAAABUSezwAQAAAACoUSIiIvT111+rW7du2rVrlzZv3iwPDw/NmTNH27dvl4ODQ6niBQcHa8+ePRo8eLCSk5MVHR2tvLw8vfjii9q/f79atmxZaMykSZMUHBys69ev6/vvv9fq1auVlJSk9u3b6+9//7sOHTqkhx56qMjzjRkzRj4+PkpMTNTq1au1b98+de/eXStXrtTGjRtlb29fpvsCAAAAAAAAAAAAAACA6sVgNBqNlZ0EKo+Hh4ckKS0trZIzAYDqh2do9cd7CADlw3O0+uM9BIDy4Tla/fEeAkD58Byt/ngPAaDseIYCAAAAAO4EdvgAAAAAAAAAAAAAAAAAAAAAAACoYij4AAAAAAAAAAAAAAAAAAAAAAAAqGIo+AAAAAAAAAAAAAAAAAAAAAAAAKhiKPgAAAAAAAAAAAAAAAAAAAAAAACoYij4AAAAAAAAAAAAAAAAAAAAAAAAqGIo+AAAAAAAAAAAAAAAAAAAAAAAAKhiKPgAAAAAAAAAAAAAAAAAAAAAAACoYij4AAAAAAAAAAAAAAAAAAAAAAAAqGIo+AAAAAAAAAAAAAAAAAAAAAAAAKhiKPgAAABmoqKi1LNnT9WvX1+Ojo564IEH9O677+ratWtljrl+/Xr1799fDRs2lK2trRo0aKAHH3xQb7/9dqG+ubm5WrFihV555RX17NlTzs7OMhgMatmyZXkuCwAAAACqpYr+jPbzzz8rODhYbm5usre3l5eXlyZOnKjTp08X2T8vL0+rV6/WtGnT1Lt3b91zzz0yGAyysbG55bk2b96sf/zjH+rXr58aNWokg8Egg8GgtLS0W47dtWuXnnzySTVp0kS2trZydHRUu3btNGXKlGJzBQAAAAAAAAAAAGoag9FoNFZ2Eqg8Hh4ekmTRf7ICAMzVxGdoWFiYIiIiZGNjo4CAADk5OWn79u3KzMxU9+7dtW3bNjk4OFgc7+rVq3r66acVFRUlBwcHdevWTW5ubjp16pQOHjyovLw8nT171mzML7/8og4dOhSK1aJFCx05cqTc13izmvgeAsCdxHO0+uM9BIDyud3P0Yr+jLZ69WqNGDFC169fl5+fn7y8vJSQkKDk5GS5ubkpLi6uULF9Zmam6tevXyiWtbW1rl+/XuL56tWrpwsXLhQ6npqaarp3RVm4cKEmTJggo9EoHx8ftW3bVjk5Odq9e7fOnz+vBg0aaMeOHWrTpo2FV1485kIAKB+eo9Uf7yEAlB3PUAAAAADAnXDrZdgAAMBdYd26dYqIiJCTk5N27NghX19fSdLZs2cVEBCguLg4hYeH6/3337c45tixYxUVFaWBAwdqyZIlcnV1NbXl5+frp59+KjSmTp06evbZZ+Xr66sOHTooMzNTTzzxRPkvEAAAAACqkYr+jHby5EmNGjVK169f16JFizRu3DhJN3bwCAkJ0VdffaWRI0dqz549MhgMpnG1atXSU089pQ4dOsjX11cuLi76y1/+YtE5Bw8erPvuu0++vr7y9fVVgwYNbjnmzz//1OTJk2U0GhUZGalRo0aZ2rKzszV06FBt27ZNYWFh+te//mVRHgAAAAAAAAAAAEB1xQ4fdzlWnACAsqtpz9DOnTsrPj5eM2fO1BtvvGHWFhcXpx49esjOzk5//vmn6tate8t4sbGx6tWrl3x8fLR3717VqlWrTHl9//33euSRR9jhAwCqIJ6j1R/vIQCUz+18jlb0Z7TXX39d7733nnr16qVvv/3WrC0nJ0ceHh66cOGC/vWvf6lPnz7Fxjl27Ji8vLws2uHjfxUUkpS0w8eaNWs0dOhQ3X///Tp48GCh9l27dsnf31/Ozs5F7h5SWsyFAFA+PEerP95DACg7nqEAAAAAgDvBqrITAAAAle/EiROKj4+XJI0cObJQe/fu3dWkSRNduXJFmzdvtijm/PnzJUlhYWFlLvYAAAAAgLvR7fiMFh0dXWw8Jycn9e/fX5K0du3asqZdIezt7S3qd/MOkgAAAAAAAAAAAEBNRcEHAADQvn37JEkuLi7y8vIqsk+nTp3M+pYkLy9PsbGxkqSHHnpIp06d0ocffqgXXnhBYWFhWrZsmXJyciooewAAAACoWSr6M1p2drZpx8SCceWJdzt169ZNdevW1aFDh7Rs2TKztpycHL311luSpPHjx1dGegAAAAAAAAAAAMAdZVPZCQAAgMqXkpIiSWratGmxfZo0aWLWtyTJycmmgo7du3crNDS0UIHHa6+9ppUrVyogIKCsaQMAAABAjVTRn9GOHTtmel1czNLEu51cXFy0bNkyPfXUUwoJCdH777+vtm3bKjc3Vz/++KMk6Z133tFrr71WqXkCAAAAAAAAAAAAdwIFHwAAQNnZ2ZIkR0fHYvs4OTlJkrKysm4ZLyMjw/R69OjRevDBB/X++++rTZs2Onr0qKZPn67NmzdrwIAB2rt3r+67775yXkHxPDw8im1LT0+Xu7v7bTs3AAAAAJRFRX9GK4hXUszSxLvdBgwYoB07dujJJ59UYmKiEhMTTW29e/eWv7+/DAaDxfH4XAgAAAAAAAAAAIDqyqqyEwAAADWP0Wg0vW7cuLG2bt2qTp06ycnJSQ888IA2bNggHx8f5eTkaM6cOZWYKQAAAACgqvn444/VrVs33XPPPfr+++914cIFpaam6qOPPtLu3bsVEBCgyMjIyk4TAAAAAAAAAAAAuO3Y4QMAAKhOnTqSpNzc3GL75OTkSJKcnZ0tjidJISEhsrOzM2u3trbW+PHjNXHiRMXExJQlZYulpaUV21bSKq8AAAAAUFlu52e03Nxc1a1bt1zxbqedO3cqNDRU7u7u2rZtmylXZ2dnhYaGysXFRSNGjFBYWJgGDhyoevXq3TImnwsBAAAAAAAAAABQXbHDBwAAkKenpyQpNTW12D4FbQV9bxXPYDBIkpo3b15kn4Lj6enppcgUAAAAAGq+iv6M1qxZM9Pr48ePlzve7VSwc0dQUFCRhSlDhw6Vra2tLly4oPj4+DucHQAAAAAAAAAAAHBnUfABAADUoUMHSVJGRoZSUlKK7JOQkCBJ8vX1vWU8JycntW7dWpJ09uzZIvsUHHdycip1vgAAAABQk1X0ZzRnZ2e1bNnSbFx54t1OBQUpxe00YmNjI0dHR0nSuXPn7lheAAAAAAAAAAAAQGWg4AMAAMjDw0N+fn6SpBUrVhRqj4uLU2pqquzs7BQUFGRRzODgYElSTExMke3ffvutJKlz585lSRkAAAAAaqzb8Rlt0KBBxcbLycnRxo0bJUmDBw8ua9oVonHjxpKkPXv2FNmelJSk8+fPS5K8vLzuWF4AAAAAAAAAAABAZaDgAwAASJKmT58uSZozZ4727t1rOp6RkaHQ0FBJ0oQJE1S3bl1TW3R0tNq0aaPAwMBC8SZNmqT69etr8+bNWrRokVnbypUrtXz5clM/AAAAAIC5iv6MFhYWptq1aysmJkZLliwxHc/Ly1NoaKgyMzPl5+en3r17365LssjQoUMlSbt27dJ7770no9Foajt9+rRGjx4tSWrVqpU6depUKTkCAAAAAAAAAAAAd4pNZScAAACqhoEDB2rSpEmaN2+eunbtqsDAQDk6Oio2NlaZmZny9/fXjBkzzMZcuHBBSUlJunz5cqF4rq6u+vrrr9W/f389//zzmj9/vtq2baujR49q3759kqTw8PAiV6MdNGiQ0tPTJUlZWVmSpLS0NHXt2tXUZ8yYMRozZkyFXT8AAAAAVCUV/RmtUaNGioyM1IgRIzRu3DgtXbpUnp6eio+PV3Jystzc3LRixQoZDIZCY0NDQ01FJ1euXJF0o1Dk5s9offv2VXh4uNm4GTNm6JtvvikUr3///rK1tZUk+fr6auHChaa2oKAgjR8/XosWLdLrr7+uxYsXq3379srOztaePXuUlZWlevXq6csvv5SVFesZAQAAAAAAAAAAoGaj4AMAAJhERETI399fH330kXbt2qVr166pRYsWmjp1qiZPnmz6gxxLPfroo9q/f79mzZqlmJgYrV+/Xs7OzgoKCtJLL71U7Mqx+/bt0x9//GF27MqVK9qzZ4/p+8cee6z0FwgAAAAA1UhFf0YLDg5W8+bNNWvWLP3www/at2+f3N3d9eKLLyo8PFxubm5Fjjt06JDZ57ECNx9r06ZNofajR48WOa5gEQBJsre3L9T+ySef6PHHH9fSpUuVkJCgjRs3ysbGRl5eXurTp49efvlleXh4WHTNAAAAAAAAAAAAQHVmMBqNxspOApWn4D9G09LSKjkTAKh+eIZWf7yHAFA+PEerP95DACgfnqPVH+8hAJQPz9Hqj/cQAMqOZygAAAAA4E5gz3sAAAAAAAAAAAAAAAAAAAAAAIAqhoIPAAAAAAAAAAAAAAAAAAAAAACAKoaCDwAAAAAAAAAAAAAAAAAAAAAAgCqGgg8AAAAAAAAAAAAAAAAAAAAAAIAqhoIPAAAAAAAAAAAAAAAAAAAAAACAKoaCDwAAAAAAAAAAAAAAAAAAAAAAgCqGgg8AAAAAAAAAAAAAd1xSUpLmz5+vkJAQtWvXTjY2NjIYDJo5c2axY1JTU7Vo0SKNGzdOHTt2lJ2dnQwGg8aMGWPxedevX6/+/furYcOGsrW1VYMGDfTggw/q7bffLnbMkSNHFBISIg8PD9nZ2cnDw0MhISFKTk4u8VzZ2dmaPn26WrduLQcHB7m6uqpv377avn17iePy8/O1aNEidenSRXXq1FGdOnXUpUsXLV68WEaj0eJrBQAAAAAAAFC92VR2AgAAAAAAAAAAAADuPh9//LEiIiJKNWbNmjWaPHlymc539epVPf3004qKipKDg4O6desmNzc3nTp1SgcPHtS8efP05ptvFhq3c+dO9e7dWxcvXpS3t7e6d++uxMRELVu2TKtXr1ZMTIy6du1aaNzp06fVo0cPHT58WO7u7urXr5/+/PNPbdmyRVu2bFFERIQmTpxYaFxeXp6GDRumtWvXqnbt2goMDJQkxcTEaPz48YqJidHKlStlZcXafgAAAAAAAEBNx28BAQAAAAAAAAAAANxxPj4+evXVV7V8+XL99ttv+utf/3rLMV5eXpo4caI+//xz7d+/X2+88YbF5xs7dqyioqI0cOBAHT9+XLGxsVqxYoW2b9+u9PR0bdq0qdCYixcvatiwYbp48aKmTZumxMRErVy5UomJiZo2bZpyc3M1bNgwXbp0qdDYcePG6fDhwwoMDNSRI0e0atUq7dixQ5s2bZKVlZXCwsJ04MCBQuPmz5+vtWvXqnHjxkpMTNSGDRu0YcMGHTx4UI0aNVJUVJQWLlxo8XUDAAAAAAAAqL4o+AAAAAAAAAAAAABwx40ZM0bvvfeeRo4cqTZt2li0Y8WAAQM0b948hYSEqH379rKxsbHoXLGxsfriiy/k4+OjVatWydXV1azdysqqyF06IiMjdfLkSbVq1UozZ840a5s5c6ZatWql1NRUffHFF2Zthw4d0vr162Vtba2lS5eqdu3apragoCCFhIQoPz9fs2fPNhuXn5+vuXPnSpLmzp0rLy8vU5uXl5epbfbs2crPz7fo2gEAAAAAAABUXxR8AAAAAAAAAAAAAKjR5s+fL0kKCwtTrVq1LB4XHR0tSRo+fHihghQrKys9+eSTkqS1a9cWOc7f31/NmjUrFHfkyJGSpI0bN+ratWum4z/++KNOnTolOzs7DRkypNC4IUOGyNbWVidPntSePXssvg4AAAAAAAAA1RMFHwAAAACAGicqKko9e/ZU/fr15ejoqAceeEDvvvuu2R/RlMbPP/+s4OBgubm5yd7eXl5eXpo4caJOnz5dZP9jx47JYDCU+DV16tRiz7dr1y49+eSTatKkiWxtbeXo6Kh27dppypQpxZ4TAAAAAFC0vLw8xcbGSpIeeughnTp1Sh9++KFeeOEFhYWFadmyZcrJySly7L59+yRJnTp1KrK94HhBv9KOy83N1e+//15onLe3t+zt7QuNc3BwkLe3d5HnBAAAAAAAAFDzWLbHMQAAAAAA1URYWJgiIiJkY2OjgIAAOTk5afv27ZoyZYo2btyobdu2ycHBweJ4q1ev1ogRI3T9+nX5+fnJy8tLCQkJWrBggaKiohQXF6eWLVsWOdbR0VFDhw4tsq1jx45FHl+4cKEmTJggo9EoHx8fdevWTTk5Odq9e7feffddRUZGaseOHWrTpo3F1wAAAAAAd7Pk5GRTQcfu3bsVGhpaqMDjtdde08qVKxUQEGA6lp2drYyMDElS06ZNi4zdpEkTSdKZM2eUm5srR0dHSVJKSkqJ45ydneXs7KysrCylpKTo/vvvt2hcwTn37dtn6gsAAAAAAACg5qLgAwAAAABQY6xbt04RERFycnLSjh075OvrK0k6e/asAgICFBcXp/DwcL3//vsWxTt58qRGjRql69eva9GiRRo3bpykG6vDhoSE6KuvvtLIkSO1Z88eGQyGQuNdXV0VGRlpcf5//vmnJk+eLKPRqMjISI0aNcrUlp2draFDh2rbtm0KCwvTv/71L4vjAgAAAMDdrKBoQ5JGjx6tBx98UO+//77atGmjo0ePavr06dq8ebMGDBigvXv36r777pN043NYgYJCjv/l5ORkep2VlWXqVzC2uHEFY7OyspSVlWU6Zum4gvNZwsPDo9i29PR0ubu7WxQHAAAAAAAAwJ1nVdkJAAAAAABQUWbNmiVJmjp1qqnYQ7pReLFw4UJJ0oIFC3ThwgWL4n344Ye6ePGievXqZSr2kCRra2t9/PHHqlu3ruLj47Vt27YKyT8uLk5Xr17V/fffb1bsIUl16tTR3//+d0nSjz/+WCHnAwAAAIC7gdFoNL1u3Lixtm7dqk6dOsnJyUkPPPCANmzYIB8fH+Xk5GjOnDmVmCkAAAAAAAAAmKPg4/+XnZ2t6dOnq3Xr1nJwcJCrq6v69u2r7du3lzlmfn6+Fi1apC5duqhOnTqqU6eOunTposWLF5v9YvlWFi5cKIPBIIPBoDFjxpQ5HwAAAACoyU6cOKH4+HhJ0siRIwu1d+/eXU2aNNGVK1e0efNmi2JGR0cXG8/JyUn9+/eXJK1du7asaZuxt7e3qJ+rq2uFnA8AAAAA7gZ16tQxvQ4JCZGdnZ1Zu7W1tcaPHy9JiomJKXJcbm5ukbFzcnJMr52dnQuNLW7czWMrYlxJ0tLSiv1idw8AAAAAAACgaqPgQ9Lp06fVqVMnzZ49W9nZ2erXr5+8vb21ZcsW9erVS/Pnzy91zLy8PAUHB+v5559XYmKiHnnkET3yyCP69ddfNX78eD355JPKz8+/ZZzk5GS9/vrrMhgMZbk0AAAAALhr7Nu3T5Lk4uIiLy+vIvt06tTJrG9JsrOzdeTIEbNxpY2Xm5urOXPm6Pnnn9fEiRP14YcfKikpqdhzduvWTXXr1tWhQ4e0bNkys7acnBy99dZbkmT6QyQAAAAAwK15enqa/q+tefPmRfYpOJ6enm46VqdOHbm4uEiSjh8/XuS41NRUSTcK8x0dHc3OWdK4rKwsZWVlmfW1ZNzN57x5HAAAAAAAAICaiYIPSePGjdPhw4cVGBioI0eOaNWqVdqxY4c2bdokKysrhYWF6cCBA6WKOX/+fK1du1aNGzdWYmKiNmzYoA0bNujgwYNq1KiRoqKitHDhwhJj5OfnKyQkRAaDQc8880x5LhEAAAAAaryUlBRJUtOmTYvt06RJE7O+JTl27JjpdXExbxXv7NmzmjZtmhYtWqQFCxZo8uTJatu2rf7617+arQJbwMXFRcuWLZOjo6NCQkLUrl07DRs2TH379lXTpk0VHx+vd955R6+99tot8wcAAAAA3ODk5KTWrVtLuvE5rSgFx52cnMyO+/r6SpISEhKKHFdwvKBfacc5OjqqVatWhcYdPHhQly9fLjTu0qVLOnjwYJHnBAAAAAAAAFDz3PUFH4cOHdL69etlbW2tpUuXqnbt2qa2oKAghYSEKD8/X7Nnz7Y4Zn5+vubOnStJmjt3rtnKsl5eXqa22bNnl7jLR0REhH744QfNnTuXFXoAAAAA4Bays7MlyWxF1f9V8Ic7BauoWhKvpJjFxbOzs9PYsWO1detWpaam6uLFizp48KBmzJih2rVr66uvvtKQIUNkNBoLxRwwYIB27NihFi1aKDExUVFRUdq8ebPOnz8vPz8/+fv7l2oXSA8Pj2K/bl65FgAAAABqsuDgYElSTExMke3ffvutJKlz585mxwcNGiRJWrlyZaH/18vPz9fXX38tSRo8eLBZ28CBAyVJO3fuLHK3jhUrVkiS+vXrp1q1apmOd+vWTQ0bNtSVK1e0Zs2aQuPWrFmjq1evqlGjRurSpUvRFwsAAAAAAACgxrjrCz6io6MlSf7+/mrWrFmh9pEjR0qSNm7cqGvXrlkU88cff9SpU6dkZ2enIUOGFGofMmSIbG1tdfLkSe3Zs6fIGElJSXrjjTf08MMP64UXXrD0cgAAAAAAVYC7u7sWL16s3r17y8PDQw4ODrr//vv1t7/9Tdu3b5e1tbW2bdum9evXFxr78ccfq1u3brrnnnv0/fff68KFC0pNTdVHH32k3bt3KyAgQJGRkXf+ogAAAACgGps0aZLq16+vzZs3a9GiRWZtK1eu1PLly039bhYSEqJGjRrp8OHDCg8PN2sLDw/X4cOH5eHhoWeeecaszdvbWwMGDFBeXp5Gjx6tS5cumdq2bNmiyMhIWVlZadq0aWbjrKysNGXKFEnSlClTzHaUTElJ0dSpUyVJ06ZNk5XVXf9fvQAAAAAAAECNZ1PZCVS2ffv2SZI6depUZHvB8dzcXP3++++6//77LY7p7e0te3v7Qu0ODg7y9vbWvn37tG/fPnXr1s2sPS8vT6NGjZLBYNDSpUtLtXIrAAAAANyt6tSpI+nG57fi5OTkSJKcnZ0tjlcQs27duuWKV6Bz587q16+f1q1bp40bN5pWfZVurPwaGhoqd3d3bdu2zXROZ2dnhYaGysXFRSNGjFBYWJgGDhyoevXq3fJ8aWlpxbZ5eHhYnDcAAAAAVLS9e/cqNDTU9P3Ro0clSYsWLdKmTZtMx6Ojo+Xu7i5JSk9PN+26If33M8+GDRvUtWtX0/GFCxfK19fX9L2rq6u+/vpr9e/fX88//7zmz5+vtm3b6ujRo6b/2wsPD1dQUJBZjrVr19aqVavUu3dvzZo1Sxs2bJCPj48SExOVmJgoR0dHRUVFycHBodD1LV68WIcOHVJMTIxatGihHj166PTp09qxY4eMRqMiIiLUvn37QuMmTpyof//734qOjpaPj4969eol6cbuJBcvXtTQoUPN7hsAAAAAAACAmuuuX/alYFWcpk2bFtnu7Oxs+sOdm1fQKU9MSWrSpEmxMd977z3t2bNH77zzjlq0aGHROQEAAADgbufp6SlJSk1NLbZPQVtB35LcvAvk8ePHyx3vZm3btpVUuBijYOeOoKCgIgtMhg4dKltbW124cEHx8fGlOicAAAAAVDVZWVnas2eP6evs2bOSbnxWuvn4lStXTGOuXLli1nbixAlJ0pkzZ8yOZ2VlFTrfo48+qv3792vUqFHKzMzU+vXrdfz4cQUFBWnr1q16++23i8zT399f+/fv1zPPPKNz585pzZo1OnfunJ555hnt37/frNDkZg0aNFBCQoKmTp0qJycnrV+/XgcOHFCfPn0UExNTaDeRAtbW1lq9erU++eQT3X///YqNjVVsbKy8vb31ySefaNWqVezuAQAAAAAAANwl7vodPrKzsyVJjo6OxfZxcnJSVlZWkb8YLk9MSYViJiYm6u9//7sefPDBYn/JW1olrdianp5uWhEJAAAAAKqzDh06SJIyMjKUkpIiLy+vQn0SEhIkyWyV1+I4OzurZcuWOnLkiBISEtSuXbtyxbtZRkaGJPNdRKT/FpYUt2OIjY2NHB0ddfXqVZ07d65U5wQAAACAqqZnz54yGo2lGuPp6VnqMTdr1aqVqdi+NFq2bKlly5aVepyzs7Nmz56t2bNnl2qclZWVxo8fr/Hjx5f6nAAAAAAAAABqjmq99Mvrr7+uNm3alPorLi6uslMv0vXr1zVq1ChZWVnps88+Y2UeAAAAACgFDw8P+fn5SZJWrFhRqD0uLk6pqamys7NTUFCQRTEHDRpUbLycnBxt3LhRkjR48GCL88zNzTWN69y5s1lb48aNJUl79uwpcmxSUpLOnz8vSUUWtAAAAAAAAAAAAAAAAKDmqNYVBSdPnlRSUlKpv3JyckwxClZTzc3NLfY8Bf2LW2H1f5U15jvvvKO9e/fqrbfeUuvWrS06lyXS0tKK/WJ3DwAAAAA1yfTp0yVJc+bM0d69e03HMzIyFBoaKkmaMGGC6tata2qLjo5WmzZtFBgYWCheWFiYateurZiYGC1ZssR0PC8vT6GhocrMzJSfn5969+5tNm7x4sVKTU0tFC8lJUUDBgxQenq66tWrp+eee86sfejQoZKkXbt26b333jNbtfb06dMaPXq0pBsr0nbq1MmymwIAAAAAAAAAAAAAAIBqyaayEyiPr776Sl999VW5Ynh6emrv3r06fvx4ke1ZWVnKysoy9bU0pqRiY0oy/eHPzTGjo6MlSRs3btTmzZvN+h87dkyS9M0336hnz56SpO+//96ifAAAAADgbjFw4EBNmjRJ8+bNU9euXRUYGChHR0fFxsYqMzNT/v7+mjFjhtmYCxcuKCkpSZcvXy4Ur1GjRoqMjNSIESM0btw4LV26VJ6enoqPj1dycrLc3Ny0YsUKGQwGs3ELFy7U888/L29vb7Vq1Uq2trZKSUnRL7/8oitXruiee+7R2rVr5erqajYuKChI48eP16JFi/T6669r8eLFat++vbKzs7Vnzx5lZWWpXr16+vLLL9kVEgAAAAAAAAAAAAAAoIar1gUfFcHX11dr165VQkJCke0Fxx0dHdWqVSuLY0rSwYMHdfnyZdnb25u1X7p0SQcPHjTre7O4uLhiY586dUqnTp2yKA8AAAAAuBtFRETI399fH330kXbt2qVr166pRYsWmjp1qiZPnixbW9tSxQsODlbz5s01a9Ys/fDDD9q3b5/c3d314osvKjw8XG5uboXGTJo0SVu3btWBAwf0/fffKysrS05OTmrfvr2CgoIUGhqqBg0aFHm+Tz75RI8//riWLl2qhIQEbdy4UTY2NvLy8lKfPn308ssvy8PDo0z3BgAAAAAAAAAAAAAAANWHwWg0Gis7icp08OBB+fj4yNraWsnJyWratKlZ+5gxY7R06VINHz5c//d//2dRzPz8fDVu3FinTp3SV199paeeesqs/auvvtJf//pXNWrUSKmpqRatyvqPf/xDb731lkaPHq1PP/3U8gu8hYI/EkpLS6uwmABwt+AZWv3xHgJA+fAcrf54DwGgfHiOVn+8hwBQPjxHqz/eQwAoO56hAAAAAIA74daVBjWct7e3BgwYoLy8PI0ePVqXLl0ytW3ZskWRkZGysrLStGnTCo195pln1KZNGy1YsMDsuJWVlaZMmSJJmjJlilJSUkxtKSkpmjp1qiRp2rRpFhV7AAAAAAAAAAAAAAAAAAAAAACAu4tNZSdQFSxevFiHDh1STEyMWrRooR49euj06dPasWOHjEajIiIi1L59+0Ljjh8/rqSkJJ09e7ZQ28SJE/Xvf/9b0dHR8vHxUa9evSRJMTExunjxooYOHarQ0NDbfm0AAAAAAAAAAAAAAAAAAAAAAKD6YXsJSQ0aNFBCQoKmTp0qJycnrV+/XgcOHFCfPn0UExOjSZMmlTqmtbW1Vq9erU8++UT333+/YmNjFRsbK29vb33yySdatWoVu3sAAAAAAAAAAAAAAAAAAAAAAIAiGYxGo7Gyk0Dl8fDwkCSlpaVVciYAUP3wDK3+eA8BoHx4jlZ/vIcAUD48R6s/3kMAKB+eo9Uf7yEAlB3PUAAAAADAncAWEwAAAAAAAAAAAAAAAAAAAAAAAFUMBR8AAAAAAAAAAAAAAAAAAAAAAABVDAUfAAAAAAAAAAAAAAAAAAAAAAAAVQwFHwAAAAAAAAAAAAAAAAAAAAAAAFUMBR8AAMBMVFSUevbsqfr168vR0VEPPPCA3n33XV27dq3MMdevX6/+/furYcOGsrW1VYMGDfTggw/q7bffLnbMkSNHFBISIg8PD9nZ2cnDw0MhISFKTk4ucx4AAAAAAAAAAAAAAAAAAADVBQUfAADAJCwsTMOGDdPOnTvVuXNnPfbYYzp+/LimTJmigIAAXbp0qVTxrl69qmHDhmngwIGKiYmRt7e3hg4dKh8fHx09elTz5s0rctzOnTv1wAMPaNmyZapXr54GDRqkevXqadmyZWrfvr12795dEZcLAAAAAFVeRRfl//zzzwoODpabm5vs7e3l5eWliRMn6vTp00X2z8vL0+rVqzVt2jT17t1b99xzjwwGg2xsbG55rs2bN+sf//iH+vXrp0aNGslgMMhgMCgtLc2iXE+fPq2pU6fKx8dHTk5OcnR0VIsWLTRixAj9/PPPpbpuAAAAAAAAAAAAoDq69f/KAQCAu8K6desUEREhJycn7dixQ76+vpKks2fPKiAgQHFxcQoPD9f7779vccyxY8cqKipKAwcO1JIlS+Tq6mpqy8/P108//VRozMWLFzVs2DBdvHhR06ZN06xZs0xt06dP1+zZszVs2DAlJSXJwcGhHFcMAAAAAFVbWFiYIiIiZGNjo4CAADk5OWn79u2aMmWKNm7cqG3btpXqc9Hq1as1YsQIXb9+XX5+fvLy8lJCQoIWLFigqKgoxcXFqWXLlmZjsrOzFRwcXKb8R44cqQsXLpRp7HfffafBgwcrMzNTLVu21GOPPab8/HwdO3ZMq1atkr+/vzp27Fim2AAAAAAAAAAAAEB1wQ4fAABAkkyFFVOnTjUVe0iSq6urFi5cKElasGCBxX+sExsbqy+++EI+Pj5atWqVWbGHJFlZWalr166FxkVGRurkyZNq1aqVZs6cadY2c+ZMtWrVSqmpqfriiy9KdX0AAAAAUJ3cXJS/Z88ebd26VWvWrNHvv/+udu3amYryLXXy5EmNGjVK169f16JFi/TTTz/p66+/1uHDh/X000/rzz//1MiRI2U0Gs3G1apVS0899ZTef/99bd++Xb/88ovF5xw8eLBmzZqlf/3rX8XuIFKUQ4cOqW/fvrp+/brWrl2r33//XatXr9batWu1d+9enThxQkFBQRbHAwAAAAAAAAAAAKorCj4AAIBOnDih+Ph4STdWYP1f3bt3V5MmTXTlyhVt3rzZopjz58+XdGNF2lq1almcS3R0tCRp+PDhsrIy/6eKlZWVnnzySUnS2rVrLY4JAAAAANVNRRflf/jhh7p48aJ69eqlcePGmY5bW1vr448/Vt26dRUfH69t27aZjXN0dNRXX32lV155RY888ojq1q1r8TV89tlnmjZtmvr06aN7773X4nHPP/+8Ll26pMWLF2vQoEGF2hs2bKjmzZtbHA8AAAAAAAAAAACorij4AAAA2rdvnyTJxcVFXl5eRfbp1KmTWd+S5OXlKTY2VpL00EMP6dSpU/rwww/1wgsvKCwsTMuWLVNOTk6JuRScrzx5AAAAAEB1dDuK8guK64uK5+TkpP79+0uq/OL6X375RT/88IOaNGmi4cOHV2ouAAAAAAAAAAAAQGWzqewEAABA5UtJSZEkNW3atNg+TZo0MetbkuTkZFNBx+7duxUaGlqowOO1117TypUrFRAQYDqWnZ2tjIyMEnMpyOPMmTPKzc2Vo6PjLfMBAAAAgOrE0qL81NRU7du3TyNGjCgxXnZ2to4cOWIaV1y8L7/8stKL67du3SpJ6tGjhwwGg7Zu3arY2FhduHBBHh4eCgoKUseOHSs1RwAAAAAAAAAAAOBOoeADAAAoOztbkkosnnBycpIkZWVl3TJeQdGGJI0ePVoPPvig3n//fbVp00ZHjx7V9OnTtXnzZg0YMEB79+7VfffdZ5ZHSbkU5FGQy60KPjw8PIptS09Pl7u7+y2vBwAAAADupIouyj927Jjp9a2K6y2JdzsdOHBAklSvXj09+uijiomJMWt/88039dRTT2np0qWys7OrjBQBAAAAAAAAAACAO8aqshMAAAA1j9FoNL1u3Lixtm7dqk6dOsnJyUkPPPCANmzYIB8fH+Xk5GjOnDmVmCkAAAAAVD0VXZRfmuJ6S+LdTgULCCxZskS7du3S/PnzdeLECZ0+fVqfffaZnJ2dtXz5ck2aNMnimB4eHsV+paen365LAQAAAAAAAAAAAMqNgg8AAKA6depIknJzc4vtk5OTI0lydna2OJ4khYSEFFp11draWuPHj5cks9Vabx5XXC4FeViaS1paWrFf7O4BAAAAAFVLwQIC165d0z//+U9NmDBBjRo10r333qtnn31WS5YskSR9+umnZjuXAAAAAAAAAAAAADURBR8AAECenp6SpNTU1GL7FLQV9L1VPIPBIElq3rx5kX0Kjt+8mmqdOnXk4uIiSTp+/HiJebi6upa42i0AAAAAVFe3syj/VsX1lsS7nQpyrVWrlp577rlC7cOGDZOrq6vy8/P13XffWRSThQAAAAAAAAAAAABQXVHwAQAA1KFDB0lSRkaGUlJSiuyTkJAgSfL19b1lPCcnJ7Vu3VqSdPbs2SL7FBx3cnIyO14Qv+B85ckDAAAAAKqjii7Kb9asmen1rYrrLYl3OxUsDtCkSRPZ2NgU2cfLy0uS+QICAAAAAAAAAAAAQE1EwQcAAJCHh4f8/PwkSStWrCjUHhcXp9TUVNnZ2SkoKMiimMHBwZKkmJiYItu//fZbSVLnzp3Njg8aNEiStHLlSuXn55u15efn6+uvv5YkDR482KI8AAAAAKC6qeiifGdnZ7Vs2dJsXHni3U4dO3aUdOPai1PcAgIAAAAAAAAAAABATUPBBwAAkCRNnz5dkjRnzhzt3bvXdDwjI0OhoaGSpAkTJqhu3bqmtujoaLVp00aBgYGF4k2aNEn169fX5s2btWjRIrO2lStXavny5aZ+NwsJCVGjRo10+PBhhYeHm7WFh4fr8OHD8vDw0DPPPFOOqwUAAACAqut2FOUXFNcXFS8nJ0cbN26UVPnF9UFBQapdu7YuXLig+Pj4Qu2HDx/WH3/8IanwAgIAAAAAAAAAAABATUPBBwAAkCQNHDhQkyZNUk5Ojrp27arHH39cQ4cOVcuWLfXrr7/K399fM2bMMBtz4cIFJSUl6ejRo4Xiubq66uuvv5a9vb2ef/55+fj4KDg4WL6+vhoxYoSMRqPCw8ML/XFS7dq1tWrVKtWuXVuzZs1Su3btNGLECLVr106zZs2So6OjoqKi5ODgcFvvBwAAAABUpoouyg8LC1Pt2rUVExOjJUuWmI7n5eUpNDRUmZmZ8vPzU+/evW/XJVmkTp06euWVVyRJL7zwgk6ePGlqy8jI0JgxY5Sfn6/OnTura9eulZUmAAAAAAAAAAAAcEfYVHYCAACg6oiIiJC/v78++ugj7dq1S9euXVOLFi00depUTZ48Wba2tqWK9+ijj2r//v2aNWuWYmJitH79ejk7OysoKEgvvfRSsX9I5O/vr/3792vGjBmKiYnRmjVrdO+99+qZZ57Rm2++qRYtWlTE5QIAAABAlVVQlD9v3jx17dpVgYGBcnR0VGxsrDIzM0ssyr98+XKheI0aNVJkZKRGjBihcePGaenSpfL09FR8fLySk5Pl5uamFStWyGAwFBobGhpqKjq5cuWKpBuFIjcXXPTt27fQLo0zZszQN998Uyhe//79TZ8vfX19tXDhQrP2v/3tb0pISNCWLVvUtm1bde3aVTY2Ntq9e7fOnTunZs2aaeXKlZbcRgAAAAAAAAAAAKBao+ADAACYGTZsmIYNG2ZR35CQEIWEhJTYp1WrVoqMjCx1Hi1bttSyZctKPQ4AAAAAaoqKLsoPDg5W8+bNNWvWLP3www/at2+f3N3d9eKLLyo8PFxubm5Fjjt06JD27NlT6PjNx9q0aVOo/ejRo0WO27dvn+m1vb19oXZbW1tt2rRJixYtUmRkpHbt2qXr16/Ly8tLzz//vF555RW5uLhYdM0AAAAAAAAAAABAdWYwGo3Gyk4ClcfDw0OSlJaWVsmZAED1wzO0+uM9BIDy4Tla/fEeAkD58Byt/ngPAaB8eI5Wf7yHAFB2PEMBAAAAAHeCVWUnAAAAAAAAAAAAAAAAAAAAAAAAAHMUfAAAAAAAAAAAAAAAAAAAAAAAAFQxFHwAAAAAAAAAAAAAAAAAAAAAAABUMRR8AAAAAAAAAAAAAAAAAAAAAAAAVDEUfAAAAAAAAAAAAAAAAAAAAAAAAFQxFHwAAAAAAAAAAAAAAAAAAAAAAABUMRR8AAAAAAAAAAAAAAAAAAAAAAAAVDEUfAAAAAAAAAAAAAC445KSkjR//nyFhISoXbt2srGxkcFg0MyZM4sdk5qaqkWLFmncuHHq2LGj7OzsZDAYNGbMmFKff/PmzTIYDDIYDOrVq1eJfY8cOaKQkBB5eHjIzs5OHh4eCgkJUXJyconjsrOzNX36dLVu3VoODg5ydXVV3759tX379hLH5efna9GiRerSpYvq1KmjOnXqqEuXLlq8eLGMRmOprxUAAAAAAABA9WRT2QkAAAAAAAAAAAAAuPt8/PHHioiIKNWYNWvWaPLkyeU+9/nz5zV27FgZDIZbFlDs3LlTvXv31sWLF+Xt7a3u3bsrMTFRy5Yt0+rVqxUTE6OuXbsWGnf69Gn16NFDhw8flru7u/r166c///xTW7Zs0ZYtWxQREaGJEycWGpeXl6dhw4Zp7dq1ql27tgIDAyVJMTExGj9+vGJiYrRy5UpZWbG2HwAAAAAAAFDT8VtAAAAAAAAAAAAAAHecj4+PXn31VS1fvly//fab/vrXv95yjJeXlyZOnKjPP/9c+/fv1xtvvFGmc0+cOFF//vmnnn/++RL7Xbx4UcOGDdPFixc1bdo0JSYmauXKlUpMTNS0adOUm5urYcOG6dKlS4XGjhs3TocPH1ZgYKCOHDmiVatWaceOHdq0aZOsrKwUFhamAwcOFBo3f/58rV27Vo0bN1ZiYqI2bNigDRs26ODBg2rUqJGioqK0cOHCMl03AAAAAAAAgOqFgg8AAAAAAAAAAAAAd9yYMWP03nvvaeTIkWrTpo1FO1YMGDBA8+bNU0hIiNq3by8bG5tSnzc6OlrLly/Xyy+/rM6dO5fYNzIyUidPnlSrVq00c+ZMs7aZM2eqVatWSk1N1RdffGHWdujQIa1fv17W1tZaunSpateubWoLCgpSSEiI8vPzNXv2bLNx+fn5mjt3riRp7ty58vLyMrV5eXmZ2mbPnq38/PxSXzsAAAAAAACA6oWCDwAAAAAAAAAAAAB3hbNnz+r5559X69at9fbbb9+yf3R0tCRp+PDhhQpSrKys9OSTT0qS1q5dW+Q4f39/NWvWrFDckSNHSpI2btyoa9eumY7/+OOPOnXqlOzs7DRkyJBC44YMGSJbW1udPHlSe/bsuWX+AAAAAAAAAKo3Cj4AAAAAAAAAAAAA3BVeeOEFnT17VkuXLpW9vf0t++/bt0+S1KlTpyLbC44X9CvtuNzcXP3++++Fxnl7exeZn4ODg7y9vYs8JwAAAAAAAICah4IPAAAAAAAAAAAAADXeypUrtXr1ak2cOFH+/v637J+dna2MjAxJUtOmTYvs06RJE0nSmTNnlJubazqekpJS4jhnZ2c5Ozub9bVk3M3nvHkcAAAAAAAAgJrJprITAAAAAAAAAAAAAIDb6dSpU3rxxRfVokULzZo1y6Ix2dnZpteOjo5F9nFycjK9zsrKMvUrGFvcuIKxWVlZysrKKnTOW40rOJ8lPDw8im1LT0+Xu7u7RXEAAAAAAAAA3HkUfAAAAAAAAAAAAACo0caNG6fz589rzZo1ql27dmWnAwAAAAAAAAAWoeADAAAAAAAAAAAAQI21bNkybdy4US+88IJ69uxp8bg6deqYXufm5hbZJycnx/Ta2dm50Njixt08tiLGlSQtLa3YtpJ2/wAAAAAAAABQ+Sj4AAAAAAAAAAAAAFBjRUdHS5Li4+MLFXycOnVKkvTzzz+b2lauXKmGDRuqTp06cnFx0blz53T8+HE98MADhWKnpqZKklxdXeXo6Gg67unpqb179+r48eNF5pSVlaWsrCxT35vHSSp23M3nvHkcAAAAAAAAgJqJgo+73OnTp5WXl8fqPQBQBunp6bK2tq7sNFAOzIMAUD7MhdUfcyEAlA9zYfXHXAgA5VPd5sKEhIRi2zIzM7Vjxw5J0uXLl03HfX19FRMTo4SEBPXr16/YmL6+vmbHfX19tXbt2mLPWXDc0dFRrVq1MhsnSQcPHtTly5dlb29vNu7SpUs6ePBgkecsC+ZCACi76jYPAgAAAACqJ6vKTgCVq1atWjXqFxDp6elKT0+v7DSqPe5jxeA+VoyqfB+tra1Vq1atyk4D5VDT5kGpav/MVCfcx4rBfawYVfk+MhdWfzVtLqzKPy/VCfexYnAfK0ZVv4/MhdUfcyGKwn2sGNzHilHV72N1mQvXrVsno9FY5Nfnn38uSQoMDDQdu3nnjEGDBkm6setHfn6+Wdz8/Hx9/fXXkqTBgwebtQ0cOFCStHPnziJ361ixYoUkqV+/fmb3sFu3bmrYsKGuXLmiNWvWFBq3Zs0aXb16VY0aNVKXLl1KeScKYy5EUbiPFYP7WDGq8n2sLvMgAAAAAKB6Y4ePu1xubm5lp1ChClYfSktLq+RMqjfuY8XgPlYM7iNup5o2D0r8zFQU7mPF4D5WDO4jbqeaNhfy81IxuI8Vg/tYMbiPuN2YC1EU7mPF4D5WDO5j5QsJCdE777yjw4cPKzw8XO+8846pLTw8XIcPH5aHh4eeeeYZs3He3t4aMGCA1q9fr9GjR2vDhg1ycHCQJG3ZskWRkZGysrLStGnTzMZZWVlpypQpmjx5sqZMmaIHH3xQXl5ekqSUlBRNnTpVkjRt2jRZWZV/bT/mQhSF+1gxuI8Vg/sIAAAAALjbUfABAAAAAAAAAAAA4I7bu3evQkNDTd8fPXpUkrRo0SJt2rTJdDw6Olru7u6Sbqz0XrDrhvTfPwDesGGDunbtajq+cOFC+fr6ljvH2rVra9WqVerdu7dmzZqlDRs2yMfHR4mJiUpMTJSjo6OioqJMxRw3W7x4sQ4dOqSYmBi1aNFCPXr00OnTp7Vjxw4ZjUZFRESoffv2hcZNnDhR//73vxUdHS0fHx/16tVLkhQTE6OLFy9q6NChZvcNAAAAAAAAQM1FwQcAAAAAAAAAAACAOy4rK0t79uwpdDwtLc1sJfcrV66YvS5qzJkzZ3TmzBmz2BXF399f+/fv14wZMxQTE6M1a9bo3nvv1TPPPKM333xTLVq0KHJcgwYNlJCQoNmzZ2vNmjVav369HB0d1adPH7366qsKDAwscpy1tbVWr16tJUuW6NNPP1VsbKykG7uGjB49WuPGjZPBYKiw6wMAAAAAAABQdVHwAQAAAAAAAAAAAOCO69mzp4xGY6nGeHp6lnpMSUJCQhQSEnLLfi1bttSyZctKHd/Z2VmzZ8/W7NmzSzXOyspK48eP1/jx40t9TgAAAAAAAAA1h1VlJwAAAAAAAAAAAAAAAAAAAAAAAABzFHwAAAAAAAAAAAAAAAAAAAAAAABUMRR8AAAAAAAAAAAAAAAAAAAAAAAAVDEGo9ForOwkAAAAAAAAAAAAAAAAAAAAAAAA8F/s8AEAAAAAAAAAAAAAAAAAAAAAAFDFUPABAAAAAAAAAAAAAAAAAAAAAABQxVDwAQAAAAAAAAAAAAAAAAAAAAAAUMVQ8AEAAAAAAAAAAAAAAAAAAAAAAFDFUPABAAAAAAAAAAAAAAAAAAAAAABQxVDwAQAAAAAAAAAAAAAAAAAAAAAAUMVQ8AEAAAAAAAAAAAAAAAAAAAAAAFDFUPCBShcVFaWePXuqfv36cnR01AMPPKB3331X165dK1UcT09PGQyGW369/fbbZuOSkpL04YcfKigoSI0bN5atra2cnZ3l5+en2bNnKycnpyIv97ap7PtYlP3798vW1lYGg0EtW7Ys66XdUVXpPv773//W8OHD5eHhITs7O7m6uqpjx46aPHlyqfO506rCfbx+/boWLlyo7t27q379+qpVq5ZcXV0VGBioZcuWKT8/v6IuFyiXyv55YR40xzxYde4j8yDzIO4elf0zw1xojrmw6txH5kLmQtw9KvtnhrnQHHNh1bmPzIXMhbh7VPbPDHOhOebCqnMfmQuZCwEAAAAAkCSD0Wg0VnYSuHuFhYUpIiJCNjY2CggIkJOTk7Zv367MzEx1795d27Ztk4ODg0WxXn31VZ09e7bItnPnzmnjxo2SbvxirEePHqY2Dw8PnThxQvb29urUqZM8PDz0559/6scff9Tly5fVokULbd++XU2bNi3/Bd8mVeE+/q+rV6/Kz89Pv/76q4xGo1q0aKEjR46U/uLuoKpyH41GoyZPnqyIiAjVqlVLXbp0UZMmTXT27Fn99ttvSktLU3Z2tpycnMp3wbdJVbiPV65cUe/evfXvf/9btra26t69u+69916lpqbqxx9/lNFo1MCBA7V27VoZDIbyXzRQRlXh54V50BzzYOXfR+bB/2IexN2gKvzMMBeaYy6s/PvIXPhfzIW4G1SFnxnmQnPMhZV/H5kL/4u5EHeDqvAzw1xojrmw8u8jc+F/MRcCAAAAACDJCFSS6OhooySjk5OT8eeffzYdP3PmjLFdu3ZGScZXXnmlQs41d+5coyRjq1atCrUFBAQYly5daszOzjY7npKSYvT29jZKMj7yyCMVksftUFXu4/964403jJKMEyZMMEoytmjRokJyuF2q0n188803jZKMDz74oPHYsWOF2n/66SfjtWvXKiSXilZV7uMHH3xglGRs1qyZ8Y8//jBri4+PN9apU8coyfh///d/FZILUBZV5eeFedByzIPMg7dSVe4j8yCqi6ryM8NcaDnmQubCW6kq95G5ENVFVfmZYS60HHMhc+GtVJX7yFyI6qKq/MwwF1qOuZC58Faqyn1kLgQAAAAA1CQUfKDS+Pn5GSUZZ86cWajthx9+MEoy2tnZGTMzM8t9rtatWxslGefMmVOqcQV5SDKmpqaWO4/boSrex59++slobW1tDA4ONn733XfV4pe4VeU+/uc//zHa2NgY3dzcjOfPny/3ue60qnIfn3jiCaMk47vvvlvk2LFjxxolGSdNmlTuPICyqio/LyVhHjTHPMg8eCtV5T4yD6K6qCo/MyVhLjTHXMhceCtV5T4yF6K6qCo/MyVhLjTHXMhceCtV5T4yF6K6qCo/MyVhLjTHXMhceCtV5T4yFwIAAAAAahIrAZXgxIkTio+PlySNHDmyUHv37t3VpEkTXblyRZs3by7XuXbu3KmkpCTZ2Nho1KhRpRrboUMH0+vU1NRy5XE7VMX7ePnyZY0aNUr169fXggULynXOO6Uq3cePP/5Y169f19ixY1WvXr1ynetOq0r30d7e3qI4rq6u5coDKKuq9PNSEubB/2IeZB68lap0H5kHUR1UpZ+ZkjAX/hdzIXPhrVSl+8hciOqgKv3MlIS58L+YC5kLb6Uq3UfmQlQHVelnpiTMhf/FXMhceCtV6T4yFwIAAAAAahIKPlAp9u3bJ0lycXGRl5dXkX06depk1resPvvsM0lSUFCQGjZsWKqxv//+u+m1u7t7ufK4HarifQwPD9dvv/2mefPmqUGDBuU6551Sle7j/8fenYdVWef/H3+xKCAHSKJwARX3RszEJUwqBXOr3CElJylLE5cfZY7ohDNlY4zjtxE1zRwLLR13TIq+GlImOhruS6WpmLhFYKwqIp7fH3454wkOHnA76PNxXVwX3Z/P+31/7vt0zvsCed+f9evXS5KeeOIJ5eTkaP78+Ro9erTGjh2r+fPnKysr64bOfyvZ0n3s1auXJOn999/XiRMnzMZ27typZcuWycXFRX/84x9vaB1AVdnS+6Ui1MH/og5SB6/Hlu4jdRDVgS29ZypCLfwvaiG18Hps6T5SC1Ed2NJ7piLUwv+iFlILr8eW7iO1ENWBLb1nKkIt/C9qIbXwemzpPlILAQAAAAB3E8c7vQDcm9LT0yVJDRo0sDjH19fXbG5VFBYWasWKFZKk4cOHVzo+NjZWkhQQEKBGjRpVeR23iq3dx61bt+q9995T3759NWTIkCqf73azlft46dIlHTp0yHSeoUOHKjMz02zOG2+8oQULFmjw4MFVXsetYiv3UZIiIiK0adMmLV68WM2aNVNQUJAefPBBZWRkaOvWrWrdurU++OADm3xf495gS++XilAHr6IOUgetYSv3UaIOonqwpfdMRaiFV1ELqYXWsJX7KFELUT3Y0numItTCq6iF1EJr2Mp9lKiFqB5s6T1TEWrhVdRCaqE1bOU+StRCAAAAAMDdhR0+cEfk5+dLklxdXS3OMRgMkqS8vLwqn2fFihUqKChQnTp11Lt370rFxsfHa/ny5XJwcFBcXFyV13Ar2dJ9PH/+vCIiIuTh4aF58+ZV+Vx3gq3cx3PnzsloNEqSxowZozp16uibb75RXl6efvzxR0VERKigoEBDhw7V5s2bq7yOW8VW7qMk2dvbKz4+XjNmzJDRaFRKSoqWLVumLVu2yMXFRd26dVOTJk2qvAbgRtnS+8US6uB/UQepg9awlfsoUQdRPdjSe8YSauF/UQuphdawlfsoUQtRPdjSe8YSauF/UQuphdawlfsoUQtRPdjSe8YSauF/UQuphdawlfsoUQsBAAAAAHcXGj5wV1u4cKEk6YUXXpCjo/Ub2mzcuFEjR46UJE2fPl1BQUG3ZH3VhTX3MTo6Wj/99JNmzpxpk1ta24Lr3cfSX+BKkouLi5KTk/Xkk0/Kzc1NLVq00Mcff6xevXqppKREf/3rX2/Xsm2ONf8/5uXl6ZlnntGECRM0ZswYHT58WIWFhdq/f7/69eun9957Tx07dlRGRsbtXDpw21EHbw7q4M1BHbw5qINA5VALbw5q4c1BLbw5qIVA5VALbw5q4c1BLbw5qIVA5VALbw5q4c1BLbw5qIUAAAAAgHsNDR+4I9zc3CRd3W7VkoKCAkmSu7t7lc5x+PBhbdmyRZL00ksvWR2Xmpqqvn376tKlS/rLX/6i119/vUrnvx1s5T5+8803mjNnjnr37q0XXnihSue5k2zlPpauQ5IGDBigBx54oMycyMhISdLmzZt16dKlKq3lVrGV+yhJ48ePV1JSkkaNGqX33ntPzZo1U61ateTv768lS5aoR48e+vnnn/Xmm29WaR3AjbKl98vvUQfNUQevog5en63cR4k6iOrBlt4zv0ctNEctvIpaeH22ch8laiGqB1t6z/wetdActfAqauH12cp9lKiFqB5s6T3ze9RCc9TCq6iF12cr91GiFgIAAAAA7i7WP8YEuIkaNWokSRU+MaN0rHRuZX300UeSpKCgILVo0cKqmK1bt6p3794qLCzUn//8Z5t/Moqt3Me1a9fKaDTqxIkT6tKli9lYTk6OJOnUqVOmsZkzZ+qRRx6p0npuBVu5jwaDQQ888IB+/fVXNW7cuNw5pceLi4uVlZWlevXqVWk9t4Kt3MeSkhJ98sknkqQhQ4aUOyc8PFzr169XcnJyldYB3Chbeb/8HnWwLOqgzMaog5bZyn2kDqK6sJX3zO9RC8uiFspsjFpoma3cR2ohqgtbec/8HrWwLGqhzMaohZbZyn2kFqK6sJX3zO9RC8uiFspsjFpoma3cR2ohAAAAAOBuQ8MH7oi2bdtKkrKzs5Weni4/P78yc3bs2CFJCggIqHT+kpISLV68WJI0fPhwq2K2bdumnj17Kj8/X5MnT9Y777xT6fPebrZ2Hw8cOGBx7OLFi9q0aZOk//5i11bY0n1s166d/vd//1dZWVnljl973GAwVHott5Kt3MfMzEwVFRVJsvx0IA8PD0nSuXPnKr0O4GawlffLtaiDZVEH/4s6eH22ch+pg6gubOU9cy1qYVnUwv+iFl6frdxHaiGqC1t5z1yLWlgWtfC/qIXXZyv3kVqI6sJW3jPXohaWRS38L2rh9dnKfaQWAgAAAADuOkbgDunQoYNRkvGdd94pM7Z582ajJKOTk5MxJyen0rnXrVtnlGR0c3MzFhQUXHf+9u3bje7u7kZJxsmTJ1f6fHeSLd3H8nz99ddGScYmTZpUKf52sZX7uHDhQqMko7+/v7GkpKTM+JtvvmmUZGzRokWl13E72MJ9LCoqMjo5ORklGT/88MNy50RHRxslGR966KFKrwO4WWzh/VKKOlg+6uBV1EHr2cJ9pA6iOrGF90wpamH5qIVXUQutZwv3kVqI6sQW3jOlqIXloxZeRS20ni3cR2ohqhNbeM+UohaWj1p4FbXQerZwH6mFAAAAAIC7DQ0fuGMSEhKMkowGg8G4c+dO0/GsrCxj69atjZKM48ePN4tZs2aNsUWLFsbg4OAKc/fr188oyfjKK69cdx1paWlGDw+PavkLXKPRdu6jJdXll7i2ch+LioqMTZo0MUoy/vnPfzb7RW5KSoqxVq1aRknG999/v5JXeHvYyn0MDQ01SjJ6e3sb9+7dazaWnJxsdHZ2NkoyTp06tRJXB9xctvJ+oQ5aRh2kDlaWrdxH6iCqC1t5z1ALLaMWUgsry1buI7UQ1YWtvGeohZZRC6mFlWUr95FaiOrCVt4z1ELLqIXUwsqylftILQQAAAAA3E1o+MAdNW7cOKMkY40aNYw9e/Y0Dhw40HjfffcZJRk7d+5sPH/+vNn8jz/+2CjJ2LBhQ4s5f/nlF2ONGjWMkozbtm277hpq165tlGS87777jMOGDbP49cMPP9zo5d4ytnAfLakuv8Q1Gm3nPu7du9fo6elpum8DBw40BgYGGu3t7Y2SjMOGDTNeuXLlRi71lrKF+3jy5Elj48aNjZKMDg4Oxs6dOxvDwsKM7du3N0oySjIGBwcbL1y4cKOXC9wQW3i/UAfLRx2kDlaVLdxH6iCqE1t4z1ALy0ctpBZWlS3cR2ohqhNbeM9QC8tHLaQWVpUt3EdqIaoTW3jPUAvLRy2kFlaVLdxHaiEAAAAA4G5CwwfuuOXLlxufeOIJo7u7u9HFxcXo7+9vjI2NNRYVFZWZa80ve2bMmGGUZGzVqpVV5y/9hc71vr7++usqXuHtcafvoyXV6Ze4RqPt3MfTp08bR48ebWzUqJGxZs2axvvuu8/YtWtX47///e/KXtIdYQv3MS8vz/jOO+8YO3ToYHR3dzc6ODgYPT09jU8++aRx/vz5xsuXL1fl0oCb7k6/X6iD5aMOUgdvhC3cR+ogqpM7/Z6hFpaPWkgtvBG2cB+phahO7vR7hlpYPmohtfBG2MJ9pBaiOrnT7xlqYfmohdTCG2EL95FaCAAAAAC4W9gZjUajAAAAAAAAAAAAAAAAAAAAAAAAYDPs7/QCAAAAAAAAAAAAAAAAAAAAAAAAYI6GDwAAAAAAAAAAAAAAAAAAAAAAABtDwwcAAAAAAAAAAAAAAAAAAAAAAICNoeEDAAAAAAAAAAAAAAAAAAAAAADAxtDwAQAAAAAAAAAAAAAAAAAAAAAAYGNo+AAAAAAAAAAAAAAAAAAAAAAAALAxNHwAAAAAAAAAAAAAAAAAAAAAAADYGBo+AAAAAAAAAAAAAAAAAAAAAAAAbAwNHwAAAAAAAAAAAAAAAAAAAAAAADaGhg8AAAAAAAAAAAAAAAAAAAAAAAAbQ8MHAAAAAAAAAAAAAAAAAAAAAACAjaHhAwAAAAAAAAAAAAAAAAAAAAAAwMbQ8AEAAAAAAAAAAAAAAAAAAAAAAGBjaPgAAAAAAAAAAAAAAAAAAAAAAACwMTR8AAAAAAAAAAAAAAAAAAAAAAAA2BgaPgDccnZ2drKzs5Mkffrpp+rYsaMMBoMeeOABDRkyRCdOnJAkGY1GzZkzR4888ohcXV3l5eWliIgIZWZmlsn517/+VXZ2dvrrX/9a7jm/+eYb2dnZqUuXLrfqsgAAsAp1EABwr6MWAgDuddRCAMC9jloIAAAAAABQdTR8ALhtJk2apBdffFFubm7q1auXatWqpWXLlikoKEi//fabBg8erAkTJqhu3brq0aOHHBwctGjRIj311FO6dOnSnV4+AAA3hDoIALjXUQsBAPc6aiEA4F5HLQQAAAAAAKg8xzu9AAD3jgULFmjHjh1q06aNJOnChQvq3r27UlNT9eSTT+r8+fP68ccf1bBhQ0lSVlaWOnXqpH379mnlypV6/vnn7+TyAQC4IdRBAMC9jloIALjXUQsBAPc6aiEAAAAAAEDlscMHgNvm7bffNv0CV5JcXFz0+uuvS5L279+vWbNmmX6BK0leXl4aNWqUJGnjxo23d7EAANxk1EEAwL2OWggAuNdRCwEA9zpqIQAAAAAAQOXR8AHgtundu3eZY82aNZMkOTo6qnv37hbHT58+fWsXBwDALUYdBADc66iFAIB7HbUQAHCvoxYCAAAAAABUHg0fAG6bBg0alDlmMBgkSXXr1pWjo2OZcTc3N0nSxYsXb+3iAAC4xaiDAIB7HbUQAHCvoxYCAO511EIAAAAAAIDKo+EDwG1jb2/5I6eisaq4cuXKTc0HAMCNog4CAO511EIAwL2OWggAuNdRCwEAAAAAACqPhg8A1VLNmjUlSfn5+eWO//zzz7dzOQAA3FbUQQDAvY5aCAC411ELAQD3OmohAAAAAAC4V9DwAaBaql+/viTphx9+KHf8iy++uJ3LAQDgtqIOAgDuddRCAMC9jloIALjXUQsBAAAAAMC9goYPANVScHCw7O3ttX79em3atMl03Gg0atasWVq9evUdXB0AALcWdRAAcK+jFgIA7nXUQgDAvY5aCAAAAAAA7hU0fAColnx9fTV27FhduXJFISEh6tq1qwYOHKhmzZrpjTfeUHR09J1eIgAAtwx1EABwr6MWAgDuddRCAMC9jloIAAAAAADuFTR8AKi2/vnPf+p//ud/1Lx5c23dulXffPON/vCHP2jbtm3q0aPHnV4eAAC3FHUQAHCvoxYCAO511EIAwL2OWggAAAAAAO4Fdkaj0XinFwEAAAAAAAAAAAAAAAAAAAAAAID/YocPAAAAAAAAAAAAAAAAAAAAAAAAG0PDBwAAAAAAAAAAAAAAAAAAAAAAgI2h4QMAAAAAAAAAAAAAAAAAAAAAAMDG0PABAAAAAAAAAAAAAAAAAAAAAABgY2j4AAAAAAAAAAAAAAAAAAAAAAAAsDE0fAAAAAAAAAAAAAAAAAAAAAAAANgYGj4AAAAAAAAAAAAAAAAAAAAAAABsDA0fAAAAAAAAAAAAAAAAAAAAAAAANoaGDwAAAAAAAAAAAAAAAAAAAAAAABtDwwcAAAAAAAAAAAAAAAAAAAAAAICNoeEDAAAAAAAAAAAAAAAAAAAAAADAxtDwAQAAAAAAAAAAAAAAAAAAAAAAYGNo+AAAAAAAAAAAAAAAAAAAAAAAALAxNHwAAAAAAAAAAAAAAAAAAAAAAADYGBo+AAAAAAAAAAAAAAAAAAAAAAAAbAwNHwAAAAAAAAAAAAAAAAAAAAAAADaGhg8AAAAAAAAAAAAAAAAAAAAAAAAbQ8MHAAAAAAAAAAAAAAAAAAAAAACAjaHhAwAAAAAAAAAAAAAAAAAAAAAAwMbQ8AEAAAAAAAAAAAAAAAAAAAAAAGBjaPgAAAAAAAAAAAAAAAAAAAAAAACwMTR8AAAAAAAAAAAAAAAAAAAAAAAA2BgaPgAAAAAAAAAAAAAAAAAAAAAAAGwMDR8AAAAAAAAAAAAAAAAAAAAAAAA2hoYPAAAAAAAAAAAAAAAAAAAAAAAAG0PDBwAAAAAAAAAAAAAAAAAAAAAAgI1xvNMLwJ3l6uqq4uJiPfjgg3d6KQBQ7WRmZqpGjRoqLCy800tBFVEHAeDGUAurP2ohANwYamH1Ry0EgBtDLaz+qIUAUHXUwbsDtRAAqo5aCADA7UHDxz2uuLhYJSUld3oZAFAt8flZ/VEHAeDG8Bla/VELAeDG8Bla/VELAeDG8Bla/VELAaDq+Py8O1ALAaDq+PwEAOD2oOHjHlf6hIKTJ0/e4ZUAQPXj4+Nzp5eAG0QdBIAbQy2s/qiFAHBjqIXVH7UQAG4MtbD6oxYCQNVRB+8O1EIAqDpqIQAAt4f9nV4AAAAAAAAAAKB8K1euVJcuXVS7dm25urqqTZs2mj59uoqLi6uUb+fOnQoNDZW3t7ecnZ3l5+ensWPHKjMzs9z5JSUlWrVqlSZNmqTu3bvr/vvvl52dnRwdK36WUGZmphYvXqzw8HA1a9ZMzs7OqlWrllq2bKlx48bp+PHjFcZv3bpVzz33nHx9fVWzZk25urqqdevWmjhxosW1AgAAAAAAAAAAAHcbO6PRaLzTi8CdU9ply5MKAKDy+Ayt/ngNAeDG8Dla/fEaAsCNudWfo1FRUYqLi5Ojo6OCg4NlMBiUkpKinJwcBQUFacOGDXJxcbE636pVqzRkyBBdvnxZHTp0kJ+fn3bs2KFjx47J29tbqampatq0qVlMTk6OateuXSaXg4ODLl++bPFcQ4cO1ZIlS2Rvby9/f3+1aNFChYWFSktL06+//ipXV1clJCToqaeeKhM7d+5cjRkzRkajUf7+/nrooYdUUFCgbdu26bffftODDz6oTZs2qWXLllZfuyXUQgC4MXyOVn+8hgBQdXyG3h14HQGg6vgMBQDg9mCHDwAAAAAAAACwMWvXrlVcXJwMBoO2b9+u9evXa/Xq1frpp5/UunVrpaamKiYmxup8p0+f1rBhw3T58mXNnz9f3333nZYvX67Dhw9r6NCh+uWXXxQeHq7fPx+oRo0aev755zVjxgylpKRoz549Vp3P09NTb731lk6cOKG9e/dqxYoV+uKLL3Ts2DENHjxYhYWFGjx4sH777TezuF9++UWvvfaajEaj4uPjtX//fq1YsUJJSUn6+eef1b17d2VmZioqKsrqawcAAAAAAAAAAACqKxo+AAAAAAAAAMDGTJs2TZIUHR2tgIAA03EvLy/NnTtXkjRnzhzl5uZalW/mzJk6f/68unXrphEjRpiOOzg4aN68efLw8FBaWpo2bNhgFufq6qpPP/1U48ePV9euXeXh4WHV+WbNmqUpU6aofv36ZscNBoMWLlwoNzc3nTt3Tl988YXZeGpqqi5duqQ//OEPGjZsmNmYm5ub/vKXv0iS/vOf/1i1DgAAAAAAAAAAAKA6o+EDAAAAAAAAAGzIqVOnlJaWJkkKDw8vMx4UFCRfX18VFRUpKSnJqpwJCQkW8xkMBvXp00eStGbNmqou22q1atVSixYtJEkZGRlmY87Ozlbl8PLyuunrAgAAAAAAAAAAAGwNDR8AAAAAAAAAYEN2794tSfL09JSfn1+5c9q3b282tyL5+fk6cuSIWdyN5LtRxcXFOn78uCSpbt26ZmOdOnWSh4eHvv/+ey1atMhsrKCgQG+99ZYkaeTIkbd8nQAAAAAAAAAAAMCdRsMHAAAAAAAAANiQ9PR0SVKDBg0szvH19TWbW5HS5oqKclYm341auHChsrKy5OLiol69epmNeXp6atGiRXJ1dVVERIRat26tsLAwPf3002rQoIHS0tL0t7/9TRMmTLjl6wQAAAAAAAAAAADuNMc7vQAAAAAAAAAAwH/l5+dLklxdXS3OMRgMkqS8vDyr81WUszL5bsT+/ftNzRoxMTHy9vYuM6dv377atGmTnnvuOR04cEAHDhwwjXXv3l2dO3eWnZ2d1ef08fGxOHbmzJkyu4wAAAAAAAAAAAAAtoIdPgAAAAAAAAAAt9zJkyf17LPPqqCgQH369FF0dHS58+bNm6dOnTrp/vvv1zfffKPc3FxlZGTo/fff17Zt2xQcHKz4+Pjbu3gAAAAAAAAAAADgDqDhAwAAmFm5cqW6dOmi2rVry9XVVW3atNH06dNVXFxc5ZyfffaZ+vTpozp16qhmzZp68MEH9dhjj+ntt9+uMO7bb7/V4MGD5ePjIycnJ3l5ealdu3Z67bXXbmg9AAAAAGDL3NzcJEmFhYUW5xQUFEiS3N3drc5XUc7K5KuKs2fPKiQkRD///LN69OihFStWlLtLx5YtWxQZGSkvLy9t2LBBTz75pNzd3eXj46PIyEjNnz9fV65cUVRUlHJycqw698mTJy1+sbsHAAAAAAAAAAAAbBkNHwAAwCQqKkphYWHasmWLOnbsqJ49e+rEiROaOHGigoODdeHChUrlu3TpksLCwtSvXz8lJyerVatWGjRokPz9/XX06FHNmjWr3Dij0aioqCg9+eSTWrNmjfz8/DRw4EAFBAQoMzNTM2fOVFFR0c24ZAAAAACwOY0aNZIkZWRkWJxTOlY6tyINGzY0fX/ixIkbzldZmZmZCg4O1uHDh9WtWzetXbtWTk5O5c4t3bmjd+/e8vDwKDM+aNAg1axZU7m5uUpLS7vpawUAAAAAAAAAAABsieOdXgAAALANa9euVVxcnAwGgzZt2qSAgABJUlZWloKDg5WamqqYmBjNmDHD6pyvvPKKVq5cqX79+mnBggXy8vIyjV25ckXfffdduXF//etfFRcXp8cee0xLly41++MkSUpLS5Ozs3MVrhIAAAAAbF/btm0lSdnZ2UpPT5efn1+ZOTt27JAk089uFXF3d1fTpk115MgR7dixQ61bt76hfJXx66+/Kjg4WD/88INCQkK0bt26Cn+eK21IsbTTiKOjo1xdXXXp0iWdO3fupq4VAAAAAAAAAAAAsDXs8AEAACRJ06ZNkyRFR0eb/YGPl5eX5s6dK0maM2eOcnNzrcq3ceNGLV68WP7+/lqxYoVZs4ck2dvbKzAwsEzcoUOHNG3aNHl7e+uLL74o0+whSR06dJCjI32rAAAAAO5OPj4+6tChgyRp6dKlZcZTU1OVkZEhJycn9e7d26qc/fv3t5ivoKBAiYmJkqQBAwZUddlllD5A4ODBgwoJCVFiYqJcXFwqjKlfv74kafv27eWOHzp0SL/99pskldsIAwAAAAAAAAAAANxNaPgAAAA6deqU0tLSJEnh4eFlxoOCguTr66uioiIlJSVZlXP27NmSpKioKNWoUcPqtcybN0+XL1/WK6+8ovvuu8/qOAAAAAC4m0yePFmSFBsbq127dpmOZ2dnKzIyUpI0ZswYeXh4mMYSEhLUsmVLhYSElMkXFRWlWrVqKTk5WQsWLDAdLykpUWRkpHJyctShQwd17979pqz/3LlzCgkJ0YEDB9StWzermj0kadCgQZKkrVu36h//+IeMRqNpLDMzU8OHD5ckNW/eXO3bt78pawUAAAAAAAAAAABsFY/GBgAA2r17tyTJ09PT4hNS27dvr4yMDO3evVtDhgypMF9JSYk2btwoSXriiSd09uxZLVu2TIcOHZKTk5Patm2rgQMHymAwlIldv369KS4nJ0fLly/Xvn37ZG9vL39/fw0cOLDMbiEAAAAAcLfp16+fxo0bp1mzZikwMFAhISFydXXVxo0blZOTo86dO2vq1KlmMbm5uTp06JAuXrxYJl+9evUUHx+vIUOGaMSIEVq4cKEaNWqktLQ0HTt2TN7e3lq6dKns7OzKxEZGRpqaToqKiiRd/bnv2l0bn376acXExJj+++WXX9a+fftkZ2cnT09PjRo1yuJ19uvXz/TfvXv31siRIzV//nz96U9/0ocffqiHH35Y+fn52r59u/Ly8nTffffpk08+kb09zzMCAAAAAAAAAADA3Y2GDwAAoPT0dElSgwYNLM7x9fU1m1uRY8eOqaCgQJK0bds2RUZGmv671IQJE7Rs2TIFBwebjl26dEmHDh0ynWfo0KHKzMw0i3vjjTe0YMECDR482IorAwAAAIDqKy4uTp07d9b777+vrVu3qri4WE2aNFF0dLRee+011axZs1L5QkND1bhxY02bNk2bN2/W7t27VbduXY0ePVoxMTHy9vYuN+7777/X9u3byxy/9ljLli3Nxs6dOydJMhqNWrFihcU1NWrUyKzhQ5I++OAD9erVSwsXLtSOHTuUmJgoR0dH+fn5qUePHnr99dfl4+Nj7WUDAAAAAAAAAAAA1RYNHwAAQPn5+ZIkV1dXi3NKd+PIy8u7br7s7GzT98OHD9djjz2mGTNmqGXLljp69KgmT56spKQk9e3bV7t27VKzZs0kXf2DIKPRKEkaM2aMHnroIa1YsUIBAQE6ffq0YmNjFR8fr6FDh6p+/fp6/PHHr7uWiv4I6MyZM6pbt+51cwAAAADAnRIWFqawsDCr5kZERCgiIqLCOe3atdPq1asrtYZvvvmmUvOrGnOtvn37qm/fvjeUAwAAAAAAAAAAAKju2PMeAADcdKVNG5JUv359rV+/Xu3bt5fBYFCbNm20bt06+fv7q6CgQLGxseXGubi4KDk5WU8++aTc3NzUokULffzxx+rVq5dKSkr017/+9XZeEgAAAAAAAAAAAAAAAAAAwG1FwwcAAJCbm5skqbCw0OKcgoICSZK7u7vV+aSrT5h1cnIyG3dwcNDIkSMlScnJyeXGDRgwQA888ECZ3JGRkZKkzZs369KlS9ddy8mTJy1+sbsHAAAAAAAAAAAAAAAAAACwVTR8AAAANWrUSJKUkZFhcU7pWOnc6+Wzs7OTJDVu3LjcOaXHz5w5YzpmMBhMTR7XiysuLlZWVtZ11wIAAAAAAAAAAAAAAAAAAFAd0fABAADUtm1bSVJ2drbS09PLnbNjxw5JUkBAwHXzGQwGtWjRQpIsNmWUHjcYDGbH27VrZ1VcebEAAAAAAAAAqo9Dhw5p9uzZioiIUOvWreXo6Cg7Ozu988475c6/cuWKtm7dqilTpigoKEj333+/atSoIS8vLz311FNasmSJjEbjdc/72WefqU+fPqpTp45q1qypBx98UI899pjefvttizFHjhxRRESEfHx85OTkJB8fH0VEROjYsWMVnis/P1+TJ09WixYt5OLiIi8vLz399NNKSUmpMO7KlSuaP3++Hn30Ubm5ucnNzU2PPvqoPvzwQ6uuEQAAAAAAAMDdgYYPAAAgHx8fdejQQZK0dOnSMuOpqanKyMiQk5OTevfubVXO0NBQSVJycnK541999ZUkqWPHjuXGpaSk6MqVKxbjWrRoIXd3d6vWAgAAAAAAAMD2zJs3T+PGjdOiRYt04MABlZSUVDj/2LFj6ty5s6ZOnaoffvhB7du318CBA9W4cWMlJydr6NCh6tOnjy5dulRu/KVLlxQWFqZ+/fopOTlZrVq10qBBg+Tv76+jR49q1qxZ5cZt2bJFbdq00aJFi3Tfffepf//+uu+++7Ro0SI9/PDD2rZtW7lxmZmZat++vd59913l5+fr2WefVatWrfTll1+qW7dumj17drlxJSUlCg0N1auvvqoDBw6oa9eu6tq1q/bv36+RI0fqueeeK/d3pwAAAAAAAADuPjR8AAAASdLkyZMlSbGxsdq1a5fpeHZ2tiIjIyVJY8aMkYeHh2ksISFBLVu2VEhISJl848aNU+3atZWUlKT58+ebjS1btkxLliwxzbvW0KFD1aRJEx04cEBTpkwx+4fLr7/+Wu+99165cQAAAAAAAACqF39/f73xxhtasmSJfvjhB/3xj3+scL6dnZ2Cg4P15ZdfKjMzU+vXr9eyZcv03Xff6ZtvvpGrq6s+//xzxcbGlhv/yiuvaOXKlerXr59OnDihjRs3aunSpUpJSdGZM2f0+eefl4k5f/68wsLCdP78eU2aNEkHDhzQsmXLdODAAU2aNEmFhYUKCwvThQsXysSOGDFChw8fVkhIiI4cOaIVK1Zo06ZN+vzzz2Vvb6+oqCjt27evTNzs2bO1Zs0a1a9fXwcOHNC6deu0bt06HTx4UPXq1dPKlSs1d+5cK+8yAAAAAAAAgOqMhg8AACBJ6tevn8aNG6eCggIFBgaqV69eGjRokJo2bar9+/ebnpx3rdzcXB06dEhHjx4tk8/Ly0vLly+Xs7OzXn31Vfn7+ys0NFQBAQEaMmSIjEajYmJiyuwYUrNmTa1Zs0aenp7629/+pubNm2vQoEHq1KmTunXrpvPnz2vYsGEaNWrULb0fAAAAAAAAAG6tl19+Wf/4xz8UHh6uli1byt6+4n+6bNKkiTZu3KiePXvKwcHBbOzJJ59UdHS0JGnx4sVlYjdu3KjFixfL399fK1askJeXl9m4vb29AgMDy8TFx8fr9OnTat68ud555x2zsXfeeUfNmzdXRkZGmXN+//33+uyzz+Tg4KCFCxeqVq1aprHevXsrIiJCV65c0bvvvmsWd+XKFf3973+XJP3973+Xn5+faczPz8809u6777LLBwAAAAAAAHAPoOEDAACYxMXFafny5erUqZO2bt2qpKQk+fj4KDY2VikpKXJxcalUvqeeekp79+7VsGHDlJOTo88++0wnTpxQ7969tX79er399tvlxj388MM6cOCARo8erZKSEiUmJurHH3/Uk08+qX//+9+Kj4+XnZ3dzbhkAAAAAAAAAHeJtm3bSpIyMjLKjM2ePVuSFBUVpRo1alidMyEhQZI0ePDgMg0p9vb2eu655yRJa9asKTeuc+fOatiwYZm84eHhkqTExEQVFxebjv/nP//R2bNn5eTkpIEDB5aJGzhwoGrWrKnTp09r+/btVl8HAAAAAAAAgOrJ8U4vAAAA2JawsDCFhYVZNTciIkIREREVzmnevLni4+MrvY66detqzpw5mjNnTqVjAQAAAAAAANx7fvrpJ0lXf7d4rZKSEm3cuFGS9MQTT+js2bNatmyZDh06JCcnJ7Vt21YDBw6UwWAok3P37t2SpPbt25d7ztLjpfMqG1dYWKiffvpJf/jDH8ziWrVqJWdn5zJxLi4uatWqlXbv3q3du3erU6dO5eYHAAAAAAAAcHdghw8AAAAAwF1n5cqV6tKli2rXri1XV1e1adNG06dPN3tqamXs3LlToaGh8vb2lrOzs/z8/DR27FhlZmZeN3bv3r166aWX5OfnJ2dnZ9WuXVutW7fWqFGjlJ2dbTY3Ly9PMTExevrpp9WkSRN5eHioZs2aqlevnvr27asvvviiSusHAAAAgLvd+fPnNWvWLEkqszPGsWPHVFBQIEnatm2bmjVrptdee00ffPCB4uLiFBERocaNGyslJcUsLj8/3/RzW4MGDco9r6+vryTp119/VWFhoel4enp6hXHu7u5yd3c3m2tN3LXnvDYOAAAAAAAAwN2Jhg8AAAAAwF0lKipKYWFh2rJlizp27KiePXvqxIkTmjhxooKDg3XhwoVK5Vu1apUCAwO1atUqNWzYUH379pW9vb3mzJmjhx9+WEeOHLEYO2PGDLVr106LFi3SAw88oP79+6tTp066ePGiPvjgA505c8ZsfmZmpt555x19++23evDBBxUSEqI+ffrowQcf1Lp16/TMM89o9OjRVbovAAAAAHA3i4yMVHp6uurVq6fJkyebjV3bbD98+HC1a9dOaWlpys/P1549e9S7d2/9+uuv6tu3r2mXEOlqw0cpV1fXcs977a4geXl5ZWItxV0bezPiKuLj42Px6/c/lwIAAAAAAACwLY53egEAAAAAANwsa9euVVxcnAwGgzZt2qSAgABJUlZWloKDg5WamqqYmBjNmDHDqnynT5/WsGHDdPnyZc2fP18jRoyQJJWUlCgiIkKffvqpwsPDtX37dtnZ2ZnFfvzxx5owYYJatGihVatWyd/f32z84MGD8vHxMTtWp04d/ec//1H79u3l6Gj+I/vXX3+tZ555RnPnzlWfPn3Uo0ePSt0bAAAAALhbTZ06VYsWLZKzs7NWrFih+++/32zcaDSavq9fv77Wr18vJycnSVKbNm20bt06PfLIIzpw4IBiY2O1cOHC27p+AAAAAAAAALCEHT4AAAAAAHeNadOmSZKio6NNzR6S5OXlpblz50qS5syZo9zcXKvyzZw5U+fPn1e3bt1MzR6S5ODgoHnz5snDw0NpaWnasGGDWdxvv/2mqKgoubi4KCkpqUyzhyS1atVKHh4eZscMBoMCAwPLNHtIUteuXTV48GBJKnM+AAAAALhXvffee5oyZYqcnJyUkJCgzp07l5nj5uZm+j4iIsLU7FHKwcFBI0eOlCQlJyeXG1dYWFju+QsKCkzfu7u7l4m1FHdt7M2Iq8jJkyctftWtW9eqHAAAAAAAAADuDBo+AAAAAAB3hVOnTiktLU2SFB4eXmY8KChIvr6+KioqUlJSklU5ExISLOYzGAzq06ePJGnNmjVmY4sWLVJeXp4GDhyoxo0bV+o6KlLaCPL7P04CAAAAgHvR7NmzNX78eNWsWVOrV69Wz549y53XqFEj066Mln5GKz1+5swZ0zE3Nzd5enpKkk6cOFFuXEZGhqSrDxpwdXU1O2dFcXl5ecrLyzOba03ctee8Ng4AAAAAAADA3YmGDwAAAADAXWH37t2SJE9PT/n5+ZU7p3379mZzK5Kfn68jR46YxVmbb/369ZKkJ554QhcuXNAnn3yicePGafTo0Zo5c6bpj3MqIy0tTcuXL5ednZ2effbZSscDAAAAwN3k/fff17hx40zNHk8//bTFuQaDQS1atJAkZWVllTun9LjBYDA7Xrp75I4dO8qNKz1+7S6TlYlzdXVV8+bNy8QdPHhQFy9eLBN34cIFHTx4sNxzAgAAAAAAALj70PABAAAAALgrpKenS5IaNGhgcY6vr6/Z3IocP37c9L2lnJby7du3T9LVphF/f3+98MILmj17tubOnavXXntNTZs21XvvvVfh+adMmaKIiAg999xz6tixozp27KgLFy5o1qxZ6tSp03XXDwAAAAB3qw8++EBjxowxNXs888wz140JDQ2VJCUnJ5c7/tVXX0mSOnbsaHa8f//+kqRly5bpypUrZmNXrlzR8uXLJUkDBgwwG+vXr58kacuWLeXu1rF06VJJ0rPPPqsaNWqYjnfq1El16tRRUVGRVq9eXSZu9erVunTpkurVq6dHH320/IsFAOAGrFy5Ul26dFHt2rXl6uqqNm3aaPr06SouLq5UntIdtq739fbbb5eJvXz5subOnaugoCDVrl1bNWrUkJeXl0JCQrRo0aIyNRkAAAAA7maOd3oBAAAAAADcDPn5+ZKuPh3VktIntebl5Vmdr6KclvJlZ2dLkqKjo1WvXj0lJiYqKChI586d04cffqjp06dr/Pjxqlu3roYMGVJu7nXr1mnv3r1m53rvvff00ksvXXft1/Lx8bE4dubMGdWtW7dS+QAAAADgTlqwYIEiIyMr1ewhSePGjdOcOXOUlJSk+fPna+TIkaaxZcuWacmSJaZ514qIiNDf/vY3HT58WDExMfrb3/5mGouJidHhw4fl4+OjF154wSyuVatW6tu3rz777DMNHz5c69atk4uLiyTpyy+/VHx8vOzt7TVp0iSzOHt7e02cOFGvvfaaJk6cqMcee8y0i2V6erqio6MlSZMmTZK9Pc/2AwDcXFFRUYqLi5Ojo6OCg4NlMBiUkpKiiRMnKjExURs2bDDVs+sZNGiQxZ21zp07p8TERElS165dzcaKiorUvXt3ffvtt6pZs6aCgoL0wAMPKCMjQ19//bVSUlK0du1arVmzRnZ2djd2wQAAAABQDdDwAQAAAADATWY0GiVdfdprUlKS/vCHP0iS7rvvPsXGxiovL0/z5s3Tm2++abHhY8+ePZKuNpMcOnRIM2fO1IgRI7Rs2TKtXbtWbm5ut+VaAAAAAOBW2bVrlyIjI03/ffToUUnS/Pnz9fnnn5uOJyQkqG7dutqzZ49Gjhwpo9Goxo0ba9WqVVq1alW5uePj483+28vLS8uXL1efPn306quvavbs2XrooYd09OhR7d69W9LVBo7evXubxdWqVUsrVqxQ9+7dNW3aNK1bt07+/v46cOCADhw4IFdXV61cubLcP3798MMP9f333ys5OVlNmjTR448/rszMTG3atElGo1FxcXF6+OGHy8SNHTtW3377rRISEuTv769u3bpJuro7yfnz5zVo0CCz+wYAwM2wdu1axcXFyWAwaNOmTQoICJAkZWVlKTg4WKmpqYqJidGMGTOsylfRvOnTpysxMVHNmzfX448/bjY2d+5cffvtt2rYsKG+/fZbs92Xd+zYoeDgYK1du1bLly/X4MGDq3ClAAAAAFC90PABAAAAALgrlDZAFBYWWpxTUFAgSXJ3d7c6X2lODw8Pq/O5ubkpOztbjz/+uKnZ41qRkZGaN2+ejh07pvT0dNPTWsvj7u6uDh06aMmSJbrvvvs0d+5cvfXWW1b/w+rJkyctjlW0+wcAAAAA3Gp5eXnavn17meMnT540+1mmqKhIkpSTk2NqsP/xxx/1448/Wsz9+4YPSXrqqae0d+9eTZs2TcnJyfrss8/k7u6u3r176//9v/+n7t27l5urc+fO2rt3r6ZOnark5GStXr1aDzzwgF544QVNmTJFTZo0KTfuwQcf1I4dO/Tuu+9q9erV+uyzz+Tq6qoePXrojTfeUEhISLlxDg4OWrVqlRYsWKB//etf2rhxo6Sru4YMHz5cI0aM4InmAICbbtq0aZKu7lpc2uwhXW2anDt3rh5//HHNmTNHMTEx5f6utDI++ugjSSp3N+OUlBRJ0ujRo82aPSSpffv2Gjx4sBYsWKD//Oc/NHwAAAAAuCfQ8AEAAAAAuCs0atRIkpSRkWFxTulY6dyKNGzY0PT9iRMn1Lp1a6vzNW7cWNnZ2WrcuHG5ua89fubMmQobPq714osvau7cuUpISLC64QMAAAAAbFWXLl1MDRy3Yn55mjdvXm4zyPU0bdpUixYtqnScu7u73n33Xb377ruVirO3t9fIkSM1cuTISp8TAIDKOnXqlNLS0iRJ4eHhZcaDgoLk6+urjIwMJSUlWdy12BpbtmzRoUOH5OjoqGHDhpUZd3Z2tiqPl5dXldcAAAAAANWJ/Z1eAAAAAAAAN0Pbtm0lSdnZ2UpPTy93zo4dOyTJ7Al1lri7u6tp06Zmcdbma9eunSQpKyur3LhrjxsMhuuupZSrq6skKTMz0+oYAAAAAAAAAKjI7t27JUmenp4WH07Tvn17s7lVVbq7R+/evVWnTp0y47169ZIkvf/++zpx4oTZ2M6dO7Vs2TK5uLjoj3/84w2tAwAAAACqCxo+AAAAAAB3BR8fH3Xo0EGStHTp0jLjqampysjIkJOTk3r37m1Vzv79+1vMV1BQoMTEREnSgAEDzMZCQ0MlSdu2bVNhYWGZ2K+++krS1WaPhx56yKq1SNLGjRslXX0iLQAAAAAAAADcDKUP0GnQoIHFOb6+vmZzq6KwsFArVqyQJA0fPrzcOREREXrhhRf0888/q1mzZgoJCdGQIUMUFBSkDh06yM/PTxs3brRqF2cAAAAAuBvQ8PE7K1euVJcuXVS7dm25urqqTZs2mj59uoqLi6uUb+fOnQoNDZW3t7ecnZ3l5+ensWPHVupprKdOnVLt2rVlZ2cnR0fHKq0DAAAAAO4FkydPliTFxsZq165dpuPZ2dmKjIyUJI0ZM0YeHh6msYSEBLVs2VIhISFl8kVFRalWrVpKTk7WggULTMdLSkoUGRmpnJwcdejQQd27dzeLCw4O1uOPP67MzEyNGTNGRUVFprF9+/bpzTfflCSNGjVKNWrUMI0tXbpUO3fuLLMOo9GoNWvWmOJGjBhh/U0BAAAAAAAAgArk5+dL+u8Ow+Up3ak4Ly+vyudZsWKFCgoKVKdOHYsP5bG3t1d8fLxmzJgho9GolJQULVu2TFu2bJGLi4u6deumJk2aVOq8Pj4+Fr/OnDlT5esBAAAAgNuBho9rREVFKSwsTFu2bFHHjh3Vs2dPnThxQhMnTlRwcLAuXLhQqXyrVq1SYGCgVq1apYYNG6pv376yt7fXnDlz9PDDD+vIkSNW5XnllVeUm5tblUsCAAAAgHtKv379NG7cOBUUFCgwMFC9evXSoEGD1LRpU+3fv1+dO3fW1KlTzWJyc3N16NAhHT16tEy+evXqKT4+Xg4ODhoxYoQCAwM1ePBgNW/eXJ988om8vb21dOlS2dnZlYldsmSJGjVqpPj4eDVp0kT9+/fXk08+qQ4dOujs2bN66qmnyqxlw4YNat++vXx9ffX000/r+eefV8+ePeXn56eBAwcqNzdXo0ePpuEDAAAAAAAAQLWzcOFCSdILL7xg8YGneXl5euaZZzRhwgSNGTNGhw8fVmFhofbv369+/frpvffeU8eOHZWRkXE7lw4AAAAAdwwNH/9n7dq1iouLk8Fg0Pbt27V+/XqtXr1aP/30k1q3bq3U1FTFxMRYne/06dMaNmyYLl++rPnz5+u7777T8uXLdfjwYQ0dOlS//PKLwsPDZTQaK8zzr3/9S19++aVGjx59o5cIAAAAAPeEuLg4LV++XJ06ddLWrVuVlJQkHx8fxcbGKiUlRS4uLpXKFxoaqu3bt2vAgAE6duyYEhISVFJSotGjR2vv3r1q2rRpuXG+vr7as2ePoqOj5erqqi+//FK7d+9WQECA5s2bpy+//FJOTk5mMa+88orGjRunOnXqaNeuXVq5cqU2b94sJycnDRs2TJs3b9acOXPKbTABAAAAAAAAgKpwc3OTJBUWFlqcU1BQIElyd3ev0jkOHz6sLVu2SJJeeukli/PGjx+vpKQkjRo1Su+9956aNWumWrVqyd/fX0uWLFGPHj30888/m3ZDtsbJkyctftWtW7dK1wMAAAAAt4ud8XodB/eIjh07Ki0tTe+8847+/Oc/m42lpqbq8ccfl5OTk3755Rd5eHhcN9+f/vQn/eMf/1C3bt301VdfmY0VFBTIx8dHubm5+t///V/16NGj3Bw///yzWrdurVatWmnJkiVq0qSJHBwcdPny5apf6O/4+PhIuvrDLQCgcvgMrf54DQHgxvA5Wv3xGgLAjeFztPrjNQSAG8PnaPXHawgAVXc3fYYmJiaqT58+uv/++5WVlVXunAEDBighIUFvvPGG/vGPf1T6HNHR0fr73/+uoKAgbd68udw5JSUlcnV1VVFRkTZv3qygoKAycxYvXqxhw4apXr16OnXqVKXX8Xt30+sIALcbn6EAANwe7PAh6dSpU0pLS5MkhYeHlxkPCgqSr6+vioqKlJSUZFXOhIQEi/kMBoP69OkjSVqzZk258UajUS+99JIuXbqkjz76SPb2vFQAAAAAAAAAAAAAAAC4udq2bStJys7OVnp6erlzduzYIUkKCAiodP6SkhItXrxYkjR8+HCL8zIzM1VUVCTJ8k4ipQ9pPXfuXKXXAQAAAADVEV0Eknbv3i1J8vT0lJ+fX7lz2rdvbza3Ivn5+Tpy5IhZXGXzzZ07VykpKfrLX/6ihx566LrnBAAAAAAAAAAAAAAAACrLx8dHHTp0kCQtXbq0zHhqaqoyMjLk5OSk3r17Vzp/UlKSzpw5Izc3N4WGhlqcd//998vJyUmStH379nLnbNu2TZIs/n0PAAAAANxtaPiQTE8naNCggcU5vr6+ZnMrcvz4cdP3lnJWlO/o0aOaOHGi2rVrpwkTJlz3fAAAAAAAAAAAAAAAAEBVTZ48WZIUGxurXbt2mY5nZ2crMjJSkjRmzBjTDhuSlJCQoJYtWyokJKTC3B999JEkafDgwXJ1dbU4r2bNmurTp48kKSYmRvv27TMb37hxo2bOnClJCg8Pt/LKAAAAAKB6c7zTC7AF+fn5klThD5UGg0GSlJeXZ3W+inJaynflyhVFRETo0qVL+vjjj+XoeOMvkY+Pj8WxM2fOqG7dujd8DgAAAAAAAAAAAAAAAFRP/fr107hx4zRr1iwFBgYqJCRErq6u2rhxo3JyctS5c2dNnTrVLCY3N1eHDh3SxYsXLebNzMzUF198IUkaPnz4ddfxz3/+Uzt37tSxY8cUEBCgwMBA1a9fX8eOHdOOHTskScHBwXrjjTdu4GoBAAAAoPqg4cPGzJw5U6mpqXrrrbfUunXrO70cAAAAAAAAAAAAAAAA3APi4uLUuXNnvf/++9q6dauKi4vVpEkTRUdH67XXXlPNmjUrnfOTTz5RcXGxWrVqpUcfffS68+vXr689e/Zo1qxZ+uyzz7R//35t27ZNHh4eevLJJxUeHq7hw4fLwcGhKpcIAAAAANUODR+S3NzcJEmFhYUW5xQUFEiS3N3drc5XmvPa7Swrynfo0CH9+c9/Vps2bTRp0iTrFm+FkydPWhyraPcPAAAAAAAAAAAAAAAA3DvCwsIUFhZm1dyIiAhFRERUOGf8+PEaP358pdbg5uamP//5z/rzn/9cqTgAAAAAuBvR8CGpUaNGkqSMjAyLc0rHSudWpGHDhqbvT5w4Ue5OHeXl+/LLL3Xx4kUVFhbqqaeeMptfuv1lSUmJunTpIkmKjo5Wz549r7seAAAAAAAAAAAAAAAAAAAAAABQvdDwIalt27aSpOzsbKWnp8vPz6/MnB07dkiSAgICrpvP3d1dTZs21ZEjR7Rjx45yGz4qynfkyBEdOXLEYv5NmzZJ0nWfkgAAAAAAAAAAAAAAAAAAAAAAAKon+zu9AFvg4+OjDh06SJKWLl1aZjw1NVUZGRlycnJS7969rcrZv39/i/kKCgqUmJgoSRowYIDpeFRUlIxGY7lf6enpkiQHBwfTMRo+AAAAAAAAAAAAAAAAAAAAAAC4O9Hw8X8mT54sSYqNjdWuXbtMx7OzsxUZGSlJGjNmjDw8PExjCQkJatmypUJCQsrki4qKUq1atZScnKwFCxaYjpeUlCgyMlI5OTnq0KGDGhfhXgABAABJREFUunfvfqsuCQAAAAAAAAAAAAAAAAAAAAAAVFM0fPyffv36ady4cSooKFBgYKB69eqlQYMGqWnTptq/f786d+6sqVOnmsXk5ubq0KFDOnr0aJl89erVU3x8vBwcHDRixAgFBgZq8ODBat68uT755BN5e3tr6dKlsrOzu12XCAAAAAAAAAAAAAAAAAAAAAAAqgkaPq4RFxen5cuXq1OnTtq6dauSkpLk4+Oj2NhYpaSkyMXFpVL5QkNDtX37dg0YMEDHjh1TQkKCSkpKNHr0aO3du1dNmza9RVcCAAAAAAAA4G6wcuVKdenSRbVr15arq6vatGmj6dOnq7i4uEr5du7cqdDQUHl7e8vZ2Vl+fn4aO3asMjMzy51fUlKiVatWadKkSerevbvuv/9+2dnZydHRscLzZGZmavHixQoPD1ezZs3k7OysWrVqqWXLlho3bpyOHz9+3bVmZmYqOjpa/v7+MhgMcnV1VZMmTTRkyBDt3LmzKpcPAAAAAAAAAAAAVCt2RqPReKcXgTvHx8dHknTy5Mk7vBIAqH74DK3+eA0B4MbwOVr98RoCwI251Z+jUVFRiouLk6Ojo4KDg2UwGJSSkqKcnBwFBQVpw4YNlXpIzapVqzRkyBBdvnxZHTp0kJ+fn3bs2KFjx47J29tbqampZR5Sk5OTo9q1a5fJ5eDgoMuXL1s819ChQ7VkyRLZ29vL399fLVq0UGFhodLS0vTrr7/K1dVVCQkJeuqpp8qN//rrrzVgwADl5OSoadOmatOmja5cuaLjx49r7969iouL05gxY6y+dkuohQBwY/gcrf54DQGg6vgMvTvwOgJA1fEZCgDA7VHxY9gAAAAAAAAAALfd2rVrFRcXJ4PBoE2bNikgIECSlJWVpeDgYKWmpiomJkYzZsywKt/p06c1bNgwXb58WfPnz9eIESMkXd3BIyIiQp9++qnCw8O1fft22dnZmeJq1Kih559/Xm3btlVAQIA8PT31yCOPXPd8np6eeuuttzR8+HDVr1/fdLygoECvvPKKli1bpsGDB+vIkSNlGkq+//57Pf3003JwcNCaNWvUv39/s/GzZ8/q/PnzVl03AAAAAAAAAAAAUJ3Z3+kFAAAAAAAAAADMTZs2TZIUHR1tavaQJC8vL82dO1eSNGfOHOXm5lqVb+bMmTp//ry6detmavaQru7UMW/ePHl4eCgtLU0bNmwwi3N1ddWnn36q8ePHq2vXrvLw8LDqfLNmzdKUKVPMmj0kyWAwaOHChXJzc9O5c+f0xRdflIl99dVXdeHCBX344Ydlmj0kqU6dOmrcuLFV6wAAAAAAAAAAAACqMxo+AAAAAAAAAMCGnDp1SmlpaZKk8PDwMuNBQUHy9fVVUVGRkpKSrMqZkJBgMZ/BYFCfPn0kSWvWrKnqsq1Wq1YttWjRQpKUkZFhNrZnzx5t3rxZvr6+Gjx48C1fCwAAAAAAAAAAAGDLaPgAAAAAAAAAABuye/duSZKnp6f8/PzKndO+fXuzuRXJz8/XkSNHzOJuJN+NKi4u1vHjxyVJdevWNRtbv369JOnxxx+XnZ2d1q9frz/96U8aOXKkpk6dqp07d97y9QEAAAAAAAAAAAC2wvFOLwAAAAAAAAAA8F/p6emSpAYNGlic4+vraza3IqXNFRXlrEy+G7Vw4UJlZWXJxcVFvXr1Mhvbt2+fJOm+++7TU089peTkZLPxKVOm6Pnnn9fChQvl5OR0y9cKAAAAAAAAAAAA3Ens8AEAAMysXLlSXbp0Ue3ateXq6qo2bdpo+vTpKi4urnLOzz77TH369FGdOnVUs2ZNPfjgg3rsscf09ttvl5n7zTffyM7OrsKvDz744EYuEQAAAABsWn5+viTJ1dXV4hyDwSBJysvLszpfRTkrk+9G7N+/XxMmTJAkxcTEyNvb22w8OztbkrRgwQJt3bpVs2fP1qlTp5SZmamPPvpI7u7uWrJkicaNG2f1OX18fCx+nTlz5uZdHAAAAAAAAAAAAHCTscMHAAAwiYqKUlxcnBwdHRUcHCyDwaCUlBRNnDhRiYmJ2rBhg1xcXKzOd+nSJQ0dOlQrV66Ui4uLOnXqJG9vb509e1YHDx7UrFmzNGXKlHJjvb291bNnz3LHWrRoUaXrAwAAAADcOSdPntSzzz6rgoIC9enTR9HR0WXmGI1GSVJxcbHmzJmjESNGmMZefPFFubq66rnnntO//vUvTZo0SY0aNbpdywcAAAAAAAAAAABuOxo+AACAJGnt2rWKi4uTwWDQpk2bFBAQIEnKyspScHCwUlNTFRMToxkzZlid85VXXtHKlSvVr18/LViwQF5eXqaxK1eu6LvvvrMY27JlS8XHx1f5egAAAACgunJzc5MkFRYWWpxTUFAgSXJ3d7c6X2lODw+PG8pXFWfPnlVISIh+/vln9ejRQytWrJCdnZ3FtdaoUUMvvfRSmfGwsDCNHj1aWVlZ+vrrr/Xiiy9e99wnT560OObj41OJqwAAAAAAAAAAAABuL/s7vQAAAGAbpk2bJkmKjo42NXtIkpeXl+bOnStJmjNnjnJzc63Kt3HjRi1evFj+/v5asWKFWbOHJNnb2yswMPAmrR4AAAAA7h6lu1ZkZGRYnFM6Zs0OFw0bNjR9f+LEiRvOV1mZmZkKDg7W4cOH1a1bN61du1ZOTk7lzm3cuLEkydfXV46O5T+vyM/PT5J05syZm75WAAAAAAAAAAAAwJbQ8AEAAHTq1CmlpaVJksLDw8uMBwUFydfXV0VFRUpKSrIq5+zZsyVJUVFRqlGjxs1bLAAAAADc5dq2bStJys7OVnp6erlzduzYIUlmDfuWuLu7q2nTpmZxN5KvMn799VcFBwfrhx9+UEhIiNatWydnZ2eL89u1ayfp6rVbkpWVJUkyGAw3da0AAAAAAAAAAACAraHhAwAAaPfu3ZIkT09P05NSf699+/ZmcytSUlKijRs3SpKeeOIJnT17VjNnztSoUaMUFRWlRYsWqaCgoMIcv/zyi95++22NHDlS/+///T/NmzfP4pNoAQAAAOBu4uPjow4dOkiSli5dWmY8NTVVGRkZcnJyUu/eva3K2b9/f4v5CgoKlJiYKEkaMGBAVZddRlZWloKDg3Xw4EGFhIQoMTFRLi4uFcb07t1btWrVUm5urunBBNc6fPiwfv75Z0lSx44db9paAQAAAAAAAAAAAFtEwwcAADA9MbZBgwYW5/j6+prNrcixY8dMDR3btm1Ts2bN9Nprr+mDDz5QXFycIiIi1LhxY6WkpFjM8eOPP+ovf/mLPvzwQ82aNUuRkZFq0qSJXn/9dV2+fLkylwcAAAAA1c7kyZMlSbGxsdq1a5fpeHZ2tiIjIyVJY8aMkYeHh2ksISFBLVu2VEhISJl8UVFRqlWrlpKTk7VgwQLT8ZKSEkVGRionJ0cdOnRQ9+7db8r6z507p5CQEB04cEDdunWzqtlDktzc3DR+/HhJ0qhRo3T69GnTWHZ2tl5++WVduXJFHTt2VGBg4E1ZKwAAAAAAAAAAAGCrHO/0AgAAwJ2Xn58vSXJ1dbU4x2AwSJLy8vKumy87O9v0/fDhw/XYY49pxowZatmypY4eParJkycrKSlJffv21a5du9SsWTPTfA8PD0VFRal///5q3ry53N3ddfToUX388ceaM2eO/vnPf6qgoEAffvihVdfm4+NjcezMmTOqW7euVXkAAAAA4Hbq16+fxo0bp1mzZikwMFAhISFydXXVxo0blZOTo86dO2vq1KlmMbm5uTp06JAuXrxYJl+9evUUHx+vIUOGaMSIEVq4cKEaNWqktLQ0HTt2TN7e3lq6dKns7OzKxEZGRpqaToqKiiRdbRS5tuHi6aefVkxMjOm/X375Ze3bt092dnby9PTUqFGjLF5nv379zI69+eab2rFjh7788ks99NBDCgwMlKOjo7Zt26Zz586pYcOGWrZsmXU3EgAAAAAAAAAAAKjGaPgAAAA3ndFoNH1fv359rV+/Xk5OTpKkNm3aaN26dXrkkUd04MABxcbGauHChab5bdu2Vdu2bc3ytW7dWu+9956CgoI0cOBALViwQJGRkXrkkUduy/UAAAAAwJ0QFxenzp076/3339fWrVtVXFysJk2aKDo6Wq+99ppq1qxZqXyhoaFq3Lixpk2bps2bN2v37t2qW7euRo8erZiYGHl7e5cb9/3332v79u1ljl97rGXLlmZj586dk3T158MVK1ZYXFOjRo3KNHzUrFlTn3/+uebPn6/4+Hht3bpVly9flp+fn1599VWNHz9enp6e1l42AAAAAAAAAAAAUG3R8AEAAOTm5iZJKiwstDinoKBAkuTu7m51PkmKiIgwNXuUcnBw0MiRIzV27FglJydbvc4BAwbokUce0Z49e5SYmGhVw8fJkyctjlW0+wcAAAAA2IKwsDCFhYVZNTciIkIREREVzmnXrp1Wr15dqTV88803lZpf1Zhr2dvba9SoURZ3BgEAAAAAAAAAAADuBfZ3egEAAODOa9SokSQpIyPD4pzSsdK518tnZ2cnSWrcuHG5c0qPnzlzphIrlR566CFJFTdyAAAAAAAAAAAAAAAAAAAAVHc0fAAAALVt21aSlJ2drfT09HLn7NixQ5IUEBBw3XwGg0EtWrSQJGVlZZU7p/S4wWCo1Fqzs7Mlme8iAgAAAAAAAAAAAAAAAAAAcLeh4QMAAMjHx0cdOnSQJC1durTMeGpqqjIyMuTk5KTevXtblTM0NFSSlJycXO74V199JUnq2LGj1es8deqUNm/eXOk4AAAAAAAAAAAAAAAAAACA6oaGDwAAIEmaPHmyJCk2Nla7du0yHc/OzlZkZKQkacyYMfLw8DCNJSQkqGXLlgoJCSmTb9y4capdu7aSkpI0f/58s7Fly5ZpyZIlpnnXiouLK3dXkH379unZZ5/VhQsX1KRJE/Xt27eKVwoAAAAAAAAAAAAAAAAAAGD7aPgAAACSpH79+mncuHEqKChQYGCgevXqpUGDBqlp06bav3+/OnfurKlTp5rF5Obm6tChQzp69GiZfF5eXlq+fLmcnZ316quvyt/fX6GhoQoICNCQIUNkNBoVExNTZseQv/zlL6pTp47at2+v0NBQPffcc2rfvr3atm2r3bt3q0GDBkpMTJSTk9MtvR8AAAAAAAAAbq1Dhw5p9uzZioiIUOvWreXo6Cg7Ozu988475c6/cuWKtm7dqilTpigoKEj333+/atSoIS8vLz311FNasmSJjEaj1edPSkqSnZ2d7Ozs1K1btwrnHjlyRBEREfLx8ZGTk5N8fHwUERGhY8eOVRiXn5+vyZMnq0WLFnJxcZGXl5eefvpppaSkVBh35coVzZ8/X48++qjc3Nzk5uamRx99VB9++GGlrhEAAAAAAABA9UbDBwAAMImLi9Py5cvVqVMnbd26VUlJSfLx8VFsbKxSUlLk4uJSqXxPPfWU9u7dq2HDhiknJ0efffaZTpw4od69e2v9+vV6++23y8T8+c9/1jPPPKPc3Fx99dVXWrNmjdLT0/XYY4/pH//4hw4cOKCHHnroZl0yAAAAAAAAgDtk3rx5GjdunBYtWqQDBw6opKSkwvnHjh0zPZjmhx9+UPv27TVw4EA1btxYycnJGjp0qPr06aNLly5d99y//fabXnnlFdnZ2V137pYtW9SmTRstWrRI9913n/r376/77rtPixYt0sMPP6xt27aVG5eZman27dvr3XffVX5+vp599lm1atVKX375pbp166bZs2eXG1dSUqLQ0FC9+uqrOnDggLp27aquXbtq//79GjlypJ577jlduXLluusGAKAqVq5cqS5duqh27dpydXVVmzZtNH36dBUXF1cqT6NGjUyNlRV9/f7fC7t06WJV3EsvvXQzLxsAAAAAbJbjnV4AAACwLWFhYQoLC7NqbkREhCIiIiqc07x5c8XHx1t9/gkTJmjChAlWzwcAAAAAAABQPfn7++uNN95Q27ZtFRAQoGnTpumTTz6xON/Ozk7BwcGaMGGCnnrqKTk4OJjGNm3apKefflqff/65YmNjNWXKlArPPXbsWP3yyy969dVXNW/ePIvzzp8/r7CwMJ0/f16TJk3StGnTTGOTJ0/Wu+++q7CwMB06dKjMA3NGjBihw4cPKyQkROvWrVOtWrUkXd1ZpE+fPoqKitKTTz6phx9+2Cxu9uzZWrNmjerXr6/NmzfLz89PkpSenq6goCCtXLlSTzzxhMaMGVPhNQIAUFlRUVGKi4uTo6OjgoODZTAYlJKSookTJyoxMVEbNmyw+gFxgwYNUlZWVrlj586dU2JioiSpa9euZmM9e/ZUo0aNyo27dOmS/v3vf5cbBwAAAAB3Kzsje/7e03x8fCRJJ0+evMMrAYDqh8/Q6o/XEABuDJ+j1R+vIQDcGD5Hqz9eQwC4MTf7czQiIkKLFi3S1KlT9eabb1Y6/p133lFMTIyaNGmiI0eOWJyXkJCgAQMGaMKECfrDH/6gF198USEhIUpOTi4zd+7cuRo9erSaN2+uH374Qfb29qaxK1eu6KGHHtLhw4f1wQcfaOTIkaax77//Xq1atZKDg4OOHj2qhg0bmuV9+eWXtXDhQg0ePNj0h6ulOevXr6+zZ8/q008/1fPPP28W9+mnn+qPf/yj6tWrp4yMDLP1VAW1EACq7m77DF27dq369+8vg8GgTZs2KSAgQJKUlZWl4OBg7d+/X+PHj9eMGTNu+FzTp0/XxIkT1bx5cx06dMjquBUrVui5556Th4eHzpw5Y3XzSUXuttcRAG4nPkMBALg9buw3gAAAAAAAAAAAAABgA9q2bStJysjIsDgnKytLr776qlq0aKG33377ujkTEhIkSYMHDy7TXGFvb6/nnntOkrRmzZpy4zp37lym2UOSwsPDJUmJiYkqLi42Hf/Pf/6js2fPysnJSQMHDiwTN3DgQNWsWVOnT5/W9u3br7t+AACsVbqLVXR0tKnZQ5K8vLw0d+5cSdKcOXOUm5t7w+f66KOPJEkvvfRSpeIWLlwoSRoyZMhNafYAAAAAgOqAhg8AAAAAwF1n5cqV6tKli2rXri1XV1e1adNG06dPN/sjmsrYuXOnQkND5e3tLWdnZ/n5+Wns2LHKzMy8buzevXv10ksvyc/PT87Ozqpdu7Zat26tUaNGKTs722xuZmamFi9erPDwcDVr1kzOzs6qVauWWrZsqXHjxun48eNVWj8AAAAA3At++uknSVLdunUtzhk1apSysrK0cOFCOTs7Xzfn7t27JUnt27cvd7z0eOm8ysYVFhaa1n1tXKtWrcpdn4uLi1q1alXuOQEAqKpTp04pLS1N0n+bEq8VFBQkX19fFRUVKSkp6YbOtWXLFh06dEiOjo4aNmyY1XEZGRmm3biGDx9+Q2sAAAAAgOqEhg8AAAAAwF0lKipKYWFh2rJlizp27KiePXvqxIkTmjhxooKDg3XhwoVK5Vu1apUCAwO1atUqNWzYUH379pW9vb3mzJmjhx9+WEeOHLEYO2PGDLVr106LFi3SAw88oP79+6tTp066ePGiPvjgA505c8Zs/uuvv65hw4Zp+fLlqlWrlvr06aOuXbvq3Llzmj17tvz9/fXVV19V6b4AAAAAwN3s/PnzmjVrliSVuzOGJC1btkyrVq3S2LFj1blz5+vmzM/PNzXqN2jQoNw5vr6+kqRff/1VhYWFpuPp6ekVxrm7u8vd3d1srjVx157z2jgAAG5EaROhp6en/Pz8yp1jqcmxskp39+jdu7fq1KljdVx8fLyuXLmihx9+2GJDJQAAAADcjRzv9AIAAAAAALhZ1q5dq7i4OBkMBm3atEkBAQGSpKysLAUHBys1NVUxMTGaMWOGVflOnz6tYcOG6fLly5o/f75GjBghSSopKVFERIQ+/fRThYeHa/v27bKzszOL/fjjjzVhwgS1aNFCq1atkr+/v9n4wYMH5ePjY3bM09NTb731loYPH6769eubjhcUFOiVV17RsmXLNHjwYB05ckS1a9eu9P0BAAAAgLtVZGSk0tPTVa9ePU2ePLnM+NmzZzV69Gg1adJE06ZNsypnfn6+6XtXV9dy5xgMBtP3eXl5pnmlsZbiSmPz8vKUl5dX5pzXiys9nzV+/7Pntc6cOVPhjigAgHvD7Wo4LCws1IoVKyRVbpcOo9Go+Pj4SscBAAAAwN2AHT4AAAAAAHeN0j/aiY6ONjV7SJKXl5fmzp0rSZozZ45yc3Otyjdz5kydP39e3bp1MzV7SJKDg4PmzZsnDw8PpaWlacOGDWZxv/32m6KiouTi4qKkpKQyzR6S1KpVK3l4eJgdmzVrlqZMmWLW7CFd/WOehQsXys3NTefOndMXX3xh1foBAAAA4F4wdepULVq0SM7OzlqxYoXuv//+MnNGjBih3377Tf/6179Uq1atO7BKAABs161oOCzPihUrVFBQoDp16qh3795Wx33zzTc6duyYnJycNHTo0Eqf18fHx+LX73dhBgAAAABbQ8MHAAAAAOCucOrUKaWlpUmSwsPDy4wHBQXJ19dXRUVFSkpKsipnQkKCxXwGg0F9+vSRJK1Zs8ZsbNGiRcrLy9PAgQPVuHHjSl2HJbVq1VKLFi0kSRkZGTclJwAAAABUd++9956mTJkiJycnJSQkqHPnzmXmLFq0SImJiXr11VfVpUsXq3O7ubmZvi8sLCx3TkFBgel7d3f3MrGW4q6NvRlxFTl58qTFL3b3AADcTgsXLpQkvfDCC3J0dKx0XN++feXp6XlL1gYAAAAAtsr6n54AAAAAALBhu3fvliR5enrKz8+v3Dnt27dXRkaGdu/erSFDhlSYLz8/X0eOHDHFWcr3ySefmM5dav369ZKkJ554QhcuXNCqVauUlpamkpISNWvWTAMHDpSvr2+lrq+4uFjHjx+XJP4gBwAAAAAkzZ49W+PHj1fNmjW1evVq9ezZs9x5pc38aWlpZRo+zp49K0nauXOnaWzZsmWqU6eO3Nzc5OnpqXPnzunEiRNq06ZNmdylDfleXl5mT0Vv1KiRdu3apRMnTpS7pry8PNMT0hs1amQWJ8li3LXnvDYOAIAbcSsaDn/v8OHD2rJliyTppZdesjouNzfX9MCd4cOHV+ncJ0+etDjm4+NTpZwAAAAAcLvQ8AEAAAAAuCukp6dLkho0aGBxTmmTRencipQ2V1SU01K+ffv2SbraNOLv769jx46ZjU+cOFHvvvuuXn/99euuo9TChQuVlZUlFxcX9erVy+o4AAAAALgbvf/++xo3bpyp2ePpp5++bsyOHTssjuXk5GjTpk2SpIsXL5qOBwQEKDk5WTt27NCzzz5rMWdAQIDZ8YCAAK1Zs8biOUuPu7q6qnnz5mZxknTw4EFdvHhRzs7OZnEXLlzQwYMHyz0nAABVVdpEWNHOwjfacPjRRx9JuroTc+lOxtb497//rQsXLqhBgwbq1q1blc4NAAAAANWZ/Z1eAAAAAAAAN0N+fr4kmT1R9fcMBoMkmZ6iak2+inJaypednS1Jio6OVklJiRITE/Xbb7/p6NGjmjhxooqLizV+/Hj9+9//vu46JGn//v2aMGGCJCkmJkbe3t5WxUlXn1Bn6evMmTNW5wEAAAAAW/HBBx9ozJgxpmaPZ555psL5a9euldFoLPfr448/liSFhISYjl37h6z9+/eXdHXXjytXrpjlvXLlipYvXy5JGjBggNlYv379JElbtmwpd7eOpUuXSpKeffZZ1ahRw3S8U6dOqlOnjoqKirR69eoycatXr9alS5dUr149PfrooxVeNwAA1mrbtq2kq7/XtPSwHEtNjtYoKSnR4sWLJVV+l47SRpEXX3xR9vb8mRMAAACAew8/CQEAAAAAcJMZjUZJV//4JykpSc8884zuu+8+NW7cWLGxsXr11VclSW+++eZ1c508eVLPPvusCgoK1KdPH0VHR9/StQMAAACALVuwYIEiIyOtbva4UREREapXr54OHz6smJgYs7GYmBgdPnxYPj4+euGFF8zGWrVqpb59+6qkpETDhw/XhQsXTGNffvml4uPjZW9vr0mTJpnF2dvba+LEiZKu7g557R/dpqenm34mnDRpEn/0CgC4aXx8fNShQwdJ/21KvFZqaqoyMjLk5OSk3r17Vzp/UlKSzpw5Izc3N4WGhlodd+DAAaWlpcnOzk4vvvhipc8LAAAAAHcDxzu9AAAAAAAAbgY3NzdJUmFhocU5BQUFkiR3d3er85Xm9PDwsDqfm5ubsrOz9fjjj+sPf/hDmbjIyEjNmzdPx44dU3p6uvz8/Mpdw9mzZxUSEqKff/5ZPXr00IoVK2RnZ3fdtV/r5MmTFsd8fHwqlQsAAAAAbqZdu3YpMjLS9N9Hjx6VJM2fP1+ff/656XhCQoLq1q2rPXv2aOTIkTIajWrcuLFWrVqlVatWlZs7Pj7+pqyxVq1aWrFihbp3765p06Zp3bp18vf314EDB3TgwAG5urpq5cqVcnFxKRP74Ycf6vvvv1dycrKaNGmixx9/XJmZmdq0aZOMRqPi4uL08MMPl4kbO3asvv32WyUkJMjf31/dunWTJCUnJ+v8+fMaNGiQ2X0DAOBmmDx5svr376/Y2Fj16tXLtJNHdna2qe6MGTPG7PekCQkJmjRpkurXr6+NGzdazF26S8fgwYMr3KH59xYuXChJ6tatmxo2bFjpawIAAACAuwENHwAAAACAu0KjRo0kSRkZGRbnlI6Vzq3Itf+AeOLECbVu3drqfI0bN1Z2drYaN25cbu5rj585c6bcho/MzEwFBwfr8OHD6tatm9auXSsnJ6frrhsAAAAAqou8vDxt3769zPGTJ0+aNa8XFRVJknJyckw7Kv7444/68ccfLea+WQ0fktS5c2ft3btXU6dOVXJyslavXq0HHnhAL7zwgqZMmaImTZqUG/fggw9qx44devfdd7V69Wp99tlncnV1VY8ePfTGG28oJCSk3DgHBwetWrVKCxYs0L/+9S/TH9C2atVKw4cP14gRIyr9MAAAAK6nX79+GjdunGbNmqXAwECFhITI1dVVGzduVE5Ojjp37qypU6eaxeTm5urQoUO6ePGixbyZmZn64osvJEnDhw+3ej3FxcX69NNPKx0HAAAAAHcbGj4AAAAAAHeFtm3bSrr6xDlLu2bs2LFDkkxPp6uIu7u7mjZtqiNHjmjHjh3lNnxYyteuXTulpaUpKyur3NzXHjcYDGXGf/31VwUHB+uHH35QSEiI1q1bJ2dn5+uuGQAAAACqky5dupgaOG7FfGtEREQoIiLiuvOaNm2qRYsWVTq/u7u73n33Xb377ruVirO3t9fIkSM1cuTISp8TAICqiouLU+fOnfX+++9r69atKi4uVpMmTRQdHa3XXntNNWvWrHTOTz75RMXFxWrVqpUeffRRq+PWrVunrKwseXp6ql+/fpU+LwAAAADcLezv9AIAAAAAALgZfHx81KFDB0nS0qVLy4ynpqYqIyNDTk5O6t27t1U5+/fvbzFfQUGBEhMTJUkDBgwwGwsNDZUkbdu2TYWFhWViv/rqK0lXmz0eeughs7GsrCwFBwfr4MGDCgkJUWJiolxcXKxaLwAAAAAAAADciLCwMG3atEm5ubk6f/689u/fr4kTJ5bb7BERESGj0ajjx49bzDd+/HgZjUYdOHCgUusYOHCgjEajsrOz2fkYAAAAwD2Nhg8AAAAAwF1j8uTJkqTY2Fjt2rXLdDw7O1uRkZGSpDFjxsjDw8M0lpCQoJYtWyokJKRMvqioKNWqVUvJyclasGCB6XhJSYkiIyOVk5OjDh06qHv37mZxwcHBevzxx5WZmakxY8aoqKjINLZv3z69+eabkqRRo0apRo0aprFz584pJCREBw4cULdu3Wj2AAAAAAAAAAAAAAAAuIc53ukFAAAAAABws/Tr10/jxo3TrFmzFBgYqJCQELm6umrjxo3KyclR586dNXXqVLOY3NxcHTp0SBcvXiyTr169eoqPj9eQIUM0YsQILVy4UI0aNVJaWpqOHTsmb29vLV26VHZ2dmVilyxZoieeeELx8fH66quv1KFDB507d07btm3TpUuX9NRTT5VZy8svv6x9+/bJzs5Onp6eGjVqlMXr7NevX9VvFAAAAAAAAAAAAAAAAGweDR8AAAAAgLtKXFycOnfurPfff19bt25VcXGxmjRpoujoaL322muqWbNmpfKFhoaqcePGmjZtmjZv3qzdu3erbt26Gj16tGJiYuTt7V1unK+vr/bs2aPY2FitWbNGX375pWrWrKmAgAANGzZMr7zyihwcHMxizp07J0kyGo1asWKFxTU1atSIhg8AAAAAAAAAAAAAAIC7nJ3RaDTe6UXgzvHx8ZEknTx58g6vBACqHz5Dqz9eQwC4MXyOVn+8hgBwY/gcrf54DQHgxvA5Wv3xGgJA1fEZenfgdQSAquMzFACA28P+Ti8AAAAAAAAAAAAAAAAAAAAAAAAA5mj4AAAAAAAAAAAAAAAAAAAAAAAAsDE0fAAAAAAAAAAAAAAAAAAAAAAAANgYGj4AAAAAAAAAAAAAAAAAAAAAAABsDA0fAAAAAAAAAAAAAAAAAAAAAAAANoaGDwAAAAAAAAAAAAAAAAAAAAAAABtDwwcAAAAAAAAAAAAAAAAAAAAAAICNoeEDAAAAAAAAAAAAAAAAAAAAAADAxtDw8TsrV65Uly5dVLt2bbm6uqpNmzaaPn26iouLq5Rv586dCg0Nlbe3t5ydneXn56exY8cqMzOz3PknTpzQ/PnzNWDAADVs2FBOTk4yGAxq06aNJk+erF9//fVGLg8AAAAAAAAAAAAAAAAAAAAAAFQDNHxcIyoqSmFhYdqyZYs6duyonj176sSJE5o4caKCg4N14cKFSuVbtWqVAgMDtWrVKjVs2FB9+/aVvb295syZo4cfflhHjhwpExMeHq5XX31ViYmJ8vb2Vv/+/fXYY4/p+PHjevfdd9WqVSvt2bPnJl0xAAAAAAAAAAAAAAAAAAAAAACwRTR8/J+1a9cqLi5OBoNB27dv1/r167V69Wr99NNPat26tVJTUxUTE2N1vtOnT2vYsGG6fPmy5s+fr++++07Lly/X4cOHNXToUP3yyy8KDw+X0Wg0i6tfv77++c9/6uzZs/ruu++0bNkybdiwQUeOHFGXLl3066+/KiwsTCUlJTf7FgAAAAAAAAAAAAAAAAAAAAAAABtBw8f/mTZtmiQpOjpaAQEBpuNeXl6aO3euJGnOnDnKzc21Kt/MmTN1/vx5devWTSNGjDAdd3Bw0Lx58+Th4aG0tDRt2LDBLG758uWKiorS/fffb3b8gQce0CeffCJJ+umnn/Sf//yn8hcJAAAAAAAAoFpZuXKlunTpotq1a8vV1VVt2rTR9OnTVVxcXKV8O3fuVGhoqLy9veXs7Cw/Pz+NHTtWmZmZ5c4vKSnRqlWrNGnSJHXv3l3333+/7Ozs5OjoWOF5MjMztXjxYoWHh6tZs2ZydnZWrVq11LJlS40bN07Hjx+3es0lJSXq1KmT7OzsZGdnp9TU1MpcMgAAAAAAAAAAAFBt0fAh6dSpU0pLS5MkhYeHlxkPCgqSr6+vioqKlJSUZFXOhIQEi/kMBoP69OkjSVqzZo3V6/Tx8ZGXl5ckKSMjw+o4AAAAAAAAANVPVFSUwsLCtGXLFnXs2FE9e/bUiRMnNHHiRAUHB+vChQuVyrdq1SoFBgZq1apVatiwofr27St7e3vNmTNHDz/8sI4cOVImJj8/X6GhoYqNjdVXX32lc+fOWXWu119/XcOGDdPy5ctVq1Yt9enTR127dtW5c+c0e/Zs+fv766uvvrIq14wZM7Rt2zbZ2dlV6noBAAAAAAAAAACA6o6GD0m7d++WJHl6esrPz6/cOe3btzebW5H8/HzTP46Wxt1IvlJZWVn67bffJEl169a1Og4AAAAAAABA9bJ27VrFxcXJYDBo+/btWr9+vVavXq2ffvpJrVu3VmpqqmJiYqzOd/r0aQ0bNkyXL1/W/Pnz9d1332n58uU6fPiwhg4dql9++UXh4eEyGo1mcTVq1NDzzz+vGTNmKCUlRXv27LHqfJ6ennrrrbd04sQJ7d27VytWrNAXX3yhY8eOafDgwSosLNTgwYNNv++05ODBg/rLX/6iZ555Rg0aNLD6egEAAAAAAAAAAIC7AQ0fktLT0yWpwn8w9PX1NZtbkePHj5u+t5SzMvlKzZgxQyUlJapbt64ee+wxq+MAAAAAAAAAVC/Tpk2TJEVHRysgIMB03MvLS3PnzpUkzZkzR7m5uVblmzlzps6fP69u3bppxIgRpuMODg6aN2+ePDw8lJaWpg0bNpjFubq66tNPP9X48ePVtWtXeXh4WHW+WbNmacqUKapfv77ZcYPBoIULF8rNzU3nzp3TF198YTHH5cuXNWzYMLm4uGj+/PlWnRcAAAAAAAAAAAC4m9Dwoas7ckhX//HSEoPBIEnKy8uzOl9FOSuTT5KSk5M1Y8YMSdL//M//qGbNmlbFSZKPj4/FrzNnzlidBwAAAAAAAMCtd+rUKaWlpUmSwsPDy4wHBQXJ19dXRUVFSkpKsipnQkKCxXwGg0F9+vSRJK1Zs6aqy7ZarVq11KJFC0lSRkaGxXnTpk3Tzp079d5776levXq3fF0AAAAAAAAAAACAraHhoxrYv3+/QkNDVVJSorFjx2rIkCF3ekkAAAAAAAAAbpHdu3dLkjw9PeXn51funPbt25vNrUh+fr6OHDliFncj+W5UcXGxaZfkunXrljtnz549euedd9SjRw+9+OKLt3xNAAAAAAAAAAAAgC2i4UOSm5ubJKmwsNDinIKCAkmSu7u71fkqymltvh9//FHdunVTTk6OXnzxRcXFxV33/L938uRJi1+W/kEVAHDvWrlypbp06aLatWvL1dVVbdq00fTp01VcXFzlnJ999pn69OmjOnXqqGbNmnrwwQf12GOP6e2337Yqfu/evapZs6bs7OzUtGnTKq8DAAAAAKqD9PR0SVKDBg0szvH19TWbW5HS5oqKclYm341auHChsrKy5OLiol69epUZv3TpkoYNGyZnZ2d9+OGHt3w9AAAAAAAAAAAAgK1yvNMLsAWNGjWSJGVkZFicUzpWOrciDRs2NH1/4sQJtW7dukr5Dh8+rODgYGVmZuqFF17Qv/71L9nZ2V33/AAAVFVUVJTi4uLk6Oio4OBgGQwGpaSkaOLEiUpMTNSGDRvk4uJidb5Lly5p6NChWrlypVxcXNSpUyd5e3vr7NmzOnjwoGbNmqUpU6ZcN8cLL7ygy5cv3+jlAQAAAEC1kJ+fL0lydXW1OMdgMEiS8vLyrM5XUc7K5LsR+/fv14QJEyRJMTEx8vb2LjPnrbfe0r59+/TBBx9U2PRiLR8fH4tjZ86c4aE4AAAAAAAAAAAAsFns8CGpbdu2kqTs7GyLT7DbsWOHJCkgIOC6+dzd3U1PHy+Nq2y+n376SV27dtWZM2c0dOhQffzxx7K35+UCANw6a9euVVxcnAwGg7Zv367169dr9erV+umnn9S6dWulpqYqJiamUjlfeeUVrVy5Uv369dOJEye0ceNGLV26VCkpKTpz5ow+//zz6+Z4++23tW/fPo0ePbqqlwYAAAAAsAEnT57Us88+q4KCAvXp00fR0dFl5nz33Xf6+9//ruDgYI0YMeIOrBIAAAAAAAAAAACwHXQQ6OoT3jp06CBJWrp0aZnx1NRUZWRkyMnJSb1797YqZ//+/S3mKygoUGJioiRpwIABZcaPHj2qrl276vTp0xo6dKgWLVpEswcA4JabNm2aJCk6OtqsIdHLy0tz586VJM2ZM0e5ublW5du4caMWL14sf39/rVixQl5eXmbj9vb2CgwMrDBHWlqaYmNjFRoaqoEDB1bmcgAAAACg2nJzc5MkFRYWWpxTUFAg6erDZ6zNV1HOyuSrirNnzyokJEQ///yzevTooRUrVpTZzfjixYuKiIiQs7PzTd3t+OTJkxa/2N0DAAAAAAAAAAAAtowugv8zefJkSVJsbKx27dplOp6dna3IyEhJ0pgxY+Th4WEaS0hIUMuWLRUSElImX1RUlGrVqqXk5GQtWLDAdLykpESRkZHKyclRhw4d1L17d7O49PR0de3aVadOndIf//hHmj0AALfFqVOnlJaWJkkKDw8vMx4UFCRfX18VFRUpKSnJqpyzZ8+WdLUm1qhRo9JrunjxooYNG6batWtrzpw5lY4HAAAAgOqqUaNGkqSMjAyLc0rHSudWpGHDhqbvT5w4ccP5KiszM1PBwcE6fPiwunXrprVr18rJyanMvB9//FE//PCDXFxc9OKLL6pLly5mX2fPnpUkjR07Vl26dFFsbOxNXysAAAAAAAAAAABgSxzv9AJsRb9+/TRu3DjNmjVLgYGBCgkJkaurqzZu3KicnBx17txZU6dONYvJzc3VoUOHdPHixTL56tWrp/j4eA0ZMkQjRozQwoUL1ahRI6WlpenYsWPy9vbW0qVLyzylbuDAgabdRCTppZdeKne9L7/8soKCgm7S1QMA7nW7d++WJHl6esrPz6/cOe3bt1dGRoZ2796tIUOGVJivpKREGzdulCQ98cQTOnv2rJYtW6ZDhw7JyclJbdu21cCBA2UwGCzmiImJ0Q8//KClS5fqwQcf1Pfff1/FqwMAAACA6qVt27aSrj6MJj09vdyf03bs2CFJZjs0WuLu7q6mTZvqyJEj2rFjh1q3bn1D+Srj119/VXBwsH744QeFhIRo3bp1cnZ2rjAmKytLmzZtsji+Z88eSbemOQUAAAAAAAAAAACwJWwdcY24uDgtX75cnTp10tatW5WUlCQfHx/FxsYqJSVFLi4ulcoXGhqq7du3a8CAATp27JgSEhJUUlKi0aNHa+/evWratGmZmHPnzkmSioqK9Mknn2jRokXlfh05cuSmXDMAANLVHaYkqUGDBhbn+Pr6ms2tyLFjx1RQUCBJ2rZtm5o1a6bXXntNH3zwgeLi4hQREaHGjRsrJSWl3PitW7fqvffeU9++fa/bXAIAAAAAdxsfHx916NBBkrR06dIy46mpqaaHxvTu3duqnP3797eYr6CgQImJiZKkAQMGVHXZZWRlZSk4OFgHDx5USEiIEhMTK/wd6yOPPCKj0Wjxq3Snks2bN8toNCo+Pv6mrRUAAAAAcNXKlSvVpUsX1a5dW66urmrTpo2mT5+u4uLiSuVp1KiR7Ozsrvv19ttvW8zx7bffavDgwfLx8ZGTk5O8vLzUrl07vfbaa5VeDwAAAABUV+zw8TthYWEKCwuzam5ERIQiIiIqnNOuXTutXr3a6vMfP37c6rkAANws+fn5kiRXV1eLc0p348jLy7tuvuzsbNP3w4cP12OPPaYZM2aoZcuWOnr0qCZPnqykpCT17dtXu3btUrNmzUzzz58/r4iICHl4eGjevHlVvSQTHx8fi2NnzpxR3bp1b/gcAAAAAHCzTZ48Wf3791dsbKx69epl2nkjOztbkZGRkqQxY8bIw8PDFJOQkKBJkyapfv36pl0XS0VFRen9999XcnKyFixYoFdeeUXS1R0aIyMjlZOTow4dOqh79+43Zf3nzp1TSEiIDhw4oG7dumndunWVfqAOAAAAAOD2ioqKUlxcnBwdHRUcHCyDwaCUlBRNnDhRiYmJ2rBhg9U/2w0aNEhZWVnljp07d8704IGuXbuWGTcajXrttdcUFxenGjVq6NFHH9UTTzyhrKws/fDDD5o5c6amTp2qGjVqVP1iAQAAAKCaoOEDAADcdEaj0fR9/fr1tX79ejk5OUmS2rRpo3Xr1umRRx7RgQMHFBsbq4ULF5rmR0dH66efftKiRYtoxgAAAABwz+rXr5/GjRunWbNmKTAwUCEhIXJ1ddXGjRuVk5Ojzp07a+rUqWYxubm5OnTokC5evFgmX7169RQfH68hQ4ZoxIgRWrhwoRo1aqS0tDQdO3ZM3t7eWrp0qezs7MrERkZGateuXZKu7kwsXW0UCQwMNM15+umnFRMTY/rvl19+Wfv27ZOdnZ08PT01atQoi9fZr1+/St8fAAAAAMDNtXbtWsXFxclgMGjTpk2mBw+U7t6YmpqqmJgYzZgxw6p8Fc2bPn26EhMT1bx5cz3++ONlxv/6178qLi5Ojz32mJYuXWra8bFUWlqanJ2dK3F1AAAAAFB90fABAADk5uYmSSosLLQ4p6CgQJLk7u5udT7p6o5Ypc0epRwcHDRy5EiNHTtWycnJpuPffPON5syZo969e+uFF16o1DVYcvLkSYtjFe3+AQD4/+zdeXxN1/7/8ddJIhGJINVGiEhi7EXNxY2piZmqoVy0l1SLUpRqK2jctlpUfd3GWFyqVK6KORo1RKkYo4LS1tAkFVNVQkYqw/n94ZdznWaQRCbxfj4eedycvdZnrc+Oxz27Z5/9WUtERESKm7+/P56enixcuJCDBw+SkpJCzZo18fX1ZcKECVhbW+dpvP79++Ph4cGMGTPYv38/4eHhODs788Ybb+Dn54eTk1OWcT/99BNHjhzJdPz+Y/Xq1TNri42NBe4tCLBu3bpsc3Jzc1PBh4iIiIiISAkwY8YM4N7ibBnFHgCVK1dm0aJFtG3blgULFuDn52e222R+rFixAoBhw4Zlajt79iwzZszAycmJb775hooVK2bq06JFi4eaX0RERERE5FGigg8RERHBzc0NgOjo6Gz7ZLRl9H3QeAaDAaPRiIeHR5Z9Mo5fvXrVdGzz5s0YjUYuXrxIhw4dzPrfunULgMuXL5vaPvvsMxo3bvzAfERERERERB5VAwYMYMCAAbnq6+Pjg4+PT459mjVrxoYNG/KUw969e/PUP78xDxIVFVXgY4qIiIiIiMi979/CwsIAGDx4cKb2Nm3aUL16daKjowkODmbQoEH5nuvAgQOcPXsWKysrhg4dmql98eLFpKamMnz48CyLPURERERERB43KvgQERERmjRpAkBMTAyRkZG4u7tn6nPs2DEAsxV9smNvb0/dunX55ZdfuHHjRpZ9Mo7b29tnajt9+nS2Y9+5c4d9+/YB/ysCEREREREREREREREREZH8CQ8PB8DR0THL7wkBmjdvTnR0NOHh4Q9V8JGxu0f37t2pUqVKpvYdO3YA0K5dO27dusXXX3/NqVOnsLCwoEGDBvTr14/KlSvne34REREREZFHjUVxJyAiIiLFz8XFxbT1cUBAQKb20NBQoqOjsbGxoXv37rkas3///gDs3r07y/Zdu3YB8Oyzz5qOffbZZxiNxix/vvvuOwBq1qxpOvbXXUBEREREREREREREREREJG8iIyMBcHV1zbZP9erVzfrmR1JSEuvWrQPg1VdfzdR+9+5dzp49a5qnbt26vP766yxatIgFCxbw+uuv4+7uztq1a/Odg4iIiIiIyKNGBR8iIiICwJQpUwCYNWsWx48fNx2PiYlh9OjRAIwZM4YKFSqY2jZt2kS9evXw9vbONN64ceOoVKkSwcHBLFmyxKxt7dq1rFmzxtRPRERERERERERERERERIpHQkICAHZ2dtn2sbe3ByA+Pj7f86xbt47ExESqVKmS5SJzsbGxGI1G4N73klWqVGHv3r3Ex8fzyy+/4OPjQ2JiIi+//DL79+/P9bwuLi7Z/ly9ejXf5yMiIiIiIlIUVPAhIiIiAPTu3Ztx48aRmJhIq1at6NatGy+++CK1atXixx9/xNPTk+nTp5vFxMXFcfbsWX799ddM41WuXJmvv/6asmXL8vrrr9OgQQP69+9P06ZNGTRoEEajET8/v1zvGCIiIiIiIiIiIiIiIiIij67ly5cDMGTIEKysrDK1ZxR7ANja2rJ7927at29P+fLlqVu3Ll988QXdunUjLS2N999/v6jSFhERERERKVaZPz2JiIjIY8vf3x9PT08WLlzIwYMHSUlJoWbNmvj6+jJhwgSsra3zNF6nTp04efIkM2bMYPfu3WzZsgUHBwe6d+/Om2++SefOnQvpTEREREREREREREREREQkN8qXLw9AUlJStn0SExMBcHBwyNcc586d48CBAwAMGzYsxzwA+vbty5NPPpmpz+jRo9m+fTv79+/n7t27ufr+8tKlS9m2ubi4PDBeRERERESkOGmHDxERETEzYMAA9u3bR1xcHMnJyfz4449MmjQpy5ulPj4+GI1GoqKish2vTp06rFy5kkuXLnH37l1u3LjBN998k+dijw4dOmA0Grlw4UJeT0lERERERERERERKoLNnzzJ//nx8fHxo2LAhVlZWGAwGPvrooyz7p6enc/DgQaZNm0abNm144oknKFOmDJUrV6ZTp06sWbPGbGXw+4WHhzNz5ky8vb1xcnKiTJkyVKpUibZt27Jw4UJSUlJyzPXChQv4+Pjg4uKCjY0NLi4u+Pj4EBERkWNcQkICU6ZMoW7dutja2lK5cmV69OjBnj17coxLT09nyZIltGzZkvLly1O+fHlatmzJ0qVLsz1HERGR/HJzcwMgOjo62z4ZbRl982rFihUAtGnThrp162bZx97e3lTk4eHhkWWfjOMpKSncuHEjX7mIiIiIiIg8SrTDh4iIiIiIiIiIiIiIiIgUucWLF+Pv75/r/hEREXh6egLg6OhI8+bNqVSpEhEREezevZvdu3ezdu1aNmzYYLaATWpqKk2bNgXuPUjaokULnJycuHTpEocOHSI0NJRVq1axY8cOKlasmGneAwcO0LlzZ5KTk6lfvz5t2rTh9OnTfPnll6xfv57du3fTqlWrTHHXr1+nbdu2nDt3DmdnZ55//nl+//13tm/fzvbt2/H392fs2LGZ4tLS0hgwYAAbN26kXLlyeHt7A7B7925GjhxpOk8LC63tJyIiBaNJkyYAxMTEEBkZibu7e6Y+x44dAzBdU/MiLS2NVatWAfDqq6/m2LdZs2Z8++232RZz3H/c3t4+z7mIiIiIiIg8anQXUERERERERERERERERESKXIMGDXj77bdZs2YNP//8M//85z9z7G8wGPDy8mL79u1cv36dHTt2sHbtWo4ePcrevXuxs7Nj27ZtzJo1K1Nss2bNWLduHTdu3GDPnj3897//Zf/+/YSHh+Ps7MzRo0d56623MsUlJyczYMAAkpOTmTx5MqdPn2bt2rWcPn2ayZMnk5SUxIABA7h9+3am2BEjRnDu3Dm8vb25cOEC69atY9++fWzbtg0LCwvGjx/PqVOnMsXNnz+fjRs3Uq1aNU6fPs3WrVvZunUrZ86coWrVqgQGBrJo0aI8/KVFRERy5uLiQosWLQAICAjI1B4aGkp0dDQ2NjZ07949z+MHBwdz9epVypcvT//+/XPsm9G+Z88e0tPTM7Xv2rULgLp16+Lg4JDnXERERERERB41KvgQERERERERERERERERkSL32muv8emnnzJ48GDq1av3wB0ratasSUhICF27dsXS0tKsrX379vj6+gKYVhDPYGVlxbFjx+jfvz82NjZmbQ0bNmT27NkArF27lpSUFLP2lStXcuXKFerUqcNHH31k1vbRRx9Rp04doqOjM835008/sWXLFiwtLVm+fDnlypUztXXv3h0fHx/S09OZOXOmWVx6ejqffPIJAJ988onZCuvu7u6mtpkzZ2b5EKyIiEh+TZkyBYBZs2Zx/Phx0/GYmBhGjx4NwJgxY6hQoYKpbdOmTdSrV8+0G1V2VqxYAcDAgQOxs7PLse/LL79MzZo1OX36NNOmTTO73n333XfMnTsXgHHjxuXh7ERERERERB5dKvgQERERERERERERERERkUdekyZNAIiOjs5X3O3bt7lx44ZZ26ZNm4B7D6j+tSDFwsKCf/zjHwBs3LgxyzhPT09q1KiRac7BgwcDEBQUZFZkcujQIa5du4aNjQ39+vXLFNevXz+sra25cuUKR44cydN5ioiI5KR3796MGzeOxMREWrVqRbdu3XjxxRepVasWP/74I56enkyfPt0sJi4ujrNnz/Lrr79mO+7169f55ptvAHj11VcfmIe1tTUbN27E0dGRjz/+mDp16vDiiy/SunVrOnbsSHJyMkOHDmXUqFEPd8IiIiIiIiKPCBV8iIiIiIiISKkTGBhIhw4dqFSpEnZ2djRq1IjZs2dnWqk1t3744Qf69++Pk5MTZcuWxd3dnbFjx3L9+vUHxp48eZJhw4bh7u5O2bJlqVSpEg0bNmTUqFHExMRk6h8cHMz777/P888/T9WqVTEYDBgMBi5dupSv3EVERERERB4X58+fB8DZ2TlfcdbW1jg6Opq1hYeHA9C8efMsYzOOZ/TLa1xSUpJp/vvj6tevT9myZTPF2draUr9+/SznFBEReVj+/v58/fXXtG7dmoMHDxIcHIyLiwuzZs1iz5492Nra5nnM1atXk5KSQv369WnZsmWuYp555hlOnz7NG2+8QVpaGkFBQfzyyy+0b9+e//73v6xcuRKDwZDnXERERERERB5FVsWdgIiIiIiIiEhBGj9+PP7+/lhZWeHl5YW9vT179uxh0qRJBAUFsXPnzjx9Mbl+/XoGDRpEamoqLVq0wN3dnWPHjrFgwQICAwMJDQ2lVq1aWcbOmTMHX19fjEYjzZo1o1WrVsTFxXH+/Hk+//xz3njjDZ544gmzmMGDBxMXF/dQfwMREREREZHHTXJyMvPmzQPIcmeM7BiNRmbPng1Az549sbGxMbUlJCSYCvVdXV2zjK9evToAf/zxB0lJSdjZ2QEQGRmZY5yDgwMODg7Ex8cTGRnJ3/72t1zFZcwZHh5u6isiIlKQBgwYwIABA3LV18fHBx8fnxz7TJw4kYkTJ+Y5D2dnZxYsWMCCBQvyHCsiIiIiIlKaqOBDRERERERESo3Nmzfj7++Pvb09+/bto2nTpgDcuHEDLy8vQkND8fPzY86cObka78qVKwwdOpTU1FSWLFnCiBEjAEhLS8PHx4evvvqKwYMHc+TIkUwryn3xxRe888471K1bl/Xr19OgQQOz9jNnzuDi4pJpzr59+1K7dm2aNm1K06ZNeeqpp/LzpxAREREREXmsjB49msjISKpWrcqUKVNyHffBBx9w6NAh7O3tmTVrlllbQkKC6feMQo6/sre3N/0eHx9v6pcRm11cRmx8fDzx8fGZ5nxQXMZ8uZHVZ88MV69ezfOOKCIiIiIiIiIiIlJ0LIo7AREREREREZGCMmPGDAB8fX1NxR4AlStXZtGiRQAsWLAg1ztofPbZZyQnJ9OxY0dTsQeApaUlixcvpkKFCoSFhbFz506zuJs3bzJ+/HhsbW0JDg7OVOwBUL9+fSpUqJDp+IoVK5g8eTJdunThySefzFWeIiIiIiIij7Pp06fz5ZdfUrZsWdatW5dpJ8XsrFq1ig8//BALCwtWrFhB7dq1CzlTERERERERERERkbxRwYeIiIiIiIiUCpcvXyYsLAyAwYMHZ2pv06YN1atX588//yQ4ODhXY27atCnb8ezt7enVqxcAGzduNGv78ssviY+Pp1+/fnh4eOTpPERERERERCT35s6dy7Rp07CxsWHTpk14enrmKi4wMJBhw4YBsGzZMvr375+pT/ny5U2/JyUlZTlOYmKi6XcHB4dMsdnF3R9bEHE5uXTpUrY/2t1DRERERERERESkZFPBh4iIiIiIiJQK4eHhADg6OuLu7p5ln+bNm5v1zUlCQgIXLlwwi8vteDt27ACgXbt23L59m9WrVzNu3DjeeOMNPvvsM6Kjo3NxRiIiIiIiIpKT+fPnM3HiRKytrdmwYQNdu3bNVdzGjRsZPHgw6enpLFmyxFT48Vfly5fH0dERgIsXL2bZJ+PzXeXKlbGzszMdd3NzyzEuPj6e+Ph4s765ibt/zvvjREREREREREREpHRSwYeIiIiIiIiUCpGRkQC4urpm26d69epmfXMSFRVl+j27MbMb79SpU8C9opEGDRowZMgQ5s+fz6JFi5gwYQK1atVi7ty5D8xBREREREREsrZw4ULGjRtnKvbo0aNHruI2b97MwIEDSUtLY/HixQwfPjzH/k2bNgXg2LFjWbZnHM/ol9c4Ozs76tSpkynuzJkz3LlzJ1Pc7du3OXPmTJZzioiIiIiIiIiISOljVdwJiIiIiIiIyOPh6tWrbNmyhbNnzxIfH4/RaMzUx2AwsHz58nyNn5CQAGC2oupf2dvbA5hWUc3NeDmNmd14MTExAPj6+lK1alWCgoJo06YNsbGxLF26lNmzZzNx4kScnZ0ZNGjQA3N5GC4uLtm2Xb16FWdn50KdX0REREREpKB9/vnnjBkzxlTs0bNnz1zFBQUFMWDAAFJTU1m8eDEjR458YEyfPn3YvXs3a9eu5V//+hcWFv9bTy89PZ2vv/4agL59+5rF9e7dm/fee48DBw5w8eLFTAsJBAQEAPD8889TpkwZ0/HWrVtTpUoVrl27xoYNG3jppZfM4jZs2MDdu3epWrUqLVu2zNV5i4iIiIiIiIiIyKNLBR8iIiIiIiJS6ObPn88777xDSkqK6VhGwYfBYDC9fpiCj5Ik49zS09MJDg7mb3/7GwAVK1Zk1qxZxMfHs3jxYt57771CL/gQERERERHJr19++SXHov3k5GTKlStXpDktW7aM0aNH57nYIzg4mBdffJHU1FQ+//xzRowYkas4Hx8fPv74Y86dO4efnx8ff/yxqc3Pz49z587h4uLCkCFDzOLq16/PCy+8wJYtW3j11VfZunUrtra2AGzfvp2VK1diYWHB5MmTzeIsLCyYNGkSEyZMYNKkSfz973/H3d0duLe7pK+vLwCTJ082Kz4RERERERERERGR0kkFHyIiIiVcWloa69evZ/fu3Vy+fJk7d+5k2c9gMBASElLE2YmIiDxYSEgIb775Jg4ODkycOJF9+/Zx6NAhlixZwrlz59i4cSNRUVGMHz+eRo0a5Xue8uXLA5CUlJRtn8TERAAcHBxyPV7GmBUqVMj1eOXLlycmJoa2bduaij3uN3r0aBYvXkxERASRkZGmh3cKw6VLl7Jty2n3DxEREREReXwdPnyYESNGcObMmWz7GI1GjEbjQxV8HD9+nNGjR5te//rrrwAsWbKEbdu2mY5v2rQJZ2dnTpw4wciRIzEajXh4eLB+/XrWr1+f5dgrV640/X79+nX69u3L3bt3cXFx4eDBgxw8eDDLuDlz5lC5cmXT63LlyrFu3To6d+7MjBkz2Lp1Kw0aNOD06dOcPn0aOzs7AgMDTcUc91u6dCk//fQTu3fvpmbNmrRt25br16+zb98+jEYj/v7+PPPMM5nixo4dy/fff8+mTZto0KABHTt2BGD37t0kJyfz4osvmv3dREREREREREREpPRSwYeIiEgJFhcXR5cuXQgLC8tyBb37ZayOLiIiUtL4+/tjMBjYsWMHLVu25JVXXuHQoUMMHz4cgI8++ohRo0axYsUKjh8/nu953NzcAIiOjs62T0ZbRt+c1KhRw/T7xYsXadiwYa7H8/DwICYmBg8PjyzHvv/41atXC7XgQ0REREREJC/OnTtHp06dSEpKonXr1vz+++9ERkYycOBAzp8/z4kTJ0hLS6NPnz58++23DzVXfHw8R44cyXT80qVLZsXrf/75JwC3bt0y3Sf95Zdf+OWXX7Id+/6Cj+TkZNMYly5d4ssvv8w27v333zcr+ADw9PTk5MmTTJ8+nd27d7NhwwaefPJJhgwZwrRp06hZs2aWYz311FMcO3aMmTNnsmHDBrZs2YKdnR1dunTh7bffxtvbO8s4S0tL1q9fz7Jly/jPf/5jWuinfv36vPrqq4wYMUL3g0VERERERERERB4TKvgQEREpwfz8/Dh69CjVqlVj7NixPP3007lakVxERKQkOXr0KE2bNqVly5ZZttvY2LB48WKCg4P58MMPzR7KyYsmTZoAEBMTk+2uGceOHQOgadOmDxzPwcGBWrVqceHCBY4dO5ZlwUd24zVr1oywsDBu3LiR5dj3H7e3t39gLiIiIiIiIkXlk08+ISkpiUWLFvH666/zyiuvEBkZyZo1awA4c+YMQ4YM4fz581nuhJgXHTp0eOBCNw/TP4Obm1u+4u5Xq1atHAtFsuPg4MDMmTOZOXNmnuIsLCwYOXIkI0eOzPOcIiIiIiIiIiIiUnqo4ENERKQE27x5MxUrVuTw4cNUq1atuNMRERHJl5s3b9KhQwfT6zJlygBw+/ZtbG1tgXtFH23btjWtWpofLi4utGjRgrCwMAICApg6dapZe2hoKNHR0djY2NC9e/dcjdmnTx8+/fRTAgICeOWVV8zaEhMTCQoKAqBv375mbf379+fzzz/n8OHDJCUlYWdnZ9a+a9cu4F6xx9NPP52n8xQRERERESlM3333HTVr1uT111/Psr1+/fps27aNWrVqYWFh8dBFHyIiIiIiIiIiIiKSPYviTkBERESy9/vvv+Pp6aliDxEReaQ5OjqSlJRkel2pUiUALl68aNYvLS2NmJiYh5prypQpAMyaNYvjx4+bjsfExDB69GgAxowZY/ZA0qZNm6hXrx7e3t6Zxhs/fjzlypVj9+7dLFu2zCzX0aNHc+vWLVq0aEHnzp3N4ry8vGjbti3Xr19nzJgx/Pnnn6a2U6dO8d577wEwatQoUwGMiIiIiIhISXD16lUaNGhgem1paQnA3bt3TcecnZ1p3749d+7cKfL8RERERERERERERB4n2uFDRESkBHNycqJs2bLFnYaIiMhDcXV1JTo62vS6QYMGGI1Gtm3bRt26dYF7u2Xs378fFxeXh5qrd+/ejBs3jnnz5tGqVSu8vb2xs7MjJCSEW7du4enpyfTp081i4uLiOHv2bJYPKlWtWpWVK1cyaNAgRowYwfLly3FzcyMsLIyIiAicnJwICAjAYDBkil2zZg3t2rVj5cqV7Nq1ixYtWhAbG8vhw4e5e/cunTp1ypQLwPTp0/nmm28yHe/VqxfW1tYANG3alEWLFuX3zyQiIiIiIpItW1tbrKz+9xVi+fLlgXuL01SvXt103MHBgbS0tCLPT0RERERERERERORxooIPERGREuz5559n06ZNpKSkaPVvERF5ZLVv355///vf/P777zg5OdGjRw/s7OyYMmUK165dw9XVlS+//JLY2FgGDhz40PP5+/vj6enJwoULOXjwICkpKdSsWRNfX18mTJhgKprIrf79++Ph4cGMGTPYv38/4eHhODs788Ybb+Dn54eTk1OWcdWrV+fEiRPMmjWLjRs3sn37dqytrWnatClDhw5l+PDhppVy7/frr79y5MiRTMfDw8NNv6sgVERERERECku1atXMdmSsVasWAIcOHTIVfBiNRo4fP55l8buIiIiIiIiIiIiIFByD0Wg0FncSUnwyVs+9dOlSMWciIvLoKYr30Bs3btC0aVM6d+7MggUL9HBnAdN1UETk4eT2fTQsLIwpU6bw9ttv06VLFwCWLVvG66+/bupjNBpxc3Pj2LFjODo6Fl7SYkbXQhGRh6P30Uef/g1FRDJ77bXX+Prrr7l+/Tq2trb8+uuv1KlThypVqrB06VJcXV1ZuHAhy5Ytw9ramieeeELvo48wXQtFRPJP76Glg/4dRUTyT++hIiIiRUM7fIiIiJRgixYtonPnznzxxRfs2rULb29vXF1dsbCwyNTXYDDg5+dXDFmKiIjkrEWLFuzatcvs2PDhw2nWrBmBgYHExsby9NNP88orr1ChQoViylJEREREREQAunfvzpdffsm2bdvo378/NWvWZMSIESxZsoRevXoB94r2bWxscHBwKOZsRUREREREREREREo3FXyIiIiUYO+//z4GgwGj0Uh0dDQrV67M1CejXQUfIiLyqGnatClNmzYt7jRERETy7NixY6xfv56YmBiMRiNeXl6Z+hgMBkJCQoohOxERkYfTt29fUlJSzI4tXLiQ2rVrmxXtT5kyhb59+xZTliIiIiIiIiIiIiKPBxV8iIiIlGD/+te/ijsFERERERERuc/bb7/Nv//9b4xGI0ajEYC9e/ea2u8vyhcRESktLCwseOutt3jrrbeKOxURERERERERERGRx4oKPkREREowFXyIiEhpk5aWRkxMDHfu3Mm2j6uraxFmJCIiknuBgYHMnTsXFxcX/Pz8GDt2LH/++Sc7duzg/PnzrFmzhkOHDuHr60uXLl2KO10RERERERERERERERERecSp4ENEREREREQK3cGDB/nggw/4/vvvuXv3brb9DAYDqampRZiZiIhI7i1duhRLS0tCQkKoXbs248ePB6BTp0506tSJ0aNH4+fnx6effsqAAQOKN1kREREREREREREREREReeSp4ENEROQRcu3aNS5dugRAtWrVcHZ2LuaMREREHmzPnj1069aNlJQUABwdHSlfvnwxZyUiIpJ34eHhtGzZktq1a2fb54MPPuCrr77io48+Yv369UWYnYiISP54eXnlO/bGjRtUrly5ALMRERERERERERERkfsVScFHXFwc8fHxGI3GLNtdXV2LIg0REZFH1vLly/n00085f/682fE6derwzjvvMGzYsGLKTERE5MHee+89UlJSGD9+PO+99x6Ojo7FnZKIiEi+JCQkZHkvMzExEXt7ewAsLCxo2bIl+/btK+r0RERE8mXv3r1ZHjcYDACZvt+7/3h23/2JiIiIiIiIiIiISMEotIKPmzdvMm3aNAIDA/njjz+y7WcwGEhNTS2sNERERB55w4cPZ8WKFaYvTzMeko2NjeXs2bMMHz6cQ4cOsWzZsuJMU0REJFsnTpygcePGzJ07t7hTEREReShPPvkkt27dMr22sLAAICoqigYNGpiOJyUlER8fX9TpiYiI5Mt3332X6djmzZvx9/encePGDBkyBHd3d+DeNW/VqlWEh4czfvx4Vq9eXdTpioiIiIiIiIiIiDxWCqXgIy4ujlatWnHhwgUsLS2xtbUlOTkZZ2dnrl27htFoxGAwaGcPERGRBwgMDGT58uVUqlSJqVOn8uqrr1KhQgUA4uPjWb58OR9//DErVqygS5cuvPjii8WcsYiISGb29vbUq1evuNMQERF5aG5ubvz222+m19bW1gAEBAQwY8YMAK5du8a+ffuoUaNGseQoIiKSV+3btzd7HRoayoIFC5g5cyaTJk3K1P/NN99k9uzZTJ06lYoVKxZRliIiIiIiIiIiIiKPJ4vCGPTTTz/l/PnzDBkyhLi4OF588UUMBgOXL18mISGBxYsXU7FiRdq3b09kZGRhpCAiIlIqLFmyBCsrK3bt2sVbb71lKvYAcHBwYMKECezatQtLS0uWLFlSjJmKiIhkr1WrVpw7d6640xAREXlo3t7e/PLLL0RFRQFgY2ODhYUFn3zyCf3792fixIm0bNmSpKQk+vXrV7zJioiI5NPHH39MvXr1siz2yPDuu+9Sr149EhISijAzERERERERERERkcdPoezwsXXrVipXrszixYspW7YsBoPB1FauXDlGjhxJo0aNaNOmDX//+98ZMWJEYaQhIiLyyAsPD6d9+/Y0bdo02z5NmjShffv2HD9+vAgzExERyb2pU6fSrl07AgICGDx4cHGnIyIikm8DBw7kypUrREdH4+bmhoWFBRUrVuTOnTts2LDB1K9Zs2ZMnjy5GDMVERHJv6NHj9K1a9cH9nvmmWc4c+ZMEWQkIiIiIiIiIiIi8vgqlIKPiIgI2rZtS9myZQFMBR9paWlYWloC91Z4bd26NcuXL1fBh4iISDaSkpJ46qmnHtjvqaeeIikpqQgyEhERybuWLVvy9ddf89prrxEUFES3bt1wdXXFwiLrTSfbtWtXxBmKiIjkztNPP82yZcvMjtna2vLjjz8SFBREbGwsTz/9NM8//7zpPujDCgwMZOHChZw8eZK7d+9Sq1YtXnrpJSZMmECZMmXyPN4PP/zArFmz+P7774mLi8PZ2ZmePXvi5+eX5efPtLQ0Nm3axA8//GD6iY2NxdLSktTU1GznuX79Ot9++y3ffvstYWFhREdHY2FhgaurK507d+att97Czc0tU1xcXBw7d+7k22+/5dChQ0RFRZGenk7VqlXp0KEDEyZMoGHDhnk+bxERyb07d+5w5cqVB/a7evVqEWQjIiIiIiIiIiIi8ngrlIIPgEqVKpl+L1euHAA3b96kcuXKpuOurq5s27atsFIQERF55FWpUoXw8PAH9gsPD8fJyakIMhIREcmftLQ0ypUrx7p161i3bl22/QwGQ44Pj4qIiJREVatWZeTIkQU+7vjx4/H398fKygovLy/s7e3Zs2cPkyZNIigoiJ07d2Jra5vr8davX8+gQYNITU2lRYsWuLu7c+zYMRYsWEBgYCChoaHUqlXLLCYhIYH+/fvnOfe33nqLNWvWYGFhQYMGDejVqxdJSUmEhYUxf/58VqxYwaZNm+jUqZNZ3KeffsrHH38MQJ06dejWrRtpaWn88MMPfPHFF3z11VcsW7aMoUOH5jknERHJnb/97W+EhoZy8OBB/v73v2fZ59ChQ3z//fdYWRXaV40iIiIiIiIiIiIiAmS9nOpDqlq1KpcvXza9dnV1BeDUqVNm/SIiInQjWEREJAfPPfccZ8+eZdasWdn2mTlzJmfPnsXb27sIMxMREcm9rVu38o9//INLly5RqVIlmjZtSrt27bL8adu2bXGnKyIiUiJs3rwZf39/7O3tOXLkCDt27GDDhg2cP3+ehg0bEhoaip+fX67Hu3LlCkOHDiU1NZUlS5Zw9OhRvv76a86dO8fLL7/M77//zuDBgzEajWZxZcqU4aWXXmLOnDns2bOHEydO5Go+R0dHPvjgAy5evMjJkydZt24d33zzDREREQwcOJCkpCQGDhzIzZs3zeLs7Ox46623OHfuHGfPnmXDhg1s3ryZiIgIJkyYQEpKCiNGjODChQu5PncREcmbsWPHkpaWRteuXZk6dSo//fQTt2/f5vbt2/z888+89957dO3aFaPRiJ2dXXGnKyIiIgUsMDCQDh06UKlSJezs7GjUqBGzZ88mJSUlT+O4ublhMBge+PPhhx+axe3du/eBMZ9//nlBnrKIiIiIiEiJZjD+9Ru8AtCvXz8OHDjAtWvXgHur/Hh6euLp6UlwcDDly5fnq6++YsiQIXh6erJ///6CTkFyycXFBYBLly4VcyYiIo+eongPPXv2LE2aNOHPP/+kefPmDBkyBHd3d+Be4eSXX37J8ePHKVu2LMePH6du3boPPWdgYCALFy7k5MmT3L17l1q1avHSSy8xYcIEypQpk68xt2zZwvLlyzl69CixsbFUrFiRWrVq0bVrV6ZNm2bW96effmLp0qUcP36cqKgobty4gdFopFq1arRv357x48fTsGHDhz5P0HVQRORh5fZ99Nlnn+WHH37A39+fUaNGYWlpWRTpSS7oWigikn+XL1+mSZMmGI1GNmzYkGWfdu3a5Xv8Z599lrCwMD766COmTp1q1hYaGkrbtm2xsbHh999/p0KFCg8c79133+XTTz+lY8eO7Nq1y6wtMTERFxcX4uLi+Pbbb+nSpUu240RFReHu7o6lpWW+d+VKTk6mSpUqJCQksHr1al5++eVcxaWnp/P0009z7tw5pk+fznvvvZev+e+na6GISNbefPNN5s+fj8FgyLLdaDQyZswYNm7cCOh99FGma6GISP4V1Xuol5dXrvsaDAZCQkLyPVd2O03eunWLNm3a5GmnybfffpsbN25k2RYbG0tQUBAA33//vdlCQHv37uW5557DycmJrl27Zhk/dOhQnnvuuTyeXdZ0LRQRyT+9h4qIiBSNQtleo2vXrmzatInvvvuO5557jtatW+Pp6cmBAwdwdHTEwcGBW7duYTAYePfddwsjBRERkVKhbt26BAYG8tJLLxEWFsaxY8fM2o1GIw4ODqxZs6ZAij2yu4k7adIkgoKC8nQTF+Du3bu8/PLLBAYGYmtrS+vWrXFycuLatWucOXOGefPmZSr4OHjwIP7+/jg5OVG3bl1at25NcnIyP/74IytWrGDVqlWsWrWKQYMGPfT5iohI0fjpp59o3bo1Y8aMKe5UREREHtqWLVvw9fXl3LlzpKenA2T5kInBYMh3QcTly5cJCwsDYPDgwZna27RpQ/Xq1YmOjiY4ODhXn482bdqU7Xj29vb06tWL1atXs3HjxhwLPgpCuXLlqFu3LseOHSM6OjrXcRYWFjzzzDOcO3cuT3EiIpJ3/v7+dO7cmc8++4wDBw5w584dAGxsbPD09GT8+PH07NnTVPAhIiIihWfv3r0P7GMwGDAajdkWa+bG/TtN7tu3j6ZNmwJw48YNvLy8TDtNzpkzJ1fj5dRv9uzZBAUFUadOnWx3fa5Xrx4rV67M83mIiIiIiIiUNoVS8DFo0CD+9re/4ebmZjq2ceNGXn31VbZv387NmzepVKkS06ZN4/nnny+MFEREREqNHj16cO7cOZYuXcq+ffu4fPkyANWqVaNDhw4MHz6cp5566qHnKeibuADDhw8nMDCQ3r17s2zZMipXrmxqS09P5+jRo5liOnbsyM8//0y9evXMjqenpzN37lzeeecdXnvtNbp27UqlSpXyebYiIlKU7OzsqFGjRnGnISIi8tC2b99Ov379SE9Pp0KFCiQlJWEwGPj73/9eoPOEh4cD4OjoaNrl8a+aN29OdHQ04eHhDyz4SEhI4MKFC6a47MZbvXq1ae7ClJKSQlRUFADOzs55ij1//ny+4kREJO969OhBjx49SEtLIyYmBoAnnnhCuzaKiIgUse+++y7L4+np6fz2229s27aNjRs3MnnyZDp37pzveWbMmAGAr6+v6XtCgMqVK7No0SLatm3LggUL8PPzy9VOkzlZsWIFAMOGDXuocURERERERB4HhVLwYW9vj6enp9mxJ598kq1bt5KcnExcXBxOTk5YWFgUxvQiIiKlzlNPPcV7773He++9V2hzFPRN3JCQEFatWkWDBg1Yt24dZcqUMWu3sLCgVatWmeLuLxj9a/+3336bxYsXExERQWhoqApHRUQeER06dCiSh0dFREQK28cff0x6ejrvv/8+vr6+eHh4ANk/fJNfkZGRALi6umbbp3r16mZ9c5JRXJHTmHkZ72EtX76cGzduYGtrS7du3XId9+2333Ly5EkMBgN9+/YtxAxFROR+lpaWBbLgjIiIiORP+/btc2z38fFh3rx5vPvuuwwYMCBfcxTGTpPZOXDgAGfPnsXKyoqhQ4fmexwREREREZHHRZFXXJQrVw5nZ2cVe4iIiJQgub2J++effxIcHJyrMefPnw/A+PHjMxV7PAwrq3v1qjY2NgU2poiIFK7p06cTHR3NrFmzijsVERGRh3LixAkaN27MtGnTsLa2LrR5EhISgHu7ZGXH3t4egPj4+FyPl9OYeRnvYfz444+88847APj5+eHk5JSruCtXrvDqq68C93aTfOaZZ3I9p4uLS7Y/V69ezftJiIg8Ru7evcvhw4dZv349gYGBHDp0iLt37xZ3WiIiIvIX48aNo3r16rz//vv5is/tTpP3982vjN09unfvTpUqVbLt9/vvv/Phhx8ycuRI3nzzTRYvXszFixcfam4REREREZFHUaHs8GFpaYmPjw/Lly/Psd/w4cP54osvSE1NLYw08iUwMJCFCxdy8uRJ7t69S61atXjppZeYMGFCvh5W/eGHH5g1axbff/89cXFxODs707NnT/z8/HJcDen3339n+vTpfPPNN1y5coWKFSvSrl07Jk+ebLbquoiISEHI7U3c6OhowsPDH7hqT1paGiEhIQC0a9eOa9eusXbtWs6ePYuNjQ1NmjShX79+pgeKcmvp0qWcO3eOp556KsvdQUREpGQ6fPgww4YNY+rUqWzdupWuXbvi6uqa7UIAQ4YMKeIMRUREcsfS0pJ69eoVdxqPrEuXLvH888+TmJhIr1698PX1zVVcfHw8PXv25MqVKzz77LP4+/sXcqYiInL37l0++OADFi1alKkYsHz58owaNSrfD5SKiIhI4WjUqBH79u3LV2xB7zSZnaSkJNatWwdgKurPzi+//MK//vUvs2NWVlaMHTuW2bNnmxaJExERERERKe0K5dOP0WjEaDTmum9JMX78ePz9/bGyssLLywt7e3v27NnDpEmTCAoKYufOndja2uZ6vPXr1zNo0CBSU1Np0aIF7u7uHDt2jAULFhAYGEhoaCi1atXKFHfu3Dnatm3L9evX8fDwoHfv3kRGRrJ+/Xo2b97MunXr6NOnT0GeuoiIlBBeXl75jjUYDKYii7wq6Ju4ERERJCYmAvce8h09erTpdYZ33nmHtWvXZnvOycnJjB49GoC4uDhOnz7NhQsXcHJyIjAwEAcHhwefmIiIlAg+Pj4YDAaMRiOHDx/myJEjOfZXwYeIiJRUzzzzDJcuXSr0ecqXLw/cexAmOxmfsXLz2ShjvIwxK1So8FDj5ce1a9fw9vbmt99+o0uXLqxbtw6DwfDAuMTERLp160Z4eDhNmjTh22+/pWzZsnmaO6d/MxcXlzyNJSLyOLhz5w6dO3fmwIEDGI1GnnjiCdzc3ACIiooiJiaG2bNnExoaitFozNX7uYiIiBS+2NjYTN/H5VZB7zSZnXXr1pGYmEiVKlXo3r17ln0qVKjA+PHj6dOnD3Xq1MHBwYFff/2VL774ggULFvDvf/+bxMREli5dmut5c/rsd/XqVZydnfN8LiIiIiIiIkWlWMvdk5OT87VrRmHYvHkz/v7+2Nvbs2/fPtMuGjdu3MDLy4vQ0FD8/PyYM2dOrsa7cuUKQ4cOJTU1lSVLljBixAjg3ornPj4+fPXVVwwePJgjR46Y3Qg3Go0MHDiQ69ev889//pMvvvgCS0tL4N6q5iNHjmTIkCGcP38+x60tRUTk0bR37958xz7MF6sFfRM3JibG9Purr77K3//+d+bMmUO9evX49ddfmTJlCsHBwbzwwgscP36c2rVrZxrj7t27fPnll2bHPDw8WL58OW3bts3VeYFu4IqIlARDhgzRA0AiIlIqjB8/ngEDBnDs2DGaN29eaPNkPFQbHR2dbZ+Mtoy+OalRo4bp94sXL9KwYcOHGi+vrl+/jpeXF+fOnaNjx45s3rwZGxubB8YlJSXRo0cPDh48yDPPPMOuXbuoVKlSgecnIiLmPvnkE0JDQ6lTpw7/93//R48ePczag4ODmThxIgcPHsTOzk4Ls4iIiJQA33//Pfv376du3brFnUqOli9fDty7Z5zdDh1NmjShSZMmZscaNmzI3LlzadOmDf369WPZsmWMHj2axo0bF3bKIiIiIiIixa7YCj5u3bpFaGhoiXnIcsaMGQD4+vqaij0AKleuzKJFi2jbti0LFizAz88vyxXw/uqzzz4jOTmZjh07moo9ACwtLVm8eDFBQUGEhYWxc+dOunTpYmrfvn074eHhVKxYkUWLFpmKPQBGjBjBunXrCAkJwd/fn5kzZxbEqYuUOEajkTupd7At878ddW6n3KasVVk9KCil3nfffVfcKRSI+3fwqlatGjt27DA9zNOoUSO2bt1K48aNOX36NLNmzTLd3L1fxYoVTeP8/vvvHD9+nA8++IDnnnuOt99+m08//bRoTkakGOhaKKXNypUrizsFEXnE6FooJVW/fv3w8/OjS5cuTJ8+ndTU1GwfUHkYGQ+2xMTEEBkZibu7e6Y+x44dAzC7l5kdBwcHatWqxYULFzh27FiWBR95GS8v/vjjD7y8vPj555/x9vZm69atudqhIzk5mR49evD999/zzDPPEBISwhNPPFGguYmUZLoWSnEKCAjA3t6ePXv2ULVq1Uzt3bt3p3HjxtStW5fbt2+r4ENECoWuhSL/8+GHH2bblpCQwM8//8yOHTtIT0/ntddey9ccBb3TZFbOnTvHgQMHABg2bFi+xujbty+NGzfmxIkTBAUF5brgQzs/yqNG10ERERERuV+BfRvp4eFh9nr9+vXZrlKemprKtWvXSEtLY+TIkQWVQr5dvnyZsLAwAAYPHpypvU2bNlSvXp3o6GiCg4MZNGjQA8fctGlTtuPZ29vTq1cvVq9ezcaNG80KPjLievXqZVpJ/X6DBw8mJCSEjRs3quBDSiWj0cjM0Jnsv7iftf3WUqFsBeLuxDFww0DaurZlcpvJ+vAqpVr79u2LZd6CvombMR6Aj49PppVbLS0tGTlyJGPHjmX37t0PHM/JyYlu3brh7e1Ny5YtmTNnDu3bt6dnz54PjNUNXHnU6FooIiKPO10LpSS5fzGWvxo7dizp6enZ9jMYDKSmpuZrXhcXF1q0aEFYWBgBAQFMnTrVrD00NJTo6GhsbGzo3r17rsbs06cPn376KQEBAbzyyitmbYmJiQQFBQH3Hp4pKBm7J585cwZvb2+CgoKwtbV9YNzt27fp2bMn+/btMxV7VK5cucDyEinpdC2U4nbx4kU6d+6cZbFHhqpVq+Ll5cXWrVuLMDMReVzoWihi7v3338dgMJgtuPZXFhYWvPnmm4wfPz5fcxT0TpNZWbFiBXDvGZyH2Ynk6aef5sSJEzl+ByjyKNN1UERERET+qsAKPqKioky/GwwGEhMTTQ+GZsXa2prevXubdtYoTuHh4QA4OjpmuVoeQPPmzYmOjiY8PPyBBR8JCQlcuHDBFJfdeKtXrzbN/ddccooDOH/+PElJSdjZ2eWYi8ijJOND64KjCwAYuGEgS3ouYeS2kZy8dpKT104C6MOrSCEo6Ju4bm5uphvPfy0KzZBx/OrVq7nO09rampdeeokTJ06wadOmXBV8iDxKdC0UEZHHna6FUtLk9DDNg/rlNjY7U6ZMoU+fPsyaNYtu3bqZdt6IiYlh9OjRAIwZM8ZsN+JNmzYxefJkqlWrRkhIiNl448ePZ+HChezevZtly5YxfPhwANLS0hg9ejS3bt2iRYsWdO7c+aHyzhAbG4u3tzenT5+mY8eObN26NVfFHnfu3KFXr1589913KvaQx5KuhVISVKpUKVfv2WXLlsXCwqIIMhKRx4muhSKZ/etf/8q2zdrammrVquHl5fVQC50V9E6Tf5WWlsaqVasAePXVV/OdZ0aOYL4AnUhpoeugiIiIiGSlwAo+IiMjAUwPdr744ot8+umnWfa1trbmySefxMqqwKZ/KBm5u7q6ZtunevXqZn1zcn/xS3ZjZjfeg3LJiDMajURFRVG/fv0H5iPyqLiTeof9F/ebXp+8dpJW/2ll1mf/xf1MSJ1gtm2liDy8gr6Ja29vT926dfnll1+4ceNGln0yjme1o1VOMoodr1+/nqc4kUeBroVS2l26dIm9e/dy5coV7ty5k2Ufg8GAn59fEWcmIiWFroVS0mTs4JGdjIdpCmNV0d69ezNu3DjmzZtHq1at8Pb2xs7OjpCQEG7duoWnpyfTp083i4mLi+Ps2bNZXmerVq3KypUrGTRoECNGjGD58uW4ubkRFhZGREQETk5OBAQEZPmwwOjRozl+/DgAf/75J3DvYZ1Wrf73/88ePXqYXcNfe+01Tp06hcFgwNHRkVGjRmV7nr179za9njJlimknSFdXV95+++0s49q0acNrr72WZZvIo0zXQikJOnbsyO7du/nzzz8z7dyb4c6dO+zfvz/bdhGR/NK1UCSznAo+Ckph7DR5v+DgYK5evUr58uXp379/vvO8fPky+/ffe4949tln8z2OSEml66CIiIiIZKXAKi5q1Khh+n3o0KG0bdvW7FhJlpCQAJDjbhkZD6PGx8fnerycxsxuvAflcv9DsbnJBchxFYerV6/i7Oycq3FECpttGVvW9lvLwA0DTasS3K9RlUas7bdWH1qlVPvwww+Be6u0Ojo6ml7nxsM8IFsYN3H79+/P9OnT2b17NxMmTMjUvmvXLiDvN2MzVqmtU6dOnuJEHgW6FkpplZaWxrhx41i6dKnpwdm/rnqesTOUCj5EHm+6FoqY8/f3x9PTk4ULF3Lw4EFSUlKoWbMmvr6+TJgwAWtr6zyN179/fzw8PJgxYwb79+8nPDwcZ2dn3njjDfz8/HBycsoy7qeffuLIkSOZjt9/rF69emZtsbGxwL1r/rp167LNyc3NzazgIyMOYNu2bTmejwo+pDTStVBKgo8++ojt27czePBgFi9ezFNPPWXWfuPGDV5//XVSUlJwcHAopixFpLTStVCk+BT0TpP3W7FiBQADBw7M8dkcuPdZ+KWXXsq02+OpU6fw8fHh9u3b1KxZkxdeeCFf5ylSkuk6KCIiIiJZMRj/+pTNY2jGjBlMnToVT09PQkNDs+wzdepUZsyYQefOndmxY0eO4x08eBBPT08AUlJSstzJZNeuXXTu3Blra2vTqnhwb/eTlJQUdu3aRceOHTPFpaSkmL7IPXjwIK1bt37g+eWm4KMwViEUya+LcRczrVAAcPi1w7hWyH4nHpGiVhgruVpYWGAwGPj555+pU6eO6XVOl+v7H5BNS0vL99ybN2+mT58+2Nvbs2/fPrObuM899xw//vgjEydOZM6cOaaYnG7i3rhxgzp16nDz5k0+//xzRo4caWpbu3YtgwcPxmg08s0335gVkXz22Wf069fPtKtVhuTkZObOnYufnx9WVlaEh4fToEGDfJ8vFO5qvCIPQ9dCeVTk9n30gw8+4IMPPsDKyopu3bpRu3Ztypcvn23/olixTu7RtVBKKl0L5VGh99FHn/4NpaTStVCKUlaLzkRERLBq1SrKlStH586dTTsCR0ZGsnPnTm7fvs2QIUPYsGEDDg4Oeh99hOlaKCWVroXyKCiN76Fvvvkm8+bNo0yZMlnuNLlr1y5sbf/3oPnKlSt55ZVXqFGjBlFRUVmOef36dVxcXEhJSeHw4cO0bNkyxxwqVqxIYmIijRs3xt3dHQsLC3799VfCw8NJT0/H1dWVb7/9lqeffrpAzrk0/jvKo0/XQXlU6D1URESkaBTYDh9ZMRqNbN++nYMHD/LHH3/QsmVLhg0bBsAff/zBzZs3qVmzJpaWloWZxgNlPGiUlJSUbZ/ExESAXK1UdP+DS0lJSWarGzxovPLlyxMbG5ttLhlxuc0Fcv4PqpyKQUSKQ9ydOEZuG5ll28htI1nbby0Vymb+/5RIaTFt2jQMBoNpxZqM10Whd+/ejBs3jnnz5tGqVassb+JOnz7dLCYuLo6zZ89y586dTONVrlyZr7/+ml69evH6668zf/58nn76adMNWQA/P79MO4Z89tlnvPXWWzz99NPUrVuXsmXLcvXqVU6ePMnNmzexsbFh2bJlD13sIVJS6VoopdHKlSuxtbVl//79poJCEZHs6Fooj4KUlBQ2bNjAzZs3SUtLo0ePHri4uNChQwf69euX5503RETup2uhFLX3338/06IzGfckk5OT2bx5c5ZxX375JUajUbt8iEiB07VQJLPU1FQCAwMJCQnhypUrWX43B/eu4TnttPEgBb3TJMDq1atJSUmhfv36Dyz2gHsLsh44cIAzZ86wa9cukpKScHBw4O9//zsvvPACI0eOzHFBIZFHna6DIiIiIvJXhbbDx8mTJ/nHP/7B+fPnTauODx061LRNY0BAAP/85z/ZvHkzzz//fGGkkGtBQUH06tWLJ554ghs3bmTZp2/fvmzatIm3336bTz/9NMfx4uPjTUUep06domHDhpn6zJs3jzfffJPmzZsTFhZmOt6sWTOOHz/OvHnzGDt2bKa4U6dO0ahRIwwGA/Hx8djb2+flVDNRla2UJLdTbtN3Xd8st6XM0KhKIzYO2KjtKaVEKK3voevWrWPhwoWcOHHCdBP35ZdfzvImbm5W7Tl37hwzZsxg9+7dXL9+HQcHB1q2bMmbb75J586dM/UPCAhg586dHDt2jGvXrnHr1i3s7OyoWbMm3t7ejBo1Cg8PjwI519L6byiPLl0L5VGT2/dRW1tbOnTowPbt24siLckDXQulpNG1UB4FR44cYdCgQfz222+kp6cD/3so1mAw4OrqSkBAQK525pXip2uhlDS6Fkpx+OCDD/Id+3//93/a4eMRp2uhlDS6FsqjpKjeQ//44w86d+7MqVOneNAjPgaDgbS0tELNp7TRtVBKEl0H5VGj91AREZGiUSg7fFy6dImOHTsSExND9+7d6dChA++++65Zn969e1OmTBm2bNlS7AUfTZo0ASAmJobIyEjTttT3O3bsGECuVqN1cHCgVq1aXLhwgWPHjmVZ8JHdeE2bNuX48eOm9uziateu/dDFHiIlTVmrsrR1bWv64NqoSiOW9FzCyG0jTcfauralrFXZ4kxTpNQbMGAAAwYMyFVfHx8ffHx8cuxTp04dVq5cmev5Bw8ezODBg3PdX6Q00bVQSquqVatqxTURyRVdC6WkO3v2LJ06dSIxMZFq1apx69YtLC0t+fjjj4mKiuLrr7/mt99+o0uXLhw9epR69eoVd8oi8ojRtVCKw7/+9a98xy5btqwAMxER0bVQJCvvvvsuJ0+epFatWowaNYratWvrfqtIKaXroIiIiIhkpVAKPmbMmEFMTAyfffYZ48aNA8hU8FGuXDkaNWpktrtFcXFxcaFFixaEhYUREBDA1KlTzdpDQ0OJjo7GxsaG7t2752rMPn368OmnnxIQEMArr7xi1paYmEhQUBBwb+eQv8b95z//YevWrSQlJWFnZ2fWHhAQkGWcSGlgMBiY3GYyAPsv7jdtQ7m231oGbhhIW9e2TG4z2bRqpsjj7vbt25w7dw4XFxeeeOKJ4k5HRAqAroVSWvXp04evvvqKP//8Exsbm+JOR0RKMF0LpaSbNm0aiYmJjBs3jtmzZ5t2H3zjjTeAe/dF3333Xfz9/fnXv/7F119/XZzpisgjSNdCERF53OlaKJLZtm3bcHJy4vDhwzg6OhZ3OiJSiHQdFBEREZGsGIwP2u8xHzw8PChbtiw//fST6ZiFhQU+Pj6sWLHCdOwf//gH3333HdevXy/oFPJs8+bN9OnTB3t7e/bt22faeSMmJobnnnuOH3/8kYkTJzJnzhxTzKZNm5g8eTLVqlUjJCTEbLwrV65Qu3ZtkpOTWbp0KcOHDwcgLS2NV155hdWrV9OiRQuOHDli9h/hRqORZs2aER4ezpAhQ1ixYgWWlpYALF26lJEjR2Jvb8/58+epUqXKQ5+3tlWTkshoNHIn9Y7Z9pO3U25T1qqsPrRKiVIU76H79+9n06ZNDB06lEaNGpmOBwQEMHLkSJKTk7G0tOS9995j2rRphZZHaaXroJRUuhbKoyK376Px8fE8++yzPP300yxbtozKlSsXRXqSC7oWSkmla6GUVE8++SQVK1bk3LlzGAyGLN9HjUYjderU4datW/zxxx/Flarkkq6FUlLpWiiPCr2PPvr0byglla6F8igoqvdQe3t7unbtyvr16wt1nseVroVSEuk6KI8KvYeKiIgUjULZ4ePKlSu88MILD+xnMBiIj48vjBTyrHfv3owbN4558+bRqlUrvL29sbOzIyQkhFu3buHp6cn06dPNYuLi4jh79ix37tzJNF7VqlVZuXIlgwYNYsSIESxfvhw3NzfCwsKIiIjAycmJgICATP8RbjAY+O9//0vbtm1ZtWoVoaGhtGjRgsjISI4ePYqVlRWrVq0qkGIPkZLKYDCYfWgFMr0WeVwsXbqUr7/+milTppiORUdHM2zYMO7evUvFihW5desWH3zwAe3bt6d9+/bFmK2IFBRdC6W0cXBw4NChQ3To0IGaNWvSrFkzXF1dsbCwyNTXYDCwfPnyYshSREoSXQulpEpKSqJz5845frFuMBho0aIFmzdvLrrERKTU0bVQSoJDhw4REhLClStXsvwuDODmzZtUqlQp33OcPXuWnTt38sMPP/DDDz/w888/k5aWxvTp03nvvfcy9U9PT+fw4cN8++237Nmzh59//pn4+HgqVKhAkyZN8PHxYfDgwTleq3/44QdmzZrF999/T1xcHM7OzvTs2RM/Pz+eeuqpbON+//13pk+fzjfffMOVK1eoWLEi7dq1Y/LkyaaF5LJy9+5d/v3vfxMQEMCFCxewtramUaNGjBkzhhdffDHHv09gYCALFy7k5MmT3L17l1q1avHSSy8xYcIEypQpk2OsyKNO10KR/6lduza3b98u7jREpAjpOigiIiIi9yuUgg87O7tcrV4XGRlZorab9Pf3x9PTk4ULF3Lw4EFSUlKoWbMmvr6+TJgwAWtr6zyN179/fzw8PJgxYwb79+8nPDwcZ2dn3njjDfz8/HBycsoyrm7dupw6dYqPPvqIbdu2sWnTJipUqEDfvn2ZOnVqjjeNRUSkdDly5AiNGjUyWwl99erV3L17l/fff59p06axf/9+OnTowKJFi1TwISIiJdKff/6Jj48Pp0+fxmg0snfv3mz7quBDRERKMg8PD27cuPHAfjExMbi7uxdBRiIiIgUvOTmZAQMGsH37duDe6sLZMRqND1XwsXjxYvz9/XPdPyIiAk9PTwAcHR1p3rw5lSpVIiIigt27d7N7927Wrl3Lhg0bsvxeb/369QwaNIjU1FRatGiBu7s7x44dY8GCBQQGBhIaGkqtWrUyxZ07d462bdty/fp1PDw86N27N5GRkaxfv57Nmzezbt06+vTpkykuOTmZTp06cfDgQSpWrEjXrl1JTExkz5497Nu3j4kTJzJnzpwsz3X8+PH4+/tjZWWFl5cX9vb27Nmzh0mTJhEUFMTOnTuxtdVDfyIij4NXX32VSZMmcenSJdNK6iIiIiIiIvL4KJSCj4YNG/LDDz9w48YNswdU7/fbb79x8uRJOnXqVBgp5NuAAQMYMGBArvr6+Pjg4+OTY59mzZqxYcOGPOdRpUoVFixYwIIFC/IcKyIipceNGzeoX7++2bE9e/ZgbW3NW2+9BUDbtm1p1aoV4eHhxZGiiIjIA/3rX/8iKCiISpUq8c9//pPatWtjb29f3GmJiIjk2ZAhQ5g2bRpnzpzJ9Fktw5kzZ9i7dy8ffPBBEWcnIiJSMKZMmUJwcDCVKlXi5Zdfpnbt2pQvXz7LvuPHj3+ouRo0aMDbb79NkyZNaNq0KTNmzGD16tXZ9jcYDHh5efHOO+/QqVMnLC0tTW379u2jR48ebNu2jVmzZjFt2jSz2CtXrjB06FBSU1NZsmQJI0aMACAtLQ0fHx+++uorBg8ezJEjR8x2CDEajQwcOJDr16/zz3/+ky+++MI079KlSxk5ciRDhgzh/PnzVKlSxWzOKVOmcPDgQRo2bMiePXtM35v+8MMPdOjQgf/7v/+jQ4cO9OzZ0yxu8+bN+Pv7Y29vz759+0yLwd24cQMvLy9CQ0Px8/PLtlhERERKlzFjxrB//368vLyYP38+nTp1ynL3ZBERERERESmdCqXg4+WXX+b777/ntddeIyAggHLlypm13717l9GjR5OSksLLL79cGCmIiIiUComJiWartBmNRsLCwmjevLnZg7Jubm6cPHmyOFIUERF5oP/+979UrFiREydOUL169eJOR0REJN8mTpzI0aNH8fLyws/Pj/T0dNNDNvHx8axevZrp06fz/PPP8+677xZztiIiIvkTGBhIxYoVOX78ODVq1Mix79SpUx9qrtdee83s9YMeXq1ZsyYhISFZtrVv3x5fX1/8/PxYtWpVpoKPzz77jOTkZDp27Ggq9gCwtLRk8eLFBAUFERYWxs6dO+nSpYupffv27YSHh1OxYkUWLVpkVmQyYsQI1q1bR0hICP7+/sycOdPUdvPmTRYvXgzc28nk/kXymjVrxqRJk/Dz8+Pjjz/OVPAxY8YMAHx9fU3FHgCVK1dm0aJFtG3blgULFuDn50eFChVy/JuJiEjpsGTJEtq3b0/37t2xsrLC2dk5y+umwWDg119/LYYMRUREREREpLAUSsn/K6+8Qvv27dm6dSv16tUz3TQ9efIk48aNo06dOmzfvh1vb2/+8Y9/FEYKIiIipYKjoyNRUVGm1+Hh4SQkJPD3v//drF9KSgrW1tZFnJ2IiEjuXL9+nbZt26rYQ0REHnm1a9fm+PHj/PHHH7z55ptcvXqVK1eu8MQTT1CpUiXGjRvHH3/8wQ8//ECtWrXw8PAw/dSsWbO40xcREcmVmzdv0rZt2wcWe5RETZo0ASA6OjpT26ZNmwAYPHhwpjZ7e3t69eoFwMaNG7OM69WrV5a7VWaM99e44OBg7t69i6urK56entnGHT58mCtXrpiOX758mbCwsGxzbdOmDdWrV+fPP/8kODg4U7uIiJQ+0dHRNG7cmNOnT2M0GklJSeHixYtERUVl+SMiIiIiIiKlS6EUfFhaWhIUFMSgQYO4fPky//nPf4B7D6kuWLCAixcv0q9fv0w3PkVERMRcixYtOHr0KIcOHQLA398fg8GAl5eXWb/z58/j7OxcHCmKiIg8kKur6wNXaS1ogYGBdOjQgUqVKmFnZ0ejRo2YPXs2KSkp+Rrvhx9+oH///jg5OVG2bFnc3d0ZO3Ys169ff2DsyZMnGTZsGO7u7pQtW5ZKlSrRsGFDRo0aRUxMTJYxCQkJTJkyhbp162Jra0vlypXp0aMHe/bsyVf+IiJSMO5/eMZoNJr+9+bNmxiNRtPPb7/9poduRETkkVWjRo0i/wxXUM6fPw+Q6V5pQkICFy5cAKB58+ZZxmYcDw8PNzue8fpBcefPnycpKSnXcR4eHjg6OgJw4sSJTHGOjo64u7vnKVcRESmdJk2axMWLF/H09GTjxo38+OOPREZGZvkTERFR3OmKiIiIiIhIAbMqrIHt7e1Zs2YNfn5+BAcHExERQXp6OtWrV6dbt240bty4sKYWEREpNd58802Cg4Np06YNFSpUIC4uDg8PDzp37mzqc+PGDX788UcGDhxYjJmKiIhkb/DgwXz22WfcunWLihUrFvp848ePx9/fHysrK7y8vLC3t2fPnj1MmjSJoKAgdu7cia2tba7HW79+PYMGDSI1NZUWLVrg7u7OsWPHWLBgAYGBgYSGhlKrVq0sY+fMmYOvry9Go5FmzZrRqlUr4uLiOH/+PJ9//jlvvPEGTzzxhFlMxo4o586dw9nZmeeff57ff/+d7du3s337dvz9/Rk7duxD/Y1ERCR/IiMjzV63bNkSgCNHjhRHOiIiIoVi8ODBzJ07t8g+wxWU5ORk5s2bB0C/fv3M2u4vvHR1dc0yPmNXyr9e7zNePyjOaDQSFRVF/fr1cxUH4OLiQmxsrNmcuYnLLlcRESmddu/eTY0aNdi1axc2NjbFnY6IiIiIiIgUsUIr+MhQr1496tWrV9jTiIiIlEodO3ZkxYoVfPDBB1y/fp327duzaNEisxX2Vq9eTXp6Ou3bty/GTEVERLI3efJk9u7dS/fu3Vm+fDlPP/10oc21efNm/P39sbe3Z9++fTRt2hS4VyDp5eVFaGgofn5+zJkzJ1fjXblyhaFDh5KamsqSJUsYMWIEAGlpafj4+PDVV18xePBgjhw5gsFgMIv94osveOedd6hbty7r16+nQYMGZu1nzpzBxcUl05wjRozg3LlzeHt7s3XrVsqVKwdAcHAwvXr1Yvz48bRv355nnnkmz38fERF5ODVq1DB7bWVlleVxERGRR9mkSZPYuXMn3bp1Y8WKFYX6Ga4gjR49msjISKpWrcqUKVPM2hISEky/29nZZRlvb28PQHx8fJaxD4r7a+yD4rKbM79xOcnqs2eGq1evavdoEZES7vbt2zz33HMq9hAREREREXlMFXrBh4iIiDycoUOHMnTo0GzbX3/9dYYNG2b2xaKIiEhJ0rVrV1JSUjh8+DANGzbE1dUVV1dXswLGDAaDgZCQkHzPNWPGDAB8fX1NxR4AlStXZtGiRbRt25YFCxbg5+dHhQoVHjjeZ599RnJyMh07djQVewBYWlqyePFigoKCCAsLY+fOnXTp0sXUfvPmTcaPH4+trS3BwcF4eHhkGjtj1df7/fTTT2zZsgVLS0uWL19uKvYA6N69Oz4+PixfvpyZM2fy3//+N3d/FBERERERkTywtrZmx44dtG7d+oGf4W7cuEHlypWLIUtz06dP58svv6Rs2bKsW7cu006KIiIij7K//e1vxMbGFncaIiIiIiIiUkwKteDjxo0b/Oc//2Hv3r1cunQJo9GIi4sLzz33HMOGDeOpp54qzOlFREQeC7a2ttja2hZ3GiIiItnau3ev6ff09HSioqKIiorKsu9fd8nIi8uXLxMWFgbA4MGDM7W3adOG6tWrEx0dTXBwMIMGDXrgmJs2bcp2PHt7e3r16sXq1avZuHGjWcHHl19+SXx8PC+//HKWxR4Pms/T0zPL1eIHDx7M8uXLCQoKIiUlhTJlyuR6bBERERERkdy4efMmnTp14vTp0xiNxhw/wxmNxqJNLgtz585l2rRp2NjYsGnTJjw9PTP1KV++vOn3pKSkLBcASExMBMDBwSFTbGxsLElJSVnOnxH319iMObOLy27O/Mbl5NKlS9m25bT7h4iIlAxjx45l2LBhnD59OtMuwiIiIiIiIlL6FVrBx5YtW3jllVeIi4szu9n7888/s3v3bmbNmsUXX3xBnz59CisFERGRUuXKlSt8//33ZkWU7dq1o1q1asWdmoiISI6+++67IpknPDwcAEdHR9zd3bPs07x5c6KjowkPD39gwUdCQgIXLlwwxWU33urVq01zZ9ixYwcA7dq14/bt26xfv56wsDDS0tKoXbs2/fr1o3r16tmeQ07zwb0Hf86fP8/f/va3HM9BREQejpeXV47tf/zxR7b9HnbXKhERkeIyZcoUjh8/Tu3atRk1ahS1a9fOdnfhF198sYizMzd//nwmTpyItbU1GzZsoGvXrln2u7+g/uLFizRs2DBTn+joaADc3NzMjru5uREbG8vFixezHDsjzmAwmM2TMU52cfC/Qoz758z4PWPcnOb8a64iIlI6vfzyy/z00094eXkxffp0unXrhqura3GnJSIiIiIiIkWkUAo+jhw5Qv/+/UlNTaV58+YMGTLE9LBNVFQUq1atIiwsjH/84x/s37+fli1bFkYaIiIipUJMTAzjxo1j3bp1pKenm7VZWFjw4osvMn/+fCpXrlxMGYqIiOSsffv2RTJPZGQkQI5fdmYUWWT0zcn9K9hmN2Z24506dQq4VzTSoEEDIiIizNonTZrEzJkzeeutt/J0Dg4ODjg4OBAfH09kZKQKPkRECtn9u1RlJWOhm6z6PcyuVSIiIsVpy5YtODk5cfjwYSpVqpRjXxsbmyLKKrOFCxcybtw4U7FHjx49su3r4OBArVq1uHDhAseOHcuy4OPYsWMANG3a1Ox406ZNOX78uKk9u7i/FsZkjJNdXEREBLGxsQA0adLEdDzj95iYGCIjI7Nc0CC7XEVEpHSytLQ0/T569Ogc+xoMBlJTUws7JRERERERESlChVLw8eGHH5KWlsann37KxIkTM7W/8cYb/Pvf/2bixIlMnz6dbdu2FUYaIiIij7xbt27Rtm1bzp49C9z7su/+Isrjx4+zbt06Tpw4waFDh6hYsWIxZisiIlK8EhISALCzs8u2T8bDN/Hx8bkeL6cxsxsvJiYGAF9fX6pWrUpQUBBt2rQhNjaWpUuXMnv2bCZOnIizs7PZTiO5PYf4+PhcnQOAi4tLtm1Xr17F2dk5V+OIiDyOHrRLVcaq5uvXry+KdERERIpEXFwcXbt2fWCxR3H6/PPPGTNmjKnYo2fPng+M6dOnD59++ikBAQG88sorZm2JiYkEBQUB0Ldv30xx//nPf9i6dStJSUmZPq8FBARkGde9e3esra25ePEiBw4cwNPTM8u4Vq1aUbVqVdNxFxcXWrRoQVhYGAEBAUydOtUsLjQ0lOjoaGxsbOjevfsDz1tERB59GYsNFHRfEREREREReTQUSsHHwYMHadCgQZbFHhkmTJjAypUrOXDgQGGkICIiUip8+OGH/PLLL/z973/n888/p0GDBmbtZ86cYdSoURw4cIAPP/yQuXPnFlOmIiIicr+ML1bT09MJDg427cRRsWJFZs2aRXx8PIsXL+a9994zK/gQEZGS5UG7VGWsal5Uu1mJiIgUhVq1anHnzp3iTiNby5YtY/To0Xkq9gAYP348CxcuZPfu3Sxbtozhw4cDkJaWxujRo7l16xYtWrSgc+fOZnHdunWjSZMmhIeHM3r0aFasWGFaaX3p0qWEhIRgb2/Pm2++aRZXqVIlRo0ahb+/P6NHj2bPnj088cQTABw/fpxPPvkEIFNBB8CUKVPo06cPs2bNolu3bqadPGJiYkwru48ZM4YKFSrk9s8mIiKPsPT09OJOQURERERERIpRoRR8pKSkZLkV8l81aNCAX3/9tTBSEBERKRU2btyIo6MjwcHBODg4ZGqvX78+QUFB1KxZk40bN6rgQ0RESrRjx46xfv16zp49S3x8fJarzRkMBkJCQvI1fvny5QFISkrKtk9iYiJAltfV7MbLGDOrB2myG698+fLExMTQtm1bU7HH/UaPHs3ixYuJiIggMjLStINXQZ8DwKVLl7Jty2n3DxEREREReTy9+uqrTJkyhUuXLhX6Z4bjx4+bChgA0/eGS5YsYdu2babjmzZtwtnZmRMnTjBy5EiMRiMeHh6sX78+2522Vq5cafa6atWqrFy5kkGDBjFixAiWL1+Om5sbYWFhRERE4OTkREBAAAaDwSzOYDDw3//+l7Zt27Jq1SpCQ0Np0aIFkZGRHD16FCsrK1atWkWVKlUy5TBjxgyOHj3KoUOHqF27Nl5eXiQlJRESEkJKSgpvvfVWlgUrvXv3Zty4ccybN49WrVrh7e2NnZ0dISEh3Lp1C09PT6ZPn57rv7OIiIiIiIiIiIg8ugql4KNevXpER0c/sN/ly5epW7duYaQgIiJSKly7do2ePXvm+EBnhQoV6NChA998800RZiYiIpI3b7/9Nv/+979NRR4Gg8Gs4CPj9V8frMkLNzc3gBw/j2a0ZfTNSY0aNUy/X7x4McuFDbIbz8PDg5iYGDw8PLIc+/7jV69eNRV8uLm5cfz4cS5evJhlXHx8PPHx8bk+BxERKRxXr15ly5Yt3Lp1C6PRyLBhwzL1MRgMLF++vBiyExEReThjx47lyJEjeHl5MX/+fDp16oSFhUWhzBUfH8+RI0cyHb906ZJZ8fqff/4JYLr2Avzyyy/88ssv2Y7914IPgP79++Ph4cGMGTPYv38/4eHhODs788Ybb+Dn54eTk1OWY9WtW5dTp07x0UcfsW3bNjZt2kSFChXo27cvU6dONe3A8VflypVj7969zJ07lzVr1hAcHIy1tTWtW7dmzJgx9O/fP9v8/f398fT0ZOHChRw8eJCUlBRq1qyJr68vEyZMwNraOttYERERERERERERKT0KpeBj5MiRvP766+zbt4/27dtn2Wffvn3s37+fxYsXF0YKIiIipYKTk1OWq5//ldFo5KmnniqCjERERPIuMDCQuXPn4uLigp+fHxs2bGDXrl3s2LGD8+fPs2bNGg4dOoSvry9dunTJ9zxNmjQBICYmxmzXjPsdO3YMINuHce7n4OBArVq1uHDhAseOHcuy4CO78Zo1a0ZYWBg3btzIcuz7j9vb25t+b9q0KRs3bjSNm918dnZ21KlT54HnICIiBW/+/Pm88847pKSkkJ6eDvzvgdKMwsWMIkYVfIiIyKOoZs2aAERFRdG9e3esrKxwdnbOsujj2rVrWe5skVsdOnTI1f3P/PbPSrNmzdiwYUOe46pUqcKCBQtYsGBBnuKsra3x9fXF19c3z3MOGDCAAQMG5DlORERERERERERESo9CWY5n+PDhjB8/nh49evD2229z6tQpEhISSEhI4NSpU7zzzjv06NGD8ePHM2LEiMJIQUREpFTo2bMne/fuJS4uLts+t27d4rvvvqNHjx5FmJmIiEjuLV26FEtLS0JCQhg+fDjOzs4AdOrUidGjR3PgwAGmTp3K3LlzqVChQr7ncXFxoUWLFgAEBARkag8NDSU6OhobGxu6d++eqzH79OmT7XiJiYkEBQUB0LdvX7O2jFVaDx8+TFJSUqbYXbt2AfeKPZ5++mnT8d69ewNw4MCBLHf5yMjj+eefp0yZMrk6BxERKTghISG8+eablC1bFl9fX9PK2kuWLGHixImm3ZfGjx/PihUrijFTERGR/IuKiiIqKgq4V8SYkpLCxYsXTcfv/0lLSyveZEVERERERERERERKOYPxYZfBASwtLfOfgMFAamrqw6Yg+eTi4gJgti22iIjkTlG8h8bGxtKyZUucnJxYvHhxppXFT58+zahRo7h27RqHDx/miSeeKLRcSiNdB0VEHk5u30crV65MvXr1CA0NBeCVV15h1apVZg8GpaenU7NmTZo1a8b69evzndPmzZvp06cP9vb27Nu3z7TzRkxMDM899xw//vgjEydOZM6cOaaYTZs2MXnyZKpVq0ZISIjZeFeuXKF27dokJyezdOlShg8fDkBaWhqvvPIKq1evpkWLFhw5csS0qnuGdu3asX//fnx8fPj888+xsbEB4NSpU3Tp0oVr167xzjvvMHv2bLO43r17s2XLFjp27MjWrVuxtbUFYPv27Tz//PMYjUbCw8N55pln8v13yqBroYhI3vTq1YtvvvmGgwcP0rJlS+zs7EhOTjatNP7nn38yatQoNm7cyPHjx/Hw8CjmjOVBdC0UEcnst99+y3Xfli1bYmVlpffRR5iuhSIi+af30NJB/44iIvmn91AREZGiYVUQgzxMzUgB1JuIiIiUWm+//TYNGjRgy5YtNG7cmEaNGuHu7g5AZGQkp06dwmg00qtXL9555x2zWIPBwPLly4sjbRERETMJCQm4urqaXmeshp6YmIi9vT0AFhYWtGzZkn379j3UXL1792bcuHHMmzePVq1a4e3tjZ2dHSEhIdy6dQtPT0+mT59uFhMXF8fZs2e5c+dOpvGqVq3KypUrGTRoECNGjGD58uW4ubkRFhZGREQETk5OBAQEZCr2AFizZg3t2rVj5cqV7Nq1ixYtWhAbG8vhw4e5e/cunTp1ypQL3NsR5aeffmL37t3UrFmTtm3bcv36dfbt24fRaMTf379Aij1ERCTvjh49StOmTWnZsmWW7TY2NixevJjg4GA+/PBDVq5cWbQJioiIFIAaNWrkuq+VVYF81SgiIiIiIiIiIiIi2SiQu7Dp6ekFMYyIiIj8xcqVK00PkBqNRk6cOMGJEycy9duyZUumYyr4EBGRkuLJJ5/k1q1bpteVK1cGICoqigYNGpiOJyUlER8f/9Dz+fv74+npycKFCzl48CApKSnUrFkTX19fJkyYYCo4ya3+/fvj4eHBjBkz2L9/P+Hh4Tg7O/PGG2/g5+eHk5NTlnHVq1fnxIkTzJo1i40bN7J9+3asra1p2rQpQ4cOZfjw4VnumPnUU09x7NgxZs6cyYYNG9iyZQt2dnZ06dKFt99+G29v73z9XURE5OHdvHmTDh06ZDp++/Zt045MNjY2tG3bNtOuUSIiIiIiIiIiIiIiIiIieaVld0REREqwL774orhTEBEReWhubm789ttvptdNmjTBaDQSEBDAjBkzALh27Rr79u3L00qyORkwYAADBgzIVV8fHx98fHxy7NOsWTM2bNiQ5zwqVKjAzJkzmTlzZp7iHBwc8hUnIiKFy9HRkaSkJNNrCwsLAC5evEjdunVNx9PS0oiJiSny/ERERERERERERERERESkdFHBh4iISAk2dOjQ4k5BRETkoXl7e/PRRx8RFRWFm5sb3bp1w9HRkU8++YTz58/j6urK+vXrSUpKol+/fsWdroiISLZcXV2Jjo42vS5TpgwA27ZtMxV8JCYmsn//flxcXIolRxERkYKyYcMGAgMDOXv2LPHx8RiNxkx9rl27RpUqVYohOxEREREREREREZHHgwo+REREHhE//fQTBw8e5I8//qB+/fr06tULgPT0dFJTU7G2ti7mDEVERLI2cOBArly5QnR0NG5ubtjZ2fHFF18wcOBAs10zmjVrxuTJk4sxUxERkZy1b9+ef//73/z+++84OTlRtmxZDAYDU6ZM4dq1a7i6uvLll18SGxvLwIEDiztdERGRfDEajQwYMICNGzdmWeQBYDAYMBqN2baLiIiIiIiIiIiISMGwKO4EREREJGfR0dF07NiRhg0bMnLkSN577z02b95sal+2bBm2traEhIQUX5IiIiI5ePrpp1m2bBlt27Y1HXv++ec5f/48ixcv5uOPP2bjxo0cPnyYcuXKFWOmIiIiOevfvz8dOnTgxIkTAFhYWFChQgVSU1OZO3cu48eP5/jx49SoUYMPPvigeJMVERHJp2XLlrFhwwaeeeYZduzYQd++fTEYDJw9e5Zt27bxj3/8A4D33nsPJyenYs5WREREClpgYCAdOnSgUqVK2NnZ0ahRI2bPnk1KSkqexnFzc8NgMDzw58MPP3zgWCdPnsTa2hqDwUCtWrXye2oiIiIiIiKPJO3wISIiUoLFxsbSvn17oqKiaNCgAe3atWPRokVmfQYMGMCYMWPYunUr3t7exZSpiIhI3lWtWpWRI0cWdxoiIiK51qJFC3bt2mV2zM7OjpCQEAIDA4mNjeXpp5/mlVdeoUKFCsWUpYiIyMNZvXo1NjY2bN++nSpVqhAQEABA7dq1qV27Nt27d+e5555j9OjRVKpUCSsrfd0oIiJSWowfPx5/f3+srKzw8vLC3t6ePXv2MGnSJIKCgti5cye2tra5GuvFF1/kxo0bWbbFxsYSFBQEwHPPPZfjOHfv3mXIkCGkpqbm7WRERERERERKCd2BFRERKcE++eQToqKiePvtt/nkk08wGAyZCj4qVapEw4YNCQ0NLaYsRUREcnbx4sVc9bO2tsbR0RFra+tCzkhERKRgNW3alKZNmxZ3GiIiIgXi9OnTtG7dmipVqgBgMBgAMBqNpt9HjBjBZ599RkREBDY2NsWWq4iIiBSczZs34+/vj729Pfv27TN9zr1x4wZeXl6Ehobi5+fHnDlzcjVeTv1mz55NUFAQderUMdsZOisffvghp06dYsyYMSxYsCD3JyQiIiIiIlJKWBR3AiIiIpK9LVu24ObmxqxZs0xfpmbFw8ODK1euFGFmIiIiuefm5oa7u/sDf6pVq4adnR2NGzdm3rx5pKenF3fqIiIiIiIij53bt2/j7Oxsep1R0BEfH2/Wr3HjxqSkpBRpbiIiIlJ4ZsyYAYCvr6/ZogaVK1c2LUi3YMEC4uLiHnquFStWADBs2LAc+4WFhTFr1iz69+9Pv379HnpeERERERGRR5EKPkREREqw3377jaZNm2JhkfMl29ramtjY2CLKSkREJG9cXV1xdXXFaDSafhwcHKhQoYLZserVq2NpacmpU6eYMGECPXr0UNGHiIiIiIhIEXNycuKPP/4wvX7qqacAuHDhglm/2NhYjEZjkeYmIiIihePy5cuEhYUBMHjw4Eztbdq0oXr16vz5558EBwc/1FwHDhzg7NmzWFlZMXTo0Gz73blzh6FDh1KpUiXt7CEiIiIiIo81FXyIiIiUYGXLliUhIeGB/S5evEiFChWKICMREZG8i4yMpFWrVjg5ObFgwQJu3rzJzZs3iY2N5datWyxcuJAqVarQqlUrEhIS2Lt3L7Vq1WLnzp385z//Ke70RUREREREHiu1atUiIiLC9LpFixYYjUY+//xz07Gff/6ZvXv3YmVlVRwpioiISAELDw8HwNHREXd39yz7NG/e3KxvfmXs7tG9e3eqVKmSbT8/Pz9+/vln5s2bZypAFREREREReRyp4ENERKQEq1evHsePHycpKSnbPjdu3ODkyZM888wzRZiZiIhI7s2bN4/Nmzfz3XffMXr0aLMiRQcHB0aNGsWePXvYvHkzCxYsoF27dmzYsAGDwcCaNWuKMXMREREREZHHT+fOnYmMjOSnn34yva5evTorVqygRYsW9OvXj9atW5OSkoKtrW0xZysiIiIFITIyEri3W3N2qlevbtY3P5KSkli3bh0Ar776arb9Dh48yNy5c3nhhRcYNGhQvucTEREREREpDVTwISIiUoK9+OKLxMTE8NZbb5Genp5ln3feeYfk5GT+8Y9/FHF2IiIiubN8+XLat29PvXr1su1Tr149OnToYFrdrUGDBjRt2pQzZ84UVZoiIiIiIiICDBo0iA8//JDbt28DYG1tzddff82TTz7JDz/8wKZNm4iPj6dXr17Y29sXc7YiIiJSEBISEgCws7PLtk/GdT8+Pj7f86xbt47ExESqVKlC9+7ds+yTnJyMj48PFSpUYPHixfme634uLi7Z/ly9erVA5hARERERESksKvgQEREpwd544w0aNGjAf/7zH5599llmzJgBwK+//srcuXNp3bo1q1atonHjxvj4+BRvsiIiItn49ddfeeKJJx7Yz9HRkYiICNNrd3d30xeNIiIij6vAwEA6dOhApUqVsLOzo1GjRsyePZuUlJR8jffDDz/Qv39/nJycKFu2LO7u7owdO5br169n2T8tLY3169czefJkOnfuzBNPPIHBYMDKyirHea5fv86qVasYPHgwtWvXpmzZspQrV4569eoxbtw4oqKicoy/e/cun3zyCY0aNcLOzo5KlSrRoUMH1q9fn6/zFhGR3HN1dWXq1Kk0a9bMdKxVq1ZERkayfft21qxZw/Hjx9m0aRMGg6EYMxUREZFHzfLlywEYMmRItp8rfX19OX/+PJ999hnOzs5FmZ6IiIiIiEiJlPO3ciIiIlKsypYty44dO+jfvz8HDx4kPDwcgNDQUEJDQzEajbRo0YLNmzdTpkyZApkzMDCQhQsXcvLkSe7evUutWrV46aWXmDBhQr7n2LJlC8uXL+fo0aPExsZSsWJFatWqRdeuXZk2bZpZ37Nnz7J9+3Z27tzJyZMn+eOPPyhbtix169alb9++jB07VisHiog8YsqVK0dYWFiOfYxGI8eOHaNcuXKmY7dv36Z8+fKFnZ6IiEiJNX78ePz9/bGyssLLywt7e3v27NnDpEmTCAoKYufOndja2uZ6vPXr1zNo0CBSU1Np0aIF7u7uHDt2jAULFhAYGEhoaCi1atUyi0lISKB///55zv2tt95izZo1WFhY0KBBA3r16kVSUhJhYWHMnz+fFStWsGnTJjp16pQpNjk5mU6dOnHw4EEqVqxI165dSUxMZM+ePezbt4+JEycyZ86cPOckIiIPx9bWli5duhR3GiIiIlIIMu7DJiUlZdsnMTERAAcHh3zNce7cOQ4cOADAsGHDsuyzd+9eFixYQPfu3RkyZEi+5snKpUuXsm1zcXEpsHlEREREREQKgwo+RERESjhnZ2dCQ0PZsWMH33zzDREREaSnp1O9enW6devGCy+8UGAr6RX0w0R3797l5ZdfJjAwEFtbW1q3bo2TkxPXrl3jzJkzzJs3L1PBh7e3N5cvX6Zs2bI0b96cdu3a8fvvv3Po0CGOHTvG8uXL2bNnD66urgVyziIiUvjatWvH5s2bmTRpEjNmzMDS0tKsPT09nSlTpnDhwgX69u1rOh4REUG1atWKOl0REZESYfPmzfj7+2Nvb8++ffto2rQpADdu3MDLy4vQ0FD8/PxyXfhw5coVhg4dSmpqKkuWLGHEiBHAvR08fHx8+Oqrrxg8eDBHjhwx+4xZpkwZXnrpJZo0aULTpk1xdHSkcePGD5zP0dGRDz74gFdffdXsep6YmMjw4cNZu3YtAwcO5MKFC1SqVMksdsqUKRw8eJCGDRuyZ88eKleuDNzbnaRDhw783//9Hx06dKBnz565OncREcnZxYsX8x2bmpr6wF2fREREpORzc3MDIDo6Ots+GW0ZffNqxYoVALRp04a6detm2Wfz5s0YjUYuXrxIhw4dzNpu3boFwOXLl01tn332Wa4+o4qIiIiIiDzKDEaj0VjcSUjxyVipIKfVDEREJGul7T108+bN9OnTJ9uHiX788cc8r6I6dOhQVq1aRe/evVm2bJnpIR2493Dv0aNHadWqlVmMt7c3L730EgMGDDDbySMqKoqePXty5swZnnvuOfbs2fOQZ1z6/g1FRIpabt9Hz5w5w7PPPsudO3eoUaMG/fv3x83NDYPBQFRUFIGBgURFRVG2bFmOHDlCgwYNiIqKwsPDgzFjxjBv3ryiOJ3Hkq6FIiIPpzDfR5999lnCwsL46KOPmDp1qllbaGgobdu2xcbGht9//50KFSo8cLx3332XTz/9lI4dO7Jr1y6ztsTERFxcXIiLi+Pbb7/NcfX2qKgo3N3dsbS0JDU1NV/nlpycTJUqVUhISGD16tW8/PLLprabN29SpUoV7t69S2hoKJ6enmaxH330EX5+frRq1YpDhw7la/776VooIgIWFhb5XlAmPT2datWq6X30EaZroYhI/pWm99BLly5RvXp14N5CPO7u7pn6uLq6Eh0dTUBAAIMGDcrT+GlpaVSvXp2rV6/yxRdf4OPjk2W/jMXpcuu7777LVBiSV6Xp31FEpKjpPVRERKRoWBR3AiIiIlIyzJgxAwBfX19TsQdA5cqVWbRoEQALFiwgLi4uV+OFhISwatUqGjRowLp168yKPeDeF8l/LfbIiBs2bJhZsQfcWy3o888/B+7dvNUNAxGRR0f9+vUJDg7G2dmZqKgo5syZw5gxY3jjjTf49NNPiYyMpEqVKmzbto0GDRoAYG9vz3fffcfkyZOLOXsREZGid/nyZcLCwgAYPHhwpvY2bdpQvXp1/vzzT4KDg3M15qZNm7Idz97enl69egGwcePG/Kada+XKlTOt5vrX1WODg4O5e/curq6umYo94H/5Hz58mCtXrhR6riIijwNXV9d8//x1B0cRERF5NLm4uNCiRQsAAgICMrWHhoYSHR2NjY0N3bt3z/P4wcHBXL16lfLly9O/f/9s+3322WcYjcYsf7777jsAatasaTr2sMUeIiIiIiIijwLtsSwiIiK5fpgoOjqa4ODgXK3aM3/+fODeSjxlypQpkDybNGli+j06Otq0WoSIiJR87du358KFC6xfv559+/aZCveqVatGu3bt6N+/P7a2tqb+lStXpn379sWVroiISLEKDw8HwNHRMctVVQGaN29OdHQ04eHhD/yMlpCQwIULF0xx2Y23evVq09yFKSUlhaioKACcnZ3N2jLmzy5PDw8PHB0diY2N5cSJE1StWrVQcxUReRxkvCfnh+7PiYiIlB5TpkyhT58+zJo1i27dupkWiIuJiWH06NEAjBkzxmyXyU2bNjF58mSqVatGSEhItmOvWLECgIEDB2JnZ1eIZyEiIiIiIlL6qOBDRERECvxhorS0NNNN3Xbt2nHt2jXWrl3L2bNnsbGxoUmTJvTr1y/TLh4Pcv78edPvf30oSERESr6yZcvy8ssv8/LLLxd3KiIiIiVaZGQkcG/F9exUr17drG9O7n+QN7sx8zLew1q+fDk3btzA1taWbt26mbXl5txdXFyIjY0tklxFREREREQeF71792bcuHHMmzePVq1a4e3tjZ2dHSEhIdy6dQtPT0+mT59uFhMXF8fZs2e5c+dOtuNev36db775BoBXX321UM9BRERERESkNFLBh4iIiBT4w0QREREkJiYCcPjwYUaPHm16neGdd95h7dq1eHl55TrPWbNmAdC0aVPc3NxyHSciIiIiIvIoSUhIAMhx1dOMAvr4+Phcj5fTmHkZ72H8+OOPvPPOOwD4+fnh5ORk1l7Q5w45rz5/9epVLSggIiIiIiLy//n7++Pp6cnChQs5ePAgKSkp1KxZE19fXyZMmIC1tXWex1y9ejUpKSnUr1+fli1bFkLWIiIiIiIipZtFcScgIiIixa+gH6iJiYkx/f7qq6/SrFkzwsLCSEhI4MSJE3Tv3p0//viDF154wWzXjpysXLmSr7/+GktLS/z9/XMVA/ce7Mnu5+rVq7keR0RERERERB7OpUuXeP7550lMTKRXr174+voWd0oiIiIiIiLyFwMGDGDfvn3ExcWRnJzMjz/+yKRJk7Is9vDx8cFoNJrtLPlXEydOxGg0cvr06YfKq0OHDhiNRi5cuPBQ44iIiIiIiDxqtMOHiIiIFDij0Wj6vVq1auzYsQMbGxsAGjVqxNatW2ncuDGnT59m1qxZLF++PMfxQkJCGDlyJACzZ8+mTZs2hZe8iIiIiIhIMStfvjwASUlJ2fbJ2EXRwcEh1+NljFmhQoWHGi8/rl27hre3N7/99htdunRh3bp1GAyGbHMtqHOHe4Um2clp9w8RERERERERERERERGR4qaCDxERESnUh4l8fHxMxR4ZLC0tGTlyJGPHjmX37t05jhUaGsoLL7zA3bt3+de//sVbb731wPnvpwd7RERERETkUePm5gZAdHR0tn0y2jL65qRGjRqm3y9evEjDhg0fary8un79Ol5eXpw7d46OHTuyefPmTJ8TM2TMf/HixWzHy/icVxi5ioiIiIiIiIiIiIiIiJQkFsWdgIiIiBS/gn6YyM3NzbRSq4eHR5Z9Mo5fvXo123EOHjxI9+7dSUpKYurUqbz//vsPnFtERERERORR16RJEwBiYmKIjIzMss+xY8cAaNq06QPHc3BwoFatWmZxDzNeXvzxxx94eXnx888/4+3tzdatWylbtmy2/TPmzy7PiIgIYmNjgf/9nURERERERERERERERERKKxV8iIiISIE/TGRvb0/dunUBuHHjRpZ9Mo7b29tn2X748GG6du1KQkICU6ZM4aOPPnrgvCIiIiIiIqWBi4sLLVq0ACAgICBTe2hoKNHR0djY2NC9e/dcjdmnT59sx0tMTCQoKAiAvn375jftTG7cuIGXlxdnzpzB29uboKAgbG1tc4zp3r071tbWXLx4kQMHDmRqz8i/VatWVK1atcByFRERERERERERERERESmJVPAhIiIihfIwUf/+/QHYvXt3lu27du0C4Nlnn83UdvToUbp06WIq9vj4449zNaeIiIiIiEhpMWXKFABmzZrF8ePHTcdjYmIYPXo0AGPGjKFChQqmtk2bNlGvXj28vb0zjTd+/HjKlSvH7t27WbZsmel4Wloao0eP5tatW7Ro0YLOnTsXSP6xsbF4e3tz+vRpOnbsmKtiD4BKlSoxatQoAEaPHk1MTIyp7fjx43zyyScATJ06tUDyFBERERERERERERERESnJrIo7ARERESkZpkyZQp8+fZg1axbdunUz7eTxoIeJJk+eTLVq1QgJCTEbb9y4cSxYsIDg4GCWLFnCyJEjTW1r165lzZo1pn73O3bsGJ07dyY+Pl7FHiIiIiIi8tjq3bs348aNY968ebRq1Qpvb2/s7OwICQnh1q1beHp6Mn36dLOYuLg4zp49y507dzKNV7VqVVauXMmgQYMYMWIEy5cvx83NjbCwMCIiInByciIgIACDwZApdvTo0aaikz///BO4VyjSqlUrU58ePXrg5+dnev3aa69x6tQpDAYDjo6OpiKOrM6zd+/eZsdmzJjB0aNHOXToELVr18bLy4ukpCRCQkJISUnhrbfeomfPnrn7Q4qIiIiIiIiIiIiIiIg8wlTwISIiIkDBP0xUuXJlvv76a3r16sXrr7/O/Pnzefrpp/n1118JDw8HwM/PL9OOIZ07dyYuLo6KFSty+fJlfHx8sszX19eXevXqFczJi4iIiIiIlED+/v54enqycOFCDh48SEpKCjVr1sTX15cJEyZgbW2dp/H69++Ph4cHM2bMYP/+/YSHh+Ps7Mwbb7yBn58fTk5OWcb99NNPHDlyJNPx+4/99fNZbGwsAEajkXXr1mWbk5ubW6aCj3LlyrF3717mzp3LmjVrCA4OxtramtatWzNmzBjTjpIiIiIiIiIiIiIiIiIipZ3BaDQaizsJKT4uLi4AXLp0qZgzERF59JTW99B169axcOFCTpw4YXqY6OWXX87yYaKVK1fyyiuvUKNGDaKiorIc79y5c8yYMYPdu3dz/fp1HBwcaNmyJW+++SadO3fO1D+r1WSz8t1339GhQ4e8np6Z0vpvKCJSVPQ++ujTv6GIyMPR++ijT/+GIiIPR++jjz79G4qI5J/eQ0sH/TuKiOSf3kNFRESKhnb4EBERETMDBgxgwIABuerr4+OT7Q4cGerUqcPKlStzPb9qUUVEREREREREREREREREREREREREwKK4ExARERERERERERERERERERERERERERERERFzKvgQEREREREREREREREREREREREREREREREpYVTw8f8lJCQwZcoU6tati62tLZUrV6ZHjx7s2bMn32Omp6ezZMkSWrZsSfny5SlfvjwtW7Zk6dKlGI3GLPsfPHiQadOm0aZNG5544gnKlClD5cqV6dSpE2vWrMkyTkRERERERERERERERERERERERERERERESher4k6gJLh+/Tpt27bl3LlzODs78/zzz/P777+zfft2tm/fjr+/P2PHjs3TmGlpaQwYMICNGzdSrlw5vL29Adi9ezcjR45k9+7drF27FguL/9XcRERE4OnpCYCjoyPNmzenUqVKREREsHv3blPMhg0bsLa2Lrg/gIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIlCja4QMYMWIE586dw9vbmwsXLrBu3Tr27dvHtm3bsLCwYPz48Zw6dSpPY86fP5+NGzdSrVo1Tp8+zdatW9m6dStnzpyhatWqBAYGsmjRIrMYg8GAl5cX27dv5/r16+zYsYO1a9dy9OhR9u7di52dHdu2bWPWrFkFefoiIiIiIiIiIiIiIiIiRe7s2bPMnz8fHx8fGjZsiJWVFQaDgY8++ijbmOjoaJYsWcKIESNo1qwZNjY2GAwGXnvttQfOl5SUxMyZM2nevDkODg6UKVOGKlWq0LNnT7Zu3Zpj7IULF/Dx8cHFxQUbGxtcXFzw8fEhIiIix7iEhASmTJlC3bp1sbW1pXLlyvTo0YM9e/bkGJeens6SJUto2bIl5cuXp3z58rRs2ZKlS5diNBofeK4iIiIiIiIiIiJSOjz2BR8//fQTW7ZswdLSkuXLl1OuXDlTW/fu3fHx8SE9PZ2ZM2fmesz09HQ++eQTAD755BPc3d1Nbe7u7qa2mTNnkp6ebmqrWbMmISEhdO3aFUtLS7Mx27dvj6+vLwCrVq3K+4mKiIiIiIiIiIiIiIiIlCCLFy9m3LhxfPnll5w+fZq0tLQHxmzYsIHXX3+dZcuWcfz4ce7evZuruWJiYnj22WeZMmUKZ8+epXXr1vTt25dq1arxzTff8MILL/Dmm29mGXvgwAEaNWrEl19+ScWKFenTpw8VK1bkyy+/5JlnnuHw4cNZxl2/fp3mzZszc+ZMEhISeP7556lfvz7b/x97dx4XZb3////JIqgsbiQuqKAel0A7kmvoObmkReWupZZSmhqp6Wlx6Wud0tTKTyfccknTMj/mhorh0cCy0DJQsoP6wQ0TFVM0ZdFcYH5/+GOOEwMOMMAM87jfbtxucL2X6zWM1/X0At7XtX27evToofnz55sdl5OTo0GDBmns2LFKSkpS165d1bVrV/3nP//RmDFj9NRTT5n8jhEAAAAAAABAxeXwCz4iIyMlSSEhIWrUqFG+9qFDh0qSoqKidOvWLYvm/OGHH3T+/Hm5u7trwIAB+doHDBggNzc3nTt3Tvv27bO41jZt2ki6c+ciAAAAAAAAAAAAwJ4FBQXp1Vdf1RdffKEjR47o2WefveeYgIAAjR8/Xp9++qkOHjyoN954w6J9vfPOOzp8+LAefPBB/frrr9qxY4e+/PJL7d+/X1999ZVcXV01b968fIs3rl27psGDB+vatWuaOnWqkpKStHbtWiUlJWnq1KnKzs7W4MGDdf369Xz7HD16tI4eParu3bvr+PHjWrdunXbv3q1t27bJ2dlZEydO1C+//JJv3Pz587Vp0ybVr19fSUlJ2rp1q7Zu3apDhw6pXr16Wr9+vRYtWmTR6wYAAAAAAABg3xx+wUdiYqIkqW3btmbb87ZnZ2fr2LFjRZozMDBQlStXztdepUoVBQYGmvS1RN7+69ata/EYAAAAAAAAAAAAwBaNGjVKH3zwgYYOHaoWLVrI2fnev7rs06eP5s2bp7CwMLVu3Vqurq4W7WvXrl2SpMmTJ6tmzZombaGhoerataukOzd2u9vKlSt17tw5NWvWTDNnzjRpmzlzppo1a6bU1FR99tlnJm2HDx/Wli1b5OLiouXLl6tq1aom+wsLC1Nubq5mz55tMi43N1fvvfeeJOm9995TQECAsS0gIMDYNnv2bJ7yAQAAAAAAADgAh1/wkZKSIklq2LCh2XZvb295e3ub9C3pnJLUoEGDIs157do1zZs3T5LMPjUEAAAAAAAAAAAAgHnmbtJmjo+Pj8nXkZGRkqSnn34634IUZ2dnPfXUU5KkTZs2mR0XEhKiRo0a5dvP0KFDJUlRUVG6deuWcfsPP/yg8+fPy93d3ezvBAcMGCA3NzedO3dO+/bts+g1AQAAAAAAALBfDr/gIzMzU5Lk4eFRYB9PT09JUkZGRrnNGR4erpSUFNWrV0/Tpk2zaEwePz+/Aj/S0tKKNBcAAAAA2IP169fr4YcfVo0aNeTh4aEHHnhA77//vskf0RTF/v37NWjQIPn6+qpy5coKCAjQ+PHjdeHCBbP9T506JScnp0I/pkyZUuD+9u3bp4EDB6pOnTpyc3NT/fr19cwzz+jw4cPFqh8AAAAAHN1jjz0m6c5TMy5fvmzSFh0drW+++UZ16tRR7969TdoSExMlSW3btjU7b972vH5FHZedna1jx47lGxcYGGh2kUqVKlUUGBhodp8AAAAAAAAAKh7LnnFso15//XVt3bq1yOM++eQTde7cuRQqKh0zZszQqlWrVLlyZa1bt061atUq75IAAAAAwGZNnDhRERERcnV1Vbdu3eTp6aldu3Zp8uTJioqK0s6dO1WlShWL59uwYYOGDBmi27dvq127dgoICFBCQoIWLFig9evXKy4uTk2bNjU71sPDQwMHDjTb9uCDD5rdvnTpUoWHhysnJ0ctW7ZU586ddezYMX3xxRfasGGDNm/erEcffdTi+gEAAAAA0uTJk/XTTz9px44datSokUJCQlS9enUdP35c+/fvV0hIiJYvX65q1aoZx2RmZurSpUuSpIYNG5qdt0GDBpKkixcvKjs723hDuJSUlELHeXt7y9vbWxkZGUpJSdH9999v0bi8fSYmJhr7AgAAAAAAAKi47HrBx7lz55ScnFzkcVlZWcbPvby8JN25e869+nt7e1s0vzXn/PDDD/Xmm2/K3d1dkZGRCgkJsaiGu505c6bANj8/vyLPBwAAAAC2avPmzYqIiJCnp6d2796t4OBgSVJ6erq6deumuLg4TZ8+XXPnzrVovnPnzmnEiBG6ffu2lixZotGjR0uScnJyFBYWptWrV2vo0KHat2+fnJyc8o338fHRypUrLa7/l19+MS72+PDDDzVp0iRj26effqrnn39eTz/9tI4fPy4fHx+L5wUAAAAAR+fh4aGoqChNmzZN//M//6MdO3YY22rVqqUePXqofv36JmMyMzNNxpvj6elp/DwjI8PYL29sQePyxmZkZCgjIyPfPu81Lm9/lijs94FpaWmqW7euRfMAAAAAAAAAKHvO5V1ASaxevVoGg6HIH3ffCdXf31+SdPr0abP7uPuHrHl97+Vec0pSamrqPeecP3++XnnlFbm5uWnjxo3cwRUAAAAA7mHWrFmSpClTphgXe0h3Fl4sWrRIkrRgwQJdvXrVovk++ugjXbt2TT169DAu9pAkFxcXffzxx6pWrZri4+O1c+dOq9S/cOFC5eTk6O9//7vJYg9Jeu6559SvXz9dvXpVERERVtkfAAAAADiKtLQ0hYSEaP78+Zo5c6ZOnjyprKws/fTTT3rwwQf19ttvq3PnziaLPAAAAAAAAACgvNn1gg9ryPsDoISEBLPteds9PDzUrFmzIs156NAh/fHHH/nar1+/rkOHDpn0/bOFCxdqwoQJxsUejz/+uEX7BgAAAABHdfbsWcXHx0uShg4dmq+9c+fOatCggW7cuKHo6GiL5oyMjCxwPk9PT/Xu3VuStGnTpuKWbSKv/h49ephtz9u+YcMGq+wPAAAAABzFiBEjFB8frxkzZmjatGkKCAiQh4eH2rVrp23btqlVq1Y6ePCgyRMhvby8jJ9nZ2ebnTcrK8v4ube3d76xBY27e6w1xhXmzJkzBX7wdA8AAAAAAADAtjn8go++fftKkvbs2WP2iRxr1qyRJD355JOqVKmSRXN26tRJderU0Y0bN7Rx48Z87Rs3btTNmzdVr149dejQIV/74sWLNW7cOONijyeeeKIIrwgAAAAAHFNiYqIkqWbNmgoICDDbp23btiZ9C5OZmanjx4+bjCvqfNnZ2ZozZ47Gjh2r8ePH66OPPlJycnKB+8z7o51atWqZbffx8ZEkJScnF/rHPwAAAACA/zp79qy+/vprSdKQIUPytVeqVEkDBw6UJMXExBi3e3l5qWbNmpJk9veIkpSamirpzvWah4eHcbu/v3+h4zIyMpSRkWHS15Jxd+/z7nEAAAAAAAAAKiaHX/ARGBioPn36KCcnRyNHjtT169eNbdu3b9fKlSvl7OysqVOn5hs7fPhwtWjRQgsWLDDZ7uzsrMmTJ0uSJk+erJSUFGNbSkqKpkyZIkmaOnWqnJ1N34Jly5YpPDycxR4AAAAAUER5114NGzYssE+DBg1M+hbm1KlTxs8LmvNe86Wnp2vq1KlasmSJFixYoEmTJqlly5Z69tlnTe4Cm6d27dqSpJMnT5qdL2+7wWAwqQ8AAAAAULC7F08U9FSMatWqSZIuX75ssj04OFiSlJCQYHZc3va8fkUd5+HhoWbNmuUbd+jQIf3xxx/5xl2/fl2HDh0yu08AAAAAAAAAFY/DL/iQpKVLl+ovf/mLYmJi1KRJEz311FPq2rWrHn/8ceXk5Ohf//qXWrdunW/c6dOnlZycrPT09Hxt48ePV79+/XT27FkFBQWpT58+6tOnj4KCgnT27FkNHDhQ4eHhJmN+/vlnjRkzRgaDQY0bN9aGDRsUFhZm9gMAAAAAYCozM1OSTO6o+meenp6SZLyLqiXzFTZnQfO5u7vrhRde0I4dO5Samqpr167p0KFDmjFjhqpWrarVq1drwIABMhgMJuO6desmSfriiy907do1k7Zbt25pxYoVxq8teQ2S5OfnV+BHWlqaRXMAAAAAgD2rX7++8fN9+/aZ7fPjjz9KUr4nRvbr10+StHbtWuXm5pq05ebm6ssvv5Qk9e/f36Stb9++kqQ9e/aYfVrHmjVrJElPPvmkKlWqZNzeqVMn1alTRzdu3NDGjRvzjdu4caNu3rypevXqqUOHDmZfCwAAAAAAAICKgwUfunMH1YSEBE2ZMkWenp7asmWLfvnlF/Xq1UsxMTGaMGFCked0cXHRhg0btHjxYt1///2KjY1VbGysAgMDtXjxYq1bty7f0z2uXLli/GOf//u//9OqVasK/AAAAAAA2K66detq6dKl6tmzp/z8/FSlShXdf//9+n//7/9p165dcnFx0c6dO7VlyxaTcS+99JJ8fHyUlpamXr16KT4+XtnZ2Tp48KCeeOIJk6d6/PmaEgAAAABgXsOGDdWuXTtJ0ssvv5zviYmrV682LtwYOnSoSVtYWJjq1auno0ePavr06SZt06dP19GjR+Xn56fhw4ebtAUGBqpPnz7KycnRyJEjdf36dWPb9u3btXLlSjk7O2vq1Kkm45ydnTV58mRJ0uTJk02eKJmSkqIpU6ZIkqZOncp1IQAAAAAAAOAAXMu7AFvh7e2t2bNna/bs2RaP+fbbbwttd3Z21pgxYzRmzBiL5nv44Yfz3d0VAAAAAGAZLy8vSVJ2dnaBfbKysiTduQa0dL68OatVq1ai+fK0b99eTz75pDZv3qyoqCjjXV8lydfXV1999ZX69++vuLg4tW/f3thWpUoVffzxxxo1apQkqWbNmhbt78yZMwW2+fn5WVw3AAAAAFjbgQMHFB4ebvz6xIkTkqQlS5Zo27Ztxu2RkZGqW7euJCktLc341A3pv9c8W7duVceOHY3bFy1apODgYOPXK1asUNeuXXXkyBG1bNlSHTt2lI+Pj44cOaJDhw5Jkp555hkNGzbMpMaqVatq3bp16tmzp2bNmqWtW7cqKChISUlJSkpKkoeHh9avX68qVarke31Lly7V4cOHFRMToyZNmqhLly66cOGCdu/eLYPBoIiICLVu3TrfuPHjx+u7775TZGSkgoKC1KNHD0lSTEyMrl27poEDB5p83wAAsKb169dr4cKFOnjwoG7evKmmTZtq2LBhmjRpkslTqe7F399fv/766z37vf3223rzzTeNXx8+fFhLly7VgQMHdOrUKaWnp8tgMKh+/fr6+9//rokTJ6pVq1bFem0AAAAAYI9Y8AEAAAAAqBD8/f0lSampqQX2yWvL61uYRo0aGT8/ffq02V8iFmW+u7Vs2VKbN282uxijffv2OnbsmCIjIxUfH6/r16+rSZMmevrpp413hPXw8FDjxo2LtE8AAAAAsDUZGRnat29fvu1nzpwxuV66ceOGyefmxly8eFEXL140mftueYs0/vWvf2n79u2Kj4/XjRs3VKNGDfXq1UvPP/+8Bg8ebLbOkJAQHTx4UDNmzFBMTIw2btyo++67T8OHD9ebb76pJk2amB1Xu3ZtJSQkaPbs2dq4caO2bNkiDw8P9erVS6+++qq6d+9udpyLi4s2bNigZcuW6ZNPPlFsbKykO08NGTlypEaPHi0nJyezYwEAKImJEycqIiJCrq6u6tatmzw9PbVr1y5NnjxZUVFR2rlzp9lFjuYMHDhQ6enpZtsuX76sqKgoSVLXrl1N2vbu3auIiAj5+vqqefPm6tSpk65du6b//Oc/WrFihT777DN99tlnGjJkSMleLAAAAADYCRZ8AAAAAAAqhDZt2kiSLl26pJSUFAUEBOTrk5CQIEkmd3ktiLe3t5o2barjx48rISHB7IKPosx3t0uXLkkyfYrI3apUqaKhQ4dq6NChJtuXL18u6c4vQV1cXIq0TwAAAACwNQ8//LAMBkORxvj7+xd5TB5fX1/NmTNHc+bMKfLYpk2batWqVUUe5+3trdmzZ2v27NlFGufs7KwxY8ZozJgxRd4nAADFsXnzZkVERMjT01O7d+82/swzPT1d3bp1U1xcnKZPn665c+daNF9h/d5//31FRUWpWbNm6tKli0lbjx49dOTIEbVo0cJke25urj788EO99tprGjVqlB599FHVqFGjiK8SAAAAAOyPc3kXAAAAAACANfj5+aldu3aSpDVr1uRrj4uLU2pqqtzd3RUaGmrRnP369StwvqysLONd6Pr3729xndnZ2cZx7du3t3jc7du3FRERIUkaN26cxeMAAAAAAAAA4F5mzZolSZoyZYrJDW58fHy0aNEiSdKCBQt09erVEu9rxYoVkqTnn38+X5u/v3++xR7SncWQr776qho3bqxr164pLi6uxHUAAAAAgD1gwQcAAAAAoMKYNm2aJGnOnDk6cOCAcfulS5cUHh4u6c5iiWrVqhnbIiMj1aJFC3Xv3j3ffBMnTlTVqlUVExOjZcuWGbfn5OQoPDxcV65cUbt27dSzZ0+TcUuXLlVqamq++VJSUtSnTx+lpaWpevXqZn+hmZCQoNu3b5tsu3z5soYMGaL//Oc/GjJkiHr16mXJtwMAAAAAAAAA7uns2bOKj4+XpHxPHZakzp07q0GDBrpx44aio6NLtK89e/YoOTlZrq6uGjFiRJHHu7q6SpLc3d1LVAcAAAAA2AvX8i4AAAAAAABr6du3ryZMmKB58+apY8eO6t69uzw8PBQbG6srV64oJCREM2bMMBlz9epVJScn648//sg3X7169bRy5UoNGTJEo0eP1vLly+Xv76/4+HidPHlSvr6+WrNmjZycnEzGLVq0SGPHjlVgYKCaNWsmNzc3paSk6Oeff9aNGzdUq1Ytbdq0ST4+Pvn2OWrUKJ09e1atW7eWr6+v0tPTtXfvXmVnZ+uJJ54w3v0OAAAAAAAAAKwhMTFRklSzZk0FBASY7dO2bVulpqYqMTFRQ4YMKfa+8n6+GRoaqjp16hRp7NKlS3X06FHVrl1bHTt2LHYNAAAAAGBPWPABAAAAAKhQIiIiFBISooULF2rv3r26deuWmjRpoilTpmjSpElyc3Mr0nyDBg1S48aNNWvWLH3//fdKTExU3bp19dJLL2n69Ony9fXNN2bChAnasWOHfvnlF3377bfKyMiQp6enWrdurdDQUIWHh6t27dpm9zdq1Cht3LhRSUlJ+v7771WtWjV17txZzz33nJ566qlifU8AAAAAAAAAoCApKSmSpIYNGxbYp0GDBiZ9iyM7O1vr1q2TJI0cObLQvteuXTM+tfnq1atKSkrS8ePH5evrq/Xr18vb27vYdQAAAACAPWHBBwAAAACgwhk8eLAGDx5sUd+wsDCFhYUV2ufBBx/Uxo0bLd7/888/r+eff97i/ncbN26cxo0bV6yxAAAAAAAAAFBUmZmZkiQPD48C+3h6ekqSMjIyir2fdevWKSsrS3Xq1FFoaGihfW/evKlVq1aZbGvcuLGWL1+uLl26FGm/fn5+BbalpaWpbt26RZoPAAAAAMqSc3kXAAAAAAAAAAAAAAAAAKBiW758uSRp+PDhcnUt/B611atXl8FgkMFg0Pnz5xUdHa377rtPXbt21WuvvVYW5QIAAACATeAJHwAAAAAAAAAAAAAAAICD8vLykiRlZ2cX2CcrK0uS5O3tXax9HD16VHv27JGkIj8d2dfXV4899pi6d++uDh06aO7cufr73/+uJ554wqLxZ86cKbCtsKd/AAAAAIAt4AkfAAAAAAAAAAAAAAAAgIPy9/eXJKWmphbYJ68tr29RrVixQpLUuXNnNW/evFhzuLm5adiwYZKkyMjIYs0BAAAAAPaGBR8AAAAAAAAAAAAAAACAg2rTpo0k6dKlS0pJSTHbJyEhQZIUHBxc5PlzcnL02WefSZJGjhxZzCrv8PDwkCRduHChRPMAAAAAgL1gwQcAAAAAAAAAAAAAAADgoPz8/NSuXTtJ0po1a/K1x8XFKTU1Ve7u7goNDS3y/NHR0UpLS5OXl5cGDRpUolpjY2MlSc2aNSvRPAAAAABgL1jwAQAAAAAAAAAAAAAAADiwadOmSZLmzJmjAwcOGLdfunRJ4eHhkqRx48apWrVqxrbIyEi1aNFC3bt3L3TuFStWSJKefvpp4xM6CvLRRx8pNTU13/Zr165p5syZ2rhxo1xdXfXcc89Z9sIAAAAAwM65lncBAAAAAAAAAAAAAAAAAMpP3759NWHCBM2bN08dO3ZU9+7d5eHhodjYWF25ckUhISGaMWOGyZirV68qOTlZf/zxR4HzXrhwQV999ZUkaeTIkfes46OPPtI//vEPtWzZUs2bN1flypWVlpamgwcP6vfff5e7u7uWLVumoKCgkr1gAAAAALATLPgAAAAAAAAAAAAAAAAAHFxERIRCQkK0cOFC7d27V7du3VKTJk00ZcoUTZo0SW5ubkWe8/PPP9etW7cUGBioDh063LP/rFmztHPnTiUkJOi7777TlStX5OHhoSZNmmjkyJF68cUX1bhx4+K8PAAAAACwS04Gg8FQ3kWg/Pj5+UmSzpw5U86VAID94Rxq/3gPAaBkOI/aP95DACgZzqP2j/cQAEqG86j94z0EgOLjHFox8D4CQPFxDgUAoGw4l3cBAAAAAAAAAAAAAAAAAAAAAAAAMMWCDwAAYGL9+vV6+OGHVaNGDXl4eOiBBx7Q+++/r1u3bhV7zi1btqh3796qU6eO3NzcVLt2bT300EN655138vXNzs7WmjVr9Morr+jhhx+Wt7e3nJyc1LRp05K8LAAAAACwS9a+Rtu/f78GDRokX19fVa5cWQEBARo/frwuXLhgtn9OTo42bNigqVOnqmfPnqpVq5acnJzk6up6z31FR0frn//8p5588knVq1dPTk5OcnJysuiOf3v37tVTTz2lBg0ayM3NTR4eHmrVqpUmT55cYK0AAAAAAAAAAABAReNkMBgM5V0Eyg+PVQOA4quI59CJEycqIiJCrq6u6tatmzw9PbVr1y5duXJFnTt31s6dO1WlShWL57t586aeeeYZrV+/XlWqVFGnTp3k6+ur8+fP69ChQ8rJyVF6errJmJ9//llt2rTJN1eTJk10/PjxEr/Gu1XE9xAAyhLnUfvHewgAJVPa51FrX6Nt2LBBQ4YM0e3bt9WuXTsFBAQoISFBJ0+elK+vr+Li4vIttr9y5Ypq1KiRby4XFxfdvn270P1Vr15dV69ezbc9NTXV+L0zZ9GiRRo3bpwMBoOCgoLUsmVLZWVl6ccff9Tvv/+u2rVra/fu3WrRooWFr7xgZCEAlAznUfvHewgAxcc5tGLgfQSA4uMcCgBA2bj3bdgAAIBD2Lx5syIiIuTp6andu3crODhYkpSenq5u3bopLi5O06dP19y5cy2e84UXXtD69evVt29fLVu2TD4+Psa23Nxc/fTTT/nGeHl56bnnnlNwcLDatGmjK1eu6Iknnij5CwQAAAAAO2Lta7Rz585pxIgRun37tpYsWaLRo0dLuvMEj7CwMK1evVpDhw7Vvn375OTkZBxXqVIlDRs2TG3atFFwcLBq1qypv/71rxbts3///vrLX/6i4OBgBQcHq3bt2vcc89tvv2nSpEkyGAxauXKlRowYYWzLzMzUwIEDtXPnTk2cOFH//ve/LaoDAAAAAAAAAAAAsFc84cPBscoWAIqvop1D27dvr/j4eM2cOVNvvPGGSVtcXJy6dOkid3d3/fbbb6pWrdo954uNjVWPHj0UFBSkAwcOqFKlSsWq69tvv1XXrl15wgcA2CDOo/aP9xAASqY0z6PWvkZ7/fXX9cEHH6hHjx76+uuvTdqysrLk5+enq1ev6t///rd69epV4DynTp1SQECARU/4+LO8hSSFPeFj48aNGjhwoO6//34dOnQoX/vevXsVEhIib29vs08PKSqyEABKhvOo/eM9BIDi4xxaMfA+AkDxcQ4FAKBsOJd3AQAAoPydPXtW8fHxkqShQ4fma+/cubMaNGigGzduKDo62qI558+fL0maOHFisRd7AAAAAIAjKo1rtMjIyALn8/T0VO/evSVJmzZtKm7ZVlG5cmWL+t39BEkAAAAAAAAAAACgomLBBwAAUGJioiSpZs2aCggIMNunbdu2Jn0Lk5OTo9jYWEnS3/72N50/f14fffSRXnzxRU2cOFGrVq1SVlaWlaoHAAAAgIrF2tdomZmZxicm5o0ryXylqVOnTqpWrZoOHz6sVatWmbRlZWXp7bffliSNGTOmPMoDAAAAAAAAAAAAypRreRcAAADKX0pKiiSpYcOGBfZp0KCBSd/CnDx50rig48cff1R4eHi+BR6vvfaa1q5dq27duhW3bAAAAACokKx9jXbq1Cnj5wXNWZT5SlPNmjW1atUqDRs2TGFhYZo7d65atmyp7Oxs/fDDD5Kkd999V6+99lq51gkAAAAAAAAAAACUBRZ8AAAAZWZmSpI8PDwK7OPp6SlJysjIuOd8ly5dMn4+cuRIPfTQQ5o7d65atGihEydOaNq0aYqOjlafPn104MAB/eUvfynhKyiYn59fgW1paWmqW7duqe0bAAAAAIrD2tdoefMVNmdR5ittffr00e7du/XUU08pKSlJSUlJxraePXsqJCRETk5OFs/HdSEAAAAAAAAAAADslXN5FwAAACoeg8Fg/Lx+/frasWOH2rZtK09PTz3wwAPaunWrgoKClJWVpTlz5pRjpQAAAAAAW/Pxxx+rU6dOqlWrlr799ltdvXpVqampWrhwoX788Ud169ZNK1euLO8yAQAAAAAAAAAAgFLHEz4AAIC8vLwkSdnZ2QX2ycrKkiR5e3tbPJ8khYWFyd3d3aTdxcVFY8aM0fjx4xUTE1Ocki125syZAtsKu8srAAAAAJSX0rxGy87OVrVq1Uo0X2nas2ePwsPDVbduXe3cudNYq7e3t8LDw1WzZk0NGTJEEydOVN++fVW9evV7zsl1IQAAAAAAAAAAAOwVT/gAAADy9/eXJKWmphbYJ68tr++95nNycpIkNW7c2GyfvO1paWlFqBQAAAAAKj5rX6M1atTI+Pnp06dLPF9pyntyR2hoqNmFKQMHDpSbm5uuXr2q+Pj4Mq4OAAAAAAAAAAAAKFss+AAAAGrTpo0k6dKlS0pJSTHbJyEhQZIUHBx8z/k8PT3VvHlzSVJ6errZPnnbPT09i1wvAAAAAFRk1r5G8/b2VtOmTU3GlWS+0pS3IKWgJ424urrKw8NDknT58uUyqwsAAAAAAAAAAAAoDyz4AAAA8vPzU7t27SRJa9asydceFxen1NRUubu7KzQ01KI5Bw0aJEmKiYkx2/71119Lktq3b1+ckgEAAACgwiqNa7R+/foVOF9WVpaioqIkSf379y9u2VZRv359SdK+ffvMticnJ+v333+XJAUEBJRZXQAAAAAAAAAAAEB5YMEHAACQJE2bNk2SNGfOHB04cMC4/dKlSwoPD5ckjRs3TtWqVTO2RUZGqkWLFurevXu++SZMmKAaNWooOjpaS5YsMWlbu3atvvjiC2M/AAAAAIApa1+jTZw4UVWrVlVMTIyWLVtm3J6Tk6Pw8HBduXJF7dq1U8+ePUvrJVlk4MCBkqS9e/fqgw8+kMFgMLZduHBBI0eOlCQ1a9ZMbdu2LZcaAQAAAAAAAAAAgLLiWt4FAAAA29C3b19NmDBB8+bNU8eOHdW9e3d5eHgoNjZWV65cUUhIiGbMmGEy5urVq0pOTtYff/yRbz4fHx99+eWX6t27t8aOHav58+erZcuWOnHihBITEyVJ06dPN3s32n79+iktLU2SlJGRIUk6c+aMOnbsaOwzatQojRo1ymqvHwAAAABsibWv0erVq6eVK1dqyJAhGj16tJYvXy5/f3/Fx8fr5MmT8vX11Zo1a+Tk5JRvbHh4uHHRyY0bNyTdWShy9zXa448/runTp5uMmzFjhr766qt88/Xu3Vtubm6SpODgYC1atMjYFhoaqjFjxmjJkiV6/fXXtXTpUrVu3VqZmZnat2+fMjIyVL16dX3++edyduZ+RgAAAAAAAAAAAKjYWPABAACMIiIiFBISooULF2rv3r26deuWmjRpoilTpmjSpEnGP8ix1COPPKKDBw9q1qxZiomJ0ZYtW+Tt7a3Q0FC9/PLLBd45NjExUb/++qvJths3bmjfvn3Grx999NGiv0AAAAAAsCPWvkYbNGiQGjdurFmzZun7779XYmKi6tatq5deeknTp0+Xr6+v2XGHDx82uR7Lc/e2Fi1a5Gs/ceKE2XF5NwGQpMqVK+drX7x4sR577DEtX75cCQkJioqKkqurqwICAtSrVy/94x//kJ+fn0WvGQAAAAAAAAAAALBnTgaDwVDeRaD85P1i9MyZM+VcCQDYH86h9o/3EABKhvOo/eM9BICS4Txq/3gPAaBkOI/aP95DACg+zqEVA+8jABQf51AAAMoGz7wHAAAAAAAAAAAAAAAAAAAAAACwMSz4AAAAAAAAAAAAAAAAAAAAAAAAsDEs+AAAAAAAAAAAAAAAAAAAAAAAALAxLPgAAAAAAAAAAAAAAAAAAAAAAACwMSz4AAAAAAAAAAAAAAAAAAAAAAAAsDEs+AAAAAAAAAAAAAAAAAAAAAAAALAxLPgAAAAAAAAAAAAAUOaSk5M1f/58hYWFqVWrVnJ1dZWTk5NmzpxZ4JjU1FQtWbJEo0eP1oMPPih3d3c5OTlp1KhRFu93y5Yt6t27t+rUqSM3NzfVrl1bDz30kN55550Cxxw/flxhYWHy8/OTu7u7/Pz8FBYWppMnTxa6r8zMTE2bNk3NmzdXlSpV5OPjo8cff1y7du0qdFxubq6WLFmiDh06yMvLS15eXurQoYOWLl0qg8Fg8WsFAAAAAAAAYN9cy7sAAAAAAAAAAAAAAI7n448/VkRERJHGbNy4UZMmTSrW/m7evKlnnnlG69evV5UqVdSpUyf5+vrq/PnzOnTokObNm6c333wz37g9e/aoZ8+eunbtmgIDA9W5c2clJSVp1apV2rBhg2JiYtSxY8d84y5cuKAuXbro6NGjqlu3rp588kn99ttv2r59u7Zv366IiAiNHz8+37icnBwNHjxYmzZtUtWqVdW9e3dJUkxMjMaMGaOYmBitXbtWzs7c2w8AAAAAAACo6PgpIAAAAAAAAAAAAIAyFxQUpFdffVVffPGFjhw5omefffaeYwICAjR+/Hh9+umnOnjwoN544w2L9/fCCy9o/fr16tu3r06fPq3Y2FitWbNGu3btUlpamrZt25ZvzLVr1zR48GBdu3ZNU6dOVVJSktauXaukpCRNnTpV2dnZGjx4sK5fv55v7OjRo3X06FF1795dx48f17p167R7925t27ZNzs7Omjhxon755Zd84+bPn69Nmzapfv36SkpK0tatW7V161YdOnRI9erV0/r167Vo0SKLXzcAAAAAAAAA+8WCDwAAAAAAAAAAAABlbtSoUfrggw80dOhQtWjRwqInVvTp00fz5s1TWFiYWrduLVdXV4v2FRsbq88++0xBQUFat26dfHx8TNqdnZ3NPqVj5cqVOnfunJo1a6aZM2eatM2cOVPNmjVTamqqPvvsM5O2w4cPa8uWLXJxcdHy5ctVtWpVY1toaKjCwsKUm5ur2bNnm4zLzc3Ve++9J0l67733FBAQYGwLCAgwts2ePVu5ubkWvXYAAIpi/fr1evjhh1WjRg15eHjogQce0Pvvv69bt24VaR5/f385OTnd8+Odd94xGZecnKyPPvpIoaGhql+/vtzc3OTt7a127dpp9uzZysrKsubLBQAAAACbZ9lPQAEAAAAAAAAAAADATs2fP1+SNHHiRFWqVMnicZGRkZKkp59+Ot+CFGdnZz311FOaMWOGNm3apDFjxuQbFxISokaNGuWbd+jQoVq+fLmioqJ069YtY00//PCDzp8/L3d3dw0YMCDfuAEDBmjkyJE6d+6c9u3bp06dOln8WgAAuJeJEycqIiJCrq6u6tatmzw9PbVr1y5NnjxZUVFR2rlzp6pUqWLRXAMHDlR6errZtsuXLysqKkqS1LVrV5O27t276+zZs6pcubLatm2rv/3tb/rtt9/0ww8/KCEhQcuXL9euXbvUsGHDkr1YAAAAALATPOEDAAAAAFDhWOsudHn279+vQYMGydfXV5UrV1ZAQIDGjx+vCxcumO1/6tSpe965bsqUKQXub+/evXrqqafUoEEDubm5ycPDQ61atdLkyZML3CcAAAAAwLycnBzFxsZKkv72t7/p/Pnz+uijj/Tiiy9q4sSJWrVqVYF3C09MTJQktW3b1mx73va8fkUdl52drWPHjuUbFxgYqMqVK+cbV6VKFQUGBprdJwAAJbF582ZFRETI09NT+/bt044dO7Rx40YdO3ZMrVq1UlxcnKZPn27xfHPnztXKlSvNfnTu3FmS1KxZM3Xp0sVkXPPmzbV8+XJdvHhR33//vf73f/9Xu3bt0pEjRxQYGKgTJ04oLCzMmi8dAAAAAGwaT/gAAAAAAFQo1rwLnSRt2LBBQ4YM0e3bt9WuXTsFBAQoISFBCxYs0Pr16xUXF6emTZuaHevh4aGBAweabXvwwQfNbl+0aJHGjRsng8GgoKAgderUSVlZWfrxxx/1/vvva+XKldq9e7datGhh8WsAAAAAAEd28uRJ44KOH3/8UeHh4fkWeLz22mtau3atunXrZtyWmZmpS5cuSVKBdxFv0KCBJOnixYvKzs6Wh4eHJCklJaXQcd7e3vL29lZGRoZSUlJ0//33WzQub5+JiYnGvgAAWMOsWbMkSVOmTFFwcLBxu4+PjxYtWqQuXbpowYIFmj59uqpVq1aifa1YsUKS9Pzzz+dry1uk+Wf+/v5avHixunTpom+++UZnzpyRn59fieoAAAAAAHvAgg8AAAAAQIVx913odu/ebfzFZHp6urp162a8C93cuXMtmu/cuXMaMWKEbt++rSVLlmj06NGS7twdNiwsTKtXr9bQoUO1b98+OTk55Rvv4+OjlStXWlz/b7/9pkmTJslgMGjlypUaMWKEsS0zM1MDBw7Uzp07NXHiRP373/+2eF4AAAAAcGR5izYkaeTIkXrooYc0d+5ctWjRQidOnNC0adMUHR2tPn366MCBA/rLX/4i6c51WJ68hRx/5unpafw8IyPD2C9vbEHj8sZmZGQoIyPDuM3ScXn7s0RhfwyblpamunXrWjQPAKDiOnv2rOLj4yVJQ4cOzdfeuXNnNWjQQKmpqYqOjtaQIUOKva89e/YoOTlZrq6uJj//tESbNm2Mn6emprLgAwAAAIBDcC7vAgAAAAAAsJZ73YVOkhYsWKCrV69aNN9HH32ka9euqUePHsbFHpLk4uKijz/+WNWqVVN8fLx27txplfrj4uJ08+ZN3X///fl+2enl5aW33npLkvTDDz9YZX8AAAAA4AgMBoPx8/r162vHjh1q27atPD099cADD2jr1q0KCgpSVlaW5syZU46VAgBQPhITEyVJNWvWVEBAgNk+bdu2NelbXHlP9wgNDVWdOnWKNPbYsWPGz1mwCAAAAMBRsODj/5eZmalp06apefPmqlKlinx8fPT4449r165dxZ4zNzdXS5YsUYcOHeTl5SUvLy916NBBS5cuNfnB8r0sWrRITk5OcnJy0qhRo4pdDwAAAABUZJbehe7GjRuKjo62aM7IyMgC5/P09FTv3r0lSZs2bSpu2SYqV65sUT8fHx+r7A8AAAAAHIGXl5fx87CwMLm7u5u0u7i4aMyYMZKkmJgYs+Oys7PNzp2VlWX83NvbO9/YgsbdPdYa4wpz5syZAj/4Y1kAgCSlpKRIkho2bFhgnwYNGpj0LY7s7GytW7dO0p2nbhVV3sLM4OBg+fv7F7sOAAAAALAnLPiQdOHCBbVt21azZ89WZmamnnzySQUGBmr79u3q0aOH5s+fX+Q5c3JyNGjQII0dO1ZJSUnq2rWrunbtqv/85z8aM2aMnnrqKeXm5t5znpMnT+r111+Xk5NTcV4aAAAAADgMa9+FLjMzU8ePHzcZV9T5srOzNWfOHI0dO1bjx4/XRx99pOTk5AL32alTJ1WrVk2HDx/WqlWrTNqysrL09ttvS5LxD5EAAAAAAPfm7+9v/F1b48aNzfbJ256Wlmbc5uXlpZo1a0qSTp8+bXZcamqqpDsL8z08PEz2Wdi4jIwMZWRkmPS1ZNzd++QPXQEA1pKZmSlJJln2Z56enpJkzK/iWLdunbKyslSnTh2FhoYWaezKlSv15ZdfysXFRREREUUa6+fnV+DH3dkPAAAAALaIBR+SRo8eraNHj6p79+46fvy41q1bp927d2vbtm1ydnbWxIkT9csvvxRpzvnz52vTpk2qX7++kpKStHXrVm3dulWHDh1SvXr1tH79ei1atKjQOXJzcxUWFiYnJycNHz68JC8RAAAAACo8a9+F7tSpU8bPC5rzXvOlp6dr6tSpWrJkiRYsWKBJkyapZcuWevbZZ03uApunZs2aWrVqlTw8PBQWFqZWrVpp8ODBevzxx9WwYUPFx8fr3Xff1WuvvXbP+gEAAAAAd3h6eqp58+aS7lynmZO3Pe+PWfMEBwdLkhISEsyOy9ue16+o4zw8PNSsWbN84w4dOqQ//vgj37jr16/r0KFDZvcJAICtW758uSRp+PDhcnV1tXhcbGys8SY477//vjp37lwq9QEAAACALXL4BR+HDx/Wli1b5OLiouXLl6tq1arGttDQUIWFhSk3N1ezZ8+2eM7c3Fy99957kqT33nvP5M6yAQEBxrbZs2cX+pSPiIgIff/993rvvfe4Qw8AAAAA3IO170KXN19hcxY0n7u7u1544QXt2LFDqampunbtmg4dOqQZM2aoatWqWr16tQYMGCCDwZBvzj59+mj37t1q0qSJkpKStH79ekVHR+v3339Xu3btFBISUqSnQHL3OgAAAACQBg0aJEmKiYkx2/71119Lktq3b2+yvV+/fpKktWvX5vu9Xm5urr788ktJUv/+/U3a+vbtK0nas2eP2ad1rFmzRpL05JNPqlKlSsbtnTp1Up06dXTjxg1t3Lgx37iNGzfq5s2bqlevnjp06GD+xQIAUEReXl6S7jyxuCB5N7Dx9vYu1j6OHj2qPXv2SJKef/55i8fFxcWpT58+unnzpt566y394x//KPK+z5w5U+BH3bp1izwfAAAAAJQlh1/wERkZKUkKCQlRo0aN8rUPHTpUkhQVFaVbt25ZNOcPP/yg8+fPy93dXQMGDMjXPmDAALm5uencuXPat2+f2TmSk5P1xhtv6O9//7tefPFFS18OAAAAAMAG1K1bV0uXLlXPnj3l5+enKlWq6P7779f/+3//T7t27ZKLi4t27typLVu25Bv78ccfq1OnTqpVq5a+/fZbXb16VampqVq4cKF+/PFHdevWTStXriz7FwUAAAAAdmzChAmqUaOGoqOjtWTJEpO2tWvX6osvvjD2u1tYWJjq1auno0ePavr06SZt06dP19GjR+Xn56fhw4ebtAUGBqpPnz7KycnRyJEjdf36dWPb9u3btXLlSjk7O2vq1Kkm45ydnTV58mRJ0uTJk02eKJmSkqIpU6ZIkqZOnSpnZ4f/VS8AwErybkKamppaYJ+8tuLesHTFihWSpM6dOxufvHUve/fuVWhoqLKzs/XGG2/on//8Z7H2DQAAAAD2zPLnI1ZQiYmJkqS2bduabc/bnp2drWPHjun++++3eM7AwEBVrlw5X3uVKlUUGBioxMREJSYmqlOnTibtOTk5GjFihJycnLR8+fIi3bkVAAAAAByVte9Clzdf3pzVqlUr0Xx52rdvryeffFKbN29WVFSU8a6v0p07v4aHh6tu3brauXOncZ/e3t4KDw9XzZo1NWTIEE2cOFF9+/ZV9erV77m/M2fOFNjm5+dncd0AAAAAYG0HDhxQeHi48esTJ05IkpYsWaJt27YZt0dGRhrvvp2WlmZ86ob032uerVu3qmPHjsbtixYtUnBwsPFrHx8fffnll+rdu7fGjh2r+fPnq2XLljpx4oTxd3vTp09XaGioSY1Vq1bVunXr1LNnT82aNUtbt25VUFCQkpKSlJSUJA8PD61fv15VqlTJ9/qWLl2qw4cPKyYmRk2aNFGXLl104cIF7d69WwaDQREREWrdunW+cePHj9d3332nyMhIBQUFqUePHpLuPJ3k2rVrGjhwoMn3DQCAkmrTpo0k6dKlS0pJSVFAQEC+PgkJCZJkkq+WysnJ0WeffSZJGjlypEVjfvzxRz366KPKzMzUtGnTNHPmzCLvFwAAAAAqAoe/7UveXXEaNmxott3b29v4hzt330GnJHNKUoMGDQqc84MPPtC+ffv07rvvqkmTJhbtEwAAAAAcnbXvQnf3UyBPnz5d4vnu1rJlS0n5F2PkPbkjNDTU7AKTgQMHys3NTVevXlV8fHyR9gkAAAAAtiYjI0P79u0zfqSnp0u6c6109/YbN24Yx9y4ccOk7ezZs5KkixcvmmzPyMjIt79HHnlEBw8e1IgRI3TlyhVt2bJFp0+fVmhoqHbs2KF33nnHbJ0hISE6ePCghg8frsuXL2vjxo26fPmyhg8froMHD5osNLlb7dq1lZCQoClTpsjT01NbtmzRL7/8ol69eikmJibf00TyuLi4aMOGDVq8eLHuv/9+xcbGKjY2VoGBgVq8eLHWrVvH0z0AAFbl5+endu3aSZLWrFmTrz0uLk6pqalyd3fPtzjSEtHR0UpLS5OXl5cGDRp0z/4//fSTevXqZVzs8e677xZ5nwAAAABQUTj8Ez4yMzMlSR4eHgX28fT0VEZGhtkfDJdkTkn55kxKStJbb72lhx56qMAf8hZVYXdsTUtLM94RCQAAAADsmbXvQuft7a2mTZvq+PHjSkhIUKtWrUo0390uXbokyfQpItJ/F5YU9MQQV1dXeXh46ObNm7p8+XKR9gkAAAAAtubhhx+WwWAo0hh/f/8ij7lbs2bNjIvti6Jp06ZatWpVkcd5e3tr9uzZmj17dpHGOTs7a8yYMRozZkyR9wkAQHFMmzZN/fr105w5c/TYY48Zf+Z56dIl45Olxo0bZ3KjmsjISE2dOlX169dXbGxsgXOvWLFCkvT0008X+rc00p2fufbs2VMZGRks9gAAAAAA2fmCj9dff11bt24t8rhPPvlEnTt3LoWKSub27dsaMWKEnJ2dtWLFCu7MAwAAAABFkHcXuvj4eK1Zs0ZvvPGGSXtx7kLXr18/ffDBB1qzZo2ee+45k7asrCxFRUVJkvr3729xndnZ2cZx7du3N2mrX7++JGnfvn1mxyYnJ+v333+XJLMLWgAAAAAAAACgOPr27asJEyZo3rx56tixo7p37y4PDw/FxsbqypUrCgkJ0YwZM0zGXL16VcnJyfrjjz8KnPfChQv66quvJEkjR468Zx09e/bU1atXVb16dZ09e1ZhYWFm+02ZMkUtWrSw/AUCAAAAgJ2y6wUf586dU3JycpHHZWVlGT/Pu5tqdnb2PfsXdIfVPyvunO+++64OHDig9957T82bN7doX5Y4c+ZMgW2FPf0DAAAAAOyNte9CN3HiRC1cuFAxMTFatmyZXnjhBUlSTk6OwsPDdeXKFbVr1049e/Y0Gbd06VI99thjatCggcn2lJQUvfDCC0pLS1P16tX1/PPPm7QPHDhQn376qfbu3asPPvhAr776qpycnCTd+cVo3i9EmzVrprZt25b02wUAAAAAAAAARhEREQoJCdHChQu1d+9e3bp1S02aNNGUKVM0adIkubm5FXnOzz//XLdu3VJgYKA6dOhwz/55N7y5cuVKoU/XCgsLY8EHAAAAAIdg1ws+Vq9erdWrV5doDn9/fx04cECnT582256RkaGMjAxjX0vnlFTgnJKUmpqab87IyEhJUlRUlKKjo036nzp1SpL01Vdf6eGHH5YkffvttxbVAwAAAACOwtp3oatXr55WrlypIUOGaPTo0Vq+fLn8/f0VHx+vkydPytfXV2vWrDEuysizaNEijR07VoGBgWrWrJnc3NyUkpKin3/+WTdu3FCtWrW0adMm+fj4mIwLDQ3VmDFjtGTJEr3++utaunSpWrdurczMTO3bt08ZGRmqXr26Pv/8c54KCQAAAAAAAMDqBg8erMGDB1vUNywsrMAncOR55ZVX9Morr1i8f4PBYHFfAAAAAHAEdr3gwxqCg4O1adMmJSQkmG3P2+7h4aFmzZpZPKckHTp0SH/88YcqV65s0n79+nUdOnTIpO/d4uLiCpz7/PnzOn/+vEV1AAAAAIAjsvZd6AYNGqTGjRtr1qxZ+v7775WYmKi6devqpZde0vTp0+Xr65tvzIQJE7Rjxw798ssv+vbbb5WRkSFPT0+1bt1aoaGhCg8PV+3atc3ub/HixXrssce0fPlyJSQkKCoqSq6urgoICFCvXr30j3/8g6c1AgAAAAAAAAAAAAAAOAAng4MvjT906JCCgoLk4uKikydPqmHDhibto0aN0vLly/X000/rf//3fy2aMzc3V/Xr19f58+e1evVqDRs2zKR99erVevbZZ1WvXj2lpqZadFfWf/7zn3r77bc1cuRIffLJJ5a/wHvI+yOhM2fOWG1OAHAUnEPtH+8hAJQM51H7x3sIACXDedT+8R4CQMlwHrV/vIcAUHycQysG3kcAKD7OoQAAlI17rzSo4AIDA9WnTx/l5ORo5MiRun79urFt+/btWrlypZydnTV16tR8Y4cPH64WLVpowYIFJtudnZ01efJkSdLkyZOVkpJibEtJSdGUKVMkSVOnTrVosQcAAAAAAAAAAAAAAAAAAAAAAHAsruVdgC1YunSpDh8+rJiYGDVp0kRdunTRhQsXtHv3bhkMBkVERKh169b5xp0+fVrJyclKT0/P1zZ+/Hh99913ioyMVFBQkHr06CFJiomJ0bVr1zRw4ECFh4eX+msDAAAAAAAAAAAAAAAAAAAAAAD2h8dLSKpdu7YSEhI0ZcoUeXp6asuWLfrll1/Uq1cvxcTEaMKECUWe08XFRRs2bNDixYt1//33KzY2VrGxsQoMDNTixYu1bt06nu4BAAAAAAAAAAAAAAAAAAAAAADMcjIYDIbyLgLlx8/PT5J05syZcq4EAOwP51D7x3sIACXDedT+8R4CQMlwHrV/vIcAUDKcR+0f7yEAFB/n0IqB9xEAio9zKAAAZYNHTAAAAAAAAAAAAAAAAAAAAAAAANgYFnwAAAAAAAAAAAAAAAAAAAAAAADYGBZ8AAAAAAAAAAAAAAAAAAAAAAAA2BgWfAAAABPr16/Xww8/rBo1asjDw0MPPPCA3n//fd26davYc27ZskW9e/dWnTp15Obmptq1a+uhhx7SO++8U+CY48ePKywsTH5+fnJ3d5efn5/CwsJ08uTJYtcBAAAAAAAAAAAAAAAAAABgL1jwAQAAjCZOnKjBgwdrz549at++vR599FGdPn1akydPVrdu3XT9+vUizXfz5k0NHjxYffv2VUxMjAIDAzVw4EAFBQXpxIkTmjdvntlxe/bs0QMPPKBVq1apevXq6tevn6pXr65Vq1apdevW+vHHH63xcgEAAAAAAAAAAAAAAAAAAGwWCz4AAIAkafPmzYqIiJCnp6f27dunHTt2aOPGjTp27JhatWqluLg4TZ8+vUhzvvDCC1q/fr369u2r06dPKzY2VmvWrNGuXbuUlpambdu25Rtz7do1DR48WNeuXdPUqVOVlJSktWvXKikpSVOnTlV2drYGDx5c5MUnAAAAAGCPrP0Uxv3792vQoEHy9fVV5cqVFRAQoPHjx+vChQtm++fk5GjDhg2aOnWqevbsqVq1asnJyUmurq733Fd0dLT++c9/6sknn1S9evXk5OQkJycnnTlzxqJaL1y4oClTpigoKEienp7y8PBQkyZNNGTIEO3fv79IrxsAAAAAAAAAAACwR04Gg8FQ3kWg/Pj5+UmSxb9kBQD8V0U7h7Zv317x8fGaOXOm3njjDZO2uLg4denSRe7u7vrtt99UrVq1e84XGxurHj16KCgoSAcOHFClSpUsqmPRokV66aWX1KxZMx05ckTOzv9dn5qbm6uWLVvq6NGjWrx4scaMGVO0F/knFe09BICyxnnU/vEeAkDJlPZ5dOLEiYqIiJCrq6u6desmT09P7dq1S1euXFHnzp21c+dOValSxeL5NmzYoCFDhuj27dtq166dAgIClJCQoJMnT8rX11dxcXFq2rSpyZgrV66oRo0a+eZycXHR7du3C91f9erVdfXq1XzbU1NTjd+7gnzzzTfq37+/rly5oqZNm+qBBx5Qbm6uTp06pYMHDyoiIkLjxo2z4FUXjiwEgJLhPGr/eA8BoPg4h1YMvI8AUHycQwEAKBs84QMAAOjs2bOKj4+XJA0dOjRfe+fOndWgQQPduHFD0dHRFs05f/58SXf+QMnSxR6SFBkZKUl6+umnTRZ7SJKzs7OeeuopSdKmTZssnhMAAAAA7I21n8J47tw5jRgxQrdv39aSJUv0008/6csvv9TRo0f1zDPP6LffftPQoUP15/sDVapUScOGDdPcuXO1a9cu/fzzzxbvs3///po1a5b+/e9/F/gEEXMOHz6sxx9/XLdv39amTZt07NgxbdiwQZs2bdKBAwd09uxZhYaGWjwfAAAAAAAAAAAAYK9cy7sAAABQ/hITEyVJNWvWVEBAgNk+bdu2VWpqqhITEzVkyJBC58vJyVFsbKwk6W9/+5vOnz+vtWvXKjk5We7u7mrTpo0GDBggT0/PAmtp27ZtgXXc3Q8AAAAAKqJZs2ZJkqZMmaLg4GDjdh8fHy1atEhdunTRggULNH36dIuewvjRRx/p2rVr6tGjh0aPHm3c7uLioo8//lhRUVGKj4/Xzp071atXL2O7h4eHVq9ebfz61KlTFr+GFStWWNz3bmPHjtX169e1Zs0a9evXL197nTp1ijUvAAAAAAAAAAAAYG94wgcAAFBKSookqWHDhgX2adCggUnfwpw8eVJZWVmSpB9//FF/+ctfNGnSJC1evFgREREKCwtT48aNtWvXLpNxmZmZunTpUqG15NVx8eJFZWdn37MWAAAAALA3pfEUxrynKZqbz9PTU71795ZU/k9T/Pnnn/X999+rQYMGevrpp8u1FgAAAAAAAAAAAKC8seADAAAoMzNT0p07txYk72kcGRkZ95wvb9GGJI0cOVIPPvig4uPjlZmZqZ9//lmhoaG6ePGi+vTpo2PHjuWro7Ba7n4qiCW1+Pn5FfiRlpZ2z/EAAAAAUNYsfQrj3X0Lk5mZqePHj5uMK8l8pWnHjh2SpC5dusjJyUk7duzQ66+/rjFjxmjGjBnav39/udYHAAAAAAAAAAAAlCXX8i4AAABUPAaDwfh5/fr1tWPHDrm7u0uSHnjgAW3dulV//etflZSUpDlz5mj58uXlVSoAAAAA2BxrP4Xx1KlTxs/v9TRFS+YrTb/88oskqXr16nrkkUcUExNj0v7mm29q2LBhWr58ufE6EwAAAAAAAAAAAKioWPABAADk5eUlScrOzi6wT1ZWliTJ29vb4vkkKSwsLN8f4bi4uGjMmDEaP368yR/v3D2uoFry6rC0ljNnzhTY5ufnd8/xAAAAAFDWrP0UxqI8TdGS+UpT3hMjly1bpkqVKmn+/Pnq37+/KlWqpG3btmnixIn64osv5OHhoSVLllg0Z2HXfmlpaapbt65VagcAAAAAAAAAAACszbm8CwAAAOXP399fkpSamlpgn7y2vL73ms/JyUmS1LhxY7N98ranpaUZt3l5ealmzZqSpNOnTxdah4+PT6F//AQAAAAAsD95T4y8deuW/vWvf2ncuHGqV6+e7rvvPj333HNatmyZJOmTTz4xeXIJAAAAAAAAAAAAUBGx4AMAAKhNmzaS7txJNSUlxWyfhIQESVJwcPA95/P09FTz5s0lSenp6Wb75G3Pu4tsnrz58/ZXkjoAAAAAwB6V5lMY7/U0RUvmK015tVaqVEnPP/98vvbBgwfLx8dHubm5+uabbyya88yZMwV+8HQPAAAAAAAAAAAA2DIWfAAAAPn5+aldu3aSpDVr1uRrj4uLU2pqqtzd3RUaGmrRnIMGDZIkxcTEmG3/+uuvJUnt27c32d6vXz9J0tq1a5Wbm2vSlpubqy+//FKS1L9/f4vqAAAAAAB7Y+2nMDZq1Mj4+b2epmjJfKUp72mQDRo0kKurq9k+AQEBkkyfGAkAAAAAAAAAAABURCz4AAAAkqRp06ZJkubMmaMDBw4Yt1+6dEnh4eGSpHHjxqlatWrGtsjISLVo0ULdu3fPN9+ECRNUo0YNRUdHa8mSJSZta9eu1RdffGHsd7ewsDDVq1dPR48e1fTp003apk+frqNHj8rPz0/Dhw8vwasFAAAAANtl7acwent7q2nTpibjSjJfaXrwwQcl3XntBSnoiZEAAAAAAAAAAABARcOCDwAAIEnq27evJkyYoKysLHXs2FGPPfaYBg4cqKZNm+o///mPQkJCNGPGDJMxV69eVXJysk6cOJFvPh8fH3355ZeqXLmyxo4dq6CgIA0aNEjBwcEaMmSIDAaDpk+fnu+JIVWrVtW6detUtWpVzZo1S61atdKQIUPUqlUrzZo1Sx4eHlq/fr2qVKlSqt8PAAAAACgvpfEUxrynKZqbLysrS1FRUZLK/2mKoaGhqlq1qq5evar4+Ph87UePHtWvv/4qKf8TIwEAAAAAAAAAAICKhgUfAADAKCIiQl9++aU6deqkvXv3Kjo6Wn5+fpozZ4527dpV5EUWjzzyiA4ePKgRI0boypUr2rJli06fPq3Q0FDt2LFD77zzjtlxISEhOnjwoIYPH67Lly9r48aNunz5soYPH66DBw+qY8eO1ni5AAAAAGCzrP0UxokTJ6pq1aqKiYnRsmXLjNtzcnIUHh6uK1euqF27durZs2dpvSSLeHl56ZVXXpEkvfjiizp37pyx7dKlSxo1apRyc3PVvn17rg0BAAAAAAAAAABQ4TkZDAZDeReB8uPn5ydJOnPmTDlXAgD2h3Oo/eM9BICS4Txq/3gPAaBkSvs8+vLLL2vevHmqVKmSunfvLg8PD8XGxurKlSsKCQnR119/bbIwf+XKlXruuefUqFEjnTp1Kt9869ev15AhQ5STk6MOHTrI399f8fHxOnnypHx9fRUXF6emTZvmGxceHm5cdHLjxg39/PPPkqQOHToY+zz++OOaPn26ybgZM2boq6++Mn69b98+SVKbNm3k5uYmSQoODtaiRYtMxt28eVN9+/bV9u3b5e3trY4dO8rV1VU//vijLl++rEaNGumbb75RQEBAEb6b5pGFAFAynEftH+8hABQf59CKgfcRAIqPcygAAGXDtbwLAAAAAAAAAADkFxERoZCQEC1cuFB79+7VrVu31KRJE02ZMkWTJk0yLpqw1KBBg9S4cWPNmjVL33//vRITE1W3bl299NJLmj59unx9fc2OO3z4sHGxxt3u3taiRYt87SdOnDA7LjEx0fh55cqV87W7ublp27ZtWrJkiVauXKm9e/fq9u3bCggI0NixY/XKK6+oZs2aFr1mAAAAAAAAAAAAwJ7xhA8HxypbACg+zqH2j/cQAEqG86j94z0EgJLhPGr/eA8BoGQ4j9o/3kMAKL6Keg5dv369Fi5cqIMHD+rmzZtq2rSphg0bpkmTJqlSpUoWz+Pv769ff/31nv3efvttvfnmm8avs7OztWXLFu3fv1/79+/XgQMHlJmZqSZNmuj48ePFek2FqajvIwCUBc6hAACUDZ7wAQAAAAAAAAAAAAAAADi4iRMnKiIiQq6ururWrZs8PT21a9cuTZ48WVFRUdq5c6eqVKli0VwDBw5Uenq62bbLly8rKipKktS1a1eTtmPHjmnYsGEleyEAAAAAUIGw4AMAAAAAAAAAAAAAAABwYJs3b1ZERIQ8PT21e/duBQcHS5LS09PVrVs3xcXFafr06Zo7d65F8xXW7/3331dUVJSaNWumLl26mLR5eXnpueeeU3BwsNq0aaMrV67oiSeeKP4LAwAAAAA751zeBQAAAAAAAAAAAAAAAAAoP7NmzZIkTZkyxbjYQ5J8fHy0aNEiSdKCBQt09erVEu9rxYoVkqTnn38+X1uTJk20YsUKjRs3TiEhIfLw8Cjx/gAAAADAnrHgAwAAAAAAAAAAAAAAAHBQZ8+eVXx8vCRp6NCh+do7d+6sBg0a6MaNG4qOji7Rvvbs2aPk5GS5urpqxIgRJZoLAAAAABwBCz4AAAAAAAAAAAAAAAAAB5WYmChJqlmzpgICAsz2adu2rUnf4sp7ukdoaKjq1KlTorkAAAAAwBGw4AMAAAAAAAAAAAAAAABwUCkpKZKkhg0bFtinQYMGJn2LIzs7W+vWrZMkjRw5stjzAAAAAIAjcS3vAgAAAAAAAAAAAAAAAACUj8zMTEmSh4dHgX08PT0lSRkZGcXez7p165SVlaU6deooNDS02PMUlZ+fX4FtaWlpqlu3bpnVAgAAAABFxRM+APuRdHAAAQAASURBVAAAAAAAAAAAAJS55ORkzZ8/X2FhYWrVqpVcXV3l5OSkmTNnFjgmNTVVS5Ys0ejRo/Xggw/K3d1dTk5OGjVqVJH3Hx0dLScnJzk5OalHjx6F9j1+/LjCwsLk5+cnd3d3+fn5KSwsTCdPnix0XGZmpqZNm6bmzZurSpUq8vHx0eOPP65du3YVOi43N1dLlixRhw4d5OXlJS8vL3Xo0EFLly6VwWAo8msFAMAWLF++XJI0fPhwubpyj1oAAAAAsARXTwAAAAAAAAAAAADK3Mcff6yIiIgijdm4caMmTZpU4n3//vvveuGFF+Tk5HTPBRR79uxRz549de3aNQUGBqpz585KSkrSqlWrtGHDBsXExKhjx475xl24cEFdunTR0aNHVbduXT355JP67bfftH37dm3fvl0REREaP358vnE5OTkaPHiwNm3apKpVq6p79+6SpJiYGI0ZM0YxMTFau3atnJ25tx8AwDq8vLwkSdnZ2QX2ycrKkiR5e3sXax9Hjx7Vnj17JEnPP/98seYorjNnzhTYVtjTPwAAAADAFvBTQAAAAAAAAAAAAABlLigoSK+++qq++OILHTlyRM8+++w9xwQEBGj8+PH69NNPdfDgQb3xxhvF2vf48eP122+/aezYsYX2u3btmgYPHqxr165p6tSpSkpK0tq1a5WUlKSpU6cqOztbgwcP1vXr1/ONHT16tI4eParu3bvr+PHjWrdunXbv3q1t27bJ2dlZEydO1C+//JJv3Pz587Vp0ybVr19fSUlJ2rp1q7Zu3apDhw6pXr16Wr9+vRYtWlSs1w0AgDn+/v6S7jxJqyB5bXl9i2rFihWSpM6dO6t58+bFmgMAAAAAHBELPgAAAAAAAAAAAACUuVGjRumDDz7Q0KFD1aJFC4ueWNGnTx/NmzdPYWFhat26tVxdXYu838jISH3xxRf6xz/+ofbt2xfad+XKlTp37pyaNWummTNnmrTNnDlTzZo1U2pqqj777DOTtsOHD2vLli1ycXHR8uXLVbVqVWNbaGiowsLClJubq9mzZ5uMy83N1XvvvSdJeu+99xQQEGBsCwgIMLbNnj1bubm5RX7tAACY06ZNG0nSpUuXlJKSYrZPQkKCJCk4OLjI8+fk5BizcuTIkcWsEgAAAAAcEws+AAAAAAAAAAAAADiE9PR0jR07Vs2bN9c777xzz/6RkZGSpKeffjrfghRnZ2c99dRTkqRNmzaZHRcSEqJGjRrlm3fo0KGSpKioKN26dcu4/YcfftD58+fl7u6uAQMG5Bs3YMAAubm56dy5c9q3b9896wcAwBJ+fn5q166dJGnNmjX52uPi4pSamip3d3eFhoYWef7o6GilpaXJy8tLgwYNKnG9AAAAAOBIWPABAAAAAAAAAAAAwCG8+OKLSk9P1/Lly1W5cuV79k9MTJQktW3b1mx73va8fkUdl52drWPHjuUbFxgYaLa+KlWqKDAw0Ow+AQAoiWnTpkmS5syZowMHDhi3X7p0SeHh4ZKkcePGqVq1asa2yMhItWjRQt27dy907hUrVki6s4DSw8PD2qUDAAAAQIVW9GccAwAAAAAAAAAAAICdWbt2rTZs2KCXX35ZISEh9+yfmZmpS5cuSZIaNmxotk+DBg0kSRcvXlR2drbxj1hTUlIKHeft7S1vb29lZGQoJSVF999/v0Xj8vaZmJho7AsAgDX07dtXEyZM0Lx589SxY0d1795dHh4eio2N1ZUrVxQSEqIZM2aYjLl69aqSk5P1xx9/FDjvhQsX9NVXX0mSRo4caVEt/fr1U1pamiQpIyNDknTmzBl17NjR2GfUqFEaNWpUkV4jAAAAANgjFnwAAAAAAAAAAAAAqNDOnz+vl156SU2aNNGsWbMsGpOZmWn8vKC7kXt6eho/z8jIMPbLG1vYXcw9PT2VkZFh/EPWoozL258l/Pz8CmxLS0tT3bp1LZoHAFDxRUREKCQkRAsXLtTevXt169YtNWnSRFOmTNGkSZPk5uZW5Dk///xz3bp1S4GBgerQoYNFYxITE/Xrr7+abLtx44b27dtn/PrRRx8tci0AAAAAYI9Y8AEAAAAAAAAAAACgQhs9erR+//13bdy4UVWrVi3vcgAAsFmDBw/W4MGDLeobFhamsLCwQvu88soreuWVV4pUw6lTp4rUHwAAAAAqMhZ8AAAAAAAAAAAAAKiwVq1apaioKL344ot6+OGHLR7n5eVl/Dw7O9tsn6ysLOPn3t7e+cYWNO7usdYYV5gzZ84U2FbY0z8AAAAAAAAAlD8WfAAAAAAAAAAAAACosCIjIyVJ8fHx+RZ8nD9/XpK0f/9+Y9vatWtVp04deXl5qWbNmrp8+bJOnz6tBx54IN/cqampkiQfHx95eHgYt/v7++vAgQM6ffq02ZoyMjKUkZFh7Hv3OEkFjrt7n3ePAwAAAAAAAFAxseDDwV24cEE5OTncvQcAiiEtLU0uLi7lXQZKgBwEgJIhC+0fWQgAJUMW2j+yEABKxt6yMCEhocC2K1euaPfu3ZKkP/74w7g9ODhYMTExSkhI0JNPPlngnMHBwSbbg4ODtWnTpgL3mbfdw8NDzZo1MxknSYcOHdIff/yhypUrm4y7fv26Dh06ZHafxUEWAkDx2VsOwjyyEACKjywEAKBsOJd3AShflSpVstp/utLS0pSWlmaVucqCvdUr2V/N1Fu67K1eyf5qvle9Li4uqlSpUhlWBGuzZg5KFe/fuK2xt3ol+6uZekuXvdUrkYWOgCyk3tJkb/VK9lcz9ZYuS+olC+0fWUi9pYl6S5+91VwR67WXLNy8ebMMBoPZj08//VSS1L17d+O2u5+c0a9fP0l3nvqRm5trMm9ubq6+/PJLSVL//v1N2vr27StJ2rNnj9mndaxZs0aS9OSTT5p8Dzt16qQ6deroxo0b2rhxY75xGzdu1M2bN1WvXj116NChiN+J/Bz5d4WS/dVMvaXL3uqV7K/milavveQgCufIWWhv9Ur2VzP1li57q1eyv5rJQgAAbANP+HBw2dnZVpsr724HZ86csdqcpcne6pXsr2bqLV32Vq9kfzXbW70oOmvmoGR//2aot/TZW83UW7rsrV7JPmtG0ZCF1Fua7K1eyf5qpt7SZW/1onjIQuotTdRb+uytZuq1T2FhYXr33Xd19OhRTZ8+Xe+++66xbfr06Tp69Kj8/Pw0fPhwk3GBgYHq06ePtmzZopEjR2rr1q2qUqWKJGn79u1auXKlnJ2dNXXqVJNxzs7Omjx5siZNmqTJkyfroYceUkBAgCQpJSVFU6ZMkSRNnTpVzs4lv7efI/+uULK/mqm3dNlbvZL91Uy9sEWOnIX2Vq9kfzVTb+myt3ol+6vZ3uoFAKCiYsEHAAAAAAAAAAAAgDJ34MABhYeHG78+ceKEJGnJkiXatm2bcXtkZKTq1q0r6c4dZvOeuiH99w+Ptm7dqo4dOxq3L1q0SMHBwSWusWrVqlq3bp169uypWbNmaevWrQoKClJSUpKSkpLk4eGh9evXGxdz3G3p0qU6fPiwYmJi1KRJE3Xp0kUXLlzQ7t27ZTAYFBERodatW+cbN378eH333XeKjIxUUFCQevToIUmKiYnRtWvXNHDgQJPvGwAAAAAAAICKiwUfAAAAAAAAAAAAAMpcRkaG9u3bl2/7mTNnTO4ge+PGDZPPzY25ePGiLl68aDK3tYSEhOjgwYOaMWOGYmJitHHjRt13330aPny43nzzTTVp0sTsuNq1ayshIUGzZ8/Wxo0btWXLFnl4eKhXr1569dVX1b17d7PjXFxctGHDBi1btkyffPKJYmNjJd15asjIkSM1evRoOTk5We31AQAAAAAAALBdLPgAAAAAAAAAAAAAUOYefvhhGQyGIo3x9/cv8pjChIWFKSws7J79mjZtqlWrVhV5fm9vb82ePVuzZ88u0jhnZ2eNGTNGY8aMKfI+AQAAAAAAAFQczuVdAAAAAAAAAAAAAAAAAAAAAAAAAEyx4AMAAAAAAAAAAAAAAAAAAAAAAMDGsOADAAAAAAAAAAAAAAAAAAAAAADAxjgZDAZDeRcBAAAAAAAAAAAAAAAAAAAAAACA/+IJHwAAAAAAAAAAAAAAAAAAAAAAADaGBR8AAAAAAAAAAAAAAAAAAAAAAAA2hgUfAAAAAAAAAAAAAAAAAAAAAAAANoYFHwAAAAAAAAAAAAAAAAAAAAAAADaGBR8AAAAAAAAAAAAAAAAAAAAAAAA2hgUfAAAAAAAAAAAAAAAAAAAAAAAANoYFHw4qOTlZ8+fPV1hYmFq1aiVXV1c5OTlp5syZxZpv+/btGjVqlNq2bau6devK3d1dXl5e+utf/6pp06YpPT3d7LjExETNnj1b3bt3l6+vrypVqqQaNWqoS5cuWrhwoW7dumVT9ZoTHR0tJycnOTk5qUePHjZb75YtW9S7d2/VqVNHbm5uql27th566CG98847Nldzdna2Zs+erbZt28rb21uVKlVSnTp19MQTT2jr1q2lUq85ixYtMr63o0aNKrTv/v37NWjQIPn6+qpy5coKCAjQ+PHjdeHCBZuqt7yOueLWa465Y85Wa77XcYfyZSvnPbKw7Oot7Ji0pXotyUHJ9s57ZGHp1GtOWRxz1qiXHLRttnLes/SYtKWazSELrVtvRbwmtKWaycKyq5cstG22ct4jC8u2XrKwaBz5mtCWajaHLIQ12Mp5r6L+fNRWayYLi4YstI2azSELYQ22ct6rqFloi/XydzNF58hZaCv1msPfzQAA4IAMcEgvv/yyQVK+jxkzZhRrvmHDhhkkGZo2bWro0aOHYciQIYaePXsaqlevbpBkqF27tiEpKclkzK1bt4z79fT0NHTt2tXw9NNPGzp37mxwcXExSDK0b9/e8Pvvv9tEveZcvnzZUK9ePYOTk5NBkqF79+4Gg8E2vr95bty4YRg0aJBBkqFKlSqGbt26GYYMGWLo2rWroXbt2oZatWrZVM3p6emG+++/3/jvomfPnobBgwcbgoODjTVNmDDB6vX+2YkTJwweHh7G93bkyJEF9l2/fr3B1dXVIMnQrl07w+DBgw2NGzc2SDL4+voajh07ZhP1lucxV5x6zSnomDMYrP9vuCQ1W3rcoXzZwnmPLCybei05Jm2lXktz0GCwrfMeWVg69ZpTVsdcSeolB+2DLZz3inJM2krN5pCF1q23ol4TGgy2ca4mC8umXrLQPtjCeY8sLLt6ycKic/RrQoPBtrLlbmQhrMUWznsV+eejBoNtfI/zkIVFRxbaVrbcjSyEtdjCea8iZ6Et1cvfzRSPo2ehLdRrDn83AwCAY2LBh4NatmyZ4dVXXzV88cUXhiNHjhieffbZEv0HLzEx0ZCWlpZve2ZmpvE/bx07djRpu3XrluHBBx80rFu3zvDHH3+YtP3yyy+GunXrGiQZnnvuOZuo15xhw4YZXFxcDC+++KLJf6Jtqd7hw4cbJBn69u1ruHjxoklbTk6O4YcffrCpmidMmGCQZHjwwQcNly5dMmn76quvjBeIU6dOtWq9d8vJyTF06dLF4OnpaRgxYkShFylnz541VK1a1SDJsGTJEuP227dvG5555hnjxezSpUvLvd7yPOaKU685BR1zBoP1/w2XpGZLjzuUL1s475GFZVOvJcekrdRraQ6WRs13IwvtLwttqV5y0D7YwnmvKMekrdRsDllo3Xor6jVhbm6uTZyrycKyqZcstA+2cN4jC8uuXrKwaLgmLJ1jrjg1m0MWwlps4bxXkX8+ajDYxvc4D1lYNGQhWVjSeslC+2AL572KnIW2VC9/N1N0ZKH9/XzUYCALAQCoyFjwAYPBYDD+R8xaK3rvdvr0aYN0Z8Xw1atXLR73+eefG6Q7q3xv3rxp0mYL9W7atMkgyfDaa68ZPv3003z/ibaFemNiYgySDEFBQfm+h/dSXjUHBQUZJBnWrVtnduwjjzxikGT48MMPS63eDz/80CDJsHDhQsNbb71V6EXKa6+9ZpBk6NGjR762zMxMQ7Vq1QySDP/+979tot7ClNUxV9x6i3LMlWfNJTnuUL5sIVv+jCwseb3FPSbtLQetXTNZaP9ZSA6iqGwhV/6ssGPSYLCNmsnC4uGasHxrLgxZWPJ6yUL7ZQu58mdkoXXqJQuLjmvC0j/myELYIlvIlT+rSD8fLc+aycKiIwvJwpLUSxbaL1vIlj+rSFlobzloMJCFZKF9/3y0PGsmCwEAsD5nAaXM1dVVkuTs7KxKlSpZPK5NmzaSpOvXrys9Pb1UajPHknrT09M1duxYNW/eXO+8806Z1WZOYfXOnz9fkjRx4sQife9LW2E1V65c2aI5fHx8rF6XJCUnJ+uNN97Q3//+d7344ov37B8ZGSlJGjp0aL42T09P9e7dW5K0adMm6xb6/ytqvYUpi2OuuPWW5zFX1Jpt9bhD+SILS5e9ZaEt56BEFkpk4d3IQViDveWgRBaWNlvOQnvLQYksLG1kIayBLCx9ZKH12FsW2lsOSmQhHJO9ZaG95aBEFloTWUgW/hlZCGsgC0uXveWgRBZak71lob3loEQWAgBgC1zLuwBUbDdu3NC0adMkSY888oiqVKli8dhjx45Jktzc3FSzZs1Sqe/PLK33xRdfVHp6ujZt2mTxhVZpKKzenJwcxcbGSpL+9re/6fz581q7dq2Sk5Pl7u6uNm3aaMCAAfL09LSZmiXpscceU0JCgt577z11797d5L2Pjo7WN998ozp16hgvCK0pJydHI0aMkJOTk5YvXy4nJ6dC+2dmZur48eOSpLZt25rt07ZtW33++edKTEws93rvpbSPuZLUW17HXFFrttXjDuWLLCxd9paFtpyDEllIFpoiB2EN9paDEllYnvVKXBMWFVlYushCWANZWPrIQuuxtyy0txyUyEKy0DHZWxbaWw5KZKE1kYVk4Z+RhbAGsrB02VsO3qtmiSwszXrvhZ+P5kcWAgBgG1jwAas6cOCA5s2bJ4PBoIsXLyo+Pl7p6elq166dli9fbvE8BoNB77//viTpiSeekLu7u83Uu3btWm3YsEEvv/yyQkJCSqUua9R78uRJZWVlSZJ+/PFHhYeHG7/O89prr2nt2rXq1q2bTdQsSZMnT9ZPP/2kHTt2qFGjRgoJCVH16tV1/Phx7d+/XyEhIVq+fLmqVatm9Vo/+OAD7du3T//617/UpEmTe/Y/deqU8fOGDRua7dOgQQNJUkpKilVqvFtR6y1MWRxzxa23PI+5otZsK8cdyhdZWLrsLQvtKQclspAsNEUOojjsLQclspAs/C97y0GJLCxtZCGKgywsfWQhWZjH3nJQIgslstAR2FsW2lsOSmQhWfhfZGHpIwtRHGRh6bK3HCxqzRJZWBT2loX2loMSWQgAgK1gwQes6vTp01q1apXJth49emjJkiWqX7++xfO8/fbb+uGHH+Tp6ak5c+ZYu0yjotZ7/vx5vfTSS2rSpIlmzZpVanUVpCj1Xrp0yfj5yJEj9dBDD2nu3Llq0aKFTpw4oWnTpik6Olp9+vTRgQMH9Je//KXca5YkDw8PRUVFadq0afqf//kf7dixw9hWq1Yt9ejRo0j/liyVlJSkt956Sw899JAmTJhg0ZjMzEyTus3JW5GekZFR8iLvUpx6C1Pax1xx6y3PY644NdvKcYfyRRaWLnvLQnvJQYksJAtNkYMoLnvLQYksJAvvsLcclMjC0kYWorjIwtJHFpKFkv3loEQWkoWOw96y0N5yUCILycI7yMLSRxaiuMjC0mVvOVjUmiWy0FL2loX2loMSWQgAgC1xLu8CULH07dtXBoNBt2/f1qlTp/TJJ5/oyJEjCgoK0oYNGyya47PPPtM777wjZ2dnrVixolT/Y1fUekePHq3ff/9dn3zyiapWrVpqdVmjXoPBYPy8fv362rFjh9q2bStPT0898MAD2rp1q4KCgpSVlVWqPxwo6vc4LS1NISEhmj9/vmbOnGlc+f3TTz/pwQcf1Ntvv63OnTubXDSW1O3btzVixAjjvzlnZ9s+NVq73tI+5kpSb3kdc8Wt2VaOO5QvsrB02VsW2kMOSmQhWWiKHERJ2FsOFqdmsrD06pW4JrQUWVi6yEKUBFlY+shCstDeclAiC8lCx2JvWWhvOSiRhWQhWVgWyEKUBFlYuuwtB4tas0QWWsLestDeclAiCwEAsDW2/b8z2C0XFxc1atRII0eOVFxcnJycnPTcc8/p/PnzhY5bv369nn/+eUnSsmXLNGjQoLIo16J6V61apaioKI0dO1YPP/xwmdRVEEvq9fLyMn4eFhaW71GDLi4uGjNmjCQpJibGJmqWpBEjRig+Pl4zZszQtGnTFBAQIA8PD7Vr107btm1Tq1atdPDgQc2dO9dqtb377rs6cOCA3n77bTVv3tzicXd/j7Ozs832yXssobe3d8mKvEtx6zWnLI654tZbnsecNf5N2MJxh/JFFpYue8tCW85BiSwkC02Rg7AGe8tBiSx05Cy0txyUyMLSRhbCGsjC0kcWOm4W2lsOSmRhHrLQsdhbFtpbDkpkIVlIFpYmshDWQBaWLnvLQUtrlshCS9hbFtpbDkpkIQAAtsa1vAtAxefv76+uXbvqq6++0tdff61nn33WbL9NmzZp6NChys3N1ZIlS4z/mS5rBdUbGRkpSYqPj8/3n+i8i6/9+/cb29auXas6deqUW73+/v5ycnKSwWBQ48aNzY7N256Wllbqdd6toJrPnj2rr7/+WpI0ZMiQfOMqVaqkgQMH6j//+Y9iYmL09ttvW6WevPc2KipK0dHRJm2nTp2SJH311VfG9/bbb7+VJDVq1MjY7/Tp02rVqlW+uVNTUyXdec3WUtx6/6ysjrni1luex1xxa7bl4w7liywsn3pt9Zi0tRyUyEKy0Dr12uoxh/JnbzkokYXlVS/XhKVf85+Rhdat11aPOZQ/spAstLResrB06/2zsjzmyML/Igsdk71lob3lYGE12+pxSRaWT71/RhZav15bPeZQ/sjC8qnXlo9JsrB86v0zfj5q/Zpt+bgDAMCeseADZcLDw0OSdOHCBbPtmzdv1tNPP62cnBx9/PHHeuGFF8qyvHwKqzchIaHAcVeuXNHu3bslSX/88UfpFGeGuXo9PT3VvHlz/d///Z/S09PNjsvb7unpWfpF/om5mk+fPm38vKCV/dWqVZMkXb582eo1xcXFFdh2/vz5fHdV8Pb2VtOmTXX8+HElJCSYvXDN+/cSHBxs3WJV9HrvVh7HXHHrLc9jrqg12/pxh/JFFpYue8tCW8xBiSwsbfaWheQgrMneclAiC0ubLWahveWgRBZKZCHsB1lY+sjCkrO3LLS3HJTIQoksdGT2loX2loMSWWgNZGHpIwvJQkdGFpYue8tBiSy0BnvLQnvLQYksBADAVjiXdwGo+G7cuGH8z1+zZs3ytUdFRWnw4MG6ffu2Pv74Y+Nj28pLQfVu3rxZBoPB7Menn34qSerevbtxm7Xv3lnUeiUZHzNY0CPw8u4K0L59+1KsML+Caq5fv77x83379pkd++OPP0qSAgICrFbPzz//XOB7+9Zbb0mSRo4cadx2t379+kmS1qxZk2/erKwsRUVFSZL69+9vE/VKZX/MFbfe8jzmSvI9ttXjDuWLLCyfeiXbPCZtLQclspAstE69km0ecyh/9paDEllY2mwtC+0tB0tas0QWlla9km0ecyh/ZGH51SvZ5nFJFpZfvVL5HHNk4X+RhY7J3rLQ3nKwsJol2zwuycLyq1ciC0uzXsk2jzmUP7KwfOqVbPeYJAvLr16Jn4+WZs2S7R53AADYMxZ8wGILFixQixYtNHz4cJPtFy5c0Mcff6yMjIx8Y86ePatnn31W586dk7+/vx555BGT9ujoaA0cOFC3b9/W4sWLrfof6NKotzSVRr0TJkxQjRo1FB0drSVLlpi0rV27Vl988YWxny3U3LBhQ7Vr106S9PLLLxsfAZhn9erV+vLLLyVJQ4cOtVq9JTFx4kRVrVpVMTExWrZsmXF7Tk6OwsPDdeXKFbVr1049e/a0iXrL45izZaVRc2kfdyhfZGHpsrcstLccLKzmkiAL/8vespAcRFHZWw6WVs2liSzkmvDPyMLSRRaiqMjC0kcWkoWlXW95HXO2iixEUdlbFtpbDkpkIVlY+vWShabIQhQVWVi67C0HS6NmsrD06+Xno6bIQgAA7INreReA8nHgwAGFh4cbvz5x4oQkacmSJdq2bZtxe2RkpOrWrSvpzuPUkpOTVadOHZO5rl27pvDwcE2cOFF//etf5e/vL4PBoNTUVB04cEA3b95UvXr1tHnzZlWuXNk47sKFC+rfv79u3rwpPz8/7d27V3v37jVb77PPPqs33nijXOstClv4/kqSj4+PvvzyS/Xu3Vtjx47V/Pnz1bJlS504cUKJiYmSpOnTpys0NNRmal6xYoW6du2qI0eOqGXLlurYsaN8fHx05MgRHTp0SJL0zDPPGNusUW9J1KtXTytXrtSQIUM0evRoLV++XP7+/oqPj9fJkyfl6+urNWvWKDEx0Wrf3+Iqr2OurFjz33BJFOW4Q/myhfMeWWg7WVinTh2r5UpZ5OCwYcNs5rxHFtpGFtrKvwdy0H7Ywnm6KMfk3Llzdfr06XKvuShs4XssVdwstLdrQicnJ5s4V5OFZCH+yxbO02Rh2dRLFtpGFtrbNaG1j7myQBaiqGzhPF2Rfz4q2cb3WCILycL/IgvvIAuRxxbO0xU5C23h+yvxdzOW1lsSFTUL7e3noxJZCABARcaCDweVkZFh9tF/Z86c0ZkzZ4xf37hx455z1a5dW//zP/+j7777TklJSTpy5IiuX7+u6tWrq2PHjnryySc1evRoeXt7m4y7du2acf4zZ85o1apVBe7j0UcfLfd6i8IWvr95HnnkER08eFCzZs1STEyMtmzZIm9vb4WGhurll182rqC3lZqDgoKUlJSkf/3rX9q+fbvi4+N148YN1ahRQ7169dLzzz+vwYMH69tvv7VavSU1aNAgNW7cWLNmzdL333+vxMRE1a1bVy+99JKmT58uX19fm6i3vI65smLNf8MlZelxh/JlC+c9stB2stCa5+myyEHJts57ZGH5s6V/D+SgfbCF83RRjsl//vOfNlFzUdhSvRUxC20hV/JYkoOSbZyryUKyEP9lC+dpsrDs6iULS1dFvCa09jFXFmypXrLQPtjCeboi/3xUso3vcR6ysHSRhWThn5GF9sEWztMVOQtt4fubh7+bIQvzVOSfj0pkIQAAFZmTwWAwlHcRAAAAAAAAAAAAAAAAAAAAAAAA+C/n8i4AAAAAAAAAAAAAAAAAAAAAAAAApljwAQAAAAAAAAAAAAAAAAAAAAAAYGNY8AEAAAAAAAAAAAAAAAAAAAAAAGBjWPABAAAAAAAAAAAAAAAAAAAAAABgY1jwAQAAAAAAAAAAAAAAAAAAAAAAYGNY8AEAAAAAAAAAAAAAAAAAAAAAAGBjWPABAAAAAAAAAAAAAAAAAAAAAABgY1jwAQAAAAAAAAAAAAAAAAAAAAAAYGNY8AEAAAAAAAAAAAAAAAAAAAAAAGBjWPABAAAAAAAAAAAAAAAAAAAAAABgY1jwAQAAAAAAAAAAAAAAAAAAAAAAYGNY8AEAAAAAAAAAAAAAAAAAAAAAAGBjWPABoFR9/fXXeu6559SsWTN5e3vL3d1ddevW1SOPPKJ//etfunjxorHvypUr5eTkpLCwsPIrGAAAKyMLAQCOjiwEADgychAA4OjIQgCAoyMLAQAAUFIs+ABQKtLT0/XII4+oZ8+eWrlypW7duqWuXbtqwIABatmypfbu3at//OMfaty4sfbt21foXKdOnZKTk5P8/f3LpngAAKyALAQAODqyEADgyMhBAICjIwsBAI6OLAQAAIC1uJZ3AQAqnqtXr6pz585KTk5WixYttHTpUnXp0sWkz40bN7Rq1Sq99dZbSktLkyT169dPHTt2VLVq1cqjbAAArIYsBAA4OrIQAODIyEEAgKMjCwEAjo4sBAAAgDWx4AOA1Y0fP17Jycny9/fXnj17VLNmzXx93N3dNXr0aPXp00dXrlyRJFWrVo2LVgBAhUAWAgAcHVkIAHBk5CAAwNGRhQAAR0cWAgAAwJqcy7sAABXLyZMntWbNGknShx9+aPai9W6+vr5q3ry5JGnlypVycnJSWFiYsT0sLEwBAQGSpF9//VVOTk4mH5I0YsQIOTk5afbs2QXuZ926dXJyclL79u1L8vIAALgnshAA4OjIQgCAIyMHAQCOjiwEADg6shAAAADWxhM+AFjVtm3blJOTo+rVq6t3794lnq9z587KysrSxo0b5eHhoYEDB+br8/LLL+uzzz7T4sWL9frrr8vFxSVfn4ULF0qSxo0bV+KaAAAoDFkIAHB0ZCEAwJGRgwAAR0cWAgAcHVkIAAAAa2PBBwCrSkhIkCQFBwebvYAsqlGjRqlHjx7auHGjfHx8tHLlynx9goODFRISoj179mjr1q3q16+fSXtSUpK+++473XfffXrqqadKXBMAAIUhCwEAjo4sBAA4MnIQAODoyEIAgKMjCwEAAGBtzuVdAICK5eLFi5Kk2rVrl+l+X375ZUn/vSPB3RYsWCDpzkWwu7t7mdYFAHA8ZCEAwNGRhQAAR0YOAgAcHVkIAHB0ZCEAAACsjQUfACqEfv36qUGDBoqNjdX//d//GbdfvXpVq1evlouLi1588cVyrBAAgNJFFgIAHB1ZCABwZOQgAMDRkYUAAEdHFgIAAFRcLPgAYFX33XefJOnChQtlul9XV1eFh4dL+u+dCSRp1apVys7OVu/evdWgQYMyrQkA4JjIQgCAoyMLAQCOjBwEADg6shAA4OjIQgAAAFgbCz4AWNWDDz4oSTpw4IBycnLKdN8vvPCCqlSpos8++0yZmZkyGAxatGiRJGncuHFlWgsAwHGRhQAAR0cWAgAcGTkIAHB0ZCEAwNGRhQAAALA2FnwAsKonnnhCzs7OunLlirZu3Vqm+65Vq5aGDRumzMxMffbZZ4qJiVFycrLuv/9+devWrUxrAQA4LrIQAODoyEIAgCMjBwEAjo4sBAA4OrIQAAAA1saCDwBW1aRJEw0ZMkSS9Morr+jy5cuF9r9w4YKSk5ML7ePm5iZJun379j33P2HCBEnSwoULjY+ofOmll+45DgAAayELAQCOjiwEADgychAA4OjIQgCAoyMLAQAAYG0s+ABgdfPnz1fTpk2VkpKizp07Ky4uLl+fmzdvasWKFWrTpo2OHDlS6Hz33Xef3NzcdP78+XteCLdq1UrdunXTkSNHtHXrVnl7e2v48OElej0AABQVWQgAcHRkIQDAkZGDAABHRxYCABwdWQgAAABrci3vAgBUPDVq1NCePXv01FNP6dtvv1WXLl0UEBCg1q1bq2rVqvrtt9/0008/KSsrS97e3qpXr16h81WqVEm9e/fWhg0b9Ne//lWdO3dW1apVJUmffPJJvv4TJkzQrl27JEkjRoyQp6en9V8kAACFIAsBAI6OLAQAODJyEADg6MhCAICjIwsBAABgTSz4AFAqateurW+++Ub//ve/9b//+7/au3evYmNjdePGDdWqVUudOnXS448/rmeffVY1a9a853xLlixRrVq1tH37dm3YsEG3bt2SZP7CtXv37nJxcVFubi6PpQQAlBuyEADg6MhCAIAjIwcBAI6OLAQAODqyEAAAANbiZDAYDOVdBABY0yeffKIXXnhBPXv21I4dO8q7HAAAyhxZCABwdGQhAMCRkYMAAEdHFgIAHB1ZCAAAULGw4ANAhZKdna3WrVvr5MmT2rFjh3r27FneJQEAUKbIQgCAoyMLAQCOjBwEADg6shAA4OjIQgAAgIrHtbwLAABr+OCDD5SUlKS4uDidPHlSjz76KBetAACHQhYCABwdWQgAcGTkIADA0ZGFAABHRxYCAABUXDzhA0CF8PDDD2v37t3y8fHRE088oQ8//FA1atQo77IAACgzZCEAwNGRhQAAR0YOAgAcHVkIAHB0ZCEAAEDFxYIPAAAAAAAAAAAAAAAAAAAAAAAAG+Nc3gUAAAAAAAAAAAAAAAAAAAAAAADAFAs+AAAAAAAAAAAAAAAAAAAAAAAAbAwLPgAAAAAAAAAAAAAAAAAAAAAAAGwMCz4AAAAAAAAAAAAAAAAAAAAAAABsDAs+AAAAAAAAAAAAAAAAAAAAAAAAbAwLPgAAAAAAAAAAAAAAAAAAAAAAAGwMCz4AAAAAAAAAAAAAAAAAAAAAAABsDAs+AAAAAAAAAAAAAAAAAAAAAAAAbAwLPgAAAAAAAAAAAAAAAAAAAAAAAGwMCz4AAAAAAAAAAAAAAAAAAAAAAABsDAs+AAAAAAAAAAAAAAAAAAAAAAAAbAwLPgAAAAAAAAAAAAAAAAAAAAAAAGwMCz4AAAAAAAAAAAAAAAAAAAAAAABsDAs+AAAAAAAAAAAAAAAAAAAAAAAAbAwLPgAAAAAAAAAAAAAAAAAAAAAAAGwMCz4AAAAAAAAAAAAAAAAAAAAAAABsDAs+AAAAAAAAAAAAAAAAAAAAAAAAbAwLPgAAAAAAAAAAAAAAAAAAAAAAAGwMCz4AAAAAAAAAAAAAAAAAAAAAAABsDAs+AAAAAAAAAAAAAAAAAAAAAAAAbAwLPgAA/x97dx5XdZ3+//9xAEXkAErkCgrujaiJSypqBmpKpbhAao5Q5obLYMtoNlhmKeP4aURxyzDUctxRSRoVHU20DPe0wtwStwhIBUxF4PeHP87XExw8KObS8367ndvt8H5d1/W+3kicgHO9XyIiIiIiIiIiIiIiIiIiIiIiIiIiIvKA0cCHiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIA8bufjcg95ejoyO5ublUqVLlfrciIvLQSUtLo1y5cuTk5NzvVuQO6XVQROTu6LXw4afXQhGRu6PXwoefXgtFRO6OXgsffnotFBG5c3odfDTotVBE5M7ptfDhp9dBEZG780e9Fmrg408uNzeXvLy8+92GiMhDSd8/H356HRQRuTv6Hvrw02uhiMjd0ffQh59eC0VE7o6+hz789FooInLn9P3z0aDXQhGRO6fvnw8/vQ6KiNydP+p7qAY+/uQKJzPPnDlznzsREXn4uLu73+8W5C7pdVBE5O7otfDhp9dCEZG7o9fCh59eC0VE7o5eCx9+ei0UEblzeh18NOi1UETkzj1qr4UpKSls2rSJvXv3snfvXr7//nvy8vKYPHky//jHP8rkHHPmzGHkyJEADB48mI8//rjE+HXr1hETE8M333xDZmYmlSpVol69enTr1o2JEyfedT96HRQRuTt/1GuhzR9yFhEREREREREREREptZUrV9KpUycqV66Mo6MjzZo1Y9q0aeTm5t5Rvb179xIUFETVqlWpUKECXl5ejB49mrS0tGLj8/LyWLVqFW+99RZdu3blsccew2AwYGdX8r2E0tLSWLx4MQMGDKB+/fpUqFCBihUr0qhRI8aMGcOpU6dKzN+1axcvvvgiHh4elC9fHkdHR5o0acK4ceMs9ioiIiIiIiIiIiJyp+bOncuYMWNYtGgRhw8fLvO7tp84cYK///3vGAyG28Zev36d4OBgAgMDSUxMpHHjxvTt2xdvb2+OHz/OzJkzy7Q3ERF5sGngQ0REREREREREROQBFB4eTnBwMDt37qR169Z069aN06dPM27cOPz8/Pjtt99KVW/VqlW0adOGVatWUbt2bXr27ImNjQ3R0dE0bdqUY8eOFcnJysoiKCiIyMhINm/eTGZmplXneu211wgJCWH58uVUrFiRHj168Mwzz5CZmcmsWbPw9vZm8+bNxebOmTOH9u3bs2LFCipVqkRgYCBPP/00Z8+eZdq0aTRp0oQffvihVNcuIiIiIiIiIiIiUhJvb2/eeOMNPvvsM77//nv++te/llnt/Px8QkNDMRgMDBo06LbxQ4YMYeXKlQQGBnL69Gm2bNnC0qVL2bp1K+fPn+fzzz8vs95EROTBV/Jt2ERERERERERERETkD7d27VqioqIwGo1s374dHx8fANLT0/Hz8yMpKYmIiAimT59uVb1z584REhLCjRs3mD9/PkOHDgVu7uARGhrKp59+yoABA9i9e7fZHebKlSvHSy+9RPPmzfHx8cHV1ZUnn3zytudzdXVl0qRJDB48mJo1a5qOZ2dnM2TIEJYtW0a/fv04duwYlStXNq3//PPPjB07loKCAmJjYwkJCTGtZWVl0bdvXzZt2kR4eDj//e9/rbp2ERERERERERERkdt59dVXzT62sSm7+6lHRUWxY8cOZs+efdsdjLds2cLixYvx9vZmxYoVlCtXrkhfbdq0KbPeRETkwacdPkREREREREREREQeMFOmTAFg/PjxpmEPADc3N+bMmQNAdHQ0ly5dsqrejBkzuHLlCp07dzYNewDY2toyd+5cXFxcSE5OZtOmTWZ5jo6OfPrpp7z++us888wzuLi4WHW+mTNnMnHiRLNhDwCj0UhMTAxOTk5kZmayYcMGs/WkpCSuX7/OX/7yF7NhDwAnJyfeeecdAL766iur+hARERERERERERG5n1JSUnj77bd5+umnGTFixG3jZ82aBdzcAfr3wx4iIvLnpIEPERERERERERERkQfI2bNnSU5OBmDAgAFF1tu3b4+HhwfXrl0jISHBqppxcXEW6xmNRnr06AHAmjVr7rRtq1WsWJGGDRsCkJqaarZWoUIFq2q4ubmVeV8iIiIiIiIiIiIiZSkvL4+QkBAMBgMxMTFmuytbit+yZQsAHTt25MKFC8yYMYMRI0YQHh7OokWLyM7O/iNaFxGRB4gGPkREREREREREREQeIPv37wfA1dUVLy+vYmNatmxpFluSrKwsjh07ZpZ3N/XuVm5uLqdOnQKgevXqZmtt27bFxcWF7777jkWLFpmtZWdnM2nSJACGDRt2z/sUERERERERERERuRv/+te/2L17Nx988AF169a9bfyJEydMAx1ff/019evXZ+zYscybN4+oqChCQ0OpU6cOW7duvdeti4jIA0QDHyIiIiIiIiIiIiIPkJMnTwJQq1YtizEeHh5msSUpHK4oqWZp6t2tmJgY0tPTcXBwoHv37mZrrq6uLFq0CEdHR0JDQ2nSpAnBwcE899xz1KpVi+TkZD744APefPPNe96niIiIiIiIiIiIyJ06fPgw77zzDu3atWPMmDFW5WRkZJieDx48mBYtWpCcnExWVhYHDhwgICCAX375hZ49e/Ljjz9aVdPd3d3i4/z583d0bSIi8seyu98NiIiIiIiIiIiIiMj/k5WVBYCjo6PFGKPRCMDly5etrldSzdLUuxvffvutaVgjIiKCqlWrFonp2bMn27dv58UXX+Tw4cMcPnzYtNa1a1d8fX0xGAxWn9Pd3d3i2vnz54vsMiIiIiIiIiIiIiJyN27cuEFISAg2NjYsXLgQGxvr7s1eUFBgel6zZk02btyIvb09AM2aNWP9+vU8+eSTHD58mMjISGJiYu5J/yJ/VgUFBeTl5Zn9tyh/DgaDAVtb21L9/emPpIEPEREREREREREREbnnzpw5wwsvvEB2djY9evRg/PjxxcbNnTuXv/3tbzRv3pyYmBiaN2/O5cuXWb9+PW+99RZ+fn7ExMQQGhr6x16AiIiIiIiIiIiIiBU++OAD9u3bxz//+U8aNmxodZ6Tk5PpeWhoqGnYo5CtrS3Dhg1j9OjRJCYmWlXzzJkzFtdKulmOyJ9Jbm4u6enpZGVlkZeXd7/bkfvE1tYWJycn3NzcKFeu3P1ux4wGPkRERMTMypUrmT17NgcPHuT69evUq1ePl156ibFjx97x/8isW7eOmJgYvvnmGzIzM6lUqRL16tWjW7duTJw40WLel19+yZw5c0hKSuKXX37BycmJ2rVr07FjR6ZNm/bA/Y+ViIiIiIhIWSj8o15OTo7FmOzsbACcnZ2trldY08XF5a7q3YkLFy7g7+/PTz/9xLPPPsuKFSuKvUvSzp07CQsLo3r16mzatMnUq7OzM2FhYbi6utK/f3/Cw8MJDAykUqVKtz23/qApIiIiIiIiIiIif6S4uDgA4uPjSUhIMFs7deoUABs2bKBTp04AbNu2DQBPT08MBgMFBQXUqVOn2NqFx8+fP1/2jYv8CeXm5nL69GmuX79+v1uR+ywvL4+LFy9y5coVatWq9UC9N1EDHyIiImISHh5OVFQUdnZ2+Pn5YTQa2bp1K+PGjSM+Pp5Nmzbh4OBgdb3r168zcOBAVq5ciYODA23btqVq1apcuHCBI0eOMHPmzGIHPgoKChg7dixRUVGUK1eOp556io4dO5Kens7333/PjBkzmDx58gP1P1UiIiIiIiJlxdPTE4DU1FSLMYVrhbElqV27tun56dOnadKkyV3VK620tDT8/Pw4evQonTt3Zu3atUXuTFcoNjYWgICAgGIHU/r27UtISAiXLl0iOTmZLl26lHm/IiIiIiIiIiIiImUhKSnJ4tqFCxe4cOGC2TGj0UjDhg354YcfSE9PLzav8LjRaCy7RkX+xNLT07l+/ToGg4EqVarg6OiIjY3N/W5L/mD5+fnk5OSQlpbG9evXSU9Pp3r16ve7LRMNfIiIiAgAa9euJSoqCqPRyPbt2/Hx8QFu/k+tn58fSUlJREREMH36dKtrDhkyhJUrVxIYGMiCBQtwc3MzreXn5/PNN98Um/fuu+8SFRVFu3btWLp0qdmbkwCSk5OpUKHCHVyliIiIiIjIg6958+YAZGRkcPLkSby8vIrE7NmzB8D0s1tJnJ2dqVevHseOHWPPnj3FDnyUpl5p/PLLL/j5+fH999/j7+/P+vXrS/x57vTp06aei2NnZ4ejoyPXr18nMzOzTHsVERERERERERERKQsHDhywuPbuu+8yadIkBg8ezMcff1xkPSgoiMmTJ5OYmMjYsWOLrG/evBmA1q1bl1m/In9WBQUFZGVlAVClShVcXV3vc0dyPxXerOznn38mKyuLatWqFbtb/f2gESQREREBYMqUKQCMHz/e7A0+bm5uzJkzB4Do6GguXbpkVb0tW7awePFivL29WbFihdmwB4CNjQ1t2rQpkpeSksKUKVOoWrUqGzZsKDLsAdCqVSvs7DS3KiIiIiIijyZ3d3datWoFwNKlS4usJyUlkZqair29PQEBAVbV7NWrl8V62dnZxMfHA9C7d+87bbuIwhsIHDlyBH9/f+Lj42+7a2TNmjUB2L17d7HrKSkp/PrrrwDFDsKIiIiIiIiIiIiI/FGio6Np1KgRgwYNKrOaY8aMoXLlyiQkJDB//nyztWXLlvHZZ5+Z4kTk7uTl5ZGXlweAo6Pjfe5GHgSFXwe3fm08CDTwISIiIpw9e5bk5GQABgwYUGS9ffv2eHh4cO3aNRISEqyqOWvWLADCw8MpV66c1b3MnTuXGzduMGTIECpVqmR1noiIiIiIyKNkwoQJAERGRrJv3z7T8YyMDMLCwgAYNWoULi4uprW4uDgaNWqEv79/kXrh4eFUrFiRxMREFixYYDqel5dHWFgYFy9epFWrVnTt2rVM+s/MzMTf35/Dhw/TuXNnq4Y9APr27QvArl27+Ne//kVBQYFpLS0tjcGDBwPQoEEDWrZsWSa9ioiIiIiIiIiIiOzbt482bdqYHhs2bABg/vz5ZsfPnz9vyklPTyclJcW0c3FZcHNzY/ny5VSoUIHhw4fj7e1NUFAQPj4+9O/fn4KCAiIiIqy+GZCIWHbr3yBsbPSWejH/Orj16+N+062xRUREhP379wPg6upq8Q6pLVu2JDU1lf3799O/f/8S6+Xl5bFlyxYAOnbsyIULF1i2bBkpKSnY29vTvHlz+vTpg9FoLJK7ceNGU97FixdZvnw5hw4dwsbGBm9vb/r06VNktxAREREREZFHTWBgIGPGjGHmzJm0adMGf39/HB0d2bJlCxcvXsTX15fJkyeb5Vy6dImUlBSuXr1apF6NGjWIjY2lf//+DB06lJiYGDw9PUlOTubEiRNUrVqVpUuXFrs1dVhYmGno5Nq1a8DNn/tu3bXxueeeIyIiwvTxq6++yqFDhzAYDLi6ujJixAiL1xkYGGj6OCAggGHDhjF//nz+/ve/89FHH9G0aVOysrLYvXs3ly9fplKlSixZskR/fBEREREREREREZEyc/ny5WJ3Hj5z5gxnzpwxfVz4O9J7qUuXLhw8eJApU6aQmJjIunXrcHZ2JiAggL/97W9lduMeERF5OGjgQ0RERDh58iQAtWrVshjj4eFhFluSEydOkJ2dDcDXX39NWFiY6eNCb775JsuWLcPPz8907Pr166SkpJjOM3DgQNLS0szy3njjDRYsWEC/fv2suDIREREREZGHV1RUFL6+vsyePZtdu3aRm5tL3bp1GT9+PGPHjqV8+fKlqhcUFESdOnWYMmUKO3bsYP/+/VSvXp2RI0cSERFB1apVi8377rvviv1D563HGjVqZLaWmZkJ3Lz70YoVKyz25OnpaTbwATBv3jy6d+9OTEwMe/bsIT4+Hjs7O7y8vHj22Wd57bXXcHd3t/ayRURERERERERERG6rU6dOpb6b+7vvvsu77757T3IaNGhAbGxsqWqLiMijSQMfIiIiQlZWFgCOjo4WYwp347h8+fJt62VkZJieDx48mHbt2jF9+nQaNWrE8ePHmTBhAgkJCfTs2ZN9+/ZRv3594OYbggp/eB41ahRPPPEEK1aswMfHh3PnzhEZGUlsbCwDBw6kZs2adOjQ4ba9lPQmoPPnz1O9evXb1hAREREREblfgoODCQ4Otio2NDSU0NDQEmNatGjB6tWrS9XDtm3bShV/pzm36tmzJz179ryrGiIiIiIiIiIiIiIiIiIPO+15LyIiImXu1jse1KxZk40bN9KyZUuMRiPNmjVj/fr1eHt7k52dTWRkZLF5Dg4OJCYm8vTTT+Pk5ETDhg355JNP6N69O3l5eaW+Q4KIiIiIiIiIiIiIiIiIiIiIiIiIyMNEAx8iIiKCk5MTADk5ORZjsrOzAXB2dra6Hty8w6y9vb3Zuq2tLcOGDQMgMTGx2LzevXvz+OOPF6kdFhYGwI4dO7h+/fptezlz5ozFh3b3EBEREREREREREREREREREREREZEHlQY+REREBE9PTwBSU1MtxhSuFcberp7BYACgTp06xcYUHj9//rzpmNFoNA153C4vNzeX9PT02/YiIiIiIiIiIiIiIiIiIiIiIiIiIneu8D2Bp06dut+t/Olo4ENERERo3rw5ABkZGZw8ebLYmD179gDg4+Nz23pGo5GGDRsCWBzKKDxuNBrNjrdo0cKqvOJyRURERERERERE5OGRkpLCrFmzCA0NpUmTJtjZ2WEwGHj//feLjc/Pz2fXrl1MnDiR9u3b89hjj1GuXDnc3Nzo0qULn332GQUFBbc977p16+jRowfVqlWjfPnyVKlShXbt2vHee+9ZzDl27BihoaG4u7tjb2+Pu7s7oaGhnDhxosRzZWVlMWHCBBo2bIiDgwNubm4899xzbN26tcS8/Px85s+fz1NPPYWTkxNOTk489dRTfPTRR1Zdo4iIiIiIiIiIiDwaNPAhIiIiuLu706pVKwCWLl1aZD0pKYnU1FTs7e0JCAiwqmZQUBAAiYmJxa5v3rwZgNatWxebt3XrVvLz8y3mNWzYEGdnZ6t6ERERERERERERkQfP3LlzGTNmDIsWLeLw4cPk5eWVGH/ixAl8fX2ZPHky33//PS1btqRPnz7UqVOHxMREBg4cSI8ePbh+/Xqx+devXyc4OJjAwEASExNp3Lgxffv2xdvbm+PHjzNz5sxi83bu3EmzZs1YtGgRlSpVolevXlSqVIlFixbRtGlTvv7662Lz0tLSaNmyJVOnTiUrK4sXXniBxo0b88UXX9C5c2dmzZpVbF5eXh5BQUEMHz6cw4cP88wzz/DMM8/w7bffMmzYMF588cVif3cqIiIiIiIiIiIijx67+92AiIiIPBgmTJhAr169iIyMpHv37qadPDIyMggLCwNg1KhRuLi4mHLi4uJ46623qFmzJlu2bDGrN2bMGKKjo0lISGD+/PkMGzbMtLZs2TI+++wzU9ytBg4cyJQpUzh8+DATJ07kvffew8bm5ozq//73Pz788MNi80REREREREREROTh4u3tzRtvvEHz5s3x8fFhypQpLFmyxGK8wWDAz8+PN998ky5dumBra2ta2759O8899xyff/45kZGRTJw4sUj+kCFDWLlyJYGBgSxYsAA3NzfTWn5+Pt98802RnCtXrhAcHMyVK1d46623mDJlimltwoQJTJ06leDgYFJSUnBwcDDLHTp0KEePHsXf35/169dTsWJFABISEujRowfh4eE8/fTTNG3a1Cxv1qxZrFmzhpo1a7Jjxw68vLwAOHnyJO3bt2flypV07NiRUaNGlfTpFRERERERERGRO3To50PkFzw6N9ywMdjQtGrT2wcWIzY2lpdfftn0ceHvqgr973//A+CZZ57h6aefJiEhgcjISFauXMlPP/1ElSpVOHXqFKdOncLLy4vatWtz6tSpYs/l6enJTz/9xMmTJ/H09DRbu3HjBrGxsXz66accOnSInJwcatSoQbdu3ZgwYQIeHh53dH0PA+3wISIiIgAEBgYyZswYsrOzadOmDd27d6dv377Uq1ePb7/91nTnvFtdunSJlJQUjh8/XqSem5sby5cvp0KFCgwfPhxvb2+CgoLw8fGhf//+FBQUEBERUWTHkPLly7NmzRpcXV354IMPaNCgAX379qVt27Z07tyZK1euEBISwogRI+7p50NERERERERERETurVdffZV//etfDBgwgEaNGplu/GJJ3bp12bJlC926dTMb9gB4+umnGT9+PACLFy8ukrtlyxYWL16Mt7c3K1asMBv2ALCxsaFNmzZF8mJjYzl37hwNGjTg/fffN1t7//33adCgAampqUXO+d1337Fu3TpsbW2JiYkxDXsABAQEEBoaSn5+PlOnTjXLy8/P55///CcA//znP83+gO7l5WVamzp1qnb5EBERERERERG5R/IL8snLz3tkHnczvFKvXj1CQkJwdHQEoE+fPoSEhJge1apVM8VevXqVTp068eGHH+Ll5UWPHj2oX7/+Xf97ZGVl0aVLF4YMGcLevXtp2rQpPXr0wN7ennnz5tG8eXP2799/1+d5UGngQ0REREyioqJYvnw5bdu2ZdeuXSQkJODu7k5kZCRbt24tcoe62+nSpQsHDx4kJCSEixcvsm7dOk6fPk1AQAAbN27kvffeKzavadOmHD58mJEjR5KXl0d8fDw//PADTz/9NP/5z3+IjY3FYDCUxSWLiIiIiIiIiIjII6J58+YApKamFlmbNWsWAOHh4ZQrV87qmnFxcQD069evyECKjY0NL774IgBr1qwpNs/X15fatWsXqTtgwAAA4uPjyc3NNR3/6quvuHDhAvb29vTp06dIXp8+fShfvjznzp1j9+7dVl+HiIiIiIiIiIjInWjfvj2xsbGmG6hMnz6d2NhY06NRo0am2N27d3Pt2jWOHTtGQkICy5YtY/PmzXfdw/Dhw9m2bRvPP/88x48fZ9u2baxcuZIffviBf//732RkZPDiiy+Sl5d31+d6ENnd7wZERETkwRIcHExwcLBVsaGhoYSGhpYY06BBA2JjY0vdR/Xq1YmOjiY6OrrUuSIiIiIiIiIiIvLn8+OPPwI3f7d4q7y8PLZs2QJAx44duXDhAsuWLSMlJQV7e3uaN29Onz59MBqNRWoW3hmwZcuWxZ6z8Pjv7yBobV5OTg4//vgjf/nLX8zyGjduTIUKFYrkOTg40LhxY/bv38/+/ftp27ZtsfVFRERERERERETuh+joaLNdP+7W999/z3/+8x9q1KjB0qVLcXJyMlsPDw9n8+bNJCQk8MUXX/D888+X2bkfFNrhQ0RERERERB45K1eupFOnTlSuXBlHR0eaNWvGtGnTzO6aWhp79+4lKCiIqlWrUqFCBby8vBg9ejRpaWm3zT148CCvvPIKXl5eVKhQgcqVK9OkSRNGjBhBRkaGWezly5eJiIjgueeeo27duri4uFC+fHlq1KhBz5492bBhwx31LyIiIiIi8qi7cuUKM2fOBCiyM8aJEyfIzs4G4Ouvv6Z+/fqMHTuWefPmERUVRWhoKHXq1GHr1q1meVlZWaaf22rVqlXseT08PAD45ZdfyMnJMR0/efJkiXnOzs44OzubxVqTd+s5b80TERERERERERG536pUqUKHDh3KtGZCQgIFBQV07969yLBHoU6dOgGwa9euMj33g0IDHyIiIiIiIvJICQ8PJzg4mJ07d9K6dWu6devG6dOnGTduHH5+fvz222+lqrdq1SratGnDqlWrqF27Nj179sTGxobo6GiaNm3KsWPHLOZOnz6dFi1asGjRIh5//HF69epF27ZtuXr1KvPmzeP8+fNm8Wlpabz//vt8+eWXVKlSBX9/f3r06EGVKlVYv349zz//PCNHjryjz4uIiIiIiMijLCwsjJMnT1KjRg0mTJhgtnbrsP3gwYNp0aIFycnJZGVlceDAAQICAvjll1/o2bOnaZcQuDnwUcjR0bHY8966K8jly5eL5FrKuzW3LPJK4u7ubvHx+59LRURERERERERE7pSnp2eZ1zxx4gQAMTExGAyGYh9///vfgZs3ZXkU2d3vBkRERERERETKytq1a4mKisJoNLJ9+3Z8fHwASE9Px8/Pj6SkJCIiIpg+fbpV9c6dO0dISAg3btxg/vz5DB06FIC8vDxCQ0P59NNPGTBgALt378ZgMJjlfvLJJ7z55ps0bNiQVatW4e3tbbZ+5MgR3N3dzY5Vq1aNr776ipYtW2JnZ/4j+//+9z+ef/555syZQ48ePXj22WdL9bkRERERERF5VE2ePJlFixZRoUIFVqxYwWOPPWa2XlBQYHpes2ZNNm7ciL29PQDNmjVj/fr1PPnkkxw+fJjIyEhiYmL+0P5FREREREREREQeBQ4ODneVn5+fb/HYk08+SbNmzUrMf+qpp+7q/A8qDXyIiIiIiIjII2PKlCkAjB8/3jTsAeDm5sacOXPo0KED0dHRRERE4OLictt6M2bM4MqVK3Tu3Nk07AFga2vL3LlziY+PJzk5mU2bNpkNYPz666+Eh4fj4OBAQkICderUKVK7cePGRY4ZjUbatGlTbC/PPPMM/fr1Y+HChUXOJyIiIiIi8mf14YcfMnHiROzt7YmLi8PX17dIjJOTk+l5aGioadijkK2tLcOGDWP06NEkJiYWm5eTk1Ps+bOzs03PnZ2di+Rayrs1tyzySnLmzBmLa7+/EYGIiIiIiIiIiMi9UL58ecB8V91b5ebmFrsbrYeHBwC+vr5ER0ffuwYfYDb3uwERERERERGRsnD27FmSk5MBGDBgQJH19u3b4+HhwbVr10hISLCqZlxcnMV6RqORHj16ALBmzRqztUWLFnH58mX69OlT7LDHnSrc9eP3b04SERERERH5M5o1axavv/465cuXZ/Xq1XTr1q3YOE9PT9OujJZ+Ris8fusflZ2cnHB1dQXg9OnTxealpqYCN2804OjoaHbOkvIuX77M5cuXzWKtybv1nLfmiYiIiIiIiIhI2bEx2GBrY/vIPGwMdz8yUDiwcePGjTvKf/zxxylfvjyZmZmkpaUVWd+4cWOxtbt37w7A+vXruXr16h2d+2GnHT5ERERERETkkbB//34AXF1d8fLyKjamZcuWpKamsn//fvr3719ivaysLI4dO2bKs1RvyZIlpnMX2rhxIwAdO3bkt99+Y9WqVSQnJ5OXl0f9+vXp06eP6S4U1kpOTmb58uUYDAZeeOGFUuWKiIiIiIg8ambPns2YMWNMwx7PPfecxVij0UjDhg354YcfSE9PLzam8LjRaDQ77uPjQ2JiInv27Cn2Z7E9e/aY4n6ft2bNGtO6pTxHR0caNGhglgdw5MgRrl69SoUKFczyfvvtN44cOVLsOUVEREREREREpGw0rdr0frfwwHF3d+fHH3/kyJEj1KtXr9T55cqVo2PHjiQmJvKPf/yDefPmYWNzcxDl4MGDjBo1qti85s2b06dPH1avXk3v3r2ZM2dOkRuh5OTksHbtWjp37kzVqlVL3duDTjt8iIiIiIiIyCPh5MmTANSqVctiTOGQRWFsSU6dOmV6bqmmpXqHDh0Cbg6NeHt7M2jQIGbNmsWcOXMYO3Ys9erV48MPPyzx/BMnTiQ0NJQXX3yR1q1b07p1a3777TdmzpxJ27Ztb9u/iIiIiIjIo2revHmMGjXKNOzx/PPP3zYnKCgIgMTExGLXN2/eDEDr1q3Njvfq1QuAZcuWkZ+fb7aWn5/P8uXLAejdu7fZWmBgIAA7d+4sdreOpUuXAvDCCy9Qrlw50/G2bdtSrVo1rl27xurVq4vkrV69muvXr1OjRg2eeuqp4i9WRETkLqxcuZJOnTpRuXJlHB0dadasGdOmTSM3N7dUdQp32Lrd47333iuSe+PGDebMmUP79u2pXLky5cqVw83NDX9/fxYtWlTkNVlERERERO69Pn36ADBw4ED69OnDq6++yquvvkpKSorVNd5//33Kly/PggULeOKJJwgKCqJdu3a0atWKTp06Ubt27WLzPvnkE/z9/fniiy9o2LAhrVu35sUXXyQ4OJjWrVvj6urKwIED+fXXX8vkWh802uFDREREREREHglZWVnAzbujWlJ4p9bLly9bXa+kmpbqZWRkADB+/Hhq1KhBfHw87du3JzMzk48++ohp06bx+uuvU716dYs7jaxfv56DBw+anevDDz/klVdeuW3vt3J3d7e4dv78eapXr16qeiIiIiIiIvfTggULCAsLK9WwB8CYMWOIjo4mISGB+fPnM2zYMNPasmXL+Oyzz0xxtwoNDeWDDz7g6NGjRERE8MEHH5jWIiIiOHr0KO7u7gwaNMgsr3HjxvTs2ZN169YxePBg1q9fj4ODAwBffPEFsbGx2NjY8NZbb5nl2djYMG7cOMaOHcu4ceNo166daRfLkydPMn78eADeeust0x0QRUREykp4eDhRUVHY2dnh5+eH0Whk69atjBs3jvj4eDZt2mR6Pbudvn37WtxZKzMzk/j4eACeeeYZs7Vr167RtWtXvvzyS8qXL0/79u15/PHHSU1N5X//+x9bt25l7dq1rFmzBoPBcHcXLCIiIiIiVhsxYgRZWVl8+umnJCQkcPXqVeDmAIi1nnrqKbZv384777zD119/TWpqKg0aNCAqKorhw4ebfg/2e05OTmzatInly5fz6aefsnfvXg4cOICzszPVq1fnpZdeokePHtStW7dMrvVBo4EPERERERERkTJWUFAA3Lzba0JCAn/5y18AqFSpEpGRkVy+fJm5c+fyj3/8w+LAx4EDB4CbwyQpKSnMmDGDoUOHsmzZMtauXYuTk9Mfci0iIiIiIiL3yr59+wgLCzN9fPz4cQDmz5/P559/bjoeFxdH9erVOXDgAMOGDaOgoIA6deqwatUqVq1aVWzt2NhYs4/d3NxYvnw5PXr0YPjw4cyaNYsnnniC48ePs3//fuDmAEdAQIBZXsWKFVmxYgVdu3ZlypQprF+/Hm9vbw4fPszhw4dxdHRk5cqVxb759aOPPuK7774jMTGRunXr0qFDB9LS0ti+fTsFBQVERUXRtGnTInmjR4/myy+/JC4uDm9vbzp37gzc3J3kypUr9O3b1+zzJiIiUhbWrl1LVFQURqOR7du34+PjA0B6ejp+fn4kJSURERHB9OnTrapXUty0adOIj4+nQYMGdOjQwWxtzpw5fPnll9SuXZsvv/zSbPflPXv24Ofnx9q1a1m+fDn9+vW7gysVEREREZE7YWNjw/jx4003JPm9wvdJ3E6bNm3YuHFjsWunTp0q8fz9+/e3+B6LR5kGPkREREREROSRUDgAkZOTYzEmOzsbAGdnZ6vrFdZ0cXGxup6TkxMZGRl06NDBNOxxq7CwMObOncuJEyc4efKkxbtUFNZu1aoVn332GZUqVWLOnDlMmjTJ6j+snjlzxuJaSbt/iIiIiIiI3GuXL19m9+7dRY6fOXPG7GeZa9euAXDx4kXTH45/+OEHfvjhB4u1fz/wAdClSxcOHjzIlClTSExMZN26dTg7OxMQEMDf/vY3unbtWmwtX19fDh48yOTJk0lMTGT16tU8/vjjDBo0iIkTJ1q8c2CVKlXYs2cPU6dOZfXq1axbtw5HR0eeffZZ3njjDfz9/YvNs7W1ZdWqVSxYsICPP/6YLVu2ADd3DRk8eDBDhw7VHc1FRKTMTZkyBbi5a3HhsAfcHJqcM2cOHTp0IDo6moiIiGJ/V1oaCxcuBCh2N+OtW7cCMHLkSLNhD4CWLVvSr18/FixYwFdffaWBDxERERER+VPQwIeIiIiIiIg8Ejw9PQFITU21GFO4Vhhbktq1a5uenz59miZNmlhdr06dOmRkZFCnTp1ia996/Pz58yUOfNzq5ZdfZs6cOcTFxVk98CEiIiIiIvKg6tSpk9V3/ruT+OI0aNCg2GGQ26lXrx6LFi0qdZ6zszNTp05l6tSppcqzsbFh2LBhDBs2rNTnFBERKa2zZ8+SnJwMwIABA4qst2/fHg8PD1JTU0lISLirO+ru3LmTlJQU7OzsCAkJKbJeoUIFq+q4ubndcQ8iIiIiIiIPE5v73YCIiIiIiIhIWWjevDkAGRkZnDx5stiYPXv2AJjdoc4SZ2dn6tWrZ5Znbb0WLVoAkJ6eXmzerceNRuNteynk6OgIQFpamtU5IiIiIiIiIiIiIiXZv38/AK6urhZvTtOyZUuz2DtVuLtHQEAA1apVK7LevXt3AGbPns3p06fN1vbu3cuyZctwcHDgr3/96131ISIiIiIi8rDQwIeIiIiIiIg8Etzd3WnVqhUAS5cuLbKelJREamoq9vb2BAQEWFWzV69eFutlZ2cTHx8PQO/evc3WgoKCAPj666/Jyckpkrt582bg5rDHE088YVUvAFu2bAFu3pFWREREREREREREpCwU3kCnVq1aFmM8PDzMYu9ETk4OK1asAGDw4MHFxoSGhjJo0CB++ukn6tevj7+/P/3796d9+/a0atUKLy8vtmzZYtUuziIiIiIiIo8CDXz8zsqVK+nUqROVK1fG0dGRZs2aMW3aNHJzc++o3t69ewkKCqJq1apUqFABLy8vRo8eXaq7sZ49e5bKlStjMBiws7O7oz5ERERERET+DCZMmABAZGQk+/btMx3PyMggLCwMgFGjRuHi4mJai4uLo1GjRvj7+xepFx4eTsWKFUlMTGTBggWm43l5eYSFhXHx4kVatWpF165dzfL8/Pzo0KEDaWlpjBo1imvXrpnWDh06xD/+8Q8ARowYQbly5UxrS5cuZe/evUX6KCgoYM2aNaa8oUOHWv9JERERERERERERESlBVlYW8P92GC5O4U7Fly9fvuPzrFixguzsbKpVq2bxpjw2NjbExsYyffp0CgoK2Lp1K8uWLWPnzp04ODjQuXNn6tatW6rzuru7W3ycP3/+jq9HRERERETkj6CBj1uEh4cTHBzMzp07ad26Nd26deP06dOMGzcOPz8/fvvtt1LVW7VqFW3atGHVqlXUrl2bnj17YmNjQ3R0NE2bNuXYsWNW1RkyZAiXLl26k0sSERERERH5UwkMDGTMmDFkZ2fTpk0bunfvTt++falXrx7ffvstvr6+TJ482Szn0qVLpKSkcPz48SL1atSoQWxsLLa2tgwdOpQ2bdrQr18/GjRowJIlS6hatSpLly7FYDAUyf3ss8/w9PQkNjaWunXr0qtXL55++mlatWrFhQsX6NKlS5FeNm3aRMuWLfHw8OC5557jpZdeolu3bnh5edGnTx8uXbrEyJEjNfAhIiIiIiIiIiIiD52YmBgABg0aZPGGp5cvX+b555/nzTffZNSoURw9epScnBy+/fZbAgMD+fDDD2ndujWpqal/ZOsiIiIiIiL3jQY+/n9r164lKioKo9HI7t272bhxI6tXr+bHH3+kSZMmJCUlERERYXW9c+fOERISwo0bN5g/fz7ffPMNy5cv5+jRowwcOJCff/6ZAQMGUFBQUGKdjz/+mC+++IKRI0fe7SWKiIiIiIj8KURFRbF8+XLatm3Lrl27SEhIwN3dncjISLZu3YqDg0Op6gUFBbF792569+7NiRMniIuLIy8vj5EjR3Lw4EHq1atXbJ6HhwcHDhxg/PjxODo68sUXX7B//358fHyYO3cuX3zxBfb29mY5Q4YMYcyYMVSrVo19+/axcuVKduzYgb29PSEhIezYsYPo6OhiB0xERERERERERERE7oSTkxMAOTk5FmOys7MBcHZ2vqNzHD16lJ07dwLwyiuvWIx7/fXXSUhIYMSIEXz44YfUr1+fihUr4u3tzWeffcazzz7LTz/9ZNoN2Rpnzpyx+KhevfodXY+IiIiIiMgfpfhx+T+hKVOmADB+/Hh8fHxMx93c3JgzZw4dOnQgOjqaiIgIXFxcbltvxowZXLlyhc6dO5vdedXW1pa5c+cSHx9PcnIymzZt4tlnny22xk8//cRrr71GmzZtGDt2LNHR0Xd5lSIiIiIiIn8OwcHBBAcHWxUbGhpKaGhoiTEtWrRg9erVpe7DxcWFqVOnMnXqVKvifX198fX1LfV5RERERERERERERO6Up6cnQIm7ZhSuFcaW1sKFCwFo3749DRs2LDYmLy+PJUuWANC/f/9iYwYMGMDGjRtJTEy8oz5EREREREQeNtrhAzh79izJycnAzR8Mf699+/Z4eHhw7do1EhISrKoZFxdnsZ7RaKRHjx4ArFmzptj8goICXnnlFa5fv87ChQuxsdE/lYiIiIiIiIiIiIiIiIiIiIiUrebNmwOQkZHByZMni43Zs2cPgNlNVK2Vl5fH4sWLARg8eLDFuLS0NK5duwZY3kmk8CatmZmZpe5DRERERETkYaQpAmD//v0AuLq64uXlVWxMy5YtzWJLkpWVxbFjx8zySltvzpw5bN26lXfeeYcnnnjitucUERERERERERERERERERERESktd3d3WrVqBcDSpUuLrCclJZGamoq9vT0BAQGlrp+QkMD58+dxcnIiKCjIYtxjjz2Gvb09ALt37y425uuvvwaw+P4eERERERGRR40GPsB0d4JatWpZjPHw8DCLLcmpU6dMzy3VLKne8ePHGTduHC1atODNN9+87flERERERERERERERERERERERO7UhAkTAIiMjGTfvn2m4xkZGYSFhQEwatQo0w4bAHFxcTRq1Ah/f/8Say9cuBCAfv364ejoaDGufPny9OjRA4CIiAgOHTpktr5lyxZmzJgBwIABA6y8MhERERERkYebBj64uSMHUOIPlUajEYDLly9bXa+kmpbq5efnExoayvXr1/nkk0+ws7O77flux93d3eLj/Pnzd11fRERERERERERERERERERERB5egYGBjBkzhuzsbNq0aUP37t3p27cv9erV49tvv8XX15fJkyeb5Vy6dImUlBSOHz9usW5aWhobNmwAYPDgwbft49///jd16tTh559/xsfHh/bt2/Piiy/SqlUrOnfuzNWrV/Hz8+ONN964uwsWERH5nZSUFGbNmkVoaChNmjTBzs4Og8HA+++/X2bnmDNnDgaDAYPBwKuvvmp1XkJCgimvc+fOZdaPiIg8HO5+mkDK1IwZM0hKSmLSpEk0adLkfrcjIiIiIiIiIiIiIiIiIiIiIn8CUVFR+Pr6Mnv2bHbt2kVubi5169Zl/PjxjB07lvLly5e65pIlS8jNzaVx48Y89dRTt42vWbMmBw4cYObMmaxbt45vv/2Wr7/+GhcXF55++mkGDBjA4MGDsbW1vZNLFBERsWju3LlERUXds/onTpzg73//OwaDgYKCAqvzfv31V4YMGVLqPBEReXRo4ANwcnICICcnx2JMdnY2AM7OzlbXK6x563aWJdVLSUnh7bffplmzZrz11lvWNW+FM2fOWFxzd3cvs/OIiIiIiIiIiIiIiIiIiIiIyMMrODiY4OBgq2JDQ0MJDQ0tMeb111/n9ddfL1UPTk5OvP3227z99tulyhMREbkb3t7evPHGGzRv3hwfHx+mTJnCkiVLyqR2fn4+oaGhGAwGBg0axKJFi6zOHT16ND///DPDhw9n7ty5ZdKPiIg8XGzudwMPAk9PTwBSU1MtxhSuFcaWpHbt2qbnp0+ftrreF198wdWrV8nJyaFLly506tTJ9OjXrx8AeXl5pmP//e9/b9uLiIiIiIiIiIiIiIiIiIiIiIiIiIhY9uqrr/Kvf/2LAQMG0KhRI2xsyu7ttVFRUezYsYN//vOfVr0HtVBcXByfffYZr732Gq1bty6zfkRE7lR8fDwdOnTA2dkZg8GAwWBg27Ztd1QrNjYWg8Fw2yFy0Q4fADRv3hyAjIwMTp48iZeXV5GYPXv2AODj43Pbes7OztSrV49jx46xZ88emjRpUqp6x44d49ixYxbrb9++HUBf4CIiIiIiIiIiIiIiIiIiIiIiIiIiD6iUlBTefvttnn76aUaMGMGkSZOsyktPT2f48OE0bNiQ9957j2XLlt3jTkVESnbgwAH69OlDfn4+fn5+VK9eHYPBQLVq1e53a4887fABuLu706pVKwCWLl1aZD0pKYnU1FTs7e0JCAiwqmavXr0s1svOziY+Ph6A3r17m46Hh4dTUFBQ7OPkyZMA2Nramo5p4ENERERERERERERERERERERERERE5MGTl5dHSEgIBoOBmJgYDAaD1bkjRowgPT2dmJgYKlSocA+7FBGxztq1a8nNzWXcuHFs2rSJRYsWERsbS6NGje53a488DXz8/yZMmABAZGQk+/btMx3PyMggLCwMgFGjRuHi4mJai4uLo1GjRvj7+xepFx4eTsWKFUlMTGTBggWm43l5eYSFhXHx4kVatWpF165d79UliYiIiIiIiIiIiIiIiIiIiIiIiIjIffCvf/2L3bt388EHH1C3bl2r85YtW8aqVasYPXo0vr6+97BDERHrnT59GoD69evf507+fOzudwMPisDAQMaMGcPMmTNp06YN/v7+ODo6smXLFi5evIivry+TJ082y7l06RIpKSlcvXq1SL0aNWoQGxtL//79GTp0KDExMXh6epKcnMyJEyeoWrUqS5cuLdXEpoiIiIiIiIiIiIiIiIiIiIiIiIiIPNgOHz7MO++8Q7t27RgzZozVeRcuXGDkyJHUrVuXKVOm3HUf7u7uFtfOnz9P9erV7/ocIo+kQ4cgP/9+d1F2bGygadM7Sn333XeZNGmS6eOXX36Zl19+GYCnn36abdu2kZiYyLp169ixYwdnzpwhKyuLxx9/HF9fX9544w1atWpVqnMmJiYSFRXFN998Q2ZmJkajETc3N5566imGDh1Kx44di+Rs2bKF2bNn89VXX5GRkUGlSpXw9fXl73//O23btr2ja39QaIePW0RFRbF8+XLatm3Lrl27SEhIwN3dncjISLZu3YqDg0Op6gUFBbF792569+7NiRMniIuLIy8vj5EjR3Lw4EHq1at3j65EREREREREREREHgUrV66kU6dOVK5cGUdHR5o1a8a0adPIzc29o3p79+4lKCiIqlWrUqFCBby8vBg9ejRpaWnFxufl5bFq1SreeustunbtymOPPYbBYMDOruR7CaWlpbF48WIGDBhA/fr1qVChAhUrVqRRo0aMGTOGU6dO3bbXtLQ0xo8fj7e3N0ajEUdHR+rWrUv//v3Zu3fvnVy+iIiIiIiIiIiIyD1348YNQkJCsLGxYeHChdjYWP9W3aFDh/Lrr7/y8ccfU7FixXvYpYiUKD8f8vIencddDK88+eSThISEmHYq8vX1JSQkhJCQELp16wbA8OHD+eijj7CxscHX15fnn38eFxcXVqxYQbt27Vi9erXV51u0aBFdu3Zlw4YNeHl50adPHzp27IizszPLli1jzZo1RXLeeOMNOnfuzLp166hVqxaBgYHUqVOHdevW0aFDBz755JM7vv4HgXb4+J3g4GCCg4Otig0NDSU0NLTEmBYtWpTqi9QST09PCgoK7rqOiIiIiIiIiIiIPBzCw8OJiorCzs4OPz8/jEYjW7duZdy4ccTHx7Np06ZS3aRm1apV9O/fnxs3btCqVSu8vLzYs2cP0dHRrFy5kqSkpCI3qcnKyiIoKKjUvb/22mt89tln2NjY4O3tTY8ePcjJySE5OZlZs2axcOFC4uLi6NKlS7H5//vf/+jduzcXL16kXr16dOvWjfz8fE6dOsWKFSvw9fWlRYsWpe5LRERERERERERE5F774IMP2LdvH//85z9p2LCh1XmLFi0iPj6eESNG0KlTpzLp5cyZMxbXStr9Q0SkUGBgIIGBgYSGhnL8+HFeffXVIu+fnz59Ok8//TSVK1c2O7527VqCgoIYNmwYAQEBVv1da9KkSRQUFLBjxw7at29vtpaWlsbZs2fNji1YsID/+7//o169eqxevZqmt+xk8uWXX/L8888zfPhw2rdvT/369Ut59Q8GDXyIiIiIiIiIiIiIPGDWrl1LVFQURqOR7du34+PjA0B6ejp+fn4kJSURERHB9OnTrap37tw5QkJCuHHjBvPnz2fo0KHAzR08QkND+fTTTxkwYAC7d+/GYDCY8sqVK8dLL71E8+bN8fHxwdXVlSeffPK253N1dWXSpEkMHjyYmjVrmo5nZ2czZMgQli1bRr9+/Th27FiRX/5/9913PPfcc9ja2rJmzRp69epltn7hwgWuXLli1XWLiIiIiIiIiIiI/NHi4uIAiI+PJyEhwWytcPfjDRs2mIY6tm3bZpaXnJxcZODjwoULwM1dnAvXli1bRrVq1cr+AkRESikwMNDi8aCgIP7zn//wv//9j4CAgNvW+vnnn3FxcSky7AFQpUoVqlSpYvo4Pz+fd999F7j5PfHWYQ+Ajh07EhERwd///nfmz59v9d/VHjQa+BARERERERERERF5wEyZMgWA8ePHm4Y9ANzc3JgzZw4dOnQgOjqaiIgIXFxcbltvxowZXLlyhc6dO5uGPQBsbW2ZO3cu8fHxJCcns2nTJp599lnTuqOjI59++qnp48I/Rt7OzJkziz1uNBqJiYlhw4YNZGZmsmHDBgYOHGgWM3z4cH777TeWLl1aZNgD0B8wRURERERERERE5KGQlJRkce3ChQumIY7f27Nnj8W8ixcvsn37dgCuXr16dw2KiJShc+fOsWHDBn744QcuXbrEjRs3ADhy5AgAKSkpVg18tG7dmm3btjFo0CD+9re/0bx5c2xsbIqN3b9/P+fOnaNu3boWd4YvHJLbtWvXHVzVg6H4qxcRERERERERERGR++Ls2bMkJycDMGDAgCLr7du3x8PDg2vXrhW5O5wlhXeGK66e0WikR48eAKxZs+ZO27ZaxYoVadiwIQCpqalmawcOHGDHjh14eHjQr1+/e96LiIiIiIiIiIiISFk7cOAABQUFxT7eeecdAAYPHmw6Vmjt2rUW8z755BMA/P39Tcc8PT3vx+WJiBQxadIkPD09GTp0KB9++CExMTEsWrSIRYsWcejQIQAuX75sVa05c+ZQp04dlixZQsuWLalUqRL+/v588MEHnD592iz2xIkTABw/fhyDwVDso3Xr1gD88ssvZXjFfyzt8CEiIiIiIiIiIiLyANm/fz8Arq6ueHl5FRvTsmVLUlNT2b9/P/379y+xXlZWFseOHTPlWaq3ZMkS07nvpdzcXNNOIdWrVzdb27hxIwAdOnTAYDCwceNGtmzZwqVLl3B3dycgIMDiHZpERERERERERERE/kjR0dFER0fTunVrFi9efL/bERG5L9asWcO7776L0WgkOjoaPz8/atSogYODAwaDgQkTJjB16lSzAbeSPPHEE6SkpLBp0ya2bt3Krl272LFjB1u3buW9994jJibGtHt8fn4+cHN3+Ft3sC+Om5vb3V3ofaSBDxEREREREREREZEHyMmTJwGoVauWxRgPDw+z2JIUDleUVLM09e5WTEwM6enpODg40L17d7O1wrs8VapUiS5dupCYmGi2PnHiRF566SViYmKwt7e/572KiIiIiIiIiIjIn8O+ffsICwszfXz8+HEA5s+fz+eff246HhcXZ7qRTXp6OikpKVSrVu2PbVZE5AGyYsUKAD744AOGDh1aZP3HH38sdU07OzsCAgIICAgAbu4O8uGHHzJp0iSGDRtGr169cHR0NP1967HHHiM2NvbOL+IBZ3O/GxAREZEHy8qVK+nUqROVK1fG0dGRZs2aMW3aNHJzc++45rp16+jRowfVqlWjfPnyVKlShXbt2vHee+8Vid22bZvF7dUKH/PmzbubSxQREREREXmgZWVlAeDo6Ggxxmg0AtZtf11Yr6Sapal3N7799lvefPNNACIiIqhatarZekZGBgALFixg165dzJo1i7Nnz5KWlsbChQtxdnbms88+Y8yYMVaf093d3eLj/PnzZXdxIiIiIiIiIiIi8tC6fPkyu3fvNj3S09MBOHPmjNnxa9eu3edOReQPYWMDtraPzsPm3o0MZGZmAlC7du0ia2lpaWzevPmuz+Hs7My7775LpUqVuHLlCkePHgWgVatWuLm58d1333HkyJG7Ps+DSjt8iIiIiEl4eDhRUVHY2dnh5+eH0Whk69atjBs3jvj4eDZt2oSDg4PV9a5fv87AgQNZuXIlDg4OtG3blqpVq3LhwgWOHDnCzJkzmThxYrG5VatWpVu3bsWuNWzY8I6uT0RERERERO6fM2fO8MILL5CdnU2PHj0YP358kZjC7bxzc3OJjo42uxPUyy+/jKOjIy+++CIff/wxb731Fp6enn9U+yIiIiIiIiIiIvII69Spk+n3k9Z69913effdd+95DkBoaCihoaGlzhORO9S06f3u4KHxxBNPsHnzZj766CO6d+9O+fLlAbh06RIhISFcunTJ6lpXrlxh3rx5/PWvf+Xxxx83W9uxYwcXL17E1tYWd3d3AMqVK8c777zD6NGj6dWrFwsXLqR9+/ZmeXl5eWzfvp2KFSvSpk2bu7za+0MDHyIiIgLA2rVriYqKwmg0sn37dnx8fICb20/6+fmRlJREREQE06dPt7rmkCFDWLlyJYGBgSxYsAA3NzfTWn5+Pt98843F3EaNGj3S26yJiIiIiIhY4uTkBEBOTo7FmOzsbODmHY2srVdY08XF5a7q3YkLFy7g7+/PTz/9xLPPPsuKFSswGAwWey1XrhyvvPJKkfXg4GBGjhxJeno6//vf/3j55Zdve+4zZ85YXCv8g4CIiIiIiIiIiIiIiIiUXnh4OIsXLyYhIYE6derQpk0bcnNzTUMWr7zyCgsXLrSq1vXr13n99dd58803adKkCfXr16dcuXKcOnWKr7/+GoC3337bbBhk1KhRnD59mn/961906NCBxo0bU69ePRwcHLhw4QIHDhzg4sWLzJ0796Ed+Lh3+7OIiIjIQ2XKlCkAjB8/3jTsAeDm5sacOXMAiI6OtnridsuWLSxevBhvb29WrFhhNuwBYGNj89D+D5SIiIiIiMi9VLhrRWpqqsWYwjVrdri4dQvt06dP33W90kpLS8PPz4+jR4/SuXNn1q5di729fbGxderUAcDDwwM7u+LvV+Tl5QXA+fPny7xXERERERERERERERERsZ6Xlxf79+/npZdewtbWls8//5yDBw/Sv39/9u/fj4eHh9W1jEYj8+bN48UXX+TatWts3ryZtWvXkpaWRu/evdmyZQuTJk0qkjdt2jR27tzJSy+9RHZ2Nv/973/ZsGED586do1OnTnz88ce8+OKLZXnZfyjt8CEiIiKcPXuW5ORkAAYMGFBkvX379nh4eJCamkpCQgL9+/e/bc1Zs2YBNyd4y5UrV7YNi4iIiIiIPMKaN28OQEZGBidPnjQNONxqz549AGYD+5Y4OztTr149jh07xp49e2jSpMld1SuNX375BT8/P77//nv8/f1Zv349FSpUsBjfokUL4Oa1W5Keng7c/KW/iIiIiIiIiIiIiIiI3HuxsbHExsYWu+bp6cmnn35a7Nq7777Lu+++W+R4aGgooaGhZsfs7OwYNmwYw4YNK3V/7dq1o127dqXOexhohw8RERFh//79ALi6uhb7RiKAli1bmsWWJC8vjy1btgDQsWNHLly4wIwZMxgxYgTh4eEsWrSI7OzsEmv8/PPPvPfeewwbNoy//e1vzJ071+KdaEVERERERB4l7u7utGrVCoClS5cWWU9KSiI1NRV7e3sCAgKsqtmrVy+L9bKzs4mPjwegd+/ed9p2Eenp6fj5+XHkyBH8/f2Jj4/HwcGhxJyAgAAqVqzIpUuXTDcmuNXRo0f56aefAGjdunWZ9SoiIiIiIiIiIiIiIiLyINLAh4iIiHDy5EkAatWqZTGmcGu1wtiSnDhxwjTQ8fXXX1O/fn3Gjh3LvHnziIqKIjQ0lDp16rB161aLNX744QfeeecdPvroI2bOnElYWBh169bltdde48aNG6W5PBERERERkYfOhAkTAIiMjGTfvn2m4xkZGYSFhQEwatQoXFxcTGtxcXE0atQIf3//IvXCw8OpWLEiiYmJLFiwwHQ8Ly+PsLAwLl68SKtWrejatWuZ9J+ZmYm/vz+HDx+mc+fOVg17ADg5OfH6668DMGLECM6dO2day8jI4NVXXyU/P5/WrVvTpk2bMulVRERERERERERERERE5EFld78bEBERkfsvKysLAEdHR4sxRqMRgMuXL9+2XkZGhun54MGDadeuHdOnT6dRo0YcP36cCRMmkJCQQM+ePdm3bx/169c3xbu4uBAeHk6vXr1o0KABzs7OHD9+nE8++YTo6Gj+/e9/k52dzUcffWTVtbm7u1tcO3/+PNWrV7eqjoiIiIiIyB8pMDCQMWPGMHPmTNq0aYO/vz+Ojo5s2bKFixcv4uvry+TJk81yLl26REpKClevXi1Sr0aNGsTGxtK/f3+GDh1KTEwMnp6eJCcnc+LECapWrcrSpUsxGAxFcsPCwkxDJ9euXQNuDorcOnDx3HPPERERYfr41Vdf5dChQxgMBlxdXRkxYoTF6wwMDDQ79o9//IM9e/bwxRdf8MQTT9CmTRvs7Oz4+uuvyczMpHbt2ixbtsy6T6SIiIiIiIiIiIiIiIjIQ0wDHyIiIlLmCgoKTM9r1qzJxo0bsbe3B6BZs2asX7+eJ598ksOHDxMZGUlMTIwpvnnz5jRv3tysXpMmTfjwww9p3749ffr0YcGCBYSFhfHkk0/+IdcjIiIiIiJyP0RFReHr68vs2bPZtWsXubm51K1bl/HjxzN27FjKly9fqnpBQUHUqVOHKVOmsGPHDvbv30/16tUZOXIkERERVK1atdi87777jt27dxc5fuuxRo0ama1lZmYCN38+XLFihcWePD09iwx8lC9fns8//5z58+cTGxvLrl27uHHjBl5eXgwfPpzXX38dV1dXay9bRERERERERERERERE5KGlgQ8RERHByckJgJycHIsx2dnZADg7O1tdDyA0NNQ07FHI1taWYcOGMXr0aBITE63us3fv3jz55JMcOHCA+Ph4qwY+zpw5Y3GtpN0/REREREREHgTBwcEEBwdbFRsaGkpoaGiJMS1atGD16tWl6mHbtm2lir/TnFvZ2NgwYsQIizuDiIiIiIiIiIiIiIiIiPwZ2NzvBkREROT+8/T0BCA1NdViTOFaYezt6hkMBgDq1KlTbEzh8fPnz5eiU3jiiSeAkgc5REREREREREREREREREREREREREQedhr4EBEREZo3bw5ARkYGJ0+eLDZmz549APj4+Ny2ntFopGHDhgCkp6cXG1N43Gg0lqrXjIwMwHwXERERERERERERERERERERERERERGRR40GPkRERAR3d3datWoFwNKlS4usJyUlkZqair29PQEBAVbVDAoKAiAxMbHY9c2bNwPQunVrq/s8e/YsO3bsKHWeiIiIiIiIiIiIiIiIiIiIiIiISCGDwWB6XlBQcB87kQfFrV8Ht3593G8a+BAREREAJkyYAEBkZCT79u0zHc/IyCAsLAyAUaNG4eLiYlqLi4ujUaNG+Pv7F6k3ZswYKleuTEJCAvPnzzdbW7ZsGZ999pkp7lZRUVHF7gpy6NAhXnjhBX777Tfq1q1Lz5497/BKRURERERERERERERERERERERE5M/M1tbW9Kb+a9eu3edu5EFQ+HVgMBiwtbW9z938Pxr4EBEREQACAwMZM2YM2dnZtGnThu7du9O3b1/q1avHt99+i6+vL5MnTzbLuXTpEikpKRw/frxIPTc3N5YvX06FChUYPnw43t7eBAUF4ePjQ//+/SkoKCAiIqLIjiHvvPMO1apVo2XLlgQFBfHiiy/SsmVLmjdvzv79+6lVqxbx8fHY29vf08+HiIiIiIiIiIiI3FspKSnMmjWL0NBQmjRpgp2dHQaDgffff7/Y+Pz8fHbt2sXEiRNp3749jz32GOXKlcPNzY0uXbrw2WeflepujAkJCRgMBgwGA507dy4x9tixY4SGhuLu7o69vT3u7u6EhoZy4sSJEvOysrKYMGECDRs2xMHBATc3N5577jm2bt1aYl5+fj7z58/nqaeewsnJCScnJ5566ik++ugj3XFSRERERERERKQMGAwGKlasCNz8HY5I4ddBxYoVH6gdPuzudwMiIiLy4IiKisLX15fZs2eza9cucnNzqVu3LuPHj2fs2LGUL1++VPW6dOnCwYMHmTJlComJiaxbtw5nZ2cCAgL429/+RteuXYvkvP322+zcuZMjR46wefNmcnJycHZ2pl27dvTs2ZNhw4bh5ORUVpcsIiIiIiIiIiIi98ncuXOJioqyOv7EiRP4+voC4OrqSsuWLalcuTInTpwgMTGRxMREli1bxurVq2/7u8xff/2VIUOGYDAYbjtAsXPnTrp27cqVK1do3Lgx7du35/DhwyxatIhVq1aRmJhImzZtiuSlpaXRoUMHjh49SvXq1XnhhRf4+eef+eKLL/jiiy+Iiopi9OjRRfLy8vIIDg5mzZo1VKxY0bTDcmJiIsOGDTNdp42N7u0nIiJlb+XKlcyePZuDBw9y/fp16tWrx0svvcTYsWMpV66c1XU8PT356aefbhs3adIkJk6caPq4U6dObN++/bZ5L7/8MgsXLrS6HxERERGR4hiNRnJycrh06RK2tra4uLg8UDs7yB8jLy+PS5cucenSJYAH7v2JGvgQERERM8HBwQQHB1sVGxoaSmhoaIkxDRo0IDY21urzv/nmm7z55ptWx4uIiIiIiIiIiMjDydvbmzfeeIPmzZvj4+PDlClTWLJkicV4g8GAn58fb775Jl26dDH74/v27dt57rnn+Pzzz4mMjDR742hxRo8ezc8//8zw4cOZO3euxbgrV64QHBzMlStXeOutt5gyZYppbcKECUydOpXg4GBSUlJwcHAwyx06dChHjx7F39+f9evXm+4YmZCQQI8ePQgPD+fpp5+madOmZnmzZs1izZo11KxZkx07duDl5QXAyZMnad++PStXrqRjx46MGjWqxGsUEREprfDwcKKiorCzs8PPzw+j0cjWrVsZN24c8fHxbNq0qcjrnSV9+/YlPT292LXMzEzi4+MBeOaZZ8zWunXrhqenZ7F5169f5z//+U+xeSIiIiIid6Jy5crk5OSQnZ1NZmYmmZmZ97sluc+MRiOVKlW6322YMRRoz98/NXd3dwDOnDlznzsREXn46Hvow0//hiIid0ffRx9++jcUEbk7+j768NO/oYjI3Snr76OhoaEsWrSIyZMn849//KPU+e+//z4RERHUrVuXY8eOWYyLi4ujd+/evPnmm/zlL3/h5Zdfxt/fn8TExCKxc+bMYeTIkTRo0IDvv//ebFeN/Px8nnjiCY4ePcq8efMYNmyYae27776jcePG2Nracvz4cWrXrm1W99VXXyUmJoZ+/fqZ3rhaWLNmzZpcuHCBTz/9lJdeesks79NPP+Wvf/0rNWrUIDU19a53+dBroYjInXvUvoeuXbuWXr16YTQa2b59Oz4+PgCkp6fj5+fHt99+y+uvv8706dPv+lzTpk1j3LhxNGjQgJSUFKvzVqxYwYsvvoiLiwvnz5+3evikJI/av6OIyB9J30Mffvo3FLkpPz+fzMxMfv31V27cuHG/25H7xM7OjsqVK+Pq6mr179z+qO+j2uFDRERERERERERERERERB56zZs3ByA1NdViTHp6OsOHD6dhw4a89957LFu2rMSacXFxAPTr16/IH3ptbGx48cUXmTx5MmvWrDEb+CjM8/X1LTLsATBgwABiYmKIj48nNzeXcuXKAfDVV19x4cIF7O3t6dOnT5G8Pn36MHjwYM6dO8fu3btp27Ztif2LiIhYq3AXq/Hjx5uGPQDc3NyYM2cOHTp0IDo6moiICFxcXO7qXAsXLgTglVdeKVVeTEwMAP379y+TYQ8REREREbj5Ox43Nzcee+wx8vPzyc/Pv98tyR/MxsYGGxsbDAbD/W6lWHd3yxcRERERERGRB9DKlSvp1KkTlStXxtHRkWbNmjFt2jRyc3PvqN7evXsJCgqiatWqVKhQAS8vL0aPHk1aWtptcw8ePMgrr7yCl5cXFSpUoHLlyjRp0oQRI0aQkZFhFpuWlsbixYsZMGAA9evXp0KFClSsWJFGjRoxZswYTp06dUf9i4iIiIiI/Bn8+OOPAFSvXt1izIgRI0hPTycmJoYKFSrctub+/fsBaNmyZbHrhccL40qbl5OTY+r71rzGjRsX25+DgwONGzcu9pwiIiJ36uzZsyQnJwM3hxJ/r3379nh4eHDt2jUSEhLu6lw7d+4kJSUFOzs7QkJCrM5LTU017cY1ePDgu+pBRERERKQ4BoMBW1tbypUrp8ef7GFra/vADnuABj5ERERERETkERMeHk5wcDA7d+6kdevWdOvWjdOnTzNu3Dj8/Pz47bffSlVv1apVtGnThlWrVlG7dm169uyJjY0N0dHRNG3alGPHjlnMnT59Oi1atGDRokU8/vjj9OrVi7Zt23L16lXmzZvH+fPnzeJfe+01QkJCWL58ORUrVqRHjx4888wzZGZmMmvWLLy9vdm8efMdfV5EREREREQeZVeuXGHmzJkAxe6MAbBs2TJWrVrF6NGj8fX1vW3NrKws06B+rVq1io3x8PAA4JdffiEnJ8d0/OTJkyXmOTs74+zsbBZrTd6t57w1T0RE5G4UDhG6urri5eVVbIylIcfSKtzdIyAggGrVqlmdFxsbS35+Pk2bNrU4UCkiIiIiIvIosrvfDYiIiIiIiIiUlbVr1xIVFYXRaGT79u34+PgAkJ6ejp+fH0lJSURERDB9+nSr6p07d46QkBBu3LjB/PnzGTp0KAB5eXmEhoby6aefMmDAAHbv3l3kbg+ffPIJb775Jg0bNmTVqlV4e3ubrR85cgR3d3ezY66urkyaNInBgwdTs2ZN0/Hs7GyGDBnCsmXL6NevH8eOHaNy5cql/vyIiIiIiIg8qsLCwjh58iQ1atRgwoQJRdYvXLjAyJEjqVu3LlOmTLGqZlZWlum5o6NjsTFGo9H0/PLly6a4wlxLeYW5ly9f5vLly0XOebu8wvNZ4/c/e97q/PnzJe6IIiIifw5/1MBhTk4OK1asAEq3S0dBQQGxsbGlzhMREREREXkUaIcPEREREREReWQUvmln/PjxpmEPADc3N+bMmQNAdHQ0ly5dsqrejBkzuHLlCp07dzYNewDY2toyd+5cXFxcSE5OZtOmTWZ5v/76K+Hh4Tg4OJCQkFBk2AOgcePGuLi4mB2bOXMmEydONBv2gJtv5omJicHJyYnMzEw2bNhgVf8iIiIiIiJ/BpMnT2bRokVUqFCBFStW8NhjjxWJGTp0KL/++isff/wxFStWvA9dioiIPLjuxcBhcVasWEF2djbVqlUjICDA6rxt27Zx4sQJ7O3tGThwYKnP6+7ubvHx+12YRUREREREHjQa+BAREREREZFHwtmzZ0lOTgZgwIABRdbbt2+Ph4cH165dIyEhwaqacXFxFusZjUZ69OgBwJo1a8zWFi1axOXLl+nTpw916tQp1XVYUrFiRRo2bAhAampqmdQUERERERF52H344YdMnDgRe3t74uLi8PX1LRKzaNEi4uPjGT58OJ06dbK6tpOTk+l5Tk5OsTHZ2dmm587OzkVyLeXdmlsWeSU5c+aMxYd29xARkT9STEwMAIMGDcLOzq7UeT179sTV1fWe9CYiIiIiIvKgsv6nJxEREREREZEH2P79+wFwdXXFy8ur2JiWLVuSmprK/v376d+/f4n1srKyOHbsmCnPUr0lS5aYzl1o48aNAHTs2JHffvuNVatWkZycTF5eHvXr16dPnz54eHiU6vpyc3M5deoUgN6QIyIiIiIiAsyaNYvXX3+d8uXLs3r1arp161ZsXOEwf3JycpGBjwsXLgCwd+9e09qyZcuoVq0aTk5OuLq6kpmZyenTp2nWrFmR2oUD+W5ubmZ3Rff09GTfvn2cPn262J4uX75sukO6p6enWR5gMe/Wc96aJyIicjfuxcDh7x09epSdO3cC8Morr1idd+nSJdMNdwYPHnxH5z5z5ozFNXd39zuqKSIiIiIi8kfRwIeIiIiIiIg8Ek6ePAlArVq1LMYUDlkUxpakcLiipJqW6h06dAi4OTTi7e3NiRMnzNbHjRvH1KlTee21127bR6GYmBjS09NxcHCge/fuVueJiIiIiIg8imbPns2YMWNMwx7PPffcbXP27Nljce3ixYts374dgKtXr5qO+/j4kJiYyJ49e3jhhRcs1vTx8TE77uPjw5o1ayyes/C4o6MjDRo0MMsDOHLkCFevXqVChQpmeb/99htHjhwp9pwiIiJ3qnCIsKSdhe924HDhwoXAzZ2YC3cytsZ//vMffvvtN2rVqkXnzp3v6NwiIiIiIiIPM5v73YCIiIiIiIhIWcjKygIwu6Pq7xmNRgDTXVStqVdSTUv1MjIyABg/fjx5eXnEx8fz66+/cvz4ccaNG0dubi6vv/46//nPf27bB8C3337Lm2++CUBERARVq1a1Kg9u3qHO0uP8+fNW1xEREREREXlQzJs3j1GjRpmGPZ5//vkS49euXUtBQUGxj08++QQAf39/07Fb38jaq1cv4OauH/n5+WZ18/PzWb58OQC9e/c2WwsMDARg586dxe7WsXTpUgBeeOEFypUrZzretm1bqlWrxrVr11i9enWRvNWrV3P9+nVq1KjBU089VeJ1i4iIWKt58+bAzd9rWrpZjqUhR2vk5eWxePFioPS7dBQOirz88svY2OhtTiIiIiIi8uejn4REREREREREylhBQQFw880/CQkJPP/881SqVIk6deoQGRnJ8OHDAfjHP/5x21pnzpzhhRdeIDs7mx49ejB+/Ph72ruIiIiIiMiDbMGCBYSFhVk97HG3QkNDqVGjBkePHiUiIsJsLSIigqNHj+Lu7s6gQYPM1ho3bkzPnj3Jy8tj8ODB/Pbbb6a1L774gtjYWGxsbHjrrbfM8mxsbBg3bhxwc3fIW990e/LkSdPPhG+99Zbe9CoiImXG3d2dVq1aAf9vKPFWSUlJpKamYm9vT0BAQKnrJyQkcP78eZycnAgKCrI67/DhwyQnJ2MwGHj55ZdLfV4REREREZFHgd39bkBERERERESkLDg5OQGQk5NjMSY7OxsAZ2dnq+sV1nRxcbG6npOTExkZGXTo0IG//OUvRfLCwsKYO3cuJ06c4OTJk3h5eRXbw4ULF/D39+enn37i2WefZcWKFRgMhtv2fqszZ85YXHN3dy9VLRERERERkbK0b98+wsLCTB8fP34cgPnz5/P555+bjsfFxVG9enUOHDjAsGHDKCgooE6dOqxatYpVq1YVWzs2NrZMeqxYsSIrVqyga9euTJkyhfXr1+Pt7c3hw4c5fPgwjo6OrFy5EgcHhyK5H330Ed999x2JiYnUrVuXDh06kJaWxvbt2ykoKCAqKoqmTZsWyRs9ejRffvklcXFxeHt707lzZwASExO5cuUKffv2Nfu8iYiIlIUJEybQq1cvIiMj6d69u2knj4yMDNPrzqhRo8x+TxoXF8dbb71FzZo12bJli8Xahbt09OvXr8Qdmn8vJiYGgM6dO1O7du1SX5OIiIiIiMijQAMfIiIiIiIi8kjw9PQEIDU11WJM4VphbElu/QPi6dOnadKkidX16tSpQ0ZGBnXq1Cm29q3Hz58/X+zAR1paGn5+fhw9epTOnTuzdu1a7O3tb9u3iIiIiIjIw+Ly5cvs3r27yPEzZ86YDa9fu3YNgIsXL5p2VPzhhx/44YcfLNYuq4EPAF9fXw4ePMjkyZNJTExk9erVPP744wwaNIiJEydSt27dYvOqVKnCnj17mDp1KqtXr2bdunU4Ojry7LPP8sYbb+Dv719snq2tLatWrWLBggV8/PHHpjfQNm7cmMGDBzN06NBS3wxARETkdgIDAxkzZgwzZ86kTZs2+Pv74+joyJYtW7h48SK+vr5MnjzZLOfSpUukpKRw9epVi3XT0tLYsGEDAIMHD7a6n9zcXD799NNS54mIiIiIiDxqNPAhIiIiIiIij4TmzZsDN+84Z2nXjD179gCY7k5XEmdnZ+rVq8exY8fYs2dPsQMfluq1aNGC5ORk0tPTi61963Gj0Vhk/ZdffsHPz4/vv/8ef39/1q9fT4UKFW7bs4iIiIiIyMOkU6dOpgGOexFvjdDQUEJDQ28bV69ePRYtWlTq+s7OzkydOpWpU6eWKs/GxoZhw4YxbNiwUp9TRETkTkVFReHr68vs2bPZtWsXubm51K1bl/HjxzN27FjKly9f6ppLliwhNzeXxo0b89RTT1mdt379etLT03F1dSUwMLDU5xUREREREXlU2NzvBkRERERERETKgru7O61atQJg6dKlRdaTkpJITU3F3t6egIAAq2r26tXLYr3s7Gzi4+MB6N27t9laUFAQAF9//TU5OTlFcjdv3gzcHPZ44oknzNbS09Px8/PjyJEj+Pv7Ex8fj4ODg1X9ioiIiIiIiIiIiNyN4OBgtm/fzqVLl7hy5Qrffvst48aNK3bYIzQ0lIKCAk6dOmWx3uuvv05BQQGHDx8uVR99+vShoKCAjIwM7XwsIiIiIiJ/ahr4EBERERERkUfGhAkTAIiMjGTfvn2m4xkZGYSFhQEwatQoXFxcTGtxcXE0atQIf3//IvXCw8OpWLEiiYmJLFiwwHQ8Ly+PsLAwLl68SKtWrejatatZnp+fHx06dCAtLY1Ro0Zx7do109qhQ4f4xz/+AcCIESMoV66caS0zMxN/f38OHz5M586dNewhIiIiIiIiIiIiIiIiIiIi8idmd78bEBERERERESkrgYGBjBkzhpkzZ9KmTRv8/f1xdHRky5YtXLx4EV9fXyZPnmyWc+nSJVJSUrh69WqRejVq1CA2Npb+/fszdOhQYmJi8PT0JDk5mRMnTlC1alWWLl2KwWAokvvZZ5/RsWNHYmNj2bx5M61atSIzM5Ovv/6a69ev06VLlyK9vPrqqxw6dAiDwYCrqysjRoyweJ2BgYF3/okSEREREREREREREREREZOUlBQ2bdrE3r172bt3L99//z15eXlMnjzZdDO3uzVnzhxGjhwJwODBg/n444+LxOzfv5///ve/JCYmcvjwYTIzMzEajXh7e9OvXz+GDh1qdkM5ERF59GngQ0RERERERB4pUVFR+Pr6Mnv2bHbt2kVubi5169Zl/PjxjB07lvLly5eqXlBQEHXq1GHKlCns2LGD/fv3U716dUaOHElERARVq1YtNs/Dw4MDBw4QGRnJmjVr+OKLLyhfvjw+Pj6EhIQwZMgQbG1tzXIyMzMBKCgoYMWKFRZ78vT01MCHiIiIiIiIiIiIiIiISBmZO3cuUVFR96z+iRMn+Pvf/47BYKCgoKDYmBs3buDj4wOA0WikVatWVK1alTNnzvDVV1+RlJTE4sWL2bhxI5UqVbpnvYqIyINFAx8iIiIiIiLyyAkODiY4ONiq2NDQUEJDQ0uMadGiBatXry51Hy4uLkydOpWpU6daFb9t27ZSn0NERERERERERERERERE7o63tzdvvPEGzZs3x8fHhylTprBkyZIyqZ2fn09oaCgGg4FBgwaxaNEii7EtWrRg3Lhx9OjRA3t7e9Pxb7/9lmeffZZvvvmG1157jYULF5ZJbyIi8uDTwIeIiIiIiIiIiIiIiIiIiIiIiIiIiPxpvfrqq2Yf29jYlFntqKgoduzYwezZs0lLS7MYZ2dnx549e4pda9KkCdOmTeOvf/0ry5YtY/78+ZQrV67MehQRkQdX2b0iiYiIiIiIiIiIiIiIiIiIiIiIiIiICAApKSm8/fbbPP3004wYMeKuajVv3hyA3377jfT09LJoT0REHgIa+BARERERERERERERERERERERERERESlDeXl5hISEYDAYiImJwWAw3FW9H3/8EYDy5cvj6upaFi2KiMhDwO5+NyAiIiIiIiIiIiIiIiIiIiIiIiIiIvIo+de//sXu3bv597//Td26de+qVkFBAdOmTQPg+eefx97evixaFBGRh4AGPkRERERERERERERERERERERERERERMrI4cOHeeedd2jXrh1jxoy563qTJk3iq6++wmg0EhkZaXWeu7u7xbXz589TvXr1u+5NRETuLZv73YCIiIiIiIiIiIiIiIiIiIiIiIiIiMij4MaNG4SEhGBjY8PChQuxsbm7t+ouXryY9957z1Svfv36ZdSpiIg8DLTDh4iIiIiIiIiIiIiIiIiIiIiIiIiISBn44IMP2LdvH//85z9p2LDhXdVauXIlr7zyCgALFiwgKCioVPlnzpyxuFbS7h8iIvLg0MCHiIiIiIiIiIiIiIiIiIiIiIiIiIhIGYiLiwMgPj6ehIQEs7VTp04BsGHDBjp16gTAtm3biq2zZs0aBgwYQH5+PvPnzzcNfoiIyJ+LBj5+Z+XKlcyePZuDBw9y/fp16tWrx0svvcTYsWMpV65cqevt3buXyMhIvvzySy5dukT16tV5/vnniYiIoEqVKkXiT58+zRdffMHGjRvZu3cvFy5coFy5ctStW5fnnnuOsWPH8vjjj5fFpYqIiIiIiIiIiIiIiIiIiIiIiIiIyD2QlJRkce3ChQtcuHDB4vratWvp168feXl5zJ07lyFDhtyLFkVE5CFgc78beJCEh4cTHBzMzp07ad26Nd26deP06dOMGzcOPz8/fvvtt1LVW7VqFW3atGHVqlXUrl2bnj17YmNjQ3R0NE2bNuXYsWNFcgYMGMDw4cOJj4+natWq9OrVi3bt2nHq1CmmTp1K48aNOXDgQBldsYiIiIiIiIiIiIiIiIiIiIiIiIiIlJUDBw5QUFBQ7OOdd94BYPDgwaZjvxcfH09wcDA3btxg7ty5DBs27I++BBEReYBo4OP/t3btWqKiojAajezevZuNGzeyevVqfvzxR5o0aUJSUhIRERFW1zt37hwhISHcuHGD+fPn880337B8+XKOHj3KwIED+fnnnxkwYECRF+uaNWvy73//mwsXLvDNN9+wbNkyNm3axLFjx+jUqRO//PILwcHB5OXllfWnQERERERERERERERERERERERERERErBAdHU2jRo0YNGhQmdVMSEigb9++3Lhxg3nz5mnYQ0RENPBRaMqUKQCMHz8eHx8f03E3NzfmzJkD3HxxvnTpklX1ZsyYwZUrV+jcuTNDhw41Hbe1tWXu3Lm4uLiQnJzMpk2bzPKWL19OeHg4jz32mNnxxx9/nCVLlgDw448/8tVXX5X+IkVEREREREREROShsnLlSjp16kTlypVxdHSkWbNmTJs2jdzc3Duqt3fvXoKCgqhatSoVKlTAy8uL0aNHk5aWVmx8Xl4eq1at4q233qJr16489thjGAwG7OzsSjxPWloaixcvZsCAAdSvX58KFSpQsWJFGjVqxJgxYzh16pTVPefl5dG2bVsMBgMGg4GkpKTSXLKIiIiIiIiIiIjIbe3bt482bdqYHhs2bABg/vz5ZsfPnz9vyklPTyclJYXTp0+XSQ9paWn07t2b69evU7NmTXbt2kVoaGixj/T09DI5p4iIPPhK/qvcn8TZs2dJTk4GYMCAAUXW27dvj4eHB6mpqSQkJNC/f//b1oyLi7NYz2g00qNHD5YsWcKaNWt49tlnrerT3d0dNzc30tPTSU1NtSpHREREREREREREHk7h4eFERUVhZ2eHn58fRqORrVu3Mm7cOOLj49m0aRMODg5W11u1ahX9+/fnxo0btGrVCi8vL/bs2UN0dDQrV64kKSmJevXqmeVkZWURFBRU6t5fe+01PvvsM2xsbPD29qZHjx7k5OSQnJzMrFmzWLhwIXFxcXTp0uW2taZPn87XX3+NwWAosmOyiIiIiIiIiIiISFm4fPkyu3fvLnL8zJkznDlzxvTxtWvX7lkPV65cMdU/c+YMixYtshj77rvv4ubmds96ERGRB4d2+AD2798PgKurK15eXsXGtGzZ0iy2JFlZWRw7dsws727qFUpPT+fXX38FoHr16lbniYiIiIiIiIiIyMNl7dq1REVFYTQa2b17Nxs3bmT16tX8+OOPNGnShKSkJCIiIqyud+7cOUJCQrhx4wbz58/nm2++Yfny5Rw9epSBAwfy888/M2DAgCIDFeXKleOll15i+vTpbN26lQMHDlh1PldXVyZNmsTp06c5ePAgK1asYMOGDZw4cYJ+/fqRk5NDv379TL/vtOTIkSO88847PP/889SqVcvq6xUREREREREREREpjU6dOlFQUHDbh6enpynn3XffpaCggG3btll9nsKcjz/+uMiap6enVT38vg8REXm0aeADOHnyJECJfzD08PAwiy3JqVOnTM8t1SxNvULTp08nLy+P6tWr065dO6vzRERERERERERE5OEyZcoUAMaPH4+Pj4/puJubG3PmzAEgOjqaS5cuWVVvxowZXLlyhc6dOzN06FDTcVtbW+bOnYuLiwvJycls2rTJLM/R0ZFPP/2U119/nWeeeQYXFxerzjdz5kwmTpxIzZo1zY4bjUZiYmJwcnIiMzOTDRs2WKxx48YNQkJCcHBwYP78+VadV0RERERERERERERERORRooEPbu7IATf/eGmJ0WgEbm7bZW29kmqWph5AYmIi06dPB+D//u//KF++vFV5AO7u7hYf58+ft7qOiIiIiIiIiIiI3Htnz54lOTkZgAEDBhRZb9++PR4eHly7do2EhASrasbFxVmsZzQa6dGjBwBr1qy507atVrFiRRo2bAhAamqqxbgpU6awd+9ePvzwQ2rUqHHP+xIRERERERERERERERF50Gjg4yHw7bffEhQURF5eHqNHj6Z///73uyUREXmErVy5kk6dOlG5cmUcHR1p1qwZ06ZNIzc3945rrlu3jh49elCtWjXKly9PlSpVaNeuHe+9955V+QcPHqR8+fIYDAbq1at3x32IiIiIiIg8DPbv3w+Aq6srXl5exca0bNnSLLYkWVlZHDt2zCzvburdrdzcXNMuydWrVy825sCBA7z//vs8++yzvPzyy/e8JxEREREREREREREREZEHkd39buBB4OTkBEBOTo7FmOzsbACcnZ2trldY08XF5Y7r/fDDD3Tu3JmLFy/y8ssvExUVddvz/96ZM2csrrm7u5e6noiIPLrCw8OJiorCzs4OPz8/jEYjW7duZdy4ccTHx7Np0yYcHBysrnf9+nUGDhzIypUrcXBwoG3btlStWpULFy5w5MgRZs6cycSJE29bY9CgQdy4ceNuL09EREREROShcPLkSQBq1aplMcbDw8MstiSFwxUl1SxNvbsVExNDeno6Dg4OdO/evcj69evXCQkJoUKFCnz00Uf3vB8RERERERERERERERGRB5UGPgBPT08AUlNTLcYUrhXGlqR27dqm56dPn6ZJkyZ3VO/o0aP4+fmRlpbGoEGD+PjjjzEYDLc9v4iIyJ1Yu3YtUVFRGI1Gtm/fjo+PDwDp6en4+fmRlJREREQE06dPt7rmkCFDWLlyJYGBgSxYsAA3NzfTWn5+Pt98881ta7z33nscOnSIUaNGER0dXfoLExERERERechkZWUB4OjoaDHGaDQCcPnyZavrlVSzNPXuxrfffsubb74JQEREBFWrVi0SM2nSJA4dOsS8efNKHHqxVkk3vTl//rzFXUZERERERERERERERERE7jeb+93Ag6B58+YAZGRkWLyD3Z49ewBMb34tibOzM/Xq1TPLK229H3/8kWeeeYbz588zcOBAPvnkE2xs9M8lIiL3zpQpUwAYP3682euTm5sbc+bMASA6OppLly5ZVW/Lli0sXrwYb29vVqxYYTbsAWBjY0ObNm1KrJGcnExkZCRBQUH06dOnNJcjIiIiIiIiD5gzZ87wwgsvkJ2dTY8ePRg/fnyRmG+++YZ//vOf+Pn5MXTo0PvQpYiIiIiIiIiIiIiIiMiDQxME3LzDW6tWrQBYunRpkfWkpCRSU1Oxt7cnICDAqpq9evWyWC87O5v4+HgAevfuXWT9+PHjPPPMM5w7d46BAweyaNEiDXuIiMg9dfbsWZKTkwEYMGBAkfX27dvj4eHBtWvXSEhIsKrmrFmzAAgPD6dcuXKl7unq1auEhIRQuXJl7ewhIiIiIiJ/Kk5OTgDk5ORYjMnOzgZu3nzG2nol1SxNvTtx4cIF/P39+emnn3j22WdZsWJFkd2Mr169SmhoKBUqVCjT3Y7PnDlj8aHdPURERERERERERERERORBpimC/9+ECRMAiIyMZN++fabjGRkZhIWFATBq1ChcXFxMa3FxcTRq1Ah/f/8i9cLDw6lYsSKJiYksWLDAdDwvL4+wsDAuXrxIq1at6Nq1q1neyZMneeaZZzh79ix//etfNewhIiJ/iP379wPg6uqKl5dXsTEtW7Y0iy1JXl4eW7ZsAaBjx45cuHCBGTNmMGLECMLDw1m0aJHpzUSWRERE8P333zNz5kyqVKlSmssRERERERF5qHl6egKQmppqMaZwrTC2JLVr1zY9P3369F3XK620tDT8/Pw4evQonTt3Zu3atdjb2xeJ++GHH/j+++9xcHDg5ZdfplOnTmaPCxcuADB69Gg6depEZGRkmfcqIiIiIiIiIiIiIiIi8iCxu98NPCgCAwMZM2YMM2fOpE2bNvj7++Po6MiWLVu4ePEivr6+TJ482Szn0qVLpKSkcPXq1SL1atSoQWxsLP3792fo0KHExMTg6elJcnIyJ06coGrVqixdurTIXer69Olj2k0E4JVXXim231dffZX27duX0dWLiMif3cmTJwGoVauWxRgPDw+z2JKcOHHCNNDx9ddfExYWVmTA480332TZsmX4+fkVyd+1axcffvghPXv2pH///lZfh4iIiIiIyKOgefPmwM2b0Zw8ebLYwfw9e/YA4OPjc9t6zs7O1KtXj2PHjrFnzx6aNGlyV/VK45dffsHPz4/vv/8ef39/1q9fT4UKFUrMSU9PZ/v27RbXDxw4ANyb4RQRERERERERERERERGRB4m2jrhFVFQUy5cvp23btuzatYuEhATc3d2JjIxk69atODg4lKpeUFAQu3fvpnfv3pw4cYK4uDjy8vIYOXIkBw8epF69ekVyMjMzAbh27RpLlixh0aJFxT6OHTtWJtcsIiICkJWVBYCjo6PFGKPRCMDly5dvWy8jI8P0fPDgwbRo0YLk5GSysrI4cOAAAQEB/PLLL/Ts2ZMff/zRLPfKlSuEhobi4uLC3Llz7+RyzLi7u1t8nD9//q7ri4iIiIiIlDV3d3datWoFwNKlS4usJyUlmW4aExAQYFXNXr16WayXnZ1NfHw8AL17977TtotIT0/Hz8+PI0eO4O/vT3x8fIm/Y33yyScpKCiw+CjcqWTHjh0UFBQQGxtbZr2KiIiIiIjITStXrqRTp05UrlwZR0dHmjVrxrRp08jNzS1VHU9PTwwGw20f7733nsUaX375Jf369cPd3R17e3vc3Nxo0aIFY8eOLXU/IiIiIiIiDyvt8PE7wcHBBAcHWxUbGhpKaGhoiTEtWrRg9erVVp//1KlTVseKiIg8qAoKCkzPa9asycaNG027VzVr1oz169fz5JNPcvjwYSIjI4mJiTHFjx8/nh9//JFFixZRvXr1P7x3ERERERGRB8GECRPo1asXkZGRdO/e3bTzRkZGBmFhYQCMGjUKFxcXU05cXBxvvfUWNWvWZMuWLWb1wsPDmT17NomJiSxYsIAhQ4YAkJeXR1hYGBcvXqRVq1Z07dq1TPrPzMzE39+fw4cP07lzZ9avX1/qG+qIiIiIiIjIHys8PJyoqCjs7Ozw8/PDaDSydetWxo0bR3x8PJs2bbL6Z7u+ffuSnp5e7FpmZqbpxgPPPPNMkfWCggLGjh1LVFQU5cqV46mnnqJjx46kp6fz/fffM2PGDCZPnky5cuXu/GJFREREREQeEhr4EBEREZycnADIycmxGJOdnQ2As7Oz1fXg5oBk4bBHIVtbW4YNG8bo0aNJTEw0Hd+2bRvR0dEEBAQwaNCgUl2DJWfOnLG45u7uXibnEBERERERKWuBgYGMGTOGmTNn0qZNG/z9/XF0dGTLli1cvHgRX19fJk+ebJZz6dIlUlJSuHr1apF6NWrUIDY2lv79+zN06FBiYmLw9PQkOTmZEydOULVqVZYuXYrBYCiSGxYWxr59+4CbOxPDzUGRNm3amGKee+45IiIiTB+/+uqrHDp0CIPBgKurKyNGjLB4nYGBgaX+/IiIiIiIiEjZWrt2LVFRURiNRrZv32668UDh7o1JSUlEREQwffp0q+qVFDdt2jTi4+Np0KABHTp0KLL+7rvvEhUVRbt27Vi6dKlpx8dCycnJVKhQoRRXJyIiIiIi8vDSwIeIiIjg6ekJQGpqqsWYwrXC2NvVMxgMFBQUUKdOnWJjCo+fP3/edGzt2rUUFBRw+vRpOnXqZBZ/8eJFAM6ePWtamzFjBk8++eRt+xEREREREXkYRUVF4evry+zZs9m1axe5ubnUrVuX8ePHM3bsWMqXL1+qekFBQdSpU4cpU6awY8cO9u/fT/Xq1Rk5ciQRERFUrVq12LzvvvuO3bt3Fzl+67FGjRqZrWVmZgI378q6YsUKiz15enpq4ENEREREROQBMGXKFADGjx9vGvYAcHNzY86cOXTo0IHo6GgiIiLMdpu8EwsXLgTglVdeKbKWkpLClClTqFq1Khs2bKBSpUpFYlq1anVX5xcREREREXmYaOBDREREaN68OQAZGRmcPHkSLy+vIjF79uwBMPsFryVGo5GGDRvyww8/WNyqufC40Wgssnb48GGLta9evcr27duB/zcEIiIiIiIi8qgKDg4mODjYqtjQ0FBCQ0NLjGnRogWrV68uVQ/btm0rVfyd5tzOqVOnyrymiIiIiIiI3LzhWnJyMgADBgwost6+fXs8PDxITU0lISGB/v373/G5du7cSUpKCnZ2doSEhBRZnzt3Ljdu3GDIkCHFDnuIiIiIiIj82djc7wZERETk/nN3dzfdCWfp0qVF1pOSkkhNTcXe3p6AgACragYFBQGQmJhY7PrmzZsBaN26tenYjBkzKPj/2Lvz8Jiv/v/jz0nIIhGk2lgiYiu9UbWkqLWJpdZayo22BEWlKFW1NW2VG8WtDUHRqKXcCKKiUUuUCkVCaGlrqajYqhJks2SZ3x9+ma9pFklkE6/HdeW6M59z3ue8J657Tmfm8z7HaEz354cffgCgWrVqpmv/PAVERERERERERERERERERLInPDwcAEdHx3Q3hgNo1KiRWd+cSj3do2PHjpQrVy5N+/bt2wFo2bIlN2/eZPHixbzzzjuMHDmSxYsXZ7jZnIiIiIiISFGlgg8REREBYNKkSQDMnDmTo0ePmq5HRUXh5eUFwIgRI8yOaA4ICKBWrVp4eHikGW/UqFGUKVOGoKAgFi9ebNa2du1aVq9ebeonIiIiIiIiIiIiIiIiIgUjIiICABcXlwz7VKpUyaxvTsTHx7N+/XoABg8enKb93r17nDp1yjRPzZo1efvtt1m4cCG+vr68/fbbVKlShbVr1+Y4BxERERERkceNCj5EREQEgG7dujFq1Cji4uJo0qQJHTp04LXXXqN69er88ssvNGvWjKlTp5rF3Lp1i1OnTvHHH3+kGa9s2bKsW7cOGxsb3n77berUqUOvXr1o0KABffv2xWg04u3tneUTQ0REREREREREREREREQk98XGxgJgZ2eXYR97e3sAYmJicjzP+vXriYuLo1y5cul+RxgdHY3RaATub0RXrlw59uzZQ0xMDL///juenp7ExcXxxhtvsG/fvizP6+zsnOHPlStXcvx8RERERERE8oMKPkRERMTEx8eHdevW0bRpUw4cOEBQUBDOzs7MnDmT3bt3Y2trm63x2rZty/HjxxkwYAA3b97k22+/5cKFC3Ts2JHt27fz6aef5tEzEREREREREREREREREZHCxM/PD4D+/ftTrFixNO2pxR4Atra27Nq1i1atWlGyZElq1qzJ119/TYcOHUhOTuaTTz7Jr7RFREREREQKVNp3TyIiIvJE6927N717985SX09PTzw9PTPt8+yzz7J8+fJHzqt169ZmH/KKiIiIiIiIiIiIiIiIyKMrWbIkAPHx8Rn2iYuLA8DBwSFHc5w+fZr9+/cDMGjQoEzzAOjRowdPP/10mj5eXl5s27aNffv2ce/ePaysrB4698WLFzNsc3Z2fmi8iIiIiIhIQdIJHyIiIiIiIiIiIiIiIiKS706dOsX8+fPx9PSkbt26FCtWDIPBwLRp09Ltn5KSwoEDB/joo49o3rw5Tz31FMWLF6ds2bK0bduW1atXZ7hpTHh4ODNmzMDDwwMnJyeKFy9OmTJlaNGiBQsWLCAxMTHTXM+ePYunpyfOzs5YW1vj7OyMp6cn586dyzQuNjaWSZMmUbNmTWxtbSlbtiydOnVi9+7dmcalpKSwePFiGjduTMmSJSlZsiSNGzdmyZIl2hhHRERynaurKwCRkZEZ9kltS+2bXcuWLQOgefPm1KxZM90+9vb2piKPqlWrptsn9XpiYiLXr1/PUS4iIiIiIiKPE53wISIiIiIiIiIiIiIiIiL5btGiRfj4+GS5/7lz52jWrBkAjo6ONGrUiDJlynDu3Dl27drFrl27WLt2LRs3bjTb7TspKYkGDRoA928kdXNzw8nJiYsXL/LTTz8REhLCypUr2b59O6VLl04z7/79+2nXrh0JCQnUrl2b5s2bc+LECVasWMGGDRvYtWsXTZo0SRN37do1WrRowenTpylfvjxdunThr7/+Ytu2bWzbtg0fHx9GjhyZJi45OZnevXuzadMmSpQogYeHBwC7du1i2LBhpudpYaG9/UREJHfUr18fgKioKCIiIqhSpUqaPmFhYQCmNTU7kpOTWblyJQCDBw/OtG/Dhg35/vvvMyzmePC6vb19tnMRERERERF53OhTQBERERERERERERERERHJd3Xq1OH9999n9erV/Pbbb7z55puZ9jcYDLi7u7Nt2zauXbvG9u3bWbt2LYcPH2bPnj3Y2dmxdetWZs6cmSa2YcOGrF+/nuvXr7N7927+97//sW/fPsLDwylfvjyHDx/mvffeSxOXkJBA7969SUhIYOLEiZw4cYK1a9dy4sQJJk6cSHx8PL179+b27dtpYocOHcrp06fx8PDg7NmzrF+/nr1797J161YsLCwYPXo0P//8c5q4+fPns2nTJipWrMiJEyfYsmULW7Zs4eTJk1SoUAF/f38WLlyYjb+0iIhI5pydnXFzcwNgzZo1adpDQkKIjIzE2tqajh07Znv8oKAgrly5QsmSJenVq1emfVPbd+/eTUpKSpr2nTt3AlCzZk0cHByynYuIiIiIiMjjRgUfIiIiIiIiIiIiIiIiIpLv3nrrLWbPnk2/fv2oVavWQ0+sqFatGsHBwbzyyitYWlqatbVq1YoJEyYAmHYQT1WsWDHCwsLo1asX1tbWZm1169Zl1qxZAKxdu5bExESz9uXLl3P58mWeffZZpk2bZtY2bdo0nn32WSIjI9PM+euvv/Ltt99iaWmJn58fJUqUMLV17NgRT09PUlJSmDFjhllcSkoKn332GQCfffaZ2Q7rVapUMbXNmDEj3ZtgRUREcmrSpEkAzJw5k6NHj5quR0VF4eXlBcCIESMoVaqUqS0gIIBatWqZTqPKyLJlywDo06cPdnZ2mfZ94403qFatGidOnOCjjz4yW+9++OEH5s6dC8CoUaOy8exEREREREQeXyr4EBEREREREREREREREZHHXv369QGIjIzMUdzt27e5fv26WVtAQABw/wbVfxakWFhY8O9//xuATZs2pRvXrFkzKleunGbOfv36ARAYGGhWZPLTTz9x9epVrK2t6dmzZ5q4nj17YmVlxeXLlzl06FC2nqeIiEhmunXrxqhRo4iLi6NJkyZ06NCB1157jerVq/PLL7/QrFkzpk6dahZz69YtTp06xR9//JHhuNeuXeO7774DYPDgwQ/Nw8rKik2bNuHo6Mh//vMfnn32WV577TWaNm1KmzZtSEhIYMCAAQwfPvzRnrCIiIiIiMhjQgUfIiIiIiIiUuT4+/vTunVrypQpg52dHfXq1WPWrFlpdmrNqiNHjtCrVy+cnJywsbGhSpUqjBw5kmvXrj009vjx4wwaNIgqVapgY2NDmTJlqFu3LsOHDycqKipN/6CgID755BO6dOlChQoVMBgMGAwGLl68mKPcRUREREREnhRnzpwBoHz58jmKs7KywtHR0awtPDwcgEaNGqUbm3o9tV924+Lj403zPxhXu3ZtbGxs0sTZ2tpSu3btdOcUERF5VD4+Pqxbt46mTZty4MABgoKCcHZ2ZubMmezevRtbW9tsj7lq1SoSExOpXbs2jRs3zlLM888/z4kTJ3jnnXdITk4mMDCQ33//nVatWvG///2P5cuXYzAYsp2LiIiIiIjI46hYQScgIiIiIiIikptGjx6Nj48PxYoVw93dHXt7e3bv3s348eMJDAxkx44d2fpicsOGDfTt25ekpCTc3NyoUqUKYWFh+Pr64u/vT0hICNWrV083ds6cOUyYMAGj0UjDhg1p0qQJt27d4syZM3z55Ze88847PPXUU2Yx/fr149atW4/0NxAREREREXnSJCQkMG/ePIB0T8bIiNFoZNasWQB07twZa2trU1tsbKypUN/FxSXd+EqVKgHw999/Ex8fj52dHQARERGZxjk4OODg4EBMTAwRERH861//ylJc6pzh4eGmviIiIrmpd+/e9O7dO0t9PT098fT0zLTP2LFjGTt2bLbzKF++PL6+vvj6+mY7VkREREREpChRwYeIiIiIiIgUGZs3b8bHxwd7e3v27t1LgwYNALh+/Tru7u6EhITg7e3NnDlzsjTe5cuXGTBgAElJSSxevJihQ4cCkJycjKenJ9988w39+vXj0KFDaXaU+/rrrxk3bhw1a9Zkw4YN1KlTx6z95MmTODs7p5mzR48e1KhRgwYNGtCgQQOeeeaZnPwpREREREREniheXl5ERERQoUIFJk2alOW4KVOm8NNPP2Fvb8/MmTPN2mJjY02/pxZy/JO9vb3p95iYGFO/1NiM4lJjY2JiiImJSTPnw+JS58uK9N57prpy5Uq2T0QRERERERERERGR/GNR0AmIiIiIiIiI5Jbp06cDMGHCBFOxB0DZsmVZuHAhAL6+vlk+QeOLL74gISGBNm3amIo9ACwtLVm0aBGlSpUiNDSUHTt2mMXduHGD0aNHY2trS1BQUJpiD4DatWtTqlSpNNeXLVvGxIkTad++PU8//XSW8hQREREREXmSTZ06lRUrVmBjY8P69evTnKSYkZUrV/Lpp59iYWHBsmXLqFGjRh5nKiIiIiIiIiIiIpI9KvgQERERERGRIuHSpUuEhoYC0K9fvzTtzZs3p1KlSty9e5egoKAsjRkQEJDhePb29nTt2hWATZs2mbWtWLGCmJgYevbsSdWqVbP1PERERERERCTr5s6dy0cffYS1tTUBAQE0a9YsS3H+/v4MGjQIgKVLl9KrV680fUqWLGn6PT4+Pt1x4uLiTL87ODikic0o7sHY3IjLzMWLFzP80ekeIiIiIiIiIiIihZsKPkRERERERKRICA8PB8DR0ZEqVaqk26dRo0ZmfTMTGxvL2bNnzeKyOt727dsBaNmyJbdv32bVqlWMGjWKd955hy+++ILIyMgsPCMRERERERHJzPz58xk7dixWVlZs3LiRV155JUtxmzZtol+/fqSkpLB48WJT4cc/lSxZEkdHRwAuXLiQbp/U93dly5bFzs7OdN3V1TXTuJiYGGJiYsz6ZiXuwTkfjBMREREREREREZGiqVhBJyAiIiIiIiJPhitXrvDtt99y6tQpYmJiMBqNafoYDAb8/PxyNH5ERAQALi4uGfapVKmSWd/MnD9/3vR7RmNmNN7PP/8M3C8aqVOnDufOnTNrHz9+PDNmzOC99957aB4iIiIiIiKS1oIFCxg1apSp2KNTp05Zitu8eTN9+vQhOTmZRYsWMWTIkEz7N2jQgF27dhEWFkaXLl3StIeFhZn6/TNu06ZNpvaM4uzs7Hj22WfN4gBOnjzJnTt3sLGxMYu7ffs2J0+eTHdOERERERERyblTp06xY8cOjhw5wpEjR/jtt99ITk5m6tSpfPjhh7kyx8KFC3nnnXcAGDx4MF999VWGfY8cOcLMmTP58ccfuXXrFuXLl6dz5854e3vzzDPP5Eo+IiLyeFDBh4iIiIiIiOS5+fPnM27cOBITE03XUgs+DAaD6fGjFHzExsYCmO2o+k/29vYApl1UszJeZmNmNF5UVBQAEyZMoEKFCgQGBtK8eXOio6NZsmQJs2bNYuzYsZQvX56+ffs+NJdH4ezsnGHblStXKF++fJ7OLyIiIiIiktu+/PJLRowYYSr26Ny5c5biAgMD6d27N0lJSSxatIhhw4Y9NKZ79+7s2rWLtWvX8vHHH2NhYWFqS0lJYd26dQD06NHDLK5bt258+OGH7N+/nwsXLqTZSGDNmjUAdOnSheLFi5uuN23alHLlynH16lU2btzI66+/bha3ceNG7t27R4UKFWjcuHGWnreIiIiIiIg83KJFi/Dx8cmz8c+dO8cHH3yAwWBId2O8B23YsIG+ffuSlJSEm5sbVapUISwsDF9fX/z9/QkJCaF69ep5lquIiBQuFg/vIiIiIiIiIpJzwcHBvPvuu9jY2DBhwgSaNm0KwOLFixk7diyurq4AjB49mmXLlhVgprkn9UPalJQUgoKC6Ny5M6VLl6Zq1arMnDmTt99+GyDXdgMSERERERHJC7///jvffvstq1atYuXKlWl+EhIS8j2npUuX4uXlle1ij6CgIF577TWSkpL48ssvs1TsAeDp6UmFChU4ffo03t7eZm3e3t6cPn0aZ2dn+vfvb9ZWu3ZtXn31VZKTkxk8eDC3b982tW3bto3ly5djYWHBxIkTzeIsLCwYP348cP90yAdPlIyIiGDChAkATJw40az4RERERERERB5NnTp1eP/991m9ejW//fYbb775Zq6NnZKSgqenJwaDIc37x3+6fPkyAwYMICkpicWLF3P48GHWrVvH6dOneeONN/jrr7/o16/fQ4tGRESk6NAJHyIiIoVccnIyGzZsYNeuXVy6dIk7d+6k289gMBAcHJzP2YmIiDycj48PBoOB7du307hxYwYOHMhPP/3EkCFDAJg2bRrDhw9n2bJlHD16NMfzlCxZEoD4+PgM+8TFxQHg4OCQ5fFSxyxVqlSWxytZsiRRUVG0aNGCf/3rX2nivLy8WLRoEefOnSMiIoIqVao8NJ+cunjxYoZtmZ3+ISIiIiIiT66DBw8ydOhQTp48mWEfo9GI0WikRIkSOZ7n6NGjeHl5mR7/8ccfwP0NArZu3Wq6HhAQQPny5Tl27BjDhg3DaDRStWpVNmzYwIYNG9Ide/ny5abfr127Ro8ePbh37x7Ozs4cOHCAAwcOpBs3Z84cypYta3pcokQJ1q9fT7t27Zg+fTpbtmyhTp06nDhxghMnTmBnZ4e/vz+2trZpxlqyZAm//voru3btolq1arRo0YJr166xd+9ejEYjPj4+PP/882niRo4cyY8//khAQAB16tShTZs2AOzatYuEhARee+01s7+biIiIiIiIPLq33nrL7HFuFtn7+Piwb98+FixYwLVr1zLt+8UXX5CQkECbNm0YOnSo6bqlpSWLFi0iMDCQ0NBQduzYQfv27XMtRxERKbxU8CEiIlKI3bp1i/bt2xMaGvrQynyDwZBPWYmIiGTP4cOHadCgAY0bN0633dramkWLFhEUFMSnn35qdlNOdqSeFBIZGZlhn9S21L6ZqVy5sun3CxcuULdu3SyPV7VqVaKioqhatWq6Yz94/cqVK3la8CEiIiIiIpIdp0+fpm3btsTHx9O0aVP++usvIiIi6NOnD2fOnOHYsWMkJyfTvXt3vv/++0eaKyYmhkOHDqW5fvHiRbPi9bt37wJw8+ZN0+ekv//+O7///nuGYz/43jIhIcE0xsWLF1mxYkWGcZ988olZwQdAs2bNOH78OFOnTmXXrl1s3LiRp59+mv79+/PRRx9RrVq1dMd65plnCAsLY8aMGWzcuJFvv/0WOzs72rdvz/vvv4+Hh0e6cZaWlmzYsIGlS5fy1VdfmTb6qV27NoMHD2bo0KH6PFhEREREROQxcerUKSZPnkyrVq0YPnw4U6ZMybR/QEAAAP369UvTZm9vT9euXVm1ahWbNm1SwYeIyBNCBR8iIiKFmLe3N4cPH6ZixYqMHDmS5557Lks7kouIiBQmN27coHXr1qbHxYsXB+D27dumHVCtra1p0aLFI51WVb9+fQCioqIyPDUjLCwMgAYNGjx0PAcHB6pXr87Zs2cJCwtLt+Ajo/EaNmxIaGgo169fT3fsB6/b29s/NBcREREREZH88tlnnxEfH8/ChQt5++23GThwIBEREaxevRqAkydP0r9/f86cOZPuSYjZ0bp164dudPMo/VO5urrmKO5B1atXz7RQJCMODg7MmDGDGTNmZCvOwsKCYcOGMWzYsGzPKSIiIiIiIoVDcnIyAwYMwGAw4Ofn99Di/djYWM6ePQtAo0aN0u3TqFEjVq1aRXh4eK7nKyIihZMKPkRERAqxzZs3U7p0aQ4ePEjFihULOh0REZEccXR0JD4+3vS4TJkywP1TM2rWrGm6npycTFRUVI7ncXZ2xs3NjdDQUNasWcPkyZPN2kNCQoiMjMTa2pqOHTtmaczu3bsze/Zs1qxZw8CBA83a4uLiCAwMBKBHjx5mbb169eLLL7/k4MGDxMfHY2dnZ9a+c+dO4H6xx3PPPZet5ykiIiIiIpKXfvjhB6pVq8bbb7+dbnvt2rXZunUr1atXx8LC4pGLPkRERERERESKqtmzZ3Po0CE+//zzDE+HfND58+dNv7u4uKTbp1KlSgBERETkSo4iIlL4WRR0AiIiIpKxv/76i2bNmqnYQ0REHmsuLi5ERkaaHtepUwej0cjWrVtN1+Li4ti3bx/Ozs6PNNekSZMAmDlzJkePHjVdj4qKwsvLC4ARI0aY3ZAUEBBArVq18PDwSDPe6NGjKVGiBLt27WLp0qWm68nJyXh5eXHz5k3c3Nxo166dWZy7uzstWrTg2rVrjBgxgrt375rafv75Zz788EMAhg8fbjrxREREREREpDC4cuUKderUMT22tLQE4N69e6Zr5cuXp1WrVty5cyff8xMRERERERF5HJw4cYKPP/6Yl156iVGjRmUpJjY21vT7PzeUS2Vvbw9ATExMlsZ0dnbO8OfKlStZGkNERAqWTvgQEREpxJycnLCxsSnoNERERB5Jq1at+Pzzz/nrr79wcnKiU6dO2NnZMWnSJK5evYqLiwsrVqwgOjqaPn36PNJc3bp1Y9SoUcybN48mTZrg4eGBnZ0dwcHB3Lx5k2bNmjF16lSzmFu3bnHq1Kl0b1SqUKECy5cvp2/fvgwdOhQ/Pz9cXV0JDQ3l3LlzODk5sWbNmnSPX169ejUtW7Zk+fLl7Ny5Ezc3N6Kjozl48CD37t2jbdu2aXIBmDp1Kt99912a6127dsXKygqABg0asHDhwpz+mURERERERDJka2tLsWL/9xViyZIlgfub06TuIgrg4OBAcnJyvucnIiIiIiIiUtglJSUxYMAALCwsWLZsGRYW2ptdRERyTgUfIiIihViXLl0ICAggMTFRu3+LiMhjq1evXoSHh3Ps2DHat2+Po6Mjc+fO5e2332bu3LkAGI1GXF1dmTJlyiPP5+PjQ7NmzViwYAEHDhwgMTGRatWqMWHCBMaMGWMqmshO/lWrVmX69Ons27eP8PBwypcvzzvvvIO3tzdOTk7pxlWqVIljx44xc+ZMNm3axLZt27CysqJBgwYMGDCAIUOGmHbKfdAff/zBoUOH0lwPDw83/a6CUBERERERySsVK1bkwoULpsfVq1cH4KeffjIVfBiNRo4ePZpu8buIiIiIiIjIk+4///kPR48e5bPPPqNmzZpZjkvddAEgPj6eUqVKpekTFxcH3N+IISsuXryYYZuzs3OWcxMRkYKjgg8REZFCbMqUKQQGBjJ8+HB8fX11c6eIiDyW3Nzc2Llzp9m1IUOG0LBhQ/z9/YmOjua5555j4MCB6X5omRO9e/emd+/eWerr6emJp6dnpn0aNmzIxo0bs51HqVKlmDFjBjNmzMhyzPLly1m+fHm25xIREREREckNjRs3Zt26ddy+fRtbW1teeeUVAMaMGYOdnR0uLi4sWLCAP/74I9sF9SIiIiIiIiJPgoCAAAACAwMJCgoyazt//jwA3333Ha1btwZgz549AFSuXNnU78KFC9StWzfN2JGRkQC4urrmbtIiIlJoqeBDRESkEFu4cCHt2rXj66+/ZufOnXh4eODi4pLuUY8GgwFvb+8CyFJERCRnGjRoQIMGDQo6DREREREREXlAx44dWbFiBVu3bqVXr15Uq1aNoUOHsnjxYrp27QrcP+HD2to6y7uJioiIiIiIiDyJQkJCMmy7evUqV69eNbvm4OBA9erVOXv2LGFhYekWfISFhQHoe1YRkSeICj5EREQKsU8++QSDwYDRaCQyMjLd3b5T21XwISIiIiIikj/CwsLYsGEDUVFRGI1G3N3d0/QxGAwEBwcXQHYiIiKPpkePHiQmJppdW7BgATVq1DA7pXHSpEn06NGjgLIUERERERERKbyOHTuWYdsnn3zClClTGDx4MF999VWa9u7duzN79mzWrFnDwIEDzdri4uIIDAwE0HtyEZEniAo+RERECrGPP/64oFMQERHJVcnJyURFRXHnzp0M+7i4uORjRiIiItnz/vvv8/nnn2M0GjEajQDs2bPH1P5gUb6IiEhRYWFhwXvvvcd7771X0KmIiIiIiIiIFBq+vr74+vry4osvsnLlylwZc/To0SxYsIBdu3axdOlShgwZAtz/ntXLy4ubN2/i5uZGu3btcmU+EREp/FTwISIiUoip4ENERIqKAwcOMGXKFH788Ufu3buXYT+DwUBSUlI+ZiYiIpJ1/v7+zJ07F2dnZ7y9vRk5ciR3795l+/btnDlzhtWrV/PTTz8xYcIE2rdvX9DpioiIiIiIiIiIiEgWHT16FC8vL9PjP/74A4DFixezdetW0/WAgADKly8PwPXr1zl16hTlypXLtTwqVKjA8uXL6du3L0OHDsXPzw9XV1dCQ0M5d+4cTk5OrFmzRpsOiYg8QVTwISIiIiIiInlq9+7ddOjQgcTERAAcHR0pWbJkAWclIiKSfUuWLMHS0pLg4GBq1KjB6NGjAWjbti1t27bFy8sLb29vZs+eTe/evQs2WRERERERERERERHJspiYGA4dOpTm+sWLF7l48aLp8d27d/M8l169elG1alWmT5/Ovn37CA8Pp3z58rzzzjt4e3vj5OSU5zmIiEjhYTAajcaCTkIKjrOzM4DZf5CIiEjWFMRr6NWrV03zVaxY0bRjgOSM1kERkUeT1dfRl156iYMHDzJ69Gg+/PBDHB0d8yM9yQKthSIi2VO2bFlq1apFSEgIAHZ2diQkJPDgR6wpKSlUq1aNhg0bsmHDhoJKVbJIa6GICLi7u+c49sCBA5QtW1avo48xrYUiIjmn19CiQf+OIiI5p9fQx5/+DUVEHk1+vY7mywkft27dIiYmhoxqS1xcXPIjDRERkceWn58fs2fP5syZM2bXn332WcaNG8egQYMKKDMREZGHO3bsGC+88AJz584t6FREREQeSWxsbLqfZcbFxWFvbw+AhYUFjRs3Zu/evfmdnoiISI7s2bMn3esGgwEgzfd7D17XvnIiIiIiIiIiIiIieSvPCj5u3LjBRx99hL+/P3///XeG/QwGA0lJSXmVhoiIyGNvyJAhLFu2zPTlaequ6NHR0Zw6dYohQ4bw008/sXTp0oJMU0REJEP29vbUqlWroNMQERF5ZE8//TQ3b940PbawsADg/Pnz1KlTx3Q9Pj6emJiY/E5PREQkR3744Yc01zZv3oyPjw8vvPAC/fv3p0qVKsD9NW/lypWEh4czevRoVq1ald/pioiIiIiIiIiIiDxR8qTg49atWzRp0oSzZ89iaWmJra0tCQkJlC9fnqtXr2I0GjEYDDrZQ0RE5CH8/f3x8/OjTJkyTJ48mcGDB1OqVCkAYmJi8PPz4z//+Q/Lli2jffv2vPbaawWcsYiISFpNmjTh9OnTBZ2GiIjII3N1deXPP/80PbaysgJgzZo1TJ8+HYCrV6+yd+9eKleuXCA5ioiIZFerVq3MHoeEhODr68uMGTMYP358mv7vvvsus2bNYvLkyZQuXTqfshQRERERERERERF5MlnkxaCzZ8/mzJkz9O/fn1u3bvHaa69hMBi4dOkSsbGxLFq0iNKlS9OqVSsiIiLyIgUREZEiYfHixRQrVoydO3fy3nvvmYo9ABwcHBgzZgw7d+7E0tKSxYsXF2CmIiIiGZs8eTK//PILa9asKehUREREHomHhwe///4758+fB8Da2hoLCws+++wzevXqxdixY2ncuDHx8fH07NmzYJMVERHJof/85z/UqlUr3WKPVB988AG1atUiNjY2HzMTERERERGRJ02TJk1YvXo1iYmJBZ2KiIhIgcmTgo8tW7ZQtmxZFi1ahK2tLQaDwdRWokQJhg0bxnfffcc333zDkiVL8iIFERGRIiE8PJxWrVrRoEGDDPvUr1+fVq1acfTo0XzMTEREJOsaN27MunXrGDVqFH379mXlypXs2bOHH3/8Md0fERGRwqpPnz4MGjSIyMhIACwsLChdujQ2NjZs3LiRzz//nMjISBo0aMDEiRNzZU5/f39at25NmTJlsLOzo169esyaNSvHX3AeOXKEXr164eTkhI2NDVWqVGHkyJFcu3Yt3f7Jycls2LCBiRMn0q5dO5566ikMBgPFimV+ePS1a9dYuXIl/fr1o0aNGtjY2FCiRAlq1arFqFGjTEUz/3Tr1i38/f0ZPHgw//rXvyhRogQ2NjZUrVqVQYMG8csvv+ToeYuISNYdPnyY559//qH9nn/+ee7du5cPGYmIiIiIiMiT6vDhw/Tv359KlSrh7e3NpUuXCjolERGRfJf5t3I5dO7cOVq0aIGNjQ2AqeAjOTkZS0tL4H7lZdOmTfHz82Po0KF5kYaIiMhjLz4+nmeeeeah/Z555hni4+PzISMREZGcSU5OpkSJEqxfv57169dn2M9gMJCUlJSPmYmIiGTdc889x9KlS82u2dra8ssvvxAYGEh0dDTPPfccXbp0MX0O+ihGjx6Nj48PxYoVw93dHXt7e3bv3s348eMJDAxkx44d2NraZnm8DRs20LdvX5KSknBzc6NKlSqEhYXh6+uLv78/ISEhVK9e3SwmNjaWXr16ZTv39957j9WrV2NhYUGdOnXo2rUr8fHxhIaGMn/+fJYtW0ZAQABt27Y1i5s9ezb/+c9/AHj22Wfp0KEDycnJHDlyhK+//ppvvvmGpUuXMmDAgGznJCIiWXPnzh0uX7780H5XrlzJh2xERERERETkSbZ27VoWLFjAvn37mD59Op999hmvvvoqI0aMoFWrVgWdnoiISL7IkxM+AMqUKWP6vUSJEgDcuHHDrI+Liwu///57XqUgIiLy2CtXrhzh4eEP7RceHo6Tk1M+ZCQiIpJ9W7Zs4d///jcXL16kTJkyNGjQgJYtW6b706JFi4JOV0REJNsqVKjAsGHDmDhxIt26dcuVYo/Nmzfj4+ODvb09hw4dYvv27WzcuJEzZ85Qt25dQkJC8Pb2zvJ4ly9fZsCAASQlJbF48WIOHz7MunXrOH36NG+88QZ//fUX/fr1w2g0msUVL16c119/nTlz5rB7926OHTuWpfkcHR2ZMmUKFy5c4Pjx46xfv57vvvuOc+fO0adPH+Lj4+nTp0+az4zt7Ox47733OH36NKdOnWLjxo1s3ryZc+fOMWbMGBITExk6dChnz57N8nMXEZHs+de//kVISAgHDhzIsM9PP/3Ejz/++NATn0REROTxk1snTbq6umIwGB768+mnn5rF7dmz56ExX375ZW4+ZRERKcR69+7N3r17+eWXXxgyZAjW1tZs3LgRd3d3nn/+eRYvXkxCQkJBpykiIpKn8uRT2AoVKpgdneXi4gLAzz//jLu7u+n6uXPn9EGwiIhIJl5++WVWrlzJzJkzmTBhQrp9ZsyYwalTp7S7qYiIFFrTpk3DaDQyb948hg8fnis3wYqIiBR106dPB2DChAk0aNDAdL1s2bIsXLiQFi1a4Ovri7e3N6VKlXroeF988QUJCQm0adPG7MRlS0tLFi1aRGBgIKGhoezYsYP27dub2u3s7Pjmm29Mj8+fP5+l/OfNm5fudXt7e/z8/Pjuu++Ijo7mu+++44033jC1T5w4Md244sWLM2fOHL777jtOnz7N2rVr+fDDD7OUi4iIZM/IkSPx9PTklVdeYeTIkbz++utUqVIFuL8OrF69mvnz52M0GrGzsyvgbEVERCQ35eZJk6+99hrXr19Pty06OprAwEDg/veh6XFycuKVV15Jt61mzZpZykFERIqO2rVr8+WXXzJr1iyWL1/OwoULOXHiBF5eXkyYMAFPT0+8vLyoUaNGQacqIiKS6/Kk2qJu3brs37/f9LhFixYYjUY+/vhj3NzcKFmyJN988w2HDh2iWbNmeZGCiIhIkTBhwgTWrVvH5MmTCQgIoH///qYvV8+dO8eKFSs4evQoNjY2jB8/Plfm9Pf3Z8GCBRw/fpx79+5RvXp1Xn/9dcaMGUPx4sVzNOa3336Ln58fhw8fJjo6mtKlS1O9enVeeeUVPvroI7O+v/76K0uWLOHo0aOcP3+e69evYzQaqVixIq1atWL06NHUrVs3N56qiIjkk19//ZWmTZsyYsSIgk5FREQk11y6dIl79+5hNBr58ccf0+3TsmXLHI8dGhoKQL9+/dK0N2/enEqVKhEZGUlQUBB9+/Z96JgBAQEZjmdvb0/Xrl1ZtWoVmzZtMiv4yAslSpSgZs2ahIWFERkZmeU4CwsLnn/+eU6fPp2tOBERyZ7+/ftz5MgR5s+fz8yZM5k5c2aaPkajkREjRrBp06YCyFBEROTJ8uDGqg9jMBgIDg7O0TwPnjS5d+9e0+YD169fx93d3XTS5Jw5c7I0Xmb9Zs2aRWBgIM8++2yGpz7XqlWL5cuXZ/t5iIhI0ebg4MCoUaMYNWoUu3btwtfXly1btjBv3jzmz59Pu3btGDt2LB4eHgWdqoiISK7Jk4KPV155hYCAAH744QdefvllmjZtSrNmzdi/fz+Ojo44ODhw8+ZNDAYDH3zwQV6kICIiUiTUrFkTf39/Xn/9dUJDQwkLCzNrNxqNODg4sHr16lzZySY3d+0BuHfvHm+88Qb+/v7Y2trStGlTnJycuHr1KidPnmTevHlpCj4OHDiAj48PTk5O1KxZk6ZNm5KQkMAvv/zCsmXLWLlyJStXrszSDU0iIlI42NnZUbly5YJOQ0REJFd8++23TJgwgdOnT5OSkgKkvxupwWAgKSkpR3OEh4cD4OjoaCr6/6dGjRoRGRlJeHj4Q98fxcbGcvbsWVNcRuOtWrXKNHdeSkxMNJ0UUr58+WzFnjlzJkdxIiKSPT4+PrRr144vvviC/fv3c+fOHQCsra1p1qwZo0ePpnPnzir4EBERyQd79ux5aB+DwYDRaMRgMOR4ntw+aTIzy5YtA2DQoEGPNI6IiDy54uPjOXPmjOlzT6PRiIWFBd9//z3bt2+nQ4cOrF69+pHXLBERkcIgTwo++vbty7/+9S9cXV1N1zZt2sTgwYPZtm0bN27coEyZMnz00Ud06dIlL1IQEREpMjp16sTp06dZsmQJe/fu5dKlSwBUrFiR1q1bM2TIEJ555plHnie3d+0BGDJkCP7+/nTr1o2lS5dStmxZU1tKSgqHDx9OE9OmTRt+++03atWqZXY9JSWFuXPnMm7cON566y1eeeUVypQpk8NnKyIi+al169b5cvOoiIhIXtu2bRs9e/YkJSWFUqVKER8fj8Fg4KWXXsrVeSIiIgBwcXHJsE+lSpXM+mYmtbgiszGzM96j8vPz4/r169ja2tKhQ4csx33//fccP34cg8FAjx498jBDERGB+59LdurUieTkZKKiogB46qmnsLS0LODMREREniw//PBDutdTUlL4888/2bp1K5s2bWLixIm0a9cuR3PkxUmTGdm/fz+nTp2iWLFiDBgwIMfjiIjIk+n06dP4+vqycuVKYmNjMRqNuLu7M2rUKDw8PPjf//7HjBkz2LZtG2PHjuWrr74q6JRFREQeWZ4UfNjb29OsWTOza08//TRbtmwhISGBW7du4eTkhIWFRV5MLyIiUuQ888wzfPjhh3z44Yd5Nkdu79oTHBzMypUrqVOnDuvXr6d48eJm7RYWFjRp0iRN3IMFo//s//7777No0SLOnTtHSEiICkdFRB4TU6dOpWHDhsycOZMJEyYUdDoiIiI59p///IeUlBQ++eQTJkyYQNWqVYGMb77JqdjYWOD+KVkZsbe3ByAmJibL42U2ZnbGexS//PIL48aNA8Db2xsnJ6csxV2+fJnBgwcD9zcXeP7557M8p7Ozc4ZtV65c0WkhIiIPYWlpmSsbzoiIiEjOtGrVKtN2T09P5s2bxwcffEDv3r1zNEdunzSZmdTTPTp27Ei5cuUy7PfXX3/x6aefcunSJWxsbKhVqxadOnXKdHMEEREpmoxGI1u2bGHBggUEBwdjNBqxtbVl8ODBjBo1ijp16pj6vvXWW/Tt25d69eoRGBhYgFmLiIjknjwp+MhMiRIlKFGiRH5PKyIiIpnIi1175s+fD8Do0aPTFHs8imLF7v/ni7W1da6NKSIieevgwYMMGjSIyZMns2XLFl555RVcXFwy3ASgf//++ZyhiIhI1hw7dowXXniBjz76qKBTeSxdvHiRLl26EBcXR9euXbNcCBoTE0Pnzp25fPkyL774Ij4+PnmcqYiIpLp37x5Hjx7l4sWLGI1GnJ2dadiwIVZWVgWdmoiIiDxg1KhRzJ8/n08++YSAgIBsx+f2SZMZiY+PZ/369QCmov6M/P7773z88cdm14oVK8bIkSOZNWuW6TtDEREp2j777DO+/PJLLly4gNFopFKlSnh5eTFkyBAcHR3TjbGzs6N58+asWrUqn7MVERHJG3ny7sfS0hJPT0/8/Pwy7TdkyBC+/vprkpKS8iKNHPH392fBggUcP36ce/fuUb16dV5//XXGjBmTo5tVjxw5wsyZM/nxxx+5desW5cuXp3Pnznh7e2e6G9Jff/3F1KlT+e6777h8+TKlS5emZcuWTJw40WzXdRERkdyQ27v2JCcnExwcDEDLli25evUqa9eu5dSpU1hbW1O/fn169uxp2kE2q5YsWcLp06d55pln0j0dRERECidPT08MBgNGo5GDBw9y6NChTPur4ENERAorS0tLatWqlefzlCxZErh/I0xG4uLiAHBwcMjyeKljpndqY3bGy4mrV6/i4eHBn3/+Sfv27Vm/fj0Gg+GhcXFxcXTo0IHw8HDq16/P999/j42NTbbmvnjxYoZtmZ3+ISLyJLt37x5Tpkxh4cKFaU5/KlmyJMOHD+eTTz4pmOREREQkXfXq1WPv3r05is3tkyYzsn79euLi4ihXrhwdO3ZMt0+pUqUYPXo03bt359lnn8XBwYE//viDr7/+Gl9fXz7//HPi4uJYsmRJlufVyY8iIo+viRMnAtCsWTPeffddunfvjqWl5UPj6tSpQ8uWLfM6PRERkXyRJwUfRqMRo9GY5b6FxejRo/Hx8aFYsWK4u7tjb2/P7t27GT9+PIGBgezYsQNbW9ssj7dhwwb69u1LUlISbm5uVKlShbCwMHx9ffH39yckJITq1auniTt9+jQtWrTg2rVrVK1alW7duhEREcGGDRvYvHkz69evp3v37rn51EVEpJBwd3fPcazBYDAVWWRXbu/ac+7cOdPNQgcPHsTLy8v0ONW4ceNYu3Zths85ISEBLy8vAG7dusWJEyc4e/YsTk5O+Pv759lNSCIikvv69++fpRs6RURECrvnn38+0+KB3OLq6gpAZGRkhn1S21L7ZqZy5cqm3y9cuEDdunUfabzsunbtGu7u7pw+fZo2bdqwefPmLJ3aGB8fT6dOnThw4ADPP/88O3fupEyZMrmen4iImLtz5w7t2rVj//79GI1GnnrqKdP6cP78eaKiopg1axYhISEYjUa93xMRESkkoqOj03wfV9ikbhzbv3//DE/oqF+/PvXr1ze7VrduXebOnUvz5s3p2bMnS5cuxcvLixdeeCGvUxYRkQLWv39/3n333TRrw8O8//77vP/++3mUlYiISP4q0PMNExIScnRqRl7YvHkzPj4+2Nvbs3fvXtMpGtevX8fd3Z2QkBC8vb2ZM2dOlsa7fPkyAwYMICkpicWLFzN06FDg/o7nnp6efPPNN/Tr149Dhw6ZfRBuNBrp06cP165d48033+Trr782VaQuWbKEYcOG0b9/f86cOUO5cuVy+a8gIiIFbc+ePTmOfZQvVnN7156oqCjT74MHD+all15izpw51KpViz/++INJkyYRFBTEq6++ytGjR6lRo0aaMe7du8eKFSvMrlWtWhU/Pz9atGiRpecF2rFHRKQwWL58eUGnICIikitGjx5N7969CQsLo1GjRnk2T+qXl1FRUURERKR7EmNYWBhAlk4DdnBwoHr16pw9e5awsLB0Cz6yM152/P3337i7u/Pbb7/h4eHBli1bsnRCR0JCAp06deLHH3/k+eefJzg4mKeeeipXcxMRkfR99tlnhISE8Oyzz/Lf//6XTp06mbUHBQUxduxYDhw4gJ2dnTZmERERKQR+/PFH9u3bR82aNXMUn9snTabn9OnT7N+/H4BBgwblaIwePXrwwgsvcOzYMQIDA7Nc8KGTH0VEHl/6nlFERKQACz5u3rxJSEhIobnJcvr06QBMmDDB7EvNsmXLsnDhQlq0aIGvry/e3t6UKlXqoeN98cUXJCQk0KZNG1OxB4ClpSWLFi0iMDCQ0NBQduzYQfv27U3t27ZtIzw8nNKlS7Nw4UKz48eGDh3K+vXrCQ4OxsfHhxkzZuTGUxcpdIxGI3eS7mBb/P9O1LmdeBubYjbaKUyKvB9++KGgU8gVD57gVbFiRbZv327avbVevXps2bKFF154gRMnTjBz5kzTbj4PKl26tGmcv/76i6NHjzJlyhRefvll3n//fWbPnp0/T0akAGgtFBGRJ53WQimsevbsibe3N+3bt2fq1KkkJSVluCPpo3B2dsbNzY3Q0FDWrFnD5MmTzdpDQkKIjIzE2tqajh07ZmnM7t27M3v2bNasWcPAgQPN2uLi4ggMDATu3zyTW1I30zl58iQeHh4EBgZm6QTl27dv07lzZ/bu3Wsq9ihbtmyu5SXyONBaKAVpzZo12Nvbs3v3bipUqJCmvWPHjrzwwgvUrFmT27dvq+BDRPKE1kKR//Ppp59m2BYbG8tvv/3G9u3bSUlJ4a233srRHLl90mR6li1bBkDz5s1zXJgC8Nxzz3Hs2LF8OYFTpKBoHRT5P5aWlnh6eqZ7X8mDhgwZwtdff01SUlI+ZSYieUlroYi5XPs2smrVqmaPN2zYkOEu5UlJSVy9epXk5GSGDRuWWynk2KVLlwgNDQWgX79+adqbN29OpUqViIyMJCgoiL59+z50zICAgAzHs7e3p2vXrqxatYpNmzaZFXykxnXt2tW0k/qD+vXrR3BwMJs2bVLBhxRJRqORGSEz2HdhH2t7rqWUTSlu3blFn419aOHSgonNJ2rBliKtVatWBTJvbu/akzoegKenp6nYI5WlpSXDhg1j5MiR7Nq166HjOTk50aFDBzw8PGjcuDFz5syhVatWdO7c+aGx2rFHHjdaC0VE5EmntVAKkwc3Y/mnkSNHkpKSkmE/g8HwSF8uTpo0ie7duzNz5kw6dOhg2qQmKioKLy8vAEaMGGG2OU1AQAATJ06kYsWKBAcHm403evRoFixYwK5du1i6dClDhgwB7p9I7OXlxc2bN3Fzc6Ndu3Y5zvlB0dHReHh4cOLECdq0acOWLVuyVOxx584dunbtyg8//KBiD3liaS2UgnbhwgXatWuXbrFHqgoVKuDu7s6WLVvyMTMReVJoLRQx98knn2AwGMw2XPsnCwsL3n33XUaPHp2jOXL7pMl/Sk5OZuXKlQAMHjw4RzmmioqKAsy/jxQpSrQOipgzGo2ZroH/7Csijz+thSJp5VrBx/nz502/GwwG4uLiTDeGpsfKyopu3bqZTtYoSOHh4QA4Ojqm+6YVoFGjRkRGRhIeHv7Qgo/Y2FjOnj1ristovFWrVpnm/mcumcUBnDlzhvj4eOzs7DLNReRxkrpQ+x72BaDPxj4s7ryYYVuHcfzqcY5fPQ6gBVskD+T2rj2urq6mD57/WRSaKvX6lStXspynlZUVr7/+OseOHSMgICBLBR8ijxOthVLUXbx4kT179nD58mXu3LmTbh+DwYC3t3c+ZyYihYXWQilsHuWLxEf9crFbt26MGjWKefPm0aRJEzw8PLCzsyM4OJibN2/SrFkzpk6dahZz69YtTp06le46W6FCBZYvX07fvn0ZOnQofn5+uLq6Ehoayrlz53BycmLNmjXp/n/Ly8uLo0ePAnD37l3g/s06TZo0MfXp1KmT2Rr+1ltv8fPPP2MwGHB0dGT48OEZPs9u3bqZHk+aNMm0MYCLiwvvv/9+unHNmzfP8c61IoWZ1kIpDMqUKZOlIj0bGxssLCzyISMReZJoLRRJ6+OPP86wzcrKiooVK+Lu7v5IG53lxUmTDwoKCuLKlSuULFmSXr165TjPS5cusW/fPgBefPHFHI8jUlhpHRTJuYSEBIoXL17QaYjII9JaKJK+XCv4iIiIADDd2Pnaa68xe/bsdPtaWVnx9NNPU6xYrk3/SFJzd3FxybBPpUqVzPpm5sHil4zGzGi8h+WSGmc0Gjl//jy1a9d+aD4ij4s7SXfYd2Gf6fHxq8dp8lUTsz77LuxjTNIYs6O6ROTR5fauPfb29tSsWZPff/+d69evp9sn9Xp6J1plJrXY8dq1a9mKE3kcaC2Uoio5OZlRo0axZMkS007o/7wJNrVQUAUfIk82rYVS2KSuWxlJvZkms5MFH4WPjw/NmjVjwYIFHDhwgMTERKpVq8aECRMYM2YMVlZW2RqvV69eVK1alenTp7Nv3z7Cw8MpX74877zzDt7e3jg5OaUb9+uvv3Lo0KE01x+8VqtWLbO26Oho4P6av379+gxzcnV1NSv4SI0D2Lp1a6bPRwUfUhRpLZTCoE2bNuzatYu7d++mObk31Z07d9i3b1+G7SIiOaW1UCStzAo+clNunzT5oGXLlgHQp0+fh25s6uPjw+uvv57mtMeff/4ZT09Pbt++TbVq1Xj11Vdz9DxFCjOtgyI5c/PmTUJCQihfvnxBpyIij0hroUj6cq3ionLlyqbfBwwYQIsWLcyuFWaxsbEAmb6pTL0ZNSYmJsvjZTZmRuM9LJcHb4rNSi5Aprs4XLlyRf+hI4WGbXFb1vZcS5+NfUyVmA+qV64ea3uu1UItRdqnn34K3P+w1NHR0fQ4Kx7lBtm82LWnV69eTJ06lV27djFmzJg07Tt37gSyv/tO6ofFzz77bLbiRB4HWgulqJo2bRqLFi2iWLFidO7cmRo1alCyZMmCTktECiGthSJp9e7dm969e2epr6enJ56enpn2adiwIRs3bsxWDnv27MlW/5zGACxfvpzly5fnKFakKNBaKIXBtGnT2LZtG/369WPRokU888wzZu3Xr1/n7bffJjExEQcHhwLKUkSKKq2FIgUnt0+aTHXt2jW+++47AAYPHvzQPD7++GPGjh3LCy+8QJUqVbCwsOCPP/4gPDyclJQUXFxcCAwMVOGpFElaB0Xuq1q1qtnjDRs2ZPh5Y1JSElevXiU5OZlhw4blQ3Yikpe0FoqkL0+O2Pj666/zYlgReQKUsinF4s6L01RlAizuvJhSNqXSiRIpOj755BMMBgN9+vTB0dHR9Pifu6A/KLd2RM/tXXtGjRqFr68vQUFBLF682OyN9dq1a1m9erWp34O++OILevbsaTrVKlVCQgJz585l48aNFCtWjIEDB+b4uYoUZloLpShavnw5tra27Nu3L0snRYnIk01roYiIPOm0Fkp+S2/TmU6dOrFy5Uq2b99Ou3btTCcCR0REsGPHDm7fvk3//v3ZuHGjij5EJNdpLRQpOLl90iTAqlWrSExMpHbt2jRu3Pih/SdPnsz+/fs5efIkO3fuJD4+HgcHB1566SVeffVVhg0bpg2FpEjTOigC58+fN/1uMBiIi4sjLi4uw/5WVlZ069aN6dOn50N2IpLXtBaKpJUnBR+pjEYj27Zt48CBA/z99980btyYQYMGAfD3339z48YNqlWrhqWlZV6m8VCpbwTj4+Mz7JP6HwxZ+dD6wTeW8fHxZjfGPmy8kiVLEh0dnWEuD/6HS1Y/QL948WKGbZmd/iFSEG7ducWwrelXWw/bOoy1PddqwZYi7aOPPsJgMJiOKE59nB9ye9eesmXLsm7dOrp27crbb7/N/Pnzee6550w78AB4e3unOTHkiy++4L333uO5556jZs2a2NjYcOXKFY4fP86NGzewtrZm6dKl1KlTJ+/+GCIFSGuhFEVXr16ldevWKvYQkSzRWiiPg8TERDZu3MiNGzdITk6mU6dOODs707p1a3r27JmjG2BERFJpLZT8lt6mM6mfSSYkJLB58+Z041asWIHRaFTBh4jkOq2FImklJSXh7+9PcHAwly9fzvBEDYPBkGaTtuzK7ZMmx44dy9ixY7M8/7hx4xg3blyW+4sUNVoHRe5vNgD37z+tWrUqr732GrNnz063r5WVFU8//TTFiuXprbAiko+0FoqklWer3PHjx/n3v//NmTNnTLuOJyYmmgo+du7cyZtvvsnmzZvp0qVLXqWRJa6urgBERkZm2Ce1LbVvZipXrmz6/cKFC9StWzfL47m6uhIdHc2FCxcyzcNgMJjNI1IU3E68neFRXADHrx6nz8Y+bOq9SUdySZH1ySefZPo4r+X2rj1t27bl+PHjTJ8+nV27dvHtt9/i4OBAx44deffdd2nXrl2amOnTp7Njxw7CwsL48ccfuXnzJnZ2dlSrVo3BgwczfPjwNMd3ihQVWgulqKpQoYJ2XBORLNFaKI+DQ4cO0bdvX/78809SUlIA2LZtGwBfffUVkyZNYs2aNTRt2rQg0xSRx5TWQikIH3/8cY5j//vf/+ZiJiIiWgtF0vP333/Trl07fv75Z7MCzfTk10ZyIpI3tA6K3PfgfZEDBgygRYsWuldS5AmhtVAkfXlS8HHx4kXatGlDVFQUHTt2pHXr1nzwwQdmfbp160bx4sX59ttvC7zgo379+gBERUURERFhOpb6QWFhYQBZ2pHWwcGB6tWrc/bsWcLCwtIt+MhovAYNGnD06FFTe0ZxNWrUwN7e/qG5iDxObIrZ0MKlhWmxrleuHos7L2bY1mGmay1cWmBTzKYg0xQp8nJ7155nn32W5cuXZ3n+fv360a9fvyz3FylKtBZKUdW9e3e++eYb7t69i7W1dUGnIyKFmNZCKexOnTpF27ZtiYuLo2LFity8eRNLS0v+85//cP78edatW8eff/5J+/btOXz4MLVq1SrolEXkMaO1UArCoxR8LF26NBczERHRWiiSng8++IDjx49TvXp1hg8fTo0aNbTBjkgRpXVQJK2vv/66oFMQkXyktVAkfXlS8DF9+nSioqL44osvGDVqFECago8SJUpQr149QkND8yKFbHF2dsbNzY3Q0FDWrFnD5MmTzdpDQkKIjIzE2tqajh07ZmnM7t27M3v2bNasWcPAgQPN2uLi4ggMDASgR48eaeK++uortmzZQnx8PHZ2dmbta9asSTdOpCgwGAxMbD4RgH0X9pmO3lrbcy19NvahhUsLJjafqF1JRP6/27dvc/r0aZydnXnqqacKOh0RyQVaC6Wo+uijj9i6dSt9+vRh6dKllC1btqBTEpFCSmuhFHYfffQRcXFxjBo1ilmzZplOH3znnXeA+5+LfvDBB/j4+PDxxx+zbt26gkxXRB5DWgtFRORJp7VQJK2tW7fi5OTEwYMHcXR0LOh0RCQPaR0UEZEnndZCkfQZjA877zEHqlatio2NDb/++qvpmoWFBZ6enixbtsx07d///jc//PAD165dy+0Usm3z5s10794de3t79u7dazp5IyoqipdffplffvmFsWPHMmfOHFNMQEAAEydOpGLFigQHB5uNd/nyZWrUqEFCQgJLlixhyJAhACQnJzNw4EBWrVqFm5sbhw4dMnvhMRqNNGzYkPDwcPr378+yZcuwtLQEYMmSJQwbNgx7e3vOnDlDuXLlHvl5Ozs7A/dPZREpLIxGI3eS7pgduXU78TY2xWy0UEuhkh+vofv27SMgIIABAwZQr1490/U1a9YwbNgwEhISsLS05MMPP+Sjjz7KszyKKq2DUlhpLZTHRXZeR2/cuEHr1q05f/48DRs2xMXFBQsLizT9DAYDfn5+uZ6rpE9roRRWWgulsHr66acpXbo0p0+fxmAwpPs6ajQaefbZZ7l58yZ///13QaUqWaS1UAorrYXyuHjU19FTp06xY8cOjhw5wpEjR/jtt99ITk5m6tSpfPjhh2n6p6SkcPDgQb7//nt2797Nb7/9RkxMDKVKlaJ+/fp4enrSr1+/TP9/cuTIEWbOnMmPP/7IrVu3KF++PJ07d8bb25tnnnkmw7i//vqLqVOn8t1333H58mVKly5Ny5YtmThxoul7xfTcu3ePzz//nDVr1nD27FmsrKyoV68eI0aM4LXXXsv07+Pv78+CBQs4fvw49+7do3r16rz++uuMGTOG4sWLZxqbVVoLpbDSWiiPg/x6DbW3t+eVV15hw4YNeTrPk0proRRGWgflcZEXr6GDBg3CYDAwffp0nJycGDRoUJZj9T1j9mkdlMJKa6E8LvLrdTRPTvi4fPkyr7766kP7GQwGYmJi8iKFbOvWrRujRo1i3rx5NGnSBA8PD+zs7AgODubmzZs0a9aMqVOnmsXcunWLU6dOcefOnTTjVahQgeXLl9O3b1+GDh2Kn58frq6uhIaGcu7cOZycnFizZk2aFx6DwcD//vc/WrRowcqVKwkJCcHNzY2IiAgOHz5MsWLFWLlyZa4Ue4gUVgaDwWyhBtI8FnlSLFmyhHXr1jFp0iTTtcjISAYNGsS9e/coXbo0N2/eZMqUKbRq1YpWrVoVYLYiklu0FkpRc/fuXTw9PTlx4gRGo5E9e/Zk2FcfxIoIaC2Uwis+Pp527dpl+mWCwWDAzc2NzZs3519iIlLkaC2UwuCnn34iODiYy5cvp/tdGNwv7i9TpkyO51i0aBE+Pj5Z7n/u3DmaNWsGgKOjI40aNaJMmTKcO3eOXbt2sWvXLtauXcvGjRuxsrJKE79hwwb69u1LUlISbm5uVKlShbCwMHx9ffH39yckJITq1auniTt9+jQtWrTg2rVrVK1alW7duhEREcGGDRvYvHkz69evp3v37mniEhISaNu2LQcOHKB06dK88sorxMXFsXv3bvbu3Ztms7kHjR49Gh8fH4oVK4a7uzv29vbs3r2b8ePHExgYyI4dO7C11euCFF1aC0X+T40aNbh9+3ZBpyEi+UjroDzJli9fjsFgYPz48Tg5ObF8+fIsx+p7RpGiQ2uhiLk8Kfiws7PL0u51ERERheq4SR8fH5o1a8aCBQs4cOAAiYmJVKtWjQkTJjBmzJh0PxjOTK9evahatSrTp09n3759hIeHU758ed555x28vb1xcnJKN65mzZr8/PPPTJs2ja1btxIQEECpUqXo0aMHkydPznSXIBERKVoOHTpEvXr1KFu2rOnaqlWruHfvHp988gkfffQR+/bto3Xr1ixcuFAFHyIiUih9/PHHBAYGUqZMGd58801q1KiBvb19QaclIiKSbVWrVuX69esP7RcVFUWVKlXyISMREZHcl5CQQO/evdm2bRtwf0fFjBiNxkcq+KhTpw7vv/8+9evXp0GDBkyfPp1Vq1Zl2N9gMODu7s64ceNo27YtlpaWpra9e/fSqVMntm7dysyZM9OciHz58mUGDBhAUlISixcvZujQoQAkJyfj6enJN998Q79+/Th06JBZcafRaKRPnz5cu3aNN998k6+//to075IlSxg2bBj9+/fnzJkzaTZsmzRpEgcOHKBu3brs3r3b9DnvkSNHaN26Nf/9739p3bo1nTt3NovbvHkzPj4+2Nvbs3fvXtN3g9evX8fd3Z2QkBC8vb0zLBYREZGiZfDgwYwfP56LFy+ado8VEREpqr7++msAypcvb/ZYRETkSWYwZvYpbQ61bt2a8PBw/vjjD9MHlxYWFnh6erJs2TIA/vzzT2rWrEnbtm0JDAzM7RQki3Qkl4hIzuXHa6ijoyOtWrUiICDAdK1NmzaEhIRw/fp1082yzZo14++//+b06dN5lktRpHVQROTRZPV1tHLlysTGxnL8+HEqVaqUH6lJFmktFBHJnlmzZvHRRx9x5MgRateune7r6MmTJ2nQoAFTpkxhwoQJBZWqZJHWQhGRtEaPHs28efMoU6YMb7zxBjVq1KBkyZIZ9rWzs8u111FPT09WrFjB1KlT+fDDD7MdP23aNLy9valWrRpnz541a/vggw+YPXs2bdq0YefOnWZtcXFxODs7c+vWLb7//nvat29vagsKCqJTp06ULl2ayMjINBsYtGnThuDgYCZMmMCMGTNM12/cuEG5cuW4d+8eISEhppNJ/plrkyZN+Omnn8zaXnzxRUJDQ5k2bRqTJ082awsJCaFFixZYW1vz119/UapUqWz/nR6ktVBEJOfy8zX03//+N+Hh4cyfP5+2bdtiYWGR53M+KbQWiojknF5DH3/6NxQReTT59TqaJ+8A33jjDWJjY3nrrbdISEhI037v3j28vLxITEzkjTfeyIsUREREioS4uDhsbf/vODqj0UhoaCiNGjUy+2LR1dWVy5cvF0SKIiIiD3Xt2jVatGihYg8REXnsjR07ls6dO+Pu7o6vry8pKSmmtpiYGBYsWICHhwddunThgw8+KMBMRUREcs7f35/SpUtz9OhRfHx8GDFiBAMGDEj3x87OrqDTNVO/fn0AIiMj07SlbqrTr1+/NG329vZ07doVgE2bNqUb17Vr13RPq0wd759xQUFB3Lt3DxcXlzTFHg/GHTx40Oyz3UuXLhEaGpphrs2bN6dSpUrcvXuXoKCgNO0iIlI0LV68GFtbWzp27IitrS2urq5UrVo1zU+1atUKOlUREZFHFhoaypYtWzhz5sxD+54+fZotW7YQFhaWD5mJiIgUjGJ5MejAgQNZvXo1W7ZsoVatWrzyyisAHD9+nFGjRrFlyxYuXLhAmzZt+Pe//50XKYiIiBQJjo6OnD9/3vQ4PDyc2NhYXnrpJbN+iYmJWFlZ5XN2IiIiWePi4qId50REpEioUaMGAH///TfvvvsuKSkpGAwGnnrqKW7evGnqd+TIEapXr24WazAY+OOPP/IzXRERkRy5ceMGbdu2pXLlygWdSral3gxUvnx5s+uxsbGmEz8aNWqUbmyjRo1YtWoV4eHhZtdTH2cWlzp3fHy8qQjmYXFVq1bF0dGR6Ohojh07RoUKFcziHB0dqVKlSoZzRkZGEh4eTt++fdPtIyIiRUdkZCQtWrQgMjISo9FIYmIiFy5cSLevwWDI5+xERERy1/Xr1/Hw8KBkyZIcO3bsof3LlCmDl5cXCQkJnDt3jtKlS+d47lOnTrFjxw6OHDnCkSNH+O2330hOTs7xKZTbtm1j48aNHDt2jEuXLhEdHY2VlRXVqlWjY8eOvPfee5QtWzbd2Pj4eObNm8fGjRs5ffo0t2/f5qmnnqJRo0YMHTrUtGmBiIg8GfLkjhtLS0sCAwPp27cvly5d4quvvgLuf0Dp6+vLhQsX6NmzZ5qdbkRERMScm5sbhw8f5qeffgLAx8cHg8GAu7u7Wb8zZ86k+RJTRESksOjXrx979uwxuxE2r/n7+9O6dWvKlCmDnZ0d9erVY9asWSQmJuZovCNHjtCrVy+cnJywsbGhSpUqjBw5kmvXrj009vjx4wwaNIgqVapgY2NDmTJlqFu3LsOHDycqKirdmNjYWCZNmkTNmjWxtbWlbNmydOrUid27d+cofxERyR3nz583FeUbjUbT/964cQOj0Wj6+fPPP019H/wRERF5HFSuXPmxLNpPSEhg3rx5APTs2dOs7cF12MXFJd341FMpIyIizK6nPn5YnNFoNJvnYXEAzs7OaebMSlxGuYqISNE0fvx4Lly4QLNmzdi0aRO//PILERER6f6cO3euoNMVERF5JN988w1xcXFMmTKFp59++qH9n376aT799FNu3rzJN99880hzL1q0iFGjRrFixQpOnDhBcnLyI423evVq/Pz8uHXrFnXq1KFnz5689NJL/Pnnn8yYMYPatWtz8uTJNHFRUVG8+OKLTJo0iVOnTtG0aVN69OhBxYoV+e6773j11Vd59913Hyk3ERF5vOTJCR9w/+jj1atX4+3tTVBQEOfOnSMlJYVKlSrRoUMHXnjhhbyaWkREpMh49913CQoKonnz5pQqVYpbt25RtWpV2rVrZ+pz/fp1fvnlF/r06VOAmYqIiGRs4sSJ7Nmzh44dO+Ln58dzzz2Xp/ONHj0aHx8fihUrhru7O/b29uzevZvx48cTGBjIjh07sLW1zfJ4GzZsoG/fviQlJeHm5kaVKlUICwvD19cXf39/QkJC0uzinmrOnDlMmDABo9FIw4YNadKkCbdu3eLMmTN8+eWXvPPOOzz11FNmMdeuXaNFixacPn2a8uXL06VLF/766y+2bdvGtm3b8PHxYeTIkY/0NxIRkZz5502VjRs3BuDQoUMFkY6IiEie6NevH3PnzuXmzZuPtDNqfvPy8iIiIoIKFSowadIks7bY2FjT76kncPyTvb09ADExMenGPizun7EPi8tozpzGZSa1sCQ9V65c0WZCIiKF3K5du6hcuTI7d+7E2tq6oNMRERHJU0FBQdjZ2TFgwIAsx7z55puMHj2arVu3MmLEiBzPXadOHd5//33q169PgwYNmD59OqtWrcrxeO+//z5z5syhXLlyZtfj4uIYNGgQ/v7+vPXWW6ZNYFN9+umn/PrrrzRs2JAdO3bg6OhoagsKCuLVV19l3rx59O3blyZNmuQ4PxEReXzkWcFHqlq1alGrVq28nkZERKRIatOmDcuWLWPKlClcu3aNVq1asXDhQrMd9latWkVKSgqtWrUqwExFREQy9sorr5CYmMjBgwepW7cuLi4uuLi4pLtjrMFgIDg4OMdzbd68GR8fH+zt7dm7dy8NGjQA7hdIuru7ExISgre3N3PmzMnSeJcvX2bAgAEkJSWxePFihg4dCkBycjKenp5888039OvXj0OHDmEwGMxiv/76a8aNG0fNmjXZsGEDderUMWs/efJkujfdDB06lNOnT+Ph4cGWLVsoUaIEcP8D3K5duzJ69GhatWrF888/n+2/j4iIPJrKlSubPS5WrFi610VERB5n48ePZ8eOHXTo0IFly5bledF+bpg6dSorVqzAxsaG9evXpymsFxEReZzdvn2bl19+WcUeIiLyRDhx4gSNGzemePHiWY4pXrw4L774Ir/88ssjzf3WW2+ZPX7U0y8z2hTd3t6e//73v/j7+3Pw4EFiYmJwcHAwte/evRu4//78wWIPgI4dO/Lyyy+zc+dOfvrpJxV8iIg8IfK84ENEREQezYABAzLdueDtt99m0KBBZjvJiYiIFCZ79uwx/Z6SksL58+c5f/58un3/WTSRXdOnTwdgwoQJpmIPgLJly7Jw4UJatGiBr68v3t7elCpV6qHjffHFFyQkJNCmTRtTsQeApaUlixYtIjAwkNDQUHbs2EH79u1N7Tdu3GD06NHY2toSFBRE1apV04xdu3btNNd+/fVXvv32WywtLfHz8zMVe8D9D3A9PT3x8/NjxowZ/O9//8vaH0VERERERCQbrKys2L59O02bNn1o0f7169cpW7ZsAWT5f+bOnctHH32EtbU1AQEBNGvWLE2fkiVLmn6Pj49P9/1gXFwcgNlNNqmx0dHRxMfHpzt/atw/Y1PnzCguozlzGpeZixcvZtiW2ekfIiJSOPzrX/8iOjq6oNMQERHJF9HR0WlOxMgKJycnQkJC8iCjvJG6mZCFhUWa4hYbG5ssjVHQ78dFRCT/5GnBx/Xr1/nqq6/Ys2cPFy9exGg04uzszMsvv8ygQYN45pln8nJ6ERGRJ4KtrS22trYFnYaIiEiGfvjhh3yZ59KlS4SGhgLQr1+/NO3NmzenUqVKREZGEhQURN++fR86ZkBAQIbj2dvb07VrV1atWsWmTZvMCj5WrFhBTEwMb7zxRrrFHg+br1mzZunuFt+vXz/8/PwIDAwkMTExW7sbiYiIiIiIZMWNGzdo27YtJ06cwGg0Zlq0bzQa8ze5f5g/fz5jx47FysqKjRs38sorr6Tb78H3VxcuXKBu3bpp+kRGRgLg6upqdt3V1ZXo6GguXLiQ7tipcQaDwWye1HEyioP/K8R4cM7U31PHzWzOf+YqIiJF08iRIxk0aBAnTpxIc4qwiIhIUWNtbZ1pAXxGEhISHpvTsO7evcukSZMAaNu2bZp7fjp06EBYWBifffYZHh4eZqd8BAUF8cMPP1CuXDm6du2ar3mLiEjBybOCj2+//ZaBAwdy69Ytsw97f/vtN3bt2sXMmTP5+uuv6d69e16lICIiUqRcvnyZH3/80ayIsmXLllSsWLGgUxMREclUq1at8mWe8PBwABwdHalSpUq6fRo1akRkZCTh4eEPLfiIjY3l7NmzpriMxlu1apVp7lTbt28HoGXLlty+fZsNGzYQGhpKcnIyNWrUoGfPnlSqVCnD55DZfHB/p9czZ87wr3/9K9PnICIij8bd3T3T9r///jvDfgaDgeDg4DzJS0REJC9NmjSJo0ePUqNGDYYPH06NGjUyPF34tddey+fs/s+CBQsYNWqUqdijU6dOGfZ1cHCgevXqnD17lrCwsHQLPsLCwgDMTotMfXz06FFTe0Zx//w7pY6TUdy5c+dMu7XXr1/fdD3196ioKCIiItJ9f5tRriIiUjS98cYb/Prrr7i7uzN16lQ6dOiAi4tLQaclIiKSJ8qVK8fPP/+c7biff/45RyeD5IejR48yb948jEYjf//9N6GhoVy/fh03Nzf8/PzS9B8/fjyHDx9m+/btVK5cmWbNmlG6dGnOnj3LkSNHaNasGX5+fumeXikiIkVTnhR8HDp0iF69epGUlESjRo3o37+/6cPI8+fPs3LlSkJDQ/n3v//Nvn37aNy4cV6kISIiUiRERUUxatQo1q9fT0pKilmbhYUFr732GvPnz9dRjSIi8sSLiIgAyPTLztQii9S+mXlwB9uMxsxovNQPomNjY6lTpw7nzp0zax8/fjwzZszgvffey9ZzcHBwwMHBgZiYGCIiIlTwISKSx/bs2ZNpe+pGN+n1MxgMeZCRiIhI3vv2229xcnLi4MGDlClTJtO+BbV76pdffsmIESNMxR6dO3d+aEz37t2ZPXs2a9asYeDAgWZtcXFxBAYGAtCjR480cV999RVbtmwhPj4eOzs7s/Y1a9akG9exY0esrKy4cOEC+/fvp1mzZunGNWnShAoVKpiuOzs74+bmRmhoKGvWrGHy5MlmcSEhIURGRmJtbU3Hjh0f+rxFROTxZ2lpafrdy8sr074Gg4GkpKS8TklERCTPvPTSS6xcuZIDBw7w0ksvZSlm//79REREMGDAgDzOLmcuXLjAihUrzK61adOGxYsXp7vJq52dHYGBgUyaNIn//ve/po3mAJ566inatGmTrc1hnZ2dM2y7cuUK5cuXz/JYIiJSMCzyYtBPP/2U5ORkZs+ezeHDhxkxYgSdOnWiU6dOvPPOOxw6dIj//ve/JCUlMXXq1LxIQUREpEi4efMmLVq0YO3ataSkpFC/fn169OhBjx49aNCgASkpKaxfv54WLVpw8+bNgk5XRESkQMXGxgKkufnmQam7rcbExGR5vMzGzGi8qKgoACZMmEBycjKBgYHcuHGDP/74g/Hjx5OYmMjYsWP53//+l6fPAe5/iJvRz5UrV7I0hojIk+qHH37I9Kds2bKULVs23bbdu3cXdPoiIiI5cuvWLV566aWHFnsUlKVLl+Ll5ZWtYg+A0aNHU6JECXbt2sXSpUtN15OTk/Hy8uLmzZu4ubnRrl07s7gOHTpQv359bt68iZeXF8nJyaa2JUuWEBwcjL29Pe+++65ZXJkyZRg+fDhw/+bc1PeJcH93188++wwgTUEH3D9lBWDmzJkcPXrUdD0qKsp0o++IESO0m6uIyBPCaDRm+eefm8eJiIg8bl5//XWMRiNDhw7l1q1bD+1/8+ZNhg4disFgoG/fvvmQYfZ169YNo9FIUlIS58+f56uvvuK3336jTp06bNiwIU3/K1eu0KxZM+bPn8+0adM4d+4ccXFxHD58mIYNGzJlyhSaN29u9l2miIgUbXlywseBAweoU6cOY8eOzbDPmDFjWL58Ofv378+LFERERIqETz/9lN9//52XXnqJL7/8kjp16pi1nzx5kuHDh7N//34+/fRT5s6dW0CZioiIPFxYWBgbNmzg1KlTxMTEmHZFf5DBYCA4OLgAsstdqc8tJSWFoKAg00kcpUuXZubMmcTExLBo0SI+/PDDQvvhs4iIQKtWrTJtT93V/GH9REREHicyQPlxAACtO0lEQVTVq1fnzp07+TLX0aNHzXYq/+OPPwBYvHgxW7duNV0PCAigfPnyHDt2jGHDhmE0GqlatSobNmxI9+YYgOXLl5s9rlChAsuXL6dv374MHToUPz8/XF1dCQ0N5dy5czg5ObFmzZo0p3QZDAb+97//0aJFC1auXElISAhubm5ERERw+PBhihUrxsqVKylXrlyaHKZPn87hw4f56aefqFGjBu7u7sTHxxMcHExiYiLvvfdeugUr3bp1Y9SoUcybN48mTZrg4eGBnZ0dwcHB3Lx5k2bNmmlTPRGRJ4iKOERE5EnSpk0bPDw8CA4OpmHDhsydO5cuXbqkea9mNBrZsmULY8eOJSIigtatW6cp4C9sLC0tqVy5MoMHD8bDw4PatWszcOBAmjdvbvaecsCAAYSGhjJr1izGjRtnuu7m5sbWrVtp2LAhx48fZ86cOUyZMuWh8168eDHDtsxO/xARkcIjTwo+EhMTqVu37kP71alTx/TBrYiIiKS1adMmHB0dCQoKwsHBIU177dq1CQwMpFq1amzatEkFHyIiUmi9//77fP7556ZCCIPBYFbwkfr4nx/WZkfJkiUBiI+Pz7BPXFwcQLrrakbjpY6Z3s6pGY1XsmRJoqKiaNGihanY40FeXl4sWrSIc+fOERERQZUqVfLkOYA+xBURERERkewZPHgwkyZN4uLFi3n+niEmJoZDhw6luX7x4kWz9zJ3794F7u/cmvpe8vfff+f333/PcOx/FnwA9OrVi6pVqzJ9+nT27dtHeHg45cuX55133sHb2xsnJ6d0x6pZsyY///wz06ZNY+vWrQQEBFCqVCl69OjB5MmTadCgQbpxJUqUYM+ePcydO5fVq1cTFBSElZUVTZs2ZcSIEfTq1SvD/H18fGjWrBkLFizgwIEDJCYmUq1aNSZMmMCYMWOwsrLKMFZERERERORxtnbtWpo1a8bp06fp3r07pUuXpkGDBjzzzDMAXLt2jaNHj5reI1avXp1169YVcNbZ4+rqyssvv8x3333Hzp07efPNNwG4dOkSO3fuBEh307jixYvz2muv8csvv7Br164sFXyIiMjjL08KPmrVqkVkZORD+126dImaNWvmRQoiIiJFwtWrV+ncuXOmN3SWKlWK1q1b89133+VjZiIiIlnn7+/P3LlzcXZ2xtvbm40bN7Jz5062b9/OmTNnWL16NT/99BMTJkygffv2OZ7H1dUVINP3o6ltqX0zU7lyZdPvFy5cSHdjg4zGq1q1KlFRUVStWjXdsR+8fuXKFVPBh6urK0ePHuXChQvpxsXExBATE5Pl5yAiInnjypUrfPvtt6YvFAcNGpSmj8FgwM/PrwCyExEReTQjR47k0KFDuLu7M3/+fNq2bYuFhUWezNW6det0T3/Mrf7padiwIRs3bsx2XLly5fD19cXX1zdbcVZWVkyYMIEJEyZke87evXvTu3fvbMeJiIiIiIg8zp566ikOHz7MiBEj+N///seNGzcIDg42bRyX+r7QwsKCfv36MX/+fEqXLl2AGeeMnZ0dcL+AJdWD3xFmdK9Q6iZ10dHReZidiIgUJnlS8DFs2DDefvtt9u7dS6tWrdLts3fvXvbt28eiRYvyIgUREZEiwcnJKUtfYBqNRtNOBiIiIoXNkiVLsLS0JDg4mBo1anDgwAEA2rZtS9u2bfHy8sLb25vZs2c/0o0s9evXByAqKsrs1IwHhYWFAWS4++qDHBwcqF69OmfPniUsLCzdgo+MxmvYsCGhoaFcv3493bEfvG5vb2/6vUGDBmzatMk0bkbz2dnZ8eyzzz70OYiISO6bP38+48aNIzExkZSUFOD/dhB/8AtHFXyIiMjjqlq1agCcP3+ejh07UqxYMcqXL59u0cfVq1cpV65cfqcoIiIiIiIiRZyDgwMrV65kypQpbN26lbCwMP7++28Ann76aRo2bEjnzp0z3HytsLt79y4hISEAZt/5VaxY0fT7oUOHaNu2bZrYgwcPAqT7XaiIiBRNebIdz5AhQxg9ejSdOnXi/fff5+effyY2NpbY2Fh+/vlnxo0bR6dOnRg9ejRDhw7NixRERESKhM6dO7Nnzx5u3bqVYZ+bN2/yww8/0KlTp3zMTEREJOvCw8Np3LgxNWrUyLDPlClTKF++PNOmTcvxPM7Ozri5uQGwZs2aNO0hISFERkZibW1Nx44dszRm9+7dMxwvLi6OwMBAAHr06GHW1qtXL+D+B67x8fFpYlOPYra3t+e5554zXe/WrRsA+/fvT/eUj9Q8unTpQvHixbP0HEREJPcEBwfz7rvvYmNjw4QJE7CysgJg8eLFjB071nT60ujRo1m2bFkBZioiIpJz58+f5/z588D9IsbExEQuXLhguv7gT3JycsEmKyIiIiIiIkValSpVGDlyJCtWrCAoKIigoCBWrFjBqFGjCkWxh6+vL7Vq1aJ///5m169du8aiRYuIiYlJE3Pp0iXefPNNLl++jKurq1lRh4uLi+n7znfffdf0/jzVN998w7p16wDo169fLj8bEREprAzGRz33GLC0tMx5AgYDSUlJj5qC5JCzszMAFy9eLOBMREQeP/nxGhodHU3jxo1xcnJi0aJFaXYWP3HiBMOHD+fq1ascPHiQp556Ks9yKYq0DoqIPJqsvo5aW1vTs2dPU7HCsGHD+Oqrr7h165bZ6RZ9+vRh7969XLlyJcc5bd68me7du2Nvb8/evXtNJ29ERUXx8ssv88svvzB27FjmzJljigkICGDixIlUrFiR4OBgs/EuX75MjRo1SEhIYMmSJQwZMgSA5ORkBg4cyKpVq3Bzc+PQoUOmXd1TtWzZkn379uHp6cmXX36JtbU1AD///DPt27fn6tWrjBs3jlmzZpnFdevWjW+//ZY2bdqwZcsWbG1tAdi2bRtdunTBaDQSHh7O888/n+O/UyqthSIi2dO1a1e+++47Dhw4QOPGjbGzsyMhIcF0MuPdu3cZPnw4mzZt4ujRo4XiC0fJnNZCEZG0/vzzzyz3bdy4McWKFdPr6GNMa6GISM7pNbRo0L+jiEjOFbXX0KNHj+Ll5WV6/Mcff3D9+nWcnZ3NTt4ICAigfPnyAHzyySdMmTKFVq1asWfPHlOf8+fPU6VKFaysrHjhhRdwdXXFaDQSGRnJ0aNHuXfvHhUqVCAoKIh69eqZ5XHixAlefvllrl+/jo2NDU2aNKFs2bL89ttvnDx5EoA33niDlStXpvl+MruK2r+hiEh+y6/X0WK5Mcij1IzkQr2JiIhIkfX+++9Tp04dvv32W1544QXq1atnOpIxIiKCn3/+GaPRSNeuXRk3bpxZrMFgwM/PryDSFhERMfP0009z8+ZN0+OyZcsC9z/orFOnjul6fHx8urvcZEe3bt0YNWoU8+bNo0mTJnh4eGBnZ0dwcDA3b96kWbNmTJ061Szm1q1bnDp1ijt37qQZr0KFCixfvpy+ffsydOhQ/Pz8cHV1JTQ0lHPnzuHk5MSaNWvS/TB19erVtGzZkuXLl7Nz507c3NyIjo7m4MGD3Lt3j7Zt26bJBWDJkiX8+uuv7Nq1i2rVqtGiRQuuXbvG3r17MRqN+Pj45Eqxh4iIZN/hw4dp0KABjRs3Trfd2tqaRYsWERQUxKeffsry5cvzN0EREZFcULly5Sz3LVYsV75qFBERERERESlwMTExHDp0KM31ixcvmt3Ie/fu3YeO9cwzz/Df//6XH3/8kRMnTvDbb79x+/ZtSpcuTZMmTejSpQtDhw7FwcEhTWydOnU4ceIEn3/+Odu2bSM0NJS7d+9SpkwZ2rdvz6BBg+jdu/ejPVkREXms5MoJH/L4UoWmiEjO5cdrqIWFBQaDIUcFkgaDgeTk5DzIqujQOigi8miy+jravHlzbty4YdpxZsOGDfTu3ZsJEyYwffp0AK5evcqzzz6Ls7Mzv/766yPntn79ehYsWMCxY8dITEykWrVqvPHGG4wZMwYrKyuzvsuXL2fgwIFUrlw5zbHIqY4cOcL06dPZt28ft27donz58nTu3Blvb2+cnJwyzOPWrVvMnDmTTZs28eeff2JlZUXt2rUZMGAAQ4YMyfDEzJiYGGbMmMHGjRu5cOECdnZ2vPjii7z//vt4eHjk+O/yT1oLRUSyx9ramu7du7N27VoA0wkfCQkJphOZAHr16sXBgweJjIwsqFQli7QWiog8Gr2OPv70bygiknN6DS0a9O8oIpJzeg19/OnfUETk0TxWJ3yIiIhI3vj6668LOgUREZFH5uHhwbRp0zh//jyurq506NABR0dHPvvsM86cOYOLiwsbNmwgPj6enj175sqcvXv3zvLONp6ennh6embap2HDhmzcuDHbeZQqVYoZM2YwY8aMbMU5ODjkKE5ERPKWo6Mj8fHxpscWFhYAXLhwgZo1a5quJycnExUVle/5iYiIiIiIiIiIiIiIiEjRooIPERGRQmzAgAEFnYKIiMgj69OnD5cvXyYyMhJXV1fs7Oz4+uuv6dOnj1kRRcOGDZk4cWIBZioiIpI5FxcXs1M7ihcvDsDWrVtNBR9xcXHs27fPtKOPiIjI42rjxo34+/tz6tQpYmJi0j2F+OrVq5QrV64AshMRERERERERERF5MqjgQ0RE5DHx66+/cuDAAf7++29q165N165dAUhJSSEpKQkrK6sCzlBERCR9zz33HEuXLjW71qVLF86cOUNgYCDR0dE899xzdOnSBUtLywLKUkRE5OFatWrF559/zl9//YWTkxM2NjYYDAYmTZrE1atXcXFxYcWKFURHR9OnT5+CTldERCRHjEYjvXv3ZtOmTekWeQAYDAaMRmOG7SIiIvL48vf3Z8GCBRw/fpx79+5RvXp1Xn/9dcaMGWPa+CArXF1d+fPPPx/ab8qUKXz00UeZ9jl+/Dhubm4kJiZSrVo1zp49m+U8REREREREHncq+BARESnkIiMjGThwID/88IPp2oABA0wFH0uXLsXLy4sdO3bg4eFRUGmKiIhkW4UKFRg2bFhBpyEiIpJlvXr1Ijw8nGPHjtG+fXssLCwoVaoUMTExzJ07F7h/k6yrqytTpkwp4GxFRERyZunSpWzcuJF69eoxa9YsFi9eTEBAAL///jtnzpxh1apVrF+/ng8//JAlS5YUdLoiIiKSi0aPHo2Pjw/FihXD3d0de3t7du/ezfjx4wkMDGTHjh3Y2tpmaazXXnuN69evp9sWHR1NYGAgAC+//HKm49y7d4/+/fuTlJSUvScjIiIiIiJSRKjgQ0REpBCLjo6mVatWnD9/njp16tCyZUsWLlxo1qd3796MGDGCLVu2qOBDREQKpQsXLmSpn5WVFY6Ojjq1SkRECi03Nzd27txpds3Ozo7g4GD8/f1Np1YNHDiQUqVKFVCWIiIij2bVqlVYW1uzbds2ypUrx5o1awCoUaMGNWrUoGPHjrz88st4eXlRpkwZihXT140iIiJFwebNm/Hx8cHe3p69e/fSoEEDAK5fv467uzshISF4e3szZ86cLI2XWb9Zs2YRGBjIs88+S4sWLTId59NPP+Xnn39mxIgR+Pr6Zv0JiYiIiIiIFBH6BFZERKQQ++yzzzh//jzvv/8+n332GQaDIU3BR5kyZahbty4hISEFlKWIiEjmXF1dMRgMWeprYWFB7dq1GTRoECNGjMDCwiKPsxMREXl0DRo0MN0IIyIi8rg7ceIETZs2pVy5cgCm93NGo9H0+9ChQ/niiy84d+4c1tbWBZariIiI5J7p06cDMGHCBLP3uGXLlmXhwoW0aNECX19fvL29H3mTg2XLlgEwaNCgTPuFhoYyc+ZMevXqRc+ePVXwISIiIiIiTyTdOSMiIlKIffvtt7i6ujJz5sxMb5StWrUqly9fzsfMREREss7FxQUXFxeMRqPpx8HBgVKlSpldq1SpEpaWlvz888+MGTOGTp06kZKSUtDpi4iIiIiIPFFu375N+fLlTY9TCzpiYmLM+r3wwgskJibma24iIiKSNy5dukRoaCgA/fr1S9PevHlzKlWqxN27dwkKCnqkufbv38+pU6coVqwYAwYMyLDfnTt3GDBgAGXKlFGhh4iIiIiIPNFU8CEiIlKI/fnnnzRo0OChu5tbWVkRHR2dT1mJiIhkT0REBE2aNMHJyQlfX19u3LjBjRs3iI6O5ubNmyxYsIBy5crRpEkTYmNj2bNnD9WrV2fHjh189dVXBZ2+iIiIiIjIE8XJyYm///7b9PiZZ54B4OzZs2b9oqOjMRqN+ZqbiIiI5I3w8HAAHB0dqVKlSrp9GjVqZNY3p1JP9+jYsaPpRLH0eHt789tvvzFv3jzTf4+IiIiIiIg8iVTwISIiUojZ2NgQGxv70H4XLlx45KOTRURE8sq8efPYvHkzP/zwA15eXmZrloODA8OHD2f37t1s3rwZX19fWrZsycaNGzEYDKxevboAMxcREREREXnyVK9enXPnzpkeu7m5YTQa+fLLL03XfvvtN/bs2UOxYsUKIkURERHJZREREcD905ozUqlSJbO+OREfH8/69esBGDx4cIb9Dhw4wNy5c3n11Vfp27dvjucTEREREREpClTwISIiUojVqlWLo0ePEh8fn2Gf69evc/z4cZ5//vl8zExERCTr/Pz8aNWqFbVq1cqwT61atWjdurVpd7c6derQoEEDTp48mV9pioiIiIiICNCuXTsiIiL49ddfTY8rVarEsmXLcHNzo2fPnjRt2pTExERsbW0LOFsRERHJDakb0NnZ2WXYx97eHoCYmJgcz7N+/Xri4uIoV64cHTt2TLdPQkICnp6elCpVikWLFuV4rgc5Oztn+HPlypVcmUNERERERCSvqOBDRESkEHvttdeIiorivffeIyUlJd0+48aNIyEhgX//+9/5nJ2IiEjW/PHHHzz11FMP7efo6Gi2i2yVKlWydNKViIiIiIiI5J6+ffvy6aefcvv2bQCsrKxYt24dTz/9NEeOHCEgIICYmBi6du1quvFTREREJCv8/PwA6N+/f4YnhU2YMIEzZ87wxRdfUL58+fxMT0REREREpFBSwYeIiEgh9s4771CnTh2++uorXnzxRaZPnw7cv3F27ty5NG3alJUrV/LCCy/g6elZsMmKiIhkoESJEoSGhmbax2g0EhYWRokSJUzXbt++TcmSJfM6PRERkULN39+f1q1bU6ZMGezs7KhXrx6zZs0iMTExR+MdOXKEXr164eTkhI2NDVWqVGHkyJFcu3Yt3f7Jycls2LCBiRMn0q5dO5566ikMBkOGN+akunbtGitXrqRfv37UqFEDGxsbSpQoQa1atRg1ahTnz5/PNP7evXt89tln1KtXDzs7O8qUKUPr1q3ZsGFDjp63iIhknYuLC5MnT6Zhw4ama02aNCEiIoJt27axevVqjh49SkBAAAaDoQAzFRERkdyS+jlsfHx8hn3i4uIAcHBwyNEcp0+fZv/+/QAMGjQo3T579uzB19eXjh070r9//xzNk56LFy9m+KOiEhERERERKewy/1ZORERECpSNjQ3bt2+nV69eHDhwgPDwcABCQkIICQnBaDTi5ubG5s2bKV68eK7M6e/vz4IFCzh+/Dj37t2jevXqvP7664wZMybHc3z77bf4+flx+PBhoqOjKV26NNWrV+eVV17ho48+Mut76tQptm3bxo4dOzh+/Dh///03NjY21KxZkx49ejBy5EjtHCgi8php2bIlmzdvZvz48UyfPh1LS0uz9pSUFCZNmsTZs2fp0aOH6fq5c+eoWLFifqcrIiJSaIwePRofHx+KFSuGu7s79vb27N69m/HjxxMYGMiOHTuwtbXN8ngbNmygb9++JCUl4ebmRpUqVQgLC8PX1xd/f39CQkKoXr26WUxsbCy9evXKdu7vvfceq1evxsLCgjp16tC1a1fi4+MJDQ1l/vz5LFu2jICAANq2bZsmNiEhgbZt23LgwAFKly7NK6+8QlxcHLt372bv3r2MHTuWOXPmZDsnERF5NLa2trRv376g0xAREZE84OrqCkBkZGSGfVLbUvtm17JlywBo3rw5NWvWTLfP5s2bMRqNXLhwgdatW5u13bx5E4BLly6Z2r744gteeOGFHOUjIiIiIiLyuFDBh4iISCFXvnx5QkJC2L59O9999x3nzp0jJSWFSpUq0aFDB1599dVc20kvt28munfvHm+88Qb+/v7Y2trStGlTnJycuHr1KidPnmTevHlpCj48PDy4dOkSNjY2NGrUiJYtW/LXX3/x008/ERYWhp+fH7t378bFxSVXnrOIiOS9Tz/9lO+//545c+bg7+9Pr169cHV1xWAwcP78efz9/Tl//jy2trZ88sknAJw/f55ff/2VESNGFGzyIiIiBWTz5s34+Phgb2/P3r17adCgAQDXr1/H3d2dkJAQvL29s1z4cPnyZQYMGEBSUhKLFy9m6NChwP0TPDw9Pfnmm2/o168fhw4dMnuPWbx4cV5//XXq169PgwYNcHR0zNLNNI6OjkyZMoXBgwebFXDGxcUxZMgQ1q5dS58+fTh79ixlypQxi500aRIHDhygbt267N69m7JlywL3Tydp3bo1//3vf2ndujWdO3fO0nMXEZHMXbhwIcexSUlJDz31SURERAq/+vXrAxAVFUVERARVqlRJ0ycsLAzA9P40O5KTk1m5ciUAgwcPfmj/EydOZNh2584d9u7dC/xfEYiIiIiIiEhRZjAajcaCTkIKjrOzM3D/+EoREcmeovYaunnzZrp3757hzUS//PJLtndRHTBgACtXrqRbt24sXbrUdJMO3N/N/fDhwzRp0sQsxsPDg9dff53evXubneRx/vx5OnfuzMmTJ3n55ZfZvXv3Iz7jovdvKCKS37LzOrp3715ef/11Ll++nKZQ0Wg0Ur58eb755htefvll4P76c/LkSZ599lnKly+f+8kLoLVQRORR5eXr6IsvvkhoaCjTpk1j8uTJZm0hISG0aNECa2tr/vrrL0qVKvXQ8T744ANmz55NmzZt2Llzp1lbXFwczs7O3Lp1i++//z7T3dvPnz9PlSpVsLS0JCkpKUfPLSEhgXLlyhEbG8uqVat44403TG03btygXLly3Lt3j5CQEJo1a2YWO23aNLy9vWnSpAk//fRTjuZ/kNZCERGwsLDI8YYyKSkpVKxYUa+jjzGthSIiOVfUXkNz+33ogwIDA+natSslS5bkypUr2NnZZTu/PXv28PLLL1OtWjXOnj2b7fiMFLV/RxGR/KTX0Mef/g1FRB5Nfr2OWuTp6CIiIvLYmD59OgATJkww25mnbNmyLFy4EABfX19u3bqVpfGCg4NZuXIlderUYf369WbFHnD/i+R/Fnukxg0aNMis2APuHw/95ZdfAvDDDz/ozaaIyGOmVatWnD17lpUrVzJo0CDatWtHu3btGDhwIMuXL+fs2bOmYg+4v/60atVKxR4iIvJEunTpEqGhoQD069cvTXvz5s2pVKkSd+/eJSgoKEtjBgQEZDievb09Xbt2BWDTpk05TTvLSpQoQc2aNQGIjIw0awsKCuLevXu4uLikKfaA/8v/4MGDXL58Oc9zFRF5Eri4uOT4x9LSsqDTFxERkVwyadIkAGbOnMnRo0dN16OiovDy8gJgxIgRZsUeAQEB1KpVCw8Pj0zHXrZsGQB9+vTJUbGHiIiIiIjIk0xnLIuIiEiWbyaKjIwkKCiIvn37PnTM+fPnAzB69GiKFy+eK3mmHicN928KSq2QFRGRx4ONjQ1vvPGG2S7eIiIiklZ4eDgAjo6OVKlSJd0+jRo1IjIykvDw8Ie+R4uNjTXtftqoUaMMx1u1apVp7ryUmJjI+fPnAdIUd6bOn1GeVatWxdHRkejoaI4dO0aFChXyNFcRkSdB6mtyTujzORERkaKjW7dujBo1innz5tGkSRM8PDyws7MjODiYmzdv0qxZM6ZOnWoWc+vWLU6dOsWdO3cyHPfatWt89913AAwePDhPn4OIiIiIiEhRpIIPERERyfWbiZKTkwkODgagZcuWXL16lbVr13Lq1Cmsra2pX78+PXv2THOKx8OcOXPG9Lt2fBcRERERkaIqIiICuL/jekYqVapk1jczD97Im9GY2RnvUfn5+XH9+nVsbW3p0KGDWVtWnruzszPR0dH5kquIiIiIiMiTxMfHh2bNmrFgwQIOHDhAYmIi1apVY8KECYwZMwYrK6tsj7lq1SoSExOpXbs2jRs3zoOsRUREREREijYVfIiIiEiu30x07tw54uLiADh48CBeXl6mx6nGjRvH2rVrcXd3z3KeM2fOBKBBgwa4urpmOU5ERERERORxEhsbC4CdnV2GfVIL6GNiYrI8XmZjZme8R/HLL78wbtw4ALy9vXFycjJrz+3nDpnvPn/lyhVtKCAiIiIiIvKA3r1707t37yz19fT0xNPTM9M+Y8eOZezYsY+cV+vWrTEajY88joiIiIiIyOPGoqATEBERkYKX2zfUREVFmX4fPHgwDRs2JDQ0lNjYWI4dO0bHjh35+++/efXVV81O7cjM8uXLWbduHZaWlvj4+GQpBu7f2JPRz5UrV7I8joiIiIiIiDyaixcv0qVLF+Li4ujatSsTJkwo6JRERERERERERERERERECjWd8CEiIiK57sHddSpWrMj27duxtrYGoF69emzZsoUXXniBEydOMHPmTPz8/DIdLzg4mGHDhgEwa9YsmjdvnnfJi4iIiIiIFLCSJUsCEB8fn2Gf1FMUHRwcsjxe6pilSpV6pPFy4urVq3h4ePDnn3/Svn171q9fj8FgyDDX3HrucL/QJCOZnf4hIiIiIiIiIiIiIiIiUtBU8CEiIiJ5ejORp6enqdgjlaWlJcOGDWPkyJHs2rUr07FCQkJ49dVXuXfvHh9//DHvvffeQ+d/kG7sERERERGRx42rqysAkZGRGfZJbUvtm5nKlSubfr9w4QJ169Z9pPGy69q1a7i7u3P69GnatGnD5s2b07xPTJU6/4ULFzIcL/V9Xl7kKiIiIiIiIiIiIiIiIlKYWBR0AiIiIlLwcvtmIldXV9NOrVWrVk23T+r1K1euZDjOgQMH6NixI/Hx8UyePJlPPvnkoXOLiIiIiIg87urXrw9AVFQUERER6fYJCwsDoEGDBg8dz8HBgerVq5vFPcp42fH333/j7u7Ob7/9hoeHB1u2bMHGxibD/qnzZ5TnuXPniI6OBv7v7yQiIiIiIiIiIiIiIiJSVKngQ0RERHL9ZiJ7e3tq1qwJwPXr19Ptk3rd3t4+3faDBw/yyiuvEBsby6RJk5g2bdpD5xURERERESkKnJ2dcXNzA2DNmjVp2kNCQoiMjMTa2pqOHTtmaczu3btnOF5cXByBgYEA9OjRI6dpp3H9+nXc3d05efIkHh4eBAYGYmtrm2lMx44dsbKy4sKFC+zfvz9Ne2r+TZo0oUKFCrmWq4iIiIiIiIiIiIiIiEhhpIIPERERyZObiXr16gXArl270m3fuXMnAC+++GKatsOHD9O+fXtTscd//vOfLM0pIiIiIiJSVEyaNAmAmTNncvToUdP1qKgovLy8ABgxYgSlSpUytQUEBFCrVi08PDzSjDd69GhKlCjBrl27WLp0qel6cnIyXl5e3Lx5Ezc3N9q1a5cr+UdHR+Ph4cGJEydo06ZNloo9AMqUKcPw4cMB8PLyIioqytR29OhRPvvsMwAmT56cK3mKiIiIiIiIiIiIiIiIFGbFCjoBERERKRwmTZpE9+7dmTlzJh06dDCd5PGwm4kmTpxIxYoVCQ4ONhtv1KhR+Pr68v/Yu/O4qsv8//9PFkVkcYlRUFRQUwusNE0NbVTMinJXSis9palRmraMS0ObprbMTLhjYeikHxUVt3Q0cLJcgyQbtC9uOIJiiKZshgrn94c/zng6IOcAssjjfrtxux3e1/W63tf7Ou/er46c67q2bt2q8PBwjRs3zlS2atUqrVixwlTvZvHx8erbt68yMzOZ7AEAAACgxho4cKAmTpyouXPnqmvXrgoMDJSLi4tiY2N16dIlBQQEaMaMGWYxly9fVlJSkn7//XeL9po0aaLIyEgNHz5cY8eOVUREhHx8fBQXF6eTJ0+qcePGWrlypezs7CxiQ0JCTJNO8vLyJN2YKNK1a1dTnSeffFKhoaGm38eMGaOff/5ZdnZ2atiwoWkSR1HXOXDgQLNjs2bN0g8//KB9+/bp7rvvVu/evZWTk6PY2Fhdu3ZNr7/+up566inrBhIAAAAAAAAAAACoxpjwAQAAJJX/l4k8PDy0evVq9e/fX+PHj9e8efN0zz336MSJE0pISJAkhYaGWuwY0rdvX12+fFn169fXmTNnZDAYiuzv1KlT1a5du/K5eAAAAACogsLCwhQQEKAFCxZo7969unbtmlq1aqWpU6dq8uTJql27tk3tDRs2TC1bttSsWbP0/fffKyEhQV5eXnrllVcUGhqqxo0bFxl35MgRHThwwOL4zcf++Pns4sWLkiSj0ag1a9YU2ycfHx+LCR9169bVt99+q7///e9asWKFtm7dqtq1a6tbt2569dVXTTtKAgAAAAAAAAAAAHc6O6PRaKzsTqDyeHt7S5JSU1MruScAUP3cqc/QNWvWaMGCBfrpp59MXyZ67rnnivwyUWRkpF544QW1aNFCp06dKrK9o0ePatasWYqJiVF6errc3d3VpUsXvfbaa+rbt69F/aJWky3Kv//9b/Xs2dPWyzNzp76HAFBReI5Wf7yHAFA2PEerP95DACgbnqPVH+8hAJQez9A7A+8jAJQez9Dqj/cQAMqmop6j7PABAADMBAcHKzg42Kq6BoOh2B04CrVp00aRkZFWn5+5qAAAAAAAAAAAAAAAAAAAAJJ9ZXcAAAAAAAAAAAAAAAAAAAAAAAAA5pjwAQAAAAAAAAAAAAAAAAAAAAAAUMUw4eP/l5WVpenTp6tt27ZydnaWh4eHnnzySe3cubPUbRYUFCg8PFxdunSRm5ub3Nzc1KVLFy1ZskRGo7HI+nv37tU777yj7t2766677lKtWrXk4eGhRx99VCtWrCgyDgAAAAAAAAAAAAAAAAAAAKWTlJSkefPmyWAwqH379nJ0dJSdnZ1mzpxZqva2bdumMWPGqFOnTvLy8pKTk5Pc3Nz0wAMPaPr06crIyCixjY0bN6p///7y9PRU7dq11ahRIz388MP64IMPStUnAED15FjZHagK0tPT1aNHDx09elReXl7q16+ffv31V23btk3btm1TWFiYJkyYYFOb+fn5Cg4O1vr161W3bl0FBgZKkmJiYjRu3DjFxMRo1apVsrf/35ybkydPKiAgQJLUsGFDderUSQ0aNNDJkycVExNjilm3bp1q165dfgMAAAAAAAAAAAAAAAAAAABQQy1atEhhYWHl1t6KFSu0YsUKtW7dWv7+/vrTn/6kCxcu6IcfftDs2bMVERGhnTt3ys/PzyL26tWreu655xQVFSVnZ2d169ZNjRs31rlz53T48GHNnTtX77zzTrn1FQBQtbHDh6SxY8fq6NGjCgwM1PHjx7VmzRrt2rVLW7Zskb29vSZNmqSff/7ZpjbnzZun9evXq2nTpkpMTNSmTZu0adMmHT58WE2aNFFUVJQWLlxoFmNnZ6fevXtr27ZtSk9P1/bt27Vq1Sr98MMP+vbbb+Xi4qItW7Zozpw55Xn5AAAAAAAAAAAAQIUrzeqpKSkpCg8P19ixY/Xggw/KyclJdnZ2GjNmTInny8nJ0ezZs9WpUye5u7urVq1a8vT01FNPPaVNmzbdMvb48eMyGAzy9vaWk5OTvL29ZTAYdPLkyVvGZWVlafr06Wrbtq2cnZ3l4eGhJ598Ujt37rxlXEFBgcLDw9WlSxe5ubnJzc1NXbp00ZIlS2Q0Gku8VgAAAACAbfz9/fXmm29qxYoV+uWXX/T888+Xqb0333xTaWlpOnbsmL755hutXLlS27dvV0pKioYNG6b09PRiP8u+9NJLioqK0sCBA3X69GnFxsZq5cqV2rlzp9LS0rRly5Yy9Q0AUL3U+AkfR44c0caNG+Xg4KCIiAjVrVvXVBYUFCSDwaCCggLNnj3b6jYLCgr00UcfSZI++ugj+fr6msp8fX1NZbNnz1ZBQYGprFWrVoqNjdXjjz8uBwcHszb//Oc/a+rUqZKk5cuX236hAAAAAAAAAAAAQBWyaNEiTZw4UcuWLVNiYqLy8/NLjFm3bp3Gjx+vzz//XAcPHtTVq1etOteFCxf00EMPafr06UpKSlK3bt00ePBgNW3aVF9//bUGDBig1157rcjYPXv26P7779eyZctUv359DRo0SPXr19eyZct03333af/+/UXGpaenq1OnTpo9e7aysrLUr18/+fn5adu2berTp4/mzZtXZFx+fr6GDRum8ePHKzExUb169VKvXr30n//8R+PGjdPTTz9t9jdGAAAAAEDZjRkzRp988olGjBihdu3ayd6+bF+vfeCBB+Tp6Wlx3NXVVX/7298kSfv371dmZqZZeWxsrJYvXy5/f3+tWbNGHh4eZuX29vbq2rVrmfoGAKheavyEj+joaElSQECAWrRoYVE+YsQISdLmzZt17do1q9rct2+fzp07JycnJw0ZMsSifMiQIapdu7bOnj2rAwcOWN3XDh06SLqxchEAAAAAAAAAAABQnZVm9VRfX19NmDBBX375pQ4dOqS3337bqnN98MEHOnLkiB588EH997//1fbt27V69Wr9+OOP+vrrr+Xo6Ki5c+daTN7Izc1VcHCwcnNzNW3aNCUmJmrVqlVKTEzUtGnTlJOTo+DgYF25csXinGPHjtXRo0cVGBio48ePa82aNdq1a5e2bNkie3t7TZo0ST///LNF3Lx587R+/Xo1bdpUiYmJ2rRpkzZt2qTDhw+rSZMmioqK0sKFC626bgAAAABA1ePo6CjpxuSNWrVqmZUVLg4wadIkizIAQM1U4yd8JCQkSJI6depUZHnh8ZycHB07dsymNv38/FSnTh2LcmdnZ/n5+ZnVtUbh+b28vKyOAQAAAAAAAAAAAKqi0qyeOmDAAM2dO1cGg0H33Xef6UsyJdm5c6ckacqUKWrYsKFZWVBQkHr16iXpxsJuN4uMjNTZs2fVpk0bzZw506xs5syZatOmjVJSUrR8+XKzsiNHjmjjxo1ycHBQRESE6tata3Y+g8GggoICzZ492yyuoKBAH330kSTpo48+kq+vr6nM19fXVDZ79mx2+QAAAACAaigvL0/Tp0+XJD366KNydnY2leXn5ys2NlaS9Mgjj+jcuXP67LPP9PLLL2vSpElatmyZsrOzK6XfAIDKU+MnfCQnJ0uSmjdvXmS5u7u73N3dzeqWtU1JatasmU1t5ubmau7cuZJU5K4hAAAAAAAAAAAAAIpW1CJtRfHw8DD7PTo6WpL0zDPPWExIsbe319NPPy1JWr9+fZFxAQEBatGihcV5RowYIUnavHmzrl27Zjq+b98+nTt3Tk5OTkX+TXDIkCGqXbu2zp49qwMHDlh1TQAAAACAynPw4EEZDAaNGjVKQUFB8vb2VmRkpDp37qyIiAizuidPnjRN6Ni/f7/uvvtuTZ48WYsXL1ZYWJgMBoNatmxpWtQAAFAz1PgJH1lZWZIkFxeXYuu4urpKkjIzMyutzZCQECUnJ6tJkyam2Z3W8vb2LvYnLS3NprYAAAAAoDqIiopSz5491aBBA7m4uOj+++/Xxx9/bPYlGlv8+OOPGjZsmBo3bqw6derI19dXEyZMUHp6epH1T506JTs7u1v+TJ06tdjzHThwQEOHDpWnp6dq166tpk2b6rnnntORI0dK1X8AAAAAqOmeeOIJSTd2zbh48aJZ2datW/Xvf/9bnp6e6t+/v1lZQkKCJKlTp05Ftlt4vLCerXE5OTk6duyYRZyfn1+Rk1ScnZ3l5+dX5DkBAAAAAFXP6dOntWzZMi1fvlzbtm1TRkaG+vTpo1WrVqlp06ZmdS9cuGB6PXr0aD344IOKi4tTVlaWfvrpJwUFBen8+fMaMGCA2WfJW+H7owBQ/Vm3x3EV9Ze//EWbNm2yOe6LL75Q9+7db0OPbo8ZM2Zo2bJlqlOnjtasWaO77rqrsrsEAAAAAFXWpEmTFBYWJkdHR/Xu3Vuurq7auXOnpkyZos2bN2vHjh1mWyOXZO3atRo+fLiuX7+uzp07y9fXV/Hx8Zo/f76ioqK0e/dutW7dushYFxcXDR06tMiyBx98sMjjS5YsUUhIiPLz83XPPfeoe/fuOnbsmFasWKG1a9dqw4YNevzxx63uPwAAAABAmjJlin744Qdt375dLVq0UEBAgOrXr6/jx4/rxx9/VEBAgCIiIlSvXj1TTFZWlunLNs2bNy+y3WbNmkmSzp8/r5ycHNOCcMnJybeMc3d3l7u7uzIzM5WcnKx7773XqrjCcyYkJJjqAgAAAACqroEDB8poNCo/P1+pqamKiYnRu+++K39/fy1fvtzsb4lGo9H0umnTptq+fbucnJwkSffff782bdqkBx54QImJiZozZ47FDiEAgDtTtZ7wcfbsWSUlJdkcV7jllSS5ublJurF6Tkn13d3drWq/PNv8+9//rnfeeUdOTk6Kjo5WQECAVX24WWpqarFl3t7eNrcHAAAAAFXVhg0bFBYWJldXV+3atUsdO3aUJGVkZKh3797avXu3QkND9emnn1rV3tmzZzVq1Chdv35d4eHhGjt2rCQpPz9fBoNBX331lUaMGKEDBw7Izs7OIt7Dw0ORkZFW9//nn382Tfb4+9//rsmTJ5vKvvzyS7344ot65plndPz4cXl4eFjdLgAAAADUdC4uLtq8ebOmT5+uv/3tb9q+fbup7K677lKfPn0sVlbNysoyiy+Kq6ur6XVmZqapXmFscXGFsZmZmcrMzLQ4Z0lxheezxq3+HpiWliYvLy+r2gEAAAAAlJ6Dg4NatGih0aNHKzAwUH5+fnrhhRfUvXt3eXp6Svrfd08lyWAwmCZ73NzGuHHjNGHCBMXExFh1Xr4/CgDVn31ld6AsvvrqKxmNRpt/bl4J1cfHR9KNbbOKcvM/shbWLUlJbUpSSkpKiW3OmzdPb7zxhmrXrq1169axgisAAAAAlGDWrFmSpKlTp5ome0g3Jl4sXLhQkjR//nxdvnzZqvY+++wz5ebmqk+fPqbJHtKNf0xdtGiR6tWrp7i4OO3YsaNc+r9gwQLl5+frz3/+s9lkD0l64YUXNGjQIF2+fFlhYWHlcj4AAAAAqCnS0tIUEBCgefPmaebMmTp58qSys7P1ww8/6MEHH9T777+v7t27m03yAAAAAADgdvDx8VGvXr2UnZ2tb775xux44SJzLVu2LDK28HhaWtrt7ygAoEqo1hM+ykPhF4Di4+OLLC887uLiojZt2tjU5uHDh/X7779blF+5ckWHDx82q/tHCxYs0MSJE02TPZ588kmrzg0AAAAANdWZM2cUFxcnSRoxYoRFeffu3dWsWTPl5eVp69atVrUZHR1dbHuurq7q37+/JGn9+vWl7baZwv736dOnyPLC42vXri2X8wEAAABATTFq1CjFxcVpxowZmj59unx9feXi4qLOnTtry5Ytat++vQ4dOmS2I+TNK6vm5OQU2W52drbptbu7u0VscXE3x5ZH3K2kpqYW+8PuHgAAAABQOQp3dkxPTzcdc3V1Vdu2bSVJGRkZRcYVHr95x0kAwJ2txk/4GDhwoCRpz549Re7IsXLlSklSv379VKtWLava7Natmzw9PZWXl6d169ZZlK9bt05Xr15VkyZN1KVLF4vyxYsX69VXXzVN9njqqadsuCIAAAAAqJkSEhIkSQ0bNpSvr2+RdTp16mRW91aysrJ0/Phxszhb28vJydGcOXM0fvx4TZgwQZ999pmSkpKKPWfhl3buuuuuIss9PDwkSUlJSbf88g8AAAAA4H/OnDljWjF1+PDhFuW1atXS0KFDJUkxMTGm425ubmrYsKEkFfl3RElKSUmRdOPzWuGXdaQbq7LeKi4zM1OZmZlmda2Ju/mcN8cBAAAAAKqPvLw87d69W5IsFiIfNmyYJPPPpzcr/Hz70EMP3cYeAgCqkho/4cPPz08DBgxQfn6+Ro8erStXrpjKtm3bpsjISNnb22vatGkWsSNHjlS7du00f/58s+P29vaaMmWKJGnKlClKTk42lSUnJ2vq1KmSpGnTpsne3vwt+PzzzxUSEsJkDwAAAACwUeFnr+bNmxdbp1mzZmZ1b+XUqVOm18W1WVJ7GRkZmjZtmsLDwzV//nxNnjxZ99xzj55//nmzVWALNWrUSJJ08uTJItsrPG40Gs36BwAAAAAo3s2TJ4rbFaNevXqSpIsXL5od79ixoyQpPj6+yLjC44X1bI1zcXEx+3JPYdzhw4f1+++/W8RduXJFhw8fLvKcAAAAAICKNX/+fLVr104jR440O56enq5FixaZJvrf7MyZM3r++ed19uxZ+fj46NFHHzUrnzhxoho0aKCtW7cqPDzcrGzVqlVasWKFqR4AoGZwrOwOVAVLlizRkSNHFBMTo1atWqlHjx5KT0/Xrl27ZDQaFRYWpvvuu88i7vTp00pKSipy66wJEybou+++U3R0tPz9/dWnTx9JN2Zd5ubmaujQoQoJCTGL+emnnzRu3DgZjUa1bNlSa9eu1dq1a4vsc2RkZNkvHAAAAADuIFlZWZJktqLqHxVubVzUP64W196t2iyuPScnJ7300ksaOnSo7r33Xt11111KTk7W+vXrNWfOHH311VdKT0/Xv/71L9nZ2ZnievfurT179mjFihV6//33VbduXVPZtWvXtHTpUtPv1lyDJHl7exdblpaWJi8vL6vaAQAAAIDqqmnTpqbXBw4csPgyjSTt379fkix2jBw0aJBiYmK0atUqvfvuu2aLuRUUFGj16tWSpMGDB5vFDRw4UH/961+1Z88enT592mIhgZUrV0qS+vXrp1q1apmOd+vWTZ6enjp37pzWrVunZ5991ixu3bp1unr1qpo0aaIuXbpYPQYAAAAAgFs7ePCg2Xc6T5w4IUkKDw/Xli1bTMejo6NNf1/LyMhQUlKSPD09zdrKzc1VSEiIJk2apAceeEA+Pj4yGo1KSUnRwYMHTZ/rNmzYoDp16pjFenh4aPXq1erfv7/Gjx+vefPm6Z577tGJEyeUkJAgSQoNDVVQUNBtGQcAQNVT43f4kG6soBofH6+pU6fK1dVVGzdu1M8//6zHHntMMTExpZoJ6eDgoLVr12rx4sW69957FRsbq9jYWPn5+Wnx4sVas2aNxe4ely5dktFolCT9v//3/7Rs2bJifwAAAAAAVZeXl5eWLFmivn37ytvbW87Ozrr33nv117/+VTt37pSDg4N27NihjRs3msW98sor8vDwUFpamh577DHFxcUpJydHhw4d0lNPPWW2q8cfP1MCAAAAAIrWvHlzde7cWZL02muvWeyY+NVXX5kmbowYMcKszGAwqEmTJjp69KhCQ0PNykJDQ3X06FF5e3tbrObq5+enAQMGKD8/X6NHj9aVK1dMZdu2bVNkZKTs7e01bdo0szh7e3tNmTJFkjRlyhSzHSWTk5M1depUSdK0adP4XAgAuC2ioqLUs2dPNWjQQC4uLrr//vv18ccf69q1aza14+PjIzs7uxJ/PvjgA7O4I0eOaNKkSXrkkUfUvHlz1a1bV87OzmrdurVGjx6t//znP+V5uQAAmGRmZurAgQOmn8KFwFNTU82O5+XlldhWo0aN9Le//U1PPPGELly4oG3btik6OlrHjx9X165d9cknn+iXX37R/fffX2T8o48+qkOHDmnUqFG6dOmSNm7cqNOnTysoKEjbt2+3yJ8AgDubnbFwhgFqpMKVXlNTUyu5JwBQ/fAMrf54DwGgbKrac3TevHmaOHGiHnjgAdPqNn/02muvae7cuRo6dKiioqJu2d5//vMf026Ply5dUr169SzqREdHa/DgwfLw8ND58+et7uugQYO0YcMGvfjii4qIiDAr++GHHzR48GCdOXPG7Lizs7PmzZunMWPGSJKOHj2qu+++2+pzFqWqvYcAUN3wHK3+eA8BoGzK+hwtavXUjIwMeXt7m+3KcfPqqWlpaRo0aJCpLDU1VWfOnNGf/vQntWzZ0nR84cKF6tixo+n3xMRE9erVSxkZGapTp466du0qDw8P/fLLLzp8+LAk6bnnntPy5cvNdmKUpD179qhv377Kzc2Vv7+//P39lZiYqMTERLm4uCgmJkZdu3a1uL709HR1795dx44dk5eXl3r06KH09HTt2rVLRqNRYWFhRS48l5+fr2HDhik6Olp169ZVnz59JEkxMTHKzc3V0KFDtXr16nKZ8EEuBIDSuxOfoZMmTVJYWJgcHR3Vu3dvubq6aufOnbp06ZK6d++uHTt2yNnZ2aq23nzzTdMXZf/o4sWL2rx5syTpu+++U48ePUxlX3zxhV566SU1btxYbdu2laenp3Jzc/Wf//xH//3vf+Xo6Kjly5dr+PDhZb9g3ZnvIwBUFJ6h1R/vIQCUTUU9Rx1va+sAAAAAAFQQHx8fSVJKSkqxdQrLCuveSosWLUyvT58+rfbt25epvZvdc8892rBhQ5Ef+h966CEdO3ZM0dHRiouL05UrV9SqVSs988wzphVhXVxczL7IBAAAAADVUeHqqX+Umppq9nnp5tVT8/Lyiow5f/682UT8zMxMs/LCSRr/+Mc/tG3bNsXFxSkvL08NGjTQY489phdffFHBwcFF9jMgIECHDh3SjBkzFBMTo3Xr1ulPf/qTRo4cqXfeeUetWrUqMq5Ro0aKj4/X7NmztW7dOm3cuFEuLi567LHH9OabbyowMLDIOAcHB61du1aff/65vvjiC8XGxkq6sWvI6NGjNXbsWItJKQAAlNWGDRsUFhYmV1dX7dq1yzRxMiMjQ71799bu3bsVGhqqTz/91Kr2blXv448/1ubNm9WmTRuzyR6S1KdPH/3yyy9q166d2fGCggL9/e9/11tvvaUxY8bo8ccfV4MGDWy8SgAAAACofpjwAQAAAAC4I3To0EGSdOHCBSUnJ8vX19eiTnx8vCSZrfJaHHd3d7Vu3VrHjx9XfHx8kRM+bGnvZhcuXJAkubm5FVnu7OysESNGaMSIEWbHC3cD6dWrlxwcHGw6JwAAAABUNT179pTRaLQpxsfHx+aYQo0bN9acOXM0Z84cm2Nbt26tZcuW2Rzn7u6u2bNna/bs2TbF2dvba9y4cRo3bpzN5wQAoDRmzZolSZo6darZv3d6eHho4cKF6tGjh+bPn6/Q0NAid0O2xdKlSyVJL774okVZcYvr2Nvb680339SiRYt08uRJ7d69W/369StTPwAAAACgOij7Pr8AAAAAAFQB3t7e6ty5syRp5cqVFuW7d+9WSkqKnJycFBQUZFWbgwYNKra97Oxsbd68WZI0ePBgq/uZk5NjinvooYesjrt+/brCwsIkSa+++qrVcQAAAAAAAABwK2fOnFFcXJwkWSxCI0ndu3dXs2bNlJeXp61bt5bpXHv27FFSUpIcHR01atQom+MdHW+sbevk5FSmfgAAAABAdcGEDwAAAADAHWP69OmSpDlz5ujgwYOm4xcuXFBISIikG5Mlbl6BLjo6Wu3atVNgYKBFe5MmTVLdunUVExOjzz//3HQ8Pz9fISEhunTpkjp37qy+ffuaxS1ZskQpKSkW7SUnJ2vAgAFKS0tT/fr1i1zBLj4+XtevXzc7dvHiRQ0fPlz/+c9/NHz4cD322GPWDAcAAAAAAAAAlCghIUGS1LBhwyJ3TpakTp06mdUtrcLdPYKCguTp6WlT7JIlS3T06FE1atRIXbt2LVM/AAAAAKC6cKzsDgAAAAAAUF4GDhyoiRMnau7cueratasCAwPl4uKi2NhYXbp0SQEBAZoxY4ZZzOXLl5WUlKTff//dor0mTZooMjJSw4cP19ixYxURESEfHx/FxcXp5MmTaty4sVauXCk7OzuzuIULF2r8+PHy8/NTmzZtVLt2bSUnJ+unn35SXl6e7rrrLq1fv14eHh4W5xwzZozOnDmj++67T40bN1ZGRob27t2rnJwcPfXUU6Y/iAIAAAAAAABAeUhOTpYkNW/evNg6zZo1M6tbGjk5OVqzZo0kafTo0besm5uba1rE5/Lly0pMTNTx48fVuHFjRUVFyd3dvdT9AAAAAIDqhAkfAAAAAIA7SlhYmAICArRgwQLt3btX165dU6tWrTR16lRNnjxZtWvXtqm9YcOGqWXLlpo1a5a+//57JSQkyMvLS6+88opCQ0PVuHFji5iJEydq+/bt+vnnn/Xtt98qMzNTrq6uuu+++xQUFKSQkBA1atSoyPONGTNG69atU2Jior7//nvVq1dP3bt31wsvvKCnn366VGMCAAAAAAAAAMXJysqSJLm4uBRbx9XVVZKUmZlZ6vOsWbNG2dnZ8vT0VFBQ0C3rXr16VcuWLTM71rJlS0VERKhHjx42ndfb27vYsrS0NHl5ednUHgAAAABUJCZ8AAAAAADuOMHBwQoODraqrsFgkMFguGWdBx98UOvWrbP6/C+++KJefPFFq+vf7NVXX9Wrr75aqlgAAAAAAAAAqKoiIiIkSSNHjpSj462/slS/fn0ZjUZJ0q+//qqDBw/q/fffV69evfTmm2/qk08+ue39BQAAAICqgAkfAAAAAAAAAAAAAAAAQA3l5uYmScrJySm2TnZ2tiTJ3d29VOc4evSo9uzZI0k2L5bTuHFjPfHEEwoMDFSXLl306aef6s9//rOeeuopq+JTU1OLLbvV7h8AAAAAUBXYV3YHAAAAAAAAAAAAAAAAAFQOHx8fSVJKSkqxdQrLCuvaaunSpZKk7t27q23btqVqo3bt2nr22WclSdHR0aVqAwAAAACqGyZ8AAAAAAAAAAAAAAAAADVUhw4dJEkXLlxQcnJykXXi4+MlSR07drS5/fz8fC1fvlySNHr06FL28gYXFxdJUnp6epnaAQAAAIDqggkfAAAAAAAAAAAAAAAAQA3l7e2tzp07S5JWrlxpUb57926lpKTIyclJQUFBNre/detWpaWlyc3NTcOGDStTX2NjYyVJbdq0KVM7AAAAAFBdMOEDAAAAAAAAAAAAAAAAqMGmT58uSZozZ44OHjxoOn7hwgWFhIRIkl599VXVq1fPVBYdHa127dopMDDwlm0vXbpUkvTMM8+YdugozmeffaaUlBSL47m5uZo5c6bWrVsnR0dHvfDCC9ZdGAAAAABUc46V3QEAAAAAAAAAAAAAAAAAlWfgwIGaOHGi5s6dq65duyowMFAuLi6KjY3VpUuXFBAQoBkzZpjFXL58WUlJSfr999+LbTc9PV1ff/21JGn06NEl9uOzzz7T66+/rnvuuUdt27ZVnTp1lJaWpkOHDum3336Tk5OTPv/8c/n7+5ftggEAAACgmmDCBwAAAAAAAAAAAAAAAFDDhYWFKSAgQAsWLNDevXt17do1tWrVSlOnTtXkyZNVu3Ztm9v85z//qWvXrsnPz09dunQpsf6sWbO0Y8cOxcfH67vvvtOlS5fk4uKiVq1aafTo0Xr55ZfVsmXL0lweAAAAAFRLTPgAAAAAAAAAAAAAAAAAoODgYAUHB1tV12AwyGAw3LLOG2+8oTfeeMPq848YMUIjRoywuj4AAAAA3OnsK7sDAAAAAAAAAAAAAAAAAAAAAAAAMMeEDwAAAAAAAAAAAAAAAAAAAAAAgCqGCR8AAMBMVFSUevbsqQYNGsjFxUX333+/Pv74Y127dq3UbW7cuFH9+/eXp6enateurUaNGunhhx/WBx98YFE3JydHK1eu1BtvvKGePXvK3d1ddnZ2at26dVkuCwAAAACqpfL+jPbjjz9q2LBhaty4serUqSNfX19NmDBB6enpRdbPz8/X2rVrNW3aNPXt21d33XWX7Ozs5OjoWOK5tm7dqvfee0/9+vVTkyZNZGdnJzs7O6WmppYYu3fvXj399NNq1qyZateuLRcXF7Vv315Tpkwptq8AAAAAAAAAAADAncbOaDQaK7sTqDze3t6SZNUfWQEA5u7EZ+ikSZMUFhYmR0dH9e7dW66urtq5c6cuXbqk7t27a8eOHXJ2dra6vatXr+q5555TVFSUnJ2d1a1bNzVu3Fjnzp3T4cOHlZ+fr4yMDLOYn376SR06dLBoq1WrVjp+/HiZr/Fmd+J7CAAViedo9cd7CABlc7ufo+X9GW3t2rUaPny4rl+/rs6dO8vX11fx8fE6efKkGjdurN27d1tMtr906ZIaNGhg0ZaDg4OuX79+y/PVr19fly9ftjiekpJiGruiLFy4UK+++qqMRqP8/f11zz33KDs7W/v379dvv/2mRo0aadeuXWrXrp2VV148ciEAlA3P0eqP9xAASo9n6J2B9xEASo9naPXHewgAZVNRz9GSl2EDAAA1woYNGxQWFiZXV1ft2rVLHTt2lCRlZGSod+/e2r17t0JDQ/Xpp59a3eZLL72kqKgoDRw4UJ9//rk8PDxMZQUFBfrhhx8sYtzc3PTCCy+oY8eO6tChgy5duqSnnnqq7BcIAAAAANVIeX9GO3v2rEaNGqXr168rPDxcY8eOlXRjBw+DwaCvvvpKI0aM0IEDB2RnZ2eKq1Wrlp599ll16NBBHTt2VMOGDfXAAw9Ydc7Bgwfr7rvvVseOHdWxY0c1atSoxJhff/1VkydPltFoVGRkpEaNGmUqy8rK0tChQ7Vjxw5NmjRJ//rXv6zqBwAAAAAAAAAAAFBd2Vd2BwAAQNUwa9YsSdLUqVNNXySSJA8PDy1cuFCSNH/+/CJXZy1KbGysli9fLn9/f61Zs8Zssock2dvbq2vXrhZxrVq10tKlS/Xqq68qICBALi4upb0kAAAAAKi2yvsz2meffabc3Fz16dPHNNlDurFTx6JFi1SvXj3FxcVpx44dZnEuLi766quv9MYbb6hXr16qV6+e1dewdOlSTZs2TY899pj+9Kc/WRWze/duXb16Vffee6/ZZA/pxgIB7777riRp3759VvcDAAAAAAAAAAAAqK6Y8AEAAHTmzBnFxcVJkkaMGGFR3r17dzVr1kx5eXnaunWrVW3OmzdPkjRp0iTVqlWr/DoLAAAAAHe42/EZLTo6utj2XF1d1b9/f0nS+vXrS9vtclGnTh2r6v1xUQEAAAAAAAAAAADgTsSEDwAAoISEBElSw4YN5evrW2SdTp06mdW9lfz8fMXGxkqSHnnkEZ07d06fffaZXn75ZU2aNEnLli1TdnZ2OfUeAAAAAO4s5f0ZLSsrS8ePHzeLK0t7t1O3bt1Ur149HTlyRMuWLTMry87O1vvvvy9JGjduXGV0DwAAAAAAAAAAAKhQjpXdAQAAUPmSk5MlSc2bNy+2TrNmzczq3srJkydNEzr279+vkJAQiwkeb731llatWqXevXuXttsAAAAAcEcq789op06dMr0urk1b2rudGjZsqGXLlunZZ5+VwWDQp59+qnvuuUc5OTnat2+fJOnDDz/UW2+9Van9BAAAAAAAAAAAACoCEz4AAICysrIkSS4uLsXWcXV1lSRlZmaW2N6FCxdMr0ePHq2HH35Yn376qdq1a6cTJ05o+vTp2rp1qwYMGKCDBw/q7rvvLuMVFM/b27vYsrS0NHl5ed22cwMAAABAaZT3Z7TC9m7Vpi3t3W4DBgzQrl279PTTTysxMVGJiYmmsr59+yogIEB2dnZWt8fnQgAAAAAAAAAAAFRX9pXdAQAAcOcxGo2m102bNtX27dvVqVMnubq66v7779emTZvk7++v7OxszZkzpxJ7CgAAAACoahYtWqRu3brprrvu0rfffqvLly8rJSVFCxYs0P79+9W7d29FRkZWdjcBAAAAAAAAAACA244dPgAAgNzc3CRJOTk5xdbJzs6WJLm7u1vdniQZDAY5OTmZlTs4OGjcuHGaMGGCYmJiStNlq6WmphZbdqtVXgEAAACgstzOz2g5OTmqV69emdq7nfbs2aOQkBB5eXlpx44dpr66u7srJCREDRs21PDhwzVp0iQNHDhQ9evXL7FNPhcCAAAAAAAAAACgumKHDwAAIB8fH0lSSkpKsXUKywrrltSenZ2dJKlly5ZF1ik8npaWZkNPAQAAAODOV96f0Vq0aGF6ffr06TK3dzsV7twRFBRU5MSUoUOHqnbt2rp8+bLi4uIquHcAAAAAAAAAAABAxWLCBwAAUIcOHSRJFy5cUHJycpF14uPjJUkdO3YssT1XV1e1bdtWkpSRkVFkncLjrq6uNvcXAAAAAO5k5f0Zzd3dXa1btzaLK0t7t1PhhJTidhpxdHSUi4uLJOnixYsV1i8AAAAAAAAAAACgMjDhAwAAyNvbW507d5YkrVy50qJ89+7dSklJkZOTk4KCgqxqc9iwYZKkmJiYIsu/+eYbSdJDDz1Umi4DAAAAwB3rdnxGGzRoULHtZWdna/PmzZKkwYMHl7bb5aJp06aSpAMHDhRZnpSUpN9++02S5OvrW2H9AgAAAAAAAAAAACoDEz4AAIAkafr06ZKkOXPm6ODBg6bjFy5cUEhIiCTp1VdfVb169Uxl0dHRateunQIDAy3amzhxoho0aKCtW7cqPDzcrGzVqlVasWKFqR4AAAAAwFx5f0abNGmS6tatq5iYGH3++eem4/n5+QoJCdGlS5fUuXNn9e3b93ZdklWGDh0qSdq7d68++eQTGY1GU1l6erpGjx4tSWrTpo06depUKX0EAAAAAAAAcOdJSkrSvHnzZDAY1L59ezk6OsrOzk4zZ84sVXvbtm3TmDFj1KlTJ3l5ecnJyUlubm564IEHNH36dGVkZFjd1tatW2VnZyc7Ozv16dOnVP0BAFRfjpXdAQAAUDUMHDhQEydO1Ny5c9W1a1cFBgbKxcVFsbGxunTpkgICAjRjxgyzmMuXLyspKUm///67RXseHh5avXq1+vfvr/Hjx2vevHm65557dOLECSUkJEiSQkNDi1yNdtCgQUpLS5MkZWZmSpJSU1PVtWtXU50xY8ZozJgx5Xb9AAAAAFCVlPdntCZNmigyMlLDhw/X2LFjFRERIR8fH8XFxenkyZNq3LixVq5cKTs7O4vYkJAQ06STvLw8STcmitz8Ge3JJ59UaGioWdyMGTP09ddfW7TXv39/1a5dW5LUsWNHLVy40FQWFBSkcePGKTw8XH/5y1+0ZMkS3XfffcrKytKBAweUmZmp+vXr65///Kfs7VnPCAAAAAAAAED5WLRokcLCwsqtvRUrVmjFihVq3bq1/P399ac//UkXLlzQDz/8oNmzZysiIkI7d+6Un5/fLdv57bff9NJLL8nOzs5sgRwAQM3BhA8AAGASFhamgIAALViwQHv37tW1a9fUqlUrTZ06VZMnTzZ9Icdajz76qA4dOqRZs2YpJiZGGzdulLu7u4KCgvTaa68Vu3JsQkKC/vvf/5ody8vL04EDB0y/P/7447ZfIAAAAABUI+X9GW3YsGFq2bKlZs2ape+//14JCQny8vLSK6+8otDQUDVu3LjIuCNHjph9Hit087F27dpZlJ84caLIuMJFACSpTp06FuWLFy/WE088oYiICMXHx2vz5s1ydHSUr6+vHnvsMb3++uvy9va26poBAAAAAAAAwBr+/v5688031aFDB3Xs2FGzZs3SP//5z1K39+abb+rTTz+Vp6en2fHs7Gy9+OKLioqK0pgxY7Rv375btjNhwgT9+uuvGj9+vBYtWlTq/gAAqi87I1P+arTCP4ympqZWck8AoPrhGVr98R4CQNnwHK3+eA8BoGx4jlZ/vIcAUDY8R6s/3kMAKD2eoXcG3kcAKL07/RlqMBi0bNkyzZgxQ3/961/Lte2UlBQ1b95c0o2dm93d3YusFx0drcGDB+utt97SvffeqxdeeEGBgYGKiYkpl37c6e8hANxuFfUcZc97AAAAAAAAAAAAAAAAAAAAoAI4OjpKkuzt7VWrVq0i62RkZGj8+PFq27atPvjgg4rsHgCginGs7A4AAAAAAAAAAAAAAAAAAAAAd7q8vDxNnz5dkvToo4/K2dm5yHovv/yyMjIytH79etWpU6ciuwgAqGKY8AEAAAAAAAAAAAAAAAAAAACUs4MHD2ru3LkyGo06f/684uLilJGRoc6dOysiIqLImFWrVmnt2rV67bXXFBAQUME9BgBUNUz4AAAAAAAAAAAAAAAAAAAAAMrZ6dOntWzZMrNjffr0UXh4uJo2bWpR/9y5c3rllVfUqlUrzZo1q8zn9/b2LrYsLS1NXl5eZT4HAOD2sq/sDgAAAAAAAAAAAAAAAAAAAAB3moEDB8poNOr69es6deqUvvjiC/3yyy/y9/fX2rVrLeqPHTtWv/32m7744gvVrVu3EnoMAKhq2OEDAAAAAAAAAAAAAAAAAAAAuE0cHBzUokULjR49WoGBgfLz89MLL7yg7t27y9PTU5K0bNkybd68WS+//LJ69uxZLudNTU0ttuxWu38AAKoOdvgAAAAAAAAAAAAAUOGSkpI0b948GQwGtW/fXo6OjrKzs9PMmTOLjUlJSVF4eLjGjh2rBx98UE5OTrKzs9OYMWOsPu/GjRvVv39/eXp6qnbt2mrUqJEefvhhffDBB8XGHD9+XAaDQd7e3nJycpK3t7cMBoNOnjx5y3NlZWVp+vTpatu2rZydneXh4aEnn3xSO3fuvGVcQUGBwsPD1aVLF7m5ucnNzU1dunTRkiVLZDQarb5WAAAAAEDV4+Pjo169eik7O1vffPON6Xh0dLQkKS4uTj179jT7mTNnjiTpxx9/NB07d+5cpfQfAFCx2OEDAAAAAAAAAAAAQIVbtGiRwsLCbIpZt26dJk+eXKrzXb16Vc8995yioqLk7Oysbt26qXHjxjp37pwOHz6suXPn6p133rGI27Nnj/r27avc3Fz5+fmpe/fuSkxM1LJly7R27VrFxMSoa9euFnHp6enq0aOHjh49Ki8vL/Xr10+//vqrtm3bpm3btiksLEwTJkywiMvPz1dwcLDWr1+vunXrKjAwUJIUExOjcePGKSYmRqtWrZK9PWv7AQAAAEB15eLiIunGZ8c/io+PLzbu0qVL2rVrlyTp999/vz2dAwBUKfwrIAAAAAAAAAAAAIAK5+/vrzfffFMrVqzQL7/8oueff77EGF9fX02YMEFffvmlDh06pLffftvq87300kuKiorSwIEDdfr0acXGxmrlypXauXOn0tLStGXLFouY3NxcBQcHKzc3V9OmTVNiYqJWrVqlxMRETZs2TTk5OQoODtaVK1csYseOHaujR48qMDBQx48f15o1a7Rr1y5t2bJF9vb2mjRpkn7++WeLuHnz5mn9+vVq2rSpEhMTtWnTJm3atEmHDx9WkyZNFBUVpYULF1p93QAAAACAqiUvL0+7d++WJLVp08Z0fMOGDTIajUX+fPnll5KkwMBA0zEfH5/K6D4AoIIx4QMAAAAAAAAAAABAhRszZow++eQTjRgxQu3atbNqx4oBAwZo7ty5MhgMuu++++To6GjVuWJjY7V8+XL5+/trzZo18vDwMCu3t7cvcpeOyMhInT17Vm3atNHMmTPNymbOnKk2bdooJSVFy5cvNys7cuSINm7cKAcHB0VERKhu3bqmsqCgIBkMBhUUFGj27NlmcQUFBfroo48kSR999JF8fX1NZb6+vqay2bNnq6CgwKprBwDAFlFRUerZs6caNGggFxcX3X///fr444917do1m9rx8fGRnZ1diT8ffPCBWVxSUpI+++wzBQUFqWnTpqpdu7bc3d3VuXNnzZ49W9nZ2eV5uQAAlMn8+fPVrl07jRw50ux4enq6Fi1apMzMTIuYM2fO6Pnnn9fZs2fl4+OjRx99tKK6CwCopqz7F1AAAAAAAAAAAAAAqKbmzZsnSZo0aZJq1apldVx0dLQk6ZlnnrGYkGJvb6+nn35aM2bM0Pr16zVu3DiLuICAALVo0cKi3REjRigiIkKbN2/WtWvXTH3at2+fzp07JycnJw0ZMsQibsiQIRo9erTOnj2rAwcOqFu3blZfCwAAJZk0aZLCwsLk6Oio3r17y9XVVTt37tSUKVO0efNm7dixQ87Ozla1NXToUGVkZBRZdvHiRW3evFmS1KtXL7OywMBAnTlzRnXq1FGnTp30yCOP6Ndff9W+ffsUHx+viIgI7dy5U82bNy/bxQIA8AcHDx5USEiI6fcTJ05IksLDw812hIyOjpaXl5ckKSMjQ0lJSfL09DRrKzc3VyEhIZo0aZIeeOAB+fj4yGg0KiUlRQcPHtTVq1fVpEkTbdiwQXXq1KmAqwMAVGdM+AAAAAAA3HGioqK0YMECHTp0SFevXlXr1q317LPPavLkyTZ9safQjz/+qDlz5ui7777T5cuX5eXlpaeeekqhoaFq1KiRRf1Tp06ZrcJalClTpmjOnDlFlu3du1dhYWHau3evfv31V9WqVUstW7ZUUFCQ3njjjSLPCQAAAAAoWn5+vmJjYyVJjzzyiM6dO6dVq1YpKSlJTk5O6tChg4YMGSJXV1eL2ISEBElSp06dimy78HhhPVvjcnJydOzYMd17771mcX5+fkV+6cfZ2Vl+fn5KSEhQQkICEz4AAOVmw4YNCgsLk6urq3bt2qWOHTtKuvFF1t69e2v37t0KDQ3Vp59+alV7t6r38ccfa/PmzWrTpo169OhhVta2bVt98MEHCg4ONsvNp06d0lNPPaXDhw/LYDBo586dpbhKAACKl5mZqQMHDlgcT01NVWpqqun3vLy8Ettq1KiR/va3v+m7775TYmKifvnlF125ckX169dX165d1a9fP40dO1bu7u7leg0AgDsTEz4AAAAAAHeU8lyFTpLWrl2r4cOH6/r16+rcubN8fX0VHx+v+fPnKyoqSrt371br1q2LjHVxcdHQoUOLLHvwwQeLPL5w4UK9+uqrMhqN8vf3V7du3ZSdna39+/fr448/VmRkpHbt2qV27dpZfQ0AAAAAUJOdPHlS2dnZkqT9+/crJCTE9Huht956S6tWrVLv3r1Nx7KysnThwgVJKnYV8WbNmkmSzp8/r5ycHLm4uEiSkpOTbxnn7u4ud3d3ZWZmKjk52TTho6S4wnMmJCSY6gIAUB5mzZolSZo6dappsockeXh4aOHCherRo4fmz5+v0NBQ1atXr0znWrp0qSTpxRdftCgrnKT5Rz4+Plq8eLF69Oihf//730pNTZW3t3eZ+gEAwM169uwpo9FoU8x7772n9957z+J43bp19frrr+v1118vp95JBoNBBoOh3NoDAFQfTPgAAAAAANwxynsVurNnz2rUqFG6fv26wsPDNXbsWEk3Voc1GAz66quvNGLECB04cEB2dnYW8R4eHoqMjLS6/7/++qsmT54so9GoyMhIjRo1ylSWlZWloUOHaseOHZo0aZL+9a9/Wd0uAAAAANRkhZM2JGn06NF6+OGH9emnn6pdu3Y6ceKEpk+frq1bt2rAgAE6ePCg7r77bkk3PocVKpzI8Uc3rzyemZlpqlcYW1xcYWxmZqYyMzNNx6yNKzyfNW71Zdi0tDR5eXlZ1Q4A4M515swZxcXFSZJGjBhhUd69e3c1a9ZMKSkp2rp1q4YPH17qc+3Zs0dJSUlydHQ0+/dPa3To0MH0OiUlhQkfAAAAAGoE+8ruAAAAAAAA5aWkVegkaf78+bp8+bJV7X322WfKzc1Vnz59TJM9JMnBwUGLFi1SvXr1FBcXpx07dpRL/3fv3q2rV6/q3nvvtfhjp5ubm959911J0r59+8rlfAAAAABQE9y8QmvTpk21fft2derUSa6urrr//vu1adMm+fv7Kzs7W3PmzKnEngIAUDkSEhIkSQ0bNpSvr2+RdTp16mRWt7QKd/cICgqSp6enTbHHjh0zvWbCIgAAAICaggkf/7+srCxNnz5dbdu2lbOzszw8PPTkk09q586dpW6zoKBA4eHh6tKli9zc3OTm5qYuXbpoyZIlNm39tXDhQtnZ2cnOzk5jxowpdX8AAAAA4E5m7Sp0eXl52rp1q1VtRkdHF9ueq6ur+vfvL0lav359abttpk6dOlbV8/DwKJfzAQAAAEBN4ObmZnptMBjk5ORkVu7g4KBx48ZJkmJiYoqMy8nJKbLt7Oxs02t3d3eL2OLibo4tj7hbSU1NLfaHL8sCACQpOTlZktS8efNi6zRr1sysbmnk5ORozZo1km7sumWrwomZHTt2lI+PT6n7AQAAAADVCRM+JKWnp6tTp06aPXu2srKy1K9fP/n5+Wnbtm3q06eP5s2bZ3Ob+fn5GjZsmMaPH6/ExET16tVLvXr10n/+8x+NGzdOTz/9tAoKCkps5+TJk/rLX/4iOzu70lwaAAAAANQY5b0KXVZWlo4fP24WZ2t7OTk5mjNnjsaPH68JEybos88+U1JSUrHn7Natm+rVq6cjR45o2bJlZmXZ2dl6//33Jcn0RSQAAAAAQMl8fHxMf2tr2bJlkXUKj6elpZmOubm5qWHDhpKk06dPFxmXkpIi6cbEfBcXF7Nz3iouMzNTmZmZZnWtibv5nHzRFQBQXrKysiTJLJf9kaurqySZ8ldprFmzRtnZ2fL09FRQUJBNsZGRkVq9erUcHBwUFhZmU6y3t3exPzfnfgAAAACoipjwIWns2LE6evSoAgMDdfz4ca1Zs0a7du3Sli1bZG9vr0mTJunnn3+2qc158+Zp/fr1atq0qRITE7Vp0yZt2rRJhw8fVpMmTRQVFaWFCxfeso2CggIZDAbZ2dlp5MiRZblEAAAAALjjlfcqdKdOnTK9Lq7NktrLyMjQtGnTFB4ervnz52vy5Mm655579Pzzz5utAluoYcOGWrZsmVxcXGQwGNS+fXsFBwfrySefVPPmzRUXF6cPP/xQb731Von9BwAAAADc4OrqqrZt20q68TmtKIXHC7/MWqhjx46SpPj4+CLjCo8X1rM1zsXFRW3atLGIO3z4sH7//XeLuCtXrujw4cNFnhMAgKouIiJCkjRy5Eg5OjpaHRcbG2taBOfjjz9W9+7db0v/AAAAAKAqqvETPo4cOaKNGzfKwcFBERERqlu3rqksKChIBoNBBQUFmj17ttVtFhQU6KOPPpIkffTRR2Yry/r6+prKZs+efctdPsLCwvT999/ro48+YoUeAAAAAChBea9CV9jerdosrj0nJye99NJL2r59u1JSUpSbm6vDhw9rxowZqlu3rr766isNGTJERqPRos0BAwZo165datWqlRITExUVFaWtW7fqt99+U+fOnRUQEGDTLpCsXgcAAAAA0rBhwyRJMTExRZZ/8803kqSHHnrI7PigQYMkSatWrbL4u15BQYFWr14tSRo8eLBZ2cCBAyVJe/bsKXK3jpUrV0qS+vXrp1q1apmOd+vWTZ6ensrLy9O6dess4tatW6erV6+qSZMm6tKlS9EXCwCAjdzc3CTd2LG4OIUL2Li7u5fqHEePHtWePXskSS+++KLVcbt379aAAQN09epVvfvuu3r99ddtPndqamqxP15eXja3BwAAAAAVqcZP+IiOjpYkBQQEqEWLFhblI0aMkCRt3rxZ165ds6rNffv26dy5c3JyctKQIUMsyocMGaLatWvr7NmzOnDgQJFtJCUl6e2339af//xnvfzyy9ZeDgAAAACgCvDy8tKSJUvUt29feXt7y9nZWffee6/++te/aufOnXJwcNCOHTu0ceNGi9hFixapW7duuuuuu/Ttt9/q8uXLSklJ0YIFC7R//3717t1bkZGRFX9RAAAAAFCNTZw4UQ0aNNDWrVsVHh5uVrZq1SqtWLHCVO9mBoNBTZo00dGjRxUaGmpWFhoaqqNHj8rb21sjR440K/Pz89OAAQOUn5+v0aNH68qVK6aybdu2KTIyUvb29po2bZpZnL29vaZMmSJJmjJlitmOksnJyZo6daokadq0abK3r/F/6gUAlJPCRUhTUlKKrVNYVtoFS5cuXSpJ6t69u2nnrZLs3btXQUFBysnJ0dtvv6333nuvVOcGAAAAgOrM+v0R71AJCQmSpE6dOhVZXng8JydHx44d07333mt1m35+fqpTp45FubOzs/z8/JSQkKCEhAR169bNrDw/P1+jRo2SnZ2dIiIibFq5FQAAAABqqvJeha6wvcI269WrV6b2Cj300EPq16+fNmzYoM2bN5tWfZVurPwaEhIiLy8v7dixw3ROd3d3hYSEqGHDhho+fLgmTZqkgQMHqn79+iWeLzU1tdgyb29vq/sNAAAAAOXt4MGDCgkJMf1+4sQJSVJ4eLi2bNliOh4dHW1afTstLc2064b0v888mzZtUteuXU3HFy5cqI4dO5p+9/Dw0OrVq9W/f3+NHz9e8+bN0z333KMTJ06Y/rYXGhqqoKAgsz7WrVtXa9asUd++fTVr1ixt2rRJ/v7+SkxMVGJiolxcXBQVFSVnZ2eL61uyZImOHDmimJgYtWrVSj169FB6erp27dolo9GosLAw3XfffRZxEyZM0Hfffafo6Gj5+/urT58+km7sTpKbm6uhQ4eajRsAAGXVoUMHSdKFCxeUnJwsX19fizrx8fGSZJZfrZWfn6/ly5dLkkaPHm1VzP79+/X4448rKytL06dP18yZM20+LwAAAADcCWr8si+Fq+I0b968yHJ3d3fTF3duXkGnLG1KUrNmzYpt85NPPtGBAwf04YcfqlWrVladEwAAAABquvJehe7mXSBPnz5d5vZuds8990iynIxRuHNHUFBQkRNMhg4dqtq1a+vy5cuKi4uz6ZwAAAAAUNVkZmbqwIEDpp+MjAxJNz4r3Xw8Ly/PFJOXl2dWdubMGUnS+fPnzY5nZmZanO/RRx/VoUOHNGrUKF26dEkbN27U6dOnFRQUpO3bt+uDDz4osp8BAQE6dOiQRo4cqYsXL2rdunW6ePGiRo4cqUOHDplNNLlZo0aNFB8fr6lTp8rV1VUbN27Uzz//rMcee0wxMTEWu4kUcnBw0Nq1a7V48WLde++9io2NVWxsrPz8/LR48WKtWbOG3T0AAOXK29tbnTt3liStXLnSonz37t1KSUmRk5OTxeRIa2zdulVpaWlyc3PTsGHDSqz/ww8/6LHHHjNN9vjwww9tPicAAAAA3Clq/A4fWVlZkiQXF5di67i6uiozM7PIfxguS5uSLNpMTEzUu+++q4cffrjYf+S11a1WbE1LSzOtiAQAAAAA1Vl5r0Ln7u6u1q1b6/jx44qPj1f79u3L1N7NLly4IMl8FxHpfxNLitsxxNHRUS4uLrp69aouXrxo0zkBAAAAoKrp2bOnjEajTTE+Pj42x9ysTZs2psn2tmjdurWWLVtmc5y7u7tmz56t2bNn2xRnb2+vcePGady4cTafEwCA0pg+fboGDRqkOXPm6IknnjD9m+eFCxdMO0u9+uqrZgvVREdHa9q0aWratKliY2OLbXvp0qWSpGeeeeaW36WRbvyba9++fZWZmclkDwAAAABQNZ/w8Ze//EWbNm2yOe6LL75Q9+7db0OPyub69esaNWqU7O3ttXTpUlbmAQAAAAAbFK5CFxcXp5UrV+rtt982Ky/NKnSDBg3SJ598opUrV+qFF14wK8vOztbmzZslSYMHD7a6nzk5Oaa4hx56yKysadOmkqQDBw4UGZuUlKTffvtNkoqc0AIAAAAAAAAApTFw4EBNnDhRc+fOVdeuXRUYGCgXFxfFxsbq0qVLCggI0IwZM8xiLl++rKSkJP3+++/Ftpuenq6vv/5akjR69OgS+9G3b19dvnxZ9evX15kzZ2QwGIqsN3XqVLVr1876CwQAAACAaqpaT/g4e/askpKSbI7Lzs42vS5cTTUnJ6fE+sWtsPpHpW3zww8/1MGDB/XRRx+pbdu2Vp3LGqmpqcWW3Wr3DwAAAACobsp7FbpJkyZpwYIFiomJ0eeff66XXnpJkpSfn6+QkBBdunRJnTt3Vt++fc3ilixZoieeeELNmjUzO56cnKyXXnpJaWlpql+/vl588UWz8qFDh+rLL7/U3r179cknn+jNN9+UnZ2dpBt/GC38g2ibNm3UqVOnsg4XAAAAAAAAAJiEhYUpICBACxYs0N69e3Xt2jW1atVKU6dO1eTJk1W7dm2b2/znP/+pa9euyc/PT126dCmxfuGCN5cuXbrl7loGg4EJHwAAAABqhGo94eOrr77SV199VaY2fHx8dPDgQZ0+fbrI8szMTGVmZprqWtumpGLblKSUlBSLNqOjoyVJmzdv1tatW83qnzp1SpL09ddfq2fPnpKkb7/91qr+AAAAAEBNUd6r0DVp0kSRkZEaPny4xo4dq4iICPn4+CguLk4nT55U48aNtXLlStOkjEILFy7U+PHj5efnpzZt2qh27dpKTk7WTz/9pLy8PN11111av369PDw8zOKCgoI0btw4hYeH6y9/+YuWLFmi++67T1lZWTpw4IAyMzNVv359/fOf/2RXSAAAAAAAAADlLjg4WMHBwVbVNRgMxe7AUeiNN97QG2+8YfX5jUaj1XUBAAAAoCao1hM+ykPHjh21fv16xcfHF1leeNzFxUVt2rSxuk1JOnz4sH7//XfVqVPHrPzKlSs6fPiwWd2b7d69u9i2z507p3PnzlnVDwAAAACoicp7Fbphw4apZcuWmjVrlr7//nslJCTIy8tLr7zyikJDQ9W4cWOLmIkTJ2r79u36+eef9e233yozM1Ourq667777FBQUpJCQEDVq1KjI8y1evFhPPPGEIiIiFB8fr82bN8vR0VG+vr567LHH9Prrr7NbIwAAAAAAAAAAAAAAQA1gZ6zhU+MPHz4sf39/OTg46OTJk2revLlZ+ZgxYxQREaFnnnlG//d//2dVmwUFBWratKnOnTunr776Ss8++6xZ+VdffaXnn39eTZo0UUpKilWrsr733nt6//33NXr0aH3xxRfWX2AJCr8klJqaWm5tAkBNwTO0+uM9BICy4Tla/fEeAkDZ8Byt/ngPAaBseI5Wf7yHAFB6PEPvDLyPAFB6PEOrP95DACibinqOljzT4A7n5+enAQMGKD8/X6NHj9aVK1dMZdu2bVNkZKTs7e01bdo0i9iRI0eqXbt2mj9/vtlxe3t7TZkyRZI0ZcoUJScnm8qSk5M1depUSdK0adOsmuwBAAAAAAAAAAAAAAAAAAAAAABqFsfK7kBVsGTJEh05ckQxMTFq1aqVevToofT0dO3atUtGo1FhYWG67777LOJOnz6tpKQkZWRkWJRNmDBB3333naKjo+Xv768+ffpIkmJiYpSbm6uhQ4cqJCTktl8bAAAAAAAAAAAAAAAAAAAAAACoftheQlKjRo0UHx+vqVOnytXVVRs3btTPP/+sxx57TDExMZo4caLNbTo4OGjt2rVavHix7r33XsXGxio2NlZ+fn5avHix1qxZw+4eAAAAAAAAAAAAAAAAAAAAAACgSOzw8f9zd3fX7NmzNXv2bKtjvv3221uW29vba9y4cRo3blwZeye99957eu+998rcDgAAAAAAAAAAAAAAAAAAAAAAqPrYYgIAAAAAAAAAAAAAAAAAAAAAAKCKYcIHAAAAAAAAAAAAAAAAAAAAAABAFcOEDwAAAAAAAAAAAAAAAAAAAAAAgCqGCR8AAMBMVFSUevbsqQYNGsjFxUX333+/Pv74Y127dq3UbW7cuFH9+/eXp6enateurUaNGunhhx/WBx98UGzM8ePHZTAY5O3tLScnJ3l7e8tgMOjkyZOl7gcAAAAAAAAAAAAAAAAAAEB1wYQPAABgMmnSJAUHB2vPnj166KGH9Pjjj+v06dOaMmWKevfurStXrtjU3tWrVxUcHKyBAwcqJiZGfn5+Gjp0qPz9/XXixAnNnTu3yLg9e/bo/vvv17Jly1S/fn0NGjRI9evX17Jly3Tfffdp//795XG5AAAAAAAAAAAAAAAAAAAAVRYTPgAAgCRpw4YNCgsLk6urqw4cOKDt27dr3bp1OnbsmNq3b6/du3crNDTUpjZfeuklRUVFaeDAgTp9+rRiY2O1cuVK7dy5U2lpadqyZYtFTG5uroKDg5Wbm6tp06YpMTFRq1atUmJioqZNm6acnBwFBwfbPPkEAAAAAKqj8t6F8ccff9SwYcPUuHFj1alTR76+vpowYYLS09OLrJ+fn6+1a9dq2rRp6tu3r+666y7Z2dnJ0dGxxHNt3bpV7733nvr166cmTZrIzs5OdnZ2Sk1Ntaqv6enpmjp1qvz9/eXq6ioXFxe1atVKw4cP148//mjTdQMAAAAAAAAAAADVUcl/lQMAADXCrFmzJElTp05Vx44dTcc9PDy0cOFC9ejRQ/Pnz1doaKjq1atXYnuxsbFavny5/P39tWbNGtWqVcus3N7eXl27drWIi4yM1NmzZ9WmTRvNnDnTrGzmzJlat26djh49quXLl2vcuHGluVQAAAAAqBYmTZqksLAwOTo6qnfv3nJ1ddXOnTs1ZcoUbd68WTt27JCzs7PV7a1du1bDhw/X9evX1blzZ/n6+io+Pl7z589XVFSUdu/erdatW5vFZGVladiwYaXq/4gRI3T58uVSxf773//W4MGDdenSJbVu3VqPP/64CgoKdOrUKa1Zs0YBAQF68MEHS9U2AAAAAAAAAAAAUF2wwwcAANCZM2cUFxcn6cYXcv6oe/fuatasmfLy8rR161ar2pw3b56kG19Q+uNkj1uJjo6WJD3zzDOytzf/XxV7e3s9/fTTkqT169db3SYAAAAAVDflvQvj2bNnNWrUKF2/fl3h4eH64YcftHr1ah09elTPPfecfv31V40YMUJGo9EsrlatWnr22Wf16aefaufOnfrpp5+sPufgwYM1a9Ys/etf/yp2B5GiHDlyRE8++aSuX7+u9evX69ixY1q7dq3Wr1+vgwcP6syZMwoKCrK6PQAAAAAAAAAAAKC6YocPAACghIQESVLDhg3l6+tbZJ1OnTopJSVFCQkJGj58+C3by8/PV2xsrCTpkUce0blz57Rq1SolJSXJyclJHTp00JAhQ+Tq6lpsXzp16lRsP26uBwAAAAB3ovLehfGzzz5Tbm6u+vTpo7Fjx5qOOzg4aNGiRdq8ebPi4uK0Y8cOPfbYY6ZyFxcXffXVV6bfT506ZfU1LF261Oq6Nxs/fryuXLmilStXatCgQRblnp6epWoXAAAAAAAAAAAAqG7Y4QMAACg5OVmS1Lx582LrNGvWzKzurZw8eVLZ2dmSpP379+vuu+/W5MmTtXjxYoWFhclgMKhly5bauXOnWVxWVpYuXLhwy74U9uP8+fPKyckpsS8AAAAAUN3cjl0YC3dTLKo9V1dX9e/fX1Ll76b4008/6fvvv1ezZs30zDPPVGpfAAAAAAAAAAAAgMrGhA8AAKCsrCxJN1ZuLU7hbhyZmZkltlc4aUOSRo8erQcffFBxcXHKysrSTz/9pKCgIJ0/f14DBgzQsWPHLPpxq77cvCuINX3x9vYu9ictLa3EeAAAAACoaNbuwnhz3VvJysrS8ePHzeLK0t7ttH37dklSjx49ZGdnp+3bt+svf/mLxo0bpxkzZujHH3+s1P4BAAAAAAAAAAAAFcmxsjsAAADuPEaj0fS6adOm2r59u5ycnCRJ999/vzZt2qQHHnhAiYmJmjNnjiIiIiqrqwAAAABQ5ZT3LoynTp0yvS5pN0Vr2rudfv75Z0lS/fr19eijjyomJsas/J133tGzzz6riIgI0+dMAAAAAAAAAAAA4E7FDh8AAEBubm6SpJycnGLrZGdnS5Lc3d2tbk+SDAaDxZdwHBwcNG7cOEky+/LOzXHF9aWwH9b2JTU1tdgfLy+vEuMBAAAAoKKV9y6MtuymaE17t1PhjpGff/659u7dq3nz5unMmTNKT0/X0qVL5e7urhUrVmjixIlWt8nOjwAAAAAAAABKkpSUpHnz5slgMKh9+/ZydHSUnZ2dZs6cWar2tm3bpjFjxqhTp07y8vKSk5OT3Nzc9MADD2j69OnKyMgoMi4hIUGzZ89WYGCgGjdurFq1aqlBgwbq0aOHFixYoGvXrpXlMgEA1RA7fAAAAPn4+EiSUlJSiq1TWFZYt6T27OzsZDQa1bJlyyLrFB6/+cs1bm5uatiwoS5evKjTp0/r/vvvL7YfHh4et/zyEwAAAACg+incMfLatWuaP3++xo4dayp74YUX5OLioqefflpffPGFpk2bZtVnVAAAAAAAAAAoyaJFixQWFlZu7a1YsUIrVqxQ69at5e/vrz/96U+6cOGCfvjhB82ePVsRERHauXOn/Pz8TDHXr19Xx44dJd1YpKdz585q3LixUlNTtW/fPu3evVvLly/X9u3bVb9+/XLrKwCgamOHDwAAoA4dOki6sZJqcnJykXXi4+MlyfTB8lZcXV3Vtm1bSSp2RYLC44WryBYqbL/wfGXpBwAAAABUR7dzF8aSdlO0pr3bqbCvtWrV0osvvmhRHhwcLA8PDxUUFOjf//63VW2y8yMAAAAAAACAkvj7++vNN9/UihUr9Msvv+j5558vU3tvvvmm0tLSdOzYMX3zzTdauXKltm/frpSUFA0bNkzp6ekaM2aMRdyDDz6oNWvWKCMjQzt37tT//d//6fvvv1dCQoK8vLz0ww8/6PXXXy9T3wAA1QsTPgAAgLy9vdW5c2dJ0sqVKy3Kd+/erZSUFDk5OSkoKMiqNocNGyZJiomJKbL8m2++kSQ99NBDZscHDRokSVq1apUKCgrMygoKCrR69WpJ0uDBg63qBwAAAABUN+W9C2OLFi1Mr0+fPl3m9m6nwt0gmzVrJkfHojeo9vX1lWS+YyQAAAAAAAAAlMWYMWP0ySefaMSIEWrXrp3s7cv29doHHnhAnp6eFsddXV31t7/9TZK0f/9+ZWZmmsocHR0VHx+vYcOGycnJySyuffv2+vjjjyXd+E7NtWvXytQ/AED1wYQPAAAgSZo+fbokac6cOTp48KDp+IULFxQSEiJJevXVV1WvXj1TWXR0tNq1a6fAwECL9iZOnKgGDRpo69atCg8PNytbtWqVVqxYYap3M4PBoCZNmujo0aMKDQ01KwsNDdXRo0fl7e2tkSNHluFqAQAAAKDqKu9dGN3d3dW6dWuzuLK0dzs9+OCDkm5ce3GK2zESAAAAAAAAAKqDwsVu7O3tVatWLavjCv/t+MqVK6Z/JwUA3PmY8AEAACRJAwcO1MSJE5Wdna2uXbvqiSee0NChQ9W6dWv95z//UUBAgGbMmGEWc/nyZSUlJenEiRMW7Xl4eGj16tWqU6eOxo8fL39/fw0bNkwdO3bU8OHDZTQaFRoaarFjSN26dbVmzRrVrVtXs2bNUvv27TV8+HC1b99es2bNkouLi6KiouTs7HxbxwMAAAAAKsvt2IWxcDfFotrLzs7W5s2bJVX+bopBQUGqW7euLl++rLi4OIvyo0eP6r///a8kyx0jAQAAAAAAAKCqy8vLMy3K+uijj9r0/Zdjx45JkmrXrq2GDRvelv4BAKoeJnwAAACTsLAwrV69Wt26ddPevXu1detWeXt7a86cOdq5c6fNkyweffRRHTp0SKNGjdKlS5e0ceNGnT59WkFBQdq+fbs++OCDIuMCAgJ06NAhjRw5UhcvXtS6det08eJFjRw5UocOHVLXrl3L43IBAAAAoMoq710YJ02apLp16yomJkaff/656Xh+fr5CQkJ06dIlde7cWX379r1dl2QVNzc3vfHGG5Kkl19+WWfPnjWVXbhwQWPGjFFBQYEeeughPhsCAAAAAAAAqPIOHjwog8GgUaNGKSgoSN7e3oqMjFTnzp0VERFhdTtGo1Eff/yxJOmpp56Sk5PT7eoyAKCKcazsDgAAgKolODhYwcHBVtU1GAwyGAy3rNOmTRtFRkba3I/WrVtr2bJlNscBAAAAwJ2gcBfGuXPnqmvXrgoMDJSLi4tiY2N16dKlW+7C+Pvvv1u016RJE0VGRmr48OEaO3asIiIi5OPjo7i4OJ08eVKNGzfWypUrZWdnZxEbEhJimnSSl5cn6cZEkZsnXDz55JMKDQ01i5sxY4a+/vpri/b69++v2rVrS5I6duyohQsXmpX/9a9/VXx8vLZt26Z77rlHXbt2laOjo/bv36+LFy+qRYsWWrVqlTXDCAAAAAAAAACV6vTp0xbff+nTp4/Cw8PVtGlTq9t5//33tW/fPrm6umrOnDlWx3l7exdblpaWJi8vL6vbAgBUDiZ8AAAAAAAAAEAVFBYWpoCAAC1YsEB79+7VtWvX1KpVK02dOlWTJ082TZqw1rBhw9SyZUvNmjVL33//vRISEuTl5aVXXnlFoaGhaty4cZFxR44c0YEDByyO33ysXbt2FuUnTpwoMi4hIcH0uk6dOhbltWvX1pYtWxQeHq7IyEjt3btX169fl6+vr8aPH6833nhDDRs2tOqaAQAAAAAAAKAyDRw4UEajUfn5+UpNTVVMTIzeffdd+fv7a/ny5Ro6dGiJbSxfvlwffPCB7O3ttXTpUt19990V0HMAQFVhZzQajZXdCVSewtmbqampldwTAKh+eIZWf7yHAFA2PEerP95DACgbnqPVH+8hAJQNz9Hqj/cQAErvTn2GRkVFacGCBTp06JCuXr2q1q1b69lnn9XkyZNVq1Ytq9vx8fHRf//73xLrvf/++3rnnXdMv+fk5Gjjxo368ccf9eOPP+rgwYPKyspSq1atdPz48VJd063cqe8jAFSEO/0ZajAYtGzZMs2YMUN//etfy7XtU6dOyc/PT/b29jp27Jg8PT2LrRsVFaXhw4eroKBAX3zxhV588cVy68ed/h4CwO1WUc9RdvgAAAAAAAAAAAAAAAAAarhJkyYpLCxMjo6O6t27t1xdXbVz505NmTJFmzdv1o4dO+Ts7GxVW0OHDlVGRkaRZRcvXtTmzZslSb169TIrO3bsmJ599tmyXQgAAFWcj4+PevXqpa+//lrffPONnn/++SLrrV+/XiNGjFBBQYHCw8PLdbIHAKD6YMIHAAAAAAAAAAAAAAAAUINt2LBBYWFhcnV11a5du9SxY0dJUkZGhnr37q3du3crNDRUn376qVXt3arexx9/rM2bN6tNmzbq0aOHWZmbm5teeOEFdezYUR06dNClS5f01FNPlf7CAACoolxcXCRJ6enpRZZv2LBBzzzzjPLz87Vo0SK99NJLFdk9AEAVYl/ZHQAAAAAAAAAAAAAAAABQeWbNmiVJmjp1qmmyhyR5eHho4cKFkqT58+fr8uXLZT7X0qVLJanIVcpbtWqlpUuX6tVXX1VAQIDpy7AAANxJ8vLytHv3bklSmzZtLMo3b96s4OBgXb9+XYsWLdK4ceMquosAgCqECR8AAAAAAAAAAAAAAABADXXmzBnFxcVJkkaMGGFR3r17dzVr1kx5eXnaunVrmc61Z88eJSUlydHRUaNGjSpTWwAAVLb58+erXbt2GjlypNnx9PR0LVq0SJmZmRYxZ86c0fPPP6+zZ8/Kx8dHjz76qFn51q1bNXToUF2/fl2LFy9msgcAQI6V3QEAAAAAAAAAAAAAAAAAlSMhIUGS1LBhQ/n6+hZZp1OnTkpJSVFCQoKGDx9e6nMV7u4RFBQkT0/PUrcDAEB5O3jwoEJCQky/nzhxQpIUHh6uLVu2mI5HR0fLy8tLkpSRkaGkpCSLnJabm6uQkBBNmjRJDzzwgHx8fGQ0GpWSkqKDBw/q6tWratKkiTZs2KA6deqY4tLT0zV48GBdvXpV3t7e2rt3r/bu3Vtkfz/99FN5eHiU2/UDAKouJnwAAAAAAAAAAAAAAAAANVRycrIkqXnz5sXWadasmVnd0sjJydGaNWskSaNHjy51OwAA3A6ZmZk6cOCAxfHU1FSlpqaafs/LyyuxrUaNGulvf/ubvvvuOyUmJuqXX37RlStXVL9+fXXt2lX9+vXT2LFj5e7ubhaXm5traj81NVXLli0r9hzvvfceEz4AoIZgwgcAAAAAAAAAAAAAAABQQ2VlZUmSXFxciq3j6uoq6caXYUtrzZo1ys7Olqenp4KCgkrdjq28vb2LLUtLSzOt0g4AqNl69uwpo9FoU8x7772n9957z+J43bp19frrr+v111+3qb3CnUAAALiZfWV3AAAAAAAAAAAAAEDNk5SUpHnz5slgMKh9+/ZydHSUnZ2dZs6cWWxMSkqKwsPDNXbsWD344INycnKSnZ2dxowZY/P5t27dKjs7O9nZ2alPnz63rHv8+HEZDAZ5e3vLyclJ3t7eMhgMOnny5C3jsrKyNH36dLVt21bOzs7y8PDQk08+qZ07d94yrqCgQOHh4erSpYvc3Nzk5uamLl26aMmSJXz5BwBQbUVEREiSRo4cKUdH1qgFAAAAAGvw6QkAAAAAAAAAAABAhVu0aJHCwsJsilm3bp0mT55c5nP/9ttveumll2RnZ1fiBIo9e/aob9++ys3NlZ+fn7p3767ExEQtW7ZMa9euVUxMjLp27WoRl56erh49eujo0aPy8vJSv3799Ouvv2rbtm3atm2bwsLCNGHCBIu4/Px8BQcHa/369apbt64CAwMlSTExMRo3bpxiYmK0atUq2duzth8AoHy4ublJknJycoqtk52dLUlyd3cv1TmOHj2qPXv2SJJefPHFUrVRWqmpqcWW3Wr3DwAAAACoCvhXQAAAAAAAAAAAAAAVzt/fX2+++aZWrFihX375Rc8//3yJMb6+vpowYYK+/PJLHTp0SG+//Xapzj1hwgT9+uuvGj9+/C3r5ebmKjg4WLm5uZo2bZoSExO1atUqJSYmatq0acrJyVFwcLCuXLliETt27FgdPXpUgYGBOn78uNasWaNdu3Zpy5Ytsre316RJk/Tzzz9bxM2bN0/r169X06ZNlZiYqE2bNmnTpk06fPiwmjRpoqioKC1cuLBU1w0AQFF8fHwk3dhJqziFZYV1bbV06VJJUvfu3dW2bdtStQEAAAAANRETPgAAAAAAAAAAAABUuDFjxuiTTz7RiBEj1K5dO6t2rBgwYIDmzp0rg8Gg++67T46OjjafNzo6WitWrNDrr7+uhx566JZ1IyMjdfbsWbVp00YzZ840K5s5c6batGmjlJQULV++3KzsyJEj2rhxoxwcHBQREaG6deuayoKCgmQwGFRQUKDZs2ebxRUUFOijjz6SJH300Ufy9fU1lfn6+prKZs+erYKCApuvHQCAonTo0EGSdOHCBSUnJxdZJz4+XpLUsWNHm9vPz8835crRo0eXspcAAAAAUDMx4QMAAAAAAAAAAABAjZCRkaHx48erbdu2+uCDD0qsHx0dLUl65plnLCak2Nvb6+mnn5YkrV+/vsi4gIAAtWjRwqLdESNGSJI2b96sa9eumY7v27dP586dk5OTk4YMGWIRN2TIENWuXVtnz57VgQMHSuw/AADW8Pb2VufOnSVJK1eutCjfvXu3UlJS5OTkpKCgIJvb37p1q9LS0uTm5qZhw4aVub8AAAAAUJMw4QMAAAAAAAAAAABAjfDyyy8rIyNDERERqlOnTon1ExISJEmdOnUqsrzweGE9W+NycnJ07Ngxizg/P78i++fs7Cw/P78izwkAQFlMnz5dkjRnzhwdPHjQdPzChQsKCQmRJL366quqV6+eqSw6Olrt2rVTYGDgLdteunSppBsTKF1cXMq76wAAAABwR7N9j2MAAAAAAAAAAAAAqGZWrVqltWvX6rXXXlNAQECJ9bOysnThwgVJUvPmzYus06xZM0nS+fPnlZOTY/oSa3Jy8i3j3N3d5e7urszMTCUnJ+vee++1Kq7wnAkJCaa6AACUh4EDB2rixImaO3euunbtqsDAQLm4uCg2NlaXLl1SQECAZsyYYRZz+fJlJSUl6ffffy+23fT0dH399deSpNGjR1vVl0GDBiktLU2SlJmZKUlKTU1V165dTXXGjBmjMWPG2HSNAAAAAFAdMeEDAAAAAAAAAAAAwB3t3LlzeuWVV9SqVSvNmjXLqpisrCzT6+JWI3d1dTW9zszMNNUrjL3VKuaurq7KzMw0fZHVlrjC81nD29u72LK0tDR5eXlZ1Q4A4M4XFhamgIAALViwQHv37tW1a9fUqlUrTZ06VZMnT1bt2rVtbvOf//ynrl27Jj8/P3Xp0sWqmISEBP33v/81O5aXl6cDBw6Yfn/88cdt7gsAAAAAVEdM+AAAAAAAAAAAAABwRxs7dqx+++03rVu3TnXr1q3s7gAAUGUFBwcrODjYqroGg0EGg+GWdd544w298cYbNvXh1KlTNtUHAAAAgDsZEz4AAAAAAAAAAAAA3LGWLVumzZs36+WXX1bPnj2tjnNzczO9zsnJKbJOdna26bW7u7tFbHFxN8eWR9ytpKamFlt2q90/AAAAAAAAAFQ+JnwAAAAAAAAAAAAAuGNFR0dLkuLi4iwmfJw7d06S9OOPP5rKVq1aJU9PT7m5ualhw4a6ePGiTp8+rfvvv9+i7ZSUFEmSh4eHXFxcTMd9fHx08OBBnT59usg+ZWZmKjMz01T35jhJxcbdfM6b4wAAAAAAAADcmZjwUcOlp6crPz+f1XsAoBTS0tLk4OBQ2d1AGZAHAaBsyIXVH7kQAMqGXFj9kQsBoGyqWy6Mj48vtuzSpUvatWuXJOn33383He/YsaNiYmIUHx+vfv36Fdtmx44dzY537NhR69evL/achcddXFzUpk0bszhJOnz4sH7//XfVqVPHLO7KlSs6fPhwkecsDXIhAJRedcuDKBq5EABKj1xY/ZEHAaBsKioX2t/2M6BKq1WrVqlvtLS0NKWlpZVzj+5sjJltGC/bMWa2K8uYOTg4qFatWuXcI1SksuRBif/mSoMxsw3jZTvGzHbkwpqNXFixGC/bMWa2Y8xsRy6s2fj30YrFmNmOMbMdY2abso5XdcmFGzZskNFoLPLnyy+/lCQFBgaajt28c8agQYMk3dj1o6CgwKzdgoICrV69WpI0ePBgs7KBAwdKkvbs2VPkbh0rV66UJPXr189sDLt16yZPT0/l5eVp3bp1FnHr1q3T1atX1aRJE3Xp0sXGkbBELqxYjJntGDPbMF624zMhyIUVizGzDeNlO8bMduTCmo2/FVY8xsw2jJftGDPbVYdcyA4fNVxOTk6pYwtndaamppZXd+54jJltGC/bMWa2Y8xqtrLkQYn7pzQYM9swXrZjzGzHmNVs5MKKxXjZjjGzHWNmO8asZuPfRysWY2Y7xsx2jJltGK+SGQwGffjhhzp69KhCQ0P14YcfmspCQ0N19OhReXt7a+TIkWZxfn5+GjBggDZu3KjRo0dr06ZNcnZ2liRt27ZNkZGRsre317Rp08zi7O3tNWXKFE2ePFlTpkzRww8/LF9fX0lScnKypk6dKkmaNm2a7O3LvrYfubBiMWa2Y8xsw3jZjjEDubBiMWa2Ybxsx5jZjjGr2fhbYcVjzGzDeNmOMbNddRgzJnwAAAAAAAAAAAAAqHAHDx5USEiI6fcTJ05IksLDw7VlyxbT8ejoaHl5eUm6seJe4a4b0v/+ELtp0yZ17drVdHzhwoXq2LFjmftYt25drVmzRn379tWsWbO0adMm+fv7KzExUYmJiXJxcVFUVJRpMsfNlixZoiNHjigmJkatWrVSjx49lJ6erl27dsloNCosLEz33XefRdyECRP03XffKTo6Wv7+/urTp48kKSYmRrm5uRo6dKjZuAEAAAAAAAC4czHhAwAAAAAAAAAAAECFy8zM1IEDByyOp6ammq2ol5eXZ/a6qJjz58/r/PnzZm2Xl4CAAB06dEgzZsxQTEyM1q1bpz/96U8aOXKk3nnnHbVq1arIuEaNGik+Pl6zZ8/WunXrtHHjRrm4uOixxx7Tm2++qcDAwCLjHBwctHbtWn3++ef64osvFBsbK+nGriGjR4/W2LFjZWdnV27XBwAAAAAAAKDqYsIHAAAAAAAAAAAAgArXs2dPGY1Gm2J8fHxsjrkVg8Egg8FQYr3WrVtr2bJlNrfv7u6u2bNna/bs2TbF2dvba9y4cRo3bpzN5wQAAAAAAABw57Cv7A4AAAAAAAAAAAAAAAAAAAAAAADAHBM+AAAAAAAAAAAAAAAAAAAAAAAAqhgmfAAAAAAAAAAAAAAAAAAAAAAAAFQxdkaj0VjZnQAAAAAAAAAAAAAAAAAAAAAAAMD/sMMHAAAAAAAAAAAAAAAAAAAAAABAFcOEDwAAAAAAAAAAAAAAAAAAAAAAgCqGCR8AAAAAAAAAAAAAAAAAAAAAAABVDBM+AAAAAAAAAAAAAAAAAAAAAAAAqhgmfAAAAAAAAAAAAAAAAAAAAAAAAFQxTPgAAAAAAAAAAAAAAAAAAAAAAACoYpjwUUMkJSVp3rx5MhgMat++vRwdHWVnZ6eZM2eWus2LFy9q2rRpuueee+Ts7KwGDRrokUce0T//+c8SY3/88UcNGzZMjRs3Vp06deTr66sJEyYoPT291P0pT1VlvCIjI2VnZ3fLn3/961+l7lN5uXbtmmJjY/XWW2+pc+fOql+/vmrVqiVPT0/1799fX3/9danbjomJUVBQkDw8POTs7Kx27drp7bffVnZ29i3jjh8/LoPBIG9vbzk5Ocnb21sGg0EnT54sdV/KU1Uas2+//bbE+2zx4sWl7k95uR1jlpKSovDwcI0dO1YPPvignJycZGdnpzFjxlgVX9WfZTBXVZ7thar6/VNVxotcSC4sDXKh9ciFNUdVea4Xqg73TlUZM3IhubA07sRcSB5EWVWV53qh6nD/VJUxIxfembmwKo1XdciDErkQZVdVnuuFqsP9U1XGrDrkwqr0XC9UlfOgVLXGjFxILqwpqspzvVBVv3+qynhVhzwoVa3neiFyIbnQGuTCmqOqPNcLVYd7p6qMGbmQXFga5ELrVZtcaESN8NprrxklWfzMmDGjVO2dOHHC2KJFC6Mk41133WV88sknjb179zbWrVvXKMk4atQoY0FBQZGxUVFRRkdHR6MkY+fOnY3BwcHGli1bGiUZGzdubDx27FhZLrVcVJXx+vLLL42SjK1atTKOGjWqyJ+ff/65rJdbZt98841pjDw9PY1PPvmkMTg42Ojv7286Pnbs2GLvieL8/e9/N0oy2tnZGR955BHjsGHDjJ6enkZJxrZt2xrPnz9fZNzu3btNY+vn52d8+umnjX5+fkZJRhcXF+O+ffvK47LLpCqN2b///W/Tf3/F3Wc7d+4sr0svtdsxZv/4xz+K/G999OjRJcZWh2cZzFWVZ7vRWD3un6oyXuRCciG58H/IhSiLqvJcNxqrz71TVcaMXEguJBfeQB5EWVWV57rRWH3un6oyZuTCOzMXVqXxqg550GgkF6Lsqspz3WisPvdPVRmz6pALq9Jz3Wis+nnQaKxaY0YuJBfWFFXluW40Vo/7p6qMV3XIg0Zj1XquG43kQnIhuRCWqspz3WisPvdOVRkzciG5kFz4PzU5FzLho4b4/PPPjW+++aZxxYoVxl9++cX4/PPPlyn5PPTQQ0ZJxp49exovXrxoOn7s2DFjq1atjJKMS5YssYg7c+aM6SEaHh5uOn79+nXjc889Z7rpbX1AlbeqMl6FyXrUqFGlvZQKERsbaxwyZIjxu+++syhbtWqV0cHBwSjJuGzZMqvbPHjwoNHOzs7o4OBg3Lp1q+l4Tk6OMTAw0CjJOGTIEIu4nJwcY5MmTYySjNOmTTMrmzZtmlGSsVmzZsbc3FwbrrD8VaUxK0zWf/7zn0t1LRXldozZhg0bjBMmTDB++eWXxkOHDhnffvttq5J1dXmWwVxVebZXl/unqowXuZBcSC78H3IhyqKqPNer071TVcaMXEguJBfeQB5EWVWV53p1un+qypiRC+/MXFiVxqs65EGjkVyIsqsqz/XqdP9UlTGrDrmwKj3Xq0MeNBqr1piRC8mFNUVVea5Xl/unqoxXdciDRmPVeq6TC8mF5EIUpao816vTvVNVxoxcSC4kF/5PTc6FTPiooUaNGlXq5LN3716jJKODg4Px+PHjFuUbN240PRD/eKO+9dZbRknGPn36WMRlZWUZ69WrZ5Rk/Ne//mVzv26nyhqv6pKsSzJ69GijJGNgYKDVMcOGDTNKMo4ZM8ai7NSpU0Z7e3ujJOMvv/xiVrZgwQKjJGObNm2M+fn5ZmX5+fnGNm3aGCUZFy9eXLqLqSAVOWbVJVmXpDRj9kfvvvuuVcm6uj7LYI5caBtyYdmQC21HLrQduRC2IA/ajlxYNuRC25ELbUMehK3IhbYjF5YNudA25EHbkQthK3Kh7ciFpUcetB250HbkQtiKXGgb8mDZkAttRy60HbkQtiAP2o5cWDbkQtuRC213J+dCewE2iouLkyT5+PioVatWFuV9+vSRJKWkpOiHH34wK4uOjpYkjRgxwiLO1dVV/fv3lyStX7++XPtcmcoyXneKDh06SLpxjda4evWqvv76a0lF3ystWrRQQECApP/dU4UKf3/mmWdkb2/+iLO3t9fTTz8tqerfYxU5ZncKW8esLGriswzmyIW2IReSC0uDXGg7ciEqCnnQduRCcmFpkAttQx5ERSIX2o5cSC60FXnQduRCVCRyoe1qei4kD9qOXGg7ciEqErnQNjU9D0rkwtIgF9qOXIiKQh60HbmQXFga5ELb3cm5kAkfsFl2drYk6a677iqyvG7dunJ2dpYk/fjjj6bjWVlZOn78uCSpU6dORcYWHk9ISCi3/la20o7XzY4fP66//vWvGjt2rF5//XUtXbpUGRkZt6fDt8GxY8ckSV5eXlbVP3r0qHJzcyXZfq8U/l7d77GKHLNCv/76qz744AONGzdOr732mhYtWqTTp0/b2vVKY+uYlVZNfZbBHLnQNuRCcmFpkAttRy5ERSEP2o5cSC4sDXKhbciDqEjkQtuRC8mFtiIP2o5ciIpELrRdTc+F5EHbkQttRy5ERSIX2qam50GJXFga5ELbkQtRUciDtiMXkgtLg1xouzs5FzqWSyuoURo1aiRJSk5OLrL83LlzunLlikWdU6dOmV43b968yNhmzZrdsu3qqLTjdbM9e/Zoz549Zsfq1Kmj9957T1OmTCnH3pa/c+fOKTIyUpI0ZMgQq2IKx6F+/fpyc3Mrsk5R90pWVpYuXLggqeR77Pz588rJyZGLi4tVfapIFTlmN/t//+//6d133zU75ujoqAkTJujjjz+Wo2PVTRmlGbPSqqnPMpgjF9qGXEgutBW50HbkQlQk8qDtyIXkQluRC21DHkRFIxfajlxILrQFedB25EJUNHKh7WpyLiQP2o5caDtyISoaudA2NTkPSuTC0iAX2o5ciIpEHrQduZBcaCtyoe3u9FzIDh+wWa9evWRnZ6fz589rw4YNFuWLFy82vc7MzDS9zsrKMr0u7gHp6upqEVfdlXa8JMnT01Nvv/22Dhw4oPPnzyszM1NxcXEaOXKk8vLyNHXqVM2aNet2X0KpXb9+Xc8995wuX76s9u3ba9y4cVbFFd4rt0qkRd0rttxjf4ytKip6zCSpXr16mjRpknbt2qW0tDTl5OTo559/1uTJk2VnZ6d//OMfCgkJKeUV3X6lHbPSqqnPMpgjF9qGXEgutAW50HbkQlQ08qDtyIXkQluQC21DHkRlIBfajlxILrQWedB25EJUBnKh7WpqLiQP2o5caDtyISoDudA2NTUPSuTC0iAX2o5ciIpGHrQduZBcaAtyoe1qQi5kwgds1qpVKz333HOSpBdffFFfffWVLly4oNTUVH300UeaNWuWatWqJUmyt+cWK8t4Pf7445o5c6YeeugheXh4yM3NTZ06ddKyZcv06aefSpI++OAD/frrrxV7UVYaP368YmNjddddd2nt2rWqXbt2ZXepyquMMevQoYP+8Y9/6JFHHpGnp6fq1q2r9u3b6+9//7tWrVolSfr888/1008/3fa+lAb3GSoDudA25EKeUbYgF9qO+wwVjTxoO3IhzyhbkAttwz2GykAutB25kOeUtciDtuMeQ2UgF9qupuZCnlG2IxfajvsMlYFcaJuamgclnlGlQS60HfcZKhp50HbkQp5RtiAX2q4m3Gc8TVEqixYt0sCBA/Xbb7/p+eefl4eHh5o1a6apU6dq0KBBevLJJyVJDRs2NMXcvEVQTk5Oke1mZ2dLktzd3W9j7yteacarJK+99po8PDyUl5enHTt23K6ul9prr72miIgINWjQQN98843atGljdWzhvVLcfSIVfa/Yco/9MbYqqIwxK8ngwYP1wAMPSJI2b95sdVxFKcuYlVZNfpbBHLnQNuRCcqE1yIW2IxeispAHbUcuJBdag1xoG/IgKhO50HbkQnJhSciDtiMXojKRC21X03IhedB25ELbkQtRmciFtqlpeVAiF5YGudB25EJUFvKg7ciF5EJrkAttV1NyoWO5tIIax8XFRdHR0dq3b5/+9a9/KS0tTQ0bNtRjjz2mXr166eGHH5YktW/f3hTTokUL0+vTp0+blRVKSUmRJPn4+NzeC6hgpRmvkjg4OOjuu+9WRkaGUlNTb1fXS+WNN97Q3LlzVb9+fe3YsUMdOnSwKb7w/b906ZKysrLMHo6FirpX3Nzc1LBhQ128eFGnT5/W/fffX2ych4fHLbeuqmiVNWbWuOeee/TTTz/dcfdZadXkZxnMkQttQy4kF5aEXGg7ciEqE3nQduRCcmFJyIW2IQ+ispELbUcuJBfeCnnQduRCVDZyoe1qUi4kD9qOXGg7ciEqG7nQNjUpD0rkwtIgF9qOXIjKRB60HbmQXFgScqHtalIuZMIHyqRbt27q1q2b2bGsrCz99NNPcnR0VK9evUzH3d3d1bp1ax0/flzx8fFF3uDx8fGSpI4dO97ejlcSW8bLGhcuXJCkIh/MleUvf/mL/v73v6tevXrasWOHOnXqZHMbbdu2Vd26dZWbm6v4+Pgix6W4e6Vjx46KiYlRfHy8+vXrZ3VcZarsMSvJnXqflRbPMvwRudA25ELrkAvJhSUhF6KqIA/ajlxoHXIhufBWyIOoSsiFtiMXWqcm5cLKHq+S3Kn3WGnxLMMfkQttd6fnwsp+rle3PChV/piVpKrdYxK5EFULudA2d3oelCr/uU4uJBfebjzLcDPyoO3IhdYhF5ILS1LTcqF9ubQC3GThwoW6cuWKhg0bpsaNG5uVDRo0SJK0cuVKi7js7GzTdj+DBw++/R2tIm41Xrdy8OBBHT16VJL00EMP3a7u2WTq1Kn65JNPVK9ePX3zzTfq3LlzqdqpXbu2aYuyou6V//73v9q7d6+k/91ThQp/X7VqlQoKCszKCgoKtHr1aklV5x6rCmN2K2fOnNH3338v6c67z8qCZxlKQi60DbnQErnQduTCisWzDLdCHrQdudASudB2NSUXkgdRHZALbUcutFRTcmFVGK9bqWp5UCIXonogF9ruTsmFVeG5Xp3yoFQ1xuxWyIVF41mGkpALbXOn5EGpajzXyYXkworAswy3Qh60HbnQErnQduTCilXhzzMjaqRRo0YZJRlnzJhRbJ158+YZ27Zta3z++ectyo4fP25MT083O1ZQUGCMiIgw1qpVy9iwYUPj2bNnLeLOnDljrFu3rlGSccmSJabj169fNz7//PNGScbOnTsbCwoKynB15a8yxisnJ8c4f/58Y2ZmpkV7u3btMvr4+BglGbt3717Kqypfb7/9tlGSsX79+sYffvjBqphbjdmPP/5otLOzMzo4OBi3bdtmOp6Tk2MMDAw0SjIOGTLEIi4nJ8fYpEkToyTj9OnTzcqmT59ulGT09vY25ubm2niF5a+qjNlnn31mPH/+vMXxQ4cOGTt06GCUZGzVqpXx999/t+Hqbo/yHrM/evfdd42SjKNHj75lver6LIM5cqFtyIUlqyrPdXIhufCPyIUoCnnQduTCklWV5zq58M7NheRBlCdyoe3IhSWrKs/16pILq8p4VZc8aDSSC1G+yIW2IxfeWlV5rleXPGg0Vp0xIxf+D7mwZiEX2oY8WLKq8lwnF5IL/4hciKKQB21HLixZVXmukwvJhX90J+RCO6PRaLScBoI7zcGDBxUSEmL6/cSJE8rIyJC3t7eaNm1qOh4d/f+1d2+xWdf3A8c/T1faQjFMbFEBe5gY3aDGA6iJxDYqRJZsRreIxIVu80LjosazJh5v1FQ8XKiJV4jjCjPJtixi1BS13ogLZmFxcWrrDmo8zsWJqPD5X5jW9v8U5VB5fo+/1ytpIs/v+T39/L78+L29+ebZGIcffnhERNx6661x2223RW9vb2zevHnC5913331xzTXXxAknnBAdHR2RmfHiiy/GG2+8EXPmzInHH398t19D8+ijj8aqVati586dcfLJJ0dXV1ds2bIlXn/99Tj00ENjaGgoFixYMPWLsBeKsF7/+c9/4uCDD47m5uY4/vjjo6OjI7744ot45ZVXYtu2bRER0dPTE0888cTYDLXyhz/8Ic4+++yIiFi8eHEsXLhw0ve1tbXFmjVrxv78dWsWEXHvvffGlVdeGZVKJXp7e2POnDnx3HPPxVtvvRVHH310DA0NRVtbW9V5zz//fCxfvjw++eSTWLRoUSxatCi2bdsW27Zti9bW1njqqafilFNOmZqL30dFWrPvf//78fHHH8dxxx0X3d3d0dDQEK+99lps3bo1du3aFR0dHbFp06b44Q9/OHULsA++jTV76623JuxW/de//hX//ve/o729PX7wgx+Mvf7ggw9W/Ruth2cZExXh2T6qHu6fIqyXFmphhBaOp4XsjyI810fVy71ThDXTQi2M0MJROsj+KsJzfVS93D9FWDMt/O62sEjrVQ8djNBC9l8Rnuuj6uX+KcKa1UsLi/Rcjyh+ByOKtWZaqIVlUYTn+qh6uH+KsF710sGIYj3XI7RQC7WQakV4ro+ql3unCGumhVoYoYXjlbqFU7JthMIbHBzMiPjGn+Hh4bFzRncp9fb2Vn3eCy+8kCtXrszu7u6cMWNGtra2Zk9PT95000354YcffuM8L774Yp577rnZ3t6eTU1N2dnZmb/5zW/y7bffnrqL3g9FWK8dO3bkTTfdlCtWrMju7u486KCDsrGxMdvb2/PMM8/Mhx56KHfs2PHtLMBeWrt27R6tV2dn54Tzvm7NRj355JN51lln5ezZs7O5uTmPOuqovOGGGybdtTre3//+91y9enXOnTs3p02blnPnzs3Vq1fnq6++OgVXvP+KtGYDAwN59tln54IFC3LWrFnZ2NiYs2fPzqVLl+Zdd931jWt9oHwbazY8PLxHnzk4ODjpTEV/ljFREZ7t4xX9/inCemnhl7Swc8J5WqiF7JsiPNfHq4d7pwhrpoVf0sLOCeeVtYU6yP4qwnN9vHq4f4qwZlr4pe9iC4u0XvXQwUwtZP8V4bk+Xj3cP0VYs3ppYZGe66OK3MHMYq2ZFmphWRThuT5e0e+fIqxXvXQws1jP9VFaqIWjtJDMYjzXx6uHe6cIa6aFX9LCzgnnaWE5W+gbPgAAAAAAAAAAAAAAAAqmodYDAAAAAAAAAAAAAAAAMJENHwAAAAAAAAAAAAAAAAVjwwcAAAAAAAAAAAAAAEDB2PABAAAAAAAAAAAAAABQMDZ8AAAAAAAAAAAAAAAAFIwNHwAAAAAAAAAAAAAAAAVjwwcAAAAAAAAAAAAAAEDB2PABAAAAAAAAAAAAAABQMDZ8AAAAAAAAAAAAAAAAFIwNHwAAAAAAAAAAAAAAAAVjwwcAAAAAAAAAAAAAAEDB2PABAAAAAAAAAAAAAABQMDZ8ADEyMhKVSiW6urpqPQoA1IQWAlB2WghAmekgAGWnhQCUnRYCUHZaCMVmwweURFdXV1QqlRgZGan1KAdMpVKJSqVS6zEAKAgtBKDstBCAMtNBAMpOCwEoOy0EoOy0EOpXY60HAGpv3rx58fLLL8e0adNqPQoA1IQWAlB2WghAmekgAGWnhQCUnRYCUHZaCMVmwwcQ06ZNi2OOOabWYwBAzWghAGWnhQCUmQ4CUHZaCEDZaSEAZaeFUGwNtR4A+HY9/PDDUalU4o033oiIiO7u7rGvqapUKrF58+YYGRmJSqUSXV1dVeeP/0qr9evXx0knnRQzZ86M9vb2WLVqVfzjH/+IiIjMjPvvvz+OO+64aG1tjba2tvjlL38Z77zzzm5ne+WVV+Kiiy6KI488MlpaWmLWrFlx2mmnxfr16yd9/0cffRQ33nhj9PT0RGtrazQ3N8fcuXPj1FNPjZtvvjk+//zziIi49dZbJ3wN1/jrnewryfZ2jr6+vrG1e+aZZ2L58uUxe/bsmDFjRpx00knx29/+drfXDMCBp4VaCFB2WqiFAGWmgzoIUHZaqIUAZaeFWghQdlqohXwHJPCd9txzz2V/f3+2trZmROTPfvaz7O/vH/t5+eWXc3h4OCMiOzs7q86PiIyIvP7667OxsTFPP/30/PnPf54dHR0ZEXnEEUfkBx98kOedd162tLTkWWedleecc07OmTMnIyKPPfbY3LFjR9XnbtiwIVtaWjIi8phjjslzzjknTz/99LE5f/WrX014///+979ctGhRRkS2t7fnT37ykzz//POzr68vDzvssIyI/PDDDzMzc+PGjdnf3z82+/jr7e/vz3fffXef58jM7O3tzYjIyy67LBsaGvJHP/pRnn/++XnaaadlQ0NDRkReeeWV+/cXB8CU0UItBCg7LdRCgDLTQR0EKDst1EKAstNCLQQoOy3UQuqfDR9QEp2dnRkROTw8XHVsT2J9yCGH5EsvvTT2+ieffJJLly7NiMienp488sgjc2RkZOz4u+++mwsWLMiIyPXr10/4zL/85S/Z3NycLS0t+bvf/W7CsZGRkezp6cmIyHXr1o29vm7duoyIXLFiRX722WcTztm5c2du3ry56n8KRmffnX2ZI/OrWEdE3n777ROObd68OadPn54RkZs2bdrt7wbgwNPCaloIUC5aWE0LAcpDB6vpIEC5aGE1LQQoFy2spoUA5aKF1bSQemHDB5TE/sb6gQceqDr22GOPjR3/05/+VHX87rvvnnSH48qVKzMics2aNZPO+sILL2RE5Iknnjj22sDAQEZE3nPPPd9wpdWz786+zJH5VayPP/74Sc+76qqrMiJy2bJlezwrAN8+LaymhQDlooXVtBCgPHSwmg4ClIsWVtNCgHLRwmpaCFAuWlhNC6kXDQGwB3784x9XvXbUUUdFRERjY2MsX758t8fffPPNsdd27doVjz/+eERErFy5ctLftXjx4pg5c2Zs3bo1Pv3004iIWLJkSUREDAwMxCOPPBIffPDBflzNvs8x3urVqyc9r7+/PyIihoaGYufOnfs1JwDFoYVaCFB2WqiFAGWmgzoIUHZaqIUAZaeFWghQdlqohdSODR/AHuno6Kh6bebMmRERcfjhh0djY2PV8YMOOigiYkLo3n///fjvf/8bERFHHHFEVCqVqp+Ghob4+OOPY9euXfH+++9HRERfX19cd9118c4770R/f3+0tbXF0UcfHb/+9a/j97//fezatWuvrmdf5xivu7t70s8efX379u2TngdAfdJCLQQoOy3UQoAy00EdBCg7LdRCgLLTQi0EKDst1EJqp/pfF8AkGhp2vz/s6479f+OjOrqL8es0NzeP/fedd94ZF198cfzxj3+MoaGheP7552Pt2rWxdu3aWLJkSQwODkZra+u3PsfeyMx9Og+A4tFCLQQoOy3UQoAy00EdBCg7LdRCgLLTQi0EKDst1EJqx4YP4IBqa2uL6dOnx/bt22PNmjXR1ta2V+d3dXXFpZdeGpdeemlERGzZsiV+8YtfxJYtW2JgYCBuu+22AzJHRMTw8PCkr4+MjEREREtLSxxyyCF7/bkAfLdpIQBlp4UAlJkOAlB2WghA2WkhAGWnhbD39nxLFVDXmpqaIiLiiy++qOkc3/ve92LZsmUREbFhw4b9/rwlS5bEJZdcEhERL7300oRj06ZNi4jJr3kq5li/fv2krz/yyCMREbF06dJJv6YMgNrQwqmfQwsB6osWTv0cWghQP3Rw6ufQQYD6ooVTP4cWAtQXLZz6ObQQoL5o4dTPoYUcKDZ8QEnMnz8/IiL++te/1niSiFtuuSWamprimmuuiXXr1k34aqxR27Zti8cee2zszxs3boxnn3226r2ff/55bNq0KSIiOjs7Jxz7pmvelznG+/Of/xwDAwMTXhsaGooHHnggIiKuuOKKSc8DoDa0cGrmGE8LAeqLFk7NHONpIUD90MGpmWM8HQSoL1o4NXOMp4UA9UULp2aO8bQQoL5o4dTMMZ4WcsAkUAr3339/RkTOnDkzzz333LzwwgvzwgsvzL/97W85PDycEZGdnZ1V50VE7u5R8XXnZWYODg5mRGRvb2/VsQ0bNuSMGTMyInL+/Pm5fPnyvOCCC3LFihU5f/78jIhcuXLl2Psvv/zyjIhsa2vLZcuW5QUXXJA//elPc86cORkROW/evPznP/854XdcffXVY+ecd955Y9f83nvv7fMcmZm9vb0ZEXnZZZdlQ0NDLly4MFetWpW9vb3Z0NCQEZGXX3755H8RANSMFmohQNlpoRYClJkO6iBA2WmhFgKUnRZqIUDZaaEWUr9s+ICS2LlzZ95xxx25cOHCbGlpGYvw4OBgTWI9ev4VV1yRixYtytbW1mxpacnOzs7s6+vLO++8M1999dWx927dujWvv/76XLp0ac6bNy+bmpqyvb09TzzxxLz99tsnBHjU9u3b89prr80FCxZkU1PT2LUMDw/v8xyZX8V6cHAwn3766TzjjDNy1qxZOX369Fy8eHE+/PDDk14vALWlhVoIUHZaqIUAZaaDOghQdlqohQBlp4VaCFB2WqiF1K9KZmYAsMf6+vrimWeeicHBwejr66v1OABwwGkhAGWnhQCUmQ4CUHZaCEDZaSEAZaeFHGgNtR4AAAAAAAAAAAAAAACAiWz4AAAAAAAAAAAAAAAAKBgbPgAAAAAAAAAAAAAAAAqmkplZ6yEAAAAAAAAAAAAAAAD4im/4AAAAAAAAAAAAAAAAKBgbPgAAAAAAAAAAAAAAAArGhg8AAAAAAAAAAAAAAICCseEDAAAAAAAAAAAAAACgYGz4AAAAAAAAAAAAAAAAKBgbPgAAAAAAAAAAAAAAAArGhg8AAAAAAAAAAAAAAICCseEDAAAAAAAAAAAAAACgYGz4AAAAAAAAAAAAAAAAKBgbPgAAAAAAAAAAAAAAAArGhg8AAAAAAAAAAAAAAICCseEDAAAAAAAAAAAAAACgYGz4AAAAAAAAAAAAAAAAKBgbPgAAAAAAAAAAAAAAAArGhg8AAAAAAAAAAAAAAICC+T8gjtWlcK98NQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "********************************************************************************\n", + "********************************************************************************\n", + "* Analysis Summary\n", + "********************************************************************************\n", + "1 Points (+:1, -:0), 1 Boxes (+:1, -:0)\n", + "Parameters = {beta[0, 1.833): 2.5e-322, epsilon[0, 1.3333333333333335): 0.628988076607717, gamma[0, 1.125): 0.06033634263731719, alpha[0, 1.006): 0.012167379326968451, lambda[120479.0, 120481.0): 120480.75931891351, mu[0, 1.012048): 0.7484558002587655, City[0.0, 2.0): 1.3875134480164828}\n", + " # {beta[0, 1.833): 2.5e-322, epsilon[0, 1.3333333333333335): 0.628988076607717, gamma[0, 1.125): 0.06033634263731719, alpha[0, 1.006): 0.012167379326968451, lambda[120479.0, 120481.0): 120480.75931891351, mu[0, 1.012048): 0.7484558002587655, City[0.0, 2.0): 1.3875134480164828}\n", + " City Deceased Exposed Infected Recovered Susceptible \\\n", + "time \n", + "0.0 1.387513 0.000000 0.000000e+00 1.000000 0.000000 99.0 \n", + "1.0 1.387513 0.012056 1.976263e-323 0.928892 0.060448 99.0 \n", + "2.0 1.387513 0.024112 3.952525e-323 0.857784 0.120897 99.0 \n", + "3.0 1.387513 0.036167 5.928788e-323 0.786676 0.181345 99.0 \n", + "4.0 1.387513 0.048223 7.905050e-323 0.715568 0.241794 99.0 \n", + "5.0 1.387513 0.060279 9.881313e-323 0.644459 0.302242 99.0 \n", + "6.0 1.387513 0.072335 1.185758e-322 0.573351 0.362691 99.0 \n", + "7.0 1.387513 0.084391 1.383384e-322 0.502243 0.423139 99.0 \n", + "8.0 1.387513 0.096446 1.581010e-322 0.431135 0.483587 99.0 \n", + "9.0 1.387513 0.108502 1.778636e-322 0.360027 0.544036 99.0 \n", + "10.0 1.387513 0.120558 1.630417e-322 0.288919 0.604484 99.0 \n", + "11.0 1.387513 0.124025 2.420922e-322 0.266583 0.623353 99.0 \n", + "12.0 1.387513 0.127493 3.211427e-322 0.244246 0.642222 99.0 \n", + "13.0 1.387513 0.130960 4.001932e-322 0.221910 0.661091 99.0 \n", + "14.0 1.387513 0.134427 4.792437e-322 0.199574 0.679960 99.0 \n", + "15.0 1.387513 0.137895 5.582942e-322 0.177237 0.698829 99.0 \n", + "16.0 1.387513 0.141362 6.373447e-322 0.154901 0.717698 99.0 \n", + "17.0 1.387513 0.144830 7.163952e-322 0.132565 0.736567 99.0 \n", + "18.0 1.387513 0.148297 7.954457e-322 0.110229 0.755435 99.0 \n", + "19.0 1.387513 0.151765 8.744962e-322 0.087892 0.774304 99.0 \n", + "20.0 1.387513 0.155232 9.387247e-322 0.065556 0.793173 99.0 \n", + "\n", + " Total_population alpha assume_Deceased assume_Exposed \\\n", + "time \n", + "0.0 100.0 0.012167 None None \n", + "1.0 100.0 0.012167 None None \n", + "2.0 100.0 0.012167 None None \n", + "3.0 100.0 0.012167 None None \n", + "4.0 100.0 0.012167 None None \n", + "5.0 100.0 0.012167 None None \n", + "6.0 100.0 0.012167 None None \n", + "7.0 100.0 0.012167 None None \n", + "8.0 100.0 0.012167 None None \n", + "9.0 100.0 0.012167 None None \n", + "10.0 100.0 0.012167 None None \n", + "11.0 100.0 0.012167 None None \n", + "12.0 100.0 0.012167 None None \n", + "13.0 100.0 0.012167 None None \n", + "14.0 100.0 0.012167 None None \n", + "15.0 100.0 0.012167 None None \n", + "16.0 100.0 0.012167 None None \n", + "17.0 100.0 0.012167 None None \n", + "18.0 100.0 0.012167 None None \n", + "19.0 100.0 0.012167 None None \n", + "20.0 100.0 0.012167 None None \n", + "\n", + " assume_Infected assume_Recovered assume_Susceptible beta \\\n", + "time \n", + "0.0 None None None 2.519735e-322 \n", + "1.0 None None None 2.519735e-322 \n", + "2.0 None None None 2.519735e-322 \n", + "3.0 None None None 2.519735e-322 \n", + "4.0 None None None 2.519735e-322 \n", + "5.0 None None None 2.519735e-322 \n", + "6.0 None None None 2.519735e-322 \n", + "7.0 None None None 2.519735e-322 \n", + "8.0 None None None 2.519735e-322 \n", + "9.0 None None None 2.519735e-322 \n", + "10.0 None None None 2.519735e-322 \n", + "11.0 None None None 2.519735e-322 \n", + "12.0 None None None 2.519735e-322 \n", + "13.0 None None None 2.519735e-322 \n", + "14.0 None None None 2.519735e-322 \n", + "15.0 None None None 2.519735e-322 \n", + "16.0 None None None 2.519735e-322 \n", + "17.0 None None None 2.519735e-322 \n", + "18.0 None None None 2.519735e-322 \n", + "19.0 None None None 2.519735e-322 \n", + "20.0 None None None 2.519735e-322 \n", + "\n", + " epsilon gamma id label lambda mu \n", + "time \n", + "0.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "1.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "2.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "3.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "4.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "5.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "6.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "7.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "8.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "9.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "10.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "11.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "12.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "13.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "14.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "15.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "16.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "17.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "18.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "19.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + "20.0 0.628988 0.060336 0 true 120480.759319 0.748456 \n", + " \n", + "********************************************************************************\n", + " \n" + ] + } + ], + "source": [ + "# Feb 2024 Hackathon Scenario 3 (SEIRD)\n", + "\n", + "EXAMPLE_DIR = os.path.join(RESOURCES, \"amr\", \"petrinet\", \"mira\")\n", + "MODEL_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"models\", \"scenario_3_seird.json\"\n", + ")\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"requests\", \"scenario_3_seird_request.json\"\n", + ")\n", + "\n", + "\n", + "N = \"Total_population\"\n", + "STATES = [\"Susceptible\", \"Exposed\", \"Infected\", \"Recovered\", \"Deceased\"]\n", + "COMPARTMENTS = STATES + [N]\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " funman_request.structure_parameters[0].schedules[0] = EncodingSchedule(timepoints=list(range(0, 30, 10)))\n", + "\n", + " # funman_request.config.substitute_subformulas = True\n", + " # funman_request.config.use_transition_symbols = True\n", + " funman_request.config.use_compartmental_constraints=True\n", + " funman_request.config.save_smtlib=\"./out\"\n", + " funman_request.config.tolerance = 0.001\n", + " funman_request.config.verbosity = 10\n", + " funman_request.config.dreal_log_level = \"info\"\n", + "\n", + " factor = 1\n", + " to_synthesize = [\"beta\"]\n", + " for p in [po for po in funman_request.parameters if po.name not in []]:\n", + " param = funman_request.parameter(p.name)\n", + " param.interval.lb = max(p.interval.lb-factor, 0)\n", + " param.interval.ub = min(p.interval.ub+factor, max(1, p.interval.ub+factor))\n", + " # param.label = \"all\" if p.name in to_synthesize else \"any\"\n", + " print(param)\n", + "\n", + " # Susceptible is decreasing, dS/dt <= 0, S_{t+1} - S_t <= 0\n", + " c1 = LinearConstraint(name=\"c1\", additive_bounds=Interval(ub=0, closed_upper_bounds=True), variables=[\"Susceptible\"], derivative=True)\n", + " funman_request.constraints.append(c1)\n", + "\n", + " # # R is increasing, dR/dt >= 0, R_{t+1} - R_t >= 0\n", + " c2 = LinearConstraint(name=\"c2\", additive_bounds=Interval(lb=0), variables=[\"Recovered\"], derivative=True)\n", + " funman_request.constraints.append(c2)\n", + "\n", + " # # D is increasing, dD/dt >= 0, dD/dt >= 0, D_{t+1} - D_t >= 0\n", + " c3 = LinearConstraint(name=\"c3\", additive_bounds=Interval(lb=0), variables=[\"Deceased\"], derivative=True)\n", + " funman_request.constraints.append(c3)\n", + "\n", + " # # Population size maintained\n", + " # c4 = LinearConstraint(name=\"compartment\", additive_bounds=Interval(lb=0, ub=0, closed_upper_bound=True), variables=COMPARTMENTS, weights=[1, 1, 1, 1, 1, -1])\n", + " # funman_request.constraints.append(c4)\n", + "\n", + " # # Infected peak\n", + " # c5 = LinearConstraint(name=\"Infected_peak\", additive_bounds=Interval(lb=50), variables=[\"Infected\"], timepoints=Interval(lb=40, ub=40, closed_upper_bound=True))\n", + " # funman_request.constraints.append(c5)\n", + "\n", + " for sv in STATES:\n", + " funman_request.constraints.append(StateVariableConstraint(name=f\"{sv}_bounds\", variable=sv, interval=Interval(lb=0, ub=100, closed_upper_bound=True)))\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SEIRD demo\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Automatic initialization of gaol... done\n" + ] + } + ], + "source": [ + "# Feb 2024 Hackathon Scenario 3.3 (SEIRD)\n", + "\n", + "EXAMPLE_DIR = os.path.join(RESOURCES, \"amr\", \"petrinet\", \"mira\")\n", + "MODEL_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"models\", \"scenario_3_seird_stratified.json\"\n", + ")\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"requests\", \"scenario_3_seird_request_stratified.json\"\n", + ")\n", + "\n", + "\n", + "N = \"Total_population\"\n", + "STATES_Vax = [\"Susceptible_Vax\", \"Exposed_Vax\", \"Infected_Vax\", \"Recovered_Vax\", \"Deceased_Vax\"]\n", + "STATES_UnVax = [\"Susceptible_UnVax\", \"Exposed_UnVax\", \"Infected_UnVax\", \"Recovered_UnVax\", \"Deceased_UnVax\"]\n", + "STATES = STATES_UnVax + STATES_Vax\n", + "COMPARTMENTS = STATES_Vax + STATES_UnVax + [N]\n", + "MAX_TIME=100\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " funman_request.structure_parameters[0].schedules[0] = EncodingSchedule(timepoints=list(range(0, MAX_TIME, 10)))\n", + "\n", + " # funman_request.config.substitute_subformulas = True\n", + " # funman_request.config.use_transition_symbols = True\n", + " funman_request.config.use_compartmental_constraints=False\n", + " funman_request.config.save_smtlib=\"./out\"\n", + " funman_request.config.tolerance = 0.001\n", + " # funman_request.config.verbosity = 5\n", + " # funman_request.config.dreal_log_level = \"trace\"\n", + "\n", + " factor = .1\n", + " to_synthesize = [\"beta_Vax\", \"beta_UnVax\"]\n", + " for p in [po for po in funman_request.parameters if po.name not in [\"t_mask\", \"mask\"]]:\n", + " param = funman_request.parameter(p.name)\n", + " \n", + " param.interval.lb = max(p.interval.lb-factor, min(0, p.interval.lb))\n", + " param.interval.ub = min(p.interval.ub+factor, max(1, p.interval.ub))\n", + " # # param.label = \"all\" if p.name in to_synthesize else \"any\"\n", + "\n", + " param = funman_request.parameter(\"t_mask\")\n", + " param.interval.lb = 20\n", + " param.interval.ub = 20\n", + "\n", + " # dVax/dt > 0 -(Vax_{t+1}-Vax_t) < 0\n", + " inc_vax = LinearConstraint(name=\"inc_vax\", additive_bounds=Interval(ub=0), variables=STATES_Vax, derivative=True, weights=[-1]*len(STATES_Vax))\n", + " funman_request.constraints.append(inc_vax)\n", + "\n", + " # dUnVax/dt < 0 (UnVax_{t+1}-UnVax_t) < 0\n", + " dec_unvax = LinearConstraint(name=\"dec_unvax\", additive_bounds=Interval(ub=0), variables=STATES_UnVax, derivative=True)\n", + " funman_request.constraints.append(dec_unvax)\n", + "\n", + " # Susceptible is decreasing, dS/dt =< 0, S_{t+1} - S_t =< 0\n", + " c1 = LinearConstraint(name=\"c1\", additive_bounds=Interval(ub=0, closed_upper_bound=True), variables=[\"Susceptible_Vax\", \"Susceptible_UnVax\"], derivative=True, timepoints=Interval(lb=0))\n", + " funman_request.constraints.append(c1)\n", + "\n", + " # # R is increasing, dR/dt >= 0\n", + " c2 = LinearConstraint(name=\"c2\", additive_bounds=Interval(lb=0), variables=[\"Recovered_Vax\", \"Recovered_UnVax\"], derivative=True, timepoints=Interval(lb=0))\n", + " funman_request.constraints.append(c2)\n", + "\n", + " # # D is increasing, dD/dt >= 0\n", + " c3 = LinearConstraint(name=\"c3\", additive_bounds=Interval(lb=0), variables=[\"Deceased_Vax\", \"Deceased_UnVax\"], derivative=True, timepoints=Interval(lb=0))\n", + " funman_request.constraints.append(c3)\n", + " \n", + "\n", + " # Population size maintained\n", + " c4 = LinearConstraint(name=\"compartment\", additive_bounds=Interval(lb=0, ub=0, closed_upper_bound=True), variables=COMPARTMENTS, weights=[1]*len(STATES) + [-1])\n", + " funman_request.constraints.append(c4)\n", + "\n", + " # # Infected peak\n", + " # c5 = LinearConstraint(name=\"Infected_peak\", additive_bounds=Interval(lb=10), variables=[\"Infected_Vax\", \"Infected_UnVax\"], timepoints=Interval(lb=40, ub=40, closed_upper_bound=True))\n", + " # funman_request.constraints.append(c5)\n", + "\n", + " for sv in STATES:\n", + " funman_request.constraints.append(StateVariableConstraint(name=f\"{sv}_bounds\", variable=sv, interval=Interval(lb=0, ub=100, closed_upper_bound=True)))\n", + " \n", + "\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SEIRD demo\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Susceptible_VaxExposed_VaxInfected_VaxRecovered_VaxDeceased_VaxSusceptible_UnVaxExposed_UnVaxInfected_UnVaxRecovered_UnVaxDeceased_UnVaxTotal_population
time
0.00.0000000.0000001.0000000.0000000.00000098.0000000.0000001.0000000.0000000.000000100.0
1.02.4169510.0000000.9430610.0334420.04726494.7139140.8666370.9029800.0288770.043489100.0
2.04.8339020.0000000.8861230.0668840.09452991.4278281.7332740.8059600.0577540.086977100.0
3.07.2508530.0000000.8291840.1003260.14179388.1417432.5999110.7089400.0866320.130466100.0
4.09.6678030.0000000.7722450.1337680.18905784.8556573.4665490.6119200.1155090.173955100.0
5.012.0847540.0000000.7153070.1672100.23632181.5695714.3331860.5149000.1443860.217443100.0
6.014.5017050.0000000.6583680.2006520.28358678.2834855.1998230.4178800.1732630.260932100.0
7.016.9186560.0000000.6014300.2340940.33085074.9973996.0664600.3208600.2021400.304421100.0
8.019.3356070.0000000.5444910.2675360.37811471.7113136.9330970.2238390.2310170.347909100.0
9.021.7525580.0000000.4875520.3009780.42537868.4252287.7997340.1268190.2598950.391398100.0
10.024.1695080.0000000.4306140.3344200.47264365.1391428.6663710.0297990.2887720.434887100.0
11.025.7760210.2136760.3943680.3555360.49411863.5176058.1317080.3611950.2824690.436183100.0
12.027.3825340.4273510.3581230.3766520.51559361.8960687.5970460.6925910.2761660.437479100.0
13.028.9890470.6410270.3218780.3977690.53706860.2745317.0623831.0239870.2698640.438775100.0
14.030.5955600.8547020.2856320.4188850.55854358.6529946.5277201.3553830.2635610.440072100.0
15.032.2020731.0683780.2493870.4400010.58001857.0314585.9930571.6867790.2572590.441368100.0
16.033.8085871.2820540.2131420.4611180.60149355.4099215.4583942.0181740.2509560.442664100.0
17.035.4151001.4957290.1768960.4822340.62296853.7883844.9237312.3495700.2446530.443960100.0
18.037.0216131.7094050.1406510.5033500.64444352.1668474.3890682.6809660.2383510.445257100.0
19.038.6281261.9230800.1044060.5244670.66591850.5453103.8544053.0123620.2320480.446553100.0
20.040.2346392.1367560.0681600.5455830.68739348.9237733.3197423.3437580.2257450.447849100.0
21.041.4429262.1033670.2623880.5534220.69096146.2803194.5445843.1491790.3167840.593839100.0
22.042.6512132.0699780.4566150.5612610.69453043.6368645.7694252.9546010.4078230.739829100.0
23.043.8594992.0365890.6508420.5691000.69809840.9934096.9942662.7600230.4988620.885819100.0
24.045.0677862.0032000.8450700.5769400.70166638.3499548.2191072.5654440.5899011.031809100.0
25.046.2760731.9698111.0392970.5847790.70523435.7064999.4439482.3708660.6809401.177799100.0
26.047.4843601.9364221.2335240.5926180.70880233.06304510.6687892.1762870.7719791.323788100.0
27.048.6926471.9030331.4277520.6004570.71237030.41959011.8936301.9817090.8630171.469778100.0
28.049.9009341.8696441.6219790.6082960.71593827.77613513.1184721.7871310.9540561.615768100.0
29.051.1092211.8362551.8162060.6161350.71950625.13268014.3433131.5925521.0450951.761758100.0
30.052.3175081.8028662.0104340.6239740.72307422.48922515.5681541.3979741.1361341.907748100.0
31.052.8688132.0950521.9840970.7155920.82293621.65005214.8535681.8627391.1484271.968539100.0
32.053.4201182.3872391.9577600.8072090.92279820.81087914.1389822.3275031.1607202.029331100.0
33.053.9714232.6794251.9314230.8988261.02266019.97170613.4243972.7922681.1730122.090122100.0
34.054.5227282.9716111.9050860.9904431.12252219.13253312.7098113.2570331.1853052.150914100.0
35.055.0740333.2637971.8787491.0820601.22238418.29336011.9952253.7217981.1975982.211705100.0
36.055.6253383.5559831.8524121.1736771.32224617.45418711.2806404.1865631.2098912.272496100.0
37.056.1766433.8481691.8260751.2652951.42210816.61501410.5660544.6513281.2221832.333288100.0
38.056.7279474.1403551.7997381.3569121.52197015.7758419.8514685.1160931.2344762.394079100.0
39.057.2792524.4325411.7734011.4485291.62183214.9366689.1368835.5808581.2467692.454871100.0
40.057.8305574.7247271.7470641.5401461.72169414.0974958.4222976.0456231.2590612.515662100.0
41.058.1752584.6680132.0157091.6334951.80926912.9857968.6535125.7786531.4017852.776975100.0
42.058.5199594.6112992.2843541.7268441.89684411.8740988.8847275.5116831.5445093.038288100.0
43.058.8646604.5545852.5530001.8201921.98441910.7624009.1159425.2447131.6872333.299601100.0
44.059.2093614.4978712.8216451.9135412.0719949.6507029.3471574.9777431.8299563.560914100.0
45.059.5540624.4411573.0902902.0068902.1595708.5390039.5783724.7107741.9726803.822227100.0
46.059.8987634.3844433.3589352.1002382.2471457.4273059.8095874.4438042.1154044.083540100.0
47.060.2434644.3277283.6275812.1935872.3347206.31560710.0408024.1768342.2581284.344853100.0
48.060.5881654.2710143.8962262.2869362.4222955.20390910.2720173.9098642.4008514.606166100.0
49.060.9328664.2143004.1648712.3802842.5098704.09221010.5032323.6428952.5435754.867479100.0
50.061.2775674.1575864.4335162.4736332.5974452.98051210.7344473.3759252.6862995.128792100.0
\n", + "
" + ], + "text/plain": [ + " Susceptible_Vax Exposed_Vax Infected_Vax Recovered_Vax Deceased_Vax \\\n", + "time \n", + "0.0 0.000000 0.000000 1.000000 0.000000 0.000000 \n", + "1.0 2.416951 0.000000 0.943061 0.033442 0.047264 \n", + "2.0 4.833902 0.000000 0.886123 0.066884 0.094529 \n", + "3.0 7.250853 0.000000 0.829184 0.100326 0.141793 \n", + "4.0 9.667803 0.000000 0.772245 0.133768 0.189057 \n", + "5.0 12.084754 0.000000 0.715307 0.167210 0.236321 \n", + "6.0 14.501705 0.000000 0.658368 0.200652 0.283586 \n", + "7.0 16.918656 0.000000 0.601430 0.234094 0.330850 \n", + "8.0 19.335607 0.000000 0.544491 0.267536 0.378114 \n", + "9.0 21.752558 0.000000 0.487552 0.300978 0.425378 \n", + "10.0 24.169508 0.000000 0.430614 0.334420 0.472643 \n", + "11.0 25.776021 0.213676 0.394368 0.355536 0.494118 \n", + "12.0 27.382534 0.427351 0.358123 0.376652 0.515593 \n", + "13.0 28.989047 0.641027 0.321878 0.397769 0.537068 \n", + "14.0 30.595560 0.854702 0.285632 0.418885 0.558543 \n", + "15.0 32.202073 1.068378 0.249387 0.440001 0.580018 \n", + "16.0 33.808587 1.282054 0.213142 0.461118 0.601493 \n", + "17.0 35.415100 1.495729 0.176896 0.482234 0.622968 \n", + "18.0 37.021613 1.709405 0.140651 0.503350 0.644443 \n", + "19.0 38.628126 1.923080 0.104406 0.524467 0.665918 \n", + "20.0 40.234639 2.136756 0.068160 0.545583 0.687393 \n", + "21.0 41.442926 2.103367 0.262388 0.553422 0.690961 \n", + "22.0 42.651213 2.069978 0.456615 0.561261 0.694530 \n", + "23.0 43.859499 2.036589 0.650842 0.569100 0.698098 \n", + "24.0 45.067786 2.003200 0.845070 0.576940 0.701666 \n", + "25.0 46.276073 1.969811 1.039297 0.584779 0.705234 \n", + "26.0 47.484360 1.936422 1.233524 0.592618 0.708802 \n", + "27.0 48.692647 1.903033 1.427752 0.600457 0.712370 \n", + "28.0 49.900934 1.869644 1.621979 0.608296 0.715938 \n", + "29.0 51.109221 1.836255 1.816206 0.616135 0.719506 \n", + "30.0 52.317508 1.802866 2.010434 0.623974 0.723074 \n", + "31.0 52.868813 2.095052 1.984097 0.715592 0.822936 \n", + "32.0 53.420118 2.387239 1.957760 0.807209 0.922798 \n", + "33.0 53.971423 2.679425 1.931423 0.898826 1.022660 \n", + "34.0 54.522728 2.971611 1.905086 0.990443 1.122522 \n", + "35.0 55.074033 3.263797 1.878749 1.082060 1.222384 \n", + "36.0 55.625338 3.555983 1.852412 1.173677 1.322246 \n", + "37.0 56.176643 3.848169 1.826075 1.265295 1.422108 \n", + "38.0 56.727947 4.140355 1.799738 1.356912 1.521970 \n", + "39.0 57.279252 4.432541 1.773401 1.448529 1.621832 \n", + "40.0 57.830557 4.724727 1.747064 1.540146 1.721694 \n", + "41.0 58.175258 4.668013 2.015709 1.633495 1.809269 \n", + "42.0 58.519959 4.611299 2.284354 1.726844 1.896844 \n", + "43.0 58.864660 4.554585 2.553000 1.820192 1.984419 \n", + "44.0 59.209361 4.497871 2.821645 1.913541 2.071994 \n", + "45.0 59.554062 4.441157 3.090290 2.006890 2.159570 \n", + "46.0 59.898763 4.384443 3.358935 2.100238 2.247145 \n", + "47.0 60.243464 4.327728 3.627581 2.193587 2.334720 \n", + "48.0 60.588165 4.271014 3.896226 2.286936 2.422295 \n", + "49.0 60.932866 4.214300 4.164871 2.380284 2.509870 \n", + "50.0 61.277567 4.157586 4.433516 2.473633 2.597445 \n", + "\n", + " Susceptible_UnVax Exposed_UnVax Infected_UnVax Recovered_UnVax \\\n", + "time \n", + "0.0 98.000000 0.000000 1.000000 0.000000 \n", + "1.0 94.713914 0.866637 0.902980 0.028877 \n", + "2.0 91.427828 1.733274 0.805960 0.057754 \n", + "3.0 88.141743 2.599911 0.708940 0.086632 \n", + "4.0 84.855657 3.466549 0.611920 0.115509 \n", + "5.0 81.569571 4.333186 0.514900 0.144386 \n", + "6.0 78.283485 5.199823 0.417880 0.173263 \n", + "7.0 74.997399 6.066460 0.320860 0.202140 \n", + "8.0 71.711313 6.933097 0.223839 0.231017 \n", + "9.0 68.425228 7.799734 0.126819 0.259895 \n", + "10.0 65.139142 8.666371 0.029799 0.288772 \n", + "11.0 63.517605 8.131708 0.361195 0.282469 \n", + "12.0 61.896068 7.597046 0.692591 0.276166 \n", + "13.0 60.274531 7.062383 1.023987 0.269864 \n", + "14.0 58.652994 6.527720 1.355383 0.263561 \n", + "15.0 57.031458 5.993057 1.686779 0.257259 \n", + "16.0 55.409921 5.458394 2.018174 0.250956 \n", + "17.0 53.788384 4.923731 2.349570 0.244653 \n", + "18.0 52.166847 4.389068 2.680966 0.238351 \n", + "19.0 50.545310 3.854405 3.012362 0.232048 \n", + "20.0 48.923773 3.319742 3.343758 0.225745 \n", + "21.0 46.280319 4.544584 3.149179 0.316784 \n", + "22.0 43.636864 5.769425 2.954601 0.407823 \n", + "23.0 40.993409 6.994266 2.760023 0.498862 \n", + "24.0 38.349954 8.219107 2.565444 0.589901 \n", + "25.0 35.706499 9.443948 2.370866 0.680940 \n", + "26.0 33.063045 10.668789 2.176287 0.771979 \n", + "27.0 30.419590 11.893630 1.981709 0.863017 \n", + "28.0 27.776135 13.118472 1.787131 0.954056 \n", + "29.0 25.132680 14.343313 1.592552 1.045095 \n", + "30.0 22.489225 15.568154 1.397974 1.136134 \n", + "31.0 21.650052 14.853568 1.862739 1.148427 \n", + "32.0 20.810879 14.138982 2.327503 1.160720 \n", + "33.0 19.971706 13.424397 2.792268 1.173012 \n", + "34.0 19.132533 12.709811 3.257033 1.185305 \n", + "35.0 18.293360 11.995225 3.721798 1.197598 \n", + "36.0 17.454187 11.280640 4.186563 1.209891 \n", + "37.0 16.615014 10.566054 4.651328 1.222183 \n", + "38.0 15.775841 9.851468 5.116093 1.234476 \n", + "39.0 14.936668 9.136883 5.580858 1.246769 \n", + "40.0 14.097495 8.422297 6.045623 1.259061 \n", + "41.0 12.985796 8.653512 5.778653 1.401785 \n", + "42.0 11.874098 8.884727 5.511683 1.544509 \n", + "43.0 10.762400 9.115942 5.244713 1.687233 \n", + "44.0 9.650702 9.347157 4.977743 1.829956 \n", + "45.0 8.539003 9.578372 4.710774 1.972680 \n", + "46.0 7.427305 9.809587 4.443804 2.115404 \n", + "47.0 6.315607 10.040802 4.176834 2.258128 \n", + "48.0 5.203909 10.272017 3.909864 2.400851 \n", + "49.0 4.092210 10.503232 3.642895 2.543575 \n", + "50.0 2.980512 10.734447 3.375925 2.686299 \n", + "\n", + " Deceased_UnVax Total_population \n", + "time \n", + "0.0 0.000000 100.0 \n", + "1.0 0.043489 100.0 \n", + "2.0 0.086977 100.0 \n", + "3.0 0.130466 100.0 \n", + "4.0 0.173955 100.0 \n", + "5.0 0.217443 100.0 \n", + "6.0 0.260932 100.0 \n", + "7.0 0.304421 100.0 \n", + "8.0 0.347909 100.0 \n", + "9.0 0.391398 100.0 \n", + "10.0 0.434887 100.0 \n", + "11.0 0.436183 100.0 \n", + "12.0 0.437479 100.0 \n", + "13.0 0.438775 100.0 \n", + "14.0 0.440072 100.0 \n", + "15.0 0.441368 100.0 \n", + "16.0 0.442664 100.0 \n", + "17.0 0.443960 100.0 \n", + "18.0 0.445257 100.0 \n", + "19.0 0.446553 100.0 \n", + "20.0 0.447849 100.0 \n", + "21.0 0.593839 100.0 \n", + "22.0 0.739829 100.0 \n", + "23.0 0.885819 100.0 \n", + "24.0 1.031809 100.0 \n", + "25.0 1.177799 100.0 \n", + "26.0 1.323788 100.0 \n", + "27.0 1.469778 100.0 \n", + "28.0 1.615768 100.0 \n", + "29.0 1.761758 100.0 \n", + "30.0 1.907748 100.0 \n", + "31.0 1.968539 100.0 \n", + "32.0 2.029331 100.0 \n", + "33.0 2.090122 100.0 \n", + "34.0 2.150914 100.0 \n", + "35.0 2.211705 100.0 \n", + "36.0 2.272496 100.0 \n", + "37.0 2.333288 100.0 \n", + "38.0 2.394079 100.0 \n", + "39.0 2.454871 100.0 \n", + "40.0 2.515662 100.0 \n", + "41.0 2.776975 100.0 \n", + "42.0 3.038288 100.0 \n", + "43.0 3.299601 100.0 \n", + "44.0 3.560914 100.0 \n", + "45.0 3.822227 100.0 \n", + "46.0 4.083540 100.0 \n", + "47.0 4.344853 100.0 \n", + "48.0 4.606166 100.0 \n", + "49.0 4.867479 100.0 \n", + "50.0 5.128792 100.0 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results_unconstrained_point.parameter_space.points()[0]\n", + "df= results_unconstrained_point.dataframe(\n", + " results_unconstrained_point.parameter_space.points()\n", + ")\n", + "df[COMPARTMENTS]\n", + "# df[\"S\"]+df[\"E\"]+df[\"I\"]+df[\"D\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((solve_step_0 & assume_Deceased_bounds) & assume_Recovered_bounds) & assume_Infected_bounds) & assume_Exposed_bounds) & assume_Susceptible_bounds) & assume_compartment) & disj1095) & (alpha <= 10060000000000001/10000000000000000)) & (epsilon <= 2666666666666667/2000000000000000)) & solve_step_2) & solve_step_1) & disj1109) & assume_c3_20) & assume_c2_20) & disj1129) & disj1132) & (beta < 6823503167783207/25000000000000000)) & (gamma < 1/512)) & ((conj1471 | (! assume_Infected_bounds)) | (! disj1092))) & (disj1092 | (! conj1474))) & ((conj1472 | (! assume_Susceptible_bounds)) | (! disj1093))) & (disj1093 | (! conj1474))) & ((conj1474 | (! solve_step_0)) | (! disj1095))) & ((Deceased_0 = 0.0) | (! conj1474))) & ((Recovered_0 = 0.0) | (! conj1474))) & ((Exposed_0 = 0.0) | (! conj1474))) & (((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Infected_0 < 0.0) | (Susceptible_0 < 0.0)) | (alpha < -99399999999999999/100000000000000000)) | (gamma < -7/8)) | (epsilon < -33333333333333331/50000000000000000)) | (beta < -2087499999999999/12500000000000000)) | (Deceased_10 = 0.0)) | (Deceased_10 < 0.0)) | (Recovered_10 < 0.0)) | (Infected_10 < 0.0)) | (Exposed_10 < 0.0)) | (Susceptible_10 < 0.0)) | (((((((-1.0 * Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) < 0.0)) | (Deceased_20 < 0.0)) | (Recovered_20 < 0.0)) | (Infected_20 < 0.0)) | (Exposed_20 < 0.0)) | (Susceptible_20 < 0.0)) | (((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20) + Susceptible_20) < 0.0)) | (gamma < 0.0)) | (beta < 27081256023150169/100000000000000000)) | (! (Deceased_0 = 0.0))) | (! (Recovered_0 = 0.0))) | (! (Exposed_0 = 0.0))) | (! (Infected_0 <= 100.0))) | (! (Susceptible_0 <= 100.0))) | (! (Total_population_0 = 100.0))) | (! (Infected_0 = 1.0))) | (! (Susceptible_0 = 99.0))) | (! (alpha <= 10060000000000001/10000000000000000))) | (! (gamma <= 9/8))) | (! (epsilon <= 2666666666666667/2000000000000000))) | (! (beta <= 9165000000000001/5000000000000000))) | (! (Deceased_10 <= 100.0))) | (! (Recovered_10 <= 100.0))) | (! (Infected_10 <= 100.0))) | (! (Exposed_10 <= 100.0))) | (! (Susceptible_10 <= 100.0))) | (! (((((((-1.0 * Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) <= 0.0))) | (! (Total_population_10 = Total_population_0))) | (! (Deceased_10 = (Deceased_0 + (10.0 * (Infected_0 * alpha)))))) | (! (Recovered_10 = (Recovered_0 + (10.0 * (Infected_0 * gamma)))))) | (! (Exposed_10 = (Exposed_0 + (10.0 * (((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta) - (Exposed_0 * epsilon))))))) | (! (Infected_10 = (Infected_0 + (10.0 * (((Exposed_0 * epsilon) - (Infected_0 * alpha)) - (Infected_0 * gamma))))))) | (! (Susceptible_10 = (Susceptible_0 - (10.0 * ((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta)))))) | (! (Deceased_20 <= 100.0))) | (! (Recovered_20 <= 100.0))) | (! (Infected_20 <= 100.0))) | (! (Exposed_20 <= 100.0))) | (! (Susceptible_20 <= 100.0))) | (! (((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20) + Susceptible_20) <= 0.0))) | (! ((10000000000000001/100000000000000000 * (Deceased_20 - Deceased_30)) < 0.0))) | (! ((10000000000000001/100000000000000000 * (Recovered_20 - Recovered_30)) < 0.0))) | (! (Total_population_20 = Total_population_10))) | (! (Deceased_20 = (Deceased_10 + (10.0 * (alpha * Infected_10)))))) | (! (Recovered_20 = (Recovered_10 + (10.0 * (gamma * Infected_10)))))) | (! (Exposed_20 = (Exposed_10 + (10.0 * ((-1.0 * (epsilon * Exposed_10)) + (((beta * (Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10))))))) | (! (Infected_20 = (Infected_10 + (10.0 * (((-1.0 * (alpha * Infected_10)) - (gamma * Infected_10)) + (epsilon * Exposed_10))))))) | (! (Susceptible_20 = (Susceptible_10 - (10.0 * (((beta * (Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10)))))) | (! (Deceased_30 = 0.0))) | (! (Recovered_30 = 0.0))) | (! (beta < 6823503167783207/25000000000000000))) | (! (gamma < 1/512)))) & (((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Infected_0 < 0.0) | (Susceptible_0 < 0.0)) | (alpha < -99399999999999999/100000000000000000)) | (gamma < -7/8)) | (epsilon < -33333333333333331/50000000000000000)) | (beta < -2087499999999999/12500000000000000)) | (Recovered_10 = 0.0)) | (Recovered_10 < 0.0)) | (Infected_10 < 0.0)) | (Exposed_10 < 0.0)) | (Susceptible_10 < 0.0)) | (((((((-1.0 * Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) < 0.0)) | (Deceased_20 < 0.0)) | (Recovered_20 < 0.0)) | (Infected_20 < 0.0)) | (Exposed_20 < 0.0)) | (Susceptible_20 < 0.0)) | (((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20) + Susceptible_20) < 0.0)) | (gamma < 0.0)) | (beta < 27081256023150169/100000000000000000)) | (! (Deceased_0 = 0.0))) | (! (Recovered_0 = 0.0))) | (! (Exposed_0 = 0.0))) | (! (Infected_0 <= 100.0))) | (! (Susceptible_0 <= 100.0))) | (! (Total_population_0 = 100.0))) | (! (Infected_0 = 1.0))) | (! (Susceptible_0 = 99.0))) | (! (alpha <= 10060000000000001/10000000000000000))) | (! (gamma <= 9/8))) | (! (epsilon <= 2666666666666667/2000000000000000))) | (! (beta <= 9165000000000001/5000000000000000))) | (! (Deceased_10 = 0.0))) | (! (Recovered_10 <= 100.0))) | (! (Infected_10 <= 100.0))) | (! (Exposed_10 <= 100.0))) | (! (Susceptible_10 <= 100.0))) | (! (((((((-1.0 * Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) <= 0.0))) | (! (Total_population_10 = Total_population_0))) | (! (Deceased_10 = (Deceased_0 + (10.0 * (Infected_0 * alpha)))))) | (! (Recovered_10 = (Recovered_0 + (10.0 * (Infected_0 * gamma)))))) | (! (Exposed_10 = (Exposed_0 + (10.0 * (((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta) - (Exposed_0 * epsilon))))))) | (! (Infected_10 = (Infected_0 + (10.0 * (((Exposed_0 * epsilon) - (Infected_0 * alpha)) - (Infected_0 * gamma))))))) | (! (Susceptible_10 = (Susceptible_0 - (10.0 * ((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta)))))) | (! (Deceased_20 <= 100.0))) | (! (Recovered_20 <= 100.0))) | (! (Infected_20 <= 100.0))) | (! (Exposed_20 <= 100.0))) | (! (Susceptible_20 <= 100.0))) | (! (((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20) + Susceptible_20) <= 0.0))) | (! ((10000000000000001/100000000000000000 * (Deceased_20 - Deceased_30)) < 0.0))) | (! ((10000000000000001/100000000000000000 * (Recovered_20 - Recovered_30)) < 0.0))) | (! (Total_population_20 = Total_population_10))) | (! (Recovered_20 = (Recovered_10 + (10.0 * (gamma * Infected_10)))))) | (! (Exposed_20 = (Exposed_10 + (10.0 * ((-1.0 * (epsilon * Exposed_10)) + (((beta * (Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10))))))) | (! (Infected_20 = (Infected_10 + (10.0 * (((-1.0 * (alpha * Infected_10)) - (gamma * Infected_10)) + (epsilon * Exposed_10))))))) | (! (Susceptible_20 = (Susceptible_10 - (10.0 * (((beta * (Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10)))))) | (! (Deceased_30 = 0.0))) | (! (Recovered_30 = 0.0))) | (! (beta < 6823503167783207/25000000000000000))) | (! (gamma < 1/512)))) & (((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Infected_0 < 0.0) | (Susceptible_0 < 0.0)) | (alpha < -99399999999999999/100000000000000000)) | (gamma < -7/8)) | (epsilon < -33333333333333331/50000000000000000)) | (beta < -2087499999999999/12500000000000000)) | (Infected_10 < 0.0)) | (Exposed_10 < 0.0)) | (Susceptible_10 < 0.0)) | (((((((-1.0 * Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) < 0.0)) | (Deceased_20 = 0.0)) | (Deceased_20 < 0.0)) | (Recovered_20 < 0.0)) | (Infected_20 < 0.0)) | (Exposed_20 < 0.0)) | (Susceptible_20 < 0.0)) | (((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20) + Susceptible_20) < 0.0)) | (gamma < 0.0)) | (beta < 27081256023150169/100000000000000000)) | (! (Deceased_0 = 0.0))) | (! (Recovered_0 = 0.0))) | (! (Exposed_0 = 0.0))) | (! (Infected_0 <= 100.0))) | (! (Susceptible_0 <= 100.0))) | (! (Total_population_0 = 100.0))) | (! (Infected_0 = 1.0))) | (! (Susceptible_0 = 99.0))) | (! (alpha <= 10060000000000001/10000000000000000))) | (! (gamma <= 9/8))) | (! (epsilon <= 2666666666666667/2000000000000000))) | (! (beta <= 9165000000000001/5000000000000000))) | (! (Deceased_10 = 0.0))) | (! (Recovered_10 = 0.0))) | (! (Infected_10 <= 100.0))) | (! (Exposed_10 <= 100.0))) | (! (Susceptible_10 <= 100.0))) | (! (((((((-1.0 * Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) <= 0.0))) | (! (Total_population_10 = Total_population_0))) | (! (Deceased_10 = (Deceased_0 + (10.0 * (Infected_0 * alpha)))))) | (! (Recovered_10 = (Recovered_0 + (10.0 * (Infected_0 * gamma)))))) | (! (Exposed_10 = (Exposed_0 + (10.0 * (((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta) - (Exposed_0 * epsilon))))))) | (! (Infected_10 = (Infected_0 + (10.0 * (((Exposed_0 * epsilon) - (Infected_0 * alpha)) - (Infected_0 * gamma))))))) | (! (Susceptible_10 = (Susceptible_0 - (10.0 * ((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta)))))) | (! (Deceased_20 <= 100.0))) | (! (Recovered_20 <= 100.0))) | (! (Infected_20 <= 100.0))) | (! (Exposed_20 <= 100.0))) | (! (Susceptible_20 <= 100.0))) | (! (((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20) + Susceptible_20) <= 0.0))) | (! ((10000000000000001/100000000000000000 * (Deceased_20 - Deceased_30)) < 0.0))) | (! ((10000000000000001/100000000000000000 * (Recovered_20 - Recovered_30)) < 0.0))) | (! (Total_population_20 = Total_population_10))) | (! (Exposed_20 = (Exposed_10 + (10.0 * ((-1.0 * (epsilon * Exposed_10)) + (((beta * (Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10))))))) | (! (Infected_20 = (Infected_10 + (10.0 * (((-1.0 * (alpha * Infected_10)) - (gamma * Infected_10)) + (epsilon * Exposed_10))))))) | (! (Susceptible_20 = (Susceptible_10 - (10.0 * (((beta * (Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10)))))) | (! (Deceased_30 = 0.0))) | (! (Recovered_30 = 0.0))) | (! (beta < 6823503167783207/25000000000000000))) | (! (gamma < 1/512)))) & ((((((((((((((((((((((((((((((((((((((((((((((((((((((((Infected_0 < 0.0) | (Susceptible_0 < 0.0)) | (alpha < -99399999999999999/100000000000000000)) | (gamma < -7/8)) | (epsilon < -33333333333333331/50000000000000000)) | (beta < -2087499999999999/12500000000000000)) | (Infected_10 < 0.0)) | (Exposed_10 < 0.0)) | (Susceptible_10 < 0.0)) | (((((((-1.0 * Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) < 0.0)) | (Recovered_20 = 0.0)) | (Recovered_20 < 0.0)) | (Infected_20 < 0.0)) | (Exposed_20 < 0.0)) | (Susceptible_20 < 0.0)) | (((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20) + Susceptible_20) < 0.0)) | (gamma < 0.0)) | (beta < 27081256023150169/100000000000000000)) | (! (Deceased_0 = 0.0))) | (! (Recovered_0 = 0.0))) | (! (Exposed_0 = 0.0))) | (! (Infected_0 <= 100.0))) | (! (Susceptible_0 <= 100.0))) | (! (Total_population_0 = 100.0))) | (! (Infected_0 = 1.0))) | (! (Susceptible_0 = 99.0))) | (! (alpha <= 10060000000000001/10000000000000000))) | (! (gamma <= 9/8))) | (! (epsilon <= 2666666666666667/2000000000000000))) | (! (beta <= 9165000000000001/5000000000000000))) | (! (Deceased_10 = 0.0))) | (! (Recovered_10 = 0.0))) | (! (Infected_10 <= 100.0))) | (! (Exposed_10 <= 100.0))) | (! (Susceptible_10 <= 100.0))) | (! (((((((-1.0 * Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) <= 0.0))) | (! (Total_population_10 = Total_population_0))) | (! (Deceased_10 = (Deceased_0 + (10.0 * (Infected_0 * alpha)))))) | (! (Recovered_10 = (Recovered_0 + (10.0 * (Infected_0 * gamma)))))) | (! (Exposed_10 = (Exposed_0 + (10.0 * (((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta) - (Exposed_0 * epsilon))))))) | (! (Infected_10 = (Infected_0 + (10.0 * (((Exposed_0 * epsilon) - (Infected_0 * alpha)) - (Infected_0 * gamma))))))) | (! (Susceptible_10 = (Susceptible_0 - (10.0 * ((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta)))))) | (! (Deceased_20 = 0.0))) | (! (Recovered_20 <= 100.0))) | (! (Infected_20 <= 100.0))) | (! (Exposed_20 <= 100.0))) | (! (Susceptible_20 <= 100.0))) | (! (((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20) + Susceptible_20) <= 0.0))) | (! ((10000000000000001/100000000000000000 * (Recovered_20 - Recovered_30)) < 0.0))) | (! (Total_population_20 = Total_population_10))) | (! (Exposed_20 = (Exposed_10 + (10.0 * ((-1.0 * (epsilon * Exposed_10)) + (((beta * (Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10))))))) | (! (Infected_20 = (Infected_10 + (10.0 * (((-1.0 * (alpha * Infected_10)) - (gamma * Infected_10)) + (epsilon * Exposed_10))))))) | (! (Susceptible_20 = (Susceptible_10 - (10.0 * (((beta * (Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10)))))) | (! (Recovered_30 = 0.0))) | (! (beta < 6823503167783207/25000000000000000))) | (! (gamma < 1/512)))) & ((((((((((((((((((((((((((((((((((((((((((((((((((((((Infected_0 < 0.0) | (Susceptible_0 < 0.0)) | (alpha < -99399999999999999/100000000000000000)) | (gamma < -7/8)) | (epsilon < -33333333333333331/50000000000000000)) | (beta < -2087499999999999/12500000000000000)) | (Infected_10 < 0.0)) | (Exposed_10 < 0.0)) | (Susceptible_10 < 0.0)) | (((((((-1.0 * Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) < 0.0)) | (Infected_20 < 0.0)) | (Exposed_20 < 0.0)) | (Susceptible_20 < 0.0)) | (((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20) + Susceptible_20) < 0.0)) | (gamma < 0.0)) | (beta < 27081256023150169/100000000000000000)) | (! (Deceased_0 = 0.0))) | (! (Recovered_0 = 0.0))) | (! (Exposed_0 = 0.0))) | (! (Infected_0 <= 100.0))) | (! (Susceptible_0 <= 100.0))) | (! (Total_population_0 = 100.0))) | (! (Infected_0 = 1.0))) | (! (Susceptible_0 = 99.0))) | (! (alpha <= 10060000000000001/10000000000000000))) | (! (gamma <= 9/8))) | (! (epsilon <= 2666666666666667/2000000000000000))) | (! (beta <= 9165000000000001/5000000000000000))) | (! (Deceased_10 = 0.0))) | (! (Recovered_10 = 0.0))) | (! (Infected_10 <= 100.0))) | (! (Exposed_10 <= 100.0))) | (! (Susceptible_10 <= 100.0))) | (! (((((((-1.0 * Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) <= 0.0))) | (! (Total_population_10 = Total_population_0))) | (! (Deceased_10 = (Deceased_0 + (10.0 * (Infected_0 * alpha)))))) | (! (Recovered_10 = (Recovered_0 + (10.0 * (Infected_0 * gamma)))))) | (! (Exposed_10 = (Exposed_0 + (10.0 * (((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta) - (Exposed_0 * epsilon))))))) | (! (Infected_10 = (Infected_0 + (10.0 * (((Exposed_0 * epsilon) - (Infected_0 * alpha)) - (Infected_0 * gamma))))))) | (! (Susceptible_10 = (Susceptible_0 - (10.0 * ((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta)))))) | (! (Deceased_20 = 0.0))) | (! (Recovered_20 = 0.0))) | (! (Infected_20 <= 100.0))) | (! (Exposed_20 <= 100.0))) | (! (Susceptible_20 <= 100.0))) | (! (((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20) + Susceptible_20) <= 0.0))) | (! ((10000000000000001/100000000000000000 * (Deceased_20 - Deceased_30)) < 0.0))) | (! (Total_population_20 = Total_population_10))) | (! (Exposed_20 = (Exposed_10 + (10.0 * ((-1.0 * (epsilon * Exposed_10)) + (((beta * (Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10))))))) | (! (Infected_20 = (Infected_10 + (10.0 * (((-1.0 * (alpha * Infected_10)) - (gamma * Infected_10)) + (epsilon * Exposed_10))))))) | (! (Susceptible_20 = (Susceptible_10 - (10.0 * (((beta * (Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10)))))) | (! (Deceased_30 = 0.0))) | (! (beta < 6823503167783207/25000000000000000))) | (! (gamma < 1/512)))) & ((Infected_0 <= 100.0) | (! conj1471))) & ((Susceptible_0 <= 100.0) | (! conj1472))) & ((Total_population_0 = 100.0) | (! conj1474))) & ((Infected_0 = 1.0) | (! conj1474))) & ((Susceptible_0 = 99.0) | (! conj1474))) & ((gamma <= 9/8) | (! conj1474))) & ((beta <= 9165000000000001/5000000000000000) | (! conj1474))) & ((solve_step_3 | conj1514) | (! disj1132))) & ((conj1485 | (! assume_Deceased_bounds)) | (! disj1103))) & (disj1103 | (! conj1491))) & ((conj1486 | (! assume_Recovered_bounds)) | (! disj1104))) & (disj1104 | (! conj1491))) & ((conj1487 | (! assume_Exposed_bounds)) | (! disj1105))) & (disj1105 | (! conj1491))) & ((conj1488 | (! assume_Infected_bounds)) | (! disj1106))) & (disj1106 | (! conj1491))) & ((conj1489 | (! assume_Susceptible_bounds)) | (! disj1107))) & (disj1107 | (! conj1491))) & ((conj1490 | (! assume_compartment)) | (! disj1108))) & (disj1108 | (! conj1491))) & ((conj1491 | (! solve_step_1)) | (! disj1109))) & ((Deceased_10 <= 100.0) | (! conj1485))) & ((Recovered_10 <= 100.0) | (! conj1486))) & ((Infected_10 <= 100.0) | (! conj1488))) & ((Exposed_10 <= 100.0) | (! conj1487))) & ((Susceptible_10 <= 100.0) | (! conj1489))) & ((((((((-1.0 * Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) <= 0.0) | (! conj1490))) & ((Total_population_10 = Total_population_0) | (! conj1491))) & ((Deceased_10 = (Deceased_0 + (10.0 * (Infected_0 * alpha)))) | (! conj1491))) & ((Recovered_10 = (Recovered_0 + (10.0 * (Infected_0 * gamma)))) | (! conj1491))) & ((Exposed_10 = (Exposed_0 + (10.0 * (((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta) - (Exposed_0 * epsilon))))) | (! conj1491))) & ((Infected_10 = (Infected_0 + (10.0 * (((Exposed_0 * epsilon) - (Infected_0 * alpha)) - (Infected_0 * gamma))))) | (! conj1491))) & ((Susceptible_10 = (Susceptible_0 - (10.0 * ((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta)))) | (! conj1491))) & (disj1121 | (! conj1508))) & (disj1122 | (! conj1508))) & ((conj1502 | (! assume_Deceased_bounds)) | (! disj1123))) & (disj1123 | (! conj1508))) & ((conj1503 | (! assume_Recovered_bounds)) | (! disj1124))) & (disj1124 | (! conj1508))) & ((conj1504 | (! assume_Exposed_bounds)) | (! disj1125))) & (disj1125 | (! conj1508))) & ((conj1505 | (! assume_Infected_bounds)) | (! disj1126))) & (disj1126 | (! conj1508))) & ((conj1506 | (! assume_Susceptible_bounds)) | (! disj1127))) & (disj1127 | (! conj1508))) & ((conj1507 | (! assume_compartment)) | (! disj1128))) & (disj1128 | (! conj1508))) & ((conj1508 | (! solve_step_2)) | (! disj1129))) & ((Deceased_20 <= 100.0) | (! conj1502))) & ((Recovered_20 <= 100.0) | (! conj1503))) & ((Infected_20 <= 100.0) | (! conj1505))) & ((Exposed_20 <= 100.0) | (! conj1504))) & ((Susceptible_20 <= 100.0) | (! conj1506))) & ((((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20) + Susceptible_20) <= 0.0) | (! conj1507))) & ((((10000000000000001/100000000000000000 * (Deceased_20 - Deceased_30)) < 0.0) | (! assume_c3_20)) | (! disj1121))) & ((((10000000000000001/100000000000000000 * (Recovered_20 - Recovered_30)) < 0.0) | (! assume_c2_20)) | (! disj1122))) & ((Total_population_20 = Total_population_10) | (! conj1508))) & ((Deceased_20 = (Deceased_10 + (10.0 * (alpha * Infected_10)))) | (! conj1508))) & ((Recovered_20 = (Recovered_10 + (10.0 * (gamma * Infected_10)))) | (! conj1508))) & ((Exposed_20 = (Exposed_10 + (10.0 * ((-1.0 * (epsilon * Exposed_10)) + (((beta * (Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10))))) | (! conj1508))) & ((Infected_20 = (Infected_10 + (10.0 * (((-1.0 * (alpha * Infected_10)) - (gamma * Infected_10)) + (epsilon * Exposed_10))))) | (! conj1508))) & ((Susceptible_20 = (Susceptible_10 - (10.0 * (((beta * (Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10)))) | (! conj1508))) & ((Deceased_30 = 0.0) | (! conj1514))) & ((Recovered_30 = 0.0) | (! conj1514))) & ((! conj1471) | (! (Infected_0 < 0.0)))) & ((! conj1472) | (! (Susceptible_0 < 0.0)))) & ((! conj1474) | (! (gamma < -7/8)))) & ((! conj1474) | (! (beta < -2087499999999999/12500000000000000)))) & ((! conj1485) | (! (Deceased_10 < 0.0)))) & ((! conj1486) | (! (Recovered_10 < 0.0)))) & ((! conj1487) | (! (Exposed_10 < 0.0)))) & ((! conj1488) | (! (Infected_10 < 0.0)))) & ((! conj1489) | (! (Susceptible_10 < 0.0)))) & ((! conj1490) | (! (((((((-1.0 * Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) < 0.0)))) & ((! conj1502) | (! (Deceased_20 < 0.0)))) & ((! conj1503) | (! (Recovered_20 < 0.0)))) & ((! conj1504) | (! (Exposed_20 < 0.0)))) & ((! conj1505) | (! (Infected_20 < 0.0)))) & ((! conj1506) | (! (Susceptible_20 < 0.0)))) & ((! conj1507) | (! (((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20) + Susceptible_20) < 0.0)))) & (! (alpha < -99399999999999999/100000000000000000))) & (! (epsilon < -33333333333333331/50000000000000000))) & (! solve_step_3)) & (! (gamma < 0.0))) & (! (beta < 27081256023150169/100000000000000000)))'" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# results_unconstrained_point.parameter_space.points()[0]\n", + "# df= results_unconstrained_point.dataframe(\n", + "# results_unconstrained_point.parameter_space.points()\n", + "# )\n", + "# df[COMPARTMENTS].describe() #.plot()\n", + "results_unconstrained_point.parameter_space.false_boxes[0].explanation.expression" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((\n", + "((((((((((((((((((((((((((((((((((((solve_step_0 & assume_Deceased_bounds) &\n", + "assume_Recovered_bounds) & assume_Infected_bounds) & assume_Exposed_bounds) &\n", + "assume_Susceptible_bounds) & assume_compartment) & disj1095) & (alpha <=\n", + "10060000000000001/10000000000000000)) & (epsilon <=\n", + "2666666666666667/2000000000000000)) & solve_step_2) & solve_step_1) & disj1109)\n", + "& assume_c3_20) & assume_c2_20) & disj1129) & disj1132) & (beta <\n", + "6823503167783207/25000000000000000)) & (gamma < 1/512)) & ((conj1471 | (!\n", + "assume_Infected_bounds)) | (! disj1092))) & (disj1092 | (! conj1474))) &\n", + "((conj1472 | (! assume_Susceptible_bounds)) | (! disj1093))) & (disj1093 | (!\n", + "conj1474))) & ((conj1474 | (! solve_step_0)) | (! disj1095))) & ((Deceased_0 =\n", + "0.0) | (! conj1474))) & ((Recovered_0 = 0.0) | (! conj1474))) & ((Exposed_0 =\n", + "0.0) | (! conj1474))) &\n", + "(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Infected_0 < 0.0)\n", + "| (Susceptible_0 < 0.0)) | (alpha < -99399999999999999/100000000000000000)) |\n", + "(gamma < -7/8)) | (epsilon < -33333333333333331/50000000000000000)) | (beta <\n", + "-2087499999999999/12500000000000000)) | (Deceased_10 = 0.0)) | (Deceased_10 <\n", + "0.0)) | (Recovered_10 < 0.0)) | (Infected_10 < 0.0)) | (Exposed_10 < 0.0)) |\n", + "(Susceptible_10 < 0.0)) | (((((((-1.0 * Total_population_10) + Deceased_10) +\n", + "Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) < 0.0)) |\n", + "(Deceased_20 < 0.0)) | (Recovered_20 < 0.0)) | (Infected_20 < 0.0)) |\n", + "(Exposed_20 < 0.0)) | (Susceptible_20 < 0.0)) | (((((((-1.0 *\n", + "Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20)\n", + "+ Susceptible_20) < 0.0)) | (gamma < 0.0)) | (beta <\n", + "27081256023150169/100000000000000000)) | (! (Deceased_0 = 0.0))) | (!\n", + "(Recovered_0 = 0.0))) | (! (Exposed_0 = 0.0))) | (! (Infected_0 <= 100.0))) | (!\n", + "(Susceptible_0 <= 100.0))) | (! (Total_population_0 = 100.0))) | (! (Infected_0\n", + "= 1.0))) | (! (Susceptible_0 = 99.0))) | (! (alpha <=\n", + "10060000000000001/10000000000000000))) | (! (gamma <= 9/8))) | (! (epsilon <=\n", + "2666666666666667/2000000000000000))) | (! (beta <=\n", + "9165000000000001/5000000000000000))) | (! (Deceased_10 <= 100.0))) | (!\n", + "(Recovered_10 <= 100.0))) | (! (Infected_10 <= 100.0))) | (! (Exposed_10 <=\n", + "100.0))) | (! (Susceptible_10 <= 100.0))) | (! (((((((-1.0 *\n", + "Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10)\n", + "+ Susceptible_10) <= 0.0))) | (! (Total_population_10 = Total_population_0))) |\n", + "(! (Deceased_10 = (Deceased_0 + (10.0 * (Infected_0 * alpha)))))) | (!\n", + "(Recovered_10 = (Recovered_0 + (10.0 * (Infected_0 * gamma)))))) | (!\n", + "(Exposed_10 = (Exposed_0 + (10.0 * (((((Total_population_0 ^ -1.0) * Infected_0)\n", + "* Susceptible_0) * beta) - (Exposed_0 * epsilon))))))) | (! (Infected_10 =\n", + "(Infected_0 + (10.0 * (((Exposed_0 * epsilon) - (Infected_0 * alpha)) -\n", + "(Infected_0 * gamma))))))) | (! (Susceptible_10 = (Susceptible_0 - (10.0 *\n", + "((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta)))))) | (!\n", + "(Deceased_20 <= 100.0))) | (! (Recovered_20 <= 100.0))) | (! (Infected_20 <=\n", + "100.0))) | (! (Exposed_20 <= 100.0))) | (! (Susceptible_20 <= 100.0))) | (!\n", + "(((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20)\n", + "+ Infected_20) + Susceptible_20) <= 0.0))) | (!\n", + "((10000000000000001/100000000000000000 * (Deceased_20 - Deceased_30)) < 0.0))) |\n", + "(! ((10000000000000001/100000000000000000 * (Recovered_20 - Recovered_30)) <\n", + "0.0))) | (! (Total_population_20 = Total_population_10))) | (! (Deceased_20 =\n", + "(Deceased_10 + (10.0 * (alpha * Infected_10)))))) | (! (Recovered_20 =\n", + "(Recovered_10 + (10.0 * (gamma * Infected_10)))))) | (! (Exposed_20 =\n", + "(Exposed_10 + (10.0 * ((-1.0 * (epsilon * Exposed_10)) + (((beta *\n", + "(Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10))))))) | (!\n", + "(Infected_20 = (Infected_10 + (10.0 * (((-1.0 * (alpha * Infected_10)) - (gamma\n", + "* Infected_10)) + (epsilon * Exposed_10))))))) | (! (Susceptible_20 =\n", + "(Susceptible_10 - (10.0 * (((beta * (Total_population_10 ^ -1.0)) * Infected_10)\n", + "* Susceptible_10)))))) | (! (Deceased_30 = 0.0))) | (! (Recovered_30 = 0.0))) |\n", + "(! (beta < 6823503167783207/25000000000000000))) | (! (gamma < 1/512)))) &\n", + "(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Infected_0 < 0.0) |\n", + "(Susceptible_0 < 0.0)) | (alpha < -99399999999999999/100000000000000000)) |\n", + "(gamma < -7/8)) | (epsilon < -33333333333333331/50000000000000000)) | (beta <\n", + "-2087499999999999/12500000000000000)) | (Recovered_10 = 0.0)) | (Recovered_10 <\n", + "0.0)) | (Infected_10 < 0.0)) | (Exposed_10 < 0.0)) | (Susceptible_10 < 0.0)) |\n", + "(((((((-1.0 * Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10)\n", + "+ Infected_10) + Susceptible_10) < 0.0)) | (Deceased_20 < 0.0)) | (Recovered_20\n", + "< 0.0)) | (Infected_20 < 0.0)) | (Exposed_20 < 0.0)) | (Susceptible_20 < 0.0)) |\n", + "(((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20)\n", + "+ Infected_20) + Susceptible_20) < 0.0)) | (gamma < 0.0)) | (beta <\n", + "27081256023150169/100000000000000000)) | (! (Deceased_0 = 0.0))) | (!\n", + "(Recovered_0 = 0.0))) | (! (Exposed_0 = 0.0))) | (! (Infected_0 <= 100.0))) | (!\n", + "(Susceptible_0 <= 100.0))) | (! (Total_population_0 = 100.0))) | (! (Infected_0\n", + "= 1.0))) | (! (Susceptible_0 = 99.0))) | (! (alpha <=\n", + "10060000000000001/10000000000000000))) | (! (gamma <= 9/8))) | (! (epsilon <=\n", + "2666666666666667/2000000000000000))) | (! (beta <=\n", + "9165000000000001/5000000000000000))) | (! (Deceased_10 = 0.0))) | (!\n", + "(Recovered_10 <= 100.0))) | (! (Infected_10 <= 100.0))) | (! (Exposed_10 <=\n", + "100.0))) | (! (Susceptible_10 <= 100.0))) | (! (((((((-1.0 *\n", + "Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10)\n", + "+ Susceptible_10) <= 0.0))) | (! (Total_population_10 = Total_population_0))) |\n", + "(! (Deceased_10 = (Deceased_0 + (10.0 * (Infected_0 * alpha)))))) | (!\n", + "(Recovered_10 = (Recovered_0 + (10.0 * (Infected_0 * gamma)))))) | (!\n", + "(Exposed_10 = (Exposed_0 + (10.0 * (((((Total_population_0 ^ -1.0) * Infected_0)\n", + "* Susceptible_0) * beta) - (Exposed_0 * epsilon))))))) | (! (Infected_10 =\n", + "(Infected_0 + (10.0 * (((Exposed_0 * epsilon) - (Infected_0 * alpha)) -\n", + "(Infected_0 * gamma))))))) | (! (Susceptible_10 = (Susceptible_0 - (10.0 *\n", + "((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta)))))) | (!\n", + "(Deceased_20 <= 100.0))) | (! (Recovered_20 <= 100.0))) | (! (Infected_20 <=\n", + "100.0))) | (! (Exposed_20 <= 100.0))) | (! (Susceptible_20 <= 100.0))) | (!\n", + "(((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20)\n", + "+ Infected_20) + Susceptible_20) <= 0.0))) | (!\n", + "((10000000000000001/100000000000000000 * (Deceased_20 - Deceased_30)) < 0.0))) |\n", + "(! ((10000000000000001/100000000000000000 * (Recovered_20 - Recovered_30)) <\n", + "0.0))) | (! (Total_population_20 = Total_population_10))) | (! (Recovered_20 =\n", + "(Recovered_10 + (10.0 * (gamma * Infected_10)))))) | (! (Exposed_20 =\n", + "(Exposed_10 + (10.0 * ((-1.0 * (epsilon * Exposed_10)) + (((beta *\n", + "(Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10))))))) | (!\n", + "(Infected_20 = (Infected_10 + (10.0 * (((-1.0 * (alpha * Infected_10)) - (gamma\n", + "* Infected_10)) + (epsilon * Exposed_10))))))) | (! (Susceptible_20 =\n", + "(Susceptible_10 - (10.0 * (((beta * (Total_population_10 ^ -1.0)) * Infected_10)\n", + "* Susceptible_10)))))) | (! (Deceased_30 = 0.0))) | (! (Recovered_30 = 0.0))) |\n", + "(! (beta < 6823503167783207/25000000000000000))) | (! (gamma < 1/512)))) &\n", + "(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Infected_0 < 0.0) |\n", + "(Susceptible_0 < 0.0)) | (alpha < -99399999999999999/100000000000000000)) |\n", + "(gamma < -7/8)) | (epsilon < -33333333333333331/50000000000000000)) | (beta <\n", + "-2087499999999999/12500000000000000)) | (Infected_10 < 0.0)) | (Exposed_10 <\n", + "0.0)) | (Susceptible_10 < 0.0)) | (((((((-1.0 * Total_population_10) +\n", + "Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) <\n", + "0.0)) | (Deceased_20 = 0.0)) | (Deceased_20 < 0.0)) | (Recovered_20 < 0.0)) |\n", + "(Infected_20 < 0.0)) | (Exposed_20 < 0.0)) | (Susceptible_20 < 0.0)) |\n", + "(((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20)\n", + "+ Infected_20) + Susceptible_20) < 0.0)) | (gamma < 0.0)) | (beta <\n", + "27081256023150169/100000000000000000)) | (! (Deceased_0 = 0.0))) | (!\n", + "(Recovered_0 = 0.0))) | (! (Exposed_0 = 0.0))) | (! (Infected_0 <= 100.0))) | (!\n", + "(Susceptible_0 <= 100.0))) | (! (Total_population_0 = 100.0))) | (! (Infected_0\n", + "= 1.0))) | (! (Susceptible_0 = 99.0))) | (! (alpha <=\n", + "10060000000000001/10000000000000000))) | (! (gamma <= 9/8))) | (! (epsilon <=\n", + "2666666666666667/2000000000000000))) | (! (beta <=\n", + "9165000000000001/5000000000000000))) | (! (Deceased_10 = 0.0))) | (!\n", + "(Recovered_10 = 0.0))) | (! (Infected_10 <= 100.0))) | (! (Exposed_10 <=\n", + "100.0))) | (! (Susceptible_10 <= 100.0))) | (! (((((((-1.0 *\n", + "Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10)\n", + "+ Susceptible_10) <= 0.0))) | (! (Total_population_10 = Total_population_0))) |\n", + "(! (Deceased_10 = (Deceased_0 + (10.0 * (Infected_0 * alpha)))))) | (!\n", + "(Recovered_10 = (Recovered_0 + (10.0 * (Infected_0 * gamma)))))) | (!\n", + "(Exposed_10 = (Exposed_0 + (10.0 * (((((Total_population_0 ^ -1.0) * Infected_0)\n", + "* Susceptible_0) * beta) - (Exposed_0 * epsilon))))))) | (! (Infected_10 =\n", + "(Infected_0 + (10.0 * (((Exposed_0 * epsilon) - (Infected_0 * alpha)) -\n", + "(Infected_0 * gamma))))))) | (! (Susceptible_10 = (Susceptible_0 - (10.0 *\n", + "((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta)))))) | (!\n", + "(Deceased_20 <= 100.0))) | (! (Recovered_20 <= 100.0))) | (! (Infected_20 <=\n", + "100.0))) | (! (Exposed_20 <= 100.0))) | (! (Susceptible_20 <= 100.0))) | (!\n", + "(((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20)\n", + "+ Infected_20) + Susceptible_20) <= 0.0))) | (!\n", + "((10000000000000001/100000000000000000 * (Deceased_20 - Deceased_30)) < 0.0))) |\n", + "(! ((10000000000000001/100000000000000000 * (Recovered_20 - Recovered_30)) <\n", + "0.0))) | (! (Total_population_20 = Total_population_10))) | (! (Exposed_20 =\n", + "(Exposed_10 + (10.0 * ((-1.0 * (epsilon * Exposed_10)) + (((beta *\n", + "(Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10))))))) | (!\n", + "(Infected_20 = (Infected_10 + (10.0 * (((-1.0 * (alpha * Infected_10)) - (gamma\n", + "* Infected_10)) + (epsilon * Exposed_10))))))) | (! (Susceptible_20 =\n", + "(Susceptible_10 - (10.0 * (((beta * (Total_population_10 ^ -1.0)) * Infected_10)\n", + "* Susceptible_10)))))) | (! (Deceased_30 = 0.0))) | (! (Recovered_30 = 0.0))) |\n", + "(! (beta < 6823503167783207/25000000000000000))) | (! (gamma < 1/512)))) &\n", + "((((((((((((((((((((((((((((((((((((((((((((((((((((((((Infected_0 < 0.0) |\n", + "(Susceptible_0 < 0.0)) | (alpha < -99399999999999999/100000000000000000)) |\n", + "(gamma < -7/8)) | (epsilon < -33333333333333331/50000000000000000)) | (beta <\n", + "-2087499999999999/12500000000000000)) | (Infected_10 < 0.0)) | (Exposed_10 <\n", + "0.0)) | (Susceptible_10 < 0.0)) | (((((((-1.0 * Total_population_10) +\n", + "Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) <\n", + "0.0)) | (Recovered_20 = 0.0)) | (Recovered_20 < 0.0)) | (Infected_20 < 0.0)) |\n", + "(Exposed_20 < 0.0)) | (Susceptible_20 < 0.0)) | (((((((-1.0 *\n", + "Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20)\n", + "+ Susceptible_20) < 0.0)) | (gamma < 0.0)) | (beta <\n", + "27081256023150169/100000000000000000)) | (! (Deceased_0 = 0.0))) | (!\n", + "(Recovered_0 = 0.0))) | (! (Exposed_0 = 0.0))) | (! (Infected_0 <= 100.0))) | (!\n", + "(Susceptible_0 <= 100.0))) | (! (Total_population_0 = 100.0))) | (! (Infected_0\n", + "= 1.0))) | (! (Susceptible_0 = 99.0))) | (! (alpha <=\n", + "10060000000000001/10000000000000000))) | (! (gamma <= 9/8))) | (! (epsilon <=\n", + "2666666666666667/2000000000000000))) | (! (beta <=\n", + "9165000000000001/5000000000000000))) | (! (Deceased_10 = 0.0))) | (!\n", + "(Recovered_10 = 0.0))) | (! (Infected_10 <= 100.0))) | (! (Exposed_10 <=\n", + "100.0))) | (! (Susceptible_10 <= 100.0))) | (! (((((((-1.0 *\n", + "Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10)\n", + "+ Susceptible_10) <= 0.0))) | (! (Total_population_10 = Total_population_0))) |\n", + "(! (Deceased_10 = (Deceased_0 + (10.0 * (Infected_0 * alpha)))))) | (!\n", + "(Recovered_10 = (Recovered_0 + (10.0 * (Infected_0 * gamma)))))) | (!\n", + "(Exposed_10 = (Exposed_0 + (10.0 * (((((Total_population_0 ^ -1.0) * Infected_0)\n", + "* Susceptible_0) * beta) - (Exposed_0 * epsilon))))))) | (! (Infected_10 =\n", + "(Infected_0 + (10.0 * (((Exposed_0 * epsilon) - (Infected_0 * alpha)) -\n", + "(Infected_0 * gamma))))))) | (! (Susceptible_10 = (Susceptible_0 - (10.0 *\n", + "((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta)))))) | (!\n", + "(Deceased_20 = 0.0))) | (! (Recovered_20 <= 100.0))) | (! (Infected_20 <=\n", + "100.0))) | (! (Exposed_20 <= 100.0))) | (! (Susceptible_20 <= 100.0))) | (!\n", + "(((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20)\n", + "+ Infected_20) + Susceptible_20) <= 0.0))) | (!\n", + "((10000000000000001/100000000000000000 * (Recovered_20 - Recovered_30)) < 0.0)))\n", + "| (! (Total_population_20 = Total_population_10))) | (! (Exposed_20 =\n", + "(Exposed_10 + (10.0 * ((-1.0 * (epsilon * Exposed_10)) + (((beta *\n", + "(Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10))))))) | (!\n", + "(Infected_20 = (Infected_10 + (10.0 * (((-1.0 * (alpha * Infected_10)) - (gamma\n", + "* Infected_10)) + (epsilon * Exposed_10))))))) | (! (Susceptible_20 =\n", + "(Susceptible_10 - (10.0 * (((beta * (Total_population_10 ^ -1.0)) * Infected_10)\n", + "* Susceptible_10)))))) | (! (Recovered_30 = 0.0))) | (! (beta <\n", + "6823503167783207/25000000000000000))) | (! (gamma < 1/512)))) &\n", + "((((((((((((((((((((((((((((((((((((((((((((((((((((((Infected_0 < 0.0) |\n", + "(Susceptible_0 < 0.0)) | (alpha < -99399999999999999/100000000000000000)) |\n", + "(gamma < -7/8)) | (epsilon < -33333333333333331/50000000000000000)) | (beta <\n", + "-2087499999999999/12500000000000000)) | (Infected_10 < 0.0)) | (Exposed_10 <\n", + "0.0)) | (Susceptible_10 < 0.0)) | (((((((-1.0 * Total_population_10) +\n", + "Deceased_10) + Recovered_10) + Exposed_10) + Infected_10) + Susceptible_10) <\n", + "0.0)) | (Infected_20 < 0.0)) | (Exposed_20 < 0.0)) | (Susceptible_20 < 0.0)) |\n", + "(((((((-1.0 * Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20)\n", + "+ Infected_20) + Susceptible_20) < 0.0)) | (gamma < 0.0)) | (beta <\n", + "27081256023150169/100000000000000000)) | (! (Deceased_0 = 0.0))) | (!\n", + "(Recovered_0 = 0.0))) | (! (Exposed_0 = 0.0))) | (! (Infected_0 <= 100.0))) | (!\n", + "(Susceptible_0 <= 100.0))) | (! (Total_population_0 = 100.0))) | (! (Infected_0\n", + "= 1.0))) | (! (Susceptible_0 = 99.0))) | (! (alpha <=\n", + "10060000000000001/10000000000000000))) | (! (gamma <= 9/8))) | (! (epsilon <=\n", + "2666666666666667/2000000000000000))) | (! (beta <=\n", + "9165000000000001/5000000000000000))) | (! (Deceased_10 = 0.0))) | (!\n", + "(Recovered_10 = 0.0))) | (! (Infected_10 <= 100.0))) | (! (Exposed_10 <=\n", + "100.0))) | (! (Susceptible_10 <= 100.0))) | (! (((((((-1.0 *\n", + "Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10)\n", + "+ Susceptible_10) <= 0.0))) | (! (Total_population_10 = Total_population_0))) |\n", + "(! (Deceased_10 = (Deceased_0 + (10.0 * (Infected_0 * alpha)))))) | (!\n", + "(Recovered_10 = (Recovered_0 + (10.0 * (Infected_0 * gamma)))))) | (!\n", + "(Exposed_10 = (Exposed_0 + (10.0 * (((((Total_population_0 ^ -1.0) * Infected_0)\n", + "* Susceptible_0) * beta) - (Exposed_0 * epsilon))))))) | (! (Infected_10 =\n", + "(Infected_0 + (10.0 * (((Exposed_0 * epsilon) - (Infected_0 * alpha)) -\n", + "(Infected_0 * gamma))))))) | (! (Susceptible_10 = (Susceptible_0 - (10.0 *\n", + "((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta)))))) | (!\n", + "(Deceased_20 = 0.0))) | (! (Recovered_20 = 0.0))) | (! (Infected_20 <= 100.0)))\n", + "| (! (Exposed_20 <= 100.0))) | (! (Susceptible_20 <= 100.0))) | (! (((((((-1.0 *\n", + "Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20)\n", + "+ Susceptible_20) <= 0.0))) | (! ((10000000000000001/100000000000000000 *\n", + "(Deceased_20 - Deceased_30)) < 0.0))) | (! (Total_population_20 =\n", + "Total_population_10))) | (! (Exposed_20 = (Exposed_10 + (10.0 * ((-1.0 *\n", + "(epsilon * Exposed_10)) + (((beta * (Total_population_10 ^ -1.0)) * Infected_10)\n", + "* Susceptible_10))))))) | (! (Infected_20 = (Infected_10 + (10.0 * (((-1.0 *\n", + "(alpha * Infected_10)) - (gamma * Infected_10)) + (epsilon * Exposed_10))))))) |\n", + "(! (Susceptible_20 = (Susceptible_10 - (10.0 * (((beta * (Total_population_10 ^\n", + "-1.0)) * Infected_10) * Susceptible_10)))))) | (! (Deceased_30 = 0.0))) | (!\n", + "(beta < 6823503167783207/25000000000000000))) | (! (gamma < 1/512)))) &\n", + "((Infected_0 <= 100.0) | (! conj1471))) & ((Susceptible_0 <= 100.0) | (!\n", + "conj1472))) & ((Total_population_0 = 100.0) | (! conj1474))) & ((Infected_0 =\n", + "1.0) | (! conj1474))) & ((Susceptible_0 = 99.0) | (! conj1474))) & ((gamma <=\n", + "9/8) | (! conj1474))) & ((beta <= 9165000000000001/5000000000000000) | (!\n", + "conj1474))) & ((solve_step_3 | conj1514) | (! disj1132))) & ((conj1485 | (!\n", + "assume_Deceased_bounds)) | (! disj1103))) & (disj1103 | (! conj1491))) &\n", + "((conj1486 | (! assume_Recovered_bounds)) | (! disj1104))) & (disj1104 | (!\n", + "conj1491))) & ((conj1487 | (! assume_Exposed_bounds)) | (! disj1105))) &\n", + "(disj1105 | (! conj1491))) & ((conj1488 | (! assume_Infected_bounds)) | (!\n", + "disj1106))) & (disj1106 | (! conj1491))) & ((conj1489 | (!\n", + "assume_Susceptible_bounds)) | (! disj1107))) & (disj1107 | (! conj1491))) &\n", + "((conj1490 | (! assume_compartment)) | (! disj1108))) & (disj1108 | (!\n", + "conj1491))) & ((conj1491 | (! solve_step_1)) | (! disj1109))) & ((Deceased_10 <=\n", + "100.0) | (! conj1485))) & ((Recovered_10 <= 100.0) | (! conj1486))) &\n", + "((Infected_10 <= 100.0) | (! conj1488))) & ((Exposed_10 <= 100.0) | (!\n", + "conj1487))) & ((Susceptible_10 <= 100.0) | (! conj1489))) & ((((((((-1.0 *\n", + "Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) + Infected_10)\n", + "+ Susceptible_10) <= 0.0) | (! conj1490))) & ((Total_population_10 =\n", + "Total_population_0) | (! conj1491))) & ((Deceased_10 = (Deceased_0 + (10.0 *\n", + "(Infected_0 * alpha)))) | (! conj1491))) & ((Recovered_10 = (Recovered_0 + (10.0\n", + "* (Infected_0 * gamma)))) | (! conj1491))) & ((Exposed_10 = (Exposed_0 + (10.0 *\n", + "(((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta) -\n", + "(Exposed_0 * epsilon))))) | (! conj1491))) & ((Infected_10 = (Infected_0 + (10.0\n", + "* (((Exposed_0 * epsilon) - (Infected_0 * alpha)) - (Infected_0 * gamma))))) |\n", + "(! conj1491))) & ((Susceptible_10 = (Susceptible_0 - (10.0 *\n", + "((((Total_population_0 ^ -1.0) * Infected_0) * Susceptible_0) * beta)))) | (!\n", + "conj1491))) & (disj1121 | (! conj1508))) & (disj1122 | (! conj1508))) &\n", + "((conj1502 | (! assume_Deceased_bounds)) | (! disj1123))) & (disj1123 | (!\n", + "conj1508))) & ((conj1503 | (! assume_Recovered_bounds)) | (! disj1124))) &\n", + "(disj1124 | (! conj1508))) & ((conj1504 | (! assume_Exposed_bounds)) | (!\n", + "disj1125))) & (disj1125 | (! conj1508))) & ((conj1505 | (!\n", + "assume_Infected_bounds)) | (! disj1126))) & (disj1126 | (! conj1508))) &\n", + "((conj1506 | (! assume_Susceptible_bounds)) | (! disj1127))) & (disj1127 | (!\n", + "conj1508))) & ((conj1507 | (! assume_compartment)) | (! disj1128))) & (disj1128\n", + "| (! conj1508))) & ((conj1508 | (! solve_step_2)) | (! disj1129))) &\n", + "((Deceased_20 <= 100.0) | (! conj1502))) & ((Recovered_20 <= 100.0) | (!\n", + "conj1503))) & ((Infected_20 <= 100.0) | (! conj1505))) & ((Exposed_20 <= 100.0)\n", + "| (! conj1504))) & ((Susceptible_20 <= 100.0) | (! conj1506))) & ((((((((-1.0 *\n", + "Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20)\n", + "+ Susceptible_20) <= 0.0) | (! conj1507))) &\n", + "((((10000000000000001/100000000000000000 * (Deceased_20 - Deceased_30)) < 0.0) |\n", + "(! assume_c3_20)) | (! disj1121))) & ((((10000000000000001/100000000000000000 *\n", + "(Recovered_20 - Recovered_30)) < 0.0) | (! assume_c2_20)) | (! disj1122))) &\n", + "((Total_population_20 = Total_population_10) | (! conj1508))) & ((Deceased_20 =\n", + "(Deceased_10 + (10.0 * (alpha * Infected_10)))) | (! conj1508))) &\n", + "((Recovered_20 = (Recovered_10 + (10.0 * (gamma * Infected_10)))) | (!\n", + "conj1508))) & ((Exposed_20 = (Exposed_10 + (10.0 * ((-1.0 * (epsilon *\n", + "Exposed_10)) + (((beta * (Total_population_10 ^ -1.0)) * Infected_10) *\n", + "Susceptible_10))))) | (! conj1508))) & ((Infected_20 = (Infected_10 + (10.0 *\n", + "(((-1.0 * (alpha * Infected_10)) - (gamma * Infected_10)) + (epsilon *\n", + "Exposed_10))))) | (! conj1508))) & ((Susceptible_20 = (Susceptible_10 - (10.0 *\n", + "(((beta * (Total_population_10 ^ -1.0)) * Infected_10) * Susceptible_10)))) | (!\n", + "conj1508))) & ((Deceased_30 = 0.0) | (! conj1514))) & ((Recovered_30 = 0.0) | (!\n", + "conj1514))) & ((! conj1471) | (! (Infected_0 < 0.0)))) & ((! conj1472) | (!\n", + "(Susceptible_0 < 0.0)))) & ((! conj1474) | (! (gamma < -7/8)))) & ((! conj1474)\n", + "| (! (beta < -2087499999999999/12500000000000000)))) & ((! conj1485) | (!\n", + "(Deceased_10 < 0.0)))) & ((! conj1486) | (! (Recovered_10 < 0.0)))) & ((!\n", + "conj1487) | (! (Exposed_10 < 0.0)))) & ((! conj1488) | (! (Infected_10 < 0.0))))\n", + "& ((! conj1489) | (! (Susceptible_10 < 0.0)))) & ((! conj1490) | (! (((((((-1.0\n", + "* Total_population_10) + Deceased_10) + Recovered_10) + Exposed_10) +\n", + "Infected_10) + Susceptible_10) < 0.0)))) & ((! conj1502) | (! (Deceased_20 <\n", + "0.0)))) & ((! conj1503) | (! (Recovered_20 < 0.0)))) & ((! conj1504) | (!\n", + "(Exposed_20 < 0.0)))) & ((! conj1505) | (! (Infected_20 < 0.0)))) & ((!\n", + "conj1506) | (! (Susceptible_20 < 0.0)))) & ((! conj1507) | (! (((((((-1.0 *\n", + "Total_population_20) + Deceased_20) + Recovered_20) + Exposed_20) + Infected_20)\n", + "+ Susceptible_20) < 0.0)))) & (! (alpha <\n", + "-99399999999999999/100000000000000000))) & (! (epsilon <\n", + "-33333333333333331/50000000000000000))) & (! solve_step_3)) & (! (gamma < 0.0)))\n", + "& (! (beta < 27081256023150169/100000000000000000)))\n" + ] + } + ], + "source": [ + "import textwrap\n", + "expr = results_unconstrained_point.parameter_space.false_boxes[0].explanation.expression\n", + "print(textwrap.fill(expr, 80))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# SEIRHD\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " funman_request.structure_parameters[0].schedules[0] = EncodingSchedule(timepoints=[0, 1])\n", + "\n", + " # funman_request.config.substitute_subformulas = True\n", + " # funman_request.config.use_transition_symbols = True\n", + " funman_request.config.use_compartmental_constraints=False\n", + " funman_request.config.save_smtlib=\"./out\"\n", + "\n", + " for p in [po.name for po in funman_request.parameters if po.name not in [\"S0\", \"I0\", \"E0\", \"R0\", \"H0\", \"D0\", \"N\", \"beta\"]]:\n", + " #[\"beta\", \"r_H_to_D\", \"r_E_to_I\", \"p_I_to_R\", \"r_I_to_R\", \"p_I_to_H\", \"r_I_to_H\", \"p_H_to_R\", \"r_H_to_R\",\"p_H_to_D\",\"r_H_to_D\"]:\n", + " param = funman_request.parameter(p)\n", + " param.interval.lb = 0\n", + " param.interval.ub = 1\n", + "\n", + " # S is decreasing, dS/dt < 0, S_{t+1} - S_t < 0\n", + " c1 = LinearConstraint(name=\"c1\", additive_bounds=Interval(ub=0), variables=[\"S\"], derivative=True)\n", + " funman_request.constraints.append(c1)\n", + "\n", + " # R is increasing, dR/dt > 0, -dR/dt < 0, - (R_{t+1} - R_t) < 0\n", + " c2 = LinearConstraint(name=\"c2\", additive_bounds=Interval(ub=0), variables=[\"R\"], weights=[-1], derivative=True)\n", + " funman_request.constraints.append(c2)\n", + "\n", + " # D is increasing, dD/dt > 0, -dD/dt < 0, - (D_{t+1} - D_t) < 0\n", + " c3 = LinearConstraint(name=\"c3\", additive_bounds=Interval(lb=0), variables=[\"D\"], derivative=True)\n", + " funman_request.constraints.append(c3)\n", + "\n", + " # Population size maintained\n", + " c4 = LinearConstraint(name=\"compartment\", additive_bounds=Interval(lb=0, ub=0, closed_upper_bound=True), variables=[\"S\", \"E\", \"I\", \"R\", \"D\", \"H\", \"N\"], weights=[1, 1, 1, 1, 1, 1, -1])\n", + " funman_request.constraints.append(c4)\n", + "\n", + " funman_request.constraints.append(StateVariableConstraint(name=\"SB\", variable=\"S\", interval=Interval(lb=0, ub=101, closed_upper_bound=True)))\n", + " funman_request.constraints.append(StateVariableConstraint(name=\"EB\", variable=\"E\", interval=Interval(lb=0, ub=101, closed_upper_bound=True)))\n", + " funman_request.constraints.append(StateVariableConstraint(name=\"IB\", variable=\"I\", interval=Interval(lb=0, ub=101, closed_upper_bound=True)))\n", + " funman_request.constraints.append(StateVariableConstraint(name=\"RB\", variable=\"R\", interval=Interval(lb=0, ub=101, closed_upper_bound=True)))\n", + " funman_request.constraints.append(StateVariableConstraint(name=\"DB\", variable=\"D\", interval=Interval(lb=0, ub=101, closed_upper_bound=True)))\n", + " funman_request.constraints.append(StateVariableConstraint(name=\"HB\", variable=\"H\", interval=Interval(lb=0, ub=101, closed_upper_bound=True)))\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SEIRD demo\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " summary = summarize_results([\"S\", \"E\", \"I\", \"R\", \"H\", \"D\"], results_unconstrained_point, ylabel=\"Population\")\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'soft': True,\n", + " 'name': 'c2',\n", + " 'timepoints': None,\n", + " 'additive_bounds': {'lb': -1.7976931348623157e+308,\n", + " 'ub': 0.0,\n", + " 'closed_upper_bound': False,\n", + " 'original_width': 1.7976931348623157e+308},\n", + " 'variables': ['R'],\n", + " 'weights': [-1],\n", + " 'derivative': True}" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "json.loads(c2.model_dump_json())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "json.loads(results_unconstrained_point.parameter_space.false_boxes[0].explanation.model_dump_json())#['relevant_assumptions']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results_unconstrained_point.parameter_space.points()[0]\n", + "df= results_unconstrained_point.dataframe(\n", + " results_unconstrained_point.parameter_space.points()\n", + ")\n", + "df[[\"S\", \"E\", \"I\", \"R\", \"H\", \"D\"]]\n", + "# df[\"S\"]+df[\"E\"]+df[\"I\"]+df[\"D\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Stratified\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " funman_request.structure_parameters[0].schedules[0] = EncodingSchedule(timepoints=[0,1, 2])\n", + " funman_request.config.substitute_subformulas = True\n", + " funman_request.config.use_transition_symbols = True\n", + "# funman_request.config.use_compartmental_constraints=False\n", + "# r_H_to_D = funman_request.parameter(\"r_H_to_D\")\n", + "# r_H_to_D.interval.lb = 0\n", + "# r_H_to_D.interval.ub = 1.0\n", + "\n", + " # r_E_to_I = funman_request.parameter(\"r_E_to_I\")\n", + " # r_E_to_I.interval.lb = 0\n", + " # r_E_to_I.interval.ub = 1.0\n", + "\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SEIRD demo\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " # summary = summarize_results([\"S\", \"E\", \"I\", \"R\", \"D\"], results_unconstrained_point, ylabel=\"Population\")\n", + " # print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results_unconstrained_point.parameter_space.points()[0]" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "funman_venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/funman_terrarium_demo.ipynb b/notebooks/funman_terrarium_demo.ipynb index 4d574e10..7c01b585 100644 --- a/notebooks/funman_terrarium_demo.ipynb +++ b/notebooks/funman_terrarium_demo.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -10,12 +10,35 @@ "\n", "# The file scratch/hackathon/hackathon_fall_2023_demo_terarrium.py was used to generate the outputs rendered here.\n", "\n", + "SAVED_RESULTS_DIR = \"./out\"\n", + "\n", "# Import funman related code\n", "import os\n", - "from funman import FunmanResults\n", + "from funman.api.run import Runner\n", + "from funman_demo import summarize_results\n", + "from funman_demo.example.pde import plot_spatial_timeseries\n", + "from IPython.display import HTML\n", + "import matplotlib.pyplot as plt\n", + "import itertools\n", + "from funman import FunmanWorkRequest\n", "import json\n", - "from funman_demo.parameter_space_plotter import ParameterSpacePlotter\n", - "SAVED_RESULTS_DIR = \"../out\"\n", + "from funman.representation.constraint import LinearConstraint, ParameterConstraint, StateVariableConstraint\n", + "from funman.representation import Interval\n", + "from funman import FUNMANConfig\n", + "import logging\n", + "from funman_demo import summarize_results\n", + "\n", + "\n", + "\n", + "RESOURCES = \"../resources\"\n", + "EXAMPLE_DIR = os.path.join(RESOURCES, \"amr\", \"petrinet\", \"mira\")\n", + "MODEL_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"models\", \"BIOMD0000000955_askenet.json\"\n", + ")\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"requests\", \"BIOMD0000000955_askenet_request.json\"\n", + ")\n", + "\n", "\n", "# %load_ext autoreload\n", "# %autoreload 2" @@ -23,214 +46,307 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "peak_time = Interval(lb=90, ub=110, closed_upper_bound=True)\n", + "\n", + "peak_infections = Interval(lb=1e-2, ub=1e-1)\n", + "# ramp_up_infections = Interval(ub=0.1*peak_infections.ub)\n", + "# ramp_down_infections = Interval(ub=0.01*peak_infections.ub)\n", + "ramp_up_infections = Interval(lb=0.0, ub=0.5*peak_infections.ub)\n", + "ramp_down_infections = Interval(lb=0.0, ub=0.5*peak_infections.ub)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 55, "metadata": {}, "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqUAAAITCAYAAAA+S2VaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABM+UlEQVR4nO3dd3xUZdrG8WvSC8kkoUkJNRRBICCiBEIRBVxARSygYgFcbKvrrr6Iq6vuurKu7i66NpSioigKKqAiGmxAREAg9NBCjdSE9D7n/SPOkQCBJGTmzGR+Xz/zMTlncuYOjuPlc57nfmyGYRgCAAAALORndQEAAAAAoRQAAACWI5QCAADAcoRSAAAAWI5QCgAAAMsRSgEAAGA5QikAAAAsRygFAACA5QilAAAAsByhFECd1KpVK3Xo0EHx8fHq1KmTXnnllXP+zO9+9zulpqae83mffvqpVq5cecZzEyZMUHx8vOLj4xUUFGTWEB8fr5ycnCrVnp6ersTExCo9tzJPPfWUCgsLa/Sza9as0U033XRerw8A1WVjm1EAdVGrVq306aefKj4+Xnv37lXXrl21bNkyde3a9byvfccddyg+Pl5//OMfq1zDyUpLSxUQEHDedZyNzWZTZmamoqKiqvVz7qgNAM6EkVIAdV7Lli3VoUMHbd++XUeOHNF1112nLl266KKLLtK0adPM57Vq1Urr16+XJA0YMEAPP/ywEhMT1bZtW919992SpC+++EILFy7U888/r/j4eE2fPr1KNdxxxx0aN26c+vXrp4suukiSdMstt6hnz57q2rWrhg0bpkOHDkmS9uzZUyFMrl69Wpdffrl69uyp7t2766OPPjLPff7557rkkkvUrVs3xcfH66effjJrTUxMVHx8vI4cOXLO33vSpEnq1auXbr/9dn333XcVgvSSJUvUt29fXXzxxerVq5e+/fZbSdKOHTvUp08fdevWTV26dNHjjz9exX8iAHAGBgDUQS1btjTWrVtnGIZhbNiwwYiIiDC2b99u3Hjjjcajjz5qGIZhHD582GjevLnx448/nvYz/fv3N6699lqjpKTEyM/PN1q1amUkJycbhmEYt99+u/Hf//63WjXcfvvtRteuXY3s7Gzz/JEjR8yvp0yZYkycONEwDMNIS0sz7Ha7YRiGkZmZacTHxxvp6emGYRjG0aNHjdjYWOPAgQNGamqq0bBhQ2Pr1q2GYRhGcXGxceLECcMwDEOSkZmZaV7/XL/3+PHjDYfDYRiGYXz77bdGt27dDMMwjF27dhmXXXaZkZWVZRiGYezYscO44IILjMLCQuOBBx4wnn32WfM1jh8/fs4/EwCoDPdoANRZN910k0JDQxUWFqaZM2eqXbt2SkpK0s8//yxJatSoka677jolJSXpsssuO+PPBwQEKCAgQPHx8dq1a5d69+5d43puuOEGRUREmN/PmTNHs2fPVmFhoQoLC9WgQYPTfiY5OVm7d+/WVVddVeF4amqqtm7dqqFDh6pjx46SpMDAQNnt9jO+9rl+7zvuuEM2m+20n/vyyy+1c+dO9evXzzzm5+enffv2qV+/fnrkkUeUm5ur/v3764orrqjmnwgA/IZQCqDOmjt37mnzOU91piDmFBISYn7t7++v0tLS86qnXr165tfLly/XSy+9pB9//FGNGjXSwoUL9de//vW0nzEMQ507d1ZycvJp57Zu3VrjWk79vU+u7dTXv/LKKzVnzpzTzrVr104JCQn6+uuv9fLLL2vq1Kn64osvalwTAN/GnFIAPuWKK67Qm2++KUk6evSoPv74Y1155ZXVukZkZKSysrLOq47MzExFRESofv36Ki4urjDH82QJCQlKS0tTUlKSeWz9+vUqLi7WkCFDtGTJEm3btk2SVFJSYtYVERFRocaa/t5DhgxRUlKSNmzYYB5btWqVpPI5pY0bN9Ztt92mf/3rX5V2JACAqiCUAvApL730krZu3aouXbpo4MCB+stf/qJLL720WtcYO3asPvzwQ3Xv3r3KC51ONXToUHXo0EEdOnQwFySdzDmSGR0drc8//1zPPvusunXrpk6dOunRRx+Vw+FQXFycZs2apVtvvVXdunXTpZdeara0+vOf/6wrr7zSXOhU0987Li5Oc+bM0cSJE9WtWzddeOGFmjp1qiRp3rx56tKli7p3766bbrpJr7/+eo3+LABAoiUUAHicVatW6ZZbbtGOHTusLgUA3IaRUgDwIAsWLNCYMWNorwTA5zBSCgAAAMsxUgoAAADLEUoBAABgOUIpAAAALEcoBQAAgOW8ekcnh8Oh9PR0RUREnHVXFgAAAFjDMAzl5OSoadOm8vOrfDzUq0Npenq6YmNjrS4DAAAA57B//341b9680vNeHUojIiIklf+SkZGRFlcDAACAU2VnZys2NtbMbZXx6lDqvGUfGRlJKAUAAPBg55pqyUInAAAAWI5QCgAAAMsRSgEAAGA5QikAAAAsRygFAACA5QilAAAAsByhFAAAAJYjlAIAAMByhFIAAABYjlAKAAAAyxFKAQAAYDlCKQAAACxHKAUAAIDlCKUAAACwHKEUAAAAliOUAgAAwHKEUgDwcjPXzdS3ad+quKzY6lIAoMYCrC4AAFBzx/OPa/zC8ZKkvMfyFOQfZHFFAFAzjJQCgBfbfny7JKl5ZHOFBYZZXA0A1ByhFAC82I6MHZKkdjHtLK4EAM4PoRQAvNiO44RSAHUDoRQAvJhzpLR9/fYWVwIA54dQCgBezLx9X5+RUgDejVAKAF7KMAxzoRO37wF4O0IpAHipw3mHlVucKz+bn9pEt7G6HAA4L4RSAPBSzkVOLewtFBwQbHE1AHB+CKUA4KVY5ASgLiGUAoCXoh0UgLqEUAoAXorG+QDqEkIpAHgpc+U97aAA1AGEUgDwQg7DoZ0ZOyUxpxRA3UAoBQAvlJ6TroLSAgX4BahVVCurywGA80YoBQAv5Fzk1DqqtQL8AiyuBgDOH6EUALwQ24sCqGsIpQDghWgHBaCuIZQCgBfanlG+8p5FTgDqCkIpAHghRkoB1DWEUgDwMmWOMu3K3CWJOaUA6g5CKQB4mf3Z+1VcVqwg/yDFRsZaXQ4A1ApCKQB4Geet+7bRbeXv529xNQBQOwilAOBlnNuLssgJQF1CKAUAL2P2KGWRE4A6hFAKAF6GxvkA6iJCKQB4GdpBAaiLCKUA4EVKHaVKO5EmiZFSAHULoRQAvMieE3tU6ihVWGCYmkY0tbocAKg1bgulkyZNUmJiosaOHauSkhLz+HfffafY2FgNGDBAgwYNclc5AOCVnCvv42Li5GdjXAFA3eGWT7SUlBQdPHhQy5YtU8eOHTVv3rwK52+66SZ99913Wrp0qTvKAQCvxXxSAHWVW0JpcnKyBg8eLEkaOnSoVqxYUeH8/PnzlZiYqBdffPGs1ykqKlJ2dnaFBwD4EtpBAair3BJKMzMzFRkZKUmy2+3KyMgwz/Xs2VOpqalaunSpvvzyS/3888+VXmfKlCmy2+3mIzaW7fUA+BbaQQGoq9wSSqOiosxRzaysLMXExJjn6tWrp6CgIAUFBWnEiBFKSUmp9DqTJ09WVlaW+di/f7/LawcAT+K8fc9uTgDqGreE0oSEBCUlJUmSlixZoj59+pjnTr4Fv3z5csXFxVV6neDgYEVGRlZ4AICvKCot0t6svZK4fQ+g7nFLKI2Pj1fjxo2VmJiozZs3a9SoUZo4caIk6cMPP1SvXr2UkJCgZs2aqV+/fu4oCQC8zu7M3XIYDkUERahReCOrywGAWmUzDMOwuoiays7Olt1uV1ZWFqOmAOq8hakLdc0H16hHkx76+feVz78HAE9S1bxGkzsA8BLO+aRrf1lrcSUAUPsIpQDgJZwr75/o94TFlQBA7SOUAoCXcO7mxCInAHURoRQAvAQ9SgHUZYRSAPAC+SX5OpB9QBIjpQDqJkIpAHiBXRm7JEnRIdGqH1bf4moAoPYRSgHAC5jzSbl1D6COIpQCgBdwzidle1EAdRWhFAC8gLNHKfNJAdRVhFIA8ALmyntCKYA6ilAKAF6AOaUA6jpCKQB4uOyibB3OOyyJkVIAdRehFAA83M6MnZKkRuGNZA+xW1wNALgGoRQAPByLnAD4AkIpAHg45pMC8AWEUgDwcKy8B+ALCKUA4OEIpQB8AaEUADycc04puzkBqMsIpQDgwTIKMnS84LgkKS4mzuJqAMB1CKUA4MGco6RNI5oqPCjc4moAwHUIpQDgwZhPCsBXEEoBwIPRoxSAryCUAoAHc46UssgJQF1HKAUAD0bjfAC+glAKAB7KMAzmlALwGYRSAPBQR/OPKrsoWzbZ1DamrdXlAIBLEUoBwEM5FznF2mMVEhBicTUA4FqEUgDwUNy6B+BLCKUA4KGci5xYeQ/AFxBKAcBDMVIKwJcQSgHAQ5mN82kHBcAHEEoBwAMZhqGdGTslMVIKwDcQSgHAA/2S+4vySvLkZ/NT6+jWVpcDAC5HKAUAD+S8dd86qrWC/IMsrgYAXI9QCgAeiO1FAfgaQikAeCBW3gPwNYRSAPBAhFIAvoZQCgAeiHZQAHwNoRQAPIzDcJjtoNjNCYCvIJQCgIfZn7VfRWVFCvQLVAt7C6vLAQC3IJQCgIdxzidtE91GAX4BFlcDAO5BKAUAD8N8UgC+iFAKAB6GlfcAfBGhFAA8jDOUssgJgC8hlAKAhzF3c2KkFIAPIZQCgAcpdZRqd+ZuScwpBeBbCKUA4EH2ntirUkepQgJC1DyyudXlAIDbEEoBwIM455O2jW4rPxsf0QB8B594AOBBaAcFwFcRSgHAg5gr72NYeQ/AtxBKAcCDmCvvGSkF4GMIpQDgQWicD8BXEUoBwEMUlxVrz4k9khgpBeB7CKUA4CHSMtPkMBwKDwxXk3pNrC4HANyKUAoAHsK8dV+/nWw2m8XVAIB7EUoBwEM4FzmtP7Te2kIAwAKEUgDwEM4epY/1fcziSgDA/QilAOAhTr59DwC+hlAKAB6CdlAAfBmhFAA8QEFJgfZn7Zckta/Pbk4AfA+hFAA8wK7MXTJkyB5sV4OwBlaXAwBuRygFAA/gXOREOygAvopQCgAegPmkAHwdoRQAPIA5UkooBeCjCKUA4AFoBwXA1xFKAcADOHdzYuU9AF9FKAUAi+UW5+qX3F8kcfsegO8ilAKAxXZm7JQk1Q+tr+jQaIurAQBrEEoBwGInt4MCAF9FKAUAi9EOCgDcGEonTZqkxMREjR07ViUlJaed/+c//6mePXu6qxwA8BjOUMoiJwC+zC2hNCUlRQcPHtSyZcvUsWNHzZs3r8L5nJwcbdy40R2lAIDHca68Z6QUgC9zSyhNTk7W4MGDJUlDhw7VihUrKpx/8cUXdf/995/zOkVFRcrOzq7wAABvx5xSAHBTKM3MzFRkZKQkyW63KyMjwzyXlZWljRs3qnfv3ue8zpQpU2S3281HbGysy2oGAHfIKszS0fyjkhgpBeDb3BJKo6KizFHNrKwsxcTEmOemTp2qP/zhD1W6zuTJk5WVlWU+9u/f75J6AcBdnPNJJSkiOMLCSgDAWm4JpQkJCUpKSpIkLVmyRH369DHP7dy5U88884yGDh2qHTt26B//+Eel1wkODlZkZGSFBwB4M+et+8QWiRZXAgDWCnDHi8THx6tx48ZKTExUixYt9PDDD2vixImaNm2aZs+ebT6vZ8+e+stf/uKOkgDAI7DICQDKuSWUStLzzz9f4ftp06ad9pw1a9a4qxwA8Ahmj1IWOQHwcTTPBwAL0TgfAMoRSgHAQrSDAoByhFIAsMjx/OPKLMyUJMXFxFlcDQBYi1AKABZx3rpvHtlcYYFhFlcDANYilAKARVh5DwC/IZQCgEXM+aSEUgAglAKAVWgHBQC/IZQCgEWcobR9/fYWVwIA1iOUAoAFDMPg9j0AnIRQCgAWOJx3WDnFOfKz+alNdBurywEAyxFKAcACzlHSFvYWCg4ItrgaALAeoRQALMD2ogBQEaEUACzgHCllkRMAlCOUAoAFGCkFgIoIpQBgAXqUAkBFhFIAcDOH4aAdFACcglAKAG6WnpOugtIC+dv81SqqldXlAIBHIJQCgJs5R0nbRLdRoH+gxdUAgGcglAKAmzGfFABORygFADdjPikAnI5QCgButj1juyRCKQCcjFAKAG5mjpRy+x4ATIRSAHCjMkeZdmXuksRuTgBwMkIpALjR/uz9Ki4rVpB/kGIjY60uBwA8BqEUANzIeeu+bXRb+fv5W1wNAHgOQikAuNH2478ucmI+KQBUQCgFADcye5Sy8h4AKiCUAoAbOUMpi5wAoCJCKQC4EY3zAeDMCKUA4CaljlKlnUiTxJxSADgVoRQA3GTPiT0qdZQqNCBUTSOaWl0OAHgUQikAuIlz5X1cTJz8bHz8AsDJ+FQEADdhe1EAqByhFADcxFx5H8PKewA4FaEUANzE7FHKSCkAnIZQCgBuQjsoAKgcoRQA3KCotEh7s/ZKYqQUAM6EUAoAbrA7c7cchkP1guqpcXhjq8sBAI9DKAUANzh5e1GbzWZxNQDgeQilAOAGzCcFgLMjlAKAG5gr7wmlAHBGhFIAcAPnbk4scgKAMyOUAoAbMFIKAGdHKAUAF8svydeB7AOSGCkFgMoQSgHAxXZl7JIkRYdEq35ofYurAQDPRCgFABc7eXtR2kEBwJkRSgHAxcxFTswnBYBKEUoBwMXoUQoA50YoBQAXO/n2PQDgzAilAOBiJ28xCgA4M0IpALhQTlGODuUeksTtewA4G0IpALiQc5RUkuwhdgsrAQDPRigFABdyLnJKiE2wuBIA8GyEUgBwIbYXBYCqIZQCgAsRSgGgagilAOBCzsb5rLwHgLMjlAKAC5mN8+lRCgBnRSgFABfJLMjU8YLjkqS4mDiLqwEAz0YoBQAXcc4nbVKvieoF1bO4GgDwbIRSAHAR53xSbt0DwLkRSgHARZzzSdvHsMgJAM6FUAoALmK2g2KkFADOiVAKAC5Cj1IAqDpCKQC4gGEYtIMCgGoglAKACxzNP6qsoixJUtvothZXAwCej1AKAC7gHCVtYW+h0MBQi6sBAM9HKAUAF2A+KQBUD6EUAFzAnE9KKAWAKiGUAoALbM+gcT4AVAehFABcwGycX5/G+QBQFW4LpZMmTVJiYqLGjh2rkpIS83hKSooSEhLUv39/jRgxQnl5ee4qCQBcwjAM7czYKYnb9wBQVW4JpSkpKTp48KCWLVumjh07at68eea5Tp06KTk5Wd9//70uvvhiffLJJ+4oCQBc5pfcX5RXkic/m59aR7e2uhwA8ApuCaXJyckaPHiwJGno0KFasWKFeS4wMND8uqCgQB06dKj0OkVFRcrOzq7wAABP47x13yqqlYL8gyyuBgC8g1tCaWZmpiIjIyVJdrtdGRkZFc5/+eWX6t69u7777jvFxcVVep0pU6bIbrebj9jYWJfWDQA1sf34r4ucuHUPAFXmllAaFRVljmpmZWUpJiamwvmhQ4dq3bp1GjVqlKZNm1bpdSZPnqysrCzzsX//fpfWDQA1QY9SAKg+t4TShIQEJSUlSZKWLFmiPn36mOeKiorMr+12u8LCwiq9TnBwsCIjIys8AMDTOEMpK+8BoOrcEkrj4+PVuHFjJSYmavPmzRo1apQmTpwoqfzWff/+/TVgwAB99dVXGj9+vDtKAgCXMRvn06MUAKrMZhiGYXURNZWdnS273a6srCxGTQF4BIfhUPiz4SosLdTOP+xU25i2VpcEAJaqal6jeT4A1KID2QdUWFqoAL8AtYxqaXU5AOA1CKUAUIuct+7bRLdRgF+AxdUAgPcglAJALXK2g2KREwBUD6EUAGoR7aAAoGaqfG/pkksukc1mk8PhUGZmpurVq6fc3FxFR0drzZo1rqwRALwGoRQAaqbKI6WrV6/WqlWrdPHFF+vzzz9XSkqKvvjiC/Xu3duV9QGAV6EdFADUTLVv32/atEkdO3aUJHXo0EE///xzrRcFAN6o1FGq3Zm7JTFSCgDVVe2loSNGjNDAgQPVtWtXbdy4USNGjHBFXQDgdfZl7VOJo0TB/sGKtcdaXQ4AeJVqh9JHH31U48aNU1pamlq1aqXGjRu7oi4A8DrOlfdxMXHys7GOFACqo9qfmunp6fr73/+uV155RQ0aNNCsWbNcURcAeB3mkwJAzVU7lN5xxx0aO3as9u/fL39/f7333nuuqAsAvA4r7wGg5qodSsvKytSrVy/ZbDZJksPhqPWiAMAbEUoBoOaqHUo7d+6sp556SseOHdM//vEPdevWzRV1AYDX4fY9ANRctRc6vfTSS/r8888VHh6ujh07svoeACQVlxVrz4k9kthiFABqokZzSocNG6ZHHnlEI0aM0EMPPeSKugDAq6RlpqnMKFN4YLia1GtidTkA4HWqPFK6c+dOpaamat26dfriiy8kSaWlpVq7dq3LigMAb+GcTxoXE2fOuQcAVF2VQ+nBgwe1Zs0aZWdna82aNTIMQ4GBgXruuedcWR8AeAXmkwLA+alyKO3fv7/69++vUaNGqXPnzrLZbDIMQ1u2bHFlfQDgFZwjpe1jmE8KADVR7TmlDzzwgHlrymaz6YEHHqj1ogDA25jtoBgpBYAaqXYoLSwsrPB9fn5+rRUDAN7KucUoPUoBoGaq3RJq+PDhGjlypBITE7V8+XINHz7cFXUBgNcoLC3U/qz9khgpBYCaqnYofeyxx7RhwwZt27ZNTz/9tLp06eKKugDAa+zK2CVDhuzBdjUMa2h1OQDglap9+z43N1dff/211q9fr06dOmnx4sWuqAsAvMbJ80lpBwUANVPtUHrrrbcqNjZWy5Ytk7+/v/7973+7oi4A8BpmOyjmkwJAjdVopPTGG29UYGCgJMkwjFovCgC8iTlSSigFgBqrdiht0qSJ3nrrLeXl5em9995T8+bNXVEXAHgN58p79rwHgJqrdiidPn268vLy1LNnT2VmZuqNN95wRV0A4DXoUQoA56/Kq+8HDx6sr776Sn/+85/18ssvu7ImAPAaecV5Ss9Jl8TtewA4H1UOpSUlJXrooYe0aNEihYWFVTj3r3/9q9YLAwBvsDNjp/l1dGi0hZUAgHercij94osvtH79eiUnJ2vYsGGurAkAvIbz1v1lzS+zuBIA8G5VDqWhoaHq3bu3fvrpJ+Xk5OjEiROsvAfg81jkBAC1o9o7Oj3wwANas2aNmjdvLsMwZLPZ9OGHH7qiNgDweLSDAoDaUe1QmpKSouTkZFfUAgBeh8b5AFA7qt0SqmfPnlqxYoXy8vKUn5+v/Px8V9QFAF6BdlAAUDuqPVK6du1arVu3rsKxb775ptYKAgBvkVWYpSN5RyQxUgoA56vKofSGG26QzWZTgwYNXFkPAHgN5yjpBfUuUERwhMXVAIB3q3IofeGFF1xZBwB4HeaTAkDtqXIobdmypSvrAACvw8p7AKg91V7oBAAo5+xRyiInADh/hFIAqCFGSgGg9hBKAaCGnHNK2c0JAM4foRQAauB4/nFlFmZKktrGtLW4GgDwfoRSAKgB53zS5pHNFRYYZnE1AOD9CKUAUAPMJwWA2kUoBYAaoEcpANQuQikA1IBzpJRFTgBQOwilAFAD5u17epQCQK0glAJANRmGwe17AKhlhFIAqKbDeYeVU5wjP5uf2kS3sbocAKgTCKUAUE3OUdIW9hYKDgi2uBoAqBsIpQBQTbSDAoDaRygFgGpyNs5n5T0A1B5CKQBUEyOlAFD7CKUAUE3mynvaQQFArSGUAkA1OAyHdmbslMRIKQDUJkIpAFRDek66CkoL5G/zV6uoVlaXAwB1BqEUAKrBeeu+TXQbBfoHWlwNANQdhFIAqAbnynvmkwJA7SKUAkA1sPIeAFyDUAoA1UAoBQDXIJQCQDXQDgoAXINQCgBVVOYo067MXZLYzQkAahuhFACqaF/WPhWXFSvIP0ixkbFWlwMAdQqhFACqyDmftG10W/n7+VtcDQDULYRSAKgi5pMCgOsQSgGgilh5DwCuQygFgCoilAKA6xBKAaCKnLs5sfIeAGofoRQAqqCkrERpmWmSmFMKAK7gtlA6adIkJSYmauzYsSopKTGPL1q0SJdeeqn69u2rBx980F3lAEC17DmxR2VGmUIDQtU0oqnV5QBAneOWUJqSkqKDBw9q2bJl6tixo+bNm2ee69atm1asWKHly5fryJEjWrNmjTtKAoBqcc4njYuJk5+Nm0wAUNvc8smanJyswYMHS5KGDh2qFStWmOdatGihgIAASVJQUJD8/CovqaioSNnZ2RUeAOAOtIMCANdySyjNzMxUZGSkJMlutysjI+O056xevVpHjhxRjx49Kr3OlClTZLfbzUdsLDuqAHAP50hp+xgWOQGAK7gllEZFRZmjmllZWYqJialw/sCBA/rjH/+ot99++6zXmTx5srKysszH/v37XVYzAJzMbAfFSCkAuIRbQmlCQoKSkpIkSUuWLFGfPn3Mczk5ORo9erSmTZumRo0anfU6wcHBioyMrPAAAHdwtoOiRykAuIZbQml8fLwaN26sxMREbd68WaNGjdLEiRMlSVOnTlVaWpruv/9+DRgwQN9//707SgKAKisqLdK+rH2SGCkFAFexGYZhWF1ETWVnZ8tutysrK4tRUwAus/XoVnV6tZPqBdVT9qPZstlsVpcEAF6jqnmNviYAcA4nby9KIAUA1yCUAsA5ONtBsb0oALgOoRQAzuHkkVIAgGsQSgHgHMyV9yxyAgCXIZQCwDkwUgoArkcoBYCzKCgp0IHsA5IYKQUAVyKUAsBZ7MzYKUmKColS/dD6FlcDAHUXoRQAzsJ56/5E4QnaQQGACxFKAeAsnIucbulyi8WVAEDdRigFgLNw9ihlkRMAuBahFADOwlx5zyInAHApQikAnAXtoADAPQilAFCJ7KJsHco9JImRUgBwNUIpAFTC2Q6qYVhDRYVEWVsMANRxhFIAqIS5yIlRUgBwOUIpAFSC+aQA4D6EUgCohLNHafv67S2uBADqPkIpAFSCkVIAcB9CKQBUgjmlAOA+hFIAOIOMggwdLzguSYqLibO4GgCo+wilAHAGzlHSphFNVS+onsXVAEDdRygFgDNgPikAuBehFADOwJxPSigFALcglALAGZgjpSxyAgC3IJQCwBk4Qyk9SgHAPQilAHAKwzDMxvncvgcA9yCUAsApjuYfVXZRtmyyqW1MW6vLAQCfQCgFgFM4FznF2mMVEhBicTUA4BsIpQBwCtpBAYD7EUoB4BTOkVIWOQGA+xBKAeAUjJQCgPsRSgHgFObKe3qUAoDbEEoB4CSGYWhnxk5JjJQCgDsRSgHgJL/k/qK8kjz52fzUOrq11eUAgM8glALASZyLnFpFtVKQf5DF1QCA7yCUAsBJ2F4UAKxBKAWAkzhHSplPCgDuRSgFgJNsz2DPewCwAqEUAE5ijpTSDgoA3IpQCgC/chgO7crcJYmRUgBwN0IpAPzqQPYBFZYWKsAvQC2jWlpdDgD4FEIpAPzKeeu+bXRbBfgFWFwNAPgWQikA/IrtRQHAOoRSAPiVs0cp80kBwP0IpQDwK0IpAFiHUAoAv6IdFABYh1AKAJJKHaXanblbEiOlAGAFQikASNqXtU8ljhIF+wcr1h5rdTkA4HMIpQCg31bex8XEyc/GRyMAuBufvAAg5pMCgNUIpQAgVt4DgNUIpQAgQikAWI1QCgD67fZ9+/rtLa4EAHwToRSAzysuK1baiTRJzCkFAKsQSgH4vLTMNDkMh8IDw9WkXhOrywEAn0QoBeDznPNJ42LiZLPZLK4GAHwToRSAz6MdFABYj1AKwOex8h4ArEcoBeDznKGUlfcAYB1CKQCf59xilJFSALAOoRSATyssLdT+rP2SmFMKAFYilALwabsydsmQocjgSDUMa2h1OQDgswilAHyacz5pdlE27aAAwEKEUgA+zdkOavRFoy2uBAB8G6EUgE9zLnJqH8PKewCwEqEUgE8ze5SyyAkALEUoBeDTaJwPAJ6BUArAZ+UV5yk9J10SI6UAYDVCKQCftTNjpySpfmh9xYTGWFwNAPg2QikAn2Xu5MQoKQBYzm2hdNKkSUpMTNTYsWNVUlJiHt++fbvi4+MVEhKi3Nxcd5UDAMwnBQAP4pZQmpKSooMHD2rZsmXq2LGj5s2bZ55r3ry5vv/+e1122WXuKAUATIRSAPAcbgmlycnJGjx4sCRp6NChWrFihXkuLCxMdru9StcpKipSdnZ2hQcA1JSzcT637wHAem4JpZmZmYqMjJQk2e12ZWRk1Og6U6ZMkd1uNx+xsbG1WSYAH8NIKQB4DreE0qioKHNUMysrSzExNVvlOnnyZGVlZZmP/fv312aZAHxIVmGWjuQdkcRIKQB4AreE0oSEBCUlJUmSlixZoj59+tToOsHBwYqMjKzwAICacI6SNg5vrMhgPksAwGpuCaXx8fFq3LixEhMTtXnzZo0aNUoTJ06UVH5r/4orrlBKSopGjBihxYsXu6MkAD6O+aQA4FkC3PVCzz//fIXvp02bJkmKjo42R1EBwF2YTwoAnoXm+QB8EqEUADwLoRSAT3Levm9fv73FlQAAJEIpAB/FFqMA4FkIpQB8zvH848oszJQkxcXEWVwNAEAilALwQc75pM0imiksMMziagAAEqEUgA+iHRQAeB5CKQCf45xP2j6GRU4A4CkIpQB8jtkOipFSAPAYhFIAPocepQDgeQilAHyKYRjMKQUAD0QoBeBTjuQdUU5xjmyyqU10G6vLAQD8ilAKwKc4Fzm1jGqpkIAQi6sBADgRSgH4FOaTAoBnIpQC8CnmfFJCKQB4FEIpAJ9COygA8EyEUgA+xTmnlJFSAPAshFIAPsNhOLQzY6ckRkoBwNMQSgH4jPScdBWUFsjf5q/WUa2tLgcAcBJCKQCf4Vzk1Dq6tQL9Ay2uBgBwMkIpAJ9RF9tBORwOvbTyJc3fMt/qUgDgvARYXQAAuEtdWuTkcDj0xLdPaOpPU5Vfki9Jmtx3sp4d9KzFlQFAzRBKAfiEMkeZVqevluTdi5xKHaWanDRZL69+WYWlhRXOTVk+RQWlBfrvkP9aVB0A1By37wHUeTlFORo5d6R+2PuDJKlvi74WV1R9xaXFemDxA6r3bD298OMLZiDt3by3Uu5OMRduTV05VbanbVaWCgA1QigFUKftPbFXfWb20aLtixQSEKL3R72v+AvirS6rygpLC3XPZ/co4p8R+t+q/6morEiSlNgiUTv+sEPJ45PVtXFXbbtvm9rXb2/+3J2f3mlVyQBQI9y+B1BnJe9P1si5I3Uk74guqHeBFoxeoF7NelldVpXkF+fr/sX3690N76rEUSJJssmmga0GauY1M9UyqmWF5wcFBGnzvZvVfVp3bTqySW+lvKWC0gJ9cP0HVpQPANVGKAVQJ7274V2NXzhexWXFir8gXgtHL1SsPdbqss4ppyhH935+rz7Y/IFKHaWSysPo4LaDNePqGWoW2azSnw3wC1DKxBRd8uYlWntoreZunqvC0kJ9OvpTN1UPADXH7XsAdYrDcOixpY9p7CdjVVxWrJEdR2r5ncs9PpBmFWZp9EejFf1ctN7d+K5KHaXyk5+GtRumX/78i7689cuzBlInPz8/rb5rtRKaJ0iSFqQu0NDZQ11dPgCcN5thGIbVRdRUdna27Ha7srKyFBkZaXU5ACyWV5ynsZ+M1SfbPpFU3iLpmcufkZ/Nc///+3j+cd216C4tSF0gh+GQJPnZ/HRNh2v05og3VT+sfo2uaxiGBr0zSN/u+dY8VvZEmfz8PPfPAkDdVNW8xqcTgDphf9Z+Jc5K1CfbPlGQf5DeufYdPTvoWY8NpIdzD2vEnBFq9EIjfbLtEzkMh/xt/rqh0w069sgxfXzTxzUOpJJks9n0ze3f6Kq4q8xjfWb2kcPhqI3yAaDWMVIKwOutOrhK13xwjQ7lHlLDsIb6dPSnSohNsLqsM0rPSdf4BeO1ZNcSGSr/+PW3+Wv0RaP12rDXFBEcUeuved3c68zR4/gL4vXzXT8zYgrAbaqa1wilALza3E1zdceCO1RYWqgujbpo0ZhFp61M9wT7svZp3IJxWpq21DwW4BegsV3H6n9X/U/hQeEuff1b5t+iOZvmmN+XPFGiAD/WugJwvarmNT6RAHglh+HQ377/m57+/mlJ0vD2wzXnujkuGWk8H7sydmncgnH6Yd8P5rFAv0CN6z5OU4dOVUhAiFvqeG/UewoOCNas9bMkSZ1e6aRN92xSUECQW14fAM6FUArA6+SX5OvOBXfqw80fSpIe7v2w/nnFP+Xv529xZb9JPZaqcQvGKflAsnks2D9Yd/W4S/8e/G9LwuDMa2YqNCBUr655VTsydqjDKx209b6tbgvGAHA2hFIAXiU9J13XfHCN1qSvUaBfoF4f/rrGdR9ndVmmTUc2adyCcVqdvto8FhIQonsvuVf/HPRPBfoHWlid9MqwVxQSEKL/rPyP9pzYo7iX4rT9/u0KCwqztC4AIJQC8Bprf1mrq9+/WgdzDqp+aH3Nv3G++rfqb3VZkqR1v6zT+IXjte7QOvNYaECoHrzsQT0z8BmPGsX995B/KzQwVP9Y9g8dzDmotv9rq9T7UhUZwtx8ANYhlALwCvO3zNfYT8aqoLRAFza4UIvGLFLbmLZWl6VVB1dpwsIJ2nhko3ksPDBcD/d+WH/t/1ePXeX+zOXPKCQgRE98+4QO5R6S/Tm7jj9yXDFhMZbW5XA49Gnqp5q1bpZ+/uVn/ZL7i2IjY7U/e786Neik4IBgrTu0Tpe3ulyhgaEKCwxTeGC4woPCVS+onsIDwxURHKHI4EjZg+2KDI5UVEiU7MF2RYVGKSo4inm0gIdi9T0Aj2YYhp5d9qwe//ZxSdKQtkM09/q5sofYLa1r+b7lmrhoorYc22IeiwiK0OS+kzWpzySPDaOneiH5BT3y9SOSpOiQaG27b5sa1Wvk1hq2H9+ul1e9rMU7Fmv3id3mJgKu5mfzk8NwKMg/SMVlxYoIilCAX4AyCzPVPLK5gvyDtDtzt+IviFdoQKhCAkIUGlAehMMCw8wg7HxEBkeaYdgebJc9xK7o0GhFBUcpOCBYNpvNLb8X4GloCQXA6xWWFmrCwgl6b+N7kqQHL31QLwx+wdJWRt+kfaN7Pr9H249vN4/Zg+16ot8T+lPvP3ll8Hhl1Su6f/H9kqTI4EhtuXdLlbY0ran8knzNXDdTH2z6QOsOrVN+Sf5pz2kQ1kCXNbtM0aHRyi/JNx+FpYUqLC1UUVmRikqLVFxWrBJHiUrKSlTqKFWpo1RlRpnKHGVyGA6zF6ynsMkmQ4Ye7fOonh30rFe+X4DqIpQC8GqHcw9r5NyR+vHAj/K3+evl372su3vebVk9X+78Uvd9cZ92Z+42j8WExujpAU/r/l73W1ZXbZmxdoYmLJpgfr/nwT212u/1+z3fa9rP0/Tdnu/0S+4vp50P8Q/RRY0u0vWdrtfEiycqKjSq1l7bMAwVlxXrROEJZRZm6kTBCWUVZSm7KNt85BTlKK8kT7nFucotzlV+ab7yi/NVUFpgBmFnGC4uK1ZJWUmFMFxmlIdg56Mqmkc01xe3fKEujbvU2u8KeCJCKQCvlXIoRSPeH6H92fsVFRKleTfM06A2gyypZWHqQj2w+AHtzdprHmsQ1kDPDHxGE3tOtKQmV3lvw3sa+8lYGTIUGhCqlLtT1K5+uxpd65ecX/TK6le0MHWhth3bphJHSYXzNtkUa4/VlW2u1L2X3KseTXrUxq/gMZxBOKc4RycKysNwVmGWsoqy9ELyC1p5cKX53Dvj79SbI970qMVwQG0ilALwSgtTF+rm+TcrryRP7WLa6bObP1P7+u3dXsf8LfP1xyV/1IHsA+axxuGN9dwVz+n2+NvdXo+7zN8yXzd8dIN523vTPZvUuVHnc/5cqaNUH27+UO+kvKOVB1YqqyjrtOdEBkeqV9NeurXbrbr5opstb49lpQ82faBxC8apoLRAUvl83k9u+sRjukkAtYlQCsCrGIah55Of16SkSZKkQa0H6aMbPlJ0aLRb65izcY4e/urhCreYm0Y01b8H/1ujLxrt1lqs8lnqZ7pm7jXmIqCV41eqe5Pupz1v4+GNemX1K1qya4n2nNhz2vkAvwC1r99eV7e/Wvddcp+a25u7oXrvUVhSqFEfjtIXO78wjw1vN1zzbpyn4IBgCysDahehFIDXKCot0t2f36231r8lSbr74rv10lUvuXUkbdrP0/TXb/+qI3lHzGOxkbH675D/alSnUW6rw1N8vetrXfXeVSozyhToF6hldy5Tp4ad9MbPb+jDLR9qw+ENKiwtPO3nGoc3Vr+W/TTx4om6vPXlLOSpgqW7l+r6j67XicIT5rGPrv9I13e+3rqigFpEKAXgFY7mHdV1H16n5fuWy8/mp6lDpur+Xve7Jcw4HA698OMLmrJ8SoVA0CqqlV4a+pJGdBjh8ho82Xe7v9Og2YPkUOULd0IDQhV/Qbxu7Hyjxncfr4jgCDdWWHeUOco0bsE4vbPhHfNYn9g++mzMZ7W66AuwAqEUgMfbfGSzRrw/Qmkn0hQZHKkPr/9QQ+KGuPx1yxxlevK7JzV15VTlleSZx9vHtNfLv3tZV7a90uU1eKp9Wfv08qqXtWj7Im07tu208zbZ1Dq6tYa0HaL7LrmvSvNNUXXrf1mvYe8PU3pOunnslate0b297rWwKuD8EEoBeLTFOxbrpnk3Kac4R22i22jRmEXq1LCTS1+zqLRI//f1/+mNtW9UuPXctVFXvT78dfWO7e3S1/dExaXFmr1htt7b+J7WpK9RTnHOac+JDIpUTnGOufhp4eiFPj+K7EqGYej/kv5P//nxP2Z7qc4NO+vLW75kXi68EqEUgEcyDEMv/vSi/vzVn+UwHOrXsp8+vvFj1Q+r77LXzCvO0x8W/0Hvbni3QmuiS5tdqjdHvOlzfSJXH1ytV1e/qrdS3jKbuZ8syC9IFza8UNd2vFb39rxXjeo10uYjm9XzjZ4qLCsP8x/d8JGu78ScR1dKy0zT0PeGVtio4Yl+T+hvA/9mYVVA9RFKAXic4rJi3f/F/Xpz7ZuSpHHx4/Ta8NcU5O+avcgzCjJ092d36+OtH6vMKJNUfvu5f6v+mnH1DLWJbuOS1/U0GfkZem3Na/p468fafHSzisqKTntO04imGthqoO7uebf6tuh7xuvsOL5D3V7vpoLSAtlk0+yRs3VL11tcXb7P+3fyv/Xo0kdV6iiVJLWIbKHPb/lcFzW6yOLKgKohlALwKMfzj+uGj27Qt3u+lU02vTD4BT102UMuWdCUnpOuuxbepS93fWne/vSz+emquKv0xog31DSiaa2/pidxOBxakLpAs9bPUvL+ZB0vOH7ac8IDw9WjSQ/d3OVm3RF/h0ICQqp07b0n9qrzq53NubjTR0zX+B7ja7V+nO5Y3jH9bs7vtDp9taTy/7ma0GOCXh/2uvz8/CyuDjg7QikAj7Ht2DaNeH+EdmbsVL2genp/1Psa3n54rb/OroxdGr9wvH7Y+4N5S9rf5q9RF47Sa8NfU0xoTK2/pidwOBz6bu93mrNhjr7f+712Zu487Tn+Nn+1jW6r37X7ne7vdb/axrSt8esdzD6oTq92UnZRtiTpf1f9r05steoNZqfM1u8/+32FOdHL7lxW6eg24AkIpQA8wte7vtbgdwdLklraW2rRmEW1Podz4+GNmrBwglalrzKPBfoF6rZut+nFoS8qPCi8Vl/PaiVlJfp428eat3mefjr4kw7mHDzjfuv1Q+urb4u+Gtd9nIa3G16rI2pHco+o4ysdlVmYKUl64coX9OeEP9fa9VG5/JJ8XffBdVqye4l5bGTHkZp7/Vyf3iULnotQCsByr65+VQ8sfkBlRpkSYhP0yU2fqFF4o1q7/sr9K/X7z36vjUc2msdCAkJ098V367krnlNQgGvmqrpbVmGW3tvwnhakLtC6Q+t0NP/oGZ8XYAtQm+g2uq3bbbr3kntdvhtWRn6GOrzSQcfyj0mS/j7w73q83+MufU38ZsnOJbpx3o3miLUkfXzjxxp54UgLqwJORygFYJlSR6n++OUf9crqVyRJt3W7TW8Mf6PWtk78audXun/x/dqRscM8Vi+onh667CE92f9J+fv518rrWGV/1n69vf5tLd61WJuObKoQOqrqsb6PaVz3ced1m74qsguz1f7l9jqcd7j8dRMf0z8u/4dLXxO/KXOU6bZPb9OcjXPMY/1a9tNnYz5jIwN4DEIpAEucKDyhGz+6UV/v/lqSNGXQFE3qM6lWFjTN3zJff/rqT9qXtc88Fh0Srb8k/kUPXfaQ1y742Hh4o95a/5aWpi3V9uPbVVBacNpzbLIpwC+gQkurZhHNNK77ON0Zf6cKSgs0Y+0MvbPhHXPkUpIGthqo8d3H67oLr1NoYKhL6s8rzlOHlzvoYM5B85jxpNf+p8UrrT64WiPeH2H+z0GQf5BeuuolTbx4osWVAYRSABbYmbFTw+cMV+rxVIUFhum9697TtR2vPe/rzlo3S5OXTjb/gytJjcIb6ZmBz+iui+867+u7k8Ph0Ld7v9WcDXO0bN8y7Tmxp0LQdArwC1Dj8MYKCQjRgewDZhunAL8AXd3hak3oPkGD2w4+bVS4uKxYC1MXasa6GVqyc0mFHqT3X3K/JvSYoG4XdKv136uwtFAdX+6ovVl7JUn39LxHrw57tdZfB5UzDEN/+upPenHlixX+uR/808E633ECno1QCsCtvk37Vtd/dL0yCjLUPLK5Fo1ZpPgL4mt8PWeT/b//8HdlFGSYx2MjY/X84Od1U+ebaqFq1ysuLdbHWz/WvK3li5IOZB844/NCAkLULqadLm12qcIDw7Vk95IK23x2qN9BE3pM0NiuY9W4XuMqvfa+rH2atW6WZq6fWWF0WZJeG/aaxlw0RvYQe81/uVMUlxbrotcuMqdV3BF/h2ZdM6vWro+q2ZWxS0PfG6qdGeVdGPxt/vpr/7/qr/3/anFl8FWEUgBu8+bPb+reL+5VqaNUvZr10oLRC3RBvQtqdC2Hw6G//fA3/efH/1TY8rJtdFv976r/6ap2V9VW2S6RVZildze8q4WpC7X20NoKt9JPFhEUoc4NO2tI3BCN7TpWOzJ2aPra6VqYutAcOQ0LDNONnW/UhO4TlBCbUOMpEGWOMi1NW6rpa6fr022fVhiZva3bbZrQfYL6tuhbK1MsSh2l6vZaN205tsU8xq18a/xz+T/1xLdPmE33JWnbfdvUoUEHC6uCLyKUAnC5MkeZHvn6Ef135X8lSWMuGqMZV8+o0dzFkrISPZr0qF5b81qFOZWdG3bW68NeV9+WntmHcV/WPr21/i0t2blEm45Wviipfmh9xV8Qr6s7XK2xXccqOjRae07s0ax1szRr/Sztz95vPveSppdoQo8JGn3RaEUG1+5n29G8o3p3w7uavm66thzdUuHcc1c8p9u73V7lkdjKOBwOXfzmxVp/aL0k6doO1+qT0Z+c1zVRM0fyjuiq967S2l/WSiqfm3zPJffof0P/57VzsOF9CKUAXCq7KFuj543W4p2LJUl/G/A3Pd7v8WqPthWUFOjBLx/U2ylvq7is2Dzes0lPvXn1m+c1BcAVUg6l6K2Ut/TN7m+04ciGMz7HT35qEtFEvZr10vWdrteoC0eZnQeKSou0IHWBpq+dbi4Gk8oXbI3tOlbje4xX18ZdXf57GIahnw7+pOlrp+uDTR+YOzQF+AWo1FGqz8Z8piFxQxTgF1Cj6zscDiXMTNBPB3+SJA1tO1SLb11ca/Wjematm6V7Pr+nwhazyeOS1Tu2t4VVwVcQSgG4TFpmmka8P0Kbj25WaECo3hn5jq7vdH21rpFVmKV7Pr9HH23+SKVG+e1Fm2zq26KvZlw9Q+3qt3NF6dXicDj0Tdo3mrOpfFHS3hN7K12U1NLeUoktEjXmojG6os0Vp41CbT6yWTPWzTBHlZ0GtR6kCT0m6NqO11Z5q8/allOUow83f6jp66Zr5YGVFc79JfEvGtd9nNpEt6n2dR0Ohy5/53J9v/d7SdKAlgO09LaljNBZJK84T9d8cI2Wpi01j13f6XrNuW4OTffhUoRSAC6xfN9yjZw7Usfyj6lpRFMtGL1APZv2rPLPH849rN8v+r0+2/GZuQuRTTYNaTtEb454U83tzV1V+jkVlxZr/tb5mrflt52SzsS5KGlQ60G6rdtt6t6k+xmfl1OUo7mb52rGuhkVwl6ziGa6M/5O3dn9zhqFPVdyhud3Ut7R8YLjFc7NuW6ORl44strhecjsIfpq91eSpN7Ne2v5ncsJphb6bPtnunn+zeac7YigCM0ZNcclW/8CEqEUgAu8vf5t3bXoLpU4StSjSQ8tHL1QzSKbVeln957Yq/ELx1cYpfG3+evajtdq2vBpqh9W31VlV+pE4QlzUdK6Q+sqXZQUGRypzg07a2jbobo9/na1jGpZ6TUNw9DKAys1Y90MzVg3wzwe4BegEe1HaEKPCRrSdojHN/gvKi3SwtSFmr5uur7e9bXZYig6JFqZhZlKuTulWtMMrv3gWi1IXWB+X/ZEGcHUQqWOUt0y/xZ9uOXDCsdzJueoXlA9i6pCXUUoBVBryhxlemzpY/pX8r8kld/ye/vatxUWGHbOn91ydIsmLJygHw/8aB4L9AvUzV1u1v+u+p/bdp1xOBzacnSL5m+dry93fqnNRzdXWN1/sgZhDdT9gu66usPVurXrrYoKiTrn9Y/lH9PslNn601d/qnC8ff32Gt99vG7rdluNOxJYbe+JvZq1fpZmrptZYUGWJL0+7HWN6TKmSguyRs8brbmb50oqX8C2/u71NZ6zitqx8sBKXf3+1ebWtcH+wXp12Ksa132cxZWhLiGUAqgVucW5uuXjW7QwdaEk6fHEx/X0wKflZzv7KNfq9NX6/cLfa/3h9eaxYP9g3dXjLr0w+IVa23L0VA6HQxsOb9DXu7/WygMrtfXYVh3MOVjpqng/m5+a1GuiS5tdai5KCgoIqtprGQ4l7U7S9LXT9dGWj8zjoQGhurHzjRrffXyttVryBGWOMn29+2vNWDdDC7YtqNC6Kr8kX8vvXH7O1lW3f3K73tnwjqTywL7x7o1V/vOGazgcDj3w5QN6dfWrFZruH/rzofPuxABIhFIAtWBf1j6NeH+ENhzeoGD/YM28ZqZu7nLzWX/m27Rvde/n92rb8d8av4cHhuuBSx/Q3wb+rdZGxhwOh9YeWquk3UladXCVth4tD5+VjX46BfoFqlVUK/Vt0Vc3d7lZl7e6vNq3kZ1N6Z/6/qkKx3s27anx3cfXelN6T3Qk74hmp8zWjHUztPXYVvN4h/odlHo8VYcfPqxG4Y3O+LN3f3a3pv08zfy+4C8Fli3ywm9Sj6XqqveuUtqJNElSgC1Afxv4N01OnGxxZfB2hFIA5+XH/T/q2rnX6kjeETUOb6xPR3+qy5pfVunzF25bqAeXPKg9J/aYx+zBdj3a91H9X8L/1Xj+oMPh0Or01UranaTV6au19dhWpeekK7c496w/F+gXqAZhDdQ6qrW6XdBN/Vv215VtrlRMWEyN6nBu33nDRzfIJps5ohQVEqVbu9yq8T3Ge1z7KncwDEM/HvhR09dO19zNc5Vfki/pt+1QP976sUqfKD1tDu1DXz6kqT9NlVS+S9e2+7YpLOjc00Hges98/4ye+v4plRllkqQ20W205NYliouJs7gyeCtCKYAzKiot0uG8wzqce1iHcg/pcN6vf889rEN5hzRvyzy1r99euzN3l+/O07ibFo5ZqBb2Fme83uyU2ZqUNEm/5P5iHmsY1lBPD3ha91xyT5Xrcjgc+vHAj1qatlSrD65W6vFUc7vKswnyC1KD8AZqE9VG8RfEq3+r/rqizRVVmgdaFVuObtGMtTP0n5X/qXB8YKuBmtBjgkZ2HFmjzQLqouyibM3dVN5twNmfVJKaRzbXgewDSnswTa2iWpnHJydN1j9X/FOSdEG9C5R6X6oiQ/gs9wS/5Pyiq967SimHUySVd8j4w6V/0H8H/5cFaqg2QingQ4rLinUk74gO5x6uGDJ/DZ1zN89VxwYddSj3kE4Unqjyda/teK1mj5x9xtW4L696WU9/97SOFfy2Yr1ZRDM9d8VzuqXrLZVes9RRqpUHVippV/nIZ+rxVO3K3HXOWoL8g9QwrKHaRrdV/AXxGtBqgAa1HuSSEJNbnFvet3Pt9AoLtJpGNNUd3e7QuO7j1Damba2/bl2y8fBGzVg3Q7M3zFZGQYak8mAzqM0gTehe3pc1OCBYT3/3tDkNomFYQ227b1uNR7NR+978+U39YfEfzKb7jcMba9GYRbqk2SUWVwZvQigFvFypo1RH846ePpr56/fvb3pfnRp20qHcQ+Z/9Ksq0C9Qjes11gX1LlDj8MZqHP7r1ycdaxbZTG2j21ZYtOJwODRl+RT9K/lfFRYOtY5qrReHvqgRHUZUqH/5vuVaunup1qSv0faM7TqUe8i8vVuZYP9gNQxvqLjoOHVv0l39W/bXoDaDXN6mxjAMrTq4qnyHo80fmNMD/G3+Gt5+uCb0mKChcUNZLV5NhaWFWrBtgaavm66k3Unm8ZjQmPIdrLqP1+KdizUpaZJ5fOu9W9Wo3pnno8L9copyNOL9EeYmCE4lT5Tw7wOqhFAKeKAyR5mO5R8zg+Vpt9DzDitpd5IahjU0W7RUVYBfgBqFN6oYMMPL/35q6IwOia7WivBSR6n+svQvenn1yxVC5YUNLtTUIVPl7+evpWlL9XP6z9qRsUOHcg9V2L/+TEL8Q9QwvKHaxbRTjyY91L9lf13e+nK3zys8ln9M7254VzPWzdCmI5vM43ExcZrQfYJuj7/da1s5eZq0zDSztdTJGxP0atZLraNam+2iJOngQwfVNLKpFWWiEp9u+1RjPx6r3JLy/2GLDI7UB6M+0FXtrrK4Mng6jwulkyZNUnJyslq1aqWZM2cqMLB8S7OysjLddddd2rFjhy6++GJNnTq1ytcklMJqDsOhMkeZThSeOONopvPvX+36So3DG+to/lFzF6Oq8LP5nTNoOo/HhMacs01TdRWWFupPS/6k19a8VuF4vaB6igiKqDCPtDIhASFqHN7YDJ8DWg3QwNYDLV1t7TAcWrp7qWasm6FPtn2i4rJis9YbOt2gCT0mKLFFYp1p5eRpyhxl+mrXV5q+broWpi5UqaN8m9kgvyAVO8r/WdQLrKdN924660YFcL/i0mKNmT9GH2/72Dx2ZZsr9elNn7JQDZXyqFCakpKi559/Xu+++67+8Y9/qE2bNhozZowkacGCBVq9erWeeeYZ3XXXXRo3bpx69+5dpeu6M5Re+faV+mbPN5WeP7m3W22y6bf/KLrqNc6ltl/35N/JFdf3Zaf+2TpD1cnHbbJVOG6z2eT8S7byIGyTTWWOMhWUnX2082QBfgEKCwxTdEi0Lqh3gVpEtlBze3OPu723L2ufkvcnV2gC36NJD03oPkFjuoyptQVSqJrDuYc1e8NsTV87XanHUyucC/QL1IQeE+rkDkNxMXFqENbA6jJqbOvRrXpuxXNmC7ZAv0ANaj1IFzW6qM79z1xUSJQ6NuhodRm1rkeTHhUWHrqSR4XS1157TeHh4brtttv0888/a9asWXr55ZcllY+gDhs2TP369dP8+fOVlpamhx9++IzXKSoqUlFRkfl9dna2YmNj3RJK/Z/2l0NVH+EC4NnswXbd2vVWje8+vtK96+E+hmFoxf4VmrFuhuZsnGOOXgNwjekjpmt8j/Fuea2qhlK3DGFkZmaqSZMmkiS73a6MjIwK55wFnnruVFOmTNHTTz/t2mIrEeQfpMKyQkteG57p1FHJ8MBwSeX/cXX+3fzrpK+lk0aHjYpfn3yushFkd48sB9gCFOBX/vCz+cnP5ndajd40NT3AL0D3XXKfHkt8jFZOHsRms6lvi77q26KvXhz6oiYnTdYba9+Qv81fQf51b8enFvYWdWZUPq84T6nHU1VcVlylrYe9TWRwpNtGFN3JE3frcksojYqKUnZ2+UrdrKwsxcTEVOncqSZPnqw//em3faWdI6XuUPB41W9jAgBqLjI4Uq8Me0WvDHtFDsNR63OlAXgmt/ybnpCQoKSk8lYgS5YsUZ8+fap07lTBwcGKjIys8AAA1F0EUsB3uOXf9vj4eDVu3FiJiYnavHmzRo0apYkTJ0qShg8frn379ikxMVEhISFVXuQEAACAuoM+pQAAAHCZquY17osAAADAcoRSAAAAWI5QCgAAAMsRSgEAAGA5QikAAAAsRygFAACA5QilAAAAsByhFAAAAJYjlAIAAMByhFIAAABYjlAKAAAAyxFKAQAAYDlCKQAAACxHKAUAAIDlCKUAAACwXIDVBZwPwzAkSdnZ2RZXAgAAgDNx5jRnbquMV4fSnJwcSVJsbKzFlQAAAOBscnJyZLfbKz1vM84VWz2Yw+FQenq6IiIiZLPZXP562dnZio2N1f79+xUZGeny14N34H2BM+F9gTPhfYHK1OX3hmEYysnJUdOmTeXnV/nMUa8eKfXz81Pz5s3d/rqRkZF17g2D88f7AmfC+wJnwvsClamr742zjZA6sdAJAAAAliOUAgAAwHKE0moIDg7Wk08+qeDgYKtLgQfhfYEz4X2BM+F9gcrw3vDyhU4AAACoGxgpBQAAgOUIpQAAALAcoRQAAACWI5RWw6RJk5SYmKixY8eqpKTE6nJgkT179qhhw4YaMGCABgwYoKNHj+qjjz5SQkKCBg0apAMHDlhdItwoKytLvXr1Ur169bRp0yZJOuP7Ydu2berXr58SEhK0dOlSK0uGG5zpfdGuXTvzc+Prr7+WxPvC16xatUq9e/dWv379NGbMGJWUlPB5cTIDVbJ+/XrjlltuMQzDMJ555hljzpw5FlcEq6SlpRmjRo0yvy8pKTEuu+wyo6ioyFi+fLnx+9//3sLq4G7FxcXGkSNHjNtvv93YuHFjpe+HkSNHGtu3bzeysrKMhIQEi6uGq536vjAMw7j44otPex7vC9+Snp5u5OfnG4ZhGI8++qjx0Ucf8XlxEkZKqyg5OVmDBw+WJA0dOlQrVqywuCJYacWKFUpMTNRjjz2mHTt26MILL1RQUJD69OmjDRs2WF0e3CgwMFANGzY0v6/s/ZCenq527dopMjJSMTExOnbsmFUlww1OfV9IUm5urvr376+bb75ZGRkZknhf+JomTZooNDRUkhQUFKTU1FQ+L05CKK2izMxMc9svu91ufqDA9zRp0kQ7d+7UDz/8oCNHjujjjz+usCVcWVmZhdXBaid/Vki/vR8cDod5jM8Q37RixQp9//33Gjp0qJ588klJvC981d69e/XVV1+pb9++fF6chFBaRVFRUcrOzpZUPlcoJibG4opgleDgYIWHh8tms+m6665TSkqK+d6QJH9/fwurg9VO/qyQfns/+Pn99nHLZ4hvql+/viTp+uuvV0pKiiTeF74oOztbY8eO1VtvvaWGDRvyeXESQmkVJSQkKCkpSZK0ZMkS9enTx+KKYJWcnBzz62XLlmnYsGHaunWriouLlZycrK5du1pYHazWrl27M74fmjRpol27diknJ0cZGRlq0KCBxZXCnYqLi1VUVCSp/HMjLi5OEu8LX1NaWqrRo0frySefVIcOHfi8OAU7OlXDI488opUrV6pFixaaNWuWgoKCrC4JFli8eLEef/xxhYWFqXXr1po5c6bmz5+vF198USEhIXr77bcVGxtrdZlwo9/97ndav369WrZsqYkTJyo0NPS098OWLVs0ceJElZWV6emnn9aVV15pddlwsZPfF9dee60+/PBDhYeHKzg4WDNnzuR94YNmz56tP/7xj+rSpYsk6Z577pEkPi9+RSgFAACA5bh9DwAAAMsRSgEAAGA5QikAAAAsRygFAACA5QilAAAAsByhFAAAAJYjlAIAAMByhFIAcIOCggINGDBAAwYMUEREhAYMGKBWrVppxYoVVpcGAB6B5vkA4GY9e/bUmjVrrC4DADwKI6UAYJGnnnpKn332mfbs2aOEhATddNNN6ty5s+bOnavhw4erW7du2rFjhyTprbfeUmJiohISEvTNN99YXDkA1L4AqwsAAEiZmZlatmyZli5dqsmTJ2v16tVatGiRZs+erQcffFAffPCBfvjhB+Xn52vYsGG6/PLLrS4ZAGoVoRQAPECnTp3k7++vpk2b6qKLLpKfn5+aNWumpKQk7dq1S5s3b9bAgQMlSUePHrW4WgCofYRSAPAANpvtjF8bhqE2bdqoa9eu+uyzz2Sz2VRSUmJFiQDgUoRSAPBwDRo00OjRo9W/f3/5+/urS5cueumll6wuCwBqFavvAQAAYDlW3wMAAMByhFIAAABYjlAKAAAAyxFKAQAAYDlCKQAAACxHKAUAAIDlCKUAAACwHKEUAAAAliOUAgAAwHKEUgAAAFju/wHzgTBsW3iGUgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-02-21 01:15:34,270 - funman.server.worker - INFO - FunmanWorker running...\n", + "2024-02-21 01:15:34,273 - funman.server.worker - INFO - Starting work on: 8fdccfb6-957f-4685-9c5f-951d9ecabd78\n", + "2024-02-21 01:15:36,285 - funman.api.run - INFO - Dumping results to ./out/8fdccfb6-957f-4685-9c5f-951d9ecabd78.json\n", + "2024-02-21 01:15:39,034 - funman.scenario.consistency - INFO - 7{140}:\t[+]\n", + "2024-02-21 01:15:39,038 - funman.server.worker - INFO - Completed work on: 8fdccfb6-957f-4685-9c5f-951d9ecabd78\n", + "2024-02-21 01:15:46,331 - funman.server.worker - INFO - Worker.stop() acquiring state lock ....\n", + "2024-02-21 01:15:46,626 - funman.server.worker - INFO - FunmanWorker exiting...\n", + "2024-02-21 01:15:46,628 - funman.server.worker - INFO - Worker.stop() completed.\n" + ] + } + ], + "source": [ + "# Step 0: Unconstrained model, find any parameter assignment\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIDARTHE demo step 0\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " # import cProfile\n", + "\n", + " # with cProfile.Profile() as pr:\n", + "summary = summarize_results([\"Infected\"], results_unconstrained_point, ylabel=\"Infected\")\n", + "print(summary)\n", + " # pr.dump_stats(\"summary_profile.stats\")" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAFqEAABb5CAYAAAANwfJQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdd5TU9dk/7nuXtuxSBGnSFEURUBEQKRZAEWxgJAp+LVFU1KiJmMSuCTHWaCyxdyWWILFgQSMoqCAGFRRROtKkKh12qfv7I7/4pAgzuzszuyzXdQ7nOWFfn/d9zzLz2TnnWV+TVVhYWBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlCvZpb0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKmnhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAgBTq1q1bZGVl7fDPmDFjUjJrzJgxCWd169YtJbPKoqeffjrh4z/nnHNKe02AInFvAwAAAAAAAAAAAFJJCTUAAAAAAAAAAAAAAAAAAAAAAAAAAABAOaSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKAcqljaCwAAAAAAAAAAAACpMXfu3GjWrFlpr5FQ165dY8yYMaW9BgA7ib322ivmzZuX8nOzsrKiSpUqUaVKlahatWrUq1cv6tWrF40bN44WLVpEy5Yto0OHDtGwYcOUzwYAAAAAAAAAAACATFFCDQAAAAAAAAAAAADALqewsDAKCgqioKAgVq9eHUuWLPnRXLNmzeLoo4+OU089NY466qioWNGv4QMAAAAAAAAAAACw88gu7QUAAAAAAAAAAAAAAKCs+uabb+Lxxx+PXr16RaNGjWLw4MGxbNmy0l4LAAAAAAAAAAAAAJKihBoAAAAAAAAAAAAAAJKwbNmy+P3vfx9777133HLLLbFx48bSXgkAAAAAAAAAAAAAdkgJNQAAAAAAAAAAAAAAFMH69evjuuuui/bt28fXX39d2usAAAAAAAAAAAAAwHYpoQYAAAAAAAAAAAAAgGL46quvokOHDjFixIjSXgUAAAAAAAAAAAAAfpQSagAAAAAAAAAAAAAAKKYNGzbEySefHG+++WZprwIAAAAAAAAAAAAA/6NiaS8AAAAAAAAAAAAAAAAldfbZZxcpv3Xr1li1alWsWrUqVq5cGTNmzIjNmzcXa/amTZvi//2//xcff/xxtGrVqlhnAAAAAAAAAAAAAEA6KKEGAAAAAAAAAACAXUzXrl1jzJgxpb0GlFteX1A6nn766RJdX1BQEBMnToxx48bFk08+GdOmTSvS9WvXro1TTz01Pv/886hUqVKJdmHXds4558Q555xT2msAAAAAAAAAAAAA5UR2aS8AAAAAAAAAAAAAAAClLScnJ7p06RJXXHFFTJ06Nd55551o3759kc74+uuv409/+lOaNgQAAAAAAAAAAACAolNCDQAAAAAAAAAAAAAA/+WYY46J8ePHx29+85vIyspK+rrbbrst1q5dm8bNAAAAAAAAAAAAACB5SqgBAAAAAAAAAAAAAOBHVKpUKe644464/fbbk75m9erV8dhjj6VxKwAAAAAAAAAAAABInhJqAAAAAAAAAAAAAADYgSuuuCLOPffcpPNDhgxJ4zYAAAAAAAAAAAAAkDwl1AAAAAAAAAAAAAAAkMDdd98dtWrVSir7xRdfxOzZs9O8EQAAAAAAAAAAAAAkpoQaAAAAAAAAAAAAAAASqFGjRlx++eVJ50ePHp3GbQAAAAAAAAAAAAAgOUqoAQAAAAAAAAAAAAAgCRdddFFkZWUllf3444/TvA0AAAAAAAAAAAAAJFaxtBcAAAAAAAAAAAAASJd58+bFzJkz45tvvomFCxfG+vXrY/369bF58+bIzc2NvLy8qF+/fjRr1iyaN28eLVu2jOzs7NJeu0jWrVsX06ZNixkzZsR3330Xa9eujTVr1sSaNWti8+bNUbVq1cjJyYnatWtH48aNo3HjxnHAAQdE3bp1S3v1ItuyZUvMmTMnpk+fHgsWLIhly5bFqlWrYuPGjbFp06aoXLly5Obm/vCnevXq0aRJk9hzzz1jzz33jFq1apX2Q4Bd4r5UntWtWzcOOOCA+PLLLxNmk8lkynfffRfTp0+POXPmxLx582LNmjWxYcOGyM/Pj5ycnMjLy4vatWtHs2bNolmzZnHQQQdFTk5Oaa/NTmD9+vXx1VdfxZw5c+Kbb76JVatWxfr16//juVWzZs1o1qxZ7L333tGqVauoUaNGaa9NktasWRPTp0+PWbNmxeLFi2PZsmWxfv362LhxY2zbti2qVq0aubm5P/zfOnXq/PC+q0mTJlGlSpXSfggAAAAAAAAAAACEEmoAAAAAAAAAAACgHFm2bFm89NJLMWrUqBg3blwsXbq0SNfXrFkzOnfuHCeeeGKccsopUb9+/TRtWjwbNmyIcePGxZgxY2LChAkxderU+Pbbb4t1VuPGjaNLly5x3HHHxfHHHx/16tVL8bapMWnSpHj11VdjzJgx8cknn0R+fn6xz6pevXoccMAB0blz5+jUqVN06tQpmjRpksJtd36rVq2Kv//97zFx4sT46quvYtasWbF69epYs2ZNbNq0KapVqxY1atSIvffeO1q2bBkdO3aMXr16RYMGDUp79TKrvN+XdkXdunVLqmB63rx5Gdjmx+Xn58ebb74ZI0aMiHHjxsWMGTOKdH3lypWjffv20bNnz+jfv3+0bNkyTZumzrRp02LkyJExceLEmD59esyfPz/Wrl0b69evj6pVq0b16tWjVq1a0aJFi2jdunV06NAhevToEbm5uaW9+k5nwoQJMWzYsHj//fdj0qRJsWXLlqSvzc7OjoMOOii6du0ap5xyShx22GGRlZWVxm0zY9myZfHWW2/FpEmTYsqUKfHNN9/E6tWrY+3atRERkZubG7Vr14699tor9ttvv+jSpUt07do1mjZtWsqb/6f8/Pz4+9//Hm+88UaMGzcupk+fHoWFhcU6KysrKxo2bBiHHHLID++7OnToEHl5eSneGgAAAAAAAAAAgESyCov722AAAAAAAAAAAABAmTJ37txo1qxZwlzXrl1jzJgx6V8og0aMGBH33HNPvPfee7F169aUnFmhQoU48cQT45prromOHTum5Mzi+OKLL+Kll16K9957LyZMmBCbN29O+YyKFSvGSSedFJdeeml069Yt5ecXVX5+fjzxxBPxwAMPxLRp09I6q3nz5tGvX7/o379/HHTQQSk5s1u3bvH+++/vMDN69OiUfK/HjBkT3bt332Em0Wt+69at8fLLL8fDDz8cH3zwQZHKRCP+WTLZuXPnuPjii+PUU0+NypUrF+n6knj66adjwIABO8ycffbZ8fTTT2dmoX9Tnu9LmbbXXnslVeicqV+Nv/fee2PQoEEJc1lZWbFx48aoVKlS+pf6/3355Zdx5513xssvvxzr1q1L2bnt27ePq666Kn76059GdnZ2ys4tqaVLl8ZTTz0Vjz/+eMyePbvI11etWjWOOeaYuPTSS+OYY47ZYfbiiy+OZcuW7TDz0EMPRd26dYu8x38ri/e2/Pz8eOyxx+K+++6LWbNmpezcpk2bxsUXXxwXX3xxVK9ePWXnJpKKn9WbN2+OF154IR599NEYP358bNu2rch7dOrUKc4777z42c9+ltGfn/9txowZ8ec//zmGDBnyQ3F2OlSsWDG6desW/fv3j5NPPjl23333tM0CAAAAAAAAAADg/5Sd3/4EAAAAAAAAAAAAKKI333wzDj744DjhhBNi5MiRKSt6jfhnMe/w4cOjU6dO0bt375g7d27Kzk5k+vTp8fvf/z5atmwZBx98cPzhD3+IcePGpaWAOiJiy5Yt8dJLL0X37t3jmGOOic8//zwtc5Lx9NNPR/PmzeMXv/hF2guoIyJmzZoVt9xyS7Rp0yb233//2LBhQ9pnliV/+9vfokWLFtGvX7947733ilxAHfHP4t+PPvoozjzzzNh3333jhRdeSMOmO4/yel/i/yRbmlpYWBjr169P8zb/NHXq1Ojdu3e0adMmhgwZktIC6oiIzz77LPr16xcHHnhgwuLeTFi7dm1cf/310axZs7jmmmuKVUAd8c9i5ddeey169uwZ7dq1i9GjR283O2LEiHjppZd2+CdT/96ZVFhYGI888kg0a9YsLrvsspQWUEdEzJ8/P66++urYa6+94q677krpPTOdnnrqqdhnn33i7LPPjnHjxhWrgDoi4uOPP46BAwfGPvvsEy+++GKKt0xs5cqVcdFFF0Xr1q3jgQceSGsBdcQ/33OOGjUqBg4cGA0aNIhrrrkmrfMAAAAAAAAAAAD4JyXUAAAAAAAAAAAAwE7n22+/jZ/+9Kdx4oknxhdffJH2eW+88Ua0atUqHnjggbTP+vOf/xz7779/DB48OCMlzP9t1KhR0aFDh7jllluKXahYHCtWrIgTTjghBgwYEIsWLcrY3H83ffr02LRpU6nMzrTly5fHT3/60zj11FOLXd76Y+bPnx+nn356HHPMMbFkyZKUnbszKM/3Jf5TsiXUEZH2YvuCgoK49tpro02bNvHGG29EYWFhWud9/fXX0a1bt7jwwgujoKAgrbO2Z/To0dGqVau4+eabIz8/P2XnTpo0KY4++uj4+c9/Xi7LpItj1qxZceSRR8ZFF10US5cuTeusFStWxK9//evo2LFjTJkyJa2zSmLu3Llx9NFHx7nnnhsLFixI2bkLFy6M/v37x6mnnpqx5997770XBxxwQDzyyCPF+hCKktqyZUtMnTo143MBAAAAAAAAAAB2RUqoAQAAAAAAAAAAgJ3Ke++9F23bto2XX345o3Pz8/Pj0ksvjbPPPjs2btyYtjlr1qxJ29nJ2rJlS1x33XVx0kknpbTgc3vmzp0bnTt3jhEjRqR9Fv8sFe3cuXNaX0OjRo2KNm3axIcffpi2GWVJeb8v8Z+KUvScnZ2+X9mfO3duHHbYYXHrrbfG5s2b0zbnxzz66KNx+OGHx8KFCzM696abbooePXqkbW5hYWE8/PDD0a1bt1i2bFlaZuws3nnnnejQoUOMHTs2o3M/++yz6NSpU8bvp8n44IMP4pBDDon33nsvbTP+9re/xWGHHRbfffdd2mZERAwZMiSOPfbYUvvgDwAAAAAAAAAAADJLCTUAAAAAAAAAAACw07j//vujZ8+esXz58lLbYciQIfGTn/wkCgoKSm2HTHnjjTeiV69eaS2iXr58efTs2TNmzJiRthn8n6+//jq6dOkSs2fPTvusZcuWRa9evcp9ubj70q7n+++/Tzq72267pWWHsWPHxiGHHBITJ05My/nJ+Oyzz+KII46IuXPnpn3Wtm3b4uKLL44bbrghtm3blvZ5n376aXTu3HmXLeh95pln4vjjj49Vq1aVyvz169fHKaecEvfee2+pzP8xw4YNi2OOOaZIr//i+uKLL6JXr15p+2CSl156KQYMGJDx8noAAAAAAAAAAABKjxJqAAAAAAAAAAAAYKdw5513xi9+8YvYunVraa8Sb7/9dpx88smxZcuW0l4l7T788MM4++yzo7CwMOVnFxYWxhlnnBEzZ85M+dn8r2XLlsUJJ5yQ0bLk/Pz8+MlPfhLvvvtuxmZmkvvSrinZEtoqVapETk5Oyue///77ceyxx2akDDeRuXPnRteuXdNe1nz55ZfHQw89lNYZ/23OnDnRu3fv2LBhQ0bnlrbnn38+zj333FK/rxUWFsagQYPiwQcfLNU9IiL+/ve/xxlnnBGbNm3K2MyJEyfGBRdckPJzZ8yYEWeffXZGytwBAAAAAAAAAAAoOyqW9gIAAAAAAAAAAAAAidx3331xxRVXFOmarKysOOSQQ+Loo4+O9u3bR/PmzaNx48ZRrVq1qFy5cmzYsCGWLVsWM2fOjI8//jjeeuut+Mc//pH0+W+//Xb8+te/jnvvvbeoD6fEsrOzo1WrVnHooYfG/vvvH/vvv380bNgw6tevHzVq1IicnJzIysqKVatWxapVq2LlypUxZcqUmDBhQkyYMCEmTZpUpHnDhg2LTp06xa9+9auUPo4nn3wyRo4cWaRrGjVqFD179oy2bdtG8+bNY5999okaNWpEXl5e5ObmRn5+fqxZsyZWr14dq1evjgULFsTkyZPjyy+/jMmTJ8fcuXPTUqhd1m3dujX69u0bc+fOTZitUKFC7LPPPj98b7Ozs2Pt2rXxzTffxMyZM4tcwrl58+b46U9/GmPHjo0DDjigmI+g7HFf2nVNnz49qVz9+vVTPvsf//hHHH/88UUuRt57772jV69e0aFDh2jVqlU0adIkatasGVWrVo2CgoJYtWpVzJkzJz799NMYNWpUjBw5MunX+vz58+Pkk0+ODz74IKpUqVKch7VDd911V/z5z38u1rU1atSI/fbbLxo1ahTVqlWLzZs3x+rVq2POnDkxZ86chEXLEydOjAEDBsTQoUOLNX9n868PnihqQXGLFi2id+/eceSRR0bLli2jXr16kZeXF/n5+fHdd9/FtGnTYuzYsfH666/H5MmTi3T2pZdeGk2aNInevXsX6bpUmTRpUvTt2zc2b96cMLv77rvHPvvsEw0bNvzh8S9btiyWLl0as2bNKvL7j6FDh8aJJ54YZ555ZnHX/x/nn39+rF+/Pul8dnZ2tGvXLnr06BH7779/NG/ePJo0aRK5ubmRl5cXlStX/uF915o1a2LlypUxffr0H957ffnll7Fy5cqU7Q8AAAAAAAAAAEDxKKEGAAAAAAAAAAAAyrSRI0fG5ZdfnnS+du3acemll8bAgQOjcePG281Vq1YtqlWr9kMx5+9+97uYPn163HrrrfGXv/wlqQLGP//5z9GlS5fo379/0vsVV8OGDaN3795x/PHHR/fu3aN69eoJr6lbt27UrVs3IiIOPfTQOPfccyPinwWqjzzySDzzzDOxYsWKpObfcMMNcdJJJ8U+++xT/AfxbzZt2hSDBw9OKpudnR19+/aNK6+8Mjp06LDD7L/+XRs2bBgREZ06dYpTTz31h68vXbo03njjjXj99ddj5MiRRS5y3VndfffdMW7cuO1+PTs7O0488cQ455xzokePHtt9fhUUFMSYMWPi2WefjWHDhiVdUrt69ero27dvTJo0KfLy8or1GMoS96Vd2+jRo5PKtW3bNqVzv/322zj55JOTvm9VqlQpzjrrrLjkkkuiXbt2283l5uZGbm5uNGzYMA4//PAYNGhQfP/993HffffFXXfdFWvXrk04a8KECXH55ZfHgw8+mPTjScb48ePjqquuKtI1jRo1inPPPTd+8pOfRNu2bSMrK+tHc2vXro3Ro0fHs88+G8OHD9/u/ezFF1/8j58j5dXixYujX79+sWXLlqSvOeyww+IPf/hDdO/e/Ue//q972l577RXHHnts3HTTTfHxxx/HDTfcEKNGjUpqRmFhYfzsZz+LTz/9NGXvQZK1du3auOCCC3b4mjvssMPi9NNPj549e0bz5s23m1u8eHG8+eab8eSTT8b48eOT3uGqq66Kk08+OSU/O0eMGBEffvhhUtndd989fvnLX8bPf/7zH95Lbk+tWrWiVq1aP/zvrl27/sfXP/vss3j99dfj9ddfj4kTJxZ9cQAAAAAAAAAAAEosu7QXAAAAAAAAAAAAANiehQsXRv/+/WPr1q0Js9nZ2TFo0KCYM2dO/P73v99h0ev2tGjRIp5++un46KOPki46/MUvfhHfffddkWclo1KlSnH66afHO++8EwsWLIiHH344+vTpk1QB9Y60aNEi7rrrrpg5c2acfvrpSV2zYcOGuPLKK0s099+9+uqrsXDhwoS5PfbYIz744IMYNmxYwgLqZNSvXz/OO++8ePXVV+P777+PoUOHRqdOnUp8blk2f/78+O1vf7vdrx999NExZcqUGD58eJx88sk7fH7l5OTEscceG88++2zMmjWrSMWsM2fOjMsuu6xIu5dFu/p9aVe3aNGimD59elLZ9u3bp2zu1q1b45RTTonFixcnle/Vq1dMnTo1nnjiiR0WUG/P7rvvHoMHD46pU6dGr169krrm4YcfjjFjxhR51vasXbs2Tj/99KRLkWvUqBF33313zJkzJ2688cZo167ddguoIyKqV68effr0iRdffDGmT5++w/vZpZdeGuvWrSvyY9iZDBw4MJYsWZJUNicnJx555JEYO3bsdguot6dTp04xcuTIePbZZ6NatWpJXbNq1ao466yzorCwsEizSuo3v/lNzJw580e/dvjhh8fHH38cY8eOjYsvvniHBdQR/3w/c/7558dHH30Uzz77bNSvXz+pHRYtWhQPPPBAkXf/Mffff39Sud69e8fs2bPjt7/9bcIC6mS0b98+Bg8eHJ999lksWLAgfve730W9evVKfC4AAAAAAAAAAADJU0INAAAAAAAAAAAAlFkXXHBBrFy5MmFu9913j1GjRsXdd98dNWvWLPHcjh07xqeffhpHHnlkwuzy5cvj6quvLvHMf1etWrW45pprYt68efHcc8/FMcccE9nZqf+1z9q1a8dzzz0XL730UlStWjVh/pVXXokpU6akZPYLL7yQMFOnTp34xz/+EYcddlhKZv63nJyc6NevX4wfPz7Gjx8f/fr1S8v3ubR98803kZ+f/z9/n52dHbfddluMHDkyWrZsWeRzmzRpEi+++GI8+eSTUaVKlaSueeKJJ1JaUlsadtX7Ev903333JZ094ogjUjb3zjvvjI8//jhhrkKFCnH33XfH22+/nXRp+Y40atQoRowYkVSBfGFhYVx00UVJFbQn46abboq5c+cmlT344INj4sSJMWjQoKhcuXKRZ+21117x4osvxl/+8pfIycn5n68vXbo0vv/++yKfu7N46aWX4s0330wqu/vuu8eHH34YF1xwQYlmnnHGGTF+/Piky5jHjx8fjz32WIlmFtWMGTP+5+8qVaoU99xzT3zwwQfRsWPHYp17xhlnxNixY6NRo0ZJ5e+///6ky9i3Z8WKFfH3v/89Ye60006L4cOHp+Tn1o9p3LhxDB48OObPnx9PPPFEtG7dOi1zAAAAAAAAAAAA+E/l77fkAQAAAAAAAAAAgHLhueeei7feeithrk6dOjFu3Ljo3r17Sufvtttu8dZbb8UhhxySMPvMM8/ErFmzUjL3+OOPj2+++SZuueWW2GOPPVJyZiJ9+/aN119/PSpVqrTDXGFhYdx7770lnrdt27Z4//33E+YeffTRaNKkSYnnJaNTp04xdOjQqFGjRkbmlbYKFSrE008/HVdddVVkZWWV6KwBAwbEa6+99qPFrT/m8ssvj23btpVoZmnZVe9L/NOKFSvigQceSCrbpEmTpArDkzFr1qwYPHhwwlx2dna88MILMWjQoJTM/fdz77nnnrj44osTZqdPnx5/+ctfSjxz9uzZcc899ySV7dKlS7z//vspKd0+88wz46233oq8vLwSn7Wz2Lx5c/z6179OKlu9evV49913k7oHJeOAAw6IMWPGRK1atZLKX3PNNbF27dqUzC6OqlWr/lDKXtKfnc2bN48xY8YkVfa8YMGCGDVqVInmffDBBwl/9jZu3DgeffTREj+2ZFSpUiXOPffcuPnmm9M+CwAAAAAAAAAAACXUAAAAAAAAAAAAQBm0adOmuO666xLmcnJy4rXXXosWLVqkZY/c3Nx48cUXExYEbtmyJW655ZaUzGzXrl3UqVMnJWcVxdFHHx133HFHwtyLL74Y+fn5JZo1b968WLly5Q4zzZo1i5/85CclmsP2/fGPf4yzzjorZef17NkznnrqqaSyn3/+ebzwwgspm50pu/J9iX+W8P/85z9PugD3rLPOiuzs1Py6/g033BAFBQUJc3feeWeceuqpKZn5Y+6+++6kyodvuummKCwsLNGsW2+9NTZt2pQwt++++8brr7+e0g8Q6NatWzz77LMp+/cr64YMGRLz5s1LKvvss89GmzZtUjp///33j6FDhyb1/V6xYkU8+OCDKZ2frAoVKsQrr7wSPXr0SNmZzZs3jz/84Q9JZYcNG1aiWZMmTUqYOe+886J69eolmgMAAAAAAAAAAEDZtGv8ViQAAAAAAAAAAADwg/fffz+ysrIy+uecc84p0o6PPfZYUoWITzzxRHTu3LmY34nkNGvWLB5//PGEuaFDh8bq1avTuku6/eIXv4j27dvvMLNmzZoYMWJEiebMnj07YaZ3796RlZVVojn8uJNPPjl+9atfpfzc0047LS699NKksnfeeWfK56eb+9Ku7cYbb4wXX3wxqWxeXl5cfPHFKZk7ZcqUpOaef/75cfnll6dk5vZUrlw5XnzxxahWrdoOc7Nnz45Ro0YVe87ixYvj2WefTZirVKlSDB06NGrXrl3sWdvzk5/8JAYNGpTyc8uawsLCuP3225PKDhw4MPr06ZOWPY455pikf37cddddSRWUp9pNN90UvXr1Svm5F198cRx00EEJc2+99VaJ5iTz3uukk04q0QwAAAAAAAAAAADKLiXUAAAAAAAAAAAAQJlSWFgYd911V8Jct27d4vTTT8/ARhGnnHJKHHLIITvMbNiwIV544YWM7JMu2dnZccMNNyTMlaRcNCJi5cqVCTNNmzYt0Qx+XM2aNePBBx9M2/m33nprUv92n3/+eYwePTpte6Sa+9Kuq6CgIC655JIYPHhw0tdcc8010ahRo5TM/9Of/hTbtm3bYaZWrVpJFwmXVLNmzeKiiy5KmHviiSeKPeOJJ56IjRs3Jsz95je/ibZt2xZ7TiI333xz7LXXXmk7vyz48MMPY+bMmQlztWvXjjvuuCOtu9xyyy3RoEGDhLlly5bF66+/ntZd/lv79u3jiiuuSMvZFSpUiAsvvDBhbvHixUkVSW+P914AAAAAAAAAAAC7NiXUAAAAAAAAAAAAQJny7rvvxpw5c3aYycrKij/96U8Z2uifrrrqqoSZV155JQObpNcJJ5wQderU2WHm3XffLdGMZMpF8/LySjSDH3fFFVckVfJZXNWqVYvf//73SWWHDBmStj1SzX1p11NYWBgjRoyIjh07Fqm4vVWrVvHrX/86JTusWbMmXnzxxYS53/72t1G7du2UzEzGoEGDonLlyjvMvPnmm7F58+Zinf/8888nzNSuXTup539J5OTkxI033pjWGaUt2fvwlVdeGTVr1kzrLnl5eUl9EEZE5n9+/PGPf4wKFSqk7fx+/fpFxYoVE+YmTJhQ7BneewEAAAAAAAAAAOzalFADAAAAAAAAAAAAZcpTTz2VMNOnT59o165dBrb5P3379o3GjRvvMPPBBx9Efn5+hjZKj4oVK0b37t13mJk5c2asWbOm2DOSKbL89ttvi30+P65GjRpx2WWXpX3OWWedFXvvvXfC3CuvvJJUKWZZ4L60aygoKIiPPvoobr/99mjRokWccMIJMXny5KSvr1u3brzxxhuRk5OTkn2GDh0aGzZs2GGmTp06cckll6RkXrIaNWoUp5xyyg4z69ati7Fjxxb57C+//DKmTp2aMHfRRRelvRQ5IuL0009P+BrbWW3bti2pkvq8vLy46KKLMrBRxIABA5IqVH/rrbdi/fr1Gdgo4tBDD42jjjoqrTPq1KkTRx55ZMJcMq+N7fHeCwAAAAAAAAAAYNdWsbQXAAAAAAAAAAAAAPiXLVu2xIgRIxLm+vfvn4Ft/lN2dnYcddRRMWTIkO1m/lVgevTRR2dws9Q75JBDYtiwYTvMTJkyJbp06VKs8+vUqZMw8/bbb8cf/vCHYp3PjzvrrLOiWrVqaZ9ToUKFGDhwYFxzzTU7zK1evTpGjx4dxx57bNp3Kgn3pZ3HOeecU6T81q1bY/Xq1bFq1apYsWJFzJgxIzZv3lys2TVr1oxXX301mjVrVqzrf8zw4cMTZvr27RuVKlVK2cxk9ejRI55//vkdZt57772EH2rw3/7+978nzGRlZcWFF15YpHOLq0KFCnH++efH4MGDMzIvkyZOnBgrVqxImOvfv39GCr8jIqpWrRo/+9nP4p577tlhbvPmzfH+++/H8ccfn/adzj333LTPiIg4+OCD47333tthZtq0acU+P9n3XpkutQcAAAAAAAAAACAzlFADAAAAAAAAAAAAZcb48eNj1apVO8xUrVo1evfunZmF/suRRx65w7LXiIhJkybt9GWvyZSoTp06tdgl1HvssUfCzKeffhpvv/12mS8o3pmcddZZGZ117bXXRmFh4Q5zO0MJtfvSzuOZZ54plbn77bdfvPbaa9GiRYuUnblx48YYPXp0wly/fv1SNrMojjzyyISZSZMmFfncRCW8EREdOnSIpk2bFvns4jr11FPLZQn1qFGjksr99Kc/TfMm/+nUU09NWEIdEfHuu++mvYQ6KysrTjrppLTO+JcDDzwwYWbRokXFPj+Z91533XVXDBgwIHJzc4s9BwAAAAAAAAAAgLIpu7QXAAAAAAAAAAAAAPiXZAoRjzrqqKhWrVoGtvlfhx12WMJMcUo3y5oaNWokzJSkCHGvvfaKRo0aJcwNGDAgvvrqq2LP4f80aNAgDj300IzNa9SoUbRv3z5hLpmS3dLmvsT2VKhQIS644IKYMGFCSguoIyI++uij2LBhww4zNWrUiG7duqV0brL22WefqF+//g4zxXnejR8/PmHmxBNPLPK5JdGqVaukPpxhZzNhwoSEmapVq2a8wL5z585Rt27dhLl//OMfad+ldevW0aBBg7TP+desRJYuXVrs8w8//PCEmTlz5sTPfvaz2Lx5c7HnAAAAAAAAAAAAUDYpoQYAAAAAAAAAAADKjE8//TRh5sADD8zAJj9ujz32SJiZNWtWBjZJrypVqiTMLFmypEQzjjrqqKRmHHHEEfHkk0/Gtm3bSjRvV9e9e/fIysrK6MxkiksnT54cW7ZsycA2xee+xH+rUKFC9OnTJ7744ot45JFHombNmimfkczzrlWrVlGhQoWUz05WoufeokWLIj8/P+nzFixYEKtWrUqYS6ZMN9WSKXvf2UyePDlhpkOHDkm9J0ilrKyspL7fX375Zdp3adu2bdpn/EutWrUSZlasWFHs8w877LCk/i1feuml6NatW1LPDwAAAAAAAAAAAHYeSqgBAAAAAAAAAABgF9O1a9coLCzM6J+nn346qd0mTZqUMNOyZcsSfgeKr2bNmlGxYsUdZhYuXJihbSJWrVoVI0eOjHvvvTd+8YtfxIknnhiHHnpoNGvWLGrXrh15eXlRqVKlyMrKKtKf7t27J5z93XfflWj3/v37J5VbuXJlnHfeebH//vvHPffcE8uWLSvR3F1V586dy+TMjRs3xsyZMzOwTfG5L/EvNWrUiDvvvDMWLlwYw4cPj9atW6dtVll/3kVE7L777gkzRXnuffXVVwkzWVlZ0aFDh6TPTJVDDz004zPTacOGDTFnzpyEuY4dO2Zgm//VqVOnhJk1a9bEvHnz0rpHJl9jNWrUSJjZuHFjsc+vWrVq9O7dO6nsRx99FAcffHD06dMn3njjjTL/YREAAAAAAAAAAAAkpoQaAAAAAAAAAAAAKBNWrFgRixcvTphr1apVBrbZvtq1a+/w60uXLo1t27alZfa2bdtizJgx8etf/zpatWoVtWvXjp49e8agQYPi/vvvjzfffDM++eSTmDt3bqxcuTI2bNiQtuLA/Pz8El1/wgknRLt27ZLOz5w5My6//PJo2LBh9OjRI+65556YOnVqiXbYlbRp0ybjMw866KCkcskUz5YW9yX+3Zo1a+Lxxx+P999/P+2zpkyZkjBT2s+7ZEqoFy1alPR5s2fPTphp1KhRVKtWLekzU2X//ffP+Mx0mjdvXhQWFibMldbjTrb8ee7cuWndo3Hjxmk9/99Vr149YaagoKBEM66//vrIyspKKltYWBivv/569O7dOxo0aBADBgyIYcOGxYoVK0q0AwAAAAAAAAAAAKWjYmkvAAAAAAAAAAAAABARsWDBgqRyHTp0SPMmJbN169bYsGFDSksyV65cGQ888EA8/vjjMW/evJSdWxIlLUKMiLjlllviuOOOS6oI81+2bt0a7777brz77rsREdGgQYM44ogj4rDDDovOnTtH27Zto1KlSiXerbzZb7/9Mj5zzz33jJycnITPlYULF2Zoo6JzX+K/TZs2LU477bR47rnnYsiQIbHbbrulZU4yz70rrrgirrjiirTMT5W1a9cmnU2m8L158+YlWafYSmtuuiRbDr7vvvumeZMfl+zPrKKUnBdHooL/VKpatWrCzNatW0s0o02bNnHaaafFCy+8UKTrvv/++3j66afj6aefjuzs7DjwwAPj8MMPjy5dukSXLl1ir732KtFeAAAAAAAAAAAApF92aS8AAAAAAAAAAAAAEFG2i2iLKj8/PyXnbN68OW699dZo1qxZ3HDDDWWmgDrin7uVVK9eveK6664r0RlLliyJYcOGxaBBg6Jjx45Ro0aNOPLII+Paa6+Nt956K9avX1/iPXd2VapUiQYNGmR8bnZ2djRp0iRhLpni2dLivsT2vP7669GlS5eYO3duys9ev359rFq1KuXnloaiPO+SuRfUr1+/JOsUW2nNTZdk77t77LFHmjcp2dx0//zIyclJ6/ml4ZFHHolWrVoV+/pt27bFF198EQ888ECcccYZ0axZs2jYsGGccsopce+998akSZOK9OEiAAAAAAAAAAAAZIYSagAAAAAAAAAAAKBMWLJkSWmvkDKpKHv98ssv45BDDolrr702Vq9enYKtUitVBYM33nhj9O/fPyVnRUQUFBTEhx9+GLfeemscf/zxUbt27TjqqKPiz3/+c3z77bcpm7MzqVu3bpmeXZZf+2V5t6LaFUqoCwsLk/6zbt26+Pbbb2PKlCnx17/+Na699tpo3759keZNnTo1jjrqqFi0aFFKH8eu+rxLpni7Tp06Jdim+HJzcyM3N7dUZqdDsu8r6tWrl+ZNflzNmjWjSpUqCXPpfn9UoUKFtJ5fGqpXrx7Dhw+Phg0bpuzMxYsXx0svvRSDBg2Kdu3aRYMGDeLss8+O1157LTZu3JiyOQAAAAAAAAAAABSfEmoAAAAAAAAAAACgTFi/fn1pr5Ay27ZtK9H1I0aMiC5dusTkyZNTtFHZlZWVFc8//3xcddVVkZWVlfLzN23aFKNHj47LLrssmjRpEj179oxhw4bF1q1bUz6rrNp9991LbXYyhbHr1q3LwCbF475UfuXl5UXDhg2jdevW0b9//7j55pvj008/jRkzZsTFF1+cdPnsN998Ez179oy1a9embLdd9XlXUFCQMJOXl1eSdUqkPJVQJ/O9joioVq1amjcp2exdoVw/HZo3bx7jx4+PDh06pOX8ZcuWxZAhQ+Kkk06KBg0axCWXXBJTpkxJyywAAAAAAAAAAACSo4QaAAAAAAAAAAAAKBOSLUQs795+++046aSTynQxb6plZ2fHbbfdFqNHj45WrVqlbU5hYWGMHDky+vXrF/vtt188/fTTu0Qxb05OTpmeXZZf+2V5N9Jj3333jQceeCAmT54cbdu2Teqar776KgYMGJCyHXbV593GjRsTZipXrpyBTX5clSpVSm12qiXzHKtQoUJkZ5fef3KSzPd7V32tpELTpk1j3LhxcfPNN6e1YH3VqlXx4IMPxkEHHRS9e/feJT5gBQAAAAAAAAAAoCyqWNoLAAAAAAAAAAAAAEQkVz5Z3n311VdxyimnxJYtW0p0TuXKlaNu3bpRv379qFGjRlSrVi1yc3OjYsWKUbFixcjKytrh9UuWLIm///3vJdqhOLp27RqTJ0+O559/Pv74xz/GlClT0jZrzpw5MWDAgLjvvvviqaeeioMOOihts0pbWS9tLcslou5Lu65WrVrF2LFjo0+fPvHuu+8mzL/00kvx5z//OX75y1+WeLbn3fYl+vlVXmenWjIfwFCaBdQR/yzBTmRX+CCJdKpUqVJce+21ce6558af/vSneOyxx2L16tVpmVVYWBhvvPFGjBgxIn7+85/H7bffHnl5eWmZBQAAAAAAAAAAwP9SQg0AAAAAAAAAAACUCZUqVSrtFUrV5s2b48wzz4z169cX6bp69erFUUcdFR07doyDDz44mjdvHo0aNSpRWeaYMWNKpYQ64p+lk2eddVacddZZMXbs2PjLX/4Sr7zySixfvjwt8yZOnBgdOnSIhx56KM4999y0zChtpVnSuXXr1oSZZIpGS8uufl/a1eXm5sbw4cOjW7du8emnnybMX3PNNXHcccfFvvvuW6K5u+rzLpnS+tIs6C7LhflFlcz3evPmzVFYWFhq5dvJ/Fvn5ORkYJPyr0GDBnHHHXfE73//+xg6dGj89a9/jffee6/EH4ryY7Zt2xYPPPBAvPvuu/H6669H8+bNUz4DAAAAAAAAAACA/6WEGgAAAAAAAAAAACgTqlatmlRu5syZ5bKw7tFHH43PP/88qWx2dnaceuqpcdFFF0XXrl1LrSAy3Q4//PA4/PDD46GHHopPPvkkRo4cGWPHjo3x48fHmjVrUjZn06ZNcd5558XWrVtj4MCBKTu3rNi0aVOpzd7ZS0R39fsSEXl5efHKK69E27Zt47vvvtthdsOGDXHuuefGBx98UKL7crLPu8ceeyzOP//8Ys8pa5K5F2zYsCEDm5S92amW7H1348aNpXaPTqb0uyz//NgZ5ebmxoABA2LAgAGxZs2aGDVqVIwePTrGjRsXkydPTuqDJZI1bdq0OOKII+If//hHNG3aNGXnAgAAAAAAAAAA8OOUUAMAAAAAAAAAAABlQm5ublK5ZEoJdzabN2+Om2++Oalsy5Yt4y9/+Uu0b98+bfvk5+en7eziyM7Ojo4dO0bHjh0jImLbtm3x+eefxwcffBBjx46NcePGxZIlS0o85+KLL45mzZpFjx49SnxWWbJ+/foyPbssl4juyvcl/k/jxo3j8ccfj5/85CcJs2PHjo1nn302zjrrrGLP21WfdzVr1kyYWb58eQY2+V8bNmwoVyXUeXl5SeW+++67aNy4cZq3+V8bN25M6sMmkn0cFF2NGjWib9++0bdv34iIWLNmTYwbN+6H916ffvppie9BS5YsiRNPPDHGjRsX1atXT8XaAAAAAAAAAAAAbEd2aS8AAAAAAAAAAAAAEBFRv379pHLJlBLubF5//fVYvHhxwlz79u3jo48+SmsBdUSU+aLN7OzsaNeuXQwaNCj+9re/xeLFi2PWrFnx2GOPxWmnnRa1a9cu1rlbtmyJM844o1RLm9Nh2bJlZXp2cf+9MmFXvi/xn0466aQ47bTTkspeffXVsW7dumLP2lWfd3vssUfCzNKlSzOwSdmZmy4NGjRIKldaPz+SnZvs46DkatSoEccdd1zceuut8eGHH8bq1atj7Nix8Yc//CGOOOKIqFixYrHO/fLLL+Pqq69O8bYAAAAAAAAAAAD8NyXUAAAAAAAAAAAAQJnQtGnTpHLffvttmjfJvL/+9a8JMzVq1IhXX301dtttt7Tvs2TJkrTPSLV99tknzj///HjhhRdi+fLlMWbMmLjkkkuKXHC8bNmyuPfee9O0ZelYsWJFbN68uVRmJ1PcmkzxbGnZle9L/K+77747atSokTC3aNGiuOOOO4o9p0aNGlGzZs2EufL2vEvmXjBr1qwMbFJ25qZLsvfduXPnpneR7fjmm2+SypXlnx/lXeXKleOwww6L66+/Pj744INYvnx5DBkyJHr16hXZ2UX7T5Uef/zxUnuuAQAAAAAAAAAA7CqUUAMAAAAAAAAAAABlwp577plUbt68eWneJPPGjBmTMHP11VdH48aN079MRCxcuDAjc9IlOzs7unbtGvfff398++238eijj0aTJk2Svv6OO+6IgoKCNG6YWdu2bUu60DOVNmzYEIsWLUqYK8slorvyfYn/1aBBg7jmmmuSyt59993x/fffF3tWMs+98va822effRJmvv3221i/fn0GtvlP06ZNy/jMdEr2Z+L06dPTvEnJ5mbqfRGJ7bbbbnHWWWfF22+/HbNnz45LLrkkKlWqlNS1mzZtittvvz3NGwIAAAAAAAAAAOzalFADAAAAAAAAAAAAZUKtWrWiUaNGCXNffPFFBrbJnNmzZ8fy5ct3mKlQoUIMHDgwQxtFfPnllxmblW45OTkxcODAmDp1avTv3z+pa1atWhXjxo1L82aZVRpFojNnzozCwsKEub333jsD2xTPrnpfYvsGDRqU1HNi7dq1cdtttxV7zoEHHpgwU96ed61bt06YKSwsjE8++SQD2/ynCRMmZHxmOtWtWzfq1KmTMDdp0qQMbPO/Jk6cmDBTqVKl2G+//TKwDUW11157xf333x+ffPJJUvfLiIg33ngjzVsBAAAAAAAAAADs2pRQAwAAAAAAAAAAAGXGoYcemjBT3oogZ8yYkTDTtm3bpMoiU+Wzzz7L2KxMycvLi+eeey569+6dVH7kyJFp3iizynJp6wEHHJDmTUpmV7wvsX05OTlx7bXXJpV94IEHYunSpcWak8zzbuHChbF48eJinV8WNW3aNGrWrJkw9+GHH2Zgm//00UcfZXxmuh100EEJM6X1gQzJfL9btGgRlStXzsA2FFebNm1i9OjRSb2uFy5cGNOmTcvAVgAAAAAAAAAAALsmJdQAAAAAAAAAAABAmdGxY8eEmRkzZsScOXMysE1mzJ8/P2HmwAMPzMAm//Tll1/GkiVLMjYvkypUqBAPPfRQ5ObmJsyOHz8+AxtlTmkUiSbzPaxTp040aNAgA9sU3654X2LHzj///GjSpEnCXH5+ftx+++3FmpHM8y4i4q233irW+WVV586dE2befPPNDGzyf77++uty+fpu27ZtwsyiRYvi66+/zsA2/znzyy+/TJhLZn9K37777huDBw9OKlve3nsBAAAAAAAAAACUJUqoAQAAAAAAAAAAgDLjuOOOSyr38ssvp3mTzFm7dm3CTL169TKwyT8NHz48Y7NKQ6NGjeKEE05ImFu2bFkGtsmcsWPHJvVcS5XCwsKkynG7dOmSgW1KZle8L7FjlStXjquvvjqp7MMPP1ysYv9DDjkk6tSpkzBX3p53Rx11VMLMhAkTkvoAh1QZNmxYxmZlUvfu3ZPKZfp9wfDhw6OwsDBhLpnnCmXDgAEDolKlSglz5e29FwAAAAAAAAAAQFmihBoAAAAAAAAAAAAoMw466KDYe++9E+Yef/zxDGyTGfn5+Qkz2dmZ+ZXPwsLCePrppzMyqzQdffTRCTPLly/PwCaZs2nTphgxYkTG5o0fPz6p4t2doUR0V7wvkdh5550XjRo1SpjLz8+P22+/vcjnV6hQIXr37p0w9/bbb8eCBQuKfH5Z1atXr4SZwsLCePTRRzOwTcTWrVvL7Wu7a9euSRUDDxkyJAPb/J8nn3wyqVyPHj3SvAmpUrNmzWjfvn3CXHl77wUAAAAAAAAAAFCWKKEGAAAAAAAAAAAAypR+/folzEyfPj1eeeWVDGyTfskUQGaqlO/ll1+O2bNnZ2RWaWrYsGHCzOrVqzOwSWY98cQTGZuVbGnrzlIiuqvdl0isSpUqcfXVVyeVfeSRR5IqZf9v/fv3T5jZunVr3HnnnUU+u6w66KCDYv/990+Ye/jhhzNyn37++edj4cKFaZ9TGqpVqxbdu3dPmJs2bVqMGjUqAxtF/OMf/4hPP/00Ya5NmzbRuHHjDGxEquyq770AAAAAAAAAAADKCiXUAAAAAAAAAAAAQJly0UUXRYUKFRLmrrnmmti0aVMGNkqv6tWrJ8zMnz8/7Xts2bIlBg8enPY5O4vc3NzSXiHlRo0aFV999VXa5yxdujT++te/Jsy1bNkyWrdunfZ9UmFXuy+RnPPPPz/22GOPhLn8/Py47bbbinx+z549Y999902Ye/jhh2PmzJlFPr+s+n//7/8lzHz//fdx++23p3WPgoKC+O1vf5vWGaXtzDPPTCr3u9/9Ls2b/NMNN9yQVO5nP/tZmjehNJTH914AAAAAAAAAAABlhRJqAAAAAAAAAAAAoEzZc889o0+fPglz06dPj+uvvz4DG6VXkyZNEmY+/PDDyM/PT+sed955Z0yZMiWtM8qKBQsWJMzsvvvuGdgkswoLCzNSJHrrrbcm9XxNpmi2rNjV7kskJycnJ6666qqkso888kgsXry4SOdnZWXFpZdemjC3adOmOPvss2Pr1q1FOr+sOv/886Ny5coJc3feeWdMmjQpbXtcd911MXfu3LSdXxb07ds3qlWrljD30UcfxYsvvpjWXd54440YOXJkwlzFihXj9NNPT+supN6u+t4LAAAAAAAAAACgrFBCDQAAAAAAAAAAAJQ5gwcPjuzsxL/m+Kc//Sn+9re/ZWCj9Nl3330TZvLz82P48OFp22H8+PEZKScuK955552Emf333z8Dm2TeSy+9lFTJZ3FNnjw5HnzwwYS5ihUrxjnnnJO2PdJhV7ovkbwLLrggGjRokDBXUFAQt912W5HPHzhwYFIfVjB+/Pi4/PLLi3x+WdSwYcOkSoY3b94c/fv3j5UrV6Z8h+HDh8c999yT8nPLmry8vLjwwguTyl566aWxbNmytOyxcuXKuOiii5LKnnHGGUm95ig7li9fHp9//nnCXHl97wUAAAAAAAAAAFAWKKEGAAAAAAAAAAAAypyDDjooBgwYkDC3bdu2OPPMM2PEiBEZ2Gr7li9fHldeeWVs2rSpyNfuv//+UbNmzYS566+/vljnJzJr1qzo27dvWs7enjvuuCO++OKLjM37d3Pnzo0333wzYa5jx44Z2KZ0DBw4MFasWJHycwsKCuLss8+OzZs3J8z2798/qWLdsmRXui+RvKpVq8aVV16ZVPbRRx+NxYsXF/n8W265JansfffdFzfccEORzk+1TZs2xYMPPhiffPJJic659tpro1KlSglzM2fOjN69e8eaNWtKNO/fvf/++3HGGWfEtm3bUnZmWfab3/wmcnJyEuaWL18ep5xySlL3+KLYunVr9O/fP7799tuE2ezs7Lj22mtTOn9XsGTJkrjppptS+jopikceeSSp5015fu8FAAAAAAAAAABQ2pRQAwAAAAAAAAAAAGXSLbfcEvXq1UuY27hxY5x00knxwAMPZGCr/zR//vy44oorolmzZnHHHXcUq7AyKysrjjrqqIS52bNnx69+9avirLldX3/9dXTv3j2WLFmS0nMTefPNN6Nt27bxk5/8JD744IOMzd28eXP8v//3/2LLli0Js8cff3wGNiod8+bNi379+qW0nLiwsDDOO++8+PzzzxNms7Oz46qrrkrZ7EzaVe5LFM1FF12U1POioKAgbr311iKff8YZZyT1cyIi4qabbopzzz038vPzizynJNauXRt//vOfo3nz5nHJJZfE999/X6Lz9t133/jlL3+ZVHbcuHHRrVu3+Oabb0o0MyLiueeei2OPPTbWr19f4rN2Fg0aNIhBgwYllf3www/jtNNOS1kR9datW+NnP/tZjBw5Mqn8ueeeG/vtt19KZu9KCgoK4oYbbog999wzbrjhhli0aFHGZn/22Wfxhz/8IWGuVatWseeee2ZgIwAAAAAAAAAAgF2TEmoAAAAAAAAAAACgTKpXr1489dRTSWW3bNkSl156aZx44okxb968tO61bdu2eOedd6Jfv36x9957x5133lnissr+/fsnlXvggQfi6quvjsLCwhLNi4gYOnRodOrUKRYuXFjis4qjsLAwhg8fHl27do02bdrEQw89FCtXrkzbvBUrVsSJJ54YH3/8ccLsAQccEB06dEjbLmXBu+++Gz/96U+joKCgxGdt27YtBg4cGM8//3xS+XPPPTcOPPDAEs8tDbvSfYnkVa1aNa644oqkso899liRC2CzsrLimWeeidq1ayeVf+qpp6Jdu3YxduzYIs0pji+++CIuv/zyaNy4cVx22WWxYMGClJ3929/+Npo2bZpUdtKkSXHwwQfHvffeW6yC5Llz50b//v3jzDPP/NH7Yv369WP33Xcv8rk7ixtuuCH22muvpLIvv/xyHHfccbFs2bISzVyxYkX07t076Z8ddevWjdtvv71EM3d1q1atiptuuin23HPPOO2002LkyJFp/aCCMWPGxLHHHpvUh16ce+65adsDAAAAAAAAAAAAJdQAAAAAAAAAAABAGXb88cfHVVddlXT+zTffjBYtWsQvf/nLmDFjRsr22Lx5c7z33ntx+eWXR5MmTaJXr14xbNiw2Lp1a0rOP/nkk2OPPfZIKnv77bfHUUcdFXPmzCnWrMmTJ0efPn3itNNOi7Vr1/5opl27dsU6u7gmT54cF198cTRo0CD69u0bQ4YMie+++y4lZ2/ZsiWefvrpaNu2bbzzzjtJXXPllVemZHZZ98Ybb8Rhhx0Ws2fPLvYZS5cujZ49e8YTTzyRVH633XaLm266qdjzyoJd5b5E0fz85z+PunXrJswVFBTErbfeWuTzGzduHM8880xUqFAhqfy0adPiiCOOiJNOOinef//9Is/bkS+++CJuvvnmaNOmTRx88MFxzz33xJo1a1I6IyKiRo0a8dxzzyX9mNesWRODBg2KZs2axe9+97v4/PPPd/ihDevWrYs33ngjTjvttGjRokW8+OKL283ed999Ua1atSI/hp1Fbm5uPPbYY5Gdndx/YvLuu+9GmzZt4plnninWB2MMHTo02rRpE2+99VbS19x///1JF7GzY1u2bImhQ4dGz549o0mTJvGrX/0qRo8eHVu2bEnJ+YsXL47LLrssjjnmmKTez9WuXTvOO++8lMwGAAAAAAAAAADgx1Us7QUAAAAAAAAAAAAAduTWW2+NhQsXxnPPPZdUfuPGjXHffffF/fffH507d44+ffpE165do02bNlG1atWE1xcWFsa8efNi6tSp8emnn8a4ceNi/PjxaSnY/JfKlSvH1VdfHZdddllS+TFjxsR+++0XJ510Upx33nlx2GGHRc2aNbebnz9/fowaNSqee+65GD169A4LI1u2bBk33XRTHH/88UV+HCW1adOmeOWVV+KVV16J7OzsaNu2bRx++OHRuXPnOOCAA2K//faLSpUqJTxn9erV8emnn8Ybb7wRr7zySsybNy/pHTp27BhnnnlmSR5GmdOpU6dYs2ZNfP311//ztYkTJ8YBBxwQv/rVr+Kyyy6LevXqJXXmmjVr4uGHH46bb765SK+Nhx9+OOrXr590vqzaFe5LFE1eXl78+te/jquvvjph9rHHHourr746GjVqVKQZJ554Yjz44INx4YUXJn3Na6+9Fq+99lrsu+++cdJJJ0XPnj2jffv2SZf5Llu2LKZOnRqff/55fPTRRzF27NhYtGhRkfYuicMPPzxuueWWIhW/f/vtt3HjjTfGjTfeGDVr1owWLVpEw4YNo1q1arF58+ZYs2ZNzJkzJ2bPnp1U6e6pp54ap556alxxxRUleShlXo8ePWLw4MHx29/+Nqn8kiVL4pxzzombbropLrzwwujdu3e0aNFiu/lvvvkmXn/99XjkkUd+9OfRjlx22WXRr1+/Il1DchYtWhR333133H333VGjRo047LDD4vDDD48OHTpEq1atkrpPFRYWxoIFC2L06NHx+uuvx4gRIyI/Pz/pHW666abYbbfdSvAoAAAAAAAAAAAASEQJNQAAAAAAAAAAAFCmZWVlxVNPPRXr16+PV199NenrCgsL46OPPoqPPvooIiIqVKgQTZs2jSZNmsTuu+8eVatWjQoVKsTGjRujoKAgvv/++1i8eHEsWrQoCgoK0vRotu/iiy+Oxx9/PL788suk8lu3bo2XX345Xn755cjKyor9998/GjZsGLVq1YqcnJzYsGFDLFu2LGbOnBlLly5N6szc3Nx4/vnnY9WqVSV4JKmxbdu2+Oyzz+Kzzz6Le++9NyIiKlasGI0aNYqGDRtG3bp1IycnJ6pUqRIFBQWxfv36WLNmTcyaNSuWLFlSrJk1a9aM5557LrKyslL5UEpdlSpV4sknn4wuXbrEtm3b/ufrBQUFccstt8Sf/vSnOO6446JXr17Rtm3b2HvvvaNmzZqRlZUVa9eujblz58bkyZPjnXfeiddffz3WrVtXpD3OPvvs6N+/f6oeVqnaVe5LFM0ll1wSd9xxR3z//fc7zG3cuDFuvfXWuP/++4s844ILLojVq1fHlVdeWaTrZs6cGXfeeWfceeedERGxxx57RNOmTaN+/fpRtWrVqFy5cmzevDkKCgpi9erVsXjx4li8eHGsXr26yDum2pVXXhnz5s2LBx98sMjXrl69OiZMmFDs2e3atYunnnoq6Xx2dnaxZ5UF119/fUyZMiVefPHFpK+ZNWtWXHHFFXHFFVdEnTp1omXLllG3bt3Izc394T42derUYv9s7tmzZ9xxxx3FupaiWbNmTbz11lvx1ltv/fB31atX/+G9V82aNaNq1aqRnZ0d69evj/Xr18fy5ctjxowZsX79+mLN7N27d1x00UWpeggAAAAAAAAAAABshxJqAAAAAAAAAAAAoMyrVKlS/O1vf4tLLrkkHnnkkWKdsXXr1vjmm2/im2++SfF2qVGxYsV44YUX4tBDD40NGzYU6drCwsKYOnVqTJ06tUTzX3zxxTj44INjzJgxxT4nnbZs2RLz5s2LefPmpfzsnJyc+Nvf/hb77LNPys8uCzp27Bi///3v44YbbthuZuPGjfHqq68WqVQ5WYcffnixX7tl1a5wX6JoqlWrFr/+9a/j2muvTZh9/PHH45prrolGjRoVec4VV1wRdevWjYEDB8aWLVuKs+oPJdM7i/vuuy82b94cjz32WMZm7r333vHaa69FXl5e0tdUqVIljRulX1ZWVjz77LNRUFAQr732WpGv/+677+LDDz9M2T7du3ePV199NSpVqpSyMymatWvXxrRp02LatGkpP7t9+/bxl7/8pdx9+AcAAAAAAAAAAEBZlF3aCwAAAAAAAAAAAAAko0KFCvHwww/HfffdFzk5OaW9Tlq0bt06XnjhhahYsWJG51asWDGefPLJOOGEEzI6t6yoUaNGvPrqq9GjR4/SXiWtrr/++jjrrLMyPrd169YxfPjwnb6c9cfsCvcliubSSy+N2rVrJ8xt3LgxbrnllmLPOeecc+Kdd94pVon1zig7OzseffTRGDx4cEYKa9u1axcfffTRf3x/N23alPC68nAfqFSpUgwbNizOOeecUt3jpz/9abzxxhtRtWrVUt2D9OjcuXO88847UbNmzdJeBQAAAAAAAAAAYJeghBoAAAAAAAAAAADYqVx66aXxySefxMEHH1zaq/yHatWqRXZ2yX81s0+fPjF06NCMlS7WqlUr3nrrrVIpJy4LWrduHePHj49evXqV9ioZ8fjjj8cpp5ySsXmHHnpofPDBB0mV8u7Myvt9ieRVr149Lr/88qSyTzzxRCxcuLDYs7p37x6TJ0+Ofv36FfuMdKhQoULk5eWl5ezf/e538c4778Qee+yRlvMjIs4777x4//33o379+v/x9wUFBQmvLQ8l1BERlStXjqeeeiruvvvuqFy5ckZnV6hQIX7/+9/HsGHDIjc3N6OzyYwLL7wwRo8eXe7fGwAAAAAAAAAAAJQlfqMYAAAAAAAAAAAA2OkccMAB8dlnn8Vjjz0WDRo0KLU9srOzo0ePHjFkyJBYsmRJyooa+/btG++//37ss88+KTlve7p37x4TJkyIHj16pHXOfzvmmGOiYcOGGZ3536pWrRo33HBDTJw4MVq1alWqu2RS5cqVY+jQoXHZZZelfdaZZ54Z77333i5TMlne70sk75e//GXUqlUrYW7jxo1xyy23lGhW7dq1Y+jQoTF69Oho27Ztic4qqQMPPDDuuOOOWLBgQRxxxBFpm9OjR4+YOnVqXHXVVSn9wIYDDzwwRo4cGY8//nhUq1btP762bdu2WLt27Q6vz8vLiypVqqRsn7Jg0KBBMWnSpOjSpUtG5rVt2zYmTJgQv/3tbyMrKysjM3cFNWvWjGOPPbbUS9L322+/+Pvf/x4PP/xwuXutAAAAAAAAAAAAlHVKqAEAAAAAAAAAAICdUnZ2dpx//vkxe/bseOSRR+LAAw/MyNyKFStGly5d4rbbbot58+bFyJEj46yzzoq8vLyUzunQoUN88cUXceWVV6a8NHDvvfeOIUOGxHvvvRfNmzdP6dnJuO666+Lbb7+NiRMnxo033hgdO3aM7OzM/FprzZo147LLLovZs2fHjTfeuEsW9GZnZ8c999wTw4cPT0sZeN26deOZZ56Jv/zlLyl/XZR15f2+RHJq1KgRgwYNSir7xBNPxIIFC0o8s1u3bvHZZ5/Fm2++Gb169cpYgW/Lli3jV7/6VUycODEmT54cv/nNb2KPPfZI+9yaNWvGbbfdFnPmzImbbropmjVrVqxzqlSpEscff3y8+eabMXny5O1+KMPy5ctjy5YtOzyrfv36xdqhrGvVqlWMHTs2XnrppWjXrl1aZrRu3Tqee+65+OSTT9I2Y1dWq1ateOutt+L777+P4cOHxwUXXBCNGzfO2PwDDjggnnjiifj666+jZ8+eGZsLAAAAAAAAAADA/6lY2gsAAAAAAAAAAAAAlERubm5ccMEFccEFF8Qnn3wSr7zySgwfPjy+/vrrlJyfnZ0drVu3jqOPPjqOPvro6Nq1a1SvXj0lZyeSl5cXt99+e1x22WXxyCOPxNNPPx3z588v1lm5ublx9NFHx8CBA+OEE07YYelz48aN47LLLtvheakor27btm20bds2brjhhli5cmV8/PHHMX78+Bg/fnxMmDAh1qxZU+IZERHVq1ePY445Jk4++eTo27dv5ObmpuTcnV2fPn2ia9eucdddd8UDDzwQ33//fYnOq1mzZlx44YVx7bXXRs2aNVO05c6pPN+XSM5ll10Wd999d6xatWqHuU2bNsUtt9wSDz30UIlnZmVlxfHHHx/HH398zJ07N15++eV49dVX46OPPoqtW7eW+PyIiCZNmsRRRx0VRx99dPTo0SMjhdM70qBBg7juuuviuuuui6+++ipGjRoVEydOjOnTp8f8+fNj7dq1kZ+fHzk5OVG9evXYbbfdokWLFtG6devo0KFDHHPMMUmVtc+dOzepXcqrrKys6Nu3b/Tt2zfGjRsXzz33XPztb3+L5cuXF/vMWrVqxcknnxxnnHFGdO/ePWPF6buy3Nzc6NOnT/Tp0yciImbMmPHD+67x48fHlClTYtu2bSmZtc8++0Tv3r3j1FNPjS5duqTkTAAAAAAAAAAAAIovq7CwsLC0lwAAAAAAAAAAAABIte+++y4++eST+Oyzz2LWrFkxb968WLBgQaxZsyY2bNgQBQUFERFRpUqVqFq1atSuXTvq1KkTjRo1imbNmkXz5s3jgAMOiDZt2iRVUJkpn3/+eYwZMyY+++yzmDFjRixcuDBWr14dBQUFUbFixcjLy4tq1arFHnvsES1atIgWLVpEp06d4vDDD4/KlSuX9vpJ27ZtW8ycOTNmzJgRs2bNilmzZsXs2bNj6dKlsXbt2li3bt0P5aKVKlWKKlWqRI0aNaJ+/frRsGHDaN68eey///5x6KGHxkEHHRQVKlQo7YdUpm3YsCGGDRsWr732Wrzzzjuxbt26pK6rWrVqHHnkkdG3b98444wzytRrpSwqr/clyrYNGzbExIkT45NPPolp06bF/PnzY/78+fH9999Hfn5+bNiwIbZt2xaVK1eOnJyc2G233aJOnTrRoEGDaNasWey9997RqlWraNu2bdStW7e0H06pePzxx2PgwIE7zJx11lkxZMiQDG1U+goLC+Orr76KsWPHxueffx5z5syJuXPnxsqVK3+4n1WpUiVyc3Njt912i7322iv23nvvOOigg+Lwww+Pgw46aIcfiEHmrVu3Lr7++usf3nfNmjUrvvnmm1i5cuUP77vWrVsXW7ZsicqVK0fVqlVj9913j3r16kXTpk1/KHjv0qVLNGrUqLQfDgAAAAAAAAAAAP9GCTUAAAAAAAAAAAAA8IMtW7bEjBkz4quvvoqZM2fG6tWrY+3atbFp06bIy8uLGjVq/FBK26ZNm8jJySntlQHS6sILL4xHH310h5lbb701rr766gxtBAAAAAAAAAAAAJC8iqW9AAAAAAAAAAAAAABQdlSsWDFatWoVrVq1Ku1VAMqEd999N2GmdevWGdgEAAAAAAAAAAAAoOiyS3sBAAAAAAAAAAAAAACAsmjy5Mkxe/bshLmOHTtmYBsAAAAAAAAAAACAolNCDQAAAAAAAAAAAAAA8COeeuqphJmWLVtGvXr1MrANAAAAAAAAAAAAQNEpoQYAAAAAAAAAAAAAAPgv3333XTz22GMJc0cffXQGtgEAAAAAAAAAAAAoHiXUAAAAAAAAAAAAAAAA/+V3v/tdrF+/PmGuX79+GdgGAAAAAAAAAAAAoHiyCgsLC0t7CQAAAAAAAAAAAAAAgLJi9OjRcfTRR0ei/+SiSZMmMW/evMjKysrQZgAAAAAAAAAAAABFk13aCwAAAAAAAAAAAAAAAJQVs2bNilNPPTVhAXVExAUXXKCAGgAAAAAAAAAAACjTlFADAAAAAAAAAAAAAABl0pw5c+Lmm2+OdevWZWTel19+GUceeWR8//33CbPVq1ePSy65JANbAQAAAAAAAAAAABSfEmoAAAAAAAAAAAAAAKBM2rBhQ1x//fWx1157xe9+97tYunRpWuYUFhbGI488Ep06dYrFixcndc2gQYOiVq1aadkHAAAAAAAAAAAAIFWyCgsLC0t7CQAAAAAAAAAAAAAAgP82ZcqUOPDAA3/435UrV47evXvH2WefHT179owqVaqU6Pxt27bFm2++GYMHD46JEycmfd3ee+8dX331VeTk5JRoPgAAAAAAAAAAAEC6KaEGAAAAAAAAAAAAAADKpP8uof53eXl5ccwxx8SRRx4ZnTt3jgMOOCCqVauW8MzvvvsuPv3003j77bfj5ZdfjgULFhRppwoVKsTIkSOje/fuRboOAAAAAAAAAAAAoDQooQYAAAAAAAAAAAAAAMqkHZVQ/5hGjRpF48aNo169epGbmxuVK1eOTZs2RX5+fixevDgWLFgQS5YsKdFOf/zjH+OKK64o0RkAAAAAAAAAAAAAmVKxtBcAAAAAAAAAAAAAAABIhW+//Ta+/fbbtJ1/6aWXKqAGAAAAAAAAAAAAdirZpb0AAAAAAAAAAAAAAABAWXfllVfGfffdV9prAAAAAAAAAAAAABRJxdJeAAAAAAAAAAAAAAAAoKyqXr16PProo3HaaaeV9ioAAAAAAAAAAAAARZZd2gsAAAAAAAAAAAAAAACURX379o0vvvhCATUAAAAAAAAAAACw01JCDQAAAAAAAAAAAAAAlEktW7aMd955Jy644IKoV69eRmZmZ2dHnz594sMPP4yXXnopmjVrlpG5AAAAAAAAAAAAAOmQVVhYWFjaSwAAAAAAAAAAAAAAAOzI1q1b48MPP4z33nsvxo8fHxMmTIg1a9ak5Ozs7Ozo1KlT9OnTJ0477bTYc889U3IuAAAAAAAAAAAAQGlTQg2UGw0aNIhVq1b9z99XqlQpmjZtmvmFAAAAAACAMmf+/PmxefPm//n73XbbLZYsWVIKGwEAAAAAxbVt27b4+uuv48svv4y5c+fGvHnzYu7cubFo0aJYt25dbNiwITZs2BD5+fkREVG1atXIycmJ3XffPRo3bhxNmjSJli1bRvv27aNdu3ax2267le4DAgAAAAAAAAAAAEgDJdRAuZGTkxMbN24s7TUAAAAAAICdUJUqVaKgoKC01wAAAAAAAAAAAAAAAAAAAEip7NJeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDUU0INAAAAAAAAAAAAAAAAAAAAAAAAAAAAUA4poQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAoh5RQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJRDFUt7AYBUqVSpUmzcuPF//r5KlSqxzz77lMJGAAAAAABAWTN79uwf/f8nVKpUqRS2AQAAAAAAAAAAAAAAAAAASC8l1EC50bRp0/j666//5+/32Wef+Oqrr0phIwAAAAAAoKxp3br1j/7/E5o2bVoK2wAAAAAAAAAAAAAAAAAAAKRXdmkvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDqKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAPj/2LvXIK3LA83DN003GA7BEYPMuhp1GTNktESRQm0MTgRlPOAhSoyiQMjgbhHdWmRSJGyJ6KImpSzqMCkwSFQ8xANmUFMewBGljQQPOJKwIp5QY0eDUXlBOe+HnaGWgSiH7n66m+uq4sP/ed/3//zKwk9W3QIAAAAAAAAAAEArZIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBUyQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQChmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFjFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAtEJGqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABaISPUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK2QEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACAVsgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEArZIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBUyQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQChmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFjFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAtEJGqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABaISPUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK2QEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACAVsgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEArZIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBUyQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQChmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFjFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAtEJGqAEAAAAAAKAVqlQqOfKnR+amX99UOgUAAAAAAAAAAAAAAAAAAIBCjFADAAAAAABAK1OpVFJ7W23e/PjNXDH/ily34LrSSQAAAAAAAAAAAAAAAAAAABRghBoAAAAAAABameNvPz4rPlmRJNmUTblmwTWZ9OSkwlUAAAAAAAAAAAAAAAAAAAA0NSPUAAAAAAAA0Ir0vblv3vz4za3ONmVTrnv2uox7bFyZKAAAAAAAAAAAAAAAAAAAAIowQg0AAAAAAACtxHE/Oy7LVi77s59Pe2FaxjwypgmLAAAAAAAAAAAAAAAAAAAAKMkINQAAAAAAALQCJ8w8IUv/uPQLvzdz8cxc+vClTVAEAAAAAAAAAAAAAAAAAABAaUaoAQAAAAAAoIUbdOugvPSHl3b4+7e/fHtGPjCyEYsAAAAAAAAAAAAAAAAAAABoDoxQAwAAAAAAQAt22h2nZeF7C3f6d7NfmZ2h9w9thCIAAAAAAAAAAAAAAAAAAACaCyPUAAAAAAAA0EKdc9c5qXu7bpd///CrD+ecu85pwCIAAAAAAAAAAAAAAAAAAACaEyPUAAAAAAAA0AKdd895mffWvN1+z7y35uXMO8/c/SAAAAAAAAAAAAAAAAAAAACaHSPUAAAAAAAA0MKMfGBkHn390QZ73/wV8zPo1kEN9j4AAAAAAAAAAAAAAAAAAACaByPUAAAAAAAA0IJc/M8XZ/Yrsxv8vQvfW5gTZp7Q4O8FAAAAAAAAAAAAAAAAAACgHCPUAAAAAAAA0EKMeWRM7ll6T6O9/6U/vJTjZxzfaO8HAAAAAAAAAAAAAAAAAACgaRmhBgAAAAAAgBZg3GPjMnPxzEa/Z8kHS9L35r6Nfg8AAAAAAAAAAAAAAAAAAACNzwg1AAAAAAAANHOXz7s8016Y1mT3LVu5LL2n9U6lUmmyOwEAAAAAAAAAAAAAAAAAAGh4RqgBAAAAAACgGZv05KRMXTS1ye99/U+vp/a2WkPUAAAAAAAAAAAAAAAAAAAALZgRagAAAAAAAGimbvr1TZn87ORsyqYi96/4ZEWOufUYQ9QAAAAAAAAAAAAAAAAAAAAtlBFqAAAAAAAAaIamL5qeiU9NLDZA/e/eXfVuhj84vGgDAAAAAAAAAAAAAAAAAAAAu8YINQAAAAAAADQzt714W370xI+ycfPG0inZv/P++fnpPy+dAQAAAAAAAAAAAAAAAAAAwC4wQg0AAAAAAADNyL1L7s1lj13WLAaou3XslmeHPZtOnTqVTgEAAAAAAAAAAAAAAAAAAGAXGKEGAAAAAACAZmLO0jkZ/avR2bB5Q+mUdO3QNfNHzDdADQAAAAAAAAAAAAAAAAAA0IIZoQYAAAAAAIBmYO7yuRn14Kis37S+dEr2+dI+WfDdBeneqXvpFAAAAAAAAAAAAAAAAAAAAHaDEWoAAAAAAAAobO7yuRn6wNCs3bS2dEr23mvv1I2sM0ANAAAAAAAAAAAAAAAAAADQChihBgAAAAAAgILq3qj7fwPUG8sPUHdu1zmPn/e4AWoAAAAAAAAAAAAAAAAAAIBWwgg1AAAAAAAAFLK4fnGG3D+kWQxQd6zpmDnnz0mP7j1KpwAAAAAAAAAAAAAAAAAAANBAjFADAAAAAABAAYvrF2fwnYOzZsOa0inpUN0hD13wUHp171U6BQAAAAAAAAAAAAAAAAAAgAZkhBoAAAAAAACa2PL65TnzrjOzat2q0ilp37Z97vnWPQaoAQAAAAAAAAAAAAAAAAAAWiEj1AAAAAAAANCE6iv1GXj3wHy89uPSKWnftn1mnTUrtQfXlk4BAAAAAAAAAAAAAAAAAACgERihBgAAAAAAgCZSX6lP7YzafPTZR6VT0r7q/w1QD+gxoHQKAAAAAAAAAAAAAAAAAAAAjcQINQAAAAAAADSB+kp9+t3SLx9++mHplNRU1WT66dMNUAMAAAAAAAAAAAAAAAAAALRyRqgBAAAAAACgkVUqlfSf2T8r16wsnZLqNtWZesrUDO45uHQKAAAAAAAAAAAAAAAAAAAAjcwINQAAAAAAADSiSqWSY249Ju+vfr90SqrbVOf6k67PuYedWzoFAAAAAAAAAAAAAAAAAACAJmCEGgAAAAAAABpJpVJJ7W21eXfVu6VT0rZN20z65qRcdORFpVMAAAAAAAAAAAAAAAAAAABoIkaoAQAAAAAAoJH0v6N/VnyyonRGqlKVCd+YkFF9RpVOAQAAAAAAAAAAAAAAAAAAoAkZoQYAAAAAAIBG0Pfmvnn9T6+XzkhVqjLmmDG55NhLSqcAAAAAAAAAAAAAAAAAAADQxIxQAwAAAAAAQAM7fsbxWbZyWemMJMnoPqMz/oTxpTMAAAAAAAAAAAAAAAAAAAAowAg1AAAAAAAANKATZp6QJR8sKZ2RJLn4qItz5YlXls4AAAAAAAAAAAAAAAAAAACgECPUAAAAAAAA0EAG3TooL/3hpdIZSZIRvUbk2pOuLZ0BAAAAAAAAAAAAAAAAAABAQUaoAQAAAAAAoAGceeeZWfjewtIZSZIhPYdk8qDJpTMAAAAAAAAAAAAAAAAAAAAozAg1AAAAAAAA7KZz7jon81fML52RJDn7a2dn2hnTSmcAAAAAAAAAAAAAAAAAAADQDBihBgAAAAAAgN0w9P6hmffWvNIZSZKTDzk5M86aUToDAAAAAAAAAAAAAAAAAACAZsIINQAAAAAAAOyikQ+MzMOvPlw6I0ly4ldPzN1D7i6dAQAAAAAAAAAAAAAAAAAAQDNihBoAAAAAAAB2waUPX5rZr8wunZEkqT2gNvd9577SGQAAAAAAAAAAAAAAAAAAADQzRqgBAAAAAABgJ415ZExuf/n20hlJkr5/2TcPXfBQ6QwAAAAAAAAAAAAAAAAAAACaISPUAAAAAAAAsBPGPTYuMxfPLJ2RJDlivyPyyLBHSmcAAAAAAAAAAAAAAAAAAADQTBmhBgAAAAAAgB006clJmfbCtNIZSZKe+/bMkyOeLJ0BAAAAAAAAAAAAAAAAAABAM2aEGgAAAAAAAHbAdQuuy+RnJ5fOSJIc2vXQPPO9Z0pnAAAAAAAAAAAAAAAAAAAA0MwZoQYAAAAAAIAvcNOvb8o1C67JpmwqnZKDuhyUhX+/sHQGAAAAAAAAAAAAAAAAAAAALYARagAAAAAAAPgc0xdNz8SnJjaLAeoDv3xgnr7w6dIZAAAAAAAAAAAAAAAAAAAAtBBGqAEAAAAAAODPuO3F2zL+ifHZuHlj6ZR079g9dRfVpVOnTqVTAAAAAAAAAAAAAAAAAAAAaCGMUAMAAAAAAMB23Lvk3lz22GXZsHlD6ZR069gti0YsMkANAAAAAAAAAAAAAAAAAADATqkuHcCe4YMPPsiiRYvy2muv5ZNPPklNTU26du2ar3/96zn66KNTU1NTOhEAAAAAAGCLOUvnZPSvRjeLAequHbpm/oj5BqgBAAAAAAAAAAAAAAAAAADYaUaoaVT33XdfbrjhhtTV1WXz5s3b/U7nzp0zZMiQ/OAHP8ihhx7axIU7b+nSpTnyyCOzdu3abT6bOXNmhg8f3qj333LLLRk5cuR2P3vjjTdy0EEHNer9AAAAAADQ2s1dPjejHhyV9ZvWl07JPl/aJwu+uyDdO3UvnQIAAAAAAAAAAAAAAAAAAEALVFU6gNbp3XffzQknnJBzzz03CxYs+LMD1EmyatWqzJgxI4cffniuuuqqz/1uaRs3bsywYcO2O0DdFN55552MGTOmyN0AAAAAALAnmLt8boY+MDRrN5X5bwH/vy7tu+TRbz9qgBoAAAAAAAAAAAAAAAAAAIBdZoSaBrds2bL06dMn8+fP36nfrVu3LpdffnkuuOCCbNy4sZHqds+Pf/zjLFq0qNj9I0eOzMcff1zsfgAAAAAAaM3q3qjLsF8Oy9qN5QeoO7frnLnfmZse3XuUTgEAAAAAAAAAAAAAAAAAAKAFqy4dQOuycuXKDBw4MO+99942n/Xu3TtnnHFGDj744Hz66adZtmxZ7rzzzvz+97/f6nt33XVXunXrlilTpjRR9Y5ZsmRJJk6cWOz+6dOn57HHHit2PwAAAAAAtGaL6xfn27O/nTUb1pROSceajplz/hwD1AAAAAAAAAAAAAAAAAAAAOw2I9Q0qFGjRmXFihVbnXXu3DmzZs3K4MGDt/n+1VdfnauvvjpXXHHFVuc33HBDTj755Pzd3/1dY+busA0bNmTYsGFZt27dlrO+fftm4cKFTXL/W2+9lbFjx2557tKlS7p3755XXnmlSe4HAAAAAIDWbHn98gy+c3BWr19dOiUdqjvkoQseSq/uvUqnAAAAAAAAAAAAAAAAAAAA0ApUlQ6g9Xj88ccze/bsrc7atWuXJ554YrsD1ElSU1OTCRMmZMqUKdt8dumll2bDhg2NkbrTrr766rzwwgtbnocOHZpBgwY1yd2bN2/OyJEjs2rVqi1n119/fbp3794k9wMAAAAAQGu2vH55Btw1IKvWrfriLzey9m3b555v3WOAGgAAAAAAAAAAAAAAAAAAgAZjhJoGc9VVV21zNmHChBx99NFf+Nv//t//ewYOHLjV2fLly3PnnXc2WN+ueumll/K//tf/2vK83377bXc0u7H89Kc/zbx587Y8DxgwICNHjmyy+wEAAAAAoLWqr9Rn4N0D8/Haj0unpH1V+8w6a1ZqD64tnQIAAAAAAAAAAAAAAAAAAEArYoSaBvHb3/42Tz/99FZn++67b8aOHbvD77jmmmu2OfvpT3+62227Y/369Rk2bFjWr1+/5ewf//Ef07Vr1ya5/4033sgPfvCDLc8dO3bMzTff3CR3AwAAAABAa1ZfqU/tjNp89NlHpVPSvqp9pp8+PQN6DCidAgAAAAAAAAAAAAAAAAAAQCtjhJoGcffdd29zNmLEiLRr126H39G7d+/07t17q7Nnn302b7zxxm737aqrrroqL7300pbns88+O+ecc06T3L158+aMGDEiq1ev3nJ2zTXX5KCDDmqS+wEAAAAAoLWqVCrpd0u/fPjph6VTUlNVk5tOuSmDew4unQIAAAAAAAAAAAAAAAAAAEArZISaBvHII49sc7YrY83b+8323t0UXnjhhVxzzTVbnvfZZ5/80z/9U5Pdf9NNN2X+/Plbnvv165fvf//7TXY/AAAAAAC0RpVKJX1m9snKNStLp6S6TXWmnjI15x52bukUAAAAAAAAAAAAAAAAAAAAWikj1Oy21atX54UXXtjqrEOHDjnqqKN2+l3HH3/8NmdPP/30LrftqnXr1mX48OHZsGHDlrMpU6Zkv/32a5L7X3vttfzwhz/c8rzXXntlxowZadOmTZPcDwAAAAAArVGlUskxtx6T+tX1pVPStk3bXH/S9QaoAQAAAAAAAAAAAAAAAAAAaFRGqNltixcvzqZNm7Y6O/roo1NdXb3T7+rTp09qamq2Onv++ed3q29XTJw4MS+//PKW51NOOSUXXnhhk9y9adOmjBgxImvWrNmq59BDD22S+wEAAAAAoDWqVCqpva027656t3RK2rZpmwnfmJCLjryodAoAAAAAAAAAAAAAAAAAAACtnBFqdtv/+T//Z5uzHj167NK72rVrl//8n//zVmevvfZaNmzYsEvv2xXPPfdcfvKTn2x5/vKXv5xp06Y12f033HBDnn766S3PRx99dC677LImux8AAAAAAFqj/nf0z4pPVpTOSFWqMq52XC459pLSKQAAAAAAAAAAAAAAAAAAAOwBjFCz2958881tzr761a/u8vsOPPDArZ43btyYFSuaZhRi7dq1GTZs2Faj1z/5yU+2GcZuLMuWLcv48eO3PNfU1OSWW25J27Ztm+R+AAAAAABojfre3Dev/+n10hmpSlXGHDMmY/uNLZ0CAAAAAAAAAAAAAAAAAADAHqK6dAAtX319/TZnBxxwwC6/b3u//cMf/pBDDjlkl9+5oy6//PL87ne/2/L8t3/7txk1alSj35skmzZtyvDhw/Ppp59uORs/fnwOP/zwJrm/MU2dOjX/9E//1Oj3vPbaa41+BwAAAAAALcvxM47PspXLSmckSUb3GZ3xJ4z/4i8CAAAAAAAAAAAAAAAAAABAAzFCzW778MMPtznr1KnTLr9ve79duXLlLr9vRy1cuDDXX3/9lucOHTrkZz/7Wdq0adPodyfJ9ddfn1//+tdbng8//PD86Ec/apK7G9sHH3yw1bg3AAAAAAA0hQE/H5AlHywpnZEkufioi3PliVeWzgAAAAAAAAAAAAAAAAAAAGAPU1U6gJZv9erV25x96Utf2uX3be+3a9as2eX37YjPPvssw4YNy8aNG7ecTZo0KYccckij3vvvli5dmssvv3zLc9u2bXPLLbekpqamSe4HAAAAAIDWZtCtg/J8/fOlM5IkFx5+Ya496drSGQAAAAAAAAAAAAAAAAAAAOyBjFCz29avX7/N2V577bXL79veCPW6det2+X07Yvz48XnllVe2PB977LG59NJLG/XOf7dx48YMHz48n3322ZazsWPH5uijj26S+wEAAAAAoLU5884zs/C9haUzkiRDeg7JjafeWDoDAAAAAAAAAAAAAAAAAACAPZQRahpFmzZtGvS3mzdv3p2cz1VXV5cpU6ZseW7fvn1uueWWVFU1zb8eP/nJT/Kb3/xmy/PXvva1XHHFFU1yNwAAAAAAtDbn3HVO5q+YXzojSXL2187OtDOmlc4AAAAAAAAAAAAAAAAAAABgD2aEmt1WU1Ozzdmnn366y+/b3m/btWu3y+/7PGvWrMmIESOyadOmLWcTJkzIX//1XzfKff/Rb3/7260Gp9u0aZMZM2Zkr732apL7AQAAAACgNRl6/9DMe2te6YwkycmHnJwZZ80onQEAAAAAAAAAAAAAAAAAAMAerrp0AC1fhw4dtjlr6BHqjh077vL7Ps8Pf/jDvPrqq1uejzrqqPzDP/xDo9z1H23YsCHDhg3LunXrtpx9//vfT21tbZPc35S+8pWv5Otf/3qj3/Paa69l7dq1jX4PAAAAAADNz8gHRubhVx8unZEk6X9g/9w95O7SGQAAAAAAAAAAAAAAAAAAAGCEmt3XtWvXbc4qlcouv297v93eHbvrqaeeyk033bTlubq6Orfcckuqq5vmX4trr702zz///Jbngw46KNdcc02T3N3URo8endGjRzf6PX/zN3+T3/3ud41+DwAAAAAAzculD1+a2a/MLp2RJKk9oDa/PP+XpTMAAAAAAAAAAAAAAAAAAAAgSVJVOoCWb7/99tvm7J133tnl97399ts7dMfu+q//9b9m8+bNW57HjRuXI444osHv2Z533nknV1111VZnN998czp27Ngk9wMAAAAAQGsx5pExuf3l20tnJEl6d++dhy54qHQGAAAAAAAAAAAAAAAAAAAAbFFdOoCW7+CDD97m7K233trl961YsWKr57Zt2+bAAw/c5ff9Ob///e+3ep49e3YefPDBHf59fX39NmeXX355pkyZstXZ4MGDc+WVV2519sc//jHr1q3b8tyuXbuMHTt2h+9OkuXLl29zdsopp6Rdu3ZbnV155ZUZPHjwTr0bAAAAAABagnGPjcvMxTNLZyRJjtjviMwdPrd0BgAAAAAAAAAAAAAAAAAAAGzFCDW77Wtf+9o2Z9sbSN4R69aty9tvv73V2X/5L/8l1dWN/1f1d7/73W6/4+23396mv1evXl/4u3Xr1uWll17a7fuXLl26zdmHH3642+8FAAAAAIDmZtKTk3LzCzeXzkiS9Ny3Z54c8WTpDAAAAAAAAAAAAAAAAAAAANhGVekAWr4jjzwyVVVb/1V67rnnsmHDhp1+13PPPZf169dvdXbUUUftVh8AAAAAANC6XLfgukx+dnI2ZVPplBza9dA8871nSmcAAAAAAAAAAAAAAAAAAADAdhmhZrd17NgxRx555FZnq1evzosvvrjT71qwYME2Z9/4xjd2uQ0AAAAAAGhdbvr1Tbm27tpmMUB9UJeDsvDvF5bOAAAAAAAAAAAAAAAAAAAAgD/LCDUNYtCgQduc3XfffTv9nu39ZnvvbggfffRRNm/evMt/JkyYsM07Z86cuc33fv7zn2/zvV69eu3W3Zs3b07//v23ee8bb7yxzfeGDx/eCP/0AAAAAACg6U1fND0Tn5qYjZs3lk7JgV8+ME9f+HTpDAAAAAAAAAAAAAAAAAAAAPhcRqhpEOedd942ZzNnzsy6det2+B0vvvhiFi1atNVZ3759c/DBB+92HwAAAAAA0LLd9uJtGf/E+GYxQN29Y/fUXVSXTp06lU4BAAAAAAAAAAAAAAAAAACAz2WEmgZx2GGHpV+/fludffDBB/nf//t/7/A7fvjDH25z9t/+23/b7TYAAAAAAKBlu3fJvbnsscuyYfOG0inp1rFbFo1YZIAaAAAAAAAAAAAAAAAAAACAFsEINQ3mf/7P/7nN2YQJE/LCCy984W//8R//MY8++uhWZ4ccckjOP//8Hbr7oIMOSps2bbb68+STT+7QbwEAAAAAgOZrztI5Gf2r0c1igLprh66ZP2K+AWoAAAAAAAAAAAAAAAAAAABaDCPUNJiTTz45Z5xxxlZna9euzd/+7d/mwQcf3O5v1q9fn6uuuiqXXHLJNp/deOONqampaZRWAAAAAACg+Zu7fG5GPTgq6zetL52SvffaOwu+uyDdO3UvnQIAAAAAAAAAAAAAAAAAAAA7rLp0AK3LzTffnOeffz7vvPPOlrNPPvkkgwcPztFHH50zzjgjBx98cD799NO8+uqrueOOO/Luu+9u857vf//7OfXUU5syHQAAAAAAaEbq3qjL0AeGZu2mtaVT0qV9lzx+3uMGqAEAAAAAAAAAAAAAAAAAAGhxjFDToL7yla/kscceyze/+c3U19dv9dlzzz2X55577gvfMWTIkEyZMqWRCgEAAAAAgOau7o26DLl/SNZuLD9A3bld58z9ztz06N6jdAoAAAAAAAAAAAAAAAAAAADstKrSAbQ+PXv2zG9+85v069dvp35XU1OTCRMm5K677krbtm0bqQ4AAAAAAGjOFtcvzrdnfztrNqwpnZKONR0z5/w5BqgBAAAAAAAAAAAAAAAAAABosYxQ0ygOOOCAPPXUU/nFL36R4447Lm3atPmz3+3UqVNGjBiRf/3Xf80VV1yRqip/LQEAAAAAYE+0vH55Bt85OKvXry6dkg7VHfLQBQ+lV/depVMAAAAAAAAAAAAAAAAAAABgl7XZvHnz5tIRtH7vv/9+fvOb3+T111/PJ598kurq6uy7777p2bNn+vTpk3bt2pVOpBX4m7/5m/zud7/b5vzrX/96fvvb3xYoAgAAAABgRy2vX54Bdw3Ix2s/Lp2S9m3b5/5z7k/twbWlU2gE/nsCAAAAAAAAAAAAAAAAAACwJ6kuHcCeoVu3bjnttNNKZwAAAAAAAM1QfaU+A+8e2DwGqKvaZ9ZZswxQAwAAAAAAAAAAAAAAAAAA0CpUlQ4AAAAAAABgz1VfqU/tjNp89NlHpVNSU1WT6adPz4AeA0qnAAAAAAAAAAAAAAAAAAAAQIMwQg0AAAAAAEARlUol/Wf2z4efflg6JTVVNZl6ytQM7jm4dAoAAAAAAAAAAAAAAAAAAAA0GCPUAAAAAAAANLlKpZI+M/vk/dXvl05JdZvqXDfwupx72LmlUwAAAAAAAAAAAAAAAAAAAKBBGaEGAAAAAACgSVUqlRxz6zGpX11fOiVt27TNpG9OykVHXlQ6BQAAAAAAAAAAAAAAAAAAABqcEWoAAAAAAACa1PG3H593V71bOiNt27TNhG9MyKg+o0qnAAAAAAAAAAAAAAAAAAAAQKMwQg0AAAAAAECT6T2td978+M3SGalKVcbVjsslx15SOgUAAAAAAAAAAAAAAAAAAAAajRFqAAAAAAAAmsRxPzsur//p9dIZqUpVxhwzJmP7jS2dAgAAAAAAAAAAAAAAAAAAAI3KCDUAAAAAAACN7vgZx2fpH5eWzkiSjO4zOuNPGF86AwAAAAAAAAAAAAAAAAAAABqdEWoAAAAAAAAa1YCfD8iSD5aUzkiSjOg1IleeeGXpDAAAAAAAAAAAAAAAAAAAAGgSRqgBAAAAAABoNKfdcVqer3++dEaS5MLDL8zkQZNLZwAAAAAAAAAAAAAAAAAAAECTMUINAAAAAABAozjzzjNT93Zd6YwkyZCeQ3LjqTeWzgAAAAAAAAAAAAAAAAAAAIAmZYQaAAAAAACABnfePedl/or5pTOSJKf+1amZdsa00hkAAAAAAAAAAAAAAAAAAADQ5IxQAwAAAAAA0KCG3j80j77+aOmMJMnJh5ycWd+aVToDAAAAAAAAAAAAAAAAAAAAijBCDQAAAAAAQIO5+J8vzsOvPlw6I0nS/8D+uXvI3aUzAAAAAAAAAAAAAAAAAAAAoBgj1AAAAAAAADSISx++NPcsvad0RpKk9oDa/PL8X5bOAAAAAAAAAAAAAAAAAAAAgKKMUAMAAAAAALDbxjwyJre/fHvpjCRJ7+6989AFD5XOAAAAAAAAAAAAAAAAAAAAgOKMUAMAAAAAALBbLp93eWYunlk6I0ly2FcOy9zhc0tnAAAAAAAAAAAAAAAAAAAAQLNghBoAAAAAAIBdNunJSZm6aGrpjCRJz3175umRT5fOAAAAAAAAAAAAAAAAAAAAgGbDCDUAAAAAAAC75LoF12Xys5OzKZtKp+SQvzgkz3zvmdIZAAAAAAAAAAAAAAAAAAAA0KwYoQYAAAAAAGCn3fTrm3Jt3bXNYoD6oC4H5fmLny+dAQAAAAAAAAAAAAAAAAAAAM2OEWoAAAAAAAB2yvRF0zPxqYnZuHlj6ZTs33n/PH3h06UzAAAAAAAAAAAAAAAAAAAAoFkyQg0AAAAAAMAOu+3F2zL+ifHNYoC6e8fueXbYs+nUqVPpFAAAAAAAAAAAAAAAAAAAAGiWjFADAAAAAACwQ+5dcm/GPj42GzZvKJ2Sbh27ZdGIRQaoAQAAAAAAAAAAAAAAAAAA4HMYoQYAAAAAAOALzVk6J6N/NTrrN60vnZJ9vrRP5o+Yb4AaAAAAAAAAAAAAAAAAAAAAvoARagAAAAAAAD7X3OVzM+rBUc1igHrvvfZO3ci6dO/UvXQKAAAAAAAAAAAAAAAAAAAANHtGqAEAAAAAAPiz6t6oy9AHhmbtprWlU9KlfZc8ft7jBqgBAAAAAAAAAAAAAAAAAABgBxmhBgAAAAAAYLsW1y/OkPuHZO3G8gPUndt1ztzvzE2P7j1KpwAAAAAAAAAAAAAAAAAAAECLYYQaAAAAAACAbSyuX5zT7jgtazasKZ2SjjUdM+f8OQaoAQAAAAAAAAAAAAAAAAAAYCcZoQYAAAAAAGAry+uXZ/Cdg7N6/erSKelQ3SG/OPsX6dW9V+kUAAAAAAAAAAAAAAAAAAAAaHGMUAMAAAAAALDF8vrlGXDXgKxat6p0Stq3bZ97vnVPag+uLZ0CAAAAAAAAAAAAAAAAAAAALZIRagAAAAAAAJIk9ZX6DLx7YD5e+3HplLSvap9ZZ80yQA0AAAAAAAAAAAAAAAAAAAC7wQg1AAAAAAAAqa/Up3ZGbT767KPSKampqsn006dnQI8BpVMAAAAAAAAAAAAAAAAAAACgRTNCDQAAAAAAsIerVCrpP7N/Pvz0w9IpqamqydRTpmZwz8GlUwAAAAAAAAAAAAAAAAAAAKDFM0INAAAAAACwB6tUKukzs0/eX/1+6ZRUt6nOdQOvy7mHnVs6BQAAAAAAAAAAAAAAAAAAAFoFI9QAAAAAAAB7qEqlkmNuPSb1q+tLp6Rtm7aZ9M1JuejIi0qnAAAAAAAAAAAAAAAAAAAAQKthhBoAAAAAAGAPdfztx+fdVe+WzkjbNm0z4RsTMqrPqNIpAAAAAAAAAAAAAAAAAAAA0KoYoQYAAAAAANgD9Z7WO29+/GbpjFSlKuNqx+WSYy8pnQIAAAAAAAAAAAAAAAAAAACtjhFqAAAAAACAPcxxPzsur//p9dIZqUpVxhwzJmP7jS2dAgAAAAAAAAAAAAAAAAAAAK2SEWoAAAAAAIA9yAkzT8jSPy4tnZEkGd1ndMafML50BgAAAAAAAAAAAAAAAAAAALRaRqgBAAAAAAD2EAN+PiAv/eGl0hlJkhG9RuTKE68snQEAAAAAAAAAAAAAAAAAAACtmhFqAAAAAACAPcBpd5yW5+ufL52RJLnw8AszedDk0hkAAAAAAAAAAAAAAAAAAADQ6hmhBgAAAAAAaOXOueuc1L1dVzojSTKk55DceOqNpTMAAAAAAAAAAAAAAAAAAABgj2CEGgAAAAAAoBU7757zMu+teaUzkiSn/tWpmXbGtNIZAAAAAAAAAAAAAAAAAAAAsMcwQg0AAAAAANBKDb1/aB59/dHSGUmSkw85ObO+Nat0BgAAAAAAAAAAAAAAAAAAAOxRjFADAAAAAAC0Qhf/88V5+NWHS2ckSfof2D93D7m7dAYAAAAAAAAAAAAAAAAAAADscYxQAwAAAAAAtDKXPnxp7ll6T+mMJEnfv+ybX57/y9IZAAAAAAAAAAAAAAAAAAAAsEcyQg0AAAAAANCKjHtsXG5/+fbSGUmS3t1755Fhj5TOAAAAAAAAAAAAAAAAAAAAgD2WEWoAAAAAAIBW4vJ5l2faC9NKZyRJDvvKYZk7fG7pDAAAAAAAAAAAAAAAAAAAANijGaEGAAAAAABoBSY9OSlTF00tnZEkObTroXl65NOlMwAAAAAAAAAAAAAAAAAAAGCPZ4QaAAAAAACghbtuwXWZ/OzkbMqm0ik55C8OycK/X1g6AwAAAAAAAAAAAAAAAAAAAIgRagAAAAAAgBbtpl/flGvrrm0WA9QHfvnAzL9gfukMAAAAAAAAAAAAAAAAAAAA4N8YoQYAAAAAAGihbnvxtkx8amI2bt5YOiX7d94/dRfVpVOnTqVTAAAAAAAAAAAAAAAAAAAAgH9jhBoAAAAAAKAFunfJvbnsscuaxQB1947d8+ywZw1QAwAAAAAAAAAAAAAAAAAAQDNjhBoAAAAAAKCFuXfJvRn9q9HZsHlD6ZR07dA1i0YsMkANAAAAAAAAAAAAAAAAAAAAzZARagAAAAAAgBZkztI5ueRXl2T9pvWlU7LPl/bJgu8uMEANAAAAAAAAAAAAAAAAAAAAzZQRagAAAAAAgBZi7vK5GfXgqKzdtLZ0Svbea+/UjaxL907dS6cAAAAAAAAAAAAAAAAAAAAAf4YRagAAAAAAgBag7o26DH1gaLMYoO7SvkseP+9xA9QAAAAAAAAAAAAAAAAAAADQzBmhBgAAAAAAaOYW1y/OkPuHZO3G8gPUndt1ztzvzE2P7j1KpwAAAAAAAAAAAAAAAAAAAABfwAg1AAAAAABAM7a4fnFOu+O0rNmwpnRKOtZ0zJzz5xigBgAAAAAAAAAAAAAAAAAAgBbCCDUAAAAAAEAztbx+eQbfOTir168unZIO1R3yi7N/kV7de5VOAQAAAAAAAAAAAAAAAAAAAHaQEWoAAAAAAIBmaHn98gy4a0BWrVtVOiXt27bPPd+6J7UH15ZOAQAAAAAAAAAAAAAAAAAAAHaCEWoAAAAAAIBmpr5Sn4F3D8zHaz8unZL2Ve0z66xZBqgBAAAAAAAAAAAAAAAAAACgBTJCDQAAAAAA0IzUV+rT75Z++eizj0qnpKaqJtNPn54BPQaUTgEAAAAAAAAAAAAAAAAAAAB2gRFqAAAAAACAZqJSqaT/zP5ZuWZl6ZRUt6nO1FOmZnDPwaVTAAAAAAAAAAAAAAAAAAAAgF1khBoAAAAAAKAZqFQq6TOzT95f/X7plFS3qc71J12fcw87t3QKAAAAAAAAAAAAAAAAAAAAsBuMUAMAAAAAABRWqVRSe1tt6lfXl05J2zZtM+mbk3LRkReVTgEAAAAAAAAAAAAAAAAAAAB2kxFqAAAAAACAwo6//fis+GRF6YxUpSoTvjEho/qMKp0CAAAAAAAAAAAAAAAAAAAANAAj1AAAAAAAAAX1vblv3vz4zdIZqUpVftjvh7nk2EtKpwAAAAAAAAAAAAAAAAAAAAANxAg1AAAAAABAIcf97LgsW7msdEaSZMwxYzK239jSGQAAAAAAAAAAAAAAAAAAAEADMkINAAAAAABQwAkzT8jSPy4tnZEkufioizP+hPGlMwAAAAAAAAAAAAAAAAAAAIAGZoQaAAAAAACgiQ26dVBe+sNLpTOSJCN6jci1J11bOgMAAAAAAAAAAAAAAAAAAABoBEaoAQAAAAAAmtBpd5yWhe8tLJ2RJLnw8AszedDk0hkAAAAAAAAAAAAAAAAAAABAIzFCDQAAAAAA0ETOueuc1L1dVzojSXL2187OjafeWDoDAAAAAAAAAAAAAAAAAAAAaERGqAEAAAAAAJrAefecl3lvzSudkSQ59a9OzYyzZpTOAAAAAAAAAAAAAAAAAAAAABqZEWoAAAAAAIBGNvKBkXn09UdLZyRJTvzqiZn1rVmlMwAAAAAAAAAAAAAAAAAAAIAmYIQaAAAAAACgEV38zxdn9iuzS2ckSfof2D/3fee+0hkAAAAAAAAAAAAAAAAAAABAEzFCDQAAAAAA0EjGPDIm9yy9p3RGkqTvX/bNL8//ZekMAAAAAAAAAAAAAAAAAAAAoAkZoQYAAAAAAGgE4x4bl5mLZ5bOSJIcsd8ReWTYI6UzAAAAAAAAAAAAAAAAAAAAgCZmhBoAAAAAAKCBXT7v8kx7YVrpjCTJYV85LE+OeLJ0BgAAAAAAAAAAAAAAAAAAAFCAEWoAAAAAAIAGNOnJSZm6aGrpjCTJoV0PzdMjny6dAQAAAAAAAAAAAAAAAAAAABRihBoAAAAAAKCB3PTrmzL52cnZlE2lU3LIXxyShX+/sHQGAAAAAAAAAAAAAAAAAAAAUJARagAAAAAAgAYwfdH0THxqYrMYoD7wywdm/gXzS2cAAAAAAAAAAAAAAAAAAAAAhRmhBgAAAAAA2E23vXhbfvTEj7Jx88bSKdm/8/6pu6gunTp1Kp0CAAAAAAAAAAAAAAAAAAAAFGaEGgAAAAAAYDfcu+TeXPbYZc1igLpbx255dtizBqgBAAAAAAAAAAAAAAAAAACAJEaoAQAAAAAAdtmcpXMy+lejs2HzhtIp6dqha54f8bwBagAAAAAAAAAAAAAAAAAAAGALI9QAAAAAAAC7YM7SORn14Kis37S+dEr2+dI+WfDdBQaoAQAAAAAAAAAAAAAAAAAAgK0YoQYAAAAAANhJc5fPzaiHRmXtprWlU7L3XnunbmRdunfqXjoFAAAAAAAAAAAAAAAAAAAAaGaMUAMAAAAAAOyEujfqMvSBoVm7sfwAdZf2XfL4eY8boAYAAAAAAAAAAAAAAAAAAAC2ywg1AAAAAADADlpcvzhD7h/SLAaoO9Z0zC+/88v06N6jdAoAAAAAAAAAAAAAAAAAAADQTBmhBgAAAAAA2AGL6xfntDtOy5oNa0qnpEN1hzx0wUPp1b1X6RQAAAAAAAAAAAAAAAAAAACgGTNCDQAAAAAA8AWW1y/P4DsHZ/X61aVT0qG6Q+751j0GqAEAAAAAAAAAAAAAAAAAAIAvZIQaAAAAAADgc9RX6jPw7oFZtW5V6ZS0b9s+t555a2oPri2dAgAAAAAAAAAAAAAAAAAAALQARqgBAAAAAAD+jPpKfWpn1Oajzz4qnZL2Ve0z66xZGdBjQOkUAAAAAAAAAAAAAAAAAAAAoIUwQg0AAAAAALAd9ZX69LulXz789MPSKampqsn006cboAYAAAAAAAAAAAAAAAAAAAB2ihFqAAAAAACA/6BSqaT/zP5ZuWZl6ZRUt6nO1FOmZnDPwaVTAAAAAAAAAAAAAAAAAAAAgBbGCDUAAAAAAMD/p1Kp5Jhbj8n7q98vnZLqNtW5/qTrc+5h55ZOAQAAAAAAAAAAAAAAAAAAAFogI9QAAAAAAAD/plKppPa22ry76t3SKWnbpm0mfXNSLjryotIpAAAAAAAAAAAAAAAAAAAAQAtlhBoAAAAAAODf9L+jf1Z8sqJ0RqpSlQnfmJBRfUaVTgEAAAAAAAAAAAAAAAAAAABaMCPUAAAAAAAASfre3Dev/+n10hmpSlV+2O+HueTYS0qnAAAAAAAAAAAAAAAAAAAAAC2cEWoAAAAAAGCPd9zPjsuylctKZyRJRvcZnbH9xpbOAAAAAAAAAAAAAAAAAAAAAFoBI9QAAAAAAMAe7YSZJ2TpH5eWzkiSXHzUxbnyxCtLZwAAAAAAAAAAAAAAAAAAAACthBFqAAAAAABgjzXo1kF56Q8vlc5IkozoNSLXnnRt6QwAAAAAAAAAAAAAAAAAAACgFTFCDQAAAAAA7JFOu+O0LHxvYemMJMmQnkMyedDk0hkAAAAAAAAAAAAAAAAAAABAK2OEGgAAAAAA2OOcc9c5qXu7rnRGkuTsr52daWdMK50BAAAAAAAAAAAAAAAAAAAAtEJGqAEAAAAAgD3K0PuHZt5b80pnJElO/atTM+OsGaUzAAAAAAAAAAAAAAAAAAAAgFbKCDUAAAAAALDHGPnAyDz86sOlM5IkJ371xMz61qzSGQAAAAAAAAAAAAAAAAAAAEArZoQaAAAAAADYI1z68KWZ/crs0hlJktoDanPfd+4rnQEAAAAAAAAAAAAAAAAAAAC0ckaoAQAAAACAVm/MI2Ny+8u3l85IkvT9y7556IKHSmcAAAAAAAAAAAAAAAAAAAAAewAj1AAAAAAAQKs27rFxmbl4ZumMJMkR+x2RR4Y9UjoDAAAAAAAAAAAAAAAAAAAA2EMYoQYAAAAAAFqty+ddnmkvTCudkSTpuW/PPDniydIZAAAAAAAAAAAAAAAAAAAAwB7ECDUAAAAAANAqXbfgukxdNLV0RpLk0K6H5pnvPVM6AwAAAAAAAAAAAAAAAAAAANjDGKEGAAAAAABanZt+fVOuWXBNNmVT6ZQc1OWgLPz7haUzAAAAAAAAAAAAAAAAAAAAgD2QEWoAAAAAAKBVmb5oeiY+NbFZDFAf+OUD8/SFT5fOAAAAAAAAAAAAAAAAAAAAAPZQRqgBAAAAAIBW47YXb8v4J8Zn4+aNpVOyf+f9U3dRXTp16lQ6BQAAAAAAAAAAAAAAAAAAANhDGaEGAAAAAABahXuX3JvLHrssGzZvKJ2Sbh275dlhzxqgBgAAAAAAAAAAAAAAAAAAAIoyQg0AAAAAALR4c5bOyehfjW4WA9RdO3TN/BHzDVADAAAAAAAAAAAAAAAAAAAAxRmhBgAAAAAAWrS5y+dm1IOjsn7T+tIp2edL+2TBdxeke6fupVMAAAAAAAAAAAAAAAAAAAAAjFADAAAAAAAt19zlczP0gaFZu2lt6ZTsvdfeqRtZZ4AaAAAAAAAAAAAAAAAAAAAAaDaMUAMAAAAAAC1S3Rt1GfbLYVm7sfwAded2nfP4eY8boAYAAAAAAAAAAAAAAAAAAACaFSPUAAAAAABAi7O4fnG+PfvbWbNhTemUdKzpmDnnz0mP7j1KpwAAAAAAAAAAAAAAAAAAAABsxQg1AAAAAADQoiyvX57Bdw7O6vWrS6ekQ3WHPHTBQ+nVvVfpFAAAAAAAAAAAAAAAAAAAAIBtGKEGAAAAAABajOX1yzPgrgFZtW5V6ZS0b9s+93zrHgPUAAAAAAAAAAAAAAAAAAAAQLNlhBoAAAAAAGgR6iv1GXj3wHy89uPSKWlf1T6zzpqV2oNrS6cAAAAAAAAAAAAAAAAAAAAA/FlGqAEAAAAAgGavvlKf2hm1+eizj0qnpH1V+0w/fXoG9BhQOgUAAAAAAAAAAAAAAAAAAADgcxmhBgAAAAAAmrVKpZJ+t/TLh59+WDolNVU1mX769AzuObh0CgAAAAAAAAAAAAAAAAAAAMAXMkINAAAAAAA0W5VKJb1n9s7KNStLp6S6TXWmnjLVADUAAAAAAAAAAAAAAAAAAADQYhihBgAAAAAAmqVKpZJjbj0m769+v3RK2rZpm+tPuj7nHnZu6RQAAAAAAAAAAAAAAAAAAACAHWaEGgAAAAAAaHYqlUpqb6vNu6veLZ2Stm3a5upvXp2LjryodAoAAAAAAAAAAAAAAAAAAADATjFCDQAAAAAANDv97+ifFZ+sKJ2RqlRlXO24jOozqnQKAAAAAAAAAAAAAAAAAAAAwE4zQg0AAAAAADQrfW/um9f/9HrpjFSlKmOOGZOx/caWTgEAAAAAAAAAAAAAAAAAAADYJUaoAQAAAACAZuP4Gcdn2cplpTOSJKP7jM74E8aXzgAAAAAAAAAAAAAAAAAAAADYZUaoAQAAAACAZmHAzwdkyQdLSmckSS4+6uJceeKVpTMAAAAAAAAAAAAAAAAAAAAAdosRagAAAAAAoLhBtw7K8/XPl85Iklx4+IW59qRrS2cAAAAAAAAAAAAAAAAAAAAA7DYj1AAAAAAAQFFn3nlmFr63sHRGkmRIzyG58dQbS2cAAAAAAAAAAAAAAAAAAAAANAgj1AAAAAAAQDHn3HVO5q+YXzojSXL2187OtDOmlc4AAAAAAAAAAAAAAAAAAAAAaDBGqAEAAAAAgCKG3j80896aVzojSXLyISdnxlkzSmcAAAAAAAAAAAAAAAAAAAAANCgj1AAAAAAAQJMb+cDIPPzqw6UzkiQnfvXE3D3k7tIZAAAAAAAAAAAAAAAAAAAAAA3OCDUAAAAAANCkLn340sx+ZXbpjCRJ7QG1ue8795XOAAAAAAAAAAAAAAAAAAAAAGgURqgBAAAAAIAmM+aRMbn95dtLZyRJenfvnYcueKh0BgAAAAAAAAAAAAAAAAAAAECjMUINAAAAAAA0iXGPjcvMxTNLZyRJjtjviMwdPrd0BgAAAAAAAAAAAAAAAAAAAECjMkINAAAAAAA0uklPTsrNL9xcOiNJ0nPfnnlyxJOlMwAAAAAAAAAAAAAAAAAAAAAanRFqAAAAAACgUV234LpMfnZyNmVT6ZQc2vXQPPO9Z0pnAAAAAAAAAAAAAAAAAAAAADQJI9QAAAAAAECjuenXN+WaBdc0iwHqg7oclIV/v7B0BgAAAAAAAAAAAAAAAAAAAECTMUINAAAAAAA0iumLpmfiUxObxQD1gV8+ME9f+HTpDAAAAAAAAAAAAAAAAAAAAIAmZYQaAAAAAABocLe9eFvGPzE+GzdvLJ2S7h27p+6iunTq1Kl0CgAAAAAAAAAAAAAAAAAAAECTMkINAAAAAAA0qHuX3JvLHrssGzZvKJ2Sbh27ZdGIRQaoAQAAAAAAAAAAAAAAAAAAgD2SEWoAAAAAAKDBzFk6J6N/NbpZDFB37dA180fMN0ANAAAAAAAAAAAAAAAAAAAA7LGMUAMAAAAAAA1i7vK5GfXgqKzftL50Svbea+8s+O6CdO/UvXQKAAAAAAAAAAAAAAAAAAAAQDFGqAEAAAAAgN1W90Zdhj4wNGs3rS2dki7tu+Tx8x43QA0AAAAAAAAAAAAAAAAAAADs8YxQAwAAAAAAu6XujboMuX9I1m4sP0DduV3nzP3O3PTo3qN0CgAAAAAAAAAAAAAAAAAAAEBxRqgBAAAAAIBdtrh+cb49+9tZs2FN6ZR0rOmYOefPMUANAAAAAAAAAAAAAAAAAAAA8G+MUAMAAAAAALtkef3yDL5zcFavX106JR2qO+ShCx5Kr+69SqcAAAAAAAAAAAAAAAAAAAAANBtGqAEAAAAAgJ22vH55Btw1IKvWrSqdkvZt2+eeb91jgBoAAAAAAAAAAAAAAAAAAADgPzBCDQAAAAAA7JT6Sn0G3j0wH6/9uHRK2le1z6yzZqX24NrSKQAAAAAAAAAAAAAAAAAAAADNjhFqAAAAAABgh9VX6lM7ozYfffZR6ZTUVNVk+unTM6DHgNIpAAAAAAAAAAAAAAAAAAAAAM2SEWoAAAAAAGCHVCqV9LulXz789MPSKampqsnUU6ZmcM/BpVMAAAAAAAAAAAAAAAAAAAAAmi0j1AAAAAAAwBeqVCrpM7NPVq5ZWTol1W2qc93A63LuYeeWTgEAAAAAAAAAAAAAAAAAAABo1oxQAwAAAAAAn6tSqeSYW49J/er60ilp26ZtJn1zUi468qLSKQAAAAAAAAAAAAAAAAAAAADNXnXpAPYMH3zwQRYtWpTXXnstn3zySWpqatK1a9d8/etfz9FHH52amprSic3KqlWr8tvf/javvvpq/vSnP2XVqlXp2LFj/uIv/iL7779/+vTpky5dupTOBAAAAAD2EMfffnzeXfVu6Yy0bdM2E74xIaP6jCqdAgAAAAAAAAAAAAAAAAAAANAiGKGmUd1333254YYbUldXl82bN2/3O507d86QIUPygx/8IIceemgTF+68pUuX5sgjj8zatWu3+WzmzJkZPnz4Tr/z448/ziOPPJJ/+Zd/yb/8y79k2bJln/v9Nm3a5LDDDstFF12U7373u9lnn312+k4AAAAAgB3Re1rvvPnxm6UzUpWqjKsdl0uOvaR0CgAAAAAAAAAAAAAAAAAAAECLUVU6gNbp3XffzQknnJBzzz03CxYs+LMD1EmyatWqzJgxI4cffniuuuqqz/1uaRs3bsywYcO2O0C9K+bMmZPTTz893bp1y3nnnZdp06Z94QB1kmzevDkvv/xy/uEf/iEHHHBApkyZkk2bNjVIEwAAAADAvzvuZ8fl9T+9XjojVanKmGPGZGy/saVTAAAAAAAAAAAAAAAAAAAAAFoUI9Q0uGXLlqVPnz6ZP3/+Tv1u3bp1ufzyy3PBBRdk48aNjVS3e3784x9n0aJFDfa+yZMn56GHHsq6det2+R1r1qzJ//gf/yMnnXRSVq9e3WBtAAAAAMCe7fgZx2fpH5eWzkiSjO4zOuNPGF86AwAAAAAAAAAAAAAAAAAAAKDFqS4dQOuycuXKDBw4MO+99942n/Xu3TtnnHFGDj744Hz66adZtmxZ7rzzzvz+97/f6nt33XVXunXrlilTpjRR9Y5ZsmRJJk6c2CR37b333qmtrc3RRx+dbt26Zd99982aNWvyxhtv5IknnsiCBQu2+c28efMyePDg/OpXv0r79u2bpBMAAAAAaJ0G/HxAlnywpHRGkuTioy7OlSdeWToDAAAAAAAAAAAAAAAAAAAAoEUyQk2DGjVqVFasWLHVWefOnTNr1qwMHjx4m+9fffXVufrqq3PFFVdsdX7DDTfk5JNPzt/93d81Zu4O27BhQ4YNG5Z169ZtOevbt28WLlzYYHd06dIl3/72tzN8+PD07ds3VVVV2/3exIkTs3jx4nzve9/L888/v9VnTzzxRK655ppt/nkCAAAAAOyoQbcOyvP1z3/xF5vAhYdfmGtPurZ0BgAAAAAAAAAAAAAAAAAAAECLtf2VW9gFjz/+eGbPnr3VWbt27fLEE09sd4A6SWpqajJhwoRMmTJlm88uvfTSbNiwoTFSd9rVV1+dF154Ycvz0KFDM2jQoAZ593/6T/8pN9xwQ957771MmzYtxx577J8doP53vXr1yjPPPLPdhh//+Md55513GqQNAAAAANiznHnnmVn4XsP9z/d2x5CeQ3LjqTeWzgAAAAAAAAAAAAAAAAAAAABo0YxQ02D+L3t3GmVleaYL+KlZiwINOJQxohBigiFLFGnUQnHAodXgTBxARLrBPkRcTUwfjB0QjZF41BAVc8AoUXEAx6CmHTAHhDIigzhE2lgiwZCUGmyFDVrz+dEHjpVdDLVr+Gq4rrX48T37e5/3Zgt/yrVurr/++rTZlClT4ogjjtjp2SuvvDJOOumkerOysrJ48MEHmy1fpl5//fX4yU9+su153333bbA0OxNXX311vPfeezFhwoTYfffdG3U2Pz8/5s2bF/vtt1+9+RdffBGPPPJIs+QDAAAAADqPC+ZdEIvWLUo6RkREnP6N02PmmTOTjgEAAAAAAAAAAAAAAAAAAADQ7imhpln84Q9/iMWLF9eb7bXXXnHVVVft8o4bb7wxbfbLX/6yydmaoqqqKkaNGhVVVVXbZnfccUf06NGjWfafcsopsdtuu2V8vmvXrg1+x08//XRTYgEAAAAAncyIx0bEc2ueSzpGRESc0vuUmHPunKRjAAAAAAAAAAAAAAAAAAAAAHQISqhpFg8//HDabPTo0ZGfn7/LOwYMGBADBgyoN3vllVfi/fffb3K+TF1//fXx+uuvb3s+55xz4rzzzkssT0NOO+20tNmaNWsSSAIAAAAAtEfjfjMunnn3maRjRETEkJ5D4uHh6T9vBgAAAAAAAAAAAAAAAAAAACAzSqhpFs8++2zaLJOy5obONLS7NaxcuTJuvPHGbc/du3ePO++8M5EsO9KzZ8+0WXl5eQJJAAAAAID2ZsIzE2Le6nlJx4iIiJIDSuLJi55MOgYAAAAAAAAAAAAAAAAAAABAh6KEmibbvHlzrFy5st6ssLAwDj/88EbvOuaYY9JmixcvzjhbpiorK+PSSy+N6urqbbPp06fHvvvu2+pZdmbLli1ps9133z2BJAAAAABAezLx2Ylx/5v3Jx0jIiIGFA+Ipy9+OukYAAAAAAAAAAAAAAAAAAAAAB2OEmqabNWqVVFbW1tvdsQRR0Rubm6jdw0cODDy8vLqzVasWNGkfJmYOnVqvPnmm9ueTzvttBg5cmSr59gVZWVlabP99tsvgSQAAAAAQHsx+cXJMXvV7KRjREREv737xYJLFyQdAwAAAAAAAAAAAAAAAAAAAKBDUkJNk/3nf/5n2qxPnz4Z7crPz4+vfe1r9WbvvfdeVFdXZ7QvE8uXL4+bbrpp23O3bt1i5syZrXZ/Yz366KNps4EDByaQBAAAAABoD25YeEPMWDYj6RgREdF3r76xeMzipGMAAAAAAAAAAAAAAAAAAAAAdFhKqGmytWvXps0OPPDAjPf17Nmz3nNNTU2sW7cu432NUVFREaNGjapXen3TTTelFWO3FZ9//nncf//9afMzzzwzgTQAAAAAQFt385Kb49ZXbo3aqE06SvT+Su94+Z9eTjoGAAAAAAAAAAAAAAAAAAAAQIeWm3QA2r/y8vK02QEHHJDxvobOfvjhh9G7d++Md+6qyZMnx9tvv73t+fjjj4+xY8e2+L2ZmjZtWnz00Uf1Zl/96lfjtNNOSyhRw2bMmBF33nlni9/z3nvvtfgdAAAAANBe3f7722Na6bQ2UUB90B4HxYpxK5KOAQAAAAAAAAAAAAAAAAAAANDhKaGmyT755JO0WVFRUcb7Gjq7YcOGjPftqqVLl8Ytt9yy7bmwsDB+9atfRVZWVovfnYnly5fHjTfemDa/7rrroqCgIIFE2/fxxx/XK/cGAAAAAFrXrGWzYupLU6OmribpKLF/1/1j8cjFSccAAAAAAAAAAAAAAAAAAAAA6BSykw5A+7d58+a02e67757xvobObtmyJeN9u+KLL76IUaNGRU3N/y9gueGGG6J3794tem+mNmzYEOeff35UVVXVmw8ZMiQuu+yyhFIBAAAAAG3Rfa/dF9f87po2UUBd3KU4Xhn1SpP+IUMAAAAAAAAAAAAAAAAAAAAAdp0Saprs74uQIyJ22223jPc1VEJdWVmZ8b5dcc0118Q777yz7fmoo46KCRMmtOidmaqsrIxzzjkn1q5dW2/evXv3uO+++yIrKyuZYAAAAABAm/PIW4/EVS9cFdV11UlHiX267BPLRi9TQA0AAAAAAAAAAAAAAAAAAADQipRQ0yKaUoTc0Nm6urqmxNmh0tLSmD59+rbngoKCuOeeeyI7u+399aitrY1LLrkkXnrppXrznJyceOCBB6Jnz54JJQMAAAAA2pr5q+fH+N+Oj6ra9H9IsLV13717LBq9SAE1AAAAAAAAAAAAAAAAAAAAQCtrey27tDt5eXlps88//zzjfQ2dzc/Pz3jfjmzZsiVGjx4dtbW122ZTpkyJb33rWy1yX1P9j//xP2Lu3Ln1ZllZWTFz5sw49dRTE0oFAAAAALQ1C8oWxNinxraJAuo9d9szSseURnFRcdJRAAAAAAAAAAAAAAAAAAAAADqd3KQD0P4VFhamzZq7hLpLly4Z79uRq6++Ot59991tz4cffnj88Ic/bJG7mmrixIkxc+bMtPn06dNjzJgxCSTadXvvvXcccsghLX7Pe++9FxUVFS1+DwAAAAC0ZaXvl8aIJ0ZERW3yPyvbo2CPeOGCFxRQAwAAAAAAAAAAAAAAAAAAACRECTVN1qNHj7RZKpXKeF9DZxu6o6leeumluP3227c95+bmxj333BO5uW3vr8XVV18dP//5z9Pm06ZNiwkTJiSQqHHGjx8f48ePb/F7vv3tb8fbb7/d4vcAAAAAQFtV+n5pDH9seFTUJF9A3TW/ayy4cEH0Ke6TdBQAAAAAAAAAAAAAAAAAAACATis76QC0f/vuu2/a7M9//nPG+z744INduqOpLr/88qirq9v2PGnSpDj00EOb/Z6muvbaa2PatGlp8+uuuy7+5//8nwkkAgAAAADaolXlq+J7j38vtlRvSTpKdMnrEvMvmq+AGgAAAAAAAAAAAAAAAAAAACBhuUkHoP3r1atX2uxPf/pTxvvWrVtX7zknJyd69uyZ8b7t+ctf/lLv+fHHH4+nnnpql8+Xl5enzSZPnhzTp0+vNxs2bFhcd911GWX8yU9+ElOnTk2b//jHP44f//jHGe0EAAAAADqesvKyGPbgsNhctTnpKFGYWxhzz5kb/Yv7Jx0FAAAAAAAAAAAAAAAAAAAAoNNTQk2TffOb30yblZWVZbSrsrIyPvjgg3qzr3/965Gb2/J/VN9+++0m7/jggw/S8vfv3z+jXT/72c8aLJqeNGlSxqXWAAAAAEDHU1ZeFkMfGhqbKjclHSUKcgpi3rnzoqRXSdJRAAAAAAAAAAAAAAAAAAAAAIiI7KQD0P4ddthhkZ1d/4/S8uXLo7q6utG7li9fHlVVVfVmhx9+eJPytUf/63/9r5g0aVLa/Ic//GHceOONCSQCAAAAANqi8lR5nPTwSfFZxWdJR4mC7IKYc/YcBdQAAAAAAAAAAAAAAAAAAAAAbYgSapqsS5cucdhhh9Wbbd68OV577bVG71qyZEna7Nhjj804W3v085//PP7t3/4tbf6v//qvcdNNNyWQCAAAAABoi8pT5VFyd0l8+sWnSUeJvOy8mPXdWTG0z9CkowAAAAAAAAAAAAAAAAAAAADwJUqoaRannnpq2uzRRx9t9J6GzjS0uzl8+umnUVdXl/GvKVOmpO2cPXt22nu//vWvdznTbbfdFhMnTkybT5gwIW699dam/HYBAAAAgA4klUrFkNlD4pPPP0k6SuRl58WM02bEsL7Dko4CAAAAAAAAAAAAAAAAAAAAwN9RQk2zuOCCC9Jms2fPjsrKyl3e8dprr8WyZcvqzQYNGhS9evVqcr724M4774wrr7wybT5+/Pj4xS9+kUAiAAAAAKAtSqVSMXD2wPho80dJR4ncrNy4+aSb4/x+5ycdBQAAAAAAAAAAAAAAAAAAAIAGKKGmWfTr1y8GDx5cb/bxxx/Hz3/+813ecfXVV6fN/uVf/qXJ2dqDu+66K77//e+nzS+//PK44447EkgEAAAAALRFqVQqjrz3yCjfXJ50lMjJyokbTrghLjnskqSjAAAAAAAAAAAAAAAAAAAAALAdSqhpNv/+7/+eNpsyZUqsXLlyp2fvuOOOeO655+rNevfuHRdddNEu3X3QQQdFVlZWvV8LFy7cpbNJu/fee2PcuHFRV1dXbz527Ni48847E0oFAAAAALRFx9x/TKzftD7pGJGTlRNTjp0SYweOTToKAAAAAAAAAAAAAAAAAAAAADughJpmc8opp8SZZ55Zb1ZRURHHH398PPXUUw2eqaqqiuuvvz6uuOKKtM9uu+22yMvLa5GsbcXDDz8cl112WVoB9ZgxY+J//+//HVlZWQklAwAAAADamgEzB8Taz9YmHSOyIzsmlUyKK45K/7kuAAAAAAAAAAAAAAAAAAAAAG1LbtIB6FjuuuuuWLFiRfz5z3/eNtu4cWMMGzYsjjjiiDjzzDOjV69e8fnnn8e7774bDzzwQKxfvz5tz/e///04/fTTWzN6IkaOHBm1tbVp82XLlsVhhx3WpN2//e1v46tf/WqTdgAAAAAAbcPRvzo61vzXmqRjRHZkx8QjJ8ZVg69KOgoAAAAAAAAAAAAAAAAAAAAAu0AJNc1q7733jueffz5OOOGEKC8vr/fZ8uXLY/ny5TvdMXz48Jg+fXoLJWxbqqurG5y/8cYbTd5dWVnZ5B0AAAAAQPKOufuYWP231UnHiIiI8QPHxzXHXZN0DAAAAAAAAAAAAAAAAAAAAAB2UXbSAeh4+vbtG6+++moMHjy4Uefy8vJiypQp8dBDD0VOTk4LpQMAAAAAaD+G/npovPXxW0nHiIiI0f1Hx3UnXpd0DAAAAAAAAAAAAAAAAAAAAAAaQQk1LeKAAw6Il156KebOnRtHH310ZGVlbffdoqKiGD16dLzxxhtx7bXXRna2P5YAAAAAAGc8cEasKF+RdIyIiBj5nZFx66m3Jh0DAAAAAAAAAAAAAAAAAAAAgEbKqqurq0s6BB3fRx99FK+++mqsWbMmNm7cGLm5ubHXXntF3759Y+DAgZGfn590RDqAb3/72/H222+nzQ855JD4wx/+kEAiAAAAAMjMWQ+eFYvWLUo6RkREDO87PGaeOTPpGADNxv9PAAAAAAAAAAAAAAAAAAAAOpPcpAPQOeyzzz5xxhlnJB0DAAAAAKDNu2DeBW2mgPr0b5yugBoAAAAAAAAAAAAAAAAAAACgHctOOgAAAAAAAPDfRjw2Ip5b81zSMSIi4pTep8Scc+ckHQMAAAAAAAAAAAAAAAAAAACAJlBCDQAAAAAAbcC434yLZ959JukYERExpOeQeHj4w0nHAAAAAAAAAAAAAAAAAAAAAKCJlFADAAAAAEDCJjwzIeatnpd0jIiIGLTfoHjyoieTjgEAAAAAAAAAAAAAAAAAAABAM1BCDQAAAAAACZr0/KS4/837k44REREDigfEs6OeTToGAAAAAAAAAAAAAAAAAAAAAM1ECTUAAAAAACRk8ouTY+bKmUnHiIiIfnv3iwWXLkg6BgAAAAAAAAAAAAAAAAAAAADNSAk1AAAAAAAk4IaFN8SMZTOSjhEREX336huLxyxOOgYAAAAAAAAAAAAAAAAAAAAAzUwJNQAAAAAAtLKbl9wct75ya9RGbdJRovdXesfL//Ry0jEAAAAAAAAAAAAAAAAAAAAAaAFKqAEAAAAAoBXd/vvbY1rptDZRQH3QHgfFoosXJR0DAAAAAAAAAAAAAAAAAAAAgBaihBoAAAAAAFrJrGWzYupLU6OmribpKLF/1/1j8cjFUVRUlHQUAAAAAAAAAAAAAAAAAAAAAFqIEmoAAAAAAGgF9712X1zzu2vaRAF1cZfieGXUKwqoAQAAAAAAAAAAAAAAAAAAADo4JdQAAAAAANDCHnnrkbjqhauiuq466SjRo7BHLBu9TAE1AAAAAAAAAAAAAAAAAAAAQCeghBoAAAAAAFrQ/NXzY/xvx0dVbVXSUaL77t1jyWVLFFADAAAAAAAAAAAAAAAAAAAAdBJKqAEAAAAAoIUsKFsQY58a2yYKqPfcbc8oHVMaxUXFSUcBAAAAAAAAAAAAAAAAAAAAoJUooQYAAAAAgBZQ+n5pjHhiRFTUViQdJfYo2CNeuOAFBdQAAAAAAAAAAAAAAAAAAAAAnYwSagAAAAAAaGarylfF8MeGR0VN8gXUXfO7xoILF0Sf4j5JRwEAAAAAAAAAAAAAAAAAAACglSmhBgAAAACAZrSqfFWc8cAZsaV6S9JRoktel5h/0XwF1AAAAAAAAAAAAAAAAAAAAACdlBJqAAAAAABoJmXlZTHswWGxuWpz0lGiMLcw5p4zN/oX9086CgAAAAAAAAAAAAAAAAAAAAAJUUINAAAAAADNoKy8LIY+NDQ2VW5KOkoU5BTEvHPnRUmvkqSjAAAAAAAAAAAAAAAAAAAAAJAgJdQAAAAAANBE5anyOOnhk+Kzis+SjhIF2QUx5+w5CqgBAAAAAAAAAAAAAAAAAAAAUEINAAAAAABNUZ4qj8H3DI5Pv/g06SiRl50Xs747K4b2GZp0FAAAAAAAAAAAAAAAAAAAAADaACXUAAAAAACQoVQqFUNmD4kNWzYkHSVys3JjxmkzYljfYUlHAQAAAAAAAAAAAAAAAAAAAKCNUEINAAAAAAAZSKVSMXD2wPho80dJR4ncrNy45eRb4vx+5ycdBQAAAAAAAAAAAAAAAAAAAIA2RAk1AAAAAAA0UiqVipL7SqJ8c3nSUSInKyduOOGGuOSwS5KOAgAAAAAAAAAAAAAAAAAAAEAbo4QaAAAAAAAa6Zj7j4l1G9clHSOyIzumHDslxg4cm3QUAAAAAAAAAAAAAAAAAAAAANogJdQAAAAAANAIg+4aFGs/W5t0jMiO7Lh68NVxxVFXJB0FAAAAAAAAAAAAAAAAAAAAgDZKCTUAAAAAAOyio391dPxxwx+TjhEREROPnBhXDb4q6RgAAAAAAAAAAAAAAAAAAAAAtGFKqAEAAAAAYBccN/u4WP231UnHiIiIcYePi2uOuybpGAAAAAAAAAAAAAAAAAAAAAC0cUqoAQAAAABgJ06999R4/cPXk44RERGj+4+OaSdPSzoGAAAAAAAAAAAAAAAAAAAAAO2AEmoAAAAAANiBMx44I5b+dWnSMSIiYuR3Rsatp96adAwAAAAAAAAAAAAAAAAAAAAA2gkl1AAAAAAAsB3nPXRelH5QmnSMiIg455vnxG2n35Z0DAAAAAAAAAAAAAAAAAAAAADaESXUAAAAAADQgAvmXRAv/unFpGNERMTp3zg97j777qRjAAAAAAAAAAAAAAAAAAAAANDOKKEGAAAAAIC/M+aJMfHcmueSjhERESceeGLMOXdO0jEAAAAAAAAAAAAAAAAAAAAAaIeUUAMAAAAAwJeM+824ePydx5OOERERQ3oOiUcvfDTpGAAAAAAAAAAAAAAAAAAAAAC0U0qoAQAAAADg/5n47MSYt3pe0jEiImLQfoPiyYueTDoGAAAAAAAAAAAAAAAAAAAAAO2YEmoAAAAAAIiISc9PitmrZicdIyIiDt330Hh21LNJxwAAAAAAAAAAAAAAAAAAAACgnVNCDQAAAABApzf5xckxc+XMpGNERES/vfvFwtELk44BAAAAAAAAAAAAAAAAAAAAQAeghBoAAAAAgE7thoU3xIxlM5KOERERB/c4OBaPWZx0DAAAAAAAAAAAAAAAAAAAAAA6CCXUAAAAAAB0WjcvuTlufeXWqI3apKNE76/0jqX/vDTpGAAAAAAAAAAAAAAAAAAAAAB0IEqoAQAAAADolGYtmxXTSqe1iQLqnt16xqKLFyUdAwAAAAAAAAAAAAAAAAAAAIAORgk1AAAAAACdzn2v3Rc/+t2PoqauJukosX/X/aP0ktIoKipKOgoAAAAAAAAAAAAAAAAAAAAAHYwSagAAAAAAOpVH3nokfvD8D9pEAXVxl+J4ZdQrCqgBAAAAAAAAAAAAAAAAAAAAaBFKqAEAAAAA6DTmr54f4387PqrrqpOOEj0Ke8Sy0csUUAMAAAAAAAAAAAAAAAAAAADQYpRQAwAAAADQKcxfPT/GPjU2qmqrko4S3XfvHksuW6KAGgAAAAAAAAAAAAAAAAAAAIAWpYQaAAAAAIAOb0HZghj79NioqK1IOkrsudueUTqmNIqLipOOAgAAAAAAAAAAAAAAAAAAAEAHp4QaAAAAAIAOrfT90hjxxIioqEm+gHqPgj3ihQteUEANAAAAAAAAAAAAAAAAAAAAQKtQQg0AAAAAQIe1qnxVDH9seJsooO6a3zUWXLgg+hT3SToKAAAAAAAAAAAAAAAAAAAAAJ2EEmoAAAAAADqkVeWr4owHzogt1VuSjhJd8rrE/IvmK6AGAAAAAAAAAAAAAAAAAAAAoFUpoQYAAAAAoMMpKy+LYQ8Oi81Vm5OOEoW5hTH3nLnRv7h/0lEAAAAAAAAAAAAAAAAAAAAA6GSUUAMAAAAA0KGUp8rjpIdPik2Vm5KOEgU5BXHvWfdGSa+SpKMAAAAAAAAAAAAAAAAAAAAA0AkpoQYAAAAAoMMoT5VHyd0l8ekXnyYdJQqyC2LO2XNiaJ+hSUcBAAAAAAAAAAAAAAAAAAAAoJNSQg0AAAAAQIdQniqPwfcMjk8+/yTpKJGXnRezvjtLATUAAAAAAAAAAAAAAAAAAAAAiVJCDQAAAABAu5dKpWLI7CGxYcuGpKNEblZuzDhtRgzrOyzpKAAAAAAAAAAAAAAAAAAAAAB0ckqoAQAAAABo11KpVBx575Hx0eaPko4SuVm5ccvJt8T5/c5POgoAAAAAAAAAAAAAAAAAAAAAKKEGAAAAAKD9SqVSUXJfSazftD7pKJGTlRM3nHBDXHLYJUlHAQAAAAAAAAAAAAAAAAAAAICIUEINAAAAAEA7dsz9x8S6jeuSjhHZkR1Tjp0SYweOTToKAAAAAAAAAAAAAAAAAAAAAGyjhBoAAAAAgHZp0F2DYu1na5OOEdmRHVcPvjquOOqKpKMAAAAAAAAAAAAAAAAAAAAAQD1KqAEAAAAAaHeO/tXR8ccNf0w6RkREjB84Pq4afFXSMQAAAAAAAAAAAAAAAAAAAAAgjRJqAAAAAADaleNmHxer/7Y66RgRETHu8HFx3YnXJR0DAAAAAAAAAAAAAAAAAAAAABqkhBoAAAAAgHbj1HtPjdc/fD3pGBERMbr/6Jh28rSkYwAAAAAAAAAAAAAAAAAAAADAdimhBgAAAACgXTjjgTNi6V+XJh0jIiJGfmdk3HrqrUnHAAAAAAAAAAAAAAAAAAAAAIAdUkINAAAAAECbd95D50XpB6VJx4iIiHO+eU7cdvptSccAAAAAAAAAAAAAAAAAAAAAgJ1SQg0AAAAAQJs24rER8eKfXkw6RkREnP6N0+Pus+9OOgYAAAAAAAAAAAAAAAAAAAAA7BIl1AAAAAAAtFljnhgTz7z7TNIxIiLixANPjDnnzkk6BgAAAAAAAAAAAAAAAAAAAADsMiXUAAAAAAC0SeN+My4ef+fxpGNERMSQnkPi0QsfTToGAAAAAAAAAAAAAAAAAAAAADSKEmoAAAAAANqcic9OjHmr5yUdIyIiBu03KJ686MmkYwAAAAAAAAAAAAAAAAAAAABAoymhBgAAAACgTZn0/KSYvWp20jEiIuLQfQ+NZ0c9m3QMAAAAAAAAAAAAAAAAAAAAAMiIEmoAAAAAANqMyS9OjpkrZyYdIyIi+u3dLxaOXph0DAAAAAAAAAAAAAAAAAAAAADImBJqAAAAAADahJuX3Bwzls1IOkZERBzc4+BYPGZx0jEAAAAAAAAAAAAAAAAAAAAAoEmUUAMAAAAAkLjbf3973LjkxqiN2qSjxEF7HBRL/3lp0jEAAAAAAAAAAAAAAAAAAAAAoMmUUAMAAAAAkKhZy2bF1JemtokC6p7desbikYuTjgEAAAAAAAAAAAAAAAAAAAAAzUIJNQAAAAAAibnvtfvimt9dEzV1NUlHif277h+ll5RGUVFR0lEAAAAAAAAAAAAAAAAAAAAAoFkooQYAAAAAIBGPvPVI/OD5H0R1XXXSUWKfLvvEK6NeUUANAAAAAAAAAAAAAAAAAAAAQIeihBoAAAAAgFY3f/X8GP/b8W2igLpHYY9YNHqRAmoAAAAAAAAAAAAAAAAAAAAAOhwl1AAAAAAAtKoFZQti7FNjo6q2Kuko0X337rHksiVRXFScdBQAAAAAAAAAAAAAAAAAAAAAaHZKqAEAAAAAaDULyhbEiCdGREVtRdJRYs/d9ozSMaUKqAEAAAAAAAAAAAAAAAAAAADosJRQAwAAAADQKkrfL41RT46KiprkC6i75neNFy54QQE1AAAAAAAAAAAAAAAAAAAAAB2aEmoAAAAAAFrcqvJVMfyx4bGlekvSUaJLXpeYf9H86FPcJ+koAAAAAAAAAAAAAAAAAAAAANCilFADAAAAANCiVpWvimEPDmsTBdSFuYXx9MVPR//i/klHAQAAAAAAAAAAAAAAAAAAAIAWp4QaAAAAAIAWU1ZeFmc9dFZsqtyUdJQoyCmIeefOU0ANAAAAAAAAAAAAAAAAAAAAQKehhBoAAAAAgBZRniqPkx4+KT6r+CzpKFGQUxBzzp4TJb1Kko4CAAAAAAAAAAAAAAAAAAAAAK1GCTUAAAAAAM2uPFUeJXeXxKdffJp0lCjI/u8C6qF9hiYdBQAAAAAAAAAAAAAAAAAAAABalRJqAAAAAACaVSqVisH3DI5PPv8k6SiRl50Xs747SwE1AAAAAAAAAAAAAAAAAAAAAJ2SEmoAAAAAAJpNKpWKAbMHxIYtG5KOErlZuTHjtBkxrO+wpKMAAAAAAAAAAAAAAAAAAAAAQCKUUAMAAAAA0CxSqVQcee+R8dHmj5KOEjlZOXHLybfE+f3OTzoKAAAAAAAAAAAAAAAAAAAAACRGCTUAAAAAAE2WSqWi5L6SWL9pfdJRIicrJ356wk/jksMuSToKAAAAAAAAAAAAAAAAAAAAACRKCTUAAAAAAE025IEhsW7juqRjRHZkx5Rjp8TYgWOTjgIAAAAAAAAAAAAAAAAAAAAAiVNCDQAAAABAkwy6a1Cs+a81SceI7MiOiUdOjCuOuiLpKAAAAAAAAAAAAAAAAAAAAADQJiihBgAAAAAgY8fcfUz8ccMfk44RERHjB46Pa467JukYAAAAAAAAAAAAAAAAAAAAANBmKKEGAAAAACAjQ389NN76+K2kY0RExLjDx8V1J16XdAwAAAAAAAAAAAAAAAAAAAAAaFOUUAMAAAAA0Gin3ntqrChfkXSMiIgY3X90TDt5WtIxAAAAAAAAAAAAAAAAAAAAAKDNUUINAAAAAECjnPXgWbH0r0uTjhEREcP7Do9bT7016RgAAAAAAAAAAAAAAAAAAAAA0CYpoQYAAAAAYJed99B5sWjdoqRjRETEOd88J2aeOTPpGAAAAAAAAAAAAAAAAAAAAADQZimhBgAAAABgl4x4bES8+KcXk44RERGn9D4l7j777qRjAAAAAAAAAAAAAAAAAAAAAECbpoQaAAAAAICdGvPEmHjm3WeSjhERESceeGI8PPzhpGMAAAAAAAAAAAAAAAAAAAAAQJunhBoAAAAAgB2a8MyEePydx5OOERERJQeUxKMXPpp0DAAAAAAAAAAAAAAAAAAAAABoF5RQAwAAAACwXROfnRj3v3l/0jEiImLQfoPi6YufTjoGAAAAAAAAAAAAAAAAAAAAALQbSqgBAAAAAGjQpOcnxexVs5OOERERh+57aDw76tmkYwAAAAAAAAAAAAAAAAAAAABAu6KEGgAAAACANDcsvCFmrpyZdIyIiOi7V99YOHph0jEAAAAAAAAAAAAAAAAAAAAAoN1RQg0AAAAAQD03L7k5bn3l1qRjRETEwT0Ojpf/6eWkYwAAAAAAAAAAAAAAAAAAAABAu6SEGgAAAACAbW7//e1x45IbozZqk44SB+1xUCz956VJxwAAAAAAAAAAAAAAAAAAAACAdksJNQAAAAAAERExa9msmPrS1DZRQN2zW89YPHJx0jEAAAAAAAAAAAAAAAAAAAAAoF1TQg0AAAAAQNz32n1xze+uiZq6mqSjRHGX4ii9pDSKioqSjgIAAAAAAAAAAAAAAAAAAAAA7ZoSagAAAACATu6Rtx6JHzz/g6iuq046SuzTZZ9YNnqZAmoAAAAAAAAAAAAAAAAAAAAAaAZKqAEAAAAAOrH5q+fH+N+ObxMF1D0Ke8Si0YsUUAMAAAAAAAAAAAAAAAAAAABAM1FCDQAAAADQSS0oWxBjnxobVbVVSUeJPXfbM5ZctiSKi4qTjgIAAAAAAAAAAAAAAAAAAAAAHYYSagAAAACATqj0/dIY8cSIqKitSDpK7FGwR7xwwQsKqAEAAAAAAAAAAAAAAAAAAACgmSmhBgAAAADoZErfL43hjw2PiprkC6i75neNBRcuiD7FfZKOAgAAAAAAAAAAAAAAAAAAAAAdjhJqAAAAAIBOZFX5qvje49+LLdVbko4SXfK6xPyL5iugBgAAAAAAAAAAAAAAAAAAAIAWooQaAAAAAKCTKCsvi2EPDovNVZuTjhKFuYXx9MVPR//i/klHAQAAAAAAAAAAAAAAAAAAAIAOSwk1AAAAAEAnUFZeFkMfGhqbKjclHSUKcgpi3rnzFFADAAAAAAAAAAAAAAAAAAAAQAtTQg0AAAAA0MGVp8rjpIdPis8qPks6ShRkF8Scs+dESa+SpKMAAAAAAAAAAAAAAAAAAAAAQIenhBoAAAAAoAMrT5VHyd0l8ekXnyYdJQqyC2LWd2fF0D5Dk44CAAAAAAAAAAAAAAAAAAAAAJ2CEmoAAAAAgA4qlUrF4HsGxyeff5J0lMjLzovbT7s9hvUdlnQUAAAAAAAAAAAAAAAAAAAAAOg0lFADAAAAAHRAqVQqBs4eGBu2bEg6SuRm5cbNJ90c5/c7P+koAAAAAAAAAAAAAAAAAAAAANCpKKEGAAAAAOhgUqlUHHnvkVG+uTzpKJGTlRO3nHxLXHLYJUlHAQAAAAAAAAAAAAAAAAAAAIBORwk1AAAAAEAHkkqlouS+kli/aX3SUSInKyemHDtFATUAAAAAAAAAAAAAAAAAAAAAJEQJNQAAAABABzLkgSGxbuO6pGNEdmTHpJJJccVRVyQdBQAAAAAAAAAAAAAAAAAAAAA6LSXUAAAAAAAdxNG/OjrW/NeapGNEdmTHxCMnxlWDr0o6CgAAAAAAAAAAAAAAAAAAAAB0akqoAQAAAAA6gGPuPiZW/2110jEiImL8wPFxzXHXJB0DAAAAAAAAAAAAAAAAAAAAADo9JdQAAAAAAO3c0F8Pjbc+fivpGBERMe7wcXHdidclHQMAAAAAAAAAAAAAAAAAAAAACCXUAAAAAADt2qn3nhorylckHSMiIkZ+Z2RMO3la0jEAAAAAAAAAAAAAAAAAAAAAgP9HCTUAAAAAQBtVU1uzw8/PevCsWPrXpa2UZseG9x0et51+W9IxAAAAAAAAAAAAAAAAAAAAAIAvUUINAAAAANAGbazYGGfNPSueWP1Eg59fMO+CWLRu0U73VNZURqoyFXVR19wRtznnm+fEzDNntth+AAAAAAAAAAAAAAAAAAAAACAzuUkHAAAAAACgvo0VG+N7j34vXi9/PV7762sREXF237O3fT7isRHx3JrndrqnsqYytlRviYiIVEUqigqKIiuymjXrKb1PibvPvrtZdwIAAAAAAAAAAAAAAAAAAAAAzSM76QAAAAAAAPx/Xy6gjoiorauNK/7jinhi9RMRETHuN+PimXef2emeLxdQR0TURE2kKlJRF3XNlnVIzyHx8PCHm20fAAAAAAAAAAAAAAAAAAAAANC8cpMOAAAAAADAf/v7AuqtthZRz1o+K15Z/8pO9/x9AfVWW4uoiwqKIiuympS15ICSePKiJ5u0AwAAAAAAAAAAAAAAAAAAAABoWdlJBwAAAAAAYPsF1Ftt2LQhnl3zbFTWVO5wz/YKqLfaWkRdF3UZZx1QPCCevvjpjM8DAAAAAAAAAAAAAAAAAAAAAK1DCTUAAAAAQMJ2VkD9aerT+CK+iIiILdVbtltEvbMC6q2aUkR96L6HxoJLFzT6HAAAAAAAAAAAAAAAAAAAAADQ+pRQAwAAAAAkaGcF1J+lPovP4/N6s4aKqHe1gHqrTIqo++7VNxaOXrjL7wMAAAAAAAAAAAAAAAAAAAAAyVJCDQAAAACQkJ0VUG9MbYwt0XCx9JeLqBtbQL1VY4qoe3+ld7z8Ty83+g4AAAAAAAAAAAAAAAAAAAAAIDlKqAEAAAAAElBTWxMXP37xdguoN6U2xebYvMMdW6q3xObKzRkVUG/LETWxuXLH9xy0x0GxYtyKjO8AAAAAAAAAAAAAAAAAAAAAAJKhhBoAAAAAIAE52TlxWf/LIjsr/ce0qVQqUpHapT1VdVVNzpKfk7/dz3p26xmLRy5u8h0AAAAAAAAAAAAAAAAAAAAAQOtTQg0AAAAAkJCz+54dt//j7fWKqFOpVGyKTa2WoTC3cLsl1MVdiqP0ktIoKipqtTwAAAAAAAAAAAAAAAAAAAAAQPNRQg0AAAAAkKAvF1G3pQLqfbrsE8tGL1NADQAAAAAAAAAAAAAAAAAAAADtmBJqAAAAAICEnd337BjZb2SbKaDuUdgjFo1epIAaAAAAAAAAAAAAAAAAAAAAANo5JdQAAAAAAAlbULYgZq+aHYW5ha1y344KqPfcbc9YctmSKC4qbpUsAAAAAAAAAAAAAAAAAAAAAEDLUUINAAAAAJCg0vdLY8QTI6KitiLyc/JbvIh6RwXUexTsES9c8IICagAAAAAAAAAAAAAAAAAAAADoIJRQAwAAAAAkpPT90hj+2PCoqKnYNmvJIuodFVB3ze8aCy5cEH2K+7TI3QAAAAAAAAAAAAAAAAAAAABA61NCDQAAAACQgFXlq+J7j38vtlRvSfusJYqod1RA3SWvS8y/aL4CagAAAAAAAAAAAAAAAAAAAADoYJRQAwAAAAC0srLyshj24LDYXLV5u+/k5+RHXlZes9yXl5W33QLqwtzCmHvO3Ohf3L9Z7gIAAAAAAAAAAAAAAAAAAAAA2g4l1AAAAAAAraisvCyGPjQ0NlVu2uF7lTWVUVVX1Sx3VtVVRWVNZdq8IKcg5p07L0p6lTTLPQAAAAAAAAAAAAAAAAAAAABA26KEGgAAAACglZSnyuOkh0+Kzyo+2+F7lTWVsaV6S7PevaV6S70i6oLsgphz9hwF1AAAAAAAAAAAAAAAAAAAAADQgSmhBgAAAABoBeWp8ii5uyQ+/eLTHb7XEgXUW20tos7LzotZ350VQ/sMbZF7AAAAAAAAAAAAAAAAAAAAAIC2QQk1AAAAAEALS6VSMWT2kPjk8092+F5LFlBvtaV6S4z8zsgY1ndYi94DAAAAAAAAAAAAAAAAAAAAACRPCTUAAAAAQAtKpVIxcPbA+GjzRzt8rzUKqCMiukbXmLt6bjyx+okWvwsAAAAAAAAAAAAAAAAAAAAASJYSagAAAACAFpJKpeLIe4+M8s3lO3yvNQuoi4qKorauNq74jysUUQMAAAAAAAAAAAAAAAAAAABAB6eEGgAAAACghRxz/zGxftP6Hb7TWgXURVEURUVF254VUQMAAAAAAAAAAAAAAAAAAABAx6eEGgAAAACgBQyYOSDWfrZ2h++0VgF1l+gSXYu6ps0VUQMAAAAAAAAAAAAAAAAAAABAx6aEGgAAAACgmR39q6NjzX+t2el7lTWVTb4rLytvh58XRmF0K+q23c9r62rjnlX3RE1tTZOzAAAAAAAAAAAAAAAAAAAAAABtixJqAAAAAIBmdMzdx8Tqv63epXe75HeJnMjJ+K7C3MLokt8lCnMLG/x899g99ijaY4c7Di0+NB4454HIyc48BwAAAAAAAAAAAAAAAAAAAADQNimhBgAAAABoJkN/PTTe+vitXX4/K7KiqKAooyLqwtzCyM/Jj4iI/Jz8tCLq3WK32LNozx3uOLT40Jh73tzoVtCt0fcDAAAAAAAAAAAAAAAAAAAAAG2fEmoAAAAAgGZwxgNnxIryFY0+l0kR9ZcLqLf6chH1brFbfKXoKzvcoYAaAAAAAAAAAAAAAAAAAAAAADo+JdQAAAAAAE101oNnRekHpRmfb0wRdUMF1Fvl5+THiQeeGD269tjhDgXUAAAAAAAAAAAAAAAAAAAAANA5KKEGAAAAAGiCC+ZdEIvWLWrynl0pot5RAXVExOnfOD0WXLogbv/H2yM7q+Ef/yqgBgAAAAAAAAAAAAAAAAAAAIDOQwk1AAAAAECGRjw2Ip5b81yz7dtREfXOCqhP6X1KzDl3TkREnN337AaLqBVQAwAAAAAAAAAAAAAAAAAAAEDnooQaAAAAACAD434zLp5595lm39tQEfXOCqiH9BwSDw9/uN7s74uoFVADAAAAAAAAAAAAAAAAAAAAQOeTm3QAAAAAAID2ZsIzE2Le6nkttn9rEfXmys2Rn5O/wwLqkgNK4smLnmzws7P7nh0REfesuiceOOcBBdQAAAAAAAAAAAAAAAAAAAAA0MkooQYAAAAAaIRJz0+K+9+8v8XvyYqsKMov2uE7A4oHxNMXP73Dd87ue3YM++awyMnOac54AAAAAAAAAAAAAAAAAAAAAEA7oISaVvHxxx/HsmXL4r333ouNGzdGXl5e9OjRIw455JA44ogjIi8vL+mIbVJVVVUsW7YsVq9eHRs2bIiqqqro1q1bfP3rX4+BAwfG3nvvnXREAAAAgE5l8ouTY+bKmUnHiIiIfnv3iwWXLtildxVQAwAAAAAAAAAAAAAAAAAAAEDnpISaFvXoo4/GL37xiygtLY26uroG3+natWsMHz48/u3f/i0OPvjgVk7YeKtXr47DDjssKioq0j6bPXt2XHrppU2+45133ombbropHnnkkdi0aVOD72RlZcXgwYPjyiuvjHPPPbfJdwIAAACwYzcsvCFmLJuRdIyIiOi7V99YPGZx0jEAAAAAAAAAAAAAAAAAAAAAgDYuO+kAdEzr16+P4447Ls4///xYsmTJdguoIyI2bdoUd999d3znO9+J66+/fofvJq2mpiZGjRrVYAF1c6itrY2pU6fGd77znbjnnnu2W0AdEVFXVxeLFy+O8847L44//vj461//2iKZAAAAAIi4ecnNcesrt0Zt1CYdJXp/pXe8/E8vJx0DAAAAAAAAAAAAAAAAAAAAAGgHlFDT7P74xz/GwIEDY9GiRY06V1lZGZMnT46LL744ampqWihd0/zsZz+LZcuWtcjumpqauPDCC+Paa6+NqqqqRp1duHBhDBw4MMrKylokGwAAAEBndvvvb49ppdPaRAH1QXscFCvGrUg6BgAAAAAAAAAAAAAAAAAAAADQTuQmHYCOZcOGDXHSSSfFX//617TPBgwYEGeeeWb06tUrPv/88/jjH/8YDz74YPzlL3+p995DDz0U++yzT0yfPr2VUu+at956K6ZOndpi+ydMmBDz5s1Lm3fv3j1GjBgRffv2jW7dusXatWvj+eefTyv5Xr9+fZx88smxYsWK+MpXvtJiOQEAAAA6k1nLZsXUl6ZGTV3y/2ja/l33j8UjFycdAwAAAAAAAAAAAAAAAAAAAABoR5RQ06zGjh0b69atqzfr2rVrzJkzJ4YNG5b2/k9/+tP46U9/Gtdee229+S9+8Ys45ZRT4h//8R9bMu4uq66ujlGjRkVlZeW22aBBg2Lp0qXNsn/+/Plx5513ps0vv/zyuOWWW6KwsLDe/Ec/+lGUlpbGueeeGx9++OG2+fvvvx+XX355zJ07t1lyAQAAAHRm9712X1zzu2vaRAF1cZfieGXUK1FUVJR0FAAAAAAAAAAAAAAAAAAAAACgHclOOgAdxwsvvBCPP/54vVl+fn787ne/a7CAOiIiLy8vpkyZEtOnT0/7bMKECVFdXd0SURvtpz/9aaxcuXLb84gRI+LUU09tlt1VVVVx5ZVXps3/9V//NX75y1+mFVBvVVJSEr///e+je/fu9ebz5s2LhQsXNks2AAAAgM7qkbceiateuCqq65L/+VSPwh6xbPQyBdQAAAAAAAAAAAAAAAAAAAAAQKMpoabZXH/99WmzKVOmxBFHHLHTs1deeWWcdNJJ9WZlZWXx4IMPNlu+TL3++uvxk5/8ZNvzvvvu22Bpdqbuv//+WLt2bb1Zv379Ytq0aTs926tXr7jtttvS5tddd11zxQMAAADodOavnh/jfzs+qmqrko4S3XfvHksuW6KAGgAAAAAAAAAAAAAAAAAAAADIiBJqmsUf/vCHWLx4cb3ZXnvtFVddddUu77jxxhvTZr/85S+bnK0pqqqqYtSoUVFV9f8Lh+64447o0aNHs93R0O9x6tSpkZ+fv0vnL7744ujXr1+92f/5P/8n3nnnnWbJBwAAANCZLChbEGOfGtsmCqj33G3PKB1TGsVFxUlHAQAAAAAAAAAAAAAAAAAAAADaKSXUNIuHH344bTZ69OhdLlKOiBgwYEAMGDCg3uyVV16J999/v8n5MnX99dfH66+/vu35nHPOifPOO6/Z9peVlcXy5cvrzfbbb78YNmxYo/aMGzcubfbQQw81KRsAAABAZ1P6fmmMeGJEVNRWJB0l9ijYI1644AUF1AAAAAAAAAAAAAAAAAAAAABAkyihplk8++yzabNMypobOtPQ7tawcuXKuPHGG7c9d+/ePe68885mveO5555Lm5111lmRm5vbqD0NfW//8R//kXEuAAAAgM5mVfmqGP7Y8KioSb6Aumt+11hw4YLoU9wn6SgAAAAAAAAAAAAAAAAAAAAAQDunhJom27x5c6xcubLerLCwMA4//PBG7zrmmGPSZosXL844W6YqKyvj0ksvjerq6m2z6dOnx7777tus9zT0exs8eHCj9xQXF0efPvVLiVasWBFbtmzJOBsAAABAZ7GqfFWc8cAZsaU6+Z+ldMnrEvMvmq+AGgAAAAAAAAAAAAAAAAAAAABoFkqoabJVq1ZFbW1tvdkRRxwRubm5jd41cODAyMvLqzdbsWJFk/JlYurUqfHmm29uez7ttNNi5MiRzX5PQ7+3o446KqNdRx99dL3nmpqaeP311zPaBQAAANBZlJWXxbAHh8Xmqs1JR4nC3MKYe87c6F/cP+koAAAAAAAAAAAAAAAAAAAAAEAHoYSaJvvP//zPtFmfPn0y2pWfnx9f+9rX6s3ee++9qK6uzmhfJpYvXx433XTTtudu3brFzJkzm/2eqqqqWLNmTb1ZXl5eHHjggRnt+/rXv542e+eddzLaBQAAANAZlJWXxdCHhsamyk1JR4mCnIKYd+68KOlVknQUAAAAAAAAAAAAAAAAAAAAAKADUUJNk61duzZtlmmRckREz5496z3X1NTEunXrMt7XGBUVFTFq1Kh6pdc33XRTWjF2c1i3bl3U1tbWm33ta1+L7OzM/lr+/fcWEWkl1wAAAAD8t/JUeZz08EnxWcVnSUeJguyCmHP2HAXUAAAAAAAAAAAAAAAAAAAAAECzy006AO1feXl52uyAAw7IeF9DZz/88MPo3bt3xjt31eTJk+Ptt9/e9nz88cfH2LFjW+Su1vre2oIZM2bEnXfe2eL3vPfeey1+BwAAAND+lafKY/A9g+PTLz5NOkrkZefFrO/OiqF9hiYdBQAAAAAAAAAAAAAAAAAAAADogJRQ02SffPJJ2qyoqCjjfQ2d3bBhQ8b7dtXSpUvjlltu2fZcWFgYv/rVryIrK6tF7uso39uu+Pjjj+uVewMAAAAkJZVKxZDZQ2LDluR/bpKblRszTpsRw/oOSzoKAAAAAAAAAAAAAAAAAAAAANBBZScdgPZv8+bNabPdd989430Nnd2yZUvG+3bFF198EaNGjYqampptsxtuuCF69+7dYnd2hO8NAAAAoD1JpVIxcPbA+GjzR0lHidys3Ljl5Fvi/H7nJx0FAAAAAAAAAAAAAAAAAAAAAOjAlFDTZFVVVWmz3XbbLeN9DZUpV1ZWZrxvV1xzzTXxzjvvbHs+6qijYsKECS16Z0f43gAAAADai1QqFSX3lUT55vKko0ROVk7ccMINcclhlyQdBQAAAAAAAAAAAAAAAAAAAADo4JRQ0yKysrKa9WxdXV1T4uxQaWlpTJ8+fdtzQUFB3HPPPZGd3fp/PdrT9wYAAADQnhxz/zGxbuO6pGNETlZOTDl2SowdODbpKAAAAAAAAAAAAAAAAAAAAABAJ6CEmibLy8tLm33++ecZ72vobH5+fsb7dmTLli0xevToqK2t3TabMmVKfOtb32qR+76sPX9vAAAAAO3JoLsGxdrP1iYdI7IjOyaVTIorjroi6SgAAAAAAAAAAAAAAAAAAAAAQCeRm3QA2r/CwsK0WXOXKXfp0iXjfTty9dVXx7vvvrvt+fDDD48f/vCHLXLX32vP31tj7b333nHIIYe0+D3vvfdeVFRUtPg9AAAAQPtx9K+Ojj9u+GPSMSI7smPikRPjqsFXJR0FAAAAAAAAAAAAAAAAAAAAAOhElFDTZD169EibpVKpjPc1dLahO5rqpZdeittvv33bc25ubtxzzz2Rm9s6fy3a6/eWifHjx8f48eNb/J5vf/vb8fbbb7f4PQAAAED7cNzs42L131YnHSMiIsYPHB/XHHdN0jEAAAAAAAAAAAAAAAAAAAAAgE4mO+kAtH/77rtv2uzPf/5zxvs++OCDXbqjqS6//PKoq6vb9jxp0qQ49NBDm/2e7Wmv3xsAAABAezD010Pj9Q9fTzpGRESM7j86rjvxuqRjAAAAAAAAAAAAAAAAAAAAAACdUG7SAWj/evXqlTb705/+lPG+devW1XvOycmJnj17Zrxve/7yl7/Ue3788cfjqaee2uXz5eXlabPJkyfH9OnT682GDRsW112XXjLUs2fPyM7Ojtra2m2zDz74IGprayM7u/H98H//vUU0/N8GAAAAoKM744EzYkX5iqRjRETEyO+MjFtPvTXpGAAAAAAAAAAAAAAAAAAAAABAJ6WEmib75je/mTYrKyvLaFdlZWV88MEH9WZf//rXIze35f+ovv32203e8cEHH6Tl79+/f4Pv5ufnR69eveK9997bNquqqop169bFQQcd1Oi7v7xnq29961uN3gMAAADQnp330HlR+kFp0jEiImJ43+Fx2+m3JR0DAAAAAAAAAAAAAAAAAAAAAOjEspMOQPt32GGHRXZ2/T9Ky5cvj+rq6kbvWr58eVRVVdWbHX744U3K15YNGDAgbfb73/8+o10vv/xyveecnJw49NBDM9oFAAAA0B5dMO+CePFPLyYdIyIiTv/G6THzzJlJxwAAAAAAAAAAAAAAAAAAAAAAOjkl1DRZly5d4rDDDqs327x5c7z22muN3rVkyZK02bHHHptxtrbumGOOSZs19B3szIcffhjvvvtuvdmAAQOisLAw42wAAAAA7cmYJ8bEc2ueSzpGRESceOCJMefcOUnHAAAAAAAAAAAAAAAAAAAAAABQQk3zOPXUU9Nmjz76aKP3NHSmod3N4dNPP426urqMf02ZMiVt5+zZs9Pe+/Wvf73dDKecckra7De/+U1UV1c36vfy2GOPpc1a6nsDAAAAaGvG/WZcPP7O40nHiIiIIT2HxKMXNv7nYgAAAAAAAAAAAAAAAAAAAAAALUEJNc3iggsuSJvNnj07Kisrd3nHa6+9FsuWLas3GzRoUPTq1avJ+dqqb3zjGzFgwIB6s/Xr18fTTz/dqD0zZ85Mm1144YVNygYAAADQHkx4ZkLMWz0v6RgRETFov0Hx5EVPJh0DAAAAAAAAAAAAAAAAAAAAAGAbJdQ0i379+sXgwYPrzT7++OP4+c9/vss7rr766rTZv/zLvzQ5W1vX0O9xypQpUVVVtUvnH3744XjjjTfqzY477rj41re+1Sz5AAAAANqqSc9PivvfvD/pGBERMaB4QDw76tmkYwAAAAAAAAAAAAAAAAAAAAAA1KOEmmbz7//+72mzKVOmxMqVK3d69o477ojnnnuu3qx3795x0UUX7dLdBx10UGRlZdX7tXDhwl06m7SRI0fGgQceWG/2xhtvxI9+9KOdnl27dm18//vfT5v/+Mc/brZ8AAAAAG3R5Bcnx8yVM5OOERER/fbuFwsuXZB0DAAAAAAAAAAAAAAAAAAAAACANEqoaTannHJKnHnmmfVmFRUVcfzxx8dTTz3V4Jmqqqq4/vrr44orrkj77Lbbbou8vLwWydqW5Ofnx/Tp09PmN998c4wfPz4+//zzBs+9/PLLcdRRR8WGDRvqzc8777w44YQTWiIqAAAAQJtww8IbYsayGUnHiIiIg3scHIvHLE46BgAAAAAAAAAAAAAAAAAAAABAg3KTDkDHctddd8WKFSviz3/+87bZxo0bY9iwYXHEEUfEmWeeGb169YrPP/883n333XjggQdi/fr1aXu+//3vx+mnn96a0RN11llnxbhx42LmzJn15nfeeWfMnTs3RowYEX379o2uXbvGunXr4rnnnouFCxem7TnwwAPTdgAAAAB0JDcvuTlufeXWqI3apKNE76/0jqX/vDTpGAAAAAAAAAAAAAAAAAAAAAAA26WEmma19957x/PPPx8nnHBClJeX1/ts+fLlsXz58p3uGD58eEyfPr2FErZdd9xxR/ztb3+Lxx57rN58w4YN8Ytf/GKn5/fbb794/vnno3v37i0VEQAAACBRs5bNimml09pEAXXPbj1j0cWLko4BAAAAAAAAAAAAAAAAAAAAALBD2UkHoOPp27dvvPrqqzF48OBGncvLy4spU6bEQw89FDk5OS2Uru3Kzc2NefPmxY9//OPIzW1cP/yxxx4by5Yti4MPPriF0gEAAAAk677X7osf/e5HUVNXk3SU2L/r/lF6SWkUFRUlHQUAAAAAAAAAAAAAAAAAAAAAYIeUUNMiDjjggHjppZdi7ty5cfTRR0dWVtZ23y0qKorRo0fHG2+8Eddee21kZ3feP5bZ2dlx3XXXxZtvvhmXXnrpDouMsrKyoqSkJObNmxeLFi2K/fffvxWTAgAAALSeR956JH7w/A/aRAF1cZfieGXUKwqoAQAAAAAAAAAAAAAAAAAAAIB2Iauurq4u6RB0fB999FG8+uqrsWbNmti4cWPk5ubGXnvtFX379o2BAwdGfn5+0hHbpMrKyli2bFmsXr06/va3v0V1dXV069YtevfuHf/wD/8Q++yzT9IR25Rvf/vb8fbbb6fNDznkkPjDH/6QQCIAAACgqeavnh//9NQ/RVVtVdJRokdhj1h12SoF1ADQzvn/CQAAAAAAAAAAAAAAAAAAQGeSm3QAOod99tknzjjjjKRjtDv5+flRUlISJSUlSUcBAAAAaHXzV8+PsU+NbRMF1N137x5LLluigBoAAAAAAAAAAAAAAAAAAAAAaFeykw4AAAAAAPD3FpQtiLFPjY2K2oqko8Seu+0ZpWNKo7ioOOkoAAAAAAAAAAAAAAAAAAAAAACNooQaAAAAAGhTSt8vjRFPjGgTBdR7FOwRL1zwggJqAAAAAAAAAAAAAAAAAAAAAKBdUkINAAAAALSq1Bep7X62qnxVDH9seFTUJF9A3TW/ayy4cEH0Ke6TdBQAAAAAAAAAAAAAAAAAAAAAgIwooQYAAAAAWs2y9cui28+6xaC7BqV9tqp8VZzxwBmxpXrLTvdsrNgYn1Z8GtW11S0RM7rkdYn5F81XQA0AAAAAAAAAAAAAAAAAAAAAtGtKqAEAAACAVrFs/bIY9KtBURd18epfXq1XRF1WXhbDHhwWm6s273TPxoqNURu1ERGRqko1exF1YW5hzD1nbvQv7t+sewEAAAAAAAAAAAAAAAAAAAAAWpsSagAAAACgxX25gHqrrUXUZeVlMfShobGpctNO93y5gHqr5iyiLsgpiHnnzouSXiXNsg8AAAAAAAAAAAAAAAAAAAAAIElKqAEAAACAFtVQAfVWr/7l1Thk1iHxWcVnO93TUAH1Vs1RRF2QXRBzzp6jgBoAAAAAAAAAAAAAAAAAAAAA6DCUUAMAAAAALWZHBdRbVdVVxcaKjTvcs6MC6q2aUkSdl50Xs747K4b2GZrReQAAAAAAAAAAAAAAAAAAAACAtkgJNQAAAADQInalgHqr2qjdbhH1rhRQb5VJEXVuVm7MOG1GDOs7rFHnAAAAAAAAAAAAAAAAAAAAAADaOiXUAAAAAECza0wB9VYNFVE3poB6q8YUUedm5cYtJ98S5/c7v1F3AAAAAAAAAAAAAAAAAAAAAAC0B0qoAQAAAIBmlUkB9VZfLqLOpIB6q10pos7JyokbTrghLjnskozuAAAAAAAAAAAAAAAAAAAAAABo65RQAwAAAADNJvVFKuMC6q1qozY+rfg04wLqbVmqUtv9LDuyY8qxU2LswLFNugMAAAAAAAAAAAAAAAAAAAAAoC1TQg0AAAAANJui3Ypi4FcHJh0jIv67aHp786sHXx1XHHVFKycCAAAAAAAAAAAAAAAAAAAAAGhdSqgBAAAAgGa19J+Xxj989R8SzZAd2dGtoFuDn008cmJcNfiqVk4EAAAAAAAAAAAAAAAAAAAAAND6lFADAAAAAM0uySLqHRVQjzt8XFxz3DWtnAgAAAAAAAAAAAAAAAAAAAAAIBlKqAEAAACAFrH0n5dGUV5Rq965owLq0f1Hx7STp7VqHgAAAAAAAAAAAAAAAAAAAACAJCmhBgAAAABaxBkPnBG52bmR3Uo/htxRAfXI74yMW0+9tVVyAAAAAAAAAAAAAAAAAAAAAAC0FUqoAQAAAIBmd95D50XpB6UREdGtoFuLF1HvqID6nG+eE7edfluL3g8AAAAAAAAAAAAAAAAAAAAA0BYpoQYAAAAAmtUF8y6IF//0Yr1ZSxZR76iA+vRvnB53n313i9wLAAAAAAAAAAAAAAAAAAAAANDWKaEGAAAAAJrNmCfGxHNrnmvws5Yoot5RAfWJB54Yc86d06z3AQAAAAAAAAAAAAAAAAAAAAC0J0qoAQAAAIBmMe434+Lxdx7f4TvbK4zO1Pb2Dek5JB698NFmvQsAAAAAAAAAAAAAAAAAAAAAoL1RQg0AAAAANNnEZyfGvNXzdvrexoqNzXpvQ/sG7TconrzoyWa9BwAAAAAAAAAAAAAAAAAAAACgPVJCDQAAAAA0yaTnJ8XsVbN3+t7Gio1RG7XNendt1NYroj5030Pj2VHPNusdAAAAAAAAAAAAAAAAAAAAAADtlRJqAAAAACBjk1+cHDNXztzpey1RQL3V1iLqfnv3i4WjF7bIHQAAAAAAAAAAAAAAAAAAAAAA7ZESagAAAAAgIzcvuTlmLJux0/dasoB6q9qojcrayha9AwAAAAAAAAAAAAAAAAAAAACgvVFCDQAAAAA02u2/vz1uXHLjTsulW6OAeqtX//JqDLprUKvcBQAAAAAAAAAAAAAAAAAAAADQHiihBgAAAAAaZdayWTH1paltqoB6K0XUAAAAAAAAAP+XvTuP8rqu+8b//A4DoyxCooZ2ay5k4a7ITxMUFVRKJVe0XAotzENal3lfWXa7VJbdh6z0om5RsxSXcA3BVDBFwEBccC9FMFyYMFBhkIbt+/ujCy4nEIZhhs/M8HicM+fM5/V9v1+f56D+IZzzBAAAAAAAAAAAAOB/KKEGAAAAAOrtpmduysV/ujjLy8vXeq6IAuqVFFEDAAAAAAAAAAAAAAAAAAAAAPyLEmoAAAAAoF7ueOGOfPuhb2dZedlazxVZQL2SImoAAAAAAAAAAAAAAAAAAAAAACXUAAAAAEA9jH55dIbeP3SdBdRJCi+gXmna29NS88+aomMAAAAAAAAAAAAAAAAAAAAAABRGCTUAAAAAsFbjZ4zPkPuGZOmKpfU637Ftxw16X0Uq0qWqSyo24LcvSyll6lenpuNmG5YFAAAAAAAAAAAAAAAAAAAAAKAlU0INAAAAAHyk8TPG5/R7Tk/titp636msqGxwEXVFKrJF1RZJki2qtmhQEfXKAupen+jVoAwAAAAAAAAAAAAAAAAAAAAAAK2FEmoAAAAAYI0mz5r8rwLq5fUvoF6pIUXUHy6gXml9i6gVUAMAAAAAAAAAAAAAAAAAAAAA/A8l1AAAAADAaqZXT8+guwY1qIB6pfUpol5TAfVK23bcNrttsds6dyigBgAAAAAAAAAAAAAAAAAAAACoSwk1AAAAAFDH9OrpGXjrwHyw7IMN3lWfIuq1FVC3r2yfMaeNyYv/8WL+v+3+v4/coYAaAAAAAAAAAAAAAAAAAAAAAGB1SqgBAAAAgFVmVM/Icbcdl4VLFjbazrUVUa+tgLqqTVVGnTgq+3TbJ0ky9WtT11hErYAaAAAAAAAAAAAAAAAAAAAAAGDNlFADAAAAAEmS6prqHHH7EXm/9v1G372mIup1FVCPPH5keu/Uu87834uoFVADAAAAAAAAAAAAAAAAAAAAAHw0JdQAAAAAQKprqtP7ht5575/vNdk7PlxEvdYC6op/FVD3795/jZ+vLKJWQA0AAAAAAAAAAAAAAAAAAAAAsHaVRQcAAAAAAIpVXVOdPr/pk/mL5zf5uyorKtOlqstHft62om1GHDviIwuoV5r6tamp+WdNOm7WsZETAgAAAAAAAAAAAAAAAAAAAAC0HhVFBwAAAAAAilNTU5O+N/bNvA/mFR0llaXKDP/88AzsMbBe5xVQAwAAAAAAAAAAAAAAAAAAAACsnRJqAAAAANhE1dTU5MDfHZi5i+YWHSWVpcr87Mif5eQ9Ti46CgAAAAAAAAAAAAAAAAAAAABAq6GEGgAAAAA2QTU1Nel9U++8tfCtoqOkTalNrjj8ipy575lFRwEAAAAAAAAAAAAAAAAAAAAAaFWUUAMAAADAJqjvLX0ze8HsomOkIhW59JBLM6TXkKKjAAAAAAAAAAAAAAAAAAAAAAC0OkqoAQAAAGATc8B1B2TmuzOLjpGKVOSCAy/IeZ89r+goAAAAAAAAAAAAAAAAAAAAAACtkhJqAAAAANiEHHzDwXll3itFx0iSDO01NBcfenHRMQAAAAAAAAAAAAAAAAAAAAAAWi0l1AAAAACwiTj0xkPzwjsvFB0jSXLOfufkB/1+UHQMAAAAAAAAAAAAAAAAAAAAAIBWTQk1AAAAAGwCBvxuQJ79+7NFx0iSDN5ncK488sqiYwAAAAAAAAAAAAAAAAAAAAAAtHpKqAEAAACglTvu1uMydc7UomMkSQb1GJSrBlxVdAwAAAAAAAAAAAAAAAAAAAAAgE2CEmoAAAAAaMVOuu2kTJg9oegYSZITPn1Crv3CtUXHAAAAAAAAAAAAAAAAAAAAAADYZCihBgAAAIBW6vS7Ts/Df3u46BhJkqN2Pio3HH9D0TEAAAAAAAAAAAAAAAAAAAAAADYpSqgBAAAAoBU6+56zM/bVsUXHSJL0+2S/3D7o9qJjAAAAAAAAAAAAAAAAAAAAAABscpRQAwAAAEArc/7Y83P3X+8uOkaSpPf2vXPnF+8sOgYAAAAAAAAAAAAAAAAAAAAAwCZJCTUAAAAAtCIXPHBBbn7+5qJjJEkO2PaAjDltTNExAAAAAAAAAAAAAAAAAAAAAAA2WUqoAQAAAKCVuOihi3Lj9BuLjpEk2fvje+eBLz9QdAwAAAAAAAAAAAAAAAAAAAAAgE2aEmoAAAAAaAWuePSKXPv0tUXHSJL02KpHHh38aNExAAAAAAAAAAAAAAAAAAAAAAA2eUqoAQAAAKCFGzZpWK6aclXRMZIku3bdNY9/9fGiYwAAAAAAAAAAAAAAAAAAAAAAECXUAAAAANCiXfPna/KTST/JiqwoOkp27Lxjpn5tatExAAAAAAAAAAAAAAAAAAAAAAD4b0qoAQAAAKCFGjFtRC5/7PJmUUC9wxY7ZOIZE4uOAQAAAAAAAAAAAAAAAAAAAADAhyihBgAAAIAW6KZnbsrFf7o4y8vLi46Sbh26ZfKZk9OxY8eiowAAAAAAAAAAAAAAAAAAAAAA8CFKqAEAAACghbnjhTvy7Ye+nWXlZUVHyTYdtsm0wdMUUAMAAAAAAAAAAAAAAAAAAAAANENKqAEAAACgBRn98ugMvX9osyig7tq+ayYMnqCAGgAAAAAAAAAAAAAAAAAAAACgmVJCDQAAAAAtxPgZ4zPkviFZumJp0VGy5eZbZtJZk9KtY7eiowAAAAAAAAAAAAAAAAAAAAAA8BGUUAMAAABACzB51uScfs/pqV1RW3SUdK7qnAdPeVABNQAAAAAAAAAAAAAAAAAAAABAM6eEGgAAAACaucmzJmfQXYNSu7z4AupO7Tpl/BfHp3u37kVHAQAAAAAAAAAAAAAAAAAAAABgHZRQAwAAAEAzNr16ek65+5R8sOyDoqOkQ9sOGf2l0QqoAQAAAAAAAAAAAAAAAAAAAABaCCXUAAAAANBMzaiekYG3DsyipYuKjpL2le0z5rQx2afbPkVHAQAAAAAAAAAAAAAAAAAAAACgnpRQAwAAAEAzNKN6Rvrf1j8LlywsOkqq2lRl1ImjFFADAAAAAAAAAAAAAAAAAAAAALQwSqgBAAAAoJmprqnOEbcfkfdr3y86SqoqqjLy+JHpvVPvoqMAAAAAAAAAAAAAAAAAAAAAALCelFADAAAAQDNSXVOd3jf0znv/fK/oKKmqqMqIY0ekf/f+RUcBAAAAAAAAAAAAAAAAAAAAAKABlFADAAAAQDNRU1OTPr/pk/mL5xcdJW0r2uaaz1+TgT0GFh0FAAAAAAAAAAAAAAAAAAAAAIAGUkINAAAAAM1ATU1Net3YK/M+mFd0lFSWKjP888Nz8h4nFx0FAAAAAAAAAAAAAAAAAAAAAIANoIQaAAAAAApWU1OTA393YKoXVRcdJW1KbfKzI3+mgBoAAAAAAAAAAAAAAAAAAAAAoBVQQg0AAAAABaqpqUnvm3rnrYVvFR0lbUptcukhl+bMfc8sOgoAAAAAAAAAAAAAAAAAAAAAAI1ACTUAAAAAFKjvLX0ze8HsomOkIhW5qPdFOe+z5xUdBQAAAAAAAAAAAAAAAAAAAACARqKEGgAAAAAKcsB1B2TmuzOLjpGKVOSCAy/IhX0uLDoKAAAAAAAAAAAAAAAAAAAAAACNSAk1AAAAABTg4BsOzivzXik6RpJkaK+hufjQi4uOAQAAAAAAAAAAAAAAAAAAAABAI1NCDQAAAAAbWf/f9s8L77xQdIwkyTn7nZMf9PtB0TEAAAAAAAAAAAAAAAAAAAAAAGgCSqgBAAAAYCMa8LsBear6qaJjJEnO2POMXHnklUXHAAAAAAAAAAAAAAAAAAAAAACgiSihBgAAAICN5Lhbj8vUOVOLjpEkGdRjUK4++uqiYwAAAAAAAAAAAAAAAAAAAAAA0ISUUAMAAADARnDqqFMzYfaEomMkSU749Am59gvXFh0DAAAAAAAAAAAAAAAAAAAAAIAmpoQaAAAAAJrY6XedngdnPlh0jCTJUTsflRuOv6HoGAAAAAAAAAAAAAAAAAAAAAAAbARKqAEAAACgCZ3zh3My9tWxRcdIkvT7ZL/cPuj2omMAAAAAAAAAAAAAAAAAAAAAALCRKKEGAAAAgCZy/tjzM+rlUUXHSJL03r537vzinUXHAAAAAAAAAAAAAAAAAAAAAABgI1JCDQAAAABN4IIHLsjNz99cdIwkSc9uPTPmtDFFxwAAAAAAAAAAAAAAAAAAAAAAYCNTQg0AAAAAjeyihy7KjdNvLDpGkmTvj++d8V8ZX3QMAAAAAAAAAAAAAAAAAAAAAAAKoIQaAAAAABrRFY9ekeuevq7oGEmSHlv1yKODHy06BgAAAAAAAAAAAAAAAAAAAAAABVFCDQAAAACNZNikYblqylVZkRVFR8muXXfN4199vOgYAAAAAAAAAAAAAAAAAAAAAAAUSAk1AAAAADSCa/58Ta6cfGWzKKDesfOOmfq1qUXHAAAAAAAAAAAAAAAAAAAAAACgYEqoAQAAAGADjZg2Ipc/dnmWl5cXHSU7bLFDJp4xsegYAAAAAAAAAAAAAAAAAAAAAAA0A0qoAQAAAGAD3PTMTbn4Txc3iwLqbh26ZfKZk9OxY8eiowAAAAAAAAAAAAAAAAAAAAAA0AwooQYAAACABrrjhTvy7Ye+nWXlZUVHyTYdtsm0wdMUUAMAAAAAAAAAAAAAAAAAAAAAsIoSagAAAABogNEvj87Q+4c2iwLqru27ZsLgCQqoAQAAAAAAAAAAAAAAAAAAAACoQwk1AAAAAKyn8TPGZ8h9Q7J0xdKio6TLZl0y6axJ6daxW9FRAAAAAAAAAAAAAAAAAAAAAABoZpRQAwAAAMB6mDxrck6/5/TUrqgtOko6V3XOuFPHKaAGAAAAAAAAAAAAAAAAAAAAAGCNlFADAAAAQD1NnjU5g+4alNrlxRdQd2rXKeO/OD7du3UvOgoAAAAAAAAAAAAAAAAAAAAAAM2UEmoAAAAAqIfp1dNzyt2n5INlHxQdJR3adsjoL41WQA0AAAAAAAAAAAAAAAAAAAAAwFopoQYAAACAdZhRPSMDbx2YRUsXFR0l7SvbZ8xpY7JPt32KjgIAAAAAAAAAAAAAAAAAAAAAQDOnhBoAAAAA1mJG9Yz0v61/Fi5ZWHSUVLWpyqgTRymgBgAAAAAAAAAAAAAAAAAAAACgXpRQAwAAAMBHqK6pzhG3H5H3a98vOkqqKqoy8viR6b1T76KjAAAAAAAAAAAAAAAAAAAAAADQQiihBgAAAIA1qK6pTu8beue9f75XdJS0rWibEceOSP/u/YuOAgAAAAAAAAAAAAAAAAAAAABAC6KEGgAAAAD+TU1NTfre2DfzF88vOkraVrTN8M8Pz8AeA4uOAgAAAAAAAAAAAAAAAAAAAABAC6OEGgAAAAA+pKamJr1u7JW5i+YWHSWVpcoMO2JYTt7j5KKjAAAAAAAAAAAAAAAAAAAAAADQAimhBgAAAID/VlNTkwN/d2CqF1UXHSVtSm1yxeFX5Mx9zyw6CgAAAAAAAAAAAAAAAAAAAAAALZQSagAAAAD4bwfffHDeWvhW0THSptQmlx5yaYb0GlJ0FAAAAAAAAAAAAAAAAAAAAAAAWjAl1AAAAACQpOe1PfP6+68XHSMVqchFvS/KeZ89r+goAAAAAAAAAAAAAAAAAAAAAAC0cEqoAQAAANjkHXT9QZn57syiY6QiFbngwAtyYZ8Li44CAAAAAAAAAAAAAAAAAAAAAEAroIQaAAAAgE3awTccnJf/8XLRMZIkQ3sNzcWHXlx0DAAAAAAAAAAAAAAAAAAAAAAAWgkl1AAAAABssvr/tn9eeOeFomMkSc7Z75z8oN8Pio4BAAAAAAAAAAAAAAAAAAAAAEArooQaAAAAgE3SMbcck6eqnyo6RpLkjD3PyJVHXll0DAAAAAAAAAAAAAAAAAAAAAAAWhkl1AAAAABsco679bhMfmNy0TGSJIN6DMrVR19ddAwAAAAAAAAAAAAAAAAAAAAAAFohJdQAAAAAbFJOHXVqJsyeUHSMJMnRnzo6137h2qJjAAAAAAAAAAAAAAAAAAAAAADQSimhBgAAAGCTcfpdp+fBmQ8WHSNJctTOR2XkiSOLjgEAAAAAAAAAAAAAAAAAAAAAQCumhBoAAACATcI5fzgnY18dW3SMJEnfHfrm9kG3Fx0DAAAAAAAAAAAAAAAAAAAAAIBWTgk1AAAAAK3e+WPPz6iXRxUdI0nSe/veufdL9xYdAwAAAAAAAAAAAAAAAAAAAACATYASagAAAABatQseuCA3P39z0TGSJD279cyY08YUHQMAAAAAAAAAAAAAAAAAAAAAgE2EEmoAAAAAWq1LHr4kN06/segYSZI9tt4j478yvugYAAAAAAAAAAAAAAAAAAAAAABsQpRQAwAAANAqXfHoFRk+bXjRMZIkPbbqkYlnTyw6BgAAAAAAAAAAAAAAAAAAAAAAmxgl1AAAAAC0OsMmDctVU67KiqwoOkp2/tjOefyrjxcdAwAAAAAAAAAAAAAAAAAAAACATZASagAAAABalWv+fE2unHxlsyig3rHzjnnqnKeKjgEAAAAAAAAAAAAAAAAAAAAAwCZKCTUAAAAArcaIaSNy+WOXZ3l5edFR8olOn8jEMyYWHQMAAAAAAAAAAAAAAAAAAAAAgE2YEmoAAAAAWoWbnrkpJObWawABAABJREFUF//p4mZRQN2tQ7dM+fKUdOzYsegoAAAAAAAAAAAAAAAAAAAAAABswpRQAwAAANDi3fHCHblw3IVZVl5WdJRs02GbTBs8TQE1AAAAAAAAAAAAAAAAAAAAAACFU0INAAAAQIs2+uXRGXr/0CxdsbToKNly8y0zYfAEBdQAAAAAAAAAAAAAAAAAAAAAADQLSqgBAAAAaLHGzxifIfcNaRYF1F0265LJZ09Ot47dio4CAAAAAAAAAAAAAAAAAAAAAABJlFADAAAA0EJNnjU5p99zempX1BYdJZ2rOmfcqeMUUAMAAAAAAAAAAAAAAAAAAAAA0KwooQYAAACgxZlePT2D7hqU2uXFF1B3atcp4784Pt27dS86CgAAAAAAAAAAAAAAAAAAAAAA1KGEGgAAAIAWZXr19BxzyzH5YNkHRUdJh7YdMvpLoxVQAwAAAAAAAAAAAAAAAAAAAADQLCmhBgAAAKDFmFE9IwNvHZhFSxcVHSXtK9vn9yf8Pvt026foKAAAAAAAAAAAAAAAAAAAAAAAsEZKqAEAAABoEWZUz0j/2/pn4ZKFRUdJVZuqjDpxVHrv1LvoKAAAAAAAAAAAAAAAAAAAAAAA8JGUUAMAAADQ7FXXVOeI24/I+7XvFx0lVRVVGXn8SAXUAAAAAAAAAAAAAAAAAAAAAAA0e0qoAQAAAGjWqmuq0+c3ffLeP98rOkraVrTNiGNHpH/3/kVHAQAAAAAAAAAAAAAAAAAAAACAdVJCDQAAAECzVVNTk7439s28D+YVHSVtK9pm+OeHZ2CPgUVHAQAAAAAAAAAAAAAAAAAAAACAelFCDQAAAECzVFNTk1439srcRXOLjpLKUmWGHTEsJ+9xctFRAAAAAAAAAAAAAAAAAAAAAACg3pRQAwAAANDs1NTUpPdNvVO9qLroKGlTapMrDr8iZ+57ZtFRAAAAAAAAAAAAAAAAAAAAAABgvSihBgAAAKDZOfjmgzN7weyiY6RNqU0uPeTSDOk1pOgoAAAAAAAAAAAAAAAAAAAAAACw3pRQAwAAANCs9Ly2Z15///WiY6QiFbmo90U577PnFR0FAAAAAAAAAAAAAAAAAAAAAAAaRAk1AAAAAM3GQdcflJnvziw6RipSkQsOvCAX9rmw6CgAAAAAAAAAAAAAAAAAAAAAANBgSqgBAAAAaBYOvfHQvPyPl4uOkSQZ2mtoLj704qJjAAAAAAAAAAAAAAAAAAAAAADABlFCDQAAAEDh+v+2f579+7NFx0iSDN5ncH7Q7wdFxwAAAAAAAAAAAAAAAAAAAAAAgA2mhBoAAACAQh1zyzF5qvqpomMkSc7Y84xcNeCqomMAAAAAAAAAAAAAAAAAAAAAAECjUEINAAAAQGFOuu2kTH5jctExkiSDegzK1UdfXXQMAAAAAAAAAAAAAAAAAAAAAABoNEqoAQAAACjEqaNOzcN/e7joGEmSoz91dK79wrVFxwAAAAAAAAAAAAAAAAAAAAAAgEalhBoAAACAje70u07PgzMfLDpGkuSonY/KyBNHFh0DAAAAAAAAAAAAAAAAAAAAAAAanRJqAAAAADaqc/5wTsa+OrboGEmSvjv0ze2Dbi86BgAAAAAAAAAAAAAAAAAAAAAANAkl1AAAAABsNOePPT+jXh5VdIwkyQHbHpB7v3Rv0TEAAAAAAAAAAAAAAAAAAAAAAKDJKKEGAAAAYKO46KGLcvPzNxcdI0nSs1vPPPDlB4qOAQAAAAAAAAAAAAAAAAAAAAAATUoJNQAAAABN7pKHL8m1T19bdIwkyR5b75HxXxlfdAwAAAAAAAAAAAAAAAAAAAAAAGhySqgBAAAAaFJXPHpFhk8bXnSMJMmuXXfNxLMnFh0DAAAAAAAAAAAAAAAAAAAAAAA2CiXUAAAAADSZYZOG5aopV2VFVhQdJTt/bOdM/drUomMAAAAAAAAAAAAAAAAAAAAAAMBGo4QaAAAAgCZxzZ+vyZWTr2wWBdQ7bLFDJpw2oegYAAAAAAAAAAAAAAAAAAAAAACwUSmhBgAAAKDR3fTMTbn8scuzvLy86Cj5RKdPZPKZk9OxY8eiowAAAAAAAAAAAAAAAAAAAAAAwEalhBoAAACARnXHC3fk2w99u1kUUHfr0C1TvjxFATUAAAAAAAAAAAAAAAAAAAAAAJskJdQAAAAANJo7XrgjQ+8fmmXlZUVHSdf2XTNt8DQF1AAAAAAAAAAAAAAAAAAAAAAAbLKUUAMAAADQKEa/PDrn3X9elq5YWnSUbLn5lpl01iQF1AAAAAAAAAAAAAAAAAAAAAAAbNKUUAMAAACwwcbPGJ8h9w1J7YraoqOky2ZdMvnsyenWsVvRUQAAAAAAAAAAAAAAAAAAAAAAoFBKqAEAAADYIJNnTc7p95zeLAqoO1d1zrhTxymgBgAAAAAAAAAAAAAAAAAAAACAKKEGAAAAYANMr56eQXcNSu3y4guoO7XrlPFfHJ/u3boXHQUAAAAAAAAAAAAAAAAAAAAAAJoFJdQAAAAANMj06uk55pZj8sGyD4qOkg5tO2T0l0YroAYAAAAAAAAAAAAAAAAAAAAAgA+pLDoAm4Z33nkn06ZNy2uvvZYFCxakbdu26dq1a3bbbbfsv//+adu2bdER66iurs6sWbPyxhtvZO7cuVm0aFGWLl2aLbbYIp07d86OO+6YfffdN1tssUWT5pgzZ06efvrpzJkzJ++9915qa2vTuXPndOnSJZ/5zGey1157pV27dk2aAQAAANZkRvWMDLx1YBYtXVR0lLSvbJ/fn/D77NNtn6KjAAAAAAAAAAAAAAAAAAAAAABAs6KEmiZ155135pe//GUmT56ccrm8xjOdOnXKoEGD8p//+Z/ZddddN3LC5L333sukSZMyefLkTJ06Nc8//3z+8Y9/rPNeqVTKnnvumTPPPDNnnHFGttlmm0bJM2vWrFx//fW55ZZb8re//W2tZ9u1a5fDDjssX/3qV3PcccelstJ/0gAAADS9GdUz0v+2/lm4ZGHRUVLVpiqjThyV3jv1LjoKAAAAAAAAAAAAAAAAAAAAAAA0O6XyRzUDwwZ46623ctppp2XChAn1vtOuXbt8//vfz/e///2USqUmTFfXRRddlJ/+9KcbtKNjx465/PLLc/755ze4CHrJkiW54oorcuWVV2bJkiXrfX/vvffO9ddfn/33379B728Ndt9997z00kurzXfbbbe8+OKLBSQCAABofaprqtP7ht6Zv3h+0VFSVVGVkSeMTP/u/YuOAgBAC+LPEwAAAAAAAAAAAAAAAAAAgE1JRdEBaH1eeeWV9OrVa70KqJN/lTBfcsklOe2007J8+fImStc0ampq8u1vfzvHHHNMFi9evN73P/jggwwYMCA/+MEPGlRAnSTPPvtsDjrooNxzzz0Nug8AAADrUl1TnT6/6dMsCqjbVrTNiGNHKKAGAAAAAAAAAAAAAAAAAAAAAIC1qCw6AK3LvHnzcsQRR2TOnDmrfdazZ8984QtfyE477ZTFixfnlVdeya233pq33367zrnbbrst22yzTX7xi19spNR1dejQIfvtt18+/elPp3v37tl6663TqVOnLF++PAsWLMgrr7ySxx9/PFOmTEm5XK5z98EHH8zxxx+fP/7xjymVSvV+56BBg/LII4+sNm/btm0+97nP5aCDDsonPvGJVFVV5d13381zzz2XsWPH5vXXX69zfunSpTnllFPyyCOPpHfv3g36+QEAAGBNampq0vfGvpn3wbyio6SyVJnhnx+egT0GFh0FAAAAAAAAAAAAAAAAAAAAAACaNSXUNKohQ4Zk9uzZdWadOnXKyJEjM3Dg6sVQP/7xj/PjH/84l112WZ35L3/5yxx11FH53Oc+15RxkyRVVVU5/PDD87nPfS79+vXLXnvtlTZt2qzz3owZM3LBBRfkvvvuqzN/8MEHc91112XIkCH1ev/vf//7jB07drX5Mccck2uvvTbbbbfdGu9dffXV+e1vf5tvfetbWbhw4ar50qVLc8455+SZZ55J27Zt65UBAAAA1qampia9buyVuYvmFh0llaXK/OzIn+XkPU4uOgoAAAAAAAAAAAAAAAAAAAAAADR7pXK5XC46BK3DuHHjcuSRR9aZtWvXLpMnT87++++/1ru//OUv861vfavOrHv37nn55ZdTWdl8u9LL5XKGDh2aX//613XmO+20U2bOnFmvHQcccECeeOKJOrPjjjsud911VyoqKtZ5f+LEienXr1+WLl1aZz5mzJgcffTR9crQWuy+++556aWXVpvvtttuefHFFwtIBAAA0PLV1NSk9029M3vB7HUfbmJtSm3y48N/nCG96vcXPwEAwJr48wQAAAAAAAAAAAAAAAAAAGBTsu6GW6inH/7wh6vNLr300nUWUCfJN7/5zRxxxBF1ZjNmzMitt97aaPmaQqlUys9//vN88pOfrDOfNWtWnnzyyXXef+uttzJt2rQ6s8022yy//vWv61VAnSQHH3xwzjnnnNXmf/jDH+p1HwAAANbm4JsPbhYF1BWpyKWHXKqAGgAAAAAAAAAAAAAAAAAAAAAA1oMSahrFiy++mIkTJ9aZbbXVVrnwwgvrveMnP/nJarNf//rXG5ytqVVVVeWkk05abf7SSy+t8+5f//rXlMvlOrPDDjss3bp1W68Mp5122hp3AwAAwIY44LoD8vr7rxcdIxWpyHf7fDfnffa8oqMAAAAAAAAAAAAAAAAAAAAAAECLooSaRnH77bevNhs8eHDatWtX7x09e/ZMz54968ymTJmSWbNmbXC+prbLLrusNpszZ846782dO3e1WY8ePdb7/Wu68/e//3299wAAAMBKB11/UF6Z90rRMZIkFxx4QS7sU/+/6AoAAAAAAAAAAAAAAAAAAAAAAPgXJdQ0igceeGC12UknnbTee9Z0Z027m5t//vOfq83qU8C9pjPrU9y9UlVV1WqzzTbbbL33AAAAQJIceuOhefkfLxcdI0lyzn7n5OJDLy46BgAAAAAAAAAAAAAAAAAAAAAAtEhKqNlgixYtytNPP11n1r59++y3337rvevggw9ebTZx4sQGZ9tYpk2bttpsl112Wee9nXbaabXZG2+8sd7vX9Od+rwfAAAA/t2A3w3Is39/tugYSZLB+wzOlUdeWXQMAAAAAAAAAAAAAAAAAAAAAABosZRQs8GmT5+eFStW1Jntv//+qaysXO9dvXr1Stu2bevMnnrqqQ3K19ReffXV3HPPPXVmm222WQ455JB13t1rr73StWvXOrOHH344S5cuXa8M999//2qzfv36rdcOAAAAOOaWYzJ1ztSiYyRJztjzjFw14KqiYwAAAAAAAAAAAAAAAAAAAAAAQIumhJoN9pe//GW1Wffu3Ru0q127dvlf/+t/1Zm99tprWbZsWYP2NbWZM2fm2GOPzT//+c8688GDB6dLly7rvN+mTZucc845dWbV1dW5+uqr651h/vz5+elPf1pn1qVLl5xxxhn13gEAAAAn3XZSJr8xuegYSZITPn1Crj66/v9vDAAAAAAAAAAAAAAAAAAAAAAArJkSajbY66+/vtrsk5/8ZIP37bDDDnWely9fntmzZzd4X2Orra3NlClT8q1vfSu77757/vrXv9b5fKeddspPfvKTeu/77ne/m5133rnO7Dvf+U5+85vfrPPum2++mc997nOZM2dOnfnVV1+dTp061TsDAAAAm7ZTR52ah//2cNExkiRHf+ro3HD8DUXHAAAAAAAAAAAAAAAAAAAAAACAVqGy6AC0fNXV1avNtt9++wbvW9Pdv//976sVNTel8ePH58ILL6wzW7ZsWRYuXJi33347y5YtW+O9T33qU3nooYfSuXPner+rY8eO+eMf/5jDDjssb7/9dpJ/FW+fffbZ+e1vf5uzzjorvXv3znbbbZeqqqq8++67ef7553PfffflN7/5TRYsWFBn349+9KOcccYZ6/kTN63hw4fnV7/6VZO/57XXXmvydwAAALQ2Z99zdh6c+WDRMZIk/T7ZLyNPHFl0DAAAAAAAAAAAAAAAAAAAAAAAaDWUULPB5s+fv9qsY8eODd63prvz5s1r8L6GeO+99/Lss8/W+3yHDh3y9a9/PZdffnk6dOiw3u/bdddd8/TTT+frX/967r333lXziRMnZuLEifXasdNOO+Xqq6/OMcccs97vb2rvvPNOXnrppaJjAAAA8G/O+cM5ufuvdxcdI0nSd4e+ufOLdxYdAwAAAAAAAAAAAAAAAAAAAAAAWpWKogPQ8i1atGi12eabb97gfWu6+8EHHzR4X1MqlUr56le/mlmzZmXYsGENKqBe6eMf/3juueeePPXUU/nGN75R71/Dnj17ZtSoUXnllVeaZQE1AAAAzdMFD1yQUS+PKjpGkuSAbQ/IvV+6t+gYAAAAAAAAAAAAAAAAAAAAAADQ6iihZoMtXbp0tdlmm23W4H1rKl9esmRJg/c1pXK5nOuvvz577LFHLr/88ixcuHCD9r322mu54YYbMmrUqCxevLhed5566ql873vfyy9+8YvU1NRs0PsBAADYNFz00EW5cfqNRcdIkuz98b3zwJcfKDoGAAAAAAAAAAAAAAAAAAAAAAC0SkqoaRKlUqlR75bL5Q2Js95OOumklMvlOl+LFi3KW2+9lfHjx+fyyy/PTjvttOr83Llzc9lll2WvvfbK1KlT1/t9S5cuzf/5P/8nn/70p/OrX/0qc+fOrfN5+/bts+OOO2a33XbLdtttl4qKuv/pzpgxI//7f//v9OjRI3/6058a9kMDAACwSbjk4Uty7dPXFh0jSbLH1nvk0cGPFh0DAAAAAAAAAAAAAAAAAAAAAABaLSXUbLC2bduuNlu8eHGD963pbrt27Rq8r7G0b98+2223Xfr165dLLrkkr732Wv7rv/4rHTp0WHXm9ddfT//+/fP444/Xe++SJUtywgkn5Ec/+lGWL1++ar755pvnG9/4Rp588sksWLAgs2bNyosvvpi33nor8+fPz913351DDjmkzq4333wzRx11VO66664N/4EBAABoda549IoMnza86BhJkl277pqJZ08sOgYAAAAAAAAAAAAAAAAAAAAAALRqlUUHoOVr3779arPGLqH+cNFzc1EqlTJ06NDsueeeGTBgwKrcNTU1OeWUU/Lcc8/lYx/72Dr3fPOb38yYMWPqzLp375577703u++++xrvdO7cOccff3yOP/74/PrXv843vvGNrFixIkmybNmynHbaafnMZz7zkfc3tq233jq77bZbk7/ntddeS21tbZO/BwAAoCW65s/X5KopV2VFVhQdJTt/bOdM/drUomMAAAAAAAAAAAAAAAAAAAAAAECrp4SaDda1a9fVZjU1NQ3et6a7a3pHc3HIIYfksssuy3e+851VszfffDM/+9nP8qMf/Witdx9//PH8v//3/+rMttxyyzz00EPZaaed6vX+c889N7W1tfmP//iPVbPa2tqce+65eeyxx9bjJ2k6Q4cOzdChQ5v8PbvvvnteeumlJn8PAABASzNi2ohc/tjlzaKAeoctdsiE0yYUHQMAAAAAAAAAAAAAAAAAAAAAADYJFUUHoOX7+Mc/vtrszTffbPC+N954o17vaE6++c1vplOnTnVmI0aMSLlcXuu9n/3sZ6vNLr744noXUK90/vnnZ6+99qozmzhxYp5++un12gMAAEDrc9MzN+V7f/pelpeXFx0ln+j0iUw+c3I6duxYdBQAAAAAAAAAAAAAAAAAAAAAANgkKKFmg62pMPlvf/tbg/fNnj27znObNm2yww47NHjfxlBVVZXDDz+8zuydd97JSy+99JF3li1bloceeqjOrFQq5Ywzzljv91dUVKzx3oMPPrjeuwAAAGg97njhjnz7oW83iwLqbTpskylfnqKAGgAAAAAAAAAAAAAAAAAAAAAANiIl1GywT3/606vNZsyY0aBdS5YsyRtvvFFntssuu6SysrJB+zamHXfccbXZzJkzP/L8zJkzU1NTU2e2yy67ZOutt27Q+w888MDVZs8991yDdgEAANDyjX55dIbePzTLysuKjpKu7bvmqcFPKaAGAAAAAAAAAAAAAAAAAAAAAICNTAk1G2zfffdNRUXdf5WefPLJLFu2/iVXTz75ZJYuXVpntt9++21Qvo1ls802W222cOHCjzw/b9681WYNLaD+qLvz589v8D4AAABartEvj86Q+4Zk6Yql6z7cxLbcfMtMOmuSAmoAAAAAAAAAAAAAAAAAAAAAACiAEmo2WIcOHbLvvvvWmS1atCjPPPPMeu+aNGnSarNDDjmkwdk2prlz564222qrrT7y/JpKqxcvXtzg93/wwQerzdq3b9/gfQAAALRM42eMz5AxQ1K7orboKOmyWZdMPntyunXsVnQUAAAAAAAAAAAAAAAAAAAAAADYJCmhplEMGDBgtdmdd9653nvWdGdNu5ujKVOmrDbr1u2jS7a23nrr1WZ/+9vfsmLFiga9f+bMmfV6BwAAAK3X5FmTc/o9p6d2efEF1J2rOmfcqeMUUAMAAAAAAAAAAAAAAAAAAAAAQIGUUNMoTj311NVmN954Y5YsWVLvHc8880ymTZtWZ3bAAQdkp5122uB8TW369Ol5+eWX68y6dOmSHj16fOSdbt26pWPHjnVm77777hrLrOvj/vvvX2226667NmgXAAAALc/06ukZdNegZlFA3aldp4z/4vh079a96CgAAAAAAAAAAAAAAAAAAAAAALBJU0JNo9hjjz3Sp0+fOrN33nknP//5z+u947vf/e5qs3PPPXeDszW15cuX5/zzz19tfvTRR6dt27Yfea+ysjL9+vVbbX7FFVesd4ZZs2Zl5MiRq82POuqo9d4FAABAyzO9enqOueWYfLDsg6KjpH1l+4z+0mgF1AAAAAAAAAAAAAAAAAAAAAAA0AwooabRfP/7319tdumll+bpp59e593/+q//yoMPPlhntvPOO+dLX/pSvd694447plQq1fl69NFH13nvmmuuybhx4+r1jjWpra3NaaedlokTJ9aZl0qlfOMb31jn/VNOOWW12f33358rr7yy3hnef//9HH/88VmyZEmd+W677ZY999yz3nsAAABomWZUz8hxtx2XRUsXFR0l7SvbZ9SJo7JPt32KjgIAAAAAAAAAAAAAAAAAAAAAAEQJNY3oqKOOyhe+8IU6s9ra2hx22GG577771nhn6dKl+eEPf5jzzjtvtc+uvvrqtG3btkmyrvTUU0/lyCOPzGc/+9n86le/yt///vd63Vu6dGnuvvvu7Lnnnvn973+/2udf+9rXcuCBB65zzymnnJJ99tlntfl3v/vdnHXWWevM86c//Sk9e/bMs88+u9pn61NkDQAAQMtUXVOdI24/Iu/Xvl90lFS1qcrvjvtdeu/Uu+goAAAAAAAAAAAAAAAAAAAAAADAf6ssOgCty3XXXZennnoqb7755qrZggULMnDgwOy///75whe+kJ122imLFy/Oq6++mltuuSVvvfXWanu+8Y1v5Oijj95ouadMmZIpU6bkvPPOS48ePbLvvvtmt912y5ZbbpkuXbqkVCplwYIFefvttzN9+vQ89thjmTdv3hp3HXbYYbnqqqvq9d6Kiopcf/31OfTQQ1NTU1PnsxtvvDG33nprjjrqqBx00EHZbrvtsvnmm+e9997Lyy+/nHHjxuX5559f494vf/nLOfbYY9fvFwEAAIAWpbqmOr1v6J33/vle0VFSVVGVkcePTP/u/YuOAgAAAAAAAAAAAAAAAAAAAAAAfIgSahrV1ltvnYceeiiHH354qqur63z25JNP5sknn1znjkGDBuUXv/hFEyVcuxUrVuTFF1/Miy++2KD7xx13XG699dZsvvnm9b7Ts2fP3HvvvTnuuONWK6Kura3N6NGjM3r06HrvO+GEE3L99dfX+zwAAAAtT3VNdfr8pk/mL55fdJS0rWibEceOUEANAAAAAAAAAAAAAAAAAAAAAADNUEXRAWh9evTokSeeeCJ9+vRZr3tt27bNpZdemttuuy1t2rRponR1dejQoVH2bL/99rnzzjtzzz33rFcB9Ur9+vXLs88+m759+zY4Q8eOHfOrX/0qd911Vyor9csDAAC0VjU1Nel7Y9/M+2Be0VFSWarM8M8Pz8AeA4uOAgAAAAAAAAAAAAAAAAAAAAAArIESaprE9ttvn8ceeyy///3vc9BBB6VUKn3k2Y4dO2bw4MF57rnnctlll6WiYuP9azl8+PC8+OKLGTZsWI499th069at3nc//vGP59RTT83999+fWbNm5cQTT9ygLDvvvHMeffTRPPbYYznttNOy5ZZbrvNOmzZtsu++++YXv/hF3njjjZx77rkblAEAAIDmraamJgf+7sDMXTS36CipLFXmZ0f+LCfvcXLRUQAAAAAAAAAAAAAAAAAAAAAAgI9QKpfL5aJD0PrNnTs3TzzxRGbOnJkFCxaksrIyW221VXr06JFevXqlXbt2RUdcZc6cOXnttdfy+uuvZ/78+Vm0aFHK5XI6deqUzp07Z5tttsnee++dbbfdtsmzzJgxI88991zmzZuX9957L0uWLMkWW2yRLl26ZMcdd8x+++2XDh06NHmOlmL33XfPSy+9tNp8t912y4svvlhAIgAAgMZTU1OT3jf1zuwFs4uOkjalNvnx4T/OkF5Dio4CAADrzZ8nAAAAAAAAAAAAAAAAAAAAm5LKogOwadhmm21yzDHHFB2jXrbddttsu+226dOnT9FR0r1793Tv3r3oGAAAADQDfW/p2ywKqCtSkUsPuVQBNQAAAAAAAAAAAAAAAAAAAAAAtAAVRQcAAAAAYO0OuO6AzHx3ZtExUpGKfLfPd3PeZ88rOgoAAAAAAAAAAAAAAAAAAAAAAFAPSqgBAAAAmrGDbzg4r8x7pegYSZKhvYbmwj4XFh0DAAAAAAAAAAAAAAAAAAAAAACoJyXUAAAAAM3UoTcemhfeeaHoGEmSc/Y7Jz/o94OiYwAAAAAAAAAAAAAAAAAAAAAAAOtBCTUAAABAMzTgdwPy7N+fLTpGkmTwPoNz5ZFXFh0DAAAAAAAAAAAAAAAAAAAAAABYT0qoAQAAAJqZ4249LlPnTC06RpJkUI9BuWrAVUXHAAAAAAAAAAAAAAAAAAAAAAAAGkAJNQAAAEAzctJtJ2XC7AlFx0iSnPDpE3LtF64tOgYAAAAAAAAAAAAAAAAAAAAAANBASqgBAAAAmonT7zo9D//t4aJjJEmO/tTRueH4G4qOAQAAAAAAAAAAAAAAAAAAAAAAbAAl1AAAAADNwNn3nJ2xr44tOkaSpN8n+2XkiSOLjgEAAAAAAAAAAAAAAAAAAAAAAGwgJdQAAAAABTt/7Pm5+693Fx0jSdJ7+96584t3Fh0DAAAAAAAAAAAAAAAAAAAAAABoBJVFB2iJVqxYkYceeiiTJk3KlClTMnv27Lz33nt5//33s2zZsgbtLJVKDb4LAAAAtFwXPHBBbn7+5qJjJEkO2PaAjDltTNExAAAAAAAAAAAAAAAAAAAAAACARqKEej2sWLEiv/jFL3L11VfnjTfeWDUvl8sFpgIAAABaqoseuig3Tr+x6BhJkr0/vnce+PIDRccAAAAAAAAAAAAAAAAAAAAAAAAakRLqenr77bdzyimn5PHHH69TOl0qlVIqlTZotxJrAAAA2PRc8vAlufbpa4uOkSTpsVWPPDr40aJjAAAAAAAAAAAAAAAAAAAAAAAAjUwJdT28//77OeywwzJjxoyUy+VVpdPlcnlVgfSHZ//uwyXVCqcBAACAYZOGZfi04UXHSJLs2nXXPP7Vx4uOAQAAAAAAAAAAAAAAAAAAAAAANAEl1PXwla98Ja+++mpKpVJKpVLK5XLat2+fAQMG5FOf+lR++9vfZu7cuasKqi+55JIsXrw48+fPz8yZM/PEE0+kpqYmSVbd79y5c84999xUVVUV/NMBAAAAG9M1f74mP5n0k6zIiqKjZMfOO2bq16YWHQMAAAAAAAAAAAAAAAAAAAAAAGgiSqjX4Yknnsgf/vCHVeXRpVIpAwYMyO9+97tsvfXWSZIHHnggc+fOXXXn0ksvrbNjxYoVGTt2bK666qpMmDAhpVIpCxYsyJgxYzJmzJjssMMOG/VnAgAAAIoxYtqIXP7Y5c2igHqHLXbIxDMmFh0DAAAAAAAAAAAAAAAAAAAAAABoQhVFB2juhg0btur7UqmU/fffP/fee++qAur6qKioyLHHHptHHnkkI0aMyGabbZYkeeGFF3LwwQdnzpw5jZ4bAAAAaF5ueuamXPyni7O8vLzoKPlEp09k8pmT07Fjx6KjAAAAAAAAAAAAAAAAAAAAAAAATUgJ9VqUy+WMGzcupVIp5XI5SfLLX/4y7dq1a/DOr371q7nrrrvStm3blEqlvPHGGzn55JMbKzIAAADQDN3xwh359kPfzrLysqKjZJsO22TKl6cooAYAAAAAAAAAAAAAAAAAAAAAgE2AEuq1eP755/P++++veu7Ro0cOPPDADd47YMCAfO9731tVbP3nP/85t9xyywbvBQAAAJqf0S+PztD7hzaLAuqu7btmwuAJCqgBAAAAAAAAAAAAAAAAAAAAAGAToYR6Lf7yl7+s+r5UKuWwww6r173ly5ev88x//ud/pmvXrimVSimXy7n66qsbnBMAAABonsbPGJ8h9w3J0hVLi46SLTffMpPOmpRuHbsVHQUAAAAAAAAAAAAAAAAAAAAAANhIlFCvxbvvvpskKZfLSZLddtttjedKpVKd53/+85/r3L3ZZpvlmGOOWbX7ySefzNy5czckLgAAANCMjJ8xPqffc3pqV9QWHSVdNuuSyWdPVkANAAAAAAAAAAAAAAAAAAAAAACbGCXUa7GyhHqlj33sY2s8t/nmm68qk06SDz74oF77e/bsWef5ySefXM+EAAAAQHM0edbkfPneL6d2efEF1J3adcq4U8cpoAYAAAAAAAAAAAAAAAAAAAAAgE2QEuq1aNOmTZ3ndu3arfHcFltsUef57bffrtf+bbbZps7zrFmz1iMdAAAA0BxNr56eU+4+JR8sq99fUtWUOrTtkNFfGp3u3boXHQUAAAAAAAAAAAAAAAAAAAAAACiAEuq1+Pdy6YULF67xXOfOnes8/+1vf6vX/qVLlyZJSqXSWvcDAAAALcOM6hkZeOvALFq6qOgoaV/ZPmNOG5N9uu1TdBQAAAAAAAAAAAAAAAAAAAAAAKAgSqjX4hOf+ESS/ymJfv/999d4btddd63z/MQTT9Rr/4wZM5Ik5XI5SVJZWdmgnAAAAEDxZlTPSP/b+mfhkuL/kqmqNlUZdeIoBdQAAAAAAAAAAAAAAAAAAAAAALCJU0K9Fp/5zGfqPL/66qtrPLfXXnsl+VdZdblczh//+Md67b/vvvtWFVwnyVZbbdXApAAAAECRqmuqc8TtR+T92jX/BVYbU1VFVUYePzK9d+pddBQAAAAAAAAAAAAAAAAAAAAAAKBgSqjXYuedd06HDh1WPb/88strPHfQQQelouJ/fimnT5+ehx9+eK2777rrrjz99NN1ZrvvvvsGpAUAAACKUF1Tnd439M57/3yv6CipqqjKiGNHpH/3/kVHAQAAAAAAAAAAAAAAAAAAAAAAmgEl1GtRUVGR3r17p1wup1wuZ9q0aVm+fPlq57bbbrv07ds35XI5pVIp5XI5p59+ep566qk17n3ggQcyePDglEqlVbMuXbpk//33b7KfBQAAAGh8NTU16fObPpm/eH7RUdK2om1GHDsiA3sMLDoKAAAAAAAAAAAAAAAAAAAAAADQTFQWHaC5O+yww/LQQw8l+Vex1OOPP56DDz54tXPnnntuHnnkkSRJqVTK3//+93z2s5/NgAEDcvDBB2fLLbfMP/7xjzz00EN59NFH6xRWl0qlDBkypE4pNQAAANC81dTUpNeNvTLvg3lFR0llqTLDPz9cATUAAAAAAAAAAAAAAAAAAAAAAFCHEup1OOGEE/Ld7353VUH0XXfdtcYS6pNOOimHHXZYHnnkkZRKpZRKpSxbtixjx47N2LFj65xdWTy90rbbbpsLL7ywaX8QAAAAoNHU1NTkwN8dmOpF1UVHSZtSm/zsyJ/l5D1OLjoKAAAAAAAAAAAAAAAAAAAAAADQzFQUHaC5+9SnPpV99tkn5XI55XI5N998c2pra9d4duTIkdlll11SLpeTJKVSadW9D3+tLKAul8tp3759Ro0ala5du260nwkAAABouJqamvS+qXfeWvhW0VHSptQmPz78xzlz3zOLjgIAAAAAAAAAAAAAAAAAAAAAADRDSqjrYfz48Zk1a1ZmzZqVp59+Om3atFnjuW233TYTJkxIv3796hRO//vXys922WWXTJo0KQcddNBG/okAAACAhup7S9/MXjC76BipSEUu6n1RhvQaUnQUAAAAAAAAAAAAAAAAAAAAAACgmaosOkBLsOWWW2bLLbes19ntttsu48aNy/3335/bbrst48aNy9y5c1d93r59+/Tp0yeDBg3KmWeemcpK/wgAAACgpTjgugMy892ZRcdIRSpywYEX5MI+FxYdBQAAAAAAAAAAAAAAAAAAAAAAaMY0IDeRz3/+8/n85z+fJFmyZEnmzZuXDh06ZIsttig4GQAAANAQB99wcF6Z90rRMZIkQ3sNzcWHXlx0DAAAAAAAAAAAAAAAAAAAAAAAoJlTQr0RtGvXLttuu23RMQAAAIAG6v/b/nnhnReKjpEkOWe/c/KDfj8oOgYAAAAAAAAAAAAAAAAAAAAAANACVBQdAAAAAKA5G/C7AXmq+qmiYyRJztjzjFx55JVFxwAAAAAAAAAAAAAAAAAAAAAAAFoIJdQAAAAAH+G4W4/L1DlTi46RJBnUY1CuPvrqomMAAAAAAAAAAAAAAAAAAAAAAAAtSGXRAZq7s846a9X3O+ywQy677LJG233ZZZdl9uzZSZJSqZQbbrih0XYDAAAAG+ak207KhNkTio6RJDnh0yfk2i9cW3QMAAAAAAAAAAAAAAAAAAAAAACghVFCvQ6//e1vUyqVkiR77713o5ZQ/+EPf8hzzz2XcrmshBoAAACakdPvOj0P/+3homMkSY7a+ajccLzfMwAAAAAAAAAAAAAAAAAAAAAAANZfRdEBWopyudyi9gIAAAANc/Y9Z2fsq2OLjpEk6ffJfrl90O1FxwAAAAAAAAAAAAAAAAAAAAAAAFooJdQFK5VKRUcAAAAA/tv5Y8/P3X+9u+gYSZLe2/fOnV+8s+gYAAAAAAAAAAAAAAAAAAAAAABAC6aEGgAAACDJBQ9ckJufv7noGEmSnt16ZsxpY4qOAQAAAAAAAAAAAAAAAAAAAAAAtHBKqAu0bNmyVd+3bdu2wCQAAACwabvooYty4/Qbi46RJNn743tn/FfGFx0DAAAAAAAAAAAAAAAAAAAAAABoBZRQF2j+/Pmrvu/YsWOBSQAAAGDTdcWjV+S6p68rOkaSpMdWPfLo4EeLjgEAAAAAAAAAAAAAAAAAAAAAALQSSqgL8s4772TOnDmrnrfccssC0wAAAMCmadikYblqylVZkRVFR8muXXfN4199vOgYAAAAAAAAAAAAAAAAAAAAAABAK6KEuiA///nPV31fKpXSo0ePAtMAAADApueaP1+TKydf2SwKqHfsvGOmfm1q0TEAAAAAAAAAAAAAAAAAAAAAAIBWprLoAEV77LHH6n22pqZmvc5/2PLly1NTU5OZM2fm/vvvz/jx41MqlVIul1MqlbL//vs3aC8AAACw/kZMG5HLH7s8y8vLi46SHbbYIRPPmFh0DAAAAAAAAAAAAAAAAAAAAAAAoBXa5EuoDz300JRKpbWeKZfLSZLXXnsthx12WKO8d2X59Eqnnnpqo+wFAAAA1u6mZ27KxX+6uFkUUHfr0C2Tz5ycjh07Fh0FAAAAAAAAAAAAAAAAAAAAAABohTb5EuqVVhZNb+iZ+lpZQF0qlfKlL30pn/rUpxptNwAAALBmd7xwR7790LezrLys6CjZpsM2mTZ4mgJqAAAAAAAAAAAAAAAAAAAAAACgySih/m8rS6H/3YeLpz/qTEOs3NuvX78MHz680fYCAAAAazb65dEZev/QZlFA3bV910wYPEEBNQAAAAAAAAAAAAAAAAAAAAAA0KSUUKdu0XRjnFuXzp0757Of/WzOOuusnHjiiY1abg0AAACsbvyM8Rly35AsXbG06CjpslmXTDprUrp17FZ0FAAAAAAAAAAAAAAAAAAAAAAAoJXb5EuoH3nkkY/8rFwu5/DDD0+pVEq5XE737t1z3XXXNeg9lZWV6dSpUz72sY9l++23b2hcAAAAYA2WLFuSdpXt1vjZ5FmTc/o9p6d2Re1GTrW6zlWdM+7UcQqoAQAAAAAAAAAAAAAAAAAAAACAjWKTL6Hu27dvvc6VSqV07Nix3ucBAACAjePNBW+m54ie+creX8lPj/hpnc8mz5qcQXcNSu3ydRdQL166OLUratOpXae0KbVp9Jyd2nXK+C+OT/du3Rt9NwAAAAAAAAAAAAAAAAAAAAAAwJpUFB2gJSiXyymXy0XHAAAAAP7NmwvezL7X7pt/fPCPDPvzsHxn3HdWfTa9enpOufuUfLDsg3XuWVlAnSQLlyzM8vLyRs3ZoW2HjP7SaAXUAAAAAAAAAAAAAAAAAAAAAADARlVZdIDm7tJLL131fbdu3QpMAgAAAHzYygLq+Yvnr5oN+/OwJMnX9vxaBt46MIuWLlrnng8XUK+0cMnCdGrXKW1KbTY4Z/vK9hlz2pjs022fDd4FAAAAAAAAAAAAAAAAAAAAAACwPpRQr8OHS6gBAACA5mFNBdQr/d/H/29+Ne1XqaxY9297rKmAeqXGKKKualOVUSeOUkANAAAAAAAAAAAAAAAAAAAAAAAUoqLoAAAAAADrY20F1CvKK5IkNUtrsnjp4rXuWVsB9UoLlyzM8vLyBuWsqqjKyONHpvdOvRt0HwAAAAAAAAAAAAAAAAAAAAAAYEMpoQYAAABajPoUUK9Uu6L2I4uo61NAvVJDiqjbVrTNiGNHpH/3/ut1DwAAAAAAAAAAAAAAAAAAAAAAoDFVFh2gpXvjjTfyzDPP5B//+EfmzZuXxYv/VW51ySWXFJwMAAAAWpf1KaBeqXZFbbI02bzt5qtm61NAvdLCJQvTqV2ntCm1WefZthVtM/zzwzOwx8D1egcAAAAAAAAAAAAAAAAAAAAAAEBjU0LdAG+//Xauuuqq3HPPPXn99dfXeGZtJdS33nprqqurVz0ffPDB6dWrV2PHBAAAgFajIQXUK324iLohBdQr1aeIurJUmWFHDMvJe5zcoHcAAAAAAAAAAAAAAAAAAAAAAAA0JiXU62H58uX53ve+l6uvvjpLlixJuVxe47lSqbTWPW+99VYuuuiiVc+HH354xo0b16hZAQAAoLVYsmxJeo7o2aAC6pVqV9SmtrZh5dMftnDJwnSp6rLGz9qU2uSKw6/ImfueucHvAQAAAAAAAAAAAAAAAAAAAAAAaAwVRQdoKf7xj3/ksMMOy7Bhw1JbW5tyuZxSqbTaV318/etfzxZbbJEkKZfLeeSRR/LGG280ZXwAAABosdpVtstX9v5K0TGSJFUVVWuctym1yaWHXJohvYZs5EQAAAAAAAAAAAAAAAAAAAAAAAAfTQl1PSxZsiQDBw7MpEmT6pRPl8vlOl/11alTpwwaNGjVnXK5nHvvvbeJ0gMAAEDL99MjfpoLP3thndmK8oqNmqGqoiqbt918tXlFKnJR74ty3mfP26h5AAAAAAAAAAAAAAAAAAAAAAAA1kUJdT1885vfzJQpU+qUT3ft2jU//OEP8/TTT2f+/PnZe++912vnoEGDkiSlUilJMn78+EbPDQAAAK3Jh4uom1MB9QUHXpAL+1y4hlsAAAAAAAAAAAAAAAAAAAAAAADFqiw6QHP317/+Nddff/2q8ulSqZQjjjgid9xxR7bYYosG7z300EOzxRZbZOHChSmXy5kwYUIjpgYAAIDW6adH/DQ3P3dz5tTM2Wjv/KgC6iQZ2mtoLj704o2WBQAAAAAAAAAAAAAAAAAAAAAAYH1UFB2gufvJT36S5cuXJ0lKpVJ69uyZsWPHblABdZK0adMm++67b8rlcpJk4cKFmT179gbnBQAAgNas/2/7Z/HSxamqqNoo71tbAfU5+52TH/T7wUbJAQAAAAAAAAAAAAAAAAAAAAAA0BBKqNdh7NixKZVKq8qir7/++lRWVjbK7p49e9Z5/stf/tIoewEAAKA1GvC7AXmq+qkkyeZtN2/yIuq1FVCfsecZufLIK5v0/QAAAAAAAAAAAAAAAAAAAAAAABtKCfVaPPPMM5k3b16SpFQqpU+fPtlrr70abf8OO+xQ5/mtt95qtN0AAADQmhx363GZOmdqnVlTFlGvrYB6UI9Bufroq5vkvQAAAAAAAAAAAAAAAAAAAAAAAI1JCfVavPrqq3We+/Xr16j7u3TpUud5wYIFjbofAAAAWoNTR52aCbMnrPGzpiiiXlsB9dGfOjrXfuHaRn0fAAAAAAAAAAAAAAAAAAAAAABAU1FCvRbvvPNOkqRcLidJdtxxx0bd36FDhyRJqVRKkixatKhR9wMAAEBLd/pdp+fBmQ+u9cxHFUY31EftO2rnozLyxJGN+i4AAAAAAAAAAAAAAAAAAAAAAICmpIR6LRYsWFDnuWPHjo26//3330/yPyXXjb0fAAAAWrJz/nBOxr46dp3nFi9d3KjvXdO+vjv0ze2Dbm/U9wAAAAAAAAAAAAAAAAAAAAAAADQ1JdRr8bGPfazO88rS6MYyd+7cOs9du3Zt1P0AAADQUp0/9vyMennUOs8tXro4tStqG/XdtStq6xRR996+d+790r2N+g4AAAAAAAAAAAAAAAAAAAAAAICNQQn1Wmy99dZJklKplCR54403GnX/1KlT6zxvtdVWjbofAAAAWqILHrggNz9/8zrPNUUB9Uori6h7duuZMaeNaZJ3AAAAAAAAAAAAAAAAAAAAAAAANDUl1GvxyU9+ss7zv5dGb4ja2tpMmDBhVcF1kuy3336Nth8AAABaokseviQ3Tr9xneeasoB6pdoVten5iZ5N+g4AAAAAAAAAAAAAAAAAAAAAAICmpIR6Lfbbb7906dIlSVIul/OnP/0p8+bNa5Tdv/nNb/Lee++teu7Ro0e23nrrRtkNAAAALdEVj16R4dOGr/PcxiigTpKKUkWG/XlYvjPuO03+LgAAAAAAAAAAAAAAAAAAAAAAgKaghHotKioq0r9//5TL5STJkiVLMmzYsA3eO2fOnFx++eUplUopl8splUo56qijNngvAAAAtFTDJg3LVVOuyoqsWOu5jVlAvZIiavj/2bv3KK/rQt//r+9cBQbxlk618xZmeMkrqeEtAXUnYWiSed1m4T6brZ1lnnNs29Ksbdk5ZqWb3Q+6YN5viWnljVqYjknesFTK8BJqjhjGZQAHGL6/P9qwnQaGmWFmPszM47EWa8H7+/28Py+sPyLXegIAAAAAAAAAAAAAAAAAAAAAQF8lQr0RkyZNSpJ1wegrr7wyv/rVr7p836JFi3LCCSdkwYIF684qKytz3nnnbfJWAAAA6Iuu/vXVubzh8s0yQL2WEDUAAAAAAAAAAAAAAAAAAAAAANAXiVBvxJgxY/LRj3405XI5pVIpq1atyrhx43LHHXd0+q5Zs2blwAMPzG9+85t1UetSqZRPf/rT2WmnnXpgPQAAAGzepj02LZf+6tK0lFva/V5vBajbI0QNAAAAAAAAAAAAAAAAAAAAAAD0NSLUHfDtb387Q4YMSZKUSqU0NTXlpJNOyujRo3PzzTdn/vz5bZ5ZtWpVGhsbM3v27Py///f/csghh2T06NF58cUXUy6X191VX1+f//t//2+v/n4AAABgc3DtU9fmol9etNEAdZJeC1BXlNr/v0quefqarFy9sle2AAAAAAAAAAAAAAAAAAAAAAAAbKqqogf0BXvvvXduvPHGTJgwIeVyOaVSKeVyObNmzcqsWbPWfW9tXLpcLmeLLbZoc8/aZ9f+vLq6Orfcckt22GGHXvl9AAAAwObitmduywUPXJDV5dUd+v7QmqFZunJpl99XW1GbQdWDsmLVig0GrTcWoN5m0DZ5YtITqamq6fIOAAAAAAAAAAAAAAAAAAAAAACA3tR+XYl1Pv7xj+faa6/NoEGDkqRVTHrtj3d65/naH+98ZujQofnxj3+cQw89tHd/IwAAAFCwu+belck/n5xVa1Z1+JnKUmWG1gzt0vvWBqiTZFD1oNRW1Lb5TkcC1E+d81T+Yct/6NIGAAAAAAAAAAAAAAAAAAAAAACAIohQd8Ipp5yS2bNnZ4899lgXnS6VSh3+kfwtQP3BD34wjzzySMaNG1fkbwcAAAB63cx5MzPp7kmdClCv1ZUQ9TsD1Gv9fYhagBoAAAAAAAAAAAAAAAAAAAAAAOivRKg7ac8998xvf/vb3HLLLdl///1TLpfb/Eiy3vPhw4fnmmuuyTPPPJM999yz4N8JAAAA9K6Glxpy2ozT0rymuct3dCZEvb4A9Vr1dfU540NnCFADAAAAAAAAAAAAAAAAAAAAAAD9WlXRA/qiUqmUk046KSeddFL+9Kc/5cEHH0xDQ0NeffXVLFy4MH/9618zaNCgbLfddtlhhx1y0EEHZezYsRkxYkTR0wEAAKAQcxrnZOKPJ6a5pesB6rXWhqiXrly6we+0F6AeWjM0Mz89M8Prh6e+rj5X/PqK9X5PgBoAAAAAAAAAAAAAAAAAAAAAAOjrRKg30U477ZQzzjgjZ5xxRtFTAAAAYLM0p3FOxt0wLstXL++2O9sLUbcXoB5SPSR3nXJXhtcPT5J8Y+w3kqRNiFqAGgAAAAAAAAAAAAAAAAAAAAAA6A8qih4AAAAA9F/zGudl/I3js2zVsm6/e22I+p3aC1APrhqcW064JfvW79vq/Btjv5ELDrlg3a8FqAEAAAAAAAAAAAAAAAAAAAAAgP6iqugBAAAAQP80r3Fextw0JktXLu2xd6wNUS9dubTdAHVtZW1uPfHWjNpl1Ho//8bYbyRJrnn6mjwx6QkBagAAAAAAAAAAAAAAAAAAAAAAoF+oKHoAAAAA0DetWLlig581NjVm7M1js7h5cY/vqCxVZqvarTYcoK6ozfUTrt9ggHqtb4z9Rl75n68IUAMAAAAAAAAAAAAAAAAAAAAAAP2GCDUAAADQaXPfnJut/u9WmXDzhDafNTY1ZtQPRmXR24s2ek/TyqYsal6U1WtW98DKpLqiOtM+Pi1jho/p0Pdrqmp6ZAcAAAAAAAAAAAAAAAAAAAAAAEARRKgBAACATpn75tzs8//tk5UtK3PnH+5sFaJuamrKEdOPyFsr3troPU0rm7K6/Lf4dNOqpm4PUVdXVGfKx6Zk/Ijx3XovAAAAAAAAAAAAAAAAAAAAAABAX1FV9ID+YPny5Vm8eHFWrVq1SffsuOOO3bQIAAAAesbaAPWqNf/9Z+C1Ierrxl2XkdNHZsGyBRu9550B6nVnq5pSV12XqopN/78rqkpVuWLsFTlpr5M2+S4AAAAAAAAAAAAAAAAAAAAAAIC+SoS6k5qbm/PjH/849913X5544ok8//zzaWlp2eR7S6VSVq9evfEvAgAAQEHWF6Be684/3Jn6F+pTXVm90XvWF6Be91k3hKgrS5W57KjLcsZ+Z3T5DgAAAAAAAAAAAAAAAAAAAAAAgP5AhLqDyuVyvvWtb+Wyyy7LokWL1p0BAADAQNBegHqtZauXpaqlKnU1dRv8TnsB6nXf2YQQdWWpMpccfkkmjZzU6WcBAAAAAAAAAAAAAAAAAAAAAAD6GxHqDli+fHmOO+64/OpXv2oVni6VSt1yv5g1AAAAm7OOBKjXWl1enaaVTesNUXckQL3uu10IUVekIheOujDnHnJuh58BAAAAAAAAAAAAAAAAAAAAAADoz0SoO+CEE07Igw8+mKR1eFo8GgAAgP6uMwHqtdYXou5MgHrdM50IUVekIucffH4uOPSCTr0DAAAAAAAAAAAAAAAAAAAAAACgPxOh3ogbb7wx999//3rj0/vvv38+/OEP5/3vf3+GDRuW6urqomYCAABAt+tKgHqtd4aouxKgXqujIerJIyfnoiMv6tI7AAAAAAAAAAAAAAAAAAAAAAAA+isR6o342te+tu7na+PTxxxzTK688sqMGDGiqFkAAADQo1asXJF9p+7bpQD1WqvLq7OoedEmb2la1ZStarfa4Odn7XtWvjL6K5v8HgAAAAAAAAAAAAAAAAAAAAAAgP6mougBm7P58+fnueeeS6lUSrlcTqlUyplnnpl77rlHgBoAAIB+bVDNoHxs+MeKnpEkqSpt+O/QOn3v03PlsVf24hoAAAAAAAAAAAAAAAAAAAAAAIC+Q4S6HbNnz2716x122CFTpkwpaA0AAAD0rhknz8gndv9EoRuqSlWpq6lb72cTR0zMVcdd1cuLAAAAAAAAAAAAAAAAAAAAAAAA+g4R6nYsWLBg3c9LpVJOPPHEDB48uMBFAAAA0LuKDFG3F6A+brfjMvX4qb28CAAAAAAAAAAAAAAAAAAAAAAAoG8RoW7H4sWLkyTlcjlJst9++xU5BwAAAAox4+QZec/g9/TqO9sLUB+z6zG5/sTre3UPAAAAAAAAAAAAAAAAAAAAAABAXyRC3Y66utaxq2HDhhW0BAAAAIpzzk/OyfKW5akqVfXK+9oLUB+x4xG5eeLNvbIDAAAAAAAAAAAAAAAAAAAAAACgrxOhbseuu+7a6tdvvfVWQUsAAACgGOf97LzcOvfWJEldTV2Ph6jbC1Af9O6Dcucpd/bo+wEAAAAAAAAAAAAAAAAAAAAAAPoTEep2HHzwwamoqEipVEqS/P73vy94EQAAAPSeC++/MNf97rpWZz0Zom4vQH1A/QG598x7e+S9AAAAAAAAAAAAAAAAAAAAAAAA/ZUIdTu22267HHXUUSmXyymXy7nnnnuKngQAAAC94uJfXJypT05d72c9EaJuL0C917v2ysx/mtmt7wMAAAAAAAAAAAAAAAAAAAAAABgIRKg34t/+7d+SJKVSKX/4wx9y5513FjsIAAAAethlsy7LlMemtPudDQWju2pD943YbkQeOvuhbn0XAAAAAAAAAAAAAAAAAAAAAADAQCFCvRFHHnlkzj777JTL5STJ5MmT8+qrrxa8CgAAAHrGFQ9fkSsfvTJrsqbd7zWtbOrW967vvl233jWPfPaRbn0PAAAAAAAAAAAAAAAAAAAAAADAQCJC3QFTpkzJkUcemXK5nNdffz1HHXVU5syZU/QsAAAA6FZX//rqXN5weYcC1KvLq7v13avLq1uFqHcetnMePPXBbn0HAAAAAAAAAAAAAAAAAAAAAADAQCNC3QE1NTW555578ulPfzpJMm/evBx88ME5++yz8+tf/zotLS0FLwQAAIBNM+2xabn0V5empdz+n3F7IkC91toQ9XuHvjcPnf5Q6urqeuQ9AAAAAAAAAAAAAAAAAAAAAAAAA0VV0QOKcNRRR3X52S222CLNzc1ZuXJlrrnmmlxzzTUZNGhQdtppp2yzzTaprq7u0r2lUim/+MUvurwLAAAAuurap67NRb+8qNAA9Vqry6vz7tp3C1ADAAAAAAAAAAAAAAAAAAAAAAB0gwEZoZ41a1ZKpdIm3VEqlVIul5Mky5cvz9y5c7t8Z7lc3uQ9AAAA0BW3PXNbLnjggo3GpXsjQL3WzNdmZsLNEzLj5Bm98j4AAAAAAAAAAAAAAAAAAAAAAID+qqLoAX3J2uj0WqVSqdUPAAAA6EvumntXJv98clatWdXu93ozQL3WnX+4MxNuntCr7wQAAAAAAAAAAAAAAAAAAAAAAOhvBnSEulwud+pHV57p6L0AAADQm2bOm5lJd0/aLAPUawlRAwAAAAAAAAAAAAAAAAAAAAAAbJqqogcU4fDDD0+pVCp6BgAAABSi4aWGnDbjtDSvaW73e0UGqNdaG6KecfKMQncAAAAAAAAAAAAAAAAAAAAAAAD0RQMyQj1r1qyiJwAAAEAh5jTOycQfT0xzS/sB6iSFB6jX+vm8n2fFyhUZVDOo6CkAAAAAAAAAAAAAAAAAAAAAAAB9SkXRAwAAAIDeMadxTsbdMC7LVy/v0Pfrqus26X1VpapsVbtVqkpd/zuwqiuqM+ecOQLUAAAAAAAAAAAAAAAAAAAAAAAAXSBCDQAAAAPAvMZ5GX/j+CxbtazDz1RVVHU5RF1Vqkpdzd+eraup61KIurqiOk//89MZ8a4RXdoAAAAAAAAAAAAAAAAAAAAAAAAw0IlQAwAAQD83r3Fextw0JktXLu30s10JUb8zQL1WZ0PUAtQAAAAAAAAAAAAAAAAAAAAAAACbruP1pwHqK1/5yrqf19fXZ9KkSd1297Rp09LY2Lju1xdffHG33Q0AAABJ0tjUmLE3j83i5sVdvmNtiLppVdPGv7ueAPVa226xbXbZZpc8+tqj7d4hQA0AAAAAAAAAAAAAAAAAAAAAANA9SuVyuVz0iM1ZRUVFSqVSkmSfffbJk08+2W1377fffvntb3+77tctLS3ddjcMRHvuuWeee+65Nud77LFHnn322QIWAQBAsRqbGnPoDw/NwuULu+W+1WtWtxuibi9AXV1Rne9//PsZP2J8Jtw8IXf+4c4Nfk+AGgAA6En+fQIAAAAAAAAAAAAAAAAAADCQVBQ9oK/oqVZ3uVzusbsBAAAYuJqamnLE9CO6LUCdJFUVVamrXn9kur0AdVWpKlM+NiXjR4xPksw4eUY+sfsn2nxPgBoAAAAAAAAAAAAAAAAAAAAAAKB7iVAXrFQqFT0BAACAfqapqSkjp4/MgmULuv3u9YWoNxag/ubR38xJe53U6vzvQ9QC1AAAAAAAAAAAAAAAAAAAAAAAAN1PhBoAAAD6kaampoy6dlQalzX22DveGaJuL0BdWarMZUddljP2O2O9n68NUddU1ghQAwAAAAAAAAAAAAAAAAAAAAAA9ICqogcMZC0tLet+XlXlPwoAAAA23WHXHZb5S+b3+HuqKqqyVe1WG/y8IhW55PBLMmnkpHbvmXHyjKxYuSKDagZ180IAAAAAAAAAAAAAAAAAAAAAAAAqih4wkC1evHjdz+vq6gpcAgAAQH9w0PcOysuLXy56RipSkS8e+sWce8i5Hfq+ADUAAAAAAAAAAAAAAAAAAAAAAEDPEKEuyJIlS/Lqq6+u+/VWW21V3BgAAAD6vI98/yN5fuHzRc9Ikpx/8Pm54NALip4BAAAAAAAAAAAAAAAAAAAAAAAw4IlQF+SHP/xhyuVykqRUKmX33XcveBEAAAB91ZHTj8zcv8wtekaS5Jz9z8lFR15U9AwAAAAAAAAAAAAAAAAAAAAAAACSVBU9oGjz58/v8HdXrlyZV155ZV08ujNaWlrS1NSUF198MT//+c8zffr0lEqllMvllEql7Lfffp2+EwAAAI790bF5+o2ni56RJDlr37Ny+dGXFz0DAAAAAAAAAAAAAAAAAAAAAACA/zLgI9Q777xzSqVSu99ZG52eO3dudt55525579r49FonnXRSt9wLAADAwDHuhnGZ/frsomckSU7f+/RceeyVRc8AAAAAAAAAAAAAAAAAAAAAAADgHQZ8hDr578h0d32vI9YGqEulUsaOHZt999232+4GAACg//vkTZ9MwysNRc9Ikpyw+wm56ririp4BAAAAAAAAAAAAAAAAAAAAAADA3xGhzn8HodfnneHp9r7XFeVyOXvuuWemT5/erfcCAADQv51868n5xZ9+UfSMJMlxux2XH0z4QdEzAAAAAAAAAAAAAAAAAAAAAAAAWA8R6rQOTXfH9zrigx/8YD7zmc9k8uTJGTRoULfdCwAAQP929oyzc9+L9xU9I0kyeqfRuf7E64ueAQAAAAAAAAAAAAAAAAAAAAAAwAYM+Aj19OnTN/hZuVzOZz7zmZRKpZTL5ey444659NJLu/SeqqqqDB06NFtvvXX22muvbL311l2dDAAAwAB1zk/OyR1/uKPoGUmSI3Y8Ird/+vaiZwAAAAAAAAAAAAAAAAAAAAAAANCOAR+hPvPMM9v9/DOf+UySpFQqZZttttno9wEAAKAnnH/v+bl17q1Fz0iSHPTug3LnKXcWPQMAAAAAAAAAAAAAAAAAAAAAAICNGPAR6o4ol8tFTwAAAGAAu/D+CzN9zvSiZyRJDqg/IPeeeW/RMwAAAAAAAAAAAAAAAAAAAAAAAOgAEeqNOPPMM9f9fMcddyxwCQAAAAPRxb+4OFOfnFr0jCTJXu/aKzP/aWbRMwAAAAAAAAAAAAAAAAAAAAAAAOggEeqNmD59etETAAAAGKAum3VZpjw2pegZSZIPbPuBPHT2Q0XPAAAAAAAAAAAAAAAAAAAAAAAAoBMqih4AAAAAtHXFw1fkykevzJqsKXpKdt1618z+3OyiZwAAAAAAAAAAAAAAAAAAAAAAANBJItQAAACwmZn22LRc3nD5ZhGg3nHLHfPgqQ8WPQMAAAAAAAAAAAAAAAAAAAAAAIAuEKEGAACAzci1T12bf/vlv6Wl3FL0lLx36HvTcEZD6urqip4CAAAAAAAAAAAAAAAAAAAAAABAF4hQAwAAwGbitmduyxfu/8JmEaCuH1KfR898VIAaAAAAAAAAAAAAAAAAAAAAAACgDxOhBgAAgM3AXXPvyuSfT87q8uqip2TbwdvmsbMeE6AGAAAAAAAAAAAAAAAAAAAAAADo40SoAQAAoGB3zb0rk+6elFVrVhU9JdsM2iYPf+ZhAWoAAAAAAAAAAAAAAAAAAAAAAIB+QIQaAAAACjRz3sxM+umkNK9pLnpKttpiqzSc3ZD6uvqipwAAAAAAAAAAAAAAAAAAAAAAANANRKgBAACgIA0vNeS0GaeluaX4APWw2mF54OQHBKgBAAAAAAAAAAAAAAAAAAAAAAD6ERFqAAAAKMCcxjmZ+OOJm0WAemjN0Mz89MwMrx9e9BQAAAAAAAAAAAAAAAAAAAAAAAC6kQg1AAAA9LI5jXMy7oZxWb56edFTMqR6SO465S4BagAAAAAAAAAAAAAAAAAAAAAAgH5IhBoAAAB60bzGeRl/4/gsW7Ws6CkZXDU4t5xwS/at37foKQAAAAAAAAAAAAAAAAAAAAAAAPQAEWoAAADoJY1NjRl789gsXbm06CmprazNjz7xo4zaZVTRUwAAAAAAAAAAAAAAAAAAAAAAAOghItQAAADQCxqbGjPqB6Oy6O1FRU9JbUVtrp9wfcYMH1P0FAAAAAAAAAAAAAAAAAAAAAAAAHqQCDUAAAD0sMamxhz6w0Pz1oq3ip6S6orqTPv4NAFqAAAAAAAAAAAAAAAAAAAAAACAAUCEGgAAAHpQU1NTjph+RBYuX1j0lFSVqjLlY1MyfsT4oqcAAAAAAAAAAAAAAAAAAAAAAADQC0SoAQAAoIc0NTXl4B8dnAXLFhQ9JVWlqnzz6G/mpL1OKnoKAAAAAAAAAAAAAAAAAAAAAAAAvUSEGgAAAHpAU1NTRl07Kq8tfa3oKaksVeayoy7LGfudUfQUAAAAAAAAAAAAAAAAAAAAAAAAepEINQAAAPSAw647LPOXzC96RipSkUsOvySTRk4qegoAAAAAAAAAAAAAAAAAAAAAAAC9TIQaAAAAutlB3zsoLy9+uegZqUhFvnjoF3PuIecWPQUAAAAAAAAAAAAAAAAAAAAAAIACiFADAABAJ7SsaWn38498/yN5fuHzvbSmfZNHTs4Fh15Q9AwAAAAAAAAAAAAAAAAAAAAAAAAKIkINAAAAHbSkeUk+ccsnMmPujPV+fuT0IzP3L3M3es/KlpVpWtmUcsrdPXGdc/Y/J18Z/ZUeux8AAAAAAAAAAAAAAAAAAAAAAIDNX1XRAwAAAKAv+OuKv+aUO07J041P56nXn0qSTBgxYd3nx/7o2Dz9xtMbvae5pTkrVq9IkjQ1N6Wuti6llLp161n7npXLj768W+8EAAAAAAAAAAAAAAAAAAAAAACg7xGhple8+eabeeyxx/LCCy9kyZIlqa6uzrbbbps99tgjBx54YKqrq4ue2EpjY2NeeumlvPLKK1mwYEGWLVuWVatWZcstt8ywYcOy8847Z7/99suWW27Za5vmz5+f3/3ud3n55ZezZMmSlMvl1NXV5T3veU/e//73Z4899khtbW2v7QEAgIHk1SWvZv+p+2f1mtXZomqLrCmvybn3nJvkbyHqcTeMy+zXZ2/0nhWrVqR5TfO6X7ekpdtD1KfvfXquPPbKbrkLAAAAAAAAAAAAAAAAAAAAAACAvk2Emh51++235zvf+U4aGhpSLpfX+52hQ4dm4sSJ+d//+3/nAx/4QC8vTBYtWpSHH344DQ0NmT17dn73u9/lL3/5y0afK5VK2XvvvXPGGWfk9NNPz/bbb9/t21599dVMmzYtN910U+bNm9fud2tqarLvvvvm6KOPzgknnJD99tuv2/cAAMBA9OqSV7Pf1P3y1oq31p29M0T9jYe+kT+89YeN3vP3Aeq1ujNEfcLuJ+Sq467apDsAAAAAAAAAAAAAAAAAAAAAAADoP0rlDZWBYRO89tprOfXUU/Pggw92+Jmampp86Utfype+9KWUSpsWXuuMCy+8MN/4xjc26Y66urpceumlOe+881JVtelt97fffjtf/vKX853vfCdvv/12p58fPXp0Zs6cuck7+po999wzzz33XJvzPfbYI88++2wBiwAA6OvWF6BOkmG1w7JF1RZZ2LQwK7Myg6sGp6ayZoP3bChA/U6VqdykEPVxux2X60+8vkvPAgAADCT+fQIAAAAAAAAAAAAAAAAAADCQVBQ9gP7n+eefz8iRIzsVoE6SlStX5uKLL86pp56alpaWHlrXM5qamvKFL3wh48aNy4oVKzbprpdeeikHHnhgvvGNb3QpQA0AAHSPDQWok2Rx8+IsaFqQlVmZJFm+enlWtqxc7z0dCVAnSUta0tTclHI6/3dFjd5ptAA1AAAAAAAAAAAAAAAAAAAAAAAAbVQVPYD+ZeHChRk7dmxef/31Np8dcMABOf7447PLLrtkxYoVef7553PjjTfmz3/+c6vv3XTTTdl+++3z7W9/u5dWtzZkyJDsv//+2X333TN8+PC8613vytChQ9PS0pIlS5bk+eefzyOPPJJHH3005XLrONx9992XCRMm5J577kmpVOr0u//whz/kiCOOyBtvvNHmsx122CEf+9jHMmLEiGy//fYZPHhwFi1alFdeeSW//e1v09DQkL/85S9d/n0DAAD/rb0AdZKsKa9pc7Z89fIkSU1lzbqzjgao11oboq6rrUspHfszxRE7HpHbP317h98BAAAAAAAAAAAAAAAAAAAAAADAwCFCTbeaNGlS5s+f3+ps6NChuf766zN+/Pg23//a176Wr33ta/nyl7/c6vw73/lOjjnmmPzjP/5jT85NktTW1uaoo47KP/7jP2b06NH50Ic+lMrKyo0+N2/evJx//vm5++67W53fd999+d73vpdJkyZ1aseCBQty9NFHtwlQ77bbbvnmN7+ZcePGtRu2XrNmTX7zm9/kuuuuS2NjY6feDQAA/LeuBKjXemeIurMB6rU6E6I+6N0H5c5T7uz0OwAAAAAAAAAAAAAAAAAAAAAAABgYSuVyuVz0CPqHBx54IEcffXSrs5qamjQ0NOTAAw9s99nvfOc7+Z//83+2Ohs+fHjmzp2bqqrNt5VeLpczefLkfPe73211vssuu+TFF1/s1D3HHnts7r///lbnEydOzHXXXZeamppO72ovWN1f7bnnnnnuuefanO+xxx559tlnC1gEAEBf89cVf83u/7F7Fq5YuN7P2wtQv1NlKtOSlk3aUlWqSl1N3QY/32eHfTLrrFmb9A4AAICByL9PAAAAAAAAAAAAAAAAAAAABpKKogfQf3z1q19tc3bJJZdsNECdJJ///OczduzYVmfz5s3LjTfe2G37ekKpVMq3vvWt7LTTTq3OX3rppTz++OMdvue6665rE6CeMGFCbrzxxk4HqNfuAgAAOmdJ85KccscpWb1m9Xo/72iAOskmB6iTpKZyw38W2OtdewlQAwAAAAAAAAAAAAAAAAAAAAAAsFEi1HSLZ599Ng899FCrs+222y4XXHBBh+/4+te/3ubsu9/97iZv62m1tbX55Cc/2eb8ueee69Dzzc3N+eIXv9jqbNttt820adNSWVnZLRsBAID2taxpyal3nJqnG5/OFlVbZFjtsFafdyZA3R0GVQ3aYIT6A9t+IA+d/dB6PwMAAAAAAAAAAAAAAAAAAAAAAIB3EqGmW9x8881tzs4666zU1Kw/mrY+BxxwQA444IBWZ48++mheeumlTd7X097//ve3OXv99dc79Oz111+fP//5z63OLr744my33Xbdsg0AANi4yorKfGbfz6Si9Lc/Jr8zRN3bAeraitrUVtau97Odh+2c2Z+b3at7AAAAAAAAAAAAAAAAAAAAAAAA6LtEqOkW9957b5uzT37yk52+Z33PrO/uzc3bb7/d5qyjAe7vf//7bZ477bTTumUXAADQcRNGTMjV/3h1qxB1ZbmyVzfUVtRmUPWg9X6245Y75qHTH+rVPQAAAAAAAAAAAAAAAAAAAAAAAPRtItRssmXLluXJJ59sdTZ48ODsv//+nb7rsMMOa3P20EObf2Ttsccea3P2/ve/f6PPvfLKK3n00UdbnR199NHZZpttum0bAADQce8MUTc1NWVVVvXau9sLUL936HvTcEZD6urqem0PAAAAAAAAAAAAAAAAAAAAAAAAfZ8INZtszpw5WbNmTauzAw88MFVVVZ2+a+TIkamurm519sQTT2zSvp72xz/+MTNmzGh1tsUWW+Twww/f6LMzZ85sc3bwwQd32zYAAKDzJoyYkE+N+FSWZmmvvbO9APX2Q7bPo2c+KkANAAAAAAAAAAAAAAAAAAAAAABAp4lQs8l+//vftzkbPnx4l+6qqanJP/zDP7Q6e+GFF7J69eou3dfTXnzxxXz84x/P22+/3er8rLPOylZbbbXR5xsaGtqc7bvvvut+Xi6Xc9999+Xss8/OXnvtlaFDh6ampib19fXZe++9c/rpp+faa6/NwoULN/W3AgAA/Je75t6V6353XQZXDe6V97UXoN528LZ58KwHBagBAAAAAAAAAAAAAAAAAAAAAADokqqiB9D3vfzyy23Odtpppy7ft+OOO+all15a9+uWlpbMnz8/u+66a5fv7E7Nzc156qmncvPNN2fq1KltAtS77LJLvv71r3fort/97ndtznbbbbckyTPPPJMzzzwzTz75ZJvvvPHGG3njjTfyzDPP5Prrr09dXV0+//nP53/9r/+VYcOGdeF3BQAAJMnMeTMz6e5JWbVmVWoqa5Iky1cv77H3tReg3mbQNnn4Mw+nvq6+x94PAAAAAAAAAAAAAAAAAAAAAABA/yZCzSZrbGxsc/a+972vy/et79k33nijVyPUM2fOzAUXXNDqbPXq1Vm6dGn+/Oc/Z/Xq1et9brfddsv999/f4RD0iy++2OZs2LBh+eEPf5h/+Zd/SXNzc4fuaWpqymWXXZbbbrstd999dz7wgQ906LneMmXKlPznf/5nj7/nhRde6PF3AADQf82cNzOnzTgtzWv++3+H92SIujKVGwxQb7XFVmk4u0GAGgAAAAAAAAAAAAAAAAAAAAAAgE0iQs0me+utt9qc1dXVdfm+9T27cOHCLt/XFYsWLcrTTz/d4e8PGTIk//zP/5xLL700Q4YM6dAzq1atWu/v65e//GU+97nPZc2aNa3Ohw4dmvr6+rS0tOT111/PihUr2jz7/PPP5+CDD84jjzySD37wgx3e39PefPPNPPfcc0XPAACADWp4qSFn3nlmmlva/kUwPRWibklLVrasXHf/WkNrhuaBkx8QoAYAAAAAAAAAAAAAAAAAAAAAAGCTVRQ9gL5v2bJlbc4GDRrU5fvW9+zy5d0be+supVIpn/3sZ/PSSy/liiuu6HCAOvlb6LpcLrc5P/vss9cFqEulUk4//fTMnj07ixcvzvPPP58XXnghS5YsyS9/+cscc8wxbZ7/61//mhNPPHG9/7kAAABtzWmck4k/nthuZLqmsiaVqez2dy9fvTwrW1au+/WQ6iG565S7Mrx+eLe/CwAAAAAAAAAAAAAAAAAAAAAAgIFHhJpNtmrVqjZnW2yxRZfvW1+EeuXKlev5ZvHK5XK+//3vZ6+99sqll16apUuXdvjZ5ubm9Z6vWLEiyd/+Gc6YMSPXXnttPvzhD6dUKq37TlVVVT760Y/m3nvvzVVXXdXqsyR57rnn8tWvfrULvyMAABhY5jXOy/gbx7cboE6SFatWpCUtPbJhbYh6cNXg/PTUn2bf+n175D0AAAAAAAAAAAAAAAAAAAAAAAAMPCLU9Ii/jyJv6rPlcnlT5nTaJz/5yZTL5VY/li1bltdeey0zZ87MpZdeml122WXd9xcsWJAvf/nL+dCHPpTZs2d36B0b+z1NnTo1xx9//EbvOffcc3PRRRe1Of/ud7+bRYsWdWgLAAAMRPMa52XMTWOydGX7f5nMilUr0rxm/X+JTHdZvnp5/uWAfxGgBgAAAAAAAAAAAAAAAAAAAAAAoFuJULPJqqur25ytWLGiy/et79mampou39ddBg8enPe85z0ZPXp0Lr744rzwwgv5j//4jwwZMmTdd15++eWMGTMmjzzyyEbvW98/t7WOPPLInHHGGR3edvHFF7eKYifJkiVLcvPNN3f4DgAAGEgamxoz9uaxWdy8uN3v9UaAOkmGZmi++9R3M2PujB5/FwAAAAAAAAAAAAAAAAAAAAAAAANHVdED6PsGDx7c5qy7I9TvDD1vLkqlUiZPnpy99947xx577LrdTU1N+dSnPpXf/va32XrrrTf4fHu/p3PPPbdTW6qrq3POOefkwgsvbHU+a9as/PM//3On7uoJ73rXu7LHHnv0+HteeOGFNDf3fCAQAIC+rbGpMaN+MCqL3l7U7vd6K0BdnerU1dVlTXlNzr3nb38WmDBiQo+/FwAAAAAAAAAAAAAAAAAAAAAAgP5PhJpNtu2227Y5a2pq6vJ963t2fe/YXBx++OH58pe/nP/zf/7PurNXX3013/zmN/Pv//7vG3xu6NChqampycqVK1udV1RUZMyYMZ3ecfTRR7eJUD/88MOdvqcnTJ48OZMnT+7x9+y555557rnnevw9AAD0XU1NTTn0h4fmrRVvtfu93gpQJ0lLqSVvr347W1RtIUQNAAAAAAAAAAAAAAAAAAAAAABAt6ooegB93w477NDm7NVXX+3yfa+88kqH3rE5+fznP5+hQ4e2Ops2bVrK5XK7z9XX17c523XXXbPlllt2esOHPvShVFZWtjprbGzc6AYAABgompqacsD0A7Jw+cJ2v9ebAeqK0t/+WL64eXHeXv12kqwLUc+YO6NXNgAAAAAAAAAAAAAAAAAAAAAAANB/iVCzyXbZZZc2Z3/605+6fN/8+fNb/bqysjI77rhjl+/rDbW1tTnqqKNanb355pt57rnn2n1u1113bXO27bbbdmlDZWVlhg0b1uqspaUlixYt6tJ9AADQnzQ1NeXgHx2cBcsWtPu9lS0rez1Avdbfh6h/OOeHaVnT0itbAAAAAAAAAAAAAAAAAAAAAAAA6J9EqNlku+++e5uzefPmdemulStX5pVXXml19v73vz9VVVVduq837bzzzm3OXnzxxXafGTFiRJuz2traLm/YYost2py9/fbbXb4PAAD6g6ampoy6dlReW/pau99b2bIyy1cv75VNfx+gXmttiHqf+n1ywwk3pLKislf2AAAAAAAAAAAAAAAAAAAAAAAA0D+JULPJ9ttvv1RUtP6v0uOPP57Vq1d3+q7HH388q1atanW2//77b9K+3rK+APTSpUvbfWbkyJFtzhYvXtzlDYsWLWpztu2223b5PgAA6A+OuOGIzF8yf6PfW9mycpPfVZmNR6M3FKBeq6qiKjeecGO2rN1yk/cAAAAAAAAAAAAAAAAAAAAAAAAwsIlQs8mGDBmS/fbbr9XZsmXL8tRTT3X6rocffrjN2eGHH97lbb1pwYIFbc622267dp858sgj25z96U9/Srlc7vT733zzzSxfvrzV2ZZbbpmamppO3wUAAP3FQd87KC/+9cUOfXdIzZAORaQ3pLaiNkNrh2Zw1eANfmdjAeptBm2TJ895MlsP2rrLOwAAAAAAAAAAAAAAAAAAAAAAAGAtEWq6xbHHHtvm7Pbbb+/0Pet7Zn13b44effTRNmf19fXtPrPLLrtkxIgRrc4WLVqU5557rtPvf+SRR9qc/X0cHAAABpLDfnBYnl/4fIe/X0opdbV1XQpR11bUZlD1oCRJTWVNmxB1dao7FKB+6pyn8g9b/kOn3w8AAAAAAAAAAAAAAAAAAAAAAADrI0JNtzj55JPbnE2fPj0rV67s8B1PPfVUHnvssVZnBx10UHbZZZdN3tfT5syZk7lz57Y622qrrdoEptfntNNOa3N23XXXdXrDtdde2+Zs9OjRnb4HAAD6gzHXjMkzbz7T6ee6EqJ+Z4B6rXeGqAdlULar2y7Daodt8A4BagAAAAAAAAAAAAAAAAAAAAAAAHqCCDXdYq+99sqhhx7a6uzNN9/Mt771rQ7f8cUvfrHN2f/4H/9jk7f1tJaWlpx33nltzo877rhUV1dv9Pmzzz47gwa1DtZNnTo1f/7znzu84cknn8xPfvKTVmelUiknnnhih+8AAID+4tgfHZsnGp/o8vOdCVGvL0C9Vk1lTca9f1y2GbpNkmSLqi3WG6IWoAYAAAAAAAAAAAAAAAAAAAAAAKCniFDTbb70pS+1Obvkkkvy5JNPbvTZ//iP/8h9993X6mzXXXfNKaec0qF377zzzimVSq1+zJo1a6PPXX311XnggQc69I71aW5uzqmnnpqHHnqo1XmpVMq//uu/duiOHXbYIZMnT251tmjRopx66qlZsWLFRp9fsGBBTj311LS0tLQ6P/HEE7PHHnt0aAMAAPQXn7jxE5n9+uxNvqcjIer2AtRJMnHExNx92t25+h+vTkXpb3/8/vsQtQA1AAAAAAAAAAAAAAAAAAAAAAAAPUmEmm5zzDHH5Pjjj2911tzcnI9+9KO5++671/vMqlWr8tWvfjXnnntum8+uuuqqVFdX98jWtZ544okcffTROeSQQ/Kf//mfeeONNzr03KpVq3LHHXdk7733zi233NLm88997nM5+OCDO7zjkksuyY477tjqbNasWRk9enR+//vfb/C5Rx55JIcddlib79TV1eXf//3fO/x+AADoDz550yfz4PwHu+2+9kLUGwtQn7D7CZl6/NQkyYQRE9Ybot520LYC1AAAAAAAAAAAAAAAAAAAAAAAAPSoqqIH0L9873vfyxNPPJFXX3113dmSJUsyfvz4HHjggTn++OOzyy67ZMWKFfnjH/+YG264Ia+99lqbe/71X/81xx13XK/tfvTRR/Poo4/m3HPPzYgRI7Lffvtljz32yDbbbJOtttoqpVIpS5YsyZ///OfMmTMnv/rVr7Jw4cL13vXRj340V155ZafeX1dXl9tuuy2HH354mpub153/+te/zt57752xY8dm9OjRec973pOWlpbMnz8/9957bx566KH13nfNNddk991379QGAADoy0778Wn5xZ9+0e33rg1RNzU3pSUtSZLBVYNTU1mzwWeO2fWY/GDCD1qdTRgxIUly7j3nZk15TQ76h4Ny4wk3ZutBW3f7ZgAAAAAAAAAAAAAAAAAAAAAAAFhLhJpu9a53vSv3339/jjrqqDQ2Nrb67PHHH8/jjz++0TsmTpyYb3/72z20sH1r1qzJs88+m2effbZLz3/iE5/IjTfemEGDBnX62Q9/+MO58847c8IJJ2TFihXrzlevXp177rkn99xzz0bvqKmpyZQpU3LiiSd2+v0AANBXnT3j7Pzsjz/rsfvXhqiXrVyWmsqadgPUo3canZsn3rzez9aGqH8454e54YQbsmXtlj2yFwAAAAAAAAAAAAAAAAAAAAAAANaqKHoA/c+IESPym9/8Joceeminnquurs4ll1ySm266KZWVlT20rrUhQ4Z0yz3ve9/7cvvtt2fGjBldClCvdeyxx+bXv/519tprr04/u9tuu+WXv/xlPvvZz3b5/QAA0Nec97Pzcscf7ujx95RSSl1NXbsB6lHvG5XbP317u/dMGDEhd37qTgFqAAAAAAAAAAAAAAAAAAAAAAAAeoUINT3ife97X371q1/llltuyUc+8pGUSqUNfreuri5nnXVWfvvb3+bLX/5yKip677+WU6ZMybPPPpsrrrgiH//4x1NfX9/hZ3fYYYecfPLJ+fnPf56XXnopJ554Yrds2meffTJnzpxMnz49H/7wh9v9Z1dZWZlDDjkk11xzTebOnZtRo0Z1ywYAAOgLzr/3/Fz3u+uKnpEkOejdB+Wnp/60Q9+trOidv3QHAAAAAAAAAAAAAAAAAAAAAAAASuVyuVz0CPq/BQsW5De/+U1efPHFLFmyJFVVVdluu+0yYsSIjBw5MjU1NUVPXOf111/PCy+8kJdffjlvvfVWli1blnK5nKFDh2bYsGHZfvvts88+++Td7353r+x544038vjjj6/7Z1dTU5Ptttsu73nPe3LIIYdkyy237JUdfcGee+6Z5557rs35HnvskWeffbaARQAA9JQL778wU5+cWvSMJMk+O+yTWWfNKnoGAAAAHeTfJwAAAAAAAAAAAAAAAAAAAANJVdEDGBi23377jBs3rugZHfLud7877373u3PooYcWPSVJssMOO+S4444regYAAGw2Lpt12WYToB6x3QgBagAAAAAAAAAAAAAAAAAAAAAAADZbFUUPAAAAgI664uErcuWjVxY9I0nygW0/kEc++0jRMwAAAAAAAAAAAAAAAAAAAAAAAGCDRKgBAADoE67+9dX5+sNfz5qsKXpKdh62c2Z/bnbRMwAAAAAAAAAAAAAAAAAAAAAAAKBdItQAAABs9qY9Ni2X/urSzSJAveOWO+ah0x8qegYAAAAAAAAAAAAAAAAAAAAAAABslAg1AAAAm7Vrn7o2F/3yorSUW4qekvoh9Wk4oyF1dXVFTwEAAAAAAAAAAAAAAAAAAAAAAICNEqEGAABgs3XbM7flC/d/IavLq4ueku2HbJ/HznpMgBoAAAAAAAAAAAAAAAAAAAAAAIA+Q4QaAACAzdJdc+/K5J9P3iwC1NsO3jYPnvWgADUAAAAAAAAAAAAAAAAAAAAAAAB9igg1AAAAm52Z82Zm0t2TsmrNqqKnZKsttsrDn3k49XX1RU8BAAAAAAAAAAAAAAAAAAAAAACAThGhBgAAYLPS8FJDTptxWprXNBc9JcNqh+WBkx8QoAYAAAAAAAAAAAAAAAAAAAAAAKBPEqEGAABgs9HwUkMm/nhimluKD1APrRmamZ+emeH1w4ueAgAAAAAAAAAAAAAAAAAAAAAAAF0iQg0AAMBmYU7jnHzqjk9l+erlRU/JkOohueuUuwSoAQAAAAAAAAAAAAAAAAAAAAAA6NNEqAEAACjcvMZ5GX/j+CxbtazoKRlcNTg/PfWn2bd+36KnAAAAAAAAAAAAAAAAAAAAAAAAwCYRoQYAAKBQ8xrnZcxNY7J05dKip6S2sja3nnirADUAAAAAAAAAAAAAAAAAAAAAAAD9ggg1AAAAhWlsaszYm8dmcfPioqektqI210+4PqN2GVX0FAAAAAAAAAAAAAAAAAAAAAAAAOgWItQAAAAUorGpMaN+MCqL3l5U9JTUVtRm2senZczwMUVPAQAAAAAAAAAAAAAAAAAAAAAAgG4jQg0AAECva2pqyqE/PDRvrXir6CmprqjO1R+7OuNHjC96CgAAAAAAAAAAAAAAAAAAAAAAAHQrEWoAAAB6VVNTU0ZOH5mFyxcWPSVVpapM+diUnLTXSUVPAQAAAAAAAAAAAAAAAAAAAAAAgG4nQg0AAECvaWpqysE/OjiNyxqLnpLKUmW+efQ3BagBAAAAAAAAAAAAAAAAAAAAAADot0SoAQAA6BVNTU0Zde2ovLb0taKnpLJUmUsOvyRn7HdG0VMAAAAAAAAAAAAAAAAAAAAAAACgx4hQAwAA0CuOuOGIzF8yv+gZqUhFLhx1Yc495NyipwAAAAAAAAAAAAAAAAAAAAAAAECPEqEGAACgx33k+x/Ji399segZqUhFzj/4/Fxw6AVFTwEAAAAAAAAAAAAAAAAAAAAAAIAeJ0INAABAjzrsB4dl7l/mFj0jSTJ55ORcdORFRc8AAAAAAAAAAAAAAAAAAAAAAACAXiFCDQAAQI8Zc82YPPPmM0XPSJKcs/85+crorxQ9AwAAAAAAAAAAAAAAAAAAAAAAAHqNCDUAAAA94tgfHZsnGp8oekaS5PS9T8/lR19e9AwAAAAAAAAAAAAAAAAAAAAAAADoVSLUAAAAdLtP3PiJzH59dtEzkiQTR0zMVcddVfQMAAAAAAAAAAAAAAAAAAAAAAAA6HUi1AAAAHSrk289OQ/Of7DoGUmSE3Y/IVOPn1r0DAAAAAAAAAAAAAAAAAAAAAAAACiECDUAAADd5rQfn5b7Xryv6BlJkmN2PSY/mPCDomcAAAAAAAAAAAAAAAAAAAAAAABAYUSoAQAA6Bbn/OSc/OyPPyt6RpLkiB2PyM0Tby56BgAAAAAAAAAAAAAAAAAAAAAAABRKhBoAAIBNdt7Pzsutc28tekaSZNT7RuXOU+4segYAAAAAAAAAAAAAAAAAAAAAAAAUToQaAACATXL+vefnut9dV/SMJMkB9Qfkp6f+tOgZAAAAAAAAAAAAAAAAAAAAAAAAsFkQoQYAAKDLLv7FxZk+Z3rRM5Ik++ywT2b+08yiZwAAAAAAAAAAAAAAAAAAAAAAAMBmQ4QaAACALrls1mWZ8tiUomckSUZsNyKzzppV9AwAAAAAAAAAAAAAAAAAAAAAAADYrIhQAwAA0GlXPHxFrnz0yqzJmqKnZNetd80jn32k6BkAAAAAAAAAAAAAAAAAAAAAAACw2RGhBgAAoFOu/vXVubzh8s0iQL3zsJ3zxDlPFD0DAAAAAAAAAAAAAAAAAAAAAAAANksi1AAAAHTYtMem5dJfXZqWckvRU7LjljvmodMfKnoGAAAAAAAAAAAAAAAAAAAAAAAAbLZEqAEAAOiQa5+6Nhf98qLNIkBdP6Q+DWc0pK6urugpAAAAAAAAAAAAAAAAAAAAAAAAsNkSoQYAAGCjbnvmtlzwwAVZXV5d9JRsP2T7PHbWYwLUAAAAAAAAAAAAAAAAAAAAAAAAsBEi1AAAALTrrrl3ZfLPJ2fVmlVFT8m2g7fNg2c9KEANAAAAAAAAAAAAAAAAAAAAAAAAHSBCDQAAwAbNnDczk+6etFkEqLfaYqs8/JmHU19XX/QUAAAAAAAAAAAAAAAAAAAAAAAA6BNEqAEAAFivhpcactqM09K8prnoKRlWOywPnPyAADUAAAAAAAAAAAAAAAAAAAAAAAB0ggg1AAAAbTS81JCJP56Y5pbiA9RDa4Zm5qdnZnj98KKnAAAAAAAAAAAAAAAAAAAAAAAAQJ8iQg0AAEArcxrn5FN3fCrLVy8vekqGVA/JXafcJUANAAAAAAAAAAAAAAAAAAAAAAAAXSBCDQAAwDrzGudl/I3js2zVsqKnZHDV4Pz01J9m3/p9i54CAAAAAAAAAAAAAAAAAAAAAAAAfZIINQAAAEn+FqAec9OYLF25tOgpqa2sza0n3ipADQAAAAAAAAAAAAAAAAAAAAAAAJtAhBoAAIA0NjVm7M1js7h5cdFTUltRm+snXJ9Ru4wqegoAAAAAAAAAAAAAAAAAAAAAAAD0aSLUAAAAA1xjU2NG/WBUFr29qOgpqa6ozrSPT8uY4WOKngIAAAAAAAAAAAAAAAAAAAAAAAB9ngg1AADAANbU1JQjph+Rt1a8VfSUVFdUZ8rHpmT8iPFFTwEAAAAAAAAAAAAAAAAAAAAAAIB+QYQaAABggGpqasrI6SOzYNmCoqekqlSVK8ZekZP2OqnoKQAAAAAAAAAAAAAAAAAAAAAAANBviFADAAAMQE1NTTn4RwencVlj0VNSWarMZUddljP2O6PoKQAAAAAAAAAAAAAAAAAAAAAAANCviFADAAAMQIddd1heW/pa0TNSWarMJYdfkkkjJxU9BQAAAAAAAAAAAAAAAAAAAAAAAPodEWoAAIAB5oCpB+TlxS8XPSMVqciFoy7MuYecW/QUAAAAAAAAAAAAAAAAAAAAAAAA6JdEqAEAAAaQj3z/I3nxry8WPSMVqcj5B5+fCw69oOgpAAAAAAAAAAAAAAAAAAAAAAAA0G+JUAMAAAwQh/3gsMz9y9yiZyRJJo+cnIuOvKjoGQAAAAAAAAAAAAAAAAAAAAAAANCviVADAAAMAGOuGZNn3nym6BlJkrP2PStfGf2VomcAAAAAAAAAAAAAAAAAAAAAAABAvydCDQAA0M+Nu2Fcnmh8ougZSZLT9z49Vx57ZdEzAAAAAAAAAAAAAAAAAAAAAAAAYEAQoQYAAOjHPnHjJ9LwSkPRM5IkE0dMzFXHXVX0DAAAAAAAAAAAAAAAAAAAAAAAABgwRKgBAAD6qZNvPTkPzn+w6BlJkuN2Oy5Tj59a9AwAAAAAAAAAAAAAAAAAAAAAAAAYUESoAQAA+qHTfnxa7nvxvqJnJEmO2fWYXH/i9UXPAAAAAAAAAAAAAAAAAAAAAAAAgAFHhBoAAKCfOecn5+Rnf/xZ0TOSJEfseERunnhz0TMAAAAAAAAAAAAAAAAAAAAAAABgQBKhBgAA6EfO+9l5uXXurUXPSJKMet+o3HnKnUXPAAAAAAAAAAAAAAAAAAAAAAAAgAFLhBoAAKCfuPD+C3Pd764rekaS5ID6A/LTU39a9AwAAAAAAAAAAAAAAAAAAAAAAAAY0ESoAQAA+oGLf3Fxpj45tegZSZK93rVXZv7TzKJnAAAAAAAAAAAAAAAAAAAAAAAAwIAnQg0AANDHXTbrskx5bErRM5IkI7YbkYfOfqjoGQAAAAAAAAAAAAAAAAAAAAAAAEBEqAEAAPq0Kx6+Ilc+emXWZE3RU7Lr1rvmkc8+UvQMAAAAAAAAAAAAAAAAAAAAAAAA4L+IUAMAAPRRV//66lzecPlmEaDeedjOeeKcJ4qeAQAAAAAAAAAAAAAAAAAAAAAAALyDCDUAAEAfNO2xabn0V5empdxS9JS8d+h789DpDxU9AwAAAAAAAAAAAAAAAAAAAAAAAPg7ItQAAAB9zLVPXZuLfnnRZhGgrh9Sn0fPfDR1dXVFTwEAAAAAAAAAAAAAAAAAAAAAAAD+jgg1AABAH3LbM7flggcuyOry6qKnZPsh2+exsx4ToAYAAAAAAAAAAAAAAAAAAAAAAIDNlAg1AABAH3HX3Lsy+eeTs2rNqqKnZJtB2+TBsx4UoAYAAAAAAAAAAAAAAAAAAAAAAIDNmAg1AABAHzBz3sxMunvSZhGg3mqLrdJwdkPq6+qLngIAAAAAAAAAAAAAAAAAAAAAAAC0Q4QaAABgM9fwUkNOm3Famtc0Fz0lw2qH5YGTHxCgBgAAAAAAAAAAAAAAAAAAAAAAgD5AhBoAAGAzNqdxTib+eGKaW4oPUA+tGZqZn56Z4fXDi54CAAAAAAAAAAAAAAAAAAAAAAAAdIAINQAAwGZqTuOcjLthXJavXl70lAypHpK7TrlLgBoAAAAAAAAAAAAAAAAAAAAAAAD6EBFqAACAzdC8xnkZf+P4LFu1rOgpGVw1OLeccEv2rd+36CkAAAAAAAAAAAAAAAAAAAAAAABAJ4hQAwAAbGbmNc7LmJvGZOnKpUVPSW1lbW498daM2mVU0VMAAAAAAAAAAAAAAAAAAAAAAACAThKhBgAA2Iw0NjVm7M1js7h5cdFTUltRm+snXC9ADQAAAAAAAAAAAAAAAAAAAAAAAH2UCDUAAMBmorGpMYf+8NAsentR0VNSXVGdaR+fljHDxxQ9BQAAAAAAAAAAAAAAAAAAAAAAAOgiEWoAAIDNQFNTU46YfkQWLl9Y9JRUlaoy5WNTMn7E+KKnAAAAAAAAAAAAAAAAAAAAAAAAAJtAhBoAAKBgTU1NGTl9ZBYsW1D0lFSVqvLNo7+Zk/Y6qegpAAAAAAAAAAAAAAAAAAAAAAAAwCYSoQYAAChQU1NTRl07Ko3LGouekspSZS476rKcsd8ZRU8BAAAAAAAAAAAAAAAAAAAAAAAAuoEINQAAQIEOu+6wzF8yv+gZqSxV5pLDL8mkkZOKngIAAAAAAAAAAAAAAAAAAAAAAAB0ExFqAACAghz0vYPy8uKXi56RilTkwlEX5txDzi16CgAAAAAAAAAAAAAAAAAAAAAAANCNRKgBAAAK8JHvfyTPL3y+6BmpSEXOP/j8XHDoBUVPAQAAAAAAAAAAAAAAAAAAAAAAALqZCDUAAEAvO3L6kZn7l7lFz0iSTB45ORcdeVHRMwAAAAAAAAAAAAAAAAAAAAAAAIAeIEINAADQi8ZcMyZPv/F00TOSJGfte1a+MvorRc8AAAAAAAAAAAAAAAAAAAAAAAAAeogINQAAQC8Zd8O4PNH4RNEzkiSn7316rjz2yqJnAAAAAAAAAAAAAAAAAAAAAAAAAD1IhBoAAKAXfPKmT6bhlYaiZyRJJo6YmKuOu6roGQAAAAAAAAAAAAAAAAAAAAAAAEAPE6EGAADoYSffenJ+8adfFD0jSXLcbsdl6vFTi54BAAAAAAAAAAAAAAAAAAAAAAAA9AIRagAAgB509oyzc9+L9xU9I0kyeqfRuf7E64ueAQAAAAAAAAAAAAAAAAAAAAAAAPQSEWoAAIAecs5Pzskdf7ij6BlJkiN2PCK3f/r2omcAAAAAAAAAAAAAAAAAAAAAAAAAvUiEGgAAoAec97PzcuvcW4uekSQ56N0H5c5T7ix6BgAAAAAAAAAAAAAAAAAAAAAAANDLRKgBAAC62YX3X5jrfndd0TOSJAfUH5B7z7y36BkAAAAAAAAAAAAAAAAAAAAAAABAAUSoAQAAutHFv7g4U5+cWvSMJMle79orM/9pZtEzAAAAAAAAAAAAAAAAAAAAAAAAgIKIUAMAAHSTy2ZdlimPTSl6RpLkA9t+IA+d/VDRMwAAAAAAAAAAAAAAAAAAAAAAAIACiVADAAB0gyseviJXPnpl1mRN0VOy69a7ZvbnZhc9AwAAAAAAAAAAAAAAAAAAAAAAACiYCDUAAMAmmvbYtFzecPlmEaDeccsd8+CpDxY9AwAAAAAAAAAAAAAAAAAAAAAAANgMiFADAABsgmufujb/9st/S0u5pegpee/Q96bhjIbU1dUVPQUAAAAAAAAAAAAAAAAAAAAAAADYDIhQAwAAdNFtz9yWL9z/hc0iQF0/pD6PnvmoADUAAAAAAAAAAAAAAAAAAAAAAACwjgg1AABAF9w1965M/vnkrC6vLnpKth28bR476zEBagAAAAAAAAAAAAAAAAAAAAAAAKAVEWoAAIBOumvuXZl096SsWrOq6CnZZtA2efgzDwtQAwAAAAAAAAAAAAAAAAAAAAAAAG2IUAMAAHTCzHkzM+nuSWle01z0lGy1xVZpOLsh9XX1RU8BAAAAAAAAAAAAAAAAAAAAAAAANkMi1AAAAB3U8FJDTptx2mYRoB5WOywPnPyAADUAAAAAAAAAAAAAAAAAAAAAAACwQSLUAAAAHTCncU4m/nhimluKD1APrRmamZ+emeH1w4ueAgAAAAAAAAAAAAAAAAAAAAAAAGzGRKgBAAA2Yk7jnIy7YVyWr15e9JQMqR6Su065S4AaAAAAAAAAAAAAAAAAAAAAAAAA2CgRagAAgHbMa5yX8TeOz7JVy4qeksFVg3PLCbdk3/p9i54CAAAAAAAAAAAAAAAAAAAAAAAA9AEi1AAAABswr3Fextw0JktXLi16Smora3Pribdm1C6jip4CAAAAAAAAAAAAAAAAAAAAAAAA9BEi1AAAAOvR2NSYY245JoubFxc9JbUVtbl+wvUC1AAAAAAAAAAAAAAAAAAAAAAAAECniFADAAD8ncamxhz6w0Pz1oq3ip6S6orqTPv4tIwZPqboKQAAAAAAAAAAAAAAAAAAAAAAAEAfI0INAADwDk1NTTli+hFZuHxh0VNSVarKlI9NyfgR44ueAgAAAAAAAAAAAAAAAAAAAAAAAPRBItQAAAD/pampKSOnj8yCZQuKnpKqUlW+efQ3c9JeJxU9BQAAAAAAAAAAAAAAAAAAAAAAAOijRKgBAADytwD1qGtHpXFZY9FTUlmqzGVHXZYz9juj6CkAAAAAAAAAAAAAAAAAAAAAAABAHyZCDQAAkOSw6w7L/CXzi56RilTkksMvyaSRk4qeAgAAAAAAAAAAAAAAAAAAAAAAAPRxItQAAMCAd9D3DsrLi18uekYqUpEvHvrFnHvIuUVPAQAAAAAAAAAAAAAAAAAAAAAAAPoBEWoAAGBA+8j3P5LnFz5f9IwkyfkHn58LDr2g6BkAAAAAAAAAAAAAAAAAAAAAAABAPyFCDQAADFhHTj8yc/8yt+gZSZJz9j8nFx15UdEzAAAAAAAAAAAAAAAAAAAAAAAAgH5EhBoAABiQjv3RsXn6jaeLnpEkOWvfs3L50ZcXPQMAAAAAAAAAAAAAAAAAAAAAAADoZ0SoAQCAAWfcDeMy+/XZRc9Ikpy+9+m58tgri54BAAAAAAAAAAAAAAAAAAAAAAAA9EMi1AAAwIDyyZs+mYZXGoqekSQ5YfcTctVxVxU9AwAAAAAAAAAAAAAAAAAAAAAAAOinRKgBAIAB4+RbT84v/vSLomckSY7b7bj8YMIPip4BAAAAAAAAAAAAAAAAAAAAAAAA9GMi1AAAwIBw9oyzc9+L9xU9I0kyeqfRuf7E64ueAQAAAAAAAAAAAAAAAAAAAAAAAPRzItQAAEC/d85Pzskdf7ij6BlJkiN2PCK3f/r2omcAAAAAAAAAAAAAAAAAAAAAAAAAA4AINQAA0K+df+/5uXXurUXPSJIc9O6DcucpdxY9AwAAAAAAAAAAAAAAAAAAAAAAABggRKgBAIB+68L7L8z0OdOLnpEk2WeHfXLvmfcWPQMAAAAAAAAAAAAAAAAAAAAAAAAYQESoAQCAfuniX1ycqU9OLXpGkmSvd+2VWWfNKnoGAAAAAAAAAAAAAAAAAAAAAAAAMMCIUAMAAP3OFQ9fkSmPTSl6RpLkA9t+IA+d/VDRMwAAAAAAAAAAAAAAAAAAAAAAAIABSIQaAADoV67+9dX5+sNfz5qsKXpKdt1618z+3OyiZwAAAAAAAAAAAAAAAAAA/P/s/WuU13Wh9/+/ZmAYZEBIlDATQUkXHkpFlhYobsVDHvCQoiWiROHeF0ldyCrdtFU0letaSplRS8zcKZ7QtFDbHtBEGIOQwlLYIQdDzQnDVAaQ4/xv7OvPb88eShhm5jOHx2Mtbnzf3+/n/Xnq8oZrudZLAAAAAKCNMkINAAC0GlPnT83EFyY2iwHqXrv3yqyLZhWdAQAAAAAAAAAAAAAAAAAAAAAAALRhRqgBAIBW4e7f3Z0Jz03IlpotRadkny77pHJEZTp37lx0CgAAAAAAAAAAAAAAAAAAAAAAANCGGaEGAABavIdeeShXPH1FNtdsLjolPSp6ZO4lcw1QAwAAAAAAAAAAAAAAAAAAAAAAAIUzQg0AALRoMxbPyJhfjmkWA9TdO3XPrJGzDFADAAAAAAAAAAAAAAAAAAAAAAAAzYIRagAAoMWauXRmRj82Opu2bio6JXvstkfmfHlOenbuWXQKAAAAAAAAAAAAAAAAAAAAAAAAQBIj1AAAQAs1c+nMDH90eDZs3VB0Srp17JbKUZUGqAEAAAAAAAAAAAAAAAAAAAAAAIBmxQg1AADQ4lSuqMwlP78kG7YUP0DdtbxrnrnwGQPUAAAAAAAAAAAAAAAAAAAAAAAAQLNjhBoAAGhRFlYtzLCfDcu6zeuKTklFWUV+/sWfp2/PvkWnAAAAAAAAAAAAAAAAAAAAAAAAANRhhBoAAGgxFlYtzND7hjaLAepO7Tvl8Ysez+E9Dy86BQAAAAAAAAAAAAAAAAAAAAAAAGC7jFADAAAtwtKqpTn7/rOzZuOaolPSqX2nTP/CdAPUAAAAAAAAAAAAAAAAAAAAAAAAQLNmhBoAAGj2qqqrctIDJ+X9De8XnZLyduX56dk/zcA+A4tOAQAAAAAAAAAAAAAAAAAAAAAAAPiHjFADAADNWlV1VQbeOTDvffhe0SkpLy3PtHOmZUjfIUWnAAAAAAAAAAAAAAAAAAAAAAAAAHwkI9QAAECzVVVdlUE/GZR3179bdErKSssy9cypBqgBAAAAAAAAAAAAAAAAAAAAAACAFsMINQAA0CxVV1dn8F2Ds3rd6qJT0r6kfaacNiVD+w0tOgUAAAAAAAAAAAAAAAAAAAAAAABghxmhBgAAmp3q6uoc89NjsmrtqqJT0r6kfW45+Zacf+j5RacAAAAAAAAAAAAAAAAAAAAAAAAA7BQj1AAAQLNSXV2dgXcPzFtr3io6Je1K2uWGE27IiCNGFJ0CAAAAAAAAAAAAAAAAAAAAAAAAsNOMUAMAAM3K4HsHZ+UHK4vOSGlKc81x12T0gNFFpwAAAAAAAAAAAAAAAAAAAAAAAADUixFqAACg2Tj6jqOz/G/Li85IaUoz7phxufyzlxedAgAAAAAAAAAAAAAAAAAAAAAAAFBvRqgBAIBm4dg7j82S1UuKzkiSjBkwJhOOn1B0BgAAAAAAAAAAAAAAAAAAAAAAAMAuMUINAAAU7vi7js8r77xSdEaS5LIjL8t1J15XdAYAAAAAAAAAAAAAAAAAAAAAAADALjNCDQAAFOrUn56al//yctEZSZKRh4/MpJMnFZ0BAAAAAAAAAAAAAAAAAAAAAAAA0CCMUAMAAIU5+76zM+/teUVnJEmG9RuWyadOLjoDAAAAAAAAAAAAAAAAAAAAAAAAoMEYoQYAAApx3v3nZdbKWUVnJEnOPejc3H7W7UVnAAAAAAAAAAAAAAAAAAAAAAAAADQoI9QAAECTG/6z4Xn2T88WnZEkOWX/U3LnOXcWnQEAAAAAAAAAAAAAAAAAAAAAAADQ4IxQAwAATWrUo6PyxGtPFJ2RJDlxvxPzwLAHis4AAAAAAAAAAAAAAAAAAAAAAAAAaBRGqAEAgCYz9omxeeSPjxSdkSQZuO/APPzFh4vOAAAAAAAAAAAAAAAAAAAAAAAAAGg0RqgBAIAmMe7JcbnnD/cUnZEkOXrvo/P4RY8XnQEAAAAAAAAAAAAAAAAAAAAAAADQqIxQAwAAje7Kp6/MXQvvKjojSfKZj38mT17yZNEZAAAAAAAAAAAAAAAAAAAAAAAAAI3OCDUAANCobnj+htz+29uLzkiS9NuzX54f+XzRGQAAAAAAAAAAAAAAAAAAAAAAAABNwgg1AADQaG6ec3Mmz51cdEaS5MDuB+bFr7xYdAYAAAAAAAAAAAAAAAAAAAAAAABAkzFCDQAANIrbfn1bbppzU7Zma9Ep6d21d+Z9dV7RGQAAAAAAAAAAAAAAAAAAAAAAAABNygg1AADQ4KbOn5qJL0xsFgPUvXbvldkXzy46AwAAAAAAAAAAAAAAAAAAAAAAAKDJGaEGAAAa1N2/uzsTnpuQLTVbik7JPl32SeWIynTu3LnoFAAAAAAAAAAAAAAAAAAAAAAAAIAm177oANqGd955J/Pnz8+yZcvywQcfpKysLN27d8/BBx+co446KmVlZUUn1lJVVZUVK1bkjTfeyKpVq7J27dps2rQpu+++e7p27ZrevXvniCOOyO677150KgBAs/LQKw/liqevyOaazUWnpEdFj8y9ZK4BagAAAAAAAAAAAAAAAAAAAAAAAKDNMkJNo3r44Ydz6623prKyMjU1Ndv9TZcuXTJs2LB885vfzIEHHtjEhcl7772XOXPmpLKyMvPmzcsf/vCH/PWvf/3I50pKSnLYYYdlxIgRufjii9OjR48mqE1+8pOfZNSoUdv9bsWKFendu3eTdAAA/E8zFs/ImF+OaRYD1N07dc+skbMMUAMAAAAAAAAAAAAAAAAAAAAAAABtWmnRAbROb731Vo4//vicf/75mTNnzt8doE6SNWvW5M4778xhhx2W66+//h/+tjFMmjQpZ555ZiZNmpRf/epXOzRAnSQ1NTX5/e9/n/Hjx+eAAw7I5MmTs3lz4w4uvvnmmxk3blyjvgMAoD5mLp2Z0Y+Nzqatm4pOyR677ZE5X56Tnp17Fp0CAAAAAAAAAAAAAAAAAAAAAAAAUCgj1DS4JUuWZMCAAZk1a9ZOPbdx48ZcffXVueiii7Jly5ZGqmsc1dXVueKKK3LGGWdk/fr1jfaeUaNG5f3332+0+wEA6qNyRWWGPzo8G7ZuKDolXcu7pnJUpQFqAAAAAAAAAAAAAAAAAAAAAAAAgCTtiw6gdVm9enVOOumkvP3223W+69+/f84666z06dMn69evz5IlS3Lfffflz3/+c63f3X///enRo0e+973vNVF1bRUVFTnyyCNz0EEHpW/fvtlrr73SpUuXbNmyJR988EGWLFmSF198MXPnzk1NTU2tZ5966qmcc845+Y//+I+UlJQ0aNfUqVPz9NNPN+idAAC7qnJFZYb9bFg2bCl+gLpLhy6Z+cWZBqgBAAAAAAAAAAAAAAAAAAAAAAAA/h8j1DSo0aNHZ+XKlbXOunTpkmnTpmXo0KF1fn/jjTfmxhtvzLXXXlvr/NZbb80pp5ySz3/+842ZmyQpLy/PCSeckM9//vM58cQT8+lPfzrt2rX7yOeWLl2acePG5bHHHqt1/tRTT+WOO+7I6NGjG6zxT3/6U8aPH7/tc9euXdOzZ8/88Y9/bLB3AADsrIVVC3PBIxdk3eZ1RaekoqwiM740I3179i06BQAAAAAAAAAAAAAAAAAAAAAAAKDZKC06gNbjmWeeySOPPFLrrEOHDnnuuee2O0CdJGVlZbnmmmvyve99r853Y8eOzebNmxsjtZaJEyfm2Wefzfjx43PEEUfs0AB1kvTt2ze/+MUv8i//8i91vps0aVKD9dXU1GTUqFFZs2bNtrNbbrklPXv2bLB3AADsrKVVSzP0vqFZu2lt0Snp1L5THr/o8Rze8/CiUwAAAAAAAAAAAAAAAAAAAAAAAACaFSPUNJjrr7++ztk111yTo4466iOf/frXv56TTjqp1tnSpUtz3333NVhfYygpKcl3v/vd7LfffrXOV6xYkZdeeqlB3vGjH/0ozz777LbPQ4YMyahRoxrkbgCA+lhatTRD7h+SNRvXfPSPG1l5u/JM/8J0A9QAAAAAAAAAAAAAAAAAAAAAAAAA22GEmgbx6quvZvbs2bXO9txzz4wfP36H77jpppvqnP3oRz/a5bbGVl5envPOO6/O+aJFi3b57hUrVuSb3/zmts8VFRW54447dvleAID6qqquykkPnJT3N7xfdErKS8sz7ZxpGdhnYNEpAAAAAAAAAAAAAAAAAAAAAAAAAM2SEWoaxAMPPFDnbOTIkenQocMO39G/f//079+/1tncuXOzYsWKXe5rbAcccECds7fffnuX7qypqcnIkSOzdu3abWc33XRTevfuvUv3AgDUV1V1VQbeOTDvffhe0SkpLy3P1DOnZkjfIUWnAAAAAAAAAAAAAAAAAAAAAAAAADRbRqhpEE8++WSds/POO2+n79neM9u7u7n58MMP65ztzAD39tx2222ZNWvWts+DBg3K1772tV26EwCgvqqrqzPoJ4Py7vp3i05JWWlZbjvttgztN7ToFAAAAAAAAAAAAAAAAAAAAAAAAIBmzQg1u2zt2rX57W9/W+usU6dOOfLII3f6rmOPPbbO2ezZs+vd1lTmz59f5+yAAw6o933Lli3LVVddte1zx44dc+edd6akpKTedwIA1Fd1dXUG3DUgq9etLjol7UvaZ8ppU3L+oecXnQIAAAAAAAAAAAAAAAAAAAAAAADQ7BmhZpctXLgwW7durXV21FFHpX379jt914ABA1JWVlbrbMGCBbvU19hee+21PProo7XOOnbsmOOOO65e923dujUjR47MunXrtp1NnDgxBx544C51AgDUR3V1dY756TGpWltVdEralbTLLSffYoAaAAAAAAAAAAAAAAAAAAAAAAAAYAcZoWaX/ed//meds759+9brrg4dOuSTn/xkrbNly5Zl8+bN9bqvsS1fvjxnnnlmPvzww1rnI0eOTLdu3ep156233prZs2dv+3zUUUfliiuu2JVMAIB6qa6uzsC7B+atNW8VnZJ2Je1y4wk3ZsQRI4pOAQAAAAAAAAAAAAAAAAAAAAAAAGgxjFCzy15//fU6Z/vtt1+97+vVq1etz1u2bMnKlSvrfV9D27BhQ+bOnZtvfOMbOeSQQ/LHP/6x1vd9+vTJTTfdVK+7lyxZkgkTJmz7XFZWlp/85Cdp167dLjUDANTH4HsHZ+UHxf97WGlKc+XAKzN6wOiiUwAAAAAAAAAAAAAAAAAAAAAAAABalPZFB9DyVVVV1Tnbd999633f9p79y1/+kv3337/ed+6smTNnZvz48bXONm/enDVr1uTPf/5zNm/evN3nPvWpT+Xpp59O165dd/qdW7duzaWXXpr169dvO5swYUIOO+ywnb6ruZkyZUp++MMfNvp7li1b1ujvAIC24ug7js7yvy0vOiOlKc24Y8Zl/KDxH/1jAAAAAAAAAAAAAAAAAAAAAAAAAGoxQs0ue/fdd+ucde7cud73be/Z1atX1/u++njvvffy8ssv7/DvKyoq8s///M+ZOHFiKioq6vXOW265Jb/+9a+3fT7ssMPyr//6r/W6q7l55513smjRoqIzAIAddOydx2bJ6iVFZyRJxgwYkwnHTyg6AwAAAAAAAAAAAAAAAAAAAAAAAKBFMkLNLlu7dm2ds912263e923v2XXr1tX7vsZUUlKSUaNG5cYbb8xee+1V73sWL16cq6++etvndu3a5Sc/+UnKysoaIhMAYIcN+fcheeWdV4rOSJJcduRlue7E64rOAAAAAAAAAAAAAAAAAAAAAAAAAGixSosOoOXbtGlTnbOOHTvW+77tjVBv3Lix3vc1ppqamvz4xz/OoYcemokTJ2bNmjU7fceWLVty6aWX5sMPP9x2Nn78+Bx11FENmQoA8JFO/empWVC1oOiMJMnFh12cSSdPKjoDAAAAAAAAAAAAAAAAAAAAAAAAoEUzQk2jKCkpadBna2pqdiVnp5133nmpqamp9Wft2rV56623MnPmzEycODF9+vTZ9vtVq1bl2muvzac//enMmzdvp971f//v/81vfvObbZ8POuigXHvttQ31lwIAsEPOvu/szHt75/49prEM6zcs3z/9+0VnAAAAAAAAAAAAAAAAAAAAAAAAALR4RqjZZWVlZXXO1q9fX+/7tvdshw4d6n1fQ+nUqVM+8YlP5MQTT8zVV1+dZcuW5Qc/+EEqKiq2/eb111/PkCFD8uKLL+7Qna+++mqtwemSkpLceeed6dixY0PnAwD8XRdOvzCzVs4qOiNJcu5B5+b2s24vOgMAAAAAAAAAAAAAAAAAAAAAAACgVWhfdAAtX6dOneqcNfQI9X8fem4uSkpKMmbMmBx22GE59dRTt3VXV1fnggsuyO9///t87GMf+7vPb968OZdcckk2bty47exrX/taBg4c2OjtTW2vvfbKwQcf3OjvWbZsWTZs2NDo7wGA1mT4z4bnqeVPFZ2RJDll/1Ny5zl3Fp0BAAAAAAAAAAAAAAAAAAAAAAAA0GoYoWaXde/evc5ZdXV1ve/b3rPbe0dzcdxxx+Xaa6/Nt771rW1nb775Zm655ZZ85zvf+bvPTZo0KQsWLNj2uXfv3rnpppsatbUoY8aMyZgxYxr9PYccckgWLVrU6O8BgNbisl9clidee6LojCTJifudmAeGPVB0BgAAAAAAAAAAAAAAAAAAAAAAAECrUlp0AC3fxz/+8Tpnb775Zr3ve+ONN3boHc3J17/+9XTp0qXW2dSpU1NTU7Pd37/55pu5/vrra53dcccdqaioaLRGAID/buwTYzN98fSiM5IkA/cdmIe/+HDRGQAAAAAAAAAAAAAAAAAAAAAAAACtTvuiA2j5+vTpU+fsT3/6U73vW7lyZa3P7dq1S69evep9X1MoLy/PCSeckF/84hfbzt55550sWrQohxxySJ3f//Wvf83GjRu3fe7QoUPGjx+/U+9cunRpnbPTTjstHTp0qHV23XXXZejQoTt1NwDQuo17clzu+cM9RWckSfr37J/HL3q86AwAAAAAAAAAAAAAAAAAAAAAAACAVskINbvsoIMOqnO2vYHkHbFx48a88cYbtc4OOOCAtG/f/P9R7d27d52z5cuXb3eE+n/auHFjXn755V1uWLx4cZ2zd999d5fvBQBaj6ufvTp3Lbyr6IwkyWc+/pnMvHRm0RkAAAAAAAAAAAAAAAAAAAAAAAAArVZp0QG0fEcccURKS2v/o/TSSy9l8+bNO33XSy+9lE2bNtU6O/LII3epr6l07NixztmaNWsKKAEA2L4bnr8hU+ZPKTojSdJvz355fuTzRWcAAAAAAAAAAAAAAAAAAAAAAAAAtGpGqNllFRUVOeKII2qdrV27Nr/73e92+q45c+bUOTvuuOPq3daUVq1aVedszz33LKAEAKCum+fcnMlzJ2drthadkgO7H5gXv/Ji0RkAAAAAAAAAAAAAAAAAAAAAAAAArZ4RahrEqaeeWufs4Ycf3ul7tvfM9u5ujubOnVvnrGfPntv97eGHH56amppd+jN48OA6965YsaLO7y699NKG/ksFAFqY2359WyZVTmoWA9S9u/bOvK/OKzoDAAAAAAAAAAAAAAAAAAAAAAAAoE0wQk2DuPDCC+uc3XXXXdm4ceMO3/G73/0u8+fPr3V29NFHp0+fPrvc19gWLlyYxYsX1zrr1q1b+vXrV1ARAMB/mTp/aia+MDFbarYUnZJeu/fK7ItnF50BAAAAAAAAAAAAAAAAAAAAAAAA0GYYoaZBHHrooRk0aFCts3feeSff/e53d/iOq666qs7Zv/zLv+xyW2PbsmVLxo4dW+f89NNPT1lZWQFFAAD/5e7f3Z0Jz01oFgPUPSt6pnJEZTp37lx0CgAAAAAAAAAAAAAAAAAAAAAAAECbYYSaBvPtb3+7ztk111yT3/72tx/57A9+8IM89dRTtc7233//fOlLX9qhd/fu3TslJSW1/jz//PMf+dxtt92WZ555ZofesT0bNmzIRRddlNmzZ9c6Lykpyde+9rV63wsAsKseeuWhXPH0Fdlcs7nolPSo6JH5I+cboAYAAAAAAAAAAAAAAAAAAAAAAABoYkaoaTCnnHJKzjrrrFpnGzZsyD/90z/lscce2+4zmzZtyvXXX5/LL7+8znff//73U1ZW1iit/38LFizIySefnM9+9rP54Q9/mL/85S879NymTZvyyCOP5LDDDsuDDz5Y5/uvfvWrOeaYYxo6FwBgh8xYPCNjfjmmWQxQd+/UPbNGzjJADQAAAAAAAAAAAAAAAAAAAAAAAFCA9kUH0LrccccdWbBgQd58881tZx988EGGDh2ao446KmeddVb69OmT9evX57XXXsu9996bt956q849X/va13L66ac3WffcuXMzd+7cXH755enXr1+OOOKIHHzwwdljjz3SrVu3lJSU5IMPPsif//znLFy4MC+88EJWr1693bv+6Z/+KZMnT26ydgCA/27m0pkZ/djobNq6qeiUdOvYLXO+PCc9O/csOgUAAAAAAAAAAAAAAAAAAAAAAACgTTJCTYPaa6+98vTTT+eEE05IVVVVre9eeumlvPTSSx95x7Bhw/K9732vkQr/sa1bt+bVV1/Nq6++Wq/nzz777Nx3333ZbbfdGrgMAOCjVa6ozPBHh2fD1g1Fp6Rredc8c+EzBqgBAAAAAAAAAAAAAAAAAAAAAAAAClRadACtT79+/fKb3/wmgwYN2qnnysrKcs011+T+++9Pu3btGqmutoqKiga5Z999983DDz+cRx991AA1AFCIyhWVGfazYdmwpfgB6i4dumTmF2emb8++RacAAAAAAAAAAAAAAAAAAAAAAAAAtGlGqGkU++67b1544YU8+OCD+dznPpeSkpK/+9vOnTtn5MiR+f3vf59rr702paVN94/llClT8uqrr+bmm2/OmWeemZ49e+7wsx//+Mdz4YUX5pe//GVWrFiRL3zhC41YCgDw9y2sWpgLHrkg6zavKzolFWUVmfGlGQaoAQAAAAAAAAAAAAAAAAAAAAAAAJqBkpqampqiI2j9Vq1ald/85jdZvnx5Pvjgg7Rv3z577rln+vXrlwEDBqRDhw5FJ27z9ttvZ9myZXn99dfz7rvvZu3atampqUmXLl3StWvX9OjRI5/5zGey9957F53K/3DIIYdk0aJFdc4PPvjgvPrqqwUUAUDjW1q1NCfcd0LWbFxTdEo6te+UJ4Y/kcN7Hl50CgAAAMDf5b8nAAAAAAAAAAAAAAAAAAAAbUn7ogNoG3r06JEzzjij6Iwdsvfee2fvvffOoEGDik4BAPiHllYtzZD7hzSLAeryduWZ/oXpBqgBAAAAAAAAAAAAAAAAAAAAAAAAmpHSogMAAICdV1VdlZMeOCnvb3i/6JSUl5Zn2jnTMrDPwKJTAAAAAAAAAAAAAAAAAAAAAAAAAPhvjFADAEALU1VdlYF3Dsx7H75XdErKSssy9cypGdJ3SNEpAAAAAAAAAAAAAAAAAAAAAAAAAPwPRqgBAKAFqa6uzuC7Bufd9e8WnZKy0rJMOW1KhvYbWnQKAAAAAAAAAAAAAAAAAAAAAAAAANthhBoAAFqI6urqDLhrQFatXVV0StqXtM/NJ92c8w89v+gUAAAAAAAAAAAAAAAAAAAAAAAAAP4OI9QAANACVFdX55ifHpOqtVVFp6RdSbvccMINGXHEiKJTAAAAAAAAAAAAAAAAAAAAAAAAAPgHjFADAEALcOw9x+atNW8VnZF2Je1yzXHXZPSA0UWnAAAAAAAAAAAAAAAAAAAAAAAAAPARjFADAEAz1//2/nn9/deLzkhpSnPlwCtz+WcvLzoFAAAAAAAAAAAAAAAAAAAAAAAAgB1ghBoAAJqxz/34c1n+t+VFZ6Q0pRl3zLiMHzS+6BQAAAAAAAAAAAAAAAAAAAAAAAAAdpARagAAaKaOvfPYLP7r4qIzkiRjBozJhOMnFJ0BAAAAAAAAAAAAAAAAAAAAAAAAwE4wQg0AAM3QkH8fklfeeaXojCTJZUdelutOvK7oDAAAAAAAAAAAAAAAAAAAAAAAAAB2khFqAABoZs6494wsqFpQdEaS5OLDLs6kkycVnQEAAAAAAAAAAAAAAAAAAAAAAABAPRihBgCAZuTs+85O5RuVRWckSYb1G5bvn/79ojMAAAAAAAAAAAAAAAAAAAAAAAAAqCcj1AAA0ExcOP3CzFo5q+iMJMnpnzo9t591e9EZAAAAAAAAAAAAAAAAAAAAAAAAAOwCI9QAANAMDP/Z8Dy1/KmiM5Ikp+x/SqZ9YVrRGQAAAAAAAAAAAAAAAAAAAAAAAADsIiPUAABQsMt+cVmeeO2JojOSJIN7Dc4Dwx4oOgMAAAAAAAAAAAAAAAAAAAAAAACABmCEGgAACjT2ibGZvnh60RlJkoH7DszPv/TzojMAAAAAAAAAAAAAAAAAAAAAAAAAaCBGqAEAoCBXPn1l7vnDPUVnJEn69+yfxy96vOgMAAAAAAAAAAAAAAAAAAAAAAAAABqQEWoAACjA1c9endt/e3vRGUmSQ/c6NDMvnVl0BgAAAAAAAAAAAAAAAAAAAAAAAAANzAg1AAA0sRuevyFT5k8pOiNJ0m/Pfpk9anbRGQAAAAAAAAAAAAAAAAAAAAAAAAA0AiPUAADQhG6ec3Mmz52crdladEr2/9j+efErLxadAQAAAAAAAAAAAAAAAAAAAAAAAEAjMUINAABN5LZf35ZJlZOaxQB17669s+CyBUVnAAAAAAAAAAAAAAAAAAAAAAAAANCIjFADAEATmDp/aia+MDFbarYUnZJ9uuyT2RfPLjoDAAAAAAAAAAAAAAAAAAAAAAAAgEZmhBoAABrZ3b+7OxOem9AsBqh7VvTM3EvmpnPnzkWnAAAAAAAAAAAAAAAAAAAAAAAAANDIjFADAEAjeuiVhzL+mfHZXLO56JT0qOiR+SPnG6AGAAAAAAAAAAAAAAAAAAAAAAAAaCOMUAMAQCOZsXhGxvxyTDZt3VR0SvbYbY/MGjnLADUAAAAAAAAAAAAAAAAAAAAAAABAG2KEGgAAGsHMpTMz+rHRzWKAulvHbqkcVZmenXsWnQIAAAAAAAAAAAAAAAAAAAAAAABAEzJCDQAADaxyRWWGPzo8G7ZuKDolXcu75pkLnzFADQAAAAAAAAAAAAAAAAAAAAAAANAGGaEGAIAGtLBqYYb9bFg2bCl+gLpLhy6Z+cWZ6duzb9EpAAAAAAAAAAAAAAAAAAAAAAAAABTACDUAADSQhVULc8a9Z2Td5nVFp6SirCIzvjTDADUAAAAAAAAAAAAAAAAAAAAAAABAG2aEGgAAGsDSqqUZet/QrN20tuiUdGrfKQ+e+2AO73l40SkAAAAAAAAAAAAAAAAAAAAAAAAAFMgINQAA7KKlVUsz5P4hWbNxTdEpKW9XnulfmJ6BfQYWnQIAAAAAAAAAAAAAAAAAAAAAAABAwYxQAwDALqiqrspJD5yU9ze8X3RKykvLM+2caQaoAQAAAAAAAAAAAAAAAAAAAAAAAEhihBoAAOqtqroqg34yKO99+F7RKSkrLcvUM6dmSN8hRacAAAAAAAAAAAAAAAAAAAAAAAAA0EwYoQYAgHqorq7O4LsGZ/W61UWnpKy0LFNOm5Kh/YYWnQIAAAAAAAAAAAAAAAAAAAAAAABAM2KEGgAAdlJ1dXUG3DUgq9auKjol7Uva5+aTbs75h55fdAoAAAAAAAAAAAAAAAAAAAAAAAAAzYwRagAA2AnV1dUZePfAVK2tKjol7Ura5YYTbsiII0YUnQIAAAAAAAAAAAAAAAAAAAAAAABAM2SEGgAAdsKx9xyblR+sLDoj7Ura5ZrjrsnoAaOLTgEAAAAAAAAAAAAAAAAAAAAAAACgmTJCDQAAO6j/7f3z+vuvF52R0pTmyoFX5vLPXl50CgAAAAAAAAAAAAAAAAAAAAAAAADNmBFqAADYAZ/78eey/G/Li85IaUoz7phxGT9ofNEpAAAAAAAAAAAAAAAAAAAAAAAAADRzRqgBAOAjHH/X8Vn818VFZyRJxgwYkwnHTyg6AwAAAAAAAAAAAAAAAAAAAAAAAIAWwAg1AAD8A0P+fUhe/svLRWckSUYePjLXnXhd0RkAAAAAAAAAAAAAAAAAAAAAAAAAtBBGqAEA4O84494zsqBqQdEZSZKLD7s4k0+dXHQGAAAAAAAAAAAAAAAAAAAAAAAAAC2IEWoAANiO8+4/L5VvVBadkSQZ1m9Yvn/694vOAAAAAAAAAAAAAAAAAAAAAAAAAKCFMUINAAD/w4XTL8yzf3q26IwkyemfOj23n3V70RkAAAAAAAAAAAAAAAAAAAAAAAAAtEBGqAEA4L8Z/rPheWr5U0VnJElO2f+UTPvCtKIzAAAAAAAAAAAAAAAAAAAAAAAAAGihjFADAMD/c9kvLssTrz1RdEaSZHCvwXlg2ANFZwAAAAAAAAAAAAAAAAAAAAAAAADQghmhBgCAJGOfGJvpi6cXnZEkOXrvo/PzL/286AwAAAAAAAAAAAAAAAAAAAAAAAAAWjgj1AAAtHlXPn1l7vnDPUVnJEn69+yfJy95sugMAAAAAAAAAAAAAAAAAAAAAAAAAFoBI9QAALRpVz97dW7/7e1FZyRJDt3r0My8dGbRGQAAAAAAAAAAAAAAAAAAAAAAAAC0EkaoAQBos254/oZMmT+l6IwkyYHdD8zsUbOLzgAAAAAAAAAAAAAAAAAAAAAAAACgFTFCDQBAm3TznJszee7kbM3WolOy/8f2z7yvzis6AwAAAAAAAAAAAAAAAAAAAAAAAIBWxgg1AABtztT5UzOpclKzGKDu3bV3Zl00q+gMAAAAAAAAAAAAAAAAAAAAAAAAAFohI9QAALQpd//u7vzrc/+aLTVbik7JPl32yeyLZ6dz585FpwAAAAAAAAAAAAAAAAAAAAAAAADQChmhBgCgzXjolYdyxdNXNIsB6p4VPTP3krkGqAEAAAAAAAAAAAAAAAAAAAAAAABoNEaoAQBoE2YsnpExvxyTzTWbi05J907dM3/kfAPUAAAAAAAAAAAAAAAAAAAAAAAAADQqI9QAALR6MxbPyOjHRmfT1k1Fp2SP3fbInC/PMUANAAAAAAAAAAAAAAAAAAAAAAAAQKMzQg0AQKs2c+nMjH5sdDZs3VB0Srp17JbKUZXp2bln0SkAAAAAAAAAAAAAAAAAAAAAAAAAtAFGqAEAaLUqV1Rm+KPDm8UAddfyrnnmwmcMUAMAAAAAAAAAAAAAAAAAAAAAAADQZIxQAwDQKi2sWphhPxuWDVuKH6Du0qFLZn5xZvr27Ft0CgAAAAAAAAAAAAAAAAAAAAAAAABtiBFqAABanYVVC3PGvWdk3eZ1RaekoqwiM740wwA1AAAAAAAAAAAAAAAAAAAAAAAAAE3OCDUAAK3K0qqlGXrf0KzdtLbolHRq3ykPnvtgDu95eNEpAAAAAAAAAAAAAAAAAAAAAAAAALRBRqgBAGg1llYtzZD7h2TNxjVFp6S8XXmmf2F6BvYZWHQKAAAAAAAAAAAAAAAAAAAAAAAAAG2UEWoAAFqFquqqnPLgKXl/w/tFp6S8tDzTzplmgBoAAAAAAAAAAAAAAAAAAAAAAACAQhmhBgCgxauqrsqgnwzKu+vfLTolZaVlmXrm1AzpO6ToFAAAAAAAAAAAAAAAAAAAAAAAAADaOCPUAAC0aNXV1Rl81+CsXre66JS0L2mfKadNydB+Q4tOAQAAAAAAAAAAAAAAAAAAAAAAAAAj1AAAtFzV1dUZcNeArFq7quiUtC9pn1tOviXnH3p+0SkAAAAAAAAAAAAAAAAAAAAAAAAAkMQINQAALVR1dXUG3j0wVWurik5Ju5J2ueGEGzLiiBFFpwAAAAAAAAAAAAAAAAAAAAAAAADANkaoAQBokY6959is/GBl0RkpTWmuOe6ajB4wuugUAAAAAAAAAAAAAAAAAAAAAAAAAKjFCDUAAC3O0Xccndfff73ojJSmNFcNuiqXf/byolMAAAAAAAAAAAAAAAAAAAAAAAAAoA4j1AAAtCif+/HnsmT1kqIzkiTjjhmX8YPGF50BAAAAAAAAAAAAAAAAAAAAAAAAANtlhBoAgBbj+LuOz+K/Li46I0ly2ZGXZcLxE4rOAAAAAAAAAAAAAAAAAAAAAAAAAIC/ywg1AAAtwqk/PTUv/+XlojOSJCMPH5lJJ08qOgMAAAAAAAAAAAAAAAAAAAAAAAAA/iEj1AAANHtn3HtG5r09r+iMJMnFh12cyadOLjoDAAAAAAAAAAAAAAAAAAAAAAAAAD6SEWoAAJq18+4/L5VvVBadkSQ596Bz8/3Tv190BgAAAAAAAAAAAAAAAAAAAAAAAADsECPUAAA0WxdOvzDP/unZojOSJKd/6vTcec6dRWcAAAAAAAAAAAAAAAAAAAAAAAAAwA4zQg0AQLM06tFReWr5U0VnJElO3O/ETPvCtKIzAAAAAAAAAAAAAAAAAAAAAAAAAGCnGKEGAKDZuewXl+WRPz5SdEaSZHCvwXn4iw8XnQEAAAAAAAAAAAAAAAAAAAAAAAAAO80INQAAzcq4J8dl+uLpRWckSY7e++j8/Es/LzoDAAAAAAAAAAAAAAAAAAAAAAAAAOrFCDUAAM3GlU9fmbsW3lV0RpLkMx//TJ685MmiMwAAAAAAAAAAAAAAAAAAAAAAAACg3oxQAwDQLFz97NW5/be3F52RJDl0r0Pz/Mjni84AAAAAAAAAAAAAAAAAAAAAAAAAgF1ihBoAgMLd8PwNmTJ/StEZSZIDux+Y2aNmF50BAAAAAAAAAAAAAAAAAAAAAAAAALvMCDUAAIW67de3ZfLcydmarUWnZP+P7Z95X51XdAYAAAAAAAAAAAAAAAAAAAAAAAAANAgj1AAAFGbq/KmZ+MLEZjFA3Wv3Xpl10ayiMwAAAAAAAAAAAAAAAAAAAAAAAACgwRihBgCgEHf/7u7863P/mi01W4pOyT5d9knliMp07ty56BQAAAAAAAAAAAAAAAAAAAAAAAAAaDBGqAEAaHIPvfJQrnj6imYxQN2jokfmXjLXADUAAAAAAAAAAAAAAAAAAAAAAAAArY4RagAAmtSMxTMy5pdjsrlmc9Ep6d6pexaMXGCAGgAAAAAAAAAAAAAAAAAAAAAAAIBWyQg1AABNZsbiGRn92Ohs2rqp6JTssdsemfPlOQaoAQAAAAAAAAAAAAAAAAAAAAAAAGi1jFADANAkZi6dmdGPj86GrRuKTkm3jt1SOaoyPTv3LDoFAAAAAAAAAAAAAAAAAAAAAAAAABqNEWoAABpd5YrKDH90eDZsKX6Aumt51zxz4TMGqAEAAAAAAAAAAAAAAAAAAAAAAABo9YxQAwDQqBZWLcywnw1rFgPUXTp0ycwvzkzfnn2LTgEAAAAAAAAAAAAAAAAAAAAAAACARmeEGgCARrOwamHOuPeMrNu8ruiUVJRVZMaXZhigBgAAAAAAAAAAAAAAAAAAAAAAAKDNMEINAECjWFq1NGfff3bWblpbdEo6te+UB899MIf3PLzoFAAAAAAAAAAAAAAAAAAAAAAAAABoMkaoAQBocFXVVTnpgZPy/ob3i05Jebvy/PTsn2Zgn4FFpwAAAAAAAAAAAAAAAAAAAAAAAABAkzJCDQBAg6qqrsrAOwfmvQ/fKzol5aXlmXbOtAzpO6ToFAAAAAAAAAAAAAAAAAAAAAAAAABockaoAQBoMFXVVRn0k0F5d/27RaekrLQsU8+caoAaAAAAAAAAAAAAAAAAAAAAAAAAgDbLCDUAAA2iuro6g+8anNXrVhedkvYl7TPltCkZ2m9o0SkAAAAAAAAAAAAAAAAAAAAAAAAAUBgj1AAA7LLq6uoc89NjsmrtqqJT0r6kfW45+Zacf+j5RacAAAAAAAAAAAAAAAAAAAAAAAAAQKGMUAMAsEuqq6sz8O6BeWvNW0WnpF1Ju9xwwg0ZccSIolMAAAAAAAAAAAAAAAAAAAAAAAAAoHBGqAEA2CWD7x2clR+sLDojpSnNNcddk9EDRhedAgAAAAAAAAAAAAAAAAAAAAAAAADNghFqAADq7eg7js7yvy0vOiOlKc1Vg67K5Z+9vOgUAAAAAAAAAAAAAAAAAAAAAAAAAGg2jFADAFAvx955bJasXlJ0RpJkzIAxGT9ofNEZAAAAAAAAAAAAAAAAAAAAAAAAANCsGKEGAGCnHX/X8XnlnVeKzkiSXHbkZbnuxOuKzgAAAAAAAAAAAAAAAAAAAAAAAACAZscINQAAO+XUn56al//yctEZSZKRh4/MpJMnFZ0BAAAAAAAAAAAAAAAAAAAAAAAAAM2SEWoAAHbY2fednXlvzys6I0ly8WEXZ/Kpk4vOAAAAAAAAAAAAAAAAAAAAAAAAAIBmywg1AAA75Lz7z8uslbOKzkiSnHvQufn+6d8vOgMAAAAAAAAAAAAAAAAAAAAAAAAAmjUj1AAAfKThPxueZ//0bNEZSZLTP3V67jznzqIzAAAAAAAAAAAAAAAAAAAAAAAAAKDZM0INAMA/NOrRUXnitSeKzkiSnLjfiZn2hWlFZwAAAAAAAAAAAAAAAAAAAAAAAABAi2CEGgCAv2vsE2PzyB8fKTojSTJw34F5+IsPF50BAAAAAAAAAAAAAAAAAAAAAAAAAC2GEWoAALZr3JPjcs8f7ik6I0ly9N5H5/GLHi86AwAAAAAAAAAAAAAAAAAAAAAAAABaFCPUAADUceXTV+auhXcVnZEk+czHP5MnL3my6AwAAAAAAAAAAAAAAAAAAAAAAAAAaHGMUAMAUMsNz9+Q2397e9EZSZJ+e/bL8yOfLzoDAAAAAAAAAAAAAAAAAAAAAAAAAFokI9QAAGxz85ybM3nu5KIzkiQHdj8wL37lxaIzAAAAAAAAAAAAAAAAAAAAAAAAAKDFMkINAECS5LZf35ab5tyUrdladEp6d+2deV+dV3QGAAAAAAAAAAAAAAAAAAAAAAAAALRoRqgBAMjU+VMz8YWJzWKAutfuvTL74tlFZwAAAAAAAAAAAAAAAAAAAAAAAABAi2eEGgCgjbv7d3dnwnMTsqVmS9Ep2afLPqkcUZnOnTsXnQIAAAAAAAAAAAAAAAAAAAAAAAAALZ4RagCANuyhVx7KFU9fkc01m4tOSY+KHpl7yVwD1AAAAAAAAAAAAAAAAAAAAAAAAADQQIxQAwC0UTMWz8iYX45pFgPU3Tt1z6yRswxQAwAAAAAAAAAAAAAAAAAAAAAAAEADMkINANAGzVw6M6MfG51NWzcVnZI9dtsjc748Jz079yw6BQAAAAAAAAAAAAAAAAAAAAAAAABaFSPUAABtzMylMzP80eHZsHVD0Snp1rFbKkdVGqAGAAAAAAAAAAAAAAAAAAAAAAAAgEZghBoAoA2pXFGZS35+STZsKX6AukuHLnnmwmcMUAMAAAAAAAAAAAAAAAAAAAAAAABAIzFCDQDQRiysWpgLHrkg6zavKzolFWUVmfGlGenbs2/RKQAAAAAAAAAAAAAAAAAAAAAAAADQahmhBgBoA5ZWLc3Q+4Zm7aa1RaekU/tOefyix3N4z8OLTgEAAAAAAAAAAAAAAAAAAAAAAACAVs0INQBAK7e0ammG3D8kazauKTol5e3KM/0L0w1QAwAAAAAAAAAAAAAAAAAAAAAAAEATMEINANCKVVVX5aQHTsr7G94vOiXlpeWZds60DOwzsOgUAAAAAAAAAAAAAAAAAAAAAAAAAGgTjFADALRSVdVVGXjnwLz34XtFp6S8tDxTz5yaIX2HFJ0CAAAAAAAAAAAAAAAAAAAAAAAAAG2GEWoAgFaouro6g34yKO+uf7folJSVlmXqmVMztN/QolMAAAAAAAAAAAAAAAAAAAAAAAAAoE0xQg0A0MpUV1dnwF0Dsnrd6qJT0r6kfaacNsUANQAAAAAAAAAAAAAAAAAAAAAAAAAUwAg1AEArUl1dnWN+ekyq1lYVnZJ2Je1yy8m35PxDzy86BQAAAAAAAAAAAAAAAAAAAAAAAADaJCPUAACtRHV1dQbePTBvrXmr6JS0K2mXG0+4MSOOGFF0CgAAAAAAAAAAAAAAAAAAAAAAAAC0WUaoAQBaicH3Ds7KD1YWnZHSlOaa467J6AGji04BAAAAAAAAAAAAAAAAAAAAAAAAgDbNCDUAQCtw9B1HZ/nflhedkdKUZtwx43L5Zy8vOgUAAAAAAAAAAAAAAAAAAAAAAAAA2jwj1AAALdyxdx6bJauXFJ2RJBkzYEwmHD+h6AwAAAAAAAAAAAAAAAAAAAAAAAAAIEaoAQBatCH/PiSvvPNK0RlJksuOvCzXnXhd0RkAAAAAAAAAAAAAAAAAAAAAAAAAwP9jhBoAoIU69aenZkHVgqIzkiQjDx+ZSSdPKjoDAAAAAAAAAAAAAAAAAAAAAAAAAPhvjFADALRAZ993dua9Pa/ojCTJsH7DMvnUyUVnAAAAAAAAAAAAAAAAAAAAAAAAAAD/gxFqAIAW5rz7z8uslbOKzkiSnHvQubn9rNuLzgAAAAAAAAAAAAAAAAAAAAAAAAAAtsMINQBACzL8Z8Pz7J+eLTojSXLK/qfkznPuLDoDAAAAAAAAAAAAAAAAAAAAAAAAAPg7jFADALQQox4dlSdee6LojCTJifudmAeGPVB0BgAAAAAAAAAAAAAAAAAAAAAAAADwDxihBgBoAcY+MTaP/PGRojOSJAP3HZiHv/hw0RkAAAAAAAAAAAAAAAAAAAAAAAAAwEcwQg0A0MyNe3Jc7vnDPUVnJEn69+yfxy96vOgMAAAAAAAAAAAAAAAAAAAAAAAAAGAHGKEGAGjGrnz6yty18K6iM5Ikn/n4ZzLz0plFZwAAAAAAAAAAAAAAAAAAAAAAAAAAO8gINQBAM3XD8zfkjt/eUXRGkqTfnv3y/Mjni84AAAAAAAAAAAAAAAAAAAAAAAAAAHaCEWoAgGbo5jk3Z/LcydmarUWn5MDuB+bFr7xYdAYAAAAAAAAAAAAAAAAAAAAAAAAAsJOMUAMANDO3/fq2TKqc1CwGqHt37Z15X51XdAYAAAAAAAAAAAAAAAAAAAAAAAAAUA9GqAEAmpGp86dm4gsTs6VmS9Ep6bV7r8y+eHbRGQAAAAAAAAAAAAAAAAAAAAAAAABAPRmhBgBoJu7+3d2Z8NyEZjFA3bOiZypHVKZz585FpwAAAAAAAAAAAAAAAAAAAAAAAAAA9WSEGgCgGXjolYdyxdNXZHPN5qJT0qOiR+aPnG+AGgAAAAAAAAAAAAAAAAAAAAAAAABaOCPUAAAFm7F4Rsb8ckyzGKDu3ql7Zo2cZYAaAAAAAAAAAAAAAAAAAAAAAAAAAFoBI9QAAAWauXRmRj82Opu2bio6Jd06dsucL89Jz849i04BAAAAAAAAAAAAAAAAAAAAAAAAABqAEWoAgIJUrqjM8EeHZ8PWDUWnpGt51zxz4TMGqAEAAAAAAAAAAAAAAAAAAAAAAACgFTFCDQBQgMoVlRn2s2HZsKX4AeouHbpk5hdnpm/PvkWnAAAAAAAAAAAAAAAAAAAAAAAAAAANyAg1AEATW1i1MBc8ckHWbV5XdEoqyioy40szDFADAAAAAAAAAAAAAAAAAAAAAAAAQCtkhBoAoAktrVqaofcNzdpNa4tOSaf2nfL4RY/n8J6HF50CAAAAAAAAAAAAAAAAAAAAAAAAADQCI9QAAE1kadXSDLl/SNZsXFN0SsrblWf6F6YboAYAAAAAAAAAAAAAAAAAAAAAAACAVswINQBAE6iqrspJD5yU9ze8X3RKykvLM+2caRnYZ2DRKQAAAAAAAAAAAAAAAAAAAAAAAABAIzJCDQDQyKqqqzLwzoF578P3ik5JWWlZpp45NUP6Dik6BQAAAAAAAAAAAAAAAAAAAAAAAABoZEaoAQAaUXV1dQbfNTjvrn+36JSUlZZlymlTMrTf0KJTAAAAAAAAAAAAAAAAAAAAAAAAAIAmYIQaAKCRVFdXZ8BdA7Jq7aqiU9K+pH1uPunmnH/o+UWnAAAAAAAAAAAAAAAAAAAAAAAAAABNpH3RAbQN77zzTubPn59ly5blgw8+SFlZWbp3756DDz44Rx11VMrKyopOrKWqqiorVqzIG2+8kVWrVmXt2rXZtGlTdt9993Tt2jW9e/fOEUcckd13371R3r9mzZq8+uqree211/K3v/0ta9asSUVFRT72sY9ln332yYABA9K1a9dGeTcADaO6ujrH/PSYVK2tKjol7Ura5ZaTb8mII0YUnQIAAAAAAAAAAAAAAAAAAAAAAAAANCEj1DSqhx9+OLfeemsqKytTU1Oz3d906dIlw4YNyze/+c0ceOCBTVyYvPfee5kzZ04qKyszb968/OEPf8hf//rXj3yupKQkhx12WEaMGJGLL744PXr0qHfD+++/nyeffDK/+tWv8qtf/SpLliz5yHcfeuihGTFiRL785S9njz32qPe7AWgcx95zbN5a81bRGWlX0i7XHHeNAWoAAAAAAAAAAAAAAAAAAAAAAAAAaINKav7eMjDsgrfeeisXXXRRZs2atcPPdOjQId/+9rfz7W9/OyUlJY1YV9uVV16Z//N//s8u3dG5c+dMnDgxY8eOTfv2O77tPmPGjNxxxx15+umns3Hjxnq9u1OnTrnhhhsyduzYlJaW1uuO1uKQQw7JokWL6pwffPDBefXVVwsoAtqq/rf3z/K/LS86I6UpzVWDrsr4QeOLTgEAAACAZsN/TwAAAAAAAAAAAAAAAAAAANqStr1YS6NYsmRJBgwYsFMD1EmycePGXH311bnooouyZcuWRqprHNXV1bniiityxhlnZP369Tv83OTJk/P444/Xe4A6SdatW5f//b//d04++eSsXbu23vcA0DA+9+PPNZsB6nHHjDNADQAAAAAAAAAAAAAAAAAAAAAAAABtWPuiA2hdVq9enZNOOilvv/12ne/69++fs846K3369Mn69euzZMmS3Hffffnzn/9c63f3339/evToke9973tNVF1bRUVFjjzyyBx00EHp27dv9tprr3Tp0iVbtmzJBx98kCVLluTFF1/M3LlzU1NTU+vZp556Kuecc07+4z/+IyUlJfVu6NatWwYOHJijjjoqPXr0yJ577pl169ZlxYoVee655zJnzpw6zzz77LMZOnRofvnLX6a8vLze7wag/o6989gs/uviojOSJGMGjMmE4ycUnQEAAAAAAAAAAAAAAAAAAAAAAAAAFMgINQ1q9OjRWblyZa2zLl26ZNq0aRk6dGid399444258cYbc+2119Y6v/XWW3PKKafk85//fGPmJknKy8tzwgkn5POf/3xOPPHEfPrTn067du0+8rmlS5dm3Lhxeeyxx2qdP/XUU7njjjsyevTonero2rVrLrjgglx66aU5+uijU1paut3fTZw4MQsXLsxXvvKVLFiwoNZ3zz33XG666aY6fz8BaHxD/n1IXnnnlaIzkiSXHXlZrjvxuqIzAAAAAAAAAAAAAAAAAAAAAAAAAICCldTU1NQUHUHr8Mwzz+Tkk0+uddahQ4dUVlbmqKOO+ofP3nrrrfnGN75R66xv375ZvHhx2rdvvlvpNTU1GTNmTH70ox/VOu/Tp0+WL1/+kc8ff/zxee211/Ktb30rX/3qV7Pbbrvt8Ls3btyYs846K08++WSt844dO+a1117LJz/5yR2+q7U45JBDsmjRojrnBx98cF599dUCioC24ox7z0jlG5VFZyRJLj7s4nz/9O8XnQEAAAAAzZb/ngAAAAAAAAAAAAAAAAAAALQlpUUH0Hpcf/31dc6uueaajxygTpKvf/3rOemkk2qdLV26NPfdd1+D9TWGkpKSfPe7381+++1X63zFihV56aWXPvL5q666KsuWLcvYsWN3aoA6+a+B7+nTp2fvvfeudf7hhx/moYce2qm7AKi/s+87u9kMUA/rN8wANQAAAAAAAAAAAAAAAAAAAAAAAACwjRFqGsSrr76a2bNn1zrbc889M378+B2+46abbqpz9qMf/WiX2xpbeXl5zjvvvDrnixYt+shnTznllHTs2LHe7+7Spct2/x4//vjj9b4TgB134fQLM2vlrKIzkiSnf+r03H7W7UVnAAAAAAAAAAAAAAAAAAAAAAAAAADNiBFqGsQDDzxQ52zkyJHp0KHDDt/Rv3//9O/fv9bZ3Llzs2LFil3ua2wHHHBAnbO33367Sd592mmn1Tlbvnx5k7wboC0b/rPheWr5U0VnJElO2f+UTPvCtKIzAAAAAAAAAAAAAAAAAAAAAAAAAIBmxgg1DeLJJ5+sc3beeeft9D3be2Z7dzc3H374YZ2znRng3hW9evWqc1ZVVdUk7wZoqy77xWV54rUnis5IkgzuNTgPDKv7P4MAAAAAAAAAAAAAAAAAAAAAAAAAADBCzS5bu3Ztfvvb39Y669SpU4488sidvuvYY4+tczZ79ux6tzWV+fPn1zk74IADmuTd69atq3O22267Ncm7AdqisU+MzfTF04vOSJIM3Hdgfv6lnxedAQAAAAAAAAAAAAAAAAAAAAAAAAA0U0ao2WULFy7M1q1ba50dddRRad++/U7fNWDAgJSVldU6W7BgwS71NbbXXnstjz76aK2zjh075rjjjmuS9y9durTO2d57790k7wZoa8Y9OS73/OGeojOSJP179s/jFz1edAYAAAAAAAAAAAAAAAAAAAAAAAAA0IwZoWaX/ed//meds759+9brrg4dOuSTn/xkrbNly5Zl8+bN9bqvsS1fvjxnnnlmPvzww1rnI0eOTLdu3Zqk4eGHH65zNmDAgCZ5N0BbcvWzV+euhXcVnZEk+czHP5OZl84sOgMAAAAAAAAAAAAAAAAAAAAAAAAAaOaMULPLXn/99Tpn++23X73v69WrV63PW7ZsycqVK+t9X0PbsGFD5s6dm2984xs55JBD8sc//rHW93369MlNN93UJC3r16/PPffcU+f8rLPOapL3A7QVNzx/Q6bMn1J0RpKk35798vzI54vOAAAAAAAAAAAAAAAAAAAAAAAAAABagPZFB9DyVVVV1Tnbd999633f9p79y1/+kv3337/ed+6smTNnZvz48bXONm/enDVr1uTPf/5zNm/evN3nPvWpT+Xpp59O165dmyIzkyZNyqpVq2qdfeITn8hpp53WJO/fUVOmTMkPf/jDRn/PsmXLGv0dQNtz85ybM3nu5GzN1qJTsv/H9s+LX3mx6AwAAAAAAAAAAAAAAAAAAAAAAAAAoIUwQs0ue/fdd+ucde7cud73be/Z1atX1/u++njvvffy8ssv7/DvKyoq8s///M+ZOHFiKioqGrHs//PSSy/lpptuqnN+3XXXpby8vEkadtQ777yTRYsWFZ0BsNNu+/VtmVQ5qVkMUPfu2jsLLltQdAYAAAAAAAAAAAAAAAAAAAAAAAAA0IIYoWaXrV27ts7ZbrvtVu/7tvfsunXr6n1fYyopKcmoUaNy4403Zq+99mqy965evTrnn39+Nm3aVOt88ODB+fKXv9xkHQCt2dT5UzPxhYnZUrOl6JTs02WfzL54dtEZAAAAAAAAAAAAAAAAAAAAAAAAAEALU1p0AC3f/xxCTpKOHTvW+77tjVBv3Lix3vc1ppqamvz4xz/OoYcemokTJ2bNmjWN/s6NGzfm3HPPzeuvv17rfI899sjdd9+dkpKSRm8AaO3u/t3dmfDchGYxQN2zomfmXjI3nTt3LjoFAAAAAAAAAAAAAAAAAAAAAAAAAGhhjFDTKHZlCHl7z9bU1OxKzk4777zzUlNTU+vP2rVr89Zbb2XmzJmZOHFi+vTps+33q1atyrXXXptPf/rTmTdvXqN1bd26NSNGjMgLL7xQ67xdu3a5995706tXr0Z7N0Bb8dArD2X8M+OzuWZz0SnpUdEj80fON0ANAAAAAAAAAAAAAAAAAAAAAAAAANSLEWp2WVlZWZ2z9evX1/u+7T3boUOHet/XUDp16pRPfOITOfHEE3P11Vdn2bJl+cEPfpCKioptv3n99dczZMiQvPjii43S8L/+1//Kgw8+WOuspKQkt99+e0499dRGeSdAWzJj8YyM+eWYbNq6qeiU7LHbHpk1cpYBagAAAAAAAAAAAAAAAAAAAAAAAACg3toXHUDL16lTpzpnDT1C/d+HnpuLkpKSjBkzJocddlhOPfXUbd3V1dW54IIL8vvf/z4f+9jHGux948aNy+23317n/Hvf+15GjRrVYO9pDHvttVcOPvjgRn/PsmXLsmHDhkZ/D9A6zVw6M6MfG90sBqi7deyWylGV6dm5Z9EpAAAAAAAAAAAAAAAAAAAAAAAAAEALZoSaXda9e/c6Z9XV1fW+b3vPbu8dzcVxxx2Xa6+9Nt/61re2nb355pu55ZZb8p3vfKdB3nHVVVflu9/9bp3zSZMmZezYsQ3yjsY0ZsyYjBkzptHfc8ghh2TRokWN/h6g9alcUZnhjw7Phq3FD9l3Le+aZy58xgA1AAAAAAAAAAAAAAAAAAAAAAAAALDLSosOoOX7+Mc/XufszTffrPd9b7zxxg69ozn5+te/ni5dutQ6mzp1ampqanb57muvvTaTJk2qc37dddfVGr4GoH4WVi3MsJ8Ny4YtxQ9Qd+nQJTO/ODN9e/YtOgUAAAAAAAAAAAAAAAAAAAAAAAAAaAWMULPL+vTpU+fsT3/6U73vW7lyZa3P7dq1S69evep9X1MoLy/PCSecUOvsnXfeyaJFi3bp3u985zuZOHFinfN/+7d/y7/927/t0t0A/NcA9Rn3npF1m9cVnZKKsorM+NIMA9QAAAAAAAAAAAAA8P9j707DvKwPe/9/ZpgBZRHjQoamLiDRolhF5LgMilFcGhR34gImxAbSP8G0xtNDYipqDontQRIX7BFjqYoLuAaXipJUhDEYUIkROVEEqjGOKFZl0MCw/B+0x9PJoAzDDPcsr9d1+YDv/O7v/eYX9AnX9QkAAAAAAAAAAABNxgg12+2AAw6od7Zs2bJG3bV+/fq88cYbdc7222+/lJWVNeq+HWnfffetd7Z8+fJG3/f3f//3WxyaHj9+fK6++upG3wvAf1hWvSzD7hqWtbVri05J57LOmXHWjBxacWjRKQAAAAAAAAAAAAAAAAAAAAAAAABAG2KEmu3Wv3//lJbW/aO0aNGibNiwYZvvWrRoUWpra+ucHXbYYdvVt6PstNNO9c7WrFnTqLv+1//6Xxk/fny98//+3/97fvSjHzXqTgD+n2XVyzLk7iFZs75x/51uSp06dMrMs2emsldl0SkAAAAAAAAAAAAAAAAAAAAAAAAAQBtjhJrt1qVLl/Tv37/O2dq1a/PCCy9s813z58+vd3bsscc2um1HWrVqVb2zPfbYY5vv+fGPf5y//du/rXf+N3/zN/mHf/iHRrUB8P9U11TnxHtOzAfrPig6JZ1KO2X6mdMNUAMAAAAAAAAAAAAAAAAAAAAAAAAAzcIINU3ilFNOqXd23333bfM9W3pmS3e3RAsWLKh3VlFRsU13XH/99bn00kvrnV9yySWZPHlyo9sA+A/VNdWpvLUy7//h/aJTUl5anqmnTc2QPkOKTgEAAAAAAAAAAAAAAAAAAAAAAAAA2igj1DSJ8847r97ZtGnTsn79+gbf8cILL2ThwoV1zo444oj06tVru/ua2+LFi7N06dI6Z7vuumv69u3b4DtuuummfPvb3653Pnbs2Fx33XXb3QjQ3tXU1GTwtMF57+P3ik5JeWl5pnx5Sob1HVZ0CgAAAAAAAAAAAAAAAAAAAAAAAADQhhmhpkn069cvgwYNqnP2zjvv5Mc//nGD7/jud79b7+yv/uqvtrutuW3cuDGXXHJJvfOhQ4emvLy8QXfccsst+da3vlXv/Jvf/GZuvPHG7W4EaO9qamoycNrArFq7quiUlJWUZdKJk3Juv3OLTgEAAAAAAAAAAAAAAAAAAAAAAAAA2jgj1DSZ73//+/XOJkyYkOeff36rz954442ZPXt2nbPevXvnggsuaNC7991335SUlNT556mnntrqczfccEOefPLJBr1jS9atW5cLL7ww8+bNq3NeUlKyxVHpLbntttsyZsyYbN68uc756NGjc9NNNzW6DYD/UFNTkyNvOzLVa6uLTkmHkg6ZePzEXNT/oqJTAAAAAAAAAAAAAAAAAAAAAAAAAIB2wAg1Tebkk0/O6aefXuds3bp1+dKXvpSHH354i8/U1tbmBz/4QcaNG1fvZ9dff33Ky8ubpfX/eu6553LSSSflqKOOyk033ZS33367Qc/V1tbmgQceyMEHH5wZM2bU+/k3vvGNHHnkkVu955577snXv/71egPUF198cf73//7fKSkpadhvBIBPdcwdx+TNNW8WnZEOJR0y4dgJGT1wdNEpAAAAAAAAAAAAAAAAAAAAAAAAAEA7UVZ0AG3LLbfckueeey6/+93vPjn78MMPM2zYsBx++OE5/fTT06tXr3z88cd59dVXc+edd+bNN+sPg37rW9/K0KFDd1j3ggULsmDBgowbNy59+/ZN//79c+CBB2a33XbLrrvumpKSknz44Yf5/e9/n8WLF+fpp5/O6tWrt3jXl770pUyePLlB7x05cmQ2bdpU73zhwoXp37//dv2eHnvssfzJn/zJdt0B0NoNuHlAVn6wsuiMlKY04yvHZ9xR9f9PFwAAAAAAAAAAAAAAAAAAAAAAAAAAmosRaprUnnvumSeeeCLHH398qqur6/xs0aJFWbRo0VbvGD58eH7yk580U+Fn27RpU5YsWZIlS5Y06vkzzjgjd911V3beeecGfX7Dhg1bPH/xxRcb9f7/av369dt9B0BrdvRPj87yf19edEZKU5pLj7w0lw26rOgUAAAAAAAAAAAAAAAAAAAAAAAAAKCdKS06gLanb9+++dWvfpVBgwZt03Pl5eWZMGFC7r777nTo0KGZ6urq0qVLk9yz11575b777suDDz7Y4AFqAJrPMbcek6XvLi06I0kyduDYXH7c5UVnAAAAAAAAAAAAAAAAAAAAAAAAAADtkBFqmsVee+2Vp59+OjNmzMjRRx+dkpKST/1s165dM2rUqLz44ou58sorU1q64/5YTpkyJUuWLMmkSZNy2mmnpaKiosHPfv7zn895552Xxx57LCtWrMjZZ5/djKUANNSQfx6Sl955qeiMJMmoQ0fl6hOuLjoDAAAAAAAAAAAAAAAAAAAAAAAAAGinSjZv3ry56AjavlWrVuVXv/pVli9fng8//DBlZWXZY4890rdv3wwcODAdO3YsOvETb731Vl577bWsXLky7733XtauXZvNmzenW7du6d69e3r06JFDDjkkPXv2LDqVP3LQQQfl5Zdfrnd+4IEHZsmSJQUUATvaqXeemqo3qorOSJKMPHhkrh96fdEZAAAAAMAf8fcJAAAAAAAAAAAAAAAAAABAe1JWdADtQ48ePXLqqacWndEgPXv2TM+ePTNo0KCiUwDYBmfcdUaLGaAe3ne4AWoAAAAAAAAAAAAAAAAAAAAAAAAAoHClRQcAAGyv82ael7mvzy06I0ky9ItDc/PpNxedAQAAAAAAAAAAAAAAAAAAAAAAAABghBoAaN1G3D8is5fPLjojSXJy75Mz/ezpRWcAAAAAAAAAAAAAAAAAAAAAAAAAACQxQg0AtGJjfjYmj776aNEZSZLBew/OPcPvKToDAAAAAAAAAAAAAAAAAAAAAAAAAOATRqgBgFbpkkcvycylM4vOSJJU7lWZhy54qOgMAAAAAAAAAAAAAAAAAAAAAAAAAIA6jFADAK3O+CfG547f3FF0RpJkQMWAPHLhI0VnAAAAAAAAAAAAAAAAAAAAAAAAAADUY4QaAGhVrvj5Fbn5+ZuLzkiS9NuzX+Z8bU7RGQAAAAAAAAAAAAAAAAAAAAAAAAAAW2SEGgBoNSY+NTFTFk4pOiNJ0nePvpl38byiMwAAAAAAAAAAAAAAAAAAAAAAAAAAPpURagCgVZg0f1ImL5icTdlUdEp6f653nvnLZ4rOAAAAAAAAAAAAAAAAAAAAAAAAAAD4TEaoAYAW74Zf3pBrqq5pEQPU+3bfN3MvnFt0BgAAAAAAAAAAAAAAAAAAAAAAAADAVhmhBgBatKkLp+aqp6/Kxs0bi07JF7p9IfNGzkvXrl2LTgEAAAAAAAAAAAAAAAAAAAAAAAAA2Coj1ABAi3X7C7fn8l9c3iIGqCu6VGTBVxcYoAYAAAAAAAAAAAAAAAAAAAAAAAAAWg0j1ABAi3TvS/fmsicvy4bNG4pOye6dd8/CUQsNUAMAAAAAAAAAAAAAAAAAAAAAAAAArYoRagCgxZm1dFbGPjY2tZtqi07Jbjvvlvlfn2+AGgAAAAAAAAAAAAAAAAAAAAAAAABodYxQAwAtypxlczL64dEtYoB61512TdXFVanoWlF0CgAAAAAAAAAAAAAAAAAAAAAAAADANjNCDQC0GFUrqjLiwRFZt2ld0Snp3ql7njzvSQPUAAAAAAAAAAAAAAAAAAAAAAAAAECrZYQaAGgRFlcvzvD7h2fdxuIHqLt17JY5589Jn4o+RacAAAAAAAAAAAAAAAAAAAAAAAAAADSaEWoAoHCLqxfn1DtPzUcbPio6JV3Ku2TWBbMMUAMAAAAAAAAAAAAAAAAAAAAAAAAArZ4RagCgUMuql2XYXcOytnZt0SnpXNY5M86akUMrDi06BQAAAAAAAAAAAAAAAAAAAAAAAABguxmhBgAKs6x6WYbcPSRr1q8pOiWdOnTKzLNnprJXZdEpAAAAAAAAAAAAAAAAAAAAAAAAAABNwgg1AFCI6prqnHjPiflg3QdFp6RTaadMP3O6AWoAAAAAAAAAAAAAAAAAAAAAAAAAoE0xQg0A7HDVNdUZ9E+D8v4f3i86JeWl5Zl62tQM6TOk6BQAAAAAAAAAAAAAAAAAAAAAAAAAgCZlhBoA2KFqamoyeNrgrP5oddEpKSspy5QvT8mwvsOKTgEAAAAAAAAAAAAAAAAAAAAAAAAAaHJGqAGAHaampiYDpw3MqrWrik5JWUlZrj3p2pzb79yiUwAAAAAAAAAAAAAAAAAAAAAAAAAAmoURagBgh6ipqUnl7ZWpXltddEo6lHTIxOMn5qL+FxWdAgAAAAAAAAAAAAAAAAAAAAAAAADQbIxQAwA7xDF3HJPXP3y96IyUpjQTjp2Q0QNHF50CAAAAAAAAAAAAAAAAAAAAAAAAANCsjFADAM3uiFuOyMoPVhadkdKU5ruDvptxR40rOgUAAAAAAAAAAAAAAAAAAAAAAAAAoNkZoQYAmtXRPz06r6x+peiMlKY0lx55aS4bdFnRKQAAAAAAAAAAAAAAAAAAAAAAAAAAO4QRagCg2Rw37bgsfXdp0RlJkrEDx+by4y4vOgMAAAAAAAAAAAAAAAAAAAAAAAAAYIcxQg0ANItTbjslv37710VnJElGHToqV59wddEZAAAAAAAAAAAAAAAAAAAAAAAAAAA7lBFqAKDJnXrnqXn2rWeLzkiSjDx4ZCafMrnoDAAAAAAAAAAAAAAAAAAAAAAAAACAHc4INQDQpM65+5xUvVFVdEaS5KwDzsr1Q68vOgMAAAAAAAAAAAAAAAAAAAAAAAAAoBBGqAGAJnPezPPy83/7edEZSZKhXxyaW8+8tegMAAAAAAAAAAAAAAAAAAAAAAAAAIDCGKEGAJrExQ9enNnLZxedkSQ5YZ8TMv3s6UVnAAAAAAAAAAAAAAAAAAAAAAAAAAAUygg1ALDdxvxsTB747QNFZyRJBu89OPedf1/RGQAAAAAAAAAAAAAAAAAAAAAAAAAAhTNCDQBsl0sfvzQzl84sOiNJckTPI/LQBQ8VnQEAAAAAAAAAAAAAAAAAAAAAAAAA0CIYoQYAGm38E+MzbfG0ojOSJAMqBuTxrz5edAYAAAAAAAAAAAAAAAAAAAAAAAAAQIthhBoAaJQrfn5Fbn7+5qIzkiT99uyXOV+bU3QGAAAAAAAAAAAAAAAAAAAAAAAAAECLYoQaANhmE5+amCkLpxSdkSTZf/f9M+/ieUVnAAAAAAAAAAAAAAAAAAAAAAAAAAC0OEaoAYBtMmn+pExeMDmbsqnolPT+XO88+41ni84AAAAAAAAAAAAAAAAAAAAAAAAAAGiRjFADAA02deHUXFN1TYsYoN57l70z98K5RWcAAAAAAAAAAAAAAAAAAAAAAAAAALRYRqgBgAa5/YXb871ffC8bN28sOiVf6PaFVF1Ula5duxadAgAAAAAAAAAAAAAAAAAAAAAAAADQYhmhBgC26t6X7s13nvhOixigruhSkQVfXWCAGgAAAAAAAAAAAAAAAAAAAAAAAABgK4xQAwCfadbSWRn72Nhs2Lyh6JTs3nn3LBy10AA1AAAAAAAAAAAAAAAAAAAAAAAAAEADGKEGAD7VrKWzMvrh0andVFt0SnbbebfM//p8A9QAAAAAAAAAAAAAAAAAAAAAAAAAAA1khBoA2KI5y+Zk9COjs27TuqJTsutOu6bq4qpUdK0oOgUAAAAAAAAAAAAAAAAAAAAAAAAAoNUwQg0A1FO1oiojHhyRdRuLH6Du3ql7njzvSQPUAAAAAAAAAAAAAAAAAAAAAAAAAADbyAg1AFDH4urFGX7/8BYxQN2tY7fMOX9O+lT0KToFAAAAAAAAAAAAAAAAAAAAAAAAAKDVMUINAHxicfXinHrnqflow0dFp6RLeZfMumCWAWoAAAAAAAAAAAAAAAAAAAAAAAAAgEYyQg0AJEmWVS/LsLuGZW3t2qJT0rmsc2acNSOHVhxadAoAAAAAAAAAAAAAAAAAAAAAAAAAQKtlhBoASHVNdU6858SsWb+m6JR06tApt51xWyp7VRadAgAAAAAAAAAAAAAAAAAAAAAAAADQqhmhBoB2rrqmOpW3Vub9P7xfdEo6lXbK9DOnZ0ifIUWnAAAAAAAAAAAAAAAAAAAAAAAAAAC0ekaoAaAdq66pzqB/GpT3Pn6v6JSUl5Zn6mlTDVADAAAAAAAAAAAAAAAAAAAAAAAAADQRI9QA0E7V1NRk8LTBWf3R6qJTUlZSlilfnpJhfYcVnQIAAAAAAAAAAAAAAAAAAAAAAAAA0GYYoQaAdqimpiZH3nZkVq1dVXRKykrKcu1J1+bcfucWnQIAAAAAAAAAAAAAAAAAAAAAAAAA0KYYoQaAdqampiaVt1fmzTVvFp2SDiUdMvH4ibmo/0VFpwAAAAAAAAAAAAAAAAAAAAAAAAAAtDlGqAGgnTnmjmPy+oevF52R0pRmwrETMnrg6KJTAAAAAAAAAAAAAAAAAAAAAAAAAADaJCPUANCOHHHLEVn5wcqiM1Ka0nx30Hcz7qhxRacAAAAAAAAAAAAAAAAAAAAAAAAAALRZRqgBoJ04+qdH55XVrxSdkSQZO3BsLht0WdEZAAAAAAAAAAAAAAAAAAAAAAAAAABtmhFqAGgHjpt2XJa+u7TojCTJmMPG5OoTri46AwAAAAAAAAAAAAAAAAAAAAAAAACgzTNCDQBt3Cm3nZJfv/3rojOSJKMOHZVrTrqm6AwAAAAAAAAAAAAAAAAAAAAAAAAAgHbBCDUAtGGn3nlqnn3r2aIzkiQjDx6ZyadMLjoDAAAAAAAAAAAAAAAAAAAAAAAAAKDdMEINAG3UOXefk6o3qorOSJKcdcBZuX7o9UVnAAAAAAAAAAAAAAAAAAAAAAAAAAC0K0aoAaANGnH/iPz8335edEaSZOgXh+bWM28tOgMAAAAAAAAAAAAAAAAAAAAAAAAAoN0xQg0AbczFD16cR199tOiMJMkJ+5yQ6WdPLzoDAAAAAAAAAAAAAAAAAAAAAAAAAKBdMkINAG3ImJ+NyQO/faDojCTJ4L0H577z7ys6AwAAAAAAAAAAAAAAAAAAAAAAAACg3TJCDQBtxKWPX5qZS2cWnZEkOaLnEXnogoeKzgAAAAAAAAAAAAAAAAAAAAAAAAAAaNeMUANAGzD+ifGZtnha0RlJkkM+f0ge/+rjRWcAAAAAAAAAAAAAAAAAAAAAAAAAALR7RqgBoJW74udX5Obnby46I0nSb89+eWrUU0VnAAAAAAAAAAAAAAAAAAAAAAAAAAAQI9QA0KpNmj8pUxZOKTojSbL/7vtn3sXzis4AAAAAAAAAAAAAAAAAAAAAAAAAAOA/GaEGgFbqhl/ekB/N/1E2ZVPRKen9ud559hvPFp0BAAAAAAAAAAAAAAAAAAAAAAAAAMB/YYQaAFqhqQun5qqnr2oRA9R777J35l44t+gMAAAAAAAAAAAAAAAAAAAAAAAAAAD+iBFqAGhlbn/h9lz+i8uzcfPGolPyhW5fSNVFVenatWvRKQAAAAAAAAAAAAAAAAAAAAAAAAAA/BEj1ADQitz70r35zhPfyYbNG4pOSY8uPbLgqwsMUAMAAAAAAAAAAAAAAAAAAAAAAAAAtFBGqAGglZi1dFbGPja2RQxQ795598wdNdcANQAAAAAAAAAAAAAAAAAAAAAAAABAC2aEGgBagTnL5mT0w6NTu6m26JTstvNumf/1+anoWlF0CgAAAAAAAAAAAAAAAAAAAAAAAAAAn8EINQC0cHOWzcmIB0dk3aZ1Radk1512TdXFVQaoAQAAAAAAAAAAAAAAAAAAAAAAAABaASPUANCCVa2oylcf+mrWbSx+gLpbx2558rwnDVADAAAAAAAAAAAAAAAAAAAAAAAAALQSRqgBoIVaXL04w+8fno82fFR0SrqUd8msC2alT0WfolMAAAAAAAAAAAAAAAAAAAAAAAAAAGggI9QA0AItq16WYXcNaxED1J3LOueRCx/JoRWHFp0CAAAAAAAAAAAAAAAAAAAAAAAAAMA2MEINAC3MsuplGXL3kKxZv6bolHTq0Ckzz55pgBoAAAAAAAAAAAAAAAAAAAAAAAAAoBUyQg0ALUh1TXVOvOfEfLDug6JT0qlDp0w/c3oqe1UWnQIAAAAAAAAAAAAAAAAAAAAAAAAAQCMYoQaAFqK6pjqVt1bm/T+8X3RKOpX+xwD1kD5Dik4BAAAAAAAAAAAAAAAAAAAAAAAAAKCRjFADQAtQU1OTQf80KO99/F7RKSkvLc/U06YaoAYAAAAAAAAAAAAAAAAAAAAAAAAAaOWMUANAwWpqajJg2oCs/mh10SkpKynLlC9PybC+w4pOAQAAAAAAAAAAAAAAAAAAAAAAAABgOxmhBoAC1dTU5MjbjsyqtauKTklZSVmuPenanNvv3KJTAAAAAAAAAAAAAAAAAAAAAAAAAABoAkaoAaAgNTU1qby9Mm+uebPolHQo6ZCJx0/MRf0vKjoFAAAAAAAAAAAAAAAAAAAAAAAAAIAmYoQaAAoy+M7Bef3D14vOSGlKM+HYCRk9cHTRKQAAAAAAAAAAAAAAAAAAAAAAAAAANCEj1ABQgCNuOSLL/3150RkpTWkuPfLSjDtqXNEpAAAAAAAAAAAAAAAAAAAAAAAAAAA0MSPUALCDHXPrMXll9StFZyRJxg4cm8uPu7zoDAAAAAAAAAAAAAAAAAAAAAAAAAAAmoERagDYgYb885C89M5LRWckScYcNiZXn3B10RkAAAAAAAAAAAAAAAAAAAAAAAAAADQTI9QAsIOcctspea76uaIzkiSjDh2Va066pugMAAAAAAAAAAAAAAAAAAAAAAAAAACakRFqANgBzrjrjDz71rNFZyRJhvcdnsmnTC46AwAAAAAAAAAAAAAAAAAAAAAAAACAZmaEGgCa2Tl3n5O5r88tOiNJctYBZ+Xm028uOgMAAAAAAAAAAAAAAAAAAAAAAAAAgB3ACDUANKMR94/Iz//t50VnJElO7n1ybj3z1qIzAAAAAAAAAAAAAAAAAAAAAAAAAADYQYxQA0AzufjBi/Poq48WnZEkOWGfE3LP8HuKzgAAAAAAAAAAAAAAAAAAAAAAAAAAYAcyQg0AzeCSRy/JA799oOiMJEnlXpW57/z7is4AAAAAAAAAAAAAAAAAAAAAAAAAAGAHM0INAE3s0scvzR2/uaPojCTJET2PyCMXPlJ0BgAAAAAAAAAAAAAAAAAAAAAAAAAABTBCDQBNaPwT4zNt8bSiM5Ikh3z+kDz+1ceLzgAAAAAAAAAAAAAAAAAAAAAAAAAAoCBGqAGgiUx8amJuef6WojOSJH336JunRj1VdAYAAAAAAAAAAAAAAAAAAAAAAAAAAAUyQg0ATWDS/EmZvGByNmVT0SnZf/f988xfPlN0BgAAAAAAAAAAAAAAAAAAAAAAAAAABTNCDQDb6YZf3pAfzf9Rixig3rf7vnn2G88WnQEAAAAAAAAAAAAAAAAAAAAAAAAAQAtghBoAtsPUhVNz1dNXtYgB6r132TvzRs4rOgMAAAAAAAAAAAAAAAAAAAAAAAAAgBbCCDUANNLtL9yey39xeTZu3lh0Siq6VKTqoqp07dq16BQAAAAAAAAAAAAAAAAAAAAAAAAAAFoII9QA0Aj3vnRvvvPEd7Jh84aiU9KjS48sHLXQADUAAAAAAAAAAAAAAAAAAAAAAAAAAHUYoQaAbTRr6ayMfWxsixig3r3z7pk7aq4BagAAAAAAAAAAAAAAAAAAAAAAAAAA6jFCDQDbYM6yORn98OjUbqotOiW77bxb5n99fiq6VhSdAgAAAAAAAAAAAAAAAAAAAAAAAABAC2SEGgAaqGpFVUY8OCLrNq0rOiXdO3XP7K/MNkANAAAAAAAAAAAAAAAAAAAAAAAAAMCnMkINAA1QtaIqw+8fnnUbix+g7taxW+acPyd9KvoUnQIAAAAAAAAAAAAAAAAAAAAAAAAAQAtmhBoAtmJx9eJ85YGv5KMNHxWdki7lXTLrglkGqAEAAAAAAAAAAAAAAAAAAAAAAAAA2Coj1ADwGZZVL8uwu4Zlbe3aolPSuaxzHrnwkRxacWjRKQAAAAAAAAAAAAAAAAAAAAAAAAAAtAJGqAHgUyyrXpYhdw/JmvVrik5Jpw6dMvPsmQaoAQAAAAAAAAAAAAAAAAAAAAAAAABoMCPUALAF1TXVOfGeE/PBug+KTkmn0k6Zfub0VPaqLDoFAAAAAAAAAAAAAAAAAAAAAAAAAIBWxAg1APyR6prqVN5amff/8H7RKelU2ilTT5uaIX2GFJ0CAAAAAAAAAAAAAAAAAAAAAAAAAEArY4QaAP6LmpqaDPqnQXnv4/eKTkl5aXlu+PINGdZ3WNEpAAAAAAAAAAAAAAAAAAAAAAAAAAC0QkaoAeA/1dTUZOC0gVn90eqiU1JWUpYpX56Sc/udW3QKAAAAAAAAAAAAAAAAAAAAAAAAAACtlBFqAMh/DFAfeduRqV5bXXRKOpR0yLUnXWuAGgAAAAAAAAAAAAAAAAAAAAAAAACA7WKEGgCSHHPHMXlzzZtFZ6RDSYdMOHZCLup/UdEpAAAAAAAAAAAAAAAAAAAAAAAAAAC0ckaoAWj3Btw8ICs/WFl0RkpTmvGV4zPuqHFFpwAAAAAAAAAAAAAAAAAAAAAAAAAA0AYYoQagXTv6p0dn+b8vLzojpSnNpUdemssGXVZ0CgAAAAAAAAAAAAAAAAAAAAAAAAAAbYQRagDarWNuPSZL311adEaSZOzAsbn8uMuLzgAAAAAAAAAAAAAAAAAAAAAAAAAAoA0xQg1AuzTkn4fkpXdeKjojSTLmsDG5+oSri84AAAAAAAAAAAAAAAAAAAAAAAAAAKCNMUINQLtzym2n5Lnq54rOSJKMPHhkrjnpmqIzAAAAAAAAAAAAAAAAAAAAAAAAAABog4xQA9CunHHXGXn2rWeLzkiSDO87PNcPvb7oDAAAAAAAAAAAAAAAAAAAAAAAAAAA2igj1AC0G+fNPC9zX59bdEaS5KwDzsrNp99cdAYAAAAAAAAAAAAAAAAAAAAAAAAAAG2YEWoA2oUR94/I7OWzi85Ikpzc++TceuatRWcAAAAAAAAAAAAAAAAAAAAAAAAAANDGGaEGoM0b87MxefTVR4vOSJIM3ntw7hl+T9EZAAAAAAAAAAAAAAAAAAAAAAAAAAC0A0aoAWjTLnn0ksxcOrPojCRJ5V6VeeiCh4rOAAAAAAAAAAAAAAAAAAAAAAAAAACgnTBCDUCbdenjl+aO39xRdEaSZEDFgDxy4SNFZwAAAAAAAAAAAAAAAAAAAAAAAAAA0I4YoQagTbri51dk2uJpRWckSQ75/CGZ87U5RWcAAAAAAAAAAAAAAAAAAAAAAAAAANDOGKEGoM2Z+NTETFk4peiMJEnfPfrmqVFPFZ0BAAAAAAAAAAAAAAAAAAAAAAAAAEA7ZIQagDZl0vxJmbxgcjZlU9Ep2X/3/fPMXz5TdAYAAAAAAAAAAAAAAAAAAAAAAAAAAO2UEWoA2owbfnlDrqm6pkUMUO/bfd88+41ni84AAAAAAAAAAAAAAAAAAAAAAAAAAKAdM0INQJswdeHUXPX0Vdm4eWPRKdl7l70zb+S8ojMAAAAAAAAAAAAAAAAAAAAAAAAAAGjnjFAD0Ord/sLtufwXl7eIAeqKLhWpuqgqXbt2LToFAAAAAAAAAAAAAAAAAAAAAAAAAIB2zgg1AK3avS/dm8uevCwbNm8oOiU9uvTIwlELDVADAAAAAAAAAAAAAAAAAAAAAAAAANAiGKEGoNWatXRWxj42NrWbaotOye6dd8/cUXMNUAMAAAAAAAAAAAAAAAAAAAAAAAAA0GIYoQagVZqzbE5GPzy6RQxQ77rTrpn/9fmp6FpRdAoAAAAAAAAAAAAAAAAAAAAAAAAAAHzCCDUArU7ViqqMeHBE1m1aV3RKunfqnifPe9IANQAAAAAAAAAAAAAAAAAAAAAAAAAALY4RagBalaoVVRl+//Cs21j8AHW3jt0y5/w56VPRp+gUAAAAAAAAAAAAAAAAAAAAAAAAAACoxwg1AK3G4urF+coDX8lHGz4qOiVdyrtk1gWzDFADAAAAAAAAAAAAAAAAAAAAAAAAANBiGaEGoFVYVr0sw+4alrW1a4tOSeeyznnkwkdyaMWhRacAAAAAAAAAAAAAAAAAAAAAAAAAAMCnMkINQIu3rHpZhtw9JGvWryk6JZ06dMrMs2caoAYAAAAAAAAAAAAAAAAAAAAAAAAAoMUzQg1Ai1ZdU50T7zkxH6z7oOiUdCrtlOlnTk9lr8qiUwAAAAAAAAAAAAAAAAAAAAAAAAAAYKuMUAPQYlXXVKfy1sq8/4f3i05JeWl5pp42NUP6DCk6BQAAAAAAAAAAAAAAAAAAAAAAAAAAGsQINQAtUk1NTQZPG5z3Pn6v6JSUl5ZnypenZFjfYUWnAAAAAAAAAAAAAAAAAAAAAAAAAABAgxmhBqDFqampycBpA7Nq7aqiU1JWUpZJJ07Kuf3OLToFAAAAAAAAAAAAAAAAAAAAAAAAAAC2iRFqAFqUmpqaHHnbkaleW110SjqUdMjE4yfmov4XFZ0CAAAAAAAAAAAAAAAAAAAAAAAAAADbzAg1AC3KMXcckzfXvFl0RjqUdMiEYydk9MDRRacAAAAAAAAAAAAAAAAAAAAAAAAAAECjGKEGoMUYcPOArPxgZdEZKU1pxleOz7ijxhWdAgAAAAAAAAAAAAAAAAAAAAAAAAAAjWaEGoAW4eifHp3l/7686IyUpjSXHnlpLht0WdEpAAAAAAAAAAAAAAAAAAAAAAAAAACwXYxQA1C4Y249JkvfXVp0RpJk7MCxufy4y4vOAAAAAAAAAAAAAAAAAAAAAAAAAACA7WaEGoBCDfnnIXnpnZeKzkiSjDp0VK4+4eqiMwAAAAAAAAAAAAAAAAAAAAAAAAAAoEkYoQagMKfeeWqeq36u6IwkyciDR2byKZOLzgAAAAAAAAAAAAAAAAAAAAAAAAAAgCZjhBqAQpxx1xmpeqOq6IwkyfC+w3P90OuLzgAAAAAAAAAAAAAAAAAAAAAAAAAAgCZlhBqAHe68medl7utzi85Ikgz94tDcfPrNRWcAAAAAAAAAAAAAAAAAAAAAAAAAAECTM0INwA414v4Rmb18dtEZSZKTe5+c6WdPLzoDAAAAAAAAAAAAAAAAAAAAAAAAAACahRFqAHaYMT8bk0dffbTojCTJ4L0H557h9xSdAQAAAAAAAAAAAAAAAAAAAAAAAAAAzcYINQA7xCWPXpKZS2cWnZEkqdyrMg9d8FDRGQAAAAAAAAAAAAAAAAAAAAAAAAAA0KzKig6gfXjnnXeycOHCvPbaa/nwww9TXl6e3XffPQceeGAOP/zwlJeXF51YR3V1dVasWJE33ngjq1atytq1a1NbW5tddtkl3bt3z7777pv+/ftnl112adaO2traLFy4MEuXLs3q1as/adhvv/0ycODA7Lnnns36fmgq458Ynzt+c0fRGUmSARUD8siFjxSdAQAAAAAAAAAAAAAAAAAAAAAAAAAAzc4INc3qvvvuy3XXXZeqqqps3rx5i5/p1q1bhg8fnr/927/N/vvvv4MLk/fffz/z589PVVVVnn322fzmN7/Ju+++u9XnSkpKcvDBB+eiiy7KyJEj06NHjyZr+u1vf5t/+Id/yL333ps1a9Z86vsHDRqUb3/72zn77LOb7N3Q1K74+RW5+fmbi85IkvTbs1/mfG1O0RkAAAAAAAAAAAAAAAAAAAAAAAAAALBDlGz+tGVg2A5vvvlmLrzwwsydO7fBz3Ts2DHf//738/3vfz8lJSXNWFfX+PHj8/d///fbdUfXrl1z1VVX5ZJLLklZWeO33Tdt2pQf/OAHmThxYmpraxv83HHHHZe77rorPXv2bPS724KDDjooL7/8cr3zAw88MEuWLCmgiIlPTczkBZOzKZuKTknfPfrmmb98pugMAAAAAAAK5u8TAAAAAAAAAAAAAAAAAACA9qS06ADanldeeSUDBw7cpgHqJFm/fn2uuOKKXHjhhdm4cWMz1TWPmpqafOc738mpp56ajz/+uFF3bNy4Meeff36uvPLKbRqgTpKnnnoqAwcOzLJlyxr1bmgOk+ZPajED1L0/19sANQAAAAAAAAAAAAAAAAAAAAAAAAAA7U5Z0QG0LatXr86JJ56Yt956q97PBgwYkNNPPz29evXKxx9/nFdeeSV33XVXfv/739f53N13350ePXrkJz/5yQ6qrqtLly457LDDcsABB6RPnz7Zc889061bt2zcuDEffvhhXnnllTzzzDNZsGBBNm/eXOfZ2bNn58wzz8y//Mu/pKSkZJvee8kll2TmzJn1znfbbbeMGDEiffv2zS677JKVK1fmiSeeqDfy/eabb+akk07Kc889l8997nPb/huHJnTDL2/INVXXtIgB6n2775vnxjxXdAYAAAAAAAAAAAAAAAAAAAAAAAAAAOxwRqhpUqNHj87rr79e56xbt26ZPn16hg0bVu/zP/zhD/PDH/4wV155ZZ3z6667LieffHL+4i/+ojlzkySdOnXK8ccfn7/4i7/ICSeckD//8z9Phw4dtvrcsmXLcumll+bhhx+ucz579uzccsstGT16dIMbZs2alZtuuqne+Te/+c1ce+216dy5c53z733ve6mqqsrZZ5+dt99++5PzFStW5Jvf/GZmzJjR4HdDU5u6cGquevqqbNy8seiUfKHbFzJv5LyiMwAAAAAAAAAAAAAAAAAAAAAAAAAAoBAlmzdv3lx0BG3Dk08+mZNOOqnOWceOHVNVVZXDDz/8M5+97rrr8td//dd1zvr06ZOlS5emrKzlbqVv3rw5Y8eOzT/+4z/WOe/Vq1eWL1/eoDtqa2uz//77Z+XKlXXO/+Zv/iaTJ0/+zGdXrFiRww8/PO+9916d83/913/Ncccd16D3tyUHHXRQXn755XrnBx54YJYsWVJAUftz+wu35ztPfCcbNm8oOiUVXSqycNTCdO3ategUAAAAAABaEH+fAAAAAAAAAAAAAAAAAAAAtCelRQfQdvzgBz+odzZhwoStDlAnybe//e2ceOKJdc6WLVuWu+66q8n6mkNJSUl+/OMfZ5999qlzvmLFiixatKhBd9xxxx31Bqj79euXa665ZqvP9urVK9dff32986uvvrpB74amdO9L9+ayJy9rEQPUPbr0MEANAAAAAAAAAAAAAAAAAAAAAAAAAEC7Z4SaJrFkyZLMmzevztkee+yRyy67rMF3/OhHP6p39o//+I/b3dbcOnXqlHPOOafe+csvv9yg57f0e7zqqqvSsWPHBj1/4YUXpl+/fnXO/vVf/zW//e1vG/Q8NIVZS2dl7GNjU7uptuiU7Lbzbpk7aq4BagAAAAAAAAAAAAAAAAAAAAAAAAAA2j0j1DSJe+65p97ZqFGjGjyknCQDBgzIgAED6pwtWLAgK1as2O6+5rbffvvVO3vrrbe2+tyyZcuyaNGiOmc9e/bMsGHDtun9Y8aMqXd29913b9Md0Fhzls3J6IdHt4gB6l132jVVF1elomtF0SkAAAAAAAAAAAAAAAAAAAAAAAAAAFA4I9Q0iccff7ze2TnnnLPN92zpmS3d3dL84Q9/qHfWkAHu2bNn1zs744wzUlZWtk3v39L39i//8i/bdAc0RtWKqox4cETWbVpXdEq6d+qeJ8970gA1AAAAAAAAAAAAAAAAAAAAAAAAAAD8JyPUbLe1a9fm+eefr3PWuXPnHHbYYdt81zHHHFPvbN68eY1u21EWLlxY72y//fbb6nNb+r0NGjRom99fUVGRPn361Dl77rnn8tFHH23zXdBQi6sXZ/j9w7NuY/ED1N06dsuc8+ekT0WfrX8YAAAAAAAAAAAAAAAAAAAAAAAAAADaCSPUbLfFixdn06ZNdc4OP/zwlJWVbfNdAwcOTHl5eZ2z5557brv6mturr76aBx98sM7ZTjvtlGOPPXarz27p93bUUUc1quPoo4+u8+uNGzfm17/+daPugq1ZXL04p955aj7aUPzQeZfyLpl1wSwD1AAAAAAAAAAAAAAAAAAAAAAAAAAA8EeMULPd/s//+T/1zvr0adwYbMeOHfOnf/qndc5ee+21bNiwoVH3Nbfly5fntNNOyx/+8Ic656NGjcquu+76mc/W1tZm+fLldc7Ky8uzzz77NKplv/32q3f229/+tlF3wWdZVr0sw+4alrW1a4tOSeeyzplx1owcWnFo0SkAAAAAAAAAAAAAAAAAAAAAAAAAANDiGKFmu61cubLeWWOHlJNk7733rvPrjRs35vXXX2/0fU1t3bp1WbBgQf76r/86Bx10UL2h5169euVHP/rRVu95/fXXs2nTpjpnf/qnf5rS0sb9a/nH31uSeiPXsL2WVS/LkLuHZM36NUWnpFOHTpl59sxU9qosOgUAAAAAAAAAAAAAAAAAAAAAAAAAAFqksqIDaP2qq6vrne21116Nvm9Lz7799tvp3bt3o+/cVnPmzMlll11W52zDhg1Zs2ZNfv/732fDhg1bfO6LX/xinnjiiXTv3n2r79hR31tLMGXKlNx0003N/p7XXnut2d/RnlXXVOfEe07MB+s+KDolnUo7ZfqZ0w1QAwAAAAAAAAAAAAAAAAAAAAAAAADAZzBCzXZ777336p117dq10fdt6dnVq1c3+r7GeP/99/PrX/+6wZ/v0qVLvvnNb+aqq65Kly5dGvRMW/zePs0777yTl19+uegMtkN1TXUG/dOgvP+H94tOSXlpeaaeNjVD+gwpOgUAAAAAAAAAAAAAAAAAAAAAAAAAAFo0I9Rst7Vr19Y723nnnRt935ae/eijjxp9X3MqKSnJxRdfnB/+8IfZc889t+nZ9vy90brU1NRk8LTBWf1R8aPm5aXlmfLlKRnWd1jRKQAAAAAAAAAAAAAAAAAAAAAAAAAA0OKVFh1A61dbW1vvbKeddmr0fVsaU16/fn2j72tOmzdvzk9/+tP069cvV111VdasWdPgZ9vz90brUVNTk4HTBmbV2lVFp6SspCyTTpyUc/udW3QKAAAAAAAAAAAAAAAAAAAAAAAAAAC0CkaoaRYlJSVN+uzmzZu3J2ebnXPOOdm8eXOdf9auXZs333wzc+bMyVVXXZVevXp98vlVq1blyiuvzJ//+Z/n2WefbfR7W/v3RttSU1OTytsrU722uuiUdCjpkInHT8xF/S8qOgUAAAAAAAAAAAAAAAAAAAAAAAAAAFoNI9Rst/Ly8npnH3/8caPv29KzHTt2bPR9TaVz5875kz/5k5xwwgm54oor8tprr+XGG29Mly5dPvnMypUrM2TIkDzzzDNbva+9fHFtrNsAAQAASURBVG+0XsfccUxe//D1ojPSoaRDJhw7IaMHji46BQAAAAAAAAAAAAAAAAAAAAAAAAAAWpWyogNo/Tp37lzvrKnHlP/r0HNLUVJSkrFjx+bggw/OKaec8kl3TU1NvvKVr+TFF1/M5z73uU99vj19b3vuuWcOPPDAZn/Pa6+9lnXr1jX7e9qDI245Iis/WFl0RkpTmvGV4zPuqHFFpwAAAAAAAAAAAAAAAAAAAAAAAAAAQKtjhJrttvvuu9c7q6mpafR9W3p2S+9oKY499thceeWV+R//4398cva73/0u1157bf7n//yfn/pce/rexo4dm7Fjxzb7ew466KC8/PLLzf6etu7onx6dV1a/UnRGSlOaS4+8NJcNuqzoFAAAAAAAAAAAAAAAAAAAAAAAAAAAaJVKiw6g9fv85z9f7+x3v/tdo+974403GvSOluTb3/52unXrVuds6tSp2bx586c+43ujJTpu2nFZ+u7SojOSJGMHjs3lx11edAYAAAAAAAAAAAAAAAAAAAAAAAAAALRaRqjZbr169ap39m//9m+Nvu/111+v8+sOHTpk7733bvR9O0KnTp1y/PHH1zl755138vLLL3/qM3vvvXdKS+v+K/jGG29k06ZNjWr44+8t2fL/NvBpTrntlPz67V8XnZEkGXXoqFx9wtVFZwAAAAAAAAAAAAAAAAAAAAAAAAAAQKtmhJrtdsABB9Q7W7ZsWaPuWr9+fd544406Z/vtt1/Kysoadd+OtO+++9Y7W758+ad+vmPHjvVGomtra7c4Jt0Qr732Wr2zP/uzP2vUXbQ/p955ap5969miM5IkIw8emcmnTC46AwAAAAAAAAAAAAAAAAAAAAAAAAAAWj0j1Gy3/v37p7S07h+lRYsWZcOGDdt816JFi1JbW1vn7LDDDtuuvh1lp512qne2Zs2az3xmwIAB9c5++ctfNur9zzzzTJ1fd+jQIYccckij7qJ9Oefuc1L1RlXRGUmS4X2H5/qh1xedAQAAAAAAAAAAAAAAAAAAAAAAAAAAbYIRarZbly5d0r9//zpna9euzQsvvLDNd82fP7/e2bHHHtvoth1p1apV9c722GOPz3zmmGOOqXe2pe9ga95+++28+uqrdc4GDBiQzp07b/NdtC/nzTwvP/+3nxedkSQZ+sWhufn0m4vOAAAAAAAAAAAAAAAAAAAAAAAAAACANsMINU3ilFNOqXd23333bfM9W3pmS3e3RAsWLKh3VlFR8ZnPnHzyyfXOfvazn2XDhg3b9O7777+/3llr+d4ozsUPXpzZy2cXnZEkObn3yZl+9vSiMwAAAAAAAAAAAAAAAAAAAAAAAAAAoE0xQk2TOO+88+qdTZs2LevXr2/wHS+88EIWLlxY5+yII45Ir169truvuS1evDhLly6tc7brrrumb9++n/ncF7/4xQwYMKDO2ZtvvplHHnlkm95/88031zs7//zzt+kO2pcxPxuTB377QNEZSZLBew/OPcPvKToDAAAAAAAAAAAAAAAAAAAAAAAAAADaHCPUNIl+/fpl0KBBdc7eeeed/PjHP27wHd/97nfrnf3VX/3Vdrc1t40bN+aSSy6pdz506NCUl5dv9fkt/R4nTJiQ2traBr3/nnvuyYsvvljn7Ljjjsuf/dmfNeh52p9LHr0kM5fOLDojSXJEzyPy0AUPFZ0BAAAAAAAAAAAAAAAAAAAAAAAAAABtkhFqmsz3v//9emcTJkzI888/v9Vnb7zxxsyePbvOWe/evXPBBRc06N377rtvSkpK6vzz1FNPbfW5G264IU8++WSD3rEl69aty4UXXph58+bVOS8pKcm3vvWtBt0xcuTI7LPPPnXOXnzxxXzve9/b6rMrV67c4nv+7u/+rkHvpv0Z/8T43PGbO4rOSJIMqBiQx7/6eNEZAAAAAAAAAAAAAAAAAAAAAAAAAADQZhmhpsmcfPLJOf300+ucrVu3Ll/60pfy8MMPb/GZ2tra/OAHP8i4cePq/ez6669PeXl5s7T+X88991xOOumkHHXUUbnpppvy9ttvN+i52traPPDAAzn44IMzY8aMej//xje+kSOPPLJBd3Xs2DE/+clP6p1PmjQpY8eOzccff7zF55555pkcddRRWb16dZ3zc845J8cff3yD3k37csXPr8jNz99cdEaSpN+e/TLna3OKzgAAAAAAAAAAAAAAAAAAAAAAAAAAgDatrOgA2pZbbrklzz33XH73u999cvbhhx9m2LBhOfzww3P66aenV69e+fjjj/Pqq6/mzjvvzJtvvlnvnm9961sZOnToDutesGBBFixYkHHjxqVv377p379/DjzwwOy2227ZddddU1JSkg8//DC///3vs3jx4jz99NP1xp//ry996UuZPHnyNr3/jDPOyJgxY3LzzXUHgm+66abMmDEjI0aMSN++fdOtW7e8/vrrmT17dp566ql69+yzzz717oAkmfjUxExZOKXojCTJ/rvvn3kXzys6AwAAAAAAAAAAAAAAAAAAAAAAAAAA2jwj1DSpPffcM0888USOP/74VFdX1/nZokWLsmjRoq3eMXz48PzkJz9ppsLPtmnTpixZsiRLlixp1PNnnHFG7rrrruy8887b/OyNN96Yd999N/fff3+d89WrV+e6667b6vM9e/bME088kd12222b303bNmn+pExeMDmbsqnolPT+XO88+41ni84AAAAAAAAAAAAAAAAAAAAAAAAAAIB2obToANqevn375le/+lUGDRq0Tc+Vl5dnwoQJufvuu9OhQ4dmqqurS5cuTXLPXnvtlfvuuy8PPvhgowaok6SsrCwzZ87M3/3d36WsbNv24Y899tgsXLgw+++/f6PeTds1deHUXFN1TYsYoN57l70z98K5RWcAAAAAAAAAAAAAAAAAAAAAAAAAAEC7YYSaZrHXXnvl6aefzowZM3L00UenpKTkUz/btWvXjBo1Ki+++GKuvPLKlJbuuD+WU6ZMyZIlSzJp0qScdtppqaioaPCzn//853Peeeflsccey4oVK3L22Wdvd09paWmuvvrq/OY3v8nXvva1dO3a9VM/W1JSksrKysycOTNz587NF77whe1+P23L7S/cnu/94nvZuHlj0Sn5QrcvpOqiqs/8Mw0AAAAAAAAAAAAAAAAAAAAAAAAAADStks2bN28uOoK2b9WqVfnVr36V5cuX58MPP0xZWVn22GOP9O3bNwMHDkzHjh2LTvzEW2+9lddeey0rV67Me++9l7Vr12bz5s3p1q1bunfvnh49euSQQw5Jz549m71l/fr1WbhwYZYuXZp33303GzZsyC677JLevXvnv/23/5YePXo0e0NrctBBB+Xll1+ud37ggQdmyZIlBRQV596X7s3/9+j/lw2bNxSdkoouFVk4aqEBagAAAAAAWgR/nwAAAAAAAAAAAAAAAAAAALQnZUUH0D706NEjp556atEZDdKzZ8/07NkzgwYNKjolHTt2TGVlZSorK4tOoRWZtXRWxj42tkUMUO/eeXcD1AAAAAAAAAAAAAAAAAAAAAAAAAAAUJDSogMAaDqzls7K6IdHp3ZTbdEp2W3n3TL/6/MNUAMAAAAAAAAAAAAAAAAAAAAAAAAAQEGMUAO0EXOWzcnoR0Zn3aZ1Radk1512TdXFVanoWlF0CgAAAAAAAAAAAAAAAAAAAAAAAAAAtFtGqAHagKoVVRnx4Iis21j8AHX3Tt3z5HlPGqAGAAAAAAAAAAAAAAAAAAAAAAAAAICCGaEGaOUWVy/O8PuHt4gB6m4du2XO+XPSp6JP0SkAAAAAAAAAAAAAAAAAAAAAAAAAANDuGaEGaMUWVy/OqXeemo82fFR0SrqUd8msC2YZoAYAAAAAAAAAAAAAAAAAAAAAAAAAgBbCCDVAK7WselmG3TUsa2vXFp2SzmWdM+OsGTm04tCiUwAAAAAAAAAAAAAAAAAAAAAAAAAAgP9khBqgFVpWvSxD7h6SNevXFJ2STh06ZebZM1PZq7LoFAAAAAAAAAAAAAAAAAAAAAAAAAAA4L8wQg3QylTXVOfkGSfng3UfFJ2STqWdMv3M6QaoAQAAAAAAAAAAAAAAAAAAAAAAAACgBTJCDdCKVNdUZ9A/Dcp7H79XdErKS8sz9bSpGdJnSNEpAAAAAAAAAAAAAAAAAAAAAAAAAADAFhihBmglampqMnja4Kz+aHXRKSkrKcuUL0/JsL7Dik4BAAAAAAAAAAAAAAAAAAAAAAAAAAA+hRFqgFbiyNuOzKq1q4rOSFlJWa496dqc2+/colMAAAAAAAAAAAAAAAAAAAAAAAAAAIDPYIQaoJU4tOLQohPSoaRDJh4/MRf1v6joFAAAAAAAAAAAAAAAAAAAAAAAAAAAYCuMUAO0EtPPnp6zDjirsPeXpjQTjp2Q0QNHF9YAAAAAAAAAAAAAAAAAAAAAAAAAAAA0nBFqgFbk1jNvzciDR+7w95amNN8d9N2MO2rcDn83AAAAAAAAAAAAAAAAAAAAAAAAAADQOEaoAVqZ64den1GHjtqh77z0yEtz2aDLdug7AQAAAAAAAAAAAAAAAAAAAAAAAACA7WOEGqAVmnzK5Iw5bMwOedeYw8bk8uMu3yHvAgAAAAAAAAAAAAAAAAAAAAAAAAAAmo4RaoBW6pqTrsm4geNS2oz/KR916Khcc9I1zXY/AAAAAAAAAAAAAAAAAAAAAAAAAADQfIxQA7RiV59wdb476LvNMkQ98uCRmXzK5Ca/FwAAAAAAAAAAAAAAAAAAAAAAAAAA2DGMUAO0cpcNuixXDr4yHUo6NNmdZx1wVq4fen2T3QcAAAAAAAAAAAAAAAAAAAAAAAAAAOx4RqgB2oBxR43LD4//YcpKyrb7rqFfHJpbz7y1CaoAAAAAAAAAAAAAAAAAAAAAAAAAAIAiGaEGaCNGDxyda0+6druGqE/Y54RMP3t6E1YBAAAAAAAAAAAAAAAAAAAAAAAAAABFMUIN0IZc1P+i3DT0ppSXlm/zs4P3Hpz7zr+vGaoAAAAAAAAAAAAAAAAAAAAAAAAAAIAiGKEGaGPO7XdufnraT9OptFODnzmi5xF56IKHmi8KAAAAAAAAAAAAAAAAAAAAAAAAAADY4YxQA7RBw/oOy/SzpqdTh60PUR/y+UPy+Fcf3wFVAAAAAAAAAAAAAAAAAAAAAAAAAADAjmSEGqCNGtJnSO4/5/50Luv8qZ/pt2e/PDXqqR0XBQAAAAAAAAAAAAAAAAAAAAAAAAAA7DBGqAHasMpelZl59sx0Ke9S72f7775/5l08r4AqAAAAAAAAAAAAAAAAAAAAAAAAAABgRzBCDdDGVfaqzCMXPpJuHbt9ctb7c73z7DeeLbAKAAAAAAAAAAAAAAAAAAAAAAAAAABobkaoAdqBQysOzS8u+EW6d+qevXfZO3MvnFt0EgAAAAAAAAAAAAAAAAAAAAAAAAAA0MzKig4AYMfoU9Enc86fk4quFenatWvROQAAAAAAAAAAAAAAAAAAAAAAAAAAQDMzQg3QjvSp6FN0AgAAAAAAAAAAAAAAAAAAAAAAAAAAsIOUFh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNMzQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQBhmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGiDjFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAtEFGqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADaICPUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG2QEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACANsgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAbZIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA0yQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQBhmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGiDjFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAtEFGqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADaICPUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG2QEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACANsgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAbZIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA0yQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQBhmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGiDjFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAtEFGqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADaICPUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG2QEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACANsgINQAAAAAAAAAAAAAAAAAAAAAAAAAA8P+zd+fRUZDn/sCfQBL2RVREVARxAcUFAXEXSlXcrfRqb5WKW7XVYturVmori3rdquJy8VKp4lKte61eVFRAEYqyKFqkIptsIooGBFlCyO8Pf8ZOJ5CZyYQkk8/nHM6588y87/vM5NshL+fcRwBykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOyistLS2t7iYAsqFZs2axZs2apHqDBg2iY8eO1dARAAAAAABQ08ybNy82bNiQVG/atGl89dVX1dARAAAAAAAAAAAAAAAAAABA1TGEGsgZDRs2LHdoBAAAAAAAQEUaNGgQ69evr+42AAAAAAAAAAAAAAAAAAAAsqpedTcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPYZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5KD86m4AIFtatmwZRUVFSfWCgoJo167dtm+ImDdvXmzYsCGp3qBBg+jYsWM1dATbhuxTF8k9dZXsU1fJPnWR3FNXyT51kdznvkWLFkVxcXFSvWXLltu+GQAAAAAAAAAAAAAAAAAAgCpmCDWQM5YvX17dLfBv9ttvv/jggw+S6h07doxZs2ZVQ0ewbcg+dZHcU1fJPnWV7FMXyT11lexTF8k9AAAAAAAAAAAAAAAAAAAAuaRedTcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPYZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOyq/uBgDIXT//+c/js88+S6rvuOOO1dANbDuyT10k99RVsk9dJfvURXJPXSX71EVyDwAAAAAAAAAAAAAAAAAAQC7JKy0tLa3uJgAAAAAAAAAAAAAAAAAAAAAAAAAAAADIrnrV3QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2WcINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQg/KruwEAMvfZZ5/F1KlTY968ebF69eooKCiI7bffPvbdd9/o3r17FBQUVHeLCZYvXx4LFiyIxYsXx4oVK2Lt2rVRXFwczZs3jxYtWkT79u2ja9eu0bx58yrto7i4OKZOnRqzZ8+OlStXlvXQsWPH6NGjR+y4445Vej6VI/fp+eqrr2LWrFnx0UcfxZdffhlfffVVNGnSJLbbbrvYZZddokePHtGiRYsqOZvskn3qKtmvvEWLFsX7778fCxcujNWrV0dpaWk0bdo02rZtGx07dox99903GjRosM36oWJyn5lPPvkkZsyYEZ988kkUFRXFhg0bokWLFtGyZcvo1KlTHHDAAVFYWFilPVA5tS37NYU7bu0n++lxz80Ncg8AAAAAAAAAAAAAAAAAAADbjiHUALXQU089FXfeeWdMmjQpSktLy31Ns2bN4swzz4yrrroq9t57723cYURRUVG8+eabMWnSpHjrrbfi/fffj88//7zCdXl5ebH//vvHT37yk+jfv3+0bt06az19+OGHccstt8STTz4ZX3311RbPP/LII+Pyyy+Pfv36Ze1sKk/uU7Nq1ap46aWXYvz48TF+/PiYM2dOhWd36dIlfvKTn8T5558frVq1yvhsqobsZ9/9998fF1xwQbnPLViwINq3b79N+mDrZL9ylixZEn/84x/jsccei7lz5271tYWFhXHQQQfFcccdF2eccUZ07do16/2QGrlP34IFC2LUqFHx5z//OT7++OOtvrawsDB69+4dF154YZx++umRn++fxWqK2pD9dM2ePTu6du0aGzZsSHrugQceiAEDBlT6DHfc2k/2U+Oem1vkPvvccQEAAAAAAAAAAAAAAAAAAKhIXumW/r/8Aahxli5dGmeffXa8/vrrKa8pLCyM3/3ud/G73/0u8vLyqrC7RFdffXXcfPPNldqjadOmMXTo0Bg4cGClBsRt3rw5rrvuurjhhhuiuLg45XW9evWKRx99NHbeeeeMz6by5D41f/vb3+K+++6LsWPHxsaNGzM6u3HjxnHDDTfEwIEDo169ehntQfbIftVYsmRJdOnSJVatWlXu8wZ0VT/Zr5z169fHkCFD4s4774z169envb5Pnz7x6quvVroP0iP36du4cWPccMMNcdNNN2X0u8+BBx4Yo0aNiu7du2d0PtlRm7KfjpKSkjjssMNi6tSp5T5f2YGk7ri1n+ynxj03t8h91XDHBQAAAAAAAAAAAAAAAAAAIBWmLgDUEnPmzIkePXqkNagl4pvhbNdee22cffbZUVJSUkXdVY01a9bEf/3Xf8XJJ58c69aty2iPkpKS+M///M8YMmRIWsO5IiImTJgQPXr0iLlz52Z0NpUn96nn/vbbb48XXngh48FcERFff/11/OpXv4rjjjsu1q5dm/E+VJ7sZ/adn4oLLrhgi8O5qH6yX7nsL1iwILp37x4333xzRgOoqR5yn37uv/766+jbt28MGzYs4999Zs6cGYcffng8++yzGa2n8nI5+zfffPMWh5FWljtu7Sf7qXPPzR1yX3XccQEAAAAAAAAAAAAAAAAAAEhFfnU3AEDFVq5cGccee2x88sknSc9169YtTjvttOjQoUOsW7cu5syZE48++mgsW7Ys4XWPPfZYtG7dOoYPH76Nuk7UpEmTOPjgg2OfffaJPffcM3bcccdo1qxZlJSUxOrVq2POnDkxefLkmDJlSpSWliasffnll+MHP/hBvPjii5GXl5fWuQMHDownnngiqd6qVas455xzonPnztG8efNYuHBhjB07NmkYztKlS+O4446L6dOnx3bbbZf+Gydjcp957v9Vy5Yt44gjjoju3btH69atY4cddoivv/46FixYEOPGjYs333wzac1rr70Wp556aowZMyYaNGiQ8dlkRvazk/3y/PGPf4yxY8dmdU+yR/Yrl/0PP/wwjjnmmPj000+Tnttpp53ixBNPjM6dO0fr1q2jcePGUVRUFIsXL4733nsvJk2aFJ9//nnG75vMyX1muT/zzDNj/PjxSfWCgoI44YQT4vDDD49ddtklGjRoEF9++WW899578X//93+xcOHChNcXFxfHWWedFePHj48jjjgio/dPZnIh+1vyj3/8I4YOHVpl+7vj1m6ynx3uubWL3Fcdd1wAAAAAAAAAAAAAAAAAAABSlVf67xOAAKhx+vXrF88880xCrVmzZvHII4/EqaeemvT64uLi+O///u8YMmRI0nNjxoyJE044oapaLTN48OB4880344QTTog+ffrEAQccEPXr169w3dy5c+PXv/51PP/880nPjRw5Mn7605+m3MPf/va3OO2005Lql1xySdx2223RuHHjpOcmTZoU/fr1SxrgeOaZZ8bjjz+e8tlUntx/I9Xc9+rVq2zAXIsWLeKss86KAQMGRM+ePaNevXpbXPfuu+/GhRdeGNOnTy/3/ZT3eVK1ZP8b6X7nV+Tjjz+O/fffP7766quI+OZ/J23atIkPP/ww4XULFiyI9u3bZ+1cUif738gk+ytWrIgePXrEokWLEup77bVX3HbbbXHyySdvdcDv5s2b4+23346HH344li9fHk8//XRa55M5uf9GOrl//PHH40c/+lFS/eSTT46RI0dG27Zty123efPmGD16dPzyl78s+7vgW/vtt1+88847UVBQkFIPVF5tzH4qNm3aFD179owZM2aU1Xr27BlvvfVWwuseeOCBGDBgQNr7u+PWfrKfXvbdc3OD3Gf2nV8Rd1wAAAAAAAAAAAAAAAAAAADSYQg1QA33yiuvxHHHHZdQKywsjEmTJkX37t23uvbOO++MX/7ylwm1PffcM2bPnh35+fnZbjVrSktL49JLL4177703od6hQ4eYP39+SnsUFxfH3nvvHQsXLkyo/+pXv4rbb799q2sXLFgQ3bt3jy+++CKhPn78+OjVq1dK51M5cv+dVHPfq1ev+Oijj+I3v/lNXHTRRdGoUaOUz964cWOcdtpp8dJLLyXUGzZsGB999FHsuuuuKe9F5cj+d9L5zk/ljGOPPTZee+21stqoUaPi4YcfLhtq9y0DuqqH7H8n3eyXlpZG3759Y+zYsQn1M888Mx5++OEoLCxMu6+tDawme+T+O+nkvmfPnvH2228n1E4//fR4+umntzqQ9FsTJ06MPn36RHFxcUL9hRdeiJNOOimlHqicXM7+sGHDYvDgwWWPzznnnOjYsWMMHTo04XWZDCR1x639ZD+zIdTuubWb3FfNEGp3XAAAAAAAAAAAAAAAAAAAANJV8XQeAKrVddddl1QbPHhwhYNaIiIuv/zyOPbYYxNqc+fOjUcffTRr/VWFvLy8uOOOO2L33XdPqC9YsCCmTZuW0h4PP/xw0nCuLl26xE033VTh2g4dOsRdd92VVB82bFhKZ1N5cv+dVHM/aNCgmDdvXgwcODCtwVwR3wyAeuKJJ2LnnXdOqK9fvz6efPLJtPaicmT/O+l851fk3nvvTRjO9f3vfz8uuOCCrOxNdsj+d9LN/sMPP5w0gPoHP/hBPProo2kPoP62L7YNuf9OqrlfunRpTJ06NaHWsGHDuPfee1MaQB0RcdRRR8XFF1+cVH/uuedSWk/l5Wr2Z86cGddff33Z45122imGDx+etf3dcWs/2U+fe27tJ/dVwx0XAAAAAAAAAAAAAAAAAACAdBlCDVCDzZo1KyZOnJhQ22GHHeKKK65IeY8bb7wxqXbvvfdWureq1qBBg/jhD3+YVP/ggw9SWl/eexw6dGjKwxjPPvvs6NKlS0Jt/Pjx8eGHH6a0nszJfWa5P/7446Nhw4YZn92sWbNyP+MXXngh4z1Jj+xn/p2/NQsWLIirrrqq7HGTJk3ivvvuq/S+ZI/sZ579DRs2xKBBgxJq22+/ffzxj3+M+vXrZ6VHqobcZ5b7Dz/8MEpLSxNqvXv3jjZt2qTVw9lnn13u3lS9XM1+cXFxnHvuuVFcXFxWu+eee2L77bfP2hnuuLWb7GfGPbd2k/uq4Y4LAAAAAAAAAAAAAAAAAABAJgyhBqjB/vKXvyTVzjvvvJSHTEVEdOvWLbp165ZQmzJlSixYsKDS/VW1jh07JtU++eSTCtfNnTs3pk2bllDbeeed49RTT03r/Isvvjip9thjj6W1B+mT+8xynw0nnnhiUm3+/Pnb5GxkvyqyX1paGuedd16sXbu2rHbjjTdG+/btK7Uv2SX7mWf/kUceiWXLliXUrr322thhhx2y0htVR+4zy/2KFSuSap07d077/PLWfPrpp2nvQ/pyNfvXXXddzJw5s+zxGWecUe6w9Uy549Z+sl993HOrj9xnnzsuAAAAAAAAAAAAAAAAAAAAmTKEGqAGe+mll5JqmQw1KW9NeXvXNOvXr0+qpTKo5uWXX06qnX766ZGfn5/W+eV9bi+++GJae5A+uc8s99nQrl27pNry5cu3ydnIflVk/+67747XX3+97PGRRx4Zl112WaX2JPtkP/Psjxo1KmndOeeck5W+qFpyn1nuy3tNJn9XNGjQIKnWsGHDtPchfbmY/RkzZsSNN95Y9rhVq1YxYsSIrJ7hjlv7yX71cc+tPnKffe64AAAAAAAAAAAAAAAAAAAAZMoQaoAaau3atTFjxoyEWuPGjePggw9Oe6+jjjoqqTZx4sSMe9tWpk6dmlTr2LFjhevKe29HHnlk2ue3adMm9txzz4Ta9OnT4+uvv057L1Ij95nnPhvKy3ajRo22ydl1nexnP/vz5s2LQYMGlT1u2LBh/OlPf4q8vLyM9yT7ZD/z7C9evDimTJmSUDvuuOOiVatWWeuNqiH3mee+Q4cOSbXFixenfX55a7bV71t1WS5mf+PGjTFgwIDYtGlTWW348OGx0047ZfUcd9zaTfarl3tu9ZD77HPHBQAAAAAAAAAAAAAAAAAAoDIMoQaood59993YvHlzQq179+6Rn5+f9l49evSIgoKChNr06dMr1V9V++ijj+LZZ59NqDVs2DCOPvroCteW994OO+ywjPo4/PDDEx6XlJTEzJkzM9qLisl95rnPhrlz5ybVdt55521ydl0n+9nN/ubNm+O8885LGDg3dOjQ2HvvvSvVJ9kn+5ln/9VXX02qHXrooVnrjaoj95nn/oADDojtt98+ofbaa69FcXFxWj2MGTMmqdanT5+09iB9uZj9oUOHxvvvv1/2+MQTT4z+/ftn/Rx33NpN9quXe271kPvscscFAAAAAAAAAAAAAAAAAACgsgyhBqih/vnPfybV9txzz4z2KiwsjF133TWhNm/evNi0aVNG+1W1+fPnxymnnBLr169PqJ933nnRsmXLra4tLi6O+fPnJ9QKCgpi9913z6iXjh07JtU+/PDDjPaiYnKfWe6z5amnnkqq9ejRY5ucXdfJfnazf+edd8bEiRPLHnfv3j3+67/+qzJtUkVkP/PsT5o0Kal20EEHlf3fpaWl8fLLL8cFF1wQXbp0iWbNmkVhYWG0adMm9t9//+jfv3889NBDsXLlysq+FdIk95nnvn79+nHxxRcn1JYvXx533XVXyj188cUXcfPNNyfUWrZsWWOHp+aSXMv+tGnT4pZbbil73Lx58xg5cmTWz3HHrf1kv3q551YPuc8ud1wAAAAAAAAAAAAAAAAAAAAqyxBqgBpq4cKFSbVMh0xFRLRr1y7hcUlJSSxatCjj/bJtw4YNMWXKlPjlL38Z++23X9IQrA4dOsSNN95Y4T6LFi2KzZs3J9R23XXXqFcvs7/y/v1zi4ikAWBkj9xnlvtsWLduXTz88MNJ9dNOO22bnF/XyX72sj9nzpy45ppryh4XFBTE/fffH/Xr169Uz1QN2c88+++//35Sba+99oqIiH/84x/RvXv36Nu3b9x///0xa9asWLNmTRQXF8enn34a//jHP+KRRx6Jc889N9q3bx+/+93vYtWqVZV/g6RE7iv3nT9o0KDYY489Emq/+c1v4v77769w7ZIlS+KEE06ITz75JKF+1113RbNmzVLugczkUvY3bNgQ5557bsIA1FtuuSVpSGo2uOPWfrJffdxzq4/cZ487LgAAAAAAAAAAAAAAAAAAANmQX90NAFC+5cuXJ9V22223jPcrb+2nn36aNMCtKr366qtxxRVXJNQ2bdoUX331VSxbtixhmMu/2muvvWLs2LHRokWLCs/YVp8bVUPuv5NO7rPhpptuihUrViTU2rZtGyeeeOI2Ob+uk/3vVCb7mzdvjgEDBsS6devKatdcc03sv//+ae/FtiH730k3++UNDG3RokXcf//98fOf/zw2bNiQ0j5r1qyJG264IZ588sl4/vnnY++9905pHZmT++9k8p3ftGnTePHFF6N3796xbNmyiPhmEOUFF1wQo0ePjvPPPz+OOOKIaNu2bTRo0CC+/PLLeP/99+P555+P+++/P1avXp2w3/XXXx/9+/dP8x2TiVzK/rXXXhsffPBB2ePevXvHT3/60yo5yx239pP96uOeW33kPjvccQEAAAAAAAAAAAAAAAAAAMgWQ6gBaqgvvvgiqda0adOM9ytv7cqVKzPeLxNFRUUxc+bMlF/fpEmTuOSSS2Lo0KHRpEmTlNbk4udWl+Tiz29b5L6ypk2bFjfeeGNSfdiwYdGgQYNt0kNdJ/vZyf5tt90Wf//738se77///vHb3/42o73YNmQ/s+wXFxeX+77GjRsXF110UWzevDmh3qxZs2jTpk2UlJTEJ598kjDE7ltz5syJQw89NCZPnhydOnVKuX/SJ/eV/87fe++9Y8aMGXHJJZfEX//617L6xIkTY+LEiSnt0aFDh7jrrrvi5JNPTvt8MpMr2X/rrbfitttuK3vcuHHjGDVqVOTl5VXJebnyudVlufIz3NbZryz33Ool99nhjgsAAAAAAAAAAAAAAAAAAEC21KvuBgAo39q1a5NqjRo1yni/8tZ+/fXXGe9XlfLy8uLCCy+MBQsWxB/+8Ie0BtPV5c8tF9Tln19lcl8ZK1eujP/4j/+I4uLihPoxxxwT559//jbpAdnPRvZnz54d1157bdnj+vXrx/333x8FBQXZapUqIPuZZb+oqChKS0uT6hdccEHZAOq8vLzo379/vPXWW7Fq1aqYM2dOzJs3L1avXh3jxo2L448/Pmn9l19+Gf369Sv350L2yH12ft/Zaaed4tlnn43p06fHZZddlvJn2K1bt3jiiSdizpw5BlBvY7mQ/fXr18e5554bJSUlZbUbbrgh9thjjyo7Mxc+t7ouF36G1ZH9ynDPrX5yX3nuuAAAAAAAAAAAAAAAAAAAAGSTIdQANdS/D8qJiGjYsGHG+5U3rGXjxo0Z71eVSktLY9SoUdGlS5cYOnRofPXVVymvrcufWy6oyz+/yuQ+Uxs3bowzzjgjFi5cmFBv1apVPPTQQ5GXl1flPfAN2a9c9ktKSmLAgAGxfv36stoVV1wR3bt3z2arVAHZzyz7GzZsKLe+bt26iPjmM3z22WfjoYceikMOOSTh+zw/Pz969+4dL730Utx1111J3/UffPBBXHfddRm8I1Il99n7fWfevHnxpz/9KZ544omy/Fdk+vTp8dvf/jaGDx8ea9asqdT5pCcXsn/NNdfEhx9+WPb4sMMOi4EDB1bpmbnwudV1ufAzrI7sZ8o9t2aQ+8pxxwUAAAAAAAAAAAAAAAAAACDbDKEGqEUqMyinvLWlpaWVaSdtP/zhD6O0tDThz9q1a2Pp0qXx6quvxtChQ6NDhw5lr1+xYkUMGTIkDjjggHjrrbcyPre2f251XW3/+VVX7iuyefPm+MlPfhJvvPFGQr1+/frx5z//Odq1a1dlZ5Ma2U/dLbfcEm+//XbZ43322SeGDBmSrbfCNib7FavoPY0cOTJOO+20Cvf5xS9+Eddcc01S/d57742ioqKUeiE75D49xcXF8fvf/z722WefGDFiRKxYsSLh+caNG0f79u1j3333jbZt20a9eon//DV37ty48soro3PnzjFu3LjM3jRZUZuyP2nSpBg+fHjZ4wYNGsT999+flK9toTZ9bpSvNv0Ma1L2K+KeW7PJferccQEAAAAAAAAAAAAAAAAAAMi2mjcpAoCIiCgoKEiqrVu3LuP9yltbWFiY8X7Z0rhx42jbtm306dMnrr322pg3b17cc8890aRJk7LXLFy4ML7//e/H5MmTK9yvrnxuuaqu/PyynftM/PznP4/HH388oZaXlxcjR46Mvn37VsmZbJnsZ579WbNmJQzjysvLiz/96U/RsGHDbLdPFZD97P2+861evXrFT37yk5R7u/baaxOGA0dErF69Ov7yl7+kvAfpkfvK/b6zcePGOOOMM+L666+PkpKSsnqjRo3isssui2nTpsXq1atjwYIFMWvWrFi6dGl88cUX8cwzz8TRRx+dsNeSJUvi+OOPj6effrryb5gK1ebsf/3113HeeefF5s2by2qDBw+OTp06Vcl5/6o2f258ozb/DKsz+5lwz6055D5z7rgAAAAAAAAAAAAAAAAAAABUBUOoAWqoxo0bJ9WyPazlXwfA1RR5eXlx6aWXxpgxY6JRo0Zl9TVr1sRZZ50VX3755VbX19XPLVfU1Z9fZXOfrl//+tcxcuTIpPrw4cPjggsuyOpZpEb2M8v+pk2b4txzz42NGzeW1S677LI44ogjqqxnskv2M8v+1t7TL37xi7R6KSgoiIsvvjipPmHChLT2IXVyX7nfdy6//PJ44YUXEmp77rlnTJ06Ne6+++7o1q1b1K9fP+H5Fi1axA9+8IN4/fXXY8SIEVGv3nf/HLZp06Y4++yzY9asWZV4d6SiNmd/0KBB8dFHH5U9Pvjgg+PKK6+skrP+XW3+3PhGbf4ZVmf20+WeW7PIfWbccQEAAAAAAAAAAAAAAAAAAKgqhlAD1FDbb799Um3NmjUZ71fe2vLOqCmOPvroGDJkSEJtyZIlcdttt211XV3/3Gq7uv7zyzT36Rg0aFDccccdSfWbbropBg4cmLVzSI/sZ5b9m266KaZPn172uH379nHjjTdWRYtUEdnPLPvNmjWLwsLCpHq9evXi+9//ftp9HHfccUm1N998M+19SI3cZ/77zuTJk+N///d/E2qtWrWKsWPHxn777ZfS+T/72c+SztqwYUP87Gc/S2k9maut2X/jjTfi7rvvLnucn58f999/f+Tn52f9rPLU1s+N79TWn2F1Zz8d7rk1j9xnxh0XAAAAAAAAAAAAAAAAAACAqmIINUANtdNOOyXVlixZkvF+ixcvTumMmuTyyy+PZs2aJdT++Mc/Rmlp6RbX+NxqNz+/zHKfqiFDhsRNN92UVB82bFj85je/qfT+ZE7208/+kiVL4rrrrkuo3XfffdGkSZMq65Hsk/3Mv/fbtGmTVNtjjz2iefPmafdwwAEHRP369RNqy5cvz8rfPSST+8xzX96g6muuuSY6dOiQ1vkDBw6MAw44IKE2ceLEmDFjRlr7kJ7amv1LLrkkIZtXX311HHjggVk/Z0tq6+fGd2rrz7C6s58q99yaSe7T544LAAAAAAAAAAAAAAAAAABAVcqv7gYAKF95g9Q+/vjjjPdbtGhRwuP69etHu3btMt5vW2jQoEF873vfi+eee66s9tlnn8UHH3wQ++23X7lr2rVrF/Xq1YvNmzeX1RYvXhybN2+OevXS/28v/PvnFlH+z4bskPvMcp+K66+/PoYOHZpU//3vfx+///3vM96X7JD99LP/+eefx8aNG8seFxYWxhVXXJHWmXPnzk2qnXjiiVFYWJhQGzZsWJx66qlp7U1qZD/z7/099tgj6f1uv/32GfVQv379aNGiRXzxxRdltZKSkigqKortttsuoz3ZMrnPLPebNm2KsWPHJtTy8vKif//+aZ9fr1696N+/f1x55ZUJ9ZdffjkOPvjgtPcjNbU1+8uWLUt4/Mwzz8Tzzz+f8vrly5cn1a699toYPnx4Qu3UU0+NYcOGJb3WHbf2k/3vpJP9VLjn1lxy/51Uc++OCwAAAAAAAAAAAAAAAAAAQFUyhBqghtpnn32SauUNEknFxo0bY/HixQm1jh07Rn5+zf9roH379km1+fPnb3E4XWFhYXTo0CHmzZtXVisuLo5FixaVu1dF/nWfb3Xq1CntfUiN3H8j3dxX5Oabby53ANfVV1+d8bAvskv2v1GZ7G/cuDFmzpxZ6R5mz56dVPvXwbxkl+x/I5Psd+7cOSZMmJBQa9CgQcY9NGzYMKm2fv36jPdjy+T+G+nmfv78+bFmzZqEWseOHWPHHXfM6PxDDz00qfbee+9ltBepyZXsf/DBB5XeY/HixUn9H3TQQeW+1h239pP976ST/Yq459Zscv+dTHPvjgsAAAAAAAAAAAAAAAAAAEA21avuBgAoX9euXaNevcSv6WnTpsWmTZvS3mvatGlRXFycUDv44IMr1d+2Ut5AxK+++mqra7p165ZU+/vf/57R+ZMnT054XL9+/TjwwAMz2ouKyf03Msn9ltx6661x9dVXJ9WvvPLKuPHGGzPak+yT/W9kM/vUDrL/jUyy36NHj6TaqlWrMu6hqKgoqbb99ttnvB9bJvffSDf3K1euTKplOoB6S2sNZKxasp85d9zaTfazzz235pN7AAAAAAAAAAAAAAAAAAAAqFkMoQaooZo0aRJdu3ZNqK1duzbeeeedtPd68803k2pHH310xr1tSytWrEiq7bDDDltdc9RRRyXVyvsMKvLpp5/GRx99lFDr1q1bNG7cOO29SI3cfyOT3JfnjjvuiKuuuiqp/qtf/SpuueWWjHqjasj+N7KVfWoP2f9GJtnv1atXUu3jjz+O0tLStM//7LPP4uuvv06oNW/ePAoLC9Pei4rJ/TfSzX15Q6vXrVuX8fn/nvmI8Ht+FZP9zLnj1m6yn13uubWD3AMAAAAAAAAAAAAAAAAAAEDNYgg1QA3Wt2/fpNpTTz2V9j7lrSlv75poypQpSbU2bdpsdc3xxx+fVHvuuedi06ZNaZ399NNPJ9Vqy+dWm8l9Zrn/d3fddVf8+te/TqoPHDgwbr/99ox7o+rIfnrZP+igg6K0tLRSf4455pikfRcsWJD0ugEDBmT7rfIvZD+z7/0OHTpE586dE2pFRUXxwQcfpH3+5MmTk2r/PjSQ7JL79HO/4447JtU+/vjj2Lx5c0bnz58/P6UzyK7amP2ioqJK/b4xePDgpD0feOCBpNeNHj16iz2449Z+sv+NdLP/79xzaxe5/0aquXfHBQAAAAAAAAAAAAAAAAAAoCoZQg1Qg/3oRz9Kqj3wwAOxcePGlPd45513YurUqQm1nj17RocOHSrdX1V79913Y/bs2Qm1li1bJg1c/Hd77bVXdOvWLaG2dOnSeOGFF9I6f+TIkUm1//zP/0xrD9In95nl/l+NGDEiLr/88qT6pZdeGnfeeWele6RqyH7ls0/tJPuZZ/+cc85Jqj388MNp9/DQQw8l1fr06ZP2PqRO7tPPfZs2baJp06YJtS+//LLcYdapGDNmTFJt7733zmgvUlfXs58pd9zaT/Yrzz239pF7AAAAAAAAAAAAAAAAAAAAqDkMoQaowbp06RJHHnlkQu2zzz6LO+64I+U9Bg0alFT72c9+VuneqlpJSUkMHDgwqX7SSSdFQUFBhevLe4+DBw+O4uLilM7/y1/+Eu+9915CrVevXtGpU6eU1pM5uc889xER9913X1x22WVJ9UsuuSTuueeeSvdI1ZH9ymWf2kv2M8/+BRdcEI0aNUqojRw5MpYtW5ZyDzNmzIjnnnsuoZaXlxf9+vVLeQ/SJ/fp5z4/P7/c4eg33HBD2j0sWLAgHnnkkaT68ccfn/ZepKcuZ7+y3HFrN9mvHPfc2knuAQAAAAAAAAAAAAAAAAAAoOYwhBqghvvd736XVBs8eHDMmDGjwrX33HNPvPzyywm1PfbYI3784x+ndHb79u0jLy8v4c+ECRMqXHf33XfHK6+8ktIZ5dmwYUOcffbZMXHixIR6Xl5euUOHytO/f//YfffdE2rvvfde/Pa3v61w7cKFC8s95/e//31KZ1N5cv+ddHL/4IMPxsUXXxylpaUJ9Z/+9KcxYsSIjHtj25H976STfWo/2f9OOtnfaaed4tJLL02oFRUVxdlnnx3r1q2rcP2KFSvi7LPPjpKSkoR6v379Yt99902pBzIn999JNfdnnXVWUm3MmDFx0003pdzDqlWr4gc/+EFs3Lgxob7vvvvG/vvvn/I+ZK42Zr8mcMet/WQ/M+65tZvcAwAAAAAAAAAAAAAAAAAAQM1gCDVADXf88cfHaaedllDbsGFD9O7dO55//vly1xQXF8d1110Xv/jFL5Keu+uuu6KgoKBKev3W9OnT47jjjovDDjssRowYEZ9++mlK64qLi+OZZ56J/fffPx5//PGk5y+66KI49NBDU9qrsLAwhg8fnlT/wx/+EJdeeukWBzNOnjw5DjvssFi5cmVC/Yc//GF873vfS+lsKk/uv5Nq7v/yl7/E+eefnzSY64ILLoj//d//jby8vNTeCNVK9r+Tznc+tZ/sfyfd7A8ePDjatWuXUJswYUL06dMn/vnPf25x3eTJk+Ooo45Kek3Tpk3j+uuvT/l8Mif330k192eddVYcdNBBSfVBgwbF+eefX2E/48aNi27dusXMmTOTnktnkDWVUxuzXxO449Z+sp8+99zaT+4BAAAAAAAAAAAAAAAAAACgZsiv7gYAqNh9990X06dPjyVLlpTVVq9eHaeeemp07949TjvttOjQoUOsW7cuPvroo/jzn/8cS5cuTdrnsssui5NOOmmb9T1lypSYMmVK/OIXv4jOnTtH165dY999941WrVpFy5YtIy8vL1avXh3Lli2Ld999N954442kwVjf6t27d9x+++1pnX/66afHxRdfHCNHjkyojxgxIh5//PE455xzonPnztGsWbNYtGhRvPzyyzFhwoSkfXbfffekPah6cp9e7vv37x+bN29Oqk+dOjW6du1aqfc0ZsyYaNu2baX2IHWyn9l3PrWf7GeW/aZNm8aTTz4ZRx99dGzYsKGs/ve//z3233//OPbYY6NPnz7Rtm3bKCkpiUWLFsVLL70UEydOLHe/0aNHxz777JNWD2RO7tPLfb169WLUqFHRq1evWLNmTcJzDzzwQDz66KNx/PHHx+GHHx5t27aNRo0aRVFRUcyePTteeeWVeP/998vd99xzz41TTjklvQ+BSqmt2a9u7ri1n+ynxz03N8g9AAAAAAAAAAAAAAAAAAAAVD9DqAFqgR133DHGjh0b3/ve92L58uUJz02bNi2mTZtW4R5nnnlmDB8+vIo63LrNmzfHrFmzYtasWRmtP/300+PRRx+NRo0apb32nnvuic8//zyefvrphPrKlSvjzjvvrHD9zjvvHGPHjo1WrVqlfTaVI/fp5X7Tpk3l1t97772Mzv9XGzdurPQepE72M//Op3aT/cyzf8ghh8Rf//rXOOOMM2LdunVl9U2bNsWLL74YL774YoV7FBYWxv/8z/9Ev3790j6fzMl9+rnv1q1b/PWvf43TTz89aRD1hg0b4m9/+1v87W9/S3m/M844I0aNGpXy68mO2p796uSOW7vJfnrcc3OD3AMAAAAAAAAAAAAAAAAAAED1q1fdDQCQms6dO8fbb78dRx55ZFrrCgoKYvDgwfHYY49F/fr1q6i7RE2aNMnKPrvttls89dRT8eyzz2Y8jDQ/Pz+eeOKJ+P3vfx/5+en9txeOPvromDp1auy9994ZnU3lyb0hvHWV7Mt+XSX7mWe/b9++8fe//z26dOmS9tq99torxo0bFxdeeGHG55M5uU8/93369ImZM2fGMccck3EPTZs2jREjRsTTTz+d9j2B7KhN2a9J3HFrP9mnLpJ7AAAAAAAAAAAAAAAAAAAAqF6GUAPUIrvttlu88cYb8fjjj8fhhx8eeXl5W3xt06ZN47zzzov33nsvhgwZEvXqbbuv/P/5n/+JWbNmxR/+8Ic45ZRTok2bNimv3WmnneJHP/pRjBkzJhYsWBD9+vWrdD/16tWLYcOGxfvvvx8DBgyIpk2bbvG1eXl5ccQRR8QTTzwRr7/+euyyyy6VPp/KkXvqKtmnrpL9zB144IHx7rvvxgMPPBCHHHLIVj+7+vXrx2GHHRajR4+O2bNnxxFHHJGVHsiM3Kdvjz32iAkTJsQbb7wRZ599drRq1arCNfXr14+uXbvG8OHDY/HixfGzn/2sUj1QebUl+zWNO27tJ/vURXIPAAAAAAAAAAAAAAAAAAAA1SevtLS0tLqbACAzK1asiLfffjvmz58fq1evjvz8/Nhhhx2ic+fO0aNHjygsLKzuFst88sknMW/evFi4cGF88cUXsXbt2igtLY1mzZpFixYtonXr1nHggQfGzjvvXOW9bNy4MaZOnRqzZ8+Ozz//PDZt2hTNmzePPfbYIw455JBo3bp1lfdA5uSeukr2qatkP3OffvppTJs2reyzKywsjB122CHatm0bhx12WDRv3nyb9EH65D4zc+fOjffeey9WrlwZRUVFsXHjxmjevHm0bNky2rdvHwcffHA0adKkyvsgc7Up+zWJO27tJ/vURXIPAAAAAAAAAAAAAAAAAAAA244h1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5qF51NwAAAAAAAAAAAAAAAAAAAAAAAAAAAABA9hlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCDDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEGGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAHKQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOcgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA4yhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBxlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCDDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEGGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAHKQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOcgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA4yhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBxlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCDDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEGGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAHKQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOcgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA4yhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBxlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCDDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEGGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAHKQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOcgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA4yhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBxlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCDDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEGGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAHKQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOcgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA4yhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBxlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCDDKEGAAAAMtarV6/Iy8sr+9OrV6/qbgkAAAAAAAAAAAAAAAAAAAAAAID/zxBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBxkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABADjKEGgAAAOqY0aNHR15eXsKfhQsXVndbtcqECROSPsMJEyZUd1sAAAAAAAAAAAAAAAAAAAAAAAAJDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEGGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAHKQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOcgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA7Kr+4GAAAAgNz32WefxZQpU2L+/PmxZs2aaNGiRbRu3Tp69uwZu+++e5WcWVJSEjNmzIiPP/44Pvvss/jyyy+jefPmseOOO8Zee+0VXbt2jby8vCo5OxtKSkpi/vz58c9//jOWLl0aq1evjpKSkthuu+1iu+22i06dOsX+++8f9er5b4wBAAAAAAAAAAAAAAAAAAAAAADlM4QaAAAA6oABAwbEgw8+uMXnO3ToUOEegwcPjiFDhqR17oQJE+K///u/47XXXovNmzeX+5p99903fvvb38aPf/zjrAyFfvXVV2PkyJHx6quvRlFR0RZft/3228dJJ50UgwYNik6dOlW475AhQ2Lo0KFbfL53794V7nHuuefG6NGjt/j8nDlz4plnnonx48fHpEmTYu3atVvdr0WLFnHsscfGFVdcET179qzwfAAAAAAAAAAAAAAAAAAAAAAAoG6pV90NAAAAALlnw4YNcdFFF0Xv3r3jlVde2eIA6oiIDz74IM4555zo27dvhUOXt+b999+PPn36xLHHHhtPPfXUVgdQR0SsXLkyHnrooejSpUtccsklsWHDhozPrqyVK1fGwQcfHPvss08MGjQoxo4dm9JnsWrVqnjqqafi0EMPjdNPP73C9wwAAAAAAAAAAAAAAAAAAAAAANQthlADAAAAWbV+/fo44YQTYtSoUWmtGzt2bJx44olRUlKS9pnPP/98HHbYYTFu3Li015aUlMTIkSOjV69esWLFirTXZ8NXX30V77zzTqX2eO655+KQQw6JJUuWZKkrAAAAAAAAAAAAAAAAAAAAAACgtsuv7gYAAACAqteuXbs48MADIyLiiy++iMWLFyc837lz5ygsLNzqHm3atEnprPPPPz/Gjx9f9nifffaJE044ITp16hStWrWKVatWxTvvvBNPP/10fPrppwlr33jjjbjjjjviiiuuSOmsiIhHH300+vfvH5s3b06oFxYWxve+973o2bNn7LbbbtGiRYtYs2ZNLFy4MF577bV48803E14/ZcqUOOOMM2L8+PFRUFCQdE6bNm3KPsM1a9bEvHnzEp7v2LFjNG3adKu9tmvXLqX31LRp0+jRo0d07tw59tprr2jRokU0a9YsNm7cGF9++WV88MEHMX78+Jg9e3bCuo8++ijOOuuseP311yM/3z/7AAAAAAAAAAAAAAAAAAAAAABAXZdXWlpaWt1NAAAAANvO6NGj47zzzkuoLViwINq3b5/2Xr169YrXX3+97HHDhg1j/fr1EfHN0OZ77rkn+vXrV+7aNWvWxKWXXhoPPfRQQr1ly5axbNmyaNSoUYXnz5o1Kw455JD4+uuvy2r5+fnxq1/9Kq688srYcccdt7j23XffjQsvvDCmT5+eUL/iiivi1ltv3eq5EyZMiN69eyfUxo8fH7169aqw5/IsXLgwunbtGuecc0788Ic/jMMPP7zcQdj/bvLkyXH55ZfHtGnTEuq33nprWoO8AQAAAAAAAAAAAAAAAAAAAACA3FSvuhsAAAAAcse3A6j32GOPmDJlyhYHUEdENG3aNEaPHh3HH398Qr2oqCiefvrpCs/avHlz/OhHP0oYQN2kSZMYO3Zs3HLLLVsdQB0RcdBBB8XkyZPj2GOPTajfddddsWTJkgrPz6a2bdvGsmXL4u67745jjjkmpQHUERGHH354TJw4Mfr27ZtQv+uuu2LTpk1V0SoAAAAAAAAAAAAAAAAAAAAAAFCLGEINAAAAZFVBQUE88cQTsfvuu1f42ry8vLj99tuT6i+//HKFa59++un4xz/+kVB74IEHonfv3in3WlhYGE8++WTssMMOZbWNGzeW21NVKiwsjEaNGmW0tmHDhvHggw9G48aNy2qLFy+OsWPHZqs9AAAAAAAAAAAAAAAAAAAAAACgljKEGgAAAMiqH//4x9GtW7eUX7/vvvvGwQcfnFCbPn16hetuvvnmhMe9evWK//iP/0j53G+1aNEiLr/88oTas88+m/Y+1al169bRt2/fhNqbb75ZTd0AAAAAAAAAAAAAAAAAAAAAAAA1hSHUAAAAQFZddNFFaa855JBDEh7PmTNnq69fuHBh0qDqCy+8MO1zv3XSSScl7f/xxx9nvF912GuvvRIeT5kypZo6AQAAAAAAAAAAAAAAAAAAAAAAaor86m4AAAAAyB2NGjVKGiidio4dOyY8LikpiTVr1kTTpk3Lff3rr7+eVDviiCPSPvdbHTp0SKq98847sfvuu2e8Z2UtXbo0Jk+eHO+9917MmTMnVq1aFatXr45169ZFaWlp0uuXL1+e8HjRokXbqlUAAAAAAAAAAAAAAAAAAAAAAKCGMoQaAAAAyJrdd989CgoK0l7XokWLpNqqVau2OIR60qRJSbXTTz897XO35vPPP8/qfql66qmnYsSIEfH666/H5s2bM96nqKgoe00BAAAAAAAAAAAAAAAAAAAAAAC1kiHUAAAAQNa0atUqo3XlDa4uLi7e4uuXLFmSVJs5c2ZGZ2/JypUrs7pfRZYtWxb9+/ePcePGZWW/VatWZWUfAAAAAAAAAAAAAAAAAAAAAACg9jKEGgAAAMia8oZJV4VtMSB63bp1VX7Gt5YuXRq9evWKuXPnZm3PTZs2ZW0vAAAAAAAAAAAAAAAAAAAAAACgdqpX3Q0AAAAApOvLL7+s7hayasCAAeUOoD7ooINi0KBB8eyzz8aMGTNi+fLlsXr16ti4cWOUlpYm/Bk8eHA1dA4AAAAAAAAAAAAAAAAAAAAAANRk+dXdAAAAAEC6GjVqlFRbt25dNGzYsBq6qZz/+7//i1dffTWh1rp163j44YfjuOOOS3mfdevWZbs1AAAAAAAAAAAAAAAAAAAAAACglqtX3Q0AAAAApGuHHXZIqn3xxRfV0EnlPfbYYwmP69evH88//3xaA6gjau/7BwAAAAAAAAAAAAAAAAAAAAAAqo4h1AAAAECts9NOOyXVPv7442ropPJeeeWVhMd9+/aNQw45JO195s+fn62WAAAAAAAAAAAAAAAAAAAAAACAHGEINQAAAFDr9OzZM6n2xhtvVEMnlbNhw4ZYsWJFQu2oo45Ke5+SkpJ4++23s9UWAAAAAAAAAAAAAAAAAAAAAACQIwyhBgAAgDomPz8/qVZSUlINnWTu2GOPTao988wz2+z8bH2GK1euTKq1atUq7X3GjBkTa9asSXsdAAAAAAAAAAAAAAAAAAAAAACQ2wyhBgAAgDqmWbNmSbXaNsB43333jb322iuh9vbbb8e4ceO2yfnZ+gybNGmSVPv888/T3uf2229Pew0AAAAAAAAAAAAAAAAAAAAAAJD7DKEGAACAOma77bZLqs2fP78aOqmca665Jql24YUXxhdffFHlZ2frM2zRokU0btw4oTZ27Ni09hg1alRMmDAh7bMBAAAAAAAAAAAAAAAAAAAAAIDcZwg1AAAA1DFdunRJqo0ZM6YaOqmcc845Jzp16pRQW7BgQZx44omxbNmyjPZcvXp13HLLLfHII49s9XW77bZbtGjRIqGW6Wd45JFHJjyeMGFCynu99NJLMXDgwIzOBQAAAAAAAAAAAAAAAAAAAAAAcp8h1AAAAFDHtGrVKml48wMPPBB33HFHrFq1qpq6Sl/9+vXjySefjGbNmiXU33rrrejatWuMGDEi1q9fX+E+mzZtildffTV++tOfRrt27eI3v/lNLF++fKtr8vLy4rDDDkuovfrqqzFo0KBYsWJFWu/jzDPPTKqdddZZ8dRTT21xzbp162LYsGFx2mmnxbp16yIionnz5mmdCwAAAAAAAAAAAAAAAAAAAAAA5L680tLS0upuAgAAANi2br311rjqqquS6nl5ebHrrrtGixYton79+gnPXXLJJXHJJZck1Hr16hWvv/562eNjjjkmJkyYkHY/o0ePjvPOOy+htmDBgmjfvn2Fa59//vk444wzYtOmTUnPtWzZMo455pjo2bNntG7dOlq0aBFr166NoqKiWLRoUUyfPj3eeeedWL16dcK6W2+9Na644oqtnvvkk0+WO0A6ImLnnXeOVq1aRX5+fkL91FNPjWHDhiXUiouLo3PnzjFv3rykfQ4++OA45ZRTYs8994yCgoJYsWJFTJ8+PV544YVYuXJl2ev222+/OPnkk+Pmm29OWO+ffQAAAAAAAAAAAAAAAAAAAAAAoG7Lr/glAAAAQK659NJL48EHH4xZs2Yl1EtLS2Px4sWxePHipDXLly/fVu2l5ZRTTonXXnstzjrrrKQei4qK4rnnnovnnnsu6+f269cv+vTpE6+99lrSc5988kl88sknSfWDDjooqVZQUBBPPvlkHHnkkfH1118nPDdjxoyYMWPGVvvYZZdd4oUXXojRo0en1T8AAAAAAAAAAAAAAAAAAAAAAJD76lV3AwAAAMC217hx43j55Zfj2GOPre5WsuLoo4+OGTNmxDnnnBP169fPeJ+8vLzo3bt3HHXUURW+tl69evHUU0/Fj3/844zP+1bXrl3j5Zdfjp133jmtdYceemhMmTIl2rdvX+keAAAAAAAAAAAAAAAAAAAAAACA3GMINQAAANRRu+yyS4wdOzamT58eV199dRx//PHRvn37aNmyZeTn51d3e2nbeeed4+GHH46PPvoofvnLX0bnzp1TWtesWbM4+eSTY/jw4bFgwYIYN25c9OzZM6W1LVu2jD//+c/xz3/+M4YMGRInn3xydOzYMbbbbrsoKChIq/8jjzwyZs6cGVdddVW0bNlyq6/t3r17PPjggzFp0qTYdddd0zoHAAAAAAAAAAAAAAAAAAAAAACoO/JKS0tLq7sJAAAAgKrw6aefxowZM+Lzzz+PlStXxpo1a6JJkybRvHnz2GWXXaJTp06x++67R15eXnW3mqCkpCSmTZsWs2bNis8//zw2bdoUzZo1iw4dOkT37t2jTZs21d0iAAAAAAAAAAAAAAAAAAAAAABQCxhCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCD6lV3AwAAAAAAAAAAAAAAAAAAAAAAAAAAAABknyHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHGQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgwyhBgAAAAAAAAAAgP/H3r1HaVmXewO/ZpgB5OAJkXGrKEi6Nd2pwNIE0gqU1NA8kCkKSC/WInFl1PKwNwfZirnUUEOXGFCKqKhUqOUBFYLJA4JYKoHDQZAYJUxkAOf8/vG+e953ekZhDs/cMzefz1r8cV/P8/tdX54F//DAFwAAAAAAAAAAAAAAAEghJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKaSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCFlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAApJASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAUUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEJKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABSSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAopoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIISXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAghZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAKSQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACAFFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBCSqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAUkgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAKKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCEl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAppIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIWUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACkkBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBRSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQkqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAFJICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABACimhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEghJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKaSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCFlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAApJASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAUUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEJKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABSSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAopoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIISXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAghZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAKSQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACAFFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBCSqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAUkgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAKKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCEl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAppIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIWUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACkkBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBRSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQkqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAFJICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABACimhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEghJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKaSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCFlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAApJASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAUUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEJKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABSSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAopoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIISXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAghZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAKSQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACAFFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBCSqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAUkgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAKKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCEl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAppIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIWUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACkkBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBRSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQkqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAFJICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABACimhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEghJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKaSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCFlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAApJASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAUUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEJKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABSSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAopoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIISXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAghZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAKSQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACAFFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBCSqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAUkgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAKKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCEl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAppIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIWUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACkkBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBRSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQkqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAFJICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABACuUlHQCgqRQUFMQnn3ySMc/Pz4/u3bs3fyAAAAAAAKDF2bBhQ5SXl2fM999//yguLk4gEQBNxXfGAAAAAADA7vjOGAAAAAAAAIC9UU51dXV10iEAmkL79u2jtLQ06RgAAAAAAEAr1K5du/jss8+SjgFAI/jOGAAAAAAAaCjfGQMAAAAAAACQZrlJBwAAAAAAAAAAAAAAAAAAAAAAAAAAAACg6SmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEghJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKaSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCF8pIOANBU8vPzo7S0NGPerl27OOqooxJIBAAAAAAAtDRr1qyp8/uE/Pz8BNIA0JR8ZwwAAAAAAOyO74wBAAAAAAAA2BspoQZSo3v37vHuu+9mzI866qh45513EkgEAAAAAAC0NF/+8pfr/D6he/fuCaQBoCn5zhgAAAAAANgd3xkDAAAAAAAAsDfKTToAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1PCTUAAAAAAAAAAAAAAAAAAAAAAAAAAABACimhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEghJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKaSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCFlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAApJASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAUUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEJKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABSSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAopoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIISXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAghZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAKSQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACAFFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBCSqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAUkgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAKKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCEl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAppIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIWUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACkkBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBRSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQkqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAFJICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABACimhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEghJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKaSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCFlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAApJASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAUUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEJKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABSSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAopoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIISXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAghZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAKSQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACAFFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBCSqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAUkgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAKKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCEl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAppIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIWUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACkkBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBRSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQkqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAFJICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABACimhBgAAAAAAAAAAAAAAAABImfkr58c9r9yTdAwAAAAAAAAAIGF5SQcAAAAAAAAAAAAAAAAAAKDpLChaEKOfGh0V1RVRWlka4/qPSzoSAAAAAAAAAJCQ3KQDAAAAAAAAAAAAAAAAAADQNBYULYhhvx0WpVWlUVldGVOWTImbF96cdCwAAAAAAAAAICFKqAEAAAAAAAAAAAAAAAAAUqBwXWEM/93wKK0srZlVRVXc+eqdMf7F8QkmAwAAAAAAAACSooQaAAAAAAAAAAAAAAAAAKCVW1G8Ir4777uxs2JnxmtVURX3LL0nrn322gSSAQAAAAAAAABJUkINAAAAAAAAAAAAAAAAANCKFRUXxZA5Q2JH+Y4vfN+sFbNi7DNjmykVAAAAAAAAANASKKEGAAAAAAAAAAAAAAAAAGilioqLYuAjA2N72fY9ev9Df30orvr9VVlOBQAAAAAAAAC0FEqoAQAAAAAAAAAAAAAAAABaoeKS4hj06KDYVrqtXufmrpwbw54clqVUAAAAAAAAAEBLooQaAAAAAAAAAAAAAAAAAKCVKS4pjn4z+sUnn33SoPPPvPdMXDL3kqYNBQAAAAAAAAC0OEqoAQAAAAAAAAAAAAAAAABakZKSkug/s398vOvjRt3z3Nrn4vw55zdNKAAAAAAAAACgRVJCDQAAAAAAAAAAAAAAAADQSpSUlETvWb1j686tTXLfog2L4tyHz22SuwAAAAAAAACAlkcJNQAAAAAAAAAAAAAAAABAK1BSUhKn/ubU+GjHR016b+HGwhj464FNeicAAAAAAAAA0DIooQYAAAAAAAAAAAAAAAAAaOFKSkqi34P9YtP2TVm5f1nxshgwY0BW7gYAAAAAAAAAkqOEGgAAAAAAAAAAAAAAAACghTv94dNjw6cbsrrj7S1vx2m/Oi2rOwAAAAAAAACA5pWXdAAAmsf0pdPjD+/9IT7a+VHSUQAAAAAAaEZtctrEEfsfEeP6jYsTC05MOg4AAAAAAAAADXDKA6fE2n+ubZZdK/+xMnrf3zuWXbWsWfYBAAAAAAAAANmlhBpgLzBgxoB4e8vbSccAAAAAACAhb295O54rei5+2OeHcdM3b0o6DgAAAAAAAAD1MGDGgFi9dXWz7lz7z7Vx0n0nxeLLF0enTp2adTcAAAAAAAAA0LRykw4AQHYNe3KYAmoAAAAAAKKiuiLufePeKFxXmHQUAAAAAAAAAPbQwF8PTOzfBq3ftj5O/c2pUVJSksh+AAAAAAAAAKBpKKEGSLmF6xcmHQEAAAAAgBaisroypvx5StIxAAAAAAAAANgDg38zOJYVL0s0w6btm+LU35yaaAYAAAAAAAAAoHHykg4AQPaUlJTEjvIdtWelJVEd1QklAgAAAACgueXn5Ef7tu1rnjdu25hgGgAAAAAAAAD2xPlzzo/XNr+WdIyIiOh3WL+kIwAAAAAAAAAAjaCEGiDFSqIkY1YRFQkkAQAAAAAgKdXV1dE+/l8JdVllWYJpAAAAAAAAANidix65KBZtWJR0jIiIuOCYC+L+8+5POgYAAAAAAAAA0Ai5SQcAAAAAAAAAAAAAAAAAACBi2JPD4sX3X0w6RkREnNXzrJjxnRlJxwAAAAAAAAAAGkkJNQAAAAAAAAAAAAAAAABAwkb9dlQ8894zSceIiIjTu58ejw59NOkYAAAAAAAAAEATUEINAAAAAAAAAAAAAAAAAJCgsc+MjXmr5iUdIyIi+h3eL3536e+SjgEAAAAAAAAANJG8pAMAkKz8yI+O7TomHQMAAAAAgCbySeknSUcAAAAAAAAAoB6uffbaeOivDyUdIyIiehf0jqcvezrpGAAAAAAAAABAE8pNOgAAAAAAAAAAAAAAAAAAwN7ouuevi1krZiUdIyIivtLtK7FgxIKkYwAAAAAAAAAATUwJNQAAAAAAAAAAAAAAAABAM7t54c3xwPIHko4RERHHHnRsLBy5MOkYAAAAAAAAAEAWKKEGAAAAAAAAAAAAAAAAAGhGty+5Pe589c6oiqqko0TPA3rGn7//56RjAAAAAAAAAABZooQaAAAAAAAAAAAAAAAAAKCZ3PPKPTFlyZQWUUB95H5HxrKrliUdAwAAAAAAAADIIiXUAAAAAAAAAAAAAAAAAADNYPrS6THpT5NaRAH1oZ0PjcWXL046BgAAAAAAAACQZUqoAQAAAAAAAAAAAAAAAACy7ME3H4wbX7oxKqsrk44SBR0L4tXhr0anTp2SjgIAAAAAAAAAZJkSagAAAAAAAAAAAAAAAACALHr87cfjJ8//JCqqK5KOEgd3PDiWjlyqgBoAAAAAAAAA9hJKqAEAAAAAAAAAAAAAAAAAsmT+yvkx5g9jWkQBdZcOXWLRyEUKqAEAAAAAAABgL6KEGgAAAAAAAAAAAAAAAAAgCxYULYjRT42O8qrypKPE/u33jyVXLomCTgVJRwEAAAAAAAAAmpESagAAAAAAAAAAAAAAAACAJla4rjCG/XZYlFaVJh0l9mu3X7xwyQsKqAEAAAAAAABgL6SEGgAAAAAAAAAAAAAAAACgCRWuK4yhTw6N0srkC6g7t+0cC763IHoV9Eo6CgAAAAAAAACQACXUAAAAAAAAAAAAAAAAAABNZEXxivjuvO/GzoqdSUeJjvkdY/6l8xVQAwAAAAAAAMBeTAk1AAAAAAAAAAAAAAAAAEATKCouiiFzhsSO8h1JR4kOeR3isQseixMLTkw6CgAAAAAAAACQICXUAAAAAAAAAAAAAAAAAACNVFRcFAMfGRjby7YnHSXatWkXcy+cG/169Es6CgAAAAAAAACQMCXUAAAAAAAAAAAAAAAAAACNUFxSHIMeHRTbSrclHSXa5baL2d+ZrYAaAAAAAAAAAIgIJdQAAAAAAAAAAAAAAAAAAA1WXFIc/Wb0i08++yTpKJGfmx/Tvz09BvYamHQUAAAAAAAAAKCFUEINAAAAAAAAAAAAAAAAANAAJSUl0X9m//h418dJR4n83PyYdva0GHLskKSjAAAAAAAAAAAtiBJqAAAAAAAAAAAAAAAAAIB6Kikpib6z+sbWnVuTjhJ5OXlx+6Db4+LjL046CgAAAAAAAADQwiihBgAAAAAAAAAAAAAAAACoh5KSkjj1N6dG8Y7ipKNEm5w2cfM3bo4rTroi6SgAAAAAAAAAQAukhBoAAAAAAAAAAAAAAAAAoB4GPDQgNm3flHSMaJPTJiZ8bUKM7js66SgAAAAAAAAAQAulhBoAAAAAAAAAAAAAAAAAYA/1vr93rN+2PukYkRu5cV2/6+Lqr16ddBQAAAAAAAAAoAVTQg0AAAAAAAAAAAAAAAAAsAdO+9Vpsfafa5OOEbmRG9eeem2M6z8u6SgAAAAAAAAAQAunhBoAAAAAAAAAAAAAAAAAYDcGzBgQK/+xMukYERExpu+YuPGMG5OOAQAAAAAAAAC0AkqoAQAAAAAAAAAAAAAAAAC+wMBfD4y3t7yddIyIiBh54si46Zs3JR0DAAAAAAAAAGgllFADAAAAAAAAAAAAAAAAAHyOwb8ZHMuKlyUdIyIiLj/h8rhz8J1JxwAAAAAAAAAAWhEl1AAAAAAAAAAAAAAAAAAAdTh/zvnx2ubXko4RERFDjx0ad59zd9IxAAAAAAAAAIBWRgk1AAAAAAAAAAAAAAAAAMC/uGTuJbFow6KkY0RExDlfOifuP+/+pGMAAAAAAAAAAK1QXtIB2Dts2bIlli5dGmvWrIlPP/008vPzo0uXLnHcccdFnz59Ij8/P+mIAAAAAAAAAAAAAAAAABAREcOeHBbPrX0u6RgREXFWz7Ni9oWzk44BAAAAAAAAALRSSqjJqieeeCLuuuuuKCwsjOrq6jrf07lz5xg6dGj87Gc/i6OPPrqZE9bfypUr46STTorS0tKM12bNmhUjRozI6v6ZM2fGqFGj6nxt3bp1ceSRR2Z1PwAAAAAAAAAAAAAAAECaXfX7q+KZ955JOkZERJze/fR4dOijSccAAAAAAAAAAFqx3KQDkE6bNm2KM844Iy6++OJYsmTJ5xZQR0Rs3749ZsyYESeccEJMnjz5C9+btMrKyhg+fHidBdTN4YMPPohrr702kd0AAAAAAAAAAAAAAAAAaTf2mbExd+XcpGNERES/w/vF7y79XdIxAAAAAAAAAIBWTgk1TW716tXRt2/fWLRoUb3OlZWVxfjx4+Oyyy6LysrKLKVrnJ///OexdOnSxPaPGjUqtm3blth+AAAAAAAAAAAAAAAAgLS69tlr46G/PpR0jIiI6F3QO56+7OmkYwAAAAAAAAAAKZCXdADSZevWrTFo0KDYvHlzxmu9e/eO8847L3r06BG7du2K1atXx5w5c+Lvf/97rfc98sgjcfDBB8fUqVObKfWeefvtt2PSpEmJ7Z8+fXo8//zzie0HAAAAAAAAAAAAAAAASKvxL46PWStmJR0jIiKO73p8LBixIOkYAAAAAAAAAEBKKKGmSY0ePTo2bNhQa9a5c+eYPXt2DBkyJOP9t9xyS9xyyy0xceLEWvO77rorzjrrrPjWt76Vzbh7rKKiIoYPHx5lZWU1s1NOOSVee+21Ztn//vvvx7hx42qe99tvvygoKIhVq1Y1y34AAAAAAAAAAAAAAACAtLp54c0xbem0pGNERMSxBx0bi0ctTjoGAAAAAAAAAJAiuUkHID1eeOGFmDdvXq1Z27Zt46WXXqqzgDoiIj8/PyZMmBBTp07NeG3s2LFRUVGRjaj1dsstt8Ty5ctrnocNGxaDBw9ult3V1dUxatSo2L59e83sjjvuiIKCgmbZDwAAAAAAAAAAAAAAAJBWty+5Pe589c6oiqqko0TPA3rGn7//56RjAAAAAAAAAAApo4SaJjN58uSM2YQJE6JPnz67PXvNNdfEoEGDas2Kiopizpw5TZavod5666347//+75rnbt261VmanS333XdfvPjiizXPAwcOjFGjRjXbfgAAAAAAAAAAAAAAAIA0uueVe+LWwltbRAH1kfsdGYsuW5R0DAAAAAAAAAAghZRQ0yTeeeedWLx4ca3ZQQcdFOPGjdvjO6ZMmZIxu++++xqdrTHKy8tj+PDhUV5eXjP75S9/GV26dGmW/evWrYuf/exnNc8dO3aMBx54oFl2AwAAAAAAAAAAAAAAAKTV9KXTY9KfJkVldWXSUeLQzofG4ssXR6dOnZKOAgAAAAAAAACkkBJqmsSjjz6aMRs5cmS0bdt2j+/o3bt39O7du9bs1VdfjXXr1jU6X0NNnjw53nrrrZrnCy64IC666KJm2V1dXR0jR46MHTt21MymTJkSRx55ZLPsBwAAAAAAAAAAAAAAAEijB998MG586cYWUUBd0LEgXh3+qgJqAAAAAAAAACBrlFDTJJ599tmMWUPKmus6U9fdzWH58uUxZcqUmucDDzww7r333mbbf88998SiRYtqnvv37x8/+tGPmm0/AAAAAAAAAAAAAAAAQNo8/vbjMe6FcVFRXZF0lOjSoUssHblUATUAAAAAAAAAkFVKqGm0HTt2xPLly2vNOnToECeffHK97xowYEDGbPHixQ3O1lBlZWUxYsSIqKj4f3+RaOrUqdGtW7dm2b9mzZq4/vrra57bt28fM2bMiJycnGbZDwAAAAAAAAAAAAAAAJA281fOjzF/GBPlVeVJR4kD9zkwlly5RAE1AAAAAAAAAJB1SqhptBUrVkRVVVWtWZ8+fSIvL6/ed/Xt2zfy8/NrzZYtW9aofA0xadKk+Otf/1rzfPbZZ8fll1/eLLurqqpi5MiRsXPnzlp5jj766GbZDwAAAAAAAAAAAAAAAJA2C4oWxOinRreIAur92+8fhaMKo6BTQdJRAAAAAAAAAIC9gBJqGu1vf/tbxqxXr14Nuqtt27Zx2GGH1ZqtWbMmKioqGnRfQ7zxxhtx22231Tzvu+++cf/99zfb/rvuuisWL15c89ynT5/4yU9+0mz7AQAAAAAAAAAAAAAAANKkcF1hDPvtsCitKk06SuzXbr944ZIXFFADAAAAAAAAAM1GCTWNtn79+ozZEUcc0eD7unfvXuu5srIyNmzY0OD76qO0tDSGDx9eq/T6tttuyyjGzpbVq1fHjTfeWPOcn58fM2fOjDZt2jTLfgAAAAAAAAAAAAAAAIA0KVxXGEOfHBqllckXUHdu2zkWfG9B9CrolXQUAAAAAAAAAGAvkpd0AFq/4uLijNnhhx/e4PvqOvvhhx9Gz549G3znnho/fny8++67Nc9f//rXY/To0VnfGxFRVVUVI0aMiF27dtXMbrzxxjjhhBOaZX82TZs2Le69996s71mzZk3WdwAAAAAAAAAAAAAAAACtw4riFfHded+NnRU7k44SHfM7xvxL5yugBgAAAAAAAACanRJqGu3jjz/OmHXq1KnB99V1duvWrQ2+b0+99tprcccdd9Q8d+jQIX71q19FTk5O1ndHRNxxxx3xyiuv1DyfcMIJccMNNzTL7mzbsmVLrXJvAAAAAAAAAAAAAAAAgGwqKi6KIXOGxI7yHUlHiQ55HeKxCx6LEwtOTDoKAAAAAAAAALAXyk06AK3fjh2Zfwlnn332afB9dZ3duTO7/9P8Z599FsOHD4/Kysqa2c033xw9e/bM6t7/sXLlyhg/fnzNc5s2bWLmzJmRn5/fLPsBAAAAAAAAAAAAAAAA0qKouCgGPjIwtpdtTzpKtGvTLuZeODf69eiXdBQAAAAAAAAAYC+lhJpGKy8vz5i1b9++wffVVUJdVlbW4Pv2xI033hirVq2qef7qV78aY8eOzerO/1FZWRkjRoyIzz77rGY2bty46NOnT7PsBwAAAAAAAAAAAAAAAEiL4pLiGPTooNhWui3pKNEut13M/s5sBdQAAAAAAAAAQKKUUJMVOTk5TXq2urq6MXG+UGFhYUydOrXmuV27djFz5szIzW2e3x633XZbvP766zXPxxxzTEycOLFZdgMAAAAAAAAAAAAAAACkRXFJcfSb0S8++eyTpKNEfm5+TP/29BjYa2DSUQAAAAAAAACAvZwSahotPz8/Y7Zr164G31fX2bZt2zb4vi+yc+fOGDlyZFRVVdXMJkyYEP/+7/+elX3/6p133qlVOJ2TkxMzZsyI9u3bN8t+AAAAAAAAAAAAAAAAgDQoKSmJ02edHh/v+jjpKJGXkxfTzp4WQ44dknQUAAAAAAAAAIDISzoArV+HDh0yZk1dQt2xY8cG3/dFrr/++njvvfdqnk8++eT46U9/mpVd/6qioiKGDx8eZWVlNbMf/ehH0a9fv2bZ35y6du0axx13XNb3rFmzJkpLS7O+BwAAAAAAAAAAAAAAAGg5SkpKou+svvHRjo+SjhJ5OXlxx5l3xMXHX5x0FAAAAAAAAACAiFBCTRPo0qVLxqykpKTB99V1tq4djfWnP/0p7rnnnprnvLy8mDlzZuTlNc9vi1tvvTWWLVtW83zkkUfGlClTmmV3cxszZkyMGTMm63u+/OUvx7vvvpv1PQAAAAAAAAAAAAAAAEDLUFJSEqf+5tQo3lGcdJRok9Mmbv7GzXHFSVckHQUAAAAAAAAAoEZu0gFo/bp165Yx++CDDxp838aNG/doR2P94Ac/iOrq6prn6667Lr7yla80+Z66fPDBBzF58uRaswceeCA6duzYLPsBAAAAAAAAAAAAAAAA0mDAQwNi0/ZNSceINjltYsLXJsTovqOTjgIAAAAAAAAAUEte0gFo/Xr06JExe//99xt834YNG2o9t2nTJrp3797g+z7P3//+91rP8+bNi6eeemqPzxcXF2fMxo8fH1OnTq01GzJkSNx00021Zv/4xz+irKys5rlt27Yxbty4Pd4dEVFUVJQxO/vss6Nt27a1ZjfddFMMGTKkXncDAAAAAAAAAAAAAAAAtHS97+8d67etTzpG5EZuXNfvurj6q1cnHQUAAAAAAAAAIIMSahrtmGOOyZjVVZC8J8rKymLjxo21ZkcddVTk5WX/l+q7777b6Ds2btyYkf/EE0/c7bmysrJ46623Gr1/5cqVGbOPP/640fcCAAAAAAAAAAAAAAAAtCSn/eq0WPvPtUnHiNzIjWtPvTbG9R+XdBQAAAAAAAAAgDrlJh2A1u+kk06K3Nzav5TeeOONqKioqPddb7zxRpSXl9eanXzyyY3KBwAAAAAAAAAAAAAAAEB6DJgxIFb+Y2XSMSIiYkzfMXHjGTcmHQMAAAAAAAAA4HMpoabROnbsGCeddFKt2Y4dO+LNN9+s911LlizJmH3ta19rcDYAAAAAAAAAAAAAAAAA0mPgrwfG21veTjpGRESMPHFk3PTNm5KOAQAAAAAAAADwhZRQ0yQGDx6cMXviiSfqfU9dZ+q6uyl88sknUV1d3eAfEyZMyLhz1qxZGe/79a9/nfG+E088sVG7q6ur4/TTT8+4d926dRnvGzFiRBY+PQAAAAAAAAAAAAAAAIDmde7D58ay4mVJx4iIiMtPuDzuHHxn0jEAAAAAAAAAAHZLCTVN4pJLLsmYzZo1K8rKyvb4jjfffDOWLl1aa3bKKadEjx49Gp0PAAAAAAAAAAAAAAAAgNbr/DnnR+HGwqRjRETEBcdcEHefc3fSMQAAAAAAAAAA9ogSaprE8ccfH/37968127JlS/ziF7/Y4zuuv/76jNkPf/jDRmcDAAAAAAAAAAAAAAAAoPW6ZO4lsWjDoqRjRETEOV86J2Z8Z0bSMQAAAAAAAAAA9pgSaprMf/7nf2bMJkyYEMuXL9/t2V/+8pfx3HPP1Zr17NkzLr300j3afeSRR0ZOTk6tHwsXLtyjswAAAAAAAAAAAAAAAAC0TMOeHBbPrX1u929sBt884psx+8LZSccAAAAAAAAAAKgXJdQ0mbPOOivOO++8WrPS0tL4+te/Hk899VSdZ8rLy2Py5Mlx9dVXZ7x29913R35+flayAgAAAAAAAAAAAAAAANCyXfX7q+KZ955JOkZERJze/fR44ntPJB0DAAAAAAAAAKDe8pIOQLo88MADsWzZsvjggw9qZp9++mkMGTIk+vTpE+edd1706NEjdu3aFe+99148/PDDsWnTpox7fvSjH8U555zTnNEBAAAAAAAAAAAAAAAAaCHGPjM25q6cm3SMiIg45ZBT4neX/i7pGAAAAAAAAAAADaKEmibVtWvXeP755+Mb3/hGFBcX13rtjTfeiDfeeGO3dwwdOjSmTp2apYQAAAAAAAAAAAAAAAAAtGTXPX9dPPTXh5KOERERvQt6x7PDn006BgAAAAAAAABAg+UmHYD0OfbYY+P111+P/v371+tcfn5+TJgwIR555JFo06ZNltIBAAAAAAAAAAAAAAAA0FKNf3F83L/8/qRjRETE8V2PjwUjFiQdAwAAAAAAAACgUZRQkxWHH354/OlPf4rHHnssTjvttMjJyfnc93bq1ClGjhwZf/nLX2LixImRm+uXJQAAAAAAAAAAAAAAAMDe5uaFN8e0pdOSjhEREUd3OToWj1qcdAwAAAAAAAAAgEbLSzoA6ZWTkxNDhw6NoUOHxkcffRSvv/56rF27Nj799NPIy8uLgw46KI499tjo27dvtG3btlG71q9f3zSh62HixIkxceLEZt/7PxYuXJjYbgAAAAAAAAAAAAAAAICmdPuS2+POV++MqqhKOkr0PKBnvPa/Xks6BgAAAAAAAABAk1BCTbM4+OCD49xzz006BgAAAAAAAAAAAAAAAAAtzD2v3BO3Ft7aIgqou+/bPRZdtijpGAAAAAAAAAAATSY36QAAAAAAAAAAAAAAAAAAwN5p+tLpMelPk6KyujLpKHFo50Oj8IrC6NSpU9JRAAAAAAAAAACajBJqAAAAAAAAAAAAAAAAAKDZPfjmg3HjSze2iALqgo4F8erwVxVQAwAAAAAAAACpo4QaAAAAAAAAAAAAAAAAAGhWj7/9eIx7YVxUVFckHSW6dOgSS0cuVUANAAAAAAAAAKSSEmoAAAAAAAAAAAAAAAAAoNnMXzk/xvxhTJRXlScdJQ7c58BYcuUSBdQAAAAAAAAAQGopoQYAAAAAAAAAAAAAAAAAmsWCogUx+qnRLaKAev/2+0fhqMIo6FSQdBQAAAAAAAAAgKxRQg0AAAAAAAAAAAAAAAAAZF3husIY9tthUVpVmnSU2K/dfvHCJS8ooAYAAAAAAAAAUk8JNQAAAAAAAAAAAAAAAACQVSuKV8TQJ4dGaWXyBdSd23aOBd9bEL0KeiUdBQAAAAAAAAAg65RQAwAAAAAAAAAAAAAAAABZs6J4RZz78Lmxs2Jn0lGiY37HmH/pfAXUAAAAAAAAAMBeQwk1AAAAAAAAAAAAAAAAAJAVRcVFMWTOkNhRviPpKNEhr0M8dsFjcWLBiUlHAQAAAAAAAABoNkqoAQAAAAAAAAAAAAAAAIAmV1RcFAMfGRjby7YnHSXatWkXcy+cG/169Es6CgAAAAAAAABAs1JCDQAAAAAAAAAAAAAAAAA0qeKS4hj06KDYVrot6SjRLrddzP7ObAXUAAAAAAAAAMBeSQk1AAAAAAAAAAAAAAAAANBkikuKo//M/vHJZ58kHSXyc/Nj+renx8BeA5OOAgAAAAAAAACQCCXUAAAAAAAAAAAAAAAAAECTKCkpidNnnR5bd25NOkrk5eTFtLOnxZBjhyQdBQAAAAAAAAAgMUqoAQAAAAAAAAAAAAAAAIBGKykpib6z+sZHOz5KOkrk5eTFHWfeERcff3HSUQAAAAAAAAAAEqWEGgAAAAAAAAAAAAAAAABolJKSkuj3YL8o3lGcdJRok9Mmbv7GzXHFSVckHQUAAAAAAAAAIHFKqAEAAAAAAAAAAAAAAACARhnw0IDY8OmGpGNEbuTGhK9NiNF9RycdBQAAAAAAAACgRVBCDQAAAAAAAAAAAAAAAAA02CkPnBLrt61POkbkRm5c3//6uPqrVycdBQAAAAAAAACgxVBCDQAAAAAAAAAAAAAAAAA0yGm/Oi1Wb12ddIyIiBjTd0yM6z8u6RgAAAAAAAAAAC2KEmoAAAAAAAAAAAAAAAAAoN7OmHVGrPzHyqRjRETEVSdfFTd986akYwAAAAAAAAAAtDhKqAEAAAAAAAAAAAAAAACAehn8m8Hx1odvJR0jIiJGnjgybj3z1qRjAAAAAAAAAAC0SEqoAQAAAAAAAAAAAAAAAIA9du7D58Zrm19LOkZERFx+wuVx5+A7k44BAAAAAAAAANBi5SUdAAAAAAAAAABIty1btsTSpUtjzZo18emnn0Z+fn506dIljjvuuOjTp0/k5+cnHbGWsrKyWLVqVaxcuTL+8Y9/xLZt2yI/Pz8OOOCA6Nq1a/Tu3TsOPfTQrOcoLy+PpUuXxsqVK2Pr1q1RXl4e++67bxx11FHRt2/f6Nq1a9YzAAAAAADAv7rokYuicGNh0jEiIuKCYy6Iu8+5O+kYAAAAAAAAAAAtmhJqAAAAAAAAACArnnjiibjrrruisLAwqqur63xP586dY+jQofGzn/0sjj766GZO+H+Ul5fHwoUL48UXX4yXX345li9fHhUVFV945rDDDouLL744fvjDH8aXvvSlJs2zatWquO222+Lxxx+P7du31/menJyc6N+/f1xzzTVx4YUXNul+AAAAAAD4PJfMvSRefP/FpGNERMQ5XzonZnxnRtIxAAAAAAAAAABavNykAwAAAAAAAAAA6bJp06Y444wz4uKLL44lS5Z8bgF1RMT27dtjxowZccIJJ8TkyZO/8L1N7S9/+UuMGjUqunXrFmeeeWb8/Oc/j9dff323BdQRER988EH84he/iGOOOSa+//3vx6efftroPFVVVTFp0qQ44YQTYubMmZ9bQB0RUV1dHYsXL46LLroovv71r8fmzZsbvR8AAAAAAL7IqN+OiufWPpd0jIiI+OYR34zZF85OOgYAAAAAAAAAQKughBoAAAAAAAAAaDKrV6+Ovn37xqJFi+p1rqysLMaPHx+XXXZZVFZWZildbfPmzYuZM2fGP//5zwbfUV1dXVOivXr16gbfU1lZGd/73vdi4sSJUV5eXq+zCxcujL59+0ZRUVGD9wMAAAAAwBe56vdXxbxV85KOERERp3c/PZ743hNJxwAAAAAAAAAAaDXykg4AAAAAAAAAAKTD1q1bY9CgQbF58+aM13r37h3nnXde9OjRI3bt2hWrV6+OOXPmxN///vda73vkkUfi4IMPjqlTpzZT6kzt2rWLvn37xmmnnRb/9m//FgcffHBUVlbG5s2b489//nP88Y9/jNLS0lpnNmzYEN/4xjdi8eLF0aNHj3rvHDt2bMydOzdjfuCBB8awYcPi2GOPjX333TfWr18fzz//fEbJ96ZNm+LMM8+MZcuWxQEHHFDv/QAAAAAA8HmuffbamLsy88+wk3DKIafE7y79XdIxAAAAAAAAAABaFSXUAAAAAAAAAECTGD16dGzYsKHWrHPnzjF79uwYMmRIxvtvueWWuOWWW2LixIm15nfddVecddZZ8a1vfSubcWvJy8uLs88+O0aOHBmDBw+O9u3bf+57N2/eHD/96U/j4YcfrjXftGlTXHnllfHyyy/Xa/f8+fPj3nvvzZj/4Ac/iDvuuCM6dOhQa37DDTdEYWFhXHjhhfHhhx/WzNetWxc/+MEP4rHHHqvXfgAAAAAA+DzXPX9dzFoxK+kYERHxlW5fiWeHP5t0DAAAAAAAAACAVic36QAAAAAAAAAAQOv3wgsvxLx582rN2rZtGy+99FKdBdQREfn5+TFhwoSYOnVqxmtjx46NioqKbEStZZ999okf//jHsXHjxvj9738f559//hcWUEdEHHLIITF79uy46aabMl5buHBhPPnkk3u8v7y8PK655pqM+Y9//OO47777Mgqo/0e/fv3ilVdeiQMPPLDWfO7cubFw4cI93g8AAAAAAJ9n/Ivj4/7l9ycdIyIiju96fCwcuTDpGAAAAAAAAAAArZISagAAAAAAAACg0SZPnpwxmzBhQvTp02e3Z6+55poYNGhQrVlRUVHMmTOnyfLVZfDgwbF27dq48847o6CgoN7n/+u//ivOPffcjPmDDz64x3c89NBDsX79+lqz448/Pm699dbdnu3Ro0fcfffdGfO6yrEBAAAAAKA+bl54c0xbOi3pGBERcXSXo2PxqMVJxwAAAAAAAAAAaLWUUAMAAAAAAAAAjfLOO+/E4sW1yx8OOuigGDdu3B7fMWXKlIzZfffd1+hsX+TUU09tUPn0/2/SpEkZs+effz7Kysr26HxdP8dJkyZF27Zt9+j8ZZddFscff3yt2csvvxyrVq3ao/MAAAAAAPCvbl9ye9z56p1RFVVJR4meB/SM1/7Xa0nHAAAAAAAAAABo1ZRQAwAAAAAAAACN8uijj2bMRo4cucdFyhERvXv3jt69e9eavfrqq7Fu3bpG58umk08+OaPI+rPPPovNmzfv9mxRUVG88cYbtWaHHHJIDBkypF4ZrrrqqozZI488Uq87AAAAAAAgImL60ulxa+GtLaKAuvu+3WPRZYuSjgEAAAAAAAAA0OopoQYAAAAAAAAAGuXZZ5/NmF100UX1vqeuM3Xd3dIcfvjhGbPi4uLdnnvuuecyZueff37k5eXVa39dn9sf//jHet0BAAAAAAAPvvlg3PDSDVFZXZl0lDi086FReEVhdOrUKekoAAAAAAAAAACtnhJqAAAAAAAAAKDBduzYEcuXL68169ChQ5x88sn1vmvAgAEZs8WLFzc4W3PZuXNnxmyfffbZ7bm6fm79+/ev9/6CgoLo1atXrdmyZcvqzAUAAAAAAHV5/O3H4yfP/6RFFFAf3PHgeHX4qwqoAQAAAAAAAACaiBJqAAAAAAAAAKDBVqxYEVVVVbVmffr0iby8vHrf1bdv38jPz681W7ZsWaPyZVtlZWWsW7cuY37IIYfs9mxdP7evfvWrDcpx2mmnZeR66623GnQXAAAAAAB7l/kr58eYP4yJiuqKpKNElw5dYtHIRQqoAQAAAAAAAACakBJqAAAAAAAAAKDB/va3v2XMevXq1aC72rZtG4cddlit2Zo1a6KiIvnSi8/zxz/+MXbu3FlrdsQRR0TXrl2/8Fx5eXmsXbu21iw/Pz+OOOKIBuU46qijMmarVq1q0F0AAAAAAOw95q+cH6OfGh3lVeVJR4kD9zkwlly5JAo6FSQdBQAAAAAAAAAgVZRQAwAAAAAAAAANtn79+oxZQ4uUIyK6d+9e67mysjI2bNjQ4Puybfr06Rmz8847b7fnNmzYEFVVVbVmhx12WOTmNuyvcvzr5xYRGSXXAAAAAADw/1tQtCBGPz06SqtKk44S+7ffPwpHFSqgBgAAAAAAAADIgrykAwAAAAAAAAAArVdxcXHG7PDDD2/wfXWd/fDDD6Nnz54NvjNbXn755XjqqadqzXJycmLUqFG7Pdtcn1tLMG3atLj33nuzvmfNmjVZ3wEAAAAAkBaF6wpj2G+HRWll8gXUndt2jhcueUEBNQAAAAAAAABAliihBgAAAAAAAAAa7OOPP86YderUqcH31XV269atDb4vW7Zt2xZXXnllxvyyyy6L//iP/9jt+b3pc9uyZUu8++67SccAAAAAAOD/WlG8IoY+ObRFFFB3zO8Y8y+dH70KeiUdBQAAAAAAAAAgtXKTDgAAAAAAAAAAtF47duzImO2zzz4Nvq+uszt37mzwfdlQXV0dV1xxRaxfv77W/KCDDorbb799j+7YGz83AAAAAACSt6J4RZz78LmxsyL5P0PukNchnr7s6Tix4MSkowAAAAAAAAAApJoSagAAAAAAAACgwcrLyzNm7du3b/B9dZUpl5WVNfi+bLj++utj/vz5tWY5OTkxc+bM6Nat2x7dsTd+bgAAAAAAJKuouCiGzBkSO8oz/6PE5tauTbuYe+FcBdQAAAAAAAAAAM1ACTUAAAAAAAAA0KRycnKa9Gx1dXVj4jSpe++9N37+859nzG+44Yb49re/3ai70/y5AQAAAACQrKLiohj4yMDYXrY96SjRrk27mP2d2dGvR7+kowAAAAAAAAAA7BWUUAMAAAAAAAAADZafn58x27VrV4Pvq+ts27ZtG3xfU3r44Yfj6quvzpgPHz48Jk+eXK+79qbPDQAAAACAZBWXFMdZj50V20q3JR0l2uX+nwLqgb0GJh0FAAAAAAAAAGCvkZd0AAAAAAAAAACg9erQoUPGrKnLlDt27Njg+5rKvHnzYsSIEVFVVVVrftFFF8WMGTMiJyenXvftLZ9bRETXrl3juOOOy/qeNWvWRGlpadb3AAAAAAC0JsUlxdF/Zv/4eNfHSUeJ/Nz8mP7t6QqoAQAAAAAAAACamRJqAAAAAAAAAKDBunTpkjErKSlp8H11na1rR3N6+umn45JLLomKiopa8yFDhsScOXOiTZs29b5zb/jc/seYMWNizJgxWd/z5S9/Od59992s7wEAAAAAaC1KSkri9Fmnx9adW5OOEnk5eTHt7Gkx5NghSUcBAAAAAAAAANjr5CYdAAAAAAAAAABovbp165Yx++CDDxp838aNG/doR3N57rnn4qKLLory8vJa829961vx+OOPR35+foPuTfvnBgAAAABAskpKSuLU35waH+34KOkokZeTF3eceUdcfPzFSUcBAAAAAAAAANgrKaEGAAAAAAAAABqsR48eGbP333+/wfdt2LCh1nObNm2ie/fuDb6vMRYsWBDnn39+lJaW1poPGjQo/jd7dxrmdV3o//81wwwoi5ookh5RyCzKLhcg1MEdxNTQTCdU1NDCOqhdkXX0aOKSS2aK6zloRu6ISoXazwUNBExlEZfEBNFwm0RcYADZ/zf+5+fvTIMJs/CZGR6P6/LGvL/fz/vzBO2OF74aO3ZsWrduXee7u3TpktLSmn9s44033sjq1avrdN8//74la/97AwAAAABAy1ddXZ2KWyvy1qK3ik5Jq5JWufjAi3Pi7icWnQIAAAAAAAAAsNEyQg0AAAAAAAAA1NmXvvSlWmdz5syp013Lly/PG2+8UePsC1/4QsrKyup0X338+c9/zoABA/Lxxx/XOD/wwAPzxz/+MZtsskm97m/dunWtkegVK1asdUx6Xbz66qu1zr785S/X6S4AAAAAAJq3fW7bJ/MW1u3fNzek0pRm+L7DM6TXkKJTAAAAAAAAAAA2akaoAQAAAAAAAIA623333VNaWvOPH0ybNi0rV65c77umTZuWFStW1DjbY4896tVXFxMnTszhhx+epUuX1jjfb7/9cv/992fTTTdtkPf06NGj1tlf/vKXOt315JNP1vi5VatW2XXXXet0FwAAAAAAzVfvm3rn9Y9eLzojpSnNsD2H5fS9Ti86BQAAAAAAAABgo2eEGgAAAAAAAACos3bt2mX33XevcbZ48eI8++yz633X5MmTa53tu+++dW6ri0mTJuWwww7LkiVLapzvs88+efDBB9O2bdsGe9c+++xT62xtvwef5R//+Edmz55d46xHjx4N2goAAAAAQNO392/2zisLXik6I0kytNfQnLP/OUVnAAAAAAAAAAAQI9QAAAAAAAAAQD0dcsghtc7uvffe9b5nbc+s7e7G8uSTT+bQQw/N4sWLa5xXVFTkT3/6U9q1a9eg7+vfv3+tsz/+8Y9ZuXLlet1z33331TrbkL9vAAAAAAAUb/9R+2fWe7OKzkiSnLrHqbnwoAuLzgAAAAAAAAAA4H8YoQYAAAAAAAAA6mXgwIG1zkaNGpXly5ev8x3PPvtspk6dWuOsd+/e6dq1a7371sXTTz+db3zjG6murq5xvtdee+X//J//k/bt2zf4O7/4xS+mR48eNc7eeuutPPDAA+t1z8iRI2udHXvssfVqAwAAAACg+TjklkPy3D+eKzojSTJ4t8G57ODLis4AAAAAAAAAAOB/MUINAAAAAAAAANTLLrvskj59+tQ4mz9/fq666qp1vuPss8+udfbDH/6w3m3rYvr06enfv38WLlxY4/zrX/96HnrooXTo0KHR3r22X+Pw4cOzYsWKdXp+9OjRef7552uc7b///vnyl7/cIH0AAAAAADRth99xeJ5+5+miM5Ikld0rc+UhVxadAQAAAAAAAADAPzFCDQAAAAAAAADU27nnnlvrbPjw4ZkxY8ZnPnvdddfl4YcfrnHWrVu3HHfccev07h133DElJSU1/powYcI6Pfvcc8/l4IMPzkcffVTjvGfPnnnkkUey2WabrdM9dXXCCSdkhx12qHH2/PPP5z//8z8/89nXX389p512Wq3zn//85w3WBwAAAABA03X0XUdnyhtTis5Ikhz1paMy8oiRRWcAAAAAAAAAALAWRqgBAAAAAAAAgHrr379/jjjiiBpny5YtywEHHJD7779/rc+sWLEiF110UU4//fRan11zzTUpLy9vlNb/66WXXkq/fv3y/vvv1zjfY4898uijj2bzzTdv1PcnSevWrTNixIha51dccUWGDh2apUuXrvW5J598MnvttVcWLFhQ4/zoo4/OgQce2BipAAAAAAA0IYPuG5TH/v5Y0RlJkv7d+ufmb91cdAYAAAAAAAAAAJ+irOgAAAAAAAAAAKBluOmmmzJ9+vS8+eabn5wtXLgwAwYMSM+ePXPEEUeka9euWbp0aWbPnp077rgjb731Vq17TjvttBx22GGN3vujH/0o8+fPr3X+4YcfZv/996/X3RdeeGEGDBiwTt898sgjc+qpp2bkyJE1zm+44YbcfffdGTRoULp3754OHTpk3rx5efjhhzNhwoRa9+ywww617gAAAAAAoOU55fen5MHZDxadkSQ5aIeDMrpydNEZAAAAAAAAAAD8C0aoAQAAAAAAAIAGsfXWW+eRRx7JgQcemKqqqhqfTZs2LdOmTfvMOyorKzNixIhGKqxpxYoVaz2fO3duve9+//331+v71113Xd57773cd999Nc4XLFiQq6+++jOf//znP59HHnkkW2655Xq9FwAAAACA5uXUP56asX8bW3RGkqRi+4rce+y9RWcAAAAAAAAAAPAZSosOAAAAAAAAAABaju7du+eZZ55Jnz591uu58vLyDB8+PHfddVdatWrVSHVNV1lZWcaMGZOf//znKStbv/9P8X333TdTp07Nzjvv3Eh1AAAAAAA0BcMeGpYxs8YUnZEk6f353nng+AeKzgAAAAAAAAAAYB0YoQYAAAAAAAAAGtT222+fJ554InfffXf23nvvlJSUfOp327dvn8GDB+f555/P+eefn9LSjfePMpSWlubCCy/MCy+8kO9+97tp3779p363pKQkFRUVGTNmTCZOnJjttttuA5YCAAAAALChnfXIWRk1c1TRGUmSXbfZNQ+d9FDRGQAAAAAAAAAArKOyogMAAAAAAAAAgJanpKQklZWVqayszLvvvptnnnkmc+fOzcKFC1NWVpatttoq3bt3T69evdK6det6vev111+v03MTJkyo13sby5e//OWMGjUqI0eOzNSpUzNr1qy89957WblyZTbbbLN069YtX//619OpU6eiUwEAAAAA2ADOe+y8jJwxsuiMJEn3rbpnwuAJRWcAAAAAAAAAALAejFADAAAAAAAAAI2qU6dOOfzww4vOaHZat26dioqKVFRUFJ0CAAAAAEBBrph8Ra6fen3RGUmSnTvunCe/92TRGQAAAAAAAAAArKfSogMAAAAAAAAAAAAAAAAAgJqu/cu1uXTypVmd1UWnZMfNd8zT33+66AwAAAAAAAAAAOrACDUAAAAAAAAAAAAAAAAANCE3Tr0xFzxxQZMYoO6yWZdMOmFS0RkAAAAAAAAAANSREWoAAAAAAAAAAAAAAAAAaCJuffbWnPP4OVm1ZlXRKencrnOmnDgl7du3LzoFAAAAAAAAAIA6MkINAAAAAAAAAAAAAAAAAE3APS/ek5888pOsXLOy6JR0atcpUwdPNUANAAAAAAAAANDMGaEGAAAAAAAAAAAAAAAAgIKNmzUuQ/80tEkMUHds2zETB080QA0AAAAAAAAA0AIYoQYAAAAAAAAAAAAAAACAAo2fMz5D7h+SFatXFJ2SLTfdMpNPnpzO7TsXnQIAAAAAAAAAQAMwQg0AAAAAAAAAAAAAAAAABRk/Z3wG/X5Qlq1eVnRKNm+zeR7+zsMGqAEAAAAAAAAAWhAj1AAAAAAAAAAAAAAAAABQgCmvTclJfzgpy1YVP0DdoXWHjD92fHbqvFPRKQAAAAAAAAAANCAj1AAAAAAAAAAAAAAAAACwgc2smpnK+yqzZOWSolPSrrxdxh03zgA1AAAAAAAAAEALZIQaAAAAAAAAAAAAAAAAADagmVUzM+DOAU1igLptWds8cPwD2a3zbkWnAAAAAAAAAADQCIxQAwAAAAAAAAAAAAAAAMAGMqdqTo6868gsWr6o6JS0adUmY749xgA1AAAAAAAAAEALZoQaAAAAAAAAAAAAAAAAADaAquqq9BvdLx8t+6jolLQpbZPbv3V7KrpWFJ0CAAAAAAAAAEAjMkINAAAAAAAAAAAAAAAAAI2sqroqFTdX5MOPPyw6JW1K2+TGb96Yvjv1LToFAAAAAAAAAIBGZoQaAAAAAAAAAAAAAAAAABpRdXV1+vy2T95f+n7RKSkvLc+1h16bAd0HFJ0CAAAAAAAAAMAGYIQaAAAAAAAAAAAAAAAAABpJdXV1eozqkQVLFhSdkrKSslx/6PU5Zpdjik4BAAAAAAAAAGADMUINAAAAAAAAAAAAAAAAAI2guro6e96yZ95d/G7RKWlV0iq/PvjXBqgBAAAAAAAAADYyRqgBAAAAAAAAAAAAAAAAoIFVV1en4taKvLXoraJT0qqkVYbvOzwn7n5i0SkAAAAAAAAAAGxgRqgBAAAAAAAAAAAAAAAAoIHtd8d+mbdwXtEZKU1pzqo4K6fvdXrRKQAAAAAAAAAAFMAINQAAAAAAAAAAAAAAAAA0oN439c7cD+YWnZHSlGbYnsNyZp8zi04BAAAAAAAAAKAgRqgBAAAAAAAAAAAAAAAAoIHsc/M+eWXBK0VnJEmG9hqac/Y/p+gMAAAAAAAAAAAKZIQaAAAAAAAAAAAAAAAAABpA39/1zYvzXyw6I0ly6h6n5sKDLiw6AwAAAAAAAACAghmhBgAAAAAAAAAAAAAAAIB6OuSWQzK9anrRGUmSE752Qi47+LKiMwAAAAAAAAAAaAKMUAMAAAAAAAAAAAAAAABAPRx555F5+p2ni85IklR2r8w1h11TdAYAAAAAAAAAAE2EEWoAAAAAAAAAAAAAAAAAqKOj7zo6E+dNLDojSXLUl47KyCNGFp0BAAAAAAAAAEATYoQaAAAAAAAAAAAAAAAAAOpg0H2D8tjfHys6I0nSv1v/3Pytm4vOAAAAAAAAAACgiTFCDQAAAAAAAAAAAAAAAADr6ZTfn5IHZz9YdEaSZL8u+2V05eiiMwAAAAAAAAAAaIKMUAMAAAAAAAAAAAAAAADAejjjwTMy9m9ji85IklRsX5E/HPeHojMAAAAAAAAAAGiijFADAAAAAAAAAAAAAAAAwDoa9tCw3PbCbUVnJEl6dO6RB45/oOgMAAAAAAAAAACaMCPUAAAAAAAAAAAAAAAAALAOznrkrIyaOarojCTJrtvsmvHfHV90BgAAAAAAAAAATZwRagAAAAAAAAAAAAAAAAD4DBdPuDgjZ4wsOiNJ0n2r7pkweELRGQAAAAAAAAAANANGqAEAAAAAAAAAAAAAAADgX7hi8hW58qkri85Ikuzccec8+b0ni84AAAAAAAAAAKCZMEINAAAAAAAAAAAAAAAAAJ/i2r9cm0snX5rVWV10SnbcfMc8/f2ni84AAAAAAAAAAKAZMUINAAAAAAAAAAAAAAAAAGtx49Qbc8ETFzSJAeoum3XJpBMmFZ0BAAAAAAAAAEAzY4QaAAAAAAAAAAAAAAAAAP7Jrc/emnMePyer1qwqOiWd23XOlBOnpH379kWnAAAAAAAAAADQzBihBgAAAAAAAAAAAAAAAID/5Z4X78lPHvlJVq5ZWXRKOrXrlKmDpxqgBgAAAAAAAACgToxQAwAAAAAAAAAAAAAAAMD/GDdrXIb+aWiTGKDu2LZjJg6eaIAaAAAAAAAAAIA6M0INAAAAAAAAAAAAAAAAAEnGzxmfIfcPyYrVK4pOyRabbJHJJ09O5/adi04BAAAAAAAAAKAZM0INAAAAAAAAAAAAAAAAwEZvymtTMuj3g7Js9bKiU7J5m83z6MBHDVADAAAAAAAAAFBvRqgBAAAAAAAAAAAAAAAA2KhNeW1KKu+rzLJVxQ9Qd2jdIeOPHZ+dOu9UdAoAAAAAAAAAAC2AEWoAAAAAAAAAAAAAAAAANlozq2bmO2O/kyUrlxSdknbl7TLuuHEGqAEAAAAAAAAAaDBGqAEAAAAAAAAAAAAAAADYKM2pmpMBdw7I4hWLi05J27K2eeD4B7Jb592KTgEAAAAAAAAAoAUxQg0AAAAAAAAAAAAAAADARmdO1Zz0vatvFi1fVHRK2rRqkzHfHmOAGgAAAAAAAACABmeEGgAAAAAAAAAAAAAAAICNSlV1VfqN7pePln1UdEralLbJ7d+6PRVdK4pOAQAAAAAAAACgBTJCDQAAAAAAAAAAAAAAAMBGo6q6KhU3V+TDjz8sOiXlpeW58Zs3pu9OfYtOAQAAAAAAAACghTJCDQAAAAAAAAAAAAAAAMBGobq6On1+2yfvL32/6JSUl5bn+kOvz4DuA4pOAQAAAAAAAACgBTNCDQAAAAAAAAAAAAAAAECLV11dnV6jemXBkgVFp6SspCxX9Lsix+xyTNEpAAAAAAAAAAC0cEaoAQAAAAAAAAAAAAAAAGjRqqurs+cte6ZqcVXRKWlV0ioXH3hxTtz9xKJTAAAAAAAAAADYCBihBgAAAAAAAAAAAAAAAKDFqq6uTsWtFXlr0VtFp6RVSasM33d4hvQaUnQKAAAAAAAAAAAbCSPUAAAAAAAAAAAAAAAAALRY+92xX+YtnFd0RkpTmrMqzsrpe51edAoAAAAAAAAAABsRI9QAAAAAAAAAAAAAAAAAtEi9b+qduR/MLTojpSnNsD2H5cw+ZxadAgAAAAAAAADARsYINQAAAAAAAAAAAAAAAAAtzj4375NXFrxSdEaSZGivoTln/3OKzgAAAAAAAAAAYCNkhBoAAAAAAAAAAAAAAACAFqXv7/rmxfkvFp2RJBm82+BceNCFRWcAAAAAAAAAALCRMkINAAAAAAAAAAAAAAAAQItxyC2HZHrV9KIzkiQnfO2EXHnIlUVnAAAAAAAAAACwETNCDQAAAAAAAAAAAAAAAECLcOSdR+bpd54uOiNJUtm9Mtccdk3RGQAAAAAAAAAAbOSMUAMAAAAAAAAAAAAAAADQ7A0cMzAT500sOiNJctgXD8vII0YWnQEAAAAAAAAAAEaoAQAAAAAAAAAAAAAAAGjeBt03KA/PfbjojCRJ/279c/u3by86AwAAAAAAAAAAkhihBgAAAAAAAAAAAAAAAKAZO/WPp+bB2Q8WnZEk2a/LfhldObroDAAAAAAAAAAA+IQRagAAAAAAAAAAAAAAAACapTMePCNjZo0pOiNJUrF9Rf5w3B+KzgAAAAAAAAAAgBqMUAMAAAAAAAAAAAAAAADQ7Ax7aFhue+G2ojOSJD0698gDxz9QdAYAAAAAAAAAANRihBoAAAAAAAAAAAAAAACAZuW8x87LqJmjis5Ikuyy9S4Z/93xRWcAAAAAAAAAAMBaGaEGAAAAAAAAAAAAAAAAoNm4eMLFuX7q9UVnJEm6b9U9k06ZVHQGAAAAAAAAAAB8KiPUAAAAAAAAAAAAAAAAADQLV0y+Ilc+dWVWZ3XRKen2uW558ntPFp0BAAAAAAAAAAD/khFqAAAAAAAAAAAAAAAAAJq8a/9ybS6bclmTGKDecfMdM/3U6UVnAAAAAAAAAADAZzJCDQAAAAAAAAAAAAAAAECTduPUG3PBExdk1ZpVRadkuw7bZdIJk4rOAAAAAAAAAACAdWKEGgAAAAAAAAAAAAAAAIAm69Znb805j5/TJAaoO7frnKdOeirt27cvOgUAAAAAAAAAANaJEWoAAAAAAAAAAAAAAAAAmqR7XrwnP3nkJ1m5ZmXRKenUrlOmDp5qgBoAAAAAAAAAgGbFCDUAAAAAAAAAAAAAAAAATc64WeMy9E9Dm8QA9ZabbpmJgycaoAYAAAAAAAAAoNkxQg0AAAAAAAAAAAAAAABAkzJ+zvgMuX9IVqxeUXRKtthki0w5ZUo6t+9cdAoAAAAAAAAAAKw3I9QAAAAAAAAAAAAAAAAANBlTXpuSQb8flGWrlxWdks3bbJ5HBz5qgBoAAAAAAAAAgGbLCDUAAAAAAAAAAAAAAAAATcKU16ak8r7KLFtV/AB1h9YdMv7Y8dmp805FpwAAAAAAAAAAQJ0ZoQYAAAAAAAAAAAAAAACgcDOrZuY7Y7+TJSuXFJ2SduXtMu64cQaoAQAAAAAAAABo9oxQAwAAAAAAAAAAAAAAAFCoOVVzMuDOAVm8YnHRKWlb1jZ3H3V3duu8W9EpAAAAAAAAAABQb0aoAQAAAAAAAAAAAAAAACjMnKo56XtX3yxavqjolLRp1SZjvj0mFV0rik4BAAAAAAAAAIAGYYQaAAAAAAAAAAAAAAAAgEJUVVel3+h++WjZR0WnpE1pm9z+rdsNUAMAAAAAAAAA0KIYoQYAAAAAAAAAAAAAAABgg6uqrkrFzRX58OMPi05JeWl5bvzmjem7U9+iUwAAAAAAAAAAoEEZoQYAAAAAAAAAAAAAAABgg6qurs5+o/bL+0vfLzol5aXluf7Q6zOg+4CiUwAAAAAAAAAAoMEZoQYAAAAAAAAAAAAAAABgg6murk6vUb3y7uJ3i05JWUlZruh3RY7Z5ZiiUwAAAAAAAAAAoFEYoQYAAAAAAAAAAAAAAABgg6iurs6et+yZqsVVRaekVUmrXHzgxTlx9xOLTgEAAAAAAAAAgEZjhBoAAAAAAAAAAAAAAACADWKf2/bJW4veKjojrUpaZfi+wzOk15CiUwAAAAAAAAAAoFEZoQYAAAAAAAAAAAAAAACg0fUY2SOvf/R60RkpTWnOqjgrp+91etEpAAAAAAAAAADQ6IxQAwAAAAAAAAAAAAAAANCo9v7N3pn7wdyiM1Ka0gzbc1jO7HNm0SkAAAAAAAAAALBBGKEGAAAAAAAAAAAAAAAAoNHsc/M+mfXerKIzkiRDew3NOfufU3QGAAAAAAAAAABsMEaoAQAAAAAAAAAAAAAAAGgUfX/XNy/Of7HojCTJ4N0G58KDLiw6AwAAAAAAAAAANigj1AAAAAAAAAAAAAAAAAA0uMPvODzTq6YXnZEkOeFrJ+TKQ64sOgMAAAAAAAAAADY4I9QAAAAAAAAAAAAAAAAANKgj7zwyU96YUnRGkqSye2WuOeyaojMAAAAAAAAAAKAQRqgBAAAAAAAAAAAAAAAAaDADxwzMxHkTi85Ikhz2xcMy8oiRRWcAAAAAAAAAAEBhjFADAAAAAAAAAAAAAAAA0CAG3TcoD899uOiMJEn/bv1z+7dvLzoDAAAAAAAAAAAKZYQaAAAAAAAAAAAAAAAAgHo79Y+n5sHZDxadkSTZr8t+GV05uugMAAAAAAAAAAAonBFqAAAAAAAAAAAAAAAAAOrljAfPyJhZY4rOSJL0/nzv/OG4PxSdAQAAAAAAAAAATYIRagAAAAAAAAAAAAAAAADq7KxHzsptL9xWdEaSpEfnHnnopIeKzgAAAAAAAAAAgCbDCDUAAAAAAAAAAAAAAAAAdXLeY+dl5IyRRWckSXbZepeM/+74ojMAAAAAAAAAAKBJMUINAAAAAAAAAAAAAAAAwHq7eMLFuX7q9UVnJEl27rhzJp0yqegMAAAAAAAAAABocoxQAwAAAAAAAAAAAAAAALBerph8Ra586sqszuqiU9Ltc93y9PefLjoDAAAAAAAAAACaJCPUAAAAAAAAAAAAAAAAAKyza/9ybS6bclmTGKDuslmXTDx+YtEZAAAAAAAAAADQZBmhBgAAAAAAAAAAAAAAAGCd3Dj1xlzwxAVZtWZV0SnZrsN2mXLilLRv377oFAAAAAAAAAAAaLKMUAMAAAAAAAAAAAAAAADwmW599tac8/g5TWKAunO7znnqpKcMUAMAAAAAAAAAwGcwQg0AAAAAAAAAAAAAAADAv3TPi/fkzEfPzMo1K4tOSce2HTN18FQD1AAAAAAAAAAAsA6MUAMAAAAAAAAAAAAAAADwqcbNGpehfxqaFatXFJ2SLTfdMpNPnmyAGgAAAAAAAAAA1lFZ0QFsHObPn5+pU6fm1VdfzcKFC1NeXp6OHTvmK1/5Snr27Jny8vKiE5uURYsW5a9//Wtmz56dDz74IIsWLUq7du3yuc99Ltttt1169eqVzTffvOhMAAAAAAAAAAAAAAAAWrjxc8ZnyP1DmsQA9RabbJEpp0xJ5/adi04BAAAAAAAAAIBmwwg1jeree+/N1VdfnSlTpmTNmjVr/U6HDh1SWVmZn/3sZ9l55503cOH6mzVrVnbfffcsW7as1mejRo3Kd7/73fW+86OPPspDDz2UP//5z/nzn/+cV1555V9+v6SkJLvssktOPPHEnHzyydlyyy3X+50AAAAAAAAAAAAAAADwr0x5bUoG/X5Qlq2u/d/RbGibt9k8jw581AA1AAAAAAAAAACsp9KiA2iZ3nrrrey///455phjMnny5E8doE6SRYsW5eabb87Xvva1XHTRRf/yu0VbtWpVTjrppLUOUNfFuHHj8s1vfjOdOnXKwIEDM3LkyM8coE6SNWvW5IUXXshPf/rTbL/99hkxYkRWr17dIE0AAAAAAAAAAAAAAAAws2pmKu+rzLJVxQ9Qd2jdIeOPHZ+dOu9UdAoAAAAAAAAAADQ7RqhpcK+88kp69eqViRMnrtdzy5cvz3nnnZfjjz8+q1ataqS6+vnlL3+ZqVOnNth9V155ZR544IEsX768zncsWbIkP/7xj3PwwQdn8eLFDdYGAAAAAAAAAAAAAADAxmlm1cwcfsfhWbJySdEpaVfeLuOOG2eAGgAAAAAAAAAA6qis6ABalgULFqRfv3555513an3Wo0ePHHHEEenatWuWLl2aV155JXfeeWfefvvtGt+766670qlTp4wYMWIDVa+bF198MRdccMEGedcWW2yRioqK9OzZM506dcpWW22VJUuW5LXXXsvjjz+eyZMn13rmsccey4ABA/KnP/0pbdq02SCdAAAAAAAAAAAAAAAAtCxzquZkwJ0DsnjF4qJT0rasbe4+6u7s1nm3olMAAAAAAAAAAKDZMkJNgxoyZEjmzZtX46xDhw65/fbbM2DAgFrfv+SSS3LJJZfk/PPPr3F+9dVXp3///vnGN77RmLnrbOXKlTnppJOyfPnyT8569+6dp59+usHesfnmm+c73/lOvvvd76Z3794pLS1d6/cuuOCCzJw5M9/73vcyffr0Gp89/vjjufTSS2v9fgIAAAAAAAAAAAAAAMBnmVM1J33v6ptFyxcVnZI2rdpkzLfHpKJrRdEpAAAAAAAAAADQrK195Rbq4NFHH83YsWNrnLVu3TqPP/74Wgeok6S8vDzDhw/PiBEjan12xhlnZOXKlY2Rut4uueSSzJgx45OfBw0alEMOOaRB7t52221z9dVX55133snIkSOz1157feoA9f+122675cknn1xrwy9/+cu8+eabDdIGAAAAAAAAAAAAAADAxqGquir9RvfLR8s+KjolbUrb5PZv3W6AGgAAAAAAAAAAGoARahrMRRddVOts+PDh6dmz52c++6Mf/Sj9+vWrcTZnzpzceeedDdZXV88991x+8YtffPLzNttss9bR7Lo4++yz8+qrr+aMM87Ipptuul7Ptm7dOmPGjMnnP//5Gucff/xx7rnnngbpAwAAAAAAAAAAAAAAoOWrqq5Kn9/2yYcff1h0SspLy3PjN29M3536Fp0CAAAAAAAAAAAtghFqGsRf//rXTJo0qcbZVlttlTPPPHOd77j00ktrnf3Xf/1XvdvqY8WKFTnppJOyYsWKT86uu+66dOzYsUHu79+/fzbZZJM6P9+hQ4e1/h4/8MAD9ckCAAAAAAAAAAAAAABgI1FdXZ39Ru2XBUsWFJ2SspKyXH/o9RnQfUDRKQAAAAAAAAAA0GIYoaZBjB49utbZ4MGD07p163W+o0ePHunRo0eNs6eeeiqvvfZavfvq6qKLLspzzz33yc9HHXVUjj766MJ61ubQQw+tdTZ37twCSgAAAAAAAAAAAAAAAGhOqqur02tUr7y7+N2iU1JWUpZfH/zrHLPLMUWnAAAAAAAAAABAi2KEmgbx0EMP1Tqry1jz2p5Z290bwowZM3LppZd+8vOWW26ZG264oZCWf6VLly61zqqqqgooAQAAAAAAAAAAAAAAoLmorq5Oxa0VqVpc/H+H0qqkVS4+8OKcuPuJRacAAAAAAAAAAECLY4Saelu8eHFmzJhR46xt27bZY4891vuuffbZp9bZpEmT6txWV8uXL893v/vdrFy58pOzESNGZJttttngLZ9lyZIltc423XTTAkoAAAAAAAAAAAAAAABoLva5bZ/MWziv6IyUpjTD9x2eIb2GFJ0CAAAAAAAAAAAtkhFq6m3mzJlZvXp1jbOePXumrKxsve/q1atXysvLa5xNnz69Xn11ccEFF+SFF1745OdDDz00J5xwwgbvWBdz5sypdfb5z3++gBIAAAAAAAAAAAAAAACag9439c7rH71edEZKU5qz+5yd0/c6vegUAAAAAAAAAABosYxQU28vv/xyrbOddtqpTne1bt06//Zv/1bj7NVXX83KlSvrdF9dTJs2LZdffvknP2+22WYZOXLkBnv/+rr33ntrnfXq1auAEgAAAAAAAAAAAAAAAJq6vX+zd15Z8ErRGUmSYXsOy5l9ziw6AwAAAAAAAAAAWjQj1NTb66+/Xutshx12qPN9Xbp0qfHzqlWrMm/evDrftz6WLVuWk046qcbo9eWXX15rGLupWLp0aW677bZa50cccUQBNQAAAAAAAAAAAAAAADRl+4/aP7Pem1V0RpLk1D1OzTn7n1N0BgAAAAAAAAAAtHhlRQfQ/FVVVdU623777et839qe/cc//pFu3brV+c51dd555+Wll1765OcDDjggQ4YMafT31tVll12Wd999t8bZtttum0MPPbSgorW7/vrrc8MNNzT6e1599dVGfwcAAAAAAAAAAAAAAEBz1Pd3ffPcP54rOiNJMni3wbns4MuKzgAAAAAAAAAAgI2CEWrq7f3336911r59+zrft7ZnFyxYUOf71tXTTz+dX//615/83LZt2/zmN79JSUlJo7+7LqZNm5ZLL7201vmFF16YNm3aFFD06ebPn19j3BsAAAAAAAAAAAAAAIAN5/A7Ds/0qulFZyRJTvjaCbnykCuLzgAAAAAAAAAAgI1GadEBNH+LFy+udbbpppvW+b61PbtkyZI637cuPv7445x00klZtWrVJ2cXX3xxunXr1qjvrasFCxbkmGOOyYoVK2qc77fffjn55JMLqgIAAAAAAAAAAAAAAKCpOfquozPljSlFZyRJjvrSUbnmsGuKzgAAAAAAAAAAgI2KEWrq7Z+HkJNkk002qfN9axuhXr58eZ3vWxfnnHNO/va3v33y81577ZUzzjijUd9ZV8uXL89RRx2V119/vcb5lltumVtvvTUlJSXFhAEAAAAAAAAAAAAAANCkDBwzMI/9/bGiM5Ikh33xsNz8rZuLzgAAAAAAAAAAgI2OEWoaRX2GkNf27Jo1a+qT8y9NmTIlI0aM+OTnNm3a5Le//W1KS5ve/zxWr16dE088MU888USN81atWuWOO+5Ily5dCioDAAAAAAAAAAAAAACgKTnl96fk4bkPF52RJDloh4Ny+7dvLzoDAAAAAAAAAAA2Sk1vZZdmp7y8vNbZ0qVL63zf2p5t3bp1ne/7V5YsWZLBgwdn9erVn5wNHz48X/7ylxvlffX17//+77n77rtrnJWUlGTkyJE55JBDCqoCAAAAAAAAAAAAAACgKTn1j6dm7N/GFp2RJNmvy36599h7i84AAAAAAAAAAICNVlnRATR/bdu2rXXW0CPU7dq1q/N9/8rZZ5+d2bNnf/LzHnvskZ/+9KeN8q76GjZsWEaOHFnrfMSIETnllFMKKFp3W2+9db7yla80+nteffXVLFu2rNHfAwAAAAAAAAAAAAAA0FSd8eAZGTNrTNEZSZLen++dPxz3h6IzAAAAAAAAAABgo2aEmnrr2LFjrbPq6uo637e2Z9f2jvp64okncu21137yc1lZWX7729+mrKzp/c/i7LPPzlVXXVXr/LLLLssZZ5xRQNH6GTp0aIYOHdro7/nqV7+al156qdHfAwAAAAAAAAAAAAAA0BSd9chZue2F24rOSJLsus2ueeikh4rOAAAAAAAAAACAjV5p0QE0f9tss02tszfffLPO973xxhvr9I76+sEPfpA1a9Z88vNZZ52VXXfdtcHfU1/nn39+LrvsslrnF154Yf7jP/6jgCIAAAAAAAAAAAAAAACamvMeOy8jZ4wsOiNJssvWu2TC4AlFZwAAAAAAAAAAAEnKig6g+evatWuts7///e91vm/evHk1fm7VqlW6dOlS5/s+zdtvv13j57Fjx+b+++9f5+erqqpqnZ133nkZMWJEjbMBAwbkwgsvrFPjL37xi1xwwQW1zn/+85/n5z//eZ3uBAAAAAAAAAAAAAAAoGW5eMLFuX7q9UVnJEl27rhzJp0yqegMAAAAAAAAAADgfxihpt6+9KUv1TqbM2dOne5avnx53njjjRpnX/jCF1JW1vj/qL700kv1vuONN96o1b/bbrvV6a5f/vKXax2aPuuss+o8ag0AAAAAAAAAAAAAAEDLcsXkK3LlU1dmdVYXnZJun+uWp7//dNEZAAAAAAAAAADA/1JadADN3+67757S0pr/KE2bNi0rV65c77umTZuWFStW1DjbY4896tXXHP3qV7/KWWedVev8pz/9aS699NICigAAAAAAAAAAAAAAAGhqbpx6Yy6bclmTGKDuslmXTDx+YtEZAAAAAAAAAADAPzFCTb21a9cuu+++e42zxYsX59lnn13vuyZPnlzrbN99961zW3N01VVX5Wc/+1mt8x//+Me5/PLLCygCAAAAAAAAAAAAAACgqbn12Vvzn4//Z1atWVV0SrbrsF2mnDgl7du3LzoFAAAAAAAAAAD4J0aoaRCHHHJIrbN77713ve9Z2zNru7shfPjhh1mzZk2d/xo+fHitO0eNGlXre7/73e/Wuemaa67JsGHDap2fccYZufLKK+vzywUAAAAAAAAAAAAAAKCFuOfFe/KTR37SJAaoO7XrlKdOesoANQAAAAAAAAAANFFGqGkQAwcOrHU2atSoLF++fJ3vePbZZzN16tQaZ717907Xrl3r3dcc3HDDDfnRj35U63zo0KG5+uqrCygCAAAAAAAAAAAAAACgqRk3a1yG/mloVq5ZWXRKOrbtmOmDpxugBgAAAAAAAACAJswINQ1il112SZ8+fWqczZ8/P1ddddU633H22WfXOvvhD39Y77bm4Kabbsppp51W6/wHP/hBrrvuugKKAAAAAAAAAAAAAAAAaGrGzRqXIfcPyYrVK4pOyZabbpnJJ082QA0AAAAAAAAAAE2cEWoazLnnnlvrbPjw4ZkxY8ZnPnvdddfl4YcfrnHWrVu3HHfccev07h133DElJSU1/powYcI6PVu0W265JaeeemrWrFlT43zIkCG54YYbCqoCAAAAAAAAAAAAAACgKRk/Z3yG3D8ky1YvKzolW2yyRaacMiWd23cuOgUAAAAAAAAAAPgMRqhpMP37988RRxxR42zZsmU54IADcv/996/1mRUrVuSiiy7K6aefXuuza665JuXl5Y3S2lSMHj06J598cq0B6lNOOSX//d//nZKSkoLKAAAAAAAAAAAAAAAAaCqmvDYlg34/qEkMUG/eZvM8OvBRA9QAAAAAAAAAANBMlBUdQMty0003Zfr06XnzzTc/OVu4cGEGDBiQnj175ogjjkjXrl2zdOnSzJ49O3fccUfeeuutWvecdtppOeywwzZkeiFOOOGErF69utb51KlTs/vuu9fr7j/96U/Zdttt63UHAAAAAAAAAAAAAAAAxZpZNTOV91Vm2ariB6jblbfLH479Q3bqvFPRKQAAAAAAAAAAwDoyQk2D2nrrrfPII4/kwAMPTFVVVY3Ppk2blmnTpn3mHZWVlRkxYkQjFTYtK1euXOv5888/X++7ly9fXu87AAAAAAAAAAAAAAAAKM7Mqpk5/I7Ds2TlkqJT0rasbR44/oHs1nm3olMAAAAAAAAAAID1UFp0AC1P9+7d88wzz6RPnz7r9Vx5eXmGDx+eu+66K61atWqkOgAAAAAAAAAAAAAAAGj65lTNyYA7B2TxisVFp6RtWduM+fYYA9QAAAAAAAAAANAMGaGmUWy//fZ54okncvfdd2fvvfdOSUnJp363ffv2GTx4cJ5//vmcf/75KS31jyUAAAAAAAAAAAAAAAAbrzlVc9L3rr5ZtHxR0Slp06pNbjnyllR0rSg6BQAAAAAAAAAAqIOyogNouUpKSlJZWZnKysq8++67eeaZZzJ37twsXLgwZWVl2WqrrdK9e/f06tUrrVu3rte7Xn/99YaJXg/nn39+zj///HrdsWbNmoaJAQAAAAAAAAAAAAAAoEWoqq5K/7v756NlHxWdkjalbXL7t25P3536Fp0CAAAAAAAAAADUkRFqNohOnTrl8MMPLzoDAAAAAAAAAAAAAAAAmqyq6qr0+W2fvL/0/aJTUl5anhu/eaMBagAAAAAAAAAAaOZKiw4AAAAAAAAAAAAAAAAA2NhVV1dnv1H7ZcGSBUWnpKykLNcfen0GdB9QdAoAAAAAAAAAAFBPRqgBAAAAAAAAAAAAAAAAClRdXZ1eo3rl3cXvFp2SspKy/PrgX+eYXY4pOgUAAAAAAAAAAGgARqgBAAAAAAAAAAAAAAAAClJdXZ2KWytStbiq6JS0KmmViw+8OCfufmLRKQAAAAAAAAAAQAMxQg0AAAAAAAAAAAAAAABQkH1u2yfzFs4rOiOlKc3wfYdnSK8hRacAAAAAAAAAAAANyAg1AAAAAAAAAAAAAAAAQAF639Q7r3/0etEZKU1pzu5zdk7f6/SiUwAAAAAAAAAAgAZmhBoAAAAAAAAAAAAAAABgA9v7N3vnlQWvFJ2RJBnaa2jO7HNm0RkAAAAAAAAAAEAjMEINAAAAAAAAAAAAAAAAsAHtP2r/zHpvVtEZSZJT9zg1Fx50YdEZAAAAAAAAAABAIzFCDQAAAAAAAAAAAAAAALCBHHLLIXnuH88VnZEkGbzb4Fx28GVFZwAAAAAAAAAAAI3ICDUAAAAAAAAAAAAAAADABnD4HYfn6XeeLjojSVLZvTJXHnJl0RkAAAAAAAAAAEAjM0INAAAAAAAAAAAAAAAA0MiOvuvoTHljStEZSZKjvnRURh4xsugMAAAAAAAAAABgAzBCDQAAAAAAAAAAAAAAANCIBo4ZmMf+/ljRGUmS/t365+Zv3Vx0BgAAAAAAAAAAsIEYoQYAAAAAAAAAAAAAAABoJKf8/pQ8PPfhojOSJAftcFBGV44uOgMAAAAAAAAAANiAjFADAAAAAAAAAAAAAAAANIJT/3hqxv5tbNEZSZKK7Sty77H3Fp0BAAAAAAAAAABsYEaoAQAAAAAAAAAAAAAAABrYsIeGZcysMUVnJEl6f753Hjj+gaIzAAAAAAAAAACAAhihBgAAAAAAAAAAAAAAAGhAZz1yVkbNHFV0RpJk1212zUMnPVR0BgAAAAAAAAAAUBAj1AAAAAAAAAAAAAAAAAAN5LzHzsvIGSOLzkiSdN+qeyYMnlB0BgAAAAAAAAAAUCAj1AAAAAAAAAAAAAAAAAAN4IrJV+T6qdcXnZEk2bnjznnye08WnQEAAAAAAAAAABTMCDUAAAAAAAAAAAAAAABAPV37l2tz6eRLszqri07JjpvvmKe//3TRGQAAAAAAAAAAQBNghBoAAAAAAAAAAAAAAACgHm6cemMueOKCJjFA3WWzLpl0wqSiMwAAAAAAAAAAgCbCCDUAAAAAAAAAAAAAAABAHd367K055/FzsmrNqqJTsl2H7TLlxClp37590SkAAAAAAAAAAEATYYQaAAAAAAAAAAAAAAAAoA7uefGe/OSRn2TlmpVFp6RTu0556qSnDFADAAAAAAAAAAA1GKEGAAAAAAAAAAAAAAAAWE/jZo3L0D8NbRID1B3bdszEwRMNUAMAAAAAAAAAALUYoQYAAAAAAAAAAAAAAABYD+PnjM+Q+4dkxeoVRadky023zOSTJ6dz+85FpwAAAAAAAAAAAE2QEWoAAAAAAAAAAAAAAACAdTR+zvgM+v2gLFu9rOiUbN5m80w5ZYoBagAAAAAAAAAA4FMZoQYAAAAAAAAAAAAAAABYB1Nem/L/D1CvKn6AukPrDhl/7HgD1AAAAAAAAAAAwL9khBoAAAAAAAAAAAAAAADgM8ysmpnK+yqbxAB1u/J2GXfcuOzUeaeiUwAAAAAAAAAAgCbOCDUAAAAAAAAAAAAAAADAvzCzamYG3DkgS1YuKTolbcva5oHjH8hunXcrOgUAAAAAAAAAAGgGjFADAAAAAAAAAAAAAAAAfIo5VXNy5F1HZtHyRUWnpE2rNhnz7TEGqAEAAAAAAAAAgHVmhBoAAAAAAAAAAAAAAABgLaqqq9JvdL98tOyjolPSprRNbv/W7anoWlF0CgAAAAAAAAAA0IwYoQYAAAAAAAAAAAAAAAD4J1XVVam4uSIffvxh0SlpU9omN37zxvTdqW/RKQAAAAAAAAAAQDNjhBoAAAAAAAAAAAAAAADgf6mqrkqf3/bJ+0vfLzol5aXlufGbN2ZA9wFFpwAAAAAAAAAAAM2QEWoAAAAAAAAAAAAAAACA/1FdXZ39Ru2XBUsWFJ2SspKyXH/o9QaoAQAAAAAAAACAOjNCDQAAAAAAAAAAAAAAAJD/f4B6z1v2zLuL3y06Ja1KWuXXB/86x+xyTNEpAAAAAAAAAABAM2aEGgAAAAAAAAAAAAAAANjoVVdXp+LWiry16K2iU9KqpFUuOfCSnLj7iUWnAAAAAAAAAAAAzZwRagAAAAAAAAAAAAAAAGCjt98d+2XewnlFZ6Q0pTmr4qwM6TWk6BQAAAAAAAAAAKAFMEINAAAAAAAAAAAAAAAAbNR639Q7cz+YW3RGSlOaYXsOy5l9ziw6BQAAAAAAAAAAaCGMUAMAAAAAAAAAAAAAAAAbrX1u3ievLHil6IwkydBeQ3PO/ucUnQEAAAAAAAAAALQgRqgBAAAAAAAAAAAAAACAjdL+o/bPi/NfLDojSXLqHqfmwoMuLDoDAAAAAAAAAABoYcqKDgAAAAAAAAAAWrb58+dn6tSpefXVV7Nw4cKUl5enY8eO+cpXvpKePXumvLy86MQmafbs2Xn++efz3nvvZcGCBSkvL0+nTp3SvXv37LHHHikr88c+AAAAAKA+DrnlkDz3j+eKzkiSnPC1E3LZwZcVnQEAAAAAAAAAALRA/mtEAAAAAAAAAKBR3Hvvvbn66qszZcqUrFmzZq3f6dChQyorK/Ozn/0sO++88wYurG3NmjWZPXt2pk+fnmnTpmXatGl59tlns2jRohrfO+mkk/K73/2uwd//9ttv51e/+lXGjh2befPmfer3NttssxxzzDH5yU9+ku7duzd4BwAAAAC0dEfeeWSefufpojOSJJXdK3PNYdcUnQEAAAAAAAAAALRQRqgBAAAAAAAAgAb11ltv5fjjj8/EiRM/87uLFi3KzTffnNtuuy3nnntuzj333JSUlGyAyv9n7NixeeqppzJt2rTMmDEjH3300QZ9f5KsXr06559/fn71q1/l448//szvL1y4MDfffHNuueWWDBs2LBdffHHKyvwxEAAAAABYF0ffdXQmzvvsf3+5IRz1paMy8oiRRWcAAAAAAAAAAAAtmP/6EAAAAAAAAABoMK+88kr233//vPPOO+v13PLly3Peeedl1qxZue2229KqVatGKqzt5JNPLmR4+v9auHBhvvOd7+Shhx5a72dXrlyZyy+/PDNmzMi4ceOy6aabNkIhAAAAALQcg+4blMf+/ljRGUmS/t365+Zv3Vx0BgAAAAAAAAAA0MIZoQYAAAAAAAAAGsSCBQvSr1+/tQ5Q9+jRI0cccUS6du2apUuX5pVXXsmdd96Zt99+u8b37rrrrnTq1CkjRozYQNXFWr169acOUG+xxRb55je/md69e2frrbfOokWL8vLLL+ePf/xjZs+eXeO748ePz8CBA/OHP/whJSUlGyofAAAAAJqVU35/Sh6c/WDRGUmSg3Y4KKMrRxedAQAAAAAAAAAAbASMUAMAAAAAAAAADWLIkCGZN29ejbMOHTrk9ttvz4ABA2p9/5JLLskll1yS888/v8b51Vdfnf79++cb3/hGY+Z+po4dO6ZHjx753Oc+l7vvvrtR3nH++eevdYD6+9//fn75y1/mc5/7XK3PfvnLX2bUqFE5/fTTs3Tp0k/Ox40bl6uuuirDhg1rlFYAAAAAaM7OePCMjP3b2KIzkiQV21fk3mPvLToDAAAAAAAAAADYSJQWHQAAAAAAAAAANH+PPvpoxo6tOeDSunXrPP7442sdoE6S8vLyDB8+PCNGjKj12RlnnJGVK1c2Rupabb755jnggAPy05/+NGPGjMncuXPz3nvv5eGHH84PfvCDRnnn22+/nV/96le1zs8+++zceOONax2gTpLS0tKccsopefjhh9O6desan5133nl55513GqUXAAAAAJqrYQ8Ny20v3FZ0RpKkR+ceeeD4B4rOAAAAAAAAAAAANiJGqAEAAAAAAACAervoootqnQ0fPjw9e/b8zGd/9KMfpV+/fjXO5syZkzvvvLPB+v6VZ599Nh988EEef/zxXH755TnmmGPStWvXRn/vr371q3z88cc1zioqKvKLX/xinZ7fZ599cuGFF9Y4W7x4cS6//PIGawQAAACA5u6sR87KqJmjis5Ikuy6za4Z/93xRWcAAAAAAAAAAAAbGSPUAAAAAAAAAEC9/PWvf82kSZNqnG211VY588wz1/mOSy+9tNbZf/3Xf9W7bV107do1JSUlG+Rd/9vYsWNrnZ133nkpLV33P87xox/9KB07dqxxNmrUqCxdurTefQAAAADQ3F084eKMnDGy6IwkSfetumfC4AlFZwAAAAAAAAAAABshI9QAAAAAAAAAQL2MHj261tngwYPTunXrdb6jR48e6dGjR42zp556Kq+99lq9+5qi2bNnZ968eTXOOnXqlH79+q3XPZtsskmOPvroGmcfffRR7r///no3AgAAAEBzdsXkK3LlU1cWnZEk2bnjznnye08WnQEAAAAAAAAAAGykjFADAAAAAAAAAPXy0EMP1Tr752HkdbG2Z9Z2d0vw/PPP1zrbc889U1JSst537b333rXOHnzwwTp1AQAAAEBLcO1frs2lky/N6qwuOiU7br5jnv7+00VnAAAAAAAAAAAAGzEj1AAAAAAAAABAnS1evDgzZsyocda2bdvsscce633XPvvsU+ts0qRJdW5ryubPn1/rbIcddqjTXV26dKl1NmHChDrdBQAAAADN3Y1Tb8wFT1zQJAaou2zWJZNOaJn/jhMAAAAAAAAAAGg+jFADAAAAAAAAAHU2c+bMrF5dc8ylZ8+eKSsrW++7evXqlfLy8hpn06dPr1dfU/X+++/XOttss83qdNcWW2xR62zevHl577336nQfAAAAADRXtz57a855/JysWrOq6JR0btc5U06ckvbt2xedAgAAAAAAAAAAbOSMUAMAAAAAAAAAdfbyyy/XOttpp53qdFfr1q3zb//2bzXOXn311axcubJO9zVlm266aa2zpUuX1umuJUuWrPV81qxZdboPAAAAAJqje168Jz955CdZuab4f5/YqV2nTB081QA1AAAAAAAAAADQJBihBgAAAAAAAADq7PXXX691tsMOO9T5vi5dutT4edWqVZk3b16d72uqOnbsWOts/vz5dbrr3XffXev5q6++Wqf7AAAAAKC5GTdrXIb+aWiTGKDu2LZjJg6eaIAaAAAAAAAAAABoMsqKDgAAAAAAAAAAmq+qqqpaZ9tvv32d71vbs//4xz/SrVu3Ot/ZFK3t1zlt2rQ63fVpz/3jH/+o030N7frrr88NN9zQ6O8xug0AAACwcRo/Z3yG3D8kK1avKDolW2yyRSafPDmd23cuOgUAAAAAAAAAAOATRqgBAAAAAAAAgDp7//33a521b9++zvet7dkFCxbU+b6mqnfv3ikvL8+KFf9vGOfll1/Oq6++mi984QvrddcDDzyw1vP33nuvXo0NZf78+XnppZeKzgAAAACgBZry2pQM+v2gLFu9rOiUbN5m8zw68FED1AAAAAAAAAAAQJNTWnQAAAAAAAAAANB8LV68uNbZpptuWuf71vbskiVL6nxfU9W2bdvsueeeNc7WrFmTESNGrNc9jz32WJ577rm1fra2vzcAAAAA0FJMeW1KKu+rzLJVxQ9Qd2jdIeOPHZ+dOu9UdAoAAAAAAAAAAEAtRqgBAAAAAAAAgDpbsWJFrbNNNtmkzvetbYR6+fLldb6vKfv3f//3Wmc33HBDnnjiiXV6fuHChRkyZMinft5Sf98AAAAAYGbVzHxn7HeyZGXx/wd27crbZdxx4wxQAwAAAAAAAAAATZYRagAAAAAAAACgQZWUlDTos2vWrKlPTpN1zDHH5Itf/GKNs9WrV+eb3/xmHn300X/57Ntvv50DDjggc+fO/dTv1OfvAwAAAAA0VXOq5mTAnQOyeMXiolPStqxtHjj+gezWebeiUwAAAAAAAAAAAD6VEWoAAAAAAAAAoM7Ky8trnS1durTO963t2datW9f5vqasVatWuf3222v9+hYuXJiDDz443/72t/PHP/4x77zzTlasWJH3338/f/nLX/If//Ef2XnnnTNjxoxPnuncuXOt+zfZZJNG/zUAAAAAwIY0p2pO+t7VN4uWLyo6JW1atcmYb48xQA0AAAAAAAAAADR5ZUUHAAAAAAAAAADNV9u2bWudNfQIdbt27ep8X1P39a9/Pf/93/+d733ve1m9enWNz8aOHZuxY8d+5h3HHntsttlmm4wYMaLG+RZbbNGApXW39dZb5ytf+Uqjv+fVV1/NsmXLGv09AAAAABSjqroq/Ub3y0fLPio6JW1K2+T2b92eiq4VRacAAAAAAAAAAAB8JiPUAAAAAAAAAECddezYsdZZdXV1ne9b27Nre0dLMnjw4HTu3DnHHntsPvpo/QZ0jjvuuPz2t7/NaaedVuuzz3/+8w2VWC9Dhw7N0KFDG/09X/3qV/PSSy81+nsAAAAA2PCqqqtScXNFPvz4w6JTUl5anhu/eWP67tS36BQAAAAAAAAAAIB1Ulp0AAAAAAAAAADQfG2zzTa1zt5888063/fGG2+s0ztamm984xt5+eWXc8YZZ2STTTb5zO9vu+22ufvuu3PHHXekTZs2ax2v7tatW2OkAgAAAMAGVV1dnT6/7ZP3l75fdErKS8tz/aHXZ0D3AUWnAAAAAAAAAAAArLOyogMAAAAAAAAAgOara9eutc7+/ve/1/m+efPm1fi5VatW6dKlS53va046d+6cq6++OhdddFEmTJiQP//5z/n73/+e9957L0uXLs3nPve5dO/ePX379s0hhxyS8vLyT56dNWtWrfu+9rWvbch8AAAAAGhw1dXV6TWqVxYsWVB0SspKynJFvytyzC7HFJ0CAAAAAAAAAACwXoxQAwAAAAAAAAB19qUvfanW2Zw5c+p01/Lly/PGG2/UOPvCF76QsrKN6483bLbZZhkwYEAGDBiwTt9fvnx5/va3v9U469KlS7bbbrvGyAMAAACADaK6ujp73rJnqhZXFZ2SViWtcvGBF+fE3U8sOgUAAAAAAAAAAGC9lRYdAAAAAAAAAAA0X7vvvntKS2v+8YNp06Zl5cqV633XtGnTsmLFihpne+yxR736NgbTp0+v9ft20EEHFVQDAAAAAPVXXV2dilsr8tait4pOSauSVhm+7/AM6TWk6BQAAAAAAAAAAIA6MUINAAAAAAAAANRZu3btsvvuu9c4W7x4cZ599tn1vmvy5Mm1zvbdd986t20s7rzzzlpnlZWVBZQAAAAAQMPY7479Mm/hvKIzUprSnFVxVk7f6/SiUwAAAAAAAAAAAOrMCDUAAAAAAAAAUC+HHHJIrbN77713ve9Z2zNru5v/Z8mSJbn77rtrnHXp0iV9+/YtqAgAAAAA6qf3Tb0z94O5RWekNKUZtuewnNnnzKJTAAAAAAAAAAAA6sUINQAAAAAAAABQLwMHDqx1NmrUqCxfvnyd73j22WczderUGme9e/dO165d693Xkl100UWZP39+jbNhw4alrKysoCIAAAAAqLt9bt4nryx4peiMJMnQXkNzzv7nFJ0BAAAAAAAAAABQb0aoAQAAAAAAAIB62WWXXdKnT58aZ/Pnz89VV121znecffbZtc5++MMf1rutJZsyZUp+/etf1zjbaaed/L4BAAAA0Cz1/V3fvDj/xaIzkiSn7nFqLjzowqIzAAAAAAAAAAAAGoQRagAAAAAAAACg3s4999xaZ8OHD8+MGTM+89nrrrsuDz/8cI2zbt265bjjjlund++4444pKSmp8deECRPW6dmirV69uk7PTZo0Kd/4xjeyYsWKT85KS0szcuTItG7duqHyAAAAAGCDOOSWQzK9anrRGUmSE752Qi47+LKiMwAAAAAAAAAAABqMEWoAAAAAAAAAoN769++fI444osbZsmXLcsABB+T+++9f6zMrVqzIRRddlNNPP73WZ9dcc03Ky8sbpbUpmTt3brp3754RI0bkzTff/Mzvz58/P6eddloOOOCALFq0qMZn5513Xg488MDGSgUAAACARnHknUfm6XeeLjojSVLZvTLXHHZN0RkAAAAAAAAAAAANqqzoAAAAAAAAAACgZbjpppsyffr0GmPKCxcuzIABA9KzZ88cccQR6dq1a5YuXZrZs2fnjjvuyFtvvVXrntNOOy2HHXbYBuueNm1avve9733q59XV1bXOxo0bl9122+1Tn+nZs2d+85vfrNP7X3755fz4xz/Oj3/84+y6667p2bNnvvrVr2arrbbKJptskgULFuSdd97JxIkTM3ny5KxatarWHUOGDMnw4cPX6X0AAAAA0FQMHDMwE+dNLDojSXLYFw/LyCNGFp0BAAAAAAAAAADQ4IxQAwAAAAAAAAANYuutt84jjzySAw88MFVVVTU+mzZtWqZNm/aZd1RWVmbEiBGNVLh21dXVee6559brmQ8++CAffPDBp36+xRZb1KnlueeeW6+WkpKSnHvuubnwwgvr9D4AAAAAKMqg+wbl4bkPF52RJOnfrX9u//btRWcAAAAAAAAAAAA0itKiAwAAAAAAAACAlqN79+555pln0qdPn/V6rry8PMOHD89dd92VVq1aNVJdy9K9e/c89thjBqgBAAAAaHZO+f0peXD2g0VnJEn267JfRleOLjoDAAAAAAAAAACg0RihBgAAAAAAAAAa1Pbbb58nnngid999d/bee++UlJR86nfbt2+fwYMH5/nnn8/555+f0tKN648ydOnSJXfddVcGDRqUf/u3f/vM77du3Tr9+vXL6NGj88ILL+SAAw7YAJUAAAAA0HDOePCMjP3b2KIzkiQV21fkD8f9oegMAAAAAAAAAACARlVWdAAAAAAAAAAA0PKUlJSksrIylZWVeffdd/PMM89k7ty5WbhwYcrKyrLVVlule/fu6dWrV1q3bl2vd73++uv1en7//ffPmjVr6nVHXbVu3ToDBw7MwIEDkyRvv/12Zs2alddffz0ffPBBli5dmk022SRbbbVVvvjFL2aPPfZI27ZtC2kFAAAAgPoa9tCw3PbCbUVnJEl6dO6RB45/oOgMAAAAAAAAAACARmeEGgAAAAAAAABoVJ06dcrhhx9edEazsO2222bbbbctOgMAAAAAGtxZj5yVUTNHFZ2RJNll610y/rvji84AAAAAAAAAAADYIEqLDgAAAAAAAAAAAAAAAABarosnXJybZtxUdEaSpPtW3TPplElFZwAAAAAAAAAAAGwwRqgBAAAAAAAAAAAAAACARnHF5Cty5VNXZnVWF52Sbp/rlie/92TRGQAAAAAAAAAAABuUEWoAAAAAAAAAAAAAAACgwV37l2tz2ZTLmsQA9Y6b75jpp04vOgMAAAAAAAAAAGCDM0INAAAAAAAAAAAAAAAANKgbp96YC564IKvWrCo6Jdt12C6TTphUdAYAAAAAAAAAAEAhjFADAAAAAAAAAAAAAAAADebWZ2/NOY+f0yQGqDu365ynTnoq7du3LzoFAAAAAAAAAACgEEaoAQAAAAAAAAAAAAAAgAZxz4v35CeP/CQr16wsOiWd2nXK1MFTDVADAAAAAAAAAAAbNSPUAAAAAAAAAAAAAAAAQL2NmzUuQ/80tEkMUG+56ZaZOHiiAWoAAAAAAAAAAGCjZ4QaAAAAAAAAAAAAAAAAqJfxc8ZnyP1DsmL1iqJTssUmW2TKKVPSuX3nolMAAAAAAAAAAAAKZ4QaAAAAAAAAAAAAAAAAqLMpr03JoN8PyrLVy4pOyeZtNs+jAx81QA0AAAAAAAAAAPA/jFADAAAAAAAAAAAAAAAAdTLltSmpvK8yy1YVP0DdoXWHjD92fHbqvFPRKQAAAAAAAAAAAE2GEWoAAAAAAAAAAAAAAABgvc2smpnvjP1OlqxcUnRK2pW3y7jjxhmgBgAAAAAAAAAA+CdGqAEAAAAAAAAAAAAAAID1MqdqTgbcOSCLVywuOiVty9rm7qPuzm6ddys6BQAAAAAAAAAAoMkxQg0AAAAAAAAAAAAAAACsszlVc9L3rr5ZtHxR0Slp06pNxnx7TCq6VhSdAgAAAAAAAAAA0CQZoQYAAAAAAAAAAAAAAADWSVV1VfqN7pePln1UdEralLbJ7d+63QA1AAAAAAAAAADAv2CEmv+PvTsP87ou9P7/mhVlUZNUylJBsjA7LsitCbgkpiXhTqaokR2oi7Q7s3M0S1yiPF3qIQy7MY1S3HDJSD2iaCBOaSyiWRwVkVBz1HDBAYIZht8fvxvv5syoMAufWR6P6/KP73vm8/48mfSPvKZXAAAAAAAAAAAAAAAA8L6qa6oz+LrBefMfbxadkorSilzzhWsyrP+wolMAAAAAAAAAAADaNSPUAAAAAAAAAAAAAAAAwHuqqanJIVMPyetrXi86JRWlFZn8+ckZMWBE0SkAAAAAAAAAAADtnhFqAAAAAAAAAAAAAAAA4F3V1NRk0NRBeXXVq0WnpLykPJcfcXlO2uukolMAAAAAAAAAAAA6BCPUAAAAAAAAAAAAAAAAQJNqampy4K8OTPWq6qJTUlZSlgmfmZDT9z296BQAAAAAAAAAAIAOwwg1AAAAAAAAAAAAAAAA0KShNwzNS2+/VHRGykrKMv7g8RkzaEzRKQAAAAAAAAAAAB2KEWoAAAAAAAAAAAAAAACgkYFTBmbZW8uKzkhpSnPe4PNy1qfPKjoFAAAAAAAAAACgwzFCDQAAAAAAAAAAAAAAADRw0LUHZekbS4vOSGlKc86B5+TcIecWnQIAAAAAAAAAANAhGaEGAAAAAAAAAAAAAAAA3jH0uqFZ/PfFRWckScYNGpcLDr2g6AwAAAAAAAAAAIAOywg1AAAAAAAAAAAAAAAAkCQZ9stheeq1p4rOSJKM3md0Ljn8kqIzAAAAAAAAAAAAOjQj1AAAAAAAAAAAAAAAAECG3zg8C6oXFJ2RJDntU6flyqOuLDoDAAAAAAAAAACgwzNCDQAAAAAAAAAAAAAAAF3csTcdm6oXqorOSJKMHDAyk46eVHQGAAAAAAAAAABAp2CEGgAAAAAAAAAAAAAAALqwk6efnDnL5xSdkSQ5+mNHZ8oxU4rOAAAAAAAAAAAA6DSMUAMAAAAAAAAAAAAAAEAXNeqOUZm5dGbRGUmSI/sdmWknTCs6AwAAAAAAAAAAoFMxQg0AAAAAAAAAAAAAAABd0NjfjM09z95TdEaS5JBdDsktI28pOgMAAAAAAAAAAKDTMUINAAAAAAAAAAAAAAAAXczZ95yd6YunF52RJDngQwfkrlPuKjoDAAAAAAAAAACgUzJCDQAAAAAAAAAAAAAAAF3IOfedkxv+dEPRGUmSgX0G5r4z7is6AwAAAAAAAAAAoNMyQg0AAAAAAAAAAAAAAABdxIUPXpipi6YWnZEk2WuHvTLry7OKzgAAAAAAAAAAAOjUjFADAAAAAAAAAAAAAABAFzBh9oRMnje56IwkyR6998jcM+cWnQEAAAAAAAAAANDpGaEGAAAAAAAAAAAAAACATu7yRy7PlY9emfrUF52Sfh/ol8f+9bGiMwAAAAAAAAAAALoEI9QAAAAAAAAAAAAAAADQiV31h6tyWdVl7WKAerdtd8ucU+cUnQEAAAAAAAAAANBlGKEGAAAAAAAAAAAAAACATuqaedfk4ocvzvoN64tOyc69ds7c0+amZ8+eRacAAAAAAAAAAAB0GUaoAQAAAAAAAAAAAAAAoBO6/vHrc8FDF7SLAeo+Pfrk0TMeNUANAAAAAAAAAACwhRmhBgAAAAAAAAAAAAAAgE7mtqduy7kPnJu6DXVFp6R3996ZN3qeAWoAAAAAAAAAAIACGKEGAAAAAAAAAAAAAACATmTG4hkZd++41NbXFp2S7bfePo985RED1AAAAAAAAAAAAAUxQg0AAAAAAAAAAAAAAACdxKwlszLmt2PaxQD1dlttl6ozq9KnZ5+iUwAAAAAAAAAAALosI9QAAAAAAAAAAAAAAADQCVQ9X5VRvx6VtfVri07Jtt22zQMnP2CAGgAAAAAAAAAAoGBGqAEAAAAAAAAAAAAAAKCDW1S9KCPvGJm164sfoO5V2SuzvjQr/fv0LzoFAAAAAAAAAACgyzNCDQAAAAAAAAAAAAAAAB3YoupFGX7j8KyuW110SnpU9MiMU2YYoAYAAAAAAAAAAGgnjFADAAAAAAAAAAAAAABAB7WkeklG3DQiq2pXFZ2S7uXdc+vxt2afPvsUnQIAAAAAAAAAAMD/ZYQaAAAAAAAAAAAAAAAAOqAl1Usy7OZheXvd20WnpFtZt0w/YXoG9x1cdAoAAAAAAAAAAAD/xAg1AAAA0C5s2LChXd0DAAAAAAAAAADtWXVNdY645Yi8tfatolPSrbRbph03zQA1AAAAAAAAAABAO2SEGgAAACjchg0bsqpuVdatX9eie9atX5dVdasMUQMAAAAAAAAA0KlV11RnyC+G5M1/vFl0SipKK3LNF67JsP7Dik4BAAAAAAAAAACgCUaoAQAAgEJt2LAhq2pXZX39+qypW9PsIep169dlTd2arK9fn1W1hqgBAAAAAAAAAOicampqcsjUQ7Ji9YqiU1JeUp7Jn5+cEQNGFJ0CAAAAAAAAAADAuzBCDQAAABTmnQHqDevfOWvOEPXGAeqN1m8wRA0AAAAAAAAAQOdTU1OTQVMH5dVVrxadkvKS8lzx2Sty0l4nFZ0CAAAAAAAAAADAezBCDQAAABSiqQHqjTZniPp/DlBvZIgaAAAAAAAAAIDOpKamJoOvH5zqVdVFp6SspCwTPjMhp+97etEpAAAAAAAAAAAAvA8j1AAAAMAW914D1BttyhD1uw1Qb2SIGgAAAAAAAACAzmLoDUOzfOXyojNSmtKMP3h8xgwaU3QKAAAAAAAAAAAAm8AINQAAALBFbcoA9UbvNUT9fgPUGxmiBgAAAAAAAACgoxs4ZWCWvbWs6IyUpjTnDzk/Z336rKJTAAAAAAAAAAAA2ERGqAEAAIAtZnMGqDdqaoh6UweoNzJEDQAAAAAAAABAR3XQtQdl6RtLi85Ikpxz4Dk5d8i5RWcAAAAAAAAAAACwGYxQAwAAAFtEcwaoN/rnIerNHaDeyBA1AAAAAAAAAAAdzaFTD83ivy8uOiNJMna/sbng0AuKzgAAAAAAAAAAAGAzlRcdAAAAAHR+GzZsyKq65g1Qb7Smbk1q62tTV1/X7DvWb1ifVXWr0qO8R0pKSpp9DwAAAAAAAAAAtLVhvxyWJ155ouiMJMnofUbnss9eVnQGAAAAAAAAAAAAzVBadAAAAADQ+ZWUlKSytLLF97RkgHqjytJKA9QAAAAAAAAAALRrw28cngXVC4rOSJKc9qnTcuVRVxadAQAAAAAAAAAAQDMZoQYAAAC2iMqyymxdvnWhDVuXb53KspaPYQMAAAAAAAAAQFs58eYTU/VCVdEZSZLjP358Jh09qegMAAAAAAAAAAAAWsAINQAAALDFFDlEbYAaAAAAAAAAAID27uTpJ+fBvz5YdEaS5OiPHZ3rjruu6AwAAAAAAAAAAABayAg1AAAAsEUVMURtgBoAAAAAAAAAgPZu1B2jMnPpzKIzkiSH73p4pp0wregMAAAAAAAAAAAAWoERagAAAGCL25JD1AaoAQAAAAAAAABo78b+ZmzuefaeojOSJIfsckhu/9LtRWcAAAAAAAAAAADQSoxQAwAAAIXYEkPUBqgBAAAAAAAAAGjvzr7n7ExfPL3ojCTJAR86IHedclfRGQAAAAAAAAAAALQiI9QAAABAYdpyiNoANQAAAAAAAAAA7d1595+XG/50Q9EZSZK9d9o7951xX9EZAAAAAAAAAAAAtDIj1AAAAECh2mKI2gA1AAAAAAAAAADt3YUPXpgpC6cUnZEk2WuHvTJ79OyiMwAAAAAAAAAAAGgDRqgBAACAwlWWVaa8tLxV7iovLTdADQAAAAAAAABAuzZh9oRMnje56IwkyR6998jcM+cWnQEAAAAAAAAAAEAbMUINAAAAFG7d+nWpq69rlbvq6uuybv26VrkLAAAAAAAAAABa2+WPXJ4rH70y9akvOiX9PtAvj/3rY0VnAAAAAAAAAAAA0IaMUAMAAACFWrd+XdbUrWnVO9fUrTFEDQAAAAAAAABAu3PVH67KZVWXtYsB6l222SVzTp1TdAYAAAAAAAAAAABtzAg1AAAAUJi2GKDeyBA1AAAAAAAAAADtyfWPX5+LH7446zesLzolO/faOVWnV6Vnz55FpwAAAAAAAAAAANDGjFADAAAAhWjLAeqNDFEDAAAAAAAAANAe3PbUbfn2/d9uFwPUO/bYMY+e8agBagAAAAAAAAAAgC7CCDUAAACwxW2JAeqNDFEDAAAAAAAAAFCk2566LePuHZe6DXVFp6R3995ZMHqBAWoAAAAAAAAAAIAuxAg1AAAAsEVtyQHqjQxRAwAAAAAAAABQhBmLZ+Sse89KbX1t0SnZfuvt88hXHjFADQAAAAAAAAAA0MUYoQYAAAC2mCIGqDcyRA0AAAAAAAAAwJY0a8msjPntmKytX1t0SrbbartUnVmVPj37FJ0CAAAAAAAAAADAFmaEGgAAANgiihyg3sgQNQAAAAAAAAAAW0LV81UZ9etR7WKAettu2+aBkx8wQA0AAAAAAAAAANBFGaEGAAAA2tyGDRuyrr7l48/lpeUtvmNd/bps2LChxfcAAAAAAAAAAEBTFlUvysg7Rmbt+uIHqHtV9sqsL81K/z79i04BAAAAAAAAAACgIEaoAQAAgDZXUlKSHuU9UlZS1uw7ti7fOj0qemTr8q2bfUdZSVl6lPdISUlJs+8AAAAAAAAAAIB3s6h6UYbfODyr61YXnZIeFT0y45QZBqgBAAAAAAAAAAC6OCPUAAAAwBZRUlKSHhXNG6LeunzrVJZVJkkqyyqbNURdVlKWHhUGqAEAAAAAAAAAaBtLqpdkxE0jsqp2VdEp6V7ePbcef2v26bNP0SkAAAAAAAAAAAAUzAg1AAAAsMU0Z4j6nweoN9rcIWoD1AAAAAAAAAAAtKUl1Usy7OZheXvd20WnpFtZt/zq2F9lcN/BRacAAAAAAAAAAADQDhihBgAAALaozRmibmqAeqNNHaI2QA0AAAAAAAAAQFuqrqnOkbcembfWvlV0SrqVdsu046ZlWP9hRacAAAAAAAAAAADQThihBgAAALa4TRmifq8B6o3eb4jaADUAAAAAAAAAAG2puqY6Q34xJK+veb3olFSUVuSaL1xjgBoAAAAAAAAAAIAGjFADAAAAhXivIepNGaDe6N2GqA1QAwAAAAAAAADQlmpqanLI1EOyYvWKolNSXlKeyZ+fnBEDRhSdAgAAAAAAAAAAQDtjhBoAAAAoTFND1JszQL3R/xyiNkANAAAAAAAAAEBbqqmpyaCpg/LqqleLTkl5SXmu+OwVOWmvk4pOAQAAAAAAAAAAoB0qLzoAAAAA6No2DlGvqluVytLKzR6g3mjjc+vq16VHuQFqAAAAAAAAAADaRk1NTQZfPzjVq6qLTklZSVkmfGZCTt/39KJTAAAAAAAAAAAAaKeMUAMAAACFKykpaZXh6MqyylSUVhigBgAAAAAAAACgzQy9YWiWr1xedEZKU5rxB4/PmEFjik4BAAAAAAAAAACgHTNCzRbx2muvZd68eXnuueeycuXKVFRUpHfv3tlzzz2z//77p6KioujEdqm2tjbz5s3L4sWLs2LFitTW1mabbbbJ7rvvnkGDBmWHHXYoOhEAAKDVtNZwtAFqAAAAAAAAAADaygE/PyDL3lpWdEZKU5rzh5yfsz59VtEpAAAAAAAAAAAAtHNGqGlTt99+e37yk5+kqqoqGzZsaPJ7evXqlZEjR+bf/u3fsscee2zhws23ePHi7Lvvvlm7dm2jr02dOjVf/vKXW/yOp59+Oj/+8Y9z22235e23327ye0pKSjJkyJB885vfzAknnNDidwIAAAAAAAAAAAAAAO/uoGsPyjMrnik6I0kybtC4nDvk3KIzAAAAAAAAAAAA6ABKiw6gc3rppZdy6KGH5qSTTsojjzzyrgPUSfL222/nuuuuy6c+9alceuml7/m9RVu/fn3OOOOMJgeoW0N9fX0uvvjifOpTn8ovfvGLdx2gTpINGzZk7ty5OfHEE3PYYYfl5ZdfbpMmAAAAAAAAAAAAAADo6g6demgW/31x0RlJkrH7jc0lh19SdAYAAAAAAAAAAAAdhBFqWt0zzzyTQYMGZc6cOZv13Lp163LhhRfm1FNPzfr169uormX+4z/+I/PmzWuTu9evX58vfelLueiii1JbW7tZz86ePTuDBg3KkiVL2qQNAAAAAAAAAAAAAAC6qqN+dVSeeOWJojOSJKP3GZ3LPntZ0RkAAAAAAAAAAAB0IOVFB9C5rFixIkcccURefvnlRl8bOHBgjjnmmPTt2zdr1qzJM888k5tuuil/+9vfGnzfzTffnB133DETJ07cQtWb5qmnnsrFF1/cZvefffbZmT59eqPz7bffPqNGjcqAAQOyzTbbZNmyZbn//vsbjXy/9NJL+exnP5sFCxbkAx/4QJt1AgAAAAAAAAAAAABAVzH8xuF57OXHis5Ikpz2qdNy5VFXFp0BAAAAAAAAAABAB2OEmlY1ZsyYLF++vMFZr169Mm3atIwYMaLR9//whz/MD3/4w1x00UUNzn/yk5/kyCOPzOc+97m2zN1kdXV1OeOMM7Ju3bp3zg444IA89ljr/CLpjBkzcvXVVzc6/9rXvpYrrrgi3bt3b3D+3e9+N1VVVTnhhBPyyiuvvHP+/PPP52tf+1puvfXWVukCAAAAAAAAAAAAAICu6sSbT0zVC1VFZyRJjv/48Zl09KSiMwAAAAAAAAAAAOiASosOoPN44IEHcueddzY4q6yszEMPPdTkAHWSVFRUZPz48Zk4cWK73onUAAEAAElEQVSjr5199tmpq6tri9TN9sMf/jALFy585/OoUaNy1FFHtcrdtbW1+eY3v9no/Fvf+lZ+9rOfNRqg3mjw4MH5wx/+kO23377B+fTp0zN79uxWaQMAAAAAAAAAAAAAgK7o5Okn58G/Plh0RpLk6I8dneuOu67oDAAAAAAAAAAAADooI9S0mksvvbTR2fjx47P//vu/77Pf/OY3c8QRRzQ4W7JkSW666aZW62uuJ554Ij/4wQ/e+bzTTjs1OZrdXDfccEOWLVvW4GyvvfbKZZdd9r7P9u3bN5MmTWp0fskll7RWHgAAAAAAAAAAAAAAdCln/vrMzFw6s+iMJMnhux6eaSdMKzoDAAAAAAAAAACADswINa3iz3/+c+bOndvg7IMf/GDOPffcTb7jRz/6UaOzn/3sZy1ua4na2tqcccYZqa2tfefspz/9aXr37t1q72jqz3jxxRensrJyk54/9dRTs9deezU4+93vfpenn366VfoAAAAAAAAAAAAAAKCrGPubsbnz6TuLzkiSDP7o4Nz+pduLzgAAAAAAAAAAAKCDM0JNq7jlllsanY0ePXqTh5STZODAgRk4cGCDs0cffTTPP/98i/ua69JLL80TTzzxzufjjz8+J554Yqvdv2TJksyfP7/B2Yc+9KGMGDFis+4ZO3Zso7Obb765RW0AAAAAAAAAAAAAANCVnHPfOZm+eHrRGUmSAz50QO4+9e6iMwAAAAAAAAAAAOgEjFDTKu67775GZ80Za27qmabu3hIWLlyYH/3oR+983n777XP11Ve36jtmzpzZ6OzYY49NeXn5Zt3T1M/tv/7rv5rdBQAAAAAAAAAAAAAAXcl595+XqYumFp2RJNl7p71z3xnF/G8pAAAAAAAAAAAA6HyMUNNiq1atysKFCxucde/ePfvtt99m3zV06NBGZ3Pnzm12W3OtW7cuX/7yl1NXV/fO2cSJE7PTTju16nua+rMNGTJks+/p06dP+vfv3+BswYIFWb16dbPbAAAAAAAAAAAAAACgK7jwwQszZeGUojOSJAM+OCCzR88uOgMAAAAAAAAAAIBOxAg1LbZo0aLU19c3ONt///1TXl6+2XcNGjQoFRUVDc4WLFjQor7muPjii/OnP/3pnc+f//znc9ppp7X6e5r6s336059u1l0HHXRQg8/r16/PE0880ay7AAAAAAAAAAAAAACgK5gwe0Imz5tcdEaSZI/ee+T3X/190RkAAAAAAAAAAAB0MkaoabH//u//bnTWv3//Zt1VWVmZj3zkIw3OnnvuudTV1TXrvuaYP39+fvzjH7/zeZtttsmUKVNa/T21tbVZunRpg7OKiorsuuuuzbpv9913b3T29NNPN+suAAAAAAAAAAAAAADo7K76w1W58tErU5/6olOy27a75bF/fazoDAAAAAAAAAAAADohI9S02LJlyxqdNXdIOUl22WWXBp/Xr1+f5cuXN/u+zbF27dqcccYZDUavf/zjHzcaxm4Ny5cvT319w19U/chHPpLS0ub9Y/k/f25JGo1cAwAAAAAAAAAAAAAAyTXzrsnFD1/cLgaod9lml8w9bW7RGQAAAAAAAAAAAHRS5UUH0PFVV1c3OvvoRz/a7PuaevaVV15Jv379mn3nprrwwgvzl7/85Z3Phx12WMaMGdMm79pSP7f2YPLkybn66qvb/D3PPfdcm78DAAAAAAAAAAAAAICO7frHr893H/pu1m9YX3RKdu61c6pOr0rPnj2LTgEAAAAAAAAAAKCTMkJNi73++uuNzlryy49NPbtixYpm37epHnvssVxxxRXvfO7evXuuvfbalJSUtMn7OsvPbVO89tprDca9AQAAAAAAAAAAAACgCLc9dVu+ff+328UA9Y49dsyjZzxqgBoAAAAAAAAAAIA2VVp0AB3fqlWrGp1tvfXWzb6vqWdXr17d7Ps2xT/+8Y+cccYZWb/+//0S6YQJE9KvX782e2dn+LkBAAAAAAAAAAAAAEBHMWPxjIy7d1zqNtQVnZLe3Xtnzug5BqgBAAAAAAAAAABoc0aoabHa2tpGZ1tttVWz72tqTHndunXNvm9TXHDBBXn66aff+fzpT386Z599dpu+szP83AAAAAAAAAAAAAAAoCOYsXhGxvx2TGrrG/8u/5a2/dbb55GvPJI+PfsUnQIAAAAAAAAAAEAXYISaNlFSUtKqz27YsKElOe+pqqoqEydOfOdzt27d8otf/CKlpVv+H4+O9HMDAAAAAAAAAAAAAICOYNaSWRlz95isrV9bdEq222q7VJ1ZZYAaAAAAAAAAAACALcYINS1WUVHR6GzNmjXNvq+pZysrK5t933tZvXp1Ro8enfr6+nfOxo8fn0984hNt8r5/1pF/bgAAAAAAAAAAAAAA0BFUPV+VUb8elbXrix+g7lXZKw+c/IABagAAAAAAAAAAALao8qID6Pi6d+/e6Ky1x5R79OjR7Pvey/nnn59nn332nc/77bdfvvOd77TJu/6njvxz21w77LBD9txzzzZ/z3PPPZe1a4v/xWAAAAAAAAAAAAAAAIq3qHpRRt4xsl0MUPeo6JEZp8xI/z79i04BAAAAAAAAAACgizFCTYv17t270VlNTU2z72vq2abe0VIPP/xwrrrqqnc+l5eX5xe/+EXKy7fMPxYd9efWHOPGjcu4cePa/D2f/OQn85e//KXN3wMAAAAAAAAAAAAAQPu2qHpRht84PKvrVhedku7l3XP3qXdnnz77FJ0CAAAAAAAAAABAF1RadAAd30477dTo7MUXX2z2fS+88MImvaOlvva1r2XDhg3vfD7vvPOy9957t/p73k1H/bkBAAAAAAAAAAAAAEB7tqR6SY69+disql1VdEq6lXXL9BOmG6AGAAAAAAAAAACgMOVFB9Dx9e3bt9HZX//612bft3z58gafy8rKsssuuzT7vnfzt7/9rcHnO++8M7/97W83+fnq6upGZxdeeGEmTpzY4GzEiBG55JJLGn3vLrvsktLS0tTX179z9sILL6S+vj6lpZu/D/8/f25J0//ZAAAAAAAAAAAAAABAZ1VdU50jbjkib619q+iUdCvtlmnHTcvgvoOLTgEAAAAAAAAAAKALM0JNi3384x9vdLZkyZJm3bVu3bq88MILDc523333lJe3/d+qf/nLX1p8xwsvvNCof5999mnyeysrK9O3b98899xz75zV1tZm+fLl2W233Tb73f98z0af+MQnNvseAAAAAAAAAAAAAADoiKprqjP4usF58x9vFp2SbqXdcs0Xrsmw/sOKTgEAAAAAAAAAAKCLKy06gI5v3333TWlpw7+V5s+fn7q6us2+a/78+amtrW1wtt9++7Worz0bOHBgo7M//OEPzbrr97//fYPPZWVl2XvvvZt1FwAAAAAAAAAAAAAAdCTVNdUZ8osheX3N60WnpKK0Itd84ZqMGDCi6BQAAAAAAAAAAAAwQk3L9ejRI/vuu2+Ds1WrVuXxxx/f7LseeeSRRmcHH3xws9vau6FDhzY6a+pn8H5eeeWVPPvssw3OBg4cmO7duze7DQAAAAAAAAAAAAAAOoKampocMvWQrFi9ouiUlJeUZ/LnJxugBgAAAAAAAAAAoN0wQk2rOOqooxqd3X777Zt9T1PPNHV3a3jzzTezYcOGZv81fvz4RndOnTq10ff98pe/fNeGI488stHZb37zm9TV1W3Wn+WOO+5odNZWPzcAAAAAAAAAAAAAAGgvampqcuCvDsyrq14tOiVlJWW54rNX5KS9Tio6BQAAAAAAAAAAAN5hhJpWcfLJJzc6mzp1atatW7fJdzz++OOZN29eg7MDDjggffv2bXFfe/Wxj30sAwcObHD20ksv5e67796se6ZMmdLo7Etf+lKL2gAAAAAAAAAAAAAAoD2rqanJ4OsH56W3Xyo6JWUlZfnhZ36Y0/c9vegUAAAAAAAAAAAAaMAINa1ir732ypAhQxqcvfbaa/nP//zPTb7j/PPPb3T29a9/vcVt7V1Tf8bx48entrZ2k56/5ZZb8uSTTzY4O/TQQ/OJT3yiVfoAAAAAAAAAAAAAAKA9OuTGQ7J85fKiM1Ka0pw3+LyMGTSm6BQAAAAAAAAAAABoxAg1reZ73/teo7Px48dn4cKF7/vsT3/608ycObPBWb9+/XLKKads0rt32223lJSUNPhr9uzZm/Rs0U477bTsuuuuDc6efPLJfPe7333fZ5ctW5ZvfOMbjc6///3vt1ofAAAAAAAAAAAAAAC0Nwf8/IAsfWNp0RkpTWnOOfCcnDvk3KJTAAAAAAAAAAAAoElGqGk1Rx55ZI455pgGZ2vXrs1hhx2W3/72t00+U1tbm0svvTRnnXVWo69NmjQpFRUVbdLanlRWVmbixImNzi+//PKMGzcua9asafK53//+9/n0pz+dFStWNDg/8cQT85nPfKYtUgEAAAAAAAAAAAAAoHBDrxuaZ1Y8U3RGkmTcoHG54NALis4AAAAAAAAAAACAd1VedACdy89//vMsWLAgL7744jtnK1euzIgRI7L//vvnmGOOSd++fbNmzZo8++yzufHGG/PSSy81uucb3/hGjj766C2ZXqhjjz02Y8eOzZQpUxqcX3311bn11lszatSoDBgwIL169cry5cszc+bMzJ49u9E9u+66a6M7AAAAAAAAAAAAAACgszh06qF56rWnis5Ikozdb2wuOfySojMAAAAAAAAAAADgPRmhplXtsMMOuf/++/OZz3wm1dXVDb42f/78zJ8//33vGDlyZCZOnNhGhe3XT3/60/z973/PHXfc0eB8xYoV+clPfvK+z3/oQx/K/fffn+23376tEgEAAAAAAAAAAAAAoDBH/eqoPPHKE0VnJElG7zM6l332sqIzAAAAAAAAAAAA4H2VFh1A5zNgwID88Y9/zJAhQzbruYqKiowfPz4333xzysrK2qiu/SovL8/06dPz/e9/P+Xlm7cPf/DBB2fevHnZY4892qgOAAAAAAAAAAAAAACKc+xNx+axlx8rOiNJMnLAyFx51JVFZwAAAAAAAAAAAMAmMUJNm/joRz+ahx9+OLfeemsOOuiglJSUvOv39uzZM6NHj86TTz6Ziy66KKWlXfdvy9LS0lxyySX505/+lC9/+cvp2bPnu35vSUlJBg8enOnTp2fOnDnZeeedt2ApAAAAAAAAAAAAAABsGSfefGLmLJ9TdEaS5PiPH58px0wpOgMAAAAAAAAAAAA2WXnRAXReJSUlGTlyZEaOHJlXX301f/zjH7N06dKsXLky5eXl+eAHP5gBAwZk0KBBqaysbNG7li1b1jrRm+Giiy7KRRdd1CZ3f+ITn8jUqVMzZcqUzJs3L4sXL87f//731NXVZZtttkm/fv3yv/7X/8qOO+7YJu8HAAAAAAAAAAAAAID2YNQdo/LgXx8sOiNJcmS/I3PdcdcVnQEAAAAAAAAAAACbxQg1W8SOO+6Y4cOHF53R4VRWVmbw4MEZPHhw0SkAAAAAAAAAAAAAALBFnfnrM3PPs/cUnZEkOXzXw3PLyFuKzgAAAAAAAAAAAIDNVlp0AAAAAAAAAAAAAAAAAPyzs+85O3c+fWfRGUmSwR8dnNu/dHvRGQAAAAAAAAAAANAsRqgBAAAAAAAAAAAAAABoN86575zc8Kcbis5IkgzsMzB3n3p30RkAAAAAAAAAAADQbEaoAQAAgA6vrq6uXd0DAAAAAAAAAEDznHf/eZm6aGrRGUmSvXfaO7O+PKvoDAAAAAAAAAAAAGgRI9QAAABAh1ZXV5ea9TVZuXZli+5ZuXZlatbXGKIGAAAAAAAAACjIhQ9emCkLpxSdkSQZ8MEBmT16dtEZAAAAAAAAAAAA0GJGqAEAAIAOa+MAdZLUp77ZQ9Qr165MfeqTxBA1AAAAAAAAAEABLn/k8kyeN7nojCTJHr33yO+/+vuiMwAAAAAAAAAAAKBVGKEGAAAAOqR/HqDeqDlD1P88QL2RIWoAAAAAAAAAgC3nqj9clR898qNGv8NRhN223S2P/etjRWcAAAAAAAAAAABAqzFCDQAAAHQ4TQ1Qb7Q5Q9RNDVBvZIgaAAAAAAAAAKDtXTPvmlz88MXtYoB6l212ydzT5hadAQAAAAAAAAAAAK3KCDUAAADQobzXAPVGmzJE/V4D1BsZogYAAAAAAAAAaDvXP359LnjogqzfsL7olPTp0SdVp1elZ8+eRacAAAAAAAAAAABAqzJCDQAAAHQYmzJAvdF7DVFvygD1RoaoAQAAAAAAAABa321P3ZZv3//t1G0o/vcyduyxY+aNnmeAGgAAAAAAAAAAgE7JCDUAAADQIWzOAPVGTQ1Rb84A9UaGqAEAAAAAAAAAWs+MxTMy7t5x7WKAunf33pkzeo4BagAAAAAAAAAAADotI9QAAABAu9ecAeqN/nmIujkD1BsZogYAAAAAAAAAaLlZS2ZlzG/HpLa+tuiUbLfVdnnkK4+kT88+RacAAAAAAAAAAABAmzFCDQAAALRrLRmg3qg+9Xlz7ZvNHqDeyBA1AAAAAAAAAEDzzVoyK6N+PSpr69cWnZJtu22bB05+wAA1AAAAAAAAAAAAnZ4RagAAAKBdKy8vT2k7+VcYpSlNeXl50RkAAAAAAAAAAB1O1fNVOeOuM7J2ffED1L0qe2XWl2alf5/+RacAAAAAAAAAAABAm2sfC04AAAAA72GbbtsUPkRdmtJs022bQhsAAAAAAAAAADqiRdWL8sU7v5jVdauLTkmPih6ZccoMA9QAAAAAAAAAAAB0GUaoAQAAgA6hyCFqA9QAAAAAAAAAAM2zpHpJRtw0IqtqVxWdku7l3XP3qXdnnz77FJ0CAAAAAAAAAAAAW4wRagAAAKDDKGKI2gA1AAAAAAAAAEDzLKlekmE3D8vb694uOiXdyrpl+gnTDVADAAAAAAAAAADQ5RihBgAAADqULTlEbYAaAAAAAAAAAKB5qmuqc8QtR+SttW8VnZJupd0y7bhpGdx3cNEpAAAAAAAAAAAAsMUZoQYAAAA6nC0xRG2AGgAAAAAAAACgeaprqjP4usF58x9vFp2SitKKXPOFazKs/7CiUwAAAAAAAAAAAKAQRqgBAACADqkth6gNUAMAAAAAAAAANE9NTU2G/GJIXl/zetEpqSityOTPT86IASOKTgEAAAAAAAAAAIDCGKEGAAAAOqy2GKI2QA0AAAAAAAAA0Dw1NTUZNHVQVqxeUXRKykvKc/kRl+ekvU4qOgUAAAAAAAAAAAAKZYQaAAAA6NBaezDaADUAAAAAAAAAwOarqanJgb86MNWrqotOSVlJWa747BU5fd/Ti04BAAAAAAAAAACAwhmhBgAAADq0lWtXtuv7AAAAAAAAAAA6u5qamgy+fnBeevulolNSVlKW8QePN0ANAAAAAAAAAAAA/5cRagAAAKDDWrl2ZepT36p31qfeEDUAAAAAAAAAwGY45MZDsnzl8qIzUprSnDf4vJz16bOKTgEAAAAAAAAAAIB2wwg1AAAA0CG1xQD1RoaoAQAAAAAAAAA2zQE/PyBL31hadEZKU5pzDjwn5w45t+gUAAAAAAAAAAAAaFeMUAMAAAAdTlsOUG9kiBoAAAAAAAAA4L0NvW5onlnxTNEZSZJxg8blgkMvKDoDAAAAAAAAAAAA2h0j1AAAAECHsiUGqDcyRA0AAAAAAAAA0LRhvxyWp157quiMJMnY/cbmksMvKToDAAAAAAAAAAAA2iUj1AAAAECHsSUHqDcyRA0AAAAAAAAA0NBRvzoqC6oXFJ2RJDntU6flss9eVnQGAAAAAAAAAAAAtFtGqAEAAIAOoYgB6o0MUQMAAAAAAAAA/P+OvenYPPbyY0VnJElGDhiZSUdPKjoDAAAAAAAAAAAA2jUj1AAAAEC7V+QA9UaGqAEAAAAAAACAru7Em0/MnOVzis5Ikhz9saMz5ZgpRWcAAAAAAAAAAABAu2eEGgAAAGjX6urqCh+g3qg+9amrqys6AwAAAAAAAABgixt1x6g8+NcHi85IkhzZ78hMO2Fa0RkAAAAAAAAAAADQIRihBgAAANq18vLy9Czr2aI7SlOa7bptl9IW/quQnmU9U15e3qI7AAAAAAAAAAA6mjN/fWbuefaeojOSJIfsckhuGXlL0RkAAAAAAAAAAADQYRihBgAAANq9lgxRl6Y023TbJkmyTbdtmj1EbYAaAAAAAAAAAOiKzr7n7Nz59J1FZyRJBn90cO465a6iMwAAAAAAAAAAAKBDMUINAAAAdAjNGaL+5wHqjZozRG2AGgAAAAAAAADois6575zc8Kcbis5IkgzsMzB3n3p30RkAAAAAAAAAAADQ4RihBgAAADqMzRmibmqAeqPNGaI2QA0AAAAAAAAAdEXn3X9epi6aWnRGkmTvnfbOrC/PKjoDAAAAAAAAAAAAOiQj1AAAAECHsilD1O81QL3RpgxRG6AGAAAAAAAAALqiCbMn5OcLf150RpJkwAcHZPbo2UVnAAAAAAAAAAAAQIdlhBoAAADocN5riHpTBqg3eq8hagPUAAAAAAAAAEBXdPkjl+fKR69MfeqLTkm/D/TL77/6+6IzAAAAAAAAAAAAoEMzQg0AAAB0SE0NUW/OAPVGTQ1RG6AGAAAAAAAAALqiq/5wVS6ruqxdDFDvtu1uWTB2QdEZAAAAAAAAAAAA0OEZoQYAAAA6rH8eom7OAPVG/zxEbYAaAAAAAAAAAOiKrpl3TS5++OKs37C+6JTs3GvnzD1tbtEZAAAAAAAAAAAA0ClYVAIAAAA6tPLy8vRMy4ejt+m2Terq6gxQAwAAAAAAAABdzvWPX58LHrqgXQxQ9+nRJ4+e8Wh69uxZdAoAAAAAAAAAAAB0CqVFBwAAAAC0VGsNRxugBgAAAAAAAAC6mtueui3fvv/bqdtQV3RKduyxY+aNnmeAGgAAAAAAAAAAAFqREWoAAAAAAAAAAAAAAIAuaMbiGRl377h2MUC9/dbbZ87oOQaoAQAAAAAAAAAAoJUZoQYAAAAAAAAAAAAAAOhiZi2ZlTG/HZPa+tqiU7LdVtul6syq9OnZp+gUAAAAAAAAAAAA6HSMUAMAAAAAAAAAAAAAAHQhVc9XZdSvR2Vt/dqiU7Jtt23zwMkPGKAGAAAAAAAAAACANmKEGgAAAAAAAAAAAAAAoIuoer4qI+8YmbXrix+g7lXZK7O+NCv9+/QvOgUAAAAAAAAAAAA6LSPUAAAAAAAAAAAAAAAAXcCi6kX54p1fzOq61UWnpEdFj8w4ZYYBagAAAAAAAAAAAGhjRqgBAAAAAAAAAAAAAAA6uSXVSzLiphFZVbuq6JR0L++eW4+/Nfv02afoFAAAAAAAAAAAAOj0jFADAAAAAAAAAAAAAAB0Ykuql2TYzcPy9rq3i05Jt7JumX7C9AzuO7joFAAAAAAAAAAAAOgSjFADAAAAAAAAAAAAAAB0UtU11TniliPy1tq3ik5Jt9JumXbcNAPUAAAAAAAAAAAAsAUZoQYAAAAAAAAAAAAAAOiEqmuqM/i6wXnzH28WnZKK0opc84VrMqz/sKJTAAAAAAAAAAAAoEsxQg0AAAAAAAAAAAAAANDJ1NTU5JCph+T1Na8XnZKK0opM/vzkjBgwougUAAAAAAAAAAAA6HKMUAMAAAAAAAAAAAAAAHQiNTU1GTR1UF5d9WrRKSkvKc/lR1yek/Y6qegUAAAAAAAAAAAA6JKMUAMAAAAAAAAAAAAAAHQSNTU1OfBXB6Z6VXXRKSkrKcuEz0zI6fueXnQKAAAAAAAAAAAAdFlGqAEAAAAAAAAAAAAAADqJoTcMzUtvv1R0RspKyjL+4PEZM2hM0SkAAAAAAAAAAADQpRmhBgAAAAAAAAAAAAAA6AQGThmYZW8tKzojpSnNeYPPy1mfPqvoFAAAAAAAAAAAAOjyyosOAAAAAAAAAAA6t9deey3z5s3Lc889l5UrV6aioiK9e/fOnnvumf333z8VFRVFJ7ZLL7/8chYuXJiXX345b775ZtauXZttt9022223XT7xiU/kX/7lX1JZWVl0JgAAANBOHHTtQVn6xtKiM1Ka0pxz4Dk5d8i5RacAAAAAAAAAAAAAMUINAAAAAAAAALSR22+/PT/5yU9SVVWVDRs2NPk9vXr1ysiRI/Nv//Zv2WOPPbZwYWMbNmzIs88+mwULFmT+/PmZP39+Hn/88bz99tsNvu+MM87IL3/5y1Z///PPP59rr702N954Y/7617++5/dWVlbmsMMOy1e/+tUce+yxKS/3ayAAAADQVQ29bmgW/31x0RlJknGDxuWCQy8oOgMAAAAAAAAAAAD4v/yvDwEAAAAAAACAVvXSSy/l1FNPzZw5c973e99+++1cd911ueGGG/K9730v3/ve91JSUrIFKv+fO++8M48++mjmz5+fhQsX5q233tqi70+SdevWZcKECbnsssuybt26TX5m5syZmTlzZvbee+9ce+212X///du4FAAAAGhvhv1yWJ567amiM5Iko/cZnUsOv6ToDAAAAAAAAAAAAOCfGKEGAAAAAAAAAFrNM888k0MPPTQvv/zyZj23bt26XHjhhVm8eHFuuOGGlJWVtVFhY1/5ylcKGZ7eaPXq1Rk+fHh+97vfNfuOJ554IgcddFBuvfXWHHfcca1YBwAAALRnR/3qqCyoXlB0RpLktE+dliuPurLoDAAAAAAAAAAAAOB/MEINAAAAAAAAALSKFStW5IgjjmhygHrgwIE55phj0rdv36xZsybPPPNMbrrppvztb39r8H0333xzdtxxx0ycOHELVRdv5MiRTQ5QV1RU5HOf+1wOOuig7LzzzunWrVveeOONPPnkk7nnnnuybNmyBt9fW1ubL37xi/nd736XwYMHb6F6AAAAoCjH3nRsHnv5saIzkiQjB4zMpKMnFZ0BAAAAAAAAAAAANMEINQAAAAAAAADQKsaMGZPly5c3OOvVq1emTZuWESNGNPr+H/7wh/nhD3+Yiy66qMH5T37ykxx55JH53Oc+15a576t3794ZOHBgPvCBD+TWW29tk3fceuutueeeexqdDx8+PFOmTMmHP/zhJp+bNGlSfvnLX+Z//+//nbfffvud89ra2owdOzaPP/54Kioq2qQZAAAAKN7J00/OnOVzis5Ikhz9saMz5ZgpRWcAAAAAAAAAAAAA76K06AAAAAAAAAAAoON74IEHcueddzY4q6yszEMPPdTkAHWSVFRUZPz48Zk4cWKjr5199tmpq6tri9QmbbvttjnssMPyne98J9OnT8/SpUvz97//PTNnzszXvva1NnvvlVde2ejs2GOPzW9+85t3HaBOktLS0nzlK1/JPffc02hs+s9//nPuv//+Vm8FAAAA2odRd4zKzKUzi85IkhzZ78hMO2Fa0RkAAAAAAAAAAADAezBCDQAAAAAAAAC02KWXXtrobPz48dl///3f99lvfvObOeKIIxqcLVmyJDfddFOr9b2Xxx9/PG+88UYeeuih/PjHP85JJ52Uvn37tvl7X3rppcybN6/B2VZbbZWf/exnKS3dtF/pGDp0aMaOHdvo/De/+U2rNAIAAADty9jfjM09z95TdEaS5JBdDsktI28pOgMAAAAAAAAAAAB4H0aoAQAAAAAAAIAW+fOf/5y5c+c2OPvgBz+Yc889d5Pv+NGPftTo7Gc/+1mL2zZF3759U1JSskXe9c+efvrpbNiwocHZYYcdlj59+mzWPaeeemqTdwMAAACdy9n3nJ3pi6cXnZEkGfzRwbnrlLuKzgAAAAAAAAAAAAA2gRFqAAAAAAAAAKBFbrnllkZno0ePTmVl5SbfMXDgwAwcOLDB2aOPPprnn3++xX3t1auvvtrobMCAAZt9T1PPvPLKK81qAgAAANqnc+47Jzf86YaiM5IkA/sMzN2n3l10BgAAAAAAAAAAALCJjFADAAAAAAAAAC1y3333NTo78cQTN/uepp5p6u7OoqmR7s0Z7t6oW7dujc622mqrZjUBAAAA7c+FD16YqYumFp2RJNlrh70y68uzis4AAAAAAAAAAAAANoMRagAAAAAAAACg2VatWpWFCxc2OOvevXv222+/zb5r6NChjc7mzp3b7Lb2rm/fvo3OXnjhhc2+p6lndt9992Y1AQAAAO3LhNkTMnne5KIzkiQDPjggc8/svP+uBgAAAAAAAAAAADorI9QAAAAAAAAAQLMtWrQo9fX1Dc7233//lJeXb/ZdgwYNSkVFRYOzBQsWtKivPfuXf/mX9O7du8HZgw8+mNra2s2659577210dvjhh7eoDQAAACje5Y9cnisfvTL1qX//b25j/T7QL7//6u+LzgAAAAAAAAAAAACawQg1AAAAAAAAANBs//3f/93orH///s26q7KyMh/5yEcanD333HOpq6tr1n3tXVlZWcaOHdvgrLq6OpMmTdrkO15//fX8x3/8R4Oz7bbbLqeddlqrNAIAAADFuOoPV+WyqsvaxQD1btvuljmnzik6AwAAAAAAAAAAAGgmI9QAAAAAAAAAQLMtW7as0dmuu+7a7Pt22WWXBp/Xr1+f5cuXN/u+9u78889Pv379Gpz9+7//e37xi1+877MvvvhiPve5z+Xll19ucD5p0qT06tWrVTsBAACALeeaedfk4ocvzvoN64tOyc69ds7c0+amZ8+eRacAAAAAAAAAAAAAzWSEGgAAAAAAAABoturq6kZnH/3oR5t9X1PPvvLKK82+r73r2bNn/uu//isf/vCH3zlbv359zjzzzBx88MH55S9/mWeffTarVq1KXV1dXnvttTz00EP51re+lU9+8pP54x//2OC+H/zgBznttNO29B8DAAAAaCXXP359LnjognYxQN2nR588esajBqgBAAAAAAAAAACggysvOgAAAAAAAAAA6Lhef/31RmctGSZq6tkVK1Y0+76OYI899sjChQvzta99LXfdddc753Pnzs3cuXM36Y6+fftm0qRJGT58eBtVNt/kyZNz9dVXt/l7nnvuuTZ/BwAAALSl2566Lec+cG7qNtQVnZLe3Xtn3uh5BqgBAAAAAAAAAACgEzBCDQAAAAAAAAA026pVqxqdbb311s2+r6lnV69e3ez7Ooqddtopv/71r7Nw4cJMnTo11113XdasWfO+zw0cODD//u//nuOOOy7l5e3z10Bee+21/OUvfyk6AwAAANq1GYtnZNy941JbX1t0Srbfevs88pVHDFADAAAAAAAAAABAJ1FadAAAAAAAAAAA0HHV1jYeRtpqq62afV9TI9Tr1q1r9n0dyXPPPZfrrrsu06dP36QB6iRZsGBBvvvd72bixImpqalp40IAAACgLcxaMitjfjumXQxQb7fVdqk6syp9evYpOgUAAAAAAAAAAABoJUaoAQAAAAAAAIBWVVJS0qrPbtiwoSU57V5tbW2+//3v5+Mf/3iuvvrqvPrqqw2+3r179+y2227Zc8898+EPfzilpQ1/3WPJkiX5zne+kwEDBuShhx7akukAAABAC1U9X5VRvx6VtfVri07Jtt22zQMnP2CAGgAAAAAAAAAAADoZI9QAAAAAAAAAQLNVVFQ0OluzZk2z72vq2crKymbf196tW7cuxx9/fH7wgx9k/fr175xvvfXW+cY3vpH58+dn5cqVef755/PnP/85L730Ul5//fXceeedOfjggxvc9eKLL+bII4/MHXfcsaX/GAAAAEAzLKpelJF3jMza9cUPUPeq7JVZX5qV/n36F50CAAAAAAAAAAAAtDIj1AAAAAAAAABAs3Xv3r3RWWuPUPfo0aPZ97V33/zmN3P33Xc3OOvfv3/mzZuXq666KgMHDkxZWVmDr2+77bY57rjjMmfOnFx99dUpLf1/v/5RV1eXU089NX/+85+3SD8AAADQPIuqF2X4jcOzum510SnpUdEjM06ZYYAaAAAAAAAAAAAAOqnyogMAAAAAAAAAgI6rd+/ejc5qamqafV9Tzzb1js7g97//ff7P//k/Dc6233773H///enbt+8m3fH1r389a9euzbe+9a13ztauXZuvf/3refjhh1u1t7l22GGH7Lnnnm3+nueeey5r165t8/cAAABASy2pXpIRN43IqtpVRaeke3n33Hr8rdmnzz5FpwAAAAAAAAAAAABtxAg1AAAAAAAAANBsO+20U6OzF198sdn3vfDCC5v0js7giiuuaHR2wQUXbPIA9UZnn312pk6dmieffPKds7lz52bhwoXZb7/9WtzZUuPGjcu4cePa/D2f/OQn85e//KXN3wMAAAAtsaR6SYbdPCxvr3u76JR0K+uW6SdMz+C+g4tOAQAAAAAAAAAAANpQadEBAAAAAAAAAEDH1dRg8l//+tdm37d8+fIGn8vKyrLLLrs0+772qq6uLvfff3+Ds5KSkpx22mmbfVdpaWmTz82cObPZfQAAAEDrq66pzhG3HJG31r5VdEq6lXbLtOOmGaAGAAAAAAAAAACALsAINQAAAAAAAADQbB//+McbnS1ZsqRZd61bty4vvPBCg7Pdd9895eXlzbqvPVu6dGlqamoanO2+++7ZYYcdmnXfgQce2OjsySefbNZdAAAAQOurrqnO4OsG581/vFl0SipKK3LNF67JsP7Dik4BAAAAAAAAAAAAtgAj1AAAAAAAAABAs+27774pLW346wfz589PXV3dZt81f/781NbWNjjbb7/9WtTXXq1YsaLRWXMHqN/t2ddff73Z9wEAAACtp6amJodMPSSvryn+v6uXl5Rn8ucnZ8SAEUWnAAAAAAAAAAAAAFuIEWoAAAAAAAAAoNl69OiRfffdt8HZqlWr8vjjj2/2XY888kijs4MPPrjZbe3ZVltt1ehszZo1zb5v9erVjc66d+/e7PsAAACA1lFTU5NBUwfl1VWvFp2S8pLyXPHZK3LSXicVnQIAAAAAAAAAAABsQUaoAQAAAAAAAIAWOeqooxqd3X777Zt9T1PPNHV3Z7DDDjs0OvvrX/+a+vr6Zt23dOnSTXoHAAAAsOXU1NTkwF8dmOpV1UWnpKykLBM+MyGn73t60SkAAAAAAAAAAADAFmaEGgAAAAAAAABokZNPPrnR2dSpU7Nu3bpNvuPxxx/PvHnzGpwdcMAB6du3b4v72qM+ffqkZ8+eDc7eeOONPProo82679577210tsceezTrLgAAAKB1DL1haF56+6WiM1Ka0ow/eHzGDBpTdAoAAAAAAAAAAABQACPUAAAAAAAAAECL7LXXXhkyZEiDs9deey3/+Z//ucl3nH/++Y3Ovv71r7e4rb0qLy/P4Ycf3uh8woQJm33X888/n2nTpjU6P/LII5vVBgAAALTcwCkDs+ytZUVnpDSlOX/I+Tnr02cVnQIAAAAAAAAAAAAUxAg1AAAAAAAAANBi3/ve9xqdjR8/PgsXLnzfZ3/6059m5syZDc769euXU045ZZPevdtuu6WkpKTBX7Nnz96kZ4v0xS9+sdHZvffem8suu2yT73jrrbdy3HHHZd26dQ3O99xzz3zqU59qcSMAAACw+Q669qAsfWNp0RlJknMOPCfnDjm36AwAAAAAAAAAAACgQEaoAQAAAAAAAIAWO/LII3PMMcc0OFu7dm0OO+yw/Pa3v23ymdra2lx66aU566yzGn1t0qRJqaioaJPW9uKLX/xi9tlnn0bn559/fr7yla/klVdeec/nH3rooQwcODBPPPFEo69tzpA1AAAA0HqGXjc0i/++uOiMJMnY/cbmgkMvKDoDAAAAAAAAAAAAKFh50QEAAAAAAAAAQOfw85//PAsWLMiLL774ztnKlSszYsSI7L///jnmmGPSt2/frFmzJs8++2xuvPHGvPTSS43u+cY3vpGjjz56i3XPnz8/X/3qV9/16zU1NY3OZsyY0eSA9Eb7779/rr322vd8b2lpaa699toceuihjd4xderU3HTTTTnyyCNz0EEH5cMf/nC23nrrvPnmm1m8eHEeeOCB/OlPf2ry3jPOOCNf+MIX3vPdAAAAQOsb9stheeq1p4rOSJKM3md0Lvus/5MqAAAAAAAAAAAAwAg1AAAAAAAAANBKdthhh9x///35zGc+k+rq6gZfmz9/fubPn/++d4wcOTITJ05so8Km1dTU5IknntisZ95444288cYb7/r17bbbbpPuGThwYO66664ce+yxjYao165dmxkzZmTGjBmb3HX88ce/7/g1AAAA0PqG3zg8C6oXFJ2RJDntU6flyqOuLDoDAAAAAAAAAAAAaCdKiw4AAAAAAAAAADqPAQMG5I9//GOGDBmyWc9VVFRk/Pjxufnmm1NWVtZGde3T4YcfnieeeCKHHHJIs+/o2bNnrr766txxxx0pL/f/SQ4AAABb0rE3HZuqF6qKzkiSHP/x4zPp6ElFZwAAAAAAAAAAAADtiBFqAAAAAAAAAKBVffSjH83DDz+cW2+9NQcddFBKSkre9Xt79uyZ0aNH58knn8xFF12U0tKu+asM/fr1y+zZs/Pwww/n1FNPzfbbb/++z5SVlWXffffNxIkT88ILL+TrX//6FigFAAAA/tnJ00/OnOVzis5Ikhz9saNz3XHXFZ0BAAAAAAAAAAAAtDPlRQcAAAAAAAAAAJ1PSUlJRo4cmZEjR+bVV1/NH//4xyxdujQrV65MeXl5PvjBD2bAgAEZNGhQKisrW/SuZcuWtej5Qw89NBs2bGjRHa1l6NChGTp0aJJkyZIlefLJJ7NixYq8+eabWbduXbbZZptst9122W233bLffvulR48eBRcDAABA1zXqjlGZuXRm0RlJksN3PTzTTphWdAYAAAAAAAAAAADQDhmhBgAAAAAAAADa1I477pjhw4cXndHh9O/fP/379y86AwAAAGjC2N+MzT3P3lN0RpLkkF0Oye1fur3oDAAAAAAAAAAAAKCdKi06AAAAAAAAAAAAAAAAoKM4+56zM33x9KIzkiQHfOiA3HXKXUVnAAAAAAAAAAAAAO2YEWoAAAAAAAAAAAAAAIBNcN795+WGP91QdEaSZGCfgbnvjPuKzgAAAAAAAAAAAADaOSPUAAAAAAAAAAAAAAAA7+PCBy/MlIVTis5Ikuy1w16Z9eVZRWcAAAAAAAAAAAAAHYARagAAAAAAAAAAAAAAgPcwYfaETJ43ueiMJMkevffI3DPnFp0BAAAAAAAAAAAAdBBGqAEAAAAAAAAAAAAAAN7F5Y9cnisfvTL1qS86Jf0+0C+P/etjRWcAAAAAAAAAAAAAHYgRagAAAAAAAAAAAAAAgCZc9YerclnVZe1igHqXbXbJnFPnFJ0BAAAAAAAAAAAAdDBGqAEAAAAAAAAAAAAAAP6Ha+Zdk4sfvjjrN6wvOiU799o5VadXpWfPnkWnAAAAAAAAAAAAAB2MEWoAAAAAAAAAAAAAAIB/cv3j1+eChy5oFwPUfXr0yaNnPGqAGgAAAAAAAAAAAGgWI9QAAAAAAAAAAAAAAAD/121P3ZZzHzg3dRvqik5J7+69M2/0PAPUAAAAAAAAAAAAQLMZoQYAAAAAAAAAAAAAAEgyY/GMjLt3XGrra4tOyfZbb59HvvKIAWoAAAAAAAAAAACgRYxQAwAAAAAAAAAAAAAAXd6sJbMy5rdj2sUA9XZbbZeqM6vSp2efolMAAAAAAAAAAACADs4INQAAAAAAAAAAAAAA0KVVPV+VUb8elbX1a4tOybbdts0DJz9ggBoAAAAAAAAAAABoFUaoAQAAAAAAAAAAAACALmtR9aKMvGNk1q4vfoC6V2WvzPrSrPTv07/oFAAAAAAAAAAAAKCTMEINAAAAAAAAAAAAAAB0SYuqF2X4jcOzum510SnpUdEjM06ZYYAaAAAAAAAAAAAAaFVGqAEAAAAAAAAAAAAAgC5nSfWSjLhpRFbVrio6Jd3Lu+fW42/NPn32KToFAAAAAAAAAAAA6GSMUAMAAAAAAAAAAAAAAF3KkuolGXbzsLy97u2iU9KtrFt+deyvMrjv4KJTAAAAAAAAAAAAgE7ICDUAAAAAAAAAAAAAANBlVNdU54hbjshba98qOiXdSrtl2nHTMqz/sKJTAAAAAAAAAAAAgE7KCDUAAAAAAAAAAAAAANAlVNdUZ8gvhuTNf7xZdEoqSityzReuMUANAAAAAAAAAAAAtCkj1AAAAAAAAAAAAAAAQKdXU1OTQ6YekhWrVxSdkvKS8kz+/OSMGDCi6BQAAAAAAAAAAACgkzNCDQAAAAAAAAAAAAAAdGo1NTUZNHVQXl31atEpKS8pzxWfvSIn7XVS0SkAAAAAAAAAAABAF2CEGgAAAAAAAAAAAAAA6LRqamoy+PrBqV5VXXRKykrKMuEzE3L6vqcXnQIAAAAAAAAAAAB0EUaoAQAAAAAAAAAAAACATmvoDUOzfOXyojNSmtKMP3h8xgwaU3QKAAAAAAAAAAAA0IUYoQYAAAAAAAAAAAAAADqlA35+QJa9tazojJSmNOcPOT9nffqsolMAAAAAAAAAAACALsYINQAAAAAAAAAAAAAA0OkcdO1BeWbFM0VnJEnGDRqXc4ecW3QGAAAAAAAAAAAA0AUZoQYAAAAAAAAAAAAAADqVQ6cemsV/X1x0RpJk7H5jc8nhlxSdAQAAAAAAAAAAAHRRRqgBAAAAAAAAAAAAAIBO46hfHZUnXnmi6Iwkyeh9Rueyz15WdAYAAAAAAAAAAADQhRmhBgAAAAAAAAAAAAAAOoXhNw7PYy8/VnRGkuS0T52WK4+6sugMAAAAAAAAAAAAoIszQg0AAAAAAAAAAAAAAHR4J958YqpeqCo6I0ly/MePz6SjJxWdAQAAAAAAAAAAAGCEGgAAAAAAAAAAAAAA6NhOnn5yHvzrg0VnJEmO/tjRue6464rOAAAAAAAAAAAAAEhihBoAAAAAAAAAAAAAAOjAzvz1mZm5dGbRGUmSw3c9PNNOmFZ0BgAAAAAAAAAAAMA7jFADAAAAAAAAAAAAAAAd0tjfjM2dT99ZdEaS5JBdDsntX7q96AwAAAAAAAAAAACABoxQAwAAAAAAAAAAAAAAHc45952T6YunF52RJDngQwfkrlPuKjoDAAAAAAAAAAAAoBEj1AAAAAAAAAAAAAAAQIdy3v3nZeqiqUVnJEn23mnv3HfGfUVnAAAAAAAAAAAAADTJCDUAAAAAAAAAAAAAANBhXPjghZmycErRGUmSvXbYK7NHzy46AwAAAAAAAAAAAOBdGaEGAAAAAAAAAAAAAAA6hAmzJ2TyvMlFZyRJ9ui9R+aeObfoDAAAAAAAAAAAAID3ZIQaAAAAAAAAAAAAAABo9y5/5PJc+eiVqU990Snp94F+eexfHys6AwAAAAAAAAAAAOB9GaEGAAAAAAAAAAAAAADatWvmXZPLqi5rFwPUu2yzS+acOqfoDAAAAAAAAAAAAIBNYoQaAAAAAAAAAAAAAABot65//Pp896HvZv2G9UWnZOdeO6fq9Kr07Nmz6BQAAAAAAAAAAACATWKEGgAAAAAAAAAAAAAAaJdue+q2fPv+b7eLAeode+yYR8941AA1AAAAAAAAAAAA0KEYoQYAAAAAAAAAAAAAANqdGYtnZNy941K3oa7olPTu3jtzRs8xQA0AAAAAAAAAAAB0OEaoAQAAAAAAAAAAAACAdmXG4hkZ89sxqa2vLTol22+9fR75yiPp07NP0SkAAAAAAAAAAAAAm80INQAAAAAAAAAAAAAA0G7MWjIrY+4ek7X1a4tOyXZbbZeqM6sMUAMAAAAAAAAAAAAdlhFqAAAAAAAAAAAAAACgXah6viqjfj0qa9cXP0Ddq7JXHjj5AQPUAAAAAAAAAAAAQIdmhBoAAAAAAAAAAAAAACjcoupFGXnHyHYxQN2jokdmnDIj/fv0LzoFAAAAAAAAAAAAoEWMUAMAAAAAAAAAAAAAAIVaVL0ow28cntV1q4tOSffy7rn71LuzT599ik4BAAAAAAAAAAAAaDEj1AAAAAAAAAAAAAAAQGGWVC/JiJtGZFXtqqJT0q2sW6afMN0ANQAAAAD/H3t3HqbnYO8N/PvMkpCFEInQWkJKYykSOZZYYqu0dq3Q2o7lUFV62nrPoVWhreU9r6rq0R4qoqit9qJF7FsQe4klxJZKQ0hkkshsz/uHM1NjskwmM7mzfD7X9Vzm/j33/bu/z7T+cD3zfB8AAAAAAFhmKKEGAAAAAAAAAAAAAAAKMblmcna7ZrfMqJ1RdJR0reyaK/e7MkP7Dy06CgAAAAAAAAAAAECHUUINAAAAAAAAAAAAAAAsdpNrJmfoqKGZ9sm0oqOka8WnBdS7Dti16CgAAAAAAAAAAAAAHUoJNQAAAAAAAAAAAAAAsFhNrpmc7S7dLh/O/rDoKKmuqM7Fe12sgBoAAAAAAAAAAABYJimhBgAAAAAAAAAAAAAAFpuamprsOHrHTJ01tegoqSpV5cKvX5i9B+5ddBQAAAAAAAAAAACATqGEGgAAAAAAAAAAAAAAWCxqamqy9R+2zpSZU4qOkqpSVX751V/mgE0OKDoKAAAAAAAAAAAAQKdRQg0AAAAAAAAAAAAAAHS6mpqaDL18aCbNmFR0lFSWKnPmzmfmsC0OKzoKAAAAAAAAAAAAQKdSQg0AAAAAAAAAAAAAAHS67a/YPm9//HbRMVKRiozcYWSOGXJM0VEAAAAAAAAAAAAAOp0SagAAAAAAAAAAAAAAoFNt9fut8ub0N4uOkYpU5Idb/zAnbHNC0VEAAAAAAAAAAAAAFgsl1AAAAAAAAAAAAAAAQKfZ9pJt8+rUV4uOkSQ5fsjx+cmwnxQdAwAAAAAAAAAAAGCxUUINAAAAAAAAAAAAAAB0imGjh2X8B+OLjpEkOXbQsfnZLj8rOgYAAAAAAAAAAADAYqWEGgAAAAAAAAAAAAAA6HDD/zA8z/3juaJjJEmO2PyInPPVc4qOAQAAAAAAAAAAALDYKaEGAAAAAAAAAAAAAAA61J5/3DOPv/d40TGSJCMGjsh5w88rOgYAAAAAAAAAAABAIZRQAwAAAAAAAAAAAAAAHeabV38zj7zzSNExkiT7b7h/LtrnoqJjAAAAAAAAAAAAABRGCTUAAAAAAAAAAAAAANAhDrnhkNzz1j1Fx0iS7L7e7hm136iiYwAAAAAAAAAAAAAUSgk1AAAAAAAAAAAAAACwyI666ajc/trtRcdIkuyyzi65ZsQ1RccAAAAAAAAAAAAAKJwSagAAAAAAAAAAAAAAYJEce8uxufGVG4uOkSQZutbQXP+t64uOAQAAAAAAAAAAALBEUEINAAAAAAAAAAAAAAC02w//+sNcN/66omMkSbZaY6vcdvBtRccAAAAAAAAAAAAAWGIooQYAAAAAAAAAAAAAANrl5LtOzuhnRxcdI0my2eqb5a+H/7XoGAAAAAAAAAAAAABLFCXUAAAAAAAAAAAAAADAQjvtntNy0dMXFR0jSTJwtYG5/4j7i44BAAAAAAAAAAAAsMSpKjoAy4f3338/Tz75ZF5//fV8/PHHqa6uTu/evbPRRhtlyy23THV1ddERW5g8eXImTpyYd955J1OmTMnMmTNTV1eXlVZaKSuvvHLWXXfdbLHFFllppZU6Ncd7772Xp59+Ou+9916mTZuWOXPmZOWVV06vXr3y5S9/OV/5ylfSpUuXTs0AAAAAAAAAAAAAAPB55z58bi588sKiYyRJNui9QR49+tGiYwAAAAAAAAAAAAAskZRQ06muv/76/PrXv84jjzyScrk813N69uyZESNG5D/+4z+ywQYbLOaEybRp0/Lwww/nkUceyeOPP54XXnghH3zwwQKvK5VK2XTTTXPYYYfl0EMPTd++fTskz8SJE3PJJZfkj3/8Y9566635ntulS5fstNNOOfroo7Pvvvumqsq/0gAAAAAAAAAAAABA5/rNY7/J2Q+fncY0Fh0l6668bh7/t8eLjgEAAAAAAAAAAACwxKooOgDLpkmTJmXYsGE54IAD8vDDD8+zgDpJZsyYkVGjRmXTTTfNz3/+8/me2xnOOeec7LXXXjnnnHNy3333tamAOknK5XKef/75nHTSSVl//fVz3nnnpb6+vt05amtrM3LkyHz5y1/OWWedtcAC6qZr7rzzzhxwwAHZcsstM27cuHbfHwAAAAAAAAAAAABgQS5+8uKc8eAZS0QB9dorrZ2HDn2o6BgAAAAAAAAAAAAASzQl1HS4V199NUOGDMkDDzywUNfV1tbmtNNOy8EHH5yGhoZOStc5ampq8qMf/Sh77rlnZs+evdDXz5o1K8OHD8/Pfvaz1NbWtivDc889l2233TY33XRTu64HAAAAAAAAAAAAAJify5+5PD+59ydpKBf/9979uvfLI4c9kh49ehQdBQAAAAAAAAAAAGCJVlV0AJYtU6dOzW677Zb33nuv1XODBw/OPvvsk/79+2f27Nl59dVXc9VVV+Xvf/97i/Ouvvrq9O3bN+eff/5iSt1S9+7dM2jQoGy44YYZMGBA+vTpk549e6ahoSEff/xxXn311Tz66KMZO3ZsyuVyi2vvvPPO7LfffvnLX/6SUqnU5nuOGDEi9913X6t5dXV1vva1r2XbbbfNF77whXTt2jUfffRRnn/++dx+++158803W5xfV1eXAw88MPfdd1+GDh3artcPAAAAAAAAAAAAAPB5f/rbn/Kju36U+nJ90VHSt3vfPHnEkwqoAQAAAAAAAAAAANpACTUd6phjjsnbb7/dYtazZ89ceeWV2XvvvVudf9ZZZ+Wss87K6aef3mL+61//Orvvvnu+9rWvdWbcJEnXrl2z884752tf+1p22WWXfOUrX0llZeUCr5swYUJ++MMf5s9//nOL+Z133pnf//73OeaYY9p0/2uvvTa33357q/mee+6Ziy66KGuuueZcr7vgggty2WWX5d///d8zY8aM5nldXV2OPfbYPPPMM6murm5TBgAAAAAAAAAAAACAebl1/K05/o7jl4gC6t7deueBIx5QQA0AAAAAAAAAAADQRhVFB2DZcffdd+fGG29sMevSpUvuvffeuRZQJ0l1dXVGjhyZ888/v9VzJ554YurrO/+PlM8444zcc889Oemkk7LFFlu0qYA6SQYMGJBbbrklxx13XKvnzjnnnDbf/7zzzms123fffXPLLbfMs4A6SSoqKnLkkUfm9ttvb1U2/eKLL+auu+5qcwYAAAAAAAAAAAAAgLkZM2FMjvnzMalrrCs6Snqt0CsPH/lw+vXoV3QUAAAAAAAAAAAAgKWGEmo6zM9//vNWs5EjR2bLLbdc4LXf//73s9tuu7WYTZgwIVdddVWH5esMpVIpv/rVr7LOOuu0mE+cODHjxo1b4PWTJk3Kk08+2WK2wgor5He/+10qKtr2r+f222+fY489ttX8lltuadP1AAAAAAAAAAAAAABzM2bCmBxy0yGZ0zin6ChZuevKufuguxVQAwAAAAAAAAAAACwkJdR0iBdffDEPPfRQi9lqq62Wk046qc07zj777Faz3/3ud4ucrbN17do13/zmN1vNX3rppQVe+8orr6RcLreY7bTTTunXb+H+MPrggw+e624AAAAAAAAAAAAAgPZ4ZOIjOfzmwzOnofgC6p5dembMt8ZkQL8BRUcBAAAAAAAAAAAAWOoooaZDXHPNNa1mRxxxRLp06dLmHYMHD87gwYNbzMaOHZuJEycucr7Otv7667eavffeewu8bsqUKa1mAwcOXOj7z+2af/zjHwu9BwAAAAAAAAAAAADg2cnPZsQNIzKrflbRUdK9untu/fatCqgBAAAAAAAAAAAA2kkJNR3ir3/9a6vZN7/5zYXeM7dr5rZ7SfPJJ5+0mrWlgHtu5yxMcXeTrl27tpqtsMIKC70HAAAAAAAAAAAAAFi+TZg8IXtftfcSUUDdrapbbjv4tmzeb/OiowAAAAAAAAAAAAAstZRQs8hmzpyZp59+usWsW7duGTRo0ELv2n777VvNHnrooXZnW1yefPLJVrP1119/gdf179+/1eydd95Z6PvP7Zq23B8AAAAAAAAAAAAAoMmEyROy69W7ZkbtjKKjpGtl11z3jesUUAMAAAAAAAAAAAAsIiXULLJnn302jY2NLWZbbrllqqqqFnrXkCFDUl1d3WL21FNPLVK+zvbaa6/lpptuajFbYYUVssMOOyzw2q985Svp3bt3i9k999yTurq6hcpwxx13tJrtsssuC7UDAAAAAAAAAAAAAFh+Ta6ZnN2u2S3T50wvOkq6VnTNlftdmaH9hxYdBQAAAAAAAAAAAGCpp4SaRfbyyy+3mg0YMKBdu7p06ZIvfvGLLWavv/566uvr27Wvs73xxhvZa6+98sknn7SYH3HEEenVq9cCr6+srMyxxx7bYjZ58uRccMEFbc7w4Ycf5v/+3//bYtarV68ceuihbd4BAAAAAAAAAAAAACy/JtdMztBRQzPtk2lFR0nXiq65eK+Ls+uAXYuOAgAAAAAAAAAAALBMUELNInvzzTdbzdZZZ51271t77bVbHDc0NOTtt99u976ONmfOnIwdOzb//u//no033jivvPJKi+f79++fs88+u837TjnllKy33notZv/5n/+ZSy+9dIHXvvvuu/na176W9957r8X8ggsuSM+ePducAQAAAAAAAAAAAABYPtXU1GS7S7fLh7M/LDpKqiuq85uv/yZ7D9y76CgAAAAAAAAAAAAAy4yqogOw9Js8eXKr2VprrdXufXO79h//+EeroubONGbMmJx00kktZvX19ZkxY0b+/ve/p76+fq7XfelLX8pdd92VlVdeuc336tGjR/7yl79kp512yt///vcknxZvH3XUUbnsssty5JFHZujQoVlzzTXTtWvXfPTRR3nhhRfy5z//OZdeemk+/vjjFvt+8Ytf5NBDD13IV9y5Lrzwwvz2t7/t9Pu8/vrrnX4PAAAAAAAAAAAAAFhW1NTUZPDowZk6a2rRUVJVqsqFX78wB2xyQNFRAAAAAAAAAAAAAJYpSqhZZB9++GGrWY8ePdq9b27XTp26eP+oedq0aXnuuefafH737t3zne98J2eccUa6d+++0PfbYIMN8vTTT+c73/lObr755ub5Qw89lIceeqhNO/r3758LLrgge+6550Lfv7O9//77eemll4qOAQAAAAAAAAAAAAD8r5qammz9h60zZeaUoqOkslSZX371lwqoAQAAAAAAAAAAADpBRdEBWPrNnDmz1WzFFVds9765XTtr1qx27+tMpVIpRx99dCZOnJhzzz23XQXUTVZfffXcdNNNeeqpp/K9732vzb/DwYMH57rrrsurr766RBZQAwAAAAAAAAAAAABLlpqamgy9fGgmzZhUdJRUliozcoeROWyLw4qOAgAAAAAAAAAAALBMUkLNIqurq2s1W2GFFdq9b27ly7W1te3e15nK5XIuueSSbLLJJjnjjDMyY8aMRdr3+uuvZ9SoUbnuuusye/bsNl3z1FNP5cc//nHOP//81NTULNL9AQAAAAAAAAAAAIBl345/3DFvf/x20TFSkYqcPPTknLDNCUVHAQAAAAAAAAAAAFhmKaGmU5RKpQ69tlwuL0qchfbNb34z5XK5xWPmzJmZNGlSxowZkzPOOCP9+/dvPn/KlCk5/fTT85WvfCWPP/74Qt+vrq4uP/3pT7Phhhvmt7/9baZMmdLi+W7dumXdddfNRhttlDXXXDMVFS3/1Z0wYUL+z//5Pxk4cGDuvffe9r1oAAAAAAAAAAAAAGCZt9Xvt8obH71RdIxUpCI/3PqHOWm7k4qOAgAAAAAAAAAAALBMU0LNIquurm41mz17drv3ze3aLl26tHtfR+nWrVvWXHPN7LLLLjnttNPy+uuv57//+7/TvXv35nPefPPN7Lrrrnn00UfbvLe2tjb7779/fvGLX6ShoaF5vuKKK+Z73/texo0bl48//jgTJ07Miy++mEmTJuXDDz/MjTfemB122KHFrnfffTe77757brjhhkV/wQAAAAAAAAAAAADAMmX7Udvn1amvFh0jSXL8kOPzk2E/KToGAAAAAAAAAAAAwDKvqugALP26devWatbRJdSfLXpeUpRKpRx//PHZdNNNM3z48ObcNTU1OfDAA/P8889nlVVWWeCe73//+7nttttazAYMGJCbb745G2+88VyvWXnllbPffvtlv/32y+9+97t873vfS2NjY5Kkvr4+Bx98cL785S/P8/rFrU+fPtloo406/T6vv/565syZ0+n3AQAAAAAAAAAAAIClza6X7Zq/vf+3omMkSY4ddGx+tsvPio4BAAAAAAAAAAAAsFxQQs0i6927d6tZTU1Nu/fN7dq53WNJscMOO+T000/Pf/7nfzbP3n333fzyl7/ML37xi/le++ijj+Z//ud/WsxWXXXV3HXXXenfv3+b7n/cccdlzpw5+cEPftA8mzNnTo477rg8+OCDC/FKOs/xxx+f448/vtPvs/HGG+ell17q9PsAAAAAAAAAAAAAwNJk+B+G56nJTxUdI0ly6KaH5pyvnlN0DAAAAAAAAAAAAIDlRkXRAVj6rb766q1m7777brv3vfPOO226x5Lk+9//fnr27NlidvHFF6dcLs/3ul/+8petZj/5yU/aXEDd5MQTT8xXvvKVFrOHHnooTz/99ELtAQAAAAAAAAAAAACWLftetW8ef+/xomMkSUYMHJEL9rig6BgAAAAAAAAAAAAAyxUl1CyyuRUmv/XWW+3e9/bbb7c4rqyszNprr93ufYtD165ds/POO7eYvf/++3nppZfmeU19fX3uuuuuFrNSqZRDDz10oe9fUVEx1+vuvPPOhd4FAAAAAAAAAAAAACwbvnn1N/PA2w8UHSNJsv+G++eifS4qOgYAAAAAAAAAAADAckcJNYtsww03bDWbMGFCu3bV1tbmnXfeaTFbf/31U1VV1a59i9O6667bavbGG2/M8/w33ngjNTU1LWbrr79++vTp0677b7311q1mzz//fLt2AQAAAAAAAAAAAABLt0NuOCT3vHVP0TGSJLuvt3tG7Teq6BgAAAAAAAAAAAAAy6Ulv9mXJd4WW2yRioqKNDY2Ns/GjRuX+vr6hS6PHjduXOrq6lrMBg0a1CE5O9sKK6zQajZjxox5nj916tRWs/YWUM/r2g8//LDd+wAAAAAAAID5mzhxYp566qm88sormT59eqZPn97q/c6FUSqVMmqUMiYAAABg0R1101G5/bXbi46RJNlx7R1zzYhrio4BAAAAAAAAAAAAsNxSQs0i6969e7bYYos89dRTzbOZM2fmmWeeyZAhQxZq18MPP9xqtsMOOyxyxsVhypQprWarrbbaPM+fW2n17Nmz233/WbNmtZp169at3fsAAAAAAACA1mbMmJHf/e53GTVqVCZMmNBhe8vlshJqAAAAoEOcePuJufGVG4uOkSQZutbQ3Pztm4uOAQAAAAAAAAAAALBcqyg6AMuG4cOHt5pdf/31C71nbtfMbfeSaOzYsa1m/fr1m+f5ffr0aTV766230tjY2K77v/HGG226BwAAAAAAANA+d911VzbeeOOccsopee2111IulzvkAQAAANBRfvjXH+aKF64oOkaSZHC/wbnt4NuKjgEAAAAAAAAAAACw3FNCTYc46KCDWs1Gjx6d2traNu945pln8uSTT7aYbbXVVunfv/8i5+tszz77bMaPH99i1qtXrwwcOHCe1/Tr1y89evRoMfvoo4/mWmbdFnfccUer2QYbbNCuXQAAAAAAAEBLf/7zn7PXXntl0qRJKZfLKZVKHfYAAAAA6Agn33VyRj87uugYSZLNVt8sY/51TNExAAAAAAAAAAAAAEhSVXQAlg2bbLJJtttuuzz88MPNs/fffz+/+tWv8p//+Z9t2nHKKae0mh133HEdlrGzNDQ05MQTT2w132OPPVJdXT3P66qqqrLLLrvklltuaTE/88wzc/vtty9UhokTJ+bKK69sNd99990Xag8AAAAAAADQ2rvvvpuDDjoodXV1LYqjy+Vy8zndu3fPyiuvPN/3CAEAAAA6y5n3n5mLnr6o6BhJkoGrDcz9R9xfdAwAAAAAAAAAAAAA/pcSajrMqaeemuHDh7eYjRw5MrvttlsGDRo032v/+7//O3feeWeL2XrrrZdvf/vbbbr3uuuum7feeqvF7L777suwYcPme91vfvObfPnLX85uu+3Wpvt83pw5c3L44YfnoYceajEvlUr53ve+t8DrDzzwwFYl1HfccUfOOeecnHzyyW3KMH369Oy3336pra1tMd9oo42y6aabtmkHAAAAAAAAMG+nnXZaZs+e3aJ8ulQqZcSIETnkkEPyL//yL+nbt2/BKQEAAIDl1bkPn5vzxp5XdIwkyXqrrJdHj3606BgAAAAAAAAAAAAAfEZF0QFYduy+++7ZZ599WszmzJmTnXbaKX/+85/nek1dXV1+/vOf54QTTmj13AUXXJDq6upOydrkqaeeyle/+tVss802+e1vf5t//OMfbbqurq4uN954YzbddNNce+21rZ7/t3/7t2y99dYL3HPggQdm8803bzU/5ZRTcuSRRy4wz7333pvBgwfnueeea/XcOeecs8D7AwAAAAAAAPNXV1eXP/3pTy0KqHv37p0HH3ww11xzTfbcc08F1AAAAEBhfvPYb3L2w2enMY1FR8m6K6+bp459qugYAAAAAAAAAAAAAHxOVdEBWLb8/ve/z1NPPZV33323efbxxx9n7733zpZbbpl99tkn/fv3z+zZs/Paa6/lj3/8YyZNmtRqz/e+973sscceiy332LFjM3bs2JxwwgkZOHBgtthii2y00UZZddVV06tXr5RKpXz88cf5+9//nmeffTYPPvhgpk6dOtddO+20U84777w23beioiKXXHJJhg0blpqamhbPjR49OldddVV23333bLvttllzzTWz4oorZtq0aRk/fnzuvvvuvPDCC3Pde/jhh2evvfZauF8CAAAAAAAA0Mqjjz6amTNnplQqpVwup1Qq5YYbbsjQoUOLjgYAAAAs5y5+8uKc8eAZS0QB9dorrZ2HDn2o6BgAAAAAAAAAAAAAzIUSajpUnz59ctddd2XnnXfO5MmTWzw3bty4jBs3boE7RowYkfPPP7+TEs5fY2NjXnzxxbz44ovtun7ffffNVVddlRVXXLHN1wwePDg333xz9t1331ZF1HPmzMmtt96aW2+9tc379t9//1xyySVtPh8AAAAAAACYtzfeeKP551KplF122SU77LBDgYkAAAAAksufuTw/ufcnaSg3FB0l/br3yyOHPZIePXoUHQUAAAAAAAAAAACAuagoOgDLnoEDB+aJJ57Idtttt1DXVVdXZ+TIkbn66qtTWVnZSela6t69e4fsWWuttXL99dfnpptuWqgC6ia77LJLnnvuuey4447tztCjR4/89re/zQ033JCqKv3yAAAAAAAA0BE++OCDJEm5XE6SfPWrXy0yDgAAAED+9Lc/5Ud3/Sj15fqio6Rv97558ognFVADAAAAAAAAAAAALMGUUNMp1lprrTz44IO59tprs+2226ZUKs3z3B49euSII47I888/n9NPPz0VFYvv/5YXXnhhXnzxxZx77rnZa6+90q9fvzZfu/rqq+eggw7KHXfckYkTJ+Yb3/jGImVZb731cv/99+fBBx/MwQcfnFVXXXWB11RWVmaLLbbI+eefn3feeSfHHXfcImUAAAAAAAAAWmoqn26y1lprFZQEAAAAILl1/K05/o7jl4gC6t7deueBIx5QQA0AAAAAAAAAAACwhKsqOgDLrlKplBEjRmTEiBGZMmVKnnjiibzxxhv5+OOPU1VVldVWWy0DBw7MkCFD0qVLl0W615tvvtnuazfaaKNstNFG+dGPfpQkee+99/L666/nzTffzIcffpiZM2emXC6nZ8+eWXnlldO3b99sttlmWWONNRYp87xsv/322X777ZMkEyZMyPPPP5+pU6dm2rRpqa2tzUorrZRevXpl3XXXzaBBg9K9e/dOyQEAAAAAAAAkffv2bXFcX198wRMAAACwfBozYUyO+fMxqWusKzpKeq3QKw8f+XD69ehXdBQAAAAAAAAAAAAAFkAJNYtF3759s+eeexYdo03WWGONrLHGGtluu+2KjpIBAwZkwIABRccAAAAAAACA5damm26a5NMv4U2SyZMnFxkHAAAAWE49MvGRHHLTIZnTOKfoKFm568q5+6C7FVADAAAAAAAAAAAALCUqig4AAAAAAAAAAEuqQYMGZfXVV28+fvDBBwtMAwAAACyPHpn4SEbcMCJzGoovoO7ZpWfGfGtMBvQbUHQUAAAAAAAAAAAAANpICTUAAAAAAAAAzEOpVMoxxxyTcrmccrmce+65J//4xz+KjgUAAAAsJ56d/GwOvPHAzKqfVXSUdK/unlu/fasCagAAAAAAAAAAAICljBJqAAAAAAAAAJiPk046KV/4whdSKpUye/bsnHzyyUVHAgAAAJYDEyZPyN5X7Z2ZdTOLjpJuVd1y28G3ZfN+mxcdBQAAAAAAAAAAAICFpIQaAAAAAAAAAOajZ8+eueqqq1JdXZ0kufzyy3P22WcXnAoAAABYlk2YPCG7Xr1rZtTOKDpKulZ2zXXfuE4BNQAAAAAAAAAAAMBSSgk1AAAAAAAAACzA9ttvn+uvvz5du3ZNuVzOqaeemhEjRmTixIlFRwMAAACWMZNrJme3a3bL9DnTi46SrhVdc+V+V2Zo/6FFRwEAAAAAAAAAAACgnaqKDgAAAAAAAAAAS7IHH3wwSbLSSivl7LPPzimnnJJPPvkkN9xwQ2666absvPPO2XHHHfOlL30pq666aqqrq9t9rx122KGjYgMAAABLock1kzN01NBM+2Ra0VFSXVGdi/e6OLsO2LXoKAAAAAAAAAAAAAAsAiXUAAAAAAAAADAfw4YNS6lUajErlUopl8tpaGjImDFjMmbMmEW+T6lUSn19/SLvAQAAAJZONTU12e7S7fLh7A+LjpLqiupc+PULs/fAvYuOAgAAAAAAAAAAAMAiUkINAAAAAAAAAG1QLpdbHDcVU39+DgAAALCwampqMmT0kEydNbXoKKkqVeXc3c7NAZscUHQUAAAAAAAAAAAAADqAEmoAAAAAAAAAaIOm0um2zheGImsAAABYftXU1GTrP2ydyTMnFx0llaXKnLnzmTlsi8OKjgIAAAAAAAAAAABAB1FCDQAAAAAAAAALoCQaAAAA6Aw1NTUZevnQTJoxqegoqSxVZuQOI3PMkGOKjgIAAAAAAAAAAABAB1JC3Q6NjY2566678vDDD2fs2LF5++23M23atEyfPj319fXt2lkqldp9LQAAAAAAAACd57777is6AgAAALCM2vGPO+btj98uOkYqUpGTh56cE7Y5oegoAAAAAAAAAAAAAHQwJdQLobGxMeeff34uuOCCvPPOO83zcrlcYCoAAAAAAAAAOtOOO+5YdAQAAABgGbTtJdvmjY/eKDpGKlKRH279w5y03UlFRwEAAAAAAAAAAACgEyihbqO///3vOfDAA/Poo4+2KJ0ulUoplUqLtFuJNQAAAAAAAAAAAADA8mP7Udtn/Afji46RJDl+yPH5ybCfFB0DAAAAAAAAAAAAgE6ihLoNpk+fnp122ikTJkxIuVxuLp0ul8vNBdKfnX3eZ0uqFU4DAAAAAAAAAAAAACy/dr1s1/zt/b8VHSNJcsTmR+Rnu/ys6BgAAAAAAAAAAAAAdCIl1G3wr//6r3nttddSKpVSKpVSLpfTrVu3DB8+PF/60pdy2WWXZcqUKc0F1aeddlpmz56dDz/8MG+88UaeeOKJ1NTUJEnz9SuvvHKOO+64dO3ateBXBwAAAAAAAAAAAADA4jD8D8Pz1OSnio6RJDl000Nz3vDzio4BAAAAAAAAAAAAQCdTQr0ATzzxRG655Zbm8uhSqZThw4fnD3/4Q/r06ZMk+etf/5opU6Y0XzNy5MgWOxobG3P77bfnvPPOywMPPJBSqZSPP/44t912W2677basvfbai/U1AQAAAAAAAAAAAACweO171b55/L3Hi46RJBkxcEQu2OOComMAAAAAAAAAAAAAsBhUFB1gSXfuuec2/1wqlbLlllvm5ptvbi6gbouKiorstddeue+++3LxxRdnhRVWSJL87W9/y/bbb5/33nuvw3MDAAAAAAAAAAAAALBkOOi6g/LA2w8UHSNJsseX9shF+1xUdAwAAAAAAAAAAAAAFpOqogMsycrlcu6+++6USqWUy+WUSqX8+te/TpcuXdq98+ijj84Xv/jF7Lvvvqmrq8s777yTAw44IA8//HAHJgcAAAAAAABgcfroo4/yzDPP5IMPPsiHH36YGTNmpGfPnll11VWz2mqrZdCgQenVq1fRMQEAAIACHHLDIbnzjTuLjpEk2X293XPlN64sOgYAAAAAAAAAAAAAi5ES6vl44YUXMn369JRKpSTJwIEDs/XWWy/y3uHDh+fHP/5xTj/99CTJY489lj/+8Y85+OCDF3k3AAAAAAAAAIvHa6+9lgsvvDB33313XnnllZTL5XmeWyqVsuGGG2b33XfP8ccfn/XXX38xJgUAAACKcuwtx+b2124vOkaSZMe1d8w1I64pOgYAAAAAAAAAAAAAi1lF0QGWZC+//HLzz6VSKTvttFObrmtoaFjgOf/xH/+R3r17p1QqpVwu54ILLmh3TgAAAAAAAAAWn3fffTf77LNPBg4cmN/85jcZP358GhsbUy6X5/lobGzM+PHj8+tf/zobbrhh9t9//7z77rtFvxQAAACgE514+4m5bvx1RcdIkgxda2hu/vbNRccAAAAAAAAAAAAAoABKqOfjo48+SpKUy+UkyUYbbTTX80qlUovjTz75ZIG7V1hhhey5557Nu8eNG5cpU6YsSlwAAAAAAAAAOtn111+fzTbbLLfddltz8XSpVGrzo6mQ+pZbbslmm22WG264oeiXBAAAAHSCH/71h7nihSuKjpEkGdxvcG47+LaiYwAAAAAAAAAAAABQECXU89FUQt1klVVWmet5K664YnOZdJLMmjWrTfsHDx7c4njcuHELmRAAAAAAAACAxeWaa67JQQcdlI8++qhF+XTy6ZcbL+iRpEUZ9UcffZQDDzww11xzTZEvCwAAAOhgp91zWkY/O7roGEmSTfpskjH/OqboGAAAAAAAAAAAAAAUqKroAEuyysrKFsddunSZ63krrbRSi+O///3v6dOnzwL39+3bt8XxxIkTFzIhAAAAAAAAAIvDQw89lH/9139NY2Njc/F08mn5dGVlZbbffvsMGTIkG220UVZZZZV07949M2fOzLRp0/LSSy/lySefzEMPPZT6+voW5dWNjY3513/913zxi1/MdtttV9TLAwAAADrImfefmQufvLDoGEmSgasNzENHPVR0DAAAAAAAAAAAAAAKpoR6Pj5fLj1jxoy5nrfyyiu3OH7rrbey2WabLXB/XV1dkjR/uHhe+wEAAAAAAAAoTmNjY7773e+mtra2+f3dcrmcFVdcMf/5n/+ZY445Jv369VvgnilTpuSiiy7K//2//zezZ89O8un7xbW1tfnud7+b5557rkXBNQAAALB0Offhc3Pe2PPSmMaio2S9VdbLo0c/WnQMAAAAAAAAAAAAAJYAFUUHWJJ94QtfSPLPkujp06fP9bwNNtigxfETTzzRpv0TJkxI8umHk5OkqkonOAAAAAAAAMCS5g9/+ENefPHFlEqllMvllMvlbLLJJnnxxRdz2mmntamAOkn69u2bn/70p3nxxRez6aabNr9XnCQvvvhi/vCHP3TWSwAAAAA62W8e+03OeeScJaKAet2V181Txz5VdAwAAAAAAAAAAAAAlhBKqOfjy1/+covj1157ba7nfeUrX0mS5g8c/+Uvf2nT/j//+c/NBddJstpqq7UzKQAAAAAAAACd5bLLLmtxPHDgwDzwwANZd91127VvnXXWyf3335+BAwcm+ecXI48ePXpRYgIAAAAFufjJi3PGg2ekodxQdJR8oecX8tChDxUdAwAAAAAAAAAAAIAliBLq+VhvvfXSvXv35uPx48fP9bxtt902FRX//FU+++yzueeee+a7+4YbbsjTTz/dYrbxxhsvQloAAAAAAAAAOtqMGTPy2GOPNX8pcUVFRS699NKsssoqi7S3V69eufTSS5uPy+Vyxo4dmxkzZixqZAAAAGAxuvyZy/OTe3+yRBRQ9+veL2MPH5sePXoUHQUAAAAAAAAAAACAJYgS6vmoqKjI0KFDUy6XUy6X8+STT6ahofUfB6+55prZcccdUy6Xmz94fMghh+Spp56a696//vWvOeKII1IqlZpnvXr1ypZbbtlprwUAAAAAAACAhTd27NjU19cnSUqlUrbeeutstdVWHbJ7q622yrbbbptyuZwkqa+vz9ixYztkNwAAAND5/vS3P+Wku09Kfbm+6Cjp271vnjziSQXUAAAAAAAAAAAAALRSVXSAJd1OO+2Uu+66K0lSU1OTRx99NNtvv32r84477rjcd999ST794PE//vGPbLPNNhk+fHi23377rLrqqvnggw9y11135f77729RWF0qlXLMMce0KKUGAAAAAAAAoHj/+Mc/Whx//etf79D9X//61/PII480H0+ePLlD9wMAAACd49bxt+b4O45PXWNd0VGy6oqr5oEjHlBADQAAAAAAAAAAAMBcKaFegP333z+nnHJKc0H0DTfcMNcS6m9+85vZaaedct9996VUKqVUKqW+vj633357br/99hbnNhVPN1ljjTVy0kknde4LAQAAAAAAAGChTZkyJck/3+dda621OnT/5/e9//77HbofAAAA6HhjJozJMX8+ZokooO61Qq88ctQj6dejX9FRAAAAAAAAAAAAAFhCVRQdYEn3pS99KZtvvnnK5XLK5XKuuOKKzJkzZ67nXnnllVl//fVTLpeTJKVSqfm6zz6aCqjL5XK6deuW6667Lr17915srwkAAAAAAACAtmloaGhxXFXVsd/1XFlZmSTN7yN//n4AAADAkuWRiY/kkJsOyZzGuf9N+eK0cteVc/dBdyugBgAAAAAAAAAAAGC+lFC3wZgxYzJx4sRMnDgxTz/9dPOHgD9vjTXWyAMPPJBddtmlReH05x9Nz62//vp5+OGHs+222y7mVwQAAAAAAABAW/Tt2zfJP0uiJ02a1KH7m/Y1fdlxnz59OnQ/AAAA0HEemfhIRtwwInMaii+g7tmlZ8Z8a0wG9BtQdBQAAAAAAAAAAAAAlnBKqNtg1VVXzTrrrNP8qKqqmue5a665Zu6+++7cdtttOfjgg9OnT5/m0ulyuZwVV1wxX/3qV3PJJZdk/Pjx2XzzzRffCwEAAAAAAABgoTSVUDcZM2ZMh+6/995753s/AAAAYMnw7ORnc+CNB2ZW/ayio6R7dffc+u1bFVADAAAAAAAAAAAA0CbzblNmkXz961/P17/+9SRJbW1tpk6dmu7du2ellVYqOBkAAAAAAAAAbbXlllumVColScrlcu677768/vrrWX/99Rd59+uvv5577rknpVIp5XI5pVIpQ4YMWeS9AAAAQMeaMHlC9r5q78ysm1l0lHSr6pZr9782m/fbvOgoAAAAAAAAAAAAACwlKooOsDzo0qVL1lhjDQXUAAAAAAAAAEuZPn36ZNCgQc0l0XV1dTnqqKNSX1+/SHsbGhpyzDHHpK6urnm2+eabp0+fPosaGQAAAOhAEyZPyK5X75oZtTOKjpKulV1z3Teuy9D+Q4uOAgAAAAAAAAAAAMBSRAk1AAAAAAAAAMzHiBEjWhw/9NBD+cY3vpHZs2e3a98nn3ySAw44IPfdd19KpVJzwfW3vvWtjogLAAAAdJDJNZOz2zW7Zfqc6UVHSdeKrrlyvysVUAMAAAAAAAAAAACw0JRQAwAAAAAAAMB8nHDCCfnCF76QJM2l0bfddls22mij3HjjjWlsbGzTnnK5nJtuuikbb7xxbrnllhbPrbnmmvne977X4dkBAACA9plcMzlDRw3NtE+mFR0l1RXVuXivi7PrgF2LjgIAAAAAAAAAAADAUqiq6ABLuiOPPLL557XXXjunn356h+0+/fTT8/bbbyf59IPKo0aN6rDdAAAAAAAAAHSMFVZYIeeee26+9a1vpVQqNRdRv/XWWznggAPSr1+/7Lvvvtlyyy0zcODA9OrVK927d8/MmTMzbdq0jB8/PuPGjcvNN9+cyZMnp1wuJ/lnoXWpVMovf/nLdO3ateBXCgAAACRJTU1Ndhy9Yz6c/WHRUVJVqsqFX78wew/cu+goAAAAAAAAAAAAACyllFAvwGWXXZZSqZQk2WyzzTq0hPqWW27J888/3/yhYiXUAAAAAAAAAEumAw88MK+++mpGjhzZXESdJOVyOe+9917+53/+Z4E7Pls+/Vmnn356RowY0fGhAQAAgIVWU1OTIaOHZMrMKUVHSVWpKr/86i9zwCYHFB0FAAAAAAAAAAAAgKWYEuo2avow8NKyFwAAAAAAAICO9dOf/jRJ8rOf/SyNjY1J0qKMekE+Wz5dLpdTWVmZkSNH5tRTT+2EtAAAAMDCqqmpydZ/2DqTZ04uOkoqS5U5c+czc9gWhxUdBQAAAAAAAAAAAIClXEXRAZZ3n/2QMQAAAAAAAABLtp/+9Ke5//7786UvfSnlcrm5fLpUKi3wkaT5mi9/+ct58MEHFVADAADAEmT7K7bPpBmTio6RylJlRu4wMscMOaboKAAAAAAAAAAAAAAsA5RQAwAAAAAAAMBCGDp0aF5++eXceuut2X333dO1a9fmcun5Pbp27Zqvfe1rue222/LSSy9lm222KfqlAAAAAP9r8EWD8+b0N4uOkYpU5OShJ+eEbU4oOgoAAAAAAAAAAAAAy4iqogMsz+rr65t/rq6uLjAJAAAAAAAAAAtrzz33zJ577pm6uro8/fTTefrpp/PBBx/ko48+yowZM9KzZ8+sssoq6dOnTwYNGpRBgwalqsrb9AAAALCk2faSbfPGR28UHSMVqcgPt/5hTtrupKKjAAAAAAAAAAAAALAM8enWAn344YfNP/fo0aPAJAAAAAAAAAC0V3V1dbbaaqtstdVWRUcBAAAAFtL2o7bP+A/GFx0jSXL8kOPzk2E/KToGAAAAAAAAAAAAAMuYiqIDLK/ef//9vPfee83Hq666aoFpAAAAAAAAAAAAAACWL7tetmv+9v7fio6RJDli8yPys11+VnQMAAAAAAAAAAAAAJZBSqgL8qtf/ar551KplIEDBxaYBgAAAAAAAAAAAABg+bHnH/fMU5OfKjpGkuTQTQ/NecPPKzoGAAAAAAAAAAAAAMuoqqIDFO3BBx9s87k1NTULdf5nNTQ0pKamJm+88UbuuOOOjBkzJqVSKeVyOaVSKVtuuWW79gIAAAAAAAAAAAAA0Hb7XrVvHnnnkaJjJElGDByRC/a4oOgYAAAAAAAAAAAAACzDlvsS6mHDhqVUKs33nHK5nCR5/fXXs9NOO3XIfZvKp5scdNBBHbIXAAAAAAAAAAAAAIC5O+i6g/LA2w8UHSNJsseX9shF+1xUdAwAAAAAAAAAAAAAlnHLfQl1k6ai6UU9p62aCqhLpVK+/e1v50tf+lKH7QYAAAAAAAAAAAAAoKVDbjgkd75xZ9ExkiS7rLNLrvzGlUXHAAAAAAAAAAAAAGA5oIT6fzWVQn/eZ4un53VOezTt3WWXXXLhhRd22F4AAAAAAAAAAAAAAFo69pZjc/trtxcdI0my49o75vpvXV90DAAAAAAAAAAAAACWE0qo07JouiPOW5CVV14522yzTY488sh84xvf6NByawAAAFgeNTY2pqKiYonZAwAAwJJvvfXWKzpCK6VSKa+//nrRMQAAAGCpM3HKxPTv23+ez594+4m5bvx1C9zT0NiQyorKjozWylZrbJWbv31zp94DAAAAAAAAAAAAAD5ruS+hvu++++b5XLlczs4775xSqZRyuZwBAwbk97//fbvuU1VVlZ49e2aVVVbJWmut1d64AAAAwOc0NjZmRt2MVFdUp1t1t3bvmVU3K3WNdelZ3VMRNQAAwHLgzTffbH4veEnhC4wBAABg4Z31wFn5yf0/SUUq0jCyodXzJ991cq544YoF7pk2Z1qSpGtl16xYtWJHx0ySDO43OH89/K+dshsAAAAAAAAAAAAA5mW5L6Hecccd23ReqVRKjx492nw+AAAA0PmaCqjLKae2sTapS7uKqGfVzfr0+iQz6mYoogYAAFiOLCnFz0tSGTYAAAAsLZoKqJOkMY2pPKOyRRH1afeclouevmiBe5oKqJNkTsOcJOnwIupN+mySMf86pkN3AgAAAAAAAAAAAEBbaFNqg3K57AO/AAAAsIT5bAF1k9rG2syqm7VQez5bQJ0k5ZQzo25GGhsbOywrAAAAS6am94KXhAcAAACwcD5bQN2kqYg6Sc68/8xc+OSFC9zz2QLqJnMa5mR2/ewOyZkkG/TeIA8d9VCH7QMAAAAAAAAAAACAhVFVdIAl3ciRI5t/7tevX4FJAAAAgCZzK6BuUttYm9Ql3aq7LXDP5wuomzQVUfes7pmKCt/hBQAAsCw6/PDDi44AAAAAtNPcCqibNKYxpTNKWbXrqmnM/L98eG4F1E3mNMxJkqxYtWK7cybJequsl8f/7fFF2gEAAAAAAAAAAAAAi0IJ9QJ8toQaAAAAKN78CqibtKWIel4F1E0UUQMAACzbRo8eXXQEAAAAoB3mV0D9WR/O+TC9uvaa5/PzK6BusqhF1GuvtHYeOPiBdl0LAAAAAAAAAAAAAB1FgxIAAACw1GhLAXWT2sbazKqbNdfnFlRA3aSpiLqxsXGhswIAAAAAAADQsdpaQN1kXkXTbSmgbjKnYU5m189u8/lNvtDzC3nksEfSo0ePhb4WAAAAAAAAAAAAADqSEmoAAABgqbAwBdRN5lZE3dYC6iaKqAEAAAAAAACKt7AF1E0+Xzi9MAXUTRa2iLpf934Ze/hYBdQAAAAAAAAAAAAALBGqig6wtHvnnXfyzDPP5IMPPsjUqVMze/anf1x82mmnFZwMAAAAlh3tKaBuUttYm9Ql3aq7LXQBdZOmIuqe1T1TUeE7vQAAAAAAAAAWp/YWUDeZNmdaenXt1a4C6iZzGuYkSVasWnG+5/Xu1jtPHvGkAmoAAAAAAAAAAAAAlhhKqNvh73//e84777zcdNNNefPNN+d6zvxKqK+66qpMnjy5+Xj77bfPkCFDOjomAAAALBMWpYC6SW1jberm1C3SDkXUAAAAAAAAAIvfxCkTF6mAusmiFFA3mdMwJ10quqSyonKuz6+64qp5+MiHFVADAAAAAAAAAAAAsERRQr0QGhoa8uMf/zgXXHBBamtrUy7PvbiqVCrNd8+kSZNy8sknNx/vvPPOufvuuzs0KwAAACwrKioqUl1RndrG2kXasygF1E2qK6oVUAMAAAAAAAAsRv379k9FKtKYxqKjJMk8C6h7rdArjxz1SPr16LeYEwEAAAAAAAAAAADA/GlNaqMPPvggO+20U84999zMmTMn5XI5pVKp1aMtvvOd72SllVZKkpTL5dx333155513OjM+AAAALNW6VXdLl4ouhWboUtEl3aq7FZoBAAAAAAAAYHnUMLIhFUvAn7736tprrvOVu66cuw+6WwE1AAAAAAAAAAAAAEuk4v8SdylQW1ubvffeOw8//HCL8ulyudzi0VY9e/bMiBEjmq8pl8u5+eabOyk9AAAALBuKLKJWQA0AAAAAAABQrKKLqOdVQN2zS8+M+daYDOg3YPEGAgAAAAAAAAAAAIA2UkLdBt///vczduzYFuXTvXv3zs9//vM8/fTT+fDDD7PZZpst1M4RI0YkSUqlUpJkzJgxHZ4bAAAAljVFFFEroAYAAAAAAABYMjSMbCjkvvMqoO5e3T23fvtWBdQAAAAAAAAAAAAALNGqig6wpHvllVdyySWXNJdPl0ql7LbbbvnTn/6UlVZaqd17hw0blpVWWikzZsxIuVzOAw880IGpAQAAYNnVrbpbUpfUNtZ2+r0UUAMAACy71ltvvVazUqmU119/vU3ndoZ53R8AAAD41ITJE7JWz7Xyzox3Fts951VA3a2qW67d/9ps3m/zxZYFAAAAAAAAAAAAANpDCfUCnH322WloaEipVEqpVMrgwYNz++23p6pq0X51lZWV2WKLLZrLp2fMmJG33347a6+9dkfEBgAAgGXa4iiiVkANAACwbHvzzTebv4y4SalUavO5nWFe9wcAAIDlRUNjQyorKuf63ITJE7Lr1btmRu2M9OraK9PmTOv0PPMqoO5a2TXXfeO6DO0/tNMzAAAAAAAAAAAAAMCiqig6wJLu9ttvb/Fh4ksuuWSRC6ibDB48uMXxyy+/3CF7AQAAYHnQrbpbulR06ZTdCqgBAACWH01fSLww53bGAwAAAJZ3H8/5OPteu29uGn9Tq+cm10zObtfslulzpjfP5lUQ3VHmWUBd0TVX7nelAmoAAAAAAAAAAAAAlhod06a8jHrmmWcyderU5g/9brfddvnKV77SYfvXXnvtFseTJk3qsN0AAACwPOhW3S2pS2obaztspwJqAACA5UfTlxF39LkAAADAwvl4zsc58PoD89zk5/LMe88kSfYbuF+STwuot7t0u0z7ZFqr63p17ZVpc1rPF9W8CqirK6pz8V4XZ9cBu3b4PQEAAAAAAAAAAACgsyihno/XXnutxfEuu+zSoft79erV4vjjjz/u0P0AAACwPOhW3S11c+pSzqKXgZVSUkANAACwnDj88MM75VwAAABg4Xy2gDpJGsuNOeEvJyRJdltrt+w4esdMnTV1ntd3dBH1vAqoq0pVufDrF2bvgXt32L0AAAAAAAAAAAAAYHFQQj0f77//fpKkXC6nVCpl3XXX7dD93bt3T5KUSqUkycyZMzt0PwAAACwPZtXN6pAC6iQpp5xZdbMUUQMAACwHRo8e3SnnAgAAAG33+QLqJo3lxhzxpyPSvXv3zKqbNd8dHVlA3bTv80XUVaWq/PKrv8wBmxzQofcCAAAAAAAAAAAAgMWhougAS7KPP/64xXGPHj06dP/06dOTfFpy3Rn7AQAAYFk3q25WahtrO3RnbWPtAj/EDAAAAAAAAMCimVcBdZLU1NRkRnlG/l7z99Q2zPs94Y4uoJ7b3spSZc7c+cwctsVhnXIvAAAAAAAAAAAAAOhsVUUHWJKtssoqLY6bSqM7ypQpU1oc9+7du0P3AwAAwLKsMwqom9Q21iZ1Sbfqbp2yHwAAAJY377//fp588sm8/vrr+fjjj1NdXZ3evXtno402ypZbbpnq6uqiIwIAALAYza+AOklmZmYa05gkmVX/6ZcId6ns0uKcziqg/uz+VbuumpE7jMwxQ47p1HsBAAAAAAAAAAAAQGdSQj0fffr0SZKUSqUkyTvvvNOh+x9//PEWx6uttlqH7gcAAIBlVWcWUDdRRA0AAACL7vrrr8+vf/3rPPLIIymXy3M9p2fPnhkxYkT+4z/+IxtssMFiTthauVzOa6+9lqeeeirjxo3LuHHj8swzz2TGjBktzjv88MNz2WWXLdK9Tj/99JxxxhmLtGN+5vU7BwAAKNKCCqin1ExpLqBu8vki6s4uoG7y4ZwPc8I2JyyWewEAAAAAAAAAAABAZ1FCPR/rrLNOi+PPl0Yvijlz5uSBBx5IqVRq/tDnoEGDOmw/AAAALKsWRwF1E0XUAAAA0D6TJk3KwQcfnAceeGCB586YMSOjRo3KFVdckVNPPTWnnnpq85dFLy433nhjxo4dm3HjxuXpp5/O9OnTF+v9AQAAlhdtKaBuSMNcn2sqom765+JSeUZlGkbOPRMAAAAAAAAAAAAALA2UUM/HoEGD0qtXr0yfPj3lcjn33ntvpk6dmt69ey/y7ksvvTTTpk1r/uDswIED06dPn0XeCwAAAMuyxVlA3UQRNQAAACycV199NcOGDct77723UNfV1tbmtNNOy/jx43PFFVeksrKykxK2duSRRy5zxdPbbLNN0REAAABaaGhsyME3HtyuAuomi7uAOkka06iIGgAAAAAAAAAAAIClmhLq+aioqMiuu+6a66+/PsmnH3g999xzc/bZZy/S3vfeey9nnHFGSqVSyuVySqVSdt99946IDAAAAMusIgqomyiiBgAAoCN88sknmT59elZbbbXFWrC8OE2dOjW77bbbXAuoBw8enH322Sf9+/fP7Nmz8+qrr+aqq67K3//+9xbnXX311enbt2/OP//8xZS6OP369ctmm222yHuee651gdvRRx+9yHsBAAA6UmVFZY7c/Mg8894zaSw3tnju/Zr3F1hAXSRF1AAAAAAAAAAAAAAszZRQL8AxxxyT66+/vrkw+rzzzsvXvva17LDDDu3aN23atOy///6ZMmVKSqVSkqSysjInnnhiR8YGAACAZUqRBdRNFFEDAADQHh999FH+67/+KzfccENef/31JEmpVMrAgQNz6KGH5sQTT8wKK6xQcMqOc8wxx+Ttt99uMevZs2euvPLK7L333q3OP+uss3LWWWfl9NNPbzH/9a9/nd133z1f+9rXOjPuAvXu3TuDBw/OKquskmuvvbbD93/nO9/Jd77znUXaMXbs2GyzzTYtZj179syBBx64SHsBAAA6w34D90uSnPCXE5qLqN+veT/1qS8yVpsoogYAAAAAAAAAAABgaVVRdIAl3a677pqddtop5XI5pVIpdXV12XPPPXPjjTcu9K77778/W265ZZ544onmUutSqZRvfetbWWeddTohPQAAACz9GhsbU9dYt8h7Sikt8o66xro0NjYu8h4AAACWLlOnTs23v/3t5sehhx6aTz75ZIHXPfPMM9lkk03yX//1X5kwYULK5XLK5XIaGxvz4osv5pRTTskWW2yRl19+eTG8is539913t3ovvUuXLrn33nvnWkCdJNXV1Rk5cmTOP//8Vs+deOKJqa9ffCVkK6+8cnbaaaf8n//zf3LdddfljTfeyAcffJA777xzkYuiO9Mll1zSanbggQeme/fuBaQBAABYsP0G7pfffO03qShV5IOaD5aKAuomjWnMxCkTi44BAAAAAAAAAAAAAAulqugAS4Pzzz8/2267bWbNmpVSqZSampoccMABGTZsWP7t3/4t2267batr6urqMnXq1Lz11lt58MEHc+ONN+aJJ55IuVxOkpRKpZRKpfTr1y//9V//tbhfEgAAACw1Kioq0rO6Z2bUzUg55Xbt6FLRJd2qu2VW3azUNta2a0cppfSs7pmKCt/pBQAAsLy56aabcs0116RU+vQLjvbYY4+ssMIK873mgw8+yB577JHJkycnSfO1n1Uul/PKK69k+PDheeyxx7LGGmt0fPjF6Oc//3mr2ciRI7Plllsu8Nrvf//7uf3223P33Xc3zyZMmJCrrroqhx12WIfmnJtnnnkm66677lz/d1qS1dTU5Nprr201P/roowtIAwAA0Hb7Ddwv5z5ybibNmLTY7tmtqltm1c9apB1nDjsz/fv276BEAAAAAAAAAAAAALB4KKFug0033TRXXXVV9ttvv5TL5ZRKpZTL5dx///25//77m89rKpgul8tz/cBx07VNP1dXV+faa6/N6quvvlheBwAAACytFqWIuqmAOsmn/6zLQhdRK6AGAABYvt16661J/vmeb1sKfk855ZRMnjy5Ralx03vKyT+/uLhcLuedd97Jd7/73dx0000dH34xefHFF/PQQw+1mK222mo56aST2rzj7LPPblFCnSS/+93vFksJdf/+S2eB2HXXXZeampoWs0022SRbbbVVQYkAAADa5qibjspLH7zUIcXQbdGtqlu6VHZJl8oumTZnWrt2nDnszPx4xx93bDAAAAAAAAAAAAAAWAw0J7XRXnvtlcsvvzwrrrhikrQok256fNZn502Pz17Ts2fP3HDDDdluu+0W7wsBAACApVRTEXUppQWf/L8+W0DdpFt1t3Sp6NLmHQqoAQAAGDt2bPP7vV27ds1uu+023/PffffdXH755S3eI66oqMi+++6bk08+OYcffnh69uzZ4kuQb7311jz88MOd/lo6yzXXXNNqdsQRR6RLl7b/N/jgwYMzePDgFrOxY8dm4sSJi5xvWXXJJZe0mh111FEFJAEAAGi7Y285Nje+cmOSpEtll3Sr6raAKxZNUwF1k15dey30DgXUAAAAAAAAAAAAACzNtCcthG9/+9t5/PHHs9FGGzWXTpdKpTY/kk8/XPzlL385jz76aPbcc88iXw4AAAAsdRamiHpuBdRN2lpErYAaAACAt956Kx988EGST98f3mqrrZq/vHherrrqqtTV1SX59D3iFVdcMffdd19uvPHGnHXWWRk9enReeOGFDBgwoMV1o0eP7pwXsRj89a9/bTX75je/udB75nbN3HaTjB8/Po899liLWdeuXXPooYcWlAgAAGDBTrz9xFw3/roWs84sov58AXWThSmiVkANAAAAAAAAAAAAwNJOg9JC2njjjfP888/n2muvzaBBg1Iul1s9ksx1PmDAgFx22WX529/+lo033rjgVwIAAABLp7YUUc+vgLrJgoqoFVADAACQJG+88UaL40022WSB1/zpT39KqVRKuVxOqVTKD37wg2y33XYtzllrrbVy2WWXNZ9TLpdz0003dWj2xWXmzJl5+umnW8y6deuWQYMGLfSu7bffvtXsoYceane2ZdmoUaNazfbdd9/07t27gDQAAAALdvJdJ+eKF66Y63OdUUQ9rwLqJNls9c1SHllOxQL+nF4BNQAAAAAAAAAAAADLgqqiAyyNSqVSDjjggBxwwAF566238sADD+SRRx7Ju+++m6lTp+ajjz7KiiuumNVWWy2rr756ttpqq+y2224ZOHBg0dEBAABgmdBURD2jbkbKKbd4ri0F1E26VXdL6pLaxtoWcwXUAAAANHn77beTpLkseoMNNpjv+dOmTcszzzzTfFxRUZHvfve7cz132223zaBBg5rPnz59eiZMmJABAwZ0UPrF49lnn01jY2OL2ZZbbpmqqoX/k4QhQ4akuro6dXV1zbOnnnpqkTMua+rq6nLFFa2L24466qgC0gAAACzYafeclouevmi+53Sp7JK6hrrUlevme15bVJeq51lAvUmfTXL/EfcnSRpGNqTyjMo0prHVeQqoAQAAAAAAAAAAAFhWKKFeROuss04OO+ywHHbYYUVHAQAAgOXK3IqoF6aAusnni6gVUAMAAPBZ06ZNa3Hcq1ev+Z7/0EMPpbGxMaVSKaVSKUOGDMmaa645z/N32mmnPP30083HL7zwwlJXQv3yyy+3mrX3NXTp0iVf/OIXM3HixObZ66+/nvr6+naVWi+rbr311kyZMqXFbN11182uu+5aUCIAAIB5O/P+M3Phkxcu8LzahtoOKaBOkrpyXWobalsVUW/Qe4M8dNRDLWZzK6JWQA0AAAAAAAAAAADAskSbEgAAALDUaiqiLqXUrgLqJt2qu6VLRRcF1AAAALQye/bsFsc9evSY7/mPP/54kqRc/vQLk4YPHz7f8zfYYIMWx58vFl4avPnmm61m66yzTrv3rb322i2OGxoa8vbbb7d737Jo1KhRrWZHHHFESqVSAWkAAADm7dyHz815Y89rUfA8N7UNtZlVP6tD7z2rflZqG2qbj9dbZb08/m+Pz/XchpENqfjfP61XQA0AAAAAAAAAAADAsqaq6AAAAAAAi6KioiLdKrqlurp6kfZ0q+6Wuro6BdQAAAC00FQm3WTOnDnzPb+phLrJdtttN9/ze/XqlSTN5cEff/zxQiYs3uTJk1vN1lprrXbvm9u1//jHP7Leeuu1e+ey5N13382dd97ZYlZRUZEjjzyyoEQLduGFF+a3v/1tp9/n9ddf7/R7AAAAbXfxkxfnnEfOKaSAuknT3gGrDMgDBz8w33MbRjZk4pSJ6d+3f6dkAQAAAAAAAAAAAICiKKEGAAAAlmoNDQ2Z2TgzVbVV6dGlR7v31NTWpL5cn54NPVNZWdmBCQEAAFiarbTSSi2Op06dOs9z6+vr89hjj6VUKqVcLqeysjJbb731Qt2vrq6uXTmL9OGHH7aa9ejR/v9Gn9u18/u9L29Gjx6dxsaWBW677757vvjFLxaUaMHef//9vPTSS0XHAAAAFqPLn7k8P773x2koN8z3vM4soG7ySf0nOWnISW36b1UF1AAAAAAAAAAAAAAsiyqKDgAAAADQXg0NDZlRPyNJUl+uT01tTbv2NBVQJ8mM+hlpaJj/B6EBAABYfqy66qpJklKplCR5+eWX53nuww8/nFmz/lmctckmm6Rbt27z3T9t2rQkSblcTpJ07959UeIWYubMma1mK664Yrv3ze3az/5el2flcjmjR49uNT/qqKMKSAMAADB3f/rbn/Kju360RBRQl1JK93TPKQ+dkpvG39Sp9wIAAAAAAAAAAACAJZUSagAAAGCp9NkC6ibtKaL+bAF1E0XUAAAANNlkk02afy6XyxkzZsw8z73++uubzyuVStl+++0XuP/9999vcdyrV6/2BS1QXV1dq9kKK6zQ7n1zK6Gura1t975lyb333puJEye2mPXt2zd77713QYkAAABaunX8rTn+juNbvQf7eYujgDpJeqRHevTokcZyY074ywmKqAEAAAAAAAAAAABYLlUVHWBZMGvWrEyfPn2uH6xdGGuvvXYHJQIAAIBl29wKqJs0FVH36NJjgXvmVkDdZEb9jPRMz1RWVi5SVgAAAJZuAwcOzIorrphPPvkkSfLqq6/mjjvuyNe//vUW53300Uf54x//mFKplHK5nCTZeeedF7j/hRdeaHG87rrrdkzwgpVKpQ69tul3ury75JJLWs0OO+ywVFdXF5AGAACgpVvH35pj/nxM6hrn/zfVi6uAumd6pkePf75v3FREnST7Ddyv0+8PAAAAAAAAAAAAAEsKJdQLac6cObnhhhty55135qmnnsqrr76ahoaGRd5bKpVSXz/30isAAADgn+ZXQN2kLUXU8yugbqKIGgAAgKqqquy111657rrrmgumjzzyyFx//fXZbrvtkiQzZszIwQcfnOnTpzcXKPfs2TPDhw9f4P5nn322RXH1+uuv33kvppPMrQB59uzZ7d43t2u7dOnS7n3Lig8//DA33XRTq/lRRx1VQBoAAICWxkwYk2P+fEzmNM6Z73lFFVA3UUQNAAAAAAAAAAAAwPJICXUblcvl/OpXv8qZZ56ZadOmNc8AAACAxactBdRN5ldE3ZYC6iaKqAEAAPjOd76T6667LsmnXzA8ZcqU7LjjjvnSl76U3r1754UXXsjMmTOby6RLpVIOPfTQdO3adb5733nnnbzyyivNxdWrrbZavvjFL3b66+lo3bp1azXr6BLq7t27t3vfsuKPf/xj5sxpWeY2dOjQfPnLXy4oUdv16dMnG220Uaff5/XXX2/1OwIAADrfIxMfySE3HbLAAurk0xLqRVVdqk5duW6ez8+rgLpJY7kxlz57afbecO9UVngfGAAAAAAAAAAAAIBlnxLqNpg1a1b22GOPPPjggy2Kp5s+CLyolFkDAADAgi1MAXWTuRVRL0wBdRNF1AAAAMu3YcOGZd99983NN9+cUqnUXDb96quvNv+c/PM95O7du+fHP/7xAvfedNNNzT+XSqVsvfXWnfMCOlnv3r1bzWpqatq9b27Xzu0ey5tRo0a1mh199NEFJFl4xx9/fI4//vhOv8/GG2+cl156qdPvAwAA/NOzk5/NiBtGZE5D274QpnuX7qmZU5OGNLTrft2quqVLZZfUNtRmVv2sVs8vqIA6STbrt1n+uP8fFVADAAAAAAAAAAAAsNyoKDrA0mD//ffPAw88kHK53PyB4qYPEnfEAwAAAJi/9hRQN2kqok7aV0DdZEb9jDQ0tO+D0AAAACz9Lr300my66aYtCqebSqc/+x5yqVTKxRdfnDXWWGOBO6+++uoWJdbDhg3rtPydafXVV281e/fdd9u975133mnTPZYn48aNy3PPPddi1rNnzxxwwAEFJQIAAPi0gHrPP+451zLoeSmllB5de6QyC18A3VRAnSRdKrukW1W3Fs+3tYD62m9em5W6rrTQ9wcAAAAAAAAAAACApVVV0QGWdFdddVXuuuuu5g8PJ2n+APCgQYPyL//yL1l//fWz8sorp7q6uqiYAAAAsMxalALqJvXl+kybM22Rs8yon5Ge6ZnKyoX/QDQAAABLt169euWBBx7ID37wg1x++eVz/cLhNdZYI//93/+d/fbbb4H7nnjiiTz++OMt3ov++te/3qGZF5f+/fu3mr311lvt3vf222+3OK6srMzaa6/d7n3LglGjRrWafetb30r37t0LSAMAAJBMmDwhe1+1d2bWzVzoa5uKqGvm1KQhbfsi4M8WUDdpOp5VP0sBNQAAAAAAAAAAAADMhxLqBTjrrLOaf276EPHuu++e8847LwMHDiwqFgAAACw3KisrU9VQlfpyfdFRUlWqUkANAACwHOvVq1dGjx6dn//857n11lvzxhtvZMaMGendu3e22mqr7L777llhhRXatOsvf/lLNttss+bjfv36ZcMNN+ys6J1qbrknTJjQrl21tbV55513WszWX3/9VFUtv3/eMHv27Fx99dWt5kcffXQBaQAAAD4toN716l0zo7b9Xya8MEXUcyugbtKzS8/8aJsf5dJnL01juXGeOxRQAwAAAAAAAAAAALA8W34/pdkGb7/9dl566aWUSqWUy+WUSqUcdthhGT16dNHRAAAAYLnSo0uP1NTWFFpEXVWqSo8uPQq7PwAAAEuOL37xi/nud7+7SDtGjhyZkSNHdlCiYm2xxRapqKhIY+M/y77GjRuX+vr6hS6PHjduXOrq6lrMBg0a1CE5l1Z/+tOfMn369BazTTfdNEOGDCkoEQAAsDybXDM5u1+7e6bPmb7gkxegLUXU8yug7lrRNVfud2V2HbBrtlhji5zwlxPmWkStgBoAAAAAAAAAAACA5V1F0QGWZI8//niL49VXXz0XXnhhQWkAAABg+dajS49UlYr5Pi0F1AAAADBv3bt3zxZbbNFiNnPmzDzzzDMLvevhhx9uNdthhx3anW1ZMGrUqFazo48+uoAkAADA8m5yzeRsd+l2+XD2hx22s6mIujKVrZ6bXwF1dUV1Lt7r4uw6YNckyX4D98tvvvabVJRa/nm8AmoAAAAAAAAAAAAAUEI9X1OmTGn+uVQq5Rvf+Ea6detWYCIAAABYvhVRRK2AGgAAABZs+PDhrWbXX3/9Qu+Z2zVz2728eO211/Lggw+2mHXt2jWHHHJIQYkAAIDlVU1NTXYcvWOmzpra4bvnVkQ9vwLqqlJVLvz6hdl74N4t5p8volZADQAAAAAAAAAAAACfUkI9H9OnT0+SlMvlJMkWW2xRZBwAAAAgi7eIWgE1AAAAtM1BBx3UajZ69OjU1ta2ecczzzyTJ598ssVsq622Sv/+/Rc539Lq0ksvbTXbb7/9suqqqxaQBgAAWF7V1NRkyOghmTJzSqfdo6mIuqpUtcAC6l9+9Zc5YJMD5vp8UxH14DUHK6AGAAAAAAAAAAAAgP+lhHo+evRoWTK18sorF5QEAAAA+KzFUUStgBoAAADabpNNNsl2223XYvb+++/nV7/6VZt3nHLKKa1mxx133CJnW1rV19fnD3/4Q6v50UcfXUAaAABgeVVTU5Ohlw/N5JmTO/1epZTSo0uPeRZQV5Yqc+bOZ+awLQ6b7579Bu6Xmw+8WQE1AAAAAAAAAAAAAPyvzm1rWsqtt956LY4//PDDgpIAAAAAn9ejS4/U1Nakvlzf4bsVUAMAALAwJk2alLFjx+app57KlClTMm3atMyYMSM9e/ZMr1690rdv3wwePDhbb711vvCFLxQdt9OceuqpGT58eIvZyJEjs9tuu2XQoEHzvfa///u/c+edd7aYrbfeevn2t7/dpnuvu+66eeutt1rM7rvvvgwbNqxN1y+J7rjjjrz33nstZv3798/OO+9cUCIAAGB5tP0V2+ftj98uOkYqUpGRO4zMMUOOadP5lRWVnZwIAAAAAAAAAAAAAJYeSqjnY+utt05FRUXK5XKS5OWXXy44EQAAAPBZnVFErYAaAACAtpgxY0auuOKK/M///E9efPHFNl+38cYb57jjjsshhxySnj17dmLCxW/33XfPPvvsk1tuuaV5NmfOnOy000658sors9dee7W6pq6uLuecc05OO+20Vs9dcMEFqa6u7tTMS7JRo0a1mh155JEplUoFpAEAAJZHW/1+q7w5/c2iY6QiFfnh1j/MCducUHQUAAAAAAAAAAAAAFgqKaGej9VWWy0777xzxowZkyT5y1/+kl/+8pcFpwIAAAA+q0eXHpk2Z1qH7gMAAID5ueKKK/KDH/wgH330UfOXGrfV3/72t3zve9/LT3/605x//vk55JBDOillMX7/+9/nqaeeyrvvvts8+/jjj7P33ntnyy23zD777JP+/ftn9uzZee211/LHP/4xkyZNarXne9/7XvbYY4/FlnvcuHE5+uij5/l8TU1Nq9mtt96azTfffJ7XbLnllrnkkkvalee9997LHXfc0WJWWVmZI444ol37AAAAFta2l2ybV6e+WnSMJMnxQ47PT4b9pOgYAAAAAAAAAAAAALDUUkK9AD/+8Y8zZsyYlEqlvPLKK7n55puz7777Fh0LAAAA+F81ta1LoBZ1nyJqAAAA5mbOnDk56KCDcuutt7Yony6VSm3eUS6XUy6X8+GHH+bwww/PjTfemKuvvjpdu3btjMiLXZ8+fXLXXXdl5513zuTJk1s8N27cuIwbN26BO0aMGJHzzz+/kxLOXU1NTZ577rmFuuajjz7KRx99NM/ne/Xq1e48f/jDH1JfX99iNnz48HzhC19o904AAIC2GjZ6WMZ/ML7oGEmSYwcdm5/t8rOiYwAAAAAAAAAAAADAUq2i6ABLumHDhuWoo45q/gDx8ccfn3fffbfgVAAAAEDyaWF0fbl+wScuhPpyfYcXWwMAALD0++STT7L33ns3F1CXSqXmR1OxdFsen7/ulltuyd577505c+YU/RI7zMCBA/PEE09ku+22W6jrqqurM3LkyFx99dWprKzspHRLh0svvbTV7KijjiogCQAAsLwZ/ofhee4fC/clPZ3liM2PyDlfPafoGAAAAAAAAAAAAACw1FNC3QYXXnhhhg0blnK5nPfeey8777xznn322aJjAQAAwHKtMwqomyiiBgAA4PNOOOGE3H333UmSUqmUJM3F0ttss03+3//7f7nnnnsyadKk1NTUpLGxMTU1NZk0aVLuvffe/L//9/+yzTbbNF/TtKdcLmfMmDE54YQTCnttnWGttdbKgw8+mGuvvTbbbrtt8+9sbnr06JEjjjgizz//fE4//fRUVCzff8rw4IMP5rXXXmsxW3311bPXXnsVlAgAAFhe7PnHPfP4e48XHSNJMmLgiJw3/LyiYwAAAAAAAAAAAADAMqGq6ABLgy5duuQvf/lLjjzyyFx99dWZMGFCtt566xx88ME5+uij8y//8i+prKwsOiYAAAAsNzqzgLpJUxF1jy49OvU+AAAALPkefPDBXHrppS2KlMvlcoYNG5bf/OY32Xjjjed6Xbdu3dKtW7esscYaGTZsWH70ox/lxRdfzIknnpj77rsvpVKpuYh61KhROfTQQ7P99tsvrpfV6UqlUkaMGJERI0ZkypQpeeKJJ/LGG2/k448/TlVVVVZbbbUMHDgwQ4YMSZcuXRbpXm+++eYiXd/0xdRLgh122GGJyQIAACw/vnn1N/PIO48UHSNJsv+G++eifS4qOgYAAAAAAAAAAAAALDOWyxLqnXfeud3XrrDCCpkzZ05qa2tz2WWX5bLLLsuKK66YddZZJ6uuumqqq6vbtbdUKuWee+5pdy4AAABYXiyOAuomiqgBAABIknPOOSflcrm5MLpUKuXkk0/OWWedtdC7Nt5449xzzz059dRTc9ZZZ7Uotj7nnHOWqRLqz+rbt2/23HPPomMAAAAwFwddd1DueWvJ+Dvm3dfbPaP2G1V0DAAAAAAAAAAAAABYpiyXJdT3339/iw/ytkfTh4uTZNasWRk/fny7dzZ9SBkAAACYv8VZQN1EETUAAMDy7aOPPso999zTooD6yCOPbFcB9Wf94he/yD/+8Y+MGjWqefeYMWPy0UcfZZVVVumg9AAAADB/R910VO58486iYyRJdllnl1wz4pqiYwAAAAAAAAAAAADAMqei6ABLk6bS6SalUqnFAwAAAOg8RRRQN2kqogYAAGD589hjj6Wurq75eKWVVsp5553XIbt/+ctfZuWVV24+rq+vz2OPPdYhuwEAAGBBjr3l2Nz4yo1Fx0iSDF1raK7/1vVFxwAAAAAAAAAAAACAZdJyXUJdLpcX6tGea9q6FwAAAJi3IguomyiiBgAAWD5NmjSp+edSqZR99tknPXv27JDdK620UvbZZ58W7xt/9n4AAADQWX741x/muvHXFR0jSbLVGlvltoNvKzoGAAAAAAAAAAAAACyzqooOUIQddtghpVKp6BgAAABAGzQ0NBReQN2kvlyfhoaGVFZWFh0FAACAxeT9999P8ukXFpdKpWy55ZYdun/IkCG5/PLLm48/+OCDDt0PAAAAn3fyXSdn9LOji46RJNls9c3y18P/WnQMAAAAAAAAAAAAAFimLZcl1Pfff3/REQAAAIA2qqysTM/0zIz6Ge3eUVWqSo8uPVJTW7NIhdY9q3oqoAYAAFjOrLjiii2OV1999Q7d37dv3yRp/iLlFVZYoUP3AwAAwGedds9puejpi4qOkSQZuNrA3H/E/UXHAAAAAAAAAAAAAIBlXkXRAQAAAAAWpLKyMj2rerbr2qYC6iTp0aVHqkrt+04uBdQAAADLp7XWWqvF8bRp0zp0f9O+crmcJPniF7/YofsBAACgybkPn5sLn7yw6BhJkg16b5BHj3606BgAAAAAAAAAAAAAsFxQQg0AAAAsFdpTRP3ZAuom7SmiVkANAACw/Bo8eHCSpFQqJUnGjx/foftffvnlud4PAAAAOtJvHvtNzn747DSmsegoWXfldfP4vz1edAwAAAAAAAAAAAAAWG4ooQYAAACWGgtTRD23AuomC1NErYAaAABg+da/f/9suummSZJyuZwbb7wx5XK5Q3aXy+XccMMNKZVKKZVKGThwYNZbb70O2Q0AAABNLn7y4pzx4BlLRAH12iutnYcOfajoGAAAAAAAAAAAAACwXGlb29Jy7Gc/+1nzz/369csxxxzTYbsvvvjiTJ48ufn4tNNO67DdAAAAsKyqrKxMz/TMjPoZ8zxnfgXUTXp06ZGa2prUl+vneY4CagAAAJLk3//933PUUUelVCrlnXfeya9//ev8+7//+yLv/fWvf5233347SVIqlfKDH/xgkXcCAADAZ13+zOX5yb0/SUO5oego6de9Xx457JH06DH/93IBAAAAAAAAAAAAgI6lhHoBTj/99JRKpSTJZptt1qEl1L/73e/y/PPPNx8roQYAAIC2mV8RdVsKqJvMr4haATUAAABNjjjiiIwePToPP/xwkuTHP/5xNtxww3zta19r986//vWv+fGPf9z8fvS2226bo446qkPyAgAAQJL86W9/yo/u+tF8v5h3cenbvW+ePOJJBdQAAAAAAAAAAAAAUICKogMsLcrlcqft7azdAAAAsCyrrKxMz6qeLWYLU0DdpEeXHqkqtfyeLgXUAAAAfN4NN9yQDTfcMEnyySefZN99980vfvGL1NbWLtSeurq6nHnmmdl3333zySefpFwuZ4MNNsiNN97YGbEBAABYTt06/tYcf8fxS0QBde9uvfPAEQ8ooAYAAAAAAAAAAACAgiihLlipVCo6AgAAACy1PltE3Z4C6iafLaJWQA0AAMDc9OnTJ4899lj22GOPJJ+WSY8cOTIDBgzIqaeemieffHKehdR1dXUZN25cTj311AwYMCCnnXZaamtrUyqVsscee+Sxxx5Lnz59FufLAQAAYBk2ZsKYHPPnY/L/2bvzMK/rem/8z+9sKIuYuJAdSVwPhrmiGC4kuOSCKUrmbpqec0g7x+zcduwnmlne12VWlqcDZZSQe1ouuaE3BigqKuVCEYjiNmIoy7AMMHx/f3TD3TQowzDDZwYej+viar6vz+f9+jy/I/8Qw/O7fOXyoqNkq823ysQvTUzPrj2LjgIAAAAAAAAAAAAAm6yqogMAAAAArI/Kysp0y/oXR3et6ZqGhgYF1AAAADRx+OGHN3q92Wabpb6+PuVyOW+++Wa++93v5rvf/W6qqqrSq1evdO/ePV26dMmiRYsyf/78zJ49OytWrEiSlMvlJH/7wOLNNtssixYtykknnbROeUqlUh577LHWeXMAAABsVMbNGJcz7jkj9Svri46S7p26Z9J5kxRQAwAAAAAAAAAAAEDBlFAXqKGhYfXXVVX+UwAAAEBLtVZxtAJqAAAA1mT8+PEplUpN5qtmq4qlly9fnpkzZ66+tmq+pjNJsnTp0jzxxBPrlKVcLq8xCwAAAEyaNSln/+bs1DcUX0DdraZbxn1xnAJqAAAAAAAAAAAAAGgHNB8XaP78+au/7tq1a4FJAAAAAAAAAGiONZVAf1gpdHPKopVKAwAA0Bqm1k7NsF8Py+IVi4uOki7VXXLvafdml567FB0FAAAAAAAAAAAAAIgS6sIsWLAgb7755urXW265ZXFhAAAAAAAAAFircrnc6H9bey8AAAC0xNTaqRlyy5B2UUDduapz7j/9/uzdc++iowAAAAAAAAAAAAAA/5cS6oL8/Oc/T7lcTqlUSqlUyu677150JAAAAAAAAADW4NBDD02pVCo6BgAAADQxo3ZGPn/r57Nw2cKio6RTZafcMfQOBdQAAAAAAAAAAAAA0M5s8iXUs2fPbva9y5YtyxtvvJFyubzOz2loaEhdXV1effXV/O53v8vo0aNTKpVWF1Hvs88+67wTAAAAAAAAgLY3fvz4oiMAAABAE7V1tTnitiMyv35+0VHSqaJTxp44NgN6Dyg6CgAAAAAAAAAAAADwDzb5Euodd9wxpVLpI+9ZVTo9bdq07Ljjjq3y3FXl06uccsoprbIXAAAAAAAAAAAAANi41dbVZsBNAzJv6byio6RTRaeMOn5UBu8yuOgoAAAAAAAAAAAAAMAabPIl1Mn/K5lurfuaY1UBdalUyhFHHJG999671XYDAAAAAAAAAAAAABun2rraHPzzg/P+kveLjpLqiur86JgfZUifIUVHAQAAAAAAAAAAAAA+hBLq/L9C6DX5++Lpj7qvJcrlcj71qU9l9OjRrboXAAAAAAAAAAAAANj41NXV5bDRh2Xu4rlFR0lVqSo3HnNjTul7StFRAAAAAAAAAAAAAICPoIQ6jYumW+O+5vjnf/7nfOlLX8rw4cOz+eabt9peAAAAAAAAAAAAAGDjU1dXl/6/7J85i+YUHSWVpcp878jvKaAGAAAAAAAAAAAAgA5gky+hHj169IdeK5fL+dKXvpRSqZRyuZxevXrlqquuatFzqqqq0q1bt3zsYx9L375987GPfaylkQEAAAAAAABohxoaGvL+++9nyZIlSZJevXoVnAgAAICNRV1dXQbcPCBvLXyr6CipLFVmxKEjctY+ZxUdBQAAAAAAAAAAAABohk2+hPrss8/+yOtf+tKXkiSlUilbbbXVWu8HAAAAAAAAYNPw4osv5je/+U3Gjx+fF154IfPnz199rVQqZcWKFR96dv78+WloaFj9umvXrqmpqWnTvAAAAHRch/3qsMxeMLvoGKlIRS4bcFkuOuiioqMAAAAAAAAAAAAAAM20yZdQN0e5XC46AgAAAAAAAADtxNSpU/PNb34zDz744OrZuv698sUXX5yxY8eufv3lL385//M//9NqGQEAANh4HPjTA/PqB68WHSMVqcgl/S/JpQdfWnQUAAAAAAAAAAAAAGAdKKFei7PPPnv117169SowCQAAAAAAAABFGzlyZP793/89y5YtW108XSqVUiqVVt/TnELqr3/96xk7duzqe++444788Ic/TKdOndomOAAAAB3SITcdkulzpxcdI0kyvN/wXD7w8qJjAAAAAAAAAAAAAADrSAn1WowePbroCAAAAAAAAAC0A9/+9rczYsSIRuXTSePS6b8vo/4offv2zaBBgzJu3Lgkyfz58/O73/0uJ554YiunBgAAoKMaOHpgXnrvpaJjJEku3PfCfGvQt4qOAQAAAAAAAAAAAAC0QEXRAQAAAAAAAACgvfv1r3+9uoC6VCqlVCqlXC5nl112ycUXX5zvf//72WGHHdZp5xe+8IUk/6+4+uGHH2713AAAAHRMR//y6Pzh3T8UHSNJcuaeZ+baI68tOgYAAAAAAAAAAAAA0EJKqAEAAAAAAADgIyxevDhf+cpXVhdQl8vldOvWLWPHjs2f//zn/OAHP8hXv/rVbLXVVuu098QTT0xlZWWSpFwu57HHHmuL+AAAAHQwn7/l83n6naeLjpEkGdZnWG449oaiYwAAAAAAAAAAAAAA60EJNQAAAAAAAAB8hB//+Md59913GxVQ//73v89pp522Xnu32mqr9OnTZ/XrV199NQsWLFjfuAAAAHRgJ996cp6Y/UTRMZIkJ+1+UkaeMLLoGAAAAAAAAAAAAADAelJCDQAAAAAAAAAfYcyYMasLqEulUr7//e/n05/+dKvs3m+//VIul1e/njZtWqvsBQAAoOM549dn5LHXHys6RpLkqJ2Oyk0n3lR0DAAAAAAAAAAAAACgFSihBgAAAAAAAIAPUVtbm5dffnn16169euWcc85ptf177LFHo9czZ85std0AAAB0HOfdc14e+MsDRcdIkgz65KDcNuy2omMAAAAAAAAAAAAAAK1ECTUAAAAAAAAAfIhnn3129delUimf+9znUlHRen/V/rGPfazR63nz5rXabgAAADqGix+4OHf/+e6iYyRJBuwwIHd98a6iYwAAAAAAAAAAAAAArUgJNQAAAAAAAAB8iDlz5iRJyuVykmSfffZp1f1bbrllkr8VXCfJwoULW3U/AAAA7dslD12SMS+OKTpGkmS/nvvl/tPvLzoGAAAAAAAAAAAAANDKlFADAAAAAAAAwIf461//2uj1Vltt1ar76+vrG72uqPDX+AAAAJuKyx65LKOnji46RpJkr+32yrhzxhUdAwAAAAAAAAAAAABoA/71KgAAAAAAAAB8iE6dOjV6vXTp0lbd//777ydJyuVykqRHjx6tuh8AAID26Zrx12Tk8yOLjpEk6bN1n4w/d3zRMQAAAAAAAAAAAACANqKEGgAAAAAAAAA+xDbbbNPo9V//+tdW3f/yyy83eq2EGgAAYON33cTrcv3k64uOkSTZrcduefL8J4uOAQAAAAAAAAAAAAC0ISXUAAAAAAAAAPAhtttuuyRJqVRKkrzwwgutun/8+PGrdyfJzjvv3Kr7AQAAaF9+9NSP8t2J383KrCw6SnbsvmOe/vLTRccAAAAAAAAAAAAAANqYEmoAAAAAAAAA+BD9+vVLZWVlkqRcLuexxx5LuVxuld0TJ07M9OnTV7/eaqut0rdv31bZDQAAQPsz6tlRuer3V7WLAupeW/TKhDMnFB0DAAAAAAAAAAAAANgAlFADAAAAAAAAwIfo3r17DjjggNXF02+//XbuueeeVtl9xRVXJPlbuXWpVMrAgQNbZS8AAADtz80v3JzLH788DeWGoqOkZ5eemXTWpHTt2rXoKAAAAAAAAAAAAADABqCEGgAAAAAAAAA+wtChQ5MkpVIp5XI5//Ef/5GFCxeu184rr7wy48ePT6lUWj0799xz12snAAAA7dOdL92Zrz3ytaworyg6Srbtsm2ePfdZBdQAAAAAAAAAAAAAsAlRQg0AAAAAAAAAH+Hf/u3f8vGPf3z16zfffDPHHHNMFixYsM67Vq5cmf/4j//I1VdfvbrUulQqZa+99soxxxzTmrEBAABoB+6ddm+G/254uyig7tG5R5449wkF1AAAAAAAAAAAAACwiVFCDQAAAAAAAAAfYbPNNstVV121ujC6XC7nySefzKc+9amMHTs2y5YtW+uO9957LyNHjszuu++eG264IeVyefW1UqmUa6+9ti3fAgAAAAUYN2NcLrjvgixfubzoKNlysy0z8UsT07Nrz6KjAAAAAAAAAAAAAAAbWFXRAQAAAAAAAACgvTv//PMzefLk/PznP19dRP3WW2/l7LPPzle+8pXsu+++mT17dqNy6dNOOy3vv/9+Xn/99UyfPj1JVl9ftaNUKuW//uu/cuSRRxbyvgAAAGgbk2ZNyhn3nJH6lfVFR0n3Tt3z6KmPKqAGAAAAAAAAAAAAgE2UEmoAAAAAAAAAaIb/+Z//yTvvvJMHH3wwpVIpyd9KpRcsWJAnnnii0b3lcjm333776q9XWXVulVNPPTXf+ta32jg5AAAAG9KkWZMy7NfDUt9QfAF1t5puGffFcdml5y5FRwEAAAAAAAAAAAAAClJRdAAAAAAAAAAA6Aiqqqpy//335//7//6/lEqllMvllEqlRoXUf69cLje65x/vu/LKK/OrX/1qw74JAAAA2tTU2qn5wt1fyOIVi4uOki7VXXLvafcqoAYAAAAAAAAAAACATZwSagAAAKDD+8eSr6L3AAAAsPEqlUq56qqrMmHChHzuc59bXTT9j2XTayqeXvVr4MCBmTBhQq644oqC3w0AAACtaUbtjAy5ZUgWLV9UdJR0ruqc+0+/P3v33LvoKAAAAAAAAAAAAABAwaqKDgAAAACwPsrlcuqW16VTZafUVNa0eM+yhmWpb6hP1+quqwvCAAAA4MMcdNBBeeCBB/Lyyy/nrrvuyhNPPJHJkydn6dKlTe4tlUrZe++9c8QRR+SEE07IZz7zmQISAwAA0JZm1M7I4FsHZ+GyhUVHSafKTrlj6B0KqAEAAAAAAAAAAACAJEqo2UDee++9PPvss5k5c2YWLFiQ6urq9OjRI3vssUf233//VFdXFx2xkdra2syaNStvvPFG5syZk0WLFmX58uXZYost0r179+y4447ZZ599ssUWW2ywTLNnz86LL76Y1157LQsWLEi5XE7Xrl2z/fbbZ+edd84ee+yRTp06bbA8AAAA7UG5XE7dsro0pCGLVyxOkhYVUS9rWLb6fN2yunStUUQNAABA83zqU5/Kpz71qSTJypUrM3fu3MydOzcffPBBNt9882y99dbZZptt/F0eAADARqy2rjZH3HZE5tfPLzpKOlV0ytgTx2ZA7wFFRwEAAAAAAAAAAAAA2gkl1LSpu+66Kz/84Q8zadKklMvlNd7TrVu3DBs2LP/5n/+Z3XbbbQMnTObNm5eJEydm0qRJefrpp/Piiy/mr3/961rPlUql7LnnnjnrrLNy5plnZtttt231bG+++WZGjRqVW2+9NTNmzPjIe2tqarL33nvnyCOPzEknnZR99tmn1fMAAAC0J39fQL1KS4qo/76AOkka0qCIGgAAgBapqKjINttsk2222aboKAAAAGwgtXW1GXDTgMxbOq/oKKmuqM6o40dl8C6Di44CAAAAAAAAAAAAALQjFUUHYOP01ltvZeDAgTnllFMyceLEDy2gTpKFCxfmpptuyp577pmrr776I+9tC9dee22OP/74XHvttfk//+f/NKuAOvlb2dkf//jHXHrppdl5551z/fXXZ8WKFa2SaenSpbnsssuy66675uqrr15rAXWSLFu2LM8880y+/e1v5+tf/3qr5AAAAGiv1lRAvcriFYuzrGFZs/b8YwH1KquKqDf0n1EBAAAAAACAjqOuri4H//zgvL/k/aKjpLqiOjcec2OG9BlSdBQAAAAAAAAAAAAAoJ1RQk2rmz59evr165cnnnhinc4tW7YsV1xxRU4//fQ0NDQtEWvP6urq8rWvfS3HHXdclixZsl67Zs2alf333z//+3//7yxdurSVEgIAAGw8PqqAepXmFFF/WAH1KoqoAQAAAAAAgA9TV1eXfqP7Ze7iuUVHSVWpKtcdcV1O6XtK0VEAAAAAAAAAAAAAgHaoqugAbFzmzp2bI444Iu+8806Ta/vtt19OOOGE9O7dO0uWLMn06dNzyy235O23325036233pptt902P/jBDzZQ6sa6dOmSfffdN7vvvnt22WWXbLPNNunWrVsaGhqyYMGCTJ8+PU8++WQmT57cpIjs4YcfzoknnpgHH3wwpVJpnZ/95z//OYcddljefffdJte22267HHPMMenTp0+23XbbdO7cOfPmzcsbb7yRP/7xj5k0aVL++te/tvh9AwAAdATNKaBeZVXBdE1lTZNrayugXmVVEXXXmq4t+nMeAAAAAAAAsPGpq6tL/1/2T+2i2qKjpLJUmWsOvyZn7XNW0VEAAAAAAAAAAAAAgHZKCTWt6oILLsjs2bMbzbp165axY8dmyJAhTe7/zne+k+985zu58sorG81/+MMf5qijjsrnPve5toybJOnUqVMOP/zwfO5zn8ugQYPy6U9/OpWVlWs9N2PGjFxyySW57777Gs0ffvjh/PSnP80FF1ywTjnmzJmTI488skkB9a677prvfe97Oe644z6y8GzlypV55plnMmbMmNTWFv+PGgAAAFrbuhRQr7KmIurmFlCvoogaAAAAAAAAWKWuri4Dbh6Qtxa+VXSUVJYqM+LQEbmg37r9zCoAAAAAAAAAAAAAsGlRQk2refTRR3P33Xc3mtXU1OTxxx/P/vvvv8Yz1dXVGTFiRLbccsv8+7//e6NrF198caZNm5aqqrb9bXrVVVe16Nwuu+yS3/72txk+fHh+8pOfNLp27bXXrlMJdblczplnntmkwHvYsGEZM2ZMampqPuTk/1NRUZH+/funf//+KZfLzX42AABAR9CSAupV/r6Iel0LqFdRRA0AAAAAAAAkyWG/OiyzF8xe+41trCIVuWzAZbnooIuKjgIAAAAAAAAAAAAAtHMVRQdg43H11Vc3mY0YMeJDC6j/3le/+tUcccQRjWYzZszILbfc0mr52kKpVMr3v//9fPKTn2w0nzVrVqZMmdLsPWPGjMkjjzzSaHbiiSfmlltuaVYB9ZpyAQAAbCzK5XLqlresgHqVxSsWZ9HyRS0qoF6lIQ2pW17ng38AAAAAAABgE3XgTw/Mqx+8WnSMVKQil/S/JJcefGnRUQAAAAAAAAAAAACADkAJNa3i5ZdfzoQJExrNtt5661x6afN/uP273/1uk9lPfvKT9c7W1jp16pSTTz65yfyVV15p1vn6+vp84xvfaDTr0aNHRo0alcrKylbJCAAA0NGVs/7Fz8tXLm8XOQAAAAAAAICO55CbDsn0udOLjpEkGd5veC4feHnRMQAAAAAAAAAAAACADkIJNa3itttuazI799xzU1NT0+wd++23X/bbb79Gs8mTJ2fWrFnrna+t7bzzzk1m77zzTrPOjh07Nm+//Xaj2RVXXJGtt966VbIBAAB0dKVSKZtVbpZSSsXmyP/NUSo2BwAAAAAAALBhDf7F4Lz03ktFx0iSXLjvhfnWoG8VHQMAAAAAAAAAAAAA6ECUUNMqHnrooSazk08+eZ33rOnMmna3N0uXLm0ya24B989+9rMm584444xWyQUAALCxqKmsyeZVmxdWRF1KKZtXbZ6ayuZ/2BIAAAAAAADQ8R39y6PzXO1zRcdIkpy555m59shri44BAAAAAAAAAAAAAHQwSqhZb4sWLcrzzz/faNa5c+fsu+++67zrkEMOaTKbMGFCi7NtKM8++2yT2c4777zWc2+88UYmT57caHbkkUdmq622arVsAAAAG4uiiqgVUAMAAAAAAMCm6fO3fD5Pv/N00TGSJMP6DMsNx95QdAwAAAAAAAAAAAAAoANSQs16mzp1alauXNlotv/++6eqqmqdd/Xr1y/V1dWNZs8999x65Wtrf/nLX3LPPfc0mm222WY59NBD13p23LhxTWb9+/dvtWwAAAAbmw1dRK2AGgAAAAAAADZNp95xap6Y/UTRMZIkx+56bEaeMLLoGAAAAAAAAAAAAABAB6WEmvX2pz/9qclsl112adGumpqa/NM//VOj2cyZM7NixYoW7Wtrr776ao4//vgsXbq00fzcc8/NlltuudbzkyZNajLbe++9V39dLpfz8MMP57zzzkvfvn3TrVu31NTUpGfPntlzzz1z5pln5uabb87cuXPX960AAAB0GBuqiFoBNQAAAAAAAGyazvj1GXn41YeLjpEkOWqnozJ26NiiYwAAAAAAAAAAAAAAHVhV0QHo+F577bUms09+8pMt3terV6/MmjVr9euGhobMnj07O+20U4t3tqb6+vq88MILue222zJy5MgmBdS9e/fOd7/73WbtevHFF5vMdt111yTJSy+9lLPPPjvPP/98k3vefffdvPvuu3nppZcyduzYdO3aNV/96lfz9a9/Pd27d2/BuwIAAOhYVhVDL1mxJOWUW32/AmoAAAAAAADYNF342wvzwF8eKDpGkuSwXofltmG3FR0DAAAAAAAAAAAAAOjglFCz3mpra5vMdthhhxbvW9PZd999d4OWUI8bNy6XXnppo9mKFSuycOHCvP3221mxYsUaz+2666555JFHml0E/eqrrzaZde/ePT//+c/zb//2b6mvr2/Wnrq6ulxzzTW58847c99992W33XZr1rkN5cYbb8x///d/t/lzZs6c2ebPAAAA2o+2KqJWQA0AAAAAAACbposfuDh3TLuj6BhJkgE7DMhvTvtN0TEAAAAAAAAAAAAAgI2AEmrW2/vvv99k1rVr1xbvW9PZuXPntnhfS8ybNy9/+MMfmn1/ly5d8i//8i+56qqr0qVLl2adWb58+Rrf1+OPP54vf/nLWblyZaN5t27d0rNnzzQ0NOSdd97JkiVLmpydPn16+vfvnyeffDL//M//3Oz8be29997LK6+8UnQMAABgI7SqKHrxisWttlMBNQAAAAAAAGx6Lnnokox5cUzRMZIk+/XcL/effn/RMQAAAAAAAAAAAACAjURF0QHo+BYtWtRktvnmm7d435rOLl7cemViralUKuX888/PrFmzct111zW7gDr5W9F1uVxuMj/vvPNWF1CXSqWceeaZefrppzN//vxMnz49M2fOzIIFC/L444/nqKOOanL+gw8+yNChQ9f43wUAAAAAAAAAAACAxq547IqMnjq66BhJkr7b9M24c8YVHQMAAAAAAAAAAAAA2IgooWa9LV++vMlss802a/G+NZVQL1u2rMX72lK5XM7Pfvaz9O3bN1dddVUWLlzY7LP19fVrnC9ZsiTJ376H99xzT26++eYccMABKZVKq++pqqrKZz/72Tz00EO54YYbGl1LkldeeSVXX311C94RAABAx7KsYVkWr2jdDy5avGJxljW0zz+HAgAAAAAAAK3rmvHX5MZnbyw6RpKkz9Z9MuG8CUXHAAAAAAAAAAAAAAA2MkqoaRP/WIq8vmfL5fL6xFlnJ598csrlcqNfixYtyltvvZVx48blqquuSu/evVffP2fOnFx55ZX59Kc/naeffrpZz1jbexo5cmROOOGEte656KKLcvnllzeZ/+QnP8m8efOalQUAAKAjaosC6lUUUQMAAAAAAMDG77qJ1+X6yddnZVYWHSU7fWynPHn+k0XHAAAAAAAAAAAAAAA2QkqoWW/V1dVNZkuWLGnxvjWdrampafG+1tK5c+dsv/32GTRoUK644orMnDkzP/7xj9OlS5fV97z22msZPHhwnnxy7f8IYE3ft1UGDhyYs846q9nZrrjiikal2EmyYMGC3Hbbbc3eAQAA0JG0ZQH1KoqoAQAAAAAAYOP1o6d+lGsnXdsuCqh37L5jnrvwuaJjAAAAAAAAAAAAAAAbqaqiA9Dxde7cucmstUuo/77oub0olUoZPnx49txzzxx99NGrc9fV1eULX/hC/vjHP+ZjH/vYh57/qPd00UUXrVOW6urqXHjhhbnssssazcePH59/+Zd/WaddbWGbbbbJHnvs0ebPmTlzZurr69v8OQAAQLE2RAH1KqueU1NZ/IcjAQAAAAAAAK1j1LOjctXvr0pDuaHoKPlEt09kwpkTio4BAAAAAAAAAAAAAGzElFCz3nr06NFkVldX1+J9azq7pme0F4ceemiuvPLK/K//9b9Wz958881873vfy7e//e0PPdetW7fU1NRk2bJljeYVFRUZPHjwOuc48sgjm5RQT5w4cZ33tIXhw4dn+PDhbf6cT33qU3nllVfa/DkAAEBxNmQB9SqKqAEAAAAAAGDjcfMLN+fyxy9vFwXUPbv0zOSzJ6dr165FRwEAAAAAAAAAAAAANmIVRQeg49tuu+2azN58880W73vjjTea9Yz25Ktf/Wq6devWaDZq1KiUy+WPPNezZ88ms5122ilbbLHFOmf49Kc/ncrKykaz2tratWYAAADoKIoooF5l8YrFWdawbO03AgAAAAAAAO3WnS/dma898rWsKK8oOkq27bJtnj33WQXUAAAAAAAAAAAAAECbU0LNeuvdu3eT2euvv97ifbNnz270urKyMr169Wrxvg2hU6dOOfzwwxvN3nvvvbzyyisfeW6nnXZqMuvRo0eLMlRWVqZ79+6NZg0NDZk3b16L9gEAALQnRRZQr6KIGgAAAAAAADque6fdm+G/G94uCqi32nyrPHHuEwqoAQAAAAAAAAAAAIANQgk162333XdvMpsxY0aLdi1btixvvPFGo9nOO++cqqqqFu3bkHbccccms1dfffUjz/Tp06fJrFOnTi3OsNlmmzWZLV26tMX7AAAA2oNyuZylDe3jzzZLG5amXC4XHQMAAAAAAABYB+NmjMsF912Q5SuXFx0lW262ZSadNyk9u/YsOgoAAAAAAAAAAAAAsIlQQs1622effVJR0fi30pQpU7JixYp13jVlypQsX974B/z33Xff9cq3oaypAHrhwoUfeaZfv35NZvPnz29xhnnz5jWZ9ejRo8X7AAAA2ouK9fy/MEoppbqiOqWUCs0BAAAAAAAAbFiTZk3KGfeckfqV9UVHSfdO3fPoqY8qoAYAAAAAAAAAAAAANijNSay3Ll26ZJ999mk0W7RoUV544YV13jVx4sQms0MPPbTF2TakOXPmNJltvfXWH3lm4MCBTWavv/56yuXyOj//vffey+LFixvNtthii9TU1KzzLgAAgPakVCqlS3WXVJWqWnY+pWxetXm6VHfJ5lWbt7iIuqpUlS7VXVIqrV+RNQAAAAAAALBhTJo1KcN+PSz1DcUXUHer6ZZxXxyXXXruUnQUAAAAAAAAAAAAAGATo4SaVnH00Uc3md11113rvGdNZ9a0uz2aPHlyk1nPnj0/8kzv3r3Tp0+fRrN58+bllVdeWefnP/nkk01m/1gODgAA0FG1tIh6VQF1TeXfPqCnprKmRUXUCqgBAAAAAACgY5laOzVfuPsLWbxicdFR0qW6S+497V4F1AAAAAAAAAAAAABAIZRQ0ypOPfXUJrPRo0dn2bJlzd7xwgsv5Nlnn200O/DAA9O7d+/1ztfWpk6dmmnTpjWabbnllk0KptfkjDPOaDIbM2bMOme4+eabm8wGDRq0znsAAADaq3Utov7HAupV1rWIWgE1AAAAAAAAdCwzamdkyC1Dsmj5oqKjpHNV59x+0u3Zu+feRUcBAAAAAAAAAAAAADZRSqhpFX379s3BBx/caPbee+/l+9//frN3fOMb32gy+9d//df1ztbWGhoacvHFFzeZH3vssamurl7r+fPOOy+bb755o9nIkSPz9ttvNzvD888/n9/+9reNZqVSKUOHDm32DgAAgI6guUXUH1ZAvUpzi6gVUAMAAAAAAEDHMqN2RgbfOjgLly0sOko6VXbKHUPvyIDeA4qOAgAAAAAAAAAAAABswpRQ02q++c1vNpmNGDEizz///FrP/vjHP87DDz/caLbTTjvltNNOa9azd9xxx5RKpUa/xo8fv9ZzP/rRj/Loo4826xlrUl9fn9NPPz0TJkxoNC+VSvnKV77SrB3bbbddhg8f3mg2b968nH766VmyZMlaz8+ZMyenn356GhoaGs2HDh2aPfbYo1kZAAAAOpK1FVGvrYB6lbUVUSugBgAAAAAAgI6ltq42R9x2RObXzy86SjpVdMrYE8cqoAYAAAAAAAAAAAAACqeEmlZz1FFH5YQTTmg0q6+vz2c/+9ncd999azyzfPnyXH311bnooouaXLvhhhtSXV3dJllXee6553LkkUfmoIMOyn//93/n3Xffbda55cuX5+67786ee+6Z22+/vcn1L3/5y+nfv3+zc4wYMSK9evVqNBs/fnwGDRqUP/3pTx967sknn8whhxzS5J6uXbvm29/+drOfDwAA0NF8WBF1cwuoV/mwImoF1AAAAAAAANCx1NbVZsBNAzJv6byio6S6ojqjjh+VwbsMLjoKAAAAAAAAAAAAAECq1n4LNN9Pf/rTPPfcc3nzzTdXzxYsWJAhQ4Zk//33zwknnJDevXtnyZIl+ctf/pJf/epXeeutt5rs+cpXvpJjjz12g+WePHlyJk+enIsuuih9+vTJPvvskz322CNbbbVVttxyy5RKpSxYsCBvv/12pk6dmt///veZO3fuGnd99rOfzfXXX79Oz+/atWvuvPPOHHrooamvr189f+qpp7LnnnvmiCOOyKBBg7L99tunoaEhs2fPzkMPPZQJEyascd8vfvGL7L777uuUAQAAoKNZVUS9aPmirCivWOcC6lVW3b9kxZKUU1ZADQAAAAAAAB1MXV1dDht9WN5f8n7RUVJdUZ0bj7kxQ/oMKToKAAAAAAAAAAAAAEASJdS0sm222SaPPPJIDj/88NTW1ja6NmXKlEyZMmWtO4YNG5Yf/OAHbZTwo61cuTIvv/xyXn755Rad//znP59bbrklm2+++TqfPeCAA/Kb3/wmJ510UpYsWbJ6vmLFijz44IN58MEH17qjpqYmN954Y4YOHbrOzwcAAOiI/r6IuqayZp0LqFdZdW5ZwzIF1AAAAAAAANCB1NXVpd/ofpmzaE7RUVJVqsp1R1yXU/qeUnQUAAAAAAAAAAAAAIDVKooOwManT58+eeaZZ3LwwQev07nq6uqMGDEit956ayorK9soXWNdunRplT077LBD7rrrrtxzzz0tKqBe5eijj85TTz2Vvn37rvPZXXfdNY8//njOP//8Fj8fAACgI1pVRN3SAupVaiprFFADAAAAAABAB1JXV5f+v+yf2kW1RUdJZaky1xx+Tc7a56yiowAAAAAAAAAAAAAANKKEmjaxww475Pe//31uv/32fOYzn/nIAq+uXbvm3HPPzR//+MdceeWVqajYcL8tb7zxxrz88su57rrrcvzxx6dnz57NPrvddtvl1FNPze9+97vMmjUrQ4cObZVMe+21V6ZOnZrRo0fngAMO+MjvXWVlZQ466KD84he/yLRp0zJgwIBWyQAAANDRtFZxtAJqAAAAAAAA6DgOGXNI3lr4VtExUlmqzIhDR+SCfhcUHQUAAAAAAAAAAAAAoImqogOw8SqVShk2bFiGDRuWOXPm5Jlnnsmrr76aBQsWpKqqKltvvXX69OmTfv36paamZr2e9dprr7X47B577JE99tgjX/va15Ik77zzTmbOnJnXXnst77//fhYtWpRyuZxu3bqle/fu2XbbbbPXXnvl4x//+Hpl/iiVlZU555xzcs455+Tdd9/NlClTVn/vampqsvXWW2f77bfPQQcdlC222KLNcgAAAAAAAAAAAAC0R/uN3C+vzX+t6BipSEUuG3BZLjrooqKjAAAAAAAAAAAAAACskRJqNohtt902xx13XNExmuXjH/94Pv7xj+fggw8uOkqSZLvttsuxxx5bdAwAAAAAAAAAAACAduEzP/tMXv3g1aJjpCIVuaT/Jbn04EuLjgIAAAAAAAAAAAAA8KEqig4AAAAAAAAAAAAAANAch9x0SKb9dVrRMZIkw/sNz+UDLy86BgAAAAAAAAAAAADAR1JCDQAAAAAAAAAAAAC0e4N/MTgvvfdS0TGSJOfufW6+NehbRccAAAAAAAAAAAAAAFgrJdQAAAAAAAAAAAAAQLt23K+Oy3O1zxUdI0ly5p5n5vqjry86BgAAAAAAAAAAAABAsyihBgAAAAAAAAAAAADarc/f8vlMemNS0TGSJMP6DMsNx95QdAwAAAAAAAAAAAAAgGZTQg0AAAAAAAAAAAAAtEun3nFqnpj9RNExkiTH7npsRp4wsugYAAAAAAAAAAAAAADrRAk1AAAAAAAAAAAAANDunPHrM/Lwqw8XHSNJctROR2Xs0LFFxwAAAAAAAAAAAAAAWGdKqAEAAAAAAAAAAACAduXC316YB/7yQNExkiSH9Tostw27regYAAAAAAAAAAAAAAAtooQaAAAAAAAAAAAAAGg3Ln7g4twx7Y6iYyRJDvz4gfnNab8pOgYAAAAAAAAAAAAAQIspoQYAAAAAAAAAAAAA2oXLHrksY14cU3SMJMl+PffLQ2c/VHQMAAAAAAAAAAAAAID1ooQaAAAAAAAAAAAAACjcFY9dkZHPjyw6RpKk7zZ9M+6ccUXHAAAAAAAAAAAAAABYb0qoAQAAAAAAAAAAAIBCXTP+mtz47I1Fx0iS7NZjt0w4b0LRMQAAAAAAAAAAAAAAWoUSagAAAAAAAAAAAACgMNdNvC7XT74+K7Oy6CjZ6WM75ekvP110DAAAAAAAAAAAAACAVqOEGgAAAAAAAAAAAAAoxI+e+lGunXRtuyig7rVFrzxx+hNFxwAAAAAAAAAAAAAAaFVKqAEAAAAAAAAAAACADW7Us6Ny1e+vSkO5oego+US3T2TSWZPStWvXoqMAAAAAAAAAAAAAALQqJdQAAAAAAAAAAAAAwAZ18ws35/LHL28XBdQ9u/TM5LMnK6AGAAAAAAAAAAAAADZKSqgBAAAAAAAAAAAAgA3mzpfuzKWPXpoV5RVFR0mPzj3y7LnPKqAGAAAAAAAAAAAAADZaSqgBAAAAAAAAAAAAgA3i3mn3Zvjvhmf5yuVFR8lWm2+ViV+aqIAaAAAAAAAAAAAAANioKaEGAAAAAAAAAAAAANrcuBnjcsF9F7SLAuotN9syk86blJ5dexYdBQAAAAAAAAAAAACgTSmhBgAAAAAAAAAAAADa1KRZk3LGPWekfmV90VHSvVP3PHrqowqoAQAAAAAAAAAAAIBNghJqAAAAAAAAAAAAAKDNTK2dmmG/Hpb6huILqLvVdMu4L47LLj13KToKAAAAAAAAAAAAAMAGoYQaAAAAAAAAAAAAAGgTU2un5rhfHZfFKxYXHSVdqrvk3tPuVUANAAAAAAAAAAAAAGxSlFADAAAAAAAAAAAAAK1uRu2MDLllSBYtX1R0lHSu6pzbT7o9e/fcu+goAAAAAAAAAAAAAAAblBJqAAAAAAAAAAAAAKBVzaidkcG3Ds7CZQuLjpJOlZ1yx9A7MqD3gKKjAAAAAAAAAAAAAABscEqoAQAAAAAAAAAAAIBWU1tXmyNuOyLz6+cXHSWdKjpl7IljFVADAAAAAAAAAAAAAJssJdQAAAAAAAAAAAAAQKuoravNwT8/OPOWzis6SqorqjPq+FEZvMvgoqMAAAAAAAAAAAAAABRGCTUAAAAAAAAAAAAAsN7q6upy2OjDMnfx3KKjpKpUlRuPuTFD+gwpOgoAAAAAAAAAAAAAQKGUUAMAAAAAAAAAAAAA66Wuri79RvfLnEVzio6SqlJVvnfk93JK31OKjgIAAAAAAAAAAAAAUDgl1AAAAAAAAAAAAABAi9XV1WXAzQNSu6i26CipLFXmmsOvyVn7nFV0FAAAAAAAAAAAAACAdkEJNQAAAAAAAAAAAADQYoeMOSSzF8wuOkYqUpERh47IBf0uKDoKAAAAAAAAAAAAAEC7oYQaAAAAAAAAAAAAAGiR/Ubul9fmv1Z0jFSkIt84+Bu56KCLio4CAAAAAAAAAAAAANCuKKEGAAAAAAAAAAAAANbZZ372mbz6watFx0iSXNL/klx68KVFxwAAAAAAAAAAAAAAaHeUUAMAAAAAAAAAAAAA62Tg6IGZ9tdpRcdIkly474W5fODlRccAAAAAAAAAAAAAAGiXlFADAAAAAAAAAAAAAM02+BeD84d3/1B0jCTJuXufm2uPvLboGAAAAAAAAAAAAAAA7ZYSagAAAAAAAAAAAACgWY771XF5rva5omMkSc7c88xcf/T1RccAAAAAAAAAAAAAAGjXlFADAAAAAAAAAAAAAGt18q0nZ9Ibk4qOkSQ5afeTcsOxNxQdAwAAAAAAAAAAAACg3VNCDQAAAAAAAAAAAAB8pFPvODWPvf5Y0TGSJMfuemxuOvGmomMAAAAAAAAAAAAAAHQISqgBAAAAAAAAAAAAgA91xq/PyMOvPlx0jCTJoE8OytihY4uOAQAAAAAAAAAAAADQYSihBgAAAAAAAAAAAADW6MLfXpgH/vJA0TGSJIf1Oix3ffGuomMAAAAAAAAAAAAAAHQoSqgBAAAAAAAAAAAAgCYufuDi3DHtjqJjJEkO/PiB+c1pvyk6BgAAAAAAAAAAAABAh6OEGgAAAAAAAAAAAABo5LJHLsuYF8cUHSNJstd2e+Whsx8qOgYAAAAAAAAAAAAAQIekhBoAAAAAAAAAAAAAWO2Kx67IyOdHFh0jSdJ3m74Zf+74omMAAAAAAAAAAAAAAHRYSqgBAAAAAAAAAAAAgCTJNeOvyY3P3lh0jCTJbj12y4TzJhQdAwAAAAAAAAAAAACgQ1NCDQAAAAAAAAAAAADkuonX5frJ12dlVhYdJTt9bKc8/eWni44BAAAAAAAAAAAAANDhKaEGAAAAAAAAAAAAgE3cqGdH5dpJ17aLAupeW/TKE6c/UXQMAAAAAAAAAAAAAICNghJqAAAAAAAAAAAAANiE3fzCzfmvx/8rDeWGoqPkE90+kUlnTUrXrl2LjgIAAAAAAAAAAAAAsFFQQg0AAAAAAAAAAAAAm6g7X7ozX3vka+2igHrbLttm8tmTFVADAAAAAAAAAAAAALQiJdQAAAAAAAAAAAAAsAm6d9q9Gf674VlRXlF0lPTo3CPPnfucAmoAAAAAAAAAAAAAgFamhBoAAAAAAAAAAAAANjH3Trs3F9x3QZavXF50lGy1+VaZ+KWJCqgBAAAAAAAAAAAAANqAEmoAAAAAAAAAAAAA2ISMmzEuF9x3QepX1hcdJVtutmUmnTcpPbv2LDoKAAAAAAAAAAAAAMBGSQk1AAAAAAAAAAAAAGwiJs2alDPuOaNdFFB379Q9j576qAJqAAAAAAAAAAAAAIA2pIQaAAAAAAAAAAAAADYBU2unZtivh6W+ofgC6m413TLui+OyS89dio4CAAAAAAAAAAAAALBRU0INAAAAAAAAAAAAABu5qbVTc9yvjsviFYuLjpLOVZ1z72n3KqAGAAAAAAAAAAAAANgAlFADAAAAAAAAAAAAwEZsRu2MDLllSBYtX1R0lHSu6pw7ht6RvXvuXXQUAAAAAAAAAAAAAIBNghJqAAAAAAAAAAAAANhIzaidkcG3Ds7CZQuLjpJOlZ3yy8//MgN6Dyg6CgAAAAAAAAAAAADAJkMJNQAAAAAAAAAAAABshGrranPU7Udlfv38oqOkU0WnjD1xbAbvMrjoKAAAAAAAAAAAAAAAmxQl1AAAAAAAAAAAAACwkamtq83BPz847y95v+goqa6ozqjjRymgBgAAAAAAAAAAAAAogBJqAAAAAAAAAAAAANiI1NXV5bDRh2Xu4rlFR0lVqSo3HnNjhvQZUnQUAAAAAAAAAAAAAIBNkhJqAAAAAAAAAAAAANhI1NXVpd/ofpmzaE7RUVJVqsr3jvxeTul7StFRAAAAAAAAAAAAAAA2WUqoAQAAAAAAAAAAAGAjUFdXlwE3D0jtotqio6SyVJlrDr8mZ+1zVtFRAAAAAAAAAAAAAAA2aUqoAQAAAAAAAAAAAGAjcMiYQzJ7weyiY6QiFRlx6Ihc0O+CoqMAAAAAAAAAAAAAAGzylFADAAAAAAAAAAAAQAd34E8PzGvzXys6RipSkW8c/I1cdNBFRUcBAAAAAAAAAAAAACBKqAEAAAAAAAAAAACgQ/vMzz6T6XOnFx0jSTK83/BcevClRccAAAAAAAAAAAAAAOD/UkINAAAAAAAAAAAAAB3UwNEDM+2v04qOkSS5cN8L861B3yo6BgAAAAAAAAAAAAAAf0cJNQAAAAAAAAAAAAB0QEf/8uj84d0/FB0jSXLu3ufm2iOvLToGAAAAAAAAAAAAAAD/QAk1AAAAAAAAAAAAAHQwx/3quDz9ztNFx0iSDOszLNcffX3RMQAAAAAAAAAAAAAAWAMl1AAAAAAAAAAAAADQgZx868mZ9MakomMkSU7a/aSMPGFk0TEAAAAAAAAAAAAAAPgQSqgBAAAAAAAAAAAAoIM49Y5T89jrjxUdI0ly7K7H5qYTbyo6BgAAAAAAAAAAAAAAH0EJNQAAAAAAAAAAAAB0AOfdc14efvXhomMkSQZ9clDGDh1bdAwAAAAAAAAAAAAAANZCCTUAAAAAAAAAAAAAtHMX/vbC3P3nu4uOkSQZsMOA3PXFu4qOAQAAAAAAAAAAAABAMyihBgAAAAAAAAAAAIB27JKHLskd0+4oOkaS5MCPH5j7T7+/6BgAAAAAAAAAAAAAADSTEmoAAAAAAAAAAAAAaKcue+SyjJ46uugYSZK9ttsrD539UNExAAAAAAAAAAAAAABYB0qoAQAAAAAAAAAAAKAduuKxKzLy+ZFFx0iS9Nm6T8afO77oGAAAAAAAAAAAAAAArCMl1AAAAAAAAAAAAADQzlwz/prc+OyNRcdIkuzWY7c8ef6TRccAAAAAAAAAAAAAAKAFlFADAAAAAAAAAAAAQDvyo6d+lOsnX5+VWVl0lOzYfcc8/eWni44BAAAAAAAAAAAAAEALKaEGAAAAAAAAAAAAgHZi1LOjctXvr2oXBdS9tuiVCWdOKDoGAAAAAAAAAAAAAADrQQk1AAAAAAAAAAAAALQDN79wc/7r8f9KQ7mh6Cj5RLdPZNJZk9K1a9eiowAAAAAAAAAAAAAAsB6UUAMAAAAAAAAAAABAwe586c587ZGvtYsC6m27bJvJZ09WQA0AAAAAAAAAAAAAsBFQQg0AAAAAAAAAAAAABbp32r0Z/rvhWVFeUXSU9OjcI0+c+4QCagAAAAAAAAAAAACAjYQSagAAAAAAAAAAAAAoyL3T7s0F912Q5SuXFx0lW22+VSZ+aWJ6du1ZdBQAAAAAAAAAAAAAAFqJEmoAAAAAAAAAAAAAKMC4GeNywf0XpH5lfdFRsuVmW2bSeZMUUAMAAAAAAAAAAAAAbGSUUAMAAAAAAAAAAADABjZp1qSccc8ZqW8ovoC6W023PHrqowqoAQAAAAAAAAAAAAA2QkqoAQAAAAAAAAAAAGADmlo7NcN+PaxdFFB3qe6Se0+7N7v03KXoKAAAAAAAAAAAAAAAtAEl1AAAAAAAAAAAAACwgUytnZrjfnVcFq9YXHSUdK7qnPtPvz9799y76CgAAAAAAAAAAAAAALQRJdQAAAAAAAAAAAAAsAHMqJ2Rz9/6+SxavqjoKOlU2Sl3DL1DATUAAAAAAAAAAAAAwEZOCTUAAAAAAAAAAAAAtLHautoccdsRmV8/v+go6VTRKWNPHJsBvQcUHQUAAAAAAAAAAAAAgDamhBoAAAAAAAAAAAAA2lBtXW0G3DQg85bOKzpKOlV0yqjjR2XwLoOLjgIAAAAAAAAAAAAAwAaghBoAAAAAAAAAAAAA2khtXW0O/vnBeX/J+0VHSXVFdUYdPypD+gwpOgoAAAAAAAAAAAAAABuIEmoAAAAAAAAAAAAAaAN1dXU5bPRhmbt4btFRUlWqyo3H3KiAGgAAAAAAAAAAAABgE1NVdAAAAAAAAAAAYOP23nvv5dlnn83MmTOzYMGCVFdXp0ePHtljjz2y//77p7q6uuiI7d7s2bPz4osv5rXXXsuCBQtSLpfTtWvXbL/99tl5552zxx57pFOnTkXHBADg79TV1aX/L/tnzqI5RUdJZaky3zvyezml7ylFRwEAAAAAAAAAAAAAYANTQg0AAAAAAAAAtIm77rorP/zhDzNp0qSUy+U13tOtW7cMGzYs//mf/5nddtttAydsqlwu5y9/+Uuee+65TJkyJVOmTMkLL7yQhQsXNrrv7LPPzi9+8Ys2zfLmm29m1KhRufXWWzNjxoyPvLempiZ77713jjzyyJx00knZZ5992jQbAAAfra6uLgNuHpC3Fr5VdJRUlirzncO/k7P2OavoKAAAAAAAAAAAAAAAFEAJNQAAAAAAAADQqt56662cfvrpeeKJJ9Z678KFC3PTTTdlzJgx+eY3v5lvfvObKZVKGyDl/3P33Xdn8uTJmTJlSp5//vnMnz9/gz7/Hy1dujRXXnllfvjDH2bp0qXNOrNs2bI888wzeeaZZ/LUU09l3LhxbZwSAICPctivDsvsBbOLjpGKVOSyAZflgn4XFB0FAAAAAAAAAAAAAICCKKEGAAAAAAAAAFrN9OnTM3DgwLzzzjvrdG7ZsmW54oorMm3atIwZMyaVlZVtlLCpL33pS4UXT68ya9asHH/88Xn55ZeLjgIAQAsd+NMD8+oHrxYdIxWpyCX9L8mlB19adBQAAAAAAAAAAAAAAAqkhBoAAAAAAAAAaBVz587NEUccscYC6v322y8nnHBCevfunSVLlmT69Om55ZZb8vbbbze679Zbb822226bH/zgBxsodfvx5z//OYcddljefffdJte22267HHPMMenTp0+23XbbdO7cOfPmzcsbb7yRP/7xj5k0aVL++te/FpAaAIC/d8hNh2T63OlFx0iSDO83PJcPvLzoGAAAAAAAAAAAAAAAFEwJNQAAAAAAAADQKi644ILMnj270axbt24ZO3ZshgwZ0uT+73znO/nOd76TK6+8stH8hz/8YY466qh87nOfa8u4a9WjR4/st99++djHPpbbb7+9TZ81Z86cHHnkkU0KqHfdddd873vfy3HHHZdSqfSh51euXJlnnnkmY8aMSW1tbZtmBQBgzQaOHpiX3nup6BhJkgv3vTDfGvStomMAAAAAAAAAAAAAANAOKKEGAAAAAAAAANbbo48+mrvvvrvRrKamJo8//nj233//NZ6prq7OiBEjsuWWW+bf//3fG127+OKLM23atFRVbZgfbejevXv23Xff7L///unXr1/233//9O7dO0kyfvz4Ni2hLpfLOfPMM5sUeA8bNixjxoxJTU3NWndUVFSkf//+6d+/f8rlcltFBQDgQxz9y6Pzh3f/UHSMJMmZe56Za4+8tugYAAAAAAAAAAAAAAC0E0qoAQAAAAAAAID1dvXVVzeZjRgx4kMLqP/eV7/61TzwwAN59NFHV89mzJiRW265JWeddVar5lyTF154ITvuuGNKpVKbP2tNxowZk0ceeaTR7MQTT8wtt9ySysrKdd5X1PsAANhUff6Wz+fpd54uOkaSZFifYbnh2BuKjgEAAAAAAAAAAAAAQDtSUXQAAAAAAAAAAKBje/nllzNhwoRGs6233jqXXnpps3d897vfbTL7yU9+st7ZmqN3796FFTfX19fnG9/4RqNZjx49MmrUqBYVUAMAsGGdfOvJeWL2E0XHSJKctPtJGXnCyKJjAAAAAAAAAAAAAADQziihBgAAAAAAAADWy2233dZkdu6556ampqbZO/bbb7/st99+jWaTJ0/OrFmz1jtfezZ27Ni8/fbbjWZXXHFFtt5664ISAQDQXGf8+ow89vpjRcdIkhy101G56cSbio4BAAAAAAAAAAAAAEA7pIQaAAAAAAAAAFgvDz30UJPZySefvM571nRmTbs3Jj/72c8ava6pqckZZ5xRUBoAAJrrvHvOywN/eaDoGEmSQZ8clNuGNf1gGAAAAAAAAAAAAAAASJRQAwAAAAAAAADrYdGiRXn++ecbzTp37px99913nXcdcsghTWYTJkxocbb27o033sjkyZMbzY488shstdVWBSUCAKA5Ln7g4tz957uLjpEkGbDDgNz1xbuKjgEAAAAAAAAAAAAAQDumhBoAAAAAAAAAaLGpU6dm5cqVjWb7779/qqqq1nlXv379Ul1d3Wj23HPPrVe+9mzcuHFNZv379y8gCQAAzXXJQ5dkzItjio6RJNmv5365//T7i44BAAAAAAAAAAAAAEA7p4QaAAAAAAAAAGixP/3pT01mu+yyS4t21dTU5J/+6Z8azWbOnJkVK1a0aF97N2nSpCazvffee/XX5XI5Dz/8cM4777z07ds33bp1S01NTXr27Jk999wzZ555Zm6++ebMnTt3A6YGANh0XfbIZRk9dXTRMZIke223V8ad0/RDTQAAAAAAAAAAAAAA4B9VFR0AAAAAAAAAAOi4XnvttSazT37yky3e16tXr8yaNWv164aGhsyePTs77bRTi3e2Vy+++GKT2a677pokeemll3L22Wfn+eefb3LPu+++m3fffTcvvfRSxo4dm65du+arX/1qvv71r6d79+5tnhsAYFN0zfhrMvL5kUXHSJL02bpPxp87vugYAAAAAAAAAAAAAAB0EEqoAQAAAAAAAIAWq62tbTLbYYcdWrxvTWfffffdjbKE+tVXX20y6969e37+85/n3/7t31JfX9+sPXV1dbnmmmty55135r777stuu+3W2lHXy4033pj//u//bvPnzJw5s82fAQBsmq6beF2un3x90TGSJLv12C1Pnv9k0TEAAAAAAAAAAAAAAOhAlFADAAAAAAAAAC32/vvvN5l17dq1xfvWdHbu3Lkt3tdeLV++fI3v6/HHH8+Xv/zlrFy5stG8W7du6dmzZxoaGvLOO+9kyZIlTc5Onz49/fv3z5NPPpl//ud/brPs6+q9997LK6+8UnQMAIAW+dFTP8p3J343K7Ny7Te3sR2775inv/x00TEAAAAAAAAAAAAAAOhgKooOAAAAAAAAAAB0XIsWLWoy23zzzVu8b01nFy9e3OJ97dW8efNSLpebzM8777zVBdSlUilnnnlmnn766cyfPz/Tp0/PzJkzs2DBgjz++OM56qijmpz/4IMPMnTo0DX+dwEAYN2MenZUrvr9Ve2igLrXFr0y4cwJRccAAAAAAAAAAAAAAKADUkINAAAAAAAAALTY8uXLm8w222yzFu9bUwn1smXLWryvvaqvr1/jfMmSJUn+9j285557cvPNN+eAAw5IqVRafU9VVVU++9nP5qGHHsoNN9zQ6FqSvPLKK7n66qvbLjwAwCbg5hduzuWPX56GckPRUdKzS89MOmtSunbtWnQUAAAAAAAAAAAAAAA6ICXUAAAAAAAAAECr+sdS5PU9Wy6X1ydOu7S29zRy5MiccMIJa91z0UUX5fLLL28y/8lPfpJ58+a1NB4AwCbtzpfuzNce+VpWlFcUHSXbdtk2z577rAJqAAAAAAAAAAAAAABaTAk1AAAAAAAAANBi1dXVTWZLlixp8b41na2pqWnxvvZqTd+3VQYOHJizzjqr2buuuOKK9O7du9FswYIFue2221qcDwBgU3XvtHsz/HfD20UBdY/OPfLEuU8ooAYAAAAAAAAAAAAAYL1UFR0AAAAAAAAAAOi4Onfu3GTW2iXUXbp0afG+9uqj3tNFF120Truqq6tz4YUX5rLLLms0Hz9+fP7lX/6lRfla0zbbbJM99tijzZ8zc+bM1NfXt/lzAICN17gZ43LBfRdk+crlRUfJlpttmYlfmpieXXsWHQUAAAAAAAAAAAAAgA5OCTUAAAAAAAAA0GI9evRoMqurq2vxvjWdXdMzOrpu3bqlpqYmy5YtazSvqKjI4MGD13nfkUce2aSEeuLEieuVsbUMHz48w4cPb/PnfOpTn8orr7zS5s8BADZO42aMyxn3nJH6lcV/qEX3Tt3z6KmPKqAGAAAAAAAAAAAAAKBVVBQdAAAAAAAAAADouLbbbrsmszfffLPF+954441mPWNj0LNn01LBnXbaKVtsscU67/r0pz+dysrKRrPa2tqUy+UW5wMA2FRMmjUpZ//m7NQ3FF9A3a2mW8Z9cVx26blL0VEAAAAAAAAAAAAAANhIKKEGAAAAAAAAAFqsd+/eTWavv/56i/fNnj270evKysr06tWrxfvas5122qnJrEePHi3aVVlZme7duzeaNTQ0ZN68eS3aBwCwqZhaOzVfuPsLWbxicdFR0qW6S+497V4F1AAAAAAAAAAAAAAAtCol1AAAAAAAAABAi+2+++5NZjNmzGjRrmXLluWNN95oNNt5551TVVXVon3tXZ8+fZrMOnXq1OJ9m222WZPZ0qVLW7wPAGBjN6N2RobcMiSLli8qOko6V3XO/affn7177l10FAAAAAAAAAAAAAAANjJKqAEAAAAAAACAFttnn31SUdH4xw+mTJmSFStWrPOuKVOmZPny5Y1m++6773rla8/69evXZDZ//vwW75s3b16TWY8ePVq8DwBgYzajdkYG3zo4C5ctLDpKOlV2yh1D71BADQAAAAAAAAAAAABAm1BCDQAAAAAAAAC0WJcuXbLPPvs0mi1atCgvvPDCOu+aOHFik9mhhx7a4mzt3cCBA5vMXn/99ZTL5XXe9d5772Xx4sWNZltssUVqampaGg8AYKNVW1ebI247IvPrW/4BIK2lU0WnjD1xbAb0HlB0FAAAAAAAAAAAAAAANlJKqAEAAAAAAACA9XL00Uc3md11113rvGdNZ9a0e2PRu3fv9OnTp9Fs3rx5eeWVV9Z515NPPtlk9o/l4AAA/K2AesBNAzJv6byio6S6ojqjjh+VwbsMLjoKAAAAAAAAAAAAAAAbMSXUAAAAAAAAAMB6OfXUU5vMRo8enWXLljV7xwsvvJBnn3220ezAAw9M79691ztfe3bGGWc0mY0ZM2ad99x8881NZoMGDWpRJgCAjVVdXV0O/vnBeX/J+0VHSXVFdW485sYM6TOk6CgAAAAAAAAAAAAAAGzklFADAAAAAAAAAOulb9++OfjggxvN3nvvvXz/+99v9o5vfOMbTWb/+q//ut7Z2rvzzjsvm2++eaPZyJEj8/bbbzd7x/PPP5/f/va3jWalUilDhw5tlYwAABuDurq69BvdL3MXzy06SqpKVbnuiOtySt9Tio4CAAAAAAAAAAAAAMAmQAk1AAAAAAAAALDevvnNbzaZjRgxIs8///xaz/74xz/Oww8/3Gi200475bTTTmvWs3fccceUSqVGv8aPH9+ss0XbbrvtMnz48EazefPm5fTTT8+SJUvWen7OnDk5/fTT09DQ0Gg+dOjQ7LHHHq2aFQCgo6qrq0v/X/ZP7aLaoqOkslSZaw6/Jmftc1bRUQAAAAAAAAAAAAAA2EQooQYAAAAAAAAA1ttRRx2VE044odGsvr4+n/3sZ3Pfffet8czy5ctz9dVX56KLLmpy7YYbbkh1dXWbZG1vRowYkV69ejWajR8/PoMGDcqf/vSnDz335JNP5pBDDmlyT9euXfPtb3+7TbICAHQ0dXV1GXDzgLy18K2io6SyVJkRh47IBf0uKDoKAAAAAAAAAAAAAACbkKqiAwAAAAAAAAAAG4ef/vSnee655/Lmm2+uni1YsCBDhgzJ/vvvnxNOOCG9e/fOkiVL8pe//CW/+tWv8tZbTcsAv/KVr+TYY4/dYLmnTJmS888//0Ov19XVNZnde++92XvvvT/0zP7775+f/exnzXp+165dc+edd+bQQw9NfX396vlTTz2VPffcM0cccUQGDRqU7bffPg0NDZk9e3YeeuihTJgwYY37fvGLX2T33Xdv1rMBADZ2h/3qsMxeMLvoGKlIRS4bcFkuOqjpB7AAAAAAAAAAAAAAAEBbUkINAAAAAAAAALSKbbbZJo888kgOP/zw1NbWNro2ZcqUTJkyZa07hg0blh/84AdtlHDN6urq8oc//GGdznzwwQf54IMPPvT6lltuuU77DjjggPzmN7/JSSedlCVLlqyer1ixIg8++GAefPDBte6oqanJjTfemKFDh67TswEANlYH/vTAvPrBq0XHSEUqckn/S3LpwZcWHQUAAAAAAAAAAAAAgE1QRdEBAAAAAAAAAICNR58+ffLMM8/k4IMPXqdz1dXVGTFiRG699dZUVla2Ubr27eijj85TTz2Vvn37rvPZXXfdNY8//njOP//8NkgGANDxHHLTIZk+d3rRMZIkw/sNz+UDLy86BgAAAAAAAAAAAAAAmygl1AAAAAAAAABAq9phhx3y+9//Prfffns+85nPpFQqfei9Xbt2zbnnnps//vGPufLKK1NRsWn/KMNee+2VqVOnZvTo0TnggAM+8ntXWVmZgw46KL/4xS8ybdq0DBgwYAMmBQBovwb/YnBeeu+lomMkSS7c98J8a9C3io4BAAAAAAAAAAAAAMAmrKroAAAAAAAAAADAxqdUKmXYsGEZNmxY5syZk2eeeSavvvpqFixYkKqqqmy99dbp06dP+vXrl5qamvV61muvvbZe5wcOHJhyubxeO1pTZWVlzjnnnJxzzjl59913M2XKlNXfu5qammy99dbZfvvtc9BBB2WLLbYoOi4AQLty9C+PznO1zxUdI0ly5p5n5tojry06BgAAAAAAAAAAAAAAmzgl1AAAAAAAAABAm9p2221z3HHHFR2jQ9puu+1y7LHHFh0DAKBD+Pwtn8/T7zxddIwkybA+w3LDsTcUHQMAAAAAAAAAAAAAAFJRdAAAAAAAAAAAAAAAWB8n33pynpj9RNExkiTH7npsRp4wsugYAAAAAAAAAAAAAACQRAk1AAAAAAAAAAAAAB3YGb8+I4+9/ljRMZIkR+10VMYOHVt0DAAAAAAAAAAAAAAAWE0JNQAAAAAAAAAAAAAd0nn3nJcH/vJA0TGSJIf1Oiy3Dbut6BgAAAAAAAAAAAAAANCIEmoAAAAAAAAAAAAAOpyLH7g4d//57qJjJEkG7DAgvzntN0XHAAAAAAAAAAAAAACAJpRQAwAAAAAAAAAAANChXPLQJRnz4piiYyRJ9uu5X+4//f6iYwAAAAAAAAAAAAAAwBopoQYAAAAAAAAAAACgw7jskcsyeuroomMkSfpu0zfjzhlXdAwAAAAAAAAAAAAAAPhQSqgBAAAAAAAAAAAA6BCuGX9Nfvr8T4uOkSTps3WfTDhvQtExAAAAAAAAAAAAAADgIymhBgAAAAAAAAAAAKDdu27idbl+8vVZmZVFR8lOH9spT57/ZNExAAAAAAAAAAAAAABgrZRQAwAAAAAAAAAAANCu/eipH+XaSde2iwLqHbvvmOcufK7oGAAAAAAAAAAAAAAA0CxKqAEAAAAAAAAAAABot0Y9OypX/f6qNJQbio6ST3T7RCacOaHoGAAAAAAAAAAAAAAA0GxKqAEAAAAAAAAAAABol25+4eZc/vjl7aKAumeXnpl89uR07dq16CgAAAAAAAAAAAAAANBsSqgBAAAAAAAAAAAAaHfufOnOfO2Rr2VFeUXRUbJtl23z7LnPKqAGAAAAAAAAAAAAAKDDUUINAAAAAAAAAAAAQLty77R7M/x3w9tFAfVWm2+VJ859QgE1AAAAAAAAAAAAAAAdkhJqAAAAAAAAAAAAANqNcTPG5YL7LsjylcuLjpItN9syk86blJ5dexYdBQAAAAAAAAAAAAAAWkQJNQAAAAAAAAAAAADtwqRZk3LGPWekfmV90VHSvVP3PHrqowqoAQAAAAAAAAAAAADo0JRQAwAAAAAAAAAAAFC4SbMmZdivh6W+ofgC6m413TLui+OyS89dio4CAAAAAAAAAAAAAADrRQk1AAAAAAAAAAAAAIWaWjs1X7j7C1m8YnHRUdKlukvuPe1eBdQAAAAAAAAAAAAAAGwUlFADAAAAAAAAAAAAUJgZtTMy5JYhWbR8UdFR0rmqc24/6fbs3XPvoqMAAAAAAAAAAAAAAECrUEINAAAAAAAAAAAAQCFm1M7I4FsHZ+GyhUVHSafKTrlj6B0Z0HtA0VEAAAAAAAAAAAAAAKDVKKEGAAAAAAAAAAAAYIOrravNEbcdkfn184uOkk4VnTL2xLEKqAEAAAAAAAAAAAAA2OgooQYAAAAAAAAAAABgg6qtq82AmwZk3tJ5RUdJdUV1Rh0/KoN3GVx0FAAAAAAAAAAAAAAAaHVKqAEAAAAAAAAAAADYYOrq6nLY6MPy/pL3i46S6orq3HjMjRnSZ0jRUQAAAAAAAAAAAAAAoE0ooQYAAAAAAAAAAABgg6irq0u/0f0yZ9GcoqOkqlSV6464Lqf0PaXoKAAAAAAAAAAAAAAA0GaUUAMAAAAAAAAAAADQ5urq6tL/l/1Tu6i26CipLFXmmsOvyVn7nFV0FAAAAAAAAID/n707je6yvtMGfiUQQAKCoojtiIBUD4qtCByt4FLFSl2wi1LqTmlx+qB2BpmOjh0RHZXOKG6lPaKWqeJutaJ2XNBqIQ4WULooUwRB3FIobiQga54X84xPM6EVst0BPp9z8uL/ve/f93eFk5fJBQAAAAA0KSXUAAAAAAAAAAAAADS5w+84PG+teqvoGGlV0irjjxif0QNHFx0FAAAAAAAAAAAAAACanBJqAAAAAAAAAAAAAJpU/5v7Z+kHS4uOkdKU5qJBF+X8z59fdBQAAAAAAAAAAAAAAGgWSqgBAAAAAAAAAAAAaDKH3XpYXnvvtaJjpDSlGXvo2IwbPK7oKAAAAAAAAAAAAAAA0GyUUAMAAAAAAAAAAADQJA6/7fAs+NOComMkScYMHJNLjrqk6BgAAAAAAAAAAAAAANCslFADAAAAAAAAAAAA0OiG/PuQ/H7F74uOkSQZedDIXH7M5UXHAAAAAAAAAAAAAACAZqeEGgAAAAAAAAAAAIBGdeKdJ2Ze5byiYyRJzjzwzEwaOqnoGAAAAAAAAAAAAAAAUAgl1AAAAAAAAAAAAAA0mi/f9eVUvFFRdIwkyfA+w3PjCTcWHQMAAAAAAAAAAAAAAArTuugA7BhWrFiROXPmZPHixfnwww9TVlaWLl26ZP/998+AAQNSVlZWdMRaKisrs2TJkrzxxhtZvnx5qqurs379+uy8887p1KlTevTokX79+mXnnXcuOioAAAAAAAAAAAC0GCPuG5Hnlj1XdIwkyQmfOSE3n3xz0TEAAAAAAAAAAAAAAKBQSqhpUg888EBuuOGGVFRUpKamZrPvdOzYMcOHD8/3vve97Lvvvs2cMHn//fcza9asVFRU5IUXXsjvfve7/OlPf/rEcyUlJTnwwANz1lln5cwzz0zXrl2bIW3yk5/8JKNGjdrssyVLlqRHjx7NkgMAAAAAAAAAAAD+3Bk/OyNPvPZE0TGSJMf1Oi7Tvjat6BgAAAAAAAAAAAAAAFC40qIDsH166623ctRRR+XUU0/NrFmz/mIBdZKsWrUqt912Ww488MBcccUVf/XdpjBx4sScdNJJmThxYn75y19uUQF1ktTU1OS3v/1txo0bl3322SeTJk3Khg0bmjTrm2++mbFjxzbpHQAAAAAAAAAAALC1zn343Dz26mNFx0iSHNn9yNwz/J6iYwAAAAAAAAAAAAAAQIughJpGt3DhwgwcODDPPffcVp1bt25dLr300px++unZuHFjE6VrGlVVVbnwwgtz4oknZs2aNU12z6hRo/LBBx802X4AAAAAAAAAAADYWhc8dkHuW3Bf0TGSJIfseUh+ftrPi44BAAAAAAAAAAAAAAAtRuuiA7B9WblyZY499ti88847dZ71798/J598cnr27Jk1a9Zk4cKFueuuu/L222/Xeu/uu+9O165dc/311zdT6trKy8tz8MEHZ7/99kvv3r2z++67p2PHjtm4cWM+/PDDLFy4MM8//3xmz56dmpqaWmefeOKJfOUrX8l//Md/pKSkpFFzTZkyJU8++WSj7gQAAAAAAAAAAICGGPv42NzxuzuKjpEk6d+tfx4/+/GiYwAAAAAAAAAAAAAAQIuihJpGNXr06CxbtqzWrGPHjpk2bVqGDRtW5/2rrroqV111VS677LJa8xtuuCHHHXdcvvSlLzVl3CRJ27Ztc/TRR+dLX/pSjjnmmHz2s59Nq1atPvHcokWLMnbs2DzyyCO15k888URuueWWjB49utEyvv766xk3btzHnzt16pRu3brlD3/4Q6PdAQAAAAAAAAAAAFvj0qcvzdT5U4uOkSTpu3vfzDhnRtExAAAAAAAAAAAAAACgxSktOgDbj6eeeioPPvhgrVmbNm3yzDPPbLaAOknKysoyfvz4XH/99XWeXXDBBdmwYUNTRK1lwoQJefrppzNu3Lj069dviwqok6R37955+OGH853vfKfOs4kTJzZavpqamowaNSqrVq36eHbttdemW7dujXYHAAAAAAAAAAAAbI0rn70yk+dMLjpGkqTPbn0yc9TMomMAAAAAAAAAAAAAAECLpISaRnPFFVfUmY0fPz4DBgz4xLPf/e53c+yxx9aaLVq0KHfddVej5WsKJSUlue6667L33nvXmi9ZsiRz585tlDt+/OMf5+mnn/7485AhQzJq1KhG2Q0AAAAAAAAAAABb65pZ12TS7EnZlE1FR0mvXXrl+W89X3QMAAAAAAAAAAAAAABosZRQ0yhefvnlzJw5s9Zst912y7hx47Z4x9VXX11n9uMf/7jB2Zpa27Ztc8opp9SZv/LKKw3evWTJknzve9/7+HN5eXluueWWBu8FAAAAAAAAAACA+rjpP2/KxIqJLaKAukenHnnu9OeKjgEAAAAAAAAAAAAAAC2aEmoaxT333FNnNnLkyLRp02aLd/Tv3z/9+/evNZs9e3aWLFnS4HxNbZ999qkze+eddxq0s6amJiNHjkx1dfXHs6uvvjo9evRo0F4AAAAAAAAAAACojylzpmTCryZkY83GoqPk0x0/nZlnzkyHDh2KjgIAAAAAAAAAAAAAAC2aEmoaxeOPP15ndsopp2z1ns2d2dzuluajjz6qM9uaAu7Nuemmm/Lcc899/Hnw4ME577zzGrQTAAAAAAAAAAAA6uP2l27PJc9c0iIKqLuVd8vss2croAYAAAAAAAAAAAAAgC2ghJoGq66uzosvvlhr1r59+xx88MFbvevwww+vM5s5c2a9szWXOXPm1Jnts88+9d63ePHiXHzxxR9/bteuXW677baUlJTUeycAAAAAAAAAAADUx/2/vz/jnhqXDTUbio6SLu27ZM7IOQqoAQAAAAAAAAAAAABgCymhpsHmz5+fTZs21ZoNGDAgrVu33updAwcOTFlZWa3ZvHnzGpSvqb366qt56KGHas3atWuXI444ol77Nm3alJEjR2b16tUfzyZMmJB99923QTkBAAAAAAAAAABga01fMD1jfjEm6zetLzpKdt1p18z65iwF1AAAAAAAAAAAAAAAsBWUUNNg//Vf/1Vn1rt373rtatOmTf7mb/6m1mzx4sXZsGFDvfY1tddeey0nnXRSPvroo1rzkSNHpnPnzvXaecMNN2TmzJkffx4wYEAuvPDChsQEAAAAAAAAAACArTZj0YyMfmR0iyig7tyucypGVaRbh25FRwEAAAAAAAAAAAAAgG2KEmoabOnSpXVme++9d733de/evdbnjRs3ZtmyZfXe19jWrl2b2bNn5+/+7u9ywAEH5A9/+EOt5z179szVV19dr90LFy7MJZdc8vHnsrKy/OQnP0mrVq0alBkAAAAAAAAAAAC2RsWSipzx0BlZu2lt0VHSqW2nPDXiKQXUAAAAAAAAAAAAAABQD62LDsC2r7Kyss5sr732qve+zZ394x//mF69etV759aaMWNGxo0bV2u2YcOGrFq1Km+//XY2bNiw2XOf+cxn8uSTT6ZTp05bfeemTZtyzjnnZM2aNR/PLrnkkhx44IFbvaulmTx5cn70ox81+T2LFy9u8jsAAAAAAAAAAAC2d/Mr52f4z4Zn7cbiC6g7tumYGd+Ykd7dehcdBQAAAAAAAAAAAAAAtklKqGmwd999t86sQ4cO9d63ubMrV66s9776eP/99/Ob3/xmi98vLy/P3/7t32bChAkpLy+v153XXntt/vM///PjzwceeGD+6Z/+qV67WpoVK1bklVdeKToGAAAAAAAAAAAAn2B+5fyceOeJWb1hddFRUl5WnumnTVdADQAAAAAAAAAAAAAADaCEmgarrq6uM9tpp53qvW9zZ1evLv6PWTanpKQko0aNylVXXZXdd9+93nsWLFiQSy+99OPPrVq1yk9+8pOUlZU1RkwAAAAAAAAAAAD4RIsqF2XYXcNSvb7u7wU2t/at2+fer96bg7odVHQUAAAAAAAAAAAAAADYppUWHYBt3/r16+vM2rVrV+99myuhXrduXb33NaWamprceuut6du3byZMmJBVq1Zt9Y6NGzfmnHPOyUcfffTxbNy4cRkwYEBjRgUAAAAAAAAAAIC/aFHlogy5e0hWrdv634NrbG1btc19X7svg3oOKjoKAAAAAAAAAAAAAABs85RQ0yRKSkoa9WxNTU1D4my1U045JTU1NbW+qqur89Zbb2XGjBmZMGFCevbs+fH7y5cvz2WXXZbPfvazeeGFF7bqrn/913/Nr3/9648/77fffrnssssa61sBAAAAAAAAAACAv6qyqjLH3nNsPlj7QdFR0ra0baZ9ZZoCagAAAAAAAAAAAAAAaCRKqGmwsrKyOrM1a9bUe9/mzrZp06be+xpL+/bt86lPfSrHHHNMLr300ixevDg//OEPU15e/vE7S5cuzZAhQ/L8889v0c6XX365VuF0SUlJbrvttrRr166x4wMAAAAAAAAAAEAdlVWVGXTboLz/0ftFR0lZaVmmnDQlQ3oPKToKAAAAAAAAAAAAAABsN1oXHYBtX/v27evMGruE+s+LnluKkpKSjBkzJgceeGCGDh36ce6qqqp8/etfz29/+9vssssuf/H8hg0bcvbZZ2fdunUfz84777wMGjSoybM3t9133z37779/k9+zePHirF27tsnvAQAAAAAAAAAA2B5UVVXlyKlH5t017xYdJa1LWmfy8ZMzrM+woqMAAAAAAAAAAAAAAMB2RQk1DdalS5c6s6qqqnrv29zZzd3RUhxxxBG57LLL8o//+I8fz958881ce+21+Zd/+Ze/eG7ixImZN2/ex5979OiRq6++ukmzFmXMmDEZM2ZMk99zwAEH5JVXXmnyewAAAAAAAAAAALZ1VVVVGTh1YJZXLy86SlqXtM61X7w2p/Y9tegoAAAAAAAAAAAAAACw3SktOgDbvj322KPO7M0336z3vjfeeGOL7mhJvvvd76Zjx461ZlOmTElNTc1m33/zzTdzxRVX1JrdcsstKS8vb7KMAAAAAAAAAAAAkPx3AfWhPz00ldWVRUdJq5JWufLoK3NWv7OKjgIAAAAAAAAAAAAAANul1kUHYNvXs2fPOrPXX3+93vuWLVtW63OrVq3SvXv3eu9rDm3bts3RRx+dhx9++OPZihUr8sorr+SAAw6o8/6f/vSnrFu37uPPbdq0ybhx47bqzkWLFtWZHX/88WnTpk2t2eWXX55hw4Zt1W4AAAAA7LzIBgABAABJREFUAAAAAAC2X4ffcXjeWvVW0TFSmtKMP2J8Rg8cXXQUAAAAAAAAAAAAAADYbimhpsH222+/OrPNFSRviXXr1uWNN96oNdtnn33SunXL/1Ht0aNHndlrr7222RLq/23dunX5zW9+0+AMCxYsqDN79913G7wXAAAAAAAAAACA7UP/m/tn6QdLi46R0pTm4sEX5/zPn190FAAAAAAAAAAAAAAA2K6VFh2AbV+/fv1SWlr7R2nu3LnZsGHDVu+aO3du1q9fX2t28MEHNyhfc2nXrl2d2apVqwpIAgAAAAAAAAAAAHUdduthee2914qOkSQZe+jYjBs8rugYAAAAAAAAAAAAAACw3VNCTYOVl5enX79+tWbV1dV56aWXtnrXrFmz6syOOOKIemdrTsuXL68z22233QpIAgAAAAAAAAAAALUdftvhWfCnBUXHSJKce/C5ueSoS4qOAQAAAAAAAAAAAAAAOwQl1DSKoUOH1pk98MADW71nc2c2t7slmj17dp1Zt27dNvvuQQcdlJqamgZ9HXnkkXX2LlmypM5755xzTmN/qwAAAAAAAAAAAGxDhvz7kPx+xe+LjpEkGXnQyEz84sSiYwAAAAAAAAAAAAAAwA5DCTWNYsSIEXVmU6dOzbp167Z4x0svvZQ5c+bUmh1yyCHp2bNng/M1tfnz52fBggW1Zp07d06fPn0KSgQAAAAAAAAAAADJiXeemHmV84qOkSQ588AzM2nopKJjAAAAAAAAAAAAAADADkUJNY2ib9++GTx4cK3ZihUrct11123xjosvvrjO7Dvf+U6DszW1jRs35oILLqgzP+GEE1JWVlZAIgAAAAAAAAAAAEi+fNeXU/FGRdExkiRf3e+rufGEG4uOAQAAAAAAAAAAAAAAOxwl1DSa73//+3Vm48ePz4svvviJZ3/4wx/miSeeqDXr1atXTjvttC26u0ePHikpKan19eyzz37iuZtuuilPPfXUFt2xOWvXrs3pp5+emTNn1pqXlJTkvPPOq/deAAAAAAAAAAAAaIgR943Ic8ueKzpGkuSEz5yQ275yW9ExAAAAAAAAAAAAAABgh6SEmkZz3HHH5eSTT641W7t2bb7whS/kkUce2eyZ9evX54orrsj5559f59mNN96YsrKyJsn6P+bNm5cvfvGL+fznP58f/ehH+eMf/7hF59avX58HH3wwBx54YO699946z7/97W/n0EMPbey4AAAAAAAAAAAA8InO+NkZeeK1J4qOkSQ5Zu9jMu1r04qOAQAAAAAAAAAAAAAAO6zWRQdg+3LLLbdk3rx5efPNNz+effjhhxk2bFgGDBiQk08+OT179syaNWvy6quv5s4778xbb71VZ895552XE044odlyz549O7Nnz87555+fPn36pF+/ftl///2z6667pnPnzikpKcmHH36Yt99+O/Pnz8+vfvWrrFy5crO7vvCFL2TSpEnNlh0AAAAAAAAAAAD+x7kPn5vHXn2s6BhJkiO7H5kHvvFA0TEAAAAAAAAAAAAAAGCHpoSaRrX77rvnySefzNFHH53Kyspaz+bOnZu5c+d+4o7hw4fn+uuvb6KEf92mTZvy8ssv5+WXX67X+S9/+cu56667stNOOzVyMgAAAAAAAAAAAPjrLnjsgty34L6iYyRJDtnzkPz8tJ8XHQMAAAAAAAAAAAAAAHZ4pUUHYPvTp0+f/PrXv87gwYO36lxZWVnGjx+fu+++O61atWqidLWVl5c3yp699torDzzwQB566CEF1AAAAAAAAAAAADS7i568KHf87o6iYyRJ+nfrn8fPfrzoGAAAAAAAAAAAAAAAQJRQ00T22muv/OpXv8q9996bww47LCUlJX/x3Q4dOmTkyJH57W9/m8suuyylpc33Yzl58uS8/PLLueaaa3LSSSelW7duW3x2jz32yIgRI/KLX/wiS5Ysyde+9rUmTAoAAAAAAAAAAACbd+nTl+bmF28uOkaSpO/ufTPjnBlFxwAAAAAAAAAAAAAAAP6f1kUHYPtVUlKS4cOHZ/jw4Vm+fHl+/etf57XXXsuHH36Y1q1bZ7fddkufPn0ycODAtGnTpkF3LV26tN5n999//+y///658MILkyTvvPNOFi9enKVLl+bdd99NdXV1ampq0rFjx3Tq1Cldu3bN5z73uey5554NytxQzz77bKH3AwAAAAAAAAAAULwrn70yk+dMLjpGkmTfLvtm5qiZRccAAAAAAAAAAAAAAAD+jBJqmkXXrl1z4oknFh1ji+y5557Zc889M3jw4KKjAAAAAAAAAAAAwF90zaxrMmn2pGzKpqKjpNcuvfLCt18oOgYAAAAAAAAAAAAAAPC/lBYdAAAAAAAAAAAAAICtc9N/3pSJFRNbRAF1952757nTnys6BgAAAAAAAAAAAAAAsBlKqAEAAAAAAAAAAAC2IVPmTMmEX03IxpqNRUfJpzt+OhVnVaRDhw5FRwEAAAAAAAAAAAAAADZDCTUAAAAAAAAAAADANuL2l27PJc9c0iIKqLuVd8vss2croAYAAAAAAAAAAAAAgBZMCTUAAAAAAAAAAADANuD+39+fcU+Ny4aaDUVHSZf2XTJn5BwF1AAAAAAAAAAAAAAA0MIpoQYAAAAAAAAAAABo4aYvmJ4xvxiT9ZvWFx0lu+60a2Z9c5YCagAAAAAAAAAAAAAA2AYooQYAAAAAAAAAAABowWYsmpHRj4xuEQXUndt1TsWoinTr0K3oKAAAAAAAAAAAAAAAwBZQQg0AAAAAAAAAAADQQlUsqcgZD52RtZvWFh0lndp2ylMjnlJADQAAAAAAAAAAAAAA2xAl1AAAAAAAAAAAAAAt0PzK+Rn+s+FZu7H4AuqObTpmxjdmpHe33kVHAQAAAAAAAAAAAAAAtoISagAAAAAAAAAAAIAWZn7l/Jx454lZvWF10VFSXlae6adNV0ANAAAAAAAAAAAAAADbICXUAAAAAAAAAAAAAC3IospFGXbXsFSvry46Stq3bp97v3pvDup2UNFRAAAAAAAAAAAAAACAelBCDQAAAAAAAAAAANBCLKpclCF3D8mqdauKjpK2rdrmp1/+aQb1HFR0FAAAAAAAAAAAAAAAoJ6UUAMAAAAAAAAAAAC0AJVVlTn2nmPzwdoPio6StqVtM+0r0zKk95CiowAAAAAAAAAAAAAAAA2ghBoAAAAAAAAAAACgYJVVlRn8k8F5/6P3i46SstKyTDlpigJqAAAAAAAAAAAAAADYDiihBgAAAAAAAAAAAChQVVVVjpx6ZFauXll0lLQuaZ3Jx0/OsD7Dio4CAAAAAAAAAAAAAAA0AiXUAAAAAAAAAAAAAAWpqqrKwKkDs7x6edFR0rqkda794rU5te+pRUcBAAAAAAAAAAAAAAAaiRJqAAAAAAAAAAAAgAJUVVVl0O2DUlldWXSUtCpplSuPvjJn9Tur6CgAAAAAAAAAAAAAAEAjUkINAAAAAAAAAAAAUIDD7zg8yz5cVnSMlKY0448Yn9EDRxcdBQAAAAAAAAAAAAAAaGRKqAEAAAAAAAAAAACa2SG3HJKlHywtOkZKU5qLB1+c8z9/ftFRAAAAAAAAAAAAAACAJqCEGgAAAAAAAAAAAKAZHXbrYVm4cmHRMZIkYwaOybjB44qOAQAAAAAAAAAAAAAANBEl1AAAAAAAAAAAAADN5KipR2XBnxYUHSNJcu7B5+byYy4vOgYAAAAAAAAAAAAAANCElFADAAAAAAAAAAAANIOhPx2a3/zxN0XHSJKMPGhkJn5xYtExAAAAAAAAAAAAAACAJqaEGgAAAAAAAAAAAKCJnXjniXnhnReKjpEkOfPAMzNp6KSiYwAAAAAAAAAAAAAAAM1ACTUAAAAAAAAAAABAEzrl7lNS8UZF0TGSJF/d76u58YQbi44BAAAAAAAAAAAAAAA0EyXUAAAAAAAAAAAAAE1kxH0j8vTrTxcdI0lywmdOyG1fua3oGAAAAAAAAAAAAAAAQDNSQg0AAAAAAAAAAADQBEY9NCpPvPZE0TGSJMfsfUymfW1a0TEAAAAAAAAAAAAAAIBmpoQaAAAAAAAAAAAAoJGd+/C5efAPDxYdI0lyZPcj88A3Hig6BgAAAAAAAAAAAAAAUAAl1AAAAAAAAAAAAACNaOzjY3PfgvuKjpEkOWTPQ/Lz035edAwAAAAAAAAAAAAAAKAgSqgBAAAAAAAAAAAAGslFT16UqfOnFh0jSfK5PT6Xx89+vOgYAAAAAAAAAAAAAABAgZRQAwAAAAAAAAAAADSCS5++NDe/eHPRMZIkfXfvm2dHPlt0DAAAAAAAAAAAAAAAoGBKqAEAAAAAAAAAAAAa6Mpnr8zkOZOLjpEk2bfLvpk5ambRMQAAAAAAAAAAAAAAgBZACTUAAAAAAAAAAABAA1wz65pMmj0pm7Kp6Cjp0alHXvj2C0XHAAAAAAAAAAAAAAAAWggl1AAAAAAAAAAAAAD1NGXOlEysmNgiCqi779w9M8+cWXQMAAAAAAAAAAAAAACgBVFCDQAAAAAAAAAAAFAPt790e/7pmX/KxpqNRUfJpzt+OhVnVaRDhw5FRwEAAAAAAAAAAAAAAFoQJdQAAAAAAAAAAAAAW+n+39+fC5+8sEUUUHct75rZZ89WQA0AAAAAAAAAAAAAANShhBoAAAAAAAAAAABgK0xfMD1jfjEmG2o2FB0lXdp3yXMjn1NADQAAAAAAAAAAAAAAbJYSagAAAAAAAAAAAIAtNH3B9Ix+ZHTWb1pfdJTsutOumfXNWenWoVvRUQAAAAAAAAAAAAAAgBZKCTUAAAAAAAAAAADAFpixaEZGPzo6azetLTpKOrfrnIpRFQqoAQAAAAAAAAAAAACAv0oJNQAAAAAAAAAAAMAnqFhSkTMeOiNrNxZfQN2xTcc8NeIpBdQAAAAAAAAAAAAAAMAnUkINAAAAAAAAAAAA8FfMr5yf4T8b3iIKqMvLyjP9tOnp3a130VEAAAAAAAAAAAAAAIBtgBJqAAAAAAAAAAAAgL9gfuX8nHjniVm9YXXRUdK+dfs8evqjOajbQUVHAQAAAAAAAAAAAAAAthFKqAEAAAAAAAAAAAA2Y1Hlogy7a1iq11cXHSVtW7XNfV+7TwE1AAAAAAAAAAAAAACwVZRQAwAAAAAAAAAAAPwvlVWVOfaeY7Nq3aqio6Rtq7aZ9pVpGdRzUNFRAAAAAAAAAAAAAACAbYwSagAAAAAAAAAAAIA/U1lVmUG3Dcr7H71fdJS0Lf3vAuohvYcUHQUAAAAAAAAAAAAAANgGKaEGAAAAAAAAAAAA+H8qqyoz+CeD8+6ad4uOkrLSskw5aYoCagAAAAAAAAAAAAAAoN6UUAMAAAAAAAAAAAAkqaqqypFTj8zK1SuLjpLWJa0z+fjJGdZnWNFRAAAAAAAAAAAAAACAbZgSagAAAAAAAAAAAGCHV1VVlUN/emiWVy8vOkpalbTKtV+8Nqf2PbXoKAAAAAAAAAAAAAAAwDZOCTUAAAAAAAAAAACwQ6uqqsqg2wflrVVvFR0lrUpa5aqjr8pZ/c4qOgoAAAAAAAAAAAAAALAdUEINAAAAAAAAAAAA7NAOv+PwLPtwWdExUprSjD9ifEYPHF10FAAAAAAAAAAAAAAAYDuhhBoAAAAAAAAAAADYYR1yyyFZ+sHSomOkNKUZe+jYnP/584uOAgAAAAAAAAAAAAAAbEeUUAMAAAAAAAAAAAA7pMNuPSwLVy4sOkaSZMzAMbnkqEuKjgEAAAAAAAAAAAAAAGxnlFADAAAAAAAAAAAAO5yjph6VBX9aUHSMJMm5B5+by4+5vOgYAAAAAAAAAAAAAADAdkgJNQAAAAAAAAAAALBDGfrTofnNH39TdIwkyciDRmbiFycWHQMAAAAAAAAAAAAAANhOKaEGAAAAAAAAAAAAdhgn3nliXnjnhaJjJEmG9xmeSUMnFR0DAAAAAAAAAAAAAADYjimhBgAAAAAAAAAAAHYIp9x9SireqCg6RpLkq/t9NTeffHPRMQAAAAAAAAAAAAAAgO2cEmoAAAAAAAAAAABgu3fGz87I068/XXSMJMlxvY7LbV+5regYAAAAAAAAAAAAAADADkAJNQAAAAAAAAAAALBdG/XQqDz26mNFx0iSHLP3Mbln+D1FxwAAAAAAAAAAAAAAAHYQSqgBAAAAAAAAAACA7da5D5+bB//wYNExkiSD9hqUB77xQNExAAAAAAAAAAAAAACAHYgSagAAAAAAAAAAAGC7NPbxsblvwX1Fx0iSHLLnIXn09EeLjgEAAAAAAAAAAAAAAOxglFADAAAAAAAAAAAA252LnrwoU+dPLTpGkuRze3wuj5/9eNExAAAAAAAAAAAAAACAHZASagAAAAAAAAAAAGC7cunTl+bmF28uOkaSpM9uffLsyGeLjgEAAAAAAAAAAAAAAOyglFADAAAAAAAAAAAA241rZl2TyXMmFx0jSbJvl33z/LeeLzoGAAAAAAAAAAAAAACwA1NCDQAAAAAAAAAAAGwXbvrPm3L1rKuzKZuKjpIenXrkhW+/UHQMAAAAAAAAAAAAAABgB6eEGgAAAAAAAAAAANjmTZkzJRN+NaFFFFB337l7Zp45s+gYAAAAAAAAAAAAAAAASqgBAAAAAAAAAACAbdvtL92eS565JBtrNhYdJd3Ku6XirIp06NCh6CgAAAAAAAAAAAAAAABKqAEAAAAAAAAAAIBt1/2/vz8XPnlhNtRsKDpKupZ3zZyRcxRQAwAAAAAAAAAAAAAALYYSagAAAAAAAAAAAGCbNH3B9Iz5xZgWUUDdpX2XPDfyOQXUAAAAAAAAAAAAAABAi6KEGgAAAAAAAAAAANjmzFg0I6MfGZ31m9YXHSWd23XOrG/OSrcO3YqOAgAAAAAAAAAAAAAAUIsSagAAAAAAAAAAAGCbMmPRjJzx0BlZu2lt0VHSqW2nPDXiKQXUAAAAAAAAAAAAAABAi6SEGgAAAAAAAAAAANhmVCypyNk/PztrNxZfQN2xTcfM+MaM9O7Wu+goAAAAAAAAAAAAAAAAm6WEGgAAAAAAAAAAANgmzK+cn+E/G57VG1YXHSXlZeWZftp0BdQAAAAAAAAAAAAAAECLpoQaAAAAAAAAAAAAaPEWVS7KsLuGtYgC6vat2+fR0x/NQd0OKjoKAAAAAAAAAAAAAADAX6WEGgAAAAAAAAAAAGjRFlUuypC7h2TVulVFR0nbVm1z39fuU0ANAAAAAAAAAAAAAABsE5RQAwAAAAAAAAAAAC1WZVVljr3n2Hyw9oOio6RtadtM+8q0DOo5qOgoAAAAAAAAAAAAAAAAW0QJNQAAAAAAAAAAANAiVVZVZtBtg/L+R+8XHSVtS9tmyklTMqT3kKKjAAAAAAAAAAAAAAAAbDEl1AAAAAAAAAAAAECLU1VVlcE/GZx317xbdJSUlZblpuNvyrA+w4qOAgAAAAAAAAAAAAAAsFWUUAMAAAAAAAAAAAAtSlVVVfpP7Z+Vq1cWHSWtS1rnmmOvyal9Ty06CgAAAAAAAAAAAAAAwFZTQg0AAAAAAAAAAAC0GFVVVTn0p4dmefXyoqOkVUmrXPvFa3NWv7OKjgIAAAAAAAAAAAAAAFAvSqgBAAAAAAAAAACAFqGqqiqDbh+Ut1a9VXSUtCpplfFHjFdADQAAAAAAAAAAAAAAbNOUUAMAAAAAAAAAAAAtwpF3HpllHy4rOkZKU5qLBl2U8z9/ftFRAAAAAAAAAAAAAAAAGkQJNQAAAAAAAAAAAFC4Q245JK+991rRMVKa0ow9dGzGDR5XdBQAAAAAAAAAAAAAAIAGU0INAAAAAAAAAAAAFOrw2w7PwpULi46RJBkzcEwuOeqSomMAAAAAAAAAAAAAAAA0CiXUAAAAAAAAAAAAQGGG/PuQ/H7F74uOkSQ59+Bzc/kxlxcdAwAAAAAAAAAAAAAAoNEooQYAAAAAAAAAAAAKMfSnQzOvcl7RMZIkZx54ZiZ+cWLRMQAAAAAAAAAAAAAAABqVEmoAAAAAAAAAAACg2X35ri/nhXdeKDpGkmR4n+G58YQbi44BAAAAAAAAAAAAAADQ6JRQAwAAAAAAAAAAAM3qlLtPyXPLnis6RpLkq/t9NTeffHPRMQAAAAAAAAAAAAAAAJqEEmoAAAAAAAAAAACg2ZzxszPy9OtPFx0jSXJcr+Ny21duKzoGAAAAAAAAAAAAAABAk1FCDQAAAAAAAAAAADSLUQ+NymOvPlZ0jCTJkd2PzD3D7yk6BgAAAAAAAAAAAAAAQJNSQg0AAAAAAAAAAAA0uQseuyAP/uHBomMkSQbtNSg/P+3nRccAAAAAAAAAAAAAAABockqoAQAAAAAAAAAAgCY19vGxueN3dxQdI0nSv1v/PHr6o0XHAAAAAAAAAAAAAAAAaBZKqAEAAAAAAAAAAIAmc9GTF2Xq/KlFx0iSfG6Pz2XGOTOKjgEAAAAAAAAAAAAAANBslFADAAAAAAAAAAAATeLKZ6/MLS/eUnSMJEmf3frk2ZHPFh0DAAAAAAAAAAAAAACgWSmhBgAAAAAAAAAAABrdNbOuyaTZk7Ipm4qOkl679Mrz33q+6BgAAAAAAAAAAAAAAADNTgk1AAAAAAAAAAAA0Khu+s+bcvWsq1tEAXWPTj0y79x5RccAAAAAAAAAAAAAAAAohBJqAAAAAAAAAAAAoNFMmTMlE341oUUUUHffuXtmnjmz6BgAAAAAAAAAAAAAAACFUUINAAAAAAAAAAAANIrbX7o9lzxzSTbWbCw6SrqVd0vFWRXp0KFD0VEAAAAAAAAAAAAAAAAKo4QaAAAAAAAAAAAAaLD7f39/Lnzywmyo2VB0lHQt75o5I+cooAYAAAAAAAAAAAAAAHZ4SqgBAAAAAAAAAACABpm+YHrG/GJMiyig7tK+S54b+ZwCagAAAAAAAAAAAAAAgCihBgAAAAAAAAAAABpgxqIZGf3I6KzftL7oKOncrnNmfXNWunXoVnQUAAAAAAAAAAAAAACAFkEJNQAAAAAAAAAAAFAvFUsqcsZDZ2TtprVFR0mntp3y1IinFFADAAAAAAAAAAAAAAD8GSXUAAAAAAAAAAAAwFarWFKR4T8bnrUbiy+g7timY2Z8Y0Z6d+tddBQAAAAAAAAAAAAAAIAWRQk1AAAAAAAAAAAAsFXmV87P1x/8elZvWF10lJSXlWf6adMVUAMAAAAAAAAAAAAAAGyGEmoAAAAAAAAAAABgiy2qXJRhdw1L9frqoqOkfev2ufer9+agbgcVHQUAAAAAAAAAAAAAAKBFUkINAAAAAAAAAAAAbJFFlYsy5O4hWbVuVdFR0rZV29z3tfsyqOegoqMAAAAAAAAAAAAAAAC0WEqoAQAAAAAAAAAAgE9UWVWZY+85Nh+s/aDoKGlb2jbTvjJNATUAAAAAAAAAAAAAAMAnUEINAAAAAAAAAAAA/FWVVZUZdNugvP/R+0VHSVlpWaacNCVDeg8pOgoAAAAAAAAAAAAAAECL17roAAAAAAAAAADA9m3FihWZM2dOFi9enA8//DBlZWXp0qVL9t9//wwYMCBlZWVFRwQA/oqqqqoM/sngvLvm3aKjpKy0LJOPn5xhfYYVHQUAAAAAAAAAAAAAAGCboIQaAAAAAAAAAGgSDzzwQG644YZUVFSkpqZms+907Ngxw4cPz/e+973su+++zZywrpqamrz66quZN29e5s6dm7lz5+all17KqlWrar139tln59///d8bfN+zzz6bL3zhCw3e8z/eeeeddOvWrdH2AUBVVVUGTh2YlatXFh0lrUta55pjr8mpfU8tOgoAAAAAAAAAAAAAAMA2Qwk1AAAAAAAAANCo3nrrrZx++ul57rnnPvHdVatW5bbbbssdd9yR73//+/n+97+fkpKSZkj5/z344IOZPXt25s6dmxdffDEffPBBs94PAC1VVVVVDv3poamsriw6SlqVtMqVR1+Zs/qdVXQUAAAAAAAAAAAAAACAbYoSagAAAAAAAACg0SxcuDBHHXVU3nnnna06t27dulx66aVZsGBB7rjjjrRq1aqJEtb1zW9+U/E0APwvVVVVGXT7oLy16q2io6RVSauMP2J8Rg8cXXQUAAAAAAAAAAAAAACAbY4SagAAAAAAAACgUaxcuTLHHnvsZguo+/fvn5NPPjk9e/bMmjVrsnDhwtx11115++23a7139913p2vXrrn++uubKXXLs88++6RDhw71OltWVtbIaQDYUR1555FZ9uGyomOkNKW5aNBFOf/z5xcdBQAAAAAAAAAAAAAAYJukhBoAAAAAAAAAaBSjR4/OsmW1yyo7duyYadOmZdiwYXXev+qqq3LVVVflsssuqzW/4YYbctxxx+VLX/pSU8b9RF26dEn//v2zyy675N577222e2+99dYcddRRzXYfAPxvh916WF5777WiY6Q0pRl76NiMGzyu6CgAAAAAAAAAAAAAAADbLCXUAAAAAAAAAECDPfXUU3nwwQdrzdq0aZNnnnkmAwYM2OyZsrKyjB8/Pp07d87f/d3f1Xp2wQUXZMGCBWndunl+taFTp045+OCDM2DAgAwcODADBgxIz549kyTPPvtss5ZQA0CRDr/t8Cz404KiYyRJxgwck0uOuqToGAAAAAAAAAAAAAAAANs0JdQAAAAAAAAAQINdccUVdWbjx4//iwXUf+673/1uHnvssTz11FMfzxYtWpS77rorZ511VqPm3JyXXnopPXr0SElJSZPfBQAt2ZB/H5Lfr/h90TGSJCMPGpnLj7m86BgAAAAAAAAAAAAAAADbvNKiAwAAAAAAAAAA27aXX345M2fOrDXbbbfdMm7cuC3ecfXVV9eZ/fjHP25wti3Rs2dPBdQA7PCG/nRo5lXOKzpGkuTMA8/MpKGTio4BAAAAAAAAAAAAAACwXVBCDQAAAAAAAAA0yD333FNnNnLkyLRp02aLd/Tv3z/9+/evNZs9e3aWLFnS4HwAwF/35bu+nBfeeaHoGEmS4X2G58YTbiw6BgAAAAAAAAAAAAAAwHZDCTUAAAAAAAAA0CCPP/54ndkpp5yy1Xs2d2ZzuwGAxjPivhF5btlzRcdIkpzwmRNy88k3Fx0DAAAAAAAAAAAAAABgu6KEGgAAAAAAAACot+rq6rz44ou1Zu3bt8/BBx+81bsOP/zwOrOZM2fWOxsA8Ned8bMz8sRrTxQdI0lyXK/jMu1r04qOAQAAAAAAAAAAAAAAsN1RQg0AAAAAAAAA1Nv8+fOzadOmWrMBAwakdevWW71r4MCBKSsrqzWbN29eg/IBAJt37sPn5rFXHys6RpLkyO5H5p7h9xQdAwAAAAAAAAAAAAAAYLu09X/xCQAAAAAAAADw//zXf/1XnVnv3r3rtatNmzb5m7/5myxZsuTj2eLFi7Nhw4Z6lVpvqx5++OHcfvvtmTt3biorK/P++++nQ4cO6dKlS/bcc88cdthhOfzww3PMMcekXbt2RccFYBt0wWMX5L4F9xUdI0kyaK9B+flpPy86BgAAAAAAAAAAAAAAwHZrx/kLTQAAAAAAAACg0S1durTObO+99673vu7du9cqod64cWOWLVuWXr161Xvntub666+vM3vvvffy3nvvZdGiRZk5c2Z+8IMfZI899sj555+f8847L506dWr+oABsk8Y+PjZ3/O6OomMkSfp3659HT3+06BgAAAAAAAAAAAAAAADbNSXUAAAAAAAAAEC9VVZW1pnttdde9d63ubN//OMfd6gS6i31xz/+Md///vczZcqU3HvvvTn00EOLjrRZkydPzo9+9KMmv2fx4sVNfgfAtu7Spy/N1PlTi46RJOm7e9/MOGdG0TEAAAAAAAAAAAAAAAC2e0qoAQAAAAAAAIB6e/fdd+vMOnToUO99mzu7cuXKeu/bVu20007ZbbfdsvPOO6e6ujorV67MqlWrNvvusmXLcsQRR+T222/PiBEjmjnpJ1uxYkVeeeWVomMA7PCufPbKTJ4zuegYSZI+u/XJzFEzi44BAAAAAAAAAAAAAACwQ1BCDQAAAAAAAADUW3V1dZ3ZTjvtVO99mzu7evXqeu/bVnTp0iXHH398jj/++AwYMCC9evVKaWlprXdeffXVzJgxIzfddFMWLFhQ69n69etzzjnn5NOf/nQOP/zw5owOwDbgmlnXZNLsSdmUTUVHSa9deuX5bz1fdAwAAAAAAAAAAAAAAIAdhhJqAAAAAAAAAKDe1q9fX2fWrl27eu/bXAn1unXr6r2vpfvUpz6VadOm5ZRTTknbtm3/6ruf+cxn8pnPfCZ/+7d/m8mTJ2fcuHFZu3btx8/Xrl2b4cOHZ9GiRSkvL2/q6ABsI276z5sysWJiiyig7tGpR+adO6/oGAAAAAAAAAAAAAAAADuU0qIDAAAAAAAAAADbl5KSkkY9W1NT05A4Ldq+++6b008//RMLqP9cSUlJzjvvvDz66KMpKyur9ayysjLXXXddY8cEYBs1Zc6UTPjVhGys2Vh0lHy646cz88yZRccAAAAAAAAAAAAAAADY4SihBgAAAAAAAADq7X+XICfJmjVr6r1vc2fbtGlT733bsyFDhuQHP/hBnfl1112XjRuLLxsFoFi3v3R7LnnmkhZRQN2tvFtmnz07HTp0KDoKAAAAAAAAAAAAAADADqd10QEAAAAAAAAAgG1X+/bt68wau4S6vLy83vu2d+edd15uvPHGLF269OPZu+++m1//+tf5/Oc/X1ywP7P77rtn//33b/J7Fi9enLVr1zb5PQDbgvt/f3/GPTUuG2o2FB0lXdp3yZyRcxRQAwAAAAAAAAAAAAAAFEQJNQAAAAAAAABQb126dKkzq6qqqve+zZ3d3B38t7Kyspx66qn5t3/7t1rzp59+usWUUI8ZMyZjxoxp8nsOOOCAvPLKK01+D0BLN33B9Iz5xZis37S+6CjZdaddM+ubsxRQAwAAAAAAAAAAAAAAFKi06AAAAAAAAAAAwLZrjz32qDN78803673vjTfe2KI7+P+OOuqoOrNly5Y1fxAACjdj0YyMfmR0iyig7tyucypGVaRbh25FRwEAAAAAAAAAAAAAANihKaEGAAAAAAAAAOqtZ8+edWavv/56vff97/LkVq1apXv37vXetyPYc88968xWrFhRQBIAilSxpCJnPHRG1m5aW3SUdGrbKU+NeEoBNQAAAAAAAAAAAAAAQAughBoAAAAAAAAAqLf99tuvzmzRokX12rVu3bq88cYbtWb77LNPWrduXa99O4ry8vI6szVr1hSQBICiVCypyPCfDc/ajcUXUHds0zEzvjEjvbv1LjoKAAAAAAAAAAAAAAAAUUINAAAAAAAAADRAv379Ulpa+9cP5s6dmw0bNmz1rrlz52b9+vW1ZgcffHCD8u0IVqxYUWe22267FZAEgCLMr5yfrz/49azesLroKCkvK8/006YroAYAAAAAAAAAAAAAAGhBlFADAAAAAAAAAPVWXl6efv361ZpVV1fnpZde2upds2bNqjM74ogj6p1tR7FgwYI6s913372AJAA0t0WVizLsrmGpXl9ddJS0b90+93713hzU7aCiowAAAAAAAAAAAAAAAPBnlFADAAAAAAAAAA0ydOjQOrMHHnhgq/ds7szmdlPbL37xizqzz33ucwUkAaA5LapclCF3D8mqdauKjpK2rdrmvq/dl0E9BxUdBQAAAAAAAAAAAAAAgP9FCTUAAAAAAAAA0CAjRoyoM5s6dWrWrVu3xTteeumlzJkzp9bskEMOSc+ePRucb3u2YMGCTJ8+vdaspKREeTfAdq6yqjLH3nNsPlj7QdFR0ra0baZ9ZZoCagAAAAAAAAAAAAAAgBZKCTUAAAAAAAAA0CB9+/bN4MGDa81WrFiR6667bot3XHzxxXVm3/nOdxqcbXu2du3afPvb387GjRtrzQcNGpRu3boVlAqAplZZVZlBtw3K+x+9X3SUlJWWZcpJUzKk95CiowAAAAAAAAAAAAAAAPAXKKEGAAAAAAAAABrs+9//fp3Z+PHj8+KLL37i2R/+8Id54oknas169eqV0047bYvu7tGjR0pKSmp9Pfvss1t0tkg33HBDXn/99XqdXbVqVb7+9a+noqKizrMrr7yyodEAaKGqqqpy5NQj8+6ad4uOktYlrTP5+MkZ1mdY0VEAAAAAAAAAAAAAAAD4K5RQAwAAAAAAAAANdtxxx+Xkk0+uNVu7dm2+8IUv5JFHHtnsmfXr1+eKK67I+eefX+fZjTfemLKysibJ2lJMnTo1vXv3zmmnnZbp06fno48++sQzGzduzP3335+DDz44Dz/8cJ3nI0aMyBFHHNEUcQEoWFVVVQZOHZjl1cuLjpLWJa1z7Revzal9Ty06CgAAAAAAAAAAAAAAAJ+gddEBAAAAAAAAAIDtwy233JJ58+blzTff/Hj24YcfZtiwYRkwYEBOPvnk9OzZM2vWrMmrr76aO++8M2+99VadPeedd15OOOGEZss9d+7cfOtb3/qLz6uqqurMpk+fnoMOOugvnhkwYEBuvfXWT7x7w4YNufvuu3P33XenvLw8/fr1y+c+97nss88+6dy5czp27JjVq1dn5cqVefHFF/PLX/5ys/9mSTJ48OBMnTr1E+8EYNtTVVWVQ396aCqrK4uOklYlrXLl0VfmrH5nFR0FAAAAAAAAAAAAAACALaCEGgAAAAAAAABoFLvvvnuefPLJHH300amsrF2SOXfu3MydO/cTdwwfPjzXX399EyXcvKqqqvzmN7/ZqjPvvfde3nvvvb/4vHPnzludo7q6OrNmzcqsWbO2+uywYcPy05/+NO3atdvqswC0fIffcXjeWrX5/4SgObUqaZXxR4zP6IGji44CAAAAAAAAAAAAAADAFiotOgAAAAAAAAAAsP3o06dPfv3rX2fw4MFbda6srCzjx4/P3XffnVatWjVRuu3PHnvskSlTpuThhx+uV/E1AC1f/5v7Z+kHS4uOkdKU5qJBF+X8z59fdBQAAAAAAAAAAAAAAAC2ghJqAAAAAAAAAKBR7bXXXvnVr36Ve++9N4cddlhKSkr+4rsdOnTIyJEj89vf/jaXXXZZSkt3nF9lePDBBzNlypScfvrp2W+//bb4e+/YsWOOPfbYTJs2LcuWLcu3v/3tJk4KQFEOu/WwvPbea0XHSGlKM/bQsRk3eFzRUQAAAAAAAAAAAAAAANhKrYsOAAAAAAAAAABsf0pKSjJ8+PAMHz48y5cvz69//eu89tpr+fDDD9O6devstttu6dOnTwYOHJg2bdo06K6lS5c26PxRRx2VmpqaBu2oj169eqVXr14fl0ivXr06CxcuzBtvvJG33347q1atykcffZS2bdtml112yS677JJ99903BxxwwA5V1g2wozr8tsOz4E8Lio6RJBkzcEwuOeqSomMAAAAAAAAAAAAAAABQD0qoAQAAAAAAAIAm1bVr15x44olFx2jx2rdvn4MOOigHHXRQ0VEAKNiQfx+S36/4fdExkiQjDxqZy4+5vOgYAAAAAAAAAAAAAAAA1FNp0QEAAAAAAAAAAACA/3binSdmXuW8omMkSc488MxMGjqp6BgAAAAAAAAAAAAAAAA0gBJqAAAAAAAAAAAAaAG+fNeXU/FGRdExkiTD+wzPjSfcWHQMAAAAAAAAAAAAAAAAGkgJNQAAAAAAAAAAABRsxH0j8tyy54qOkSQ54TMn5OaTby46BgAAAAAAAAAAAAAAAI1ACTUAAAAAAAAAAAAU6IyfnZEnXnui6BhJkmP2PibTvjat6BgAAAAAAAAAAAAAAAA0EiXUAAAAAAAAAAAAUJBzHz43j736WNExkiRHdj8yD3zjgaJjAAAAAAAAAAAAAAAA0IiUUAMAAAAAAAAAAEABLnjsgty34L6iYyRJDtnzkPz8tJ8XHQMAAAAAAAAAAAAAAIBGpoQaAAAAAAAAAAAAmtlFT16UO353R9ExkiT9u/XP42c/XnQMAAAAAAAAAAAAAAAAmoASagAAAAAAAAAAAGhGlz59aW5+8eaiYyRJ+u7eNzPOmVF0DAAAAAAAAAAAAAAAAJqIEmoAAAAAAAAAAABoJlc+e2Umz5lcdIwkyb5d9s3MUTOLjgEAAAAAAAAAAAAAAEATUkINAAAAAAAAAAAAzeCaWddk0uxJ2ZRNRUdJr1165YVvv1B0DAAAAAAAAAAAAAAAAJqYEmoAAAAAAAAAAABoYjf9502ZWDGxRRRQd9+5e547/bmiYwAAAAAAAAAAAAAAANAMlFADAAAAAAAAAABAE5oyZ0om/GpCNtZsLDpKPt3x06k4qyIdOnQoOgoAAAAAAAAAAAAAAADNQAk1AAAAAAAAAAAANJHbX7o9lzxzSYsooO5W3i2zz56tgBoAAAAAAAAAAAAAAGAHooQaAAAAAAAAAAAAmsD9v78/454alw01G4qOki7tu2TOyDkKqAEAAAAAAAAAAAAAAHYwrYsOwI5hxYoVmTNnThYvXpwPP/wwZWVl6dKlS/bff/8MGDAgZWVlRUespbKyMkuWLMkbb7yR5cuXp7q6OuvXr8/OO++cTp06pUePHunXr1923nnnJrl/1apVefnll/Pqq6/mvffey6pVq1JeXp5ddtkln/70pzNw4MB06tSpSe4GAAAAAAAAAAAabvqC6RnzizFZv2l90VGy6067ZtY3ZymgBgAAAAAAAAAAAAAA2AEpoaZJPfDAA7nhhhtSUVGRmpqazb7TsWPHDB8+PN/73vey7777NnPC5P3338+sWbNSUVGRF154Ib/73e/ypz/96RPPlZSU5MADD8xZZ52VM888M127dq13hg8++CCPP/54fvnLX+aXv/xlFi5c+Il39+3bN2eddVa++c1vZtddd6333QAAAAAAAAAAQOOasWhGRj8yukUUUHdu1zkVoyrSrUO3oqMAAAAAAAAAAAAAAABQgNKiA7B9euutt3LUUUfl1FNPzaxZs/5iAXWSrFq1KrfddlsOPPDAXHHFFX/13aYwceLEnHTSSZk4cWJ++ctfblEBdZLU1NTkt7/9bcaNG5d99tknkyZNyoYNG7bq7unTp+ekk05K165dM2LEiNx8882fWED9P3f/7ne/yz/8wz9kr732yvXXX59NmzZt1d0AAAAAAAAAAEDjq1hSkTMeOiNrN60tOko6te2Up0Y8pYAaAAAAAAAAAAAAAABgB6aEmka3cOHCDBw4MM8999xWnVu3bl0uvfTSnH766dm4cWMTpWsaVVVVufDCC3PiiSdmzZo1W3xu0qRJefTRR7Nu3bp637169er8/d//fb74xS+murq63nsAAAAAAAAAAICGmV85P8N/NjxrNxZfQN2xTcfM+MaM9O7Wu+goAAAAAAAAAAAAAAAAFKh10QHYvqxcuTLHHnts3nnnnTrP+vfvn5NPPjk9e/bMmjVrsnDhwtx11115++23a7139913p2vXrrn++uubKXVt5eXlOfjgg7Pffvuld+/e2X333dOxY8ds3LgxH374YRYuXJjnn38+s2fPTk1NTa2zTzzxRL7yla/kP/7jP1JSUlLvDJ07d86gQYMyYMCAdO3aNbvttltWr16dJUuW5JlnnsmsWbPqnHn66aczbNiw/OIXv0jbtm3rfTcAAAAAAAAAALD15lfOz4l3npjVG1YXHSXlZeWZftp0BdQAAAAAAAAAAAAAAAAooaZxjR49OsuWLas169ixY6ZNm5Zhw4bVef+qq67KVVddlcsuu6zW/IYbbshxxx2XL33pS00ZN0nStm3bHH300fnSl76UY445Jp/97GfTqlWrTzy3aNGijB07No888kit+RNPPJFbbrklo0eP3qocnTp1yte//vWcc845OeSQQ1JaWrrZ9yZMmJD58+fnW9/6VubNm1fr2TPPPJOrr766zr8nAAAAAAAAAADQdBZVLsqwu4alen110VHSvnX73PvVe3NQt4OKjgIAAAAAAAAAAAAAAEALsPmWW6iHp556Kg8++GCtWZs2bfLMM89stoA6ScrKyjJ+/Phcf/31dZ5dcMEF2bBhQ1NErWXChAl5+umnM27cuPTr12+LCqiTpHfv3nn44Yfzne98p86ziRMnbvH9n/rUp3LDDTfknXfeyc0335zPf/7zf7GA+n8cdNBBef755zN06NA6z37wgx/kzTff3OL7AQAAAAAAAACA+ltUuShD7h6SVetWFR0lbVu1zX1fuy+Deg4qOgoAAAAAAAAAAAAAAAAthBJqGs0VV1xRZzZ+/PgMGDDgE89+97vfzbHHHltrtmjRotx1112Nlq8plJSU5Lrrrsvee+9da75kyZLMnTv3E89ffPHFWbx4cS644ILstNNOW3V3mzZtct9992XPPfesNf/oo49y//33b9UuAAAAAAAAAABg61VWVebYe47NB2s/KDpK2pa2zbSvTFNADQAAAAAAAAAAAAAAQC1KqGkUL7/8cmbOnFlrtttuu2XcuHFbvOPqq6+uM/vxj3/c4GxNrW3btjnllFPqzF955ZVPPHvcccelXbt29b67Y8eOm/03fvTRR+u9EwAAAAAAAAAA+GSVVZUZ/JPBef+j94uOkrLSskw5aUqG9B5SdBQAAAAAAAAAAAAAAABaGCXUNIp77rmnzmzkyJFp06bNFu/o379/+vfvX2s2e/bsLFmypMH5mto+++xTZ/bOO+80y93HH398ndlrr73WLHcDAAAAAAAAAMCOqKqqKkdOPTIrV68sOkpal7TO5OMnZ1ifYUVHAQAAAAAAAAAAAAAAoAVSQk2jePzxx+vMTjnllK3es7kzm9vd0nz00Ud1ZltTwN0Q3bt3rzOrrKxslrsBAAAAAAAAAGBHU1VVlYFTB2Z59fKio6R1Setc+8Vrc2rfU4uOAgAAAAAAAAAAAAAAQAulhJoGq66uzosvvlhr1r59+xx88MFbvevwww+vM5s5c2a9szWXOXPm1Jnts88+zXL36tWr68x22mmnZrkbAAAAAAAAAAB2JFVVVRl0+6BUVhf/n8S3KmmVK4++Mmf1O6voKAAAAAAAAAAAAAAAALRgSqhpsPnz52fTpk21ZgMGDEjr1q23etfAgQNTVlZWazZv3rwG5Wtqr776ah566KFas3bt2uWII45olvsXLVpUZ7bnnns2y90AAAAAAAAAALAjOfyOw7Psw2VFx0hpSjP+iPEZPXB00VEAAAAAAAAAAAAAAABo4ZRQ02D/9V//VWfWu3fveu1q06ZN/uZv/qbWbPHixdmwYUO99jW11157LSeddFI++uijWvORI0emc+fOzZLhgQceqDMbOHBgs9wNAAAAAAAAAAA7ikNuOSRLP1hadIyUpjQXD74453/+/KKjAAAAAAAAAAAAAAAAsA1QQk2DLV26tM5s7733rve+7t271/q8cePGLFu2rN77GtvatWsze/bs/N3f/V0OOOCA/OEPf6j1vGfPnrn66qubJcuaNWtyxx131JmffPLJzXI/AAAAAAAAAADsCA679bAsXLmw6BhJkrGHjs24weOKjgEAAAAAAAAAAAAAAMA2onXRAdj2VVZW1pnttdde9d63ubN//OMf06tXr3rv3FozZszIuHG1/1Brw4YNWbVqVd5+++1s2LBhs+c+85nP5Mknn0ynTp2aI2YmTpyY5cuX15p96lOfyvHHH98s92+pyZMn50c/+lGT37N48eImvwMAAAAAAAAAgB3LUVOPyoI/LSg6RpLk3IPPzSVHXVJ0DAAAAAAAAAAAAAAAALYhSqhpsHfffbfOrEOHDvXet7mzK1eurPe++nj//ffzm9/8ZovfLy8vz9/+7d9mwoQJKS8vb8Jk/9/cuXNz9dVX15lffvnladu2bbNk2FIrVqzIK6+8UnQMAAAAAAAAAADYKkN/OjS/+eOW/x5RUxp50MhM/OLEomMAAAAAAAAAAAAAAACwjVFCTYNVV1fXme2000713re5s6tXr673vqZUUlKSUaNG5aqrrsruu+/ebPeuXLkyp556atavX19rfuSRR+ab3/xms+UAAAAAAAAAAIDt1Yl3npgX3nmh6BhJkjMPPDOThk4qOgYAAAAAAAAAAAAAAADboNKiA7Dt+99FyEnSrl27eu/bXAn1unXr6r2vKdXU1OTWW29N3759M2HChKxatarJ71y3bl2++tWvZunSpbXmu+66a26//faUlJQ0eQYAAAAAAAAAANienXL3Kal4o6LoGEmSr+731dx4wo1FxwAAAAAAAAAAAAAAAGAbpYSaJtGQIuTNna2pqWlInK12yimnpKamptZXdXV13nrrrcyYMSMTJkxIz549P35/+fLlueyyy/LZz342L7zwQpPl2rRpU84666z86le/qjVv1apV7rzzznTv3r3J7gYAAAAAAAAAgB3BiPtG5OnXny46RpLkhM+ckNu+clvRMQAAAAAAAAAAAAAAANiGKaGmwcrKyurM1qxZU+99mzvbpk2beu9rLO3bt8+nPvWpHHPMMbn00kuzePHi/PCHP0x5efnH7yxdujRDhgzJ888/3yQZ/s//+T+59957a81KSkpy8803Z+jQoU1yJwAAAAAAAAAA7ChGPTQqT7z2RNExkiTH7H1Mpn1tWtExAAAAAAAAAAAAAAAA2Ma1LjoA27727dvXmTV2CfWfFz23FCUlJRkzZkwOPPDADB069OPcVVVV+frXv57f/va32WWXXRrtvrFjx+bmm2+uM7/++uszatSoRrunKey+++7Zf//9m/yexYsXZ+3atU1+DwAAAAAAAAAA259zHz43D/7hwaJjJEmO7H5kHvjGA0XHAAAAAAAAAAAAAAAAYDughJoG69KlS51ZVVVVvfdt7uzm7mgpjjjiiFx22WX5x3/8x49nb775Zq699tr8y7/8S6PccfHFF+e6666rM584cWIuuOCCRrmjKY0ZMyZjxoxp8nsOOOCAvPLKK01+DwAAAAAAAAAA25cLHrsg9y24r+gYSZJD9jwkPz/t50XHAAAAAAAAAAAAAAAAYDtRWnQAtn177LFHndmbb75Z731vvPHGFt3Rknz3u99Nx44da82mTJmSmpqaBu++7LLLMnHixDrzyy+/vFbxNQAAAAAAAAAAsPUuevKi3PG7O4qOkST53B6fy+NnP150DAAAAAAAAAAAAAAAALYjSqhpsJ49e9aZvf766/Xet2zZslqfW7Vqle7du9d7X3No27Ztjj766FqzFStW5JVXXmnQ3n/5l3/JhAkT6sz/+Z//Of/8z//coN0AAAAAAAAAALCju/TpS3PzizcXHSNJ0nf3vnl25LNFxwAAAAAAAAAAAAAAAGA7o4SaBttvv/3qzBYtWlSvXevWrcsbb7xRa7bPPvukdevW9drXnHr06FFn9tprr9V73w9+8IPNFk1fdNFFufzyy+u9FwAAAAAAAAAASK589spMnjO56BhJkn277JuZo2YWHQMAAAAAAAAAAAAAAIDtkBJqGqxfv34pLa39ozR37txs2LBhq3fNnTs369evrzU7+OCDG5SvubRr167ObNWqVfXa9W//9m+56KKL6sz/4R/+IVdffXW9dgIAAAAAAAAAAP/tmlnXZNLsSdmUTUVHSa9deuWFb79QdAwAAAAAAAAAAAAAAAC2U0qoabDy8vL069ev1qy6ujovvfTSVu+aNWtWndkRRxxR72zNafny5XVmu+2221bvue666/K9732vzvzv//7v86//+q/1ygYAAAAAAAAAAPy3KXOmZGLFxBZRQN195+557vTnio4BAAAAAAAAAAAAAADAdkwJNY1i6NChdWYPPPDAVu/Z3JnN7W6JZs+eXWfWrVu3rdpx4403ZuzYsXXmF1xwQSZNmlTvbAAAAAAAAAAAQHL7S7fnn575p2ys2Vh0lHy646dTcVZFOnToUHQUAAAAAAAAAAAAAAAAtmNKqGkUI0aMqDObOnVq1q1bt8U7XnrppcyZM6fW7JBDDknPnj0bnK+pzZ8/PwsWLKg169y5c/r06bPFO370ox/lu9/9bp35mDFjcsMNNzQ4IwAAAAAAAAAA7Mju//39ufDJC1tEAXXX8q6ZffZsBdQAAAAAAAAAAAAAAAA0OSXUNIq+fftm8ODBtWYrVqzIdddd93/Zu/Mor+vD3v+v2UBZxIgSbKKCEg1Gqwhcl8Edl0RFjUrdE0IDyQ819yo3V2MqLlfl9Khxw1wwaqO44dbgUlFMQcCggKKJUpUtKHFcMAqDBIbl90dvvZ0OxmEWPjPD43GOf3zf8/28P0+mpqfnVF+p9x2XXHJJnbMf//jHjW5rbuvWrcsFF1xQ5/y4445LRUVFve64/fbbc95559U5/9GPfpRbb7210Y0AAAAAAAAAALAlmzhvYkY8NSJrN6wtOiVdO3TN1CFTDVADAAAAAAAAAAAAAACwWRihpsn8/Oc/r3M2atSovPzyy1/67K233ppJkybVOtt1111z5pln1uvdPXr0SElJSa2/pkyZ8qXP3XLLLXn22Wfr9Y6NWb16dc4666xMmzat1nlJSclGR6U35te//nWGDx+eDRs21DofNmxYbrvttga3AQAAAAAAAAAA/z5APezxYalZX1N0SrbbertM/8H0dO/UvegUAAAAAAAAAAAAAAAAthBGqGkyxxxzTE488cRaZ6tXr87hhx+exx9/fKPP1NTU5Kqrrsr5559f52c333xzKioqmqX1P8yZMydHH310DjzwwNx22215//336/VcTU1NHn300ey999558MEH6/z8hz/8YQ444IAvveeBBx7ID37wgzoD1EOHDs3/+T//JyUlJfX7gwAAAAAAAAAAAHVMnj85wx4fltXrVxedkm232jYzhs4wQA0AAAAAAAAAAAAAAMBmVV50AG3L7bffnjlz5uTdd9/9/Gz58uUZNGhQ+vXrlxNPPDE9e/bMqlWr8vbbb+fee+/N0qVL69xz3nnn5bjjjtts3TNnzszMmTNz/vnnp3fv3unTp0/23HPPbLfddtl2221TUlKS5cuX509/+lPmzp2b559/PsuWLdvoXYcffnhuuOGGer33nHPOyfr16+ucz5o1K3369GnUn+mpp57K3/zN3zTqDgAAAAAAAAAAaK1mLJqRsx87u0UMUHdu1znPnv6sAWoAAAAAAAAAAAAAAAA2OyPUNKkddtghzzzzTI444ohUVVXV+tns2bMze/bsL71j8ODBufHGG5up8K9bv359Xn/99bz++usNev6kk07Kfffdl6233rpe31+7du1Gz1977bUGvf8/W7NmTaPvAAAAAAAAAACA1mhu1dwMfmRwVq8rfoC6Y0XHTDxzYnp171V0CgAAAAAAAAAAAAAAAFug0qIDaHt69+6dl156KQMGDNik5yoqKjJq1Kjcf//9KSsra6a62jp27Ngk9+y00055+OGH89hjj9V7gBoAAAAAAAAAAGh6c6vm5vh7j89naz8rOiUdyjvkibOeyL7d9y06BQAAAAAAAAAAAAAAgC2UEWqaxU477ZTnn38+Dz74YA466KCUlJR84Xc7deqUIUOG5LXXXsvll1+e0tLN97flmDFj8vrrr+e6667LCSeckO7du9f72a9+9as5/fTT89RTT2XRokU55ZRTmrEUAAAAAAAAAAD4MvOr5mfQfYOysmZl0SlpX9Y+E06ZYIAaAAAAAAAAAAAAAACAQpUXHUDbVVJSksGDB2fw4MH54IMP8tJLL2XhwoVZvnx5ysvLs/3226d3797p379/2rVr16h3LV68uMHP7rnnntlzzz1z0UUXJUnee++9LFiwIIsXL87HH3+clStXZsOGDencuXO6dOmSbt26ZZ999smOO+7YqOYk2bBhQ6PvAAAAAAAAAAAA/n2AeuD9A7NizYqiU9K+rH3Gnzw+lT0ri04BAAAAAAAAAAAAAABgC2eEms2iW7duOf7444vOqJcdd9wxO+64YwYMGFB0CgAAAAAAAAAAUA9V1VU55sFj8unqT4tOSfvSfx+gHthrYNEpAAAAAAAAAAAAAAAAkNKiAwAAAAAAAAAAAKChqqqrMuDOAfl41cdFp6SitCLjThhngBoAAAAAAAAAAAAAAIAWwwg1AAAAAAAAAAAArVJ1dXUOvevQLPtsWdEpKS8pz5jvjMmg3oOKTgEAAAAAAAAAAAAAAIDPGaEGAAAAAAAAAACg1amurs4Bvz4gH6z8oOiUlJeU5/qjr89pe51WdAoAAAAAAAAAAAAAAADUYoQaAAAAAAAAAACAVqW6ujqVd1dm6YqlRaekrKQsVx9xdc7tc27RKQAAAAAAAAAAAAAAAFCHEWoAAAAAAAAAAABalYPvOThLli8pOiOlKc2oQ0ZlWP9hRacAAAAAAAAAAAAAAADARhmhBgAAAAAAAAAAoNXY//b9s/jTxUVnpDSlufCAC3P+gecXnQIAAAAAAAAAAAAAAABfyAg1AAAAAAAAAAAArcJBvzooby17q+iMJMmI/iNy6WGXFp0BAAAAAAAAAAAAAAAAf5URagAAAAAAAAAAAFq8w+46LPM+mld0RpJk+H7Dc+WRVxadAQAAAAAAAAAAAAAAAF/KCDUAAAAAAAAAAAAt2rG/Pjavvv9q0RlJkiH7Dsnoo0cXnQEAAAAAAAAAAAAAAAD1YoQaAAAAAAAAAACAFuv4e4/Pi++9WHRGkmRw78G54dgbis4AAAAAAAAAAAAAAACAejNCDQAAAAAAAAAAQIt06v2nZsY7M4rOSJJ8d4/vZuyJY4vOAAAAAAAAAAAAAAAAgE1ihBoAAAAAAAAAAIAW5/QJp+e5Pz5XdEaS5Jhdj8kdJ99RdAYAAAAAAAAAAAAAAABsMiPUAAAAAAAAAAAAtChDHxuaSQsnFZ2RJDlylyPzwOAHis4AAAAAAAAAAAAAAACABjFCDQAAAAAAAAAAQIsx/DfD8+ibjxadkSSp3KkyD5/xcNEZAAAAAAAAAAAAAAAA0GBGqAEAAAAAAAAAAGgRLnz6wkyYN6HojCTJ/jvunyfOeqLoDAAAAAAAAAAAAAAAAGgUI9QAAAAAAAAAAAAU7uJnLs5dc+8qOiNJss9X98nT33u66AwAAAAAAAAAAAAAAABoNCPUAAAAAAAAAAAAFOqy5y7L2JfHFp2RJOm9fe9MGTKl6AwAAAAAAAAAAAAAAABoEkaoAQAAAAAAAAAAKMx106/LmFljis5Ikuzedfe88PcvFJ0BAAAAAAAAAAAAAAAATcYINQAAAAAAAAAAAIW45Xe35Nrp12Z91hedkh5deuTFH75YdAYAAAAAAAAAAAAAAAA0KSPUAAAAAAAAAAAAbHbjZo3LFc9f0SIGqHfeZudMO2da0RkAAAAAAAAAAAAAAADQ5IxQAwAAAAAAAAAAsFnd/crdufS3l2bdhnVFp6R7x+6Zce6MdOrUqegUAAAAAAAAAAAAAAAAaHJGqAEAAAAAAAAAANhsHvrDQ7nomYuydsPaolPSrWO3zBoyywA1AAAAAAAAAAAAAAAAbZYRagAAAAAAAAAAADaLifMmZsRTI1rEAHXXDl0zdchUA9QAAAAAAAAAAAAAAAC0aUaoAQAAAAAAAAAAaHaT50/OsMeHpWZ9TdEp2W7r7TL9B9PTvVP3olMAAAAAAAAAAAAAAACgWRmhBgAAAAAAAAAAoFlNnj85Zz92dlavX110Srq075JJfzfJADUAAAAAAAAAAAAAAABbBCPUAAAAAAAAAAAANJsZi2bke//8vaxeV/wAded2nTP5jMnp1b1X0SkAAAAAAAAAAAAAAACwWRihBgAAAAAAAAAAoFnMrZqbwY8MzmdrPys6JR0rOmbimRMNUAMAAAAAAAAAAAAAALBFMUINAAAAAAAAAABAk5tbNTeD7hvUIgaoO5R3yBNnPZF9u+9bdAoAAAAAAAAAAAAAAABsVkaoAQAAAAAAAAAAaFLzq+bnpPtPyoo1K4pOSfuy9plwygQD1AAAAAAAAAAAAAAAAGyRjFADAAAAAAAAAADQZKqqq3LUA0fl09WfFp2S9qXtM/7k8ansWVl0CgAAAAAAAAAAAAAAABTCCDUAAAAAAAAAAABNoqq6KpV3VOaTv3xSdEral7bPuBPGZWCvgUWnAAAAAAAAAAAAAAAAQGGMUAMAAAAAAAAAANBo1dXVGXDngHy86uOiU1JRWpFbvnNLBvUeVHQKAAAAAAAAAAAAAAAAFMoINQAAAAAAAAAAAI1SXV2dvnf1zbLPlhWdkvKS8oz5zpicttdpRacAAAAAAAAAAAAAAABA4YxQAwAAAAAAAAAA0GDV1dU54NcH5IOVHxSdkrKSslx/9PUGqAEAAAAAAAAAAAAAAOD/MkINAAAAAAAAAABAg1RXV6fy7sosXbG06JSUlZRl1CGjcm6fc4tOAQAAAAAAAAAAAAAAgBbDCDUAAAAAAAAAAAANcui9h2bJ8iVFZ6Q0pbm48uKcf+D5RacAAAAAAAAAAAAAAABAi2KEGgAAAAAAAAAAgE22/+37Z+GfFxadkdKU5sIDLszIASOLTgEAAAAAAAAAAAAAAIAWxwg1AAAAAAAAAAAAm+TgOw7OW8veKjojSTKi/4hcetilRWcAAAAAAAAAAAAAAABAi2SEGgAAAAAAAAAAgHo77K7D8ocP/1B0RpJk+H7Dc+WRVxadAQAAAAAAAAAAAAAAAC2WEWoAAAAAAAAAAADq5dhfH5tX33+16IwkyTl7n5PRR48uOgMAAAAAAAAAAAAAAABaNCPUAAAAAAAAAAAAfKmT7jspL773YtEZSZLBvQfn5uNuLjoDAAAAAAAAAAAAAAAAWjwj1AAAAAAAAAAAAPxVp95/aqYumVp0RpLku3t8N2NPHFt0BgAAAAAAAAAAAAAAALQKRqgBAAAAAAAAAAD4Qmc/cnae++NzRWckSY7Z9ZjccfIdRWcAAAAAAAAAAAAAAABAq2GEGgAAAAAAAAAAgI0a+tjQPPn2k0VnJEmO3OXIPDD4gaIzAAAAAAAAAAAAAAAAoFUxQg0AAAAAAAAAAEAdFzx5QR5989GiM5IklTtV5uEzHi46AwAAAAAAAAAAAAAAAFodI9QAAAAAAAAAAADUcuHTF+ae399TdEaSpG/3vnnirCeKzgAAAAAAAAAAAAAAAIBWyQg1AAAAAAAAAAAAn7v4mYtz19y7is5Ikuzz1X0y+fuTi84AAAAAAAAAAAAAAACAVssINQAAAAAAAAAAAEmSq6dcnbEvjy06I0nSe/vemTJkStEZAAAAAAAAAAAAAAAA0KoZoQYAAAAAAAAAACDXTb8uN8y8oeiMJMnuXXfPC3//QtEZAAAAAAAAAAAAAAAA0OoZoQYAAAAAAAAAANjC3fK7W3Lt9GuzPuuLTkmPLj3y4g9fLDoDAAAAAAAAAAAAAAAA2gQj1AAAAAAAAAAAAFuwcbPG5Yrnr2gRA9Q7b7Nzpp0zregMAAAAAAAAAAAAAAAAaDOMUAMAAAAAAAAAAGyh7n7l7lz620uzbsO6olPSvWP3zDh3Rjp16lR0CgAAAAAAAAAAAAAAALQZRqgBAAAAAAAAAAC2QA/94aFc9MxFWbthbdEp6daxW2YNmWWAGgAAAAAAAAAAAAAAAJqYEWoAAAAAAAAAAIAtzMR5EzPiqREtYoC6a4eumTpkqgFqAAAAAAAAAAAAAAAAaAZGqAEAAAAAAAAAALYgk+dPzrDHh6VmfU3RKdl2q20z/QfT071T96JTAAAAAAAAAAAAAAAAoE0yQg0AAAAAAAAAALCFmLFoRs5+7OysXr+66JR0ad8lz57+rAFqAAAAAAAAAAAAAAAAaEZGqAEAAAAAAAAAALYAMxbNyOBHBmf1uuIHqDu365zJZ0xOr+69ik4BAAAAAAAAAAAAAACANs0INQAAAAAAAAAAQBs3t2pu/u7Rv8tnaz8rOiUdKzpm4pkTDVADAAAAAAAAAAAAAADAZmCEGgAAAAAAAAAAoA2bXzU/g+4blJU1K4tOSYfyDnnirCeyb/d9i04BAAAAAAAAAAAAAACALYIRagAAAAAAAAAAgDZqftX8DLx/YFasWVF0StqXtc+EUyYYoAYAAAAAAAAAAAAAAIDNyAg1AAAAAAAAAABAG1RVXZWjHjgqn67+tOiUtC9tn/Enj09lz8qiUwAAAAAAAAAAAAAAAGCLYoQaAAAAAAAAAACgjamqrkrlHZX55C+fFJ2SitKKjDthXAb2Glh0CgAAAAAAAAAAAAAAAGxxjFADAAAAAAAAAAC0IdXV1Rlw54B8vOrjolNSUVqRMd8Zk0G9BxWdAgAAAAAAAAAAAAAAAFskI9QAAAAAAAAAAABtRHV1dfrf1T/LPltWdErKS8pz3VHX5bS9Tis6BQAAAAAAAAAAAAAAALZYRqgBAAAAAAAAAADagOrq6hzw6wNStbKq6JSUlZTl6iOuzrl9zi06BQAAAAAAAAAAAAAAALZoRqgBAAAAAAAAAABauerq6lTeXZmlK5YWnZKykrKMOmRUhvUfVnQKAAAAAAAAAAAAAAAAbPGMUAMAAAAAAAAAALRyh957aJYsX1J0RkpTmosrL875B55fdAoAAAAAAAAAAAAAAAAQI9QAAAAAAAAAAACt2v6375+Ff15YdEZKU5oLD7gwIweMLDoFAAAAAAAAAAAAAAAA+L+MUAMAAAAAAAAAALRSB99xcN5a9lbRGUmSEf1H5NLDLi06AwAAAAAAAAAAAAAAAPhPjFADAAAAAAAAAAC0QgP/aWD+8OEfis5Ikgzfb3iuPPLKojMAAAAAAAAAAAAAAACA/8IINQAAAAAAAAAAQCtz7K+PzZyqOUVnJEnO2fucjD56dNEZAAAAAAAAAAAAAAAAwEYYoQYAAAAAAAAAAGhFTrrvpLz43otFZyRJBvcenJuPu7noDAAAAAAAAAAAAAAAAOALGKEGAAAAAAAAAABoJU6fcHqmLpladEaS5LhvHJexJ44tOgMAAAAAAAAAAAAAAAD4K4xQAwAAAAAAAAAAtAJnP3J2Ji2cVHRGkuSYXY/J+FPGF50BAAAAAAAAAAAAAAAAfAkj1AAAAAAAAAAAAC3c8N8Mz5NvP1l0RpLk0J0PzQODHyg6AwAAAAAAAAAAAAAAAKgHI9QAAAAAAAAAAAAt2AVPXpAJ8yYUnZEkqdypMv985j8XnQEAAAAAAAAAAAAAAADUkxFqAAAAAAAAAACAFurCpy/MPb+/p+iMJEnf7n3zxFlPFJ0BAAAAAAAAAAAAAAAAbAIj1AAAAAAAAAAAAC3QZc9dlrvm3lV0RpJkrx32yuTvTy46AwAAAAAAAAAAAAAAANhERqgBAAAAAAAAAABamKunXJ0xs8YUnZEk6b1970wbOq3oDAAAAAAAAAAAAAAAAKABjFADAAAAAAAAAAC0INdNvy43zLwh67O+6JTs+pVd88Lfv1B0BgAAAAAAAAAAAAAAANBARqgBAAAAAAAAAABaiFt+d0tGzxjdIgaoe3TpkTnD5xSdAQAAAAAAAAAAAAAAADSCEWoAAAAAAAAAAIAWYNyscbni+SuybsO6olPytc5fy7RzphWdAQAAAAAAAAAAAAAAADSSEWoAAAAAAAAAAICC3f3K3bn0t5e2iAHq7h27Z+b3ZqZTp05FpwAAAAAAAAAAAAAAAACNZIQaAAAAAAAAAACgQA/94aFc9MxFWbthbdEp6daxW2YNmWWAGgAAAAAAAAAAAAAAANoII9QAAAAAAAAAAAAFmThvYkY8NaJFDFBvt/V2mTpkqgFqAAAAAAAAAAAAAAAAaEOMUAMAAAAAAAAAABRg8vzJGfb4sNSsryk6JdtutW1mDJ2R7p26F50CAAAAAAAAAAAAAAAANCEj1AAAAAAAAAAAAJvZjEUzcvZjZ2f1+tVFp6RL+y559vRnDVADAAAAAAAAAAAAAABAG2SEGgAAAAAAAAAAYDOasWhGBj8yOKvXFT9A3bld50w+Y3J6de9VdAoAAAAAAAAAAAAAAADQDIxQAwAAAAAAAAAAbCZzq+bm7x79u3y29rOiU9KxomMmnjnRADUAAAAAAAAAAAAAAAC0YUaoAQAAAAAAAAAANoP5VfMz6L5BWVmzsuiUdCjvkAe/+2D27b5v0SkAAAAAAAAAAAAAAABAMzJCDQAAAAAAAAAA0MzmV83PwPsHZsWaFUWnpH1Z+0w4ZUIqe1YWnQIAAAAAAAAAAAAAAAA0MyPUAAAAAAAAAAAAzaiquipHPXBUPl39adEpaV/aPuNPHm+AGgAAAAAAAAAAAAAAALYQRqgBAAAAAAAAAACaSVV1VSrvqMwnf/mk6JRUlFZk3AnjMrDXwKJTAAAAAAAAAAAAAAAAgM3ECDUAAAAAAAAAAEAzqK6uzqF3HZqPV31cdEoqSisy5jtjMqj3oKJTAAAAAAAAAAAAAAAAgM3ICDUAAAAAAAAAAEATq66uTv+7+ueDlR8UnZLykvJcd9R1OW2v04pOAQAAAAAAAAAAAAAAADYzI9QAAAAAAAAAAABNqLq6Ogf8+oBUrawqOiVlJWW5+oirc26fc4tOAQAAAAAAAAAAAAAAAApghBoAAAAAAAAAAKAJHXzPwVm6YmnRGSkrKcuoQ0ZlWP9hRacAAAAAAAAAAAAAAAAABTFCDQAAAAAAAAAA0ET6ju2bxZ8uLjojpSnNxZUX5/wDzy86BQAAAAAAAAAAAAAAACiQEWoAAAAAAAAAAIAmcNCvDsrCPy8sOiOlKc2FB1yYkQNGFp0CAAAAAAAAAAAAAAAAFMwINQAAAAAAAAAAQCMdfMfBmffRvKIzkiQj+o/IpYddWnQGAAAAAAAAAAAAAAAA0AIYoQYAAAAAAAAAAGiEgf80MH/48A9FZyRJhuw7JFceeWXRGQAAAAAAAAAAAAAAAEALYYQaAAAAAAAAAACggY6/9/jMqZpTdEaS5Jy9z8kNx95QdAYAAAAAAAAAAAAAAADQghihBgAAAAAAAAAAaICT7jspM96ZUXRGkmRw78G5+bibi84AAAAAAAAAAAAAAAAAWhgj1AAAAAAAAAAAAJvo9AmnZ+qSqUVnJEmO+8ZxGXvi2KIzAAAAAAAAAAAAAAAAgBbICDUAAAAAAAAAAMAmOPuRszNp4aSiM5Ikx+x6TMafMr7oDAAAAAAAAAAAAAAAAKCFMkINAAAAAAAAAABQT8N/MzxPvv1k0RlJkkN3PjQPDH6g6AwAAAAAAAAAAAAAAACgBTNCDQAAAAAAAAAAUA8XPHlBJsybUHRGkmT/HffPP5/5z0VnAAAAAAAAAAAAAAAAAC2cEWoAAAAAAAAAAIAvcfEzF+ee399TdEaSpG/3vnn6e08XnQEAAAAAAAAAAAAAAAC0AkaoAQAAAAAAAAAA/orLnrssY18eW3RGkmSvHfbK5O9PLjoDAAAAAAAAAAAAAAAAaCWMUAMAAAAAAAAAAHyBq6dcnTGzxhSdkSTZvevumTZ0WtEZAAAAAAAAAAAAAAAAQCtihBoAAAAAAAAAAGAjrpt+XW6YeUPWZ33RKdn1K7vmxR++WHQGAAAAAAAAAAAAAAAA0MoYoQYAAAAAAAAAAPgvbvndLRk9Y3SLGKDeeZudM/WsqUVnAAAAAAAAAAAAAAAAAK2QEWoAAAAAAAAAAID/ZNyscbni+SuybsO6olPytc5fy4xzZ6RTp05FpwAAAAAAAAAAAAAAAACtkBFqAAAAAAAAAACA/+vuV+7Opb+9tEUMUHfv2D0zvzfTADUAAAAAAAAAAAAAAADQYEaoAQAAAAAAAAAAkjz0h4cy8tmRWbthbdEp6dqha2YNmWWAGgAAAAAAAAAAAAAAAGgUI9QAAAAAAAAAAMAWb+K8iRnx1IjUrK8pOiXbbb1dpv9gugFqAAAAAAAAAAAAAAAAoNGMUAMAAAAAAAAAAFu0yfMnZ9jjw1rEAPW2W22bGUNnpHun7kWnAAAAAAAAAAAAAAAAAG2AEWoAAAAAAAAAAGCLNWPRjJz92NlZvX510Snp0r5Lnj39WQPUAAAAAAAAAAAAAAAAQJMxQg0AAAAAAAAAAGyR5lbNzeBHBmf1uuIHqDu365zJZ0xOr+69ik4BAAAAAAAAAAAAAAAA2hAj1AAAAAAAAAAAwBZnbtXcHH/v8fls7WdFp6RjRcdMPHOiAWoAAAAAAAAAAAAAAACgyRmhBgAAAAAAAAAAtijzq+Zn0H2DsrJmZdEp6VDeIQ9+98Hs233folMAAAAAAAAAAAAAAACANqi86AAAAAAAAAAAoG378MMPM2vWrCxYsCDLly9PRUVFunbtmj333DP9+vVLRUVF0YnAFmR+1fwMvH9gVqxZUXRK2pe1z4RTJqSyZ2XRKQAAAAAAAAAAAAAAAEAbZYQaAAAAAAAAAGgWDz/8cG666abMmDEjGzZs2Oh3OnfunMGDB+enP/1pdt99981cWNeGDRvy9ttvZ86cOZk9e3Zmz56dV155JStW1B6r/d73vpd/+qd/2ux9d955Z4YOHbrRny1atCg9evTYvEHQylRVV+WoB47Kp6s/LTol7UvbZ/zJ4w1QAwAAAAAAAAAAAAAAAM3KCDUAAAAAAAAA0KSWLl2as846K1OnTv3S765YsSJ33HFH7rnnnvz85z/Pz3/+85SUlGyGyv/n0UcfzcyZMzN79uy8/PLL+fTT4sdpN+bdd9/NhRdeWHQGtFpV1VUZcOeAfPKXT4pOSUVpRcadMC4Dew0sOgUAAAAAAAAAAAAAAABo44xQAwAAAAAAAABN5q233sphhx2W9957b5OeW7NmTS677LLMmzcv99xzT8rKypqpsK4f/OAHLXZ4+j8bOnRoq+iElqi6ujqH3nVoln22rOiUlJeUZ8x3xmRQ70FFpwAAAAAAAAAAAAAAAABbACPUAAAAAAAAAECTWLZsWY466qiNDlD37ds3J554Ynr27JlVq1blrbfeyn333Zc//elPtb53//33p1u3brnxxhs3U3XrMG7cuDzzzDNFZ0CrVF1dnf539c8HKz8oOiXlJeW5/ujrc9pepxWdAgAAAAAAAAAAAAAAAGwhjFADAAAAAAAAAE1i2LBhWbJkSa2zzp07Z/z48Rk0aFCd719zzTW55pprcvnll9c6v+mmm3LMMcfk29/+dnPmfqmuXbumb9+++cpXvpIHH3ywsI4//vGPGTly5Oefu3Tpku7du+fNN98srAlai+rq6lTeXZmqlVVFp6SspCxXH3F1zu1zbtEpAAAAAAAAAAAAAAAAwBaktOgAAAAAAAAAAKD1e/bZZ/Poo4/WOmvXrl1++9vfbnSAOkkqKioyatSo3HjjjXV+dsEFF2Tt2rXNkbpRXbp0yeGHH57/+T//ZyZMmJCFCxfmo48+yqRJk/KjH/1os3X8Vxs2bMjQoUOzYsWKz8+uv/76dO/evbAmaE0OvufgLFm+5Mu/2MxKU5pRh4zKsP7Dik4BAAAAAAAAAAAAAAAAtjDlRQcAAAAAAAAAAK3fVVddVeds1KhR6dev35c++5Of/CRPPvlknn322c/P5s+fn/vuuy/nnntuk3ZuzCuvvJIePXqkpKSk2d+1qX75y1/mueee+/zzwIEDM3To0Nxzzz0FVkHr0Hds3yz+dHHRGSlNaS4ZcEnOP/D8olMAAAAAAAAAAAAAAACALVBp0QEAAAAAAAAAQOv2+uuvZ9q0abXOtt9++4wcObLed1x77bV1zn75y182uq0+evbs2SIHqBctWpSf/vSnn3/u2LFjbr/99gKLoPU46FcHZeGfFxadkSS58IALM3JA/f/3IQAAAAAAAAAAAAAAAEBTMkINAAAAAAAAADTKAw88UOdsyJAhadeuXb3v6Nu3b/r27VvrbObMmVm0aFGj+1qjDRs2ZMiQIVm5cuXnZ9dee2169OhRXBS0EofddVjmfTSv6IwkyfD9hufSwy4tOgMAAAAAAAAAAAAAAADYghmhBgAAAAAAAAAa5emnn65zduqpp27yPRt7ZmN3bwluueWWTJ069fPPAwYMyHnnnVdgEbQOA/9pYF59/9WiM5IkQ/YdktFHjy46AwAAAAAAAAAAAAAAANjCGaEGAAAAAAAAABps5cqVefnll2uddejQIfvtt98m33XwwQfXOZs2bVqD21qrBQsW5JJLLvn881ZbbZU77rgjJSUlBVZBy3f8vcdnTtWcojOSJOfsfU5uOPaGojMAAAAAAAAAAAAAAAAAjFADAAAAAAAAAA03d+7crF+/vtZZv379Ul5evsl39e/fPxUVFbXO5sxpGYOym8v69eszZMiQfPbZZ5+fXXHFFdl9990LrIKW79T7T82Md2YUnZEk+e4e383Nx91cdAYAAAAAAAAAAAAAAABAEiPUAAAAAAAAAEAj/Nu//Vuds169ejXornbt2uXrX/96rbMFCxZk7dq1DbqvNbrpppsybdq0zz/369cvF110UYFF0PKdPuH0PPfH54rOSJIc943jcsfJdxSdAQAAAAAAAAAAAAAAAPA5I9QAAAAAAAAAQIMtXry4ztkuu+zS4Pt23nnnWp/XrVuXJUuWNPi+1uStt97KpZde+vnnioqK3HnnnSkrKyuwClq2oY8NzaSFk4rOSJIcucuRGX/K+KIzAAAAAAAAAAAAAAAAAGoxQg0AAAAAAAAANFhVVVWds5122qnB923s2ffff7/B97UW69evz/e///2sWrXq87NLL700e++9d4FV0LIN/83wPPrmo0VnJEkO3fnQPHzGw0VnAAAAAAAAAAAAAAAAANRRXnQAAAAAAAAAANB6ffzxx3XOOnXq1OD7NvbssmXLGnxfa3H99dfnd7/73eef99577/zsZz8rsKjpjBkzJrfddluzv2fBggXN/g5ajguevCAT5k0oOiNJsv+O++efz/znojMAAAAAAAAAAAAAAAAANsoINQAAAAAAAADQYCtXrqxztvXWWzf4vo09+9lnnzX4vtZg3rx5ueyyyz7/XFZWljvvvDMVFRUFVjWdDz/8MG+88UbRGbQhFz9zce75/T1FZyRJ9vnqPnn6e08XnQEAAAAAAAAAAAAAAADwhUqLDgAAAAAAAAAAWq+ampo6Z1tttVWD79vYCPWaNWsafF9Lt27dunz/+9/PX/7yl8/PRo4cmX79+hVYBS3XZc9dlrEvjy06I0my1w57ZcqQKUVnAAAAAAAAAAAAAAAAAPxVRqgBAAAAAAAAgCZVUlLSpM9u2LChMTkt2j/+4z/mpZde+vzzHnvskcsvv7y4IGjBrp5ydcbMGlN0RpJk9667Z9rQaUVnAAAAAAAAAAAAAAAAAHwpI9QAAAAAAAAAQINVVFTUOVu1alWD79vYs+3atWvwfS3Z66+/XmtwuqSkJHfccUe22mqr4qKghbpu+nW5YeYNWZ/1Radk16/smhd/+GLRGQAAAAAAAAAAAAAAAAD1YoQaAAAAAAAAAGiwDh061Dlr6hHqjh07Nvi+lmrt2rX53ve+lzVr1nx+dt5556WysrLAKmiZxs0al9EzRreIAeqdt9k5U8+aWnQGAAAAAAAAAAAAAAAAQL2VFx0AAAAAAAAAALReXbt2rXNWXV3d4Ps29uzG3tHajR49OnPmzPn8c48ePXLttdcWWNR8dthhh+y5557N/p4FCxZk9erVzf4eNq+7X7k7P/vtz7Juw7qiU/K1zl/LjHNnpFOnTkWnAAAAAAAAAAAAAAAAANSbEWoAAAAAAAAAoMG++tWv1jl79913G3zfO++8U693tGbvvvturrrqqlpnt99+ezp27FhQUfMaMWJERowY0ezv+da3vpU33nij2d/D5vPQHx7KRc9c1CIGqLt17JaZ35tpgBoAAAAAAAAAAAAAAABodYxQAwAAAAAAAAAN1rNnzzpnf/zjHxt835IlS2p9Lisry84779zg+1qijz76KGvWrPn8c7t27TJy5MhNumP+/Pl1zr7zne+kXbt2tc6uvPLKDBo0qGGhUKCJ8yZmxFMjsnbD2qJT0rVD18wZMscANQAAAAAAAAAAAAAAANAqGaEGAAAAAAAAABpsjz32qHO2sYHk+lizZk3eeeedWme77bZbysvb9j/esGbNmrz66quNvmfevHl1zj7++ONG3wub28R5EzPs8WGpWV9TdEq223q7TP/BdAPUAAAAAAAAAAAAAAAAQKtVWnQAAAAAAAAAANB69enTJ6Wltf/xg9mzZ2ft2rWbfNfs2bNTU1N7dHa//fZrVB/QukyePznDHh+W1etXF52SbbfaNjOGzkj3Tt2LTgEAAAAAAAAAAAAAAABoMCPUAAAAAAAAAECDdezYMX369Kl1tnLlyrzyyiubfNf06dPrnB1yyCENbgNalxmLZuTsx85uEQPUXdp3ybOnP2uAGgAAAAAAAAAAAAAAAGj1jFADAAAAAAAAAI1y7LHH1jl7+OGHN/mejT2zsbtbu3333TcbNmxo1F+HHnponXsXLVpU53vf//73N/8fEBpgbtXcDH5kcFavK36AunO7zpl8xuT06t6r6BQAAAAAAAAAAAAAAACARjNCDQAAAAAAAAA0yumnn17n7K677sqaNWvqfccrr7ySWbNm1Trbf//907Nnz0b3AS3b3Kq5Of7e4/PZ2s+KTkmH8g6ZeOZEA9QAAAAAAAAAAAAAAABAm2GEGgAAAAAAAABolL322isDBgyodfbhhx/mF7/4Rb3vuOSSS+qc/fjHP250G9Cyza+an0H3DcrKmpVFp6RDeYdMOGVC9u2+b9EpAAAAAAAAAAAAAAAAAE3GCDUAAAAAAAAA0Gg///nP65yNGjUqL7/88pc+e+utt2bSpEm1znbdddeceeaZ9Xp3jx49UlJSUuuvKVOm1OtZoDjzq+Zn4P0Ds2LNiqJT0r6sfX590q9T2bOy6BQAAAAAAAAAAAAAAACAJmWEGgAAAAAAAABotGOOOSYnnnhirbPVq1fn8MMPz+OPP77RZ2pqanLVVVfl/PPPr/Ozm2++ORUVFc3SChSvqroqxzx4TD5d/WnRKWlf2j7jTx6fgb0GFp0CAAAAAAAAAAAAAAAA0OTKiw4AAAAAAAAAANqG22+/PXPmzMm77777+dny5cszaNCg9OvXLyeeeGJ69uyZVatW5e233869996bpUuX1rnnvPPOy3HHHbfZumfPnp2///u//8KfV1dX1zmbOHFi9t133y98pl+/fvnVr37VFHnQ5lRVV2XAnQPy8aqPi05JRWlFxp0wzgA1AAAAAAAAAAAAAAAA0GYZoQYAAAAAAAAAmsQOO+yQZ555JkcccUSqqqpq/Wz27NmZPXv2l94xePDg3Hjjjc1UuHHV1dV59dVXN+mZP//5z/nzn//8hT/fdtttG1kFbVN1dXUOvevQLPtsWdEpKS8pz5jvjMmg3oOKTgEAAAAAAAAAAAAAAABoNqVFBwAAAAAAAAAAbUfv3r3z0ksvZcCAAZv0XEVFRUaNGpX7778/ZWVlzVQHFKm6ujr97+qfD1Z+UHRKykvKc/3R1+e0vU4rOgUAAAAAAAAAAAAAAACgWRmhBgAAAAAAAACa1E477ZTnn38+Dz74YA466KCUlJR84Xc7deqUIUOG5LXXXsvll1+e0lL/KAO0RdXV1am8uzJVK6uKTklZSVmuPuLqnNvn3KJTAAAAAAAAAAAAAAAAAJpdedEBbBk+/PDDzJo1KwsWLMjy5ctTUVGRrl27Zs8990y/fv1SUVFRdGItVVVVWbRoUd5555188MEHWblyZWpqarLNNtukS5cu6dGjR/r06ZNtttmmWTtqamoya9aszJs3L8uWLfu8Ybfddkv//v2zww47NOv7AQAAAAAAABqqpKQkgwcPzuDBg/PBBx/kpZdeysKFC7N8+fKUl5dn++23T+/evdO/f/+0a9euUe9avHhxo54/7LDDsmHDhkbdsblNmTKl6ATYJAffc3CWLF9SdEZKU5pRh4zKsP7Dik4BAAAAAAAAAAAAAAAA2CyMUNOsHn744dx0002ZMWPGF/4Lu507d87gwYPz05/+NLvvvvtmLkw++eSTTJ8+PTNmzMiLL76Y3//+9/noo4++9LmSkpLsvffeOffcc3POOeekW7duTdb05ptv5h//8R/z0EMPZcWKFV/4/gEDBuQnP/lJTjnllCZ7NwAAAAAAAEBT69atW44//viiM4CC7H/7/ln86eKiM1Ka0lwy4JKcf+D5RacAAAAAAAAAAAAAAAAAbDalRQfQNi1dujSHHXZYTjvttEyfPv0LB6iTZMWKFbnjjjuy995756qrrvqr320Oo0ePzgknnJDRo0fnX//1X+s1QJ0kGzZsyGuvvZaRI0dmt912yw033JC1a9c2qmX9+vW54oorsvfee+fOO+/8wgHq/3j/tGnTcuqpp+bwww/Pe++916h3AwAAAAAAAAA0tYN+dVDeWvZW0RlJkhH9R2TkgJFFZwAAAAAAAAAAAAAAAABsVkaoaXJvvfVW+vfvn6lTp27Sc2vWrMlll12Ws846K+vWrWumuuZRXV2diy66KMcff3xWrVrVoDvWrVuXM844I5dffnlqamo26dkpU6akf//+mT9/foPeDQAAAAAAAADQ1A6767DM+2he0RlJkuH7Dc+VR15ZdAYAAAAAAAAAAAAAAADAZldedABty7Jly3LUUUflvffeq/Ozvn375sQTT0zPnj2zatWqvPXWW7nvvvvypz/9qdb37r///nTr1i033njjZqqurWPHjtlvv/2yxx57pFevXtlhhx3SuXPnrFu3LsuXL89bb72VF154ITNnzsyGDRtqPTtp0qScfPLJ+Zd/+ZeUlJRs0nsvuOCCTJgwoc75dtttl7PPPju9e/fONttsk8WLF+eZZ56pM/K9dOnSHH300ZkzZ06+8pWvbPofHAAAAAAAAACgiRz762Pz6vuvFp2RJBmy75CMPnp00RkAAAAAAAAAAAAAAAAAhTBCTZMaNmxYlixZUuusc+fOGT9+fAYNGlTn+9dcc02uueaaXH755bXOb7rpphxzzDH59re/3Zy5SZL27dvniCOOyLe//e0ceeSR+du//duUlZV96XPz58/PhRdemMcff7zW+aRJk3L77bdn2LBh9W6YOHFibrvttjrnP/rRj3L99denQ4cOtc5/9rOfZcaMGTnllFPy/vvvf36+aNGi/OhHP8qDDz5Y73cDAAAAAAAAADSl4+89Pi++92LRGUmSwb0H54Zjbyg6AwAAAAAAAAAAAAAAAKAwpUUH0HY8++yzefTRR2udtWvXLr/97W83OkCdJBUVFRk1alRuvPHGOj+74IILsnbt2uZIreWKK67Ic889l5EjR6ZPnz71GqBOkl69euU3v/lNfvzjH9f52ejRo+v9/pqamvzkJz+pc/4//sf/yC9/+cs6A9T/obKyMr/73e+y3Xbb1TqfMGFCpkyZUu/3AwAAAAAAAAA0lVPvPzUz3plRdEaS5Lt7fDdjTxxbdAYAAAAAAAAAAAAAAABAoYxQ02SuuuqqOmejRo1Kv379vvTZn/zkJznqqKNqnc2fPz/33Xdfk/U1h5KSkvziF7/ILrvsUut80aJFmT17dr3uuOeee7J48eJaZ3vttVe9hqx79uyZm2++uc75lVdeWa93AwAAAAAAAAA0ldMnnJ7n/vhc0RlJkuO+cVzuOPmOojMAAAAAAAAAAAAAAAAACmeEmibx+uuvZ9q0abXOtt9++4wcObLed1x77bV1zn75y182uq25tW/fPqeeemqd8zfeeKNez2/sz3jFFVekXbt29Xr+rLPOyl577VXr7F//9V/z5ptv1ut5AAAAAAAAAIDGGvrY0ExaOKnojCTJkbscmfGnjC86AwAAAAAAAAAAAAAAAKBFMEJNk3jggQfqnA0ZMqTeQ8pJ0rdv3/Tt27fW2cyZM7No0aJG9zW33Xbbrc7Ze++996XPzZ8/P7Nnz651tuOOO2bQoEGb9P7hw4fXObv//vs36Q4AAAAAAAAAgIYY/pvhefTNR4vOSJJU7lSZh894uOgMAAAAAAAAAAAAAAAAgBbDCDVN4umnn65zduqpp27yPRt7ZmN3tzR/+ctf6pzVZ4B70qRJdc5OOumklJeXb9L7N/Z7+5d/+ZdNugMAAAAAAAAAYFNd+PSFmTBvQtEZSZL9d9w/T5z1RNEZAAAAAAAAAAAAAAAAAC2KEWoabeXKlXn55ZdrnXXo0CH77bffJt918MEH1zmbNm1ag9s2l1mzZtU522233b70uY392QYMGLDJ7+/evXt69epV62zOnDn57LPPNvkuAAAAAAAAAID6uPiZi3PX3LuKzkiS7PPVffL091r+f9E5AAAAAAAAAAAAAAAAwOZmhJpGmzt3btavX1/rrF+/fikvL9/ku/r375+KiopaZ3PmzGlUX3N7++2389hjj9U622qrrXLIIYd86bMb+7MdeOCBDeo46KCDan1et25dXn311QbdBQAAAAAAAADw11z23GUZ+/LYojOSJL23750pQ6YUnQEAAAAAAAAAAAAAAADQIhmhptH+7d/+rc5Zr169GnRXu3bt8vWvf73W2YIFC7J27doG3dfcFi5cmBNOOCF/+ctfap0PGTIk22677V99tqamJgsXLqx1VlFRkV122aVBLbvttludszfffLNBdwEAAAAAAAAAfJGrp1ydMbPGFJ2RJNm96+554e9fKDoDAAAAAAAAAAAAAAAAoMUyQk2jLV68uM5ZQ4eUk2TnnXeu9XndunVZsmRJg+9raqtXr87MmTPz3//7f8+3vvWtOkPPPXv2zLXXXvul9yxZsiTr16+vdfb1r389paUN+4/lf/29Jakzcg0AAAAAAAAA0Bi3/O6W3DDzhqzP+i//cjPr0aVHXvzhi0VnAAAAAAAAAAAAAAAAALRo5UUH0PpVVVXVOdtpp50afN/Gnn3//fez6667NvjOTTV58uSMHDmy1tnatWuzYsWK/OlPf8ratWs3+tw3vvGNPPPMM+nSpcuXvmNz/d5agjFjxuS2225r9vcsWLCg2d8BAAAAAAAAAFuqcbPG5Yrnr2gRA9Q7b7Nzpp0zregMAAAAAAAAAAAAAAAAgBbPCDWN9vHHH9c569SpU4Pv29izy5Yta/B9DfHJJ5/k1Vdfrff3O3bsmB/96Ee54oor0rFjx3o90xZ/b1/kww8/zBtvvFF0BgAAAAAAAADQQHe/cnd+9tufZd2GdUWn5Gudv5YZ585o1D9nAQAAAAAAAAAAAAAAALClMEJNo61cubLO2dZbb93g+zb27Geffdbg+5pTSUlJhg4dmmuuuSY77LDDJj27Jf/eAAAAAAAAAIDW46E/PJSLnrmoRQxQd+vYLTO/N9MANQAAAAAAAAAAAAAAAEA9lRYdQOtXU1NT52yrrbZq8H0bG1Nes2ZNg+9rThs2bMivfvWr7LXXXrniiiuyYsWKej+7Jf/eAAAAAAAAAIDWYeK8iRnx1Iis3bC26JR07dA1U4dMNUANAAAAAAAAAAAAAAAAsAmMUNMsSkpKmvTZDRs2NCZnk5166qnZsGFDrb9WrlyZpUuXZvLkybniiivSs2fPz7//wQcf5PLLL8/f/u3f5sUXX2zwe1v77w0AAAAAAAAAaDsmz5+cYY8PS836uv9F25vbdltvl+k/mJ7unboXnQIAAAAAAAAAAAAAAADQqhihptEqKirqnK1atarB923s2Xbt2jX4vqbSoUOH/M3f/E2OPPLIXHbZZVmwYEFuvfXWdOzY8fPvLF68OAMHDswLL7zwpfdtKb83AAAAAAAAAKD1mTx/cs5+7OysXr+66JRsu9W2mTF0hgFqAAAAAAAAAAAAAAAAgAYoLzqA1q9Dhw51zpp6TPk/Dz23FCUlJRkxYkT23nvvHHvssZ93V1dX5+/+7u/y2muv5Stf+coXPr8l/d522GGH7Lnnns3+ngULFmT16uL/5VcAAAAAAAAAaM1mLJrx7wPU64r//8F3btc5z57+rAFqAAAAAAAAAAAAAAAAgAYyQk2jde3atc5ZdXV1g+/b2LMbe0dLccghh+Tyyy/P//pf/+vzs3fffTfXX399/vf//t9f+NyW9HsbMWJERowY0ezv+da3vpU33nij2d8DAAAAAAAAAG3V3Kq5GfzI4BYxQN2xomMmnjkxvbr3KjoFAAAAAAAAAAAAAAAAoNUqLTqA1u+rX/1qnbN33323wfe988479XpHS/KTn/wknTt3rnU2bty4bNiw4Quf8XsDAAAAAAAAAFqSuVVzM+i+Qfls7WdFp6RDeYc8cdYT2bf7vkWnAAAAAAAAAAAAAAAAALRqRqhptJ49e9Y5++Mf/9jg+5YsWVLrc1lZWXbeeecG37c5tG/fPkcccUStsw8//DBvvPHGFz6z8847p7S09n8E33nnnaxfv75BDf/195Zs/H82AAAAAAAAAAD/1fyq+Tnp/pOyYs2KolPSvqx9JpwywQA1AAAAAAAAAAAAAAAAQBMwQk2j7bHHHnXO5s+f36C71qxZk3feeafW2W677Zby8vIG3bc59ejRo87ZwoULv/D77dq1qzMSXVNTs9Ex6fpYsGBBnbNvfvObDboLAAAAAAAAANhyVFVX5agHjsqnqz8tOiXtS9tn/MnjU9mzsugUAAAAAAAAAAAAAAAAgDbBCDWN1qdPn5SW1v5bafbs2Vm7du0m3zV79uzU1NTUOttvv/0a1be5bLXVVnXOVqxY8Vef6du3b52z3/3udw16/wsvvFDrc1lZWfbZZ58G3QUAAAAAAAAAbBmqqqtSeUdlPvnLJ0WnpH1p+4w7YVwG9hpYdAoAAAAAAAAAAAAAAABAm2GEmkbr2LFj+vTpU+ts5cqVeeWVVzb5runTp9c5O+SQQxrctjl98MEHdc623377v/rMwQcfXOdsY7+DL/P+++/n7bffrnXWt2/fdOjQYZPvAgAAAAAAAAC2DFXVVRlw54B8vOrjolNSUVqRcSeMy6Deg4pOAQAAAAAAAAAAAAAAAGhTjFDTJI499tg6Zw8//PAm37OxZzZ2d0s0c+bMOmfdu3f/q88cc8wxdc5+85vfZO3atZv07kceeaTOWWv5vQEAAAAAAAAAm191dXUOvevQLPtsWdEpKS8pz5jvjDFADQAAAAAAAAAAAAAAANAMjFDTJE4//fQ6Z3fddVfWrFlT7zteeeWVzJo1q9bZ/vvvn549eza6r7nNnTs38+bNq3W27bbbpnfv3n/1uW984xvp27dvrbOlS5fmiSee2KT3jx07ts7ZGWecsUl3AAAAAAAAAABbhurq6hzw6wPywcoPik5JWUlZrj/6+py212lFpwAAAAAAAAAAAAAAAAC0SUaoaRJ77bVXBgwYUOvsww8/zC9+8Yt633HJJZfUOfvxj3/c6Lbmtm7dulxwwQV1zo877rhUVFR86fMb+zOOGjUqNTU19Xr/Aw88kNdee63W2WGHHZZvfvOb9XoeAAAAAAAAANhyVFdXp/LuyixdsbTolJSVlOWaI67JuX3OLToFAAAAAAAAAAAAAAAAoM0yQk2T+fnPf17nbNSoUXn55Ze/9Nlbb701kyZNqnW266675swzz6zXu3v06JGSkpJaf02ZMuVLn7vlllvy7LPP1usdG7N69eqcddZZmTZtWq3zkpKSnHfeefW645xzzskuu+xS6+y1117Lz372sy99dvHixRt9zz/8wz/U690AAAAAAAAAwJbl0HsPzZLlS4rOSGlKc3HlxRnWf1jRKQAAAAAAAAAAAAAAAABtmhFqmswxxxyTE088sdbZ6tWrc/jhh+fxxx/f6DM1NTW56qqrcv7559f52c0335yKiopmaf0Pc+bMydFHH50DDzwwt912W95///16PVdTU5NHH300e++9dx588ME6P//hD3+YAw44oF53tWvXLjfeeGOd8+uuuy4jRozIqlWrNvrcCy+8kAMPPDDLli2rdX7qqafmiCOOqNe7AQAAAAAAAIAtx/6375+Ff15YdEZKU5oLD7gwIweMLDoFAAAAAAAAAAAAAAAAoM0rLzqAtuX222/PnDlz8u67735+tnz58gwaNCj9+vXLiSeemJ49e2bVqlV5++23c++992bp0qV17jnvvPNy3HHHbbbumTNnZubMmTn//PPTu3fv9OnTJ3vuuWe22267bLvttikpKcny5cvzpz/9KXPnzs3zzz9fZ/z5Pxx++OG54YYbNun9J510UoYPH56xY8fWOr/tttvy4IMP5uyzz07v3r3TuXPnLFmyJJMmTcqUKVPq3LPLLrvUuQMAAAAAAAAA4OA7Ds5by94qOiNJMqL/iFx62KVFZwAAAAAAAAAAAAAAAABsEYxQ06R22GGHPPPMMzniiCNSVVVV62ezZ8/O7Nmzv/SOwYMH58Ybb2ymwr9u/fr1ef311/P666836PmTTjop9913X7beeutNfvbWW2/NRx99lEceeaTW+bJly3LTTTd96fM77rhjnnnmmWy33Xab/G4AAAAAAAAAoO067K7D8ocP/1B0RpJk+H7Dc+WRVxadAQAAAAAAAAAAAAAAALDFKC06gLand+/eeemllzJgwIBNeq6ioiKjRo3K/fffn7Kysmaqq61jx45Ncs9OO+2Uhx9+OI899liDBqiTpLy8PBMmTMg//MM/pLx80/bhDznkkMyaNSu77757g94NAAAAAAAAALRNx/762Lz6/qtFZyRJztn7nIw+enTRGQAAAAAAAAAAAAAAAABbFCPUNIuddtopzz//fB588MEcdNBBKSkp+cLvdurUKUOGDMlrr72Wyy+/PKWlm+9vyzFjxuT111/PddddlxNOOCHdu3ev97Nf/epXc/rpp+epp57KokWLcsoppzS6p7S0NFdeeWV+//vf5/vf/346der0hd8tKSlJZWVlJkyYkKlTp+ZrX/tao98PAAAAAAAAALQdJ913Ul5878WiM5Ikg3sPzs3H3Vx0BgAAAAAAAAAAAAAAAMAWp7zoANqukpKSDB48OIMHD84HH3yQl156KQsXLszy5ctTXl6e7bffPr17907//v3Trl27Rr1r8eLFDX52zz33zJ577pmLLrooSfLee+9lwYIFWbx4cT7++OOsXLkyGzZsSOfOndOlS5d069Yt++yzT3bcccdGNf813/zmN3PXXXdl7NixmTVrVubNm5ePPvooa9euzTbbbJNdd901/+2//bd069at2RoAAAAAAAAAgNbr1PtPzdQlU4vOSJJ8d4/vZuyJY4vOAAAAAAAAAAAAAAAAANgiGaFms+jWrVuOP/74ojPqZccdd8yOO+6YAQMGFJ2Sdu3apbKyMpWVlUWnAAAAAAAAAACtxNmPnJ3n/vhc0RlJkmN2PSZ3nHxH0RkAAAAAAAAAAAAAAAAAW6zSogMAAAAAAAAAAICmMfSxoXny7SeLzkiSHLnLkXlg8ANFZwAAAAAAAAAAAAAAAABs0YxQAwAAAAAAAABAG3DBkxfk0TcfLTojSVK5U2UePuPhojMAAAAAAAAAAAAAAAAAtnhGqAEAAAAAAAAAoJW78OkLc8/v7yk6I0nSt3vfPHHWE0VnAAAAAAAAAAAAAAAAABAj1AAAAAAAAAAA0Kpd/MzFuWvuXUVnJEn2+eo+mfz9yUVnAAAAAAAAAAAAAAAAAPB/GaEGAAAAAAAAAIBW6uopV2fsy2OLzkiS9N6+d6YMmVJ0BgAAAAAAAAAAAAAAAAD/iRFqAAAAAAAAAABoha6bfl1umHlD0RlJkt277p4X/v6FojMAAAAAAAAAAAAAAAAA+C+MUAMAAAAAAAAAQCtzy+9uybXTr836rC86JT269MiLP3yx6AwAAAAAAAAAAAAAAAAANqK86AAAilWTmnyy+pOiMwAAAAAAAACop3GzxuWK569oEQPUO2+zc6adM63oDAAAAAAAAAAAAAAAAAC+QGnRAQAAAAAAAAAAQP3c/crdufS3l2bdhnVFp6R7x+6Zce6MdOrUqegUAAAAAAAAAAAAAAAAAL6AEWoAAAAAAAAAAGgFHvrDQ7nomYuydsPaolPSrWO3zBoyywA1AAAAAAAAAAAAAAAAQAtnhBoAAAAAAAAAAFq4ifMmZsRTI1rEAHXXDl0zdchUA9QAAAAAAAAAAAAAAAAArUB50QEANJ9Oqfsv/JanPBuyoYAaAAAAAACKUFFSUetzu7J2BZUAAI3xm3/7TWrW1xSdkW232jbTfzA93Tt1LzoFAAAAAAAAAAAAAAAAgHowQg3QhnXq1CkdKzpmZc3K/3fWvu4wNQAAAAAAW46duuxUdAIA0AB3nHxH8ljy6JuPFtbQpX2XPHv6swaoAQAAAAAAAAAAAAAAAFqR0qIDAGheh/U4rOgEAAAAAABaiLKSslxy0CVFZwAADXTHyXdkcO/Bhby7c7vOmXzG5PTq3quQ9wMAAAAAAAAAAAAAAADQMEaoAdq48aeMz1477FV0BgAAAAAABSsvKc//1+//S2XPyqJTAIBGGHvi2AzZd8hmfWfHio6ZeOZEA9QAAAAAAAAAAAAAAAAArVB50QEANL9pQ6dl3Kxxeertp/LBZx8UnQMAAAAAwGZUVlKW3bfbPecfeH727b5v0TkAQBO44dgb0q60Xca+PLbZ39WhvEOeOOsJ/3cEAAAAAAAAAAAAAAAAQCtlhBpgCzGs/7AM6z+s6AwAAAAAAAAAmsDoo0enXVm7jJk1Juuzvlne0b6sfSacMsEANQAAAAAAAAAAAAAAAEArVlp0AAAAAAAAAAAAsOmuPPLKXHjAhSlthn8EqH1p+4w/eXwqe1Y2+d0AAAAAAAAAAAAAAAAAbD5GqAEAAAAAAAAAoJW69LBLc8mAS1JWUtZkd1aUVmTcCeMysNfAJrsTAAAAAAAAAAAAAAAAgGIYoQYAAAAAAAAAgFZs5ICRueaIa5pkiLqitCJjvjMmg3oPaoIyAAAAAAAAAAAAAAAAAIpmhBoAAAAAAAAAAFq5Yf2H5Yajb0h5SXmD7ygvKc91R12X0/Y6rQnLAAAAAAAAAAAAAAAAACiSEWoAAAAAAAAAAGgDzu1zbm477rZUlFZs8rNlJWW5+oirc26fc5uhDAAAAAAAAAAAAAAAAICiGKEGAAAAAAAAAIA24rS9TsuvTvhV2pe2r/czZSVlGXXIqAzrP6wZywAAAAAAAAAAAAAAAAAoghFqAAAAAAAAAABoQwb1HpRxJ4yr1xB1aUpzceXFOf/A8zdDGQAAAAAAAAAAAAAAAACbmxFqAAAAAAAAAABoYwb1HpTx3x2f9mVfPERdmtJceMCFGTlg5GYsAwAAAAAAAAAAAAAAAGBzMkINAAAAAAAAAABt0MBeA/PIqY+kQ3mHjf58RP8RufSwSzdzFQAAAAAAAAAAAAAAAACbkxFqAAAAAAAAAABooyp7VubJs59Mx4qOtc6H7zc8Vx55ZUFVAAAAAAAAAAAAAAAAAGwuRqgBAAAAAAAAAKAN27f7vnnirCfSuV3nJMk5e5+T0UePLrgKAAAAAAAAAAAAAAAAgM3BCDUAAAAAAAAAALRx+3bfN78987cZvt/w3HzczUXnAAAAAAAAAAAAAAAAALCZlBcdAAAAAAAAAAAANL9e3XtldPfRRWcAAAAAAAAAAAAAAAAAsBmVFh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNMzQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQBhmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGiDjFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAtEFGqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADaICPUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG2QEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACANsgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAbZIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA0yQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQBhmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGiDjFADAAAAAAAAAAAAAADw/7N331FSlmf/wK+F3QWkShPBIEVQbCiiAhZAxJIoKtaIxAImMSE9bxITY0MT45v8bImJRuzGEqOCBrGCYhcwoIigFEFFQKogZWHn98d7xIyzyM6zZXZnP59zOCdzzdz3c+2Yrwxc89wCAAAAAAAAAAAAecgh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5yCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnIIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAecgh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5yCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnIIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAecgh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5yCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnIIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAecgh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5yCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnIIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAecgh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5yCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnIIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAecgh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5yCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnIIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAecgh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5yCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnIIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAecgh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5yCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnIIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAecgh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5yCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnIIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAecgh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5yCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnIIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAecgh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5yCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnIIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAecgh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5yCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnIIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAecgh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5yCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnIIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeagglUqlct0EQGVo2rRprF27NqPeoEGD6Nq1aw46AgAAAAAAapq5c+fGxo0bM+pNmjSJTz/9NAcdAVBZzIwBAAAAAIDtMTMGAAAAAAAAoC5yCDWQNxo2bFjmF4AAAAAAAAC2p0GDBrFhw4ZctwFABZgZAwAAAAAASZkZAwAAAAAAAJDP6uW6AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqn0OoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAPKQQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAA8pBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADyUGGuGwCoLC1atIhVq1Zl1IuKiqJjx47V3xA1zty5c2Pjxo0Z9QYNGkTXrl1z0BHUDrID2ZMbSEZ2IBnZgWRkB7InN+SLhQsXRklJSUa9RYsW1d8MAJXKzJjt8ZkWkpEdSEZ2IHtyA8nIDiQjO5CM7JAPzIwBAAAAAAAAqIscQg3kjY8//jjXLVDD7bXXXvH2229n1Lt27RozZ87MQUdQO8gOZE9uIBnZgWRkB5KRHcie3AAANZ2ZMdvjMy0kIzuQjOxA9uQGkpEdSEZ2IBnZAQAAAAAAAAConerlugEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKp9DqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADykEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAPKQQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAA8pBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADykEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAPKQQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAA8pBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADykEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAPKQQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAA8pBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADykEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAPKQQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAA8pBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADykEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAPKQQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAA8pBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADykEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAPKQQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAA8pBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADykEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAPKQQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAA8pBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADykEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAPJQYa4bAIDq8r3vfS+WLVuWUW/Tpk0OuoHaQ3Yge3IDycgOJCM7kIzsQPbkBgCA2s5nWkhGdiAZ2YHsyQ0kIzuQjOxAMrIDAAAAAAAAAFA7FaRSqVSumwAAAAAAAAAAAAAAAAAAAAAAAAAAAACgctXLdQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVD6HUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5KHCXDcAQH5YtmxZvP766zF37txYs2ZNFBUVRatWrWLPPfeM3r17R1FRUa5bhBpJdiAZ2am4hQsXxptvvhkLFiyINWvWRCqViiZNmkT79u2ja9euseeee0aDBg1y3SaVTHYgGdlJZvHixTFt2rRYvHhxrFq1KjZu3BjNmzePFi1axB577BH77rtvFBcX57pNqojcJPPuu+/GjBkz4pNPPonly5dHUVFRtG3bNnr06BG9evWKwkJ/pZ/valt2Nm3aFLNnz45Zs2bFJ598EqtXr46ioqLYcccdo02bNnHAAQdEhw4dqryPkpKSeP3112PWrFmxfPnyKCkpiWbNmkXXrl3jwAMPjDZt2lR5DwAA/J/a9pkWagrZgezJTcWZGddNsgPJyE4yZsbITjLmxtS27JgbAwAAAAAAAADUDr55BECFPPjgg3HdddfFiy++GKlUqszXNG3aNE477bT4xS9+Ed27d6/mDjOlUql49913Y+rUqTFlypSYMmVKvPHGG/Hpp5+mve7ss8+O22+/vdr7u/XWW2PEiBFlPjd//vzo1KlT9TZElZCd7Zs0aVIMHDiwwvt8bvHixdGuXbtK24/ckJ2K+eCDD+Lmm2+Oe++9N957772vfG1xcXHst99+cdRRR8XQoUNj//33r9LeqFqy89UuvfTSuOyyyyq0x1fZ1ntOzSc72Zs/f37ccsstcc8998T777//la8tLi6OgQMHxsiRI+PEE090k2SekJvsffTRR/G///u/8dBDD8XChQu3+bpmzZrFqaeeGj/72c+iR48eld4HuVVbslNSUhKTJk2KZ555JiZOnBjTpk2LzZs3f+WaXXbZJU499dS44IILolu3bpXaz+zZs+Pqq6+Of/7znxmZ/VxBQUEceuih8aMf/ShOPvnkSr0+AABfqC2faf9brv88uD3mxnWD7GyfuTFfJjcVY2Zcd8nOVzMzZltkJ3tmxkTIThLmxkTUnuyYGwMAAAAAAAAA1E4FKd9qBSCBDz/8MIYNGxbPPfdcudcUFxfHRRddFBdddFEUFBRUYXeZHnrooXjllVdiypQpMW3atFi9evV21+TiZuIPPvgg9t57723252bi2k92ys/NxPw32amYDRs2xKWXXhrXXXddbNiwIev1gwYNiqeffroKOqOqyU75uKGYL5Od7G3atCmuvPLKuOqqq2LTpk1Zr+/Zs2fccsst0bt370rrieolN9krLS2NSy+9NP73f/83q89ohYWF8dOf/jSuvPJKN+LngdqSnRkzZsR1110XDz/8cKxcuTLRHgUFBXHeeefF//t//y+aNWtWoX5KS0tj9OjRceWVV0ZJSUm51w0YMCD+8Y9/xM4771yh6wMA8IXa8pn2czXhz4PlYW6c/2Sn/MyN+ZzcVIyZcd0lO+VjZsyXyU72zIyJkJ0kzI2JqD3ZMTcGAAAAAAAAAKjdfNMIgKzNmTMnBgwYEIsXL85q3aZNm+Liiy+OWbNmxV133RX169evog4znXfeeeX6YnCujRgxolb0STKyA8nITsXMnz8/jj/++Jg5c2auW6GayU7N0Ldv31y3QJZkJ3ufffZZHHfccTFx4sTEe0yfPj369esX999/f5x00kmV2B3VQW6yt2bNmjj99NNjwoQJWa/dvHlzXH311TFt2rQYN25cNGrUqAo6pDrUpuw89NBDceutt1Zoj1QqFWPGjImnnnoqnnrqqejevXuifbZs2RJnnnlmPPDAA1mvnTRpUhx44IExadKk2G233RJdHwCAL9Smz7Sfy/WfB8vL3Di/yQ5kT24qxsy47pKdmsHMuPaRneyZGRMhO0mYGxNRu7JjbgwAAAAAAAAAULs5hBqArCxfvjwGDx5c5pccDzjggDjhhBOic+fOsX79+pgzZ0784x//iI8++ijtdffee2+0bds2rr322mrquna4+eab48knn8x1G1QR2akcXbt2jSZNmiRaW1RUVMndUB1kp2Jmz54d/fv3jyVLlmQ8t9NOO8XXv/716NGjR7Rt2zZ22GGHWLVqVSxatChmzJgRL774YnzyySc56JrKIDvZadeuXfTs2bPC+0yfPj2jNnLkyArvS/WRnWROO+20Mm8mLioqimOPPTb69esXHTp0iAYNGsTKlStjxowZ8e9//zsWLFiQ9vqSkpI4/fTTY+LEiXHIIYdUU/dUlNxkr7S0dJs3Erdo0SKOP/74OPjgg6NNmzbx6aefxjvvvBNjx46Nd999N+21Tz/9dJxxxhnxyCOPREFBQXW1TyXJl+w0aNAgDjzwwOjXr1+0b98+2rZtG1u2bInFixfHSy+9FI8//nhs3Lgxbc3ChQvjiCOOiMmTJ0fnzp2zvuYPf/jDMm8kbtmyZZx11lnRo0ePaNasWSxYsCCefPLJeO6559Je9+GHH8ZRRx0VU6dOjR133DHr6wMA8H/y5TNtTWRunN9kp3KYG9ctclMxZsZ1l+xkx8yYz8lOMmbGyE72zI2JyJ/smBsDAAAAAAAAANQSKQDIwtChQ1MRkfaradOmqbFjx5b5+k2bNqUuvfTSjDURkRo/fny19d28efMye2jVqlXqqKOOSp1++ukZz5199tnV1t+CBQtSTZs23Xrt5s2bp3bfffeMnubPn19tPVG5ZCd7EydOzNh74sSJlbI3tYfsJLdkyZJUx44dM67TrVu31Lhx41KlpaVfuX7Lli2pl19+OfW9730vNXTo0ErtjaonO9Xv5ZdfLvM9X7t2ba5bIwuyk7377ruvzGsfd9xxqQ8//HCb67Zs2ZIaM2ZM2p+DPv+11157pTZt2lQp/VH15CZ7v/3tb8u89vnnn59asWJFmWu2bNmSuuWWW1KNGjXKWPenP/2pUvqietW27FxyySVbr1dYWJgaMmRI6uGHH06tX7/+K9d99NFHqWHDhpXZ94ABA7LuY+zYsWXu9d3vfje1bt26Mte88MILqZ122iljzWmnnZb19QEA+EJt+0z7uZr+d5DmxvlPdrJnbozcJGdmXLfJTvUzM84PspM9M2NSKdlJwtyYVKr2ZcfcGAAAAAAAAACgdnMINQDl9uSTT2Z86a64uDj1+uuvb3fttddem7F2t912S5WUlFRD5//3JeHmzZunBg4cmPqf//mf1AMPPJCaN2/e1ufLummxum5OKS0tTQ0aNCjt2rfcckuqf//+GT25mbh2kp1k3EyM7CRXWlqaOuqoo8r8svzGjRsT7UftITu5MWLEiIzeRo4cmeu2yILsJHPQQQdl7H3iiSemtmzZUq71zz//fKqoqChjj8cee6xS+qNqyU32Pvzww1TDhg0z9r7wwgvLtf75559PFRcXp61t3Lhx6qOPPqpwb1Sf2pidSy65JNWoUaPUT37yk9TixYuzXn/55ZeXeRPwgw8+WO49Nm3alOrUqVPGHj/5yU+2u3bevHmpli1b+nsGAIBKUhs/036uJv8dpLlx/pOdZMyN6za5Sc7MuG6TndwwM679ZCcZM2NkJ3vmxqRStTM75sYAAAAAAAAAALWbQ6gBKLfDDjss4wt3V155ZbnXDx48OGP9HXfcUYUdf2HevHlfeTNULm9O+ctf/pJ23SOPPDKVSqXcTJxHZCcZNxMjO8ndcccdGfufdNJJqc2bN1faNai5ZKf6ffrpp6kmTZpk9PbKK6/kujWyIDvZ++CDD1IFBQVp+zZs2DDrm8xGjRqV0d/5559f4f6oenKTvR//+McZ+x5yyCHlvgk/lUqlrrrqqow9fvzjH1e4N6pPbczOyy+/nOgm4v923HHHZfQ9ZMiQcq8fM2ZMxvq999673Icm3X333RnrBw4cmPTHAQCo02rjZ9rP1eS/gzQ3zn+yk4y5cd0mN8mZGddtslP9zIzzg+xkz8yYVEp2kjA3JpWqndkxNwYAAAAAAAAAqN3qBQCUw8yZM2Py5MlptdatW8fPf/7zcu/x+9//PqP217/+tcK9lUfnzp2joKCgWq6Vjfnz58cvfvGLrY8bN24cf//733PYEZVNdiAZ2Ulu48aNceGFF6bVWrVqFTfffHPUr18/Jz1RfWQnNx544IFYu3ZtWm3vvfeOgw8+OEcdkS3ZSWb27NmRSqXSagMHDox27dpltc+wYcPK3JuaTW6SeeihhzJqF198cdSrV/6/qv/Rj34UrVq1SqvddtttsX79+gr3R9Wrrdnp06dP1v9+/7LLLrsso/bkk0/Gpk2byrW+rJ/xsssui+Li4nKtHzZsWOy9995ptYkTJ/o9BwAgS7X1M+3naurfQZob5z/ZgezJTXJmxnWb7OSGmXHtJzvJmBkjO8mYG1Nbs2NuDAAAAAAAAABQuzmEGoByue+++zJq5557brm/rBcRccABB8QBBxyQVnvllVdi/vz5Fe6vNkqlUnHuuefGunXrttZ+//vfR6dOnXLXFJVOdiAZ2Unu7rvvjo8++iitdvHFF0fr1q1z1BHVSXZy45ZbbsmojRgxIgedkJTsJLN06dKMWo8ePbLep6w1S5YsSdQT1Udusvfuu+/GwoUL02pt27aNwYMHZ7VPw4YN45RTTkmrrV69Oh599NEK90jVq8vZ6dWrV8YNyRs2bIjFixdvd+17770XU6ZMSavtvPPOMWTIkKx6+M53vpNRu/fee7PaAwCgrqvLn2mrirlx3SA7kD25Sc7MuG6TndwwM679ZCcZM2NkJ3vmxkTU7eyYGwMAAAAAAAAA5I5DqAEolwkTJmTUvvzF1fIoa01Ze9cFN9xwQzz33HNbHx966KExatSoHHZEVZAdSEZ2kvvyjY3FxcVx1lln5agbqpvsVL9Zs2bFyy+/nFZr0KBBDB8+PEcdkYTsJFPWjW/Z3Az3uQYNGmTUGjZsmKgnqo/cZG/GjBkZtT59+kRBQUHWe/Xr1y+j9u9//ztRX1Svup6dr33taxm1jz/+eLvrnnjiiYzaiSeeGIWFhVldv6z37fHHH89qDwCAuq6uf6atCubGdYPsQPbkJjkz47pNdqqfmXF+kJ1kzIyRneyZGxMhO+bGAAAAAAAAAAC54RBqALZr3bp1MW3atLTaDjvsEL169cp6r8MOOyyjNnny5MS91VZz586NCy+8cOvjhg0bxpgxYxJ9gZiaS3YgGdlJbtGiRfHKK6+k1Y466qho2bJljjqiOslObowZMyajduKJJ0arVq1y0A1JyE5ynTt3zqgtWrQo633KWtO1a9dEPVE95CaZZcuWZdR23XXXRHt17NgxozZp0qREe1F9ZCfis88+y6g1atRou+vK+tkOPfTQrK/frl272G233dJqU6dOLbMvAAAy+Uxb+cyN6wbZgezJTXJmxnWb7OSGmXHtJzvJmRnXbbKTjLkxsmNuDAAAAAAAAACQKw6hBmC7/vOf/0RpaWlarXfv3lFYWJj1XgceeGAUFRWl1aZOnVqh/mqb0tLSOPfcc9O+pHjZZZdF9+7dc9gVVUF2IBnZSe7pp5/OqPXp0ycHnZALslP9SkpK4q677sqojxgxIgfdkJTsJLfvvvtm3Dz/zDPPRElJSVb7jB8/PqM2aNCgCvVG1ZKbZFasWJFRa9asWaK9WrRokVFbuHBhfPLJJ4n2o3rU9exs2bIl5s+fn1Hfeeedt7u2rJ+tb9++ifro169fRl/Tp09PtBcAQF1T1z/TVjZz47pDdiB7cpOcmXHdJjvVz8w4P8hOcmbGdZvsJGNuTF3PjrkxAAAAAAAAAEDuOIQagO165513Mmq77bZbor2Ki4tjl112SavNnTs3Nm/enGi/2ui6666LyZMnb33cu3fv+NnPfpbDjqgqslP5xo4dG+edd17su+++0bZt2yguLo6WLVtGt27d4vDDD49f/epX8e9//zs2bNiQ61apANlJ7sUXX8yo7bffflv/dyqViieeeCJGjBgRe++9dzRt2jSKi4ujXbt2sc8++8Tw4cPjzjvvjOXLl1dj11QW2al+48aNi6VLl6bVOnXqFEceeWSOOiIJ2Umufv368Z3vfCet9vHHH8f1119f7j1WrFgRf/jDH9JqLVq0iOHDh1dKj1QNuUmmUaNGGbX169cn2uu/Dyj7b7NmzUq0H9Wjrmfn8ccfz/j/7q677hpt2rT5ynUlJSUxb968tFpRUVHsuuuuifro2rVrRm327NmJ9gIAqGvq+mfaymZuXHfITuUzN85/cpOcmXHdJjvVz8w4P8hOcmbGdZvsJGNuTF3PjrkxAAAAAAAAAEDuOIQagO1asGBBRi3pl/UiIjp27Jj2eMuWLbFw4cLE+9Umc+bMid/85jdbHxcVFcWtt94a9evXz2FXVBXZqXzXXntt3HbbbfHmm2/GsmXLoqSkJFauXBnvvfdeTJ48Of7whz/EcccdF506dYorr7wyVq9eneuWSUB2knvzzTczat26dYuIiLfeeit69+4dxxxzTNx6660xc+bMWLt2bZSUlMSSJUvirbfeirvvvjvOPvvs6NSpU1x00UUyVMvITvUbM2ZMRu3cc8+NgoKCHHRDUrJTMRdeeGF06dIlrfbLX/4ybr311u2u/eCDD+LYY4+NxYsXp9Wvv/76aNq0aaX2SeWSm2RatWqVUVu2bFmivb58oMXn5s6dm2g/qkddz87NN9+cUTvhhBO2u27hwoVRWlqaVttll12iXr1kI64vv28RkXGzMgAAZavrn2krk7lx3SI7lc/cOP/JTXJmxnWb7FQ/M+P8IDsVY2Zcd8lOMubG1PXsmBsDAAAAAAAAAOSOQ6gB2K6PP/44o/a1r30t8X5lrV2yZEni/WqL0tLSOOecc2L9+vVba7/5zW9in332yWFXVCXZyZ0lS5bERRddFPvuu2+88soruW6HLMlOcmV9Ab558+Zx6623Ru/evWPatGnl2mft2rVx5ZVXxkEHHRRz5syp7DapIrJTvT744IN44okn0mr16tWL8847L0cdkZTsVEyTJk3i8ccfj/bt22+tbdmyJUaMGBGHH3543H777fHuu+/GunXrYvPmzbFs2bJ49tln4yc/+Unstdde8dprr6Xtd8UVV8Tw4cOr+8cgS3KTTFk/55QpUxLtta11+fi+5ZO6nJ2JEyfGo48+mlYrKCiIESNGbHdtXX7fAABqGp/NKoe5cd0jO7ljblx7yU1yZsZ1m+xULzPj/CE7FWNmXHfJTjLmxtTl7JgbAwAAAAAAAADkVmGuGwCg5luxYkVGrUmTJon3K2vt8uXLE+9XW/zpT3+Kl19+eevjffbZJ37961/nsCOqmuxUjUaNGkXr1q2jWbNmsW7duli+fHl8+umnZb524cKFcfjhh8edd94ZZ5xxRjV3SlKyk0xJSUmZP9ezzz4b559/fpSWlqbVmzZtGu3atYstW7bE4sWL0w67+NycOXOiT58+8dJLL8Uee+xRZb1TOWSnet12220ZuTr66KNjl112yVFHJCU7Fde9e/eYNm1afPe7341HHnlka33y5MkxefLkcu3RuXPnuP766+O4446roi6pTHKTzMEHHxxFRUVRUlKytfbOO+/E3Llzo2vXrlnt9dhjj5VZ/+STTyrUI1WrrmZn9erVZR66MmzYsNh33323u76uvm8AADWRz2aVw9y47pGdqmFunN/kJhkzY2SnepkZ5w/ZqTgz47pJdpIxN6auZsfcGAAAAAAAAAAg9+rlugEAar5169Zl1Bo1apR4v7LWfvbZZ4n3qw1mzZoVF1988dbH9evXj1tvvTWKiopy2BVVTXYqR6tWrWL48OFx7733xrvvvhtr166NhQsXxltvvRXz58+PNWvWxJw5c+LGG2+MHj16ZKwvKSmJc845p9w3s5B7spPMqlWrIpVKZdRHjBix9abHgoKCGD58eLz66quxevXqmDNnTsydOzfWrFkTzz77bBx99NEZ61euXBknn3xymf9cqFlkp/qkUqm47bbbMuojRozIQTdUlOxUjp122ikefvjhmDp1aowaNarc7+EBBxwQDzzwQMyZM8fNxLWI3CSzww47RJ8+fdJqqVQqrr322qz2eeaZZ2L69OllPuczW81WF7OTSqXiW9/6VixYsCCt3rp16/jjH/9Yrj3q4vsGAFBT+WxWcebGdZPsVA5z47pFbpIxM0Z2qo+ZcX6RncphZlz3yE4y5sbUxeyYGwMAAAAAAAAA1AwOoQZgu0pKSjJqDRs2TLxfWV/Y27RpU+L9arotW7bEOeecExs2bNha+/nPfx69e/fOYVdUB9mpmPbt28fdd98dH374Ydx5551xxhlnxG677Rb16mV+hO3WrVtccMEFMXPmzLjhhhuiQYMGac9v3LgxTjvtNF+sryVkJ5mNGzeWWV+/fn1E/N97+PDDD8edd94ZBx10UBQUFGx9TWFhYQwcODAmTJgQ119/fdpzERFvv/12jB49uuqap1LITvV59tlnY/78+Wm1tm3bxpAhQ3LUERUhO5Vn7ty5MWbMmHjggQe2/v6zPVOnTo1f//rXce2118batWuruEMqi9wk973vfS+jduONN8bzzz9frvVr1qyJb3/729t8Pl/ft3xRF7Nz4YUXxrhx49JqBQUFceutt8ZOO+1Urj3q4vsGAFBT+WxWMebGdZfsVIy5cd0kN8mYGSM71cfMOL/ITuUxM65bZCc5c+O6rS5mx9wYAAAAAAAAAKBmcAg1AIl8+Uajiq5NpVIVaadGu/rqq+O1117b+nj33XePSy+9NHcNkVOyU37du3ePYcOGZdwY/FUKCgpi1KhR8dhjj0VRUVHacx9//HFcc801ld0m1UR2tm97P9NNN90UJ5xwwnb3+cEPfhC/+c1vMup//etfY9WqVUnbI0dkp2rccsstGbVvfetbGb/3UHvJTnZKSkrit7/9bey+++5x4403xtKlS9Oe32GHHaJTp06x5557Rvv27TMOh3nvvffif/7nf6JHjx7x7LPPVmfrVCK5KZ9TTz01unXrllYrLS2N448/Pp566qmvXPvRRx/FwIEDY968edt8TUX+OZAb+ZydG2+8Mf7whz9k1H/961/H8ccfX6G98/l9AwCobXw2Kz9zY/6b7JSfuTGfk5vtMzOmLLJTNcyM85/sZMfMmM/JTvmYG/Nl+Zwdc2MAAAAAAAAAgJrDIdQAbFdZN0asX78+8X5lrS0uLk68X002c+bMtBuHCwoKYsyYMdGwYcPcNUW1kZ3cOfLII8v8wvI111wTW7ZsyUFHZEN2kvmqGxkHDBgQ3/rWt8q918UXXxydO3dOq61Zsybuu+++xP1R9WSneqxYsSIefvjhjPqIESNy0A2VQXYqZtOmTTF06NC44oor0j5nNWrUKEaNGhVTpkyJNWvWxPz582PmzJnx4YcfxooVK+Khhx6Kww8/PG2vDz74II4++uj417/+Vd0/BlmSm+Tq168fd999d8bPt2bNmjjqqKPi5JNPjrFjx8bixYujpKQkVqxYES+//HL88pe/jO7du8e0adO2rmnXrl3G/v6+oWarS9m555574gc/+EFG/eyzz47Ro0dntVddet8AAGo6n82SMzeu22Qnd8yNay+5ScbMGNmpHmbG+Ud2KsbMuO6SneTMjeu2upQdc2MAAAAAAAAAgJrFIdQAbNcOO+yQUavsL+w1btw48X411ebNm+Pss8+OTZs2ba2NGjUqDjnkkBx2RXWSndwaNWpUdOrUKa22YsWKeO2113LTEOUmO8l81c9U1pf4v0pRUVF85zvfyahPmjQp27aoRrJTPe65557YuHFjWu2QQw6JPfbYI0cdUVGyUzE/+tGP4rHHHkur7bbbbvH666/HDTfcEAcccEDUr18/7fnmzZvHSSedFM8991zceOONUa/eF39FuXnz5hg2bFjMnDmzWvonGbmpmIMOOij+9re/pf1//3MPPfRQnHjiidG+ffsoLi6OVq1aRb9+/eLqq6+OdevWbX3dN7/5zTjjjDMy1rdo0aIqW6eC6kp2HnrooTjnnHOitLQ0rX7KKafEmDFjoqCgIKv96sr7BgBQG/hsloy5MbKTW+bGtZPcJGNmjOxUDzPj/CM7FWNmXHfJTsWYG9dddSU75sYAAAAAAAAAADWPQ6gB2K5WrVpl1NauXZt4v7LWlnWN2u6qq66KqVOnbn3cqVOn+P3vf5/DjqhuspNbRUVFceqpp2bUn3nmmRx0QzZkJ5mmTZtGcXFxRr1evXpx5JFHZr3fUUcdlVF74YUXEvVG9ZCd6jFmzJiM2siRI3PQCZVFdpJ76aWX4m9/+1tarWXLlvHkk0/GXnvtVa49LrjggvjTn/6UVtu4cWNccMEFldYnlU9uKu7cc8+Nxx57LJo3b5712jPPPDNuu+22Mt+3nXfeuTLao4rUhew89thjccYZZ8TmzZvT6kOGDIl//OMfGYdMlEddeN8AAGoLn82SMTdGdnLL3Lh2kptkzIyRnephZpx/ZCc5M+O6TXYqzty4bqoL2TE3BgAAAAAAAAComRxCDcB27bTTThm1Dz74IPF+ixYtKtc1arMPPvggRo8enVb7+9//Ho0bN85RR+SC7OTegAEDMmoLFy6s/kbIiuwk165du4xaly5dolmzZlnvte+++2Z80f/jjz+OVCqVuD+qluxUvSlTpsT06dPTak2bNi3z8ApqD9lJ7ss3AkdE/OY3v4nOnTtntc8Pf/jD2HfffdNqkydPjmnTplWoP6qO3FSOY489Nt5555344Q9/GA0bNtzu69u3bx/3339/3HPPPdGgQYNYvXp1xmu6dOlSFa1SSfI9O0888USccsopUVJSklY/9thj45///GcUFRUl2jff3zcAgNrEZ7PsmRsTITs1gblx7SM3yZkZ122yU/XMjPOT7CRnZly3yU7lMDeue/I9O+bGAAAAAAAAAAA1V2GuGwCg5ivry+Dvv/9+4v2+fCNf/fr1o2PHjon3q4k++eST2LRp09bHxcXF8fOf/zyrPd57772M2te//vUoLi5Oq11++eUxZMiQZI1SpWQn93beeeeM2rJly3LQCdmQneS6dOmS8fO2atUq0V7169eP5s2bx4oVK7bWtmzZEqtWrYodd9yxQn1SNWSn6o0ZMyaj9s1vftOBMbWc7CSzefPmePLJJ9NqBQUFMXz48Kz3qlevXgwfPjz+53/+J63+xBNPRK9evSrUJ1VDbipPu3bt4rrrrovRo0fHpEmTYuLEifH+++/HJ598EuvXr48dd9wxevToEUceeWQcc8wxaTdjzpo1K2O/ffbZpzrbJ0v5nJ2nn346TjzxxNi4cWNaffDgwfHQQw9l/H1WNjp27Bj16tWL0tLSrbVFixZFaWlp1KuX/X9rtaxDxrI9DAMAoK7K58+0VcXcmAjZqQnMjWsfuUnOzLhuk52qZ2acn2QnGTNjZKfymBvXLfmcHXNjAAAAAAAAAICazSHUAGzX7rvvnlEr60bX8ti0aVMsWrQorda1a9coLMzv35I2bdoU06dPr/A+ZX1R+L9v9KJmkZ3cK+sGr/Xr1+egE7IhO8n16NEjJk2alFZr0KBB4v0aNmyYUduwYUPi/ahaslO11q9fH/fee29GfeTIkTnohsokO8nMmzcv1q5dm1br2rVrtGnTJtF+ffr0yajNmDEj0V5UPbmpfM2aNYshQ4aU+7CwTZs2xezZs9NqHTt2jA4dOlRFe1SSfM3OxIkTY8iQIRl/VjjiiCNi7NixZf65IhvFxcXRuXPnmDt37tZaSUlJLFy4MDp16pT1fv+9z+f22GOPirQIAFBn5Otn2upkblw3yU7umRvXPnKTnJlx3SY7VcvMOH/JTjJmxshO5TM3rhvyNTvmxgAAAAAAAAAANV/2/6lvAOqc/fffP+rVS/8tY8qUKbF58+as95oyZUqUlJSk1Xr16lWh/qCmkp3cW7ZsWUatdevWOeiEbMhOcgceeGBGbfXq1Yn3W7VqVUatVatWifejaslO1frnP/+Zkad99tmnzNxRu8hOMsuXL8+oJb2ZeFtrHZxUc8lN7k2dOjXjfRs0aFCOuqG88jE7zz33XBx33HEZB3f1798/Hn300WjUqFGlXOeAAw7IqL388suJ9nrppZfSHtevXz969uyZaC8AgLomHz/TQnWQndwzN6595CY5M+O6TXaqlplx/pKdZMyMkZ3cMzeunfIxO+bGAAAAAAAAAAC1g0OoAdiuxo0bx/77759WW7duXbzxxhtZ7/XCCy9k1A4//PDEvUFNJju5N2vWrIxaRW50oXrITnIDBgzIqL3//vuRSqWy3mvZsmXx2WefpdWaNWsWxcXFSdujislO1RozZkxGbeTIkTnohMomO8k0bNgwo/blG8my8eXfcyIidthhh8T7UbXkJvf+8Y9/ZNROO+20HHRCNvItO5MnT45vfOMbGf8OP+yww+Lf//53pf57/LDDDsuolfUebM+SJUvi3XffTasdcMABfs8BACinfPtMC9VFdnLP3Lj2kZvkzIzrNtmpWmbG+Ut2kjEzRnZyz9y4dsq37JgbAwAAAAAAAADUHg6hBqBcjjnmmIzagw8+mPU+Za0pa+/abr/99otUKlWhX/3798/Yd/78+RmvO+ecc6r/B6TcZCe3xo8fn1Hr2bNnDjohW7KTTOfOnaNHjx5ptVWrVsXbb7+d9V4vvfRSRu3LNz5Q88hO1Xj33Xfj+eefT6s1aNAgzjrrrBx1RGWTneyVdUDL+++/H6WlpYn2mzdvXrmuQc0hN7nz2Wefxf33359W69ixYxx55JE56ohs5Et2Xnrppfj6178e69atS6sfcsghMX78+GjcuHGlXu/oo4/OqI0dOzY2b96c1T7/+te/Mmr+nQMAkJ18+UxbXcyN+Zzs5Ja5ce0kN8mYGSM7VcPMOP/JTvbMjImQnVwyN67d8iU75sYAAAAAAAAAALWLQ6gBKJczzjgjo3bbbbfFpk2byr3HG2+8Ea+//npa7eCDD47OnTtXuD+oqWQnd2bNmhXjxo1LqxUUFPiScC0hO8mVdYPjXXfdlfU+d955Z0Zt0KBBiXqi+shO1bj11lszaieddFK0bNkyB91QFWQne+3atYsmTZqk1VauXBmvvPJKov3KOgSme/fuifaieshN7owePTqWLVuWVvvpT38ahYWFOeqIbORDdl599dU49thjY+3atWn1vn37xuOPP57x+0Nl6NatWxxwwAFptQ8//DAee+yxrPa56aabMmrf/OY3K9QbAEBdkw+faSEXZCd3zI1rL7lJzsy4bpOdqmFmnP9kJ3tmxkTITi6ZG9du+ZAdc2MAAAAAAAAAgNrHIdQAlMvee+8dhx56aFpt2bJlcc0115R7jwsvvDCjdsEFF1S4N6jJZCc3Nm7cGOeff35s2bIlrX7IIYdEu3btctQV2ZCd5EaMGBGNGjVKq910003x0UcflXuPadOmxdixY9NqBQUFcfLJJ1dKj1Qd2al8mzdvjjvuuCOjPnLkyBx0Q1WRnewVFhaWedDElVdemfVe8+fPj7vvvjujfvTRRyfqjeohN7nx4osvxp/+9Ke02m677eZ9q0Vqe3amTp0aRx99dKxZsyatftBBB8WECROiadOmVXbtsn7GSy65JEpKSsq1/r777osZM2ak1QYMGBB77LFHpfQHAFBX1PbPtJArspMb5sa1m9wkZ2Zct8lO5TMzrhtkJ3tmxkTITq6YG9d+tT075sYAAAAAAAAAALWTQ6gBKLeLLrooo3bJJZfEtGnTtrv2z3/+czzxxBNptS5dusSZZ55Zrmt36tQpCgoK0n5NmjSpXGsh12Qne9ddd128//77idZ++umncfrpp8eLL76Y8VySG1zIHdlJZqeddorvf//7abVVq1bFsGHDYv369dtdv3Tp0hg2bFjGzfgnn3xy7LnnnpXaK1VDdirX+PHjY/HixWm1zp07xxFHHJGjjqgqspO9008/PaM2fvz4uOqqq8q9x+rVq+Okk06KTZs2pdX33HPP2GeffSrcI1VLbpIpLS1NtG7y5Mlx7LHHpt04Wa9evbjpppuiuLi4stqjGtTW7EyfPj2OOuqoWL16dVq9d+/e8eSTT0azZs3KtU9Sw4cPj1133TWtNmPGjPj1r3+93bULFiyIUaNGZdR/+9vfVlp/AAB1SW39TAu5JjvZMzdGbpIxM0Z2KpeZcd0hO9kzMyZCdpIyN6a2ZsfcGAAAAAAAAACg9nIINQDldvTRR8cJJ5yQVtu4cWMMHDgwHn300TLXlJSUxOjRo+MHP/hBxnPXX399FBUVVUmvUJPITvZuu+222G233eLMM8+McePGxYYNG7a7ZsuWLfHPf/4zevXqFWPHjs14/owzzojDDz+8KtqlishOcpdcckl07NgxrTZp0qQYNGhQvPPOO9tc99JLL8Vhhx2W8ZomTZrEFVdcUSW9Uvlkp3KNGTMmo3beeedFQUFBDrqhKslO9k4//fTYb7/9MuoXXnhhnHfeebFkyZKvXP/ss8/GAQccENOnT894LpubkskduUlm3rx50aNHj7j22mvjgw8+2O7rly1bFqNGjYqBAwfGp59+mvbcxRdf7JCLWqg2Zuftt9+OwYMHx4oVK9LqvXr1iqeeeiqaN29epdePiCguLo5rr702o/7HP/4xvv/972/zAKWXXnop+vbtG8uXL0+rn3LKKfIDAJBQbfxMCzWB7GTP3Bi5Sc7MuG6TncplZlx3yE72zIyJkJ2kzI2pjdkxNwYAAAAAAAAAqN0KUqlUKtdNAFB7LFu2LHr16lXml1179+4dJ5xwQnTu3DnWr18f7777btxzzz3x4YcfZrx21KhRccMNN5T7up06dYr3338/rTZx4sQYMGBAudZPmTIlRo4cuc3n165dG3Pnzk2r7bjjjhk3Y/233r17xy233FKu6ycxYMCAeO6559Jq8+fPj06dOlXZNak6svOF8mRnv/32S7uxpHHjxrH//vtHz549o2vXrtGiRYto2rRpfPbZZ7F8+fKYNm1aTJw4scz3LCLi0EMPjaeeeioaNmz4ldel5pGdL2T7+85rr70Whx9+eGzcuDGtXlhYGIMHD45BgwZF+/btY8uWLbFw4cKYMGFCTJ48ucy9HnzwwTj55JPLfW1yT3a+UJHPbIsXL46OHTvG5s2bt9bq168f77//fnTo0CHRntRssvOF8mZn6tSpMWDAgFi7dm3Gcw0aNIijjz46+vXrF+3bt49GjRrFqlWrYtasWfHUU0/Fm2++WeaeZ599dtx+++3bvTY1g9x8oby5ee+996Jbt25bH/fs2TN69+4de+21V7Ru3ToaNmwYy5cvj8WLF8dzzz0XL7zwQmzZsiVjn29/+9tx0003bfd61Ey1LTuDBw+Op59+OqPepUuXaNq0abmvX5bLL788hgwZUu7Xf/e73y3z//utWrWKs846K3r06BFNmzaNhQsXxhNPPBGTJk3KeO2uu+4a06ZNi5YtW1akdQCAOq22fab9XE37O8jyMDfOL7LzBXNjyktuvmBmTDZk5wtmxmRDdr5gZkw2ZOcL5sZko7Zlx9wYAAAAAAAAAKB2K8x1AwDULm3atIknn3wyjjjiiPj444/TnpsyZUpMmTJlu3ucdtppce2111ZRh2Vbu3Zt2o2J5bFy5cpYuXLlNp9v0aJFBbuiLpGdLyTJzrp16+KFF16IF154Ieu1Q4YMiTvuuMONxLWU7Hwh2+wcdNBB8cgjj8TQoUNj/fr1W+ubN2+Oxx9/PB5//PHt7lFcXBx/+ctf3ExcC8nOFyryme2OO+5Iu5k4IuKYY45xM3Eek50vlDc7BxxwQDzyyCNx4oknZtxUvHHjxhg3blyMGzeu3H0NHTq0Sg9tovLJzReS/p4zffr0rHopKCiIiy66KC6//PJE16NmqG3ZKSkpKbM+b968Cu+9YsWKrF7/5z//OT755JP417/+lVZfvnx5XHfdddtdv/POO8eTTz7pRmIAgAqqbZ9pP1eT/jxI3SQ7XzA3przk5gtmxmRDdr5gZkw2ZOcLZsZkQ3a+YG5MNmpbdsyNAQAAAAAAAABqt3q5bgCA2qdHjx7x2muvxaGHHprVuqKiorjkkkvi3nvvjfr161dRd1BzyU712mmnneLmm2+OsWPHuvm/lpOd5I455ph4+eWXY++99856bbdu3eLZZ5+NkSNHVkFnVAfZqbhbb701ozZixIgcdEJ1kp3sDRo0KKZPnx79+/dPvEeTJk3ixhtvjH/9619RWOi/m1fbyE316dGjRzzzzDNuJM4TspNMYWFhPPDAA/Hb3/42698zDj/88Hj99deje/fuVdQdAEDd4jMtJCM71cvcOD/ITXJmxnWb7FScmXHdJDvZMzMmQnaqk7lxfpGdZMyNAQAAAAAAAACy5xBqABL52te+Fs8//3zcf//90a9fvygoKNjma5s0aRLnnntuzJgxIy699NKoV89vP9RdslM+Dz30UNx8880xbNiw2H333cv9szdt2jQGDx4cd999dyxcuDDOP//8Ku6U6iI7yfXs2TP+85//xG233RYHHXTQV7539evXj759+8btt98es2bNikMOOaQaO6UqyE5yzz//fLz77rtptZ122imOP/74HHVEdZKd7HXp0iUmTZoUzz//fAwbNixatmy53TX169eP/fffP6699tpYtGhRXHDBBdXQKVVFbsqvY8eOce+998ZZZ50Vu+yyy3ZfX1xcHIMHD4777rsv3nzzzRg4cGA1dEl1kZ1k6tWrF5dffnm8+eabcc4550STJk22+dqCgoI45JBD4oEHHojnnnsuOnToUI2dAgDkP59pIRnZKR9zY/6b3CRnZly3yU5yZsZ1m+xkz8yYCNnJhrkx/012kjE3BgAAAAAAAADITkEqlUrlugkAar+lS5fGa6+9FvPmzYs1a9ZEYWFhtG7dOnr06BEHHnhgFBcX57pFqJFkp3w+++yzmDNnTixatCg++uij+PTTT2PDhg3RoEGD2HHHHWPHHXeM7t27x1577VWnv0xdl8hOckuWLIkpU6Zsfe+Ki4ujdevW0b59++jbt280a9Ys1y1ShWQHkpGdZN57772YMWNGLF++PFatWhWbNm2KZs2aRYsWLaJTp07Rq1evaNy4ca7bpIrITfl99NFHMWvWrFiwYEGsXLky1q9fHw0bNozWrVtHt27dolevXrHDDjvkuk2qiewks2nTpnj99ddj1qxZ8cknn8TmzZujWbNm0aVLlzjooIOibdu2uW4RAKDO8JkWkpGd8jE35r/JTXJmxnWb7EAyspOMmTGyU37mxvw32UnG3BgAAAAAAAAA4Ks5hBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD9XLdQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVD6HUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CGHUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkIYdQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQhh1ADAAAAdc4555wTBQUFW3916tSpStcBAAAAAAAAUHOYGQMAAAAAAAAAAABQlziEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACAPOYQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA85hBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDzmEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACAPOYQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA85hBoAAACoc26//fZIpVJbfy1YsCDXLQEAAAAAAABQTcyMAQAAAAAAAAAAAKhLHEINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIccQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQhxxCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCHCnPdAAAAAJC9VatWxeuvvx5LliyJZcuWxcaNG6N169bRtm3bOPDAA2PnnXeu0uvPmzcvpk6dGosWLYr169dHmzZtokOHDtG3b99o2bJlpV2npKQkZs2aFW+99VasWLEi1qxZEwUFBdGoUaNo0aJFdOzYMbp06RKdOnWqtGtWt6VLl8aUKVNi6dKlsXTp0qhfv360bds2dtppp+jTp080a9asynsoLS2NadOmxZtvvhlLly6NgoKCaN26dXTp0iX69esXxcXFVd4DAAAAAAAAUH5mxmbGlcnMGAAAAAAAAAAAACC/OYQaAAAAaon169fHX//613jwwQfjtddeiy1btmzztXvttVcMHz48Ro0aFY0bNy73NQYMGBDPPffc1sf9+/ePSZMmRUREKpWK22+/Pa655pp48803y1xfVFQUgwYNil/96lfRv3//cl/3yyZOnBg33XRTjBs3LtavX7/d17du3Tr69OkTQ4YMiZNOOilat279la8/55xz4o477tj6eNddd40FCxYk7jdb69evjz//+c9x//33x7Rp0yKVSpX5usLCwujbt2+cc845cfbZZ0f9+vWzus6kSZNi4MCBabWJEyfGgAEDIiJizZo18ac//SluuummWLJkSZl7NG7cOE499dS4/PLL42tf+1pW1wcAAAAAAAAqj5nxtpkZl83MGAAAAAAAAAAAAICIiHq5bgAAAADYvltuuSW6du0aP/vZz+Lll1/+ypuJIyJmzpwZv/rVr6Jr167x4IMPVvj6y5Yti/79+8d55523zZuJIyJKSkpiwoQJMXDgwBg5cmS5bgb+bytXroyhQ4fGEUccEffff3+513/yySfx2GOPxbe//e0YNWpUVtesbvfff39069YtfvGLX8TUqVO3eTNxRMTmzZtj8uTJMWLEiOjZs2c8//zzldbH5MmTY88994zLL798mzcTR0SsW7cubr/99th9991j3LhxlXZ9AAAAAAAAoPzMjL+amXH2zIwBAAAAAAAAAAAA6g6HUAMAAEANVlJSEiNHjozzzz8/Fi9enPX6JUuWxGmnnRajR49O3MPKlSvj8MMPj8mTJ5d7TSqVijFjxsSQIUPKfVPwypUrY8CAAfHwww8nbbXGGz16dJxxxhnx4YcfZr125syZMXjw4Lj33nsr3Mdjjz0WRx55ZFZ9rF+/Pk4++eSYMGFCha8PAAAAAAAAlI+ZcX4xMwYAAAAAAAAAAAAgFwpz3QAAAABQttLS0jjxxBNj/PjxGc+1b98+Bg0aFPvvv3+0bt06GjZsGCtWrIg33ngjHn/88Vi4cOHW16ZSqbj44oujdevWccEFF2Tdx/Dhw+Odd97Z+vhrX/taDB06NHr06BEtWrSIJUuWxJQpU2Ls2LGxZs2atLVPP/10nHHGGTF27NjtXuenP/1pzJgxI6PevXv3OPLII2OPPfaIVq1aRYMGDWLt2rWxatWqmDNnTrz11lvx6quvxsaNG7P+2arT6NGj4+KLL86oFxYWxsCBA+PII4+MDh06xObNm2PRokUxfvz4eOWVVyKVSm197aZNm2LYsGFRv379OO200xL18Z///CcuvPDC2LRpU0RENGrUKAYNGhSHH354tGvXLgoLC2PRokXx5JNPxjPPPJO2dvPmzTFy5MiYOXNmNG/ePNH1AQAAAAAAgPIxM/4/ZsZmxgAAAAAAAAAAAABUjEOoAQAAoIa67LLLMm4m3mWXXeL//b//F0OHDo369euXuW7z5s1x++23x09+8pNYu3bt1vqPf/zjOPjgg6NXr17l7uHVV1+NDRs2REREgwYN4sorr4wf//jHZV579erV8dOf/jRuvfXWtPq4cePijjvuiLPPPnub11m0aFHccccdabU2bdrEmDFj4vjjj99un+vWrYunnnoqbrnllm2+L7n04osvxmWXXZZRP/TQQ2PMmDHRvXv3jOcuuuiiePnll+O8885Lu6E7lUrFd77znejTp0907Ngx614uvPDCrf9Mhw8fHn/4wx9i5513znjdL37xi5g0aVKcfPLJsWLFiq31Dz/8MP7617/Gr371q6yvDQAAAAAAAJSfmbGZsZkxAAAAAAAAAAAAAJWhXq4bAAAAADK9/PLLccUVV6TV+vbtG2+99VaceuqpX3nTbGFhYYwcOTJeeOGFaNas2db6pk2b4qKLLsqqj89vPC0sLIwHH3wwfvazn23z2s2bN48xY8bEL3/5y4znfvKTn8Tq1au3eZ1x48ZFKpVKq/3zn/8s183EERGNGzeOE088MR577LH4+9//Xq411SWVSsWIESNiy5YtafVvfOMb8cwzz5R5M/Hn+vbtGy+++GLsvffeafVVq1bF97///UT9fP7PdPTo0XHnnXeWeTPx5wYMGBBjx46NgoKCtPqYMWMSXRsAAAAAAAAoHzNjM+MIM2MAAAAAAAAAAAAAKodDqAEAAKAGuuKKK6K0tHTr4/bt28f48eOjefPm5d6jZ8+eceONN6bVHn/88Zg+fXrW/Vx00UVx3HHHleu1V111VQwYMCCttnLlyrjrrru2uWbevHlpj7t16xb9+/fPus+IiB122CHRuqry73//O2bPnp1W69ixY9x///1RXFy83fUtW7aMcePGRaNGjba7b3kNHTq03DeXH3rooXHqqaem1d57772YO3duomsDAAAAAAAA22dmbGb8OTNjAAAAAAAAAAAAACrKIdQAAABQw7z11lsxfvz4tNrvfve7aNGiRdZ7nXnmmdGtW7e02iOPPJLVHh06dIhf/vKXWa254YYbMmp/+9vftvn6Tz/9NO1xq1atsrpeTfbnP/85o/bHP/4xGjduXO49OnfunPHPIJVKxV/+8pes+6lXr15cffXVWa0566yzMmpTp07N+toAAAAAAADA9pkZmxl/mZkxAAAAAAAAAAAAABXhEGoAAACoYR588MG0x02bNo3TTz890V4FBQVx7LHHptUmTZqU1R7Dhw+Phg0bZrVm7733jr59+6bVZs6cGYsWLSrz9V++gfjNN9+M1atXZ3XNmmjTpk3x3HPPpdXatWsXJ510UtZ7ffvb34769eun1Z566qms9zniiCOia9euWa056KCDMmqzZ8/O+toAAAAAAADA9pkZmxmXxcwYAAAAAAAAAAAAgKQcQg0AAAA1zJdvQO3Vq1fWN/T+t86dO6c9fuONN7Jaf+KJJya67tChQzNqr7zySpmvPfjgg9Mer1u3Ls4444xYsWJFomvXFNOmTYsNGzak1U488cQoLCzMeq+dd945DjvssLTa7NmzY/ny5Vnt079//6yvvdNOO0Xjxo3TavlwwzcAAAAAAADURGbGZsZlMTMGAAAAAAAAAAAAIKnsv70KAAAAVJktW7Zk3HQ7Y8aM2G+//RLv+eWbclevXh0lJSVRVFS03bWFhYXRs2fPRNft1atXRm3q1Klx6qmnZtSPPvro2HnnnWPx4sVbaxMmTIguXbrEsGHD4pRTTolDDz20XD3XJNOmTcuo9e7dO/F+Bx54YEyaNGnr41QqFW+88UYceeSR5d6jW7duia7dvHnzWLdu3dbHbigGAAAAAACAymdmbGb8VcyMAQAAAAAAAAAAAEjCIdQAAABQgyxfvjw2bNiQVlu5cmWsXLmyUq+zYsWK2Gmnnbb7uo4dO0bDhg0TXWOPPfbIqC1durTM1zZq1Cj+/Oc/xymnnBKpVGprffXq1XHjjTfGjTfeGDvssEP07ds3Dj744Dj44IPjsMMOix133DFRb9Xlk08+yaj16NEj8X577rlnua7xVVq2bJno2l++mbukpCTRPgAAAAAAAMC2mRmbGX8VM2MAAAAAAAAAAAAAkqiX6wYAAACALyxfvrxarrN+/fpyva558+aJr1HW2lWrVm3z9UOHDo277747GjduXObzn332WTzzzDPxu9/9Lk444YRo3bp19O7dO/7whz/EokWLEvdZlcq6EbxFixaJ9yvrBuoVK1ZktceXbwwGAAAAAAAAag4zYzPjr2JmDAAAAAAAAAAAAEASDqEGAACAGqSsG1BzaVs395bHDjvskFH79NNPv3LNmWeeGbNnz47vfe970bRp0698bWlpaUydOjV+9atfRdeuXWPkyJGxbNmyxP1WhbJ+3oq8p2Wt3d57CgAAAAAAANQeZsZmxl/FzBgAAAAAAAAAAACAJBxCDQAAADVIo0aNMmqnn356pFKpSv3VqVOncvWzbt26xD/LZ599llHb3k3CEREdOnSIv/zlL7FkyZJ46KGHYtSoUdGzZ8+oX7/+NteUlJTEmDFjYt99941p06Yl7rmylfXzVuQ9LWtted5TAAAAAAAAoHYwMzYz/ipmxgAAAAAAAAAAAAAkUZjrBgAAAIAvtG7dOqO2YsWKHHTyf1avXl2pa1u0aFHu9Y0aNYqTTjopTjrppIiIWLt2bbzyyivxwgsvxIQJE+L111+P0tLStDUff/xxfOMb34i33norWrVqlbj3yrLjjjtm1FatWpV4v7LWtmzZMvF+AAAAAAAAQM1iZvwFM+NMZsYAAAAAAAAAAAAAJFEv1w0AAAAAX2jTpk0UFBSk1d5///0cdROxcOHC2LhxY6K1s2fPzqi1bds2cS9NmjSJI488Mi699NJ45ZVX4v33348LL7wwGjZsmPa6jz/+OK6++urE16lMbdq0yajNmjUr8X5vv/12Rq2sm9ABAAAAAACA2snMeNvMjM2MAQAAAAAAAAAAAEjGIdQAAABQgzRs2DB69uyZVpszZ04sWbIkJ/1s3rw5pk+fnmjt1KlTM2oHHHBARVvaapdddonf/e538eSTT0b9+vXTnvvXv/5VadepiF69emXUpkyZkni/119/Pe1xQUFBmdcAAAAAAAAAaicz4/IzMzYzBgAAAAAAAAAAAKB8HEINAAAANczgwYMzag899FAOOvk/jzzySKJ1ZfXcp0+fCnaT6bDDDovjjz8+rTZ37tz47LPPKv1a2erVq1c0bNgwrfbII4/Eli1bst5ryZIlMXny5LTa7rvvHi1btqxQjwAAAAAAAEDNYmacHTNjM2MAAAAAAAAAAAAAvppDqAEAAKCGOeGEEzJqf/zjH2Pz5s056Cbirrvuio0bN2a1ZubMmfHyyy+n1fbaa6/42te+VpmtbbXHHntk1FavXl0l18pGUVFRDBw4MK328ccfJ7pJ++abb874/8BRRx1VkfYAAAAAAACAGsjMOHtmxgAAAAAAAAAAAACwbQ6hBgAAgBrmkEMOiQEDBqTV5s2bFz/72c9y0s8HH3wQV199dVZrfvjDH2bUvvvd71ZWSxkWL16c9rigoCBat25dZdfLxve///2M2s9//vP47LPPyr3H+++/H1dddVVaraCgIEaNGlXh/gAAAAAAAICaxcw4e2bGAAAAAAAAAAAAALBtDqEGAACAGuiKK66IgoKCtNr1118fl1xySaRSqUR7vvXWW/Gtb30rVq5cmfXa0aNHx+OPP16u11500UXx7LPPptV23HHHGD58+DbXXHrppfHqq69m3VdExKJFi+Lhhx9Oq/Xo0SOKiooS7VfZvv71r8cee+yRVluwYEGceeaZsXnz5u2uX7lyZZxwwgkZNyAff/zx0a1bt0rtFQAAAAAAAKgZzIzLz8wYAAAAAAAAAAAAAL6aQ6gBAACgBjrkkEPikksuyahffvnlccQRR8TkyZPLtc/y5cvjlltuicGDB8e+++4bd911V2zZsqXcfTRs2DAiIkpKSmLo0KFxzTXXRGlpaZmvXb16dZx//vlx5ZVXZjx3zTXXRPPmzbd5nUceeST69OkTffr0ieuuuy4WLlxYrv5eeumlOOKII2LNmjVp9bPOOqtc66tDQUFBjBkzJurXr59WHzt2bBx11FHx3nvvbXPtq6++GoceemhMnz49rd6iRYu44YYbqqRfAAAAAAAAIPfMjM2MI8yMAQAAAAAAAAAAAKgchbluAAAAACjbxRdfHO+8807cd999afVJkybF4YcfHt27d48BAwbEXnvtFS1btowGDRrEqlWrYuXKlfH222/H1KlTY9asWVndQPxlBx98cDRu3DjGjx8fGzZsiJ/+9Kdx7bXXxsknnxx77LFHtGjRIpYuXRqvv/56jB07NlavXp2xx5AhQ+Lss88u1/VeffXVePXVV+PHP/5x7L777rHffvvFPvvsE23atIkWLVpERMSqVatizpw5MXHixJg2bVrGHt26dYsf/ehHiX/mqtCvX7+45JJL4uKLL06rT5w4Mfbcc88YNGhQHHHEEdGhQ4fYsmVLLFq0KMaPHx8vvfRSpFKptDUFBQVx0003RceOHavzRwAAAAAAAACqmZmxmbGZMQAAAAAAAAAAAACVwSHUAAAAUEMVFBTEPffcE127do3f/e53GTeWzpkzJ+bMmVPlfdx1113Rr1+/mD17dkRELFy4MK655ppyrR00aFDGDdHlNXv27Jg9e3bcf//95V6zyy67xMMPPxw77LBDomtWpd/+9reRSqXikksuSauXlJTEhAkTYsKECdvdo6ioKG677bY47bTTqqpNAAAAAAAAoIYwMzYz/jIzYwAAAAAAAAAAAACSqJfrBgAAAIBtq1evXlxxxRUxfvz46NmzZ4X2at68eYwcOTKaNGmS1bqWLVvG888/H/369ctq3XnnnRePPvpoNGrUaLuvbdeuXVZ7l+X444+PV155Jfbaa68K71VVLr744rj33nujffv2Wa/dc88946mnnophw4ZVQWcAAAAAAABATWRmXH5mxgAAAAAAAAAAAABQNodQAwAAQC1wzDHHxH/+85949NFHY+jQodGyZctyrevSpUucf/758eCDD8bixYvj73//ezRs2DDr67dt2zYmT54cN998c/To0WObryssLIyjjz46Jk6cGGPGjCnXzcQRERMmTIi33347/vjHP8Zxxx0XrVu3Lte65s2bx9lnnx3PPfdcjBs3Ljp06FCudbl0xhlnxHvvvRdXX3117L///lFQULDN1xYWFsahhx4at9xyS8yYMSP69+9fjZ0CAAAAAAAANYWZcdnMjAEAAAAAAAAAAABg+wpSqVQq100AAAAA2UmlUvHmm2/G3LlzY/ny5bF8+fIoLS2Npk2bRosWLaJr167Ro0ePaNGiRVb7DhgwIJ577rmtj/v37x+TJk3KeN17770XU6dOjQ8++CA2bNgQrVu3jg4dOkTfvn2jVatWFfzp/s/ChQtj7ty5sWDBgli1alWsW7cuioqKolmzZtG2bdvYZ599Yrfddot69Wr3f2NryZIl8frrr8fSpUtj2bJlUb9+/WjTpk20a9cu+vTpE82bN891iwAAAAAAAEANY2ZsZgwAAAAAAAAAAAAA5eUQagAAAGCr8t5QDAAAAAAAAED+MTMGAAAAAAAAAAAAgPxTL9cNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFD5HEINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIccQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQhxxCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCHHEINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIccQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQhxxCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCHHEINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIcKUqlUKtdNAAAAAAAAAAAAAAAA8P/Zu/Mgq8oz8ePP7VVoaYnI4oaNGLVRIyBqGYxiJovRKSPRQkqdAXSimREyU4pOXCKocYnREcU4ZRwRtdA4YySOlVExxj0zIoJLADdERAnYgm1DA73d+/vjV90V0g30cvve7sPnU2VVznvOed9HS2noS74AAAAAAAAAAAAAZFdBvgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIPtEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIFEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGK8j0AQLYMGTIkqqurW60XFxfH0KFDcz8QAAAAAADQ43z88cfR0NDQar1///6xdu3aPEwEQLb4zBgAAAAAANgZnxkDJJvPjQEAAAAAgB3ZlT8zTmUymUy+hwDIht122y3q6uryPQYAAAAAANALlZaWxtatW/M9BgBd4DNjAAAAAACgs3xmDJAMPjcGAAAAAAA6Y1f4zLgg3wMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkH0i1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJEINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEAi1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJVJTvAQCypbi4OOrq6lqtl5aWxvDhw/MwEQAAAAAA0NOsWLGizc8TiouL8zANANnkM2MAAAAAAGBnfGYMkGw+NwYAAAAAAHZkV/7MWIQaSIyhQ4fGsmXLWq0PHz48li5dmoeJAAAAAACAnuawww5r8/OEoUOH5mEaALLJZ8YAAAAAAMDO+MwYINl8bgwAAAAAAOzIrvyZcUG+BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg+0SoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJIhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggUSoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJIhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggUSoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJIhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggUSoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJIhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggUSoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJIhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggUSoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJIhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggUSoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJIhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggUSoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJIhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggUSoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJIhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggUSoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJIhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggUSoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJIhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggUSoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABKoKN8DAAAAAAAAAAAAAAAAAAAAAOyKMplMNDU1RTqdjkwmk+9xAMiCVCoVBQUFUVhYGKlUKt/jAAAAAIAINQAAAAAAAAAAAAAAAAAAAEB3y2QyUV9fH7W1tbFp06bYsmVLpNPpfI8FQDcqKCiIPn36xO677x5lZWVRUlIiTA0AAABAzolQAwAAAAAAAAAAAAAAAAAAAHSTxsbGWL9+fWzcuDEaGhryPQ4AOZROp6O2tjZqa2sjIqK4uDj69esXAwYMiKIi6R8AAAAAcsN3ogAAAAAAAAAAAAAAAAAAAACyLJPJRHV1dVRVVUVTU1O+xwGgB2hoaIgNGzbEl19+GQMHDoz+/ftHKpXK91gAAAAAJJwINQAAAAAAAAAAAAAAAAAAAEAWpdPpWL16dWzevDnfowDQAzU1NcXatWujpqYm9t9//ygoKMj3SAAAAAAkmO8+AQAAAAAAAAAAAAAAAAAAAGSJADUA7bV58+ZYvXp1pNPpfI8CAAAAQIKJUAMAAAAAAAAAAAAAAAAAAABkQSaTEaAGoEOaQ9SZTCbfowAAAACQUCLUAAAAAAAAAAAAAAAAAAAAAFlQXV0tQA1Ah23evDmqq6vzPQYAAAAACSVCDQAAAAAAAAAAAAAAAAAAANBFjY2NUVVVle8xAOilqqqqorGxMd9jAAAAAJBARfkeAAAAAAAAAAAAAAAAAAAAAKC3W79+fTQ1NbXr2cLCwigrK4uysrIoKiqKwsLCKCgo6OYJAciFdDodTU1N0djYGLW1tVFbW9uurw9NTU2xfv36GDx4cA6mBAAAAGBXIkINAAAAAAAAAAAAAAAAAAAA0AWZTCY2bty40+eKiopi8ODB0a9fv0ilUjmYDIB86t+/f8vXiHXr1kVjY+MOn9+4cWMMGjTI1wgAAAAAssofgwkAAAAAAAAAAAAAAAAAAADQBfX19dHQ0LDDZ4qKiuKAAw6I8vJycVGAXUgqlYry8vI44IADoqioaIfPNjQ0RH19fY4mAwAAAGBXIUINAAAAAAAAAAAAAAAAAAAA0AW1tbU7fWbw4MFRUlKSg2kA6IlKSkpi8ODBO32uPV9TAAAAAKAjRKgBAAAAAAAAAAAAAAAAAAAAumDTpk07vF9YWBj9+vXL0TQA9FT9+vWLwsLCHT6zs68pAAAAANBRItQAAAAAAAAAAAAAAAAAAAAAXbBly5Yd3i8rK4tUKpWjaQDoqVKpVJSVle3wmZ19TQEAAACAjhKhBgAAAAAAAAAAAAAAAAAAAOikTCYT6XR6h8/sLDgKwK5jZ18T0ul0ZDKZHE0DAAAAwK5AhBoAAAAAAAAAAAAAAAAAAACgk5qamnb6TFFRUQ4mAaA3aM/XhPZ8bQEAAACA9hKhBgAAAAAAAAAAAAAAAAAAAOikdDq902cKCwtzMAkAvUF7via052sLAAAAALSXCDUAAAAAAAAAAAAAAAAAAABAJ2UymZ0+U1Ag7wDA/9eerwnt+doCAAAAAO3lUwoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBKhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBKhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBKhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBKhBgAAAAAAAAAAAAAAAAAAAAAAAAAAgF6kKd3Uo/ah5xKhBgAAAAAAAAAAAAAAAAAAAAAAAAAAgF6ipq4mTn/k9Ji/fH6X9pm/fH6c/sjpUVNXk6XJ6ImK8j0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAsHM1dTVx1qNnxZtr34wlf14SERHjK8d3eJ/5y+fHtCenRTqTjrMePSseOfORKC8tz/a49AAF+R4AAAAAAAAAAAAAAAAAAAAAAAAAAAAA2LG/DFBHRKQz6Zj25LSYv3x+h/b5ywB1RMSba9+Msx49K2rqarI+M/knQg0AAAAAAAAAAAAAAAAAAAAAAAAAAAA92F8HqJt1NET91wHqZkLUySVCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAD3U9gLUzdobot5egLqZEHUyiVADAAAAAAAAAAAAAAAAAAAAAAAAAABAD7SzAHWznYWodxagbiZEnTwi1AAAAAAAAAAAAAAAAAAAAAAAAAAAANDDtDdA3Wx7Ier2BqibCVEniwg1AAAAAAAAAAAAAAAAAAAAAAAAAAAA9CAdDVA3++sQdUcD1M2EqJNDhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAB6iKZ0U5zz2DkdDlA3aw5RT/rtpE4FqJu9ufbNOOexc6Ip3dSp9+kZivI9AAAAAAAAAAAAAAAAAAAAAABAZ8yaNSuqq6tbrf/Lv/xL9O/fP+fzAAAAAEA2FBYUxnkjz4slf17S6YB0OpOOZ1Y806U5ClIFcd7I86KwoLBL+5BfItQAAAAAAAAAAAAAAAAAAAAAQK80a9asWLVqVav1yZMni1ADAAAA0KuNrxwfERHTnpzW6RB1VxSkCmL292a3zEHvVZDvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAIBtja8cH7O/NzsKUrnNCAtQJ4sINQAAAAAAAAAAAAAAAAAAAAAAAAAAAPRAuQ5RC1Anjwg1AAAAAAAAAAAAAAAAAAAAAAAAAAAA9FC5ClELUCeTCDUAAAAAAAAAAAAAAAAAAAAAABVqKSQAAQAASURBVAAAAAD0YN0dohagTi4RagAAAAAAAAAAAAAAAAAAAAAAAAAAAOjhuitELUCdbEX5HgAAAAAAAAAAAAAAAAAAAABgV5TOpKOusS7fY0ArpUWlWY/YAAAAAADZ0RyKnvbktEhn0l3eT4A6+USoARKuMd24w/uFqcJIpVI5moZcS2fSO/xJYSpSUVhQmMOJyLWmdFNkIrPd+wWpAr8BIMEymUw0ZZp2+ExRgV8SJJkfA3Zt7fkxwM8Fk83PBfHrwV3bzn4MiPBzwaTzc8Fdm18PsrMfA/xcEAB2LX5usGvzvWJ8r5idfa/Y94mSzfeK8b3iXZufC+LXg/h9A7s2vx7Erwd3bX7fAAD0PnWNdbGsalm+x4BWRgwcEX2K++R7DAAAAABgO8ZXjo/fvvvbeGbFM13e628O/BsB6oTzOwUAEiydSceba9/c4TMH7XlQ7LHbHjmaiFyrqq2KT2o+2e79ksKSOGLwETmciFxbVrUs6pvqt3t/3/J9Y8juQ3I4EblUU1cTH2z4YIfPjNp7lN9AnmAffvFh1NTVbPf+gL4DoqJ/Re4GIqfqm+rjT5/9aYfPVA6sjL7FfXM0Ebm2ZuOaWLdp3Xbvl5WUxaF7HZrDici1t9a9FZnM9v8PxcO+Miz27LNnDicilzZs2RCrqldt935hQWGMHDIydwORc++ufze2NGzZ7v0huw+Jfcv3zeFE5FJtQ228+/m7O3zma4O/FsWFxTmaiFxb9eWq+GLLF9u933+3/jF8z+E5nAgAyKeV1Svjy61fbvf+nn32jGFfGZbDicilhnRDvL3u7R0+c+heh0ZZSVmOJiLXdva94r7FfaNyYGUOJyLX3l739g7DcxX9K2JA3wE5nIhc+mLLF/FR9UfbvV+QKohRe4/K3UDk3Hvr34vNDZu3e9/3ipNtc8PmeOfzd3b4zBGDj4iSwpIcTUSuffzlx7Fhy4bt3ve94mRrSjft9PeRf3XAV6O8tDxHE5Fr6zatizUb12z3fmlRaRw+6PAcTkSuLataFg1NDdu9v/8e+8egskE5nIhcqt5aHR9+8eEOnxm992h/GAEAAAAAAABALzd/+fx49sNns7LXsx8+G/OXzxeiTjARagAAAAAAAAAAAAAAAAAAAACgx6utrY2VK1dus9bQ0PYfxPPee+/Fpk2b2r33oEGDYtCg7PyhPRs2bIinn346/vCHP8SyZcti5cqVUVNTE3V1ddG/f/8YPnx4XH311XHKKadk5byeqqmpKV5++eV44YUXYtGiRbFixYpYu3Zt1NbWRjqdjrKysth7773jq1/9ahx33HFx8sknx8iRI/M9NgAAAECPN3/5/Jj25LRIZ9JZ2S+dSce0J6dFRAhRJ5QINQAAAAAAAAAAAAAAAAAAAADQ47322mtx0kkntevZ7373ux3ae8aMGTFz5sw271VUVMSqVatara9cuTIqKiparletWhXXXnttPPTQQ7F169Y29/r888/j888/j/fee6/NCHV7z+qsuXPnxpQpU1qtT5o0KebOndvl/SMi1q5dG7fddlvcf//9sW7duu0+V11dHdXV1bF8+fL47//+77j88stjxIgRcdlll8W5554bhYWFWZkHAAAAIEmyHaBuJkSdbAX5HgAAAAAAAAAAAAAAAAAAAAAAoDe78847Y8SIETFnzpztBqiTrr6+Pn72s5/FgQceGDfffPMOA9Tbs2zZspg8eXIcc8wx8dZbb3XDlAAAAAC9V3cFqJs1h6jnL5/fLfuTPyLUAAAAAAAAAAAAAAAAAAAAAACddNFFF8W0adNi8+bN+R4lb1avXh1jx46Nn/70p7Fly5Yu77d48eI47rjj4tFHH83CdAAAAAC9X3cHqJsJUSeTCDUAAAAAAAAAAAAAAAAAAAAAQCdcddVVcdddd+V7jLx655134thjj41FixZldd/NmzfHxIkT49e//nVW9wUAAADobXIVoG4mRJ08RfkeAAAAAAAAAAAAAAAAAAAAAACgt1mwYEFcf/31rdaHDBkSp556apxwwgkxZMiQGDhwYNTX18fq1atj4cKF8V//9V95mLZ7fPzxx3HSSSfF2rVrt/tMeXl5nHTSSTFu3LgYPnx4DBgwIEpLS+Ozzz6LFStWxFNPPRXPPvtsbN26tdW7TU1NMWnSpBg2bFgce+yx3fm3AgAAANAj5TpA3aw5RB0RMb5yfE7PJvtEqAEAAAAAAAAAAAAAAAAAAACAHm/cuHGRyWS2WauoqIhVq1a1enblypVRUVHRrfNceuml21wPGDAgrr/++vjhD38YBQUFrZ4/9thj48wzz4wbbrghPvvss26dLRe2bt0ap59++nYD1HvttVdcdtll8aMf/Sj69eu33X2mTp0an3zySVxxxRXx4IMPtrpfX18fZ511VixdujTKysqyNj8AAABAT5evAHUzIerkaP3dSgAAAAAAAAAAAAAAAAAAAAAAdqimpqblfx922GHxpz/9KS688MI2A9R/qaioKPbZZ5/uHq/bzZgxI5YsWdLmvbFjx8Ybb7wRl1566Q4D1M3222+/eOCBB+Luu++OwsLCVvdXrVoVM2fO7OrIAAAAAL1GU7op5rwxp0sB6oJUQXx7+LejINX5BHE6k445b8yJpnRTp/cg/0SoAQAAAAAAAAAAAAAAAAAAAAA66aCDDornnnsuhgwZku9Rcmb58uXxb//2b23e+8Y3vhHPPvts7Lvvvh3e94ILLog77rijzXu//OUvY926dR3eEwAAAKA3KiwojHk/mBdHDjmyU+8XpApi9vdmx/2n3x+zvze70yHqI4ccGfN+MC8KC1r/wWH0HiLUAAAAAAAAAAAAAAAAAAAAAACddM8998TAgQPzPUZOXXPNNdHY2NhqfejQoTF//vwoLS3t9N7/9E//FKeffnqr9S1btsTdd9/d6X0BAAAAepvy0vJ45MxHOhyibg5Qj68cHxER4yvHdypEfeSQI+ORMx+J8tLyDr1HzyNCDQAAAAAAAAAAAAAAAAAAAADQCRMnToxx48ble4yc+vTTT+PRRx9t895NN90UAwYM6PIZN9xwQ6RSqVbr999/f5f3BgAAAOhNOhqi/usAdbOOhqgFqJNFhBoAAAAAAAAAAAAAAAAAAAAAoBMuvPDCfI+Qcw888EA0NTW1Wj/ssMNi4sSJWTmjsrIyvvOd77Ra//DDD+Odd97JyhkAAAAAvUV7Q9TbC1A3a2+IWoA6eUSoAQAAAAAAAAAAAAAAAAAAAAA66IADDogTTzwx32Pk3OOPP97m+sSJEyOVSmXtnG9/+9ttrj/33HNZOwMAAACgt9hZiHpnAepmOwtRC1Ankwg1AAAAAAAAAAAAAAAAAAAAAEAHjR07NqvR5d6guro6XnvttTbvjR+/48BRRx1//PFtri9ZsiSr5wAAAAD0FtsLUbc3QN1seyFqAerkEqEGAAAAAAAAAAAAAAAAAAAAAOig0aNH53uEnFu8eHGk0+lW66WlpXHooYdm9ax99923zfV33nknq+cAAAAA9CZ/HaLuaIC62V+HqAWok60o3wMAAAAAAAAAAAAAAAAAAAAAAPQ2I0aMyPcIOff222+3uX7QQQdFYWFhVs8aMGBAm+uffvppVs8BAAAA6G2aQ9TnPHZOnDfyvA4HqJs1vzfnjTkx7wfzBKgTTIQaAAAAAAAAAAAAAAAAAAAAAKCD+vfvn+8Rcm7VqlVtri9dujRSqVROZli/fn1OzgEAAADoycpLy+O3Z/02Cgu69geDja8cH6cdclqX96FnK8j3AAAAAAAAAAAAAAAAAAAAAAAAvU15eXm+R8i5NWvW5HuE2LJlS75HAAAAAOgRshWOFqBOPhFqAAAAAAAAAAAAAAAAAAAAAIAOKisry/cIObdx48Z8jxD19fX5HgEAAAAAehURagAAAAAAAAAAAAAAAAAAAAAAdqquri7fIwAAAAAAHSRCDQAAAAAAAAAAAAAAAAAAAADAThUUyNUAAAAAQG9TlO8BAAAAAAAAAAAAAAAAAAAAAADo+fr27dvm+te+9rWYN29ejqcBAAAAANpDhBoAAAAAAAAAAAAAAAAAAAAAYBdQV1fXpfcHDBiw3X0PP/zwLu0NAAAAAHSPgnwPAAAAAAAAAAAAAAAAAAAAAABARGFhYZvrTU1NWdl/w4YNXXp/6NCh3bIvAAAAANB9RKgBAAAAAAAAAAAAAAAAAAAAAHqA3Xffvc31TZs2ZWX/9evXd+n9ysrKNtc///zz+OKLL7q0NwAAAADQPUSoAQAAAAAAAAAAAAAAAAAAAAB6gD322KPN9Zqamqzsv3jx4i69f8wxx7S5nslk4qWXXurS3gAAAABA9xChBgAAAAAAAAAAAAAAAAAAAAB6pcLCwjbX6+vrczxJdpSXl7e5/sEHH3R578bGxli4cGGX9qioqIgDDzywzXu///3vu7Q3AAAAANA9RKgBAAAAAAAAAAAAAAAAAAAAgF5pt912a3N9y5YtOZ4kOyoqKtpcf+utt7q89xNPPBG1tbVd3mf8+PFtrt9///1RXV3d5f0BAAAAgOwSoQYAAAAAAAAAAAAAAAAAAAAAeqU999yzzfVPP/00x5Nkx6hRo9pcf/rpp7u89+23397lPSIizj///DbXa2pq4o477sjKGQAAAABA9ohQAwAAAAAAAAAAAAAAAAAAAAC90n777dfm+vLly3M8SXaMHj26zfXly5fH4sWLO73vf/7nf8YLL7zQ6ff/UmVlZZx88slt3rv++uvjj3/8Y1bOAQAAAACyQ4QaAAAAAAAAAAAAAAAAAAAAAOiVKisr21x/4okncjxJdhxxxBExcODANu/95Cc/6dSeK1asiAsvvLArY7Vy0003RUFB63RNfX19nHHGGfHee+9l9byIiKqqqnjuueeyvi8AAAAAJF1Rvgdg11BVVRWvvfZarFixImpqaqK4uDgGDBgQI0aMiDFjxkRxcXG+RwQAAAAAAAAAAAAAAAAAAICcKi0qjREDR+R7DGiltKg03yO029e//vU211944YWYO3duTJ48ObcDdVFRUVGce+65cdttt7W698wzz8Stt94al1xySbv3e+ONN+J73/teVFdXZ3HKiCOPPDIuvvjiuOWWW1rdW7t2bRx99NExZ86cOOOMM7p81ooVK+LWW2+NuXPnxtlnnx0nnXRSl/cEAAAAgF2JCDXd6tFHH43bb789XnnllchkMm0+069fv5gwYUJcdtllcfDBB+d4wo5bvnx5jBo1Kurq6lrdu++++7r9w4c5c+bE+eef3+a9lStXRkVFRbeeDwAAAAAAAAAAAAAAAAAAQHYUpAqiT3GffI8BvdoJJ5wQ/fv3bzOyPGXKlLj//vvjtNNOi8MOOyy+8pWvRJ8+bf83N2jQoBg0aFA3T9s+5513XpsR6oiI6dOnR1VVVVx99dXRt2/f7e6xadOm+MUvfhG33HJLbN68uWV9n332iTVr1mRlzuuvvz5efPHFWLhwYat7NTU1ceaZZ8Z3vvOd+Nd//df45je/2aG9P/zww/jNb34Tv/nNb2LhwoXb7ZYAAAAAADsnQk23+PTTT+Occ86JF154YafPbty4Me6999548MEH46qrroqrrroqUqlUDqbsuKamppg0aVKbAepc+OSTT+Liiy/Oy9kAAAAAAAAAAAAAAAAAAAAAPU1JSUn8wz/8Q9xyyy1t3n/++efj+eef3+k+M2bMiJkzZ2Z3uE46/PDDY/LkyTF37tw27//85z+PBx54IM4444wYN25c7L333lFaWhpVVVWxevXqeOaZZ2LBggXx5ZdfbvNeZWVlTJ06NS666KKszFlSUhJPPPFEjB07Nj744IM2n1mwYEEsWLAg9t9//zjhhBNi7Nixse+++8aee+4Z/fr1i40bN0Z1dXVUV1fH+++/H4sXL44lS5bEp59+mpUZAQAAAAARarrBe++9F+PGjYs///nPHXqvvr4+rr766li+fHk8+OCDUVhY2E0Tdt7Pf/7zeO211/J2/vnnn9/qG/wAAAAAAAAAAAAAAAAAAAAAu7IrrrgiHnrooVizZk2+R8maW2+9NZ588slYt25dm/f//Oc/x5133hl33nlnu/YbOHBgPP744/HKK69kc8wYNGhQvPDCC3HyySfH22+/vd3nVq9eHfPmzYt58+Zl9XwAAAAAYOcK8j0AybJ+/fr49re/3WaA+qijjoprr702HnzwwfjVr34V06dPj3322afVcw8//HBccskluRi3Q/70pz/FNddck7fzf/WrX8WCBQvydj4AAAAAAAAAAAAAAAAAAABAT/SVr3wlfve738XgwYPzPUrW7LnnnvH4449H//79u7zXoEGD4qmnnoqvfvWrXR+sDfvss0+8/PLLcfbZZ3fL/gAAAABA14hQk1UXXHBBfPzxx9us9evXLx5//PFYtGhR/PSnP41zzz03fvjDH8YvfvGL+Oijj2LmzJmt9rn99tvjySefzNHUO9fY2BiTJk2K+vr6lrVjjz02Z+evWrUqpk+f3nK9xx57xCGHHJKz8wEAAAAAAAAAAAAAAAAAAAB6spEjR8Zbb70VF1xwQZSWluZ7nKw49thj47nnnot99tmn03scc8wx8eqrr8bo0aOzOFlr5eXlMW/evJg/f34MHz486/sPGDAgpk6dGhdffHHW9wYAAACApBOhJmueeeaZeOyxx7ZZKykpiT/84Q9x2mmntflOcXFxzJgxI2bNmtXq3o9//ONobGzsjlE77IYbbojFixe3XJ977rlx8skn5+TsTCYT559/fmzcuLFl7dZbb40hQ4bk5HwAAAAAAAAAAAAAAAAAAACA3mDQoEFx9913x7p16+Lhhx+Oiy66KMaNGxfDhg2L8vLyKCoqyveIHTZy5Mh4991344orrog+ffq0+7399tsv7rjjjvjjH/8YFRUV3TfgXzn99NPjnXfeiYcffjhOPPHEKCjofN5m6NChcf7558djjz0Wa9asidmzZ8eIESOyOC0AAAAA7Bp633dG6bGuu+66VmszZsyIMWPG7PTdf/7nf47f/e538cwzz7SsffDBB/HQQw/F3//932d1zo56880342c/+1nL9eDBg2PWrFkxe/bsnJz/7//+7/Hss8+2XH/rW9+K888/Px588MGcnA8AAAAAAAAAAAAAAAAAAADQm+yxxx4xceLEmDhxYlb2++ijj7KyT2ftvvvucf3118ell14aCxYsiP/5n/+Jt99+O6qqqqKqqioymUzssccecdBBB8WoUaPi1FNPjW9961tRXFzcaq/JkyfH5MmTu3XeoqKiln/+69ati9///vfx6quvxtKlS2PVqlXx+eefx+bNmyOTyUS/fv2iX79+0b9//xg+fHhUVlZGZWVlHHPMMXHwwQd365wAAAAAsKsQoSYrli5dGi+99NI2a3vttVdMnz693XvceOON20SoI/5/gDmfEeqGhoaYNGlSNDQ0tKzdeeedMWDAgJycv3LlyrjssstarsvKyuKee+7JydkAAAAAAAAAAAAAAAAAAAAA9Bz9+/ePCRMmxIQJE/I9SrsNHjw4zjnnnDjnnHPyPQoAAAAA7LIK8j0AyfDrX/+61dqUKVOipKSk3XscddRRcdRRR22z9n//93+xcuXKLs/XWdddd128+eabLdc/+MEP4swzz8zJ2ZlMJqZMmRK1tbUtazfeeGNUVFTk5HwAAAAAAAAAAAAAAAAAAAAAAAAAAAB6NxFqsuKpp55qtdaZWHNb77S1dy4sXrw4brzxxpbrPffcM+66666cnT979ux44YUXWq6PP/74mDp1as7OBwAAAAAAAAAAAAAAAAAAAAAAAAAAoHcToabLamtrY/Hixdus9e3bN0aPHt3hvb7xjW+0WnvppZc6PVtn1dfXx+TJk6OxsbFlbdasWTF48OCcnL9ixYq4/PLLW6532223uPfeeyOVSuXkfAAAAAAAAAAAAAAAAAAAAAAAAAAAAHo/EWq67I033oh0Or3N2pgxY6KoqKjDex199NFRXFy8zdrrr7/epfk645prrom333675fqUU06Jv/u7v8vJ2el0OqZMmRKbN2/eZp6DDz44J+cDAAAAAAAAAAAAAAAAAAAAAAAAAACQDCLUdNk777zTau2ggw7q1F4lJSWx3377bbO2YsWKaGxs7NR+nbFo0aK4+eabW67Ly8vj7rvvztn5t99+e7z00kst12PGjIlLLrkkZ+cDAAAAAAAAAAAAAAAAAAAAAAAAAACQDCLUdNlHH33Uau2AAw7o9H5Dhw7d5rqpqSk+/vjjTu/XEXV1dTFp0qRtotc333xzqzB2d3nvvffiyiuvbLkuLi6OOXPmRGFhYU7OBwAAAAAAAAAAAAAAAAAAAAAAAAAAIDlEqOmytWvXtlrbf//9O71fW++uW7eu0/t1xNVXXx3Lli1ruT7ppJPiggsuyMnZ6XQ6Jk+eHFu2bGlZu/LKK+OII47IyfkAAAAAAAAAAAAAAAAAAAAAAAAAAAAkS1G+B6D327BhQ6u13XffvdP7tfXu+vXrO71fe7366qtx6623tlz37ds3/uM//iNSqVS3nx0Rceutt8b//u//tlwfccQRccUVV+Tk7O72y1/+Mu66665uP2fFihXdfgYAAAAAAAAAAAAAAAAAAAAAAAAAAEBvIUJNl9XW1rZa69OnT6f3a+vdzZs3d3q/9ti6dWtMmjQpmpqaWtauv/76OPDAA7v13GbLly+Pq6++uuW6sLAw5syZE8XFxTk5v7tVVVXFsmXL8j0GAAAAAAAAAAAAAAAAAAAAAAAAAADALqUg3wPQ+zU0NLRa22233Tq9X1sR6vr6+k7v1x5XXnllvPvuuy3Xxx13XPz4xz/u1jObNTU1xeTJk2Pr1q0ta9OnT48xY8bk5HwAAAAAAAAAAAAAAAAAAAAAAAAAAACSSYSabpFKpbL6biaT6co4O/TKK6/ErFmzWq5LS0tjzpw5UVCQm/88br755li4cGHL9SGHHBIzZ87MydkAAAAAAAAAAAAAAAAAAAAAAAAAAAAklwg1XVZcXNxqbcuWLZ3er613S0pKOr3fjmzevDmmTJkS6XS6ZW3GjBlx6KGHdst5f23p0qXbBKdTqVTce++9sdtuu+XkfAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJLhJou69u3b6u1bEeoy8rKOr3fjlx++eXx/vvvt1yPHj06Lr300m456681NjbGpEmTor6+vmVt6tSpMXbs2JycDwAAAAAAAAAAAAAAAAAAAAAAAAAAQLIV5XsAer8BAwa0Wtu0aVOn92vr3bbO6KoXX3wxZs+e3XJdVFQUc+bMiaKi3PxncdNNN8Xrr7/ecl1RURE33nhjTs7OtYEDB8aIESO6/ZwVK1ZEXV1dt58DAAAAAAAAAAAAAAAAAAAAAAAAAADQG4hQ02WDBw9utfbJJ590er/Vq1e364yu+tGPfhSZTKbl+ic/+UkceeSRWT+nLZ988klcd91126zdc889UVZWlpPzc+2iiy6Kiy66qNvPOeyww2LZsmXdfg4AAAAAAAAAAAAAAAAAAAAAAAAAAEBvIEJNlw0bNqzV2qpVqzq938cff7zNdWFhYQwdOrTT+23PmjVrtrl+7LHH4oknnmj3+2vXrm21dvXVV8esWbO2WTvttNPi2muv3Wbt888/j/r6+pbrkpKSmD59ervPjoj44IMPWq2dcsopUVJSss3atddeG6eddlqH9gYAAAAAAAAAAAAAAAAAAAAAAAAAAKD3E6Gmyw455JBWa20Fktujvr4+Vq9evc3a8OHDo6io+/9VXbZsWZf3WL16dav5R44cudP36uvr48033+zy+cuXL2+1tmHDhi7vCwAAAAAAAAAAAAAAAAAAAAAAAAAAQO9TkO8B6P1GjRoVBQXb/qu0aNGiaGxs7PBeixYtioaGhm3WRo8e3aX5AAAAAAAAAAAAAAAAAAAAAAAAAAAAYFckQk2XlZWVxahRo7ZZq62tjSVLlnR4r5dffrnV2gknnNDp2QAAAAAAAAAAAAAAAAAAAAAAAAAAAGBXJUJNVpx88smt1h599NEO79PWO23tnQ3V1dWRyWQ6/deMGTNa7Xnfffe1em7u3Lmtnhs5cmSXzs5kMnHiiSe22nflypWtnps8eXI3/NMDAAAAAAAAAAAAAAAAAAAAAAAAAACgpxOhJismTpzYau2+++6L+vr6du+xZMmSeO2117ZZO/bYY2PYsGFdng8AAAAAAAAAAAAAAAAAAAAAAAAAAAB2NSLUZMXhhx8exx9//DZrVVVVcdttt7V7j8svv7zV2j/+4z92eTYAAAAAAAAAAAAAAAAAAAAAAAAAAADYFYlQkzVXXXVVq7UZM2bE4sWLd/runXfeGU8//fQ2awceeGCcffbZ7Tq7oqIiUqnUNn89//zz7XoXAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkiEmqz57ne/G9///ve3Waurq4uTTjopnnjiiTbfaWhoiOuuuy6mTZvW6t4dd9wRxcXF3TIrAAAAAAAAAAAAAAAAAAAAAAAAAAAAJF1RvgcgWe655554/fXX45NPPmlZq6mpidNOOy3GjBkT3//+92PYsGGxZcuWeP/992PevHnx6aefttpn6tSpceqpp+ZydAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgUEWqyauDAgbFgwYL45je/GWvXrt3m3qJFi2LRokU73WPChAkxa9asbpoQAAAAAAAAAAAAAAAAAAAAAAAAAAAAdg0F+R6A5KmsrIyFCxfG8ccf36H3iouLY8aMGfHwww9HYWFhN00HAAAAAAAAAAAAAAAAAAAAAAAAAAAAuwYRarrF/vvvHy+++GI88sgj8fWvfz1SqdR2n919991jypQp8dZbb8XMmTOjoMC/lgAAAAAAAAAAAAAAAAAAAAAAAAAAANBVRfkegORKpVIxYcKEmDBhQnz22WexcOHC+PDDD6OmpiaKiopir732isrKyjj66KOjpKSkS2d99NFH2Rm6A2bOnBkzZ87M+bnNnn/++bydDQAAAAAAAAAAAAAAAAAAAAAAAAAAQM8nQk1ODBo0KP72b/8232MAAAAAAAAAAAAAAAAAAAAAAAAAAADALqMg3wMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkH0i1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJEINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEAi1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJEINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEAi1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJEINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEAi1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJEINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEAi1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJEINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEAi1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJEINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEAi1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJEINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEAi1AAAAAAAAAAAAAAAAAAAAABA4rz66qtxww03xPjx4+PQQw+NIUOGRJ8+fSKVSrX66/TTT8/3uB02efLkNv9e5s6dm+/RAAAAAIAepCjfAwAAAAAAAAAAAAAAAAAAAAAAZMvjjz8e1157bSxevDjfowAAAAAA5J0INQAAAAAAAAAAAAAAAAAAAADQ6zU1NcW0adPi/7F339FZ1+f/+K9MZBZZKioWtSrWyagLXK1FraJYRJwotNaFdqjVqgyxKtpWrIqlKlZbtDig7kGdKFpZggrKlq2IShCQhCS/Pz7f8Gt6B0ju3Mmd3Dwe5/BHrvf7db2epPbkHE2euffee9MdBQAAAACgzshOdwAAAAAAAAAAAAAAAAAAAAAAgOr67W9/q4AaAAAAAOB/KKEGAAAAAAAAAAAAAAAAAAAAAOq1119/Pf74xz+mOwYAAAAAQJ2Tm+4AAAAAAAAAAAAAAAAAAAAAAADVMWzYsM0+O/zww6N3796x3377xfbbbx/5+fkJ7zRr1qwm4wEAAAAApI0SagAAAAAAAACgRq1cuTImTZoU8+bNi4KCgsjLy4uWLVvGvvvuG507d468vLx0RyynsLAwPvnkk5g1a1Z88cUXsXr16sjLy4vtt98+WrduHZ06dYqdd965xnMUFRXFpEmTYtasWbFq1aooKiqKZs2axR577BFdunSJ1q1b13gGAAAAAAAAAACoD5YtWxYvvvhihc9uvfXW+O1vf1vLiQAAAAAA6g4l1AAAAAAAAABAjXjiiSfizjvvjLfffjtKS0srfKdp06bRu3fvuPrqq2Ovvfaq5YT/p6ioKF5//fV45ZVX4rXXXoupU6fGxo0bt3hml112idNPPz0uvvji+N73vpfSPJ988kncdttt8fjjj8eaNWsqfCcrKyu6du0aV1xxRfz0pz9N6f0AAAAAAAAAAFDfvP322xXOO3bsqIAaAAAAANjmZac7AAAAAAAAAACQWZYuXRpHH310nH766fHWW29ttoA6ImLNmjXxwAMPxP777x9Dhw7d4rupNmPGjOjfv3/ssMMO8eMf/ziGDRsW77333lYLqCMilixZEnfccUfsvffe8bOf/SwKCgqqnaekpCSGDBkS+++/f4waNWqzBdQREaWlpTFhwoTo1atXHHPMMbF8+fJq3w8AAAAAAAAAAPXVpEmTKpz37NmzlpMAAAAAANQ9SqgBAAAAAAAAgJSZPXt2dOnSJd54440qnSssLIyBAwfG2WefHcXFxTWUrryxY8fGqFGj4quvvkp6R2lp6aYS7dmzZye9p7i4OM4888wYPHhwFBUVVens66+/Hl26dIm5c+cmfT8AAAAAAAAAANRnK1asqHDeoUOHWk4CAAAAAFD35KY7AAAAAAAAAACQGVatWhXHHXdcLF++POFZp06d4pRTTon27dvH+vXrY/bs2fHII4/EsmXLyr336KOPRps2bWL48OG1lDpRgwYNokuXLnH44YdH27Zto02bNlFcXBzLly+PiRMnxgsvvBAbNmwod2bRokVx7LHHxoQJE6J9+/ZVvvPyyy+Pxx57LGHeokWLOOecc6JDhw7RrFmzWLhwYbz88ssJJd9Lly6NH//4xzFlypTYfvvtq3w/AAAAAAAAAADUZ5v7RfTNmzev3SAAAAAAAHWQEmoAAAAAAAAAICUuvPDCWLRoUblZ06ZN4x//+Ef06NEj4f2bb745br755hg8eHC5+Z133hndu3ePE044oSbjlpObmxsnnnhiXHDBBXH88cfHdtttt9l3ly9fHldddVWMHj263Hzp0qXRr1+/eO2116p099NPPx0jRoxImF900UXxxz/+MRo1alRu/rvf/S7efvvt+OlPfxqfffbZpvmCBQvioosuijFjxlTpfgAAAAAAAAAgjUpKIv7nl2FDndCgQUR2drpTVNo333xT4TwnJ6eWkwAAAAAA1D1KqAEAAAAAAACAahs/fnyMHTu23Cw/Pz9effXV6Ny5c4Vn8vLyYtCgQdG8efP45S9/We7Z5ZdfHrNmzYrc3Jr91oaGDRvGRRddFFdffXXsuOOOlTqz0047xT/+8Y/Ye++9Y+DAgeWevf766/Hkk0/GT3/600rtKioqiiuuuCJh/qtf/Sr+9Kc/bfbcEUccEe+880507tw5vvzyy03zxx57LC6++OI4+uijK3U/AAAAAAAAAJBmGzZEzJyZ7hSQaN99Ixo2THeKSistLU13BAAAAACAOksJNQAAAAAAAABQbUOHDk2YDRo0aLMF1P/tiiuuiOeeey7Gjx+/aTZ37tx45JFH4rzzzktpzv92/PHHx0UXXVTp8un/dcMNN8R7770Xzz77bLn5ww8/XOkS6r///e+xcOHCcrP99tsvbr311q2ebd++ffz5z3+Oc845p9z8xhtvVEINAAAAAAAAAEBG+vzzz+Pzzz9PmK9du7bC9xcsWBCtWrXa6t6999478vLyqp0PAAAAAKAuUkINAAAAAAAAAFTLRx99FBMmTCg3a9WqVVx55ZWV3nHLLbeUK6GOiLj33ntrtIT60EMPrfaOIUOGJJRQv/zyy1FYWBj5+flbPX/vvfdWuLMyZyMizj777Lj11lvjww8/3DR77bXX4pNPPom99967UjsAAAAAAAAAAKC+GDFiRAwZMqTS7/fr169S7y1YsCC++93vVurdJUuWxIQJE+Kjjz6KWbNmxezZs+Orr76KgoKCWLduXeTn50fTpk1j5513jj333DM6d+4cP/rRj+Lggw+OrKysSmdPt9LS0pgwYUK8++67MW3atJg5c+amv+c333wT+fn50ahRo2jcuHG0bds2dtttt2jfvn107NgxDjvssNhll11qLNs333wT48ePjwkTJsSMGTNiwYIFsWrVqli7dm3k5ORE06ZNo127dtGhQ4fo2rVrnHTSSTWaBwAAAADqOiXUAAAAAAAAAEC1/POf/0yYXXDBBZUuUo6I6NSpU3Tq1CmmTJmyafbuu+/GggULon379inJWRM6duwYO+64Y6xYsWLT7Ntvv43ly5fHbrvttsWzc+fOjcmTJ5eb7bTTTtGjR48qZfjFL34RAwYMKDd79NFHY/DgwVXaAwAAAAAAAAAAJCouLo5XX301nnzyyXj11Vdjzpw5W3x//fr1sX79+vj8889j2rRp8fjjj0dERPv27eOSSy6JSy65JBo1alQb0ZPy1VdfxZ/+9Kd4+OGHY9GiRZt9r+zvuWrVqli0aFG8++675Z63a9cuTjvttOjTp08ccsghKck2ffr0uP3222PcuHGxbt26Ct/ZuHFjbNiwIb744ouYOnVqjB49Oi655JL40Y9+FNddd10cddRRKckCAAAAAPVJdroDAAAAAAAAAAD124svvpgw69WrV5X3VHSmot11za677pow++9S6s156aWXEmannnpq5OZW7XeKV/R5e+GFF6q0AwAAAAAAAAAASPTrX/862rZtGz/+8Y9j5MiRWy2g3pIFCxbEVVddFXvttVc8++yzKUyZOqNHj4599tknbrrppi0WUFfGokWLYvjw4XHooYfG9OnTq7Xr888/j3PPPTcOOuigGD169GYLqDentLQ0xo8fH0cffXT06dMnVq1aVa08AAAAAFDfKKEGAAAAAAAAAJK2du3amDp1arlZo0aNomPHjlXe1a1bt4TZhAkTks5WWyr6gaaGDRtu9VxFf7euXbtW+f4dd9wx9txzz3KzKVOmVPkHrQAAAAAAAAAAgPL++te/xueff57SnUuXLo0ePXrETTfdlNK91TVw4MA455xzUv73jfi/Euhkvfnmm7H//vvHP/7xj5RkGTNmTHTp0iU++uijlOwDAAAAgPpACTUAAAAAAAAAkLT3338/SkpKys06d+4cubm5Vd7VpUuXyMvLKzebMmVKtfLVtOLi4liwYEHCfKeddtrq2Yr+bocddlhSOQ4//PCEXNOnT09qFwAAAAAAAAAAULNKS0vjhhtuiFtvvTXdUSIi4vbbb4+hQ4emO0aCJ554In70ox+lvBh7wYIFccwxx8TMmTNTuhcAAAAA6qqq/8QnAAAAAAAAAMD/8/HHHyfM9txzz6R25efnxy677FKu1HnevHmxcePGpEqta8MLL7wQ69atKzfbbbfdonXr1ls8V1RUFPPnzy83y8vLi9122y2pHHvssUfC7JNPPkm61BoAAAAAAAAAAOqiwYMHx+DBgxPmRx99dLzxxhsJ89deey2OPvrolGbIzs6OffbZJ7p06RKdOnWKtm3bxvbbbx/bb799bNiwIb766qtYuHBhvPPOOzF+/PhYsWLFZnddd9118YMf/CCOPfbYlGasinnz5sXAgQM3+zwvLy+6du0aRx11VOy1117Rtm3baNy4ceTk5ERBQUGsXr06lixZEtOnT48ZM2bElClToqioqNq5nn/++TjzzDNj48aNm31nl112iR/+8IfRrVu3aNu2bbRq1SqKi4vjs88+iw8++CCee+65ePfddys8u3LlyjjppJNi8uTJ0aJFi2rnBQAAAIC6rG7+hCYAAAAAAAAAUC8sXLgwYZZskXJERLt27cqVUBcXF8eiRYti9913T3pnTfrrX/+aMDvllFO2em7RokVRUlJSbrbLLrtEdnZ2UjnatWuXMPvfkmsAAAAAAAAAACA52dnZ0a1bt+jTp0/06tUrWrVqtdUzF198cRQVFcXjjz8e1157bSxatCjhnZKSkrjwwgtj1qxZkZeXVxPRt2rQoEHx7bffVvjsoosuihtuuCHatm1b6X0FBQXxwgsvxL/+9a8YO3ZsFBYWVjnTnDlz4qyzztpsAfX3v//9uOGGG+L000/f7PdcnXLKKXH99dfHu+++G7/61a8qLKNesGBBXHjhhfHEE09UOSMAAAAA1CfJ/eQiAAAAAAAAAEBErFixImG26667Jr2vorOfffZZ0vtq0muvvRbPPPNMuVlWVlb0799/q2e35c8bAAAAAAAAAADUF7m5uXHOOefEzJkz4/XXX4+LLrqoUgXUZfLy8uKss86KGTNmRI8ePSp8Z968efHwww+nKnKVFBYWJnwPVJm77ror7r333ioVUEdENGvWLM4444x49NFH49NPP43rr78+GjduXOnzJSUl0bdv31i9enWFzy+88MKYMmVKnHHGGZstoP5vhx56aEyYMCHOP//8Cp8/+eST8fzzz1c6HwAAAADUR7npDgAAAAAAAAAA1F9ffvllwqxJkyZJ76vo7KpVq5LeV1NWr14d/fr1S5ifffbZccABB2z1/Lb0ebvnnntixIgRNX7PvHnzavwOAAAAAAAAAAC2LdOmTYv27dtXe893vvOdePzxx6N79+7x+uuvJzy/5557on///tW+p6omTpwYBQUFCfOjjz46Lrvssmrv33HHHWPo0KFVOvPAAw/EO++8U+Gzq6++OoYNG1blHLm5ufHggw/GunXr4rHHHkt4fsMNN8SJJ55Y5b0AAAAAUF8ooQYAAAAAAAAAkrZ27dqEWcOGDZPeV9HZdevWJb2vJpSWlsZ5550XCxcuLDdv1apV/OEPf6jUjm3p87Zy5cqYOXNmumMAAAAAAAAAAECVpaKAukx+fn489NBDsddee8WGDRvKPZs2bVp88sknsffee6fsvsr49NNPK5z36dOnVnOUKSwsjJtuuqnCZyeffHLceuut1dp/3333xX/+85+Ev/fUqVPjzTffjCOPPLJa+wEAAACgrspOdwAAAAAAAAAAoP4qKipKmG233XZJ76uoTLmwsDDpfTXh2muvjaeffrrcLCsrK0aNGhU77LBDpXZsi583AAAAAAAAAADY1rVr1y5+9rOfVfhs/PjxtZwm4rPPPqtw/t3vfrd2g/w/Y8eOjUWLFiXMGzRoEH/+858jKyurWvubNWsW11xzTYXPHnrooWrtBgAAAIC6TAk1AAAAAAAAAJBS1flBn4rOlpaWVidOSo0YMSKGDRuWMP/d734XJ598crV2Z/LnDQAAAAAAAAAA+D+nnHJKhfN33323lpNs/nuW1qxZU8tJ/s+DDz5Y4bx///4pK8bu27dvNG/ePGH+/PPPp2Q/AAAAANRFSqgBAAAAAAAAgKTl5eUlzNavX5/0vorO5ufnJ70vlUaPHh0DBgxImPft2zeGDh1apV3b0ucNAAAAAAAAAAD4/x1xxBEVzj/88MNaThLRsmXLCufPPfdcLSf5v+Lr1157rcJnZ555ZsruadiwYXTt2jVhvmLFipg1a1bK7gEAAACAukQJNQAAAAAAAACQtEaNGiXMUl2m3Lhx46T3pcrYsWPj/PPPj5KSknLzXr16xQMPPBBZWVlV2retfN4AAAAAAAAAAIDyGjVqFE2aNEmYL1y4sNaz7LfffhXOH3744XjppZdqNctrr70WRUVFCfM2bdpstrg7WRWVUEdETJs2LaX3AAAAAEBdkZvuAAAAAAAAAABA/dWyZcuE2TfffJP0vorOVnRHbXr22WejT58+sXHjxnLzHj16xCOPPBI5OTlV3rktfN7KtG7dOvbdd98av2fevHmxYcOGGr8HAAAAAAAAoLbMnTs33n///Vi8eHGsXbs2GjZsGG3bto0DDjggvv/976c7HgDV0KJFi4Tv+Vm9enV8++23sd1229Vajk6dOkXz5s3j66+/LjcvKSmJk08+OX7961/Hb37zm2jdunWNZ5k8eXKF8/333z+ysrJSetfOO+9c4fzjjz9O6T0AAABQ04pLiiMnu+o/21RTe4C6Swk1AAAAAAAAAJC0HXbYIWG2ZMmSpPctXry4UnfUlpdeeil69eoVRUVF5eYnnHBCPP7445GXl5fU3kz/vP23Sy+9NC699NIav+f73/9+zJw5s8bvAQAAAAAAADLfl19+GZMnT970Z8qUKbFo0aKE90pLS1N+9/r16+Pee++Nv/zlLzFnzpzNvrfLLrtE//7945e//GU0b9485TkA2LKZM2fGpEmT4oMPPogPPvggli5dGmvWrImCgoJYs2ZNFBcXJ7V3zZo1tVpCnZOTE7/4xS9i2LBhCc+Kiopi2LBhcccdd8RJJ50UPXv2jO7du9dYIfUHH3xQ4XyfffZJ+V0tW7ascL506dKU3wUAAAA1pWBDQZw99uzod1C/6NmhZ9J7xs0aF6PeHxWjTxsdzRo0S2FCoC5RQg0AAAAAAAAAJK19+/YJs08//TTpff/7Q7s5OTnRrl27pPdVx7///e849dRTY8OGDeXmxx13XIwdOzby8/OT3t2uXbvIzs6OkpKSTbPFixdHSUlJZGdnV3lfRT/sXNH/NgAAAAAAAAAk+vDDD+O5556LKVOmxOTJk2PBggVpyfH222/H2WefXan/7r5kyZIYMmRIjBgxIu6///7o0aNHLSQE2LYtX748HnzwwXjkkUfio48+qpE7vv322xrZuyVXXnllPPzww7F8+fIKnxcWFsbYsWNj7NixkZWVFfvuu29069YtDj/88OjatWvKvk9pc1//7rnnnrjnnntScsfWrFq1qlbuAQAAgOoq2FAQZzxxRkxfMT2mLZ8WEZFUEfW4WeNiwAsDoqS0JM544owY02uMImrIUFX/qUUAAAAAAAAAgP9n7733TpjNnTs3qV2FhYWxePHicrM99tgjcnNr/3dsv/baa9GjR4+EH+o69thj46mnnortttuuWvvz8/MTfviqqKiowjLpypg3b17CbJ999klqFwAAAAAAAMC25v77749rrrkmHn/88bQVUI8dOzaOOeaYKv/i55UrV8app54aI0aMqKFkABQVFcVtt90We+21V1x33XU1VkAdEVFcXFxjuzenVatWMXbs2GjcuPFW3y0tLY2PPvoo/vKXv8R5550Xu+++e+y+++7xs5/9LJ588snYsGFD0jmWLVuW9NlUWb9+fbojAAAAwFb9dwF1RERJaUkMeGFAjJs1rkp7/ruAOiJi+orpccYTZ0TBhoKUZwbSTwk1AAAAAAAAAJC0gw8+OLKzy3/7weTJk2Pjxo1V3jV58uQoKioqN+vYsWO18iXjjTfeiJNOOinhB4qOOuqoeOaZZ6Jhw4YpuadTp04Js3feeSepXRMnTiz3cU5OThx44IFJ7QIAAAAAAACgdk2cODH69OmT8N/Ms7Ozo0ePHnHbbbfFo48+Gn/+85+jf//+0ahRo3LvlZaWxmWXXRbjxlWtYASArVuyZEl06dIlfvvb38Y333yT7jg15tBDD4133nkn9txzzyqfXbBgQTzwwAPRq1ev2HHHHePCCy+M2bNnV3nPmjVrqnwm1QoLC9MdAQAAALbofwuoy1S1iPp/C6jLKKKGzKWEGgAAAAAAAABIWuPGjePggw8uN1u7dm1MmzatyrveeuuthNmRRx6ZdLZkTJgwIX7yk5/EunXrys27desWzz33XMIP8lZHt27dEmYVfQ625rPPPos5c+aUm3Xq1CmlWQEAAAAAAAC2Rfn5+dGxY8e48MILo3nz5jVyx9q1a+PMM89MKKDee++948MPP4ynnnoqrrrqqujTp08MGDAg7r///li8eHH06NGj3PulpaVxwQUXxIoVK2okJ8C26LPPPoujjjoqpk+fvvWXM8D+++8fH374YfzhD3+IVq1aJbXj66+/jvvuuy/23Xff6N+/f3z11VeVPrthw4ak7kyl0tLSdEcAAACAzdpcAXWZyhZRb66AuowiashMSqgBAAAAAAAAgGo5/vjjE2ZPPPFElfdUdKai3TVl4sSJceKJJ8batWvLzY844oh4/vnno3Hjxim9r3v37gmzp556KjZu3FilPU8++WTCrDY/bwAAAAAAAACZIDc3Nw444IDo169fjBgxIt57771Ys2ZNTJkyJUaOHBnf+c53auTem2++ORYtWlRutueee8bEiROjQ4cOFZ5p0aJFjB07Nn7605+Wm69evTquueaaGskJsK0pLS2Nc889N+bPn7/F93beeefo2bNnXH/99XHffffF008/Ha+//npMnjw53n///fjggw8q/NO2bdta+ptUTYMGDeI3v/lNLF26NB5//PE49dRTo1mzZlXeU1xcHKNGjYqDDz44pk6dWqkz2dlqcAAAAGBztlZAXWZrRdRbK6Auo4gaMk9uugMAAAAAAAAAAPVbnz594ve//3252YMPPhhDhw6N/Pz8Su2YNm1aTJo0qdzskEMOifbt26cs55b85z//iRNOOCG++eabcvPDDjssXnjhhWjSpEnK7/ze974XnTp1iilTpmyaLV26NJ599tk49dRTK71n5MiRCbMzzzwzFREBAAAAAAAAtgm//e1v45ZbbomGDRvW6r1ff/113H333eVm2dnZ8eCDD0aLFi22eDYnJydGjhwZb731Vnz22Web5v/4xz9i4MCBsfvuu9dIZoBtxdixY2P8+PEVPsvOzo7+/fvHJZdcEgcddFBS+3NycqqRrubl5+dHr169olevXlFcXByTJk2K1157LSZMmBATJ06M1atXV2rPp59+Gt27d4///Oc/W/3a1KhRowr39u/fP375y18m89eossaNG9fKPQAAAFAVlS2gLlNWRB0R0bNDz03zyhZQlykroh7Ta0w0a1D1X1IF1C1KqAEAAAAAAACAatlvv/2ia9eu8dZbb22arVy5Mu6444747W9/W6kd1157bcLs4osvTlnGLZkyZUp07949CgoKys1/8IMfxIsvvhhNmzatsbsvvvji+NnPflZuNmjQoPjJT34SeXl5Wz3/z3/+M2bMmFFudvTRR8c+++yT0pwAAAAAAAAAmWynnXZKy72jR49O+G/VP/nJT6Jr166VOt+yZcu46qqr4sorr9w0Ky4ujvvuuy9uueWWlGYF2Nb88Y9/rHDetGnTePzxx6N79+7V2v/VV19V63xtysnJiUMPPTQOPfTQuPbaa6OkpCTef//9ePPNN+PZZ5+NN998M4qKijZ7/osvvoizzz473nnnnS3e07JlywpLqHNzc2O//far9t8DAAAA6qOqFlCX+d8i6qoWUJdRRA2ZIzvdAQAAAAAAAACA+u/6669PmA0aNCimTp261bN33313vPTSS+Vmu+++e5x11lmVuvu73/1uZGVllfvz+uuvV+rs9OnT48c//nHCDy917tw5Xn755WjWrGa/Oercc8+N3XbbrdxsxowZ8bvf/W6rZxcuXBiXXXZZwvyGG25IWT4AAAAAAAAAas4///nPhNlFF11UpR19+/aNBg0alJs9+uij1coFsK1bvHjxZguT77777moXUBcVFcU333xTrR3plJ2dHR07doxf/vKX8e9//zs+//zzuPPOO2P33Xff7Jl33303nnvuuS3ubdeuXYXzL7/8slp5AQAAoL4qLimOs8eeXeUC6jJlRdR9/9U3qQLqMtNXTI+zx54dxSXFSZ0H6gYl1AAAAAAAAABAtXXv3j1OOeWUcrMNGzbEMcccE88880yFZ4qKimLo0KExYMCAhGd//vOfIy8vr0aylpk5c2Ycd9xxCT+k1LFjxxg/fnx85zvfqdH7IyLy8/Nj+PDhCfM//OEPcemll8b69esrPDdx4sQ47LDDYtWqVeXmvXr1imOPPbYmogIAAAAAAACQQqtXr04oOG3atGmVi01btWoVRx99dLnZp59+GrNmzapuRIBt1ltvvVXhfI899ojzzjuv2vvnz59f7R11SfPmzePyyy+PmTNnxiWXXLLZ9yr65Qv/rUOHDhXO58yZU618AAAAUF/lZOdEv4P6RXZW8tWxJaUlMX7e+KQLqCMisrOyo99B/SInOyfpHUD65aY7AAAAAAAAAACQGe67776YMmVKLFmyZNOsoKAgevToEZ07d45TTjkl2rdvH+vXr485c+bE6NGjY+nSpQl7LrvssvjJT35S43mvuOKKWLlyZcL866+/TvgB3aq68cYbo0ePHpV699RTT41f/OIXMXLkyHLzESNGxJgxY+Kcc86JDh06RNOmTWPRokXx0ksvxeuvv56wZ7fddkvYAQAAAAAAAEDd9M4770RxcXG52aGHHho5OVUv8ejWrVu89NJL5WYTJkzYbJknAFv2ySefVDg/+eSTU7J/woQJKdlT1zRo0CDuueeemDdvXsLXpYiIV199dYvnf/CDH8S9996bMJ8xY0Z8/fXX0bx581RFBQAAgHqjZ4eeEREx4IUB1SqSTlZ2VnbcdcJdm3IA9ZcSagAAAAAAAAAgJVq3bh0vv/xyHHvssbFixYpyzyZPnhyTJ0/e6o7evXvH8OHDayhheUVFRRXO58+fX+3dX375ZZXev/vuu+OLL76IJ598stx81apVceedd271/E477RQvv/xytGjRokr3AgAAAAAAAJAeU6ZMSZgddthhSe06/PDDK7UfgMr5/PPPK5zvtttuKdm/tTLm+u7KK6+ssIR62bJlUVRUFHl5eRWeO/bYYyucl5SUxKuvvhqnnXZaSnMCAABAfZGuImoF1JBZstMdAAAAAAAAAADIHB06dIj33nsvunbtWqVzeXl5MWjQoHj00UcjJyenhtLVXbm5ufHYY4/FDTfcELm5Vfud4kceeWRMmjQp9tprrxpKBwAAAAAAAECqffzxxwmzPffcM6lde+yxR8Lsk08+SWoXABGFhYUVzhs2bFjt3Z999lmMHTu22nvqss6dO2/22apVqzb7rF27dtGpU6cKn915553VzgUAAAD1Wc8OPeOuE+6K7KzaqZFVQA2ZRwk1AAAAAAAAAJBSu+66a7z55psxZsyYOPzwwyMrK2uz7zZp0iQuuOCCmDFjRgwePDiys7fdb2XIzs6OG2+8MT744IM4//zzo0mTJpt9NysrK4444oh47LHH4o033oidd965FpMCAAAAAAAAUF0LFy5MmO22225J7dp5550TfuHz/Pnzk9oFQESLFi0qnC9btqzau4cPHx4bNmyo9p66LD8/f7PPGjduvMWz/fv3r3D+5ptvxptvvlmtXAAAAFDf1VYRtQJqyEy56Q4AAAAAAAAAAGSerKys6N27d/Tu3Ts+//zzeO+992L+/PlRUFAQubm50apVq+jQoUN06dJliz90VBkV/WBuZbz++uvVurem7LPPPvHggw/GyJEjY9KkSTFr1qz44osvYuPGjdGsWbPYfffd4wc/+EG0adMm3VEBAAAAAAAASNKKFSsSZrvuumtSu3JycmKnnXaKJUuWbJp99tlnSWdLtXvuuSdGjBhR4/fMmzevxu8Atg2tW7eucP7KK6/EkCFDkt773nvvxR/+8Iekz9cXs2fPrnDepEmTaNq06RbPnnfeeTFw4MD44osvEp717ds3Jk2aFK1atUpJTgAAAKiPyoqhB7wwIEpKS1K+XwE1ZC4l1AAAAAAAAABAjWrTpk2cdNJJ6Y5R7+Tn58cRRxwRRxxxRLqjAAAAAAAAAJBiX375ZcKsSZMmSe/737OFhYXxzTffVGtnqqxcuTJmzpyZ7hgAlXbwwQdXOH/77bfj7bffTur7eZYtWxZnnXVWbNy4sbrxUuqhhx6KH/7wh7HLLrukbOeoUaMqnO+3335bPdu4ceMYOHBgXH755QnPFi5cGD/96U/j2Wef3WqZdVV99NFHUVpaWqmMAAAAkG41VUStgBoymxJqAAAAAAAAAAAAAAAAAAAAqEVr165NmDVs2DDpfRWdXbduXZ0ooWYrGjSI2HffdKeARA0apDtB2nTr1i0aNWoU69atS3h23nnnxYQJE6Jt27aV3vfJJ59E9+7d49NPP01lzJR48MEH4+c//3mcddZZ8Zvf/Cb233//au3717/+Fffcc0+Fz3r37l2pHZdcckk88sgj8e677yY8e/PNN6Nz587x5JNPpqQwesKECXHbbbfFc889Fw8//LASagAAAOqNVBdRK6CGzKeEGgAAAAAAAAAAAAAAAAAAAGpRUVFRwmy77bZLel9FJdSFhYVJ76MWZWdHVKOAHEi9Bg0aRK9eveLhhx9OeDZ//vw49NBD4/77748f//jHW9yzdu3auO222+IPf/hDuULrZs2aRVZWVqxevTrl2ZNRVFQUDz30UDz00ENxwAEHRO/evaN3797xve99r9I7Vq1aFcOGDYs//vGPUVKSWHzVuHHjOPPMMyu1KycnJ0aPHh1dunSJL7/8MuH57Nmzo1OnTnHuuefGVVddFXvvvXelc5aWlsakSZPiiSeeiCeffDLmz59f6bMAAABQ1/Ts0DP+9cm/Yvy88dXe9cPdf6iAGjKcEmoAAAAAAAAAAAAAAAAAAABIs6ysrJSeLS0trU4cgG3aoEGD4tFHH63wlwYsXrw4unfvHgcffHCceuqp0alTp2jdunVkZ2fH559/HosXL46XX345xo8fH2vWrEk4P3z48BgyZEidKaH+bzNmzIgZM2bE9ddfHzvuuGN06dIlOnfuHHvssUe0aNEiWrRoEdttt12sXbs2Vq5cGR9//HFMmDAhXnnllfj22283u3fYsGGx4447VjrH7rvvHk8//XQcd9xxsX79+oTnhYWF8cADD8SoUaNiv/32iyOPPDK6dOkSrVu3jhYtWkSDBg1i9erV8fXXX8eqVavio48+imnTpsX7778fX3/9dTKfGgAAAKhzxs0aF6/MfyUlu16Z/0qMmzVOETVkMCXUAAAAAAAAAAAAAAAAAAAAUIvy8vJiw4YN5Wbr16+PJk2aJLWvooLO/Pz8pHYB8H8lyIMHD47rrrtus+9MmzYtpk2bVqW9F198cVxwwQUxZMiQ6kascStWrIhnnnkmnnnmmWrt6dWrV1xyySVVPnfEEUfEyy+/HCeffPJmi6NLS0vjgw8+iA8++KBaGQEAAKC+GTdrXAx4YUCUlJakZF9JaUkMeGFARIQiashQSqgBAAAAAAAAAAAAAAAAAACgFjVq1KjGS6gbN26c1K5Ua926dey77741fs+8efMSPqcA1fG73/0uZs+eHQ899FBK9p1//vlx9913p2RXfXHBBRfEfffdF1lZWUmd79q1a7z33nvRp0+fmDp1aorTAQAAQP2U6gLqMoqoIbMpoQYAAAAAAAAAAAAAAAAAAIBa1LJly/jqq6/Kzb755pto3bp1Uvu++eabch/n5+cnXWidapdeemlceumlNX7P97///Zg5c2aN3wNsW0aNGhXf/e53Y+jQoVFSklyx03bbbRc33XRT/OY3v0lxuurbf//9Y+LEiVFUVJTSvTvttFPcfvvtcfbZZ1d71/e+97145513Yvjw4fH73/8+CgoKUpCw/P6+ffvG8ccfn9K9AAAAUBNqqoC6jCJqyFxKqAEAAAAAAAAAAAAAAAAAAKAW7bDDDjF37txysyVLlkT79u2rvKu4uDiWL1+esB9gW3LUUUdFq1atEubJlvuXyc7OjsGDB8dxxx0XQ4YMifHjx1f6bH5+fvTp0ycGDhwYe+yxR7Vy1JS77rorfv/738dLL70Uzz33XLzxxhuxcOHCpPftv//+cd5558UvfvGLaNq0acpy5ufnx9VXXx0XXnhh3H///TFq1KiYNWtWUruysrLigAMOiOOOOy5OPfXUOOKII1KWEwAAAGpSTRdQl1FEDZlJCTUAAAAAAAAAAAAAAAAAAADUovbt28fbb79dbvbpp59Gt27dqrxr2bJlsXHjxoT9ANuSIUOG1Oj+I444Il5++eX48MMP44UXXog33ngj5syZE6tWrYqvv/46GjRoEE2bNo327dvHvvvuG8ccc0wcf/zxFRZjR0R88sknUVpamjBv0KBBlXL97W9/i7/97W/J/JU2adasWZx++ulx+umnR0TEihUrYuLEiTFjxoyYO3duzJs3L5YvXx5r1qyJNWvWRFZWVjRr1iyaNWsWbdq0iQMOOCAOPvjgOOKII2L//fevVpatad68eVx55ZVx5ZVXxscffxyvvvpqTJo0KWbPnh2LFi2Kr7/+OtavXx+5ubnRtGnTaNasWbRs2TL23nvv2GeffWLfffeNrl27VrucHAAAAGpbbRVQl1FEDZlHCTUAAAAAAAAAAAAAAAAAAADUor333jthNnfu3KR2zZs3L2G2zz77JLULgC3bb7/9Yr/99ourrrqqWnuqWjZdm3bcccc47bTT4rTTTkt3lC3aZ599fL0DAABgm1DbBdRlFFFDZslOdwAAAAAAAAAAAAAAAAAAAADYlnTq1Clh9s477yS1a+LEiQmzjh07JrULAAAAAIC6I10F1GXKiqjHzRqXlvuB1FFCDQAAAAAAAAAAAAAAAAAAALXosMMOi5ycnHKzd955J4qLi6u866233kqYHXnkkUlnAwAAAAAg/YpLimPU+6OqVUCdnZUdx+1xXGRnJV8/W1JaEqPeHxXFJVX/99dA3aGEGgAAAAAAAAAAAAAAAAAAAGpR8+bN49BDDy03W7NmTbz88stV2vPll1/Ga6+9Vm7Wrl276NChQ7UzAgAAAACQPjnZOTH6tNFx4I4HJnU+Oys77jrhrnjo1IfirhPuSrqI+sAdD4zRp42OnOycrb8M1FlKqAEAAAAAAAAAAAAAAAAAAKCW9enTJ2E2cuTIKu146KGH4ttvvy03O/PMM6uVCwAAAACAuqFZg2YxpteYKhdRlxVQ9+zQMyIienbomVQR9YE7Hhhjeo2JZg2aVekcUPcooQYAAAAAAAAAAAAAAAAAAIBads4550TTpk3LzZ555pmYOHFipc5/+eWXcfvtt5eb5eTkxM9//vOUZQQAAAAAIL2qWkT9vwXUZapaRK2AGjKLEmoAAAAAAAAAAAAAAAAAAACoZc2bN49LL7203KykpCQuuOCC+Oqrr7Z4tqSkJC666KJYvnx5uflZZ50Ve+yxR8qzAgAAAACQPpUtot5cAXWZyhZRK6CGzKOEGgAAAAAAAAAAAAAAAAAAANLguuuui1122aXcbPbs2XH44YfHxx9/XOGZr776Kk477bR4/PHHy82bNWsWt956a41lBQAAAAAgfbZWRL21AuoyWyuiVkANmSk33QEAAAAAAAAAAAAAAAAAAAAgnU488cRYtmzZZp9X9Oyggw7a4s7nn38+2rZtu8V3mjRpEo888kgce+yxsXHjxk3zjz/+OL7//e/HySefHN26dYudd945vvjii5g+fXo8+uijsXbt2oRdDzzwwFbvAwAAAACg/ioroj7jiTNi+orpm+aVLaAuU/begBcGRElpyaa5AmrIXEqoAQAAAAAAAAAAAAAAAAAA2KbNnDkzPv300yqdmT59+hafFxYWVmpPt27d4pFHHomzzjqrXBF1SUlJPPXUU/HUU09t8XxWVlYMHz48evXqVan7AAAAAACov/63iLqqBdRl/reIWgE1ZLbsdAcAAAAAAAAAAAAAAAAAAACAbdnpp58er7zySuy6665VOteyZct48skn4/LLL6+hZAAAAAAA1DVlRdSd2nZKqoC6TM8OPeOuE+6KTm07KaCGDJeb7gAAAAAAAAAAAAAAAAAAAACwrTvyyCPj448/jhEjRsTIkSNj7ty5m3135513jn79+sWvfvWr2H777WsxJQAAAAAAdUGzBs3iX2f8K3Kyc6q1p2eHntFj7x7V3gPUbUqoAQAAAAAAAAAAAAAAAAAA2KYtXLgw3REiIqJRo0Zx5ZVXxpVXXhmzZ8+O999/PxYvXhzr1q2L7bbbLtq2bRsHHHBA7L///umOCgAAAABAmqWqOFoBNWQ+JdQAAAAAAAAAAAAAAAAAAABQx+y1116x1157pTsGAAAAAAAA9Vx2ugMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHpKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAykBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAykhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAymhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhASqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAADIQEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAADKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACADKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACADKaEGAAAAAAAAAAAAAAAAAAAASFJWVtZW3ykpKamFJADUB5X5mlCZry0AAAAAUFlKqAEAAAAAAAAAAAAAAAAAAACSlJ299eqG4uLiWkgCQH1Qma8JlfnaAgAAAACV5d82AQAAAAAAAAAAAAAAAAAAACQpJydnq+9s3LixFpIAUB9U5mtCZb62AAAAAEBlKaEGAAAAAAAAAAAAAAAAAAAASFJWVlZkZ2+5vmHt2rW1lAaAum5rXxOys7MjKyurltIAAAAAsC1QQg0AAAAAAAAAAAAAAAAAAABQDQ0bNtzi87Vr10ZpaWktpQGgriotLd1qCfXWvqYAAAAAQFUpoQYAAAAAAAAAAAAAAAAAAACohiZNmmzxeXFxcaxZs6aW0gBQV61ZsyaKi4u3+M7WvqYAAAAAQFUpoQYAAAAAAAAAAAAAAAAAAACohsaNG2/1nc8++ywKCwtrIQ0AdVFhYWF89tlnW32vMl9TAAAAAKAqlFADAAAAAAAAAAAAAAAAAAAAVEN+fn7k5eVt8Z2NGzfGp59+GgUFBVFaWlpLyQBIt9LS0igoKIhPP/00Nm7cuMV38/LyIj8/v5aSAQAAALCtyE13AAAAAAAAAAAAAAAAAAAAAID6LCsrK5o2bRpffvnlFt/buHFjLF26NHJycqJx48bRuHHjyM3NjZycnMjOzq6ltADUpJKSkiguLo6NGzfG2rVrY+3atVFcXFyps02bNo2srKwaTggAAADAtkYJNQAAAAAAAAAAAAAAAAAAAEA1tWzZMlavXl2potHi4uIoKCiIgoKCWkgGQH2Qk5MTLVu2THcMAAAAADKQX4MJAAAAAAAAAAAAAAAAAAAAUE25ubnRunXrdMcAoJ5q3bp15ObmpjsGAAAAABlICTUAAAAAAAAAAAAAAAAAAABACjRv3jwaNWqU7hgA1DONGjWK5s2bpzsGAAAAABlKCTUAAAAAAAAAAAAAAAAAAABACmRlZcWuu+6qiBqASmvUqFHsuuuukZWVle4oAAAAAGQoJdQAAAAAAAAAAAAAAAAAAAAAKZKdna2IGoBKKSugzs5WAwQAAABAzclNdwAAAAAAAAAAAAAAAAAAAACATJKdnR3t2rWLr7/+OlauXBnFxcXpjgRAHZKTkxOtW7eO5s2bR1ZWVrrjAAAAAJDhlFADAAAAAAAAAAAAAAAAAAAApFhWVlZsv/320bRp01i1alWsWbMmioqK0h0LgDTKy8uLpk2bRsuWLSM3V/UPAAAAALXDv4kCAAAAAAAAAAAAAAAAAAAAqCG5ubmxww47RJs2baKwsDDWrl0b33zzTaxfvz5KSkrSHQ+AGpSdnR0NGzaMJk2aROPGjSM/Pz+ysrLSHQsAAACAbYwSagAAAAAAAAAAAAAAAAAAAIAalpWVFQ0aNIgGDRpEixYtIiKitLQ0iouLo6SkJEpLS9OcEIBUyMrKiuzs7MjJyVE4DQAAAECdoIQaAAAAAAAAAAAAAAAAAAAAIA2ysrIiN1f1AwAAAAAAUHOy0x0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNRTQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAGQgJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAGUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIGUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAABkICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAABlICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABABlJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCBlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCAl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAZSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAGQgJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAGUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIGUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAABkICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAABlICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABABlJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCBlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCAl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAZSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAGQgJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAGUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIGUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAABkICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAABlICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABABlJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCBlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCAl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAZSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAGQgJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAGUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIGUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAABkICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAABlICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABABspNdwC2DStXroxJkybFvHnzoqCgIPLy8qJly5ax7777RufOnSMvLy/dEeuUNWvWxEcffRRz5syJr776KtasWRONGzeO7bffPnbeeefo0qVLfOc730l3TAAAAAAAAAAAAAAAAAAAAAAAAAAAAOowJdTUqCeeeCLuvPPOePvtt6O0tLTCd5o2bRq9e/eOq6++Ovbaa69aTlh1s2bNioMPPjg2bNiQ8OzBBx+M888/v8o7V69eHS+++GK89tpr8dprr8Xs2bO3+H5WVlbst99+cd5550W/fv2iRYsWVb4TAAAAAAAAAAAAAAAAAAAAAAAAAACAzJad7gBkpqVLl8bRRx8dp59+erz11lubLaCOiFizZk088MADsf/++8fQoUO3+G66FRcXR9++fSssoE7G008/HSeffHK0adMm+vTpEyNHjtxqAXVERGlpaXzwwQdx1VVXxa677hrDhw+PkpKSlGQCAAAAAAAAAAAAAAAAAAAAAAAAAAAgMyihJuVmz54dXbp0iTfeeKNK5woLC2PgwIFx9tlnR3FxcQ2lq55hw4bFpEmTUrbvT3/6Uzz77LNRWFiY9I5169bFr371q/jxj38ca9euTVk2AAAAAAAAAAAAAAAAAAAAAAAAAAAA6rfcdAcgs6xatSqOO+64WL58ecKzTp06xSmnnBLt27eP9evXx+zZs+ORRx6JZcuWlXvv0UcfjTZt2sTw4cNrKXXlfPjhhzFkyJBauat58+ZxxBFHROfOnaNNmzbRqlWrWLduXSxYsCBeffXVeOuttxLOvPLKK9GjR494/vnno0GDBrWSEwAAAAAAAAAAAAAAAAAAAAAAAAAAgLpLCTUpdeGFF8aiRYvKzZo2bRr/+Mc/okePHgnv33zzzXHzzTfH4MGDy83vvPPO6N69e5xwwgk1GbfSNm7cGH379o3CwsJNs0MOOST+85//pOyO73znO3HGGWfE+eefH4ccckhkZ2dX+N6QIUPi/fffj5/97GcxZcqUcs9effXVuOWWWxI+nwAAAAAAAAAAAAAAAAAAAAAAAAAAAGx7Km65hSSMHz8+xo4dW26Wn58fr776aoUF1BEReXl5MWjQoBg+fHjCs8svvzw2btxYE1Gr7Oabb46pU6du+vicc86J448/PiW727ZtG3feeWcsX748Ro4cGYcddthmC6jLHHTQQTFx4sQKMwwbNiyWLFmSkmwAAAAAAAAAAAAAAAAAAAAAAAAAAADUX0qoSZmhQ4cmzAYNGhSdO3fe6tkrrrgijjvuuHKzuXPnxiOPPJKyfMmaPn163HTTTZs+3mGHHSoszU7GtddeG/PmzYvLL788GjZsWKWz+fn58dhjj8VOO+1Ubv7tt9/G448/npJ8AAAAAAAAAAAAAAAAAAAAAAAAAAAA1F9KqEmJjz76KCZMmFBu1qpVq7jyyisrveOWW25JmN17773VzlYdRUVF0bdv3ygqKto0u/vuu6Nly5Yp2d+9e/fYbrvtkj7ftGnTCj/Hzz77bHViAQAAAAAAAAAAAAAAAAAAAAAAAAAAkAGUUJMS//znPxNmF1xwQeTn51d6R6dOnaJTp07lZu+++24sWLCg2vmSNXTo0Jg+ffqmj0877bTo1atX2vJU5MQTT0yYzZ8/Pw1JAAAAAAAAAAAAAAAAAAAAAAAAAAAAqEuUUJMSL774YsIsmbLmis5UtLs2TJ06NW655ZZNH7do0SJGjBiRlixb0q5du4TZihUr0pAEAAAAAAAAAAAAAAAAAAAAAAAAAACAukQJNdW2du3amDp1arlZo0aNomPHjlXe1a1bt4TZhAkTks6WrMLCwjj//PNj48aNm2bDhw+PHXbYodazbM26desSZg0bNkxDEgAAAAAAAAAAAAAAAAAAAAAAAAAAAOoSJdRU2/vvvx8lJSXlZp07d47c3Nwq7+rSpUvk5eWVm02ZMqVa+ZIxZMiQ+OCDDzZ9fOKJJ8a5555b6zkqY+7cuQmznXbaKQ1JAAAAAAAAAAAAAAAAAAAAAAAAAAAAqEuUUFNtH3/8ccJszz33TGpXfn5+7LLLLuVm8+bNi40bNya1LxmTJ0+O2267bdPHzZo1i5EjR9ba/VX1xBNPJMy6dOmShiQAAAAAAAAAAAAAAAAAAAAAAAAAAADUJUqoqbaFCxcmzHbbbbek97Vr167cx8XFxbFo0aKk91XFhg0bom/fvuVKr2+77baEYuy6Yv369fH3v/89YX7KKaekIQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAB1iRJqqm3FihUJs1133TXpfRWd/eyzz5LeVxUDBw6MmTNnbvr4mGOOiQsvvLBW7k7GrbfeGp9//nm5Wdu2bePEE09MUyIAAAAAAAAAAAAAAAAAAAAAAAAAAADqitx0B6D++/LLLxNmTZo0SXpfRWdXrVqV9L7K+s9//hN//OMfN33cqFGjuP/++yMrK6vG707G5MmT45ZbbkmY33jjjdGgQYM0JNq8e+65J0aMGFHj98ybN6/G7wAAAAAAAAAAAAAAAAAAAAAAAAAAAKgvlFBTbWvXrk2YNWzYMOl9FZ1dt25d0vsq49tvv42+fftGcXHxptnvf//72H333Wv03mStWrUqTj/99CgqKio3P+qoo6Jfv35pSrV5K1eujJkzZ6Y7BgAAAAAAAAAAAAAAAAAAAAAAAAAAwDYlO90BqP/+twg5ImK77bZLel9FJdSFhYVJ76uM6667Lj755JNNHx922GFx+eWX1+idySosLIzTTjstFi5cWG7eokWLePjhhyMrKys9wQAAAAAAAAAAAAAAAAAAAAAAAACAWlNcUlyn9gBQNymhpkZUpwi5orOlpaXVibNFb7/9dgwfPnzTxw0aNIhRo0ZFdnbd+79HSUlJnHfeefHmm2+Wm+fk5MTo0aOjXbt2aUoGAAAAAAAAAAAAAAAAAAAAAAAAANSWgg0FceqYU2PcrHHV2jNu1rg4dcypUbChIEXJAKhrctMdgPovLy8vYbZ+/fqk91V0Nj8/P+l9W7Ju3bq44IILoqSkZNNs0KBBsc8++9TIfdV1ySWXxJgxY8rNsrKyYuTIkXH88cenKRUAAAAAAAAAAAAAAAAAAAAAAAAAUFsKNhTEGU+cEdNXTI9py6dFRETPDj2rvGfcrHEx4IUBUVJaEmc8cUaM6TUmmjVoluq4AKRZdroDUP81atQoYZbqEurGjRsnvW9Lrr322pgzZ86mjzt27BhXXXVVjdxVXb/+9a9j5MiRCfPhw4dH//7905AIAAAAAAAAAAAAAAAAAAAAAAAAAKhN/11AHRFRUloSA14YEONmjavSnv8uoI6ImL5iepzxxBlRsKEg5ZkBSK/cdAeg/mvZsmXC7Jtvvkl6X0VnK7qjut5888246667Nn2cm5sbo0aNitzcuvd/i2uvvTbuuOOOhPmtt94al19+eRoSVU3r1q1j3333rfF75s2bFxs2bKjxewAAAAAAAAAAAAAAAAAAAAAAAACgtv1vAXWZsiLqiIieHXpudc//FlCXKSuiHtNrTDRr0Cx1wQFIq7rXtku9s8MOOyTMlixZkvS+xYsXV+qO6rrooouitLR008fXXHNNHHjggSm/p7oGDx4ct956a8L8xhtvjN/+9rdpSFR1l156aVx66aU1fs/3v//9mDlzZo3fAwAAAAAAAAAAAAAAAAAAAAAAAAC1aXMF1GUqW0S9uQLqMoqoATKPEmqqrX379gmzTz/9NOl9ixYtKvdxTk5OtGvXLul9m7Ns2bJyH48dOzaeeeaZSp9fsWJFwmzgwIExfPjwcrMePXrEjTfemFTGm266KYYMGZIwv+GGG+KGG25IaicAAAAAAAAAAAAAAAAAAAAAAAAAUH9srYC6zNaKqLdWQF1GETVAZlFCTbXtvffeCbO5c+cmtauwsDAWL15cbrbHHntEbm7N/6M6c+bMau9YvHhxQv6DDjooqV3Dhg2rsGj6mmuuSbrUGgAAAAAAAAAAAAAAAAAAAAAAAACoPypbQF1mc0XUlS2gLqOIGiBzZKc7APXfwQcfHNnZ5f9Rmjx5cmzcuLHKuyZPnhxFRUXlZh07dqxWvvro9ttvj2uuuSZhftVVV8Utt9yShkQAAAAAAAAAAAAAAAAAAAAAAAAAQG2qagF1mbIi6nGzxkVE1Quoy5QVURdsKKjSOQDqFiXUVFvjxo3j4IMPLjdbu3ZtTJs2rcq73nrrrYTZkUcemXS2+uiOO+6Iq6++OmH+q1/9Km677bY0JAIAAAAAAAAAAAAAAAAAAAAAAAAAalNxSXGcPfbsKhdQlykrou77r75JFVCXmb5iepw99uwoLilO6jwA6aeEmpQ4/vjjE2ZPPPFElfdUdKai3anw9ddfR2lpadJ/Bg0alLDzwQcfTHjvb3/7W6Uz/fnPf45f//rXCfPLL788/vSnP1XnrwsAAAAAAAAAAAAAAAAAAAAAAAAA1BM52TnR76B+kZ2VfHVoSWlJjJ83PukC6oiI7Kzs6HdQv8jJzkl6BwDppYSalOjTp0/C7MEHH4zCwsJK75g2bVpMmjSp3OyQQw6J9u3bVztffTBixIi44oorEuaXXnpp3HnnnWlIBAAAAAAAAAAAAAAAAAAAAAAAAACkS88OPeOuE+6qVhF1dWRnZcddJ9wVPTv0TMv9AKSGEmpSYr/99ouuXbuWm61cuTLuuOOOSu+49tprE2YXX3xxtbPVB/fdd19cdtllCfOLLroo7r777jQkAgAAAAAAAAAAAAAAAAAAAAAAAADSLV1F1AqoATKHEmpS5vrrr0+YDRo0KKZOnbrVs3fffXe89NJL5Wa77757nHXWWZW6+7vf/W5kZWWV+/P6669X6my6PfTQQ/GLX/wiSktLy80vvPDCGDFiRJpSAQAAAAAAAAAAAAAAAAAAAAAAAAB1QW0XUSugBsgsSqhJme7du8cpp5xSbrZhw4Y45phj4plnnqnwTFFRUQwdOjQGDBiQ8OzPf/5z5OXl1UjWuuKf//xn9OvXL6GAun///vGXv/wlsrKy0pQMAAAAAAAAAAAAAAAAAAAAAAAAAKgraquIWgE1QObJTXcAMst9990XU6ZMiSVLlmyaFRQURI8ePaJz585xyimnRPv27WP9+vUxZ86cGD16dCxdujRhz2WXXRY/+clPajN6Wpx77rlRUlKSMJ80aVIcfPDB1dr9/PPPR9u2bau1AwAAAAAAAAAAAAAAAAAAAAAAAACoG8qKoQe8MCBKShO7DKtLATVAZlJCTUq1bt06Xn755Tj22GNjxYoV5Z5Nnjw5Jk+evNUdvXv3juHDh9dQwrpl48aNFc5nzJhR7d2FhYXV3gEAAAAAAAAAAAAAAAAAAAAAAAAA1B01VUStgBogc2WnOwCZp0OHDvHee+9F165dq3QuLy8vBg0aFI8++mjk5OTUUDoAAAAAAAAAAAAAAAAAAAAAAAAAgPqrZ4eecdcJd0V2VmpqRRVQA2Q2JdTUiF133TXefPPNGDNmTBx++OGRlZW12XebNGkSF1xwQcyYMSMGDx4c2dn+sQQAAAAAAAAAAAAAAAAAAAAAAAAA2JyeHXrGD3f/YUp2/XD3HyqgBshguekOQObKysqK3r17R+/evePzzz+P9957L+bPnx8FBQWRm5sbrVq1ig4dOkSXLl0iPz+/WnctXLgwNaGrYPDgwTF48OBq7SgtLU1NGAAAAAAAAAAAAAAAAAAAAAAAAABgmzFu1rh4Zf4rKdn1yvxXYtyscYqoATKUEmpqRZs2beKkk05KdwwAAAAAAAAAAAAAAAAAAAAAAAAAgHpt3KxxMeCFAVFSWpKSfSWlJTHghQEREYqoATJQdroDAAAAAAAAAAAAAAAAAAAAAAAAAAAAW5fqAuoyZUXU42aNS+leANJPCTUAAAAAAAAAAAAAAAAAAAAAAAAAANRxNVVAXUYRNUBmUkINAAAAAAAAAAAAAAAAAAAAAAAAAAB1WE0XUJdRRA2QeZRQAwAAAAAAAAAAAAAAAAAAAAAAAABAHVVbBdRlFFEDZBYl1AAAAAAAAAAAAAAAAAAAAAAAAAAAUAfVdgF1GUXUAJlDCTUAAAAAAAAAAAAAAAAAAAAAAAAAANQx6SqgLqOIGiAzKKEGAAAAAAAAAAAAAAAAAAAAAAAAAIA6pLikOEa9P6paBdTZWdlx3B7HRXZW8vWjJaUlMer9UVFcUpz0DgDSSwk1AAAAAAAAAAAAAAAAAAAAAAAAAADUITnZOTH6tNFx4I4HJnU+Oys77jrhrnjo1IfirhPuSrqI+sAdD4zRp42OnOycpM4DkH5KqAEAAAAAAAAAAAAAAAAAAAAAAAAAoI5p1qBZjOk1pspF1GUF1D079IyIiJ4deiZVRH3gjgfGmF5jolmDZlU6B0DdooQaAAAAAAAAAAAAAAAAAAAAAAAAAADqoKoWUf9vAXWZqhZRK6AGyBxKqAEAAAAAAAAAAAAAAAAAAAAAAAAAoI6qbBH15gqoy1S2iFoBNUBmUUINAAAAAAAAAAAAAAAAAAAAAAAAAAB12NaKqLdWQF1ma0XUCqgBMo8SagAAAAAAAAAAAAAAAAAAAAAAAAAAqOM2V0Rd2QLqMpsrolZADZCZlFADAAAAAAAAAAAAAAAAAAAAAAAAAEA98L9F1FUtoC7zv0XUCqgBMlduugMAAAAAAAAAAAAAAAAAAAAAAAAAAACVU1ZEffbYs6PfQf2qXEBdpuzcqPdHxejTRiugBshQSqgBAAAAAAAAAAAAAAAAAAAAAAAAAKAeadagWfzrjH9FTnZOtfb07NAzeuzdo9p7AKi7stMdAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJpUFUcroAbIbEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAADKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACADKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACADKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEBKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAykBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAykhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAymhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhASqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAADIQEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAADKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACADKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACADKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEBKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAykBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAykhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAymhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhASqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAMlBuugMAAAAAAAAAAJlt5cqVMWnSpJg3b14UFBREXl5etGzZMvbdd9/o3Llz5OXlpTtinTRnzpyYMWNGfPHFF7Fq1arIy8uLNm3aRIcOHaJjx46Rm+vbPgAAAAAAAAAAAAAAAACALfPTiAAAAAAAAABAjXjiiSfizjvvjLfffjtKS0srfKdp06bRu3fvuPrqq2Ovvfaq5YSJSktLY86cOTFlypSYPHlyTJ48OaZNmxZr1qwp917fvn3jb3/7W8rvX7ZsWdx+++0xduzYWLRo0Wbfa9asWZx++unxm9/8Jjp06JDyHAAAAAAAAAAAAAAAAABAZlBCDQAAAAAAAACk1NKlS+Pss8+ON954Y6vvrlmzJh544IH4+9//Htdff31cf/31kZWVVQsp/39jx46Nd999NyZPnhxTp06N1atX1+r9ERElJSUxePDguP322+Pbb7/d6vsFBQXxwAMPxEMPPRS//vWv4/e//33k5vo2EAAAAAAAAAAAAAAAAACgPD99CAAAAAAAAACkzOzZs+Poo4+O5cuXV+lcYWFhDBw4MGbNmhV///vfIycnp4YSJurXr19aiqfLFBQUxBlnnBEvvvhilc9u3Lgxbrvttpg6dWo8/fTT0bBhwxpICAAAAAAAAAAAAAAAAADUV0qoAQAAAAAAAICUWLVqVRx33HEVFlB36tQpTjnllGjfvn2sX78+Zs+eHY888kgsW7as3HuPPvpotGnTJoYPH15LqdOrpKRkswXUzZs3j5NPPjkOOeSQaN26daxZsyY+/vjjeOqpp2LOnDnl3v33v/8dffr0iX/961+RlZVVW/EBAAAAAAAAAAAAAAAAgDpOCTUAAAAAAAAAkBIXXnhhLFq0qNysadOm8Y9//CN69OiR8P7NN98cN998cwwePLjc/M4774zu3bvHCSecUJNxt6ply5bRqVOn2H777WPMmDE1csfgwYMrLKD++c9/HsOGDYvtt98+4dmwYcPiwQcfjAEDBsT69es3zZ9++um444474te//nWNZAUAAAAAAAAAAAAAAAAA6p/sdAcAAAAAAAAAAOq/8ePHx9ixY8vN8vPz49VXX62wgDoiIi8vLwYNGhTDhw9PeHb55ZfHxo0bayJqhb7zne/EMcccE1dddVU89thjMX/+/Pjiiy/ipZdeiosuuqhG7ly2bFncfvvtCfNrr702/vrXv1ZYQB0RkZ2dHf3794+XXnop8vPzyz0bOHBgLF++vEbyAgAAAAAAAAAAAAAAAAD1jxJqAAAAAAAAAKDahg4dmjAbNGhQdO7ceatnr7jiijjuuOPKzebOnRuPPPJIyvJtybRp0+Krr76KV199NW677bY4/fTTo3379jV+7+233x7ffvttudkRRxwRN910U6XOd+vWLW688cZys7Vr18Ztt92WsowAAAAAAAAAAAAAAAAAQP2mhBoAAAAAAAAAqJaPPvooJkyYUG7WqlWruPLKKyu945ZbbkmY3XvvvdXOVhnt27ePrKysWrnrv40dOzZhNnDgwMjOrvy3c1xxxRXRsmXLcrMHH3ww1q9fX+18AAAAAAD/H3v3HmV1Xe+P/zV7LiAqqYiaKTpA6qgFCh4NL0e8IeVBxgws8mvydZl+Ea3zO9axTLyUerqcUAxzZWgnUceMQa0Q/BokVioDOPiN8cJNEEURzFHhwDAzvz++a/NtuweYveeyLzwea7Fa+/X5vF/v196fD2t9YvY8BQAAAAAAAAAACp8QagAAAAAAAACgQx5++OG02qWXXhoVFRXt7jFkyJAYMmRISu25556LlStXdni+fPTaa6/F6tWrU2oHHHBAnH322Rn16dmzZ1x44YUptffffz+eeOKJDs8IAAAAAAAAAAAAAAAAABQ+IdQAAAAAAAAAQIc8+eSTabWPByO3R1tr2updDJYsWZJWO+mkk6KkpCTjXsOGDUur/f73v89qLgAAAAAAAAAAAAAAAACguAihBgAAAAAAAACy9tFHH8WiRYtSar169Yrjjz8+416nnnpqWm3+/PlZz5bP1q9fn1Y77LDDsurVr1+/tNq8efOy6gUAAAAAAAAAAAAAAAAAFBch1AAAAAAAAABA1l588cVoaWlJqQ0dOjTKysoy7nXCCSdEeXl5Sm3hwoUdmi9fbdy4Ma3Wu3fvrHrts88+abXVq1fHu+++m1U/AAAAAAAAAAAAAAAAAKB4CKEGAAAAAAAAALL28ssvp9UGDhyYVa+Kioo45JBDUmrLly+Pbdu2ZdUvn+2xxx5ptc2bN2fVa9OmTW3WGxoasuoHAAAAAAAAAAAAAAAAABQPIdQAAAAAAAAAQNZWrVqVVjvssMOy7tevX7+U183NzbF69eqs++WrPn36pNXWr1+fVa933nmnzfry5cuz6gcAAAAAAAAAAAAAAAAAFI+yXA8AAAAAAAAAABSudevWpdUOPfTQrPu1tfbtt9+O/v37Z90zH7X1Puvq6rLqtaN1b7/9dlb9OtvPfvazmDp1apfvI3QbAAAAAAAAAAAAAAAAANIJoQYAAAAAAAAAsrZx48a02l577ZV1v7bWbtiwIet++erEE0+M8vLyaGpq2l57+eWXY/ny5TFgwICMev3ud79rs/7uu+92aMbOsn79+li6dGmuxwAAAAAAAAAAAAAAAACA3VIi1wMAAAAAAAAAAIXro48+SqvtscceWfdra+2mTZuy7pevevXqFSeddFJKrbW1NSZPnpxRn6effjrq6+vbPNbWtQEAAAAAAAAAAAAAAAAAdi9CqAEAAAAAAACArDU1NaXVevbsmXW/tkKot27dmnW/fPa//tf/SqtNnTo1nnnmmXatb2xsjMsvv3yHx4v1cwMAAAAAAAAAAAAAAAAA2k8INQAAAAAAAADQqUpKSjp1bWtra0fGyVtf+tKX4tOf/nRKraWlJf7lX/4lnnrqqZ2uffPNN2P48OGxYsWKHZ7TkesAAAAAAAAAAAAAAAAAABQHIdQAAAAAAAAAQNbKy8vTaps3b866X1trKyoqsu6Xz0pLS+OBBx5Ie3+NjY1xzjnnxBe/+MV47LHH4q233oqmpqbYuHFj/PWvf41vf/vbccQRR8SiRYu2rznooIPS+vfs2bPL3wMAAAAAAAAAAAAAAAAAkN/Kcj0AAAAAAAAAAFC4evXqlVbr7BDqPffcM+t++e6f/umf4uc//3lcdtll0dLSknJsxowZMWPGjF32+PKXvxwHHnhgTJ48OaW+zz77dOKk2evbt28cffTRXb7P8uXLY8uWLV2+DwAAAAAAAAAAAAAAAAAUEiHUAAAAAAAAAEDW+vTpk1b78MMPs+7X1tq29igml156aRx00EHx5S9/Od5///2M1n7lK1+JadOmxVVXXZV27JOf/GRnjdghEyZMiAkTJnT5Psccc0wsXbq0y/cBAAAAAAAAAAAAAAAAgEKSyPUAAAAAAAAAAEDhOvDAA9Nqb7zxRtb91qxZ0649is3IkSPj5Zdfjquvvjp69uy5y/MPPvjgqKmpienTp0ePHj3aDK/u379/V4wKAAAAAAAAAAAAAAAAABSQslwPAAAAAAAAAAAUrsrKyrTa66+/nnW/1atXp7wuLS2Nfv36Zd2vkBx00EFxxx13xC233BLz5s2LuXPnxuuvvx7vvvtubN68Ofbdd9+oqqqKs846K84999woLy/fvrahoSGt32c+85nuHB8AAAAAAAAAAAAAAAAAyENCqAEAAAAAAACArB155JFptWXLlmXVa+vWrbFmzZqU2oABA6KsbPf6ekPv3r1j1KhRMWrUqHadv3Xr1njllVdSav369YtPfepTXTEeAAAAAAAAAAAAAAAAAFBAErkeAAAAAAAAAAAoXMcdd1wkEqlfP6irq4tt27Zl3Kuuri6amppSascff3yH5tsdLFy4MO1zO/PMM3M0DQAAAAAAAAAAAAAAAACQT4RQAwAAAAAAAABZ23PPPeO4445LqX300UexePHijHs9++yzabXTTjst69l2Fw8++GBabcyYMTmYBAAAAAAAAAAAAAAAAADIN0KoAQAAAAAAAIAOOffcc9Nqjz76aMZ92lrTVm/+n02bNkVNTU1KrV+/fnHWWWflaCIAAAAAAAAAAAAAAAAAIJ8IoQYAAAAAAAAAOuSiiy5Kq913332xdevWdvdYvHhxLFiwIKV24oknRmVlZYfnK2a33HJLrF+/PqX2r//6r1FWVpajiQAAAAAAAAAAAAAAAACAfCKEGgAAAAAAAADokGOPPTZOOeWUlNr69evjpz/9abt7XHfddWm1K6+8ssOzFbM///nP8ZOf/CSlNnDgQJ8bAAAAAAAAAAAAAAAAALCdEGoAAAAAAAAAoMOuv/76tNqkSZNi0aJFu1x71113xezZs1Nq/fv3j6985Svt2vvwww+PkpKSlD/z5s1r19pca2lpyWrd/PnzY+TIkdHU1LS9lkgk4p577omKiorOGg8AAAAAAAAAAAAAAAAAKHBCqAEAAAAAAACADhsxYkScf/75KbUtW7bE8OHD44knnmhzTVNTU9xyyy0xceLEtGN33nlnlJeXd8ms+WTFihVRVVUVkydPjjfeeGOX569fvz6uuuqqGD58eHzwwQcpx2644YY444wzumpUAAAAAAAAAAAAAAAAAKAAleV6AAAAAAAAAACgOPziF7+IhQsXpoQpNzY2xqhRo2Lo0KFx/vnnR2VlZWzevDlee+21mD59eqxduzatz1VXXRVf+MIXum3uurq6uOyyy3Z4/MMPP0yrPf744zF48OAdrhk6dGjce++97dr/5Zdfjm9+85vxzW9+MwYNGhRDhw6NY445Jvbff//o2bNnbNiwId56663405/+FM8++2w0Nzen9bj88stj0qRJ7doPAAAAAAAAAAAAAAAAANh9CKEGAAAAAAAAADpF3759Y86cOXHGGWfEunXrUo7V1dVFXV3dLnuMGTMmJk+e3EUTtu3DDz+M+vr6jNa899578d577+3w+D777JPVLPX19RnNUlJSEtdff33cfPPNWe0HAAAAAAAAAAAAAAAAABS3RK4HAAAAAAAAAACKR1VVVbzwwgtxyimnZLSuvLw8Jk2aFA899FCUlpZ20XTFpaqqKp5++mkB1AAAAAAAAAAAAAAAAADADgmhBgAAAAAAAAA61aGHHhrPPPNM1NTUxLBhw6KkpGSH5+61115x6aWXxpIlS+LGG2+MRGL3+ipDv3794qGHHoqvfvWrccghh+zy/IqKijj77LPj4YcfjpdeeimGDx/eDVMCAAAAAAAAAAAAAAAAAIWqLNcDAAAAAAAAAADFp6SkJMaMGRNjxoyJd955J1544YVYsWJFNDY2RllZWey///5RVVUVJ5xwQlRUVHRor1WrVnVo/emnnx6tra0d6pGtioqKuOiii+Kiiy6KiIg333wzGhoaYtWqVfHee+/F5s2bo2fPnrH//vvHpz/96Tj++OOjV69eOZkVAAAAAAAAAAAAAAAAACg8QqgBAAAAAAAAgC51wAEHxHnnnZfrMQrCwQcfHAcffHCuxwAAAAAAAAAAAAAAAAAAikQi1wMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0PmEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAUISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEVICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAERJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFCEhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCEh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABFSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQBESQg0AAAAAAAAAAAAAAAAAAAAAAAAAAABQhIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAABQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAARUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAREkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAUISEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAUISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEVICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAERJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFCEhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCEh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABFSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQBESQg0AAAAAAAAAAAAAAAAAAAAAAAAAAABQhIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAABQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAARUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAREkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAUISEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAUISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEVICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAERJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFCEhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCEh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABFSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQBESQg0AAAAAAAAAAAAAAAAAAAAAAAAAAABQhIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAABQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAARags1wMAAAAAAAAAAAAAAAAAAAAAqZqbm2Pp0qXxt7/9LTZu3Bjvv/9+lJaWxj777BN9+/aN4447Lg4//PBcjwkAAABADjW3NEdpojRv+gAA+UkINQAAAAAAAAAAAAAAAAAAAOSJOXPmxL333hu///3vY9OmTTs9t2/fvjF27Ni4/PLL4zOf+Uw3TQgAAABAPmjc0hjjZoyL8YPHR3VVddZ9ahtqY9qL02L6BdOjd4/enTghAJAvErkeAAAAAAAAAAAAAAAAAAAAAHZ3y5YtizPOOCNGjBgRv/nNb3YZQB0RsX79+rjrrrti0KBBccUVV8T777/fDZMCAAAAkGuNWxpj7KNjY+GbC2PirIlR21CbVZ/ahtqYOGtiLHxzYYx9dGw0bmns5EkBgHwghBoAAAAAAAAAAAAAAAAAAABy6LnnnoshQ4bE3Llzs1rf2toa99xzTwwbNizeeeedTp4OAAAAgHySDKCuX1cfEREtrS1ZBVEnA6hbWlsiIqJ+Xb0gagAoUmW5HgAAAAAAAAAAAAAAAAAAAAB2VytWrIgRI0ZEY2N6uM8nP/nJGDVqVAwaNCj69OkTTU1NsW7dunjuuefid7/7Xfz3f/93yvlLly6Nc845JxYsWBDl5eXd9RYAAAAA6CYfD6BOSgZRR0RUV1Xvss/HA6iTkkHUNRfWRO8evTtvcAAgp4RQAwAAAAAAAAAAAAAAAAAAQI5MmDAhLYC6R48ecfvtt8eECRN2GCa9YcOG+MY3vhEPPPBASr2+vj5+/OMfx3XXXddlMwMAAADQ/XYUQJ3U3iDqHQVQJwmiBoDik8j1AAAAAAAAAAAAAAAAAAAAALA7amhoiCeffDKt/uCDD8Y3vvGNHQZQR0T06dMnfv3rX8cVV1yRduyOO+6Ilpa2Q4QAAAAAKDy7CqBOSgZR1zbUtnl8VwHUSckg6sYtjTs9DwAoDEKoAQAAAAAAAAAAAAAAAAAAIAdqa9PDgEaPHh0XXHBBu3v8+Mc/jgMPPDCl9vbbb8dzzz3X4fkAAAAAyL32BlAn7SiIur0B1EmCqAGgeAihBgAAAAAAAAAAAAAAAAAAgBx4+eWX02pf/vKXM+qx5557xujRo9Pqr7zySrZjAQAAAJAnMg2gTvp4EHWmAdRJgqgBoDgIoQYAAAAAAAAAAAAAAAAAAIAceOedd9JqVVVVGfdpa83bb7+d1UwAAAAA5IfmluYYN2NcxgHUSckg6ktmXpJVAHVS/br6GDdjXDS3NGe1HgDIPSHUAAAAAFDgOuuHdX7oBwAAAAAAAAAAAADdq6Kiol21XenRo0darWfPnlnNBAAAAEB+KE2UxvjB4yNRkn1sZEtrSzy1/KmsA6gjIhIliRg/eHyUJkqz7gEA5JYQagAAAAAoYI1bGmN0zeiobajtUJ/ahtoYXTM6Grc0dtJkAAAAAAAAAAAAAMCuVFZWptXWrFmTcZ+21gwYMCCrmQAAAADIH9VV1TFl5JQOBVF3RKIkEVNGTonqquqc7A8AdA4h1AAAAABQoBq3NMbYR8fGwjcXxsRZE7MOoq5tqI2JsybGwjcXxthHxwqiBgAAAAAAAAAAAIBucsYZZ6TVnnzyyYz7zJo1K+V1RUVFnHLKKVnPBQAAAED+yFUQtQBqACgeQqgBAAAAoAAlA6jr19VHRERLa0tWQdTJAOqW1paIiKhfVy+IGgAAAAAAAAAAAAC6yRe+8IU47LDDUmo///nP4/XXX293j4cffjgWL16cUrv44otj33337ZQZAQAAAMi97g6iFkANAMVFCDUAAAAAFJiPB1AnZRpE/fEA6iRB1AAAAAAAAAAAAADQPcrKymLq1KkptY8++ihGjBgRr7766i7Xz5w5M8aPH59SO/DAA+O2227r1DkBAAAAyL3uCqIWQA0Axacs1wMAAAAAAO23owDqpGQQ9TdO+kYMP3z4Dvv87tXfxXee/k5aAHVSMoi65sKa6N2jd6fMDgAAAAAAAAAAAACk+/znPx933nlnXHPNNdHa2hoREa+88koMHjw4/sf/+B9RXV0dgwcPjv322y+amppi3bp18fzzz8evfvWrmD17dkqv/fffP2bPnh19+/bNxVtp089+9rO0oO2usHz58i7fAwAAACDXksHQE2dN3OHvineEAGoAKE5CqAEAAACgQOwqgDqppbUlfvSXH0W0RgyvTA+inrtybvznc/+5y/0EUQMAAAAAAAAAAABA95g4cWIcccQRccUVV8SqVasiImLz5s1xzz33xD333NOuHqNGjYq77747Dj744C6cNHPr16+PpUuX5noMAAAAgKLRVUHUAqgBoHglcj0AAAAAALBr7Q2gTmppbYkf/fVHMXfl3JT63JVz40d//VG7f5iYDKJu3NKY8cwAAAAAAAAAAAAAQPuNGDEiXn311XjggQfijDPOaNeaRCIRl19+ebz44ovx2GOP5V0ANQAAAABdo7qqOqaMnBKJks6JlBRADQDFTQg1AAAAAOS5TAOokz4eRJ1pAHWSIGoAAAAAAAAAAAAA6Hqtra3x5JNPxn/913/F/Pnz27WmpaUlpk2bFt/61rdi9uzZXTwhAAAAAPmkuqo6zux/Zqf0OrP/mQKoAaCICaEGAAAAgDzW3NIc42aMyziAOikZRD1p3qSsAqiT6tfVx7gZ46K5pTmr9QAAAAAAAAAAAADAjq1YsSJOO+20GDVqVMyZMyeamppSju+///5x1FFHxcCBA2OfffZJObZt27aYM2dOnHvuuTF69Oh49913u3FyAAAAAHKltqE2nl7xdKf0enrF01HbUNspvQCA/COEGgAAAADyWGmiNMYPHh+Jkuz/Ka+ltSWeX/t81gHUERGJkkSMHzw+ShOlWfcAAAAAAAAAAAAAANItWbIkTjzxxHj22WdT6gMHDoypU6fGG2+8EevXr4+GhoZ47bXX4r333ovXXnstbr/99vjkJz+Zsuaxxx6L0047LdatW9edbwEAAACAblbbUBsTZ03s0O+Q/6OW1paYOGuiIGoAKFJluR4AAAAAANi56qrqiIhO/SFgJhIliZgycsr2OQAAAAAAAAAAAACAzrFx48b4/Oc/H++++25Kffz48fGzn/0sevbs2ea6gQMHxre//e24/PLL46tf/Wr84Q9/2H6soaEhxo4dG3Pnzo1EItGl87dH37594+ijj+7yfZYvXx5btmzp8n0AAAAAcq2zA6iTkkHUEeF3ywGgyAihBgAAAIACkKsgagHUAAAAAAAAAAAAANB1/v3f/z3Wrl2bUrvgggvi3nvvjZKSkl2u33fffeO3v/1tnH766fH8889vrz/zzDNx//33x/jx4zt95kxNmDAhJkyY0OX7HHPMMbF06dIu3wcAAAAgl7oqgDpJEDUAFKfc/2dLAQAAAIB2qa6qjikjp0SipHv+WU8ANQAAAAAAAAAAAAB0nXfffTf+67/+K6XWs2fPuPPOO9sVQP2Pa+666660+uTJkzs6IgAAAAB5pKsDqJOSQdS1DbVdug8A0H2EUAMAAABAAemuIGoB1AAAAAAAAAAAAADQtf73//7fsWXLlpTaWWedFZ/61Kcy7jV06NA45phjUmovvfRSvPXWWx2aEQAAAID80F0B1EmCqAGguAihBgAAAIAC09VB1AKoAQAAAAAAAAAAAKDrLVmyJK120kknZd2vrbVt7QEAAABAYenuAOokQdQAUDyEUAMAAABAAeqqIGoB1AAAAAAAAAAAAADQPTZs2JBW69u3b9b92lq7cePGrPsBAAAAkHu5CqBOEkQNAMVBCDUAAAAAFKjODqIWQA0AAAAAAAAAAAAA3adnz55ptc2bN2fdb9OmTWm1Xr16Zd0PAAAAgNxqbmmOaS9O61AAdaIkEWcPOLtDv5Pe0toS016cFs0tzVn3AABySwg1AAAAABSw6qrqOLP/mZ3S68z+ZwqgBgAAAAAAAAAAAIBu0rdv37TaypUrs+63YsWKdu0BAAAAQGEoTZTG9Aumx6CDBmW1PlGSiCkjp8SvRv8qpoycknUQ9aCDBsX0C6ZHaaI0q/UAQO4JoQYAAACAAlbbUBtPr3i6U3o9veLpqG2o7ZReAAAAAAAAAAAAAMDOffrTn06rzZo1K6temzZtinnz5qXUSkpKYuDAgVn1AwAAACA/9O7RO2ourMk4iDoZQF1dVR0REdVV1VkFUQ86aFDUXFgTvXv0zmgdAJBfhFADAAAAQIGqbaiNibMmRktrS6f0a2ltiYmzJgqiBgAAAAAAAAAAAIBucNZZZ0Uikfor/6+++mr85je/ybjXT3/60/jwww9Tascdd1wccMABHZoRAAAAgNzLNIj64wHUSZkGUQugBoDiIYQaAAAAAApQZwdQJwmiBgAAAAAAAAAAAIDu0adPnzjrrLPS6ldccUU0NDS0u89TTz0VN910U1r9oosu6tB8AAAAAOSP9gZR7yiAOqm9QdQCqAGguAihBgAAAIAC01UB1EmCqAEAAAAAAAAAAACge9x6661RUlKSUtu4cWOcdNJJcf/998e2bdt2uHbTpk1x2223xRe+8IVoampKOXbIIYfEVVdd1SUzAwAAAJAbuwqi3lUAddKugqgFUANA8SnL9QAAAAAAQPt1dQB1UjKIOiJ2+UNGAAAAAAAAAAAAACA7Q4YMiW9/+9tx++23p9QbGxvj0ksvjRtuuCHOPffcGDx4cPTp0ydaWlpi/fr18cILL8SsWbNi48aNaT3Ly8vjl7/8Zeyxxx7d9TYAAAAA6CbJIOqxj46N+nX12+vtDaBOSp738d9dF0ANAMVJCDUAAAAAFIjuCqBOEkQNAAAAAAAAAAAAAF3vtttui/fffz/uvvvutGNr1qyJX/ziF+3uVVFREb/61a/inHPO6cwRAQAAAMgjHw+izjSAOunjQdQCqAGgeCVyPQAAAAAAsGvdHUCdlAyirm2o7dZ9AQAAAAAAAAAAAGB3MnXq1Hj44Ydj//33z7rH4MGDY8GCBXHRRRd14mQAAAAA5KNkEPWQg4dkFUCdVF1VHVNGTokhBw8RQA0ARUwINQAAAADkuVwFUCcJogYAAAAAAAAAAACArjd27NhYtWpV/OIXv4hhw4ZFeXn5LtfsvffeUV1dHbNmzYpFixbFZz/72W6YFAAAAIB80LtH75g5dmbWAdRJ1VXVMXPsTAHUAFDEynI9AAAAAACwY80tzTHtxWkdCqBOlCTihINPiAVvLsi6T0trS0x7cVqMOnJUlCZKs54FAAAAAAAAAAAAANixPffcMy677LK47LLLYsuWLbF48eJYvnx5/P3vf4/3338/SktLY5999ol99903jj322DjqqKMikUjkemwAAAAAcqSzfvfb75ADQHETQg0AAAAAeaw0URrTL5geYx8dG/Xr6jNenyhJxLWfuzaGVw6PuSvnxo/++qOsgqgHHTQopl8w3Q8PAQAAAAAAAAAAAKCb9OjRI0466aQ46aSTcj0KAAAAAAAABcx/0hQAAAAA8lzvHr2j5sKaGHTQoIzW/WMAdUTE8Mrhce3nro1ESWb/LDjooEFRc2FN9O7RO6N1AAAAAAAAAAAAAAAAAAAAAADklhBqAAAAACgAmQZRfzyAOinTIGoB1AAAAAAAAAAAAAAAAAAAAAAAhUsINQAAAAAUiPYGUSdKEnHtsPQA6qThlcPj9rNu32UQtQBqAAAAAAAAAAAAAAAAAAAAAIDCJoQaAAAAAArIroKoEyWJmDJySpxRecZO+5x3xHkxZeSUHQZRC6AGAAAAAAAAAAAAAAAAAAAAACh8QqgBAAAAoMDsKIg6GUBdXVXdrj7VVdVtBlELoAYAAAAAAAAAAAAAAAAAAAAAKA5CqAEAAACgAH08iDrTAOqkjwdRC6AGAAAAAAAAAAAAAAAAAAAAACgeZbkeAAAAAADITjKIetyMcTF+8PiMA6iTkuumvTgtpl8wXQA1AAAAAAAAAAAAAAAAAAAAAECREEINAAAAAAWsd4/eMXPszChNlHaoT3VVdYw6clSH+wAAAAAAAAAAAAAAAAAAAAAAkD+EUNMt1q9fHwsWLIjly5dHY2NjlJeXR58+feLoo4+OoUOHRnl5ea5HzEtNTU2xYMGCaGhoiA0bNkRTU1P07t07BgwYECeccEL07ds31yMCAAAAeaCzgqMFUAMAAAAAAAAAAAAAAAAAAAAAFBch1HSpRx99NO64447485//HK2trW2es/fee8eYMWPiW9/6VhxxxBHdPGHmGhoa4rjjjostW7akHbvvvvvia1/7Wof3eOWVV+KHP/xh/OY3v4kPPvigzXNKSkrilFNOiWuuuSa++MUvdnhPAAAAAAAAAAAAAAAAAAAAAAAAAAAAiksi1wNQnNauXRunn356fOlLX4pnn312hwHUEREffPBB/PKXv4zPfOYzccstt+z03Fxrbm6OSy65pM0A6s7Q0tISN910U3zmM5+JadOm7TCAOiKitbU15s+fHxdeeGEMHz483nrrrS6ZCQAAAAAAAAAAAAAAAAAAAAAAAAAAgMIkhJpO9+qrr8YJJ5wQf/rTnzJat3Xr1rjhhhti3Lhx0dzc3EXTdcx//Md/xIIFC7qkd3Nzc3z5y1+OG2+8MZqamjJaO2/evDjhhBNi2bJlXTIbAAAAAAAAAAAAAAAAAAAAAAAAAAAAhacs1wNQXDZs2BBnn312vPXWW2nHhgwZEueff35UVlbG5s2b49VXX40HH3ww3nzzzZTzHnrooTjggANi8uTJ3TR1+/yf//N/4qabbuqy/ldffXU88sgjafX99tsvvvrVr0ZVVVX07t07Vq1aFXPmzEkL+V67dm2cc845sXDhwth33327bE4AAAAAAAAAAAAAAAAAAAAAAAAAAAAKgxBqOtXll18eq1evTqntvffe8cADD8SoUaPSzr/11lvj1ltvjRtvvDGlfscdd8SIESNi5MiRXTluu23bti0uueSS2Lp16/baiSeeGM8//3yn9H/88cdj6tSpafUrrrgifvKTn0SvXr1S6t/5znfiz3/+c3zxi1+Mt99+e3t95cqVccUVV0RNTU2nzAUAAAAAAAAAAAAAAAAAAAAAAAAAAEDhSuR6AIrHU089FTNmzEipVVRUxB//+Mc2A6gjIsrLy2PSpEkxefLktGNXX311bNu2rStGzditt94aixYt2v76q1/9apx77rmd0rupqSmuueaatPo3v/nNuPvuu9MCqJNOPvnk+Otf/xr77bdfSv2RRx6JefPmdcpsAAAAAAAAAAAAAAAAAAAAAAAAAAAAFC4h1HSaW265Ja02adKkGDp06C7XXnPNNXH22Wen1JYtWxYPPvhgp82Xrfr6+vj+97+//fWBBx7YZmh2tn7961/HqlWrUmrHHnts3H777btcW1lZGXfeeWda/eabb+6s8QAAAAAAAAAAAAAAAAAAAAAAAAAAAChQQqjpFH/7299i/vz5KbX9998//u3f/q3dPW677ba02t13393h2TqiqakpLrnkkmhqatpeu+uuu6JPnz6dtkdb7/Gmm26KioqKdq0fN25cHHvssSm1uXPnxiuvvNIp8wEAAAAAAAAAAAAAAAAAAAAAAAAAAFCYhFDTKR5++OG02qWXXtruIOWIiCFDhsSQIUNSas8991ysXLmyw/Nl65Zbbon6+vrtry+44IK48MILO63/smXLoq6uLqX2yU9+MkaNGpVRn69//etptYceeqhDswEAAAAAAAAAAAAAAAAAAAAAAAAAAFDYhFDTKZ588sm0WjZhzW2taat3d1i0aFHcdttt21/vt99+MXXq1E7dY/bs2Wm10aNHR1lZWUZ92vrcZs2alfVcAAAAAAAAAAAAAAAAAAAAAAAAAAAAFD4h1HTYRx99FIsWLUqp9erVK44//viMe5166qlptfnz52c9W7a2bt0aX/va12Lbtm3ba5MnT44DDzywU/dp672dcsopGfc56KCDYuDAgSm1hQsXxqZNm7KeDQAAAAAAAAAAAAAAAAAAAAAAAAAAgMImhJoOe/HFF6OlpSWlNnTo0CgrK8u41wknnBDl5eUptYULF3ZovmzcdNNN8dJLL21//fnPfz4uvvjiTt+nrff2uc99Lqtew4YNS3nd3Nwc9fX1WfUCAAAAAAAAAAAAAAAAAAAAAAAAAACg8AmhpsNefvnltNrAgQOz6lVRURGHHHJISm358uWxbdu2rPplo66uLn74wx9uf927d++45557On2fpqamWLFiRUqtvLw8DjvssKz6DRgwIK32yiuvZNULAAAAAAAAAAAAAAAAAAAAAAAAAACAwieEmg5btWpVWi3bIOWIiH79+qW8bm5ujtWrV2fdLxNbtmyJSy65JCX0+oc//GFaMHZnWL16dbS0tKTUDjnkkEgksvtr+fHPLSLSQq4BAAAAAAAAAAAAAAAAAAAAAAAAAADYfZTlegAK37p169Jqhx56aNb92lr79ttvR//+/bPu2V433HBDLF26dPvr4cOHx+WXX94le3XX55YPfvazn8XUqVO7fJ/ly5d3+R4AAAAAAAAAAAAAAAAAAAAAAAAAAACFQgg1HbZx48a02l577ZV1v7bWbtiwIet+7fX888/HT37yk+2ve/XqFffee2+UlJR0yX7F8rm1x/r161PCvQEAAAAAAAAAAAAAAAAAAAAAAAAAAOh6iVwPQOH76KOP0mp77LFH1v3aWrtp06as+7XHf//3f8cll1wSzc3N22s/+MEPon///l22ZzF8bgAAAAAAAAAAAAAAAAAAAAAAAAAAAOQvIdR0WFNTU1qtZ8+eWfdrK0x569atWfdrj+9+97vxyiuvbH/9uc99Lq6++uou3bMYPjcAAAAAAAAAAAAAAAAAAAAAAAAAAADylxBqukRJSUmnrm1tbe3IODv15z//OSZPnrz9dY8ePWLatGmRSHT/X49C+twAAAAAAAAAAAAAAAAAAAAAAAAAAADIb0Ko6bDy8vK02ubNm7Pu19baioqKrPvtzKZNm+LSSy+NlpaW7bVJkybFUUcd1SX7/aNC/twAAAAAAAAAAAAAAAAAAAAAAAAAAADIf2W5HoDC16tXr7RaZ4cp77nnnln325nrrrsuXnvtte2vjz/++Lj22mu7ZK+PK+TPLVN9+/aNo48+usv3Wb58eWzZsqXL9wEAAAAAAAAAAAAAAAAAAAAAAAAAACgEQqjpsD59+qTVPvzww6z7tbW2rT066plnnokpU6Zsf11WVhbTpk2LsrLu+WtRqJ9bNiZMmBATJkzo8n2OOeaYWLp0aZfvAwAAAAAAAAAAAAAAAAAAAAAAAAAAUAgSuR6AwnfggQem1d54442s+61Zs6Zde3TUFVdcEa2trdtf//u//3sMGjSo0/fZkUL93AAAAAAAAAAAAAAAAAAAAAAAAAAAACgMZbkegMJXWVmZVnv99dez7rd69eqU16WlpdGvX7+s++3Im2++mfJ6xowZ8cQTT7R7/bp169JqN9xwQ0yePDmlNmrUqLj55pvTzu3Xr18kEoloaWnZXluzZk20tLREIpF5PvzHP7eItq8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAuwch1HTYkUcemVZbtmxZVr22bt0aa9asSakNGDAgysq6/lZdunRph3usWbMmbf7Bgwe3eW5FRUVUVlbG8uXLt9eamppi9erVcfjhh2e89z/2STrqqKMy7gMAAAAAAAAAAAAAAAAAAAAAAAAAAEBxSOR6AArfcccdF4lE6q1UV1cX27Zty7hXXV1dNDU1pdSOP/74Ds2Xz4YMGZJW++tf/5pVr7/85S8pr0tLS2PQoEFZ9QIAAAAAAAAAAAAAAAAAAAAAAAAAAKDwCaGmw/bcc8847rjjUmofffRRLF68OONezz77bFrttNNOy3q2fHfqqaem1dr6DHbl7bffjtdeey2lNmTIkOjVq1fWswEAAAAAAAAAAAAAAAAAAAAAAAAAAFDYhFDTKc4999y02qOPPppxn7bWtNW7M/z973+P1tbWrP9MmjQpred9992Xdt7999+/wxlGjBiRVnvsscdi27ZtGb2X3/72t2m1rvrcAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAxCqOkUF110UVrtvvvui61bt7a7x+LFi2PBggUptRNPPDEqKys7PF+++vSnPx1DhgxJqa1duzZ+97vfZdTnnnvuSat9+ctf7tBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDYh1HSKY489Nk455ZSU2vr16+OnP/1pu3tcd911abUrr7yyw7Plu7be46RJk6Kpqald6x9++OFYsmRJSu3000+Po446qlPmAwAAAAAAAAAAAAAAAAAAAAAAAAAAoDAJoabTXH/99Wm1SZMmxaJFi3a59q677orZs2en1Pr37x9f+cpX2rX34YcfHiUlJSl/5s2b1661uXbxxRfHYYcdllJbsmRJfOc739nl2lWrVsVVV12VVv/e977XafMBAAAAAAAAAAAAAAAAAAAAAAAAAABQmIRQ02lGjBgR559/fkpty5YtMXz48HjiiSfaXNPU1BS33HJLTJw4Me3YnXfeGeXl5V0yaz6pqKiIyZMnp9V//OMfx4QJE2Lz5s1trvvLX/4Sn/vc52LDhg0p9QsvvDDOOOOMrhgVAAAAAAAAAAAAAAAAAAAAAAAAAACAAlKW6wEoLr/4xS9i4cKF8cYbb2yvNTY2xqhRo2Lo0KFx/vnnR2VlZWzevDlee+21mD59eqxduzatz1VXXRVf+MIXunP0nBo9enR8/etfj3vuuSelPnXq1KipqYmvfvWrUVVVFXvvvXesXr06Zs+eHfPmzUvrc9hhh6X1AAAAAAAAAAAAAAAAAAAAAAAAAAAAYPckhJpO1bdv35gzZ06cccYZsW7dupRjdXV1UVdXt8seY8aMicmTJ3fRhPnrrrvuinfffTd++9vfptQ3bNgQd9xxxy7Xf/KTn4w5c+bEfvvt11UjAgAAAAAAAAAAAAAAAAAAAAAAAAAAUEASuR6A4lNVVRUvvPBCnHLKKRmtKy8vj0mTJsVDDz0UpaWlXTRd/iorK4tHHnkkvve970VZWWb58KeddlosWLAgjjjiiC6aDgAAAAAAAAAAAAAAAAAAAAAAAAAAgEIjhJouceihh8YzzzwTNTU1MWzYsCgpKdnhuXvttVdceumlsWTJkrjxxhsjkdh9b8tEIhE333xzvPTSS/G1r30t9tprrx2eW1JSEieffHI88sgj8ac//Sk+9alPdeOkAAAAAAAAAAAAAAAAAAAAAAAAAAAA5LuyXA9A8SopKYkxY8bEmDFj4p133okXXnghVqxYEY2NjVFWVhb7779/VFVVxQknnBAVFRUd2mvVqlWdM3QGbrzxxrjxxhu7pPdRRx0V9913X9xzzz2xYMGCaGhoiHfffTe2bdsWvXv3jv79+8c//dM/xQEHHNAl+wMAAAAAAAAAAAAAAAAAAAAAAAAAAFD4hFDTLQ444IA477zzcj1GwamoqIiTTz45Tj755FyPAgAAAAAAAAAAAAAAAAAAAAAAAAAAQIFJ5HoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqfEGoAAAAoAs0tzXnVh+7l+gPA7stzAO4BAAAAAAAAAAAAAAAAAAAAdkYINQAAABS4xi2NMbpmdNQ21HaoT21DbYyuGR2NWxo7aTK6g+sPALsvzwG4BwAAAAAAAAAAAAAAAAAAANiVslwPAAAAAGSvcUtjjH10bNSvq4/Fby2OiIjqquqM+9Q21MbEWROjpbUlxj46NmourInePXp39rh0MtcfAHZfngNwDwAAAAAAAAAAAAAAAAAAANAeiVwPAAAAAGTnH0PnIiJaWlti4qyJUdtQm1Gffwydi4ioX1cfYx8dG41bGjt9ZjqP6w8Auy/PAbgHAAAAAAAAAAAAAAAAAAAAaC8h1AAAAFCAPh46l5QMn3vs5cfa1efjoXNJwufy266uf3vDB11/ACg8nfUcMPPlmZ4DCpRnQQAAAAAAAAAAAAAAAAAAADIhhBoAAAAKzI5C55JaWlviX+f8a8xdOXenfR5/5fE2Q+eShM/lp/Zc/4mzJsasZbN22uepFU+5/gBQYNr7HPD4K4/vtM/clXPjm7O/6TmgALX3Hpi9fPZO+8xZPsezIAAAAAAAAAAAAAAAAAAAwG5CCDUAAAAUkF2FziW1tLbEj/76ox0GUc9dOTf+vzn/3w5D55KEz+WXTK7/DXNv2On1/8EzP3D9AaCAZPIccO1T1+70OeBHf/2R54AClMk9cPO8m3d6D9z0p5vcAwAAAAAAAAAAAAAAAAAAALsJIdQAAABQINobOpe0oyDq9gYPJgmfyw+uPwDsvjwHkPE9EDu/B1qjtV193AMAAAAAAAAAAAAAAAAAAACFTwg1AAAAFIBMQ+eSPh5AmGnwYJLwudxy/QFg9+U5APcAAAAAAAAAAAAAAAAAAAAAHVGW6wEAAACAnWtuaY5xM8ZlHDqXlAyfm/f6vFjw5oKMQ+eS6tfVx7gZ42Lm2JlRmijNqgeZc/0BYPflOQD3AAAAAAAAAAAAAAAAAAAAAB2VyPUAAAAAwM6VJkpj/ODxkSjJ/v/Gt7S2xPNrn886dC4iIlGSiPGDxwud62auPwDsvjwH4B4AAAAAAAAAAAAAAAAAAACgo4RQAwAAQAGorqqOKSOndCh8riMSJYmYMnJKVFdV52T/3Z3rDwC7L88BuAcAAAAAAAAAAAAAAAAAAADoCCHUAAAAUCByFT4ndC4/uP4AsPvyHIB7AAAAAAAAAAAAAAAAAAAAgGwJoQYAAIAC0t3hc0Ln8ovrDwC7L88BuAcAAAAAAAAAAAAAAAAAAADIhhBqAAAAKDDdFT4ndC4/uf4AsPvyHIB7AAAAAAAAAAAAAAAAAAAAgEwJoQYAAIAC1NXhc0Ln8pvrDwC7L88BuAcAAAAAAAAAAAAAAAAAAADIhBBqAAAAKFBdFT4ndK4wuP4AsPvyHIB7AAAAAAAAAAAAAAAAAAAAgPYSQg0AAAAFrLPD54TOFRbXHwB2X54DcA8AAAAAAAAAAAAAAAAAAADQHkKoAQAAoMBVV1XHmf3P7JReZ/Y/U+hcgXH9AWD35TkA9wAAAAAAAAAAAAAAAAAAAAC7IoQaAAAAClxtQ208veLpTun19Iqno7ahtlN60T1cfwDYfXkOwD0AAAAAAAAAAAAAAAAAAADArgihBgAAgAJW21AbE2dNjJbWlk7p19LaEhNnTRQ+VyBcfwDYfXkOwD0AAAAAAAAAAAAAAAAAAABAewihBgAAgALV2aFzScLnCoPrDwC7L88BuAcAAAAAAAAAAAAAAAAAAABoLyHUAAAAUIC6KnQuSfhcfnP9AWD35TkA9wAAAAAAAAAAAAAAAAAAAACZEEINAAAABaarQ+eShM/lJ9cfAHZfngNwDwAAAAAAAAAAAAAAAAAAAJApIdQAAABQQLordC5J+Fx+cf0BYPflOQD3AAAAAAAAAAAAAAAAAAAAANkQQg0AAAAFortD55KEz+UH1x8Adl+eA3APAAAAAAAAAAAAAAAAAAAAkC0h1AAAAFAAchU6lyR8LrdcfwDYfXkOwD0AAAAAAAAAAAAAAAAAAABARwihBgAAgDzX3NIc016c1qHQuURJIk781ImRKMn+nwJaWlti2ovTormlOeseZM71B4Ddl+cA3AMAAAAAAAAAAAAAAAAAAAB0lBBqAAAAyHOlidKYfsH0GHTQoKzWJ0oSce3nro2bTr8prv3ctVmHzw06aFBMv2B6lCZKs1pPdlx/ANh9eQ7APQAAAAAAAAAAAAAAAAAAAEBHCaEGAACAAtC7R++oubAm4/C5ZOjc8MrhERExvHJ4VuFzgw4aFDUX1kTvHr0zWkfncP0BYPflOQD3AAAAAAAAAAAAAAAAAAAAAB0hhBoAAAAKRKbhcx8PnUvKNHxO6Fx+cP0BYPflOYCM74HY+T1QEiXt6uMeAAAAAAAAAAAAAAAAAAAAKHxCqAEAAKCAtDd8bkfBg0nDK4fHT875yS4DCIXO5ZdMrv/Nw2/e6fX/7mnfdf0BoIBk8hzwo7N/tNPngPYEUXsOyD+Z3AM3nH7DTu+BSf88yT0AAAAAAAAAAAAAAAAAAACwmxBCDQAAAAVmV+FziZJE/Oc5/7nD0LmkUUeOiikjp+wwfE7oXH5qz/WfMnJKjBw4cqd9zu5/tusPAAWmvc8Bo44ctdM+wyuHx09H/NRzQAFq7z0wYsCInfY5Z8A5ngUBAAAAAAAAAAAAAAAAAAB2E0KoAQAAoADtKHwuGTp3/lHnt6tPdVV1m+FzQufy266uf3VVdbv6uP4AUHg66zlg9FGjPQcUKM+CAAAAAAAAAAAAAAAAAAAAZEIINQAAABSoj4fPZRo6l/Tx8Dmhc4XB9QeA3ZfnANwDAAAAAAAAAAAAAAAAAAAAtFdZrgcAAAAAspcMnxs3Y1yMHzw+49C5pOS6aS9Oi+kXTBc6VyBcfwDYfXkOwD0AAAAAAAAAAAAAAAAAAABAewihBgAAgALXu0fvmDl2ZpQmSjvUp7qqOkYdOarDfeherj8A7L48B+AeAAAAAAAAAAAAAAAAAAAAYFcSuR4AAAAA6LjOCosTOleYXH8A2H15DsA9AAAAAAAAAAAAAAAAAAAAwM4IoQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAoQkKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAIqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAIiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKAICaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKEJCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAACKkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCIkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgCAmhBgAAAAAAAAAAAAAAAAAAAAAAAIAC09zSnFd9AADIT0KoAQAAAAAAAAAAAAAAAAAAAAAAAKCANG5pjNE1o6O2obZDfWobamN0zeho3NLYSZMBAJBvynI9AAAAAAAAAAAAAAAAAAAAAAAAAADQPo1bGmPso2Ojfl19LH5rcUREVFdVZ9yntqE2Js6aGC2tLTH20bFRc2FN9O7Ru7PHBQAgxxK5HgAAAAAAAAAAAAAAAAAAAAAAAAAA2LV/DKCOiGhpbYmJsyZGbUNtRn3+MYA6IqJ+XX2MfXRsNG5p7PSZAQDILSHUAAAAAAAAAAAAAAAAAAAAAAAAAJDnPh5AnZRpEPXHA6iTBFEDABQnIdQAAAAAAAAAAAAAAAAAAAAAAAAAkMd2FECd1N4g6h0FUCcJogYAKD5CqAEAAAAAAAAAAAAAAAAAAAAAAAAgT+0qgDppV0HUuwqgThJEDQBQXMpyPQAAAAAAAAAAUNzWr18fCxYsiOXLl0djY2OUl5dHnz594uijj46hQ4dGeXl5rkfMS2+99VYsWrQo3nrrrfj73/8eW7ZsiU984hOxzz77xFFHHRWf/exno6KiItdjAgAAAAAAAAAAAADQhdobQJ2UDKKOiKiuqt5eb28AdVIyiLrmwpro3aN35oMDAJA3hFADAAAAAAAAAF3i0UcfjTvuuCP+/Oc/R2tra5vn7L333jFmzJj41re+FUcccUQ3T5iutbU1XnvttVi4cGHU1dVFXV1dLF68OD744IOU8y655JK4//77O33/lStXxr333hvTp0+P119/fafnVlRUxPDhw+Oyyy6L0aNHR1mZr4EAAAAAAAAAAAAAABSTTAOokz4eRJ1pAHWSIGoAgOLgtw8BAAAAAAAAgE61du3aGDduXPzpT3/a5bkffPBB/PKXv4xf//rXcf3118f1118fJSUl3TDl/zNjxox47rnnoq6uLhYtWhTvv/9+t+4fEbF169b4wQ9+ELfffnts3bq13Wtmz54ds2fPjkGDBsW9994bQ4cO7eJJAQAAAAAAAAAAAADoDs0tzTFuxriMA6iTkkHUM1+ZGU+veDrjAOqk+nX1MW7GuJg5dmaUJkqz6gEAQG4JoQYAAAAAAAAAOs2rr74ap59+erz11lsZrdu6dWvccMMN0dDQEL/+9a+jtLT7vpg6fvz4nARPJ23atCnOO++8mDt3btY96uvrY9iwYVFTUxPV1dWdOB0AAAAAAAAAAAAAALlQmiiN8YPHx+K3FmcdIN3S2hJPLX+qQ3MkShIxfvB4AdQAAAVMCDUAAAAAAAAA0Ck2bNgQZ599dpsB1EOGDInzzz8/KisrY/PmzfHqq6/Ggw8+GG+++WbKeQ899FAccMABMXny5G6aOvfGjBnTZgB1eXl5jBw5MoYNGxaf+tSnokePHvHee+/FkiVL4ve//32sWrUq5fympqYYO3ZszJ07N04++eRumh4AAAAAAAAAAAAAgK5SXVUdERETZ03MOoi6IxIliZgycsr2OQAAKExCqAEAAAAAAACATnH55ZfH6tWrU2p77713PPDAAzFq1Ki082+99da49dZb48Ybb0yp33HHHTFixIgYOXJkV467S3369IkhQ4bEvvvuGzU1NV2yR01NTfz+979Pq5933nlxzz33xMEHH9zmujvvvDPuv//++MY3vhEffPDB9npTU1N8/etfj8WLF0d5eXmXzAwAAAAAAAAAAAAAQPfJVRC1AGoAgOKRyPUAAAAAAAAAAEDhe+qpp2LGjBkptYqKivjjH//YZgB1RER5eXlMmjQpJk+enHbs6quvjm3btnXFqG36xCc+EcOHD49rr702HnnkkVixYkW8++67MXv27Ljiiiu6bN///M//TKuNHj06HnvssR0GUEdEJBKJGD9+fPz+979PC5v+29/+FnPmzOn0WQEAAAAAAAAAAAAAyI3qquqYMnJKJEq6Jz5QADUAQHERQg0AAAAAAAAAdNgtt9ySVps0aVIMHTp0l2uvueaaOPvss1Nqy5YtiwcffLDT5tuZxYsXx3vvvRd//OMf44c//GF86UtfisrKyi7fd+3atbFgwYKUWs+ePePuu++ORKJ9X+k49dRT4+tf/3pa/bHHHuuUGQEAAAAAAAAAAAAAyA/dFUQtgBoAoPgIoQYAAAAAAAAAOuRvf/tbzJ8/P6W2//77x7/927+1u8dtt92WVrv77rs7PFt7VFZWRklJSbfs9Y9eeeWVaG1tTakNHz48DjrooIz6jBs3rs3eAAAAAAAAAAAAAAAUl64OohZADQBQnIRQAwAAAAAAAAAd8vDDD6fVLr300qioqGh3jyFDhsSQIUNSas8991ysXLmyw/Plq3feeSetVlVVlXGftta8/fbbWc0EAAAAAAAAAAAAAEB+66ogagHUAADFSwg1AAAAAAAAANAhTz75ZFrtwgsvzLhPW2va6l0s2grpziS4O6lHjx5ptZ49e2Y1EwAAAAAAAAAAAAAA+a+zg6gFUAMAFDch1AAAAAAAAABA1j766KNYtGhRSq1Xr15x/PHHZ9zr1FNPTavNnz8/69nyXWVlZVptzZo1Gfdpa82AAQOymgkAAAAAAAAAAAAAgMJQXVUdZ/Y/s1N6ndn/TAHUAABFTAg1AAAAAAAAAJC1F198MVpaWlJqQ4cOjbKysox7nXDCCVFeXp5SW7hwYYfmy2ef/exno0+fPim1p59+OpqamjLq84c//CGtduaZnfNFYgAAAAAAAAAAAAAA8lNtQ208veLpTun19Iqno7ahtlN6AQCQf4RQAwAAAAAAAABZe/nll9NqAwcOzKpXRUVFHHLIISm15cuXx7Zt27Lql+9KS0vj61//ekpt3bp1ceedd7a7x8aNG+M//uM/Umr77LNPXHzxxZ0yIwAAAAAAAAAAAAAA+ae2oTYmzpoYLa0tndKvpbUlJs6aKIgaAKBICaEGAAAAAAAAALK2atWqtNphhx2Wdb9+/fqlvG5ubo7Vq1dn3S/fXXfdddG/f/+U2re//e2YNm3aLte+8cYbMXLkyHjrrbdS6nfeeWfsvffenTonAAAAAAAAAAAAAAD5obMDqJMEUQMAFK+yXA8AAAAAAAAAABSudevWpdUOPfTQrPu1tfbtt99OC2ouFnvttVfMmjUrhg8fHm+++WZE/N/g7f/5P/9n3H///TF+/Pg4+eST4+CDD44ePXrEe++9Fy+99FI88cQTMW3atGhsbEzp9/3vfz8uvvjiXLyVHfrZz34WU6dO7fJ9li9f3uV7AAAAAAAAAAAAAADkUlcFUCclg6gjIqqrqrtkDwAAup8QagAAAAAAAAAgaxs3bkyr7bXXXln3a2vthg0bsu5XCI444ohYtGhRXHHFFTFz5szt9fnz58f8+fPb1aOysjLuvPPOOO+887poyuytX78+li5dmusxAAAAAAAAAAAAAAAKWlcHUCcJogYAKD6JXA8AAAAAAAAAABSujz76KK22xx57ZN2vrbWbNm3Kul+hOPDAA6O2tjYWLlwYV111Vbs/wyFDhsQjjzwSr776al4GUAMAAAAAAAAAAAAA0HHdFUCdlAyirm2o7Zb9AADoWkKoAQAAAAAAAICsNTU1pdV69uyZdb+2wpe3bt2adb9Csnz58vjlL38ZjzzySGzevLldaxYuXBjf+c53YvLkyfHhhx928YQAAAAAAAAAAAAAAHS37g6gThJEDQBQPIRQAwAAAAAAAACdqqSkpFPXtra2dmScvNfU1BTf+9734sgjj4ypU6fGO++8k3K8V69ecfjhh8fRRx8dBx98cCQSqV/3WLZsWVx77bVRVVUVf/zjH7tzdAAAAAAAAAAAAAAAulCuAqiTBFEDABQHIdQAAAAAAAAAQNbKy8vTaps3b866X1trKyoqsu6X77Zu3RoXXHBBfP/734/m5ubt9T322COuuuqqqKuri8bGxli5cmX87W9/i7Vr18bGjRtjxowZcdppp6X0euONN2LEiBHx29/+trvfBgAAAAAAAAAAAAAAnay5pTmmvTitQwHUiZJEnD3g7EiUZB872NLaEtNenBbNLc27PhkAgLxUlusBAAAAAAAAAIDC1atXr7RaZ4dQ77nnnln3y3fXXHNN/O53v0upDRw4MGbOnBnHHHNMm2s+8YlPRHV1dVRXV8fdd98dV111VbS0/N8vFW/bti3GjRsXRx111A7Xd7e+ffvG0Ucf3eX7LF++PLZs2dLl+wAAAAAAAAAAAAAAdIfSRGlMv2B6jH10bNSvq894faIkEVNGTonqquqobaiNibMmZhVoPeigQTH9gulRmijNeC0AAPlBCDUAAAAAAAAAkLU+ffqk1T788MOs+7W1tq09isFf/vKX+PnPf55S22+//WLOnDlRWVnZrh5XXnllbNmyJb75zW9ur23ZsiWuvPLKeOaZZzp13mxNmDAhJkyY0OX7HHPMMbF06dIu3wcAAAAAAAAAAAAAoLv07tE7ai6syTiI+h8DqCNi+/9mGkQ96KBBUXNhTfTu0TuzwQEAyCuJXA8AAAAAAAAAABSuAw88MK32xhtvZN1vzZo17dqjGPzkJz9Jq333u99tdwB10tVXXx2f/exnU2rz58+PRYsWdWg+AAAAAAAAAAAAAAByLxlEPeigQe06/+MB1EnVVdUxZeSUSJS0L4JQADUAQPEQQg0AAAAAAAAAZK2twOTXX389636rV69OeV1aWhr9+vXLul++2rZtW8yZMyelVlJSEhdffHHGvRKJRJvrZs+enfV8AAAAAAAAAAAAAADkj/YGUe8ogDqpvUHUAqgBAIqLEGoAAAAAAAAAIGtHHnlkWm3ZsmVZ9dq6dWusWbMmpTZgwIAoKyvLql8+W7FiRXz44YcptQEDBkTfvn2z6nfSSSel1ZYsWZJVLwAAAAAAAAAAAAAA8s+ugqh3FUCdtKsgagHUAADFRwg1AAAAAAAAAJC14447LhKJ1K8f1NXVxbZt2zLuVVdXF01NTSm1448/vkPz5asNGzak1bINoN7R2o0bN2bdDwAAAAAAAAAAAACA/LOjIOr2BlAn7SiIWgA1AEBxEkINAAAAAAAAAGRtzz33jOOOOy6l9tFHH8XixYsz7vXss8+m1U477bSsZ8tnPXv2TKtt3rw5636bNm1Kq/Xq1SvrfgAAAAAAAAAAAAAA5KePB1FnGkCd9PEgagHUAADFSwg1AAAAAAAAANAh5557blrt0UcfzbhPW2va6l0M+vbtm1Z7/fXXo6WlJat+K1asaNceAAAAAAAAAAAAAAAUvmQQ9ZCDh2QVQJ2UDKIecvAQAdQAAEVMCDUAAAAAAAAA0CEXXXRRWu2+++6LrVu3trvH4sWLY8GCBSm1E088MSorKzs8Xz466KCDYq+99kqpvffee/Hcc89l1e8Pf/hDWu2II47IqhcAAAAAAAAAAAAAAPmvd4/eMXPszKwDqJOqq6pj5tiZAqgBAIqYEGoAAAAAAAAAoEOOPfbYOOWUU1Jq69evj5/+9Kft7nHdddel1a688soOz5avysrK4swzz0yr/+AHP8i418qVK+OBBx5Iq48YMSKr2QAAAAAAAAAAAAAAKAylidK86gMAQH4SQg0AAAAAAAAAdNj111+fVps0aVIsWrRol2vvuuuumD17dkqtf//+8ZWvfKVdex9++OFRUlKS8mfevHntWptLY8eOTav94Q9/iNtvv73dPd5///2orq6OrVu3ptSPPvro+MxnPtPhGQEAAAAAAAAAAAAAAACAwiaEGgAAAAAAAADosBEjRsT555+fUtuyZUsMHz48nnjiiTbXNDU1xS233BITJ05MO3bnnXdGeXl5l8yaL8aOHRuDBw9Oq1933XUxfvz4ePvtt3e6/o9//GMMGTIk6uvr045lEmQNAAAAAAAAAAAAAAAAABSvslwPAAAAAAAAAAAUh1/84hexcOHCeOONN7bXGhsbY9SoUTF06NA4//zzo7KyMjZv3hyvvfZaTJ8+PdauXZvW56qrroovfOEL3TZ3XV1dXHbZZTs8/uGHH6bVHn/88TYDpJOGDh0a99577073TSQSce+998bpp5+etsd9990XDz74YIwYMSKGDRsWBx98cOyxxx7x97//PRoaGuKpp56Kl156qc2+l1xySfzLv/zLTvcGAAAAAAAAAAAAAAAAAHYPQqgBAAAAAAAAgE7Rt2/fmDNnTpxxxhmxbt26lGN1dXVRV1e3yx5jxoyJyZMnd9GEbfvwww+jvr4+ozXvvfdevPfeezs8vs8++7Srz5AhQ2LmzJkxevTotCDqLVu2xOOPPx6PP/54u+e64IILdhl+DQAAAAAAAAAAAAAAAADsPhK5HgAAAAAAAAAAKB5VVVXxwgsvxCmnnJLRuvLy8pg0aVI89NBDUVpa2kXT5aczzzwz6uvr45//+Z+z7rHXXnvF1KlT47e//W2UlflvkgMAAAAAAAAAAAAAAAAA/5cQagAAAAAAAACgUx166KHxzDPPRE1NTQwbNixKSkp2eO5ee+0Vl156aSxZsiRuvPHGSCR2z68y9O/fP+bNmxfPPPNMjBs3Lvbbb79driktLY3jjjsuJk+eHGvWrIkrr7yyGyYFAAAAAAAAAAAAAAAAAApJWa4HAAAAAAAAAACKT0lJSYwZMybGjBkT77zzTrzwwguxYsWKaGxsjLKysth///2jqqoqTjjhhKioqOjQXqtWrerQ+tNPPz1aW1s71KOznHrqqXHqqadGRMSyZctiyZIlsWHDhvj73/8eW7dujd69e8c+++wThx9+eBx//PGx55575nhiAAAAAAAAAAAAAAAAACCfCaEGAAAAAAAAALrUAQccEOedd16uxyg4AwcOjIEDB+Z6DAAAAAAAAAAAAAAAAACggCVyPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnU8INQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAREkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAUISEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAUISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEVICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAERJCDQAAAAAA/P/s3XeYFeX1OPAzS1WKSBM1KtjBggJGJTZEYy+oEQ2WiCUag/kmsSYqlsQYNdaoiRE0iRqxISoaBcWCBkVUNIiNYgNE6gIiZXd+f/jbG68LW+/W+/k8z32enffOnDmX83Ip78wZAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiFNqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIU2oAQAAAAAAAAAAAAAAAAAAAAAAAAAAABohTagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGqGmdZ0A+eHLL7+MiRMnxrRp06KwsDCaNWsWHTp0iB49ekSfPn2iWbNmdZ1iljlz5sSMGTPi008/jblz58ayZcti1apV0bZt21hvvfWia9eusfPOO0fbtm1rNI/Zs2fHG2+8EbNnz45FixbFihUrYr311ot27drFtttuGzvuuGM0b968RnMAAAAAAAAAAAAAAAAAAAAAAAAAAACgYdKEmhr10EMPxU033RQvv/xypGm6xn3atGkTxx57bJx//vmx9dZb13KGEYsWLYrx48fHyy+/HK+++mq88847MW/evHKPS5IkdthhhzjppJPixBNPjM6dO+cknxkzZsSdd94Z9957b3z88cdl7tu8efPo169fnHbaaXHkkUdG06Z+SwMAAAAAAAAAAAAAAAAAULZVq1bFa6+9FhMmTIhJkybF3LlzY9GiRbFkyZJo06ZNtGvXLjp37hy9e/eO3XbbLb7//e9Hs2bN6jptAAAAAAAAoAp0rKVGfP755zFo0KB44YUXyt13yZIlMWzYsPjnP/8ZF198cVx88cWRJEktZPmNq6++Ov74xz9W+rg0TePtt9+Oc889Ny677LK4/PLL45xzzqlyI+iVK1fG73//+7j66qtj5cqVFT7m6aefjqeffjp69uwZd955Z/Tp06dK5wcAAAAAAAAAAAAAAAAAoHGbMWNG3H777XHXXXfFggULst5L0zTzc8m9viNGjIiIiPbt28fgwYPjzDPPjG7dutVewgAAAAAAAEC1FdR1AjQ+H3zwQeyyyy4VakD9bStXroxLL700Bg0aFEVFRTWUXc1YunRp/PrXv45DDz00li9fXunjv/rqqzjwwAPjiiuuqHAD6u+aPHly9O3bN0aOHFml4wEAAAAAAAAAAAAAAAAAaJyKioriyiuvjO7du8ef/vSnmD9/fqRpmvVKkiTz+u578+fPj+uuuy66d+8ev/vd7xrcvcAAAAAAAACQz5rWdQI0LvPnz4/9998/Zs+eXeq93r17xxFHHBHdunWL5cuXxwcffBD33XdfzJo1K2u/f/3rX9G5c+e48cYbaynrbK1atYpevXrFNttsE1tuuWV06tQp2rRpE0VFRVFYWBgffPBBvPLKKzFhwoSsJzpHRDz99NMxYMCAeOqppzJPeK6IY489NsaNG1dqvFmzZnHQQQdF3759Y+ONN44WLVrEwoUL4+23347Ro0fHzJkzs/ZftWpVDBw4MMaNGxc/+MEPqvT5AQAAAAAAAAAAAAAAAABoPBYuXBgHHHBATJo0KXNvbHn3wa7p/TRNY+XKlTF06NB4/PHH49///nesv/76NZIzAAAAAAAAkDuaUJNTZ5xxRnzyySdZY23atIl77rknDj/88FL7X3XVVXHVVVfFZZddljV+0003xQEHHBAHHXRQTaYbEREtWrSIfffdNw466KDo379/7LjjjtGkSZNyj/voo4/iV7/6VTz++ONZ408//XT87W9/izPOOKNC5x8xYkSMHj261Pihhx4af/3rX2OjjTZa43E333xz3H333fF///d/sWTJksz4qlWr4qc//Wm8+eab0axZswrlAAAAAAAAAAAAAAAAAABA4zN//vzYb7/9YvLkyRGR3Vy6pCF1RETz5s2jbdu20apVq1i2bFkUFhbGypUrM+8nSZI5Nk3TmDhxYvTv3z/Gjh0b7du3r6VPAwAAAAAAAFRFQV0nQOMxZsyYeOSRR7LGmjdvHs8999waG1BHRDRr1iyGDh0aN954Y6n3zjnnnFi9enVNpJrl8ssvj2effTbOPffc2HnnnSvUgDoiYsstt4xRo0bFWWedVeq9q6++usLnv/7660uNHXnkkTFq1Ki1NqCOiCgoKIjBgwfH6NGjSzWbnjJlSjzzzDMVzgEAAAAAAAAAAAAAAAAAgMbntNNOi8mTJ5dqIt2yZcs4/vjj48EHH4xp06bF119/HXPnzo0ZM2bE3Llz4+uvv47p06fHgw8+GMcff3yss846mabVJXEmT54cp512Wp19NgAAAAAAAKBiNKEmZ6688spSY0OHDo0+ffqUe+wvfvGL2H///bPGPvroo7jvvvtyll9NSJIkbrjhhthss82yxmfMmBGvv/56ucd//vnnMXHixKyxli1bxu233x4FBRX77bnnnnvGT3/601Ljo0aNqtDxAAAAAAAAAAAAAAAAAAA0Po8++miMGjUq0zQ64psG1D/5yU9i5syZce+998bRRx8d3bp1W+PxXbt2jaOPPjruvffemDlzZpxyyilZjajTNI1Ro0a5pxUAAAAAAADqOU2oyYkpU6bESy+9lDXWsWPHOPfccysc4w9/+EOpsdtvv73audW0Fi1axDHHHFNq/N133y332Pfffz+z2F6iX79+0aVLl0rlMGjQoDXGBgAAAAAAAAAAAAAAAAAgP91www2Zn9M0jYKCgrj99ttj+PDh0alTp0rF6tixYwwbNiz++te/lmpqff311+csZwAAAAAAACD3NKEmJ+6///5SY6eccko0b968wjF69+4dvXv3zhqbMGFCzJgxo9r51bQtttii1Njs2bPLPW7u3Lmlxrp3717p86/pmC+++KLScQAAAAAAAAAAAAAAAAAAaPhmz54dL7/8ciRJEmmaRpIkcf7558dPf/rTasU9/fTT44ILLsjEjIh4+eWXK3RfLQAAAAAAAFA3NKEmJ/7973+XGjvmmGMqHWdNx6wpdn3z9ddflxqrSAPuNe1TmcbdJVq0aFFqrGXLlpWOAwAAAAAAAAAAAAAAAABAwzdx4sQoLi7ObHfq1CmGDh2ak9hDhw6Nzp07Z7bTNI3XXnstJ7EBAAAAAACA3NOEmmpbtmxZvPHGG1lj6667bvTq1avSsfbcc89SYy+99FKVc6stEydOLDW2xRZblHtct27dSo19+umnlT7/mo6pyPkBAAAAAAAAAAAAAAAAAGh8Zs2alfk5SZI46qijonnz5jmJ3bx58zjqqKMiTdPM2OzZs3MSGwAAAAAAAMg9TaiptrfeeivrScgREX369ImmTZtWOtYuu+wSzZo1yxqbNGlStfKraR9++GGMHDkya6xly5ax1157lXvsjjvuGB06dMgae/bZZ2PVqlWVyuHJJ58sNda/f/9KxQAAAAAAAAAAAAAAAAAAoHFYsGBBRESmUfQOO+yQ0/g77rhjRHzT4Prb5wMAAAAAAADqH02oqbb33nuv1NiWW25ZpVjNmzeP733ve1lj06ZNi9WrV1cpXk2bPn16HHbYYfH1119njZ9yyinRrl27co9v0qRJ/PSnP80amzNnTtx8880VzmHBggXxxz/+MWusXbt2ceKJJ1Y4BgAAAAAAAAAAAAAAAAAAjUerVq2ytjt27JjT+B06dCjzfAAAAAAAAED9oQk11TZz5sxSY5tttlmV42266aZZ20VFRfHJJ59UOV6urVixIiZMmBD/93//F9ttt128//77We9369Yt/vCHP1Q43kUXXRSbb7551tgFF1wQw4cPL/fYzz77LA466KCYPXt21vjNN98cbdq0qXAOAAAAAAAAAAAAAAAAAAA0Ht26dcvanjdvXk7jz58/PyIi0jSNiIiuXbvmND4AAAAAAACQO03rOgEavjlz5pQa22STTaocb03HfvHFF6UaNdeksWPHxrnnnps1tnr16liyZEnMmjUrVq9evcbjttpqq3jmmWdivfXWq/C5WrduHU899VT069cvZs2aFRHfNN4+9dRT4+67747BgwfHD37wg9hoo42iRYsWsXDhwnjnnXfi8ccfj+HDh0dhYWFWvN/97ndx4oknVvIT16xbb701brvttho/z7Rp02r8HAAAAAAAAAAAAAAAAAAA9d0uu+wSERFJkkRExNtvv53T+N+NV3I+AAAAAAAAoP7RhJpqW7BgQamx1q1bVznemo4teRpybVm0aFFMnjy5wvu3atUqzjzzzLj88sujVatWlT7f1ltvHW+88UaceeaZ8eijj2bGX3rppXjppZcqFKNbt25x8803x6GHHlrp89e0L7/8Mt599926TgMAAAAAAAAAAAAAAAAAIC9suOGGsfvuu8eECRMiTdN45JFH4qabbormzZtXO/bKlSvj4YcfzjS43mWXXWKjjTaqdlwAAAAAAACgZhTUdQI0fMuWLSs1ts4661Q53pqO/eqrr6ocryYlSRKnnXZazJgxI6677roqNaAuscEGG8TIkSNj0qRJ8fOf/7zCv4a9e/eOBx54ID744IN62YAaAAAAAAAAAAAAAAAAAIDad95550WappEkScybNy8uv/zynMS94oor4ssvv4w0TSMi4vzzz89JXAAAAAAAAKBmaEJNta1atarUWMuWLascb03Nl1euXFnleDUpTdO48847Y/vtt4/LL788lixZUq1406ZNi2HDhsUDDzwQy5cvr9AxkyZNit/85jdx4403xtKlS6t1fgAAAAAAAAAAAAAAAAAAGocjjzwyBgwYkGkWfc0118Tf/va3asUcNmxYXH311ZEkSSRJEkcccUQcddRRuUgXAAAAAAAAqCGaUFMjkiTJ6bEli9u15Zhjjok0TbNey5Yti88//zzGjh0bl19+eXTr1i2z/9y5c+Oyyy6LHXfcMV599dVKn2/VqlVxySWXxDbbbBO33XZbzJ07N+v9ddddN7p27Ro9evSIjTbaKAoKsn/rfvTRR3HeeedF9+7d47nnnqvahwYAAAAAAAAAAAAAAAAAoFG55557Yo899og0TaOoqCjOPPPMOO2002LevHmVijN//vw4/fTT44wzzoji4uJI0zR+8IMfxD333FNDmQMAAAAAAAC5ogk11dasWbNSY8uXL69yvDUd27x58yrHy5V11103Ntpoo+jfv39ceumlMW3atPjzn/8crVq1yuwzc+bM2G+//eKVV16pcNyVK1fGUUcdFb/73e+iqKgoM77OOuvEz3/+83j99dejsLAwZsyYEVOmTInPP/88FixYEI888kjstddeWbE+++yzOOCAA+Lhhx+u/gcGAAAAAAAAAAAAAAAAAKBBW2eddWLs2LFx9tlnR5IkkaZp3HXXXdG1a9cYNGhQPPjggzF9+vQ1Hjtjxox46KGH4oQTTojNNtsshg8fHmmaRkFBQZx99tnx7LPPxrrrrlvLnwgAAAAAAACorKZ1nQAN35oWh3PdhPrbjZ7riyRJ4uyzz44ddtghDjzwwEzeS5cujYEDB8bbb78d66+/frlxfvGLX8QTTzyRNbblllvGo48+Gtttt90aj1lvvfViwIABMWDAgLj99tvj5z//eRQXF0dExOrVq2PQoEGx7bbbrvX42tapU6fo0aNHjZ9n2rRpsWLFiho/DwAAAAAAAAAAAAAAAABAfbf55ptnbTdv3jxWrlwZaZrGV199Fffff3/cf//9ERHRtGnTaNOmTbRq1SqWLVsWS5YsidWrV2eOTdM0Ir65v7Z58+YxevToGD16dKXySZIkpk2bVs1PBQAAAAAAAFSWJtRUW4cOHUqNLV26tMrx1nTsms5RX+y1115x2WWXxQUXXJAZ++yzz+JPf/pT/O53vyvz2FdeeSX+8pe/ZI21b98+nnnmmejWrVuFzn/WWWfFihUr4pe//GVmbMWKFXHWWWfFiy++WIlPUnPOPvvsOPvss2v8PNttt128++67NX4eAAAAAAAAAAAAAAAAAID6bubMmZEkSaRpGkmSRESU+rnEqlWrYsGCBbFgwYI1xvr2MStWrIiPP/446/iKKIlB1RQVFcXbb78d7733XsyZMyeWLVsWLVq0iLZt20bXrl1j6623rvD9yQAAADQuRcVF0aSgSb2JAwAA1D+aUFNtG2ywQamxzz77rMrxPv300wqdoz75xS9+Eb/73e9iyZIlmbE77rgjrrzyyjIXxP/0pz+VGvvtb39b6QXec845J+666654++23M2MvvfRSvPHGG9GrV69KxQIAAAAAAAAAAAAAAAAAoPH49r2ua/u5urHKU9mG1fzPuHHj4o477ognn3wyCgsLy9y3Y8eO0bdv3zj44IPjmGOOiQ4dOtRSlgAAANSVwhWFMeiRQTF4p8ExoPuAKscZOXVkDH9reNx71L3RtkXbHGYIAADUBwV1nQAN35oaJn/88cdVjvfJJ59kbTdp0iQ23XTTKserDS1atIh99903a+zLL7+Md999d63HrF69Op555pmssSRJ4sQTT6z0+QsKCtZ43NNPP13pWAAAAAAAAAAAAAAAAAAANA5pmtaLF5U3derU2GeffWLfffeN+++/v9wG1BER8+bNi8ceeyzOPPPMeOqpp2ohSwAAAOpS4YrCGPjQwJg0a1IMeWpIjJw6skpxRk4dGUOeGhKTZk2KgQ8NjMIV5f8bFAAAaFia1nUCNHzbbLNNqbGPPvqoSrFWrlwZn376adbYFltsEU2b1v+p2rVr11Jj06dPj+22226N+0+fPj2WLl2aNbbFFltEp06dqnT+3XbbrdTY22+/XaVYAAAAAAAAQPlmzJgRkyZNivfffz8WL14cixcvjlWrVlU5XpIkMWzYsBxmCAAAAAAAAEA+O/nkk+s6BaroH//4R5x55pmxfPnyuk4FAACAeqqkAfXkOZMjIqI4LY4hTw2JiIgB3QdUOE5JA+ritDgiIibPmRwDHxoYI44ZEW1btM194gAAQJ2o/519qfd23nnnKCgoiOLi4szY66+/HqtXr6508+jXX3+91E3ZvXr1ykmeNa1ly5alxpYsWbLW/efPn19qrKoNqNd27IIFC6ocDwAAAAAAAChtyZIlcfvtt8ewYcOq/HDeNUnTVBNqAAAAAAAAAHLqrrvuqusUqIIbbrghfvWrX5UaT5Ikdt5559h///1j4403js6dO8fq1atj4cKF8d5778Vbb70Vr776aqxevboOsgYAAKA2fbcBdYnKNqL+bgPqEhpRAwBA46MJNdXWqlWr2HnnnWPSpEmZsWXLlsWbb74Zu+yyS6VijR8/vtTYXnvtVe0ca8PcuXNLjXXs2HGt+6+paXV1nkb81VdflRpbd911qxwPAAAAAAAAyPbMM8/EaaedFp9//nmkaZqzuEmS5CwWAAAAAAAAANBw/etf/4pf//rXpcaPPfbYuPrqq6Nbt25lHl9YWBhPPvlk3HnnnVFQUFBTaQIAAFCH1taAukRFG1GvrQF1CY2oAQCgcbFyRE4ceOCBpcYeeuihSsdZ0zFril0fTZgwodRYly5d1rp/p06dSo19/PHHUVy85n+Ql2f69OkVOgcAAAAAAABQeY8//ngcdthhmQbUSZLk7AUAAAAAAAAA8MEHH8QZZ5yR9WDsZs2axQMPPBAjRowotwF1RETbtm3juOOOi7Fjx8bxxx9fk+kCAABQB8prQF2ipBH1yKkj1/h+eQ2oS5Q0oi5cUVjlnAEAgPqhaV0nQONw3HHHxe9///ussbvuuiuuvPLKaN68eYVivPnmmzFx4sSssV133bVCC6J17a233oqpU6dmjbVr1y66d+++1mO6dOkSrVu3jqVLl2bGFi5cGBMmTIi+fftWOocnn3yy1NjWW29d6TgAAAAAAABAts8++yyOO+64WLVqVVbj6G/f9NmqVatYb731olmzZnWVJgAAAAAAAADQgJ111llZ9x1HRPzrX/+Ko48+ukrxPBgbAACgcaloA+oSJY2oIyIGdB+QGa9oA+oSJY2oRxwzItq2aFv5xAEAgHpBE2pyYvvtt4899tgjxo8fnxn78ssv44YbbogLLrigQjEuuuiiUmNnnXVWznKsKUVFRXHOOeeUGj/kkEPKvMG8adOm0b9//xg1alTW+O9///sYPXp0pXKYMWNG3HPPPaXGDzjggErFAQAAAAAAAEq79NJLY/ny5VnNp5MkiWOPPTZOOOGE+P73vx+dO3eu4ywBAAAAAAAAgIbqiSeeiOeeey5r7KSTTqpyA2oAAAAal8o2oC7x3UbUlW1AXUIjagAAaPgK6joBGo+LL7641NjQoUPjjTfeKPfYP//5z/H0009njW2++ebx4x//uELn7tq1ayRJkvV6/vnnyz3ulltuiTFjxlToHGuyYsWKGDRoULz00ktZ40mSxM9//vNyjx84cGCpsSeffDKuvvrqCuewePHiGDBgQKxcuTJrvEePHrHDDjtUOA4AAAAAAABQ2qpVq+LBBx/MakDdoUOHePHFF+P++++PQw89VANqAAAAAAAAAKBa/vjHP2Ztt2jRIq677ro6ygYAAID6pKi4KAY9MqjSDahLlDSiPvnRk6vUgLrE5DmTY9Ajg6KouKhKxwMAAHVLE2py5oADDogjjjgia2zFihXRr1+/ePzxx9d4zKpVq+LKK6+MIUOGlHrv5ptvjmbNmtVIriUmTZoUP/zhD2P33XeP2267Lb744osKHbdq1ap45JFHYocddogRI0aUev/000+P3Xbbrdw4AwcOjJ122qnU+EUXXRSDBw8uN5/nnnsuevfuHZMnl/7Pgco0sgYAAAAAAADW7JVXXolly5ZFxDcNqJMkiYcffjh+8IMf1HFmAAAAAAAAAFB9hYWFMX369Jg4cWK8+OKL8eKLL9Z1Snnn/fffj/Hjx2eNHXroodGpU6c6yggAAID6pElBkxi80+AoSKreMq44LY4x08ZUuQF1RERBUhCDdxocTQqaVDkGAABQd5rWdQI0Ln/7299i0qRJ8dlnn2XGCgsL4/DDD48+ffrEEUccEd26dYvly5fHhx9+GPfee298/vnnpeL8/Oc/j0MOOaTW8p4wYUJMmDAhhgwZEt27d4+dd945evToEe3bt4927dpFkiRRWFgYs2bNirfeeitefPHFmD9//hpj9evXL66//voKnbegoCDuvPPO2GeffWLp0qVZ7911111x3333xQEHHBB9+/aNjTbaKNZZZ51YtGhRTJ06NcaMGRPvvPPOGuOefPLJcdhhh1XuFwEAAAAAAAAoZfr06ZmfkySJ/v37x1577VWHGQEAAAAAAABA9TzxxBMxcuTIeP7552PmzJlZ7yVJEqtXr17rse+++258/fXXme1NN900OnbsWFOp5oUHH3yw1Njxxx9fB5kAAABQXw3oPiAiIoY8NaRajaSrqiApiFsOuiWTBwAA0PBoQk1OderUKZ555pnYd999Y86cOVnvvf766/H666+XG+PYY4+NG2+8sYYyLFtxcXFMmTIlpkyZUqXjjzzyyLjvvvtinXXWqfAxvXv3jkcffTSOPPLIUo2oV6xYEY899lg89thjFY531FFHxZ133lnh/QEAAAAAAIC1mzdvXkREpGkaSZLED3/4wzrOCAAAAAAAAACq5sknn4wLL7wwcx9tmqaVjvGXv/wlbr311sz28ccfH/fcc0/OcsxHY8aMKTW222671UEmAAAA1Gd11YhaA2oAAGgcCuo6ARqf7t27x2uvvRZ77LFHpY5r1qxZDB06NP71r39FkyZNaii7bK1atcpJnE022SQeeuihGDlyZKUaUJfo379/TJ48Ofbee+8q59C6deu47bbb4uGHH46mTfWXBwAAAAAAgFz47g23m2yySR1lAgAAAAAAAABVk6ZpXHTRRXHYYYfFlClTIk3TzMOYv/2qiF/96ldRUFCQifHoo4/GkiVLavgTNF5FRUXx6quvZo117NgxNt5448z24sWL49Zbb41DDjkkNtlkk2jRokW0bt06unbtGrvvvntccMEF8eyzz0Zxce01IAMAAKBuDOg+IG456JYoSGqnfZwG1AAA0HhoQk2N2GSTTeLFF1+MESNGRN++fctceG7dunWccsop8fbbb8dll10WBQW1Ny1vvfXWmDJlSlx33XVx2GGHRZcuXSp87AYbbBDHHXdcPPnkkzFjxow4+uijq5XL5ptvHs8//3y8+OKLMWjQoGjfvn25xzRp0iR23nnnuPHGG+PTTz+Ns846q1o5AAAAAAAAANk6d+6ctb169eo6ygQAAAAAAAAAquass86Ka665JvMg5pL7fksaSX/3Ac1l6dq1axx66KGZ7eXLl8djjz2W24TzyAcffBArVqzIGttqq60yP99xxx2xySabxM9//vN48skn47PPPouVK1fGsmXL4uOPP44JEybENddcE/vtt1/suOOO8cgjj9T2RwAAAKCW1VYjag2oAQCgcWla1wnQeCVJEscee2wce+yxMXfu3Hjttddi+vTpUVhYGE2bNo2OHTtG9+7dY5dddonmzZtX61wzZ86s8rE9evSIHj16xK9//euIiJg9e3ZMmzYtZs6cGQsWLIhly5ZFmqbRpk2bWG+99aJz587Rs2fP2HDDDauV89rsueeeseeee0ZExEcffRRvv/12zJ8/PxYtWhQrV66Mtm3bRrt27aJr167Rq1evaNWqVY3kAQAAAAAAAETssMMOEfG/G3DnzJlTl+kAAAAAAAAAQKXcdtttcccdd0SSJJEkSabhdP/+/eOQQw6Jbt26xbnnnhvTp0+vcMxjjz02Ro0alVlLHzNmTAwaNKhG8m/s1vTrvt5668WKFSvimGOOiSeeeKLCsaZMmRJHH310nH766XHrrbdGs2bNcplqtdx6661x22231fh5pk2bVuPnAAAAqA9KGkMPeWpIFKfFOY+vATUAADQ+mlBTKzp37pz1VOP6bMMNN4wNN9ww9thjj7pOJbbccsvYcsst6zoNAAAAAAAAyFu9evWKDTbYIObOnRsRES+++GLmAbcAAAAAAAAAUJ8tXLgwfvOb32SaRadpGt/73vfi/vvvj759+2b2u+yyyyoV97DDDovmzZvHqlWrIk3TePbZZ3OZdl6ZPXt2qbHWrVvHiSeeWKoBdZIk0blz52jfvn0sWrQovvjiiyguLt1o7G9/+1vMmjUrHnvssSgoKKix3Cvjyy+/jHfffbeu0wAAAGhUaqoRtQbUAADQONWPVSMAAAAAAAAAqIeSJIkzzjgj0jTN3Dj7xRdf1HVaAAAAAAAAAFCu6667LgoLCyPimwbUG2ywQfznP//JakBdFa1bt44ddtghsz1r1qyYN29etWLmq4ULF5YaGz16dDz44IOZ7Q4dOsT1118fn332WcyZMyfefffdmDVrVnzxxRdxxx13xMYbb7zGGJVtLg4AAEDDM6D7gLjloFuiIMlNOzkNqAEAoPHShBoAAAAAAAAAynDuuefGxhtvHEmSxPLly+PCCy+s65QAAAAAAAAAoFwPPPBAJEkSaZpGkiTxl7/8ZY0Ni6uid+/ekaZpZvu9997LSdx8s2LFilJjy5cvz/y80047xZQpU+KXv/xlbLTRRln7dezYMU4//fSYOnVq9OvXr1Sc3/3ud/Huu+/mPmkAAADqlQHdB0T/zfvnJFb/zftrQA0AAI2UJtQAAAAAAAAAUIY2bdrEfffdF82aNYuIiH/84x/xhz/8oY6zAgAAAAAAAIC1mzlzZkybNi2zvc0228QRRxyRs/hbb7111vaMGTNyFjuffLuR93d17tw5nnnmmdhggw3KjNGmTZt44oknStUkTdO4+uqrc5InAAAA9dfIqSPj2enP5iTWs9OfjZFTR+YkFgAAUL9oQg0AAAAAAAAA5dhzzz3joYceihYtWkSapnHxxRfHscce6yZaAAAAAAAAAOqlt956K/NzkiRx4IEH5jR+u3btsrYLCwtzGj9flDwQe02uueaa6NSpU4XirLvuunHbbbeVGv/Xv/4VS5YsqXJ+AAAA1G8jp46MIU8NieK0OCfxitPiGPLUEI2oAQCgEWpa1wkAAAAAAAAAQH324osvRkRE27Zt4w9/+ENcdNFF8fXXX8fDDz8cI0eOjH333Tf23nvv2GqrraJ9+/Zl3iBanr322itXaQMAAAAAAACQx7788suIiEjTNJIkie222y6n8ddbb72I+KbBdURodFxFrVq1WuN4x44d4/jjj69UrP79+0f37t1j6tSpmbHVq1fHyy+/nPMm5JXVqVOn6NGjR42fZ9q0abFixYoaPw8AAEB9kOsG1CVKGlFHRAzoPiCnsQEAgLqjCTUAAAAAAAAAlGGfffbJ3DRbIkmSSNM0ioqKYuzYsTF27NhqnydJkli9enW14wAAAAAAAADA/Pnzs7bbtWuX0/hfffVV1nZ1Hticzzp06LDG8b333juaN29e6Xj7779/VhPqiIjx48fXeRPqs88+O84+++waP892220X7777bo2fBwAAoK7VVAPqEhpRAwBA46MJNQAAAAAAAABUQJqmWdsljam/Ow4AAAAAAAAAda1Vq1ZZ299tGl1dJU2u0zSNJEnW2kyZsm244YZrHN95552rFG9Nx82aNatKsQAAAKifaroBdQmNqAEAoHHRhBoAAAAAAAAAKqCk6XRFxytDI2sAAAAAAAAAcqlTp04R8b817blz5+Y0/uTJk7O2NaGums0333yN41X99VzTcSUNwwEAAGj4aqsBdQmNqAEAoPHQhBoAAAAAAAAAyqFJNAAAAAAAAAANSZcuXbK2J02alNP448aNiyRJMuvp3bt3z2n8fLHJJptE69atY+nSpVnjLVq0qFK8li1blhr7+uuvqxQLAACA+qW2G1CX0IgaAAAaB02oq6C4uDieeeaZGD9+fEyYMCE++eSTWLRoUSxevDhWr15dpZhJklT5WAAAAAAAAABqzrhx4+o6BQAAAAAAAAColF133TWaN28eq1atijRNY8yYMbFy5cpo3rx5tWOPHj06Pvnkk0iSJCIiNtpoo9hyyy2rHTcfFRQURK9eveLFF1/MGl+8eHGV4i1atKjUWIcOHaoUCwAAgPqjrhpQl9CIGgAAGj5NqCuhuLg4brzxxrj55pvj008/zYyXPKEXAAAAAAAAgMZn7733rusUAAAAAAAAAKBS1llnndhjjz3iueeei4iIBQsWxD//+c849dRTqxV35cqVcckll0TEN/dYJ0kS/fr1q3a++WyfffYp1YR6xowZVYo1c+bMUmOdOnWqUiwAAADqh6Liohj+1vBqNaAuSAqi/+b949npz1Y5TnFaHMPfGh6Hb3N4NCloUuVcAACAulFQ1wk0FLNmzYq99947zjvvvPjkk08iTdNM8+kkSar1AgAAAAAAAAAAAAAAAAAAyKXjjjsuIr65FzpN07jwwgtj9uzZ1Yr585//PN56662se6TPPPPMasXMd4ccckipsVdeeaVKsdZ03M4771ylWAAAANQPTQqaxL1H3Rs9u/Ss0vEFSUHcctAt8fcj/x63HHRLFCRVaz3Xs0vPuPeoezWgBgCABkoT6gpYvHhx9OvXL1555ZXME3lLFka/3Yz629vffn1bee8DAAAAAAAAAAAAAAAAAABU1ymnnBJbbrllRHzTiHr+/PnRv3//+OSTTyodq7CwMI4++ugYNmxYpql1kiSxxx57RN++fXOdel75/ve/H1tttVXW2Ouvvx5Tp06tVJx58+bFU089VWq8f//+1coPAACAute2RdsYccyISjeiLmlAPaD7gIiIGNB9QJUaUffs0jNGHDMi2rZoW6njAACA+qNpXSfQEPzkJz+JDz/8MNN8Ok3TWHfddePAAw+MrbbaKu6+++6YO3duZrH00ksvjeXLl8eCBQti+vTp8dprr8XSpUsj4n9PCl5vvfXirLPOihYtWtTxpwMAAAAAAAAAAAAAAAAAABqbJk2axDXXXBNHHXVU5j7p9957L7bffvs4//zz49RTT40NN9xwrccXFxfHpEmT4pFHHom//OUvUVhYmLmfOiKiefPm8ac//am2Pk6jNmTIkDjnnHOyxoYOHRoPPPBAhWP8/ve/jxUrVmSNff/7349NNtkkJzkCAABQt0oaUQ98aGBMnjO53P2/24C6RMn2kKeGRHFaXG4cDagBAKBx0IS6HK+99lqMGjUq64m8Bx54YPz973+PTp06RUTEv//975g7d27mmKFDh2bFKC4ujtGjR8f1118fL7zwQiRJEoWFhfHEE0/EE088EZtuummtfiYAAAAAAAAAAAAAAAAAAKDxO/LII+OSSy6JK6+8MtOIeunSpTF06NAYOnRobLbZZjFv3rxI0zRzTN++fWPBggXx+eefx1dffRURkXn/2/dcX3/99dGnT586+VyNzemnnx7XXnttfPrpp5mxBx98MG6//fY466yzyj1+1KhRcdNNN5Uav/TSS3OaJwAAAHWroo2o19aAukRFG1FrQA0AAI1HQV0nUN9dd911mZ+TJIk+ffrEo48+mmlAXREFBQVx2GGHxbhx4+KOO+6Ili1bRkTEf//739hzzz1j9uzZOc8bAAAAAAAAAAAAAAAAAADg8ssvjzPOOKNUI+k0TWPmzJmxbNmyzL5pmsarr74aH3zwQSxbtiyzX0kD6xIXXHBBhZojUzEtW7aMP//5z6XGf/azn8Vvf/vbWL58+RqPW7VqVfzpT3+KY445JquReETED3/4wzjkkENqJF8AAADqTkkj6p5deq7x/fIaUJcY0H1A3HLQLVGQrLkVnQbUAADQuDSt6wTqszRNY8yYMVlP5L3pppuiefPmVY552mmnxfe+97048sgjY9WqVfHpp5/Gj370oxg/fnwOMwcAAAAAAACgNi1cuDDefPPNmDdvXixYsCCWLFkSbdq0ifbt20fHjh2jV69e0a5du7pOEwAAAAAAAIA89Ze//CV23XXXGDJkSHz11VdZDaUj/teYOiIy91V/V5qm0aJFi/jrX/8aJ510Uq3knU8OP/zw+OUvfxk33HBD1vhVV10Vw4YNiyOOOCJ69eoV7du3j0WLFsV///vfePTRR+OTTz4pFatr165x33331VbqAAAA1LKSRtQDHxoYk+dMzoxXtAF1iZL9hjw1JIrT4sy4BtQAAND4aEJdhnfeeScWL16cWSTt3r177LbbbtWOe+CBB8ZvfvObuOyyyyIi4j//+U/ce++9MWjQoGrHBgAAAAAAAKB2fPjhh3HrrbfGmDFj4v3338/cjLsmSZLENttsEwcccECcffbZscUWW9RipgAAAAAAAAAQccopp8S+++4b11xzTdx9992xfPnyiIjMvdRrazwdEdGkSZM48cQT49JLL42uXbvWWs755rrrrovFixfH8OHDs8a/+OKLuOOOOyoUY5tttonHH388OnToUBMpAgAAUE98txF1ZRtQl/huI2oNqAEAoHEqqOsE6rP33nsv83OSJNGvX78KHVdUVFTuPueff3506NAh81Tgm2++ucp5AgAAAAAAAFB7PvvsszjiiCOie/fuccstt8TUqVOjuLg40jRd66u4uDimTp0aN910U2yzzTZx1FFHxWeffVbXHwUAAAAAAACAPLPZZpvFrbfeGh9//HHcdddd8ZOf/CS23HLLaNmyZdY6d5MmTaJLly5x5JFHxq233hrTpk2L4cOHa0BdwwoKCmLYsGFx0003RatWrSp1bJIkMXDgwHj11Vdjq622qqEMAQAAqE9KGlH33qh3lRpQlxjQfUDcctAt0Xuj3hpQAwBAI9W0rhOozxYuXBgR3zyhN0mS6NGjxxr3++5Tfb/++utyF/VatmwZhx56aPz973+PiIjXX3895s6dG507d85B5gAAAAAAAADUhIceeih++tOfxqJFiyJN04govWZclpKbdUeNGhUvvPBC3HHHHXH00UfXVLoAAAAAAAAAsEYdO3aMk08+OU4++eTM2Ndffx0LFy6MddZZJ9q1a1d3yRHnnHNOHHPMMXHDDTfEP//5z/jiiy/Wuu/6668fBx54YFxwwQXRs2fPWswSAACA+qBti7bx6MBHo0lBk2rFGdB9QBy+zeHVjgMAANRPmlCXoaQJdYn1119/jfuts846mZuLIyK++uqrCj1Ztnfv3pkm1BHfNKI++OCDq5gtAAAAAAAAADXp/vvvjxNOOCGKi4sjIrv59LfXjNcmSZLMMWmaxsKFC2PgwIFxzz33xHHHHVczSQMAAAAAAABABbVs2TI23HDDuk6D/2+jjTaKa6+9Nq655pr473//G++8807Mnj07li9fHuutt1507Ngxttpqq+jVq1cUFBTUdboAAADUoVw1jtaAGgAAGi9NqMvQpEn2P4aaN2++xv3atm2btT1r1qzo1KlTufE7d+6ctT1jxoxKZggAAAAAAABAbXjppZfiJz/5SRQXF5dqPt2kSZPYc889Y5dddokePXrE+uuvH61atYply5bFokWL4t13342JEyfGSy+9FKtXr85qRl1cXBw/+clP4nvf+17ssccedfXxAAAAAAAAAIB6KkmS2GGHHWKHHXao61QAAAAAAABooDShLsN3m0svWbJkjfutt956Wdsff/xx9OzZs9z4q1atiojI3Fy8tvgAAAAAAAAA1J3i4uL42c9+FitXrsys76ZpGuuss05ccMEFccYZZ0SXLl3KjTN37tz461//Gn/84x9j+fLlEfHNevHKlSvjZz/7WUyePDmrwTUAAAAAAAAAAAAAAAAAAFRXQV0nUJ9tvPHGEfG/JtGLFy9e435bb7111vZrr71WofgfffRRRHxzc3JERNOmeoIDAAAAAAAA1Dd///vfY8qUKZEkSaRpGmmaxvbbbx9TpkyJSy+9tEINqCMiOnfuHJdccklMmTIldthhh8xacUTElClT4u9//3tNfQQAAAAAAAAA8tDmm2+eeR122GE5jX3IIYdkYm+xxRY5jQ0AAAAAAADklibUZdh2222ztj/88MM17rfjjjtGRGRuOH7qqacqFP/xxx/PNLiOiOjYsWMVMwUAAAAAAACgptx9991Z2927d48XXnghunbtWqV4m222WTz//PPRvXv3iPjfg5Hvuuuu6qQJAAAAAAAAAFlmzpwZH3/8ccycOTM+//zznMaeNWtWzJw5M/MCAAAAAAAA6i9NqMuw+eabR6tWrTLbU6dOXeN+ffv2jYKC//1SvvXWW/Hss8+WGfvhhx+ON954I2tsu+22q0a2AAAAAAAAAOTakiVL4j//+U/mocQFBQUxfPjwWH/99asVt127djF8+PDMdpqmMWHChFiyZEl1UwYAAAAAAACAWlHy0GUAAAAAAACgftOEugwFBQXxgx/8INI0jTRNY+LEiVFUVFRqv4022ij23nvvSNM0c+PxCSecEJMmTVpj3H//+99xyimnZC2stmvXLvr06VNjnwUAAAAAAACAypswYUKsXr06Ir65eXa33XaLXXfdNSexd9111+jbt2+kaRoREatXr44JEybkJDYAAAAAAAAAAAAAAAAAAERENK3rBOq7fv36xTPPPBMREUuXLo1XXnkl9txzz1L7nXXWWTFu3LiI+ObG4y+++CJ23333OPDAA2PPPfeM9u3bx7x58+KZZ56J559/PqtB2CpwAAEAAElEQVRhdZIkccYZZ3jaLwAAAAAAAEA988UXX2RtH3zwwTmNf/DBB8fLL7+c2Z4zZ05O4wMAAAAAAAAAAAAAAAAAkN80oS7HUUcdFRdddFGmQfTDDz+8xibUxxxzTPTr1y/GjRsXSZJEkiSxevXqGD16dIwePTpr35LG0yU23HDDOPfcc2v2gwAAAAAAAABQaXPnzo2I/63zbrLJJjmN/914X375ZU7jAwAAAAAAAEBNWLFiRebnli1b1mEmAAAAAAAAQHkK6jqB+m6rrbaKnXbaKdI0jTRN45///GfWoui33XPPPbHFFltEmqYREZEkSea4b79KGlCnaRrrrrtuPPDAA9GhQ4da+0wAAAAAAAAAVExRUVHWdtOmuX3Wc5MmTSIiMuvI3z0fAAAAAAAAANRHX3zxRebn1q1b12EmAAAAAAAAQHk0oa6AsWPHxowZM2LGjBnxxhtvZG4C/q4NN9wwXnjhhejfv39Ww+nvvkre22KLLWL8+PHRt2/fWv5EAAAAAAAAAFRE586dI+J/TaI///zznMYviVfysONOnTrlND4AAAAAAAAA5Np7770XCxcuzGx36dKlDrMBAAAAAAAAyqMJdQW0b98+Nttss8yradOma913o402ijFjxsQTTzwRgwYNik6dOmWaTqdpGuuss0788Ic/jDvvvDOmTp0aO+20U+19EAAAAAAAAAAqpaQJdYmxY8fmNP5zzz1X5vkAAAAAAAAAoD5Zvnx5nHfeeRHxzQOXkySJ7bbbro6zAgAAAAAAAMqy9m7KVMvBBx8cBx98cERErFy5MubPnx+tWrWKtm3b1nFmAAAAAAAAAFRUnz59IkmSiPjm5tlx48bFtGnTYosttqh27GnTpsWzzz4bSZJkbszdZZddqh0XAAAAAAAAgPxwxRVXVHjfOXPmVGr/bysqKoqlS5fG9OnT44UXXojFixdn1rojIvbcc88qxQUAAAAAAABqhybUtaB58+ax4YYb1nUaAAAAAAAAAFRSp06dolevXjFp0qRIkiRWrVoVp556aowdOzaaNq36kntRUVGcccYZsWrVqkyT65122ik6deqUq9QBAAAAAAAAaOQuu+yyzJrz2pQ0iv7iiy/i8ssvr/Y5S+KVnLd58+YxcODAascFAAAAAAAAak5BXScAAAAAAAAAAPXZsccem7X90ksvxdFHHx3Lly+vUryvv/46fvSjH8W4ceMiSZJI0zSSJInjjz8+F+kCAAAAAAAAkGfSNF3jqyL7VPaVJEmmAXWSJDF06NBo3759XXxsAAAAAAAAoII0oQYAAAAAAACAMgwZMiQ23njjiIhM0+gnnngievToEY888kgUFxdXKE6apjFy5MjYbrvtYtSoUVnvbbTRRvHzn/8857kDAAAAAAAA0PiVNIb+7qsi+1T2VdKMukmTJjF06NC48MIL6+hTAwAAAAAAABXVtK4TqO8GDx6c+XnTTTeNyy67LGexL7vssvjkk08i4puF22HDhuUsNgAAAAAAAAC50bJly7juuuvi+OOPz7qp9uOPP44f/ehH0aVLlzjyyCOjT58+0b1792jXrl20atUqli1bFosWLYqpU6fG66+/Ho8++mjMmTMn0jSNiP81tE6SJP70pz9FixYt6viTAgAAAAAAANDQlKxB52q/NWnSpEm0adMm1l9//dhhhx2ib9++cdJJJ0WXLl2qHBMAAAAAAACoPZpQl+Puu+/OPOm3Z8+eOW1CPWrUqHj77bczNxVrQg0AAAAAAABQPw0cODA++OCDGDp0aKYRdcQ3N+nOnj07/vKXv5Qb49vNp7/tsssui2OPPTb3SQMAAAAAAADQqBUXF5f5fkFBQeYByTvttFO88cYbtZQZAAAAAAAAUJ9oQl1B1Xm6b13EBQAAAAAAACC3LrnkkoiIuOKKKzI38n67GXV5vt18Ok3TaNKkSQwdOjQuvvjiGsgWAAAAAAAAAL7x3YclAwAAAAAAAPmloK4TyHcWbQEAAAAAAAAajksuuSSef/752GqrrSJN00zz6SRJyn1FROaYbbfdNl588UUNqAEAAAAAAACoUd9e2wYAAAAAAADyU9O6TgAAAAAAAAAAGpIf/OAH8d5778UTTzwRt956a7zwwgvx9ddfl3tcy5Yto1+/fnH22WfHwQcfXAuZAgAAAAAAAJDPxo0bl/m5devWdZgJAAAAAAAAUJc0oa5Dq1evzvzcrFmzOswEAAAAAAAAgMo69NBD49BDD41Vq1bFG2+8EW+88UbMmzcvFi5cGEuWLIk2bdrE+uuvH506dYpevXpFr169omlTy/QAAAAAAAAA1I699967rlMAAAAAAAAA6gF3t9ahBQsWZH729GAAAAAAAACAhqlZs2ax6667xq677lrXqQAAAAAAAAAAAAAAAAAAQJaCuk4gX3355Zcxe/bszHb79u3rMBsAAAAAAAAAAAAAAAAAAAAAAAAAAACgsWla1wnkqxtuuCHzc5Ik0b179zrMBgAAAAAAAAAAAAAAAAAA4H+efvrpePjhh+Ptt9+OxYsXR6dOnaJnz55xwgknxK677lrX6QEAAAAAAAAVlPdNqF988cUK77t06dJK7f9tRUVFsXTp0pg+fXo8+eSTMXbs2EiSJNI0jSRJok+fPlWKCwAAAAAAAAAAAAAAAAAA8F0rVqyIv//971ljJ510UrRs2bLM4woLC+PYY4+NMWPGREREmqYREfHBBx/Eyy+/HLfddluccMIJceutt0br1q1rJnkAAAAAAAAgZ/K+CfU+++wTSZKUuU/Jwui0adOiX79+OTlvSfPpEscdd1xO4gIAAAAAAAAAAAAAAAAAAPz73/+OM888M3NP88477xxnnHFGmccUFRXFAQccEK+99lrmHuuIiCRJsrbvueee+Pzzz+Opp56KZs2a1cwHAAAAAAAAAHKioK4TqC/SNF3jqyL7VOVVslibJEn8+Mc/jq222qouPjYAAAAAAAAAAAAAAAAAANAIPfLIIxERmXumzzzzzHKPufbaa+PVV1+NiG/ugy55ldwf/e3tcePGxW9/+9ua+wAAAAAAAABATmhC/f99e9Hz26+K7FOVV0kz6n333TduvfXWOvrUAAAAAAAAAAAAAAAAAABAYzR+/PjM/dJJksThhx9e5v5Lly6N6667Luse6zRNo3379rHbbrvFpptummloXXK/9M033xwzZsyouQ8BAAAAAAAAVFvTuk6gPihZ7MzVfuVZb731Yvfdd4/BgwfH0UcfXarZNUBVFRUXRZOCJvUmDrVL/QEAAAAAoOI233zzuk6hlCRJYtq0aXWdBtCAWTPEHMhv6o85kN/UH3Mgv6k/4Hsgv6k/5kB+U3+gLPPmzYsZM2Zk7mPu2bNndO7cucxjHnrooViwYEGmwXSSJPH73/8+LrjggigoKIiIiFGjRsWJJ54Yy5Yti4iIVatWxd/+9re46qqravYDAQAAAAAAAFWW902ox40bt9b30jSNfffdN7NQuuWWW8bf/va3Kp2nadOm0aZNm1h//fVjk002qWq6AGtVuKIwBj0yKAbvNDgGdB9Q5Tgjp46M4W8Nj3uPujfatmibwwypSeoPAAAAAACVM3PmzMxacH3hAcZAdVgzxBzIb+qPOZDf1B9zIL+pP+B7IL+pP+ZAflN/oDwffvhh5uckSaJnz57lHnP//fdHRGQaUB933HFx0UUXZe1zxBFHxM033xyDBw/OrLvff//9mlADAAAAAABAPZb3Taj33nvvCu2XJEm0bt26wvsD1KbCFYUx8KGBMXnO5Hhz9psREVW6eGzk1JEx5KkhUZwWx8CHBsaIY0a4eKwBUH8AAAAAAKi6+tL4uT41wwYaHmuGmAP5Tf0xB/Kb+mMO5Df1B3wP5Df1xxzIb+oPVMTHH3+ctd2jR48y91+5cmW8+OKLWQ90Pu+889a478knnxyXXXZZfPrpp5lzzZ49OzbccMMcZA4AAAAAAADkWkFdJ9AQpGnqhl+g3vr2RWMREcVpcQx5akiMnDqyUnG+fdFYRMTkOZNj4EMDo3BFYc5zJnfUHwAAAAAAqq5kLbg+vACqypoh5kB+U3/Mgfym/pgD+U39Ad8D+U39MQfym/oDFTVv3ryI+N9DkTt06FDm/q+++mp8/fXXme2tttoqdtpppzXumyRJHHjggVnr3e+88041MwYAAAAAAABqStO6TqC+Gzp0aObnLl261GEmAKV996KxEiUXjxVHcXRdr2u5cb570ViJkovHRhwzItq2aJvL1MmB8uofEdF3k77lxlF/AAAAAADy0cknn1zXKQBUW0XWDHfYYIdy41gzbLjKmwOri1fH5utvXm4cc6Bhqsh3wC4b71JuHPVvuCoyB7q261puHHOgYapI/ffabK9y46h/w1WRObBtx23LjWMONEwVqf8Pt/hhuXFGvTcqfvn0L9UfGqByryNPi/1dsBGryJ8Du31vt3LjqH/DVZE5sEX7LcqNYw40TBWp/z5d9yk3zsj3RsY5T52j/tDIffXVV1nbbduW/fv6lVdeyfycJEkcdNBBZe6/3XbbZW1/8sknlcwQAAAAAAAAqC2aUJfj202oAeqTtV00VqI4LY5fPPWL+L9d/y/6deu31jiPf/B4XDj2wlIXjZVw8Vj9VJH6D3lqSFzZ78rYcYMd1xrn2RnPxnWvXKf+AAAAAADknbvuuquuUwColoquGf5mz9/ErhvvutY4T097On734u+sGTZAFZkDv3z6l+VeN/DY+4/FeWPOMwcamIp+BwzdZ2j06tJrrXHGTh8bf3z5j+rfAFV0Dvxyt1+W2Xhq9Aej4zfP/cYcaGAqWv+r9r0qtuu83Rr3iYh4bsZzccOEG9S/AaroHLjgBxdE3036rjXOUx89FZc9f5k50MBUtP7X7n9tbN1h67XGGTdjXNz46o3qDw1Qha4j/3cFriN///G4YOwFvgcamIr+OXDFPldEzy491xrn2enPxrWvXKv+DVBF58Cv+/469tp07Q+mefLDJ+Pi5y42BxqYitb/D/3/ED069VhrHH8XhPyxatWqrO2ioqIy9584cWJERKRpGkmSxF57lf2Qs86dO0fENw2rIyKWLFlS1VQBAAAAAACAGlZQ1wkAUHnlXTRWojgtjmv/c22MmzFuje+PmzEuLhiz9guHS5RcPFa4orDKOZM7lan/b5/7bZn1/8P4P6g/AAAAAAAANDCVWTO84oUrylwzvPz5y60ZNkC5vG7g3DHnmgMNTGXqf+m4S8us/+9f+r36N0CVmQPXvHJNmXPgwmfX/vD6EuZA/VKZ+l/47IVl1v+aV65R/waoMnPg9y/9vsw5cMm4S8yBBqYy9T93zLll1v/a/6y98WgJ9Yf6J5f/Hjx/7Pm+BxqYytT/4nEXl1n/q8Zfpf4NUGXmwNXjry5zDvzm2bU/kKiEOVC/VKb+F4y9wN8FgYiIaN26ddZ2YWHZv6fHjx+faSgdEbHHHnuUuX+zZs2ytr/66qtKZggAAAAAAADUFk2oARqYil40VmJtFxBnLhqLsi8aK+Hisfoh1/VP07RCcdQfAAAAAAAA6ofKrhmmkVozbmRyft1AOc1mSpgD9YP6Yw7kN/XH9WP5zXcA4Hsgv/l7AJX+f8G0nP8X9B3QoKg/UFXt2rWLiMg0lp42bdpa9/3vf/8bc+fOzWx369YtOnXqVGb8xYsXR0Rk/m6xzjrrVCddAAAAAAAAoAZpQl1Nn376aTz22GMxfPjwuPbaa+OKK66IK664oq7TAhqpyl40VuK7F5BW9qKxEi4eq1vqDwAAAAAAAPnNmiHmQH5Tf8yB/Kb+mAP5Tf0B3wP5Tf0xB/Kb+gPVsfXWW2dtjx8/fq37jhw5MvNzkiTxgx/8oNz4CxcuzNpu27ZtJTMEAAAAAAAAakuSVvTR9WTMmjUrrr/++hg5cmTMnDlzjfsUFRWt9fj77rsv5syZk9nec889Y5dddsl1mpB3tttuu3j33XdLjffo0SOmTJlSBxnlVlFxURw54siYNGtSpY5bVbwq83NBUhC7bLRLTJw1MXPRWNOCppFEUqmYvTfqHY8OfDSaFDSp1HFUXVXrX5wWR1H6zZ9Ja6p/Ekk0LWhaqZjq37C888U7sbJo5Vrf37jtxtGldZdazIjatPjrxfHRgo/K3GfnDXeOgsSzaRqrD+d/WOYF3x3W7RBd23WtvYSoVStWr4j/zv1vmft079Q91m22bi1lRG37rPCz+GLpF2t9v1XzVrFtx21rMSNq2xuz34iy/uuv2/rdov067WsxI2rTvK/mxceLPl7r+00KmsROXXaqvYSode9++W4sX7V8re93ad0lNm67cS1mRG1aunJpvD/v/TL32XGDHaNZk2a1lBG1bfrC6bFw+cK1vt+uZbvYov0WtZhR/dLY1xMA8llj/46v6pphUVqUWR9c05phQVIQTZLKrf1ZM6wbrhvIbzX1HeC6gYajpr4DmiRNKr1mbA7Uvpq6digiollB5f6PSP3rRlXnwOri1ZHGN+tFvgMarqrWP400VhevjgjfAflqxsIZsWD5grW+n+//V9yQ+PdgfnMdOf4umN+q/HfBNI3Vqb8Lrk1jX0+Ab1u6dGm0a9cu0jSNNE2joKAg/vvf/8a222ZfQ1xUVBRbbbVVfPzxx5GmaSRJEsOGDYuf/OQnZcY/44wz4s4774yIbxpXjx49Og488MCa+jhQIb7nAQAAAACAsuTzWoJuc5VQVFQUF1xwQWyxxRZxww03xIwZMzILr99+lefzzz+P8847L/P6zW9+UwvZAw1dk4ImMXinwdVqFFqcFsern7+addFYZRUkBTF4p8GN4qKxhkT9AQAAAAAAIL9ZM8QcyG/qjzmQ39QfcyC/qT/geyC/qT/mQH5Tf6C6WrduHXvvvXemsXRxcXGcdNJJsWjRoqz9hg4dGjNnzsxsN23aNA499NBy47/55puRJP97sMkWW3jQDQAAAAAAANRXlXtkfR6bN29eHHXUUfHyyy9nGk1/e2G0REWaUJ955plx1VVXRWFhYaRpGuPGjYtPP/00Ntlkk5znDTQuA7oPiIiIIU8NqdbFX1VVkBTELQfdksmD2qX+AAAAAAAAkN+sGWIO5Df1xxzIb+qPOZDf1B/wPZDf1B9zIL+pP1BdJ510UowbNy4ivrkvetKkSbHNNtvEgAEDokOHDjF+/PgYP358JEmSaVZ90EEHRceOHcuMW1hYGG+//XZme91119WEGgAAAAAAAOqxqj8CO4+sXLkyDj/88Bg/fnxmAbVkMfXbr4pq06ZNHHvssZlj0jSNRx99tIayBxqbAd0HxC0H3RIFSe1+hbtorH5QfwAAAAAAAMhv1gwxB/Kb+mMO5Df1xxzIb+oP+B7Ib+qPOZDf1B+ojhNPPDF22GGHzHaapvHll1/G3/72t7j66qsz905/2yWXXFJu3CeeeCJWrVoVEd80t+7Tp08UFLhtHQAAAAAAAOorq3kV8Itf/CImTJiQ1Xy6Q4cOceWVV8Ybb7wRCxYsiJ49e1Yq5rHHHhsR3yysRkSMHTs253kDjVdtXzzmorH6Rf0BAAAAAAAgv1kzxBzIb+qPOZDf1B9zIL+pP+B7IL+pP+ZAflN/oKoKCgrin//8Z6y33noREVn3Spc0ny651zki4le/+lX07t273LgPPfRQREQmxh577JHr1AEAAAAAAIAcalrXCdR377//ftx5552ZBdUkSWL//fePBx98MNq2bVvluPvss0+0bds2lixZEmmaxgsvvJDDrIF8UHIR15CnhkRxWlxj53HRWP2k/gAAAAAAUD2bb755qbEkSWLatGkV2rcmrO38AGtizRBzIL+pP+ZAflN/zIH8pv6A74H8pv6YA/lN/YGq2nHHHWPMmDFxwgknxPvvv58ZL7l3uuTnX/ziF3HNNdeUG+/TTz+Nxx9/POv4gw46qGaSBwAAAAAAAHJCE+py/OEPf4iioqLMk3179+4do0ePjqZNq/dL16RJk9h5550zzaeXLFkSn3zySWy66aa5SBvIEzV98ZiLxuo39QcAAAAAgKqbOXNm1g2xEd/cVFvRfWvC2s4PsDbWDDEH8pv6Yw7kN/XHHMhv6s93FRUXRZOCJvUmDjXP90B+U3/Mgfym/kBV9e7dOyZPnhwPPPBAPPbYYzF9+vRYsmRJdOjQIXbdddf4yU9+Ej179qxQrFtuuSWKiooy2x06dIjdd9+9plIHAAAAAAAAckAT6nKMHj06czNxkiRx5513VrsBdYnevXtnmlBHRLz33nuaUAOVVlMXj7lorGFQfwAAAAAAqJ6Sxs8VaTBdk02ia7rBNdB4WTPEHMhv6o85kN/UH3Mgv6k/JQpXFMagRwbF4J0GV6tuI6eOjOFvDY97j7o32rZom8MMqSm+B/Kb+mMO5Df1B6qqefPmccIJJ8QJJ5xQrThDhw6N3/72t5ntpk2beugyAAAAAAAA1HOaUJfhzTffjPnz50eSJJEkSeyxxx6x44475iz+dxtOf/755zmLDeSXXF885qKxhkX9AQAAAACgairT+FmTaKA+s2aIOZDf1B9zIL+pP+ZAflN/ClcUxsCHBsbkOZPjzdlvRkRUqX4jp47MzKOBDw2MEceM0Ii6gfA9kN/UH3Mgv6k/UJdatWpV1ykAAAAAAAAAlaQJdRk+/PDDrO3+/fvnNH67du2ytgsLC3MaH8gvA7oPiEfffzTGTBtT7Vj9N+/vorEGRv0BAAAAAKByTj755BrZF6CuWDPEHMhv6o85kN/UH3Mgv6l//vp2A+qIiOK0OIY8NSQiKteI+tsNqCMiJs+ZrBF1A+N7IL+pP+ZAflN/AAAAAAAAAKCiNKEuw5dffhkREWmaRpIk0bVr15zGL3nSb5IkERGxbNmynMYH8svIqSPj2enP5iTWs9OfjZFTR7p4rAFRfwAAAAAAqJy77rqrRvYFqCvWDDEH8pv6Yw7kN/XHHMhv6p+fvtuAusS3G1Hv1GWncuN8twF1CY2oGxbfA/lN/TEH8pv6AwAAAAAAAAAVVVDXCdRnhYWFWdutW7fOafzFixdHxDdNrmsiPpA/1nYBeFWVXIA+curInMSjZqk/AAAAAAAA5DdrhpgD+U39MQfym/pjDuQ39c9Pa2tAXaKkjk9Pe7rMOM9Me6bM+VPSiLpwReEa36d+8D2Q39QfcyC/qT8AAAAAAAAAUBlN6zqB+mz99dfP2i5pGp0rc+fOzdru0KFDTuMD+SHXF42VKLl4LCJiQPcBOY1N7qg/AAAAAAAA5DdrhpgD+U39MQfym/pjDuQ39c9P5TWgLlGcFsflz18ev97919GvW79S74+bMS6u+891UZAUlBmnpBH1iGNGRNsWbauVO7nneyC/qT/mQH5TfyBXVq1aFRMmTIg333wz5s2bF/Pnz4/ly5dHkiQxbNiwuk4PAAAAAAAAyCFNqMvQqVOniIhIkiQiIj799NOcxn/11Veztjt27JjT+EDjV1MXjZVw8Vj9pv4AAAAAAEBD8eWXX8bEiRNj2rRpUVhYGM2aNYsOHTpEjx49ok+fPtGsWbO6ThEaJGuGmAP5Tf0xB/Kb+mMO5Df1z08VbUBdojiK49r/XBsRkdWIetyMcZnxitCIun7yPZDf1B9zIL+pP5ALr7/+elx99dXx1FNPxddff531Xpqm5TahvuGGG2LGjBmZ7UMOOSQOOOCAGssXAAAAAAAAqD5NqMuw2WabZW1/t2l0daxYsSJeeOGFSJIk0jSNiIhevXrlLD7Q+NX0RWMlXDxWP6k/AAAAAADQEDz00ENx0003xcsvv5xZG/+uNm3axLHHHhvnn39+bL311rWcYWlpmsaHH34YkyZNitdffz1ef/31ePPNN2PJkiVZ+5188slx9913V+tcl112WVx++eXVilGWtf2a0zhYM8QcyG/qjzmQ39QfcyC/qX9+qmwD6hLFaXYj6pIG1MVpcRQkBRWOoxF1/eJ7IL+pP+ZAflN/oLqWLl0ap556ajz00EMRUfX1xFatWsWf//znSJIkIiImTpyoCTUAAAAAAADUc5pQl6FXr17Rrl27WLx4caRpGs8991zMnz8/OnToUO3Yw4cPj0WLFmUWWLt37x6dOnWqdlwgP9TWRWMlXDxWv6g/AAAAAABQ333++ecxaNCgeOGFF8rdd8mSJTFs2LD45z//GRdffHFcfPHFmbX02vLII4/EhAkT4vXXX4833ngjFi9eXKvnh8qyZog5kN/UH3Mgv6k/5kB+U//8VFRcFIMeGVTpBtQlShpRP//x8zFx1sQqz5/JcybHoEcGxaMDH40mBU2qFIPq8z2Q39QfcyC/qT9QXdOmTYtDDjkkPvzww0zz6TWty1akMfXJJ58cQ4cOjblz50aapvHaa6/F+++/H9tss03O8wYAAAAAAAByo6CuE6jPCgoKYr/99sssmK5cuTKuu+66asedPXt2XH755ZEkSaRpGkmSeMIvUGG1fdFYiZKLx0ZOHVmr5yWb+gMAAAAAQMP19ddfxxdffBFFRUV1nUqN+uCDD2KXXXapUAPqb1u5cmVceumlMWjQoFr/NRo8eHBce+21MW7cuEbTgHr33Xev6xSoIdYMMQfym/pjDuQ39cccyG/qn7+aFDSJwTsNjoKk6rd/FKfF8ernr1Zr/hQkBTF4p8EaUNch3wP5Tf0xB/Kb+gPVtXjx4jj00EPjgw8+yNzXXHKPc5qm0bZt22jatGmF47Vo0SKOP/74rIbVo0aNqonUAQAAAAAAgByp+IpgnjrjjDPioYceyiymXn/99XHQQQfFXnvtVaV4ixYtiqOOOirmzp2beUJwkyZN4pxzzsll2kAjVVcXjZUouXgsImJA9wF1kkM+U38AAAAAAGh4Fi5cGNdcc008/PDDMW3atIiISJIkunfvHieeeGKcc8450bJlyzrOMnfmz58f+++/f8yePbvUe717944jjjgiunXrFsuXL48PPvgg7rvvvpg1a1bWfv/617+ic+fOceONN9ZS1nWnS5cu0bNnz2rHmTx5cqmx0047rdpxqX+sGWIO5Df1xxzIb+qPOZDf1J+SX/e6mgcFSUHcctAt6l+HfA/kN/XHHMhv6g/kwqmnnhrvv/9+5r7mNE2je/fu8Zvf/CYOPvjgWH/99WPnnXeOt99+u8Ixf/SjH8WNN96YiTl27Ng4//zzayR/AAAAAAAAoPoK6jqB+m6//faLfv36ZZ7su2rVqjj00EPjkUceqXSs559/Pvr06ROvvfZapql1kiRx/PHHx2abbVYD2QONSVFxUQx/a3i1LhorSApi1413jYKk6l//xWlxDH9reBQVF1U5BpWn/gAAAAAAUHfmz58fP/7xjzOvE088Mb7++utyj3vzzTdj++23j2uuuSY++uijSNM00jSN4uLimDJlSlx00UWx8847x3vvvVcLn6J2nHHGGfHJJ59kjbVp0yZGjRoVr7/+elxyySVxwgknxOmnnx7XXnttzJw5My677LJScW666aZ46qmnainrtevQoUP88Ic/jIEDB9ZI/DPPPDPeeuutar3+8pe/lIrbpk2bGsuZumPNEHMgv6k/5kB+U3/Mgfym/pQY0H1A3HLQLdWqY1VoQF33fA/kN/XHHMhv6g/kwsSJE+ORRx7J3NccEXHKKafE5MmTY9CgQbH++utXKe7uu+8eHTp0iIhvmlq/8sormfgAAAAAAABA/aMJdQXceOON0apVq4iISJIkli5dGj/60Y+if//+cf/995e6gTYiYtWqVTFnzpx49dVX49prr43dd989+vfvH9OnT88soiZJEl26dIlrrrmmVj8P0DA1KWgS9x51b/Ts0rNKxxckBXHe7ufF5ftcHuftfl6VLx7r2aVn3HvUvdGkoEmVjqdq1B8AAAAAAOrOyJEj4/77748RI0bEiBEjYvHixdGyZcsyj5k3b14ccsghMXv27MwDir/7StM03n///TjwwANj9uzZtfRpas6YMWNKPdC5efPm8dxzz8Xhhx++xmOaNWsWQ4cOjRtvvLHUe+ecc06sXr26JlJdo/XWWy/69esX5513XjzwwAMxffr0mDdvXjz99NNx5pln1loelXXnnXeWGhs4cGDmOgcaD2uGmAP5Tf0xB/Kb+mMO5Df159tquxG1BtT1g++B/Kb+mAP5Tf2BXPjjH/+Y+TlJkjjggANi2LBh0bRp02rH7t27d+ae6eXLl8f06dOrHRMAAAAAAACoGZpQV8AOO+wQ9913XyRJEhGRuRn4+eefj0GDBkW3bt3i7bffziyUpmkaLVu2jI033jj69u0bF154Ybz22mtZNxanaRpNmzaNESNGxAYbbFCXHw9oQNq2aBsjjhlR6YvHSi4a69etX0RE9OvWr0oXj/Xs0jNGHDMi2rZoW6njyA31BwAAAACAuvHYY49FRGTWhE877bRyj7noootizpw5mTXikuNLXhGRGf/000/jZz/7WU2kXquuvPLKUmNDhw6NPn36lHvsL37xi9h///2zxj766KO47777cpZfWd58881YuHBhPPfcc3HNNdfEj370o+jWrVutnLs6li5dGiNGjCg1XpE5SsNkzRBzIL+pP+ZAflN/zIH8pv58W201otaAun7xPZDf1B9zIL+pP1AdRUVFMWbMmMx9zU2aNIlbb701Z/F79eqVtf3+++/nLDYAAAAAAACQW5pQV9Bhhx0W//jHP2KdddaJiFjrTcIlvj1e8vr2MW3atImHH3449thjj9r9IECDV9mLx7570ViJzMVjFfyjwEVj9UOu61/yZ1N51B8AAAAAgHw2YcKEzP+pt2jRolSz5O/67LPP4h//+EfWGnFBQUEceeSRceGFF8bJJ58cbdq0yawjp2kajz32WIwfP77GP0tNmTJlSrz00ktZYx07doxzzz23wjH+8Ic/lBq7/fbbq51bRXTr1q3C6yb1yQMPPBBLly7NGtt+++1j1113raOMqA2VXTNMIrFm3Mjk/LqBCjadMQfqB/XHHMhv6o/rx/Kb7wC+raYbUWtAXT/5Hshv/h5Apf9fMCnn/wV9BzQo6g9U1cSJE2PJkiUR8c13Q//+/XP6MN6NNtooa3v27Nk5iw0AAAAAAADklibUlfDjH/84Xn311ejRo0em6XSSJBV+RXxzc/G2224br7zyShx66KF1+XGABqyiF4+t7cLREv269Ys/7v/Hci8ec9FY/VKZ+v9+39+XWf+L9rhI/QEAAAAAoAwff/xxzJs3LyK+WR/eddddMw8vXpv77rsvVq1aFRHfrBGvs846MW7cuHjkkUfiqquuirvuuiveeeed2HLLLbOOu+uuu2rmQ9SC+++/v9TYKaecEs2bN69wjN69e0fv3r2zxiZMmBAzZsyodn6N1Z133llq7NRTT62DTKhtlVkzvHTvS8tcMxy6z1Brhg1QLq8buG7/68yBBqYy9b+i3xVl1v+3e/5W/RugysyB8/ueX+YcuLr/1eZAA1OZ+l/d/+oy639+3/PVvwGqzBz47Z6/LXMOXNnvSnOggalM/a/b/7oy61+R5oPqX7/VVCNqDajrt1z+e/Ca/a7xPdDAVKb+v+v3uzLr/5s9fqP+DVBl5sCFe1xY5hy4qv9V5kADU5n6/3G/P/q7IBARETNnzsza3nvvvXMav127dlnbJQ2vAQAAAAAAgPpHE+pK2m677eLtt9+OESNGRK9evSJN01KviFjj+JZbbhl33313/Pe//43tttuujj8J0NCVd/FYQVIQNx1001ovGitx2NaHlXkBuovG6qeK1P+Wg26Jg7c6uMw4/bv1V38AAAAAACjD9OnTs7a33377co958MEHI0mSSNM0kiSJX/7yl7HHHntk7bPJJpvE3XffndknTdMYOXJkTnOvTf/+979LjR1zzDGVjrOmY9YUm4ipU6fGf/7zn6yxFi1axIknnlhHGVHbKrpm+MMtflhmnAO2OMCaYQNVkTlwwwE3lHvdwOHbHG4ONEAV/Q44aMuDyoyz3+b7qX8DVdE5sG+3fcuMc8jWh5gDDVBF63/I1oeUGWffbvuqfwNV0Tmw3+b7lRnnoC0PMgcaoIrW//BtDi8zTr9u/eKGA25Q/wYu142oNaBuGCp0HfmBFbiOfBvXkTdEFf734FZl/3uw/+auI2+oKjoH+nfrX2acg7c62BxogCpa/0O3PrTMOP269YubD7pZ/SEPfPnllxERmXufv/e97+U0fskDnJMkiYiIr776KqfxAQAAAAAAgNzRhLoKkiSJH/3oRzFx4sSYMWNG3H333XH66afHQQcdFN///vdjyy23jB133DH23XffOP744+PGG2+MKVOmxPvvvx8nnXRSFBT4ZQdyY20Xj2UuAN+2YheAr+0CdBeN1W/l1r+CNwCoPwAAAAAArN0nn3wSEf+7KXfrrbcuc/9FixbFm2++mdkuKCiIn/3sZ2vct2/fvtGrV6/M9uLFi+Ojjz6qbsq1btmyZfHGG29kja277rpZn62i9txzz1JjL730UpVza8yGDRtWauzII4+MDh061EE21BVrhpQ3B47Y9ogKxTEHGibfAZgD+U39MQfyW67qf8S2R6h/IzCg+4Dov3nZjUYrqv/m/TWgbiDK+x44ctsjKxTHnwMNk78HYA7kt5zVf1v1h3ywbNmyrO2SptG5snDhwoj433p627a+OwAAAAAAAKC+0g25mjbbbLM46aST4q9//WuMHj06JkyYEO+//3689dZbMXbs2Lj33nvjnHPOie7du9d1qkAj9d2Lxyp70ViJ71486KKxhkH9AQAAAACgZi1atChru127dmXu/9JLL0VxcXFEfPOA41122SU22mijte7fr1+/zA25ERHvvPNOlXOtK2+99VbmM5fo06dPNG3atNKxdtlll2jWrFnW2KRJk6qVX2O0atWq+Oc//1lq/NRTT62DbKhr1gwxB/Kb+mMO5Df1xxzIb+pPiZFTR8az05/NSaxnpz8bI6eOzEksap7vgfym/pgD+U39gYr67gNsv7v+XV2zZ88u83wAAAAAAABA/VH5Oz4BqHdKLh4b9MigGLzT4EpfNFai5Ljhbw2Pe4+610VjDYT6AwAAAABAzVm+fHnWduvWrcvc/9VXX42IiDRNI0mSOPDAA8vcf+utt87anjt3bhWyrFvvvfdeqbEtt9yySrGaN28e3/ve92LGjBmZsWnTpsXq1aur1NS6sXrsscdKzZWuXbvGfvvtV0cZUdesGWIO5Df1xxzIb+qPOZDf1J+RU0fGkKeGRHFaXP7OFVCcFseQp4ZERFR5PlG7fA/kN/XHHMhv6g9URKdOnSLimwcoR0TWOmwuvPLKK1nbnTt3zml8AAAAAAAAIHfcoQnQSLRt0TYeHfhoNCloUq04A7oPiMO3Obzacahd6k9ERFFxUU5ql6s41C71xxwAAAAAqBlpmmZtr1ixosz9S5pQl9hjjz3K3L9du3YR8b+bfgsLCyuZYd2bOXNmqbHNNtusyvE23XTTrJufi4qK4pNPPonNN9+8yjEbm2HDhpUaO+WUUzLziPxkzRBzIL+pP+ZAflN/zIH8pv75K9cNqEtoRN3w+B7Ib+qPOZDf1B8ozxZbbJG1/d2m0dVRWFgY48ePjyRJIk3TKCgoiD59+uQsPgAAAAAAAJBbmlADNCK5utjLRWMNk/rnt8IVhTHokUExeKfB1brpY+TUkTH8reFx71H3RtsWbXOYITVJ/TEHAAAAAGpO27bZ/08yf/78te67evXq+M9//pO5ybZJkyax2267Vep8q1atqlKedWnOnDmlxjbZZJMqx1vTsV988YUm1P/fZ599Fk8//XTWWEFBQQwePLiOMirfrbfeGrfddluNn2fatGk1fo76zpoh5kB+U3/Mgfym/pgD+U39809NNaAuoRF1w+N7IL+pP+ZAflN/oCw77LBDbLDBBjF37txI0zReeuml+Oyzz+J73/tetWPfdtttsWzZssyDcnv27BnrrbdeteMCAAAAAAAANUMTagCABq5wRWEMfGhgTJ4zOd6c/WZEVO2mj2/flDLwoYEx4pgRmtA2AOqPOQAAAABQs9q3bx8Rkblx9r333lvrvuPHj4+vvvoqs+/2228f6667bpnxFy1aFBERaZpGkiTRqlWrHGRduxYsWFBqrHXr1lWOt6Zjy2r+nW/uuuuuKC7ObjB1wAEH5ORG8Zry5Zdfxrvvvvv/2Lvz6Krqc3/A704goIyCDFoHwBGHAgIVW0sBr3MVo1Z7i0pFe3+9Inrbanu1XoarVe/tpKXWqhXaIlpaa2h7K3VAcUZEAS1gUUCZZKgKAYQAyfn90XVSYwJJTk5ykvA8a521st+zv+9+D3svlrLP/iTXYwAAAECzUN8B1GmCqAEAoHk49dRT44EHHoiIiLKyspgwYULcd999der55ptvxq233lr+C5qTJImzzz47G+MCAAAAAAAA9SQv1wMAAJC5j4fPRvzzoY+ixUW16vPJh1IWrF0QFz98cRSXFGd9ZrLH+cc1AAAAAFD/jjvuuPKfU6lUPPnkk7vd9+GHHy7fL0mS+PznP19t/w0bNlTY7tixY2aD5tDWrVsr1fbZZ5+M+1W19qOPPsq4X3OSSqVi8uTJlepXXHFFDqYBAAAAGlpDBVCnZfp9JAAAoPG49tprIyLKA6MnTZoU06ZNy7jfO++8E8OHD48tW7aU11q3bh1XX311nWcFAAAAAAAA6k+LXA/QHHz00UexadOm2LlzZ536HHLIIVmaCADYG3wyfDYt/dBHRMThnQ6vts/uHkpJh9BOu3BatG/VPnuDkxU1Of/Deg6rtk/Rm0Vx7Yxrnf8mqCbXwHFdj6tqaQX+DgAAAADYs969e8c+++wT27dvj4iIJUuWxKOPPhpnnXVWhf0+/PDDmDp1avmDuxERw4ZV/290b7zxRoXtHj16ZGfwBlTVvfLWrVtn3K+qEOodO3Zk3K85eeqpp2L58uUVal27do1zzz03RxMBAAAADaWhA6jTPv59pMLehQ16bAAAoO769+8fhYWFUVRUVH4/+9JLL43Vq1fHN77xjUiSpEZ9SktLY8qUKXHdddfFhx9+WN4rSZK48soro0uXLvX8SQAAAAAAAIC6yMv1AE1NSUlJPPjggzFy5Mg47rjjoqCgINq1axcHHXRQ9OzZM+NXr169cv3RAIAmZHfhs2nphz5mLp+5xz6PvvXoHh9KSYfQFpcU13lmsqem5/9PS/60xz5PL3+6ygDqNOe/8arpNfD40sf32Oextx/zdwAAAABANVq0aBHnnHNO+cOzqVQqRo0aFc8//3z5Pps3b44RI0bEpk2bymvt2rWLM844o9r+8+fPr/BQ72GHHZbdD5AjNX1QuaZr08Hee7tf/OIXlWqXXXZZtGzZMgfTAAAAAA0lVwHUaenvIxUtLsrJ8QEAgLr58Y9/HF27do2If9yP3bVrV1x//fVx9NFHx+233x7PPvtspV8M/NZbb8Xs2bNj2rRpMXr06OjVq1dcccUV8cEHH5TvkyRJHHnkkfG9732vQT8PAAAAAAAAUHtCqGsolUrFj370ozjwwAPj0ksvjQceeCAWLVoUu3btilQqlZUXAEBNVBc+m1aWKovbnr8tnl7+dJXvP7386bjpqZuqfShFCG3jUpvz/50nvrPH8//9l77v/DdBtbkGbn725j1eA+OfGe8aAAAAAKiBr3/96+U/J0kS69evjy984Qtx9NFHx+c+97n41Kc+FY899lh5SHWSJHHppZdGq1at9th35cqV8be//a18e//994+DDjqo3j5HfakqAHnbtm0Z96tqbUFBQcb9mosPPvggiooqBz1dccUVOZgGAAAAaCilZaUxaf6kOgVQ5yV5ceKnToy8JPNHSMpSZTFp/qQoLSvNuAcAAJAbhxxySEyfPr38Hnb63vZbb70V3/3ud2Po0KHx5ptvlj/rnEqlyu+Hf+UrX4mf//znsXLlyvL74el92rRpE7///e+jbdu2OftsAAAAAAAAQM20yPUATcFHH30UZ599djz77LMVwqLTN0rrSgA1AFBTNQ2fTUulUvH9l74fERFDew4tr6cDiJNIavRQSTqEdtqF06J9q/aZDU+d1fb8l0XZHs9/Waos8pP8avs4/41Htv8OiAjXAAAAAEANDBkyJM4777yYPn16JElS/kDukiVLyn+O+Oc95DZt2sSNN95Ybd+PBwonSRKDBg2qnw9Qz/bdd99KtWyHULdp0ybjfs3F1KlTo6SkpELtc5/7XBx99NE5mqjmunTpEsccc0y9H2fp0qWV/owAAACgqcvPy4+p50+t1feGPi4vyYvrT7o+hvYcWuG7Y7XVp3ufmHr+1MjPq/77RgAAQOMzaNCgePTRR+Nf//VfY926dRXCpKvyyfrHn6lOpVJx4IEHxh/+8IcGuQ8IAAAAAAAA1J0Q6ho4//zz45lnnomIyjdJAQAaSm3DZ9PKUhWDiGsbQJwmhDa36uP814bzn3v1cQ3UJIQ+zTUAAAAA7O0mTZoUS5cujTfeeKM8iDrt4w/nJkkS9957bxxwwAHV9nzooYfKQ6yTJIkhQ4bU1/j1qnPnzpVqW7ZsybhfVWurOsbe5v77769Uu/LKK3MwSe2NHj06Ro8eXe/HOfbYY2PRokX1fhwAAABoaO1btY9pF06r9feHPh5AHfHPX2Sf/j5RTfXp3sf3hgAAoBkYMmRIzJ8/Py6//PL4y1/+EhEVn5uuTvq56lNPPTV++ctf1ui+OAAAAAAAANA4CKGuxoMPPhiPP/54leHTJ5xwQnzmM5+Jww47LDp06BAtW7bM1ZgAQDNXWlYaIx4ZUevw2bR0CO2sd2fFK2teqXUAcdqCtQtixCMjYvrF0yM/r+YB1tSN849rAAAAACD3OnbsGM8880x84xvfiF//+tdV/tLiAw44IH76059GYWFhtf3mzJkTL7/8coV70WeddVZWZ24o3bp1q1RbtWpVxv1WrlxZo2PsTebOnRsLFlT898F27drFl770pRxNBAAAADS02gZR50VefOukb5UHT6elt3/w0g9qdFwB1AAA0Lx069YtHn300XjllVfif/7nf+LPf/5zlJSUVLuuRYsWMWTIkLjpppti8ODBDTApAAAAAAAAkE1CqKtx6623lv+cfoj49NNPjx/96EfRu3fvXI0FAOxl8vPyY1TfUTHvvXkZh8eWpcri5dUv12mOvCQvRvUdJXy2gTn/uAYAAAAAGoeOHTvG5MmT4+abb44//vGPsWzZsti8eXN07tw5TjzxxDj99NOjdevWNeo1Y8aM6NOnT/l29+7d46ijjqqv0etVz549K9XefffdjPutWLGiwnZ+fn4ccsghGfdrDu6///5KtX/913+NNm3a5GAaAAAAIFdqGkSdl+TFTV+4KQYeOLDK94f2HBptCtrE95773h6/jySAGgAAmq+BAwfGww8/HCUlJfHyyy/HCy+8EKtWrYr3338/Pvzww9hnn31i//33j27dusWJJ54YQ4cOjXbt2uV6bAAAAAAAACBDQqj3YMWKFbFo0aJIkiRSqVQkSRKXXXZZTJ48OdejAQB7ocLehRERMWbGmIxDaOsiL8mLiWdOLJ+DhuX84xoAAAAAaDwOOuiguOqqq+rUY9y4cTFu3LgsTZRbVYVnv/322xn12rFjR6xcubJC7bDDDosWLfberzds27YtHnrooUr1K6+8MgfTAAAAALlWXRB1+ns+fbv3jQ+2fbDbPqcddlp0b9t9t99HEkANAAB7h1atWsXgwYNj8ODBuR4FAAAAAAAAqEd5uR6gMXv55ZcrbHfr1i3uuuuuHE0DAPCPENqJZ06MvKRh/zNO+Gzj4PzjGgAAAACgMerXr1/k5VX8N6u5c+fGrl27at1r7ty5sXPnzgq1E044oU7zNXW/+93vYtOmTRVqxx9/fAwcODBHEwEAAAC5lg6i7tO9T4V6bb/ns7vvIwmgBgAAAAAAAAAAgOZFCPUerF+/vvznJEniggsuiH333TeHEwEANHwIrfDZxsX5xzUAAAAAQGPTpk2b6NevX4Xa1q1bY968ebXu9fzzz1eqDR48OOPZmoP777+/Uu3KK6/MwSQAAABAY/LJIOpMv+fzye8jCaAGAAAAAAAAAACA5kcI9R5s2rQpIiJSqVRERKWHZgEAcqWhQmiFzzZOzj+uAQAAAAAamzPOOKNS7eGHH651n6rWVNV7b/HWW2/Fs88+W6HWqlWruOSSS3I0EQAAANCYpIOo+x/Yv07f80l/H6n/gf0FUAMAAAAAAAAAAEAzJIR6D9q2bVthu0OHDjmaBACgsvoOoRU+27g5/7gGAAAAAGhMvvzlL1eqTZ48OXbs2FHjHvPmzYtXXnmlQu3EE0+Mnj171nm+pmrSpEmVaoWFhdGpU6ccTAMAAAA0Ru1btY/pF0+v8/d8CnsXxvSLpwugBgAAAAAAAAAAgGaoRa4HaMx69epVYfuDDz7I0SQAAFVLPzQyZsaYKEuVZa2v8NmmwfnHNQAAAADQOKxevTpmz54dr776aqxfvz42btwYmzdvjnbt2kXHjh2ja9eu0b9//xg0aFB86lOfyvW49eK4446Lk08+OZ5//vny2oYNG+LHP/5xfOc736lRjxtuuKFS7d///d+zNmNTs2vXrvjVr35VqX7llVfmYBoAAACgMcvPy29UfQAAAAAAAAAAAIDGRQj1HgwaNCjy8vIilUpFRMSbb76Z44kAACrLdgit8NmmxfnHNQAAAACQG5s3b44pU6bEz3/+81i4cGGN1x177LHx7//+73HJJZdEu3bt6nHChnfTTTfFGWecUaE2bty4OPXUU+OEE07Y49qf/vSn8dhjj1Wo9erVK77yla/U6Ng9evSId999t0Lt6aefjiFDhtRofWP06KOPxnvvvVeh1rNnzxg2bFiOJgIAAAAAAACamzVr1sTGjRtj06ZNsXPnzjr1Gjx4cJamAgAAAAAAALJNCPUe7L///jFs2LB48sknIyJixowZ8cMf/jDHUwEAVFbYuzCm/216PLH0iTr3OqXXKcJnmxjnH9cAAAAAQMOaMmVKfOMb34gPP/yw/Jca19Rf//rXuPrqq+O//uu/4o477ohLLrmknqZseKeffnoMHz48/vCHP5TXSkpKYujQofHAAw/EOeecU2nNzp074/bbb4+xY8dWeu8nP/lJtGzZsl5nbszuv//+SrVRo0ZFkiQ5mAYAAAAAAABoDtasWRO//vWvY8aMGbFgwYLYvHlzVvomSRK7du3KSi8AAAAAAAAg+4RQV+PGG2+MJ598MpIkib/97W8xffr0OO+883I9FgBABUWLi2LmsplZ6TVz2cwoWlwkhLYJcf5xDQAAAAA0jJKSkvjyl78cf/zjHyuET9cmFDiVSkUqlYoPPvggRo4cGY888kg89NBD0apVq/oYucHdd9998eqrr8aqVavKa8XFxXHuuefGgAEDYvjw4dGzZ8/Ytm1bvPXWWzF16tRYvXp1pT5XX311nH322Q0299y5c+PKK6/c7ftbtmypVPvjH/8Yffv23e2aAQMGxC9+8YuM5nnvvffi0UcfrVDLz8+Pyy+/PKN+AAAAAAAAwN5t8+bNccMNN8Q999wTZWVlERG1/qXLAAAAAAAAQNMlhLoaQ4YMiSuuuCLuv//+SJIkRo8eHQMGDIiDDjoo16MBAETEP8Jnx8wYE2Wpsqz0K0uVxZgZYyIihNA2Ac4/rgEAAACAhrF9+/YYPnx4PPnkk5FKpSoET9fmwdxPrvvDH/4Q5557bvzxj39sFkHUXbp0iccffzyGDRsWa9eurfDe3LlzY+7cudX2uOiii+KOO+6opwmrtmXLlliwYEGt1nz44Yfx4Ycf7vb9jh07ZjzPr371q9i1a1eF2hlnnBGf+tSnMu4JAAAAAAAA7J1WrVoVQ4cOjWXLlmX8C5f3RJg1AAAAAAAANH55uR6gKbjrrrtiyJAhkUql4r333othw4bF/Pnzcz0WAEDWw2fT0iG0RYuLstqX7HL+cQ0AAAAANJwxY8bEE088ERH/fBA3lUpFKpWKk046Kb7//e/HzJkzY/Xq1bFly5YoKyuLLVu2xOrVq+Opp56K73//+3HSSSeVr0n3SaVS8eSTT8aYMWNy9tmyrXfv3jFnzpw4+eSTa7WuZcuWMW7cuHjooYciPz+/nqZrGiZNmlSpdsUVV+RgEgAAAAAAAKAp27ZtWwwbNiyWLl1a/guX06/0/eu6vgAAAAAAAIDGr0WuB2gKCgoKYsaMGTFq1Kh46KGH4u23345BgwbFiBEj4sorr4zPfOYze/0DsABAw6uv8Nm0dAhtRERh78J6OQaZc/5xDQAAAAA0nGeffTYmTZpUHj4d8Y8A6iFDhsTEiRPj2GOPrXLdvvvuG/vuu28ccMABMWTIkPjWt74VCxcujGuuuSaefvrpCg/23n///XHppZfG5z//+Yb6WPXq4IMPjmeffTZ+97vfxZ133hkvvfTSbh8+btu2bXzpS1+Kb3/723H00Uc38KSNz7PPPhtvvfVWhVq3bt3inHPOydFEAAAAAAAAQFN1yy23xNtvv13pfnfHjh3ji1/8YvTr1y969OgR7dq1i5YtW+ZwUgAAAAAAAKA+7ZUh1MOGDct4bevWraOkpCR27NgRv/zlL+OXv/xl7LPPPnHooYdGp06dMr7BmiRJzJw5M+O5AIC9S32Hz6YJoW2cnH9cAwAAAAAN6/bbb49UKlUeGJ0kSfznf/5n3HrrrbXudeyxx8bMmTPjpptuiltvvbXCg7633357swmhjvjHffCLLrooLrrooli/fn3MmTMnli1bFsXFxdGiRYvYf//9o3fv3jFw4MAoKCio07HeeeedOq0fMmTIbkOyG9rgwYMbzSwAAAAAAABA01VaWhp33313+X3pVCoV+fn5MWHChPjWt74VrVq1yvGEAAAAAAAAQEPZK0OoZ82aVeFB3kykHy6OiPjoo49i8eLFGfdMP6QMAFATDRU+myaEtnFx/nENAAAAADSsDz/8MGbOnFkhgHrUqFEZBVB/3C233BLr1q2L+++/v7z3k08+GR9++GHst99+WZq+8ejatWt88YtfzPUYAAAAAAAAAHuN559/PjZu3FjhfvcvfvGLGDlyZK5HAwAAAAAAABpYXq4HaErSodNpSZJUeAEA1LeGDp9NS4fQFi0uatDjUpHzj2sAAAAAoOG99NJLsXPnzvLt9u3bx49+9KOs9P7hD38YHTp0KN/etWtXvPTSS1npDQAAAAAAAMDebenSpeU/J0kSJ554ogBqAAAAAAAA2Evt1SHUqVSqVq9M1tS0LwBAdXIVPpsmhDa3nH9cAwAAAAC5sXr16vKfkySJ4cOHR7t27bLSu3379jF8+PAK940/fjwAAAAAAAAAyNT69esjIsrvSQ8fPjyX4wAAAAAAAAA51CLXA+TC4MGDI0mSXI8BAFBjpWWlMWn+pDqFz+YleTHwwIHxyppXMu5TliqLSfMnxblHnRv5efkZz0LtOP+4BgAAAAByZ8OGDRHxj4dykySJAQMGZLX/wIED49e//nX59t///ves9gcAAAAAAABg71RQUFBhu0ePHrkZBAAAAAAAAMi5vTKEetasWbkeAQCgVvLz8mPq+VPj4ocvjgVrF9R6fV6SF9efdH0M7Tk0nl7+dHz/pe9nFELbp3ufmHr+VOGzDcz5xzUAAAAAkDv77LNPhe1u3bpltX/Xrl0jIsp/kXLr1q2z2h8AAAAAAACAvdMBBxxQYXvXrl05mgQAAAAAAADItbxcDwAAQM20b9U+pl04Lfp071OrdR8Pn42IGNpzaFx/0vWRl9TuPwX7dO8T0y6cFu1bta/VOrLD+cc1AAAAAJAbBx98cIXtjRs3ZrV/ul8qlYqIiIMOOiir/QEAAAAAAADYO/Xr1y8i/vlLkdesWZPLcQAAAAAAAIAcEkINANCE1DaENkmSCuGzabUNoRU+2zjU9vznRZ7z38z4OwAAAACg4fXv3z8i/vlQ7uLFi7Pa/80336zyeAAAAAAAAABQF0cffXQcfvjh5dtPPfVUDqcBAAAAAAAAckkINQBAE1PTENq8JC9uOPmGSuGzaUN7Do1bht1SbQit8NnGpTbn/39O/Z89nv+ahBA7/41Pba6B/xr8X3u8BsZ/YbxrAAAAAKAaPXv2jOOPPz4iIlKpVDzyyCORSqWy0juVSsXvf//7SJIkkiSJ3r17R69evbLSGwAAAAAAAACuvvrqSKVSkUql4umnn45ly5bleiQAAADqQWlZaaPqAwAAQOMjhLoa//3f/13+uvfee7Pa+957763QHwCgpqoLoc1L8mLimRPjlJ6n7LHPWUecFRPPnLjbEFrhs41TTc//OUees8c+Q3sOjTvPvNP5b4Jqeg2cdthpe+xz+uGn+zsAAAAAoAb+4z/+I1KpVCRJEitXrow777wzK33vvPPOWLFiRXmo9Te+8Y2s9AUAAAAAAACAiIivf/3rceyxx0aSJLFz58646qqroqysLNdjAQAAkEXFJcVx3rTzomhxUZ36FC0uivOmnRfFJcVZmgwAAIDGRAh1NcaPHx8TJkyICRMmxM9//vOs9r777rvLe0+YMCGrvQGA5m93IbTp8NnC3oU16lPYu7DKEFrhs41b1s7/0c5/U+XvAAAAAICGc/nll8fJJ58cqVQqUqlU3HjjjTFjxow69fzLX/4SN954YyRJEkmSxGc/+9m44oorsjQxAAAAAAAAAEQUFBTEb3/72+jUqVNERDzxxBMxcuTI2L59e44nAwAAIBuKS4rj4ocvjlfXvBpjZozJOIi6aHFRjJkxJl5d82pc/PDFgqgBAACaISHUNZRKpeqtb331BgCav0+G0NY2fDbtkyG0wmebBucf1wAAAABAw/n9738fRx11VEREbN++Pc4777y45ZZbYseOHbXqs3Pnzvje974X5513Xmzfvj1SqVQceeSR8cgjj9TH2AAAAAAAAADs5Xr37h1PPPFEHHDAAZFKpeLBBx+ME044IaZNmxalpaW5Hg8AAIAMpQOoF6xdEBERZamyjIKo0wHUZamyiIhYsHaBIGoAAIBmqEWuB9jbJUkihBoAqJN0CO2IR0bEqL6jah0+m5ZeN2n+pJh6/lThs02E849rAAAAAKBhdOnSJV566aW49NJL489//nPs3Lkzxo0bF/fee29cdtllMXz48OjTp08UFBRUWrtz585YsGBBTJ8+PaZMmRKrVq2KVCoVSZLEWWedFVOmTImOHTs2/IcCAAAAAAAAYK/Qt2/fePXVV+NrX/ta/N///V+8+eab8ZWvfCX+3//7fzFo0KA4/PDDY7/99ouWLVtmfIyxY8dmcWIAAAD25JMB1GnpIOqIqNFz558MoE5LB1FPu3Ca584BAACaCSHUAADNQPtW7WP6xdMjPy+/Tn0KexfGuUedW+c+NCznH9cAAAAAQP0aNmxYhe3WrVtHSUlJpFKpWLVqVdx2221x2223RYsWLeKQQw6JDh06RJs2bWLr1q2xadOmWLFiRezatSsiovyXFCdJEq1bt46tW7fG+eefX6t5kiSJmTNnZufDAQAAAAAAALBX6Nq1a3zlK1+JOXPmxIYNGyKVSkVxcXE88cQT8cQTT9S5vxBqAACAhrG7AOq0mgZR7y6AOk0QNQAAQPMihDqHSktLy39u0cKpAADqJluhscJnmybnH9cAAAAAQP2ZNWtWJElSqZ6upYOld+7cGUuXLi1/L12vak1ExPbt2+OZZ56p1SypVKrKWQAAAAAAAABgd15//fUYOXJkvP766+W1T97zrgv3sQEAABpGdQHUadUFUVcXQJ0miBoAAKD5yMv1AHuzTZs2lf/ctm3bHE4CAAAAAAAAQE3sLlj6k6891avrBwAAAAAAAADZ8vTTT8fnPve5eP311yOVSlW6T13Vve3avAAAAGgYNQ2gTksHURctLqpQr2kAdVo6iLq4pLjWMwMAANB4CKHOkeLi4li1alX5dseOHXM3DAAAAAAAAADVSj+Im34oNxuv2vYDAAAAAAAAgJpavXp1nH/++bF169aI+GfgdLbvewMAAFC/ahtAnfbJIOraBlCnCaIGAABo+lrkeoC91aRJkyKVSpXfrD3qqKNyPRIAAAAAAAAAVRg8eHAkSZLrMQAAAAAAAACgVm688cbYtGlT+T3v9LPNZ511VlxwwQXRr1+/OPTQQ6Ndu3bRooXHzgEAABqj0rLSGPHIiFoHUKelg6in/216zFw2s9YB1GkL1i6IEY+MiOkXT4/8vPyMegAAAJA7e/3dwBUrVtR43x07dsTKlSsz+q28paWlsWXLlli2bFk8+uijMXny5PLfFJwkSfTr16/WPQEAAAAAAACof7Nmzcr1CAAAAAAAAABQKxs3bozf/va3FQKou3XrFo888kicdNJJOZ4OAACAmsrPy49RfUfFvPfmZRwgXZYqiyeWPlGnOfKSvBjVd5QAagAAgCZqrw+h7tGjR/nN091Jh04vXrw4evTokZXjpsOn0770pS9lpS8AAAAAAAAAAAAAAAAAALB3e/HFF6OkpCSSJIlUKhX5+fnx6KOPRr9+/XI9GgAAALVU2LswIiLGzBiTcRB1XeQleTHxzInlcwAAAND07PUh1BH/DJnO1n41kQ6gTpIkTj311Ojbt2/WegMAAAAAAAAAAAAAAAAAAHuvt99+u/znJEninHPOEUANAADQhOUqiFoANQAAQPMghDr+GQhdlY8HT+9pv0ykUqk49thjY/LkyVntCwAAAAAAAAAAAAAAAAAA7L02b94cEf94njlJkhg2bFiOJwIAAKCuGjqIWgA1AABA8yGEOioGTWdjv5o4+uijY9SoUTF69OjYZ599stYXAAAAAAAAAAAAAAAAAADYu7Vp06bCdvfu3XM0CQAAANnUUEHUAqgBAACal70+hHry5Mm7fS+VSsWoUaMiSZJIpVJxyCGHxIQJEzI6TosWLaJdu3ax3377xXHHHRf77bdfpiMDAAAAAAAA0AiVlpbGBx98ENu2bYuIiEMOOSTHEwEAAAAAAACwtzr00EMrbG/ZsiVHkwAAAJBt9R1ELYAaAACg+dnrQ6hHjhy5x/dHjRoVERFJkkSnTp2q3R8AAAAAAACAvcMbb7wR06dPj1mzZsW8efNi06ZN5e8lSRK7du3a7dpNmzZFaWlp+Xbbtm2joKCgXucFAAAAAAAAYO8xYMCAiPjH/euIiOXLl+dyHAAAALKsvoKoBVADAAA0T3m5HqApSKVSkUqlcj0GAAAAAAAAAI3A/Pnz44tf/GL07ds3xo8fH7NmzYqNGzeW31uuyT3ma665Jrp06VL+uuaaaxpoegAAAAAAAAD2BgcffHB5EHVExIwZM3I4DQAAAPWhsHdhTDxzYuQl2YkSE0ANAADQfAmhrsbIkSPLX+ecc06uxwEAAAAAAAAgh+6555446aSTYsaMGRXCppMkKX/VxPXXXx8R//ylyL/97W+jpKSk3uYGAAAAAAAAYO9z3XXXld+XfvXVV+Ppp5/O9UgAAABkWWHvwjil1ylZ6XVKr1MEUAMAADRTQqirMXny5PLXhAkTcj0OAAAAAAAAADlyyy23xFVXXRUlJSWRSqXKQ6fTD+ymA6lr4rjjjotTTvnnl703bdoUjz76aH2MDQAAAAAAAMBe6qKLLoqzzjqrfPtrX/tabNiwIYcTAQAAkG1Fi4ti5rKZWek1c9nMKFpclJVeAAAANC5CqAEAAAAAAACgGr///e9j3LhxlcKnDz/88Ljmmmvixz/+cRx88MG16nnxxRdHRESSJBER8dhjj2V9bgAAAAAAAAD2bg899FD069cvUqlULF++PIYNGxaLFi3K9VgAAABkQdHiohgzY0yUpcqy0q8sVRZjZowRRA0AANAMCaEGAAAAAAAAgD346KOP4uqrry4PoE6lUtGuXbt44IEH4m9/+1vccccdce2110anTp1q1bewsDDy8/MjIiKVSsXMmTPrY3wAAAAAAAAA9mLt2rWLZ555Js4777xIpVKxcOHCGDBgQHz961+POXPmRFlZdoLKAAAAaFjZDqBOE0QNAADQPLXI9QAAAAAAAAAA0Jj99Kc/jXXr1lUIoH722Wfj05/+dJ36durUKXr37h0LFy6MiIhly5ZFcXFxtG/fPhtjAwAAAAAAALCXGzZsWIXtVq1axY4dO2L79u1x3333xX333Rf77rtvHHroobHffvtFy5YtMzpOkiR+8TIAAEADqq8A6rR0EHVERGHvwno5BgAAAA1LCDUAAAAAAAAA7MGUKVPKA6iTJIkf//jHdQ6gTuvfv3/89a9/Ld9evHhxnHjiiVnpDQAAAAAAAMDebdasWZEkSaV6+h54RMTWrVtj0aJFVe5XE+l76QAAADSM+g6gThNEDQAA0Lzk5XoAAAAAAAAAAGis1q5dGwsXLizfPuSQQ+KrX/1q1vofc8wxFbaXLl2atd4AAAAAAAAAkJYOnU5LkqTCCwAAgMavoQKo09JB1EWLixrkeAAAANSfFrkeAAAAAAAAAAAaq1deeaX85yRJ4swzz4y8vOz9vuf99tuvwvbGjRuz1hsAAAAAAAAAIv4ZQP3JIGoAAACajoYOoE5LB1FHRBT2LmzQYwMAAJA9QqgBAAAAAAAAYDfWr18fEf94EDdJkujXr19W+3fs2DEi/hFwHRGxefPmrPYHAAAAAAAAYO81ePDg8vvRAAAANF25CqBOE0QNAADQ9AmhBgAAAAAAAIDd+Pvf/15hu1OnTlntX1JSUmE7Ly8vq/0BAAAAAAAA2HvNmjUr1yMAAABQR6VlpTFp/qQ6BVDnJXlxSq9TYuaymRn3KUuVxaT5k+Lco86N/Lz8jGcBAAAgNzy9CgAAAAAAAAC70apVqwrb27dvz2r/Dz74ICIiUqlURER07tw5q/0BAAAAAAAAAAAAgKYrPy8/pp4/Nfp075PR+rwkLyaeOTF+dd6vYuKZEyMvySx2rE/3PjH1/KkCqAEAAJooIdQAAAAAAAAAsBtdunSpsP33v/89q/0XLlxYYVsINQAAAAAAAAAAAADwce1btY9pF06rdRB1OoC6sHdhREQU9i7MKIi6T/c+Me3CadG+VftarQMAAKDxEEINAAAAAAAAALvRrVu3iIhIkiQiIubNm5fV/rNmzSrvHRFx2GGHZbU/AAAAAAAAAAAAAND01TaI+pMB1Gm1DaIWQA0AANA8CKEGAAAAAAAAgN0YOHBg5OfnR0REKpWKmTNnRiqVykrv559/PpYsWVK+3alTpzjuuOOy0hsAAAAAAAAAAAAAaF5qGkS9uwDqtJoGUQugBgAAaD6EUAMAAAAAAADAbnTo0CE+85nPlAdPr1mzJoqKirLSe+zYsRHxj3DrJEliyJAhWekLAAAAAAAAAAAAADRP1QVRVxdAnVZdELUAagAAgOZFCDUAAAAAAAAA7MEFF1wQERFJkkQqlYpvfOMbsXnz5jr1HD9+fMyaNSuSJCmvXX755XXqCQAAAAAAAAAAAAA0f7sLoq5pAHXa7oKoBVADAAA0P0KoAQAAAAAAAGAPrrrqqjjggAPKt1etWhVnnXVWFBcX17pXWVlZfOMb34ibb765PNQ6SZLo06dPnHXWWdkcGwAAAAAAAAAAAABopj4ZRF3bAOq0TwZRC6AGAABonoRQAwAAAAAAAMAetG7dOiZMmFAeGJ1KpeLFF1+MY489Nh544IHYsWNHtT02bNgQ99xzTxx11FHxk5/8JFKpVPl7SZLE7bffXp8fAQAAAAAAAAAAAABoZtJB1P0P7J9RAHVaOoi6/4H9BVADAAA0Uy1yPQAAAAAAAAAANHZXXnllzJ49OyZNmlQeRL169eoYOXJkXH311XHCCSfEihUrKoRLf+UrX4kPPvgg3n333ViyZElERPn76R5JksSNN94Yp512Wk4+FwAAAAAAAABNS35+fqVakiSxa9euGu1bH3Z3fAAAAOpf+1btY/rF0yM/r27/D1jYuzDOPercOvcBAACgcRJCDQAAAAAAAAA18POf/zzee++9mDFjRiRJEhH/CJUuLi6OZ555psK+qVQqpk2bVv5zWnpd2pe//OX47//+73qeHAAAAAAAAIDm4uP3oLO5LwAAAE1XtoKjBVADAAA0X3m5HgAAAAAAAAAAmoIWLVrE//3f/8V//dd/RZIkkUqlIkmSCoHUH5dKpSrs88n9xo8fH1OnTm3YDwEAAAAAAABAk/fJ+9A13bc+XgAAAAAAAEDjJ4QaAAAAAKAJKy0rbVR9AACauyRJYsKECfHcc8/FmWeeWR40/cmw6aqCp9OvIUOGxHPPPRdjx47N8acBAAAAAAAAoCn6+D3o2uxbHy8AAAAAAACg8WuR6wEAAAAAAMhMcUlxjHhkRIzqOyoKexdm3KdocVFMmj8ppp4/Ndq3ap/FCWkIpWWlkZ+X32j6AMDe4qSTToo///nPsXDhwnj44YfjmWeeidmzZ8f27dsr7ZskSfTt2zdOPfXUGD58eHz2s5/NwcQAAAAAAAAANAfjxo2rl30BAAAAAACA5ksINQAAAABAE1RcUhwXP3xxLFi7IOa9Ny8iIqMg6qLFRTFmxpgoS5XFxQ9fHNMunCaIugkRRA4AuXfsscfGscceGxERZWVl8f7778f7778fH374Yeyzzz6x//77R5cuXaJVq1Y5nhQAAAAAAACA5kAINQAAAAAAAFBbQqhpEBs2bIhXXnklli5dGsXFxdGyZcvo3LlzHHPMMTFgwIBo2bJlrkesYO3atbF8+fJYuXJlrF+/PrZu3Ro7d+6M9u3bR4cOHaJHjx7Rr1+/aN++4cJYVqxYEW+88Ua88847UVxcHKlUKtq2bRsHHnhgHHbYYXHMMcd4cB0AAABgL/HxAOqIiLJUWYyZMSYiahdE/fEA6oiIBWsXCKJuQgSRA0Djk5eXF126dIkuXbrkehQAAAAAAAAAAAAAAAAAAIgIIdTUs4cffjjuvPPOeOGFFyKVSlW5T7t27eKiiy6Kb3/723HkkUc28IQRGzdujOeffz5eeOGFePnll+ONN96Iv//979WuS5Ikjj/++Ljsssvi0ksvja5du2Z9tlWrVsW9994bDz30ULz99tt73LegoCD69u0bp512Wpx//vnRr1+/rM8DAAAAQO59MoA67eNB1J8/9PPV9vlkAHWaIOqmQRA5AAAAAAAAAAAAAAAAAAAAADWRl+sBaJ5Wr14dQ4YMiS996Uvx/PPP7zaAOiJi8+bNcf/998fxxx8fN9988x73rQ+33357nHPOOXH77bfH008/XaMA6oiIVCoVr7/+elx33XVx2GGHxY9+9KPYtWtXVmbavn17/Od//mccccQRcfPNN1cbQB0RsWPHjpgzZ07ccsstcf3112dlDgAAAAAal90FUKelg4j/vOTPe+zz1PKnqgygTksHEReXFNd5ZrKvuiDyosVFNepTXRC58w8AAAAAAAAAAAAAAAAAAADQ9LXI9QA0P0uWLIkhQ4bEe++9V6t1O3bsiLFjx8bixYtjypQpkZ+fX08TZt+WLVviW9/6Vjz++ONRVFQU++yzT8a9li9fHuecc04sXLgwixMCAAAA0NRVF0CdVpYqixtm3hDfHPTNGNpzaKX3n17+dHz/pe9HfrLnf39LBxFPu3BatG/Vvk6zkz01DSL/9ue+HZ87+HO77TPj7Rkxftb4aoPInX8AAAAAAAAAAICm67//+7/Lf+7evXv827/9W9Z633vvvbF27dry7bFjx2atNwAAAAAAAJBdQqjJqvfffz9OPfXUKgOo+/fvH8OHD4+ePXvGtm3bYsmSJfHggw/GmjVrKuz30EMPRdeuXeOOO+5ooKkratOmTZxwwglx1FFHxeGHHx5dunSJdu3aRWlpaRQXF8eSJUvixRdfjNmzZ0cqlaqw9rHHHovCwsKYMWNGJElS62P/7W9/iy984Quxbt26Su9169YtzjrrrOjdu3d07do19t1339i4cWOsXLkyXn/99XjhhRfi73//e8afGwAAAIDGq6YB1GllqbL4/kvfj4ioEESdDqAuS5VVG0IdIYi4salNEPmtz90a15103W6DyH84+4eRxJ7/DdP5BwAAAAAAAAAAaNrGjx9f/rxrnz59shpCfffdd8frr79evi2EGgAAAAAAABovIdRk1b/927/FihUrKtTatWsXDzzwQJx77rmV9r/11lvj1ltvjfHjx1eo33nnnXH66afHmWeeWZ/jRkREq1atYtiwYXHmmWfGKaecEp/+9KcjP7/6AJ633347vvnNb8af/vSnCvXHHnss7rvvvlrfiF+/fn2cdtpplQKojzjiiPjhD38YX/ziF/cYbF1WVhZz5syJKVOmVPjN0QAAAAA0bbUNoE77ZBD1xwOoa0MQceOQ7SDyJJIa/SI95x8AAAAAAAAAAKDpS6VS9dq3Jt9HAwAAAAAAAHJHCDVZ88QTT8QjjzxSoVZQUBBPPfVUDBgwoMo1LVu2jHHjxkXHjh3jP/7jPyq8d80118TixYujRYv6vUwnTJiQ0brDDz88/vCHP8To0aPj7rvvrvDe7bffXqsQ6lQqFZdeemmlAO+LLroopkyZEgUFBdX2yMvLi0GDBsWgQYPq7csAAAAAADSs0rLSGPHIiFoHUKelg4hnvTsrXlnzSq0DqNMWrF0QIx4ZEdMvnh75edX/Ajeyqz6CyPOTmp9HQdQAAAAAAAAAAABUJUkSz7QCAAAAAABAE5CX6wFoPm6++eZKtXHjxu02gPrjrr322jj11FMr1N5+++148MEHszZffUiSJH784x/HoYceWqG+fPnymDt3bo37TJkyJR5//PEKtcLCwnjwwQdrFEBd1VwAAAAANH35efkxqu+oyEsy/6fcslRZvLz65YwDqCMi8pK8GNV3lADqHMhWEPm4WePKA6gzkQ4iLy0rzWg9AAAAAAAAAAAAAAAAAAAAALkhhJqsWLhwYTz33HMVavvvv39cd911Ne5x2223VardfffddZ6tvrVq1SouvPDCSvVFixbVaH1JSUnccMMNFWqdO3eOe++9N/LzhfoAAAAA7O0KexfGxDMn1imIui7ykryYeObEKOxdmJPj7+0EkQMAAAAAAAAAANAYlZaWlv/cokWLHE4CAAAAAAAAVEcINVnxm9/8plLt8ssvj4KCghr36N+/f/Tv379Cbfbs2bF8+fI6z1ffDjvssEq19957r0ZrH3jggVizZk2F2tixY2P//ffPymwAAAAANH25CqIWQN04CCIHAAAAAAAAAACgsdm0aVP5z23bts3hJAAAAAAAAEB1hFCTFX/5y18q1S688MJa96lqTVW9G5vt27dXqtU0gPsXv/hFpXWXXHJJVuYCAAAAoPlo6CBiwcONiyByAAAAAAAAAAAAGovi4uJYtWpV+XbHjh1zNwwAAAAAAABQLSHU1NnWrVvjtddeq1Dbd99944QTTqh1r89//vOVas8991zGszWUV155pVLtsMMOq3bdypUrY/bs2RVqp512WnTq1ClrswEAAADQfDRUELHg4cZJEDkAAAAAAAAAAACNwaRJkyKVSkVERJIkcdRRR+V4IgAAAAAAAGBPWuR6AJq++fPnR1lZWYXagAEDokWL2l9eAwcOjJYtW8bOnTvLa6+++mqdZ6xPb731VhQVFVWotW7dOgYPHlzt2ieffLJSbdCgQVmbDQAAAIDmJx0IPGbGmChLlVWzd+0JHm7c6vv8p7kOAAAAAAAAAAAAGr8VK1bUeN8dO3bEypUry8Oja6O0tDS2bNkSy5Yti0cffTQmT54cSZJEKpWKJEmiX79+te4JAAAAAAAANBwh1NTZm2++Wal2+OGHZ9SroKAgDjrooFi+fHl5benSpbFr166MQq3r27Jly+Kcc86J7du3V6hffvnl0bFjx2rXv/DCC5Vqffv2Lf85lUrF448/Hr/97W/j5ZdfjnfffTdKSkqiU6dO0aVLl+jbt2+ceuqpcfbZZ0fnzp3r+nEAAAAAaCLqK4hY8HDTIIgcAAAAAAAAAACAiIgePXpEkiR73CcdOr148eLo0aNHVo6bDp9O+9KXvpSVvgAAAAAAAED9aHypvjQ577zzTqXaoYcemnG/Qw45pEIIdWlpaaxYsSJ69eqVcc9sKikpiXnz5sVvfvObuOeeeyoFUPfs2TNuu+22GvV64403KtWOOOKIiIj461//GiNHjozXXnut0j7r1q2LdevWxV//+td44IEHom3btnHttdfG9ddfHx06dMjgUwEAAADQ1GQ7iFjwcNMiiBwAAAAAAAAAAICIf4ZMZ2u/mkgHUCdJEqeeemr07ds3a70BAAAAAACA7BNCTZ2tXbu2Uu3ggw/OuF9Va9etW9egIdRPPvlkXHfddRVqu3btis2bN8eaNWti165dVa474ogj4vHHH69xEPSyZcsq1Tp06BCTJk2Kq666KkpKSmrUZ8uWLfG9730vfve738Wf/vSnOPLII2u0rqHcdddd8bOf/azej7N06dJ6PwYAAABAY1LYuzCm/216PLH0iTr3OqXXKYKHmxhB5AAAAAAAAAAAAKQDoavy8eDpPe2XiVQqFccee2xMnjw5q30BAAAAAACA7BNCTZ198MEHlWpt27bNuF9Va99///2M+2Vi48aNsWDBghrv36ZNm/j6178eEyZMiDZt2tRozc6dO6v8XE899VR87Wtfi7KyiqEx7dq1i+7du0dpaWm89957sW3btkprlyxZEoMGDYoXX3wxjj766BrPX982bNgQixYtyvUYAAAAAM1O0eKimLlsZlZ6zVw2M4oWFwkgbmIEkQMAAAAAAAAAAOzdPh40nY39auLoo4+OUaNGxejRo2OfffbJWl8AAAAAAACgfgihps62bt1aqVaXG8ZVrf3oo48y7lefkiSJK664Im699dbo0qVLrdZu3Lixyhv2V1xxRXkAdZIkcckll8TVV18dAwcOLP8t07t27Yrnnnsu/ud//icee+yxCus//PDDuOCCC2LOnDk1DsQGAAAAoOkpWlwUY2aMibJUWfU710BZqizGzBgTESGIuAkRRA4AAAAAAAAAALD3mjx58m7fS6VSMWrUqEiSJFKpVBxyyCExYcKEjI7TokWLaNeuXey3335x3HHHxX777ZfpyAAAAAAAAEAOCKGmznbu3Fmp1rp164z7VRVCvWPHjoz71adUKhW/+MUv4o9//GNcddVV8c1vfjPatWtXo7UlJSVV1rdt2xYR//gz/M1vfhPDhw+vtE+LFi1i6NChMXTo0Jg4cWJce+21FQKtFy1aFDfffHPcfvvtGXwqAAAAABq7bAdQpwmibloEkQMAAAAAAAAAAOzdRo4cucf3R40aFRERSZJEp06dqt0fAAAAAAAAaJ7ycj0AzVOSJFld+/GA5YZw4YUXRiqVqvDaunVrrF69Op588smYMGFC9OzZs3z/9evXx/jx4+PTn/50vPzyyzU6RnWf6Z577qkygPqTxowZE9/97ncr1e++++7YuHFjjWYBAAAAoOmorwDqtHQQcdHionrpT3bUdxC58w8AAAAAAAAAANA8pJ+TBQAAAAAAAPZeQqips5YtW1aqbdu2LeN+Va0tKCjIuF+27LvvvnHggQfGKaecEmPHjo2lS5fGT3/602jTpk35Pu+88078y7/8S7z44ovV9qvqzy1tyJAhcdlll9V4trFjx1YIxY6IKC4ujt/85jc17gEAAABA41ffAdRpgogbN0HkAAAAAAAAAAAA1MTIkSPLX+ecc06uxwEAAAAAAABypEWuB6Dp23fffSvVsh1C/fGg58YiSZIYPXp0HH/88XHGGWeUz71ly5a4+OKL4/XXX4/99ttvt+v39JnGjBlTq1latmwZ/+///b/4z//8zwr1WbNmxde//vVa9aoPXbp0iWOOOabej7N06dIoKSmp9+MAAAAA5EJDBVCnpYOIIyIKexc2yDGpXkMHkUc4/wAAAAAAAAAAAE3V5MmTcz0CAAAAAAAA0AgIoabOOnfuXKm2ZcuWjPtVtbaqYzQWgwcPjvHjx8d3vvOd8tqqVavihz/8Ydxyyy27XdeuXbsoKCiIHTt2VKjn5eXFv/zLv9R6jtNOO61SCPXzzz9f6z71YfTo0TF69Oh6P86xxx4bixYtqvfjAAAAADS0hg6gThNE3LgIIgcAAAAAAAAAAAAAAAAAAACgtvJyPQBNX7du3SrVVq1alXG/lStX1ugYjcm1114b7dq1q1C79957I5VK7XFd9+7dK9V69eoV7du3r/UMn/70pyM/P79Cbe3atdXOAAAAAEDjlqsA6rR0EHHR4qKcHJ9/yHUQufMPAAAAAAAAAAAAAAAAAAAA0DQJoabOevbsWan27rvvZtxvxYoVFbbz8/PjkEMOybhfQ2jVqlUMGzasQm3Dhg2xaNGiPa7r1atXpVrnzp0zmiE/Pz86dOhQoVZaWhobN27MqB8AAAAAuVdaVhqT5k+qU/BwXpIXJ37qxMhLMv/n4LJUWUyaPylKy0oz7kHmBJEDAAAAAAAAAAAAAAAAAAAAkCkh1NTZUUcdVan29ttvZ9Rrx44dsXLlygq1ww47LFq0aJFRv4bUo0ePSrVly5btcU3v3r0r1Vq1apXxDK1bt65U2759e8b9AAAAAMit/Lz8mHr+1OjTvU9G6/OSvLj+pOtjwpAJcf1J12ccRN2ne5+Yev7UyM/Lz2g9mRNEDgAAAAAAAAAAAAAAAAAAAEBdCKGmzvr16xd5eRUvpblz58auXbtq3Wvu3Lmxc+fOCrUTTjihTvM1lKoCoDdv3rzHNQMHDqxU27RpU8YzbNy4sVKtc+fOGfcDAAAAIPfat2of0y6cVusg6nQA9dCeQyMiYmjPoRkFUffp3iemXTgt2rdqX6t1ZIcgcgAAAAAAAAAAAAAAAAAAAADqQgg1ddamTZvo169fhdrWrVtj3rx5te71/PPPV6oNHjw449ka0vr16yvV9t9//z2uGTJkSKXau+++G6lUqtbH37BhQ3z00UcVau3bt4+CgoJa9wIAAACgcaltEPUnA6jTahtELYC6cRBEDgAAAAAAAAAAAAAAAAAAAECmhFCTFWeccUal2sMPP1zrPlWtqap3YzR79uxKte7du+9xTc+ePaN3794Vahs3boxFixbV+vgvvvhipdonw8EBAAAAaLpqGkScl+TFbafcVimAOm1oz6Hxnc99p9ogYsHDjUu2g8iTJKlRH9cBAAAAAAAAAAAAAAAAAAAAQNMmhJqs+PKXv1ypNnny5NixY0eNe8ybNy9eeeWVCrUTTzwxevbsWef56tv8+fNj8eLFFWodO3asFDBdlUsuuaRSbcqUKbWe4de//nWl2imnnFLrPgAAAAA0XtUFEecleTHxzIlx9pFn77HPsJ7DYuKZE3cbRC14uHGqTRD5jZ+/cY9B5DcPvVkQOQAAAAAAAAAAAAAAAAAAAMBeQAg1WXHcccfFySefXKG2YcOG+PGPf1zjHjfccEOl2r//+7/Xebb6VlpaGtdcc02l+tlnnx0tW7asdv0VV1wR++yzT4XaPffcE2vWrKnxDK+99lr84Q9/qFBLkiQuuOCCGvcAAAAAoGnYXRBxOoC6sHdhjfoU9i6sMoha8HDjVtMg8n/p9S977HPm4WcKIgcAAAAAAAAAAAAAAAAAAADYCwihJmtuuummSrVx48bFa6+9Vu3an/70p/HYY49VqPXq1Su+8pWv1OjYPXr0iCRJKrxmzZpV7bqJEyfGE088UaNjVKWkpCRGjBgRzz33XIV6kiRx9dVX16hHt27dYvTo0RVqGzdujBEjRsS2bduqXb9+/foYMWJElJaWVqhfcMEFccwxx9RoBgAAAACalk8GEdc2gDrtk0HUgoebBkHkAAAAAAAAAAAAAAAAAAAAANSUEGqy5vTTT4/hw4dXqJWUlMTQoUPjT3/6U5Vrdu7cGTfffHOMGTOm0ns/+clPomXLlvUya9qrr74ap512Wpx00knxs5/9LNatW1ejdTt37oxHHnkkjj/++Jg2bVql97/2ta/FoEGDajzHuHHj4pBDDqlQmzVrVpxyyinx5ptv7nbdiy++GJ///Ocr7dO2bdu45ZZbanx8AAAAAJqedBBx/wP7ZxRAnZYOIu5/YH/Bw02IIHIAAAAAAAAAAAAAAAAAAAAAaqJFrgegebnvvvvi1VdfjVWrVpXXiouL49xzz40BAwbE8OHDo2fPnrFt27Z46623YurUqbF69epKfa6++uo4++yzG2zu2bNnx+zZs2PMmDHRu3fv6NevXxxzzDHRqVOn6NixYyRJEsXFxbFmzZqYP39+PPvss/H+++9X2Wvo0KHxox/9qFbHb9u2bfzud7+LwYMHR0lJSXn9pZdeiuOPPz5OPfXUOOWUU+LAAw+M0tLSWLFiRfzlL3+J5557rsp+v/zlL+Ooo46q1QwAAAAAND3tW7WP6RdPj/y8/Dr1KexdGOcedW6d+9Cw0kHUIx4ZEaP6jqpTEHlExKT5k2Lq+VMFUAMAAAAAAAAAAAAAAAAAAAA0I0KoyaouXbrE448/HsOGDYu1a9dWeG/u3Lkxd+7cantcdNFFcccdd9TThHtWVlYWCxcujIULF2a0/rzzzosHH3ww9tlnn1qv/cxnPhPTp0+P888/P7Zt21Ze37VrV8yYMSNmzJhRbY+CgoK466674oILLqj18QEAAABomrIVHC2AumkSRA4AAAAAAAAAAAAAAAAAAADAnuTlegCan969e8ecOXPi5JNPrtW6li1bxrhx4+Khhx6K/PyGCTpp06ZNVvocfPDB8fDDD0dRUVFGAdRpZ5xxRrz00ktx3HHH1XrtEUccEU899VRceeWVGR8fAAAAAGh6BJEDAAAAAAAAAAAAAAAAAAAAsDtCqKkXBx98cDz77LMxbdq0+OxnPxtJkux237Zt28bll18er7/+eowfPz7y8hrusrzrrrti4cKF8YMf/CDOOeec6N69e43XduvWLb785S/Ho48+GsuXL48LLrggKzP16dMn5s+fH5MnT47PfOYze/yzy8/Pj5NOOil++ctfxuLFi+Nzn/tcVmYAAAAAAAAAAAAAAAAAAAAAAAAAAACg6WuR6wFovpIkiYsuuiguuuiiWL9+fcyZMyeWLVsWxcXF0aJFi9h///2jd+/eMXDgwCgoKKjTsd55552M1x5zzDFxzDHHxLe+9a2IiHjvvfdi6dKl8c4778QHH3wQW7dujVQqFe3atYsOHTpE165do0+fPnHAAQfUaeY9yc/Pj69+9avx1a9+NdatWxdz584t/7MrKCiI/fffPw488MA46aSTon379vU2BwAAAAAAAAAAAAAAAAAAAAAAAAAAAE2XEGoaRNeuXeOLX/xirseokQMOOCAOOOCAOPnkk3M9SkREdOvWLc4+++xcjwEAAAAAAAAAAAAAAAAAAAAAAAAAAEATk5frAQAAAAAAAAAAAAAAAAAAAAAAAAAAAADIPiHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2QEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAZkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAzJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBkSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQDAmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGiGhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAACaISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2QEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAZkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAzJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBkSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQDAmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGiGhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAACaISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2QEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAZkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAzJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBkSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQDAmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGiGhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAACaISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2QEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAZkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAzJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBkSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQDAmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGiGhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAACaISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2QEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAZkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAzJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBkSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQDAmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGiGhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAACaISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2QEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAZkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAzJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBkSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQDAmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGiGhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAACaISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2QEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAZkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAzJIQaAAAAAAAAAAAAAAAAAAAAAACgiSotK21UfQAAAIDGRQg1AAAAAAAAAAAAAAAAAAAANAGpVCqGDBkSSZJUeg0ZMiTX4wEAkAPFJcVx3rTzomhxUZ36FC0uivOmnRfFJcVZmgwAAABoLFrkegAAAAAAAAAAAAAAAAAAAACgehMnToxnnnkm12MAANBIFJcUx8UPXxwL1i6Iee/Ni4iIwt6Fte5TtLgoxswYE2Wpsrj44Ytj2oXTon2r9tkeFwAAAMiRvFwPAAAAAAAAAAAAAAAAAAAAAOzZ22+/HTfccEOuxwAAoJH4eAB1RERZqizGzBgTRYuLatXn4wHUEREL1i6Iix++OIpLirM+MwAAAJAbQqgBAAAAAAAAAAAAAAAAAACgESsrK4vLL788Pvroo1yPAgBAI/DJAOq02gZRfzKAOk0QNQAAADQvQqgBAAAAAAAAAAAAAAAAAACgEbvjjjvi+eefL98+8cQTczgNAAC5tLsA6rSaBlHvLoA6TRA1AAAANB9CqAEAAAAAAAAAAAAAAAAAAKCRWrJkSdx0003l2507d46f/OQnOZwIAIBcqS6AOq26IOrqAqjTBFEDAABA8yCEGgAAAAAAAAAAAAAAAAAAABqhsrKy+OpXvxrbtm0rr91xxx3RtWvXHE4FAEAu1DSAOm13QdQ1DaBOE0QNAAAATZ8QagAAAAAAAAAAAAAAAAAAAGiEfvCDH8RLL71Uvn322WfHJZdcksOJAADIhdoGUKd9Moi6tgHUaYKoAQAAoGkTQg0AAAAAAAAAAAAAAAAAAACNzOLFi2Ps2LHl2+3bt4+f//znOZwIAIBcKC0rjRGPjKh1AHVaOoh65PSRGQVQpy1YuyBGPDIiSstKM1oPAAAA5I4QagAAAAAAAAAAAAAAAAAAAGhESktLY+TIkVFSUlJe+8EPfhAHHXRQDqcCACAX8vPyY1TfUZGXZB4XVZYqiyeWPpFxAHVERF6SF6P6jor8vPyMewAAAAC5IYQaAAAAAAAAAAAAAAAAAAAAGpH//d//jVdeeaV8+5RTTomvfe1rOZwIAIBcKuxdGBPPnFinIOq6yEvyYuKZE6Owd2FOjg8AAADUjRBqAAAAAAAAAAAAAAAAAAAAaCQWLlwY48ePL99u06ZN3HfffbkbCACARiFXQdQCqAEAAKDpE0INAAAAAAAAAAAAAAAAAAAAjcCuXbti5MiRsWPHjvLarbfeGj179szhVAAANBYNHUQtgBoAAACaByHUAAAAAAAAAAAAAAAAAAAA0Ajcdttt8eqrr5Zvf/azn42rr746hxMBANDYNFQQtQBqAAAAaD5a5HoAAAAAAAAAAAAAAAAAAAAA2Nu9/vrrcfPNN5dvt27dOiZNmhR5efUbLljf7rrrrvjZz35W78dZunRpvR8DAKCxSAdDj5kxJspSZVnvL4AaAAAAmhch1AAAAAAAAAAAAAAAAAAAAJBDO3fujJEjR8bOnTvLa+PGjYujjjoqh1Nlx4YNG2LRokW5HgMAoNmpryBqAdQAAADQ/DTtX3kKAAAAAAAAAAAAAAAAAAAATdwtt9wS8+fPL9/u379/XH/99bkbCACAJqGwd2FMPHNi5CXZiZISQA0AAADNkxBqAAAAAAAAAAAAAAAAAAAAyJF58+bFrbfeWr7dsmXLmDRpUuTn5+dwKgAAmorC3oVxSq9TstLrlF6nCKAGAACAZkgINQAAAAAAAAAAAAAAAAAAAOTAjh07YuTIkbFr167y2g033BCf/vSnczgVAABNSdHiopi5bGZWes1cNjOKFhdlpRcAAADQeAihBgAAAAAAAAAAAAAAAAAAgByYMGFCvPHGG+Xbxx13XHz3u9/N4UQAADQlRYuLYsyMMVGWKstKv7JUWYyZMUYQNQAAADQzLXI9AAAAAAAAAAAAAAAAAAAAAOxt5s6dG//7v/9bvp2fnx+TJk2KgoKCHE6VfV26dIljjjmm3o+zdOnSKCkpqffjAAA0FtkOoE5LB1FHRBT2LsxqbwAAACA3hFADAAAAAAAAAAAAAAAAAABAAyopKYmvfvWrsWvXrvLaN7/5zRg4cGAOp6ofo0ePjtGjR9f7cY499thYtGhRvR8HAKAxqK8A6jRB1AAAANC85OV6AAAAAAAAAAAAAAAAAAAAANib3HnnnbFw4cLy7SOOOCImTJiQw4kAAGgq6juAOi0dRF20uKhejwMAAADUvxa5HgAAAAAAAAAAAAAAAAAAAAD2JmvWrKmwvXnz5jjppJNqvH7Hjh2VanPnzo2+fftWqs+fP7+24wEA0Eg1VAB1WjqIOiKisHdhgxwTAAAAyD4h1AAAAAAAAAAAAAAAAAAAAJBDa9eujbVr19apx9atW2PBggVZmggAgMamoQOo0wRRAwAAQNOXl+sBAAAAAAAAAAAAAAAAAAAAAAAAqFquAqjT0kHURYuLcnJ8AAAAoG6EUAMAAAAAAAAAAAAAAAAAAAAAADRCpWWlMWn+pDoFUOcleXHqYadGXpJ55FRZqiwmzZ8UpWWlGfcAAAAAckMINQAAAAAAAAAAAAAAAAAAADSgO+64I1KpVMav5cuXV+r5hS98ocp9AQBo2vLz8mPq+VOjT/c+Ga3PS/Ji4pkT41fn/Somnjkx4yDqPt37xNTzp0Z+Xn5G6wEAAIDcEUINAAAAAAAAAAAAAAAAAAAAAADQSLVv1T6mXTit1kHU6QDqwt6FERFR2LswoyDqPt37xLQLp0X7Vu1rtQ4AAABoHIRQAwAAAAAAAAAAAAAAAAAAAAAANGK1DaL+ZAB1Wm2DqAVQAwAAQNMnhBoAAAAAAAAAAAAAAAAAAAAAAKCRq2kQ9e4CqNNqGkQtgBoAAACaByHUAAAAAAAAAAAAAAAAAAAAAAAATUB1QdTVBVCnVRdELYAaAAAAmg8h1AAAAAAAAAAAAAAAAAAAAAAAAE3E7oKoaxpAnba7IGoB1AAAANC8CKEGAAAAAAAAAAAAAAAAAAAAAABoQj4ZRF3bAOq0TwZRC6AGAACA5qdFrgcAAAAAAAAAAJq3DRs2xCuvvBJLly6N4uLiaNmyZXTu3DmOOeaYGDBgQLRs2TLXIzZ6K1asiDfeeCPeeeedKC4ujlQqFW3bto0DDzwwDjvssDjmmGOiVatWuR4TAAAAAAAAAAAAaEDpIOoRj4yIUX1H1TqAOi29btL8STH1/KkCqAEAAKCZEUINAAAAAAAAANSLhx9+OO6888544YUXIpVKVblPu3bt4qKLLopvf/vbceSRRzbwhJWlUql466234tVXX425c+fG3LlzY968ebF58+YK+40cOTJ++ctf1ussq1atinvvvTceeuihePvtt/e4b0FBQfTt2zdOO+20OP/886Nfv371OhsAAAAAAAAAAADQOLRv1T6mXzw98vPy69SnsHdhnHvUuXXuAwAAADQ+QqgBAAAAAAAAgKxavXp1jBgxIp555plq9928eXPcf//9MWXKlLjpppvipptuiiRJGmDKf3rkkUdi9uzZMXfu3Hjttddi06ZNDXr8T9q+fXuMHz8+7rzzzti+fXuN1uzYsSPmzJkTc+bMiZdeeimefPLJep4SAAAAAAAAgFzq0aPHbn8hNAAAe59sBUcLoAYAAIDmSQg1AAAAAAAAAJA1S5YsiSFDhsR7771Xq3U7duyIsWPHxuLFi2PKlCmRn99wDzGMGjUq58HTacuXL49zzjknFi5cmOtRAAAAAAAAAAAAAAAAAIBmQAg1AAAAAAAAAJAV77//fpx66qlVBlD3798/hg8fHj179oxt27bFkiVL4sEHH4w1a9ZU2O+hhx6Krl27xh133NFAUzcef/vb3+ILX/hCrFu3rtJ73bp1i7POOit69+4dXbt2jX333Tc2btwYK1eujNdffz1eeOGF+Pvf/56DqQEAAAAAAAAAAAAAAACAxkwINQAAAAAAAACQFf/2b/8WK1asqFBr165dPPDAA3HuuedW2v/WW2+NW2+9NcaPH1+hfuedd8bpp58eZ555Zn2OW63OnTtH//79Y7/99otp06bV67HWr18fp512WqUA6iOOOCJ++MMfxhe/+MVIkmS368vKymLOnDkxZcqUWLt2bb3OCgAAAAAAAAAAAAAAAAA0HUKoAQAAAAAAAIA6e+KJJ+KRRx6pUCsoKIinnnoqBgwYUOWali1bxrhx46Jjx47xH//xHxXeu+aaa2Lx4sXRokXDfLWhQ4cOccIJJ8SAAQNi4MCBMWDAgOjZs2dERMyaNateQ6hTqVRceumllQK8L7roopgyZUoUFBRU2yMvLy8GDRoUgwYNilQqVV+jAgAAAAAAAAAAAAAAAABNjBBqAAAAAAAAAKDObr755kq1cePG7TaA+uOuvfba+POf/xxPPPFEee3tt9+OBx98MC677LKszlmVefPmRY8ePSJJkno/VlWmTJkSjz/+eIVaYWFhPPjgg5Gfn1/rfrn6HAAAAAAAAAAAAAAAAABA45OX6wEAAAAAAAAAgKZt4cKF8dxzz1Wo7b///nHdddfVuMdtt91WqXb33XfXebaa6NmzZ86Cm0tKSuKGG26oUOvcuXPce++9GQVQAwAAAAAAAAAAAAAAAAB8nBBqAAAAAAAAAKBOfvOb31SqXX755VFQUFDjHv3794/+/ftXqM2ePTuWL19e5/kaswceeCDWrFlToTZ27NjYf//9czQRAAAAAAAAAAAAAAAAANCcCKEGAAAAAAAAAOrkL3/5S6XahRdeWOs+Va2pqndz8otf/KLCdkFBQVxyySU5mgYAAAAAAAAAAAAAAAAAaG6EUAMAAAAAAAAAGdu6dWu89tprFWr77rtvnHDCCbXu9fnPf75S7bnnnst4tsZu5cqVMXv27Aq10047LTp16pSjiQAAAAAAAAAAAAAAAACA5kYINQAAAAAAAACQsfnz50dZWVmF2oABA6JFixa17jVw4MBo2bJlhdqrr75ap/kasyeffLJSbdCgQTmYBAAAAAAAAAAAAAAAAABoroRQAwAAAAAAAAAZe/PNNyvVDj/88Ix6FRQUxEEHHVShtnTp0ti1a1dG/Rq7F154oVKtb9++5T+nUql47LHH4oorrojjjjsu2rVrFwUFBdG9e/c4/vjj49JLL41f//rX8f777zfg1AAAAAAAAAAAAAAAAABAU9Ii1wMAAAAAAAAAAE3XO++8U6l26KGHZtzvkEMOieXLl5dvl5aWxooVK6JXr14Z92ys3njjjUq1I444IiIi/vrXv8bIkSPjtddeq7TPunXrYt26dfHXv/41HnjggWjbtm1ce+21cf3110eHDh3qfW4AAAAAAAAAAAAAAAAAoOkQQg0AAAAAAAAAZGzt2rWVagcffHDG/apau27dumYZQr1s2bJKtQ4dOsSkSZPiqquuipKSkhr12bJlS3zve9+L3/3ud/GnP/0pjjzyyGyPWid33XVX/OxnP6v34yxdurTejwEAAAAAAAAAAAAAAAAATY0QagAAAAAAAAAgYx988EGlWtu2bTPuV9Xa999/P+N+jdXOnTur/FxPPfVUfO1rX4uysrIK9Xbt2kX37t2jtLQ03nvvvdi2bVultUuWLIlBgwbFiy++GEcffXS9zV5bGzZsiEWLFuV6DAAAAAAAAAAAAAAAAADYK+XlegAAAAAAAAAAoOnaunVrpdo+++yTcb+q1n700UcZ92usNm7cGKlUqlL9iiuuKA+gTpIkLr300nj55Zdj06ZNsWTJkli6dGkUFxfHU089Faeffnql9R9++GFccMEFVZ4XAAAAAAAAAAAAAAAAAGDvI4QaAAAAAAAAAMjYzp07K9Vat26dcb+qQqh37NiRcb/GqqSkpMr6tm3bIuIff4ZFRUXx61//Oj7zmc9EkiTl+7Ro0SKGDh0af/nLX+InP/lJhfciIhYtWhQ333xz/Q0PAAAAAAAAAAAAAAAAADQZQqgBAAAAAAAAgKz6ZChyXdemUqm6jNMoVfeZ7rnnnhg+fHi1fcaMGRPf/e53K9Xvvvvu2LhxY6bjAQAAAAAAAAAAAAAAAADNhBBqAAAAAAAAACBjLVu2rFTbtm1bxv2qWltQUJBxv8aqqj+3tCFDhsRll11W415jx46Nnj3/P3v3Gl11feeL/5OEhEu4lotoixLwMoCIQGhrRYoi3oVSKbrKqQVtPboA21MZ5zjjEhzmCD1nWqFeuuq1Fy9lhgHRVsQrClqKQcAOYJEAAipCUQz3kMv/wfmHM7s7lGTnspPN67VWHuz37/f9fD/J4hnhTUFCVlJSEr/97W9T3g8AAAAAAAAAAAAAAAAAyAwt0r0AAAAAAAAAANB8tWnTJimr7xLq/Pz8lOc1VX/re5oyZUqtZuXm5sZ//+//Pf7n//yfCfmSJUvi5ptvTmm/+tS1a9fo27dvg99TXFwchw8fbvB7AAAAAAAAAAAAAAAAAKA5UUINAAAAAAAAAKSsc+fOSdm+fftSnlfd2eruaO7atWsXeXl5UVpampBnZ2fHxRdfXOt5l1xySVIJ9bJly+q0Y32ZNGlSTJo0qcHv6devX6xbt67B7wEAAAAAAAAAAAAAAACA5iQ73QsAAAAAAAAAAM3XSSedlJRt37495Xnbtm2r0R2ZoHv37klZr169on379rWedc4550ROTk5CtmPHjqisrEx5PwAAAAAAAAAAAAAAAACg+VNCDQAAAAAAAACkrKCgICn74IMPUp63devWhM85OTlx6qmnpjyvKevVq1dS1rlz55Rm5eTkRIcOHRKy8vLy2LNnT0rzAAAAAAAAAAAAAAAAAIDMoIQaAAAAAAAAAEjZWWedlZRt3LgxpVmlpaWxbdu2hKx3797RokWLlOY1dX369EnKWrZsmfK8Vq1aJWWHDh1KeR4AAAAAAAAAAAAAAAAA0PwpoQYAAAAAAAAAUjZw4MDIzk789YOioqIoKyur9ayioqI4cuRIQjZo0KA67deUDRkyJCn7/PPPU563Z8+epKxz584pzwMAAAAAAAAAAAAAAAAAmj8l1AAAAAAAAABAyvLz82PgwIEJ2f79+2PVqlW1nrVs2bKkbNiwYSnv1tQNHz48Kfvggw+isrKy1rN27doVBw4cSMjat28feXl5qa4HAAAAAAAAAAAAAAAAAGQAJdQAAAAAAAAAQJ1cdtllSdm8efNqPae6M9XNzhQFBQXRp0+fhGzPnj2xbt26Ws966623krK/LgcHAAAAAAAAAAAAAAAAAE48SqgBAAAAAAAAgDq57rrrkrLHH388SktLazxj1apV8fbbbydkX/nKV6KgoKDO+zVl/+2//bek7De/+U2t5/z6179OykaMGJHSTgAAAAAAAAAAAAAAAABA5lBCDQAAAAAAAADUydlnnx1Dhw5NyHbt2hX33ntvjWfccccdSdktt9xS592auhtvvDFat26dkP3iF7+Ijz76qMYz3nnnnVi4cGFClpWVFddcc0297AgAAAAAAAAAAAAAAAAANF9KqAEAAAAAAACAOrvzzjuTsmnTpsU777xz3LP3339/LF68OCHr1atXfPvb367R3T179oysrKyEryVLltTobLqddNJJMWnSpIRsz549MX78+Dh48OBxz+/cuTPGjx8f5eXlCfk111wTffv2rdddAQAAAAAAAAAAAAAAAIDmRwk1AAAAAAAAAFBnl156aYwePTohO3z4cFx44YXx3HPPVXvmyJEjMWPGjJgyZUrSs5/97GeRm5vbILs2NdOmTYtTTz01IVuyZEmMGDEi3nvvvWOee+utt+KCCy5Ieqdt27bxL//yLw2yKwAAAAAAAAAAAAAAAADQvLRI9wIAAAAAAAAAQGZ4+OGHY+XKlbF9+/ajWUlJSYwaNSoKCwtj9OjRUVBQEAcPHoz3338/nnzyyfjwww+T5kyePDmuvPLKRtu7qKgovve97x3z+b59+5KyZ599Ns4999xjniksLIxHHnmkRve3bds2/v3f/z2GDRsWhw8fPpr/4Q9/iP79+8fIkSNjxIgRccopp0R5eXls3bo1XnjhhVi6dGm18375y1/GWWedVaO7AQAAAAAAAAAAAAAAAIDMpoQaAAAAAAAAAKgXXbt2jRdffDEuuuii2LFjR8KzoqKiKCoqOu6McePGxezZsxtow+rt27cv1qxZU6szn332WXz22WfHfN6xY8dazfvyl78czzzzTHzzm9+MgwcPHs3Lyspi0aJFsWjRouPOyMvLiwceeCCuueaaWt0NAAAAAAAAAAAAAAAAAGSu7HQvAAAAAAAAAABkjj59+sSKFSti6NChtTqXm5sb06ZNi6effjpycnIaaLum7bLLLos//OEPcfbZZ9f67BlnnBGvvvpqfO9732uAzQAAAAAAAAAAAAAAAACA5koJNQAAAAAAAABQr3r06BFvvPFGzJ07N772ta9FVlbWMd9t27ZtTJw4Md59992YPn16ZGef2L/KMGDAgFi9enU8/vjj8eUvf/lv/uxycnLivPPOi1/+8pexfv36OP/88xtxUwAAAAAAAAAAAAAAAACgOWiR7gUAAAAAAAAAgMyTlZUV48aNi3HjxsXOnTtjxYoVsWnTpigpKYkWLVpEly5dok+fPjFkyJDIy8ur011btmyp0/nhw4dHZWVlnWbUp5ycnJgwYUJMmDAhPvnkkygqKjr6s8vLy4suXbrEKaecEuedd160b98+3esCAAAAAAAAAAAAAAAAAE2YEmoAAAAAAAAAoEF169YtrrrqqnSv0SyddNJJceWVV6Z7DQAAAAAAAAAAAAAAAACgmcpO9wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1D8l1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAZSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAGQgJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAGUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIGUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAABkICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAABlICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABABlJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCBlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCAl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAZSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAGQgJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAGUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIGUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAABkICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAABlICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABABlJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCBlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCAl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAZSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQgZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAGQgJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAGUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIFapHsBTgy7du2Kt99+O4qLi6OkpCRyc3Ojc+fO0bdv3ygsLIzc3Nx0r5hgx44dsXnz5ti2bVvs3Lkz9u/fH0eOHIn27dtHhw4domfPnjFw4MBo3759ulcFAAAAAAAAAAAAAAAAAAAAAAAAAACAaimhpkHNmzcv5syZE2+++WZUVlZW+067du1i3Lhxcfvtt8eZZ57ZyBtG7NmzJ5YtWxZvvvlm/PGPf4w//elP8Ze//OW457KysqJ///5x/fXXx3e+853o1q1bI2wb8dhjj8WNN95Y7bPNmzdHz549G2UPAAAAAAAAAAAAAAAAAAAAAAAAAAAAmrbsdC9AZvrwww9j+PDh8a1vfSuWLVt2zALqiIi9e/fGo48+Gv37948ZM2b8zXcbwqxZs+Lqq6+OWbNmxWuvvVajAuqIiMrKynj33Xdj6tSp0bt37/jpT38aZWVlDbrr9u3b40c/+lGD3gEAAAAAAAAAAAAAAAAAAAAAAAAAAEBmUEJNvduwYUMMGTIkXn/99VqdKy0tjbvuuivGjx8f5eXlDbRdw9i3b1/cdtttcdVVV8XBgwcb7J4bb7wxPv/88wabDwAAAAAAAAAAAAAAAAAAAAAAAAAAQOZoke4FyCy7d++OkSNHxscff5z0bPDgwTF69OgoKCiIgwcPxoYNG+Kpp56Kjz76KOG9p59+Orp16xazZ89upK0T5efnx6BBg+Kss86K008/Pbp27Rrt2rWL8vLyKCkpiQ0bNsRbb70Vy5cvj8rKyoSzixcvjjFjxsSiRYsiKyurXvd66KGH4sUXX6zXmQAAAAAAAAAAAAAAAAAAAAAAAAAAAGQuJdTUq5tuuim2bt2akLVr1y6eeOKJGDVqVNL799xzT9xzzz0xffr0hHzOnDlx6aWXxuWXX96Q60ZERMuWLeOiiy6Kyy+/PEaMGBHnnHNO5OTkHPfcxo0b40c/+lE899xzCfnixYvj4Ycfjptuuqnedvzggw9i6tSpRz936NAhunfvHn/+85/r7Q4AAAAAAAAAAAAAAAAAAAAAAAAAAAAyS3a6FyBzvPTSSzF//vyELC8vL1599dVqC6gjInJzc2PatGkxe/bspGe33nprlJWVNcSqCe6+++545ZVXYurUqTFw4MAaFVBHRJx++umxcOHCuOWWW5KezZo1q972q6ysjBtvvDH27t17NPvJT34S3bt3r7c7AAAAAAAAAAAAAAAAAAAAAAAAAAAAyDxKqKk3M2bMSMqmTZsWhYWFxz37gx/8IEaOHJmQbdy4MZ566ql6268hZGVlxb333hunnXZaQr558+YoKiqqlzt+/vOfxyuvvHL088UXXxw33nhjvcwGAAAAAAAAAAAAAAAAAAAAAAAAAAAgcymhpl6sXbs2li5dmpB16dIlpk6dWuMZM2fOTMp+/vOf13m3htayZcsYO3ZsUr5u3bo6z968eXPcfvvtRz/n5+fHww8/XOe5AAAAAAAAAAAAAAAAAAAAAAAAAAAAZD4l1NSL3/72t0nZxIkTIy8vr8YzBg8eHIMHD07Ili9fHps3b67zfg2td+/eSdnHH39cp5mVlZUxceLE2L9//9Fs5syZ0bNnzzrNBQAAAAAAAAAAAAAAAAAAAAAAAAAA4MSghJp68cILLyRlY8eOrfWc6s5UN7upOXToUFJWmwLu6tx3333x+uuvH/08dOjQmDx5cp1mAgAAAAAAAAAAAAAAAAAAAAAAAAAAcOJQQk2d7d+/P955552ErE2bNjFo0KBaz7rggguSsqVLl6a8W2N5++23k7LevXunPK+4uDjuuOOOo59btWoVjz76aGRlZaU8EwAAAAAAAAAAAAAAAAAAAAAAAAAAgBOLEmrqbPXq1VFRUZGQFRYWRosWLWo9a8iQIZGbm5uQrVy5sk77NbT3338/FixYkJC1atUqhg0bltK8ioqKmDhxYhw4cOBodvfdd8eZZ55Zpz0BAAAAAAAAAAAAAAAAAAAAAAAAAAA4sSihps7ee++9pOz0009PaVZeXl586UtfSsiKi4ujrKwspXkNbdOmTXH11VfHoUOHEvKJEydGx44dU5o5Z86cWLp06dHPhYWFcdttt9VlTQAAAAAAAAAAAAAAAAAAAAAAAAAAAE5ASqipsy1btiRlp512WsrzTj311ITP5eXlsXXr1pTn1bfDhw/H8uXL44c//GH069cv/vznPyc8LygoiJkzZ6Y0e8OGDfFP//RPRz/n5ubGY489Fjk5OXXaGQAAAAAAAAAAAAAAAAAAAAAAAAAAgBNPi3QvQPO3Y8eOpKxHjx4pz6vu7CeffBK9evVKeWZtvfzyyzF16tSErKysLPbu3RsfffRRlJWVVXvujDPOiBdffDE6dOhQ6zsrKipiwoQJcfDgwaPZP/3TP0X//v1rPaupeeCBB+LBBx9s8HuKi4sb/A4AAAAAAAAAAAAAAAAAAAAAAAAAAIDmQgk1dfbpp58mZW3btk15XnVnd+/enfK8VOzZsyfWrFlT4/fz8/Pj5ptvjrvvvjvy8/NTuvMnP/lJ/OEPfzj6uX///vGP//iPKc1qanbt2hXr1q1L9xoAAAAAAAAAAAAAAAAAAAAAAAAAAAAnFCXU1Nn+/fuTstatW6c8r7qzBw4cSHleQ8rKyoobb7wx7rnnnujatWvKc9avXx933XXX0c85OTnx2GOPRW5ubn2sCQAAAAAAAAAAAAAAAAAAAAAAAAAAwAkoO90L0PwdOXIkKWvVqlXK86oroS4tLU15XkOqrKyMRx55JM4+++y4++67Y+/evbWeUV5eHhMmTIhDhw4dzaZOnRqFhYX1uSoAAAAAAAAAAAAAAAAAAAAAAAAAAAAnGCXUNIisrKx6PVtZWVmXdWpt7NixUVlZmfC1f//++PDDD+Pll1+Ou+++OwoKCo6+v3Pnzpg+fXqcc8458cc//rFWd/3v//2/Y8WKFUc/n3XWWTF9+vT6+lYAAAAAAAAAAAAAAAAAAAAAAAAAAAA4QSmhps5yc3OTsoMHD6Y8r7qzeXl5Kc+rL23atIlTTjklRowYEXfddVcUFxfH/fffH/n5+Uff2bJlS1x88cXx1ltv1Wjm2rVrEwqns7Ky4tFHH41WrVrV9/oAAAAAAAAAAAAAAAAAAAAAAAAAAACcYFqkewGavzZt2iRl9V1C/V+LnpuKrKysmDRpUvTv3z8uu+yyo3vv27cvrr322nj33XejU6dOxzxfVlYW3/3ud6O0tPRoNnny5Dj//PMbfPfG1rVr1+jbt2+D31NcXByHDx9u8HsAAAAAAAAAAAAAAAAAAAAAAAAAAACaAyXU1Fnnzp2Tsn379qU8r7qz1d3RVAwbNiymT58e//AP/3A02759e/zkJz+Jf/mXfznmuVmzZsXKlSuPfu7Zs2fMnDmzQXdNl0mTJsWkSZMa/J5+/frFunXrGvweAAAAAAAAAAAAAAAAAAAAAAAAAACA5iA73QvQ/J100klJ2fbt21Oet23bthrd0ZT84Ac/iHbt2iVkDz30UFRWVlb7/vbt22PGjBkJ2cMPPxz5+fkNtiMAAAAAAAAAAAAAAAAAAAAAAAAAAAAnlhbpXoDmr6CgICn74IMPUp63devWhM85OTlx6qmnpjyvMbRs2TIuuuiiWLhw4dFs165dsW7duujXr1/S+3/5y1+itLT06Oe8vLyYOnVqre7cuHFjUnbFFVdEXl5eQvbP//zPMWrUqFrNBgAAAAAAAAAAAAAAAAAAAAAAAAAAoPlTQk2dnXXWWUlZdQXJNVFaWhrbtm1LyHr37h0tWjT9P6o9e/ZMyjZt2lRtCfVfKy0tjTVr1tR5h/Xr1ydln376aZ3nAgAAAAAAAAAAAAAAAAAAAAAAAAAA0Pxkp3sBmr+BAwdGdnbiH6WioqIoKyur9ayioqI4cuRIQjZo0KA67ddYWrVqlZTt3bs3DZsAAAAAAAAAAAAAAAAAAAAAAAAAAACAEmrqQX5+fgwcODAh279/f6xatarWs5YtW5aUDRs2LOXdGtPOnTuTsi5duqRhEwAAAAAAAAAAAAAAAAAAAADgRFFeUd6k5gAAAADQtCihpl5cdtllSdm8efNqPae6M9XNboqWL1+elHXv3r3ad88999yorKys09fXv/71pLmbN29Oem/ChAn1/a0CAAAAAAAAAAAAAAAAAAAAAE1AyeGS+Mbcb8SC9QvqNGfB+gXxjbnfiJLDJfW0GQAAAABNhRJq6sV1112XlD3++ONRWlpa4xmrVq2Kt99+OyH7yle+EgUFBXXer6GtXr061q9fn5B17Ngx+vTpk6aNAAAAAAAAAAAAAAAAAAAAAIBMVnK4JK6dd22s/GhlTFk0JeUi6gXrF8SURVNi5Ucr49p51yqiBgAAAMgwSqipF2effXYMHTo0Idu1a1fce++9NZ5xxx13JGW33HJLnXdraOXl5XHrrbcm5VdeeWXk5uamYSMAAAAAAAAAAAAAAAAAAAAAIJNVFVCv2bEmIiIqKitSKqKuKqCuqKyIiIg1O9YoogYAAADIMEqoqTd33nlnUjZt2rR45513jnv2/vvvj8WLFydkvXr1im9/+9s1urtnz56RlZWV8LVkyZLjnrvvvvvipZdeqtEd1Tl8+HCMHz8+li5dmpBnZWXF5MmTU54LAAAAAAAAAAAAAAAAAAAAAFCdvy6grlLbIuq/LqCuoogaAAAAILMooabeXHrppTF69OiE7PDhw3HhhRfGc889V+2ZI0eOxIwZM2LKlClJz372s59Fbm5ug+xaZeXKlXHJJZfEeeedFw8++GB88sknNTp35MiRmD9/fvTv3z/mzp2b9Pz73/9+fPWrX63vdQEAAAAAAAAAAAAAAAAAAACAE9ixCqir1LSI+lgF1FUUUQMAAABkjhbpXoDM8vDDD8fKlStj+/btR7OSkpIYNWpUFBYWxujRo6OgoCAOHjwY77//fjz55JPx4YcfJs2ZPHlyXHnllY229/Lly2P58uUxZcqU6NOnTwwcODD69u0bX/jCF6Jjx46RlZUVJSUl8dFHH8Xq1avjjTfeiN27d1c768ILL4yf/vSnjbY7AAAAAAAAAAAAAAAAAAAAAJD5jldAXaWqiDoiYkyfMUnPj1dAXaWqiHru2LnRvmX71BcHAAAAIK2UUFOvunbtGi+++GJcdNFFsWPHjoRnRUVFUVRUdNwZ48aNi9mzZzfQhn9bRUVFrF27NtauXZvS+W984xvx1FNPRevWret5MwAAAAAAAAAAAAAAAAAAAADgRFXTAuoqxyqirmkBdRVF1AAAAADNX3a6FyDz9OnTJ1asWBFDhw6t1bnc3NyYNm1aPP3005GTk9NA2yXKz8+vlzk9evSIefPmxYIFCxRQAwAAAAAAAAAAAAAAAAAAAAD1prYF1FWqiqgXrF8QEbUvoK5SVURdcrikVucAAAAAaBqUUNMgevToEW+88UbMnTs3vva1r0VWVtYx323btm1MnDgx3n333Zg+fXpkZzfeH8sHHngg1q5dG//6r/8aV199dXTv3r3GZ0866aS47rrr4vnnn4/NmzfHNddc04CbAgAAAAAAAAAAAAAAAAAAAAAnmvKK8hg/f3ytC6irVBVRf/eZ76ZUQF1lzY41MX7++CivKE/pPAAAAADp0yLdC5C5srKyYty4cTFu3LjYuXNnrFixIjZt2hQlJSXRokWL6NKlS/Tp0yeGDBkSeXl5dbpry5YtKZ/t27dv9O3bN2677baIiPj444+juLg4tmzZEp9++mns378/Kisro127dtGhQ4fo1q1bDBgwIE4++eQ67VxXS5YsSev9AAAAAAAAAAAAAAAAAAAAAEDDysnOiRvOvSFWfbwq5QLpisqKeKn4pTrtkZ2VHTece0PkZOfUaQ4AAAAAjU8JNY2iW7ducdVVV6V7jRo5+eST4+STT46hQ4emexUAAAAAAAAAAAAAAAAAAAAA4AQ3ps+YiIiYsmhKykXUdZGdlR33XX7f0T0AAAAAaF6y070AAAAAAAAAAAAAAAAAAAAAAABwbGP6jIn7Lr8vsrMatzJIATUAAABA86eEGgAAAAAAAAAAAAAAAAAAAAAAmrjGLqJWQA0AAACQGZRQAwAAAAAAAAAAAAAAAAAAAABAM9BYRdQKqAEAAAAyhxJqAAAAAAAAAAAAAAAAAAAAAABoJhq6iFoBNQAAAEBmUUINAAAAAAAAAAAAAAAAAAAAAADNSEMVUSugBgAAAMg8SqgBAAAAAAAAAAAAAAAAAAAAAKCZqe8iagXUAAAAAJlJCTUAAAAAAAAAAAAAAAAAAAAAADRDY/qMiRG9RtTLrBG9RiigBgAAAMhASqgBAAAAAAAAAAAAAAAAAAAAAKAZWrB+Qbyy6ZV6mfXKpldiwfoF9TILAAAAgKZDCTUAAAAAAAAAAAAAAAAAAAAAADQzC9YviCmLpkRFZUW9zKuorIgpi6YoogYAAADIMEqoAQAAAAAAAAAAAAAAAAAAAACgGanvAuoqiqgBAAAAMo8SagAAAAAAAAAAAAAAAAAAAAAAaCYaqoC6iiJqAAAAgMyihBoAAAAAAAAAAAAAAAAAAAAAAJqBhi6grqKIGgAAACBzKKEGAAAAAAAAAAAAAAAAAAAAAIAmrrEKqKsoogYAAADIDEqoAQAAAAAAAAAAAAAAAAAAAACgCWvsAuoqiqgBAAAAmj8l1AAAAAAAAAAAAAAAAAAAAAAA0ESlq4C6iiJqAAAAgOZNCTUAAAAAAAAAAAAAAAAAAAAAADRB5RXl8djqx+pUQJ2dlR0je4+M7KzU64YqKivisdWPRXlFecozAAAAAEgPJdQAAAAAAAAAAAAAAAAAAAAAANAE5WTnxJPffDIGdB+Q0vnsrOy47/L74lff+FXcd/l9KRdRD+g+IJ785pORk52T0nkAAAAA0kcJNQAAAAAAAAAAAAAAAAAAAAAANFHtW7aPuWPn1rqIuqqAekyfMRERMabPmJSKqAd0HxBzx86N9i3b1+ocAAAAAE2DEmoAAAAAAAAAAAAAAAAAAAAAAGjCaltE/dcF1FVqW0StgBoAAACg+VNCDQAAAAAAAAAAAAAAAAAAAAAATVxNi6iPVUBdpaZF1AqoAQAAADKDEmoAAAAAAAAAAAAAAAAAAAAAAGgGjldEfbwC6irHK6JWQA0AAACQOZRQAwAAAAAAAAAAAAAAAAAAAABAM3GsIuqaFlBXOVYRtQJqAAAAgMyihBoAAAAAAAAAAAAAAAAAAAAAAJqRvy6irm0BdZW/LqJWQA0AAACQeVqkewEAAAAAAAAAAAAAAAAAAAAAAKB2qoqox88fHzece0OtC6irVJ17bPVj8eQ3n1RADQAAAJBhlFADAAAAAAAAAAAAAAAAAAAAAEAz1L5l+3jm2mciJzunTnPG9BkTo84aVec5AAAAADQ92eleAAAAAAAAAAAAAAAAAAAAAAAASE19FUcroAYAAADITEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAADKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACADKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACADKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEBKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAykBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAykhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAymhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhASqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAADIQEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAADKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACADKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACADKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEBKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAykBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAykhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAymhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhASqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAADIQEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAADKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACADKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACADKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEBKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAykBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAykhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAymhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhASqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAADIQEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAADKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACADKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACADKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEBKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAykBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAykhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAymhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhASqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAADIQEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAADKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACADKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACADKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEBKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAykBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAykhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAymhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhASqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAADIQEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAADKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACADKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACADKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEBKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAykBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAykhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAymhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhASqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAMpASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAADIQEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAADKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACADKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACADKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEBKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAykBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAzUIt0LAAAAAAAAAACZbdeuXfH2229HcXFxlJSURG5ubnTu3Dn69u0bhYWFkZubm+4VAQAAAAAAAAAAAAAAAAAykhJqAAAAAAAAAKBBzJs3L+bMmRNvvvlmVFZWVvtOu3btYty4cXH77bfHmWee2cgbJqusrIz3338/Vq5cGUVFRVFUVBSrVq2KvXv3Jrz33e9+N375y1/W+b4lS5bEhRdeWOc5VT7++OPo3r17vc0DAAAAAAAAAAAAAAAAAJo3JdQAAAAAAAAAQL368MMPY/z48fH6668f9929e/fGo48+Gr/5zW/izjvvjDvvvDOysrIaYcv/Z/78+bF8+fIoKiqKd955Jz7//PNGvR8AAAAAAAAAAAAAAAAAoKEooQYAAAAAAAAA6s2GDRti+PDh8fHHH9fqXGlpadx1112xfv36+M1vfhM5OTkNtGGyG264QfE0AAAAAAAAAAAAAAAAAJCRlFADAAAAAAAAAPVi9+7dMXLkyGoLqAcPHhyjR4+OgoKCOHjwYGzYsCGeeuqp+OijjxLee/rpp6Nbt24xe/bsRtq66endu3e0bds2pbO5ubn1vA0AAAAAAAAAAAAAAAAA0JwpoQYAAAAAAAAA6sVNN90UW7duTcjatWsXTzzxRIwaNSrp/XvuuSfuueeemD59ekI+Z86cuPTSS+Pyyy9vyHWPq3PnzjF48ODo1KlTzJ07t9HufeSRR2L48OGNdh8AAAAAAAAAAAAAAAAAkLmUUAMAAAAAAAAAdfbSSy/F/PnzE7K8vLx49dVXo7CwsNozubm5MW3atOjYsWP88Ic/THh26623xvr166NFi8b51YYOHTrEoEGDorCwMIYMGRKFhYVRUFAQERFLlixp1BJqAAAAAAAAAAAAAAAAAID6ooQaAAAAAAAAAKizGTNmJGXTpk07ZgH1f/WDH/wgfv/738dLL710NNu4cWM89dRTcf3119frntVZtWpV9OzZM7Kyshr8LgAAAAAAAAAAAAAAAACAxpSd7gUAAAAAAAAAgOZt7dq1sXTp0oSsS5cuMXXq1BrPmDlzZlL285//vM671URBQYECagAAAAAAAAAAAAAAAAAgIymhBgAAAAAAAADq5Le//W1SNnHixMjLy6vxjMGDB8fgwYMTsuXLl8fmzZvrvB8AAAAAAAAAAAAAAAAAwIlKCTUAAAAAAAAAUCcvvPBCUjZ27Nhaz6nuTHWzAQAAAAAAAAAAAAAAAACoGSXUAAAAAAAAAEDK9u/fH++8805C1qZNmxg0aFCtZ11wwQVJ2dKlS1PeDQAAAAAAAAAAAAAAAADgRKeEGgAAAAAAAABI2erVq6OioiIhKywsjBYtWtR61pAhQyI3NzchW7lyZZ32AwAAAAAAAAAAAAAAAAA4kdX+X3wCAAAAAAAAAPz/3nvvvaTs9NNPT2lWXl5efOlLX4rNmzcfzYqLi6OsrCylUuvmauHChfHrX/86ioqKYseOHbFnz55o27ZtdO7cOU4++eT42te+FhdccEGMGDEiWrVqle51AQAAAAAAAAAAAAAAAIAm7MT5F5oAAAAAAAAAQL3bsmVLUnbaaaelPO/UU09NKKEuLy+PrVu3Rq9evVKe2dzMnj07Kfvss8/is88+i40bN8bSpUvjxz/+cZx00kkxZcqUmDx5cnTo0KHxFwUAAAAAAAAAAAAAAAAAmjwl1AAAAAAAAABAynbs2JGU9ejRI+V51Z395JNPTqgS6pr65JNP4s4774yHHnoo5s6dG1/96lfTvVK1HnjggXjwwQcb/J7i4uIGvwMAAAAAAAAAAAAAAAAAmhsl1AAAAAAAAABAyj799NOkrG3btinPq+7s7t27U57XXLVu3Tq6dOkS7du3j/3798fu3btj79691b67devWGDZsWPz617+O6667rpE3Pb5du3bFunXr0r0GAAAAAAAAAABkrPKK8sjJzmkycwAAAACApkUJNQAAAAAAAACQsv379ydlrVu3TnledWcPHDiQ8rzmonPnznHFFVfEFVdcEYWFhdGrV6/Izs5OeOf999+Pl19+Oe67775Yv359wrMjR47EhAkT4otf/GJccMEFjbk6AAAAAAAAAA1g27ZtsXbt2ti+fXvs2bMnSktLo1OnTtGpU6f4u7/7u+jfv3/k5CgJBSCi5HBJjJ8/Pm4494YY02dMynMWrF8Qj61+LJ785pPRvmX7etwQAAAAAEg3JdQAAAAAAAAAQMqOHDmSlLVq1SrledWVUJeWlqY8r6k75ZRT4oknnoixY8dGy5Yt/+a7Z5xxRpxxxhlx8803xwMPPBBTp06Nw4cPH31++PDhGDduXGzcuDHy8/MbenUAAAAAAAAA6tF7770XixcvjldffTXeeOON2LNnz998Pz8/P4YPHx4333xzXHHFFUn/0TEAJ4aSwyVx7bxrY82ONbHq41URESkVUS9YvyCmLJoSFZUVce28a2Pu2LmKqAEAAAAgg/ibJAAAAAAAAACgXmVlZdXr2crKyrqs06SdeeaZMX78+OMWUP9XWVlZMXny5Pjd734Xubm5Cc927NgR9957b32vCQAAAAAAAEADOHjwYMyYMSP69+8fffr0iR/+8Ifx7LPPHreAOiJi//798fvf/z6uvvrqOOecc6KoqKjhFwagSfmvBdQRERWVFTFl0ZRYsH5Breb81wLqiIg1O9bEtfOujZLDJfW+MwAAAACQHkqoAQAAAAAAAICU/XUJcsT//UeyqarubF5eXsrzMtnFF18cP/7xj5Pye++9N8rLy9OwEQAAAAAAAAC18cknn8Rdd90V//mf/1mnOWvXro3zzjsv7r///nraDICm7q8LqKvUtoj6rwuoqyiiBgAAAIDM0iLdCwAAAAAAAAAAzVebNm2Ssvouoc7Pz095XqabPHly/OxnP4stW7YczT799NNYsWJFnHfeeelb7L/o2rVr9O3bt8HvKS4ujsOHDzf4PQAAAAAAAACN4fTTT4+vf/3rccYZZ0S3bt0iPz8/Pv3001i9enU8//zzsW3btoT3y8rKYsqUKZGXlxc33XRTmrYGoDEcq4C6SlURdUTEmD5jjjnnWAXUVaqKqOeOnRvtW7av++IAAAAAQNoooQYAAAAAAAAAUta5c+ekbN++fSnPq+5sdXfwf+Xm5sa3vvWt+D//5/8k5K+88kqTKaGeNGlSTJo0qcHv6devX6xbt67B7wEAAAAAAABoKH379o0JEybEt7/97fjiF794zPfKysri8ccfjx/96EdJf88+ZcqUGD58eJx55pkNvS4AaXC8AuoqxyuiPl4BdRVF1AAAAACQGbLTvQAAAAAAAAAA0HyddNJJSdn27dtTnrdt27Ya3cH/M3z48KRs69atjb8IAAAAAAAAACm58MIL4/XXX4+1a9fG3//93//NAuqIiBYtWsT3v//9ePPNN6Njx44Jz0pLS+O2225rwG0BSJeaFlBXqSqiXrB+QUJe0wLqKlVF1CWHS2q9MwAAAADQNCihBgAAAAAAAABSVlBQkJR98MEHKc/76/LknJycOPXUU1OedyI4+eSTk7Jdu3alYRMAAAAAAAAAaqNDhw6xZMmSePXVV2PYsGG1Pn/OOefEI488kpQvWrQo/vKXv9THigA0EbUtoK7y10XUtS2grqKIGgAAAACaNyXUAAAAAAAAAEDKzjrrrKRs48aNKc0qLS2Nbdu2JWS9e/eOFi1apDTvRJGfn5+UHTx4MA2bAAAAAAAAAFAbnTp1iq9//et1mnHNNdfEOeeck5CVl5fHokWL6jQXgKajvKI8xs8fX+sC6ipVRdTffea7KRVQV1mzY02Mnz8+yivKUzoPAAAAAKSPEmoAAAAAAAAAIGUDBw6M7OzEXz8oKiqKsrKyWs8qKiqKI0eOJGSDBg2q034ngl27diVlXbp0ScMmAAAAAAAAAKTD5ZdfnpRt2rQpDZsA0BBysnPihnNviOys1GtiKior4qXil1IuoI6IyM7KjhvOvSFysnNSngEAAAAApIcSagAAAAAAAAAgZfn5+TFw4MCEbP/+/bFq1apaz1q2bFlSNmzYsJR3O1GsX78+KevatWsaNgEAAAAAAAAgHU499dSkbMeOHWnYBICGMqbPmLjv8vvqVERdF9lZ2XHf5ffFmD5j0nI/AAAAAFA3SqgBAAAAAAAAgDq57LLLkrJ58+bVek51Z6qbTaLnn38+KRswYEAaNgEAAAAAAAAgHQ4cOJCUtW7dOg2bANCQ0lVErYAaAAAAAJo/JdQAAAAAAAAAQJ1cd911Sdnjjz8epaWlNZ6xatWqePvttxOyr3zlK1FQUFDn/TLZ+vXr49lnn03IsrKylHcDAAAAAAAAnEA2btyYlJ188slp2ASAhtbYRdQKqAEAAAAgMyihBgAAAAAAAADq5Oyzz46hQ4cmZLt27Yp77723xjPuuOOOpOyWW26p826Z7PDhw/H9738/ysvLE/Lzzz8/unfvnqatAAAAAAAAAGhMZWVlsXDhwqR8yJAhadgGgMbQWEXUCqgBAAAAIHO0SPcCAAAAAAAAAEDzd+edd8Zll12WkE2bNi1GjhwZgwYN+ptn77///li8eHFC1qtXr/j2t79do7t79uwZH3zwQUL22muvxfDhw2t0Pl3mzJkT3/jGN+K0006r9dm9e/fGd77znXjzzTeTnv2v//W/6mM9AAAAAAAAAJqBZ599Nnbs2JGQfeELX0j6z6TT6YEHHogHH3ywwe8pLi5u8DsAmoqqYugpi6ZERWVFvc9XQA0AAAAAmUUJNQAAAAAAAABQZ5deemmMHj06Fi5ceDQ7fPhwXHjhhfHEE0/E1VdfnXTmyJEjMWvWrLjrrruSnv3sZz+L3NzcBt053R5//PGYOnVqfOtb34rrrrsuLrnkkmjVqtXfPFNeXh7z58+Pf/zHf4yNGzcmPb/uuuti2LBhDbUyAAAAAAAAAE3IoUOH4o477kjKJ06cGC1aNJ0qgV27dsW6devSvQZAxmmoImoF1AAAAACQeZrO3xwBAAAAAAAAAM3aww8/HCtXrozt27cfzUpKSmLUqFFRWFgYo0ePjoKCgjh48GC8//778eSTT8aHH36YNGfy5Mlx5ZVXNtreRUVF8b3vfe+Yz/ft25eUPfvss3Huuece80xhYWE88sgjx727rKwsnn766Xj66acjPz8/Bg4cGAMGDIjevXtHx44do127dnHgwIHYvXt3vPPOO/Haa69V+zOLiBg6dGg8/vjjx70TAAAAAAAAgMxwxx13xIYNGxKyTp06xT/8wz+kaSMAGlt9F1EroAYAAACAzKSEGgAAAAAAAACoF127do0XX3wxLrrootixY0fCs6KioigqKjrujHHjxsXs2bMbaMPq7du3L9asWVOrM5999ll89tlnx3zesWPHWu+xf//+WLZsWSxbtqzWZ0eNGhW/+tWvolWrVrU+CwAAAAAAAEDz8x//8R/V/v36v/7rv0bXrl0bfyEA0mZMnzHxzJ+fiZeKX6rzrBG9RiigBgAAAIAMlJ3uBQAAAAAAAACAzNGnT59YsWJFDB06tFbncnNzY9q0afH0009HTk5OA22XeU466aR46KGHYuHChSkVXwMAAAAAAADQ/KxcuTKuv/76pPyaa66JG264IQ0bAZBOC9YviFc2vVIvs17Z9EosWL+gXmYBAAAAAE2HEmoAAAAAAAAAoF716NEj3njjjZg7d2587Wtfi6ysrGO+27Zt25g4cWK8++67MX369MjOPnF+lWH+/Pnx0EMPxfjx4+Oss86q8fferl27GDlyZDzxxBOxdevW+P73v9/AmwIAAAAAAADQVGzatCmuuuqqOHDgQEL+d3/3d/H444+naSsA0mXB+gUxZdGUqKisqJd5FZUVMWXRFEXUAAAAAJBhWqR7AQAAAAAAAAAg82RlZcW4ceNi3LhxsXPnzlixYkVs2rQpSkpKokWLFtGlS5fo06dPDBkyJPLy8up015YtW+p0fvjw4VFZWVmnGano1atX9OrV62iJ9IEDB2LDhg2xbdu2+Oijj2Lv3r1x6NChaNmyZXTq1Ck6deoUZ555ZvTr1++EKusGAAAAAAAA4P/68MMP4+KLL44dO3Yk5D169IgXXngh2rVrl6bN/rauXbtG3759G/ye4uLiOHz4cIPfA9BU1HcBdZWqIuqIiDF9xtTrbAAAAAAgPZRQAwAAAAAAAAANqlu3bnHVVVele40mr02bNnHuuefGueeem+5VAAAAAAAAAGhidu7cGRdffHFs3rw5Ie/evXu8/PLLcdppp6Vps+ObNGlSTJo0qcHv6devX6xbt67B7wFoChqqgLqKImoAAAAAyCzZ6V4AAAAAAAAAAAAAAAAAAAAAqN7u3btjxIgR8d577yXkXbp0iZdffjnOPPPMNG0GQDo0dAF1laoi6gXrFzToPQAAAABAw1NCDQAAAAAAAAAAAAAAAAAAAE3QZ599FiNHjoz//M//TMi/8IUvxMsvvxz9+vVL02YApENjFVBXUUQNAAAAAJlBCTUAAAAAAAAAAAAAAAAAAAA0MZ9//nmMHDkyVq1alZB37NgxXnzxxRgwYECaNgMgHRq7gLqKImoAAAAAaP6UUAMAAAAAAAAAAAAAAAAAAEATUlJSEpdcckmsXLkyIW/fvn0sXrw4Bg8enKbNAEiHdBVQV1FEDQAAAADNmxJqAAAAAAAAAAAAAAAAAAAAaCL27t0bl156aaxYsSIhb9euXSxevDi+/OUvp2kzANKhvKI8Hlv9WJ0KqLOzsmNk75GRnZV61UxFZUU8tvqxKK8oT3kGAAAAAJAeSqgBAAAAAAAAAAAAAAAAAACgCdi3b19cdtllsXz58oS8bdu2sWjRovjqV7+aps0ASJec7Jx48ptPxoDuA1I6n52VHfddfl/86hu/ivsuvy/lIuoB3QfEk998MnKyc1I6DwAAAACkjxJqAAAAAAAAAAAAAAAAAAAASLP9+/fHFVdcEW+99VZCnp+fH88//3ycf/75adoMgHRr37J9zB07t9ZF1FUF1GP6jImIiDF9xqRURD2g+4CYO3ZutG/ZvlbnAAAAAICmQQk1AAAAAAAAAAAAAAAAAAAApNGBAwfiqquuiqVLlybkbdq0id///vdxwQUXpGkzAJqK2hZR/3UBdZXaFlEroAYAAACA5k8JNQAAAAAAAAAAAAAAAAAAAKTJoUOHYvTo0bFkyZKEvHXr1vG73/0uvv71r6dnMQCanJoWUR+rgLpKTYuoFVADAAAAQGZQQg0AAAAAAAAAAAAAAAAAAABpUFpaGt/85jfj5ZdfTshbt24dzz33XFx44YVp2gyApup4RdTHK6CucrwiagXUAAAAAJA5lFADAAAAAAAAAAAAAAAAAABAIysrK4tx48bFokWLEvJWrVrFM888EyNGjEjTZgA0dccqoq5pAXWVYxVRK6AGAAAAgMzSIt0LAAAAAAAAAAAAAAAAAAAAwIlm7ty5sXDhwqS8VatWcfvtt8ftt9+e8uzCwsJ45JFH6rIeAE1cVRH1tfOujTU71tS6gLpK1ftTFk2JisoKBdQAAAAAkIGUUAMAAAAAAAAAAAAAAAAAAEAjO3LkSLX5nj17Ys+ePXWa3bFjxzqdB6B5qCqiHj9/fNxw7g21LqCuUnXusdWPxZPffFIBNQAAAABkGCXUAAAAAAAAAAAAAAAAAAAAAADNUPuW7eOZa5+JnOycOs0Z02dMjDprVJ3nAAAAAABNT3a6FwAAAAAAAAAAAAAAAAAAAAAAIDX1VRytgBoAAAAAMlOLdC/AiWHXrl3x9ttvR3FxcZSUlERubm507tw5+vbtG4WFhZGbm5vuFRPs2LEjNm/eHNu2bYudO3fG/v3748iRI9G+ffvo0KFD9OzZMwYOHBjt27dvkPv37t0ba9eujffffz8+++yz2Lt3b+Tn50enTp3ii1/8YgwZMiQ6dOjQIHcDAAAAAAAAAAAAAAAAAAANb8KECTFhwoR0rwEAAAAAAECGU0JNg5o3b17MmTMn3nzzzaisrKz2nXbt2sW4cePi9ttvjzPPPLORN4zYs2dPLFu2LN5888344x//GH/605/iL3/5y3HPZWVlRf/+/eP666+P73znO9GtW7eUd/j888/jhRdeiNdeey1ee+212LBhw3HvPvvss+P666+PG264Ib7whS+kfDcAAAAAAAAAAAAAAAAAAAAAAAAAAACZKTvdC5CZPvzwwxg+fHh861vfimXLlh2zgDoiYu/evfHoo49G//79Y8aMGX/z3YYwa9asuPrqq2PWrFnx2muv1aiAOiKisrIy3n333Zg6dWr07t07fvrTn0ZZWVmt7n722Wfj6quvjm7dusV1110Xv/jFL45bQF1195/+9Kf4+7//++jRo0fMnj07KioqanU3AAAAAAAAAAAAAAAAAAAAAAAAAAAAmU0JNfVuw4YNMWTIkHj99ddrda60tDTuuuuuGD9+fJSXlzfQdg1j3759cdttt8VVV10VBw8erPG5n/70p/G73/0uSktLU777wIED8T/+x/+ISy65JPbv35/yHAAAAAAAAAAAAAAAAAAAAAAAAAAAADJLi3QvQGbZvXt3jBw5Mj7++OOkZ4MHD47Ro0dHQUFBHDx4MDZs2BBPPfVUfPTRRwnvPf3009GtW7eYPXt2I22dKD8/PwYNGhRnnXVWnH766dG1a9do165dlJeXR0lJSWzYsCHeeuutWL58eVRWViacXbx4cYwZMyYWLVoUWVlZKe/QsWPHOP/886OwsDC6desWXbp0iQMHDsTmzZvj1VdfjWXLliWdeeWVV2LUqFHx/PPPR8uWLVO+GwAAAAAAAAAAAAAAAAAAAAAAAAAAgMyghJp6ddNNN8XWrVsTsnbt2sUTTzwRo0aNSnr/nnvuiXvuuSemT5+ekM+ZMycuvfTSuPzyyxty3YiIaNmyZVx00UVx+eWXx4gRI+Kcc86JnJyc457buHFj/OhHP4rnnnsuIV+8eHE8/PDDcdNNN9Vqjw4dOsS1114bEyZMiK985SuRnZ1d7Xt33313rF69Or73ve/FypUrE569+uqrMXPmzKSfJwAAAAAAAAAAAAAAAAAAAAAAAAAAACee6ltuIQUvvfRSzJ8/PyHLy8uLV199tdoC6oiI3NzcmDZtWsyePTvp2a233hplZWUNsWqCu+++O1555ZWYOnVqDBw4sEYF1BERp59+eixcuDBuueWWpGezZs2q8f2nnHJKzJkzJz7++OP4xS9+Eeedd94xC6irnHvuufHWW2/FZZddlvTsxz/+cWzfvr3G9wMAAAAAAAAAAAAAAAAAAAAAAAAAAJCZlFBTb2bMmJGUTZs2LQoLC4979gc/+EGMHDkyIdu4cWM89dRT9bZfQ8jKyop77703TjvttIR88+bNUVRUdNzzd9xxRxQXF8ett94arVu3rtXdeXl58W//9m9x8sknJ+SHDh2Kf//3f6/VLAAAAAAAAAAAAAAAAAAAAAAAAAAAADKPEmrqxdq1a2Pp0qUJWZcuXWLq1Kk1njFz5syk7Oc//3mdd2toLVu2jLFjxybl69atO+7ZSy+9NFq1apXy3e3atav2Z/y73/0u5ZkAAAAAAAAAAAAAAAAAAAAAAAAAAABkBiXU1Ivf/va3SdnEiRMjLy+vxjMGDx4cgwcPTsiWL18emzdvrvN+Da13795J2ccff9wod19xxRVJ2aZNmxrlbgAAAAAAAAAAAAAAAAAAAAAAAAAAAJouJdTUixdeeCEpGzt2bK3nVHemutlNzaFDh5Ky2hRw18Wpp56alO3YsaNR7gYAAAAAAAAAAAAAAAAAAAAAAAAAAKDpUkJNne3fvz/eeeedhKxNmzYxaNCgWs+64IILkrKlS5emvFtjefvtt5Oy3r17N8rdBw4cSMpat27dKHcDAAAAAAAAAAAAAAAAAAAAAAAAAADQdCmhps5Wr14dFRUVCVlhYWG0aNGi1rOGDBkSubm5CdnKlSvrtF9De//992PBggUJWatWrWLYsGGNcv/GjRuTspNPPrlR7gYAAAAAAAAAAAAAAAAAAAAAAAAAAKDpUkJNnb333ntJ2emnn57SrLy8vPjSl76UkBUXF0dZWVlK8xrapk2b4uqrr45Dhw4l5BMnToyOHTs2yg7z5s1LyoYMGdIodwMAAAAAAAAAAAAAAAAAAAAAAAAAANB0KaGmzrZs2ZKUnXbaaSnPO/XUUxM+l5eXx9atW1OeV98OHz4cy5cvjx/+8IfRr1+/+POf/5zwvKCgIGbOnNkouxw8eDB+85vfJOWjR49ulPsBAAAAAAAAAAAAAAAAAAAAAAAAAABoulqkewGavx07diRlPXr0SHledWc/+eST6NWrV8oza+vll1+OqVOnJmRlZWWxd+/e+Oijj6KsrKzac2eccUa8+OKL0aFDh8ZYM2bNmhU7d+5MyE455ZS44oorGuX+mnrggQfiwQcfbPB7iouLG/wOAAAAAAAAAAAAAAAAAAAAAAAAAACA5kIJNXX26aefJmVt27ZNeV51Z3fv3p3yvFTs2bMn1qxZU+P38/Pz4+abb46777478vPzG3Cz/6eoqChmzpyZlP/zP/9ztGzZslF2qKldu3bFunXr0r0GAAAAAAAAAAAAAAD/H3v3HmcFXeeP/33mxmUAL1wEN5AB0wYlQ2DbFM1Lpq4GUoRudEPLdBFsiyxbFJBWXTcTRHHN1G1dVIyk1t0MyVbFlGCQSw8glQHkoghifQdGYq6/v4ZfxzPIzJnLmXN4Ph8P/jivcz7vz3uOI5dxeAkAAAAAAAAAAAAcUZRQ02KVlZUpWZcuXdKe19jZ9957L+15bSmRSMRVV10Vt956a/Tu3bvd7t2zZ098/vOfj+rq6qT8k5/8ZFx55ZXttgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAdV16mFyD7vb8IOSKic+fOac9rrIS6qqoq7Xltqb6+Pn7yk5/EqaeeGjNnzoy9e/e2+Z1VVVXx2c9+NrZs2ZKUH3vssfGf//mfkUgk2nwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAOj4l1LSJlhQhN3a2vr6+Jes027hx46K+vj7pR2VlZezYsSN+85vfxMyZM6OkpOTg63ft2hUzZsyIj370o/H73/++zfaqq6uLL3/5y/HCCy8k5fn5+TF//vwYMGBAm90NAAAAAAAAAAAAAAAAAAAAAAAAAABAdlFCTYsVFhamZPv37097XmNni4qK0p7XWrp27RrHH398nH/++XHzzTdHeXl53HPPPVFcXHzwNVu2bIlPfepT8dJLL7XJDv/4j/8YCxYsSMoSiUTcf//9cdFFF7XJnQAAAAAAAAAAAAAAAAAAAAAAAAAAAGSngkwvQPbr2rVrStbaJdR/XfTcUSQSiZg0aVIMHTo0LrroooN779u3Ly6//PJYu3ZtHHPMMa1237e+9a24//77U/LZs2fHVVdd1Wr3tIXevXvHkCFD2vye8vLyOHDgQJvfAwAAAAAAAAAAAAAAAAAAAAAAAAAAkA2UUNNiPXv2TMn27duX9rzGzjZ2R0dx9tlnx4wZM+K73/3uwWz79u1x5513xg9+8INWuePGG2+Mu+66KyW//fbbY8qUKa1yR1uaNGlSTJo0qc3vOeWUU2L9+vVtfg8AAAAAAAAAAAAAAAAAAAAAAAAAAEA2yMv0AmS/4447LiXbvn172vO2bdvWpDs6kuuvvz66d++elP34xz+O+vr6Fs+eMWNG3H777Sn5LbfcklR8DQAAAAAAAAAAAAAAAAAAAAAAAAAAAH9NCTUtVlJSkpK98cYbac/bunVr0uP8/PwYMGBA2vPaQ6dOneK8885Lynbv3h3r169v0dwf/OAHMXPmzJT8pptuiptuuqlFswEAAAAAAAAAAAAAAAAAAAAAAAAAAMhtSqhpsZNPPjkl27hxY1qzqqqqYtu2bUnZ4MGDo6CgIK157WngwIEp2aZNm9Ke96//+q+NFk1/73vfi1tuuSXtuQAAAAAAAAAAAAAAAAAAAAAAAAAAABwZlFDTYsOGDYu8vORPpbKysqipqWn2rLKysqiurk7KTj/99Bbt1146d+6cku3duzetWf/2b/8W3/ve91Ly73znO3HbbbelNRMAAAAAAAAAAAAAAAAAAAAAAAAAAIAjixJqWqy4uDiGDRuWlFVWVsaqVauaPevFF19Myc4+++y0d2tPu3btSsl69erV7Dl33XVX3HDDDSn5P/3TP8Udd9yR1m4AAAAAAAAAAAAAAAAAAAAAAAAAAAAceZRQ0youuuiilGzhwoXNntPYmcZmd0TLli1Lyfr27dusGXfffXd861vfSsmnTJkSP/rRj9LeDQAAAAAAAAAAAAAAAAAAAAAAAAAAgCOPEmpaxRVXXJGSPfzww1FVVdXkGatWrYoVK1YkZR//+MejpKSkxfu1tdWrV8eGDRuSsqOPPjpKS0ubPGPevHlx/fXXp+STJk2KOXPmtHhHAAAAAAAAAAAAAAAAAAAAAAAAAAAAjixKqGkVp556aowaNSop2717d9x1111NnnHjjTemZNdee22Ld2trtbW1MWXKlJT8kksuicLCwibNeOCBB+K6665Lya+55pq45557WrwjAAAAAAAAAAAAAAAAAAAAAAAAAAAARx4l1LSaadOmpWTTp0+PV1555bBn77nnnli8eHFSNmjQoPjCF77QpLsHDhwYiUQi6cdzzz132HNz586NJUuWNOmOxhw4cCAmTJgQS5cuTcoTiUSjpdKN+elPfxrf+MY3or6+Pim/+uqrY968eWnvBgAAAAAAAAAAAAAAAAAAAAAAAAAAwJFNCTWt5sILL4wxY8YkZQcOHIhzzz03nnrqqUbPVFdXx6xZs2Ly5Mkpz919991RWFjYJrs2WLlyZXz605+OT3ziEzFv3rx4++23m3Suuro6nnzyyRg6dGgsWLAg5fmvf/3r8Xd/93eHnfP444/HlVdemVJAfdVVV8W///u/RyKRaNoHAgAAAAAAAAAAAAAAAAAAAAAAAAAAAO9TkOkFyC0PPPBArFy5MrZv334wq6ioiNGjR8eIESNizJgxUVJSEvv374/XX3895s+fHzt27EiZc91118Ull1zSbnsvW7Ysli1bFpMnT47S0tIYNmxYDBkyJI499tg4+uijI5FIREVFRbz55puxevXqeOGFF2LPnj2Nzjr33HPjRz/6UZPu/dKXvhR1dXUp+YoVK2LYsGEt+ph+9atfxfHHH9+iGQAAAAAAAAAAAAAAAAAAAAAAAAAAAGQvJdS0qt69e8czzzwT5513XuzcuTPpubKysigrKzvsjPHjx8fs2bPbaMMPVldXF+vWrYt169aldf6yyy6LRx99NLp06dKk19fU1DSar127Nq37/1pVVVWLZwAAAAAAAAAAAAAAAAAAAAAAAAAAAJC98jK9ALmntLQ0li9fHqNGjWrWucLCwpg+fXo89thjkZ+f30bbJSsuLm6VOf3794+FCxfGokWLmlxADQAAAAAAAAAAAAAAAAAAAAAAAAAAAG1JCTVton///vHCCy/EggUL4owzzohEInHI13br1i0mTpwYa9eujRkzZkReXvt9Wt57772xbt26+OEPfxif+cxnom/fvk0+e9xxx8UVV1wRv/rVr2Lz5s3xuc99rg03BQAAAAAAAAAAAAAAAAAAAAAAAAAAgOYpyPQC5K5EIhHjx4+P8ePHx65du2L58uWxadOmqKioiIKCgujVq1eUlpbGyJEjo6ioqEV3bdmyJe2zQ4YMiSFDhsS3v/3tiIh46623ory8PLZs2RLvvvtuVFZWRn19fXTv3j2OOuqo6NOnT5x22mnRr1+/Fu0cEVFfX9/iGQAAAAAAAAAAAAAAAAAAAAAAAAAAANAYJdS0iz59+sSll16a6TWapF+/ftGvX78YNWpUplcBAAAAAAAAAAAAAAAAAAAAAAAAAACAtOVlegEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWp8SagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAADIQUqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAHKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACAHKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEFKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBykhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBymhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBSqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAcpASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAADIQUqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAHKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACAHKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEFKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBykhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBymhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBSqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAcpASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAADIQUqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAHKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACAHKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEFKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBykhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBymhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBSqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAcpASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAADIQUqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAHKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACAHKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEFKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABykBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBykhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBymhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMhBSqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAcpASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAcpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAADIQUqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAHKQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACAHKSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACAHKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEFKqAEAAAAAAAAAAAAAAAAAAAAgi9XW1XaoOQAAAAAAdBxKqAEAAAAAAAAAAAAAAAAAAAAgS1UcqIjLFlwWizYsatGcRRsWxWULLouKAxWttBkAAAAAAB1BQaYXAAAAAAAAAAAAAAAAAAAAAACar+JARVy+8PJYs3NNrHprVUREjC0d2+w5izYsislPT466+rq4fOHlsWDcgujRqUdrrwsAAAAAQAbkZXoBAAAAAAAAAAAAAAAAAAAAAKB5/rqAOiKirr4uJj89ORZtWNSsOX9dQB0RsWbnmrh84eVRcaCi1XcGAAAAAKD9KaEGAAAAAAAAAAAAAAAAAAAAgCzy/gLqBs0ton5/AXUDRdQAAAAAALlDCTUAAAAAAAAAAAAAAAAAAAAAZIlDFVA3aGoR9aEKqBsoogYAAAAAyA1KqAEAAAAAAAAAAAAAAAAAAAAgCxyugLrB4YqoD1dA3UARNQAAAABA9lNCDQAAAAAAAAAAAAAAAAAAAAAdXFMLqBscqoi6qQXUDRRRAwAAAABkNyXUAAAAAAAAAAAAAAAAAAAAANCBNbeAusH7i6ibW0DdQBE1AAAAAED2UkINAAAAAAAAAAAAAAAAAAAAAB1UbV1tTHhyQrMLqBs0FFF/5RdfSauAusGanWtiwpMTorauNq3zAAAAAABkhhJqAAAAAAAAAAAAAAAAAAAAAOig8vPy48qPXRl5ifRrQurq62JJ+ZK0C6gjIvISeXHlx66M/Lz8tGcAAAAAAND+lFADAAAAAAAAAAAAAAAAAAAAQAc2tnRszL14bouKqFsiL5EXcy+eG2NLx2bkfgAAAAAA0qeEGgAAAAAAAAAAAAAAAAAAAAA6uEwVUSugBgAAAADIbkqoAQAAAAAAAAAAAAAAAAAAACALtHcRtQJqAAAAAIDsp4QaAAAAAAAAAAAAAAAAAAAAALJEexVRK6AGAAAAAMgNSqgBAAAAAAAAAAAAAAAAAAAAIIu0dRG1AmoAAAAAgNyhhBoAAAAAAAAAAAAAAAAAAAAAskxbFVEroAYAAAAAyC1KqAEAAAAAAAAAAAAAAAAAAAAgC7V2EbUCagAAAACA3KOEGgAAAAAAAAAAAAAAAAAAAACy1NjSsXH+oPNbZdb5g85XQA0AAAAAkGOUUAMAAAAAAAAAAAAAAAAAAABAllq0YVE8u+nZVpn17KZnY9GGRa0yCwAAAACAjkEJNQAAAAAAAAAAAAAAAAAAAABkoUUbFsXkpydHXX1dq8yrq6+LyU9PVkQNAAAAAJBDlFADAAAAAAAAAAAAAAAAAAAAQJZp7QLqBoqoAQAAAAByixJqAAAAAAAAAAAAAAAAAAAAAMgibVVA3UARNQAAAABA7lBCDQAAAAAAAAAAAAAAAAAAAABZoq0LqBsoogYAAAAAyA1KqAEAAAAAAAAAAAAAAAAAAAAgC7RXAXUDRdQAAAAAANlPCTUAAAAAAAAAAAAAAAAAAAAAdHDtXUDdQBE1AAAAAEB2U0INAAAAAAAAAAAAAAAAAAAAAB1YpgqoGyiiBgAAAADIXkqoAQAAAAAAAAAAAAAAAAAAAKCDqq2rjYdWP9SiAuq8RF5cMPiCyEukXzVSV18XD61+KGrratOeAQAAAABA+1NCDQAAAAAAAAAAAAAAAAAAAAAdVH5efsz/7Pw4re9paZ3PS+TF3Ivnxk8v+2nMvXhu2kXUp/U9LeZ/dn7k5+WndR4AAAAAgMxQQg0AAAAAAAAAAAAAAAAAAAAAHViPTj1iwbgFzS6ibiigHls6NiIixpaOTauI+rS+p8WCcQuiR6cezToHAAAAAEDmKaEGAAAAAAAAAAAAAAAAAAAAgA6uuUXU7y+gbtDcImoF1AAAAAAA2U0JNQAAAAAAAAAAAAAAAAAAAABkgaYWUR+qgLpBU4uoFVADAAAAAGQ/JdQAAAAAAAAAAAAAAAAAAAAAkCUOV0R9uALqBocrolZADQAAAACQG5RQAwAAAAAAAAAAAAAAAAAAAEAWOVQRdVMLqBscqohaATUAAAAAQO5QQg0AAAAAAAAAAAAAAAAAAAAAWeb9RdTNLaBu8P4iagXUAAAAAAC5pSDTCwAAAAAAAAAAAAAAAAAAAAAAzddQRD3hyQlx5ceubHYBdYOGcw+tfijmf3a+AmoAAAAAgByihBoAAAAAAAAAAAAAAAAAAAAAslSPTj3iF5f/IvLz8ls0Z2zp2Bh98ugWzwEAAAAAoGPJy/QCAAAAAAAAAAAAAAAAAAAAAED6Wqs4WgE1AAAAAEDuUUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIOUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABADlJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCDlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CAl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5SAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA5SQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQg5RQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQgJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOUgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIOUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABADlJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCDlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CAl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5SAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA5SQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQg5RQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQgJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOUgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIOUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmoINMLAAAAAAAAAAC5bffu3bFixYooLy+PioqKKCwsjJ49e8aQIUNixIgRUVhYmOkVAQAAAAAAAAAAAAAAAABykhJqAAAAAAAAAKBNLFy4MObMmRO/+93vor6+vtHXdO/ePcaPHx833HBDnHTSSe28Yar6+vp4/fXXY+XKlVFWVhZlZWWxatWq2Lt3b9LrvvKVr8R//Md/tPt+Dz30UFx11VWNPrd58+YYOHBg+y4EAAAAAAAAAAAAAAAAAHRoSqgBAAAAAAAAgFa1Y8eOmDBhQjz//POHfe3evXvjwQcfjEceeSSmTZsW06ZNi0Qi0Q5b/v+efPLJWLZsWZSVlcUrr7wS/+///b92vb+ptm/fHt/61rcyvQYAAAAAAAAAAAAAAAAAkEWUUAMAAAAAAAAArea1116Lc845J956661mnauqqoqbb745NmzYEI888kjk5+e30Yaprrzyyg5bPP3XrrrqqqzYEwAAAAAAAAAAAAAAAADoOJRQAwAAAAAAAACtYs+ePXHBBRc0WkA9fPjwGDNmTJSUlMT+/fvjtddei0cffTTefPPNpNc99thj0adPn5g9e3Y7bZ0dfvzjH8czzzyT6TUAAAAAAAAAAAAAAAAAgCyjhBoAAAAAAAAAaBVXX311bN26NSnr3r17/Nd//VeMHj065fW33npr3HrrrTFjxoykfM6cOXHhhRfGxRdf3JbrHlbPnj1j+PDhccwxx8SCBQsytscbb7wRU6dOPfj4qKOOir59+8arr76asZ0AAAAAAAAAAAAAAAAAgOyQl+kFAAAAAAAAAIDst2TJknjyySeTsqKiovjtb3/baAF1RERhYWFMnz49Zs+enfLclClToqampi1WbdRRRx0V5557bnznO9+JJ554IjZt2hTvvPNOLF68OK655pp22+P96uvr46qrroq9e/cezO68887o27dvxnYCAAAAAAAAAAAAAAAAALJHQaYXAAAAAAAAAACy36xZs1Ky6dOnx4gRIw579vrrr4///d//jSVLlhzMNm7cGI8++mh8+ctfbtU9G7Nq1aoYOHBgJBKJNr+rue6777549tlnDz7+1Kc+FVdddVU88sgjGdwKAAAAAAAAAAAAAAAAAMgWeZleAAAAAAAAAADIbuvWrYulS5cmZb169YqpU6c2ecZtt92Wkt13330t3q0pSkpKOmQB9ebNm+OGG244+Li4uDgeeOCBDG4EAAAAAAAAAAAAAAAAAGQbJdQAAAAAAAAAQIs8/vjjKdnEiROjqKioyTOGDx8ew4cPT8qWLVsWmzdvbvF+2ai+vj4mTpwYlZWVB7PbbrstBg4cmLmlAAAAAAAAAAAAAAAAAICso4QaAAAAAAAAAGiRX//61ynZuHHjmj2nsTONzT4SzJ07N55//vmDj0eNGhXXXXddBjcCAAAAAAAAAAAAAAAAALKREmoAAAAAAAAAIG2VlZXxyiuvJGVdu3aN008/vdmzzjrrrJRs6dKlae+WrcrLy+PGG288+Lhz587x4IMPRiKRyOBWAAAAAAAAAAAAAAAAAEA2UkINAAAAAAAAAKRt9erVUVdXl5SNGDEiCgoKmj1r5MiRUVhYmJStXLmyRftlm7q6upg4cWK89957B7OZM2fGSSedlMGtAAAAAAAAAAAAAAAAAIBspYQaAAAAAAAAAEjbH//4x5TsxBNPTGtWUVFRfOhDH0rKysvLo6amJq152WjOnDmxdOnSg49HjBgR3/72tzO4EQAAAAAAAAAAAAAAAACQzZRQAwAAAAAAAABp27JlS0p2wgknpD1vwIABSY9ra2tj69atac/LJq+99lr88z//88HHhYWF8dBDD0V+fn4GtwIAAAAAAAAAAAAAAAAAsllBphcAAAAAAAAAALLXzp07U7L+/funPa+xs2+//XYMGjQo7ZnZoK6uLr761a/G/v37D2b//M//HEOHDs3gVq3j3nvvjXnz5rX5PeXl5W1+BwAAAAAAAAAAAAAAAABkGyXUAAAAAAAAAEDa3n333ZSsW7duac9r7OyePXvSnpct7rzzznj55ZcPPh46dGh8//vfz+BGrWf37t2xfv36TK8BAAAAAAAAAAAAAAAAAEekvEwvAAAAAAAAAABkr8rKypSsS5cuac9r7Ox7772X9rxssGHDhrj55psPPs7Pz4+HHnooCgsLM7gVAAAAAAAAAAAAAAAAAJALlFADAAAAAAAAAGmrrq5OyTp37pz2vMZKqKuqqtKe19HV1tbGV7/61fjLX/5yMJs6dWqMGDEig1sBAAAAAAAAAAAAAAAAALlCCTUAAAAAAAAA0KoSiUSrnq2vr2/JOh3aHXfcEcuXLz/4+OSTT44ZM2ZkbiEAAAAAAAAAAAAAAAAAIKcooQYAAAAAAAAA0lZYWJiS7d+/P+15jZ0tKipKe15Htm7duqTC6UQiEQ8++GB07tw5c0sBAAAAAAAAAAAAAAAAADmlINMLAAAAAAAAAADZq2vXrilZa5dQFxcXpz2vo6qpqYmvfOUrUVVVdTC77rrr4swzz8zgVm2jd+/eMWTIkDa/p7y8PA4cONDm9wAAAAAAAAAAAAAAAABANlFCDQAAAAAAAACkrWfPninZvn370p7X2NnG7sh2t99+e6xcufLg44EDB8Ztt92WwY3azqRJk2LSpEltfs8pp5wS69evb/N7AAAAAAAAAAAAAAAAACCb5GV6AQAAAAAAAAAgex133HEp2fbt29Oet23btibdkc22b98es2bNSsoeeOCBKC4uztBGAAAAAAAAAAAAAAAAAECuKsj0AgAAAAAAAABA9iopKUnJ3njjjbTnbd26Nelxfn5+DBgwIO15HdE777wTVVVVBx8XFRXF1KlTmzVj48aNKdnf//3fR1FRUVJ2yy23xOjRo9NbFAAAAAAAAAAAAAAAAADIekqoAQAAAAAAAIC0nXzyySlZYwXJTVFVVRXbtm1LygYPHhwFBbn97Q1VVVWxZs2aFs/ZsGFDSvbuu++2eC4AAAAAAAAAAAAAAAAAkL3yMr0AAAAAAAAAAJC9hg0bFnl5yd9+UFZWFjU1Nc2eVVZWFtXV1UnZ6aef3qL9AAAAAAAAAAAAAAAAAACOZEqoAQAAAAAAAIC0FRcXx7Bhw5KyysrKWLVqVbNnvfjiiynZ2WefnfZuAAAAAAAAAAAAAAAAAABHOiXUAAAAAAAAAECLXHTRRSnZwoULmz2nsTONzc52H/vYx6K+vr5FPz75yU+mzN28eXPK67761a+2/wcIAAAAAAAAAAAAAAAAAHQYSqgBAAAAAAAAgBa54oorUrKHH344qqqqmjxj1apVsWLFiqTs4x//eJSUlLR4PwAAAAAAAAAAAAAAAACAI5USagAAAAAAAACgRU499dQYNWpUUrZ79+646667mjzjxhtvTMmuvfbaFu8GAAAAAAAAAAAAAAAAAHAkU0INAAAAAAAAALTYtGnTUrLp06fHK6+8ctiz99xzTyxevDgpGzRoUHzhC19o0t0DBw6MRCKR9OO5555r0lkAAAAAAAAAAAAAAAAAgFymhBoAAAAAAAAAaLELL7wwxowZk5QdOHAgzj333HjqqacaPVNdXR2zZs2KyZMnpzx39913R2FhYZvsCgAAAAAAAAAAAAAAAABwpCjI9AIAAAAAAAAAQG544IEHYuXKlbF9+/aDWUVFRYwePTpGjBgRY8aMiZKSkti/f3+8/vrrMX/+/NixY0fKnOuuuy4uueSSdtu7rKwsvva1rx3y+X379qVk//3f/x0f+9jHDnlmxIgR8ZOf/KQ11gMAAAAAAAAAAAAAAAAASJsSagAAAAAAAACgVfTu3TueeeaZOO+882Lnzp1Jz5WVlUVZWdlhZ4wfPz5mz57dRhs2bt++fbFmzZpmnfnTn/4Uf/rTnw75/NFHH93CrQAAAAAAAAAAAAAAAAAAWi4v0wsAAAAAAAAAALmjtLQ0li9fHqNGjWrWucLCwpg+fXo89thjkZ+f30bbAQAAAAAAAAAAAAAAAAAcWZRQAwAAAAAAAACtqn///vHCCy/EggUL4owzzohEInHI13br1i0mTpwYa9eujRkzZkRenm9lAAAAAAAAAAAAAAAAAABoLQWZXoAjw+7du2PFihVRXl4eFRUVUVhYGD179owhQ4bEiBEjorCwMNMrJtm5c2ds3rw5tm3bFrt27YrKysqorq6OHj16xFFHHRUDBw6MYcOGRY8ePdp0j+rq6lixYkVs2LAh9uzZc3CHwYMHx8iRI6N3795tej8AAAAAAABAuhKJRIwfPz7Gjx8fu3btiuXLl8emTZuioqIiCgoKolevXlFaWhojR46MoqKiFt21ZcuWFp0/55xzor6+vkUz2ttzzz2X6RUAAAAAAAAAAAAAAAAAgCyghJo2tXDhwpgzZ0787ne/O+Rf2O3evXuMHz8+brjhhjjppJPaecOIP//5z/Hiiy/G7373u/j9738ff/jDH+Kdd9457LlEIhFDhw6NL3/5y/GlL30p+vTp02o7vfrqq3HHHXfEz372s9i7d+8h7x81alRcf/318bnPfa7V7gYAAAAAAABobX369IlLL70002sAAAAAAAAAAAAAAAAAABxx8jK9ALlpx44dcc4558TnP//5ePHFFw9ZQB0RsXfv3njwwQdj6NChMWvWrA98bVu4/fbb4zOf+Uzcfvvt8X//939NKqCOiKivr4+1a9fG1KlTY/DgwfGjH/0oampqWrRLXV1dzJw5M4YOHRoPPfTQIQuoG+5funRpjBs3Ls4999x46623WnQ3AAAAAAAAAAAAAAAAAAAAAAAAAAAAuUUJNa3utddei5EjR8bzzz/frHNVVVVx8803x4QJE6K2traNtmsb+/bti29/+9tx6aWXxv79+9OaUVtbG//wD/8QM2bMiOrq6madfe6552LkyJGxcePGtO4GAAAAAAAAAAAAAAAAAAAAAAAAAAAg9xRkegFyy549e+KCCy6It956K+W54cOHx5gxY6KkpCT2798fr732Wjz66KPx5ptvJr3uscceiz59+sTs2bPbaetkxcXFcfrpp8fJJ58cJ554YvTu3Tu6d+8etbW1UVFREa+99lq89NJLsWzZsqivr086u3jx4hg7dmw8/fTTkUgkmnXvlClT4oknnkjJjz322PjiF78YpaWl0aNHj9iyZUs888wzKSXfO3bsiE9/+tOxcuXKOOaYY5r/gQMAAAAAAAAAAAAAAAAAAAAAAAAAAJBTlFDTqq6++urYunVrUta9e/f4r//6rxg9enTK62+99da49dZbY8aMGUn5nDlz4sILL4yLL764LdeNiIhOnTrFeeedFxdffHGcf/758dGPfjTy8/MPe27jxo3xrW99K5566qmkfPHixfHAAw/E1Vdf3eQd/vu//zvmzZuXkl9zzTVx5513RteuXZPy73//+/G73/0uPve5z8Xbb799MN+8eXNcc801sWDBgibfDQAAAAAAAAAAAAAAAAAAAAAAAAAAQG7Ky/QC5I4lS5bEk08+mZQVFRXFb3/720YLqCMiCgsLY/r06TF79uyU56ZMmRI1NTVtsWqSmTNnxrPPPhtTp06NYcOGNamAOiLixBNPjF/+8pdx7bXXpjx3++23N/n+6urquP7661Pyf/qnf4r77rsvpYC6wZlnnhkvv/xyHHvssUn5E088Ec8991yT7wcAAAAAAAAAAAAAAAAAAAAAAAAAACA3KaGm1cyaNSslmz59eowYMeKwZ6+//vq44IILkrKNGzfGo48+2mr7tYVEIhF33XVXnHDCCUn55s2bo6ysrEkzHnnkkdiyZUtSduqppzapyLqkpCTuvvvulPyWW25p0t0AAAAAAAAAAAAAAAAAAAAAAAAAAADkLiXUtIp169bF0qVLk7JevXrF1KlTmzzjtttuS8nuu+++Fu/W1jp16hTjxo1LydevX9+k8419jDNnzoyioqImnZ8wYUKceuqpSdn//d//xauvvtqk8wAAAAAAAAAAAAAAAAAAAAAAAAAAAOQmJdS0iscffzwlmzhxYpOLlCMihg8fHsOHD0/Kli1bFps3b27xfm1t8ODBKdlbb7112HMbN26MsrKypKxfv34xevToZt3/jW98IyV77LHHmjUDAAAAAAAAAAAAAAAAAAAAAAAAAACA3KKEmlbx61//OiUbN25cs+c0dqax2R3NX/7yl5SsKQXcixcvTskuu+yyKCgoaNb9jb1vTz/9dLNmAAAAAAAAAAAAAAAAAAAAAAAAAAAAkFuUUNNilZWV8corryRlXbt2jdNPP73Zs84666yUbOnSpWnv1l5WrFiRkg0ePPiw5xr72EaNGtXs+/v27RsnnnhiUrZy5cp47733mj0LAAAAAAAAAAAAAAAAAAAAAAAAAACA3KCEmhZbvXp11NXVJWUjRoyIgoKCZs8aOXJkFBYWJmUrV65s0X5t7fXXX49FixYlZZ07d46zzz77sGcb+9g+8YlPpLXHGWeckfS4trY21qxZk9YsAAAAAAAAAAAAAAAAAAAAAAAAAAAAsp8Salrsj3/8Y0p24oknpjWrqKgoPvShDyVl5eXlUVNTk9a8trZp06b4zGc+E3/5y1+S8okTJ8bRRx/9gWerq6tj06ZNSVlhYWGccMIJae0yePDglOzVV19NaxYAAAAAAAAAAAAAAAAAAAAAAAAAAADZTwk1LbZly5aULN0i5YiIAQMGJD2ura2NrVu3pj2vtR04cCCWLVsW3/zmN+OUU05JKXouKSmJ22677bBztm7dGnV1dUnZhz70ocjLS+9fy/e/bxGRUnINAAAAAAAAAAAAAAAAAAAAAAAAAADAkaMg0wuQ/Xbu3JmS9e/fP+15jZ19++23Y9CgQWnPbK7f/OY3MXXq1KSspqYm9u7dG2+++WbU1NQ0eu7DH/5wPPPMM3HUUUcd9o72et86gnvvvTfmzZvX5veUl5e3+R0AAAAAAAAAAAAAAAAAAAAAAAAAAADZQgk1Lfbuu++mZN26dUt7XmNn9+zZk/a8dPz5z3+ONWvWNPn1xcXFcc0118TMmTOjuLi4SWdy8X07lN27d8f69eszvQYAAAAAAAAAAAAAAAAAAAAAAAAAAMARRQk1LVZZWZmSdenSJe15jZ1977330p7XlhKJRFx11VVx6623Ru/evZt19kh+3wAAAAAAAAAAAAAAAAAAAAAAAAAAAGh7eZlegOxXXV2dknXu3DnteY2VKVdVVaU9ry3V19fHT37ykzj11FNj5syZsXfv3iafPZLfNwAAAAAAAAAAAAAAAAAAAAAAAAAAANqeEmraRCKRaNWz9fX1LVmn+wV4TQAAbQxJREFU2caNGxf19fVJPyorK2PHjh3xm9/8JmbOnBklJSUHX79r166YMWNGfPSjH43f//73ad+b7e8bAAAAAAAAAAAAAAAAAAAAAAAAAAAAHYcSalqssLAwJdu/f3/a8xo7W1RUlPa81tK1a9c4/vjj4/zzz4+bb745ysvL45577oni4uKDr9myZUt86lOfipdeeumw846U9w0AAAAAAAAAAAAAAAAAAAAAAAAAAIDMKMj0AmS/rl27pmStXab810XPHUUikYhJkybF0KFD46KLLjq49759++Lyyy+PtWvXxjHHHHPI80fS+9a7d+8YMmRIm99TXl4eBw4caPN7AAAAAAAAAAAAAAAAAAAAAAAAAAAAsoESalqsZ8+eKdm+ffvSntfY2cbu6CjOPvvsmDFjRnz3u989mG3fvj3uvPPO+MEPfnDIc0fS+zZp0qSYNGlSm99zyimnxPr169v8HgAAAAAAAAAAAAAAAAAAAAAAAAAAgGyQl+kFyH7HHXdcSrZ9+/a0523btq1Jd3Qk119/fXTv3j0p+/GPfxz19fWHPON9AwAAAAAAAAAAAAAAAAAAAAAAAAAAoC0poabFSkpKUrI33ngj7Xlbt25Nepyfnx8DBgxIe1576NSpU5x33nlJ2e7du2P9+vWHPDNgwIDIy0v+V3Dbtm1RV1eX1g7vf98iGv9nAwAAAAAAAAAAAAAAAAAAAAAAAAAAwJFBCTUtdvLJJ6dkGzduTGtWVVVVbNu2LSkbPHhwFBQUpDWvPQ0cODAl27Rp0yFfX1RUlFISXV1d3WiZdFOUl5enZB/5yEfSmgUAAAAAAAAAAAAAAAAAAAAAAAAAAED2U0JNiw0bNizy8pI/lcrKyqKmpqbZs8rKyqK6ujopO/3001u0X3vp3LlzSrZ3794PPDN8+PCU7OWXX07r/pdeeinpcX5+fpx22mlpzQIAAAAAAAAAAAAAAAAAAAAAAAAAACD7KaGmxYqLi2PYsGFJWWVlZaxatarZs1588cWU7Oyzz057t/a0a9eulKxXr14feOass85KyRp7Dw7n7bffjtdffz0pGz58eHTt2rXZswAAAAAAAAAAAAAAAAAAAAAAAAAAAMgNSqhpFRdddFFKtnDhwmbPaexMY7M7omXLlqVkffv2/cAzF154YUr2y1/+Mmpqapp1989//vOULFveNwAAAAAAAAAAAAAAAAAAAAAAAAAAANqGEmpaxRVXXJGSPfzww1FVVdXkGatWrYoVK1YkZR//+MejpKSkxfu1tdWrV8eGDRuSsqOPPjpKS0s/8NyHP/zhGD58eFK2Y8eO+J//+Z9m3X///fenZP/wD//QrBkAAAAAAAAAAAAAAAAAAAAAAAAAAADkFiXUtIpTTz01Ro0alZTt3r077rrrribPuPHGG1Oya6+9tsW7tbXa2tqYMmVKSn7JJZdEYWHhYc839jFOnz49qqurm3T/448/HmvXrk3KzjnnnPjIRz7SpPMAAAAAAAAAAAAAAAAAAAAAAAAAAADkJiXUtJpp06alZNOnT49XXnnlsGfvueeeWLx4cVI2aNCg+MIXvtCkuwcOHBiJRCLpx3PPPXfYc3Pnzo0lS5Y06Y7GHDhwICZMmBBLly5NyhOJRFx33XVNmvGlL30pTjjhhKRs7dq18f3vf/+wZ7ds2dLoPTfddFOT7gYAAAAAAAAAAAAAAAAAADqu3bt3x69+9auYO3du/Mu//Evccccd8eCDD8bLL78c1dXVmV6PDqS2rrZDzQEAAAAAADoOJdS0mgsvvDDGjBmTlB04cCDOPffceOqppxo9U11dHbNmzYrJkyenPHf33XdHYWFhm+zaYOXKlfHpT386PvGJT8S8efPi7bffbtK56urqePLJJ2Po0KGxYMGClOe//vWvx9/93d81aVZRUVHMnj07Jf/hD38YkyZNiv379zd67qWXXopPfOITsWfPnqR83Lhxcd555zXpbgAAAAAAAAAAAAAAAAAAoONZuHBhnHXWWXHcccfFJZdcElOmTIlp06bFd7/73fja174WZ5xxRvTs2TO+9rWvxWuvvZbpdcmwigMVcdmCy2LRhkUtmrNow6K4bMFlUXGgopU2AwAAAAAAOoKCTC9AbnnggQdi5cqVsX379oNZRUVFjB49OkaMGBFjxoyJkpKS2L9/f7z++usxf/782LFjR8qc6667Li655JJ223vZsmWxbNmymDx5cpSWlsawYcNiyJAhceyxx8bRRx8diUQiKioq4s0334zVq1fHCy+8kFL+3ODcc8+NH/3oR826/7LLLotvfOMbcf/99yfl8+bNiwULFsQXv/jFKC0tje7du8fWrVtj8eLF8dxzz6XMOeGEE1JmAAAAAAAAAAAAAAAAAAAA2WHHjh0xYcKEeP755w/72r1798aDDz4YjzzySEybNi2mTZsWiUSiHbakI6k4UBGXL7w81uxcE6veWhUREWNLxzZ7zqINi2Ly05Ojrr4uLl94eSwYtyB6dOrR2usCAAAAAAAZoISaVtW7d+945pln4rzzzoudO3cmPVdWVhZlZWWHnTF+/PiYPXt2G234werq6mLdunWxbt26tM5fdtll8eijj0aXLl2affaee+6Jd955J37+858n5Xv27Ik5c+Yc9ny/fv3imWeeiWOPPbbZdwMAAAAAAAAAAAAAAAAAAJn12muvxTnnnBNvvfVWs85VVVXFzTffHBs2bIhHHnkk8vPz22hDOpq/LqCOiKirr4vJT0+OiOYVUf91AXVExJqdaxRRAwAAAABADsnL9ALkntLS0li+fHmMGjWqWecKCwtj+vTp8dhjj7Xbf9gsLi5ulTn9+/ePhQsXxqJFi9IqoI6IKCgoiCeeeCJuuummKChoXj/82WefHStWrIiTTjoprbsBAAAAAAAAAAAAAAAAAIDM2bNnT1xwwQWNFlAPHz48brnllnjkkUfixz/+cUydOjWOP/74lNc99thj8e1vf7s91qUDeH8BdYOGIupFGxY1ac77C6gbNBRRVxyoaLWdAQAAAACAzFBCTZvo379/vPDCC7FgwYI444wzIpFIHPK13bp1i4kTJ8batWtjxowZkZfXfp+W9957b6xbty5++MMfxmc+85no27dvk88ed9xxccUVV8SvfvWr2Lx5c3zuc59r8T55eXlxyy23xB/+8If46le/Gt26dTvkaxOJRJx55pnxxBNPxPPPPx9/8zd/0+L7AQAAAAAAAAAAAAAAAACA9nf11VfH1q1bk7Lu3bvHL3/5yygrK4ubbropvvjFL8bXv/71+Ld/+7fYsmVLzJgxI2XOnDlz4umnn26nrcmUQxVQN2hqEfWhCqgbKKIGAAAAAIDcUJDpBchdiUQixo8fH+PHj49du3bF8uXLY9OmTVFRUREFBQXRq1evKC0tjZEjR0ZRUVGL7tqyZUvaZ4cMGRJDhgw5+H/1feutt6K8vDy2bNkS7777blRWVkZ9fX107949jjrqqOjTp0+cdtpp0a9fvxbt/EE+8pGPxMMPPxz3339/rFixIjZs2BDvvPNO1NTURI8ePWLQoEHxt3/7t9GnT5822wEAAAAAAAAAAAAAAAAAAGh7S5YsiSeffDIpKyoqit/+9rcxYsSIRs8UFhbG9OnT4+ijj45vfvObSc9NmTIlNmzYEAUF6gRy0eEKqBs0FFFHRIwtHZvy/OEKqBs0FFEvGLcgenTqkf7iAAAAAABAxvivRrSLPn36xKWXXprpNZqkX79+0a9fvxg1alSmV4mioqI488wz48wzz8z0KgAAAAAAAAAAAAAAAAAAQBuYNWtWSjZ9+vRDFlD/teuvvz7+93//N5YsWXIw27hxYzz66KPx5S9/uVX3JPOaWkDd4FBF1E0toG6giBoAAAAAALJbXqYXAAAAAAAAAAAAAAAAAAAAgCPRunXrYunSpUlZr169YurUqU2ecdttt6Vk9913X4t3o2NpbgF1g4Yi6kUbFkVE8wuoGzQUUVccqGjWOQAAAAAAIPOUUAMAAAAAAAAAAAAAAAAAAEAGPP744ynZxIkTo6ioqMkzhg8fHsOHD0/Kli1bFps3b27xfnQMtXW1MeHJCc0uoG7QUET9lV98Ja0C6gZrdq6JCU9OiNq62rTOAwAAAAAAmaGEGgAAAAAAAAAAAAAAAAAAADLg17/+dUo2bty4Zs9p7Exjs8lO+Xn5ceXHroy8RPoVEXX1dbGkfEnaBdQREXmJvLjyY1dGfl5+2jMAAAAAAID2p4QaAAAAAAAAAAAAAAAAAAAA2lllZWW88sorSVnXrl3j9NNPb/ass846KyVbunRp2rvR8YwtHRtzL57boiLqlshL5MXci+fG2NKxGbkfAAAAAABInxJqAAAAAAAAAAAAAAAAAAAAaGerV6+Ourq6pGzEiBFRUFDQ7FkjR46MwsLCpGzlypUt2o+OJ1NF1AqoAQAAAAAguymhBgAAAAAAAAAAAAAAAAAAgHb2xz/+MSU78cQT05pVVFQUH/rQh5Ky8vLyqKmpSWseHVd7F1EroAYAAAAAgOynhBoAAAAAAAAAAAAAAAAAAADa2ZYtW1KyE044Ie15AwYMSHpcW1sbW7duTXseHVd7FVEroAYAAAAAgNxQkOkFAAAAAAAAAAAAAAAAAAAA4Eizc+fOlKx///5pz2vs7Ntvvx2DBg1Ke2ZruPfee2PevHltfk95eXmb39GRNBRDT356ctTV17X6fAXUAAAAAACQO5RQAwAAAAAAAAAAAAAAAAAAQDt79913U7Ju3bqlPa+xs3v27El7XmvZvXt3rF+/PtNr5KS2KqJWQA0AAAAAALklL9MLAAAAAAAAAAAAAAAAAAAAwJGmsrIyJevSpUva8xo7+95776U9j+wwtnRszL14buQlWqc+QgE1AAAAAADknoJMLwBA20lEIrp36v6Br8nPy2+nbciEovyiD/wcKMjzW4Fc162oW1TXVR/y+aL8onbchvZWkFdw2F8HyG1dC7tGfdQf8vnOBZ3bcRvaW14i77A/B7TWNxfSMXXK7/SBnwN+Dsh93Yu6f+CvA/48kNsK8wo/8OcAvwbkvuLC4g/897xTQad23Ib2lp/IP+zvBROJRDttQyZ0KegSNZ1qDv18Yfp/SQ0AyD5dCrpEXae6Qz/v9wY5zfcN4GvFdCvq9oFfKy7ML2zHbWhvhfm+Vnyk61rY9QN/rfe14tyWn3f4rxX7eSC3dSnsEt3rDv054M+DuS2ROPyfB33fQG7rVPDBfx70PcS5r1tRt6ipO/R/M/Q5kNsO9+dBADqW6urUv/vVuXP6X79vrIS6qqoq7Xlkj7GlY+MXr/4ilpQvafGs8wedr4AaAAAAAAByjO8YA8hhiUQiTup5UqbXIIOO6XJMHNPlmEyvQQaVHFOS6RXIoOKiYr8OHOH+psffZHoFMqgwv9DPAUe43sW9o3dx70yvQQZ9uOeHM70CGXRU56PiqM5HZXoNMuiEo0/I9ApkUJfCLn4veITr171f9It+mV4DAOggfK34yOZrxfhaMb5WfGTr0alH9OjUI9NrkEG+Vnxk61zQ2e8Fj3B9u/WNvt36ZnoNMiQvkefngCPcsV2OjWO7HJvpNcigQccMyvQKZFC3om5+HQDIcolEolXP1tcf+n9WSO5YtGFRPLvp2VaZ9eymZ2PRhkWKqAEAAAAAIIfkZXoBAAAAAAAAAAAAAAAAAAAAONIUFhamZPv37097XmNni4qK0p5Hdli0YVFMfnpy1NXXtcq8uvq6mPz05Fi0YVGrzAMAAAAAADKvINMLAAAAAAAAAAAAAAAAAAAAwJGma9euKVlrl1AXFxenPa+19O7dO4YMGdLm95SXl8eBAwfa/J6OpLULqBs0FFFHRIwtHduqswEAAAAAgPanhBoAAAAAAAAAAAAAAAAAAADaWc+ePVOyffv2pT2vsbON3dHeJk2aFJMmTWrze0455ZRYv359m9/TUbRVAXUDRdQAAAAAAJA78jK9AAAAAAAAAAAAAAAAAAAAABxpjjvuuJRs+/btac/btm1bk+4g+7V1AXWDhiLqRRsWtek9AAAAAABA21JCDQAAAAAAAAAAAAAAAAAAAO2spKQkJXvjjTfSnrd169akx/n5+TFgwIC059ExtVcBdQNF1AAAAAAAkP2UUAMAAAAAAAAAAAAAAAAAAEA7O/nkk1OyjRs3pjWrqqoqtm3blpQNHjw4CgoK0ppHx9TeBdQNFFEDAAAAAEB2U0INAAAAAAAAAAAAAAAAAAAA7WzYsGGRl5f8V/7Lysqipqam2bPKysqiuro6KTv99NNbtB8dS6YKqBsoogYAAAAAgOylhBoAAAAAAAAAAAAAAAAAAADaWXFxcQwbNiwpq6ysjFWrVjV71osvvpiSnX322WnvRsdSW1cbD61+qEUF1HmJvLhg8AWRl0i/ZqKuvi4eWv1Q1NbVpj0DAAAAAABof0qoAQAAAAAAAAAAAAAAAAAAIAMuuuiilGzhwoXNntPYmcZmk53y8/Jj/mfnx2l9T0vrfF4iL+ZePDd+etlPY+7Fc9Muoj6t72kx/7PzIz8vP63zAAAAAABAZiihBgAAAAAAAAAAAAAAAAAAgAy44oorUrKHH344qqqqmjxj1apVsWLFiqTs4x//eJSUlLR4PzqOHp16xIJxC5pdRN1QQD22dGxERIwtHZtWEfVpfU+LBeMWRI9OPZp1DgAAAAAAyDwl1AAAAAAAAAAAAAAAAAAAAJABp556aowaNSop2717d9x1111NnnHjjTemZNdee22Ld6PjaW4R9fsLqBs0t4haATUAAAAAAGQ3JdQAAAAAAAAAAAAAAAAAAACQIdOmTUvJpk+fHq+88sphz95zzz2xePHipGzQoEHxhS98odX2o2NpahH1oQqoGzS1iFoBNQAAAAAAZD8l1AAAAAAAAAAAAAAAAAAAAJAhF154YYwZMyYpO3DgQJx77rnx1FNPNXqmuro6Zs2aFZMnT0557u67747CwsI22ZWO4XBF1IcroG5wuCJqBdQAAAAAAJAbCjK9AAAAAAAAAAAAAAAAAAAAABzJHnjggVi5cmVs3779YFZRURGjR4+OESNGxJgxY6KkpCT2798fr7/+esyfPz927NiRMue6666LSy65pD1XJ0MaiqgvX3h5rNm55mDe1ALqBg2vm/z05KirrzuYK6AGAAAAAIDcoYQaAAAAAAAAAAAAAAAAAAAAMqh3797xzDPPxHnnnRc7d+5Meq6srCzKysoOO2P8+PExe/bsNtqQjuj9RdTNLaBu8P4iagXUAAAAAACQW/IyvQAAAAAAAAAAAAAAAAAAAAAc6UpLS2P58uUxatSoZp0rLCyM6dOnx2OPPRb5+flttB0dVUMR9fDjh6dVQN1gbOnYmHvx3Bh+/HAF1AAAAAAAkGMKMr0AAAAAAAAAAAAAAAAAAAAAENG/f/944YUX4mc/+1nMmTMnXn755aivr2/0td26dYvPf/7zccMNN8RHPvKRdt6UjqRHpx7xi8t/Efl5LSshH1s6NkafPLrFcwAAAAAAgI5FCTUAAAAAAAAAAAAAAAAAAAB0EIlEIsaPHx/jx4+PXbt2xfLly2PTpk1RUVERBQUF0atXrygtLY2RI0dGUVFRptelg2it4mgF1AAAAAAAkHuUUAMAAAAAAAAAAAAAAAAAAEAH1KdPn7j00kszvQYAAAAAAABZLC/TCwAAAAAAAAAAAAAAAAAAAAAAAAAAAADQ+pRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQgJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOUgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIOUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABADlJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJCDlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAA5CAl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5SAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA5SQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQg5RQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAOQgJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOUgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAOUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIOUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADkICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABADlJCDQAAAP8fe/cdZVV97o//mRmGDtIREAHB3gUsBMXeG2JsseH9arDlGlOsN+C6V1FjYok1+rVG8UYlEAuixhLsgiKKKAqCoqBIL0MZmN8f/uTr8czAnDNn5jD7vF5rsZb7Ofvz2c8MZOfMec96NgAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkUFFFRUVFvpsAyIUWLVrE0qVL0+qNGjWKnj175qEjAAAAAABgYzNt2rRYuXJlWr158+axZMmSPHQEQK7IjAEAAAAAgA2RGQMkm9wYAAAAAABYn0LOjA2hBhKjcePGld7MAQAAAAAANqRRo0axYsWKfLcBQA3IjAEAAAAAgGzJjAGSQW4MAAAAAABkoxAy4+J8NwAAAAAAAAAAAAAAAAAAAAAAAAAAAABA7hlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ1CDfDQDkSqtWrWLhwoVp9dLS0th8883rvqGNyLRp02LlypVp9UaNGkXPnj3z0BFQl9wDoLC5B0Bhcw+AwuYeAIXNPQCq9sUXX8Tq1avT6q1atar7ZgDIKZlx1bw/hMLmHgCFzT0ACpt7AOA+AIXNPQAqJzMGSDa5ceW8N4TC5h4AuA9AYXMPgMLmHgCFzT0AKlfImbEh1EBizJkzJ98tbLS23377+Oijj9LqPXv2jMmTJ+ehI6AuuQdAYXMPgMLmHgCFzT0ACpt7AABQiGTGVfP+EAqbewAUNvcAKGzuAYD7ABQ29wAAoBDJjSvnvSEUNvcAwH0ACpt7ABQ29wAobO4BwE8V57sBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHLPEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASyBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQyhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggQyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASyBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQyhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggQyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIoAb5bgCA2nfeeefF3Llz0+rt27fPQzdAXXMPgMLmHgCFzT0ACpt7ABQ29wAAAH7M+0MobO4BUNjcA6CwuQcA7gNQ2NwDAAD4gfeGUNjcAwD3AShs7gFQ2NwDoLC5BwA/VVRRUVGR7yYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyK3ifDcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQO4ZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACNch3AwDUrrlz58Y777wT06ZNi8WLF0dpaWm0bds2tttuu+jTp0+Ulpbmu0Wglnz55ZcxefLkmDVrVixcuDBWrVoVrVu3jtatW8c222wTO+64Y5SUlOS7TQCgDqxZsyYmTZoUH3/8ccyZMyeWLVsWjRo1ipYtW0b37t1jq622ih49euS7TSCH1qxZEx999FFMnjw55s+fH4sWLYqSkpJo1apVtG/fPnbdddfo3r17vtsENlKfffZZTJw4Mb788stYtmxZNGnSJDp37hw77bRTbL/99vluDwCADMmMoXDJjAGAH8iMofDIjIGakBkDACSP3BgKk8wYAPiBzBgKj8wYqCm5MSSTIdQACfX444/HzTffHK+99lpUVFRUek6LFi3ihBNOiN///vex1VZb1XGHQK59/PHHMXbs2HjxxRfj3//+dyxcuHC95zdr1iz23XffGDJkSBx++OFRXFxcN40CeVVRURH77bdfvPLKK2mvDRgwIF5++eW6bwqoNS+99FL89a9/jWeeeSYWL1683nPbtWsX/fr1i8MPPzyOP/74aNu2bR11CeTSc889F/fcc088/fTTsXz58vWe2759+zjxxBPjnHPOiR133LGOOgTWZ/78+TF+/Ph1fyZMmBBffPFF2nlVfd5XE2VlZXHHHXfEnXfeGZ9++mmV52222WbxH//xH3HRRRdFq1atct4HAAC5IzOGwiMzBqpDZgyFRWYMhUdmDPWbzBgAgFyTG0NhkRkD1SEzhsIiM4bCIzOG+k9uDNSmoorauHsAkDdfffVV/OIXv6j0A9+qNGzYMK688sq48soro6ioqBa7A3KtrKwsbrjhhvj73/8eH374Ydb7bL/99nH//fdHnz59ctgdsDG65ZZb4j//8z8rfU04DMkxZcqUOPfcczP6ueDHHnrooTj11FNz3BVQmz777LM455xz4qWXXsp4bVFRUZxzzjlx3XXXxSabbFIL3QFV+fDDD+Ppp5+OCRMmxPjx4+Pzzz+v1rpcRzuvvfZa/OIXv4iZM2dWe0379u3jnnvuiaOPPjqnvQAAUHMyYygsMmMgUzJjKAwyYyg8MmOon2TGAADUFrkxFA6ZMZApmTEUBpkxFB6ZMdRfcmOgLhlCDZAgU6dOjX333Tdmz56d1fqTTz45HnrooSgpKclxZ0BtmTFjRvTo0SMnezVo0CBuvPHGuOCCC3KyH7Dx+eyzz2LnnXeu8mmFwmFIhgcffDCGDBkSZWVlWe8hHIb65c0334xDDjlkg08i35DtttsuXnrppejQoUOOOgM25KKLLoqbb74543W5jHZGjhwZJ510UqxevTrjtUVFRXHrrbfGeeedl7N+AACoGZkxFB6ZMZAJmTEUBpkxFB6ZMdRfMmMAAGqD3BgKi8wYyITMGAqDzBgKj8wY6je5MVCXGuS7AQByY968eXHQQQdVGgr37t07jjnmmOjRo0eUlZXF1KlT45FHHomvv/465bwRI0ZEhw4d4qabbqqjroHa1KtXrxgwYEBsueWW0aFDh2jWrFnMnz8/Jk6cGM8880x8+eWXKeeXl5fHhRdeGA0bNoxzzjknT10DtWXt2rUxePDgKoNhIBluvPHGuPjii9PqRUVFseuuu8ZBBx0UXbp0iQ4dOkR5eXksWLAgPv7445g4cWK89dZbUV5enoeugZqYPn16lcFwp06d4uijj46dd9452rZtG6tXr445c+bEm2++GU899VSsWLEi5fyPPvooDj744HjnnXeitLS0rr4EII9ef/31SkPh4uLiOPLII6N///7RtWvXmDt3brz//vsxYsSIlJ8pKioq4oILLohOnTrFwIED67p9AAB+QmYM/JTMGPgxmTEUBpkxFB6ZMVATMmMAgOSRGwM/JjMGfkxmDIVBZgyFR2YM1JTcGAqLIdQACXHOOefEF198kVJr0aJF/O1vf4ujjz467fxrrrkmrrnmmhg2bFhK/eabb45DDjkkDjvssNpsF6gl2223XZx55plxyimnRJcuXao8r7y8PO677764+OKLY+nSpSmvXXjhhbHvvvvGVlttVdvtAnXopptuildffXXd8R577BFvvfVWHjsCcm3EiBHxm9/8Jq1+wgknxLXXXhs9evRY7/rFixfHM888E/fcc08UFxfXVptAjp1//vlpwXCjRo3i2muvjfPPP7/KkHfevHlx0UUXxd/+9reU+vvvvx833HBDXHbZZbXWM7BhDRs2jB122CH69OkTf//732PhwoU5v8ayZcvi5JNPTguFt9566/jHP/4R2267bdqa66+/PgYPHhz//Oc/19UqKipi8ODBsddee8Wmm26a8z4BAKg+mTEQITMGqiYzhuSTGUNhkhlDMsmMAQDIltwYkBkDVZEZQ/LJjKEwyYwhueTGQG0oqqioqMh3EwDUzPPPPx8HH3xwSq1hw4bx2muvRZ8+fda79uabb46LLroopdarV6+YMmVKNGjgWQWwsZsxY0b06NEj9ttvvxg2bFjss88+Ga2fNGlSDBgwIO0HzCOPPDKefPLJHHYK5NPUqVNjl112ibKysoiIaNu2bTzzzDOxxx57pJw3YMCAePnll/PQIVBTU6dOjd69e6f80ldpaWk8/PDD8fOf/zzj/SoqKqKoqCiXLQK1YMqUKbHddtul1Z944ok47rjjqrXHueeeG3feeWdKrWPHjvH111/7RRGoAxdddFHcdtttsd1220WfPn3W/dl5552jYcOGERHRvXv3mDlzZsq6XEQ7V1xxRVxzzTUptV69esVbb70Vbdq0qXLdmjVr4sQTT4wnnngipX7GGWfE/fffX+O+AADIjswYCpfMGKgOmTEkn8wYCpPMGOo/mTEAALkkN4bCJDMGqkNmDMknM4bCJDOGZJAbA3XJEGqABNhnn31i3LhxKbWrr746Lr/88mqtP/jgg+P5559PqT3wwANx+umn56xHoHYsWLBgXcCbrSeeeCKOP/74lFpJSUnMmTMn2rVrV9MWgTxbu3Zt9O/fP9544411tYceeij69++f9rRS4TDUXwcccEC8+OKLKbXHH388Bg0alKeOgLpwzTXXxBVXXJFSO/bYY+Mf//hHtfdYtmxZ9OzZM7755puU+muvvRb9+vXLSZ9A1WbPnh2tWrWKJk2aVHlObQTDCxcujG7duqU84by4uDheeeWV6N+//wbXz5s3L7bffvuUe0dJSUlMnTo1tthiixr1BgBAdmTGULhkxsCGyIyhMMiMoTDJjKH+kxkDAJBLcmMoTDJjYENkxlAYZMZQmGTGkAxyY6AuecQEQD03efLktFC4Xbt28dvf/rbaewwfPjytdscdd9S4N6D2tW7dukbBcETEoEGDYqeddkqprVmzJsaMGVOjfYGNww033JASDB9xxBFx6qmn5rEjINeeeuqptGD49NNPFwxDAfj444/TaieffHJGezRr1iyOPfbYtPonn3ySbVtABjp16rTeULi2PPzwwymhcMT3PytUJxSOiGjbtm387ne/S6mtWbMm7r777pz1CABA9cmMobDJjIENkRlD8smMoXDJjKH+kxkDAJArcmMoXDJjYENkxpB8MmMoXDJjSAa5MVCXDKEGqOceffTRtNrgwYOjYcOG1d6jd+/e0bt375Tam2++GZ9//nmN+wPqh8MOOyytNn369Dx0AuTSlClT4g9/+MO645YtW8add96Zx46A2nDdddelHDdq1ChuuOGGPHUD1KVvv/02rbbttttmvE9la376xGIgWSr7THHIkCEZ7XHGGWdEo0aNUmojRoyoUV8AAGRHZgzkgswYkklmDIVBZgyFS2YMZEtmDACQPHJjoKZkxpBMMmMoDDJjKFwyY6Am5MZQmAyhBqjnnn322bTa8ccfn/E+la2pbG8gmTbffPO02pw5c/LQCZAra9asiTPOOCNWrly5rnbDDTfEZpttlseugFz75JNP4tVXX02pHXnkkdG+ffs8dQTUpcp+KTyTXxT/wU+DnYiIxo0bZ9UTsPFbtGhRvPHGGym1Fi1axCGHHJLRPu3atYt99903pTZz5syYMmVKTVsEACBDMmMgF2TGkDwyYygMMmMobDJjIBsyYwCAZJIbAzUlM4bkkRlDYZAZQ2GTGQPZkhtD4TKEGqAeW7ZsWbz77rsptaZNm8Zuu+2W8V577713Wm3cuHFZ9wbUL8uXL0+rNWnSJA+dALly/fXXxzvvvLPu+IADDoizzz47jx0BteGxxx5Lq5188sl56ATIhx49eqTVvvzyy4z3qWxNz549s+oJ2Pi98cYbsWbNmpTannvuGSUlJRnv5TNFAID8kxkDuSIzhuSRGUNhkBlDYZMZA9mQGQMAJI/cGMgFmTEkj8wYCoPMGAqbzBjIltwYCpch1AD12MSJE2Pt2rUptT59+kSDBg0y3qtv375RWlqaUpswYUKN+gPqj88++yyt1qlTpzx0AuTC5MmTY9iwYeuOmzVrFnfffXf+GgJqzfPPP59W23PPPfPQCZAP+++/f1rt2WefzXifMWPGpBw3bNgw+vfvn3VfwMatss/89tprr6z26tevX7X2BwCg9siMgVyRGUOyyIyhcMiMobDJjIFsyIwBAJJHbgzkgswYkkVmDIVDZgyFTWYMZEtuDIXLEGqAeuzjjz9Oq/Xq1SurvRo2bBibbbZZSm3atGlRXl6e1X5A/VFeXh6jR49Oq/ft2zcP3QA1VV5eHmeccUasWrVqXe2aa66p9AmGQP22Zs2aeOutt1Jq7dq1iy5duqw7XrRoUdx2221xxBFHRNeuXaNRo0bRvHnz6N69e+y1115xySWXxL/+9a+0XzgF6ocjjjgiunXrllK78847Y+bMmdXe49FHH4333nsvpXbaaadF69atc9IjsPHJ5WeKlT3N/JNPPslqLwAAsiMzBnJBZgzJIjOGwiEzBmTGQDZkxgAAySM3BmpKZgzJIjOGwiEzBmTGQLbkxlC4DKEGqMdmzJiRVvvpD4WZ2HzzzVOO16xZE1988UXW+wH1wz//+c+YM2dOSq1NmzaeSAb11PDhw1OeBtavX7+44IIL8tgRUFumTp0aK1euTKltueWW6/77r3/9a3Tt2jUuuOCCeOaZZ2LWrFmxatWqWLZsWcycOTPefPPNuP766+PAAw+MnXbaKUaOHFnXXwJQQw0aNIjbb789pbZs2bI45JBDYurUqRtcP2rUqDjrrLNSah07dozhw4fntE9g45LLzxS7dOkSJSUlKbXp06dntRcAANmRGQO5IDOGZJEZQ+GQGQMyYyAbMmMAgOSRGwM1JTOGZJEZQ+GQGQMyYyBbcmMoXIZQA9RjPw1zIiK6du2a9X6Vrf3mm2+y3g/Y+K1YsSIuu+yytPrgwYOjQYMGeegIqIlJkybFf//3f687bty4cdx7771RXOxHP0iiyj503WSTTWLlypVx1FFHxS9/+ctYsmRJtfaaPHlyDBo0KM4555xYvXp1rlsFatHhhx8et9xySxQVFa2rffLJJ7HLLrvEkCFDYuzYsfHNN9/E6tWrY/ny5TF9+vQYMWJEHHrooTFw4MAoKytbt65du3YxduzYaN++fT6+FKCO5PIzxZKSkujUqVNKzeeJAAB1S2YM1JTMGJJFZgyFRWYMRMiMgczJjAEAkkduDNSEzBiSRWYMhUVmDETIjIHsyI2hcPnED6Aemz9/flqtefPmWe9X2dp58+ZlvR+w8bvsssvSnlzWunXruOSSS/LUEZCt1atXxxlnnJES6gwdOjS23nrrPHYF1KbZs2en1Zo3bx6nnXZaPPXUUyn1oqKi6NChQ7Rp0yYWLlwY33zzTaxduzZt/d133x1ff/11/POf//SLJVCPXHjhhbHVVlvFkCFD1j11tKysLO6666646667qrXH0UcfHXfccUd07ty5FjsFNga1/ZniqlWrYunSpTXaEwCA6pMZAzUlM4bkkBlD4ZEZAz+QGQOZkBkDACSP3BioCZkxJIfMGAqPzBj4gcwYyJTcGAqXd/kA9diyZcvSak2aNMl6v8rWLl++POv9gI3bE088ETfddFNa/YYbbvBEMqiH/ud//icmTpy47rh3797xu9/9Ln8NAbVuwYIFabWnn346HnvssXXHbdu2jT//+c8xa9asmDNnTnz00Ufx9ddfxzfffBN//etfo0uXLpXuMWzYsNpsHagFhxxySEydOjX+9re/xf7771+tNcXFxXHOOefExIkTY/To0YJhKBA+UwQASBbv74CakBlDssiMofDIjIEfkxkD1eUzRQCA5PEeD8iWzBiSRWYMhUdmDPyYzBjIhM8UoXAZQg1Qj/34CYQ/aNy4cdb7VfYmbtWqVVnvB2y8JkyYEKeffnpafdCgQXHWWWfloSOgJt5777245ppr1h2XlpbGvffeGyUlJXnsCqhtK1euTKuVlZWt++9ddtklJk+eHL/+9a/TAp927drF2WefHVOmTIn99tsvbZ//+Z//iY8++ij3TQO1pqKiIp599tl48MEHY9y4cdVas3bt2rj33nvj97//fYwdO7aWOwQ2Fj5TBABIFu/vgGzJjCFZZMZQmGTGwI/JjIHq8pkiAEDyeI8HZENmDMkiM4bCJDMGfkxmDGTCZ4pQuAyhBkiYoqKinK6tqKioSTvARmj69Olx5JFHpj0paJttton77rsvT10B2Vq1alWcccYZUV5evq522WWXxU477ZTHroC6sL736h06dIjnnnsuOnbsuN49WrRoEU899VRstdVWaXtfe+21OekTqH3Tp0+PffbZJ44++uh47rnn0kKfdu3axTbbbBO9evWKVq1apbxWXl4ezz33XBx66KFx7LHHxnfffVeHnQMbC58pAgAki/d3wIbIjCFZZMZQuGTGwA9kxkBN+UwRACB5vMcD1kdmDMkiM4bCJTMGfiAzBnLBZ4pQGAyhBqjHSktL02o/fiJZpipb27Bhw6z3AzY+X331VRx44IExZ86clHrXrl3j2WefjRYtWuSpMyBbV111VXzwwQfrjnfYYYe44oor8tgRUFcq+3ngB9dff320b9++Wvs0bdo0br/99rT6iBEjYsmSJVn3B9SNSZMmxR577BGvvvpqSr1Xr15x++23x6xZs2Lu3LkxZcqU+PTTT2PBggXx6aefxrXXXhudOnVKWTN69OjYZ5990n5eAJLFZ4oAAMni/R2QKZkxJI/MGAqXzBiIkBkDmfOZIgBA8niPB2RCZgzJIzOGwiUzBiJkxkB2fKYIhcsQaoB6rGnTpmm1XL+Ja9asWdb7ARuXb7/9Ng488MD4/PPPU+qbbrppvPDCC9GtW7c8dQZka/z48XH99devOy4pKYl7773XhzBQIKp6r96uXbs4+eSTM9rrgAMOiG233TalVl5eHq+99lrW/QG1b/78+XH44YenPVX4rLPOig8++CDOPffc6NKlS9q6Xr16xSWXXBKTJ0+Oww8/POW1KVOmxIknnhhr166t1d6B/PGZIgBAsnh/B2RCZgzJIzOGwiYzBmTGQDZ8pggAkDze4wHVJTOG5JEZQ2GTGQMyYyBbPlOEwmUINUA91rZt27Ta0qVLs96vsrWVXQOof+bNmxcHHHBAfPzxxyn1du3axQsvvBBbbbVVnjoDsrVy5co488wzo7y8fF3t4osvjr59++axK6AuVfVefcCAAVn9kshBBx2UVvvpE0+Bjcull14aX331VUrtuOOOi3vuuScaN268wfWtW7eOJ554IvbYY4+U+r///e+4//77c9kqsBGp7c8UGzZsGM2bN896PwAAMiMzBqpLZgzJIzMGZMaAzBjIhswYACB55MZAdciMIXlkxoDMGJAZA9mSG0PhMoQaoB7r2LFjWm3WrFlZ7/fll19W6xpA/bJgwYI46KCD4sMPP0ypt2nTJl544YXYfvvt89QZUBM333xzTJ48ed3xlltuGVdddVUeOwLqWqdOnSqt77rrrlntV9m6r7/+Oqu9gNr33XffxYMPPphSa9y4cdxyyy1RVFRU7X0aN24ct956a1r9pptuqmmLwEYql58prlmzJmbPnr3B/QEAqD0yY6A6ZMaQTDJjQGYMhU1mDGRLZgwAkDxyY2BDZMaQTDJjQGYMhU1mDNSE3BgKV4N8NwBA9nr06JFWmzlzZtb7ffHFFynHJSUlsfnmm2e9H5B/ixYtioMOOijee++9lHqrVq3iueeei5133jlPnQE19dPAZsmSJbHXXntVe/2qVavSauPHj49ddtklrT5x4sRM2wPqwBZbbFFpvaonF29IZevmzZuX1V5A7XvhhRdi5cqVKbUDDzwwunTpkvFeffr0ie233z7lF88++OCDmD17dpW/iALUXz169IjXXnstpTZz5szYe++9M97r66+/jvLy8rT9AQCoOzJjYENkxpBcMmNAZgyFTWYMZEtmDACQPHJjYH1kxpBcMmNAZgyFTWYM1ITcGAqXIdQA9djWW2+dVvvss8+y2mvVqlVpTyfu2bNnNGjg/yqgvlq8eHEcfPDBMWHChJR6y5YtY+zYsdG7d+88dQbUhjlz5sScOXNqtMeyZcvi/fffz1FHQG3r2rVrNG/ePJYuXZpSb9SoUVb7NW7cOK22YsWKrPYCat+kSZPSanvuuWfW++25554p4fAP1xAOQ/Lk8jPFadOmpdW22WabrPYCACA7MmNgfWTGUFhkxlB4ZMZQ2GTGQLZkxgAAySM3BqoiM4bCIjOGwiMzhsImMwZqQm4Mhas43w0AkL1dd901iotTb+Xjx49PeyJIdYwfPz5Wr16dUtttt91q1B+QP0uWLIlDDjkk3n777ZR6ixYtYuzYsbH77rvnqTMAIFeKi4srfc++aNGirPZbuHBhWi3bpx0Dta+yJ4i3b98+6/0qWzt//vys9wM2XpX9svgbb7yR1V6vv/56Ws1nigAAdUtmDFRFZgwAySczhsImMwayJTMGAEgeuTFQGZkxACSfzBgKm8wYqAm5MRQuQ6gB6rFmzZrFrrvumlJbtmxZvPfeexnv9eqrr6bV9tlnn6x7A/Jn6dKlceihh8abb76ZUm/evHmMGTOmRk8tAwA2Lvvuu29a7fPPP89qrxkzZqTVahI0AbWrsqeKl5WVZb3f8uXL02pNmzbNej9g47XXXntFSUlJSu2NN96INWvWZLyXzxQBAPJPZgxURmYMAIVDZgyFS2YMZEtmDACQPHJj4KdkxgBQOGTGULhkxkBNyI2hcBlCDVDPHXrooWm1xx9/PON9KltT2d7Axm3ZsmVx+OGHpz0dqFmzZvHMM8/Ez372szx1BuTaTTfdFBUVFVn/qSw8GjBgQKXnAhuvI444Iq1W2VMCq6OydT/9RVRg41HZL29k+8shERHTp0+v1jWA+q9Vq1Zpvzi+ZMmSeO655zLaZ/78+fHSSy+l1DbffPPYdttta9wjAACZkRkDPyYzhsIhMwYiZMZQyGTGQLZkxgAAySQ3Bn4gM4bCITMGImTGUMhkxkBNyI2hcBlCDVDPnXTSSWm1++67L1atWlXtPd5777145513Ump77LFH9OjRo8b9AXVn+fLlceSRR8a4ceNS6k2bNo2nn3469t577zx1BgDUlt133z223HLLlNr48eNjypQpGe3z3XffxZgxY9LqBxxwQI36A2rPT/+3HxGV/u+4OpYvXx4vv/xySq2oqCh69eqV1X7Axq+yzxTvuuuujPZ44IEHYsWKFSm1k08+uUZ9AQCQHZkx8AOZMQAUHpkxFC6ZMVATMmMAgOSRGwMRMmMAKEQyYyhcMmOgpuTGUJgMoQao53bYYYfo379/Sm3u3Llx4403VnuPyy67LK127rnn1rg3oO6sWLEijjnmmLQPdJo0aRJPPfVUDBgwID+NAQC17sILL0yrDR06NKM9rr766li5cmVKbffdd4+uXbvWqDeg9hx44IFRXJz68e7UqVPjsccey3ivG2+8MZYuXZpS23XXXaNDhw416hHYeJ166qnRokWLlNqTTz4Zr7/+erXWz58/P/74xz+m1EpKSuLss8/OWY8AAFSfzBiIkBkDQCGTGUNhkhkDNSEzBgBIHrkxIDMGgMIlM4bCJDMGakpuDIXJEGqABLjyyivTakOHDo133313g2tvvfXWGDt2bEptiy22iFNOOSVn/QG1a9WqVXHcccfFCy+8kFJv0qRJPPnkk7HffvvlqTMAoC6cffbZaSHuY489FnfccUe11o8ePTpuvvnmtPof/vCHnPQH1I62bdvGgQcemFYfMmRIRk8pf/755+Oqq65Kq1f25FIgOVq1ahXnn39+Sm3t2rUxePDgWLBgwXrXrl27NoYMGRKzZ89OqZ9yyinRs2fPnPcKAED1yIyhsMmMAaCwyYyhMMmMgZqQGQMAJJPcGAqXzBgACpvMGAqTzBioKbkxFCZDqAES4JBDDoljjjkmpbZy5crYb7/94sknn6x0zerVq+O///u/K32a2S233BKlpaW10iuQW+Xl5XHCCSfEmDFjUuqNGzeOUaNGxQEHHJCnzgCAutK4ceO49dZb0+rnnXdeXHHFFVFWVlbputWrV8ef/vSnOP7446OioiLltYMPPjiOOOKIWukXyJ1rrrkmioqKUmrz58+PPffcM+6///4oLy+vcu3y5ctj+PDhccQRR8Tq1atTXttss83iggsuqJWegY3HFVdcEZtttllKberUqdGvX7/4+OOPK12zYMGCOO6449Keht6yZcu49tpra61XAAA2TGYMhUtmDADIjKFwyYyBmpAZAwAkj9wYCpPMGACQGUPhkhkDNSU3hsJTVPHTd/8A1Etz586N3XbbLWbNmpX2Wp8+feKYY46JHj16RFlZWXz66afx8MMPx1dffZV27gUXXBB/+ctf6qJlIAcefvjhOPXUU9PqrVq1im7dutVo7z59+sQ999xToz2AjdeMGTOiR48eKbUBAwbEyy+/nJ+GgBq7+OKL48Ybb0yrd+zYMY455pjYbbfdok2bNrFw4cL48MMPY9SoUfHFF1+knd+9e/cYP358tG3bti7aBmrosssuqzKM6dq1axx66KGxyy67RNu2bWPt2rUxd+7cePvtt2PMmDExf/78tDWlpaXx1FNPxcEHH1zbrQP/v8MPPzy+/vrrKl//6KOP0n6JY+edd17vns8880x07tx5g9ceN25c7L///mm/TFJcXBxHHXVU7L333tGlS5f47rvv4v33348RI0bEsmXL0vZ57LHH4vjjj9/g9QAAqF0yYyhMMmMgWzJjSB6ZMRQmmTHUfzJjAABySW4MhUdmDGRLZgzJIzOGwiQzhmSQGwN1xRBqgASZMmVK7L///jFnzpys1p9wwgnxyCOPRElJSY47A2rL/fffH4MHD66VvYVEkGzCYUietWvXxtlnnx333ntv1ntsvfXW8eSTT8aWW26Zw86A2nbeeefFHXfcUeN9GjZsGA888ECcdNJJOegKqK7u3bvHzJkzc7rn559/Ht27d6/WuY899liccsop632qeVWKioripptuil/96lcZrwUAoHbIjKHwyIyBbMmMIXlkxlC4ZMZQv8mMAQDINbkxFBaZMZAtmTEkj8wYCpfMGOo/uTFQV4rz3QAAubPtttvG22+/Hf37989oXWlpaQwdOjRGjBghFAYAgHqquLg4/u///b9x8803R7NmzTJaW1RUFCeeeGK89dZbgmGoh26//fZ49NFHo127dlnvscsuu8Q777wjGIYC9POf/zz+9a9/RdeuXTNa17Zt23jiiSeEwgAAGxmZMQAAFC6ZMRQumTFQEzJjAIDkkRsDAEBhkhlD4ZIZAzUlN4bCYQg1QMJ07do1/v3vf8f//u//Rr9+/aKoqKjKc5s3bx6DBw+OSZMmxbBhw6K42P8tAABAfferX/0qpk6dGr/97W+jY8eO6z23devWcfLJJ8d7770Xjz76aGyyySZ11CWQayeeeGLMmDEj7r777ujXr1+UlpZucE2LFi1i4MCBMWbMmHj33Xdjp512qoNOgY3RPvvsEx9//HH88Y9/jF69eq333C5dusR//dd/xaeffhoDBw6sow4BAMiEzBgAAAqbzBgKk8wYqAmZMQBA8siNAQCgcMmMoTDJjIGakhtDYSiqqKioyHcTANSeb7/9Nt5+++2YPn16LF68OBo0aBDt2rWLbbfdNvr27RsNGzbMd4sAAEAtqaioiA8//DA++OCDmD17dpSVlcUmm2wS7dq1iy233DJ22203vyAKCbVy5cp47733Ytq0abFw4cJYtGhRlJSURKtWraJ169axww47xDbbbOMeAFRq6tSpMXHixPjyyy9j+fLl0bhx4+jcuXPstNNOseOOO+a7PQAAMiQzBgCAwiUzhsIlMwZqQmYMAJA8cmMAAChMMmMoXDJjoKbkxpBMhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJDHTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAALCRGDZsWBQVFaX8AQAAAAAAAKBwyI0BAAAAAAAACpfMGAAAgNpiCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAABADdx///1RVFSU8mfGjBn5bouN0E//nQwbNizfLQEAAAAAAAA5IDemuuTGAAAAAAAAkDwyY6pLZgwAAOSTIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAG4lhw4ZFRUVFyh8AAAAAAAAACofcGAAAAAAAAKBwyYwBAACoLYZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACNch3AwAAAEDd+OKLL2L8+PExc+bMWLZsWbRo0SJ69eoV/fr1i9atW1d7nylTpsR7770Xs2fPjlWrVkWHDh2iZ8+e0b9//2jQIPcfNVRUVMQHH3wQ06ZNi7lz58a8efOiWbNm0b59++jevXv07ds3p9ddsmRJfPDBBzF16tRYuHBhLF26NEpLS6Np06bRrl276NatW2y55ZbRvn37nF0z15YvXx5vvfVWzJkzJ+bOnRvLli2Ltm3bRvv27WOXXXaJHj161HoPX3/9dbzzzjvx+eefx7Jly6JNmzbRuXPn6Nu3b3Tu3LnWrw8AAAAAAACkkxtXj9w4N+TGAAAAAAAAsHGRGVePzDg3ZMYAALBxKaqoqKjIdxMAAABQn5x55pnxwAMP1GiPoUOHxrBhw1Jqw4YNi6uuuiqlVp0f2/fdd9945ZVX1h0PGDAgXn755XXHf//73+OPf/xjjB8/vtL1jRo1ihNOOCGuueaa2GyzzSo9Z+XKlXHXXXfFX/7yl/jss88qPadVq1Zx7rnnxpVXXhlNmzbdYN8bMn78+Ljlllviueeei2+++abK81q0aBEHHXRQXHLJJbH77rtnda01a9bE3/72t3jggQfilVdeibVr125wTY8ePaJ///5x3HHHxaGHHhqNGzdOef3ll1+O/fbbL6t+ftCtW7eYMWNGtc4tLy+P+++/P0aMGBGvvvpqrFq1qspze/bsGSeccEL89re/jTZt2mTU00///f+0x1GjRsX1118fb7zxRqXri4uL42c/+1n8+te/joEDB2Z0bQAAAAAAANhYyI3lxhFy46p6lBsDAAAAAACQdDJjmXGEzLiqHmXGAACwcSrOdwMAAABA7Vi8eHEceeSRceKJJ1YZCkd8H/o+9NBDscMOO8SLL76Y9vqUKVOiT58+8Z//+Z9VhsIREQsXLozhw4fHzjvvHF9++WXWfc+cOTMGDRoUffv2jYceemi9oXDE908THjlyZOyxxx4xaNCgWLhwYUbXmzRpUuy2225x5plnxksvvVStUDgi4vPPP4+HHnooBg4cGPfff39G18y1UaNGxbbbbhtnn312vPjii+sNhSMipk2bFsOHD48ePXrEbbfdlpMeli9fHoMGDYqBAwdWGQpHRKxduzbGjRsXxx13XBx77LHx3Xff5eT6AAAAAAAAQDq5cfXIjeXGAAAAAAAAkEQy4+qRGcuMAQCgEBhCDQAAAAm0ZMmS2G+//eLpp5+u9ppFixbFUUcdFRMnTlxXmzhxYuy9997x4YcfVnufzz77LPbdd99YtGhRJi1HRMSbb74Zu+++e4wcOTLjtRERI0eOjD333HO9AfaPTZgwIQYMGBCTJk3K6nr5VlFREUOHDo2BAwdW+2v+scWLF8cFF1wQv/zlL2PNmjVZ97Fy5co49NBDM/57Gz16dBxwwAExb968rK8NAAAAAAAAVE5uLDeuDrkxAAAAAAAAJJPMWGZcHTJjAAAoHA3y3QAAAADUN5tvvnnsvPPOERExf/78tCfxbrvtttGwYcP17rHpppvWWn8REaeffnq8++6764579+4dhx12WPTo0SOaN28ec+bMiRdffDGefPLJlKfxLl++PM4444x4991347vvvosjjzxyXWhXWloa++23X+y///7RuXPnaNCgQcyYMSNGjx4db731Vsr1p0+fHpdddlncfvvt1e755ZdfjsMOOyxWrFiRUi8uLo699947+vXrFz169IhWrVpFWVlZzJo1K1555ZX417/+lRJqfvLJJ3H44YfH+PHjo2XLllVeb+XKlXHqqaemPc24qKgo9tprr+jfv3/07NkzWrZsGSUlJbF48eKYN29efPTRR/H+++/H+++/HxUVFVXu37x583X/TiIi3n///ZTXO3bsuMF/B507d17v6+eee27cddddafU2bdrEQQcdFL17944OHTpE06ZNY+HChTF58uR49tln45NPPkk5/69//Wu0atUqrrvuuvVeryq/+c1vYty4ceuO27VrF8cdd1zstNNO0a5du/juu+/igw8+iJEjR8bcuXNT1k6aNCkOOeSQeOONN6K0tDSr6wMAAAAAAEBdkxvLjeXGqeTGAAAAAAAAFBKZscxYZpxKZgwAAPVABQAAAJC1++67ryIiUv58/vnnWe01dOjQtL2qY8CAASlrGjVqtO6/e/ToUfH8889XuXb8+PEVHTt2TLvuI488UnHUUUetOz7wwAMrpk6dWuU+9957b0VJSUnKHsXFxRVffvlltb6G2bNnV9rH4MGDK2bOnLnetZ999lnFIYcckrb2+OOPX++6hx56KG3NbrvtVvHhhx9Wu+e77rqrYtddd6244447Nnj+T681dOjQal2nKvfee2/anm3atKm46667KsrKyqpct3bt2oqRI0dWdOjQIW39k08+ucHrnnHGGWn/3oqKitb9nV9yySVVXr+srKzi0ksvrSguLk679rBhw7L+XgAAAAAAAEA+yY2/JzeWG8uNAQAAAAAAKEQy4+/JjGXGMmMAANi4FQcAAACQKCtXroyI75+S/Prrr8eBBx5Y5bm9e/eOkSNHRlFRUUr9oosuiieffDIiIk4++eQYM2ZMbLnlllXuM3jw4LjqqqtSamvXro0HH3ywWj2fddZZ8c0336w7LikpiYcffjjuvffe2Hzzzde7tmfPnjFmzJgYPHhwSv3xxx+Pt99+u8p1o0ePTjlu165dPPfcc7H99ttXq+dNN900zjnnnHj33Xfj9NNPr9aaXJkxY0ZccMEFKbWtttoq3n///TjnnHOicePGVa4tKiqKgQMHxvjx42OzzTZLee3SSy9d7xOXK7Ny5cp1a2677ba49tprq7x+48aNY/jw4XHbbbelvXb11VfHtGnTMro2AAAAAAAAUDm58ffkxpWTGwMAAAAAAECyyYy/JzOunMwYAAAKkyHUAAAAkECNGjWK//3f/41NN910g+f269cvDjvssJTat99+GxERW2+9ddxzzz3RoEGDDe7zm9/8Jlq1apVSGzNmzAbXvfPOO2nnDR8+PE455ZQNrv1BUVFR3HXXXbHtttum1K+99toq10yfPj3leODAgdG2bdtqX/PHmjZtmtW6bP3xj3+M5cuXrztu1qxZPPvss2lB7/p07do1Hn300ZTa5MmT1/1CQKbOPPPMGDJkSLXOHTJkSJx55pkptdWrV8cdd9yR1bUBAAAAAACAdHLj78mNqyY3BgAAAAAAgOSSGX9PZlw1mTEAABQWQ6gBAAAggU477bTYcccdq33+oEGDKq3/4Q9/qHbo2bhx4zjyyCNTau+///4Gn3Z73XXXpRz36tUrLr744mpd88dKS0vj8ssvT6mNGTNm3dOaf2rJkiUpx9mGwnVt7ty5cd9996XUfve730WPHj0y3utnP/tZHHDAASm1f/zjHxnv06RJk7S/xw257rrrokmTJim1++67r8q/LwAAAAAAACAzcuPvyY3XT24MAAAAAAAAySQz/p7MeP1kxgAAUDgMoQYAAIAE+o//+I+Mzt91113Tai1atIif//znNdpnyZIl8dVXX1V5/ooVK+Kpp55KqZ155plRUlKS0XV/cPjhh6ft/+abb1Z67k+D4FdffTWra9a1p59+OsrKylJq/+f//J+s9zviiCNSjl9++eWM9zjmmGOiQ4cOGa3p0KFDHHvssSm1+fPnx9tvv53x9QEAAAAAAIB0cuP/t7/ceP3kxgAAAAAAAJA8MuP/t7/MeP1kxgAAUBgMoQYAAICEadq0afTp0yejNd26dUur7bnnnlFaWprRPt27d0+rLVy4sMrz33rrrbSn0f7sZz/L6Jo/1qZNm9hkk01Sau+9916l5+6xxx4px6+++mpcccUVUV5envX168Irr7ySctytW7fo0qVL1vv99KnGM2bMWO/fWWV+GvBW13HHHZdWqyrIBwAAAAAAAKpPbiw3zoTcGAAAAAAAAJJFZiwzzoTMGAAACkODfDcAAAAA5Fa3bt2iQYPMfuRv0aJFWq1Xr14ZX7uyfRYtWlTl+a+99lpa7bzzzouGDRtmfO0fLF++POX4u+++q/S8M888M2655ZaoqKhYV7vmmmvikUceicGDB8fAgQNjxx13zLqP2vLT79l3330Xu+yyS9b7LV26NK323XffRatWraq9R+/evbO69m677ZZWmzBhQlZ7AQAAAAAAAP+P3FhunAm5MQAAAAAAACSLzFhmnAmZMQAAFAZDqAEAACBhWrdunfGayp5CnKt9Vq9eXeX5s2bNSqtNmTIl4+uuz7x58yqt77LLLvGrX/0qbr755pT6jBkzYujQoTF06NDo0KFD9O/fP/r27Rv9+vWLPfbYIxo1apTT/jL10+/ZsmXL4v3338/pNebNm1ftXwxo0KBB9OzZM6vrbLHFFtGwYcNYtWrVutq3336b1V4AAAAAAADA/yM3TiU3zpzcGAAAAAAAAOovmXEqmXHmZMYAAJA8hlADAABAwlQWzuZzn/WpKrTNpbKysipf+9Of/hQlJSXx5z//udLXv/322xg5cmSMHDkyIiIaN24c++yzT5x00klx/PHHV/o05tpUVla23q8nl9eprhYtWkRRUVHW12rZsmXKE6QXLlyY9V4AAAAAAADA9+TGqeTG2V2nuuTGAAAAAAAAsHGRGaeSGWd3neqSGQMAQP1QnO8GAAAAgMK1YMGCvF6/pKQk/vSnP8Xbb78dRx11VDRosP7nda1YsSKee+65OOuss6J79+4xfPjwKC8vr6Nu8//9qkyzZs1yun7JkiU12g8AAAAAAACoX/Kdg8qNa05uDAAAAAAAAGQr3xmozLjmZMYAAFA/rP+nHQAAAIBa1KRJk7TalClTYptttqnTPvr27Rv//Oc/49tvv42nnnoqXnrppXjttdfi888/r3LN/Pnz4/LLL4/Ro0fHs88+G61atar1Piv7fu2xxx7x5ptv1vq1q7Js2bKcrq/rJz4DAAAAAAAA+SU3zozcGAAAAAAAAEgSmXFmZMYAAEC2ivPdAAAAAFC42rVrl1abP39+Hjr5XocOHeKss86Khx56KKZPnx5z5syJxx9/PH71q1/FlltuWemat956K0444YQ66a9Vq1ZpT1DO5/cr4vunCVdUVGS9fvHixSnHdRGwAwAAAAAAABsPuXFm5MYAAAAAAABAksiMMyMzBgAAsmUINQAAAJA3HTt2TKvNnDkzD51UrmPHjjFo0KC4+eabY+rUqTFhwoQ46aST0s57/vnnY8yYMbXeT1FRUbRv3z6l9tVXX0V5eXmtX7sq5eXlMX369KzWfv7557Fq1aqUWocOHXLRFgAAAAAAAFBPyI0zIzcGAAAAAAAAkkRmnBmZMQAAkC1DqAEAAIC82WOPPdJq//73v/PQSfXstttuMWLEiLj66qvTXnviiSfqpIeffs+WL18eEyZMqJNrVyXb61e2rnfv3jVtBwAAAAAAAKhH5MaZkxsDAAAAAAAASSEzzpzMGAAAyIYh1AAAAFADDRo0SKutWbMmD53UT/vtt1/a9/Cpp56K1atX56mj6rnkkkuibdu2KbVJkyatd01JSUnKcbb/Tg466KC02siRI7PaK1dGjRqV1brK+t5zzz1r2A0AAAAAAADULblxzciNMyc3BgAAAAAAgI2HzLhmZMaZkxkDAADZMIQaAAAAaqBFixZptaVLl+ahk/qpZcuWse+++6bUZs2aFQ899FB+GqqmkpKS2HLLLVNqixYtWu+an/5byfbfyRFHHJEWMt95552xcOHCrPbLhVGjRsXcuXMzWjN37twYPXp0Sq1Nmzax++6757I1AAAAAAAAqHVy45qRG2dObgwAAAAAAAAbD5lxzciMMyczBgAAsmEINQAAANRA69at02rTp0/PQyf115VXXplW++1vf7vRfx9nz56dcty+ffv1nv/TfyvZfn3dunWL0047LaW2ePHiGDx4cFRUVGS1Z02VlZXFpZdemtGaSy+9NJYvX55SGzx4cDRq1CiXrQEAAAAAAECtkxvXnNw4M3JjAAAAAAAA2HjIjGtOZpwZmTEAAJANQ6gBAACgBnbYYYe02jPPPJOHTuqvAQMGxEEHHZRSW7BgQRx66KExZcqUrPZcsWJF3HXXXfHnP/+50teXLl0av/vd7+KLL77Iav/Ro0fHzJkzU2o777zzetfsuOOOKcevvPJKLFu2LKvr/+EPf0gLUEeNGhXnnHNOrFy5Mqs9Z8yYERdeeGF8+OGHWa2/995745577qnWuXfffXfce++9KbXS0tI499xzs7o2AAAAAAAA5JPcuObkxpmTGwMAAAAAAMDGQWZcczLjzMmMAQCATBlCDQAAADXQpk2b2GabbVJq9913X9x4442xaNGiPHVV/9x///3RuXPnlNqnn34au+++ewwfPrxa38uKiop4/fXX49e//nV07949hgwZUuUTgMvLy+OGG26ILbbYIgYOHBgPP/xwta6xdu3auP/+++PUU09Ne62y2o/169cv5XjRokVx4oknZhV+9+jRI+666660+j333BN77rlnPPXUU9V6UvGSJUvikUceiWOPPTZ69eoVt956a6xYsSKjXho1ahRFRUUREfHLX/4yrrjiiirD6ZUrV8YVV1wRQ4YMSXvtiiuuiJ49e2Z0bQAAAAAAANgYyI1zQ26cGbkxAAAAAAAAbBxkxrkhM86MzBgAAMhUg3w3AAAAAPXdWWedFb///e/XHa9ZsyYuvvji+M1vfhObbbZZbLLJJlFSUpKyZsiQIZWGY4Wqc+fOMXr06Nh3331Tnti7dOnSuPzyy+Pqq6+O/v37R79+/aJTp07RunXrKCsri4ULF8bXX38d7777bkyYMCHmzZuX0XXXrFkTo0aNilGjRkVpaWnstNNOseuuu8Y222wTrVu3jk022SRWr14d3377bUyePDmeffbZSp9o/Itf/CL22muv9V7r9NNPjyuvvDLKy8vX1Z5++ul4+umno3Xr1tGxY8e0Jw537ty5yqddn3HGGTFlypS47rrrUuoTJ06Mo446KjbffPPYb7/9Yuedd462bdtG06ZNY9GiRbFw4cKYOnVqTJgwIT744INYtWpVdb9dldp0003jiCOOiNtvvz3Wrl0b11xzTdx9990xaNCg2GmnnaJt27Yxb968mDRpUowcOTK+/fbbtD169+4dl19+eY36AAAAAAAAgHySG9ec3FhuLDcGAAAAAACgvpIZ15zMWGYsMwYAgNplCDUAAADU0Pnnnx8PPPBATJ48OaVeUVERX375ZXz55Zdpa+bMmVNX7dUbffr0iTfffDMGDRoUU6dOTXlt2bJlMXbs2Bg7dmytXX/16tUxYcKEmDBhQkbr9t1337j99ts3eF6nTp3iyiuvjGHDhqW9tmDBgliwYEFafeHChevd89prr42uXbvGxRdfnBbwfvHFF/HAAw9ssK9c+POf/xyTJk2KV199NSIi5s6dG3feeWe11u60004xduzYKC0trc0WAQAAAAAAoFbJjXNDbiw3BgAAAAAAgPpIZpwbMmOZMQAAUHuK890AAAAA1HdNmzaNsWPHxkEHHZTvVuq9HXbYId5555244IILonHjxjXaq2/fvnHEEUdU+lqDBg2ibdu2Ndq/tLQ0Lr744nj22WejZcuW1VrzX//1X3H11VdHw4YNa3TtHzv//PNj3Lhx0b9//xrt06RJkzjppJNi8803z3hto0aN4tlnn41jjjkmo3VHH310/Otf/6rx3wUAAAAAAADkm9w4d+TGmZMbAwAAAAAAQH7JjHNHZpw5mTEAAFAdhlADAABADnTp0iWee+65mDBhQlx66aVxyCGHRPfu3aNVq1bRoEGDfLdXr7Rs2TL+8pe/xIwZM+LKK6+MXXfdNYqLN/wRRpMmTeKAAw6I4cOHx0cffRRvv/12HHbYYZWe27x58/jmm29i3Lhxcfnll8c+++wTTZs2rVZ/3bp1i9///vcxZcqU+NOf/hSNGjWq9tdWXFwcl19+eXz11Vdx6623xoknnhg77LBDtGvXrkZB+O677x7jxo2LcePGxS9+8Yvo3LlztdZ17tw5TjvttHjwwQdj9uzZMWLEiOjQoUNWPTRr1ixGjRoVjz32WPTt27fK84qKiqJ///7xxBNPxOjRo6Ndu3ZZXQ8AAAAAAAA2NnLj3JEbZ05uDAAAAAAAAPklM84dmXHmZMYAAMCGFFVUVFTkuwkAAACA9VmwYEGMHz8+vv3225g3b14sXrw4mjZtGi1atIhOnTrF1ltvHVtssUWUlJRkfY3y8vKYNm1aTJs2LWbNmhWLFy+OsrKyddfZfPPNY8cdd4wuXbrk8CurPVOnTo0pU6bEvHnzYt68ebF69epo0aJFtGzZMnr06BHbbLNNViHwmWeeGQ888MC6427dusWMGTPSzps1a1a88847MWPGjFi2bFm0adMmOnXqFLvvvnu9+R4CAAAAAAAAGw+5cebkxgAAAAAAAEBSyIwzJzMGAAB+zBBqAAAAAKqtusEwAAAAAAAAAMkkNwYAAAAAAAAoXDJjAACon4rz3QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuWcINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJFBRRUVFRb6bAAAAAAAAAAAAAAAAAAAAAAAAAAAAACC3ivPdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5Zwg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHU/H/t3IEMAAAAwCB/63t8BRIAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAGJJQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAxJqAEAAAAAAAAAAAAAAAAAAAAAAAAAAACGJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQxJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCEJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAMCQhBoAAAAAAAAAAAAAAAAAAAAAAAAAAABgSEINAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCShBgAAAAAAAAAAAAAAAAAAAAAAAAAAABiSUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAMSagBAAAAAAAAAAAAAAAAAAAAAAAAAAAAhiTUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEMSagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAhCTUAAAAAAAAAAAAAAAAAAAAAAAAAAADAkIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAYEhCDQAAAAAAAAAAAAAAAAAAAAAAAAAAADAkoQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAYklADAAAAAAAAAAAAAAAAAAAAAAAAAAAADEmoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAIYk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABDEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACAIQk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAwJCEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAGBIQg0AAAAAAAAAAAAAAAAAAAAAAAAAAAAwJKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAGJJQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFjWnZinH4HNsAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-02-21 01:15:49,824 - funman.server.worker - INFO - FunmanWorker running...\n", + "2024-02-21 01:15:49,827 - funman.server.worker - INFO - Starting work on: b506b93f-7c9d-415b-87b4-4a8df15fdaf5\n", + "2024-02-21 01:15:51,834 - funman.api.run - INFO - Dumping results to ./out/b506b93f-7c9d-415b-87b4-4a8df15fdaf5.json\n", + "2024-02-21 01:15:52,912 - funman.search.box_search - INFO - progress: 0.12500\n", + "2024-02-21 01:15:53,295 - funman.search.box_search - INFO - progress: 0.25000\n", + "2024-02-21 01:15:53,649 - funman.search.box_search - INFO - progress: 0.37500\n", + "2024-02-21 01:15:53,987 - funman.search.box_search - INFO - progress: 0.50000\n", + "2024-02-21 01:15:54,307 - funman.search.box_search - INFO - progress: 0.62500\n", + "2024-02-21 01:15:54,621 - funman.search.box_search - INFO - progress: 0.75000\n", + "2024-02-21 01:15:54,920 - funman.search.box_search - INFO - progress: 1.00000\n", + "2024-02-21 01:15:56,017 - funman.server.worker - INFO - Completed work on: b506b93f-7c9d-415b-87b4-4a8df15fdaf5\n", + "2024-02-21 01:16:01,914 - funman.server.worker - INFO - Worker.stop() acquiring state lock ....\n", + "2024-02-21 01:16:02,073 - funman.server.worker - INFO - FunmanWorker exiting...\n", + "2024-02-21 01:16:02,079 - funman.server.worker - INFO - Worker.stop() completed.\n" + ] } ], "source": [ - "# Step 1: Unconstrained model, constraints = []\n", + "# Take point from previous solution and define a box around it (used to label the box)\n", + "from funman import Box\n", + "from funman import ModelParameter, LABEL_ALL\n", + "point = results_unconstrained_point.parameter_space.true_points()[0]\n", + "# parameters = results_parameter_constraint.point_parameters(point)\n", + "parameters = results_unconstrained_point.model._parameter_names()\n", + "b = Box.from_point(point, radius = .000001, radius_vars=[p for p in parameters])\n", + "# b.bounds[\"epsilon\"]\n", + "# b.bounds\n", "\n", - "# Synthesize parameters epsilon and theta\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request: FunmanWorkRequest = FunmanWorkRequest.model_validate(json.load(request))\n", "\n", - "# {\n", - "# \"name\": \"epsilon\",\n", - "# \"interval\": {\"lb\": 0.1368, \"ub\": 0.20520000000000002},\n", - "# \"label\": \"all\",\n", - "# },\n", - "# {\n", - "# \"name\": \"theta\",\n", - "# \"interval\": {\"lb\": 0.2968, \"ub\": 0.4452},\n", - "# \"label\": \"all\",\n", - "# },\n", + " funman_request.parameters = [ModelParameter(name=p, interval=b.bounds[p], label=LABEL_ALL) for p in parameters]\n", + " # print(funman_request.parameters[0] )\n", + " # funman_request.config.use_compartmental_constraints=False \n", + " results_synthesis_around_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIDARTHE demo\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " # dump_results=False\n", + " )\n", + " summary = summarize_results([\"Infected\"], results_synthesis_around_point, ylabel=\"Infected\")\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# View profiling if present (must set `\"profiling\": True` in the config above)\n", "\n", - "SAVED_RESULT_TO_USE = os.path.join(SAVED_RESULTS_DIR, \"06396b64-b529-4808-a2dc-d74ff9e33657.json\")\n", + "import os\n", + "from IPython.core.display import Image\n", + "from IPython.display import display\n", + "profile_file = os.path.join(f\"./summary_profile.stats\")\n", + "if os.path.exists(profile_file):\n", + " os.system(f\"gprof2dot -f pstats {profile_file} | dot -Tpng -o summary-profile.png\")\n", + " display(Image(filename='summary-profile.png'))\n", + "else:\n", + " print(f\"{profile_file} file not present\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Step 1: Constrain peak infected, find any parameter assignment\n", "\n", - "with open(SAVED_RESULT_TO_USE, \"r\") as f:\n", - " results: FunmanResults = FunmanResults.model_validate(json.load(f))\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", "\n", - "# Plot the trajectories\n", - "results.plot(variables=[\"Infected\"], label_marker={\"true\":\",\", \"false\": \",\"}, xlabel=\"Time\", ylabel=\"Infected\")\n", + " \n", + " funman_request.constraints = [\n", + " StateVariableConstraint(name=\"peak_infected1\", variable=\"Infected\", interval=ramp_up_infections, timepoints=Interval(ub=peak_time.lb)),\n", + " StateVariableConstraint(name=\"peak_infected2\", variable=\"Infected\", interval=peak_infections, timepoints=peak_time),\n", + " StateVariableConstraint(name=\"peak_infected3\", variable=\"Infected\", interval=ramp_down_infections, timepoints=Interval(lb=peak_time.ub))\n", + " ]\n", "\n", - "# Plot the parameter space\n", - "ParameterSpacePlotter(\n", - " results.parameter_space, plot_points=True, parameters=[\"epsilon\", \"theta\", \"timestep\"]\n", - " ).plot(show=True)" + " results_constrained = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIDARTHE demo step 1\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " summary = summarize_results([\"Infected\"], results_constrained, ylabel=\"Infected\")\n", + " print(summary)" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNoUlEQVR4nOzdd3hU1dbH8e+kNxIIIQkl9N6lFxGQAAKKKCooSrNdFb1erl47iA0RRSwoKiA2BLFgQZAiSJVepEMooaUB6aTNnPePvBkZU0iZZDLJ7/PcPJecss+aYYTFztprmwzDMBARERERcUIujg5ARERERKS4lMyKiIiIiNNSMisiIiIiTkvJrIiIiIg4LSWzIiIiIuK0lMyKiIiIiNNSMisiIiIiTkvJrIiIiIg4LSWzIiIiIuK0lMyKSKXWp08f+vTp4+gw7OLkyZOYTCbmz5/v6FCKZezYsdSvX9/RYYiIk1EyKyJOZf78+ZhMJuuXl5cXTZs2ZcKECURHR5dpLAsWLGDmzJlXve7FF1+0iTm/r/KeVJ87d44XX3yR3bt3OzoUERErk2EYhqODEBEprPnz5zNu3DheeuklGjRoQFpaGhs2bOCLL76gXr167Nu3Dx8fn0KPl5GRAYCHh0eRY7nxxhvZt28fJ0+eLPC6vXv3snfvXuv3ycnJPPTQQ9xyyy3ceuut1uMhISH079+/yHHkMAyD9PR03N3dcXV1LfY4+dm+fTudO3fm008/ZezYsXYfPzMzE4vFgqenp93HFpGKy83RAYiIFMegQYPo1KkTAPfddx/Vq1dnxowZ/Pjjj9x5552FHqc4SWxRtW3blrZt21q/j4uL46GHHqJt27bcfffd+d6XlpaGh4cHLi6F+yFazky1s0lJScHX1xd3d3dHhyIiTkhlBiJSIVx//fUAnDhxAoCsrCxefvllGjVqhKenJ/Xr1+fZZ58lPT3d5r5/1syuXbsWk8nEN998w6uvvkqdOnXw8vKiX79+HDt2zOa+pUuXcurUKWuZQEnqPXOeu3DhQp5//nlq166Nj48PiYmJXLx4kSeeeII2bdrg5+eHv78/gwYNYs+ePTZj5Fcze+jQIW677TYCAwPx8vKiU6dO/PTTT7liiI+P5z//+Q/169fH09OTOnXqMHr0aOLi4li7di2dO3cGYNy4cdbXfOWzFi9eTMeOHfH29iYoKIi7776bs2fP2jxj7Nix+Pn5ERERweDBg6lSpQqjRo2ynvvne2ixWJg5cyatWrXCy8uLkJAQHnzwQS5dumRz3fbt2xk4cCBBQUF4e3vToEEDxo8fX5TfAhFxUpqZFZEKISIiAoDq1asD2bO1n332Gbfddhv//e9/2bJlC1OnTuXgwYP88MMPVx3v9ddfx8XFhSeeeIKEhATeeOMNRo0axZYtWwB47rnnSEhI4MyZM7z99tsA+Pn5lfh1vPzyy3h4ePDEE0+Qnp6Oh4cHBw4cYMmSJdx+++00aNCA6OhoPvroI3r37s2BAweoVatWvuPt37+fnj17Urt2bZ5++ml8fX355ptvGDZsGN999x233HILkF360KtXLw4ePMj48ePp0KEDcXFx/PTTT5w5c4YWLVrw0ksvMWnSJB544AF69eoFQI8ePYC/yz86d+7M1KlTiY6O5p133mHjxo3s2rWLqlWrWmPKyspi4MCBXHvttbz55psFloU8+OCD1rEfe+wxTpw4wfvvv8+uXbvYuHEj7u7uxMTEMGDAAGrUqMHTTz9N1apVOXnyJN9//32Jfz9ExAkYIiJO5NNPPzUAY9WqVUZsbKxx+vRpY+HChUb16tUNb29v48yZM8bu3bsNwLjvvvts7n3iiScMwPj999+tx3r37m307t3b+v2aNWsMwGjRooWRnp5uPf7OO+8YgPHXX39Zjw0ZMsSoV69ekV9DbGysARiTJ0/O9dyGDRsaqampNtenpaUZZrPZ5tiJEycMT09P46WXXrI5Bhiffvqp9Vi/fv2MNm3aGGlpadZjFovF6NGjh9GkSRPrsUmTJhmA8f333+eK12KxGIZhGNu2bcs1vmEYRkZGhhEcHGy0bt3auHz5svX4L7/8YgDGpEmTrMfGjBljAMbTTz+d6zljxoyxeT/Xr19vAMZXX31lc93y5cttjv/www8GYGzbti3XmCJS8anMQEScUnh4ODVq1CAsLIyRI0fi5+fHDz/8QO3atfn1118BmDhxos09//3vfwFYunTpVccfN26cTT1tzkzk8ePH7fUS8jRmzBi8vb1tjnl6elrrZs1mMxcuXMDPz49mzZqxc+fOfMe6ePEiv//+O3fccQdJSUnExcURFxfHhQsXGDhwIEePHrWWAXz33Xe0a9fOOlN7JZPJVGDM27dvJyYmhocfftimZnfIkCE0b948z/f7oYceKnBMyC5bCAgIoH///tbY4+Li6NixI35+fqxZswbAOuv7yy+/kJmZedVxRaRiUZmBiDilWbNm0bRpU9zc3AgJCaFZs2bWhO/UqVO4uLjQuHFjm3tCQ0OpWrUqp06duur4devWtfm+WrVqALlqNe2tQYMGuY5ZLBbeeecdPvjgA06cOIHZbLaeyymryMuxY8cwDIMXXniBF154Ic9rYmJiqF27NhEREQwfPrxYMee8n82aNct1rnnz5mzYsMHmmJubG3Xq1LnquEePHiUhIYHg4OA8z8fExADQu3dvhg8fzpQpU3j77bfp06cPw4YN46677lJnBJFKQMmsiDilLl26WLsZ5OdqM4oFya+1lVHK3Qz/OSsL8Nprr/HCCy8wfvx4Xn75ZQIDA3FxceHxxx/HYrHkO1bOuSeeeIKBAwfmec0/E/6ycOVMc0EsFgvBwcF89dVXeZ6vUaMGkP37/O233/Lnn3/y888/89tvvzF+/Hjeeust/vzzT7vUMotI+aVkVkQqnHr16mGxWDh69CgtWrSwHo+OjiY+Pp569erZ5TklSZaL4ttvv6Vv377MnTvX5nh8fDxBQUH53tewYUMA3N3dCQ8PL/AZjRo1Yt++fQVek9/rzXk/Dx8+bO0qkePw4cPFfr8bNWrEqlWr6NmzZ55J/j9169aNbt268eqrr7JgwQJGjRrFwoULue+++4r1fBFxDqqZFZEKZ/DgwQC5dueaMWMGkF3LaQ++vr4kJCTYZayCuLq65poRXrx4ca62V/8UHBxMnz59+Oijjzh//nyu87GxsdZfDx8+nD179uTZ6SHn2b6+vkB2En2lTp06ERwczOzZs21any1btoyDBw8W+/2+4447MJvNvPzyy7nOZWVlWeO4dOlSrvenffv2ALlasYlIxaOZWRGpcNq1a8eYMWP4+OOPiY+Pp3fv3mzdupXPPvuMYcOG0bdvX7s8p2PHjixatIiJEyfSuXNn/Pz8uOmmm+wy9pVuvPFGXnrpJcaNG0ePHj3466+/+Oqrr6wzrwWZNWsW1157LW3atOH++++nYcOGREdHs3nzZs6cOWPtVfvkk0/y7bffcvvttzN+/Hg6duzIxYsX+emnn5g9ezbt2rWjUaNGVK1aldmzZ1OlShV8fX3p2rUrDRo0YNq0aYwbN47evXtz5513Wltz1a9fn//85z/Fet29e/fmwQcfZOrUqezevZsBAwbg7u7O0aNHWbx4Me+88w633XYbn332GR988AG33HILjRo1IikpiU8++QR/f3/rP2xEpOJSMisiFdKcOXNo2LAh8+fP54cffiA0NJRnnnmGyZMn2+0ZDz/8MLt37+bTTz/l7bffpl69eqWSzD777LOkpKSwYMECFi1aRIcOHVi6dClPP/30Ve9t2bIl27dvZ8qUKcyfP58LFy4QHBzMNddcw6RJk6zX+fn5sX79eiZPnswPP/zAZ599RnBwMP369bMu1nJ3d+ezzz7jmWee4V//+hdZWVl8+umnNGjQgLFjx+Lj48Prr7/OU089ha+vL7fccgvTpk2z6TFbVLNnz6Zjx4589NFHPPvss7i5uVG/fn3uvvtuevbsCWD9x8rChQuJjo4mICCALl268NVXX+W5oE5EKhaTUdqrGUREpExERETQuHFjvvjiiwK3yRURqUhUMysiUkHk1MUWtChMRKSiUZmBiEgFMG/ePObNm4ePjw/dunVzdDgiImVGM7MiIhXAAw88wMWLF1m8eHGJalRFRJyNamZFRERExGlpZlZEREREnJaSWRERERFxWpVuAZjFYuHcuXNUqVKlzLaiFBEREZHCMwyDpKQkatWqhYtLwXOvlS6ZPXfuHGFhYY4OQ0RERESu4vTp09aNW/JT6ZLZKlWqANlvjr+/v4OjEREREZF/SkxMJCwszJq3FaTSJbM5pQX+/v5KZkVERETKscKUhGoBmIiIiIg4LSWzIiIiIuK0lMyKiIiIiNNSMisiIiIiTkvJrIiIiIg4LSWzIiIiIuK0lMyKiIiIiNNSMisiIiIiTkvJrIiIiIg4LSWzIiIiIuK0lMyKiIiIiNNSMisiIiIiTkvJrIiIiIg4LSWzIiIiIuK0lMyKiIiIiNNSMisiIiIiTkvJrIiISClavH8xKyNWkpSe5OhQRCokJbMiIiKl6OFfH2bAlwM4cuGIo0MRqZCUzIqIiJSSmJQY4lLjMGGiRY0Wjg5HpEJSMisiIlJK9sfsB6BBtQb4uPs4OBqRiknJrIiISCnZH5udzLaq0crBkYhUXEpmRURESknOzKySWZHSo2RWRESklFhnZoOVzIqUFiWzIiIipcAwDJUZiJQBJbMiIiKlIDolmouXL+JicqF5UHNHhyNSYSmZFRERKQU59bINqzXE293bwdGIVFxKZkVEREqBSgxEyoaSWRERkVKgTgYiZUPJrIiISClQJwORsqFkVkRExM4Mw+BA7AFAM7MipU3JrIiIiJ1FJUdxKe0SLiYXmgU1c3Q4IhWaklkRERE7yykxaBzYGC83LwdHI1KxKZkVERGxMy3+Eik7SmZFRETsTG25RMqOklkRERE7UycDkbKjZFZERMSODMNQmYFIGVIyKyIiYkfnks6RkJ6Aq8mVptWbOjockQpPyayIiIgd5ZQYNKneBE83TwdHI1LxKZkVERGxo5wSg5Y1Wjo4EpHKQcmsiIiIHamTgUjZUjIrIiJiR0pmRcqWklkRERE7MQyDA7EHALXlEikrSmZFRETs5EziGRLTE3FzcVMnA5EyomRWRETETqydDAKb4OHq4eBoRCoHJbMiIiJ2Yt0sQSUGImVGyayIiIidaPGXSNlTMisiImInSmZFyp6SWRERETtQJwMRx1AyKyIiYgeRCZEkZyTj7uJOk8Amjg5HpNJQMisiImIHOSUGTas3xd3V3cHRiFQeSmZFRETsQJ0MRBxDyayIiIgdaPGXiGMomRUREbEDJbMijqFkVkREpIQshkWdDEQcRMmsiIhICZ2KP0VqZioerh40Dmzs6HBEKhUlsyIiIiWUU2LQrHoz3FzcHByNSOVSLpLZWbNmUb9+fby8vOjatStbt27N99r58+djMplsvry8vMowWhEREVsqMRBxHIcns4sWLWLixIlMnjyZnTt30q5dOwYOHEhMTEy+9/j7+3P+/Hnr16lTp8owYhEREVta/CXiOA5PZmfMmMH999/PuHHjaNmyJbNnz8bHx4d58+ble4/JZCI0NNT6FRISUoYRi4iI2LL2mFUyK1LmHJrMZmRksGPHDsLDw63HXFxcCA8PZ/Pmzfnel5ycTL169QgLC+Pmm29m//79+V6bnp5OYmKizZeIiIi9WAwLB+MOAiozEHEEhyazcXFxmM3mXDOrISEhREVF5XlPs2bNmDdvHj/++CNffvklFouFHj16cObMmTyvnzp1KgEBAdavsLAwu78OERGpvE7GnyQ1MxVPV08aVWvk6HBEKh2HlxkUVffu3Rk9ejTt27end+/efP/999SoUYOPPvooz+ufeeYZEhISrF+nT58u44hFRKQiyykxaB7UHFcXVwdHI1L5OLR/SFBQEK6urkRHR9scj46OJjQ0tFBjuLu7c80113Ds2LE8z3t6euLp6VniWEVERPJiXfylEgMRh3DozKyHhwcdO3Zk9erV1mMWi4XVq1fTvXv3Qo1hNpv566+/qFmzZmmFKSIiki91MhBxLId3dp44cSJjxoyhU6dOdOnShZkzZ5KSksK4ceMAGD16NLVr12bq1KkAvPTSS3Tr1o3GjRsTHx/P9OnTOXXqFPfdd58jX4aIiFRS6mQg4lgOT2ZHjBhBbGwskyZNIioqivbt27N8+XLrorDIyEhcXP6eQL506RL3338/UVFRVKtWjY4dO7Jp0yZatmzpqJcgIiKVlNliVicDEQczGYZhODqIspSYmEhAQAAJCQn4+/s7OhwREXFixy4eo8l7TfBy8yL5mWQtABOxk6Lka07XzUBERKS8UCcDEcdTMisiIlJMWvwl4nhKZkVERIpJyayI4ymZFRERKSZrJwMt/hJxGCWzIiIixWC2mDkUdwjQzKyIIymZFRERKYaISxGkm9PxdvOmQbUGjg5HpNJSMisiIlIMOSUGLWq0wMWkv05FHEX/9YmIiBSDFn+JlA9KZkVERIpByaxI+aBkVkREpBjUyUCkfFAyKyIiUkRZliwOXzgMaGZWxNGUzIqIiBTRsYvHyDBn4OPuQ72q9RwdjkilpmRWRESkiHJKDFrWaKlOBiIOpv8CRUREikiLv0TKDyWzIiIiRaRkVqT8UDIrIiJSROpkIFJ+KJkVEREpgkxzJkcuHAE0MytSHiiZFRERKYJjF4+RacnEz8OPugF1HR2OSKWnZFZERKQIcuplW9ZoiclkcnA0IqJkVkREpAis9bIqMRApF5TMioiIFIE6GYiUL0pmRUREisCazKqTgUi5oGRWRESkkDLMGepkIFLOKJkVEREppKMXjpJlycLf0586/nUcHY6IoGRWRESk0NTJQKT8UTIrIiJSSOpkIFL+KJkVEREpJHUyECl/lMyKiIgUkjoZiJQ/SmZFREQKIT0rnaMXjgLZNbMiUj4omRURESmEIxeOYDbM+Hv6U7tKbUeHIyL/T8msiIhIIVxZL6tOBiLlh5JZERGRQlAnA5HyScmsiIhIIWjxl0j5pGRWRESkENSWS6R8UjIrIiJyFWlZaRy7eAzQzKxIeaNkVkRE5CoOxx3GYlio6lWVmn41HR2OiFxByayIiMhVqJOBSPmlZFZEROQq1MlApPxSMisiInIV6mQgUn4pmRUREbkKdTIQKb+UzIqIiBTgcuZlIi5GAJqZFSmPlMyKiIgU4FDcIQwMAr0DCfENcXQ4IvIPSmZFREQKoE4GIuWbklkREZECHIg9AKheVqS8UjIrIiJSAHUyECnflMyKiIgUQD1mRco3JbMiIiL5SM1M5fil44BmZkXKKyWzIiIi+cjpZBDkE0Swb7CjwxGRPCiZFRERyYdKDETKPyWzIiIi+dDOXyLln5JZERGRfKiTgUj5p2RWREQkHyozECn/lMyKiIjkISUjhRPxJwDNzIqUZ0pmRURE8nAw7iAAwb7BBPkEOTgaEcmPklkREZE8qMRAxDkomRUREcmDOhmIOAclsyIiInlQJwMR56BkVkREJA85ZQYta7R0cCQiUhAlsyIiIv+QnJHMqYRTgMoMRMo7JbMiIiL/cCD2AAAhviFU96nu4GhEpCBKZkVERP7B2slA9bIi5Z6SWRERkX9QJwMR56FkVkREypRhGGRZshwdRoGUzIo4DyWzIiJSpiIuRVD19aqYppgwDMPR4eRJZQYizkPJrIiIlKn1p9aTkplCz7CemEwmR4eTS2J6IqcTTwOamRVxBuUimZ01axb169fHy8uLrl27snXr1kLdt3DhQkwmE8OGDSvdAEVExG7WR64HoFfdXg6OJG85nQxq+tWkmnc1B0cjIlfj8GR20aJFTJw4kcmTJ7Nz507atWvHwIEDiYmJKfC+kydP8sQTT9CrV/n8w1BERPK27tQ6AHrVK59/fqvEQMS5ODyZnTFjBvfffz/jxo2jZcuWzJ49Gx8fH+bNm5fvPWazmVGjRjFlyhQaNmxYhtGKiEhJnE86T8SlCEyY6BnW09Hh5EmLv0Sci0OT2YyMDHbs2EF4eLj1mIuLC+Hh4WzevDnf+1566SWCg4O59957r/qM9PR0EhMTbb5ERMQxckoM2oW2I8ArwMHR5E3JrIhzcWgyGxcXh9lsJiQkxOZ4SEgIUVFRed6zYcMG5s6dyyeffFKoZ0ydOpWAgADrV1hYWInjFhGR4skpMbiu7nUOjiR/OTWzKjMQcQ4OLzMoiqSkJO655x4++eQTgoKCCnXPM888Q0JCgvXr9OnTpRyliIjkx7r4q5zWyyakJXAm8QwALWu0dHA0IlIYbo58eFBQEK6urkRHR9scj46OJjQ0NNf1ERERnDx5kptuusl6zGKxAODm5sbhw4dp1KiRzT2enp54enqWQvQiIlIUly5f4q/ov4Dy38mgdpXaVPWq6thgRKRQHDoz6+HhQceOHVm9erX1mMViYfXq1XTv3j3X9c2bN+evv/5i9+7d1q+hQ4fSt29fdu/erRICEZFybOPpjRgYNK3elBC/kKvf4ADWelmVGIg4DYfOzAJMnDiRMWPG0KlTJ7p06cLMmTNJSUlh3LhxAIwePZratWszdepUvLy8aN26tc39VatWBch1XEREypf1p8p3f1m4oi2XFn+JOA2HJ7MjRowgNjaWSZMmERUVRfv27Vm+fLl1UVhkZCQuLk5V2isiInnIqZe9rl75XfylTgYizsdklNeNsUtJYmIiAQEBJCQk4O/v7+hwREQqhdTMVAJeDyDLksXxx47ToFoDR4eUp9ozanMu6Ryb791MtzrdHB2OSKVVlHxNU54iIlLqtpzZQpYlC4D6Ves7Nph8xKfFcy7pHKBOBiLORMmsiIiUupz+sne2vhOTyeTgaPKWUy8b5h+Gv6d+cifiLJTMiohIqbP2ly3Pi7/UyUDEKSmZFRGRUpVpzmTzmewtysv14i91MhBxSkpmRUSkVO08v5PUzFQCvQNpUaOFo8PJlzoZiDgnJbMiIlKqckoMrq17LS6m8vvXjsoMRJxT+f1TRUREKoScxV/X1S2/JQYXL18kKjkKUCcDEWejZFZEREqNxbCwIXIDAL3qlePFX/9fL1svoB5+Hn4OjkZEikLJrIiIlJoDsQe4lHYJH3cfrgm9xtHh5EslBiLOS8msiIiUmpwSgx5hPXB3dXdwNPlTJwMR56VkVkRESo0z9JeFv2dmVS8r4nyUzIqISKkwDMM6M+ssyaxmZkWcj5JZEREpFSfiT3Au6RwAXet0dXA0+YtLjSMmJQagXPfBFZG8KZkVEZFSsf5UdolB9zrd8XH3cXA0+cupl61ftb46GYg4ISWzIiJSKlRiICJlQcmsiIiUipzFX9fVK7+bJYA6GYg4OyWzIiJid1HJURy9eBQTJnrW7enocAqkHrMizk3JrIiI2F1OvWzbkLZU9arq2GCuQmUGIs5NyayIiNids/SXjUmJIS41DhMmdTIQcVJKZkVExO6si7/qle9kNqdetkG1BuW644KI5E/JrIiI2FV8Wjx7o/cC5X9m9kDsAUAlBiLOTMmsiIjY1abTmzAwaBzYmJpVajo6nAKpXlbE+SmZFRERu8opMbiubvluyQXqZCBSESiZFRERu7Iu/irn9bKGYajHrEgFoGRWRETs5nLmZbad3QaU/3rZmJQYLly+gIvJheZBzR0djogUk5JZERGxmy1nt5BpyaRWlVo0rNbQ0eEUKKfEoGG1hni7ezs4GhEpLiWzIiJiNzmbJfSq2wuTyeTgaAqmEgORikHJrIiI2M26yP/vL1vOSwxAnQxEKgolsyIiYhdZliw2n94MwHX11MlARMqGklkREbGLXed3kZKZQjWvauU+QVQnA5GKQ8msiIjYRU5/2Z51e+JiKt9/vUQlR3Ep7RIuJheaBTVzdDgiUgLl+08bERFxGjn9ZZ1ps4TGgY3xcvNycDQiUhJKZkVEpMQshoUNkRuA8r9ZAqiTgUhFomRWRERK7GDsQS5cvoCPuw8danZwdDhXpU4GIhWHklkRESmxnBKDbnW64eHq4eBork6dDEQqDiWzIiJSYjnJrDP0l1UnA5GKRcmsiIiUiGEY1k4GztBf9lzSORLSE3A1udK0elNHhyMiJaRkVkRESuRUwinOJJ4BsssMyrucEoMm1Zvg6ebp4GhEpKSUzIqISInkzMp2rd0VH3cfB0dzdTklBi1rtHRwJCJiD0pmRUSkRNaf+v/+sk5QYgBl38ng3S3v8sWeL4hPiy+T54lUNkpmRUSkRJxp8ReUbTKbZcli0ppJjF4ymkNxh0r9eSKVkZJZEREptujkaA5fOAxkb2Nb3hmGwYHYA0DZtOXafHozCekJVPeuTudanUv9eSKVkZJZEREptpxdv9oEtyHQO9DB0VzdmcQzJKYn4ubiViadDH49+isANzS+AVcX11J/nkhlpGRWRESKLWfxl7OVGDQJbFImmzssPboUgCFNhpT6s0QqKyWzIiJSbNZ62XpOkszGlN3OX6cTTvNXzF+4mFwY0GhAqT9PpLJSMisiIsWSkJbAnug9gPPNzJbF4q9lx5YB2b13q/tUL/XniVRWSmZFRKRYNp3ehMWw0LBaQ2r713Z0OIVSlslsTr3s4MaDS/1ZIpWZklkRESmWnBIDZ+kvW5adDNKz0ll1fBUAg5somRUpTUpmRUSkWJxt8dfpxNMkZyTj7uJOk8AmpfqsdafWkZKZQk2/mrQPbV+qzxKp7JTMiohIkaVlpbHt3DbAeZLZnMVfTas3xd3VvVSfZS0xaDIYk8lUqs8SqeyUzIqISJFtPbuVDHMGoX6hNA5s7OhwCsVaL1sGnQx+PfZ3MisipUvJrIiIFNmVJQbOMvNYVou/jl08xpELR3BzcSO8YXipPktElMyKiEgxWPvLOkmJAVzRY7aUk9llR7NbcvWq2wt/T/9SfZaIKJkVEZEiyrJksen0JsB5OhlYDEuZdTJQiYFI2VIyKyIiRbI7ajfJGckEeAbQOri1o8MplMiESFIyU/Bw9SjVGt+UjBTWnFgDKJkVKStKZkVEpEjWn8ouMbi27rW4urg6OJrCySkxaFa9GW4ubqX2nDUn15BuTqd+1fq0CGpRas8Rkb8pmRURkSJxynrZMupkcOWuX86yME7E2SmZFRGRQjMMw+l2/oKy6WRgGIZNf1kRKRtKZkVEpNAOxR0iLjUObzdvOtbq6OhwCq0sOhkcjDvIqYRTeLp60rdB31J7jojYUjIrIiKFljMr261ONzxcPRwcTeFYDAsH4w4CpVtmkDMr27dBX3zcfUrtOSJiS8msiIgUmjPWy56MP0lqZiqerp40qtao1J6z9OhSILteVkTKTqGXdL777ruFHvSxxx4rVjAiIlK+WXf+quc8yWxOiUHzoOal1n0hIS2BDZEbABjSdEipPENE8lboZPbtt9+2+T42NpbU1FSqVq0KQHx8PD4+PgQHByuZFRGpgE7FnyIyIRI3Fze61+nu6HAKrSw6Gaw6voosSxbNqjejYbWGpfYcEcmt0GUGJ06csH69+uqrtG/fnoMHD3Lx4kUuXrzIwYMH6dChAy+//HJpxisiIg6SU2LQoWYHfD18HRxN4ZVFJwN1MRBxnGLVzL7wwgu89957NGvWzHqsWbNmvP322zz//PNFHm/WrFnUr18fLy8vunbtytatW/O99vvvv6dTp05UrVoVX19f2rdvzxdffFGclyEiIkWQs1mCM9XLQul3MjAMQ1vYijhQsZLZ8+fPk5WVleu42WwmOjq6SGMtWrSIiRMnMnnyZHbu3Em7du0YOHAgMTExeV4fGBjIc889x+bNm9m7dy/jxo1j3Lhx/Pbbb8V5KSIiUkjrIrPrZZ2pv6zZYi71Tga7onYRlRyFr7uv0yX6IhVBsZLZfv368eCDD7Jz507rsR07dvDQQw8RHh5epLFmzJjB/fffz7hx42jZsiWzZ8/Gx8eHefPm5Xl9nz59uOWWW2jRogWNGjXi3//+N23btmXDhg3FeSkiIlIIsSmxHIo7BEDPsJ4OjqbwTsSfIC0rDS83LxpUbVAqz8gpMejfqD+ebp6l8gwRyV+xktl58+YRGhpKp06d8PT0xNPTky5duhASEsKcOXMKPU5GRgY7duywSYBdXFwIDw9n8+bNV73fMAxWr17N4cOHue66vGcK0tPTSUxMtPkSEZGiyVmp3zq4NdV9qjs4msIri04GV25hKyJlr9DdDK5Uo0YNfv31V44cOcKhQ9n/Um/evDlNmzYt0jhxcXGYzWZCQkJsjoeEhFjHzUtCQgK1a9cmPT0dV1dXPvjgA/r375/ntVOnTmXKlClFiktERGxZW3I52Y/RS3vxV1xqHH+e+ROAQU0GlcozRKRgxUpmc9SvXx/DMGjUqBFubiUaqkiqVKnC7t27SU5OZvXq1UycOJGGDRvSp0+fXNc+88wzTJw40fp9YmIiYWFhZRariEhF4IybJUDpJ7MrIlZgYNA2pC11/OuUyjNEpGDFykBTU1N59NFH+eyzzwA4cuQIDRs25NFHH6V27do8/fTThRonKCgIV1fXXIvGoqOjCQ0Nzfc+FxcXGjduDGBtETZ16tQ8k9mcMggRESmexPREdkXtApxrswS4opNBKS3+UomBiOMVq2b2mWeeYc+ePaxduxYvLy/r8fDwcBYtWlTocTw8POjYsSOrV6+2HrNYLKxevZru3QvfkNtisZCenl7o60VEpPA2n96MxbDQoGoDp5p9NFvM1kVrpTEza7aYWX5sOaCWXCKOVKyZ2SVLlrBo0SK6deuGyWSyHm/VqhURERFFGmvixImMGTOGTp060aVLF2bOnElKSgrjxo0DYPTo0dSuXZupU6cC2TWwnTp1olGjRqSnp/Prr7/yxRdf8OGHHxbnpYiIyFU44xa2ABGXIkg3p+Pt5k2DavbvZLD17FYuXL5AVa+qdA9znh3RRCqaYiWzsbGxBAcH5zqekpJik9wWxogRI4iNjWXSpElERUXRvn17li9fbl0UFhkZiYvL3xPIKSkpPPzww5w5cwZvb2+aN2/Ol19+yYgRI4rzUkRE5Cpy6mWvq+s8/WXh7xKDFjVa4GIq1g8iC5RTYjCw0UDcXMpu3YiI2CrWf32dOnVi6dKlPProowDWBHbOnDlFKg/IMWHCBCZMmJDnubVr19p8/8orr/DKK68U+RkiIlJ0aVlpbD2bvSujs83MHog9AJTe4i/t+iVSPhQrmX3ttdcYNGgQBw4cICsri3feeYcDBw6wadMm/vjjD3vHKCIiDrLt7DbSzekE+wbTJLCJo8MpktLsZHA+6Tw7z2dvHHRD4xvsPr6IFF6xfu5y7bXXsnv3brKysmjTpg0rVqwgODiYzZs307FjR3vHKCIiDmItMah3XZHLyBzNmsyWQieDnIVfnWt1Jtg3d9mdiJSdYhf5NGrUiE8++cSesYiISDnjrP1lsyxZpdrJYOnRpYBKDETKg2LNzLq6uhITE5Pr+IULF3B1LZ3tAkVEpGyZLWY2Rm4EsmdmnUnExQgyzBn4uPtQr2o9u46dac5kRcQKAIY0GWLXsUWk6IqVzBqGkefx9PR0PDw8ShSQiIiUD3ui95CUkYS/pz9tgts4OpwiySkxaFmjpd07GWw8vZGkjCRq+NSgYy2V1ok4WpHKDN59910gu3vBnDlz8PPzs54zm82sW7eO5s2b2zdCERFxiPWnsksMeob1xNXFuX7qZt35qxRKDHJacg1qMqhUWn6JSNEUKZl9++23geyZ2dmzZ9uUFHh4eFC/fn1mz55t3whFRMQh1kVmb5bgbCUGULqdDLSFrUj5UqRk9sSJEwD07duX77//nmrVqpVKUCIi4liGYVhnZp1t8ReUXieDU/Gn2B+7HxeTCwMaDbDr2CJSPMXqZrBmzRp7xyEiIuXIkQtHiE2NxcvNi061Ojk6nCLJNGdyOO4wYP+Z2ZxZ2R5hPajmrQkdkfKgWMU+w4cPZ9q0abmOv/HGG9x+++0lDkpERBxr3ansEoOutbvi6ebp4GiK5tjFY2RaMvHz8KNuQF27jp2z65e6GIiUH8VKZtetW8fgwblrhQYNGsS6detKHJSIiDjWlZslOJsrOxnYc6OHtKw0Vh9fDai/rEh5UqxkNjk5Oc8WXO7u7iQmJpY4KBERcSxn3SwB/u5ksPXsVruO+8fJP7icdZnaVWo7XasykYqsWMlsmzZtWLRoUa7jCxcupGXLliUOSkREHOd0wmlOxp/E1eRK97Dujg6nyHJmZt/s/6Zdx7V2MWgy2Om29hWpyIq1AOyFF17g1ltvJSIiguuvvx6A1atX8/XXX7N48WK7BigiImUrZ1a2Q80O+Hn4XeXq8qc0OhkYhqEtbEXKqWIlszfddBNLlizhtdde49tvv8Xb25u2bduyatUqevfube8YRUSkDOUs/nLGEoMMcwZHLhwB7NvJ4OjFo0RcisDdxZ3whuF2G1dESq5YySzAkCFDGDJEqzlFRCoaa71sPedLZo9eOEqWJQt/T3/q+Nex27g5JQa96/d2ytlqkYqs2PvwxcfHM2fOHJ599lkuXrwIwM6dOzl79qzdghMRkbIVlxrHgdgDAFxb91oHR1N0pdXJQLt+iZRfxZqZ3bt3L+Hh4QQEBHDy5Enuu+8+AgMD+f7774mMjOTzzz+3d5wiIlIGNkRuALKTwSCfIAdHU3Q5nQzsWWKQnJHMH6f+AFQvK1IeFWtmduLEiYwdO5ajR4/i5eVlPT548GD1mRURcWLOvIUtXLH4y47J7Orjq8kwZ9CwWkOaVm9qt3FFxD6Klcxu27aNBx98MNfx2rVrExUVVeKgRETEMdZFZk9IOONmCVA6nQyuLDFQSy6R8qdYyaynp2eemyMcOXKEGjVqlDgoEREpe0npSew6vwtwzpnZ9Kx0jl44CthvZtYwjL+3sG2qRc8i5VGxktmhQ4fy0ksvkZmZCYDJZCIyMpKnnnqK4cOH2zVAEREpG5vPbMZsmKkXUI+wgDBHh1NkRy4cwWyY8ff0p1aVWnYZc1/MPs4knsHbzZve9dR6UqQ8KlYy+9Zbb5GcnExwcDCXL1+md+/eNG7cmCpVqvDqq6/aO0YRESkDOfWyTl9iUKOV3coBckoMrm9wPd7u3nYZU0Tsq1jdDAICAli5ciUbN25kz549JCcn06FDB8LD1UhaRMRZ5dTLOmOJAZROJ4OcEgN1MRApvwqdzAYGBnLkyBGCgoIYP34877zzDj179qRnz56lGZ+IiJSB9Kx0tp7dCjjnZglg/8Vfly5fYmPkRgAGNR5klzFFxP4KXWaQkZFhXfT12WefkZaWVmpBiYhI2dp+bjtpWWnU8KlBs+rNHB1OseRs9mCvmdmVx1diNsy0CGpBg2oN7DKmiNhfoWdmu3fvzrBhw+jYsSOGYfDYY4/h7Z13/dC8efPsFqCIiJS+daf+v8SgXi+nbD+VnpXOsYvHAPvNzObUyw5poi4GIuVZoZPZL7/8krfffpuIiAhMJhMJCQmanRURqSDWRzr3ZgmHLxzGbJip6lWVmn41SzyexbCw7NgyQPWyIuVdoZPZkJAQXn/9dQAaNGjAF198QfXq1UstMBERKRtmi5mNp7NrQ522k0GMfTsZ7Dy/k5iUGKp4VKFnXa0NESnPitXN4MSJE/aOQ0REHGRv9F4S0xOp4lGFdiHtHB1OseQs/spJyksqp8Sgf6P+eLh62GVMESkdxUpmAVavXs3q1auJiYnBYrHYnFPNrIiI88gpMehZtyeuLq4OjqZ4cpLZd254xy7jLT26FMjewlZEyrdiJbNTpkzhpZdeolOnTtSsWdMpFwuIiEg2Z6+XBfv2mI1JiWHb2W0ADGqillwi5V2xktnZs2czf/587rnnHnvHIyIiZcgwjL87GThpMpuWlUbEpQjAPp0Mfjv2GwYG14ReY7dtcUWk9BRrO9uMjAx69Ohh71hERKSMHb14lJiUGDxdPelcu7OjwymWQ3GHsBgWAr0DCfENKfF42vVLxLkUK5m97777WLBggb1jERGRMrb+VHaJQZfaXfBy83JwNMVjz04GWZYsfjv2G6BkVsRZFKvMIC0tjY8//phVq1bRtm1b3N3dbc7PmDHDLsGJiEjpWhfp3CUGcMU2tnaol/3zzJ9cSrtEoHcgXWt3LfF4IlL6ipXM7t27l/bt2wOwb98+e8YjIiJlKGdm1ln7y8IVyawd6mVzWnINbDTQaTs7iFQ2xUpm16xZY+84RESkjJ1JPMOJ+BO4mFzoHtbd0eEUmz07GWgLWxHnU6Rk9tZbb73qNSaTie+++67YAYmISNnImZVtH9oef09/B0dTPKmZqRy/dBwo+czs2cSz7InegwkTAxsPtEd4IlIGipTMBgQElFYcIiJSxnL6y15X13lLDA7FHcLAIMgniGDf4BKNtezYMgC61ulKkE+QPcITkTJQpGT2008/La04RESkjFn7y9Zz4sVfpVBioF2/RJxLsVpziYiIc7uQesG6cEqdDCA9K52Vx1cCaskl4myUzIqIVEIbIjcA0DyoOTV8azg4muKzVyeDDZEbSM5IJsQ3hGtqXmOP0ESkjCiZFRGphCpCvSzYr8zAWmLQZDAuJv3VKOJM9F+siEgllJPMOnO9bEpGCifiTwAln5nVFrYizkvJrIhIJZOckcyOczsA566XPRh3EIBg3+ASdR84fuk4h+IO4WpypX/D/vYKT0TKiJJZEZFK5s8zf2I2zNQNqEu9qvUcHU6x5ZQYxKTElGicZUezW3JdW/daArzUglLE2SiZFRGpZKwtuZx4Vhb+Xvw1ofOEEo2z9OhSQCUGIs5KyayISCVjXfxVz8kXf9mhk0FqZiprTmZv0a5kVsQ5KZkVEalEMswZ/HnmT6ACzMz+f5lByxotiz3G2pNrSctKo25AXbtsvCAiZU/JrIhIJbL93HbSstII8gmieVBzR4dTbMkZyZxKOAWUrC3Xlbt+mUwmu8QmImVLyayISCWy/tT/t+Sq28upk7cDsQcACPENobpP9WKNYRiG6mVFKgAlsyIilci6yIqx+CsnmS1JveyhuEOcjD+Jh6sH1ze43l6hiUgZUzIrIlJJmC1mNkZuBJx7swSwz85fOSUGfer3wdfD1y5xiUjZUzIrIlJJ7IvZR0J6An4efrQPbe/ocErE2smgJMnssb/rZUXEeSmZFRGpJHL6y/YI64Gbi5uDoymZkrblSkxPtNYPD2k6xG5xiUjZUzIrIlJJ5PSXdfZ62aT0JCITIoHiz8yuPr6aTEsmTQKb0DiwsT3DE5EypmRWRKQSMAyjwmyWkLP4q6ZfTap5VyvWGNaWXOpiIOL0lMyKiFQCxy4eIyo5Cg9XD7rU7uLocEqkpCUGhmH8XS+rZFbE6SmZFRGpBHJmZbvU7oKXm5eDoymZknYy2BO9h3NJ5/Bx9ymTWeoDsQe4ePliqT9HpLJSMisiUglUlHpZKHkng5wSg34N+pV6Ym+2mLnzuzup/kZ11pxYU6rPEqmslMyKiFQCOZ0MKlQyW8wyg5xkdkiT0u9i8Pmez9kbvZcAzwDahrQt9eeJVEZKZkVEKrhzSec4fuk4LiYXeoT1cHQ4JZKQlsCZxDMAtKzRssj3X7x8kc1nNgMwqMkgu8b2TykZKTy/5nkAnr/u+WJvuysiBVMyKyJSweX0U20X0o4ArwAHR1MyOZ0MalepTVWvqkW+f0XECiyGhdbBrakbUNfO0dmasXkG55LOUb9qfSZ0mVCqzxKpzJTMiohUcBWxxOBs0tli3b/06FKg9Hf9ikqOYtrGaQBM7TfV6RfdiZRn5SKZnTVrFvXr18fLy4uuXbuydevWfK/95JNP6NWrF9WqVaNatWqEh4cXeL2ISGVXUfrLwt+dDP7T7T9FvtdsMbP82HKg9Ftyvbj2RVIyU+hSuwsjWo0o1WeJVHYOT2YXLVrExIkTmTx5Mjt37qRdu3YMHDiQmJiYPK9fu3Ytd955J2vWrGHz5s2EhYUxYMAAzp4t3r/SRUQqsouXL7IvZh8A19a91sHRlFxJOhlsP7eduNQ4AjwDSrV2+EDsAT7Z+QkAb/Z/E5PJVGrPEpFykMzOmDGD+++/n3HjxtGyZUtmz56Nj48P8+bNy/P6r776iocffpj27dvTvHlz5syZg8ViYfXq1WUcuYhI+bcxciMGBs2qNyPEL8TR4ZRYSToZ5HQxGNBoAO6u7naN60r/W/k/LIaFW5rfQq96zl/aIVLeOTSZzcjIYMeOHYSHh1uPubi4EB4ezubNmws1RmpqKpmZmQQGBuZ5Pj09ncTERJsvEZHKoiL1l41Pi+dc0jmgeJ0MymLXr9XHV7P06FLcXNx4Pfz1UnuOiPzNoclsXFwcZrOZkBDb2YKQkBCioqIKNcZTTz1FrVq1bBLiK02dOpWAgADrV1hYWInjFhFxFhWxXjbMPwx/T/8i3RuVHMX2c9sBuKHxDXaPDcBiWHhi5RMA/Kvjv2havWmpPEdEbDm8zKAkXn/9dRYuXMgPP/yAl1feK0WfeeYZEhISrF+nT58u4yhFRBwjJSPFmsBVhB93l6TEIGfhV8eaHQn1C7VrXDm+3Pslu6N24+/pz6Tek0rlGSKSm5sjHx4UFISrqyvR0dE2x6OjowkNLfgPmzfffJPXX3+dVatW0bZt/ruqeHp64unpaZd4RUScyZazW8iyZFHHvw71Auo5OpwSy5mZLc7ir5x62dIqMbiceZnnfn8OgGevfZYavjVK5TkikptDZ2Y9PDzo2LGjzeKtnMVc3bt3z/e+N954g5dffpnly5fTqVOnsghVRMTp5GyWcF296yrEivridjLINGeyImIFUHpb2M78cyZnEs9QN6Auj3V9rFSeISJ5c+jMLMDEiRMZM2YMnTp1okuXLsycOZOUlBTGjRsHwOjRo6lduzZTp04FYNq0aUyaNIkFCxZQv359a22tn58ffn5+DnsdIiLlzbrIirNZAhS/zGDzmc0kpCcQ5BNEp1r2nwCJSYlh6obsv6Neu/41vN297f4MEcmfw5PZESNGEBsby6RJk4iKiqJ9+/YsX77cuigsMjISF5e/J5A//PBDMjIyuO2222zGmTx5Mi+++GJZhi4iUm5lmjP588yfQMVIZi9evkhUcvbkRVE7GeSUGNzQ+AZcXVztHtuUtVNIykiiY82O3NnmTruPLyIFc3gyCzBhwgQmTMh73+q1a9fafH/y5MnSD0hExMntPL+T1MxUqntXL1Ybq/Imp162XkA9/DyK9lO40tzC9lDcIT7a8REAbw54ExeTU6+rFnFK+q9ORKQCWncqu8Tg2rrXVqx62SKWGEQmRLIvZh8uJhcGNBpg97ieWvUUZsPMTU1vok/9PnYfX0SuTsmsiEgFVJH6y0LxOxksO7oMgG51ulHdp7pdY1p7ci0/Hf4JV5Mr08Kn2XVsESk8JbMiIhWMxbCwIXIDUDHqZeHvmdki18v+/65f9u5iYDEsPLEie4OEBzo+QIsaLew6vogUnpJZEZEKZn/Mfi6lXcLX3Zdral7j6HDs4kDsAaBoM7PpWemsOr4KsH9/2YX7FrLj/A6qeFThxT4v2nVsESkaJbMiIhVMTr1sj7AeuLmUi3W+JXIh9QLRKdmb6xRlBvSPU3+QmplKTb+atAtpZ7d40rLSeGb1MwA8fe3TBPsG221sESk6JbMiIhVMTr1sRSsxqF+1fpE6GVy565c9F8G9u+VdIhMiqeNfh8e7PW63cUWkeJTMiohUIIZh/J3M1qsgyez/L/46GX+ySPeVxha2calxvLr+VQBe6fsKPu4+dhtbRIpHyayISAVy/NJxziWdw93Fna61uzo6HLvImZn9X4//FfqeoxeOcvTiUdxd3AlvGG63WF764yUS0xNpH9qeu9vebbdxRaT4lMyKiFQgObOynWt3rjDbqhanx+yyY9ktuXrV64W/p79d4jhy4Qgfbv8QgDf7v1kqu4mJSNEpmRURqUByFn9VlHpZKF6PWWuJgR13/Xp61dNkWbIY3GQw/Rr2s9u4IlIySmZFRCqQirb4KzYlltjUWEyYCt3JICUjhbUn1wL2q5fdELmBHw79gIvJhTfC37DLmCJiH0pmRUQqiPNJ5zl28RgmTPSs29PR4dhFTolBg2oNCr3Y6vcTv5NuTgegeVDzEsdgGAb/XfFfAO675r4ib6krIqVLyayISAWRMyvbLrQdVb2qOjYYOylJicHDnR62S0uub/Z/w9azW/F192VK3yklHk9E7EvJrIhIBbH+VMUqMYArFn8VMpk1DOPvLWyblnwL2/SsdJ5e/TQAT/V8ilC/0BKPKSL2pWRWRKSCqGj1slD0TgYHYg8QmRCJl5sXfer3KfHz39/6PifjT1LTryYTu08s8XgiYn9KZkVEKoD4tHj2Ru8FKs5mCYZhFLnMIKfEoG/9viXe0OBC6gVeWf8KAK9c/wq+Hr4lGk9ESoeSWRGRCmBj5EYMDJoENqkwPwqPSYnhwuULuJhcCr2Qa+nRpYB9uhi8su4V4tPiaRPchjHtxpR4PBEpHUpmRUQqgJwSg+vqXefgSOwnp8SgYbWGhdoAIiEtgQ2RG4CSJ7MRFyOYtW0WAG8O0AYJIuWZklkRkQpAmyXAyuMrMRtmmlVvRsNqDUv07GdWP0OmJZOBjQYyoNGAEo0lIqVLyayIiJO7nHmZ7ee2AxVzZrao9bJDmpSsi8Hm05tZfGAxLiYXpvefXqKxRKT0KZkVEXFyW85uIdOSSe0qtalftb6jw7GbonQysBgWlh1bBpSsxODKDRLGtR9Hm5A2xR5LRMqGklkRESdnLTGo18sumwSUhaVHlpKWlZbv+aJ2Mth1fhdRyVH4efhxbd1rix3Xdwe/Y/OZzfi4+/BS35eKPY6IlB0lsyIiTs66+Kuuc5QYbDq9iZu+vgnvV71JTE/M85qo5CgupV3CxeRCs6BmVx0zp8QgOSMZTzfPYsWVYc7gqVVPAfBE9yeoVaVWscYRkbKlZFZExIllmjPZdHoT4Bz9ZS9nXmbcj+MwMBjbfiz+nv55XpdTYmAxLHi5eV113Jxdvz6+8eNix/bBtg84fuk4Ib4hPNnzyWKPIyJlS8msiIgT2xW1i9TMVKp5VaNljZaODueqJq2ZxJELR6hVpRYzBszI97qcEoNbmt9y1THjUuPYcmYLAIOaDCpWXJcuX+LldS8D8HLfl/Hz8CvWOCJS9pTMiog4sfWn/n8L23q9cDGV7z/SN5/ezIw/sxPYj278iGre1fK9tiidDH479hsGBu1C2lHHv06xYntt/WtcvHyRVjVaMe6accUaQ0Qco3z/ySciIgVaF+kc/WVzygsshoXR7UZzY9MbC7y+KJ0MckoMitvF4MSlE7y79V0ApvefjpuLW7HGERHHUDIrIuKkLIbFuuNVee8v++LaFzl84TChfqHMHDizwGuL0snAbDGz/NhyoPjJ7LO/P0uGOYPwhuHc0PiGYo0hIo6jZFZExEkdiD3AxcsX8XH34ZrQaxwdTr62nNnCm5vfBLIXaBVUXgBwLukcCekJuJpcaVq9acFjn93CxcsXqepVlW51uhUrtoX7FmLCxPT+052mtZmI/E3JrIiIk8qpl+1epzvuru4OjiZvaVlp1vKCu9vezU3NbrrqPTklBk2qN7lqm62cllwDGw0scnmAYRg8sfIJAEa3G0370PZFul9EygclsyIiTiqnXrY8lxhMWTuFg3EHCfEN4Z0b3inUPQdiDwCFW/yVk8wWp8RgyaElbIjcgJebF69c/0qR7xeR8kHJrIiIEzIM4+9OBuV08de2s9t4Y9MbQHb3gkDvQOu5gnb/yqmXvVqrsXNJ59gVtQsTpiLXumaaM60bJPy3+3+L3QVBRBxPyayIiBM6GX+Ss0lncXdxp2udro4OJ5f0rHTG/jgWi2FhVJtR3Nz8Zuu56ORoqk2rhmmKiQxzRq57C9uWK2fhl4FBsG9wkeL7aMdHHL14lGDfYJ7q+VSR7hWR8kXJrIiIE1p3KrvEoFOtTvi4+zg4mtxe+uMlDsQeyLO8YNBXg0jLSsPV5EpCWoLNOcMwCt2Wa+nRpQC82PvFIsWWkJbAi2uz75nSZwpVPKsU6X4RKV+UzIqIOKH1keW3xGD7ue1M2zgNgNk3zqa6T3XruY93fMyuqF0AvHDdC9TwrWFz79mksySmJ+Lm4lZgJ4MMcwYrI1YCRa+XnbphKhcuX6B5UHPu63Bfke4VkfJHyayIiBPKmZntVa98JbPpWemMXTIWs2HmztZ3Mqz5MOu5hLQEHl32KAD1q9ZnUu9Jue7PqZdtEtgED1ePfJ+zMXIjSRlJ1PCpQcdaHQsd36n4U8z8cyagDRJEKgolsyIiTiYqOYqjF49iwkTPsJ6ODsfGy+teZn/sfoJ9g3l30Ls25276+iYyzBmYMLF81PI8e7oWtsQgp4vBoCaDirSN73O/P0e6OZ0+9fswpMmQQt8nIuWXklkRESeTs+tXm5A2V92AoCztOLeD1ze8DsCHQz4kyCfIeu6bfd9YSyMe6/oYzYKa5TlGYXf+ytnCtigJ6fZz2/nqr68AeLP/m9ogQaSCUDIrIuJkrCUG5aheNsOcwdgfs8sLRrQawa0tbrWeu5x5mXE/jQMg1C+Utwe+ne84helkcDL+JAdiD+BqcqV/w/6Fis8wDJ5c+SQAd7e9u0ilCSJSvimZFRFxMjkznOVps4SX/3iZfTH7qOFTg/cGvWdz7rZvbiM1MxWAX+78Jd8ZUcMw/t4woYAyg5wSgx5hPQo9M/3LkV9Ye3Itnq6evHr9q4W6R0Scg5JZEREnkpCWwJ6oPUD5mZndeX4nUzdMBbLLC67sULAiYoW1JGBMuzEFzoieTjxNUkYS7i7uNAlsku91Rd31K9OcaZ2V/U+3/1A3oG6h7hMR56BkVkTEiWw8vREDg0bVGlGzSk1Hh5NdXvD/3QvuaHUHw1sOt57LNGdyx+I7AKjmVY25Q+cWOFZOvWymJRN3V/c8r7mceZnfT/wOFD6ZnbNzDocvHCbIJ4inr326UPeIiPNQMisi4kRytrAtLyUGr657lb9i/iLIJ4j3B71vc27MkjEkpGdvivD9iO9xdXEtcKycetk7Wt2R7zV/nPqDy1mXAWgT3Oaq8SWmJzJ57WQge3OFAK+Aq94jIs5FyayIiBMpT5sl7Dq/i9c2vAbAB4M/sCkv+PP0n3y972sAhjUbRp/6fa46XmEWf+WUGDzQ4YFCdSOYtmEasamxNK3elAc6PnDV60XE+SiZFRFxEpczL7P17FbA8ZslZJgzGPfjOLIsWdzW8jZub3W79ZzFsDB04VAA/Nz9WHjbwkKNebW2XIZhWLewLUyJwemE08z4cwYA08Kn5Vu6ICLOTcmsiIiT2Hp2K5mWTGr61aRRtUYOjWXq+qnsid5DkE8QswbPsjk3YekEYlNjAfjy1i/xdPO86ngWw3LVTgZHLhzh+KXjuLu4069hv6uO+cKaF0jLSqNX3V7c3Ozmq14vIs5JyayISDlw5MIR7vzuTmJSYvK9xlpiUK+XQxv+74nawyvrXwFg1uBZBPsGW8/ti97H7B2zAbi+wfXc3LxwSWRkQiQpmSl4uHrQOLBxntfklBj0rt8bPw+/AsfbdX4Xn+/5HIA3B2iDBJGKTJtSi4g4WJYlizFLxvDnmT8xDCPfH8uXh80SMs2ZjP1xLFmWLIa3GM7tLf8uLzAMg8ELBmNg4OXqxY8jfyz0uDklBs2qN8PNJe+/mnJafA1uXHCJgWEYPLHyCQwM7mx9J11qdyl0HCLifDQzKyLiYG9uepM/z/yJv6c/0/tPz/OaLEsWm89sBhzbyWDqhqnsjtpNde/qzBo8y2bG89nVz3I68TQAs2+cfdXZ0ytZF3/lU2KQnJHMHyf/AGBI04K3sF12bJm1fddr/V4rdAwi4pyUzIqIONBf0X8xac0kAN694V3CAsLyvG531G6SM5Kp6lWV1sGtyzJEq73Re3llXXZ5wfuD3yfEL8R67sSlE7yx6Q0AutTqwpj2Y4o09tU6Gaw6vopMSyaNqjUqcEOFLEuWdYOEJ3s8Sf2q9YsUh4g4HyWzIiIOkmHOYPSS0WRaMhnabCij243O99qcEoNr616Li6ns/+jONGcydslYMi2Z3NL8Fka0GmFz/oYvb8BiWHB3cefXUb8WefyrdTK4ctevgupf5+2ax4HYAwR6B/Jsr2eLHIeIOB8lsyIiDvLKulesP7L/6MaPCkzSHN1fdtrGaeyK2kWgdyAfDPnAJtZpG6Zx5OIRAKb3n051n+pFGttiWDgYdxDIu8zAMIxCbWGblJ5kneWedN0kqnpVLVIcIuKclMyKiDjAtrPbeG19dj3nh0M+JNQvNN9rDcOw7vzliGT2r+i/eOmPlwB4b9B7NrFGJUfx/O/PA9AyqCX/7vbvIo9/Mv4kqZmpeLp65tly7K+YvzibdBaA3vV65zvOm5veJDolmkbVGvFQ54eKHIeIOCclsyIiZexy5mXGLBmD2TAzsvVImw0H8nIw7iAXLl/A282bjrU6llGU2XK6F2RaMrm52c3c2fpOm/ODvxpMlpGFq8mV5XcvL9YzckoMmgc1z3PL25xZ2SFNhuDt7p3nGGcTzzJ9U/biuWnh0/Bw9ShWLCLifJTMioiUsRfWvMDBuIOE+oXy/qD3r3p9zqxstzrdyjxJe2PjG+w8v5NqXtX4cMiHNuUFH+/4mF1RuwB44boX8l28djVX62RwZTKbn0lrJnE56zIAt7a4tVhxiIhzUjIrIlKG1p9az4zN2VusfnLTJ4WqL10Xmb34q6xbcu2L2ceUP6YA8O6gd6lZpab1XEJaAo8uexSA+lXrM6n3pGI/p6BOBpcuX2LT6U0ADGoyKM/790bv5dPdnwKw+d7N2iBBpJJRMisiUkaSM5IZ++NYDAzGtR/HjU1vLNR9jqiXzbJkWbsX3NT0Jka1GWVz/qYFN5FhzsCEieWjlpcogbRuY5tHMrsiYgVmw0zLGi3zbbP15MonMTC4o9UddKvTrdhxiIhzUjIrIlJG/rfyfxy/dJy6AXWZecPMQt1zKv4UpxNP4+biVqaJ2vSN09lxfgdVvaoy+8bZNsnqN/u/Yf3p7AT70S6P0iyoWbGfYzEsHIzNv5PB1Xb9+u3Yb6yIWIG7iztT+00tdhwi4ryUzIqIlIEVESv4cPuHAMwbOg9/T/9C3ZfTX7ZjzY74eviWWnxX2h+znxf/eBGAd254h1pValnPXc68zLgfxwEQ6hvK2ze8XaJnnbh0gstZl/Fy86JB1QY25yyGhWVHlwF5t+QyW8w8sfIJACZ0mUDDag1LFIuIOCclsyIipSw+LZ57f7oXgAmdJ9CvYb9C31vW/WWzLFmM+3EcGeYMhjQZwj1t77E5f9s3t5GamQrA0lFLS7yBQ069bFpWWq5OBjvO7SA2NZYqHlXoWbdnrns/2/MZ+2L2AfD8dc+XKA4RcV5KZkVEStnjyx/nTOIZAF4Pf71I91qT2Xplk8y+tekttp3bRoBnQK6NHH479pv1x/5j2o2hQ80OJX5eTluuf9bkwt9dDAY0GpCri0NKRoq1v+1bA94i0DuwxLGIiHNSMisiUop+PPQjn+35DBeTCxvHbyxSqUBMSgyH4g4B2dvYlrYDsQeYtDa7K8E7N7xDbf/a1nMZWRnc8e0dAFTzqsacoXPs8syCOhksPboUyLvE4K3Nb3E++TwNqjbgkc6P2CUWEXFOSmZFREpJbEosD/zyAABPdH+CHmE9inT/hsgNALQObl3qM49mi5nxP44nw5zB4CaDGd1utM35MT+OITE9EYDv7vgONxc3uzw3vx6z0cnRbDu3DYAbGt9gc+580nne2PgGkD3T7enmaZdYRMQ5KZkVESkFhmHw0NKHiEmJoVWNVkzpO6XIY+Qs/rqubun3l31r81tsObuFAM8APr7xY5vygs1nNrNw30IAhjUfRt8Gfe3yTLPFbJ15/ufM7G8Rv1l/feUCNIDJayeTkplC19pdub1lwbuniUjF5/BkdtasWdSvXx8vLy+6du3K1q1b8712//79DB8+nPr162MymZg5c2bZBSoiUgQL9y3ku4PfAfDZsM/wcvMq8hhlVS97MPYgk9Zklxe8PfBtm/ICs8XMzV/fDICfhx9f3/q13Z57/NJx0rLS8HbzpkE1204GOfWyz/V6zub4vph9zN01F8iuldUGCSLi0GR20aJFTJw4kcmTJ7Nz507atWvHwIEDiYmJyfP61NRUGjZsyOuvv05oaGgZRysiUjjnks7xyK/ZdZyTe0+mY62ORR4jMT2R3VG7gdLtZGC2mBn34zjSzenc0PgGxrYfa3N+wq8TiE2NBeCrW77Cy73oSXl+ckoMWtRoYdMVIcuSZZ2Z/ecWtv9b+T8shoVbW9yaZ4cDEal8HJrMzpgxg/vvv59x48bRsmVLZs+ejY+PD/Pmzcvz+s6dOzN9+nRGjhyJp6dqpESk/DEMg/t/vp9LaZfoULNDrpnFwtp0ehMWw0LDag1tZkrt7e0/32bL2S34e/rzyU2f2Mx0/hX9Fx/t+AiA6+tfz9DmQ+367JxOBv8sMdh8ejPxafEEegfSpXYX6/FVx1ex7Ngy3FzceL1f0bpCiEjF5bBkNiMjgx07dhAeHv53MC4uhIeHs3nzZrs9Jz09ncTERJsvEZHSMm/XPH49+iserh58Puxz3F3dizVOWWxheyjukLW91dsD36aOfx3rOcMwGLxgMAYGXm5eLBm5xO7Pz6+TQU6JwQ2Nb7D2njVbzDyxInuDhIc7PUyT6k3sHo+IOCeHJbNxcXGYzWZCQkJsjoeEhBAVFWW350ydOpWAgADrV1hYmN3GFhG50qn4U/znt/8A8ErfV/LcnrWw1kX+/+KveqWz+Cune0G6OZ2BjQYyrv04m/PPrn7W2ht39o2zqeJZxe4x5NfJIK8tbL/c+yV7ovcQ4BnAC71fsHssIuK8HL4ArLQ988wzJCQkWL9Onz7t6JBEpAKyGBbG/TiOpIwkeob1ZGL3icUeKy0rja1nsxfDltbM7Dtb3mHzmc1U8aiSq7zg+MXjvLEpu/VV51qdGdNujN2fn2XJyrOTwZnEM+yN3osJEwMbDwQgNTOV537PLtd4rtdzBPkE2T0eEXFe9mkUWAxBQUG4uroSHR1tczw6Otqui7s8PT1VXysipW7W1lmsObkGH3cf5g+bn2tr1qLYdnYbGeYMQnxDaBzY2I5RZjty4Yg1OZwxcAZhAbY/sRq0YBAWw4K7izu/jvrV7s8HiLgYQYY5Ax93H+pVrWc9vuzoMgC61ulqTVrf3vw2Z5POAvBo10dLJR4RcV4Om5n18PCgY8eOrF692nrMYrGwevVqunfv7qiwRESK7MiFIzy16ikApvefXuIE1Npftt51dm89lVNekJaVxoBGA7j3mnttzk/bOI0jF44A2a+ltGZBc0oMWtZoadPJIKfEIKeLQXRyNK9vzF7steDWBcVqcSYiFZvDZmYBJk6cyJgxY+jUqRNdunRh5syZpKSkMG5cdu3W6NGjqV27NlOnTgWyF40dOHDA+uuzZ8+ye/du/Pz8aNzY/rMXIiJXY7aYGbNkDJezLhPeMJx/dfpXice09pcthRKD97a+x8bTG/MsL4hKirIuCGtZoyX/7vZvuz8/R16dDNKz0lkZsRL4ewvbF9e+SHJGMp1qdWJE6xGlFo+IOC+HJrMjRowgNjaWSZMmERUVRfv27Vm+fLl1UVhkZCQuLn//i/3cuXNcc8011u/ffPNN3nzzTXr37s3atWvLOnwREd7c9CZ/nvkTgLlD59rMMhZHliWLjac3AvbfLOHohaM8u/pZIHvDgboBdW3OD1owiCxLFq4mV5aPWm7XZ/9TXp0M1keuJyUzBYD2oe05GHuQT3Z+AsCb/d8s8XsrIhWTQ5NZgAkTJjBhwoQ8z/0zQa1fvz6GYZRBVCIiV/dX9F9MWpu9c9a8ofNyJYfFsSdqD8kZyQR4BtAmuE2Jx8thMSyM/2m8dQb5vg732Zz/aPtH1k0aXrjuhVx1tPaWVyeDnJZc49qPw8XkwlOrnsJsmLm52c30rt+7VOMREeelf+aKiBRDhjmDMUvGkGHO4KamN+XaOau4cuple9btWaJFZP/03pb32BC5AT8PP+bcNMemvCD+cjyPLX8MgAZVGzCp9yS7PTcvmeZMDscdBmxnZnOS2cFNBrPmxBp+PvIzANPCp5VqPCLi3Bw+Mysi4oxeXfcqu6J2EegdyMc3fWy3hVo59bLX1bVff9ljF4/xzOpngOwf11/ZPQDgpq9vIsOcgQkTy0Yts/uis3/6K+YvMi2ZANbZ7IiLERy+cBg3Fzf6NehH+BfZG+o80vkRmgU1K9V4RMS5aWZWRKSItp/bzqvrXwXgwyEfEupnn3aChmH8vfjLTvWyFsPC+B+zywuub3A9D3R8wOb8N/u+YcPpDQA81vWxUk8cD8Ye5OaFNwMwoNEAa+K87Fh2S65r617L0qNL2Xl+J1U8qjC59+RSjUdEnJ9mZkVEiiAtK43RP4zGbJgZ0WoEd7S6w25jH4o7RFxqHF5uXnSq1ckuY87aOov1kevxdfdl7tC5NrOuqRmpjPsxu3tMqF8oMwbOsMsz87P17FYGfzWYC5cv0CKoBXOHzrWeW3p0KQD9G/S3LlJ7ttez1PCtUaoxiYjzUzIrIlIEL/z+AgfjDhLiG8KswbPsOnbOrGy3Ot3wcPUo8XgRFyN4evXTQHbP2PpV69ucv23xbaRmpQLwy52/lGq3gNXHV3PzwptJyUyhS+0u/HrXr1T3qQ5k7/C15sQaAGJTYzmdeJow/zD+3bX0WoOJSMWhMgMRkULaELmBtza/BcAnN31iTcbs5ZcjvwD26S9rMSzc+9O9pGam0rd+Xx7s9KDN+d+O/Wb90f6YdmPoWKtjiZ+Zn+8Pfs/gBYNJyUwhvGE4q0evtnnv1pxYQ7o5ndpVajNv9zwAXr3+VbzdvUstJhGpOJTMiogUQnJGMmOWjMHAYFz7cdzU7Ca7jv/Wpresq/evq1fyxV8fbvuQP079YS0vuHLWNSMrgzu+zS6PqOZVjTlD55T4efmZs3MOty++nQxzBre1vI1f7vwFPw8/m2tyuhhU86pGYnoi14Rew6i2o0otJhGpWJTMiogUwlMrn+L4peOE+Yfx9sC37TauYRi8uPZFnlj5BAAmTHSr061EYx6/dJz/rfofkN3WqkG1BjbnRy8ZTWJ6IgDfj/geN5fSqTh7Y+Mb3P/z/VgMC/d3uJ+Fwxfi6eZpc41hGNYtbA/GHQTgzQHaIEFECk81syIiV7EyYiUfbP8AgHk3zyPAK8Au4xqGwRMrnmDGn38vvOpcu3OumcuiuLK8oHe93jzU+SGb85tOb2LR/kUA3NL8FvrU71PsZ+XHMAyeWvUU0zdNB+Dpnk/zWr/X8mz5dTDuICfjTwJgNszc2PRGrm9wvd1jEpGKS8msiEgBEtISGP/TeCC752l4w3C7jGu2mHlo6UPW7Vpr+NQgNjW2xPWys7fPZu3Jtfi4++QqLzBbzNa2WH4efiy4dUGJnpWXLEsWD/78oLX2dXr/6TzR44l8r88pMQBwNbnyRvgbdo9JRCo2JbMiIgV4/LfHOZN4hsaBje22E1WmOZOxP45lwV8LcDG54OvuS2xqLHUD6vJY18eKPe6JSyf438rs8oKp/abSKLCRzfmHlz5MXGocAF/d+hVe7l7FfxF5SMtK467v7uKHQz/gYnJhzk1zGHfNuALvWXpkqfXX93e4nxY1Wtg1JhGp+JTMiojk46fDPzF/93wAPhv2Gb4eviUeMy0rjZHfjuTHwz/ianLFbJhJykjimtBrWHrXUmpWqVmscXPKC1IyU+hVtxcTukywOb83eq91Fvj6BtcztNnQEr+WKyWlJzFs0TB+P/E7nq6eLLxtIcOaD8t1XUpGCl/99RVf7v2S9ZHrMfF36cGLfV60a0wiUjkomRURyUNcahwP/Jy9W9b/evyPHmE9SjxmSkYKwxYNY9XxVUB2AgowsNFAFt++mCqeVYo99sc7PmbNyTV4u3kz7+Z5NuUFhmEw5KshGBh4uXmxZMSSEr2Of4pNiWXwgsFsP7edKh5V+HHkj/Rt0NfmmqMXjvLBtg+YuWWmzXEDA4CX+75MiF+IXeMSkcpByayISB4e+fURolOiaVWjFVP6TinxePFp8QxZMIRNpzfh7uJOpiUTA4Ox7cfy8Y0f4+7qXuyxT8af5MmVTwLwevjrNA5sbHP+6VVPcybpDACzh8wuUdL8T6cTTtP/i/4cvnCYIJ8glo9abu1Za7aYWXZsGbO2zWL5seXWexpVa8TARgOti+pcTa4lKq8QkcpNyayIyD8s2reIb/Z/g5uLG58N+wwvt5LVlsalxjHwy4HsPL8TD1cPMswZAEzuPZnJvSfnucq/sAzD4L6f7iM5IznP8oLjl47z5uY3AehSqwtj2o8p/gv5h0NxhxjwxQDrjl0r71lJs6BmXLx8kXm75vHBtg84EX8CyG45NrjJYCZ0mcCARgO4mHrRmsyaDTMBrweQ9lxartZdIiJXo2RWROQK55PO8/CvDwPwfK/nS7wz1rmkc4R/Hm7toZphzsDV5MrsG2dzX4f7Shzvxzs+ZvWJ1Xi7eefqXmAYBgO/HIjFsODu4s7SUUsLGKlotp/bzg1f3sCFyxdoHtScFXevIC41jnt/vJcF+xaQlpUGZG+EcO819/JQ54doWK2h9f7Hlv89E5uT4A9bNIzv7vgOH3cfu8UpIhWfklkRkf9nGAYP/PIAFy9fpEPNDjzb69kSjXcy/iT9Pu/H8UvHraUFvu6+LL59MYOaDCpxvKfiT1k3W3it32s0qd7E5vy0DdM4dvEYANMHTCfIJ6jEzwT4/cTv3LzwZpIzkulUqxP3XXMfI78byabTm6zXtA9tz4TOE7izzZ3W5DTTnMnqE6tZuG+htddt9zrdeanvS9y88GaWH1vO4K8G8/OdP9u1FEJEKjaTYRiGo4MoS4mJiQQEBJCQkIC/v7+jwxGRcmTernnc+9O9eLh6sPOBnbQKblXssQ7HHabf5/04m3TW2rUgxDeEpXctLfFsL2Qn3gO+HMCq46voGdaTP8b+gauLq/X8+aTz1H27LllGFi1rtGT/w/tL/EyAHw7+wMjvRpJhzqBB1QbWMgIANxc3bm95OxO6TKB7ne6YTCbMFjPrTq1j0f5FfHvgWy5cvmAz3uwhs3mw04NsjNzI4AWDrTuTXfjfBQK9A+0Ss4g4n6Lka5qZFREhe5bz8eWPA/BK31dKlMjuidpD/y/6E5sai4vJBbNhpln1ZiwbtSzX1rLFNWfnHFYdX4WXmxfzbp5nk8gCDPpqEFlGFq4mV5aPWp7PKEUzd+dcHvjlAWsXhpxEtlaVWvyr47+4v+P9hPqFYjEsbD6zObv2+MA3RCVHWccI9g2md73efHvgWwwM6wx1z7o9+X307wz4cgAXL1+k72d9WXH3CnU4EJGrUjIrIpWexbAw/qfxJGUk0SOsBxO7Tyz2WJtPb2bwgsHEp8VjwoTFsNAzrCc/jvyR6j7V7RJvZEIk/13xXwBevf5VmlZvanN+9vbZ7IneA8Dz1z1PWEBYiZ6XnJHMmB/G8P2h722O967Xm0c6P8Kw5sNwc3FjV9QuZmyewaL9i4hMiLReV82rGre2uJWm1ZuyImIFiw8sBqBzrc7UDahrva5jrY78MfYP+n/Rn73Re+k9vzerRq+ijn+dEsUvIhWbygxEpNJ7f+v7PLrsUQCOPno0V2urwvr9xO8M/XooKZkp1mPDWwzni1u+wNvd2y6xGobBDV/dwIqIFfQI68G6setsZmXj0+IJeTPEWgYQ8VhEsbslHI47zKyts/ho50fWDgxuLm6Mbz+eCV0m0CakDftj9ltrYI9ePGq918/Dj2HNh3F7y9tJyUhhxp8z2H5uO5DdimtE6xG8dv1r1KtaL9dzj144Sr/P+3E68TQAEY9F2CweE5GKT2UGIiKFdPTCUesWsO8Per/YiewvR37htm9uI92cbj32WJfHmDFwRq4SgJKYu2suKyJWZJcXDM1dXnDTgpvIMGdgwsSyUcuKnMiaLWaWHl3KrG2zWBGxwnbspjfx+S2fE5cax6J9i7jr+7vYF7PPet7bzZsbm97IyNYj6Vu/L4sPLOa/K/5rXYTm7ebN+Pbj6R7Wna/3fU39d+pjmWTJFWOT6k1YP2494V+Ec+ziMXp92otV96zSVrcikiclsyJSaZktZsYsGcPlrMv0a9CPhzo/VKxxFu1bxN0/3E2WJct6bMaAGfyn+3/sFSqQXV4w8bfsEohX+r5Cs6BmNucX7lvIhtMbgOxE+p/nC3Ih9QJzd83lqVVP5TrnYnLhtetfw9XFlfDPw9lxfof1nLuLO4OaDGJkq5Hc1OwmsixZzN4+m4eXPkx0SjQAgd6B3HfNfXi7efPu1neZtX2W9f7e83uz/O7ludpx1ataj3Vj19H/i/7sj91P7/m9WXHPCtqHti/0axKRykFlBiJSab2x8Q2eWvUUVTyqsO/hfTb1m4U1b9c87v/5fuuiKHcXd7689UvuaHWHXWM1DINBXw3it4jf6FanGxvGbbCZlU3JSKHG9BpczrpMTb+anJl4xqbnbH52nNvB+9veZ+G+hTa9Yat4ViEyIRJXkytNAptw6MIh6z2uJlf6NezHyFYjGdZ8GNW8q3Eu6Rwz/5zJ7O2zScpIAiDMP4w7W9/JobhD/HL0F+t79E+BXoFsvX8rjQIb5Tp35YYTAJvv3Uy3Ot0K/8aJiFMqSr6mZFZEKqV9Mfvo+HFHMswZzBs6j3HXjCvyGO9ueZd/L/+39fsAzwB+uvMnrqt3nT1DBf5uG+bp6snuf+2meVBzm/ODvxrMsmPLANh+//YC23+lZ6Wz+MBiZm2bxZ9n/rQe71CzA7e1uI2PdnzEqYRTNveYMHFdvesY2Xokw1sMp4ZvDSC7rnb6pul8sfcLa11tyxotuS7sOn47/ptN666ccbrX6c7E7hO596d7SUhPsJ5bOHwhI1qPyBVvQloCQxYMYePpjfi6+/LLXb/Qp36fQrxrIuKslMwWQMmsiGSaM+k6pyu7onZxY9Mb+WnkT0WqLTUMg9fWv8bza563HgvzD2P53ctpWaOl3eM9k3iGVh+0IjE9kTfC3+DJnk/anF92dBmDFwwGYGy7sXw67NM8xzmdcJqPdnzExzs+JjY1FsieSb6l+S00C2rG+lPrWXtqrc093ep0Y0SrEdze8nZq+9e2Ht9yZgvTNk7jh0M/WI91qdWFUL9Qfov4zaZ2GMDH3Yf7rrmP1/q9hq+HLwBZlix6f9qbTWf+3mxhTLsxzB06N1ctcEpGCsMWDbO2I0vLSsOYXKn++hKpVJTMFkDJrIi8uPZFpvwxhUDvQPY/vJ9Qv9BC32sYBs+sfoZpG6dZj7ULacevo36lVpVado/VMAyGLBjCsmPL6Fq7KxvHb7RJ9DLMGdSYXoPE9ESqeVUj5skY3FzcbO5fe3It7297n+8P/t1aq1aVWvSq24vE9ETrjG4Odxd3Hu3yKBO6TLDpi2sYBsuPLWfaxmn8ceoP6/HudbqTmJ7I/tjcGzM0DmzM1H5Tua3lbfm+xpf+eInJayfbHIt7Mi5XK7O0rDTuWHwHPx/5GXcXd74e/jXDWw7Pd1wRcV5KZgugZFakcttxbgdd53TFbJjz/bF2fiyGhUd/fZQPtn9gPTaw0UAW37641LZf/XTXp4z/aTyerp7senBXrhX9I78dad0advXo1Vzf4HoAktKT+GLvFzzy6yM217cObk2AZwAbT2+0OZ6zS1mDqg1YO3atTf1wliWLRfsW8camN9gbvRcAN5Mb7UPbc/TiUZtSgZyxbmp6EzMHzaReQO7WW3nZGLmRfp/3s87oerp6snbMWrqF2dbHZpozueeHe1i0fxEuJhfm3zyfe9rdU6hniIjzUDJbACWzIpVXWlYaHT/uyIHYA9zR6g4W3bao0PdmWbK498d7+Xzv59ZjY9uP5eMbP8bd1b00wuVM4hlaf9CahPQEXu/3Ok9da9tpYFPkJnp+2hOAYc2H8cOIHzgUd4hZW2fx2Z7PrAuxvNy8qBdQj8MXDtvc37BaQ7rV7saPh38kJTOFjjU7smzUMms9bGpmKvN2zePNTW9aa2i93bypU6UOEfERuRZ0BfkE8UT3J3iixxPFakeWmJZIh487EHEpwub4P8sJzBYz9/98P5/u/jTfa0TEuanPrIhIHiatmcSB2AOE+IYwa/Csq9/w/9Kz0hn53UiWHFpiPTa592Qm955c7A0JrsYwDB785UES0hPoUrsL/+3xX5vzZouZmxfdDICvuy93tb6L/l/0Z9XxVdZrAjwDSEhPIC0rzZrI1q5SmxGtRjCy9UjOJJ7hzu/uJN2cTt/6fVkycgn+nv5cSL3ArG2zbH707+fuh4erBxfTLnL00lGbWLrU6sLMG2bSPax7iV6zv5c/xx47xrgl45i/Z771eJ9P+7D8nuV4uXkB4Oriypyhc/Dz8OO9re8B8Namt3K9RyJSOWhmVkQqhY2RG+n1aS8MDH4c+SNDmw0t1H2pmakM/Xooq0+sth6bc9Mc7u1wb2mFCsBnuz9j7I9j8XD1YNeDu3ItLHvw5wf5eOfHANTwqWFd0GXChIHtH+vBvsHc3vJ2RrYeSY+wHtk/nt89n3t/uheLYWFY82F8PfxrYlJimLF5Bp/s/ITUzFQA/D38Sc1MJcvIshnT282bMe3G8Hr46wR4Bdj99X+7/1tGfDfCOvsb6BXIjgd2UL9afes1hmHw3O/PMXXDVABe7P0ik3pPKrV/YIhI2VGZQQGUzIpUPikZKbSb3Y6ISxGMbT+WT2/Oe7X/PyWmJzLgiwFsObsFAC9XL74f8T2DmgwqzXA5m3iWVh+0IiE9gan9pvL0tU/bnF+wdwGjfhhV4BjVvKpxa4tbGdl6JH3q97FZFDZj8wz+uyJ7FnN8+/E82vVRZmyewdf7vrZu/ODr5ktKVkqucRtWbchLfV/irjZ3lXrSGJkQyTUfXcPFyxetxxbfvjjXYrLX1r/Gc78/Z/0+r13FRMS5KJktgJJZkcpnwq8TmLVtFmH+Yfz10F+Fmkm8kHqB3vN7W1foV/Oqxsp7VhbYv9UeDMNg6MKh/HLkFzrV6sTmezfj5uJGWlYa3+z/hjFLxuR7r5+HH8OaD2Nkq5H0b9QfD1ePXGNfOZM5stVIEtMT+fXYrwXG5Gpy5YbGN/DODe/kubFBabJYLPT/oj+/n/zdemxcu3HMuXmOzaYQ7/z5Do//9jgA/+r4L2YNmVWoTSNEpHxSMlsAJbMilcuq46vo/0V/AFbes5LwhuFXved80nl6zOvByfiTANQLqMeaMWts2lSVli/2fMHoJaPxcPVg5wM7qeJZhdnbZzN7+2wupV3Kdb2nqydDmw1lRKsRDG4yGG937zzHNVvMPLT0IT7Z+QkAdf3rEpkYWWAsgd6BPN71cZ6+9ulSW+RWWG9teosnVj5hcyz+qXibf5jM3TmX+3++HwODe9rew7yb59nMSIuI81AyWwAlsyKVR0JaAm0+bMPpxNM81OkhPhjywVXvORV/im5zuhGVEgXANaHXsPKelbl6npaG80nnaflBS+LT4hnffjxnk86yImJFrhpYgKpeVZk1eBY3Nb3pqm3B0rPSuev7u2z6zBakQ2gH3hr4VrnbZWv3+d10n9fduu2up6snG8ZvoFOtTtZrvv7ra+754R7MhhmA9OfTc81Qi0j5p2S2AEpmRSqP8T+O59Pdn9KoWiN2/2s3fh5+BV5/OO4w3eZ0Iz49HsjuIfvDiB/yne20J8MwGPDlAFYdX4Wbi5u1djWHCy54unpy2XwZNxc3zk88T5Bv0FXHPZ90nj7z+3Dk4pECr/N09WRUm1G80f+NMknciys1I5VOn3TiYNxBm+NXtub68dCP3PHtHWSYMxjUeBDf3fFdmfweioj9FCVfU0GRiFRIPx/+mU93f4oJE/OHzb9qIrv7/G46fNTBmsiObz+epXctLfUkKD0rnWkbphH8ZrC1rdaViWynmp34YPAHPH3t01w2XwZgev/pV01ko5Oj+c/y/1BrRq0CE9m6AXWZO3Qul5+7zNyb55brRBbAx8OHA48c4KFOD9kc7zO/D5nmTABubn4zv9z5C95u3iw7lr3Vb1J6kiPCFZEyoJlZEalwLqReoNUHrYhOieaJ7k8wfcD0Aq9ff2o9/T7vR6YlOxma0nsKk/pMKtUYN0Ru4L+//Zet57bmOle7Sm0e7vwwY9qNobZ/bc4lnqPuzLqYDTOtarRi38P78h33+KXjvLnpTebunEuGJSPPa1xMLoQ3DOftAW/TMrhlntc4g6WHl3LzoputJQXVvKrx17/+onZAbSD793XIgiEkZSTRtXZXlo1aRjXvao4MWUQKSWUGBVAyK1Lx5Wzx2rJGS3Y8sMPabD8vPx7+kVsX3YrFsGDCxJyhcxh/zfhSievi5Ys8t/o5Pt/7ubWPaw4Xkwt96/VlWv9pdKjZwaa1VPvZ7dkTvQdXkysn/n2CsICwXGPvOr+LaRun8c3+b/KssYXsTRQmdJnA872ex8s9//fEmcQkx9BmdhtiUmKsx769/VuGtxwOwPZz2xn45UAuXr5Iu5B2rLhnBcG+wY4KV0QKSclsAZTMilRsi/YtYuR3I3E1ubLlvi0FttL6dNen3PvTvRgYuLm48fOdP3ND4xvsGo/FsLDgrwVMWjOJE/Encp0P8w9j8nWTubvd3Xi6eeY6/+G2D3n414eB7E0BJvf5e1cuwzD4/cTvTN0w1WZTh39qG9yWN/q/wcDGA+3wisofi8XC0IVDWXp0qfXYuHbjmHvzXEwmE39F/0X/L/oTnRINwJn/nKG2f21HhSsihaBktgBKZkUqrvNJ52n9YWsuXr7I5N6TebHPi/leO23DNJ5enb0ZgZebF5vGb+KamtfYLZajF47y7+X/ZmXEyjx3z7q77d282PtFavnXyneMS5cvEfpWKBnmDBpUbUDEYxGYTCbMFjPfH/yeO769I997TZgY3nI4793wHqFVQu32usqzD7Z+wIRlE2xmppOeScLPw48jF44Q/nk4pxNP06BqA1aPXl0mrdZEpHiUzBZAyaxIxXTlZgPXhF7Dlvu25NsbdeLyiby95W0gu8XV7gd3U69qvRLHkJaVxvSN05n550wupl20OWfCRKdanXiz/5v0qterUDtU9ZzXk02nN2HCxMFHDlKvaj3m75rPK+tf4WzS2XzvaxLYhC33bamU9aGHYg/R8ZOO1jIOT1dPNt27iQ41O3Aq/hT9Pu9HxKUIalepzarRq2ge1NzBEYtIXpTMFkDJrEjF9OmuTxn/03g8XD3Y8cAOWge3zvO6Ud+NYsG+BQDUqlKLfQ/tK1HSZxgGf5z6g8eXP87e6L256lWDfYL5X8//8UiXRwqs3f2nr//6mru+vwvI3tEqxDeEtza/RXJmcoH3DW02lEW3LSrSsyqajKwMus7pyu7o3dZjOdsCn0s6R/8v+nMg9gAAux/cTbvQdg6KVETyo2S2AEpmRSqeyIRI2nzYhsT0RKaFT+N/Pf+X6xrDMAj/PNy6LWqLoBbsenBXnnWqhRGXEscTK59g0f5F1ib+OTxcPBjabChvDXyLugF1izx2SkYKNabX4HLWZbzdvLmcdTnP66p4VKFTrU6sObkGgDHtxjBn6BztevX/nlzxJG9uftP6fe+6vVk1ZhXxafEM+GIAu6J2UdWrKstHLadrna4OjFRE/knJbAGUzIpULBbDQv8v+vP7id/pXqc768etx9XF1eaa9Kx0On/Smb9i/gLg2rBr+WPsH7i4FK3Vttli5rPdnzFp7aQ8f8zfPKg508OnM6TpkEKVEeTn2nnXsvH0xnzPt6zRklf7vsq2c9t4bcNrAEzsNpHpA6bjYlL78CutObGGAV8OsPbureZVjf0P78fb3ZshC4aw6fQm/Dz8+OXOX+hdv7eDoxWRHNo0QUQqjQ+3fcjvJ37H282bz4Z9liuRjU+Lp+l7Ta2J7PAWw1k/fn2REtkDMQfoM78Pnq94cu/P99oksgGeATzd82lSn03l4CMHubHZjcVOZJceWUrNN2vmmci6ubgxotUIIh+PZO+/9rI8Yrk1kX3t+td4c8CbSmTz0LdBX2KfjKVWleyFdpfSLlHn7TqsPr6a3+7+jesbXE9yRjJ9PuvD8mPLHRusiBSLZmZFxGkdvXCU9h+1JzUzlfcGvceELhNszkfGR9L+o/ZcSrsEwMOdHmbWkFmFGjs1M5Upa6cwe/tsEjMSbc65mlzpXb83Hwz+gGZBzYodf1pmGl/v+5p5u+ax5cwWMo3MXNeE+Ibw9LVP80jnR3B3dSfDnME9P9zDN/u/wYSJ2TfO5oGODxQ7hspk+KLhfH/oe+v3Y9uP5YPBH3D74ttZenQp7i7uLLxtIbe2uNWBUYoIqMygQEpmRSoGs8XMdfOvY9PpTfSt35dVo1fZzEzuPr+bHvN6WOtN/9mjNS+GYbDs6DImrpjI4QuHc52vG1CXl/u8zD3t7in27GvExQje2/oe3x/8ntOJp/O9rnWN1swZOsemljM5I5nh3wxnRcQK3F3c+erWr7i91e3FiqOyurK3MECjao3Ydt82Hlz6IIsPLMbV5Mr8YfO5u+3dDo5UpHIrSr6mVQIi4pRmbJ7BptObqOJRhU9v/tQmkf3t2G/c+PWN1jrJDwZ/wEOdH8p3rPNJ53n010f5+ejPZJhtt4D1cffhztZ3MmPADPy9iv4PYLPFzE+Hf2L2jtmsP7U+38VcVxrceDBLRy21OXbx8kWGLBjCn2f+xMfdhx9G/MCARgOKHE9lN+6acfSt35c2s9uQnJFMxKUIQmeEsn7Menw9fJm/ez73/HAPqZmpmvEWcRKamRURp7M/Zj8dPu5AhjmDuUPn2mw/e+XMm4vJhUW3LeK2lrflGiPLksX7W95n6sapNluhQnZP2A41OzBr8KxirXKPTo5m1rZZfL33a47FH8v3OhMmDAzr/wP4efgR80QM3u7e1uvOJp5l4JcD2R+7n2pe1fh11K90q9OtyHHJ37IsWfSY24Nt57ZZj73S9xXOJ59n1rbsUpS3BrzFxO4THRWiSKWmMoMCKJkVcW6Z5ky6ze3GzvM7GdJkCD/f+TMmkwnDMHh53ctMXptdSuDm4sayUcsIbxhuc//2s9t5+NeH2X5ue66esDV8avBkjyf5b/f/FmmBmGEYrD25lve3vs/KiJUkZSble62nqycerh4kZeS+pppXNZaMXMJ19a6zHjt64SgDvhzAyfiT1KpSixV3r6BVcKtCxyYFm/T7JF5e/7L1+2vDrqVHWA/e2PQGAFP6TOGF614oUXcKESk6JbMFUDIr4tymrJ3Ci3+8aG2xVLNKTcwWMw/+8iBzd80FsrenXTtmrXVWNSk9iSdXPskXe7+w7gyVw8PFg8FNBvPBkA+oWaVmoeNITE/k4+0f8/mez9kfux8LljyvM2Gybspw8fLFXOdr+NRgaLOhPNrlUdqGtLVJmnad38UNX91ATEoMTQKbsOKeFdSvWr/QMUrhbIrcRJ/P+pBp+XsB3lM9n2LaxmkAPNnjSaaFT1NCK1KGlMwWQMmsiPPacW4H3eZ2I8uSxdfDv2Zk65FczrzMLYtu4beI34DsjQQ23buJVjVa8fW+r3nu9+c4GX8y11hNqzflrf5vcWOzGwv9/F3ndzFzy0x+OfJLnolpDm83b2pWqUlyRnKuEgaA2lVqc1vL25jQeQKNqzfOc4x1p9Zx09c3kZieSPvQ9iwftZwQv5BCxypFk5qRSotZLYhMjATAxeTCPW3v4bM9nwHwUKeHeH/w+2p/JlJGlMwWQMmsiHNKy0qj08ed2B+7n9tb3s6i2xZx4fIF605OAEE+QSy8bSHTNkxjzck11gVgOfw9/Lmvw328cv0rNjWp+UnPSueLvV/wyY5P2Hl+J1lGVr7X1vGvQ7BPMGeTzhKdEp3rfMOqDRnVdhT/6vQva8/T/Px8+GeGLhwKwHX1ruOnkT8R4BVw1Xil5K7c7higW+1ubDm7BQOD0e1GM3foXO2wJlIGlMwWQMmsiHN6auVTvLHpDYJ9g9n/8H4S0hK4/rPrrTNpVTyqYDKZSEzP3RO2R1gPZg+ZTcvglld9TsTFCGb+OZNvD3xLVEpUvtd5uXlxTcg1eLt7szd6L3GX42zOmzDRokYLxrYby70d7iXQO7BQr/OLPV8w7sdxmA0zNzW9iUW3LSpU4i328/W+rxn13ShrTXUNnxpcSL2ABQu3tbyNr279Cg9XDwdHKVKxKZktgJJZEeez6fQmrp13LQYGP478kZp+NRnw5QDi0+Lzvad2ldpM6j2J+zrcV+CPhs0WM0sOLeH9re+z9tTaAuMI8w/junrXEX85nk1nNlk3Y8jhanKlXUg7Huj4AHe3vRtfD9+ivEze+fMdHv/tcQDuaXsPc4fOxd3VvUhjiH2cSzpHy1ktSUhPALIXFGJAlpHF4CaD+fb2b/WPDJFSpGS2AEpmRZxLSkYK7T9qz7GLxxjdbjT9GvRj7JKxuToRQPZs6W0tbmPGwBnU8K2R75hRyVG89+d7fLnvSyITIvO9zsPVg551enJt3WvZdX4XayPXkpyRbHONu4s7XWp34aHOD3Fbi9vwdPMs8PWYLWYiEyI5cuEIRy4c4bHljzGg0QAOxx3mVMIpAB7v+jhvDXxL9ZkOZrFYuG7+dTbbC7u7uFsXiiU+nUgVzyqOCk+kQlMyWwAlsyLO5dFfH+X9be9T1asqZrM5z7ZXbYLb8M4N79Cnfp88V5wbhsHvJ37n7c1vs+bUmlwdDa5Uy68Ww1sOp1WNVnx38Ds2RG7ItdGBt5s319a9lke7PMrgJoNxdXHN9bzY1FhrwnrkwhEOXzjMkkNL8HD1yLUxQw5XkytT+kzh2V7PauV8OfLq+ld5/vfnrd+7mFywGBa61enGslHLqOpV1XHBiVRQSmYLoGRWpPyzWCysi1zH1PVTWXF8RZ7XuLm48VTPp3iu13N5/rg3MS2R2dtnM3f3XI5eOJrnTC5kz7R1rdOVe9vfi8lkYs7OOWw9tzVXwlnFowrXN7iex7s9Tu96vTGZTCRnJHP0wlFrspqTuF7ZiD8vnq6eNA5sTNPqTa1fzao3o3lQc6r7VC/kuyRlafu57fSc1zPX56J9aHtW3L2iwJ8EiEjRKZktgCOSWdMUE8bkSvU2i1yVxWLhp0M/MW/3PHac30FcahwZlrxnLP+pmlc17mp9Fz3r9qRfg34E+wUD2a273tr0FkuPLiUxIzHf+4N9ghnecjj3d7ifbee28cmOT9gdvTtX94NA70AGNBzAHa3uwM3F7e+Z1ovZ/38u6Vy+zzBhol7VetnJauD/J6xBzWhavSlh/mG5ZnOl/EvPTKflBy05Hn8817kz/zlDbf/aDohKpGJSMlsAzcyKlJ2MrAy+3vc1X+z5gr3Re7mUfilXwlgW3Fzc6BDagQc7PcjQpkP5bM9nzN8znwOxB7AYtpsdVPGoQr2q9dgXs48mgU04fuk4ZsOc79g1fGrkmmFtWr0pjQIb4eXmVdovTRxg/I/j+XT3pzbHGlZryOrRq7WphYidKJktgJJZEfu6nHGZObvmsGj/Ig7GHiQxPbHAfqxX42pyxWyY8XHzITXLtra1Q2gHfNx92BO1p8AtY6/kbnKnmnc1YlJjqOJeJc/7TJjyLUMA8HH3+TthDfx7hrVJYBPr7l5Sufxw8AduW3ybzT+GavvVZvWY1TQLaubAyEQqBiWzBVAyK1J0CWkJvLflPb4/+D0RlyIK/BF+aanlV4tzyQX/WN/bzRs3FzdSM1OLnFCbMFGzSk3aBLehZY2W1hnWptWbUqtKLS3IklxikmNoPqt5rhZte/61h7YhbR0UlUjFoGS2AEpmRfJ2Pul8dr3psaWcjj9NalZqgbOV5YGvuy+tarSiQbUGXLp8if2x+zmbdLbE47q5uJFlyeKa0GtoHtScjjU70rt+bzqEdsDFRe2yxFbf+X1tehR7uXnxx9g/6FK7i+OCEnFySmYLoGRWKrOjF47yxsY3WH1iNeeTz5OelV7uE9Z/8nT1xGwxF2rm1YSJmn41GdxkMPd3uJ8WNVpQxbMKMckxrDm5hk2nN7EvZh/H448TkxJTYMuuK4X5h9GgagNah7Sme+3uXN/gemr5F7xFrVRs0zdN538r/2f93sXkwu+jf6d3/d4OjErEeTldMjtr1iymT59OVFQU7dq147333qNLl/z/Rbt48WJeeOEFTp48SZMmTZg2bRqDBw8u1LOUzEpFt+3MNqZtnMafZ/4kNjW20B0CnE3OhgL/XMCVs4nBI10eYUSrEUXaeMBisbAvdh9rTqxh27ltHIo7xOmE01xKu2RtlF+Qql5VqelXk4NxB5l83WR61etFz7o9tRCskvgr+i86fdLJpn3Xl7d8yai2oxwYlYhzcqpkdtGiRYwePZrZs2fTtWtXZs6cyeLFizl8+DDBwcG5rt+0aRPXXXcdU6dO5cYbb2TBggVMmzaNnTt30rp166s+T8msOKuk9CTiL8cTmxLLFzu+4KtDXxF3Oc7pZlYLy8Xkgq+7L4HegTSt3hQfdx+OXDjC8UvHSTen21zr4+5Dz7CePN7tcQY1HlQq9a3JGcmsO7WOjac3svv8bo5dOkZUchRJ6UlX/T3wcPUg0DuQqOQoxrYfS5daXehTvw/NqjdT2UIFk2nOpOWslhy7dMx67N9d/83MG2Y6LigRJ+RUyWzXrl3p3Lkz77//PpA9MxIWFsajjz7K008/nev6ESNGkJKSwi+//GI91q1bN9q3b8/s2bOv+ryyTmZNU7RoRKS4XHCxJor/TBjdXNwI8g6icWBjh280kJqRSmxqLJcuXyIpI4nUrFQysjKwYLn6zYCPmw++Hr74e/gztPlQZgycUcoRS2m776f7mLtrrvX7MP8wQv1CHRhR2QrzD6NRYCNHh1EmfNx9KtWCvwGNBuDn4VfqzylKvuZW6tEUICMjgx07dvDMM89Yj7m4uBAeHs7mzZvzvGfz5s1MnDjR5tjAgQNZsmRJntenp6eTnv73LE5iYtmvwhaR4ikoGcyyZBGVEkVUSlQZRlQ6UrNSSc3KTohnbZulZLYCmDN0Djc2uZFbvrkFgNOJpzmdeNrBUZWdq+2CJ87r2KPH8Ass/WS2KByazMbFxWE2mwkJCbE5HhISwqFDh/K8JyoqKs/ro6Ly/gtt6tSpTJkyxT4Bi5QzJrJn/itqqcGVXEwu1tdbERgYZP/PsPn9q+6t7WwrimEthhH7ZCyN3m1EYnrlmkhxd3GvNLXi3u7eNAls4ugwykx5/H11aDJbFp555hmbmdzExETCwsLK7PnaxlZEpPIK8gki4ekER4chUqE5NJkNCgrC1dWV6Ohom+PR0dGEhuZdWxQaGlqk6z09PfH09LRPwCIiIiJSrjh0Ga2HhwcdO3Zk9erV1mMWi4XVq1fTvXv3PO/p3r27zfUAK1euzPd6EREREam4HF5mMHHiRMaMGUOnTp3o0qULM2fOJCUlhXHjxgEwevRoateuzdSpUwH497//Te/evXnrrbcYMmQICxcuZPv27Xz88ceOfBkiIiIi4gAOT2ZHjBhBbGwskyZNIioqivbt27N8+XLrIq/IyEibPow9evRgwYIFPP/88zz77LM0adKEJUuWFKrHrIiIiIhULA7vM1vWtGmCiIiISPlWlHxNW8+IiIiIiNNSMisiIiIiTkvJrIiIiIg4LSWzIiIiIuK0lMyKiIiIiNNSMisiIiIiTkvJrIiIiIg4LSWzIiIiIuK0lMyKiIiIiNNSMisiIiIiTkvJrIiIiIg4LSWzIiIiIuK0lMyKiIiIiNNyc3QAZc0wDAASExMdHImIiIiI5CUnT8vJ2wpS6ZLZpKQkAMLCwhwciYiIiIgUJCkpiYCAgAKvMRmFSXkrEIvFwrlz56hSpQomk6nUn5eYmEhYWBinT5/G39+/1J/nzPReFY7ep8LR+1Q4ep8KR+9T4eh9Kjy9VwUzDIOkpCRq1aqFi0vBVbGVbmbWxcWFOnXqlPlz/f399WEtJL1XhaP3qXD0PhWO3qfC0ftUOHqfCk/vVf6uNiObQwvARERERMRpKZkVEREREaelZLaUeXp6MnnyZDw9PR0dSrmn96pw9D4Vjt6nwtH7VDh6nwpH71Ph6b2yn0q3AExEREREKg7NzIqIiIiI01IyKyIiIiJOS8msiIiIiDgtJbMiIiIi4rSUzJayWbNmUb9+fby8vOjatStbt251dEgONXXqVDp37kyVKlUIDg5m2LBhHD582OaaPn36YDKZbL7+9a9/OShix3jxxRdzvQfNmze3nk9LS+ORRx6hevXq+Pn5MXz4cKKjox0YsWPUr18/1/tkMpl45JFHgMr7WVq3bh033XQTtWrVwmQysWTJEpvzhmEwadIkatasibe3N+Hh4Rw9etTmmosXLzJq1Cj8/f2pWrUq9957L8nJyWX4KspGQe9VZmYmTz31FG3atMHX15datWoxevRozp07ZzNGXp/D119/vYxfSem62mdq7Nixud6DG264weaayvCZutr7lNefVyaTienTp1uvqQyfJ3tTMluKFi1axMSJE5k8eTI7d+6kXbt2DBw4kJiYGEeH5jB//PEHjzzyCH/++ScrV64kMzOTAQMGkJKSYnPd/fffz/nz561fb7zxhoMidpxWrVrZvAcbNmywnvvPf/7Dzz//zOLFi/njjz84d+4ct956qwOjdYxt27bZvEcrV64E4Pbbb7deUxk/SykpKbRr145Zs2blef6NN97g3XffZfbs2WzZsgVfX18GDhxIWlqa9ZpRo0axf/9+Vq5cyS+//MK6det44IEHyuollJmC3qvU1FR27tzJCy+8wM6dO/n+++85fPgwQ4cOzXXtSy+9ZPM5e/TRR8si/DJztc8UwA033GDzHnz99dc25yvDZ+pq79OV78/58+eZN28eJpOJ4cOH21xX0T9PdmdIqenSpYvxyCOPWL83m81GrVq1jKlTpzowqvIlJibGAIw//vjDeqx3797Gv//9b8cFVQ5MnjzZaNeuXZ7n4uPjDXd3d2Px4sXWYwcPHjQAY/PmzWUUYfn073//22jUqJFhsVgMw9BnyTAMAzB++OEH6/cWi8UIDQ01pk+fbj0WHx9veHp6Gl9//bVhGIZx4MABAzC2bdtmvWbZsmWGyWQyzp49W2axl7V/vld52bp1qwEYp06dsh6rV6+e8fbbb5ducOVIXu/TmDFjjJtvvjnfeyrjZ6own6ebb77ZuP76622OVbbPkz1oZraUZGRksGPHDsLDw63HXFxcCA8PZ/PmzQ6MrHxJSEgAIDAw0Ob4V199RVBQEK1bt+aZZ54hNTXVEeE51NGjR6lVqxYNGzZk1KhRREZGArBjxw4yMzNtPlvNmzenbt26lfqzlZGRwZdffsn48eMxmUzW4/os2Tpx4gRRUVE2n5+AgAC6du1q/fxs3ryZqlWr0qlTJ+s14eHhuLi4sGXLljKPuTxJSEjAZDJRtWpVm+Ovv/461atX55prrmH69OlkZWU5JkAHWrt2LcHBwTRr1oyHHnqICxcuWM/pM5VbdHQ0S5cu5d577811Tp+nonFzdAAVVVxcHGazmZCQEJvjISEhHDp0yEFRlS8Wi4XHH3+cnj170rp1a+vxu+66i3r16lGrVi327t3LU089xeHDh/n+++8dGG3Z6tq1K/Pnz6dZs2acP3+eKVOm0KtXL/bt20dUVBQeHh65/jINCQkhKirKMQGXA0uWLCE+Pp6xY8daj+mzlFvOZySvP5tyzkVFRREcHGxz3s3NjcDAwEr9GUtLS+Opp57izjvvxN/f33r8scceo0OHDgQGBrJp0yaeeeYZzp8/z4wZMxwYbdm64YYbuPXWW2nQoAERERE8++yzDBo0iM2bN+Pq6qrPVB4+++wzqlSpkqtETJ+nolMyKw7zyCOPsG/fPptaUMCmhqpNmzbUrFmTfv36ERERQaNGjco6TIcYNGiQ9ddt27ala9eu1KtXj2+++QZvb28HRlZ+zZ07l0GDBlGrVi3rMX2WxF4yMzO54447MAyDDz/80ObcxIkTrb9u27YtHh4ePPjgg0ydOrXSbFU6cuRI66/btGlD27ZtadSoEWvXrqVfv34OjKz8mjdvHqNGjcLLy8vmuD5PRacyg1ISFBSEq6trrhXm0dHRhIaGOiiq8mPChAn88ssvrFmzhjp16hR4bdeuXQE4duxYWYRWLlWtWpWmTZty7NgxQkNDycjIID4+3uaayvzZOnXqFKtWreK+++4r8Dp9lrB+Rgr6syk0NDTXQtWsrCwuXrxYKT9jOYnsqVOnWLlypc2sbF66du1KVlYWJ0+eLJsAy6GGDRsSFBRk/W9Nnylb69ev5/Dhw1f9Mwv0eSoMJbOlxMPDg44dO7J69WrrMYvFwurVq+nevbsDI3MswzCYMGECP/zwA7///jsNGjS46j27d+8GoGbNmqUcXfmVnJxMREQENWvWpGPHjri7u9t8tg4fPkxkZGSl/Wx9+umnBAcHM2TIkAKv02cJGjRoQGhoqM3nJzExkS1btlg/P927dyc+/v/au5uQqNY4juP/sXxJpkZTmaywF5yohckYFLaQqBhq0duiZBZWLowsBKEigjJoIbUpoiAieoMWtWjhqgRxXGSvY04SgeUwEIElGYqlFejvLi53QOzaJbRzT/P9wIHxmTnH//PwnONvxmdmBqyjoyP5mNbWVhsbG0s+IUgV/wTZN2/eWEtLi+Xl5f10n1gsZmlpaRP+rZ5K3r17Z/39/clzjTk13tWrV23VqlVWWlr608cyn/4Dp9+B9ie7ffu2MjMzdePGDb169Ur79u1TTk6O3r9/73RpjqmtrZXP51NbW5t6e3uT2/DwsCSpp6dHp06dUjQaVSKRUFNTk5YuXaqKigqHK/+9Dh06pLa2NiUSCbW3t2vjxo3Kz89XX1+fJGn//v0qKipSa2urotGoysvLVV5e7nDVzhgdHVVRUZGOHj06rj2V59LQ0JA6OzvV2dkpM9PZs2fV2dmZfAf+6dOnlZOTo6amJnV1dWnbtm1asmSJRkZGksfYtGmTgsGgnjx5ogcPHigQCCgcDjvVpWkz2Vh9//5dW7du1cKFCxWLxcZds759+yZJevjwoc6dO6dYLKZ4PK5bt26poKBAu3fvdrhnU2uycRoaGtLhw4f16NEjJRIJtbS0qKysTIFAQF+/fk0eIxXm1M/OPUkaHBxUdna2Ll26NGH/VJlPU40wO80uXLigoqIiZWRkaPXq1Xr8+LHTJTnKzH64Xb9+XZL09u1bVVRUaO7cucrMzFRxcbGOHDmiwcFBZwv/zSorK1VYWKiMjAwtWLBAlZWV6unpSd4/MjKiAwcOKDc3V9nZ2dqxY4d6e3sdrNg5zc3NMjN1d3ePa0/luRSJRH54nu3Zs0fS3x/PdeLECfn9fmVmZmrDhg0Txq+/v1/hcFher1dz5sxRdXW1hoaGHOjN9JpsrBKJxL9esyKRiCSpo6NDa9askc/nU1ZWllasWKHGxsZxIe5PMNk4DQ8PKxQKqaCgQOnp6Vq0aJFqamomvHCTCnPqZ+eeJF2+fFmzZs3SwMDAhP1TZT5NNY8kTetLvwAAAMA0Yc0sAAAAXIswCwAAANcizAIAAMC1CLMAAABwLcIsAAAAXIswCwAAANcizAIAAMC1CLMAAABwLcIsALjA3r17bfv27U6XAQD/OzOdLgAAUp3H45n0/pMnT9r58+eNL2wEgIkIswDgsN7e3uTtO3fuWENDg3V3dyfbvF6veb1eJ0oDgP89lhkAgMPmzZuX3Hw+n3k8nnFtXq93wjKDdevWWV1dndXX11tubq75/X67cuWKffnyxaqrq2327NlWXFxs9+7dG/e7Xr58aZs3bzav12t+v9+qqqrs48ePv7nHADB1CLMA4FI3b960/Px8e/r0qdXV1Vltba3t3LnT1q5da8+fP7dQKGRVVVU2PDxsZmYDAwO2fv16CwaDFo1G7f79+/bhwwfbtWuXwz0BgF9HmAUAlyotLbXjx49bIBCwY8eOWVZWluXn51tNTY0FAgFraGiw/v5+6+rqMjOzixcvWjAYtMbGRlu+fLkFg0G7du2aRSIRe/36tcO9AYBfw5pZAHCplStXJm/PmDHD8vLyrKSkJNnm9/vNzKyvr8/MzF68eGGRSOSH62/j8bgtW7ZsmisGgKlHmAUAl0pPTx/3s8fjGdf2z6ckjI2NmZnZ58+fbcuWLXbmzJkJxyosLJzGSgFg+hBmASBFlJWV2d27d23x4sU2cyaXfwB/BtbMAkCKOHjwoH369MnC4bA9e/bM4vG4NTc3W3V1tY2OjjpdHgD8EsIsAKSI+fPnW3t7u42OjlooFLKSkhKrr6+3nJwcS0vjzwEAd/KIr5QBAACAS/FUHAAAAK5FmAUAAIBrEWYBAADgWoRZAAAAuBZhFgAAAK5FmAUAAIBrEWYBAADgWoRZAAAAuBZhFgAAAK5FmAUAAIBrEWYBAADgWn8BNzcpdEnNi/4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAFr0AABcaCAYAAAAG9PGuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdd5SU9fk//GuXtrAUQZo0RVEEVAREigVQBKOCkSj4tURRUaMmYhK7JsRYo7HEEnshliCxYEEjKKggBhUUUTrSpCoddqn7/JEn/lKUmd0pu7Cv1zmcHOF9f65rlpl75+Qs78kpKioqCgAAAAAAAAAAAAAAAAAAAAAAAAAAAABIQW5pLwAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzk/pNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAApU3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMqUXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQMqXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKRM6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKVN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDKlF4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDKl1wAAAAAAAAAAAAAAAAAAAAAAAAAAAACkTOk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAClTeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAypReAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJAypdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAApEzpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAApU3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMqUXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQMqXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKRM6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKVN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDKlF4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDKl1wAAAAAAAAAAAAAAAAAAAAAAAAAAAACkTOk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAClTeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAypReAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJAypdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAApEzpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAApU3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMqUXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQMqXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKRM6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKVN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDKlF4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDKl1wAAAAAAAAAAAAAAAAAAAAAAAAAAAACkTOk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAClTeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAypReAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJAypdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAApEzpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAApU3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMqUXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQMqXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKRM6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKVN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDKlF4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDKl1wAAAAAAAAAAAAAAAAAAAAAAAAAAAACkTOk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAClTeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAypReAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJAypdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAApEzpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAApU3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMqUXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQMqXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKRM6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKVN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDKlF4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDKl1wAAAAAAAAAAAAAAAAAAAAAAAAAAAACkTOk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAClTeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAypReAwAAAAAAAAAAAABJ6d69e+Tk5Ozw19ixY9Mya+zYsQlnde/ePS2zyqInn3wy4eM/++yzS3tNgGJxbwMAAAAAAAAAAIBdn9JrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFKm9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAlFUs7QUAAAAAAAAAAAAAEpk3b140b968tNdIqFu3bjF27NjSXgOAncRee+0V8+fPT/u5OTk5UaVKlahSpUpUrVo16tevH/Xr148mTZpEy5Yto1WrVtGxY8do1KhR2mcDAAAAAAAAAAAAUL4pvQYAAAAAAAAAAAAAgF1IUVFRFBYWRmFhYaxZsyaWLl36vbnmzZvH0UcfHaecckocddRRUbGif2IAAAAAAAAAAAAAQGpyS3sBAAAAAAAAAAAAAAAg+7766qt49NFHo3fv3tG4ceMYMmRILF++vLTXAgAAAAAAAAAAAGAnpvQaAAAAAAAAAAAAAADKueXLl8fvfve72HvvvePmm2+OTZs2lfZKAAAAAAAAAAAAAOyElF4DAAAAAAAAAAAAAAAREbFhw4a49tpro0OHDvHll1+W9joAAAAAAAAAAAAA7GSUXgMAAAAAAAAAAAAAAP/hiy++iI4dO8bIkSNLexUAAAAAAAAAAAAAdiJKrwEAAAAAAAAAAAAAgP+xcePGOOmkk+L1118v7VUAAAAAAAAAAAAA2ElULO0FAAAAAAAAAAAAAACAH3bWWWcVK79t27ZYvXp1rF69OlatWhUzZ86MLVu2lGj25s2b4//+7//iww8/jNatW5foDAAAAAAAAAAAAADKD6XXAAAAAAAAAAAAwC6jW7duMXbs2NJeA3ZZXl9QOp588smUri8sLIxJkybF+PHj4/HHH4/p06cX6/p169bFKaecEp9++mlUqlQppV0o384+++w4++yzS3sNAAAAAAAAAAAAIINyS3sBAAAAAAAAAAAAAAAgc/Ly8qJr165x+eWXx7Rp0+Ktt96KDh06FOuML7/8Mv74xz9maEMAAAAAAAAAAAAAdhVKrwEAAAAAAAAAAAAAoBw55phjYsKECfHrX/86cnJykr7u1ltvjXXr1mVwMwAAAAAAAAAAAAB2dkqvAQAAAAAAAAAAAACgnKlUqVLcfvvtcdtttyV9zZo1a+KRRx7J4FYAAAAAAAAAAAAA7OyUXgMAAAAAAAAAAAAAQDl1+eWXxznnnJN0fujQoRncBgAAAAAAAAAAAICdndJrAAAAAAAAAAAAAAAox+66666oXbt2UtnPPvss5syZk+GNAAAAAAAAAAAAANhZKb0GAAAAAAAAAAAAAIByrGbNmnHZZZclnR8zZkwGtwEAAAAAAAAAAABgZ6b0GgAAAAAAAAAAAAAAyrkLL7wwcnJyksp++OGHGd4GAAAAAAAAAAAAgJ1VxdJeAAAAAAAAAAAAAIDimz9/fsyaNSu++uqrWLRoUWzYsCE2bNgQW7ZsiWrVqkV+fn40aNAgmjdvHi1atIhWrVpFbm5uaa9dLOvXr4/p06fHzJkz45tvvol169bF2rVrY+3atbFly5aoWrVq5OXlRZ06daJJkybRpEmTOOCAA6JevXqlvXqxbd26NebOnRszZsyIhQsXxvLly2P16tWxadOm2Lx5c1SuXDmqVav23a8aNWpE06ZNY88994w999wzateuXdoPAcrFfWlXVq9evTjggAPi888/T5hNJpMt33zzTcyYMSPmzp0b8+fPj7Vr18bGjRujoKAg8vLyIj8/P+rUqRPNmzeP5s2bx0EHHRR5eXmlvTY7gQ0bNsQXX3wRc+fOja+++ipWr14dGzZs+I/nVq1ataJ58+ax9957R+vWraNmzZqlvTZJWrt2bcyYMSNmz54dS5YsieXLl8eGDRti06ZNsX379qhatWpUq1btu/+tW7fud++7mjZtGlWqVCnthwAAAAAAAAAAAFBmKb0GAAAAAAAAAAAA2AksX748XnjhhRg9enSMHz8+li1bVqzra9WqFV26dIkTTjghTj755GjQoEGGNi2ZjRs3xvjx42Ps2LExceLEmDZtWnz99dclOqtJkybRtWvX+NGPfhTHHXdc1K9fP83bpsfkyZPj5ZdfjrFjx8ZHH30UBQUFJT6rRo0accABB0SXLl2ic+fO0blz52jatGkat935rV69Ov7+97/HpEmT4osvvojZs2fHmjVrYu3atbF58+aoXr161KxZM/bee+9o1apVdOrUKXr37h0NGzYs7dXLrF39vlQede/ePalC6/nz52dhm+9XUFAQr7/+eowcOTLGjx8fM2fOLNb1lStXjg4dOkSvXr1iwIAB0apVqwxtmj7Tp0+PUaNGxaRJk2LGjBmxYMGCWLduXWzYsCGqVq0aNWrUiNq1a0fLli2jTZs20bFjx+jZs2dUq1attFff6UycODGGDx8e7777bkyePDm2bt2a9LW5ublx0EEHRbdu3eLkk0+Oww47LHJycjK4bXYsX7483njjjZg8eXJMnTo1vvrqq1izZk2sW7cuIiKqVasWderUib322iv222+/6Nq1a3Tr1i2aNWtWypv/p4KCgvj73/8er732WowfPz5mzJgRRUVFJTorJycnGjVqFIcccsh377s6duwY+fn5ad4aAAAAAAAAAABg55RTVNKf0AIAAAAAAAAAAADIknnz5kXz5s0T5rp16xZjx47N/EJZNHLkyLj77rvjnXfeiW3btqXlzAoVKsQJJ5wQV199dXTq1CktZ5bEZ599Fi+88EK88847MXHixNiyZUvaZ1SsWDFOPPHEuOSSS6J79+5pP7+4CgoK4rHHHov7778/pk+fntFZLVq0iP79+8eAAQPioIMOSsuZ3bt3j3fffXeHmTFjxqTlaz127Njo0aPHDjOJXvPbtm2LF198MR588MF47733ilVeGvHPUssuXbrERRddFKecckpUrly5WNen4sknn4yBAwfuMHPWWWfFk08+mZ2F/s2ufF/Ktr322iupAuls/dj/PffcE4MHD06Yy8nJiU2bNkWlSpUyv9T/7/PPP4877rgjXnzxxVi/fn3azu3QoUNceeWV8ZOf/CRyc3PTdm6qli1bFk888UQ8+uijMWfOnGJfX7Vq1TjmmGPikksuiWOOOWaH2YsuuiiWL1++w8yf//znqFevXrH3+G9l8d5WUFAQjzzySNx7770xe/bstJ3brFmzuOiii+Kiiy6KGjVqpO3cRNLxvXrLli3x3HPPxcMPPxwTJkyI7du3F3uPzp07x7nnnhs//elPs/r987/NnDkz/vSnP8XQoUO/K+rOhIoVK0b37t1jwIABcdJJJ8Xuu++esVkAAAAAAAAAAABlXdn5iUwAAAAAAAAAAAAAvvP666/HwQcfHMcff3yMGjUqbcWyEf8sAh4xYkR07tw5+vTpE/PmzUvb2YnMmDEjfve730WrVq3i4IMPjt///vcxfvz4jBReR0Rs3bo1XnjhhejRo0ccc8wx8emnn2ZkTjKefPLJaNGiRfz85z/PeOF1RMTs2bPj5ptvjrZt28b+++8fGzduzPjMsuRvf/tbtGzZMvr37x/vvPNOsQuvI/5ZNPzBBx/EGWecEfvuu28899xzGdh057Gr3pf4f5ItaS0qKooNGzZkeJt/mjZtWvTp0yfatm0bQ4cOTWvhdUTEJ598Ev37948DDzwwYVFwNqxbty6uu+66aN68eVx99dUlKryO+GeR8yuvvBK9evWK9u3bx5gxY34wO3LkyHjhhRd2+Ctbf9/ZVFRUFA899FA0b948Lr300rQWXkdELFiwIK666qrYa6+94s4770zrPTOTnnjiidhnn33irLPOivHjx5eo8Doi4sMPP4xBgwbFPvvsE88//3yat0xs1apVceGFF0abNm3i/vvvz2jhdcQ/33OOHj06Bg0aFA0bNoyrr746o/MAAAAAAAAAAADKMqXXAAAAAAAAAAAAAGXI119/HT/5yU/ihBNOiM8++yzj81577bVo3bp13H///Rmf9ac//Sn233//GDJkSFZKn//b6NGjo2PHjnHzzTeXuMCxJFauXBnHH398DBw4MBYvXpy1uf9uxowZsXnz5lKZnW0rVqyIn/zkJ3HKKaeUuCz2+yxYsCBOO+20OOaYY2Lp0qVpO3dnsCvfl/hPyZZeR0TGi/QLCwvjmmuuibZt28Zrr70WRUVFGZ335ZdfRvfu3eOCCy6IwsLCjM76IWPGjInWrVvHTTfdFAUFBWk7d/LkyXH00UfHz372s12yvLokZs+eHUceeWRceOGFsWzZsozOWrlyZfzqV7+KTp06xdSpUzM6KxXz5s2Lo48+Os4555xYuHBh2s5dtGhRDBgwIE455ZSsPf/eeeedOOCAA+Khhx4q0YdepGrr1q0xbdq0rM8FAAAAAAAAAAAoK5ReAwAAAAAAAAAAAJQR77zzTrRr1y5efPHFrM4tKCiISy65JM4666zYtGlTxuasXbs2Y2cna+vWrXHttdfGiSeemNZC0R8yb9686NKlS4wcOTLjs/hniWmXLl0y+hoaPXp0tG3bNt5///2MzShLdvX7Ev+pOMXSubmZ++cI8+bNi8MOOyxuueWW2LJlS8bmfJ+HH344Dj/88Fi0aFFW5954443Rs2fPjM0tKiqKBx98MLp37x7Lly/PyIydxVtvvRUdO3aMcePGZXXuJ598Ep07d876/TQZ7733XhxyyCHxzjvvZGzG3/72tzjssMPim2++ydiMiIihQ4fGscceW2ofNAIAAAAAAAAAAIDSawAAAAAAAAAAAIAy4b777otevXrFihUrSm2HoUOHxo9//OMoLCwstR2y5bXXXovevXtntPh6xYoV0atXr5g5c2bGZvD/fPnll9G1a9eYM2dOxmctX748evfuvcuXmbsvlT/ffvtt0tnddtstIzuMGzcuDjnkkJg0aVJGzk/GJ598EkcccUTMmzcv47O2b98eF110UVx//fWxffv2jM/7+OOPo0uXLuW2EPipp56K4447LlavXl0q8zds2BAnn3xy3HPPPaUy//sMHz48jjnmmGK9/kvqs88+i969e2fsg1BeeOGFGDhwYNbL8gEAAAAAAAAAAPhPSq8BAAAAAAAAAAAAStkdd9wRP//5z2Pbtm2lvUq8+eabcdJJJ8XWrVtLe5WMe//99+Oss86KoqKitJ9dVFQUp59+esyaNSvtZ/O/li9fHscff3xWy5kLCgrixz/+cbz99ttZm5lN7kvlU7Klt1WqVIm8vLy0z3/33Xfj2GOPzUr5biLz5s2Lbt26Zbwc+rLLLos///nPGZ3x3+bOnRt9+vSJjRs3ZnVuaXv22WfjnHPOKfX7WlFRUQwePDgeeOCBUt0jIuLvf/97nH766bF58+aszZw0aVKcf/75aT935syZcdZZZ2WlPB4AAAAAAAAAAIAdq1jaCwAAAAAAAAAAAACUZ/fee29cfvnlxbomJycnDjnkkDj66KOjQ4cO0aJFi2jSpElUr149KleuHBs3bozly5fHrFmz4sMPP4w33ngj/vGPfyR9/ptvvhm/+tWv4p577inuw0lZbm5utG7dOg499NDYf//9Y//9949GjRpFgwYNombNmpGXlxc5OTmxevXqWL16daxatSqmTp0aEydOjIkTJ8bkyZOLNW/48OHRuXPn+OUvf5nWx/H444/HqFGjinVN48aNo1evXtGuXbto0aJF7LPPPlGzZs3Iz8+PatWqRUFBQaxduzbWrFkTa9asiYULF8aUKVPi888/jylTpsS8efMyUuBd1m3bti369esX8+bNS5itUKFC7LPPPt99bXNzc2PdunXx1VdfxaxZs4pd+rlly5b4yU9+EuPGjYsDDjighI+g7HFfKr9mzJiRVK5BgwZpn/2Pf/wjjjvuuGIXMe+9997Ru3fv6NixY7Ru3TqaNm0atWrViqpVq0ZhYWGsXr065s6dGx9//HGMHj06Ro0alfRrfcGCBXHSSSfFe++9F1WqVCnJw9qhO++8M/70pz+V6NqaNWvGfvvtF40bN47q1avHli1bYs2aNTF37tyYO3duwmLnSZMmxcCBA2PYsGElmr+z+dcHXRS3ELlly5bRp0+fOPLII6NVq1ZRv379yM/Pj4KCgvjmm29i+vTpMW7cuHj11VdjypQpxTr7kksuiaZNm0afPn2KdV26TJ48Ofr16xdbtmxJmN19991jn332iUaNGn33+JcvXx7Lli2L2bNnF/v9x7Bhw+KEE06IM844o6Tr/4/zzjsvNmzYkHQ+Nzc32rdvHz179oz9998/WrRoEU2bNo1q1apFfn5+VK5c+bv3XWvXro1Vq1bFjBkzvnvv9fnnn8eqVavStj8AAAAAAAAAAMCuROk1AAAAAAAAAAAAQCkZNWpUXHbZZUnn69SpE5dcckkMGjQomjRp8oO56tWrR/Xq1b8rAv3tb38bM2bMiFtuuSX+8pe/JFX4+Kc//Sm6du0aAwYMSHq/kmrUqFH06dMnjjvuuOjRo0fUqFEj4TX16tWLevXqRUTEoYceGuecc05E/LOw9aGHHoqnnnoqVq5cmdT866+/Pk488cTYZ599Sv4g/s3mzZtjyJAhSWVzc3OjX79+ccUVV0THjh13mP3X32ujRo0iIqJz585xyimnfPfny5Yti9deey1effXVGDVqVLGLY3dWd911V4wfP/4H/zw3NzdOOOGEOPvss6Nnz54/+PwqLCyMsWPHxtNPPx3Dhw9PuhR3zZo10a9fv5g8eXLk5+eX6DGUJe5L5duYMWOSyrVr1y6tc7/++us46aSTkr5vVapUKc4888y4+OKLo3379j+Yq1atWlSrVi0aNWoUhx9+eAwePDi+/fbbuPfee+POO++MdevWJZw1ceLEuOyyy+KBBx5I+vEkY8KECXHllVcW65rGjRvHOeecEz/+8Y+jXbt2kZOT8725devWxZgxY+Lpp5+OESNG/OD97Pnnn/+P7yO7qiVLlkT//v1j69atSV9z2GGHxe9///vo0aPH9/75v+5pe+21Vxx77LFx4403xocffhjXX399jB49OqkZRUVF8dOf/jQ+/vjjtL0HSda6devi/PPP3+Fr7rDDDovTTjstevXqFS1atPjB3JIlS+L111+Pxx9/PCZMmJD0DldeeWWcdNJJafneOXLkyHj//feTyu6+++7xi1/8In72s599917yh9SuXTtq16793X9369btP/78k08+iVdffTVeffXVmDRpUvEXBwAAAAAAAAAA2EXllvYCAAAAAAAAAAAAAOXRokWLYsCAAbFt27aE2dzc3Bg8eHDMnTs3fve73+2wWPaHtGzZMp588sn44IMPki5W/PnPfx7ffPNNsWclo1KlSnHaaafFW2+9FQsXLowHH3ww+vbtm1Th9Y60bNky7rzzzpg1a1acdtppSV2zcePGuOKKK1Ka++9efvnlWLRoUcLcHnvsEe+9914MHz48YeF1Mho0aBDnnntuvPzyy/Htt9/GsGHDonPnzimfW5YtWLAgfvOb3/zgnx999NExderUGDFiRJx00kk7fH7l5eXFscceG08//XTMnj27WEWws2bNiksvvbRYu5dF5f2+VN4tXrw4ZsyYkVS2Q4cOaZu7bdu2OPnkk2PJkiVJ5Xv37h3Tpk2Lxx57bIeF1z9k9913jyFDhsS0adOid+/eSV3z4IMPxtixY4s964esW7cuTjvttKRLmGvWrBl33XVXzJ07N2644YZo3779DxZeR0TUqFEj+vbtG88//3zMmDFjh/ezSy65JNavX1/sx7AzGTRoUCxdujSpbF5eXjz00EMxbty4Hyy8/iGdO3eOUaNGxdNPPx3Vq1dP6prVq1fHmWeeGUVFRcWalapf//rXMWvWrO/9s8MPPzw+/PDDGDduXFx00UU7LLyO+Of7mfPOOy8++OCDePrpp6NBgwZJ7bB48eK4//77i73797nvvvuSyvXp0yfmzJkTv/nNbxIWXiejQ4cOMWTIkPjkk09i4cKF8dvf/jbq16+f8rkAAAAAAAAAAAA7O6XXAAAAAAAAAAAAAKXg/PPPj1WrViXM7b777jF69Oi46667olatWinP7dSpU3z88cdx5JFHJsyuWLEirrrqqpRn/rvq1avH1VdfHfPnz49nnnkmjjnmmMjNTf+PtNapUyeeeeaZeOGFF6Jq1aoJ8y+99FJMnTo1LbOfe+65hJm6devGP/7xjzjssMPSMvO/5eXlRf/+/WPChAkxYcKE6N+/f0a+zqXtq6++ioKCgv/5/dzc3Lj11ltj1KhR0apVq2Kf27Rp03j++efj8ccfjypVqiR1zWOPPZbWUtzSUF7vS/zTvffem3T2iCOOSNvcO+64Iz788MOEuQoVKsRdd90Vb775ZtIl6TvSuHHjGDlyZFKF9UVFRXHhhRcmVQifjBtvvDHmzZuXVPbggw+OSZMmxeDBg6Ny5crFnrXXXnvF888/H3/5y18iLy/vf/582bJl8e233xb73J3FCy+8EK+//npS2d133z3ef//9OP/881Oaefrpp8eECROSLn+eMGFCPPLIIynNLK6ZM2f+z+9VqlQp7r777njvvfeiU6dOJTr39NNPj3HjxkXjxo2Tyt93331Jl7//kJUrV8bf//73hLlTTz01RowYkZbvW9+nSZMmMWTIkFiwYEE89thj0aZNm4zMAQAAAAAAAAAA2Bnsej+5DgAAAAAAAAAAAFDGPfPMM/HGG28kzNWtWzfGjx8fPXr0SOv83XbbLd5444045JBDEmafeuqpmD17dlrmHnfccfHVV1/FzTffHHvssUdazkykX79+8eqrr0alSpV2mCsqKop77rkn5Xnbt2+Pd999N2Hu4YcfjqZNm6Y8LxmdO3eOYcOGRc2aNbMyr7RVqFAhnnzyybjyyisjJycnpbMGDhwYr7zyyvcWxX6fyy67LLZv357SzNJSXu9L/NPKlSvj/vvvTyrbtGnTpArKkzF79uwYMmRIwlxubm4899xzMXjw4LTM/fdz77777rjooosSZmfMmBF/+ctfUp45Z86cuPvuu5PKdu3aNd599920lHyfccYZ8cYbb0R+fn7KZ+0stmzZEr/61a+SytaoUSPefvvtpO5ByTjggANi7NixUbt27aTyV199daxbty4ts0uiatWq35XAp/q9s0WLFjF27NikyqUXLlwYo0ePTmnee++9l/B7b5MmTeLhhx9O+bElo0qVKnHOOefETTfdlPFZAAAAAAAAAAAAZZXSawAAAAAAAAAAAIAs2rx5c1x77bUJc3l5efHKK69Ey5YtM7JHtWrV4vnnn09YSLh169a4+eab0zKzffv2Ubdu3bScVRxHH3103H777Qlzzz//fBQUFKQ0a/78+bFq1aodZpo3bx4//vGPU5rDD/vDH/4QZ555ZtrO69WrVzzxxBNJZT/99NN47rnn0jY7W8rzfYl/lv7/7Gc/S7pw98wzz4zc3PT8U4Trr78+CgsLE+buuOOOOOWUU9Iy8/vcddddSZUd33jjjVFUVJTSrFtuuSU2b96cMLfvvvvGq6++mtYPLOjevXs8/fTTafv7K+uGDh0a8+fPTyr79NNPR9u2bdM6f//9949hw4Yl9fVeuXJlPPDAA2mdn6wKFSrESy+9FD179kzbmS1atIjf//73SWWHDx+e0qzJkycnzJx77rlRo0aNlOYAAAAAAAAAAACQvPLxk4oAAAAAAAAAAABAufDuu+9GTk5OVn+dffbZxdrxkUceSaqA8bHHHosuXbqU8CuRnObNm8ejjz6aMDds2LBYs2ZNRnfJtJ///OfRoUOHHWbWrl0bI0eOTGnOnDlzEmb69OkTOTk5Kc3h+5100knxy1/+Mu3nnnrqqXHJJZcklb3jjjvSPj/T3JfKtxtuuCGef/75pLL5+flx0UUXpWXu1KlTk5p73nnnxWWXXZaWmT+kcuXK8fzzz0f16tV3mJszZ06MHj26xHOWLFkSTz/9dMJcpUqVYtiwYVGnTp0Sz/ohP/7xj2Pw4MFpP7esKSoqittuuy2p7KBBg6Jv374Z2eOYY45J+vvHnXfemVQherrdeOON0bt377Sfe9FFF8VBBx2UMPfGG2+kNCeZ914nnnhiSjMAAAAAAAAAAAAoHqXXAAAAAAAAAAAAAFlSVFQUd955Z8Jc9+7d47TTTsvCRhEnn3xyHHLIITvMbNy4MZ577rms7JMpubm5cf311yfMpVJmGhGxatWqhJlmzZqlNIPvV6tWrXjggQcydv4tt9yS1N/dp59+GmPGjMnYHunmvlR+FRYWxsUXXxxDhgxJ+pqrr746GjdunJb5f/zjH2P79u07zNSuXTvp4uJUNW/ePC688MKEuccee6zEMx577LHYtGlTwtyvf/3raNeuXYnnJHLTTTfFXnvtlbHzy4L3338/Zs2alTBXp06duP322zO6y8033xwNGzZMmFu+fHm8+uqrGd3lv3Xo0CEuv/zyjJxdoUKFuOCCCxLmlixZklRx9Q/x3gsAAAAAAAAAAKDsUXoNAAAAAAAAAAAAkCVvv/12zJ07d4eZnJyc+OMf/5iljf7pyiuvTJh56aWXsrBJZh1//PFRt27dHWbefvvtlGYkU2aan5+f0gy+3+WXX55UqWhJVa9ePX73u98llR06dGjG9kg396Xyp6ioKEaOHBmdOnUqVlF869at41e/+lVadli7dm08//zzCXO/+c1vok6dOmmZmYzBgwdH5cqVd5h5/fXXY8uWLSU6/9lnn02YqVOnTlLP/1Tk5eXFDTfckNEZpS3Z+/AVV1wRtWrVyugu+fn5SX3wRkT2v3/84Q9/iAoVKmTs/P79+0fFihUT5iZOnFjiGd57AQAAAAAAAAAAlD1KrwEAAAAAAAAAAACy5IknnkiY6du3b7Rv3z4L2/w//fr1iyZNmuww895770VBQUGWNsqMihUrRo8ePXaYmTVrVqxdu7bEM5Ipzvz6669LfD7fr2bNmnHppZdmfM6ZZ54Ze++9d8LcSy+9lFQJZ1ngvlQ+FBYWxgcffBC33XZbtGzZMo4//viYMmVK0tfXq1cvXnvttcjLy0vLPsOGDYuNGzfuMFO3bt24+OKL0zIvWY0bN46TTz55h5n169fHuHHjin32559/HtOmTUuYu/DCCzNewhwRcdpppyV8je2stm/fnlQpfn5+flx44YVZ2Chi4MCBSRW4v/HGG7Fhw4YsbBRx6KGHxlFHHZXRGXXr1o0jjzwyYS6Z18YP8d4LAAAAAAAAAACg7KlY2gsAAAAAAAAAAAAAlAdbt26NkSNHJswNGDAgC9v8p9zc3DjqqKNi6NChP5j5V2Hq0UcfncXN0u+QQw6J4cOH7zAzderU6Nq1a4nOr1u3bsLMm2++Gb///e9LdD7f78wzz4zq1atnfE6FChVi0KBBcfXVV+8wt2bNmhgzZkwce+yxGd8pFe5LO4+zzz67WPlt27bFmjVrYvXq1bFy5cqYOXNmbNmypUSza9WqFS+//HI0b968RNd/nxEjRiTM9OvXLypVqpS2mcnq2bNnPPvsszvMvPPOOwk/ROG//f3vf0+YycnJiQsuuKBY55ZUhQoV4rzzzoshQ4ZkZV42TZo0KVauXJkwN2DAgKwUjEdEVK1aNX7605/G3XffvcPcli1b4t13343jjjsu4zudc845GZ8REXHwwQfHO++8s8PM9OnTS3x+su+9sl2iDwAAAAAAAAAAUJ4pvQYAAAAAAAAAAADIggkTJsTq1at3mKlatWr06dMnOwv9lyOPPHKH5bIREZMnT97py2WTKW2dNm1aiUuv99hjj4SZjz/+ON58880yX4i8MznzzDOzOuuaa66JoqKiHeZ2htJr96Wdx1NPPVUqc/fbb7945ZVXomXLlmk7c9OmTTFmzJiEuf79+6dtZnEceeSRCTOTJ08u9rmJSn8jIjp27BjNmjUr9tkldcopp+ySpdejR49OKveTn/wkw5v8p1NOOSVh6XVExNtvv53x0uucnJw48cQTMzrjXw488MCEmcWLF5f4/GTee915550xcODAqFatWonnAAAAAAAAAAAAkLzc0l4AAAAAAAAAAAAAoDxIpoDxqKOOiurVq2dhm/912GGHJcyUpOSzrKlZs2bCTCrFi3vttVc0btw4YW7gwIHxxRdflHgO/0/Dhg3j0EMPzdq8xo0bR4cOHRLmkin1LW3uS/yQChUqxPnnnx8TJ05Ma+F1RMQHH3wQGzdu3GGmZs2a0b1797TOTdY+++wTDRo02GGmJM+7CRMmJMyccMIJxT43Fa1bt07qwyB2NhMnTkyYqVq1atYL87t06RL16tVLmPvHP/6R8V3atGkTDRs2zPicf81KZNmyZSU+//DDD0+YmTt3bvz0pz+NLVu2lHgOAAAAAAAAAAAAyVN6DQAAAAAAAAAAAJAFH3/8ccLMgQcemIVNvt8ee+yRMDN79uwsbJJZVapUSZhZunRpSjOOOuqopGYcccQR8fjjj8f27dtTmlfe9ejRI3JycrI6M5mi1ClTpsTWrVuzsE3JuS/x3ypUqBB9+/aNzz77LB566KGoVatW2mck87xr3bp1VKhQIe2zk5Xoubd48eIoKChI+ryFCxfG6tWrE+aSKe9Nt2TK5Xc2U6ZMSZjp2LFjUu8J0iknJyepr/fnn3+e8V3atWuX8Rn/Urt27YSZlStXlvj8ww47LKm/yxdeeCG6d++e1PMDAAAAAAAAAACA1Ci9BgAAAAAAAAAAAHYZ3bp1i6Kioqz+evLJJ5PabfLkyQkzrVq1SvErUHK1atWKihUr7jCzaNGiLG0TsXr16hg1alTcc8898fOf/zxOOOGEOPTQQ6N58+ZRp06dyM/Pj0qVKkVOTk6xfvXo0SPh7G+++Sal3QcMGJBUbtWqVXHuuefG/vvvH3fffXcsX748pbnlVZcuXcrkzE2bNsWsWbOysE3JuS/xLzVr1ow77rgjFi1aFCNGjIg2bdpkbFZZf95FROy+++4JM8V57n3xxRcJMzk5OdGxY8ekz0yXQw89NOszM2njxo0xd+7chLlOnTplYZv/1blz54SZtWvXxvz58zO6RzZfYzVr1kyY2bRpU4nPr1q1avTp0yep7AcffBAHH3xw9O3bN1577bUy/+EUAAAAAAAAAAAAOyul1wAAAAAAAAAAAAAZtnLlyliyZEnCXOvWrbOwzQ+rU6fODv982bJlsX379ozM3r59e4wdOzZ+9atfRevWraNOnTrRq1evGDx4cNx3333x+uuvx0cffRTz5s2LVatWxcaNGzNWVFhQUJDS9ccff3y0b98+6fysWbPisssui0aNGkXPnj3j7rvvjmnTpqW0Q3nStm3brM886KCDksolU3RbWtyX+Hdr166NRx99NN59992Mz5o6dWrCTGk/75IpvV68eHHS582ZMydhpnHjxlG9evWkz0yX/fffP+szM2n+/PlRVFSUMFdajzvZsul58+ZldI8mTZpk9Px/V6NGjYSZwsLClGZcd911kZOTk1S2qKgoXn311ejTp080bNgwBg4cGMOHD4+VK1emtAMAAAAAAAAAAAD/T8XSXgAAAAAAAAAAAABgV7dw4cKkch07dszwJqnZtm1bbNy4Ma2lnKtWrYr7778/Hn300Zg/f37azk1FqsWLERE333xz/OhHP0qqePNftm3bFm+//Xa8/fbbERHRsGHDOOKII+Kwww6LLl26RLt27aJSpUop77ar2W+//bI+c88994y8vLyEz5VFixZlaaPic1/iv02fPj1OPfXUeOaZZ2Lo0KGx2267ZWROMs+9yy+/PC6//PKMzE+XdevWJZ1NpmC+RYsWqaxTYqU1N1OSLSPfd999M7zJ90v2e1ZxStVLItEHCqRT1apVE2a2bduW0oy2bdvGqaeeGs8991yxrvv222/jySefjCeffDJyc3PjwAMPjMMPPzy6du0aXbt2jb322iulvQAAAAAAAAAAAMqr3NJeAAAAAAAAAAAAAGBXV5aLb4uroKAgLeds2bIlbrnllmjevHlcf/31ZabwOuKfu6Wqd+/ece2116Z0xtKlS2P48OExePDg6NSpU9SsWTOOPPLIuOaaa+KNN96IDRs2pLznzq5KlSrRsGHDrM/Nzc2Npk2bJswlU3RbWtyX+CGvvvpqdO3aNebNm5f2szds2BCrV69O+7mloTjPu2TuBQ0aNEhlnRIrrbmZkux9d4899sjwJqnNzfT3j7y8vIyeXxoeeuihaN26dYmv3759e3z22Wdx//33x+mnnx7NmzePRo0axcknnxz33HNPTJ48uVgfZgIAAAAAAAAAAFCeKb0GAAAAAAAAAAAAyLClS5eW9gppk45y2c8//zwOOeSQuOaaa2LNmjVp2Cq90lVoeMMNN8SAAQPSclZERGFhYbz//vtxyy23xHHHHRd16tSJo446Kv70pz/F119/nbY5O5N69eqV6dll+bVflncrrvJQel1UVJT0r/Xr18fXX38dU6dOjb/+9a9xzTXXRIcOHYo1b9q0aXHUUUfF4sWL0/o4yuvzLpmi77p166awTclVq1YtqlWrViqzMyHZ9xX169fP8Cbfr1atWlGlSpWEuUy/P6pQoUJGzy8NNWrUiBEjRkSjRo3SduaSJUvihRdeiMGDB0f79u2jYcOGcdZZZ8Urr7wSmzZtStscAAAAAAAAAACAXY3SawAAAAAAAAAAAIAM27BhQ2mvkDbbt29P6fqRI0dG165dY8qUKWnaqOzKycmJZ599Nq688srIyclJ+/mbN2+OMWPGxKWXXhpNmzaNXr16xfDhw2Pbtm1pn1VW7b777qU2O5mC2vXr12dhk5JxX9p15efnR6NGjaJNmzYxYMCAuOmmm+Ljjz+OmTNnxkUXXZR02e1XX30VvXr1inXr1qVtt/L6vCssLEyYyc/PT2WdlOxKpdfJfK0jIqpXr57hTVKbXR7K/DOhRYsWMWHChOjYsWNGzl++fHkMHTo0TjzxxGjYsGFcfPHFMXXq1IzMAgAAAAAAAAAA2JkpvQYAAAAAAAAAAADIsGQLGHd1b775Zpx44ollugg43XJzc+PWW2+NMWPGROvWrTM2p6ioKEaNGhX9+/eP/fbbL5588slyUQScl5dXpmeX5dd+Wd6NzNh3333j/vvvjylTpkS7du2SuuaLL76IgQMHpm2H8vq827RpU8JM5cqVs7DJ96tSpUqpzU63ZJ5jFSpUiNzc0vvnNMl8vcvrayUdmjVrFuPHj4+bbropo4Xuq1evjgceeCAOOuig6NOnT7n4QBcAAAAAAAAAAIBkVSztBQAAAAAAAAAAAAB2dcmUXe7qvvjiizj55JNj69atKZ1TuXLlqFevXjRo0CBq1qwZ1atXj2rVqkXFihWjYsWKkZOTs8Prly5dGn//+99T2qEkunXrFlOmTIlnn302/vCHP8TUqVMzNmvu3LkxcODAuPfee+OJJ56Igw46KGOzSltZL4kty6Wl7kvlV+vWrWPcuHHRt2/fePvttxPmX3jhhfjTn/4Uv/jFL1Ke7Xn3wxJ9/9pVZ6dbMh/4UJqF1xH/LN1OpDx8cEUmVapUKa655po455xz4o9//GM88sgjsWbNmozMKioqitdeey1GjhwZP/vZz+K2226L/Pz8jMwCAAAAAAAAAADYWSi9BgAAAAAAAAAAAMiwSpUqlfYKpWrLli1xxhlnxIYNG4p1Xf369eOoo46KTp06xcEHHxwtWrSIxo0bp1TOOXbs2FIpvY74Z8nlmWeeGWeeeWaMGzcu/vKXv8RLL70UK1asyMi8SZMmRceOHePPf/5znHPOORmZUdpKsxR027ZtCTPJFJuWlvJ+XyrvqlWrFiNGjIju3bvHxx9/nDB/9dVXx49+9KPYd999U5pbXp93yZTkl2YheFku6C+uZL7WW7ZsiaKiolIr+07m7zovLy8Lm+z6GjZsGLfffnv87ne/i2HDhsVf//rXeOedd1L+EJbvs3379rj//vvj7bffjldffTVatGiR9hkAAAAAAAAAAAA7C6XXAAAAAAAAAAAAABlWtWrVpHKzZs3aJQvyHn744fj000+Tyubm5sYpp5wSF154YXTr1q3UCikz7fDDD4/DDz88/vznP8dHH30Uo0aNinHjxsWECRNi7dq1aZuzefPmOPfcc2Pbtm0xaNCgtJ1bVmzevLnUZu/spaXl/b5ERH5+frz00kvRrl27+Oabb3aY3bhxY5xzzjnx3nvvpXRfTvZ598gjj8R5551X4jllTTL3go0bN2Zhk7I3O92Sve9u2rSp1O7RyZSMl+XvHzujatWqxcCBA2PgwIGxdu3aGD16dIwZMybGjx8fU6ZMSeqDLJI1ffr0OOKII+If//hHNGvWLG3nAgAAAAAAAAAA7EyUXgMAAAAAAAAAAABkWLVq1ZLKJVOCuLPZsmVL3HTTTUllW7VqFX/5y1+iQ4cOGdunoKAgY2eXRG5ubnTq1Ck6deoUERHbt2+PTz/9NN57770YN25cjB8/PpYuXZrynIsuuiiaN28ePXv2TPmssmTDhg1lenZZLi0tz/cl/p8mTZrEo48+Gj/+8Y8TZseNGxdPP/10nHnmmSWeV16fd7Vq1UqYWbFiRRY2+V8bN27cpUqv8/Pzk8p988030aRJkwxv8782bdqU1IdbJPs4KL6aNWtGv379ol+/fhERsXbt2hg/fvx3770+/vjjlO9BS5cujRNOOCHGjx8fNWrUSMfaAAAAAAAAAAAAO5Xc0l4AAAAAAAAAAAAAYFfXoEGDpHLJlCDubF599dVYsmRJwlyHDh3igw8+yGjhdUSU+WLP3NzcaN++fQwePDj+9re/xZIlS2L27NnxyCOPxKmnnhp16tQp0blbt26N008/vVRLojNh+fLlZXp2Sf++sqE835f4TyeeeGKceuqpSWWvuuqqWL9+fYlnldfn3R577JEws2zZsixsUnbmZkrDhg2TypXW949k5yb7OEhdzZo140c/+lHccsst8f7778eaNWti3Lhx8fvf/z6OOOKIqFixYonO/fzzz+Oqq65K87YAAAAAAAAAAAA7B6XXAAAAAAAAAAAAABnWrFmzpHJff/11hjfJvr/+9a8JMzVr1oyXX345dtttt4zvs3Tp0ozPSLd99tknzjvvvHjuuedixYoVMXbs2Lj44ouLXai8fPnyuOeeezK0ZelYuXJlbNmypVRmJ1MUm0zRbWkpz/cl/tddd90VNWvWTJhbvHhx3H777SWeU7NmzahVq1bC3K72vEvmXjB79uwsbFJ25mZKsvfdefPmZXaRH/DVV18llSvL3z92dZUrV47DDjssrrvuunjvvfdixYoVMXTo0Ojdu3fk5hbvn2E9+uijpfZcAwAAAAAAAAAAKE1KrwEAAAAAAAAAAAAybM8990wqN3/+/Axvkn1jx45NmLnqqquiSZMmmV8mIhYtWpSVOZmSm5sb3bp1i/vuuy++/vrrePjhh6Np06ZJX3/77bdHYWFhBjfMru3btyddIJpOGzdujMWLFyfMleXS0vJ8X+J/NWzYMK6++uqksnfddVd8++23JZ6VzHNvV3ve7bPPPgkzX3/9dWzYsCEL2/yn6dOnZ31mJiX7PXHGjBkZ3iS1udl6X0Riu+22W5x55pnx5ptvxpw5c+Liiy+OSpUqJXXt5s2b47bbbsvwhgAAAAAAAAAAAGWP0msAAAAAAAAAAACADKtdu3Y0btw4Ye6zzz7LwjbZM2fOnFixYsUOMxUqVIhBgwZlaaOIzz//PGuzMi0vLy8GDRoU06ZNiwEDBiR1zerVq2P8+PEZ3iy7SqO4dNasWVFUVJQwt/fee2dhm5Ipr/clftjgwYOTek6sW7cubr311hLPOfDAAxNmdrXnXZs2bRJmioqK4qOPPsrCNv9p4sSJWZ+ZSfXq1Yu6desmzE2ePDkL2/yvSZMmJcxUqlQp9ttvvyxsQ3Httddecd9998VHH32U1P0yIuK1117L8FYAAAAAAAAAAABlj9JrAAAAAAAAAAAAgCw49NBDE2Z2teLJmTNnJsy0a9cuqXLKdPnkk0+yNitb8vPz45lnnok+ffoklR81alSGN8quslwSe8ABB2R4k9SUx/sSPywvLy+uueaapLL3339/LFu2rERzknneLVq0KJYsWVKi88uiZs2aRa1atRLm3n///Sxs858++OCDrM/MtIMOOihhprQ+ACKZr3fLli2jcuXKWdiGkmrbtm2MGTMmqdf1okWLYvr06VnYCgAAAAAAAAAAoOxQeg0AAAAAAAAAAACQBZ06dUqYmTlzZsydOzcL22THggULEmYOPPDALGzyT59//nksXbo0a/OyqUKFCvHnP/85qlWrljA7YcKELGyUPaVRXJrM17Bu3brRsGHDLGxTcuXxvsSOnXfeedG0adOEuYKCgrjttttKNCOZ511ExBtvvFGi88uqLl26JMy8/vrrWdjk//nyyy93ydd3u3btEmYWL14cX375ZRa2+c+Zn3/+ecJcMvtT+vbdd98YMmRIUtld7b0XAAAAAAAAAABAIkqvAQAAAAAAAAAAALLgRz/6UVK5F198McObZM+6desSZurXr5+FTf5pxIgRWZtVGho3bhzHH398wtzy5cuzsE32jBs3LqnnWroUFRUlVcbbtWvXLGyTmvJ4X2LHKleuHFdddVVS2QcffLBEHyRwyCGHRN26dRPmdrXn3VFHHZUwM3HixKQ+MCJdhg8fnrVZ2dSjR4+kctl+XzBixIgoKipKmEvmuULZMHDgwKhUqVLC3K723gsAAAAAAAAAACARpdcAAAAAAAAAAAAAWXDQQQfF3nvvnTD36KOPZmGb7CgoKEiYyc3Nzo+zFhUVxZNPPpmVWaXp6KOPTphZsWJFFjbJns2bN8fIkSOzNm/ChAlJFf3uDKWl5fG+RGLnnntuNG7cOGGuoKAgbrvttmKfX6FChejTp0/C3JtvvhkLFy4s9vllVe/evRNmioqK4uGHH87CNhHbtm3bZV/b3bp1S6qIeOjQoVnY5v95/PHHk8r17Nkzw5uQLrVq1YoOHTokzO1q770AAAAAAAAAAAASUXoNAAAAAAAAAAAAkCX9+/dPmJkxY0a89NJLWdgm85IpnMxWCeCLL74Yc+bMycqs0tSoUaOEmTVr1mRhk+x67LHHsjYr2ZLYnaW0tLzdl0isSpUqcdVVVyWVfeihh5Iqgf9vAwYMSJjZtm1b3HHHHcU+u6w66KCDYv/990+Ye/DBB7Nyn3722Wdj0aJFGZ9TGqpXrx49evRImJs+fXqMHj06CxtF/OMf/4iPP/44Ya5t27bRpEmTLGxEupTX914AAAAAAAAAAAA7ovQaAAAAAAAAAAAAIEsuvPDCqFChQsLc1VdfHZs3b87CRplVo0aNhJkFCxZkfI+tW7fGkCFDMj5nZ1GtWrXSXiHtRo8eHV988UXG5yxbtiz++te/Jsy1atUq2rRpk/F90qG83ZdIznnnnRd77LFHwlxBQUHceuutxT6/V69ese+++ybMPfjggzFr1qxin19W/d///V/CzLfffhu33XZbRvcoLCyM3/zmNxmdUdrOOOOMpHK//e1vM7zJP11//fVJ5X76059meBNKw6743gsAAAAAAAAAAGBHlF4DAAAAAAAAAAAAZMmee+4Zffv2TZibMWNGXHfddVnYKLOaNm2aMPP+++9HQUFBRve44447YurUqRmdUVYsXLgwYWb33XfPwibZVVRUlJXi0ltuuSWp52syxbZlRXm7L5GcvLy8uPLKK5PKPvTQQ7FkyZJinZ+TkxOXXHJJwtzmzZvjrLPOim3bthXr/LLqvPPOi8qVKyfM3XHHHTF58uSM7XHttdfGvHnzMnZ+WdCvX7+oXr16wtwHH3wQzz//fEZ3ee2112LUqFEJcxUrVozTTjsto7uQfuX1vRcAAAAAAAAAAMCOKL0GAAAAAAAAAAAAyKIhQ4ZEbm7iH+H84x//GH/729+ysFHm7LvvvgkzBQUFMWLEiIztMGHChKyUIZcVb731VsLM/vvvn4VNsu+FF15IqlS0pKZMmRIPPPBAwlzFihXj7LPPztgemVCe7ksk7/zzz4+GDRsmzBUWFsatt95a7PMHDRqU1IcjTJgwIS677LJin18WNWrUKKlS4y1btsSAAQNi1apVad9hxIgRcffdd6f93LImPz8/LrjggqSyl1xySSxfvjwje6xatSouvPDCpLKnn356Uq85yo4VK1bEp59+mjC3q773AgAAAAAAAAAA+CFKrwEAAAAAAAAAAACy6KCDDoqBAwcmzG3fvj3OOOOMGDlyZBa2+mErVqyIK664IjZv3lzsa/fff/+oVatWwtx1111XovMTmT17dvTr1y8jZ/+Q22+/PT777LOszft38+bNi9dffz1hrlOnTlnYpnQMGjQoVq5cmfZzCwsL46yzzootW7YkzA4YMCCpIt+ypDzdl0he1apV44orrkgq+/DDD8eSJUuKff7NN9+cVPbee++N66+/vljnp9vmzZvjgQceiI8++iilc6655pqoVKlSwtysWbOiT58+sXbt2pTm/bt33303Tj/99Ni+fXvazizLfv3rX0deXl7C3IoVK+Lkk09O6h5fHNu2bYsBAwbE119/nTCbm5sb11xzTVrnlwdLly6NG2+8Ma2vk+J46KGHknre7MrvvQAAAAAAAAAAAL6P0msAAAAAAAAAAACALLv55pujfv36CXObNm2KE088Me6///4sbPWfFixYEJdffnk0b948br/99hIVZObk5MRRRx2VMDdnzpz45S9/WZI1f9CXX34ZPXr0iKVLl6b13ERef/31aNeuXfz4xz+O9957L2tzt2zZEv/3f/8XW7duTZg97rjjsrBR6Zg/f370798/rWXIRUVFce6558ann36aMJubmxtXXnll2mZnU3m5L1E8F154YVLPi8LCwrjllluKff7pp5+e1PeJiIgbb7wxzjnnnCgoKCj2nFSsW7cu/vSnP0WLFi3i4osvjm+//Tal8/bdd9/4xS9+kVR2/Pjx0b179/jqq69SmhkR8cwzz8Sxxx4bGzZsSPmsnUXDhg1j8ODBSWXff//9OPXUU9NWfL1t27b46U9/GqNGjUoqf84558R+++2XltnlSWFhYVx//fWx5557xvXXXx+LFy/O2uxPPvkkfv/73yfMtW7dOvbcc88sbAQAAAAAAAAAAFB2KL0GAAAAAAAAAAAAyLL69evHE088kVR269atcckll8QJJ5wQ8+fPz+he27dvj7feeiv69+8fe++9d9xxxx0pl2MOGDAgqdz9998fV111VRQVFaU0LyJi2LBh0blz51i0aFHKZ5VEUVFRjBgxIrp16xZt27aNP//5z7Fq1aqMzVu5cmWccMIJ8eGHHybMHnDAAdGxY8eM7VIWvP322/GTn/wkCgsLUz5r+/btMWjQoHj22WeTyp9zzjlx4IEHpjy3NJSn+xLJq1q1alx++eVJZR955JFiF87m5OTEU089FXXq1Ekq/8QTT0T79u1j3LhxxZpTEp999llcdtll0aRJk7j00ktj4cKFaTv7N7/5TTRr1iyp7OTJk+Pggw+Oe+65p0SFzPPmzYsBAwbEGWec8b33xQYNGsTuu+9e7HN3Ftdff33stddeSWVffPHF+NGPfhTLly9PaebKlSujT58+SX/vqFevXtx2220pzSzvVq9eHTfeeGPsueeeceqpp8aoUaMy+sEIY8eOjWOPPTapD9k455xzMrYHAAAAAAAAAABAWaX0GgAAAAAAAAAAAKAUHHfccXHllVcmnX/99dejZcuW8Ytf/CJmzpyZtj22bNkS77zzTlx22WXRtGnT6N27dwwfPjy2bduWlvNPOumk2GOPPZLK3nbbbXHUUUfF3LlzSzRrypQp0bdv3zj11FNj3bp135tp3759ic4uqSlTpsRFF10UDRs2jH79+sXQoUPjm2++ScvZW7dujSeffDLatWsXb731VlLXXHHFFWmZXda99tprcdhhh8WcOXNKfMayZcuiV69e8dhjjyWV32233eLGG28s8byyoLzclyien/3sZ1GvXr2EucLCwrjllluKfX6TJk3iqaeeigoVKiSVnz59ehxxxBFx4oknxrvvvlvseTvy2WefxU033RRt27aNgw8+OO6+++5Yu3ZtWmdERNSsWTOeeeaZpB/z2rVrY/DgwdG8efP47W9/G59++ukOPyRi/fr18dprr8Wpp54aLVu2jOeff/4Hs/fee29Ur1692I9hZ1GtWrV45JFHIjc3uX8+8/bbb0fbtm3jqaeeKtEHcQwbNizatm0bb7zxRtLX3HfffUkXv7NjW7dujWHDhkWvXr2iadOm8ctf/jLGjBkTW7duTcv5S5YsiUsvvTSOOeaYpN7P1alTJ84999y0zAYAAAAAAAAAANiZVCztBQAAAAAAAAAAAADKq1tuuSUWLVoUzzzzTFL5TZs2xb333hv33XdfdOnSJfr27RvdunWLtm3bRtWqVRNeX1RUFPPnz49p06bFxx9/HOPHj48JEyZkpNDzXypXrhxXXXVVXHrppUnlx44dG/vtt1+ceOKJce6558Zhhx0WtWrV+sH8ggULYvTo0fHMM8/EmDFjdlhQ2apVq7jxxhvjuOOOK/bjSNXmzZvjpZdeipdeeilyc3OjXbt2cfjhh0eXLl3igAMOiP322y8qVaqU8Jw1a9bExx9/HK+99lq89NJLMX/+/KR36NSpU5xxxhmpPIwyp3PnzrF27dr48ssv/+fPJk2aFAcccED88pe/jEsvvTTq16+f1Jlr166NBx98MG666aZivTYefPDBaNCgQdL5sqo83Jconvz8/PjVr34VV111VcLsI488EldddVU0bty4WDNOOOGEeOCBB+KCCy5I+ppXXnklXnnlldh3333jxBNPjF69ekWHDh2SLg9evnx5TJs2LT799NP44IMPYty4cbF48eJi7Z2Kww8/PG6++eZiFc1//fXXccMNN8QNN9wQtWrVipYtW0ajRo2ievXqsWXLlli7dm3MnTs35syZk1TJ7ymnnBKnnHJKXH755ak8lDKvZ8+eMWTIkPjNb36TVH7p0qVx9tlnx4033hgXXHBB9OnTJ1q2bPmD+a+++ipeffXVeOihh773+9GOXHrppdG/f/9iXUNyFi9eHHfddVfcddddUbNmzTjssMPi8MMPj44dO0br1q2Tuk8VFRXFwoULY8yYMfHqq6/GyJEjo6CgIOkdbrzxxthtt91SeBQAAAAAAAAAAAA7J6XXAAAAAAAAAAAAAKUkJycnnnjiidiwYUO8/PLLSV9XVFQUH3zwQXzwwQcREVGhQoVo1qxZNG3aNHbfffeoWrVqVKhQITZt2hSFhYXx7bffxpIlS2Lx4sVRWFiYoUfzwy666KJ49NFH4/PPP08qv23btnjxxRfjxRdfjJycnNh///2jUaNGUbt27cjLy4uNGzfG8uXLY9asWbFs2bKkzqxWrVo8++yzsXr16hQeSXps3749Pvnkk/jkk0/innvuiYiIihUrRuPGjaNRo0ZRr169yMvLiypVqkRhYWFs2LAh1q5dG7Nnz46lS5eWaGatWrXimWeeiZycnHQ+lFJXpUqVePzxx6Nr166xffv2//nzwsLCuPnmm+OPf/xj/OhHP4revXtHu3btYu+9945atWpFTk5OrFu3LubNmxdTpkyJt956K1599dVYv359sfY466yzYsCAAel6WKWqvNyXKJ6LL744br/99vj22293mNu0aVPccsstcd999xV7xvnnnx9r1qyJK664oljXzZo1K+6444644447IiJijz32iGbNmkWDBg2iatWqUbly5diyZUsUFhbGmjVrYsmSJbFkyZJYs2ZNsXdMtyuuuCLmz58fDzzwQLGvXbNmTUycOLHEs9u3bx9PPPFE0vnc3NwSzyoLrrvuupg6dWo8//zzSV8ze/bsuPzyy+Pyyy+PunXrRqtWraJevXpRrVq17+5j06ZNK/H35l69esXtt99eomspnrVr18Ybb7wRb7zxxne/V6NGje/ee9WqVSuqVq0aubm5sWHDhtiwYUOsWLEiZs6cGRs2bCjRzD59+sSFF16YrocAAAAAAAAAAACwU1F6DQAAAAAAAAAAAFCKKlWqFH/729/i4osvjoceeqhEZ2zbti2++uqr+Oqrr9K8XXpUrFgxnnvuuTj00ENj48aNxbq2qKgopk2bFtOmTUtp/vPPPx8HH3xwjB07tsTnZNLWrVtj/vz5MX/+/LSfnZeXF3/7299in332SfvZZUGnTp3id7/7XVx//fU/mNm0aVO8/PLLxSpxTtbhhx9e4tduWVUe7ksUT/Xq1eNXv/pVXHPNNQmzjz76aFx99dXRuHHjYs+5/PLLo169ejFo0KDYunVrSVb9rtR6Z3HvvffGli1b4pFHHsnazL333jteeeWVyM/PT/qaKlWqZHCjzMvJyYmnn346CgsL45VXXin29d988028//77adunR48e8fLLL0elSpXSdibFs27dupg+fXpMnz497Wd36NAh/vKXv+xyHzYCAAAAAAAAAACQrNzSXgAAAAAAAAAAAACgvKtQoUI8+OCDce+990ZeXl5pr5MRbdq0ieeeey4qVqyY1bkVK1aMxx9/PI4//viszi0ratasGS+//HL07NmztFfJqOuuuy7OPPPMrM9t06ZNjBgxYqcvg/0+5eG+RPFccsklUadOnYS5TZs2xc0331ziOWeffXa89dZbJSrN3hnl5ubGww8/HEOGDMlKQW779u3jgw8++I+v7+bNmxNetyvcBypVqhTDhw+Ps88+u1T3+MlPfhKvvfZaVK1atVT3IDO6dOkSb731VtSqVau0VwEAAAAAAAAAACg1Sq8BAAAAAAAAAAAAyohLLrkkPvroozj44INLe5X/UL169cjNTf3HTvv27RvDhg3LWslj7dq144033iiVMuSyoE2bNjFhwoTo3bt3aa+SFY8++micfPLJWZt36KGHxnvvvZdUCfDObFe/L5G8GjVqxGWXXZZU9rHHHotFixaVeFaPHj1iypQp0b9//xKfkQkVKlSI/Pz8jJz929/+Nt56663YY489MnJ+RMS5554b7777bjRo0OA/fr+wsDDhtbtC6XVEROXKleOJJ56Iu+66KypXrpzV2RUqVIjf/e53MXz48KhWrVpWZ5MdF1xwQYwZM2aXf28AAAAAAAAAAACQiJ/yBQAAAAAAAAAAAChDDjjggPjkk0/ikUceiYYNG5baHrm5udGzZ88YOnRoLF26NG3FkP369Yt333039tlnn7Sc90N69OgREydOjJ49e2Z0zn875phjolGjRlmd+d+qVq0a119/fUyaNClat25dqrtkU+XKlWPYsGFx6aWXZnzWGWecEe+88065KbXc1e9LJO8Xv/hF1K5dO2Fu06ZNcfPNN6c0q06dOjFs2LAYM2ZMtGvXLqWzUnXggQfG7bffHgsXLowjjjgiY3N69uwZ06ZNiyuvvDKtHxBx4IEHxqhRo+LRRx+N6tWr/8efbd++PdatW7fD6/Pz86NKlSpp26csGDx4cEyePDm6du2alXnt2rWLiRMnxm9+85vIycnJyszyoFatWnHssceWein7fvvtF3//+9/jwQcf3OVeKwAAAAAAAAAAACWh9BoAAAAAAAAAAACgjMnNzY3zzjsv5syZEw899FAceOCBWZlbsWLF6Nq1a9x6660xf/78GDVqVJx55pmRn5+f1jkdO3aMzz77LK644oq0lxTuvffeMXTo0HjnnXeiRYsWaT07Gddee218/fXXMWnSpLjhhhuiU6dOkZubnR/ZrVWrVlx66aUxZ86cuOGGG8plIXBubm7cfffdMWLEiIyUj9erVy+eeuqp+Mtf/pL210VZt6vfl0hOzZo1Y/DgwUllH3vssVi4cGHKM7t37x6ffPJJvP7669G7d++sFQa3atUqfvnLX8akSZNiypQp8etf/zr22GOPjM+tVatW3HrrrTF37ty48cYbo3nz5iU6p0qVKnHcccfF66+/HlOmTPnBD4FYsWJFbN26dYdnNWjQoEQ7lHWtW7eOcePGxQsvvBDt27fPyIw2bdrEM888Ex999FHGZpRntWvXjjfeeCO+/fbbGDFiRJx//vnRpEmTrM0/4IAD4rHHHosvv/wyevXqlbW5AAAAAAAAAAAAZV3F0l4AAAAAAAAAAAAAgO9XrVq1OP/88+P888+Pjz76KF566aUYMWJEfPnll2k5Pzc3N9q0aRNHH310HH300dGtW7eoUaNGWs5OJD8/P2677ba49NJL46GHHoonn3wyFixYUKKzqlWrFkcffXQMGjQojj/++B2WTDdp0iQuvfTSHZ6XjrLsdu3aRbt27eL666+PVatWxYcffhgTJkyICRMmxMSJE2Pt2rUpz4iIqFGjRhxzzDFx0kknRb9+/aJatWppOXdn17dv3+jWrVvceeedcf/998e3336b0nm1atWKCy64IK655pqoVatWmrbcOe3K9yWSc+mll8Zdd90Vq1ev3mFu8+bNcfPNN8ef//znlGfm5OTEcccdF8cdd1zMmzcvXnzxxXj55Zfjgw8+iG3btqV8fkRE06ZN46ijjoqjjz46evbsmZWC6x1p2LBhXHvttXHttdfGF198EaNHj45JkybFjBkzYsGCBbFu3booKCiIvLy8qFGjRuy2227RsmXLaNOmTXTs2DGOOeaYpMrh582bl9Quu6qcnJzo169f9OvXL8aPHx/PPPNM/O1vf4sVK1aU+MzatWvHSSedFKeffnr06NEja0Xt5Vm1atWib9++0bdv34iImDlz5nfvuyZMmBBTp06N7du3p2XWPvvsE3369IlTTjklunbtmpYzAQAAAAAAAAAAdjU5RUVFRaW9BAAAAAAAAAAAAADJ++abb+Kjjz6KTz75JGbPnh3z58+PhQsXxtq1a2Pjxo1RWFgYERFVqlSJqlWrRp06daJu3brRuHHjaN68ebRo0SIOOOCAaNu2bVKFmNny6aefxtixY+OTTz6JmTNnxqJFi2LNmjVRWFgYFStWjPz8/KhevXrsscce0bJly2jZsmV07tw5Dj/88KhcuXJpr5+07du3x6xZs2LmzJkxe/bsmD17dsyZMyeWLVsW69ati/Xr139XZlqpUqWoUqVK1KxZMxo0aBCNGjWKFi1axP777x+HHnpoHHTQQVGhQoXSfkhl2saNG2P48OHxyiuvxFtvvRXr169P6rqqVavGkUceGf369YvTTz+9TL1WyqJd9b5E2bZx48aYNGlSfPTRRzF9+vRYsGBBLFiwIL799tsoKCiIjRs3xvbt26Ny5cqRl5cXu+22W9StWzcaNmwYzZs3j7333jtat24d7dq1i3r16pX2wykVjz76aAwaNGiHmTPPPDOGDh2apY1KX1FRUXzxxRcxbty4+PTTT2Pu3Lkxb968WLVq1Xf3sypVqkS1atVit912i7322iv23nvvOOigg+Lwww+Pgw46aIcfwEH2rV+/Pr788svv3nfNnj07vvrqq1i1atV377vWr18fW7dujcqVK0fVqlVj9913j/r160ezZs2+K5Tv2rVrNG7cuLQfDgAAAAAAAAAAQJmn9BoAAAAAAAAAAAAAKBe2bt0aM2fOjC+++CJmzZoVa9asiXXr1sXmzZsjPz8/atas+V0Jbtu2bSMvL6+0VwbIqAsuuCAefvjhHWZuueWWuOqqq7K0EQAAAAAAAAAAALCzq1jaCwAAAAAAAAAAAAAAZEPFihWjdevW0bp169JeBaBMePvttxNm2rRpk4VNAAAAAAAAAAAAgF1FbmkvAAAAAAAAAAAAAAAAQHZNmTIl5syZkzDXqVOnLGwDAAAAAAAAAAAA7CqUXgMAAAAAAAAAAAAAAJQzTzzxRMJMq1aton79+lnYBgAAAAAAAAAAANhVKL0GAAAAAAAAAAAAAAAoR7755pt45JFHEuaOPvroLGwDAAAAAAAAAAAA7EqUXgMAAAAAAAAAAAAAAJQjv/3tb2PDhg0Jc/3798/CNgAAAAAAAAAAAMCuJKeoqKiotJcAAAAAAAAAAAAAAAAg88aMGRNHH310JPrnJE2bNo358+dHTk5OljYDAAAAAAAAAAAAdgW5pb0AAAAAAAAAAAAAAAAAmTd79uw45ZRTEhZeR0Scf/75Cq8BAAAAAAAAAACAYlN6DQAAAAAAAAAAAAAAkGVz586Nm266KdavX5+VeZ9//nkceeSR8e233ybM1qhRIy6++OIsbAUAAAAAAAAAAADsapReAwAAAAAAAAAAAAAAZNnGjRvjuuuui7322it++9vfxrJlyzIyp6ioKB566KHo3LlzLFmyJKlrBg8eHLVr187IPgAAAAAAAAAAAMCuLaeoqKiotJcAAAAAAAAAAAAAAAAoT6ZOnRoHHnjgd/9duXLl6NOnT5x11lnRq1evqFKlSkrnb9++PV5//fUYMmRITJo0Kenr9t577/jiiy8iLy8vpfkAAAAAAAAAAABA+aT0GgAAAAAAAAAAAAAAIMv+u/T63+Xn58cxxxwTRx55ZHTp0iUOOOCAqF69esIzv/nmm/j444/jzTffjBdffDEWLlxYrJ0qVKgQo0aNih49ehTrOgAAAAAAAAAAAIB/UXoNAAAAAAAAAAAAAACQZTsqvf4+jRs3jiZNmkT9+vWjWrVqUbly5di8eXMUFBTEkiVLYuHChbF06dKUdvrDH/4Ql19+eUpnAAAAAAAAAAAAAOVbxdJeAAAAAAAAAAAAAAAAgB37+uuv4+uvv87Y+ZdcconCawAAAAAAAAAAACBluaW9AAAAAAAAAAAAAAAAAKXniiuuiHvvvbe01wAAAAAAAAAAAAB2ARVLewEAAAAAAAAAAAAAAACyr0aNGvHwww/HqaeeWtqrAAAAAAAAAAAAALuI3NJeAAAAAAAAAAAAAAAAgOzq169ffPbZZwqvAQAAAAAAAAAAgLRSeg0AAAAAAAAAAAAAAJBlrVq1irfeeivOP//8qF+/flZm5ubmRt++feP999+PF154IZo3b56VuQAAAAAAAAAAAED5kVNUVFRU2ksAAAAAAAAAAAAAAACUV9u2bYv3338/3nnnnZgwYUJMnDgx1q5dm5azc3Nzo3PnztG3b9849dRTY88990zLuQAAAAAAAAAAAADfR+k1AAAAAAAAAAAAAABAGbJ9+/b48ssv4/PPP4958+bF/PnzY968ebF48eJYv359bNy4MTZu3BgFBQUREVG1atXIy8uL3XffPZo0aRJNmzaNVq1aRYcOHaJ9+/ax2267le4DAgAAAAAAAAAAAMoNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAApCy3tBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYOen9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAlCm9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBlSq8BAAAAAAAAAAAAAAAAAAAAAAAAAAAASJnSawAAAAAAAAAAAAAAAAAAAAAAAAAAAABSpvQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJQpvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgZUqvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEiZ0msAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUqb0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICUKb0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGUVS3sBAMqfhg0bxurVq//n9ytVqhTNmjXL/kIAAAAAAJABCxYsiC1btvzP7++2226xdOnSUtgIAAAAAAAAAAAAAAAAAAAgs3KKioqKSnsJAMqXvLy82LRpU2mvAQAAAAAApaJKlSpRWFhY2msAAAAAAAAAAAAAAAAAAACkXW5pLwAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzk/pNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAApU3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMqUXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQsoqlvQAA5U+lSpVi06ZN//P7VapUiX322acUNgIAAAAAgPSbM2fO9/7/4ZUqVSqFbQAAAAAAAAAAAAAAAAAAADJP6TUAWdesWbP48ssv/+f399lnn/jiiy9KYSMAAAAAAEi/Nm3afO//H96sWbNS2AYAAAAAAAAAAAAAAAAAACDzckt7AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2fkqvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEiZ0msAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUqb0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICUKb0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGVKrwEAAAAAAAAAAAAAAAAAAAAAAAAAAABImdJrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFKm9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAlCm9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBlSq8BAAAAAAAAAAAAAAAAAAAAAAAAAAAASJnSawAAAAAAAAAAAAAAAAAAAAAAAAAAAABSpvQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJQpvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgZUqvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEiZ0msAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUqb0GgAAAAAAAID/j707D7O7rO///zpnlky2ISEQtkDYCYuETbAsKotQoQoBBAWVioIWinX92bq2fPX7bd2qIhasVbAlsilbXRBJFAFZAwgkLLIGCBCyTdbZzvn9Mdkzc2aSmTOTTB6Pq1zJfO77c9/v0HP5R+biOQAAAAAAAAAAAAAAAAAAAL0meg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAr4leAwAAAAAAAAAAAAAAAAAAAAAAAAAAANBrotcAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9JroNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAC9JnoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQK+JXgMAAAAAAAAAAAAAAAAAAAAAAAAAAADQa6LXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPSa6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvSZ6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAECviV4DAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Gui1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0mug1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAL0meg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAr4leAwAAAAAAAAAAAAAAAAAAAAAAAAAAANBrotcAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9JroNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAC9JnoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQK+JXgMAAAAAAAAAAAAAAAAAAAAAAAAAAADQa6LXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPSa6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvSZ6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAECviV4DAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Gui1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0mug1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAL0meg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAr4leAwAAAAAAAAAAAAAAAAAAAAAAAAAAANBrotcAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9JroNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAC9JnoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQK+JXgMAAAAAAAAAAAAAAAAAAAAAAAAAAADQa6LXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPSa6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvSZ6DQAAAAAAAPS5D5w9LJ8/e/uBHgMAAAAAAAAAAAAAAAAAAIB+JHoNAAAAAAAA9KkPnz0yDzYuzY2Ns/Kps7Ya6HEAAAAAAAAAAAAAAAAAAADoJ6LXAAAAAAAAQJ/5+Flb5k+Ni1Z+/Zst5uT8sxoHcCIAAAAAAAAAAAAAAAAAAAD6i+g1AAAAAAAA0Cc+f/b2+d0W89Z5fucWC/OBs4cNwEQAAAAAAAAAAAAAAAAAAAD0J9FrAAAAAAAAoNf+7ZzdcmPjrC7XH2xcmtPePyTLXn21H6cCAAAAAAAAAAAAAAAAAACgP4leAwAAAAAAAL3y7x/eL1cOe7bbfTNGtuT0/29H4WsAAAAAAAAAAAAAAAAAAIBBSvQaAAAAAAAA2GDf/ehBuWTY42kv9Gz/s8PbcvL/t0PmP/FwVecCAAAAAAAAAAAAAAAAAACg/4leAwAAAAAAABvkvz7+tny//qGUk7TUJG09DF/PHF7Kaf96cF695zdVnQ8AAAAAAAAAAAAAAAAAAID+JXoNAAAAAAAArKO91F5x/ZrPn5x/Ld+RttWetdYkbWt9B7LcxfuzhpZyxg9PzPO/ubpXcwIAAAAAAAAAAAAAAAAAALDxEL0GAAAAAAAA1tDU3JRTrjklN8y4odP1X/3Lh/LlppvXCF6v0Frs+CdZFbzuKnz9xpByzrrufXni+h/0dmQAAAAAAAAAAAAAAAAAAAA2ArUDPQAAAAAAAACw8WhqbsqZ15+ZR159JA/NeihJMmnvSSvX77z0c/n0a1ekpabrM9qKHaHrutKqZ+UkhU72zq9PzvnNhbnk9Zdz6AVf65M/AwAAAAAAAAAAAAAAAAAAAAND9BoAAAAAAABIsmbwOklK5VIu+vVFydy5mTR7TO7/2Xfy0S3/kGU9+C5je7Hj156ErxfWJX/38P/Nd7+1OEd++ju9/WMAAAAAAAAAAAAAAAAAAAAwQIoDPQAAAAAAAAAw8NYOXidJmptTmjsnF914fn78fyblvC3+kCXr8WN124tJS01H7HqFchd7l9YkFz313fz6X87ekPEBAAAAAAAAAAAAAAAAAADYCIheAwAAAAAAwGZuneB1c3PyxhvJ/PlJS0u2eb6U7xySLBiy/meXCklrD8PXzcXkn2ZNzvWfOnH9LwIAAAAAAAAAAAAAAAAAAGDAiV4DAAAAAADAZmyN4HW5nDQ1dcSu29uTJEPnlFLeIllYv+F3rE/4uqWQXLz017niwiM3/EIAAAAAAAAAAAAAAAAAAAAGhOg1AAAAAAAAbKbWCF63tydz5iRLl65cHzq3lDGlZN7Q3t9VKiQtPQxftyX5Rumu/OAjB/T+YgAAAAAAAAAAAAAAAAAAAPqN6DUAAAAAAABshtYJXs+b2/FruZyUy1n6RinbtCazR/TdneX1CF+Xk1xa90j+7Zzd+m4AAAAAAAAAAAAAAAAAAAAAqkr0GgAAAAAAADYz7aX2nP2LszuC16VSMmdO0trW8ftyOYvnlDOhLZnV2Pd3lwtJS23Pw9d/KL/Y90MAAAAAAAAAAAAAAAAAAABQFaLXAAAAAAAAsJmpKdbk3APOTbGlNZk9O2lvX2N9z3Lyl62T5prq3F9O0lyblJZ/Xehi33ZLi5n8+furMwQAAAAAAAAAAAAAAAAAAAB9TvQaAAAAAAAANjdNTZl02e9zybWLUmwvrbG0y2vJ81t2/L61pnrh6yRpqe0IYHdmq+ZCrvrYLzNqwgHVGwAAAAAAAAAAAAAAAAAAAIA+VTvQAwAAAAAAAAD9aObM5LTTkj//OZOam5NlyUUnJqVCMuHl5NHt19zeWpOUC0lDW3XGaalN6tvW/Gm9o1sK+ekZk7PtW/66OpcCAAAAAAAAAAAAAAAAAABQFaLXAAAAAAAAsLl48cXkhBOSp55KSqUkyaQnOpa+dXDy8A5JTXnd19qKybK6ZEhrUujjkcpZHr5uT4rlZGRr8l/v/H52/uv39vFNAAAAAAAAAAAAAAAAAAAAVFtxoAcAAAAAAAAA+kFTU3LSSckTT6wMXq9w1YTkkR2S1pqkvYvvILYVOsLXnTSxe62cpKUmqS8llxz8hUw4/YIq3AIAAAAAAAAAAAAAAAAAAEC1iV4DAAAAAADA5uCCC5LHHlvn8fknJLfuuerr1mLS1sV3EdurGL6uLyXf2uPCHPp3X63C6QAAAAAAAAAAAAAAAAAAAPQH0WsAAAAAAAAY7G68MZk8eZ3Hnzw6+dnEdbe3dRO+XlqXlPpwvPpy8v/GnpFjP/P9PjwVAAAAAAAAAAAAAAAAAACA/iZ6DQAAAAAAAIPZnDnJmWcm5fIaj798ePKjN3f9WqXwdakPw9e1Sb5U/45M+so1fXAaAAAAAAAAAAAAAAAAAAAAA0n0GgAAAAAAAAarmTOTAw5IWlrWePzNg5PvHtH965XC1+VCsqSX4etCkk+VD8v7v/3bXpwCAAAAAAAAAAAAAAAAAADAxqJ2oAcAAAAAAAAAquDFF5OTT05eemmNxz/aN/nqMUmp0LNj2oodgeu69k4Wl4evh7YmNes5XiHJBY815O+m3rOebwIAAAAAAAAAAAAAAAAAALCxKg70AAAAAAAAAEAfa2pKzjwzefrpNR7/ZELy2Xcm7T0MXq/QXkhauqpaF5KldUlnTexK/vbh5DOlQ9fzLQAAAAAAAAAAAAAAAAAAADZmotcAAAAAAAAw2JxzTvLAA8nixSsf3bxj8ol3Jc01SXkDjiwVKrxbSJbWJ209POvU6cmXn9kuqavbgEkAAAAAAAAAAAAAAAAAAADYWIleAwAAAAAAwCDQXmpPmpqSSZOSm25K2lYlqG/fIfnge5PW5d8dLBU2LHxdLiQtFaLZy+qTtkLlM97+TPKtGdt1fLHVVhswBQAAAAAAAAAAAAAAAAAAABsr0WsAAAAAAADYxDU1N+WUK07IDWcdmNx8c1JelaW+Z4vkjDOTlrW+M1i18HVd1+Hria8kt+1bzA07L+t4sO++GzABAAAAAAAAAAAAAAAAAAAAG6vagR4AAAAAAAAA2HBPv/Z0Pn7LeXnkL3flob3akmeSSU90rE1vTN59brK0rvN3S4WkWE66aFR3qVxIWmqT+rbO311WlzS0J7Xtq57t81py324d5e2LjliQJJm0//7reTMAAAAAAAAAAAAAAAAAAAAbM9FrAAAAAAAA2ET9x33/kQt+fUEK5WTbto6I9UUndqy9+cnkmA8li+orn7HB4eskzbXJkK7C1zVJfZL69mTXuclD41ftKhWWh6+3npNJ63kvAAAAAAAAAAAAAAAAAAAAG6/iQA8AAAAAAAAArL8VweuUOwLUr47oeF4qJB84ODnk40lTQ8/OKhWS0gbO0VyblLsoZrfUJGObkmlDkhTW3FQaUp+L7vlybphxwwbeDAAAAAAAAAAAAAAAAAAAwMZG9BoAAAAAAAA2MSuD16tZEb5e8FoyfEwyd1hHzLqnyr0JX9ck7Z3ctfWi5ImaZOiWnbw0bFhK5VJ+/PCP015q38CbAQAAAAAAAAAAAAAAAAAA2JiIXgMAAAAAAMAmZI3gdXnNtXKSrbdI5g9LCumIXq93+Ho99q+uda3w9ZZLkqWtyfDOgtc1NcmQIZm47cRcdepVqSnWbNilAAAAAAAAAAAAAAAAAAAAbFRErwEAAAAAAGATUSl4nSS7vZa8OrIjeJ3yBoavl7/TyfHdWhG+3mJZMuL1pLmz4HWSjByZidtOzDWnX5PGIY0bcBMAAAAAAAAAAAAAAAAAAAAbI9FrAAAAAAAA2AR0F7ze55XkpVGrvl4nfL0e3xksJylvYPi6pj0Z+3Iya5fVHhZWq24PHZqJ4w8VvAYAAAAAAAAAAAAAAAAAABiERK8BAAAAAABgI/fjaT+uGLw+4PnkmTHrPl8jfJ3qh6+HtCf7PZM8v/vagyyPXtfUZOKufyV4DQAAAAAAAAAAAAAAAAAAMEiJXgMAAAAAAMBG7IqHrsiHb/lwxxedFKgPeTZ5fPuu49Rrh6/bqxS+rm9P/vvq5ONPJ8XOXqipycTdjsg17/254DUAAAAAAAAAAAAAAAAAAMAgVTvQAwAAAAAAAACde3X+q/nQzR/q+KKTkPRhTyfTxi9fLmRl3HpthSTlclJYHrBuLyY1pZ7NUF55QOdnJ0ltKfneLck7X1717KITk1IhHZeuCF5/4CbBawAAAAAAAAAAAAAAAAAAgEGsONADAAAAAAAAAOta2rI0w4YOS7FQ7DR4/bbpq4LXK5QLnW5N0hGsLpRX9qvTvh7fKSxXOLumnHzj18nZT616NumJ5JJfJcVykqFDM3HC2wSvAQAAAAAAAAAAAAAAAAAANgO1Az0AAAAAAAAAsKYZs2dk4mUTM7phdLapHZVXW+auEZw+5s/JHyd0/m55edW60MXZhfKqfe3Fjmh1l6Xs1c9d/k5xtbOL5eSLU5KPPL7u/klPJDn7rPx4t6ZcdepVgtcAAAAAAAAAAAAAAAAAAACbAdFrAAAAAAAA2IisCF63llrz+pLXM6Q12XZZ8uqIjvD0cQ8nf9in8hndhq/TsV4uJO2FpGb51z1RWi18/Q93JZ95sIuNJ52USV+8Ku8utaemWNOzwwEAAAAAAAAAAAAAAAAAANikiV4DAAAAAADARmL14HWSpJw01yZzG5JtFyUTnknu6CZ4vcL6hK/bCsu/cbge4evz70suvruLDWPHJpMnJ4ngNQAAAAAAAAAAAAAAAAAAwGakONADAAAAAAAAAJ0Hr1dork0mPJXcPaHHXeqOIwqV9xeSFJZvaCssD2X3wLunJ9+Z2sXisGHJ1KlJY+N6TAoAAAAAAAAAAAAAAAAAAMBgIHoNAAAAAAAAA6xS8DpJjpie3LNPUuphlHp16xO+bu9B+PrYvyRX39LF4rBhyZQpyT77rP+gAAAAAAAAAAAAAAAAAAAAbPJErwEAAAAAAGAAdRe8PnBaMm3XpK0X39nrq/D1YTOTW37exSFbbpncf39y2GEbPigAAAAAAAAAAAAAAAAAAACbtNqBHgAAAAAAAAA2VzNmz8j+l+2ftlJbx4O1ytQTpydPTuhd8HqFcqHj/C561h3Pyx372gtJTVaFsJNkv1eTqZO7eHm33ZJp05LGxt4PCgAAAAAAAAAAAAAAAAAAwCarD/7zeAAAAAAAAGB9dRe83n568szOSWsf/hjbcmGda9ZQyKrQdXtheSg7yZ5zkvuu7OSFYjHZe2/BawAAAAAAAAAAAAAAAAAAAJKIXgMAAAAAAEC/W9qyNBMvm9hl8Lp2drJ4fNLch8HrFcqFyvHrtcPX2y1MHv5RJxtra5OJE5NbbxW8BgAAAAAAAAAAAAAAAAAAIInoNQAAAAAAAPS71nJrRjeM7vhi7fr0G0njkGRJXfXuLydJD8LXoxcnX/xZF5t23z256aZkxx2rMiMAAAAAAAAAAAAAAAAAAACbHtFrAAAAAAAA6EdNzU058/ozU1OsyZDCWmXrN5Jta5JFQ6o/RzlJuUL4eoulyaK5yZc+lNwwYa3F0aOTO+8UvAYAAAAAAAAAAAAAAAAAAGANotcAAAAAAADQT1YErx959ZGkXM6Wi0sZ0rZqfVwhmTcsKSQpdFWj7mOdha9HNCeLmpMttklKheSiE1cLXzc0JNdem4wZ0z8DAgAAAAAAAAAAAAAAAAAAsMmoHegBAAAAAAAAYHOwRvC6uTmZPz8plbJlezK3IdlhTvLyqFX7C0lS7ohSV1u50HFXIcnQ1mTEi8mc/ZJlSbZdtCp8nWIxk972oeS446o/FAAAAAAAAAAAAAAAAAAAAJuc4kAPAAAAAAAAAIPdyuD1rIeTefOSuXOTUmnl+q6vrxm8XqGQpFDunxnLhaSuLdn12eSF/ZY/S/LqiI7flwrJRe+qyQ0fOaJ/BgIAAAAAAAAAAAAAAAAAAGCTI3oNAAAAAAAAVbQyeP3Sg8nrryfLlq2xvtW85NkxXb/fX+Hr2lKyx5PJtP3XfL4yfF1Tk9KWo/PjJ69Oe6m9+gMBAAAAAAAAAAAAAAAAAACwyRG9BgAAAAAAgCppL7Xn7F+cnUdmPpC88UZSKq2xPu715Kmx3Z9TSFKsYvi6tpQc9Gzy0EGdr5eTvDqsPRN3OChXnXpVaoo11RsGAAAAAAAAAAAAAAAAAACATZboNQAAAAAAAFRJTbEm5445LsU35iTlNavVe7yc/HmH9TuvWE4KfRy/riknb56e3LVPhU2FjvD19477XhqHNPbtAAAAAAAAAAAAAAAAAAAAAAwaotcAAAAAAABQLU1NmXTOv+aSX5VTXC1WPeHF5N6dN+zIQvoufF1I8tbHkzsO6mZTkh+88wfZY5s9+uZiAAAAAAAAAAAAAAAAAAAABqXagR4AAAAAAAAABq13vCN59dVMejVJObnoxGS/Z5PfT+jdsYV0nFcu9O6ct05PftvD4PXfHfp3vbsMAAAAAAAAAAAAAAAAAACAQa840AMAAAAAAADAoNPUlBx/fHLffSsfTXoiOfGh3gevVygkKZQ3/P2jnkx+d0A3F0TwGgAAAAAAAAAAAAAAAAAAgJ6rHegBAAAAAAAAYFCZOTM5+eTkoYfWePyvb07+57C+vaqQJOWkXFi/997yl2TKm7o7WPAaAAAAAAAAAAAAAAAAAACA9SN6DQAAAAAAAH3lxReTd70refzxNR5/Z//k4mOSUhWuXN/w9WHPJn/ZqeO9cpcHCl4DAAAAAAAAAAAAAAAAAACw/ooDPQAAAAAAAAAMCk1NyXvfmzz9dNLevvLxf+6VfO6kpLWmelcXkhQ6LVivaeJLyZ0TkrkNybaLVvat1zwogtcAAAAAAAAAAAAAAAAAAABsGNFrAAAAAAAA6Atf+lLy2GPJ0qUrH920U3LRpKS0PCbdXkwnpem+0V34ep9ZyQO7dvy+ubaT8PXy3/zXu/5L8BoAAAAAAAAAAAAAAAAAAIANInoNAAAAAAAAvXXjjcmPfpQsXLjy0e1bJu973/LQ9WraC+n38PUus5NHxq/5bGX4enEhheXz/OTdP8m5B51bneEAAAAAAAAAAAAAAAAAAAAY9GoHegAAAAAAAADYpD37bPL+9ydLl6589ODo5N0fSVprOn+lvdDx02k7C1T3ViFJykl5ech6+/nJUzt0vre5NplbW8y2I8Zmv633ywcmfqDvBwIAAAAAAAAAAAAAAAAAAGCzIXoNAAAAAAAAG+rFF5Mjj0wWL1756NlC8vaPJC3dfCeu1A/h67GLkxfGVt7bXGjPflvvl+vPvD41xS4q3QAAAAAAAAAAAAAAAAAAANADxYEeAAAAAAAAADZJL72UHHZYMmvWykfzkhz46WRZXc+OKBWScqE64221OHmp1M2mQnLkTkfm+jOvT+OQxuoMAgAAAAAAAAAAAAAAAAAAwGZD9BoAAAAAAADW18yZyZvfnLz++spH85Ls/ulkSf36HVWN8HXjsuSVUpKtKmxaHrz+5Vm/FLwGAAAAAAAAAAAAAAAAAACgT4heAwAAAAAAwPp48cXk6KM7gtfl8srHEz6RNA3ZsCNLhY5/+sLwlmR+awSvAQAAAAAAAAAAAAAAAAAA6Hei1wAAAAAAANBTTU3JGWd0hK9XM+7vk7nDend0uQ/C10Nbk4XNSavgNQAAAAAAAAAAAAAAAAAAAANA9BoAAAAAAAB66ktfSp56KmlrS8rlpFzObh9LXuujdnRvwtf1bcmuzyTFURU2CV4DAAAAAAAAAAAAAAAAAABQRaLXAAAAAAAA0BO33JL8138l8+atDF7v95HkxS379poNCV/XtSf7zEhm7ZZsuSwZ0tbJJsFrAAAAAAAAAAAAAAAAAAAAqkz0GgAAAAAAALrzta8lp5ySLF688tGBf5s8ObY6161P+Lq2lBz2VPLihFXP1glfF5ItG7bMze+9WfAaAAAAAAAAAAAAAAAAAACAqqkd6AEAAAAAAABgo/XSS8nf/E3y5z8n5fLKx4d9IPnzDh2/L5STHvap18uK8HWx1PWemnJy5J+TP++77tqWrTWZW19Mc7k1R+50ZG5+780ZPXR0FSYFAAAAAAAAAAAAAAAAAACADqLXAAAAAAAA0Jl7702OOy5ZsmSN4PXx70ke2GnVtnIhSbXC10lKxc7D18VycsxjyYOdBK9TLCZbb50tC4Xst/V+uf7M69M4pLEKEwIAAAAAAAAAAAAAAAAAAMAqxYEeAAAAAAAAADY6f/pTcvTR6wSvT313cvue624vFzoC1dVQTtLeyXf1jn08eXBCFy+NGpUUCpm47UTBawAAAAAAAAAAAAAAAAAAAPqN6DUAAAAAAACs7qWXkuOPT5YtS0qlldHrD52Q3PSmrl+rZvg6WRW+LiQ584HkoU7i20mShoZkyJBM3HZirjn9GsFrAAAAAAAAAAAAAAAAAAAA+o3oNQAAAAAAAKzu0EOTRYtWxq6T5FNHJf99SPev9kf4+n0PJVf+LrnkV0lx7cuKxWTUKMFrAAAAAAAAAAAAAAAAAAAABoToNQAAAAAAACTJSy8l222XzJq1xuPrd06+99aex6yrGb4+4cnkx7d2/H7SE52Er8eMycTtDhC8BgAAAAAAAAAAAAAAAAAAYECIXgMAAAAAAMC99yYTJiSvvrrG4/u2Sb79tqRx0fodV43w9ZHPJf/78zWfrRG+HjMmE8cdLHgNAAAAAAAAAAAAAAAAAADAgKkd6AEAAAAAAABgoLSX2lNz733JsccmS5eusfbEqOTvT0oW1Sc7LUlmtSdvbNHzs8uFJOWk0AdzTnwlmfqzztcmPVVMLvhofrzVzFx16lWC1wAAAAAAAAAAAAAAAAAAAAwY0WsAAAAAAAA2S03NTTn7qtNy7iV3ZtKy5jXWnh+anHtKR/A6SVpqkm2bk5r5yWujen5HX4Sv93gjeeCKLhbr6pIPfziTLvpB3l1qT02xphc3AQAAAAAAAAAAAAAAAAAAQO+IXgMAAAAAALDZaWpuypnXn5lHnvp9HjqmLVmWTHqiY+3VhuSD70nmN6z5TmtNslVrUjMveWV0z+/qTfh6p7nJ9B92sdjQkBx0UPJv/5YkgtcAAAAAAAAAAAAAAAAAAAAMONFrAAAAAAAANisrg9dP35m0taVUSC46sWPt6CeTs09P3hjW+bttxWR0e1IzJ5k5pud3lgtJuZwU12PObRYmz1zWxWJtbbLXXsnVVyeNjetxKgAAAAAAAAAAAAAAAAAAAFSP6DUAAAAAAACbjXlL5+WsX5yVR15+MFm0aOXzUiH5u0OS/Q9IZo2ofEZbIRleTnZ5I3l+q6Tc08sLSamH4evRS5OXLulisaYmmTgxueGGZMcde3o7AAAAAAAAAAAAAAAAAAAAVF1P/pt6AAAAAAAA2OS91PRS9vr+Xrn3xT8lb8xZY23Z68mBrcnMUd1HrMvpiGQPSbLzG0lhfYYodLxbSWNz8uS/d/V+IfnAB5IpUwSvAQAAAAAAAAAAAAAAAAAA2OiIXgMAAAAAADDovTD/hRx4+YGZs3ROFjQvyLJiaY31o5Ymz49e9XVX4evVn5cKyZBCsuur6xm+Ttfh62EtyYPfTkZ3tlgsJl/5SvKTnySNjet5IwAAAAAAAAAAAAAAAAAAAFSf6DUAAAAAAACD2ozZM7LHJXtkzpI5SamclJMFQ5JltR3rRz6TPLXVuu+tHb7uLIRdSlJbl+zxclLsqpTdhbXD1w2tyUPfSnbu7JyhQ5MLL+yIXgMAAAAAAAAAAAAAAAAAAMBGSvQaAAAAAACAQWvG7BmZeNnEtJZaU0455fKqovSCIcnRTyaPbtv1++W1fu1qT6Eh2bMX4ev6tuT3P0p2Xfv9QiGpq0sOOCD56lfX73AAAAAAAAAAAAAAAAAAAADoZ6LXAAAAAAAADErPzn12ZfA6SVJOyoVVAesP3pdMG9f9OT3pWJeTlIcme76S1LSv35zFUnLzj5KD5y1/UCgkxWLHP4VCsvPOyTXXJI2N63cwAAAAAAAAAAAAAAAAAAAA9DPRawAAAAAAAAadGbNnZMKlE9YIXq9QLiR/e09yz859e2c5Sakh2fu1pLaH4etiObnsF8mxc1d7WCis+v022yS3357suGNfjgoAAAAAAAAAAAAAAAAAAABVUTvQA8DGprm5OU899VReeumlLFy4MEuWLMmwYcMycuTIjBs3LnvttVfq6+sHekz6yZw5c/LEE09kzpw5WbhwYdrb2zNy5MhsscUW2WOPPbKjyAgAAAAAwEZnxuwZmXjZxI7gdXnd9fPvTO7Yo3r3twxJ9nwt+cvYpKXCd+MKSb5+S/Khp1Z/uFbw+r77knHjqjUqAAAAAAAAAAAAAAAAAAAA9CnRa0hyzz335MYbb8yvf/3rPP7442lvb+9yb01NTfbdd9+ceOKJOfnkk/OWt7ylHycdeK+//noeffTRPPbYY3n88cfz5JNPZs6cOZk/f37mz5+fZcuWpaGhIcOHD8+2226bHXbYIfvss08mTpyYt73tbdlpp50G+o9Q0ZIlS3LTTTfll7/8ZW6//fa8+uqrFfePHDkyRx55ZE466aScdtpp2XbbbftpUgAAAAAAOtNd8Pqjf0z+sGf152gbkuw2O3l2q6S5bt31QpJ/ui355KOdvFxTk4wfn0yZIngNAAAAAAAAAAAAAAAAAADAJqVQLpc7+c/9YfNw9dVX5xvf+EamTZu2wWccfPDB+exnP5szzzyzDyfbeMyZMydTp07N7bffnilTpuSpp57q1Xl77bVX3ve+9+Wcc87Jzjvv3DdD9oF58+blG9/4Ri6//PLMnTt3g86or6/PmWeemc9//vOZMGFCH084uOy7776ZPn36Os/32WefPP744wMwEQAAAAAwGLww/4XscckeXQavP7Y8eN2f3xwb0ZJMH5Msq1/1rJDk43ck3/5jJy+MHp3stVdy7bXJjjv215hUib8PBwAAAAAAAAAAAAAAAAAANjei12yWnnjiiXz0ox/NHXfc0Wdnvv3tb89ll12Wvfbaq8/OHCgzZ87Mddddl2uvvTb33XdfqvE/EzU1NTnzzDPzla98JXvuuWefn78+fvrTn+Yzn/lMZs+e3Sfn1dfX59Of/nS+8pWvZMiQIX1y5mAj8gEAAAAA9LWXml7KgZcfmDlL5nT699ofuTP5025Je7H/Zios/3VYa/LUqGRxQ8fXH3wg+cmtnbwwYkTy4Q8nF1+cNDb205RUk78PBwAAAAAAAAAAAAAAAAAANjf9+J/1w8bhF7/4Rd785jf3afA6SX7/+9/nkEMOyQ033NCn5/anSy65JIcffnjGjx+fT3/607n33nurErxOkvb29kyePDlvetOb8pWvfCVtbW1VuaeS5ubmnHvuuTnnnHP6LHidJC0tLfl//+//5a1vfWteeeWVPjsXAAAAAIDOzVs6LwddflDmLpmTQqm8Mja9wvvuSe4doOB1kiypS3ZfkIxcmpz8aBfB62IxmTw5+c53BK8BAAAAAAAAAAAAAAAAAADYZIles1m59NJLc/rpp2fRokVVOX/RokU57bTT8oMf/KAq51fbZz/72fzpT3+qWui6My0tLbn44ovz9re/vV8D0UuXLs0JJ5yQn/zkJ1W747777sub3/zmPPPMM1W7AwAAAABgc9fU3JSzfnFW2lqbk1LH328Xyqui06fenzy+U9I6QMHrFZbVJl//XfKLmzt7oZB89avJu95V7dEAAAAAAAAAAAAAAAAAAACgqkSv2WxceeWVueiii6oedC6Xy/n7v//7/PSnP63qPYPNXXfdlSOOOCLPPvts1e9qbW3NpEmT8oc//KHqd73yyis59thj89JLL1X9LgAAAACAzU1Tc1POvP7MPDLr4TTMW5gtmletFcrJ8dOSZ7dPWmr6b6bOgtdJcs7Dyfl/XntzISkWk4kTk3/6pypPBgAAAAAAAAAAAAAAAAAAANVXO9ADQH+47777ct555/UoeH344YfnrLPOyuGHH56dd945I0eOzMKFC/Pss8/m7rvvzlVXXZV777234hnlcjnnnXde9t5777z5zW/uqz/GRmerrbbKgQcemF133TU77rhjRo4cmbq6usybNy9z5szJ448/nrvuuiuLFi3q0XnPP/98jjnmmNx7773ZZpttqjb3Zz/72dx6663d7hs2bFhOO+20nHzyyTnooIOyzTbbpKamJnPmzMmjjz6a2267Lf/zP/+T1157reI5L7zwQk477bTceeedqaur66s/BgAAAADAZq291J73Xv/ePPLqI8mcOUm5nIa2jrUFQ5KjpyezxybL+vG7YV0Fr097PPncPZ29UEiGD09uuaWaYwEAAAAAAAAAAAAAAAAAAEC/KZR7UgGGTVhTU1MOOOCAPPfccxX37bHHHvmP//iPHHvssd2e+dvf/jYXXHBBnnnmmYr7dtlllzz88MNpbGxcr5kHSkNDQ5qbm7tcHzp0aE444YS8853vzHHHHZddd9212zPb2toyderUfP3rX8/vfve7Hs1x+OGH54477khNTU2PZ++pm2++OSeffHK3+84+++x84xvfyHbbbVdx39KlS/PNb34zF198cdra2iru/dSnPpVvfetb6zXvYLXvvvtm+vTp6zzfZ5998vjjjw/ARAAAAADApmbG7BnZ/7L9U1sqZPTC1jXWdnsiad46WdjQ/3OtHb7+66eTb9/e2cZC0tCQTJ2aHHZYf4zGAPD34QAAAAAAAAAAAAAAAAAAwOamONADQLV9+ctf7jZ4fdxxx+X+++/vUfA6SY4//vg88MADOfrooyvue+655/LP//zPPR11o3XEEUfkiiuuyGuvvZYbbrgh559/fo+C10lSW1ubd7zjHbntttsyderUbL/99t2+c/fdd1clDr148eJccMEFFfcUCoV8//vfz//8z/90G7xOOkLgX/rSlzJlypRu4+bf+c538tBDD63XzAAAAAAArGvG7BmZeNnEtJXasqzcmnmrxa13fTqZvWPyamMyED/5dfU7j3yhi+B1kgwfLngNAAAAAAAAAAAAAAAAAADAoCN6zaA2ffr0XHrppRX3/NVf/VVuuummbLHFFut19qhRo3LLLbfk0EMPrbjvkksuyYwZM9br7I1BbW1tPvjBD+ahhx7KnXfemXPOOScjR47s1Zlvf/vb8/DDD+fwww/vdu9Xv/rVvPHGG726b21f+9rX8vLLL1fc8+1vfzsXXnjhep991FFH5Ve/+lXq6+u73FMqlXLRRRet99kAAAAAAKyyInjdWmpdWZheVpvMa0iGz07mbZs0DUnaCsniIUlpAGYsJzl4VvLDX3exYbvtkhkzBK8BAAAAAAAAAAAAAAAAAAAYdESvGdT+5V/+JW1tbV2ub7nllrnmmmsybNiwDTp/+PDhufbaazNq1Kgu97S1teXiiy/eoPMHQm1tbc4777w89dRTufLKK3PAAQf06flbb711brnllkyYMKHivoULF+a73/1un907Z86cbs87/fTT84lPfGKD7zjiiCPy9a9/veKeu+66K7feeusG3wEAAAAAsDnrLHi9QnF+MrQumTd01bP2JEsGIHy91+vJqU92sbjttskrryTjxvXrTAAAAAAAAAAAAAAAAAAAANAfRK8ZtJ599tn8/Oc/r7jnq1/9anbcccde3TN+/Pj8y7/8S8U91113XZ5//vle3dMfJk2alMceeyw//OEPs8suu1Ttni233DI33XRT6urqKu678sorUyr1TYrk+9//fpYsWdLl+siRI/P973+/1/d8/OMfz8EHH1xxT3dhbAAAAAAA1lUpeJ03kr0XJ2+MWPe9leHrQn9Mmew8L7ljeHLRickNa//8x+HDk/vv759BAAAAAAAAAAAAAAAAAAAAYACIXjNoXXrppWlvb+9yfY899sj555/fJ3ddcMEF2XXXXbtcb29vz6WXXtond1XTz372s+y11179cteee+6ZCy64oOKemTNnZtq0ab2+q62tLT/4wQ8q7vnMZz6TbbbZptd3FQqFbqPWU6ZMyWOPPdbruwAAAAAANhcVg9dLkrcsTF7Zouv325Msqa9++Hrc/OTe+qRhbMdda4Sv6+uT229Pxo2r7hAAAAAAAAAAAAAAAAAAAAAwgESvGZTa29vzs5/9rOKeT37yk6mpqemT+2pra/Pxj3+84p7JkyenVCr1yX2DxWc+85lu9/z+97/v9T2//e1v8/rrr3e5PnTo0Fx44YW9vmeFY445JgceeGDFPVdddVWf3QcAAAAAMJhVDF4nedsryQujuz+nPcni+qStSuHrsYuSmXUdwesVVoav9y4kU6Ykhx1WncsBAAAAAAAAAAAAAAAAAABgIyF6zaA0ZcqUzJo1q8v1hoaGvP/97+/TO88555zU19d3uf7KK6/0ScB5MBk3blwmTpxYcc+jjz7a63u6C0yfeuqpGTNmTK/vWd15551XcX3y5MkplzupswAAAAAAsFJ3wetjn0ie2qrn55WSLKlP2vr4O2SjlySLFydNY9ddKxWSi84enRu27PqHMwIAAAAAAAAAAAAAAAAAAMBgIXrNoHTLLbdUXD/ppJMycuTIPr1z1KhReec731lxT3dzbY7e+ta3Vlx/9tlne3V+qVTKr371q4p73vve9/bqjs685z3vSW1tbZfrL774Yv785z/3+b0AAAAAAIPF0palOeDyAzqC151452PJ9G3X/9xyksV1fRe+blyWlJYkD70pWbb2XwsXCsnw4Sk1DMmPH/5x2kvtfXMpAAAAAAAAAAAAAAAAAAAAbKRErxmUfve731VcP+mkk6pyb3fn3nbbbVW5d1O27baViyTz58/v1fkPPPBAxTOGDBmSY489tld3dGarrbbKoYceWnGPzwMAAAAAQNeG1g/Nibuf2PFFec21SQ8nD4/r3fmL65LWXn6nbERLUjs3uX+fjq8XDFkevi4UkmIxqa1NRo7MxG0n5qpTr0pNsaZ3FwIAAAAAAAAAAAAAAAAAAMBGTvSaQWfWrFmZMWNGxT3HHXdcVe5+xzveUXH98ccfz6uvvlqVuzdVW2+9dcX1pUuX9ur822+/veL6EUcckaFDh/bqjq5093noLs4OAAAAALC5u+G9N+SU9r3WeHb6tOSenfvm/CV1ScsGdqgb2pLtZiV3H7hmk3tl+LqmJhk9OhO3OyDXnH5NGoc09sXIAAAAAAAAAAAAAAAAAAAAsFETvWbQue+++yqu77jjjtlxxx2rcvfOO++c7bbbruKe+++/vyp3b6qWLFlScb2hoaFX53f3eTjiiCN6dX4lhx9+eMV1nwUAAAAAgO7d8ONFOeWJjt+/777krl379vyltesfvq5vT3abmdxyaMfX5cLa4etyljUOy8QdDhK8BgAAAAAAAAAAAAAAAAAAYLMies2gM23atIrrBx10UFXvP+SQQyquP/TQQ1W9f1Mzc+bMiuujR4/u1fkD+Xno7rMwd+7cvPjii1W7HwAAAABgkzdtWjJrVm64rpiP3ZH8fs/qXLO0NlnWw/B1XSnZ77nk529Z8/nK8HWhkBSLqa2tz+RTJwteAwAAAAAAAAAAAAAAAAAAsFkRvWbQefjhhyuu77///lW9v7vzRa/X1F2Uerfddtvgs3sSla7m52HLLbfMDjvsUHGPzwMAAAAAQAXXXZckuXT/Un75pupe1dyD8HVNKTnwuWTyEZ2vl4sd8esth26ZaR+dltFDe/eDHQEAAAAAAAAAAAAAAAAAAGBTI3rNoPPUU09VXN9jjz2qev/uu+9ecf3pp5+u6v2bkgULFuSuu+6quGe//fbb4PO7+3ddV1eX8ePHb/D5PeHzAAAAAACwAV55JbnxxuTqq3PlhFL+7a1JW6H61zbXJstqO18rJHnzs8lPD+/i5eXz1RZr88B5D2Rc47hqjAgAAAAAAAAAAAAAAAAAAAAbNdFrBpVyuZznn3++4p7uIsS91d353c23Obn++uvT0tJScc/b3va2DT7/ueeeq7i+yy67pKamZoPP74nuPg/dzQgAAAAAsNlobU1uuSU5/fTkkEOSCy7IDcXn8+Xj+id4vUJzTbJ0rfB1IclfPZNccUQXLy2fr65Yl0c+9kjGj6ruD1wEAAAAAAAAAAAAAAAAAACAjVVt91tg0/Haa69l2bJlFfdsv/32VZ2hu/MXL16c119/PWPHjq3qHBu7crmc7373uxX3bL/99jn44IM3+I7uAuPV/iz05A7RawAAAACAJLfdlnzxi8nMmSsfTamflU+dlLT2Y/B6hZaapFxIhrZ29Kzf8mzy48Mrv7MieL331nv3y4wAAAAAAAAAAAAAAAAAAACwMRK9ZlB55ZVXut2z7bbbVnWGnpz/yiuvbPbR66uvvjqPPvpoxT1nnXVWisXiBt/R3eeh2p+FntzRk88sAAAAAMCg1dSUfOlLyXXXdXzd3p60tubu2nk579SkecP/irjXWotJ6pOjn0qufEtH/Lrc2cZCR/D6iQufyK5b7tq/QwIAAAAAAAAAAAAAAAAAAMBGRvSaQWXOnDkV1xsbGzNkyJCqzjBs2LCMGDEiixYt6nJPd3MOdosXL84//dM/VdxTW1ubv//7v+/VPd39e+6P8Pg222xTcX1z/ywAAAAAAJuxmTOTM89MnnsuaW5Oli5NWloyvbGUD70nWboRfBfrwBeT/z604/eFcpLCWuHr5cHrRz72iOA1AAAAAAAAAAAAAAAAAAAARPSaQWbu3LkV1xsbG/tljsbGxorR6+7mHOw+97nP5YUXXqi454Mf/GDGjx/fq3s2hs9Dd3ds7p8FAAAAAGAz9eKLySmnJC+8kCxcmLS3J0nm1pbylWOSQmlgx0uSg15O7tst2aI5WbD852muHb5eEbzee+u9B2pMAAAAAAAAAAAAAAAAAAAA2KiIXjOozJs3r+L6yJEj+2WO7u7ZnEPHv/3tb/ODH/yg4p6RI0fma1/7Wq/v2hg+D93dsWTJkjQ3N2fIkCFVn6UnLr300m7//9MXnnnmmarfAQAAAABspJqaktNPT558Mlm2bOXjubWlXHRiMndYssOipFhO5jcMzIh7v55MW/5zGRvaOn5dO3xdWyN4DQAAAAAAAAAAAAAAAAAAAGsTvWZQWbZaHKMzw4cP75c5RowYUXG9uzkHq5dffjnvf//7Uy6XK+67+OKLs+222/b6vo3h89DdZyHpmHNjiV7Pnj0706dPH+gxAAAAAIDB7BOfSB5+OGlvT5b/ffGilPOpE5JXV/sr1e0Wd4Sv5w7t3/F2nZvcvWsyerW/Yl47fD2mYcs88LFpGT9qfP8OBwAAAAAAAAAAAAAAAAAAABs50WsGlZaWlorrtbX985Hv7p7u5hyMWlpacsYZZ2T27NkV9731rW/Nxz/+8T67s5L++Dz05I7N8fMAAAAAAGymrroq+elPk1JpZfC6JcmnTkpmbrHu9m2WJMVS8kb//EzLjJuf3NWYpDaZ19B5+Lq2cYtMu+CRjGsc1z9DAQAAAAAAAAAAAAAAAAAAwCakONADQF/aGCLHPblnc4wcf/SjH83dd99dcU9jY2OuuOKKFIt98z9NG8PnQfQaAAAAAGC5OXOSj3wkaW9fI3j92eOTZ0Z3/drWy5KtFld/vG0WJfePSLJVx9fLloevV3fYVhPz5CefE7wGAAAAAAAAAAAAAAAAAACALoheM6iUSqWK6zU1Nf0yR3f3tLe398scG4uvf/3rueKKK7rdd8UVV2SXXXbps3s3hs9DT+7Y3D4PAAAAAMBmqKkpefObk2XL1nj8+WOTx8ZWfrWUZMyyZOyi6o03ZknyVENWBq9XWD18PXH7g3LNRXdk9NAKhW4AAAAAAAAAAAAAAAAAAADYzIleM6jU1tZWXG9ra+uXObq7p66url/m2BhMnjw5//iP/9jtvk9/+tOZNGlSn969MXweenLH5vR5AAAAAAA2QzNnJocdljz33BqPv/y25KHtKr+6+o82HN2cbLsgKfTxeI3NHU3uJVt1vr6sNilttVWuuXBqGoc09vHtAAAAAAAAAAAAAAAAAAAAMLhULsLCJqa+vr7ien9Fr1tbWyuudzfnYHHrrbfmb//2b1MulyvumzRpUr7+9a/3+f0bw+ehu89CsnF9Hrbeeuvss88+Vb/nmWeeSXNzc9XvAQAAAAAG2IsvJm95SzJr1hqP//Wvkrt2rPxqqZNnW7QlxQXJrMak3Af16xHNyfB5yZMTKmwqJHNbF6Su4AcYAgAAAAAAAAAAAAAAAAAAQHdErxlU6uoqBydaWlr6ZQ7R6+Suu+7Kqaee2u2/i6OPPjo/+9nPUiwW+3yGjeHzsKlFry+88MJceOGFVb9n3333zfTp06t+DwAAAAAwgGbMSA45JFmyZI3HFx+R3LZbUt9Z1Xo1xXQevh7ZlhSaOsLXpV6Er4e1JaNeSe4/sMKmQlJXrMsjH3skQ+uHbvhlAAAAAAAAAAAAAAAAAAAAsJno+8osDKARI0ZUXF+0aFG/zLFw4cKK693Nual7+OGHc9JJJ2XJWiGTtR166KG5+eabM2TIkKrMsTF8Hrr7LBQKhQwbNqzqcwAAAAAA9Kt7700mTlw3eH14csPeybK6pLmm+2O6+kbWiLZkXFNSLG/YePWlZOdXex683nvrvTfsIgAAAAAAAAAAAAAAAAAAANjMiF4zqGy55ZYV15uamvplju7u6W7OTdkTTzyR448/PgsWLKi4701velN+/etfVzUAvjF8Hrq7Y4sttkhNTQ/KLgAAAAAAm4D2Unvypz8lb31r0tq6xtp3Dkmu3j9prk3aih2/dhW+Lq32+66+mTW0LdlxblKznuHrulKy/1+S2/ersEnwGgAAAAAAAAAAAAAAAAAAADaI6DWDypgxYyquz58/v1/m6C743N2cm6rnnnsuxx13XGbPnl1x3x577JHbbrut6vHvjeHz0N0dg/WzAAAAAABsfpqam3LKFX+dGy44OmlpWWPtP/dP/vOQVV831ySty8PXy2rXPKe01q9J19/Qakgybm5S28PwdV05efdDyS2HVtgkeA0AAAAAAAAAAAAAAAAAAAAbTPSaQWWrrbaquN7c3Fz10PHcuXPTslbMY22DMXT88ssv59hjj83LL79ccd/48ePzu9/9Lttss03VZ+ru8/Dqq69WfYbu7hiMnwUAAAAAYPPSXmrPvKXzcub1Z+bBp36fi45pzg0TVq3/ZJ/kO4cna3epW5aHr1tqkqW1SXvWDF0nPQ9f7zQ3qWuvPGdtOfnylOSSu4s55YkuNgleAwAAAAAAAAAAAAAAAAAAQK/UDvQA0Jd22mmnbve89tprGTVqVNVmeO2117rd05M5NyWvvfZajj322Dz33HMV92233Xa5/fbb++3P3909Pfn/VW91d8f48eOrPgMAAAAAQLU0NTfl1GtOzf2v3J+a5tY0tLWlVEguOrFj/ZX65P++PRnSnjR0EqVuqUnKhY4gdilJQ1tSWGtPKauC18WsG8ZOkrokO81PXhqVNNesu15I8uk7kw8/1nHIDdcVM+k9pdw4YbUNEbwGAAAAAAAAAAAAAAAAAACA3ip2vwU2HSNGjMiYMWMq7nnhhReqOsPzzz9fcX3s2LEZPnx4VWfoT3Pnzs073vGOPPnkkxX3bb311rn99tuz22679dNkyc4771xxvdqfhaT7z8Muu+xS9RkAAAAAAKqhqbkpJ199cqY8NyVNzU2ZX16aZct/3GqpkNywffLldyRL65OltcnSTmLUSdJS7Ihft9UkS+s6AthrWz103dU3t+rTEb4e2rbm80KSj92X/MO0NZ/fcNe4nJK9BK8BAAAAAAAAAAAAAAAAAACgD4leM+h0FxF++umnq3r/X/7yl4rrgylyvGDBghx//PF59NFHK+4bPXp0brvttuy9d/+GQrr7dz1r1qwsXry4qjNsTp8HAAAAAGDzsSJ4/Yfn/5Byyln+f5k/JFlWm7z9keRXB3TEr8tJmus6ni+tXTNqveL3rcWkuSZpK25Y+HrF17VJxi1IhrWuWvvAQ8mX/pSkWEx22SX53OeSBx9MZs7MDf/8RE7Z65TU19QLXgMAAAAAAAAAAAAAAAAAAEAfqB3oAaCv7bvvvnnggQe6XH/yySeren935++7775Vvb+/LFq0KCeeeGIefPDBivtGjhyZ3/zmN5k4cWI/TbbKHnvskfr6+rS0tHS558knn8xBBx1UlfvL5XK3kfXB8nkAAAAAADYf6wSvV1MuJIc+nkx5U9K+Wpl6Rfg6hY49Q1uzjrbV9i+p69izdty6lFXPimt9vUJtkh2aklcak+OfTv71zmJSX5uMGZP8+78nJ5+8xv4b3ntDlrYszdD6oT38NwAAAAAAAAAAAAAAAAAAAAB0Ze0OAGzyugsYP/TQQ1W9f9q0aRXXDzzwwKre3x+WLl2ad73rXbn77rsr7hs2bFh++ctf5tBDD+2nydZUX1/fbVS6mp+Hp59+OgsXLuxyvVAoDEgMHAAAAABgQzU1N+XdP3v3quB1OVm9e33UtOThPZLmmnXfLSdZVtuxtqg+a+WyO7QVk+bajmD20vqOqPXaVn/W1Te6apNccH9y6e3LdxSX/9rF31cLXgMAAAAAAAAAAAAAAAAAAEDfEL1m0Okuev3www+nvb29Kne3tbXlkUceqbhnU49eNzc355RTTsnvf//7ivuGDBmSm266KUcddVT/DNaF7j4PDz74YNXu7u7s3XbbLY2NjVW7HwAAAACgLzU1N+WkySflDy/8IeVyeZ1q9aEPJ8/s0nnwenXLapOWYrK4i/B1e2F5+LqQLOlB+LozxzybfPLB1b4NVlubHHlkst123bwJAAAAAAAAAAAAAAAAAAAA9IboNYPOIYcckoaGhi7XFy1aVLXQ8X333ZclS5Z0ud7Q0JCDDz64Knf3h9bW1pxxxhn57W9/W3FfXV1dfv7zn+e4447rp8m6duSRR1Zc7y7e3RtTp06tuN7dbAAAAAAAG4t5S+fl3T97d+588c5OS9W7PpbM2qkjUt0TLT0IXy+rTUrLw9fthXX3dBW+fstLyRfuXuthXV1yzjk9Gw4AAAAAAAAAAAAAAAAAAADYYKLXDDoNDQ054ogjKu657bbbqnL37373u4rrRx11VMUg98asvb09Z599dm6++eaK+2pra3P11VfnpJNO6qfJKusuvD1jxoy8/PLLVbm7u8/DO97xjqrcCwAAAADQl15qeim7X7J77njhjk4L1cNfS8rbJAuHrN+5LbVJc02yeEjnAevSauHrpXXrhq87+ybXgbOSr/2+k4Wdd06OP379BgQAAAAAAAAAAAAAAAAAAADWm+g1g1J3MeFf/OIXVbn3+uuvr7h+/CYa1CiXyzn33HNz3XXXVdxXLBZz5ZVX5tRTT+2nybo3bty4TJgwoeKeanwepk2blueee67L9UKh0G2QGwAAAABgoM1bOi8H/McBmbt0bsrlTorXryfbJZk3bMPOb63pCF8vqRS+Xh68XlKXtC0PX3f2Da4Js5P/e3snC/X1yde/ntTVbdiQAAAAAAAAAAAAAAAAAAAAQI+JXjMonX766RXXp02blieffLJP73zsscfy6KOPdrleKBS6nWtj9Xd/93f56U9/WnFPoVDID3/4w5x11ln9NFXPvec976m4Pnny5D6/s7sz3/a2t2Xs2LF9fi8AAAAAQF9pam7KGdefkQUtC5JOetd5Pdm7PXljRO/uaS0my2qSRV2Fr9MRvi4VkqXLf13bbvOSf781qV/xoLDapuOPT/wQQgAAAAAAAAAAAAAAAAAAAOgXotcMSrvttlve8pa3VNxzySWX9Omd3/ve9yquH3744dl555379M7+8MlPfjKXX355t/suueSSfPjDH+6Hidbf2WefXXH9nnvuyQMPPNBn9y1evDg//vGPezUTAAAAAMBAampuymnXnpY/vvDHlErt6aQznd0Lycwt+ua+tmLSsjx83dbJZeUsD18Xk6X1HaHsFXZckHz7V6sFr1c3bFjSzd/XAgAAAAAAAAAAAAAAAAAAAH1H9JpB69xzz624/pOf/CSzZs3qk7teeuml/Pd//3fFPX/7t3/bJ3f1py9+8Yv5zne+0+2+b37zm7nwwgurP9AG2muvvXL44YdX3PO1r32tz+677LLLMm/evC7Xhw8fntNPP73P7gMAAAAA6EurB69bS61JqZxCOWuEr/ealbw8Mmkvdh6p3hArwtdL6rs+s7m2Y21ZXUf4ettFybdvTUaUO9lcU5NcfnkyZkzfDAgAAAAAAAAAAAAAAAAAAAB0S/SaQesDH/hAxo4d2+X6kiVL8o//+I99ctfnPve5LFu2rMv1bbbZJh/4wAf65K7+8q//+q89CkF/9atfzac//el+mKh3upvxxhtvzNSpU3t9z+zZs/N//s//qbjnIx/5SEaNGtXruwAAAAAA+tq6wevSyrUV4ev9ZiYvjl71TnuxI1jdF9qKHWHrxWuFr1f8tpxV4euhrck3f51s2dLJQbW1yQc+kJx1Vt8MBgAAAAAAAAAAAAAAAAAAAPSI6DWDVkNDQ/7hH/6h4p6f/vSnueGGG3p1z7XXXpvJkydX3POJT3wiQ4YM6dU9zz//fAqFQsV//vmf/7lXd6xwySWX5J/+6Z+63feFL3whX/jCF/rkzmo75ZRTstdee1Xc86EPfSjz58/f4DvK5XI+9KEPZcGCBV3uqaury6c+9akNvgMAAAAAoFqamptyxnVndASv25cHr8tr7jnk2eSZrdd9t73Qd+Hr9kLSUpssqk9aC6uC1yuUk9S3J5f+MtmuuZMDhgxJDjoo+fd/75uBAAAAAAAAAAAAAAAAAAAAgB4TvWZQ+8QnPpEdd9yx4p5zzjkn99133wadf8899+TDH/5wxT3jx4/vNr69MfnJT37So3k//elP56tf/Wo/TNQ3isVivvnNb1bc88ILL+TUU0/N0qVLN+iOz372s/nlL39Zcc8nPvGJ7LTTTht0PgAAAABAtTQ1N+XM68/Mn1/7c4bVNCTldYPXBz+XPDwuKa9doV6uGuHrJfVJS82aa8NbkstuTHZv6uTFmppkn32S665LGhv7ZhgAAAAAAAAAAAAAAAAAAACgx0SvGdSGDRuWb3/72xX3LFy4MMcff3z+93//d73Ovummm3LCCSdk0aJFFfd961vfytChQ9fr7IFy7bXX5rzzzku5XK6474ILLug2IL0x+pu/+ZucdNJJFfdMnTo1xx9/fGbNmtXjc5ubm3P++efnW9/6VsV92223Xb70pS/1+FwAAAAAgP7QXmrP2b84O4+8+khSLqehaUm2aF6zbH3YXzqC10lHkLo/wtelQtJcmyypXRW+HtKe/PuvkwPmdfJCsZjstVdy001JNz8QEwAAAAAAAAAAAAAAAAAAAKiO2oEeAKrt9NNPz1lnnZXJkyd3uWfBggV597vfnfe973350pe+lAkTJnS5d/r06bn44otzzTXXdHv32WefndNOO22D5u5v99xzT97//venvb294r6ddtopBxxwQH70ox/102TJSSedlO22265PzvrhD3+YAw44ILNnz+5yz5133pn99tsvX/ziF/ORj3wkI0eO7HRfW1tbbrrppnzhC1/Ik08+WfHeYrGYK664osuzAAAAAAAGSk2xJucecG4emvVQSk3zk/b2NKSQNJezYEhy1Izk7t3XfKe9kNQkKXTyMxTbC0mpmNSWev/TV1eEr5OkppR889fJkZ39zMJCIdl//+QPf0gaG3t5KwAAAAAAAAAAAAAAAAAAALChRK/ZLFx++eV58MEHK4aJy+VyJk+enMmTJ+fAAw/M4Ycfnl122SUjRozIwoUL89xzz+Wuu+7KI4880qM7J0yYkMsuu6yv/ghV98QTT6S1tbXbfS+++GLOP//8fpholalTp/ZZ9Hr77bfPf//3f+fEE09MqVTqct/cuXPzqU99Kl/4whdy9NFH58ADD8w222yTmpqazJ07N48++mimTp1aMZ69us9//vM5/vjj++TPAAAAAADQ1ybtPSl55OFcNOurKRU6njW0JYc+mUzZu/N3KoWvy4WkrQ/D1621yedvS459qYtNe+0leA0AAAAAAAAAAAAAAAAAAAAbAdFrNgsjRozIrbfemqOOOiozZ87sdv9DDz2Uhx56aIPv22mnnXLrrbdmxIgRG3wG1XPCCSfkP//zP/ORj3wk5XInNZbVLF26NL/61a/yq1/9aoPv+9CHPpSLL754g98HAAAAAKi61tZM+vffJDVb5KIjFqRUSA6dkfx6/8qvtRc6otbFKoevP3Fncs70Lha33z757W8FrwEAAAAAAAAAAAAAAAAAAGAj0NvGAGwyxo8fnylTpmS33Xar6j277757pkyZkp122qmq99A75557bi6//PLU1la3/f/hD384P/rRj1IoFKp6DwAAAADA+lrasnTVF7femsycmUnPN+SSu7bIATNKuXX/pJCkUPlnB6ZU6PinM+VC0laTlHox54mPJfss6GJx+PDknnuSHXfsxQ0AAAAAAAAAAAAAAAAAAABAXxG9ZrOy++675/77788JJ5xQlfP/+q//Ovfff3/Vw9r0jfPOOy+33XZbxo4d2+dn19XV5Xvf+15+9KMfpVj0P7UAAAAAwMZlxuwZGfX1UZl09aSOB1deuXLtlcXzMmW/VaHqXoevs+Hh62OfTKbum1x0YnLDhLUW6+qS++8XvAYAAAAAAAAAAAAAAAAAAICNiBIrm53Ro0fnN7/5Ta644oo+ix2PHTs2V155ZX79619n1KhRfXIm/ePtb397ZsyYkfPPP7/P4tRHH310HnnkkVx00UV9ch4AAAAAQF9pL7VnxuwZmXjZxLS0t+TGJ2/MpCvemdxxR7JsWa5umJXPvrMjYF0udASrk1Xh6y661kmWh6+7+GvWDQlfH/mXZMo+q85eI3xdX5/88Y/J3nuvx4kAAAAAAAAAAAAAAAAAAABAtYles9k655xz8uyzz+bSSy/N3hsYxdhnn31y6aWX5rnnnssHP/jBPp6Q/rLlllvm8ssvzxNPPJELL7wwjY2N631GXV1dTjnllEydOjVTpkzZ4M8UAAAAAEC1NDU35bifHpc3/ceb0lpqXfn8xud/k0lHv55fjpiXc89I2lb77tGK8HU5y4PX3YWv0zfh64NfTP53YjJ/SLKsdvnZK8LXBzR0RLoPO6wHJwEAAAAAAAAAAAAAAAAAAAD9qVAul8sDPQRsDJ566qn85je/ybRp0/L444/n5ZdfzsKFC7NkyZIMGzYsI0eOzLhx47LPPvvkoIMOyjvf+c7sscceAz02VdDa2po//vGPmTJlSh577LE88cQTmTNnThYuXJj29vaMHDkyW2yxRXbffffsu+++OfLII3P88cdvUCx7c7Xvvvtm+vTp6zzfZ5998vjjjw/ARAAAAAAwuDU1N+WkySflzhfvXPVwte8QTZyePL1z0lrb+ftrB6/L6Qhid6WYpNhF3bqQpLa965/Muv/LyR17rra/nIxqThraktTWpjhmq1zyNz/IpL0ndT0AbCT8fTgAAAAAAAAAAAAAAAAAALC56SJdAJufPffcM3vuuWf3Gxn06urqcswxx+SYY44Z6FEAAAAAAHptneD1Wj8OddzjyV926Tp4veKVQiEpLw9fr4hgdxW+LiVJsfPwdTlJW03n4eu9Zq8ZvE467pjfkIwqDE3DiFEpJfnxwz/Ou/d6d2qKNV0PDQAAAAAAAAAAAAAAAAAAAPS7tVsCAAAAAAAADBLdBa/rX08W7py09ODHpJbTEaBecUQhSaHc9f5SkvYuvhNVTtJaszyOvdz4ecm9O3exv5DMz7Isa1uWidtOzFWnXiV4DQAAAAAAAAAAAAAAAAAAABsh0WsAAAAAAIBBqLvgdV5Lhg9NltSt37nrE74up+vwddIRvm4vJNs1JY/Ud7KhsPyfJOWUU1uszeRTJ6dxSOP6DQ0AAAAAAAAAAAAAAAAAAAD0C9FrAAAAAACAQaYnweuxQ5JFQzbs/PUNX7dV+I7UyGXJjJokYyvfOWbomEz76LSMHjp6/YYFAAAAAAAAAAAAAAAAAAAA+o3oNQAAAAAAwCDS1NyU0689vSN4Xc66wesk42qTecN6d8/6hK+TzsPXI5uTN0rpPHhdWPXbMUPH5OGPPZxxjeM2bFgAAAAAAAAAAAAAAAAAAACgX4heAwAAAAAADBJNzU058/oz89isR9LQVuh0z66vJbNHdB+p7okNCV+v2DK8JSm/kbRsVfkdwWsAAAAAAAAAAAAAAAAAAADYdIheAwAAAAAADALtpfac/Yuz8/DLD2buwtcztLWchrY19+z6WvLilh3h6Z5EqntifcPX7cVkSHuyzUvJ7N262LS81y14DQAAAAAAAAAAAAAAAAAAAJsW0WsAAAAAAIBBoKZYk/fu+u7MW/RGWovJgiHJ0LasDF/v+UpH8DpJSsU1w9eFXt69PuHr2lKy+5PJ9H262LB8mLpiXR48/0HBawAAAAAAAAAAAAAAAAAAANiEiF4DAAAAAABs4tpL7Wlqbsr/3Py1DGtZVZxeEb4+9Jnk+a3WfGf18HX6KXxdW0oOfiaZdmAXse3VgtePfOyRjB81vpdTAQAAAAAAAAAAAAAAAAAAAP2pdqAHAAAAAAAAYMM1NTfljOvOyOuvPJVXm19Iw/LnC4Z0/Lrf88l9u3REpotJSquVpkvFpFjqaE2Xy0lhtXD1higXsjKgvSKmXV5+X005Oezx5I6DVu0vLK9ul5OVwesxQ8fkwfMfFLwGAAAAAAAAAAAAAAAAAACATZDoNQAAAAAAwCaqqbkpp117Wv74/B1pbWvJFrVJQ1vHP0ky8dnkT7ut2l8oJ8VyR+x6hf4IX6eQvO2x5LaD1t1fSJJCIeWUM2bomDz8sYczrnFcLyYAAAAAAAAAAAAAAAAAAAAABkqx+y0AAAAAAABsbJqam3LqNaeuDF4nyYIhybLlP/L0gL8kd+6xbsC6kI7I9epKxZVt6pXB6t4orxbOLiT560c6D153bCikvqY+x+5ybJ6+6GnBawAAAAAAAAAAAAAAAAAAANiEiV4DAAAAAABsYpqam3Ly1SdnynNT0tLessbagiHJfn9J/rhXx9crgtar6zJ8XehYK/Rh+PrY6cn9eydbNHeyqVBIXU19jhp/VH5x5i8yeujoXt4KAAAAAAAAAAAAAAAAAAAADCTRawAAAAAAgE3IiuD1H57/Q8rlcsrpCEyvcMwjydR913ynx+Hrwqqz+iJ8fcRfkof2LCTFYhpKxWzRstqJhaSuti5HjT8qPz/j52kc0tjL2wAAAAAAAAAAAAAAAAAAAICBJnoNAAAAAACwiWhqbsqp15yaO56/I+XVMtYrwtdvn5b8YZ/O312f8HVp9fD12i/10N/MSC6aUUxxtXR2Q3uhI3xdSOpq6nPU+LcKXgMAAAAAAAAAAAAAAAAAAMAgUjvQAwAAAAAAANC9puamnHbtabnzxTs7gtdrxajf9mBy55s64tddKRU7Iterb1kRvi6t9qNSy4WklKRYXr63XPnctR3xfPKLm4tJbW3SODwXHbFgZUi7IbXZecyeGTt6XK59z7WC1wAAAAAAAAAAAAAAAAAAADCIiF4DAAAAAABs5Jqam3LqNafmzhfvTGupdZ0Q9YHTkj/tl5Vh6UrWJ3zdnqRmPcPXB7+cTL1m+UHFYiY935AkHeHrYUMzcde/yjXv/XmG1w1PTbGm+wMBAAAAAAAAAAAAAAAAAACATYboNQAAAAAAwEZsacvSnHrNqZn63NSUU06hUEjK5ZUh6v0fS6bvk7QXuztplZ6Gr1NI2gtJTaln4etdZyfbLlvtQW3Ht6ImlfZMDj4hPy5Py1WnXpXGIY09HxYAAAAAAAAAAAAAAAAAAADYZIheAwAAAAAAbKReanopEy+bmEUti1JKqeNhqZxCueO3209Pnto9aa9Z/7Mrhq8LWWOhffW9XYSvd5ifPLlDxz+T3lPKDdcVk/33Tz7/+eT44zOpri7vLrWnprgBwwIAAAAAAAAAAAAAAAAAAACbBNFrAAAAAACAjdBLTS9l///YP/OWzet4UF7jl9TNThbskrT24rs9XYWva8pJ+4ovOtu7Vvh67KLk+bGrvr5xQjLp7Nrc8G/XJ9ttt/K54DUAAAAAAAAAAAAAwP/P3p9HyV3X+R7/q6qXdBY6C5CwJISwE5awBAIIiAriwiAZvYLLDI4LoqMz6s/54fXO3Os4d34zOOr1qijMOIjeEREVwRXZcWMJJIQl7AlLWBJIQjprb1W/P6qTdJLu6k7SWzqPxzl9UvX9fOrzeeeQwx/d5zwbAAAAAIa34mAPAAAAAAAAwOY2C16Xs6l03aH8atIwOllft+N3lYpbHZ+kEr7ecmHD3kKSQsfa+LXJC61bf/76A1oy+86P7/iAAAAAAAAAAAAAAAAAAAAAwE5D9BoAAAAAAGAI2Sp4vaVXktGjk9X1fXfn9oavx69NljYnmdTFhwvJ9Y9fn9nXzO67QQEAAAAAAAAAAAAAAAAAAIAhTfQaAAAAAABgiOgxeJ2kcWSyrj5JISn14d2lYlIubP28u/D16OakqbvgdSe/furXWdeyrq/GBAAAAAAAAAAAAAAAAAAAAIYw0WsAAAAAAIAhoDfB6wkrk9UNnR70dfi60H34uthpphFtyZq1yfrugtcdZ9QV6/LARx/IyPqRfTglAAAAAAAAAAAAAAAAAAAAMFSJXgMAAAAAAAyy3gSv91mWvDa6i4UBCl8XOsLX9W3JHk8lzXtVP6e2UJv5F8/P4Xse3ofTAQAAAAAAAAAAAAAAAAAAAEOZ6DUAAAAAAMAg2ix43Y39lyRLxiZdtKgr+iF8Xerisvq25NCnk2ePqvLhQiV4/eDHHhS8BgAAAAAAAAAAAAAAAAAAgF2M6DUAAAAAAMAgaWlryTGXH7MpeF3ees+0l5Jnd9/0fqDC1+VC0t7pstpSMvOpZN6RVT4keA0AAAAAAAAAAAAAAAAAAAC7NNFrAAAAAACAQbJ07dKsaVlTedNF8PqAl5JFe1Zedw5aD1T4OoWkvZjUlJNZjyTzD0ka2rrfK3gNAAAAAAAAAAAAAAAAAAAAuzbRawAAAAAAgEGwcPnCHP3to7O+fX2XwevDnksWdgSvNywPRvi6UE5OWZDccXyyckQysq2L8LXgNQAAAAAAAAAAAAAAAAAAABDRawAAAAAAgAE354U5OfAbB2bF+hVdBq+PXpg8ts/mz7Y5fN1H8es3PZLcP33T+63C14LXAAAAAAAAAAAAAAAAAAAAQAfRawAAAAAAgAH08JKHc+J3Tqy86SJ4fdRTyYP7df3ZzuHrDa+7DV93LO5I+PoNjyTzD64Ersc2b3q+IXw9sWa31BXrBK8BAAAAAAAAAAAAAAAAAACAJEntYA8AAAAAAACwq3j0lUdz7BXHVt50Ebw+dkEy75DqZ5RTCV13jl53fr+VQlIqb/tvQj31ieTWGZXYdUNb5SupBK+TZO2ouvznO76dPz/szzOyfuQ2ng4AAAAAAAAAAAAAAAAAAAAMR9vaNwAAAAAAAGA7PLzk4Rz97aPTVm7rcv2Eh3sOXm9Q3uIrqYSvu1VISr2eNJm5KPnd9MrrlSOS9R2/RrWhrRLBrqutz7hRE3LNI9ekvrZ+G04GAAAAAAAAAAAAAAAAAAAAhrPawR4AAAAAAABguLv7+btzypWnpLwhUV3efP3E+cm9R2z7uZ2PKXR8lbvZm0JSKvf8G1GPfj6555Ck0OmglSMqfzakNg177pkR5XKO2fuY/ODPf5CaYs22Dw4AAAAAAAAAAAAAAAAAAAAMSz11DQAAAAAAANgBtz59a06+8uRNwestHPXg9gWvNyh3+koq4etuFZJSleVDXk7mHtBx3hYHrWxI1o8bkyQ5Zu9j8qN3/SiNIxq3d2wAAAAAAAAAAAAAAAAAAABgGBK9BgAAAAAA6Ce3Pn1rzvyvMzd/2Kl9Pf3B5KHpO35PX4Svp7yaLJiyxZmFTZ9JoZi1bety9KSjBa8BAAAAAAAAAAAAAAAAAACALoleAwAAAAAA9IPbF92+dfC6kz0fSR47vO/u25Hw9T6vJc/s1c2ZHcHrupq6nDb1tFz7364VvAYAAAAAAAAAAAAAAAAAAAC6JHoNAAAAAADQxx58+cG88ftv7H7D0mT5IUmpapl6221P+HqPVcniPSp7C+Wtt5ULSbFYzGlTT8tP3/1TwWsAAAAAAAAAAAAAAAAAAACgW6LXAAAAAAAAfejRVx7NzP+Y2f2GpUnN+KS9j4PXG3QVvu7uqjHNyZLxm95vFr7u9MFxI8bl2nddK3gNAAAAAAAAAAAAAAAAAAAAVCV6DQAAAAAA0EcefeXRzLh8RlpLrV1vWJLUjuu/4PUGW4avk63D1w0tSdO6pFzYYl+xkEJh0+7dR+6eeRfPy/iR4wMAAAAAAAAAAAAAAAAAAABQTe1gDwAAAAAAADAcdBu87lSUrm9MWgboV5KWO/254cpCx/sRrcnaNUn27NjTsVAoFpNCZV9NoSbjGsZl3kfnZXLj5IEZGgAAAAAAAAAAAAAAAAAAANipDVBWAQAAAAAAYPh69rVntw5el7NZ8HrkmqRlgH8d6YbrS52eNbQmzauzMXi9cW8hKXd8oq5YlzP2PyNPfOIJwWsAAAAAAAAAAAAAAAAAAACg10SvAQAAAAAAdsCKdSsy8z9mbgpebxG7TpIxq5N1IwZ8tCSbh69r25LGRUlpz+72llMsFHPa1NPy03f/NONHjh+oMQEAAAAAAAAAAAAAAAAAAIBhQPQaAAAAAABgO7WX2vOen74nr61/rfKgvPWecSuT1Q0DOtZWykmK5eSgp5OXp3ezqVD5Y1zDuFz7rmvTOKJxoMYDAAAAAAAAAAAAAAAAAAAAhgnRawAAAAAAgO20pnVNlq5ZmlK5lEIXwes9lievjR74ubZUTHLYI8kjR3SzoSN4vfvI3TPvo/MyfuT4gRoNAAAAAAAAAAAAAAAAAAAAGEZErwEAAAAAALZDU3NTzv/J+Xl51UsZ21JIoZzNwtf7LE1ebRy8+TYoJJn5aPLIMdX3TRg5IQ9c/EAmN04eiLEAAAAAAAAAAAAAAAAAAACAYUj0GgAAAAAAYBttCF7Pf3l+smpVGlrKlfB1KuHr/V5MXpww2FNWgtfHP57ce1SVPYVCdh+5e+ZfPF/wGgAAAAAAAAAAAAAAAAAAANghotcAAAAAAADboL3Unvdd975K8Lq5OVm3LknS0F7I2JZCDno+eW7iIA/Z4ZgnkvuO6H69UCjk9fu/Pk9+8knBawAAAAAAAAAAAAAAAAAAAGCHiV4DAAAAAABsg5piTT54zAdTLBSTVas2W9v/uXKe3GeQBtvC0YuSedOrbCgkE0ZOyHXvvi7jR44fsLkAAAAAAAAAAAAAAAAAAACA4Uv0GgAAAAAAYBvNPnx2vrHnhSm2tW98NuXZUuZNG8ShOpn+fPLgwVU2dASvH7j4AcFrAAAAAAAAAAAAAAAAAAAAoM+IXgMAAAAAAGyH2T9/It/449gUy8n+T5Vyb7XI9AA65KVkQbX4dkfwev7F8zO5cfKAzQUAAAAAAAAAAAAAAAAAAAAMf6LXAAAAAAAA2+rFF5M//jGzn2nI2XNKuWv6YA9Usd+ryRNTul8vFArZfeTugtcAAAAAAAAAAAAAAAAAAABAvxC9BgAAAAAA2Fb33psk+fKeL+XKUwd5lg57rUie26vKhkIyfc/pefKTTwpeAwAAAAAAAAAAAAAAAAAAAP1C9BoAAAAAAGBbvPhi8qMf5cfll/L//bPBHqZiwqrk5T2rbCgkxUIxkxsnp3FE44DNBQAAAAAAAAAAAAAAAAAAAOxaagd7AAAAAAAAgCGvtTW58cbk8suTu+7KzfUrcsGHkvJgz5Vkt3XJ8vFVNhSSQgo5ferpufa/XZuaYs2AzQYAAAAAAAAAAAAAAAAAAADsWkSvAQAAAAAAqvnNb5JPfSp57rmkpSUPlkt5y39PSoXBHiwZ2Zys2q3Kho4ZxzeMz3Xvvi6NIxoHZC4AAAAAAAAAAAAAAAAAAABg1yR6DQAAAAAA0JWmpuTCC5Nf/Sppb0+SPFgu5bghEryub0vWje5msdN8Y0eMzfyPzc/4keMHZC4AAAAAAAAAAAAAAAAAAABg1yV6DQAAAAAAsKUFC5I3vSlZunTjoyWlUmb+96R9CASva0tJS1OShi0WtphtXMO4PPSxhzK5cfJAjQYAAAAAAAAAAAAAAAAAAADswoqDPQAAAAAAAMCQcvfdyYknbhW8nnpJ0joEfrJSU07aXksyseNBodNXJ+MbxgteAwAAAAAAAAAAAAAAAAAAAAOqdrAHAAAAAAAAGDIeeSQ588xk3bqkXK48K5cz7e+S5iHwU5WactL+WjYPXndh3IhxefBjDwpeAwAAAAAAAAAAAAAAAAAAAAOqONgDAAAAAAAADAlNTckb35isXZuUSpXodbmc0X+XrKsf7OGSQjkZ92SSPavvG1s/Ng99/CHBawAAAAAAAAAAAAAAAAAAAGDAiV4DAAAAAAAkycknJ0uXVmLXHcZ9Olk7BILXSTJtUbJsevU9Y+vH5uG/fljwGgAAAAAAAAAAAAAAAAAAABgUotcAAAAAAMCubfHi5IADkgULNns86ZPJylGDNNMWDn4kWXhI9T3H7318Fn1qkeA1AAAAAAAAAAAAAAAAAAAAMGhErwEAAAAAgF3XPfckhx+eLFq02eN9Pp4sbRykmbYwc0Hy5IwuFgqbXp6070m57cLbMn7k+AGbCwAAAAAAAAAAAAAAAAAAAGBLtYM9AAAAAAAAwKC4667kjDOSlpbNHv/o8OSVoRK8fjS57+ju12sKNZl70dwcMfGI1BRrBm4wAAAAAAAAAAAAAAAAAAAAgC4UB3sAAAAAAACAgbKuZV3lxaOPJq9//VbB6+sPSv7j+OT0xUl92yAM2Mlxjyf3H9nNYqHyx2n7nSZ4DQAAAAAAAAAAAAAAAAAAAAwZotcAAAAAAMAu4eElD2fcl8Zl9nffksycmbS2brb+2/2Ty2Yl5Y73p76QNLRudcyAmPl0sujAStu6UO56z6n7nZob3nOD4DUAAAAAAAAAAAAAAAAAAAAwZIheAwAAAAAAw96cF+bkqMuPSkt7S65/9reZfc7azdZ/t2/y1VOSUmHzz53yYjKqeQAHTXLUc8kLkwtpKBUztqWwdfi6UAle/+q9v0rjiMaBHQ4AAAAAAAAAAAAAAAAAAACgCtFrAAAAAABgWJvzwpyc+J0TK2864tHXH57Mfnfl9X0Tk385PWnr5qcmJ72cjFnf/3MmySEvJa/uVUwKlfp2Q3thU/g6SbFQyOunvl7wGgAAAAAAAAAAAAAAAAAAABiSagd7AAAAAAAAgP7SVfB6g+sPT/7+hGT+AUlLTfVzZi5J5u6ZNI3qnzmT5OCXkzUTti5vN7QXkvZi1o6oyalTT8t1518neA0AAAAAAAAAAAAAAAAAAAAMSVuXEwAAAAAAAIaBasHrJHnHfcn8/ZPVddXPKXX8edwryYTVfTnhJvstT574f/X5xh/HprjlrCNHpmHcnjlj2hsErwEAAAAAAAAAAAAAAAAAAIAhTfQaAAAAAAAYdnoKXp8xN1m0T/LK6Mr70tZbunx+9LJk0mt9NGSHiU3Js9+uvJ79TMOm8HVNTTJuXNLYmBl7H5Nr/9u1gtcAAAAAAAAAAAAAAAAAAADAkCZ6DQAAAAAADCs9Ba9PejBZPilpGpEsHZ2sqa083zJw3V0I+/CVyeTlfTPr+DXJkm90vClWfmwze/KZ+caMz6W458RkxIjM2GtGfvSuHwleAwAAAAAAAAAAAAAAAAAAAENe7WAPAAAAAAAA0Fd6Cl4f9HDSMj5paujYUkheGZOU1yRjWiuh62K6D15vPGdVUtuaPDNp+2cd05ws/1rHm9raZPbs5CtfSfbeO7OT5NGZufKBK/ODP/+B4DUAAAAAAAAAAAAAAAAAAACwUxC9BgAAAAAAhoUlq5ZUDV6PWZpMGJMsHbX12qujk9K6pLG55+D1BvuvT+pfSp7Ye9tnHdGWrPpqsVLYTpKRI5Pzz0/23nTY7MNn59xDz01NsWbbLwAAAAAAAAAAAAAAAAAAAAAYBMWetwAAAAAAAAxt7aX2XHjDhSmk0GXwOkuTQ9Yni8d1vZwky0cmrzVs2737tCSHLd62z9S3Jc9eusXD2trkxBO32it4DQAAAAAAAAAAAAAAAAAAAOxMRK8BAAAAAIBhYdlrL6ZQ6iJpvSQ5fn3yYmMleN1a0334+rWGZMU2hq/3ak+Oeq53e2vKyXOXJpOKW/yI5tRTk7333raLAQAAAAAAAAAAAAAAAAAAAIYY0WsAAAAAAGCn1tLWkprVa/L5Hy7OuPVJcYui9YnrkmfHJ+3FSuy6p/D1yoZk2chtm2H3cnJsD+HrQjmZ+y/JpC0X6uuTj3502y4EAAAAAAAAAAAAAAAAAAAAGIJErwEAAAAAgJ3Ws689mylfm5JL/ucpmf2nFfnOz7NZ+PqUhcnC3Suvy4Wtw9elbs5dNSJ5ZdS2zTK2nMx8tpvFcvKL7yZHd1Xanjo1efObt+0yAAAAAAAAAAAAAAAAAAAAgCGodrAHAAAAAAAA2B6PvvJoZlw+I22l1nx57NLkTcmlt1bWPnxuMuO55KF9Nv/MhvB1TUfturUmqWvv+reErqlPSoVk4pqk0MuZGpPMeja5Z2rnS5P/uip5+0tdfKCmJvna15K6ul7eAAAAAAAAAAAAAAAAAAAAADB0ddVwAAAAAAAAGNIeXvJwZlw+I62l1pTLSTnJl1+XXPKmZPZjyesf3zp4vUG5kLQVK59JKuHrUjdV63V1ydIxm/ZWs+GHLqOTvPHZpNgR1v76T5L3vdhpY6HTZeeck7zlLb04HQAAAAAAAAAAAAAAAAAAAGDoqx3sAQAAAAAAALbFnBfmZNZ3ZqWc8sYadbmQpFwJXz/fkPz+wB4O6Qhf15aSQpLWYlJXSopd1K3X1SYvj0n2Wl3Z25WufsvoOU8lb7k/+djCbj40aVJy1VU9DAoAAAAAAAAAAAAAAAAAAACw8xC9BgAAAAAAdhpdBa83KBeSd92f3HxoLw/rInxdW0pqughfN9cmL+2W7LVq68B1V8HrEW3JP92WHL2sq3sLyciRyS23JI2NvRwWAAAAAAAAAAAAAAAAAAAAYOjrqsMAAAAAAAAw5GwWvO7CeXOT2w/ZxkMLSVvNpn52WzFpL3S9taUmebFx8/WuftBS35584Y4egte33ppMn76NwwIAAAAAAAAAAAAAAAAAAAAMbaLXAAAAAADAkLdV8HqL7vU75yS3HJ4012611Cu9DV+3FZOXdktaulmvLSX//XfJiS93c9HEicm99yazZm3HlAAAAAAAAAAAAAAAAAAAAABDm+g1AAAAAAAwpPUUvJ59b/LbIzYttexA+Lq04XUxaasSvl7SmLQUN+1PkkKSz/wpOf2Fbi444ojkiSeS6dO3YzoAAAAAAAAAAAAAAAAAAACAoU/0GgAAAAAAGLIWLV9UNXj99vuSW49MpTidTVuatzN83d4pfN1erASuu9xXSJbsVglslzqu//i9ydnPdHPwAQckDz+cNDZux1QAAAAAAAAAAAAAAAAAAAAAOwfRawAAAAAAYEhasW5FZv3nrMqbcraqWJ95f/KHw5NSYauPJukIX3ezVk17zaYz2wuV8HVXAe32QvLy6GR9bXLmo8mfP9HNgWPGJHfeue2DAAAAAAAAAAAAAAAAAAAAAOxkRK8BAAAAAIAhp6m5Ke+97r1pa2tJoVzOlu3q0x5N5h6atPfwk47mmkqcelu1F3sXvi4VkukvJv/9nGT2u7vYMGJEcsstyeTJ2z4EAAAAAAAAAAAAAAAAAAAAwE5G9BoAAAAAABhS2kvted9178v8F+am4bXVGbs+KZSzMXw9c36yeI+kpZc/5WjdgfD1hs+Vuglfn7IwufLkyuvrD98ifF1Xl9x5ZzJr1rZfDgAAAAAAAAAAAAAAAAAAALATEr0GAAAAAACGlJpiTT546AUpLluetLenoS0Z21wJXx/9VNK8Z1IuJru1ZOsKdTe2N3xdqhK+nrk4ufqEzfdvDF+PGpXMny94DQAAAAAAAAAAAAAAAAAAAOxSRK8BAAAAAIAhZ/ZXfp1v/LwtxY7CdENbcuQjSU1DsmpE5dmI9qSxpRLD7o3WmqR9O34ysmX4urUmmf5y8pMZXe+//vBk9jdPSw4/fNsvAwAAAAAAAAAAAAAAAAAAANiJiV4DAAAAAABDQktbS+XF5z6XXH11Zj+WfOPXSbGcNCxLShOSFSM3/0x9ezJ2/TaEr4s7Hr4+aFny6yOqbC4kv37h9qxrWbftFwEAAAAAAAAAAAAAAAAAAADsxGoHewAAAAAAAIDFTYtz/OXH5QMvTcylX3tk4/PZjyVrliX/v9nJy2OS2nIyojUpdPpsbbkSvm5qSEqFrc/eUmsxKSepLW3bjKViMmVF8rvdqmzquP/+j9yfkfUjq2wEAAAAAAAAAAAAAAAAAAAAGH6Kgz0AAAAAAACwa1vctDjHfmtGXl37Sr7c+EguedOmtTVJ/s+fJa+MqbxvKyTNdZVodWe15WTsuqRmy4VutBUrX9ti0qrk/hFJJlbfd+qUU3P4nodv2+EAAAAAAAAAAAAAAAAAAAAAw4DoNQAAAAAAMGgWLl+YY791dJavX76xZP3l12Vj+PpNH0ieG7f5Z9oKyfouwtc16b/w9YQ1ybM1SSZV2VRITp58cn71vl+lpljTu4MBAAAAAAAAAAAAAAAAAAAAhpHawR4AAAAAAADYNc15YU5mfWdWyuVyiluEqr/8uuQPeydPT+j6s+2FZF1dMrI1KXR6XkwlfN3U0LugdVuxEs+uK3W/Z+z6pHl5snp6lYM6gtc3vv/GNI5o7PliAAAAAAAAAAAAAAAAAAAAgGGoF7kHAAAAAACAvtU5eJ0kWzanT1iYPDGx+hmlQrK2rhKt7qyYpHF9UlslZN1ZezFp7eYnJqObkwlLk2cFrwEAAAAAAAAAAAAAAAAAAAB6JHoNAAAAAAAMqI3B68656sKm8PXMhckj+yRtvfgpRrkjfL1l33pD+LquvXcztReT1prNn41sS/77r5OnD0iKW5a1O80teA0AAAAAAAAAAAAAAAAAAABQIXoNAAAAAAAMmM2C11uGpAvJSU8mC/apvG0r9j58va6b8PXY5qS+t+HrQtLSEb5uaEv+8vfJRxcl3/l5Mm59F+FrwWsAAAAAAAAAAAAAAAAAAACAzdQO9gAAAAAAAMCu4e7n784pV55SCV534U2PJPccsPmztmIlal3XQ7i6XEjW1iWjWrf+jZ+Nzcnq+mR9L34qUipU4tfHPZH8y58lrROSS2+trH343OS1hsoewWsAAAAAAAAAAAAAAAAAAACArYleAwAAAAAA/e7Blx/MyVeevOnBFt3rP5uX3H5Y159tLySpSWrbk0K1SwrJ2vqkoWXrH4CMaan82VP4ulhOTl+Q3DArKZSTL7+u8nxj+Pq8YtaMqs0p+70u119wveA1AAAAAAAAAAAAAAAAAAAAQCei1wAAAAAAQL969JVHM/M/Zm56sEXw+oJ7kjsPTeraktZufnLRXkjKNUldT+HrJOurha/Lyfq6bj5YTs58KLluVsfbQuXZxvD1w5OSt/1T/vP5G3L1O68WvAYAAAAAAAAAAAAAAAAAAADYgug1AAAAAADQbx595dHMuHxGWkutlQdbBK/ffU/y+0Mqrxs6gtYt3fz0olRIWmqS+t6Gr1uT2i3uG9OaFJOs7SJ8/aYFm4LXG2wWvv74n+fS0z6Sc0sfTE2xpocJAAAAAAAAAAAAAAAAAAAAAHY9xcEeAAAAAAAAGJ5eXfPqpuB1OVsFr//83uSuQyox6w1GtCf1bd2fWe4IX5e737LR+rqkrYufhIxqTUY3b/7s9Y8nN8zs/s5ysZCrFv40LW0tgtcAAAAAAAAAAAAAAAAAAAAA3RC9BgAAAAAA+lxTc1Pec9170l5q77JQ/bY5yX0HJW2FrddGtCcNPYWva3sZvq5NWrv4acjI9mRMR/j6dU8lvzqmyiGFpLZYm3s/fG/qa+t7cSsAAAAAAAAAAAAAAAAAAADArkn0GgAAAAAA6FNNzU1557XvzO8X3ZmUSlvVqV+/IHnkwK5j1BvU9RS+TtJcm5R6MU9zbdLcxV0N7clbH01+e1SVDxeSumJd5l88P1PHTe3FbQAAAAAAAAAAAAAAAAAAAAC7LtFrAAAAAACgz2wMXj/zu7S2tybp+GFER/j6hHnJ4olJSy9+QlHXnjS0VN/TUpu092Ku1tqkuWbzZyc+k/z4uG4+UKh8FVLI3Ivm5vA9D+/FLQAAAAAAAAAAAAAAAAAAAAC7NtFrAAAAAACgTzQ1N+XdP353fv/s79PavnmtupjkuEeTFfsma2t7f2ZdOWlorr6ntbfh65pN4evjXkiuPb6bjYUNfxRyz4fvyZGTjuztuAAAAAAAAAAAAAAAAAAAAAC7NNFrAAAAAABgh7WX2vO+696XB5c8mFHtxaS8+frkx5M1E5I19dt+dl2Skc0bW9Rdaq1N2qtt2LCvJjnwleT6o6qftyF4fcK+J2zjtAAAAAAAAAAAAAAAAAAAAAC7LtFrAAAAAABgh9UUa/LBYz6YYgppWLUuY5s3rTUsT8aMTZpGbP/5tUlGNSeFcvd7Wmt6Dl9PW54smJyM7Thrq+0FwWsAAAAAAAAAAAAAAAAAAACA7SV6DQAAAAAA9InZ+74p37hzVIrlpKGtEpYuLU8OWpesGLnj5xeTjGrZ/vD11BXJkx2f3TDfZuFrwWsAAAAAAAAAAAAAAAAAAACAHSJ6DQAAAAAA7Ljnn0/e8pbM/tXCfOPXSbGclJYmJ6xJXhnTd9dsb/h671XJnd9NrrynMluydfha8BoAAAAAAAAAAAAAAAAAAABgx9QO9gAAAAAAAMBO7rnnkne8I1m4MCmVMvuxyuP/dWry7JikpkqgentsCF+vrU/Kha73tNYk5VJSW0r2WJPc8p1kdLJxtk++LSkVKuHrJKkdv3vu+cicTJswrW+HBQAAAAAAAAAAAAAAAAAAANiFFAd7AAAAAAAAYCfW1JS89a3JI48kq1ZtfPw/Tk+eH5e01Cbt/fDTiA3h62Kp+z1txaShJTlnTjKxU3h79mPJN36dFDuezZpyUh7/mycFrwEAAAAAAAAAAAAAAAAAAAB2UO1gDwAAAAAAAOykmpqS009PHnus8r5cqUgf8ZHkqd2TmnLS0Ja01CR1SWqrBKq3RzHJyNZkfV3XYe2GtqR9efLVc5Li+OTSWzetzX4sSU0xV3785PzgQ79O44jGvh0OAAAAAAAAAAAAAAAAAAAAYBckeg0AAAAAAGy7559Pzj47efzxjbHrJDnt/cnCCUkhSXshWVdbiU+31iTlQlLX3rdjFJM0dBG+HtGe7P1c8sj0yvsvv67y58bw9ejRmf3jOTn30ENSU6zp26EAAAAAAAAAAAAAAAAAAAAAdlGi1wAAAAAAwLZ57rnk3HOTJ55ISqWNj9/67uT+fSvB62IpKRWTUiFZ3xG+buuIUvdX+Lq5NmmrqZy///PJvOmb79sYvl6wd3LPPcmUKZG7BgAAAAAAAAAAAAAAAAAAAOg7otcAAAAAAEDvNTUlb3lLJXjdvqle/a7zkjunbdq2Vfi6LhnRz+HrkW1Jeyk5bFHyuxlJypXnnX35dUk+fl4unTKlbwcAAAAAAAAAAAAAAAAAAAAAYKvWAwAAAAAAQNeampLTTksee2yz4PWHzk5+fejW2zeErwtJSkmaa5P2QiV83doPv5azrpSc/ERH8LpjgNKWA9UUc9XCn6alraXvBwAAAAAAAAAAAAAAAAAAAADYxYleAwAAAAAAPXv++eSoo5IHH0zK5Y2PP/WG5IfHdP+xbsPXhaSlD8PXxXJy4pPJDTO3HmBj+LpYzISRE3L/Rfenvra+7y4HAAAAAAAAAAAAAAAAAAAAIInoNQAAAAAA0JNHHkmOOy557rnNHv/PU5LvnNjzxwtJakqVMHU5m8LX7R3h63JPB/SgWE5OeyL5yazuBygVkwkjJ2TeR+dlcuPkHbwRAAAAAAAAAAAAAAAAAAAAgK7UDvYAAAAAAADAELZgQXLSScmaNZs9/upxyf85LSltw1HFjrp1qVAJX9e3p3JAbVLXVoljb4/Tnkiu6S54nSSFpJBC7vnQPYLXAAAAAAAAAAAAAAAAAAAAAP1I9BoAAAAAAOjac88lZ5yRrF2blMsbH3/3sOQLZybt23HkZuHrmo6HpaRcm9RvR/j69Cd7Gbz+8D05YMIB2zExAAAAAAAAAAAAAAAAAAAAAL1VHOwBAAAAAACAIaipKXnrW5NlyzZ7fM2Byd+em7Rta526k2I5KZYqr5trkrZiRwS7NilX/+hmTl2Y/OiEbhYL2Sx4fcK+3W0EAAAAAAAAAAAAAAAAAAAAoK+IXgMAAAAAAFv7H/8jefLJyutyJUX928nJR96ZtO5A8HqDYrYOX5cLyfpehq9Peib58XHdLHaaT/AaAAAAAAAAAAAAAAAAAAAAYOCIXgMAAAAAAEmSlraWyoubb06uvjppb9+49odxybvfk7R2xKl7E6buyZbh69Zikl6Er49ZnPzsmG4WOwWvT51yao7bu7syNgAAAAAAAAAAAAAAAAAAAAB9TfQaAAAAAADI4qbFmfK1Kbnkt3+X/P3fJ2vXbly7f1w5b70oWVezaX9fhq9rOsLXLTWVr2rh68OWJL89Il0vdgpez9p3Vn71vl+lpljTxUYAAAAAAAAAAAAAAAAAAAAA+oPoNQAAAAAA7OIWNy3OsVccm1fXvpov3/3VXLLXw0lLS5JkYbmUMz7cEaEuJqVOn+ur8HUhm8LXrcWkeUP4ui4pdQpZH/RKcuchldfFpNvLT5l8Sm76i5vSOKKxD6YDAAAAAAAAAAAAAAAAAAAAoLdErwEAAAAAYBe2IXi9fN3yyoNyKV8+Zm0ueWMpy0qlHPnZZG3dpv39Hb4uJGnbEL5O0lxbCV/v91ryx4M2/8xm4euOOPap+52a37z/N4LXAAAAAAAAAAAAAAAAAAAAAINA9BoAAAAAAHZRz7727ObB62RjRPpLByX7/13SXJ+ksEXouh/D18XO4evayvOx65IH6rv+THHDB1MJXv/qvb8SvAYAAAAAAAAAAAAAAAAAAAAYJKLXAAAAAACwC3p4ycM5+BsHZ9naZZseljelqxtHJ2s7h6YHI3xdSEa0Je1rkwmNydjmLj5QLGZEzYi8cf83Cl4DAAAAAAAAAAAAAAAAAAAADDLRawAAAAAA2MXMeWFOjr786LSWWlNOOeVyKSmVklIlW73HymR1QxcfHODw9aiW5O7/m/zbnKRYThratghf1xRTV1OX06aelp9d8DPBawAAAAAAAAAAAAAAAAAAAIBBVjvYAwAAAAAAAANnzgtzMus7s1LekKcud4Sqy5XY9KQVyaujK6+7DFgXKm3sDb9Vs1ys9LI3vi9sOmtHjGlN7vxOsn852f+xyrNPvq0Svk6xkJUNhdQVK8Hrn777p4LXAAAAAAAAAAAAAAAAAAAAAEOA6DUAAAAAAOwi/vjsH3PaVadVgtdbFK3LhWSfV5OXxlXe17Yn7TWDE75uaEt+8Z/J9KZNz2Y/lqRhRD55ZmsaxozL/rtPzcTRE3Ptf7tW8BoAAAAAAAAAAAAAAAAAAABgiBC9BgAAAACAXcCfnvtTTr3q1MqbLkrW+7+cPLfHpvdtNUlNe0fQuqt6dT+Fr+tKyVXXJiet3HBPofJVX5/ZS8YnOS5XTivkB3/+g4yuG52aYs023gAAAAAAAAAAAAAAAAAAAABAfxG9BgAAAACAYe7u5+/Oqd/tPnh98AvJ05O2ft5ekxQ7QtbbG74uJyl2cWdXasvJFdcl5z6/4fyO4HWSjBqVTJuW2f9wdc4dI3YNAAAAAAAAAAAAAAAAAAAAMBQVe94CAAAAAADsrG5fdHtOvvLklFPuMng9/dmug9cblIpJylXC1YWk1Oltubj5+6QSzO6pe11bTv71N8kFT3exWFOTTJ2aXHNN0tgoeA0AAAAAAAAAAAAAAAAAAAAwRIleAwAAAADAMHXr07fmjd9/Y+VNF9Xpoxcmj+3b8zl9Eb4uVwlf1yT5wi3Jxx/qZsPBByc33JBMmdLzsAAAAAAAAAAAAAAAAAAAAAAMGtFrAAAAAAAYhm59+tac+V9ndrt+zJPJw/v1/ryN4esta9YbdBG+bi9svqWr8HUxyad/n3xmbldnFpKjj07uukvwGgAAAAAAAAAAAAAAAAAAAGAnIHoNAAAAAADDzN3P37158HqL0vQxjyUPTtv2c0sdP1Wo6WX4OoVK+HqzGPYW4esP35t88U9dnFVTkxx2WHLnnUlj47YPCwAAAAAAAAAAAAAAAAAAAMCAE70GAAAAAIBhZM4Lc3LylSdX3pSzVfB6xuPJQwdt//mlYuXIbQlfl7sJX/+3h5Kv3d7FGTU1yVFHJTfeKHgNAAAAAAAAAAAAAAAAAAAAsBMRvQYAAAAAgGFizgtzcuJ3Tqy8KW+9Pv3p5OEDu1zaJr0KX3cOXReScnHz8PVZTyXf+3VXny0khx6a/PznyZQpOzgpAAAAAAAAAAAAAAAAAAAAAANJ9BoAAAAAAIaBhcsXVg1eH/Jo8sR+Ox683qDH8HVSiV93ershfD3r+eTnP+3mM0cfndx1l+A1AAAAAAAAAAAAAAAAAAAAwE6odrAHgKGmubk5TzzxRBYvXpxVq1Zl7dq1GTVqVHbbbbdMnjw5hx56aOrr6wd7TPpZe3t7nn/++TzzzDNZtmxZ1q5dm3K5nN122y2NjY054IADMnXq1BSLfncAAAAAAINvcdPinPAfJ1TedFG1nvJMsvCgpFTo23tLxaRQroSv27v7VlkhKZU3/RbOw15J7vxBN3v32y/53e+Sxsa+HRQAAAAAAAAAAAAAAAAAAACAASF6DUnuvvvuXH/99fnNb36TRx55JO3t7d3urampyRFHHJG3ve1tecc73pGTTjppACelPz344IP56U9/mjvuuCP33Xdf1q5dW3V/Q0NDTjjhhLzlLW/Jeeedl+nTpw/QpAAAAACwyYp1KzLj8hlZvn55l8Hr3Z5JXt6n74PXG5QLlbNrS0lbD+Hr/ZcnD/5nV+uFZI89kj/8QfAaAAAAAAAAAAAAAAAAAAAAYCdWKJfLXSQwYNdwzTXX5N/+7d8yd+7c7T7j+OOPz9/93d/l/PPP78PJdg5r167NAw88kPvuu2/j1+OPP55SqdTtZ/7X//pf+cIXvjBwQ/agvb09V199db7yla9k/vz5O3TWG97whnz2s5/N2972tj6abvg64ogjsmDBgq2eT58+PY888sggTAQAAACwc2pqbso7rnlH7nzmjnT53f6VSX1D0lbT/7MUkhTak3JNl+3t7L4mWfq1DZsLm/85enRy992JXywHDDO+Hw4AAAAAAAAAAAAAAAAAAOxqagd7ABgMjz32WD760Y/md7/73Q6fdf/99+eCCy7I5ZdfnssvvzyHHnpoH0w49DQ3N2f+/PmbBa4XLFiQ9vb2wR5tu91xxx355Cc/mYcffrhPzrv99ttz++23561vfWu++c1v5oADDuiTcwEAAACgK+2l9vz5j/48dz5zZ7fB64YRScsABK+TjtB1TVJsT0pbhK8b1ydLv15Mil18cI89kttvF7wGAAAAAAAAAAAAAAAAAAAAGAZEr9nlXHfddbnwwguzevXqPj33jjvuyMyZM/P9738/s2fP7tOzB1pra2seeuihzQLXDz/8cFpbWwd7tD7R1taWv//7v8+XvvSllLusAe2Y3/zmNznuuOPy/e9/P+eee26fnw8AAAAASfLS6pdy7+J7uv4e12vJqPpk/QD/FKCcpL0mqekUvm5oSd55Uxeba2qSgw9ObrwxmTJlYAcFAAAAAAAAAAAAAAAAAAAAoF8UB3sAGEiXXXZZ3vWud/V58HqD1atX553vfGe+9a1v9cv5A+VXv/pVjj/++Hz0ox/Nf/zHf2TevHnDJni9du3avOMd78ill17aL8HrDVauXJnzzjsvX//61/vtDgAAAAB2XYubFufYK47NmpbVKXSxvltdsr5+wMfaqL0mKbYnI1uStauS785OLnljqbJYX5+MG5dcfHFy112C1wAAAAAAAAAAAAAAAAAAAADDSO1gDwAD5Xvf+14++clP9mvoOEnK5XI+8YlPZMyYMfnLv/zLfr2LbdPc3Jy3v/3tueOOOwbkvnK5nL/9279NfX19Lr744gG5EwAAAIDhb8mqJTnuiuOyfO2ypJxK9LqQbPjO57impGnUIA7YobaUtKxLihMr7798SpJRDbl0yVHJP/1TctZZgzofAAAAAAAAAAAAAAAAAAAAAH2vONgDwEC4995785GPfKRXwetTTjkl3/zmNzN37twsX748ra2tWb58ee677758/etfz6xZs3o8o1wu5yMf+UjmzJnTF+PTRz7wgQ/0Onh94IEH5jOf+UxuuummPPbYY3nttdeydu3aLFy4MH/84x/zz//8z5k1a1YKhUKPZ33iE5/IbbfdtoPTAwAAAEDy6CuPZr+v7Zem9SuT0qbvdxY64tcTVwyN4HVNKRnzXNI+odPDQvLl49bnkn88TfAaAAAAAAAAAAAAAAAAAAAAYJiqHewBoL81NTXlggsuSGtra9V9Bx98cL797W/nTW9601Zr48ePz/HHH5/jjz8+n/zkJ3PTTTfl4x//eJ5++uluz2tpacn555+fBx54II2NjTv892DHfOtb38o111zT47599903X/rSl/Le9763y/Vp06Zl2rRpOeWUU/L5z38+99xzTz7xiU/kvvvu6/bM9vb2vOc978kDDzyQvffee7v/DgAAAADs2h595dHMuHxGWkutSTkZ0Z601mxa329J8sKEJOVUCtiDpFhOpj6bLDyk88NC0vEL5L58z1eTYjGXnnXp4AwIAAAAAAAAAAAAAAAAAAAAQL8pDvYA0N/+5//8n1m0aFHVPWeeeWbmzJnTZfC6K29+85tz33335Q1veEPVfYsWLcoXvvCF3o66Uxs1alROPvnkHHjggYM9ylaeeeaZfPazn+1x35vf/OY89thj3QavuzJr1qzce++9+dznPld139KlS/O3f/u3vT4XAAAAADp79rVnNwWvOzTXJnXtldf7v9wRvE7HN/7LAz5i5e5yctBjyVMHbzFCYfMK91Xzr0pLW8uAzgYAAAAAAAAAAAAAAAAAAABA/xO9ZlhbsGBBLrvssqp7Tj755Nxwww0ZO3bsNp09bty4/OIXv8iJJ55Ydd83vvGNPProo9t09lDX0NCQWbNm5a//+q9z5ZVX5sEHH0xTU1P+9Kc/5dRTTx3s8bbyuc99LuvWrau658/+7M/y85//PGPGjNnm8wuFQv7lX/4lX/ziF6vu+/GPf5xbbrllm88HAAAAYNe2uGlxZv7HzLSV2rZaa65NDl2cPLfH5s8HI3xdSHLkwuSxoyrvy4WOETbvXWfCyAm5/6L7U19bP7ADAgAAAAAAAAAAAAAAAAAAANDvagd7AOhP//iP/5i2tq1DMBtMmDAhP/rRjzJq1KjtOn/06NG59tprc8wxx+S1117rck9bW1u++MUv5oc//OF23THYRowYkaOOOiozZ87MzJkzc/zxx+fII49Mbe3O8b+PRx99ND/60Y+q7jnggAPywx/+MCNGjNihu/7hH/4hc+fOzfXXX9/tns9//vM588wzd+geAAAAAHYdi5sW59grjs3ydctTKFQq0uXyppr1QS8kj+/V9W+4LCYplbNVdLo/FJIc9VTywGGbPy8XKosbRpgwckLmfXReJjdO7v+hAAAAAAAAAAAAAAAAAAAAABhwXXUwYFhYuHBhfvrTn1bd87//9//OlClTduieqVOn5h//8R+r7vnxj3+cZ555ZofuGUiHHHJIrrjiitx3331ZtWpV5syZk29/+9v50Ic+lGOOOWanCV4nyWWXXVZ1vVAo5Lvf/W5Gjx7dJ/ddccUV2WOPPbpdnzNnTm655ZY+uQsAAACA4a1z8DpJUiqnUCpvDEgf9mzy1KSkVKh8daWYJOWu1/pSV8HrDcqphLoFrwEAAAAAAAAAAAAAAAAAAACGP9Frhq3LLrss7e3t3a4ffPDBueiii/rkro9//OM54IADul1vb2/vMb48lEyfPj0XXXRRjj/++NTV1Q32ONutvb0911xzTdU9b33rW3P66af32Z0TJ07Mpz71qap7vvrVr/bZfQAAAAAMT5sFr8tJSqWkXKlXF8rJkU8nj+27aX8pgxe+PnpR98HrDYXu2mJt7vvIfYLXAAAAAAAAAAAAAAAAAAAAAMOc6DXDUnt7e374wx9W3fPpT386NTU1fXJfbW1t/uZv/qbqnquvvjqlUqlP7qN3/vCHP2TZsmVV93zsYx/r83s//OEPp76+vtv1m266KS+//HKf3wsAAADA8LBV8Lpc2ixaPf3J5OGpW39uMMLX059PHji4+p5CCpl70dxMHdfF0AAAAAAAAAAAAAAAAAAAAAAMK6LXDEu33XZbXnrppW7XGxoa8v73v79P77zwwgurho5ffPHF3HHHHX16J9XdeeedVdcnTpyYt73tbX1+76RJk/LWt7612/X29vZcffXVfX4vAAAAADu/lraWHP/vx1eC18lWwetjFiQPH9D95wcyfH3oS8nD06psKFSC1/d8+J4cOenIvrsYAAAAAAAAAAAAAAAAAAAAgCFL9Jph6Re/+EXV9be//e3Zbbfd+vTOcePGVQ0dJz3PRd+aM2dO1fWTTz45xWL//G/wda97XdX1G264oV/uBQAAAGDn1dLWkvra+nxgxgcqD0pbBK8fSeYe2vM5pSTt/Ry+nrY0eXRKlQ2dgtcn7HvCjl8IAAAAAAAAAAAAAAAAAAAAwE5B9Jph6ZZbbqm6/va3v71f7u3p3Jtvvrlf7qVrjz32WNX1k046qd/unjVrVtX1u+66K6tWreq3+wEAAADYuSxuWpwpX5uSS26+JJfmzHz2kbGbxamPfCyZe1jvzyun/8LX+y1Lnt6nyoaOe3//gd8LXgMAAAAAAAAAAAAAAAAAAADsYkSvGXZeeumlPProo1X3nHnmmf1y91lnnVV1/ZFHHsnLL7/cL3ezuXK5nOeff77qnunTp/fb/UcccUTV9dbW1txxxx39dj8AAAAAO4/FTYtz7BXH5tW1r+bLf/y3XPLN83Lpz1bns3+qrB82L3nw4G0/tz/C15NWJs9MqrKhkBRSyB//6o953dTXbfsFAAAAAAAAAAAAAAAAAAAAAOzURK8Zdu69996q61OmTMmUKVP65e79998/e++9d9U9c+bM6Ze72dyqVavS3Nxcdc/48eP77f5x48alUOimKNTh7rvv7rf7AQAAANg5bAheL1+7PCmVknI5Xz5mbS55fWsuva2Y91+fPHrU9p/fl+HrCauTl3bvZrHQ8ZXkTx/8U07Z75TeHwwAAAAAAAAAAAAAAAAAAADAsCF6zbAzd+7cquvHHXdcv94/c+bMquvz5s3r1/upWLt2bY97xo0b12/319TUZMyYMVX39PRvFQAAAIDhbbPgdbm0WYD6y6ckHz6ylP86JylX/91qPSonadvB8PXYtcmr47pZ7HT2bX95W06actI2zQcAAAAAAAAAAAAAAAAAAADA8CF6zbDzwAMPVF0/+uij+/X+ns4XvR4Yra2tPe4ZOXJkv87Q0/mi1wAAAAC7ro3B63VbB6+TpLw0ueqcpLSDwevOtjd8PXp9sqKx5/Nvef8tecO0N2zPaAAAAAAAAAAAAAAAAAAAAAAME6LXDDtPPPFE1fWDDz64X+8/6KCDqq4/+eST/Xo/FSNGjOhxz8qVK/t1hp7OX7p0ab/PAAAAAMDQs1nwulTeKjhdeiUpj0/a+zB4vUFbISl18byYpNhF+Hpkc7KqrcqBHTPe8v5b8qYD39QHEwIAAAAAAAAAAAAAAAAAAACwMxO9Zlgpl8t55plnqu7pKUq9o3o6v6f56BujR4/ucc9rr73Wb/evX78+zc3NPe57+umn+20GAAAAAIaexU2Lc8zlx1SC1+Vy5auT0itJcVz69bv3pW7C10lH+LpjpBFtyZrWJOO62dwRvL7rg3cJXgMAAAAAAAAAAAAAAAAAAACQRPSaYWbJkiVZv3591T377LNPv87Q0/lr1qzJ0qVL+3UGKtHrMWPGVN3zyiuv9Nv9vf1vvHDhwn6bAQAAAIChZXHT4sy4fEaWrVuWchfB6ySpHZuUBuA791XD10lGtCbr1qfH4PWpU07NCfue0OfzAQAAAAAAAAAAAAAAAAAAALBzEr1mWHnxxRd73LPXXnv16wy9Ob83c7LjJk+eXHX9vvvu67e7e3u2fwsAAAAAu4aWtpYce/mxWb5ueZKknHK2TF7XNidtNQM3U3fh67r2pH5Jegxenzz55Pzqfb9KTXEAhwYAAAAAAAAAAAAAAAAAAABgSBO9ZlhZtmxZ1fXGxsaMGDGiX2cYNWpUxowZU3VPT3PSN6ZPn151/e677+63u++5555e7fNvAQAAAGDXsHTt0qxuXV15U658lZOUOwLSI9YkLbUDP9eW4eva9mTPJUnT/t18oJAUUsjp+52eG99/YxpHNA7AlAAAAAAAAAAAAAAAAAAAAADsLAYhoQH9Z/ny5VXXGxsHJsDS2NiY1atXd7ve05z0jeOPPz7XXXddt+v33XdfVqxYkfHjx/f53TfffHOv9g216PVll12Wb33rW/1+z9NPP93vdwAAAAAMFYubFufYK45NS1tLpXTdSTnJ6FXJ6lGDMlqSSvg65aSulOz3bPLUIUmhnKSwxbgdge4JIyfk+guuF7wGAAAAAAAAAAAAAAAAAAAAYCui1wwrK1asqLq+2267DcgcPd0jej0wXv/611ddb25uzlVXXZVPf/rTfXrvPffck3nz5vVq71D7t/DKK69kwYIFgz0GAAAAwLCxIXi9fO3ypFRKMUkp2RiQHr88WTEE2tHlQnLw88mCQzY92yx83THv7iN3zwMXP5DxI/v+F8kBAAAAAAAAAAAAAAAAAAAAsPMrDvYA0JfWr19fdX306NEDMseYMWOqrvc0J33jpJNOyu677151z7e//e20t7f36b3f/OY3e73XvwUAAACA4Wtx0+Icc/kxG4PXGxSTpJwcvGhoBK+TZMYTycMHJXVbfKuskKRQqBSvNwSvJzdOHvgBAQAAAAAAAAAAAAAAAAAAANgpiF4zrLS0tFRdr62tHZA5erqnpznpGzU1Nbnggguq7nnyySdz6aWX9tmdd9xxR37wgx/0er9/CwAAAADD0+KmxZlx+YwsW7cs5U7B6w1OeCp5Zt8k5YGfbUsznkwemF553VzbKXxdLCTFYgqFQvYYuYfgNQAAAAAAAAAAAAAAAAAAAAA9Er1mWBG9ZksXX3xxj3v+8R//MQ888MAO37Vy5cr81V/9Vcrl3peK/FsAAAAAGH42BK+Xr1uelJNyYfO29QlPJg9MrbyuK2dQw9dHPJPMP3zzZ821SV1tfVIoJEkmjJyQeRfPE7wGAAAAAAAAAAAAAAAAAAAAoEei1wwrpVKp6npNTc2AzNHTPe3t7QMyB8mRRx6Z2bNnV93T0tKSs88+O/Pnz9/ue5YvX56zzjorzzzzzDZ9zr8FAAAAgOGlpa0lx15x7Mbg9QYbwtcnPpbM3X/zzwxW+PqwxcmjByaFLtaaSy2pK9Zl95G7Z95HBa8BAAAAAAAAAAAAAAAAAAAA6J3awR4A+lJtbfV/0m1tbQMyR0/31NXVDcgcVPzLv/xLfv3rX6e5ubnbPUuXLs0b3vCGXHnllTnvvPO26fz58+fn/e9/fx5++OFtnm3EiBHb/Jn+tOeee2b69On9fs/TTz9d9b8HAAAAwM5qffv67Fauz6tdRKyPfTyZe2DXn6srJ22pxLEHwsEvJ09MrbwulJMUOnW3O2Yol8t56OKHMmm3SQMzFAAAAAAAAAAAAAAAAAAAAAA7PdFrhpX6+vqq6wMVvW5tba263tOc9K1DDz00X/ziF3PJJZdU3bdixYrMnj07Z511Vv7+7/8+r3vd61JTU9Pt/gULFuSb3/xm/v3f/z3t7e1d7qmtra36766hoaF3f4kB8td//df567/+636/54gjjsiCBQv6/R4AAACAgbRk1ZJ84HvnZf3SFzO6PlnT6duAxz6ZPDKtU1i6C7XlpK2clIv9O+fUV5Kn99382Zbh67piXR64+AHBawAAAAAAAAAAAAAAAAAAAAC2ieg1w0pdXV3V9ZaWlgGZQ/R66PnsZz+bP/7xj/n5z3/e496bb745N998c3bfffecddZZ2W+//TJp0qTU19dnyZIleemll3LnnXfmqaeeqnrOOeeck2XLluWuu+7qds9Qi14DAAAAsH3mvDAns74zK/Wt5UxI0tjxrcg19cmhjyaPTUtKhZ7PqU3SVuq/8PVeK5Ln9+p6rVBOUiyktlib+RfPz+F7Ht4/QwAAAAAAAAAAAAAAAAAAAAAwbIleM6yMGTOm6vrq1asHZI5Vq1ZVXe9pTvpesVjM1VdfnbPOOqtqhLqzZcuW5Zprrtmu+w499NB873vfy9lnn11134QJE7brfAAAAACGjg3B63K5nObaZHlDMmF9JXy935PJwoOS9kLSi+Z1kv4LX+/RlCzdo8qGQiG7j9o9933kvkwdN7VvLwcAAAAAAAAAAAAAAAAAAABgl9DHyQwYXD0FhJuamgZkjp7uEToeHKNHj85NN92UM888s1/vOeigg3LbbbdlwoQJWb9+fdW9e++9d7/OAgAAAED/2hi8Tnnjsw3h60nPJYsOTNqLSQrptKNntUkKpb6bc9yaZPn4KhsKyYRREzLvo/MErwEAAAAAAAAAAAAAAAAAAADYbqLXDCu777571fXXXnttQOZYuXJl1fWe5qT/jBkzJjfeeGM+//nPp1js+/8Fnnnmmbn77ruzzz77JEmWL19edf9ee+3V5zMAAAAAMDAeXvLwpuD1FkXr+heTJ6YlbTWdHg5S+Hp0c7Lia8ln/9TNhkIyoWFC5l38QCY3Tt7xCwEAAAAAAAAAAAAAAAAAAADYZYleM6zsscceVdebm5v7PXy9fPnytLS0VN0jej24ampq8s///M+59957c/LJJ/fJmY2Njfk//+f/5MYbb9zsv++yZcuqfm7q1Kl9cj8AAAAAA2v+S/Nz3L8fl3J56+B1ViZteybNtV18cIDD17XtybpRySVnJpfeVtw6fL0heP3x+YLXAAAAAAAAAAAAAAAAAAAAAOww0WuGlf3226/HPUuWLOnXGXpzfm/mpP8df/zx+dOf/pTbb78973rXuzJy5MhtPmPPPffMP/zDP+TJJ5/Mpz71qdTU1GxcW758eZqbm6t+/ogjjtjmOwEAAAAYXLc8fUuO+fdj0treuvXiymRMbdJcl5QLSZe96gEKXxdLSdvKyusvn5Jc8sZSJXx9d8ePBgqFTBi1u+A1AAAAAAAAAAAAAAAAAAAAAH2mdrAHgL40ZsyY7L777lm2bFm3e5599tkceuih/TbDM888U3V94sSJGT16dL/dz7Y744wzcsYZZ2TNmjW5/fbbc9ddd+XBBx/MokWL8vLLL2fNmjVpbW3N6NGjM378+Bx22GE55phjcvbZZ+e0005LbW3X/yt96qmnqt47YcKE7L333v3xVwIAAACgn/zy8V/mz675s66r1SuTccVkdX1SKFei1ykkpXIXv4GykJTLSaGX99YmaSsl5d7+KstSUnotKe656dGXT6ksXPrcYcm7js5VK+/I/RfdL3gNAAAAAAAAAAAAAAAAAAAAQJ8RvWbYmTZtWtXo9ZNPPpk3v/nN/XZ/T6HjadOm9dvd7JjRo0fnnHPOyTnnnNMn5/X0b2HGjBl9cg8AAAAAA+Pnj/4877j2HV0Hr5NMSNLUUHldSJLBCl+Xk7y2efB6gy+/LsnJ5+TSs/8t/9TWkvra+l7eDgAAAAAAAAAAAAAAAAAAAAA96ymNATudI444our6448/3q/393R+T/MxfNx///1V11//+tcP0CQAAAAA7KjfP/P7qsHrsauSFaOTUqdnhSSF8qY3pS4+l0K3R3apNkldlwd1KCfjn+g6eJ1CkmIxVz30/bQIXgMAAAAAAAAAAAAAAAAAAADQD0SvGXaOO+64quvz5s3r1/vnzp1bdf3YY4/t1/sZOubMmVN1/YwzzhiYQQAAAADYIXNemJPXf6/7X2A24bWkaWTldbnQ/+HrpJvwdTk5+Ilk5fSu70ihmAkjJ+T+i+4XvAYAAAAAAAAAAAAAAAAAAACgX4heM+z0FL1+4IEH0t7e3i93t7W1Zf78+VX3iF7vGlatWpV77rmn2/XddtstJ5100gBOBAAAAMD2mPPCnMz6zqyUU+6yTD1pWbJizObPBit8ffBDydPVgtejJmTeR+dlcuPkbbwJAAAAAAAAAAAAAAAAAAAAAHpH9JphZ+bMmWloaOh2ffXq1bn//vv75e577703a9eu7Xa9oaEhxx9/fL/czdBy0003paWlpdv1d7zjHRkxYsQATgQAAADAtuopeD3x1WTJ2K4/O5Dh62IpOeTJ5MnjKvdufmYhKQpeAwAAAAAAAAAAAAAAAAAAADAwRK8ZdhoaGvK6172u6p6bb765X+6+5ZZbqq6fdtppVYPcDB//9V//VXX9ggsuGKBJAAAAANgePQWvJy1Nlo6rvO4uVL0j4evexq+L5eS4hckTh2+aZWP4ulhIioVMGCl4DQAAAAAAAAAAAAAAAAAAAMDAEL1mWDrrrLOqrl933XX9cu9PfvKTqutvfvOb++VehpaXXnopv/zlL7tdnzx5cs4+++wBnAgAAACAbbFo+aKqwet9X06WTNj8WV+Hr6ud2Xnb0U8n9x269SzlQpKC4DUAAAAAAAAAAAAAAAAAAAAAA0v0mmHpXe96V9X1uXPn5vHHH+/TOx9++OE89NBD3a4XCoUe52J4+Nd//de0tbV1u/43f/M3qa2tHcCJAAAAAOitFetW5MT/PLHb4PV+i5MX9uj6s30evi5UD18f93Ry/+Ed3+jfYmO5kIyoGSF4DQAAAAAAAAAAAAAAAAAAAMCAEr1mWDrwwANz0kknVd3zjW98o0/v/PrXv151/ZRTTsn+++/fp3cy9Dz99NO54oorul3fbbfdctFFFw3gRAAAAAD0VlNzU979k3fntfWvdbm+/3PJc3tVP2NHwtddfrab8PVxzyb3HrbpfVfh65F1IzNx1MTqAwMAAAAAAAAAAAAAAAAAAABAHxK9Ztj64Ac/WHX9u9/9Mz9mIgABAABJREFUbl566aU+uWvx4sX5f//v/1Xd84EPfKBP7mLoKpfL+eAHP5jm5uZu93z+85/P2LFjB3AqAAAAAHpjXcu6nP/j8/P7Z3+fUrm0KUjdYdqzyTP79O6sbQlfFzuFr8vdfXaL8PWRzyX3HrT1tmKn/eMbxmf+xfNTX1vfu6EBAAAAAAAAAAAAAAAAAAAAoA+IXjNs/cVf/EUmTpzY7fratWvzuc99rk/uuuSSS7J+/fpu1ydNmpS/+Iu/6JO7GLouueSS/O53v+t2fdq0afn0pz89gBMBAAAA0BuLmxZn6v+dmrkvzU1rqTUpl1MoZ2P4evJzyaJ9t+3MquHrwubPtiV8Pf2FZN5BlXO62lcsFDOhYUIe/NiDmdw4eduGBgAAAAAAAAAAAAAAAAAAAIAdJHrNsNXQ0JC//du/rbrn+9//fn72s5/t0D3XXnttrr766qp7PvWpT2XEiBE7dM8zzzyTQqFQ9esLX/jCDt3B9vvSl76Uf/u3f+t2vVAo5Nvf/vYO/zsAAAAAoG8tblqcYy4/Jq+sfSVL1y5NXbEuKVdy0oUkkx9LFu+zfWd3G75O1+HrQrlyaXdB6wOXJvOndTpny33FYiaMmpD5H5sveA0AAAAAAAAAAAAAAAAAAADAoBC9Zlj71Kc+lSlTplTdc+GFF+bee+/drvPvvvvufOhDH6q6Z+rUqT3Gt+l/ixcvzp133tnn5zY3N+cTn/hELrnkkqr7PvnJT+bss8/u8/sBAAAA2H4bgtfL1i3b+Ky5vTl1bZXXU55IFh+0Y3dsS/i6kI7wdbYOWk9dljzeRcd6476O4PW8j84TvAYAAAAAAAAAAAAAAAAAAABg0IheM6yNGjUqX/3qV6vuWbVqVd785jfnl7/85TadfcMNN+Tss8/O6tWrq+77yle+kpEjR27T2fS9xYsX54wzzsixxx6bq666qsf/br1x6623ZubMmbnsssuq7ps5c2YuvfTSHb4PAAAAgL7TVfB6g+baZJ9FybMH9M1d1cLX7YWk1OlZV+HrfVYma8cko1u6OaeYjK4fLXgNAAAAAAAAAAAAAAAAAAAAwKCrHewBoL+9613vynvf+95cffXV3e5ZuXJlzj333LznPe/JP/zDP+Swww7rdu+CBQvyxS9+MT/60Y96vPt973tf3vnOd27X3INt9erVueaaa7b5c08++WTV9blz5+Y73/nONp2522675fzzz9/mWbrywAMP5K/+6q/ysY99LGeeeWbOO++8nHnmmZk6dWqvPr9ixYr8/Oc/z3e+85384Q9/6HH/tGnT8stf/jINDQ07OjoAAAAAfWRx0+Ice/mxXQavU07qn0sWT0mlQN1HylWOKxeSUnnTb6ksdHygXEjGr0mWjEsmrE8aO6LXa+o7fbiQFAvFzNp3VvYes3ffDQwAAAAAAAAAAAAAAAAAAAAA20H0ml3CFVdckfvvvz+PP/54t3vK5XKuvvrqXH311Tn22GNzyimnZNq0aRkzZkxWrVqVRYsW5Y9//GPmz5/fqzsPO+ywXH755X31Vxhwr776aj7ykY/0+bm/+MUv8otf/GKbPjN16tQ+i15vsH79+vzyl7/ML3/5yyTJ+PHjc+yxx+bwww/PhAkTMm7cuIwePTrr16/PihUrsnDhwjz00EN58MEHUyqVenXHvvvumxtvvDGTJk3q09kBAAAA2H4bgtfL1y9PIYWUU64sdPyRlUnr3unT4PUG2xq+HrsmeXVc5f3yhi7C1x3B69Onnp6fnv/T1BRr+n5oAAAAAAAAAAAAAAAAAAAAANgGotfsEsaMGZPf/va3Oe200/L888/3uH/evHmZN2/edt+333775be//W3GjBmz3WcwsFasWJHbbrstt912W5+cd+ihh+amm27Kfvvt1yfnAQAAALDjFjctzjGXH5Nl65alkEIlQF3e1LvOyqRmVNLeD8HrDXobvh6zPlneaa25dovw9aiRWVdqzulTT88NF9yQxhGN/Tc0AAAAAAAAAAAAAAAAAAAAAPRScbAHgIEyderU3HbbbTnwwAP79Z6DDjoot912m9jxLuy8887Ln/70J/8GAAAAAIaQzsHrJCmXyymXyymUOyLUK5Pakf0bvN6gXG2tkIxoSV4rJRm7+dqG8HX22CONI8flzGlnCl4DAAAAAAAAAAAAAAAAAAAAMKSIXrNLOeiggzJnzpycffbZ/XL+W97ylsyZM6ffw9oMTePGjcsVV1yRn/3sZ5kwYcJgjwMAAABAh5a2lhx3xXEbg9cbqtPlVCLThXJSHJm0DeB3zLsLX9e2J2vaslXweoPmumR526rM2GtGfvzuHwteAwAAAAAAAAAAAAAAAAAAADCkiF6zyxk/fnxuvPHGXHXVVZk4cWKfnDlx4sR873vfy29+85uMGzeuT86kb+22225pbOyfANDIkSPzmc98Jk8//XQuuuiifrkDAAAAgO23vn19xtSPqbzZojZdTlJsSUqD8N3yLcPXNaWkbkm6Dl4XOr6StLS35KpzrxK8BgAAAAAAAAAAAAAAAAAAAGDIEb1ml3XhhRdm4cKFueyyy3L44Ydv1xnTp0/PZZddlkWLFuUv//Iv+3hC+tIRRxyRV199Nbfeems+85nPZMaMGampqdnu8wqFQo499tj83//7f/Piiy/mK1/5SiZMmNCHEwMAAADQF5qam3L+T87P+tZ1Gd269bfER6xL2rb/20Q7bEP4uqacTFiarN2vi02Fzi8LuefD92TSbpMGYjwAAAAAAAAAAAAAAAAAAAAA2CaFcrlc7nkbDH9PPPFEbrzxxsydOzePPPJIXnjhhaxatSpr167NqFGjsttuu2Xy5MmZPn16jjvuuLz1rW/NwQcfPNhjswNWr16d++67L/fff3+eeuqpPP3003n22WezcuXKrFmzJmvXrs2IESMyZsyYTJgwIQcddFAOOeSQzJw5M29605syaZKw0PY64ogjsmDBgq2eT58+PY888sggTAQAAAAMRxuC1/Nfnp+8+mrS2pqm+mRNfWV95Jpk3YjBnXGDaYuSRd19u7Gw4Y9K8PqEfU8YsLkA2DG+Hw4AAAAAAAAAAAAAAAAAAOxqagd7ABgqDjnkkBxyyCGDPQYDaMyYMTnjjDNyxhlnDPYoAAAAAPSxjcHrF+cmry5L2tuTJI0tlfWatUnTmEEcsJOpTyaLDu9mUfAaAAAAAAAAAAAAAAAAAAAAgJ2I6DUAAAAAAMPKxuD18/cly5Yl5fJm62NXJC/uPkjDbWH/55Jneghe1xXrMveiuTly0pEDNhcAAAAAAAAAAAAAAAAAAAAAbI/iYA8AAAAAAAB9pb3Unvdd975K8PrVV7cKXtc2DZ3g9QGLk2cO6GaxsOnlnA/PEbwGAAAAAAAAAAAAAAAAAAAAYKcgeg0AAAAAwLBRU6zJB6ecm+Kry7Zaq3steX7iwM/Ulf1fTBbu381ip+D1ze+/OTP2njEQIwEAAAAAAAAAAAAAAAAAAADADhO9BgAAAABgWJn9icvyjV8nxfKmZ6NfTZ7ba/Bm6mzKy8kz+3Wz2Cl4/YsLfpEzDzxzQGYCAAAAAAAAAAAAAAAAAAAAgL5QO9gDAAAAAABAn/nXf00eeiizU0hSziffmoxZkjy+/2APVrHvK8nzk3ved8O7b8g5h57T/wMBAAAAAAAAAAAAAAAAAAAAQB8qDvYAAAAAAADQJ9auTf73/974dvZjhcx8eOgEryctT17Yu8qGQlJIIb+78Hc59/BzB2wuAAAAAAAAAAAAAAAAAAAAAOgrtYM9AAAAAAAAbK/2UntqijWVN//6r8m6dRvX/j8nl3PDCYM02Bb2WJksmVhlQ0fw+p4P35MT9h0iQwMAAAAAAAAAAAAAAAAAAADANioO9gAAAAAAALA9mpqbct6PzsvPHv1Z5cGVV25c+9rBpXz1DYM02BbGrU6WT0gK5W42CF4DAAAAAAAAAAAAAAAAAAAAMEzUDvYAAAAAAACwrZqam3L+T87P/JfnZ95L85KFT2f2Sy8lSb6/dymfftcgD9hhzLqkaWzldSFJykm50GlDx2vBawAAAAAAAAAAAAAAAAAAAACGA9FrAAAAAAB2Gi1tLVnfvn5j8DpJSuVSPjnni8mh5dSsLOfCCwd5yA4NLcnq3ZIRbUlrTeXZht515/D1qVNOzXF7Hzfg8wEAAAAAAAAAAAAAAAAAAABAXxO9BgAAAABgp7C4aXGOu+K4jKkfk/Vt6zctlEoprV+XD51czoq9sqksPYjq25L1oyqvm2s7wte1SQqFFAqFpFxOIYWcut+p+cV7f5GaYs2gzgsAAAAAAAAAAAAAAAAAAAAAfUH0GgAAAACAIW9x0+Icc/kxWbZuWV5Z+0pG141OY0Yka9cmLS15aXkpGSLB69pS0tKcpGHTs+a6ZETNiLSWWpMk9TX1OXW/U3Pd+delcUTj4AwKAAAAAAAAAAAAAAAAAAAAAH1M9BoAAAAAgCFtcdPizPj2jCxfv3zjszUta5LWNWlsLeal10opTEzKQyB4nVLSti7J2E7POuZqbm/OiJoRSZLTpp6Wn777p4LXAAAAAAAAAAAAAAAAAAAAAAwrotcAAAAAAAxZi5sW58hvHZmVzSsrD8qb1tbUJUkpdeOT1uJgTLeFcpK1ScZ1v6W1vTVvmvam/OTdPxG8BgAAAAAAAAAAAAAAAAAAAGDYGQoZEAAAAAAA2Eq14PVGLUlr3YCO1bVykjVJcWxS6GZLIYWcvv/p+cn5gtcAAAAAAAAAAAAAAAAAAAAADE+i1wAAAAAADDm9CV7vtipZM2Jg5+pSOal5Kcm4pFxICuVO4evChj8Kef3+r88NF9wgeA0AAAAA8P9n786j5K7rdPE/1VvS2RMSQiAhIKACkgBhUURHRsVlvEoQCYoCwqCOiqP8cJk7oiM6KoprxEGvVwUvaEABxREcFFREIAFCZBeQQEICBLJ01t6qfn90EtJJd3WW7qpO5/U6p09Xfd7v/n6ePieHc6g/ngYAAAAAAAAAAAAAYMBSeg0AAAAAQL+ysGlhDr744LKF1yNXJCsbK5urO+MXJO17d7wuZcvia4XXAAAAAAAAAAAAAAAAAAAAAOwq6qodAAAAAAAANthQeN3U0tRx0FXh9dJkRT/pjt7nkWT+gZ3PSklSSAqFQoY1DMtRex2Vq2dcrfAaAAAAAAAAAAAAAAAAAAAAgAFP6TUAAAAAAP1CS1tLXvbdl71QeN2Fkcv6T+H1QU8kT+zX9ayUZFjDsDzwoQcyYdiE1NbUVjQbAAAAAAAAAAAAAAAAAAAAAFRDTbUDAAAAAABAklz/yPVZ0bzihYNS5/m4JcmK4ZXN1J2XPJ4sG5+MaEmGtmw5LxQKOWqvoxReAwAAAAAAAAAAAAAAAAAAALBLUXoNAAAAAEDVXXnflTnhyhM63pSyReH1Hk8nS0ZXOlXXDngyaZrwwvvNi68LhUL+YZ9/yNUzrlZ4DQAAAAAAAAAAAAAAAAAAAMAupa7aAQAAAAAA2LXdtfCuzPjFjI43pS3neyxKnt69spm6s++iZFUXWUa0JKmpydr6Ul69zz/kl6f8MiMGjah4PgAAAAAAAAAAAAAAAAAAAACoJqXXAAAAAABUzYNLHswrfvSKjjddFF7v+VSyaHxlM3Vn4rPJujHdDBvqM2LUbnnl+Cm56uSrFF4DAAAAAAAAAAAAAAAAAAAAsEuqqXYAAAAAAAB2TQ8ueTBTL5ma1mJrl4XXez3Zfwqv93k2KQ3vZlhbm+w2NlMnHKrwGgAAAAAAAAAAAAAAAAAAAIBdmtJrAAAAAAAqrqfC64mPJU/tWflcXZm4NHn8/yQzf5PUbJ61UEjG7pape0zNrJNmKbwGAAAAAAAAAAAAAAAAAAAAYJem9BoAAAAAgIp6bvVzOfR7h3YUXndhz0eShZMrHKobY1cmC/6r4/X0hwuZef1mxde77Zapex6u8BoAAAAAAAAAAAAAAAAAAAAAovQaAAAAAIAKampuynuufU/qa+o7Dkqd5yMXJov2rXyurgxfmyz5Tk1Ss/6rUMj0h2sy8/pCalJIxo7N1ElHKLwGAAAAAAAAAAAAAAAAAAAAgPXqqh0AAAAAAIBdQ1NzU2b8fEbmPT2voyS6vT2r29dtnBcWJivGVzHgJga3Jk1fT5d/OnL6oKnJCR/MDxf8KpefeLnCawAAAAAAAAAAAAAAAAAAAABYT+k1AAAAAAB9rr3YnlOvPjXznp7XcdDcnBFNzUl9srohSVNSGp+kUM2UHerakyt+1cWgsTH59KeTT30q05O8tXhmamtqKx0PAAAAAAAAAAAAAAAAAAAAAPqtmmoHAAAAAABg4Kutqc2Zh56ZmhSSpqZk+fKkVMqIliSLkjSmXxRe1xSTca3JOW9Ornnp+sM990zOPz959tnkU5/auKvwGgAAAAAAAAAAAAAAAAAAAAA6q6t2AAAAAAAABra1LWvT2NCY6cOOSG4ZlnMOeDrFlJIki59PMiH9o/C6PSkuSTIqKRaSc05oSF71pUx/87nVjgYAAAAAAAAAAAAAAAAAAAAAO4WaagcAAAAAAGDgenDJgxn1lVGZ/qM3Jm97W6bPXpmZt45MTUfndQoT0i8+qa4rJUOeTyaMqUlqOr6Kw4bmnIe+nmsevKba8QAAAAAAAAAAAAAAAAAAAABgp9APqkQAAAAAABiIHlzyYKZeMjUt7S259onfZvohDyRJps8fnJk31uXZ+qTUDz6lriklbauT0rjNBg0NKZaKOef6cxRfAwAAAAAAAAAAAAAAAAAAAMBW6Ad1IgAAAAAADDQbCq9bi61JqePs2n2bM/31S5Mk73xja9prqxhwvUIpGfRUklHJ6vqkqb7YMWhoSGo6PkIvlor54T0/THuxvWo5AQAAAAAAAAAAAAAAAAAAAGBnoPQaAAAAAIBe1anwejPX7tucIe9anOb6KgTrwrjFydp9Xni/sfh6yJCNZ1P3mJrLT7w8tTX9oKUbAAAAAAAAAAAAAAAAAAAAAPoxpdcAAAAAAPSaLQqvS53nQ5uStYMrn6srez2SPLv3luer65OmNCfpKLyeddKsjBg0osLpAAAAAAAAAAAAAAAAAAAAAGDno/QaAAAAAIBesUXh9WZ2fy5ZPaTCobqx9xPJUwd2Mywka1vX5pDdD1F4DQAAAAAAAAAAAAAAAAAAAADbQOk1AAAAAAA77MElD2bKf03pXHhdeuHlXk8nz46qeKwuTVycPLlf9/NCCnn1Pq/OVSdfpfAaAAAAAAAAAAAAAAAAAAAAALaB0msAAAAAAHbIfc/cl0P+65C0ldq6nO+zIHlqbIVDdWPPZ5KFk8osFJJ/2Ocf8stTfqnwGgAAAAAAAAAAAAAAAAAAAAC2kdJrAAAAAAC22zMrn8mUS6akvdTe5Xz/+cn8CZXN1J09nk0W7VVmodDx7fITLld4DQAAAAAAAAAAAAAAAAAAAADbQek1AAAAAADbpam5KdOvnJ5SSp0HpY6vlzyWPDqxKtG2sPtzydN7lllYX3h902k3Zc+R5RYBAAAAAAAAAAAAAAAAAAAAgO7UVTsAAAAAAAA7n6bmprzx/70xty28reNgs97rlzyaPLxPxWN1abflybN7lFnYpPD6uH2Pq0QkAAAAAAAAAAAAAAAAAAAAABiQlF4DAAAAALBNOhVel7ac7/9Y/ym8HrkqeX5smYX1hde3nXlbXj7p5RXJBAAAAAAAAAAAAAAAAAAAAAADVU21AwAAAAAAsPPosfD6weTRyZXP1ZUha5MVo8osrC+8/vMZf1Z4DQAAAAAAAAAAAAAAAAAAAAC9QOk1AAAAAABbpafC60mPJo8eUPlcXRncnKwZ3vPedadcl1dOfmXfBwIAAAAAAAAAAAAAAAAAAACAXYDSawAAAAAAetRT4fXQR5MFkyufqyv1bcm6oT0sFToKr9/ykrdUJBMAAAAAAAAAAAAAAAAAAAAA7AqUXgMAAAAAUFZTc1NOmnVSt4XXWZqsnpykUOlkW6ptT1oH97BUSK49+VqF1wAAAAAAAAAAAAAAAAAAAADQy5ReAwAAAADQrfZie069+tTct+S+1Ld3sbA8yfD0i8LrQjFpH9TTUjLr7bPytgPfVpFMAAAAAAAAAAAAAAAAAAAAALArUXoNAAAAAEC3WtpacuahZ6bm+aUZuyapL24yXJ7UDEm/KLxOMSktToa2dL9SX1ufO8+6Mye/7OTK5QIAAAAAAAAAAAAAAAAAAACAXYjSawAAAAAAuvTgkgcz6iujctmv/zMzr2lOTSkvFF+vTeqGJMX+8ClzKcniZMJuyYiWLoqvCx2F1/M+MC/TJk6rRkIAAAAAAAAAAAAAAAAAAAAA2CX0hzoSAAAAAAD6mQeXPJipl0xNS3tLrl19Vy6bksz8TTYWXzcUkrb+8AlzKRnzVEfh9QYjWpKhrevfFJL6mo7C6wPHHViViAAAAAAAAAAAAAAAAAAAAACwq+gPlSQAAAAAAPQjGwqvW4utSanj7NoDs7H4ellN0lJX3YxJklJy1WXJD+7oKONOkhQKSU1NRhTrM7RhaBpqGxReAwAAAAAAAAAAAAAAAAAAAECF9IdaEgAAAAAA+omuCq83uPbA5HcTk3UN1cm2uVfflpz0dF0yenRyW1vOeeWKFAvrh8OH51WTj8pPTvhJxg4dW9WcAAAAAAAAAAAAAAAAAAAAALCrqKl2AAAAAAAA+odOhdddGLU8WdVY2Uzd2e/+5E+vTqa/syapq8v0+YMz89aRqSklaWzM1MlHZdZJsxReAwAAAAAAAAAAAAAAAAAAAEAFKb0GAAAAAGDLwutS5/luS5PlwyqfqysvfiJ5bGrH62tf1JLpr1+aJB3F148ekGn7vSqzTpqVEYNGVDElAAAAAAAAAAAAAAAAAAAAAOx6lF4DAAAAAOzi7nvmvs6F15uZ8EzyfD/pj37p35O/7df57Np9mzuKrydMyPRv35hr3/1rhdcAAAAAAAAAAAAAAAAAAAAAUAVKrwEAAAAAdmFznpqTKZdM6Vx4XXrh5cRFyeLdKp+rKy9+InnoxV3Prt23OdM/PC6ZNCm1NbWVDQYAAAAAAAAAAAAAAAAAAAAAJFF6DQAAAACwy3pm5TM5+gdHp7Sh5bqUToXXkxckC3evSrQt7L8w+dt+ZRYKyW+eujlrW9ZWLBMAAAAAAAAAAAAAAAAAAAAA0JnSawAAAACAXVBTc1PO+NUZaaht2KLsOkn2nZ88MaEayba0z+Lk0X26GRY6vupr6nPP++9JY0NjBZMBAAAAAAAAAAAAAAAAAAAAAJtSeg0AAAAAsItpam7KjJ/PyLyFd2VMU2sGtXWe7zs/eXxiVaJtYa8lyfxJXQzWl10nHYXX8z4wLweOO7CS0QAAAAAAAAAAAAAAAAAAAACAzSi9BgAAAADYhWwsvJ5/R7JkSVIsZsy6bCy+3uex/lN4vfuy5KkJmxwU0qnsOlF4DQAAAAAAAAAAAAAAAAAAAAD9SV21AwAAAAAAUBnPrX4u77n2PR2F18uWdZqNWZc0Lkj+fkCVwm1mTFPy7LjyOwqvAQAAAAAAAAAAAAAAAAAAAKB/UXoNAAAAALALeHDJgzn0e4emPnUZsXzNFvMRjyQPH1KFYF0YviZZOmazw0LntwqvAQAAAAAAAAAAAAAAAAAAAKD/UXoNAAAAADDAPbjkwUy9ZGpai61pKbUkDcmIlhfmQ55IHn5Z9fJtqrE5WTmi5z2F1wAAAAAAAAAAAAAAAAAAAADQ/yi9BgAAAAAYwJ5Y/kQO+e4haU97Uuo4W93Q8X1ES9LwRPLYi5MUqhZxo/rWZO3QnvcKKWTS8El9HwgAAAAAAAAAAAAAAAAAAAAA2CZKrwEAAAAABqiFTQtz2PcO6yi83szqhmTN8qTUTwqv64pJa2M3w83y3fHPd2TY4GF9ngkAAAAAAAAAAAAAAAAAAAAA2DY11Q4AAAAAAEDvW9i0MFP+a0qWrVvWcVDabGFZUhiVflF4XVtM2tZs3e7sf56dI/c6sm8DAQAAAAAAAAAAAAAAAAAAAADbRek1AAAAAMAAs0Xh9eaakrqhSbEffEJcKCXtq5OM6m7hhZcKrwEAAAAAAAAAAAAAAAAAAACgf+sHlSYAAAAAAPSWHguvk9QPStr6w6fDpaTUlGR0N3OF1wAAAAAAAAAAAAAAAAAAAACwU+kPtSYAAAAAAPSCbguvSy+8HLQ2aa2tbK4ulZL9H0omDErqi13MFV4DAAAAAAAAAAAAAAAAAAAAwE5H6TUAAAAAwADQ0taSqZdM3bLwehONq5Lm+gqG6k4pec1tyVceSGpKydg13RRfR+E1AAAAAAAAAAAAAAAAAAAAAOxMlF4DAAAAAAwAz655Nmtb13Y7H9aUrB1cwUBl7PO35A+vTi6bksz8TRfF14WObwqvAQAAAAAAAAAAAAAAAAAAAGDnovQaAAAAAGAnt7BpYQ773mFpbm9OYUNj9CZGLUtWDalCsC686JFk/sEdr689cMvi65ENw5MovAYAAAAAAAAAAAAAAAAAAACAnVFdtQMAAAAAALD9WtpaMu3707J07dIkSaFQSEpJKaUkybglyZJRVQy4if2fTB49sPPZtevfz7y+kB/+y9G5/H2/TU2pJsMGD6t8QAAAAAAAAAAAAAAAAAAAAABgh9RUOwAAAAAAANuvoa4hZ0w9o9NZoVBIIYVMWNx/Cq9ftCB59EVdz649MLnsfUfl2g/9OSMGjVB4DQAAAAAAAAAAAAAAAAAAAAA7KaXXAAAAAAA7uQtff2HOe8V5HW9KpaRUysSFpSweW91cG+y9KPn7vmUWCslvVs1NS1tLxTIBAAAAAAAAAAAAAAAAAAAAAL2vrtoBAAAAAADYAa2tyQ035MJLH0vaGnPR1NWZuDB5ckK1g3WY+Gzy5N5lFgpJfU197nn/PWlsaKxYLgAAAAAAAAAAAAAAAAAAAACg9ym9BgAAAADYWd14Y/LpTycLFiRJLsyI3Fq3Ore+tMq51hu/NFm4ZzfDQse3+pr6zPvAvBw47sCK5QIAAAAAAAAAAAAAAAAAAAAA+obSawAAAACAnU1TU3L++clVV3U6/vBBi/tN4fXY5ckzu3cxKLzwUuE1AAAAAAAAAAAAAAAAAAAAAAwsSq8BAAAAAHYmCxYkM2Yk8+d3Oj7zJYvzo5dXJ9LmRq5KnhvbxUDhNQAAAAAAAAAAAAAAAAAAAAAMaEqvAQAAAAB2Fk8+mZxwQvL0052Oz917cX70yupE2tywNcmQumRdW9LczSfQCq8BAAAAAAAAAAAAAAAAAAAAYGCqqXYAAAAAAAC2QlNTcsopWxRef2qPxfnGa6uUaTODW5Lh6z91HrMuGdS2ybDQ8U3hNQAAAAAAAAAAAAAAAAAAAAAMXEqvAQAAAAB2Buefn8yf3+noG2MW58I3ZWOhdDXVtyeji53PNi++LqSQu993t8JrAAAAAAAAAAAAAAAAAAAAABiglF4DAAAAAPR3N96YXHVVp6OfL12cc9+WflN4Pba169mYlpoMqhuUQgq545/vyMvGv6yy4QAAAAAAAAAAAAAAAAAAAACAilF6DQAAAADQn7W2Jp/+dKejB1YszjvOTb8ovK4tJq1rk6aGbhZ22y3H7XtcFp+7OEfudWRFswEAAAAAAAAAAAAAAAAAAAAAlVVX7QAAAAAAAJTx298mCxZsfPvAysU5+F/TL/6kYU0xaV+XZFSyev3ZiJZNFkaPztSJ0zLrpFkZMWhE5QMCAAAAAAAAAAAAAAAAAAAAABXVD2pRAAAAAADo1qWXdnp78IfTPz7ZLSXFdUk26bJe3ZA0Nax/M3p0pu5ztMJrAAAAAAAAAAAAAAAAAAAAANiF9IdqFAAAAAAAurJoUXLrrRvfFk5fnNRWMc8GpaT2mXQqvN5gdUPSNGqIwmsAAAAAAAAAAAAAAAAAAAAA2AUpvQYAAAAA6K9mz974snBa/ym8Hv1M0j6xm3khaU1bfnLCTxReAwAAAAAAAAAAAAAAAAAAAMAuRuk1AAAAAEB/9de/JkkK716c1FU5y3oT5yfLuiq8LnR81dfU557335OxQ8dWOBkAAAAAAAAAAAAAAAAAAAAAUG1KrwEAAAAA+qv770/tqYuThmoH6TDxkWThAZscFDb5SlKTmsz7wLwcOO7AKqQDAAAAAAAAAAAAAAAAAAAAAKqtrtoBAAAAAADo2qCJV6Y4qNopOkxalCw4qPzOmMYx2W/0fpUJBAAAAAAAAAAAAAAAAAAAAAD0OzXVDgAAAAAAwJYazy2kpbHaKTrsvShZMLn8zpjGMZn7gblpqGuoTCgAAAAAAAAAAAAAAAAAAAAAoN9Reg0AAAAA0M+M/NdC1g2pdooOey9OFuxdfmdM45jM+8C8TBwxsTKhAAAAAAAAAAAAAAAAAAAAAIB+Sek1AAAAAEA/Mu7c+jQNr3aKDpOeSRZOTApJCil0uaPwGgAAAAAAAAAAAAAAAAAAAADYQOk1AAAAAEA/sd+nh+e5IW3VjpEk2X9x8tSe698UCikUClsUXyu8BgAAAAAAAAAAAAAAAAAAAAA2pfQaAAAAAKBaFi1Krr02ueCCHHlmIX/PqmonSpKMWZE8cv2EnDdvaKfzTYuvFV4DAAAAAAAAAAAAAAAAAAAAAJurq3YAAAAAAIBdSmtrcsMNyaWXJn/5S5Lkm3suzp1vrHKu9QY3J8//YkKS5MLZI5IkFx2+duO8UChkzOAxuecD9yi8BgAAAAAAAAAAAAAAAAAAAAA6qal2AAAAAACAgW5J05KOFzfemBx7bPL+928svP6/oxfn3H5SeJ2WZO2Px3Y6urDhzTnvFedtfD+mUeE1AAAAAAAAAAAAAAAAAAAAANC1umoHAAAAAAAYyK6878rM+MWMjGpvyLIf7NZxWCwmLS25etCyvP+EpFTVhOu1JaXvDk1G1Hc+P/30XPj6f0qS/Hjej3PX++5SeA0AAAAAAAAAAAAAAAAAAAAAdKmm2gEAAAAAAAaqDYXXKSXLa1oy+rTFybJlyZIl+XPtspxyRtJeqHbKdBRef70+GT688/neeyfHH58kufD1F2bBRxcovAYAAAAAAAAAAAAAAAAAAAAAuqX0GgAAAACgD2xaeL3B8sHJ6I+sy0OlYl77z0lbbVL1zuv2pPS1umTUqKSwWZovfCGpr9/4tqGuobLZAAAAAAAAAAAAAAAAAAAAAICdSl21AwAAAAAADCTtxfb84oFfbFF4vcHyYjL1k0lr7QtnhXS52veKyf1fTjJudFK32cfFJ5+cvO511UgFAAAAAAAAAAAAAAAAAAAAAOyklF4DAAAAAPSSpuamHPfj43L303d33WK9Ohlck6xbX3hd2GRU8eLrYnL/l5KD9tgjKRQ6z/bdN7nggkqmAQAAAAAAAAAAAAAAAAAAAAAGAKXXAAAAAAC9oKm5Kcf+8Njc++y93e4MqknW1b/wvpQqFV+Xkqu+nhw0YcKWswkTkp/9LBkxohJJAAAAAAAAAAAAAAAAAAAAAIABpKbaAQAAAAAAdnZbFF530Vw9dHXSXL/leUVKrje78LtXJSeN6aLwet99k2uvTSZNqnQqAAAAAAAAAAAAAAAAAAAAAGAAUHoNAAAAALADtqbwekRTsnpQ988obfa9z5SSz/x38i+ruii8Pvnk5PrrFV4DAAAAAAAAAAAAAAAAAAAAANutrtoBAAAAAAB2Vk3NTXnL5W95ofC6CyNXJCuG9vysPi+8TvLePyWfe3azwuu9904+//nk9a+vQAIAAAAAAAAAAAAAAAAAAAAAYCBTeg0AAAAAsB2ampvytp+9LbcuuPWFw82aq3dbmjw/orK5ujN9dvLDxzYpvD722OT005Pjj0/q66sXDAAAAAAAAAAAAAAAAAAAAAAYMJReAwAAAABsow2F13+c/8eUUtqi7DpJxi9Jnhld+WxdOe7vydVjZiT/cnAyZUpy1FHJhAk9/yAAAAAAAAAAAAAAAAAAAAAAwDZQeg0AAAAAsA22pvB6r2eSp3arfLauHFQ/NjddsaTaMQAAAAAAAAAAAAAAAAAAAACAXUBNtQMAAAAAAOws2ovtefust5ctvJ60qP8UXu9VbMz9n1V4DQAAAAAAAAAAAAAAAAAAAABURl21AwAAAAAA7Cyampsye9Hsbguv934qeXJ85XN1ZXRTsvDba6odAwAAAAAAAAAAAAAAAAAAAADYhdRUOwAAAAAAwM6gqbkp77r6Xakt1KbQReH1pIX9p/B66Kpk6be7CAkAAAAAAAAAAAAAAAAAAAAA0IeUXgMAAAAA9KCpuSkzfj4j856el8HthYxqLqSwyXyvJ5MFe1QtXidD1ySr7ntttWMAAAAAAAAAAAAAAAAAAAAAALsgpdcAAAAAAGVsWnidUilZsSKDW0sZtS4plJJxjyVP7VnZTIX1X5vbf0my6mcTkrFjKxsIAAAAAAAAAAAAAAAAAAAAACBKrwEAAAAAutVebM+pV5/aUXjd3JwsWZK0tydJBrclez6WLJlc2UyFbl5PXpY88uOGjjcHH1zJSAAAAAAAAAAAAAAAAAAAAAAASZReAwAAAACUdeZLTklNU1OyfPnGwuskqX82eWqfyucpbfa+kI7C6/mXbPJx75QplYwEAAAAAAAAAAAAAAAAAAAAAJBE6TUAAAAAQJeamptywo/fkFxwQWbe2JCaTdqmW55NnpxUvWybFl+PXb1J4XXN+u9HHVXxTAAAAAAAAAAAAAAAAAAAAAAASq8BAAAAADbT1NyUGT95a+565I8554BHkyQz/9CYmlKydE3y/KQkhepmLCUZtTZ59tubfMxbX58ce2wyYULVcgEAAAAAAAAAAAAAAAAAAAAAuy6l1wAAAAAAm2hqbsqMn7098x77S9JeTLGQnPPKFUlbez7+i6R5dKpeeJ0kjS3JsubNDuvqktNPr0oeAAAAAAAAAAAAAAAAAAAAAIC6agcAAAAAAOgvmpqbMuPnMzLv77cl7e0bz4uF5MSXr0v6SeF1fXuytpRkbDL6vGKWXbT+7xvuu29y/PFVzQYAAAAAAAAAAAAAAAAAAAAA7Lpqqh0AAAAAAKA/2Fh4/cTsZO3aLRdGp198olpXTFrbkgzteL+8saP4Og0NyYUXJvX1Vc0HAAAAAAAAAAAAAAAAAAAAAOy6+kFFCwAAAABAdW0svH56XrJy5RbzxbXFfvFpam0paWvNxsLrDZY3JqP/v7bkda+rSi4AAAAAAAAAAAAAAAAAAAAAgKRf1LQAAAAAAFTPsrXLXii8bm5O2ts7zRfXFJPaKoXbRG0paV+RLQqvN1he35bRXx5d0UwAAAAAAAAAAAAAAAAAAAAAAJuqq3YAAAAAAIBqWdi0MId/7/C0FdsyuG5wsmZNp/mzhWK/+BS1JknDimTt2G4WCh3fljcvz5KmJRk3YlylogEAAAAAAAAAAAAAAAAAAAAAbNQP6loAAAAAACrvudXP5fDvHZ7n1z7fcVAsZnBLy8b586Vi2huqFG4ThSS7L0qe3rvn3Vlvn6XwGgAAAAAAAAAAAAAAAAAAAAComppqBwAAAAAAqLQnlj+Rg757UNa0rtl4tqKlKetqS0mplGXFYloGVTHgeoUkez3RQ+F1oePbrLfPyskvO7kSsQAAAAAAAAAAAAAAAAAAAAAAulRX7QAAAAAAAJX04JIHM/WSqWkrtqVQKKSx0JC17euSUrKiIWluTtYNqXbKDns9kyzcr8yCwmsAAAAAAAAAAAAAAAAAAAAAoB+pqXYAAAAAAIBK2VB43VpsTSmllIrFrG1bl8aWjvnQ5cmaflJ4PXlRsnCvMgsKrwEAAAAAAAAAAAAAAAAAAACAfkbpNQAAAACwS9i08DqlJKX13wrJ2vpk+PPJyuHVTtlh72eSJ/Yus7C+8PqnJ/5U4TUAAAAAAAAAAAAAAAAAAAAA0G8ovQYAAAAABrwtCq83UUoy4plkxahqJNvSXkuSJ/fqZljIxsLrH731RznlkFMqFQsAAAAAAAAAAAAAAAAAAAAAoEdKrwEAAACAAa1c4XWSjH4qWT628rm6MmZZ8tSEboaFF17+6K0/yhmHnVGJSAAAAAAAAAAAAAAAAAAAAAAAW03pNQAAAAAwYD2x/ImyhdcTHkuWja98rq4MXZssHdfznsJrAAAAAAAAAAAAAAAAAAAAAKC/qqt2AAAAAACAvrCwaWGO+D9HpK3Y1mXh9dgnk8WTK5+rK4ObkzXDyiwUkrFDxuYvp/0lB4w/oGK5AAAAAAAAAAAAAAAAAAAAAAC2hdJrAAAAAGDAWbZ2WQ7/3uFZunZpCqWOxutNe6/rnkue27M62TbX0JqMLiXrmpPlg5JSYbOFQrJb426Z+/65mThiYlUyAgAAAAAAAAAAAAAAAAAAAABsjZpqBwAAAAAA6E3txfacdu1paSu2JaVSUkoKpWRjl/RzSdvIaiZ8QV1bslt7x+vBbcmo5k1yJhsLr+/5wD0KrwEAAAAAAAAAAAAAAAAAAACAfk/pNQAAAAAwoNTW1ObMQ8/MkPohGdn8QoV0oZRkdZKR2axZukrak3FtnY86iq8LHfEUXgMAAAAAAAAAAAAAAAAAAAAAOxml1wAAAADAgNFebE+STD9wemaOOz1DmosZ2dwxK65O0pD+UXhdTPZq6eK8tjaDh4/OqMbRGTdknMJrAAAAAAAAAAAAAAAAAAAAAGCnovQaAAAAABgQmpqbcsKsE3LNg9ckSabPmpeZ1xcypDUpLk0K/ajw+puXJzOvL6SmtMl5bW0yblwyaFCOnnh0Hv7wwwqvAQAAAAAAAAAAAAAAAAAAAICdSl21AwAAAAAA7Kim5qbM+PmMzHt6XuYunpssXZrpf/lLpq/oaLl+xwmltPeHPwFYSrI8+epJycybBmXmn2pzzmvWplhIMnJkUihk6h5TM+ukWRkxaESVwwIAAAAAAAAAAAAAAAAAAAAAbJv+UPMCAAAAALDdNi28TpJiqZhz/vjJXDN5bZLknf+r/xRe1y9NJgyrSbG2Jue8riWpb8jMW0empnFIMmiQwmsAAAAAAAAAAAAAAAAAAAAAYKdWV+0A0N80Nzfnb3/7WxYuXJiVK1dmzZo1GTJkSIYPH56JEyfmJS95SRoaGqodkwpYvnx5nnjiiSxevDgrVqzIunXrUiqVMnjw4AwbNizjx4/PxIkTM2HChGpHBQAAgF3W5oXXGxRbW3LOP67Lu16fNNdXKdymSsmIRcnQcS+0bxcLyTmvXJGZjx6QmW87Pz98+Ge5/MTLFV4DAAAAAAAAAAAAAAAAAAAAADstpdeQ5Pbbb8+1116b66+/Pvfff3/a29u73a2trc3BBx+cN7/5zXnb296Wl7/85RVMSl/6+9//nuuuuy4333xz7rzzzjz11FNb9XOjR4/OoYcemte85jV505velCOPPLKPkwIAAABJ94XXSZLW1iypTVr6yd8u22NxUtik8HqDYl1tzjlmRWY2Dsm1M65NbU1tFdIBAAAAAAAAAAAAAAAAAAAAAPSOQqlUKlU7BFTLz372s3z1q1/N3Xffvd3PmDZtWj7+8Y9nxowZvZhs57BmzZrcc889ufPOOzd+PfzwwykWi93+zGc/+9n8x3/8R+VC9qC9vT0///nP861vfSu33XZbrzxz//33zwc/+MGcffbZGTZsWK88c6A5+OCD88ADD2xxftBBB+X++++vQiIAAAB2Nl0WXheLSUtL0taWZatWZt2g6uXb1ITHk+y1ZeF1amuT0aOT2tpM23Oa0msAGIB8Hg4AAAAAAAAAAAAAAAAAAOxq6qodAKrhoYceyvvf//786U9/2uFn3XXXXTnllFNyySWX5JJLLslLXvKSXkjY/zQ3N2fevHmdCq4feOCBtLe3Vzvadvv973+fj3zkI12WTeyIRx99NOeee26+9KUv5Utf+lLOPPPMFAqFXr0DAAAAdmVbFF43Nydr1nQUXidpai9mXWMVA25ijyeSTOhi0NiYDB+eFAqZusfUXH7i5QqvAQAAAAAAAAAAAAAAAAAAAICdntJrdjlXX311Tj/99KxatapXn/uHP/whRxxxRC677LJMnz69V59daa2trbn33ns7FVzfd999aW1trXa0XtHS0pJPfOIT+da3vtWn9yxZsiT//M//nF/84he57LLLMnbs2D69DwAAAHYFnQqvm5uTlSuT9vakVEqSrG4tZfWwKodcb9yipDB+s8Pa2o6y60GDkiRT95iaWSfNyohBIyofEAAAAAAAAAAAAAAAAAAAAACglym9Zpdy8cUX55xzzklpfQlSb1u1alXe/va35zvf+U4++MEP9skdlfDf//3fO31xd3dWrVqVE088MTfeeGPF7rz++utzzDHH5MYbb8zkyZMrdi8AAAAMNO3F9px69amZt/iepKkpWbt2Y9l1kqxtSZr6SXf0qOeS5yclI5uTwe2FpKEhGTJkY9l1ovAaAAAAAAAAAAAAAAAAAAAAABh4aqodACrl0ksv7dPC6w1KpVI+/OEP57LLLuvTe9h2ra2tmT59ekULrzd45JFHctxxx+XZZ5+t+N0AAAAwUNTW1ObMiW9NzZLnkjVrOhVeN69LlveT7uiRy5Om8R2vVwxK1o1oTEaPVngNAAAAAAAAAAAAAAAAAAAAAAx4Sq/ZJcyePTtnn332VhVeH3PMMfnOd76Tu+++O0uXLk1ra2uWLl2aO++8M9/+9rdz9NFH9/iMUqmUs88+O3PmzOmN+PSST3ziE/nd7363VbsNDQ15xzvekZkzZ2bOnDlZsGBBVq1alXXr1mXRokX561//mh/+8Ic566yzMmrUqK165uOPP553vOMdKRaLO/BbAAAAwK6ppa0luf/+TH/7v2fmde2p2eRjntY1ydJRVYvWybCVycrdksbWF85WlNZlXdu6je8VXgMAAAAAAAAAAAAAAAAAAAAAA5XSawa8pqamnHLKKWltbS27d8ABB+R3v/tdbr311nzoQx/KYYcdltGjR6euri6jR4/OtGnTcs455+T222/Pb3/72+y3335ln9fS0pIZM2akqampN38dttOtt96ab33rWz3u1dbW5uMf/3iefPLJXHnllfnwhz+cI444IhMnTszQoUMzaNCgTJgwIYccckje+9735gc/+EEWLFiQb37zmxk+fHiPz//Tn/6Uiy++uDd+JQAAANhlLGxamEkXTcgnP35Y8vzzmf5wITOvL6SmlLSvSJ4bU+2EHYauSVaNTkqFZG39+uLrQsdsRfOKrGtbp/AaAAAAAAAAAAAAAAAAAAAAABjQlF4z4H3mM5/J448/Xnbnda97XebMmZPXvva1W/XM448/PnfeeWeOO+64snuPP/54/uM//mNro+7UhgwZkle84hU9loFXy7/927+lVCqV3Rk/fnxuvvnmfOUrX8n48eO3+tnDhg3Lv/7rv2bu3Lk59NBDe9y/4IILsmrVqq1+PgAAAOzKFjYtzGHfnZLn1i7NRUe25pP/WEySTH+4kCPuS57d+v+F71NjViSr1/dYl7JJ8XXt4I07dTV1ueLEKxReAwAAAAAAAAAAAAAAAAAAAAADltJrBrQHHnggF198cdmdV7ziFfnlL3+ZkSNHbtOzR40aleuuuy5HHXVU2b2ZM2fmwQcf3KZn93eDBw/O0UcfnQ996EP54Q9/mL/+9a9pamrKX/7ylxx77LHVjreFuXPn5pZbbim7M3To0PzmN7/Jq171qu2+Z7/99sv//M//9Fj8/dxzz+X//b//t933AAAAwK5iYdPCHHbJoVm6btnGs4uOST75j8X858uK+eWRVQy3iSFrk6W7dT7bWHxdakljXWN2a9wtd7//7oxuHF2VjAAAAAAAAAAAAAAAAAAAAAAAlVBX7QDQlz73uc+lra2t2/mYMWMya9asDBkyZLueP3To0Fx55ZU59NBDs3z58i532tracsEFF+SnP/3pdt1RbYMGDcohhxySI444IkcccUSmTZuWl73sZamr23n+83H55Zf3uPPNb34zhx9++A7fNW7cuFx99dU57LDDUiwWy2b6wAc+sMP3AQAAwEC1sGlhDvveYVm6ZmlHg/QmLjooKR5dnVybG9SSrBne9axUSFIqZUj9kDzwwQcydujYimYDAAAAAAAAAAAAAAAAAAAAAKi0mmoHgL7y97//Pb/4xS/K7nzhC1/IpEmTduieyZMn53Of+1zZnauuuirz58/foXsq6cUvfnG+973v5c4778zKlSszZ86c/Nd//VfOOuusHHrooTtV4XWS/P73vy87f8lLXpL3vve9vXbflClT8u53v7vszu23357Vq1f32p0AAAAwUKxYs2KTwuvnk1Lnxuvi8qQ4rDrZNlffljT38LfU6mrqMufsOQqvAQAAAAAAAAAAAAAAAAAAAIBdgtJrBqyLL7447e3t3c4POOCAvO997+uVuz74wQ/mRS96Ubfz9vb2XHzxxb1yVyUcdNBBed/73pdp06alvr6+2nF2SGtra+69996yO2eccUZqa2t79d6e/m21tbXlnnvu6dU7AQAAYGd38+M3Z9RXR2XyNyZn6dqlWxZeNycZlqRQlXid1LUnrYPLLBSS+pr6zPvAvEweNbliuQAAAAAAAAAAAAAAAAAAAAAAqknpNQNSe3t7fvrTn5bd+djHPtZrRcd1dXX5yEc+UnbniiuuSLFY7JX72HpPPPFE2fLzJDn++ON7/d6jjz46I0eOLLvz6KOP9vq9AAAAsLO6+fGb84+X/WOSpJhiiqVisknndbE5SW36ReF1bTEpNpSJsknh9YHjDqxkNAAAAAAAAAAAAAAAAAAAAACAqlJ6zYB00003ZfHixd3OBw8enHe/+929eufpp5+ehoaGbueLFi3KH/7wh169k54tW7asx51DDjmk1++tq6vLQQcdVHbnueee6/V7AQAAYGe0aeH1RqWkuL5Vuticjk8y+0HhdaGYtLesf13qIpLCawAAAAAAAAAAAAAAAAAAAABgF6b0mgHpuuuuKzv/p3/6pwwfPrxX7xw1alTe9KY3ld3pKRe9r7m5uex85MiRqa+v75O7x40bV3a+du3aPrkXAAAAdiZdFl5votiSFGrSLz7JLJSSwrJkdN1mZxvfKLwGAAAAAAAAAAAAAAAAAAAAAHZt/aAqBnrf7373u7Lzf/qnf+qTe3t67o033tgn99K9kSNHlp0PHTq0z+7u6dkjRozos7sBAABgZ9BT4XXS8QFmqR98ilkoJXd+Kfn5HwsZ0pqM3OTvbBWSFAoFhdcAAAAAAAAAAAAAAAAAAAAAwC6vH9TFQO9avHhxHnzwwbI7r3vd6/rk7te//vVl5/fff3+efvrpPrmbru22225l50uXLu2zu59//vmy856yAQAAwEC2NYXXdeuSYm2FApVTSv7tl8nhhZpMf7iQmdevL75urUlqCklNTXYbslseOecRhdcAAAAAAAAAAAAAAAAAAAAAwC5N6TUDzuzZs8vOJ02alEmTJvXJ3fvss08mTJhQdmfOnDl9cjddmzBhQkaPHt3tfN26dVm+fHmf3N1TwfmLXvSiPrkXAAAA+rseC69LSf3apK2ucpnKmbA4ufQNyTVTGpKRIzN9v3/KzMP+d4aMnZCRg0dlt8bdMvf9czN51ORqRwUAAAAAAAAAAAAAAAAAAAAAqCql1ww4d999d9n54Ycf3qf3H3HEEWXnc+fO7dP76axQKOSVr3xl2Z1bbrml1+9dunRp7rvvvm7njY2NmTZtWq/fCwAAAP1dj4XXSQatSVrrKxSoBxOfSDK2JsURw3POO4bmml9flFx3Xaa/+z8z800z88q9X5mHP/xwJo6YWO2oAAAAAAAAAAAAAAAAAAAAAABVp/SaAeeee+4pO58yZUqf3t/T85VeV96b3/zmsvPf/OY3vX7nDTfckGKx2O382GOPTUNDQ6/fCwAAAP3ZijUreiy8blyVNPeT/2Xe64mkfUJN0tCQDBuW4qCGnHP7Z3LNg9ckSaYfOD3Xzrg2oxtHVzkpAAAAAAAAAAAAAAAAAAAAAED/oPSaAedvf/tb2fkBBxzQp/fvv//+ZeePPPJIn97Plt7znvdk1KhR3c4vvfTSLF68uNfuKxaL+dKXvlR254Mf/GCv3QcAAAA7i9qa2uw/uvvPToatSNYOqmCgMiYsSorj17+pr994XiwVc87152wsvq6tqa1COgAAAAAAAAAAAAAAAAAAAACA/knpNQNKqVTK/Pnzy+70VEq9o3p6fk/56H3Dhg3LRz7ykW7na9euzXnnnddr933nO9/Jfffd1+38gAMOyFvf+tZeuw8AAAB2BnOempMRF47ImMYxXRZfD1uWrBpShWBdGP9ckjGbHNTVdZoXS8X88J4fpr3YXtFcAAAAAAAAAAAAAAAAAAAAAAD9ndJrBpRnnnkm69atK7uz55579mmGnp6/evXqPPvss32agS39+7//ew4++OBu51dccUU+//nP7/A9v/71r3Puued2Oy8UCvn+97+fmhr/+QUAAGDXMeepOTn6B0enlFJmL5q9RfH1sOeTVcOqGHATuy1LajZkKRQ6vjc0dNqZusfUXH7i5amtqa1sOAAAAAAAAAAAAAAAAAAAAACAfk7rKgPKokWLetzZY489+jTD1jx/a3LSuxoaGnLFFVdk1KhR3e585jOfyVlnnZU1a9Zs8/OLxWK+9KUvZfr06Wlvb+9279xzz81rXvOabX4+AAAA7Kw2LbzeYNPi6+HPJKtGVDHgJkY1JQ2Nmx02NCSb/PGqqXtMzayTZmXEoH4SGgAAAAAAAAAAAAAAAAAAAACgH1F6zYDy/PPPl52PGDEigwYN6tMMQ4YMybBhw8ru9JSTvjFlypTccMMNGT58eLc7P/zhD/PSl740F110UZYtW9bjM5ubm3PZZZfl8MMPz//+3/87bW1t3e6edtpp+epXv7pd2QEAAGBndOsTt25ReL3B7EWzs3bBgqwcU4VgXRi+Kmls2OywUEiGDNn4VuE1AAAAAAAAAAAAAAAAAAAAAEB5ddUOAL1p6dKlZecjRlSmkGjEiBFZtWpVt/OectJ3jj766Nx+++055ZRTcu+993a5s2DBgnz84x/Ppz71qRxyyCF5+ctfnj322CNjxoxJbW1tli1bliVLluSuu+7KnDlz0tzcXPbOQqGQj370o/nqV7+aQqHQF78WAAAA9Du/evBXeduVb+t2Pnxh8tT48v9PXSnjlyV1g5Pi5oPa2mT9H1BTeA0AAAAAAAAAAAAAAAAAAAAA0DOl1wwoy5YtKzsfPnx4RXL0dI/S6+o66KCDMnv27Hzxi1/Mt771rTQ1NXW5197ennvuuSf33HPPdt81efLkfPe7382b3/zm7X5GJV188cX57ne/2+f3PPbYY31+BwAAANVz5X1XZsYvZnQ7H/xssnJ8BQOVsdeyZOF3k2sOLOScN5VS3PD3qgqFZP1nPAqvAQAAAAAAAAAAAAAAAAAAAAC2jtJrBpR169aVnQ8dOrQiOYYNG1Z23lNO+t7gwYNzwQUX5GMf+1i++93vZtasWbn33nt77fkveclL8tGPfjRnnXVW6uvre+25fW3JkiV54IEHqh0DAACAnVhPhdeFJcm60RUMVMbgluTUh5PU1GT6wx1nG4uvhwxJBg1SeA0AAAAAAAAAAAAAAAAAAAAAsA1qqh0AelNLS0vZeV1dZXree7qnp5xUzujRo/OJT3wiX/va1/LGN75xh5+3zz775Prrr89DDz2UD3zgAztV4TUAAADsqJ4Kr7MiKY2sXJ5yGlqTlsbkolcmn/zHYpJk+sOFzLy+kJraumT4cIXXAAAAAAAAAAAAAAAAAAAAAADbSOk1A4rSa7bF4sWLc95552Xs2LE5/vjjc8MNN+zwM+fPn583velNmTZtWr75zW9m9erVvZAUAAAA+r+7Ft5VvvC6KUljkkKlEnWvtj1pG/zC+4uO2aT4+vlxmfmW72baXkcovAYAAAAAAAAAAAAAAAAAAAAA2EZKrxlQisVi2XltbW1FcvR0T3t7e0Vy0LXm5uZ84hOfyL777puvfe1raWpq6vU77r777nzsYx/L5MmT88UvfjGtra29fgcAAAD0Fw8ueTCv+NErul9Yl2Rw+kXhdaGYlBq2PL/omOSTb6xNbr450191dq6dca3CawAAAAAAAAAAAAAAAAAAAACAbaT0mgGlrq6u7Lytra0iOXq6p76+viI52NJ9992XI488Ml/96lfT3Nzc5/c9//zz+fd///e8/OUvz0MPPdTn9wEAAEClPbjkwUy9ZGpai938wafmdJRd95fC6zJ/M+2io9rzyacuTZLU1lTmj6cBAAAAAAAAAAAAAAAAAAAAAAwk5RuCYSfT0NBQdl6p0uvW1m5KntbrKSd9Y/bs2Tn++OOzYsWKHnfHjRuXN77xjXnVq16VadOmZezYsRkzZkzq6+vz/PPPZ+nSpbn//vtzyy235H/+53/yyCOPlH3e3XffnWnTpuXXv/51jjvuuN76lXrduHHjctBBB/X5PY899lhFSscBAADoW1tVeJ30jz+9V+oovK4Z1MWskKRQkxSSH8/7cT5/3OfTUOfzGwAAAAAAAAAAAAAAAAAAAACAbaX0mgGlvr6+7LylpaUiOZRe9z9z587dqsLryZMn51Of+lTOOOOMDB48uMudPffcM3vuuWde9rKXZcaMGSmVSvnv//7vfPGLX8xtt93W7bPXrFmTt7zlLfnNb36Tf/iHf9ih36evfOhDH8qHPvShPr/n4IMPzgMPPNDn9wAAANB3nlv9XA695NDuC6+TpJSktmKRuldKUkwyeP3rTRUKSU0hSTKmcUzuet9dCq8BAAAAAAAAAAAAAAAAAAAAALZTTbUDQG8aNmxY2fmqVasqkmPlypVl5z3lpHetXr06J598co+F1yeffHL++te/5gMf+EC3hdddKRQKectb3pI///nPueCCC1Jb232b15o1a3LiiSdm0aJFW/18AAAA6G/ai+1576/em/raMn+AbF36T+H12iSDOt4WC+vPC+kou96k8Hru++dm4oiJVQgJAAAAAAAAAAAAAAAAAAAAADAwKL1mQBkzZkzZeVNTU0Vy9HRPTznpXeedd14effTRsjvnnntuZs2alREjRmz3PTU1NTn//PPzs5/9LIVCodu9pUuX5qyzztruewAAAKDa2ovtOfPQMzNq8KgMrR+6xbxmbfpX4fVm/7tfrElSU5MUFF4DAAAAAAAAAAAAAAAAAAAAAPQmpdcMKLvttlvZ+fLlyyuSY8WKFWXnPeWk9zz66KP5/ve/X3bnbW97W7761a/22p0nnXRSvvzlL5fdueGGG/KrX/2q1+4EAACASlnYtDCTvjkpty+8PTOP/0ZGZXCGttd2FEyXkrrVSbGu2ik71C5PR+F1YbOvJMVSMYnCawAAAAAAAAAAAAAAAAAAAACA3qT0mgFl7NixZefNzc19Xny9dOnStLS0lN1Rel053/jGN1IsFrudDxkyJJdccklqanr3P4cf//jHc+ihh5bd+frXv96rdwIAAEBfW9i0MId977A8t+a5XPSXi3L7Vz6Smb8uZtTaUoa2Jg2rk7aGaqfsMGRZ0r57NpZcd2XUoFEKrwEAAAAAAAAAAAAAAAAAAAAAepHSawaUvffeu8edZ555pk8zbM3ztyYnO66trS0/+clPyu58+MMfzh577NHrdxcKhXzhC18ou/PHP/4xDzzwQK/fDQAAAH1hQ+H10rVLk2IpKRZz0b5P5/bdWzLz1pEprUtaBlU7ZYcRTydrdu9hp2FE5v3LPIXXAAAAAAAAAAAAAAAAAAAAAAC9SOk1A8qwYcOy2267ld154okn+jTD/Pnzy8533333DB06tE8z0OHOO+/MypUry+6cdtppfXb/m9/85owdO7bszu9///s+ux8AAAB6y8bC6zVLk2IxKZU2zi6aujofPHRZ1jRWMeAmhj+XNE0qvzOiYUTu/9D9Cq8BAAAAAAAAAAAAAAAAAAAAAHqZ0msGnH333bfs/JFHHunT+x999NGy857y0XtuueWWsvO99torBx98cJ/dXygU8rrXva7szp/+9Kc+ux8AAAB6Q6fC61IxKXWeD1mWPD2mOtk2N3xpsnJC+Z1Rg0YpvAYAAAAAAAAAAAAAAAAAAAAA6CNKrxlweioxfvjhh/v0/p6e35cly3T297//vez8yCOP7PMMRx99dNn5Qw891OcZAAAAYHttLLxe23Xh9eAlyaoR1cm2uWFNycrx5XduOu2mPHPeMwqvAQAAAAAAAAAAAAAAAAAAAAD6iNJrBpzDDz+87Hzu3Ll9ev/dd99ddn7YYYf16f284Pnnny87HzduXJ9n6OmOnjICAABAtXQqvC6Wtiy8XpSsGVOdbJsbuSbZY//9y+7cdNpNOW7f49JQ11ChVAAAAAAAAAAAAAAAAAAAAAAAux6l1ww4PZVe33PPPWlvb++Tu9va2jJv3ryyO0qvK2fZsmVl52PHju3zDD3dofQaAACA/qhT4XWp1PG1iUFPJ2vGVyncZhrXJitGJmMax2T/0V0XX28ovAYAAAAAAAAAAAAAAAAAAAAAoG8pvWbAOeKIIzJ48OBu56tWrcpdd93VJ3fPnj07a9as6XY+ePDgTJs2rU/uZku1tbVl583NzX2eYd26dWXnhUKhzzMAAADAtmhpa8m070/rKLxOkmLnwuuapcnacVUI1oVBzcnaER2vZy+a3WXxtcJrAAAAAAAAAAAAAAAAAAAAAIDKUXrNgDN48OC88pWvLLtz44039sndv/vd78rOX/WqV5Ut5KZ3DR06tOx8yZIlfZ6hpzuGDBnS5xkAAABgWzTUNeSMqWd0vCkWO82KS5O2kZXP1JX6lqR5WOezzYuvFV4DAAAAAAAAAAAAAAAAAAAAAFSW0msGpNe//vVl51dffXWf3Pvzn/+87Pz444/vk3vp2h577FF2vnDhwj7PsGDBgrLz8ePH93kGAAAA2FYXvvTDOe+x8UnphbPiqiQjqhapk9q2pLWbv3W1ofh6+ceXK7wGAAAAAAAAAAAAAAAAAAAAAKgwpdcMSCeddFLZ+d13352HH364V++87777cu+993Y7LxQKPeaid+27775l57fddlvWrVvXpxl+//vfl533lBEAAAAq7sknk7e9LRf+tpjz/tJxVFyVZHCSQjWDrdeetDeWX5mzaE5qa2orkwcAAAAAAAAAAAAAAAAAAAAAgI2UXjMg7bfffnn5y19edmfmzJm9eue3v/3tsvNjjjkm++yzT6/eSXmHHXZY2fm6devyhz/8oc/uX7ZsWe64446yO1OmTOmz+wEAAGCbNTUlp5ySPP100tKSC2+qyWl/SL8qvM7g8iuFFHLHP9+RYYOHVSQSAAAAAAAAAAAAAAAAAAAAAAAvUHrNgHXmmWeWnf/oRz/K4sWLe+WuhQsX5ic/+UnZnTPOOKNX7mLrHXXUUamrqyu7c9FFF/XZ/V/72tfS1tZWdueYY47ps/sBAABgm51/fjJ/fsfrtrYsLBbz41emfxReF9Njjg2F10fudWRFIgEAAAAAAAAAAAAAAAAAAAAA0JnSawas97znPdl99927na9Zsyaf+tSneuWuT37yk1m3bl238/Hjx+c973lPr9zF1hs+fHhe85rXlN35/e9/n9/97ne9fvfixYvzzW9+s+zOkCFD8trXvrbX7wYAAIDtcuONyVVXbXz76OqVmfRv6R+fIBbXfx/U/YrCawAAAAAAAAAAAAAAAAAAAACA6usPlTXQJwYPHpx//dd/Lbtz2WWX5Zprrtmhe6688spcccUVZXc++tGPZtCgMq1MW2H+/PkpFAplv/7jP/5jh+4YiE499dQed97znvfkiSee6LU7165dmxNOOCGrV68uu/e//tf/ytChQ3vtXgAAANhura3Jpz/d6eiAT6Z/fHpYWv/Vw0crt5xxi8JrAAAAAAAAAAAAAAAAAAAAAIAq6w+1NdBnPvrRj2bSpElld04//fTMnj17u55/++2356yzziq7M3ny5B7Lt+k773znOzNhwoSyO08//XTe/OY390rx9cqVK3PyySdv1b+pc889d4fvAwAAgF7x298mCxZsfFs4fXH/+OSwlGRtksHl13558i/zysmvrEQiAAAAAAAAAAAAAAAAAAAAAADK6A/VNdBnhgwZkq9//etld1auXJnjjz8+v/71r7fp2b/85S/zhje8IatWrSq797WvfS2NjY3b9Gx6z6BBg/KZz3ymx70HHngghx12WK655prtvuvuu+/OEUccsVX/lt761rfmqKOO2u67AAAAoFddeunGl4XTFie1VcyywYbC6xHl12a9fVbeeuBbK5EIAAAAAAAAAAAAAAAAAAAAAIAe1FU7APS1k046Ke9617tyxRVXdLuzYsWKvPWtb8073/nOnH/++XnpS1/a7e4DDzyQCy64ILNmzerx7lNPPTVvf/vbtyt3ta1atSo/+9nPtvnnHnnkkbLzu+++Oz/4wQ+26ZnDhw/PjBkztjnLBu973/ty2WWX5bbbbiu7t2zZspx44ok58sgjc9555+Utb3lLhgwZUvZn2tracsstt+Qb3/hGfv3rX6dUKvWYZ/jw4Zk5c+Y2/Q4AAADQZxYtSm69NUlS/+7F/ecTw+VJxpVfmfX2WTn5ZSdXIg0AAAAAAAAAAAAAAAAAAAAAAFuhv1TYQJ/63ve+l7vuuisPP/xwtzulUilXXHFFrrjiihx22GE55phjsu+++2bYsGFZuXJlHn/88dx6662ZN2/eVt350pe+NJdccklv/QoV99xzz+Xss8/u9eded911ue6667bpZyZPnrxDpdc1NTW58sorM23atDz77LM97s+ZMyczZsxIfX19Dj/88BxxxBEZO3ZsxowZk9ra2ixbtixLly7Nvffem9tuuy2rV6/e6iyFQiGXXXZZ9t577+3+fQAAAKBXzZ6dJBl86uK0NVQ5y3qDliXNGwqvC13vKLwGAAAAAAAAAAAAAAAAAAAAAOh/lF6zSxg2bFh++9vf5lWvelUWLFjQ4/7cuXMzd+7c7b5v7733zm9/+9sMGzZsu59B75o4cWKuv/76vP71r8/SpUu36mdaW1tzxx135I477uiVDIVCIRdffHFOOOGEXnkeAAAA9Iq//jXD37k4zYOqHaTD7ouS1ROS5m7m9TX1ue29t2XaxGkVzQUAAAAAAAAAAAAAAAAAAAAAQM9qqh0AKmXy5Mm56aabst9++/XpPfvvv39uuumm7L333n16D9vu8MMPzx//+Mc+/zfQlcbGxvzkJz/Jv/zLv1T8bgAAAChnzPLPZlVjtVN0OOTx5JKHRmdUS02Gtm45r6+pz7wPzFN4DQAAAAAAAAAAAAAAAAAAAADQTym9Zpey//77Z86cOXnDG97QJ89/4xvfmDlz5lSlVJmt87KXvSx33nln3v3ud1fszmnTpuX222/PqaeeWrE7AQAAYGvs9bnRWTak2ik6DFua3L9/cvvuLZl568iO4uti7cb5hsLrA8cdWMWUAAAAAAAAAAAAAAAAAAAAAACUo/SaXc7o0aNzww035Mc//nF23333Xnnm7rvvnksvvTTXX399Ro0a1SvPpO+MGjUqP/nJT/LHP/4xr3nNa/rsnhe96EX5/ve/n9mzZ2fKlCl9dg8AAABsjwM+Nz6LWpdXO0aSpLEpWTOu4/VFU1e/UHw9eFSG1g9NQ02DwmsAAAAAAAAAAAAAAAAAAAAAgJ2A0mt2Waeffnr+/ve/5+KLL86BB25fYdJBBx2Uiy++OI8//nhOO+20Xk5IX3v1q1+dm2++OXfddVc++tGPZtKkSTv8zOHDh2fGjBn51a9+lb/97W85++yzU1PjP7UAAAD0L9O+dEAebX222jGSJI2rkubRnc8umro6t+8/ODPf+l85bt/j8tS5Tym8BgAAAAAAAAAAAAAAAAAAAADYCRRKpVKp2iGgP/jb3/6WG264IXfffXfuv//+PPXUU1m5cmXWrFmTIUOGZPjw4Zk4cWIOOuigHH744XnTm96UAw44oNqx6WV/+9vfcuutt+bee+/NQw89lKeeeipPP/10Vq9enXXr1qVUKmXQoEFpbGzM7rvvngkTJmT//ffPwQcfnKOPPjpHHHFE6urqqv1r9HsHH3xwHnjggS3ODzrooNx///1VSAQAALDreOO3X5HfPnt7tWMkSQatTVqHdTOsqcl5x5yXL772i6mtqa1oLgCA3uLzcAAAAAAAAAAAAAAAAAAAYFejmRXWe/GLX5wXv/jF1Y5Blfl3AAAAwEB25g9O6DeF1/XNZQqvC4WkkPx43o/z+eM+r/QaAAAAAAAAAAAAAAAAAAAAAGAnUVPtAAAAAABA3zv3p2fmR/N/We0YSZLalqR9SDfDQpKaQsY0jsld77srDXUNlYwGAAAAAAAAAAAAAAAAAAAAAMAOUHoNAAAAAAPcF679RL5x/4+qHSNJUtOalBq7GRaSFGoypnFM5r5/biaOmFjJaAAAAAAAAAAAAAAAAAAAAAAA7CCl1wAAAAAwgP2fm76R8+d8tdoxOrQlGdzNbEPh9RCF1wAAAAAAAAAAAAAAAAAAAAAAO6u6agcAAAAAAHrZokXJ7Nm5Yc5P875c2VEoXWWF9qQwqLthkpqajGlUeA0AAAAAAAAAAAAAAAAAAAAAsDOrqXYAAAAAAKAXtLYm112XnHRScsQRefSfp+dN/aTwOsXkyS8n593axUzhNQAAAAAAAAAAAAAAAAAAAADAgFFX7QAAAAAAwA668cbk059OFixIkjzfsjgHnJl+U3j9yJeSiUkuvLkmKRRz0TGbzAsFhdcAAAAAAAAAAAAAAAAAAAAAAAOE0msAAAAA2Fk1NSXnn59cdVWn4/3PSGoakmJ1Ur2glFz/5WT/QiEZMiRpaMiF9zYkQ1floqmrOwqvh+ym8BoAAAAAAAAAAAAAAAAAAAAAYIBQeg0AAAAAO6MFC5IZM5L58zsdj5+xOE2DO17XpIrF16Xk+i8lbxwyNBk+PCkUNo4unD0iGTUyPz6oNXe9/26F1wAAAAAAAAAAAAAAAAAAAAAAA4TSawAAAADY2Tz5ZHLCCcnTT3c6nviOxXluaOfVqhRfl5LvX528cbexSX39lvMJE3Lh56/N5yeMT0NdQ6XTAQAAAAAAAAAAAAAAAAAAAADQR2qqHQAAAAAA2AZNTckpp2xReL3f9MVZPLzrH6n0h4Af+0Ny9ooJXRde77tvcu21yaRJCq8BAAAAAAAAAAAAAAAAAAAAAAYYpdcAAAAAsDM5//xk/vxOR1P+aXHmjy7/Y5X6IPC9tydff3xC18OTT06uvz6ZNKlCaQAAAAAAAAAAAAAAAAAAAAAAqKS6agcAAAAAALbSjTcmV12VtLcnra1Ja2uOPnFV7h+/dT9ek6TYh/FOnJv88IEuCq/33jv5/OeT17++D28HAAAAAAAAAAAAAAAAAAAAAKDalF4DAAAAwM5gzZrkQx9Kli1LWlqSJMe/vZg7J23bY/qq+PrYR5JfzN2s8PrYY5PTT0+OPz6pr++DWwEAAAAAAAAAAAAAAAAAAAAA6E+UXgMAAABAf3fjjcmHP5w89tjGoxPfUszvX7x9j+vt4uuDn01uef61yavHJgcfnEyZkhx1VDJhQs8/DAAAAAAAAAAAAAAAAAAAAADAgKH0GgAAAAD6q6am5Pzzk6uuSpYt23j8njcUc+0hSWEHHt1bxdeT68fkvu8/3wtPAgAAAAAAAAAAAAAAAAAAAABgZ6f0GgAAAAD6owULkhkzkvnzk2IxaWlJkpzzqmKuOLxjpZTqFl/vXj888z+r8BoAAAAAAAAAAAAAAAAAAAAAgA5Kr/uBYrGYpqamNDc3p6WlJaVSqWJ377333hW7CwAAAICt9OSTyQknJE8/3fF+feH15w4v5rvHdpRdb9AbxdfJtpdfj6xvzDOfbdqBmwEAAAAAAAAAAAAAAAAAAAAAGGiUXldQW1tb7rjjjvz5z3/OvHnz8tBDD2XBggVZtmxZRYuuNygUCmlra6v4vQAAAACU0dSUnHLKC4XXSdLWlq8eUswFb+hceL3BjhZfJx3l11tbfN1YX5Pln12zgzcCAAAAAAAAAAAAAAAAAAAAADDQKL2ugDvuuCOXXHJJfvnLX2bFihUbz6tRdA0AAABAP3f++cn8+Z2OLh+3Mv/2lq4LrzeoVPF1fX2y5rPtO3gTAAAAAAAAAAAAAAAAAAAAAAADkdLrPjR37tyce+65+dOf/pSk65LrQmFHq4i2j8JtAAAAgH7oxhuTq67qdPTroYtzxsk9l1EnfV98XWhNWr7gcyUAAAAAAAAAAAAAAAAAAAAAALqm9LoPlEqlfO5zn8t//ud/plgsbiyYLldwXckS6moVbQMAAABQRmtr8ulPdzr684jFOfHEpH0bPs7ps+LrtqR4+6t38MkAAAAAAAAAAAAAAAAAAAAAAAxkSq97WUtLS971rnflmmuu6bLsupLl1gAAAADsRH7722TBgo1vH2hdnH+cnrTVbPujer34uj0pXTYhOah+B58KAAAAAAAAAAAAAAAAAAAAAMBApvS6l5122mm5+uqrk7xQdt1V0fWmRdgAAAAAkEsv3fhySeviHHp20rq+8Hp7PknqreLrNCftl0/oOBg7dgefCAAAAAAAAAAAAAAAAAAAAADAQKb0uhd961vfypVXXtmp0HrzwuvNy667KsQGAAAAYBezaFFy661JOgqv9z7rhcLrZPsLrHe0+HpISzL/R0ka1h8cfPAOPA0AAAAAAAAAAAAAAAAAAAAAgIFO6XUvWbRoUT796U9vLLXurux6w3mhUMjkyZMzZcqUvPSlL83IkSMzfPjwDBs2bItibAAAAAAGuNmzN77c973Jui4+tat08fWg1uSu/5vsNmjCC4dTpmzHkwAAAAAAAAAAAAAAAAAAAAAA2FUove4lX/nKV7J69eoUCoWyhddTp07NGWeckVNOOSXjx4+vRlQAAAAA+pu//jVJMupdi7O6ofu1ShVfN7Ql93w9efG4CZ0HRx21HbcDAAAAAAAAAAAAAAAAAAAAALCrUHrdC1paWvLjH/94Y7n1Bpu+HzNmTL785S/nrLPOqnQ8AAAAAPq7++/PuBmLs2Jwz6t9XXxd157c9IPkxaPGdh4ce2wyYULXPwQAAAAAAAAAAAAAAAAAAAAAAFF63StuvPHGNDU1pVAopFQqJXmh8LpUKmXPPffMzTffnAMOOKCaMQEAAADopyZOuDLPDd36/b4qvq4tJtf+IHnFuqHJiPrOw9NP344bAQAAAAAAAAAA/n/27jRM7rJOG/ZVvWRPhwQIRLYgm6yBhFFEQZRFHBWJIKssEhFHzKCMjj6+M4+izig6zqgs4ihhUXYEgXGQRQdwFJ8ACSiLbLIFAiQQ0ll7q//7IXTTnXR3SNJd1emc53GUVN2/u+77qkQ87PpwNQAAAAAAAAAAG5KaagcYDO66664urzsXXg8dOjS33XabwmsAAAAAurXdWZvm+VFr/r5iLe/r6X01RXL+dckHFtYno0d3HW69dXLIIWt5IwAAAAAAAAAAAAAAAAAAAAAAGwql131g1qxZq6wVRZFSqZQzzjgjO++8cxVSAQAAADDQ7fEvW+WvLfPX+v3rUnzd+b2lJN+5KfnkY6Vko42S13+pW4dvfjOpr1/L2wAAAAAAAAAAAAAAAAAAAAAA2FAove4DTz31VEqvFwGVOhUC1dTU5Itf/GK1YgEAAAAwgL3z7J3y52Vz1vmctS2+bn9vKcmXbk8+/+ckQ4YkdXVdNx11VHLQQetwCwAAAAAAAAAAAAAAAAAAAAAAG4q61W9hdebPn9/ldVEUKZVK+Zu/+ZtsvPHGVUoFAAAAQDW1ldtSW1P7xsILLyQzZyZ/+lMOnfO9/HF8Y5/d1V5evaZKSf7+ruRfZpaSmlJSX991w7bbJl//eh8kBAAAAAAAAAAAAAAAAAAAAABgQ6D0ug8sXbq02/V99tmnwkkAAAAAGAgamxpz/HXH55TdT8zUp4Yll1yS/OEPSZKj95mbW3bp+zvXpvj62FnJv/++5o03di69njAhufLKpKGhjxICAAAAAAAAAAAAAAAAAAAAADDYKb3uA/X19Wlra1tlffz48VVIAwAAAEA1LVi2IMddd1weeGZmZj9wS3LXqEx9eliS5NN7zc01/VB43W5Niq8/+FDy81tqui62l15vu+2KwuutturLeAAAAAAAAAAAAAAAAAAAAAAADHJKr/tAQ0NDli9fvsr62LFjq5AGAAAAgGqZ0zgnky/YK61LFmXYspaUk0x/18IkyV0NC/Kfe60opu5P7ef3Vn79rr8mN924UuH1kCFJbW1y1FHJ17+eNDT0V0QAAAAAAAAAAAAAAAAAAAAAAAYppdd9YMKECXnppZdSKnWtElqwYEGVEgEAAABQaXMa52Sv8yfl1eWvrlioLWVYWynlUnLa7gsyf9P+L7zurEj3xdd7zkl+d2Vp1eHWWyfnnpscfHAF0gEAAAAAAAAAAAAAAAAAAAAAMBjVVDvAYLDrrrt2u/7yyy9XOAkAAAAA1bCi8HqPFYXXrzdbLxxSZHltkbbF5cyrcOF1u5Xv3GFeMuuSJJ1/eduQIckOOySzZyu8BgAAAAAAAAAAAAAAAAAAAABgnSi97gN77713t+vPPPNMhZMAAAAAUGlzGudkrwv2zKvLF6zSMr2gXOTlcdXJ1a490lYLkkd/UkqGDk1GjkzGjEk23TQZOzY599xkxIiq5gQAAAAAAAAAAAAAAAAAAAAAYP2n9LoPHHbYYV1el0qlFEWR//mf/0m5XK5SKgAAAAD625zGOdnrx3vl1aWvrlJ4XV6apK4qsVax6aLkmZ/UJ5tskowbl4walQwbltTUJEcdlRx0ULUjAgAAAAAAAAAAAAAAAAAAAAAwCCi97gPbbrtt9t577xRF12ajhQsX5u67765SKgAAAAD60xuF168kK30vVG5JSkOSlKqTrbMxy5KXLhyZbLxxUrdSC/e22yZf/3p1ggEAAAAAAAAAAAAAAAAAAAAAMOgove4jZ555Zrfr55xzToWTAAAAANDfFixbkMk/npxXl73abeF1SkkxAAqvRzYnr126SdLQkJRWCjRhQnLllStmAAAAAAAAAAAAAAAAAAAAAADQB5Re95Gjjjoqu+22W8frUqmUoihyzTXX5N57761iMgAAAAD6UmNTY4677ri0lltXFF536rwut7z+ZAAUXg9rTZ66KEl9/arDbbdNfvnLZKutKh0LAAAAAAAAAAAAAAAAAAAAAIBBTOl1H6mpqclPf/rTlEpdG42KosinPvWpLFmypErJAAAAAOgrbeW2HH/d8XngxQcyrG5YxrTWdZmXkgHxjVt9OXn2wmTT+gmrDo86Krn5ZoXXAAAAAAAAAAAAAAAAAAAAAAD0uQFQwTN4vP3tb883v/nNFEWRJB0F2A888ECOOOKItLW1VTMeAAAAAOuotqY2p+x5SmpKNUm5nGFNbRnTvOI7oFJzUgyAb9vqy8n9P+mm8HrrrZNLLkm+//2koaEq2QAAAAAAAAAAAAAAAAAAAAAAGNwGQA3P4PLlL385n/jEJ7oUXxdFkdtuuy0f+MAH8uKLL1Y5IQAAAADrYurOU3POB85JTUtrkmRYWyk1TUlbbZWDJakrktt+mezSufD63e9OfvKT5He/Sw4+uGrZAAAAAAAAAAAAAAAAAAAAAAAY/OqqHWAw+ulPf5qhQ4fmggsuSKlU6ii+/s1vfpNJkybl3HPPzcc+9rFqxwQAAABgLU3deWpy9dWZXlyd+TXltA6Ab9lqk1x79055zx57JrvumuyxR/L2tycTJqzurQAAAAAAAAAAAAAAAAAAAAAA0Cdqqh1gMCqVSjn//PPzne98J3V1dR1rRVFk3rx5OeaYY7LDDjvk3HPPzfPPP1/ltAAAAACsjakPl9PUXE5TfbWTrPiS78L3/kc+8tu/JFdemfzzPycf+YjCawAAAAAAAAAAAAAAAAAAAAAAKqqu2gEGi0svvXSVtfHjx2fatGm54IILUiqVUiqVkiRFUeTJJ5/MGWeckTPOOCNbbbVV9t1332y99dYZO3Zsxo0bl6FDh1Yk94knnliRewAAAAAGmx03vSbzR1c7RVJK8s09z8xJB36u2lEAAAAAAAAAAAAAAAAAAAAAANjAKb3uIyeffHJHqXV3iqJIklXKr5Pk2WefzXPPPdf/Ibuh9BoAAABgze31rW3z+EZFtWOklOQrD22S//PN71U7CgAAAAAAAAAAAAAAAAAAAAAAKL3ua+1F1qubdy6/fjPv6w+9lXQDAAAA0L19v7Nz7l/ydLVjpJTkU7OTbzZNqnYUAAAAAAAAAAAAAAAAAAAAAABIovS6z3VXJN1doXXntZULsCuhGiXbAAAAAOu79//H3+Tuxr9UO0aS5GMPJxfMnpDsv0m1owAAAAAAAAAAAAAAAAAAAAAAQBKl131ubcqkK11AXemCbQAAAIDB4OjzDsytr9xb7RhJkvc/mVz1xwkrXuy6a3XDAAAAAAAAAAAAAAAAAAAAAADA62qqHQAAAAAABrq/u/BjuXrub6sdI0nyrmeTX9854Y2FPfaoXhgAAAAAAAAAAAAAAAAAAAAAAOikrtoBBptSqVTtCAAAAACsobZyW2prarudffXK03PBU9dWOFH3Ri1P/uGJsV0X3/726oQBAAAAAAAAAAAAAAAAAAAAAICV1FQ7wGBSFMV68wAAAABghcamxhx+1eG5/pHrV5n92y+/kq8/eH4VUq1qxPJkdE1Npr9rYa6fuHzF4rvfnUyYUN1gAAAAAAAAAAAAAAAAAAAAAADwurpqBxgsnnrqqWpHAAAAAGANNTY15uhrj84DLz6Q2XNnJ0mm7jw1SXLJbf+Rf7z3W9WM12FoSzK0Lkk5KZeS6e9amCSZetJJ1Q0GAAAAAAAAAAAAAAAAAAAAAACdKL3uI9tss021IwAAAACwBjoXXidJuShn+s3TkySjliWn3HFmilI1E64wpDVpGZYsTJLmIsPaSiuKr9+zONlmaaZWOyAAAAAAAAAAAAAAAAAAAAAAALxO6TUAAAAAG5yVC6/blYtyjr/6iCxvLgZE4XVdW9I69I3XC4cUSXNWFF+PHp3pt34+qa3L1J1VXwMAAAAAAAAAAAAAAAAAAAAAUH011Q4AAAAAAJXUU+F1ksxfPDfLBkjhdU05KQ9ZdX3hkCLLh9cnQ4emXJQz4/4ZaSu3VT4gAAAAAAAAAAAAAAAAAAAAAACsROk1AAAAABuM3gqvX1o8Ny1NSQZA4XWpnJR7HCYLa1uyvHV5Jm0+KZd99LLU1tRWMh4AAAAAAAAAAAAAAAAAAAAAAHRL6TUAAAAAG4TVFV4XTRkY35YVSZGkpr6bWSlJaUXIupq6XP7Ry9MwtKGS6QAAAAAAAAAAAAAAAAAAAAAAoEcDocYHAAAAAPrV/CXzeyy8TpKa5UkxEL4pK1Y8ei28LiXjho/LrNNmZezwsRUOCAAAAAAAAAAAAAAAAAAAAAAAPaurdgAAAAAA6E/PvPZMdjx3x9TX1KdhaMMq81fmzU3rQPiWrEjqFifljbqZlUpJTSnJisLr2afNzpYNW1Y0HgAAAAAAAAAAAAAAAAAAAAAArM5AqPMBAAAAgH4xp3FO9v7J3mlpa0lzW3OSdCm+XvDy3DTXVytdV2MXJsNG1GR5c5GFQ4oVi6WsKLwuKbwGAAAAAAAAAAAAAAAAAAAAAGDgq6l2AAAAAADoD3Ma52SvH++VV5e9mlKplFJKWdKyJI1NjUmS116am+UDpPD6tPuSEcNXfFU3rK2UMeX6pKaU1NQovAYAAAAAAAAAAAAAAAAAAAAAYL1RV+0AAAAAANDXOhdetyuVSkmRLGlZkvKCJVk2tIoBO/nXhzbP/xnznlw/upTpdbelXF+XYTU1SevyLGxamEThNQAAAAAAAAAAAAAAAAAAAAAA6wel1wAAAAAMKt0VXrcrlUoZ9lqRZSOqEKwb/7DjSfk/37w4STI1SR65PtNvnp5yUc6wumFJkrqausw6bZbCawAAAAAAAAAAAAAAAAAAAAAABjyl1wNAa2trHnnkkfz5z3/OM888kxdeeCHz5s3LsmXLsnz58iTJsGHDMnz48IwfPz4TJkzINttsk9133z0777xz6ur8NQIAAAAkvRdeJ8nwV8tZMqrCoXpw4lZ/m3878eIua1N3npokHcXX79jyHbn8o5dn7PCxVUgIAAAAAAAAAAAAAAAAAAAAAABrRltylTz44IO5/vrrc/vtt+f//b//l5aWlrU6Z8iQIdlnn31y0EEHZerUqdlll136OCkAAADA+mG1hdfzy1nSUOFQPfjw+H1zyWm/6nbWXnw94/4Zueyjl6Vh6AAJDQAAAAAAAAAAAAAAAAAAAAAAq1EqiqKodogNRWtray6++OL86Ec/yv3339+xvq5/BaVSqeP55MmTc/rpp+eEE05IbW3tOp0L0F923XXXPPzww6us77LLLnnooYeqkAgAAFjfra7wesSL5SweV+FQPXjP2N1zxz/8abX72sptqa3x/Q4AwPrM9+EAAAAAAAAAAAAAAAAAAMCGpqbaATYUl1xySbbbbrucdtppmT17doqi6HiUSqV1enQ+67777su0adOy3Xbb5bLLLqv2xwYAAADod82tzZnyn1N6LryeM3AKr6eM2u5NFV4nUXgNAAAAAAAAAAAAAAAAAAAAAMB6R+l1P3vuuefy3ve+N6ecckqee+65FEWRJF1Kq5N0Ka5ek0dPZz377LM58cQTc/DBB+f555+vzocHAAAAqIAhdUNy8qSTu50Nn1vO4vGVzdOTnYe9Jfd++YlqxwAAAAAAAAAAAAAAAAAAAAAAgH6j9Lof3X777ZkyZUruuuuuFEXRpZy6u/LqtbHyOSvf8Zvf/CaTJ0/OHXfc0XcfDAAAAGCAOfvgs/OFd36hy1rdK+Us2bhKgVaydf24PPxPfjEZAAAAAAAAAAAAAAAAAAAAAACDm9LrfnLdddflQx/6UObPn99RRp2kx5LrzmXVa/JYWefz2+fz5s3LoYcemhtvvLEfPzEAAABAdXUuvi6/Wk7z6CoHet3m9Q155quvVDsGAAAAAAAAAAAAAAAAAAAAAAD0O6XX/eDmm2/OMccck+bm5o5y6u7Krlcur27f82Yf3Z3Rrn1P+6y5uTkf+9jHcuutt1bmDwEAAACgCs4++Oz87eh9kpHVTrLC2PoRmfvVhdWOAQAAAAAAAAAAAAAAAAAAAAAAFVFX7QCDzaOPPppjjz02ra2tXcqsO+tcUN0+mzhxYvbaa6/stdde2WGHHTJmzJiOR5IsXLiw4/HEE09k9uzZmT17dp566qlVzu18X+fi65aWlhxzzDGZOXNmtt9++/75AwAAAACoouvvviT/Nf8PSWn1e/tbTVty4fE/r3YMAAAAAAAAAAAAAAAAAAAAAACoGKXXfagoipx44olpbGzstoB65bWdd945J5xwQj7+8Y9nyy23XKs7586dm5/97Gf5+c9/ngcffLCj4LrzPZ2Lr1977bWccMIJufvuu9f6cwIAAAAMRDMf/W0++l8nD4jC65STzTaZkOk3T0+STN15apUDAQAAAAAAAAAAAAAAAAAAAABA/6updoDB5Lzzzss999yz2sLrXXbZJbfffnseeuihfPnLX17rwuskmTBhQv7xH/8xf/rTn3LHHXdk991377i3/c6Vs8ycOTPnn3/+Wt8JAAAAMGDccktyxBF5fotS9rnkwAFReF0qJzVDVzwvF+VMv3l6rn/k+uqGAgAAAAAAAAAAAAAAAAAAAACAClB63Ueampryr//6r6sUXpdKpZRKpRRFkSFDhuR73/teHnjggbzvfe/r8wz7779/Zs2alR/84AcZNmxYx/2dtWf5l3/5lzQ3N/d5BgAAAIB+t3BhcvTRyfDhyaGH5vnrrsvWJyXFAPimq6aclIYmm42a0LGm+BoAAAAAAAAAAAAAAAAAAAAAgA3FAKgCGhwuvvjivPjii0m6Fl63vx43blzuvPPOfP7zn09tbW2/5aipqcn06dNz1113ZdNNN10lR7sXX3wxl156ab/lAAAAAOgX06Yl48YlV1+dLF+eJJn45aQ8AL7lKhXJkJUKr9spvgYAAAAAAAAAAAAAAAAAAAAAYEMwAOqABoef/exnXV53LpoeNWpUbr/99rz97W+vWJ4pU6bk1ltvzahRo7rk6eziiy+uWB4AAACAdfLII8mmmyYzZiTlcsfy0C8nrf33+8XevCIZPSQZ203hdbtyUc6M+2ekrdxWwWAAAAAAAAAAAAAAAAAAAAAAAFA5Sq/7wAsvvJC77757lWLpoihSKpVy/vnnZ88996x4rj322CMXXHBBiqJYJVNRFLn77rvzwgsvVDwXAAAAwBq58cZkt92S+fO7LI/4QtI8QAqvNyklI3spvE6SSZtPymUfvSy1NQMhNAAAAAAAAAAAAAAAAAAAAAAA9D2l133grrvu6iiW7lwqXSqV8p73vCcf//jHq5bt2GOPzXvf+96OPCu78847q5AKAAAA4E26/vrk8MOTcrnL8sh/SJYNrU6klb0lSf3Y1RdeX3XkVWkY2lCZUAAAAAAAAAAAAAAAAAAAAAAAUAVKr/vAH/7whx5nX/7ylyuYZM0z3H333RVMAgAAALAGHnkkOfLI5PVfNtZu7BnJ0mFVyrSSMUuTYpzCawAAAAAAAAAAAAAAAAAAAAAASJRe94nHHnus43mpVOp4vummm+aQQw6pRqQuDj744IwfPz5J13xJ1+wAAAAAA8r++yflcpelLT6dvDaqSnlWMmJ+snBM0tjU2OMehdcAAAAAAAAAAAAAAAAAAAAAAGxIlF73gaeeeqpLmXRRFCmVSjnggAOqF2olBxxwQIqi6HhdKpVSFEX++te/VjEVAAAAQA+mTUvmz++ytP0nkxc2rlKelYx6OVn+lpqUUsqSliXdFl8rvAYAAAAAAAAAAAAAAAAAAAAAYENTV+0Ag8Err7zS7frOO+9c4SQ922WXXbpd7yk7AAAAQNUsXJhcfHGXpb85Pnlys+rEWdmoV5OlW674XXKlUikpkiUtS5Kko+Ba4TUAAAAAAAAAAAAAAAAAAAAAABsipdd9YMmSJd2ub7LJJhVO0rONN9642/WlS5dWOAkAAADAapx2WlIud7w88Ijk3onVi9PZyMZk6eY1XdZWLr7eb5v9FF4DAAAAAAAAAAAAAAAAAAAAALBBUnrdB1pbW7tdr6+vr3CSntXVdf9X3dbWVuEkAAAAAKtxww0dTz/04eS3b6tilk5GLk6WbVLT7ay9+Lql3JKfHf4zhdcAAAAAAAAAAAAAAAAAAAAAAGyQum/pYY2MHDmy2/WFCxdWOEnPFi1a1O368OHDK5wEAAAAoBe33JIsX54kOfnA5Fd7VDnP64YtS5aN6/2rtI1HbJzHPvtYNhm5SYVSAQAAAAAAAAAAAAAAAAAAAADAwKL0ug+MHj262/Unn3yywkl61lOWnrIDAAAAVMV//meS5CuTk0v2qXKW1w1tSprH9P412rjh4zL7tNnZZqNtKpQKAAAAAAAAAAAAAAAAAAAAAAAGHqXXfWDrrbdOURRd1oqiyB//+McqJVrVzJkzu7wuiiKlUilbb711lRIBAAAAdGPWrHxn5+RbH6h2kBXqm5OW0W+u8HrLhi0rlAoAAAAAAAAAAAAAAAAAAAAAAAYmpdd94K1vfWvH8/Yy6ST585//nKeffrpKqd7w3HPP5f777+/I1dl2221XhUQAAAAA3ftp29P50tRqp1hhSGvSNkrhNQAAAAAAAAAAAAAAAAAAAAAAvFlKr/vAlClTepydf/75FUzSvfPOOy9FUSRJxz/b9ZYdAAAAoJKu/d1PcuoJSVb9vV0VN7Q1afp2kS+88ws97lF4DQAAAAAAAAAAAAAAAAAAAAAAXSm97gP77bffKmulUilFUeTcc8/N008/XflQr3v22WdzzjnnpFTqvi2qu+wAAAAAlfbHB3+dj/36UwOi8LquLVn+b7VJkrMPPrvb4muF1wAAAAAAAAAAAAAAAAAAAAAAsCql131g8uTJmTBhQpI3yq7bLV++PMcee2xaWloqnqu1tTXHH398li1bliQpiqJL+fWECRMyZcqUiucCAAAA6GzOE0/knVd8YEAUXteUk6e/naTTdygrF18rvAYAAAAAAAAAAAAAAAAAAAAAgO4pve4DpVIpRx11VJey684F0zNnzszRRx+d1tbWimUql8s54YQT8vvf/36VIu72bMccc0zF8gAAAAB0Z84TT2TrGTsMiMLrUjl59lvJFklSX99l1l58vcmITRReAwAAAAAAAAAAAAAAAAAAAABAD5Re95HTTz89tbW1SdJRdt1eLl0URW644YYcfPDBeemll/o9y/z583PooYfm6quv7sjSOVeS1NbW5u/+7u/6PQsAAABAb7aZsUOKgfANVZH88duvF14nyeabr7Ll7IPPznOfe07hNQAAAAAAAAAAAAAAAAAAAAAA9GAgVAoNCttvv32OOuqoFEXRZb1z8fWdd96ZnXbaKd///vfT1tbW5xmKosi5556bnXbaKb/5zW86snTO1J7n6KOPznbbbdfnGQAAAADerCH/p5TyQPh2qkiuuyR5e+evdSZP7nbrkLohlckEAAAAAAAAAAAAAAAAAAAAAADroYFQKzRofOc738no0aOTJKVSqWO9vWg6SRobG/MP//AP2W233fL9738/L7/88jrfO2/evPzwhz/MHnvskTPOOCMLFizoUra9cp7Ro0fn7LPPXud7AQAAANbW8C+X0lJb7RRJiuSCS5Opz6+0ftppVYkDAAAAAAAAAAAAAAAAAAAAAADrs7pqBxhMtthii3z3u9/Npz/96S4l00nX4uuiKPLoo4/mH/7hH/KP//iPee9735t3v/vd2WuvvbLnnntmyy237PWeF154IbNnz87s2bPz+9//Pr/5zW/S1ta2SsF1++uVM3zve9/LW97ylr762AAAAABrZMyXarO8vtopVvjGDclpc1ZaHD48OfjgquQBAAAAAAAAAAAAAAAAAAAAAID1mdLrPvapT30qM2fOzIwZM1IqlboUT7eXTncupW5tbc3tt9+e22+/vWNffX19xowZk4aGhjQ0NCRJGhsbOx7Nzc1d7ux8R3eF1+05SqVSPvnJT2batGl9/8EBAAAA3oTNzhqZxvpytWMkSf7x5uSfHupmcPjhlY4CAAAAAAAAAAAAAAAAAAAAAACDgtLrfvCjH/0o8+fPz4033rhKCXX7P1cuv+6subk58+bNy7x5897Ufe3ndHdW59nUqVNz/vnnr+GnAQAAAOgb2541Ni+3LK12jCTJZ+5Mzp7VzaCmJvnRjyqeBwAAAAAAAAAAAAAAAAAAAAAABoOaagcYjOrr63Pttdfm2GOP7VJy3VlRFKsUYHf3aLe6PZ3P6/ye9tkJJ5yQq666KrW1tf32uQEAAAB6sstZm+fplteqHSNJcuSs5Lz/7WF4yinJmDEVzQMAAAAAAAAAAAAAAAAAAAAAAIOF0ut+UldXl8suuyz/9m//lrq6uiRZpcg6eaOsuvOjs3V5T1EUqa+vzw9+8INccsklCq8BAACAqtj7G9vmkZaXqh0jSfK+vyTX3NzDcJNNkp/8pKJ5AAAAAAAAAAAAAAAAAAAAAABgMFF63c/OPPPMzJo1K/vuu29HOXV7KfXKZdbtuiu17qngul3nM9v37b///rn//vszffr0fvt8AAAAAL1539m75b6mp6sdI0my99PJb37Rw7CmJrnrrkrGAQAAAAAAAAAAAAAAAAAAAACAQUfpdQXsuuuu+d3vfpdf/vKXmTJlSpfy6s5l1asrw17d/vZz99lnn9x0002544478ra3va0inxEAAABgZUd8/935n0UPVTtGkuRtLyT3XNbDsFRKrr8+2XnnimYCAAAAAAAAAAAAAAAAAAAAAIDBRul1BR122GGZOXNm7r333pxxxhnZaqutOoqqOxdhJ6svw175fdtss00+//nPZ9asWfnDH/6QD37wg9X4iAAAAABJkk//eGqum//7asdIkkyclzxyUQ/Dmprkl79MDjuskpEAAAAAAAAAAAAAAAAAAAAAAGBQqqt2gA3R5MmTM3ny5PzHf/xHHn/88fzud7/LAw88kAcffDDPPPNM5s6dm2XLlnX73uHDh2fChAmZOHFidtttt0yaNCn7779/tttuuwp/CgAAAIDu/cPFJ+XHz/2y2jGSJJs0Jk/9Z0/DTZK77kp23rmimQAAAAAAAAAAAAAAAAAAAAAAYLBSel1lO+ywQ3bYYYdV1pcuXZply5Zl+fLlSZJhw4Zl+PDhGTFiRKUjAgAAALxp37/u/8u/P3FptWMkSTZaksw7p5tBTU1y8snJhRdWOhIAAAAAAAAAAAAAAAAAAAAAAAxqSq8HqBEjRii4BgAAANYrl95+Tj4/61+rHSNJMrwpWfD9lReHJ4cfnvzoR8mYMVVIBQAAAAAAAAAAAAAAAAAAAAAAg5vSawAAAADW2Y3/77Kc9D9/n5SqnSQZ0pos/X5dMrw+2XzzZPLk5LTTkoMPrnY0AAAAAAAAAAAAAAAAAAAAAAAY1JReAwAAALBO7n3irnzkxo8PiMLr2rak6dtF8u1qJwEAAAAAAAAAAAAAAAAAAAAAgA1PTbUDAAAAALD+euGZZ/I3F71nQBRe15STp6c9Xu0YAAAAAAAAAAAAAAAAAAAAAACwwVJ6DQAAAMBaeeGZZ7LVTyYOiMLrlJNnTnk8W26/fbWTAAAAAAAAAAAAAAAAAAAAAADABkvpNQAAAABrZZuLJ6Zc7RBJUiR3H3ezwmsAAAAAAAAAAAAAAAAAAAAAAKgypdcAAAAArLGhZ9WmtaXaKbKi8PrYm7PPbodWOwkAAAAAAAAAAAAAAAAAAAAAAGzwlF4DAAAA0MW8xnm9zkecVZ/mlnKF0vSiSK459D8VXgMAAAAAAAAAAAAAAAAAAAAAwACh9BoAAACADlc/eHXG/8f4jP322G7nG501LMtaWiucqnsXv/PbOXK/U6sdAwAAAAAAAAAAAAAAAAAAAAAAeJ3SawAAAACSrCi8PvoXRydJXmt6bZXi683OGp2FLU3ViLaKr+7ymZz0oS9VOwYAAAAAAAAAAAAAAAAAAAAAANCJ0msAAAAAuhRet+tcfL3VWePycsviakRbxZnbHZ+vHXdetWMAAAAAAAAAAAAAAAAAAAAAAAArqat2gGq79NJLqx2hqk488cRqRwAAAACq7Io/XZHjrj+u29lrTa9lxJmlLBtR4VA9+PjmB+d7n/h5tWMAAAAAAAAAAAAAAAAAAAAAAADd2OBLr08++eSUSqVqx6gapdcAAACwYbt49sX5xI2f6HE+7NVk2egKBurF3240JT/77K3VjgEAAAAAAAAAAAAAAAAAAAAAAPRggy+9blcURbUjVNyGXPYNAAAAvInC63nJ8o0ql6c37x31tvzqC/dWOwYAAAAAAAAAAAAAAAAAAAAAANALpdev29AKoDfEkm8AAADgDastvJ6bLN+kgoF6Mal+q/z2y49UOwYAAAAAAAAAAAAAAAAAAAAAALAaSq9ftyGVQG9oBd8AAABAV90WXnf6amTo/IFTeL1j/aa5/6vPVjsGAAAAAAAAAAAAAAAAAAAAAADwJii9BgAAANiAPDnvya6F1yv9HrC6+UnTRhWN1KMt60fn0a++XO0YAAAAAAAAAAAAAAAAAAAAAADAm6T0+nWlUqnaEQAAAAD6VWNTYz5762dTSilFUay6YWHSulHFY3Vrk/phee6rjdWOAQAAAAAAAAAAAAAAAAAAAAAArAGl10n3JU8AAAAAg0hjU2OOvvboPPD8rGy+vC4vDmlJ0fl3gC1NMrJa6boaXT8k8766rNoxAAAAAAAAAAAAAAAAAAAAAACANbTBl14/9dRT1Y4AAAAA0K86F15nwatJWzmbL6vJi8PLK4qvlyapr3bKFYbX16Xxq03VjgEAAAAAAAAAAAAAAAAAAAAAAKyFDb70eptttql2BAAAAIB+01Zuy/HXHZ8H5t6fLFiQtJU7Zpsvq8ncuvKKwutS1SJ2GFJfytKvtlQ7BgAAAAAAAAAAAAAAAAAAAAAAsJZqqh0AAAAAgP51yp6npGbRoqStrcv63JbyirLrAVB4XVeXNH21vPqNAAAAAAAAAAAAAAAAAAAAAADAgKX0GgAAAGCQamxqzOFXHZ48cH/OuW1Iaoo3ZnNbysnwDIjC65py8swnnq52DAAAAAAAAAAAAAAAAAAAAAAAYB0pvQYAAAAYhBqbGnP0tUfnvhfuy/T7v5UkOef3Y94ovh6egfHNUJE88skH8pZttql2EgAAAAAAAAAAAAAAAAAAAAAAYB0NhGojAAAAAPpQe+H1Ay8+kDQ1pVxuy/R3LUyyovj6xdrywPhWqEju+cSd2fGte1Q7CQAAAAAAAAAAAAAAAAAAAAAA0Afqqh0AAAAAgL6zYNmCHHfdcSsKr5Nk6dIkSbmUTH/XwsyrLaeorWLAdkVyw2E/z97b71/tJAAAAAAAAAAAAAAAAAAAAAAAQB9Reg0AAAAwSMxpnJPJP56c1nJrhtUNS8rlpLk5KYokydyaIuUB8m3QJe/9YQ57x/HVjgEAAAAAAAAAAAAAAAAAAAAAAPShAVJzBAAAAMC6mNM4J3tesGdeWfZKSillo9qRGbakaUXxdZKXa5JyfZVDvu6sSWfmxIOmVzsGAAAAAAAAAAAAAAAAAAAAAADQx2qqHQAAAACAddO58DpJiqLIa62LszwtSZJXkrQNqWLATs7c6RP5vx/7XrVjAAAAAAAAAAAAAAAAAAAAAAAA/aCu2gEAAAAAWHtdCq+LN9aLJK8NSYY0Jc0jqhavi4ZFyfdOmFHtGAAAAAAAAAAAAAAAAAAAAAAAQD+pqXYAAAAAANbOgmULsteP91ql8Lpd3cKkaYAUXg+bnzSOS8Z+e2y1owAAAAAAAAAAAAAAAAAAAAAAAP1E6TUAAADAeqixqTFHXXtUXlv2WreF10NeTVpGVTxWt4a9liyfsOL5a02vKb4GAAAAAAAAAAAAAAAAAAAAAIBBSuk1AAAAwHqmsakxR1x9RH73zF0pl1tTWqn0esjLSXNDdbKtbNiiZPkmXdcUXwMAAAAAAAAAAAAAAAAAAAAAwOBUV+0AMNA0NTXlsccey5w5c7Jo0aIsXbo0I0aMyOjRo7Pllltmp512ypAhQ6odEwAAgA3UG4XXv0tLa0tSJKUkKZKilNS/lDRvXO2UKwxdmizvodu6vfh6wZcXVDYUAAAAAAAAAAAAAAAAAAAAAADQbzb40utnn332Te3beuut++ScgWZ1n2tD8cc//jG//OUvc/PNN+ehhx5KW1tbj3tra2uz66675m//9m/zkY98JPvss08FkwIAALAhayu35ahrjlpReN3WnBRFx6yUpGZe0jJACq+HLE+aGl5/Uep+z2tNr2Ve47xs2rBpxXIBAAAAAAAAAAAAAAAAAAAAAAD9Z4MvvZ44cWJKpR6al15XKpXS2tq6zucMNG/mcw12V155Zb773e9m1qxZb/o9bW1t+dOf/pQ//elP+fa3v50pU6bki1/8Yo4++uh+TDowLV26NPfff3/uvffejsejjz6acrnc43u++tWv5mtf+1rFMs6aNWuN/n4raccdd8z+++9f7RgAAMB65pWlr6Sl3NKl8DpJyguTjK1OppXVNSfNo1a/76ojrlJ4DQAAAAAAAAAAAAAAAAAAAAAAg8gGX3qdJMVKJVHVPof+95e//CWnnXZa7rrrrnU+67777ssxxxyTCy64IBdccEF22mmnPkg48DQ1NeWBBx7oUnD98MMPp62trdrRenXjjTfmrLPOqnaMbp100klKrwEAgDVSW1Obr+z3lXzy6uPzWrGsY728NMmbKJmuhNqWpHXE6vdddcRVOWq3o/o/EAAAAAAAAAAAAAAAAAAAAAAAUDFKr5OUSqUeZ2tSZN3bOQPNhlzQfd111+Wkk07K4sWL+/TcO+64I3vvvXcuvfTSTJ06tU/PrrSWlpb8+c9/7lJw/eCDD6alpaXa0QAAADZsjY2ZesEdyR2t+eShyWvDXi+8HlLtYCuUWpO24avfp/AaAAAAAAAAAAAAAAAAAAAAAAAGJ6XXr+uuBHptSqzXhzLp9amcu6+dd955mT59er/9PS1evDhHHHFEzj333HzmM5/plzsq4Ve/+tV6X9y9Pqipqal2BAAAYH3y3HPJ0UcnTz6ZqfPbkpZSPnpokQxPMhB+1G9LimHdrK+U7fKplyu8BgAAAAAAAAAAAAAAAAAAAACAQUrjKhuMSy65pF8Lr9sVRZHPfvazufTSS/v1HtZ/BxxwQLUjAAAA64tnn00+8pHk6aeTlpYkyYS/DKDC63IyoSUpreZH7osOuyjH7nFsZTIBAAAAAAAAAAAAAAAAAAAAAAAVp/T6daVSaZVHX50z0B4bopkzZ+bUU099U4XX++67b84999zMmjUrr776alpaWvLqq6/m3nvvzQ9/+MO84x3vWO0ZRVHk1FNPzT333NMX8RmEGhoacuSRR1Y7BgAAsD5obEyOOSZ58cUVr1ta8ly5nHd+OQOm8DpLktTUZPNlNV2Lrzvlu+iwi3LyXidXNhsAAAAAAAAAAAAAAAAAAAAAAFBRddUOMBC8mSLkSp5D32psbMwxxxyTlpaWXvftsMMO+dGPfpQDDzxwldnYsWMzZcqUTJkyJdOnT8+tt96az3zmM3nyySd7PK+5uTlHH3107r///jQ0NKzz52BwOfbYYzNixIhqxwAAANYH//zPydNPd7xc0rI4W/+fDIxfZVYkWZJMGPpGmM2X1eTF4eUUCq8BAAAAAAAAAAAAAAAAAAAAAGCDs8GXXl900UUD6hz63v/9v/83Tz31VK97DjrooFx77bUZM2bMmzrzkEMOyb333puPfvSj+Z//+Z8e9z311FP52te+ln//939fo8zroxEjRmTSpEl5+eWXey0Dr7Svfe1r+drXvlbRO7/1rW/lK1/5Sq97pk2bVqE0AADAeu2225JrrumyNPrzGTCF10MWJxsPXTXM5s31eXFYa4oUCq8BAAAAAAAAAAAAAAAAAAAAAGADssGXXp900kkD6hz61sMPP5zzzjuv1z3vfOc7c8MNN2TEiBFrdPZGG22Um266Ke973/syc+bMHvedc845OfXUU7Pzzjuv0fkD2bBhwzJp0qTsvffemTJlSvbee+/ssssuqa2tzcknnzygSq+rYcaMGb3Od9999/zN3/xNhdIAAADrrZaW5J/+qctS3YlzU9RWKU9nRfKFG5J9G8Zm+rsWplzqNKutTcaOzfu3mJxzDzk32226XdViAgAAAAAAAAAAAAAAAAAAAAAAlbXBl14zuJ111llpbW3tcT5u3LhcddVVa1x43W7kyJG5+uqrs+eee+a1117rdk9ra2u+/vWv54orrlirO6pt6NCh2X333bP33nt3lFzvtttuqavzPx/dufPOO/PEE0/0umfatGkVSgMAAKxv2sptqa15vdX6lluS557rmA09YW7aBsiPYqMWJFe8P9n37uSc3495o/j69cLrSVtMzlVHXpWGoQ3VjgoAAAAAAAAAAAAAAAAAAAAAAFRQTbUDQH/561//ml/84he97vnmN7+Zrbbaap3u2WabbXLWWWf1uueaa67J008/vU73VNKOO+6YH//4x7n33nuzaNGi3HPPPfnRj36UadOmZc8991R43YsZM2b0Oh8yZEg+/vGPVygNAACwPmlsaszhVx2e6x+5fsXCJZd0zEYePzfN9VUKtpKxLyWjRyTlUjL9XQuTrCi+rhk+Itl4Y4XXAAAAAAAAAAAAAAAAAAAAAACwAVN6zaB13nnnpa2trcf5DjvskE996lN9ctdnPvOZvPWtb+1x3tbWlvPOO69P7qqEXXbZJZ/61KcyZcqU1NcPkFa19UBjY2OuvfbaXvccfvjh2XjjjSuUCAAAWB80tzansakxR197dO574b5Mv3l6rv/9hcnvf58kGXPM3CwdWuWQr9tobjJszOsvSqUVxdfvWZz8/fScc8ylmbLF3gqvAQAAAAAAAAAAAAAAAAAAAABgA6b0mkGpra0tV1xxRa97Pv/5z6e2trZP7qurq8vf//3f97rn8ssvT7lc7pP7GJiuvPLKLF26tNc906ZNq1AaAABgfTCncU62/I8ts+cFe+aBFx9IkpSLcqbf+aVcP3F53vLRuWkcUeWQrxv1YjJ8bKeFurpko41S3mSTTH/hwiTJL4/+pcJrAAAAAAAAAAAAAAAAAAAAAADYgCm9ZlD67W9/m7lz5/Y4HzZsWD7+8Y/36Z0nnXRShgwZ0uP8hRdeyB133NGndzKwXHjhhb3Ot9566xx00EEVSgMAAAx0cxrnZM8L9sy8pfPy1GtPpbGpsWNWbmnO0W9fkLkbVS9fZ0PmJ0u2SJbXJymVkpqaZNy4ZOjQJCuKumfcP6O6IQEAAAAAAAAAAAAAAAAAAAAAgKpTes2gdNNNN/U6/+AHP5jRo0f36Z0bbbRRPvCBD/S6Z3W5WH899NBDmTlzZq97Tj755NTU+J9dAADgjcLrV5a90rG2pGVJR/H1K68sSsuoaqXrashrSfPmSVFKXhuaLK9LMmTIiuLr103afFIu++hlqa2prVpOAAAAAAAAAAAAAAAAAAAAAACg+rSvMijdfvvtvc4/+MEP9su9qzv3tttu65d7qb4LL7yw13mpVMonPvGJCqUBAAAGsu4Kr9staVmSec/OTXNDFYJ1Y8iipHmTN14XSV4bWmT5sLqOtUmbT8pVR16VhqEDJDQAAAAAAAAAAAAAAAAAAAAAAFA1Sq8ZdObOnZtHHnmk1z0HHXRQv9x98MEH9zp/6KGH8uKLL/bL3VRPS0tLfv7zn/e658ADD8zEiRMrEwgAABiweiu8TpK8krSOrmymntQvTZrHrrpeJHmtbUmWty5XeA0AAAAAAAAAAAAAAAAAAAAAAHSh9JpBZ+bMmb3Ot9pqq2y11Vb9cvfEiRMzYcKEXvfcc889/XI31XPjjTdm3rx5ve6ZNm1ahdIAAAAD1WoLr19LMkC6o+uWJS09ZSklRYq0FW25/KOXK7wGAAAAAAAAAAAAAAAAAAAAAAA6KL1m0Jk1a1av88mTJ/fr/XvvvXev89mzZ/fr/VTejBkzep2PGzcuU6dOrVAaAABgIJrTOCd7XbBXz4XXi5KMrGikHtU2JeVRSanoeU8ppbz9LW9XeA0AAAAAAAAAAAAAAAAAAAAAAHRRV+0ArL1HH300v/vd7zJ37tzMnz8/TU1NGTNmTN761rdm7733zpQpU6odsSruv//+Xud77LFHv96/xx575KabbupxrvR6cHn++edzyy239Lrn+OOPz9ChQyuUCAAAGGieevWpvP3Ct+fV5a+mlFKKFEnnQuklSYZVK11XpZakGPH68yQpkqLUecOKwuv3THxPfnH0L1JbU1uFlAAAAAAAAAAAAAAAAAAAAAAAwECl9Ho9s2zZsvzgBz/I+eefn+eff77XvZtvvnlOPfXUfO5zn8tGG21UmYADwGOPPdbrfIcddujX+7fffvte548//ni/3k9lXXLJJWlra+t1z7Rp0yqUBgAAGGj++upfs/05K35OLCUpFSvarjs6r5cnGVKNZN1oTUorlW93Kb7uVHh9wzE3pGFoQxVCAgAAAAAAAAAAAAAAAAAAAAAAA5nS6z706KOP9lh++9a3vjXDhg3rdvZm3X777fn4xz+eefPmpSiK1e6fO3duvvGNb+S8887L+eefn4997GPrdP/6oCiKPP30073uWV0p9bpa3fmry8f65aKLLup1PmXKlEyaNKlCaQAAgIFkTuOcvOPCd6RI0dFyXSpeL5IuJUVTktq8vlBlbUnN0O5HpdKK/yillP0n7q/wGgAAAAAAAAAAAAAAAAAAAAAA6JHS6z7y9NNPZ+edd06ptGpT1UYbbZTnnntunc7/6U9/mtNPPz0tLS1J0u093SmKIq+88kqOOeaY/OlPf8o3vvGNdcox0L300ktZvnx5r3ve8pa39GuG1Z2/ZMmSvPzyyxk/fny/5qD/3XnnnXniiSd63TNt2rQKpQEAAAaSOY1zsteP98qrS19NTZGU83rvdWlF8XXRkqQmA6LwulROfvHL5JOHJa+t/Pu6SqWkppQhNfV599bvznVHX6fwGgAAAAAAAAAAAAAAAAAAAAAA6FFNtQMMFtdcc02SFSXTnR9J8slPfjIjRoxY67NvuummnHbaaWlpaUmpVOoovF75ru7ubt9fFEX+9V//NWedddY6ftKB7YUXXljtns0337xfM7yZ899MTga+Cy+8sNf58OHDc9xxx1UoDQAAMFB0LrxOUU6KpGbFj+kpkpTbXn8yAAqvU06e+VYy9dFSfnpTKRt1/j1SNSsKr+tr6rPfNvspvAYAAAAAAAAAAAAAAAAAAAAAAFZL6XUfufrqqzsKpjsXU9fV1eXv//7v1/rcefPmZdq0aSmKYpWy69VZufy6KIp8/etfz69+9au1zjPQvfLKK73OGxoaMnTo0H7NMGLEiIwaNarXPavLycDX2NiYX/ziF73uOeKIIzJmzJgKJQIAAAaCjsLrZW8UXrerKZK0JSlnYHwjUyRPfyvZKklKpRXF17+uz0ZNpRWF3KU3Cq9/cdQvFF4DAAAAAAAAAAAAAAAAAAAAAACrVVftAIPB/Pnzc99993UUS3f+50EHHZQttthirc/+53/+58yfP79L4XVn7evdad/bnqU91/Tp03PQQQf1e/lzNbz66qu9zhsaKlPQ1dDQkMWLF/c4X11OBr4rrrgiS5cu7XXPtGnTKpSm75x33nk5//zz+/2eJ598st/vAACASpvTOCd7XbBXXl3+alIuuhRed2hNUlvpZN0okju/lWxTKiXDhydDhyb19Zk6rza5a3k++cHWLCmaFV4DAAAAAAAAAAAAAAAAAAAAAABrROl1H/jjH//Y4+zDH/7wWp/77LPPZsaMGastvF55vfN85eLrJHnmmWfyrW99K1/72tfWOttAtWDBgl7no0ePrkiO1d2j9Hr9N2PGjF7n2223Xd7znvdUKE3fmTdvXh5++OFqxwAAgPXOnMY52fOCPfPKsldSSimlbn5WLzdlYHwTUyQ/vyzZv64+2WijpK5rqKlvPzH56Hty4ewLc/kRlyu8BgAAAAAAAAAAAAAAAAAAAAAA3rSaagcYDO6+++4eZ4cddthan/uDH/wgra2tSboWW5dKpY5C6+233z7f+c538vvf/z6PPvpofv/73+eHP/xhdt999y5F153fWxRFvvvd72bRokVrnW2gWr58ea/zkSNHViTHqFGjep2vLicD20MPPZSZM2f2uueUU05Z5d8/AABgcOpceJ2s+Bm+WOnHgfLyDJjC6x9enhw/f2Sy8carFF5n222Tr389U3eemhuOuUHhNQAAAAAAAAAAAAAAAAAAAAAAsEaUXveBzuW37aXSSbLbbrvlLW95y1qd2dLSkp/97Gc9llYnyac//ek8+OCD+cIXvpB3vvOd2WGHHfLOd74zn/3sZzN79ux88Ytf7FJ83bk4e/ny5bn22mvXKttA1tzc3Ou8buUyr36yuntWl5OB7cILL+x1Xltbm5NPPrkyYQAAgKpqbm3O5B9P7ii8blckHcXX5WVJ6iserVtf+1UyffEmSUNDsvIv6pkwIbnyyhWzJLU1tVVICAAAAAAAAAAAAAAAAAAAAAAArM+UXveBJ554otty6j333HOtz7ztttsyf/78JG+UVbcXXpdKpRx++OE5//zzU1/ffWtWTU1Nzj777Jx66qldiq87u/TSS9c630Cl9Jr+1l5I35tDDz10rQvvAQCA9cvytuUZNWTUGwtF16flpUmGVDpV9z73v8lXX56QdPddwrbbJr/8ZbLVVhXPBQAAAAAAAAAAAAAAAAAAAAAADB5Kr9dRW1tb5syZ0+1sjz32WOtzr7vuui6vO5dW19XV5fvf//6bOuf73/9+Nttssy5ntJdn/+53v+so1h4syuVyr/Pa2tqK5FjdPW1tbRXJQd+78cYbV/vvzbRp0yqUBgAAqKbGpsYcfe3RWd66PCPrR666YVGSoRWP1a2jHkj+47EJPQyPSm6+WeE1AAAAAAAAAAAAAAAAAAAAAACwzuqqHWB9N2fOnLS1tXUUSXcup16X0utf//rXXc5K0nH+kUcema3eZBHV8OHDc+aZZ+ZLX/rSKhmLosh9992X97///Wudc6Cpq+v9v9Ktra0VybG6e+rr6yuSg7534YUX9jofP358PvShD1UoTd/bdNNNs8suu/T7PU8++WSampr6/R4AAOgv7YXXD7z4QJKkYWhD0taWJW3LV2x4LcmoqsXrYvj85JhXxq462Hrr5BvfSA4+uPKhAAAAAAAAAAAAAAAAAAAAAACAQUnp9Tp6/vnne5xtscUWa3XmX/7yl7zwwgsdJdUr+8QnPrFG5x111FH50pe+1O3s/vvvH1Sl10OGDOl1XqnS65aWll7nq8vJwPT888/n1ltv7XXPiSeeuF6Xmp9++uk5/fTT+/2eXXfdNQ8//HC/3wMAAP1h5cLrdg3l+qRleZYsStJQnWwrG/ZqslFDTaa/a2GSZOrTw5J3vzs56aTkkEOS9fjnFwAAAAAAAAAAAAAAAAAAAAAAYOBRer2OFi9e3ONszJgxa3Xm//7v/3Z5XSqVOp6PGzcu73vf+9bovG222SY77bRTHnvssS5nJcns2bPXKuNAtbqy4ebm5orkUHo9OF188cVpa2vrdc+0adMqlAYAAKiGngqvkyQtLWlekGRcxWN1q3ZRMnajIUlNTcr19Zn+oZrkgG9m6r6nVDsaAAAAAAAAAAAAAAAAAAAAAAAwSNVUO8D6bunSpT3OGhoa1urMlUuvk6QoipRKpRxyyCGpqVnzv7bddtstRVGscuZTTz21VhkHqlGjRvU6762kvC8tWrSo1/nqcjLwFEWRiy66qNc9++67b972trdVKBEAAFBpbeW2HPeL47ovvE7yymvL0zJACq+zNGkblzSOqk/Gjk1GjUp56JBM/+P/zfWPXF/tdAAAAAAAAAAAAAAAAAAAAAAAwCCl9Hod9VZ6vbbFxnfffXdKpVK3s/e///1rdeaOO+7Y5XX7+QsXLlyr8waqceN6bxdrbGysSI7V3bO6nAw8d955Z5588sle90ybNq1CaQAAgGpY0rIkLy1+KU2tTavMXlk4N80bVT5Tt5YlGbPi6ZKWJWlseuNn1HJRzvSbpyu+BgAAAAAAAAAAAAAAAAAAAAAA+oXS63XU0tLS42z58uVrfN78+fPz+OOPJ0mKolhl/t73vneNz0ySjTbaqNv1SpVAV8rGG2/c6/y1116rSI7VlYmvLicDz4UXXtjrfNSoUTnqqKMqlAYAAKi0xqbGHH3t0Xl+0fNJKV2Kr19ZPDfN5SqG66wpyeiuS90VX8+4f0baym2VzQYAAAAAAAAAAAAAAAAAAAAAAAx6Sq/X0ejRo3ucLVmyZI3Pu+uuu7q8LpVKHc+32GKLbLXVVmt8ZrKikLc7g630epNNNul13tTU1O/F16+++mqam5t73aP0ev2ycOHC/OIXv+h1z1FHHdXjv2cAAMD6rb3w+oEXH0iSDK0d2lF8/fLiuWnu+fdhVVZzkpHdjzoXX0/afFIu++hlqa2prVw2AAAAAAAAAAAAAAAAAAAAAABgg6D0eh01NDT0OJs/f/4an3fHHXesslYURUqlUvbbb781Pq9dbW33RVarK2de32y99dar3fPSSy/1a4Y3c/6bycnAccUVV2TZsmW97pk2bVqF0gAAAJW0cuF1u6G1Q/Pq8lfTNlB+rG5NMuL156XutyxrWZbdx++eq468Kg1De/4+AwAAAAAAAAAAAAAAAAAAAAAAYG0pvV5HY8aM6XH2+OOPr/F5v/nNb1Iqdd9OtS6l18uXL+92fdSoUWt95kA0atSobLzxxr3ueeaZZ/o1w9NPP93rfPz48Rk5cmS/ZqBvzZgxo9f52972tuy7774VSgMAAFRKT4XXSTJ38dykOT0WTFdUW5JhvW8ppZT9J+6fa466RuE1AAAAAAAAAAAAAAAAAAAAAADQb5Rer6Px48f3OHvwwQfX6KwnnngijzzySJKkKIpV5vvvv/+ahetkwYIF3a4PttLrJNl22217na9NGfmaeOKJJ3qdry4fA8uDDz6Ye+65p9c906ZNq1AaAACgUtanwuvS0N63lFLKeya+Jzccc4PCawAAAAAAAAAAAAAAAAAAAAAAoF8pvV5H22yzTRoaVhRGlUpd265uueWWNTrruuuu6/K683mbbrppdtlll7VMmbzwwgtdXreXao8ePXqtzxyodt11117njz76aL/ev7rzV5ePgeXCCy/sdV5fX58TTzyxQmkAAIBKWG3hdVMGRuF1OUlNUip6jqPwGgAAAAAAAAAAAAAAAAAAAAAAqCSl131gzz337CiRTlaUVRdFkbvvvnuVsuneXHjhhasUZxdFkVKplAMOOGCdMv71r39dZa1UKmXChAnrdO5ANHny5F7ns2fP7tf7Z82a1et8r7326tf76TvNzc35+c9/3uueD33oQxk/fnyFEgEAAP3tTRVeD4RvU8pJapNS/YqXHcXXnb5WUHgNAAAAAAAAAAAAAAAAAAAAAABU2kCoaVrvdS4x7lx+3dramu9+97tv6oz/+q//yuOPP77KGe0OPPDAdcr40EMPrVKonSTbbbfdOp07EK2u9Pr+++9PW1tbv9zd2tqaBx5YtRitM6XX648bb7wx8+fP73XPtGnTKpQGAADob23lthx/3fHdFl4nGTiF10VW5Khd8bR4/cf9UlYUXScKrwEAAAAAAAAAAAAAAAAAAAAAgOoYCFVN672PfOQjq6yVSqUURZHzzjsv//M//9Pr+5csWZIzzzyzSyl15+e1tbX58Ic/vNb5Xnjhhbz44otJVi3U3n777df63IFq7733zrBhw3qcL168OPfdd1+/3D1z5swsXbq0x/mwYcMyZcqUfrmbvnfhhRf2On/LW96SQw89tEJpAACA/lZbU5tT9jwlNaVVvy6ZO3/uwPgWpUhSTmpqk5rijaWilKRUSqlUyugho3PgtgcqvAYAAAAAAAAAAAAAAAAAAAAAACpuINQ1rfcOOOCAbLPNNkneKLtuf97a2pqpU6fmqquu6va9L7/8cj784Q/niSeeSNK1lLooipRKpRxyyCHZfPPN1zrf//7v//Y4G4yl18OGDcu73vWuXvfcdttt/XL37bff3ut8v/3267WQm4Fjzpw5ufXWW3vdc/LJJ6e2trZCiQAAgEqYuvPUnPOBc7oUX8+dNzcZCP/Xv73wesgbS12Kr5OMGz4uD5/+cH798V8rvAYAAAAAAAAAAAAAAAAAAAAAACpO6XUfOeGEE1YprG4vrW5sbMxxxx2X3XffPV/5yldywQUX5Nxzz80nP/nJ7LTTTrnzzjs73tOdU045ZZ2y9VbwvNdee63T2QPVwQcf3Ov8uuuu65d7r7322l7nhxxySL/cS9+7+OKLUy6Xe5yXSqV1/ncTAACovrZy2yprnYuv5740N6mrQrDutHQtvG5XkySlFc9nTpuZLRu2TG3NQGjpBgAAAAAAAAAAAAAAAAAAAAAANjRKr/vImWeemfHjxydZUYbbWalUSlEUeeihh3L22Wfn9NNPzxlnnJGLLrooCxcu7CjHXnl/qVTK7rvvno9+9KPrlO2//uu/Os7vfM9mm22WiRMnrtPZA9WRRx7Z63zWrFl59NFH+/TOBx98MH/+8597nJdKpdXmYmAoiiIXXXRRr3ve8573ZLvttqtQIgAAoD80NjXm8KsOz/WPXL/KbOrOUzN/0fNJNyXTVdGS1AzvZr2UpFSTTUZskiemP5Ftx21b6WQAAAAAAAAAAAAAAAAAAAAAAAAdlF73kY022ijf/e53UxRFl/X21+1l00VRdHmUSqWOkuvufPvb316nXHfddVdeeumlLlna733nO9+5TmcPZNttt1322WefXvecc845fXrnD3/4w17n++6776AtGR9s7rjjjvz1r3/tdc+0adMqlAYAAOgPjU2NOfrao3PfC/dl+s3TVym+HnPWiDS1VCncypYnGZ4UpZXWXy+8HjdiXGafNjtvHffWKoQDAAAAAAAAAAAAAAAAAAAAAAB4g9LrPnTCCSfkwx/+cEepdLuVC647P9rn7doLsEulUk4++eQceuih65Tpkksu6XG27777rtPZA90pp5zS6/yiiy7K3Llz++SuOXPm5Gc/+1mve04++eQ+uYv+N2PGjF7nY8aMyRFHHFGhNAAAQF9rL7x+4MUHkiTlotyl+Hr8WQ1pbFlWzYhvWJJk1IqnRToVX5dKSc0bhddbNmxZpYAAAAAAAAAAAAAAAAAAAAAAAABvUHrdx6644orst99+XUqu27WXX6/8aNd57z777JMLLrhgnbI0Njbmmmuu6XJuZwcddNA6nT/QnXDCCRk/fnyP86VLl+bLX/5yn9z1pS99KcuXL+9xvtlmm+WEE07ok7voXwsXLswvfvGLXvccd9xxGT58eIUSAQAAfWnlwut27cXXm57VkHkti6qUbiWLkozpulQkKWpKSU0p44YrvAYAAAAAAAAAAAAAAAAAAAAAAAYWpdd9bMSIEbntttvyyU9+sqPUur38enWP9v0f+9jHctttt6W+vn6dssyYMSOLFy9Oko4c7bbYYotMmjRpnc4f6IYNG5Yzzjij1z2XXnpprr/++nW65+qrr87ll1/e657Pfe5zGTp06Drd8/TTT6/2v0Nf+9rX1ukOVhTXL1u2rNc906ZNq1AaAACgL/VUeN1u3tPPZ/4AKbyua0xGjlppsbTiUaTIyPqRCq8BAAAAAAAAAAAAAAAAAAAAAIABR+l1PxgyZEj+8z//M7/97W/z7ne/u6PMuv3RbuX1XXfdNVdeeWWuuuqqjBgxYp0ytLa25gc/+EFH0XXnwutSqZQPfvCD63T++uJzn/tcttpqq173nHTSSZk5c+Zanf/HP/5xtQXI22yzzWrLtxk4Lrzwwl7nkyZNypQpUyqUBgAA6CurK7xeMGdumhsqHKoHNYuTTRuGpWHI6IysHdZRdt2ulFLescU7MmHUhKplBAAAAAAAAAAAAAAAAAAAAAAA6E5dtQMMZgcccEDuuuuuPP744/nv//7vzJw5M3/961+zYMGCJMnGG2+cTTfdNG9/+9tz4IEH5h3veEef3X3JJZfkmWee6XH+oQ99qM/uGshGjBiRf//3f8/HPvaxHvcsWrQohxxySH7+85+v0Z/LDTfckBNPPDGLFy/udd/3vve9DB8+/E2fS/X8+c9/zr333tvrntWVnAMAAAPP6gqvX3tpbpaPrHConixLNtvqjTLrhiRpasySliVJVhRev2fie/KLo3+R2pra6mQEAAAAAAAAAAAAAAAAAAAAAADogdLrCthhhx1yxhlnVPTOAw88MLNnz+5xvuuuu1YwTXUdeeSROe6443L55Zf3uGfhwoU57LDDcuyxx+af//mf87a3va3HvQ8//HC+/vWv56qrrlrt3ccff3yOOOKItcpdbYsXL86VV165xu97/PHHe53PmjUrP/3pT9fozNGjR+foo49e4yxr6sILL+x1PnTo0Bx//PH9ngMAAOg7jU2NOeqao/Knl/7U/fyVuVk2pMKhetKUTHjLhFWWG4Y2JEmWtSzL/hP3zw3H3NCxBgAAAAAAAAAAAAAAAAAAAAAAMJAovR6kJk6cWO0IA8qPf/zj3HfffXn00Ud73FMURS6//PJcfvnl2WuvvbLvvvtm2223zahRo7Jo0aI89dRT+f3vf58HHnjgTd35tre9LRdccEFffYSKmz9/fk499dQ+P/emm27KTTfdtEbv2Wabbfq99Lq5uTmXXXZZr3umTp2acePG9WsOAACg77SV23LUNUfljqfvyIj6ERlWN6zL/NXFc9NUU6VwK2tOJmy+auF1u4ahDXnXVu/KNUddo/AaAAAAAAAAAAAAAAAAAAAAAAAYsJRes0EYNWpUbrnlluy333557rnnVrt/9uzZmT179lrft/XWW+eWW27JqFGj1voMKuuGG27I/Pnze90zbdq0CqUBAAD6QmNTY15e8nJayi1Z2LQwSTqKr19ePDdtLdVM10lrMm7j3n/BzqTNJ+WqI69SeA0AAAAAAAAAAAAAAAAAAAAAAAxoNdUOAJWyzTbb5Le//W222267fr1n++23z29/+9tsvfXW/XoPfWvGjBm9zidOnJgDDzywQmkAAIB1NadxTnY6d6c8/drTGTN0TJJkYdPCLG9dnrmL56atucoB27UmEzadkJSSptambrcovAYAAAAAAAAAAAAAAAAAAAAAANYXSq/ZoGy//fa555578v73v79fzj/00ENzzz339HuxNn1rzpw5ufXWW3vd84lPfCKlUqlCiQAAgHUxp3FO9vrxXnll2StZ2LQwSTqKrxcsXpA0JxkI//e+7fXC6yRDa4d2W3yt8BoAAAAAAAAAAAAAAAAAAAAAAFifKL1mgzN27Nj8+te/zsUXX5zx48f3yZnjx4/PJZdckptvvjkbbbRRn5xJ5Vx88cUpl8s9zmtqanLyySdXLhAAALDW2guvX132asdae/F1uSgn5QyMwutykmFdl1YuvlZ4DQAAAAAAAAAAAAAAAAAAAAAArG+UXrPBOumkk/LXv/415513Xnbeeee1OmOXXXbJeeedl6eeeionnnhiHyekEoqiyEUXXdTrnoMOOihbb711hRIBAABrq7vC63YLlixImjJwCq+HJhNGTVhl1F58/ZbRb1F4DQAAAAAAAAAAAAAAAAAAAAAArHfqqh0AqmnkyJH5zGc+k8985jN57LHH8utf/zqzZs3KQw89lOeffz6LFi3K0qVLM2LEiIwePTpbbrlldtlll0yePDkf+MAHssMOO1Qs68SJE1MUxaC9r1pKpVKefPLJascAAADWUW+F10mS1gyMX/1VpMfC63ZDa4dm81GbZ2T9yMrlAgAAAAAAAAAAAAAAAAAAAAAA6ANKr+F1O+64Y3bcccdqxwAAAGANra7wurysnNRWOFR3iiRDei+8TpJJm0/K5UdcntqagRAaAAAAAAAAAAAAAAAAAAAAAADgzVN6PQAsWrQoDz30UB566KHMmTMnc+fOzSuvvJLly5enqakpNTU1GTZsWEaOHJnx48dnwoQJ2W677bLrrrtmxx13TE1NTbU/AgAAAFTFgmULMvnHk3suvF5aHhjffqxB4fVVR16VhqENlckFAAAAAAAAAAAAAAAAAAAAAADQhwZC7dMGp1wu5/bbb89//dd/5Y477sjDDz+coijW6qwRI0Zk3333zfve974cccQR2X777fs4LQAAAAxMjU2NOe6649Jabu12Xl5STuorHKoHI2uTBoXXAAAAAAAAAAAAAAAAAAAAAADAIKf0uoKee+65/PCHP8yll16a+fPnJ8lal123W7JkSW6//fbcfvvt+cpXvpLJkyfns5/9bI477rjU1w+QZi8AAADoY23lthx/3fF54MUHMqxuWJJkYdPCjnl5UTkZWq10XR08/p15uPXZlItyj3sUXgMAAAAAAAAAAAAAAAAAAAAAAINBTbUDbAhefvnlnHrqqdluu+3y7//+75k3b16KougovC6VSuv0aD+rKIrcd999OeWUUzJx4sTMmDGjyp8cAAAA+kdtTW1O2fOU1JRWfLUxrG5YxgwdkyQpNw6cwutjtvlAbv37P+ScD5zTkXVlCq8BAAAAAAAAAAAAAAAAAAAAAIDBQul1P7vggguyww47ZMaMGWltbU1RFKuUVifpUly9Jo8k3Z41d+7cnHrqqdl7773zyCOPVO3zAwAAQH+ZuvPULmXSw+qGpfxaORlW5WCve9/4vXPFqf+dZNWs7RReAwAAAAAAAAAAAAAAAAAAAAAAg4nS636yePHiHHbYYTn99NOzaNGiLmXXyaol12tr5XM6F2AXRZFZs2Zl7733zk9+8pO++mgAAAAwYHQuk5770txkRLUTrbBt/ab5zd/f02Vt5eJrhdcAAAAAAAAAAAAAAAAAAAAAAMBgo/S6Hzz//PPZd99986tf/arHsuvOOhdVr82js87nt8+XLVuWT3/60/nHf/zHyvwBAAAAQB9rbm3ucTZ156kpLW5KhlQwUC/qG5Pm0UNy/SPXrzJrL76e8pYpCq8BAAAAAAAAAAAAAAAAAAAAAIBBR+l1H3vppZfy3ve+Nw8++GBH4XWyatn1yqXV7fM1fXR31sr3lUqlFEWR733veznzzDMr9UcBAAAAfWJO45xs9f2t8qXbvtTt/J0/3CtzivkVTtW9usXJJttMSLkoZ/rN03ssvv7l0b9UeA0AAAAAAAAAAAAAAAAAAAAAAAw6ddUOMJg0Nzfngx/8YJ544okuZdadrVxMnSQ77bRTJk+enEmTJmXSpEmZMGFCGhoaOh4tLS1pbGzseDz22GN54IEH8sADD+See+7Jq6++2nH2yve2F2+3F1//4Ac/yNZbb53Pfe5z/f3HAQAAAOtsTuOc7PXjvfLqslfzb3f/W5Lk7IPP7pgf9p8H548L7l/xoj5JS+UztqtZmmy61YSO1+3F18mKouvOamtqK5oNAAAAAAAAAAAAAAAAAAAAAACgEpRe96EvfOELmTVr1moLr4uiyFvf+tYce+yxOe6447Lzzjv3em5dXV2GDx+ezTbbLEkyZcqUHHvssUmS1tbW3HLLLbn88stzww03ZOnSpV1Krtvv67z25S9/Ofvtt1+mTJnSp58fAAAA+lLnwut2nYuvj7348Nw09/aub6pW8XVTstkWE1ZZ7q34GgAAAAAAAAAAAAAAAAAAAAAAYLCpqXaAweK+++7Leeed123hdefC6U022SQXXHBBHnvssXzjG99YbeH16tTV1eWDH/xgLrvssjz55JM5+eSTu9zbrj1PqVRKc3NzPv3pT6/TvQAAANCfuiu8bvdvd/9bJn9v91z5zA3dv7m+n8OtrDmZsPmqhdftykU5M+6fkbZyWwVDAQAAAAAAAAAAAAAAAAAAAAAAVJ7S6z7yxS9+saNYeuXC6/a1U045JY8//ng+9alPpaam7//oN9tss8yYMSMzZ87M9ttvn6Ioui2+TpJZs2bliiuu6PMMAAAAsK56K7xOknJTObMXPJi09HJIpYqvW5IJm/VceJ0kkzaflMs+ellqa2orFAoAAAAAAAAAAAAAAAAAAAAAAKA6lF73gT//+c+54447UiqVVim8bn/9ve99Lz/96U/T0NDQ73mmTJmSe+65J+9617tWKb5uVxRFvv/97/d7FgAAAFgTPRZeF0nKRcrLy13XW7p5JL0XYveV1mTC+NUXXl915FVpGNr/3wcAAAAAAAAAAAAAAAAAAAAAAABUm9LrPnDppZeustZeeF0qlXLWWWfl85//fEUzNTQ05Ne//nV22223jjxJupRg33vvvXnkkUcqmgsAAAB60m3hdblI2spJuZxya5GUsuLRm0oUXrclY8eO7XWLwmsAAAAAAAAAAAAAAAAAAAAAAGBDo/S6D/z3f/93R5F00rXw+oADDsg//dM/VSXXyJEjc/XVV6e+vr4j18puvvnmSscCAACAVaxSeF28XnZdFEmScluSIqsvvK6EcpIhycKmhVneurzbLQqvAQAAAAAAAAAAAAAAAAAAAACADZHS63XU2NiYRx55JElSvF7E1dkPfvCDSkfq4m1ve1v+7u/+rttsSfLHP/6xwokAAACgq+bW5kz5zylvFF6Xy0n5jZ9jy21ZUTQ9UAqvhyZjR4xN0n3xtcJrAAAAAAAAAAAAAAAAAAAAAABgQ6X0eh395S9/6fK6VCqlKIqUSqW8733vy2677ValZG8444wzul0viqKjsBsAAACqZUjdkJw86eSkSNJWXvHPzsoZGN9gFElqk5rSijBjho5J0rX4WuE1AAAAAAAAAAAAAAAAAAAAAACwIRsIlVHrtblz5/Y4mzp1agWT9GzixInZc889O8q4k3T8s7f8AAAAUClnjzo8X/jjql9TlJszML69KJLUJDX1K8IsbFqYpGvx9eajNld4DQAAAAAAAAAAAAAAAAAAAAAAbNAGQm3Uem3RokU9zt7xjndUMEnv9tlnn27XFy9eXOEkAAAAsJI5c5JDDsnZt5bzhT+8sVxuSlJbtVRvKFY82guv23Uuvq6vqc9mIzfLyPqRVQgIAAAAAAAAAAAAAAAAAAAAAAAwMCi9Xkc1NT3/EW6//fYVTNK77bbbrtv13vIDAABARXzoQ8nSpUmSs39bky/8ISkvT1JX3Vid1Qzr/ufn9uLrAyYekKs+dlVqawZCSzcAAAAAAAAAAAAAAAAAAAAAAEB1aDxeR6NHj16rWaX1lGUgZQQAAGAD9O1vJ3/+c5elH+6ZpL4qaVbVmtQM7f3rk7qaulxxxBVpGNpQoVAAAAAA8P+zd+dhWtf1/vif9zDDDqHgggm4ZC4oLqCYaekJtbRUTuXSIp20LD1tp06eOm6ofbPFzvlVmp6stNIwSs0tDY9aJzc0cAV3UUxETRGQbYa5f38gyMAsLPd9f4bh8biuuZjP+/2+36/njV5e3vPHcwAAAAAAAAAAAAAAAACgc1J6vZ4GDhzY5t6SJUtqmKR9q2Ypl8tJkkGDBhURBwAAAJIFC5Jzz22x1O9LzVnUo4YZ2ivXXpLU9W7/Ryeb9to0U06akk16bVLZXAAAAAAAAAAAAAAAAAAAAAAAABsgpdfraeedd25z76WXXqphkva9/PLLq62VSqXstNNOBaQBAACAJOedlyxcuOJx0MnNmd+7gBytFV83J3V9Oy68nnrS1Gzdf+vq5AIAAAAAAAAAAAAAAAAAAAAAANjAKL1eT5tsskne/va3J1lWIr2yhx9+uIhIrWory+67717jJAAAAPCmn/98xbfDPt2cf7ytwCwrFV/XNSeDBw7O23q0HUjhNQAAAAAAAAAAAAAAAAAAAAAAwOqUXlfAoYcemnK5vNr6pEmTCkizuqVLl+a2225brZQ7WZYdAAAAam7KlGTWrCTJzp9oznNbFJSjcaXvG5Ktuw/K4EHLfrlVz/qerRZfK7wGAAAAAAAAAAAAAAAAAAAAAABondLrCjjqqKNaPJdKpZTL5fzmN79JY2Nj6y+qoWuuuSZz5sxZbX3LLbfM6NGjax8IAAAAJk5Mkrzrn5vz6JCCs7xpaPctM/OMl/OjD/wodaVlPzJZtfha4TUAAAAAAAAAAAAAAAAAAAAAAEDblF5XwGGHHZbtt99+tfWXX345P/nJTwpI9JZyuZxzzz13tbVSqZRTTjmloFQAAABs9O65J4d+sDl371h0kGUGpn+e/casJMnYnce2Wnw9sNdAhdcAAAAAAAAAAAAAAAAAAAAAAADtUHpdAXV1dTn11FNTLpdXrJVKpZTL5Zxxxhl5+umnC8v23e9+Nw888EBKpVKL9U022UTpNQAAAIU5rvdt+dNuRadYpm965ZUzX2+xtmrx9eitR+exf31M4TUAAAAAAAAAAAAAAAAAAAAAAEA7lF5XyIknnpgDDjigRfF1ksydOzdHHnlkXnnllZpnuuaaa3Laaae1KLwul8splUr5wQ9+kLe97W01zwQAAABfuOLTmbBH0SmWKS1J5p25oNW95cXXI7camSs/cmU26bVJjdMBAAAAAAAAAAAAAAAAAAAAAABsWJReV9Bll12WzTfffMVzqVRKqVTKI488kgMPPDBPPfVUzbL84he/yLHHHpulS5e2WC+VSjnuuONy/PHH1ywLAAAALPfdG8/Ij6f9ougYyzQmpV7JqZNObfPI2J3H5ppjrkn/Hv1rGAwAAAAAAAAAAAAAAAAAAAAAAGDDpPS6grbZZpvccMMN6du3b4v1UqmUadOmZeTIkfnBD36QpqamqmV49tln89GPfjQnnnhilixZklKptGKvXC5nzJgxufTSS6s2HwAAANryi//7SU69+5yiYyzTlNT1XPbt9+/6frvF193qutUoFAAAAAAAAAAAAAAAAAAAAAAAwIZN6XWFjRw5Mn/961+z9dZbp1wur1gvlUqZO3du/v3f/z277LJLrrjiiixcuLBic5955pn8x3/8R3beeedcddVVKZfLKwqvy+VyyuVyPvaxj+W6665LfX19xeYCAABAm154IbnmmuTss3PLh/fMp286OWkuOlSSpUldj5ZLHRVfAwAAAAAAAAAAAAAAAAAAAAAA0DHtx1Ww22675b777stJJ52Ua665ZkX5dKlUSrlczpNPPplPfvKT6d27d4444oiMHTs2e+21V7bbbrs1nrFo0aI8/PDDueOOOzJhwoRMnjw5SVYUba9ceN23b998+9vfzimnnFLhdwoAAACraGxMbropueyy5M47kyS3NM3KwZ9JUio2WpKkOanrvtLzSpm+f9f3kyTfOfg7tc0EAAAAAAAAAAAAAAAAAAAAAADQRZTKy1uSWS9nn312q+vXXHNN7r///hUl1MutWk6dJH379s2uu+6arbbaKv3790///v3Tr1+/NDY2Zu7cuZk3b15ef/31PPHEE3niiSfS3Nzc7n3lcjl1dXU5/vjjs80221Tqra7mjDPOqNrdQNc0fPjwTJs2bbX1XXbZJY888kgBiQAAqIhJk5LTTktmzlyx9HTTrGx/YpK64mKt0JykLqnrttJaqZTUvfVZelDvQZn55ZnpXt99tZcDAACsLT8PBwAAAAAAAAAAAAAAAAAANjZKryukrq5utWLr5Vb9K161mLqtvba09o+srTvX5L71tXTp0qrPALoWJR8AAF3M3LnJ6acnEyeutlX61KzOUXhdTlJapfA6Serqkjc/Om/aa9NMPWlqtu6/da3TAQAAXZSfhwMAAAAAAAAAAAAAAAAAABub+qIDdDVr0iG+/EypVFqtlHpNXt9akXVbr6t2p3ktSrUBAADoxGbOTI45JpkxY7Wt0rhOXnidKLwGAAAAAAAAAAAAAAAAAAAAAACoIKXXFbY+hdStlWC3Z10Lsiul2oXaAAAAdHLPPZccdVTy4ourbZWOn5W0VjJda+UkzUld91b23vzMrPAaAAAAAAAAAAAAAAAAAAAAAACgMpReV9j6FEFXo0S6WsXU1SzTBgAAYAMwd25y7LGrF16Xy2k4/sXO8xOHtgqvk6SupPAaAAAAAAAAAAAAAAAAAAAAAACgguqKDgAAAABsgE4/PZkxo+VaU1N6fvLFNDUUkmg1p16ffP3eNjYVXgMAAAAAAAAAAAAAAAAAAAAAAFRcfdEBuppSqVR0BAAAAKiuSZOSiRNbrjU1pefxL2dx92IirerYu5LzHkhSKiWlcr6/30qbpWTT3gMVXgMAAAAAAAAAAAAAAAAAAAAAAFSY0usKKpfLRUcAAACA6mpsTE47reVauZxen3g5i3sWE2lVH5qS/ObWJHV1SZLv3FpK0ryi+HrTnpsqvAYAAAAAAAAAAAAAAAAAAAAAAKgCpdcV0tzcXHQEAAAAqL6bb05mzmyx1O+YF7Ood0F5VrHvY8m1N5WSulKL9e/cWpfU1+XS9/TL305+QOE1AAAAAAAAAAAAAAAAAAAAAABAFdQVHQAAAADYgFx2WYvHgR+Zlfl9C8qyip1mJnddVZeUSqtv9umT75z118z89xcVXgMAAAAAAAAAAAAAAAAAAAAAAFSJ0msAAABgzbzwQnLHHSsehx4xK6/2LzDPSobOTqb/uo0fc4wYkUyblowene713WsbDAAAAAAAAAAAAAAAAAAAAAAAYCOi9BoAAABYM5Mnr/h2t4NnZeagArOsZLPXkmd/3sqPOHr1Sr71rWTq1GTrrWsfDAAAAAAAAAAAAAAAAAAAAAAAYCNTX3QAAAAAYAPx4INJkoPeNSsPDyk4y5v6LkheumiVwuuttkpOOCH5+teT3r2LCQYAAAAAAAAAAAAAAAAAAAAAALARUnoNAAAArJlHHslRI2fl9p2LDrJMr8XJvEs3Sd7eN9lhh2T06OToo5M99ig6GgAAAAAAAAAAAAAAAAAAAAAAwEZJ6TUAAACwRr728v/mD/sVnWKZ+oZkwbnl5HtFJwEAAAAAAAAAAAAAAAAAAAAAAGA5pdcAAABAh86f9O2c/65/FB0jSVJqShrPLRcdAwAAAAAAAAAAAAAAAAAAAAAAgFXUFR0AAAAA6Nx+O/XX+dqd30xKRSdJsjRpvu99RacAAAAAAAAAAAAAAAAAAAAAAACgFUqvAQAAgDb9duqvc8y1nyw6xjLNSfmywcmgQUUnAQAAAAAAAAAAAAAAAAAAAAAAoBVKrwEAAIBWPfLgg52q8PqpS978fvjwQqMAAAAAAAAAAAAAAAAAAAAAAADQuvqiA2zspk2blqlTp+ahhx7K888/n7///e+ZO3duFi5cmMWLF6dcLidJSqVSnnrqqYLTAgAAsLF45KGHsuvVuxcdY5nyssLr7eoHL3seMaLYPAAAAAAAAAAAAAAAAAAAAAAAALRK6XWNNTc35/rrr8+VV16ZW265Ja+88spqZ5YXXa+sVCqt1Zw5c+bk1VdfbXVv0003zYABA9bqPgAAADYuu17VSYqly8mkn65UeJ0k++xTXB4AAAAAAAAAAAAAAAAAAAAAAADapPS6Rt5444386Ec/yg9/+MPMnj07Sevl1sutXHLd3rm2PPjggznooINa3Tv00ENz4403rvWdAAAAbBxK49v4xUsNSRprGKSc/PwPyZiVC6/33z8ZPLjt1wAAAAAAAAAAAAAAAAAAAAAAAFCYuqIDbAx+/etfZ7vttst//ud/5sUXX0y5XE65XE6pVGrza3295z3vyX777bdi1spfkyZNyqxZsyrwzgAAAOhq2iy8LsB3rk7+5dVVCq7HjSsmDAAAAAAAAAAAAAAAAAAAAAAAAB1Sel1F8+bNy1FHHZVx48bl5ZdfXq3oOkmrpdQrf62Pf/u3f0uS1WY2Nzfn8ssvX783BwAAQJezRoXXDdXPkSSn3pB8/bUtWy4OHZocckhtAgAAAAAAAAAAAAAAAAAAAAAAALDWlF5XyYwZM7L33nvnuuuua1F2nWS1UuuVS6mXn6mEI488MkOGDFltvVwu59JLL63YHAAAADZ8DeO7FR1hhQPvT877+2bJqp+Rzz03aahR6zYAAAAAAAAAAAAAAAAAAAAAAABrTel1FTzzzDM58MAD8/jjj68ovE7SZtH1ynvL9yuhrq4un/zkJ1fcuXKW6dOn58knn6zYLAAAADZcB1z0rjSlec1fUMXe6X2mJ7dN3iypr2+5cfTRyZgx1RsMAAAAAAAAAAAAAAAAAAAAAADAelN6XWHz5s3LYYcdlueee25FqXVrZdcrl1xvscUWGT16dA477LDss88+K85Vwic+8Yk292655ZaKzAAAAGDDdejP/il3zL47a/0ptArF1+94Prnnzi1XL7zedtvk7LMrPxAAAAAAAAAAAAAAAAAAAAAAAICKUnpdYZ/+9Kfz2GOPrSitXl52naRF2fXee++d//mf/8njjz+eF154IXfddVeuv/76fOYzn6lonp122ik77rjjivkrU3oNAACwcfvIr47MpOdvW/FcZPH15q8lT/xpcLLqL4EaPDiZMCHp379ywwAAAAAAAAAAAAAAAAAAAAAAAKiK+qIDdCV/+MMf8vvf/361wuuVn0eMGJEf/OAH+ad/+qea5frABz7Qooh7efn27bffXrMMAAAAdAIvvJBMnpw8+GA+8/f/yVWb/X21I6WGpNzKS9vUkKRx/WK9bV4y++rBq29su+2ywushQ9ZvAAAAAAAAAAAAAAAAAAAAAAAAADVRV3SArqK5uTlf+9rXVjyvXHhdLpdTLpdzwgkn5O67765p4XWSHHTQQavlSpLXXnst06dPr2kWAAAAaqyxMbnuuuQjH0lGjUpOPjlfv/Oc/LyVwutl55NS47I/17jMumHd4/VakMyZ2Erh9dFHJ3/8o8JrAAAAAAAAAAAAAAAAAAAAAACADUh90QG6igkTJuSpp55aUXKdvFV4XSqV8pWvfCXf//73C8m27777trk3ffr07LzzzjVMAwAAQM1MmpScdloyc+aKpe9t/3LOH9WUcjsvS5JSsuzM8uLrjoqtG7LmJdnLX7IwWTBhlcLroUOTc85JDj547S4DAAAAAAAAAAAAAAAAAAAAAACgcEqvK+RnP/tZi+eVC6+PPPLIwgqvk2SzzTbLVlttlVmzZqVUKrXYe/TRRwtKBQAAQNXMnZucfnoycWKL5Yu2finfeO/SDguvl1v+CXKNy6+X761J+fXiZMlvViq83n//ZNy45JBDkoaOGrYBAAAAAAAAAAAAAAAAAAAAAADojJReV8Ds2bPz5z//eUWh9MrF0n369MlFF11UVLQVdtxxx7zwwgtKrwEAALq6mTOTY45JZsxosXz5oJfyr4csTfM6XFlK3irKbkz7xddJx+XXjUl55jHJ54cnI0Yk++yTDB7cxmEAAAAAAAAAAAAAAAAAAAAAAAA2FEqvK+C2225Lc3NzSqVSyuVyiz+//OUvZ/PNNy86Yrbddtvcdtttq60//fTTBaQBAACgKp57LjnqqOTFF1ssX7/pS/mXD61b4fVya118nbbPlM8tt74BAAAAAAAAAAAAAAAAAAAAAADABq2u6ABdwR133NHm3oknnljDJG3bcsstV1srl8uZM2dO7cMAAABQeXPnJsceu1rh9V83mZ1/PmJpmkrrP6LFFY3rdkf5TIXXAAAAAAAAAAAAAAAAAAAAAAAAXZXS6wp49NFHV3xfKr1VAbbjjjtm6NChRURazcCBA1s8L885b968IuIAAABQaaefnsyY0WLp0SWzMuaI5jRV8NP/+nRnK7wGAAAAAAAAAAAAAAAAAAAAAADo2pReV8AzzzzTouy6XC6nVCrlgAMOKDBVSz179mx1Xek1AABAFzBpUjJxYoulV5bMyl4nJEu6VX7cik/AjWv+mofHPlD5IAAAAAAAAAAAAAAAAAAAAAAAAHQq9UUH6ApeffXVVte32GKLGidpW7durbeczZ8/v8ZJAAAAqKjGxuS001osvbJ0drb5dLKooXpjS0nKa3j24X9+MMN32616YQAAAAAAAAAAAAAAAAAAAAAAAOgUlF5XwIIFC1pd70yl16+//nqr622VYQMAALCBuPnmZObMpLk5WbIkaWrKOz7bnAXdqz96TYqvrzzqcoXXAAAAAAAAAAAAAAAAAAAAAAAAGwml1xVQLrde8dXc3FzjJG179dVXW13v3bt3jZMAAABQMY2Nybe/nbz22rLC6ySbf7E5c3vWLkKpMSk3tL73/f3Py9G7f6x2YQAAAAAAAAAAAAAAAAAAAAAAAChUXdEBuoI+ffq0ut5W0XQR2srSr1+/GicBAACgIiZNSvbZJ7n77hWF10NObs4rrX9ErapSK2tfHfGFfPV9p9Y8CwAAAAAAAAAAAAAAAAAAAAAAAMVRel0BbRVH/+Mf/6hxkrY9+uijLZ7L5XJKpVKGDBlSUCIAAADWydy5yZe+lIwblzz77Irl7T/bnL+/rbhYKxdfj3vHcfn+2B8WlgUAAAAAAAAAAAAAAAAAAAAAAIBiKL2ugKFDh6ZcLq+2/vDDDxeQZnVLlizJ5MmTUyqVVtsbNmxYAYkAAABYJzNnJu9/fzJx4rLnxsYkyW6fas4zAwvMtSxGuqUuPzn4R7n041cUGAYAAAAAAAAAAAAAAAAAAAAAAICiKL2ugO22267Fc6lUSrlczj333JOmpqaCUr3l3nvvzeLFi5NktXLu4cOHFxEJAACAtfXcc8mRRyYzZry11tSUfT7WnEcGF5ZqhVJKOX3fb+Rz+/1r0VEAAAAAAAAAAAAAAAAAAAAAAAAoiNLrCthzzz1XfL9yqfSiRYty5513FhGphauuuqrNvX322aeGSQAAAFgnc+cmxx6bvPhii+VDP7go9w0rKNNKSkm+tMcpOfPQc4uOAgAAAAAAAAAAAAAAAAAAAAAAQIGUXlfAu9/97jb3LrzwwhomWd3cuXNzySWXpFQqJcmKP5OkoaEho0ePLioaAAAAa+r005MZM1osfWS/WZm0YzFxVvXpGZvmB0f+qOgYAAAAAAAAAAAAAAAAAAAAAAAAFEzpdQXstddeGThwYJK0KJcul8v5/e9/nxmrFJPV0k9+8pPMmzcvSVIul1f8WSqVctBBB6Vv376FZQMAAGANTJqUTJzYYukze83KVTsVlGcV//x4KT99cc+iYwAAAAAAAAAAAAAAAAAAAAAAANAJKL2ugG7dumXs2LEtSqWXa25uzuc///lCcj322GM599xzVxRxr+qjH/1ojRMBAACwVhobk9NOa7H09eGz8vM9iomzqvc+l/zur1smgwYVHQUAAAAAAAAAAAAAAAAAAAAAAIBOQOl1hZxwwgktnsvlckqlUsrlcv70pz/lvPPOq2mehQsX5qMf/WjeeOONFnmWGzBgQI477riaZgIAAGAt3XxzMnPmisfxO72Y80cn5XZeUiujZiW33TJ42cPw4cWGAQAAAAAAAAAAAAAAAAAAAAAAoFNQel0ho0ePznve857VyqWXF1+ffvrpufjii2uSpbGxMccdd1wefvjhFfOXW57vxBNPTK9evWqSBwAAgHV02WUrvr3o7S/mnP3KnaLwepdXksl/HPzWwogRxYUBAAAAAAAAAAAAAAAAAAAAAACg01B6XUHnnHNOi+dyubyiZHrp0qU5+eST881vfjNLly6tWoaZM2fmoIMOynXXXbda+fZym2yySb7xjW9ULQMAAAAV8MILyR13JEkuHzg7/3poOc0FR0qSbV9NHr52cMvFffYpJgwAAAAAAAAAAAAAAAAAAAAAAACditLrCjrggAMybty4FUXXyy1/LpfL+c53vpPddtstN954Y0Vnv/HGG/n2t7+dXXfdNXfddVfK5fKK2avmGD9+fAYMGFDR+QAAAFTY5MlJkus3mZ1/OaK5UxReD56bPDVxUMvF/fdPBg9u/QUAAAAAAAAAAAAAAAAAAAAAAABsVJReV9h//dd/Zdttt02SFsXXy5/L5XIeffTRfOhDH8quu+6ac845J9OnT1+nWXPmzMkNN9yQz372s3n729+e0047LfPmzWtRsr3y3FKplIMPPjinnHLK+r1JAAAAqu/BB/PXTWbnn49sTlOp4+PVtumC5O8/75M0NLTcGDeumEAAAAAAAAAAAAAAAAAAAAAAAAB0OvVFB+hqBgwYkKuuuir7779/FixYsKJweuUC6iQpl8uZNm1azjrrrJx11lnp1atXdtppp9WKsld2/PHHZ9GiRXnppZcyY8aMzJw5c8Vea/ev/JwkQ4cOzS9/+cvKvmEAAACq4tEHb82YI5rT1Al+XVX/hckrP25IBvZruTF0aHLIIcWEAgAAAAAAAAAAAAAAAAAAAAAAoNNRel0Fu+++e6699tp88IMfzKJFi1YUXyfLyqhLpdJqZdgLFizIlClTViutXvnPyy+/fMWM5evLrVxu3VoB9sCBA3PTTTdl8803r8ZbBgAAoIJemT07e73zz1nSCQqvey9OnvzvJAMHJKv+oqZzz00aGgpIBQAAAAAAAAAAAAAAAAAAAAAAQGfUCeqzuqaDDjoo119/fQYMGJAkK4quk6wou16+tupeW5a/rr3XtlZ4PXjw4Pzv//5vdtxxx2q9XQAAACrkldmzs81FQ7OoE3xi79mYzPh+MmjgZkn9Kr836+ijkzFjigkGAAAAAAAAAAAAAAAAAAAAAABAp9QJKrS6roMOOih33313dtpppxZl1KuWVLe215q2Sq5XvmP5ueX7u+++e+68886MGDGiKu8RAACAytruomFZkCVFx0j3pmTK95JB3buvXni97bbJ2WcXEwwAAAAAAAAAAAAAAAAAAAAAAIBOS+l1le2www6ZOnVqvv71r6eurq7NguvWyqtX1VbJ9cr3lUqllMvllEqlfOUrX8k999yTYcOGVefNAQAAUFGDxvfL/CwuOkbqm5NbfpbsVKpL6lb50cHgwcmECUn//sWEAwAAAAAAAAAAAAAAAAAAAAAAoNNSel0D3bt3z3nnnZdHHnkkH/3oR5NktfLrVUuwO9La65aXYY8ZMyZTp07N+eefn+7du1f+DQEAAFAZU6Yk3/hG8k//lLd/uZRXG+cnjVn2VZD65uSqS5L9X33zRwYNDW9tbrttcs01yZAhhWQDAAAAAAAAAAAAAAAAAAAAAACgc1N6XUPvfOc7c+WVV+bxxx/P17/+9QwePHhFUXVbJdhtfSVp8drevXvn+OOPz7333ps//elP2W233Yp8qwAAALRlwYLk9NOTrbdO9t47+e53s/2Ot2VW36KDLfshwS8mJB/8x0o/LqivX/bn0Ucnf/yjwmsAAAAAAAAAAAAAAAAAAAAAAADaVF90gI3R9ttvn/POOy/nnXdepkyZkptuuin33HNPpk6dmueff36N7ujZs2d23333jB49OmPGjMnBBx+cHj16VDk5AAAA6+W885Jzz00WLlyxtMunm/PMwAIzvakuyY+vSj7+7Cq/H2vbbZflPvjgQnIBAAAAAAAAAAAAAAAAAAAAAACw4VB6XbC99tore+2114rnBQsWZObMmXnhhRcyb968LFy4MI2NjenRo0d69+6dgQMHZujQoRk8eHBKpVKByQEAAFhjzz+ffPCDyUMPtVje52PNeXSLgjKtpJTk9JuTzz22UuF19+7JqFHJrbcmDQ2FZQMAAAAAAAAAAAAAAAAAAAAAAGDDofS6k+ndu3d23HHH7LjjjkVHAQAAoBLuuScZMyZZsKDF8kEfbc59wwrKtJJSkq/empw5tVvSu9eyguuGhqRbt+Q//kPhNQAAAAAAAAAAAAAAAAAAAAAAAGtM6TUAAABUy113Je97X7J4cYvlDx3RnD+/o6BMq/j0Pcl372tINhuYlEpvbQwdmhxySHHBAAAAAAAAAAAAAAAAAAAAAAAA2ODUFR0AAAAAuqTnn19WGr1K4fUnDm3ODcMLyrSKf34g+ent9cmAAS0Lr5Pk3HOThoZCcgEAAAAAAAAAAAAAAAAAAAAAALBhqi86AAAAAHRJH/xgsmBBi6UvHNCc3+xVUJ5VHPxo8rubG5JNBiT1q/x44OijkzFjCskFAAAAAAAAAAAAAAAAAAAAAADAhkvpNQAAAFTaeeclDz3UYmn8Xs25cP+kXFCkle07I7n5pj7JwH5JqdRyc9ttk7PPLiQXAAAAAAAAAAAAAAAAAAAAAAAAGzal1wAAAFBJCxYk557bYumiHZtz9qGdo/B6+IvJnTcPSvo3rL45eHAyYULSv3/tgwEAAAAAAAAAAAAAAAAAAAAAALDBqys6AAAAAHQp552XLFy44vHi7Zpz8j8nzQVGWm7715KHbhycNLRSeL3ttsk11yRDhtQ8FwAAAAAAAAAAAAAAAAAAAAAAAF2D0msAAACopJ//fMW3EzdvzuePScpvPpdbf0VNvH1u8sTVg1vfPPro5I9/VHgNAAAAAAAAAAAAAAAAAAAAAADAeqkvOgAAAAB0GVOmJLNmJUkmbdacYz+9etF1OUmpxrEGLUhm/q6VwuuhQ5NzzkkOPrjGiQAAAAAAAAAAAAAAAAAAAAAAAOiKlF4DAABApUycmCR5sNycD5yQNLfRbl3L4uv+i5KXJqxSeL3//sm4cckhhyQNDTVKAgAAAAAAAAAAAAAAAAAAAAAAQFen9BoAAAAq5Z57Mru5OXt9M1naQat1LYqv+zQlT/5t1+Q9w5Phw5MRI5J99kkGD+74xQAAAAAAAAAAAAAAAAAAAAAAALCWlF4DAABAhcyefnuGntpx4fVy1Sy+7tnQkGe+MDODttiiShMAAAAAAAAAAAAAAAAAAAAAAACgpbqiAwAAAEBXMWxcOUvW8tdLlauQo/vSZMpn7lN4DQAAAAAAAAAAAAAAAAAAAAAAQE0pvQYAAIAK6De+exavZeH1cpUsvq5vTu76WbLTViMqeCsAAAAAAAAAAAAAAAAAAAAAAAB0TOk1AAAArKdNx/fM/MbG9bqjEsXX9c3JDT9N9mzapAK3AQAAAAAAAAAAAAAAAAAAAAAAwNpReg0AAADrYfPxffNa4+KK3LU+xdd1SX4xITn41bqkb9+K5AEAAAAAAAAAAAAAAAAAAAAAAIC1ofQaAAAA1tGw8QPzcuMbFb2znLUvv65L8uOrko8/++bH/B12qGgmAAAAAAAAAAAAAAAAAAAAAAAAWBNKrwEAAGAdvPOcLfNc46tVu39Ni69LSb59ffK5x1b6iD96dDUiAQAAAAAAAAAAAAAAAAAAAAAAQLuUXgMAAMBaGnXeO/LE4tlVn9NR8XUpyVdvTf79oVU+3h99dLUiAQAAAAAAAAAAAAAAAAAAAAAAQJuUXgMAAMBaOPD8Efnb/KdqNq+94utP35N89+5Sy8Wttkr22KOakQAAAAAAAAAAAAAAAAAAAAAAAKBV9UUHAAAAgE7vhReSyZNzxC2n5M8DXqj5+HKSVaqt888PJD+9JUndKjsnnFCjVAAAAAAAAAAAAAAAAAAAAAAAANCS0msAAABoTWNjctNNyWWXJXfemXF7z8p1uxUXZ+Xi64MfTX53fZK6upaHevVKvv71GicDAAAAAAAAAAAAAAAAAAAAAACAZZReAwAAwKomTUpOOy2ZOTNJ8rXhs/LLAguvlysn2f/p5ObfJymVVj9wxhlJ7961jgUAAAAAAAAAAAAAAAAAAAAAAABJlF4DAACwkVu4ZGF6de+17GHu3OT005OJE1fsn/mOWTl/dEHhVrH9K8n//SbLCq9XLb0eMSL5+tcLyQUAAAAAAAAAAAAAAAAAAAAAAABJUld0AAAAACjK9JenZ8B3B2TshLHJzJnJ+9+fXH75svLrf/wjF/eZlbPfU3TKZbaekzx5cZK6utULr/v0Sa67rohYAAAAAAAAAAAAAAAAAAAAAAAAsEJ90QEAAACgCNNfnp7dL9o9jc2NueaxazL2xhtz9T1NSXNzkmTilsnnjyk45JsGzk9mXlhK6kqrb/bokUyalGy9de2DAQAAAAAAAAAAAAAAAAAAAAAAwErqig4AAAAAtbZy4XXKScrJNdstydiPLCu8nrRFcuynl20Vrf+i5JUf1SWlVgqv+/RJbrstGT269sEAAAAAAAAAAAAAAAAAAAAAAABgFfVFBwAAAIBaWq3weiXX7Jwc8OHkrh2T5lY6pmut95Lk9f9q4/dVjRiRXHddsvXWtQ0FAAAAAAAAAAAAAAAAAAAAAAAAbWijOQsAAAC6nvYKr5MkS5O/7pgs7QSF1z2akle+18pGr17Jt76VTJ2q8BoAAAAAAAAAAAAAAAAAAAAAAIBOpb7oAAAAAFALa1J4naXpFL8eqqE5efY7Sa+6lcJstVVywgnJ17+e9O5dXDgAAAAAAAAAAAAAAAAAAAAAAABog9JrAAAAurwOC6+TTlN43a2c3PejZIshQ5IddkhGj06OPjrZY4+iowEAAAAAAAAAAAAAAAAAAAAAAEC7lF4DAADQpa1R4fXiJN1qmap13crJlBPvyohv7Vt0FAAAAAAAAAAAAAAAAAAAAAAAAFhrdUUHAAAAgGpZuGRh9rh4j2WF120oLUqnKLyuKyd/HDsxI7ZVeA0AAAAAAAAAAAAAAAAAAAAAAMCGSek1AAAAXVav7r1y2DsOW/ZQXn2/bmFSrq9tptaUkkwY89McPOojRUcBAAAAAAAAAAAAAAAAAAAAAACAdab0GgAAgC7t6mOvzlFLd1xtvW5B0txQQKBWfHfUN/LRg04sOgYAAAAAAAAAAAAAAAAAAAAAAACsF6XXAAAAdHlX/3x+jnr0redu85Pm7sXlWdkZu56crx31/4qOAQAAAAAAAAAAAAAAAAAAAAAAAOtN6TUAAABd25QpyaxZuXpiXY56NKmfmyztWXSoZT73xCYZf+wFRccAAAAAAAAAAAAAAAAAAAAAAACAiqgvOgAAAABU1cSJK759rZw09S4wy0o+9nDyk9d2KzoGAAAAAAAAAAAAAAAAAAAAAAAAVExd0QEAAACgqu65J0lyxIea8+cdCs7ypg89nlw+eXDS0FB0FAAAAAAAAAAAAAAAAAAAAAAAAKgYpdcAAAB0bU8+mXHva851uxYdZJn3zkiu/evgZQ+DBhWaBQAAAAAAAAAAAAAAAAAAAAAAACqpvugAAAAAUE2f32Vmfjmq6BTL7DEruf3WwW8tDB9eXBgAAAAAAAAAAAAAAAAAAAAAAACosLqiAwAAAEC1nHrpuFzUSQqvd3gpmXrjli0XR4woJgwAAAAAAAAAAAAAAAAAAAAAAABUgdJrAAAAuqRvXfmVfPfJXxYdI0my9Zzk8Z8mKZVabuyzTxFxAAAAAAAAAAAAAAAAAAAAAAAAoCqUXgMAANDlXH7zf+e0h/676BhJks3mJTMvSFK3ykfw/fdPBg8uJBMAAAAAAAAAAAAAAAAAAAAAAABUg9JrAAAAupQb7vpVPvGXrxQdI0nytgXJSz9886G+vuXmuHE1zwMAAAAAAAAAAAAAAAAAAAAAAADVpPQaAACALmPKY7fng9cfn5SKTpLUL03m/NdKCw0Nb30/dGhyyCE1zwQAAAAAAAAAAAAAAAAAAAAAAADVpPQaAACALmHKY7dn1C8P6hSF12lOmnokY49eaa1nz7e+P/fcliXYAAAAAAAAAAAAAAAAAAAAAAAA0AXUFx0AOpvFixfn8ccfz/PPP5958+ZlwYIF6d27d/r165ett946O+64Y7p37150TAAAYCWzZszIPpcdlHJn+NVOzUm6Lfv2mp2XFV9f/bu6ZPnniKOPTsaMKSweAAAAAAAAAAAAAAAAAAAAAAAAVIvSa0hy991355prrskf//jHPPLII1m6dGmbZ7t165bhw4fnsMMOy5FHHpl99923hkkpwqJFi/LXv/41d9xxRx577LE89thjmT17dubPn5/58+ene/fu6dOnT/r27Zu3v/3t2W677bL99ttnt912y7777putttqq6LcAANDlDfufbbO0MxRel7Os8LrbW0vX7JyMPbaUq29Lsu22ydlnFxQOAAAAAAAAAAAAAAAAAAAAAAAAqqtULpfLRYeAokyYMCHf+973MmXKlHW+Y+TIkfn3f//3HHPMMRVMtmFYsGBB7r///tx3330rvh577LE0Nze3+ZozzzwzZ511Vu1CrqOlS5fmhhtuyCWXXJJJkyZl0aJF63zXkCFDcsABB+Twww/P+9///my66aYVTLphGj58eKZNm7ba+i677JJHHnmkgEQAwIas5zdKWdyt43NVV05SlxaF1ys7atbbcvVpDyVDhtQyFQAAAAXy83AAAAAAAAAAAAAAAAAAAGBjU190ACjCo48+mpNOOil/+ctf1vuuv/3tbzn22GNz0UUX5aKLLsqOO+5YgYSdz+LFi/PAAw+0KLieNm1ali5dWnS0ilq6dGl+8YtfZPz48Xn++ecrcufMmTNzxRVX5Iorrki3bt3yrW99K6eeempF7gYA2Nj1+WZ95ym8LqfNwuskuXHrBVm4xaD0qlUmAAAAAAAAAAAAAAAAAAAAAAAAqDGl12x0rrrqqowbNy7z58+v6L233357Ro0alV/+8pcZO3ZsRe+utcbGxjz00EMtCq4ffvjhNDY2Fh2tqu6+++58+tOfzvTp06s2Y+nSpZk1a1bV7gcA2JgMGN8jC+o6yS9hKSfp3vZ2Q7eG3P+5B9Kru8prAAAAAAAAAAAAAAAAAAAAAAAAui6l12xULrjggnzhC19IuVyuyv3z58/Phz/84fz4xz/OySefXJUZtXDDDTds8MXda6O5uTnnnntuzjnnnDQ1NRUdBwCANbDF+D55vXFJ0TGWaUzSVpd1KWmoa8gDn3sgO2+2cy1TAQAAAAAAAAAAAAAAAAAAAAAAQM0pvWajcdlll1W18Hq5crmcf/3Xf03fvn1z/PHHV3UW62/x4sX5+Mc/nt///vdFRwEAYA1tM37TvNS4oOgYyyxK0reNPYXXAAAAAAAAAAAAAAAAAAAAAAAAbGSUXrNRmDx5cj7zmc+sUeH1fvvtl4997GPZb7/9ss0226Rfv36ZN29enn766dx55525/PLLc88997R7R7lczmc+85nsvPPO2XvvvSv1NqiwBQsW5PDDD8/tt9++xq8ZNmxYRo4cme233z6bbbZZ+vbtm8bGxsyZMydz5szJc889l6lTp+aZZ56pesE6AMBG44UXksmTkwcfzC4vn5Nn39ZUdKJlFF4DAAAAAAAAAAAAAAAAAAAAAABAC0qv6fLmzp2bY489No2Nje2e22GHHfKTn/wk73vf+1bb22STTTJy5MiMHDkyX/jCF/KnP/0pJ598cp566qk271uyZEmOOeaY3H///enfv/96vw8qa+nSpTn22GPXqPB6++23zwknnJBjjjkm22233RrdP3fu3Nx999259tprc9111+W5555bz8QAAF3fc688l6GDhi57aGxMbropueyy5M47kyR7vH9Wpm9VYMCVHD85mbtpcs1OrWwqvAYAAAAAAAAAAAAAAAAAAAAAAGAjVVd0AKi2M844I88880y7Z8aMGZN777231cLr1hxyyCG57777ctBBB7V77plnnslZZ521plE3aL1798673vWubL/99kVHWSNf/OIXc91117V7ZuDAgfnpT3+aRx99NN/4xjfWuPA6Sfr3759DDjkkP/7xj/Pss89m8uTJGTduXHr06LG+0QEAuqQf3PGDDLtgWBrObkgmTUr23z856aQVhdfvft+sPNBJCq8/9HBy2f/W5eqJdTnq0ZU2SlF4DQAAAAAAAAAAAAAAAAAAAAAAwEZN6TVd2rRp03LBBRe0e+Zd73pX/vCHP+Rtb3vbWt09YMCAXHfdddlnn33aPfejH/0o06dPX6u7O7uePXtm9OjROeWUU/Lzn/88Dz74YObOnZs777wz+++/f9HxOjRx4sRceOGF7Z456KCD8vDDD+fEE09MfX39es/ce++9c+mll+b555/Pxz72sfW+DwCgK/nBHT/IV2/5apKkqbkpDX85JJk5c8X+4fvPyp3DikrX0nufSK697q2P0lffsXWOyo7LCq+j8BoAAAAAAAAAAAAAAAAAAAAAAICN2/o3uUInNn78+DQ1NbW5v+mmm+bKK69M79691+n+Pn365Le//W322GOPzJkzp9UzTU1NOfvss/Ob3/xmnWYUrUePHtltt90yatSojBo1KiNHjsyuu+5akSLoIjz//PM56aST2j1z9NFH51e/+lW6d+9e8fmDBg3KoEGDKn4vAMCGauXC65SX/dHULWk4YVYafzY4nxw5Kze+s7h8K9vr+eT2u4YkB+6QjB6dHH10ssceuTrJ2Aljc+OTN+b+k+5XeA0AAAAAAAAAAAAAAAAAAAAAAMBGa8NsrYU18PTTT+f3v/99u2fOPffcDBkyZL3mDBs2LOPHj8+XvvSlNs9MnDgx3/72t7PNNtus16xaeec735mLL744I0eOzIgRI9LQ0FB0pIr5yle+ktdee63N/TFjxuTXv/51l3rPAACdVWuF18s1dUu6jZ2V5k1qn6s12zQMyN8ubfv/I68+9uosXLIwvbr3qmEqAAAAAAAAAAAAAAAAAAAAAAAA6Fzqig4A1XLBBRdk6dKlbe7vsMMO+exnP1uRWSeffHK22267NveXLl2aCy64oCKzamGXXXbJZz/72YwcObJLlT//5S9/ye9+97s297fccstMmDChS71nAIDOqr3C6yTJ/HSawustG/rkmTPbLrxeTuE1AAAAAAAAAAAAAAAAAAAAAAAAGzul13RJS5cuzW9+85t2z3zlK19Jt27dKjKvvr4+X/ziF9s9c8UVV6S5ubki81g3p556arv7F154YQYOHFijNAAAG68OC68XJelZy0Rt26Sue2adOb/oGAAAAAAAAAAAAAAAAAAAAAAAALBBUHpNl3Trrbdm1qxZbe737Nkzn/jEJyo6c9y4cenevXub+y+88EJuv/32is5kzf3f//1f7r777jb33/3ud2fs2LE1TAQAsHFqUXjdmkVJKvO7adZbn6ZuefXsxUXHAAAAAAAAAAAAAAAAAAAAAAAAgA2G0mu6pOuuu67d/cMPPzz9+vWr6MwBAwbkAx/4QLtnOspF9Zx//vnt7v/nf/5njZIAAGy8Viu8Lq9yoCnLCq9LNQzVhh5LS5l/XlPRMQAAAAAAAAAAAAAAAAAAAAAAAGCDovSaLumWW25pd//www+vytyO7p00aVJV5tK+l19+OTfccEOb+9tss00OPfTQGiYCANj4PPfKcy0Lr1fVlGUl2J2g8LqhOVn07eaiYwAAAAAAAAAAAAAAAAAAAAAAAMAGR+k1Xc6sWbMyffr0ds+MGTOmKrMPPvjgdvcfeeSRvPjii1WZTdsmTpyYpqamNvePPfbY1NX5zyEAQDUNHTQ09aX6txbKK202JmlOpyi8rm9Onv3sM0XHAAAAAAAAAAAAAAAAAAAAAAAAgA2Slle6nMmTJ7e7P2TIkAwZMqQqs7fZZpsMHjy43TP33ntvVWbTtiuvvLLd/Q996EM1SgIAsHFrPKOxZfF1kjQmpXI6xafTUjl57rPPZPA22xQdBQAAAAAAAAAAAAAAAAAAAAAAADZInaBWDCprypQp7e7vtddeVZ0/atSodvenTp1a1fm09MYbb+Suu+5qc79Pnz4ZPXp0DRMBAGxcFi5Z2OK58YzG1K/0UbRbc1LuBJ9MS+XkvuNvU3gNAAAAAAAAAAAAAAAAAAAAAAAA66ETVItBZd1///3t7o8YMaKq8zu6X+l1bd1xxx1pbGxsc3/kyJHp1q1bDRMBAGw8pr88PQO+OyBjJ4x9a/GKK9J4yVapX5rUL0qWdob/FSsn1x3x6+y144FFJwEAAAAAAAAAAAAAAAAAAAAAAIANWn3RAaDSHn/88Xb3d9hhh6rOf8c73tHu/hNPPFHV+bT0l7/8pd39vfbaa43umTt3bh555JHMnj07c+fOTalUSu/evTNo0KAMGzYsQ4YMUZ4NALCS6S9Pz+4X7Z7G5sZc89g1GXvywFx98ZykuTlJ8rZ5yT/6FptxuV8f+MMcPvrjRccAAAAAAAAAAAAAAAAAAAAAAACADZ7Sa7qUcrmcGTNmtHumo1Lq9dXR/R3lo7Luv//+dvfb++d13333ZcKECbn++uvz2GOPtXtPnz59MmrUqLzvfe/Lhz/84eyyyy7rEhcAoEtYufA65WVr12z+asZ+JLn6t8mQUzpP4fUP9zkrHz/4C0XHAAAAAAAAAAAAAAAAAAAAAAAAgC6hrugAUEmzZ8/OokWL2j2z1VZbVTVDR/e/8cYbeemll6qagbc8/PDD7e5vv/32q63dfvvtOeCAA7L33nvn/PPP77DwOln2z/XPf/5zzjjjjAwfPjzvete7ctVVV61zbgCADVVrhdfLXbNzMuBLyfMDCom2mlMf2jRfOOLMomMAAAAAAAAAAAAAAAAAAAAAAABAl6H0mi7lhRde6PDMlltuWdUMa3L/muRk/b3xxht57rnn2j2zxRZbrPh+7ty5+cQnPpGDDjoof/3rX9dr9t13350Pf/jDOeCAA/LQQw+t110AABuK9gqvk6T33OT1vrXP1ZpT7k3Oe2PPomMAAAAAAAAAAAAAAAAAAAAAAABAl6L0mi7lH//4R7v7/fv3T48ePaqaoXfv3unbt/0mv45yUhnPP/98yuVW2hZXstlmmyVJHn300ey99965/PLLK5rhr3/9a/bZZ5/89Kc/rei9AACdTUeF133mJAt61zxWq/55WvLjhwYngwYVHQUAAAAAAAAAAAAAAAAAAAAAAAC6FKXXdCmvvvpqu/v9+/evSY6O5nSUk8qYNWtWh2f69++fRx99NAceeGAef/zxquRYtGhRPvvZz+a0006ryv0AAEXrsPD61eSN9n8vTM0c9HTy+7sHL3sYPrzYMAAAAAAAAAAAAAAAAAAAAAAAANDF1BcdACrptddea3e/X79+NcnR0Ryl17WxJqXXc+bMyZgxYzJ79uyq5/nWt76Vurq6nH322VWfta4uuOCCXHjhhVWf89RTT1V9BgBQGx0VXvd9KZm/ae1ztWbk88mttw9+a2HEiOLCAAAAAAAAAAAAAAAAAAAAAAAAQBek9JouZdGiRe3u9+nTpyY5+vbt2+5+RzmpjNdff73DM5/61Kfy97//vc39rbfeOkcccUQOP/zwbLvtttliiy3Sp0+fzJ49Oy+++GLuvPPOXHvttfm///u/NDU1dTjvnHPOyc4775zjjjturd5Lrbz88suZNm1a0TEAgA3EwiULs8fFe7RZeN17djJ/YO1ztWbnF5P7/jS45eI++xQTBgAAAAAAAAAAAAAAAAAAAAAAALqouqIDQCUtWbKk3f36+tr0vHc0p6OcVMbChQs7PHPbbbe1uj5w4MBceOGFefbZZ3PBBRfksMMOy84775xNN900PXr0yNChQ7PPPvvky1/+cm699dY8/PDDef/7379GuT7/+c9n5syZa/VeAAA6o17de+WwdxzW6l63OcmCTlJ43XNhMu0Pg1ou7r9/Mnhw6y8AAAAAAAAAAAAAAAAAAAAAAAAA1onSa7oUpdesbNGiRev0utGjR+exxx7L5z//+dTVrdl/Jnfcccf88Y9/zEUXXdTha15//fV84QtfWKdsAACdzdXHXp2jXtq05eL8ZGnfYvKsqvviZFG/pOFzr7TcGDeumEAAAAAAAAAAAAAAAAAAAAAAAADQhSm9pktpbm5ud79bt241ydHRnKVLl9Ykx8ausbFxrV/z3ve+N7fccksGDhy4TjNPOumk/PrXv+7w34E//OEPueuuu9ZpBgBAZ3P1RXNy1PQ3H+Yn6Vlkmrc0LEmW9Fn2fVO3pOGEWcsehg5NDjmkuGAAAAAAAAAAAAAAAAAAAAAAAADQRSm9pkupr69vd7+pqakmOTqa09DQUJMcG7u1LTnffPPNM3HixPTt23e95h533HH52te+1uG573//++s1BwCgU7jiiqS5OVf/Nhk1NUmPogMt060paezdcm1F8fW55yb+nxwAAAAAAAAAAAAAAAAAAAAAAAAqrv2GYNjAdO/evd39WpVeNzY2trvfUU4qY23/ni+66KJsttlmFZk9fvz4XH/99XnkkUfaPHPttddm1qxZGTx4cEVmVsJmm22WXXbZpepznnrqqSxevLjqcwCAGvjRj5Ikk7ZIpuyapFRsnCSpW5os7dn6XlO3pOHOD6RxTPv/zw4AAAAAAAAAAAAAAAAAAAAAAACsPaXXdCkNDQ3t7i9ZsqQmOZRedw5r8/c8atSojB07tmKze/TokTPPPDNHH310m2eampryhz/8IZ/73OcqNnd9nXLKKTnllFOqPmf48OGZNm1a1ecAADXw6KN5sJR84ISkuRMUXqc5ae7Rzn4paSo35blXnsvQQUNrFgsAAAAAAAAAAAAAAAAAAAAAAAA2BnVFB4BK6tu3b7v78+fPr0mOefPmtbvfUU4qo0+fPmt89vOf/3zF548dOzaDBw9u98yNN95Y8bkAALU0e86cjPqPZGknKLwuNSdpL8ebe+ePOV/hNQAAAAAAAAAAAAAAAAAAAAAAAFSB0mu6lE033bTd/blz59YkR0dzOspJZazp33OPHj1y3HHHVXx+fX19PvGJT7R75u677674XACAWpn9979n6KlJY2f4ZFlOyqUkDW3sr1R4/W/v/rdapQIAAAAAAAAAAAAAAAAAAAAAAICNSmeoJoOKGThwYLv7c+bMqUmO119/vd39jnJSGWv697znnnumV69eVcmw3377tbv/8ssv5/nnn6/KbACAatv2km2ypL7oFEnKb/6p8BoAAAAAAAAAAAAAAAAAAAAAAAAKpfSaLmXQoEHt7i9evLjqxdevvvpqlixZ0u4Zpde10dG/D8vtu+++VcswevToDs889dRTVZsPAFAt/cb3yMLGpqJjLCu8bkzrhdelKLwGAAAAAAAAAAAAAAAAAAAAAACAGlJ6TZcydOjQDs/Mnj27qhnW5P41ycn6W9O/51122aVqGQYPHpwBAwa0e2bmzJlVmw8AUA2bju+d+Y3t/6KXWqgrJ7/9eVLfY5WNlcquE4XXAAAAAAAAAAAAAAAAAAAAAAAAUCtKr+lS+vbtm4EDB7Z75tlnn61qhhkzZrS7v/nmm6dPnz5VzcAy/fr16/DfhyQdllKvr0022aTd/VdffbWq8wEAKmnw+AF5rXFh0TGSJBf+Nvnoi0njuUn90qxWdp0ovAYAAAAAAAAAAAAAAAAAAAAAAIBaUnpNl7Ptttu2u//EE09Udf6TTz7Z7n5H+ais7bbbrsMz1S697uj+BQsWVHU+AEClbHfuFnmx8fWiYyRJdn8iOWml//Vu/N93pb5U3+KMwmsAAAAAAAAAAAAAAAAAAAAAAACoLaXXdDnDhw9vd/+xxx6r6vyO7u8oH5W16667dnimV69eVc3Q0f1NTU1VnQ8AUAm7nDc0zyx6qegYSZLec5IHdk7GHr3S4he/mMYzGlcUXyu8BgAAAAAAAAAAAAAAAAAAAAAAgNpTek2Xs9dee7W7P3Xq1KrOnzJlSrv7e+65Z1Xn09LIkSM7PPP6669XNUNH91e7dBsAYH2N+t6OmT5/ZtExkiS9/5EsGLTs+2uWF19365Yce2ySpPGMxjx7yrMKrwEAAAAAAAAAAAAAAAAAAAAAAKAASq/pcjoqvb7//vuzdOnSqsxuamrKAw880O4Zpde1NWrUqA7PzJkzp6oZXnvttXb3+/btW9X5AADr49Af7pu/vf540TGSJH1fTRZs0XLtmp2TsScNaLE2dNDQ2oUCAAAAAAAAAAAAAAAAAAAAAAAAVlB6TZczatSo9OzZs839+fPn529/+1tVZk+ePDkLFixoc79nz54ZOXJkVWbTuj333DN9+vRp98xLL71UtflLly7Nq6++2u6Zt7/97VWbDwCwPg78zq7500v3FB0jSdJnbjJ/89b3rtn8Hxk7YWxtAwEAAAAAAAAAAAAAAAAAAAAAAACrUXpNl9OzZ8+8+93vbvfMpEmTqjL7lltuaXf/gAMOaLeQm8rr3r17DjzwwHbP3HvvvVWb//DDD2fRokXtnhk2bFjV5gMArKsj/3u//HneI0XHSJL0WJC8sWn7Z2588sYsXLKwNoEAAAAAAAAAAAAAAAAAAAAAAACAVim9pks6+OCD292/6qqrqjL3d7/7Xbv7hxxySFXm0r73v//97e7ffffdVZvd0d09evTITjvtVLX5AADr4pMXH55rX7mr6BhJkh4Lk8X92zlQShrqGnL/SfenV/deNcsFAAAAAAAAAAAAAAAAAAAAAAAArE7pNV3SRz7ykXb3p0yZkscee6yiMx9++OE89NBDbe6XSqUOc1EdH/7wh9OtW7c295955pk8+eSTVZn9pz/9qd39PffcMw0NDVWZDQCwLk69/DP59cwbi46RJOm+OMYvu2AAAQAASURBVFncr50DbxZeP/C5B7LzZjvXLBcAAAAAAAAAAAAAAAAAAAAAAADQOqXXdEnbb7999t1333bP/OhHP6rozB/+8Ift7u+3337ZZpttKjqTNTN48OAcfPDB7Z656KKLKj73hRdeyLXXXtvumUMPPbTicwEA1tW3r/r3fHf6JUXHSJI0LEmW9GnngMJrAAAAAAAAAAAAAAAAAAAAAAAA6HSUXtNlffrTn253/xe/+EVmzZpVkVnPP/98fvWrX7V75lOf+lRFZrFuTjzxxHb3f/GLX2T+/PkVnfmTn/wkTU1N7Z4ZO3ZsRWcCAKyri//47Xzzb98vOkaSpEdj0ti7nQMKrwEAAAAAAAAAAAAAAAAAAAAAAKBTUnpNl/XJT34ym2++eZv7CxYsyH/8x39UZNapp56aRYsWtbm/xRZb5JOf/GRFZrFuxo4dm3e+851t7r/66qv52te+VrF506dPz/e/335p5N57753dd9+9YjMBANbVlXf8LJ/76zeTUtFJkn6LkkXfTY6a3sYBhdcAAAAAAAAAAAAAAAAAAAAAAADQaSm9psvq2bNnvvSlL7V75pe//GWuvvrq9Zrz29/+NldccUW7Z7785S+nR48e6zVnxowZKZVK7X6dddZZ6zWjK6urq8s3vvGNds9cfPHFuemmm9Z71pIlSzJu3Lh2i9CT5Ctf+cp6zwIAWF93Tv9Tjr3xxE5ReN1rSTL3/GXfX/3bVoqvFV4DAAAAAAAAAAAAAAAAAAAAAABAp6b0mi7ty1/+coYMGdLumXHjxmXy5MnrdP/dd9+dE044od0zw4YN67B8m9o4/vjjM3LkyHbPfOQjH8n//u//rvOMhQsX5sgjj8y9997b7rm99torxx577DrPAQCohJlPPZV3/+rQTlF43b0peeZ7Ldeu/n23HPXywGX5FF4DAAAAAAAAAAAAAAAAAAAAAABAp6f0mi6td+/e+cEPftDumXnz5uWQQw7J9ddfv1Z3/+EPf8ihhx6a+fPnt3vu/PPPT69evdbqbqqjrq4uF110Uerq2v5P3xtvvJHDDz88l1xyScrl8lrd/9RTT+WQQw7JTTfd1O65bt265Uc/+lFKpU7QLgkAbLRmPvVUhv7sHZ3iU2FDc/Lcd5ItunVLBgxI3vWu5De/SZqacvUFr+SoHY9K927dFV4DAAAAAAAAAAAAAAAAAAAAAABAJ1dfdACoto985CP52Mc+liuuuKLNM6+//nqOOOKIHHfccTn99NOz0047tXl22rRpOfvss3PllVd2OPvjH/94PvzhD69T7qLNnz8/EyZMWOvXPfHEE+3uT5kyJZdccsla3dmvX78cc8wxa52lNaNGjcr48eNz+umnt3lm8eLF+cxnPpOLL74448ePz5gxY9K9e/c2zz/99NP56U9/mv/6r//K4sWLO8zwzW9+M/vtt9865QcAqJRhnaTwultDct+n7skW/2+fNs9cfezVWbhkYXp198tkAAAAAAAAAAAAAAAAAAAAAAAAoDMrlcvlctEhoNrmz5+fUaNG5bHHHluj83vuuWf222+/bLvttunbt2/mzZuXZ555JnfccUceeOCBNbpjp512yr333pu+ffuuT/QVZsyYkW233bbdM2eeeWbOOuusms2rlWHDhmXGjBkVu69cLueII47I9ddfv0bn+/Xrl4MPPjjbbbddtthii/Tq1Ssvv/xyXnzxxdxxxx15+OGH13j2UUcdld///vepq+sEDZMFGj58eKZNm7ba+i677JJHHnmkgEQAsHFp+M9SmkpFp0jqGpKbPnRVDt5rbNFRAAAAoCr8PBwAAAAAAAAAAAAAAAAAANjY1BcdAGqhb9++ufnmm3PAAQdk5syZHZ6fOnVqpk6dus7zhg4dmptvvrlihddUVqlUypVXXpnDDz88t99+e4fn582bl6uuumq9544ZMyZXXHHFRl94DQAUq+f4us5ReF1OJhz0c4XXAAAAAAAAAAAAAAAAAAAAAAAA0IVoXmWjMWzYsNx6663ZfvvtqzrnHe94R2699dYMHTq0qnNYP717984NN9yQww47rCbzjjnmmNxwww3p1atXTeYBALSm7/iGLG4sFx0jSXLhQd/PR9/zL0XHAAAAAAAAAAAAAAAAAAAAAAAAACpI6TUblXe84x259957c+ihh1bl/ve///259957q16sTWX07t07119/fc4666x069atKjN69eqVH//4x5kwYUK6d+9elRkAAGtik/G98kZjU9ExkiTf2/e0nDTmq0XHAAAAAAAAAAAAAAAAAAAAAAAAACpM6TUbnU022SQ33XRTLr300my++eYVuXPzzTfPZZddlj/+8Y8ZMGBARe6kNkqlUs4888xMmTIlBx54YEXvPfroozN9+vSccsopFbsXAGBdDB7fP3MaFxUdI0nyzd1Pztc+eE7RMQAAAAAAAAAAAAAAAAAAAAAAAIAqUHrNRmvcuHF5+umnc8EFF2TnnXdepzt22WWXXHDBBXnmmWdy/PHHVzghtTRixIjcdttt+ctf/pJjjjkmPXr0WKd7ttxyy3zhC1/Io48+miuvvDLDhg2rcFIAgLWz7fhBebFxXtExkiSf2+HYfOujFxQdAwAAAAAAAAAAAAAAAAAAAAAAAKiSUrlcLhcdAjqDxx9/PDfddFOmTJmSRx55JH//+98zb968LFiwIL17906/fv2y9dZbZ5dddslee+2VD3zgA9lhhx2Kjk2VLFiwILfffnv+8pe/ZNq0aXn88cfzj3/8I/Pnz8+SJUvSq1ev9O/fP0OGDMn222+fkSNH5t3vfnf22Wef1NX5fQIdGT58eKZNm7ba+i677JJHHnmkgEQA0DUNP3dIpi16vugYSZKxW7w3V33h9qJjAAAAQE35eTgAAAAAAAAAAAAAAAAAALCxqS86AHQW73znO/POd76z6Bh0Er17985hhx2Www47rOgoAADr5L3/ParTFF7v2WOYwmsAAAAAAAAAAAAAAAAAAAAAAADYCNQVHQAAAIDK+vD/vD9/ef1vRcdIkuzQsEWmnD6j6BgAAAAAAAAAAAAAAAAAAAAAAABADSi9BgAA6EI+d/knc9Wsm5c9NBSbZUjDJnn8zBeLDQEAAAAAAAAAAAAAAAAAAAAAAADUjNJrAACALuKrv/lMLn7y1y0XCyq+3rShV54789VihgMAAAAAAAAAAAAAAAAAAAAAAACFUHoNAADQBfz3jefmB49ckjRm2dfKalx83b+he/5x5oLaDgUAAAAAAAAAAAAAAAAAAAAAAAAKp/QaAABgA/fLWy/MV+48veViQcXXPRvq8vqZi2szDAAAAAAAAAAAAAAAAAAAAAAAAOhUlF4DAABswK699zcZd/sprW/WuPi6oS5ZeObS6g4BAAAAAAAAAAAAAAAAAAAAAAAAOi2l1wAAABuo+57+a4688WNJczuHalR8Xbc0WXJ2uTqXAwAAAAAAAAAAAAAAAAAAAAAAABuE+qIDAAAAsBZeeCGZPDkvTLk+ey/9WVJag9c0pmXZdUOSpiQV6qguNSczTnyyMpcBAAAAAAAAAAAAAAAAAAAAAAAAGyyl1wAAAJ1dY2Ny003JZZcld96ZF5pmZeiJSerW5o60LL6uT9KcZOl6ZmtOnj3hyQzZfvv1vAgAAAAAAAAAAAAAAAAAAAAAAADY0Cm9BgAA6MwmTUpOOy2ZOXPF0pATk+a1KbxebtXi67o3vxrXMVs5ueOTNyu8BgAAAAAAAAAAAAAAAAAAAAAAAJIovQYAAOic5s5NTj89mTixxXL3cbPWrfB6uVWLr/Pm89oWX5eTOz5xc/bb+ZD1CAMAAAAAAAAAAAAAAAAAAAAAAAB0JUqvAQAAOpuZM5NjjklmzGix3PP4WWnsVoH717f4upxMOOwShdcAAAAAAAAAAAAAAAAAAAAAAABAC0qvAQAAOpPnnkuOOip58cUWy30/PiuLK/kJrjHLPhGWVlpbw+Lr/2+/M3PMu0+oYBgAAAAAAAAAAAAAAAAAAAAAAACgK6grOgAAAABvmjs3OfbY1QqvBx4zK2/0qMK8piTlVdYa2n/J13c+MV88/KwqhAEAAAAAAAAAAAAAAAAAAAAAAAA2dEqvAQAAOovTT09mzGixtOWHZ+XVPlWc2ZRk6SprbRRfn7TdR/Odj/+0imEAAAAAAAAAAAAAAAAAAAAAAACADZnSawAAgM5g0qRk4sQWS+/40KzMflsNZjenw+LrsVu+Nxd9+rc1CAMAAAAAAAAAAAAAAAAAAAAAAABsqJReAwAAFK2xMTnttBZLI94/K09tVsMMzUmaVll7s/j6vQN2y1X/ensNwwAAAAAAAAAAAAAAAAAAAAAAAAAbIqXXAAAARbv55mTmzBWP7/6nWXloqwJylJM0tlzab7M9c/vXHiwgDAAAAAAAAAAAAAAAAAAAAAAAALChUXoNAABQtMsuW/Ht4fvNyp3bFBclyYri6xF9d8gdX5pSbBYAAAAAAAAAAAAAAAAAAAAAAABgg6H0GgAAoEgvvJDccUeS5FN7zMqNOxWc503v7LF1Hvjq40XHAAAAAAAAAAAAAAAAAAAAAAAAADYgSq8BAACKNHlykuSUXWblsr0KzvKmt3cfmMf+Y2bRMQAAAAAAAAAAAAAAAAAAAAAAAIANjNJrAACAIj34YL779lm5cN+igywzqKFvnj/jlaJjAAAAAAAAAAAAAAAAAAAAAAAAABug+qIDAAAAbHReeCGZPDl58MFccv2ZOfXQogMt06+hR14+c17RMQAAAAAAAAAAAAAAAAAAAAAAAIANlNJrAACAWmhsTG66KbnssuTOO5MkV246K585suBcb+rZlMw9d1HRMQAAAAAAAAAAAAAAAAAAAAAAAIANmNJrAACAaps0KTnttGTmzBVLf2malWOPTFIqLtZy3ZcmC+96T9ExAAAAAAAAAAAAAAAAAAAAAAAAgA2c0msAAIBqmTs3Of30ZOLEFsvPNs3Kez+TTlF4Xd+cLL5scLJLQ9FRAAAAAAAAAAAAAAAAAAAAAAAAgA2c0msAAIAKe3nuy9ns9UXJMcckM2a02Hu2aVa2OTGdovA6zcmzl2TZJ8NBg4pOAwAAAAAAAAAAAAAAAAAAAAAAAGzglF4DAABU0ISHJuS4q47LgMV1eW3GFssWGxuTRYuSJUuyzVeT1BUacZly8rdLkq3qBy97Hj682DwAAAAAAAAAAAAAAAAAAAAAAADABq8zVK0BAAB0CZdOvTTHXXVcUk7mdG/OJsfPSmbPTl55JZk/P6V/W9I5PoWVk7v+J9lreeF1kowYUVweAAAAAAAAAAAAAAAAAAAAAAAAoEvoDHVrAAAAG7xLp16af7n2X5LyW2tzeiabfK05SVJ/apJuxWRroZxMnJDs2zC45fo++xSTBwAAAAAAAAAAAAAAAAAAAAAAAOgy6osOAAAAsKFbUXjdijm9ktLX02k+ff30V8lHFg5KGlZa3H//ZPDgNl8DAAAAAAAAAAAAAAAAAAAAAAAAsCbqig4AAACwIWtReF1u5cCCtCyYLtA3/pic+GqfpGGVQOPGFRMIAAAAAAAAAAAAAAAAAAAAAAAA6FKUXgMAAKyjDguv5yfpXstEbTv5z8n/e6gh6dev5cbQockhhxQTCgAAAAAAAAAAAAAAAAAAAAAAAOhSlF4DAACsgw4Lr+cm6VnLRG37yJTkgrvrkwEDklKp5ea55yYNDYXkAgAAAAAAAAAAAAAAAAAAAAAAALoWpdcAAABrqcPC6zlJetcwUDsOeyiZeEtDsskmSX19y82jj07GjCkmGAAAAAAAAAAAAAAAAAAAAADw/7N372Fe1wXe/18zzAznETygqCBoaop5glUz3b1TsVzb1OwWN1Os3Q4rudXmrpWZ4VpGaXeb4tpZtMxTQXW7Vib2M+02Dyge8JRASqKSgJxhTr8/EOQ03xlg5vv5zszjcV1eMN/3ez6fl1ddyvTHMwCAbqem7SsAAACsM3vB7DeD11uyMEl92eaUdPTzye139U92GphUVW18OHJkcumlxQwDAAAAAAAAAAAAAAAAAAAAAAAAuiXRawAAgHZqam7KJ3/7yVSlKi1pSVo2ufB6KiZ4/bZ5yX2/3Tmpr938cOjQ5KabkvoKGQsAAAAAAAAAAAAAAAAAAAAAAAB0C9VFDwAAAOhKPnzoh7P7wN1TtaXgdf8iFm1u5F+Tx34zNKndQvB65Mhk2rRk2LCy7wIAAAAAAAAAAAAAAAAAAAAAAAC6N9FrAACAdliyeklOvfnUJMlVJ12V3ZdXvxm+XpaKCV7vuiSZ/YuhWz4844zkjjsErwEAAAAAAAAAAAAAAAAAAAAAAIBOIXoNAADQhiWrl2TcbePy8EsP5/w7zk9mP5+rbm/J7suSrEjSp+iFaw1elrx82xaC18OHJ1OmJN/8ZlJfX/ZdAAAAAAAAAAAAAAAAAAAAAAAAQM8geg0AAFDCopWLMu62cZn58swkSXNLc85/8NIkydhHktQVOG4D/VclC/97kzHHHJN897vJ73+fjB1bzDAAAAAAAAAAAAAAAAAAAAAAAACgx6gpegAAAEClmrdkXg7/9uFpbG5Mn5o+6z9vXrM6px/fkpb6AsdtoKYxWXZVXbLrrslHPpIcfHByxBHJ0KFFTwMAAAAAAAAAAAAAAAAAAAAAAAB6ENFrAACALZi3ZF4O+/ZhWbhy4frP1oWv569ek9QnqSpo3AaqmpKG64cmO2Vt8Prii4ueBAAAAAAAAAAAAAAAAAAAAAAAAPRQotcAAACb2FLw+vXVrydJFq1alPRJRQSv05w0Txn65tcHH1zcFgAAAAAAAAAAAAAAAAAAAAAAAKDHqy56AAAAQCXZUvB6nUUrFiWrUzHB67mXb/LZEUcUMgUAAAAAAAAAAAAAAAAAAAAAAAAgEb0GAABYr1TwOi0tSUMq46eolmTO5cleVRvUt485Jhk6tLhNAAAAAAAAAAAAAAAAAAAAAAAAQI9XCbk2AACAwi1auSiHf/vwLQevkzSvaqmMn6BakrsvT0YkyYbR6/HjCxoEAAAAAAAAAAAAAAAAAAAAAAAAsFYlJNsAAAAK9dflf80HfvaBNDY3bvG8eUVz0qvMo7akJbn+xuR/tbzxdU3N2l+HD09OPLGwWQAAAAAAAAAAAAAAAAAAAAAAAABJUlP0AAAAgCI9teCpHHrtoantVZv63vVJktdXv77+vHl5c1Jb1LpNLEvOnrvB13V1a3+97LKktlJGAgAAAAAAAAAAAAAAAAAAAAAAAD1VddEDAAAAivLnxX/OIdcekjXNa7K8YXmWrF6SPjV9skPvHZIkzcsqKHi9KsngZPB/bPBZnz7JGWckJ5xQ1CoAAAAAAAAAAAAAAAAAAAAAAACA9USvAQCAHmneknkZ890xaWxuXP/ZhuHr5qXNSV2BAze0LMmAtb9d3PeN8HV1dbLffsmllxa5DAAAAAAAAAAAAAAAAAAAAAAAAGA90WsAAKDHmbdkXg779mFZuHJhqqqqUpWq9WfLG5Zn/l/mJ70LHLihZUkGbfzR4r7J4H9vTm66KamvL2IVAAAAAAAAAAAAAAAAAAAAAAAAwGZErwEAgB5lw+D1OhuFrxcl6VfMts0sz2bB63UW900G//jgcq4BAAAAAAAAAAAAAAAAAAAAAAAAKEn0GgAA6DG2FLxep6qqKnktyYDy79qiJUl2aOXsjT734tWLs2DJgnItAgAAAAAAAAAAAAAAAAAAAAAAAChJ9BoAAOgRSgWvk6R5aXNSX+ZRrVmaZMe2r/3kfT/JLvW7dPocAAAAAAAAAAAAAAAAAAAAAAAAgPYQvQYAALq9NoPXK5qT3mUe1ZoVSQaXOK9a+8sP3/vDnPm2M8uxCAAAAAAAAAAAAAAAAAAAAAAAAKBdRK8BAIBubU3jmoz+zujWg9ermpOaMo9qzaok9SXONwhen3vYuWUYBAAAAAAAAAAAAAAAAAAAAAAAANB+otcAAEC3VldTl3MPOXeLZ82rmyvnp6LVSQaUOBe8BgAAAAAAAAAAAAAAAAAAAAAAACpcpeTdAAAAOs2ksZNywdsv2Oiz5jXN60PSRevVkOzRnFS1tHJB8BoAAAAAAAAAAAAAAAAAAAAAAADoAkSvAQCAHmHD8HVzY3PSWmC63BqTW39ZlavuqMruyzYJX1dF8BoAAAAAAAAAAAAAAAAAAAAAAADoMkSvAQCAHmPS2Ek5Yefjkqasj0kXqikZ2picf9La0vVVd1Rl95W91k7bYJ/gNQAAAAAAAAAAAAAAAAAAAAAAANAViF4DAAA9xu/+9Nv8ZsFvKyN43ZwMbaxKqqvT3Lsu558xILniilz1oVuze/0eqXpjpOA1AAAAAAAAAAAAAAAAAAAAAAAA0FWIXgMAAD3C3Nmz884fj137RW2xW9KcpHeS3XZLdt012WmnNA8ckPOf/kaS5KqTrsrJ+52c5897XvAaAAAAAAAAAAAAAAAAAAAAAAAA6DJErwEAgG5v7uzZGXnDPht/WFT4umXtu6urqrOqcdVGR80tzTn/jvOTJNPGTcveu+xdwEAAAAAAAAAAAAAAAAAAAAAAAACAbSN6DQAAdHubBa/XKXf4uiVJr6S619ofxV5f/foWw9c/ePQHZR4GAAAAAAAAAAAAAAAAAAAAAAAAsP1ErwEAgG6t18Q2fuwpV/i6JUlVUl2z8Z5Nw9eH7HZIfvy+H6dXda8yDQMAAAAAAAAAAAAAAAAAAAAAAADoGKLXAABAt1U3sTbNaSl9qaE8W5Kkum7LP4KtC18fstshufn9N6e+d335RgEAAAAAAAAAAAAAAAAAAAAAAAB0ENFrAACgW+o7sU8a0lj6UrmC101Jde/SP37VVNfkxvfdKHgNAAAAAAAAAAAAAAAAAAAAAAAAdFmi1wAAQLcz8D8HZFVWl75UruB1VVLdt/SPXjv23TEzPjYjg/sOLtMoAAAAAAAAAAAAAAAAAAAAAAAAgI4neg0AAHQru311SJY1Ly96xlqNydBBQ7ND7x1avbJj3x3zyMceyZ71e5ZxGAAAAAAAAAAAAAAAAAAAAAAAAEDHE70GAAC6jb2+PiyvrF7Q9sWGzt+S5Un6JktWL0mfmj5bDF8LXgMAAAAAAAAAAAAAAAAAAAAAAADdSU3RAwAAADrC7pfulPktC9u+WI7g9dIkO6797fKG5UmS+t71SZLXV7+eRPAaAAAAAAAAAAAAAAAAAAAAAAAA6H5ErwEAgC5vv8uHZ/6aN4LXtSUuliN4vSqp3qk6LS0taUlLks3D1zXVNZnxsRmC1wAAAAAAAAAAAAAAAAAAAAAAAEC3Ul30AAAAgO3xN//nbXlu+YtvftBa2LocwesVSXX92h+zqqqqUpWq9UfLG5ZnyeolOXLPI/PMJ54RvAYAAAAAAAAAAAAAAAAAAAAAAAC6HdFrAACgy/q7q47MQ689sflBQ5LmTb7ubCuT6kEb/4i1afi6oakhN5x6Qwb3HVyGQQAAAAAAAAAAAAAAAAAAAAAAAADlJXoNAAB0Sf/4w1NzzysPtH6hKW/Grms74IWlnrE6qd5hyz9erQtf11bX5tGPP5qd++/cAWMAAAAAAAAAAAAAAAAAAAAAAAAAKo/oNQAA0OX8y03n5qbnf96+yx0Rvq7d5NcNrUmqB5b+0WqnfjvlufOfywG7HLAdIwAAAAAAAAAAAAAAAAAAAAAAAAAqm+g1AADQpXzh5xfk2senbN03bU/4etPv2fDrxqR6QOkfq3bsu2Me+dgj2WvQXtvwcgAAAAAAAAAAAAAAAAAAAAAAAICuo6boAQAAAO01efqV+fKjVyZV2/DNDVkbrK7NmxHsUkoFst84q65rX/B6z/o927cRAAAAAAAAAAAAAAAAAAAAAAAAoAsrXWgDAACoEL+YeUs+8fsL2hesbs267y0VtG7PeZKWS1pywdsvaPVc8BoAAAAAAAAAAAAAAAAAAAAAAADoaUSvAQCAivfMk0/mlGnjti94vU5b4et2BK/nnP18kmTS2ElbDF8LXgMAAAAAAAAAAAAAAAAAAAAAAAA9keg1AABQ0Z558sm89baDOiZ4vU5r4et2Bq9H7L33+q83DV8LXgMAAAAAAAAAAAAAAAAAAAAAAAA9VU3RAwAAAErp8OD1Og1ZG7mu3eD3bbj77Ls2Cl6vM2nspCTJdTOvy8MffVjwGgAAAAAAAAAAAAAAAAAAAAAAAOiRqoseAAAA0JqqiVWdE7xeZ92z2xG8vv7d1+V/7X1cq+eTxk7Ki596UfAaAAAAAAAAAAAAAAAAAAAAAAAA6LFErwEAgIrU6cHrddrxjv9z7BU5+8jxbd6rq6nrgEEAAAAAAAAAAAAAAAAAAAAAAAAAXZPoNQAAUHGqyxW8XqfEuy4e/fl86rjPlG8LAAAAAAAAAAAAAAAAAAAAAAAAQBcleg0AAFSUuonVaSln8HqdLbzz/Ledl0vf8+XybwEAAAAAAAAAAAAAAAAAAAAAAADogkSvAQCAitFvYl0aGlqKG7BB+Pr0EafmW++bXNwWAAAAAAAAAAAAAAAAAAAAAAAAgC5G9BoAAKgI9RP7ZWVDQ9sXO1tD8vbBh+e28VOLXgIAAAAAAAAAAAAAAAAAAAAAAADQpYheAwAAhTvqm4dkacPKomckSfbtPyx/+NeHi54BAAAAAAAAAAAAAAAAAAAAAAAA0OWIXgMAAIV61zXH5o+vP5bUFr0kGVq3Y5793AtFzwAAAAAAAAAAAAAAAAAAAAAAAADokkSvAQCAwpzy7bH5zYJ73/ygwPD1oNoBeemLrxU3AAAAAAAAAAAAAAAAAAAAAAAAAKCLE70GAAAK8c83fCC/ePm3mx8UEL7uW1ubRZcsLf+LAQAAAAAAAAAAAAAAAAAAAAAAALoR0WsAAKDsLp52Qb4/+yetXyhj+Lq2tiorLllTvhcCAAAAAAAAAAAAAAAAAAAAAAAAdFOi1wAAQFldecdluWzmlW1fLEP4uqo2WXNJc+e/CAAAAAAAAAAAAAAAAAAAAAAAAKAHEL0GAADK5od3X5MLHri4/d/QmeHr2qT5kpZOfAEAAAAAAAAAAAAAAAAAAAAAAABAzyJ6DQAAlMXUB3+SD98zYeu/sTPC17VJi+A1AAAAAAAAAAAAAAAAAAAAAAAAQIcSvQYAADrdA3Puzfv+5wPb/oCODF8LXgMAAAAAAAAAAAAAAAAAAAAAAAB0CtFrAACgU/3lhRdy5PXHbv+DOiJ8XZs8/f4nOuBBAAAAAAAAAAAAAAAAAAAAAAAAAGxK9BoAAOg0f3nhhQz/4V4d98DtCV+/Ebzef9SoDpsDAAAAAAAAAAAAAAAAAAAAAAAAwJtqih4AAAB0My+9lDzwQPLYY9lr1SVpLvV/tbMtEevaJI1JWrbue35+6s2C1wAAAAAAAAAAAAAAAAAAAAAAAACdSPQaAADYfg0Nya9+lUyZkvzhD0mS3uPnp6lXW9/3xq9bG7+uSfvD17XJ1cdekfcecsZWvgQAAAAAAAAAAAAAAAAAAAAAAACArSF6DQAAbJ8770y+8IXkxRfXf9Tv7PlZ01bwekPbEr+uSdKcpKnEnZbkokM/kwnHfWYrHgwAAAAAAAAAAAAAAAAAAAAAAADAthC9BgAAts2SJcnFFye33rrRx/UfmJ+VWxOv3tDWxq+rk1Qladzy8cffNj6XnXLFNo4BAAAAAAAAAAAAAAAAAAAAAAAAYGuIXgMAAFvvxReTceOSuXM3+niXM+ZnaZ8OeH5D2h++rnrjbsPGH5+5zyn57zOv64AxAAAAAAAAAAAAAAAAAAAAAAAAALSH6DUAALB1XnghOfXU5OWXN/p42Gnz89cBHfierQlfJxuFr08a9r/ykw9N68AxAAAAAAAAAAAAAAAAAAAAAAAAALSluugBAABAF7JkSXLmmZsFr9/yD/Mzb3AnvK9hK+/XJkfsdEj+52N3d8IYAAAAAAAAAAAAAAAAAAAAAAAAAEoRvQYAANrv4ouTuXM3+ujgd8/P87sUM2dTJ+5yTP746UeLngEAAAAAAAAAAAAAAAAAAAAAAADQI9UUPQAAAOgi7rwzufXWpKkpaWhIGhryjvcsy+O7d/J7G5LUtn3tyB0Ozq/P+30njwEAAAAAAAAAAAAAAAAAAAAAAACgNaLXAABA21asSCZMSBYtStasSZKc/J7m/GGfgne9YVT/vXP/p2YWPQMAAAAAAAAAAAAAAAAAAAAAAACgR6suegAAAFDh7rwzOeyw5Pnn1wevz31nc/7nbWXc0ND60T6998gTFzxfvi0AAAAAAAAAAAAAAAAAAAAAAAAAbFFN0QMAAIAKtWRJcvHFya23JgsXJi0tSZIJ72jJlKMK3vaGIdWD8qfPzit6BgAAAAAAAAAAAAAAAAAAAAAAAAARvQYAALbkxReTM85Inn02Wb48Wb06SfK1A5Jr/q6gTQ1Jat/8cscMyCsXLypoDAAAAAAAAAAAAAAAAAAAAAAAAACbEr0GAAA29sILyfHHJ3/+c9LUlLS0JEm+Nyy58H0Fb3tD//TOa5csLXoGAAAAAAAAAAAAAAAAAAAAAAAAABsQvQYAAN40b15y5JHJq69u9PFteyYfObugTZvonZosu2RV0TMAAAAAAAAAAAAAAAAAAAAAAAAA2ER10QMAAIAK8eKLyd/8zWbB6z+kJf/7nCRVxczaUE2qsuqShqJnAAAAAAAAAAAAAAAAAAAAAAAAALAFotcAAEDywgvJO9+5WfD6xebmvONzqYjgda/mZO6H5hY9AwAAAAAAAAAAAAAAAAAAAAAAAIBWiF4DAEBPt2RJcsYZa8PXG3ixuTnDKyR4XdWc/PmeEdlj+PCipwAAAAAAAAAAAAAAAAAAAAAAAADQCtFrAADo6S6+OHn22aSpaaOP9/pcKuMnhpbk/u8ne/TZp+glAAAAAAAAAAAAAAAAAAAAAAAAAJRQCQk7AACgKHfemdx6a7Jy5UYf1/xHc1oq4aeFluSP30uO6DU02XnnotcAAAAAAAAAAAAAAAAAAAAAAAAAUEIlZOwAAIAiNDQkX/hC0tSUrFmz/uPe/96cpl4F7lqnJfnZz98IXifJqFHF7gEAAAAAAAAAAAAAAAAAAAAAAACgJNFrAADoqX796+TFF9fGr9/Q79+as6amwE0b+MH/JKctHPrmBwcfXNwYAAAAAAAAAAAAAAAAAAAAAAAAANokeg0AAD3VlClrf30jej34/Oas7F3gng184dfJh14ZuvGHRxxRzBgAAAAAAAAAAAAAAAAAAAAAAAAA2kX0GgAAeqKXXkruu2/t7xsbM+S85iweUOykdc77/5L/nLvzxh8ec0wydOiWvwEAAAAAAAAAAAAAAAAAAAAAAACAiiB6DQAAPdEDD6z/7cizV2XBDgVu2cD7ZySTH+mf1NZufDB+fDGDAAAAAAAAAAAAAAAAAAAAAAAAAGg30WsAAOiJHnssSTLqpPmZO6TgLW847unk1t/WJgMHbnwwfHhy4onFjAIAAAAAAAAAAAAAAAAAAAAAAACg3USvAQCgJ3ryyRx1/PzMGlr0kLWOfj6562dVyaBBSVXVxoeXXZbU1hayCwAAAAAAAAAAAAAAAAAAAAAAAID2qyl6AAAAUH7v7n97/rh70SvWOmhect9NSXrXJTWb/IhyxhnJCScUsgsAAAAAAAAAAAAAAAAAAAAAAACArSN6DQAAPcwHf3h6fr378qJnJElGLEgev74qqa5Kams3Phw5Mrn00mKGAQAAAAAAAAAAAAAAAAAAAAAAALDVqoseAAAAlM9HfvTB/PiFnxU9I0my6+JkzneSVFWt/WDD6PXQoclNNyX19UVMAwAAAAAAAAAAAAAAAAAAAAAAAGAbiF4DAEA3saZxTcnzy35xUb73/I/LtKa0QcuTlydv8uG66PXIkcm0acmwYeWeBQAAAAAAAAAAAAAAAAAAAAAAAMB2EL0GAIBuYN6SednjG3vkwjsv3PjgpZeSadNyzUV/l4sf+ErSkLV/Faj/6mTRN9/4oqpq7a91dUmvXskZZyR33CF4DQAAAAAAAAAAAAAAAAAAAAAAANAF1RQ9AAAA2D7zlszLW69+a5Y3LM/X/vC1pLk5k9b8bTJlSvKHP+QnO87PhFOKXrlWXUOy7IotHAwfnlx9dTJ2bNk3AQAAAAAAAAAAAAAAAAAAAAAAANAxRK8BAKAL2zB4vc7X/t8VyaP/nUkP1Oee5vn5wClJqorbuE6vpmT11zb5sK4uGTEimTEj6deviFkAAAAAAAAAAAAAAAAAAAAAAAAAdBDRawAA6KI2C163vHn2tUOX58/Ny3Pz21IRweuq5qTxq+u+eGNQXV2y447J1VcLXgMAAAAAAAAAAAAAAAAAAAAAAAB0A6LXAADQBZUKXidJmpObD0pFBK/TnPz58iTV1Rt/3r9/csYZyQknFDILAAAAAAAAAAAAAAAAAAAAAAAAgI4leg0AAF3MvCXzsv9V+2dF44q1H2wavE6SxiTVW/i83FqSFy5Phm0avO7VK9l//+TSS4vZBQAAAAAAAAAAAAAAAAAAAAAAAECHq4QMHgAA0E7tCl6vTmX8Sb8luW9LweskGTEiufnmpL6+7LMAAAAAAAAAAAAAAAAAAAAAAAAA6ByVkMIDAADaoV3B61VJepVzVStakptuSI6u2sKPHLvumtx1VzJsWPl3AQAAAAAAAAAAAAAAAAAAAAAAANBpaooeAAAAtG1N45occPUBbwavt2RlktqyTSrp2h8l4/7SSvD6gQeSPfcs/ygAAAAAAAAAAAAAAAAAAAAAAAAAOtUWKnQAAEClefrlp7OsYdmbH7RscmFFKiZ4PfGXycfmbfKjRq9eyd57J3/8o+A1AAAAAAAAAAAAAAAAAAAAAAAAQDcleg0AABXuqQVP5W+u+5vWL6xIUle2OSV97J7ki09s8GNGXV2yww7J6NHJ9OnJsGHFjQMAAAAAAAAAAAAAAAAAAAAAAACgU9UUPQAAAGjdUwueyiHXHpKG5oY3P2zZ4MLKVEzwetyDybUP9kn61SS1tWv/6tUrOeOM5NJLk/r6oicCAAAAAAAAAAAAAAAAAAAAAAAA0IlEr2ETq1evzrPPPpt58+Zl6dKlWbFiRfr165eBAwdmzz33zP7775+6ugopSwIA3doWg9cbWpWktqyTWvWuZ5KbHh+aDN7gw+HDk//8z2Ts2MJ2AQAAAAAAAAAAAAAAAAAAAAAAAFA+oteQ5P7778+0adNyxx135Mknn0xTU1Ord3v16pVRo0bl7//+73PKKafkqKOOKuNSAKCnaDN4vToV86f5I/+c/Oq+oW9+cMwxyfjxyYknJrUVUuUGAAAAAAAAAAAAAAAAAAAAAAAAoNNVSCYPinHTTTfl61//embMmNHu72lqaspjjz2Wxx57LF/96lczevTo/Pu//3vGjRvXiUsr04oVK/Loo4/moYceWv/XM888k+bm5la/55JLLsmXvvSl8o18w3XXXZcPfehDZX/vOnvssUfmzZtX2PsB6Fr+vPjPpYPXDUl6lXVSqw5cVJP7G05P/mVUcvDByRFHJEOHtv2NAAAAAAAAAAAAAAAAAAAAAAAAAHQ7otf0SE8//XQ+9rGP5Z577tnuZz388MM588wzc+211+baa6/N/vvv3wELK8/q1aszc+bMjQLXs2bNSlNTU9HTAKBbmbdkXsZ8d0wamxu3fGFNkqqyTmrVsH675snLXi56BgAAAAAAAAAAAAAAAAAAAAAAAAAVQvSaHudnP/tZxo8fn2XLlnXoc3/3u99lzJgxuf7663Paaad16LPLraGhIY8//vhGgesnnngiDQ0NRU8DgG5t3pJ5Oezbh2XhyoWpqqpKWpKWtLx5oTEVE7zeaVXyguA1AAAAAAAAAAAAAAAAAAAAAAAAABsQvaZHmTx5cs4///y0tLS0fXkbLFu2LKeffnquvvrqnHfeeZ3yjnK4/fbbu3y4GwC6mg2D1+tsFL5uTNI5f4TZavUrk78+9LdFzwAAAAAAAAAAAAAAAAAAAAAAAACgwlQXPQDKZcqUKZ0avF6npaUln/jEJ3L99dd36nsAgO5jTeOajP7O6I2C1+tUVVUlTamY4HWfhuT1nwxNamuLngIAAAAAAAAAAAAAAAAAAAAAAABAhRG9pkd44IEH8pGPfKRdweujjz46V199dWbMmJGFCxemoaEhCxcuzEMPPZRvfetbOfLII9t8RktLSz7ykY/kwQcf7Ij5AEA3V1dTl3MPOXeLZ83NzWuj1xWgpjFZecPQtV/svHOxYwAAAAAAAAAAAAAAAAAAAAAAAACoODVFD4DOtmTJkpx55plpaGgoeW/ffffNf//3f+f444/f7Gzw4MEZPXp0Ro8enfPPPz+/+c1vct555+X5559v9Xlr1qzJuHHj8uijj6a+vn67/z7oXF/96lez0047ddrz+/fv32nPBqB7mDR2UpLkiv93xfrPmpubk4YkVQWN2kBVU9Jw/dA3Pxg1qrgxAAAAAAAAAAAAAAAAAAAAAAAAAFQk0Wu6vS9+8YuZM2dOyTsnnHBCbrvttuywww7teuaJJ56Yhx56KO973/ty9913t3pvzpw5+dKXvpRvfOMbW7W5K+rXr18OOeSQvPrqqyVj4JVq3LhxGTFiRNEzAOjhNgxfV1LwOs1J83W7bbzl4IMLmwMAAAAAAAAAAAAAAAAAAAAAAABAZaouegB0plmzZmXy5Mkl77z97W/Pz3/+83YHr9cZNGhQfvnLX+aII44oee+qq67KU089tVXPrnR9+vTJkUcemQkTJuQHP/hBHnvssSxZsiR/+MMfcswxxxQ9DwC6tEljJ+W0XU5N1qRigtepSS48cunGn7fxZyAAAAAAAAAAAAAAAAAAAAAAAAAAep6aogdAZ5o4cWIaGxtbPd9xxx1z8803p1+/ftv0/P79++eWW27JoYcemsWLF2/xTmNjYy699NL85Cc/2aZ3FK13795529veljFjxmTMmDEZPXp0DjrooNTU+McHAHSGObNn56ev/izpnaSh4DEtWfsTQ3XytUOXJ0kmPVCfHHNMMnRoodMAAAAAAAAAAAAAAAAAAAAAAAAAqDyqtXRbs2fPzk9/+tOSdy677LIMGzZsu96z1157ZeLEifnkJz/Z6p1bb701l19+eUaMGLFd7yqX/fbbL9/+9rczevToHHzwwamtrS16EgD0GHvfsM+bX9SmuPB1S5JeSarf/Gh9+Hr8+EImAQAAAAAAAAAAAAAAAAAAAAAAAFDZqtu+Al3T5MmT09TU1Or5vvvum49+9KMd8q7zzjsve++9d6vnTU1NmTx5coe8qxwOPPDAfPSjH83o0aMFrwGgjKomVm3+YRH/Km5JUpUt/rTwtUOX58Ka35V5EAAAAAAAAAAAAAAAAAAAAAAAAABdgeg13VJTU1N+8pOflLzz6U9/Or169eqQ99XU1ORf//VfS9658cYb09zc3CHvAwC6n14TS/zRvNzh66okNa2ffe3+K7KmcU05FwEAAAAAAAAAAAAAAAAAAAAAAADQBYhe0y1Nnz498+fPb/W8T58++eAHP9ih7xw/fnzq6upaPX/ppZfyu9/9rkPfCQB0D70n1qU5LUXPWKtU8HoDC5Ys6PQpAAAAAAAAAAAAAAAAAAAAAAAAAHQtotd0S7/85S9Lnp988skZOHBgh75z0KBBOemkk0reaWsXANA9NTU3tXrWb2LfrElDGde0oVeJs6q1v1xz0jXZY8c9yjIHAAAAAAAAAAAAAAAAAAAAAAAAgK5D9Jpu6be//W3J85NPPrlT3tvWc++8885OeS8AULmWrF6SU28+NVOfmrrZ2Y5fHpSVWdX2Q8rVxK4pcbZB8PpfjviXsswBAAAAAAAAAAAAAAAAAAAAAAAAoGsplbWDLmn+/Pl56qmnSt454YQTOuXdY8eOLXn+5JNP5uWXX85uu+3WKe8HACrLktVLMu62cZn58sw8Mv+RJMlpB5yWJBn61V2zqPH1th9SjuB1S5LaEueC1wAAAAAAAAAAAAAAAAAAAAAAAAC0Q3XRA6CjPfDAAyXPhw0blmHDhnXKu0eMGJGhQ4eWvPPggw92yrsBgMqyYfA6SZpbmnP+Hedn6lNTs8+VI/Ly6lfbfkg5gtfNEbwGAAAAAAAAAAAAAAAAAAAAAAAAoEOIXtPtzJgxo+T54Ycf3qnvHzNmTMnzRx55pFPfDwAUb9Pg9TrNLc153y3vy+xlf277IeUIXjclqWvlrCrrg9dXv/tqwWsAAAAAAAAAAAAAAAAAAAAAAAAA2iR6Tbfz6KOPljw/+OCDO/X9bT1f9BoAurfWgtdJMn/Z/PY9pBzB68Ykvbfw+Qax6yS58oQrM+HICWUYBAAAAAAAAAAAAAAAAAAAAAAAAEBXV1P0AOhozz77bMnzfffdt1Pf/5a3vKXk+XPPPdep72f7LVq0KLNnz868efOydOnSNDQ0pG/fvunXr1+GDBmSYcOGZejQoamu9v8bAMDGukzwuiFJ3zd+X9X6tStPuDL/9o5/K8MgAAAAAAAAAAAAAAAAAAAAAAAAALoD0Wu6lZaWlsydO7fknbai1Nurree3tY9i3HLLLXnsscdy3333tes/o/79++fQQw/NUUcdlZNOOinHHnts6urqOn8oABWrywSv1yTp3/Y1wWsAAAAAAAAAAAAAAAAAAAAAAAAAtpboNd3KK6+8klWrVpW8s/vuu3fqhraev3z58rz66qsZMmRIp+5g61x44YVbdX/58uW57777ct999+XKK6/M4MGDM378+Jx33nnZd999O2klAJXqlaWv5NxfnLt9weuWDh61JQ1pM3hd16suD577YA7e8+AyDAIAAAAAAAAAAAAAAAAAAAAAAACgO6kuegB0pJdeeqnNO7vttlunbmjP89uzk65l0aJF+eY3v5kDDjgg//zP/+w/Y4Ae5IlXnsjQbwzN3XPu3uys3cHrJKnqgDG1b/y1JY1Jdf/qVJV4UW11bR792KOC1wAAAAAAAAAAAAAAAAAAAAAAAABsE9FrupXXXnut5Hl9fX169+7dqRv69euXAQMGlLzT1k66rqampnz/+9/PqFGjcsMNNxQ9B4BO9tSCp3L4dw5PS1qyuml1Fq5cuP5sq4LX67QWrN7e5zQl1f3W/tG/qqpqi+Hr2urazPz4zBywywEdNAIAAAAAAAAAAAAAAAAAAAAAAACAnkb0mm5l4cKFJc/r6+vLsqOt97S1k65v8eLFOeecczJhwoQ0NjYWPQeATvDUgqdyyLWHpKG5Yf1n68LX2xS8Xmdbw9ebft+6r5uT6r4b/7F/0/C14DUAAAAAAAAAAAAAAAAAAAAAAAAAHaGm6AHQkRYtWlTyfODAgWXZ0dZ7RK97jmuuuSbz5s3LT3/609TUVP4/cidPnpxrrrmm09/z/PPPd/o7ADrTloLX66xuWr39L6hNsvmjS9/fms+zNnydlqSmukbwGgAAAAAAAAAAAAAAAAAAAAAAAIAOUfkFVtgKq1atKnnev3//suwYMGBAyfO2dlI+ffr0ydFHH52DDz44b3vb2zJq1KjsvPPOqa+vzw477JA1a9Zk4cKFee211zJ37tzcc889ueeee/Loo4+mubm5Xe/4xS9+kbPPPjs33njj2sBoBVuwYEFmzZpV9AyAilYqeN2h2hu+LhG2/tNZz+U7c76bK/7fFVs836nfTnnoIw9lr0F7bdNEAAAAAAAAAAAAAAAAAAAAAAAAANiQ6DXdypo1a0qe19SU57/ybb2nrZ10rp133jmnn356Tj755Bx//PHp169fq3fr6uoyYMCADB8+PIcddlhOO+20JMmcOXNy5ZVX5gc/+EFWrlzZ5jtvuummHHroobnwwgs77O8DgPIrW/B6nbbC1yWC17/+wB3Z5y1vyaS3TEqSzcLXO/bdMY987JHsWb/n9u8EAAAAAAAAAAAAAAAAAAAAAAAAgCTVRQ+AjiR6TWuqqqryjne8Iz/60Y8yb968XHvttfmHf/iHksHrUkaOHJmrr746c+fOzUknndSu77nooosyY8aMbXofAMUre/B6ndokVa183orvjf1OTtz33eu/njR2Ui54+wXrvxa8BgAAAAAAAAAAAAAAAAAAAAAAAKAziF7TrTQ3N5c879WrV1l2tPWepqamsuzgTWeddVbuvffenHXWWendu3eHPXfIkCG5/fbb85WvfCXV1aX/kdrU1JQJEyakpaWlw94PQHkUFrxepyYbh69LBK+/cvR/5p+O/shmn68LX+/cb2fBawAAAAAAAAAAAAAAAAAAAAAAAAA6heg13UpNTU3J88bGxrLsaOs9tbUlSpV0irb+u7E9qqqq8rnPfS7f+9732rx7//335xe/+EWnbQGg461cszKHfvvQ4oLX69Rk7Z/eS/wx4oJDP53Pjf1Cq+eTxk7Ki596UfAaAAAAAAAAAAAAAAAAAAAAAAAAgE7ReRVYKEBdXV3J83JFrxsaSkcx29pJ1/ShD30oTz31VL7+9a+XvHfFFVfklFNOKdOqrbPLLrvkwAMP7PT3PP/881m9enWnvwegI/St65u/f8vfZ9oz04qekvRq/eif3/qhfP2Ub7T5iLoafw4BAAAAAAAAAAAAAAAAAAAAAAAAoHOIXtOt1NbWljxfs2ZNWXaIXvdcl112WX7xi1/kmWeeafXOvffemzlz5mTkyJFlXNY+EyZMyIQJEzr9PaNGjcqsWbM6/T0AHWXqmVNz2k2nVUb4egv+fs935bvjflD0DAAAAAAAAAAAAAAAAAAAAAAAAAB6uOqiB0BHGjBgQMnzZcuWlWXH0qVLS563tZOuq66uLl/5ylfavHfbbbeVYQ0AHWnqmVNz6v6nFj1jM2/f5W9y+z/9qugZAAAAAAAAAAAAAAAAAAAAAAAAACB6Tfey4447ljxfsmRJWXa09Z62dtK1nXrqqRkxYkTJO3fffXd5xgDQoaaeOTV1qSt6xnqH7nxo/nDeA0XPAAAAAAAAAAAAAAAAAAAAAAAAAIAkotd0MzvttFPJ88WLF5dlx+uvv17yvK2ddG3V1dV5//vfX/LO/fffX6Y1AHSkwyYfljVZU/SM9b543BeLngAAAAAAAAAAAAAAAAAAAAAAAAAA64le063svPPOJc9Xr17d6eHrhQsXZs2a0jFM0evu753vfGfJ80WLFuWVV14p0xoAOsLx3zs+j/710aJnrDd0wNCcf8f5mfrU1KKnAAAAAAAAAAAAAAAAAAAAAAAAAEAS0Wu6meHDh7d5p7NDw+15fnt20rUdfvjhbd6ZO3du5w8BoEO8d8p7M/0v04uesd7QAUOTJM0tzcLXAAAAAAAAAAAAAAAAAAAAAAAAAFQM0Wu6lQEDBmSnnXYqeefPf/5zp25oK2Q8ZMiQ9O/fv1M3ULzddtstffr0KXnn1VdfLdMaALbHx3/28fxy7i+LnrHeuuD1OsLXAAAAAAAAAAAAAAAAAAAAAAAAAFQK0Wu6nZEjR5Y8f+655zr1/X/6059Knre1j+6jvr6+5PmKFSvKtASAbfXZX342337820XPWG/T4PU6wtcAAAAAAAAAAAAAAAAAAAAAAAAAVALRa7qdUaNGlTx/5plnOvX9bT2/rX10H3V1dSXPGxoayrQEgG3xtelfy6QZk4qesV5rwet1mlua84NHf5Cm5qYyLQIAAAAAAAAAAAAAAAAAAAAAAACAjYle0+0cfvjhJc8feeSRTn3/jBkzSp4fdthhnfp+KsfKlStLnvft27dMSwDYWj/84w9z4e8vLHrGem0Fr5PkkN0OyY/f9+P0qu5VhkUAAAAAAAAAAAAAAAAAAAAAAAAAsDnRa7qdtqLXjz76aJqamjrl3Y2NjZk5c2bJO6LXPcOaNWuyaNGikncGDBhQpjUAbI3fzv5tPvyrDxc9Y732Bq9vfv/Nqe9dX4ZFAAAAAAAAAAAAAAAAAAAAAAAAALBlotd0O2PGjEmfPn1aPV+2bFkefvjhTnn3Aw88kBUrVrR63qdPn4wePbpT3k1lmT17dpqbm0ve2WOPPcq0BoD2mj17dsbeMLboGVtF8BoAAAAAAAAAAAAAAAAAAAAAAACASiF6TbfTp0+fvOMd7yh558477+yUd//2t78teX7ssceWDHLTffzxj39s886IESM6fwgA7fb0009nnxv2KXrGZhauXNjqmeA1AAAAAAAAAAAAAAAAAAAAAAAAAJVE9JpuaezYsSXPf/azn3XKe2+77baS5yeeeGKnvJfKc/vtt5c833vvvTNgwIAyrQGgPQ64+YCiJ2zR6qbVWwxfC14DAAAAAAAAAAAAAAAAAAAAAAAAUGlEr+mW3v/+95c8nzFjRp555pkOfecTTzyRxx9/vNXzqqqqNnfRPSxcuLDN6PXRRx9dpjUAtEfVxKqiJ5S0afha8BoAAAAAAAAAAAAAAAAAAAAAAACASiR6Tbe0zz775Kijjip556qrrurQd37rW98qeX700UdnxIgRHfpOKtN//dd/ZcWKFSXvvOtd7yrTGgDaUunB63XWha8FrwEAAAAAAAAAAAAAAAAAAAAAAACoVKLXdFsf/vCHS57/8Ic/zPz58zvkXfPmzcsNN9xQ8s65557bIe+iss2ePTtf//rXS97p3bt3TjnllDItAqCUrhK8XmdN05pc997rBK8BAAAAAAAAAAAAAAAAAAAAAAAAqEii13RbZ599doYMGdLq+YoVK/LZz362Q9514YUXZtWqVa2e77rrrjn77LM75F1UrlWrVmXcuHFZuXJlyXtnnnlmBg4cWKZVALSmdmJt0RO2Sm11bR77+GPZdeCuRU8BAAAAAAAAAAAAAAAAAAAAAAAAgC0Svabb6tOnTz75yU+WvHP99ddn6tSp2/WeW265JTfeeGPJO5/61KfSu3fv7XrP3LlzU1VVVfKvL33pS9v1ju7o3nvvLct7Vq1aldNPPz0PPfRQyXtVVVW58MILy7IJgNb1ndg3jWkseka71VbXZubHZ+agXQ8qegoAAAAAAAAAAAAAAAAAAAAAAAAAtEr0mm7tU5/6VIYNG1byzvjx4/PAAw9s0/Pvv//+/NM//VPJO3vttVeb8W06z3ve854cf/zxmT59eqe947nnnstRRx2V//mf/2nz7kc/+tEccMABnbYFgLYN/M+BWZVVRc9ot3XB6wN28e8PAAAAAAAAAAAAAAAAAAAAAAAAACqb6DXdWr9+/fKNb3yj5J2lS5fmxBNPzP/9v/93q57985//PO9617uybNmykveuvPLK9O3bd6ueTceaPn16jj/++Bx66KGZPHlyFi5c2CHPXblyZa666qqMHj06M2fObPP+7rvvnssvv7xD3g3Attnp8p2yrLn0v7vLpV/6tXlH8BoAAAAAAAAAAAAAAAAAAAAAAACArqSm6AHQ2d7//vfnAx/4QG688cZW77z++ut573vfm3/8x3/MxRdfnLe+9a2t3p01a1YuvfTS3HzzzW2++6yzzsrpp5++TbuLtmzZstx0001b/X3PPfdcyfMZM2bke9/73lY9c+DAgRk3btxWb9nUzJkz84lPfCKf/vSnc+yxx+bkk0/Osccem0MPPTS1tbXtekZzc3Mef/zxTJ06NZMnT85f//rXdn1fXV1dbrvttgwePHh7/hYA2A7DrxiehWs65v/4YHvtU79P/vTpP+W0m07LtGembfGO4DUAAAAAAAAAAAAAAAAAAAAAAAAAXU1VS0tLS9EjoLMtW7YsY8aMyTPPPNOu+4cddliOPvrojBw5MgMGDMjSpUszZ86c3HfffZk5c2a7nvHWt741Dz74YAYMGLA909ebO3duRo4cWfLOJZdcki996Utle1+57LXXXpk7d+42fe+gQYPy+uuvl7zTu3fv7Lffftl///2zxx57ZNddd82AAQPSu3fvrFy5MgsXLszChQszd+7c3HvvvVm8ePFWbejVq1d+9KMf5cwzz9ymv4fuaNSoUZk1a9Zmnx944IF58sknC1gEdHejvjUqsxZt/s+dIuzeb/f85d//sv7rLYWvBa8BAAAAugf/ezgAAAAAAAAAAAAAAAAAANDT1BQ9AMphwIAB+fWvf51jjz02L774Ypv3H3nkkTzyyCPb/L7hw4fn17/+dYcFr+lcq1evzuOPP57HH3+8w5/dp0+fTJkyJWeccUaHPxuA9jn2O8dWTPB6x7odNwpeJ8nUM6duFL4WvAYAAAAAAAAAAAAAAAAAAAAAAACgq6ouegCUy1577ZXp06dnn3326dT3vOUtb8n06dMzfPjwTn0PlW/48OH5/e9/L3gNUKAzbjwj986/t+gZSZJ+1f3y2ude2+LZ1DOn5tT9T01drzrBawAAAAAAAAAAAAAAAAAAAAAAAAC6LNFrepS3vOUtefDBB/Oud72rU57/7ne/Ow8++GCnh7WpbL169cq//uu/5oknnsiYMWOKngPQY330px/Nrc/dWvSMJEld6rL84uUl70w9c2oW/8diwWsAAAAAAAAAAAAAAAAAAAAAAAAAuizRa3qcwYMH51e/+lWuu+66DBkypEOeOWTIkEyZMiV33HFHBg0a1CHPpGOMHTs29fX1ZXlXbW1tzjnnnMyaNSv/9V//lYEDB5blvQBs7vO/+ny++8R3i56RJOmVXll9yep23e1b17eT1wAAAAAAAAAAAAAAAAAAAAAAAABA5xG9pscaP358Zs+encmTJ+eAAw7YpmcceOCBmTx5cubMmZNzzjmngxfSEW699dYsXLgwf/zjH/PVr34173nPe7LHHnt02PPr6uryd3/3d/nWt76Vl156KVOmTMl+++3XYc8HYOtd9furcvkfLy96xnqNlzQWPQEAAAAAAAAAAAAAAAAAAAAAAAAAyqKqpaWlpegRUAmeffbZ/OpXv8qMGTPy5JNP5i9/+UuWLl2aFStWpF+/fhk4cGD23HPPHHjggTn88MNz0kknZd999y16NtvotddeyyOPPJJZs2blhRdeyIsvvpgXX3wxr776apYvX54VK1ZkxYoVaWlpSe/evdO3b9/svPPO2X333bPXXnvloIMOyiGHHJK3v/3t6d+/f9F/O13OqFGjMmvWrM0+P/DAA/Pkk08WsAjoLqY9PS2n3Xxa0TPWa7nEH7UBAAAAejL/ezgAAAAAAAAAAAAAAAAAANDT1BQ9ACrFfvvtl/3226/oGZTJTjvtlBNOOCEnnHBC0VMA6CBPP/10RQWvnz/7+aInAAAAAAAAAAAAAAAAAAAAAAAAAEBZVRc9AAAAttecOXNywM0HFD1jvafGPZW999676BkAAAAAAAAAAAAAAAAAAAAAAAAAUFai1wAAdHl7X185gemp46bmrW99a9EzAAAAAAAAAAAAAAAAAAAAAAAAAKDsRK8BAOjSqiZWFT1hvanjpubUt55a9AwAAAAAAAAAAAAAAAAAAAAAAAAAKIToNQAAXVbNxJqiJ6w36dhJgtcAAAAAAAAAAAAAAAAAAAAAAAAA9Gii1wAAdEl1E+vSlKaiZyRJPnLQR/Ifx/1H0TMAAAAAAAAAAAAAAAAAAAAAAAAAoFCi1wAAdDn9/7N/GtJQ9Iwkyf/e93/nO6d/p+gZAAAAAAAAAAAAAAAAAAAAAAAAAFA40WsAALqU+i/XZ0XziqJnJElOHH5ibvnALUXPAAAAAAAAAAAAAAAAAAAAAAAAAICKIHoNAECXsdvXdsvSxqVFz0iSHL7L4fn1h35d9AwAAAAAAAAAAAAAAAAAAAAAAAAAqBii1wAAdAkjvzEyr6x8pegZSZJ96vfJw+c9XPQMAAAAAAAAAAAAAAAAAAAAAAAAAKgootcAAFS8g646KHOXzi16RpJk1z675k+f/lPRMwAAAAAAAAAAAAAAAAAAAAAAAACg4oheAwBQ0Y759jF5cuGTRc9IkuxQs0NevvDlomcAAAAAAAAAAAAAAAAAAAAAAAAAQEUSvQYAoGKddsNpue/l+4qekSTpX9U/iy9aXPQMAAAAAAAAAAAAAAAAAAAAAAAAAKhYotcAAFSkD970wUybPa3oGUmSmtRk2ReXFT0DAAAAAAAAAAAAAAAAAAAAAAAAACqa6DUAABXnotsvyo+f+XHRM5IkValKwyUNRc8AAAAAAAAAAAAAAAAAAAAAAAAAgIoneg0AQEW58u4r85WHvlL0jPWaL2kuegIAAAAAAAAAAAAAAAAAAAAAAAAAdAmi1wAAVIwpD0zJBfdcUPSM9VouaSl6AgAAAAAAAAAAAAAAAAAAAAAAAAB0GaLXAABUhOlzpufcO84tesZ6gtcAAAAAAAAAAAAAAAAAAAAAAAAAsHVErwEAKNycOXNy/PXHFz1jvcWfWlz0BAAAAAAAAAAAAAAAAAAAAAAAAADockSvAQAo1Jw5c7L39XsXPWO92efMzg477FD0DAAAAAAAAAAAAAAAAAAAAAAAAADockSvAQAoVCUFr+86566MHDmy6BkAAAAAAAAAAAAAAAAAAAAAAAAA0CWJXgMAUJiqiVVFT1jvrnPuynEjjyt6BgAAAAAAAAAAAAAAAAAAAAAAAAB0WaLXAAAUotfEXkVPWO+6k64TvAYAAAAAAAAAAAAAAAAAAAAAAACA7SR6DQBA2dVNrEtzmouekSS54m+vyPgjxhc9AwAAAAAAAAAAAAAAAAAAAAAAAAC6PNFrAADKqt+l/dKQhqJnJEnOO+S8fOadnyl6BgAAAAAAAAAAAAAAAAAAAAAAAAB0C6LXAACUTf2X67OyZWXRM5IkZ+1/ViafOrnoGQAAAAAAAAAAAAAAAAAAAAAAAADQbYheAwBQFkMmDcnSxqVFz0iSjN1zbH505o+KngEAAAAAAAAAAAAAAAAAAAAAAAAA3YroNQAAnW7kN0ZmwaoFRc9Ikhy565H5zT/9pugZAAAAAAAAAAAAAAAAAAAAAAAAANDtiF4DANCpDrrqoMxdOrfoGUmSUTuOyv0fv7/oGQAAAAAAAAAAAAAAAAAAAAAAAADQLYleAwDQaY759jF5cuGTRc9IkowYOCJPnP9E0TMAAAAAAAAAAAAAAAAAAAAAAAAAoNsSvQYAoFOc+P0Tc9/L9xU9I0myS59dMuff5hQ9AwAAAAAAAAAAAAAAAAAAAAAAAAC6NdFrAAA63Adv+mDunHdn0TOSJANrBubVC18tegYAAAAAAAAAAAAAAAAAAAAAAAAAdHui1wAAdKgJ0ybkx8/8uOgZSZI+6ZMlFy0pegYAAAAAAAAAAAAAAAAAAAAAAAAA9Aii1wAAdJgr774y18y8pugZSZLa1GblJSuLngEAAAAAAAAAAAAAAAAAAAAAAAAAPYboNQAAHWLKA1NywT0XFD0jSVKd6qy5ZE3RMwAAAAAAAAAAAAAAAAAAAAAAAACgRxG9BgBgu02fMz3n3nFu0TPWa7qkqegJAAAAAAAAAAAAAAAAAAAAAAAAANDjiF4DALBdps+ZnuOvP77oGeu1XNJS9AQAAAAAAAAAAAAAAAAAAAAAAAAA6JFErwEA2GZz5sypqOD17HNmFz0BAAAAAAAAAAAAAAAAAAAAAAAAAHos0WsAALbZ3tfvXfSE9WafMzsjR44segYAAAAAAAAAAAAAAAAAAAAAAAAA9Fii1wAAbJOqiVVFT1jvrnPuErwGAAAAAAAAAAAAAAAAAAAAAAAAgIKJXgMAsNWqJ1bOHyOvO+m6HDfyuKJnAAAAAAAAAAAAAAAAAAAAAAAAAECPVzm1QgAAuoTaibVpSUvRM5IkV/ztFRl/xPiiZwAAAAAAAAAAAAAAAAAAAAAAAAAAEb0GAGAr9J3YN41pLHpGkuTzYz6fz7zzM0XPAAAAAAAAAAAAAAAAAAAAAAAAAADeIHoNAECSZMGSBSXP679cn1VZVaY1pZ21/1n58slfLnoGAAAAAAAAAAAAAAAAAAAAAAAAALAB0WsAAHLLE7dkyP8ZksFfHbzF8yGThmRp49Iyr9qyU/c+NT8680dFzwAAAAAAAAAAAAAAAAAAAAAAAAAANiF6DQDQw93yxC0Z99NxSZLFqxdvFr4edsWwLFi1oIhpm3nHbu/I1LOnFj0DAAAAAAAAAAAAAAAAAAAAAAAAANgC0WsAgB5sw+D1OhuGr/f75n6Zt3xeEdM2M2rHUbn3Y/cWPQMAAAAAAAAAAAAAAAAAAAAAAAAAaEVN0QMAACjGloLX6yxevThVE6vKvKh1IwaOyBPnP1H0DAAAAAAAAAAAAAAAAAAAAAAAAACghOqiBwAAUH6lgteVZte+u2bOv80pegYAAAAAAAAAAAAAAAAAAAAAAAAA0AbRawCAHqYrBa8H1gzMy//xctEzAAAAAAAAAAAAAAAAAAAAAAAAAIB2EL0GAOhBulLwul91vyy5aEnRMwAAAAAAAAAAAAAAAAAAAAAAAACAdhK9BgDoIbpS8Lo2tVl+8fKiZwAAAAAAAAAAAAAAAAAAAAAAAAAAW0H0GgCgB1iwZEGXCV5XpzprLllT9AwAAAAAAAAAAAAAAAAAAAAAAAAAYCuJXgMA9AC71O+SQb0HFT2jXZouaSp6AgAAAAAAAAAAAAAAAAAAAAAAAACwDUSvAQB6iEWfXVTx4euWS1qKngAAAAAAAAAAAAAAAAAAAAAAAAAAbCPRawCAHqSSw9ezz5ld9AQAAAAAAAAAAAAAAAAAAAAAAAAAYDuIXgMA9DCLPruo6AmbmX3O7IwcObLoGQAAAAAAAAAAAAAAAAAAAAAAAADAdhC9BgCgUHedc5fgNQAAAAAAAAAAAAAAAAAAAAAAAAB0A6LXAAA9TPXEyvkj4HUnXZfjRh5X9AwAAAAAAAAAAAAAAAAAAAAAAAAAoANUTvEQAIBOVzuxNi1pKXpGkuSKv70i448YX/QMAAAAAAAAAAAAAAAAAAAAAAAAAKCDiF4DAPQQfSf2TWMai56RJPn8mM/nM+/8TNEzAAAAAAAAAAAAAAAAAAAAAAAAAIAOJHoNANADDLhsQFZlVdEzkiRn7X9Wvnzyl4ueAQAAAAAAAAAAAAAAAAAAAAAAAAB0MNFrAIBubsikIVnetLzoGUmSU/c+NT8680dFzwAAAAAAAAAAAAAAAAAAAAAAAAAAOoHoNQBANzbsimFZsGpB0TOSJO/Y7R2ZevbUomcAAAAAAAAAAAAAAAAAAAAAAAAAAJ1E9BoAoJva75v7Zd7yeUXPSJKM2nFU7v3YvUXPAAAAAAAAAAAAAAAAAAAAAAAAAAA6keg1AEA3NOaaMXnu9eeKnrHeE+c/UfQEAAAAAAAAAAAAAAAAAAAAAAAAAKCTiV4DAHQzJ37/xDy84OGiZ2xk8FcHFz0BAAAAAAAAAAAAAAAAAAAAAAAAAOhkotcAAN3IaTecljvn3Vn0jM0sXr1Y+BoAAAAAAAAAAAAAAAAAAAAAAAAAujnRawCAbmLCtAmZNnta0TNaJXwNAAAAAAAAAAAAAAAAAAAAAAAAAN2b6DUAQDdw0e0X5ZqZ1xQ9o03C1wAAAAAAAAAAAAAAAAAAAAAAAADQfYleAwB0cVfefWW+8tBXip7RbotXL86CJQuKngEAAAAAAAAAAAAAAAAAAAAAAAAAdDDRawCALmzKA1NywT0XFD1jq9x8+s3ZpX6XomcAAAAAAAAAAAAAAAAAAAAAAAAAAB1M9BoAoIuaPmd6zr3j3KJnbJWbT785Zxx0RtEzAAAAAAAAAAAAAAAAAAAAAAAAAIBOIHoNANAFzZkzJ8dff3zRM7aK4DUAAAAAAAAAAAAAAAAAAAAAAAAAdG+i1wAAXcycOXOy9/V7Fz1jqwheAwAAAAAAAAAAAAAAAAAAAAAAAED3J3oNANDFVFLw+q5z7sqg3oNK3hG8BgAAAAAAAAAAAAAAAAAAAAAAAICeQfQaAKALqZpYVfSE9a476bocN/K4LPrsolbD14LXAAAAAAAAAAAAAAAAAAAAAAAAANBziF4DAHQRNRNrip6w3hV/e0XGHzF+/ddbCl8LXgMAAAAAAAAAAAAAAAAAAAAAAABAzyJ6DQDQBfSZ2CdNaSp6RpLk82M+n8+88zObfb5h+FrwGgAAAAAAAAAAAAAAAAAAAAAAAAB6npqiBwAAUNqAywZkdVYXPSNJct4h5+XLJ3+51fNFn12UBUsWZJf6Xcq4CgAAAAAAAAAAAAAAAAAAAAAAAACoBNVFDwAAoHWDLx+c5U3Li56RJDl171Mz+dTJbd4TvAYAAAAAAAAAAAAAAAAAAAAAAACAnkn0GgCgQu359T2zeM3iomckScbuOTZTz55a9AwAAAAAAAAAAAAAAAAAAAAAAAAAoIKJXgMAVKD9vrlf/rLiL0XPSJKM3mV0fvNPvyl6BgAAAAAAAAAAAAAAAAAAAAAAAABQ4USvAQAqzJhrxuS5158rekaSZN8d9s1D5z1U9AwAAAAAAAAAAAAAAAAAAAAAAAAAoAsQvQYAqCAnfv/EPLzg4aJnJEn27L9nnv3Us0XPAAAAAAAAAAAAAAAAAAAAAAAAAAC6CNFrAIAKcdoNp+XOeXcWPSNJMqhuUF684MWiZwAAAAAAAAAAAAAAAAAAAAAAAAAAXYjoNQBABZgwbUKmzZ5W9IwkSf9e/bPoc4uKngEAAAAAAAAAAAAAAAAAAAAAAAAAdDGi1wAABbvo9otyzcxrip6RJOmd3ln2hWVFzwAAAAD4/9m7+yit6zr/4++BAUZguLFFsUAYECjQ7iDzLjcxTGLPhsfOaquCm3mzkIbB6q5U41RgJXQKhSO77QaoZHdKx/VgGOBypPUgYipQgM6FqymKIDfDyN0wvz9+25grXANcN5+Zax6Pc/ij+Xz5fp6c/Ho8dc5LAAAAAAAAAAAAAAAAAAAAoBUyeg0AkNDM5TNj+urpqTMiIqJ9tI+91XtTZwAAAAAAAAAAAAAAAAAAAAAAAAAArZTRawCAROavmh9TVkxJndHkYPXB1AkAAAAAAAAAAAAAAAAAAAAAAAAAQCtm9BoAIIFlmWVx9eKrU2c0aaxuTJ0AAAAAAAAAAAAAAAAAAAAAAAAAALRyRq8BAIosk8nEhQsuTJ3RpHZcbeoEAAAAAAAAAAAAAAAAAAAAAAAAAKAEGL0GACiiTCYTAxYMSJ3RpHZcbVRVVaXOAAAAAAAAAAAAAAAAAAAAAAAAAABKgNFrAIAiakmD10vHLTV4DQAAAAAAAAAAAAAAAAAAAAAAAADkjdFrAIAiKaspS53QZN7oeTGyamTqDAAAAAAAAAAAAAAAAAAAAAAAAACghBi9BgAogvKa8tQJTWacPyPGnzk+dQYAAAAAAAAAAAAAAAAAAAAAAAAAUGKMXgMAFFhFTUU0REPqjIiIuG3EbTH5gsmpMwAAAAAAAAAAAAAAAAAAAAAAAACAEmT0GgCggLp8u0vsi32pMyIiYsJHJsS0MdNSZwAAAAAAAAAAAAAAAAAAAAAAAAAAJcroNQBAgfS8o2fUH6pPnREREZcPujxmj52dOgMAAAAAAAAAAAAAAAAAAAAAAAAAKGFGrwEACqD393vHjv07UmdERMSoPqPip3//09QZAAAAAAAAAAAAAAAAAAAAAAAAAECJM3oNAJBnVT+oitfffj11RkREDO81PJZcsyR1BgAAAAAAAAAAAAAAAAAAAAAAAADQBhi9BgDIo9PvOj02796cOiMiIgZ1HxSrJ6xOnQEAAAAAAAAAAAAAAAAAAAAAAAAAtBFGrwEA8uS8uefFuu3rUmdERESfLn1i46SNqTMAAAAAAAAAAAAAAAAAAAAAAAAAgDbE6DUAwFHaWb/ziGeX3HtJrNyysog1R9arole8POXl1BkAAAAAAAAAAAAAAAAAAAAAAAAAQBtj9BoA4CgszyyPHnf2iEGzBr3n7IYHb4hFtYuKH3UYXdp3iTdufSN1BgAAAAAAAAAAAAAAAAAAAAAAAADQBhm9BgBoxvLM8hi5YGRERLzw1gvvGr6e+sjUmPv83FRp71IRFVH39brUGQAAAAAAAAAAAAAAAAAAAAAAAABAG1WeOgAAoCX7y8HrP/vz8PUNZ9wQ01dPT1T2buVRHm9Xv506AwAAAAAAAAAAAAAAAAAAAAAAAABow9qlDgAAaKkON3j9Zy+89UJMWTGlyEWHVxZlcaD6QOoMAAAAAAAAAAAAAAAAAAAAAAAAAKCNM3oNAHAY2QavW5pD1YdSJwAAAAAAAAAAAAAAAAAAAAAAAAAAGL0GAPi/WtPgde242tQJAAAAAAAAAAAAAAAAAAAAAAAAAAARYfQaAOBdWtvgdVVVVeoMAAAAAAAAAAAAAAAAAAAAAAAAAICIMHoNANCkNQ1eLx231OA1AAAAAAAAAAAAAAAAAAAAAAAAANCiGL0GAIiInfU7W9Xg9ciq1tEKAAAAAAAAAAAAAAAAAAAAAAAAALQdRq8BACKie+fucVrP01JnNGve6HkGrwEAAAAAAAAAAAAAAAAAAAAAAACAFsnoNQDA/9p006YWPXz9zTO/GePPHJ86AwAAAAAAAAAAAAAAAAAAAAAAAADgsIxeAwD8hZY6fD3hIxOiZnRN6gwAAAAAAAAAAAAAAAAAAAAAAAAAgCMyeg0A8H9sumlT6oR3uWLIFTF77OzUGQAAAAAAAAAAAAAAAAAAAAAAAAAAWRm9BgD4P3p/v3fqhCaj+oyK+y6/L3UGAAAAAAAAAAAAAAAAAAAAAAAAAECzjF4DAPyFqh9Uxetvv546IyIihvcaHkuuWZI6AwAAAAAAAAAAAAAAAAAAAAAAAADgqBi9BgD4X6ffdXps3r05dUZERAzqPihWT1idOgMAAAAAAAAAAAAAAAAAAAAAAAAA4KgZvQYAiIjz5p4X67avS50RERF9uvSJjZM2ps4AAAAAAAAAAAAAAAAAAAAAAAAAADgmRq8BgDbvknsviZVbVqbOiIiIXhW94uUpL6fOAAAAAAAAAAAAAAAAAAAAAAAAAAA4ZkavAYA27coHroxFtYtSZ0RERGV5Zbxx6xupMwAAAAAAAAAAAAAAAAAAAAAAAAAAjovRawCgzZr6yNS4f8P9qTMiIqIiKmLX1F2pMwAAAAAAAAAAAAAAAAAAAAAAAAAAjpvRawCgTZq5fGZMXz09dUZERJRHebxd/XbqDAAAAAAAAAAAAAAAAAAAAAAAAACAnBi9BgDanPmr5seUFVNSZzTp37N/6gQAAAAAAAAAAAAAAAAAAAAAAAAAgJwZvQYA2pRlmWVx9eKrU2e8ywtvvRCDZg1KnQEAAAAAAAAAAAAAAAAAAAAAAAAAkBOj1wBAm5HJZOLCBRemzjgsw9cAAAAAAAAAAAAAAAAAAAAAAAAAQGtn9BoAaBMymUwMWDAgdUZWhq8BAAAAAAAAAAAAAAAAAAAAAAAAgNbM6DUA0Ca09MHrPzN8DQAAAAAAAAAAAAAAAAAAAAAAAAC0VkavAYCSV1ZTljrhmLzw1guxs35n6gwAAAAAAAAAAAAAAAAAAAAAAAAAgGNi9BoAKGnta9qnTjhmy8Yti+6du6fOAAAAAAAAAAAAAAAAAAAAAAAAAAA4JkavAYCS1bGmYxyKQ6kzjsmyccvigqoLUmcAAAAAAAAAAAAAAAAAAAAAAAAAABwzo9cAQEk6oeaEOBAHUmccE4PXAAAAAAAAAAAAAAAAAAAAAAAAAEBrZvQaACg53aZ1i72xN3VGRES0j/ZH9ZzBawAAAAAAAAAAAAAAAAAAAAAAAACgtTN6DQCUlJO+d1LsPrg7dUZERIzqMyoOVh+M03qelvU5g9cAAAAAAAAAAAAAAAAAAAAAAAAAQCkweg0AlIyqH1TF1r1bU2dERMS5vc+NJdcsiYiITTdtOuLwtcFrAAAAAAAAAAAAAAAAAAAAAAAAAKBUGL0GAErC6XedHpt3b06dERERw04cFk9c/8S7fna44WuD1wAAAAAAAAAAAAAAAAAAAAAAAABAKTF6DQC0eufNPS/WbV+XOiMiIvpX9o+1N6497NlfDl8bvAYAAAAAAAAAAAAAAAAAAAAAAAAASk156gAAgFxc9O8XxcotK1NnREREr4pekflaJuszm27aFDvrd0b3zt2LVAUAAAAAAAAAAAAAAAAAAAAAAAAAUBztUgcAAByvKx+4Mh575bHUGRERUVleGW/c+sZRPWvwGgAAAAAAAAAAAAAAAAAAAAAAAAAoRUavAYBWaeKiiXH/hvtTZ0REREVUxK6pu1JnAAAAAAAAAAAAAAAAAAAAAAAAAAAkZfQaAGh1Zi6fGXOenZM6IyIiOkSHeLv67dQZAAAAAAAAAAAAAAAAAAAAAAAAAADJGb0GAFqV+avmx5QVU1JnREREu2gX+6v3p84AAAAAAAAAAAAAAAAAAAAAAAAAAGgRylMHQEuzb9++2LhxY7zyyiuxe/fuqK+vj86dO0dlZWX06dMnhgwZEh07dkydCdAmLcssi6sXX506o0lDdUPqBAAAAAAAAAAAAAAAAAAAAAAAAACAFsPoNUTEk08+GYsWLYrFixfHunXroqHhyCOm7du3j2HDhsXnPve5+PznPx9nnXVWEUsB2q5lmWVx4YILU2c0aaxuTJ0AAAAAAAAAAAAAAAAAAAAAAAAAANCitEsdACk98MADMXz48Dj77LPje9/7Xjz33HNZB68jIhoaGuK5556L7373u3H22WfHiBEj4mc/+1mRiluW+vr6+N3vfhezZs2KcePGxdChQ6N9+/ZRVlZ2xF+333576uy8WLhwYdY/51/+evzxx1PnQquXyWRa1OB17bja1AkAAAAAAAAAAAAAAAAAAAAAAAAAAC1OeeoASOGPf/xjXH/99bFixYqc3/X000/H5ZdfHvfcc0/cc889MWTIkDwUtjz79u2LZ599NlavXt30a/369c2OhJeibdu2xaRJk1JnQJsyYMGA1AlNasfVRlVVVeoMAAAAAAAAAAAAAAAAAAAAAAAAAIAWx+g1bc6DDz4Y48ePj7q6ury+9/HHH48RI0bEggUL4pJLLsnru4vtwIED8fzzz79r4Hrt2rVx4MCB1Gktws033xxbt25NnQFtRllNWeqEJkvHLTV4DQAAAAAAAAAAAAAAAAAAAAAAAABwBEavaVNmz54dN954YzQ2Nhbk/XV1dXHppZfG3XffHRMmTCjIHcXwyCOPtPrh7kJZsmRJ3HvvvakzoM1oV9MudUKTeaPnxciqkakzAAAAAAAAAAAAAAAAAAAAAAAAAABarJazJAkFNn/+/IIOXv9ZY2NjfOUrX4kFCxYU9B6Kr76+Pm644YbUGdBmdKjpEI1R2L9nH60Z58+I8WeOT50BAAAAAAAAAAAAAAAAAAAAAAAAANCiGb2mTVi1alVce+21RzV4fc4558Tdd98da9asie3bt8eBAwdi+/btsXr16pg1a1Z88pOfbPYdjY2Nce2118ZTTz2Vj3xaiK9//euRyWRSZ0CbcELNCXEwDqbOiIiI20bcFpMvmJw6AwAAAAAAAAAAAAAAAAAAAAAAAACgxTN6TcnbtWtXXH755XHgwIGszw0aNCh++9vfxsqVK2PixInxsY99LHr27Bnl5eXRs2fPGD58eNx4443x5JNPxm9+85sYOHBg1vft378/Lrvssti1a1c+/zgk8tRTT8WsWbNSZ0Cb0G1at9gbe1NnRETEFUOuiGljpqXOAAAAAAAAAAAAAAAAAAAAAAAAAABoFYxeU/K++c1vRiaTyfrMZz7zmXjqqafiwgsvPKp3XnTRRbF69eq44IILsj6XyWTi9ttvP9rUVq1z585x9tlnNzsG3hodPHgwvvzlL0dDQ8N7znr06BE9e/ZMUAWl6aTvnRS7D+5OnREREWMHjI37Lr8vdQYAAAAAAAAAAAAAAAAAAAAAAAAAQKth9JqStn79+pg9e3bWZ84+++z49a9/Hd27dz+md/fo0SMefvjhOPPMM7M+d9ddd8Uf/vCHY3p3S1dRURGf/OQnY+LEifEf//Ef8dxzz8WuXbvid7/7XZx33nmp8/Lu+9//fjz33HOHPfvud78b3bp1K3IRlKa+M/rG1r1bU2dERMS5vc+Nh656KHUGAAAAAAAAAAAAAAAAAAAAAAAAAECrUp46AAqppqYmDh48eMTzE088MX72s59F586dj+v9Xbp0iZ///Ofx0Y9+NHbs2HHYZw4ePBjf+ta34qc//elx3ZFap06d4owzzogRI0bEiBEjYvjw4XH66adHeXnb+NvHxo0b49vf/vZhz84555y47rrr4o477ihyFZSewT8cHK/seSV1RkREDDtxWDxx/ROpMwAAAAAAAAAAAAAAAAAAAAAAAAAAWp22sVpLm1RbWxu/+tWvsj7zne98J/r27ZvTPf369Yuampr46le/esRnfvGLX8Qdd9wR/fv3z+muYhk8eHDMnTs3hg8fHh/+8IejQ4cOqZOSaGxsjOuuuy727t37nrMOHTrE3Llzo6ysLEEZlJYRc0bEpp2bUmdERET/yv6x9sa1qTMAAAAAAAAAAAAAAAAAAAAAAAAAAFqldqkDoFBmz54dDQ0NRzwfNGhQXHfddXm5a8KECTFgwIAjnjc0NMTs2bPzclcxDB06NK677roYPnx4mx28joj48Y9/HP/1X/912LPJkyfH6aefXuQiKD0X/ftF8fTWp1NnRETEySecHJmvZVJnAAAAAAAAAAAAAAAAAAAAAAAAAAC0WkavKUkNDQ3x05/+NOszN998c7Rv3z4v95WXl8dNN92U9ZmFCxfGoUOH8nIfhffaa6/FLbfcctizqqqq+OY3v1nkIig9Vz5wZTz2ymOpMyIionuH7rHlli2pMwAAAAAAAAAAAAAAAAAAAAAAAAAAWjWj15SkZcuWxWuvvXbE84qKirjyyivzeuf48eOjY8eORzx/9dVX4/HHH8/rnRTOV77yldixY8dhz+bMmRMnnHBCcYOgxExcNDHu33B/6oyIiOjcrnPsuG1H6gwAAAAAAAAAAAAAAAAAAAAAAAAAgFbP6DUl6eGHH856PmbMmKisrMzrnT169IjRo0dnfaa5LlqGRYsWxYMPPnjYs8suuywuvvjiIhdBaZn6yNSY8+yc1BkREdEhOsSeb+xJnQEAAAAAAAAAAAAAAAAAAAAAAAAAUBKMXlOSfvvb32Y9HzNmTEHube69jz32WEHuJX927twZEydOPOxZjx494oc//GFxg6DEzF81P6avnp46IyIi2kW72F+9P3UGAAAAAAAAAAAAAAAAAAAAAAAAAEDJMHpNyXnttdfiD3/4Q9ZnPvOZzxTk7lGjRmU9X7duXWzZsqUgd5Mft9xyS7z66quHPbvjjjuid+/eRS6C0vHohkfj6sVXp85o0lDdkDoBAAAAAAAAAAAAAAAAAAAAAAAAAKCkGL2m5KxatSrred++faNv374Fubt///5xyimnZH3mqaeeKsjd5G7FihXxb//2b4c9O/vss+P6668vchGUjmWZZTH6gdGpM5o0VjemTgAAAAAAAAAAAAAAAAAAAAAAAAAAKDlGryk5a9asyXr+8Y9/vKD3jxgxIuv5M888U9D7OT779u2L6667Lhob3zuEW15eHnPnzo2ysrIEZdD6ZTKZuHDBhakzmtSOq02dAAAAAAAAAAAAAAAAAAAAAAAAAABQkoxeU3J+//vfZz3/8Ic/XND7m3u/0euW6Vvf+lZs2LDhsGdf+9rX4owzzihyEZSGTCYTAxYMSJ3RpHZcbVRVVaXOAAAAAAAAAAAAAAAAAAAAAAAAAAAoSUavKTkbN27Mej5o0KCC3n/aaadlPd+0aVNB7+fYPffcc3HnnXce9qx///5RXV1d5CIoHS1p8HrpuKUGrwEAAAAAAAAAAAAAAAAAAAAAAAAACsjoNSWlsbExNm/enPWZ5kapc9Xc+5vro7gOHToU1157bRw4cOCw53PmzInOnTsXuQpKQ7ualvOPGfNGz4uRVSNTZwAAAAAAAAAAAAAAAAAAAAAAAAAAlLSWs0YJefD666/H3r17sz7z/ve/v6ANzb1/z5498cYbbxS0gaM3a9asWLVq1WHP/u7v/i5Gjx5d5CIoDR1qOkRjNKbOiIiIGefPiPFnjk+dAQAAAAAAAAAAAAAAAAAAAAAAAABQ8oxeU1JeffXVZp/p3bt3QRuO5v1H00nhvfTSS/H1r3/9sGfdu3ePH/7wh8UNghJRUVMRB+Ng6oyIiLhtxG0x+YLJqTMAAAAAAAAAAAAAAAAAAAAAAAAAANoEo9eUlG3btmU979atW3Tq1KmgDZ07d46uXbtmfaa5TorjhhtuiD179hz2bPr06XHKKacUuQhav67f6Rr7Yl/qjIiImPCRCTFtzLTUGQAAAAAAAAAAAAAAAAAAAAAAAAAAbUZ56gDIp+3bt2c979atW1E6unXrFnV1dUc8b66Twrvvvvvi0UcfPezZWWedFTfccEORi1qG2bNnx5w5cwp+z4svvljwOyi+k753UuxpOPyQfLGNHTA2Zo+dnToDAAAAAAAAAAAAAAAAAAAAAAAAAKBNMXpNSXnrrbeynldWVhalo7l7jF6n9eabb8bNN9982LPy8vKYO3dutGvXrshVLcPWrVtj/fr1qTNohfrO6Btb925NnREREef2Pjceuuqh1BkAAAAAAAAAAAAAAAAAAAAAAAAAAG1O21x1pWTt3bs363mXLl2K0tG1a9es5811UliTJk2KN99887BnN998c3z4wx8uchG0boN/ODhe2fNK6oyIiBh24rB44vonUmcAAAAAAAAAAAAAAAAAAAAAAAAAALRJRq8pKfv37896Xl5eXpSO5u5prpPCefTRR+P+++8/7Fm/fv3i9ttvL24QtHIj5oyITTs3pc6IiIj+lf1j7Y1rU2cAAAAAAAAAAAAAAAAAAAAAAAAAALRZRq8pKUavyWbPnj1xww03HPF89uzZ0blz5yIWQet20b9fFE9vfTp1RkREnHzCyZH5WiZ1BgAAAAAAAAAAAAAAAAAAAAAAAABAm2b0mpJy6NChrOft27cvSkdz9zQ0NBSlg3ebOnVqvPTSS4c9+8IXvhBjxowpchG0Xpfce0k89spjqTMiIqJHxx6x5ZYtqTMAAAAAAAAAAAAAAAAAAAAAAAAAANq88tQBkE/l5dn/kj548GBROpq7p0OHDkXp4B2rVq2Ku+6667Bn3bp1i1mzZhW5qGXq1atXDB06tOD3vPjii7Fv376C30NhTFw0MRbVLkqdERERndt1jrf+5a3UGQAAAAAAAAAAAAAAAAAAAAAAAAAAhNFrSkzHjh2znhdr9PrAgQNZz5vrJL8OHDgQX/7yl+PQoUOHPZ8+fXqccsopRa5qmSZOnBgTJ04s+D3Dhg2L9evXF/we8m/qI1NjzrNzUmdERESn6BR7vrEndQYAAAAAAAAAAAAAAAAAAAAAAAAAAP+rXeoAyKcOHTpkPd+/f39ROoxetyzf+9734vnnnz/s2Zlnnhn/+I//WOQiaJ1mLp8Z01dPT50RERHto33srd6bOgMAAAAAAAAAAAAAAAAAAAAAAAAAgL9g9JqS0rVr16zndXV1RenYvXt31vPmOsmfDRs2xHe+853DnpWXl8fcuXOjXTt/K4TmzF81P6asmJI6o8nB6oOpEwAAAAAAAAAAAAAAAAAAAAAAAAAA+D8svVJSTjzxxKznu3btKkpHc/c010l+NDY2xnXXXRf79u077PlXv/rV+OhHP1rcKGiFlmWWxdWLr06d0aSxujF1AgAAAAAAAAAAAAAAAAAAAAAAAAAAh2H0mpLyvve9L+v5jh07itKxc+fOrOfNdZIf//qv/xorVqw47Fm/fv2ipqamyEXQ+mQymbhwwYWpM5rUjqtNnQAAAAAAAAAAAAAAAAAAAAAAAAAAwBEYvaak/NVf/VXW83379hV8+Hr79u2xf//+rM8YvS68V199NW699dYjnt99993RpUuXIhZB65PJZGLAggGpM5rUjquNqqqq1BkAAAAAAAAAAAAAAAAAAAAAAAAAAByB0WtKyqmnntrsM6+//npBG47m/UfTSW6+8pWvxM6dOw97dumll8bf/M3fFLkIWp+WNHi9dNxSg9cAAAAAAAAAAAAAAAAAAAAAAAAAAC2c0WtKSteuXeN973tf1mdeeumlgjZs3rw56/lJJ50UXbp0KWhDW/fEE0/EQw89dNizbt26xY9+9KMiF0HrU1ZTljqhybzR82Jk1cjUGQAAAAAAAAAAAAAAAAAAAAAAAAAANKM8dQDkW1VVVWzbtu2I55s2bYqLLrqoYPe/8MILWc+rqqoKdjf/35tvvnnEs7POOisWL16c1/vq6uqynj/yyCPN/nXx5S9/OZ9JkJPympbzjwczzp8R488cnzoDAAAAAAAAAAAAAAAAAAAAAAAAAICj0HJWLSFPhg0bFqtXrz7i+YYNGwp6f3PvHzZsWEHvJ7slS5bEkiVLinrnjBkzmn3G6DUtRUVNRTREQ+qMiIi4bcRtMfmCyakzAAAAAAAAAAAAAAAAAAAAAAAAAAA4Su1SB0C+ffzjH896/swzzxT0/jVr1mQ9/9jHPlbQ+wGOV9fvdI19sS91RkRETPjIhJg2ZlrqDAAAAAAAAAAAAAAAAAAAAAAAAAAAjoHRa0pOc6PXv//976OhoaEgdx88eDCeffbZrM8YvQZaop539Iw9DXtSZ0RExNgBY2P22NmpMwAAAAAAAAAAAAAAAAAAAAAAAAAAOEZGryk5I0aMiIqKiiOe19XVxdNPP12Qu1etWhX19fVHPK+oqIjhw4cX5G6A49X7+71jx/4dqTMiImJUn1Hx0FUPpc4AAAAAAAAAAAAAAAAAAAAAAAAAAOA4GL2m5FRUVMS5556b9ZnHHnusIHf/9re/zXr+qU99KusgN0CxDf7h4Hj97ddTZ0RExPBew2PJNUtSZwAAAAAAAAAAAAAAAAAAAAAAAAAAcJyMXlOSRo0alfX8wQcfLMi9v/zlL7OeX3TRRQW5F+B4jJgzIjbt3JQ6IyIiBnUfFKsnrE6dAQAAAAAAAAAAAAAAAAAAAAAAAABADoxeU5K+8IUvZD1fs2ZNbNiwIa93rl27Np5//vkjnpeVlTXbRX6MHTs2Ghsbi/arX79+WXuWL1/e7Dug2M6be148vfXp1BkREdGnS5/YOGlj6gwAAAAAAAAAAAAAAAAAAAAAAAAAAHJk9JqSNHDgwDjrrLOyPnPXXXfl9c5Zs2ZlPT/nnHOif//+eb0T4Hhccu8lsXLLytQZERHRo2OPeHnKy6kzAAAAAAAAAAAAAAAAAAAAAAAAAADIA6PXlKwvfelLWc9/8pOfxGuvvZaXu1555ZW49957sz5z9dVX5+UugFxMXDQxFtUuSp0RERFd2neJt/7lrdQZAAAAAAAAAAAAAAAAAAAAAAAAAADkidFrStZVV10VJ5100hHP6+vr45//+Z/zctett94ae/fuPeL5ySefHFdddVVe7gI4XlMfmRpznp2TOiMiIjpFp6j7el3qDAAAAAAAAAAAAAAAAAAAAAAAAAAA8sjoNSWroqIivvrVr2Z9ZsGCBfHQQw/ldM/Pf/7zWLhwYdZnJk2aFJ06dcrpns2bN0dZWVnWX7fffntOdwCla+bymTF99fTUGRER0T7ax97qI/+LAgAAAAAAAAAAAAAAAAAAAAAAAAAAaJ2MXlPSJk2aFH379s36zPjx42PVqlXH9f4nn3wyrrnmmqzP9OvXr9nxbYBCmr9qfkxZMSV1RkRElEVZHKw+mDoDAAAAAAAAAAAAAAAAAAAAAAAAAIACMHpNSevcuXP84Ac/yPrM7t2746KLLor//M//PKZ3//rXv47PfvazUVdXl/W5mTNnxgknnHBM7wbIl2WZZXH14qtTZzQ5VH0odQIAAAAAAAAAAAAAAAAAAAAAAAAAAAVSnjoACu0LX/hC/P3f/30sXLjwiM/s3Lkz/vZv/za++MUvxje+8Y344Ac/eMRn169fH9/61rfiZz/7WbN3X3HFFXHppZceV3dqdXV18cADDxzz79u0aVPW8zVr1sSPf/zjY3pnZWVlXHbZZcfcAm1dJpOJCxdcmDqjSe242tQJAAAAAAAAAAAAAAAAAAAAAAAAAAAUkNFr2oS5c+fG008/HRs2bDjiM42NjbFw4cJYuHBhfOxjH4tzzjknqqqqomvXrrF79+7IZDKxcuXKePbZZ4/qzg9+8INxzz335OuPUHRvvvlmXHvttXl/78MPPxwPP/zwMf2efv36Gb2GY5TJZGLAggGpM5rUjquNqqqq1BkAAAAAAAAAAAAAAAAAAAAAAAAAABSQ0WvahK5du8ZvfvOb+NSnPhUvv/xys88/88wz8cwzzxz3faeeemr85je/ia5dux73OwBy0ZIGr5eOW2rwGgAAAAAAAAAAAAAAAAAAAAAAAACgDWiXOgCKpV+/frFs2bIYOHBgQe857bTTYtmyZXHqqacW9B6AIymrKUud0GTe6Hkxsmpk6gwAAAAAAAAAAAAAAAAAAAAAAAAAAIrA6DVtymmnnRZPPfVUfPazny3I+y+++OJ46qmnCj6sDXAk5TXlqROazDh/Row/c3zqDAAAAAAAAAAAAAAAAAAAAAAAAAAAisToNW1Oz54949FHH4158+bFSSedlJd3nnTSSTF//vxYvHhx9OjRIy/vBDhWHWs6RkM0pM6IiIjbRtwWky+YnDoDAAAAAAAAAAAAAAAAAAAAAAAAAIAiMnpNmzV+/Piora2N2bNnx4c+9KHjesfQoUNj9uzZkclkYty4cXkuBDh6Xb7dJQ7EgdQZEREx4SMTYtqYaakzAAAAAAAAAAAAAAAAAAAAAAAAAAAosvLUAZBSly5dYsKECTFhwoTYuHFjPProo7FmzZpYt25d/OlPf4rdu3dHfX19dO7cOSorK6NPnz4xdOjQ+PjHPx6jR4+OQYMGFa21f//+0djYWLL3tWaTJk2KHTt2HPG8f//+RWuhbep5R8+oP1SfOiMiIq4YckXMHjs7dQYAAAAAAAAAAAAAAAAAAAAAAAAAAAkYvYb/NXjw4Bg8eHDqDFqhSZMmpU6gDev9/d6xY/+O1BkRETGqz6i47/L7UmcAAAAAAAAAAAAAAAAAAAAAAAAAAJBIu9QBAMDxqfpBVbz+9uupMyIiYniv4bHkmiWpMwAAAAAAAAAAAAAAAAAAAAAAAAAASMjoNQC0QqffdXps3r05dUZERAzqPihWT1idOgMAAAAAAAAAAAAAAAAAAAAAAAAAgMSMXgNAK3Pe3PNi3fZ1qTMiIqJPlz6xcdLG1BkAAAAAAAAAAAAAAAAAAAAAAAAAALQARq8BoBW55N5LYuWWlakzIiKiV0WveHnKy6kzAAAAAAAAAAAAAAAAAAAAAAAAAABoIYxeA0ArceUDV8ai2kWpMyIiokv7LvHGrW+kzgAAAAAAAAAAAAAAAAAAAAAAAAAAoAUxeg0ArcDUR6bG/RvuT50REREVURF1X69LnQEAAAAAAAAAAAAAAAAAAAAAAAAAQAtj9BoAWriZy2fG9NXTU2dERER5lMfb1W+nzgAAAAAAAAAAAAAAAAAAAAAAAAAAoAUyeg0ALdj8VfNjyoopqTMiIqIsyuJA9YHUGQAAAAAAAAAAAAAAAAAAAAAAAAAAtFBGrwGghVqWWRZXL746dUaTQ9WHUicAAAAAAAAAAAAAAAAAAAAAAAAAANCCGb0GgBYok8nEhQsuTJ3RpHZcbeoEAAAAAAAAAAAAAAAAAAAAAAAAAABaOKPXANDCZDKZGLBgQOqMJrXjaqOqqip1BgAAAAAAAAAAAAAAAAAAAAAAAAAALZzRawBoYVrS4PXScUsNXgMAAAAAAAAAAAAAAAAAAAAAAAAAcFSMXgNAC1JWU5Y6ocnScUtjZNXI1BkAAAAAAAAAAAAAAAAAAAAAAAAAALQSRq8BoIVoX9M+dUKTeaPnGbwGAAAAAAAAAAAAAAAAAAAAAAAAAOCYGL0GgBagY03HOBSHUmdERMSM82fE+DPHp84AAAAAAAAAAAAAAAAAAAAAAAAAAKCVMXoNAIl1+XaXOBAHUmdERMSEj0yIyRdMTp0BAAAAAAAAAAAAAAAAAAAAAAAAAEArZPQaABLqNq1b1B+qT50RERFXDLkiZo+dnToDAAAAAAAAAAAAAAAAAAAAAAAAAIBWyug1ACTS+/u9Y/fB3akzIiJiVJ9Rcd/l96XOAAAAAAAAAAAAAAAAAAAAAAAAAACgFTN6DQAJVP2gKl5/+/XUGRERMbzX8FhyzZLUGQAAAAAAAAAAAAAAAAAAAAAAAAAAtHJGrwGgyE6/6/TYvHtz6oyIiBh24rBYPWF16gwAAAAAAAAAAAAAAAAAAAAAAAAAAEqA0WsAKKLz5p4X67avS50RERH9K/vH2hvXps4AAAAAAAAAAAAAAAAAAAAAAAAAAKBEGL0GgCK55N5LYuWWlakzIiKiV0WvyHwtkzoDAAAAAAAAAAAAAAAAAAAAAAAAAIASYvQaAIrgygeujEW1i1JnREREZXllvHHrG6kzAAAAAAAAAAAAAAAAAAAAAAAAAAAoMUavAaDApj4yNe7fcH/qjIiIqIiK2DV1V+oMAAAAAAAAAAAAAAAAAAAAAAAAAABKkNFrACigmctnxvTV01NnREREeZTH29Vvp84AAAAAAAAAAAAAAAAAAAAAAAAAAKBEGb0GgAKZv2p+TFkxJXVGRES0i3ZxoPpA6gwAAAAAAAAAAAAAAAAAAAAAAAAAAEqY0WsAKIBlmWVx9eKrU2c0aahuSJ0AAAAAAAAAAAAAAAAAAAAAAAAAAECJM3oNAHmWyWTiwgUXps5o0ljdmDoBAAAAAAAAAAAAAAAAAAAAAAAAAIA2wOg1AORRJpOJAQsGpM5oUjuuNnUCAAAAAAAAAAAAAAAAAAAAAAAAAABthNFrAMijljZ4XVVVlToDAAAAAAAAAAAAAAAAAAAAAAAAAIA2wug1AORJWU1Z6oQmS8ctNXgNAAAAAAAAAAAAAAAAAAAAAAAAAEBRGb0GgDxoX9M+dUKTeaPnxciqkakzAAAAAAAAAAAAAAAAAAAAAAAAAABoY4xeA0COMplMHIpDqTMiImLG+TNi/JnjU2cAAAAAAAAAAAAAAAAAAAAAAAAAANAGGb0GgBxVVVXF0nFLU2fEbSNui8kXTE6dAQAAAAAAAAAAAAAAAAAAAAAAAABAG2X0GgDyYGTVyKgdV5vs/iuGXBHTxkxLdj8AAAAAAAAAAAAAAAAAAAAAAAAAABi9BoA8qaqqSjJ8ParPqLjv8vuKfi8AAAAAAAAAAAAAAAAAAAAAAAAAAPwlo9cAkEdVVVXRWN1YtPvO7X1uLLlmSdHuAwAAAAAAAAAAAAAAAAAAAAAAAACAIzF6DQAF0FjdGO2jfUHvGHbisHji+icKegcAAAAAAAAAAAAAAAAAAAAAAAAAABwto9cAUCAHqw9Gh+hQkHf3r+wfa29cW5B3AwAAAAAAAAAAAAAAAAAAAAAAAADA8TB6DQAFtL96f3Ru1zmv7zz5hJMj87VMXt8JAAAAAAAAAAAAAAAAAAAAAAAAAAC5MnoNAAW25xt7okfHHnl5V2V5ZWy5ZUte3gUAAAAAAAAAAAAAAAAAAAAAAAAAAPlk9BoAiuCtf3krTj7h5Jze0bld59g1dVeeigAAAAAAAAAAAAAAAAAAAAAAAAAAIL+MXgNAkWy5ZUv0r+x/XL+3Q3SIPd/Yk98gAAAAAAAAAAAAAAAAAAAAAAAAAADII6PXAFBEma9lYtiJw47p97SLdrG/en+BigAAAAAAAAAAAAAAAAAAAAAAAAAAID+MXgNAka29cW2c2/vco36+obqhgDUAAAAAAAAAAAAAAAAAAAAAAAAAAJAfRq8BIIEnrn8ixg4Y2+xzjdWNhY8BAAAAAAAAAAAAAAAAAAAAAAAAAIA8MHoNAIk8dNVDccWQK454Xjuutog1AAAAAAAAAAAAAAAAAAAAAAAAAACQG6PXAJDQfZffF7eNuO09P68dVxtVVVUJigAAAAAAAAAAAAAAAAAAAAAAAAAA4PgYvQaAxKaNmRYzzp/R9J+Xjltq8BoAAAAAAAAAAAAAAAAAAAAAAAAAgFanPHUAABAx+YLJ8Vdd/ioiIkZWjUxcAwAAAAAAAAAAAAAAAAAAAAAAAAAAx87oNQC0EOPPHJ86AQAAAAAAAAAAAAAAAAAAAAAAAAAAjlu71AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtH5GrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImdFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHJm9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAnBm9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBnRq8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJnRawAAAAAAAAAAAAAAAAAAAAAAAAAAAAByZvQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJwZvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgZ0avAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMiZ0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcmb0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICcGb0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGdGrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImdFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHJm9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAnBm9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBnRq8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJnRawAAAAAAAAAAAAAAAAAAAAAAAAAAAAByZvQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJwZvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgZ0avAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMiZ0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcmb0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICcGb0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGdGrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImdFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHJm9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAnBm9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBnRq8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJnRawAAAAAAAAAAAAAAAAAAAAAAAAAAAAByZvQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJwZvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgZ0avAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMiZ0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcmb0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICcGb0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGdGrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImdFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHJm9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAnBm9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBnRq8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJnRawAAAAAAAAAAAAAAAAAAAAAAAAAAAAByZvQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJwZvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgZ0avAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMiZ0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcmb0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICcGb0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGdljY2NjakjAGhbKisro66u7j0/79SpUwwcODBBEQAAAAAA5N+LL74Y+/bte8/Pu3btGrt3705QBAAAAAAAAAAAAAAAAAAAUFhGrwEouoqKisOOfAAAAAAAQFvQqVOn2Lt3b+oMAAAAAAAAAAAAAAAAAACAvGuXOgAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1s/oNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5M3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM6MXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQs/LUAQC0PT169IgdO3a85+cdOnSIU089tfhBJPHiiy/Gvn373vPzTp06xcCBAxMUQTq+B3g33wS8w/cA7/A9wDt8D/AO3wMt3f/8z//EgQMH3vPzHj16FD8GAAAAAAAAAAAAAAAAAACgCIxeA1B0W7ZsSZ1ACzBs2LBYv379e34+cODAWLduXYIiSMf3AO/mm4B3+B7gHb4HeIfvAd7hewAAAAAAAAAAAAAAAAAAAICWpV3qAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABaP6PXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOTM6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOTN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDOjF4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDOj1wAAAAAAAAAAAAAAAAAAAAAAAAAAAADkzOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAADkzeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAzoxeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJAzo9cAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5MzoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5M3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM6MXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQM6PXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOTM6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOTN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDOjF4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDOj1wAAAAAAAAAAAAAAAAAAAAAAAAAAAADkzOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAADkzeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAzoxeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJAzo9cAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5MzoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5M3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM7KUwcAAG3ThAkTYuvWre/5ea9evRLUQFq+B3g33wS8w/cA7/A9wDt8D/AO3wMAAAAAAAAAAAAAAAAAAAC0LGWNjY2NqSMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaN3apQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPUzeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAzoxeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJAzo9cAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5MzoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5M3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM6MXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQM6PXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOTM6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOTN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDOjF4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDOj1wAAAAAAAAAAAAAAAAAAAAAAAAAAAADkzOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAADkzeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAzoxeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJAzo9cAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5MzoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5M3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM6MXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQM6PXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOTM6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOTN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDOjF4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDOj1wAAAAAAAAAAAAAAAAAAAAAAAAAAAADkzOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAADkzeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAzoxeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJAzo9cAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5Kw8dQAAtCX79u2LjRs3xiuvvBK7d++O+vr66Ny5c1RWVkafPn1iyJAh0bFjx9SZUBS+B3iH7wHe4XuAd/NN8Gc7duyIl156KV577bXYuXNn7N27NxobG6OioiK6du0aJ598cvTp0ydOOeWU1KkF43sgIqKhoSFefvnl2Lx5c2zbti3q6+ujsbExKisro1u3bjFgwIDo169ftGtX2v/OT98Df2nbtm3xxz/+MbZt2xa7d++OhoaGqKysjO7du8egQYOib9++qRMBAAAAAAAAAAAAAAAAAABoQ4xeA0CBPfnkk7Fo0aJYvHhxrFu3LhoaGo74bPv27WPYsGHxuc99Lj7/+c/HWWedVcRSKDzfA7zD90A2e/fujSeeeCJWrlwZGzZsiA0bNsTrr78edXV1UVdXFx07dowuXbpE165d4wMf+EAMGDAgBg4cGGeccUacddZZ8f73vz/1H+GY+B7g3XwTRETU1tbGww8/HMuXL4/Vq1fHn/70p6P6fT179oyPfvSj8elPfzpGjx4dn/jEJwpcWli+ByIinnvuufjVr34Vjz/+eKxevTrq6+uzPl9RURGf+MQn4uKLL46xY8fG0KFDi1RaWL6Ho/fGG2/E888/H2vXro1169bFhg0bYtu2bbFjx47YsWNH7N27NyoqKqJLly7Ru3fv+MAHPhBDhw6Nj3zkI/HXf/3Xceqpp6b+I2RVX18fv/71r+ORRx6JpUuXxpYtW7I+X1lZGeedd16MGTMmLr300ujdu3eRSgEAAAAAAAAAAAAAAAAAAGiLyhobGxtTRwBAKXrggQfizjvvjDVr1hz3O4YPHx7/9E//FJdddlkey1qH+vr6+P3vfx+rV69u+rVhw4Y4dOjQEX9PdXV13H777cWLLJCFCxfGFVdccVTPLl++PD796U8XNigPfA+5aU3fw7x58+If/uEfin7vn33gAx+IV155Jdn9R8P3kJvW9D0cq4aGhnjkkUfixz/+cTz22GOxd+/e435X375941Of+lSMGTMmLr744jjxxBPzWJo/vofctIbvYc2aNTn991tIgwcPjvPPPz91xrv4JnLTGr6J5jQ0NMQvf/nL+NGPfhT//d//nZd3nnbaaTFhwoS49tpro2vXrnl5ZzH4HnJTKt/DwoULY+bMmfHss8/m9K4LLrggpkyZEp/73OfyVFdcvofmbdu2LZYvXx5Lly6NZcuWxcaNG3N635AhQ+KLX/xijB8/Pvr375+fyDx466234s4774y5c+fG9u3bj+sdHTt2jMsuuyxuu+22+OAHP5jnQgAAAAAAAAAAAAAAAAAAADB6DQB598c//jGuv/76WLFiRd7e+elPfzruueeeGDJkSN7e2ZLs27cvnn322XeNca1fvz4aGhqO6T0tbaDreGzbti0+9KEPxdatW4/q+ZY+eu17OHat/Xswen1kvodj19q/h6PV0NAQP/nJT6KmpqYgf/22b98+pk2bFrfeemve3328fA/HrrV+D7fffnvU1NQU7b5jMX78+Jg3b17qjIjwTRyP1vpNZLN06dK46aabYv369QV5f69eveKOO+6IL33pS1FWVlaQO/LB93DsSvF7ePzxx+PGG2+MtWvX5vW9o0ePjrvvvjsGDBiQ1/cWiu8hu5dffjl+8YtfxM9//vNYtWpVFOL/7mrfvn1cdtllUV1dHYMHD877+4/FggULYsqUKUf9vxk1p2PHjjF58uSorq6OTp065eWdAAAAAAAAAAAAAAAAAAAAEBFRnjoAAErJgw8+GOPHj4+6urq8vvfxxx+PESNGxIIFC/4fe/cdZWVhNAx8lt5RmqDSbSgWioDYMBQbiWLFRlDsLWqMNWosib72hi2iWKKoUQOWKBZA0dAEFKwoRUCU3mGBZb8/cvhCDPvc3b1lAX+/czznfZ25M3OXZ2AXT+ZGr169Mlo719auXRuTJk36r2NckydPjrVr15b1aJuFSy+9NGPHi8qafUjNPvxy2IfUfqn7MGrUqDjjjDPiyy+/zFqPgoKCmDNnTtbql5R9SO2Xug+/VHYita19J9asWRNXXHFF3HfffVntM2/evDjzzDPj5Zdfjqeffjrq1auX1X6lYR9S29r3Yd26dfHHP/4xbr/99qwcMP7nP/8Zbdu2jaeffjp+85vfZLx+JtmHoj3wwAPx/PPPx6hRo7LynGysoKAgnnvuufj73/8eV111VVx33XVRoUJu/9Nafn5+nHfeefHkk09mtO6aNWvi1ltvjffeey9effXV2H777TNaHwAAAAAAAAAAAAAAAAAAgF8uR68BIEP69+8fF110UdaO7SxfvjyOPfbYePDBB+P888/PSo9ceOONN7bYo0rZNnTo0HjmmWfKeoyMsA/FYx9+GexD8fzS9mH9+vVxyy23xM033xzr1q0r63Fyxj4Uzy9tH8pKuXLlynoEO1FMW/NOLF++PI455ph45513ctbzn//8Z3Tu3DneeeedaNq0ac76pmIfimdr3oeVK1fG8ccfH2+++WZW+yxZsiSOPvrouPfee+Piiy/Oaq/Ssg/J/vCHP0R+fn5Oe65ZsyZuuummeO+99+LFF1/M2YHoVatWxeGHHx4jRozIWo8xY8bEvvvuGx988EG0bNkya30AAAAAAAAAAAAAAAAAAAD45Sj76z4AsBV46qmnsnqMaIPCwsK48MIL4+mnn85qH3Jv5cqVce6555b1GBlhH+A/7AObkp+fHyeccELccMMNv6iD1/aBzU2XLl3KtL+dYO3atdGrV6+cHrzeYMqUKXHIIYfE3Llzc957U+wD+fn5ceSRR2b94PUGhYWF8bvf/S4eeeSRnPQrCfuwefvoo49i//33j6lTp2a914Y/J7J58HqDH374Ibp27RqzZs3Kei8AAAAAAAAAAAAAAAAAAAC2fhXKegAA2NKNGTMmzjrrrGIdI+rcuXOcfPLJ0blz52jWrFnUrFkzli1bFlOnTo2PP/44/va3v8Xo0aMTaxQWFsZZZ50VrVq1in333TdTb4My9sc//jGmTZtW1mOkzT7Af9gHNmXlypVx5JFHxvDhw4v9mqZNm0a7du2iZcuWUb9+/ahRo0asXbs2Fi9eHIsXL47vv/8+JkyYENOmTcv6ccTSsg9sbmrVqhXHHXdcmfW3E0REXHHFFfHuu+8WK7dSpUpx1FFHxUEHHRSdOnWKhg0bxrbbbhsVKlSIhQsXxvz582PcuHHx0UcfxcsvvxyLFy9OWXPatGlx/PHHx7Bhw6JcubL7bET7QERE3759i/39UcuWLeOoo46Kww47LJo0aRINGzaMSpUqxY8//hhz5syJ4cOHx5AhQ2LMmDEpn6sLL7wwdtlll/jVr36VgXeRPvuQHfXq1Ys2bdpEixYtonHjxlGzZs2oWLFiLFq0KBYsWBCff/55fPTRR7F8+fJi1Zs+fXr86le/itGjR8d2222Xtbn/8Ic/xNtvv50yr1q1anHsscfGUUcdFW3bto3tttsuypcvHwsWLIhJkybFO++8E88++2z89NNPiXVmzJgRxx57bIwcOTIqVqyYqbcBAAAAAAAAAAAAAAAAAADAL5Cj1wCQhqVLl0bv3r1j7dq1iXk777xzPPzww9G1a9f/iW277bbRrl27aNeuXVx00UUxdOjQOP/88+O7774rst6aNWvixBNPjIkTJ0atWrXSfh+UrbFjx8b9999f1mOkzT5QHLfddlvUrVs3a/WrV6+etdolYR/YlIKCgujdu3exDjq2bNky+vXrFyeeeGK0aNGiWPWXLl0ao0aNiiFDhsRrr70W33//fZoTZ4Z9YHN00kknRbVq1cqkt50gIuKjjz6K++67L2Ve+fLl47LLLovf//73RR5WbdSoUTRq1Cj23HPPOP300+Pee++NAQMGxHXXXRfLli1LrP/BBx9E//7946KLLirV+0iXfSAi4qGHHopBgwalzNthhx3i9ttvj5NPPnmT8ebNm0fz5s2jc+fOcc0118To0aPjwgsvjHHjxhVZs6CgIE466aSYOHFiNGrUqNTvIRPsQ+ZUrVo1Dj300Dj88MOjW7duxfp+et26dTFs2LC4/fbbi/WBBDNmzIhjjjkmPvjggyhfvnwmxv4vQ4YMKdafE6ecckrccccdm3x+t99++9h+++3j0EMPjZtvvjnuvPPOuOmmm2LdunVF1hszZkxcddVVcdddd6U1PwAAAAAAAAAAAAAAAAAAAL9sjl4DQBquv/76mDZtWmJOt27d4u9//3vUrl27WDV79OgR48aNi2OOOSaGDRtWZN60adPiT3/6U9x9990lmnlLVK1atdh7771j7ty5iYeatkTr1q2LM888MwoKCv4nts0220ReXl4sWrSoDCYrOfuQG1v6Ppx44onRrFmzsh4j6+xDbmxp+3DxxRfHa6+9lphTt27duO2226Jv375RoULJfmSvVatW9OjRI3r06BEPPvhgjB07Nvr371+sI5LZZB9yY3Pdhz/96U/xpz/9Kac9b7311rjmmmsSc/r165ejaf6XnciNzXUnNrj66qujsLAwMWe77baLl156KQ488MAS1a5Ro0b87ne/i549e8Zxxx0XEydOTMy/6aab4vTTT48aNWqUqE8m2Ifc2Jz3Yfr06XH55ZenzOvRo0e8/PLLJXpOO3bsGGPGjIlrrrkmbrvttiLz5s6dG7/73e/ixRdfLHbtbLAP6dt///3jrLPOimOOOSZq1qxZotdWqFAhunfvHt27d4/hw4fHKaecEj/88EPiaz7++OO466674oorrkhn7P+xYsWKOP/88xNz8vLy4oEHHogLLrigWDWrVq0a1113XXTp0iV69uwZS5cuLTL33nvvjVNPPTXatGlTorkBAAAAAAAAAAAAAAAAAABgg3JlPQAAbKm++OKL6N+/f2LOfvvtF4MHDy72MaINttlmm3jttdeiQ4cOiXkPPPBAfPnllyWqvbmrUqVKdOzYMS644IJ44okn4rPPPoulS5fGxx9/HAcccEBZj5dxt99+e3z22WebjN12221Rq1atHE9UOvYhO35p+7C1sA/ZsaXvw0svvRQPPfRQYs4hhxwSkydPjjPPPLPEB683Zd99942BAwfGrFmz4uSTT067XmnYh+zY0vch25544onE+J577hn77rtvjqb5b3YiO7a0nZgwYUJ8+OGHiTnVq1ePN998s8QHrzfWsmXLGDp0aLRs2TIxb/78+fHss8+Wuk9p2Yfs2NL24aqrropVq1Yl5vz617+OIUOGlOowe15eXtx6661x0003Jea99NJL8e6775a4fqbYh9KrUKFC9OnTJyZMmBAjR46M3/72tyU+eP1zXbp0iYkTJ0bnzp1T5t5yyy0xf/78tPr93J///OeYPXt2Ys7dd99d7IPXGzvwwAPjzTffjEqVKhWZs379+rjoootKXBsAAAAAAAAAAAAAAAAAAAA2SP+KFgD8Qt14442xbt26IuN16tSJF154IapVq1aq+tWrV48XX3wx9tlnn1i8ePEmc9atWxc33XRTPP/886XqUdYqV64ce+65Z7Rv3z7at28f7dq1i9atW2fk0OeW4Jtvvombb755k7HOnTvH2WefHbfeemuOpyod+5C+X/o+bE3sQ/q2tn2YNWtWnHPOOYk5J5xwQjzzzDOJx+dKq169elGvXr2M1y0O+5C+rW0fsm3EiBHx7bffJub069cvR9P8LzuRvq1hJ/72t7+lzLn33nujbdu2afeqX79+vPLKK9GmTZtYv3594kznnntu2v1Kwj6kb0vfhy+//DJeeOGFxJwWLVrE888/H5UrV06r13XXXRfjx4+Pf/zjH0XmXHPNNdGtW7e0+pSWfSi5ChUqxOmnnx5XX311NG/ePOP169evH6+99lrsv//+8dVXXxWZt2zZsrjvvvuK/PudklqwYEHcd999iTnHHXdcXHLJJaXusf/++8ftt9+eWOOjjz6Kt99+Ow499NBS9wEAAAAAAAAAAAAAAAAAAOCXq1xZDwAAW6KpU6fGyy+/nJhzyy23ROPGjdPq07Rp07jxxhsTc1566aWYPn16Wn1yaZdddolHH300xo0bF8uWLYuxY8fGww8/HP369Yt99tlniznOla7CwsI4++yzY/Xq1f8Tq1ixYjz66KORl5dXBpOVnH0oPfuw9bEPpbc178Oll14aixYtKjLerVu3ePbZZ7Ny8Los2YfS25r3IdueeOKJxHilSpXi1FNPzdE0/81OlN7WthPvvfdeYnzXXXeN008/PWP99tprr5TP/ahRo2LFihUZ65mKfSi9rWkf+vfvnxjPy8uLJ598MqpXr56Rfo8++mjiB4GMHTs23n333Yz0Kgn7UHK9evWKyZMnx2OPPZaVg9cb1KlTJwYPHhwVK1ZMzHvqqacSP1igJB588MFYuXJlkfGaNWvGgw8+mHafiy++ONq1a5eYc/vtt6fdBwAAAAAAAAAAAAAAAAAAgF8mR68BoBT69+8fBQUFRcZ33nnnOPvsszPS6/zzz48WLVoUGS8oKEh5KGpzsvvuu8fZZ58d7dq1S3k0aGv2+OOPx4gRIzYZ+/3vfx+tW7fO8USlZx9Kzz5sfexD6W2t+/DBBx/E3//+9yLjDRs2jEGDBm1V73kD+1B6W+s+ZNvSpUsT9y0i4uijj466devmaKL/ZidKb2vaibVr18akSZMSc/r27Rvly5fPaN9Uz9a6deti4sSJGe2ZxD6U3tayDwUFBTFo0KDEnMMPPzwOOuigjPVs0KBBXHLJJYk5d999d8b6FZd9KLnnn38+dt1115z02mWXXeL8889PzJk5c2aMHz8+7V7r1q2Lhx56KDHn8ssvj+222y7tXnl5eSmPWr///vsxefLktHsBAAAAAAAAAAAAAAAAAADwy+PoNQCUUEFBQTz//POJOZdeemnGjpRVqFAhLr744sSc5557LtavX5+RfmTfnDlz4oorrthkrHnz5nH99dfneKLSsw/wH/aBTbnyyisT4w899FCZHeDNJvtAWRg0aFCsXLkyMadfv345mua/2Qk2mDFjRuJx24iIHj16ZLxvx44do3bt2ok53377bcb7bop9ICJi5MiRsWDBgsSc8847L+N9zzzzzKhUqVKR8aFDh8aPP/6Y8b5FsQ9bhssvvzxlzvDhw9PuM3To0Jg7d26R8apVq8YFF1yQdp8NfvWrX0WbNm0Sc/72t79lrB8AAAAAAAAAAAAAAAAAAAC/HI5eA0AJvf/++zFnzpwi41WqVIlTTz01oz1/+9vfJh5l+uGHHzJyXIfcuPDCC2Px4sWbjD300ENRtWrV3A6UBvsA/2Ef+LkPP/wwRo0aVWR8//33j169euVwotyxD5SFAQMGJMabNGkS3bp1y9E0/81OsMGiRYtS5uy5554Z71uhQoXYfffdE3Pmz5+f8b6bYh+IiBgxYkRivEGDBnHEEUdkvO92220Xhx9+eJHxgoKCeO655zLetyj2Ycuw4447xt57752YM2nSpLT7pDowfcwxx2T8A3POOuusxPhzzz0XhYWFGe0JAAAAAAAAAAAAAAAAAADA1s/RawAooddeey0xfuSRR0bNmjUz2nObbbZJPMoUkXouNg//+Mc/4pVXXtlk7MQTT4zDDjssxxOlxz7Af9gHfu6uu+5KjF977bU5miT37AO59vnnn8eYMWMSc/r27RvlypXNX4XZCTbIz89PjNeuXTsqVqyYld7169dPjK9atSorfX/OPhARMXbs2MT4fvvtl7Xfs/fff//E+ODBg7PSd1Psw5bjoIMOSoxPnTo1rfrr16+PN998MzGnd+/eafXYlOOPPz4qVKhQZPz777+Pzz77LON9AQAAAAAAAAAAAAAAAAAA2Lo5eg0AJfTuu+8mxo888sis9E1V95133slKXzJnyZIlccEFF2wyts0228S9996b24EywD7Af9gHNjZv3rx44403iow3a9YsDj300BxOlFv2gVwbMGBAYjwvLy9OP/30HE3zv+wEG9SuXTsxXr169az1TlW7Vq1aWeu9MftARMRXX32VGO/UqVPWenfs2DEx/q9//SuWLVuWtf4bsw9bjoYNGybGFy9enFb9cePGJdaoXLlydO3aNa0em1KvXr3o0KFDYo7nAQAAAAAAAAAAAAAAAAAAgJJy9BoASmDOnDnx5ZdfJuZ069YtK727d++eGP/888/jxx9/zEpvMuOKK66IH374YZOxW2+9NeUBpc2NfYD/sA/83EsvvRTr1q0rMt67d+8oV27r/JHcPpBra9eujWeffTYxp2vXrtGsWbPcDPQzdoKN1a1bNzG+cOHCrPVesGBBYjzVbJlgH4iIKCwsjJkzZybm7L777lnrv8ceeyTG165dG8OHD89a/w3sw5alfv36ifFVq1alVf+9995LjO+///5RtWrVtHoUJdXzkOo4OwAAAAAAAAAAAAAAAAAAAPzc1nlhCwCyZMyYMYnxxo0bR+PGjbPSu1mzZtGoUaPEnLFjx2alN+n74IMP4q9//esmY/vtt1+cc845OZ4offYB/sM+8HMvvPBCYvzXv/51jibJPftArg0ZMiTmzZuXmNOvX78cTfO/7AQba9SoUWy77bZFxlevXh2LFy/OSu9UB2xbtGiRlb4bsw9ERCxbtizy8/MTc5L2JF3bbLNN5OXlJeaMGjUqa/03sA9blpUrVybGq1Spklb9VM/D/vvvn1b9JJ07d06MexYAAAAAAAAAAAAAAAAAAAAoKUevAaAExo8fnxhv27ZtVvu3b98+MT5hwoSs9qd08vPz4+yzz47CwsL/iVWoUCEeffTRlAe3Nkf2Af7DPrCxFStWxL/+9a8i49WrV4+OHTvmcKLcsg/k2hNPPJEYr1OnTvTq1StH0/wvO8HG8vLyUh4u/fDDDzPed+HChTF58uQi41WrVo127dplvO/P2QciUh8Pjvj3YepsKV++fNSoUSMxJ9Wzmgn2Ycsyc+bMxHi6h9rL8nlI9SwsXLgwvv/++6z1BwAAAAAAAAAAAAAAAAAAYOvj6DUAlMDEiRMT43vttVdW+6eq7yDR5ummm26Kr7/+epOxyy67LPbcc88cT5QZ9gH+wz6wsY8++ijWrl1bZLxdu3ZRvnz5HE6UW/aBXJo9e3a8/fbbiTmnnHJKVK5cOUcT/S87wc8dccQRifE333wz4z3feuutWL9+fZHxAw44ICpVqpTxvj9nH4iIxO+TNqhatWpWZ0hVPxdHr+3DliXVM9GyZctS1y7OUelsPg916tSJHXbYITHH8wAAAAAAAAAAAAAAAAAAAEBJVCjrAQBgS/LNN98kxnfeeees9t9pp50S41OmTMlqf0rus88+izvuuGOTsWbNmsUNN9yQ44kyxz6QrkWLFsXUqVNj1qxZsWzZsli7dm1UrVo1qlWrFg0aNIjGjRtHo0aNoly5zf+zeuwDG/vggw8S423bti1WnaVLl8bnn38eP/30UyxdujTy8vKiWrVqUa9evWjatGk0btx4szyebR/IpaeeeioKCgoSc/r165ejaTbNTvBzp512WlxzzTWxePHiTcafeuqpuP7666NRo0YZ6bd+/fq49dZbE3POP//8jPRKxT4QEcX6IIIlS5ZkdYZU9efOnRtLliyJ2rVrZ20G+7DlWLJkSXz00UeJOa1bty51/VRf64oVK0bTpk1LXb84dtppp5g9e3aRcc8DAAAAAAAAAAAAAAAAAAAAJeHoNQAUU2FhYUyfPj0xJ9XBoHSlqp9qPnJr/fr1cdZZZ8XatWs3GX/ooYeiWrVqOZ4qM+wDpfXiiy/GZ599Fh999FGxfo2qV68e++yzT3Tq1CkOP/zwOPDAA6NSpUrZH7QE7AM/N3HixMR40q/XuHHjYtCgQfH666/H119/nVinevXq0b59++jatWsce+yxsfvuu5dm3IyyD+Tak08+mRhv165d7L333jma5n/ZCTalRo0acfHFF8dNN920yfiqVavi8ssvj7/97W8Z6ffggw/G5MmTi4zvvPPO8Zvf/CYjvZLYBzaoXr16ypyijsJnwurVqyM/Pz9l3nfffVfsDyspKfuwZfn73/8ea9asScw5+OCDS11/2rRpifHmzZtn/cNudtpppxgxYkSR8VQzAgAAAAAAAAAAAAAAAAAAwMbKlfUAALCl+Omnn2L16tWJOdtvv31WZ0hVf8WKFTF37tyszkDx3X///TFmzJhNxk444YQ4/PDDczxR5tgHSuvKK6+Mv/3tb8U+oLZixYr46KOP4q677opu3bpFw4YN49JLL40pU6Zkd9ASsA/8XNJh0YiIli1b/s+/Gz58eBx44IGx7777xl133ZXy4HXEv39dR4wYEddff33ssccesd9++8Urr7xS6rkzwT6QSyNGjIhvv/02Madfv345mmbT7ARFufbaa2OPPfYoMv7cc8/FzTffnHaf119/PS677LIi43l5efHYY49FuXLZ/2ti+8AG1atXjxo1aiTmzJs3L2v9i/trPHXq1KzNYB+2HIWFhXHfffcl5my//fbRrl27UvdI9fNxtp+F4vRw9BoAAAAAAAAAAAAAAAAAAICScPQaAIrphx9+SJnTsGHDrM5QnPrFmZPsmzFjRvzxj3/cZKx27dpx77335nagDLMPlJVFixbFvffeG61atYozzzxzs/g1tg9sbMWKFfH9998n5my33Xb///9eunRpnHrqqXHIIYfEyJEj0+o9atSoOPbYY+PAAw+MSZMmpVWrtOwDuTRgwIDEeNWqVePkk0/O0TSbZicoSqVKleK5556LbbbZpsic66+/Pvr16xcrV64scf3169fHrbfeGr169YqCgoIi8y677LLo0qVLieuXhn1gYzvuuGNifNy4cVnrXdza2XwW7MOWY9CgQSm/tz755JPT+vCAVF/nbD8LxenhWQAAAAAAAAAAAAAAAAAAAKAkHL0GgGJasGBBYrxWrVpRuXLlrM5QrVq1qFGjRmJOqjnJjXPPPTdWrFixydhf/vKXaNSoUY4nyiz7QFkrKCiIAQMGxB577BHPPPNMmc5iH9jYrFmzorCwMDGnfv36ERHx1Vdfxb777ht/+9vfMjrDyJEjo0OHDvHXv/41o3WLwz6QK0uXLo2XX345MefYY4+N2rVr52iiTbMTJNlrr73irbfeipo1axaZ88QTT8Ruu+0Wd955ZyxatChlzfz8/Hj66aejbdu2cc0118S6deuKzO3Tp0/ccccdpZq9NOwDG9t9990T46NGjcpa79GjRxcrL5vPgn3YMqxYsSKuvvrqxJwKFSrEhRdemFafVF/nBg0apFW/ODb+YJ5N+aU/CwAAAAAAAAAAAAAAAAAAAJRMhbIeAAC2FAsXLkyM16pVKydz1KpVK5YvX15kPNWcZN+zzz4bb7311iZjnTp1inPPPTfHE2WefWBzsXjx4ujTp0+MGjUq7rvvvqhQIfc/4tgHNjZnzpyUObVq1YqvvvoqunTpEj/99FNW5li9enWcffbZMWPGjLjllluy0mNT7AO58vzzz8fKlSsTc/r165ejaYpmJ0ilY8eOMWrUqOjdu3dMmjRpkzkzZ86MP/zhD3HVVVfFnnvuGZ06dYqGDRtGnTp1onz58rFo0aKYN29efPLJJzF27NjIz89P7JmXlxeXXHJJ3HHHHZGXl5eNt7VJ9oGNtWvXLl555ZUi4+PGjYtFixbFtttum/He77zzTrHysnnk1z5sGa688sqYMWNGYk6fPn2iadOmafXZHJ6HVD1+6c8CAAAAAAAAAAAAAAAAAAAAJePoNQAU06JFixLjNWvWzMkcqfo4QlO25s+fH5deeukmYxUqVIhHH300ypUrl+OpMs8+sLl56KGHYtasWfHyyy/n/PC1fWBjxTl6vXjx4ujWrVvWDl5v7M9//nOUK1cubrrppqz3irAP5M4TTzyRGG/ZsmUcfPDBOZqmaHaC4th9991jzJgx8Ze//CXuu+++WLp06SbzCgoKYuLEiTFx4sRS92ratGk89NBDccQRR5S6RmnZBzaW6vfo/Pz8GDhwYJE/X5fW6NGjY8KECcXKzeazYB82f0OHDo2HHnooMadmzZrx5z//Oe1em8PzkKrHypUrIz8/PypXrpz1WQAAAAAAAAAAAAAAAAAAANjybfkXFwEgR1avXp0Yr169ek7mqFGjRmI81Zxk1yWXXBLz58/fZOzSSy+NvfbaK8cTZYd9oKSqVKkSv/rVr+KSSy6JAQMGxKhRo+Lbb7+NuXPnRn5+fixbtixmzJgR48ePj1deeSUuueSSaNu2bYmOxA8ZMiROO+20KCwszOI7+V/2gY0tWbIkZU7fvn1j9uzZRcZ33HHHOP/88+ONN96IL774IhYsWBCrV6+OGTNmxOjRo+Oee+6JQw45pNgH3m+++eZ4/vnni/0e0mEfyIXPP/88xowZk5hzxhlnRF5eXo4mKpqdoLiqVKkSN910U0yfPj1uueWW2HPPPTNaf9ddd42HH344pkyZUiYHryPsA/+tU6dOUbdu3cSchx9+OAoKCjLa98EHHyx2bjafBfuweZs9e3aceuqpKX+2vOmmm6Jhw4Zp99scnodUz0LEL/d5AAAAAAAAAAAAAAAAAAAAoOSKdyELAIg1a9Ykxot7eDJdqfqkmpPseeutt+Jvf/vbJmNNmzaNP/3pT7kdKIvsA8VRr169OPbYY+PII4+Mrl27RrVq1YrMrVSpUtSoUSOaNGkSbdq0iV69ekVExLRp0+Kuu+6KJ554IlatWpWy56BBg2KfffaJK6+8MmPvIxX7wMaK85wOGzZsk/++bt26cfPNN8c555yzyYPvTZo0iSZNmkSHDh3ikksuia+//jouueSSeOutt1L2PO+88+KAAw6Ixo0bp34TabAP5MKAAQMS4+XLl4++ffvmZpgU7AQlte2228YVV1wRHTp0iLvvvrtYv8cnadasWTz88MNx2GGHZWjC0rMPbKx8+fLRu3fv6N+/f5E5U6ZMif/7v/+La665JiM9hw8fXuTP7JuSzWfBPmy+1qxZEyeccELMmzcvMe+ggw6Kiy++OGM9k+TieShOj1/i8wAAAAAAAAAAAAAAAAAAAEDp/O8VLQBgkzaHAzTF6eMATdlYsWJFnHvuuUXG+/fvn3jwd0tjHyhKXl5e7L///vHss8/GrFmz4pFHHolf//rXpX7+mzdvHg8++GBMnz49Dj/88GK95tprr43x48eXql9p2Ac2tnr16lK9rmPHjvH111/Heeedt8mD15uy6667xj//+c945JFHUr5myZIlcdFFF5VqtpKwD2Tb2rVr45lnnknMOeyww2L77bfP0UTJ7AQlMWfOnLj88sujXr160aNHj7QPXkfE//8eql27dnHvvffGihUrMjBp6dgHfi7pZ+gNbrzxxpg4cWLavZYsWRKnn356FBYWFvs1jl7/MvfhnHPOiY8//jgxp1atWjFw4MBif9+eyubwPDh6DQAAAAAAAAAAAAAAAAAAQCY5eg0AxbR+/frEePny5XMyR6o+BQUFOZmD/3bttdfGjBkzNhk77rjj4sgjj8zxRNllHyjKKaecEiNHjoxTTjklKleunLG6DRo0iDfeeCP+8pe/pDwsVlBQEBdccEGJDtqlwz6wsbVr15b4NQcffHC8++67Ubdu3VL1POecc+LZZ59N+QwMHjw4/vWvf5WqR3HZB7JtyJAhMX/+/MScfv365Wia1OwExZGfnx9XXHFFNG/ePO66665YunRpxnuMHz8+Lr300mjatGn85S9/KdWfV+myD/xc69ato1evXok5a9asiUMPPTQ+/fTTUvdZuHBhdO/ePaZPn16i12XzWbAPm6fbb789Bg4cmDJv4MCB0bx584z13Ryeh+L0+KU9DwAAAAAAAAAAAAAAAAAAAJSeo9cAUEwVKlRIjK9bty4nc6TqU7FixZzMwX+MGTMmHnjggU3GatWqFffff3+OJ8o++0BRUj0b6cjLy4urr746Hn/88ZS5o0aNiiFDhmRtlo3ZBzZW0oN0DRo0iJdeeilq1KiRVt+TTjopLr/88pR5d955Z1p9UrEPZNuAAQMS4w0aNIiePXvmaJrU7ASpTJ48Ofbdd9+44447Ij8/P+v9FixYENdee2106tQpvvrqq6z325h9YFNuvfXWlB+WM3fu3DjkkEPiH//4R4nrf/rpp3HwwQfH2LFjS/zaTH6Iz8/Zh83Pc889F1dddVXKvN///vcpj7WX1ObwPBSnxy/peQAAAAAAAAAAAAAAAAAAACA9jl4DQDFVqlQpMZ6rg0Rr165NjKeak8xau3ZtnHnmmbF+/fpNxv/yl79Eo0aNcjxV9tkHytLpp58ef/jDH1LmZfu47wb2gY2V9Ov8yCOPRP369TPS+8Ybb4w99tgjMWfIkCExZ86cjPTbFPtANs2ePTuGDh2amNOnT5/N6iCjnSDJmDFj4oADDohJkyalzK1fv36cdtpp8dhjj8Unn3wSM2bMiGXLlsXq1atj9uzZMWnSpBg0aFBccMEFsfPOO6esN378+GjXrl0MGzYsE2+lWOwDm7LrrrvGTTfdlDJv0aJF0atXr+jRo0d88MEHUVBQkJj/xRdfxPnnnx/t2rWLyZMnbzIn1aHhKlWqpJyrtOzD5uXtt9+Ovn37RmFhYWJer1694vbbb894/83heUj1LET8cp4HAAAAAAAAAAAAAAAAAAAA0pd81QEA+P9SHc9bs2ZNTuZwkGjz8n//939FHqnr0KFDnHfeeTmeKDfsA2XtlltuiSFDhsTXX39dZM7IkSNj2rRp0bx586zOYh/YWEm+zu3bt49evXplrHflypXjhhtuiBNOOKHInHXr1sXgwYPj3HPPzVjfjdkHsmngwIEpj5z269cvR9MUj52gKBMmTIgePXrEkiVLEvOaNm0aV111VfTt27fIA7zbb799bL/99tG6des48cQTo7CwMN544434y1/+Ev/617+KrL1y5cro2bNnvPnmm3HwwQen9X6Kwz5QlMsvvzw++uijGDJkSMrcd955J955552oW7dudO/ePZo0aRLbbbddVKpUKX766aeYM2dOjBgxIr799tvEOj179owFCxYk7kg2j17bh83HRx99FMccc0zKr8UhhxwSzz//fJQrl/nPkt0cngdHrwEAAAAAAAAAAAAAAAAAAMikzP+v8wFgK1WjRo3E+PLly3Myx7JlyxLjqeYkc77++uu45ZZbNhmrUKFCPProo1k5hrQ5sA+UtUqVKsVf/vKXlHl///vfsz6LfWBj1atXL3ZuNj4YoVevXtGoUaPEnDfffDPjfTewD2RLYWFhPPnkk4k5nTt3jt122y1HExWPnWBTVqxYESeccELKg9cnnHBCfPbZZ3HuueeW6PhuXl5e9OzZM0aOHBk33XRTlC9fvsjclStXxjHHHBM//PBDseuXln2gKOXKlYvnnnsu9ttvv2K/ZsGCBTFo0KC4/fbb4/e//31cdNFFccstt8SAAQNSHrzedddd46mnnkp55LdOnTrFnqek7MPmYeLEiXHkkUfGypUrE/M6dOgQQ4YMicqVK2dljs3heUj1LOTl5UW1atWyPgcAAAAAAAAAAAAAAAAAAABbh63zCiMAZEGqY0dLly7NyRyp+mTzKBP/UVhYGGeffXbk5+dvMv673/0u9tlnn9wOlUP2gc3B0UcfHc2aNUvMGTZsWNbnsA9srLhf58qVK8dJJ52U8f4VKlSIU089NTFn1KhRGe+7gX0gW0aMGBHfffddYk6/fv1yNE3x2Qk25fLLL095lPeyyy6LF154IWrVqlXqPuXKlYvrrrsuBg0aFHl5eUXmLVy4MCf7Yx9IUr169Rg6dGh069Ytq3122mmneP/996NOnTqxevXqxNxUHySSDvtQ9r766qvo0aNHyg8g2HPPPeOf//xnVg+Abw7PQ6oetWvXTvwQBQAAAAAAAAAAAAAAAAAAANiYo9cAUEx169ZNjC9evDgnc6Q6xpNqTjLjscceiw8++GCTsaZNm8aNN96Y44lyyz6wOShXrlwcd9xxiTnZPO67gX1gY8X9Ordp0yaqVq2alRk6d+6cGJ83b17MmjUrK73tA9kyYMCAxHiNGjXihBNOyNE0xWcn+Llvv/02HnvsscSco446Ku64446M9TzuuOPitttuS8x56623YsiQIRnruSn2gVRq1KgRb731VlxzzTVRrlzm/9NFt27dYtSoUbH99ttHxL8Pvidp2LBhxmfYwD6UrWnTpkW3bt1i3rx5iXk777xzvPPOO1k//r05PA+pemytzwIAAAAAAAAAAAAAAAAAAADZ4eg1ABRTvXr1EuP5+flZP0KzcOHCWLNmTWKOIzTZ98MPP8SVV15ZZPzBBx+M6tWr53Ci3LMPbC4OOeSQxPiiRYvip59+yuoM9oGNpXoeNujUqVPWZujYsWPKnO+++y4rve0D2bBkyZJ4+eWXE3NOOOGEqFGjRo4mKj47wc/dc889sX79+iLj1apVi0ceeSTjB3//8Ic/xD777JOYc/fdd2e058/ZB4qjfPny8ec//znGjBkT++23X0Zq1qpVK+6555546623/uvXd8GCBYmva9q0aUb6b4p9KDuzZ8+Orl27xuzZsxPzmjZtGu+++25st912WZ8p1fPw448/Zn2GVD22xmcBAAAAAAAAAAAAAAAAAACA7HH0GgCKqUmTJilzsn1YtTj1izMn6bnwwgtjyZIlm4wde+yx0bNnzxxPlHv2gc1F27ZtU+ZMnz49qzPYBzZW3K/z7rvvnrUZGjVqFNtss01izsyZM7PS2z6QDc8//3ysWrUqMadfv345mqZk7AQbW7duXTzzzDOJORdeeGE0bNgw473z8vLilltuScwZMWJEfPHFFxnvvYF9oCTatWsXH3/8cQwbNiyOO+64qFq1aolr1K9fP6677rqYMmVKXHLJJVG+fPn/H1u4cGHk5+cnvn6PPfYocc/isg9l46effoquXbvGtGnTEvMaNWoU7733Xs7ef6o+2X4WitMjm0fgAQAAAAAAAAAAAAAAAAAA2Po4eg0AxVSjRo2oW7duYs6MGTOyOkOqw60NGjSI6tWrZ3WGX7qRI0fGq6++uslYrVq14r777svxRGXDPrC5aNiwYVSpUiUxZ+7cuVmdwT6wsZo1a6Z8HiIi5VHqdG277baJ8YULF2alr30gG5544onE+G677RadO3fO0TQlYyfY2Lhx42LZsmWJOX369Mla/yOOOCLq1auXmPPee+9lrb99oDS6dOkSL730UsybNy9ee+21uOaaa6Jnz56xxx57RN26daNKlSpRvnz5qFWrVjRt2jQOPfTQuPLKK+P999+PH374IW666aZo0KDB/9T99ttvE/vWqVMnGjVqlK23ZR/KwMKFC6N79+7x9ddfJ+bVr18/3nvvvWjZsmWOJoto1qxZYjzbz0JE6uehefPmWZ8BAAAAAAAAAAAAAAAAAACArUeFsh4AALYkzZs3jwULFhQZnzJlSvTo0SNr/VMdZXKAJvvmz59fZKxTp07xz3/+M6P9li9fnhh/4403Uj4XZ555ZiZH+v/sA5uLWrVqxerVq4uMr1y5Musz2Ac21qJFi8TnISL7R69T1c/mXtgHMmny5MkxduzYxJx+/frlaJrSsRNs8OGHHybGd9hhh9hjjz2y1j8vLy+6desWgwYNKjLngw8+iIsuuihrM9gHSqt69erRs2fP6NmzZ0bqpXoW9t5774z0SWIfcmfJkiXRo0ePmDRpUmLetttuG++88060atUqR5P9W6qv9Zw5c2LFihVZPUL+S3oeAAAAAAAAAAAAAAAAAAAAyD5HrwGgBPbYY48YN25ckfGvv/46q/1T1c/mgTRSGzp0aAwdOjSnPe+8886UOdk6em0f2FxUqlQpMb527dqsz2Af2Fjr1q1THumtWrVqVmdIVX/dunVZ620fyKQBAwYkxitWrBh9+vTJ0TSlYyfYYOrUqYnxfffdN+szdOzYMfHo9VdffZXV/vaBzcUnn3ySGD/44IOzPoN9yI3ly5fHEUcckfLXvGbNmvHWW2/l5OD5z+28885RqVKlWLNmTZE5X3/9dbRt2zYr/QsLC2PKlCmJOVvL8wAAAAAAAAAAAAAAAAAAAEBulCvrAQBgS5LquMyECROy2n/8+PGJ8TZt2mS1P2zMPrC5WLVqVWI828eFI+wD/61du3Ypc5YsWZLVGVLVz+Ze2AcyZc2aNfHss88m5vTs2TMaNGiQo4lKx06wwYIFCxLj9evXz/oMqXqkmjFd9oHNRaoPKOnSpUvWZ7AP2bdq1ar49a9/HR9//HFiXrVq1eKNN96IDh065Giy/1apUqWUR6Wz+TxMmTIlli1bVmQ8Ly+vTI6BAwAAAAAAAAAAAAAAAAAAsOVy9BoASiDVQaKJEydGQUFBVnqvW7cuPv3008ScreEgEVsO+8DmYM2aNbFo0aLEnBo1amR9DvvAxtq3b58yZ/HixVmdoSz3wj6QKUOGDIn58+cn5vTr1y9H05SenWCDVL8316tXL+szpOpR1kev7QO5sGzZshg9enSR8Zo1a0anTp2yPod9yK78/Pw4+uijY/jw4Yl5lStXjsGDB8eBBx6Ym8GKkOp5+OSTT7LWO1Xtli1bRq1atbLWHwAAAAAAAAAAAAAAAAAAgK2Po9cAUALt27ePKlWqFBlfvnx51o7QjBkzJlauXFlkvEqVKtGuXbus9IZNsQ9sDqZOnRrr169PzNlhhx2yPod9YGNt2rSJ6tWrJ+bMnTs3a/0LCgpi4cKFiTnZ3Av7QKYMGDAgMb799tvHYYcdlqNpSs9OsEH58uUT4/n5+VmfYfXq1YnxvLy8rPa3D2wOhg4dGmvWrCkyftRRR0XlypWzPod9yJ61a9fGCSecEEOHDk3Mq1ixYrz88svRrVu3HE1WtAMOOCAxnup4dzqGDRuWGE81GwAAAAAAAAAAAAAAAAAAAPyco9cAUAJVqlSJ/fffPzHnnXfeyUrvd999NzF+4IEHJh5LgkyzD2wORo8enTKnWbNmWZ/DPrCxSpUqRZcuXRJzxo4dm7X+kydPTnnUtGnTplnrbx/IhFmzZqU8VNm3b9+UR4Q3B3aCDVJ9IMK8efOyPkOqHtWqVctqf/vA5uDZZ59NjPfu3Tsnc9iH7CgoKIhTTjklhgwZkphXoUKFGDRoUBx55JE5mixZqsPbX375ZcyePTsrvVM9D927d89KXwAAAAAAAAAAAAAAAAAAALZejl4DQAmlOvTyyiuvZKXv3//+98R4jx49stIXktgHytobb7yRGG/RokXUqFEjJ7PYBzZ22GGHJcZHjRqVtd6paleuXDl22223rPWPsA+kb+DAgbF+/foi43l5eXHGGWfkcKL02AkiIho2bJgYnzVrVtZnmDlzZmJ8u+22y/oM9oGyNGfOnHj99deLjO+4445x6KGH5mwe+5BZhYWFccYZZ8RLL72UmFeuXLl46qmn4phjjsnRZKntuOOOKb9Hz8bzMH78+Jg2bVqR8by8vJQHuQEAAAAAAAAAAAAAAAAAAODnHL0GgBI67rjjEuPjx4+Pr7/+OqM9J0+eHJMmTSoynpeXl3IuMuPoo4+OwsLCnP3TtGnTxHmGDRuWskY22QfK0sKFC1Meve7cuXOOprEP/Ldjjz02ypcvX2R82rRp8e2332al99ChQxPjbdq0iYoVK2al9wb2gXQUFhbGk08+mZhz8MEHR8uWLXM0UfrsBBERzZs3T4z/61//itWrV2d1hvfeey8xnmrGTLAPlKXbbrst1q1bV2T84osvjgoVKuRsHvuQWeedd148/fTTiTl5eXnx2GOPxcknn5yjqYrv+OOPT4w/99xzGe+ZqubBBx8cDRo0yHhfAAAAAAAAAAAAAAAAAAAAtm6OXgNACbVs2TI6deqUmPPAAw9ktOf999+fGO/cuXM0a9Ysoz2hOOwDZem+++6LlStXJuYceuihOZrGPvDfGjVqFN27d0/MeeSRRzLe94cffoghQ4Yk5uRiL+wD6Rg+fHhMnTo1Madfv345miYz7AQR//7QgSSrV6+O4cOHZ63/okWLYvTo0Yk5e+21V9b6b2AfKCvfffddPProo0XGa9asGWeffXYOJ7IPmXTppZcm/vpu8MADD2y230eccsopifFRo0bFuHHjMtZvxYoV8cQTT6Q1EwAAAAAAAAAAAAAAAAAAAGyKo9cAUApnnHFGYvzJJ5+MOXPmZKTXrFmz4plnnknM6du3b0Z6QWnYB8rC1KlT44477kjMqVy5chx11FE5mujf7AMbO/PMMxPjTz75ZCxfvjyjPR9++OFYt25dYk6vXr0y2rMo9oHSSnV8sXbt2nHsscfmaJrMsRN06NAhKlSokJhz5513Zq3/XXfdlfLPiM6dO2et/8bsA7lWWFgYZ5xxRuTn5xeZc80110Tt2rVzONW/2Yf0/fGPf4x77703Zd6dd94ZF1xwQfYHKqVdd9015e/Df/7znzPW75FHHolFixYVGa9evXocd9xxGesHAAAAAAAAAAAAAAAAAADAL4ej1wBQCqeddlo0aNCgyPjKlSvjqquuykivK6+8MlavXl1kfLvttovTTjstI72gNOwDubZ69eo48cQTY9WqVYl5vXv3jpo1a+Zoqn+zD2ysV69escsuuxQZX7hwYVx++eUZ6/fll1+mPJa67777xt57752xnknsA6WxZMmSePnllxNzTj755KhatWqOJsocO0HNmjWjS5cuiTnvvfdevPvuuxnvPWfOnJQHYatVqxZdu3bNeO9NsQ/k2pVXXhkffPBBkfHmzZvHpZdemsOJ/sM+pOe2224r1iHoW265JX7/+9/nYKL0pJrxH//4RwwbNiztPvPmzYubb745MefMM8+MbbbZJu1eAAAAAAAAAAAAAAAAAAAA/PI4eg0ApVClSpX43e9+l5jz9NNPx6uvvppWnxdffDGee+65xJxLLrkkKleunFaf6dOnR15eXuI/f/rTn9LqwdbLPhARMXLkyJz0Wb16dRx77LExbty4xLy8vLy48sorczLTxuwDGytXrlxcffXViTmPPvpovPXWW2n3WrNmTfz2t79NPGIYETk95mgfKI3nn38+5Yca9OvXL0fTZJadICLilFNOSZlz2mmnxYwZMzLWc9WqVXH00UfHihUrEvN+/etfR/Xq1TPWN4l9IJduv/32uOOOO4qM5+XlxcMPP5z2c1Ba9qH0HnjggZTfb0dEXHvttXHttddmpGe2HX300bHrrrsm5px++umxePHiUvcoLCyM008/PZYsWVJkTsWKFeOyyy4rdQ8AAAAAAAAAAAAAAAAAAAB+2Ry9BoBSuuSSS6Jx48aJOb/97W9jzJgxpao/atSolAf9mjZtmvIwEuSCfaBnz57RtWvXeP/997PWY8qUKdGpU6d48803U+aeffbZ0apVq6zNksQ+sLE+ffpEu3btEnOOO+64eO+990rdY9WqVXHUUUfF2LFjE/Patm0bvXv3LnWf0rAPlNSAAQMS43vvvXfKndqc2QlOOumkaNSoUWLOjz/+GEcccURGDl8vW7YsTjjhhGI9U7k+bmof2GDWrFkxYsSIjNfNz8+PCy+8MOWH4Vx00UVx6KGHZrx/SdiHknvyySeLNe/vf//7uOWWW3IwUWaUK1cu7rzzzsScGTNmxDHHHJPyg0KK8oc//CHeeOONxJxLLrkkmjRpUqr6AAAAAAAAAAAAAAAAAAAA4Og1AJRStWrV4u67707MWbZsWfTo0SNef/31EtUePHhwHHroobF8+fLEvLvuuiuqVq1aotqQDfaBiIj3338/unbtGvvss0/0798/Fi5cmJG6q1atigceeCDatWsXn376acr87bffPm699daM9C4N+8DGypUrF4888kiUK1f0j98rVqyII488Mh5//PEoLCwsUf3vvvsuevToEW+99VZiXvny5eOBBx6IvLy8EtVPl32gJCZNmhTjxo1LzEl1sHNzZyeoXLlyXH/99Snzvvjii2jTpk28+uqrpe41fvz4aN++fbGepd/85jfRoUOHUvcqDfvABrNmzYouXbpEmzZtYuDAgSl/3Yrjvffei/bt20f//v0T89q3bx//93//l3a/dNmHknnxxRfjrLPOSvm98/nnn5/ygPTmqGfPnnHkkUcm5gwbNix69OgRc+bMKXbd/Pz8OPvss+Ouu+5KzGvUqFFcd911xa4LAAAAAAAAAAAAAAAAAAAAP1ehrAcAgC3ZcccdFyeffHI899xzReYsWbIkfvOb38RJJ50U1113Xey2225F5n7xxRdx0003xQsvvJCy9ymnnBLHHntsqeYua8uXL49BgwaV+HVTpkxJjI8fPz4ef/zxEtWsWbNmnHjiiSWehf9lH0pna9yHTz/9NC688MK49NJL48ADD4wjjzwyDjzwwNhnn32iYsWKxaqxfv36mDRpUrz66qvRv3//mD9/frFeV6lSpfj73/8e2267bTpvIW32oXS2xn2I+PcxxRtvvDHxcFx+fn6cddZZ8eijj8aNN94Y3bp1i0qVKhWZP3Xq1PjrX/8a99xzT+Tn56ec4ZprronOnTuXav502YfS2Vr3IcmAAQMS45UrV45TTjkl63Nkm50ona1pJ84+++x4+umn41//+ldi3qJFi+KYY46JfffdNy6//PLo2bNnVKtWLfE169atiw8//DDuueeeeP3114v1YQo1a9aMBx54oETvIVPsQ+lsTfuwsYkTJ8bpp58e5513XnTr1i2OPvro6NatWzRt2rRYr1+0aFEMGTIkHn/88Rg5cmTK/ObNm8frr78eVapUSXf0jLAPxTNq1Kg49dRTo6CgIDGvSZMmsc8++5T4mU7HkUceGY0aNcpIrcceeyz22WefmDdvXpE5I0eOjNatW8cf//jHOPPMM6NmzZqbzFu3bl0MHjw4rr322vj6668T+5YrVy4GDhxYZC0AAAAAAAAAAAAAAAAAAAAojrzC4lw+AQCKtHz58mjfvn3KozEbtGnTJjp37hzNmzePGjVqxLJly2LatGnx0UcfxaefflqsGrvttluMHTs2atSokc7o/9/06dOjefPmiTk33HBD/OlPf8pZv1xp2rRpTJ8+vazHKFKzZs1ixowZRcaHDRsWXbp0yd1AKdiH7PTLlXT2YZtttoklS5Yk5lSuXDl22WWX2HXXXWOHHXaI7bbbLmrUqBGVK1eOVatWxcKFC2PhwoUxffr0GDlyZCxevLhEM5QvXz6effbZ6N27d6neQ6bZh+z0y5VM//lQWFgYv/nNb+L1118vVn7NmjWje/fu0aJFi9huu+2iatWqMW/evPjxxx/jo48+ismTJxe799FHHx0vv/xylCtXrrTjp80+ZKdfruTi+6U1a9bEDjvskPghB717947nn38+q3Pkip3ITr9cycROzJo1K9q1axdz584t9msqVqwYbdu2jfbt20e9evWiTp06Ub58+Vi0aFEsXLgwJk2aFP/6179ixYoVxa6Zl5cXr7zyShx99NGleBeZYR+y0y9XMrEPo0aNiv3226/I+Lbbbhtt2rSJVq1aRZ06dWKbbbaJ6tWrx+rVq2PRokUxderUmDRpUnz22Wexfv36YvXcYYcd4v33349ddtklrdkzzT6kNnDgwDj99NNL9dpsy/Tf0bz99ttxxBFHFOu5rlq1ahxyyCHRpk2b2G677aJ8+fL//8+GYcOGJR7P3tgf//jHuPnmm9MdHQAAAAAAAAAAAAAAAAAAgF+4CmU9AABs6WrUqBFvv/12HHjggTFz5syU+RMmTIgJEyaUul+TJk3i7bffztgxIsgk+0CS/Pz8mDRpUkyaNCnjtatUqRJPPfVUnHDCCRmvXVr2gY3l5eXFCy+8EEceeWQMHz48Zf6yZcvilVdeSbtvt27d4rnnnivTg9cR9oHUBg8enHjwOiKiX79+OZom++wEO+64Y/zzn/+M7t27x8KFC4v1mrVr18bo0aNj9OjRGZkhLy8v+vfvX6YHryPsA6ktWrQo3n///Xj//fczUm/XXXeNoUOHRpMmTTJSL5PsAxs79NBD469//WuceeaZkerza1etWhVvvvlmvPnmm6Xud/rpp8dNN91U6tcDAAAAAAAAAAAAAAAAAADABmV79QoAthJNmzaN999/P1q2bJnVPjvttFO8//77m+VhJtjAPpBrTZo0iQ8//HCzOni9gX1gY9WqVYs33ngjjjjiiJz0O/HEE+ONN96IqlWr5qRfKvaBJE888URivFmzZtG1a9ccTZMbdoK2bdvGiBEjsv4MbErVqlXjmWeeifPOOy/nvTfFPpArRx99dHz88ceb9TNgH9jYGWecEY8++mhUqJDdz7Dt169fPP7445GXl5fVPgAAAAAAAAAAAAAAAAAAAPwyOHoNABmy0047xdixY+PQQw/NSv3DDjssxo4dWyYH0aCk7AO5UL58+bj44otj8uTJ0b59+7Iep0j2gY1Vq1YtXn/99fjTn/4U5cuXz0qPqlWrxoMPPhiDBg2KSpUqZaVHadkHNmXWrFkxdOjQxJzTTz99qzzCaCdo3bp1jBs3Lk499dSc9WzXrl2MGjUqTjnllJz1LA77QDZts8028eijj8arr74aderUKetxUrIPbOyss86Kd955Jxo0aJDx2hUrVoz7778/Hn/88ShXzn8yBAAAAAAAAAAAAAAAAAAAIDP8L9gBIIO23XbbeOutt2LgwIEZO0TToEGDeOqpp+Kf//xnbLPNNhmpCblgH35ZunfvHrVq1cpJr4oVK0afPn3iiy++iPvuuy9q1qyZk77psA9sLC8vL2644YYYP358dOnSJaN1TzjhhPjyyy/jggsuyFjdTLMP/NzAgQNj/fr1RcbLlSsXffv2zd1AOWYn2GabbeKZZ56JESNGZPTPhZ9r0aJFPPbYYzFmzJjYa6+9stYnHfbhl6lmzZpZ+1miatWqcdlll8V3330XZ599dlZ6ZIt9YGNdunSJL7/8Ms4+++yMHac+5JBD4tNPP42LLrooI/UAAAAAAAAAAAAAAAAAAABgA0evASALfvvb38bUqVOjf//+0apVq1LV2H333aN///4xbdq06NOnT4YnhNyxD78ML730UixcuDBGjx4dt912W/Ts2TN22GGHjNWvVKlSHHzwwXH//ffHDz/8EE899VTssssuGaufK/aBje21114xbNiw+OCDD+LEE0+MypUrl6pOw4YN46KLLoqvvvoqXnjhhWjatGmGJ80O+0BERGFhYTz55JOJOd26dYsmTZrkaKKyYyc46KCDYtiwYfHJJ5/EJZdcEo0bN067Zs2aNePEE0+MIUOGxDfffBNnnXVWxo6lZpN9+GXZY489Yv78+fHee+/FZZddFnvvvXeUL1++1PXy8vKiTZs2cd9998UPP/wQd911V9SpUyeDE+eWfWCDOnXqxKOPPhpfffVVXHDBBaU6Fl+xYsU4+uijY9iwYfH++++X+pkCAAAAAAAAAAAAAAAAAACAJHmFhYWFZT0EAGztvvnmm3jrrbdi/Pjx8fnnn8fs2bNj2bJlsXLlyqhWrVrUrFkzdtxxx9h9992jbdu2cfjhh8fOO+9c1mOzGbj33ntj8eLFRcb79u0bzZo1y9k8mWAfflkWLFgQEyZMiC+++CK+//77mDlzZsycOTPmzp0bK1asiJUrV8bKlSujsLAwKleuHFWrVo169erF9ttvH02bNo3WrVvH3nvvHfvtt19Ur169rN9OxtkHNrZy5coYPnx4fPDBB/HFF1/EN998EwsWLIjly5fHmjVromrVqlGrVq1o3LhxtGzZMtq1axf7779/dOjQYYs4YJqKfYD/ZieI+Pdz8NFHH8WkSZPiq6++itmzZ8ePP/4YK1asiNWrV//X91ANGjSIRo0axU477RR77LFHdOzYMdq3bx8VKlQo67eRNvvwy7N8+fIYN25cfPLJJ/Htt9/Gd999FzNmzIglS5b8/58jKleuHDVq1Ig6derETjvtFLvssku0b98+unbtGtttt11Zv4WssQ9ssHbt2vjwww/j/fffj8mTJ8dXX30VCxYsiGXLlkVBQUHUrFkzateu/f//XDjggAOiR48epTqWDQAAAAAAAAAAAAAAAAAAACXh6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaStX1gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsOVz9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAtDl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDaHL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIG2OXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQNkevAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEibo9cAAAAAAAAAAAAAAAAAAAAAAAAAAAAApM3RawAAAAAAAAAAAAAAAAAAAAAAAAAAAADS5ug1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlz9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAtDl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDaHL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIG2OXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQNkevAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEibo9cAAAAAAAAAAAAAAAAAAAAAAAAAAAAApM3RawAAAAAAAAAAAAAAAAAAAAAAAAAAAADS5ug1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlz9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAtDl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDaHL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIG2OXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQNkevAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEibo9cAAAAAAAAAAAAAAAAAAAAAAAAAAAAApM3RawAAAAAAAAAAAAAAAAAAAAAAAAAAAADS5ug1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlz9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAtDl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDaHL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIG2OXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQNkevAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEibo9cAAAAAAAAAAAAAAAAAAAAAAAAAAAAApM3RawAAAAAAAAAAAAAAAAAAAAAAAAAAAADS5ug1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlz9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAtDl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDaHL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIG2OXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQNkevAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEibo9cAAAAAAAAAAAAAAAAAAAAAAAAAAAAApM3RawAAAAAAAAAAAAAAAAAAAAAAAAAAAADS5ug1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlz9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAtDl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDaHL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIG2OXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQNkevAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEibo9cAAAAAAAAAAAAAAAAAAAAAAAAAAAAApM3RawAAAAAAAAAAAAAAAAAAAAAAAAAAAADS5ug1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlz9BoAAACAiIgYOHBg5OXlFfnP9OnTS117+vTpibUHDhyYsfcBAAAAAAAAAAAAAAAAAAAAAACUDUevAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEibo9cAAAAAAAAAAAAAAAAAAAAAAAAAAAAApM3RawAAAAAAAAAAAAAAAAAAAAAAAAAAAADS5ug1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlz9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAtDl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDaHL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIG2OXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQNkevAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEibo9cAAAAARERE3759o7CwsMh/mjVrVtYjAgAAAAAAAAAAAAAAAAAAAAAAmzFHrwEAAAAAAAAAAAAAAAAAAAAAAAAAAABIm6PXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKTN0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0uboNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABpc/QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLRVKOsBAAAAADJt4cKF8eWXX8aCBQti2bJlsX79+qhZs2Y0atQodtttt6hdu3ZZj/hfCgsLY8aMGTF37txYsmRJLF26NJYtWxYVK1aMatWqRbVq1aJGjRqxww47xI477hgVKvgrHQAAAAAAAAAAAAAAAAAAAAAAYPPjQhIAAAD8wqxbty7Gjx8fH330UUyYMCGmTp0a33//fSxbtixWrFgReXl5Ua1atahTp040b948dtttt9h///3jkEMOiYYNG5b1+JtUUFAQb775ZvzjH/+It99+O2bPnp2Y36pVqzjiiCOiT58+sddee+Voyv8oLCyM4cOHx+DBg2PChAkxceLEWLp0abFeW758+dhxxx1jp512ig4dOsR+++0XnTp1ivr162d56q3D+vXrY/z48fHhhx/GJ5988j/Pf4UKFaJ69epRt27daN68eeyyyy7RuXPnOOigg2KHHXYo6/GLZerUqTFkyJAYN25cfP755zFnzpxYunRprF27NqpVqxb16tWL5s2bR9u2beOggw6K7t27R+XKlct6bAAAAAAAAAAAAAAAAAAAAAAAtgJ5hYWFhWU9BAAAAJB9o0aNiieeeCJeeeWVWLBgQYlfX65cuTj44IOjX79+0bt37yhfvnzGZ8zLyysydsMNN8Sf/vSn//p3hYWFMWDAgLjtttviu+++K1XPLl26xB133BHt27cv1etLYtGiRXHPPffE008/HTNmzMho7Xbt2sUJJ5wQxx9/fDRv3rxUNQYOHBinn356kfFp06ZFs2bNSlV7+vTpiXM9+eST0bdv31LVLo4pU6bEQw89FC+88ELMmTOnxK/Py8uL/fbbL0477bTo27dvVKlSJQtTlv7rVFBQEC+99FLcddddMW7cuBL1rFWrVvTt2zeuuOKKLeawNwAAAAAAAAAAAAAAAAAAAAAAm6dyZT0AAAAAkF0ffvhhdOnSJfbbb7/461//WqqD1xER69evj2HDhsWpp54au+66a/zjH//I7KAlNH369OjSpUucddZZpT54HRExfPjw6NChQ1x00UWRn5+fwQn/2zPPPBO77bZb3HzzzRk/eB0R8cknn8SVV14ZLVq0iC+//DLj9bdUs2bNilNOOSVatWoV9957b6kOXkf8+8D6xx9/HOedd140b948HnjggVi/fn2Gpy2dMWPGRJs2beKkk04q8cHriIilS5fG/fffH7vuumvce++94TPyAAAAAAAAAAAAAAAAAAAAAAAoLUevAQAAYCu1aNGiOP300+Oggw6KESNGZLT2d999F7169Yrjjjsuli5dmtHaxfHJJ59Ex44d44MPPshIvcLCwnjwwQejc+fO8eOPP2ak5gYrVqyIo446Kvr06RNz587NaO2iFBQU5KTP5u6xxx6L3XffPZ577rmMfk1+/PHHuPjii6NTp07x1VdfZaxuadx2222x3377xaRJk9KutWLFirj00kujd+/eWT0ADwAAAAAAAAAAAAAAAAAAAADA1svRawAAANgKffrpp9G+ffsYOHBgVvu8/PLL0aFDh5g6dWpW+2xs0qRJccghh2TlgPT48ePjwAMPjJkzZ2akXn5+fhxxxBExZMiQjNSjeNasWRNnnnlmnHPOObFs2bKs9Rk7dmx07Ngx3nzzzaz1KMr69eujX79+cfXVV8f69eszWvvFF1+Mk046yfF0AAAAAAAAAAAAAAAAAAAAAABKzNFrAAAA2MoMGzYs9t9//5wdov7666+jS5cuOek3d+7c6NmzZ1YPGX/77bdx+OGHx9KlS9OuddFFF8UHH3yQgakorrVr18YJJ5wQAwYMyEm/pUuXxlFHHRUvv/xyTvptcOGFF8YTTzyRtfqvvvpq3HjjjVmrDwAAAAAAAAAAAAAAAAAAAADA1qlCWQ8AAAAAZM6wYcPiyCOPjFWrVhUrv0qVKtGxY8do3bp11K1bN+rUqRPlypWLn376KX766af48MMP4+uvv05ZZ+bMmXHYYYfF2LFjo3bt2um+jSKdc8458f33328yVr9+/TjppJOie/fu0bp162jQoEFUqlQpli1bFt9++22MHj06Xn311Xj//fdT9vn888/j5JNPjtdff73Usw4fPjz++te/psyrUKFC7LfffnHooYdG69atY+edd4569epF9erVo0qVKrF8+fJYunRpLFmyJGbPnh2fffZZfPbZZzFx4sSYPHlyqefbWvXt2zcGDx5c7Pw999wzOnXqFC1btozatWvH2rVrY/78+fHll1/G8OHDY968eSlrrFu3Lk466aR4/fXXo0ePHumMXyx33nlnPPzww0XGa9euHYccckg0bdo0GjRoENtuu20sWrQo5s6dG6NGjYqxY8fG+vXrU/b585//HEcddVS0a9cuk+MDAAAAAAAAAAAAAAAAAAAAALAVc/QaAAAAthJTpkyJY489NuXB63LlysUxxxwTF1xwQXTu3DkqVaqUmD99+vR4/PHH4957740VK1Yk9j/ttNNiyJAhpZo/lcGDB8fEiRP/59/XrFkzbrzxxjj//POjcuXK/xPfdtttY99994199903Lrzwwvjss8/id7/7XQwfPjyx3xtvvBEPPfRQnH/++aWa9/rrr0+Mly9fPs4///y44oorYscddywyr3bt2lG7du1o3LhxtG7dOg499ND/H5s1a1YMGTIkXnvttXj33Xdj3bp1pZp1a3H33XfHc889lzKvcuXKccEFF8QFF1wQLVq0KDKvsLAw3n777bjttttixIgRiTXXrl0bJ598cnzyySfRtGnTEs9eXKNHj44BAwZsMnbcccfFxRdfHPvtt19UqFD0X/vNmzcv7rjjjrjvvvtizZo1ReatX78+LrvsspTvHQAAAAAAAAAAAAAAAAAAAAAANsgrLCwsLOshAAAAgPTk5+dH27Zt44svvkjM6969ezz88MPRsmXLEvf48ccf49xzz43Bgwcn5j311FPRp0+fEtePiMjLyytRfqtWrWLw4MGx8847l+h1hYWFcfPNN8cNN9yQmFejRo2YMmVKNGzYsET1v/nmm9h1112LjNesWTNeeeWV6NatW4nqJpk5c2bcf//98fjjj8eHH34YrVu3LnGNgQMHxumnn15kfNq0adGsWbNSzTd9+vRo3rx5kfEnn3wy+vbtW6raERGff/55tGnTJtauXZuYt++++8bzzz9f4h14+umn4/zzz088/B4RcdBBB8Xw4cNL/CxvkOrrtCl77bVXPPbYY9GxY8cSve7zzz+P7t27x5w5cxLzPv7449hvv/1KVBsAAAAAAAAAAAAAAAAAAAAAgF+mcmU9AAAAAJC+G264IfHgdbly5eKWW26Jt956q1QHryMiGjZsGK+88kpceumliXm///3vY9myZaXqURK77bZbDB8+vMQHryP+fVz7+uuvj7vuuisxb/ny5XHttdeWuP6bb76ZGH/kkUcyevA6IqJx48Zxxx13xMyZM6NFixYZrb25KywsjHPPPTflwevf/OY38eGHH5ZqB/r06RMffPBB1KlTJzHvgw8+iIEDB5a4fml169YtRo4cWeKD1xERe+yxRwwfPjzq1q2bmPfII4+UdjwAAAAAAAAAAAAAAAAAAAAAAH5hHL0GAACALdzXX38dd955Z2LOAw88ENdee22UK5feXwWUK1cu7r777ujXr1+ROfPnz48HHnggrT6p1KxZMwYPHhwNGjRIq85ll10WZ5xxRmLOU089FTNmzChR3TFjxhQZ23333ePkk08uUb2SqFGjRlSrVi1r9TdHr732WowcOTIx58ADD4yXXnopKleuXOo+bdu2jTfffDNljeuvvz7WrFlT6j7F9atf/SrefPPNqFmzZqlr7LLLLnHbbbcl5gwePDgn7wcAAAAAAAAAAAAAAAAAAAAAgC2fo9cAAACwhbv++uujoKCgyPgVV1wR559/fkZ7PvDAA7HXXnsVGb///vtj3bp1Ge25seuuuy522WWXjNS6++67o379+kXGCwoK4v777y9RzalTpxYZ+/Wvf12iWqR2yy23JMZr1qwZgwYNikqVKqXdq2PHjvGXv/wlMWfWrFkxcODAtHslqVevXjzzzDNRsWLFtGv169cv9t577yLjS5YsidGjR6fdBwAAAAAAAAAAAAAAAAAAAACArZ+j1wAAALAF+/bbb+Oll14qMr7LLrukPAhcGlWrVo277767yPhPP/0Ur7/+esb7RkS0bNkyfve732WsXu3atePmm29OzHn66adLdMR70aJFRcaaNGlS7Dqk9sknn8TYsWMTc2644YbYfvvtM9bz4osvjt133z0x5+GHH85Yv0154IEHMvae8vLyom/fvok5I0eOzEgvAAAAAAAAAAAAAAAAAAAAAAC2bo5eAwAAwBbs8ccfj8LCwiLjd955Z1SsWDErvbt27Rr77rtvkfEXXnghK31vuOGGqFSpUkZrnnnmmdGiRYsi4/Pnz4933303I71Kcjyb1J555pnE+C677BIXX3xxRntWqFAh7r///sSciRMnxmeffZbRvhu0aNEiTjjhhIzW7N27d+Tl5RUZ//TTTzPaDwAAAAAAAAAAAAAAAAAAAACArZOj1wAAALCFKiwsTDz426pVq/j1r3+d1RnOOuusImPvvvturF+/PqP9qlWrFsccc0xGa0ZElC9fPk466aTEnNdff73Y9erWrVtkbOLEicWuQ2qvvvpqYvzss8/OyuH3rl27RqtWrRJzUs1WWhdffHGUK5fZv9Zr2LBhNG3atMj4V199ldF+AAAAAAAAAAAAAAAAAAAAAABsnRy9BgAAgC3U+PHj44cffigyfuKJJ2Z9hi5duhQZmz9/fnzxxRcZ7feb3/wmqlevntGaG5x88smJ8eHDhxe7Vv369YuMvfzyy/Hjjz8WuxZF++abb+L7778vMl6+fPk45ZRTstb/tNNOS4y/++67WembjcPvERF77bVXkbGZM2dmpScAAAAAAAAAAAAAAAAAAAAAAFsXR68BAABgC/XWW28lxo877risz7DzzjtHw4YNi4xPmDAho/169eqV0Xob23333WPXXXctMv7FF1/EkiVLilWrQ4cORcaWLl0avXv3juXLl5d4Rv7bhx9+mBg/5JBDEp/PdJ166qmJ8dGjR8eaNWsy2rNx48bRuHHjjNbcYLfddisytmjRoli3bl1W+gIAAAAAAAAAAAAAAAAAAAAAsPVw9BoAAAC2UKNHjy4yVrVq1WjVqlVO5mjatGmRsUmTJmW0V9u2bTNaryT1CwsL4/PPPy9Wna5duybGR4wYEW3atInXXnstCgsLSzQj//Hpp58mxg844ICs9m/cuHE0a9asyPjatWvjyy+/zGjPzp07Z7TexmrXrl1krLCwMJYuXZq13gAAAAAAAAAAAAAAAAAAAAAAbB0cvQYAAIAt1IQJE4qM7bbbblGuXG5+7K9bt26RsVmzZmWsT40aNaJly5YZq7cpe++9d2K8uEevO3bsGHvssUdizrfffhu/+c1vYtddd43/+7//iylTphR7Tv5t8uTJifE2bdpkfYZUPTJ9+L1JkyYZrbexmjVrJsbz8/Oz1hsAAAAAAAAAAAAAAAAAAAAAgK1DhbIeAAAAACi5FStWJB6UzsvLi8cffzwns8yfP7/I2OzZszPWp3Xr1pGXl5exepuS6uh1cY945+XlxXXXXRe9e/dOmTtlypS46qqr4qqrropWrVpF165do0uXLnHQQQdF/fr1i9Xvl2rGjBmJ8X322SfrM7Rp0yZeffXVIuOpZiypbbfdNqP1NlajRo3E+Jo1a7LWGwAAAAAAAAAAAAAAAAAAAACArYOj1wAAALAFmjlzZmJ8/PjxcdZZZ+VomqItXbo0Y7W23377jNUqSqNGjRLjc+bMKXatE088MV5++eV46aWXiv2aL7/8Mr788st48MEHIyJi5513jv322y8OOOCAOOCAA6JVq1bFrvVLkPTrUbFixWjSpEnWZ9h5550T4z/88ENG+9WpUyej9TaW6qh8YWFh1noDAAAAAAAAAAAAAAAAAAAAALB1cPQaAAAAtkCZPqSbLatWrcpYrVq1amWsVml7LFiwoET1nnzyyZg5c2aMGjWqVPNMmTIlpkyZEk8//XRE/Pvw92GHHRbHHHNMdO/ePSpVqlSquluDFStWJD5ftWvXzskcqfrMmzcvo/0qV66c0XoAAAAAAAAAAAAAAAAAAAAAAJBJ5cp6AAAAAKDkli1bVtYjFEt+fn7Gam0OR69Xr15donrVq1eP4cOHR9++fdOY6j9++OGHeOKJJ6Jnz56xww47xGWXXRYzZszISO0tTaqD6rl4XiJSH73O5OF3AAAAAAAAAAAAAAAAAAAAAADY3Dl6DQAAAFugLeWQbmFhYcZq1axZM2O1ipLqUHJpjnhXrlw5nnzyyXjjjTdizz33LO1o/2P+/Plxzz33xE477RTnnHNOzJ07N2O1twSpDpBvLkevS3ooHQAAAAAAAAAAAAAAAAAAAAAAtmSOXgMAAMAWaO3atWU9Qs7l4j2n6lGuXOn/KuWII46IiRMnxksvvRSHH354lC9fvtS1NrZu3bp47LHHYo899oghQ4ZkpCYAAAAAAAAAAAAAAAAAAAAAAEBpOHoNAAAAW6DKlSuX9Qg5t3Tp0jLvUaVKlbTqlytXLo477rh488034/vvv49HHnkkjj/++Khfv35adSMi5s+fH0cffXQ89thjadfaEqT6tcjF8xIRsWTJksR4us8MAAAAAAAAAAAAAAAAAAAAAABsSRy9BgAAgC1QtWrVEuOnnHJKFBYWlvk/06dPz9h7XrZsWcZqFSXVoeTq1atnrNf2228f55xzTrz44ovx008/xaRJk6J///7Ru3fv2GGHHUpVs7CwMC644IIYOnRoxubcXFWtWjUxvrkcvU41JwAAAAAAAAAAAAAAAAAAAAAAbE0qlPUAAAAAQMnVrVs3Mb569eocTZI7qY4LZ0KqQ8kNGjTISt+8vLxo3bp1tG7dOs4///yIiJgxY0YMGzYs3n777Rg6dGgsXLiwWLXWrVsXp556akybNi2jR7o3N9WrV4+qVavGqlWrNhnfXI5eZ+uZAQAAAAAAAAAAAAAAAAAAAACAzVG5sh4AAAAAKLkmTZokxufOnZujSXJnypQpWe/xzTffJMYbNWqU9Rk2aNq0afTt2zeef/75+Omnn+Ltt9+O3r17R4UKqT/DbN68eXHfffflYMqylfTrsWbNmpg1a1bWZ/j2228T47l8ZgAAAAAAAAAAAAAAAAAAAAAAoKw5eg0AAABboEaNGkWVKlWKjE+fPj13w+TIlClTYuXKlVnt8emnnybGW7ZsmdX+RalQoUL06NEjnn/++fj222/j6KOPTvmahx56KPuDlbFmzZolxidMmJD1GVL1aNq0adZnAAAAAAAAAAAAAAAAAAAAAACAzYWj1wAAALAFKleuXOy9995FxmfOnBkLFy7M4UTZt379+pg8eXJWe6Q6er3HHntktX9xNG3aNF599dU499xzE/Nmz54dX375ZY6mKhutW7dOjG8OR6/33HPPrM8AAAAAAAAAAAAAAAAAAAAAAACbC0evAQAAYAvVsWPHxPhHH32Uo0lyJ5vvae3atTF27Ngi49WqVYtddtkla/1L6r777oudd945MefDDz/M0TRlI+nwe0T2d+CHH36IadOmFRmvVKlStGrVKqszAAAAAAAAAAAAAAAAAAAAAADA5sTRawAAANhCdevWLTE+ePDgHE2SO4MGDcpa7bfffjsWLlxYZLxz585RoUKFrPUvqUqVKsVZZ52VmDNnzpwcTVM2DjrooMT4e++9Fz/99FPW+j/77LOJ8U6dOkWlSpWy1h8AAAAAAAAAAAAAAAAAAAAAADY3jl4DAADAFqp79+5RvXr1IuMvvvhiLFu2LIcTZd+YMWPiu+++y0rt5557LjH+q1/9Kit907H//vsnxufPn5+jScrGTjvtFM2aNSsyXlBQEM8//3zW+j/zzDOJ8VSH6QEAAAAAAAAAAAAAAAAAAAAAYGvj6DUAAABsoapUqRLHHntskfFly5bF/fffn8OJcuPRRx/NeM0ff/wxBg8enJiT9LUuK/Xq1UuM5+fn52iSstOrV6/E+F//+tcoKCjIeN8PPvggJk+enJiTajYAAAAAAAAAAAAAAAAAAAAAANjaOHoNAAAAW7CLLrooMX7bbbfFjBkzcjRNbtx///0xbdq0jNa85pprYuXKlUXG27ZtG7vssktGe2bC/PnzE+O1a9fO0SRl57TTTkuMf/HFF9G/f/+M9iwoKIiLL744Madt27bRunXrjPYFAAAAAAAAAAAAAAAAAAAAAIDNnaPXAAAAsAVr3759dOvWrcj48uXL46STTor8/PwcTpVd+fn5cfnll2es3ieffBIDBw5MzLngggsy1i+TPvnkk8R4ixYtcjRJ2WnTpk106tQpMeeGG26IuXPnZqznQw89FJ9++mlizvnnn5+xfgAAAAAAAAAAAAAAAAAAAAAAsKVw9BoAAAC2cHfddVeUK1f0j/j/+te/4vjjj4+VK1fmbKYRI0bEwoULs1b/lVdeiQEDBqRdZ8mSJXHyySdHYWFhkTkNGzaMU045pdg1p02bFo8//nisXbs27fmSFBQUxF//+tfEnPbt22d1hs3FtddemxhfvHhxnHzyybFu3bq0e33yySdx5ZVXJuY0btw4+vTpk3YvAAAAAAAAAAAAAAAAAAAAAADY0jh6DQAAAFu4vfbaK373u98l5rz22mvRsWPH+Oqrr7I2R0FBQbz66qtx4IEHRpcuXbJ69Doi4rzzzotXX3211K9fvnx59OzZM7755pvEvJtuuikqV65c7LpLliyJs846K3beeee45557YsmSJaWeMck111wTkyZNKjLesGHDaNeuXVZ6b27rSbU5AAEAAElEQVR69uwZBx10UGLOe++9F6ecckpax8g/++yzOOKII2LVqlWJebfccktUrFix1H0AAAAAAAAAAAAAAAAAAAAAAGBL5eg1AAAAbAVuvfXW2HvvvRNzJk+eHO3bt4/bbrsto4eYv/zyy/jjH/8YzZs3j2OOOSZGjhyZsdoby8vL+6//f+3atXH88cfHbbfdFuvXry9Rra+++io6d+6cctZ99tkn+vXrV+JZIyJmzJgRl112Wey4445xxhlnxIgRI6KwsLBUtTa2cuXKOOecc+L2229PzDvzzDOjXLlfzl/9PPLII1GpUqXEnBdffDEOOeSQmDFjRonrP//883HAAQfE3LlzE/MOOeSQ6NOnT4nrAwAAAAAAAAAAAAAAAAAAAADA1uCXc/kIAAAAtmKVK1eOf/zjH9GoUaPEvBUrVsTVV18djRs3jssuuyxGjhwZ+fn5Jeo1d+7cGDJkSFx66aWx2267xe677x5//vOfY+bMmem8hZT69OkT1atX/69/V1BQEFdffXW0bds2/v73v8e6desSa0ybNi0uvfTS2HvvvWPSpEmJuVWqVIlnnnkm7cPRy5cvjyeffDK6dOkSjRo1ijPPPDNeeOGFmD17donqTJ8+Pe64445o0aJFPPbYY4m5derUiUsvvTSdsbc4rVq1ijvuuCNl3kcffRStWrWKK6+8Mr7//vvE3MLCwnjnnXeia9eucfLJJ8eyZcsS8+vVqxdPPfVUieYGAAAAAAAAAAAAAAAAAAAAAICtSYWyHgAAAADIjGbNmsU///nP+NWvfhULFy5MzF22bFncc889cc8990TlypWjQ4cOsdtuu0WdOnWiTp06Ubt27SgoKIjVq1fHggUL4scff4xp06bF119/HT/88EOO3tF/a9asWdx6661x8cUX/0/s008/jeOPPz622WabOOSQQ6J169ZRv379qFSpUixbtiy+++67GDVqVEycOLHY/e65555o3bp1Bt9BxE8//RQDBgyIAQMGREREw4YNY4899ogWLVrE9ttvH9tuu21UqVIlCgoKYvny5bF48eL45ptvYvLkyfH1118Xu0///v2jTp06GZ19S3DxxRfHuHHj4plnnknMW7VqVdx+++1xxx13xD777BMdOnSIli1bRs2aNWPdunWxYMGC+OKLL2L48OExd+7cYvWuWLFiDBo0KBo3bpyJtwIAAAAAAAAAAAAAAAAAAAAAAFskR68BAABgK7L33nvHyJEj47DDDovvv/++WK/Jz8+PDz/8MD788MMsT5e+iy66KEaNGhXPPffcJuOLFy+OV199NV599dW0+lx22WVx7rnnplWjOH788cf48ccf47333stYzauvvjp69+6dsXpbmieeeCKWL19erGegsLAwJkyYEBMmTEirZ4UKFeKFF16Irl27plUHAADg/7F353GSFfS997/V6+wzMMoiAyKKQIiowRhQn8TEhaBxGeMNxGjIyyfiEkfjmjwJGiO5Xp7oKy/Uy6LmyY0xUVwi7kpw3y4gCAOXVWBYZ2OGme6emd6q6jx/nGl6me6enqnuru6e9/v1KrvrnFPn/Kqr+1TZQ38KAAAAAAAAAAAAAAAAAADmu5ZmDwAAAABMr1NOOSXXXnttXvSiFzV7lBnxL//yL3nhC184Y/t/29velo985CMztv+Z9L73vS8f+tCHmj1GUw0FqP/8z/98Vo63cuXKfO1rX8vatWtn5XgAAAAAAAAAAAAAAAAAAAAAADCXiV4DAADAAnTUUUflqquuysc+9rEcdthhs3rslpaWvPjFL87hhx8+I/vv7OzMN7/5zfzxH//xtO63vb09H/nIR/LRj340lUplWvc90574xCfmq1/9aj74wQ82e5Q5ob29PZ/61KfyyU9+MsuXL5+x4/zmb/5mrr322px99tkzdgwAAAAAAAAAAAAAAAAAAAAAAJhPRK8BAABggapUKlm3bl3uvvvuvPvd786qVatm9HinnHJKLrroojzwwAO56qqrZix6nSQdHR357Gc/m//1v/7XtES9n/nMZ+anP/1p3vWudzW8r1NPPTVf+9rXcv755+eYY45peH+TWbRoUS644ILcfvvtefnLXz6jx5qP3vCGN+S2227La17zmrS2tk7bfo866qh87GMfyzXXXJOTTjpp2vYLAAAAAAAAAAAAAAAAAAAAAADzneg1AAAALHCHH354PvzhD+ehhx7Kpz71qbz4xS9Oe3t7w/s97LDDsnbt2lxyySW58847c9ttt+Wv/uqvZjz0PNKf/dmf5Z577smFF16Yo4466oBv/6xnPSuf+cxncv311+fZz372tMzU3t6el73sZfnEJz6Rhx56KL/85S/zj//4j3nlK1+ZI488suH9VyqV/PZv/3Y+9alPZfPmzbnwwguzePHiaZh8YVqzZk3+4z/+I7fffnve8Y535Oijjz7ofZ155pm5/PLLs2HDhqxbty4tLX61BgAAAAAAAAAAAAAAAAAAAAAAI1WKoiiaPQQAAAAwu7q7u3Pttdfmuuuuy6233pr7778/Dz74YHp6erJnz57UarUsW7Ysy5cvz/Lly7Nq1aqccMIJOfnkk3PyySfnlFNOySmnnDLt0d9KpTLhur/7u7/LBz7wgQnX1+v1XHvttbnqqquyfv363HHHHdm2bVt6enpSr9ezbNmyHH300TnllFNyxhln5Oyzz86pp546rfNPxb333psbb7wxd999d+6+++7cc8892bRpU3p6erJr167s2rUrHR0dWbFiRVasWJGVK1fmSU96Up75zGfmGc94Rk4//fQcccQRsz73QlGv13PDDTfkJz/5SW644Ybcc889eeCBB9LT05Pe3t60trZmyZIlWb16dU444YQ89alPzZlnnpnf+Z3fyZo1a5o9PgAAAAAAAAAAAAAAAAAAAAAAzGmi1wAAAMCc0Uj0GgAAAAAAAAAAAAAAAAAAAAAAgOZqafYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMx/otcAAAAAAAAAAAAAAAAAAAAAAAAAAAAANEz0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICGiV4DAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DDRawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJnoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMNErwEAAAAAAAAAAAAAAAAAAAAAAAAAAABomOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TvQYAAAAAAAAAAAAAAAAAAAAAAAAAAACgYaLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRM9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAholeAwAAAAAAAAAAAAAAAAAAAAAAAAAAANAw0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiZ6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDRK8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAaFhbswcAAAAAGFIURbNHAAAAAAAAAAAAAAAAAAAAAAAA4CC1NHsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOY/0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiZ6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDRK8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJjoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE70GAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGGi1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TPQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIaJXgMAAAAAAAAAAAAAAAAAAAAAAAAAAADQMNFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAw0SvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAGiY6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRO9BgAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhotcAAAAAAAAAAAAAAAAAAAAAAAAAAAAANEz0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICGiV4DAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DDRawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJnoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMNErwEAAAAAAAAAAAAAAAAAAAAAAAAAAABomOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TvQYAAAAAAAAAAAAAAAAAAAAAAAAAAACgYaLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRM9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAholeAwAAAAAAAAAAAAAAAAAAAAAAAAAAANAw0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiZ6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDRK8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJjoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE70GAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGGi1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TPQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIaJXgMAAAAAAAAAAAAAAAAAAAAAAAAAAADQMNFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAw0SvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAGiY6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRO9BgAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhotcAAAAAAAAAAAAAAAAAAAAAAAAAAAAANEz0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICGiV4DAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DDRawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJnoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMNErwEAAAAAAAAAAAAAAAAAAAAAAAAAAABomOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TvQYAAAAAAAAAAAAAAAAAAAAAAAAAAACgYaLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRM9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAholeAwAAAAAAAAAAAAAAAAAAAAAAAAAAANAw0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiZ6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDRK8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJjoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE70GAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGGi1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TPQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIaJXgMAAAAAAAAAAAAAAAAAAAAAAAAAAADQMNFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAw0SvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAGiY6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRO9BgAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhotcAAAAAAAAAAAAAAAAAAAAAAAAAAAAANEz0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICGiV4DAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DDRawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJnoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMNErwEAAAAAAAAAAAAAAAAAAAAAAAAAAABomOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TvQYAAAAAAAAAAAAAAAAAAAAAAAAAAACgYaLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRM9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAholeAwAAAAAAAAAAAAAAAAAAAAAAAAAAANAw0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiZ6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDRK8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJjoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE70GAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGGi1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TPQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIaJXgMAAAAAAAAAAAAAAAAAAAAAAAAAAADQMNFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAw0SvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAGiY6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRO9BgAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhotcAAAAAAAAAAAAAAAAAAAAAAAAAAAAANEz0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICGiV4DAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DDRawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJnoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMNErwEAAAAAAAAAAAAAAAAAAAAAAAAAAABomOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TvQYAAAAAAAAAAAAAAAAAAAAAAAAAAACgYaLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRM9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAholeAwAAAAAAAAAAAAAAAAAAAAAAAAAAANAw0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiZ6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDRK8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJjoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE70GAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGGi1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TPQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIaJXgMAAAAAAAAAAAAAAAAAAAAAAAAAAADQMNFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAw0SvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAGiY6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRO9BgAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhotcAAAAAAAAAAAAAAAAAAAAAAAAAAAAANEz0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICGiV4DAAAAAAAAAAAAAAAAAAAAAAAAAAAA0LC2Zg8AwKHnqKOOys6dO/dZ3t7enuOOO272BwIAAAAAgBnwwAMPZHBwcJ/lq1atyubNm5swEQDMHf7dGAAAAACAQ4F/NwYAAAAAAADgUFQpiqJo9hAAHFoWLVqU/v7+Zo8BAAAAAABN0dnZmb6+vmaPAQBN5d+NAQAAAAA4lPl3YwAAAAAAAAAWspZmDwAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/Cd6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDRK8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJjoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAANa2v2AAAcetrb29Pf37/P8s7Ozjz5yU9uwkQAAAAAADD97rnnnnF/H97e3t6EaQBgbvHvxgAAAAAAHAr8uzEAAAAAAAAAhyLRawBm3XHHHZfbbrttn+VPfvKTc+uttzZhIgAAAAAAmH6nnnrquL8PP+6445owDQDMLf7dGAAAAACAQ4F/NwYAAAAAAADgUNTS7AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmP9ErwEAAAAAAAAAAAAAAAAAAAAAAAAAAABomOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TvQYAAAAAAAAAAAAAAAAAAAAAAAAAAACgYaLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRM9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAholeAwAAAAAAAAAAAAAAAAAAAAAAAAAAANAw0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiZ6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDRK8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJjoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE70GAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGGi1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TPQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIaJXgMAAAAAAAAAAAAAAAAAAAAAAAAAAADQMNFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAw0SvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAGiY6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRO9BgAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhotcAAAAAAAAAAAAAAAAAAAAAAAAAAAAANEz0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICGiV4DAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DDRawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJnoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMNErwEAAAAAAAAAAAAAAAAAAAAAAAAAAABomOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TvQYAAAAAAAAAAAAAAAAAAAAAAAAAAACgYaLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRM9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAholeAwAAAAAAAAAAAAAAAAAAAAAAAAAAANAw0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiZ6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDRK8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJjoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE70GAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGGi1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TPQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIaJXgMAAAAAAAAAAAAAAAAAAAAAAAAAAADQMNFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAw0SvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAGiY6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRO9BgAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhotcAAAAAAAAAAAAAAAAAAAAAAAAAAAAANEz0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICGiV4DAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DDRawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJnoNAAAAAAAAAAAAAAAAAMC0ueqWr+Zll/9us8cAAAAAAAAAAJpA9BoAAAAAAAAAAAAAAAAAgGnx07u+l3OufE2u3vLT/NbFv97scQAAAAAAAACAWSZ6DQAAAAAAAAAAAAAAAABAw265+4a8/IpXpK8YSJKs77ozz/jIU5s8FQAAAAAAAAAwm0SvAQAAAAAAAAAAAAAAAABoyAPb783vfu53s6foH7X8jt0bctJFxzVpKgAAAAAAAABgtoleAwAAAAAAAAAAAAAAAABw0Lp27MizLzs9u+q9466/v39TnvihI9O1Y8csTwYAAAAAAAAAzDbRawAAAAAAAAAAAAAAAAAADkrXjh059dITs7O2a9Lttgw+mlMvPVH4GgAAAAAAAAAWONFrAAAAAAAAAAAAAAAAAAAOymmXnZxt1a4pbbut2pWn/M/j88D2e2d4KgAAAAAAAACgWUSvAQAAAAAAAAAAAAAAAAA4YCdddFy2DD56QLfpqe/JMy99em65+4YZmgoAAAAAAAAAaCbRawAAAAAAAAAAAAAAAAAADsgzPvLU3N+/6aBuu7vel9/+7G/np3d9b5qnAgAAAAAAAACaTfQaAAAAAACmUa1em1P7AQAAAAAAAACA6fbcjz4jd+ze0NA+eouB/MEVL89Vt3x1mqYCAAAAAAAAAOYC0WsAAAAAAJgm3f3deeXnX5krb7+yof1cefuVeeXnX5nu/u5pmgwAAAAAAAAAAKbHWZc+NzfsvHVa9tVXDOTVXz4n/3n9v0/L/gAAAAAAAACA5mtr9gAAAAAAADBvbdyYXHddcvPN6b79ppxzxI+zfmlPbrzl6mTr6Vl73FnJaaclz3528oQnTGmXV95+ZdZ9e13qRT3nfOmcfP7Vn8+KzhUzfEcAAAAAAAAAAGD/1n7qRfnRI9dN6z4HU8uffvP/zvaebTn/d/9yWvcNAAAAAAAAAMw+0WsAAAAAADgQg4PJd76TfPrTyc9/niTpbq/nnBfuzPrOwaSa1JOsO+ya5Du3Z+3li8rbPfe5yXnnJWedlbS3j7vrkcHrJFm/eb3wNQAAAAAAAAAAc8Jr//WV+fbGH87Ivmup5x0//qs82rstf/2Sf5iRYwAAAAAAAAAAs6Ol2QMAAAAAAMC8cfXVyfOel7zxjfsGr1cPjtq0XknWPbcrVx7fVy742c+S888vb3/11fvsemzweshQ+Lq7v3tm7hMAAAAAAAAAAOzHmz/7unzp/m/O6DFqqeeDv/jHfOCr757R4wAAAAAAAAAAM6ut2QMAAEl27Eh27UoGB/e/LTBziiLp6kr27CmvL1uWrFjR3JkOJQMD5de/vz/p6EhWrkw6O5s9FTNtcLB83Pv6Zv5xH9r/8uUzs3/gwHkdvHD09ibd3eVjuWhRsmpV0jbHfvU48rVGZ2f5Wq+3N9m5M6lWk6VLk8WLk8MOSyqVxo9Xq5Xf4319SXt7+fyzZEnj+51L+vrKx31goHmPe6Ov4Vtaysf98MPLz7dvL/dVHxGdbmsr99vamrz//ckXv1iuL4oke4PXL+jO+tXVcQ8xFL5OkrX3LSoXPvhgct55qb/61dn+/7w9W1v78vU7v55/uuafUqtVk6LI2O/Cax/43/ntT/xW/voZb8sJT/i1dCxdmUqlkuWd5Wub1kprlnYszbKWxblnww3Z0b0l1ZrzKzA3LF28Ikcf8eSsOeaUZo8CAAAAAAAAwEH46y+/Nf/6qytm5Vj1FPl/b/podvbtzMXn/POsHBMAAAAAAAAAmF5zrDwDAIeYej25++6kp6fZkwDVavLQQ2X4cKRly5I1a6YnfMjEdu1KHn54dFywUkmOOqqMJ7Iw7d5dPu612vCySiU58sgyODoTtmxJVq9Ojj9+ZvYPTE2tltxzj9fBC8W2beVlbwA4SRkJXrOmjAnPBd3dycaNwzNWq+VzQrU6/Ppj8eLkiCPKj8ceW4aqD1ZfX/nacmzQ/XGPSx7/+IPf71zy6KPJ1q2jH/fW1uSYY8qA+GyYztfwGzaU96WjY/z1t9ySXHBBsnlzeQ4bGbx+cU8ZvB76Uoz8muydoV6p7BO+rqdI7QtXpPVn382/vfvMfOr+L2eg2p8iRVpSSSWVtFRaym2L8vv03u4HcsG1H8rvrX5WnnjkU/PENU/LkvYlOXblsWmptOSuh9fn/9zxk6xqWZL2Fr/+B+aWOx+4MWvuf3J++7fOSUtra7PHAQAAAAAAAGCKLvrWBfnYLZ9Msf9Np02R5PI7Pp1t/7ot//5nX5nFIwMAAAAAAAAA06Gl2QMAwCHt4YeF/mCu2LJl31heUsaYH3lk9uc5lFSr+wavkzIWuHlz0t/fnLmYWdVqGR8dGbxOysd9y5YyFjpTtm/3cw3N5nXwwrF7d3lOLcb8OdNEz+/NMDg4OnidlDM/+mgZTK5Wy2W9vcmOHeVrj02bDv549Xp538cGr5MyDr5r18Hve67o7S2fr8c+7rXa+M/vM2Xr1ul5DV+vJw88kNx///D3w0ibNyfvelf5/TIwMDp4fVZ31h8+WC4buow0tKxeTz1F1j23K1ce35ciSa1eS72o57/a7s9nbvp0qoNl8Dopg9hFytj1UPB6yKb+bfnOI/87926+I9t3Ppw9g3uydffWVGuDWX/Hj7JrYFceGdgx9fsPMIseeuSe/J87ftTsMQAAAAAAAACYok/+4OJc+IsPpz6ryethX7r/m1n7qRc15dgAAAAAAAAAwMFra/YAAHDIKooyeAY0X72edHdPvH7nzuSII2ZtnENOT8/EQcyiSLq6fP0Xol27xo9KJuXjvnNnctRRM3f8bduSxz9+5vbPoWXjxuS665Kbb05uvbUMqw8OJu3tyerVyamnJqedljz72ckTntDsaZvP6+CFpatr4nWDg2UUe/ny2ZtnPN3do0PEg4Plmyvs2VNe7+0dnnHXrvLndvfu4Z/jA9XbW4aRJ7JzZ7Js2YHvdy7ZuXPiddVq+fVbsWJmZ6jXJ//+O5DX8Hv2lBHve+5JvvOd8rze1TX8WuWee8rvh9bWpFJJOjrS3VbLOS/qyvrVBxB2L4oyfP2cnakXK/KyDe258vi+vOu3e1MUyeJdfdm9rCNFpVJu/tgfClZSGdrF3mXbB7ty9bZrs2r547N61THZ2bczxa6e9A6U39f99cEM1AfT0XIQ38MAM+yeh27Oaaf+XrPHAAAAAAAAAGA//vP6f887fvxXqeUA/huZGfDtjT/MJ39wcc7/3b9s6hwAAAAAAAAAwNSJXgNAswwM7Bt53bZtdIwNmB19fcmOHZNvs2JFGblj+m3dOnmwsL+/jAuysDzyyOhgZqUy+jmwr296f+ba2pLDDhu+3ts7ffvm0DQ4WIZRP/3p5Oc/n3zbn/xk+PPnPjc577zkrLMOLqa7EPT37/ua95FHmjMLjdu0qXxMhxTF6OftSqWMSDfTli2j3+Ckt7e8PvT6o6Nj9PfkkiXl88bDDydLlx748XbunPy15a5dSWfnge93Ltm8efLn0kpl9PfFTOjv3/9r+OXLy8dyPNu3J7fdVr5pwU03lY/b0PdvS0v5OqS1tfz/7kPx673fJ7X21vzJq6tZf5Dvn1FPkbc/pytfeWJHvn/sYOqVJEXSUhTp7K2mb3F7kiK1ov7Yj9NQ9nrk2XP7YFe+fP+3c9xxT0tLpSWDfaN/x7Czd0f29E7yOhtglrSmNcc+7oTHru/u60m1OpC2to4mTgUAAAAAAADAZK665av5s2/+edOD10ly+qpTBa8BAAAAAAAAYJ4RvQaAZhkvbi32B83R1zc6vjueRx6ZOJhHYx59NOnpGb4+Nn7c3z//w5Ds69FHRwdIW1pGvxlEX1+yaNH0Ha+jY3T02ptM0Iirr04uuCB58MEDv+3PflZejj02+Yd/SF70oumfb64b+/NXFOWbvzA/7dhRRoGHjH0eT5p/zt2+Pdm9e/h6f3/52mPPnvL6ypVliHrIzp3l676OjoN7k4Sursnf2KGtLVm27MD3O5ds3z75416vz/zj3t+//9fw27aNfg1frSY335z89Kdl8Lqvb983o0qSWq18c4Nk+H4M3cdKJa0D1bz+l8mNL0kZrD4I9UryvTUDKTJ6Bx2DtVTbW1Jta0lR1EccfkxMPklLWnLSsuPT3d+997aj47G9g715uOvhgxsQYBp1tHaMil4nSb1W86+UAAAAAAAAAHPUT+/6Xs658jUZTK3Zo+TkpU/Kz95+U7PHAAAAAAAAAAAOkD8nBwAAAJiK7u7kfe9LvvjFxvf14IPJeecl/+2/JRdemKxY0fg+AZjYLbckX/pSGezu6xsd7Z7IyHD30Od7P669o7y6bmT4ujKmgD10fcxtR21SFI+Fr4fWLuqrZteyjn22HXW7VPK8w56eE5au2f/9AAAAAAAAAACAKbrl7hvysitenr5iCv99zQw7YfGa3PTuu5o9BgAAAAAAAABwEESvAQAAAPbnwQeTc85J7rtv/PVFUQZUq9XyMqStrbx0dOwbQ03KgPb11ydXXJEce+yMjA5wSOvtLWPX112X1OvJ7t3lx/0ZJ1A91rjh68m0VJL6BOHrEc8RlXqRtsF6aq3j76aSSp6+4ql50pJjpnBQAAAAAAAAAACYmge235vnf+756Z0DweujOx6X2967odljAAAAAAAAAAAHSfQaAOayjo6ks7PZU8DCNzJOOpFFi5LFi2d+lkPRtm3732b58pmfg9m1ffv+t2nkce/pOfjbwlgPPJC88pXJ5s37rhscTPbsSfr7Jw+kVirl67olS5L29tHrNmwo9/+VrwhfD+nsLF8LszA0+3l869aDv+3BzN7VNTP7nW8mu4+PPprcdVdy//3lObanJ6nVktbW8nbHHZc88YnJU5+aHH74+Puo1fY/w+7dycc/Xn4PFMXEwespBK4nsvbOSlIpsu7spJ5inDc4GLnvStKSccPXo7dLOgZr6W9tGfeYT1/x1Byz6PEHNe9hiw47qNsBHIidfTtT5ODPrQAAAAAAAADMvq4dO3L6pc/M7npfs0fJ49pW5qY33dbsMQAAAAAAAACABoheA8BcdswxZWgXmFlLliQPPjj5NsccU27H9Nu+ffJA8eLFyZo1szcPs2PHjqS7e+L1nZ2NPe7d3cnDDx/87WFId3dy7rn7Bq+Lojx39fZObT9FkfT1lZfFi8uo68gw6qZN5XG+/e1kxYrpm3++OuYYb/4yX9x7bzIwMPH6ww9v/vP41q1l7PhAHXNMcvTRB367vr4y6jyRtrbmf00atWHD5I/7YYftex+r1eTnP0++8Y3k5psn3/+ddw5//vSnJ3/wB8mZZ5ZfuyFLlpTB7Ins3Jl85jPla46WlvKcPTJu3UDoepSiyNo7KkkmCF/vc5jxw9eVIilG3Ky1Wk+lqKQYsa9KktM6jz/o4HVHa0d+7ZinH9RtAQ7E9p6tuWOrPz4GAAAAAAAAmC+6duzIqZeemJ76nmaPklWty3LrW36VlYd5c3cAAAAAAAAAmM9ErwEAAAAm8r73JffdN3pZtVrGVGu1g9tnb28Zi121anTAdcOG5P3vTy6++OD2CzBXXXNNctllyZYtB37b9evLy5FHJm9+c3LGGfu/TV9f8sUvJnv2lAHq3buTer0MXU9X7Hqk/YWvR2+cIntX72eUtloyuPdpopLk6e3H5ej2w6dtbAAAAAAAAAAASJLTLjs526pdzR4jy1oW57o33yB4DQAAAAAAAAALQEuzBwAAAACYk66+uoymjlStJjt2jB+8rlSS9vZkyZJk6dLyY3v7+OHTWq3cT7U6evkXvlAeF2Ah2LUr+chHkg984OCC1yNt2VLu5yMfKfc7me9/v3xzgqR8k4GBgZkLXo+w9o5KPv7tpGWSwxSPfdz3uWHskrZ6sXd5JU9vPy7HtPljPgAAAAAAAAAAptdJFx2XLYOPNnuMLKl05gd//IMct/qEZo8CAAAAAAAAAEyDtmYPAAAAADDnDA4mF1wwellRlBHVen308kqljFwvXpy0jPP+YvV60tub7N49Orhar5f7W716dBj7fe9Lnv/8MpgNMF9t3pz8zd8kGzeOv74oyvB/tTr6jQRaW5O2tvIy3psGfPe7yW23Je997/j7vfvu5NZbh6/v2TMrwesURVKpZO0dlSRF1p1dpD7ZW06Wm43ZR0aVr1trRSqp5Nc7jhG8BgAAAAAAAABg2j3jI0/N/f2bmj1GFlU68rVzv5qnPeX0Zo8CAAAAAAAAAEwT0WsAAABg/4oiGRho9hSz51vfSh58cPSynp7RYdakDFOvXFlGWifS0lJGsRctSrq6yqD2kFqt3O+KFcPLHngg+eY3k7PPbvx+zEX9/aO/l4qiDICPFwwH5qft25MPfaj8OFa1mvT1Te05paOjPHe2jfk19saNyQc+kLziFeU5eEitlnzve8PXBwbKZVMJXo8MbB9sIHtE+PorJxW5+ikHt5vHRiqS1S3LcnTrqsZ2BAAAAAAAAAAAY/zWxb+eO3ZvaPYYaU9rPr/2s3neU1/Q7FEAAAAAAAAAgGkkeg0AAABMrL+/jDD39Bx8BHQ+uuSS0XHqajXp7R29TVtbsmxZuV1vbxlWrVbLr9Pe8GkqlXK71tbh7Xt6yu2G9PaW8eyRUddLLkmOPXZm72Oz9PUlG0b8oUxRJPffX8ZtV68uA7fA/NXXl/zbvyU7d45eXhTJnj3l88pUDQyUl87OZMmS0WHqRx9NvvCF5HWvGz5v3H130t09epYDDV5PgytPLvK9EzL8XDCBolKGrSccK8n2+q5squ3ME9seN60zAgAAAAAAAABw6HrBJWdkfdedzR4jbWnNv770n3PW017R7FEAAAAAAAAAgGnW0uwBAAAAgDlqYCC5/fYyIHooBa8feSRZv370sr6+0deLogxV9/QkXV3J7t3lNtVqGb+u14cj2H195fqurnL79vZ9v55j93/TTeUch5KBgWTTpn2/FsD88v3vJ9u2jV5Wq5XnwAMJXo/U31/evlYbvXznzvJ4Q266qTy/VqtlYHvkmxdMZujNCqbhue7Kk4usOzupT6GjPVnwOkmKJEWK/J+Bh/NwdUfDswEAAAAAAAAAwMsu/938bNsNzR4jrWnJZS/8aP7wWa9t9igAAAAAAAAAwAwQvQYAAADG9/DD+wZGDwW33jr6elGUQeaR1yuVpLe3DKseiGq1vF2lMjquOjCwb2x17ByHiu3bmz0BcLDuvnvfc1etVr55Qr0+/m3a2pLOzmTRovJjW9v429Xr5X7GPi/demt53O7u5N57y9h1X9+Un79qY+PUBxm+rlWSK0/OlIPXU1Hs3U+RIusHHxC+BgAAAAAAAACgIa/911fm6i0/bfYYaUkl//0578/rnvvGZo8CAAAAAAAAAMwQ0WsAAABgfLt2NXuC5vjVr0ZfHwpbF0UZXS2Kg46iPmZoH0P7G3mcIXff3dgx5quBgUMztg7zXa2WfO97o5cVRdLTM/45s729jFwn5flvYGD4PNjZWa4fe7uJ9vfd7yZf/WoZuz6A83N3Z/LKc8tYdSOuPDk548+Tv3jJOMHroXn2WT7OjsZsU2sdXlAkWT/4QDYOPtrYsAAAAAAAAAAAHJLe/NnX5Uv3f7PZY6SS5L3PeFv+8kV/2+xRAAAAAAAAAIAZ1NbsAQAAAIA5anBw9PUNG5L+/ubMMptuuml0gHpgoIxTjzVeWHW8ZZWxpdNxblMU5XFGbnvTTckdd0xl4vmlvz/ZuHHybcYGwIG57+67k+7u0cv27Bk+f449P459jhlp5Dlg5O0qlXJ/e/YkixeXy+r1ZPPmpOXA3t+xuzM559XJ+qOSG48ul62dwim3VklaR4x05cnJn7882bkoaa8nq3rHf6fJYuh/i9FL9t1mWLWlMmplUUnW99+X9HZmzeIjRm1bL+qpF/V9lo2+3uAbNgAAAAAAAAAAMC/99Zffmn/91RXNHiOVJG88+bx84BUfafYoAAAAAAAAAMAME70GAAAApmYozrzQ7do1+vr+Asz7+5qMDbZOpFpNOjuHr/f0LMyv96HyfQSHmptuGn29Wh1+o4SRP/eVyv7fDGBIpbLvOaNSKffb3l4Gr3t7y/W12pRHHRm8TpJ6JVn3kvLzycLX3Z3Jn7wqef2N5XYjg9dJMtiS7Fw8HL4ukuxYnCyqFultK4+zbG/ru7ctWdmXdC0qly8dSDprZdi6qzNZXE2qreW2A6kmqaStaEk19fyi69bUU8/jOw5Lktz2yG358f0/zqq2pXnl6v8ri1o7clvPhty487Y8t/VJ6ai0ZcPgI7mzujmn1U7P4tZFU/5aAQAAAAAAAAAwv130rQvysVs+Oc5btM++15zwqlx8zj83ewwAAAAAAAAAYBaIXgMAAACMNDJyXRQTR68PJtw8Mvo63nGLYnjd/mLbAHNFd3fywAOjl/X1jR+snmrweuRtkuF9DZ0n+/uTwcHh/Y88f05yfh4bvB6yv/D1yNvdeHRyzTHJP58+HLweMhS+XtmbdC0ur/ePeD+Drs4kRVJJ8siSMnKdlPHrFf1lDLvakgx2Ji2VIrXU9v7BYZHB1PZ+ltzQdXuWty1Ne2t7fvzgjemr9mVrpSVX9O/JM1eclKu3X5uiKHJ1duepbUflmoF7kiT/874v5K3H/5HwNQAAAAAAAADAIeCTP7g4F/7iw6nPgeT1K489K//f6z7f7DEAAAAAAAAAgFkieg0AAAAwUtuIX5f09o4fTz2Y4PX+bl8U5fGWLNl3DoC57KGHRl8vijJKPVnweuS6sduN/XxszHpo/2MD2vs5N08UvB4yUfh67O32tCcffu7e0cbZz2BL8sjSvSONHXHvjcZOWqQMYleSVIryejX1Ce9LPUV+sP36tKYltb3b1Yp67uvdmPt7N2Vxa2cqqWRrrTsbazvSkba0VFryQO8W4WsAAAAAAAAAgEPAZ372ibzjx3/12H9b0ky/8/hn54rXf6PZYwAAAAAAAAAAs6il2QMAAAAAzCnLlpUfBwfLy2waecyhOQDmui1bRl8fGJg4QF0USb1efhy6jF0/dBnabiIH8AYE+wteDxkKX1958vi362sr49RFZfgy3j4mWrc/RaZ+2yJFqqml2JvQLlKkniK11NNb689gUc1AqqmnSH+qKfZ+vYbC1721vgMfEAAAAAAAAACAOe+qW76at3z37XMieP1bhz89V73lZ80eAwAAAAAAAACYZW3NHgAAAABgTjnmmOSOO5K+vTHQSmXqYdXKOJXSA71tX1/S1pasWTO12wE029atw58XRdLfP/529YP4I7qhAPZ459eh9ROt22uqweshQ+HrPe3Jv5+2b/A6SVqKvXHrJKkklWL4to2aesp75G1G36qWemr1gSRJZe/6/gymvehIpVJ5LHz91uP/KItbFzU+NADAAtPf35+77rorDz30UHp6erJnz54sWbIky5cvz5o1a3LSSSelo6Oj2WMCAAAAAADs46d3fS9/9OU/zmBqzR4lv778xPxo3fXNHgMAAAAAAAAAaALRawAAAICRjj02qVYPLM46WXB1aN1U49f1enn8Y4+d+vEBmmnPnuHP+/vHP39O9Rw4kcluP8m6Aw1eD6lVkv/75cmSarKoOjp4PWRs+LrBezhsGsLZIxV7d1lPkd313ixtWSx8DQAwjmuuuSZf+cpX8u1vfzu33nprarWJQxCtra059dRT85KXvCSveMUrcsYZZ8zipAAAAAAAAOO75e4b8rIrXp7+DDZ7lJyweE2uf+dtzR4DAAAAAAAAAGgS0WsAAABgapYsSTo6mj3FzHv605OBgalvP1nweux2U42+Dgwkp52WLF8+9Tnmi46O8ntppJHB3GTqX1NgbhiKXFer5WWOqFWSP3nVgQeviyQ7FieDLUlXaxm87m8df9tR4evpMEOnv6Hwda2oC18DAIxxxRVX5MMf/nB++ctfTvk2tVotN998c26++eZcdNFFOf300/Oe97wn55xzzgxOOr996EMfyt/+7d9OadsNGzbk+OOPn9mBpsFCvE8AAAAAAMxfD2y/N8//3PPTWxzAf/84Q47ueFxue++GZo8BAAAAAAAAADSR6DUAAAAwvkWLkt7e8vNaLVm1qqnjzKoDCVkf6H6nEr6uVJLDD08e97gD2/980N+f7No1fL0okp6epHVvUbZSSdrbmzMbcHBaWsqf5f7+Zk9S2ntubi2KvP7G5MajyzD1VIwMXg+ZKHg9XwlfAwCU7rjjjrzxjW/Mj3/844b3dcMNN+Tcc8/N5ZdfnssvvzwnnXTSNEy4cNx111258MILmz3GtFqI9wkAAAAAgPmra8eOnH7pM7O73tfsUXJE+2G56U23NXsMAAAAAAAAAKDJRK8BAACA8a1alezYkWzePBy/PhRcf30ZXR4c3P+2RTEcvp4sZj2VbUZqb09++MPk9NOntv180t+fbNw4fL0oki1bkra2ZOXK5LDDDjwmDjRHb295aWkpz5lTPcfNlkola+8oZ1r3kqmFr8cGr/dnqjHt/ZqF014x4jDjha8vvf9LeceTXpOWygF8AQAA5qkvf/nLOe+887Jr5JsyTYMf/vCHedaznpV/+7d/y9q1a6d13/NVURQ5//zz09fX/MjGdFmI9wkAAAAAgPmra8eOnHLJU9JT39PsUXJ464rc8uY7s/Kww5o9CgAAAAAAAADQZOoVAAAAwPhWry5jxIdS8DpJHnywjE63TPHXJkWx/9DrVLYZ0tJSHv/BB6e2/UJRrSY7dyZLljR7EmAqdu4s3xihr698k4RqtVw+x8LXtUqy9o7k499KWqYw2pIJ3u9goptOS6u6SZ3/jkp7KnvfZKBSqeR3Dv8NwWsA4JBwySWX5NWvfvW0B6+H7Nq1K3/4h3+YSy+9dEb2P9986lOfyo9+9KNmjzGtFuJ9AgAAAABg/jrtspPzaK272WNkWcviXPPmXwheAwAAAAAAAABJkrZmDwAAAADMUQ8/nBx3XPLoo8nu3cnAQLMnmh0bNyaVSrJ4cXm/ZyvgWhTDx61Uyjna22fn2LOpKJK2ttHXOzrKy7JlSXfz//gG2I/e3mTPnuHrS5cm9Xrz5hmppeWx83Z3R5E/eVXy+hvL8HWSrHtJUh8RmS6S7Fhcxq4XVctLknR1jt6mqJSfjO1TV4oklYmj2Ps1i8HrkYda3NKZjpbyOaZSqeRPj3lJnrXq12ZvGACAJvn0pz+ddevWpZjh/69fFEXe+ta3ZtmyZfnTP/3TGT3WXLZp06a8973vbfYY02oh3icAAAAAAOavEy9aky2DjzZ7jCypdOaXb7kpx60+odmjAAAAAAAAAABzhOg1AAAAML5du8r48urV5SWZvQB0M9VqSWtrealWk76+2Tt2Z2eyaFH5ebWaPPnJs3fs2dLfv++yWm3484GB0deBuae3d/zlzX6OaGkp3yxgYCDdHUXOeXWy/qjkxqPL1WPD10PB68GW4cj12PD1Y8HrDIevi0oZkK40cndnMXY99nCC1wDAoeq6667LG97whikFr5/znOfkNa95TZ7znOfk+OOPz/Lly9PT05N77703P//5z/Mf//EfufbaayfdR1EUecMb3pBTTjklv/mbvzldd2Ne+Yu/+It0dXU1e4xptRDvEwAAAAAA89PTPvzkPNi/pdljZFGlIz96zY8ErwEAAAAAAACAUUSvAQAAgPFVq6Ov33vv+MHihaa7e/i+d3aW93k2Qq6VSnm8oWN3dyd33DHzx51t/f3Jxo2TbzP2e49DwyOPJLfemvzqV+X5pqur/F5oa0tWrkxOOCE58cTk1FOTxz++2dMe2saG6XfvLoPTcyFY39qa7sUtOWdtLeuPKhfVK2XoOhkOX7/1JcmjS8rg9ZCx4euBlmR3x+jdPxbATh4rSR/QM8Qsx67HHlLwGgA4VHV3d+fcc8/N4ODgpNudeOKJueyyy/KCF7xgn3WHHXZYTj/99Jx++ulZt25d/uu//itvectbcs8990y4v4GBgZxzzjm56aabsmLFiobvx3zy5S9/OVdeeWWzx5hWC/E+AQAAAAAwP/3Wxb+eX+15oNljpDPt+ca5X8vTnnJ6s0cBAAAAAAAAAOYY0WsAAACAkdpG/LqkUimv7yeKNW3HrVRGX4eFrlpNfv7z5BvfSG6+efJtb7xx+POnPz35gz9IzjzTz0ozjP2a79gxN6LXRZHujiLnvLzI+jFd9JHh6xdsSI7clWxetu8uhsLXSdLbXgajJ4paj7u8CVHryYwcpyNtgtcAwCHr/e9/fzZs2DDpNi984QvzpS99KStXrpzSPl/84hfn+uuvz6te9ar84Ac/mHC7DRs25AMf+ED+6Z/+6YBmns+6urry1re+ddx1J5xwQu69995ZnqhxC/E+AQAAAAAwP73gkjOyvuvOZo+RtrTmX176yTzvqfu+mSgAAAAAAAAAgCIMAAAAMLnu7mT37mTjxmRgoNnTzLzW1tHh1mp1do5brY4+bltbsmnT7Bx7Ng0OJtu2jV7W0pJ0diZLlowOf7OwXXNNctllyZYtB37b9evLy5FHJm9+c3LGGdM/HxNbvjzZurX8vCiS3t6kXm/uTMne4HV/1h9RJKmUs41QryRvfcne4PXyZGX/6Mj1kJ2d5c0rRXlJZeLw9VxWGZHsbk9b2iqt5XLBawDgEHPbbbflkksumXSbM888M1/96lezZMmSA9r3qlWr8vWvfz2/93u/l+uuu27C7T7+8Y/nDW94Q0455ZQD2v989Z73vCebJvidxqWXXprf//3fn+WJGrcQ7xMAAAAAAPPPyy7/3fxs2w3NHiOtacllL/xo/vBZr232KAAAAAAAAADAHCV6DQAAAIyvKJKHHkp6esrrfX2HRvR69epkw4by876+faKpM6YoyuMtWjQ8R1/f7Bx7Ng0MjP991NdXxtUf97jZn4nZtWtXcvnlyXe/2/i+tmxJPvCB5IUvTN70pmTZssb3yf61tSWrVpXPEX195WVktL8JujuTc16drH98PcneeH5ldPi6SPLokmTzsjJ4vaia9LUl/a0ZtU0x1N7fG76e0rPAHOv1V0YMVAavW8rlgtcAwCHo7//+71Od5A2tDj/88Hz+858/4OD1kKVLl+YLX/hCnvGMZ2Tnzp3jblOtVvPBD34wn/vc5w7qGPPJj370o/zzP//zuOvOPffcnHXWWbM8UeMW4n0CAAAAAGD+Ofdf/iBXb/lps8dIa1ry35/z/rzuuW9s9igAAAAAAAAAwBzW0uwBAAAAgDnq0UeHg9eHkqOOKj9Wq+WlMksl00pl+JhJcuSRs3PcuaRaTbq7mz0FM2nz5uRtb5s4eF0UyeBg0ttbxrGHLr295fKJIvTf/W65382bZ252hhVF+bgsWVKGxmfrzQEm8Fjw+qhxVu49hxdJdixOBvf+RryrM+numCR4vfd6fSpPAfMkeJ1E8BoAOOTce++9+c///M9Jt/mHf/iHHHvssQ0d54lPfGL+/u//ftJtvvjFL+a+++5r6DhzXV9fX84///wU4/x/hFWrVuXiiy+e/aEatBDvEwAAAAAA88+bP/u6fOXBq5o9RlpSyXuesS5/+aK/bfYoAAAAAAAAAMAcJ3oNAAAAjO9QjQ8fc0wZcO3vb87x+/vL469Z05zjN9uePU0P6DJDNm9O3vWuZOPGfddVq2VEeceOMrbf25sMDAxfenvL5Tt2lNsNxeFH2rgxefe7ha9nQ19f+Ri0tCSLFiWtrWVceugyi8YNXo85hxQtlVHB66SMW+/uGA5b1yujg9dTUsmcDl63VlpGBa+PbVsteA0AHHIuueSS1Gq1CdefeOKJOf/886flWG95y1tywgknTLi+VqvlkksumZZjzVUXXnhh7rrrrnHXXXTRRTlyHr7B10K8TwAAAAAAzC9//eW35l9/dUWzx0glyduedn4+8IqPNHsUAAAAAAAAAGAeEL0GAAAAxjde9Hlk1HShXlauTA4/fHQ0daYjriP3XxTl8VesaP7XYiYuLVP4ddQkQTLmqV27kr/5m2T79tHLiyLZvbuM7A8MTG1fAwPl9rt37xtI37atPM6uXdMzN3NarZL8yavGBK/HsaOz2Cd4XYz4/IDNwdj1kCLDPxO1op5qUX/s+oPV7bl+523NGAsAoClqtVo+97nPTbrNO97xjrS2tk7L8dra2vK2t71t0m0++9nPpl6vT7rNfHXzzTfnwx/+8LjrzjzzzGmLi8+mhXifAAAAAACYXy761gX52C2fTLH/TWfcn514bi561f9s9hgAAAAAAAAAwDwheg0AAACMr7Nz32VFcWhcDtRUYs8Hqtlfg5m67C/uVakkbW0H/vVibrv88mTjxtHLarWkq2v8wP5U9PeXtx8bSd+4MfnEJw5un0zNokVJR8fw9SZF+1qL5PU3Ji3jnbZHnMuXVIfPwSOD1wvVyPD1YKqjwtf/9vC3hK8BgEPG97///WzatGnC9YsWLcprX/vaaT3meeedl46Rr5XH2LhxY374wx9O6zHngnq9nje84Q0ZHBzcZ11bW1s+8YlPpDLTbyg2zRbifQIAAAAAYH65+Or/ngt/8eHU58B/7fLKY8/KZa/5TLPHAAAAAAAAAADmEdFrAAAAYHyHH97sCZqjuzt59NHRoer9hbAni2VPJaQ9cn2lUh6/u3tq8y40S5c2ewKm2zXXJN/97uhltVr5PT5RLLmtrQzvL1pUfpwohF6vl/sZG76++uryuMyMSqV8jli2LGltbWqofu0dyce/NXn4elE1WTlQOSSC10MmCl8XRSF8DQAcMr7+9a9Puv6lL31pli9fPq3HXLVqVc4+++xJt9nfXPPRRz/60Vx33XXjrnvXu96Vpz3tabM8UeMW4n0CAAAAAGD++MzPPpG//fkHU0tz3ox+pBcd+bxc8fpvNHsMAAAAAAAAAGCeEb0GAAAAxrdyZbJ6dbOnmH0PP1wGXTs7D/y2Q4HrkZcD1dlZHv/hhw/8tvPdokXJNAfHaLJqNbnsstHLiiLp6dn356NSSRYvTlatSlasKAPoS5aUH1esKJcvXrzvMSba3+WXl8dnZrS0lI/LkUeW8euW5v2qeb/h64M9H4+nsv9N5op9w9dlHF74GgA4VHx37JvvjPHSl750Ro67v/1effXVM3LcZrnvvvvyvve9b9x1T3rSk/J3f/d3szxR4xbifQIAAAAAYP74z+v/PW/+7tvnRPD6tw5/er7+ph80ewwAAAAAAAAAYB5qa/YAAAAAwBx2xBFl1HT37jIq298/vK6lZWEGin/5y/K+dXQktVoyODh7x25vL4+bJL29yZo1s3fs2dLTk+zZM3pZa2t5vw8mNM7cdsstyZYto5ft2ZPUx/xBVltbGbdubZ14Xy0tZfS6o6M8J40MWtfr5X6XLh1etnlzcs01ZTibmbVkSfm49PU1bYS1dyRpbcm6s+qpjwlT97UlXZ1JpUiKRqLV8yh4PaTI8NgDqaa1PpiOlvbHwtdJ8qxVv9a0+QAAZsqmTZty++23T7rNC1/4whk59ote9KJJ1996663ZvHlzjjrqqBk5/mx705velN27d4+77tJLL83i8d68aI5biPcJAAAAAID54ad3fS+v/+b5qabW7FHy68tPzI/WXd/sMQAAAAAAAACAeUr0GgAAAJjcokXlpatrdPT6CU9IVq5s3lwz5XOfK+PTSRng3bkzKYrR21Qq+y47EOPdvlJJli0rw75JGfU97bSDP8Zc1dVVXjg0/OQno69Xq6PPI0kZvF6+vPwZmIrW1nL7np7R4ev+/jKc3jbiV57f+EbyR390cLOzf/V6MjCQrFpVPn6NnhsbtPb2JG0dWfeCgcfC10PB6yT7xLAPyDwMXg8ZGb7urZc/f8LXAMBCd9111026/thjj82xxx47I8c+/vjjc/TRR2fTpk0TbvOLX/wiL3vZy2bk+LPpM5/5TK666qpx151zzjn5/d///VmeqHEL8T4BAAAAADA/3HL3DXnZFS9PfwabPUpOXHJcrn/nbc0eAwAAAAAAAACYx1qaPQAAAADAnDIyyNzSMhzAHqlSKddNNdI7ldu1tw8Hr8fOAfNRd3dy112jl/X17bvd0qUH97O0dOm+y8fu/6abynA906+/P9m6NXn00eHHYuh8eaCP53Qpiqy9pZqPX9WSllSSSrJn70gNBa8XgJEp8t56fwbq5R9HDoWvr9/pjxQBgIXll7/85aTrf+M3fmNGj/+sZz1r0vU33njjjB5/Nmzbti3vfOc7x123cuXKXHzxxbM70DRYiPcJAAAAAID54YHt9+b5n3t+eouBZo+SYzuPzC3vuafZYwAAAAAAAAAA81xbswcAAACAQ87Gjcl11yU335zcemuyfXsyOFjGQlevTk49NTnttOTZz06e8IRmT3voqVZHX69UyktRDF+faF0y+vOx247d78h9jl0/dg6Ybx5+ePT1okgGxvxR1uLFSWvrwe2/tbW8fW/v8LKBgfI4I3+e7rsvOeqogzsG46tWy+euIUccUX5sbS0vtVpz5tpr7e1J6sm6l1RyWH+ydXGx39tMaoEEs4sM35Xeen+SpKOl/bHwdZI8a9WvNWc4AIBpdtNNN026/rTTTpvR45922mn5+te/PuH6hRC9fvvb355t27aNu+5//I//kaPm4f8PW4j3CQAAAACAue+B7ffm9Eufmd31vmaPkiPaD8uv/vqhZo8BAAAAAAAAACwAotcAAAAwGwYHk+98J/n0p5Of/3zybX/yk+HPn/vc5LzzkrPOKqPYzLy2cX5dMhTQLYp9g7oTBa+Hro+87Xi3Gy94PdEcMJ9s3jz6+ngh987Oxo7R2Tk6ej10nJHny4ceEr2ebrt2jb6+dGn5Nd68uTx3zXa0f5xz6No7K0mKrDu7yIrBSnZ2HET4eoHEricyUAymvWhLpVJJURT50aO/zG+sPDktlZZmjwYA0LC77rpr0vUnnnjijB7/KU95yqTrf/WrX83o8Wfad77znXz2s58dd90ZZ5yRN73pTbM8UeMW4n0CAAAAAGDu69qxI2dc9pvpqe9p9ig5vHVFbnnznc0eAwAAAAAAAABYINQrAAAAYKZdfXXyvOclb3zj/oPXY/3sZ8n555e3v/rqmZmP0VauHH29tbX8WKkkLS1l0LWlpYxW1+vDIeyxweshI9cPbT9yP0Ox1qHjTDQHzDePPDL6+tgQ8tDPQCOGfpYmO87GjY0dg30NDu677KSTyo+zHbxOyvNqa2uyePGo76m1d1bygg3J4oEiqwYOsGC9AIPXI+9Sa6UlS1sWp7L3Oei4xUfmLU98teA1ALAgFEWR++67b9Jt9helbtT+9r+/+eayXbt2TRiAbmtryyc/+cnHXmfOFwvxPgEAAAAAMD887bKT8mitu9ljZHnLktz+F3dn5WGHNXsUAAAAAAAAAGCBaNv/JgAAADBP1evJrl3lx87O0etWrZr54/f0JBdfnHz7243v6777kte+Njn77OQv/zJZvrzxfe7Pgw+Ovr51axloXras8VDtXHbCCcmNNw5fHxvUrdWGQ9UHayh+PXI/Y4/z5Cc3dgxotj17Rl+v1UZfHxt6P1itraNDy2OPs2vX9ByHYeM9B6xZk3R0JL295bltojcCmCm1Wnnszs6kvT3p78+VTx7M955Url48UCSpZGfHfuY6BDp24wWv33r8H2Vx66ImTwYAMD22bNmSvr6+Sbd5whOeMKMz7G//u3fvztatW3PEEUfM6Bwz4YILLsj9998/7rp3vvOdedrTnjbLEzVuId4nAAAAAADmvhMvWpOtgzuaPUaWtizKDW+5UfAaAAAAAAAAAJhWotcAAAAsTIODyZYt5cf29jJAPdLOnTN7/M2bk7/5m2TjxvHXF0UZaa1WRwdaW1vL+HFb2/hh5W9+swwyf+hDyVFHzczsQ3bt+v/Zu/M4Oeo6/+Pvqj7nnoRcBEggJCQksASIgAQE5BLIitwIAq6CShBFQeWH6y6y6rrKusqNusqhAbIooghiuFTQgAlJCImEXCSQkDtzz3RPd9Xvj28603f3THdP9/S8nj7amar61vf7qaO/nQyZdyWGlnZ0SOGw1Npa+rHLacqUxOVYGLXrJp4Py0oNdk0X8hp/HWPfx/qKBV9bVmro9eTJAz8GoBIkh08nKzQ8Pt9+ctWB/qupyd2mHMHXkvmcikT0xMygrj85Iie23nVVE7Hk2rZavXH3xDAIuZb6DpPAawAAMBxszvSzmDjjSvxzjXz637x585ALvX7ttdd05513pt124IEH6t///d8HuaLCVeMxAQAAAAAAAAAq3/TvHaR3Q1vLXYZqLL9e+vhLmrDPpHKXAgAAAAAAAAAAAAAAqoxd7gIAAAAAACiJHTtM4HU5bNki3Xhj+sDrSMSER+/ebYK4u7tNQGfs1d1t1u/ebdpFIql9bN4s3XSTGaccIhFzfqvVjBmJy5ZlgtOTw61jy+lCrdMtJwdex/fl86Xue9hhA6sfqBQeT/btxQpEztVPrjrQf7W1qcHX771nPscq4Hw/MSWq6z/UIcdS34MFbPOjcH+wTg2BBpMCPcwCr21ZBF4DAIBhYefOnVm3NzY2KhAIlLSG2tpa1dfXZ22Tq85K09vbq6uvvlqO46Tdfvfdd6u2tnaQqypMNR4TAAAAAAAAAKDyzfrBdK3rfq/cZSggn3536W91+OSjy10KAAAAAAAAAAAAAACoQoReAwAAAACqTzgs9fSUZ+yODumWW6Tk4CLXlTo7pbY2U18+wmHTvrMzNdR1xw4zTkdHcerur56e/I9jqBk9WjriiL7laDR9+HgsvNpx+r5Pvk7x6+PbJYtEzDgxM2dKo0YV5XCAskkOBksOQ46/5wuR3E/yODmC5jBAI0ZIzc1SMCh5vdLbb5v16UL8B8OeufWJqa6uP8s1gddpgus8nV178q6rK/E6+Xg8shW0/XvXWrIUkI/AawAAMCzs2rUr6/bGxsZBqSPXOLnqrDT/9V//peXLl6fddtFFF+nss88e5IoKV43HBAAAAAAAAACobCfdOUtvtq8udxnyyqP55z+iEw45tdylAAAAAAAAAAAAAACAKuUtdwEAAAAAABRdchhzNColBwlt21aase+7T3rvvdTxOzrShm/mJRYwXV+fGOb63nvS//yP9NnPDrzebHbtSgxoTg5+DoVKM24lmDNHWrbMXLP29vRB1VLm9Zlk66e9XWpslGzbjA8MdaNHJ86H3qQfRUYi5j1mF/BcPsdJnZuSxxk/fuD9I7vaWvNqbzefq7HPKJ/PrEsWC8Pu79yZiWUl9PnEDI+uPyNiAq9jXDchhDukqDrCHSb82ZVcFamWQWZJGuFtVEe0W71uZM86a2+gd40nIEuWXDmKKCq/vAReAwCAYWP37t1Ztzc0NAxKHbnGGUqh16tWrdK3vvWttNuampr0ox/9aJArKlw1HlMx3X333brnnntKPs7atWtLPgYAAAAAAAAAVIp/vu8UvbprWbnLkEe27j3tRzrz8HPLXQoAAAAAAAAAAAAAAKhihF4DAAAAAKpPcpim40itrYnrdu4s/rjLl0t//nPiumhU6uzMHPDp9ZrAV8sybdIFuEp94ct1dYnB13/6kzR1qnT44cU7jpjWVjNuV5cJuE6u6/XXpXXrij9uJYhGTZDrli3me6nvGhVbrN9YOPq4cVJvb+q9VC06OlJD5z0eye8393chAcioLOPGJS4nh1FLZm6pqRn4GOnC95PH2X//gfeP/CQ/7MGyUtskBVQX2xPTpOvPjCrl8RJxodc9HletfldyM9RYASxpbwy3V7aictLGcluyNLNpqnwen/68a4l6Ij3yWLYmBMfpyMapWrDzVbmuqzGeRh3iHaeFYRMkR+A1AAAYDnp6erJur6urG5Q66uvrs27PVWelcF1X11xzjUIZHn72ne98R/vuu+8gV1WYajymYtu+fbtWrlxZ7jIAAAAAAAAAoGpc+rM5WrD15XKXIY9sffv4f9MVsz9b7lIAAAAAAAAAAAAAAECVI/QaAAAAAIBiiESkxx9PXOe6JjA6OdzTsqRAQPL50gf8Oo4JPQ6FEveN9VdfnxjW+atfSYcemj5QthCuK+3YYWpJJxw2AcbV6pBDpHff7VsuReB1rN/Y9eztNSHm3d2lGasShMOpAeqRiLnfu7qkUaPKUxeKb7/9Epcty4Sbh8N967q7zbr4MP98RaOp7xW/PzXM+MADpSESJjdkbd2auByJZA64LkXg9VRX15/lyrEsybLN52jSmD1emcBryaRK76nDkiU3bax0ebgyNXksWx7Xkke2wopIsuSVrYgcWZJ8tk+vtrypE/Y5UudOPVd/3vBnNXvr9LF9TlTQ45fP9mlJy0rN9hwkv+WV1/JoVWQLgdcAAGBYCMf/nSMNb7F/fjLAcXLVWSnuv/9+/eUvf0m77dhjj9XnPve5Qa6ocNV4TAAAAAAAAACAyvXphy/Rb959ttxlyJalb3zgK7rh9K+XuxQAAAAAAAAAAAAAADAMpEnWAgAAAAAA/bZ8ubRrV+K6np7U4E2Px4RWBwLpA68lsz4QMO2Sg2AdJzW8dedO6c03C6s/nfb2zIHX1S4alf7xj74g8VIFXsfE+vd6zbjRaGnHq1TRqNTaWu4qUCyNjSY8Pl4wTdhuZ2f/32Oua/ZLltz/zJlSc3P/+kb/bduWuBz77LMs85nm9Q4s2DwPfYHX6ruPkoLPezxuX+B1BbFkpV2fHMLtl1cBeeWxbAUsr/y2T9aedm+1r9e0UdP0maM/o89P/xcFPX5J0vSGg3T5mNPkt8zn2EG+0ZpTdxSB1wAAYFgg9Lp4Nm/erJtvvjntNq/Xq/vvv192pp9vVahqPCYAAAAAAAAAQOW64bGrNW/dr8tdhixJXzj8M7r57G+VuxQAAAAAAAAAAAAAADBMDM5vcwIAAAAAUGkaG4vb38KFiSGb0aiUHF7k9Up1dSlhnBnFArI7O6VIpG99OGxCseMDRBculD70oYHXn053d3H7G0rWrJHa2sx5jj/3pRYImNDnNWukqVMHb9xK0tNT+pBxDJ4TT5TWretb9nrNfR4K9a2LREzIfl1dfsHI0WjqvCiZfpND5ebMGXjtyF9XV+JycnC/zyfV1poHKXR2DizY37JS5oaoXP3sSJnA6yxtu3xp+nMlWakB04PFK1uWZSvqOnLkpGyPuFFJHnliwdhp/uiwj69Jp405TrZlAvliX2NSl/P88wcAAMAQ5yQ/gCyJp0QPZOnvONEh8MCr6667Tq0ZHk51ww036IgjjhjkigpXjccEAAAAAAAAAKhMtz55k3781kNl+tcpiT455VJ99/y7yl0GAAAAAAAAAAAAAAAYRgi9BgAAAAAMT/vtV7y+tm+X3n47May1uzs13Lq+Pr9A12T19SYIOV44bNbHrFol+f3S6NH97z+THCFRsqz8A7yHmqVL+75PE7RaEvHnculSadq00o9ZDradu80QCP5Cng4/XBo7Vtq6tW9dLPw4fo6JRMw8V1NjwqvT3SeOY8Ky0wXy27bpN964cdJxx0lvvFGcY0Fm+X5e+P0m2D6+fbb5NcdnjMeVfvlrS5dc6GrZ2MztRnRLu2uk3rjbyo2Lu7ZkDWr4tVce2ZYlVyaY2rZsRZzUByw4cuRR+j83NHnrdfqoY+W30yV6AwAADG/e5IfhJIkM0sOtco3j81X2n+Uef/xx/eY3v0m7beLEifrmN785uAUVQTUeEwAAAAAAAACgMv1wwbf1/aV3yqmAyOsLJ56jey97uNxlAAAAAAAAAAAAAACAYYbQawAAAAAACrViReKy65pQ6ng1NQMLvJbMfjU1iUGv4bAZJz4QdMUK6eSTBzZGOl5v6nHEc93BCYMebG1t0saN5vtQaPCO0XXNeMGgGb+1VWpsHJyxB1M+4bg5AsowhHi90rXXSrfe2rfOsqSGBvNeS35/dXebl9dr5r5Y6Hw0aoKx04n1lxyQfO213EuDJVeYffx1Tv7sSjfH9uOBCo1hS489rtTg67gHFliSRvRIu4Mm+Nq1lBB4HWszGLO9VybkOn4027LltTyKuH2B/5YsebMEXh/bfBiB1wAAABn4/f6s2wcr9Lq3tzfr9lx1llNLS4uuv/76jNvvvvtu1SY/eKjCVeMxldLo0aM1ffr0ko+zdu1ahUKhko8DAAAAAAAAAIPp4Vfu19f/epuiyvFv5QbB6WNP0C8++ZtylwEAAAAAAAAAAAAAAIYhUl8AAAAAACjU6tWJy+nCkwKBwsYIBBJDr2Pj+OICL9esKW7odUODtHNn8fobKjZtMl8jkcwhu6USG9PrNXVUY+h1LvX15a4AxXbccdJpp0nPPde3zuMx93d7e/og9Hzff7Zt5qrkhwqcfrp07LGF1Y38JQfDeTyJ1y/aF+Zc1AcJ7AnH3ht8fZG0bFyGprI0ImRpR9BRxFJc1HV8m+IHX8f32Rd4ncq2bHlcV1E5smTJZ3lkpSmmya7Vsc2HyWfzo30AAIBMfL7sDwcJZ3vAVxEN5dDrm266SVu2bEm77YILLtA555wzyBUVrhqPqZSuu+46XXfddSUfZ8aMGVq5cmXJxwEAAAAAAACAwfKrRb/Qtc99sSICr2ePOlq/+9yL5S4DAAAAAAAAAAAAAAAMU+kTNgAAAAAAQP7WrUtcTg5q9XpNMGshbNv0k22ctWsLGyNZMDg8Q5e3bDGhrKGQWS5mQGs2sXFCIfP91q2DM24lqa0l9HqoikSkzk6ptTXxtXattHy59KEPSc3NfWHWkYi5z+vqTHi/6/b/5fOZ/V03sd/mZunEE824y5dLGzcm1tTWZh4ikC5sGwMzZkzicvJnXiTSd76txKDpYmkMW3rsqRodsTNzwGHI48qxJK+THHfdp9jVuZI8skzgdY4fx9uWrVo7KJ/lTVtJk1WjD9RMJvAaAAAgh/ocf6/s6OgYlDra29uzbs9VZ7m89NJL+tnPfpZ2W2Njo+64445Brqhw1XhMAAAAAAAAAIDK8/Lbz+tTv/+MIormblxiRzRN1fPXLSx3GQAAAAAAAAAAAAAAYBgjHQMAAAAAgEK1tiYuR5N+YcHjKc44Hk9i0HXyOMl1FEN9vVRTY4KYk0O2R42Sxo0r/pjl9vvfJwbrDqbYeK4rdXVJkyYN7viDob1d6ulJXOfxSH6/CTHG0NPZaYKk071fLEt6913z/bnnSvPmSckBc36/uQd6e1PnmXS8XnOveDypwdX19WacHTv61nV0JN5z4bBZ19ZmQrNRuLFjE5e93sT7wXWllhYThh2NmuX+hl/nMR83Oj499lyDLjmtRctGhBK29XhdtfqlprAlf1TaXSP1ZijBb3nluq56C/wFREuWXLmyZGm8p1lbo23KdhR1nhpNrttf3ZGQ1nS9m7CtyarRsYGD5bH4kT4AAEAuI0eOzLq9ra1tUOrINU6uOsuhp6dHn/nMZ+Rm+PP3t7/9bY0fP36QqypMNR4TAAAAAAAAAKDyLF+zWHMe/ahC6i13KZpSO0Gv3vBmucsAAAAAAAAAAAAAAADDHAkZAAAAAAAUKldIa3+DPQfaTz5hsQMRjZqX4ySGjvb0SN3dpRmznNraTMh3OYXDJsS8Gs9vT09qYLtk1hF6PfTE7tV8NDVJl10mzZ9vApDjeTxmjouF+yfPN5ZlApO9XtPGtlP7b26WLr7YjJMP1zWB3enuR/TP/vubr65rzmckkhpSnXxNs4VY5xuKndzG51Njr63H/tioS07ermV7srh7vNobeB2Mmn2aFFCLHVHESfzs9Ns+2bLlypFcDSj42or7f/+eH8FvjbZprKdRW532tMHXdb46TQ7uJ49labR/hGzL0tsdGyRJjbYJvPZZHjlp9gUAAECiffbZJ+v2luS/j5RIa46/K+Wqsxy++c1vavXq1Wm3HXPMMZo7d+4gV1S4ajwmAAAAAAAAAEBl2bhznU6ad5J63HC5S9EBgbFa/pW15S4DAAAAAAAAAAAAAACA0GsAAAAAAArmzfHX62zBnv2Rq59cdQxEa6sJhU2no8OEmFabtjYT2lqs69ZfrmsCY9vapPffL08NpRQOZw7zDgSkESMGtx4UpqOjf+2bmqQrrpBeeEFasaIvJLm3N3v4dKxdrI3HY0LSY2HZM2ZIH/6wFAz2rx7XNUHsgUD/9kOixkZp5Ejp3Xf75k7LSp1HBzqvptsvOfDa6937OdjYFtJjj1u65EJXy8ZK3d7EwGtJsnw+Nfhr1BZqU9Qx95Xf9sljeeTuGc9j2XuDr32WV71u6sMlvDIB7JE9cdRey6NaO6gup0d+yyfXdRR1HbmSOt2wpgTGa3V4c8Ih1fvrdWjzZDndPSZsW9IY/wjZvl69H23RUf6J8lmeAZ06AACA4WjUqFFZt4dCIbW0tKi5ublkNezatUvhcPZgi0oLvV62bJluv/32tNu8Xq/uv/9+2ekeQFTBqvGYAAAAAAAAAACVZePOdTrqnpnqckPlLkVjfSO1+ub3yl0GAAAAAAAAAAAAAACAJInf3gMAAAAAoFBNTYnLnqRgymxBrv2R3E/yOMl1FKqrK3PgdTWLRMoXeB0TC74ebkIhqb293FWgP3p7E5ctK/Vl24mv2lppzhzpgx8017ynp//zZDRq9guFTD9z5ph+k8eKveLrSX5/F2uOHq56eqTf/17ati3x3CaHUvdXrK9M83Fy/zU1Zl00KnV2qjFs6bHHLR39vvTTP/h17DZ/YvderyxZqvPVybbsvYHXybyWrem+/TSjYZJOCRyq+FG9smXLki1r7/d1nhrZlq06u0Z+27e3bb0d0AzfeI31N+uQ2gnSnp5qPEEdNvowee3UB1eM9TRqlu9AAq8BAAD6acKECTnbbN26taQ15NN/PnUOlmg0qquvvlqRDD+L+OIXv6iZM2cOblEFqsZjAgAAAAAAAABUltbdu3XMvUerw+kudyka6WnUG9e+Ve4yAAAAAAAAAAAAAAAA9kpN0gAAAAAAAP0zaZK0ZEnfsjfpr9uRiOQ4Jnh1oBwnNQQ5eZyDDx54/+kMx8BrqfyB1zGVUsdg6+oqdwXoj+R5KPm+dV0zf8Xr6ZFeeEFasUIKBEwfvb39C5/2eCSfz3z929+ktjbpwx+WgsHUto6TPYy5kLl5uGttlebPl1pazLVIDhVPFzLeH/kGXns8cmuCcp2orNbWvfs1hC098ZhkN9frnG0eXXp6i97YJyLH55NjSa7rSnJV4wko6kT3LJtxXdeVJUvTvftpf7tZHxp5rJa9v1RToiO12t4lj6w9T5Q0+9iSbMuW6zqKVe26kuM6qrP8OsQeK8dxFemNqClQrwmBsdrWu1sTasfKcaJyImFFor1yXEe2R/K6HkWjETmWLTtqybVivUaliHnf9Vjdsh2PunvMwwK6wn51h/s+u+1wWE40Kjv5IRkAAABVrr6+Xvvss4927tyZsc2GDRs0derUktXwzjvvZN0+ZswY1dXVlWz8/nrkkUe0aNGitNsmTJigb37zm4NcUeGq8ZgAAAAAAAAAAJWjdfduHX7vVLVEO8pdihrsWv3jujVqGjGi3KUAAAAAAAAAAAAAAADsReg1AAAAAACFmjIlcTk5BFaSQiGppmbgY4RCqeuSx5k8eeD9p9PbaxI7u7ulcDg1uDYSSR8wO9SFw+WuwAiHpW3byl1F8UUi0q5diets29zPtbXm++SAd1Su2lopS5BciviQZMmEF3u95uU4Jvg69qCA5PDk2H3i8aQGVa9YIW3aJF18sdTUlH89lmWCt4ez7dvN+Vu9Wlq3zlyjSMSc66Ym82CHKVOkGTOk0aP79mtpkebNkzo6+sLNPR7z2SGVLrg/6dq7knqDPkW7O+TrCsmOJIanuz6vepxe+Tt69fPf+3XlWVEtmmAp2tsjV5IjR47jyHGdhF5duZqgJlmRkN6PbNPv33lW7b098jiOxtu12urtVl+8dWw3Vz3RxM/rgDwa7QbVGmmTJFm9ttxejyw5GuEG1d7VZgK3IxFFImG5ruSzPLJlyY70yiNLlix590ZsW7IifklSl71Lsmy1RkzQ9fu9HrV37947thWJald4t2rtGo0N7iO/xz/Akw4AADD0HHTQQVlDr1evXq0zzjijZOOvWbMm6/aDDjqoZGMPxI4dOzJumz17th555JFBrEZ67LHHtM8++2Tc3tDQoEsuuSRrH9V4TAAAAAAAAACAyjHzvuna1rs7d8MSq7ODWjx3CYHXAAAAAAAAAAAAAACg4hB6DQAAAABAoWbMSFy2LMnvTwxP7u426zye/vcfjZr94/n9Zpx4hx3W/76z8XhMOHGmAOJIpDrDiSvlmKr1/Pb2mns6xnXNvdzba8LdR4wY2PsE5VFTI9XXm+DjXFpapEceSd82GjX3QKZ73nVNm2jUhDH7fKn3SSyE+bLL8g++rqkx/UWjudtWk0hE+utfpaeekt54I3vbJUv6vj/iCGnOHKmzU3rsMROQHbsuyUHlpZD0uedKinhtKRJVIBRWcga1bEuRmr5Q88awpTteHalzDw1qSzgpfD/JBDVphNI/2KHR8UsRaau3O+32mHr5tb/q1ZtSWOxwrAxbiqvL6da7XVs02VNZwYoAAAClNGPGDC1atCjj9lWrVpV0/Fz9z0j+WVIFe+SRRwY9IPrmm2/Oun3ixIkFBURX4zEBAAAAAAAAAAbP9O8dpPfDmR++OFhqLL9e+vhLmrDPpHKXAgAAAAAAAAAAAAAAkILQawAAAAAACjV6tAkCXbasb10wmBh6LZmQ0IaG1LDqbFzX7JcsmBTEOXOmNGpU/v3mO3Z8AK1tJ9bu9ZpXtSl1aGt/VOv5jQ8rdl0TliuZr5FI/94jKL/GRikQMOH8sfDjmEDABFD39Ei//rWZz+Kvr+uasPPe3vzHiwXC+3ym//j+OjvNOJ/7XN882dWVGmpdU9MXoD3cLFwo3XuvtHVr//ddtsy8enrMdYtG++bMwZg7XbcvKN91JUvy9LpSb5rQcstSuK5GbtJ8svhjx+mi8WM0//0F2hLambqbpIPt0ap1ss9DjY5fVkTakiH4ul5+HabRaldIvSp/qHpEEe0K7y53GQAAAIPmqKOO0oMPPphx+5L4h7uUwOuvv551+5FHHlnS8QEAAAAAAAAAQGnM+sF0ret+r9xlKCCffnfpb3X45KPLXQoAAAAAAAAAAAAAAEBawzDVBQAAAACAEpgzJzH02us1YayhUN+6SERqb5fq6hJDfzOJRk2Aa3zwtGT6TQ5qnTNn4LVn4vNJfn9feHdTU+K4zc1SbW3xx4XhutKYMeWuovjC4dTQ4x07zPc+n3kNxyDioS4Q6Augjg8/njRJmjZNuv12qaPDzCkx0aiZEx1nYEHnkYjZt6EhcU5tb5eWLpVuvNEsv/66tGVL3/aeHlNjT0//xxzKOjqk++6TnnuusH5CIdNXObmuzF2W4b6xTeC147ETVq87fprWH76/gpIu3vd0Pfb+H/V+aMfe7ZakQ3xjNcKtUZeT5oETSRodv9yItDUp+DoWeO2VnWHP8uiOpA/oBgAAqEZHHXVU1u1Lly5VNBqVJ5+fz/RTJBLRsvifEaVB6DUAAAAAAAAAAEPPSXfO0pvtq8tdhnzyaP75j+iEQ04tdykAAAAAAAAAAAAAAAAZkSAEAAAAAEAxfPCD0tix0tatfetqa6XeXhPKGhOJSK2tUk2NCYi10wRiOo4JFe1OE05p26lB0+PGSccdV5zjiOfxmKDrUMgcRzicGMCdrr5qEB/YW06uK3V1lbuK4uvtTQ0bDgZN2HUsODkaLU9tKI2FC1ODlqNRqa0t8/vN6zVzUCxEOxpNfQCAZObLtjapsTEx+HrBAmn27NLMjUPRli3SLbdImzen3+665vxGIonvP4/HXAuv11yL2MMbKoFtpbl9XPX6bPUEvHLVK8Udys6RNbr/g35teW/R3nUz3NHqcNu02+2UK1cHqFGB3qi6ZJb7WHLkypbkKu4zXbYaHJ8UF3xdL5+ma5TsPfuYquL7cuRGIpIcSY4seeR298iRo85o35zvlaUmBWSiuN29fUTlqCdsrkGnOuSXV+6eP2fsikTUHu0LJK+TX564YPCIk+Y9BAAAUKVmzZqlYDCongwPu+no6NDixYt1zDHHFH3s1157TV1Z/j4fDAZ19NFHF31cAAAAAAAAAABQOmfeM1uv7sr+0MvB4JGte077kc48/NxylwIAAAAAAAAAAAAAAJAVodcAAAAAABSD1ytde61066196yxLamhIDXaNhRl3dZk2yeLbxm+P9Ze8z7XXmvGLrbHRhBPHgoiT1dSkBnBXA5+vL2i3XCzL1FGN5zccNiHX8WLLlmWC1isleByFi0Ske+9NXOe6Jjg5+TpblrkX+vtAgFh/TU2J8+N990mzZhXnOIayLVukG2+Udu5M3RaJmHk+HM7dj89nQuuLJGpJnoG81S0r7jq7ilquPLIU9XnV45WintTP1bbGgP73EzMUCQZkOb17A6R9lkfHBg7Wq6G1qnc8GqG+ucmKC4v2yZYtS37bJ8tJvDctWWp0/FJE6vBEdJg1Rl71tQnIqx5Fk/ax5ZGlXklB2yfLsmS7HtnS3khtr2x59rysuHo8kmxZe2O0fbZXlmV+odGJu/+tPe0AAACGq2AwqNmzZ+v555/P2GbBggUlCb1+LvmhP0lOPPFEBZP/XgwAAAAAAAAAACrWpT+boz9tf63cZcgjW//zof/SFbM/W+5SAAAAAAAAAAAAAAAAckqTHgMAAAAAAAbkuOOk005LXOfxmPDoWIiy45ivsZfjpL6St7uu2b+x0fQX7/TTpWOPLc3x2LY0erQJXk4et5pVSvBUpdQxGGzbHO/o0SZYF9Vj+XJp69bEdV1dZm6L5/WaOa6mJn3gtWTW19SYcOvkoH/HMf3G27JFWriwsPqHuo4O6ZZbUgOvXVfq7DQPZcgn8Np1TeB48nUboLaA9LFLpSem9XNHj8fcA8Gg3EBAvzrco49dbmv7qFr11gbSBl7vHFmj+z55uHaPCMqyLNVZiQ9x8FkezQ5M0QGefdIOacuSX+Yz0OfxqNb2p203wg1opj02IfBakmrlkz/Nj+EtWaqRX3WeWlmyTOa7ZeZ9jyzVyCuvbNXKp0DcsystWfLt6c8jW/XeOklSjZVYV0BeQq8BAMCwd/rpp2fd/utf/7ok4z7++ONZt59xxhklGRcAAAAAAAAAABTfpx++RL9599lylyFblr7xga/oM6fcUO5SAAAAAAAAAAAAAAAA8uLN3QQAAAAAAOTtc5+TVq6UNm/uWxeN9oVeD0Qs9DoaTQyfHj9e+uxnC6s3F9uWmpvN98nHMHq0VF9f2vHLYfx4adu2wq5ZISyrr46DDhr88UstFJL86UNjUYX+8pfE5UjE3APxvF6poaHv3s/F4zHt29tNfzGhkBQIJAZiP/WUdPHFA6u9Gtx3X+LnkWQ+S9rb+xdgXcS5sC0gXXKhtGyctGRfs+68t3LsZFl9c3JDg2TbemJil26Y3SPHkq44u0cPPRNUsDtxt9ePGKPffWSSeoJ990SN7ZflWup0QnLk7One0ghfo7yWR22RDjlyZMmESgfllRUXHt3gq5Gn11an2yNnz2kJWF41emvlyfCMyREKql1hdSsiV5IlqcYKqt5bq6jtSo4UciPyeywFHK88jqvgnrF98siVK0tSWFG5knzyKKiAgv4a+Wyvaiy/fJb584ElSwF59gZ1AwAADGcXXnihbr755ozbX3/9da1atUpTp04t2phvvvmmli9fnnG7ZVm68MILizZesdxwww264YYbBm08K8ff/9avX68DDzywoDGq8ZgAAAAAAAAAAIPrhseu1i/XleYhmv1hSfrC4Z/RzWd/q9ylAAAAAAAAAAAAAAAA5I3QawAAAAAAiqm+XvrOd6SbbjLByV1dUjhsttm2CezsT3hoLOjTcaSODhMWXFsrjRljxiln6HQgYIKvq81hh0lvvmnCdAc7+DoWkOTzmTqq8fy2taWG8KI6tbVJb7+dGELd05Parq4u/8DrGMsy+7W2Jq7v6UmcF5culc44o399V4uFC6XnnktcF42a65JpXvN6Tah4bO6LRqXe3qKVFB94LUmOJV1/tvk+Y/C1nRQkHQ7riWnSF2e3KxbbvXyUoyvP6tFPn7LVGLa0uzmo335kknTiCTrEG8hYT9SNKuqmhn/3hLskx5ad477siXTLa/vktfP7MbvjOAorLL+3VrYnse+oE5HX8strW/LYHjnRsMK90ZQ+Im5Ufl9QXo8tj2UCsZ09x7DkvUV6NxLOqxYAAIDh4OCDD9Zxxx2nhQsXZmxz55136q677iramHfccUfW7ccffzzBxwAAAAAAAAAADAG3PnmT7n/rwXKXIUn65JRL9d3zi/ffMwAAAAAAAAAAAAAAAAYDodcAAAAAgOrluiYAtbfXhEbHW7astGNfcIH03/8thUKp22IhmtnClOODNuPbxfq74AJp61bzKpWWlsSxbduEMQeDpr4RI6RRo0o3frkccYT05JMmZDxmMIKvYwHnkjnHRxxRnefX5yt3BRgsmzaZuTe6J7jXdc1DAOLfT8Gg+RpNDffNSyCQGKQdDvcF1sf84x/SQQcNrP+hKhKR7r03cZ3rSu3tqfOZZZnrEAikBky7rvkscJx+P7AharnyuH3Xoc3vJgRex+wNvrYsnbfKSvm8jsqRR311PXFgt66fHZZjSYorafkoRx+/0KPzIlO0/pDRcjy2jvY3KBioyb/umLr+71IJ6ny1Une5qwAAAKgsn/rUp7KGXv/85z/X17/+de27774Fj/Xee+/p4Ycfztrmk5/8ZMHjAAAAAAAAAACA0vrhgm/re0vv0CD8q8GcLpx4ju69LPt/fwAAAAAAAAAAAAAAAKhEhF4DAAAAAKpTNCrt2mUCr9PZtKl0Y7e0SI88Inm9po5IJHF7PsGhsTbxwa2S6dPrlX72M+myy6SmpqKUnFZnZ/r1Pp80cmTpxi23GTPMMdq2CV+1rMELvZb6wsUPO6z0YwKltGWL+Rp7/0Qiqe8ln6+w95fPlxh67bpmHG/cjz3ff3/4hV7/7W+pD0Xo6kp9AITXK9XVSR5P+n56e8057ec82OZ3dfn50qeWujrvLStj4HWMY0nXn2X6P+8ffeufOFT62SyPfvnHBjV2RvTEpJCuPzUsx+eV5MqRK9djy/F4FPXYWtrQq3ft93W6vY/8stMPBgAAgGHliiuu0L/+679q27Ztabd3dXXp5ptv1oMPPljwWF/72tfUE//3kyRjx47VFVdcUfA4AAAAAAAAAACgdB78yz36+l9vk1MBkddnjT9Zv/jkb8pdBgAAAAAAAAAAAAAAwICQ/AEAAAAAqE4tLZkDr0upp0f6v/+TOjpMSGgwaF6xwND+hrvG9knuq6NDmj8/Mex1sPT2mvNbrUaPlmbOlGpr+9Ylh48XW3z/tbXSkUdKo0aVdkyg1LZvT1yORhOXvV4T8l4I204MuE43Tix8ezh56qnE5UhECoUS13m9UkND5sBraUCfMW0B6ZILpcXjpevPkn55WPbAa0ly1Rd8/etDzfKvp5n9F491dPE5XXr4CFvXnxGV4/PKGTlCkeYmheqCCgf9ivg8cmzJdV3tdDq0oPtNhd1I5gEBAAAwbASDQX3xi1/M2uahhx7SE088UdA48+fP17x587K2ueGGGxQIBAoa55133pFlWVlft956a0FjAAAAAAAAAAAwXP1q0S903QtfVlRO7sYlNnvU0XrimgXlLgMAAAAAAAAAAAAAAGDACL0GAAAAAFSf3t7UcM/B8sILqYHQhYa6ZuqnpcWMVw6hUHlCxQfLnDmS329e0uCFXsfGnDOntOMBg6GrK3E5OYy6VHNj8jidncUZZ6jYvl1atixxXbrw6rq67HNbNGrCsvshFngdC7iOWtKnPyq9un/mfRxJu2ukHq8Jvv7CWdLNp0pfONssy3X16pheXXNKm3otR44bVSgaUigaVq8b2fvqiYbUo4giblQ79gRfd0fL9GcBAAAAVJQbbrhBBxxwQNY2V111lV577bUB9b9w4UJ9+tOfztpm4sSJOcO3AQAAAAAAAABA+Ty7/El98vdXK6Jo7sYldkTTVD1/3cJylwEAAAAAAAAAAAAAAFAQb7kLAAAAAACg6MLhxGXXTQ32LEWI8Zo10ooViescR+ruTq3BdTPXkW6b65p+amoSA15XrJCmTpUmTy7OMWSTfAzJ57mafPCD0tix5vpFIuarZfVdm2KKnVPblmprpXHjpOOOK/44QCkkz2ENDX1h8bYteTx9c1ZyW4/HvAqV3IdlJa7zeKRRo/qWd+5MbZ/N9u1mrl29Wlq3TmptNfOC1ys1NUmTJklTpkgzZkijRxd2LMWQ/DnkuqnzdU1N7nNfYOC1KxNm3WtLrXuGCiZ16UhqibUJ9K2/fbbUFDLte7xSm9/MvS0BqSlNWRE3ql43IldSrxy5rrTD6dCPN/1GX5h0qWo8wX4dCwAAAKpLbW2tfvCDH+iiiy7K2Ka9vV1nnHGGfvGLX2hOPx5E9eSTT+rKK69UR0dH1nb//d//rZqamrz7BQAAAAAAAAAAg+flt5/XJU9cpt4KCLyeVneQXr3hzXKXAQAAAAAAAAAAAAAAUDBCrwEAAAAA1cfnS1zOFixdLNGo9NxzqWPEAq+TBQKmzky19famD+/u7jbByPH7Pf+8dOCBxQmPzSa51liwbTXyeqVrr5VuvdWE+La19W0r5r1jWX2vhgYTDnzttWZ8YChIngeCQamuznwfCPTd31Li91L6BxIMRHI/yeP4/eb9FfPee9L69eZrW5tpG4mY918wKO2/vwmf37VLeuMN88pmyZK+7484QjrqKDNPl3pOzmT16sTldOHVgUDqumTR/H+JLznwWpJ21UiRuGc0xEKtY8HX8YHXMS1BSa5k7Wnf45V6PGZZMv21+h3VxM3DETeqXqd377IrVxE5slzp3dA23bPhcX3poMtkW3EDAQAAYNi58MILddlll2nevHkZ27S2tuqjH/2oPv7xj+sb3/iGpk2blrHtypUrddttt+mxxx7LOfbll1+uCy64YEB1AwAAAAAAAACA0lq+ZrE++ui56nHDuRuX2MTAvlp609vlLgMAAAAAAAAAAAAAAKAoSFACAAAAAFQfv98ESvf25m5bLGvWJAYjS1IolBqQ7PGYsFE7S/imZZlj8HpNH/HBo65r1gWDfetaW834U6cWfhzp9PSYMR2n73h8Pmn5cmnTptKMWSkOPVRatkyqqekLMLes4gRfxwcB19SY63z44Sbs/C9/Kbz/StXRIW3blrjO6zX3VF1d9vcGKk9TkwmHTveeqK9PXE4Oge5HqHJWyf0kj9PYaIKf33hDevll6a23zD6OY7Z7vX3fS9LmzX3zt89n5ttMDylItmyZ9PrrJvT61FOlyZMLO7aBWLcucTk59Nrrze99li4sO410gdeOJNeSXPUFVkt9wdf+SGrgday9LO0Nvu7xmPWxZUmKWK46eztV46lJCbze25dc9cqEY5808igCrwEAACBJuv/++7V48WKtWrUqYxvXdTVv3jzNmzdPRx55pI4//ngddNBBqq+vV3t7u9avX69XXnlFy5Yty2vMadOm6b777ivWIQAAAAAAAAAAgCLauHOdTnnkFHW5oXKXorG+kVp188ZylwEAAAAAAAAAAAAAAFA0hF4DSUKhkN5++2299957am9vV1dXl2pra9XQ0KD9999fU6dOld/vL3eZGCQ7d+7UW2+9pZ07d6q9vV3RaFQNDQ1qamrSlClTdMABB5S7RAAAAGTS3GyCWIsVqprL0qWJy9FoamCox2PCU13XbIuFrsaHxVqWCSP1eMzXYNCETscfR2zf+GDXpUtLE3rd0pIaHm7bJqS5t1dqby/+mJXkxBOld94x56GmxgThRiKFB1/HwnO9XhOCblkmPPiEE6r/nIbDqe+NSMTc593d0qhR5akLA+P3m2u2c2dicLQk7beftHp137I36UeRkYjZp5Cgc8dJH+ocz+eT/uM/zGdCsvgga9c181ryfNvRYWqsrTXHm4+2NumJJ6QZM0z4dSCQ337F0NqauJwrFDyT+M+nDPNdpsDrlhopaknaM1XGB1+3BCSPX3LiT30s8Dp+OS4xOz742pUUdaLqcDrkKvM87MpVg7dOMxom5Xe8AAAAqHr19fV69tlndeKJJ+rdd9/N2X7JkiVasmTJgMebMGGCnn32WdUnPxAIAAAAAAAAAACUXevu3Trm3qPV4XSXuxSN8jbpjWvfKncZAAAAAAAAAAAAAAAARUXoNSBp4cKF+s1vfqNnnnlGK1asUDRLKJ7H49GMGTN09tln69xzz9Vxxx03iJWW37Zt27R8+XK9+eabWrFihVatWqWdO3eqpaVFLS0t6unpUTAYVF1dncaNG6f99ttP06dP1xFHHKGTTjpJEyZMKPchZNXV1aUnn3xSv//97/X8889ry5YtWds3NDTohBNO0DnnnKMLLrhA48aNy9oeAAAAg8jnk0aPlrq6TMhucmDnyJHFG6ulRXr33cTw1OQQVssyQazJAdbpRKN9QdMej9kvORw7EkkMdn33XRPK2txcyJEk2rjRfPX5zFfLMt8Hg4WF1A4lwaB08cXSvHkm+DYYNOc+FOpr05/w69g9YlkmBDd2DevrzTjBYPFqH4oiEfN+wtBSX2/u3e5uacQIqaHBrJ8+Xfrzn/tCluPnyJjeXhMmPVDx78UYv9/MUY5j3reLFpkaYg8MiIVtx967sfksGt2T0JymzmjUBNJ7POYVaxObo73e9PutWCFt3ixddJEJth8MyZ8/ydLVGeO65jMzFvCfRbbA6949p9Ry+wKsY4HVriVFLLO8d3vaOpNKi3VgKWvYdYxXttoinbrrnfn6/IEXq8YzzOdXAAAASJImTpyoF154QR/5yEe0du3ako0zefJk/eEPf6j4/zYKAAAAAAAAAMBw1Lp7t2bcM0Ut0Y5yl6IGu1Yr5q5W04gR5S4FAAAAAAAAAAAAAACgqAi9xrD26KOP6vvf/75ef/31vPeJRqN644039MYbb+i73/2ujj76aH3lK1/RJZdcUsJKy2fnzp168cUX9fzzz+uFF17Q22+/nXOfzs5OdXZ2atu2bXrjjTf0zDPP7N02depUffzjH9dVV12lAw88sISV98/u3bv1/e9/X/fff7927dqV937t7e165pln9Mwzz+jLX/6yLrnkEt1yyy2aNm1aCasFAABA3mzbhLGmU8wH2Lz0kglZjXFdE7QaCxaNBauGw+ZrtsDRZI7Tt1/8vpGICaCO7ysYLO5xrVqVGKw9XDU1SZddJs2fbwKZvV4TdBsLJ48F5eZiWWY/ny8xNLe52QReD1YgbqXr6elfkDgqg9drwq5Hj5YaG8262bOln/ykL1Tats081dPTt19Xl1RT0xeM3R/RqNk/XjBoaolGzfs1NlfGBzjH7q/YV8dJ7CO23tqT1pz8wIFIxGxLnsv9fjN+8vrdu01w/mWXleZ9vn27CddevVpat05as8acl1iN8QHfsWNKJxyWOjtTz0caUUu6/PzsgdcxsWBrZ09gdUwsALs/8m3vlS1bppCN3VsJvgYAAECCyZMn6+9//7s+/vGP69lnny16/x/5yEf0yCOPqLmYDyYDAAAAAAAAAABFM/O+6doRaS13Gaqzg1o8dwmB1wAAAAAAAAAAAAAAoCrZuZsA1eett97SSSedpI9//OP9CrxOZ/Hixbr00kt1yimnaNWqVUWqsLzeffdd/eAHP9Bxxx2n0aNH66KLLtJ9992XV+B1LqtWrdKtt96qyZMn6/LLLy9Kn4V66KGHNHXqVP3nf/5nvwKvk4XDYT388MM64ogjdMsttygUChWxSgAAAFS01asTl2Phqq7bFzZaaIhvrI/48NL4EFfJBJ0WUzSafXssUHU4vJqbpSuvlA47LPU85Htt07U77DDTb3Nz+Y9xsF52Hj+OynXvYWgYPVqaNStxXW1t4rLrSq2t/Z8jM+1XW2vun507TSi966YGXuc7J2drl25bOCy1tZnA6eRtHR0mOD8+8LsQkYj05z9LX/2qdMUV0ne/K/3qV9KSJWYMxzHnIRLpC+aPfYbEzktMNGrOZVtbYtssPK70qSWSHcsNV/rA6xgrKfC6lOIDr2Niwdfd0SKdfwAAAAx5I0aM0B/+8Ac98MADGjNmTFH6HDNmjB588EE988wzBF4DAAAAAAAAAFChpn53gt4P7yh3Gaqx/Hrp4y9pwj6Tyl0KAAAAAAAAAAAAAABASRB6jWHn17/+tT7wgQ/oz3/+c1H7femllzRr1iw98cQTRe13MN155506/vjjNXHiRN1444169dVX5RYazJdBNBrVvHnzdPjhh+vf//3fFUkO6xsEoVBIn/rUp3TVVVdp+/btRes3HA7rP//zP/WhD31ImzdvLlq/AAAAqGDr1iUuRyKpoaFWUtpnfPCq4/S9MgWyxu8f25785+i1aws/lnheb/bt8bUOh1cgIJ11lnTssVIoZIJlo9H+BT5Ho2a/UMj0c9ZZpt9yH9tgvhwn+31l27nvPQwdF12UuOzzSTU1iet6e6Xdu/MPO49GTfve3sT1NTXm/tmxo6+v2NwZu/eS59ZCpJurJRN+3dWVeq+3tEgvvFD4uAsXSp/+tPSd70hvvJG6Pdf7JxIxtYTDZj5Kdy7zcN5b0p1PS3KzB15LklOswOsc/aQLvI7Z2L1V92x4XI6bYw4CAADAsHLVVVdp3bp1uvvuu3XooYcOqI/p06fr7rvv1vr163XllVcWuUIAAAAAAAAAAFAsM28/RBtC75e7DAUtv3536W91+OSjy10KAAAAAAAAAAAAAABAyZAghGHl7rvv1vXXX69SBTl3dHToggsu0F133aW5c+eWZIxS+spXvqJQKDSoY4bDYd122216/vnnNX/+fI0fP35Qxu3u7tZZZ52lP/3pTyUb47XXXtsbsH7wwQeXbBwAAABUgNbWxOVY6HU6mUJS47fHfx8LS07XLjn0OrmOQjU0SDt3FrfPoaynxwTWrlhhgqq9XhMUm29QryR5PCb01+ORXn1V6uiQPvxhKRgsXd1DTV1duStAMZ18snTAAdK77/ata2gwgcvx753eXjPf1NX1hVcncxypu1vq7EydRz0eqbbWBF4nh03nmncHwrL65uh0XNfUmnwsK1ZIhx1m3vf91dEh3Xef9Nxz2dvlExofjUptbf2vIcmp66VxHdLW+uztLEkFX4FcgdeWR7abuZFlWTpp5FGyLZ4DCQAAgER1dXWaO3eu5s6dq7ffflt/+MMf9Prrr2vFihXatGmT2tvb1dXVpdraWjU0NGj//ffX9OnTddRRR+mss87SlClTBq3WAw88sGT/rXsw/fu//3vW7c3NzYNTSBFV4zEBAAAAAAAAQDWZ/aOZeqtzfbnLkE8ePXbePJ1wyKnlLgUAAAAAAAAAAAAAAKCkCL3GsPHggw+WNPA6xnVdff7zn1d9fb2uvPLKko5VTV555RXNnj1bzz//vCZNmlTSsXp7e3XeeeeVNPA6ZvPmzTr11FP18ssva//99y/5eAAAAOiH3buL11d3d1/IquuaMNdkAw1dje2XLlg1Fhob29bdXdzjCgZNOG17e/H6HKpaW6X586WWFrNsWSZY1us11z4aNSHkjpN4nS3LBN56vSaUNznId8UKadMm6eKLpaamQTucilVbK9XnSM/F0OLzSd/6lnTVVX3rLEtqbjbzVXxAteuaYOfOTvOe8fn6wqV7ezM/UMC2pcZGadeuxP5iDw1IDsEuRPyDCGJf6+r6ArnjxYKva2sT5/A//lG6+ur8wqljtmyRbrlF2rw5/fbYgxBir9gxZwrlLoK2gHTJhdKWBqkpJLUGMre1XElWEYKvM/BaHtmylWkEy7J05X5na1bz9BJVAAAAgGpxyCGH6JBDDil3GVXv1ltvLXcJRVeNxwQAAAAAAAAA1eLMe2ZrccuKcpchj2w9cM5Pdebh55a7FAAAAAAAAAAAAAAAgJIj9BrDwmuvvaZrrrkmr8Dr448/XpdddpmOP/54HXjggWpoaFB7e7vWrVunv/71r/rlL3+pV199NWsfruvqmmuu0aGHHqoPfOADxTqMijNq1CgdeeSRmjRpkg444AA1NDTI5/Np9+7d2rlzp1asWKFXXnlFHR0defX3zjvv6MMf/rBeffVVjR07tmR1f+UrX9Gzzz6bs11tba0uuOACnXvuuTrqqKM0duxYeTwe7dy5U8uXL9eCBQv0i1/8Qlu3bs3az4YNG3TBBRfo5Zdfls/nK9ZhAAAAoFBbthSvL8fpCxjt7k4fylroA3gy9dnVJdXU9NVRzOOSTOh1TY0J2I5EErfts49Uwj+7V4wdO6T//V8T/u3xJG6LRk0Yb29v+n1d17SJRk2AbyCQ2kd7u/SrX0lf/KI5p9Wuo0Pq6UlcZ9uS329eGJocx8wTra3mfo/x+6WZM6U5c6Tf/rZvvW2boPfW1tRQ6ljIdab3VbxY4HVbW+K4UvEDr2O1xfqO6e42x+L3m8Du+LpdVwqFEu/tnTulhx+WDj88vzF37ZLuvdccY7Jo1Jz3bHNQCUQt6fLzpWXjzHJwz8dDyYKvc2R3W66VsU2xA68d15Ft2bkbDlI/Qw3nr7JwPQAAAAAAAAAAAAAA1e68n5yuP21/rdxlyCNb//Oh/9IFsz5R7lIAAAAAAAAAAAAAAAAGBaHXqHptbW269NJL1ZsjKGnKlCm69957deqpp6ZsGzFihI4++mgdffTRuv766/XHP/5Rc+fO1dq1azP2Fw6Hdckll2jp0qVqbGws+DgqQU1Njc4880ydddZZOu200zRp0qSc+0QiEb344ov63ve+p+eeey5n+w0bNuj888/Xn//8Z3mSg+CK4Le//a1+9KMf5Wx3+eWX6/vf/7723XfflG3jx4/X+PHjdeaZZ+o//uM/dPvtt+u2225TJDkAMM5rr72mm2++Wf/93/9dUP0AAACoUPX15mtvrwkfHUzhsOT1mkDlWB3F5vWal2UlBqhOniwdcEBpxqwUHR3S7bebIFtv3I9RYoHjoZBZtnIkskomNDwSMcHXtbWJ+3R0SD//uXTHHaW7jpWitdUEiaN/tm+XVqyQVq+W1q0z5zESMfdlU5M0aZI0ZYo0Y4Y0evTg1tbdba5pJGJCmOMffhWJmHnq8sulV1+VNm/u22ZZpvbYeyl+fkkX1hz/nrGsvvdSZ2dqKL9U/MDr+Nria3EcM//7/eZBAW1tifVEIibs3o4LhH3ppfweGtDTYwKyW1pSawiF0h/3IPC40qeWSEv2lZw9p6Jkwdd5TK+u5cpK09AucuB1d7RH92x4XCeNPKqgPhe1rNSfdr2uuRMvVI0nWJTahgLOX2XhegAAAAAAAAAAAAAAqt2nH75Ez2x+qdxlyJalb3zgK/rMKTeUuxQAAAAAAAAAAAAAAIBBY+duAgxt//Zv/6b169dnbXPaaafp73//e9rA63TOOOMMLVq0SKecckrWduvXr9ett96ab6kVa/bs2XrggQe0detWPfHEE/rMZz6TV+C1JHm9Xp1++ulasGCBXnzxRY0fPz7nPn/9619LEg7d2dmpuXPnZm1jWZbuuusu/eIXv0gbeJ2spqZG3/jGN/TCCy/kDDf/4Q9/qCVLlvSrZgAAAAwR++1nvvb0mK/5BCDH2mV65bt//Lj7759/zcjPffclhvRKJtS3tbUv8Lq/QiGzfzSauH7zZun++wfWJ6pTJCL9+c/SV78qXXGF9N3vSr/6lbRkiQm+3rjRfF2yxKz/7ndNu699TfrLXwYnEDkSkbZuzT1Wfb30ne9Io0YlrrcsE9rv8Zgg59grnfjtHo/ZL/awgUz7lEryePHzf01Navvk87NxownHzuWFF1IDrx3HBIVnO+f5fo4U4Ly3pDufluy4UxGMSE0DnBrTyvMwIm5UjhJDzi1JF475cFEDr+96Z77e6XpfD216WotaVg6on0UtK/XQpqf1Ttf7uuud+eqO9hSlvkrH+assXA8AAAAAAAAAAAAAQLW74bGr9ct1vy53GbIkfXXmF3Tz2d8qdykAAAAAAAAAAAAAAACDitBrVLWVK1fq7rvvztrmgx/8oJ588kk1NTX1q+/m5mb97ne/0zHHHJO13Z133ql//OMf/eq7Eni9Xl155ZVasmSJXn75ZV111VVqaGgoqM+TTz5ZS5cu1fHHH5+z7be+9S3t2LGjoPGSffvb39amTZuytvnBD36g6667rt99n3jiiXr66afl9/sztnEcR9dff32/+wYAAEAR2LYUCCS+amqK95o82YSPOk7uWqT8gq37E37tOGb8gw8u7nEln7NBCFGtKAsXSs89l7guGjVBtZmutddrzlUwaL56venbOY7pJzn4esECMy6wcKH06U+boOg33ujfvsuWSd/+ttm/1PdTS0v+gdPjxkm33y7FHogVDpv9OzrMe8G2M4f/x6+3bdO+o8O8j/oTeF2seSw5nDsS6Xs/23bqez8aTa0zx88otGaNtGJF4jrHkbq7Mx9zLAzc7888/xRRf4OvXUsqVTx5fPC1JekQ31gd0TClKH3HAoI3dm+VJLmuO6Cg4FhAsLvn+m3s3josgoI5f5WF6wEAAAAAAAAAAAAAqHa3PnmT7n/rwXKXIUn67LSrdOu5t5e7DAAAAAAAAAAAAAAAgEFH6DWq2je/+U1FIpGM20eOHKnHHntMtbW1A+q/rq5O8+fPV3Nzc8Y2kUhEt91224D6Lwev16trrrlGb7/9th588EHNnDmzqP2PHj1av/vd7zRt2rSs7drb2/WjH/2oaOPu3LkzZ38XXnihbrjhhgGPMXv2bH3ve9/L2uaVV17Rs88+O+AxAAAAkCefL3HZsqSxYxNf++9fvNeJJ5rw1kxhrcm19PeVT1/hsPShDxX3uMaMSTxndtKPEbI89GXIi0Ske+9NXOe6Unt7atisZZmQ8OZmqbFRqquTamvN18ZGs76mJnWMTP3dd58ZH8NTR4cJhr71Vmnr1sL62rrV9HP77abfUgglpRv39ko9PX2v7m6pq6vv1dgo/du/mfdFe3tfGHRyiLSUeR5Mbp9v6HWpg/tj71vXTR84nRyWv22bmVfTvVxXeuGFxPaumznw2u83c07sgQV+v/k++fOwBDIFXweSMv37HXid69kQaRpE5MiRo0N8YzXa09if0TJKDgiO6W9QcHJAcEy1BwVz/ioL1wMAAAAAAAAAAAAAUO1+uODb+t7SO0r2YPb+uHDiOfrhJT8tdxkAAAAAAAAAAAAAAABlkSZ9BagO69at069+9ausbb71rW/pgAMOKGiciRMn6pvf/Ka++MUvZmzzf//3f/rP//xPHXjggQWNVWrnnXeebr31Vk2dOrWk44wcOVJPPvmkDjvsMPX29mZs9+CDD+qb3/ym7ORgvQG466671NXVlXF7Q0OD7rrrroLH+cIXvqCHH35Yixcvztjme9/7ns4888yCxwIAAEAWgYAJHO3okNrazLpoUvqmx1O88XbvTh/Ymk6+4az5tI/f5rrSunWmlmJ5993EMbZtM18bG6X6enOeq9Xf/pYaONzVlRpa6/WaoNls95Ntm/BZv1/q7EwMtHYc029dXd+6LVukhQulE04o/DgwtGzZIt1yi7R5c/rtrmvun0gkcU7zeMy96PWmD3Z+7jlp5UrpO9+Rxo0rbs3Jc1RLS+K67m5z38fs3CnddZe0Y4cJh+/pSX1fpetXSh9+XU6um1hT7JrEgrptO/HYHCdxrti6Nf2xS9Lbb0utrYnrQqHUY/Z4zFyc6WcngYC5X0p8rs57y3y9/mzJsaQerxSKO9TBCLwuhUwBwTGxoGBJmtU8PWM/mQKCY2JBwZ8/8GLVeIKFF14hOH+VhesBAAAAAAAAAAAAAKh2P37xh/r6X2+TUwGR12eNP1m/+ORvyl0GAAAAAAAAAAAAAABA2RSeJAtUqLvvvlvR5FC7OFOmTNFnPvOZoow1d+5cTZo0KeP2aDSqu+++uyhjldIjjzxS8sDrmEMOOURz587N2ubdd9/V66+/XvBYkUhE99xzT9Y2N910k8aOHVvwWJZl6Xvf+17WNi+88ILefPPNgscCAABAFpZlQoZ37UoMGC6VtWtNoHG+8g0f7U9Iqd9vQq9LLRIx5zUQSB+uWy2eeipxORIxgbPxvF6poSH/AHWPx7T3Jj2DLBRKvU+Tx0f127JFuvHG9IHXkYgJ8d+9W2pvN0HS4XDfq7vbrN+927RLN+9t3izddJMZp1x27JD+53/MV0ny+UyAfm2teX/EHh6Qae6L397fB2SVar6KrzX5vOcK6c7ycC4tXZq4HI2m9u/xSMFg9nMRC98eBOe9Jd35tAm7bo17JsJgBl7bsmTL1tu9W7U92tafUVPkCgiOiQUFL2pZmXZ7roDgmFhQcHe0Z8A1VxLOX2XhegAAAAAAAAAAAAAAqt2vFv1CX/7zzYoqw0PoB9FJo4/RE9csKHcZAAAAAAAAAAAAAAAAZUXoNapSNBrVI488krXNl770JXnyDSbLwev16gtf+ELWNvPmzZPjlP8fTlWSm266KWebl156qeBx/vjHP2rbtm0Zt9fU1Oi6664reJyYD3/4wzryyCOztvnlL39ZtPEAAACQhuNInZ3S6NEm/NrjMaGfpXq9954JMu5PsGg+wa75sm0z/nvvlfY4vV4TsDp6tAnZrda/42zfLi1blriuJ01oY11d/4N0Lcvslyy5/6VLTR0YHjo6pFtukXbuTFzvumYua2sz4db5CIdN+87O1Hlkxw4zTkdHceruj+5u6e67pdbW1G2RiAl17o/Y/FNJ4fux8x0Lms5VW6ZjbmuTNm5MXNfbm9oun4cPOI55lek8DWbgtSQ5cuXIkSvp7d6tWta+uj+j75VvQHBMpqDgfAOCY6olKJjzV1m4HgAAAAAAAAAAAACAavfs8if1yd9frYj6+W+QSuDo5hl6du4r5S4DAAAAAAAAAAAAAACg7LzlLgAohRdeeEHvv/9+xu3BYFCf+MQnijrmVVddpa9+9asKZwih2rx5s1566SV9+MMfLuq4Q9n++++vI444QsuSw+TiLF++vOBxcgVMn3/++dpnn30KHifeNddco7lz52bcPm/ePH3nO9+RVUnhXAAAANUkFDIhnz6fNGKE+br//oltpk4t3nhtbWaMujoTJtufwOr4kNT+7BcTC1H2+UyYbDGPKzl82+vtC951HHOeq9GKFYnLrpsaOBwLUx8Ij8fs393dty4cNuPE/x1hxQrp5JMHNgaGlvvukzZvTlwXjUrt7QMPlw+FTFByQ0Pivbp5s3T//dKNNw683v7yeKRf/cqEbseLPaBgIAHWsblpIPNmqcTXkulYYuttu+8hAsk2bUp8iILrmmDweIGAmZNz6W+YeAGemCZdf7YUiEpNIaklWNzAa0ly5eYMvo7IkVeSLVuPb3tBdf5azWqenncZ/Q0I3lvbnqBgSZrVPL3fAcExsaDgzx94sWo8wX7tWwk4f5WF6wEAAAAAAAAAAAAAqHYvv/28LnniMvVWQOD1tLqD9MoXl5a7DAAAAAAAAAAAAAAAgIpA6DWq0u9+97us28855xw1NDQUdczm5madddZZevLJJ7PWReh1og996ENZQ6/XrVtXUP+O4+jpp5/O2ubSSy8taIx0LrroIn3hC19QJDmUao+NGzfqjTfe0BFHHFH0sQEAAKDUcNDeXmnDhsR1Aw0sTmfzZjOmbScGQ/fHQIJbXdeEXdu2GX/zZuntt/vfTyYbNiTWlVxjb2/xxqokq1cnLqf7c30gUNgYgUBi6HVsHJ+vb3nNGkKvh4OFC6XnnktcF42aMP1M84LXa+awWFh+NJr+PnUc009jY+Kct2CBNHu2dNxxxTuOTEaOlHbtkhYvTgxpjkZN4HVy2HtMrmOslLDr+PqTjyO5Ro+nL8za55MmTJA+8IHUPpcuTZwLentT+66tTQzGziR+3xKes1jgtbNnqGBEslzJzTfHvD955/0IvnZcV3/a9bqOapom28p9vhzX0T0bHu93QPDe2vYEBS9ufUsrOtb1OyA4ZmP3Vt2z4XF96aDL8qq7UnD+KgvXAwAAAAAAAAAAAABQ7ZavWayPPnquetwB/JvNIpsY2FdLbyriv98EAAAAAAAAAAAAAAAY4kgYQFV6LjksKsk555xTknFz9btgwYKSjDuUjRs3Luv2lpaWgvpftGhR1j4CgYBOPfXUgsZIZ9SoUTrmmGOytuF+AAAAGGSOk/iKRov3ig9iralJH+Cabl1/ZOqzpqZvORIp7nEln7PhIvnhO8lhwl5vfmGz2cQC0rONs3ZtYWOg8kUi0r33Jq5zXam9PTWgOPZ+b242IdZ1dSb4uK7OLDc3J84Hufq77770QdnFNhjHWCni5+lYUHe85Hnj4IPT91PMOahU19iy9r6eODQx8FqSevJ91KKlfgVex7h7/pdNRI4avLWaO/HCvIN2bcvWSSOPklXAZ7brunqzfe2AA4IlybIsnTTyqCEXEMz5qyxcDwAAAAAAAAAAAABANdu4c51OfuRkdbmhcpeiff2jtOrmjeUuAwAAAAAAAAAAAAAAoKKQMoCq8/777+sf//hH1jannXZaScY+/fTTs25fsWKFtmzZUpKxh6rRo0dn3d7d3V1Q/88//3zW7bNnz1ZNiQKzct0PucLZAQAAMITEhxdbVmqYcfy2/gYPZtvH603clmlc9E9ra+JycnCtx1OccZL7SR4nuQ5Un7/9Tdq6NXFdV1dqyLzXa0Kfa2oyhx3bttne1JQ6FziO6Tfeli3SwoWF1Z+P5ctLc4z9nUsLCGzNW/x57+1N3Z78np88OX0/xZyDinnccUHXMU9Mk64/KzXwujVgvrczDT/AsOv+sGSpI9KlFe3rcjeOM6t5uq7c7+yCgoILYVmWrtzvbM1qnl6W8QvF+assXA8AAAAAAAAAAAAAQDVq3b1bx9x7tDqdnnKXolHeJi393MpylwEAAAAAAAAAAAAAAFBxCL1G1Xnttdeybj/ggAN0wAEHlGTsAw88UPvuu2/WNn//+99LMvZQ1ZUcupUkGAwW1H+u+2H27NkF9Z/N8ccfn3U79wIAAEAVqa9PXM4VPp0mOLRf2zONk1wHBiYSyb69WMGRufrJVQeGvqeeSlyORKRQKHGd1ys1NOQfdOzxmPbJ80MolHpPJY9fCn/5S+JysY6xkPD5UoW/xmpyHCkcTtyW/JACSTrssPT9FHMOKjT0Osvn0RPTXF1/lpsx8DomY/B1CVmy5JMtV9JDm57Wopb+/WJhuYKCqyUgmPNXWbgeAAAAAAAAAAAAAIBq0rp7t2bcM0Ut0Y5yl6JmT71WzF2tphEjyl0KAAAAAAAAAAAAAABAxcmRwgUMPa+//nrW7UcddVRJx581a5Z+97vfZdy+ZMkS/fM//3NJaxhK3n333azbRxT4D7/KeT/MmjUr6/Zdu3Zp48aNmjBhQslqAAAAQBbF/HPY9OnSmjV9yz6f1NOTX9joQAMILcuMEx/8OmNGcY/rnXeK19dQkiu0vNAQ2Xz7yVUHhrbt26VlyxLX9fSktqur6/88YVlmv9bW1P7jw/GXLjV1jB7dv/7z1dYmvf124r1crGO0bbNPf96Prlu6wGvJzMmuK6V7wJfPl7g8c6Y0alT6foo5B8Ufb3/PVxZRy9XPZipn4HWM7Sa2LaVY4LVkBnRdVw9telqS+hW+G2v70Kan5RZr3s+i2gKCOX+VhesBAAAAAAAAAAAAAKgW/3TvNO2ItOZuWGL1do1eu3YxgdcAAAAAAAAAAAAAAAAZ2OUuACi2pUuXZt3+T//0TyUdP1f/S5YsKen4Q02uUOqDDz54wH3HQqWzKeX9MHLkSO23335Z23A/AAAAlFFdXfFeM2aYMNHYy+czX227L5i1WK/4PmPjxF7Tpxf3uIarpqbE5fhgcUmKRoszTnI/yeMk14HqsmJF4rLrSuFw4rqamtT7Il8ej9k/XjicGnqcXEcxbdqUuFzMY/R6++a+/ih22GtsfK/X9N3eLkUiiW283tRjnDMnc5/FnINKFPLtcS398tfSEVvNcrbAa0ly48soYfh1cuD13vH3BF8valnZr/5mNU/XlfudLauUYemq3oBgzl9l4XoAAAAAAAAAAAAAAIa6qd+doK29u8pdhmqtgF78+IuasM+kcpcCAAAAAAAAAAAAAABQsQi9RtV5++23s26fMmVKScefPHly1u2rV68u6fhDSWtrq1555ZWsbQ477LAB95/rXPt8Pk2cOHHA/eeD+wEAAGCYmDEjcdmyJL8/cdl1Tbir19u/vr1eqbbW7B8fUuj3p4aZFvDnZ8SZlPSLKMnXLBKRHKewMRwnfTBuvAIeAoQhIPnvg8n3gyQFsqQI5yPd/snjrFlT2BjZbNmSfWxp4MfY37k0XvJ8WqhYf62tqcdoWanHOGKEdNxxmfsr5hxUyHnKcY4aw5Yee9zSuI7sgdeSVOSo8bQyBV7vrcF19addr8tx+zd/lzoouNoDgjl/lYXrAQAAAAAAAAAAAAAYqmbefog2hN4vdxkKWn799tIndfjko8tdCgAAAAAAAAAAAAAAQEUrIPUEqDyu6+qdd97J2iZXCHGhcvWfq77h5PHHH1c4HM7a5qSTThpw/+vXr8+6/aCDDpLH4xlw//mYPHmy/vSnP2XcnqtGAAAADBGjR0tHHCEtW9a3LhiU4v+8a1lSb6/U0NAXeByNmq+u2xeaalkmpNTjkXw+s9zenho+GgwmLs+cKY0aVbJDHFaSH5aULjQ2FDIh5gMVCqWuSx6nxH9/RZmtW5e4nC4E3S7weXW2bfqJ7zsSMXNLzNq1hY2RzfbticvFPMbY+yX2UIH+Gsg+2foJh9OHRAcCqQHVM2dKCxZk7rOtzcwRsc+E+HFiOjvNuXMc84p9jsRYVt+5HcCxunv/34oLrE7ux9KCg1xtrZN8jtSb5VLaruSUJmN3TyWSLUuOXEmubFlKDr+eUDNWcydeKNvq/z0XC/B9aNPTcot172j4BARz/ioL1wMAAAAAAAAAAAAAMNTM/tFMvdVZ/t+/8cmjx86bpxMOObXcpQAAAAAAAAAAAAAAAFQ8Qq9RVbZu3aqenp6sbcaPH1/SGnL139nZqW3btmnMmDElraPSua6rH/3oR1nbjB8/XkcfffSAx8gVMF7qeyGfMQi9BgAAqCJz5iSGXnu9Juw0Ptw4EjEB1nV1Zlsu0ajU0ZEaFBsIpAYkz5kz8NqRaMaMxGXLkvz+xBDz7m6zbiAP0olGzf7x/P7UwNzDDut/3xg6WlsTl6PRxOViPaTJ40mcQ5LHSa6jmLq6EpeLeYzpAr3LJT6cOn5duvf1wQdLBxyQPYh6v/3M1/gHIsSONbZf7LMlXdB2TDSaGoSdBzfuGzdhl8T9n5jm6otnmTYjuqXdNbmDr2VZcuWmxGf3h6XU+G17T8x1jCNX8aVMqBmrzx94sWo8SQ+M6IdiBwUPt4Bgzl9l4XoAAAAAAAAAAAAAAIaKU+8+TotbVpS7DHnl0QPn/FRnHn5uuUsBAAAAAAAAAAAAAAAYErLEkABDz+bNm3O2GTduXElryKf/fOqsdo8++qiWL1+etc1ll10m2x74NJXrPJf6XshnDO4FAACAKvLBD0pjxyauq601wazxIhETMtvdLTlO+r4cx2xvbU0NdLVt02+8ceOk444rrH70GT1aOuKIxHXBNEGpnZ3Zg2vTcV2zX7Lk/mfOlEaN6l/fGFpyhTXnGVCcU65+ShkanRxynazQY4y9b4p1rgYqeXy/39SWPP83NEgf+EDu/hobpQkT+pZ7e80Y6eabWDB27JWttoEE22boN2q5+vlMydnTvSUTfO3L8LEmSQ29loIev6y4H0lb6t+1s2TJZ3nltTxx66TUGGwTfC0VJ/A6ZlbzdM2on1RwP5I0o37SsAsI5vxVFq4HAAAAAAAAAAAAAKDSnfeT0/XKjsXlLkMe2frBh76rC2Z9otylAAAAAAAAAAAAAAAADBmEXqOq7Ny5M+v2xsZGBQKBktZQW1ur+vr6rG1y1VntOjs79f/+3//L2sbr9erzn/98QePkOs9jxowpqP98jE0OPUwy3O8FAACAquL1Stdem7jOskzIabpA1u5uqaVFamszIchdXeZrW5tZ392duk+m/q691oyP4pkzJ3HZ65WS/z4ZiUjt7bmDfWOiUdM+OWQ4EEi9fsnjo/rkes8OJKB4IP2Ucu7weLJvL/QY/X4TLF2sczUQ8fOx328Cq9OF5NfWSqefbtrk45/+ycwVXV3m8yAczm+/bAHYA2DFXq4ra0+/luvK60i//LV0xJbEtpmCrxvDkuvzSZalgO2TJUu2bHksW3aeP6I2gdceac++XssjS5ItK2N49n6BUUULvJakRS0rtaJjXVH6WtGxTotaVhalr6GC81dZuB4AAAAAAAAAAAAAgEr2iQc+pmc2v1TuMmTL0reP/zd95pQbyl0KAAAAAAAAAAAAAADAkELoNarKrl27sm5vbGwclDpyjZOrzmr3ta99TRs2bMja5sorr9TEiRMLGqcS7gfuBQAAgGHmuOOk005LXOfxmBBUO8NfwSMRKRSSenrM1+RA5BjbNv0kh8iefrp07LGF145EH/yglPwQm9ra1OsYiUitrSaU1kmT9CqZ9d3dpl3y9bVt02+8cePMvYTq1tSUuJz83s43TD2X5H6Sx0muo5iS7+1SHGPyGIMpEDDjNzRII0ZI9fXpQ8QbGqSPfMRsz8eaNdJf/2qCrjPNK/kYQPB1rj3io6UbQ9Kjj+cOvm4MS5ZlK+RxFHUichxHh/rGq84KSK4rW+aXA+PZsuSJ+9G1JUs+eUyBe8K3GxTQvqrPGHgdkEdXjj2jqIHXD216Wm6RAsVd19VDm54eNkHBnL/KwvUAAAAAAAAAAAAAAFSya+ddocc3/L7cZciS9NWZX9ANp3+93KUAAAAAAAAAAAAAAAAMOWlSWICha/fu3Vm3NzQ0DEoducYZzkHHf/zjH3XPPfdkbdPQ0KBvf/vbBY9VCfdDrjG6uroUCoUUCARKXks+7r777pzXpxjWrl1b8jEAAADK5nOfk1aulDZv7lvn8Zhg2a4uE2zdX7FgVSsp2HP8eOmzny2sXqTn9UrXXivdemvfOssy4bVtbalhst3d5uX1muttWaZNNJo5yDzWX/J1vfba9MG5qC6TJklLlvQtJ1/zSMQEHmcKzM+H46Tef8njHHzwwPvPZfRo6b33Mo9djGNM916Jvf9KxbKk5ubUEO/47TEHHyx94AOS35+7354e6YUXpBUrzDkJBMznRiFKeR7UF3x96YXSsnFmXSz4eneNVNMr+V1LrbWWXNdsO8Q3RqM9jQq6Xq2KblHI7d0beu3IlS1Ltqw9/7MVlStf0rMb6+2ADrHHqjXSJkuWtqozYXtAHk1Qo+q9xQlFL3ZAcEwsKFiSZjVPL2rflYTzV1m4HgAAAAAAAAAAAACASnbzrz+vB1Y/Wu4yJEmfnXaVbj339nKXAQAAAAAAAAAAAAAAMCSRoISq0tPTk3V7XV3doNRRX1+fdXuuOqvVpk2b9IlPfCJnoMptt92mcePGFTxeJdwPue4FydRZKaHX27dv18qVK8tdBgAAwNBWXy995zvSTTdJO3b0rbcsqa7OhJj29EjhcO6+/H4pGEwf6jpqlBknjz9zYoCOO0467TTpuef61nk8UmOj1N5uwnqTRSKZQ67j2bYJvE4OzT39dOnYYwurG0PDlCmJy+ne56GQVFMz8DHShewnjzN58sD7zyX57/alOsZ0Ide2nf49WqhcgdexNo2N0tFHSwcckF+/ra3S/PnSrl0mLN918/ucqACNIemRPcHXbyQFXzu2pa5ar8kBd10d4hur0Z5Gs59downuPtro7NwbfN1s1arN7d7bhyVbyZHo9XZAh/n2k7Pn+jbK/EwlFnwdkEf7qUHNChbl+EoVEBxT7UHBnL/KwvUAAAAAAAAAAAAAAFSy7z79r7pj+Y9V2se85+fySefrh5f8tNxlAAAAAAAAAAAAAAAADFmEXqOqhHOEAXnThSuVQK5xctVZjcLhsC6++GJt3749a7sPfehD+sIXvlC0MbMZjPshnzGG4/0AAABQ9caNk26/XbrlFmnz5sRtXq8JqnbdvoDkaLRvu8dj2ni9Jjg1nfHjTeB1ER4Wgxw+9zlp5crE6+jxSE1NUldX+lDhXAIBqbY29fqOHy999rOF1YuhY8aMxGXLMkH38X9H7O4267IFLGcSjZr94/n9qffdYYf1v+987bdf4nKpjjF2TLEQ19iyvScu2eczY+Yb8hp/juL3sW3z3s9W68yZ0lFHmfd5R0fqNUhn507poYdMmH7s86BEgbSl4FpSY1h6NCn42vFY6qrxyrEteSQd7p+oWtsv7fm1RNu2NEr1siRtdHaqyapVox1UoxvU5mhr2rFigddey6Ow+kLNY8HXrerR/mpQk4Kqka/gYyt1QHBMtQYFc/4qC9cDAAAAAAAAAAAAAFDJfvziD/Uff/++nAqIvD5r/Mn63yseK3cZAAAAAAAAAAAAAAAAQxqh16gqlRBynM84wzHk+LOf/az++te/Zm3T2NioBx54QHYslKpAlXA/EHoNAAAwjI0bJ91xh3T//dKCBanbLcsEsfr6Gcp5+ukmGLm+vjh1Irv6ehMwftNN0o4dfestS6qrM8G2PT2JIb6Z+P1SMGgCzZONGmXG4boOH6NHS0ccIS1b1rcuGEy9lzo7pYaGzCH46biu2S9ZMJi4PHOmufdKpbFROuQQad26xBpKcYzxQdfxga5erxnT5zMPGQiHJcdRRsk1+P3mtc8+0oknSlu3Sq2tpi+v14RgH3ywNHmyCRAfNUpas0Z6+21pxAhzDpIfbuD1Socfbr5/9VXzOTGQAP1iSw4Pz8G1JKnvfJnga1eXXiS9foBXoRqfbMuSR5Y+NvIEHV53kMJORF1OjyJO3/lwXEc9TlhhRVVj+xSw/FrV/a6ea12c8CuMY3zNOnfEbAVs87m5vXOLVrR29Y0vvyaqUX55ZKvwny0NVkBwTLUFBXP+KgvXAwAAAAAAAAAAAABQyX616Bf60p+/pqiy/LueQXLS6GP0xDVp/s0nAAAAAAAAAAAAAAAA+oXQa1QVJ1tokSSPxzModeQaJxofdDQMfO9739MDDzyQs90DDzyggw46qGjjVsL9kM8Yw+1+AAAAGFbq66Ubb5Rmz5buu0/asmXgfY0bJ33uc9JxxxWvPuRn3Djp9tulW26RNm9O3Ob1muvsuibYNjnc1uMxbbzezIG+48ebwOtx40p3DKhMc+Ykhl57vSZIPT4AORKR2ttNyHo+f4+NRk0YdCSSuD4QSA1cnzNn4LXn68QTE0OvS3mMwaBUWyt1dfX1Hwv6jn/QQDRq9nWc1ABsyzI12HZfSH0hDxuIzQHxQbPBoKnhhz+UFi5MPY5ysG1z7La9px5XSpONmxx0nazO8utLoz+ir45aqY3dW2VZlq7c7+x+h97O0KGa0LL/3pDeCTVj9fkDL1aNpy+4/d2dNVrfur6vtqyV9c9gBwTHVEtQMOevsnA9AAAAAAAAAAAAAACV7NnlT+qTv7+6IgKvj26eoWfnvlLuMgAAAAAAAAAAAAAAAKoCodeoKt7k8KYkkUEKEco1js/nG5Q6KsG8efN0880352x344036rzzzivq2JVwP+QzxnC6HwAAAAZdLBg1HE4NNv3znwe3lquukt56S1q0SFq/Pnf7mIMOkj7wAWnqVHMcg1n31q2Jy7Yt+f35B9NWk3HjpDvukO6/X1qwIHV7fKBufxQSpouh74MflMaOTXyv1dZKvb2Jc1YkIrW2SjU1JjDatlP7chwT9NzdnbrNtk2/8caNG5wQ/cMPH9xjtCwzR/l8ZgyfLzVU2rZNEHVs/OSxYgHQY8dK119fvPMUjUqrV0uLF0tr15rlQQ6hTWFZfYH8rivV1SnUG5I33Cs7Egvwz12j4/Xo/ZkH62/Xf0zhxjp9PnqY7tnwuE4aedSAw25j+/1p1+uaO/HChMDrUipXQHDMUA8K5vxVFq4HAAAAAAAAAAAAAKCSvfz287r41x9Xr6K5G5fYYQ1T9MoXl5a7DAAAAAAAAAAAAAAAgKpB6DWqit/vz7p9sEKve3t7s27PVWe1ePbZZ/XJT34yZ6jKeeedp+9973tFH78S7odc94JUWffD6NGjNX166QNo1q5dq1AoVPJxAADAMBcOSzt3Zg4U7egY3HokaeJE82prkzZtMiGw27ZJXV0m/NTjMaGtY8aYsNX995caGsy+6UJeSy3dn5nDYRMkvs8+g19PudXXSzfeKM2eLd13n7Rly8D7GjdO+tznBid0GJXL65WuvVa69da+dZZl3vdtbanzV3e3eXm9Zr6wLNMmGk3/fo3vLxZsHHPttaafUivXMfr90re+ZfZ7+GETNp2vCROkI4+ULrxQOuCA/PfLZs0a6fnnpZYWc3yuWxmB1w0Npp7onl8c7OmRU+NT2O+V5TiyI1G5kV7ZUVeW68qK7WfZcjy2XI+tjrEjtOTK07Vl5uS9Xdd4gvrSQZfJttKEl/fDrObpOqppWsH95MtxHf1p1+sFBQRblqUZ9ZO0omPdgPtxXVd/2vX6oB57MXD+KgvXAwAAAAAAAAAAAABQyZavWax/fvSjCin3792U2qSa/bXoyyvLXQYAAAAAAAAAAAAAAEBVIfQaVcXn82XdHg6HB6UOQq+lV155Reeff37Oc3HKKafokUcekW0XP/CkEu6HoRZ6fd111+m6664r+TgzZszQypX8g0AAAFBCrmuCRcsdKJpJY6N5HXpouSsZmEo/v6V23HHSrFnS3/4mPfWUtGxZ/vvOnCnNmWP6GIzAYVS+446TTjtNeu65vnUej5kj2tslx0ndJxLJHAAdz7ZNqLHHk7j+9NOlY48trO7+KNcxHn+8+b6uTnr77b6HDWzZIrW2SqGQCXBubjavkSPNQwcOOsi8P4vxHu3pkV54QVqxwsyZscDrcrMs84pEzEMMQiFTWzgsK+CRa9tybVtRv61ejytXfTV7bZ9sy9b2Qydo3YdnavPMyXK9npQhihVuO5ghubZla+7EC3XXO/O1sXtrv/e3LEtX7ne2ZjVP16KWlXpo09MDCgqeUDNWcydeOOQCgjl/lYXrAQAAAAAAAAAAAACoVBt3rtPJj5ysbndwfs8rm339o7Tyq+vLXQYAAAAAAAAAAAAAAEDVIV0JVaW+vj7r9o6OjkGpo729Pev2XHUOdUuXLtU555yjrq6urO2OOeYY/fa3v1UgEChJHZVwP+S6FyzLUm1tbcnrAAAAGHbC4fzCUjFwkYiUx0NeqpbXK514onlt324CbdeskdauNWG6kYhp09QkHXywNHmydNhh0qhR5a4clehzn5NWrpQ2b+5b5/GY+6erywQS91cgINXWmmDjeOPHS5/9bGH1DkS5jzH+YQOhkLRjh3lJ0r77luYzo7VVmj/fPCRAMuPGAmPLHXztuua8xc57MGhekYjWfGiaHL9PTe9uU6CtSx2duxW1pY46nzaPq5N96HSFDp+u7pEN5T2GEqnxBPX5Ay/ud1BwfECwpL1f+xsUPKFmrD5/4MWq8QT7V3iF4PxVFq4HAAAAAAAAAAAAAKDStO7eraPvOVKdTk+5S9EY3wgt/dzKcpcBAAAAAAAAAAAAAABQlQi9RlUZOXJk1u1tbW2DUkeucXLVOZS99dZbOuOMM9Ta2pq13eGHH65nnnmmpAHglXA/5BqjqalJHo+n5HUAAAAMO/mElyaHpKL/hnPodbzRo6WTTzYvYCDq66XvfEe66aa+IGbJzFN1dSbcuafHBPrn4veb8GJvmh/7jRplxinHw7iGwzHGa2mRHnlEij1wKxLp+2zKMzA2akmeImRjZ+zHcSTbNnO532/WeTxy/D4tv+Tkvc1eXf+yIk7f5+r0cQdrRF11Bl7H9DcoODkgOKa/QcHVEhDM+assXA8AAAAAAAAAAAAAQKVo3b1bM+6Zonanq9ylqNlTr+XXrlLTiBHlLgUAAAAAAAAAAAAAAKAq2eUuACimffbZJ+v2lpaWQakjV+BzrjqHqvXr1+u0007T9u3bs7abMmWKFixYUPLw70q4H3KNUa33AgAAQNkFArnbuC6vXK9cYiGpAAo3bpx0++3S+PGp27xeE+I8YoTU0CDV1Jj3X+xVU2PWjxhh2qULgx4/3vQ/blzpjyWT4XCMktTVJf3f//UFXruuFAr1fZ+HtoD0sUulJ6YVVsoT00w/bZk+Fl035QEGTe9uK2zQKhELCp5QMzZru0wBwTGzmqfryv3OlpXjYRvVFhDM+assXA8AAAAAAAAAAAAAQCX4p3unaUck++9cDYZ6u0avXbuYwGsAAAAAAAAAAAAAAIASIvQaVWXUqFFZt4dCoZIHHe/atUvhcDhrm2oMOt60aZNOPfVUbdq0KWu7iRMn6rnnntPYsdkDVooh1/2wZcuWkteQa4xqvBcAAAAqgtdrAlJROsGg5POVuwqguowbJ91xh3T66em3W5Z539XUmODn2KumxqzPFEJ6+umm33KHQUvD4xjnz5fif/4Ujeb/MAGZgOpLLpQWj5euPzsx+DqaPWc2wRPTzP6Lx5v+4oOv9/bjulIkkrBfoK0r/0GqXK6g4FwBwTG5goKrNSCY81dZuB4AAAAAAAAAAAAAgHKa+t0J2tq7q9xlqNYK6PW5SzVhn0nlLgUAAAAAAAAAAAAAAKCqEXqNqjJhwoScbbZu3VrSGvLpP586h5KtW7fq1FNP1fr167O223ffffX8888P2vHnGqfU90I+Y0ycOLHkNQAAAAxbjY1SIJC7HfovEJCamspdBVCd6uulG2+Ubr218ADnceNMPzfeaPqtFNV8jAsXSq++mrguHO534PWyPafFsfqCr9sC0scuTQzBziQWeO3syaRdNq4v+PqJaaafvSHY0WjCvnbS8nCXHBTs7rmW+QYExyQHBcf6qfaA4ExBy4Wev5hqP3/FxvUAAAAAAAAAAAAAAJTD4d8/WBtC75e7DAUtv/502Z8IvAYAAAAAAAAAAAAAABgE3nIXABRTfX299tlnH+3cuTNjmw0bNmjq1Kklq+Gdd97Jun3MmDGqq6sr2fiDbdeuXTr99NO1atWqrO1Gjx6t559/XgcffPAgVSYdeOCBWbdv2LCh5DXkuh8OOuigktcAAAAwbHk80j77SKGQ1NsrOU7i9kn80kJO7e2JQa0ej+T1EiYODIbjjpNmzZL+9jfpqaekZcvy33fmTGnOHNOHt4J//FdtxxiJSPfem7guGk0Jlc4kOfA6xrGkz58tje2QtjRIS/Y16897K30/yYHXMcvGSSdfJW2pl2SZsR57XGrs7TVz/Z7wWsfjyave4SQWFPyj9Y9qVecGBWy/rt7/3LwDgmNi7X/67pMKOWFNrZs4LAKCY+fvrnfma2P31n4HLMfE2j+06Wm5rkvA8gBxPQAAAAAAAAAAAAAAg+nYHx6m1V0by12GfPLosfPm6fDJR5e7FAAAAAAAAAAAAAAAgGGhQhJhgOI56KCDsoZer169WmeccUbJxl+zZk3W7dUUctza2qozzjhDy5cvz9puxIgRWrBggQ499NBBqszIda7ff/99dXZ2ljSEfDjdDwAAABUrEEgf0jxt2uDXErN9u7RihbR6tbRundTaasJSvV6pqckEck+ZIs2YIY0eXb46169PDL22rMRlAKXl9UonnmhesXljzRpp7drUeePgg6XJk6XDDpNGjSp35fmrpmP829+krVsT14VCee2aKfBaklxJu2pNWHVTSApGTKi1lBp8nSnwWpJ6vKZ/nyM1d5vvTfC1o8ZQSAqaoNpQY21eNQ9naU7voO4/FMWClu/Z8LhOGnlUvwOWY2L7/WnX65o78UIClgeI6wEAAAAAAAAAAAAAGAyn3n2clrWuKncZ8sqjB875qc48/NxylwIAAAAAAAAAAAAAADBsEHqNqjNjxgwtWrQo4/ZVq0r7j6Vy9T9jxoySjj9YOjo6dPbZZ2vx4sVZ2zU0NOgPf/iDjjjiiEGqrM+UKVPk9/sVDocztlm1apWOOuqokozvuq5Wr16dtU213A8AAADIQyQi/fWv0lNPSW+8kb3tkiV93x9xhDRnjvTBD5rgVwDD0+jR0sknm1e1GurH+NRTicvRqHnlkCvweneN1Gub5dY9z3BIF3ydK/A6tm+vLbXUJAVf/65LjTJhta0HjMlZ83DTHe3RXe/M16ae7ar31Eiy9NCmpyWpX2HBi1pW6qFNT8treVXv8WhTz3bd9c58ff7Ai4dFWHCNJ6gvHXSZbMsuqJ9ZzdN1VNO0gvsZ7rgeAAAAAAAAAAAAAIBS+uf7TtErO7L/ztFg8MjWvaf9SBfM+kS5SwEAAAAAAAAAAAAAABhWSCFA1ckVYLwkPjyuBF5//fWs24888siSjj8Yuru79c///M/661//mrVdbW2tfv/73+uYY44ZpMoS+f3+nKHSpbwfVq9erfb29ozbLcsqSxg4AAAAymDhQunTn5a+853cgdfJli2Tvv1ts//ChaWpDwBQmO3bzXwdr7c35279CbyOaQ2YEGvHMiHXT0zLP/B6b2l7gq8d7Qm+/mhIbbapd/eBY3PWPZzEAq83dm/ds8acZNd19dCmp7WoZWVe/cQCr13XTehnY/dW3fXOfHVHe4pceWUqVjAyAcvFwfUAAAAAAAAAAAAAAJTCJx74mBZsfbncZciWpW8f/2+6YvZny10KAAAAAAAAAAAAAADAsEMSAapOrtDrpUuXKhqNlmTsSCSiZckBR0mGeuh1KBTSxz72Mb300ktZ2wUCAT355JM68cQTB6ewDHLdD4sXLy7Z2Ln6Pvjgg9XY2Fiy8QEAAFABOjqk22+Xbr1V2ro1Z/Ostm41/dx+u+kXAFA5VqxIXHZdKRLJukumwGtX0q4aaUdtauB1THzw9dUfNa/kwOser+kjOfA6JiH4eqx0yektavM52jll/6x1DyepgdeJ8g2+Tg28TjTcgq8BAAAAAAAAAAAAAED1unbeFXp8w+/LXYYsSV+d+QXdcPrXy10KAAAAAAAAAAAAAADAsOQtdwFAsc2aNUvBYFA9PelDYjo6OrR48WIdc8wxRR/7tddeU1dXV8btwWBQRx99dNHHHSy9vb26+OKL9cc//jFrO5/Pp1/96lc67bTTBqmyzE444QT97//+b8btucK7C/Hiiy9m3X7CCSeUbGwAAABUgC1bpFtukTZvTr89FogaiUjxD+bxeCSv17wsK3W/556TVq6UvvMdady41O2l4jjmFR/Y2dkptbUNXg2oDu3tUm9v4jrbNvc+MFStXp24nO6Ba5a1dw6NWtLl52cOvA7veTtYkqz0Ocl7g69De9o2haTgnpztHq/UEpDcPR8jdoY+YsHXI7qlZaOiuuQiSxc0+VST9WCHh1yB1zGx4GtJmtU8PWV7rsDrmFjw9ecPvFg1nuDACwcAAAAAAAAAAAAAACiTm3/9eT2w+tFylyFL0menXaVbz7293KUAAAAAAAAAAAAAAAAMW4Reo+oEg0HNnj1bzz//fMY2CxYsKEno9XPPPZd1+4knnqhgcGiG1kSjUV1++eX67W9/m7Wd1+vVo48+qnPOOWeQKssuV/D2P/7xD23atEn77bdf0cfOdT+cfvrpRR8TAAAAFWLLFunGG6WdO1O3RSJST48UDufux++XgkETgB1v82bpppuk228vffB1b6/U2pq+3t5ead260o6P6hMOSzt2pK73eqWmJikQGPyagEIlz4WOk7W5x5U+tURasq/k7AmmTg68jq2TlTn4OhTXtjXurRMfeC2ZMTIFX9f2ml/0k+vqjZFhvU/wct6B1zGZgq/zDbyOIfgaAAAAAAAAAAAAAAAMVd99+l91x/IfK79/JVFal006Xz+85KflLgMAAAAAAAAAAAAAAGBYs8tdAFAKucKEf/3rX5dk3Mcffzzr9jPOOKMk45aa67r61Kc+pf/7v//L2s62bT344IM6//zzB6my3Pbff39NmzYta5tS3A+vv/661q9fn3G7ZVk5A7kBAAAwRHV0SLfckhp47bpSZ6fU1pZf4LVk2rW1mf2SAzN37DDjdHQUp+50olEzTr71AoWIRMz7JhQqdyVA/7W2Ji7nCL2WpPPeku582oRRu5J2JwVex7hKDLDOpiUg7Q6mb++kWdcUkoKRPQuWJTcQ0Mburbpnw+Ny3NzHUI36G3gdEwu+XtSyUlL/A69jYsHX3dGefu0HAAAAAAAAAAAAAABQLj9+8Yf6j79/X04FRF5/7IAz9b9XPFbuMgAAAAAAAAAAAAAAAIY9Qq9RlS688MKs219//XWtWrWqqGO++eabWr58ecbtlmXlrKtSXXvttXrooYeytrEsSz/+8Y912WWXDVJV+bvooouybp83b17Rx8zV50knnaQxY8YUfVwAAABUgPvukzZvTlwXjZpA1IGG+YZCZv9oNHH95s3S/fcPrM98tLWlhm0jVVub9I9/SC++KM2fLz3wgPS//2u+zp9v1v/jH6YdcksODwaGgkgkd5s0zntL+q8FJqi615YyZVvnE3ztWrnbxAdfJwReS5LHI1nmZzwnjTxKtjX8fnTsuI7u2fB4vwOvY2LB1/dv+PWAAq9jhnvwOAAAAAAAAAAAAAAAGDoefuV+fenPX1NU5f93DieNPkaPfuqpcpcBAAAAAAAAAAAAAAAAEXqNKnXwwQfruOOOy9rmzjvvLOqYd9xxR9btxx9/vA488MCijjkYvvSlL+n+PEL07rzzTn36058ehIr67/LLL8+6feHChVq0aFHRxuvs7NTPfvazgmoCAADAELVwofTcc4nrolETduxk+IUOr1cKBKRg0Hz1etO3cxzTT3Lw9YIFZtxSGGhI93AQjUpvvSU9+qgJHn/qKWnRImnDBmn7dmnXLvN1wwaz/qmnTLvHHpNWrUq9jugTiXB+MPRkmruTWYmp1G0B6Rf/JNXuCZ/OFpGcLfjatbLvG8+xpMbkwGvLkmxbtmxdud/ZmtU8Pc/eqott2Tpp5FGyrBzp4Vm4rqs329cOOPBaGt7B4wAAAAAAAAAAAAAAYOh4dvmTmvvcFysi8PrYkUfo2bmvlLsMAAAAAAAAAAAAAAAA7EFqBqrWpz71qazbf/7zn+v9998vyljvvfeeHn744axtPvnJTxZlrMH0r//6r/rhD3+Ys93tt9+u6667rvQFDdDUqVN1/PHHZ23z7W9/u2jj3Xfffdq9e3fG7XV1dbrwwguLNh4AAAAqRCQi3Xtv4jrXldrbzdd4liXV1EjNzVJjo1RXJ9XWmq+NjWZ9TU3qGJn6u+8+Mz4Gx5o10k9/Kv3ud9K77/Zv340bpd/+1uy/Zk1p6gMw+JqaEpft3D92bQtIl1woLRsn+SOSnUdGcrrg6/4EXkuS5UrdvqR9LEu27dEPTv/+sA28jpnVPF1X7nd2QcHXhbAsa1gHjwMAAAAAAAAAAAAAgKHh5bef18W//rh6FS13KTqsYYr+dP2icpcBAAAAAAAAAAAAAACAOIReo2pdccUVGjNmTMbtXV1duvnmm4sy1te+9jX19PRk3D527FhdccUVRRlrsHz3u9/NKwj6W9/6lm688cZBqKgwuWr8zW9+oxdffLHgcbZv367/+I//yNrm6quvVnNzc8FjAQAAoML87W/S1q2J67q6JMdJXOf1mmDrmprMoai2bbY3NZn28RzH9BtvyxZp4cLC6k8nECh+n0NZT4/09NPSE09IbW2F9dXWZvp5+mnTL/p4vZLHU+4qgP6ZNClxOTa/pwtOtqyEwGtHUkuN5FgmkDqX+ODr/gZeS5IlqdeWdtfs6ce2ZbvSnf5zde4hH+1nb9WpXMHXBF4DAAAAAAAAAAAAAIChYPmaxfrnRz+qkHrLXYom1eyvRV9eWe4yAAAAAAAAAAAAAAAAkITQa1StYDCoL37xi1nbPPTQQ3riiScKGmf+/PmaN29e1jY33HCDAgWGxb3zzjuyLCvr69Zbby1ojJg777xT/+///b+c7b7+9a/r61//elHGLLWPfexjmjp1atY2//Iv/6KWlpYBj+G6rv7lX/5Fra2tGdv4fD59+ctfHvAYAAAAqGBPPZW4HIlIoVDiOq9XamjIP9DX4zHtk4OvQyHTf7bxi6GxMX1g63DU2io9/LC0YkX67a5rrkk4bEKsY69w2Kx3M8TSrlhh+s3y94hhh4cEYSiaMiVxOd08v2ceiFquLj8/MfC6N5aRrfyDr50BBF5rz37SnuDroEzg9StNOu+ISwfQW/Ua7OBrAq8BAAAAAAAAAAAAAMBQsHHnOp38yMnqdsPlLkX7+kdp5VfXl7sMAAAAAAAAAAAAAAAApEHoNaraDTfcoAMOOCBrm6uuukqvvfbagPpfuHChPv3pT2dtM3HixJzh25Xk5z//eV713njjjfrWt741CBUVh23buv3227O22bBhg84//3x1d3cPaIyvfOUr+v3vf5+1zQ033KAJEyYMqH8AAABUsO3bpWXLEtf19KS2q6vrf4i0ZZn9kiX3v3SpqaOYPB5p1CjJ5ytuv0NNS4s0b575miwaNdeiszMx5Dr2ioVgx7ZHo5n7H+7B116vtM8+kt9f7kqA/psxI3HZslIfWLCHx7X0qaWS3MTA6727Kr/g60LEgq/rIpZ+9HKDPrrOp50Hj9eOHe+qrbsl4RWOlP8XFMtlsIKvCbwGAAAAAAAAAAAAAABDQevu3Tr6niPV6aT595GDbIxvhJZ+bmW5ywAAAAAAAAAAAAAAAEAG6ZNXgCpRW1urH/zgB7rooosytmlvb9cZZ5yhX/ziF5ozZ07efT/55JO68sor1dHRkbXdf//3f6umpibvfstp/vz5uuaaa+S62ZOV5s6dmzNAuhLNmTNH55xzTtZg6hdffFFnnHGG5s+fr3333TevfkOhkK6//nr95Cc/ydpu33331Te+8Y1+1QwAAIAhYsWKxGXXNWHH8WpqTIj0QHg8Zv/4B7SEw2ac+CDOFSukk08e2BiZ+HzS6NGS4/S9Yg45RNpvv+KOV2k6O6WbbzbnOz6M2XWlri4pFMq/r1gQdiAg1dYmXrtwWPrDH6T//M/0IefVpK1NWrw4cZ3XK9k8mw1l0ttr3s+x+S0QMPPusmXS2rXm/enzmXk43UMAbFsKBs2c+NZbfeH2Pp95z1uWmTOkvfP2qeukcZ3S1vr0JVmSSpx7LY8rff+lgM5a5ei9Q0frL2v/oHBvj5ZvXprQbl3nu7IkjQ6MUKO/scRVVZ5YEPVDm57O+TOzgSDwGgAAAAAAAAAAAAAADAWtu3fr0Lsnq93pKncpGulp1PJrV6lpxIhylwIAAAAAAAAAAAAAAIAMCL1G1bvwwgt12WWXad68eRnbtLa26qMf/ag+/vGP6xvf+IamTZuWse3KlSt122236bHHHss59uWXX64LLrhgQHUPtoULF+oTn/iEorFgpgwmTJigmTNn6qc//ekgVSadc845eQdQ5/LjH/9YM2fO1Pbt2zO2efnll3XYYYfpX//1X3X11VeroaEhbbtIJKInn3xSX//617Vq1aqs49q2rQceeCBjXwAAABjiVq9OXI5EUtsEAoWNEQgkhl7HxokPYF2zpvih1zG2bUJg4wM/GxqkpqbSjFcpfvITadu2xIDqaFRqbzcBufHr8xUOm2vX0JAYhL51q/TII9KNNxZed6WLDxAHyqmrS9q9uy+oWjJh944jtbamhlw3N5vQ+nQOOURaubJv2eMxge5JwddRubr8fGlLvdQUklrTfDyUOvDaklQXlh4/pFcXve3Vug/PzNo+qqi2hHaUJPR5KChV8DWB1wAAAAAAAAAAAAAAYKj4p3unaVe0rdxlqN6u0cJr/07gNQAAAAAAAAAAAAAAQIUj9BrDwv3336/FixdnDSZ2XVfz5s3TvHnzdOSRR+r444/XQQcdpPr6erW3t2v9+vV65ZVXtGzZsrzGnDZtmu67775iHULJvfXWW+rt7c3ZbuPGjfrMZz4zCBX1efHFF4sWej1+/Hg9/PDDOvvss+U4TsZ2u3bt0pe//GV9/etf1ymnnKIjjzxSY8eOlcfj0a5du7R8+XK9+OKLWcOz491yyy0644wzinIMAAAAqEDr1iUuJ4dee70mNLoQtt0Xnho/Tnwg69q1hY2BRAsXSs89l7guGpXa2hLDv+N5vSboNhZwG42mD0F3HNNPY2Ni8PWCBdLs2dJxxxXvOACkFwqZV/IDqlzXvD/TPbiqpcXMu8lh2JI0caLZp7W1b10gYOaBuDnD40qfWiIt2VcK7pke4oOvXUnuAPL082VJCkSk2oilK1f61DOqWZtnTs5r3+3hFjnRzD9PqWbFDr4m8BoAAAAAAAAAAAAAAAwVU767v7b27ip3Gaq1Anp97lJN2GdSuUsBAAAAAAAAAAAAAABADoReY1ior6/Xs88+qxNPPFHvvvtuzvZLlizRkiVLBjzehAkT9Oyzz6q+vn7AfaB0zjzzTP3kJz/R1VdfnTOkqLu7W08//bSefvrpAY/3L//yL7rtttsGvD8AAACGgPiAU8kEnMaLDzUuhMeTGKCcPE5yHRi4SES6997Eda4rtbenBl5blhQMmnDbdOHmjmOCdbu70/fX1GT6iLnvPmnWLBOgDaB0enrSrw+FMgfbS+a9nC702uORTjlF+s1v+tZZllRT0/f+39PveW+ZxevPTgy+LnXgtSRZrhT2SJeu8uqja7165QunKGpbkuPIdRw5buZQa0dR9fR2lbbACjareboWt76lN9sLf8jEjPpJBF4DAAAAAAAAAAAAAICKd/j3D9a7oa3lLkM1ll9/uuxPBF4DAAAAAAAAAAAAAAAMEaQnYdiYOHGiXnjhBX3kIx/R2rWFB9NkMnnyZP3hD3/QhAkTSjYGCvepT31K0WhUc+fOVSQ+NLDIPv3pT+vHP/6xLKvEiVUAAAAor1x/pizWnwdz9VPCP9sOO3/7m7Q16Rd1urpMgHU8r1eqq8sebG7bJvTW75c6OxOvk+OYfuvq+tZt2SItXCidcELhxwEgs+T3c0zyAwWSRSKJ83FdXV/g/VFHSZs2SX//e992j0eqrTXvdSlj8HXYljr9AziOfnIlNYWlR6f2qsnfqPcbN0nrN0mSIm5E6zo2JrR35MqWtWdfV+Fob9b+HdeRbaV5AEAJ2gy2RS0rtaJjXVH6WtGxTotaVhJ8DQAAAAAAAAAAAAAAKtaxPzxMq7s25m5YYgH59LtLf6vDJx9d7lIAAAAAAAAAAAAAAACQp8pKDQFKbPLkyfr73/+uM888syT9f+QjH9Hf//53HXzwwSXpH8V1zTXXaMGCBRozZkzR+/b5fLrjjjv005/+VLbNVAsAAFD1vDmeKbUn4LRgufrJVQfy99RTicuRiBQKJa7zeqWGhuyB1/E8HtM++TqFQqmB5cnjAyi+TH9fzzXXOo5pE3s1NUn77NP3+tznpLFjTf+xV2y+8PtNYPae0Ozz3pLufFoKeaRunzQoj8yyJLlSxGPp+//UrvW92zM23a5OLdc2ReQoIkdvaJtWdmf+RcbuaI/+Z/08LWpZmbHNopaV+p/189Qd7SmozWBb1LJSD216Wm6RPtNd19VDm57Oeq4AAAAAAAAAAAAAAABKKepkfjj8SXfO0rLWVYNYTXpeefSzc36sEw45tdylAAAAAAAAAAAAAAAAoB9IYsWwM2LECP3hD3/QAw88ULSw4zFjxujBBx/UM888o+bm5qL0icFx8skn6x//+Ic+85nPFC2c+pRTTtGyZct0/fXXF6U/AAAADAFNTYnLySHI0cy/GNIvyf0kj5NcBwZm+3Zp2bLEdT1pglfr6kxwbTRqgqu7uqS2Nqm1VWppMV/b2sz6UMi0syyzX7Lk/pcuNXUAKJ1AwHy17b73czGMHCndeKOU/DMiy5JqaqTGRjO2baeMabmlDb629ozRFpDaamw5lvRy6O20wdfb1am3tUvtCmu5tmm5tqldYT3d+ve0Qc3d0R7d9c58vdP1fsYw51hw9Dtd7+uud+anDbXOp81gK3bgdQzB1wAAAAAAAAAAAAAAoFzaQm362GMf0xP/eCJl2z/fd4pe3bUszV6pHDmK9EaKXZ4kySNb9572I10w6xMl6R8AAAAAAAAAAAAAAACl8//Zu/M4ucoC3//fs9TWSzoJCQlbAoGwJCAIURBcUECvgEuQC4gK/BDZoyjq5eI44nod5d4BMSyO47iM4AoiCCIgoILIFkIIBgJhTUjI1nt3Leec3x9Pn3TtVd1dSy+f97yKrjrL8zxV3VVO+tX1KaLXmLLOPPNMrVu3TsuXL9cBBxwwqjEWLVqk5cuX68UXX9QZZ5xR4xWiUWbOnKkbbrhBa9as0UUXXaRp06aNeIxIJKIPf/jDuu+++/TnP/951D9TAAAAmKAWLMi97bq5tzMZyffHNofvm3HKzbP33mObA8bq1bm3g0BKpXK3xePm+xFGrvv6TLg6kzFxa983XzMZs72vbziC7Xnm/GyplJmn3DoA1EYkYr7GYlI0asLTLS0mQp0t/zW2Cl7gm/He9Cbpi1+UZs/OPcC2zfxtbdKMGbrlzQktO8FSzJM6kuYQq7Zd5R3C4LUkBZaUtDxlAl+BgoLwdRi8DpfSqUF1alDB0P/lh5rD4PUrA5vM+EVizvnh6FcGNhVEras5ptHqFbwOEb4GAAAAAAAAAAAAAACN1p3s1qm/OVWPb3hcy+5clhO+Pu1HJ+ruTX+rahxfvry0r0Cqefjaka1vHvmv+sRR59V0XAAAAAAAAAAAAAAAADTGyMstwCTS2tqqCy+8UBdeeKGee+45/fGPf9QTTzyh1atXa/369erp6VF/f79aWlrU3t6u3XffXYsWLdKhhx6q97///Vq4cGHD1rrnnnvWLa4jSWeddZbOOuusuo0/ESxcuFDf//739e///u/661//qj//+c96+umntWbNGm3dulU9PT3yPE/t7e3q6OjQPvvso8WLF+vtb3+73vve944qlg0AAIBJIv/fBsVCqcmklEiMfo5ksnBb/jz77DP68TFs7drc2/mx8SAw34/R/Bstk5F6e00UNwjM1+x9YYxXkp5/Xjr66JHPAaC8eFyaPt1E6GMxqaNDam01z81MxoSwYzETwpaGn6+hWCz39by1VYpG1e3162OvXKOzZ5yipbt/WDrmGGnRImn5cum++8w4Wc/5W/ZKatk7BuVbliRLcV9SKtD2WP1+/yNLCrLWkJYn13Lk2q7+kXlRu3bsrs29ucHrtLwd1zPyFQTBjlCzJC1uX5ATvA5lHyOpaDg6jFpfvOcpWt2zruIxCSfvAwPqrN7B61D2Y7Vk+qK6zgUAAAAAAAAAAAAAAKa2MHi9cuNKSZIf+Fp25zJJ0p9W3KzfvXpXVeOEwetQGL52I2N/u6ItS19+yxd0yXFfGvNYAAAAAAAAAAAAAAAAaA6i18CQfffdV/vuu2+zl4FxIBKJ6D3veY/e8573NHspAAAAmCgWL869bVkmmppKDW8bGDDbHGfk43ueOT9bNJobTJakAw8c+dgotG5d7u0weh0Ew+Hb7ABqqeuh7O9TeD0cKwxfW1Zh9PqFF0Z/HwAMi0Zzb7e0SDvvLPX3S+m0iWB3dJiYfSZjrsfjw6/X+dHreFyaO3f49h57qNtO69QnrtTK1Etasebfpb330dIDlkr77iu9613S3XdLX/6y9MorkiTPCvSjRYPy817GU3b94sqBJFmF21NBRpEgIlmWfrX5PiWVkj10YHbwOhxjIEipLTC/Vv7Ja39QR6RNXene4nMGgf7z1VsVSIpYxX8V/crAJn1z7Y/UlekrufZmhK8bFbwOEb4GAAAAAAAAAAAAAAD1lh+8DvmBr3N++VH1WGnZsiuOkx+8DtUifG1J+vRB5+qy478x6jEAAAAAAAAAAAAAAADQfESvAQAAAAAYq9mzpYMPllZmvREkHs+NXktSX5/U3l4Yqy4nCMx5+eJ50c9DDpFmzap+XJTW1ZV72/Nyg9dS8fh1Kfnn5X//w/2eV34dAEanpaUwXO265jVzYMBcXnxRWrtW6uw08etUykSvW1pMBNu2zXO0u1saHDT7XFdqa1P3Qfvq1PmPaKW9WbJt+Qq07M5lkmTC15J03HHS0UdLd90l/eQnch58UD+/d7pOPbZTK3dKS5K6I776IqqPsLcvyRr6ryQ5lq1WOyHLspQO0ur3kwoUyJUtT76KvcL58tXnD6jFiqs/GFRXplctTkwRq3Dx6SCtfi8pSUrYMUXtwmNSflqvDG4ya3ESsoqVudXY8HWjg9chwtcAAAAAAAAAAAAAAKBeSgWvJSnZu12dGfM3HoqobPi6VPA6NNbw9VkLT9O3T/r+qM4FAAAAAAAAAAAAAADA+EH0GgAAAACAWjjxxNzotetKsZiJp4YyGamnR2ptNcHUSjzPBK8zmdztsZgZP39+1Eb+450fvA63jVaxc4vNkb8OAKMTi0nTp0vbtw9vy2SkZ5+VnnxSeu01E7X2/eGvvm9eg9Pp3CC940iRiBlTUnc00KmLntDK7qFjXFdqaZGfSBSGryMR81p94onShg2a9uij+uXKR3Rqz4/01/gb6sv+n4Vyn40wkpefIuOE4WvHcnKD197w/15lVPqNiZLkBb56gr6hsSz1e0m1OMoJX+ePOeCb69nh65Sf3rHdC3z1eQNVh6/rpVnB6xDhawAAAAAAAAAAAAAAUGvlgtep3u3qTA/uuO2l/ZLh60rB69Bow9cf3uN9uu70n43oHAAAAAAAAAAAAAAAAIxPRK8BAAAAAKiFt71NmjNH2rRpeFtLiwmm+llv8shkpK4uKZEw0VS78I0h8n0Tyx4YKNxn22bcbHPnSkccUZv7gdyguO9LqVRj5k2lhqO7+esAxrtMxrxueV5uwP2FF3Kj0bWUSpnXySAwr6eJRPHjOjvN11hM6u01oev77pO2bDHbbTv3tTiTkQYHiwfqPc9cUil1T4vp1ONTWrmTpx116UxG6u6W+vrkt7cXhq9Du+4qfehDmvahD2m/P/bpj/+4uvr7XS6IXaVAUtRyiwavqzs/yLmeH74uNWZ2+Do7eB0aSfj6w9Nq/797fuDrgW1PjCl4bVmWFrct0OredaMeJwgCPbDtCR3asb9sq8j/nwAAAAAAAAAAAAAAAFClcsHrTF7wOlQsfF1t8Do00vD1cXPerl+cfXvV4wMAAAAAAAAAAAAAAGB8o54EAAAAAEAtuK50wQXSFVcMb7Msqb3dBFDzw5cDA+biupLjmGODwMRUM5nic4TjWXkh0AsuIJBcSx0dw9f7+xs7d3+/1NZWuA5gPOvvNzH/YoFfy5Jefrn2c/b0mEu2aFSaMcO8phYzOCj9+c/SM88MR67D4LVtm+h8f7/5sIIKul1Ppx7fr5U7SUUr1J4ndXbKTyS17I6LJeWGr33P0zPP/lVXPPR/dPP6u2XJyglJN8KAn1Im8JQOsqPklddQ7Ijs8HXEyuSNmT9vUukgo0yJY8LwdZuTUKnC9ysDm/Sr9APaRXbJOPZo2JatC+efrO+/9Cu9MrCp8gl5LMvSGbsdryXTF+mxzmf00/V3jCp8PS8xRxfOP5ngNQAAAAAAAAAAAAAAGJNywet073ZtTw+W/GuR7PD1SIPXoWrD14fPPFi3nX/fiMcHAAAAAAAAAAAAAADA+EU1AwAAAACAWjniCOnYY3O3OY40bdpwYDVfJiMlkybGmkyWDl7bthknP+Z63HHS4YePfe0YtmCB+ZpKmcsogqWjEgTDc0rS3ns3Zl5gLFIpqbOzcc8TyXxgQH7wOlxLV1fxc7q6pJ/9TFq9One7P/RmvEzGfEBB+JzPv0g7rndHA516srRyrnK2l1qrv2Wzlt1+oW755y07Nt/30M912f1f1s3r7w4Hqequ11aQE6d2LFtxKzqqkbLD0+WC16FSwetQzI6oVPBaMnHpw1oX1jR4HUo4cV285ymal5gzovOyg9eStGT6Ip2x2/Gy8j+oooJ5iTm6eM9TlHDiIzoPAAAAAAAAAAAAAAAgm+d7+tjNHysavB6oELzeMUbal5fOjCp4HQrD16Uc3LGfHlj22KjHBwAAAAAAAAAAAAAAwPhU/mPSAQAAAADAyJx/vvTMM9KGDcPbHEfq6JD6+03YeqRiMamlRcoPZ+66q3TeeWNbbzU8T0qnzdfssOsrrwwHmieT9nYTwO3rGw7iNorvm3ltW2prk154obHzN0Jvr7lkcxwpEpFcflU14eR/L5s95+Cgef5m/yx1dko33VT8PM8z56TT5ecceu3rjik3eJ29PwjM63T+a7Xnyd+2Vctuv1CStMjdRf++6j90x+YHw5OblLyWrKH/OpatVjshKVDayyij0q99Vtb55nZtw9MtTkwRK1J6/qG49ByvRa9vXVfTuUNh+Pr7L/1Krwxsqnh8fvA6FN7+6fo7FFQRhid4DQAAAAAAAAAAAAAAasWxHZ19yNla8foK+cHw34L09W5Xf2pQQZV/8lGLv6CzI3bR7Qtb5ukflzxdgxkAAAAAAAAAAAAAAAAw3lASAgAAAACgltrapG99S/r856UtW4a3W5bU2moC1oOD1cWio1EpHi8eAp41y8zT1la7tRfT3y91deXGrkO2bfZNRslk44PXId8381uW9OyzzVlDPaVSUnd38X3t7eaCiaNSLLpYBHqsMpnK+yND0eTBQenXvzY/c55nnl++b17Twq9V8izpYycVCV5nC8crFb6+42Id0LaXHtjyj/CEpgSvQ4EkVyZ4bVmWgiCQLUuu7LLha8lS1HKVDip8L0ao2uD1kumL9OrWl2o6d75qw9elgtehasPXBK8BAAAAAAAAAAAAAECtLT1gqSRp2Z3L5Ae+enq3azA1KL/Gf85TjhOxZaswer1HbI5WfeGFxi0EAAAAAAAAAAAAAAAADVX8Y9IBAAAAAMDozZ0rXXmltOuuhftc14SqZ8wwcd9EwsStw0siYbbPmGGOKxa83nVXM/7ccuXVGkgmpc7OEUVhJ4Vp00wwt1n3OwjM/FMx/tzTI/X1NXsVGAnHKb8/COpzKSeMWWcy0m9+I73+ugn4J5Mm0u155jLC57gTSGevkOxKp4VB7XyeJ7+7S49vXaUWJy5b1piC15YkW2N7B6IlqcWOy8qLdIfh61ISdkwtTlwJOzam+bONJHjdKGH4el5izpjWtGT6Ip2x2/EFj3OI4DUAAAAAAAAAAAAAAKiXpQcs1TXvv0Z9vV1KjpPg9ZzITK297LXGLQQAAAAAAAAAAAAAAAANR/QaAAAAAIB6mDtX+t73pOOOK77fskzYOJEwcevwkkiY7SXCmDruODNuvYPXkgkQT0Xd3VIq1dw1pFJmHVPRVP25m6haWpq9guKef15avlx67jkTuM42hqD90jXSNXdUEb6WCsLXgSVt8/uUSSeVCTLyx5S81o6znTH8ijeQ1B8MKijymJQKX8esqKK2iVNH7UhNwtfjMXgdKhW+HumaSoWvCV4DAAAAAAAAAAAAAIB6e8/co+VK8sZB8HqmM01PXbCmcQsBAAAAAAAAAAAAAABAU7jNXgAAAAAAAJNWW5t06aXSUUdJ118vbdw4+rHmzpXOP1864ojara+SdLryMaXi3BPZ+vVjiuLWRBBIGzZIHR3NXUc92BUCvb4vZTKNWQvGrqVFam2V+vqavRIjlZLuvlt69lmpv79wfw2e20uH3nO37HjJr/QS6PuSbcuX1Bn1lbaltJ9U+FmEliwFY4hf+wrkDMWpM/Irn1BEJvDU5w+o1U4U7LPzxnZlK2I5OceEAewBPzmq+cdz8DoUhq+//9Kv9MrAplGvKTz+p+vvUBAEBK8BAAAAAAAAAAAAAEBDHHTdfupTSk7Elpce3d+YjESp4HW73aJ/XvS8OmbMqPsaAAAAAAAAAAAAAAAA0FxErwEAAAAAqLcjjpCWLJH+/nfp9tullSurP/eQQ6QTTzRjuA3+Z7xtm2BrOc2OQ9fDxo3VBb/rKZ0269h//+auox4q/UxJkuNUPgbjR0eHFItJg4MmWJ79uhCL1T7evnlz8e09PdIf/yj19pqfs/zXpxq+Xo0kfB0EvjrjUtrO3WZZ9piC1yFPvlzZsmXJH8V4lix5ga8+f0AtVqzIfhO7lkwEu5jRhq8nQvA6FIavr335N3rXzENHvabwvAe2PaEL559M8BoAAAAAAAAAAAAAANTVwm/vrjfS2yXJhKgjqmv4ulTwutWO6/ELVxC8BgAAAAAAAAAAAAAAmCKIXgMAAAAA0AiuK73jHeayebO0erX0/PPSCy9IXV0mFOu6Jg67997SPvtIBx4ozZrVvDUnEiYi63kmwux5uftdt3DbZPDKK9WFmevJ96WXXzaP/2STSkl9fbnbbFuKRMzPVDwuWRUqwhh/4vHh7112XHrBgtrH27u6cm9blrR9u3TXXeZnKxIxX8OfoyCoS6C/mvB1IGl7XvBaMiHpQIEsWWMOX1uSMvJlyxpx+NrKilh7ga/+IClraF2S5CuQL1/7ayc5svWctpUca6Th64kUvA4lnLg+u9fpsq3CN2aOxJLpi3Rox/5jHgcAAAAAAAAAAAAAAKCcRd/ZS68mN+Vsq2f4ulTwOmFFdf9H79e8nRbUfE4AAAAAAAAAAAAAAACMT0SvAQAAAABotNmzpaOPNpfxrL1d2rq1MDAbchwT655stm5t9gqMrVsnZ/Q6nZb6+4vva2mRdt65sevBxDc4KP3611Jvr7nt++a1qU6x62zlwteBpO2JwuD1jp2WyV2PNHxtDZ2eM9RQ7NqWJUe2PFV+U2J28Dpkzgvkylag4Zj2RvXrQM3WDMXVV2bsqB1ROsgoE5T/QISI5ZQNXkvS4rYF4yp4HapVqJrgNQAAAAAAAAAAAAAAqKcl/2+R1g28VnRfPcLXpYLXMUV022m/10H7HFazuQAAAAAAAAAAAAAAADD+Eb0GAAAAAADFJZOSbZtobE+PiRVnB2T7+6VotHnrq5e+vmavwOjrk15/vdmrqD3PG44ThxxHam01P0+Dg81ZFyaue++VOjuHb3teQ4LXoWLh67LB61BO+FpVZa+tkkeabb6CqkYqFrzOHikzNFI4ZreSekKvKyVPMcVKnpvy0xWD15KUDjylg3TZ8PXq3nV6rPOZcRm+BgAAAAAAAAAAAAAAGM/edc0SPd2ztuwxtmwF8qv4aPXK7KHx8kXk6Fcn3aS373tMDWYBAAAAAAAAAAAAAADAREL0GgAAAAAAFNfVJW3ZYgLFvm8C2NkcR3In4a8WvMrB1obwvMn5+EqFP0tBYCLfQWB+roBqPf+8tHp17rb8QH8DLF0jyZKWvV/yrCqC13mqCV+XC1WPRDXj5K8jI1+98mVJipZ4bFN+WgN+sup19HtJtTgqGb4OgkA/XX+HJBG+BgAAAAAAAAAAAAAAqNIHrn+3/rFtZcXj/BoFr81YkiU/J3ztyNa1x16t9x30oRrNAgAAAAAAAAAAAAAAgIlkBOkVAAAAAAAwpWzbJnV3m+C11PCIbNOMl/s5XtZRa1aJ4G4Yvt68WcpkGrsmTEyeJ917b+62IJBSqaYsZ+kaS+98ufrgdf4zISiybfhYa+iY4q8L1b5ahOOXGqfSSIGkgSClIO/1aaTB61C/l1Q6SJeebyh8/VjnMyMeGwAAAAAAAAAAAAAAYKo57Ucn6u5Nf6t4nC9fXrpWyWvDSw9ntB3Z+vd3/ps+cdR5NZ0DAAAAAAAAAAAAAAAAEwfRawAAAAAAUFx3d7NX0BzjJTY9XtZRa/n3K/92T0/pMDaQ7fnnC1+nksmmPXd+u3+gW/avLnhdSrHwdX7weiz3LsgZJ3+k0insbJ589fkDO8LXow1ehwhfAwAAAAAAAAAAAAAAjN0nf3aqfvfqXRWPq0fwOuSlfQUK9OW3fEHnvvuSuswBAAAAAAAAAAAAAACAicFt9gIAAAAAAMA4ZeeVW6PR3BhxLGYuqJ/J+Pi6rgkTh4JASmcFbx1HymQavy5MPE8+OXzd983PTbp0PLmebtlf+sz7pURGSjlVnhRIQZV99+py1CMXKBiKagdDwW2rqrm8wFOfP6CIXA0GqTGvo99LqsWRIlak+DqHwteStGT6ojHPBwAAAAAAAAAAAAAAMJlc8stzdOO6myseV8/gdagtcLXfXofVdQ4AAAAAAAAAAAAAAACMf0SvAQAAAABAcR0d0uDgcIA4PybrTtJfK1iWCTE3m2XlxqEni0xGSpWI5Nq21N4+OWPfqGzzZmn1amntWmndOqmry/y8uK55PVqwQFq4UOruNse//LLkeea1yfOa9ry9ZX9p2fGSZ0n9ESmRlgaKt5tzlApeh/diOEZd3/sVjm/mq/YcKRN4ysgb8bmlEL4GAAAAAAAAAAAAAAAYuStu/bxuWPOTin9h0ojg9TTLVax9ppbduUyStPSApXWdDwAAAAAAAAAAAAAAAOPXJK1TAQAAAACAMZs9W+rrM+HldFry897w4rqS4zRnbfVk2yag22y2PTkf3yAw9y1beF/jcWnnnZuzLjRHJiM99JB0++3SU0+VP3bFCvM1mTQ/K3199V9fBdnB6+0JKW2bSzXh60pvNAwU7Ahfj3fDax2bkYSv56hlzPMBAAAAAAAAAAAAAABMZFfd/U1958nvjYvgdVvgKDFjtpkv8AlfAwAAAAAAAAAAAAAATHFErwEAAAAAQHEzZkiDg9Ibb5jAbL729uLbJ7pEQurtbfYqzDpmzmz2KmovnZasInFcy5KmTyd6PZU8/LB03XXSpk3VnxME5nWpp6d+66pSseB1aCBSPnztV9mHDhoYvDbh6tGpRfA6VG34+vhpS2o2JwAAAAAAAAAAAAAAwETzswdv0Jce+pr8Cn9f0ojgdWvGVuvs3L/7InwNAAAAAAAAAAAAAAAwtRG9BgAAAAAApc2dK3V0mAj0wICUyQzvmz7dhJknm112kdaubfYqzDpmzGj2KmovnZY8b/i2ZUltbeZnqa2teetC4/T2StdfL91zz8jO832puzv356fOPEtyirwvsFzwOlQqfF1t8LoZRpvYNsFsc8cilqN0UP575FqOMmWOSfppRRxXKhHTDoJAj/et1S6yaxrcBgAAAAAAAAAAAAAAmAh++9h/64J7PiNP5WPWjQhet6Qstc2ZU3x+wtcAAAAAAAAAAAAAAABTFtFrAAAAAABQXiJhLpYlBVlJ1AMPlHbfvXnrqhfblr75zWavQjrtNOkDH2j2Kmqvs1N6+OFmrwLNsnGjdPnl0oYNxfcHgYnrZzK5cWvblgYHc1+D6qw7Jn3sJOnsFdLSNcPbqwlehwYiUsSTkq5kB+MreG3t+G8w6tj18FhmtBYnpogVUTpIq99LFj02YccUtSNK+WkN+IXHOJatViehUsFrSZqXmKMPTztCf1v/tzGuHAAAAAAAAAAAAAAAYGK5a9WtOvsP5yqjyh8c79cgeG1LJdPaibTUPmdu+TUEvn705I/0wf0+KMd2xrweAAAAAAAAAAAAAAAATAxErwEAAAAAwOhYlgnRTjZvf7vkuia62yyuKx111OR8fB3euDRlbdwoXXqptHVr4b5MxkStU6nCfUHQ0Ni1ZILXp54srZwrrdjFbFu6ZmTBa0kKLBO8tlQkeD1uAtiWrFGEr00uuzB4LUkRK6IWRwXh6zB4LWnH1+zwdRi8tioEry/e8xRt6dw4whUDAAAAAAAAAAAAAABMbKuef1yn3nK6kkpXdbwbcZVJZ0b9gehOxJYtW5Z8eXkB7WhGmrbzLhXHOHjuwfr5ST8neA0AAAAAAAAAAAAAADDFEL0GAAAAAADINnu2dMAB0qpVzVvDokXSrFnNmx+otd5e6fLLC4PXQSD190vJZPHzwmMaKDt4LZlYdRi6/skhIwtehytv7D2ojglWm/+ONHztWo5arLj6g0F5gZ8TvA7lh6+zg9eh7PD1SILXCSde5UoBAAAAAAAAAAAAAAAmh3Wvr9G7bnyXBoMiHypfxmjD12HwWpL5GtGO8HXUk2bMri54/cuTf6lpsWkjnB0AAAAAAAAAAAAAAAATXYU0CwAAAAAAwBR05pmS3aRfmziOmR+YTK6/XtqwIXeb50ldXeM6eB3yLemS90sfXCNl7JEFr8ezIOu/KpubHubIVqudkG3banNaNC8xtyB4HYpYEbU6cbU48YLgdShqRzQvPkdtTgvBawAAAAAAAAAAAAAAgCJe2bpOb/3hW9UflPk7mzLciFvV34WEsoPXIVu2nIitiC/NmEXwGgAAAAAAAAAAAAAAAOURvQYAAAAAAMj39rdLe+zRnLn32EM66qjmzA3Uw8MPS/fck7vN86Tubsn3i5/julIsJlkjebtdcV6VQ5QKXmeP8+njTfQ6UmLZvlVl8Hrsd6tm8sPXdpnFWZISVlSWZcmyLJ25+wn60j7/n+Yl5hQ/3rL0yT0+pHP2+JCsEt/LeYk5+tLCs3Xm7ieUPYbgNQAAAAAAAAAAAAAAmIq6tm/XW687TL3+wJjGqTZ8XSx4HZrlTNf1J/6nbKv8WxIJXgMAAAAAAAAAAAAAAIDoNQAAAAAAQD7Xlb7wBRPdbaRYzMzruo2dF6iXTEa67rrcbUEg9fSYr9ksS0okpOnTpWnTpEjEbLdtcxlFALs7Jn3oNOmW/Ssfd0qZ4PWgK21NSPGMOTaRLgxf+0PLqxi8HofC8HXCjsqVLbfIr40tSa7sHcHrM3Y7XkumL1LCieviPU8pCF9nH7Nk+iKdsdvxBVHr7Jh1NccAAAAAAAAAAAAAAABMJV3bt+ug6/ZTp9dbk/Eqha/LBa/b7Rb986LnddaRZ+ua919TMnxN8BoAAAAAAAAAAAAAAAAS0WsAAAAAAIDijjhCOvFEyXEaM5/jSB/4gHT44Y2ZD2iEVaukTZtyt/X3S35eMdp1Teg6kTCBa0kaHBzT1N0x6SOnSPfsLZ3zwdLh6/C4+/cycet8g660PSalHaknKk1LFoav/ZH3uMed7Fi3LWtH+NqWpRmKa7risob+L4xZh/LD19nB61B+1LpYzLqaYwAAAAAAAAAAAAAAAKaKQ65fpDfS22s6Zqnwdbngdasd1+MXrlDHjBmSpKUHLC0aviZ4DQAAAAAAAAAAAAAAgFCRjAsAAAAAAAAkScuWSatXS2vXSp5Xv3kcR1q4ULr44vrNATTDX/+aezuTkZLJ3G2uK7W3S1bW2+l83xybLQhUrTBk/df5UtqWOuMmfC1JS9eUPq4rZrbHh6YOg9fhO/08Ozd83Z6UUrGql2XGqf5uNJQlSwN+So4s2UMXV7Z8+dpFbZqlFq3WZh3X8ZacmHUoDF9f+/Jv9K6ZhxY9Jtz2wLYndOH8k4vGrKs5BgAAAAAAAAAAAAAAYLJb9J299HpqS13GdiOuMunMjj9jKRe8TlhR3f/R+zVvpwU525cesFSStOzOZfIDn+A1AAAAAAAAAAAAAAAAchC9BgAAAAAAKKWtTbrySukzn5FefrkwwlsLrivNn2/maWur/fhAs3R3S889Z37GQ4ODhce1tuYGr6WaBq9D+eFrz5JOObnwuK6siHV28DoUhq/bk1LXSHrMVuVDmsXKWlxGvlzZO8LXthy9oO1yZOlN2lmLEvNKjpNw4vrsXqfLtoq/CVIyUetDO/Yf8zEAAAAAAAAAAAAAAACT1ZL/t0jrBl6r6xxh+NouE7yOKaLbTvu9DtrnsKL7w/D1j578kX5+0s8JXgMAAAAAAAAAAAAAAGAHqiEAAAAAAADlzJ0rXX21tN9+UjxeGOcdLcsy4+23nxl/7tzajAuMF+vX594OAimVyt2WSEiOU3juKAPzpYLXoTB8fcv+Ul9UeqO19HHFgtchzzZx7KpfDSZI8DrkyVeg4dB4IOk5bdMW9Vccr5pQda2OAQAAAAAAAAAAAAAAmGyOuvoQPd2ztiFzuRG3ZPA6Ike/OukmvX3fY8qOsfSApfrdqb8jeA0AAAAAAAAAAAAAAIAclEMAAAAAAAAqmTtXWr5cWrpUam+XXHf08WvLMue3t5vxli8neI3JaePG3NvFQtaxWPFzRxG9rhS8DnXGpbM/KB19prSxXepI5u4PLBN5rhiqDo+rcMxEC15bklzZBfvC8PUzA680ZnEAAAAAAAAAAAAAAABTzPuuPUqPd65u9jLkyNa1x16t9x30oeqOt4t86D0AAAAAAAAAAAAAAACmNLfZCwAAAAAAAJgQ2tqkSy+VjjpKuu466dVXpcFBKZ0ePiYoksDNjmNHIlI8Lu2xh3TBBdIRR9R/3UCzbN6cezs/ZO26kl2iTp3/XCr23MpSbfBaMvHmzoS0Ii7NSErxoWV1xlRdyHqSKBa8dmTLUlB0n2Qemzu6HtWczl20ZPqiOq8QAAAAAAAAAAAAAABg6jjtRyfqgc2PNHsZcmTr39/5b/rEUec1eykAAAAAAAAAAAAAAACYwIheAwAAAAAAjMQRR0hLlkh//7t0++3SE0+YmK/nma9BYC6WZS6uKzmOCV4feqh04olmDJdfy2CS6+/Pve15ubcdpybTjDR4HYQ9Z0vaHpNmSIpmJDsqecVbz5NSkBe3dixbLVZMg36y4nk/XX+HJBG+BgAAAAAAAAAAAAAAqIFP/uxU/e7Vu5q9DNmy9OW3fEHnvvuSZi8FAAAAAAAAAAAAAAAAExx1JQAAAAAAgJFyXekd7zCXzZul1aul55+XXnhB6uoy8WvXlTo6pL33lvbZRzrwQGnWrGavHGic/Mh1PmvshWnPkk45uXjw2rckS5IVmNs5wesdazDhaztmjp9qwvC1Y9lqtRMyj1IV5wWErwEAAAAAAAAAAAAAAGrhkl+eo5+vu7nZy5Al6dMHnavLjv9Gs5cCAAAAAAAAAAAAAACASYDoNQAAAABgcgsCKZ02X7Nt3tyc9UwkyWTu42bbJuRcg1DtpDJ7tnT00eYCYJjjlN+f/7qcLf91xrJKHr+1pXjwWhpKOFvmSkHwesfYkl9+pZOaJUutdkKWZSko9z3JQ/gaAAAAAAAAAAAAAABgbK649fO6Yc1Pmr0MSdJZC0/Tt0/6frOXAQAAAAAAAAAAAAAAgEmC6DUAAAAAYHIKAqmvT+rpKR5KffTRxq9potmypXCbZUltbeYCAOW0tEjbtg3fzo9ge17pc11XymQqTuEE0uV/lc75oNQZN9v8vLj1jvA1CliyFChQOsgoakVGfH4QBHpg2xM6tGN/2ZZd+QQAAAAAAAAAAAAAAABIkq66+5v6zpPfU/UfUV4/J88/Qded/rNmLwMAAAAAAAAAAAAAAACTCCUSAAAAAMDk1NsrdXcXD15j9ILAhMR7e5u9EgDj3ezZubfdvM/fy2Qk3y9+bv6xZSxdI/3w91LHYGHwGsMs5ba/Hdma5raqxYlpwE8q5adHPOa8xBxdOP9kgtcAAAAAAAAAAAAAAAAj8IP7rtKXHvqa/HGQvH7/rkfrv8/6XbOXAQAAAAAAAAAAAAAAgEmm+noMAAAAAAATheeZMDPqp6fHPM4AUMrcubm3w5B19ocRdHVJtm22WZa5uG7uNsl8LfMhBse8KO3ZKXUmNA7eCjieWbIUyJatNrdFlixFrIhaHKnfS0p2tOqR5iXm6OI9T1HCiddxvQAAAAAAAAAAAAAAAJPLbx/7b33uL5fJU4kPi2+go2Ydpls+dXezlwEAAAAAAAAAAAAAAIBJiOg1AAAAAGDySSZzbxcLpZaJpyJL9uMUxmdD+Y8zAGTbbbfh60EgpVLD10OeJ/l+7utLJjN8XBXh6+6YdOrJ0sZ2adqg1DVeGsxW5UOaocWJK2K5yl5gdvjakSW7wuIJXgMAAAAAAAAAAAAAAIzcXatu1Vl/OEcZec1eig6bvlj3XvRws5cBAAAAAAAAAAAAAACASYroNQAAAABg8smPM+ffLrUNhco9TrbduHUAmHimTZP23Vdas0bq7zdx63IfQlDstTsMXxfbr+Hg9cq5ki9pMCIp0LgNTjdbixNTxIoU3RexPJBq/wABAABJREFUIkrYgfr9pFzZJcPXcyIzCF4DAAAAAAAAAAAAAACM0N+eu1en3nK60uMgeL1/61568DNPNnsZAAAAAAAAAAAAAAAAmMSoUwEAAAAAJp9YjKh1vVmWFI02exUAxrPBQSmdlnp7TfBaKv3anB23DuUfm7c/P3jdmZDS9tAvPIu0tSezav4XL2pFSgavQxHLlStbvnwFRR7ENkV1yox3ELwGAAAAAAAAAAAAAAAYgVXPP64P/uJDGgxSzV6K5sd20ZOff67ZywAAAAAAAAAAAAAAAMAkR/QaAAAAADD52LbU0dHsVUxuHR3mcQaAYrq6pJ/9THrxxcLXinLha9/PDWCXONazpI+dVBi8DjU9fN2kz12wS0ztyJJrOVWNMU0x7a+dZOeN1KaoDtRsxW0+8AAAAAAAAAAAAAAAAKBar2xdp3ff9G71B8lmL0VzIjP17GWvNHsZAAAAAAAAAAAAAAAAmALcZi8AAAAAAIC6aGmRHMeEVzOZZq9m8nBdE7yOxZq9EgDjSRBI6bTkeVJnp3TzzVJfn4lWx+PmevaxlcaqcJwTSGevkB7fRepsyQ1eh2xJfqDGB6ibFry2doSqPQUKsqrffpVj7BafrVl9vlzZcmTrOW1ToOHgtctnKAIAAAAAAAAAAAAAAFSta/t2vfW6w9TrDzR7KZrlduipC9Y0exkAAAAAAAAAAAAAAACYIoheAwAAAAAmr1hM2nlnE07Nj6e+5z3NWdNEcs89ubcty1wAIFsyaULXnielUtIf/iD19Jh9liXZtgnmp9M1nfaYF6W5vdKmttLHWJIqJLZrqw4vkdbQvSh3PyJ2RL7vmeMtS25gKyNvx/2PVBGrnpeYo7Pm/A/d/vztkqTZapUkbVCvFhO8BgAAAAAAAAAAAAAAGJGu7du1+NqF6vR6m70UTXfatPrCteqYMaPZSwEAAAAAAAAAAAAAAMAUQfQaAAAAADD5FYs1x+PNWctE4jgmFj4wYEK2mUzu/qeektavb87aMHH19Ulbt+Zus20TqU8kCKtPNJmMtG3b8AcLPPLIcPA65PsmiF1DniV97CRpY7vUkZS6YoXHBJKCRv441W2uQCZ9HQxdyw15Ry1XruUopeHHOAxft9txzbWn6YXM5rIzzEvM0cV7niIvlczZPlut2kktsut35wAAAAAAAAAAAAAAACalQ65fpC2ZrmYvQ612XI9c8DjBawAAAAAAAAAAAAAAADQU0WsAAAAAAFDatm3S4GDxfQMDZj8wEqmUlEwWbh8YMEHsnXZq/Jowej09w8HrV1+V1q3L3e/75vsdBCZoHgSFY4yCE0hnr5BW7CLFh3r82eHrhgeva8wa+m+wI3QdyLEcRe2IBrzh12RXthzLLjrGNDuhxZFd5VqOHMvWi17x1+sweJ1w4upV4XPTIngNAAAAAAAAAAAAAAAwIvt9e55eT21p9jKUsKK6/6P3a95OC5q9FAAAAAAAAAAAAAAAAEwxxYsoAAAAAAAAvb2lg9dAPaTTUnd3s1eBkUinzVfPkx59NHdfEAwHr0NWXkDZsgovVVq6RrrmDskOTPi6Y6jX3PDgtSXVvgsdZq+HB47aEUWtiKKWK0smeG2X+PVum5vQgbE95FqOJGm2M03HdLxZVt7jmx28BgAAAAAAAAAAAAAAwNgdcuW+ejn5erOXobgV1W2n/V4H7XNYs5cCAAAAAAAAAAAAAACAKYjoNQAAAAAAKG5goNkrwFTU358bScb4FkaUX3vNhPKzpdOF30vHkVpapEikdOC6mvj10P788HUi3YTgdZ2HdC1H7U6rUn5a6SAtV44OdHeXU+JXuy1WTAe27b0jeB3aN7G7ztjt+B3ha4LXAAAAAAAAAAAAAAAAtXXU1YdoTd+LzV6GInL0y6U36u37HtPspQAAAAAAAAAAAAAAAGCKcpu9AAAAAAAAME5lMuX3VxOmBfLZVXwGm+fVfx2ojURC2r5devbZ3O2+X/h9dBwpHjevG45jXmOSydKRc8sqH0C3bcmytPS5QJKvcz4o9UfGdG+qV4eXPkeWPOXeX8ey1eokZMlSq51Qvz+oN0X20MGRPSQr0HPpTTnHx6yI9o7tItd2JKUL5lgyfZEk6YFtT+jC+ScTvAYAAAAAAAAAAAAAAKiR9117lB7vXN3sZciVox+f8EO976APNXspAAAAAAAAAAAAAAAAmMKIXgMAAAAAgOJcV0qlSu8PgvJBWqCYSj8zlmV+9jAxtLaa14mNG3O3F4vmx2K5oXzXNfFrz5PS6eKx81Lha8uS2tqkaNTsd7Yr5fgKGtHhr9Mcliy5suTJl5QbvJYky7LUYse1Jr1BHVZCs51pkqTnvS2SpLgV0a72dDmWU3aeJdMX6dCO/WVbVQToAQAAAAAAAAAAAAAAUNHS/zhOD2x+pNnLkCNb/++d39ZHlny82UsBAAAAAAAAAAAAAADAFEdBCAAAAAAAFNfWJm3b1uxVYKppbW32CqaezZul1aultWuldeukri4TrXZdqaNDWrBAWrhQWrxYmj0791zLkvr7c+PUQVAYsI5GJbtIZDmMnLuu5Pvm4nnma3bsOgjMtuxodiQiSbpl77TOeXeg/ojpUU/UFH9GvlzZisqVZwU5weuQNXT/12Y2ah93Z812pmlGy056OfmGEmkr5+Eph+A1AAAAAAAAAAAAAABAbXz8xx/WnRvub/YyZMvSN4/8V5377kuavRQAAAAAAAAAAAAAAACA6DUAAAAAACghkTAB4r6+Zq8EU0U8LrW3N3sVU0MmIz30kHT77dJTT5U/dsWK4esHHyydeKL0treZULUkbdqUG7TOZHLPtyzzWmLbJlydyQxfssPWYQA7DGSHY4ZfOzsLluZFXX1zSac6Y4FkWbKGktd1C19XGZWuxJWtjPyC7Rn5smWrzUmUnGyW0653RPfVBn+7JGmP2M7af9o+evD1f8gvMiYAAAAAAAAAAAAAAADq45JfnqPfvPyHZi9DlqQvHvJpXXLcl5q9FAAAAAAAAAAAAAAAAEAS0WsAAAAAAFBOR4eJXyeTkufl7mtvl+bObc66MHH19BSG1G3bhI7j8easaap5+GHpuutMrHqkVq40lzlzpAsuMNs2b849xs8LL7uuCVwPDhYGsfNlh7DDAHY0KjnO8DihdFqKRTR70FbEl9JOMBzWrrUaxa7DoSyVC197CkzDu8C8xBy9zd5T6UwqZ7td7GAAAAAAAAAAAAAAAADUzRW3fl43rPlJs5chSTpv/zN1xYeubPYyAAAAAAAAAAAAAAAAgB2IXgMAAAAAgPLC6KxlDcdoJWnRImmPPZq3LkxMXV1Sd3ezVzE19fZK118v3XPP2MfatEm64grpgAPMuNnyo9PpdOXYdTGZzHAsu7XVhK+zx8lk5ASWfnnPDH3kvdv1113TSgWBgrD/HBQddWRq3JK2JNmSLFlFw9eWpJhcWUUi1vMSc3Txnqfo6VefUFqpgv0AAAAAAAAAAAAAAABojG/f8S/6zpPfq8mfp4zVxxacpKtO/WGzlwEAAAAAAAAAAAAAAADkIHoNAAAAAAAATHYbN0qXXy5t2FB8fxAMR6Y9b3i740iuay5FQsxauVJKJs1+2y4cUyp+3kj4vglr27YZM2+8aWlbv/3TDL3jf/bqqfa+4R1jjV/XIXjtylaQtSBb1o7wdbi/XPA64cRruygAAAAAAAAAAAAAAACMyA/uu0pff/S78sdB8vr9ux6t//zEL5u9DAAAAAAAAAAAAAAAAKAA0WsAAAAAAABgMtu4Ubr0Umnr1sJ9mYw0OCilUpXHiUaleNwErvPHSKelRGI4TB1kvakvP1Sdvy9UKY6dyZQ89t7dUtocTSvqRJXy8u7LSOLXNQ5dZ7NlyZKVE70Ot7cpopS8ogsgeA0AAAAAAAAAAAAAADA+/Pax/9bn/nKZPPnNXoreNfutuuVTdzd7GQAAAAAAAAAAAAAAAEBRRK8BAAAAAACAyaq3V7r88sLgdRBI/f1SMln9WKmUucRiUkvLcHjasiTflwYGTBTb8wrPzQ9hF5O/v1QEO4xoD8W3b9lzUMuO6pLsqFrceGH0esd45aevN0+BrCLl7XZFtViztV0Dek7bcvYRvAYAAAAAAAAAAAAAABgf7lp1q876wznKqMjfxjTYYdMX664LH2z2MgAAAAAAAAAAAAAAAICSiF4DAAAAAACg8cLocipVGEl+9FETVZ4oYjGprc18HY10WuruNo9FGH5OJqXBQRN3bmuTbNtEpQcGzOMVjZrtjlN63FRK+vWvpXXrzDhhRNr3zWNfKUJdyuCgWV9Ly3CAOnvcYkYzV5lzAt+Xp0A379Gtzx7VL1/SgJ1Rd7Jr5PPUWt6ybUn+0PWMfNnSjvuWCBztkkmoS/2yJe1itWiD2yc/8DXdSmjBQFx3r/lDznh9maQyga+t6pEk+X6gluh29WT6FEjyfE8pLyUrmVKQtZh/bHhML21+tuzSk15GW1O9eXfHl2VWLUm6f8PftGrzU1U+GPXTme7V1lRP3tbcsvkf196llsjUCYa/PrBFPcHA8IbAUvYPpGP16dbVNzd+YQCmnH5vMOe2K0fTXn9a0xMzNWf6rk1aFQAAAAAAAAAAADB6f3vuXp16y+lKj4Pg9f6te+nBzzzZ7GUAAAAAAAAAAAAAAAAAZRG9BgAAAAAAQGN5nrRtm4k9F9Pba6LKE83MmVJHx8jO6euTNm/ODTz39JhLyHEk1y18TCzLzFkstt3XJz39tPRUkTjx4GDpoLTjmMC2ZZljfL8wSi4NR8tjseFj6ylr/PDa7+b367Pv8OVLGnQC9dgZSZYsWTmx52ayJdlDIWZ/aE2+JEu+4oGrXdIt8gJfnmWy2InA0R5euzrdlPYNZqg701t03Ix8pWSeP0l/UHbGkqeMfEnpwJbjJRUonZOATsnS1rRfdLyQL1+pIJOzLVAgS8PnDaZT2qrmx8VTmYxSwfDPZqD85LXU4/drID2oqSIZZJTyS7+51lGgbenOxi0IAIa4crWlf4u29G/RG70btXjXg5u9JAAAAAAAAAAAAKBqq55/XB/8xQc1GKSavRTNj+2iJz//XLOXAQAAAAAAAAAAAAAAAFRkN3sBAAAAAAAAmGK6u0sHryeybdtGFuvOZKQtW3KD0alUbvBaMgHrjRsLzw8CqbPThKmzpdNmLY8+Wnh8qeC165qLZCLXmcxw7Dp7X7HxmsCzpB8f6CmwAg06gbpjUmANJ4+tgvxx42UHr8Pr1tD1eOBqt3SrnCLrnBHE9CbtLJdf3QIAJqHuZLde2bqu2csAAAAAAAAAAAAAqvLK1nU6+qaj1T8Ogte7RGfp2cteafYyAAAAAAAAAAAAAAAAgKpQTgEAAAAAAEDjBIE0MNDsVdRPX1/1xw4MFAar+/sLj0smTYQ6kync53kmlJ1tcFB67TWptzd3ezqdG7wOrwfB8PieZ9YUXsIAdiaTe3z2GGEcuwHCmR1Z+u+bpTk9UndMKta4bmb4Ojt4HUoEjuZmEor6dsngdWg8RLsBAKiXzX2bm70EAAAAAAAAAAAAoKKu7dv11usOU5/fnA+FzzbL7dCT5z/T7GUAAAAAAAAAAAAAAAAAVXObvQAAAAAAAABMIel05WNsW7ImSPQ3HpcSieHbra3SnDnVnWtZudHrZFLaunX4dlub2RZGpT1Pcov8Os/zch+vTEZ69tncY8KAtVQYra72sbas4uHrBkavQ0EQ6N4F0hutkutLaUcaTmIPs4purR9LKhqzjgXOjtB11AvkZD3mtpW7RltWxeh19hEDmaRSfkZKm1GsiC9lfFnKbYFbVYxrF/mMxPxxbKvyOA2R9821VPijbNlTKyBuK/d7FQTmMRjeP06+dwCmvJSXkh80/v9/AAAAAAAAAAAAAKrVtX27Fl+7UJ1eb+WD62y606bVF65Vx4wZzV4KAAAAAAAAAAAAAAAAUDWi1wAAAAAAAGicSKTyMb6fG1UezyIRqaNj+HZrqzRzZnXnplK597O7OzeCnUhU91jkH9PTI23cmHtMJlN8nJHGxbPD103kW9J/HSIFljRjUNrSZslvaN66kCXJHYpGB1lryQ5eS1LUyn0O+Mrlysk5vxhnKF7sK1BSaclPy5YlX57stKSIN7SO7HHtiuNKkmNZ8nK+x1buOG5149Sb67hSJndb9qocy5JT5X2eLBw5ufc27+nq2NaUejwAjF9xNy7bcpq9DAAAAAAAAAAAAKCkN123v7Zkupq9DLXZCT1yweMErwEAAAAAAAAAAAAAADDh2M1eAAAAAAAAAKYQy5La2pq9isktP3gdBJLnFR6XH7wOgtKXcudV4FnFr5fbVmkcSfr5zdKbNprYdDwo/dl+VonrrixZGtsvSM351o7gtSVLVtbjkx+8lqQZdkvJ8RzLVjRS3ecUtuR9nmFMrhzZciOFEdGobEVUXVy0xYqV3Be3XNnj5FfKtqQWO1pyf8IqvW+yikYicq3S359WTb3HBMD4NHfaLs1eAgAAAAAAAAAAAFDSft+ep03pbc1ehlqsmO776H2at9OCZi8FAAAAAAAAAAAAAAAAGLHqCioAAAAAAAAobvNmafVqae1aad06qatLymQk15U6OqQFC6SFC6XFi6XZs5u92vGhrc08RoODzV7J5LRlS+5tzysMV2crty//mBEGr7tj0uknSZ9cIR3zovSxk6SzV0hL1wzvz99WzC37S//5ZhO6vncv6b/eLP33zdKNv7N1ysmB/p7wZDmWAgXKvjdW1ldHtixJGflyZMuRpX01QxvVqy4l5any4xBGrgNJgQLZstSmqHZTm15Q544RbFmKBo52TbfkBK/b7bjaInFZaVs9/kDOjI5la7rTUnVUulURZeRrUCZoHo9E1aaEkkrnHBeRpQ7FqxpTkloicWVSngaC3HGilqOOaOlgdzO0R1rkpX0l/UzO9rjlqjVSOt49WdmSOuwWdfp98vKe19PshKIRotcAmm/n1p2124z5zV4GAAAAAAAAAAAAUNQhV+6rl5OvN3sZiltR/f60W3XQPoc1eykAAAAAAAAAAAAAAADAqBC9BgAAAAAAGKlMRnroIen226Wnnip/7IoVw9cPPlg68UTpbW8zUeypyralmTOlZNJc8qPLO+8stbY2Z22VdHfn3u7okGbMGL7d1lZ93DydGxWWZZn7HW5vbzdfEwnJ96WWFileJF7c3i7tvnvuGsM4dRAUzhPOVU3sOt8IzumOSR85RfrrfOmhPaQ9O6WN7dKKXcz+Y16UTj1ZWjl3eFux8PUt+0vnfFDqi0rvPEva3CrJkk47Wbrx5kCnPGPpL/N9BZIsWTnZa7NNillRuZatIAh0pDtf67zNWujO0Z7uTkoFGd2XfFab/R6l5SkqV74CpYdi0iFblmJWRIECtSuuec4MbfS79e7YfoparuZmturh9DoFCjTTbtXRkX2VjA4q6aUUsR21OC2KusPR4VQmpT5vQBkvo6gTUbvbJtupLnidbTDIyLcsJaItsmxbg5lB9af65QUZxayI2hSVbY9w3BZpIDOoAS+pwPcUc2Jqi47T56SkvsyA+jMDsgIp4SbUEkk0e0lNFfhST7pHySCliFy1ui2KuASvATROb6pP6awPYYhYrnbv2EPTW2aoo2VmE1cGAAAAAAAAAAAAlHb4VQdqTd+LzV6GInL0y6U36u37HtPspQAAAAAAAAAAAAAAAACjNoXrSgAAAAAAAKPw8MPSdddJmzaN/NyVK81lzhzpggukI46o/fomkljMXPItXixNm9b49VTj9delzs7h2zNmSHPnDt+eNk2aN6+6sSxLikSGb8di0vr1JgQumTB4JCJt2yZ5nhk7kSgMVu+zj7TvvsO3fd+ExSVpcLB4qHo0wesRyA5ep21pe0LqjEvTk1I8I110vDS310SwJcm3pGXHm+vZ4esweN0ZlwJLemquFPWkGQMmlv2eTwTa2B5oWsrW9nggX4X3K2pHFbdjsixLZ+x2vJZMXyQ/8GVbwyHod3rH6NqXf6PdYjvrgW2Pq88blCXtGM2SpTa3RbZszUvM0cV7nqKEEy8Y56DOZ/TAtid04fyTlXCKBMoBAJgCtva8oTVvPLPjdtSJav6svZu4IgAYuWQyqeeee06vvfaaenp61N/fr5aWFrW3t2v33XfXfvvtp2iUDxYBAAAAAAAAgMnimOVHaGXXs81ehlw5+vEJP9T7DvpQs5cCAAAAAAAAAAAAAAAAjAnRawAAAAAAGm3zZmn1amntWmndOqmrS8pkJNeVOjqkBQukhQtN+Hf27GavFqHeXun666V77hn7WJs2SVdcIR17rHT++VJb29jHxPixYYP0yCPSU0+Z5/rWrVI6bQLWO+1knttvepO0227Dcepa8jzzNZMxlwbLD177ltkeWFJnTJomaTAibWqTOoYi2FJh+Do/eB0GqFOOiWi3pE0EO+JLbeniEW9LUspPK2I5+uTuH9KS6YskKSdULUkJJ67P7nW6nuhao/u3Pb7jbEvBjnn7vUHt1zp/R/C62DhLpi/SoR37F2wHAAAAMP49/PDD+t3vfqc777xTq1evlhf+26oIx3G0ePFiHX/88frQhz6kI6b6h1pNAm+88YZWrVqlp59+WqtXr9azzz6rrVu3qrOzU52dnRocHFQ8Hldra6vmzp2r3XbbTYsWLdLBBx+sd73rXZpX7QdgAQAAAAAAABh3lv7HcXpwy+OVD6wzR7auevd39ZElH2/2UgAAAAAAAAAAAAAAAIAxI3oNAAAAAEAjZDLSQw9Jt99uQrjlrFgxfP3gg6UTT5Te9jYTxUZzbNwoXX65iRkXEwTDgeHsKJbjmO+b60qWVXjePfdIzzwjfetb0ty59Vk7GiN8jt91V+Xn+F//ar56nnTQQcPP8VpxHPMzmUzWbswqlQpehwJL6opLVmCC1F0xsz0/fP3wbtIPDysMXodSjrlYgZlnWzwoOEYy51kqPL+YJ7rW6Kfr71DEcpWwYxrwkzLh65EheA0AAABMLL/4xS/03e9+V0888UTV53iep6eeekpPPfWUvv3tb+uwww7TF77wBZ166ql1XOnE9q1vfUtf+tKXqjr2xRdf1J577lnX9WzdulX33Xef7r33Xv35z3/Wc889V/Gcvr4+9fX16Y033tBTTz2lO++8c8e+/fbbTx/96Ed15pln1n3tAAAAAAAAAGrn4z/+sO7ccH+zlyFblr555L/qnHcua/ZSAAAAAAAAAAAAAAAAgJqglgUAAAAAQL09/LB03XXSpk3mtucNx5EzGROnDQITRbYsE0gOY8krV5rLnDnSBRdIRxzR3PsyFW3cKF16qbR1a+G+TEYaHJRSqcrjRKNSPF4YL9+wQfr856UrryR8PVFlP8dt2zx/q5X9HP/EJ4rH0UeqtdW8vgTVpJ5rp1LwOlswVKIuFr7uj0jfPUoKa9Pl7kWxILYlS9kJ7LgVVcRy9dP1d0iSlkxfVDDOY53P6Kfr71Aw9JhF7YgkDYWvJcey1WontH5ws77/0q908Z6nKOHEy6wMAAAAwHi3Zs0anXfeefrLX/4y5rEef/xxnXbaabr++ut1/fXXa7/99qvBCieP5557Tl//+tebvQy9+uqr+vWvf61f/epXeuSRR3b8G7AWnn32WV1xxRX6+te/rlNPPVVf+cpXtO+++9ZsfAAAAAAAAAC1d8GNn9BvXv5Ds5chS9IXD/m0Ljmuug8OBAAAAAAAAAAAAAAAACYCu9kLAAAAAABg0urtNSHjK64w4eRkUurulrq6pL4+E0sO49e+PxzBHhw0+7u6zPGplDn/iivMeL29zb5nU0dvr3T55YXB6yAw36Pw+1ONVMoc39dXGCPessXMw/d2YhkYkG64wTw3w6j9aG3aJH3nO9Lvf29eA8Zi3jwpnR7bGCM0kuB1KDtY3RWTBl1z6YwN7xttfswaKmZbktLKKAgCBUGgn66/Q491PpNzbH7wOhS1I0rYsR3Ba2soSP7KwCZ9/6VfacAb4/cJAAAAQNPcfPPNestb3lKT4HW2+++/X0uWLNEtt9xS03EnsiAIdO6552pwrP/WHYNrrrlGRx55pObPn69LL71U//jHP2oavM7meZ5uvPFGHXTQQfrKV76iTCZTl3kAAAAAAAAAjM1lN1+sH6/9RbOXIUk6b/8zdcWHrmz2MgAAAAAAAAAAAAAAAICaInoNAAAAAEA9bNwoffrT0j33mNhxGLoOQzdBMHzx/eFL9nbJHN/ba85Ppcx4n/60GR/1d/310oYNuds8z3w/ksnRjZlMmvM9L3f7hg0moIyJYetWE6l+8MHi+4PAfK/DgH146esz20vFtZ56SvrZz8yxozV3buHPVx2NJngdyg5fd8ak7XGzbSyCoRFN+NqSF/jq8weKhq9LBa9DUTuSE7wOEb4GAAAAJq7ly5fr5JNPVm+dPniqt7dXH/nIR3TttdfWZfyJ5j/+4z/0wAMPNHUNX/jCF/T3v/+9bqHrYlKplL72ta/p6KOP1ob83y0BAAAAAAAAaKpv3/Ev+t6qH4z6w9hr6WMLTtJVp/6w2csAAAAAAAAAAAAAAAAAao7oNQAAAAAAtbZxo3TppdJrr5lgdW+vCVpLw5Hr/Lh1KD+GHe73/eGxXntN+vznCV/X28MPm8h4Ns+TuruHv5/5XFeKxaR43Hx13eLH+b4ZJz9MfPfdZl6Mb1u2SP/+7+ZrvnTaBKs3b5Y6O81zdnBw+NLba7Zv3iz19AyH8LN1dko33iht2za69aVSw9frHPTyLOmUk0cXvA4FljlvrLHrnDHz3pZYLHx9w8s3lw1eh/KD16FXBjbp2pd/Iz8o8XoAAAAAYNz5yU9+omXLltU9fhwEgS6++GL99Kc/res8493rr7+uL37xi81eRlM9+OCDOuqoo7Ru3bpmLwUAAAAAAACApB/cd5W+/uh35Y+D5PWH93if/vMTv2z2MgAAAAAAAAAAAAAAAIC6KFFeAgAAAAAAo9LbK11+ufTGGyZomx27Hk1QKTzPsswllTKR3CAw83zve1JbW23vA8xjfN11uduCwHxP87+PljUcubaLfL6Y70vJpDQwUHy8jg4zRuj666UlS0oHs9Fc/f3S8uUmbJ0tCMy+ZLK6cYLAHJtMmp+dlpbc/b290g03SOecM/I1bt4sOU5hVL1OtraY4LUkWdI4eEugWUe+qBXZEbAOgkBP97wwtjksS++aeahsi88VBAAAACaCRx55RJ/61KeqCl4feeSROv3003XkkUdqzz33VHt7u3p6erRu3To99NBD+vnPf65//OMfZccIgkCf+tSndMABB+gtb3lLre7GhHLRRRepK//fzxPArFmz9OY3v1kLFizQHnvsofb2dkUiEW3fvl1bt27V6tWr9eCDD6q3t7eq8V566SW95z3v0T/+8Q/NmTOnzqsHAAAAAAAAUMrPHrxBn/3L/5Kn5n/A+btmv1W/OPv2Zi8DAAAAAAAAAAAAAAAAqBvqSQAAAAAA1NL110uvvip1dw/HkUcbvM4Wnm9ZJqLc3W3mueEG6dJLxzY2Cv3979KmTbnb+vuHI+Yh15VaW01guBTblhIJKRqV+vpMUDvk+2bc1tbhbRs3Sg8/LL397WO/H6i9//5vacuW3G2elxu5H6lkUkqnc38OJDPPnXdKBx00svHWr5cikdyftTrwLMkJpMv/Kn3yg1JXXLICSVZzw9dW1n9DCTumqB2p3RyWpTN2O15Lpi+q2ZgAAAAA6qe7u1unnXaa0ul02eMWLlyo6667Tsccc0zBvhkzZuiwww7TYYcdpmXLlulPf/qTLrzwQr3wQukP1EmlUjr11FP15JNPatq0aWO+HxPJzTffrFtuuaXZy6hKIpHQ+973Pr3//e/XscceqwULFlQ8J5PJ6L777tN3vvMd3XPPPRWPf/nll3XSSSfpL3/5i5xyv0cCAAAAAAAAUBd3rbpVF97zmXERvD585sG668IHm70MAAAAAAAAAAAAAAAAoK7sZi8AAAAAAIBJ4+GHpT/9ycRvaxm8DmWPFQRmnrvuMvOitm6/Pfd2JmPCxNlcV2pvLx+8zuY45ng37zPIksnCOHH+/BgfHn5YejDvDWeeZyL0xYLXlmXi0y0tJmjd0mJuW1bhsb5fPJz95JMmcD8SfX0mtl4H3tDSu2PSh0+TbtlfOuZFae/tUstQO84K8pPTjUbwGgAAAECuf/3Xf9WLL75Y9phjjz1Wjz76aNHgdTHvfe979dhjj+nd73532eNefPFFXXHFFdUudVLo6urSxRdfXHRfNUHpRjnqqKP04x//WJs2bdItt9yic889t+r1ua6r4447Tnfffbfuu+8+7brrrhXPeeihh/R//+//HeuyAQAAAAAAAIzQ3567V6fc/FGl5TV7KTqwfaEeWPZYs5cBAAAAAAAAAAAAAAAA1B3RawAAAAAAaiGTka67TurvH47W1jJ4Hcoe0/fNfNdfXxhNxuht3iytXJm7bXCw8LjW1uLx4nIsy5yXL3/8J58068D4ET7HQ0FggtdhqDp8bgaB+T63tEjTp0vTpkmJhBSPm6/TppntLS3D42RfBgYKw9f/+IeZq1qeVzzCPUZh6PrnB0mnniw9vqt08fHS0WdK66dJUW88ha8NgtcAAAAAnnnmGS1fvrzsMW9729t06623qqOjY0RjT58+Xbfddpve+ta3lj3ummuu0T//+c8RjT2RfeELX9Drr79edN+1117b4NXkcl1XZ5xxhlasWKG//e1vOvPMM9Xe3j6mMY8++mg9+eSTOvLIIyse+41vfENbtmwZ03wAAAAAAAAAqrfq+cf1gV98UEmlm70ULUjsrsc+90yzlwEAAAAAAAAAAAAAAAA0BNFrAAAAAABq4e9/l159VUqlzO16BK9D2WOnUtIrr0gPP1yfuaai1atzbwfB8Pc1lEhIjjO68R3HnJ8tlSr8eclfB5rr73+XNm0y14PARKUHBwu/b65rwtbxuIlf50etwyh2PG6Oy/85CgIpmcyNVvf0SK+9Vv1aHafwZ3aMumMmdP3YrtInPyj9Y3cpkLS1RVo5Vxp0pZjX+PC1FUh2IEX8wpkIXgMAAACQpK9+9avKlPmwsJkzZ+qXv/ylWsIPJxqh1tZW/epXv9L06dNLHpPJZPS1r31tVONPNA888IB++MMfFt132mmn6X3ve1+DV2S4rqtPfepTeu655/STn/xEhxxySE3Hnz17tm677Tbtv//+ZY/r6enR1VdfXdO5AQAAAAAAABT3ytZ1OvqmozUQ1PbvaEZjl+gsPfPFF5u9DAAAAAAAAAAAAAAAAKBhiF4DAAAAAFALv/+91N9vrtczeB3KnqO/38yP2li7Nvd2sTBWLDa2OYqdnz/P88+PbQ7U1u23m69h8NrzCr9njiO1tlYfRLft4sd7nrlkv448+2z1a3Vdc36NhMHrJ+dK2xNS2pG6YtKWFik99NvFrljp8HW9hFHtaUnJsSy5Wb/qJHgNAAAAQJLWrVun3/72t2WP+cY3vqE99thjTPPMnz9fX/3qV8se8+tf/1ovvfTSmOYZ7wYHB3XuuecqKPJ7senTp+uqq65q/KIkLV26VE8//bR+8IMfaK+99qrbPDNnztStt96qSKT8v0d/8pOfyM/+sCsAAAAAAAAANde1fbsOu/bN6vMHm70U7RyZoSfPf6bZywAAAAAAAAAAAAAAAAAaiug1AAAAAABjtXmz9PjjJoTbiOB1KJzL96XHHjPrwNitW5d7Oz9s7LomVjwWtm3GKTfPCy+MbQ7UzubN0sqV5nr4/E6nc4+xLKmlxXwdiVLnZTK5ryUbN0o9PdWNWW10uwoFweuhH33fkjK2lP1qlx++TqTNcfWQE7yWJd+2ZMuErwleAwAAAAgtX75cXpkPBVq4cKHOPffcmsx14YUXasGCBSX3e56n5cuX12Su8errX/+6nnvuuaL7vv3tb2vOnDkNXpFx0003ab/99mvIXPvuu68uvPDCsse8+uqreuKJJxqyHgAAAAAAAGAq6tq+XQcs30c9fn+zl6LpTptWXfCsOmbMaPZSAAAAAAAAAAAAAAAAgIZyKx8CAAAAAMAk9NprtRvr4YelgYHGBq9D4XwDA9Jf/iIdfnhj55+Murpyb+fHsWoVFHac3NB1/jz560DzrF49fD18nudHyqNR89X3qx83DOWH5yeTw/s8z+zLjmG//rq0887VjVsD5YLXocCSNBSglkz4WpJiGaknVpNlFBUGr2Oe1Be3dmw7QDvp8Dlv1W+3/FVBDV6PCV4DAAAAE5fnebrpppvKHvPZz35WTo3+ne+6rj796U/rkksuKXnMjTfeqH/7t3+TPdYP0xqHnnrqKX33u98tuu9tb3tbzeLiE8HnP/95XX311WWPuf/++7VkyZIGrQgAAAAAAACYWt503f7a5nU3exlqsxN65ILHCV4DAAAAAAAAAAAAAABgSiJ6DQAAAACYvHxf6uuT0unCCOxzz9VungcfNAHcRgevQ2GA98EHpVq+QWbLltz75DiS60qtrdIkjDPtkB8zzpcdIR6LSuNUWgcaZ+3a3Nv5gXLJPDfC50u1rwXZoXzXzY1eh/NkP9feeKO6cQcGqjuujGqC16Fi4Ws7WvzYWop6Zo6UYyaaobhmq1UHt+2jNYPr9XTPC2OeY3HbAoLXAAAAwAT15z//Wa+//nrJ/fF4XB//+MdrOueZZ56pL37xi0qlUkX3b9iwQffff7/e85731HTeZvN9X5/61KeUTqcL9rmuqxtuuEFWrX6fMgHsvvvuOvjgg7Vy5cqSx6xataqBKwIAAAAAAACmjn2/vYc2pbc1exlqsWJ64sInNW+nBc1eCgAAAAAAAAAAAAAAANAURK8BAAAAAJNTOi1t21Y8TitJg4O1m+vll2s31li89FJt71d+gDfU3y/NnFm7ecYbt8KvS2oVN680TqV1oHHWrcu9nR/Rd5zciLnvm2i575vXoDBubVnm4jgmZm3bw+eF27Nfs/Ln2bJl+Hp3t7R+vbRxo3THHcNzuq702mtjursjCV6HssPXvjV0bB0/B8C3pG0JKRJYChRIgbTdGtRm9Wll7/Na3buu8iBVWN27To91PkP4GgAAAJiAbrvttrL7TzjhBLW3t9d0zunTp+v973+/br311rLrmmzR66uvvlqPPPJI0X2XXnqpDjrooAavqPne+c53lo1er8v/XQMAAAAAAACAMTvou3vrleTGZi9DcSuqB05/gOA1AAAAAAAAAAAAAAAApjTqSQAAAACAyamz0wRgk0kTwM4PDMfjtZ2rViHk0QoCs45t22o3Zk9P7v2ybRPUjcXGx32ul46O3NuOk3u7VEh9pPLHyZ8nfx1onq6u3Nv5MWrbNs8HzzOvN5V+RjKZ4euOI0UiwyHsctHr/n5pzRrpySelV1/NHSM7kl4qWF+FMHi9cgTB61Bg5XWuqzhnLDK2lFEgZ2gqLwj0T2urXth0r6J2pCZzBEGgn66/Q5IIXwMAAAATzD333FN2/wknnFCXeU844YSy0eu77767LvM2y0svvaQvf/nLRffttdde+spXvtLgFY0Pc+fOLbu/s7OzMQsBAAAAAAAApojDrzpQa/tfafYyFFNEv1x6ow7a57BmLwUAAAAAAAAAAAAAAABoKqLXAAAAAIDJJ52WBgak7m4TkLWswsi1W8N/EqfTtRtrLNLp2t6vMOQbGhw0t/v7pWnTcsO9k8mCBdKKFcO38x/TTMbEiG179HP4fuHjlz/P3nuPfnzUVqWf9fB5MZoQvOcNv07lh8/zj3v9dem220Y+R7VLsaSPnWSC15LUkpa6Yua6pbyg9TjiKZAjS4EkP/Dl+Sb6TfgaAAAAmLpef/11/fOf/yx7zLHHHluXuY877riy+1evXq2NGzdWjCJPFOeff776+vqK7rv22muVSCQavKLxYfbs2WX3DwwMNGglAAAAAAAAwOR3zPIjtLLr2WYvQ64c/eiEH+h9B32o2UsBAAAAAAAAAAAAAAAAmm4MdSYAAAAAAMax3l4TiQ0FQe7F92t3yZ6nmTyvtvcr/zHLnqe3t3n3s94WLsy9XSwknkyObY5i5+fPs88+Y5sDtVMqJh8+N9Lp3OeIZVV3yR8rHCe8eJ6JaQ8MmJ+ZVGr4ejptnqc15ATS2Sske+iuxDNSx9CPqhWY8PV45SmQn5XlHvCTSvm1+0CCMHz9WOczNRsTAAAAQP088sgjZffvscce2mOPPeoy95577qlddtml7DGPPvpoXeZutJ/97Ge66667iu479dRT9T/+x/9o8IrGj/7+/rL74/kf0AcAAAAAAABgVD5w/bv14JbHm70MObJ13bFX6yNLPt7spQAAAAAAAAAAAAAAAADjQoliDwAAAAAAE1h2fDa8PTiYu61CeGZM8zVLENT2fg0M1G6siWTx4tzbliVFoyY4HBoYMNscZ+Tje17hYxuNFkaQDzxw5GOjPjo6cm/bduXnffb+/CB2tcIAfTbPyw3tW5aJcoch7fxI/QgtXWO+Ljte8i0TvpakrpgJX8uSxskrXkUDvil2R+1ITcYLw9eStGT6opqMCQAAAKA+nnjiibL7Dz300LrOv2TJEt12220l969YsUIf+MAH6rqGetuyZYs+97nPFd3X0dGhq666qrELGmdeffXVsvtnzJjRoJUAAAAAAAAAk9fHf/xh3b3pb81ehhzZ+uaR/6pPHHVes5cCAAAAAAAAAAAAAAAAjBt2sxcAAAAAAEDNpdNSW9twkLjeUeqRRGzrya7zP/PDx9FxzOObTtd3vmaZPVs6+ODcbfF44XF9fSP/2QoCc16+/PEPOUSaNWtkY6N+FiwY2fG+PxyfLhbhz983mlB1eI7vmyB7Mmni/snkyMYpYuka6Zo7JHtoSfGM1DE0rBVI4+QVryoDflIpv3avVWH4+rHOZ2o2JgAAAIDae/LJJ8vuf9Ob3lTX+SuNv2LFirrO3wif+cxntGXLlqL7/s//+T+aO3dug1c0vlQKr++9994NWgkAAAAAAAAwOV1w4yf0m5f/0OxlyJL0hUOW6ZLjvtTspQAAAAAAAAAAAAAAAADjitvsBQAAAAAAUHPRqOS60vTpJgabTpswbLZiEePRqndsulqWVdv7FY3m3rZt87jGYsPXJ6sTT5RWrhy+Hd7v7KBwJiP19EitrcOB9XI8zwSvM5nc7bFY4WN54omjXztqb+HC4etBUDz4Ptq4/mhi1w2wdI35uux4ybdM+FqSumImfC1LasxKsliqatJAgaysNPeAb563UTtSk2WE4WtJWjJ9UU3GBAAAAFBbzz33XNn9C7P/nVcH++yzT9n9a9eurev89fbHP/5RN954Y9F9RxxxhM4///wGr2h86erq0oMPPlj2mAMPPLBBqwEAAAAAAAAmn8tuvlg/XvuLZi9DlqTz9j9TV3zoymYvBQAAAAAAAAAAAAAAABh3JnGdCgAAAAAwZUUiJticSpkIdLEQ9MyZtZsvFpMGB2s33ljWUcv7Ve4+RaOFUezJ5G1vk+bMkTZtGt7W0lIYUM9kpK4uKZEYjoHn830Tyx4YKNxn22bcbHPnSkccUZv7gdpYvHj4+uBgw8LTzTYuw9eV7GhdB9k3CF8DAAAAU0gQBHrppZfKHlMpSj1WlcavtL7xrLe3t2TU2nVd/eAHP5BlWUX3TxW/+c1vlEqlyh7zrne9q0GrAQAAAAAAACaXb9/xL/reqh+Mi79ZOX3BSbrq1B82exkAAAAAAAAAAAAAAADAuFSkxAQAAAAAwCQwfbrkNuiznsZL/LlR63Ac8/hOZq4rXXBB7jbLktrbzdd8AwNSZ6fU3S319Un9/eZrd7fZXix4XWq8Cy5o3M8uqjN7tnTwwSakn06bbVMk4LV0jXTNHZI99E7BeEbqMP1oWUF2VrrOrLyv5Y5R8Rh3KkgrGAqWW5alA9v3HlOILQgCPbDtCfmBX/lgAAAAAA2zadMmDVb4cLJdd921rmuoNH5fX5/eeOONuq6hXv7lX/5FL7/8ctF9n/vc53TQQQc1eEXjSxAEuvrqq8ses+uuu+qwww5r0IoAAAAAAACAyeMH912lrz/6XfnjIHn94T3ep//8xC+bvQwAAAAAAAAAAAAAAABg3KKgBAAAAACYnFxXmjXLxIf7+yXfL9xfKy0ttRtrLFpaanu/7LzPynIcKZEw8+Tvm4yOOEI69ljpnnuGtzmONG2a1NNT+DMlSZmMuVRi2yZ47Ti52487Tjr88LGtG/Xx/vdLDzww8vOyo8pB899wNxpL15ivy46XfMuErwNJnfEGRa/zJ6liUivvIMey1WonZFmWLMvSGbsdryXTF+mxzmf00/V37Ihhj8S8xBxdOP9k2dYUeD0EAAAAJpANGzZUPGbu3Ll1XUM142/YsEE777xzXddRa4888oiuueaaovv23HNPfeUrX2nwisafX/ziF1q1alXZY04//XTZU+F3awAAAAAAAEAN/ezBG/TZv/wveWr+h5MfN+ft+sXZtzd7GQAAAAAAAAAAAAAAAMC4RvQaAAAAADA5BYGJXXd3F99fTZi4WmG82PNqN+ZIua5ZRy3vV37U2feldNpcb22t3Tzj2fnnS888I2UHsxxH6ugwP1/J5MjHjMVMONzKK/fuuqt03nljWy/Gj/D7a1nm9WicB689S3KCwuuh7PC1Z0kDEXM7kGlQ1+3ejaKqXW3wWtKOryMNX89LzNHFe56ihBMf+QIBAAAA1NXWrVvL7p82bZpisVhd19DS0qK2tjb19vaWPKbSOsebdDqtc845R36xDwGTtHz5crWMlw+Ga5K+vj797//9v8se47quLr744gatCAAAAAAAAJgc7lp1qy645zPjInh9+MyDddv59zV7GQAAAAAAAAAAAAAAAMC4Zzd7AQAAAAAA1EVvb+ngda3Nni1Fo42Zq5RIRNp558bM1d1tHt+poK1N+ta3pFmzcrdblgl/T5tW/fc+GjXHt7YWBq9nzTLztLXVZt2ovTvvNLHyaoWha98f98Hr7pj04dOkW/bPvZ5v6RrpnS9L2xNSyhnePp6C1/nKBa9DS6Yv0hm7HS8r/3lZAsFrAAAAYHzbtm1b2f3Tpk1ryDoqzVNpnePNv/3bv2nVqlVF9/3P//k/dfzxxzd4RePP//pf/0svv/xy2WPOOOMMzZ8/v0ErAgAAAAAAACa+vz13r065+aPKyGv2UnRg+0I9sOyxZi8DAAAAAAAAAAAAAAAAmBDcZi8AAAAAAICa8zypp6dx882dKzmOZNsmcNtotm3mnzOncXP29JjHeSqYO1e68krp8sulDRty97muCVUHgZTJmEv24+I45hjXLQxdh3bd1QSv586t333A2GzeLK1cacLl0aiUSo37kHW1umPSqSdLK+dKj+8ize2VNrZLK3Yx+5euGT725wdJN+9vgtd1v/cNCl6Hwu0/XX+HgjLfW4LXAAAAwPi3ffv2svvb29sbso5K80yk6PWzzz6rb3zjG0X3dXR06Oqrr27wisafP/3pT7r22mvLHtPe3q5vfvObDVrR2Cxfvrzi/amFF154oe5zAAAAAAAAYOJa9fzj+sAvPqik0s1eihYkdtdjn3um2csAAAAAAAAAAAAAAAAAJgyi1wAAAACAySeVyr0dBKWDw7Ww225m/FhMGhxsbAw3nNeypN13b9y8kpRMNna+Zpo7V/re96QbbpDuvrtwv2VJkYi5jMRxx0nnnWfC2Ri/Vq8evt7SUhg3n6Cyg9e+pM4WaVOb1JGU4hlp2fHmuKVrTPD6kx+UUm5jgteWxjbPSILXoUrha4LXAAAAwMQwODhYdn9ra2tD1tFW4d/6ldY5XgRBoE996lNKlvg90Le+9S3tsssuDV7V+LJ+/Xp9/OMfL/shSpL0ta99TXMnyIeebd68Wc88Q8AHAAAAAAAAzfPK1nU6+qajNRCkKh9cZ3vE5uiZL77Y7GUAAAAAAAAAAAAAAAAAEwrRawAAAADA5JMfuK5n8FqSpk2T5s2TXnnFzNXo6LXrmvnb2xs3bzj3VNLWJl16qXTUUdL110sbN45+rLlzpfPPl444onbrQ/2sXTt8PQycF4teh8+JRr4GjFJB8DohpW2zrytmvobh6wfmS9cvaUDwOuslJdDow9e2rBEHr0OlwtcErwEAAICJI5X/YWh5XLcxfyZRaZ5K6xwvbrjhBv31r38tuu/www/X+eef3+AVjS+pVEqnnHKKNm/eXPa4d77znfr0pz/doFUBAAAAAAAAE1vX9u067No3q89v/ocH7hyZobWXvdbsZQAAAAAAAAAAAAAAAAATDtFrAAAAAMDkE402Pj59yCHSunWS7zduTsnMl8mY+RvJsqRYrLFzjhdHHCEtWSL9/e/S7bdLK1dWf+4hh0gnnmjGaFBkCzWwbt3wdd83ry35rzHZEXjbbvxrwQiUC16HwvB1IOnqRrTZizT0K72CW5IicuQrUEb+jm0xK2KujzB4HcoPXxO8BgAAACYWote1s2HDBl122WVF97muqxtuuEG2bRfdP1Wcd955euihh8oeM23aNP34xz+e8o8VAAAAAAAAUI2u7dt1wPJ91OP3N3spmulM06oLnm32MgAAAAAAAAAAAAAAAIAJiboSAAAAAGDysW2po0Pq7GzcnHvtZeLTjY5tW5bkeWb+RuroMI/zVOW60jveYS6bN0urV0vPPy+98ILU1WV+FlzXPE577y3ts4904IHSrFnNXjlGo6sr93YYtC71fG/ka8AIdcekU06WnioTvA51xqSgSIy6pOxjq30IRjJ+3mkROZIkW5Zc2fLky5Utx3bky9dHd3nfiIPXofC8B7Y9oQvnn0zwGgAAAJhA/AofQuQ4TkPWUWkez/Maso6xuOiii9SV/2/iIZdccokOPvjgBq9ofPnOd76jH//4xxWP+/GPf6y9Gv27OwAAAAAAAGCc8nxPjl3696cHXbeftnndDVxRce12ix6+4FF1zJjR7KUAAAAAAAAAAAAAAAAAExLRawAAAADA5NTSYqLMPT1SOl3/+V580USOGxm+toZqsY5j5t9vv/rP57pSe7sUJwC7w+zZ0tFHmwsmhjBUvnattG5dYah8wQJp4UJp8WLz/c1khs/Nf25blnkO+v7wvnEave6OSR85RfrrfCmRlgYipYPXgVV9t1pSYbx6lDHragWSfAWyhyayZcka+q8lS7Zl6eHOVXrbjINkW6ML9C+ZvkiHduw/6vMBAAAANIfrlv8ziEz2v/HqqNI8kUikIesYrd/85jf63e9+V3Tf/Pnz9dWvfrWxCxpnbrzxRl122WUVj7v00ku1dOnSBqwIAAAAAAAAGP+2D2zXGb87Q2cfcraWHlD4e7OF395db6S3VxzHly8/7cuN1Odtca12XI9fuELzdlpQl/EBAAAAAAAAAAAAAACAqYDoNQAAAABg8orHzSU7Rht6z3tqO9ef/2xC20EgJZP1D1+HwetYzMy7YYN0wQW1neOee3Lvg20PzwtMNJmM9NBD0u23S089Vf7YFSuGrx98sInnl2Pb5rUmlWpMZH8UsoPXKVtKxk2X2iryMjXi4HWTZOTLlb0jfG1llbYty9a7Zh465mA1wWsAAABg4olGo2X3Nyp6na7w78NK62ymzs5OLVu2rOT+5cuXq6WlpYErGl/uuusunXXWWQoq/O5v6dKl+s53vtOgVdXW7NmztWjRorrP88ILLyiZTNZ9HgAAAAAAADTfa92v6dAbDlXGz2jF6+Zvc7LD1wd9d2+9mtxUcRwv7ckf+suWTDpT8/B1worq/o/eT/AaAAAAAAAAAAAAAAAAGCOi1wAAAACAyc8uEi2Nx2s3/ubN0tNPmyB0S4uJ69Y7oBQEkuua+SxLWrXKhHlnz67dHI6TG72ud8gbqJeHH5auu07aVPmNcQVWrpS6u008P3y+5b+mhM/5IBiXzxHPkk49eTh4HQy1oQNJsnLD1xMleB3KD19Lkm1ZOmO347Vkev3jXAAAAADGn0gkUnZ/KpVqyDomcvT685//vDZu3Fh030c+8hGdcMIJDV7R+PHggw/qpJNOqvj9ffe7362bbrpJdrHfS04AF110kS666KK6z7N48WI988wzdZ8HAAAAAAAAzfVa92t68w1v1raBbTu2LbvTfPDe0gOW6vCrDtTa/lcqjuOlPXlDf9liyfyNSy3D1zFFdNtpv9dB+xxWk/EAAAAAAAAAAAAAAACAqWxivrsOAAAAAIDxZPXq4eu2LbW1FT/Osopvr6TUeW1tufHd7HUAkHp7pSuvlK64YnTB65Drmuh1b680MJD7vAsCs8/3x7zceumLSptapbRt3vCXE7nWcAQ7vD3RZOTLz3pD48mz30XwGgAAAJjC2kr9XmZIb29vQ9bR09NTdn+ldTbL/fffrx/96EdF902bNk3f+973Gryi8ePJJ5/UCSecoP7+/rLHvfWtb9Xvf/97xWKxBq0MAAAAAAAAGL+KBa+7kl3qT/dr2Z3LtPg7C7Sy69mK42QHr6Xhv3EJw9dj5crRj074gd6+7zFjHgsAAAAAAAAAAAAAAACAVJuPsgcAAAAAYCpbuzb3dhCYUHWQlY+1rOFLEOTuKyU8Pnvc7H35Yzz/vHT00SNePjApbdwoXX65tGFD8f1BIGUy5uJ5w9sdx0SuXXf4+ec4w/vTaXNOOMY41x2TTj1Z2tgudSSlrpgJQysYjl0HkmSZGLYdSP4o+/yNYKl4mDsjX65sHaCddHDbPo1eFgAAAIBxZObMmWX3d3d3N2QdleaptM5mGBwc1LnnnqugxL93v/nNb2rXXXdt8KrGhzVr1ui9732vurq6yh530EEH6c477xy3UXMAAAAAAACgkYoFr0NdyS6lNm/X63HJidiyZRcZwcgPXocCDf8tSSadkRsZ3dvkHNm67tir9ZElHx/V+QAAAAAAAAAAAAAAAAAKEb0GAAAAAGCs1q3LvZ3JDMdyw0hQdrw6P2ZdjezIdXh+JiNFIsPHvPDCyMYEJquNG6VLL5W2bi3cl8lIg4NSKlV5nGhUisdNADub7xc/fpxFsMPg9cq55nZ8qNVd8/B1gyLZVsnktRGXq1lqacxiAAAAAIxbO+20U9n9nZ2dDVlHpThypXU2w1e/+lWtzf9wtyFvfetbdeGFFzZ4RePDiy++qGOPPVabN28ue9zChQt19913j8ugOQAAAAAAANBo5YLXkhTt9NXfYv7sxEv7UkRFw9elgtehsYavHdn65pH/qk8cdd6IzgMAAAAAAAAAAAAAAABQXuFfAwEAAAAAgJHJjxh5nvlqWZJtm3CuPcZ/gmePEwazw3lKrQOYinp7pcsvLwxeB4HU1yd1d1cXvJbMcd3dJpKdH74e5/KD16F4RupImuuWTOQ6FGg4gm2Pr353RW2K6lDNHQpjAwAAAJjKZs2aVXZ/Mpmse/h627ZtSlX4t+d4i16vXLlSV155ZdF9ruvqhhtukD3W329NQOvXr9cxxxyj9evXlz1u/vz5uueeezRnzpwGrQwAAAAAAAAYv6oJXieHPtc8/BMVL+3LV+4H0VcKXoeCrK+ZdKbqddqy9OW3fEGXHPelqs8BAAAAAAAAAAAAAAAAUJ2p945EAAAAAABqLVPhjTKuK3V0SG1tIw/nuq45r6Oj8rmV1gFMBddfL23YkLvN80wUPpkc3ZjJpHl+BYG5jHOlgtehasPX4ykfXS5mHQavXX7VCQAAAEDSvHnzKh6zadOmuq6hmvGrWWejeJ6nc845R5kSv1v6zGc+o0MOOaSxixoHNm3apGOOOUYvvvhi2eN22WUX3XvvvePqewoAAAAAAAA0S6XgdaRnOHgdKha+rjZ4nT9GteFrS9KnDzpXlx3/jarnAAAAAAAAAAAAAAAAAFC9EZa2AAAAAABAgUox6iCQLEuKRs3F80xAN/wahnQty1xcV3IcKRKRbDt3nLGsA5jsHn5Yuuee3G2eJ3V3l37+hM83yzLHhM/LfBMkeO1Z0sdOKh28DsWH7mJXbChuHQzHrrPD1xU1oIxN8BoAAADASLS1tWmnnXbS1q1bSx7z8ssva7/99qvbGl566aWy+3feeWe1trbWbf6Ruummm/TYY48V3Tdv3jx99atfbfCKmm/btm067rjj9Oyzz5Y9bvbs2br33nu19957N2hlAAAAAAAAwPi1fWC7Dr3h0JLBa6fPVypW/NxA5s9QwvC1P4r5wzHC8LUbKf33dGctPE3fPun7o5gFAAAAAAAAAAAAAAAAQDWoYQEAAAAAMFYdHbm3HSf3tucV7s8/phrFxim3DmAqyWSk667L3RYEUk9PYazasqR4XIrFcsPyId+XkklpYKB+660TJ5DOXiGt2EXyKwSpy4Wvx4tyweuoHL2Z4DUAAACAIvbaa6+y0eu1a9fqve99b93mf/7558vu32uvveo292hs2bKl5L6jjjpKN910UwNXI/3yl7/UTjvtVHJ/e3u7Tj311LrN39XVpfe+971atWpV2eNmzJihu+++WwcccEDd1gIAAAAAAABMFJ7v6YzfnaGMX+TD5iVZ/b68SPkxwmj1aILX+WPYkdJ/T/LhPd6n607/2RhmAQAAAAAAAAAAAAAAAFAJ0WsAAAAAAMZqwQJpxYrh227eP7czGRPRLRbXrZbvm3Gy5c+z996jHx+Y6P7+d2nTptxt/f3muZPNdaXW1vLheduWEgkpGpX6+gqfe+Pc0jXm67Lj6xy+rmMgu8WOy7Kkfi9ZdurtGtDOaq3fQgAAAABMSIsXL9Zjjz1Wcv+zzz5b1/krjb948eK6zl9LN910U8Oj15dddlnZ/fPnz69b9Lq3t1fHH3+8Hn/88bLHtbe3649//KMOPvjguqwDAAAAAAAAmGgc29HZh5ytFa+bv6PrSnbt2OcP+rJdE6SupJpjKrFlyS7xIerHzXm7fnH27TWYBQAAAAAAAAAAAAAAAEA5Y6htAQAAAAAASdLChbm382PUkpQsHm6tWrHz8+fZZ5+xzQFMZLfnvRktkyl83riu1N5ePnidzXHM8a4rBbV4S13jLF0jXXOHZFex7HhGinnmetUd6zoEr8MhW+y4onZEESuiFidW9LiIzPdwrbZps/pqvxgAAAAAE9qhhx5adv+K7A8vq4Mnnnii7P43v/nNdZ0fozMwMKAPfOADeuihh8oe19LSoj/84Q9661vf2qCVAQAAAAAAABPD0gOW6pr3X6OWSIs6Yh2SJD/py7ZrE7OuhiNLTqT43wYdPvNg3Xb+fQ1aCQAAAAAAAAAAAAAAADC1Eb0GAAAAAGCsFi/OvW1ZUjSau21gQPK80Y3veeb8bNGomSfbgQeObnxgotu8WVq5Mnfb4GDhca2thc+bSixLSiRGdvw4UW34etCVkkPv9avqDYZ1uouBpKgVUdSO7NiWH762Ze8IXofnPEf4GgAAAECeStHrJ598Ut5of09TQSaT0cr8f6PmIXo9/iSTSX34wx/W/fffX/a4WCymW2+9Ve94xzsaszAAAAAAAABggskOX0cDX7Y1PoLXB3fspweWPdaglQAAAAAAAAAAAAAAAAAgeg0AAAAAwFjNni0dfHDutni88Li+PikY4Vt4gsCcly9//EMOkWbNGtnYwGSxenXu7SCQUqncbYmE5BR/U1tFvj+ymPUECl8PulLXUFM6kBRUWnqd71o6yCjlp3O2heFrx7KVsGMF5xC+BgAAAJBvyZIlihf73cyQ3t5ePf7443WZ+5FHHlF/f3/J/fF4XIcddlhd5sbopNNpnXLKKfrTn/5U9rhIJKLf/va3OvbYYxu0MgAAAAAAAGBiWnrAUl265DPKpCofWyvlgtcLW+bpH5c83bjFAAAAAAAAAAAAAAAAACB6DQAAAABATZx4Yu5t15VieXHWTEbq6ZE8r7oxPc8cn8nkbo/FzPjl5gemkrVrc2/nP2ekwufjSFT7nB2nSoWvRxy8rjNrqKg94CeLhq/bnETJ5jbhawAAAADZ4vG4jjrqqLLH3H333XWZ+5577im7/x3veEfZIDcay/M8fexjH9Pvf//7sse5rqtf/OIXOuGEExq0MgAAAAAAAGDiemXrOn39/q/Kipq3rdX7T1LKBa/3iM3Rqi+8UOcVAAAAAAAAAAAAAAAAAMhH9BoAAAAAgFp429ukOXNyt7W0SHbeP70zGamrSxoYkHy/+Fi+b/Z3dRXGe23bjJtt7lzpiCPGtn5gIlu3Lvd2/vPGdQufiyORyUjWCN5+Z1kjO74B8sPXIw5eW6rrOxCtvMGLha8rLSAMX6/sfb62iwMAAAAwIR133HFl99988811mfc3v/lN2f3vfe976zIvRi4IAp199tn69a9/XfY427b1k5/8RCeddFKDVgYAAAAAAABMXK9sXadDrz1E/UFStmw5kfqGr8sFr+dEZmrtZa/VaWYAAAAAAAAAAAAAAAAA5RC9BgAAAACgFlxXuuCC3G2WJbW3F4/fDgxInZ1Sd7fU1yf195uv3d1m+8BA4TmlxrvgAjM/MFV1deXe9rzc207xN7ZVLQiqO862h+caZ9FraTh8nXRGELyuc+w6FKjwMS4evq40jvSbzQ/osc5narQyAAAAABPVySefXHb/E088oWeffbamcz799NNatWpVyf2WZVVcVzNccsklCoKgYZdKXnzxxbLnv/TSSzW53xdccIF++tOflj3Gsiz94Ac/0Omnn16TOQEAAAAAAIDJrGv7dh1x3VvU6w//7Vs9w9flgtcznWl66oI1NZ4RAAAAAAAAAAAAAAAAQLWIXgMAAAAAUCtHHCEde2zuNseRpk0zMdxiMhkpmZQGB83XTKb4cbZtxsmP9x53nHT44WNfOzCRlXrehMYaoA6DXOXGsSxzaWmROjqk1lYpkRiX8evBoUZ+2eB1g2LX2WoVvvaDQD9dfwfhawAAAGCK23vvvXXEEUeUPeaaa66p6Zzf+973yu4/8sgjteeee9Z0TozOZz/7Wd1www0Vj7vmmmv0yU9+sgErAgAAAAAAACa2TCqlg67bT9u87oJ99Qhf21LJ4HW73aJ/XvS8OmbMqNFsAAAAAAAAAAAAAAAAAEaK6DUAAAAAALV0/vnSrrvmbnMcE8GNxUY3Zixmzs8PXu+6q3TeeaMbE5hMXLf8/qAwpjwiYbi62nEcxzxvW1ul6dPNbdsuvDQ4iH3L/tI5HzTR67LB6yYKw9cRa/j1LhWkFYzwexgEgR7Y9oT8wK/p+gAAAABMLGeffXbZ/f/1X/+l119/vSZzvfbaa/rZz35W9pizzjqrJnNhbP7lX/5FV111VcXjrrzySl100UX1XxAAAAAAAAAwCez3//bSG+ntJffbsmVJRT4SfeTCcXwV/l1Iqx3X4xeuIHgNAAAAAAAAAAAAAAAANBnRawAAAAAAaqmtTfrWt6RZs3K3W5YJ4E6bJkWj1Y0VjZrjW1sL47izZpl52tpqs25gIuvoyL2dH4j3vLGNX22cuthxjmOex3aJX8M1KHwdBq874+M3eB2K2q5anIRanJgcy1arnZA1wsdpXmKOLpx/smyLX38CAAAAU9knPvEJ7bzzziX39///7N15nBx1gf//d1Xfc08OkhBICIQrARNIUA5R5AZZBc1XEFRYUEAExcXvFxfWXZaf7qqLuqsisMt6oETAIwJZ5AiHK0cgIWEigUDIgZCLHHPP9FVVvz9qKtPd0/d09xx5PX20M13H5/PpyUweZqx6dV+fvv71r1dkrhtvvFHRaDTn/ilTpuizn/1sReZC+b797W/rW9/6VsHjvvnNb+qGG26owYoAAAAAAACAsW/Od2dpS+y9vMdYCStLoro8XjjbSthp4euIEdQzn35GMyYeXKGZAAAAAAAAAAAAAAAAAJSL6gsAAAAAAJU2dap0223S/vsP3ef3u6Hq1lapsVGKRNy4tfeIRNztra3ucX7/0DH2398df+rU6r8WYCw4OONGtcyfm2RSsodx25zfLzlO/mMcJ3fY2gtfZwbvHafwuBVgGdK/nDw2gteGpLidVNxO6JC6A/T5A8+XmevrmsP00CRde9CnFPGFq7NIAAAAAGNGOBzWV77ylbzH3HPPPVqyZMmw5nnggQe0ePHivMdcf/31CoVCw5pn8+bNMgwj7+OWW24Z1hzj2Y9+9CP9/d//fcHjbr75Zt188801WBEAAAAAAAAw9i38/hxt7H837zFWwpKlyl4jkxm+Dimghy96SEfPXlDReQAAAAAAAAAAAAAAAACUh+g1AAAAAADVMHWq9MMfSmeckX2/YUiBgBu5bmgYfEQi7nYjR5X2jDPccQleA4MOPTT9ebZYfCxW/vg+3/CPM83Bn3PTrEns2vPQ4dKWRilgu1Fpo3ZTl8RI+e+Ek9BJrfN00oR5+tz0c2Xk+jsxQ4OC+tup5xC8BgAAALDX9ddfrwMPPDDvMZdeeqleeumlssZfvny5rrjiirzHzJw5s2B8G9X1s5/9rKg/gxtuuEHf/OY3a7AiAAAAAAAAYOz78I8W6tXu9XmPqUbw2uONaidsfWX+tfrgYadVZR4AAAAAAAAAAAAAAAAApSN6DQAAAABAtTQ0SDfcIN1yy/Aj1VOnuuPccIM7LoBBc+emPzcMKRhM39bfL1lWeeNXMlIdDLo/w0VGnIdryRHSdedKMqSW/tEbvk4NXvsMU3W+iO7b9oRWdrymhS1zigpfNyioozRZEV+o6usFAAAAMHbU1dXp+9//ft5juru7deaZZ2rp0qUljf3ggw/qrLPOUk9PT97jvve97ykSiZQ0NirngQce0Be+8AU5Bf5tf8011+i2226r0aoAAAAAAACAse2sn5ykF/e05T2mmsHrVPUB6acbFmvJ60uqPhcAAAAAAAAAAAAAAACA4vhHegEAAAAAAIx7xx8vLVwovfCCtHSp1Jb/Zp808+dL553njuHnn/FAVpMnS/Pmpf9shcNSPJ5+XG+v1NhYWnDacdxgdjESicI/p7YteTE0bx2VCmpn8ILX9sA0ptzwdUdESpiSHMmpTXs7r8zgdb0vIkOGHMfRPVsekSQtbJkjSfrZOw9lHcMLXvt5jz8AAAAAWSxatEgXX3yxFi9enPOYzs5OfexjH9OnP/1pfeMb39ARRxyR89jXXntNt956q+6///6Cc19yySX65Cc/Wda6MXzLly/XZz7zGVkF3ghrxowZmj9/vu6+++4arUz66Ec/qmnTptVsPgAAAAAAAKBSLvrpefrTzpfyHlOL4LUhybGknqApX6JP1/3xOknSBUdeUNV5AQAAAAAAAAAAAAAAABRGLQsAAAAAgFrw+6WTT3YfO3dKa9dKb70lbdggdXZKyaR7THOzdMgh0uzZ0lFHSZMmjfTKgbHhvPPSo9d+vxQKSbHY4LZkUurulurrJZ+v8JiW5Yayk0k3UJ0ap8587h3f3+/OnWv8vj43fO2pQvDaMqSHDk8PXnuGE742BsLUTsVvSBwavPY4jqM/7VmlY5uP0MKWOdrV/Z5+u/tPaSsgeA0AAACgGHfddZdefvllvfHGGzmPcRxHixcv1uLFi3XMMcfoxBNP1KxZs9TQ0KDu7m5t2rRJzz33nNqKfEOzI444QnfeeWelXgLKsG7dOiUSiYLH/fWvf9WVV15ZgxUNevrpp4leAwAAAAAAYMy54pcX6g/vPJb3mFoEryXJl5Csevd6kc5YpyQRvgYAAAAAAAAAAAAAAABGCaLXAAAAAADU2uTJ0imnuA8AlXHCCdKUKdKOHYPb6uqkRCI9Mp1MuqH5SMSNYptZQsm27cay+/uzz2UYgx+9aLW3zbJyjx+Puw/vnCoEr7tC0mmfkza2SiEr+zGZ4WvHkVQgfJ0aojZkFB2+DsuvpGxZsuWXqaTsvWf6ZOy9wTFb8FqSZkSm6JqZi2Qa7tdxbt1BWrP7L3pTe+SI4DUAAACA4jU0NOixxx7TySefrHfeeafg8atXr9bq1avLnm/GjBl67LHH1NDQUPYYAAAAAAAAADCaXH//57V44+/zHlOr4HUwJiUa068XIXwNAAAAAAAAAAAAAAAAjB5ErwEAAAAA45dtu9HazOitJK1YMTJrGkt2705/bhhSMOjGfLOFgoGR5PdLX/yidMstg9sMQ2pslLq6hgam+/vdh98v+XyDAWvLcsPYmQwjPXKduj2bzPElKRqtSuja0xWSPrVI+ssUN2bdHJPCWV6KNBi+bo9IcV/uMU2ZMqSUVLUra/g680sjyTJs1dl+TbDD2uLrkU+mLNkyZQyMLMkwFJRfSTt9sZN9Tfpg8HC9vv21vdt29+1SMGFqutGg3Wa/Zlj1ipuWDJ/kI3wNAAAAoICZM2fqqaee0tlnn60NGzZUbZ7Zs2fr0Ucf1YwZM6o2BwAAAAAAAADU0i0Pfk13rftF3py1LXvINSblMDTkMpQ0oX4p3pz9OhEvfP3TV36qjx3+MfnMPBfGAAAAAAAAAAAAAAAAAKgaotcAAAAAgPEpmZT27Mker5WknTtru56xKBoduq2/X+rpkSZOrP16gEKOP146/XRp2bLBbT6f1NQkdXcPjd9L7t8Ruf6eSGWabkC7t9cN6Xv8fjcG39+fPWjtje84VQ9eX7hIWjNVah2IWXeG3H25wteF+GXKkiPTMGU6ecLXOV6WIclnG4pYpmJKqMHyq9OXGLgx0ZE1cKIpKe4k0sYJyaegndTTu19MG9NKWupWVHKkiGVqh3olu1d+29Ak1as1UF/eiwUAAACwz5g9e7ZWrFihT3/603rssccqPv7ZZ5+tX//612ppaan42AAAAAAAAAAwEv79iW/pu6/8sGDO2k641+YUilbnYw6cm2uMUJ8Ub8n/xuh+0697zr+H4DUAAAAAAAAAAAAAAAAwgvJf5QMAAAAAwFjV3l5cyBalsyypo2OkVwFkd/XV0v77p2/z+aTmZikUKm/MUMg93+eTwmHJMNzthuHuM02prs4NYOdSg+B129SBZckNXwdsN3wdzbIsW1JHREqakukMnufdLWjKUEA+1flCshxbhmHIlDF0oDzBa0lqtcJ7zws7PjVbgTxHu0Lyaboa5Svwq0sj5bykHG1Xj7oT/XnPAQAAAABJam1t1aOPPqqf//zn2m+//Soy5n777adf/OIX+uMf/0jwGgAAAAAAAMC48cvn7tLNz9865M3Ss/EH/Huv5shylUlBPhnyB/zyBcysYwSjhYPXEyITtOqqVWqNtJaxAgAAAAAAAAAAAAAAAACVQvQaAAAAADD+xONSIjHSqxjf+BpjtGpokP7lX6RJk9K3G4ZUXy81NUnBYHFjBYPu8fX16aHrSMQNYEci6dvDYTd+nTl+luB1vEK/ldsVSQ9ee/KFr73gdSJlDYYjyRn4ZaEh2XKUlKWAEcgZvnZy3MxoDszvSGr3RdNueow4fjVbub/+xQavc9mh3rLOAwAAALBvuvTSS7Vx40bdfvvtOvLII8saY86cObr99tu1adMmfe5zn6vwCgEAAAAAAABg5Pxu5a/0xWVfkSW76HPKDV/7ZMgX8EmSTJlDwtehmJRoKhy8Xn3Vah3QdEAJMwMAAAAAAAAAAAAAAACoBn/hQwAAAAAAGGMyY8yOMxim9WQ+x1CGkR7rzfw6xuO1XxNQjKlTpdtuk266Sdq6NX2f3++GsR1HSibdh2UN7vf53GP8/tx/T0yYIJ19tvToo1JHR/o+L4adOn5GJP7dRmnBVdJlq6XvPFn+y7z+LOmO46Tm/uy/5PPC1+0RN3wtScHk0OC1k3K8k/KSE7IVtxMKmgHV+aQ+KyafYcp0lPNmxtRbCw1JccNWuy+uFisgU4Ycx1FIPjVZQXX5vL9D3BWE5Nf+anCPyxHUtuUM2Wek3CKZkKUoQX4AAAAAJaivr9c111yja665Rm+++aYeffRRrVq1SmvXrtWWLVvU3d2tvr4+1dXVqbGxUQcccIDmzJmjY489Vuecc44OPfTQmq31oIMOkpPljZXGmn/6p3/Ku7+lpaVic1122WW67LLLKjYeAAAAAAAAsK947C8P6rL/+bySsgofnMEf8CuZSMrR4Bun55MavPaYMqWAZCVshRNSrJHgNQAAAAAAAAAAAAAAADCWEL0GAAAAAIw/wWD682zh2nEQCKq6zK9R5tcx8+sMjCZTp0o//KF0113SE08M3W8YUiDgPkpx3HHS+98vhcPSZz8rPfWUtHZt7vH9/iHB62OulvZEpNtOcreVE76+/izpP453P99VL03qLRy+7ghJvqBkp/wopwavs+m3Y5KUFr42chxtKttNio4ShqM9vrjqLZ8M7+8RRwpbPvX73Hx2QKYaFFSP8gerHdmKZtxMGUl55YYk2yj9ZksAAAAAkKTDDjtMhx122EgvY9y75ZZbRnoJAAAAAAAAAPL4y1sv68IlFytRRvDaU2z4Olvw2mPK1PTIJCUmBNSX6FNnrDPrcQSvAQAAAAAAAAAAAAAAgNEn/9vcAwAAAAAwFgUCUig00qsY34LB0mPBQK01NEg33CDdcosbwR6OqVPdcT79aTd43dsrdXVJxxwjfehDUiQiWZb7iMXcR2+v1N4uxeOS0oPXnttOkm48rbSlpAavJckx3PB10nuecbwhqbnf/TxpusenHpeasM52g2G/HVPcTihgBBQ0/bJlDzkm1y8ZvbEtw1Gvz5KTMkPQMVVv+RWQqRaFZeZMbxfPJ59Mk195AgAAAAAAAAAAAAAAlOMvb72sDy/+sKJOfNhj+QP+vVeDZLsqJF/wWpJmhqZp08079KNzfqS6QJ2aQ81DjiF4DQAAAAAAAAAAAAAAAIxO/pFeAAAAAAAAVdHcLO3ZIyWThY9Fafx+qaVlpFcBFO/446WFC6UXXpCWLpXa2oo/d/586bzz3DH8fvfczk43aO058EBp//2ld9+V1q+Xtm93o9cpf/9kC157bjvJ/fidJwsv5/+dnh689njh6wm9Uk9EqktI4YHpHUmdEffmQcd7DDwZkofOuMPQkSNDhvrtmBJOUknH2juOJBmGZGQrZacMaAykrr3wdb3lkyFDkqEGf3DvUcNlSIqYwWGPAwAAAAAAAAAAAAAAsC/66+6N+sivP6I+J1axMf0Bv5KJpBwp7ZqTQsHrKYEJeuPrf5UkXXDkBZKk6/54nSSpM9YpieA1AAAAAAAAAAAAAAAAMJoRvQYAAAAAjE9+vzR5stTfL8XjkpNRZZ06dWTWNZZ0dKR/3UxTCgSkSMQt3QJjid8vnXyy+9i5U1q7VnrrLWnDBjdinUy6xzQ3S4ccIs2eLR11lDRpUvo4sVh68Nrj80kzZ0rTpkmPPiq1t7s/J7atdyPJnMFrT2b42jIkX8ZfWzeeJn3vxNxjOIa0u0GSIyVC7rZQ0r1hsC4hdYYk05Fs78fXcH/EC/00e+HrpGPtPdGQI1OmJEfGwDiOctSvDUOG4+4N2qYMmfJJCvgDFYtd++RTnS8o0xyS8QYAAAAAAAAAAAAAAEABne3tev8dC9Rj91d87MzwtVkgeD3J36w1X1yXti0zfO03/Vp11SqC1wAAAAAAAAAAAAAAAMAoRfQaAAAAADB+GYZUV+c+Mh17bO3XM9bs2JEevfbKtsBYN3mydMop7qNU0Wjufd3d0uOPu8f4/ZLfr3frkjrmc8m8wWuPF76++Vnpkk9Il6+WLhi4f+/G09z9djGNaEOyHakjJPmD0oQ+KZx0d3WGJMNxA9nSwMeB8LWTZ2wvfO2p84XlN/zqTfa5UxpuCtvOCF/75ZPP9MmQdFzjHB0YnDysMPX2nu36S+/6lHUZala47PEAAAAAAAAAAAAAAAD2dZ3t7Tr6jsPVYfVUbQ4vfG0GzIE3Ws+u0azT2mvWq7m1dcg+L3z901d+qnvOv0etkaHHAAAAAAAAAAAAAAAAABgdiF4DAAAAAAAAxbLt7NvjcWnZMqnPjUDLskoKXntuO0n6zVwpGpBWT3O3LZ9eQvDaY0iOpIQh7a6TJg6Er+Om1BtMP9QLXxdK2nvh6zpfSAEjIKfgGe46TMPUB1vnaVbd9BJeQHahWNgddED5+WwAAAAAAAAAAAAAAABI0vw75+i9RHvV5/EH8t/GVm+G9fI1q7MGrz0XHHmBPnb4x+QzfZVeHgAAAAAAAAAAAAAAAIAKInoNAAAAAAAAFCsYzL79xRel9nbJsiTb1rsNjo65QiUFryU3bL2pVaqPS01x6XMXSL2BgTB1mZKmG76uj0v9ATcZnZmrLnb8iBlUwAgUPbcho2LBawAAAAAAAAAAAAAAAFTWnO/O0rb4rpFehiJGUM98+hnNmHhwwWMJXgMAAAAAAAAAAAAAAACjH9FrAAAAAAAAoFh1dW74Oh4f3LZqlfT665LjpqTjpqMFVxUOXtuGG6A2nMHnnt6gFA1I1jBi16mSptQZlkxnYD5jaPhaBeYyJMWdpAJOQIZR3MIOD00neA0AAAAAAAAAAAAAADAKLfz+HG3sf3ekl6GwEdTDFz2ko2cvGOmlAAAAAAAAAAAAAAAAAKgQc6QXAAAAAAAAAIwZhiFNmCCFw274+s9/llau3Bu8lqSgbeiy1fmH8QLXjiTHSA9eeyoVvM42r+EUbFynMQb+23Js9dr9cpwhyewhmhXSfv7mMlYJAAAAAAAAAAAAAACAajrpP+br1e71I70MBeTT/Rcs1gcPO22klwIAAAAAAAAAAAAAAACggvwjvQAAAAAAAADsgxxH6utzw9G2nb5v5Uqprq6260kmpZ4e96PP584fCg09butWqbdX6u6WHnlEam9PC15LkhxH33nS/fS2k4YOkRm4LpyPrizbkMwSJjVS/lvS3vB1nRnOeU6zQgrzq0cAAAAAAAAAAAAAAIBR56yfnKSXO9aO9DLkk6m7zviJzjr64yO9FAAAAAAAAAAAAAAAAAAVRnkGAAAAAAAAtWVZ0p49UiKRfX93txSNlj5uV5e0ZYu0fbu0c6cb1baswYj15MnS1KnS9OlSU9PgedFoery6t1d67z03gt3ZmT6O3+/GsDdvdgPZyWT6GlIC2NnC15nB65EyZB051pUZvPZYjq0+OypHjoyM/QSvAQAAAAAAAAAAAAAARqdP3X2O/rTzpZFehnwy9YMPfUcXn3j5SC8FAAAAAAAAAAAAAAAAQBVQnwEyxGIxvfnmm3r33XfV3d2tvr4+1dXVqbGxUQcccIAOP/xwBYPBkV4mqsyyLL3zzjvavHmzdu/erb6+PjmOo8bGRjU1Nenggw/WzJkzZZrmSC8VAAAAAMaerq7cwetSWZa0fr30yivSO+/kP/bttwc/nzFDmj9fmjVL6uhw49XvvCO9+aYbzfaYpmSkRJ0ty41kO05a4DqX1PD1aAleD5FnXU6e3UEjoLgTT9sWko/gNQAAAAAAAAAAAAAAwCh0xS8v1ENblo30MmTK0DeO+7+68iPXj/RSAAAAAAAAAAAAAAAAAFQJBRpA0vLly/WHP/xBf/zjH7V27VpZlpXzWJ/Pp7lz5+rcc8/Vxz/+cR1//PE1XCmqac2aNfrd736nZ555RitXrlRfX1/e48PhsI477jidffbZOv/88zVnzpwarRQAAAAAxjDHkfr7KzPWW29JTz7pRrRL9de/uo+GBunAA6XNm6WenqHHOU569DoeLyp2nermZ6XfzJU2tZa+zJGWK3gdMUMKmH7F7fTodUyWokoSvgYAAAAAAAAAAAAAABhFrr//87p34+9HehkyJH356Cv19XO/OdJLAQAAAAAAAAAAAAAAAFBF1GewT7vvvvv0b//2b1q1alXR51iWpTVr1mjNmjX69re/rQULFuj//t//qwsvvLCKKx2d+vr69Morr2jlypV7H2+88YZs2855zj/90z/plltuqd0iC7AsS4sXL9b3vvc9tbW1lXRuNBrVn//8Z/35z3/WzTffrI985CP62te+pnPPPbdKqwUAAACAcSCRKHyMaaaHpjNFo27seu3a4a3FcaSdO6Xt2yWfTwoE8s+bTEp53igrm66QdOEiKRqQ6uNSb3B4S664PC9XkhxJxsB/eyJmSEEzIEfZ49+dikkS4WsAAAAAAAAAAAAAAIBR4JYHv6a71v1ipJchSbrs0Iv07U/8eKSXAQAAAAAAAAAAAAAAAKDKKM9gn7Ru3TpdddVV+t///d9hj/Xyyy/roosu0p133qk777xThx9+eAVWOPrEYjG1tbWlBa5fe+01WSXGvkaTZ555Rtddd51effXVioz39NNP6+mnn9Y555yjH//4xzr44IMrMi4AAAAAjCuBQOFjbNsNUmfT2Sk98IDU0ZF9v+O4YWrbdh8e03QfPp8btrZtqb9/cB7vnFDI3e84g+vwHpaVe11ZeMHrtqnu86a4G5HuGw3h6wKx61Sp4WsveF2IF74GAAAAAAAAAAAAAADAyPn3J76l777ywxxvbV5bi2Z+VHdc/MuRXgYAAAAAAAAAAAAAAACAGiB6jX3O73//e1166aXq6emp6LjPPPOMFi5cqHvuuUcXXHBBRceutUQiob/85S9pgetXX31ViURipJdWEclkUv/wD/+g7373u3JKiJUV649//KOOPfZY3XPPPfrYxz5W8fEBAAAAYEwzDKm+XurtLf3cjg7p17+Wsv2b3rKkREJKJguP4/O5x2dyHCkadePYqcFsb18JLEO65BODwWtJsiVZPnkV6ZFTxtyOpJDpLyp47elUTO8lOzW79OkAAAAAAAAAAAAAAAAwTP/59L/r5udvlT0Kktfn7H+KfnXZH0Z6GQAAAAAAAAAAAAAAAABqxBzpBQC1dPvtt2vRokUVD157enp69MlPflI/+clPqjJ+rfzP//yPFixYoKuuukr/9V//pdWrV4+b4HVfX58+/vGP6zvf+U5Vgteezs5OnX/++frhD39YtTkAAAAAYMxqbJTC4dLOiUal3/xmaPDaC1X39xcXvHYc9zjHSQ9Ze88dxw1iD/PfjD5Huny1ZA4MY0vqiEgJc4R/ITeM2HbcTirhlPb7gTdiW7Spb0v5kwIAAAAAAAAAAAAAAKBkv1v5K/3d/35dluzCB1fZSZMWaMkXnhjpZQAAAAAAAAAAAAAAAACoIf9ILwColV/84he67rrrqho6liTHcXTttdeqoaFBn/vc56o6F0oTi8X00Y9+VM8880xN5nMcR1/5ylcUDAZ19dVX12ROAAAAABgTTFOaMEGKxdyHnXFz3aRJUkND+rbFi6WuLvdcj227sevM80tRzO8JyvxdwgXr3I9fOlfqqHOD1yN2G+EwYtfu6e4AfVZMdT4pYASKOs+Ro2fb2yRJs+qmD28RAAAAAAAAAAAAAAAAKOjBFffq0kc+r6SskV6KFrTM1ZNfWj7SywAAAAAAAAAAAAAAAABQY0SvsU946aWX9IUvfKGo4PWJJ56oiy++WCeeeKIOOuggNTY2qru7Wxs3btTzzz+ve++9Vy+++GLeMRzH0Re+8AUdeeSROu644yr1MjBMl112WdHB60MOOUQf//jHdfbZZ2vGjBmaOnWqgsGgtm/frm3btumZZ57RQw89pJdeeqng99W1116rww47TKeeemoFXgUAAAAAjCOhkPvIdPTRUlPT4PPly6W2NimQElq2LKmnxw1SG1mKzn6/5PO5+xzHPT6RKH2NPp8b2k4kyopfn7ZJmtoj7WgYCF4PMz5dkgrNZWQM5IWv/UZxv1okfA0AAAAAAAAAAAAAAFAbT65Zqosf+VvFlZRPpmp7sUq6I+pn6bmvvDJi8wMAAAAAAAAAAAAAAAAYOUSvMe51dXXpoosuUqJA2OrQQw/VHXfcodNOO23IvtbWVi1YsEALFizQddddp8cff1zXXHONNmzYkHO8eDyuCy+8UK+88oqaUkNdGBE/+clPdN999xU8bvr06frud7+riy++OOv+WbNmadasWTrxxBN100036cUXX9S1116rlStX5hzTsix9+tOf1iuvvKJp06aV/RoAAAAAYJ+UTEp33JG+zXGk7u6hEWrDkMJhN6RtmkPP6eiQbLu0eHVdnbuGZHIwoF3k+V0h6cJF0vZGqTEmdYaLn7ZkVbo/MTN47emzYoqYWXdlRfgaAAAAAAAAAAAAAACgul5e+6w+vuQTiispSbJkj1j4emZoml752ps1nxcAAAAAAAAAAAAAAADA6FBCmgYYm/7xH/9RmzZtynvM6aefrhUrVmQNXmdz5plnauXKlfrIRz6S97hNmzbplltuKXapY1pdXZ1OOOEEHXLIISO9lCE2b96sr33tawWPO/PMM7Vu3bqcwetsPvCBD+ill17S17/+9bzHvffee/rKV75S9LgAAAAAgAEvvCDt2JG+ra/PjVen8vulpiYpEhkavJakRMKNVRuG+yiG40i9vVJ/vztfCcFsy5Au+YTUNlVKqsrB6ypyNPh6/YYvbV/cSUgqPiDuyNG6ns2yS4mOAwAAAAAAAAAAAAAAoKCNO9bpI789XbGB4LXHkp12/UctTAlO1Btf/2tN5wQAAAAAAAAAAAAAAAAwuhC9xrj22muv6fbbb897zAknnKAHH3xQzc3NJY3d0tKihx9+WO9///vzHvejH/1Ir7/+ekljj3bhcFgf+MAH9KUvfUk//elPtWbNGnV1den555/XBz/4wZFe3hBf//rX1d/fn/eYv/mbv9FDDz2khoaGksc3DEP/+q//qltvvTXvcb/5zW+0bNmykscHAAAAgH3a0qXpz5NJKRZL3+b3S42Nki89ypwmGh38vJTwtWUVHbpO5XOky1dLtiPtLP2fmqUp8qWUy5GjiBlSvS+iiBmSJPkMU/W+cEmTTww067RJ75dZ7NceAAAAAAAAAAAAAAAABbXv2qUFdx6rfsWz7rdrGL6e5G/WmqvH1z00AAAAAAAAAAAAAAAAAErnH+kFANX0z//8z0omkzn3T5gwQffff7/q6urKGr++vl4PPPCA5s+fr46OjqzHJJNJ3Xrrrfr1r39d1hwjLRQK6eijj9bChQu1cOFCLViwQEcddZT8/rHx18frr7+u+++/P+8xBx98sH79618rFAoNa65vfOMbWrVqlf7whz/kPOamm27S6aefPqx5AAAAAGCfsXOn1NaWvi01Xu2pr88fsbYsN5adqoyQdamO2yK1R6o+TdWlfmWDZkCTgy3qTPaWdDPkxECzzpj0AQXNQOUXCAAAAAAAAAAAAAAAsI/as3OnZv9kprrVLyPPm5fbsmXKzHvMcLX4GrT2mvVqbm2t2hwAAAAAAAAAAAAAAAAAxgZzpBcAVMvGjRv1u9/9Lu8x3/zmN3XggQcOa56ZM2fqn//5n/Me85vf/EabN28e1jy1dNhhh+muu+7SypUr1d3drRUrVuiOO+7QFVdcofnz54+Z4LUk3X777Xn3G4ahn/3sZ6qvr6/IfHfddZcmTZqUc/+KFSu0bNmyiswFAAAAAOPe2rXpzx1HisfTt0Uiks+Xf5wRCF6/2ygdep0UHzv/hM7KGPjvfjumuJ3QjMgU3Xzo5br0gI/KLPImSILXAAAAAAAAAAAAAAAA5bFsK+/+I35yiLrUL0kF38DcHvhPNTSYEb30xZcJXgMAAAAAAAAAAAAAAACQRPQa49jtt98uy8p9cd+hhx6qK6+8siJzXXPNNTr44INz7rcsq2B8eTSZM2eOrrzySi1YsECBwNgNUlmWpfvuuy/vMeecc44+9KEPVWzO/fbbT9dff33eY77//e9XbD4AAAAAGNfWr09/nhmvlqRQqPA4eX4/UA1e8Dpai39SF9edrsgECSehk1rnKeILa2HLHF087ayCZzeaEYLXAAAAAAAAAAAAAAAAZeiKden8+8/XkteXZN2////Xqj3qTtuWLXztJBzZCUey3f2VDl/XGSE9/emnNWNi7vtqAAAAAAAAAAAAAAAAAOxbiF5jXLIsS7/+9a/zHvPVr35VPp+vIvP5/X59+ctfznvM4sWLZduVvTAQ+T377LPavXt33mO++MUvVnzez3/+8woGgzn3P/7449q+fXvF5wUAAACAcWfjxvTnmdFrv18yi/j1VuZ5ztCb+yrl3UZp/tU1Cl6XyZBklFjL9hmm6nwR3bftCa3seE2StKDpCE1Rfc5zAjJ1dHgmwWsAAAAAAAAAAAAAAIASdcW6dOFvL9TLW1/WdX+8bkj4+uBvTdV7dkfWc1PD107CkS3JkWRblQ9fh42gHrroQR09e0FFxgMAAAAAAAAAAAAAAAAwPhC9xrj01FNPadu2bTn3h8NhfeYzn6nonJdeemne0PHWrVv1zDPPVHRO5PenP/0p7/799ttP5557bsXnnTJlis4555yc+y3L0uLFiys+LwAAAACMO52d6c8tK/15sW9mlRq5rmLwOm5KC66S2iOSUb1pBpXWrd6r1KX5DFP1vogMGXIcR/dseWRv+LpJoazh64BMtSgsv1GZNxwDAAAAAAAAAAAAAADYV3jB67btbZIk27HTwtdzvj1Tf03uyDuGI2dv8HpwW2XD1wH5dP8Fi/XBw04b1jgAAAAAAAAAAAAAAAAAxh+i1xiXHn744bz7P/rRj6qxsbGic7a0tOQNHUuF14XKWrFiRd79J5xwgkyzOn8NnnTSSXn3P/jgg1WZFwAAAGPEzp3SM89I//Vf0t//vXTNNdKVV7of//7v3e3PPOMeB+zLksn8+40iq881il4Hbemy1e7nhqocvi4zeD3IKWqI1OD13jMHwtcvd62TNDR87QWvzeEvEgAAAAAAAAAAAAAAYJ/SFevSp37zqb3Ba48Xvp79zal6I/bXgm967iQkK9t2VSZ87ZdPP//o3Trr6I+XdT4AAAAAAAAAAAAAAACA8c0/0gsAqmHZsmV593/0ox+tyrwf/ehH88aMn3jiiarMi+zWrVuXd//xxx9ftbk/8IEP5N3/wgsvqLu7u+LxdQAAAIxiyaT0/PPS0qXSmjX5j129evDzefOk886TTjhB8vPPeOxjCn3PFxuw9uLYRR5vGZLPGfp5Mb7zpPvxtoH3QjIcyRmF7ediXpIhDQle7z3fcfRse5scOTJkqEkhSdJu9amZ4DUAAAAAAAAAAAAAAEDJumJd+uQDn9Sf3/6z6gJ1CvvDafs7t2zRlsjAm7EH3Os/sl2h4SS0N2Wd7RgvfG3KkGO64Wv3Wo/irvfwydT3P/RtfXLhZ0p5eQAAAAAAAAAAAAAAAAD2IeZILwCotG3btun111/Pe8zpp59elbnPOOOMvPvXrl2r7du3V2VupHMcR++8807eY+bMmVO1+efOnZt3fyKR0DPPPFO1+QEAADDKLF8uXXGF9C//Ujh4namtTfrWt9zzly+vzvqA0aq5Of25z5f+3LKKG8cw3OB1EdHrrpB0/kXSkiPSP98bzi7Cd56UPrYuJXZdQjS7KBXoSWcLWWc9JsfaZ0Sm6MoDzk8bp0khTSB4DQAAAAAAAAAAAAAAULLU4HXCTqgz1qloMrp3f8+WbeqJuJ87csPW3uepUoPXe7dlmc8LX8uWHDmy3VELrtOUoW+d+I+68iPXF/W6AAAAAAAAAAAAAAAAAOybiF5j3HnppZfy7j/wwAN14IEHVmXugw46SNOmTct7zIoVK6oyN9J1d3crFovlPaa1tbVq87e0tMgoEERbTrAQAABg/OvpkW67TbrlFmnHjuGNtWOHO85tt7njAvuCgw9Of+73pz9PJiU78za9LDLPy6ErJF24SHp5f+nac6VTLnU/v+5cackRxZerlxwhrThAqo8PhK8r2YCuSPB68GOu4QxJAZlZ/207IzJF1x70KUV8oSznEbwGAAAAAAAAAAAAAAAoRWbw2uOFr/ve2abuuvRzsoWvswWvU4/Ptq2U8LUh6f/N/7KuP+Pmol4XAAAAAAAAAAAAAAAAgH0X0WuMO6tWrcq7/9hjj63q/AsXLsy7f/Xq1VWdH66+vr6Cx7S0tFRtfp/Pp4aGhrzHFPpeBQAAwBi3fbv05S9Ly5Zl3+84UiIh9fe7EWvv0d/vbndy3Dy0bJk77vbt1Vs7MFocemj682zx6gJveCRJ8vly/0wN8ILXbVPdW/d217mfR/2SbUjXnePGrAtZcoQbybYNKVhEj7toFYxne18JQ4YC8smf8StCQ5JfZtaA9WDwOlyZxQAAAAAAAAAAAAAAAOzDcgWvPbF32tWZ49aE1PC1nSd4nXp8tm2p4WtLdo4jpauOuFS3fPy2ArMAAAAAAAAAAAAAAAAAANFrjEOvvPJK3v3ve9/7qjp/ofGJXtdGIjH0Ys9MkUikqmsoND7RawAAgHFs+3bphhukrVuH7ksm3bh1e7vU3e1GruPxwUd/v7u9vd09LpkcOsbWrdLXvkb4GuPf3Lnpzw1DCgbTt/X3S5aVfxwz/6/AMoPX7REpMXBKZyglfH1u/vB1avA66pc6QvmXVbQKxa7ThzQUkhsRN2XsDV8TvAYAAAAAAAAAAAAAAKgNy7a06IFFOYPX4Z22+lryj+HIDV7nfzv49OOzjmEN7skWvr7k4E/o3y+8u8hZAAAAAAAAAAAAAAAAAOzriF5j3HnzzTfz7j/00EOrOv/s2bPz7l+/fn1V54crFCpcFuvs7KzqGgqN/95771V9DQAAABgBPT3STTdJu3enb3ccqbdX6upy49bFiMfd43t73fNT7drlztPTU5l1A6PR5MnSvHnp28JZgsvZfkZS2XbOXfmC155iwteZwevOkORUIlZdheC1JDlyZKXcnGjKUIOCChC8BgAAAAAAAAAAAAAAqIk3d7+ppzc9rbg19HqyULutvubqzJvtKpvMq0VSw9fn7H+K/vuz91dnMQAAAAAAAAAAAAAAAADGJaLXGFccx9HmzZvzHlMoSj1chcYvtD5URn19fcFjOjo6qjZ/NBpVLBYreNyGDRuqtgYAAACMkDvvlLZuTd9mWVJnp1TE/0bMKhZzz7es9O1bt0p33VXemMBYcd556c/9finzjY6SSam7e+jPiMeyJGNoyLmY4LUnX/g6W/Baksw8He7RIKGk7IGbExsU1AJN0+GaOOQmxuEGr+18QfIRGAfAyLGd3G9CMBLjAAAAAAAAAAAAAMBIeX3n65p35zwlnaQcOXJSrotwum31F74lYlhSr8IwJRmBodfWWLL1oUnv15IvPFHdxQAAAAAAAAAAAAAAAAAYd4heY1zZsWOHotFo3mP233//qq6h0Pi9vb167733qroGuNHrhoaGvMfs3LmzavMX+2e8cePGqq0BAAAAI2D5cmnZsvRtliV1dUl2jjijF/ANh92Pfn/242zbHScz6vvEE+68wHh1wgnSlCnp2+rqJDPj11rJpBuH7+8f+vOWTEoZweRSgteebOHrXMFrz7DC10PvJRwWU4YC8qUNa8lWvQI6SpPll6nJqtdhmrD3mOEGr5OOpcd2Pq9NfVuGtfZNfVv02M7nlXCSwxoHwMjpt6L6wabFWtnx2rDGWdnxmn6wabH6rfy/BwYAAAAAAAAAAACA0coLXifsxN5tXvja7rPlhPKcXEGOcgevJWluZJYe/9JztVkMAAAAAAAAAAAAAAAAgHElR0kLGJu2bt1a8JipU6dWdQ3FjL9161btt99+VV0HpAMOOEDr1q3LuX/lypW66KKLqjL3ypUrizqumO9ZAAAAjBHJpHTHHenbHEfq7h4S25VhDEauM8O9khvsjcXceG+28Zqb3TE8d94pLVyYO5gNjFa27f7sZMbct2+XensHn194ofTv/55+TH199p+vvj73Z8f72XKcIeOXE7z2eFHrcFL6/Mfcz0NW9uC1JDnlhqsrHLw2ZMgnU4Ykn0xZcsPgDXZAM6wG9SgqQ4YcOQrI0HSjQXv8MR3vn6U1W1/JOqZtW+pLxNK2xQ1LPr8hQ6ZsOfpL9G31K6Fd7W2SpFl100te+6a+LXq2vU2OHPUl+2XKGXglAMaKfiuqH29+QH/t36G3+x+RJC1smVPyOCs7XtM9Wx6R4zj68eYHhhXlBwAAAAAAAAAAAICR8HbH20OC1x4n5sjwudez1IIhSYHs+2YFpumV/7ehRisBAAAAAAAAAAAAAAAAMN5Qw8K4snv37rz7m5qaFAplKVBVUF1dnRoaGtTT05PzmELrRGXMmTMnb/R6+fLlVZv7xRdfLOo4vhcAAADGkRdekHbsSN/W1+dGfVP5/W6s1+fLPZZpSpGIFAy64d9kcnCfbbvj1tcPbtu+XVq+XPrgB4f/OoBa6e2VurqGRqsl6fXXpUDGHXWHHSatXZu+LRyWotHBMVI/Zv7sDbAM6ZJPuMFrqbTgtacz5EauYwM/xiFr8PNUjlHGTYhVajmbkmwNfk2C8smwHdVZPr2ngcC4kzK/IzUkTP25fXXOMR1JnYqmbYs7lpyEoaBM9QcsyTblN/1y5OjZMsLXqcFrSeqy+iTZalGY8DUwRqQGryXJcRzds6X08HVq8FqS/tq/g/A1AAAAAAAAAAAAgDHl7Y63tfC/FippJ4fujEsyhvEG62UYvEzEGXjubjnAP0lv3rSldgsBAAAAAAAAAAAAAAAAMO6UmPQBRrc9e/bk3d/U1FSTdRSap9A6URkLFizIu3/lypVqb2+vytxPPPFEUccRvQYAABhHli5Nf55MSrFY+ja/X2pszB+8TuXzucf7M96zKhZLD2Fnmx8Yzfr6pM7O7MHrXE49VWppGXzunRsKuT8rRY7lc6TLV0vmwOF1ieKXkCo1cp0teC2VGLw2VLXgdaagfJqpZk2x6vKGo40yF+TIUbcvoYRjD9n+bHubNvUVd1NkZvDak5CtDkVll54UB1BjmcFrjxe+XtnxWlHjZAavPV74ut+K5jgTAAAAAAAAAAAAAEaH13e+rkN/dKh29+2WYRjp12V4l4LVMHhtSjIy3pPekaNJRpM23fxe7RYCAAAAAAAAAAAAAAAAYFzyFz4EGDsKBYwbGxtrso5C8xC9ro0Pf/jDeffHYjH9/Oc/11e/+tWKzvviiy9q9erVRR072r4Xbr/9dv3kJz+p+jwbNmyo+hwAAAA1tXOn1NaWvi2aJb5YXy8ZJd6ZZBjueZ2dQ8dvaBh8/sor7jomTy5tfGAkdHWVfk44LH3qU9LixVJPT2nB7AwXrHM/XneuFB64abAzVPZwOZmOZBf6ka/yzYqGlBa2DsqnqWqQT2bZUet8HDmK+5zB1+0M3f9su/v35ay66TnHyRW89njh61aFK7FsAFWQK3jt8cLXkrSwZU7OcXIFrz1e+Pragz6liI+/EwAAAAAAAAAAAACMPq/ueFXH/uexStgD787uSIZhSI7kWI5ka8SD15LUpIheu+at2i0EAAAAAAAAAAAAAAAAwLhF9BrjSjRbVC5FfX19TdbRkBqey6LQOlEZxx9/vCZOnKjdu3fnPOaOO+7Ql7/8Zfl8vorN++Mf/7joY0fb98LOnTv12muvjfQyAAAAxp61a9OfO44Uj6dvi0Skcv93p8/nnt/fP7gtHnfnSY1or10rnXJKeXPkE4+7D8tKDw2//rpU4M2HUGP9/VIs5n4eDruPWrJtqa/P/X4JBNzvW3/Gr586OoZG3E3TPT4YdJ/nisM3N0sXXyw98IC0e7c7n/ezUKJahK+dbC+jijcoGpIMGbIHQtFu8NqUV54OyNREReTIkSVbtpycUWlJsgeOy8WR0s535CiWGrzO2J+6LV/4ulDw2pOQrXZF1aSQfDLzHgugtgoFrz2FwteFgtcewtcAAAAAAAAAAAAARqvl7yzXiT89ccg1FnIkx3akpFTLyx4MZQ9e1ymkt655W62TJtVuMQAAAAAAAAAAAAAAAADGLaLXGFfimVG5DP7M0FaVFJqn0DpRGT6fTxdddJFuv/32nMesX79e3/nOd3TTTTdVZM5nnnlG9957b9HH870AAABQhJ073Zjz+vXSxo1uLDeZdEO6zc3SwQdLhx4qzZ0rTZ48Mmtcvz79eTI59JjQMGu6oVB69NqbJ5ByB9Jbb1U+et3VJfX05N6X7bWi9hzHDZBnvrFOOCy1tLhR6WqLx901WFb69pYWqa4u/bhcbwAUCkmNjfkj1s3N0mc/K/3ud9Kbb5YVvPbkCl/bxsANfuUPnRZ+rpXMCLW7zY1W+2SqTgFFlZQpQzFZSiqphFL+vDLW7JMjW/n/3RofmM+Ro7jPLvp15wpfFxu89iRka4u6NV2NhK+BUaLY4LUnV/i62OC1h/A1AAAAAAAAAAAAgNFmzfY1OuGnJ2Td58iREhqR4LWj9MtEwgpo1VWrNGGkrr8DAAAAAAAAAAAAAAAAMO4Qvca4QvQama6++uq80WtJ+ud//mede+65mj9//rDm6uzs1N/+7d8WHeKR+F4AAADIybKk//1faelSac2a/MeuXj34+bx50nnnSTNmVHd9mTZuTH+eGYL2+4cfHTZNd5zUsTOj1xs2DG+OTP39uYPXGF26u7OHpKNR98+wqam689t29uC1JHV0uN+n3veqYQz9XvbEYpLPV9x8O3a4Yw0jei2lh69DSckMusFqR5KM8sLXIxG8TmXKUJ386lNCkhu8blRQ5sDtisbAR5/pU8LO8mc2oNiIdKnB69TzUsPXpQavPTFZhK+BUaLU4LUnM3xdavDaQ/gaAAAAAAAAAAAAwGjx+s7XtfC/FuY+ICqpiMtkqsULXwfl19OLlmn21DmFTgEAAAAAAAAAAAAAAACAohG9xrhi23be/b5iwlkVUGgeK1sEDFVx1FFH6YILLtCSJUtyHhOPx3XWWWfp8ccf17x588qaZ8+ePTr77LO1efPmks7jewEAACCLt96S/vQnqbe39HPb2txHa6t0wgnS7NmVX182nZ3pzzP/d16l/i3i86WHgjPnyVzHcBG8Hjvy/bzUInodjWYPXnv6+qTm5sHnDQ1uDDub/v78c731lvS737ljVsgF66S+gHTFx9xgtSH3xr5ywtd5w881imHbcmRLqldQUSWHBK/3fu4z5Ld9Smron50pQ75A4b+78gWvjZT/znf+s+1t2tS/VVuiO0sOXntisrRV3TpAVf5eB5CT7dj6ydu/LTl47fHC1y93rtPano0lB689f+3foZ+8/Vt9ddbFMg1C+AAAAAAAAAAAAABqr21bm467+zgl7ET2A/o1Ind0OZKUkIyB9673y6c/fPy3Om7uh2q/GAAAAAAAAAAAAAAAAADjGsUHjCt+f/6r/pKpcbgqKjRPIBCoyTrg+td//VeFQqG8x7z33nv6yEc+oj/84Q8lj9/W1qYPf/jDWrFiRcnnFloXAADAPiUalR55RFqyRGpvH95Yu3a54zzyiDtutRX6t4ZRodJtoXEq/W+eYl4Xj5F/WJZUKAxqWdVfQ6HvpdTjAwFpwgQpFBr6fe04UrY3tfL+jvjNbwaD12UGUTN1haRfvU+qG/iWNxztTTU7kpwif4SLPa6QSgwTVVINCqlV4YHItRu79mf8OjAQ8CsgX1oU2yefgkX+7sKQIb9tZmwbeA3Fft3k6N3oe2UHrz3NCsuoVVkcwBCmYerDE46VMYz/3eM4jl7t3lB28FqSDMPQhyccS/AaAAAAAAAAAAAAwIh4csOTmv+f83MGr80+jUjw2uNIchLuG6L/4sy7dOb8j4/cYgAAAAAAAAAAAAAAAACMWyN4mRRQecFgMO/+WkWvE4nsFyd6Cq0TlXX44Yfr1ltv1Y033pj3uPb2dl1wwQU644wz9A//8A866aST5PP5ch7/2muv6cc//rH+8z//U1aOwJvf78/7fRcOh4t7ETUyefJkzZkzp+rzbNiwQbFYrOrzAACAMaSjQ7r/fvdjNo7jRnOTyfS4rs8n+f3uI1tgce1aacsW6VOfkpqbq7FyV4E34KlUmLfgOIXWUSq/X4rH86+nUq8N5csWiM5kWe7Py0itwbYHv1e8Y30+qanJ/Tz1+8gwpFNOSf+Z3bFDuukmaetWKZFwj6lg8PrCRVLbVCk88M+3jpAbvpYxcKOf3M+NPFM6A8fmVKAB6+0+qu5gHdc4Ryu6X9OrfRtLzkAbkoJGUOdP/pAa/HWSJNu2i4rQOpYlo4TvE8uytOS9JxSQ5JOhqArEz6toiurVJN5YChhpC1vc3yvds+WRYYWry2UYhj43/dy96wAAAAAAAAAAAACAWlr6xlL9zX1/k3O/r0eyRsHlDY6kKw/9nC484YqRXgoAAAAAAAAAAAAAAACAcYroNcaVQCCQd388X6ytgohejz5f+9rX9Nxzz+mhhx4qeOwTTzyhJ554QhMnTtQZZ5yhGTNmaMqUKQoGg9qxY4e2bdumP/3pT3rrrbfyjnPeeedp9+7deuGFF3IeM9qi11/60pf0pS99qerzzJ07V6+99lrV5wEAAGNER4f0619LPT1D9yWTUjSaP7zsCQalcHho+LmjQ1q8WLr44uqFrzPHzYzG5niTlJJljpM5T6VfXyRS3NceGK7UIHNdnfu9bZru8+3bpa99Tdq92w1eFxP5LlJq8NpjJiUn7N7cZzpuzFrKH74uGLwuwHv18xoP0/GtR0uSTgodI1+7X23db+Y9N3VeQ1LIDGrR1NP2Bq9Lkv/XKkMknLhMuX9OIZkyZKhftXnDsVQEr4HRZaTC1wSvAQAAAAAAAAAAAIykJzc8mTd4HeiSEpEaLiiPCT7pwe3LdPrrS3TBkReM9HIAAAAAAAAAAAAAAAAAjENErzGuNDQ05N3fky2iVwXd3d159xdaJyrPNE0tXrxYZ5xxRt4Idardu3frvvvuK2u+ww8/XL/4xS901lln5T1uwoQJZY0PAAAwbkSj0m9+MzR47ThSb68UixU/VjzuPkIh95Gqp0d64AHps591w9iVdvDB0urVg88zw9vJpBvq9SK+5bBtd5xUmfMcckj542fT0OD+GUSjlR0XyMXvl5qaBp/39Eg33eQGr6XB70XHcR/DkC14HZe0O+Wf7LaRfk628HVRwWuj8ObU4LXHe54vfJ06xrCC1xUQlBvir2X4ulkhgtfAKFTr8DXBawAAAAAAAAAAAAAj6elNT+v0X52ec3+gU0qMzOUcQ0yypEDrNNmOrev+eJ0kEb4GAAAAAAAAAAAAAAAAUHFErzGuFAoId3V11WQdheYhdDwy6uvr9fjjj+uCCy7QsmXLqjbP7Nmz9dRTT2nChAmKFogDTps2rWrrAAAAGBOeekrq6EjfZttSf3/5Y8Zibvw6HE6PTHd0uPOde275Y+dy6KHpzzNj1N66IpHy58gWAM+cZ/bs8sfPZcIE988jFhsa3Q6HpdbWys+J0vT2Sp2d+Y9paJDq66u3hmhUSiQGn5um+7PsCQYHv1d6e6XMfzebphurr6uTjJSM8w9+IG3aJFmWO37qHMNQTPA6l9Tw9XCC195YhrIHrz3FhK+lkQ9ee4IyJflrEr5uVkgRfr0JjFq1Cl8TvAYAAAAAAAAAAAAwkpa/s1yn3nNqzv2hPVKssYYLymNCVAqk3MNA+BoAAAAAAAAAAAAAAABAtVCFwbgyceLEvPs7MmN6VdJZIDZWaJ2onoaGBj366KP6x3/8R33729+WnRphq4DTTz9d9913394/4z179uQ9furUqXn3AwAAjGtvvSWtXZu+zQteO056+Nbj90s+n7vPcdwQbmaIOXWcSCQ9fL12rXTYYZWPQ8+dm/7cMNzIbzw+uK2/393m85U+vmUNDYEHg0O/RkcdVfrYxYhE3If3dfccfbR04IHVmRPF6+qSnn02/zHHHSc1N1dvDX/5i/TOO4PPM79XmpulE05wP+/slJ57LvdYliU9/7z0299Ka9YMbq9QMNUypEs+UV7weu9S5AavK+F9DYfmDF57CoWvR0vw2hOU+/dcNcPXzQopzK82gVGv2uFrgtcAAAAAAAAAAAAARtKrO17ViT89Mef+0E4p1lK79eRT3yU501uHbCd8DQAAAAAAAAAAAAAAAKAazMKHAGPHpEmT8u6PxWJVD1/v2bNH8dSwXRZEr0eWz+fTt771Lb300ks6wYuuDVNTU5N+8IMf6NFHH0378929e3fe82bOnFmR+QEAAMacZFJ68sn0bY4zGLxOZRhucLmlRWpqkurrpbo692NTk7s9Ehk6R67xnnrKjepW0uTJ0rx56dvC4aHH9faWHu51HPe8TJnjz58vFfg3ETDqvfWWdPfd0ve/L736avq+CsVSfY50+WrJHBiu1OB1SQqEsQ8KT9MJE96397md5zUe33q05jUeNmT7aAtee4LyKSJ/oS9ByQwZBK+BMWZhyxx9bvq5MrK9ockwELwGAAAAAAAAAAAAMJJe3/m6jv3PY+Uo+/UewdEUvO6R+ieZ6ox1KpqMDtlvO7Z++spPZdkVvq4OAAAAAAAAAAAAAAAAwD6L6DXGlRkzZhQ8ZseOHVVdQzHjF7NOVN+CBQv0/PPP6+mnn9aiRYsUyRZKLGDy5Mn6xje+ofXr1+v666+Xz+fbu2/Pnj2KxWJ5z587d27JcwIAAIwLr74qdXWlb4vFhkZt/X43bB2JSGaOf8Kapru/udk9PpXjuOOm6ux0w7qVdt556c/9fikUSt+WTErd3cVHty3LPT6ZTN8eCg19rZnzA2NJNCo98oi0ZIn7d0MiIdl2wdOsAv3UXPsvWCf96BEp6Yxc8NonU4c3DL4R0qa+LXps5/OK24mc52SGr0dr8NoTlE8HB6fIqFD62pChoyIHEbwGxqBKh68JXgMAAAAAAAAAAAAYSa/vfF3z7pynRI7rPPztUryltmvKpa5P6p8weO1dtvD1vKnzdO8n7pXP9GWeDgAAAAAAAAAAAAAAAABloRCDcaWhoUETJ07U7t27cx7z9ttv6/DDD6/aGjZv3px3/3777af6+vqqzY/SnXLKKTrllFPU29urp59+Wi+88ILWrFmjTZs2afv27ert7VUikVB9fb1aW1t1xBFHaP78+TrrrLN08skny58ZGxzwVoGQ4oQJEzRt2rRqvCQAAIDR77nn0p9b1tCws98vNTZKxcYRfT73+O5uN5jrSSbd8VPeoESvvFLWsvM64QRpyhQp9Y1w6uqGxnuTSTe8HYm48epsMW/bdmPd/f1D95mmO26qqVOl44+vzOsAaq2zU3rgAamjY3Bbaqw+M4Y/oCskXfIJ6fLVbsS61P1H7KxS8LrIv7IChl/Ptrftff5se5scOXpi14s6Y9IHFDQDWc87vvVoSdIbvW/rk1NPHbXBa89EX5PsgE/vRt8b9ljTw5M1LTBBW/q2VmBlAGptYcscvdy5Tq92bxj2WHMbDiZ4DQAAAAAAAAAAAGBE7Ordpfl3zs8ZvA7ukuLNNV5UDuGYFG0Zen1aZ6zT3e8Pa97Uebp/0f1qCjXVenkAAAAAAAAAAAAAAAAAxjGi1xh3Zs2alTd6vX79ep155plVm79Q6HjWrFlVmxvDU19fr/POO0/nnXdeRcYr9L0wb968iswDAAAw5uzcKWX+b6VExg1AhiHV1xcfvM48r7MzPZSbSKRHr//6V3cdkyeXNn4+fr/0xS9Kt9ySvp7GRqmra2i4t7/fffj97toMwz0mWwA8c7zMr8sXv+iOA4wmXV3Sli3S9u1u0Preewe/t+Nx9+evsVFavjw98G7bg38n5AleX7hIapsqrR54L6HUsHWh/a9PlI6+RrJL/CumoBLGizpxhe2gntmzSpLkM9wbDHcnOosKXy9snit/tmj+KLPb6tKW+J6KjLUlulNNTrgiYwGovZUdr2ltz8aKjLW2Z6NWdrxG+BoAAAAAAAAAAABATVm2pcsevEwBX0BxOz70gJ7RE7wOxaV4Y+5rSzpjnTqo5SCC1wAAAAAAAAAAAAAAAACqgiIWxp25c+dq5cqVOfe/8cYbVZ2/0Phz586t6vwYPV5++eW8+z/84Q/XaCUAAACjzNq16c8dZ2jkORhMj1SXwueTQiEpGh3clky686TGoteulU45pbw5cjn+eOn006Vly9LX09QkdXe7Md9MyWTuyHUq03QDwZlflzPOkD7wgeGtG6gUy5LWr5deeUV6553B7Ybh/lxL7s9iPC5t3iz19bnPfT4pEHA/WlbO2LWUHrSW3HD1dee6n1+wLvd+25A++brU75Ped41kVbIXXWY8O+rEJcc9PWAG5Dfcn+9iwtdjIXgdl6WN8R3y+yrzK0hHjl7t36yITIX5tSYwpqzseE33bHlETp6/30vhOI7u2fKIJBG+BgAAAAAAAAAAAFAzu3p3aUfPDoV8IUlSb6J3cGe/pNDIrCtTICHF6428l7QEzICm1E9RfaC+ZusCAAAAAAAAAAAAAAAAsO8Y/XUcoETHHnts3v2rV6+u6vyrVq3Ku/+YY46p6vwYPVasWJF3/ymVDiwCAACMFevXpz+3rKHHBLJHXovmxXXzzfPWW8ObI5err5b23z99m88nNTe7Me5yhELu+ZnB6/33l666qrwxgUp76y3p7rulhx9OD17nEosNxq0tyw3V9/WlB+szZAatPV7Y+t6js++3DOkzn5BuPE0K2lJ9vMTXVgNJ20qLwXrh67idGMFVlS8uS/1KqjJ520GOHHUqpqiKeLMAAKNCpYPXHi98vbLjtYqOCwAAAAAAAAAAAADZrNiyQtO+P02vvveqZEgh21C95ZMcucFrX6ERasOflBJ17jUWuf5/2oAZ0MkzT9b9/+d++cxRsnAAAAAAAAAAAAAAAAAA4wrRa4w7haLXr7zyiqxsUb0KSCaTamtry3sM0et9Q3d3t1588cWc+xsbG3X88cfXcEUAAACjyMaN6c9tO/25zycZxvDmMM2hgejMeTZsGN4cuTQ0SP/yL9KkSenbDUOqr5eamrJHubMJBt3j6+uHfk0mTXLnaWiozLqBcvX0SPfeKy1ZInV1FXdOMuk+MmX+nKbIFbz2WIZ0xcekFw9I3+5Iao9IcZ9020nSov8j1Scks9I15jIZkgyZCpkBGRk/52M1fO0Fr6uJ8DUwNlQreO0hfA0AAAAAAAAAAACgFlZsWaEP3P0BOXIUtaLq62mXensVituDwethXvJWEZaUjAw+zRa+9oLXv/vU79QUaqrxAgEAAAAAAAAAAAAAAADsK4heY9xZuHChwuFwzv09PT16+eWXqzL3Sy+9pL6+vpz7w+GwFixYUJW5Mbo8/vjjisfjOfd//OMfVygUquGKAAAARpHOzvTnmZFbs0L/VM0cJ3OezHVU0tSp0m23SfvvP3Sf3++GqltbpcZGKRJx49beIxJxt7e2usf5/UPH2H9/d/ypOeq/QK1s3y59+cvSypXZ9zuOG7eOx904tveIRt19mcfmUCh47YWtEz6pMyRF/RnbzcHnfzjSPWa/3pEPX+cLXnvGWvg6LrvqwWtPp2I1mwtA6aodvPYQvgYAAAAAAAAAAABQTanBazmSHClqOurzO9pjOTL8Gh3Ba1tSYOjm1PA1wWsAAAAAAAAAAAAAAAAAtUL0GuNOOBzWSSedlPeYJ554oipzL1u2LO/+k08+OW+QG+PHr371q7z7L7roohqtBAAAYBRKFgiU5gi/lqzQOIXWMVxTp0o//KF0xhnZ9xuGFAi4keuGhsFHJOJuz7X+M85wxyV4jZG2fbt0ww3S1q1D91mWG7bu7XU/xmJu+Np7eAFUxxl85FB08Drlt1ydIanfPzR47Qz8WPUGpe5ghcLXZf6VVUzw2jNWwtdxWTWPUHcqpi7FajongMJqFbz2EL4GAAAAAAAAAAAAUA1Dgtcpoo7kCwxejzKibEl+Sb7sux05MmQQvAYAAAAAAAAAAAAAAABQM0SvMS6dkSsqN+D3v/99Veb97W9/m3f/mWeeWZV5Mbps27ZNS5cuzbn/gAMO0FlnnVXDFQEAAIwyfn/+/ZWKIxYap9A6KqGhwY0C33LL8CPVU6e649xwgzsuMJJ6eqSbbpJ2707f7jhu5Lq/P3dYvoSf8WKC13siUsw39AbCjrAUzxK89qSGr2t972EpwWvP7kSnntz1kuwaBWRLNRLBa88O9RK+BkaRWgevPYSvAQAAAAAAAAAAAFRSvuC1JJm2ZI2Gu7IcST7J9Jsy8lwFYxqmfv2JXxO8BgAAAAAAAAAAAAAAAFATo+HyKqDiFi1alHf/qlWr9MYbb1R0zldffVV/+ctfcu43DKPgujA+fPvb31YyV9xN0pe//GX5axFYBAAAGK2am9Ofmxn/NLXtysyTOU7mPJnrqKbjj5fuvlu6+WZp3rzSzp0/X/qHf3DPP/74qiwPKNmdd0pbt6Zvs22pry937FoqKXhtGdIln8gdvJak9ogU9w0MrcGwtT3w0THczzOD157eoBvNznZjYlHKqGWXE7x2zzN0RMNBMks4p1ZGMnjtIXwNjA4jFbz2EL4GAAAAAAAAAAAAUAmFgtf+mGSPhjuyHLl3hvnd/7/UMIys4euAGVDb1W2aVD+p5ksEAAAAAAAAAAAAAAAAsG+iuopx6ZBDDtHxxx+v5cuX5zzmRz/6kX784x9XbM4f/vCHefefeOKJOuiggyo2H0anDRs26K677sq5v7GxUVdeeWUNVwQAADAKHXywtGLF4PPMGLVllRTGzcq23XFSZc5zyCHDm6NUfr908snuY+dOae1a6a23pA0bpM5ONxTs97sx7kMOkWbPlo46SprEjUYYZZYvl5YtS99mWVJ/f+6fXZ9PCgTcn81YcWFinyNdvlpaPW0wYp3KkRvGztyWK3CdixfNLlmNg9cfbJ2nWXXTS5+0yhw5imt4b1ZgyND08GRtie50bxYtU6eialRwWGsBUD7bsfWnPauGFbw2DENzGw7W2p6NZY/jOI7+tGeVjm0+QqYxGu4yBwAAAAAAAAAAADCWFApeB6JSYjTcjeWtze89dddrGIbcT90DvOD1kZOPHJl1AgAAAAAAAAAAAAAAANgnjYbLrICquPzyy/NGr3/2s5/p5ptv1rRp04Y917vvvqtf/vKXeY+57LLLhj0PRjfHcXT55ZcrlifgdtNNN6m5ubmGqwIAABiFDj00/bkvS3E2kZBCofLniMeHbsucZ/bs8scfrsmTpVNOcR/AWJJMSnfckb7NcaS+vuzB62DQjV2bpvt5X5/kxZ6LiJlesM79eN256eFrR1J7xN1mKOv9haOUMa6C15K7vnr51auErDL+JFJf36a+LXq2va2s8HVIPu2vRhnl1MgBVIRpmLpm5iL9ePMD+mv/jpLPNwxDn5t+rha2zNHKjtd0z5ZHygpfz4hM0TUzFxG8BgAAAAAAAAAAAFCyV3e8Ohi8ziLUL8UCNV5ULo6kUOam9PC13/QTvAYAAAAAAAAAAAAAAAAwIqg+YNz67Gc/q/322y/n/r6+Pn3961+vyFw33nijotFozv1TpkzRZz/72YrMhdHrxhtv1P/+7//m3D9r1ix99atfreGKAAAARqm5c9OfG4bkz3hPpnhcsqzyxrcsKfONSPz+wdCu56ijyhsf2Je98IK0IyNk2tcn2Xb6Np9PqqtzQ9epP3vJ5ODnRYafL1gn/egRyRy4l9ALXie832qNRPG6zK6yI0eW7MIH7p1mdAevPW74OiBfiV+YzNc3q266Ptg6r+RwdUg+TVejfPyqExhxEV9Y1x70Kc2ITCnpvNTgtSQtbJmjz00/t6Q3CZDc4PW1B31KEV+4pPMAAAAAAAAAAAAAoD/erwX/tWAweJ1xTUqkdxQFrxMaErz2OHLkOI4m1k3U+uvWE7wGAAAAAAAAAAAAAAAAMCIowWDcCofD+spXvpL3mHvuuUdLliwZ1jwPPPCAFi9enPeY66+/XqFQjisKi7R582YZhpH3ccsttwxrDpTvu9/9rv7t3/4t537DMHTHHXcM+/sAAABgXJg8WZo9O31bIONuIMeRenvdj6XIdV7m+DNmSJMmlTY2AGnp0vTnyeTQyLzPJ4XDkpnl106l/kwP8MLXhpMevHYkOWUGqMtWxnxGyseEnVDSKRz1HyvBa0+p4etcr6/U8HVAJsFrYJQpNXydGbz2lBq+JngNAAAAAAAAAAAAYDgiwYjOnX1u1n31XVL/aLkVoFdSXf5D/KZfK7+wUjNbZtZkSQAAAAAAAAAAAAAAAACQiRoMxrXrr79eBx54YN5jLr30Ur300ktljb98+XJdccUVeY+ZOXNmwfg2qu/dd9/Vn/70p4qPG4vFdO211+rGG2/Me9x1112ns846q+LzAwAAjFknnZT+3OeT/P70bcmk1N0tWYXjsJLc47q73fNS+f3u+Knmzy9puQAk7dwptbWlb4tGhx4XCklFBkpLcdomaUrP2AteS+5aU08tFL4ea8Frjxu+9hcMXxd6fcWGrwMy1aowwWtgFCo2fJ0reO0pNnxN8BoAAAAAAAAAAADAcMSTcUnSkouW6PzDz3cv9hjQ2Cn1FohM10qwS1JL/mMCZkBtV7cRvAYAAAAAAAAAAAAAAAAwoijCYFyrq6vT97///bzHdHd368wzz9TSpUtLGvvBBx/UWWedpZ6enrzHfe9731MkEilpbFTeu+++q1NOOUXHHHOMfv7znxf8cyvGk08+qYULF+r222/Pe9zChQv1ne98Z9jzAQAAjCtHHSU1NaVvyxbKTSalzk6pv1+y7exj2ba7v7NzaPDaMNxxUzU3S7NnD2/9wL5o7dr0544jxePp24JByaz8r5u6QtKFi6TtjVJzbGwFrz1OxvNc4euxGrz2uOHrQM7wdbGvr1D4OiBTLQrLHO4fDICqKRS+LhS89hQKXxO8BgAAAAAAAAAAADAcb3e8rQP//UDd+MSNkqQlH7pd529yrzlrape660dydYNCe6T4xPzHGDK06spVOnLykbVZFAAAAAAAAAAAAAAAAADk4B/pBQDVtmjRIl188cVavHhxzmM6Ozv1sY99TJ/+9Kf1jW98Q0cccUTOY1977TXdeuutuv/++wvOfckll+iTn/xkWeseaT09PbrvvvtKPm/9+vV5969atUp33313SWM2NjbqwgsvLHkt2bzyyiv627/9W33xi1/U6aefrvPPP1+nn366Zs6cWdT57e3teuihh3T33Xfr2WefLXj8rFmztHTpUoXDRHcAAADS+P3SaadJS5YMbjMMKRJxA9ZORh62v999+P2Sz+ce6ziSZQ0NXWeOlxlIPO00dwwAue3c6Uau16+XNm50o/LvvON+NAz3Z1Fyfw5Tf8YCgfzj5giW5mMZ0iWfkNqmus/9SUm1/idWhbrKTsZQSduSzzT3hlzHevDa44Wve5UYsr2U1+cd92x7m5yUbDjBa2Ds8MLXP978gP7av2Pv9mKD1x7vuHu2PCIn5X8nErwGAAAAAAAAAAAAMByv73xd8+6cp6Sd1G0v3CZJ+k7vCVryxAQdefY2rdt/hBc4INglxbK/33Ca5y9/XkdNOar6CwIAAAAAAAAAAAAAAACAAoheY59w11136eWXX9Ybb7yR8xjHcbR48WItXrxYxxxzjE488UTNmjVLDQ0N6u7u1qZNm/Tcc8+pra2tqDmPOOII3XnnnZV6CTW3a9cufeELX6j4uA8//LAefvjhks6ZOXNmxaLXnmg0qqVLl2rp0qWSpNbWVh1zzDE68sgjNWHCBLW0tKi+vl7RaFTt7e3auHGj/vKXv2jNmjWybbuoOaZPn65HH31UU6YUcXUpAADAvmj2bGnuXDes6zHNwfB1Nslk7sh1KtOUwmH3Y6q5c6VDDil/zcB4lkxKzz8vLV0qrVkzdH9Xlxua9451nMGHYbg/b4Wi1n6/lEjkPyaDz5EuXy2tnibFDWlXveQUPq0yqtBU9sLXhkyFzMDe4LUkTQ9PHvPBa48XvjbMgGJOUqZhlhX0Tg1f246tJl+dzGSS4DUwhmSGr0sNXnsyw9cErwEAAAAAAAAAAAAMhxe8TtgD17I4csPXzonqm7dNb46S4HWoR4pNzH9MwAxo5RdW6n1T31ebRQEAAAAAAAAAAAAAAABAAUSvsU9oaGjQY489ppNPPlnvvPNOweNXr16t1atXlz3fjBkz9Nhjj6mhoaHsMVBb7e3teuqpp/TUU09VZLzDDz9cjz/+uGbMmFGR8QAAAMatU0+VtmyROjoGt5mmVF/vRnVjsdLHDIXchxfn9bS0uPMBGGr5cumOO6QdO3If4zi5nzuO+zOXTLph61wy9xnG0HGzuGCdtCssXfUxyal267gGLWVHUjgjeC1JW6I7talvy7gKXx8SmKrXEu/q0LoDy35ds+qma0dsj97ofVvz6g7W2q71FV4pgGrzwtc/efu3+vCEY0sOXnu88/60Z5WumbmI4DUAAAAAAAAAAACAsgwJXkty5L75+93vPqv2Be42QzV8c/YsQn1SrDX/MQEzoLar23Tk5CNrsygAAAAAAAAAAAAAAAAAKII50gsAamXmzJl66qmndMghh1R1ntmzZ+upp54idrwPO//88/X888/zPQAAAFCMcFj61Kekxsb07Ybhhq+bmqRgsLixgkH3+Pp69/xUDQ3uPGHCiECanh7pttukW27JH7yWiopTKxp1H7mOzRfEzuPdRummM1TdILVR5fEzxFJumvQ4cvRse5s29W2p3UKqyJGjDYntMmRofd87Zb+uTX1btL7vHRky1Na3UfaI3k4KoFwRX1hfnXVx2cFrz8KWOfrqrIsJXgMAAAAAAAAAAAAoy5DgtTP4aN0i7ZkyuEmq6eUkaUJRKdZc+LgVn19B8BoAAAAAAAAAAAAAAADAqEP0GvuU2bNna8WKFTrrrLOqMv7ZZ5+tFStWVD2sjdGppaVFd911l5YsWaIJEyaM9HIAAADGjuZm6eKLpZaWofv8fjdY3drqhrEjETdu7T0iEXd7a6t7XLagbkuLO35zEXcAAfuS7dulL39ZWrYs+37HkRIJqb/fjWPbtvtwnPwB7GTSPce2h+4zTSkQSN+WGanPEDelBVdJeyKS4VTpRsIRuDvRlq2oFR+yfbyErx056lVCvXZMMsp/XZv6tujZ9jY5cv/wu6w+dShK+BoYo0yjMv+XRKXGAQAAAAAAAAAAALBvSQtep5atJdXtlPbsl378SIWvg3Ep1lD4uGWfWaZ50+ZVf0EAAAAAAAAAAAAAAAAAUCLKENjntLa26tFHH9XPf/5z7bfffoVPKMJ+++2nX/ziF/rjH/+olmyhPoy4xsZGNTU1VWXsSCSiv/u7v9OGDRt05ZVXVmUOAACAca+lRfrsZ6W5c7PvNww3lBuJuHFr7xGJuNtzRXPnznXHJXgNpNu+XbrhBmnr1qH7kkk3ct3eLnV3uwHreHwwYl0oei25x+YKX4dCJS01aEuXvVLSKaUZgeC1x5Yty7KGbB/r4WsveG1lhKlLfV1pwesUCdmErwEAAAAAAAAAAAAAQEn2Bq+thIZcctAl9bdmP6/W4etAQorXFT7u4Yse1mmHnFb9BQEAAAAAAAAAAAAAAABAGYheY5916aWXauPGjbr99tt15JFHljXGnDlzdPvtt2vTpk363Oc+V+EVopLmzp2rXbt26cknn9Tf/d3fad68efL5fGWPZxiGjjnmGP3Hf/yHtm7dqu9973uaMGFCBVcMAACwDwqHpXPPlS64QGrNcQdRsSZPdsc591x3XACDenqkm26Sdu9O3+44Um+v1NXlRq4z5YrLZ47hsW2pr0+KxdyPHR3Snj3uHF44u5iAtqTvPGnoa8+7NxFWNHM8jLsRjQrcyhhSIOe/Tcdq+DpX8Dp1fzGvK1fw2kP4GgAAAAAAAAAAAAAAFOv1na9r3h0DwetMXZIZyX9NSsWvWcnBn5QSkcLHLfvMMp13+HnVXxAAAAAAAAAAAAAAAAAAlMk/0gsARlJ9fb2uueYaXXPNNXrzzTf16KOPatWqVVq7dq22bNmi7u5u9fX1qa6uTo2NjTrggAM0Z84cHXvssTrnnHN06KGH1mytBx10kJwiQmBjdb5aCAQCOvXUU3XqqadKknp6erRy5Uq9/PLLeuutt7Rhwwa9/fbb6uzsVG9vr/r6+hQKhdTQ0KAJEyZo9uzZOuyww7Rw4UKddtppmjJlygi/IgAAgHFq9mxp/nw3sLt0qdTWVvy58+dL550nHXigtHZttVYIjG133ilt3Zq+zbKk7m43VD1cqf+WdJzsAe0yxjz+Xak+IfUEhz9cBXrVcuTIUPk3NOYLXqfO8Wy7+3fgrLrpZc5UO27wOpkzeJ16XL7XVSh47UnIVruialJIPt7bDwAAAAAAAAAAAAAAZLGrd5fm3zlPCTtL8Dom+SKSVYFrSYbLb0nJcMqGHGt66nNP6SOzPlKTNQEAAAAAAAAAAAAAAABAuYheAwMOO+wwHXbYYSO9DNRQQ0ODTjnlFJ1yyikjvRQAAABk8vmkk06STj5Z2rnTDVi/9Za0YYPU2Sklk5LfLzU3S4cc4oayjzpKmjTJPX/LlpFdPzBaLV8uLVuWvs2ypK6u9Fh1Kr/f/Zl0HCkarf4as1hyhHTduVJj3I1M95Ybvq7wDYrVDF4PzjE2wtdu8DpRMHideny211Vs8NqTkK0t6tZ0NRK+BgAAAAAAAAAAAAAAaeLJuP72d59VIG4pnnmpRkzymaMkeG1LTY6hWMJRbyD7MYYMPX/58zr+wONruzgAAAAAAAAAAAAAAAAAKAPRawAAAADA6DZ5snTKKe4DQPmSSemOO9K3OY7U3T00eG0YUjgshUKSmRIStm13HO/4XKHsCvKC1/bADYZNcfdjyeHrUXCDolRa8Noz2sPXpQavU89LfV2lBq89MVmErwEAAAAAAAAAAAAAQJquWJcu+f0lmvPaTq22HCmowaB0VPKbUnIUXE9i2lLSkWRIIcuQNDR8HTADWnXlKh015aiRWCIAAAAAAAAAAAAAAAAAlIwKDAAAAAAAwL7ghRekHTvSt/X1uSHrVH6/1NQkRSLpwWvJDWFLbhTbqP5df5nBa09TXKqPlzDQKLhBUZLCCpYcvPY4crSuZ7PsGoTGS+EGr5MlB69Tz3+2vU1P7V5RVvDaE5Olreou+3wAAAAAAAAAAAAAADB+dMW6dOFvL9TLG5/TvclVuuQVRy3RwetNAoaUHAV3VBnOwHUxIanP7+wNX9fbg9eXBMyA2q5uI3gNAAAAAAAAAAAAAAAAYEwZBZdoAQAAAAAAoOqWLk1/nkxKsVj6Nr9famyUcoWZA4HBEHaV48uWIf30mKHBa0mSYagpYcgsZgmjIHhtyNCnpp6uD086VkaZC5oYaNZpk94vswax8VIYMhQc5q8YHTl6N/resIPVzQqX/fUFAAAAAAAAAAAAAADjgxe8btuySurokC1H975PumSN1BKTQr1Sorz3LK8sR+6VEgH3adSXEr4ORlQfqFfQDKrt6jYdOfnIkVwpAAAAAAAAAAAAAAAAAJSM6DUAAAAAAMB4t2uX1NaWvi0aHXpcfb2UL6psGFJdnRu8rnL02udI9/5emrc9+zqi/iIGGQX9Y0OG/s/U0zQh2KxZddP1wdZ5JYeZJwaadcakDyhoBqq0yuEJyqeIivkDqZ4pqleTQiO6BgAAAAAAAAAAAAAAMLLSgte7d++9vsU2pHvfJ/U6Ujw0Ci4pcSQltDd47Yn6pL6ApGBQR0w6Qlv+bgvBawAAAAAAAAAAAAAAAABjEtFrAAAAAACA8W7duvTnjiPF4+nbIhHJ5ys8VjAombX5lVJTTLr/t0PD11HTVmfQvSnRzNbeNjSidyemTu0Frz2lhq9He/DaM5Lha4LXAAAAAAAAAAAAAABg3bZ1bvB62ytSe7tkWWn7exyps27w+YiGrxOS6rLvivoc9cX7NLVhqlojrTVdFgAAAAAAAAAAAAAAAABUCtFrAAAAAACA8W7jxvTnyeTQY0JFRoPjccm2h7+mImWGr6N+qTNlqXbqHYgjHLv2OJLq5Fej/GnBa0+x4euxErz2jET4ulkhgtcAAAAAAAAAAAAAAOzjvv/c93Xkfx6pR996VOruHhK8jialriyR6RG5zKRXOYPXnpgV03//zX/LZxbxBvYAAAAAAAAAAAAAAAAAMAoRvQYAAAAAABjv3n47/Xlm9Nrvl8wifk3kOFJfn2QY7qNMVomneuHrqb3G0OB16qNG3OlyT1gnv4LyyafcNx4WCl+PteC1JyizZuHrZoVqHtkGAAAAAAAAAAAAAACjy/ef+75uWHbD3ufbjN60N3RPxKWOhtzn1zJ8Xd8haej7pw8y3GtSXvz8i5rSOKVGqwIAAAAAAAAAAAAAAACAyiN6DQAAAAAAMN51daU/t6z0577cceY0icTgTYFlRq+7QtL5F0lLjijtvCcPlrY3OAoMTG/XOHTtMST5ZCpsBrNO7wWvi5ErfD1Wg9eeoHxVj1E3K6QwwWsAAAAAAAAAAAAAAPZpmcFrOe6HbQORaysq7W4qPE4lL0HJdUlL4x6pd1L+E73g9XHTj6vgigAAAAAAAAAAAAAAAACg9ijDAAAAAAAAjHfJZP79xQaso9FhLaMrJF24SGqbKq2e5m67YF3h85YcIV13jiRHaokZ2hkZuEPRUc3D16YM9z+GIZ98SmowIF6ngIIlvsfcrLrpkqRn29vkyBnzwWuPF/4u8J1XMkMGwWsAAAAAAAAAAAAAAKDbX7x9MHjtDN0fjUsdLcWPZ2QfpmTe5Syp403YJe2Zmn9ygtcAAAAAAAAAAAAAAAAAxpPSKjwAAAAAAAAYe/wFAsFOEbfsWVZ6PLuYc1KkBq8lyTak6851g9Z5pzWknx7jHi9J7UFn7+cjwUipbBuS/DLkk6E6+feGnks1q266Ptg6T5MDLeMieO0JyqeDg1PSvmbDYcjQUZGDCF4DAAAAAAAAAAAAALCPu+OlO3Tto9e6T7JcwjJxt9TRVPq4lbokxVuSIemIrQSvAQAAAAAAAAAAAAAAAOx7iF4DAAAAAACMd00Zd/H5MuLMllV4jNTgtVRS9HpI8Hpge1r42sh+26DPkX71e2nedmlPWIpn9o5La28PiyHJTpkwYgRVr4AaFCg7eO2ZVTddZ00+cdwErz0TfU2aHp5ckbGmhydrWnBCRcYCAAAAAAAAAAAAAABj0x0v3aFr/niN+yRb8Po9qb25/IB1JcPXH10rvf7oNJ2/KZR9IoLXAAAAAAAAAAAAAAAAAMYpotcAAAAAAADj3cyZ6c/9GeXoZFKybeXlhbEdZ1jB66SknfVSV9B9Phi+drKGrx1JTTHJZ0uxzOD1CHAG/jMx0KyDA1NkDPynEswc4e+xbLfVpS3RnRUZa0t0p7bF91RkLAAAAAAAAAAAAAAAMPYUDF5vkdpT3k97JMPXzd3SnD73tq0lT0wYDF8bgxMQvAYAAAAAAAAAAAAAAAAwXhG9BgAAAAAAGO8OPjj9eWb0WpJisfxjJJODwesio9fZgte76t3QdW8wI3x9jrTkiOzjfOJT0v8cVtSUVeW9ar9MnTHpA/IZ/Gotn7gsbYzvkJPtLtMyOHL0av9mRZWsyHgAAAAAAAAAAAAAAGDsKBS8Du6ROqYM3T4S4evmHqmrRbrteFs3XnWIdMcdWvLtTTr/iPNTxid4DQAAAAAAAAAAAAAAAGD8oswDAAAAAAAw3h2RUZM2DCkYTN/W3y9ZVvbzbXswel2kXMFrJ+WOwKHha2dI+PqBOdJDOWLYI8GU1KSQgmag4LGVij1LUjzXn80IjVNwHlnqV7KCXwGXI0edihG+BgAAAAAAAAAAAABgH7Jlz5bB4HUW/h7JbnRb2NmuVahl+LqpV+psca+RcUzpNuN53Vj3vDRtmpZctETnH36+gr6g1ly9huA1AAAAAAAAAAAAAAAAgHGL6DUAAAAAAMB4N2mSNG9e+rZweOhxvb1Dw9aWJXV1ueHrIhUTvN47ZWb4+lztDV8vOUK64WxpYq9kDKOeHJRfzQorKH/ZYxiSmhRQg4IyirilMS5LvUoqbifKntOzJ96pn295SI++9/ywxnn0vef18y0PaU+8c9hryscLXlcT4WsAAAAAAAAAAAAAAPYd0ydMV9AcuMAk4xoSf4dkB93rUgy5j5EKX9dHpa7mweeOJMdxdNsLt+nGJ26UJC25aIk6/l+HjppyVJkrAgAAAAAAAAAAAAAAAIDRj+g1AAAAAADAvuC889Kf+/1SKJS+LZmUurvd0LVUVvDaMqRLPlFc8NqTLXx96fnuR9uQ/JLCZbajw/KrbiBUXadAWeFrQ1KjAjJlFh287ldSlmw9sevFYYWv98Q79dvtT8qWrc3RbWWHrx9973ltjm6TLVu/3f5k1cLXcdlVD157OhWr2VwAAAAAAAAAAAAAAGBkxb4RG3rdR4fk1Eu2KXlXt4xU+Docl3obhm535AwJX0eCkTJXAgAAAAAAAAAAAAAAAABjA9FrAAAAAACA8cS2pUQi/dHdLc2dK02aJDnO4CMSkQwjfVsiIXV2Sn19g8FrJ9ttgOmsgbv7fI50+WrJdIoLXnu88LUjN3T9xCHuR8nd3h8s/UsRkE8NRlg+mfJuPywnfO0Fr4vhBa89uxOdZYevB4PXg1//csLXXvDaY8upSvg687XXQqdi6lKspnMCAAAAAAAAAAAAAICREXv1fAW9SxOikq9+8JoVR2742lLtw9ehhBSty73fC1//vO3niifjZa4AAAAAAAAAAAAAAAAAAMaO0go/AAAAAAAASLdzp7R2rbR+vbRxoxuMTiYlv19qbpYOPlg69FA3Oj15cvXWEYsNzp1p5UopGJTe/35pyZL0feGw1N+fHra2bTd6XaSukHTJJ9zY9QXr3MeusHTVx4oLXnt6g1LUL03qG3yntq6gu71UdQpoir9lbzDacRxZsuXIUb0i6rH71OlEixorKUfFLCFX9NkLX58x6QMKmoGi5swWvPZ44euz9zux4DiZwWuPF75eNPU0TQg2F7WmfEYieO3ZoV5JUpNCIzI/AAAAAAAAAAAAAACoga1bpeeeU+y5aTIu3iZ/UEpmXJfiyI1TW5J8GdtS5QpiF5LtvGBSikVyHJzCb/r10udfUtBfxoUwAAAAAAAAAAAAAAAAADDGEL0GAAAAAAAoVTIpPf+8tHSptGZN/mNXrx78fN486bzzpBNOcKPYlRKLSbt3Fz5u9mw3vr127eA205QiETdy7ZR+O19XSLpwkdQ2VVo9zd123BbppjM09I7BIlimtKtemtQr9ZQZvJYk2zR00n4L1eCvG7JvU98WrevZrBn+Br3a81bemxgNaW/MObj3dsihCkWfSwlf5wtee4oJX+cKXnsqFb4eyeC1h/A1AAAAAAAAAAAAAADj3EsvSZJ2R7epzif1mdkPq2X42m9L8SLOCZgBtV3dppktM8uYEQAAAAAAAAAAAAAAAADGnhyXeAEAAAAAACCr5culK66Q/uVfCgevM7W1Sd/6lnv+8uWVW1NnZ/HHnnqq1NKSvs22JaP0QnVq8FqSbEO67lzpqGukPRHJcMrqXssypB0N5QevDUkxO67fbX9KSdtO27epb4uebW/TzkSH9iS6VG9G8o7j6VdScVlZjys2+uyFr+N2IucxxQSvPV74OptCwWuPF77eEy/heyiFI0dx2YUPzMOQoQPC+8ko67tlUKeicsq6HRUAAAAAAAAAAAAAAIx6a9Zod3SbDrlc6g/kvyYlNXxtKHfgutwrFQy5weukLSmcf2AveH3k5CPLnA0AAAAAAAAAAAAAAAAAxh6i1wAAAAAAAMXo6ZFuu0265RZpx47hjbVjhzvObbe54w6HZUnJwsHlvcJh6VOfkhoaJMeRolH34Tglha/bw+nBa49tSJY5eKNgueHrohm5nx5eP1N+c/DXX17w2pEjx3G0LbZLfXZM/oxfkRnKvuZs4etig9eefOHrUoLXnmzh62KD157hhK8NGaqXX74y/5QNGfpg6zydOvE4fbB1Xtnh65B82l+Nww5nAwAAAAAAAAAAAACAUWrtWh32t1J3ePC6jpEKX/tsKRlX9uB1CoLXAAAAAAAAAAAAAAAAAPZVRK8BAAAAAAAK2b5d+vKXpWXLsu93HCmRkPr73Yi19+jvd7c7OSLGy5a5427fXv7aco2dT3OzdN55UjxeWjB7wLuN0uHXSi8ekH1/Y1yqT9QwfO3Nk/L5vMbDdHzr0XufZwavY3ZCjmw5smVLe8PXYSMoM8+vzPqVVHQgct1u9ZYUvPZkC1+XE7z2pIavSw1ee4Yfvg6UHL72gtez6qZLkmbVTS8rfB2ST9PVKB+/6gQAAAAAAAAAAAAAYHzZulX6wx+kW2/VtGkPqCMyuKvS4etir1bwOdInnpWmO1J9PMdgIngNAAAAAAAAAAAAAAAAYN9GCQYAAAAAACCf7dulG25wb6LLlEy6cev2dqm7241cx+ODj/5+d3t7u3tctsD01q3S175Wfvja73cfpejokJYulYLB9HOLCGi/2ygdc7W0u07qDEnRHFPXOnxdbPBajhQfCF57vPB1SAGZZuFfl3Urpqd2r9A7yV1lr3d3olNP7npJtuMobln67fanygpeezZHt+m/33mwrOC1xw1fP6W4ZZV8bqnh68zgtafU8HVAJsFrAAAAAAAAAAAAAADGk0RCevhhadEiaeFC6ZprNGvHP+m9hqGHFhu+lgqHrwuNI7k3YU3aLT13nHTJGqkllhG+JngNAAAAAAAAAAAAAAAAAJKIXgMAAAAAAOTW0yPddJO0e3f6dseRenulri43bl2MeNw9vrd3aFx61y53np6e8tbZ3Fz8sdGo9JvfuHMZhhQOuw+jcGTYC17viQxuG9Hwdcpg3hx5g9cD5/hN35ChHNlKyJJTRPhbkt6NvlfuqgeWYeiIhoNkGoaCPp9mhKcMazxJSjhZouolmhGeoqBv6NenGG742l8wfJ0reO0pNnwdkKlWhQleAwAAAAAAAAAAAAAwxln2wBt0P/GE9MEPSlddJT3/vCRp7t9s019bc5+bL2I9ZB4Nhq/zjZdr+/RtktEg2YZ07/tSwtcJEbwGAAAAAAAAAAAAAAAAgBQUYQAAAAAAAHK5805p69b0bZYldXZKsVh5Y8Zi7vmWlb5961bprrvKGzMUkiZOlPw56tOpnnpK6uhI32YW/hVRtuC1p5TwdZFN6cKy3GE4Mzwtf/B6gM/wKWgGhpzvyFbMTgw5vtKyRZ/P3u9EHRSeVtV5CzkoPE1n73fisMZww9eBnOHrQsFrT6HwdUCmWhSWWdmMOgAAAAAAAAAAAAAAqLGuWJfO/9V5WvK186RLL5XeeWfvvmPO2aZ1k/Of76i0N2EvJ3xtSJr2rpRIiW/vDV+/7ldL/UTVB+oV9AUJXgMAAAAAAAAAAAAAAACAiF4DAAAAAABkt3y5tGxZ+jbLkrq6JNvOfo7f7waow2H3Y64ItW2742SGr594wp23HKGQtN9+0tSp0qRJ6Y8FC6STTnKPWb9eCgYHH6YpRaN5a9TtIenYq7IHrz3FhK/tQncMDoPf8GlnokOb+rZIyh289uQLX9tVzF7niz6PZPi6EsFrT67wdbHBa0+u8DXBawAAAAAAAAAAAAAAxoeuWJcu/OXH9fLrT+o6449aclB0775TP7JNawpcRpF6fUep4etC56Tum7ZVsicNPcY2Dd17XFiXHHeFPjLrI9ry1S0ErwEAAAAAAAAAAAAAAABAUo4UEQAAAAAAwD4smZTuuCN9m+NI3d1D49CGMRi5NrO8v5htS7GY1N+ffbzmZncMz513SgsX5g5mF2Kabsw6VVOTVF8v3XOPO5dlua8xmSwYvO4KSRcvkpK+wlN3htyP4eTQfYEcnfCyZNxxaMpU0AzIkaNn29u0qX+rtkR3FkxXu+FrKW4nsu53hk41LMVEn8/e70Q9+t7z2hzdVsGZ86tk8Nrjha8NM6C4rJKD1x7veC9g3uSrk5lMErwGAAAAAAAAAAAAAGCMa+9v18X3XqC2Dc9Jli3bkK47qVOS9N8HtOtPs/Kfn+2qECPH9mwsSb4C5xiSWndJ9oTMHYb78PlkNzbotV2v6Xf/53cK+oPZhgEAAAAAAAAAAAAAAACAfU6WEhMAAAAAAMA+7oUXpB070rf19bkB61R+vxuUjkSyB68ld3sk4satM0PWtu2Om2r7dmn58uGtP5tnn5X++lepq0vq7JR6e90Qd4Hg9YWLpLapbsi6OVZ4ms6QFM14mVG/1BEe5vo9WVrHjmwlHWvgc0fvRt8rGLz2uOHrQLFTla2U6PPZ+52og8LTKjh7btUIXnsMGTo8OF2TAy1lBa89s+qm64Ot8zQ50KIF9YcSvAYAAAAAAAAAAAAAYIx7t+tdHf6jw/Ti5mcla/B6HNuQ/u+cdv3xsPzn57sqpJSrCqwC57R2SLunStsaUjaa5t7gtVpbNW/afN37iXsJXgMAAAAAAAAAAAAAAABACqLXAAAAAAAAmZYuTX+eTEqxjOKz3y81Nro3sBXD53OPzwxfx2Lu+PnmH66VK6Vbb3VD195ceWLXUnrw2lNO+NoLXheXoC4gz12JCTuxN3xdqszwtSljxILXnlqEr6sZvPb4DZ/Omnxi2cFrz6y66Tpr8okKGP7CBwMAAAAAAAAAAAAAgFHr3a53dcxdx2h33251+ixFfYNXldTvtrVxav7rTIq5BqWU6z685HbmORM6pd2TBp+nha+94PX0Y3X/ovvVFGoqYUYAAAAAAAAAAAAAAAAAGP+IXgMAAAAAAKTauVNqa0vfFo0OPa6+XjJKTCMbhntepszxX3nFXcdwRaPSI49I3/621NOTvi9P9NoypEs+kR689pQSvu4IVyh4baiouxGHH74OKmgGK5q8Lid47alm+LoWwWuPWerPSZXHAQAAAAAAAAAAAAAAI8MLXu/p27332pXOoKOoz1FDu62NKZdJZLvepJRrUIq9ysCR5F1t4p3T2iXtmjj02G0NkiIRaeJEgtcAAAAAAAAAAAAAAAAAkAfRawAAAAAAgFRr16Y/dxwpHk/fFolIPl954/t87vmp4vGhEerMdZSqs1P65S/dcZLJ9H15gteS5HOky1dLZo7Dig1fR/3DCF4bKjp2nTpHueFrQ4ZOmXCsTplwrGzZJZ+fa13lBq891Qhf1zJ4DQAAAAAAAAAAAAAAIKUEr/v3DLl2JbzV0cYpQ68zcXJ8XqxS3l7bu9qkoU/aPSH3gNvMXs2bNp/gNQAAAAAAAAAAAAAAAADkQfQaAAAAAAAg1fr16c8zg9GSFAoNb45s52fO89Zb5Y/f0SEtXux+zBzbcQpGryXpgnXSjx4pP3ztGMMIXpdhOOFrQ8beOHWzv0GOhr927/xmf8MwR3LD1wHDP+xxJClg+AleAwAAAAAAAAAAAACAmhoSvE65MGPyFum9A5XzLcqHew1Hke+5Lklq6JK6cnWsUwb5wak/IHiN/5+9O4+Toy7w//+u6nPuzOS+SDgCQoBAjJy6CwrItWIgGhQFFeQQoyjuug/d/QrqustPXFcQBNd1FQSMHAFlOVZA1FUjhIQJhEDCESAnk8zRc/VVVb8/anqmu6fv6WNm8nry6J3pqurP5zOTfgTprXoVAAAAAAAAAAAAAAAAgByIXgMAAAAAACR7/fXU5+kxaq9XMsf4kYppuuPkmue110obOxyW7r1X6usb2WZZ7gWDtl1Q8Dqh1PB1tYPXw/MmfV9o+Do5eN0Z7dG9u5/MOF6p67h395PqjPaUOJLrsXf+rJiTIb5egpgT12Pv/LksYwEAAAAAAAAAAAAAAOTTNdilpbcvdYPXUsq5K3UdUscsKd8ZHuU4DyVf+LplQOppyz/O9077nt41+11lWBEAAAAAAAAAAAAAAAAATF5ErwEAAAAAAJL1pAWKrbTL6jye8syTPk76POnrKNRTT0nd3anbioxdJyslfD3mCw3zXWWYQ/LccduSk+PnzhS8dtJWX+zPkn68I2dM4evH3vmztoV3lfTabLaFdxG+BgAAAAAAAAAAAAAAFReKhPTxBz6uuJ10s++hkyuMkBRpHTnXwlHlb7JuKvNpKU2DUk9zjhcOveh7p31PXz75yxVYGQAAAAAAAAAAAAAAAABMLkSvAQAAAAAAksXjufcbYygyFzNOvnVk8uqr0qZNqdtsu7CxcqynkPB1IKnZne24anEkGTIVMH0ysvxchQSvk8crdN7M20sLX1cieJ1A+BoAAAAAAAAAAAAAAFTS3v69WnnfSrXvblfQ9KslakqWLUmyQ5JRL1lDp3Ukn91RqdNOjKSvyfPVR6TepvwvJHgNAAAAAAAAAAAAAAAAAIUjeg0AAAAAAJDM68293ynTpXX5xsm3jnSRiPS//ytZ1sgjHpcGBwsfo8TwddgrRTxpQxU+a5lemMqUsgavJWlucHpBweuEfH/q+fcXF76uZPA6gfA1AAAAAAAAAAAAAACohDe739Tc78/VH9/8o9TZKe3Zo2A4rpaIZEckX91I8DqhkuHr9DNIEuHrQEwaaMj/wh+e+UOC1wAAAAAAAAAAAAAAAABQBKLXAAAAAAAAyVpaUp970mrOllWeedLHSZ8nfR25xGLS+vVSKDR6e7GR7iLD12Gv1BNIPc4xyn/xYbHishW1Y1n37wh36IXQ1oKC1wnZjir0Zy00fF2N4HUC4WsAAAAAAAAAAAAAAFBO20Pbtew/lylmxdQf7VfIiQzv6++X/IYUz3I1UyXD1+kaI9KO/5T88SwHDC3m1rNu1dXHX13h1QAAAAAAAAAAAAAAAADA5EL0GgAAAAAAINlBB6U+93pTn8fjkm2PbQ7bdsfJNc/BBxc+Xk+P9Moro+coNdBdYPg6U/BaGsNFh9mnLUncsWRn+bOKW3H9qXtjwcHrhPSji/1Z84Wvqxm8TiB8DQAAAAAAAAAAAAAAyuHN7jd17O3HqnNgnwzbkSGp3y+F/NK+sGTWSzFP7jHKHb7OdDpKICa98V/S1OBsRX46OzV8bSgleH3VcVeVYRUAAAAAAAAAAAAAAAAAsH8heg0AAAAAAJBs0aLU5+kxakmKRMY2R6bXp89zyCGFjWXbUleXtHt36vb0qHaCYWSOWjuFXya4/GVp0b7MwWvJDWKPlVmGj62Chl+mOXocy7IUUazkce2hSyrjKi0qni18XYvgdQLhawAAAAAAAAAAAAAAMBabOzZr0c2LtG9gn2S751YYjobD1756KeIrbKxyha8zBa/9cen577rB64TIlo/Ib3hTXkDwGgAAAAAAAAAAAAAAAABKR/QaAAAAAAAg2eLFqc8NQ/L7U7cNDkpWacFjWZb7+mR+/+gQ9ZFHFjaebUvvvJO6zXFS15cYO1PsOnlpRtJlgjmO/eoHpD8syD6OoxLC10byt+6TsYSvKxW8ThiwwmO6qDIRvo4O/TnVMnidQPgaAAAAAAAAAAAAAACUYnPHZi25bYlidkyO48hJPg/EkRr7pAF/9tdnMtbwdaYzX7yW9NRPpENnzJSuukr60Y+k556TfvUrRb4Rk990F0nwGgAAAAAAAAAAAAAAAADGxlvrBQAAAAAAAIwr06dLS5ZI7e0j24JBKRpNPa6/X2pqyhuSTuE47uvSBYOpz485Rpo2rbAxvV6pszN1m22PPs7jSd1uGO56hoQC0kXnS5953tHyl42Mx0hu8PrGk7Mvx5HcCxcdN3xt5/v1pMWuDcOQ1/TKkCHbsWVn+lkKkCl4LUke0yPZY49el0PQ9Mlrmopalt4K7xnzeD7Dq5gTH9MYb4X3KGpZ8ns8Y14PAAAAAAAAAAAAAACY/JKD14k6tSNJhhu8bg5JPQ2ljW1oJHjtKHPIOtNrMvHa0oP3SSf6Z0t/8zfSP//zqGMi/xzRjs4dmts2t7QFAwAAAAAAAAAAAAAAAAAkEb0GAAAAAAAY7dxzU6PXXq8UCEiRyMi2WEzq6XFj0pblBqUdZ1QkWqbpPhLHWVZqKDsQcMdPn78Yvb2pz9ND0aYp+f1SOJzx5aGAtHKF1D5L2jBbkjKHrwsOXqvA8LWR/tT9xzRMOY6juF16wDlsRRX0+DPOWWcGNGhHRu+roqDp18fmnCnTMOT3eLRi1vt13+4nZcvJ/+IMFgZn68wZJ+mxd/6sbeFdJY1hytCKWe8neA0AAAAAAAAAAAAAAAqSKXid4Eia2i3taxrbHKWEr9OZjnTHg9JZ/bPdDYsXZz2W4DUAAAAAAAAAAAAAAAAAjJ1Z6wUAAAAAAACMOyeeKM2cmbqtvn4kAJ0IXMfjbgg7Hh/Zls62U49Lfr1huOMmmzVLOuGE4tYbjaaGtDOFtz2e1GMkyTBSgteSG6hedZa05jAn5bivnlZ48Hp4mzHqesakMUdvsmXLcRxZtqWoFc0+WQFs2QpnGcMwDNWZgTGNPxZB06+PzzlTftM3vK3N36IVsz4gs4RLMxPBa0k6c8ZJWhicXfQYbvD6A2rztxT9WgAAAAAAAAAAAAAAsP9JCV5nMGPf2IPXCclnUxR7O3HTkX70qLSyO+l8iqOPLseyAAAAAAAAAAAAAAAAAABZeGu9AAAAAAAAMEFYVurzWEwKh2uzlmq47DLp298eeR4dCihnCluXIjFONCr5/SPbL73UjWPH45lfZxhuwNqy3DGiUfd7wxgdtU7weCSfzw1s9/cPbw75nZTgdYJtSKvOliRHy1+W7jtcuun4HD+KRgevh/clby+g52zLlm3bMkqIP2caK2xFFfT4R+2LZLngstIyBa8TEuHr+3Y/KbvASzSTg9cJZ844SY+982dtC+8qaAyC1wAAAAAAAAAAAAAAoBh7+/fqmNuOcYPXGU5xmPWOtKetvHMaGpnKUfbTUJL3GZKuf0y6bHfaDcSPO668iwMAAAAAAAAAAAAAAAAApCB6DQAAMJ51dEibNklbt0qvvy719LgBTK9XammRDjpIWrRIWrxYmj691qtFLfAeAVBpti11d0uRyOjYczgsvfxyTZZVNYsWSS++6P78sQpEki1L6u11/972+6WjjnKfP/VU5uMdR+rrc3/3fr/U1OSOEY+7f1bZOI77SMwTjWYNXickwtdr50p3LZGmhKWuOilmpg2t7MHrYSX0qx05FQtfh62obOX4fVVIruB1QjHh60zB64RCw9cErwEAAAAAAAAAAAAAQDFCkZA++eAn5TO9ilrRUftn75F2T63M3MWGr7/0tPS1t6ZJyadqvPe90uzZmV8IAAAAAAAAAAAAAAAAACgLotcAAADjTTwu/fnP0sMPSxs35j52w4aR75cskc49VzrxRDdoicmL9wiAarEsac+e0bHr/cmyZdL69ZUJXieLxyXDkA45JPdxXV1u8Lq/X3rnHTdI3tsrdXa6YW7JHScRuU48t6yRMYJBhcyYVp7vZA1eJwz4pBtPlloiUjAutQ6mhq8rFbxOcPJEnwuVHL4ez8HrhELC17mC1wn5wtcErwEAAAAAAAAAAAAAQDFCkZBW3rdS7TvWq7k3KplS/8h9yCsavE4oNHx90E7ppP6A5Es7V+OSSyq3OAAAAAAAAAAAAAAAAACAJKLXAAAA48vatdKPfuQGRovV3u4+Zs6UrrpKOuGE8q8Ptcd7BEA19fbu38Hr7m7p/vslj6c685mm9PjjUkuLNCtDjXpgQHr5ZWnLFmn37pHthuFGsxN/VsnB68TzeNwNX3s8CgWklR821D4t93LCXqkn4H6f+Jocvo6alQ1el5stWwNWuCZzFxO8TsgVvi4keJ2QLXxN8BoAAAAAAAAAAAAAABQjGo/qogcuUvuu590btMfjah7a1++XZr1T+eB1Qr7w9YG7pf42adVpMelPYS3fFnR3HHCAdMYZ1VkkAAAAAAAAAAAAAAAAAOzHzFovAAAAAJL6+qQbb5Suu660mHGyPXvccW680R0XkwPvEQC1EK5NIHhcCIele+91w9+RiBuWrrRYTOrvl9asGf27f/VV6Wc/k/7wh9TgteRGrc0CPuLp61PIiGrl2f1qn27n/ZkG0vrMPQE3hG1IqotNrOB1LZUSvE5IhK/NpF9mMcHrhDNnnKSFwdnDzwleAwAAAAAAAAAAAACAYoQiIV1w7wU6ovlgmXv3uTdgH9IclebukPa0VXdNhkZOT0m+nfi8DmlwiiTTlG1Iq07u0ZqFQ+fifPvbkq/4czgAAAAAAAAAAAAAAAAAAMUheg0AAFBru3dLX/iC9MQTmfc7jhvBHBx0A8WJx+Cgu91xMr/uiSfccdPDmJh4eI8AQPU99ZTU3e0Grx0n+9+l5ZT4+zwUcueX3Pj1I4+4IezeXnebYbiR6+RodXr0OkPQ2pKji84cUPvU+MgxOcLXrYOSz07d1hOQuoNSKCCZuX4lhuQxPDIoX5ccvE4YCV+bJQWvExLha1MmwWsAAAAAAAAAAAAAAFCwUCSklfet1HNvP6O7/nCLLnoulnLeiL9T2jWzdutLDl/P6pT6WpVyLs1w+PqipdJpp9ViiQAAAAAAAAAAAAAAAACw3yF6DQAAUEu7d0vXXivt3Dl6Xzzuhou7utzI5eCgFI2OPAYH3e1dXe5x8fjoMXbulL7yFaLGExnvEQC15Cs91DuhvfqqtGmT+/dmPF6d4LXkzmNZ7mPTJqm9XbrzTvf7dIlYtWW5a4zFRsbIEun2ONJnNgzFqhPHZApoJ6ZQ5vB1xDPy/ajwteE+fKZPAW9Afo9/TOHroCcoc4KHs5/a++yYx2jzt+hTcz9UcvA64cwZJ+lTcz9E8BoAAAAAAAAAAAAAABQkEbxu37Fe6uyUbcV119HSRRvd80aCu6Ttc9zgdC0ZkqaGpD3T3Zu6hz2pK7K9Hq2atUFrNq+pzQIBAAAAAAAAAAAAAAAAYD9D9BoAAKBW+vqkr31N2rcvdbvjSP39UijkhosLEY26x/f3j45c7t3rztPXV551o3p4jwCotZb9MIxrWdKTT7p/V0Yi1Z/fcdy/sy1L+vWv3RsXpLNtKRyWBgbcY2Mx9/gC4tzLX5ZufiQtfC1ljV9nC18nGw5fD73Ub/oV8AYkSR7TU3L4OugJyjRNScaYwtm1ti28S4+98+cxj+P3ePIfVMVxAAAAAAAAAAAAAADA5DYcvN71vHsOi2VJkmxDuuto6W/bpbcXSDlOK6maln6pq3XkeY/fGQlfezxSa6tsOfrp8z+VZVu1WSQAAAAAAAAAAAAAAAAA7EeIXgMAANTKbbdJO3embrMsqaen9MhmJOK+3ko7IX/nTun220sbE7XDewRArXm90rRp7tf9xauvujcJSESkCwhJl53jSIODUjye+vd1IogdDrv70hmFhaGzhq8TY6TFrwsKXw999Xvc4LUhQ6ZhypAxHL4uht/0DwWvk5ZG+BoAAAAAAAAAAAAAAKAqhoPXu9ul3t5RN2QPdkn3L5NkquZndDQOSqHm0dt7/I7CfkNqbZU8Hi2ZtUR3nX+XPCY3DAcAAAAAAAAAAAAAAACAStuPqlUAAADjyNq10hNPpG6zLDeymS2u6fVKHo8boXQc9/hMwUvbdsdpbnaPT/jtb6WTT5ZOOKF8Pwcqh/cIgPHC75dmzHD/Tkm7eE0HHSTNmVO7tVXC//6v5PO5YelaSfyODcP9nQcC7tdwOH+EO/HvgDyWv+x+XXW2ZCvt+AyvT4Svu+qkWKZbqBmGmvyNw3FrJ21My7YUtaKjtmf8EWSMCl5PBonw9ZkzTqr1UgAAAAAAeUQiEW3ZskXbt29Xb2+vBgYGVF9fr6amJs2bN0+HHXaY/P7ibvCEiWv37t3asmWLurq6FAqFJEnNzc1qbW3VoYceqlmzZtV4hQAAAAAAAOWVEryORNybtycxOqUdM6T40BVJpiRbKuCskPKrj0j9jVl2GoZ6/I7kxHT8rKVavWK1mgMZ6tgAAAAAAAAAAAAAAAAAgLIjeg0AAFBt8bj0ox+lbnMcqbd3dGTSMKRg0I1dZoo/2nbGCwqGx2tpccdIuO02adkyN46M8Yv3CIDxyONx/25I/nuorU2aPr12ayq3jg7p5ZdHbhwwHsTj7lr6+7PHrD2e1JsexGLu3/955AxfZ2BImhIx1BVwFDdTdzT6m+T3+pM2jfy7xXZs9UZ6CwpemzJlJP97KUkhrx/vCF8DAAAAwPi1du1aPfjgg3r00Ue1adMmWTk+G/B4PFq8eLHOPvtsnXfeeTqBGwlOKt3d3br//vv1yCOP6He/+526urpyHt/W1qZTTjlF55xzjs4//3xNmTKlOgsFAAAAAACogJTgteSeZygNn7cSHpQi06VY0imGjmoTvg5GpcH6DDsMuefRDJ2D4jW9uvv8uwleAwAAAAAAAAAAAAAAAEAVZajiAQAAoKL+8hdpz57UbQMDo+OUXq/U3CzV1WWOGUvu9ro6N1ycHim2bXfcZLt3S2vXjm39qDzeIwBQG5s2uV/j8dquI5njZA5eG4Z7w4OGBvfv+bo69yYIdXVSU1P2fy+kWf6ydPMjkpnvikNDcgw3Zd0aMeS1R7Y3BlKD18lsx1b3YLds5Y9wS8p63GQIXickwtcAAAAAgPHhl7/8pd797nfrxBNP1A033KCNGzfmDF5LkmVZ2rhxo/7t3/5NJ554opYtW6bVq1dXacUT03e+8x0ZhlHQY9u2bTVZ4/bt23X11Vdr3rx5uuyyy/TAAw/kDV5LUmdnpx544AFdeumlmjdvnj7/+c9r+/btVVgxAAAAAABAeY0KXkciKTeO7xqQYg1SxDf6tYnwdbUuUgrEpMFYhh2m4Z43MxS8bqtr0/or1qu1rrVKKwMAAAAAAAAAAAAAAAAASESvAQAAqu/hh1Ofx+PuhQHJvF43WOnxFDamx+Menx41jkRGhzvT58f4w3sEAGpj61b3a+JivfTQdC04zuibHng8UmOj5PcPX6CXwjDc/R5P5v1p8oavDWPoMfRUbvja5xhq9DfK7w1kfFmxwesEy0kNixX7+omA8DUAAAAA1N7LL7+sv/3bv9XHPvYxrV+/fkxjPffcc7rwwgt16qmn6pVXXinTCiePLVu26Fvf+latl5GVbdv63ve+p8MPP1y33nqr+vv7Sx6rv79ft9xyiw4//HD9+7//u+z0z3UAAAAAAADGKcu2dNEDF40EryVpYGD4255+R/56aTDzfdElafiW5pW+UMkXl+x+abZHakk+tdI0Us6Vaatr04YrNmhe87wKrwgAAAAAAAAAAAAAAAAAkI7oNQAAQDV1dEjt7anbwuHRxzU0FBSpTGEY7uvSpY///PPuOjA+8R4BgNp5/XX3a/rNAGolU3Tb45Hq6iQzz0c6pik1N8vymtn/fTEcsza0/BVDNz9mytTINpmGO45haNRKTFNN9VPk9wUzDl1q8DohGo9KksLxDP8OnCQIXwMAAABA7TzwwAN6z3veoz/84Q9lHffpp5/WsmXLtGbNmrKOO5E5jqPLL79c4Uyfc48DPT09Ovfcc/WVr3xFfX19ZRu3r69P1157rT70oQ+pp6enbOMCAAAAAABUisf06DPHfEamMXROim1L0ah7/orjqNEvDeQIXqczNXx/9bLyWu6ypg6dshKMJ4WvCV4DAAAAAAAAAAAAAAAAwLhB9BoAAKCaNm1Kfe447tn3yerq3KBlKRIhzGSJiw5yrQPjB+8RAKidRIDItjMHp2tp6AJC2bY0MCD190uRiBSLudsyCAWkD3/c1JqjfIWFr1+WPrAjMLJt6NLDsMdRV8AZDl9bAb+iUxqz/rvIcRx1DXaVHLyWJFu2BmIDsp3Sx6g0n+Ed8xhvhfcoalllWA0AAAAAoFC33HKLVqxYUdbAcbK+vj5dcMEFuvXWWysy/kTzn//5n/r9739f62Vk1NHRoZNOOkmPPvpoxeb4n//5H5188snau3dvxeYAAAAAAAAol+WHL9fNZ3xfZiQqdXYOn0Njhh111w+FrIs4lWPk7JPy8NhSbFBSsxRKCnAH41KLNXIeB8FrAAAAAAAAAAAAAAAAAKg9otcAAADVtHVr6vN4fPQxgcDY5sj0+vR5Xn11bHOgcniPAEBtxOPS3r1SKOR+P96i1wmJ8HU87t60IBIZiWDHYsPrDvkdrTyrT8/NsLTqjLjWHBuUTHP0WEnWHOboybmRlG1hj6Mev6OYKXUFHUWa6hVrrJOM7B8pGYYhn8dXnp93nPLLo0vnn6cWo77kMUwZWjHr/fKXeiMLAAAAAEDRfv7zn2vVqlVyKvzf/Y7j6POf/7zuuOOOis4z3u3atUv/8A//UOtlZNTT06MPfvCDeumllyo+16ZNm3TGGWeoJ3HDNQAAAAAAgPHqt7/V8ktv1M0P2zJj7jmFgQFpb9NIvLpW4WuPI/l7JbPFHa/fnxa+bpmqlkCLptZNJXgNAAAAAAAAAAAAAAAAAOMA0WsAAIBqev311OfpoWGvd3SQslim6Y6Ta57XXhvbHKgc3iMAUH1r10qXXiq9/Xbmmw2MF0aOSwDjcTd+3denkBHVyrP71T7V/VlsQ1r1/ojWLGvMGr5ec5ijVWc5spOmSASvZUgyDcU8hnoVKSgM1hxolt/jz3vcROSVoVbVSZIO8c+St4RLM93g9QfU5m8p9/IAAAAAAFk888wz+uxnP1vQf9eedNJJ+uEPf6j169ers7NTsVhMnZ2dWrdunW666SYdf/zxecdwHEef/exn9eyzz5Zj+RPS1VdfPW5Dz5/61Ke0YcOGvMdNmTJFV111lX7zm9/o7bff1uDgoAYGBvTWW2/p17/+ta644gq1tOT/7/sNGzbo05/+dDmWDgAAAAAAUH6hkPTFL0qXXCK9+aaWvyzd/JihQK+0c8rIYbUKX5uSmt+Rwm1D4zlp4etAQDJNHT/veL3y+VcIXgMAAAAAAAAAAAAAAADAOED0GgAAoJrS4w6Wlfrc4ynPPOnjpM8zTiMTEO8RAKimvj7pxhul666T9uzJHZWeIEJeSyvPHhgOXifYhrTqb/q0ZrHphq9N0/15/X6tOdIzErwe2jZY71NPUJJpSKapRA7Msi31x/plO/mvXJyM4WuvDDUq9WdqlL+o8DXBawAAAACovlAopAsvvFCxWCzncYsWLdITTzyhP/3pT7r66qt17LHHqrW1VV6vV62trXr3u9+tVatWae3atXr88cd18MEH5xwvGo1q5cqVCoVC5fxxJoQHHnhAa9asqfUyMrrpppv04IMP5jzGMAxdc801euONN3Trrbfq3HPP1bx58xQMBlVXV6f58+fr7/7u73TbbbfpjTfe0KpVq/LOu2bNGt18881l+ikAAAAAAADK5O23pQ9+UPrFL6SuLqmjQ+rp0f+31Nb2aZItyRl6SKPD14WeMVFq+NqUNH2P1DlXcpIGSAlfN3i1ZNYSrV6xWq11rSXMAgAAAAAAAAAAAAAAAAAoN6LXAAAA1RSP595frthmvnHyrQO1w3sEAKpj927pC1+QnnhiZJvX634dr/Frx0l9pAn5Ha1cIbXPSjt+iG1Iq86wtOawoW2GoTXvcrTqDEu2ZyiE7fUq3FSnkBlzfw8ZfheJ8LWTYQ3pgp5gST/qeJUevE7eXkj4muA1AAAAANTG//t//09vvPFGzmNOO+00Pfvss/rABz5Q0JhnnHGG1q1bp1NPPTXncW+88Yauu+66Qpc6KfT09Ojzn/98xn0HHXRQlVeTaseOHfra176W8xi/36/7779f3//+9zVlypS8Y7a2tuqmm27SvffeK5/Pl/PYr33ta9q5c2cxSwYAAAAAAKict96S3v9+6bnnpO5uKRqVJJ2+wta6+UPHGG74WsocvlYFw9eGpOk7pd1zR+YfFb42DMXsmO788J1qDjQXMToAAAAAAAAAAAAAAAAAoJKIXgMAAFRTIqaZTQHxyILkGyffOlA7vEcAoPJ275auvVZKDwx5PFmD0uNSUgB7VPA6/Rj3sj/ZhqNVZzm6/zBb9x9ma9UHorIMR4l/Boy4usPdchwn5ZHOsi11hbs0EB3QQCzzozfSq95or4yiLlcc3/oUzbrPDV9n/6htsgev7eFLXMcmbpdnHAAAAABIeOmll3TLLbfkPObEE0/UQw89pJaW4v6bbcqUKfrNb36j4447LudxN998szZv3lzU2BPZ3//932vXrl0Z9916661VXk2qv//7v1d/f3/W/YZh6J577tHy5cuLHnvFihW66667ch7T19env//7vy96bAAAAAAAgLLbvl06/njp9dclyxre/OEP2Xr6kLRj08LXyWeSVDJ8PWOPtPuA1G0p4WvT0NT6qdry+S2a1jCtwFEBAAAAAAAAAAAAAAAAANVA9BoAAKCa0oMZHk/q86QLB8YkfZz0eYoMd6CKeI8AQGX19Ulf+5q0b1/qdseRYrGJE7xOEgooc/A6wXFSWt62IV3+d+7DTrqKMOyRen2FB4cdx1HYCmeNYketkUD0ZAlfx+UUEL4e/bPuD8HrXsU0oNiYxlnb9YLu2vmI+uIDZVoZAAAAAEjXX3+94vF41v1tbW1avXq16uvrSxq/oaFBv/rVrzRlypSsx8TjcX3zm98safyJ5ve//71+8pOfZNx34YUX6oMf/GCVVzTipZde0i9/+cucx1x77bU6//zzS57jIx/5iK655pqcx9xzzz16+eWXS54DAAAAAABgzN5+W3rPe6R33hnZ5jj65Jm2/ueILK9JCl+nGw5fF3jaTSHh65md0u65mfc5khzTUFv9VG24YoMWTFlQ2MQAAAAAAAAAAAAAAAAAgKoheg0AAFBNBx2U+tzrTX0ej0t24bHJjGzbHSfXPAcfPLY5UDm8RwCgsm67Tdq5M3WbZUk9PVI0e8x4vMobvB5iJMLUjhT2St1B9xEe+us/7JFC/uKD347jKGJFRoWv4/bomNh4CF/7DG/+g/KIy5Gl7DehSA9f7y/Ba0dSVLYGlD0kl8varhfU3rtFYTui+3Y/SfgaAAAAQFm8/vrruv/++3Me8+1vf1vz588f0zwLFizQ9ddfn/OYe++9V9u2bRvTPONdOBzW5ZdfnvEGWVOmTNF//Md/VH9RSb773e9mXFvCggUL9K1vfWvM8/zLv/yL5s2bl3W/4zj67ne/O+Z5AAAAAAAASvLWW9Kpp7rBa8dxzye0bX3+/Y5+eUye1xqpN1hPZkqSU57w9ax90u4ZuV/sNb1a99l1mtec/XMYAAAAAAAAAAAAAAAAAEDtEL0GAACopkWLUp+nh4YlKRIZ2xyZXp8+zyGHjG0OVA7vEQConLVrpSeeSN1mWVIoNHJDAaP2YeZCWYZ00fnS83mC18nCXqknMPK8JyD1+B2F/I6SrzlMfZab4ziKWqnBcL/HL8MwRo1Ty/D1wuBsXTr/PC0Mzh7TOE3yyiNPzmOSw9eTOXjdFx8cDl4nuOHrWFHjJILXCRE7SvgaAAAAQFnccsstsqzsNy5atGiRLr/88rLM9bnPfU4Hpd/UMIllWbrlllvKMtd49a1vfUtbtmzJuO/f/u3fNHPmzCqvaMS+fft099135zzmm9/8poLB4Jjnqq+vzxtB/8UvfqHOzs4xzwUAAAAAAFCUUEj66Eelbdvcc2WGbhD2TydKPz6+gNcPlaotQ7Iz7C4mfG0oc/h6zl5pV66PkQzJZ/rUfmW7FkxZUMCiAQAAAAAAAAAAAAAAAAC1QPQaAACgmhYvTn1uGJLfn7ptcNANcJbCstzXJ/P7Rwc8jzyytPFRebxHAKAy4nHpRz9K3eY4Um/v8AV8E4JhDD88jnThC1J30I1Z5+U4GvCN3hzxSI4kZ+iCxESo2snyTyJmnfyPaZiyHXv44ciRx/BkHKcWFgZn68wZJ0mSzpxxUsnh60KC1wmN8qtJ3kkcvB7Qg/t+n/FPtJjwdXrwOoHwNQAAAICxsixL99xzT85jvvSlL8njKey/8/Lxer36whe+kPOYu+++W7adKQc08W3cuFHf/e53M+478cQTyxYXL9Xq1asVjUaz7p87d64+9rGPlW2+iy66KGfkOxqN6t577y3bfAAAAAAAAAX56lel559POf/wP46WvnuK8p/RkXSKoWGMnGeSzpRkOpKR52MwR6PD17P3SXaj1JDpY5yhAxPB68OnH55vxQAAAAAAAAAAAAAAAACAGiJ6DQAAUE3Tp0tLlqRuCwZHH9ffX3yA03Hc16VLH/+YY6Rp04obG9XDewQAKuMvf5H27EndNjAgpYemfD6psVEyzdE3BBhnQgHpF0ukurjUE8gfvjYkTRmUfGk/ciJ4PXxQDj7TJ7/HL5/pS9nmMVMDYZZtKWYXFj2utOTgdUIp4etigtcJxR4/UfTFB3Tf7icVdbL/GRcSvs4WvE4gfA0AAABgLJ566int2rUr6/5gMKhPfOITZZ3zkksukT/9JoZJdu7cqaeffrqsc44Htm3rs5/9rGKx0f8d6PV6dfvtt8uo8ecsd911V879n/rUp+TzZbhbWIkCgYAuueSSMa0JAAAAAACgrO66S/qv/5IikeFNvzhY+uo5kp3vo5sM+3OFryX3YqViwtfz9klOg7u9OZo5fE3wGgAAAAAAAAAAAAAAAAAmDqLXAAAA1XbuuanPvV4pEEjdFo9Lvb2SZRU2pmW5x8fjqdsDAXf8XPNj/OE9AgDl9/DDqc/j8ZSL+CS5fx82Nbk3A/D7x2f0euiGByG/o5UrpPZZUjAutUQKC1+bSg1fpwSv80iOW3tMj/ymX37TP+GC1wnFhK9LCV5PVongdcTOcHVpmqhsbYvtybgvX/A6gfA1AAAAgFL95je/ybn/nHPOUVNTU1nnnDJlis4666ycx+Rb10T0gx/8QM8880zGfddee62OOuqoKq8o1b59+/SXv/wl5zEXXnhh2ef92Mc+lnP/n/70J3V2dpZ9XgAAAAAAgFFee026/PKU8wcfOkC67COlBa+Hd5UpfL2wQ7LrU7enhK8NgtcAAAAAAAAAAAAAAAAAMNEQvQYAAKi2E0+UZs5M3VZfL5lp/9MsHpd6eqTBQcnOcta/bbv7e3pGx4xN0x032axZ0gknjG39qDzeIwBQXh0dUnt76rZwePRxDQ0joev6+vEZvVZq8DqhlPC16RQevPYYnpS4tSFDS2cv1dLZS2UkXd04UYLXCYWErwlejygmeJ2wI96ptV0vpGwrNHidQPgaAAAAQCmeeOKJnPvPOeecisybb9zf/va3FZm3VrZt26Z//ud/zrjvwAMP1De+8Y0qr2i0J598Us7QjcQyOeCAA3TkkUeWfd5jjjlGc+fOzbrftm099dRTZZ8XAAAAAABAkqLxof/ffigknXtuyrkyT7ZJH/uYZOW7oqiA80rGGr6eHpLCjdJFG91zWZI1O141+OrlN/0ErwEAAAAAAAAAAAAAAABggiF6DQAAUG1er3TVVanbDENqasoc1xwclLq73QsP+vulgQH3ayjkbh8cHP2abONddZU7P8Y33iMAUF6bNqU+dxwpmhbtrauTPElhY9OUgsHKr61IoYBGBa8TiglfR7ySnf6vlBwXKtqOe/Whz/TJb/p13mHn6exDztbZh5yt8w47T37TL0mK23EZWf6ppkKC1wm5wtcEr0eUErxOaO/dMhy+LjZ4nZAIXw/akaJfCwAAAGD/s2vXLm3evDnnMaeddlpF5j799NNz7t+0aZN2795dkblr4corr1R/f3/Gfbfeeqvq6uqqvKLRnnzyyZz7K/VeKGTsfHF2AAAAAACAUmwPbdf8/5ivr/72q9I//7O0bdvwvudapQ9dJsXynQ5hSI7cRz6lhq9b+yXD757DctfRaeFrr1dqbdP7Fv6Ndnx5B8FrAAAAAAAAAAAAAAAAAJhgiF4DAADUwgknSOmhA49Ham52I5uZxONSJCKFw+7XeDzzcabpjuNJuyLh9NOl448f+9pRHbxHAKB8tm5NfZ7p78dAYPQ2x8l8s4EayRW8TigkfD3odceSki4ULODHjMQjsh1bnz7m0zpn0Tk6sPVAHdh6oM5ZdI7ed8D7FIlnjxE7BV0CWR51ZqDg4HVCpvA1wesRcdvW/bufKil4ndDeu0V373yspOB1QsSO6g+9L8jOepksAAAAALieeeaZnPvnz5+v+fPnV2TuhQsXavbszDdXSnj22WcrMne13XnnnXr88ccz7lu5cqXOPPPMKq8os3zvh5NPPrlic590Uu7PKCbLewEAAAAAAIwf20Pbdeztx2rvwF7d+Ocb9dVtPxm+OfzrcnTKZVI0z83UE8HrhFLD14ZGTklJD183D0q+pNMyUsLXXp80bZqWzF2q1StWa1rDtAJWAAAAAAAAAAAAAAAAAAAYT4heAwAA1MqVV0pz5qRu83iklpbM4c1CBALu69NjxnPmSFdcUdqYqB3eIwBQHq+/nvo8PXrt9Wa+oUA87l6RNw7C14UErxNyha/DScFryb1gsBCJaLWRoY69buc6/Xn7n1Xvq8/52moZtCN67J0/F/26RPjalKmFaiN4ncRrmjqsYcGYx+mN9495jPm+6TL5SBMAAABAHuvXr8+5f+nSpRWdf9myZTn3b9iwoaLzV8PevXv15S9/OeO+lpYW/cd//Ed1F5RFNBrVpk2bch5TyfdDvvfCiy++qFgsVrH5AQAAAADA/iURvO4c7HQ3OLZuPGZAX32/rS7b1rHXSmFf7jGcLOeSlBq+lkaHrxsHpcHB0a+3DemupV5d9L7P6d1zl2n1itVqDjQXMDMAAAAAAAAAAAAAAAAAYLyhEAMAAFArjY3Sd74jTZuWut0wpIYGqblZ8vsLG8vvd49vaBgd5pw2zZ2nsbE860b18B4BgPLo6Ul9blmpz9NvBJDgDF2uZxiZo9hVUkzwOiFT+DrsdZ8nDAevCwxf13nr5PV4dcfGO7Ru5zpJbvD6jo13yJEjn8c3Knxd7eB1wrbwrpLD15+a+yEFPAX++3U/ckLrUVrSdGhN17Ck6VAdUT/2+DYAAACAye/555/Puf/oo4+u6Pz5xp8M0esvfvGL2rt3b8Z9//qv/6pZs4r4IKOCNm3alDMq7fF4dMQRR1Rs/iOPPFJmjs+VotGoXnrppYrNDwAAAAAA9h+jg9fOcKn6/3u3tPBaaSDP6RCJ4HW2sz0KCl9LkumGr5307ZKaI1JsUGpNv7e6YUg+r+ypbXop9Jru/8j9BK8BAAAAAAAAAAAAAAAAYAIjeg0AAFBLs2ZJN94ozZkzep/X60aIW1ulpiaprs4NFycedXXu9tZW9zivd/QYc+a444+TuARKwHsEAMYuHs+9P/1mAAlObYLNkobXZBnSRecXF7xOCMalgOWGrruDYwteS1LUjspxHDlydMfGO3T7c7cPB68TksPXtQpeJ5QavvZni6CjpuHrJU2H6oTWo2oyNwAAAICJZ8uWLTn3L1q0qKLzH3LIITn3b926taLzV9pjjz2mu+++O+O+E044QVdeeWWVV5RdvvfCggUL5C/05pIl8Pv9mj9/fs5jJvr7AQAAAAAA1N6o4LWUct5LoyX1B0ei1mOR82wQJ+lrhvB1fVQyB6WWernnxiRuRG+a7vmNrW1aMnep7jr/Lvm93LAcAAAAAAAAAAAAAAAAACYyotcAAAC1NmuWdNNN0umnZ95vGJLP5waMGxtHHnV17vZsoc7TT3fHJWY88fEeAYCxyRT9T5Ytbp3t789yKGRsw5DHkT6zQTJL6EeHvVJkqN8cSes4G8P/p3AewyNjaN2OHL3Y8WLGsLXX9JYleO0zfWMe463wHkUta8zjYEQtwtcErwEAAAAUw3Ecbdu2Lecx+aLUY5Vv/HzrG8/6+vqyRq29Xq9+/OMfD39+MB688cYbOfdX+r1QyBz51ggAAAAAAJBLxuC1NFybbuiXBpNulJ4tfF1MEDvjWSHpG9PC14G4FAxJQ/dSH4leS+65jlOnasncpVq9YrWaA82FLwYAAAAAAAAAAAAAAAAAMC4RvQYAABgPGhula6+Vrrtu7AHiWbPcca691h0XkwPvEQAoXUtL6nNPWgE6WxQ5PdBUzmBTttB2hjUs32Lq5keLC1+HvVJPIPv+Yi5UTIhaUcWsWN7jDMNQk7+p+AmSzG6crUuPvVQLWxaWPIYpQytmvV/+9D9vjFk1w9cErwEAAAAUa8+ePQqHwzmPmTNnTkXXkG/8/v5+vfPOOxVdQ6X80z/9k958882M+7785S/rqKPG13/D5QuMV/q9UMgcRK8BAAAAAECpsgev3ZNMmnqlgeDo16WfN1LKeSRO1idp203JG5emviMZiZZ14hwcj0eaMkVqbtaS2ccQvAYAAAAAAAAAAAAAAACAScRb6wUAAAAgyQknSMuWSX/5i/Tww1J7e+GvPeYY6dxz3TG8/M+8SYv3CAAU76CDpA0bRp6n/x0Yj0u2LZlp9wbzet191ZYe1/b7tfwtj/TYoFadacvOc6FhJYLXhtwXDcQGVK96+Ty+nMd7TI+a/E3qjfYWPVfAE9DJ806WJJ15yJn66fqfKupEixrDDV5/QG3+lvwHoyQntB4ly7L0wsBrFZuD4DUAAACAUuzcuTPvMbPGemPBMoy/c+dOzZgxo6LrKLdnnnlGN998c8Z9Cxcu1De+8Y0qryi/fO+HSr8XCpmjkPcsAAAAAABAuqzB6yEtISnUkP31jiEZTuHnkRga3bZ25I6Ri8eSFrwtdc9N2uj1Sk1NUsA9wWXJrCUErwEAAAAAAAAAAAAAAABgkqF0BwAAMN54vdL73uc+OjqkTZukV1+VXntN6ulx45ter9TSIh18sHTIIdKRR0rTptV65agW3iMAUJxFi1KfZwr/RyJSXV3qNo+ncmsqhscj+XxavtMnPTWoVe+PZA1f5wtelyIRvE6oZPg64Amora4tZVubr0V7o52KyypoDILX1XNc8xF6ZeANRWWXfWyC1wAAAABKtW/fvpz7m5ubFQiU+T+e09TX16uxsVF9fX1Zj8m3zvEmFovpsssuk21n/m/AW265RfX19VVeVX75fs/VCI/PnDkz5/6J9l4AAAAAAAC1F41H9e4fvztr8HrKPkehpvzjFHPjdEeZw9eZN7o8tvSTe6UGn7RqjmSbhnsz+La24ZvTE7wGAAAAAAAAAAAAAAAAgMmJ6DUAAMB4Nn26dMop7gPIhPcIAOS3eHHqc8OQ/H4pGh3ZNjjobksOXafHsQ1DcrJcpVeIQl/vOO6xCX7/8IV+y99ulP7Pr1V/0zeSGR4as+DgtZH+1N3gZLgCMT14nVCJ8HWm4HVCo7dOffHBvOFrgtfVVy+fpFhZw9cErwEAAACMRWdn5tBPQnNzdeI5zc3NOaPX+dY53txwww164YUXMu77yEc+orPPPrvKKyrMeHg/5Jtjor0XAAAAAABA7fm9fn1qyad0419uHLWvdZ+trmZJjmQ6xYWt88kYvs5yKozpSD94SPrEG+45L6rza9UHorKTzoMheA0AAAAAAAAAAAAAAAAAkxfRawAAAAAAMLlNny4tWSK1t49sCwZTo9eS1N8vNTWNBKc9Hjd8HY+7z8cSvC7l9Ybhzp8c4pa0/HW3bL3qb/plG+5xYY+jHn8B4xtZrzWUISMlfJ0teJ1QTPi6OdCsvkif7Cxh5FzB64R84WuC17VTL59iimR9bxWjydtA8BoAAADAmHR1deXc39TUVJV15JtnIoWOX3nlFX3729/OuK+lpUU/+MEPqryiwo2H98NEfC/ccsstuvXWWys+z2uvvVbxOQAAAAAAmEwGo4Oq89dJkm44/QZJcsPXQ+ektO5z3OC1JBmS7bi7zAqFr40sJwoYkv7f/0pXbJY01Lxevq1O+lOdVp1ryhbBawAAAAAAAAAAAAAAAACY7IheAwAAAACAye/cc1Oj116vFAhIkcjItnhc6u2VGhpGQtPBoNTX514BONbodTEScwWDGXcnh68HvAUGr5U9eJ2QCF/nC14nFBK+NmTo00s+rTmNc/S1331NlpMarW70NaopUFhgyg1fDyieFs8meF1bA4qVJVHIce4AAQAASURBVHgtSb3xfq3teoHwNQAAAICShcPhnPsbGhqqso7Gxsac+/Otc7xwHEef/exnFUn+DCXJd77zHc2ePbvKqyrceHg/TMT3QkdHh1566aVaLwMAAAAAACTZ3LFZx9x+jM4+5GytueBX0mOP6YafvybF63Tjkn61dUqd6adNDJ3+YTvuvdfL1b7OFbyWpC/8n/T159I2+v1abi+UPnStfvrCHbrr/LsIXgMAAAAAAAAAAAAAAADAJGbWegEAAAAAAAAVd+KJ0syZqdvq6yUz7aOReFzq6ZEGByXblnw+95hqBq8THEeyLHcdGSx/za+LXvIWHLyW5F7BmEOdr071vvpiVqmB2IBiVizzdDJ08dEXa9mcZZrTPEffOfU7Mo2R33mjr1HzmucVNV+jgvKmfaRF8Lp2BhRTVJnfo6Vq792itV0vlHVMAAAAAPuPaDSac7/XW517g+ebJ986x4vbb79df/zjHzPuO/7443XllVdWeUXFGQ/vh8nyXgAAAAAAALWzuWOzlty2RFErqgdfeVDLvzBDuuwy6amndMOTho7fmiF4PcQY+j+Ok/9m6eVwyTrpxj+kbfT73fNvvv1tLT/yI3pw5YMErwEAAAAAAAAAAAAAAABgkiN6DQAAAAAAJj+vV7rqqtRthiE1NWUOQQ8OSt3dUm9vVZaXVfI6BgelcNj92tsrq6dLL02JKmAVNpST5VMgr+kd/ur3+OX3+Ie3FSpiRTJeGbl4+mItm7Ns+Pmc5jm6aqn759Doa9T8lvlFzZPQqMBw+HqBZxrB6xp5JvRS2YPXCYSvAQAAAJRqPESOC5lnIoSOd+7cqX/8x3/MuM/r9er222+XmX5DsXFmPLwfJsN7AQAAAAAA1E4ieB2zY+65GY704MxuLT/1HamnR19d0qdnD8o9RnL4uhyMLOOc/4L0k/9NPnDonJz6eumjH5VOO02S5DE95VkIAAAAAAAAAAAAAAAAAGDcGt9XHwIAAAAAAJTLCScMXzw3zOORmpulbIGmWEyKxyu/tmwSVxvGYm7semDA/RqLyWNLF74o2Rma3aOGSVy9mMZn+lTnq1O9r15xO66oFVXUiipuF/4ze0yPGnwNmYbXpo5NWrdzXcq2GQ0zdGjroSUHrxMaFVCT/Ap4/GMaB6VZ2/WCXhx4raJzEL4GAAAAUArbzn1zHo+nOkGdfPNYVoF3saqhq6++Wj09PRn3XXPNNVqyZEmVV1S88fB+mAzvBQAAAAAAUBujgtdJHnyXdPxyW//+t+6ufKePJE4dsccYvs4WvP7gK9Lq32TY4fFIhx0mffObY5sYAAAAAAAAAAAAAAAAADChEL0GAAAAAAD7jyuvlObMSd3m8UgtLVIgUJs1lWjNYY6+eprUOij5cvWbDGW8stFn+uQx3eiSz+NTva9eg7FBDcQGCl5DInhtGJkvnXTk6I6Nd4wKX5crKOVRdUJlSLW26wW1926pylyErwEAAAAUy+v15twfr9LNrfLN4/P5qrKOUt1333168MEHM+5bsGCBrr/++uouqETj4f0w0d8LAAAAAACgNl7c82LW4LUkTX1LeuZdUjzplI1Kh6+zBa+Pe0t6+P5MLzCkhQul1avdm9IDAAAAAAAAAAAAAAAAAPYbua/uAwAAAAAAmEwaG6XvfEf6ylekvXtHthuG1NDghq/DYSkadbc7JV7lNxammXfuNYc5WnWWI9uQDMNQa0TqCjiKpd/ezJCcxBWLSZKD15k4cmTkuRQyX/A6eaw7Nt4hSVo2Z1nOYzH+VTN4nZCY74TWo6o6LwAAAICJye/359xfreh1LBbLuT/fOmupu7tbq1atyrr/lltuUX19fRVXVDq/35/zz6Ia74eJ+F6YPn26jjjiiIrP89prrykSiVR8HgAAAAAAJppndzyr439yvBw5GYPXTTukfUn3fLek4duGG8r4kmGG3HNJbEcy81Wyk1+XZdAlO6U//SLLi2bOlJ58Upo/v/CJAAAAAAAAAAAAAAAAAACTAtFrAAAAAACwf5k1S7rxRulrX5N27kzd5/W6YWzHccPXfX3lC1+nx6HzjZs4vqVFsixpKMK0ZlFcq06LyTaM4WMMSVMiUndy+NqQnAxB6kzB65gV00BsYOhlhpyhf7KFrwsNXg//qEnh67ZgW0GvwfhTi+B1QmLe+R7ePwAAAABy8/l8OfdHEze6qrCJGDpO+MpXvqLdu3dn3HfBBRfonHPOqfKKSjce3g8T8b1w9dVX6+qrr674PIsXL9ZLL71U8XkAAAAAAJhI8gWvvZ1S78zR2ysZvs4WvF60V1r3sywvam2VnnlGmjcv/wQAAAAAAAAAAAAAAAAAgEnHzH8IAAAAAADAJDNrlnTTTdLpp2fen4g5G4Zkmu6jwMCzEjHq9Ee24wrR0CC1tGjNkoBWnR6XbY5+rSlDUyKGfLayBq/9Hv+o4HXcig8Hr4eXNhS7djJcAlls8DohEb7evHdzUa/D+FDL4HVCe+8WvTTwZk3XAAAAAGD8a2xszLm/r6+vKuvo7e3NuT/fOmvl6aef1k9/+tOM+5qbm3XTTTdVeUVjMx7eDxP1vQAAAAAAAKovX/BanVK8KfvrraGvhdze3Rj6P3YBBzsZThGZ1yO99OMsLwgEpHXrCF4DAAAAAAAAAAAAAAAAwH6M6DUAAAAAANg/NTZK114rXXedG8FOZ1mjt+VTZAh6OKadHNV20q4mjMUkSWsWhrXq5B7ZOaYwPB41BZrl8fhG7csUvLZsS4PxwcxjZQhflxq8TnDk6JFXH1EoEirp9aiNuG3rlf6xx6abvA1jHuPtWIds2WMeBwAAAMDk1dbWlnN/KFSd/ybNN0++ddZCOBzW5ZdfLif9s4kh//Iv/6I5c+ZUeVVjMx7eDxPxvQAAAAAAAKpvT++e3MHrAclo0lCtOjtLKvj/q54IX2f5OChFcvh6eq/0xi2ZBjQkr1f66U+lgw4qcBUAAAAAAAAAAAAAAAAAgMmI6DUAAAAAANi/nXCC9JOfSF//urRkycj2eDz/a71eye93vyZC0IaRPX6d2OfzSU1N0owZ7usT+0xTqqsb2Ta0jrzBa79fVnOj4q1TpIBfzYHmlMB1tuB1zI7l/PGSw9djDV4nOHK0p38P4esJxGuaumDW+xUw/fkPzmJJ06H6+JwztaTp0JLHCJh+/U3TUTL5SBMAAABADlOnTs25v7u7uyrr6Onpybk/3zpr4frrr9fWrVsz7jvuuOP0uc99rsorGrvx8H7IN8d4fC8AAAAAAIDqCkVCuvCBC1NuTJ5iQDJ9qeHpfEoKX+eJXzuG1Doobb458WJj5JE45+Wyy6SPf7zwhQIAAAAAAAAAAAAAAAAAJiVvrRcAAAAAAABQc16v9L73uY+ODmnTJun733e/d4au6LOske8lN1wdDI48t4cuF3QcN5ht2+73iYv7PJ6RQLZpjoSxfT4plhafbm11Xx+Nas3Rfq16b0i2nfQxjmm6r0tEt01TdlLA2jAMNfoa1Rfrk8fwlBS8Hh5Lhhw58pv+MQevk+3p3yNJavI3lW1MVE6jt14rZn1A9+1+UhE7WtRrlzQdqhNaj5Kk4a/tvVuKGiNg+rVi1gfUM9BV1OsAAAAA7H+mTZuWc38kElF3d7emTJlSsTV0dnYqGs39307jLXTc3t6uG2+8MeM+r9er22+/XaY58W5ClO/9sHv37oqvId8c4+29AAAAAAAAqisUCem8X56nP7z5B3dDenh6QPJ4JauEUzZsqfDbSg+Fr00ne1w7EJU+/KzUkn5DeI/Hvfn7u94l3XBD8QsFAAAAAAAAAAAAAAAAAEw6E++KRAAAAAAAgEqaPl065RRp5kypuVlqaXEffv9IwNow3PB0MtN0L+ILBKSGBqmx0b2gr7HRfV5XNxyoTpEtJG2asuoC+ulRMdmtU6SpU0cera3uuMHg6PGGhzVU76uX1/RqXtM8GRqax5EsxyrqV2LIUNSOyhmKfhsydOT0I0fGLFFPuGd4TIx/ifB1wPQX/Jq53rbh0HXCCa1HaUnToQWPkQheN3rrC34NAAAAgP3XAQcckPeYPXv2VHQNhYxfyDqrxbIsXXbZZYrH4xn3f/GLX9QxxxxT3UWVSb7fc6XfC4XMsWDBgoqvAQAAAAAAjE/JwWvbsUcHryX5vJI1hit/7GIONtzjjQzr8MalAVP6r/dLX/3A0AF+v3tOzdSp0sKF0i9/6Z5rAwAAAAAAAAAAAAAAAADY73lrvQAAAAAAAIBxyZvnY5NsseZiI845jvc4hu7acpRWnlCn9t3txY0ryTRMnTj/RB3YeqDe6HpD//f2/0mG5DN9itkx94LJAnhMjxp8DTIMQ4YMXXz0xVo2Z5nW7VynOzbeISfTVZd5BDwBNfubtatvlyLxSMq+J157Qh6vR5IUinbLThk/dc2D0Yjue/u3Rc+fS6/Tp1iOyz5NuXP2O/2KKndA/L63/resaxsP6uRTRNG8f+qGpM54r+59O/PvICCfworlHSNo+/Torv+TJMWdqMKKJh3hqEfhlNfc9sb98vsKD3MDAIDyisWjitkj/xvJY5ra/FanlrUeoSOaDqrhygDsLxobGzV16lTt27cv6zFvvvmmDjvssIqtYdu2bTn3z5gxQw0NDRWbv1j33HOP1q1bl3HfAQccoOuvv77KKyqfhQsX5tz/5ptvVnwN+d4PBx54YMXXAAAAAAAAxp9QJKQP3fMh/fGtP2YNXvsHpahv7HPZkgruZhuS7UimIzlD90I3LSliSIl7ZN94kqT6oG54tsXdcOCBbvB6/vyxLxYAAAAAAAAAAAAAAAAAMCkQvQYAAAAAAMikpSX1uceT+twuLBidVywt+psW225unaXVK36slfetLCp8bRiGPnL4R2Qa7mWLB7YeKEeO/vjWH1PC106eSHe24LWk4a/Fhq/9pl+WbWl3/245Q/8ki9gRmTF33XaO+LQkWbIVc0IFz12IfH+ytqROJ5T3OEnqVG8ZVjT+FPKn7UgaVEwRJ3fYOt8YIfWnTJj+e48pnvL8bXufjIhR8pwAAKC8DEt6p6dPf+l5QYfVL9A1B3+81ksCsB848MADc0avt27dqjPOOKNi87/66qs594+3yPHevXuz7jv55JN1zz33VHE10urVqzV16tSs+5uamrRy5cqCxsr3u966dWtRayvFRHs/AAAAAACAyrNsS+fdc55+/+bv3Q0Z/p/wwQEpXMb7PZcavjZsKRaVzMbUQ248ZkAyDN2w8DLpm9+UmpvLt1gAAAAAAAAAAAAAAAAAwIRH9BoAAAAAACCTgw6SNmwYeZ4Wo5ZlSY4jGWOI69q2FE8N9srnS32+eLGaA81avWJ1weFr0zD1qSWf0kGtB2njno3D2w+ccqBCkZDa97QPh68tx5JlWxnHyRW8Tig2fD2zYaZ2hXYpakXzHovxy1T+OHg5xin4glsAADAhvDLwpu56+1F9VF+p9VIATHKLFy/WunXrsu5/5ZVXKjp/vvEXL15c0fnL6Z577ql69Pof//Efc+5fsGBBwdHrfL/rvXv3qrOzU21tbQWvrxiJ8XOZSO8HAAAAAABQHlv2bXFvWi5lDF439Er9deWft9jwtWFJVnx08Dqx/8ZjB6WTArqB4DUAAAAAAAAAAAAAAAAAIA3RawAAAAAAkJ1tS729Ujjsfu8kXWk3OCi9+GJ55zNNKRCQWlvdr7VUVzc6SJ0uHk9dp2lmjGA7kizZcpz48LWKhmPIDMdkOPbQBYyOHMNQKN4nxx4Z4z9Dj2ndr9xwdcAMyHZs9UR6Rs1hO2462JChQ9sO1R/f+qOeeP0JdUe6U46LxCMKeoMpY2SLVdu2rb5onySpra5ND215SA9teSjjsV7Tq87B3BEnv8evgeiA+q3+nMdhYjCU8drbomULXxO8BgBgcloX2lzrJQDYDyxdulQ///nPs+7fkHyTqwpYv359zv3HHntsRefHiIULF6q1tVVdXV1Zj9mwYYM+8IEPVGT+fO+FqVOnav78+RWZGwAAAAAAjE97+/fqmNuOkeVYGf+f7i3dUk+myHSZFBq+NiTV9Ul96fcKM+SeGzN0fszP2n+mb536Lfm9/vIuFAAAAAAAAAAAAAAAAAAwoRG9BgAAAAAAmdm21NEhWVbm/Y6TGsEuB8uSBgakPXukvj73644d7vfxuOT1So2N0ty50vz50sEHu4HsSjjooNTnhuHOnxzCjkYlv9+NXSeOMVMvDbTlyHKsUdcpOrYt9ffLcRwlEtcxnynHTI1mbz14ipyh37PX9Or4Ocfrrzv/mjF8nQheT2+Y7saqs/zxBL1BSVJPpEeGDHkMj3sxZRJTpoyhCxTb6trU4G/IPNiQxP5s4Wu/x6/pDdPVHykseG1nzCBnO7b6Cp2zFmsbb0r9HZT6O47KIpgNAMA445Vv+PuwHdFgOCx/oK6GKwIw2S1dujTn/ueff16WZcnj8ZR97ng8rvb29pzHEL2urqVLl+rJJ5/Muv+5556rWPT6ueeey7mf9wIAAAAAAPuXrsEuffLBT8pnehW1oqP2T98ndbRUfh35wteGpCl7pa5ZiQ1G6tchbXVteu7y5wheAwAAAAAAAAAAAAAAAABGIXoNAAAAAAAy6+3NHryuBMuStm6Vnn9eevttd1u2+NQrr4x8v2iR9L73SUcd5Uapy6W11R1769aRJQb98vQlRa8dx410NzQMX9hnGY48zshFfpZjj2pPW7Ll6xsYjoY7ci8YjPpHfl7LcLT10Gnqbh2JATqOI5/HlzF8nRy8ThaPx+VN+704jjMcvg5FQpKUEr7OFLzONE66bOHrRPDaNEgRozqIjQMAMJ4Z6ox0q0UVunkNAEhatmyZgsGgwuFwxv19fX167rnndNxxx5V97meeeUYDAwNZ9weDQb373e8u+7zI7r3vfW/O6PXTTz+tf/iHf6jI3L/73e9y7n/ve99bkXkBAAAAAMD4sz20XUtvX6p4PKrmvphkSP1JrehZ70i726q3HltS4iyV9PNaWvdInXM16sbvydrq2rThig2a1zyvQisEAAAAAAAAAAAAAAAAAExkRK8BAAAAAEBmWcJQFfHqq9KTT0qhUOp2xxmOSWe1dav7aGuTVqxw49cJXV3Sa6+5Ee0dO6S+Piked+PYjY3S3LnS/PnSwQe7ket073vfcPQ65Hd00ZkRfWa9R8s3JcXALUvq75fq6xUKGrrog736zOaglr8ekCPJSbs08KGFEf38XWH94j5HTUnbo36P4l73YsGHD7Z09xGWjps1d3h/zIrpmZ3PaOGUhZrbNDclfG3I0KK2RaOC133RPm3v2y6/6dec5jmSpHA8rIHYgKYEpyjoDcpreocj1UFvUHKkmB2TNBK83hnaqagd1azGWcOx7GzSw9fpwWsj358nAAAAJjWvmeXGNgBQRsFgUCeffHLO0PFvf/vbikSvn3jiiZz73/e+9ykYzP3f1iiv0047Tddff33W/X/4wx8UjUbl9/uzHlOKcDis//u//8t5zOmnn17WOQEAAAAAwPi0PbRdx95+rDoHOiXHlmSoOeru6/dLc3ZJO6fnHKIibEmm3Bu1J85uae2UOufkfh3BawAAAAAAAAAAAAAAAABAPkSvAQAAAABAZrade3854sXhsPTUU9KmTe5z00zd7/EUPk9Pj/Rf/yWdcoobvn76aemFF3K/5tVXR74/6ijprLOk4493o9iSG8R+9FGFunZr5Vn9ap9qacOZkmxDyzcnxawtS6For1Z+2FT7DEcbpvdLhqnz3vBL9tDPZNv69QED+tLfRmUb0oUrpHvuk5qjkmMa6gsYsqyYHjnE0df/1lbMI/2xaaOm7dotSero71DUiqpjoEOv1b2mBn+DAt6AjIihRn+j9g7u1d7BvSO/2nhYXeEuSVLUjuqt7rcU9AY1GB+UJO0d2Kt6T728Hq/qvHWKWBHVeercHydmKeAJyLItvd3ztizHjXzv7tutZm+zvN78Hyklxgx6guqL9A1vj8QjeV8LAACAycmQR15veYOiAJDN6aefnjN6/cADD+jrX/962ee97777cu4/44wzyj4ncjvhhBPU1NSk3t7ejPv7+/v1+OOP6+/+7u/KOu8jjzyiwcHBrPtbWloqEl4HAAAAAADjy3DwenAoeO1IPX5HctxzRqZ2SG/NrM3aHEmWJI/c8PXxr0prDxvameV8HYLXAAAAAAAAAAAAAAAAAIBCmPkPAQAAAAAA+yWfL/d+x8m9P5+eHunOO0eC1wmGMXLhXDzuhrH7+0ce4bC7PfnYxCMWkx56SPr2t6X29tH7cz1efFH67nelq6+Wnn9eCgalxkaFrvqMVp7Vp/ZplmQYsg1Dq85ytObwkdeGAtLKFY7ap1uSbct2bK16b0hr5vbKMzgob2+fHp7Zo2ve7wavJWnjLOljK6SegNRb75VtSP9ziK2vn2rLNqS+gKGwHdXuvt3a3btbESsiZ+iffYP71BPuUcyKqSXQIq/plWVbilkxxayYBiIDw8HrBFu2BuIDI88dWwPWgGzHltf0qt5bPzx+vbdeXtOr7nD3cPA6IRQPKRqLynbsnI/kMdP3AQAAYP9iGh55Tb8C/qDcbAYAVN6KFSty7l+/fr1eeeWVss754osv6oUcN+AyDCPvumrhmmuukeM4VXvk88Ybb+R8/bZt24r6+bxerz784Q/nPObuu+8uasxC5Btz+fLlBd1YDAAAAAAATFwpwWvbDV0n9ASkxndqF7xOZkm6oF36072mvvKMJ+txBK8BAAAAAAAAAAAAAAAAAIXi6jkAAAAAAJBZc7PU0VGZsbu7pXvukfr6Ru+zLCkScQPW0kgAOxO/341TezxuEDsaHdkXCrk/gyf7xXgZ7dkjXXeddNppCl32Sa30rFH7HI8UHYk/26YbvpZh6AOvOW7wOu0iRFuOvnhqWEbYXf8XznKGg9cJG2dJH11p6D8flX4/z9Y/neoeE/YZinrdg6OW+zMZMmQk/S56Ij2SpKA3KEkyTVO2ZSsWj6kn1pP1x3PkyBgKDdqOrf5Yvxp8DSljG4ahUCQkW5kD1X1WnxrVmDfMZOT6s8uhTnVqqGso6bUAAACorf5IvwbtwZRtfl+wRqsBsD87+OCDdcIJJ2jt2rVZj7n55pv1wx/+sGxz3nTTTTn3n3TSSVq4cGHZ5kPhLrroIt15551Z999///3auXOn5syZU5b53nrrLT300EN51wQAAAAAACavrsEuLb19qRu8dpxRN5efs1PaekCNFpdm7l5p9cOSTOmG/6uTAo5uXJr6WT/BawAAAAAAAAAAAAAAAABAMYheAwAAAAAmr2jUDR/HYqMuHNMjj9RmTeXS3y8NDEjxuBt1rq+XGhpyB6KL1dHhxqd7e93fn2FIXq87j89X+rjhsHTvvaOD144jDQ6OxK4LEY26azSMkTUmj9fbKzU1Sbbt/q6skXC1PB735/F6U15nGY48jqHQ7/9XK6f8j9rn+9yfOR53xxlim4auPsvRrD5pd4Y+syPJNqTP/p373gtYo/c7hvTidEfnrYjpnfqh+U2pLzASpR453pEcZQ1fGzJk2VbO4HXyWInwteVYo8LXuYLXCYWGrwEAAAAAqJXPfOYzOaPX//3f/62vf/3rmj179pjn2r59e86osiR96lOfGvM8KM1pp52m+fPn6+233864PxaL6bvf/a6+//3vl2W+7373u4rH41n3H3DAATr11FPLMhcAAAAAABh/QpGQPv7AxxW3YpI9Ong9fZu0Y35t1paupU/aMUta/lFpzX2SfD7d4D9NOvFA3fiXGyURvAYAAAAAAAAAAAAAAAAAFI8qEQAAAABgchoclLq6ar2KyujudoPXCfG4G/eORqW2tvLOFQi4gWvLGglGW5Ybkl6wQJo1q/gxf/ITN3jt9Y5EpC3L/ZnS4+SFRLydtIsDE69xHPd309UlmWbuMQIBqb5eoTpTF50W0oVbg/rFYWG1N8WlkCm1trqPri45tiVDhmw56g462lMvtUQNBeMaXkfYKw34pLqYFAq4U7RE5B4jyTEMN2ItKeyRNk2TvLbUFJVCdaYcIzV4ncyUmRK+7o/2a3rddPkMnzb1bcr/+0r82uTIa458NGTL1sKmhXq1+9W8weuEPqtPhzQdokZ/Y8Hz7u7drcHBwYKPBwAAAACgVJ/85Cf1T//0T3rnnXcy7h8YGNA//uM/6uc///mY5/rqV7+qcDicdf/MmTP1yU9+cszzoDQej0fXXHONrr322qzH3HLLLbryyit12GGHjWmul156SbfddlvOY770pS/J4/GMaR4AAAAAADA+hSIhrbxvpdp3rFewp19yHPUERvbP2CHtmS852YeomsYBqWeK+/2Dh0vLP2Jrze980iWX6IbTz5Ek/az9Z3ru8ucIXgMAAAAAAAAAAAAAAAAAipKn+AQAAAAAwATkOFJPT61XURmRSGrwOlk47Ma+y8003fB1MDjyiESkmTOl+fOLe+zYIf31r5LH4z4Mww1fJwevDWPkIblz19dLDQ3uV59vZJ+dFmdOjJEewk6PaaeLRBTq79TK93dq3fS4Lj01pL/OiI3M0d0teTyyW6eoKygNeGx1BxzFhj5Z6fE7Cnvd31XYK/UEpKhH6g6OXKTYE5DCPskxDYW9jrqD0qBH6h26sDFuSp11kmVmD147cmTLlmmY8pgeeUyPTNPUG11vaFNn4cHrBMu25DW98ppexeyYNu/brMF4ce+hV7tf1ZTgFB3cdnBBj7b6MofZAQAAAADIIhgM6otf/GLOY+644w6tWbNmTPP86le/0t13353zmGuuuUaBQCDnMfls27ZNhmHkfFx33XVjmmMyu/zyy9WW44ZxsVhMn/jEJxSNRkueIxKJ6BOf+ITi8XjWY9ra2nTZZZeVPAcAAAAAABi/9vTuGQ5eq6tTsiwF4+6N0iUp0Cm9M2t8BK/rw1Jfc+q2B98lLT8/Jp1xhiTphtNv0NvXvE3wGgAAAAAAAAAAAAAAAABQNKLXAAAAAIDJJxweHUOeLCKRse0vF8cpfq54XPrRj0aPkxy8TjAMqa5OmjZNamuTmpqkxkb3a1ubu93rzTyPbY8eLz2CnSbkd7RyhaPnp1vqCtiKmUMha8/QayxLdm9I3bFexbyGG7VO+1Slx+8o5LPVE5AcY+QCxeTve/xSyOco5Hej2KGhKLZjSLY59DVL8Hr4x3NsxeyYnKGfJx6PK6ZYztdk48hRJO7+OUbiEcWd7EGmXJ5+62ntG9hX0msBAAAAAKika665RvPnz895zCWXXKJnnnmmpPHXrl2rSy+9NOcxCxYsyBvfRuU1Njbq+uuvz3nMunXr9OlPf1p2CZ8tWpalSy65RBs2bMh53Le+9S01NjYWPT4AAAAAABjfXtzzomb/+2z97vWnpK4uyRr5fCEYl5p2SdFmaTyc0RSMSgNZPp54cFaXlt//0eHnfq+/SqsCAAAAAAAAAAAAAAAAAEwmRK8BAAAAAJNPjrjxhGdZufdXM/Zd7Fx/+Yu0Z0/qtkyBcq/XDVybptTf714IuG/fyKOrSwqFpFiRoWePR6qvlxoa3K8+n2QY6grYWrnCUftMqatOiiV9WpIIX9ty1G0PKGZF3Si1ITlDkerhX4ekfp9kJ0WuExLha0fSQNoxjpE6TiES4etYPKa4SgtVD69NjsLxsJxRqy7O0289rXh8bGsBAAAAAKDc6uvr9e///u85j+nt7dUZZ5yhhx9+uKixH3roIX3wgx9UX19fzuO+973vqa6urqixURlXXXWVjj766JzH3H333VqxYoVCoVDB4/b09Oj888/X6tWrcx63ZMkSXXHFFQWPCwAAAAAAJobNHZu19MdL3ZuPW1F1eobOaRk6h6k/IvVPl6wizw+pBH9MCtfnPuaRVx/RYHSwOgsCAAAAAAAAAAAAAAAAAExKRK8BAAAAAJNPIFDrFewfiv09p4ej4nEpGh157jiSYbgR7FBI6uuTBgbcY+LxkUc0Kg0OFh43Nww3oO31Sk1NblC7qUlqa9P2A6bosFXSX+e6h9Zn6Gj3+B3tCzpuDNtxZGjkCkTHkGzTjVgrz4WJGePWBbwuG4/hkc/rS1lPLbUGW+X1emu9DAAAAAAARlmxYoU+/vGP5zymp6dHH/rQh3TRRRfp5ZdfznnsSy+9pAsvvFAf/vCH84aRL7roIl1wwQVFrxmV4fF4dOeddyoYDOY8bs2aNVq8eLF+9rOfKRwOZz1ucHBQ//Vf/6XFixfr17/+dc4x6+rqdOedd8rj8ZS0dgAAAAAAMD5t7tisJbctUcweOekk4pU6/e5N4PsjUqRhfASvvbYUzXVvNkPymT49f8XzqvNzEzcAAAAAAAAAAAAAAAAAQOkoEQEAAAAAJh+Pxw0b9/XVeiWTV2Oj+3suVEeH1N6eui05GJQIWDuOZFm5xyo0di25wWtj6KrBaNR9DK17e31cx360S51J7e5g3P3ak7TNNtyH4Qw9DEky5ChpHckXJuZaXgEXMBrpY2fgM33ymO7PEfAGFIlH8r6mklqDrXr/wvfXbH4AAAAAAPK5/fbb9dxzz+mVV17JeozjOLr77rt1991369hjj9VJJ52kAw88UI2Njert7dUbb7yhP/3pT2pP/4wji3e961267bbbyvUjoEyOPvpo3XzzzfrsZz+b87jt27fr05/+tL70pS/p1FNP1ZIlSzRt2jQ5jqO9e/eqvb1dTz31VN7wecLNN9+so446qhw/AgAAAAAAGCdGBa+TTt2IeKVdg46C9VLMO3LKSK3O7vDY7r3m5c9ywFDwuv3Kdh0+/fBqLg0AAAAAAAAAAAAAAAAAMAkRvQYAAAAATE5NTe5Xwtfl19g48vst1KZNqc8dxw1QFxOwTn5tqaJRKRDQ9npLx67sVmdgZKxE6Do5fG0nRaodQ5IjGY4jwzQlR5lD0wWErfPJFb5ODl4n1DJ8TfAaAAAAADARNDY26vHHH9f73vc+vf3223mP37BhgzZs2FDyfAcccIAef/xxNTY2ljwGKueyyy7T22+/rW9+85t5j+3u7taaNWu0Zs2akue77rrrdOmll5b8egAAAAAAMP6MCl5nEPBKYZ/7vanC76lebqYjWXFJ9VkOIHgNAAAAAAAAAAAAAAAAACgzotcAAAAAgMnJMKTmZjfQHI9LlpW6f8mS2qxrrF58MXfIu66ufD9bOJwamPZ4JK9XMs3ix9q6NfV5PD46Xm1kqUU7zthC18ksyw1efyw1eJ2QCF8H4pLpT41eS0nha2UJXpeBI0eGDJmGKduxU/ZlCl4n1CJ8TfAaAAAAADCRLFiwQE899ZTOPPNMvfbaaxWb55BDDtFjjz2mAw44oGJzYOyuv/56SSoofD0W3/jGN/SNb3yjonMAAAAAAIDqyhi8Tjtdo75fGgiMPLc1Er52kr5WmuFIdkwErwEAAAAAAAAAAAAAAAAAVUX0GgAAAAAwuZmm5PeP3j53bvXXUg7vvDM64J1s2rTy/Wx1deWLTb/+eurzaDT32OWa13FSYtpdnqiWXjiYMXid0BMYCV5nusDQMSQnLUZdbo4cGY4hn+kbvkAyV/A6oZrha4LXAAAAAICJ6JBDDtGzzz6rj33sY3r88cfLPv6ZZ56pe+65R1OmTCn72Ci/66+/XosXL9all16qvlw3mitBY2Oj/vu//1srVqwo67gAAAAAAKC2Mgav0zT2SX3B0durHb42HMnpkTQtxzEytP7y9QSvAQAAAAAAAAAAAAAAAABlZdZ6AQAAAAAAYD/Q0zPyvW1L4XDm4xynfMHr5PkcRyGfrY9/2FI8z6chtiHFzaGLCx33AsNasGXLNEz5Tb/8pj9v8Doh4A3IqPCqCV4DAAAAACay1tZWPfbYY/rZz36mGTNmlGXMGTNm6Oc//7keffRRgtcTzEc/+lFt3rxZF1xwQdnGXLFihTZv3kzwGgAAAACASaaQ4HVLT+bgdULiNutG2tdK8OcJXsuQ/nrZX3XkzCMruAoAAAAAAAAAAAAAAAAAwP6I6DUAAAAAAKi8eHzk+4GBzGHrcseuk4T8jlaukNpnOArGpZZo9ksGE3scI0f4unJLHWbKlGmYWjp7qZbOXlpUyLqS4WuC1wAAAACAyeKSSy7R66+/rltuuUWHH354SWMcccQRuuWWW/TGG2/o4osvLvMKUS3z5s3Tfffdp+eee06f+MQnVFdXV/QYdXV1+uQnP6n169fr3nvv1bx58yqwUgAAAAAAUCuD0UEdc/sxOYPXbV1ST0P+sSodvjYkTd0lRfIEr6cEpmjJzCVlnh0AAAAAAAAAAAAAAAAAAMlb6wUAAAAAAID9gHfoI4ho1H1UUSggN3g9a2RbMC5Jhnr8o+vVhiNpKHjtGJIcd5tTmYZ0RoYMmYapJTOXaG7T3OHt7Xva5RRY3A54A4rEIwUfXwiC1wAAAACAyaahoUGf+9zn9LnPfU5btmzRY489pvXr12vTpk3asWOHent7NTAwoPr6ejU1NWnevHk64ogjtHTpUp111llatGhR1da6cOFCORW8aVi1fOMb38i5f8qUKdVZSAZLly7VnXfeqR//+Md66qmn9Pvf/14vvviitmzZoq6uLvX29kqSmpqa1NbWpkMPPVSLFy/WKaecolNPPbWkWDYAAAAAAJgY/F6/zj7kbD34yoOjdzrStE5pb3Ph49mSTLmBaifp61gZkma9Ke06OPdBLf4WvfC5F+T3+sswKwAAAAAAAAAAAAAAAAAAqYheAwAAAACAymtpkRxHGhhwnxuG+7zCLEO66PzU4HVCMeHrauakDBkyDEN1vrqU4PXcprna2btT7wy8U/BYAW9A4Xi4bOsieA0AAAAAmMwOPfRQHXroobVexqR33XXX1XoJedXV1emcc87ROeecU+ulAAAAAACAcSAUCemiBy7SZ475jCSNCl/P2Cu9M6X4cZPD1wnFnKOSKZQ9e6e0M0/wutXfqo1Xb9S85nlFzAYAAAAAAAAAAAAAAAAAQOHMWi8AAAAAAADsBw46SIrFJNuu+tSf2SCZWa4IDMallqiRcZ/hpF5UWA2J4LUkDcYGtaN3x/C+Hb071DHQUdR4kXikbGtz5OipbU+VbTwAAAAAAAAAAAAAAIDxLhQJaeV9K/Xczue06tFVunjJxfrwYR8e3j9zT2nB64TkM2kMFXeuipN2/Ny90s4DcrzAkNrq2gheAwAAAAAAAAAAAAAAAAAqjug1AAAAAACovEWLpHC4qlOGAtKHL3S/v/mRofC1MfrSwHzh62oxDXM4eC25ken2Pe3a0btDO3p3qH1PuxwVvqBIPFLU8YXoCncRvgYAAAAAAAAAAAAAAPuFrsEurbxvpdp3t0uSbMdOCV/P3CPtaRv7POUIXx+0U9oxK8eBQ8Hr9ivbCV4DAAAAAAAAAAAAAAAAACqO6DUAAAAAAKi8WbOkeLxq04UC0soV0nNzpFVnu9uGw9cZZAtfV6t57TW9Mo3RH9M4crR+13qt37W+5sHrBMLXAAAAAAAAAAAAAABgstse2q7DfniY/rr9rynbE+Hr2Cuv6J0yBK+Hx036vtjw9YI90mCb1BDNcgDBawAAAAAAAAAAAAAAAABAlRG9BgAAAAAAlbd7t+T1ut87jvuokETwun2W+9w2ksLXT/oLDl87kpxsVxAWc2XhGFi2pagdVdSOyrKtgl5TyeB1AuFrAAAAAAAAAAAAAAAwWW0Pbdextx+rfYP71BPpUTgeTtkffGWHHo1tLvu8pYSvZ3ZKb82Rwl6pOZohfG1IXsOr9ZevJ3gNAAAAAAAAAAAAAAAAAKgaotcAAAAAAKDytm6VgkH3+yoGrxOGw9e2o5t/35D1A5FgXApYeYLXFRC343LSfi+OHMXs2PDzmB3LG76uRvA6gfA1AAAAAAAAAAAAAACYbBLB687BzuFtyeFr/7ZdemO6u73QMHUxiglfTwtJHUNr6QlkCF8PBa83XrVRC6YsKPNKAQAAAAAAAAAAAAAAAADIjug1AAAAAACovNdfl/x+yahcSTpb8DrBNqRVp0Ul09DNf2iUKcNdT+IhKexxFPZUN3idYDnWcPjacRzZjj3qmFzh62oGrxMIXwMAAAAAAAAAAAAAgMkiU/BajiTbUc9glzybduntFjdMnTiro1bh62khqbM1dVtPQAr7DDU7PjX46uU3/dp41UYdPv3wMq8QAAAAAAAAAAAAAAAAAIDciF4DAAAAAIDK6+mp6PD5gtcJtiGt+pt+SdLNf2iQmWhEO47CHkfdgQKC1xUMYjty5DhOznh1pvB1LYLXCYSvAQAAAAAAAAAAAADARDcqeG07kmVLti05joId0s45qUHqWoWvp/SPDl4n9AQchZvr9b6Ff6MdX95B8BoAAAAAAAAAAAAAAAAAUBNErwEAAAAAQOXF41I0KjnlDzMXGrxOSAlfP10v0y4ieF0FhcSrk8PXtQxeJxC+BgAAAAAAAAAAAAAAE1XXYJeO+dExbvDaGYpdJ53jYndLkSmpIerhfUNfKxW+Th+/aVAKNWd5gSHJMOX1+nX3+XdrWsO0Mq8IAAAAAAAAAAAAAAAAAIDCEL0GAAAAAACV5/VK4bD7vVG+S/ySg9eOpM46KezN8yLHkS1Hq97bK/X3a9HeIoLX4yCKnWA5lmLxWM2D1wld4S7F4/FaLwMAAAAAAAAAAAAAAKBgoUhI5//qfHWGO2XbtmSnnodhD0jeBsnKcc5IJcPXyeM3hqVGQ2qJZDjIMCTTVFt9m9ZfsV6tda0VWAkAAAAAAAAAAAAAAAAAAIXJl4ECAAAAAAAYu2BQSgSRDUNyxh5qtgzp4+ePBK+76qSYKfUEhqbM1l8emts2pIs/7KjPP+alFMUYurxxLLFq0zDlM30yDENG3FBcpcemDRkKeAOKxCNjWtMpB5wir5ePmgAAAAAAAAAAAAAAwMQQioR03i/P0++3/V5O4nwSSebQfntQ8nnd81HySbwuEb0u9y3MgxGpMfH90GkiiXNkZBqSYaitrk0brtigec3zyjw7AAAAAAAAAAAAAAAAAADFKeDUOwAAAAAAgDEKBlOfG0bm44rQ75f2NEphz0jwOqEnIIW9uS8gDPlVXPB67EuWlD92bRq5P65JDl5LktfrlU++ktaSCF5LUsAbkNcoLVp9ygGnaGr91JJeCwAAAAAAAAAAAAAAUG2Wben81eenBK8lSYYbsLYHJb9HinkKP2XEHhmiXKeZSJL8cSk2kLotGJdaInLPwSF4DQAAAAAAAAAAAAAAAAAYZ4heAwAAAACACScUkFaukLY3S30BKZrhE47ugLSv3o1fj3q9341mF6ycVyIqd/jacRyZhikjw6TpwWt3aYbePffdOuWAU4paQ3LwWpJaAi06+5Cz1RpsLWocgtcAAAAAAAAAAAAAAGCi2dW3S89s/2tq8DohLvlNKepxnyaOKOT0kXKHr322FHUks1XDgWuZpmSaCho+tQRbNLVuKsFrAAAAAAAAAAAAAAAAAMC4kiH7BAAAAAAAUEYdHdL27ZLjuI8xSgSvn58lddVJ1tBVgo4zcrGgI8kxpJghdQelKWEpGB95fb+viAnLHLzOx5Ejx3EyRq/lSHE7nrJpanCq9vTukSTNrp+tXQO7CprHNEzFrJgkyW/6FTSDemHPC5rin6L+aL+idjTvGLPrZ+vN7jf1ZvebBc0pSZ3hzoKPBQAAAAAAAAAAAAAAKLc3u9/Usv9cpv5onwxp1K3L62JS2J96Hkria6bj0yXC14l7uJd6tozXlmKWpDopIqlTjtoSd4b3eKTWVh0/d6nuPv9utdYVd5NzAAAAAAAAAAAAAAAAAAAqieg1AAAAAAAov3hc+vOfpYcfljZulHp6KhK8jg1dx2c4buQ6MYWT1It2NBK+lsZn8NqQISftEsf055Jky065EtJjeNQV6VJXpCvnWJlYjjV8fMyOaWf/zqLXvDe8t6jXSJJlW0W/BgAAAAAAAAAAAAAAoBw2d2zWktuWKG7HZCRusG6MnI7R2CcNBFNfkxy6LjR8Lbnx61LD1x5HivdJahvZFvFKnbLVZvmk1lYtmbtUq1esVnOgucjRAQAAAAAAAAAAAAAAAACoLKLXAAAAAACgvNaulX70I2nPnpFtjiMZxpjC19mC1wnD4esMr02Er+WMHJdXFYPXia+ZYtXZtnsMj0zDHLXda3oVt+MFha8NGfIYHhnG6B/WZ/oUs2NZX+c1+VgJAAAAAAAAAAAAAABMHIngdcyODZ9gYsg9l0SG1BiS+utHtiefeTHW8LUx9H0hTEneXslqG70v4pU6A4ZOJXgNAAAAAAAAAAAAAAAAABjHqBMBAAAAAIDy6OuTbrtNeuKJ0fsyRJWLkS94nZDrYkJHKixkXaXYtTtV7skSUWpJshxrOGSdLXidkC187TE8shwrZexMweuETOFrgtcAAAAAAAAAAAAAAGCiyRS8dobK1Yaklh4p1JD6mnKHr03lD1+bkur3Sn2zMuwcOsUjasf0sw/9jOA1AAAAAAAAAAAAAAAAAGDcolAEAAAAAADGbvdu6Wtfk3buzLx/DNHrRPC6PU/w2i51iipGrt3pDDlyRgWvE4FqY+gfR4488gwf55FHliyZQ//ku2rSa3gVd0bC1z7DN7zPlj0ydp5xfIZPMSc2vDav4S3sis0s0kPcmcQVL30CAAAAAAAAAAAAAACAJHv79+qY248ZdeNvyQ1fT+mUerL0o6sZvjYkTd0ldczPsGOIz/Rp/eXrNbNpZgGzAgAAAAAAAAAAAAAAAABQG0SvAQAAAADA2OzeLV17rbRv3+h98bgUDkuxmOQUX0pODl5LUn1M6gmMPq6o4HWVI9eZl2BkjD8bMmTKlGEYchxHbpPaSeyU6QztK7A67TE8ijtxeQ3vSFTbMGQ6ZurYeSQC2h7DU/BrAAAAAAAAAAAAAAAAam1v/1598sFPymd4FXWio/ZP2yvtneJ+n+U+7FUJXxuSpu+U3jlAWc9t8Zk+tV/ZrsOnH17AbAAAAAAAAAAAAAAAAAAA1A7RawAAAAAAULq+PulrXxsdvHYcaWBAikRKHtoypIvOHwleS1Iw7n5NDl9PtOB1LongtaThr8kybcvHa4z++Kdc41SKmfUyUgAAAAAAAAAAAAAAgMJs7tisY24/Rj551NwTlnxSv39k//QOqaN15HkiSp1JrrD1WMPXhqTpe6V3FmR/HcFrAAAAAAAAAAAAAAAAAMBEQkEIAAAAAACU7rbbpJ07U7dZltTTM6bgtSR5HOkzGyQz7YrAYFxqGRq6qOB1DfkMn3ymT0ZSddtIK3B75CkpRg0AAAAAAAAAAAAAAIBUG3dv1JLblihqRdUfH1TI56g5KjVE3f0H7EgNXifYozcNMzRyv/X0MzycDNuyScxhDr1m9l7pndnZjyd4DQAAAAAAAAAAAAAAAACYaLy1XgAAAAAAYD9n21I87oaSE0Ihae/e0sfs6hodXPZ4JC//GVxWzz8vPfFE6jbLcv/8nLRStWGM3laA5S+7X1ednRq4Dsbdr90ByRnnneg6s04e0yMZksfwKGKNvDeNoX88hkeOiv/9TESGjP3mZwUAAAAAAAAAAAAAANX3uzd+p/ff8X73ydApCv1+92tzVJq5S3p9bvbX23KD1NkYGolcJ58BkWlbvjne7ztQTacs0YOvPJjxOILXAAAAAAAAAAAAAAAAAICJiNoXAAAAAKA2bNuNIw8MjA4i+/3SM8+UPvbgoBu+Tuf1SlOmuONjbCxLuvvu1G2OI/X2Zg5eB4Pua8LhoqfKFb6eotqHr72mV6aReqmj7dgyZOg9c96joDeYsq+jv0NbOrfIkaNGf6OOnH6kvOb+8xHNa52v6c3Qm7VeBgAAAAAAAAAAAAAAmITWvr12VPA6od+fP3idYA99zRa/Lkf4ek639PJBUd285GJJGhW+JngNAAAAAAAAAAAAAAAAAJiosp1/BwAAAABAZXV1ucHraorHpb17pVisuvNORq++6v4ukw0MuDHzZF6v1Nws1dWN3leE5S9LNz8imWlXBAbj0pSIZBRypWAZmTLlNb0Zg9eS1Bxo1glzTxgVvJak6Q3TNbNhphzH0bumvmu/Cl4DAAAAAAAAAAAAAABUyrM7ntVJPz3JfZLhXJKDtxUWvE6W62wXI+1rgpNhW7pZXZJ14GzZjq1Vj67SxUsu1ocP+/DwfoLXAAAAAAAAAAAAAAAAAICJjOg1AAAAAKD6BgelSKR28/f21m7uyeL551Ofx+Oj/0y9XqmpSfJ4JMtyjzHyXdKXXd7wdckjF8+WrSmBKTp86uEy0mZu9DfqyOlHyufxZXxtR3+H9vTvkSS9vO9lxe14xdcLAAAAAAAAAAAAAAAwmT2741kd/5Pj5cjJHLzeLG2bV9rY5Q5fTwtJRv3I3vTwtd/jJ3gNAAAAAAAAAAAAAAAAAJjQiF4DAAAAAKovPY7sOKMfY5VrrGh07OPvz0Ih6a23UreFw6OPa2gYiVzHh8LOY4heS9nD15IyXrBY0jEF2ju4Vz2RHh3aduhw+DoRvPaa3oyv6ejv0JbOLXLkyDAM9UX79GLHi4SvAQAAAAAAAAAAAAAASpQveH3QK9K2RW68utQzV8oVvp7SL3W2SuG0e6knh6+7/6Gb4DUAAAAAAAAAAAAAAAAAYELLXGAC9mORSERbtmzR9u3b1dvbq4GBAdXX16upqUnz5s3TYYcdJr/fX+tlogq6u7v15ptvateuXerp6VE4HJbjOAoGg2psbNTMmTM1b948zZ49u9ZLBQAAmHgyhY/HGEMuarxyz7W/2bEj9bnjjA6J19VJHs/Ic8sa+d4wxhQ2X/6y+3XV2ZJtSGGv1BNwLxIsY9O6IG+F3tIBzQfo0LZDtbNvpxZPX1xQ8DpZInydK5YNAAAAAAAAAAAAAACA0fIFr2e/Jb11UGq0utRzTGxJZpZ9iTHTx07e1jQohZrd7T1+R4qHFfQGR8Z3bP30+Z/qQ4d9qITVAQAAAAAAAAAAAAAAAAAwflBSAiStXbtWDz74oB599FFt2rRJVnKMLY3H49HixYt19tln67zzztMJJ5xQxZWikl5//XX95je/0e9+9zutW7dOO9JDflm0trbqmGOO0SmnnKKzzjpL73nPeyq8UgAAgEmgrq6283Mjm7HZvTv1eTw++phAIPsxY4xeSyPh68s+5AavJcmpUcs8Eb4+esbRMrIE1bMFrxMIXwMAAAAAAAAAAAAAABTn9c7Xcwav69+S9s6SrAync1Q7fN0YlvobU4/uifRI0nD4esmsJbrr/LvkMT0CAAAAAAAAAAAAAAAAAGAiy3auHbBf+OUvf6l3v/vdOvHEE3XDDTdo48aNOYPXkmRZljZu3Kh/+7d/04knnqhly5Zp9erVVVrx+DIwMKA///nPuummm3TxxRfriCOOkMfjkWEYWR/XXXddrZedwrIsrV69WieddJIOPvhgXXPNNXrooYcKDl5LUldXl373u9/pG9/4ho477jgtWrRI3//+99XX11fBlQMAAExwfr/U0FCbuQ1Dam6uzdyTRUdH6vN43I1YJx6S1NsrdXdLPT1SKJR6TJl86BWpPuZ+7xilXYhYLttD29XR35FxX77gdUIifB23M0TEAQAAAAAAAAAAAAAAMGx7aLuO+8lxWYPX6pFiM6V4jqtmSr2/up1jn5H2VZKCMWkg/VSpoRur90R6FI6HtWTWEq1esVrNAc5rAgAAAAAAAAAAAAAAAABMfN5aLwCohZdffllXXHGF/vCHP4x5rOeee04XXnihbrvtNt1222067LDDyrDC8ScSiai9vV3r1q0bfrz00kt5I+Hj2ZNPPqkvfOELeumll8o67quvvqovf/nL+td//Vf967/+qz7zmc/IMEo9JRoAAGASa2mRPB6pv1+q1v+uDAZH5kXpBgbcr44jRSLS4GBqzDpT2Nq2c+8vwa8Pk2xDMh0pXsP/yW3IkMf0aGvXVhmGoekN04f3FRq8TkiEr4+cfqS8Jh/bAAAAAAAAAAAAAAAApIvGo1p6+1LtG9yXOXgdkup90mABpwgZKu1G67akbD3txJiGJF9cCjsZjk0618VrenX3+XcTvAYAAAAAAAAAAAAAAAAATBrUk7DfeeCBB3TJJZeor6+vrOM+/fTTWrZsme644w4tX768rGNXWywW0wsvvJASuH7xxRcVi8VqvbSyiEaj+od/+Af94Ac/qOg8HR0duuyyy3T//ffrjjvu0LRp0yo6HwAAwITU2Og+HCc1hNzQIJ14Yunj7tghbd6cus0w3AfGzrKkeNyNXztOatBaqsrvec27pFVnS4M+N3xdK4YMeU2vDMOQI0dbOrdIkqY3TC86eJ1A+BoAAAAAAAAAAAAAACA7j+lRU6BJHf0do3eGpCZTGvAXPl6lwtceS4qakhlI3zlysktbXZvWX7FerXWtJawAAAAAAAAAAAAAAAAAAIDxiXIS9iu33HKLVq1aJccp5ZTU/Pr6+nTBBRfohz/8oT73uc9VZI5q+J//+Z8JH+7Opq+vT+eff75++9vfVm3ORx99VCeddJJ++9vfasGCBVWbFwAAYEIxzdTotd8vBYOljxcMumNC6uiQNm2Stm6VXn9d6ulxg9Ver9TSIh10kLRokbR4sTR9ev7xwmGpq8v9KmUOXDtOaeFrw0h9H2SRCF4P+KSeoYsCTaf68evk4HVCInzdMdChrnBX0cHrhL5onzZ1bNLRM45OGR8AAAAAAAAAAAAAAGB/5zE9uvHk63Xx/Z9UX1rcutWQQkOnHZlyw9SFKHf42mNLMUOSX7KdtGNM91yQtro2bbhig+Y1zythZgAAAAAAAAAAAAAAAAAAxi+i19hv/PznP69o8DrBcRx9/vOfV2Njoy6++OKKzoXixGIxLV++XE888UTV5966datOPfVUrV27VjNmzKj6/AAAANjPxOPSn/8sPfywtHFj7mM3bBj5fskS6dxzpRNPdKPY6Xp6pF/9ShoYSN2eKVZt26n7C5Eey87w32+ZgtcJ1QxfZwpeJzhy1BnuHPP4cxrnELwGAAAAAAAAAAAAAADIYPn/z96dh8dVFvz//5wzW/at6Ub3QoHSQqELS1lENtkEitgi+yOCqGz6iPrlefSL6BcX9HHBKvhDHylSZJHKvlMFKbSFtimUtRtd0pYuaSbrZOac8/vjZJKZySzJZCZJ0/er11zJOeee+76noBfJdeY9P3tCC96RrpijjvB1db1UVxw/Lhqb7k78Olfha9ORwm2SSjon7ghfE7wGAAAAAAAAAAAAAAAAAOwHiF5jv7Bs2TJdc8013Qpez549W5dccolmz56t8ePHq7S0VA0NDVq/fr2WLFmiBx54QEuXLk07h+M4uuaaazR58mTNmjUrVy8DvfSd73yn28Frv9+v888/XyeddJKOPfZYjRgxQpWVlfJ6vdqzZ4927dqlt956S6+//rr+/ve/a+/evRnn3LBhg774xS9q8eLFMk0z43gAAAAgK++/L82fL+3Y0fPn1tS4j+HDpa99Lf7a3r3Sgw9KjY2SaUqW1f150/wsZhmSp5vvFlw0WbrhrOTB66hs33zYU6Zh5i1IbcjQwVUHa2jx0LzMDwAAAAAAAAAAAAAAsE978UXp0Uc1x5EWLHLD1yWN0s6y1E8x1f3wtdTz+0+i4WvTkSIhdQavYya2JZmGQfAaAAAAAAAAAAAAAAAAADDoUV3FoBcMBnXxxRcrHA6nHTdp0iS99NJLev311/WNb3xDRx11VEfkuLKyUjNmzNANN9ygN998U88//7wOPPDAtPO1tbVp3rx5CgaDuXw5yNLrr7+u3/zmNxnHeTwe3XLLLdq0aZMefvhhXX/99Zo5c6ZGjx6t4uJiBQIBjRw5Uocffrj+4z/+Q/fee682b96sX//61yotLc04/6uvvqr58+fn4iUBAAAA8VpbpWeekRYsyC54HWvHDum226Snn3bnbW2VHnnEDV5LksfTOda200at0wkGpAsulhYdGnMyOlfCnIsOTR28dgzJNtyvfRG8liTLsWQ73XkrZM8QvAYAAAAAAAAAAAAAAEghGJRuukmaN6/j3pI5H0hjPpV2Zr6Vu0dvoMnmo9AdSd6gZCQGr2MmDXgCBK8BAAAAAAAAAAAAAAAAAIMe0WsMej/4wQ+0YcOGtGNOO+00LV++XKeeemq35jzjjDP01ltv6bOf/WzacRs2bNBtt93W3a3u04qKinTcccdljIH3l//zf/6PnAwhvuHDh2vx4sX6+c9/ruHDh3d77pKSEt10001auXKljjzyyIzjb7/9djVGY4EAAABALtTXS/ffL61Zk/y640jhsNTS4oaro4+WFvd8qv9WXrPGnffZZ6W6Onec40im2TlvloIBad5F0tsHSDecnSJ83W7Roe4Y23Cj13EvLSZ03a3dZPOOxBQidiSn4WuC1wAAAAAAAAAAAAAAACls3iydeab7we3NzR2nj79M+nh4+y0h3bh5JJ/h66HbpbYqyXCSPLf9RIm/RMOKhvVwZgAAAAAAAAAAAAAAAAAA9i1ErzGovffee5o/f37aMccdd5wef/xxlZeX92juiooKPfnkkzr66KPTjrvrrrv0/vvv92juga6goEDHHHOMvvGNb+jPf/6zVq9erWAwqCVLluiEE07o7+11sXLlSr322mtpxxQXF+uZZ57RiSeemPU6Bx54oF544YWM4e9du3bpr3/9a9brAAAAAHH27pUWLnS/JopE3Lh1XZ3U0OBGrtvaOh8tLe75ujp3XCTSdY6dO6WaGsmyJNt2H5aVk+B1zQj32DaShK/bxQavJamyRfK1d6Zjg9f9JVfha4LXAAAAAAAAAAAAAAAAKWzaJJ1/vrRxo3vcfo/L6XOlZWM7h/Vn+Hp4rfTp6M7l48LX7d8MKRyiFV9dIb/X34MdAAAAAAAAAAAAAAAAAACw7/H29waAfPrhD3+oSLJoW7uqqio99NBDKioqymr+4uJiPfzwwzryyCO1N1lgTlIkEtHtt9+uBx98MKs1+lsgENDhhx+umTNnaubMmZoxY4amTp0qr3ff+b+PBx54IOOYX//615o+fXqv1xo6dKgee+wxHXXUUbLt1OG7Bx54QNddd12v1wMAAMB+rrVVeuQRN1gdy3Gk5mYpFOr+XNEQdiAgFRVJhuEGrtva3PlCIfdadGxPGEZHJDsxeB0VDV9L0pwP3K+WIf35qM7gteS+B7CyRdpVJEW6+67C2CfnQcSOyGt6ZRrZfbYYwWsAAAAAAAAAAAAAAIAUgkHp4oul7ds7z1mWpl0prR4tmU58xNpQ+20qGe4TMSV192PODaVvaY/dIW1qj2877YON6BYMQ44cDSkcolXXrdLostHdXBUAAAAAAAAAAAAAAAAAgH1XdjUmYB+wfv16/f3vf0875sc//rHGjBnTq3XGjRunH/7wh2nHPPLII9q4cWOv1ulLBx98sO655x699dZbamho0PLly/WHP/xBV199tY488sh9KngtSS+//HLa64cccoj+4z/+I2frHXHEEbrsssvSjnnzzTfV1NSUszUBAACwn3rlFSnxA3gsS6qv71nwOlYo5D7fsqRIpCNWLceRwmH34ThuyDpRsnPR5yp18DoqGr5edKh77HGkBx6Tpm2PHxfyxoewMzEkebr7LsUsWbYlx0n39sbkCF4DAAAAAAAAAAAAAACk8f3vSwn34n/uQjd4Lbn3kCTeFmJI6SvV7XryhppUt6qM2yZtGhV/zjEkx5RkmjIMQ9WF1QSvAQAAAAAAAAAAAAAAAAD7FaLXGLTmz58vy7JSXp80aZKuvfbanKz19a9/XRMnTkx53bIszZ8/Pydr9YXDDjtM1157rWbMmCGfz9ff2+mVcDisd955J+2Yq666Sh6PJ6frZvp3KxKJaNWqVTldEwAAAPuZtWulNWviz9m21Nzsfk3G65UCAamgwP2a6gNtbFsKBt3AdaxIxH0kEw1epwhfZwpedyydEL4uC0kPPdoZvm71SvWB9HMkY+XoP/mNJG9hNGTIa3plpIp+p5mrp8HrcOI/kyzlah4AAAAAAAAAAAAAAIC8efFF6ZFH4k7Nm7lNL0yOH9Zf4etx26VPxiQf60hyHEdVhVVaed1KgtcAAAAAAAAAAAAAAAAAgP0K0WsMSpZl6cEHH0w75pvf/GbOQsder1c33nhj2jELFy6UnSo8h7z55JNP0sbPJemMM87I+brHHHOMysvL045Zu3ZtztcFAADAfsKypJdfjj/nOFJLi/s1lmFIhYVSRYVUViYVF0tFRe7XsjL3fGFh1zVs230kzpc4t9fbNXSdcNzd4HXH0inC1yMaOoPXdg/60t14/2IP5nJkGp2/Tsk2eC1JlQWVPQpe72neo9e2vqYlW5b0eK1YS7Ys0WtbX9Oe5j29mgcAAAAAAAAAAAAAACBvwmHpv/877tTV07bp4SOSD7eN9vtJYm7hyGf4evROqa1CKm5LPchrevXWNW8RvAYAAAAAAAAAAAAAAAAA7HeIXmNQeuWVV7Rt27aU1wsKCnTZZZfldM0rr7xSfr8/5fXa2lr985//zOmayKyuri7jmMMPPzzn63q9Xh122GFpx+zatSvn6wIAAGA/sXatFAzGnwuFugaqvV43bF1YKJkpfgVgmu718nJ3fCqxc0e/9/ulgoKu0Wup41xPg9dR0fD1Y4e67z18aYK0vUTy2j0LXivhzYxe0yuv6ZXHyP5DkGzHbp86++C1JNW11mln085ujd3TvEerPl0lSWqNtGYdvl6yZYlaI62SpFWfriJ8DQAAAAAAAAAAAAAABqbnn5c2b+44/O7B2/TnGemfYkuyJDl5Dl9P+FTaMlIK+qWytoTwdfvaPtOnmutqNK5iXA9mBgAAAAAAAAAAAAAAAABgcCB6jUHpySefTHv9nHPOUWlpaU7XrKio0FlnnZV2TKZ9IfdCoVDa6+Xl5fL5fHlZe+jQoWmvt7S05GVdAAAA7AdWrYo/tiwpEok/5/VKpaWSp5txZ4/HHZ8sfJ0Y045dwzDcaHaS8LNlSpde2PPgdZRtSDeeLV11gftVPW1LJxkfsSOqCFT0Knod5TE8WQevJcmRo4/2fJQxfB0bvI7KJnwdG7yOInwNAAAAAAAAAAAAAAAGpPvu6/j2dwds0y9O6N7THLnx63yFr0fvljYc4H7f5E8evo4GrycPndy9TQMAAAAAAAAAAAAAAAAAMMgQvcag9NJLL6W9fs455+Rl3Uzzvvjii3lZF6mVl5envV5cXJy3tTPNXVZWlre1AQAAMIjt3Stt2hR/LhzuOq64OGmIOi3DcJ8npQ5dx46Nzm+aScPXHsfQl1dJZjfeNJiKbUgvHihZpiHHNFQUMWSkmC/ufIqX7jN9agw3yjRN+czsPwDHY3hkmr3/tUqm8HWy4HVUT8LXyYLXUYSvAQAAAAAAAAAAAADAgFJbK73+uiTpvsptuulMN2TdXY4kS+3h6/Z7SHIRvh5eL20eHn+uI3wdNlTsK5Lf4yd4DQAAAAAAAAAAAAAAAADY7xG9xqCzbds2vf/++2nHnHbaaXlZ+/TTT097fc2aNdq+fXte1kZyQ4YMSXt9z578hd12796d9nqmvQEAAABJbdgQf+w4UiQSf66wUPJ4spvf43Gfn4lhSD6fFAi4j8JCqbLS/T4axDYMzfnQ1F3P9i587RhGxxsQCyypvE1dwteGE9O5ThO89pidfy8e0xMXvjaN7v2axGN44ubprVTh63TB66juhK/TBa+jCF8DAAAAAAAAAAAAAID+YNlW15PLlkmSHi/epq9c0LPgddzcau9c5yB8XdUobU9x+3eTXwqWF+jE8Sdp6ze3ErwGAAAAAAAAAAAAAAAAAOz3iF5j0FnWfoNrKmPGjNGYMWPysvb48eM1cuTItGOWL1+el7WR3MiRI1VZWZnyemtrq/bu3ZuXtTMFzidOnJiXdQEAADDIbdkSf2wleeNfINC7NbJ9vmFIJSXuw+z8lcOcD4zeha8TItYFEaNL+NoxJNvsOjYqMXgdFQ1fm4YZF8BOJ5fB66jE8HV3gtdR6cLX3QleRxG+BgAAAAAAAAAAAAAAfSkYCuqChy7QovcXxV9YvVr/Kt6mi+ZKkRT3gnRXLsLXZS3S7oo0gw0pLEv3X3C/qours9soAAAAAAAAAAAAAAAAAACDCNFrDDorVqxIe3369Ol5XX/mzJlpr69cuTKv6yOeYRg6/vjj04557bXXcr7unj179O6776a8XlhYqBkzZuR8XQAAAOwHamvjj207/tjjiQtOZ8U03YB1OonrxvL7pYoKN37t9UrqYfjaMOQYRnvI2lDEa8oyDdmmIcs0FPa63/scw30nYvSRwGt4O2LW6ULV0fC1kek1SzJSVbVzIBq+Xr9nfbeD11HJwtc9CV5HEb4GAAAAAAAAAAAAAAB9IRgKat6j8/R27du64dkb3PD1woXSccfpvdv+r07/Yu+D11G9CV+XtUj1pWkGGe6Hsa/66iqC1wAAAAAAAAAAAAAAAAAAtCN6jUFn1apVaa8fccQReV0/0/xEr/ve2Wefnfb6M888k/M1n3vuOdlpIoAnnHCC/H5/ztcFAADAfqCpKf44WfQ6FzKFsx3HXTsSSf0wTamoSCotlYqKNGdDge56wZM+fG1ITkfE2pDlNdVcElBTWYEaywrcr8U+NQVMWV5TppF8n17TK6/HmzF43bFsN4LXfaHNatPG4Masnhsbvs4meB1F+BoAAAAAAAAAAAAAAORTXUud5j06TzXbayTblr1rp26490It+tGl2vnmm5r+HSmc43e7ZBO+LmqV6jPc5yJJb13zliYPndzbLQIAAAAAAAAAAAAAAAAAMGgQvcag89FHH6W9PmnSpLyuf9BBB6W9/vHHH+d1fXR1+eWXq6KiIuX1++67T9u2bcvZerZt6yc/+UnaMV//+tdzth4AAAD2M5aV/nqu4s2ZoteSG77u7lw+n1RQoDlbSnXXv0vdWHXSvcafszzp92G0/0nkMdzQ9UCJWXdH2ArLyfRuygxaI616ZeMrWQevo1Z9ukrhcLhXcwAAAAAAAAAAAAAAACTaEtyiQ353iJZuWSrt2SPt2CG1tck2pIs/I439jhTy5mftnoSvC9ukBltSWYrJ2uc4ZtQxmjJsSg53CQAAAAAAAAAAAAAAAADAvo/oNQYVx3G0cePGtGMyRal7K9P8mfaH3CspKdGNN96Y8npLS4u+/e1v52y93/3ud3r33XdTXp80aZLOO++8nK0HAACA/YzHk/56d0PUmXQnFt3WltXUc9YHdNerxTKTbDXxlJ0hei25Yetk4ev+YshQVUFVj/fk8/jytKOeK/AWyOcbOPsBAAAAAAAAAAAAAAD7vk/2fqKj7jlKu5t3q765Tq1WKO66WS615vl2hY7wdbuO8HXMSX9YaoyoW8HrFy5/QR4zw/08AAAAAAAAAAAAAAAAAADsZ4heY1DZsWOHWltb04454IAD8rqHTPM3NTXp008/zese0NV//dd/acqUKSmvL1y4UD/60Y96vc5TTz2lb33rWymvG4ahP/7xjzJN/u8XAAAAWSoujj9O/G9Ly8rNOt2JZ7e1Sbad1fRzPvbqrmfUNXyd0ImOeDtfnylTPtMnj9H1jYJOQi47lPCmyL5iyNDBVQfrsKGH6eCqg3scvvZ7/HnaWfcVeAs0e/Ts/t4GAAAAAAAAAAAAAAAYRN7f+b4m3TVJu5t3d9xvUh+QWr3u9aCR/+B1lCUp9o6Xjrs7HMkbkYzdyhi8Pnb0sXrh8hdUFkg1EAAAAAAAAAAAAAAAAACA/RfVVQwqtbW1GceMGDEir3vozvzd2Sdyy+/3a+HChaqoqEg55gc/+IGuvvpqNTc393h+27b1k5/8RHPmzJGVJjL4rW99SyeffHKP5wcAAAA6JH7QTrLodZYh6g62nTyebSQEnB1Hamlx9+DxdP/hOFJTk+Z8aOjUDannt3weOaYRc9noeMRvI3mgOxTpWfi6p+MTRYPXQ4uHSpKGFg/NKnxdVVilAk9Br/aSLYLXAAAAAAAAAAAAAAAg197f+b6m3T1NYTssx3HkxNxKUR+Q6iU1Bfp2T7bRNXzts6TKXVLz6BRPigleP3/Z8wSvAQAAAAAAAAAAAAAAAABIgeg1BpXdu3envV5WVqZAIL93wxYVFamkpCTtmEz7RH4cccQReu6551RaWppyzJ///Gcdeuih+sUvfqG6urqMc4ZCIS1YsEDTp0/XrbfeqkgkknLsFVdcoTvvvDOrvQMAAAAdRie8q87j6Tom1Lt4c9LnJwavo8eWJTU2uqFsw8j8sG2poUGKRLToEEcvT+icz0lYIhzwZtyq7dhylDx67cjpdsg6FAmlnKc7EoPXUT0NX5f4SzR16FTNHjNbBd6+DV8TvAYAAAAAAAAAAAAAALm2dNPSjuB19NYMR+q4T6S4QWrun88Gjwtfe2zpe09JjcNSDCZ4DQAAAAAAAAAAAAAAAABAt2WuRwH7kD179qS9XlbWNzeWlpWVqbGxMeX1TPtE/hxzzDF68803dfHFF+udd95JOmbz5s265ZZb9L3vfU+HH364jj32WI0YMUJVVVXyeDyqq6vTzp079fbbb2v58uUKZQgKGoahm2++WXfeeaeMxFAgAAAA0FMTJsQfG4bk9UqxH8DS0iL5/cmD2JlYlvv8VAxDchLi0JGIVF8vFRZKgYBkJvmMLduWQiFZrc3yOIYWHeLohrMc2dH/RDYMObI74tCOaSri80ipgtaOo+ifdKLh64A39Qcg5St4HRU9/9Gej9KuEw1ee0331zWzR8/Wki1L1BppzXpv3UXwGgAAAAAAAAAAAAAA5NqDqx/UJYsucQ8SbplwJFXulfaU9vWu4tmGZFrSvY9Il62TjrCkK+ZIjf6YQQSvAQAAAAAAAAAAAAAAAADoEaLXGFTq6urSXi8t7Zs7YjOtQ/S6fx122GFatmyZ7rjjDv3mN79RMBhMOs6yLK1atUqrVq3Keq1x48bp97//vc4+++ys5+hL8+fP1+9///u8r7Nu3bq8rwEAADBoVVRIY8dKmzZ1nvP54qPXktTUJJWWupHq7nIc93lR0cB14hxeryzHksdOeH5Li/vwet3gdvT5liVFIgr6HV06z9Fhnzp64Aj3TYOOJMM0ZcvR3oBUGHFUYBkKFxfIfcdg10h0xI7IVuLiaV5WmvB1T4PXiWMzBa+jMoWvE4PXUX0RviZ4DQAAAAAAAAAAAAAAcu3hdx9OGbyWpGE7pU8r+3ZPqVz/bzd4LUlzPpAWLIoJXxvu/SEnjj1RT17yJMFrAAAAAAAAAAAAAAAAAAC6geg1BpXW1vQRsOLi4j7ZR0lJSdrrmfaJ/CsoKNDtt9+ub37zm/r973+vhx56SO+8807O5j/kkEN088036+qrr5bP58vZvPm2c+dOvffee/29DQAAAGRy5JHx0WuPxw1Nx4avIxGpoUEqLnavZ2JZbvA6MZ4dCLjh6nC441SwvECXntOqL79ta877SeaKRLrME/Q7mneRo6WjpGcOkspD7vlmn1QWshUMSGFTCvslyzYlrynLjsiRI0OGjPbwdpvVppAVyvx6EiQLX/c0eN3x8qyIvB5vt4PXUanC16mC11H5DF8TvAYAAAAAAAAAAAAAALn28LsPa97f56W8PmqHtHVIH24ojS8vkX717/hzczYWaMHEr+uKT/+o5nCzThp/kh6/+HGC1wAAAAAAAAAAAAAAAAAAdJPZ3xsAcqmtrS3tda+3bzrvmdbJtE/0ncrKSn3nO9/RL3/5S5155pm9nm/8+PF69tln9cEHH+i6667bp4LXAAAA2IccdJBUlvAmukBAag9Dd4hEpPp6qaVFsu3kc9m2e72+vmvw2jSlggKpsND9XlKw0NS880J6e7itG86SFh2R+b95Y4PX9e3N6b0F0t6A1GZKuwrd4LUkyZAavbbCdmdk25Ejx3EUtsNqCbdkXC+VaPhayj54LUm2bFmW1aPgddTQ4qE6uOpgGXL/WWUKXkfNHj1bBd6CrPabCsFrAAAAAAAAAAAAAACQa0+8/0Rn8Nppf8QYUztwgtdzV0p/Wiz3A+UDAamqSho5Upo2TXOu/KkWzFmgMw86k+A1AAAAAAAAAAAAAAAAAAA9RPQagwrRa/TEtm3b9O1vf1vV1dU644wz9Nxzz/V6zo0bN+qss87SjBkz9Otf/1pNTU052CkAAACQwOORTj01/pxhuHHqxPC15Eat9+6VgkGpqUlqbna/BoPu+ZYkIWnDkIqK3K+GIRUXK1hgaN4XDdVUW5Ik25BuOC2sRTOL3Th2krWTBa8do/09jUbnwzai19xvQpGQLNvqmCdiR3oVqo5y5Kg10trreSxZqgxUZvXcaPi61F/areB1VK4D1QSvAQAAAAAAAAAAAABALj314VM6/+Hz3YMkt2aM3SptHta3e0rljPelh17wSkOHSsOGucHrQPvNLT/+seTzac7kOXriS08QvAYAAAAAAAAAAAAAAAAAoIeIXmNQsW077XWPx9Mn+8i0jmVZaa8jv0KhkL7zne9owoQJ+uUvf6lgMJjzNVasWKFvfvObGjdunO644w6Fw+GcrwEAAID93EEHSVOmxJ8zTTdUbab4cT8SkUIhqbXV/RqJJB9nmlJZmRvXbhcsMDTvq0NUMyJ+qG1IN5zUpEXTAu6bACsrpZISqaBAwbKA5s01tHR01+B1MnbCttvsNlm2Jcu2FLYH1n9Tl/pLe/XBSkOLh+qIYUd0O3gtSUu2LMl6vb6YDwAAAAAAAAAAAAAA7L9eXveyPv+3z7sHSW4OGbNZ2jS8b/eUynHrpeef9Ln3uSTe/zF3rnTaaR2HHrNv3oMAAAAAAAAAAAAAAAAAAMBgQvQag0qm4FgkVdAtxzKt4/P5+mQf6Ordd9/VrFmzdOeddyoUCuV9vd27d+u//uu/dOyxx+qDDz7I+3oAAADYz5xyilRREX/O45HKy6VAILs5AwH3+bHBa7+jeReEVTPUSjq3bUg3HF+vRRNCkt8vFRcrWF2qeRfaWnqAo3q/Oy5d8FpG+5j2P1FhOxwXvDaiA/vZ+PLxvZ7DMLr/WpZsWaLWSGuv14zVGmklfA0AAAAAAAAAAAAAAHpt8YbFOu2v7aHoJDeHjN4kbR7Zt3tK5diN0pIniqUhQ7oGrydMkG6/vV/2BQAAAAAAAAAAAAAAAADAYJK+EAzsY/x+f9rrfRW9DofDaa9n2ifyY9myZTrjjDNUX1+fcezQoUN15pln6sQTT9SMGTNUXV2tqqoq+Xw+7d69W3v27NGaNWv02muv6YUXXtDHH3+cdr4VK1ZoxowZeuqpp/TZz342Vy8p54YOHarDDjss7+usW7euT6LjAAAAg15BgTR3rrRwodTY2HneMKTiYjdO3doqtbVlnsvvd+dLeDNf0O9o3nltqhnlc+eNzu33Sc0tkmVJ6gxfS9KpW/2ad9pe1QwJq9nrvpMxZfA6RffZSZHHTnW+L/k9ftU21qq6qLpH4eps5SN4HRUNX88ePTsv8wMAAAAAAAAAAAAAgMFt8YbFOmXBKe5Bkts6Rq2Ttozr2z2lcugO6Y3nq6UyX9eLI0dKf/ubVFbW9xsDAAAAAAAAAAAAAAAAAGCQIXqNQcXnS3LzaYy27oTecoDo9cCzcuXKbgWvx40bp+9973u66qqrVFBQkHTMAQccoAMOOEBTp07VvHnz5DiOnn76ad1xxx164403Us7d3Nysc889V88884w+85nP9Or15Ms3vvENfeMb38j7OlOmTNF7772X93UAAAD2C+Xl0iWXSA8/LO3dG3/N65VKSiTHkSIR99EeqZYkeTzuGK/XjVknCPodzbsg7AavTTP+os8vVRVK4bDU3Cy1tck2pG8cv1cjWjzaXmRLkirbTO0K2IokTp9FK9qRI0NGv4avDRkq8ZdoytAp+3zwOorwNQAAAAAAAAAAAAAAyEZ9c33a4PUB66StAyR4PXGP9P7TI6VkbzmYMMENXo8Z0+f7AgAAAAAAAAAAAAAAAABgMDIzDwH2HSUlJWmvNzY29sk+Ghoa0l7PtE/kVlNTk+bOnZsxeD137lytXr1a1113XcrgdTKGYejcc8/Vv//9b91+++3yeDwpxzY3N+vCCy9UbW1tt+cHAAAAMiovly6/XJoyJfl1w5B8Pqmw0I1gRx+Fhe75ZMFrn615X/KpZnSS4HXHvJICAamyUho6VE5ZmfaUmKqpjqjVb0per0I+U7bZPjb2kaX+DF5Lktf0aurQqfKa+f8csb4IXkdFw9cAAAAAAAAAAAAAAADd0dLWotqm9nuik9zOUVYr1Q6Q4PXIoLTuHyOTX5w7V3r2WYLXAAAAAAAAAAAAAAAAAADkUP4LTUAfqqqqSns9GAz2yT4yrZNpn8itb3/721q7dm3aMd/61rf0y1/+slfrmKap73//+5o8ebLmzp0rx0ke49uzZ4+uvvpqPfvss71aDwAAAPuwnTulNWukjz+W1q+X6uulSETyet2A9cSJ0qRJbsR66NDuzVlQIJ19tjRrlrR4sbR9e9bbs0YM16VfMlRjb1G3C9WmKacgoIKIo3Bbg+r9tlo8XrVZEUmmTEm2Y2e9J0ky2vfSX+FrQ4ZKfCWDLngdFQ1fzx49u0/XBQAAAAAAAAAAAAAA+5b3d76vaXdPU8SOJA1eq1YKdvOWl3yrapZq75KU2LweO1b60Y+k00/vj20BAAAAAAAAAAAAAAAAADCoEb3GoDJkyJC01/fu3dsn+6ivr097PdM+kTtr167VH//4x7Rjzj//fN155505W/Oiiy7ST3/6U333u99NOea5557TE088ofPOOy9n6wIAAGCAi0SkJUukp56SVq9OP3blys7vp02Tzj1XOu44N4qdyeTJ0qWXSm+84a5VU9P9PR55pHTuufIce6yu/PRfWlnzU9kZAtOOHLVZbbJsS4ZhyDAMFXgL1BJuUSgSkiOnI1ZtyOi3YHVvGTJkypRhdDMC3gv9EbyOInwNAAAAAAAAAAAAAADSeX/n+zri7iNSB68bJA1Vtz9nPZ9KW6Xdv0o4ecIJ0pVXSmecIfl8/bIvAAAAAAAAAAAAAAAAAAAGO6LXGFSqq6vTXg+FQtq7d68qKirytoc9e/aora0t7Rii133nV7/6lWzbTnm9qKhId999t0zTzOm6t9xyix588EGtWrUq5Zj/+Z//IXoNAACwv3jzTekPf5B27Oj5c2tq3Mfw4dLXviYFAu55y5JaWtyYthPzDsLWVvcNeSUl0sUXS2eeKW3cKG3ZItXWSo2N7nM9HnfM2LHSpEnSoYdKVVWSpOC2jbpvw6O6tGS2HmhckjJ87TiOQlabbMdWU7hJfo+/4yFJzeFmd1yOw9d9Hc/eX4LXUYSvAQAAAAAAAAAAAABAMu/vfF+H/+FwWY6VOnhdoAERvC5uk9b9sv3AMNx7d44+Who5sl/3BQAAAAAAAAAAAAAAAADA/oDoNQaVsWPHZhyzY8eOvEavd3QjYtedfaL3IpGI7r///rRjrr/+eo0YMSLnaxuGoR//+Mc699xzU47517/+pffee0+HHXZYztcHAADAANHYKN19t/TSS72fa8cO6bbbpGnTpCOPdIPXyT7gxXGkbdvizw0f7j5mzEg+t8cjhcNSfb2Cdovmbf+dato2aaXWpg1fR+xIR/Dasi212C2S1BG9jo1T5zp83Vf6MngdDof7PXgd1RppVTgcls/n6++tAAAAAAAAAAAAAACAASAueJ1Mg2QGJHsABK99lvQ/f5OGRk+Ul0vnn9+fWwIAAAAAAAAAAAAAAAAAYL9i9vcGgFwqKSnRkCFD0o755JNP8rqHjRs3pr0+bNgwFRcX53UPcL311ltqaGhIO+aKK67I2/pnn322qqur0455+eWX87Y+AAAA+tn27dKNN6YOXjuOG5puaXHj2NFHS4t73kkRhX7rLemBB6RgMHd7tSxp504FI00dwWtJsuXogcYlurRktkx1fUdixLY6gtdRLeEWNbc1qyXsBrCNmOfFhq6NJPMNRH0VvJYkn8+nI4cd2as5CrwFOmX8KSrwFvRqniOHHUnwGgAAAAAAAAAAAAAASEoSvE52W0tAsgfAO1S8tlS0V7r9i9KiQ9tPTp7cn1sCAAAAAAAAAAAAAAAAAGC/MwBuKQRya8KECWmvf/zxx3ldf+3atWmvZ9ofcue1115Le33UqFGaMmVK3tY3DEOnnXZa2jGvvvpq3tYHAABAP9q+XfrP/5Rqa7tei0TcuHVdndTQ4Eau29o6Hy0t7vm6OndcJBL/fMdxg9fPPedez5FguFHztt3VEbyOigtfG52/RrAdW40JwWvJDVu32W1xgevE6/sSS1bmQTlUVVSVdfi6wFug2aNnS5Jmj56ddfj6yGFHqqqoKqvnAgAAAAAAAAAAAACAwaVbweuQBsS7UwxHKqyTiool25BuOLs9fH3jjf29NQAAAAAAAAAAAAAAAAAA9isD4LZCILcyRYw//PDDvK6faf58RpYRb/369Wmvz5o1K+97OOaYY9Je/+CDD/K+BwAAAPSxxkbp1lul3bvjzzuO1NTkBqvb2ro3V1ubO76pyX1+dB5Jam6WXnwx+VyG0b1HYaFUVqZgqV/zPI+pxtoqmWaXh20aeqD5TV16wOdkGqZsx9becEPnmxmjLzHhXY3RY0NG2nG9YfbBrzYiTiTzoBzKJnwdG7yOyiZ8TfAaAAAAAAAAAAAAAABEvb/zfR3xhyPSBq+NVkmePt1WUoYjlW+TSoo7z3WEr6cF+m9jAAAAAAAAAAAAAAAAAADsh7z9vQEg16ZPn6777rsv5fWVK1fmdf0VK1akvX7UUUfldX102p0YGUwwdOjQvO8h0xqZ9ggAAIB90N13S7W18ecsS2pokGw7uzlDISkclkpL3Vh1VEODtHy5dPzx8eOdmHcYBoPS1q3S9u3Szp1uLNuyJI9HqqhQcOIozTtktWr8dZLX64auk7AlPbDtBV004lTdvenvCmcIXseeN9r/xI7JRfjalClbWf6d9lDEichr9N2vUaLh61Wfrso4NlnwOmr26NlasmWJWiOtGecheA0AAAAAAAAAAAAAAKKiwet0HxbubZEivj7cVBoVn0r1YyQjJBXEbNkO+HXDszdIkuZMntNPuwMAAAAAAAAAAAAAAAAAYP9C9BqDzvTp09NeX7VqlSzLksfjyfnakUhENTU1accQve47dXV1aa9XV1fnfQ+Z1iB6DQAAMMi8+ab00kvx5yzLDU87KSLPXq8boDYMd4xlSZEkbxa0bXeewsL48+vWSWPHSmPGxK/58cfSqlXS5s0ptxts2KV5R6xWTciSQpJ8XqmgUPL7k463HEt3b/q7vIZHYXXuMVPAOlX4uqei80iSIaPPgtdR6d7EmQ/dCV+nC15HdSd8TfAaAAAAAAAAAAAAAABEtbS1aNrd0+LvlUi45aOgSWoN9O2+Uhm1Udp2oPt9ffueOsLXlZWyHVt/XvVnnXfIefKYuX8fAQAAAAAAAAAAAAAAAAAAiGf29waAXJs5c6YKCgpSXm9sbNTbb7+dl7WXLVum5ubmlNcLCgo0Y8aMvKyNrjKFzUOhUN730NqaOionSYZh5H0PAAAA6CORiPSHP8SfcxypoaFr8Now3Hh1RYVUViYVF0tFRe7XsjL3fGLcOjpfS4v7/FjLl7uha0n65BPp3nulJ59MH7z2O5p3drNqqq3Ok+GI1Ngo7d0rhdvil5ajunBQYTuiFiskr+ntON+Xouv19bpR9aH6Pl0vGr5OpjvB66jZo2erwJv8Z2WC1wAAAAAAAAAAAAAAIFbYCauysDLl9eLgwAheG5JGfSJtPUhyYm6nqQ9IrV5JgYBkmpo2YpoeuPABgtcAAAAAAAAAAAAAAAAAAPQRotcYdAoKCnT88cenHfPiiy/mZe2XXnop7fUTTzwxbZAbuVVcXJz2+s6dO/O+h0xrFBUV5X0PAAAA6CNvvCHt2BF/rrlZsu34c16vG7YuLJTMFD+Wm6Z7vbzcHR/LtqW2NneMYbiPpiZp61bpzTelF190w9Wm2fXRPt4ypUvPblXNUCv5+rYtNTS680qyDEd72oPXbm7aUZvd1qPwtNP+Jxf6K3gtSZZjaXnt8j5dM1n4uifB66hk4WuC1wAAAAAAAAAAAAAAIFZdS53mPTpPHsOjAk/7fQYxt2pU7pKaBsgt0KN2SFsPdL93lCR8XVakaSOm6aGLHlJZoKxf9ggAAAAAAAAAAAAAAAAAwP6I6DUGpdNPPz3t9cceeywv6z766KNpr59xxhl5WRfJjRgxIu31LVu25H0PmzdvTnt9+PDhed8DAAAA+shTT8UfRyJSKBR/zuuVSkslj6d7c3o87vjE8HUk4oapozFrSVq8WFq3zn2Ozxf/iD4/HJZaW+VpCenLKyUzth0dDWjHCoXk1O+V4zgq8BZKhuG+QbAfo9MDQUNbQ7+Gr7MJXkfFhq8JXgMAAAAAAAAAAAAAgFh1LXU6dP6hWrplqSSpsrBSBZ5Ax/Vh26W6in7aXIKx26Uto+LPxYWvTVNe06uFFy4keA0AAAAAAAAAAAAAAAAAQB8jeo1B6aKLLkp7fcWKFfrwww9zuua7776rd955J+V1wzAy7gu5NWHChLTX33jjDbW2tuZ1Dy+//HLa65n2CAAAgH3Ezp1STU38uWT/rVlc3DUsnYlhuM9LFA67X21bamlx17Pt+DGRiNTYKNXVSQ0N7phwWAqHNWeNpbuecWTajuQ47nOdrjFrw7Ll2RtUwPAq4AkMiuC1oR7+M0iioa1BkUgkB7vpvqqiKp046sSsg9dRs0fP1omjTiR4DQAAAAAAAAAAAAAAOgRDQV3y2CUKW2HVh+rVGnHvfak0ilRgSQdslT6t7udNthu9Q9o0Ovk1R5JjGqoqqtKKr65QZWFln+4NAAAAAAAAAAAAAAAAAAAQvcYgdeCBB+rYY49NO+auu+7K6Zq//e1v016fPXu2xo8fn9M1kd5RRx2V9npra6v++c9/5m39uro6LV26NO2YI444Im/rAwAAoA+tWRN/7DhSW1v8ucJCyePJbn6Px31+rEikM3gdjVVHo9eOIzU1ScFg133EmPOBobueNWRGO9aOkzx8bdsKN9QrFAnlJBidLaP9T29UFlTqwkMvVGVB797QOGPEDHm93l7NkQ2fzzeg5gEAAAAAAAAAAAAAAPu+YCioLz78RdVsr1GBt0DlgfLO8HUkolGfSLXD+3uXrpG7pC2j0gwwJK/p1VvXvKXRZSnK2AAAAAAAAAAAAAAAAAAAIK+IXmPQ+vKXv5z2+v/+7/9q27ZtOVlry5Ytuv/++9OOueqqq3KyFrrv6KOPzhih+8UvfpG39X/5y18qEomkHTN79uy8rQ8AAIA+9PHH8cfJ/jswEOjdGsme39oaH6m2LPdRXy+FQt2ads6HScLX0Xh2dBmPo6DXkhz3fH+Gr3uj2FesU8afIkk6ZfwpWYevZ4yYofKC8lxuDQAAAAAAAAAAAAAAoF8EQ0Gd/7fz9dKGlxQMBSUpLnxdtK5B68b28ybbDd8jbRuRZoAh+Uyfaq6r0biKcX22LwAAAAAAAAAAAAAAAAAAEI/oNQatyy+/XMOGDUt5vbm5Wd/73vdystZ3v/tdtba2prw+fPhwXX755TlZC91XWlqqk08+Oe2Yl19+WS+99FLO1962bZt+/etfpx1TVFSkU089NedrAwAAoB+sXx9/nBi99nols5c/gpumO0+U47iB61iWJTU3d4lWx+3D73cD2n6/5PNJShK+ltw5HEetHkf1/vYLMdf7M3ydzdqGDNmOra0NWzvOZRO+LvOWEbwGAAAAAAAAAAAAAACDQjR4/eonr8p2bDWFm+LC1xM+tgdM8HpIUNqR+u0BccHryUMn99m+AAAAAAAAAAAAAAAAAABAV0SvMWgVFBTopptuSjtmwYIFWrRoUa/Wefjhh7Vw4cK0Y26++WYFAoFerbNx40YZhpH2cdttt/VqjcHo0ksvzTjm8ssv1yeffJKzNVtaWnTBBReoqakp7bjPf/7zKi4uztm6AAAA6Ef19fHHiTFqjyc360TncZzk1y2r6zXDkAoLpYoKqaTE/b6gwP1aWuqeLyxMGr6OC15Hp0u19gBmyFDAG5AjRzU7anoVvvbGhscBAAAAAAAAAAAAAAD2UcFQUOc9eF5H8DoqGr4ur9mmdeP6cYMxSpuk3VVpBrR/fvprV75G8BoAAAAAAAAAAAAAAAAAgAGA6DUGtZtvvlljxoxJO+bKK6/UsmXLspr/zTff1NVXX512zLhx4zLGt5E/X/rSlzRy5Mi0Y7Zv366zzz47J+HrhoYGzZ07t1v/Tn3rW9/q9XoAAAAYICKR9NcNIzfrpJsnWYza65XKytzAtZniVwCm6V4vL9ecdb6O8HWrV6pP9tk9McsYytHr6gGf6evR+GjwOsqRo417N8qJ+fvqbvjaaxC8BgAAAAAAAAAAAAAA+75gKKhzFp6jf33yr7jgdVTpB036YGw/bCyJwlapoTzzuIVzFuqYscfkf0MAAAAAAAAAAAAAAAAAACAjotcY1IqKivQ///M/acc0NDTojDPO0FNPPdWjuR9//HF97nOfU2NjY9pxv/zlL1VYWNijuZE7gUBAP/jBDzKOe++993TUUUdp0aJFWa+1YsUKzZw5s1v/Lp133nk6+uijs14LAAAAA4w3Qww5WZA6Gz2Zx+uVSkslj6d74z0eN3y93q/fPCe1pHlJRsw++jJ8HfAEVOQvkt/j79b4xOC1JJUHynX0AUfLSAiIZwpfE7wGAAAAAAAAAAAAAACDQTAU1NkPnK1/b/p30uuFa6XtY/p4Uyn4I1JLSYZBhvTQFx7Sl474Up/sCQAAAAAAAAAAAAAAAAAAZEaxCYPeRRddpEsuuUQLFy5MOaa+vl7nnXeevvSlL+n73/++Dj300JRj33vvPd1+++166KGHMq596aWX6gtf+EJW++5vjY2N+tvf/tbj53388cdpr69YsUL33ntvj+YsLS3VvHnzeryXqGuvvVYLFizQG2+8kXZcXV2dLrzwQs2aNUvf/va3de6556qoqCjtcyKRiF577TX96le/0lNPPSWnGxHC0tJS3XXXXT16DQAAABjgysvjjxND05aVm3UsK3n4Otm54mLJ6GGQ2jCk8nJ94cPd+vsHlh6bLIWTfVyWI8W2rg0ZcpSjsHcKPtMnr+n+GsNrehW2w7IdO+X4VMHrYw44Rj6PL+lzThl/ih774LEur4XgNQAAAAAAAAAAAAAAGAws29I5D5yj1ze/3vWiI2mP1DJW6sPPQE/Ja0ltBRkGtQev506d2yd7AgAAAAAAAAAAAAAAAAAA3UO1CfuFe+65R2+//bY+/PDDlGMcx9HChQu1cOFCHXXUUZo9e7YmTJigkpISNTQ0aMOGDXr99ddVU1PTrTUPPfRQ3X333bl6CX1u165duuaaa3I+75NPPqknn3yyR88ZN25cr6LXpmnq4Ycf1owZM/Tpp59mHL98+XLNmzdPPp9P06dP18yZM1VdXa2qqip5PB7V1dVpz549euedd/TGG2+oqamp23sxDEMLFizQ2LFjs349AAAAGIAmTpRWruw89ib8uB2JSLYtmckK0t1k2+483VFY2DW83V0ejxZN8+vVcS2qbJHqClOEr2PkI3htyJDX9MqRI1OmzIS/O0OGTMNMGb72e/xxx5mC11EFngK1WC0da3iU5d8jAAAAAAAAAAAAAADAALNi2wr9e/O/O0/E3vKxR1KpBkTw2rSlSCDDIEN6fO7jOm/yeX2yJwAAAAAAAAAAAAAAAAAA0H1Er7FfKCkp0fPPP68TTzxRmzdvzjh+5cqVWhkbrOuhsWPH6vnnn1dJSUnWcyC3Ro8erWeffVann3669uzZ063nhMNhLV26VEuXLs3JHgzD0Pz583XBBRfkZD4AAAAMIJMmxR8nRq8lKRRyY9TZCoW6njMMyUkSnA5ketdfaovGt+qG40OyHfc9jKnC14bjyDGMtMFrQ+mvp+MxPTIMQ1Oqp6jAW6CaHV0/gChZ+NpI8s7L7gavo3ymTxE74ka37dwHvQEAAAAAAAAAAAAAAPra8q3Ldcy9x7gHibdD7JaMUskZAMFr2ZIdkuRPM8aQnrz4SZ17yLl9tSsAAAAAAAAAAAAAAAAAANADZuYhwOAwbtw4vfLKKzrwwAPzus5BBx2kV155RWPHjs3rOui56dOn61//+lfe/x1IprCwUPfff7++9rWv9fnaAAAA6ANTpsQfG4bkT3jnXUuLZFnZzW9Z7vMzMQzJ45FsW4pEuj6SBbJjLJoQ0g3H18uOeQNjNHzts7uO707QOlmEujsidkRDCodoePFwjSodpWnDpynZVIYM+UxfyrV6GryO8pp8ThgAAAAAAAAAAAAAABgc1u9Zr2PuPca91yPJ7R6eUskZCO8ucSQFJZWmuG64j5cue4ngNQAAAAAAAAAAAAAAAAAAA9hAuC0R6DMHHXSQli9frs997nN5mf/MM8/U8uXL+yWqjO6ZOnWq3nrrLV122WV9tuaMGTP05ptv6tJLL+2zNQEAANDHhg6Vpk2LP1dQ0HVcU1PG8HQXjuM+L5GRIiZtZvej/qKJId1wYkNn8DpmfkNSZavkjQlf9+RVpApfpwtie02vdrfs1o6mHZKkUaWjdPr407s8x+/xa1jRMBV5i7rMkW3wGgAAAAAAAAAAAAAAYLDYEtyiY/6UOnhd0CxZA+GdJY6keknVKa633zJSEajQieNO7KNNAQAAAAAAAAAAAAAAAACAbAyEWxOBPlVZWannnntOf/nLXzRs2LCczDls2DDdd999evbZZ1VRUZGTOZE/FRUVuv/++/Wvf/1LJ598ct7WmThxov74xz9q2bJlOuKII/K2DgAAAAaIc8+NP/Z6pUAg/lwkIjU0SJbVvTktyx0fiXR/H6li2GksmhjSDSc1dQavk03rSJUhQ15bcoyu74FMF7BOdj1T8No0TDmOo/d3va+tDVslSQcPOVhXHHFFx3P9Hr+GFg+VaZjye/wq9BZ2zFHqLyV4DQAAAAAAAAAAAAAA9mtbglt01D1HaU/zbpm2utzwUdQotfr7ZWvxHMm/QRmD117Dq1XXrZLfOxA2DQAAAAAAAAAAAAAAAAAAUiF6jf3WlVdeqfXr12v+/PmaPHlyVnMcdthhmj9/vjZs2KArrrgixztEvp100klavHix3n77bd18880aM2ZMr+csLS3VvHnz9MQTT+ijjz7SNddcI9Pk/2oBAAD2C8cdJw0fHn+uqEhK/O/BSESqr5daWiTbTj6XbbvX6+uTB6+Tha2j55zEHHV63QledywhqTBi9Dh4nTjOkCG/p/PNh6ZhKuAJyJDREbyOVbOjpiN8PfOAmfrMuM/EBa+jouFrj+nRtOHTCF4DAAAAAAAAAAAAAID9Vl1LnabfM117mvdItnu3hyl1hK/LglJzQb9tL87IDVLbwSkuxgSvV39ttcZVjOuzfQEAAAAAAAAAAAAAAAAAgOx4+3sDQH8qLi7W17/+dX3961/XRx99pOeee04rVqzQmjVrtHXrVjU0NKi5uVlFRUUqLS3V6NGjddhhh2n69Ok666yzNGnSpD7b6/jx4+X0MF63L63Xn6ZPn67p06frV7/6lT766CO9/vrreuedd/TBBx9o69at2r59u5qamtTa2irHcRQIBFRYWKhhw4Zp5MiROuiggzRlyhQdc8wxmjlzprxe/q8VAABgv+T1Sl/7mnTbbZ3nDEMqLZWCwa4x6pYW9+H1Sh6PO9ZxJMtKHrqOzuf1umMSz0c5jjumG9IGrxP3axhq9UgNfkemo47ndDd43TFN+/g2q01+j19hOyyf6ZNhuMFrI0nQ25Gjmh01Glk8UlOHT9VBlQfp3Z3vJh3r9/jlM33ymvx3OQAAAAAAAAAAAAAA2D8FQ0Fd8tglitiRLh/Kbkoq2yvtLemXrXUx7mPpk8npx0SD15OHZhgIAAAAAAAAAAAAAAAAAAAGBApQQLuDDz5YBx98cH9vA/2Mfw8AAADQK8ceK512mvTSS53nPB6prExqaOjyJkJJbuA6VeQ6lmm6Ae2WlvjodWIE27LcdUwz7XRpg9dJtHqloL8zhG1KcnoYvE7UZrWlDF0ncuToxY0vamzFWElK+5zuzAcAAAAAAAAAAAAAADAYtbS16NLHLlXN9hoVBJslS6oPdF6vqpN2lfXf/mKN+yRD8NqQPIaH4DUAAAAAAAAAAAAAAAAAAPuY9AUsAAAAAADQM9ddJx1wQPw5j0cqL5cCgeTPySQQcJ/v8biPKMOQCgrixzqOFAqlnc4yHP15cmvq4LXjdDnV7E04ZxgyjZ79WsFn+rruxbHkJFkv+b6kf33yL9lOkng4AAAAAAAAAAAAAADAfm5LcIvG/3a8vIZXpiMpFFJBRCpvv5WketfACV6P2Sp9cmCaAe3B63e+9g7BawAAAAAAAAAAAAAAAAAA9jHe/t4AAAAAAACDSkmJdMcd0re/Le3a1XneMKTiYjdg3doqtbVlnsvvd6PW3pgf332+zvkKCyXTdM+Fw51jWlrc58YGsmN4HEMPvFCqeWc2qKba6jogSYS6PCTtDUiR9s61KVOOJEOGbCWPUDvqnMdjeGTLlmmYshx3TUOG5EgROyJJsh3bPWd0TCDLsNxzkgyPobAV1hMfPqGdLTtjtut0zBH170/+LU+K159Oq9Uat+/oPqLqWuu0ZPOSHs+LTm1WN/7dBwAAAAAAAAAAAAAAPbIluEVH3XOU9rTs0RMfPaHz1vm0vFqyDakgIhXXSVuG9vcuXaNrpc3j0gxov3dk1VdXEbwGAAAAAAAAAAAAAAAAAGAfRPQaAAAAAIBcGzFC+sUvpFtvlWpr4695vW4Y23GkSMR9WDHhaY/HHeP1umHrRKbpxrNN031E49fR6HX0Oc3NUkVF8jkklTnSQy9Vat7p9aoZEhPMtrsGrG1DMhypIiTVBySvJbUUOHKSxLGTMWTIduyOeLQhQ077H0kd83Sci5nWcNyxpmHKa3i1tWGrIlYkLpzsOE6X8HbEisi0zG7tL1aX4HWS6yEr1ON50SnT3zEAAAAAAAAAAAAAAOiZ2OC1HEmOrSfGh3TeB9Ly0ZKvXto4or936Tpgh7RlbJoB7be6LPvKMk0dPrVP9gQAAAAAAAAAAAAAAAAAAHKL6DUAAAAAYGDbuVNas0b6+GNp/Xqpvt4NRXu9Unm5NHGiNGmSNGWKNHRof++204gR0m9/K91zj/Tii12vG4bk87mPnjj+eGncOOmvf42fp6BACsXEmMNhae9e9+/I40k6VVnEo4deqtC80/a64eskwevYPLHHln75gnTHZ71qiYlMRyPWyRjqGt32GB75TJ9ardaML1eSTMNUgadARoqANwAAAAAAAAAAAAAAwP4qWfA6ehvHE4dK0z6UVh7Ur1vscMCn0p5U8W0j+sXQ0q8s1axRs/psXwAAAAAAAAAAAAAAAAAAILeIXgMAAAAABh7Lkl59VXrqKWn16vRjV67s/H7aNOncc6WxY/O7v+4qKZH+8z/dUPXdd0vbt2c/14gR0nXXua9t927pmWekPXs6rxcVuaHr2HB1OOyOLS6WCgsl0+wybVlIeugJv+adGVLN8K7LOu1vKDQd6ceLDU3b5ZVRWSlfuF5tVlvHuHTh61gew6NiX7EMw5BhGGqJtKQdT/AaAAAAAAAAAAAAAAAgubjgtRQXvJak4bUDJ3hdvVdyKkxVhqS6gK3W6Ge4x9wSUlVQpbeueUsTqib0xxYBAAAAAAAAAAAAAAAAAECOEL0GAAAAAAwsa9dK//qX1NTU8+fW1LiPykrpuOOkgwbIu/aOPVaaOVN64w035F1T0/3nHnmkG/I+9ljJ65Vqa92vF10k/fGPneMMQyotlYJByYl596LjSI2N7t+n1yv5fO5Yx3Gj2JGIyhxHDz1qaN5FTlz42o4JXv+/xabO/NjRVy/yKmi1yGf4FFZYtmIi20nEhrBNmfIYHoWsUPSiPIZHESeS9LmGDBmOobAd7jw2DFmWpYiSPyeWJSvjmGx0J+6N3unOP18AAAAAAAAAAAAAAPZnXYLXthMfvF4vbRvXP3tLVBmU9lRL5ZZHBd4CVXq9qnOa1Rq9h0TSCWNP0BMXP6HKwsp+3CkAAAAAAAAAAAAAAAAAAMgFotcAAAAAgIGhtVV65RVpzRo3yuz3Zz/Xrl3SokXSlCnSKadIBQW522e2vF7pxBPdx86d7utcu1Zat06qr5ciEXdMebl04IFusHvqVKm6Ovl8hx8uHX209NZbnec8Hvf5DQ2SlRB8jkauw+Gk05W1GXroUXWGr01TcuyO4PXZaw09NEV6dnxYirhzZBN/jtjxMWNHjgwZSedy5CiiiEzb7DiXaiwGF/4ZAwAAAAAAAAAAAACQWpfgtePEfUj6sE0DJ3hd0iwVjBspRVpVH6qXAl43fK0C1bXUqdVq1QljT9DTlzytskBZf28XAAAAAAAAAAAAAAAAAADkANFrAAAAAED/q6+XHnpI2rs3+XXHcaPQkUh8zNnjcUPRXq8byk60Zo20das0d64bgx4ohg6VTj7ZffTGRRdJmze7Ee0or1caMsQNX7e09Gi6sjZDDz1dqHlzIqoZEokLXm8e4tUPT4kPaZsyZcuOCxQb7X+c9j+xYw0l+WfU/hwpeejYlNnlXKp5MHh4+ZUVAAAAAAAAAAAAAABJdQleS3HB66Jd0s5R/bCxJApbJae6WJJU4HU/tL4+VN9xXFlYqanDpurRuY8SvAYAAAAAAAAAAAAAAAAAYBDpWo4CAAAAAKAv7d0rPfBA8uB1JCI1Nkp1dZ0R57a2zkdLi3u+rs4dF4kkn3/hQjesPdgUFkrf/a5UXR1/3jCksjKpqkoqKEgeBE8cX1AgVVWprKBcD71UqRm7fLqjPXj9aZlHN14xVA0FRsLTjI7ItaQu30eD1emC1x1zxTw33ZioZDFsAAAAAAAAAAAAAACAwawt0qbp90zvGryONq93Sa0VkpXsyX0s0Ca1lEhN4SYFQ0FJbui6PFCu+lC9WiOtmjZiGsFrAAAAAAAAAAAAAAAAAAAGIW9/bwAAAAAAsB9rbZUeecQNVsdyHKmpSQqFuj9XNIQdCLiPWI2N0sMPS5df7sadB5OhQ6Vf/EK69Vaptjb+ms8nlZe7f5/hsPuIDYN7ve4Yny8ujF0WNvWP5yu1u3GXtlT79M0rR2hnuUdGgyHHceKW8Hq8ki3Zji0ZMWHq9i+mY8rIFN2WJEdy5MhxHBky5MjpiGrHzhfLtE3ZsuW0v3MzNrjdW1aSt38S2s4NW3Z/bwEAAAAAAAAAAAAAgH1Sq9WqskCZdjXv6rwfo/1eDrtJ8lZIkd7fNtFrvogUKuo8bgo3SZLKAmUq8Lr37vg8Pi28cCHBawAAAAAAAAAAAAAAAAAABiGi1wAAAACA/vPKK9LevfHnbFtqacl+zlDIjV8XFEhmTKR47153vbPPdo/Xrct+je6wbSkYdF9LbGg6Ga9XKiyUysri95xMW1vXcyNGSL/9rXTPPdLLL3e9bhiS3+8+usnjGHp+epl+e061mgo98kkyDVOO0Rm9rghUqLq4uttzApK0PbhddW11/b0NAAAAAAAAAAAAAAD2KTsaduiqJ65Sc7hZxf5iNbU1uR8M7kh2o+TzS+EBELz22FI4yWfSx4avjxl9jBZeuFCVhZV9vDsAAAAAAAAAAAAAAAAAANAXiF4DAAAAAPrH2rXSmjXx56LBa8dxQ82JvF7J43GvOY5kWcmD0tF5CgvjI9Jr1kgHHywddFDyeHSu2La0bZu7RjAobd0qbd8u7dwpNTe7+/Z4pKIiaehQN1o9apQ0ZIh0wAGZw9fJlJRI//mf0hlnSHffLW3alP3+x46VfvQj/fSjm+XIyTweAAAAAAAAAAAAAAAAebN863Idc+8xCngCqiysVKnjl6xWNRkROQ1SwC+1eSRD6tc7PUxbshokDUl+vSncpGHFw/TQRQ+pLFDWp3sDAAAAAAAAAAAAAAAAAAB9h+g1AAAAAKDvRSLSyy/Hn3OczuB1LMOQCgqkQCB5DNq2pVDIfW6y+YqK4gPar7wiTZiQm9eRys6d0urV0qpV0ubN6cd+8knn92PHSscdJx1/vBv4zsYJJ0iXXio9/7x0333S66/37LlXXumGs30+6aPstgAAAAAAAAAAAAAAAIDciAavHTlqtVpVV79dla2GSh3HLVybUlPMbSb9Fb72OlLEUsrgdVRDW4MKPAV9sicAAAAAAAAAAAAAAAAAANA/iF4DAAAAAPreu+9KwWD8uVCoa/Da65WKiyWPJ/VcpikVFkp+v9TU5Aa1oxzHnbcg5o1y9fXS2rXSQQf1/nUk88470sKF7jo9tWmT+3jlFemii6TDD89uDz6fdO657qO2Vlq+3I1wr1kj7dolhcPumOpqacoU6YgjpKOPlkaOzG49AAAAAAAAAAAAAAAA5Fxs8Dpasm41HdX5HVW2SoYjNRZ2DV33dfja47TfslOYcMGIP6wqrNLKr66U3+vvq60BAAAAAAAAAAAAAAAAAIB+QPQaAAAAAND3Xn89/tiy4mPVkhu8Li2VjIR3v6Xi8bjjGxrcqHNUJOLO7/N1nnv/fekrX8lu76k0NUl//rP0r3+5a5pm5zXbTv/c2LGSG8z+05+kz3xG+vKX3fB3KrGvK9lcBxwgnX+++wAAAAAAAAAAAAAAAMA+IVnwOqrVKzW1B68l93J/ha9NR7IaJFWlH1dVWKWa62o0umx0H+wKAAAAAAAAAAAAAAAAAAD0J6LXAAAAAIC+tXOntHZt/LnYSLXkhq6Li7sfvE58Xn295MS8bS8clvz+zuP166XWVmno0J7Nn8r27dKtt0q1te4eEvftOG5427bjA9im6T78/vjnRL9/9VX37+qOO6QRI7q3l6Ki3r0WAAAAAAAAAAAAAAAA9KvXP3ldJ/7lxKTBa0mq2ivVlcSfSxa4znf42pDkbZDaMgSvvYZXK65dQfAaAAAAAAAAAAAAAAAAAID9BNHrAcC2bQWDQYVCIbW1tclx8nlbabyxY8f22VoAAAAAIElasyb+2HGkSCT+nN8veTzZze/xSIWFUnNz57lIxF0nNiy9Zo108snZrRFr+3bpP/9T2r276zXLkkKhrlHvRK2tks8nBQJdX3dtrfTtb0u/+EXm8LXXK1VX92z/AAAAAAAAAAAAAAAAGDCe+vApff5vn3cPkry1YNhuaWd59+fLV/jakFS2Q6oflWaA3OD16q+t1riKcXnYBQAAAAAAAAAAAAAAAAAAGIiIXvehSCSipUuX6t///rdqamr0wQcfaPPmzaqrq+vT0HWUYRiKJIblAAAAACDfPv44/tiyuo7x+Xq3ht8fH72OruON+TF47dreR68bG6Vbb+0avHYcN2Td1tb9ucJh9+H3SyUl8YHuXbvcdX77W/daMn6/NGFC/GsEAAAAAAAAAAAAAADAPuPldS+nDV4P3SV9WtHRk04rNnadj/D1sM3SzvHtE6fZ0MqvrtTkoZNzvDoAAAAAAAAAAAAAAAAAABjIKGH1gaVLl+ruu+/W448/rvr6+o7z/RG6BgAAAIB+t359/LFtxx97PPHB52yYpht/jv2gH9t2z0fV1koHHNC7db7/fWnHDnfPUZGIG8NOfF3d1dYm1ddL5eXxAesdO6S//lW6/fb48YYhFRa6MezYfQAAAAAAAAAAAAAAAGCfsXjDYp3219PcgyRvNRixQ9o+pPNyprtromPyEb4eWSvtGO9+b0qyEzfU/v2yryzT1OFTc7QqAAAAAAAAAAAAAAAAAADYVxC9zqOVK1fqW9/6ll599VVJySPXRm9DblkiuA0AAACg38R8GJCkrnHo2DB1byTOkxi9bmqSRo7Mfv4XX5SeeSZ+zkjEfX2OEx/ujv4M5vW64w3DPWfb7nMSfza0bXeeysr48PXTT0tz50qnn579vgEAAAAAAAAAAAAAADCgrN21VqcsOMU9SHKr/+haacuw+HP9Fb4es0PaOib+XFz42pAMGVr6laWaNWpWL1cDAAAAAAAAAAAAAAAAAAD7ohyVxBDLcRzddtttOvroo/Xqq6/KcRw5jiPDMLo8Yp/TVw8AAAAA6FeRSPrrufpwoEzzhMPZzx0OS//93/HnHEfau7drxNswpIICqbRUKi6WCgvd48JC97i01P0+kW278yX+HPf97/du7wAAAAAAAAAAAAAAABgwtgS36Lj/Pc49SHK7/7jNXYPXUd15d0BiHLs3d+aM2yFFyqXyUNdrZvvkBK8BAAAAAAAAAAAAAAAAAADR6xxra2vTF7/4Rf3oRz+SZVlxsWspddwaAAAAAPYbXm/667n6GSnTPD5f9nM//7y0eXP8uYYGybLiz3m9UlmZFAhIZoofwU3TjV6Xl3f9u7Esd95YmzZJL7yQ/d4BAAAAAAAAAAAAAAAwIGwJbtFR9xylPc17ZNpdr0/cKH0yMv0cfRW+PnirFClzvy+IJAlfm4aqi6q19oa1BK8BAAAAAAAAAAAAAAAAANjPEb3OsSuuuEKPPfZYXOw6Wdw6eq0/HgAAAADQr8rL448TY9B2knfwZSNxHo8n/ri6Ovu577sv/jgcllpa4s95vVJpadd1U/F43PGJ4euWFnf+dOsDAAAAAAAAAAAAAABgn7JhzwY3eN2yR3Lc+1zMmIL1qI3S+tHdmyvb8HV3310wfI+0dqw0a0vnHuPC16apqqIhWvnVlZpYNbGbswIAAAAAAAAAAAAAAAAAgMGK6HUO/eY3v9HDDz8cF5eODV1L6hKejg1i9+UDAAAAAPrNxIQ3tiVGry1L6u3PLbYtRSLx5xJj0lOmZDd3ba30+uvx55qbu44rLpZ6+sFDhpH8eYnz//vf7j4AAAAAAAAAAAAAAACwz1m+dbkm3jVRu5t3S7YTV602Hal6o7S1m8HrqGzC10pynGhIUNo51P3+iUMTwteWofKiSg1pD16PLuvhpgEAAAAAAAAAAAAAAAAAwKDkzTwE3VFbW6v//u//Thu7jj1vGIbGjRunI444QoceeqjKy8tVWlqqkpKSuCg2AAAAAAw6kybFH3s8XceEw1IgkP0abW3xx4bRNXp9xBHZzb1sWfyx40ihUPy5wsLkr6s7PB43fN3Y2HkuFHLXif15cfly6fzzs1sDAAAAAAAAAAAAAAAA/WL9nvU6+t6jJUlOe6o69h0E1ZukT7NsRyeLWqcaE/uOh8TjqKH10u6q+HNPHCqd95Gh5aMN2ZUVOmb00Vp44UJVFlZmt2kAAAAAAAAAAAAAAAAAADDoEL3OkZ///OdqamqSYRhpg9fTpk3TVVddpYsvvljDhw/vj60CAAAAQP+aMiX+OBqkjkQ6z7W1SZaVXTjasqSWlvhzPl98MFqSjj6653NL0urV8cdtbW6QOsowehfsltxodlNT57yO44bA/f74fRC9BgAAAAAAAAAAAAAA2GdsCW7R9Humd55w2mPThmQ4UsUW6dNRvVsjV+HrysauweuoJw52dF54giITDtMDFz6gskBZL3YMAAAAAAAAAAAAAAAAAAAGG6LXOdDW1qa//OUvHXHrqNjjqqoq/fSnP9XVV1/d19sDAAAAgIFl6FDpoIOkDz/sPOfzxUevHceNPpeWdo1VpxN9XsKHEcXFoiXpyCOlkSN7vHVJ0po18cex+5bcgLdpZjd3lGm684TDnecSo9eJ+wAAAAAAAAAAAAAAAMCAtSW4RVPnT1V9W717Iub2FkeSs1vaMyI3a/U2fF3WLNWXp3myIS2paNDGLzysQn9h7zYLAAAAAAAAAAAAAAAAAAAGHaLXOfDiiy8qGAzKMAw57WG1aPDacRwdcMABWrx4sSZNmtSf2wQAAACAgeP44+Oj1x6PG3mODUhHIlJDg1Rc7F7PxLLc4HVihNrvd+eOde652e999+7448T1fL7s506cJzZ6nbjOrl25WQcAAAAAAAAAAAAAAAB5lS54LUnaLalcmUvVPZBt+Lq0VWosTfMkQ6oqqNLb160geA0AAAAAAAAAAAAAAAAAAJIiep0Dr776atxxbPA6EAjoxRdfJHgNAAAAALGmTpXKyqRgsPNcIOCGq52Yt9FFIlJ9vVRY6F43za5z2bYUCkktLV2vmaZUUBB/bsQI6dhjs997bIg6GSNH7z5MM48jyWlrU8Rqy81aqdZxHDkxb2t0nMR3XAIAAAAAAAAAAAAAACCdjMHrRskok5wcBq+jehq+LmyTmorTDG4PXq/8eo1Gl43O1TYBAAAAAAAAAAAAAAAAAMAgQ/Q6B1asWNHlnOM4MgxDN910kyZPntwPuwIAAACAAczrlU49VVq0qPOcYbhx65aW+PC15J5raXGf5/G4Yx3HjWRHIsnXMAypqKhrPPprX3PnyZbPl/56rsLQSeaxHVuWY8uRo1YnpI93vJObtVJotVrjo9dyOsLXRq7i3gAAAAAAAAAAAAAAAINUd4LXpl+y83gbRnfD10UhqcmSknwkvcswVFVUpZXXrSJ4DQAAAAAAAAAAAAAAAAAA0kp5PyK6b8OGDR2xr9jol2mauuWWW/prWwAAAAAwsB10kDRlSvw503TD16mCypGIFApJra3u11TBa9OUiovdQHas00+Xjjmmd/seMiT+ODGgHQ73bv4U89gejyKO1RGhjlSV52adLDm5insDAAAAAAAAAAAAAAAMQhmD1w2S1yfZffCujkx3eXgtqcmWzNIkFw1JpqGq4iEErwEAAAAAAAAAAAAAAAAAQLcQvc6BXbt2xR07jiPDMDRr1iwNSYyhAQAAAAA6nXKKVFERfy4arA4EspszEJDKy7sGrw84QPrqV7ObM1ZiqDsxeh2JSLbduzVsOy7o7UiyvZ0/wluGo5aDD+zdGpIs2+rV8wlfAwAAAAAAAAAAAAAAdNUWadPhvz88dfBakt8nRTxdz+dLqrs8vJZUUieVBBLGtMeuZZqqKhqilV9dSfAaAAAAAAAAAAAAAAAAAAB0izfzEGTS3Nyc9Pyxxx7bxzsBAAAAgH60c6e0Zo308cfS+vVSfb0bbvZ63Qj1xInSpEnx0eiCAmnuXOnBB6WGhs7zhtEZvm5tldraMq/v97vzeb1SYoy5okK64w6ppKT3r/OII7quaxidazqOFApJhYXZr9HSEv8aDENOe1w76LN15WkNOmd8i47JfgUt3rBYT3z0hH702R+pxJ+DvxcAAAAAAAAAAAAAAABIkrYEt2hvaK97kKQ2XdAstfr7dEsdWzFijj2OFNgpFVRIBe235zT5JMM0OwZWFVYRvAYAAAAAAAAAAAAAAAAAAD1C9DoHfD6fLMvqcn7YsGH9sBsAAAAA6EORiLRkifTUU9Lq1enHrlzZ+f348dIhh0gHHeQGsS+5RHroIWnv3vjneL1uqNpx3LUiESn25y+Pxx3j9brh6WSGDpVuvlkaMSKLF5jE0UfHHxtGZ5w7qqXFjWF7PJ1jEkLcluHI4xhd921ZUlNT/LlAQI5pKOizdekZDXpnSERvBh/X5asrNGPkDJmG2aOXsLx2uRbULJAjRzc+d6Oun3W9inxFXcaFIqG4YyfhNTjJ3pUJAAAAAAAAAAAAAACwH9sS3KJj/tT+UeZJbq0oaZAae/FZ6r0VDV97HKlkt7R3tHtLTmWrVBo2JK9HTbJkyCB4DQAAAAAAAAAAAAAAAAAAstKzKhaSKisrS3q+srKyj3cCAAAAAH3ozTelq6+W7rgjc/A60dq10hNPSPfe635fXi5dfrk0ZUry8YYh+XxSYaEbwY4+Cgvd86mC18ccI91yi1Rd3bP9pXPAAdLxx8efK+oajFZTU2foOjbO7fUqWGjqgvOatehgqzOMLbnjY58XPV1YGBO8tmT7fLJN6d4V9+r//vP/qrmtWY7jdOuxfGtn8FqSNtVv0u+W/S7pHJIbto7+AQAAAAAAAAAAAAAAQGptkTbN+OMM7WnZIzPJrRbl9f0bvI5yJI3YIu1t/wz5Vq9UVyDJMFRaUKZif7FK/aUErwEAAAAAAAAAAAAAAAAAQFaIXufAyJEjO2Jgserq6vphNwAAAACQZ42N0i9+Id12m7RjR+/mCgalRYukp592j88+W5ozR+rthwgNGyZde6102WVuGDvXrrwy/jga5I4ViUgNDZJlxZ0O+mzNO7NBbw+zdMNJTVo0MeResCx3fCQSP09hoYJFZkfwWpLswoDarDY1h5u1ce9G/b9//z+1hFsybvut2re0YPWCLgHrTcFN+t3y33VrDgAAAAAAAAAAAAAAACTn9/p11eQvSbYtOYoLX1fvluqL+29vsUZ/Im2ZEH/ODV87UiCgUn+pjh9zvEaWjOyfDQIAAAAAAAAAAAAAAAAAgH2at783MBhMmTJFq1at6nL+008/7fvNAAAAAEA+bd8u3XqrVFub/LrjuNHmSCQ+9uzxSF6v+zCMrs9bs0baulWaO1c66CDpyCPdcU89JdXUdH9/Rx4pnXuudNhhvQ9yp/O5z0ljxkibN3eeKy2V2triX3ckItXXu0HsQEDBgDTvzAbVVFuSHNmSbjixUVZbSF9YHXH//mL+fhzTVF25X5ectlerh0Q6zjUZVlygelP9Jv2/f/8//dcJ/6VCX/LId6rgdccc7eHr62ddn3IOAAAAAACA/UEoFNJHH32kLVu2qKGhQc3NzSoqKlJpaalGjx6tQw45RH6/v7+3iT6wc+dObd68Wdu2bVNDQ4NaW1tlGIYKCgpUWlqqkSNHasyYMaquru7vrQIAAAAABorNm/WzHy+Vykz94lhbkhu+HvGpVDukn/fWbkKttOHA5NdaPY7qWup08oST9eBFD8pjevp0bwAAAAAAAAAAAAAAAAAAYHAgep0DM2fO1AMPPNDl/CeffNIPuwEAAACAPNm+XfrP/5R27+56LRKRWlvd6HMmfn/y+PXevdLChdIll0jl5dLxx0snnijt3OlGsdeuldatcyPSkYg7R3m5dOCBbih76lQpGpcJBnv9ctPy+aQf/1i68srOc4YhVVRIdXWSbcePb2lR0GrWvHOkmipHcgw3cC3JlnTzKW0yQ9KcD824+eqqS3TJmY16pz14LUlNRT61RFqUaHNws+58407ddeZdKvYXx1179ZNXtfDdhTINs8vzYm1t2Ko/rfqTfviZH3aZAwAAAAAAYDB788039Y9//EPPPvus1qxZIyv2g80SeDweTZkyRWeffbbOP/98HXvssX240/4VDAb17rvvas2aNdq0aZM2bdqkzZs3q7a2Vo2NjWpublZTU5Msy1IgEFBxcbGGDRumkSNH6pBDDtHUqVN1/PHHa+rUqTKSfTheP3v33Xf19NNPa/HixVqxYoV27tzZrecNHz5c06dP18knn6xzzjlHU6ZMyfNOAQAAAAADiWVbbhx60ybpggukTz7Rz/ZKsqVfzJYO2C5tGdrPm2w3cYu0fnz6MSErpL+c9xeVBcr6ZE8AAAAAAAAAAAAAAAAAAGDwIXqdA+edd56++c1vdhwbhiHHcbR48WLZti3TTB8VAwAAAIABr7FRuvXWrsFrx5Gam6VQqPtztbW5471eKRCIj183NkoPPyxdf33nuaFDpZNPdh8DyemnS1/8ovTII53nvF6pstINeMeEkYJ+R/MuclQzrP1Ee/A6yjakG8+SJEdzPjTkmKYbvD67Se8M6ZynucCjJif13/W6unW66fmbdM+596jEXyJJWrxhsX6z7Ddy5HQrJLSubp1uf/V23XHqHRnHAgAAAAAA7Ov+9re/6c4779SKFSu6/RzLsrR69WqtXr1aP/3pTzVjxgzdcsstmjdvXh532veam5u1dOlSvf7661q6dKneeeedHn34d3Nzs5qbm7Vz506tWbNGL730Use1oUOHas6cObrssst04okn5mP73RYKhbRgwQLdddddeuedd7KaY8eOHXr22Wf17LPP6rvf/a6mTZumG2+8UZdddpn8fn+OdwwAAAAAGEiCoaAufexSffmQizXn+vnuh8o3N0uSfvaKqVeG2XprQj9vst2E2gzBa0MyZGjpV5ZqeOnwvtoWAAAAAAAAAAAAAAAAAAAYhKgx58CECRM0c+ZMOQnRsvr6er3xxhv9tCsAAAAAyKG775Zqa+PPWZZUX9+z4HWsSMR9k59tx5/fu1d65pns5uxrP/qRNCHhnYlerzRkiFRYKCkmeJ3hvYBu+NrRY4d7VTestEvwusVrqMFjpZnB9fGej/XVp76qxrZGLd6wWHe+cadsx874vFgf7flIt758a4+fBwAAAAAAsK/44IMP9JnPfEZf+tKXehS8Tubtt9/WxRdfrM9+9rP68MMPc7TD/rNkyRIdffTRKi8v1ymnnKLvf//7euqpp3oUvM5k586d+uMf/6iTTjpJM2bM0FNPPZWzuXvi4Ycf1qRJk3TttddmHbxOpqamRldffbUOOeQQ/eMf/8jZvAAAAACAgSUYCmreo/P0du3buuHxr2qRPnDvg2ltlWxbV502cILXY3dIG8amGRATvJ41alaf7QsAAAAAAAAAAAAAAAAAAAxORK9z5Fvf+lbS83fddVcf7wQAAAAAcuzNN6WXXoo/Z1lSMNg1WB3l9UqBgFRQ4H71epOPcxyppaXrPCtXuusOdGVl0t/+Jo0cGX/eMKSyMgWHV2jeXCNj8DrKNg3deHpYp58f1OohETntf5q9hoIBJ/ME7T7e87G++MgX9bMlP8s6XP3Rno9U11rX5QOeAAAAAAAA9nWPPfaYZs2apVdffTWn8/7zn//UzJkztWjRopzO29fWr1+v5cuXKxKJ9Ml6K1as0Oc//3l97nOf05YtW/pkzYaGBl188cWaN2+eNm/enLd1Nm7cqDlz5uiqq65Sc3Nz3tYBAAAAAPS9aPC6ZnuNFArJbmnRDcfVaVHlDknSN4+XFgyQdnRlUNo0Ks0AgtcAAAAAAAAAAAAAAAAAACDHiF7nyNy5czV16tSOY8Mw5DiOHnnkEb311lv9uDMAAAAA6IVIRPrDH+LPOY7U0OB+jWUYUmGhVFHhxqCLi6WiIvdrWZl7vrCw6xrR8HXifHff7a4/0I0ZI/3jH9KECXGngz5b885qcoPXpun+/UQfUe3HjmHIMQ05hmQb0idltkKm+/fR0sPgddTult2qb63POnptGqaKfEUyYvcLAAAAAACwj5s/f74uuugiNTY25mX+xsZGfeELX9Dvf//7vMw/mL3wwgs64ogj9PLLL+d1nR07duikk07SQw89lNd1Yt1333065ZRTtGfPnj5bEwAAAACQP3HBa0mqq5NsW7Yh3XC2dOlp0m9OlgbCx4xXBKW6qjQDCF4DAAAAAAAAAAAAAAAAAIA8IHqdI6Zp6t577+0SA3McR9dee62ampr6aWcAAAAA0AtvvCHt2BF/rrlZshNCyl6vG7YuLHQDz8mYpnu9vFzyeOKvOY4UCsWf275devPN3u2/r4wZIz37rDR3riTJMhxdeupe1QwJd46JjV6bZkIIO346v+2+oXBvYXbB6yjLsdQQapCTGBTPwDRM3XLcLSr0JomUAwAAAAAA7KPuu+8+3XDDDT3+XUlPOY6j66+/XgsWLMjrOoNRXV2dzjrrLD366KN5mT8YDOr000/XqlWr8jJ/OkuXLtWZZ56p5ubmPl8bAAAAAJA7ccHrcFjati3ug94DtdKDxwyM4HVpkxSsTDOg/X6V1656jeA1AAAAAAAAAAAAAAAAAADIKW9/b2AwOfroo/XjH/9Yt956qwzDkGEYchxHNTU1+sIXvqCnn35ansSwGwAAAAAMZE89FX8ciXSNU3u9UmmpG2/uDo9HKi6Wmpoky4qf27Lig9hPPSWdcEJ2e+9rZWXSr38tnXOOPN//vr78QUgrj6+X3c2/lliOaUrFBe5fRbh3EZwCb0GXD2hKJxq8/uyEz+pXb/6qV2sDAAAAAAAMFMuWLdM111zTreD17Nmzdckll2j27NkaP368SktL1dDQoPXr12vJkiV64IEHtHTp0rRzOI6ja665RpMnT9asWYMzGlVeXq6DDz5YhxxyiIYPH67S0lKVlZWpqKhIDQ0NCgaD2rlzp2pqarR69epuf1h4OBzWpZdequrqap188sk53fOVV16pd955p1tjS0pKdOGFF+qEE07QrFmzNGzYMFVVVclxHO3Zs0c7duzQsmXL9Nprr2nRokVqaWnJOOfy5cv11a9+Vffff39vXwoAAAAAoB/EBa+bm6X6+rjrxTukDQf20+YSFLdITWXu96ajrvevtB8/efGTOn7c8X26NwAAAAAAAAAAAAAAAAAAMPgRvc6x733ve/r444/1v//7v3Hh6xdffFFnnXWWFixYoBEjRvT3NgEAAAAgs507pZqa+HOtrV3HFRd3P3gdZRhSIOC+ATBWOBwfvV61yt3H0KE9m78/nX66dPLJmvP889Jjd+iGIUu7Hb62fV5ZAb+cQECGYahAboS6sa0xq60U+4oV8Aa6PT42eA0AAAAAADBYBINBXXzxxQqHw2nHTZo0SX/4wx906qmndrlWWVmpGTNmaMaMGbrhhhv0wgsv6Otf/7rWrVuXcr62tjbNmzdPq1atUllZWa9fR3/y+/2aOXOmTjjhBJ144omaNWuWhg8f3u3n27atxYsXa8GCBXr44YfVmuz3jDHa2tp0ySWXaPXq1aquru7t9iVJDz74oP7xj39kHFdYWKgf/OAH+trXvqby8vKkY0aNGqVRo0Zp+vTpuu6667R7927ddddd+slPfqK2tra08//1r3/V3Llz9fnPfz6blwEAAAAA6CeZgtfmLmntmI6WtAxJmT96Kz8K2qSWkvhzceHr9q8vXfaSTj2w6+9BAAAAAAAAAAAAAAAAAAAAesvs7w0MRvfee6+uu+46OY57m2o0fP3yyy9r2rRpeuSRR/p5hwAAAADQDWvWxB87jpQYbCksjI9U94RpSn5//LlIxF0n3T72BT6fdO65mvPnJbrrgj/KrKh04+B+v+T1yvF45Hg9buS6sEDhkiKFKkrVVlYsK+CTaZodH6QU8AZU5Cvq8RYIXgMAAAAAALh+8IMfaMOGDWnHnHbaaVq+fHnS4HUyZ5xxht566y199rPpf5eyYcMG3Xbbbd3d6oAycuRIXXvttXr66adVX1+v119/XT/72c907rnn9ih4LUmmaerUU0/VfffdpzVr1uiss87K+Jxt27bpv//7v7PdfpxIJNKtuQ4++GAtW7ZM3/ve91IGr5MZMmSIbrvtNi1ZskTjx4/POP573/uebNvu9vwAAAAAgP4VF7wOh7sEr5v3SFtHSTLjQ9c9/Aj5nPCHpdYiyUmyuOmoY1OvXPEKwWsAAAAAAAAAAAAAAAAAAJA3RK/zwDAM/f73v9fPf/5zeb3ejnOO42jnzp26+OKLNWnSJP3ud7/T1q1b+3m3AAAAAJDCxx/HH0ciXccEuh9VTsrn63rOsuKP167t3Rr9bM7xV+uuOf+fzNIyqbJSzpAqRarKFaksl1VRJrukSFbAJ8eT+kd0v8ffo4A1wWsAAAAAAADXe++9p/nz56cdc9xxx+nxxx/vUeRYkioqKvTkk0/q6KOPTjvurrvu0vvvv9+jufvTrFmz9MYbb2jr1q265557dPbZZ6ugoCBn80+cOFHPPPOMvvOd72Qce++992rTpk29XvPJJ5/U+vXr044ZMWKEXnjhBU2dOjXrdWbMmKEXXnhB1dXVace99957euGFF7JeBwAAAADQdyzb0iV/v8QNXkvSrl1x1/e2SvUjFVe47q/wtc+S2go799AlfG2aqi6q1sff+Jh7RAAAAAAAAAAAAAAAAAAAQF55+3sDg8WCBQu6nBs2bJiuvvpq3X333TIMQ4bh3jXqOI7WrVunm266STfddJPGjBmj2bNna+zYsaqsrFRVVZUCvQ3HddMVV1zRJ+sAAAAA2AclRmASo9der2T28rOUDEPyeOJD17YdP2bdut6tMQDMmTxHknTDszfIcqwMo5PzmT7JK4UiobTjCF4DAAAAAAB0+uEPf6hIsg9za1dVVaWHHnpIRUVFWc1fXFyshx9+WEceeaT27t2bdEwkEtHtt9+uBx98MKs1+tohhxzSJ+v87Gc/UzAY1N13351yjGVZ+tOf/qQf/vCHvVrrgQceyDjm/vvv17hx43q1jiRNmjRJf/nLX3Tuuedm3NOZZ57Z6/UAAAAAAPnVFG7SjsYdCkVCCgSb4q5tb5ZUoaRlayfmtKH4EHY+eC0pHJYUc8uI07644UgyDVUVVWnlV1dqdNnoPO8GAAAAAAAAAAAAAAAAAADs74he58hVV13VEbVOxnHc21QT49eStGnTJm3evDn/m0yC6DUAAACAlOrr44+thFizx5ObdUwzffQ6cR/7qGj4+vpnr896jkzha4LXAAAAAAAAndavX6+///3vacf8+Mc/1pgxY3q1zrhx4/TDH/5QN910U8oxjzzyiH7yk59o/PjxvVprsPn5z3+uJ554QrW1tSnHPPHEE72KXjuOo8WLF6cdc+qpp+q0007Leo1E55xzjk466SS9+uqrKce8/PLLOVsPAAAAAJAfwVBQ8x6dp60NWyXHccPX7de2NUtmhWSn+bz4vgpfe2wp0iapNPkeZEhDioYQvAYAAAAAAAAAAAAAAAAAAH0mzS2WyIbjOF0eya5LnQFswzCSPi/fDwAAAABIKxJJfz3NB//0SKZ5Mu1jHzJn8hzdedqdMo3sfxz3mT55zK7B8Z4GryVp1gGzCF4DAAAAAIBBa/78+bISP8gtxqRJk3TttdfmZK2vf/3rmjhxYsrrlmVp/vz5OVlrMCktLdXNN9+cdkxNTY3qe/HBeBs3btSePXvSjvnKV76S9fypZPp3a9u2bdq6dWvO1wUAAAAA5EY0eF2zvUaSFAg2SZJC7bdseMvTB6+jYu/az9GdNnFMR7JSBK879mBIy65eRvAaAAAAAAAAAAAAAAAAAAD0GaLXORYbso4+kkmMTyd7Xj4fAAAAAJCR15v+eq4+TCfTPJn2sY/5/CGf1y3H3ZJ1+Dpsh2XZ8bGmgDfQ4+C1JC2vXa7FGxZntQ8AAAAAAICBzLIsPfjgg2nHfPOb35TH0/XDxbLh9Xp14403ph2zcOFC2badk/UGkwsuuCDtdcdx9OGHH2Y9/7p169JeN01Tp512Wtbzp3L66adnvD9j7dq1OV8XAAAAANB7wVBQ5y88vyN4LUlqa1Og/XaNXT4p0oNfKeQrfG04krNbUkm6QVJlQaVGlY3K4coAAAAAAAAAAAAAAAAAAADpEb3OsdiYdWzUuqfPyecDAAAAALqlvDz+ODEAZMWHl7OWGPoxE35UTdzHIPDZCZ/VrANm9fh5YTusUCQUd85jeuQzfVntw3Zs3fnGnYSvAQAAAADAoPPKK69o27ZtKa8XFBTosssuy+maV155pfx+f8rrtbW1+uc//5nTNQeDSZMmaciQIWnH1NbWZj1/XV1d2usjR45UdXV11vOnMmzYMI0YMSLtmF27duV8XQAAAABA7wRDQR33/x2nf276p7Y1tv9uoaWl43qzI4Wz+AytXIevDUcq2S056X70bA9er/7aavm9qX9nAQAAAAAAAAAAAAAAAAAAkGve/t4AAAAAMKBEIlI43DXCu3GjVFjYL1sa9LZulZqaOo8NQ/J6JZ/P/R79Z+JEaeXKzmNvwo+QkYj7v5XESHVPOE7XeHbifAcemP38A9TiDYu1vHZ5j56TLHgtSZZtKWyHFVAgq71Ew9eSG+MGAAAAAAAYDJ588sm018855xyVlpbmdM2KigqdddZZevzxx9Pu65RTTsnpuoPB8OHDtXv37pTXm2J/h9xDoVDX36nFykfwOmro0KFp4+stMdE0AAAAAED/iwav39v9Xse5bY3bNLLV/TDyoCO19qId7agzeG0oPoTdUyO2SNsmpBlgSIYMvX3N2xpdNroXKwEAAAAAAAAAAAAAAAAAAPQc0escM4jyAQAA7JscR2pokBobk19ft07yePp2T/uLvXul5uau571eqaKir3eDWJMmxR8nRq8lKRTqXRA+HO56zuNx/zfptL+1b+RI99+TnggGs99TGpZtyWP27v8LnvzwSf18yc/l9OCti21WW9LgdVQoEpLP9CngJXwNAAAAAAAgSS+99FLa6+ecc05e1j3nnHPSRq9ffPHFvKy7rysvL097vaioKG9zFxcXZz13JpnmLisry9vaAAAAAICeSRa8jtoWCKusRWoq6f060btFDGUXvjYkjdws1XYjeL30K0s1oSrdQAAAAAAAAAAAAAAAAAAAgPwgep1DjtPTW04BAAAwYDQ2pg5eo39EItKePdLw4f29k/3XlCnxx4Yh+f1SW1vnuZYW91w2UXjbjp9LcsPa0Q8Tsiz3a1WVtG1bz+fPsWAoqEsfu1RfPvLLmjN5jiTJtm1F7EjG53pNr0zT1KL3F+n6Z69XU7hJpf7Sbn1wUlukTc3hJGH4BE3hJkkifA0AAAAAwD4iEolo69at2rZtm3bv3q2WlhaFQiFZ0d+J5FF1dbXOPvvsvK/TX7Zt26b3338/7ZjTTjstL2uffvrpaa+vWbNG27dv14gRI/Ky/r7q008/TXu9uro667mHDBmS9vru3buznjuTTHNn2hsAAAAAoG+kC15LUlmdFCzN7ZqOsgtfj6qVtnQzeD1r1Kxe7REAAAAAAAAAAAAAAAAAACBbRK9zZMOGDf29BQAAAGTLcQheD1S2LTU09Pcu9l9Dh0rTpkk1NZ3nCgq6hqqbmqTS0s5YdXc4jhQKdT3v88UfH3ywVFHR/XnzJBgKat6j81SzvUYrt63U9sbtGlU2Sg1tDXLszG899JgevbfzPc1fPl/1ofqOOcsCZWnD122RNjWGu///T4SvAQAAAAAYuGpra/XCCy/olVde0cqVK/XRRx8pEsn8YVr5MGPGjEEdvV62bFna62PGjNGYMWPysvb48eM1cuRIbUvzIW7Lly/X5z//+bysvy+yLCvt35ckTZw4Mev5Dz30UBmGkfKDzHfs2JH13Jlkmrs3rwsAAAAAkBuWben4e4/vGrxu/zGytD73wevYJaLh65glUxq7Q9qS7lcaBK8BAAAAAAAAAAAAAAAAAMAAQfQ6R8aNG9ffWwAAAEC22trcAG+U4/Qs3ov8Sgwso2+de2589NrrlQKB+GB1JOLGyYuLJY8n85yW5YayLSv+vNfb9fknnpj93nMkNngtSW1Wm/7rlf/SFUdcoZkHzOzWHEu3LNWfVv5JTeGmjsi15Vgd4etkehq8jspl+BoAAAAAAPTeo48+qnvuuUeLFy/uiO6miu8iN1asWJH2+vTp0/O6/syZM/Xkk0+mvL5y5Uqi1zFeffVVNTc3p7w+YcIEjRo1Kuv5q6qqNGXKFL377rtJr+/du1fvvPOODj/88KzXSKampkb19fUpr0+cOFEjR47M6ZoAAAAAgJ7741t/1Lu72n9mTPiVTeVuqa48v+tHw9dq/5rqt0bHfyS9Mdn93nQkO/H2NoLXAAAAAAAAAAAAAAAAAABgADH7ewMAAABAv0uM7BK8Hli6E1FG/hx3nDR8ePy5oiLJTPhxMhKR6uullhbJtpPPZdvu9fr6rsFrw5AKCuKPhw6VZs2SCgt7/4iduwcSg9eOHIXtsBw5WrB6gd6qfSvjHG/VvtURvJbio1bR8HVi6CoUCWUVvI5qCjcpFAllHphCNHzdEmnJeg4AAID/n737jpOqvvs2/jlTdmYLu0sv0quCAQQUNfYek6ioERVbNImJEWOKuRPzxBhjTExTo1juJLbcFhCxETERGzbESBFFQJr0ZYFl+85OOc8fh7M7Mzt1d3Zmy/V+XvNi55wzv/MdltyPOztzHQAAurvXX39dhx9+uGbOnKnXX39doVBIpmk2vQ5gGEbObl3dypUrE+6fOHFiu54/2forVqxo1/N3Nk899VTC/WeddVabz3H22Wcn3P/yyy+3+RzR/vWvfyXcf+qpp2b8nAAAAACA9Dyw7AFdt+g6605UbbrXnvYPXtvCTx3rlZtzVkvvPCP95N3mbY6oBxG8BgAAAAAAAAAAAAAAAAAAHYkr1wMAAAAAOedySW635PfnehLEkp+f6wm6N5dL+t73pFtvbd5mGFKPHlJVlRQVa1Z9vXVzuaxguWFYxwSDVhg7FsOwQtrhgXPDkG68URo9OtPPyOLxJD0kOngtSaGwoLcdvpakaYOmxVwjOnjd9FjTbApMBc2gav21KnQXWttMqSHQkPZTiuYP+eUIOuR2ulv1+JAZUp2/Th6np1vEsAAAAAAAyJRAIKAbbrhBDz30kCRFRK6jRV8Iqz0ZhpHV8+XS+vXrE+4fM2ZMu55/dJLXtD7//PN2PX9nsmLFCj388MNx9xuGodmzZ7f5PNddd53+/Oc/Kxh9Mb6D7rnnHt1www3Kz9Dr0TU1NbrnnnuSzgQAAAAAyJ2m4HWMl0t675b29cnuPKaag9eGmsc6eb30wovW13e+Zu3807HWfYekEMFrAAAAAAAAAAAAAAAAAADQARG9BgAAACSptFTau7dlwBe5VVAgeb25ngJHHy2ddpq0eHHzNqdTKi6WqqulsBB0k0AgfuQ6nGFYYXOHI3L7scdK06e3be5ESkoS7o4VvJakkCKfa9AM6u8r/q4N+zdoVK9REfs27t+o1za/Jl/Ql3ScYCgyfF3sKVaVr0pBM3aEJ5kid5HyXHnyB/3yB/2tCl+P7TVWmyo2EbwGAAAAACANtbW1+trXvqYlS5bEjF13l+h0LpmmqS1btiQ8JlmUuq2SrZ9svu5i9+7duvTSS+OGqCXp/PPP12GHHdbmcw0bNkyzZs3S448/HnP/rl279Jvf/EZ33HFHm88lSbfccov27NkTd/8pp5yiyZMnZ+RcAAAAAID07di/I27wus9Wae+g7M8ktQxfT9guvf5M5DF3vu6QHNKfjglJDof65PfSB9d8oJG9RmZ5WgAAAAAAAAAAAAAAAAAAgPgcyQ8BAAAAugG3W+rXz4osu1xWiDf85nBYx3DL/C3679rplDweK0ReWprrfxmwffe70qCoT/Q5nVY82uNp3Zput/W/uejgdd++0syZrVszFR5Py+cSJl7wOh5Tpt784k2t27tOjcFGNQYb1RBo0LKdy1IKXtvs8LVpmjIMQyXeEvXO753y42128FqS3E63BvUYJEPphavH9hqrO069Qw6Dlw0AAAAAAEiV3+/Xueeeq7feeqvp53vDMGSaZtPN3hZ9iyfe8ckeF+ux4du6srKyMjU0NCQ8ZlCC14YyIdn6tbW1CYPI3cHq1at14oknau3atXGP6dOnj+bMmZOxc/7lL39R//794+7/3e9+FzeKnY4HH3xQd911V9z9Xq9X999/f5vPAwAAAABovUPWbVWev+X23htyF7y22R3uARVSRW/puUPDdhqGVFqqO6un6ydH/kB9CvpoxbUrCF4DAAAAAAAAAAAAAAAAAIAOx5XrAQAAAIAOw+mMH1k+6SQrzovMW7VK2rGj+b5hSKYZ/3jkRlGRdMcd0k9+Iu3d27zdMKTCQisk3dAgNTYmXysvz7o5HNb3Ovz7XVoqXX+9db7oGHZbeTxScbEVvI6zdrLgtRnn36YpU+9se0eSNKLnCH1x4AvVNtY2ha1iHR8rRG2Hr0udpfqfY/9HRx5ypK5deK3W71uf0lMMD15LzfHqD3d8qD++/0eFzFDSNezHFOUVpXTO7siOlHWUdQAAAAAAHcPPf/5zvf76600/64W/JhD+81+81xdiSXRsdMA6+th0ztOV7Ny5M+kxAwYMaNcZUll/586d6tevX7vO0RFt3rxZ9957r+69914FAoG4x3k8Hj355JMJI9Xp6t27t/7v//5PX/3qV9UY53XMb37zm1q7dq1uu+02uVzpvaXG5/Ppf/7nf3TPPfckPO6Pf/yjxo0bl9baAAAAAIAM2r5dOuMM+eoc8vw8pMaDP/712iztG57TyZoUV0nKl0KSZp9tbZuxVtbF6YcPl+bO1Z1Dhug3Z/4h4n0iAAAAAAAAAAAAAAAAAAAAHQXRawAAAABAagYMkP70J+nmm6XoeJDLZYWqTVMKBKxbMNi83+m0jnG5rFB2KGTdDMO6ORzS4MFWWHvAAGutLIdfgqGgZi2YFTd4HTJDqvJVye10K8/Z8gODdvh684HN2lG9QzIkj9MjX9AXEZkyZX0dL3gcDAXVJ7+PThh2gpwOpx762kP65gvf1JYDWxLOHy94XZRXpJNHnCxJScPXBK+TC4aC2lm9UyXeEhV7ilu9TpWvSpUNlRrUY5CcDmcGJwQAAAAA5ML777+vu+66K2Hw2jRNFRcX66yzztJXvvIVDRs2TAMGDNCLL76on/3sZ00Xzwr/c9OmTTJNU5WVlaqoqND+/fu1adMmvfvuu3rvvfdUXl7edI7oALbL5dLPf/5zXX311S3m9Xg87fnXkVP79u1LuL+4uLjdn39BQYGKiopUU1MT95hkc3Z2dXV1qq6uVkVFhdasWaOVK1fq9ddf13vvvZc0yO71evXcc8/p9NNPz/hcp512mubNm6cLL7wwZnQ7FArpd7/7nZ577jn98Ic/1GWXXaaCJBfErK6u1mOPPaa7775bGzduTHjs//t//0/XX399m54DAAAAAKB1gqGg9fv5r31NqquTJPl+Z4Wvjf3S/sE5HvAgd0AqCHtbSsgIC1/3Gi89/bQ0ZIgkEbwGAAAAAAAAAAAAAAAAAAAdFtFrAAAAAEDqBgyQ/vpX6aGHpFdfbbnfMCS327ql47jjpB/9yIpd54jT4dTVk6/Wil0rWoShQ2ZIBxoOKGgGFfBbMZx44evdNbubwtaGYcjj9Mgf9CtoBpu228fKVIvwdYG7QFdNvqophFyUV6TbTr5NN716k8pqymLO7nV54wavbcnC1wSvkwuGgtpRvUO+oE8NtQ2S1KrwdZWvSmW11vdyR/UOHdLjEMLXAAAAANDJ/eQnP4kIVkuRP/O7XC7dcMMN+tWvfqWiqNc/3n333bjrDhs2LO75JGnZsmW6++679eyzz8rv9zed0zAMBQIB3X777frkk0/0+OOPq7CwsE3PsbPYv39/wv3Fxa2/iFU6iouLE0avk83Z0V144YV69tlnM77upEmT9MQTT2jChAkZX9t27rnn6o033tCsWbO0devWmMesXbtW1157rWbPnq0pU6boyCOPVL9+/dSzZ0+ZpqmKigqVlZXpgw8+0MqVK2MGtMO53W799re/1U033dQeTwkAAAAAkESVr0qzFszS1ZtKNWP16oh9Tz8qnX+lpJbXLc+6vIDUO8aPmCFDmv01h3TJdZpxMHgNAAAAAAAAAAAAAAAAAADQkRG9BgAAAACkp6hI+vGPpS9/WXrwQWn37tav1bu3dMEF0vHH5zR4bZtx2AxJ0uxFs5vC0Hbw2h/yNx1X76+XJLkckT9WGzKsuJQZts0wVOAuUI2/pil6ZbPD17YCd4G+dcS3dNLwkyKOK3AX6OrJV+vhlQ+3CF97XJ6IORLFq+OFrwleJxcevLbZ4ep0wtfhwWtJ8gV9hK8BAAAAoJN755139P7778cMXpumqR49emjhwoU6/vjjM37uo446Sk8++aR27dql2bNna8GCBRHha9M09fzzz+vkk0/Wv/71L/Xt2zfjM3Q0FRUVCff36NEjK3MkO09nj15n2qBBg3TTTTfpuuuuU15ey4vNZdpxxx2nVatW6Ze//KX+9re/yefzxTyusbFRS5cu1dKlS1t9rgkTJugf//iHpk+f3uo1sm3OnDm6//772/08GzdubPdzAAAAAEBFfYUuXXCpVu1aqRUVZdI4acY6QzJNLZPZYYLXrmDs4LUt1K+vHl73tM6ZfDHvLwAAAAAAAAAAAAAAAAAAAB0e0WsAAAAAQOscfbQ0bZr0/vvSwoXSqlWpP3b8eGn6dOnwwyVXx/rRNDx8HQgFWgSvbfX+enld3qaQVCKBUKBF8NpmHqxeF7oL9a0jvqVpg6bFPM7r8rYIX3tcHrkd7qZjUolXR4evCV4nFyt4bUsnfB0dvLYRvgYAAACAzu3BBx+MuB8evM7Ly9OiRYt07LHHtusMAwcO1Pz58/XYY4/pBz/4gaqrq5tmMU1T//3vf3X66afr3XffVWFhYbvOkmsNDQ0J92fr+RclucBbsjm7g/z8fJ155pm68MILdeGFF8rj8WT1/KWlpbr33nv185//XPfee6/mz5+vDRs2ZGz9KVOm6KabbtJFF10kh8ORsXWzoby8XGvWrMn1GAAAAADQZturtmvKQ1MUCAXkrfcrJFOzvyLJNDV9rTT9ZnWI4LUjJAWrJXnjHODxaNKgI/TE+U/wvgIAAAAAAAAAAAAAAAAAANApdKyyGAAAAACgc3G5pOOPt27l5dKnn0obNkgbN0qVlVIgYB1TUiKNGiWNHm2FrgMBqaIi19PHNeOwGarz1+maF6+JGby2NQQa5Ha65XLE//E6EArIH7TWMGQ0Ra7DOQ2nLp94edzgtc0OXz+68lFVNFREnDedeLUdvn5x/Yv6zcm/IXidQKLgtS2V8HW84LWN8DUAAAAAdE7BYFALFy5scVEs0zRlGIZuuummdg9eh7vyyis1ceJEnXnmmdq3b5+k5vD16tWrdckll+jFF1/M2jy50NjYmHC/K0sXYEt2nmRzdgf9+/fXsGHD1KdPn5xGoQcNGqRf/vKXOvroo3XHHXdo2bJlbVpv0qRJeuihhzR9+vQMTQgAAAAAaI3tVdt1xENHaH/9fsk0pQZTXkkhQ7rgFMmYoQ4RvDZCUuiANLAg/jGTxp+suRfOTemC3AAAAAAAAAAAAAAAAAAAAB0B0esOIBAI6LPPPtPq1av1xRdfaOfOnSovL1d9fb0aGhokSV6vV/n5+erXr58GDhyoYcOG6Utf+pIOO+ywrH0oFwAAAAAS6ttXOukk65bM7t3tPU2bVPmq9H+r/08F7gJV+ioTHmsHrWOFr8OD17bo8LUhQ16XV+9te09TBkxRvjs/4fm8Lq+unXqtPtv7mV7+/GWZMjWgaEDKwWvbySNO1gnDTiCwnEAqwWtbovB1suC1jfA1AAAAAHQ+7733nqqqqprC0uHx68GDB+uWW27J+kxHHHGEXnjhBZ1yyilNYWV7vn/961969NFHddVVV2V9rmwhet15bNmyRffcc4/uueceDR48WDfeeKO+853vqEePHlmbYcOGDbrzzjv1xBNPqL6+PiNrrlq1Sl/+8pd1zDHH6Jvf/KYuv/xyud3ujKwNAAAAAEhNRPA6ZEqmqUqPtc8bkFQihXJ3/aVmppR/QCpJFLweeQzBawAAAAAAAAAAAAAAAAAA0OlQS86RTz75RM8995wWL16sDz74QH6/P/mDYsjLy9PRRx+t0047TTNmzND48eMzPCkAAAAAdC9VvirNnD9Tq3avktfllaSUw9duR3O8Jlbw2maHrw0ZKsorktPh1Naqrbrvw/t0/ZHXJ53RYTg0vq/189/y3ct10fiL0gpe2wgrx5dO8NoWK3ydavDaRvgaAAAAADqXDz/8sMU2O3591VVX5Sx0e8wxx+g3v/mNfvrTnzaFuO3w9U9/+lNdcMEFWQ0LZ1MoFEq43+nMzs/byc4TDAazMkdnsX37dv3kJz/RH/7wB/3tb3/TOeec067nq6ys1A9/+EM9/vjj7fK9CAaDeuedd/TOO+/o1ltv1c0336xrr702IowPAAAAAGgfTcHruv2SGVLYdclV6ZEOGJLZQYLXPXZLRT3jHzKpz+Gae80rBK8BAAAAAAAAAAAAAAAAAECnQ/Q6iwKBgB599FE98MADWrlyZdN20zTjPygJn8+nJUuWaMmSJbrllls0ZcoUff/739fll1+etQ/rAgAAAEBXER68tqUTvjZkyOVwJQxe2xyGQ0XuIuW58hQIBSSpKXx915l3qcRbknTe8X3H69A+h8rl4Mf7TGpN8NoWHr5ON3htI3wNAAAAAJ1H+O99o33zm9/M3iAx/OhHP9Lf//53ff755xHb9+3bp0ceeUQ33HBDjiZrXy5X4tdJAoFAVuZIdp5cBdEz5Xvf+57OOuusmPtCoZAqKyt14MAB7d+/X6tWrdLKlStVX1+fdN09e/bo3HPP1be//W098MAD7fK+h7fffluXXXaZtm7dmvG1Y9m2bZu+973v6dlnn9Vjjz2mQYMGZeW8AAAAANAdRQSvY1wYy/BJoY7wFgtTGrFNqhwo+SR5YlyPaVKfwzX3h+8SvAYAAAAAAAAAAAAAAAAAAJ1SR3jLZrfw2GOP6ZZbbtH27dtbRK4Nw2jT2uHrffTRR7rmmmt066236re//a1mzZrVprUBAAAAoLsIhoKatWBWRPDalmr4ujHYqJAZaopYJ2IHr6NtrdqqW968RX854y8pBY8dhiPpMUidaZraWb2zVcFrW1ltmWoaa1Trr231Gr6gTzurd2pw8eA2v24AAAAAAGg/mzdvbvo6/Oe3gQMHavjw4W1ePxQKyeFo3c/+DodDP/nJT/Sd73ynaTbDMGSapubMmdNlo9d5eS1fbwmXrei135/4gmjJ5uzoTj311LSODwQC+u9//6u///3vevrpp1Vbm/h1k7/97W+qrKzUE088kTRkno6FCxfqggsuUGNjY9JjhwwZojPPPFPHH3+8Jk+erF69eql3794yTVP79+/Xvn37tHLlSr399tv697//re3btydcb/HixZo8ebJef/11HX744Zl6Su2ib9++Gj9+fLufZ+PGjfL5Wv86HAAAAACE27B3g4555Bjtr48dvHY2SP4Ocg2qEZukhkOs2LXPad3Cw9eTRh6jude8QvAaAAAAAAAAAAAAAAAAAAB0WkSv29m2bdt0xRVXaMmSJRFx6uhgVXQIO1WGYUSsZZqmTNPU1q1bdcUVV+jRRx/Vo48+qkMOOaR1TwAAAAAAugmnw6mrJ1+tFbtWKGS2/PCj1+VVnb9OjcHEQZxUgtdupztm8FqSDBn6+tivpxS8RuYZhqESb4kaahvatE5bgte2Em8JwWsAAAAA6OB27NjR4ve1hmFo6tSpGVk/EAi0KY48c+ZMXX/99S0CzBs2bND69es1duzYto7Y4bjdietVqcSOM6GrR6/T5XK5dPTRR+voo4/WX/7yF/3iF7/QnDlzEr5XYt68eSosLNTDDz+ckRleeeWVlILXhx9+uG6++WZ94xvfiBvcLigo0ODBgzVp0iRdeeWVCgQCmjt3ru644w6tWbMm7trl5eU69dRT9cYbb2QlKt1a3//+9/X973+/3c8zYcKEhH9fAAAAAJCqNza9oVP+eYokydHyLR/Kq5MaPFkeKo6hn0sNQ5rvR4SvXR5NGn+y5l44l+A1AAAAAAAAAAAAAAAAAADo1By5HqArW7x4saZOndoUvLYD1YZhNMWp7VtrRa8TfY7XXntNU6ZM0Ztvvpm5JwYAAAAAXdSMw2bo3q/cK4fR8sflhkCD/KHEsaJU+YN+NQZaxnUMGbpi4hU6afhJGTkPWqfYU6z+hf1zOkP/wv58gBUAAAAAOoEDBw7E3H7ooYemvEaiCx7V1rbtoko9evTQUUcdFfN30v/5z3/atHZHVVRUlHB/TU1NVuaorq5OuD/ZnF1ZcXGx7r33Xr355pvq27dvwmMfeeQRzZ8/v83n3LVrl2bNmpU0eD179mx99NFHuuSSS+IGr2NxuVyaNWuWli9fruuuuy7hsXv27NE555zT5v99AwAAAAAs8z6Z1xS8limFol5q8dR0nOB1ry+krTFeNvI486SePTVo2OEErwEAAAAAAAAAAAAAAAAAQJdA9LqdLFiwQF/72te0d+/ephi1pLiR6/BYdTq3aOHr2/vLy8t11lln6cUXX2zHZwwAAAAAXUOs8HVDoEGVvsqMnqfGXxMRvraD19MGTcvoedA6uQxfE7wGAAAAgM6jvr4+5vaSkpKU13C73XH3ZSKKO3ny5JjbV65c2ea1O6JevXol3F9VVZWVOZKdJ9mc3cEJJ5ygV199VT179kx43LXXXqvKyra9Nnf11Vdr//79CY+555579Ne//lV5eXmtPo/H49GcOXP05z//OeFxGzdu1I9//ONWnwcAAAAAYHnhsxc089mZ1p2wt+jb4euSvVJ9fvbniqVPmbR/lCRD2lUkye2WSkulgQOl3r3lcXs1oGiACt2FOZ4UAAAAAAAAAAAAAAAAAACg7Vy5HqArWrRokS6++GIFAoGI2HW06Gh1rGMSiQ5fhz8+Onzd2Niob3zjG3rppZd0xhlnpHUeAAAAIKsCASn8v43r66WamtzN0x2EQtbN1U4/IgYCLdeuq5P8/ub7fr/1fY9xcZ9cmHHYDEnS7EWzVeevy3jw2lbjr1GhCuVyuAhed0B2eLqstixr5yR4DQAAAACdSzAYjLk9nei1x+OJu2/v3r0aPHhw2nOFGzZsWMzt69ata9O6HVXv3r0T7j9w4EBW5kgWaU42Z3cxadIkzZ8/X6eeemrcY/bv36///d//1U033dSqc7z++ut65ZVXEh4ze/Zs3XDDDa1aP5Yf/ehH2rBhgx544IG4xzz00EO67rrrNHHixIydFwAAAAC6k4XrFuq8eedZd2K8Db/fHml3B/nxu9d+ae8hB+8cfGvMLq9fA/Obi9yTBkzSkxc8KafDmf0BAQAAAAAAAAAAAAAAAAAAMozodYatW7dOl1xyScLgdaxQ9fDhw3XEEUfoiCOO0JgxY1RSUtJ0k6wPxNq3DRs2aMWKFVqxYoU2b97cYt3o+LUdx/b7/br44ou1bNkyjR49un3+AgAAAIDWME2pulqqrY0MXktSZaUVvkbm+f3W329jo3Xf6ZSKi6WwD9S1WqzvaUGBtb7D0fL4ykorhF1cLPXv3/bzZ8CMw2Zo6fal+tP7f2rX89T6a/WVUV8heN1BZTN8TfAaAAAAADqfoqKimHFjR6zXPxKsEc/u3btbNVei9Q3DkGma+uKLL9q8dkfUp0+fhPt9Pp8OHDig0tLSdpth//79arRfc4uD6HWzU045RRdddJHmzZsX95i//vWv+tGPfiSnM/3w15///OeE+w855BD94Q9/SHvdZP70pz/pueeeS/i/47/85S969NFHM35uAAAAAOjqFq5bqK8//XXrTozg9YCyjhO8Lq2U9veLvW9XzS4NLBqoSQMmae6Fc3nPAAAAAAAAAAAAAAAAAAAA6DKIXmeQaZq64oorVFVVFTNAHb3tsMMO0+WXX67LLrtMgwcPbtU5d+3apX/+85/6v//7P33yySdNgevw84SHrw8cOKDLL79c77//fqufJwAAAJBxFRVSQ0Oup+heAgFp797IyHgwaH0vTNMKVLdFrO9pXZ113t69pbCLATUxTSt+7fNJhx/etvNnwHOfPacnVj+hEk+JKn0t41WZUugu1Hvb39PoXqMJX3dQ2QhfE7wGAAAAgM6puLg4ZvQ61rZ4+vbtG3df+EWQWytefLmmpqbNa3dEQ4cOTXpMWVlZu0avy8qSv4aQypzdye23354wer19+3YtX75cRx55ZFrr7tq1S4sWLUp4zC9+8Qt5vd601k1FQUGB/t//+3+6/vrr4x7z1FNP6e67727Xf48AAAAA0NW8+NmLOnfeudadWMHr3dLuxNfEypriaulAkvj27prdWnvhWt4zAAAAAAAAAAAAAAAAAAAAuhSi1xk0Z84cffjhh0mD1+PHj9df//pXnXLKKW0+58CBA/XTn/5UP/3pT7VkyRLdcMMN+vjjj5si19Hha0latmyZ7r//fl133XVtPj8AAADQZvX13TN4XVUl7dgh7d4tlZdbQehgUHI6reB0377SgAHSIYdIxe3wobaqqsjgdbjKSsnrlRyO1s3es6f1Z79+UmGhVFsr7dkj7dtnxbADAWud8Oc6YoQ0ebL12IYGaf/+zD/nNDz32XOavWi2QmZIXpcVvGmP8HWhu1Ael0eBUECPf/y4JBG+7qDaM3xN8BoAAAAAOq/i4uKI38Xa0ole9+/fP+6+9evXt3o2W0VFRczttbW1bV67IyoqKlLv3r21b9++uMd88cUXGjduXLvNsGXLloT7+/Xrp8LCwnY7f2c0ZswYjR8/XmvWrIl7zFtvvZV29Pqtt96KeO9GNJfLpUsvvTStNdMxa9Ys/eAHP1AwGIy5v7GxUW+//ba+/vWvt9sMAAAAANCVzPtknmY+O9O6Eyt4vVXaPSi7M8VTVCtV9YzaGOsa8TJVXVvN+wYAAAAAAAAAAAAAAAAAAECXQvQ6Q3w+n+64444Wwevw+x6PR3fccYduuOEGOZ3OjM9wwgknaPny5ZozZ45+9rOfqaGhISJ8bc9jmqZ++9vf6lvf+pby8vIyPgcAAACQlu4UvA4Gpc8/l1aulLZtS3zsF180fz10qBWEHj3aCkVnQmNj/H2maYWpw39eSGf2zZulUMh6jNttrRU+t2FEBrW/+EL66CNpwQJpzBjp+OOlPn1a9bQyITx4bWuP8LUdvLaZMpvC12N6j8nYeZA57RG+JngNAAAAAJ3bIYccok8++aTF9nSi10OGDJHH41FjY2OLePby5cvbPGO8cLbH44m5vSsYMWJEwuj1559/rjPOOKPdzr9hw4aE+0eMGNFu5+7MvvrVryaMXn/44Ydpr/n2228n3H/UUUeppKQk7XVTVVpaqiOPPFJLly6Ne8ySJUuIXgMAAABACpIFr3vt6DjBa69Pqknxx837v3K/Dul1SPsOBAAAAAAAAAAAAAAAAAAAkGWO5IcgFY8++qh2794tKXbwulevXnrrrbf0wx/+sF2C1zaHw6HZs2dryZIl6tu3b4s5bLt379bjjz/ebnMAAAAAiLJhg/T3v0svvZQ8Gh1t61bpxRetxycJ5qTENK0odSLBYPPX6c4eDEo+n+T3S3V1VmC7oSFyzXg+/1x6+GHpxhulV19NfnyGxQpe27wur9wOd0bO43a6I4LXNjt8/eaWNzNyHmResadYhe7CjKxV6C4keA0AAAAAndyhhx4ac/umTZtSXsMwDI0ePbrFNtM09eGHH6qhjReNe++991rEtCWpd+/ebVq3I5swYULC/evWrWvX8ydbP9l83VWyGPiePXvSXjPZ/xaPOuqotNdM1/Tp0xPuX7t2bbvPAAAAAACd3ZItS5qD1zF4yqX9/bM4UAJ5jVJDim8ruP8r9+t7R32vfQcCAAAAAAAAAAAAAAAAAADIAVeuB+gq/vnPf0bcDw9NFxUVafHixZo8eXLW5pk6dar+85//6Pjjj1dNTU3Th6LDPfroo/rWt76VtZkAAACAmDwtw79dSkOD9Prr0qeftn2tqirpueekCROkU06RvN62r5lIurObphW7DgRi72tslJxOKS8v+Vp790pXXil94xvSb34jFbd/GDgYCurhlQ/HDF5LUkOgQf6QP+k6LodLgVCMv4Mw/qBfvoBPDsOhoBlUMBQZBL//w/u1cf9GOQzrWlXVjdWqbqxu2m/IkCkz4v62yjRj6imoa6yLOE/4nPZs3U2Vr0q1/tqMrFXrr1WVr4rwNQAAAAB0YtHRa/v3sqtWrUprnWnTpunTTz9terz9+2afz6dXXnlF5513Xqvm++CDD7Rly5aIde3fG3fl6PWUKVP02GOPxd2/YsWKdj3/8uXLE+4/4ogj2vX8nVX//onrZPv27Ut7zWSPsS8m3p6SnaM1zwsAAAAAupOy6jKd9NhJzRsi3xIv5wGpsWcWB0ogr1FqLIizM+qaZASvAQAAAAAAAAAAAAAAAABAV0b0OgN27typ999/v+mDxzb7Q8P3339/VoPXtokTJ+rBBx/UrFmzIiLc9geZ33//fe3cuVODBg3K+mwAAABAk4ICK97c0JDrSTKvslKaN086cCD2ftOUgkEpFLJuNofDujmdUtTPGZKsCPWOHdJFF0klJe0yuqqqpBdfTH12+374xXbCZ7e3BwLWcfZzs5+ryxX5OMfBoPIzz0j//a/09NPSkCEZfYrRnA6nnjj/Cc2cP1OrdkeGqRoCDar0VSZdI8+ZJ6/Lq4ZAgxqDjQmPrWmskdvplstwRYSlSzwlmtx/svbX72/a5gv6VOevi7uWIUN76/YmnS9dATMy3h0+Z7w4eFdW5atSWW1ZRte01yN8DQAAAACd02GHHdb0dXises+ePSorK0sa8bUdc8wxcSPN999/f6uj13/6059ibjcMQyNHjmzVmp3BlClTEu5fuXKlgsGgnE5nxs8dCASSRs+JXsdWnOTCd/X19WmvWVFRkXB/nz590l4zXcnOQfQaAAAAAOKr8lXpsucva744eFTwWgckFbbcnAuegGTGuw48wWsAAAAAAAAAAAAAAAAAANDNOHI9QFewZMkSmQcDbuFRacMwdOKJJ+qyyy7L2WyXXHKJTj755IgPWId76623cjAVAAAAEKW0VCoszPUUmXXggPTkk7Gj0cGgFfmurbX+bGy0YtD2rbExcn8wGH/9yuQh5rRVV0vz56c+u99vzW1GfYTQNJtv0dujn2tNjVRXZwW0o2NDmzdL550nbduWyWcZU7GnWHMvnKtJAyY1bUsneO1yWPFup8OpPGe8TzI28wf9CoSaw9IlnhJNHzRdbqe7FdNnlylTwVj/Nruo9ghe28pqy1Tlq2qXtQEAAAAA7WvatGlyu62f46N/H7tixYqU1zn77LMj7of/3vm1117TM888k/Zs8+fP17PPPtu0TrSTTjop7TU7i2nTpsnr9cbdX1NTo48++qhdzr1s2TLV1cW/eJnX69XUqVPb5dydXW1tbcL9ha14DTlZ2Nzn86W9ZroaklzwMdZ7OQAAAAAA1u/pL3rmIr39xdvWhuiXNxokV6EU7AA/VrmDUsOdku+3Ul4g8bEErwEAAAAAAAAAAAAAAAAAQHfgyvUAXcF7770Xd9/PfvazLE4Sf4Y33ngj5r73339fl1xySZYnAgAAAKI4HFJJiVRcbEWVQ6HmfUVF0rRpuZutNWprpZ//3Ao654WFj0Mhqb5eSiekYsehPR4pP9/6u7I1NkqvvCLdcUd60fBQSFqyJHKbYVgxap9PWrjQ+jOV2WMEk1JmmtZ5bYGAFb/2eFo+n127pIsvlhYtsv6dtCM7fD1z/kx9sP2DlIPXTkdkQMfpcCpPeWoMNrY43pQpQ9Zz94f8csmlXvm9Ok3w2ma2+ERp19SewWubvX6xp33/fQMAAAAAMqugoEBHHnmk3nvvvRbh2kWLFumss85KaZ3BgwfryCOP1IcffhgRqba/vuaaazRy5MiUY8mvvvqqvvnNbyaM6Z588skprdUZeb1effnLX9Zrr70W95hXX31VRx11VMbPvXjx4oT7jz/++IRB7u5sW5KL3vXs2TPtNZOFssvLy9NeM13JzlFQUNDuMwAAAABAZ1Plq9LM+TP1cdnHKnB6VRnwyWFKIfuljgbJ5ZACHSB47QpJW37ffN/3O4c8Pw+p0f6kRtiMBK8BAAAAAAAAAAAAAAAAAEB3QfQ6A9avX9/0dfiHhvv27aszzjgjFyNFOP3009WvXz+Vl5e3+FBz+OwAAABAzhmG5HZHhpSLiqTS0pyN1Cp//7u0Z09k0DkYlKqrrXh0gthQXI2NVhS6Rw/JGRZXLiuTnn5a+vGPU18rFIoMWodbvFiqrLS+D/aciWZvS/Tafnz0mj6f5PdLPXtKrrAfWzdvlm65Rbr77radMwXFnmJd9qXL9Mbm2BcQChcreG1LFL4OFwgF1NPbU1W+qrj76wJ1TfcNRf6dGTIUDAWTzpquoBmMCFuHx7rt+11dNoLXNsLXAAAAANA5nXzyyREXSrZD1S+++KLuueeelNf51re+pQ8//LDpvmmaMgxDhmGopqZGX/7yl/XrX/9a119/fdyQb3V1tX7729/q7rvvVmNjY8yAtiSNHz9ehx12WGuebqdx+umnJ4xeL1iwQL/4xS8yft758+cn3N8R3kPQUa1atSrh/lGjRqW95oABAxLu3759e9prpitZzLt///7tPgMAAAAAdCZ28HrV7lWSacpbVSeZUqVHVvjaJ7kNye9Ivla7C0l3PyUNsu8ffA9MU/g67LrnBK8BAAAAAAAAAAAAAAAAAEB30hHe6tnpbd68OSImbX/4+KSTTsrdUFFOOumkpg8wS80faN60aVMOpwIAAAC6oKVLrXB0uGBQqqqyotGxuFySxyN5vdafrjjXJwqFrHWCUXHjV1+1zttWGzZIn36a+uzhwevWhLwTCYWkigor9B1u3jzr+baz5z57Tv+z+H/UM7+n3A533OO8Lm/c4LXN6XAq350fd79hGHI6nNpYsVHbqrepxl/T4lYfqI+41QXqIm4NwYaYj2vrLWSGZJpm0y06tt3VZTN4bSurLYsbPwcAAAAAdEwnn3xy09fhv5PdunWrVqxYkfI6l112mQYOHCip+WLLTT+TG4YaGxt18803q1+/frrgggv0y1/+UnPmzNGDDz6o2267TV//+tc1cOBA/fGPf2wRvA5nGIZ+9rOftfbpdhoXXnhhwv3Lly/XunXrMnrOTz75RKtXr4673zCMpHN1V6Zp6tUkr/u1JtQ+YsSIhPvfeCP5Re/a6vXXX0+4P9mMAAAAANCdBENBzVowywpeS9ZF2oNBeQNSic/a5DElf+K3amSHKXmqpN+dLz13aNS+wkL5vr5UeQ7rovQErwEAAAAAAAAAAAAAAAAAQHcTp6SGdOzbty/m9tZ84LK9jB8/Pub2eLMDAAAAaIVAQHrggchtpml9AC86MGQYzZFrR4zrEYVCks8n1dfHXq+kJDI0/eCD0rRp8YPZyQSD0muvpT67x2PNF70vRkiphehAdvh64UIh6cABqXfvyMf88pfSSSdJ7vgx6rZ47rPnNHvRbIXMkAwZ6pnfUxX1FfKH/BHHFbgL5HQ4FQgF4qzUzO1wy3AbqvPXSVJTPNowDHmcnqY1tlZulST19PaMeLxhGHIaTgXNqOD5QS5Hbn68NzIdO+9AchG8ttnnLfYU5+T8AAAAAID0nHjiierdu7f279/f4mfluXPn6ogjjkhpnfz8fP3qV7/Sd7/73Zg/c9sR6/r6ej3//PN6/vnnWxxjR66jH2/fNwxDo0eP1iWXXJLSTJ3ZqFGjdPTRR2tpgovF3Xvvvbrvvvsyds6//vWvCfcfe+yxGj58eMbO15W8+eab+uKLLxIec8IJJ6S9brL//W3ZskVr167VoYdG18kyY/Xq1dq+fXvCYyZOnNgu5wYAAACAzsjpcOrqyVdrxa4VCjXUR7xvxhuQKg3J1z5vF0mPKalG6uWVQpJmn21tnrHekCZOlF56SRo8WL7pPu3Yv0OH9Dokl9MCAAAAAAAAAAAAAAAAAABkXYyyGtJVW1sbc3ufPn2yPEl8vXv3jrm9rq4uy5MAAAAAXdj770tlUZHcujor3hzO5ZKKi6X8/NjBa8nanp9vxa2jQ9ahkLVuuN27pQQBn6Q2bJCqqlKf3eVqXfA61nGmKTmdsZ9rMGiFt8Nt3Sr95z+pnStN4cFrmx2+djuaPzVZ4C6Q25nepyjdTrcK3AVN9x2GQx6np8VxWyu3qqKhosV2j8sjp+FssT3PkZez6HVXlcvgta2stkxVvqrkBwIAAAAAcs7pdOqCCy5oCk5LzYHq//3f/437++RYvvOd7+ikk06SaZoR4erwmLW9dqybvT/6Mfb9vLw8Pfnkk3LEe02qi7n66qsT7n/kkUe0a9eujJxr+/bt+uc//5nwmKuuuioj5+qKbr311oT7+/btqylTpqS97rHHHpv0mD/96U9pr5uqO++8M+kxqcwIAAAAAN3JjMNm6N4z7pKj6uD7RQ6+xlHukkIt3zaRfaakKslRKjUcfLtGyLDC18/ddqm0YoU0eHDT4QSvAQAAAAAAAAAAAAAAAABAd9Q9PsnazgKBQMztbnd6AbT25IoOxx0UDAazPAkAAADQhS1cGHk/EJB8vshtLpfUo4cVeU6F02kdH/3f9D6ftX6i86dj5crI+8lmb2iI3Jdq8Doeny/+c62vl/z+yG2PPda288UQDAX18MqHI4LXNjt87XK4EgavDRma0HeCDBkx97udbnldXjkMh/Ld+XI6nHIYLX80r/JVaWDRQA3qMajpdkiPQzSi5wiNKBmhIT2GaGjxUI0qHaVhpcMijsvkzYj6f9HPtSsyTVOVDZVtXqfQXdjmNSobKiOCaQAAAACAjuviiy9u+toOUEtSZWWl/va3v6W11lNPPaWhQ4dKUovwdXT8OvoWfVz4Yw3D0D333KOpU6em/wQ7qcsvv1z9+vWLu7+urk4/+9nPMnKu//mf/1FD9GtmYfr376/LL788I+fqau6//34tWbIk4TGXXnqpnKm+phrmsMMO05gxYxIe89hjj2nt2rVpr53MypUr9dRTTyU8ZtiwYZo4cWLGzw0AAAAAnZrfrxnzVuveRZIjGJJMU/ucUqCDXA/cqJIcvayvKz0Hw9eGoVCvnpqd/4ae++y5nM4HAAAAAAAAAAAAAAAAAADQEXSQt352boWFhaqurm6xvbKy7ZGsTIk1nyTl5+dneRIAAACgiyovl1atitwWK3JTWCgZacaCDcN6XPTPGA0NUlFR8/2VK605+vZNb/2qKmnr1sht0cFrqXn2YLBlcDtemNd+rtH7TTPy7yEQkEIhyeGwzlNVFfmYujqppKT5/jvvSDt3SoMGJX5uaXA6nHri/Cc0c/5Mrdq9qsV+Q4aKPcUKhGJf+MiQoZOGnaTzx5+vuZ/M1Tvb3pGpln8vLodLDsPRHI02IgNWRXlFunLilSr2FmfmibXBq5tejbjfVUPX4QzD0KAeg7Sjeod8wRj/O0hB/8L+KvYUq8pXpbLaslat4XF6rPB4uv/3AgAAAACQEyeeeKJOO+20mL+XXbp0aVpr9e/fX6+++qrOOOMMffHFFxEx6/A/k4l+3G233abvfOc7ac3S2Xm9Xv3gBz/QL37xi7jHPP744zrvvPM0Y8aMVp9n3rx5evLJJxMec+ONN8rj8bT6HJK0ZcsWjRgxIuExv/rVr3Trrbe2av3du3friy++0PTp01v1+Nb417/+pRtvvDHhMU6nU9ddd12rz3HppZfq17/+ddz9gUBA559/vt577z2Vlpa2+jzhysvLdcEFFygUanmBvXDhwXwAAAAAgKRXX5X+3/+TPv5YMxqDkt/QrK+aaox9bfKsK9ktVR8Sua3SIyngkNfrVcgM6eGVD+uccefI6Uj/4k0AAAAAAAAAAAAAAAAAAABdhSPXA3QFPXr0iLl948aNWZ4kvnizxJsdAAAAQJo+/TTyvmlKjY2R2/LzJWcrP9DmdFqPD9fY2DImHT1HKnbsiLxvmpLfH7ktfPZ0g9epsteN9Vx9vpbn+fDD9NZPQbGnWHMvnKtJAyal9ThDho4bcpxG9xotSRrRc4SOG3JcRCTaNE0FQ0GFzJBCZkhBM2jdQkGZpinTNFXkLtLhfQ+Xx9W2ABLaxulw6pAeh8jjTP/7YAevJevfU//C/mmv4XF6dEiPQ/gALAAAAAB0IoZh6D//+Y/ef//9Frenn3467fXGjBmjDz74QGeeeWZTtNowjIhbrBmi95umqZ49e+qZZ55JGH7uym688UYNGTIk4TFXXnmlli1b1qr1ly5dqmuuuSbhMcOGDdMPfvCDVq2fTbt379bRRx+tr371q/qwHV57CxcMBnXXXXfpvPPOkz/6tcgoV111lcaOHdvqc1133XXyer0Jj/nss8907rnnav/+/a0+j62srExf+9rXtGnTpoTH5eXl6frrr2/z+QAAAACgS6iqkn7wA+nKK6Uvvmh6z80NJ5mq7yBvoSjZ1jJ4bavMC6kh0KBJAybpifOf4Pf9AAAAAAAAAAAAAAAAAACg2yN6nQFDhw5t+qCxzTRNLV26NEcTtRT9AV3TNGUYhoYOHZqjiQAAAIAu5vPPI+9Hh6ElydPGT+HFenz0eTZsSH/d3bsj7weDLQPT4ecOBtM/RyoB7PDn4vFEPiZWiPvjj9OfIwXphq/t4PWIniMitoeHr02ZCpmhhOvku/M1vHS4HAY/qncErQlfhwevbemGrwleAwAAAABs/fr106JFizRv3jwdfvjhTRfNShbBto/Jz8/X9ddfr/Xr1+uCCy7I1dPIuYKCAv3lL39JeEx1dbXOOOMMLVy4MK21X3jhBZ155pmqqalJeNyf//xn5Udf5K0De/nll3XUUUfp9NNP18MPP6yKioqMrv/uu+9q2rRp+tGPfqRArNdRwwwYMEB33nlnm87Xr1+/lKLjS5Ys0eTJk/X222+3+lyLFy/W5MmTU4qof/e739XgwYNbfS4AAAAA6DK2bZPOOkt65hnr/sHg9WFXhbS9Vw7nCjOwTKoeHmenYUiGIZfDpSfPf7LF+wYAAAAAAAAAAAAAAAAAAAC6I0paGTBy5Mimr+2YtCStXr1aW7ZsydFUzbZt26aVK1dGfNDZNmrUqBxMBAAAAHRBmzZF3o+OtbhckqONP4I5HNY6ic6zcWP665aXR94PRcWZo2dPEqKRlFrkOjqsHb5urOcaHb3+9NPk52ilVMPX8YLXthE9R+iYwce0uFBStHx3vkaVjpLDcMgX8LV6bmRWOuHrWMFrW6rha4LXAAAAAIBYLrzwQq1atUoffPCBbr75Zp1wwgnq3bt3RATbNE05nU6NHDlSF198sR5++GHt2LFDf/3rX9W7d+9cP4Wcu/DCC3XppZcmPKayslLnnHOOZs2apbVr1yY8ds2aNbr44ot13nnnqaqqKuGxs2bN6rTR8cWLF+uaa65R//79dfbZZ+uhhx7SJ598olD064dJmKap9evX684779Thhx+u4447TitXrkz6OJfLpX/+858Z+Td8yy23RLy3I55t27bphBNO0GmnnaZFixap8WBoLRGfz6cXX3xRJ554ok4//XTtjr7IYAyDBw/W7bffntLsAAAAANBVlVeVS1u3SueeK4W/5z4Q0Gnnh7R2YM5GizBgr1Q2KM5OQ5LDUK/8Xlp+7XL1zO+ZzdEAAAAAAAAAAAAAAAAAAAA6LFfyQ5DM1KlT9cQTT8Tcd//99+sPf/hDlieKNGfOnKYYd3iUW7JmBwAAAJABlZWR94PByPvODEVsnc7IOHT0eaLnSEVdXeT96GhN9OzRAeckQeeURa/jdkeGrqNj23v3Zua8cdjh65nzZ2rV7lUt9hsyNOOwGUmDyIOLB6vUW6r/bPyPTLX8u+qV30v9Cvo1hY4DoRSi4sgaO3y9o3qHfMHYQfJEwWubvb+stizmfoLXAAAAAIBkjjzySB155JFN9+vr61VdXa3Gxkbl5+erZ8+ecrT1omtd2EMPPaSPPvpI69ati3uMaZp68skn9eSTT+qII47QscceqxEjRqioqEjV1dXavHmz3n33Xa1a1fK1olgOPfRQPfjgg5l6Cjnj9/u1aNEiLVq0SJJUWFiosWPHauzYsRo4cKD69++vwsJCeTweNTY2qqqqSlVVVaqoqNAnn3yijz/+WDU1NWmd0zAM/f3vf9dpp52WkedQUFCgZ599Vscee6zq6+uTHv/aa6/ptddek9fr1fTp0zVp0iT17t1bvXr1kmma2r9/v/bt26cVK1boww8/lM+X+oXsPB6Pnn32WfXo0aMtTwkAAAAAOrV5n8zTzGdnqtTnUMXuyItIn39StV4bl6PBovTfL+0eYH3tiPX2GMOhXvm9tOLaFRpcPDirswEAAAAAAAAAAAAAAAAAAHRkRK8z4Pjjj2+xzQ5M33fffbruuus0fPjw7A8maevWrbr33nsjQtfhYs0OAAAAoBWig8zR4vw3edqSrZNsjliiw9nJzpmpyHUyyZ5reBC7ncQLXxsydMXEKzS853Ct2xs/lCRJgWBAh/Y5VC6HSy9//rJMmQqZIRkyVOop1ZQBU7SrZlfT8fZ+dByJwtepBK9t8cLXBK8BAAAAAK2Rn5+v/Pz8XI/RaRQVFenf//63jj/+eG3bti3p8StWrNCKFStafb6hQ4fq3//+t4qKilq9RkdVW1vb5r+fRPLy8vTYY4/p4osvzui6kydP1oIFCzRjxgw1NDSk9JiGhga99dZbeuuttzIyQ15enubNm6ejjjoqI+sBAAAAQGdkB69lSgfyQup5xS5VPD5QknTNEbv03MQcD3hQ/31SWViPO2REha8dDvUqIHgNAAAAAAAAAAAAAAAAAAAQiyPXA3QFU6ZM0cCB1htt7di1raGhQZdccon8WYixRQsEApo1a5bq6+slSaZpRsSvBw4cqKlTp2Z9LgAAAKBLciW5plCmQtHJ1kk2RyzOJKHd6HNmKuCdTLLn6nZnZQw7fD1pwCRJzcHraYOmpbXO+L7jdfaYs2XI+vsr8ZToqEFHyWHwo3lnYIevPU5P07Z0gte2Yk+x+hc2fyqW4DUAAAAAANkzbNgwvf766xo1alS7nmf06NF6/fXXNXTo0HY9T1c0atQoLVmyJOPBa9tZZ52lV155Rf369WuX9RPp1auXFi5cqHPOOSfr5wYAAACAjqIpeB3mgFfqecUu/ezQXXr4iBwNFqVfRWTw2hay3zLjJHgNAAAAAAAAAAAAAAAAAACQSCtqaIhmGIYuuugi3XPPPU1RaTswbZqmli1bppkzZ2revHlytSZA1wqhUEiXX3653n333RYhbnu29vqQKAAAANAtlZRE3o8OSQeDmTlP9DrR54meIxUFBZH3HVER5uhzRkevDSMzUe/odaMvHhT981SfPkmXDAaD+mjXR9pRvUONgcY2jXfRYRdpS8UWjSgdoUAooKXbl6rKV6Vd1bsijttYsVH1/vqm+w2BBvmCPvUu6K1D+xyqffX7tHL3Sk0fNF1up1uBUKBNcyF77PD1zuqdKvGWpB28ttmPq2yo1KAegwheAwAAAACQRaNHj9aHH36oSy65RP/+978zvv5ZZ52lp556SqWlpRlfuyvzeDy64YYbdMstt6ioqKhdz3XiiSfqo48+0re//W298sor7Xou26mnnqp//OMfGjZsWFbOBwAAAAAdUUTwOuptJqFK6c5jsz9TLCU10p6+8feHHFKffILXAAAAAAAAAAAAAAAAAAAAiRC9zpDvf//7uu+++xQKhZoi0+Hh6xdeeEGnn366nn76afXv379dZ9m7d68uvfRSvfbaa00RbkkRXzudTn3ve99r1zkAAACAbmXkSGnFiub70YHmQEAKhVoGpdMRClnrhIs+z6hR6a/bt6/0xRfN96NnjJ7d5Wo5RzTTbBmxjha9P/y5xHqubnfk/QkTEi6/v36/nlz9pCrqKxLPkYYTh52ovXV7tbtmtySpxl+jA74DEcdE3/cH/XLUOrSvfp+2V2/X4OLBcsoptzPq+aBTcDqcGlw8OOJn7NYo9hSrR16PNq8DAAAAAADS17NnT73yyit67LHH9NOf/lR79uxp85r9+vXTH//4R11xxRUZmDA3xowZo/vuu0+LFi3SG2+8obq6unY/Z3Fxsa6++mrdeOONWQ1CDx48WIsWLdILL7ygX//611oR/tpuBk2aNEm//OUvdcEFF7TL+gAAAADQWUQEr6M490tVvbM8UBzFtVJlaYIDDv6K//1vvk/wGgAAAAAAAAAAAAAAAAAAIIE21NYQbvTo0broootkmmbE9vDw9VtvvaVx48bp7rvvVjAYzPgMpmnqvvvu07hx4/Taa681zRI+kz3PzJkzNao1MTwAAAAAsY0ZE3k/OkYtST5f284R6/HR5xk9Ov11BwyIvO90tgxSh5/b6Uz/HFE/K8UU/lx8vsjHGEbL6PXEiQmXe+6z5zIavJYkh9G2H6PrGuu05cAWQsedXKa+f/w7AAAAAAAgt6688kpt2rRJc+bM0WGHHdaqNcaPH685c+Zo8+bNnTp4LUmFhYX6/ve/r4ULF2rfvn165ZVX9LOf/Uwnn3yyevTokbHz9O7dW9/4xjf09NNPa+fOnbrrrruyGrwOd+6552r58uV688039a1vfUt9+/Zt85q9e/fW1Vdfrddff10rV64keA0AAACg22sRvA57O0jeWilYnP2ZYimql6pKEhxw8Ff8r1/+ukb3acX7cwAAAAAAAAAAAAAAAAAAALqRGBU2tNYf/vAHLVy4UDU1NU2haykyfF1VVaUf//jHeuihh3Tttdfq0ksvVb9+/dp03vLycj311FP629/+pjVr1jSdN3yG8JBWjx49dOedd7bpnAAAAACiTJgQed8wpLw8qbGxeVt9vbWtNdHoYNB6fLi8vJZx6sMPT3/tQw6JvG8Hpv3+5m3hs0eHtg0jdtTaNFvOl4i9bqzn6vG0XOuoo+IuVV5Trp3VO1M/dxZVNVTJVcCP4wAAAAAAAB1BYWGhrrvuOl133XVav369XnnlFS1fvlyffvqpduzYoerqatXV1amgoEA9evTQ4MGDNX78eE2ZMkVf+cpXNCb6YnjtaPjw4S0uxN1evF6vzjzzTJ155pmSpFAopM8++0yrVq3S5s2bm247d+5UTU2NamtrVVNTo2AwKI/HI4/Ho549e6pfv34aNGiQxo4dq8MOO0zTpk3T+PHjO9zFwE488USdeOKJ+t///V+tXr1a77//vlavXq3169dr586dKisrU11dnXwHLw7o8XhUUFCg/v37a9CgQRozZowOP/xwHX300Zo8eXKHe34AAAAAkCstgtfh1kqNo7I7TzxFDVJNous9Hfwxb+4Fc3XyyJOzMhMAAAAAAAAAAAAAAAAAAEBnRmUrgw455BD98Y9/1He/+90WH2C0w9f21+vWrdOPf/xj/fSnP9XJJ5+s4447TkcccYQmT56swYMHJzzPzp07tWLFCq1YsULvvvuuXnvtNQWDwRaB6+gPu9oz/PnPf9agQYMy9bQBAAAASFLfvtKkSdKqVc3bvN7I6LUk1dZKPXqkF4M2Tetx0bzeyPuTJ0t9+qS+rq24WBo6VNq6tXmbxxMZvZaaZ7fD14FA875E4etYop+/yyU5HM3PNfpxBQWR9487Tho4MO5T2lW7K+J+Q6BBO6p2xD0+Vfvr96uivqLpvj/kVyAYSPAI6xjDjHy+jYFGKa/N4wAAAAAAgA5g5MiRMbffeeed+sY3vpHlaSLNmzdPP/vZz1psNwxDGzduzMFEHdvYsWM1duzYXI/RITkcDk2YMEEToi/+18UYhqGJEydq4sSJuR4FAAAAADq9hMHrvZJGqSkmnUv5PqmmKMEBB2ecNnCaLhh/QVZmAgAAAAAAAAAAAAAAAAAA6OyIXmfYd77zHS1btkwPP/ywDMOICE/b0enwKHUgENDixYu1ePHipuPcbrdKSkpUXFys4uJiSVJVVVXTrTEqmhd+jljBa3sOwzD0rW99S9dcc03mnzgAAAAA6Wtfi4xeu1xWPNrna94WCEjV1VJhoRWPTiYYtCLQgaiwssdjrR99/taaPDkyep1sdq9Xqqlp3hcvep0qrzf+c83Pl9zuyG1XXplwuVAoFHHfH/RrW9W21s93UH2gXgcaDqT1GH/Qr6CCcqr5++0wHG2eBQAAAAAAdAxbtmxp8bthwzBUXV2dw6ks1dXVcecDAAAAAABoL+VV5bGD16akckml6hDB67yAVF+Y/LgiDM8GAAEAAElEQVSpA6bqtStfk9ORwnt9AAAAAAAAAAAAAAAAAAAAQPS6PTzwwAPau3evXnzxxRYRavvP6Ph1uMbGRpWXl6u8vDyl84V/IDl6rfB9M2bM0P3335/mswEAAACQsmOOkfr3l8rKmrcVFEh+vxQeYQ4EpMpKK+bs8UiOGAHkUMgKTtfXt9zncFjrhhswQDr66NbPPnq0VFwsVVWlNrvX2zJ0nWr42jCsW/j9UMhaN5rTKfXoEblt6FDpjDNSe14Z5nF65DScCprBVq/hdXnlTCV4DgAAAAAAOpV4v//tKDr6fAAAAAAAoOvoW9xXpZ5SHfAdsDbYL0eUSypRhwheu4NSY7KDDCt4/fpVr6vYU5yNsQAAAAAAAAAAAAAAAAAAALqEGGU1tJXb7db8+fN1ySWXRESuw5mm2SKAHetmS3ZM+Hrhj7H3XX755Zo7dy5hNQAAAKA9uVzS974Xuc0wrGizEePTevX10oEDVmi6tlaqq7P+rKqytscKXsdb73vfs87fWk6ndOqpqc/e0GCFqu2baaYWvJaajw1/fLy4d2lpy/Pffrvkdqd2rgxzGA6VekrlVOt+tspz5ql3Qe8MTwUAAAAAAAAAAAAAANCxVEydp1Kfozl4LVnB647wCQZT8ockeRMcY0hTBkwheA0AAAAAAAAAAAAAAAAAANAKbSiiIRGXy6UnnnhCU6dO1c9//nMFAoGICLUtOlQtqUXsOlqsx8R6vGmaysvL0x//+EfNnj27Vc8DAAAAQJqOPlo67TRp8eLmbU6nVFwsVVdbgedogYB1S8bhsCLU0RezOf10afr0ts0tSaNHSxMmSJ9+2rwt0eyG0Ry6TjV4bQs/PlZU2+m0gtfRIe+LLrL+fjOg1Fva6sf2Luit2sZa+YI+mYp87iEzpLpAXdN9h+FQsadYxXnFKvYUq7y+vNXnBQAAAAAAHZdpmjF/v9tRdPT5AAAAAABA5xYMBeV0OK2Lvf/yl9Izz6hC/dXzil064JXkk1p5jfHMMiXVSo4S6+tQrJdLDGlS/0l646o3CF4DAAAAAAAAAAAAAAAAAAC0AtHrdvajH/1IZ555pr773e/q3XfflWEYER8kjhWwTha1jiXWmieccIIefPBBHXrooa2YHAAAAECrffe70po10s6dzducTqmkRKqrk3y+9Nf0eKSCgpaB6EGDpGuvbdu84U45RdqxQ6qtbd6WaPbw8HVrxAot5edbce/ofSNGSLfd1vpzRZk8YHLG1grXGGzUe9vea7rvC/jUr6ifvE5vu5wPAAAAAAAAAAAAAAAgl6p8VZq1YJauHnyOZvzPI9KWLZLfLzU0qOKuPBk/bOwYn1wwpR7lUlGx1OCTKj2SIzp8fTB4veSbSwheAwAAAAAAAAAAAAAAAAAAtFJHeOtolzdhwgS9/fbbevHFF3X77bfrv//9ryS1CGCHixe+jnd8+GOOPvpo/eIXv9BXv/rVNk4OAAAAZFkwaN1CoeZt+/dLu3fnZh6HQ8rLk1wp/OhkmlJjo/WBPUn64Q+l22+XKioij8vPl9xuKx7t9ycORhuGdazHY81gmpHH9+xpnaemxrrZj8nLsx6XaNZ4vF7pooukBQukqqrIfQUF1to+n/VcU4ldJ4piOxyRx9lh71izDxwoPf20VMyHCQEAAAAAAAAAAAAAADqKKl+VZs6fqVU7lmvFqn9L9U7NKGtsev+P8VN1mE8t9CmX3AffeuINWH9GhK8N6ahBR+nVK14leA0AAAAAAAAAAAAAAAAAANAGHeTto93DOeeco3POOUfLly/XP//5Tz333HPaunVrxDF21DpR3FpqGcUePny4ZsyYocsvv1yTJ0/O6NwAAABAuwsGpcpKqaGh5T6PR1q+PPszhSsslHr3lpzO2Pvr66W9e6VAIHL7eedJ8+ZJBw60fIwdprYj3+H/je90WhFoh6M5Gm3HtG2lpdb627ZZt1jr9+1r/RktWay6pET69relRx6Ryssj9xmGFcb2eJoj5cGgtWYgYP0Z/fNMrPsej/Wny2X9PbjdLY+zjRhhBa+HDEk8NwAAAAAAAAAAAAAAALKmKXi9a6W0b59CwaBmn+KXGqQZayXjJkkJrtueTQO2SUbfyG1N4Wuv5HHm6dghX9bzlzxP8BoAAAAAAAAAAAAAAAAAAKCNiF7nwJQpUzRlyhTddddd+vzzz/X2229r1apV+uSTT/TFF19o165dqq+vj/nY/Px8DRw4UMOHD9fhhx+uSZMm6YQTTtCoUaOy/CwAAACADDFNqaJCamzM9STx1dZaYecBA1qGmX0+qawsdki6pES6/HLp9delTz9tud+OPtvsyHV0BDvahAnSKadY8el4GhulXbukwYPjx7oT6dVLuukm6dlnpQ8+iD97+PymaQXAowPd9vGSFbsuLLQi16m46CLpttukYj5MCAAAAAAAkC6fz9f0dfiFlx0ORy7GAQAAAAAAXUhFfYUuXXCpVu1cLpXvtd7vIilkSLPPls7/qqQY12rPhR+9IR2335orZMh6H8vB10q8hlPDe49V/55DNPcbcwleAwAAAAAAAAAAAAAAAAAAZADR6xwbM2aMxowZ02J7XV2d6uvr1dDQIEnyer3Kz89XQUFBtkcEAAAA2lddXccOXtsaGqxZCwsjt1dUJA5Ue73S2WdLY8da8evKyvjHhkJW+DreeiUlVux69OjUZg6FrPP16pXa8dHy86XLLpMmTbLi1/v2JT7eMKSCAit63dDQ9GFGSdbzKiiQ8vKsr5MZOlT6zW+k009v3ewAAAAAAABQbW1tzO0ejyfLkwAAAAAAgK5ke9V2TXloigKNDfJWVLfYv8OUlJ/9uWK5fon056UH36timJr9FVMhx8GLg+Xna9LIYzT34mdV6C6U09GKC8sDAAAAAAAAAAAAAAAAAACgBaLXHVRBQQGBawAAAHQPPl/yYwyj/eeId97wQHMwKLndkccEg5LLFXk/ljFjpJEjpQ0bpBUrpK1bU59j6FDpiCOs2LUzyYfrUpnZNCNnjsXlan7clCnSxInSqlXSkiXS+vWJH5uXZz3W75c8nuY/U3HccdKVV0pnnNFybgAAAAAAAKRlx44dMbcXFxdneRIAAAAAANBVbK/ariMeOkL76/ZbF0R3Sd5A8/5dAUlFORsvwtVLpXvfbX4fzYx1huR2afbZUqhHD00adpTmXjhXxR5eKwEAAAAAAAAAAAAAAAAAAMgkotcAAAAAcis80ByPabb/HLH07CmVlDTfLymRBg2KPMbvj7y/fXvLbTaHQxo71rpVVUk7dkgNDdLOnVJNjRQIWHHo/Hxp8GBpyBBp4MDIMHiyv4v8fKl//+b7eXnSqFGxjw0EYm+XpBEjJK83ctuhh0ozZ0rl5dKnn1oB740bpcpKay2Xy/o7GjXKCnQffrjUp0/L4+vqrHi3223tnzDBimofdZT1fAEAAAAAAJARn3zyScR98+BrS3379s3FOAAAAAAAoJNrCl7XHwxeS6o8eB10b0Da0yipg/SjZ3ws/eN1QzLCNublacaM/5EunKCHVz+uJ85/guA1AAAAAAAAAAAAAAAAAABAOyB6DQAAACC3osPK3UVxsXUbOtQKQNuKiqwAtq22VtqzJ/PnLyy0YtWxOJ1WfDuevn2lk06ybqmIPn7kSCsoDgAAAAAAgHZz4MABvfPOOzIMI2K7YRgaOnRojqYCAAAAAACdVazgta3SI9VVScFeORouyqnrpAULDev9L263dSH3vDxp+HDpF7/QDLdb54w/X06HM+laAAAAAAAAAAAAAAAAAAAASB/RawAAAAC55fVKBQVSXV2uJ+le+vWz4trBYMt9AwdKUTGkjCkpIXgNAAAAAACQBXfeeacaGxtlGIZM04yIX48bNy6HkwEAAAAAgM6mor5CUx6aYgWvTVMyI/fn75Rq++dmtmhHfSEtft4l9elpxa7D3X67FcGWCF4DAAAAAAAAAAAAAAAAAAC0I6LXAAAAAHKvtNT6kFldnRQI5Hqa7sHlkkaOlMrKpNpaKRSyAuT9+lkR8kzzeKTevaUBAzK/NgAAAAAAAJrs27dPv//973X33XdHhK7DHXnkkVmeCgAAAAAAdFZVvipduuBSBUIH39MTiixe99gkVQ7LwWAxFNVL6wfJuiB7dPD6oouk007LyVwAAAAAAAAAAAAAAAAAAADdDdFrAAAAAB1DUZF1M03rZuvZU8pWhGf7diu8bevfX+rVq/l+797S8OGRjwkGI++7XJLP13x/0CDreUlW0HvTpsjjx42THI7m+6Wl0oEDzferq60Ytc3plEaNar6/d6+0f3/z/eJi6ZBDmu97vdKECUrKNKU4EaQ2M4zI5wgAAAAAANBBPf744xlb67333pMrOq6UYX6/X/X19aqqqtKmTZu0Zs0affjhhwqFQjJNU4ZhNP1pMwxDJ598crvOBQAAAAAAuoYqX5Vmzp+pVbtXyev0SD5DlWEvdxSvlQ6Myd18ERqlmh7Wlz2vLlfF4wOb940YId12W27mAgAAAAAAAAAAAAAAAAAA6IaIXgMAAADoWByOyOi10ynl5WXn3C6Xdb7wWcLvO52R9+1t4aIf43I1zx+9L5VzRN93uyP/Ptzu9GcGAAAAAABATFdddVVEIDpV5sHXs8L/fOSRR/TII49kdL50ZrGD1+HbDcPQl7/8ZfXr1y/rcwEAAAAAgM4lPHitYFCqqJDXH5SCUqVH6rtBKusowWu/pILmuwe8Us8rdlnh64EDpaefti4kDwAAAAAAAAAAAAAAAAAAgKwgeg0AAAAAAJAGn88nj8fTYdYBAAAAAGReeCw6l2u0RrJo9/XXX5+lSQAAAAAAQGcVDAU1a8GssOD1fikYkiR5A5J7g1Q2LsdD2gKS8ltuPuCVen6zTBXf/UAaMiTrYwEAAAAAAAAAAAAAAAAAAHRnjlwPAAAAAAAA0FkcaDigTdWbtG7vujats27vOm2q3qQDDQcyMxgAAAAAIKMMw0j5lok1MnmTrOC2Hd22txmGoenTp+sb3/hG+/8FAgAAAACATu/qyVfLIUOqqLCC1wdfa6jaJ+0ZJynxdbeyIyjJG3/3gbyQej4xMWvjAAAAAAAAAAAAAAAAAAAAwEL0GgAAAAAAIAUHGg5oV80uSVJIoVaHr9ftXaeQQpKkXTW7CF8DAAAAQAdkR6NTuWVijUzfbOER7L59++rJJ59s9787AAAAAADQuVX5qnTe3PMkSffuOkKOQNDaYZqq3C/VDlLHCF6HJHni7DPUNOMB3wGVV5VnaSgAAAAAAAAAAAAAAAAAAABIRK8BAAAAAACSCg9e21oTvg4PXtsIXwMAAAAAMsEwjBY3yQpeT5gwQW+//baGDx+e2yEBAAAAAECHVlFfoZnzZ+qjnR9p9vPfkd57T/e+WyKHKe3aL9UNUMcJXlfG2B4Wu7bNvWCu+hb3zcJQAAAAAAAAAAAAAAAAAAAAsLlyPUCuPf7447keIaeuuOKKXI8AAAAAAECHFit4bbPD1+P6jEu6Tqzgtc1ev9Rb2uo5AQAAAACZYwejU2GaZpvXyKTweUaOHKkbb7xR1157rdxud07mAQAAAAAAncP2qu2a8tAUBUIBeV1ehaoqNfvLQd37bol+vDCkH82Q5Mj1lJJMWcHr8I51nJdh5l4wVxcdflEWhgIAAAAAAAAAAAAAAAAAAEC4bh+9vuqqq3L2YeOOgOg1AAAAAHQ+ITMkh9H2T5Jmap2uLFHw2pZK+DpR8NpG+BoAAAAAOoZ4EetcrZOqgoICDRkyRIceeqimT5+u0047TdOmTcvqDAAAAAAAoHPaXrVdRzx0hPbX77c2+P3yBoMKydTsYw9oh1sErwEAAAAAAAAAAAAAAAAAAJCybh+9tmX7A8cdQXeOfQMAAABAZ9UQaND8z+ZryoApGt93fKvXWVO+Rst3L9eFh10or8ubwQm7jlSC17ZE4etUgtc2wtcAAAAAkFubN29O63jTNDVy5EgZhiHTNCP+/P3vf6+LLmrfsJLT6VReXp569Oih/Pz8dj0XAAAAAADomloEr01Tlf4aySF5A9IOlyRnTke0mFLeZ1LjxOSHErwGAAAAAAAAAAAAAAAAAADILaLXB3W3AHR3jHwDAAAAXcL+/dKbb0qffy5t2iSVl0v19ZLLJRUVSSNHSlOnShMmSH375npaZFhDoEHz1sxTWU2ZXq5+WZJaFb5eU75GL3/+skyZmrdmni4afxHh6yjpBK9tscLX6QSvbYSvAQAAACB3hg0blrG1evfundH1AAAAAAAAMi0ieG2aUqj5PeaVHqnSVIf5xME1/5H+/l+p5xjpQIJrfxG8BgAAAAAAAAAAAAAAAAAAyL0O8hbU3OtOEejuFvgGAAAAOr1AQPr4Y+mdd6QNGySns3lfKGTdbOvXS6++an09aZI0Y4Y0dqzkdmd3ZmRcePBakkyZevnz9MPX4cFrSSqrKSN8HaU1wWtbePi6NcFrG+FrAAAAAAAAAAAAAEB7igheh0JS1NvpXfVSY15uZot27rtW8FqSKu7OU88fNuqAV1LU2+IJXgMAAAAAAAAAAAAAAAAAAHQMjlwPAAAAAABI4L//lX7zG+mRR6TPP0/vsatWSb/+tXTccc0hbHRK0cFrmx2+XlO+JqV1ooPXNjt83RBoyNjMnZXP52t18NoWUkif7f2s1cFr266aXfL5fG1aAwAAAACQPVx8GAAAAAAAdBZNweu6/VKwZfDaU9txgtcjN0nPvxm2IS9PFY8PVGlj5EchCF4DAAAAAAAAAAAAAAAAAAB0HESvDzIMo9vcAAAAAHQCNTXSn/4k/f730v79bVtr2zbpyiulH/xAqqrKzHzImnjBa1uq4et4wWsb4WuLx+ORo4O8XOKQQx6PJ9djAAAAAABSYJpm0w0AAAAAAKAjq6iv0JSHpljB61DLizkXHZDqvdmfK5binZJvoPTcoWEbvdZwFaf8W6WeUkkErwEAAAAAAAAAAAAAAAAAADoaV64H6Aj44DEAAACADmX3bunmm6WdO2PvN00pEGi+2T/TOJ2SyyU5HFKsC94884z03/9KTz8tDRnSfvMjY5IFr212+FqSxvcd32J/suC1zQ5fXzT+InldHeQTrDkwrs84rdu7TiG1/HBvtjjk0Lg+43J2fgAAAABA6q688sqY28eOHZvlSQAAAAAAABKr8lXp0gWXKuD3xQxel+yVKnrmYLAYCvZKhb2kkKTZZ1vbZqx3SG63dNFF0mmnqeK0CpVXlatvcd+czgoAAAAAAAAAAAAAAAAAAIBI3T56vXnz5lyPAAAAAADNdu6Ufvxjad++lvuCQamxUfL7m7eFX8TH3m4YUl6e5PVaH/QLt3mzdN550vPPE77u4FINXtviha9TDV7bwsPX3Vkuw9cErwEAAACgc3nkkUdyPQIAAAAAAEBSwVBQsxbM0qpdK+U9UCM5pEpP8/7eZVJ5n9zNF859QCopar4fMg6Gr715mlEwQrrttqZ9BK8BAAAAAAAAAAAAAAAAAAA6nm4fvR42bFiuRwAAAAAAS02N9MMftgxem6bU0GAFryUrap1MY6N183ikkpLIx+zaJV18sbRokVRcnLn5kTG+gE8vfv5iysFrW3T4Ot3gtc0OX5umKSOVf29dVC7C1wSvAQAAAAAAAAAAAADtwelw6urJV2vFJ4sVCoXkPfir8EqP1HeXVNYvt/PZjGqpj7fl9pAhzT4zKH31Ks3g/S4AAAAAAAAAAAAAAAAAAAAdmiPXAwAAAAAADnrwQWnHjshtwaAVw7aD1+ny+ayIdiAQuX3zZumWW1q3JtqVaZp6cX36weumxx8MXy/4bEGrgte2spoyNYYaZZqte3xXMa7PODmy9PIJwWsAAAAAAAAAAAAAQHuoaaiRJM3Y4tW9L/rlOPhWAG9AGri94wSvVScZpVKDK8Y+p1OhXj318PYXFQwFsz0ZAAAAAAAAAAAAAAAAAAAA0kD0GgAAAAA6gqVLpcWLI7cFg1J1tRQKxX6MyyV5PNYtL8+6bxgtjwsGpYqKluHrefOkV1/NzPyI0JZQtGEYmth/ogwZrV7HlKmNFRtbHbyWJEOGXIZLRqx/U91MNsLXBK8BAAAAAAAAAAAAAO1h6balKr6zWNP/9yjpxhs1Y42pexdJDlPylEk7BuZ6woPqJUcP68tKT1T42uGQ+vbVpEOm6Inzn5DT4czJiAAAAAAAAAAAAAAAAAAAAEgN0WsAAAAAyLVAQHrggchtphk7eG0YUn6+VFoqFRdLBQWS12ttKyyUevSwvo4WCkkHDljrhvvlLyW/P5PPptvzBXz6eM/HKq8tb/Ua43qP08T+E9UQaGhTQLu1DBk6e8zZfEg0THuGrwleAwAAAAAAAAAAAADawxub39AxDx8jU6aW7fpQ009YL4VCmvGZdOQKacuwXE94kE9yFEVuighf9+2jSQMna+6Fc1XsKc76eAAAAAAAAAAAAAAAAAAAAEgP0WsAAAAAyLX335fKyiK31dW1DF47nc1Ra0ecH+ccDmt/SYnkckXuCwatkHa4rVul//ynbfOjSUOgQQvWLlB1Y7XW71/f6vD1un3r9HHZx3I5XaoP1Gc1fG0Hr8f3HZ+1c3YW7RG+JngNAAAAAAAAAAAAAGgPb2x+Q6c8fkrzBlNadog0/Rrp14dLzx+bu9nCuRslR0HsfZUeqaFnD00aNIXgNQAAAAAAAAAAAAAAAAAAQCfiSn4IAAAAAKBdLVwYeT8QkHy+yG1Op1RYGD92Hc0OZFdXW+vZ6uutKLbb3bztscekr361dbOjSUOgQfPWzFNZrRUwN2Vq/f71GlE6QmM0JuV1KhoqtG7fOkmS22F9n+oD9cp35cswjMwPHobgdXLj+ozTZ3s/y+h6QK6YppmR/7uSqXUAAACA7mjHjh1avXq1tm/frh07dqiqqkr19fXy+XxNF8EyDEP/+Mc/cjwpAAAAAADoTCKC11HX2V4fkJadk/2ZYjECUjA/wQEOh1x5Xj15/pMErwEAAAAAAAAAAAAAAAAAADoRotcAAAAAkGkVFdLGjdK2bdL+/VJdnRWedjisGPUhh0hDhkijRknl5dKqVZGPb2iIvG8YUkGB9Wc6DEMqKpIqKyUz7BOMdXVSSUnz/XfekXbulAYNSm/9LiJkhuQwUoyJx9EQaNC8T5uD1zZTpjYd2KSBPQZqXO/kceOKhgptrdwqj9PTFJDNVvia4HVq1u1dl/H1CF8jF0JmSNWN1fK6vPI4Pa1exxf0qSHQoB55Pdr8f0sBAACA7mDfvn1asGCB/vOf/+itt97Svn37Eh5vX2SG6DUAAAAAAEhVouC1sUU6cIikjnBN26A0ICA1SKqM9StLp0O98ntp+bXL1TO/Z7anAwAAAAAAAAAAAAAAAAAAQBsQvQYAAACATAgEpPfek+bOldaFRXGdzshYdSAQuX/IEKmxUXK7reNCIet+OI/HCma3htMpFRZKNTXN23w+K4IdPteHH0rnntu6c3RiDYEGzf9svqYMmNLq2HNDoEGPrHxEe2r3KN+d32K/aZr6YMcHynPkaUTPEXHXsYPXsbR3+JrgdWrW7V2nkEIZXTOkEOFrZJ0dvA6GgqptrJXy1KrwtS/osx4vqbqxmvA1AAAAkMDSpUv15z//WS+99JL8fr8k6zWD9vDSSy/p+9//fsx9M2bM0D333NMu5wUAAAAAALmXKHitA5LZUYLXIWmg9RKJvAHrz4jw9cHg9YprV2hw8eCsjwcAAAAAAAAAAAAAAAAAAIC2IXoNAAAAAG21dKn0wANSWZkUDKb32I0bpYYGK2pdUNAybm0YVhC7LfLzpdpaK3QtWX/6/VJeXvMxH3/c7aLXDYEGzVszT2U1ZXq5+mVJSjv6bAevd9fsliTV++vldXlbHGeapt7Z9o4kqSCvoMX+RMFrW3uFrwlep6Y9gtc2wtfIpvDgta014evw4LUkBUNBwtcAAABADBs2bNANN9ygf//735IiQ9ep/GzfmjD22WefLbfbrc2bN7fY98gjj+h3v/udCgpavj4BAAAAAAA6t2TBaxWowwSvtVtSr+ZNEeFrh0HwGgAAAAAAAAAAAAAAAAAAoJOjQAMAAAAArVVVJf3pT9Ktt1rB69YIHPzUXigk1dRExqklyeVqGcJOl8NhrRPO74+8/+mnbTtHJxMIBZqC15JkytTLn7+sNeVrUl4jOngtWTHZhkBDzONNWeHrndU7I7bvrN6ZNHhtczvccjvdqg/Utyp6FY3gdWraM3hts8PXQHuKFby21TbWyhf0pbROdPDaZoevQ2b7/u8FAAAA6CzuuusuTZo0Sf/+979lmqZM05RhGE03SU3bY91ay+l06oc//KEktThfbW2tFixY0PYnBwAAAAAAOpSUgtcd4ZMDpqRd0kA7eG0Y1vtaHA55Qw6VyKPeBX0IXgMAAAAAAAAAAAAAAAAAAHRyHeGtqwAAAADQ+WzbJp11lrR4cez9pmkFrevrrZi1ffP5rO12uCg6YOT3W9vs7U5nZuZ1uyPv27Ft2969mTlPJxAIBfRJ+SdNwWtbOuHrWMFrW8gMyR/0x3iUdY5VZau0p3aPJGlH9Q6tLl+d1vxuh1uGYWQkfD2y50iC10lkI3htI3yN9pQoeG1LJXwdL3htI3wNAAAASD6fT5dccol+8pOfqL6+PiJ2LSlm2Dp8fyZcddVVKioqirnv0Ucfzdh5AAAAAABA7m2r2NYcvI4lXx3jUwOmdNPfpQUfGHIYVuha4a+HOJ2aPvJ4rbt+HcFrAAAAAAAAAAAAAAAAAACATq4jvH0VAAAAADqXrVulc8+VtmxpuS8QkOrqpKoqqbbWil43NjbfGhqs7VVV1nGhOFFQO3ydqdhRsnX8sSPNXY0dvK5prIm5P5XwdcgM6dGVj8YMXoevEy98LVkh5Q93fqhVZavSDlf7Q34FQ0GFzFCbw9ebKjalFPnurrIZvLYRvkZ7SCV4bUsUvk4WvLYRvgYAAEB31tDQoHPOOUfz5s2LiF2Hh67tbeG3TCsqKtLMmTNbhLVN09Sbb76pvd3oAmgAAAAAAHRlFfUVmvaPaVZEWpKi30LQIClD11tvE1MavFZ68jJJbpfufbdEjvBZnU5NGvVlzb34WfXM75mrKQEAAAAAAAAAAAAAAAAAAJAhRK8BAAAAIB1VVdLFF0u7o4LHpmnFrGtqUg9I+/1SMGiFr2OFi00zfhQ7XcnCyG53Zs7TgSULXtuSha/X7l2rioaKpOdLFL42ZWpP3R6ZLT5tmpg/5Jcv0ByjdTvdbQpjpRL57q5yEby2Eb5GJqUTvLbFCl+nGry2Eb4GAABAd3XxxRfr1VdflaSmn9nt8HR44Do8gm2apvLz81VcXBzxuLa67LLLmr4Oj1+bpqnXXnstI+cAAAAAAAC5U+Wr0qULLm16b4Ij6qMBrnpJrhwMFs2URq6TgiOkkCHNPj0gSc3hazt4ffkLKvYU53ZWAAAAAAAAAAAAAAAAAAAAZERHeBsr0KH4fD6tX79e27dvV3V1terq6lRQUKAePXpo8ODBGjdunPLy8nI9JgAAAHLll7+UtmyJ3BYMStXVbQtU2+Ehw4gMVDc2Sl5v69e1RYe4XVE/Dvbp0/ZzdGC+gC+l4LXNjkFL0vi+45u2rylfo5c/f1kuh0selyciQB1vnUAoIJej7T9+RwevPS6P3I62x8rjPdfuLJfBa5sdvh7XZ1xO50Dn1prgta22sVbKkzxOT9rBa5sdvu6R10MOg2vvAQAAoOv7zW9+oxdffLFF7FqKDGDn5+drxowZOumkk3TCCSdo2LBh8ng8+sc//qFvf/vbGZvnhBNOUL9+/VReXt4ipL148WLNnDkzY+cCAAAAAADZVeWr0sz5M7Vq9yp5Xdb7SirrK+QISSGHlFcnNXaQtzsPWSNtmSiV+CRv4GD4+suVuvfdEt2rr+jhw4J6YuZcgtcAAAAAAAAAAAAAAAAAAABdSLePXm/dujWl44YOHZqRdTqaZM+ru1i6dKmef/55LVq0SJ9++qmCwfgxKKfTqQkTJujss8/Wueeeq6OPPjqLkwIAAEQpL5c+/VT6/HNp0yapslIKBKygcUmJNHKkNGaMNGGC1Ldvrqft/N5+W3rmmchtwaBUVRUZqg7ndktOZ3PMOhCwbrbwyLVpWvfDhUJW+LotF14JhSLPac8VbsKE1q/fwTUEGvTS5y+lHLy2Rceg7eC1Kev75Xa4JZdSCl/7gj55nJ4WgalUtVfw2kb4upnP58t58NoWUkg+n08ejyfXo6ATMk2z1cFrW21jrRqdjfIH/ckPjsMOXxfnFbf6/wYCAAAAncEnn3yi3/zmNy2C1+H3i4qKdOONN+qGG25QnyxcgMwwDJ111ll6/PHHm+YwDEOmaeq1115r9/MDAAAAAID2ER68tnkdeZLPUGWeqfxqqT4/hwOGGf65tHWi9XXlwV99e0OGQk6nZn/dqXvPu0bPjztHToczd0MCAAAAAAAAAAAAAAAAAAAg47p99Hr48OFJgzuGYSgQHYhrxTodTSrPq6t7+umn9cc//lHLly9P+THBYFAff/yxPv74Y/3+97/X1KlTddNNN2nmzJntOGnHVFdXp5UrV+q///1v023dunUKheIH4n71q1/p1ltvzdqMy5cvT+v7m01jx47VCSeckOsxAACdUSAgvfeetHCh9PHHiY9dsaL560mTpK99TTrmGCuKjfQEAtKf/xy5zTSl6uqWwWvDkDweKyztdkeGrAMBK0Lt90s+X8vHxopn19e3XCcd9fWR6xpGy+j1xImtW7uDC5khzf9svvbU7mnV4+0Y9Nq9a7WpYlNT8NqWavg6ZIbUGGyUx5V+vLi9g9c2wtcWj8ejgeZA7arZ1eo1HHJoXJ9xWrd3XZsC2gOLBhK8RqsZhiGvy6vaxto2rdOW4LXN6/J2utfNAAAAgHTNnj1bgUCgKSotRQavv/SlL+mZZ57R2LFjszrXaaedpscff7xpDnumL774Qtu2bdOQIUOyOg8AAAAAAGibLfu26HuvfC8ieC1JamyUN2goUGmquig3s0Ubsk3aemjktkqPJHeBvPk9FJL08MqHdc64c3IxHgAAAAAAAAAAAAAAAAAAANoRpTup6UPHHWUdtL+1a9fq2muv1ZIlS9q81kcffaSLL75YDz74oB588EGNGzcuAxN2PD6fT6tWrYoIXK9Zs0bBYDDXoyX04osv6te//nWux4jpyiuvJHoNAEjf0qXSAw9IZWXpP3bVKuvWv7/0ve9JRx+d+fm6svffl3btkpzO5m3V1VbAOpzLJeXnSw5H/LUcjuYodn29FcBOxDSlxkbrMekKBqXaqOCpx9MyoH3UUemv3Qk4DIemDJiindU7W72GKVMbKzbG3Z9K+NqQIZcj/R/BsxW8thG+tpR6SyWpVeFrO3gtqU3h64FFA5vmAFrL4/RIeWpz+LotCvMKrTkAAACALuzdd9/VW2+91SJ4bUemTz75ZP3rX/+S1+vN+mzHHHNM3H2ffvop0WsAAAAAADqReZ/M08xnZ8ohh/oX9Y/cGQjIXxNSda/czBbtkF3SjuExdjgMVYbqpIBb0wdP1xPnPyGnwxnjQAAAAAAAAAAAAAAAAAAAAHRmRK9lfeA4nnRC1onW6Wi6c6B7wYIFuvLKK1VTU5PRdd98801NmzZNjz/+uGbMmJHRtbPN7/dr9erVEYHrTz75RP5kMUYAANB+amqkBx+UFi9u+1plZdKtt0qnnSZ997tSUVHb1+wOFi6MvO/3W8HqcC6XVFCQ+poOh1RcLO3fb4WtE2lokPLyWsaqEzFN699O9NrRMx53nDRwYOrrdjLj+45Xvb9er2x8Raba52ehZOFrt9Od9oc0sx28toWHr7uz1oSvw4PXttaErwleI5NyGb4meA0AAIDu4r777ou4Hx68PvTQQ7VgwYKcBK8ladSoUSotLVVlZWWL32evXbtWZ511Vk7mAgAAAAAA6bGD15IUUkhlNWUR4WtzV7X29snVdJEGlEm7BsfZefD1CZfDpSfPf1LFnuLsDQYAAAAAAAAAAAAAAAAAAICsIXp9UKwIdGsi1p0hJt2Z4tyZNmfOHM2ePbvdvk81NTW64IILdN999+m6665rl3Nkw7/+9a9OH+7uDBwOR65HAAB0Frt3SzffLO3cGXu/aUqBgHULBpu3O51WhNnlih1KXrxYWrNGuuMOacCA9pm9qygvl1atsiLVtrq6lscVFlp/pvPfm4ZhPS7ZRVnsgHVRkfW9TSYYlGprrX8X4fLzJXdUOPnKK1Oft5Ma23usNlVs0vr967MevnYZLjmN9ILXATOQk+C1zQ5fB0PBtGPdXUk64etYwWtbOuFrgtdoD7kIXxO8BgAAQHdRW1url156qel3sOG/izUMQ08++aRKSkpyNZ4kady4cfrggw9iRq8BAAAAAEDHFx68tlnh693qryK5tlVrWwd560/vfdKeQXF2OqzXJnrl99Lya5erZ37P7A0GAAAAAAAAAAAAAAAAAACArKK4im7jsccea9fgtc00TV1//fV6/PHH2/U86PxOOumkXI8AAOgMdu+Wfvzj2MHrQMCKIFdUSNXVUn291NjYfKuvt7ZXVFjHRcePJWvdn/zEOg/i+/TTyPumKfkiw8bKz08tRh2L1xsZ1I4nGGz+XofixHNDIWt/ZWXL77nTKfXoEblt6FDpjDNaN3cn07ewr8b2GitD7XchILfDLY+rOfLqcrhadeEhf9Df9HVrgteGDI3qOapNz9WUqYAZ6BQXd2pPpd5SDSwamPCYRMFr27g+4+RI8jIMwWu0J4/To8K8wqyci+A1AAAAupMlS5ao7uDF0eyfoU3TlGEYmjlzpiZNmpTL8SRJo0ePjrn9888/z/IkAAAAAAAgXS989kKL4LVM6xYyTTm/6DjB65IqqaJfnJ2GJMNQr/xeWnHtCg0uHpzN0QAAAAAAAAAAAAAAAAAAAJBlrlwP0FG0JkLWnusgs5YtW6Zvf/vbKcXajj32WF166aU69thjNXz4cPXo0UPV1dXatGmT3nvvPT3xxBP64IMPEq5hmqa+/e1v67DDDtORRx6ZqaeBLqS4uFgXXnhhrscAAHR0NTXSzTdL+/ZFbjdNqa6uZXQ5ETuE7fFIBQVS+H+37t1rneevf5WKijIze1cTHQBqbLS+D+E8bYx7FhZaQetwhtHyPKZpRa3r6yWXqzmWbZpW8DoYjL2+wyGVlkZ+7yXp9tsld+pB5YZAg1bsWqE9tXvUEGhI+XHZtuXAFq0uW910vyHQoL21e5XnytPoXqO1Yf+Gdju3y+GSw3A03VoTjfa6vGoINMgwjFYFr88ec7bG9x2vNeVr9PLnL8tU+jP0L+qv7ZXb+TlXagpR76rZ1WJfKsFr27g+47Ru7zqF1DJaT/Aa2eBxeqQ8qbaxtt3OQfAaAAAA3c0777wTd99PfvKTLE4S38CBLS/mZJqm9kW/7ggAAAAAADqUhesW6rx55zVviPrV/+AvpO2HZHWkuIpqpII8yeGTKmP9utDhIHgNAAAAAAAAAAAAAAAAAADQjRC9lloVIGvPdZBZVVVVuvjii+X3+xMeN2bMGD3wwAM69dRTW+zr2bOnpk6dqqlTp2r27Nn6z3/+o+uuu04bN26Mu15jY6NmzpyplStXqri4uM3PA13LJZdcooKCglyPAQDo6B58UNq5M3JbMGiFkUMtg6kp8fkkv1/q0UNyOpu379wpPfSQ9OMft37ermzTpsj7gUDk/fD4dGt5PFJtbcvvbazwdfgcsfZFR4qdTit47Yr6EfCii6TTTkt5xJrGGr38+ctqDDSm/JhcCYQCCpnNf5dBMyi/6Zff75fTcGp0r9HaVrmtVTHoVM5tB69by5ChfHe+6v318of8KYevw4PXkpr+TDd83b+ovy4af5HuWnpX+sN3UbHC1+kEr22xwtcEr5FN7Rm+JngNAACA7mj16uaLboVfOKp///464ogjcjFSC3379o24bxiGTNNUVVVVjiYCAAAAAADJLFy3UF9/+uvWnRi/7h/6mbR1THZniqeoVipxSiFJ3oNvqYkIXxO8BgAAAAAAAAAAAAAAAAAA6Ha6ffT6kUce6VDrIPNuueUWbd68OeExp512mubPn6+SkpKU1jzjjDP03//+V+eff77eeOONuMdt3rxZt956q/7yl7+kNXNnVFBQoEmTJmnPnj0JY+DZduutt+rWW2/N6jl/97vf6eabb054zDXXXJOlaQAAndbSpdLixZHbgkGpqip+ANnlsuLGdiQ5GGwZZ5asqHJVlVRcHBm+fvVV6ctflo4+OnPPo6uorIy8H/33Gv732BYej1Rf33zfNK3vZ6LwdSprlpS0DGGPGCHddltaS32w/YNOEbxOJmgGVeAq0Nljzk47Bp1MIBSQIaNNwWtbePhaUtLwdXTw2pZu+NoOXntd3lZO3nWFh69bE7y2hYevCV4jF9ojfE3wGgAAAN3Vpk2bImLXpmnKMAydcsopOZwqUrwLsVZXV2d5EgAAAAAAkIpkwevBq6Wth2V3pnjyfVL13dJzh0qzz5ZCRlT42uFQrwKC1wAAAAAAAAAAAAAAAAAAAN1Nt49eX3nllR1qHWTWmjVrNGfOnITHHHPMMXrhhRfiftg7ntLSUr300ks65ZRTtGzZsrjH3Xvvvfr2t7+tww7rIO8uzwCv16tJkyZp2rRpmjp1qqZNm6bx48fL6XTqqquu6lDR61x4+OGHE+7/0pe+pCOPPDJL0wAAOqVAQHrggchtpilVV7cMHxuG5PVaYWNHjMhuKCT5fJEh5fD1omPIDz4oTZtmBbTRLFY8PFx0ULq1EgWuDcP6Hjudkt+ffK28POvfhtvdcr6BA6Wnn7bC5ykKhULaXbs75eM7Ol/Ql3YMOplAyPp34nQ4FQwG27yelHr4Ol7w2pbqcyV4nVypt1T5Rr48nrbFfcf1GSefz9fmdYDW8jg9anQ2yh9M4f9PScLtdBO8BgAAQLdVVlYWc/uQIUOyPEl8eXl5MbcTvQYAAAAAoONJFrweuF7afmh2Z4rHGZC+VGF9PWOt9WdT+DrkkDxFcrk9Wn7tcoLXAAAAAAAAAAAAAAAAAAAA3QwlO3Rpv/71rxVIECjs1auX5s6dm3bw2lZYWKh58+Zp8uTJOnDgQMxjAoGAbrvtNj311FOtOkeueTwefelLX9K0adOaIteHH364XIQwY3rrrbe0YcOGhMdcc801WZoGANBpvf++FB3LqauzAtbhXC6psNCKIMfjcEj5+VYAubY2Mt4cClnrFhY2b9u9W1q6VDruuLY/j64k2X/7xIpUt4ZpNgWqgzLljF7WMKSCAuu4YLD5ZnM6rVnz8prXMUxF/AsZMcIKXqcZXqpprJEZihzo4z0fy8zUc8+wPbV7tLumOdIdMCN/Lgia1t/b+L7jtXbvWm2saNuFW/whv4KhoLwub0YC2uGSha+TBa9tycLXBK9Tl6lQNcFr5JIv6MtI8FqS/EG/fEEf4WsAAAB0S7W1tTG39+3bN8uTxFdTUxNze0d9XQcAAAAAgO5qf83+hMFrz3pp1whJGbo2e5sEpaBXWjZYmn6N9ME/DoavnQ7NPjdPoZ6lmj5wsp48/0n1zO+Z62kBAAAAAAAAAAAAAAAAAACQZVRr0WVt2rRJzz77bMJjbr/9dg1JM/YXbdiwYfr1r3+tH/zgB3GPeeaZZ/S73/1Ow4cPb9O5smXs2LF66KGHNHXqVE2cOFFutzv5gyBJevjhhxPuz8vL02WXXZalaQAAndbChZH3AwHJ54vc5nJJPXo0hY2Tcjqt46urI8PXPp/k8URGnRcuJHodraQk8n50BDs8PN0WB9ep8kizZkhXf+zQjDVhn2K0v9+GYc0QK8ZtGE3HPTfSp4cP8+mJN3qq2O+QLrpIuu02qbg4I+NWN1bH/JBlR1Drr5Uv2Py/m5AZinncmvI12lSxqU3n8of88gV8TV+7HJn/UTte+DrV4LUtXvia4DXQvfiCPtU2xg7ztVZtY62UJ8LXAAAA6Hb8/tgXk2ntRXfbw/79+2Nuz8/Pz/IkAAAAAAAgkV5FvTSgcEDERb6b7JN8HSh4rbBfCzaFr+f10Iw/zpWGN+jhlQ/rifOfULEnM+9RAQAAAAAAAAAAAAAAAAAAQOfiyPUAQHuZM2eOggnig2PGjNF3vvOdjJzruuuu08iRI+PuDwaDmjNnTkbOlQ3jx4/Xd77zHU2dOpXgdRqqqqo0f/78hMecd9556t27d5YmAgB0SuXl0qpVkdsaGloeV1iYevDaZhjW46JFr79ypTUHmkX/t150bDoQkEKxo8opC4WkQEBVeaZmXmjqo0HS7LNMPXeEV3Ic/NHN6Ux5uedG+jT7hFp91C+gmV9vUNU/7pfuvjtjweuuYE35mhbx53SFB68lyRfwKRAKJHhE69nha3/QL3/In3bw2ja+73idPeZsGQc/CUvwGuhe2iN4battjLzgAAAAANAdxItb79u3L8uTxFdRURFze1FRUZYnAQAAAAAAyeya8LAG1ERt3CephzpG8Dokqb7l5mWDpen/b4D0la9oxmEz9PzM5wleAwAAAAAAAAAAAAAAAAAAdGNEr9ElBYNBPfXUUwmP+eEPfyhnGtHARFwul2644YaExzz55JMKtTWEiA7t6aefVl1dXcJjrrnmmixNAwDotD79NPK+aUqNjZHb8vPTih9HcDqtx4drbLTOk2iO7m7MmMj7eXkto+O+NkY+fb6m4PWq/tamkCHNPsWn56bkS0VF0ujR1vcwyc0OXofcLqlHD60aUaCZ+x9Sla+qbTN2IVW+qowHr22+gE8hs33+2z88fD2x/8S0g9c2O3zdv5DgNdCdtGfw2kb4GgAAAN1NYayLzEnav39/lieJ74svvoi4bx58LXDgwIG5GAcAAAAAAMSzaJH0jW9o110ODag+uM0OXneEd/2HJNVJKo29e1n955r+t+mSJKcjM+/RBgAAAAAAAAAAAAAAAAAAQOfkyvUAQHt4/fXXtWvXrrj7vV6vLrvssoye88orr9RPf/pTNUZHKQ/auXOn3nzzTZ1yyikZPS86jn/84x8J9w8dOlSnnXZalqYBAHRan38eeT8QaHmMx9O2c3g8Un19y/O43c33N2yQTjqpbefpSiZMiLxvGNbfY0ND87b6eiuG3RrBoKqCdRHBa/s8IUmzT6yTjELNuO1PVqD800+t79HGjVJlpfX9c7mkkhI9N96h2b2WKuQqlRwO6yZp1e5Vmjl/puZeOFfFnuLWzZlE/8L+KsyLHXrKtvpAfdx9Vb4qldWWKd+VH/eYZOIFr22BUEAuh0sOI/OfOjVNUyEzpGU7l2lw8eBWh6+3V23Xrppd8gV8RK+BbiAbwWtbbWOtlCd5nG38bxYAAACgEzjkkEO0e/duGVEXSNu8eXOOJmrpvffeazGfYRgaOnRojiYCAAAAAAARqqqkX/5S+r//a3pPz667HRp4Y0i7O0rw2lTC4LUOvvTw4c4PVdNQoyJvUXbmAgAAAAAAAAAAAAAAAAAAQIdE9Bpd0ksvvZRw/1e/+lX16NEjo+csLS3VV77yFb3wwgsJ5yJ63TV9+umnWrZsWcJjrrrqKjkcHeGTBwCADm3Tpsj70dFrl6spYtxqDoe1Tvja0dHrjRvbdo6upm9fadIkafXq5m0FBZHRa0mqrbW2p8M0VeWviRm8toUMafapjZJ/tWYMPNkKkseIkj+36w3N/vSPCplh30uns+nL9g5f9yvs125B7XTtrtkdc7sdvG4L0zTlD/qTHmeHrw0ZLfYZMtSvoJ/K68plykz53CEzpDp/nUyZagz+f/buO76t8u77+PdI8l7Ze09IQgJJgIRACQTCHiEpgVAgJaXMtKWU0odCb7q424Zyl5bZQoBQZtlQKGGPACXTIQ5khww7ibO8LUs65/lDkS3JGpa1bOfzfl562ee6rvO7fnLK/Uj20fc06O1Nb+uIbkfEHK69eNNiLdm+RJL04PIHdd2E61SUXRRTDQDtRyoDr30IvgYAAMDhYvDgwVq+fHnjsWEYsixLn376aRq7arJmzRodOHCgsS//8OuRI0emsTMAAAAAACBJ2r5dmj1b2rpVqq0NmNqbqTYTeG3slKxB0Zd+dtVnBF4DAAAAAAAAAAAAAAAAAACgTVwGCyTcu+++G3H+nHPOScq+0eq+8847SdkX6ffoo49GnDcMQ9///vdT1A0AoF2rqAg89ngCj/0CjOMSXCd4n+A+IJ17buBxRoaUkxM45nZ7g69Ns2U1TVOVzkrNvtDVPPDaCAxKNrOzNL9kgV4u+yBkqabAa7OphqP5fY58wdeVzsqW9diBJCLwWvK+tstx5LQoaNptumVZzUOtR3YbqWP7HKtxPccFhE1F4h947XOg/oDe3Rz5/U8w/8BrSapz1enB5Q+qop7/7oGOKB2B1z41DTVyepxp2RsAAABIldGjRzd+7/87gH379mnt2rXpaCnAf/7zn7Bzxx57bAo7AQAAAAAAzWzbJl1wgTfw2jSlhobGqeyfmXIn6DKhuFhS52iB14cue3j/ivc1qf+kVHQFAAAAAAAAAAAAAAAAAACANo7Qa3Q4ZWVl+vrrryOuOe2005Ky9+mnnx5xvqSkRLt27UrK3kgfl8ulf/7znxHXTJs2TYMGDUpNQwCA9s3tjjzfwnDcqKLVidbH4WjyZKl378CxggLJFvS2yu2WqqslpzN8+LVpSk6nKhuqmgdeS83/fex2KSdHps3Q/G/u0cueEmnQoMbHy54Szf/mHpk2Q3LYvWHXDkfYf+fDMfj6YP3BhARe+8QUfG255bG8wfKGDI3rOU498npIkvoW9NVR3Y+KWiNU4LWv3pLtS7R40+IW9R0ceO1D8DXQMaUz8NqH4GsAAAB0dFOmTAk799hjj6Wwk+Y8Ho/uu+++sDfcmjx5coo7AgAAAAAAjSorpUsukXzXFfsFXuf/xJQzI019BemzXjowKMICv8DrUwafkoqWAAAAAAAAAAAAAAAAAAAA0A4Qeo0O58svv4w4379/f/Xv3z8pew8aNEi9g4MQgyxdujQpeyN9XnvtNZWXl0dcM2/evBR1AwBo9xyOyPOWFXm+paLVidbH4cjhkG6+OXDMMLzB18HBQZYl1ddLVVXeDynW1Ei1td6vNTVSVZUqzTrNnmk1D7wODtGWmsK1bTaZhjT/09v08p6Ppa5d9fKejzX/09tkGofONWwtCkc/nIKvD9Qf0PbK7QmvG0vwtcvjksf06MT+J6pPQZ+AuT4FfTSgaEDYcyMFXvu0JPg6XOC1D8HXQMdiWZbq3fVx18mwx/9p+np3vaxEvYYBAAAA2pjJkycrKytLkhrDpQ3DkGVZ+vvf/67KyvT97uVf//qXtm3bJsn7HsHXlySNHz9evXr1SltvAAAAAAAc9u64Q9q6ten40A3qu91oqiYnPS0FG7hBKh0dYQGB1wAAAAAAAAAAAAAAAAAAAAiD0Gt0OCtWrIg4P378+KTuP3HixIjzK1euTOr+SL2FCxdGnO/SpYtmzJiRom4AAO1eUVHgsd0eeOzxJGaf4DrB+wT3Aa+TTpK++93AMbtdKiwMHVYteT+U6HR6Q7CdTsntlsewdNlFUnFwrlCosOqcHOlQcJKPaZma/9Z8XfnKlZr/1nyZltmqp1O8q1iXvXSZPGaC/nfVBlmWpb21e+OqYcjQ0M5DA0KmG+daGHxtyVJhVqEGdhoYcr5zdueQwdctCbz2iRR8HS3w2ofga6DjMAxDBZkFstvs0ReHkZeZp4LMAuVl5rW6ht1mV0FmQWP4HwAAANDR5OXl6ayzzmoMk/a/4Ut1dbV+85vfpKWvyspK3X777SFfixuGoYsuuigNXQEAAAAAAEnSO+9I//pX4FhDg/r+0NS+gvS0FGzgdmn7EZIt3CUpBF4DAAAAAAAAAAAAAAAAAAAgAke6G0DrrVu3Tp988onKysq0d+9eOZ1OFRUVaciQIZo4caImTJiQ7hbTYtWqVRHnx44dm9T9x44dq9dffz3sPKHXHcvOnTv19ttvR1xz2WWXKSsoqBIAgLCGDJH8Xy84gl6yu92SaYYPWG4J0/TW8Re8z9Chra/flpSXSyUl0oYN0ubNUkWF97k7HN5g7yFDpOHDpdGjpe7dW1bzt7+Vli2TtmxpGrPbvfVqa73h1lHYLUNXrbK0srdk+nKHDKN56LXdLhUEfprRkiXLsmRapt7eGPl1iD/DMJoFJdsMm646+qq4AlHbOsMwNKTTEG06sEm17trYz5ehs4efrVHdR2lt+Vq9ueHN5gHUh4Kv69x1YQPIu2R30XkjzosYjt05u7MkaVvFNkmxBV77+IKtpw+d3jjW0sBrH1/w9XUTrmvxOQDaJpthU0FmgaoaqmK+wUFeZp6y7N73sln2LClTqmmoiamGL/A62o0BAAAAgPbue9/7nl555ZWAMcMwZFmW/vKXv2jatGk666yzUtrTVVddpc2bNzf24R9+7XA4NHfu3JT2AwAAAAAADnG5pNtvDxyzLA273KnSrulpKdig7ZKzp01FDZYqMi3ZTMn0/cnP75IFAq8BAAAAAAAAAAAAAAAAAAAQDqHX7UxdXZ3uvfdePfDAA9q5c2fEtb169dLVV1+tn/zkJ+rUqVNqGmwD1q9fH3F++PDhSd1/2LBhEec3bNiQ1P2RWk888YQ8nsjBYfPmzUtRNwCADiH4tUpwGLUkOZ1STk7r93A6m48F7xPlNU2b5nZLn30mvfGGtHp15LX+AePjxknHH+/9Nwj1c/cpLJSefVa68EKprKxp3DCkvDzvuU6n90OKEcxYZ5PsNs0/wyPTFiLE2G6XOnduDMI2LVMeK7bAUkmNAdmNZW12GTJkM2y67aTbNKr7KK3buy5qnSpnlcqqywLH6quU7chWhj0j5r5SyW6za3Cnwdp4YKOcnub/+zdNU7YQQfL+gdeSGr+GC77OsmXJaTqbBV/nOnJ15vAzlWnPjNqrL/h6V/WumAOvffyDr2MNvPbxBV+H+9kAaD9aE3ztH3jtE2vwNYHXAAAAOJxceOGFGjZsmDZt2hQQMm0YhkzT1BVXXKG3335b48ePT0k/v//97/XSSy819uLj6+uiiy5S7969U9ILAAAAAAAI8vbb0vbtAUNjp+/Spp5p6idI/1Jv4LUkZXsMqUGqyLJkM2wy1XQ9BIHXAAAAAAAAAAAAAAAAAAAAiITQ6wRat25d2PDbIUOGKDs7O6767777rr73ve+pvLw84MPJ4ZSVlem3v/2t7r//fj3wwAP67ne/G9f+7YFlWdq6dWvENdFCqeMVrX60/tC+PPbYYxHnJ0yYoHHjxqWoGwBAhzB6dOCxYUiZmVJDQ9NYXZ13zG6Pvb7H4z3fX2ZmY7ByozFjYq/dFnzxhfTgg9Lu3bGfW1wsrVjhDZqeNUs66qjwa/v3l155RbrkEin4pisOh/ffxrK8P2/fw8dub3zM2GFIn3g0/zs1Mv3/CXyB14f+jS1ZsQdeW5LLdDULYHabbjlsDl0x9gp1yuqkpTuXtqhcrbtWmw9sDhjbVb1Llix1zu6s7nndY+svxew2u/oW9NXOqp0BwdemaarGXaMMW4ayHU3v2YIDr33CBV/Xu+vlMl3KtefKaTob/73yM/M1utvoFgVe+xRlFmm7ub1Vgdc+S7YvUUl5iQ7WH2zxOcHqXHWyZClLWQRfA+1cLMHXoQKvfVoafE3gNQAAAA43NptNt912m6666ioZh37P5h98vW/fPk2dOlXPP/+8zjzzzKT14fF4dOutt+r//u//GvuQFPC9w+HQnXfembQeAAAAAABAFE88EXA45eQyfdU/Tb0E6VUuubseulYpI0NyOJSdmSmZDapwVsgmm0zLJPAaAAAAAAAAAAAAAAAAAAAAUZE8kyBbt27VkUceqaOOOqrZ46STTpJpmtGLRPDII4/onHPO0Z49ewI+IB3tYVmW9u3bp0suuUR33HFHgp5t27V7927V19dHXNOnT5+k9hCtfk1Njfbs2ZPUHpAaH330kTZu3Bhxzbx581LUDQCgw+jeXQq+YUKom6fU1HhDlWNhWd7zggXXP/poqVu32GqnW3W1dPfd0p13ti7w2t/+/dLf/y49+WTon5dP//7SW29Jp58eet4wvAHYWVlSbm7TIyvLO34obGjG5iz97eM82Xz/nNnZUteuAaHm0QJKQwkVeC15g5MvGHmBJvaZGHPNcA7UH9C+un0Jq5csvuBrX5irL/Ba8v686t3e9xLhAq99RnUfpbOHn90YQu0LvJakWk+tMm2ZMmQoPzNf43uNl8MW2/2mbDabjul1TMBYLIHXPvEEXvs4DAeB10AH4Qu+ttvC3zQjUuC1T5Y9S3mZeWHnCbwGAADA4Wru3LmaPHmyJAUEX/uOq6urde655+oHP/iBdsf7+6sQPv/8c02aNEn/93//17iv/42UfX9jvuaaazRy5MiE7w8AAAAAAFqgtFRasqTx8Jzjy/TZ0DT246fLAckosnmva+ncWcrP917DYrMp25Gtoqwidcvtpm0/2kbgNQAAAAAAAAAAAAAAAAAAAKIifSZB/vWvf0nyfljY/yFJP/jBD5Sbm9vq2q+//rquueYauVyuxjDrUHuF2ts//Pquu+7Sr3/96zifadtWWloadU2vXr2S2kNL6rekT7R9jz76aMT5nJwczZkzJ0XdAAA6lHPPDTz2BSf7c7ulqirJ08IwZI/Hu97tDhz3BTBH2r+t27VL+tGPpHffDT1vWZLLJdXVecOxfY+6Ou94uPDwL7+Ubr/dWz+cwkLp5pu9YdtxvM6csTlLf1vdT7aCQm9NIzDg2FJgj9HeC5imKY/lkeX3/6SmMOeRXRMfbHSg9kDCayaDL/g6w8hoDLz2cZkuOd3OiIHXPr7ga6fb2Rh47VPnqVNhZmGrAq99Th10qk7sf6Kk1gVeJ8KU/lOUYc9Iy94AkiNS8HVLAq99wgVfE3gNAACAw90//vGPxr8Lhwq+Nk1Tjz32mEaMGKEbb7xRn3zySVz7VVRU6Omnn9Ypp5yiE088UStWrGgMt/bf1/d16NCh+t///d+49gQAAAAAAHH48svGb+eOKdObo9PYi5/CSml/d2l3jillhL5O4Ph+x+ubG75R/879U9wdAAAAAAAAAAAAAAAAAAAA2qPWpW+hmeeff77xA8M+lmXJ4XDoRz/6UavrlpeXa968eY0fTvbVbYlQwde/+c1vNHHiRJ1zzjmt7qkt27dvX8T5wsJCZQUHRiZYbm6u8vPzVV1dHXZNtD7R9lVWVurFF1+MuGbmzJkqKipKUUcAgA5l8mSpZ09p9+6msdxcb0CzaTaNud1SRYWUk+MNr7aFCJg0Tcnp9AY8B7PZvHX99eolTZqUmOeRCrt2eUOnQ72+crul+nqpoSF6ncxMKTu7Wdi0du2SfvYz6e67I4daT5okTZwoff659Oyz0rp1LX8O48ZJ552nGZMmSeWfaP66/5OpyK/5TctsFoQdMG+aMi0zYMxm2HTqoFPVv7C/KpwVyq/Pb3mPkurcdaptqA2/p0zVe+pVqMKY6qaDx/LIaTpDzjWYDdpRuSNq6LUk7ajcoQYz9P++atw1cpvuVodeS9L0odMlSUu2L2l1jdaa0n+Kpg+druVly1O+N4Dk8gVfVzVUyWN6b54RS+C1T5Y9S8qUahq8NxAg8BoAAACQRo0apX/84x+aM2dOwN9ofX/r9R1XVVXpwQcf1IMPPqgePXromGOO0ahRo7Qrws3XFi5cqPr6eu3Zs0dbt25VcXGxSkpK5Dl0Uzz/vw0HB15blqXs7Gw9/fTTystrfgMbAAAAAACQIqtXS5Ju7V+mJ45Lcy+H5NZJlV2835uGtFvV6qnAa0rG9Rqn52Y9p8Kstn9NCAAAAAAAAAAAAAAAAAAAANoGQq8TYO/evVq+fHnjB4j9v5522mnq27dvq2vfcccd2rt3b9jA6+CgbX++tcEfop4/f75OO+20pIc/p8P+/fsjzhcWpuZi68LCwoih19H6RNv3zDPPqLY2fOijJM2bNy9F3QAAOhyHQ7ruOunOO5vGDEMqKJAqK6Xgm6DU1XkfDodkt3vXWpbk8XiDn0Px1Qt+PXnddd467UF1tXTbbc0Dry1Lqq31hn23VEOD95GR0Tz8eu9e7z5//avUtWvzc+1278/a4ZBOOkk69lipvFz6+mtp0yZpyxZvOLnb7V1TVCQNHiwNHSodeaTUr1/jfjN6nyL176f57/2sWWh1LEIFYo/pPkYOm0ObD2yWzbDpYP3BmGo6PU7tqNoRuE/Q+x9feGprmZaZ9LDUBk+Dth7cKtMyZcho9rMyZDSGTPtCp0NZvGmxlmxfEraG23RraelSHdvnWBkK/74tmnQEX/sCrwF0XP7B19mO7JgDr318wdf17noCrwEAAIBDLrnkEm3btk2/+MUvwgZfS01/y929e7fefvttvf322401/P/O6/t69dVXB+wT7u/GoQKv7Xa7nnrqKU2cODHRTxcAAAAAAITgMT2y2+zNJ0pK9L/dy/Sn01PfUyhZDVJtQeCYKUu7q3erZ35PSQReAwAAAAAAAAAAAAAAAAAAoHXaSZpd2/bFF1+EnTvvvPNaXXfbtm1auHBh1MDr4HH/+eDga0n69ttv9b//+7+60z9EsYM4cOBAxPmCgoKI84kSbR9Cr9u/hQsXRpwfOnSoTj755BR1kzj333+/HnjggaTvs2nTpqTvAQDt3qRJ0mmnSe++2zRmt0uFhVJVlWSGCER2u8OHXPuz2byB1/agD9edfrp0/PHx9Z1KDz0klZYGjnk84X8+LdHQ4P0Z5uYG/nxKS6WHH5buuqv5Obm53j19srOl/v29j1jZbJoxdraUmaX5b82PK/jax5Ch4/ser87ZneOuFYrbdKukvER98vvEVWdZ6TJ99O1Hun7i9crJyElQd4F8gdceqymc2z+02j+cOlLwtS/wOloNl+nS0tKlGttjbFx9pzL4msBr4PBhM2wqzCyMeEO1lsiyZynTlhl3HQAAAKAj+fnPfy7LsnTbbbdJUkDwte/Y/zV0uL/3+gu1JlwN/78jOxwOPfLII5oxY0brngwAAAAAAIhJpbNSl710ma46+irNODLw/fjD5e/pttZfWp5QDpfkzA09Z8rU7urdmj5sOoHXAAAAAAAAAAAAAAAAAAAAaBVCrxPg888/Dzt3/vnnt7ruvffeK7fbHRBeLQV+SHn48OG6+uqrNWXKFHXr1k179+7V8uXL9Y9//ENfffVVyHMty9KCBQt08803pywEOlXq6+sjzufl5aWkj/z8/Ijz0fpE21ZSUqIvv/wy4pqrrrqqXQZ+lZeXa+3ateluAwDgc+210tq1gcHOdrtUVCTV1kpOZ+w1s7K8Ic3B//9Unz7SNdfE128qffFFYCC45A28rqyUwoUEORzen59heNd4PKFDwk1TqqmR8vK8AeE+77wjnXWWNGhQ4Po+faR16+J6OgG1DEMzjpyhV9a9onc2vRN3yb4FfTWo0yBV1FckoMFAbtOtkr0lqm6o1vr967Vmzxr1zu8dc51lpcu0aPUiWbJ039L7dOOxNyY8+LrB3Tzw2sc/qNpfqODr4MDraDVcpkvFu4s1pMsQZedkt6b1gB6SGXxN4DVw+EnU+9b2+P4XAAAASLZbb71VQ4cO1dy5c1VXVxfwN97gv9+2JAA73OvuSDdOzs/P17PPPquzzz47rucCAAAAAABaptJZqdkvzFbxrmKtLFspSY3B18+9+HtdO3lfOttrZHNL7lCXZfj9+sGUqQfPfJDAawAAAAAAAAAAAAAAAAAAALSKLfoSROMffusfMj1mzBj16dOnVTVdLpeefPLJZh9e9q9/7bXXas2aNfrZz36myZMna/jw4Zo8ebJuvPFGrVy5Urfccossywr4YLNPfX29XnjhhVb11pY1NDREnHc4UpPzHm2faH2ibXv00Ucjztvtds2dOzc1zQAAOrb8fOmuu6Ru3QLHDcMbyFxYKGVmtqxWZqZ3fV5e88Drbt28+0S5cUeb4XZLDz4YOGZZUlVV88Brw5BycqROnZqef25u08+vUyfvfDDL8gaLB9e75x7J5Qocy8+XBg/2Bmq3lmFIvXtLPXpIkl7++mW9t/m9Fp9uN+xy2ByND5vR9FZvZ9VObT24NeQ5sTyCuU23Ssq9gdeSZMnSq+te1bLSZTE9df/Aa0naVrlN9y29T3WuupjqRNLgbtDX+74OGXgdzZLtS7R402JJ4QOvo3Fbbr227rXGn1VrTR86XVP6T4mrRjgEXgMAAAAAkHizZs3S8uXLNWnSpMa/1YYKufZ/hBO8LlJ4tmVZOu6447Ry5UoCrwEAAAAASBH/wGtJMi1T89+ar5e/flmffbBIl6y4XWHup51ShkcyW3DP7udmPqdBXQclvR8AAAAAAAAAAAAAAAAAAAB0TKlJAO7gNm7cGDKc+uijj251zXfeeUd79+4NCLn2fW8Yhi688EI98MADYc+32Wz64x//qIMHD+of//hHQB2fRYsW6fvf/36re2yLCL1GsvkC6SM588wzWx14DwBAM716SXffLd12m1RaGjjncHgDly3LGwTtdksev1Bfu927xuFoHnTt06ePN/C6V6/kPYdE+/xzaffuwLHaWsk0A8ccDm+4daQwapvNG3qdmSnV1AQGWpumVFcXGAZeWiotXiydc05gnS5dpKIibx9OZ2zPJyPDG8SdkSHJG3g9/635Mi0zyoktY8nSFzu/0NgeY9W3oK8kyWFzaFK/STHV2Vu7V98e/FaSN/B6TfkaVbsCQ5xNy9Si1YskSRP7TIxaMzjw2scXfH3jsTcqJyNEKHkMTNPU2n1rWxV47bNk+xKVlJfoYP3BVtdwepx68esXddlRl7W6hqTGYOrWhG+HQ+A1AAAAAADJM3LkSH366ad69NFH9bvf/U7btm2TpGZ/X44UeB1K8Pm+Gl27dtWdd96pa6+9VvZ4btIGAAAAAABaLDjw2se0TF301EWSpTYReC1TsqolZYWY8+vvuZnP6eIxF6eqKwAAAAAAAAAAAAAAAAAAAHRAtnQ30N55PB7t2LEj5NzYsWNbXfell14KOPb/0LLD4dBf/vKXFtX5y1/+op49ewbU8AVgf/LJJ9q7d2+re2yLzOCgwyCp+mB3tH08ntYH7iG9Xnvttaj/3cybNy9F3QAADhu9ekl//at0+umh5w3DG5ick+MNaPY9cnK84+ECr08/3Vu3PQVeS9IbbwQeu93Ng6YdDqmgIHLgtT+73bs++OYlTqe3vr8nnohco1u32B5FRUkLvPaxLEvFu4u1s2pn3LUaA68bqkPOW7K0aPUiLStdFrFOuMBrH1/wdZ2rLq5+bTabuuZ0jauGpLgCryXJkKGRXUfKYYv/RjzTh05Xp+xOcdeRpE7ZnQi8BgAAAAAgyQzD0A9+8ANt2LBBjzzyiI4//nhZltX48K2J5SEpoMagQYO0YMECbdq0STfccAOB1wAAAAAApEi4wGtJKttfJplqM4HXqpIU5RIKAq8BAAAAAAAAAAAAAAAAAACQCIRex2nHjh2NAca+DyT7xBN6/Z///Ccg6NpX3zAMzZo1S/37929RnZycHP30pz9t7M2/R8uytHz58lb32BY5gkMKg7iDAwuTJNo+GYdCDdH+PProoxHne/TooXPPPTdF3QAADiv5+dLNN0t33hl/SHWvXt46N9/srduelJdLxUEfEqyvb74uLy982Hc4hiHl5jY/L7j+p59KpaWx1W6BZAVe+1iKP/g6WuC1/16Rgq+jBV77JCr4un9hf/XM7RlXjXiN7j5ak/pNSkitxZsWxx3C7XOw/qAWb1qckFoAAAAAACCyjIwMXXXVVfr888/1zTff6O6779Zpp52mwsLCgADrljxsNpvGjh2rn/70p/rkk0+0ceNG3XzzzSosLEz30wQAAAAA4LARMvDa6ZQOHJD27JEstY2r9S1FDrw+dKnMKxe/QuA1AAAAAAAAAAAAAAAAAAAAEiJyQjCi2rkzfGBc3759W1Xzm2++UWlpqQzDaBakLUnf//73Y6p38cUX69Zbbw05t2rVKp1xxhmt6rMtyszMjDifqtBrl8sVcT5an2ibdu7cqcWLIwcCXnHFFe061Lx79+4aNWpU0vfZtGmTnE5n0vcBgA5p0iRp4kTp88+lN95oHgAdydFHS+ee660R5WYhbVZJSeCxZUkNDYFjOTmS3d66+jablJUVGHTd0ODdxz8Me+lS6YILWrdHCMkOvPbxBV87bLH/+9e761sUeO2/16LViyRJE/tMbBxvaeC1jy/4+sZjb1RORk7Mffv0Lewrl+nS/vr9ra7R6r3z+2pi34nRF7bA4k2LtWT7koTU8vHVmz50ekLrAgAAAACA8EaMGKGf/vSn+ulPfypJ2rx5s7755htt375dpaWlqqqqUl1dnVwul7KyspSbm6uuXbtqwIABGjJkiMaOHavc3Nw0PwsAAAAAAA5fAYHXliUdPBhwvcmuDLWZwOsl/yvNvEnaFWr+0OUwr1/yus4deW4qOwMAAAAAAAAAAAAAAAAAAEAH1k6T7tqO6urwgW9FRUWtqvnpp58GHBt+4XpdunTRqaeeGlO9gQMHauTIkVq/fn1ALUlauXJlq3psq6KFDTcEByImCaHXHdPjjz8uj8cTcc28efNS1E1y3HDDDbrhhhuSvs/o0aO1du3apO8DAB2WwyGddJL3UV7uDYLeuFHatEmqqJDcbu+aoiJp6FBp2DBpzBipW7d0dx6/DRsCj0Pd1CQrK749MjICQ699+/i/1ly9OmGh16kKvPaxZGl52XItK10WEEYdSZ2rTk8UP9HiwGv/vfyDr2MNvPZJVPB1z/yekpTS4OsBhQPUv7B/QmolI/Dah+BrAAAAAADSa8iQIRoyZEi62wAAAAAAAC2wesdq3frRrd7A64MHpbq6gPk9Dslq5f3aE8qSnn1SOsGwqewvUu+fmNpV4DdP4DUAAAAAAAAAAAAAAAAAAACShNDrONXW1oadKywsbFXN4NBrSbIsS4ZhaPr06bLZbDHXHDNmjNatWxcQem1ZlrZs2dKqHtuq/Pz8iPORQsoTqaqqKuJ8tD7R9liWpcceeyzimhNOOEFHHHFEijoCAOCQ7t2lqVO9j8PB5s2Bx8Gh1w6H1IrXywFsNm8d/9rBodclJfHtcUiqA69lqfEDi/5h1JGYlqkHlj2g0urSpjKH3p+0bEtv8PXysuUqKS+JOfDaZ1vlNj2w7AHdNOkm2YzW/xunMvh6QOEADesyTE63M+5ayQy89iH4GgAAAAAAAAAAAACAyH730e90x4d3SJJ619gkM/Caj712ydNGrtD/48vS7J1N11iU/cWm3jeZ2pUvAq8BAAAAAAAAAAAAAAAAAACQVHGmwSFS6HVrg40///zzsAFyZ5xxRqtqjhgxIuDYV7+ioqJV9dqqLl26RJyvrKxMSR/R9onWJ9qejz76SJs2bYq4Zt68eSnqBgCAw1jw61ePJ/DYbk/MPsHB2cH77N0b9xapDry2LEsNZoM8pve5+MKol5Uui3iezbDp5IEnyzj0aUfTMuU23bKslodXW7K0pnxNqwOvJcmQoZMHnhxX4LVPz/ye6pKd3NfkvsDrREhF4LXPku1LtHjT4pTsBQAAAAAAAAAAAABAe3LXR3c1Bl7LkspyA6/5OCjJldHstLT4f29JP18XdI1FTo7Kpr2pXvm9JBF4DQAAAAAAAAAAAAAAAAAAgOQh9DpOLpcr7Fx9fX3M9fbu3asNGzZIUsgQuVNOOSXmmpLUqVOnkOOpCoFOla5du0acP3jwYEr6iBYmHq1PtD2PPvpoxPn8/HxdfPHFKeoGAIDDmNsdeT7MzWNiFq1OhPcBLeExPVq4amFcgdeGDI3pPqYxjDoal+mSaZlyma6A4OuPvv0oah8T+0zURUdc1BR4LSvm4Ot4GDJ0xdgrNLHPxITV7JnfU1P6T0lYPX+T+k5ql4HXPgRfAwAAAAAAAAAAAAAQ6K6P7tIvP/yl98DvcomyfO/XKo9Ul536vkK5/iPprlV+HxPIzJQ6dZJeeEE66yyV/axM+27eR+A1AAAAAAAAAAAAAAAAAAAAkobQ6zgVFBSEnaupqYm53scffxxwbPiF7fXt21f9+/ePuabkDeQNpaOFXnfr1i3ivNPpTHrw9f79+9XQ0BBxDaHX7UtFRYVefPHFiGsuvvjisP+dAQCABHI4Is8nKoQ5Wp2MjLjK2212PXXRUxrXa1yrzjcMbwj0NROu0RVjrwh43xDMsiw5Pc6AYOsGs0Euj0sDCgfo+onXy2bE/tYwVcHXyQi89pk+dHrCg6+n9J+iaUOmJaRWOgKvfQi+BgAAAAAAAAAAAADAqzHw2lJA4LWPu0aqzkt5WyHNWiHdvzRLysuTioqk7t2lzp2lyy+XzjyzcV2X/C5p7BIAAAAAAAAAAAAAAAAAAAAdHaHXcSosLAw7t3fv3pjrffjhh83GLMuSYRg66aSTYq7nY7fbQ45HC2dubwYMGBB1ze7du5PaQ0vqt6RPtB3PPPOM6urqIq6ZN29eiroBAOAwV1QUeBz8OtfjScw+phl4HLxPlJuttERhVqGem/VczMHXNsOmuePmNoZAT+wzUT8+7schg6tDBV77OD1OndD/BOVk5ETdc1npMr30zUuyGTY5bE3B48kOvk5m4LXP9KHT1Sm7U0JqdcrupOlDpyek1vtb309b4LXPku1L5PK40toDAAAAAAAAAAAAAADpFBB4HcKAHVJ519T2FM6p30j/WtlL6tJFys+XsrMlm00aPFj6zW/S3R4AAAAAAAAAAAAAAAAAAAAOI4Rex6koOHTPz4YNG2Ku995778kwjJBz8YRe19fXhxzPz89vdc22KD8/X127Rr5y/Ntvv01qD1u3bo0436NHD+Xl5SW1ByTWwoULI84fccQROuGEE1LUDQAAh7khQwKPHY7AY7e7eWB1rEzTWyfSPqNHx7fHIbEGX9sMm26ZfIuO63tcwPhJA0/SLZNvCQi+9gVehwqkthk25WXk6bmS57SsdFnEPZeVLtOi1YtkHfr0ZqqCr1MReC1Jizct1sH6gwmpdbD+oBZvWhx3HdM09dWer+Kuk4gwb7fllhnvf1MAAAAAAAAAAAAAALRD0QKvh3wrbeuV2p7CmbhVeu+z3lLwdei9e0vPPisVFqalLwAAAAAAAAAAAAAAAAAAAByeCL2OU48ePcLOrVmzJqZaGzdu1Ndffy1JIQPjvvOd78TWnJ8DBw6EHO9oodeSNHjw4IjzrQkjj8XGjRsjzkfrD23LmjVrtHTp0ohr5s2bl6JuAACAhg8PPA4Oo5YkpzO+PVyu5mPB+4wdG98efloafO0LvD5l8Ckh508ZfEpj8LWlyIHXmbZMGYYhS5YWrV4UNvg6OPDav0Yyg69TGXi9ZPuShNZcsn2J3tv8Xlw1bDabvj/2+8rJyGl1jSn9p+imSTdpSv8pra6Rk5GjLFuWbDZ+dQAAAAAAAAAAAAAAOLxEC7wevlHa3De1PYVzRKm09P3ezScGD5ZeeUXq3z/lPQEAAAAAAAAAAAAAAAAAAODwRnJVnAYOHKjCwkJJkmEYAXNvv/12TLVeeumlgGP/et27d9eoUaNa2aVUWloacOwLoysoKGh1zbZq9OjREefXrVuX1P2j1Y/WH9qWRx99NOJ8RkaGrrjiihR1AwAAFPxayjCkzMzAsbo6yeNpXX3TbB6anZnp3cffcce1rn4Y0YKvowVe+5wy+BTNP3a+al21YQOvM2wZAe81wgVfhwu89q8VHHxd566LO/g6VYHXu6t3Jzzw2ueLnV9o4/7IN8OJpjC7UNdNuK5VwddT+k/R9KHTJUnTh05vVfB1TkaOrptwHYHXAAAAAAAAAAAAAIDDTmPgdRgjNkgbBqWun0j675W+/k+IwOuLL5beeovAawAAAAAAAAAAAAAAAAAAAKQF6VUJcPTRRwcEuxmGIcuy9PnnnzcLm47k0UcfbRacbVmWDMPQ1KlT4+px8+bNzcYMw1Dv3iEucm7nxo8fH3F+5cqVSd1/xYoVEeePOeaYpO6PxGloaNA///nPiGvOPfdc9ejRI0UdAQAAde8ujQsKhs7Obr6upkaKNXzZsqTa2ubnBdc/8UQpCa+jwwVftzTwWpKqG6r11sa3lGnLbDYXKvDaJzj4OlrgtX9N/+Br0zJV46ppdfB1KgOv99fvT+oe2yq3xR18XZRdFHPwtX/gtU+swde+wOui7KIWnwMAAAAAAAAAAAAAQEewZc+WpsDrEJc/DN8krR+c2p7C6VIlbXst6BqWAQOkJ56Q/vIXqbAwLX0BAAAAAAAAAAAAAAAAAAAAhF4ngH+IsX+4m9vt1oIFC1pU44033tCGDRua1fCZNm1aXD2WlJSEDLcbOnRoXHXbomih16tWrZLH40nK3m63W8XFxRHXEHrdfrz22mvau3dvxDXz5s1LUTcAAKDRuecGHjscUlZW4JjbLVVVSS193efxeNe73YHjWVne+v6uvDK2fmMQHHxtM2y696x7WxR47TE9uuODO7R+/3pl2DOUYc9onIsUeO3jC75+ePnDLQq89q9tM5reWnpMT6uDr0d3H90hAq99Uh18HSrw2qelwdcEXgMAAAAAAAAAAAAADmddi7p6vwlx2cOQldKGgantJ5zCWmnfv/wCr088UfrHP6RPPpFOPz19jQEAAAAAAAAAAAAAAAAAAACSHNGXIJoLLrhA9957b8CYYRiyLEv333+/zj//fJ1ySviQupqaGv30pz8NCKDz/95ut+u8885rdX+lpaXatWtXY0/+tYcNG9bqum3VxIkTlZ2drfr6+pDz1dXVWr58uY477riE7/3ll1+qtrY27Hx2drYmTJiQ8H2RHI8++mjE+T59+ujMM89MUTcAAKDR5MlSz57S7t1NY7m5ksslmWbTmNstVVRIOTne8GpbiHv+mKbkdEp1dc3nbDbvuf769JGmhw4VThRf8PVlL12mq46+ShcccYFWlq2Mep7dZtf5I87Xun3rJEkOm/ftntt0K9OWKYXPu25kydKa8jUx9WtapkzLDBjLtGdGDNgOp6S8RMtKlyUt+DqVgdc+2yq3yWN6NLzb8FbX8AVfP7j8QdW5QvxvVZEDr31880u2Lwk5T+A1AAAAAADJZ5qmNm7cqG+++Ubbt2/Xnj17VFFRIafTqYaGhlbdSKw1DMOI+rcwAAAAAAAON5XOSs1+YbZ6Z3RRWUPg9QWDv5E2H5WmxoJkN0gVpbOl60ZLY8dKxx0n9e4d/UQAAAAAAAAAAAAAAAAAAAAgRQi9ToCpU6dq4MCB2rZtW0CwtGEYcrvdmjFjhh5++GHNnj272bl79uzRJZdcoo0bNzae6+OrM336dPXq1avV/X366adh5zpi6HV2dramTJmi9957L+yad955Jymh1++++27E+ZNOOknZ2dkJ3xeJt2PHDi1evDjimrlz58put6eoIwAA0MjhkK67TrrzzqYxw5AKCqTKSik4GKiuzvtwOCS73bvWsiSPxxuMHYpheIO0g4Obb75ZyshI6NMJpTCrUK/MfkV2m71ZoHQkpwz23mzn95/+XpI3+NpueF+vWEp8YJJpmXKbgT/DnIwcZdozW1XPkqVFqxdJUsKDr3dW7kx54HXj3tU7tWznMp044MRW14gUfN2SwGufcMHXBF4DAAAAAJA8W7du1QsvvKC3335b//3vf1VTU5PWfnx/hyb0GgAAAACAJr7A6+JdxVJVlXq7pLJ871zBN9KWoentzyfDLdX9KTU3zQIAAAAAAAAAAAAAAAAAAABay5buBjqKyy+/vFlgte/DwpWVlZozZ46OOuoo3XbbbXrooYd033336Qc/+IFGjhypjz76qPGcUK666qq4envnnXfCzh1zzDFx1W6rTj/99IjzL730UlL2feGFFyLOT5/esiA6pN/jjz8u0wwfMGkYRtz/bQIAgDhMmiSddlrgmN0uFRZKtjBvc9xuyemU6uu9X8MFXttsUl6et56/00+XTmx9aHGs7LbW3VzjlMGn6NLRl8qQN7DbCA7uTpBQgddZjqxWB177+IKvl5Uui6uOv+2V27W7dnfC6rVGSXmJvtjxRVw1fMHXORk5jWOxBF77TB86XVP6T2k8JvAaAAAAAIDk+Oijj3TWWWdp6NChuvXWW/X++++rurq68W/J6XoAAAAAAIBAB+oONAVeO52SyyVJ6l0taa9UNVRSci6/iIndIzX8gff2AAAAAAAAAAAAAAAAAAAAaPsc6W6go/jpT3+qv//97yovL5dhGAEfFvYdl5SUaO3atQHn+db5n+P73jAMHXXUUbrooovi6u2NN95oDLrzD7zr2bOnBg0aFFfttmrWrFn6xS9+EXZ+xYoVWrdunUaOHJmwPdesWaOvvvoq7LxhGJo1a1bC9kPyWJalxx57LOKak08+WUOHDk1RRwAAIKRrr5XWrpVKS5vG7HapqEiqrfV+CDFWmZlSdrYUHBTdp490zTXx9ZtCx/Q+RpsPbNan2z+VpcR/2DFU4LXD5lCGLSPieb73OdH4gq8laWKfiSH3txktu4eTaZraV7evRWsj6ZTdSQfrD7b6fEuW1u1bF/L5xMIXfP3Q8od0TK9jYg689vGdt3LXSl074VoCrwEAAAAASKA9e/bo2muv1auvvipJzf52nG4EXwMAAAAA0GRH5Q6Nf3i83KZb2Y5s7zUnh5TtldRXbSLwWqb0z+8+le4uAAAAAAAAAAAAAAAAAAAAgBZpWUoYourUqZMWLFjQ7APC/kHWvmP/h2EYzUKy/f3hD3+Iq6+PP/5Yu3fvDujFt+/kyZPjqt2WDR06VJMmTYq45m9/+1tC9/zrX/8acf6EE07osCHjHc2HH36ozZs3R1wzb968FHUDAADCys+X7rpL6tYtcNwwpLw8qbDQG2LdEpmZ3vW5uc0Dr7t18+6Tn5+YvlNkcOfBOrH/iTIS/MnLcIHX0UKoLctSjatGDZ6GFu3jC75eVrosYHxZ6TL93xf/pzpXXYvq2Gw2jeo6SnbD3qL1oUzpP0U3TbpJU/pPaXWNLHuWZh45Uw5b/PeeKsou0s2Tb2514LXP9KHTdfPkmwm8BgAAAAAggT777DONGzdOr776arO/CYf7m3EqHwAAAAAAoMmOyh065uFjtK9unyqcFaqvrZDq6yVJZeWS+qjNBF5rl/SzD3+ul79+Od3dAAAAAAAAAAAAAAAAAAAAAFERep1Al19+uc4777zGDy77hPowc/CHmn18AdiGYWju3Lk688wz4+rpiSeeCDt3wgknxFW7rbvqqqsizj/22GMqKytLyF47duzQk08+GXHN3LlzE7IXkm/hwoUR54uKijRz5swUdQMAACLq1Uu6+26pT5/mcw6HN6i6c2epoEDKyfGGW/seOTne8c6dvescIcKIffV79Ur+c0mCxuDr4CDvVoo38NpjelTnqmt18PWy0mVatHqRtlZs1X1L72tx8HWmI1NHdj2yVcHXU/pPaQyXnj50equCrx2GQ+ePPF/5mYkLTk9EeHYi6wAAAAAAAO+NVadPn67du3c3uwFypODpUH9HTtYDAAAAAAB4+QKv99ftlyxLMk1VuGtV7/szel+1jSvtLamgTOrdxXvdxvy35hN8DQAAAAAAAAAAAAAAAAAAgDavLVyK26E888wzOumkkwI+xOwT/GHm4A81+6+dNGmSHnroobh6qays1L/+9a+wH14+7bTT4qrf1l1++eXq0aNH2Pna2lr94he/SMhet956q+rr68PO9+zZU5dffnlC9kJyVVRU6MUXX4y4Zs6cOcrJyUlRRwAAIKpevaS//lU6/fTQ84YhZWR4Q67z85seOTne8XBhP8cfL/3ud+028NpncOfBmtR3kgzFF2rk8rjiDrz2aU3w9bNrntWi1YtkyfsealvltpiDrwd1GhRT8LV/4LVPrMHXGbYMjes5TnmZeS0+BwAAAAAAtD+bNm3SzJkzVVtb2yzs2h9B1AAAAAAApF9A4LVpeR+H3sJXZEllGWobV9lbUkGplN+1aYjgawAAAAAAAAAAAAAAAAAAALQHjnQ30NHk5ubqnXfe0Y033qhHHnlEklr8QWXfB56/+93v6rHHHlNGRkZcvSxcuFDV1dWNH6j276Nv374aN25cXPXbuuzsbP34xz/WL3/5y7BrFi1apAsvvFAzZsxo9T7PP/+8nn766YhrfvKTnygrK6vVe0jS1q1bNXjw4Ihr/ud//kd33nlnXPsc7p555hnV1UUOTpw3b16KugEAAJKkujpp06bo6y68UBoyRHruOWnfvtbtZVlS167SzJnSUUdJeS0LKvZ4PFqyfYm2HtyqCmdF6/aO4GD9QQ0sGqjRPUa36vxBnQap1lWr4t3FjaHRsXB5XKp3B97kpbWB1z6+sOpMe2bU/Z0ep97c+KZyM3KVYW96n+QLvr7x2BuVkxH9piSZdm/w9daDW+WxmvfkL1TgtY9vfMn2JRFrZNgydGyfY+MOHAcAAAAAAG3fvHnzdODAgca/yYYKu/YJnsvIyFBBQYHy8/MJwQYAAAAAIMkO1B3Q+IfHa3/tfskyFXwZhelU27jC3pIGfS05hxw6tjfd5NsXfC1JM45s/TXQAAAAAAAAAAAAAAAAAAAAQLK0hUtyO5zMzEz9/e9/15w5c/SrX/1Kn376acB8uA86jx49WnfccYcuvvjiuHtwu9269957G/fy/3C0YRg655xz4t6jPfjJT36ihx56SNu3bw+75sorr1Tfvn113HHHxVz/iy++iBqAPHDgQP34xz+OuTbS49FHH404P27cOE2YMCFF3QAAgEYNDS1bd8QR0i9/KX31lfTJJ9KGDS3fY8QI6aSTpDFjJEfL3yo1eBr02MrHtKdmT8v3ioFpmdpVvUulVaXaVrlNZw07q1V1+hb0VWlVqfbUxtin5Q2d9mczbDEHXmfYMuQyXQFrWhJ83eBpaFzn9DiVYcuQf4Z0PMHXpmWGXBMp8NonWvC1L/A625Etp9sZcg0AAAAAAOgYXnrpJX388cdRA68ty1K3bt00a9YsTZo0SWPHjtURRxyh7OzslPcMAAAAAMDhqNJZqTkvzZHb3RAy8Nqql5QR8tSUG1ksVR7hN5AR2JhpmVq4aqHOH3m+7Da7AAAAAAAAAAAAAAAAAAAAgLaE0Oskmjp1qj7++GNt2LBBb775pr788ktt3rxZBw4ckCR17dpV3bt313HHHadp06bp+OOPT9jeTzzxhL799tuw8+eee27C9mrLcnNzdc899+i73/1u2DVVVVWaPn26/vnPf8b0c3n11Vd1xRVXqLq6OuK6P//5z8rJiR6+h/T76quvtGzZsohrooWcAwCANsDhkI45xvs4cEDavFnavl3asUOqrpbcbu+a/HypXz+pf39p6FCpU6dWbffBlg+SFngdbGflTpXsKVGWIyv2c6t2qry2PPZNDSkvI081DTVyW25J3g9OmpYZNvg6OPA6NyNXGfYMuTwu1bpqA9ZGCr72D7y22+zKy8gLCLz2aW3wdVl1WWN9n5YEXvuEC77OdmTrmF7HKNtBYBUAAAAAAIeDP/3pT43f+wde+4ddDx06VH/60590/vnny24niAoAAAAAgFSrdFZq9guzVVy2StmVtZIMVWQ2vY+31Unu8PfsTqnhG4ICryUpNzfgcFyvcXrqoqcIvAYAAAAAAAAAAAAAAAAAAECbROh1CgwfPlw//vGPU7rntGnTtHLlyrDzo0ePTmE36TVr1izNmTNHTz/9dNg1FRUVOv/883XppZfqjjvu0BFHBF8p3mTt2rX6zW9+o+eeey7q3pdddplmzpzZqr7Trbq6Ws8++2zM523YsCHi/IoVK/TII4/EVLOgoECzZ8+OuZdYPfrooxHns7KydNlllyW9DwAAkECdO0sTJngfSbJ+3/qk1Q5ly8EtOqJb+NeroWw9uFXFu4tlWmZj2FIsDMNQTkaOqhuqZcn7gU+36ZbD5mgWfB0u8FqSMuwZylVui4KvQwVeR+q9NcHX1024Tg8uf7Bxn1gCr32Cg69zMnL0g6N/oDXla2KqAwAAAAAA2qeNGzfqyy+/lGEYzQKvfcfz58/XggULlJnZRpKzAAAAAAA4zDQGXu8qlqqqJI9H2TKkBqki01JWjVTXRu5rPWyrVN0/xERW0w3Sx/Uap+dmPafCrMKU9QUAAAAAAAAAAAAAAAAAAADEgtDrDmrQoEHpbqFNefjhh7V8+XKtW7cu7BrLsvT000/r6aef1jHHHKMTTjhBgwcPVn5+vqqqqrRlyxYtWbJExcXFLdrziCOO0EMPPZSop5Bye/fu1dVXX53wuq+//rpef/31mM4ZOHBg0kOvGxoa9NRTT0VcM2PGDHXp0iWpfQAAcFgKDjLOyZHy85uOc3Olvn1T25NPdtAnGu32ZksO1h8MOP66/Gs1mA0JayE3I1d5GXmNx1XOqpjO33Jgi77Y+YVMy5TLdMlu2OWwxf5W0DAMZdgz1OBpem7BwdeWZanGHTrw2qclwdexBl77+Adft0RRdpGum3CdHlr+kI7pdUzMgdc+vvNW7lqpaydc26LQbQAAAAAA0DH85z//aTbmC7w2DEM33XST7r777jR0BgAAAAAAJMljenTpC5d6A6+dTqmurnEu22PIXWGpKj9CgRQauUWq7B1iIqfpOgQCrwEAAAAAAAAAAAAAAAAAANAeEHqNw0J+fr7efvttnXTSSdq+fXvU9StXrtTKlStbvd+AAQP09ttvKz+/jVwFj6heffVV7d27N+KaefPmpagbAAAOM5mZgccOh5TXFPKsvDypsI18UC8nephxhbNCda66FoU0R2NZlsxsMyD0OhZbDmzRp9s/lWl6A69Ny5RpmTLUut5My2w25gu+NmSozl3XuCZU4LVPpOBrl8clt+mWFFvgtc+2ym16YNkDmjpoaovWF2UX6ebJN7cqCNzf9KHTdergU+WwOQKCwQEAAAAAQMf2+eefBxz7Aq8laezYsVqwYEE62gIAAAAAAIeUVZdpyfYl8pgeFVQ5A+ac1aaquqSpsSDDtkrrhnu/710dNFlUJInAawAAAAAAAAAAAAAAAAAAALQftnQ3AKTKwIED9f7772vo0KFJ3WfYsGF6//33NWDAgKTug8RauHBhxPlBgwZp2rRpKeoGAIDDTEGBN+i6rcvMlLpE/6Sjy3Rp9Z7VKq8pj2u78ppyrd6zWi6Pq1XnNwZeW6YazIaAwOoGsyHmYGb/MOpgbtMtS1ZjyHWkwGufDHuGcjNyQ9aSWhd4LUmGDJ088GTZjJa/3Y038DrRdQAAAAAAQPuxfv36kOOGYejuu+9OyI3RAAAAAABA6+yo3KFjHj5GVQ1VqnHVqMpougbDPGhqfxsJvB6yU9o4rOm4LN9vMjdXMgwCrwEAAAAAAAAAAAAAAAAAANCuEHqNw8qwYcO0dOlSnXHGGUmpf+aZZ2rp0qVJD9ZGYu3YsUOLFy+OuOb73/8+oQQAACSLzSb16CFlRA5JTqvsbGnoUG+vEdS767Vq1ypVNVRp/f71rQ6+Lq8p1/r961XVUKWlZUtjDqheWbayMfDa6XEGBF771LnqWly3wdOgend9xDVu0y2bbDp72NnKtGe2qG644Ot4Aq+vGHuFJvaZGNN5AAAAAAAArbVt27bG32H4/y6jW7du3FAVAAAAAIA08gVe76/bL0kyLEs1mVKVw5R1wNTuHmlu8JABu6TNA5uPl+XLe51KURGB1wAAAAAAAAAAAAAAAAAAAGh3HOluAEi1zp076z//+Y+eeOIJ/fznP9eePXvirtmjRw8tWLBAV1xxRQI6RKo9/vjjMs3mQZA+NptNc+fOTV1DAAAcjrKypD59pPp6KTdX6t69aS4/3zuXDoYh5eRIBQUtCrx+fu3zqnRWSpIsWVq/f70y7Zka3WN0i7dcWbZS6/evlyVLklRRX6F3Nr+j04ec3qIw6Q+2fKBnSp5pDLy2LCvs2jpXnSRFrNvgaWhcF5UhDesyTMO6DNOi1Ysan0MkGfYM5SpXta5aSQReAwAAAACA9qW6ujrg2LIsGYah6dOnp6kjAAAAAAAQHHgtSbIkQ1J+ubSrZ9paC9Bzv7StX/j5sjxTZxJ4DQAAAAAAAAAAAAAAAAAAgHaI0Gsctq688krNmjVLTzzxhO677z59/fXXMdcYNWqUbrjhBs2dO1e5ublJ6BLJZlmWHnvssYhrTjvtNA0YMCBFHQEA2gTTlIKDguvro4Yed2hut+RI0tuHujpvfUnKzJSKiqRu3ZrmCwul3r2Ts3eC+AKvd1fvDhi3ZOmbfd9oeNfhGtV9VNQ6a8vXatPBTc3CovfV7WsMvs7LyAt7/gdbPtCCzxfINKMHXvtECr6OJfDakCGbbFq0epGuGHuFrhh7RczB106Pk8BrAAAAAADQrjQ0NIQcHzRoUGobAQAAAAAAkqSvSr/SqU+dGhR47b12oedmqWxgmhoL0rVC2t0jwoJDl0788eQ/EngNAAAAAAAAAAAAAAAAAACAdofQaxzW8vLydP311+v666/X+vXr9Z///EcrVqxQSUmJdu7cqaqqKtXW1io3N1cFBQXq16+fRo0apfHjx+uss87S8OHDU9broEGDWhRa2F73SxfDMLRp06Z0twEAaCucTqmyUnK5ms8tWSLZ7anvKZ1MU6qq8oZSm6Y39DsvT8rPl2IMJY5JRYVUXe0Nv+7ePXn7JEi4wGsfS5be3PCmJEUMvl5bvlZvbngz7GswX/D1BSMuCDnvMT16bf1rcptu1bpqY3ot5wu2zrJnaXT30SopL5HT42xx4LXkfZ517jrZbXZ99O1HumnSTZIUU/B1hi2j8UObLUXgNQAAAAAASKeCggJVVFQ0G+/RI1JqFQAAAAAASIbHVz6u77/2fUmSzfC7ub1lqec3UlnqLvuNKL9W2tc1woJD1078dupvNbbf2JT0BAAAAAAAAAAAAAAAAAAAACQSodfAISNGjNCIESPS3QYAAEiX+npp//50d9F2WJb359HQ0DTmC8H2eKROnZK7v8fj3b++Pvl7xaHSWRkx8NonWvB1Y+B1lHDofXX79MaGNzS+z3hvQLQfu82uX0z5hS576TJ5LE+Mz8QbfH3KwFN0yZhL9OyaZ/XmxjdjrmFapkzL1PfHfV82w9YYRN3S4GsCrwEAAAAAQHvTqVOnkKHXAAAAAAAgtfwDryXvNQw2S5IlFW1tO4HXOfVSdWH0db+f+nvddvJtyW8IAAAAAAAAAAAAAAAAAAAASAJCr9uAqqoqlZSUqKSkRDt27FBZWZn27dun+vp6OZ1O2Ww2ZWdnKy8vTz169FDv3r01dOhQjR49WiNGjJDNZkv3UwAAAGj/CKYJVFsbGHgdPJebK2VmpqaPgweTv08rVDorNfuF2VEDr33CBV+3NPDap7y2XPf+917dMPEG5WTkNI57TI/+sOQPstvsstvs8pixBV/nZuTqsx2fqcJZoZLyEuVm5KrWVRtTDZthk82w6bHix3TTpJtaF3zdQgReAwAAAACAtmD48OHaunWrDCPwbl579uxJU0cAAAAAABx+Fq5YqHmvz2saOHR5ginJ2Cod6JeOrprLdEl1+VEWGQReAwAAAAAAAAAAAAAAAAAAoP0j9DoNTNPUu+++qzfeeEMffvih1q5dK8tqXfhbbm6uTjjhBJ166qmaOXOmhg0bluBuAQAADgMul+SJLSC4wwsXeO3jdKYm9FqSampSs08MfIHXxbuKYzovOPg61sBrn20V23Tf0vt047E3NgZf2212nT/ifK3bt065Gbmqbqhu8fuM3IxcZdgzZMnSmvI1kqQMe4Zy1fLga0OGcjNyZTNsOnngybIZTTfnSXTwNYHXAAAAAACgrTjqqKP0zjvvNBsn9BoAAAAAgNT4Z/E/mwKvgy9JOChZ/SQZSjuHR2rIibKIwGsAAAAAAAAAAAAAAAAAAAB0ELboS5Ao27dv1y233KLevXvrrLPO0v333681a9bINE1ZltWqR01Njd59913ddtttGjlypI499lg98cQTcrlc6X66AAAA7UeoYGDLCnwcbkKFgPv/PFIZEt7Gfv4e06PLXros5sBrH1/w9Utfv9SqwGufbZXb9MCyB2RaZuPYKYNP0S2Tb5HNsCnLniXDiP6pTV/gdSgZ9gzlZuRGrWHIUIY9QzbDFjaMemKfiRrdfXTUWi0xuvtoAq8BAAAAAECbMG3atGZjlmVp6dKlaegGAAAAAIDDy/Nrntflr1zuPQgReK08tYnAa5lS92iXdhN4DQAAAAAAAAAAAAAAAAAAgA6E0OsU2LNnj66++moNHTpU99xzj8rLyxtDqyXJMIy4Hv4h2MuXL9dVV12lQYMGaeHChWl+5gAAAO1EZqYUHA5sGIEPpO9nkhs9dDmV7Da7rjr6KtmM1r+dsmRp04FNrQ68lrxB0ycPPLlZH6cMPkWXjr60RcHXkQKvfaIFX/sCrw0ZumDkBWHDqJeVLlNJeUnEvVqqpLxEy0qXJaQWAAAAAABAPKZNm6b8/PzGY9/vYoqLi7V79+50tQUAAAAAQIf3/JrnNfvF2d6DUIHXuWozgdfa6f22d3WIeUMEXgMAAAAAAAAAAAAAAAAAAKDDIfQ6yR566CENHz5cCxculNvtlmVZzUKrJQUEV8fykBSyVllZma6++mpNnDhRX3/9ddqePwAAQLtRVJTuDhBKVpbUuXO6u2hmxpEz9Lez/hZX8HU8DMPQFWOvCBswfUzvY3Ri/xMbg69D9dmSwGufDHuGsh3ZzfvwC7we0WWExvQYE/L8ZaXLtGj1orhCvv1ZsrRo9SKCrwEAAAAAQNplZmbqyiuvbPzbrb+XXnopDR0BAAAAANDxRQy8lmTPVdu4St6StFPq3b1pKCD4+lAoN4HXAAAAAAAAAAAAAAAAAAAA6GjawuW8HVJ1dbXOP/983XDDDaqqqgoIu5aah1y3VnAd/wBsy7K0YsUKTZw4Uf/4xz8S9dQAAAA6ptxcqVMn6dDrNbQBBQXSgAFt9t/EF3xtKLX9GYahuePmhg289hnceXDY4OtMW2aLA699MuwZctgcTX3IUIatKfC6e173kOclOvDah+BrAAAAAADQVtx8881yOPx+b3Lob7V33XWX6uvr09gZAAAAAAAdT7TA6wyn5GkLV8hbkm13YOC1JCkjQ70zuxB4DQAAAAAAAAAAAAAAAAAAgA7NEX0JYrVz506dddZZKikpaQyi9gkVcG3EGeLnX9P3vX/Adl1dna699lpt2LBBf/rTn+LaCwAAoEPLzfU+3G7JNAPnjj5ayslJS1tpsXSp5HSGn+/SRRo1KjF77d4tNTQE1u7XT7LbE1M/iWYcOUPPlzyvNze8mfBQ51AMGTp10Kk6ru9xcnlcUdcP7jxYkvTJ9k+UYcuQy3TJbthlt7XuZ2szbHLYHPKYHmXY0xd47eMLvpYUNQQcAAAAAAAgWQYNGqSf/exn+sMf/hDwt9/S0lItWLBAd9xxRxq7AwAAAACg49i6b2tT4HUImfVSQ1u4Ot6SsjZKriOkeqeU7T403qlT4/VHvbN668iuR+rWk25NW5sAAAAAAAAAAAAAAAAAAABAsrSFy3o7lN27d+uUU07Rxo0bJTUFWgeHXQcHXYcKw24J/3Br/zrB4deWZenPf/6z3G637rnnnlbtBQAAcNhwhHiZ3LWrNxD7cNGpk3TgQNOxzRYYBN6pk9StW2L2crmkgwebjrOz20Xgtc+o7t7wb//ga9M0ZbPZ4q7tX8eQoRP7n6jhXYbHVGNw58FymS59vuNzZdoypfjuuSObYZPNbpMhQ8O7DE9b4LUPwdcAAAAAAKAt+J//+R+99tpr+vrrryWp8W+0v/nNbzRu3Didf/75ae4QAAAAAID2rdJZqev+c51sssmUqeDLEXKqpbrs9PQWrNdmac8R3u8rsiQZhrLtWY2B15I0rtc4PTfruVbfuBwAAAAAAAAAAAAAAAAAAABoywi9TqCGhgadc8452rhxY4vCrn1zI0eO1Pjx4zVu3DiNGzdOvXv3VmFhYePD5XKpsrKy8bF+/XoVFxeruLhYS5cu1f79+xtrB+9rWVZA8PW9996rAQMG6Cc/+UmyfxwAAADAYcM/+No0Tbktt2ymTQ5b699yuU23TMuUzbTJbrPrxP4nanDnwa2qNajTINW6alW8uzghIdSGDI3oMkLdckMHn6cq8NqH4GsAAAAAAJBuWVlZev311zVp0iTt3btXkvfvtx6PR5deeqlef/11nXrqqWnuEgAAAACA9qnSWanZL8xW8a5i9czvqd3Vu2T6XZOQXyFV56WxQT99SqRdYwPHKjItKcMhXya3L/C6MKsw5f0BAAAAAAAAAAAAAAAAAAAAqUDodQL97Gc/04oVK6IGXluWpSFDhujSSy/VnDlzdOSRR0as63A4lJOTo549e0qSJkyYoEsvvVSS5Ha79fbbb+vpp5/Wq6++qtra2oCQa99+/mO/+MUvdNJJJ2nChAkJff4AAADA4WxU91GqbajVaxtekySZlim36W5V8LUv8FqSGqwGTe49udWB1z59C/qqtKpUe2r3xFVHkjpnd1b3vO7N3vNIqQ+89iH4GgAAAAAApNvgwYP173//W2eddVbAjYvr6up0xhln6P/9v/+nO++8UzabLc2dAgAAAADQfnhMjy576TIV7ypuHOvpytJue71MQ+p0QDpYkMYG/fT/Vto5NsSEIVWYtZI7Q8f3O57AawAAAAAAAAAAAAAAAAAAAHR4fJo2QZYvX677778/ZOC1f+B0t27d9NBDD2n9+vX67W9/GzXwOhqHw6FzzjlHTz31lDZt2qS5c+cG7Ovj68cwDDU0NOjaa6+Na18AAAAAgSrqK/Tu1ncDxkzLVIOnIaY6Lo+rMfDa5787/6vqhuq4+ttZtVPlteVx1fA5UH9A5TXNa63ZsyYtgdc+vuDrZaXL0rI/AAAAAADAxIkT9dFHH6lfv34Bf6P1eDz6/e9/r2OOOUZPPvmkXC5XmjsFAAAAAKB9sNvsuuroq2QzDl32bppSQ4N61tnUvbztBF4P2CHtHBJm8tA13Q6bQ09f9DSB1wAAAAAAAAAAAAAAAAAAAOjwCL1OkFtuuaXxQ8vBgde+sauuukobNmzQD3/4Q9lsif/R9+zZUwsXLtSXX36pYcOGybKskMHXkrRixQo988wzCe8BAAAAOBxV1FfoweUPqs5V12zObbpV765vUZ16d73clrvZuNPj1AtrX2h18PXWg1tVvLs4YWHUliyt378+IETbsiwtLV0a1x6GDI3pPkaGjOiLI/T20bcfNQsOBwAAAAAASJVRo0Zp1apVOu+88wKCry3L0ldffaW5c+dq4MCBuvrqq/X4449r/fr1qq9v2e+PAAAAAAA4HM04cob+dtbfvMHXDd6bjxsVpso7p7mxQ/rtlFzdpKKGENc7GIZkGOqS00UrrlmhzjltpGkAAAAAAAAAAAAAAAAAAAAgiRzpbqAj+Oqrr/Thhx82flDZx3dsGIb+/Oc/66abbkpJPxMmTNDSpUt1zjnnaMmSJc36kryBdH/5y1906aWXpqQnAAAAoKOKFHjt4zJdklvKdmSHXVPvrveuC8MXfH3F2Cti6m/LgS36YucXCQu89rFkacP+DTJkqHtedxmGoUvHXKoX1r6gbZXbYq5nyNAVY6/QxD4Ttax0mRatXtSqngcUDtD1E6/XN/u+iflcAAAAAABweBkyZEhK9/P93dayLO3atUsLFy7UwoULG+ezsrLUuXNnZWVlpaSXTZs2JX0fAAAAAAASZcaRMyRJ85+fq8y9prb0SXNDh3TbK3m6eYOtsz2SGqSKzEPXOxiSbN7A65XXrFS/wn7pbBUAAAAAAAAAAAAAAAAAAABIGUKvE2DRokXNxvwDr3/961+nLPDap7CwUP/5z380efJklZSUBHyA2vf9smXL9PXXX+vII49MaW8AAABIoPJyqaRE2rBB2rxZqqiQ3G7J4ZCKiqQhQ6Thw6XRo6Xu3Tt+Hym2o3JHQOB1pJDmSMHX0QKvLVkyZMjpcerJr57UuF7jVJhVGLW/LQe26NPtnza7CU6iWLK0fv96SVL3vO7KdmTrxmNv1H1L74sp+No/8FpS49dYg68HFA7QjcfeqJyMnBieBQAAAAAAOFxt3bo15A2EE8UwDElqduNkn+B96+vrVVZWlpRewvUGAAAAAEB7MuPIGVqw/iJ9PjjdnXh1PihlFNoCxrI9hjf4OsuSDBuB1wAAAAAAAAAAAAAAAAAAADgsEXqdAG+++WbAh4L9A6+nTp2q22+/PS195eXl6fnnn9fRRx8tl8sV8gPbb731FqHXAAAA7Y3bLX32mfTGG9Lq1ZHXrlzZ9P24cdK550qTJ3vDqDtKH2myo3KHjnn4mBYFXvuECr6OFnjt4wu+rnfX6xfv/UK/m/o7dcntEnZ9Y+B1DKHRreEffC1JORk5MQVfBwde+8QafE3gNQAAAAAAaK1kBUCHCtP2jRmGkbbg6WSFfAMAAAAAEC+P6ZHdZg87f+nPh7eZwOv8aslVKGW7m89lyyFl5crhyNSKa1YQeA0AAAAAAAAAAAAAAAAAAIDDji3dDbR3lZWV+vrrryWF/nDwvffem+qWAhxxxBG67rrrwn5w+YsvvkhxRwAAAIjLF19I8+ZJd90VPWg6WHGx9Pvfe8+P93VgSUnb6CNNfIHX++v2S2pZ4LWPy3Sp3l0vqeWB1z6+faobqnX7h7drf+3+kOtWlq1MSeC1f1/r96/Xmj1rJDUFXw8oHBDxvHCB1z4T+0zUFWOvkKHIAVAEXgMAAAAAgLYoUqi1ZVnNHgAAAAAAHM4qnZW68LkL9fLXL4ec//GvJ+vZzI0p7iq0rHqptkiqyZSqHGbgZE6O1LWrjh8wWetuXEfgNQAAAAAAAAAAAAAAAAAAAA5LhF7H6Ztvvgk4NgxDlmXJMAydeuqpGjNmTJo6a/LjH/845LhlWY2B3QAAAGjjqqulu++W7rxT2r07vlq7d3vr3H23t24s6uulN9+UHnkkcX38/e9SXV18tVKowd2gCX+f0KrAax+X6VJ1Q3VMgdc+/sHXd3x4h9ymO2D+gy0f6JmSZ1IWeO3f16vrXtWy0mWSogdfRwu89okWfE3gNQAAAAAAiFeoAOpEPdpKHwRrAwAAAADaskpnpWa/MFvLS5dr/lvzmwVf3/nrs/RXV9u4sXqmU3Lleb83LL/ga7td6tRJKizUuN5H67lZz6lzTue09goAAAAAAAAAAAAAAAAAAACkC6HXcSorKws7N2PGjBR2Et6gQYN09NFHN4ZxS2r8Gql/AAAAtBG7dkk/+pH07ruh5y1Lcrm8wdHV1U2PujrveLgwm3ff9dbdtatlfVRUSE8+KZWUJLaPJUukBQukffta1keaZToyNXfcXEmKKygoEaHUJw04SQ6bo/H4gy0faMHnC9IWYGRaphatXhQ1+Lqlgdc+4YKvCbwGAAAAAACJYBjGYfMAAAAAAKCtqXRW6uJ/XaziXcWSvNcezH9rvl7++03S5Mn6xzBDv3b9J81detldkjs3cMyQVJNlqKogS8rK0rhe4/TcrOdUmFWYlh4BAAAAAAAAAAAAAAAAAACAtoDQ6zhVVVWFnTv++ONT2ElkkyZNCjleXV2d4k4AAAAQk127pJtvlkpLm8+53d5Q6QMHpKoqb7h0Q0PTo67OO37ggHed2928Rmmp9LOfRQ++PnhQevpp79dk9FFeLv3lL+0m+PqPp/9R5484PyHB1a1hydL4XuN1yZhLGsc8pkevrX9NpmW2uq4hQ2O6j2kWLh1rbx99+1FjH8HB17EGXvsEB18TeA0AAAAAABLBsqzD7gEAAAAAQFtR6azUzOdn6sOtH6reXS+ZprRvn8zSnZq/7i/6ZdUX+uHsdHd5iFuysv2ODUl2m2SzyTAM1bhqlJORQ+A1AAAAAAAAAAAAAAAAAAAAIMmR7gbaO5stfG74sGHDUthJZEOHDg05Hql/AAAApFl1tXTbbc2DoC1Lqq2VnM6W1/IFUGdlSbm5kuEXarx3r3efv/5Vys9vfm59vfTcc95+ktnHwYPS/fdLd93V8npp8vLXL2tp6VLlZeSpxlWT8v2z7FnafHCzlpUuawyPttvs+u0pv9Vt792mkvKSmGv6h1EvK12mRasXtSrUe0DhAF0/8XrZjKb3Gr7g6weWPaCTB54cc+C1j++8j779SNdPvJ7AawAAAAAAEJcrr7wy3S0AAAAAAHDY8gVef/LtJ3KZLlXUHZDqpexD91Jv2CvddYEUx327E8cjKVsKuIzCCGzMMAxVN1Qr254tAAAAAAAAAAAAAAAAAAAA4HBH6HWcCgoKWjWXauF6aUs9AgAAIMhDD0mlpYFjHo9UVSWZZutqOp2SyyUVFEh2e9N4aan08MPSzTc3P+f9972B1P5MU6qoSEwf/h8CLC+X/vlP6Y47Wlc3BTymRwtXLZRpmSrMKlSDp0Eu05Wy/R02h3IzcmXJ0kfffqTxvcc3zuVn5uuuaXfphjdv0JaDW1pc0z/wWmoKl441+LpPQR/deOyNIcOoczJydNOkmwLCsFtjYp+JGt97fNx1AAAAAAAAHnvssXS3gDbK6XRq/fr12rFjh6qqqlRbW6vc3FwVFBSoX79+GjlypDIzM9PdJgAAAAC0WwGB1x5X4/UnFVneefsuaW8/tY3Aa1PSob5MQ7L5LqMICr3uktNFy3+4XJkO3i8CAAAAAAAAAAAAAAAAAAAAhF7HqWvXrmHnGhoalJ2dncJuwmtoaAg4tizvFdfdunVLRzsAAACI5osvpHffDRzzeKTKSskKE0LscHiDrA3Du8bjkdzu5utM01unsDAw+Pqdd6QpU6RJk5rGNm6USkqan19XF773WPvIzw/8IOAnn3ifv38fbYjdZtdTFz2l2S/MVvGuYmU7siW3Yg6+NmTEFCgteQOvs+zeT1IOKByg6yde3yz8OT8zXz8c/0Pd/fnd2le3r0V9+Ade+8QafJ2fma/LjrosZOC1T6KCqgm8BgAAAAAAQKJ98cUXeuWVV/TWW2+ppKREHo8n7Fq73a7Ro0fr7LPP1gUXXKBJbfR3mclQWVmpNWvWqKSkRNu2bdO2bdu0fft2lZaWqrq6WrW1taqpqZHH41FWVpby8vLUo0cP9e7dWyNHjtSYMWM0ZcoUjRkzRobRFtLrWqaqqkofffSRvvjiC61bt07r16/X3r17G0PRs7KylJ+fr/z8fPXv319DhgzR0KFDdfTRR+v444/n2gwAAADAT6WzUhc9d5E+3fapXJ4GyQy8JuFAlWTrozYReG0zJbNWkl+OtWlIwVctdMnpopXXrFS/wn6pbA8AAAAAAAAAAAAAAAAAAABoswi9jtORRx4Zdm7Pnj0aMGBACrsJr7y8vNmYYRg64ogj0tANAAAAInK7pQcfDByzLKmqqnngtWFI2dlSVpZkCxEEbJqS09k8pNpXr6goMHD6oYekiYfCjz0e6b33mp9XV+f96n9ePH1UVzcPvvb14Wibb1kKswr13KznNPuF2VqybUnMwdfGoU9mxhJ87bA5lGn3fopyQNEA3TDxhrAB0zkZOTp9yOl6Z/M7EYOvwwVe+/gHX0eSn5mvMd3HeH8OAAAAAAAAQDvy7LPPasGCBVqxYkWLz/F4PFq9erVWr16tP/zhD5owYYJuueUWzZ49O4mdpl5tba3++9//asmSJfrvf/+rr776St9++21M59fW1qq8vFwlJSV61+9Gj927d9eMGTP0ve99TyeddFIy2o9bfX29XnzxRT366KP65JNP5A51c8dDfM91z5492rx5sz766KOA+WHDhmnq1Kk655xzdNpppyk/Pz/Z7QMAAABtUqWzUhc8e4E+3vqxLJkyzMB5c6/kKJLcbeFe2NahwOtOzaf8g68JvAYAAAAAAAAAAAAAAAAAAACaawuXBLdrnTt3Vt++fSV5Q6T9rVmzJh0thRSul3HjxqW4EwAAAET1+efS7t2BY7W13uBofw6HVFgo5eSEDpqWvOM5Od5w6+AAadP01vW3a5f0xRfe7zdulCorA+edzubB24noo74+fB9tlC/4umd+T0lStiNbGbaMqOf5Aq/DHYfiH3jdPbe7fnz8j8MGXvtk2jN1+pDT1TWna9g+IgVe+0zsM1FXjL0ibJ++wGuHrW0GlAMAAAAAAAChfPPNNzr55JN16aWXxhR4Hcry5ct1ySWX6JRTTtG6desS1GH6fPbZZzruuONUVFSkU089VXfccYfeeOONmAKvoykvL9ff//53fec739GECRP0xhtvJKx2vOrr67VgwQL17dtX3/ve9/TBBx9EDLxuiY0bN+qRRx7RjBkz1LVrVz311FMJ6hYAAABoPzymRzOfm6mPtn4kU6YsS81uE+4obDuB16pRyMBrH9MyCbwGAAAAAAAAAAAAAAAAAAAAwmgLlwW3e2eccYas4OA/Se+8804aumnO4/Hogw8+aBbKLXl7BwAAQBsTHO7hdnvDpv05HFJBgWS3t6ym3e5dHxw47XR664faf9WqwHGPp/naRPXR0OCtH6qPNqwwq1AXj7o4IPjaZoR/mxUuODpS8LXdsDcGXnfN6apzh5+r3IzcFvXnC77uktOl2VxLAq99JvaZqIuOuKhZn/kZBF4DAAAAAACg/XnppZd07LHH6uOPP05o3Q8//FATJ07Uyy+/nNC6qbZ582YtXbo07qDnllqxYoXOO+88nXHGGdqxY0dK9gzn3//+t0aMGKGf//zn2r9/f1L2aGhoUHl5eVJqAwAAAG1ZWXWZ/rvzv7LUlHZtGU3B1w6n5G7h5SdJZUmZOxU+8Nrv0on3L3ufwGsAAAAAAAAAAAAAAAAAAAAgBEKvE+DCCy8MODYMQ5Zl6ZlnnpHL5UpPU35eeeUVHTx4sNl4r169dPzxx6e+IQAAAIRXXi4VFweO1dc3X5eXJ4W4qUlEhuE9L1hw/VWrpO3bpW3bAsdDvbZNZB/Bwd6rVnl/Hm1ctiM7IPg6w5YRcl2kYOtI8756XXO66vQhpyvLkRVTf5n2TJ0y6BQVZRU17jOh94QWB177jO05ViO6jGjsMz8zX6O7jybwGgAAAAAAAO3K/fffr1mzZqm6ujop9aurqzVz5kw98MADSanfkS1evFhjx47Ve++9l/K96+vrdcMNN+jcc8/V9u3bU74/AAAA0NHtqNyhYx4+RjWuGhlW4JxlSFk1UkMbufygx06pYVD0dY+d/5iO6nNU0vsBAAAAAAAAAAAAAAAAAAAA2iNCrxPg7LPP1tChQ5uNl5eX68EHH0xDR00sy9Lvfve7ZmOGYeiGG25IU1cAAAAIq6Qk8NiypIaGwLGcHMlub119u917vr+GBu8+/laubN6H253cPtzu5n0E/zzaKP/ga5fZPBw8WuB1pHUu09UYeJ1pz2xVf5n2TB3f53h1yuqkcT3HqX9h/1bV6Z7XXSO6jFBBZoHGdB9D4DUAAAAAAADalSeeeELz58+XFfx7yASzLEs33nijFi1alNR9OqIDBw7orLPO0gsvvJCyPQ8ePKjp06cTVA4AAAAkyYG6Axr/8Hjtr9svSTIsBVwdkV8p1WWnp7dgg0qkPYMiLDjU+GPnP6a5x8xNQUcAAAAAAAAAAAAAAAAAAABA+0RCWQLYbDbdeuut+uEPfyjD8F7NbBiGLMvSr371K5177rkaMmRIWnr705/+pOLi4sa+fDp37kzoNQAAQFu0YUPgcXDQtCRlZcW3R1aWVFfXfJ+MjKbjb78NnPd4kt+HZXn38Q/S3rgxvj1SKNuRrW453bRxf2DPLQ28DsdjedQpq1OrA699MuwZOqHfCc3eG8Sqe153dcvt1vieBwAAAAAAAGgPvvzyS1199dUt+p3WCSecoDlz5uiEE07QoEGDVFBQoKqqKm3evFmfffaZnnrqKf33v/+NWMOyLF199dU68sgjdeyxxybqabQpRUVFGjFihEaOHKmePXuqoKBAhYWFys3NVVVVlSorK1VeXq7i4mKtXr1aNTU1Larrcrl02WWXqVu3bpo6dWpSn8OePXs0bdo0rVmzpsXnjBgxQuPGjdOwYcPUtWtX5eXlqb6+XgcPHtTBgwe1adMmrVq1Sjt27Ehi5wAAAED7UOms1JyX5shtHrr+xTQleYOvZUh99kg7u6SvP39DvpU2j4uw4NDlFo+e9yiB1wAAAAAAAAAAAAAAAAAAAEAUhF4nyA9+8AM9+eST+uSTTwJC5CorK3XBBRfogw8+ULdu3VLa0yuvvKLbb789oB/LsmQYhu655x4VFRWltB8AAAC0wObNgcfBodcOh2SzxbeHzeat4187OPR6z57Acw596LCR3Z64PlyuprHgcO1Nm+LbI4UWb1qs/+6MHHTTWmvK18hus2tSv0lx1Yk38DrRdQAAAAAAADqCU089NeT4LbfcorPOOivF3QR68803dffddzcbNwxD7733Xho6So/Kykpdcsklcvn/LjKE4cOH68EHH9S0adOazXXu3FkTJkzQhAkTNH/+fC1evFjXX3+9NkX4HWZDQ4Nmz56tVatWqbCwMO7nkU6ZmZmaOHGiTjzxRJ100kk69thj1bNnzxafb5qmPvjgAy1atEjPP/+86uvrI65vaGjQnDlztHr16qRda1FTU6NzzjmnRYHX48aN07x58zRr1iz17t27RfX37dunJUuW6NVXX9Ubb7yhPcG/dwcAAAA6uEpnpWa/MFvFu4qV7ciWJFXUHmicH7JT2tTytxVJNXSrtGlYhAWHLpN48sIn9b1x30tFSwAAAAAAAAAAAAAAAAAAAEC7Ruh1Aj3xxBOaNGmSysvLJTUFwZWUlGjq1Kl69dVXNXTo0JT08thjj+m6666Tx+MJCKQzDEOXXnqprrjiipT0AQAAgBhVVAQeB4dA2+2J2cduDwy9Dt6noSFwr1Ch14nqI1LodfDPo41avGmxlmxfktQ9incXS5KmDW4euAMAAAAAAID0+fDDD0PeiPh730t/CFZZWVnY/g4nv/rVr7Rly5aIa0477TS98MILLb559PTp07Vs2TJddNFF+uCDD8Ku27Jli+68807dc889MfXcFvTu3VvnnXeeLrjgAp166qnKzs5udS2bzaZp06Zp2rRp+p//+R/deOONeuuttyKeU1ZWpttvv10PPfRQq/cNx7IsXXLJJVq2bFnEdQMHDtSf//xnXXTRRTH/d9O1a1edf/75Ov/882Wapj788EPdd999eu211+JpHQAAAGgX/AOvfbJdluSUKrKkEdukb/qmsUE/I76VqvrYZLNMmaFe9h8ae27mc7p4zMUp7Q0AAAAAAAAAAAAAAAAAAABor2zpbqAjGTRokP79738rPz8/YNwwDK1du1YTJkzQPffcI7d/uGCCffvtt/rud7+rH/zgB2poaGj24eXTTjtNjz/+eNL2BwAAQJyivVZMVBhNtDrBIdfp6iOJr50TJRWB1z7Fu4v18bcfp2QvAAAAAAAAxMayrHS3EFFb7y9Z1q5dq/vvvz/imsmTJ+vVV19tceC1T6dOnfT666/ruOOOi7jub3/7m77++uuYaqfTscceq88//1w7d+7Uww8/rLPPPjuuwOtgQ4YM0Ztvvqmf//znUdc+8sgj2rZtW8L29rn77rv1xhtvRFwze/ZsrV69WjNnzow7KN5ms+nUU0/VSy+9pM2bN2vaNG5uCAAAgI7LY3p02UuXBQReyzSlqiplu6Uxm9tO4PWwHVJVb+/l9D3rbLL5v3U2ROA1AAAAAAAAAAAAAAAAAAAA0EqEXifYhAkT9Omnn6pfv34BHxo2DEOVlZW65ZZbNGrUKD399NOqq6tL2L5btmzRL37xCx155JF66aWXZFlW44cuLcuSZVmaM2eOXn/9dTkcjoTtCwAAgASL9lotUcE00erYorxVSFUfbfy1663v3JqywGufZWXL9NRXT6V0TwAAAAAAAEQXbyhusrX1/pLl17/+dcQbU3fp0kXPPfeccnNzW1U/Ly9Pzz//vDp16hR2jdvt1m9+85tW1U+HkSNHatKkSUn/38wf//hHXXvttRHXeDwePfroowndd+XKlbr99tsjrrnpppv0zDPPqLCwMKF7S9KAAQN01FFHJbwuAAAA0FbYbXZddfRVshk2yemUDhyQysslj0f9tkurB6a7Q68jd0h13QOvj+npyZbNMBrDriUCrwEAAAAAAAAAAAAAAAAAAIDWIPQ6CY466igtW7ZMF154YbPga8uytHHjRl1++eXq0aOHLrvsMr3wwgvavHlzTHvU19dr2bJluvfeezV58mQNGzZMCxYsUH19fbPA6/z8fP3tb3/TP//5T2VmZib0uQIAACDBiooCj+32wGOPJzH7BNcJ3if4dWNwCHbw+R6P94OKtbVSZaVUUSEdPOj9WlnpHXc6Q58XqY/gn0cbcus7t+ruz+9Oy95vrH9Dz655Ni17AwAAAAAAIDQrUTeKS5K23l8ybN68WS+++GLENb/73e/Uv3//uPYZOHCgfv3rX0dc869//Utbt26Na5+O6E9/+pP69OkTcc1rr72WsP0sy9K1116rhoaGsGuuvPJK3XPPPYdtUDwAAAAQD4/pvQ5kxo58/e3DHNkOHJQOvf4esEVaOjyNzfkZsUdau2Oa/nZwsmx5+d7rU7p3lzp3Vs/8XrIdusSewGsAAAAAAAAAAAAAAAAAAACgdRzpbqCj+M1vftNs7Oijj9bWrVu1atWqxg9D+odR19TU6Nlnn9Wzz3rD6vLz8zVmzBj16dNHhYWFKiwsVEFBgVwulyorK1VVVaWKigpt2LBBGzZskGmajXv5PqDs/6FLy7Jks9k0a9Ys7du3L2SPifCrX/0qKXUBAAAOS0OGSCtXNh07gl6yu92SaTYPoY6FaXrr+Avep0cPqays6ThU6LXH463jdDavF8x/3uGQsrO9AdfB5wWHXg8dGrlumqQz8NrnzY1vSpIuGXNJWvsAAAAAAAAA2qr7779fngg3Ehw+fLh++MMfJmSv66+/Xvfee2/YG157PB7df//9WrBgQUL26ygKCgr0k5/8RD//+c/DrikuLlZFRYWKEnCTxCeffFJffvll2PkxY8bo4YcfjnsfAAAA4HBU6azUZc/N1lWr7Zrx9ArNkKS9RZo/pUL9Npn676h0d+jVf6+07u/e665nSNLXL2v+W/NlWk3XZU8fNl0PnvmgBnUdlJYeAQAAAAAAAAAAAAAAAAAAgPaO0OsEufPOOwMCp4P5QqklbzC1f/i1T1VVlb744ouoe/mf418z1LxlWXriiSei1owHodcAAAAJNHx44HFwGLXkDZnOyWn9Hk5n87HgfQYODAy9Dg6jtiypoqJ1+7vdUnV1Ux0fw2i+z7BhrdsjiRrcDXq8+PG463TK7qSD9QfjqvHJtk80a9SsuHsBAAAAAAAAOhqPx6Nnnnkm4pqbbrpJ9uDfSbaSw+HQj370I/3kJz8Ju+bpp5/WH//4R9niualhB3ThhRdGDL22LEvr1q3TcccdF9c+LpdLt99+e9h5wzD0+OOPKysrK659AAAAgMNRpbNSs5+8QMWblmil4ZEGFWnG1mzN2Jqt940Duv+UdHfo1eugtO1hSQ81jc04coYkNQZfj+s1Ts/Nek6FWYVp6REAAAAAAAAAAAAAAAAAAADoCPgkZYJZltXsEW6N1BSA7XuEOj/4EXxO8HnR+knkAwAAAAk2enTgsWFImZmBY3V1ksfTuvoej/d8f5mZ3n38HXNM8z4cDm9Ite91oGkGhlbHwrKazvc9HI7mfYwZ07r6SZTpyNTyHy5Xl5wura4xpf8U3TTpJk3pP6XVNfIz8/Xbqb+Vw8a9jAAAAAAAAIBg77//vsr8b+wXJDs7W9/73vcSuueVV16pzODf5/opLS3Vhx9+mNA9O4Lhw4era9euEdeUlpbGvc+zzz6r7du3h52fM2eOJkyYEPc+AAAAwOHGG3h9voo3fSp5PDINaf6UCr08qF6P5pfp/lOktnDFcdcqqex+Nb82Rd7g67+d9TdN6DOBwGsAAAAAAAAAAAAAAAAAAAAgAQi9TrBQgdThhAqQDnV+uHotCZ9uSb3WPgAAAJAE3btL48YFjmVnN19XUxN74LRlec8LFlz/6KOl/v2lAQOawqlNU7KFePvgH1rte/jW+z9CrQuWkdG8j27dYnuOKdKvsJ9WXrOyVcHXU/pP0fSh0yVJ04dOb1XwdX5mvn439Xfqktv64G0AAAAAAAB0fC6Xq/F7/7/x2kL9rq+Def311yPOn3POOSooKEjonp06ddJZZ50VcU20vg5XPXv2jDhfE+p32zG65557Is7/8pe/jHsPAAAA4HDiMT3ewOtnZ6p402eSx2ycMw3pd50P6IffbRuB1/l10t6/HjoI8554xpEz9MrsVwi8BgAAAAAAAAAAAAAAAAAAABKg43+SNcWCg6wjBVK35NxIj2TUTOTeAAAAaKVzzw08djikrKzAMbdbqqqSPJ6W1fR4vOvd7sDxrCxv/VD7jxzZFFjt8UgNDaFrRwuzbuma+nrvfsF9tFG+4OucjJwWn+MfeO0Ta/B1tiNbf5j2BwKvAQAAAAAAEFV1dXXI8czMzBR3knrvvvtuxPlzzjknKftGq/vOO+8kZd/2rqioKOJ8bm5uXPVXrlypVatWhZ3/zne+oyOPPDKuPQAAAIDDSaWzUuc8fY6mPj5VxZs/b7p+5dB1Id3Wmyo+2ht+nW5ZLqlI0stHHBqIcAMku82ekp4AAAAAAAAAAAAAAAAAAACAjo7QawAAAKCtmTxZ6tkzcCw3V7IFvXx3u6WKCqmuLjAs2p9peucrKpoHXtts3rr+evWSJk2SnE6pa1cpP9/7gcRwgdeJYhjeXmtqvPv5+mjj+hX203UTrmtR8HWowGuflgZfZ9mzdPlRl6trbteYewUAAAAAAMDhZ/fu3SHHCyIEfHUEZWVl+vrrryOuOe2005Ky9+mnnx5xvqSkRLt27UrK3u3Znj17Is5369YtrvrPPPNMxPk5c+bEVR8AAAA4nFQ6KzXz+Zn6cOuHKt61SvUNtd5rPg7dWN3YY+mbIyRPGwi8dphSF483fHv+2YeCr7nhDQAAAAAAAAAAAAAAAAAAAJB0hF4nmGEYh8UDAAAASeRwSNddFzhmGFJBgfdrsLo66eBBqbLSGxpdW+v9WlnpHa+ra35OuHrXXefdv7ZWstulY4+VXC5vELXvvETzr2ma3r19fbQDRdlFUYOvIwVe+/iCrw2F/hln2bM0a9QsFWR17EAiAAAAAAAAJE5JSUnAsXXo93zxBgi3dV9++WXE+f79+6t///5J2XvQoEHq3bt3xDVLly5Nyt7tlcfjUVlZWcQ1Q4YMiWuP559/PuL8ueeeG1d9AAAA4HDhC7z+5NtP5PI0SKalikxL9Ycu8dhbLu3vJbnbwCUfdlNy+91fpzH4+vuT09cUAAAAAAAAAAAAAAAAAAAAcJgg9DqBLMs6rB4AAABIokmTpNNOCxyz26XCQskW5mW82y05nVJ9vfer2x16nc3mrWO3B46ffrp0/PHe712u+PqPh2E0hWxL4Z9vGxIp+Hpcz3FRA699pg+drtHdRzcb9wVe52fmx90rAAAAAAAADg+1tbX65JNPmt3U2DAM9evXL01dpcaKFSsizo8fPz6p+0+cODHi/MqVK5O6f3vz8ccfq7a2Nuz84MGD1bdv31bXX79+vb799tuw8yNHjoyrPgAAAHC4aAq8/lgutzfw2qciSyo7IGX2lJwZ3rEk3Fa9xQxT8lRItr5qDOSWDgVfVz2nl79+OX3NAQAAAAAAAAAAAAAAAAAAAIeBtp8e106YpnlYPjweT7p/9AAAAB3XtddKffoEjtntUlGRlJXVuppZWd7zgwOv+/SRrrmm6TgzU/J4pKVLpYwMbxC1FBhGnSi+mobh7SsvT3rooabQ7pzmQdJtkS/4OsOW0Tg2oHCAJvWfFFOdiX0makDhgMbjTHsmgdcAAAAAAACI2YMPPqiamhpJanZT4xEjRqSjpZRZtWpVxPmxY8cmdf9o9Qm9DvTMM89EnD/zzDPjqv/hhx9GnD/edzNIAAAAAGFVOit18b8u1idbDwVeh7h+pKCzVJMZOJaW4GtLsg5Ktm7ew4osv+DrzEyZlqmFqxbKY3INNAAAAAAAAAAAAAAAAAAAAJAsjuhLAAAAAKRFfr50113Sz34m7d3bNG4Y3mDorCypvl5qaIheKzNTys6WHCHeAnTr5t0n3y9UOS9P2rFDqq727peVJTmdyQm9lrx17XapsNC7365d0hdfSCef7O2vnSjKLtKJA07Up9s+Ve/83hrWZVir6vjOK6su0ykDTyHwGgAAAAAAAC1mmqYefPBB3X777TKM0PFiEydOTHFXqbV+/fqI88OHD0/q/sOGRf694IYNG5K6f3uycuVKLVy4MOy8YRiaP39+XHt8/PHHEefHjx/fojr79u3T2rVrVV5erqqqKtntduXl5al79+4aNGiQ+vbtG/a/OQAAAKA9q3RWavYLs7W6dKVy692qCHHpSUG1VHHonuaWAsOujUNjKWFJnddLFaMChysO3Vs+u3Nnjes1Tk9d9JTsNnvz8wEAAAAAAAAAAAAAAAAAAAAkBKHXAAAAQFvWq5d0993SbbdJpaWBcw6HN6jasiS32/vweJrm7XbvGofDGyQdSp8+3sDrXr0CxzMypC1bmo4NwzvmdIau46sfKRQ72prcXMlmazr+97+luXO9gd3tSI4jR1P6TZHN/7m0wrAuwzSk0xDlZuQmqDMAAAAAAABEEy0cNxbr1q1LaL1QXC6X6urqVFlZqc2bN2vt2rVavHixDhw4IMuyZBiGrBC/j5s6dWpS+0ony7K0devWiGuihVLHK1r9aP0dLnbt2qU5c+bI4/977SAXXXSRjjzyyLj2WbVqVcT5SP9eH3zwgf71r3/p3//+t7Zt2xaxTlFRkSZNmqTTTz9dM2fO1KBBg1rRLQAAANC2+AKvi8tWSQcOKNsjyTRUkdn0XrNLhbQvPzDcOi3B15Y0bL20eVTo6YpsaVBhHz036zkVZhUmuxsAAAAAAAAAAAAAAAAAAADgsEboNQAAANDW9eol/fWv0sMPS++803zeF0idkRFb3dNPl665xhucHayiQtq5symE2rK8gdqG0Ty02j9QO1y4dvD64Bo2m+RySdnZTWvWrJFqaqSiopY/pzYi3sDrRNcBAAAAAABAy0ydOlVGS37HFcQXLO3/9e6779bdd9+d0P5i6cU/8Nr3vWEYOvroozVgwICU95Uqu3fvVn19fcQ1ffr0SWoP0erX1NRoz5496tGjR1L7aMu++uorzZo1S+vXrw+7plu3brr//vvj2sflckXcQ5KGDh3abOyll17Sr3/9a61evbrFe1VUVOjtt9/W22+/rZ/97GeaPn26br31Vp166qkx9w0AAAC0BY2B17uKpaqqxhuxZ3sMyWmpIkvqtU8q69R0TrqCrw1JQ7+SNo6XDCtwX58MR5Z65PVQXkZekroAAAAAAAAAAAAAAAAAAAAA4EOCGgAAANAe5OdLN98s3XmnNwQ7Hr16eevcfHPowGtJ2rrV+9Uwmh6HPrzYeGyzeR/+a/wfoYQ61xfs3NDg/d5ubxpbujS+5woAAAAAAAC0gmVZLX4kokYiH4ZhRAzuvv7665PxI2szSktLo67pFe/vWBNQvyV9dkRbtmzRT3/6U40fPz5iGHVWVpaefvpp9ezZM679NmzYIJfLFXGN/x6lpaU688wzNXPmzJgCr0NZvHixpk2bpgsuuEDffvttXLUAAACAVPOYHs15cY438NrplOrqAuaz3dKA3YGB1z6GmkKng981x36bqegMSaM2eAOvJckymu+bYc/QSQNP0vPffV52mz0JXQAAAAAAAAAAAAAAAAAAAADw50h3AwAAAABiMGmSNHGi9Pnn0htvSMXFLT/36KOlc8/11nBEeSsQHLjiC7z216mT5HZL9fXery3lcEjZ2VJGhnTwoOQLBrIsyeWSMjOb1q5eLV1wQctrAwAAAAAAAAkQKTQ6WLjg61hqJJp/T74+DMPQyJEjdeWVV6arrZTYt29fxPnCwkJlZWUltYfc3Fzl5+eruro67JpofbZ3tbW1qqqq0oEDB7R27VqtWrVK77//vj777LOIYfGSlJ2drZdfflmnn3563H1s37494rzD4VCnTp0kSZ999plmzpypXbt2xb2vv9dee02ffPKJnnjiCZ133nkJrQ0AAAAkS42rRrurd8vpdiqrqqrZfH6FtDHKPWoMecOnLQWGXfvGE+XoddKq0YFj1qFNDEkZNodOGnyyXrz4RRVmFSZwZwAAAAAAAAAAAAAAAAAAAADhEHoNAAAAtDcOh3TSSd5HeblUUiJt3Cht2iRVVHgDqB0OqahIGjpUGjZMGjNG6tat5XuUlQUem2bgsd0u2WzegOrMTO+82930sKymMGvD8K53OLxrbTbvuM3mHXO5muoGh16XlLS8ZwAAAAAAACBBooXypqpGvHyB15ZlKS8vT08//bQc0W6I187t378/4nxhYWoCzgoLCyOGXkfrs62bNWuWXnzxxYTXHTdunJ566imNHj06+uIWKAv+XXeQgoICGYahTz/9VGeeeaZqamoSsm+wAwcO6MILL9QDDzyga665Jil7JNL999+vBx54IOn7bNq0Kel7AAAAIHaVzkrNfmG2dlbtlFwuOS23svxiqzvtNfVNn5bVSnbw9THrpeJRknFoA/+aliHZDZtOGjKVwGsAAAAAAAAAAAAAAAAAAAAgxTr2p1kBAACAjq57d2nqVO8jkYKDPYJDr222plBryRtsnZHhffh4PM3P8QVe+2RkBIZeu92B83v3xtY3AAAAAAAAcBjzhVz7syxLPXv21Isvvqijjz469U2l2IEDByLOFxQUpKSPaPu099DrROvTp49uueUWXX/99cr0vzFinKKFXmdmZuqbb77R2WefnbTAax/TNHXttdcqIyNDV111VVL3ild5ebnWrl2b7jYAAACQBr7A6+JdxZKkrHqXnIbktFnKMg31KjO1amBsNZMVfD1ho7TySL96wcHXhtQpt4uen/U8gdcAAAAAAAAAAAAAAAAAAABAihF6DQAAAKC54JDrYIbRPNS6NUKE8ATwD8QGAAAAAAAAUiRUeHQ4lhU6oiuWGonk309+fr5++MMf6vbbb1enTp3S0k+q1dfXR5zPy8tLSR/5+fkR56P1eTjIycnRGWecoVmzZmnWrFnKyspK+B4VFRUR503T1KxZs1RVVRV2zfDhw3XBBRfojDPO0IABA9SzZ09lZmZq165dKisr04cffqjXXntNX375Zdj/e+Dv2muv1bBhw/Sd73wn5ucDAAAAJFNw4LVMU2poUJYMOe2Wum81tWpE62onOvj6mK1SaT+pyClV+L2VaAy+NqSuOV218pqV6pzTuXVNAwAAAAAAAAAAAAAAAAAAAGg1Qq8BAAAANGezRZ5vQXBHi0Srk5GRmH0AAAAAAACAFmpJaG0q68QiJydHI0aM0PHHH6/TTjtNZ599tnJzc1PeRzo1NDREnHc4UnOZRLR9ovV5OOjZs6cGDhyobt26yRbtd9KtVFdXF3G+vLxc5eXlIecGDBigBQsW6OKLLw45P3jwYA0ePFgnnHCC/j97dx4mR1nvf/9TvUz37Nkmmew7IQkmkQAJqwYCIosSWQURn6AgKAiKctQjovDzoOIRZFU4KCgQQAElghI20UBIQlayExKyJ5Nl9pneqp4/Kj3T+zY905OZ98urrpmq+67v/e1OJ05C1ad+8IMfaPHixbrhhhu0ePHilGsGAgF9+ctf1urVq1VeXp7ZCwEAAAA6WVzgtSRF/L1l4gZLCyfZ3+f6iKdUwddS5uHXk3dIe6rt771B+2ud53Ahh0OGpP7eflr+9eUaVjEsx24BAAAAAAAAAAAAAAAAAAAAdASh1wAAAADilZZG78cGjphmftYJBKL3Y4NgBgzIzzoAAAAAAABABt58882s5luWpdNPP12GYciyrKivt9xyi84555xO6tTmdDpVVFSk8vJyVVVVaQD/nkbo9RFk69atuvfee3Xvvfdq2LBhuummm3TNNdfkNQi6tbU1p/POP/98zZs3L6vQ+BNOOEGLFi3SbbfdpjvvvDPl3I8//lg/+tGPdM899+TUHwAAAJBPCQOvJSloJ0qPXW/qP1PaD8eGVmcjWfB15FgqY/ZJByP/6ut0yltWLrkN1fnqJEn9ivtp+bUEXgMAAAAAAAAAAAAAAAAAAACFROh1ga1du1bLly/X6tWrtWPHDu3cuVP19fVqaWmRz+eTZdmXbxuGoc2bNxe4WwAAAPQagwdLH37Yvh8beh0KSZYVfzwbptl2g2Qbtzt6f/Lk3OsDAAAAAAAAWfrUpz6Vt1oTJkzIaz1kxkzzwD6n09klfaRbJxQKdUkfR4odO3bolltu0S9+8Qs98sgj+tznPpeXuoHYBy9m4JJLLtGTTz6ZU0C6YRi64447VF5erltvvTXl3Iceekg333yzRo4cmfU6AAAAQL4kDbyWpEBAR60z9a+p8UOFCL4eXSP5Kh3RJw0YIDkc8h7edTlcWnbtMgKvAQAAAAAAAAAAAAAAAAAAgAIj9LqLmaap+fPn65lnntFrr72m/fv3x80JB11HMozsLg2vra3VwYMHE47169dPffr0yaoeAKBALMsOhQXQuTIJFzHN3vX7cVjMzX9ut9TaGn0sGJSKi3Nfo7XV/nMuzDDiQ6+nTMm9vqSDLYl/Js6npkBT1L4v6JMv6Gsfb21Svas+43rNgeao831On1qCLW37hgzV++sVNNsDw2tbaxUw28NbGnwNUecEQ0G1htp//UJmSId8hzLuSbJvdI3sS1LcHah1rXXyur3qDhp9jQqE2t8TS5aCoeiQ9frWzH9dsuEP+aN/DUM++QLtDzXyBX0KhoLymfacUCgU9espSXW+OvlNf6f0lw3LsqLuKDYV/edgKBhSS2uLgGxE/t4EAAAAACDf0gUVB2MfxNdJ0q3jjv230CPMddddp7PPPjvhmGmaqqura7tuYeXKlVqxYoVaWtL/O9K+ffv0+c9/Xl/72tf00EMPdTikPNvzJ06cqMcffzynwOtI3/ve97Rs2TI988wzSef4/X795je/0a9+9asOrdUZqqqqNGnSpE5fZ/PmzfL5fOknAgAAoFOkDLyWNGZVa8LA67CuDL4eWit99PwAvTA+pBtOrpNpSCoqinpY+4xhM/TUF55S3+K+OXYFAAAAAAAAAAAAAAAAAAAAIF8Ive4iTU1Nuu+++/Sb3/xGe/fulZQ43DosMuQ61bxkVq1apVmzZiUc+8xnPqOXX34565oAgALYurXQHQC9Q2yYcyJbtkgdDLk4ooweHb0fDqQORASVtrTYNxDmEjoSCtnnR/J47HUinXBC1qVbWlr01Ze/qhW7V6g51Jx9b1mqbamN2m8NtsqKuP1y6e6lHarvkENOhzNq/7m1z6U8J2gGo0OULSmk9nB3Q4Ze2/Jado1YUsCKDqq1LCvq7y4r9qzI+oE9nSVkhhS0ot8DK+a22PuW3NclvViWpXU169rem6AZlCVLDsPRNh6yosP319as7RbvpS+UOnCm0WxUY2NjF3UDAAAAAED31h3+Lg+pqKgo5XhXhV4HAqkf+pSuz+7ujDPOyGp+MBjU0qVL9eijj2revHlqampKOf+RRx5RXV2dnnzyyQ4FUGfzPjudTj3++OPyevPzYL8HHnhAb731Vts1Ion84Q9/0M9+9jN5PJ68rJkv3/jGN/SNb3yj09eZPHmy1q5d2+nrAAAAIF7IDOmK569IGng9bOFuLfxE+jpdEXzdt0m6b6FHcrs1Z6v9AKEbTq6TWVLSNn9q9VQ9c9EzqvBU5NgNAAAAAAAAAAAAAAAAAAAAgHxyFLqB3uBPf/qTxowZox/+8Ifas2ePLMtqC4dLtnXUaaedppNOOqltrchtwYIF2r17dx5eGQAAAHqsYcPig68ThW40NUnZPqTFshKfF3EzoiTplFOkwYOzqy3pjKfO0Ds73umSwGsAAAAAAAAgLPzfY1FYbrc75bjf7++SPnp66HW2XC6XZs6cqUcffVS7du3SN7/5zbTXRjz77LO65pprOrRuNu/znDlzdPzxx3dovUj9+/fXd77znZRzDh48qDfffDNvawIAAACZcjqcmjttbtvDmiONWLxbSycq4zTrjvxNOLxEOPw6dqxPs+R1SjfMDuiFUfZD7eds9eq+jWPl8BZLIvAaAAAAAAAAAAAAAAAAAAAA6I4Ive5EDQ0NuuCCC3TVVVeppqYmLuhaUsJQ6sitI7797W9LUtyapmnqySef7NiLAwAAQM93xhlSZOiI0ynFBoQEg1JDgxQKZVbTNKXGRvu8SMXFUmwYzVVXZd3yba/fpt2NPOAFAAAAAAAAXee0007Taaedpk996lNt22mnnabBOTzQDR1XVlaWcryxsbFL+mhoaEg5nq7PnqyiokL33Xef3nrrLVVVVaWc+/vf/15//vOfc16rtLQ047nXXXddzuskM3fuXHm93pRzXn755byvCwAAAGRizsQ5uu+z90UFXzs/2q0l4yQrw8DrsHwEX8fWKW+Vig+3ZhrSDSfXtQdf3/Cg7vvsfZo+ZDqB1wAAAAAAAAAAAAAAAAAAAEA35Cp0Az3V1q1bdfbZZ2vTpk1tYddhsWHWkWOJxnP1+c9/XsOHD9eOHTvi6v/hD3/QLbfckpd1AAAA0ENNmSINGCAdPCg5HPZWVibV1dnh1WHBoFRfL5WW2uHVjgTP1jFNqaVFamqSYn/edTql8vLoYyNGSGedlXXLi3ctzvocAED3E1KGD1MAAAAAgG7grbfeKnQLiNCvX7+U4/X19V3SR7p10vXZG5x22mlasGCBZs2apUOHDiWdd+211+rMM89UZWVl1mtk+j6PGDFCp59+etb10+nfv7/OP/98Pffcc0nnLFq0KO/rAgAAAJmaM3GOJOmGV27Qrh075ai0A6ZzEb4aJJfTjYjzLUmlfqmlRiqtUtsD28PB1zr5JM2ZPVtzJH1uwufkdDhzaxgAAAAAAAAAAAAAAAAAAABApyH0uhNs2bJFs2bN0rZt2yS1h1pHhll3VtB1JIfDoSuvvFI/+9nPZBhGW/i2ZVlat26dPvzwQ40bNy7v6wIAMuRK8H/D/LkMFIbPl/j3ZKSjjkoc5tzTfetb0h13tO8bhh1QXV8fHV5tWVJjox1q7XJJbrc917KkQMAOxk70M6/DIfXp03aDYps777RrZKnWVxu1v69xn/xBf9Z1shEbzGop/z/bx2a/OgLpP4umzLRz8s0nX5ev2RHBULDL1vKbnfs5BHqaTvmzFAAAAADQK/Tv3z/leG1tbZf0UVdXl3I8XZ+9xdSpU/XnP/9ZZ5xxRtI5Bw8e1O9+9zt997vfzbp+pu/zSSedlHXtTJ100kkpQ69XrVqlYDAoV7r/TgEAAAB0kjkT52jP++/rWzX/TxlcjpCWpY4FX3uCkn+vNKAqfo7pcuqGAculdS9ozsQ5BF4DAAAAAAAAAAAAAAAAAAAA3RR3zOVZQ0ODzjnnHG3bti1l2HXkserqao0cOVL9+/fX/v37tXjx4rZw6o760pe+pJ/97GcJx1577TVCrwGgkFwuyeOxw3bDcgh4BZAHbrf9+zEUSjzu8dhbb3TyydLs2dJrr7Ufczqlvn2lurr49ywcch0IpK/tdNqB17FBHpdcYq+ZB6ZldnpwancMZs0k8NrI4RbTdK81l5qdpTv+ugDInFv8XAwAAAAAyM2AAQNSjvt8PtXW1qpPnz6d1sPBgwfl96d+CBqh1+1OP/10XXLJJXr22WeTzvnNb36jb3/723I6swu0S/d5CJs5c2ZWdbMxY8aMlOM+n087d+7UyJEjO60HAAAAIJ2bV/8/BfL4n+hyDb4uCkm+ZqnvYEnh51iHH6R++HoVU5YeW/GYPjfhc4ReAwAAAAAAAAAAAAAAAAAAAN2Uo9AN9DRz587Vhg0bkgZeW5Yly7J0/PHH63e/+502btyoXbt26d1339X8+fP1ta99La/9HH300ZowYULb+pFeiwwuBAAUxrBhhe4AQNjAgbmN9QZf/7o0ZEj7vmHYQeH9+0vFxbnVLC62z48NvB49WvrpT3PvtQC6U9BzmIO/6nXLXxcAAAAAAAB0vhEjRqSds3fv3k7tIZP6mfTZm9x5550px3fs2KFly5ZlXTfT93nSpElZ185UJrW3b9/eaesDAAAA6VTeYsjXCc+kzfZR1S5TKtkhOfpKdR6pNfKSkvAD2p1OTa2eqie/8CSB1wAAAAAAAAAAAAAAAAAAAEA35ko/BZn661//qr/85S9xgdeR+1OmTNH//u//6vTTT++yvj772c9GBXGHw7ffeuutLusBAJBEnz52wOu2bVIoVOhucCSrqZHWrJE2bZI++kiqq5OCQTtQuLJSGjNGGj9emjxZqqoqdLfdU58+kmVJe/faXyX7hrnqaqmsrKCtFVxZmfSzn0m33CIdPGi/L5Idfl1RYQdYNzdLPl/7e5eIYUgej1RSYodmxxo8WJo3z655BHHIIVOmrKxv18x9vY7KNRDakJH0dRIynbnwr6Eps8CdAAAAAAAA9DxlZWXq37+/Dhw4kHTOxx9/3Pbw6M6wdevWlOMDBw5UaWlpp61/JBo/frwmTZqktWvXJp3zr3/9S8cff3xWdUePHp3RvD59+mRVNxsVFRVyOBwyzeT/Hnjw4MFOWx8AAABIpepmQ/Wd+NcTS8roagKnJQ3bLn08pv1YnUeSYchbVCyVl0uGoanVU/XMRc+ownNkXVsCAAAAAAAAAAAAAAAAAAAA9DaEXueJaZq65ZZb2vYjA6/D31999dW677775PV6u7S3WbNm6Z577mnrKxx+fejQIa1bt04TJ07s0n4AADH69ZP69pVaWyW/v9Dd4EgSCEivvSY9/bS0eHHquatXt38/Y4b0xS9KZ5yROHi4t7MsqaXFDmj2eu2vkI46Snr5ZelLX5K2bIkec7vtcHXLsj+XgYAduh7mctlz3O7k7+fo0Xbg9fDhnfcaZP98Xl5U3mn1TdNs+/k/nwzDkMPhyClY2zItmTJlyGj7u0BHWabV1oshQ4aje/8+MUPtoeQOo+Oh4bmIfAhRJNOMDkzP169RZ/AH/G1B3U6Hs8Dd4EjWYrYUugUAAAAAQA83evTolKHXmzZt0llnndVp63/44YcpxzMNYu5tzj333JSh10uWLMm6ZllZmaqqqlRTU5NyXmeGXhuGocrKSh06dCjpnObm5k5bHwAAAEhm6I2G9ndBdnS64GuHpDEbpQ8nxY/VeSV5i+Ql8BoAAAAAAAAAAAAAAAAAAAA4ohB6nSfz5s3T5s2bo0Kuw98bhqGbb75Zd999d0F6mzlzZtIxQq8BoJswDKm42N6ATCxYIP33f0vbt9v72YSkLl5sb8OHS3feKZ15Zuf0eCTrxHCLI1p5ufTKK9Jtt0nPPhs/bhhSUZG9ZeOSS6Sf/lSq6PybEt0OtyqLKzt9HQBAcvvr96vRbCx0GwAAAACAHmzy5MlaunRp0vENGzZ06vrp6k+ePLlT1z9SpQsD37dvX051jznmGL355psp5xR38n+jKy4uThl6HYx8kCQAAADQBcZ8w9Cuvl23XrLga4ekT2ySViUIvJbDkAxDzYFmnTD0BAKvAQAAAAAAAAAAAAAAAAAAgCOIo9AN9BT/93//F7UfGXj9+c9/vmCB15JUVVWlIUOGtPUVaf369YVoCQAA5Kq+XvrWt6SrrmoPvM7V9u12nW99y64LZKKiQrrnHunxx6URIzpWa8QIu84993RJ4DUAAAAAAACA3uHYY49NOb58+fJOXX/ZsmUpxz/5yU926vpHqkGDBqUcP3DgQE51p0+fnnZOXV1dTrUzla5+Z4duAwAAAJGmXGtoSxcGXodZMfuGpGM3SnuHS5W+2EE78NrtcOvUkafq2YufJfAaAAAAAAAAAAAAAAAAAAAAOIIQep0He/fu1b/+9a+2QOnIYOnS0lI9/PDDhWqtzYQJE2RZsZeLE3oNAMARZft26eyzpeeeSzxuWZLPJzU1SXV17VtTk308wc8Ckux6n/1sx0O00buceab0739Lv/uddPLJ2Z17yinSI4/Y5595Zuf0BwAAAAAAAKDXShd6vWLFCoVCoU5ZOxgMauXKlSnnEHqdWEWahyO2tLTkVPe4445LO6e2tjan2pkIBAJqampKOaesrKzT1gcAAAAkScuWSd//vmZeaWh1VeHaiLx6afoGaccoh+RwyGs6VOk/fP21IcnRHnj9l0v+QuA1AAAAAAAAAAAAAAAAAAAAcIRxFbqBnuDNN9+UaZoyDEOWZUV9vemmmzRw4MBCt6jRo0frzTffjDv+0UcfFaAbAACQtW3bpAsukPbsiR8LBKTm5tTB1pJkGJLHI5WUSG539NiWLXb9F1+Uhg/PY+Po0dxu6bzz7G3XLmnJEmnVKmnNGmn/fvuz6XZLAwZIkydLU6ZIJ5wgDR5c6M4BAAAAAAAA9GDHHXecvF6vWltbE443Njbq/fff1wknnJD3tRcvXqzm5uak416vV9OnT8/7uj1BumDo0tLSnOqecsopaefs27cvp9qZyKT20KFDO219AAAA9GLNzdL//I/0+99Lu3dr9hdMvTeh0E3ZwdfTN0s7RjuijntDhhR0qK7IIvAaAAAAAAAAAAAAAAAAAAAAOMIRep0HCxcuTDr21a9+tQs7Sa66ujrumGVZqq2t7fpmAABAdurrpcsuiw+8tiypoUFqacmsjmVJra32VlwslZfbQdhhu3fb67zyilTBzWLI0pAh0uc/b28AAAAAAAAAUEBer1cnn3yyXn/99aRzFixY0Cmh16+99lrK8VNPPVVerzfv6/YE27dvTznet2/fnOoOHTpUkydP1po1a5LOWbJkiebMmZNT/XSWLl2ads6IESM6ZW0AAAD0YnfdJd15Z9t1RV8419Tr3SDwWpKmbpV2DXfEDzid8lb21ajKoRpUOkjPXPwMgdcAAAAAAAAAAAAAAAAAAADAESrBFcPI1vr169u+NyKCIydMmNBtbkzs379/1H64z4aGhkK0AwAAsvGjH0lbt0YfCwalAwcyD7yO1dJinx8MRh/fskW67bbcagIAAAAAAAAA0E2ceeaZKceff/75Tln3z3/+c8rxs846q1PW7QlWrlyZcnzs2LE51z777LNTji9atCjn2umkqz169GhV8DBSAAAA5MuOHdK0adIPf9h2XdH9nzD1yqTCthU2aYe0fbghn8OKHigulvr319Shx+qtr7yl+ZfPJ/AaAAAAAAAAAAAAAAAAAAAAOIIRep0HW7ZsiQq7tixLhmHo1FNPLWBX0bxeb8LjhF4DANDNLVggPfdc9LFgUDp0SAqF4ucbhuR2SyUlUmmp/dXtto/HCoXsOrHB188+a68LAAAAAAAAAMAR6qKLLko5vmzZMm3YsCGva37wwQdavXp10nHDMNL21VtZlqUFaf7bxMSJE3Ouf8kll6Qcf++991RfX59z/VReffXVlOMzZszolHUBAADQC733njRxohTx95Inx5n60ZmSy5K8wRTndoGxe6VDAx3yhAzJkB187XRKffpIFRWaOnianrnoGVV4KuR0OAvbLAAAAAAAAAAAAAAAAAAAAIAOcRW6gZ7g4MGDCY8PGjSoiztJzulMfPF3Y2NjF3cCAIgTCkl790qNjVIgUOhu0J0EAtJ3vhMdSm1ZUm2tZJrRcw1DKi6WPB7JEfNck+Jie77PJ7W02DXCTNMOvu7Txz7PMOyvP/qR9OlP24HZAAAAAAAAAAAcYcaOHauZM2dq0aJFSefcd999uv/++/O25m9+85uU4yeddJJGjRqVt/V6krfeeksff/xxyjmnnXZazvVPOOEEHX300Vq/fn3C8ebmZj3xxBP65je/mfMaiSxevFjLli1LOeczn/lMXtcEAABAL/Xuu9IZZ9jXBx324khTN3xOCh6+lCgcfN1agKvHhxyUmvu2X9PkcXrk87rlc7vlcXk0tXpqW+A1AAAAAAAAAAAAAAAAAAAAgCMfodd50NzcnPB4dwq9rqurS3g8WRg2AKCLBALS+vWS31/oTtAd/fvf0u7d0ceamuIDr10uqbRUCv//emSodZhhSF6vHWLd1BQdpG2a9rHS0vbzt22TXn1VOvdcadcuafFiadUqac0a6cAB+7Prdkv9+0uTJ0tTpkgnnCANGZK/1w8AAAAAAAAAQAfMnTs3Zej173//e/3whz/U4MGDO7zWjh079Mc//jHlnK985SsdXqenuv3221OOV1VV6dhjj+3QGl/96ld1yy23JB1/8MEHdd111+X1Oor77rsv5bjL5dL555+ft/UAAADQS+3YIZ11VlTg9b+qTX31C1LAET21EMHXVXWS1e/wdUsul1RUJDkc8kjyhXwaUj6EwGsAAAAAAAAAAAAAAAAAAACgh3Gkn4J0rETBkpLM2EDKAjp48GDC4yUlJV3cCQAgyrZtBF4jufnzo/eDwaib0yTZN4KVl7cHXqfjdNrzXTF3rvl87UHYpmlv//M/0kUXSccdJ11/vfTww3YQ99q10qZN9td//9s+fv319ryLL7b7DgRye80AAAAAAAAAAOTJlVdeqYEDByYdb25u1n/913/lZa1bb71Vra2tSccHDRqkK6+8Mi9r9TQPPvig3n777ZRzLr/88g6HUV9zzTXq27dv0vF169bpl7/8ZYfWiPTGG2/oySefTDlnzpw56t+/f97WBAAAQO/R2NrYvnPeeVJzc9vu0jJTF18q+ZL8CB0Ovu4KlU2Sa9RgqW9fqaxM8nolR/vl6x6nR9Vl1Sp1l3ZNQwAAAAAAAAAAAAAAAAAAAAC6BKHXeVBamvhC62RB04WQrJfy8vIu7gQA0MaypLq6QneB7qqmRlq5MvpYorCM0lLJMLKrbRj2ebHC9f1+6cAB6d137VDrbCxcKF1zjXTKKdKCBdmdCwAAAAAAAABAHnm9Xn3rW99KOeeJJ57QCy+80KF1nn32WT311FMp59x0003yeDwdWmfr1q0yDCPldvvtt+dcf8+ePXrvvfc61GO2/v73v+umm25KOcfpdOr666/v8Frl5eW68cYbU8758Y9/rJWx/30mB7W1tZo7d27Sh6iH3XzzzR1eCwAAAL3Pkp1LVPHzCs14ZIZ0113S6tVtYxtKTZ0/V2pxp67hsiRvJz/TvsQnlQwbnHLO1OqpeurCp+R0dOwhNwAAAAAAAAAAAAAAAAAAAAC6F1ehG+gJysvLVZcgtPTAgQMF6Cax9evXR+1bliXDMDR8+PACdQQAkM9nB19H2rGjML2g+1m0SAqF2vctyw6jjvzMeL3218h52fB4ooO0/X6psdH+GhYISM4cbirbvl266irp4oulO+6QKipy6xEAAAAAAAAAgA646aab9PDDD2v79u1J51x11VUaOnSoTjjhhKzrL1q0SFdffXXKOSNHjkwbvt0d7NmzRzNnztQ555yj22+/Xccff3ynrRUKhfSb3/xG3/ve9xQMBlPO/cpXvqKjjjoqL+t+97vf1WOPPZb08+D3+3XWWWdpwYIFmjJlSk5rHDhwQGeddZY+/vjjlPMuuOACnXjiiTmtAQAAgN5ryc4lmvHoDFmytHjXYs3YtUTvyZAk7bJMnTFXaizKoJAhOWUHX7emCcjOhScgVVanD7x+5qJnVOHhuiIAAAAAAAAAAAAAAAAAAACgpyH0Og9GjBih7du3yzCMqOMffPBBgTqK5vf7tXjx4rj+JPvmWgBAN9LQUOgO0F1s3BgdcB0Mxoeku93xx7LhdkeHXpumHcYe+TNDIGCHa4dDt4NBewtzueytqCj6vLDnnpOWLpXmzZN42AYAAAAAAAAAoIuVlJTof//3f3XxxRcnndPQ0KCzzjpLf/rTn3TeeedlXPuvf/2rvvzlL6uxsTHlvF/96lcqLi7OuG6hvfzyy3r55Zc1e/ZsffGLX9ScOXPUt2/fvNVfuHChvvnNb2rFihVp51ZXV+vnP/953tYuLS3Vvffeqy984QtJ5+zbt0+f/vSn9dhjj+mCCy7Iqv7y5ct15ZVXas2aNSnnlZWV6e67786qNgAAABAZeC1JsqTFgy3NmGvptUelmd+U6jwZFDIUriCnYQdf+9ztxzrKHZL8gdRzCLwGAAAAAAAAAAAAAAAAAAAAejZHoRvoCcaMGRO1bxiGLMvSe++9p2BkKGSBLFmyRD6fT5JkxQRjTp48uRAtAQCAdHbujN4PhaL3XS7J0cEf5RwOu46UPDzb75fq6qSaGqm2VmpstIOyw1tjo328psaeF0hwx9qWLdIFF0jbt3esXwAAAAAAAAAAcnDRRRfp8ssvTzmnrq5On/vc53TFFVdo/fr1KeeuXbtWl112mS644ALV19ennHvFFVfowgsvzLrn7uC1117T1VdfrUGDBumcc87Rb3/7W33wwQcyTTOrOpZlaePGjfr5z3+uY445RqecckpGgdcul0t//OMf1b9//xxfQWJz5szR1VdfnXLOoUOHNGfOHJ111ll6++23FYr97zQx1qxZo2uvvVbHHXdc2sBrSbr33ns1duzYrPoGAABA7xYXeB1hcR/pmG9Kh0oyKGTEh1s7DckTyM9F5a6QZPql6qGDk84h8BoAAAAAAAAAAAAAAAAAAADo+VyFbqAn+OQnP6k//vGPkuybNQ3DkCS1trbqnXfe0WmnnVbI9vT8888nHTvhhBO6sBMAAJCxxsbo/dgwhY4GXkfWiQy8tizJMNqP+f1SJg/xsKz2IOziYqm83K4Ttnu3dNll0iuvSBXcsAYAAAAAAAAA6Fq//e1v9f7772vDhg1J51iWpaeeekpPPfWUPvnJT+qkk07S6NGjVVZWpoaGBm3ZskULFy7UypUrM1rz6KOP1sMPP5yvl1AwgUBAr7zyil555RVJUmlpqY466igdddRRGjx4sAYNGqTS0lJ5PB75/X7V19ervr5ehw4d0gcffKBVq1apMfa/e6RhGIYeffRRzZ49uzNeku6//36tWLFC77//fsp5CxYs0IIFCzRgwADNnj1bI0aMUHV1tVwul/bt26fdu3frrbfe0ubNmzNe+8Ybb9TcuXM7+hIAAADQiyzavkgnPXZSwsBrSRrRIh0okwwpPtE6UoLA6zCnIRUFJL9LMo0kk9JwmdLyk/9Pm8b21Q2v3CDTin9gDoHXAAAAAAAAAAAAAAAAAAAAQO9A6HUenHzyyUnHHnzwwYKGXtfX1+vRRx9tC+I2IsIn3W63ZsyYUajWAACZKC+XvN5Cd4FCcDiig60NI/V4tszDN5UlCrS2rOgg7Gy1tNhh2X36SK6IHze3bJFuu026557cawMAAAAAAAAAkIOysjL985//1Kmnnqrt27ennb98+XItX7485/VGjBihf/7znyorK8u5RnfV1NTU4fcnlaKiIj3++OO67LLLOqW+JHm9Xr3yyiuaNWuW1qxZk3b+/v37NW/evA6ve+WVV+rXv/51h+sAAACg93hzy5s6/YnT4wcOX9ozbq+0p7L9kGEocbJ1isDrMKchFYekVqcUyjL42mlJy0/6Px1z3lwdc/hYbPA1gdcAAAAAAAAAAAAAAAAAAABA70HodR4ce+yx6t+/vw4ePBgVLm1Zlv7yl79o69atGjVqVEF6e+ihh9TQ0NDWT+TXWbNm9cgbbAHgiGOa0sGDdlDwzp3RY4YhFRUVpi8UVmtrdCB1bAh1KJQ4sDpTlmXXCIUSjyXjctmbYdjzgsHEfYRC9ue6slJyOtuPP/WU9IlPSCedlHvv3ZXDIZWWSgMH8vsWAAAAAAAAALqhkSNH6o033tDZZ5+tzZs3d9o648aN0z/+8Q+NGDGi09boqcaOHasnn3yySx7gXVVVpTfffFPnnXeeFi9e3Onrffvb39bdd98d9bByAAAAIJWkgdeHTdwtbe9rfx/Ouk4YfJ1B4HUkb0hqdUghR2bznZb06ojbdcx5c9uOzZk4R1J78DWB1wAAAAAAAAAAAAAAAAAAAEDvQuh1HjidTs2ZM0ePPvpoVKi0JJmmqeuuu06vvPJKl/e1YcMG3XnnnUlvmLz44ou7uCMAQJxgUPr4Y8nvt/fDXyP5fF3bE7oHjyc6fDr2/89NM3U4dTqWZQdrZ8IwJK/X7smR4G4207Q/py0t8WvU19vB15H933OPdMwxdnh2T9PYKO3fL40bJ/FwEQAAAAAAAADodsaNG6clS5boi1/8ov75z3/mvf7ZZ5+tp59+Wn369Ml77Z7M4/Hoxhtv1G233dalD++uqqrS22+/rZtuukkPP/xwp6zRt29f/e53v9NFF13UKfUBAADQM6ULvP7EDmnLgOhjCYOvswy8DvOaUqvSB187JP2h6CKdfu2P48bCwdePrXhMT37hSQKvAQAAAAAAAAAAAAAAAAAAgF4kzaXIyNTVV18dtR8OvrYsS6+++qruuuuuLu2npaVFF198sZqamqL6CevTp4+++MUvdmlPAIAE9uxJHHQNVFVF78eGTYdCHQu9DoXssOp0nE6pokIqLk4ceB3urbjYDreODbI2Tam5OfrYnj3SokW59X0kCIWkLVsye38BAAAAAAAAAF2ub9+++sc//qE//OEPGjhwYF5qDhw4UI8//rheeeWVIzbwevz48br//vt17rnnqqSkpEvWrKio0E033aQNGzboF7/4RZcGXod5PB499NBD+te//qWpU6fmra7b7da1116rjRs3EngNAACArOyq25Uy8PqYbdKHAxKHWYevFLYkWTkGXod5TcmV4vIXQ9Kv/ip96cfPJZ0zZ+IcvXjpiwReAwAAAAAAAAAAAAAAAAAAAL0Modd5MmPGDJ122mlx4dLh4Osf/ehH+u1vf9slvQQCAX3xi1/UBx980LZ+WLi/r371qyouLu6SfgAASViW1NhY6C7QXVVXR+87nfFzAoHc62d6bklJ4rUTcTql8vL44GufTwoGo4/Nn59ZzSOV3x8f9g0AAAAAAAAA6FauuuoqffTRR3rggQc0ceLEnGpMmjRJDzzwgLZs2aIvf/nLee6wa5WWluob3/iG5s+frwMHDugf//iH/uu//kuzZs1SeXl53tbp37+/Lr74Ys2bN0+7du3Sr3/9a40cOTJv9XN12mmnafny5Zo/f74++9nPyhX73zsyNGrUKH3/+9/Xli1b9PDDD2vAgAF57hQAAAA92ca9G3X1/KvlciT+eXTqVmnzQEmGZCp18HU+eE3JHUo89pN/SDdtr0xbw+nI8NojAAAAAAAAAAAAAAAAAAAAAD1GbnfoIaE77rhDn/rUp9r2w2HThmEoFArp+uuv18cff6w77rhDzkzDI7O0fft2ffGLX9S7774bF74d1rdvX33/+9/vlPUBAFkIBu3g60hGPm85whFt2LDofcOww6Qjw6P9fvuYI8vnmJhmfAh1IoZh1w4luXMtmeJiqaEh+vPd0mIHaIe9/760apXUv392tbuzAQMkj6d9v7VVKisrXD8AAAAAAAAAgLRKS0t1/fXX6/rrr9fGjRv1j3/8Q8uWLdOaNWu0c+dONTQ0qLm5WSUlJSovL9ewYcM0adIkHXvssfrsZz+r8ePHd1mvo0aNinrodWfyer36zGc+o8985jOSJNM0tW7dOq1cuVJbtmxp23bt2qXGxkY1NTWpsbFRoVBIHo9HHo9Hffv21cCBAzVkyBAdddRRmjhxoo477jhNmjQp6hqG7sQwDJ177rk699xzVVdXp9dee00LFy7UunXr9OGHH+rQoUNqaGhQKBRScXGx+vTpoxEjRmjcuHE6/vjjdcopp2jatGmFfhkAAAA4Qj20+CFd/8r1kqTBZYNV01yjoNl+jc+xH0nrhkScYEimJTkUH3RtKHEgdjYM2UU8lv29P+LS52++Lf1ouUOqzPK6JQAAAAAAAAAAAAAAAAAAAAC9AqHXeXTqqafqqquu0uOPPy7DMNpuNrUsq23/5z//uV588UXdfffdOuecc/K2dlNTk37zm9/orrvuUmNjY9SaYeFjP/nJT9SnT5+8rQ0AyJHbbQcKm2b7sS4KKsARoLxcGjFC2rat/ZjbHR9W7fNJXm92gemZhli7XHbdbD+XhmGHP7e2th8LBOzPemSfq1ZJ06dnV7s769MnOvSa388AAAAAAAAAcEQ56qijdNRRRxW6jW7J4XBo8uTJmjx5cqFb6TKVlZW68MILdeGFFxa6FQAAAPQCkYHXkrS7cXdU8PWxm6V1QxOc2EnB1+HA67Ciw5e4+Z3S5e9L9y08HHbNA+EBAAAAAAAAAAAAAAAAAAAAJOAodAM9za9//WuNHj1akmTEhE+GQ6jXr1+v888/X8ccc4zuuOMOrVu3Lqe1amtr9fe//13XXHONhg4dqv/+7/9WQ0NDXOB1+HvDMHTmmWfqG9/4RsdeJAAgf/r3L3QH6M6mTYvedzrtIOpIoZAdLh0Znp6KadpB2ekYhlRUlFnNRNzu6H3Lig/b3r499/oAAAAAAAAAAAAAAABADxAbeB22u3G3qkqqNP1Dad2QFAUMyVTigOvYIOxMxAZeh3lD0k1vSk++GnH5+fjxOawAAAAAAAAAAAAAAAAAAAAAoKdzpZ+CbPTp00fPP/+8TjnlFDU3N7cFTkcGUEuSZVlau3atbr/9dt1+++0qLi7W0UcfHReUHenLX/6yWltbtW/fPm3dulXbI4IiE9WP3JekESNG6IknnsjvCwYAdEz//lIgINXWFroTdEfjxkkVFVJ9ffsxj8cOj7Yi7iwLhaTmZjuk2u22A6tjWZb9WfP7o89NxuGID9jORvj8YDC6z8iaO3bkXh8AAAAAAAAAAAAAAAA4wj32/mMJA6/DBi7brXXDlT692pBMS3IkmGoocSB2kjJJJ89dKv16kSP64IwZGVYGAAAAAAAAAAAAAAAAAAAA0JsQet0Jpk6dqr/97W8677zz1Nra2hZ8Ldlh1IZhxIVhNzc3a9myZXGh1ZFfn3zyybY1rJiwyshw60QB2P3799c//vEPDRw4sDNeMgAgV4YhDR4s9e1rhxYfPBg9XlpqBxmj97riCul3v4s+VloqNTXFh1f7/fbmctmh04ZhzzHN6PDpTJSUSE5nx3p3OqPXNU27rzCfzw5+P1IdOFDoDgAAAAAAAAAAAAAAAHCEemzZY7p6/tVJxyd/LG0aLlnpAq/DOhh8nSrw+osrpV+/Kbt4pEsuybA5AAAAAAAAAAAAAAAAAAAAAL0JodedZNasWZo/f74uuugi1dbWRgVQx4ZSh0WOJRI5FntusnHLsjR48GC98sormjBhQu4vCADQubxee+vXL/r46NH2cfRekyZJ27ZJr73WfszlsreGBjtIOlYoZG+RIn92iPx5IxyMHcnlkjyejvceDt6OXCsy9NrhkI7kB3LU1sa/zwAAAAAAAAAAAAAAAEAaDy1+SNe/cn3S8QkfSluHZBF4HWZIpiSHlV3wdarA6/PXSb/7p6KvA5KkIUOkadOybBAAAAAAAAAAAAAAAAAAAABAb+BIPwW5mjVrlhYtWqSjjz46Kug6NgA70Vgi4fFE5ycLvJ46dareeecdTZkypVNeIwAA6AJf/7p9k1gkp1OqrOxYOLVhxN+MJtmh1/mQ4mEeeV0HAAAAAAAAAAAAAAAAOEKkC7wes0XaNVgyO3CVt2kkzrBOdJVyqsDrT22RnnopPDHm7Kuvzrk/AAAAAAAAAAAAAAAAAAAAAD0bodedbPz48Vq+fLm+973vyeFwJA24ThReHStZyHVkPcMwZFmWDMPQzTffrPfee08jR47snBcHAAC6RlmZ9LOfSQMGRB83DKm0VKqokIqKMqtVVCS53ZLD0X4jWuQNaYYhmWZ++g6Fovedzuj9ysr8rAMAAAAAAAAAAAAAAAAcAdIFXg/cLe0fKAWdSadkLOPg6ySXLh+3U5r/3OEdR8wl58XF0ve+17EGAQAAAAAAAAAAAAAAAAAAAPRYhF53gaKiIt11111as2aNLr74YkmKC7+ODcFOJ9F54TDs2bNna/ny5frVr36lokwDMAEAQPdUUyO99Zb00ktSVZXU2irV1dlbfb3U3GyHVJeUSH37SuXl9k1lRUXtW3GxfbxvXztA2+1OvJZh2FswmDj4OhSSfD57zfp6u4fa2uhefD57nmnadSK5XNH7Y8fm4x0CAAAAAAAAAAAAAAAAur1NezelDLwu2SP5y6RAHgKvwzIKvk5w+fLkvdKbT4bHE0y47Tb7eiUAAAAAAAAAAAAAAAAAAAAASMCVfgry5aijjtIzzzyjzZs365FHHtGf/vQn7dq1q2082+DrcHC2JJWWlurCCy/UDTfcoOnTp+e1bwAA0MWCQemdd6T586VVq6LHiorscb+/fW6YyyV5vXbIdSqx4dMejx1WHflziM9n17Esey2fLz7EOlHfYYZhnxv+PtG648alrgcAAAAAAAAAAAAAAAD0APW+et342o0yZMhKFEPdIHlLpJYkz7LvCNOQDEtyxBw3ZAdiWzp8ec/htsYelBY9Hp5kxIdeT5kife97+W8UAAAAAAAAAAAAAAAAAAAAQI9B6HUBjB07VnfddZfuuusuLVu2TP/4xz/03nvvafny5dqxY0dGNbxer6ZOnaoZM2Zo9uzZOvPMM+XxeDq5cwBAp/H5pJYWqbY2+vimTXbIMXqP1aul556TDhxIPsfrlZxOqbVVMs3244GAvTkcdmB1bMh0JMuy55WUSG53e7h1WEuL/TV2jUxFnmNZ9uc4FIp/HRs2RB9zOOwQ7uLi+BvmupvY1wMAAAAAAAAAAAAAAADEqPfV69I/X6qVe1aquqxaexr3RAdfN0oDQlKTt/N6sAzJzCD4elidtOLRw4OO2NmSSkull17qvEYBAAAAAAAAAAAAAAAAAAAA9AiEXhfYscceq2OPPbZtv7m5Wdu3b9euXbvU0NCglpYWBQIBeTwelZSUqH///hoxYoQGDx4so7sHQQIA0rMsae9e6dAhez/8NSx2Hz1Xa6v0xhvSmjWZzQ8HW4dCdtB1ZACzaUpNTXbotccTHx49YoTU0CAdPGjXMU07lDocem1Z9tbUlFvwtGXFHzNNKRhsrzdihL3+wYOJa3i9UlVV6uBuAAAAAAAAAAAAAAAAoBuLDLwOqy6r1p6G3XbsdYM0MCQ1FHd+L+mCryuaJaNW9vU9ia4Z8nikBQukYcM6vVcAAAAAAAAAAAAAAAAAAAAARzZSBLuZkpISTZgwQRMmTCh0KwCArnDwIMHWkOrqpGeflWprE49blh1qbZr2FuZw2JvXGz/HsuyvgYA0apQ0dKg0aJB901l5ubRhg/S3v9lzHA7J6bSDr32++LVjb2JLFGqdTigkNTfbQd0OhzRtWur5ra1STY00eHD2awEAAAAAAAAAAAAAAAAFFhd4HQhI+/dLkqol7SmTqkJSXbEdPJ3Do+mzliz4urxF2uWRdk2QZlxt6b3HYropLbUDr2fM6IIuAQAAAAAAAAAAAAAAAAAAABzpCL0GAKCQDhwodAcotNpa6emnpcbG+LFQyL7ZLRhMX8flktxue4tVXy+dd55UWdl+bNw4qaLCHgsHWycKvZZyC7mOFA7NtiyppUUaONBeP53WVnvzeju2PgAAAAAAAAAAAAAAANCFQmZIl//l8vbA69274+YMPiAdKLO/D1+dU4jg6xKftMctqdTeXzxUmjHX1HuPHZ4xZYr00kvSsGFd0B0AAAAAAAAAAAAAAAAAAACAnoDQawAACsXvt0ONIxldcdsSuo3WVum55+IDry3LDp/OJOw6LBi0N5dL8niiP0uNjfY6V15pB0i7XFJJiXTuudK8ee1zm5vt7zsach0p9jNtWZJptvcaq6hIcjrb991uqbw8f/10pkSvBwAAAAAAAAAAAAAAAL1OU6BJexv3ytdYJ09Dc9x4UYu0J/z8eivqS5cGX5f4paYWSdXR44uHSjO+aum90T+T/uu/uqAjAAAAAAAAAAAAAAAAAAAAAD0JyXwAABSK2x0fMJzPsGF0f6+/LtXWRh8zTamlJffPQjBoh6kXF0sOR/vxQ4fs9c45xw6WHjhQGjRI2rpVWrKkfc1wSHW+PouRNSU7GLqlpb2XWJWVUmlp+35VlTRgQH566Wpeb6E7AAAAAAAAAAAAAAAAQBer99Xr0j9fqp0fr5aCPvmckifUPl7aKG3vF3GCoYIEX7tMydEsNVUnHl88xNKM/i/oPRF6DQAAAAAAAAAAAAAAAAAAACA7jvRTAABApzAMqays0F2gUD78UFqzJvpYusBrp9MOSy8qsr86nYnnWZZdxzSjj69ZY68b6aKL7JBpv7/9mGFEB1V3VPj1GIbk8STvpScpKooO7wYAAAAAAAAAAAAAAECPFw68Xrn2Tcnnawu79h2+zKfvIWl73wQnRlyqY6k9/LqzOENS1S5pX2zgtRGxSVqya4kaWxs7uRsAAAAAAAAAAAAAAAAAAAAAPQ2h1wAAFFJ1tR1ejN4lFJJefz36WDioOlHgdThAubjYDo0uKrK/Fhfbx4uK4s9JVu+NN+z1w9xuyeWSHI7oc5MFb+fKsiSvNzpMO7aXnsLhkEaNin5PAQAAAAAAAAAAAAAA0KO1BV5vfkfy+dqOh4OvBx6Qtgw8fPF2oktzuij42mFKQ3dLm8crOuTaiJ5nyNB7X31PZd6yTuoEAAAAAAAAAAAAAAAAAAAAQE/lKnQDAAD0ai6XNGaMdOCA1NycOACbUOyeZ+1aqaEhOgDa54sPmnY67aDoVOHJhmEHYLvdUmtrdIi0ZUl+vz0eVlcnbd4sjRxp769ebR+rqJDq6yXTzD7w2oi54y3R+YYhBYP2Zz6svl7aulU6+uj2Y0VF0SHeXq+9HQmcTqmkRBo0KPo9BwAAAAAAAAAAAAAAQI/WFni9Z6V9TUyMUbultUPt7w3ZwdeWJVkxQdcyDmdPW+3B1/l87LphSWN3S6vGpZl3OPD6+KHH53F1AAAAAAAAAAAAAAAAAAAAAL0FodcAABSawyFVVdnfNzdHj40efeQE/iJzr7wSHewcDNpbZHi0yyWVl8cHSqfi8dhh2sFgdO3Y4OwPPpC+9jX7+9/9zl7L5ZIGDJBqa+3w7FiGkXm4tWEcvivPij4WDNp9RAZfb9ggzZ7dvj9smP26w4YOlaqrM3r5AAAAAAAAAAAAAAAAQFdrC7zevULasyduvHqvtG6YHWYdDrI2FBFubRwOvD7M0uHLdA4fNCPnd4BhSeO3SyuPSjOPwGsAAAAAAAAAAAAAAAAAAAAAHeRIPwUAAAB5U1MjrVwZfSxRyHRpaXaB15I9v7Q0/rjPF72/dq3dR2wvhmGHUseumyjwOh2nUyori68X+1o3bJAOHcquNgAAAAAAAAAAAAAAANANtAVe71wm7d8fN15ZI60cKYUO74evorEi9xM8d96KnKz2sOycWdLEnQReAwAAAAAAAAAAAAAAAAAAAOgahF4DAAB0pTVrovctS/L7o48VF9uh0blwOu3zIwUC9jqxfSTqxeeLDr92ubILvHa57LDrPn0krze+F78/vpePPsq8PgAAAAAAAAAAAAAAANANRAVeHzooBYNR4333SRuH298HnVJ4NDL42jq8b3Ry8PXEXdKuaYPlcrhSzntn7jsEXgMAAAAAAAAAAAAAAAAAAADosNRXLgMAACC/Nm2K3o+52U2S5PF0bA2PR2ppad+3LCkUsgOpwz78MD58OjaQ2uGQ+vdvH/P7owO0LcsOxHY67c3lktzu1L1I9muOnLd9uzR9em6vFQAAAAAAAAAAAAAAAOhiITOkK56/Qit3r5AOHZJCZtR4373S+pEx5zglKyS5ZWdZR165Y8g+YMU8m97S4efVW+37bfMzNGmn9P5YSY27NbhssGqaaxQ0469ZeuPLb2jm8JlZVAYAAAAAAAAAAAAAAAAAAACAxAi9BgAA6EoffRS9Hxt67XLZYdMd4XDYdSJrx4Zeb94cf16qXrxeO6jajLhBzzSj940Et9Ml6iU29HrHjvSvCQAAAAAAAAAAAAAAAOgmnA6n5k6bq+Xr35QZCkVdQ1O5V9owMvF5plMKhBJfwG1IMizJzGPw9VF7DgdeH7Y7SfD1G19+Q7NGz8qgIgAAAAAAAAAAAAAAAAAAAACk18FERQAAAGSlri56PxSK3nc687NObJ3Yderq4nuJDb2ODKbuzF4aG/OzDgAAAAAAAAAAAAAAANCJ/EF/2/dzdpTpvgVFcljt4+XbpU0j24OpEwk5pWCKxGpHgpMtKSrl2lLqNSRp7F5p5aj447sbd6uqpEouhx29TeA1AAAAAAAAAAAAAAAAAAAAgHwj9BoAAKArxQZLxzJS3NGWjXR1gsHu1QsAAAAAAAAAAAAAAADQje2o36Hh9wzXrQtulQIB6b//W3O2enXfwko5LKlin/TRuNRh1OGxkKNzg69HHpA+GJm8/u7G3Zo9ZrZ23rSTwGsAAAAAAAAAAAAAAAAAAAAAeecqdAMAAAC9iivNj19WqtvespCuTro+ulsvAAAAAAAAAAAAAAAAQIHsqN+hT/72kzrYclB3v3u3tHmzfr59uyRpzlav1tdLP/6cZKYIso69gibksC+rcZuJ5zus+HqWDj9/3oquGTltaK20fmj613Tv7Hs1pHJI+okAAAAAAAAAAAAAAAAAAAAAkCVHoRsAAADoVSoro/edzuj9UCg/68TWiV2nsjK+l9jw6UCga3opK8vPOgAAAAAAAAAAAAAAAECeRQZeh9295y+69YR6SdLGpt36yfl2iHUyyR4ZbxpSIMV5jgQnWlJUyrUVUb+qXvqwOnm9sAc/+6COGnRU+okAAAAAAAAAAAAAAAAAAAAAkANCrwEAALrSmDHR+7FB08GgZJodW8M07TqRYoOmx44tXC+x6wwb1rE1AAAAAAAAAAAAAAAAgE6QKPBakmRJd09t0g2Td2va16WAM/H5h6emFA6+TnaVTmzwdTjv2ooJvu7bJG2rSrOY7MDr6064Lv1EAAAAAAAAAAAAAAAAAAAAAMiRK/0UAAAA5M348dH7sQHQkuTzScXFua/h80XvG0Z86PW4cfHnFRXZc63Dd8pZltTSIpWW5q8XKf41Dx+ee30AAAAAAAAAAAAAAACgEyQPvLavrTGbpP/7pORzJ6+RLvA6zDQkyyG5TMmRYNxhRYdcS3b4tWVIhiVVtEq7UvQRRuA1AAAAAAAAAAAAAAAAAAAAgK5A6DUAAEBXmjw5et8w7LBpv7/9WEuLfSw2qDoToZB9fiS3214n0jHHtIdbR/bi8Uitre3Hmpokrzd/vYSDtSONHZt9bQAAAAAAAAAAAAAAAKCTJA28jlAVlA6VJK+RaeB123xDCqYIvjaswzUjLr0xJJX4pRqHpPLU9f/vvP/T3Olzs+wKAAAAAAAAAAAAAAAAAAAAALKX6JpoAAAAdJaqKmnq1OhjXm/8vKam+FDqdCzLPi+WxxO9P2mSNGBA4l5KYu7Esyypri5/vcS+1gkTpD59sqsNAAAAAAAAAAAAAAAAdJK0gdeWpepDUl2JfSG2w8zf2uHg69iSRsQWmabtDUiuZslIF3h9PoHXAAAAAAAAAAAAAAAAAAAAALqOq9ANAAAASQ0NUnOztG9f9PG6OqmoqDA9ofNMnCgtXRp9zOWSAoH2/UDA/vUvLpYcGTynxDSllhYpFIo+7na3j4d98pPSzp329yeeKC1fLhmGve9w2CHZPl90L/v32z2GQvEB2E6nfZ7Taa+TqhfLin6dkydHf+6dTqm+vn2/rk7assWuVVJiB2SHe81Vc7P9ey4YtN/fPn0Sv8cej1RZKZWWdmy9DtjTuEdra9aqprGmYD0caWqaatTY2ti2HwwFFZL9WXTKWai2AAAAAAAAAAAAAADAESBt4LWkIfulfRXt+w5JMiUzg0t8MhEOvnaZklN2xrWliNBr2ZfgFIWkvnsl30CpulHaUxaVh93mwc8+qLnHEngNAAAAAAAAAAAAAAAAAAAAoOsQeg0AQCGZprRjh9TUZO+Hv4bF7qNn6N9fKiuLDncuKrJDmCMDpUMhqbHRHnO7E4c9h0Ok/f74McOwz42sWVkpjRjRvvbYsVK/flJtbfuckhK7nmm2n2uadn+RtSP7DPficMSHYkf2Ehm+XVkpDRsW/Tmvr28P1q6psc/p06d93OuVhg+3A7hzsXevdDDmpkS3267p8cTP371bGjTI7rOLLdy2UG9ufVNWovcTSfmCPgWtYMKxcPg1AAAAAAAAAAAAAABALH/Qr+m/m54y8HrEblO7+sYfjw2+7ujVHpYhBZ2SQomDr4tC0vA90sGB7eckCr5+8LMP6roTrutgNwAAAAAAAAAAAAAAAAAAAACQHUehGwAAoFfbt49g697I6ZTOOCP6mGFIxcWJg639fvtz0tIi+Xz2vs9n7zc1JQ+8TlTvjDPs9cNcLumyy6LnBAL211Rhy5YVv0ntQdmRxzLtJVJ9feLfG62t0p49yftKpb4+PvBasl/vrl3JX2+ioOxOtq1uG4HXncSMDF4HAAAAAAAAAAAAAAA4rMhVpK9M/UrS8aO2m9qdIPA6zCHJkefLEoJOKSQ76FqyA61dIWnE9ujA67Dq8sEyDs8m8BoAAAAAAAAAAAAAAAAAAABAoRB6DQBAIdXWFroDFMq4cdLkydHHHI7kwdeSFArZAc1+v/01FEo8Lxwy7Yj5UW/yZGns2Pj5U6ZIs2fboc+NjfZmWcn7yJbXm3kvYfX1yccaGqRgMPs+Uv1+a221g8ST2b8/+/U6YMXuFQRedxJLvK8AAAAAAAAAAAAAACCxn5/5c91y4i1xxyd+bGrrAMmw2gOoEwkHX3f0qpvI8yODr52mNGa3dGBo8nM/M+4z2vj1jQReAwAAAAAAAAAAAAAAAAAAACgYV6EbAACg1/L77WDhSLHBwOjZZs+Wdu2SDh1qP+ZwSCUldgBzLsHOLpfk8cQHVvfta6/ncNiB2ZEB0B6PdPrp0l//Gh/8bBjxn9Ns+XzRwdeRvcRqbrbnh98Tp9P+GhvCvWuX/T5lY8+e5EHhkrRzp1RZaX/vckl9+rSPtbRkt1YH1TTXRO3va9ynBn9DxueblimH0fE/T/whv4qcRR2uEzSDcjm65q8ercFWBUKBtn1TZpesCwAAAAAAAAAAAAAAjkwt/hYVFxW37f/8zJ9Lku5+925J0uQtpjZVt883LEmGkj522yFJpmQ6ks9JJVFgdtApGUFp0k5py+HAa0/sZTADBmhq9VQ9c9EzqvBU5LAyAAAAAAAAAAAAAAAAAAAAAOQHodcAABSK2x0fKGwSztqrFBVJF18sPfWU1NjYftww7JDoUMgOqM4k/Nrlsj9T4ZDoSGVl9jpFRfZnzO+3t7BAQHriCft8vz8/n8PIgGrTtEOji4ulioroXmI1NtrHGw4HPLvdiYOqi4riQ68PHZI2b5a2b7cDrBsb7ffO5bLfg9JSadAgaejhO/927rSDsGtq7LBtUnLg3AABAABJREFUh8MOAC8rk0aNko4/Xpo8Waqq6njwd5ZMK/q9qWmuiQvCTiZoBrWmZo2GlA1RVWlVzj3srNupjYc2amj5UB3V/6ic63x48EPtbtyt44ccL6/Lm3OdTPlMn4JW++8ZK/b20a79pQQAAAAAAAAAAAAAAN3Yupp1mvbbaTpn3Dl64bIX2o6Hg6//+eQvtHFw/HmZBl9bDmX1uO5EgddhY3dJu6rtsGuf094ig6+nDj+OwGsAAAAAAAAAAAAAAAAAAAAA3QKh1wAAFIphSH362EG96L0qK6XLL5eefVaqrY0eczrtzbLs4GfTjA6KdjjszemMDpmO1KePdMkl9jqJtLZKzzwj1dXZtUpLpaYme518Bj1blh2ufeGFyXuJ5XTa4dapBIPSqlXSf/4jbdqUfm44SFxqDwkPv3cOR/v3GzdKr79ufz91qvS5z9kB2G53Zr0XSNAM6oOaD9Tob9TGgxslKafg6511O7Xh0AZJ0o6GHZKUU/D1hwc/1Lb6bZKkJbuWdFnwNQAAAAAAAAAAAAAAQDrratZp6sNTFTADenHDi5ozb05U8LWWLNXGwcmDrTMJvjZN+5KUTIKvUwVeH7VdOjSwfT82+HrqJ88m8BoAAAAAAAAAAAAAAAAAAABAt+EodAMAAPRqAwdKJSWF7gKFVlkpXXmlHaqciGFILpcdAO31tm9FRfbxZIHXkyfbdVOFTC9cKB040L7vcEjFxbm/lrDYwOxw/0uXZna+wyH17Wt/TWb1aumOO6Tf/z594HUgIDU32yHfoZC9tbbax4LB1OeuXGmvc8op0oIFmfVfAJGB15JkydLGgxtV01STVZ3IwOuwHQ07tPHAxqzqRAZeS1LADGjJriVqDbZmVQcAAAAAAAAAAAAAACDfIgOvw8LB15L0s/+9UA80vCEpdRi1YaUed0hympIjzbPnU9UYu0uqS/DMc0/I/jqkchiB1wAAAAAAAAAAAAAAAAAAAAC6FVehGwAAoFdzOKSRI6X6ejt8d+/e6HG32w4KRu9w1VXSunXS3/4mHTqUe52+faXPfU6aODH5nKIi6aOPpFWrokOzQyH7s5gPlmV/xr1e+7Ms2a/vhBOS9+ZwtAddJwu8bm2Vnn1WWrbM3k8W+h3uoaVF8vuTj7e22qHcxcWpa23fbv8aXXyxHYJdUdgbBft4+7R9HwgFtHjXYjUHmuUwot+3TYc2qaSoREPLh6at+dGhj+ICr8N2NOyQx+XR1EFT09ZZvW91VOB1W59mQEt3L9XpI09XSRGB/wAAAAAAAAAAAAAAoOslCrwOe3HDizrn5qH6t3eXzIjjhqRkudWGZU9IlWvtPDxoxlyakirsWpJG75Ua+yUf97g8qh47VaXu0jSVAAAAAAAAAAAAAAAAAAAAAKDrEHoNAEB3UFFhb7FBx6NH24HB6D2OP166/HLp3Xel+fOllSszP3faNOm886SZM+0Q51SCQel//1dyOtuPWZbU0GB/bxj2Zlnt35tm4lBoy4r+GhY+LzZM+o037NeYrEe/X9q9O/FYXZ0deN3UFN17ZC/BYPvm97e/hvDXRL0HAvZ8t9uu63TaoduJXu9zz0lLl0rz5knDhyfus5MNKh2kiVV2cHhrsFXPrn1WzYFmuR3uhPPX1azT6D6jNalqUtKaS3cu1Yq9K1Kuu/nQZlWVVOmc8ecknfPq5lf14cEPZSS5LTMQCujt7W/ruunXqdJbmXK9XLzx0RsKKP6mVAAAAAAAAAAAAAAAgFSB15I0arP09uDowOuwtMHXkqwUKdaxwdfpAq9H7JeaU11a4fFo6qRZeurCp+R0JLiOBgAAAAAAAAAAAAAAAAAAAAAKhNBrAACA7sblkk491d5qaqQ1a6QPP5Q2b7ZDn4NBe05lpTR2rDRunHTMMdKAAZmv8e670t690ceam+1g60hut1RaaodAh0L22uGvlhUdiu1wtI+Hw6Ity65bWtpec88eadEi6ZRTsntfamulp5+WGhvtviIFg1Jrqx1yHV43MoQ7WTB3JMuyzw/33twsFRXZwfOxAd1btkgXXCC9+GLBgq+l9sDrvY17U86zZOnlTS9LUsLg66U7l+pvm/6W0ZqLdi6SpITB169uflULty9MW6Ml0KKH3n+o04KvAQAAAAAAAAAAAAAAYqULvB75sVQzWAo57P10odSxDNnh12YGwdepwrElafAhyVeWYkJFhaaOPUnPXPSMKjwVWXYKAAAAAAAAAAAAAAAAAAAAAJ2L0GsAAIDurKpK+vSn7S2f5s+P3g8GJZ8v+pjLJZWXt4dAO532loplSQ0Ndr0wn0/yeKKDo+fPzy70urVVeu45O/A6dr3m5ujeYwOvsxUO8pbsEGy/3+6/srL9uCTt3i1ddpn0yitSRdffPJhp4HVYsuDrbAKvwxIFX2caeB1G8DUAAAAAAAAAAAAAAOgq6QKvh2yXDg1oD7yWJEvZB19LkiOD4GtTyecMqJfM4hQLDB6sqdVTCbwGAAAAAAAAAAAAAAAAAAAA0G050k8BAABAj1JTI61cGX2stTV+XmlpdMhzJgzDPi9WbP0VK+w+MvXGG1JtbfSxUEiqq4sP6+5I4HWyGj6fdOBAdJi3JG3ZIt12W8fXy1IgFMgq8DosHHy9tmatpNwCr8MW7VzUFqKdbeB1WDj4uq61LqceAAAAAAAAAAAAAAAA0kkXeF20X2rqK/kTPAveSvJ9Oo40kx2W5DDjjw+ql9zuJCe5XFJ1NYHXAAAAAAAAAAAAAAAAAAAAALo9Qq8BAAB6mzVrovctS/L7o48VF0vOBHfyZcLptM+P5PfHB0nH9pHMhx/Gzw2FpPp6yYy5+y92jWxDu1PVCoWkQ4fig6+ffVZasCD3dbJuy9I7O97JOvC67fzDwdd/XvNnvbTppQ71smjnIv160a9zCrwOawm06OH3H1bQDKafDAAAAAAAAAAAAAAAkIUWf4um/XZaysDrEo/kcyWvYSm7wOuwtMHXig6+HtAk7bpPuu/lmHMdDjsJu18/TR08jcBrAAAAAAAAAAAAAAAAAAAAAN0eodcAAAC9zaZN0fuxIc6S5PF0bI1E58eu8+GH6euEQtLrr0cfsyypsTE+lFqyQ64Nw77Zz5Hlj7rhc8NB2YkCs01Tqq2NX/tHP5ICiW+OzDfDMDSm7xgZyj3Q25KlLXVb5HKkuGMzQ7WttR2u8cnqT+alFwAAAAAAAAAAAAAAgEjFRcU6Z9w5iQebpLIiqdXdeetnGnxd1irtfWawNHiw5tQN1n3v9pXDOHz9i9Mp9e2rqUOPJfAaAAAAAAAAAAAAAAAAAAAAwBGB0GsAAIDe5qOPovdjw6hdruwDo2M5HHadVOts3py+zocfSvX10cd8Pjt8OpLLJRUX299HhlUnCsZOJnJuuEZJSfzrCIWkhoboY9u2Sa++mvlaHTS8YrjOGX9Oh4KvJcnr8srtyP3OzY6uL0knDz9ZZ409q8N1AAAAAAAAAAAAAAAAEnnhshd0wYQLog82S1VBqbmo89dPF3zdp1Wql3TrCe3XyMzZ6tV9CyvlKC6R+vcn8BoAAAAAAAAAAAAAAAAAAADAEYXQawAAgN6mri56PxSK3nc687NObJ3YdWL7SGTFivgaiUK6y8ulQCD6eKrAayPDsGa/364dG3zd0hK/3uOPZ1YzTyZVTSpo8DWB1wAAAAAAAAAAAAAA4EgRFXzdLI1ulJq6IPA6LFnwdalf2u+QHKXS3VOb2oOvR4zQnJ88o/sue0LThx5H4DUAAAAAAAAAAAAAAAAAAACAIwqh1wAAAL1NbGh0rEwDodNJVyddH/X10rZt0cdig6YlqbRUMs34eslCr8N9Jeov9pxg0D5WWho/v7k5ev8//5F27Uq8ZicpVPA1gdcAAAAAAAAAAAAAAOBIEw6+Htcg7S+VnGbyMOrO4LAUdcVFcUA6JDvwOuzuaU269baTpH//WzrzTM2ZOEcvXvoigdcAAAAAAAAAAAAAAAAAAAAAjiiEXgMAAPQ2Llfq8WRh0dlKVyddHzt3xteLDbYuLpaczuwDr7MRDNprlJZGH/f54tdZsiT7+h3U1cHXBF4DAAAAAAAAAAAAAIAj1f733lJNefu+05QcZtetbxwOvvYEJX+T5CiT5DDszemQHA7dve8F3frWf7f36HB2XYMAAAAAAAAAAAAAAAAAAAAAkAeEXgMAAPQ2lZXR+86YG+NCofysE1sndp3YPmLt2ZO6niR5PMnHMpFJCHY4ULu4OHq+ZUmBQPTcVaty66ODuir4msBrAAAAAAAAAAAAAABwpDr75kH6oKhWhuyM6TCn1bXB156g5GmSfNV2yLUMI+4alj+s/IP8QX/XNQUAAAAAAAAAAAAAAAAAAAAAeUToNQAAQG8zZkz0vssVvR8MSmYH7+Qzzfaw6GTrjB2bukZNTXzN2HqOwz/Oxq6VSCYB15IdZh0pXNvhiH8NsaHXa9ZktkYn6OzgawKvAQAAAAAAAAAAAADAkeqCbw/Te0X72vYTBV878xR8bRzeEnGHpH4HpIODkl/C3a+4n96/5n0VuYry0xAAAAAAAAAAAAAAAAAAAAAAdDFCrwEAAHqb8eOj92ODnCXJ5+vYGonOj11n3LjUNZqbo/djQ6+dzvbvY4OqY/c7IrKWOyYMOjZse//+/K2bg84KvibwGgAAAAAAAAAAAAAAHKnOv2mwFhTtVGymdWzwtcOSnKGOrWUk+V6yQ7UH7Za2jUwdeL382uUaVjGsY40AAAAAAAAAAAAAAAAAAAAAQAEReg0AANDbTJ4cvW8YUlFR9LGWFimU4118oZB9fqSiInudSMcck75OKpH10oVcx66dq3R1AoH8rNMBk6omaUzfMR2u43V5VeQoykvgdR9vHwKvAQAAAAAAAAAAAABAl7vq2xP0evEeWYYUNJQw+DqSQx0Pvk5U32FJI2qkj8YTeA0AAAAAAAAAAAAAAAAAAACg5yP0GgAAoLepqpKmTo0+5vXGz2tqSh8mHcuy7PNixdafNk0aMCB1Lacz/Vph6cKos30dudZxu/OzTgesrVmrjw591OE6rcFW+U2/LHX8vattrdWrm1/tcB0AAAAAAAAAAAAAAIBMXf9fU/WcZ2PbfqLg60RXReQ7+NohadReacMoAq8BAAAAAAAAAAAAAAAAAAAA9A6EXgMAAPRG550Xve9ySR5P9LFgUGpokEIZ3sUXCtnzg8Ho4x6PXT/V+omUlETvO2J+dI3sKzb0Ol0IdjYiawUC0WOxrytdkHcnW1uzVi9vernDQdWtwVYFzPbXmo/g64XbFxJ8DQAAAAAAAAAAAAAAusStPzlZfzBWxR2PDL62JJlJLonINfg6tpxD0vf6nafzLv9e0nMIvAYAAAAAAAAAAAAAAAAAAADQ07jSTwEAAECPc+KJ0qBB0t697cdKSuxQZ9NsPxYMSnV1UnGxHV4dGzwt2fN9PqmlJX7M4YgPr66ulmbOTN9jVZX08cfRtSIFg/baDocdPh0bth3LsjILw46dEw62Ns34Ndzu6P3Jk9PX7ySdFXgdZsmSoY6FiS/cvlCSdNbYszpUBwAAAAAAAAAAAAAAIJmf/b9z9UDrO0nHLUMKSHKaSnklhEOSQpLpjA+zTsVSe92ve0/Vj7/7UtvY3e/eHTWXwGsAAAAAAAAAAAAAAAAAAAAAPVGC1EIAAAD0eC6XdN110ccMQyovTxwM3dIi1dZK9fVSU5PU3Gx/ra+3jycKvE5W77rr2oOkU6mujt53OuPn+HzJxzJhZXBLYrjXlpbo+YYRH3o9ZUpufXRQZwdeh3W0vmQHX7+6+dUO1wEAAAAAAAAAAAAAAIj14L1X6n8aX5aZbqIhhRzpw6wdkhyh1OHYiViSjq0r1d0/frvt2M/P/LluOfGWtn0CrwEAAAAAAAAAAAAAAAAAAAD0VIReAwAA9FYzZ0qzZ0cfczqligrJkeTHxGDQDppubbW/BoOJ5zkcdp3YMOozz5RmzMisv6FDo/cNIz4su6VFCoXijycK7pYyC7mO5XLZazQ1RR/3eOLXOeGE7Ot3UFcFXocRfA0AAAAAAAAAAAAAALqj3z/0df3X7j8plOkJhhRydk7w9ah90sJBTZozb07U8XDw9YCSAQReAwAAAAAAAAAAAAAAAAAAAOixXOmnAL2Lz+fTxo0btWPHDjU0NKi5uVklJSUqLy/XsGHDNGHCBBUVFRW6TQAA8uPrX5fWrpV27Wo/5nRKlZVSc7MdbJ0tj0cqKYkPhB4yRLr22szrVFRII0ZI27a1H3O744O2m5qk8nI7nDpyzDASh1xbVvKx2J5dLvtYY2P8/JKS6P1TTpEGD07/uvKoqwOvwyxZMrK6lTPewu0LJUlnjT2rQ3UAAAAAAAAAAAAAAAD+9uTtumnrbxVM8pz3VEJOyZkm1NohSSHJzCAke+R+af0I+/sXN7yoOfPm6IXLXmgb//mZP9cds+5QkYtrUQEAAAAAAAAAAAAAAAAAAAD0TIReA5IWLVqkF198Ua+88orWrFmjUCiUdK7T6dTkyZN1zjnn6POf/7xmzpzZhZ2iEFpbW/Wf//xHCxcu1IYNG7Rhwwbt3btXjY2NamxsVFFRkUpLS1VWVqahQ4dqzJgxGjt2rD7xiU9o5syZGjJkSKFfAgAkV1Ym/exn0i23SPv3tx83DKm01A6wbm2V/P70tYqKJK/XDoqONWCAvU5ZWXb9TZsWHXrtdMaHWweDUkNDfCB2smBrKfnxWEVFdu3YoO3iYnu9SFddlVnNPClU4HUYwdcAAAAAAAAAAAAAAKA7eP35e/TlVT9RIIfA67CQU3KakpHiMoxMgq+HH5Q2DIs+lij4msBrAAAAAAAAAAAAAAAAAAAAAD0Zodfo1ebNm6df/vKXWrZsWcbnhEIhrVq1SqtWrdJdd92l6dOn67vf/a4uvfTSTuy0e2pubtaKFSu0dOnStm3Dhg0yTTPpOT/+8Y91++23d12TOQqFQvr73/+uRx99VAsWLFBra2vSuS0tLWppadH+/fu1detWLVy4MGp8+PDhOvXUU3Xuuefq7LPPVr9+/Tq7fQDITnW1dPfd0g9+IO3aFT3mctlB1ZZlBz8Hg1LkwyHCIdQulx0ynciQIXbgdXV19r2NGydVVEj19e3HPB7JNKODq4NBKRBoD7oO95Iq+DpWZP/hGs3N8fOcTqm8PPrYiBHSWV0X3Ly9frtW7V1VsMDrMIKvAQAAAAAAAAAAAABAIS169Qldsuhm+Z0drxVySA5TcuQYfD24Tto0JPF5iYKvAQAAAAAAAAAAAAAAAAAAAKCnIvQavdL69et17bXX6u233+5wrffff1+XXXaZHn74YT388MOaMGFCHjrsfnw+n1auXBkVcL127VqFIoNPe4BQKKTf//73+slPfqIdO3bkpeb27dv11FNP6amnnpLT6dT/+3//T7feemteagNA3lRXS7/5jfTb30oLFsSPG4bkdttbNs48U7r2Wjs4OxdOp3TGGdILETf8GYZdr7ExOtA6HHAd3sLHMhUbjh0Znh3mcEh9+sQfv/PO7N+bHFmWpY8OfdShwGtDhkZVjtLqmtUd7qePt49qW2s7VGP5nuU6ffTpcjn46wkAAAAAAAAAAAAAAMjM2iV/0+cWXKWWPF5uYDok5RB8XdUgbRmUuvbLH76sFn+LiouK89MsAAAAAAAAAAAAAAAAAAAAAHRTpMqh13n++ed11VVXqbGxMa9133rrLR133HF64oknNGfOnLzW7mqBQECrV6+OCrj+4IMPFAgECt1ap1q0aJHmzp2rdevWddoaoVBIu3fv7rT6ANAhZWXSd74jnXyy9PDD0p49udeqrpa+/nVp5syO9zVunDR5srRmTfsxp1OqqJAaGiTTbD8eDr4Oiw2yzkZssLXTaQdeu2J+hL7kEmn27NzXybotQycNO0kr9q3Q3sa92Z8vQ+eMP0eTqiZp1M5R+tumv+Xcy8yhM3XO+HP06uZXtXD7wpxqFLuL9fXpXyfwGgAAAAAAAAAAAAAAZGzHxqU6/ZnPq7ETnlFuOiRZkuPwJSkOQzLsQzIPX4oSDr62HFKfZml7VeqabodbK65dQeA1AAAAAAAAAAAAAAAAAAAAgF6BZDn0Kg888IBuuOEGWR0JwEyhsbFRF154oe6//35df/31nbJGV/j73/9+xAd3Z8M0Td1555264447FAwGC90OABTezJnSccdJ774rzZ8vrVyZ+bnTpknnnWfXiA2H7ojTT5d27pRqa9uPOZ1SZaXU3Cz5fO3HY4OvcxEbeF1cLJWXxx8fPVr66U87tlYO3E63Lpl0iZ5d+2xWwdeRgdeSdNzQ4yQpp+DrcOC1JJ019ixJyjr4uthdrOumX6dKb2XW6wMAAAAAAAAAAAAAgN6pftcuzfzdDNV3QuB1mGlIckguyw68luyvDiM6+Lpvo7StNHUtt8OtlV9fqYlVEzuvYQAAAAAAAAAAAAAAAAAAAADoRgi9Rq/x+OOPd2rgdZhlWfrmN7+psrIyffnLX+7UtdBxPp9PV1xxhf7yl78UuhUA6F5cLunUU+2tpkZas0b68ENp82aprk4KBu05lZXS2LHSuHHSMcdIAwZ0Tj9er3TJJdJTT0mNje3HDUMqLZU8Hqm1VfL724Opc/3/fMNor+H1SiUlkjvBXZKDB0vz5kkVFbmt00Felzer4OvYwOuwXIKvIwOvw7INvibwGgAAAAAAAAAAAAAAZGzZMum551T/+guaOmODDpZKir00xEh0Yu5MQwrJDr6OXCIcfN239XDgdUnyGgReAwAAAAAAAAAAAAAAAAAAAOiNCL1Gr7B48WJ97Wtfyyjw+qSTTtLll1+uk046SaNGjVJ5ebkaGhr00Ucf6Z133tGTTz6p9957L2UNy7L0ta99TRMnTtTxxx+fr5eBPGtubta5556rt956K+NzRo4cqenTp2vs2LGqqqpSWVmZAoGAamtrVVtbq23btmn58uXasmVLpwesowfy++3Q3kgHD0pFRYXpB0eGYFAKhezPiZHvO/dMKRCQ6uvtralJ8vnsz2ooZI/7fPbx+npp/3573+WSnM7c1nQ6k7+Oykrp8sulZ5+1g68j/5x1Ou3w65IS+z0Jvy9+vz0v3XtjWZLDYYdnu93tW7LzRo+2A6+HD48bavY3q95fn+ELTqyutU6NvvZw79Zgq/xBf9t+TXONymrLJEknDz1Zr299XQdbDiatZxiGThx6osrd5dpeuz1ufFDpIJ0y7BT9Z8d/0vY2ecBkfaLqEwnrTOw/UfWt9VpdszpljSJnkT4//vOqb61XfWvH3qtYATMgy2z/bFhxd7gCAAAAAAAAAAAAAIAjQnOz9D//I/3+99Lu3ZKk464xtbc0yfzISwTydBlN6HCd2ODrSr+0zSsCrwEAAAAAAAAAAAAAAAAAAAAgAUKv0ePV19frsssuUyAQSDlv/Pjxeuihh3TGGWfEjfXt21fTp0/X9OnTdcMNN+jVV1/V9ddfr82bNyet5/f7demll2rFihWqqKjo8OtAfoVCIV122WUZBV6PHTtWV199tS699FKNGTMmo/r19fVatGiR/va3v+mll17Stm3bOtgxerSGBmnPHjuk9/DNWW1i94Ewv1+qrbU/N2EVFVJZWcdrm6Z06JC0YYO0caP9+TSM9i3W8uX2OZYlVVdLEybYodD9+9vB0bloarJDrGNVVkpXXiktWiQtW5b4XIejPSze65VaWuzw7kTCr8frlcrLMwvrvuQS6ac/td/vCPsa92nRzkV5CXFeu39tVJ09jXuig7RbpZ0NO9t2S9wlOtR6SL6QL2G9QaWDtLNxp3Y27kw4Hjlvb9PepON9vX1lykwbjt3X21cHWxOHcDsNp4ZVDNOKfStS1shV0ArKlNkptQEAANC9tbS0qLi4uKB1LMuSkYcHEuWrDgAAAAAAAAAcse66S7rzTvu6j8M+cbWpHZUZnh8Oqc7DP7WGDMmUHXztkFQZdOq1r7yq766/Ty9ueDHhOQReAwAAAAAAAAAAAAAAAAAAAOjNHIVuAOhst912m7Zs2ZJyzuzZs7VkyZKEgdeJnHXWWVq6dKlmzZqVct6WLVt0++23Z9rqEa2kpEQnnniixo4dW+hWMnLjjTfqpZdeSjmnf//+euSRR7R+/Xp9//vfzzjwWpIqKip01lln6f7779fHH3+sxYsX66qrrpLH4+lo6+hpGhulHTuig4uBdAIB6cCB+M9Nfb0dot5RK1ZITz8tvf22HXgt2YHW4WDrWJHH9+yR/vUv6c9/tuuEQtmvb5pSXZ0dfJ2I1ytdeql0zTV2sHYqhiGVlNibI8GPvg6HHRReWpo40DvSiBHS449L99wTF3hd21qrBVsW5CXwOhdOh1NDy4fK44z//5lBpYNU4cnsARz9ivtpUOmghGN9vX1VXVadUZ1BZYPUz9svvk/DqVF9RqnIWZRRHQAAACBTzS3NalKT9rfs71Cd/S371aQmNbc0Z32uaZmq99cnfRhNpnwhn+r99TItHuYCAAAAAAAAoBfasUOaNk364Q+jAq9PuNLU5vhLEdKz1B6A3QGWIQUNqTgkvXj+sxo37XS9cNkLumDCBXFzCbwGAAAAAAAAAAAAAAAAAAAA0NsReo0ebe3atXrggQdSzjnxxBP117/+VZWVlVnV7tOnj1566SWdcMIJKefdd999WrduXVa1uzuv16sZM2boG9/4hh577DGtWrVK9fX1euedd3TKKacUur20nnvuOT344IMp58yaNUsffPCBvvrVr8rlcnV4zeOPP15/+MMftGPHDl1++eUdroceZO/eQneAI1FDQ+Lw6fCYmWMwWmur9Le/Sa++ageyJxK7rmUl7qWxUXr9dbtea2tu/dTXJ3+dkvSJT0j//d/S3LnS+PGpa7nddrh1SYnkctlbWZnUp49UlCaA+ZRTpEcekf79b+nMMxNOWbZ7mSwzD3dIdkCi4OtsAq/DEgVfZxN43bZ2TPB1dwm8NkVwIAAAQE/T3NKsZrWHVOcafB15XrOaswq+Ni1TDf4GhcyQmvxNOQdf+0I+NfmbFDJDavA3EHwNAAAAAAAAoHd57z1p4kRp9eqow7MuM/VBdpctxMvDZR1uS/rjSb/WtE9/oe1YbPA1gdcAAAAAAAAAAAAAAAAAAAAAIHU8yRXoxn7yk58oGAwmHe/Xr5+eeeYZlZSU5FS/tLRUzz77rKZNm6ba2tqEc4LBoH7605/q6aefzmmNQvN4PPrEJz6h4447Tscdd5ymT5+uY445Ji9B0IWwY8cOXXvttSnnXHLJJfrjH/+oonQhqDkYMGCABgwYkPe6OEIFg5LfX+gucCRK97kJBCSPJ/WcWHV10rPPSgcPJh63LDtMOzbk2jDszeGwv8bauFHav1+65BIpkwdMOBztdSUpFEocSu1w2FtRkTR9ur0dOiRt3ixt3y7t2GEHgIdCktMplZdLw4ZJw4dLY8faNerrpW3b7HPq6ux5JSXSgAHS5MnSlCnSCSdIgwenbXt/c3SoXsAMpH+tKZimqZAVaj9gKaObL52GU0PLhmpX4y5VeipVUVSR002b/bz9JEva27xXfT19VV1anVOdcHh2na9OoypHqchRlJebSFOxTEtWqrB0AAAA9Cixgddh+1v2a0Bx5v8Gkygou1nNUotUUpz63w4jA6/DmvxNUpGiHkqTTjjwOiwcfF1eVC6HwfMrAQAAAAAAAPRw774rnXGG5It+qOBXzzL1/tA8rWFJSnB5SybcpvTElB/rjC/cFDf2wmUvaM68OXr5w5e14toVBF4DAAAAAAAAAAAAAAAAAAAA6PWOzNRaIAMfffSR/vKXv6Scc+edd2r48OEdWmfkyJH6yU9+om9961tJ5zz33HP6n//5H40aNapDa3WVo446Sr/97W81ffp0TZkyRW63u9At5c3NN9+sQ4cOJR2fPXu2/vSnP/Wo14xuLFFAMJAJ00w9HgqlHo9VWys9/bTU2Jh4rWAws5pOp+RytQdXS3ZAdm2t9NRT0uWXpw++Hjq0vYZpStXVUnFx/LzRoyWvN/74zJnp+0xm3LjMgrkT8Aejg8hX71utlkBLzq1sr9+uel991LHSotKMzy/3lMvo4J8xpUWlGlI2RE6ns0N1xhSNkWmacji6JqTP6XTKMttDryODBwEAANCzJAu8Dss0+DpR4HXbGmmCrxMFXodlE3wdG3gdRvA1AAAAAAAAgF5hxw7prLPiAq+/9WlTf50keUJ2VnUgH/9MmkPwtcuS7hl1rT53xe1J57xw2Qtq8beouCjBdS4AAAAAAAAAAAAAAAAAAAAA0MuQkoEe64EHHlAoRUDn+PHjdc011+Rlreuvv15jxoxJOh4KhfTAAw/kZa2uMGnSJF1zzTWaPn16jwp/fvvtt/XnP/856Xh1dbXmzZvXo14zujmnM3FoL9CVWlul556LD7y2LMnvt28mzDREOxSy5/v99vmRGhulZ5+118tEqt8bTqfkSR8alxWHQyrNPFS6s5UXlXfo/I4GXod1NPA6rKsCrzNhZHvnKgAAALqldIHXYakCrTMZl+zg6+aW+LVSBV6HNfmb5Av5ko5LyQOvw8LB16aV5gFIAAAAAAAAAHCkOu88qTn632F/cLKpp6a17xeFJHe+/pnUSj8lzCnprsFf0v933cNp5xJ4DQAAAAAAAAAAAAAAAAAAAAC27pM+B+RRKBTS008/nXLOzTffnLcgR5fLpRtvvDHlnKeeekqmSTBNId16660pxx988EH179+/i7oBDquulvIUTgvk5I03pNra6GOmmV3Ydaxw+HXs/+/V1trrZaJfv+S/NwYPzv/vm6FDJZcrvzU7YFDZIHndhOJ3BsPBn7kAAABHukwDr8OSBVtnEnjdtmZM8HUmgddhqYKv0wVehxF8DQAAAAAAAKDHuusuafXqqEO/OtbUI8fHTy0KSZ4u/GdSh6Tvl52j67/1x65bFAAAAAAAAAAAAAAAAAAAAAB6AEKv0SO98cYb2r17d9Jxr9erL33pS3ld86qrrlJRUVHS8V27dumtt97K65rI3L///W8tWrQo6fjJJ5+sOXPmdGFHwGHFxdKoUfZXwq/R1T78UFqzJvpYOPDashKf43BIbrdUVGR/dST5cdKyEtdZs8ZeNx232w6iLilp/73h9UojRkjl5enPz5TXK40ZIw0cmL+aeeAwHDp6wNEaUDJALkf3CeMGAAAACi3bwOuw2IDrbAKv29Y+HHydTeB1WKLg60wDr8MIvgYAAAAAAADQ4zQ3S3feGXXod5NN/fLU5Ke4QpInx+e4R0lyaUykb3hP0g9++Pc8LAYAAAAAAAAAAAAAAAAAAAAAvQsJeuiRXnrppZTj5557rsrzGZgpqU+fPvrsZz+rv/71ryn7Ov300/O6LjLzq1/9KuX4D3/4wy7qBEjA67WDry1LCgSix4YPt8eBSAsWRO/HBqYffbQ0bFjqGsGg9PTTdnh1mGVJTUkC14qKJJdLcjrtQOqwUMj+3AaDkt8ff57PFx/qvnSpNHeufWzLluj5Y8dG1x83zg65tqzkAdu5cjjs19MFRlaOVFVpVfYnDrW/tAZbZZkZ3G0J/eTtn6gl0NK2HzJDsjK5UxUAAADdXq6B12H7W/ZrQPGAnAKv23pQs5pbm+XI4XmSTf4mqUjyOD1ZB16HhYOvy4vK5TB4piUAAAAAAACAI0/IDMnpOHy9xl13SS3t/43/8QmmfjxbChlJTj7MdfjZgL5OvOzjK9YU/fzHCztvAQAAAAAAAAAAAAAAAAAAAADowQi9Ro/02muvpRw/99xzO2Xdc889N2Xo9YLYkFJ0iZqaGv39739POj5q1Ch95jOf6cKOgCQMww4VjuT1EnqNeOmCmj2e9J+bf/9bqqmJDqNubrbDpWPX8niiA6cjzzEMeywciu3z2UHYYZZl35xYWtp+bN8+acUK6cQT41+LyxX9+8Dtjg7mPkIVuYrkcXpyPr8j5/Y2LodLRsRn1JBB6DUAAEAP0NLS0qHA67COBF5HMmXmHHztd/oVCAXST04iHHxdUVQR9bMvAAAAAAAAAHR39b56XfH8FZo7ba7mTJwjPfZY29hfR5n6/mekYAb/7Bl0SH6n5AlKvo5cCW1JSrDe5/yj9OCvVnagMAAAAAAAAAAAAAAAAAAAAAD0boReo8fZvXu31q1bl3LO7NmzO2XtM888M+X4mjVrtGfPHlVXV3fK+kjsueeeUzAYTDp+2WWXyeHIPqQIAI5o8+dH7weDdmB1JKfTDs/ONETN4bDnt7ZGB1/7fHZwdmSY9fz5dug1AAAAAGSguLhYTS1NhW6jTS6B12EdCbwO87q8BF4DAAAAAAAAOKLU++p16Z8v1co9K7V893Lpo82as3u3JOlfVaa+eZ4UyOCfXoMOqeXwJSh+lx187Xcpb4/DPqOlWvPu2ZKnagAAAAAAAAAAAAAAAAAAAADQO5Hyih5n8eLFKceHDx+u4cOHd8rao0aN0uDBg1POWbJkSaesjeSeeeaZlOPnn39+F3UCAN1ETY20cmX0sdbW+HkeT+aB12GGYZ8XK7b+ihV2H91IyAyln5QB0zLzOq8z6hRybQAAACBXA4oHFLoFSVJ5UXlB1y8tKpXHmeDvXQAAAAAAAADQTUUGXkv29QY3LPmpXphg6b0Bpq68VGp1pSmi6MBrSQoZduB1UVDKx2MCZzT31Uv37M5DJQAAAAAAAAAAAAAAAAAAAADo3TK4RBw4sixbtizl+LHHHtup6x933HF66aWXko4vX76ckOUu1NTUpHfffTfpeGlpqWbMmNGFHQHoUWpqpDVrpE2bpI8+kurqpGBQcrmkykppzBhp/Hhp8mSpqqrQ3bZ75x3J77d7DQYly5ICgeg5bnf796Zpb6GQ/bWlJXquYUhOp+RwtG9ut72GZNdvbbXXMgx7c7mk556Tpk+X+vbt3NebgXpfva54/grNnTZXcybOybnO0l1L9a+P/6WThp+Ucl5LoEUPLn1Qnxr5KR035LgOr3f9cder2F2c0TmFXBsAAADoqAHFA7S/ZX9B15ckFUlN/qYuX5/AawAAAAAAAABHmtjA6zDT79ONsyxZLsmXQ+B1WFvwdUAKuKWsH99tSTKkKc1levPeg9meDQAAAAAAAAAAAAAAAAAAAABIgNBr9DgrVqxIOT5lypROXX/KlClpQ6/RdRYuXKhAbJBrhOnTp8vpdHZhRwCOeMGgHRo9f760alXquZF/5k+dKp13nnTiiXbgc1eL7HvRIjuEOsyy4ucHAvZmGPa4YbSPRX4fPjf8Z63DYR8zE9xCGAq1nxsM2qHXf/2rHQx+6qnSJz7RsdeYA9Mytbdxr778wpf1Qc0HWrZrmZoCTTr/qOweUNEcaNbyPcs1b808WZalg60HdcaoM+RxxYfRtQRadP+S+7Wtfps+XvWxJOUUPr1011I9seoJWbJ0/5L79c3jv5k2fLqQawMAAAD5Uqjg67bAa8kOnu7i4GsCrwEAAAAAAAAcaZIFXktSqNGv1mIp4JTcpuRMkVadLPC6rZYh+d25B18f1eLVonsbsjwLAAAAAAAAAAAAAAAAAAAAAJAModfocTZu3JhyfPz48Z26/rhx41KOb9q0qVPXR7S333475fixxx6bUZ36+nqtWbNGe/fuVX19vQzDUElJiQYMGKCRI0dq+PDhhGcDvcGiRdJDD0l792Z/7sqV9jZokHTdddLMmfnvL5nYvoPBzM8Nh1qHv0YGXieaFwplXjsYlIqKpE2b7K1fP+lb35JOPjnzGh2wv3m/1u9fr1sX3KqNB9t/fvjOq9/RnoY9mjV6Vsa13tz6pl7e9LIs2e9DTVONXv7wZX161KfVx9OnbV5k6LQkWbL0xKonJGUXPh0ZOi1J2+q3pQ2fLuTaAAAAQL51dfB1ZOB1WFcGXxN4DQAAAAAAAOBIkyrw2tdYJ7ntwGtJCjjsr4mCr9MFXoeFg689AftrpsHXw+qkFQ+1ZDgbAAAAAAAAAAAAAAAAAAAAAJAJQq/Ro1iWpa1bt6acky6UuqPS1U/XH/JrxYoVKcdT/XotXbpU8+bN0/z587Vhw4aUdUpLS3XcccfpjDPO0IUXXqhJkybl0i6A7qqxUXr4Yem11zpea+9e6fbbpdmzpa9/XSor63jNZJL1HQ6oTrafSqLw60zPt6zU5x08KN1xR5e8NweaD2jNvjX6wes/iAq8liTTMvXLd38pSRkFX7+5JTrwOqzOV6e3tr6lT4/8tKT40OmwbMOnY0Onw1KFTxdybQAAAKCzdFXwdaLA67CuCL4m8BoAAAAAAADAkSZV4HVTY52KGpvVGnMFc6Lg60wDr8NChuRzS96A/TVd8PWgRmnpI5IeynwNAAAAAAAAAAAAAAAAAAAAAEB6jkI3AOTT3r171dramnLOkCFDOrWHdPWbmpq0b9++Tu0B7T744IOU42PHjo079tZbb+nUU0/V8ccfr1/96ldpA68l+9f1X//6l2677TZNnjxZJ554op5//vmc+wbQjezZI914Y/LAa8uSAgGppcUOmQ5vLS328WSB0K+9Ztfds6fr+7as6C1bliWZpr1le374nFRrd/Z7I2nDgQ0JA6/b2jwcfP3mljdT1nlzy5v65bu/jAuBDqvz1emtj9/SwZaDCUOnw8Lh00t3LU25XrLQ6bBw+HRLoKXtWLLA665YGwAAAOhsqQKpu6q+x+lRaVFpp6xP4DUAAAAAAACAI03CwGvTlFpb1VS7W8V1zWpNcvVywCGFDo+FHHbodbYXOocMqdUteQKSM8W8fs3Sygekioq+Wa4AAAAAAAAAAAAAAAAAAAAAAEiH0Gv0KLt27Uo7p7q6ulN7yKR+Jn2i45qamrRtW+KAz7BBgwa1fV9fX68vfelLmjVrlv7zn/90aO1Fixbpwgsv1KmnnqrVq1d3qBaAAtqzR/rOd6REf24Hg3a49aFDUkODHXLt97dvLS328UOH7HnBYHyNXbukW27Jf7hzTU3qvjMJnu5M4XWDQam5WQqF4ueE35sdO/K+/P7m/fruq9+NDry24jfTNPWLd36hBZsXyB/yx20LNi/QL975hUzTlBXzv0i1rbX69aJf6+O6j1P2lS58Ol3odFhk+HS6wOvOXBsAAADoKp0VfJ1N3c4IvibwGgAAAAAAAMCRJmSGdMXzV7QHXvt89rUzNTVSXZ1KGqQmd+oaAYcUcNpfJclpSo4sL29JF3xd0Sotul+qcDiksrLsigMAAAAAAAAAAAAAAAAAAAAA0iL0Gj3KgQMHUo5XVFTI4+ncoJiSkhKVpbkJIl2fyI8dO3bIShPmWlVVJUlav369jj/+eD355JN57eE///mPTjjhBD3yyCN5rQugCzQ2Sj/4gRT7Z7ZlSU1NUn29HW6dCb/fnt/UFB8yvX+/vU5jY376bm2VfvWr1H2bZn7WyodAwH7tLS2J35u5c+2e86TeV6/L/3J5dOC1pKAVTLgFzIB+8c4v9MwHz2jzwc1t2zMfPKNfvPMLBcyAglZQpmVGbeFwaMuyFDADagm0qCnQlPb/l5KFT2caOh22rX6b7n3vXt27+N60gdedsTbB1wAAAOhq+Q6+zqWex+mR25kmrSVDbqebwGsAAAAAAAAARxynw6m50+bK4Q/Y133U1rZdX+NoNdWY4T97hoyYulb2wddFIcnQ4eDriHPL/NIbv5eGGYcvoR4/PrvCAAAAAAAAAAAAAAAAAAAAAIC0XIVuAMingwcPphyvqKjokj4qKirUmCK8NF2fyI/du3ennVNRUaH169fr05/+tPbu3dspfbS2tuqaa67Rxx9/rDvvvLNT1siXBx54QA8++GCnr7N58+ZOXwPosIcflnbtij4WCkkNDbmHRvt8dshzebnkdLYf37VL+u1vpe98J/d+w954Q9q3L7p+bN+GER8wXQhGxB2Kfr8UDNrvjSviR9SPP5Zuu026554OL1fvq9elf75Uq/9/9u48Pqr60P//+5zZkkwSCBA2EUQRK6iooCJqW6vgWlsqFZe6/LQuVbna2lZvq63a5davtrctxaL12qp1t+LWqsW6tO4LmyyKCyjIIgpkzyznnN8fJ5PMvmUmgeT17GMeyZzzOZ/PZ6K3zYUzr/n07YKui8WgJWnKyCl5R6BjwWvbsWXIkGVbaom0KOgLyjCMzNcVuV7y2u9ufVeScq5X6rWlrvD1pQddqkpfZUHXAgAAAMX4rO2zks9XaPg6ZIUUsSIlWT9iRRSyQoSvAQAAAAAAAOwULNuSx/RIjY2aOf956Q1Lcw6zZHfcruBpt7W9m7cPxMLVdh63QFRGJW/sNhlJgagU8kr+qPTY7dKEZrNr8CGHdG9jAAAAAAAAAAAAAAAAAAAAAIAURK/Rp2zbti3r+Zqamh7ZR651iF73jHyi19u3b9fRRx9dtuB1vF/84hcyTVPXX3992dcq1pYtW7Ry5cre3gbQ+159VXrmmcRjliU1NmaORXu9bmg6FpS2LDfinMy23XlqaxPD1AsXSocdJk2dWvy+339fWrEiMRqda987Ett249zJP5sHHpBOOEGaPr3oqS3b0hkPn6Glm5YWdX0sBv3Wxre0YsuKvCLQseB18j4KCV8Xsl7ntY6jlkiLLNuSJLVEWlTtq3bfxZnP9d1YO97HjR/r5jdv1nenflemYea+AAAAAChSqYPX8fPmG74OWSG1hFtKun5LuEXyi/A1AAAAAAAAgB1aY6hRZzx8hs4ddZJmXvlnae1azVSFJGnOYQ0KtNj6NN9bNw0p220K+YSv44PX8dPWtUt/fVCa2pR0D8Mpp+S5OQAAAAAAAAAAAAAAAAAAAABAvqjPoU9pb2/Pej4YDPbIPqqrq7Oez7VPlEZDQ0POMeecc44++eSTjOdHjRqliy++WH//+9+1cuVKff7552pvb9dHH32k1157Tf/7v/+rI488Ul5vfp8h8LOf/Uz33ntv3q8BQC+IRqU//jHxmOO4MebkcLRhSJWV0sCBbqg5GJSqqtyvtbXu8crK1DUyzTd/fvpQdj4sS/rXv/Lfd5bgco8wDKmiInUfmfZ8zTVSJFL0ch7To3P3P7db8WVHjpZvWZ53BNpjeNIe93v8WYPXxa4XYxiG/B5/5/OAJ5B38Lq7ayfsQ4a+NOZLBK8BAABQVuUKXhcyfzmC1zEt4RaFrFBZ5gYAAAAAAACA7moMNWr2Q7P11rrXNefvl2iB3uk8N3NthSZ9YmtLtWTkc/uBkfQ1A48jmRnmSxe8lqSKqHTX/dIXNyVNPnKktP/+eWwOAAAAAAAAAAAAAAAAAAAAAFAICnToU8LhcNbz+YaJuyvXOrn2idJoa2vLOea5555Le3zw4MG6+eab9dFHH2nevHk6/vjjtffee2vQoEEKBAIaPXq0Dj74YF1++eV69tlntXz5ch177LF57es73/mO1q1bV9BrAdCDXnlF2rw58Vhrq2QnvSPO63XD1pWVkpnhVyrTdM8PGOCOj2fb7rzxNm2SXn21uH2//77U2JjfvgcMkDzpg8w9xuNx4+DV1al7Sfez+fhj6Z//7NaSM/eeqbnHzc0rwuwxPPKa3rwfaecwPfKZvoRjlb7KhCB1ufg9flX5qhT0BeXz+HJfUGKGDJ2131maMnJKj68NAACA/qPcwet81iln8DqG8DUAAAAAAACAHVEseL104xJp2zbZtqU5hzVowS6NUnOzLpu4Ua+P6IpQZw1fJ4eu8whfe5LmyxS89tvSnxZIX9qs1A9nP++87AsBAAAAAAAAAAAAAAAAAAAAAIpC9Bp9CtFrxGtvby/qukMOOUTvvvuuvvOd78jMFLJNstdee+nJJ5/U/Pnzc17T0NCgOXPmFLU3AD3giScSn0ejUigpLub1SjU1+YejPR53fPL/PoRC7vzZ1s/XkiWJz0ux755gmm78OnlP6X42d9zR7eVm7j1Tv57x65zhayPXuyfzFB++7qngteTu/9sHfFvnHXBeyV5LIWsTvAYAAEC59VTwOtt6PRG8jiF8DQAAAAAAAGBH0hm83rTU/ZD2aFSybdmOrTlfbNG3jmjSPfu5Yz1OjvB1ptsactzuYMaFrzMFr72O9Ou/S8euU+qH2ldWSj/8YfZFAAAAAAAAAAAAAAAAAAAAAABFIXqNPsW207xrIY6nhyKfudaxLKtH9tHfRSKRgq/50pe+pGeeeUaDBw8uas0LL7xQf/3rX3P+O/Doo4/qlVdeKWoNAGW0ZYu0dGnisXQB/WBQMgoMCRuGe12y5PmXLHH3UYjGRunjj7PPK3Xt27LcR2+yLCn2v9uGIVVVpf5Mk1/Diy9KGzZ0e+mT9jpJPzj0BznD16XiNb06bPRhCngCPbJefHR6ysgpOmu/s3osfE3wGgAAAD2hp4PX6dbtyeB1DOFrAAAAAAAAADuChOB1c7PU2io5XTXrYKP02ETJirtVIWP4OtftDHmEr6syBK89jnTdM9Kp7yn9fT4/+Yl7vwoAAAAAAAAAAAAAAAAAAAAAoOS8vb0BoJS83uz/Skej0R7ZR651fD5fj+yjvys0cj506FA9+OCDqq6u7ta6p512mpYuXaobbrgh67ibbrpJf/vb37q1VqnV19drwoQJZV/ngw8+UChEpAk7oBUrEp87jhQOJx6rrJSK/RAFj8e9vq2t61g47K4T/+a6FSukL385/3k/+STxea59R6Nd6zmOepxhuI9IpGtPpikFAlL8fzeEw24YO/7n/cYb0te+1u0tHDn2SEnSja/cKNvJ/qEZ3WHI0KRhk3TMHsdo8vDJunPZnXJUvp95uuh07PveWBsAAAAotd4KXsevX+Ov6fHgdUxLuEXyq8c+VAcAAAAAAAAA4nUGrzcucT+kvbU14XzNdmnTIPf7qCnJduPTUsdX2z1uSPnfwZBlsM+WPBmC1z/4j3TB2+q6TyXefvtJP/xhvjsAAAAAAAAAAAAAAAAAAAAAABSI6DX6FL/fn/V8T0WvI5FI1vO59onSKPTnPH/+fNXX15dk7euuu05PPPGEViQHdOM89thj2rhxo0aMGFGSNUvhkksu0SWXXFL2dSZOnKiVK1eWfR2gYO+9l/g83f9uBLoZFgsEEqPXsXXiPxDh/fcLi15v2pQ6X7p1YyzL/WoYvRe9ju0jPmjt8yVGr6XEMLYkLVtWkui1FBe+fvnGksyXLBa83qVmF0nlj09ni0735toAAABAqfR28DqmKdwkU2avrU/4GgAAAAAAAEBv6Axef7JI2rYt5f6UmmZp86DEPnW68LUtyYoNcORGrXNJE772OOmD15J00WvSFW/K/RD2ZMGg9PjjeSwKAAAAAAAAAAAAAAAAAAAAAChW75U5gDLwxQdD0wiHwz2yD6LXO4ZCfs5TpkzRzJkzS7Z2IBDQT3/606xjotGoHn300ZKtCaAEPvww8XlyPNrrTf9muEKYpjtPtnU++KCwObdsSXxuWYnPk/cdv56RzzsHSyh+veTXnc/PJsuHCRTjyLFH6vvTvi8jr3dQ5i85eB0zZeQUnbXfWWVZL1d0ujfXBgAAALqrLfnDg3qZrQwllTz4PNn/DDMf7dF2Ob3xIUYAAAAAAAAA+qXE4PVW996UuD+jrNwqfVqjtH9yGjUly0j9vlO+f9SZdJ1lSFaa23j+v0XSta8Y6e/xCQSkhQulUaPyXBQAAAAAAAAAAAAAAAAAAAAAUAyi1+hTqqurs55vbm7ukX00NTVlPZ9rnyiNYDCY99jvfOc7JV9/5syZGjFiRNYx//jHP0q+LoBuaGhIfJ4cj/Z4SrNO8jzJ6yTvI5fW1sTndtJbCJPXiw+j9Wb0Ol2gLdfP5rPPSr6lI3c7sqQxaEOGDhxxYErwOqbU8elCotO9uTYAAADQHZWVlapSVbfnGVI5pAS7kcwi/2g96A+qxl+joD//P7dK5jE9qvHXyOjp/38OAAAAAAAAQL9k2ZbOePgMLd24RNq2TbLshHs+fI3StsFpYtZxoqYU8bhf0yoyfB0xE8PXX1sp/b9/m+nvhwkGpeeekw45JM/FAAAAAAAAAAAAAAAAAAAAAADFInqNPmXQoEFZzzc2NvbIPnKtk2ufKI18f86BQECnnXZaydf3er361re+lXXMq6++WvJ1AXRDNJr9fKmCYrnmybWPZMlh6OSYdPJ66WLTvSHdPnLtNRIpy1amjJyiifUTSzLXLjW7aFTtqB5bb2L9xIKi0725NgAAANAdVZVV3Qpfx4LX3QlfV6lKgyoGyWMW/qFIQX9QAU9AkhTwBIoKX8eC16bBH+0DAAAAAAAA6Bke06Nz9z9XZmOTe0+L3RW9NtqkbXVufDorI3sUW1J+4es0Y2Lh62Pel277Z4aN7LeftHIlwWsAAAAAAAAAAAAAAAAAAAAA6CGUMdCnDB48OOv57du398g+Ghoasp7PtU+URr4/5wMOOECVlZVl2cO0adOynt+yZYvWr19flrUBFMHrzX6+VLHoXPPk2kcyT1JsLVc4ulTx7u5Kt49ce/X5yrKVNze8qRVbVpRkrk+aPtH6xuz/3V7K9VZsWaE3N7yZ9/jeXBsAAADormLD18mh62LC11WqUlVllUzDVI2/pqDwdXzwOqbQ8DXBawAAAAAAAAC9Zeaj72rugnaZdtd9HXZYag5K0Y6gtZPpdhQjv561pOwDs5wLtkknv5dmA5WV0i9+IS1eLI3K/gHmAAAAAAAAAAAAAAAAAAAAAIDSoY6BPmXIkOyxmlAoVPbw9datWxUOh7OOIXrdM3L9+xAzderUsu3hkEMOyTnmgw8+KNv6AAo0YEDi8+SYtGWVZp3keZLXSd5HLlVJwTcz6Ve85PWSQ9I9FcHOZ91cP5s8/7u9EM+tfU53LrtTTv5vsczKkaNFGxfpk6ZP0p5/c8ObJV/vzmV35hWf7s21AQAAgFIpNHydKXBdSPg6FryOKSR8nS54HZNv+JrgNQAAAAAAAIBe0dgozZkj/eQnmrnS0dwnDZmOFApLTZVSJO6PLC1DcpL/CLOQ4HVMuguyTDKgTbIqpDnHOVqwV8fAkSOla66RPv1UuuqqQncAAAAAAAAAAAAAAAAAAAAAAOgmChnoU0aPHp1zzObNm8u6h3zmz2ef6L58f84TJkwo2x5GjBihgQMHZh2zbt26sq0PoEC775743OtNfB6NSrbdvTVs250n2zp77FHYnPX1ic+TQ9HJ+05er7ck7yOfn83EiSXdwnNrntNNL99Usgh0jCNHSzcvTQlflzo6Hb9ervh0b64NAAAAlFq+4etcYet8wtfJweuYfMLX2YLXMbnC1wSvAQAAAAAAAPSKdeukY4+V7rmn80PMZ75r6L+fkEKVUsQj2WZij9pSXPi6mOB1jJPh+yTV7ZIdMCTTlB3wa84p1Vrw+I3u3q+9NvWD5AEAAAAAAAAAAAAAAAAAAAAAPYJKBvqU6upqDR48OOuYjz76qKx7WLt2bdbzQ4cOVTCYOWKD0qmpqcn574OknFHq7qqrq8t6fuvWrWVdH0AB9twz8Xm6OHQo1L010l2fvM64cYXNOXx49vmS102OYmdiGO6jEIVck7yPSCR1jM+X+Hy//QrbTxbPrXlON75yo2x1M2SeQXL4ulzR6fj1MsWne3NtAAAAoFxyha/zCVrnGpcpeB2TLXydT/A6JlP4muA1AAAAAAAAgF7x8cfS174mrV0rtbZ2Hm6ybd0wQ7INyZBky41cJ4evLbMbwesYR1knCYak1oDc+2aGDZMGD5ZdU6057/xGC1Yt6O7qAAAAAAAAAAAAAAAAAAAAAIBuoJSBPmfs2LFZz7/33ntlXf/999/Pej7X/lBau+++e84x5Y5e55q/Ne5NQQB62cSJic8NQ/L7E4+1tUmWVdz8luVeH8/vT41E77NPYfPuskvi81z7To5iZ4pUO07289muSSd5nvigtW2nBsH9fslM+nX14IPz30sWncFrpzzB65hY+PrpD54ua3Q6fr3k+HS5g9fZ1gYAAADKLVP4Ot/gdbbxuYLXMenC14UEr2OSw9cErwEAAAAAAAD0isZG6dRTpU2b3Ps5wmFJbvB6/4ulbVWSx5E8dlf42k6KXDuGZBX4OevJjI5HOlVhqc2Ugl5/yjnbsTXnyTmErwEAAAAAAAAAAAAAAAAAAACgF1HLQJ8zMTlYmuTdd98t6/q55s+1P5TWPnmEYysrK8u6h1zzR6PRsq4PoAD19dKkSYnHKipSx7W0ZI87p+M47nXJkufff39pSGFxNtXWSqNHZ59X6tq3x1NY+LqY15rMMLrmiu0hNs5xpNbW1OuSX8Phh0sjRhS2lzQee/exHglex0TtqF76+CWFrFDuwSUQH5/uqeB1urUBAACAnpIcvi40eJ3uunyD1zHx4etigtcxsfA1wWsAAAAAAAAAveaaa6S1a93vO4LXknTIhdKn1V3D4sPXjlLD1+pG+NrjdEzqpIavA1EpakhBr5n6YeodbMfW7Utul2UX+cH2AAAAAAAAAAAAAAAAAAAAAIBuoZiBPufAAw/Men7x4sVlXX/RokVZzx9wwAFlXR+JJk+enHNMQ0NDWfeQa/5yR7cBFOjEExOfe71SIClWFo1KTU2Slecb4yzLHZ8cuQ8EUuPTyevna//9E5/n2ndyUDpT9Lpc/H43cm3bbow7+WeZ7mdz9tndXnbBqgW64p9X9Fjw2rItReyIJKkt0qawFc5xRWk4cnTb4tv0f4v/r8eC1/FrE74GAABAT6uqrFJQwaKD1zFDKocoqGBBwesY0zBV668tOngdE/AEVOuvJXgNAAAAAAAAoOctXCg9+GDX8457XfY/19a6AanDM4avY7cqFBG+9tqSz3K/qmMuo2M+X9S93STg7fjzU58v7RyThk/S3d+4Wx7TU9jiAAAAAAAAAAAAAAAAAAAAAICSoJqBPidX9HrJkiWy8o2UFigajWrp0qVZxxC97llTpkzJOWb79u1l3cO2bduynq+uri7r+gAKdOih0rBhiceqqiQz6demaFRqaJDa2txwczq27Z5vaEgNXpumO2+84cOlqVOL2/e4cVJtbf77jkZTQ9flCl8nz2uakscjhUJSc3Nq8Drdz2b0aGnGjG5tY8GqBZrz5JxeCV7H9FT4OmyF1RppVUukRRErkvuCEiN8DQAAgN5Qqg8W6848Ron+/6pSzQMAAAAAAAAAeYtEpKuvTjl26LdsfTAo82WeuCh1d8PXHqcrdh3/vSRVRCRfJC54LaV+oLrc4PX9s+5XbaA25RwAAAAAAAAAAAAAAAAAAAAAoGcQvUafM2XKFFVUVGQ839zcrLfeeqssa7/++utqbW3NeL6iokKTJ08uy9pI74ADDlAwGMw65tNPPy3b+pZlaevWrVnH7LLLLmVbH0ARvF7pO99JPGYYUk1N+ih0W5u0fbvU2Ci1tEitre7Xxkb3eFtb6jWZ5vvOd9K+GS8vHo901FH577u93Y1yxx6O4z7KITZ3/BpNTe4ektfMtOef/1zy+YregmVbun3J7d0KXpuGqUN2OUSmkd+v0JaT/kM2wlZYTh4/a0OG9qnfR4YKi905jpMQ1g5Zoa43kuap2LUT9iFHL3z0Qo9FxgEAAAAAAAAAAAAAQDc8/bS0bl3CoaNntmv58OyXWYbkxN1eUGz42pBkK3FcLHztt6XKkOSpSLpnw+9PeErwGgAAAAAAAAAAAAAAAAAAAAB2DESv0edUVFTosMMOyzpm4cKFZVn7mWeeyXr+iCOOyBrkRun5/X59+ctfzjrmjTfeKNv6y5cvV3t7e9YxY8aMKdv6AIo0dap09NGJxzweqbZWMjP8+hSNSqGQG3IOhdzn6ZimO4/Hk3h8+nTpkEO6t+9x46SJE/Pfd3xYulzB63TsDBHkTD+bU05J/edRII/p0d3fuFuThk8q6nrTMPWDQ3+g6758nX5w6A/yCl/7TF/KOI/pUdAXlJEuRB7HkKGz9jtLF06+UGftd1ZB8WnDMBT0BeUxPZ3rFdKu7s7a8UbXjtbFUy7OOxIOAAAAAAAAAAAAAAB60R13JDz9+hc36bVds19iGZJlpn4Wd6HhayNuXNRMHBeMSN97TrKr0gSv4+6HIXgNAAAAAAAAAAAAAAAAAAAAADsOCnTok6ZPn571/MMPP1yWdR966KGs52fMmFGWdZHdsccem/X8q6++Wra1c80dCAT0hS98oWzrA+iGiy6SRo5MPObxSAMGSIFAcXMGAu71yVHnkSOlCy8sbs5kX/mKNGxY4rFs+84RXy45w0j/qKiQBg5M/dmMHStdf31Jlq4N1Or+Wfdr36H7FnRdLHh95NgjJUlHjj0yr/C1YRgJ4etCg9dTRk6RJE0ZOaWo8PVeg/bSXoP3yrleqdeW3OD1pQddqkpfZUHXAQAAAAAAAAAAAACAXrBhg/TSS51Pzzhsi/61W/YPUM8UvI7JN3wdH7yOiYWv/bb0pwXSj5aYmvvSAJnx46qqOr8leA0AAAAAAAAAAAAAAAAAAAAAOxai1+iTZs2alfX8okWL9O6775Z0zeXLl+vtt9/OeN4wjJz7QnmcfPLJ8iRHVOOsWbNG77//flnW/uc//5n1/AEHHCCfz1eWtQF0U3W19MtfSkOGJB43DCkYlGprJb8/v7n8fnd8MJgamR4yxF2nuro0+66okK64Iv99x6LTpZJtvnTnsv1shg+X7r/fPV8itYFa3TnzTo0fND6v8cnB65hCw9eVvsqigtcxhcanR9eO1mWHXKbLDr5Mo2tH53VNKdcmeA0AAAAAAAAAAAAAwE7k9dc7v/3OlM/02B7RzDVr5Q5ex+QKX6cLXndea0hnvSYdu06S36+Zayu6wtceT+eHvxO8BgAAAAAAAAAAAAAAAAAAAIAdD9Fr9El77LGHpk6dmnXM3LlzS7rm73//+6znp02bpt12262kayI/I0aM0PTp07OOmT9/fsnX3bBhgx577LGsY4455piSrwughIYPl266SRo5MvWc1+uGquvqpJoaqbLSDTjHHpWV7vG6Onec15s6x8iR7vzDh5d230OGFLbvQMB9xAeZY4Hq+Ef8udg1ppl5TOxhml3j8/3Z7Lqr9Nhj7tcSqw3U6pdH/TJn+DpT8Dom3/D1wIqBunjKxRozYEzWcZmi0zH5xqfjo9OVvkpdetClOcPX5VgbAAAAAAAAAAAAAADsWMLRcPoTy5ZJkq6c9Ln+OiGSdQ7LkKJ5BK9jHMUFspPC15nmMCUNbZDuOlRasLch+XyS1BW+rh0gieA1AAAAAAAAAAAAAAAAAAAAAOyoiF6jzzr33HOznv/zn/+sjRs3lmSt9evX66677so65pxzzinJWijOt7/97azn//znP6u5ubmka/7xj39UNBrNOmbmzJklXRNAGQwfLv3+91KmeL7R8ca6yko34Bx7VFa6x40MkeDp0915Sx28LnbfsQi13595z4bhnh80yB1fUyMNGND5xsK0AgFp8GB3XG2t+wgG3eMejxvEjn94PNKsWdLzz0tjx3b7x5BJtb86a/jaMIysweuYWPg6Uwx6QGCADhl5iAZUDMgan84VnY7JFZ9OF53OFb4u59oAAAAAAAAAAAAAAGDHsL5xvXb97a66cuGVqSdXrNAvJmzT/EkZotgdLEOKeCQn+2dmp782PnztdM2XPJchafjnUlOtZBvSnOMcLdjL7jw/8+CzNPfrt2ryyMkErwEAAAAAAAAAAAAAAAAAAABgB0X0Gn3WmWeeqaFDh2Y839raqquuuqoka1155ZVqb2/PeH7YsGE688wzS7IWijNz5kyNH58+bCpJW7du1fe///2Srbdq1SrddNNNWcccdNBBmjRpUsnWBFBG1dXSFVdI117b/Uj18OHuPFdc4c5bToXu2zTdCHZFRWr42jDc48nnDEOqqnIfptl1zOPpCmN7ve7zXI+xY6W77pL++Ec3jl1msfD1noP2THypMvS9qd/LGbyOOXLskTp818NTYtCx4LXP40bBM8Wn841Ox2SKT2eLTvfm2gAAAAAAAAAAAAAAoHetb1yvA245QJ+1fqabXrkpJXz9h+hrunFKu+wM10sdwWuvG6l20sSq82GZqdclh69HbpUa67qe24Y058ttWrBbu3tvyfXXa+beM/XI7EcIXgMAAAAAAAAAAAAAAAAAAADADoroNfqsiooKXXbZZVnH3HnnnVqwYEG31nnggQd0zz33ZB1z+eWXKxAIdGudtWvXyjCMrI9rr722W2v0ZaZp6r//+7+zjrnlllv01FNPdXutcDiss88+O2sIXZK++93vdnstAD1s6lTpttukH/9YKjRav//+0tVXu9dPnVqW7WVU6L69XjdiXVHhRqsrKtznXm/ma3w+N7K9117SvvtKAwdKfn9++zv8cOlPf5L+8x9p+vT8rimRan+1fvmVX3bGoGMR6C/t9qWC5hlbNzYhfD2wYmBC8DomOT5daHQ6Jjk+nU90ujfXBgAAAAAAAAAAAAAAvSMWvN7atrXzWHz4+u7n5umaPT+SlWWOzuB13LGiw9dprosdG7ldahiYeo1tSHO+2KwFvzqn84PUPaan8MUBAAAAAAAAAAAAAAAAAAAAAD0iS7kQ2Pldfvnlmj9/vtatW5dxzNlnn61ddtlFBx98cMHzv/rqqzrvvPOyjhkzZkzO+DZ6xllnnaU//OEPeuuttzKOmTVrlh599FEdddRRRa3R1tamb3zjG3rjjTeyjjvwwAN16qmnFrUGgF7m9UpHHOE+tmyRVqyQ3n9f+uADqaFBikbdMQMGSHvsIY0bJ+2zjzRkyM6xb8mNVw8bJo0a5b5RsKFB+uQTafNmaft2d1xsfGWl+9p23dV9vbvsIo0e3bXGmjXSZ5+5j0jEjWMPGSJNnCjtt5908MHSiBG9+qOp9lfr0oMu1c1v3qwvjflSwRHomLF1YyVJ73z+jiaPmNwZhU4Wi093d73YdS989IIunnJxXtHp3lwbAAAAAAAAAAAAAAD0rHTB65ibXrlJH6xdpGc3vKioocSidZKIJ/3pWLzayHKtJBkdYxzDnccyJE/SdbUtUmNtuosNyeORXVen29c/ppPscwleAwAAAAAAAAAAAAAAAAAAAMAOjug1+rSqqir95je/0Te/+c2MY5qamjRjxgz99a9/1Yknnpj33I8++qjOOussNTc3Zx3361//WpWVhCB3BKZpav78+TrkkENk23baMS0tLTrhhBP0hz/8Qeedd54MI32wNJ0PPvhA55xzjl588cWs4zwej+bOnVvQ3AB2UPX10pe/7D52Jtn2vWyZtH594rHaWvex995SXZ106KFd5z7/XPr008xrzJgh7btvCTdfHpW+Sn136ndlGma35hlbN1ZjBo5RQ6hBUSta9vWmjJyiA0ccWNA8vbk2AAAAAAAAAAAAAADoGdmC15LktNl64sNnZHjMrDcTR8yuuHXaeXKErw1JHlvyOG7s2jK7wtemJNORBrZITkWGBaqqpJoaTRqxv+7+xt0ErwEAAAAAAAAAAAAAAAAAAABgJ0D0Gn3erFmzdPrpp+uee+7JOKahoUEnnXSSTjvtNF1zzTX6whe+kHHsypUrdf311+v+++/PufYZZ5yhk08+uah997bm5mbdd999BV/33nvvZT2/aNEi3XbbbQXNWVNTo9mzZxe8l3SmTJmi6667Ttdcc03GMaFQSOeff75uueUWXXfddTr66KPl9/szjv/www/1pz/9Sf/7v/+rUCiUcw8/+tGPNG3atKL2DwAon1LFm/Odp6fX21HWBgAAAAAAAAAAAAAA5ZUreG2HbAUk2aYkx5ZMyWuljouYUjSPxnSm8HV88Frq+Gp3ha9tQ6ppkxTIMHFNjVRdrUnDJ+n+WferNlCbezMAAAAAAAAAAAAAAAAAAAAAgF5H9Br9wi233KK33npL7777bsYxjuPonnvu0T333KMDDjhA06ZN09ixY1VdXa2mpiatWbNGL730kpYuXZrXml/4whc0f/78Ur2EHvfZZ5/p/PPPL/m8jz/+uB5//PGCrhkzZkzJoteS9OMf/1ivvfaannjiiazj3nzzTZ1wwgmqqanR9OnTtfvuu2vYsGGqrKzUli1btGnTJr300ktavnx53mt//etf17XXXtvNVwAAAAAAAAAAAAAAAAAAQKqcweuwrUorMWZtSZIheeOi1dE8g9cxyeHr5OB1THz4uqpd8qW7k9kwpMpKgtcAAAAAAAAAAAAAAAAAAAAAsJMieo1+obq6Wk8//bSOOOIIrVu3Luf4xYsXa/HixUWvN3r0aD399NOqrq4ueg6Uj2EYuv/++3XCCSfo+eefzzm+qalJDz/8cLfXPfroo3XPPffINM1uzwUAAAAAAAAAAAAAAAAAQLycweuorZqwFPG4cepYqFpyI9Sy3fB11HCfJ4/JJT58nS54HeNxpF22SW1Vkh1/wjDch8cj1dYSvAYAAAAAAAAAAAAAAAAAAACAnRTRa/QbY8aM0bPPPqtjjz1WH3zwQdnWGTdunJ566imNHj26bGug+6qqqvT3v/9d3/zmN/WPf/yj7OvNnj1bd955p/x+f9nXwk7KcaRQSGptTTy+ebMUCPTOnvoqx5HCYfd7v999o1x3WJY7n88necvwq5XH4/47UEgwv7VVam4ubr3kfweTtbUlzl3kOuFwWG9tfkubmzcXdX13tEfbtb5xfdcBR1rftD5hzPtb35fH9OQ954dbP0x43hJpkWVbnc+jdjRlDMqjLdymiBXpfG7LliNHhrr5f+sAAAAAAAAAAAAAAOzAwtGwJt86OWvwura9I3gtyXTc4HRy+NqOC10bklRk+DpT8FqSRjVKq24xtOAL0pzjHNmx+WPB67o6TRqxP8FrAAAAAAAAAAAAAAAAAAAAANhJEb1GvzJu3Di98cYbOu200/T000+XfP5jjz1W9957rwYOHFjyuVF6VVVVeuKJJ3T99dfrZz/7mSzLyn1RgSorK3XjjTfqkksuKfnc6EMaGqRNmyTbdiPX8ZKfo3taW6XGRvdnLblvlBswQKqqKnwu23b/2bW1dR3z+6WBA0sfvzYMd94BA/KLdMe/xkJFIrnHrFtX3Nwd/vTmn/TwqocVtsPdmqdYlm2pJdLSdcCRWqItmS/Iw/b27QnPo1ZUjrrevbmmYY1Mo4BwOYrWEmmRra5//2P/HOL/eQAAAAAAAAAAAAAA0Nf4vX6dM+kc3fTKTSnnbMvWgDYpHHdLiyE3TG0pMWqdHLguJnztyXLbytBm6fX5kkxDM991j805zpFtxgWvdzmQ4DUAAAAAAAAAAAAAAAAAAAAA7MQo76Hfqaur01NPPaW//OUvGjp0aEnmHDp0qO644w49+eSTBK93MoZh6Kc//akWLVqkL3/5yyWd95RTTtGqVasIXiO7piZpw4biA8XIX3u7tH174s/acdxjra2Fz7dtW2LwWpLCYenzz0v/z9Nx3PUaGko7by+4a8ldum/Ffb0WvAYAAAAAAAAAAAAAAOirbph+g75/6PdTjte2JAav43kcycjxOdKGco+J8VqSL8OtM3Wt0qI/SjVm1+3LM981NPefHpmVVdLgwQSvAQAAAAAAAAAAAAAAAAAAAKAPIHqNfuvss8/Whx9+qHnz5mnvvfcuao4JEyZo3rx5WrNmjc4666wS7xA9ab/99tNzzz2nf//735o9e7YCgUBR8wwfPlxz5szRO++8o/vvv19jxowp8U7R52ze3Ns76D8aG4s7l04o5D7SsSyppaWw+fK1fbs7/07sgRUP9PYW0M9F7EhvbwEAAAAAAAAAAAAAgLJJDl9XN9oK+6VszWqPIxk5PuM9n/B1tuD1gJD06jxpgJF067LHo5nf+oXmnnaXJu8yheA1AAAAAAAAAAAAAAAAAAAAAPQB3t7eANCbgsGgLr74Yl188cVavXq1nnrqKS1atEgrVqzQJ598oqamJrW2tqqqqko1NTUaNWqUJkyYoAMPPFDHHXec9txzzx7b62677SbHyfGOkZ14vR3FEUccoSOOOEKtra16/vnn9e9//1srV67U6tWr9fnnn6u5uVnhcFiVlZWqra3Vrrvuqj322EOTJ0/WYYcdpoMPPlimyecJIE/RqBRJiq8aRu/spa+zbffnne28bUseT37zJf9zS3e+VP8sTTNxLtuWvDl+hfP53EcxfL7E+Q1Div/fA683+9xZ9vb+1vfVGm1NONYabs0wunws21J7tL3zuSNHkWj3QsiWnRgjtxxLTvzbRW3JyfXOT5SE3fEfAAAAAAAAAAAAAAD6qxum3yBJuvWp/6e2gHssdgtIpjtaPJIsW3Ky3P5mSJIjOWkmyRa8rg5L/7pdGhkfvPb7paoq6YwzpCuv1ExJJ+11kjxmnvfvAAAAAAAAAAAAAAAAAAAAAAB2WESvgQ7jx4/X+PHje3sb2EFUVVXp+OOP1/HHH9/bW0Ffli6Q3g9j8z3CsnKPiUbT/zMpZj7LKt0/y2HDpECg6/kuu7hv+MsW3t5tN6mysrj1Bg6UtmzJfH7AAGnkyPzn8/s7v93SkjivFbX0zufvFLjB7nMcR5aTx78TBYjY2aPZpszM7xpFSRG8BgAAAAAAAAAAAABAWrHieYUrPVLHB3k7yi98bduSXWD4OlvwujIiPX67tFekQgp2fBi73+/epzN2rPTzn3etT/AaAAAAAAAAAAAAAAAAAAAAAPqEPMuOAACg5Eyz+DAx+rdgMPM5jycxkl3KufM5n6ympvi9lIlhGCUPUJtZfq02qF0DAAAAAAAAAAAAAIAeNGvul/RSw1L5fd6EkLQjN1ad7aPcTUmeHJ83bUgyOuLZ2YLXAUt64AmfpgRHSHV1UnW1VFHh3jc1YoR0331SbW1hLw4AAAAAAAAAAAAAAAAAAAAAsMMjeg0AQG8aPlwyCOKiQPX1kteb/tzw4e4bA4tVWem+yTCdYFAaMCD/uSoq3P3sgLJFqovhMTzZB/B/5jsMIuQAAAAAAAAAAAAAgL7svFu/qn9tfa3zeXL4WsodvjaUX/jaa0k+p+NJ0sNnS7c8W6UvNw9JvXjsWOmRR6Rdd83jFQEAAAAAAAAAAAAAAAAAAAAAdjZErwEA6E0VFe6buKqruxcqRv/i9br/3tTWSh6PG06vrJRGj3aPddfw4e7D73ef+3zSkCH5v9HQ53PD3F/4wg7777VpmG6oulT9Y0PyGb6EmLYhQ6ZMGYTtAQAAAAAAAAAAAABAD/ivW7+hhz9emHK8HOFrjy15M0zgtaXfv1Clkzel+XD1U06RnnyS4DUAAAAAAAAAAAAAAAAAAAAA9GHe3t4AAAD9XiDQ9SauaDTx3G67uefRPc3N0osvZh8zdao0cGB+861YIa1b1/XcMCQn7l18NTXSYYcVvE1J0rvvJj7ffffEfwd2312qq0sc4zjuHsqhmLm7EboeO3Csqn3VRV9fLMfJ9jbOIuejdd0rXvnkFdnK8q5bAAAAAAAAAMghFApp9erVWr9+vZqamtTa2qqqqirV1NRo1KhR2muvveSPfXAkAAAAsIO46i9n6a6Pn3CfREzJl3je7/OqPWQlhK4dQ1KWWxxi4WvLUMIgw8kcvPZI+tkrVfrW+qTg9ejR0s9+Jk2fnu9LAgAAAAAAAAAAAAAAAAAAAADspIheAwCwI0mOBXs8kpf/ue42rzd3iNnrzf9nnTxfcvS6kLmSJe/TMBKPmWa3otI7Op/HJ5/Xl3sgkIFBbRwAAAAAAABAEV599VU98sgjevLJJ7VixQpZlpVxrMfj0cSJE3X88cfra1/7mqZOndqDO+1djY2NWr58uVasWKGPP/5YH3/8sdatW6cNGzaoublZra2tamlpkWVZCgQCCgaDGjp0qEaMGKG99tpL++yzjw477DDts88+Msr1gZ4AAAD90C/vuUR/ev/+uCO2FDEkX9fvXOFIVOk61XmFr52O8HXcNVEjNXxtSvrBmxW69IO44PXhh0tnny3NmCH5uCcEAAAAAAAAAAAAAAAAAAAAAPoDKpoAAAAAAAAAAAAAAKBfuu+++3TjjTdq0aJFeV9jWZaWLVumZcuW6Ve/+pUmT56sH/zgB5o9e3YZd9rzWltb9dprr+mll17Sa6+9prffflsfffRRQde3trZqy5YtWrFihZ555pnOc/X19Zo5c6a+9a1v6YgjjijH9svul7/8pX784x/nNXbNmjXabbfdyrshAADQb81d8CP9ZuX/yU5JWjtSRJLPUDgSlWVn/mCXvMLXtmTFfU577Huv3XXsorVD9eMhR0rfmSjtt5908MHSiBGFvygAAAAAAAAAAAAAAAAAAAAAwE6N6DUAAMDOaMMG6fXXpWXLpBUrpM8/lyIRyeeTBg+WJsa9eXDkyN7eLQAAAAAAAAAAO5R33nlHF154of797393e6633npLp556qubPn6/58+drr732KsEOe8/LL7+syy+/XIsXL1Y0Gi3LGlu2bNGtt96qW2+9VQceeKCuu+46nXjiiWVZqxxWr16tn/3sZ729DQAA0F/F3TNy56qHdP2ub8uK1aoNSYYpGYZkugej4agsx844XUxR4WtJ8pjy+jw6c9ev64b/eaDolwUAAAAAAAAAAAAAAAAAAAAA6DuIXgMAAOwsolHpqaekv/1Nevnl7GP/85+u7w87TDr7bOmYY9woNgAAAAAAAAAA/djDDz+ss88+W83NzSWd9/nnn9eUKVN05513aubMmSWduyd9+OGHeuONN3psvUWLFumrX/2qZsyYof/7v//TqFGjemztYjiOowsuuEDt7e29vRUAANAPWLYlj+lxPwj9qaekO+7ovGfksfoGff/oVkUlyem4wJGkrsB11JQsww1WO5lq1nHyDV/bZteSlmNrb88o3XwuwWsAAAAAAAAAAAAAAAAAAAAAgMvs7Q0AAAAgD6++Kp13nvS97+UOXid76SXpggukww+XFi4sz/4AAAAAAAAAANgJzJs3T7NmzSp58DqmublZJ598sm6++eayzN+X/fOf/9R+++2nf/3rX729laz+9Kc/6YUXXujtbQAAgH6gMdSor9//dS2476fuPR8XXth5z8gzQxp0wdGtingyXx8LXkturNpwMo+N5xhdQet0DEmm3RXGDrZLS+31unLhlfktAAAAAAAAAAAAAAAAAAAAAADo84heAwAA7MhaWqSbbpKuvVbavLl7c61bJ519tnTZZVJjY0m2BwAAAAAAAADAzuKOO+7QnDlz5Dh51v6K5DiOLr30Ut15551lXacv2rZtm4477jg99NBDvb2VtDZu3Kgf/vCHvb0NAADQDzSGGjX7vpP11jvPac5bP9cCz3ud55ZUNujso1sVyjN4HVOO8HVVSGoc4N6KfNMrNxG+BgAAAAAAAAAAAAAAAAAAAABIkry9vQEAAABk8Pnn0g03SJs2pT/vOFI4LEWj7iPG63Uffr9kGKnXPfig9Oab0n33SbvuWp69AwAAAAAAAACwA3n99dd1/vnn5xW8njZtmk4//XRNmzZNu+22m2pqatTU1KQPP/xQL7/8su6++2699tprWedwHEfnn3++9t57bx100EGlehk7lAEDBmj8+PHaa6+9NGzYMNXU1Ki2tlZVVVVqampSY2OjtmzZoqVLl2rZsmVqaWnJa95IJKIzzjhDQ4YM0Ze//OXyvogCXXLJJWpoaOjtbQAAgD6uMdSo2Xd9TUs/eEmyLNmGNOcw93eQfTeHdOJJrWqNv/s3/ldcww1eRw03TJ3M6BjvdD7JzDHcsZmGVYWk7QPNhGM3vXKTJOmG6TdknxwAAAAAAAAAAAAAAAAAAAAA0KcRvQYAANgRffaZ9NvfSs3NqeHqSERqbZVCITd8nYlhSIGAVFUl+XyJ59askb7+demRRwhfAwAAAAAAAAD6tMbGRp166qmKRCJZx+2555764x//qKOOOirlXF1dnSZPnqzJkydrzpw5+uc//6mLL75YH3zwQcb5wuGwZs+erSVLlqi2trbbr6M3+f1+TZkyRYcffriOOOIIHXTQQRo2bFje19u2reeee0533nmnHnjgAbW3t2cdHw6Hdfrpp2vZsmUaMmRId7dfEg8//LAWLFjQ29sAAAB9nBu8PqkjeG13HrcN6dtTt8nvSO1eJYau44RNyTK7zmcMX6vjlpN8wtdSSvw6EE4NXscQvgYAAAAAAAAAAAAAAAAAAAAApL/jHAAAAL2nrU2aN09qaEg87jhSY6O0davU3p49eB0b397ujm9sTB2/caN06qnuOQAAAAAAAAAA+qif/OQnWrNmTdYxRx99tN544420wet0ZsyYoTfffFNHHnlk1nFr1qzRtddem+9WdygjRozQBRdcoL///e9qaGjQSy+9pBtuuEEnnnhiQcFrSTJNU0cddZTuuOMOrVixQscdd1zOazZu3Kirr7662O2XVENDgy699NK053bfffce3g0AAOirGkONmn3fyVr6wcsJwWtJarNsRbzS9gopmuXOXytWpjbc7nWmO0uMjke6AckdbCduPkkKRKTGAdlvP/7L0r8oHA1nHQMAAAAAAAAAAAAAAAAAAAAA6LuIXgMAAOxoHnpI+uyzxGOW5Uaw29uLm7OtTfr8cykaTTy+Zo30k58UNycAAAAAAAAAADu4lStXat68eVnHHHrooXr00Uc1YMCAguYeOHCgHn/8cR188MFZx82dO1erVq0qaO7edNBBB+mVV17RJ598oltuuUXHH3+8KioqSjb/7rvvrn/84x/64Q9/mHPsbbfdpo8//rhkaxfrBz/4gTZu3Jj23M0339zDuwEAAH1RY6hRsx+araUfvuLeIxKn2bLlmFLY44ano2bm8LUvvpVdRPjaY3pUEQjIY3oSxsbC176otD2Y/bUMqhykty54S36vP/tAAAAAAAAAAAAAAAAAAAAAAECfRfQaAABgR/L229LrrycesyypsVGy7dTxhiH5fFJVlRQMul99Pvd4MsuStm1LDV8/8IC0cGHpXgMAAAAAAAAAADuI6667TtHkPxePM2jQIN1///2qqqoqav5gMKgHHnhAAwcOzDgmGo3q+uuvL2r+3rDXXntp6tSpMtL9XUMJ3XDDDbrooouyjrEsS//3f/9X1n3k8sILL+i2225Le+7UU0/VMccc08M7AgAAfU1n8Pqj190PNY/TbNuSIbV7u46lDV8bccecxOP5hq89pkd+n7uQ3+dNCV97LKmxSjI9mW89HlQ5SIsvXKxRtaOyvmYAAAAAAAAAAAAAAAAAAAAAQN9G9BoAAGBHEY1KDz2UeMxxpKYm92s8w5Cqq6XBg6W6Ovf7YND9WlfnHq+uTo1f27a0fXvqfNdcI0UiJX9JAAAAAAAAAAD0lg8//FB/+9vfso75+c9/rl133bVb64wZM0bXXXdd1jEPPvig1q5d2611+qL/9//+n0aOHJl1zGOPPdZDu0nV3t6uCy64QE7y36tIGjhwoH7729/2/KYAAECf0hm83rTUvT8kiSmpzZ8arU4IXxtStCN67cQPiMkjfO0zDPkNb8Lx+PC115JaAgSvAQAAAAAAAAAAAAAAAAAAAAD5IXoNAACwo3jlFWnr1sRjra1uqNpxuh5er1RbK/n97rloNPVh2+752lp3fDzLSn2j5McfS//8Z3lfHwAAAAAAAAAAPWjevHmyLCvj+T333FMXXHBBSda6+OKLtfvuu2c8b1mW5s2bV5K1+pKamhpdfvnlWccsXbpUDQ0NPbOhJD/72c+0evXqtOd+9atfadiwYT28IwAA0JdYtqUzHj7DDV6HQu79HHHaLFutfjdKbRuZw9chMyl4HT8gJkf42nYcybGlpM9L9/u8Cho+tfgk00vwGgAAAAAAAAAAAAAAAAAAAACQH6LXAAAAO4onnkh8blnumxrjeb1STY3k8eQ3p8fjjk8OX7e1SZGkdyrecUdh+wUAAAAAAAAAYAdlWZbuvfferGO++93vypPvn7fn4PV69V//9V9Zx9xzzz2ybbsk6/UlX//617OedxxH7777bs9sJs6yZct04403pj136KGHliyYDgAA+i+P6dG5+58r0zDdD0WPE4rYagl0Pc8Wvk53PGFA3CROurGO5Ok8mBi+rlJA//r/ntUPv/TDjK+D4DUAAAAAAAAAAAAAAAAAAAAAIBnRawAAgB3Bli3S0qWJx2LBa6fjnYWGIVVXu18LYRhSMJh6POkNk3rxRWnDhsLmBgAAAAAAAABgB/Tss89q48aNGc9XVFToW9/6VknXPPvss+X3+zOe37Bhg55//vmSrtkX7Lnnnho8eHDWMRt6+O8vbNvW+eefr0jyB4jKDZzfcsstMgr9+xoAAIA0Zu49U3MPuU5mKNx5LBK21VSZOjZT+DqnpAscQ7LjznkdyWPHD3TD1wH59MCsB7T/uMN1w/Qb9P1Dv58yNcFrAAAAAAAAAAAAAAAAAAAAAEA6RK8BAAB2BCtWJD53HCk5pBAISKbZdT7fhyR5PFJl0jsiQ6Gu8zFvvFG61wQAAAAAAAAAQC95/PHHs54/4YQTVFNTU9I1Bw4cqOOOOy7rmFz76q+GDRuW9XxLS0sP7cT1u9/9Tq+//nrac1dccYX23XffHt0PAADo22ZuGay5Lw2Q6UjRkK2GqsxjSxW+jh3yOpKns3XdNcgnU7dOv1mHTTym81hy+JrgNQAAAAAAAAAAAAAAAAAAAAAgE6LXAAAAO4L33kt8blmpY3y+rnOFPGzbvS4QSJwvXVh72bLSvB4AAAAAAAAAAHrRM888k/X8CSecUJZ1c827cOHCsqy7sxswYEDW81VVWcqPJbZ27Vpdc801ac+NHTtWP/3pT3tsLwAAoJ9Ytkwz11Zo309sNQRzD+92+Npx5/DaccFrqfOD073yaN6RN+qkaWemTBELXw+pGkLwGgAAAAAAAAAAAAAAAAAAAACQEdFrAACAHcGHHyY+T45ee72S2c1f3UzTnSdecvR6xYrurQEAAAAAAAAAQC/buHGjVq1alXXM0UcfXZa1p0+fnvX8ihUrtGnTprKsvTP79NNPs54fMmRID+1Euuiii9TS0pL23M0336zKysoe2wsAAOjjNmyQHnlEeuABfXfCRr24q+Sx3SB1Lt0JX8eC197kix1bHpn6xcH/rW8edUnGKW6YfoPWXb6O4DUAAAAAAAAAAAAAAAAAAAAAICNv7iEAAAAomy1b3ND0ypVSY6Nk25LjdH2NMfJ5S2MePB4pGu16Hve9I6lt4zqt3PCmHCe/t0VW+6u1S80uqq2oLc3+AAAAAAAAAADoptdffz3r+V133VW77rprWdbebbfdNGLECG3cuDHjmDfeeENf/epXy7L+zsiyrKw/L0nafffde2Qvd911l55++um052bPnq1jjz22R/YBAAD6sEhEeuop6Y47pJdfliT9ZPeNuv1A97THkWRLlpk7aB0LX5tOfqHs2DVe2310HuhgOtJV+16sC076Sc55/F5/nisCAAAAAAAAAAAAAAAAAAAAAPojotcAAAA9LRp137j4xBPSsmXusYYGybK6QtfJ0elw2D1WUeGGq4uVIZ5tObbCVlhNLZ/rnS3vFDTlInORJg2dpH2G7VP8vgAAAAAAAAAAKJFFixZlPX/ggQeWdf0pU6bo8ccfz3h+8eLFRK/j/Pvf/1Zra2vG82PHjtUuu+xS9n189tln+t73vpf23IABA/Tb3/627HsAAAB93MKF0tVXS+vWdR66afw2/e4QyY4bVkz42nAkM4+xCcHrJJd8WK/v3/CbnC8DAAAAAAAAAAAAAAAAAAAAAIBciF4DAAD0pFdflf74R2nz5sKvjUal5mbJNN34tc/nHjdN9xFj2+4jneSYttw3SIatsBw5sr2F/3ro2I6WbFqi2opajR4wuuDrAQAAAAAAAAAopSVLlmQ9v99++5V1/f322y9n9Bpd7r333qznjz322B7Zx2WXXabPPvss7bn/+Z//0fDhw3tkHwAAoA9qbJSuuUZ68MGEw7eN3qafH9KudHd4FBq+dgzJzhK+zhW8/v9W+HR9qLy/JwMAAAAAAAAAAAAAAAAAAAAA+g+i1wAAAD2huVmaP1965pn05w0j/7lsW2ptdaPXlZWF7cOyEp97vbLsqBw5sgxHoYHVhc0X593P3tXoAaNl2ZY8pqfoeUrJcRwZhfxsyzxPNpFIRL5YyHwHmAcAAAAAAAAAdlarV6/Oen7PPfcs6/rjxo3Lev69994r6/o7k8WLF+v222/PeN4wDM2ZM6fs+3jqqad0zz33pD03depUXXTRRWXfAwAA6Fvawm2q9FdK69ZJs2dLa9cmnP/b0G364RHtsgxlrFp7HDdk7eRxu0Ku8LXhpAled8x7yrte/WbxEOmLQ3IvBAAAAAAAAAAAAAAAAAAAAABAHoheAwCAHd+WLdKKFdJ770kffig1NEjRqOT1SgMGSLvvLu25pzRxolRfX9wan30mLVmS3xqF2rRJ+tGPpA0b0p93HDd67TjuI1+RiBuxrq6WzHRvWUxi2+5riufzyXYcNfocnTu9RdPrDFWGm9UUbso5nd/j1+DKwZ3Pt7Vv04JVC3T7ktt19zfuVm2gNv/XUgZRO6oVW1ZoZPVI1QeL/PdC0paWLdrQvEET6yfKa5bn1+etrVu15NMlqvBWaNqoaUXP8/L6l9Uebdf+Q/fXoKpBJdwhAAAAAAAAAOwcHMfR2qSgYLJcUeruyjV/rv31F5s2bdLpp58uK/kDO+N84xvf0N57713WfTQ3N2eMWnu9Xt16661l/2BMAADQt6zaskr737K/jt/lSC2Y+6l730icJ4ds0wVHtytiKmPwWpIiHsnOEsVOli187RhS1EwNXx/zkUe3vNFxT0Ux98QAAAAAAAAAAAAAAAAAAAAAAJAG0WsAALBjikall1+WnnhCWrYs+9jFi7u+nzRJOvFE6dBD3WB1NpblRq6XLJE2b3bD0/msMXasNH68NG6c5PFkX2PTJumKK6TPP089F41K7e1SOJxf8DoWx45n21Jzs1Rbm3svoVDic8OQfD41ekI6a0aL3h5i6Y3q5Tpm3Yuq8dd0LeHYMo3UqHa1rzohev3a+td0/4r7ZTu2Zj80W/fPuj8hfG3ZmaMVpRa1o1q+Zbmaw81avXW1JBUVvt7SskWrt66WI0fLtyzXPvX7lDx8HQteS1J7tF0vr3+5qPB1LHgtSUs+XUL4GgAAAAAAAEC/tHnzZrW3t2cdM3LkyLLuIdf8LS0t+vTTTzV06NCy7mNH9vbbb2vWrFlavXp1xjFDhgzRvHnzyr6Xq6++Wh999FHac9/73ve07777ln0PAACg71i1ZZUmzZ+kiB3RIx89rZn7BrRgU9ff3b8Q3KozZ4QUznGLR2fwWuqoWee3fqbwtSM3ei11ha+/uM7Uff+J+510v/3yWwQAAAAAAAAAAAAAAAAAAAAAgBxS64UAAAC97dVXpfPOk375y9zB62RLl0q/+IV7/auvZh73/vvSbbdJjz8urVtX2BrvvSc99ph7/fvvZx7X3Cz96EepwWvHkVpapMZGN3hdiHRhbNuWmprcr5lYltTWlngsEFCj39EZM5r19hA3SG15TT2++nGt2bZGkhS2wnr6g6c7n2fy5oY39Zelf5HtuHtYummpZj80W42hRknSglULdNW/rlLUjub5QosXH7yWJEeOVm9drS0tWwqaJz54LUnN4WYt37K8pK8hPngdEwtfFyI+eB2z5NMl2tq6tbtbBAAAAAAAAICdyoYNG3KOGT58eFn3kM/8+eyzL1qzZo2+973v6cADD8wavA4EArrnnns0bNiwsu7n9ddf19y5c9Oe22233fTTn/60rOsDAIC+JT54HYtUPzI2pJnT3b+7f9v7mU47MaRQruC1GRe8jsnyOe7JOsPXScdj4euoKU3eJD36QtLvWgcfnP8iAAAAAAAAAAAAAAAAAAAAAABk4e3tDQAAAHRqbpbmz5eeeab7c23eLF17rXT00dKZZ3Ydb2+Xnn1WWrGi+2s0NkoLFkgTJ0pf+YpUUZF4fv58KTlaYVnpA9WGkT5onY7juOOT521pkYLB1Lljke3k7Q+o0Oyjt+vtwW7E2fZ55XhMObalF9e9qKgd1eqtq/V52+f6rPUzSdLYurEp87y54U3duezOlOOx8PW39v2WrnzmSoWiIdmytU/9PvKa5fk1NDl4HRMLX0tSfbA+5zzJweuYWPi6FK8hXfA6Jha+njZqWs550gWvY5Z8ukT7D91fg6oGdWerAAAAAAAAALDT+Dz5gyiT1NbWKhAIlHUPVVVVqq6uVnNzc8Yxufa5s2ttbVVTU5O2bdumlStXasmSJXr22Wf18ssvy8nx9yEVFRVasGCBpk+fXtY9RiIRffvb35ad4UNF582bp6qqqrLuAQAA9B0Jweskj4wN6YTDN2rFcKnNKxmOG6VOJ2J2nHOUGrqOHc9DZ/jakcy4446kQES6ZHVN4gWHHy6NGJHf5AAAAAAAAAAAAAAAAAAAAAAA5ED0GgAA7Bg2bZJ+9KPUSHSM40jRqPuwrK7jHo/k9bqP5BC05Aa0ly+XjjnGff7AA9L27aVdY8UK6ZNPpFNOkQYMcI+9+mpqvNuy3FB2ppiD1+uunY904etw2J3D5+s6ZttSW1vi61FH8Pq4Fi0d3PVmSyvg77rMsfX8R8/La3rlMT2SpBfXvSgpMXwdC147cmSkvNtSem39a3puzXOqq6yTlBiNTje+OzIFr2PyDV9nCl7HlCJ8nS14HZNP+Dpb8DqG8DUAAAAAAACA/mTr1q1Zz9fW1vbIPmpra7NGr3Ptc0c3a9Ys/e1vfyv5vJMmTdLdd9+tiRMnlnzuZDfccIPefvvttOe++c1v6vjjjy/7HgAAQN+QErxOvt0gKr04Rop6JL8leRzJUlz4uuNrxHC/7/giu1Tha0lmxzVVEcnvMTTniy3SS17NXNvxAe9nn53nqwUAAAAAAAAAAAAAAAAAAAAAIDei1wAAoPdt2iRdcYX0+eep56JRqb3dDTrn4vdLFRVu+Dnexo3SXXe537e1pV5nWVJzsxSJpJ5Lt0a6+PX27dI990inny5VV0u33pp43nGkpqbU4LVhuHsOBCTTlLZtc0PV8ddlki583d7u7s9x3NcTCqWMa6wwNHtmVEsHdwW2HdOU5fd1TOsoZIXkOI7CVlgBBVThq5BlWwnh6/e2vqd/f/zvjHHo9mi7GkINkqRtbdsU9AcldUWj967bO/NrK1Cu4HVMrvB1ruB1THfC1/kEr2Oyha/zCV7HEL4GAAAAAAAA0F9s27Yt6/mampoe2UeudXb26HWpjRw5Uj/4wQ908cUXy+/3576gm9599139/Oc/T3tuwIAB+t3vflf2PezI5s2bp5tvvrns63zwwQdlXwMAgHJLCV4ni0oD2qVwx+eXh+PC17Yk23SPx4LX8UyVKHwtyTKkYFiKWpJ8hmxJcw5z7+mYaY+XZszIb0IAAAAAAAAAAAAAAAAAAAAAAPJA9BoAAPSu5mbpRz9KDV47jtTa6kab8xUOu49AQKqq6go927Ybk5YSjzuOO3+0I/6cHJDOtEYo5IalA4HEa5qbpQcekI46Stq8OfG61tbEmLXkzhEMSh5P17GKCndsTPxe00k+Hgt4J6/VoTEgzT7FTAheS1IkWCkZbvC6LdomJ27ekBWSx/TINEw5cvTiuhe1uWWz3t/2fsbgc3zwWpIidkRNoSYZHa+nOdyslZ+vlOM4nceKlW/wOiZT+Drf4HVMMeHrQoLXMenC14UEr2MIXwMAAAAAAADoD9rbs//ZaTAY7JF9VFdXZz2fa5/9QWVlpY455hjNmjVLs2bNUiAQ6JF1HcfR+eefr1CGv4P65S9/qREjRvTIXnZUW7Zs0cqVK3t7GwAA7PDSBq/jbzmISnVtUnvcZ3o4Rlf42nQk2VLIo9SwdYdSha/9lhSxpAE+s/O4bXSEr6ccq5k+X36TAQAAAAAAAAAAAAAAAAAAAACQBzP3EAAAgDKaP1/asCHxmGVJDQ2FBa/jhULu9ZblPm9rc+PQsci15EahW1u7gteFikbTh6y3b5eeeCJ1bPJr8XqlmprE4LUk+XyS368UhYShY687SWOFodmzTS2tTzxvBwKy/V45jqOWSItsJzWY3RppVdR2f1ZRO6qlm5cqYkVSxkmpwevObdlWwjUtkRa1RFoSAtuFKjR4HRMLX29p2SKp8OB1TCx8HfvZZFNM8DomFr6Wigtexyz5dIm2tm4t6loAAAAAAAAA2BmEw+Gs573envls8Fzr5NpnfzBs2DCNGTNGQ4YMkWn23O0rt9xyi/7zn/+kPXfIIYfooosu6rG9AACAnVfO4LWk2napLc0tILHwtSRFzIy9605mmrkl5b6wg8+SvOHE4HWMXVWpOZ/cpgWrFuQ3GQAAAAAAAAAAAAAAAAAAAAAAeSB6DQAAes+rr0rPPJN4zLKkxsbUmHSM1ysFAlJFhfs1UzTCtt152tsTg9PRqBQOd4Wwu7OG47jzxO/VtqXPP3fXiGlPEygOBjOHrCsqpHRxh0LC17HxHQ+rwq8zvmlqaX3Sz9XjkVVd1Rm8tuz0wWzJDS+HoiGFLfe1ha1w5/fxY9IFr2McOQnha8uxig5fO46jFVtWFBy8jt/L6q2rtXLLyqKC1zHN4Wat2LIi62uIRCJFB69j2qPtenbts0UHr2OWfLpEkUj6YDkAAAAAAAAA7OyIXu881q5dq9/97nc69thjtfvuu+vXv/61mpqayrrmhg0bdNVVV6U95/V6dcstt/RogBsAAOyc2sJt2v+W/buC145SotQDmqSQ3w1cp7ubwDGkkEeS4barjRy3LGQLX5tO5v6115Yq2qWqNMFreTxSTY1sx9btS27Pes8IAAAAAAAAAAAAAAAAAAAAAACF4J16AACgd0Sj0h//mHjMcaSmptQYtWFIlZXSwIFSba0bjK6qcr/W1rrHKytT17BtqTlNEDkUKt0asfB1bD6r4w2Ara1d55PDFZWV7hsHMzEMd91ShK/9fqm2Vp6qap27qkJm/Mv2eKS6OlnKHbyOsZ3EaHZbpC0hgp0teN25rJn42osNXxuGoZHVI2VkfOtmbo4cbW3fWnTwWpIMdewjyz8bn8+nCm9F0WuUUoW3Qj6fr7e3AQAAAAAAAABlYWf6UM0Onmx/Pl9CudaxLIKC8davX6/vf//7GjdunB577LGyrXPJJZeooSH932VcfvnlmjRpUtnWBgAAfUelv1LHjzvefZLmdoOBjVJ7oOu5Y0hpf0s1Er/NJ3ydPMZ0JJ8teezU8LXHlqrbpUAgQ/C6rk4yDE0aPkl3f+PulPs5AAAAAAAAAAAAAAAAAAAAAAAolre3NwAAAPqpV16RNm9OPNba6oaq43m9bgA6WxzCNN2QtN8vtbS4Qe14jtMVi46FleOPeTxSTU3+azQ1dcWtY3OFQlJFRdf+bduNXacLIQcCqcfSrRcMdv1M4oPQhpEa7Y5nGLICPnmCNQnrz/wwIJmm5hzeJNvrvnnRMU01tzXnFbzOpC3SpogVUdSOZg0/y5C8hlemkfpmSsux1BItPHxdH6yXJK3eurpb4epiGTI0ftD4zn1kM23UNL28/mW1R9t7YGfpVXgrNG3UtF5bHwAAAAAAAADKzevNfhtENPnvEMok1zo7+4cTfuc739Gxxx6b9pxt22poaND27du1detWLV26VEuWLFFbW1vOeT/99FN97Wtf0/nnn68//vGPJY2UP/TQQ3rkkUfSnhszZoyuu+66kq0FAAD6vgXTfqeZzz2nR0YkfqDGwEapLd1nYhuS7bjh6kwMSXI6OtoZbr+IH2NK8nXc7uFxJNmSZbrnPI40sEUyKrMErz0eTRo+SffPul+1gdosOwMAAAAAAAAAAAAAAAAAAAAAoDBErwEAQO944onE59GoG46O5/W6MepsIeV4sXh1U5M7Xz4BZY/HjVWb2d5WmDQ+GHTj2vHh62jUfR4f7W5vl5KjFV5v/muZplRbK7W1uT+bdPHuGMPoPNfod3TGyVGd815IJ3zgkeXYnWNmvG/oin0m6Prd18mxQ5ItmYaZNRhtZHonZZyonTsSEvQFFbJCGc/7TX/2aHYGvRW+LiR4HdOb4WuC1wAAAAAAAAD6A7/fn/V8T0WvI5FI1vO59rmjO+qoowoaH41G9eabb+q2227Tfffdp5aWlqzj//SnP6mhoUF33313zpB5PrZv3645c+ZkPD9v3jxVVVV1e52+or6+XhMmTCj7Oh988IFCyX8/CADAzqCxUTr1VC1YW6WZ09v1yFj3f8/qGqXWdMHrmHzD1+q4LSRL+NpwJF/S58rHwte2IQ1ulux0wevKys57cQheAwAAAAAAAAAAAAAAAAAAAADKheg1AADoeVu2SEuXJh5rTxMBDgbzD17HGIZ73fbticczBbADgeLWCASk1tbE45FI4jrRaOrcHk/hawWDbjy7tTUxqp1Go9/R7FmOlg5ztGhEi0JOQF/90A1vNwyt1fPnfUXNU8bp2C0r9Y/3/iFHjjyGRz7Tp4idPsDhyMkrfJ3NgMAAeQxPxuh1pbdSfk/xgY+eDl8XE7yO6Y3wNcFrAAAAAAAAAP2FL/nDKJOEw+Ee2Udfj14Xyuv1aurUqZo6dap+85vf6Mc//rHmzZsnJ8sHmD7wwAMKBoO6/fbbu73+97//fW3atCntuZNPPlknnHBCt9foSy655BJdcsklZV9n4sSJWrlyZdnXAQCg5K65Rlq7VpK0YOEgzZy+Vc8PDmUPXseUInydJngdE7Ckc9+U7p+StELsg+QDAUkieA0AAAAAAAAAAAAAAAAAAAAAKKts980DAACUx4oVic8dR0qOTFRWFh6IjvF4pHxiEV6vZBb565Bppq4RjabGtZMj1YUGtmP8fmngQKm21v0+zTxdweuOpSX94Esh/fnIgXri+yfpjrnnac2UcZKkCfUTdPyex8uQIcdx5DHd8HUm+YSkM40ZEBigCm/md3Z2N3gdUx+s1/hB47sd6M6lO8HrmGmjpmX9mZQSwWsAAAAAAAAA/Ul1dXXW883NzT2yj6ampqznc+2zL6utrdXcuXP1/PPPq74++5+1//nPf9ZDDz3UrfWef/75jOHs2tpa/f73v+/W/AAAoJ9ZuFB68MGEQ3tttBQq5LYHw72nI8cQ9+6H5FsxsgSvPY50w1PSr1/2a+5LA2Q66rrfZMgQgtcAAAAAAAAAAAAAAAAAAAAAgB5D9BoAAPS8995LfB6Npo7peKNd0YqNWRfClzkS3Sk5gp38vFAVFVJdnVRV5YavO+LXjQFp9jfVGbx2TEOh6go1D6zSNQc26LFxlmxvYkR8Qv0ETd99ukJ2SJZtyWN65DEyh8adjv/Evk8+5768xONZg9dG6YLXMeUOX5cieB3TE+FrgtcAAAAAAAAA+ptBgwZlPd/Y2Ngj+8i1Tq599gdf/OIXtXDhQtXV1WUdd+GFF6qhoaGoNdrb23XBBRek/P1FzC9+8QuNHDmyqLkBAEA/FIlIV1+dcOgXX/hct0yKKmBJZq6SdbyO8HW2u0hSwteO5MtwgSnp6uekC96vkMaP18wr/6y5M/8kc9DghHtwCF4DAAAAAAAAAAAAAAAAAAAAAHoC0WsAANDzPvww8Xly9Nrr7X602rJyj+lugNowJE/mSHTaNfLZVz6i0c7odWOFodmzTS0dbkimKcc0ZHk9ivq9ckxTlmPp0Xcf1VPvPaXlm5d3PhZvWKyX1r0k0zAVsSMKR8OynNz7Sw5fxwewHTmd4Yhqf7UC3vTxckOG9hy4Z0mD1zHlCl+XMngdU87wNcFrAAAAAAAAAP3R4MGDs57fvn17j+wjV6Q51z77i0mTJumhhx7KOmbr1q269dZbi5r/uuuu03vJH8ba4eCDD9bFF19c1LwAAKCfevppad26zqdzx23XbyaHO58XE752lF/42sgSvJYhXbbIp+9/MsL9IPVTTpG+9jXNnHau5h43V6bh3oND8BoAAAAAAAAAAAAAAAAAAAAA0FOIXgMAgJ6XHHpIDkHnCknnI5+gdXej11Lhce5oVLILeYdjGrbdGQpv9DuaPcvR0vrEOW1P174cx5HlWHpr01ta9dkqfdb2mTa1bNIL617Q1vatMjr+Y6vwfTlp3nrpyFHQG5Tf45dlp0a0Y/HoIZVDCl4vX6UOX5cjeB1TjvA1wWsAAAAAAAAA/dWQIdn/7DkUCpU9fL1161aFw+GsY4hed/nKV76iU045JeuY3//+97IK/GDRpUuX6qabbkp7zuv16pZbbpHZ3Q9hBQAA/csdd3R+e+eoBl13cFvKnRZlCV87UiAqyU4/8Mzlpq5fEfd78H77dX47c++ZmnvcXE0eOZngNQAAAAAAAAAAAAAAAAAAAACgx/DuPQAA0PM6gs0ZGSUIFTtOaebJJXmNXM8lKRTq3pptbZLjdAWvh6WuY3tTw+GOHK3eulqbmjZp+Zblag43u2MdO228ujvarfbOeePnLmc8Oll9sF51FXUlmauuoq6sey51oJrgNQAAAAAAAID+avTo0TnHbN68uax7yGf+fPbZn/z85z/Pen79+vVatGhR3vNZlqVvf/vbimb4O6nLLrtM+++/fyFbBAAA/d2GDdJLL0mSHhzRoCu+2Corw20pAUvZK9bJsoWvHXc+Q5InzaBvrJJuXjQs8eDBByc8nbn3TD0y+xGC1wAAAAAAAAAAAAAAAAAAAACAHkP0GgAA9DyvN/t5pwQBZsMozTy5JK+RLnrt9ycea2uTLKu49SxLamnJGryWJMub/tc827G16vNVagw1dj63nCL3kkXUjqop1OSGrzt+RobRc8FrSdrSskXb2reVZK5t7du0pWVLSeZK5+X1L+/Q8wEAAAAAAADAzqK6ulqDBw/OOuajjz4q6x7Wrl2b9fzQoUMVDAbLuoedzZ577qkJEyZkHfPCCy/kPd+9996rN998M+250aNH67rrritofwAAAHr9dUnSM0MaNOfLrYqmuy2j4/aNkKfr+7xlCl8bUtjTNb3XkYyOQceslu54ZUji+MMPl0aMSJneY6Z+eDoAAAAAAAAAAAAAAAAAAAAAAOWSozgJAABQBgMGJD73JL2xrtggdLw0IeiixuRi24nPY68ldtwwpIoKKRxOHNfSItXUFLYHx5GammTJ1hnf6Ahex9aIH+bzyjFT313pOI6idlSO3K8ew1OW4LWkzjWaQk0aWDFQpmFqysgpCkVDZVkv2ZaWLVq9dbWc1LeDFsWRo9VbV0tSyaPdL69/We3R9pLO2R5t18vrX9a0UdNKOi8AAAAAAAAA7AzGjh2rzz//POP59957TzNmzCjb+u+//37W82PHji3b2juzE044QStXrsx4/o033sh7rs8++yzjucMOO0z33ntvQXvrrvvvvz9rjL2mpkazZ8/uwR0BAICCLVuml4IN+tbRrW7UOoOQR7LTf055bnGf7x5/J4jTEb72d9zi4XGkaWulhxYGpVpf4hxnn13k4gAAAAAAAAAAAAAAAAAAAAAAlA7RawAA0PN2311avLjruTfpV5Jo1I1Gpwk35y05pJ1Od6PXjpMa6DZN9xHqiDt7ve4jEOg6JrmvsalJCgbz26tluaHsaFQeGTp3sbR4uCPbTH0NVkVAtm3LjPv5xQevJcmQIduxU64tpVj4uiHUoLqKOr254U0NDw4veTQ6WamD1zHlCF+XI3gdQ/gaAAAAAAAAQH81ceJEvfnmmxnPv/vuu2VdP9f8EydOLOv6O6tcMfBPP/20JOvce++9PR69vuqqq7KeHzNmDNFrAAB2cEsW/1OzT2xVKMtdtyGzG8HrmDzC15M/kf7+iE8aXJN47ejRUhk/3AUAAAAAAAAAAAAAAAAAAAAAgHx19/Z6AACAwu25Z+Lz5Oi1lBiILoZd3qCzJCkSST3m8bivJxacjr22qqrUiHc0KjU0SG1tmfdr2+75hgZ3fIeZ7xqa+0+PTCVFrz0eRb0etURbOmPKycHrmFJHodNx5ChiRbS9fbss29Lqrau1pWVL2dYrV/A6Jha+LsVrKGfwOiYWvgYAAAAAAACA/uTAAw/Men5x/AdzlsGiRYuynj/ggAPKuv7OatiwYVnPf/755z20EwAAgETvr3lbXx/7ilp8cQeTbksIeUoQvI4x3OmT73xwDGlAq/TMg15p4MDUD3v/+c8ln08AAAAAAAAAAAAAAAAAAAAAAPQ2otcAAKDnTZyY+NwwJL8/8Vhbm2RZxc1vWVI4nHtcNFp8HNu2U9fwet3XYhhu5Dp2THKP1dSkvuFQcl/r9u1SY6P7fXu7+7WlpSuKncw0NXPzIM19aYDMuHc5RoNBNYQbJUkRO6K2aJtCdqhXgtfxa4WtsJrCTbIdu2zh63IHr2NKEb7uieB1DOFrAAAAAAAAAP1Nruj1kiVLZBX7dxA5RKNRLV26NOsYotfp1dbWZj3flu7vSwAAAMps09aPdcxdR6rBn/n+kpIGr2PShK8rQ9JH9dLM08zUD5g/5RTp6KNLvAkAAAAAAAAAAAAAAAAAAAAAAIpD9BoAAPS8+npp0qTEYxUVqeNaWiSnwICx47jXJcelYzHqZKFQcWuEQqnHfb6u8z6fNHy4u6bjuA/TlKqrE4/FPyIRN6QdCrlfo9H0e/N4pLo6yevVzLUVneHraGVAn1kNCdHnqB1VD/atM3LkyGN6ZBhGZzT6s7bPSjZ/TwWvY7oTvu7J4HUM4WsAAAAAAAAA/cmUKVNUke7vHTo0NzfrrbfeKsvar7/+ulpbWzOer6io0OTJk8uy9s6upaUl6/lgMNhDOwEAAHA1NzToSzcfrK1Oc8YxZQlex8SFryvC0taOz19/ZPewZk7f2jVu7Fjp+uvLtAkAAAAAAAAAAAAAAAAAAAAAAApH9BoAAPSOE09MfO71SoFA4rFoVGpqkiwrvzktyx0fjbrP00Wu013T3l7YGi0tqeO9XjdGHT/uG9+QBg1yv489DMMNX/v9+a2XrKJCGjzYXa/DzLUV+una3fSZ2Z42+mzLlqE8fhZlZMhQ2ArLdmxJbjT6ve3vKWyFuz13TwevY4oJX/dG8DqG8DUAAAAAAACA/qKiokKHHXZY1jELFy4sy9rPPPNM1vNHHHFE1iB3f7Zu3bqs5+vq6npoJwAAAFLz9u2a+tu99Gn79o4jyR++Xubgddw6XkvaVimp61YRPTI25IavR4yQ7rtPqq0t80YAAAAAAAAAAAAAAAAAAAAAAMgf0WsAANA7Dj1UGjYs8VhVlWQm/XoSjUoNDVJbm2Tb6eeybfd8Q0NX8DpefPw69n38McuSGhvzXyM5eG0YqcHuwYOlyZOlSy6RBg5MHV9Z6cavfb706yXz+903KNbWpsS8148drB9N3p718p4OQsczZMgwDMmRona0M3wtR2qLtnUrfN1bweuYQsLXvRm8jiF8DQAAAAAAAKC/mD59etbzDz/8cFnWfeihh7KenzFjRlnW7QuWLl2a9fwee+zRQzsBAACQjvjdRH0S2SrJliJKuZ8lZPZA8FqSNyo1B5QQvI55ZGxIMy+tl3bdtfwbAQAAAAAAAAAAAAAAAAAAAACgAESvAQBA7/B6pe98J/GYYUg1NSlRZ0lucHr7djdO3dIitba6Xxsb3eNtbanXmKYblk4WCKSu4TjFrRELWCfPN2uW+xoHD5Yuv1yqr0+91uNxQ9+1tVIwKFVUuBHs2KOiwv151NW5r8Ob+g7G9XuN1AFf3aCt4e0yDEOG0vzselFn8DqOZSdGw4sNXzuOow3NG7oVvDZkaFDFoG793Bx17MPJvI9IJNLrweuY9mi7IpFIb28DAAAAAAAAAMpq1qxZWc8vWrRI7777bknXXL58ud5+++2M5w3DyLmv/spxHC1cuDDrmL333jvv+S6//HI5jtNjj1zWrFmT9fq1a9fm/doAAED5Tfv57lobif/wazvlvpCSBK9z/BrhsaQWryRPhgGG9I9PnlNbOM39LAAAAAAAAAAAAAAAAAAAAAAA9CKi1wAAoPdMnSodfXTiMY/HjUCbGX5NiUalUEhqb3e/RqPpx5mmO09FhRu5jvF6Jb8/fai60DViwevkvR5wgHTQQe65ykpp1Cjpmmukww5zr0l+mGZX5DoY7HpUVLh7zbDP9accpwOOW6ut4e1xW9pxwtfpgteGDPk8vpSxxYSvDcPQxPqJqvanCZvnub/xg8ZrQv0EjR80vuifW7W/WhPrJ6a81ng+n0/7D92/qPljKrwV+spuX1GFt6Jb8+w/dH/5fKn/DAAAAAAAAACgL9ljjz00derUrGPmzp1b0jV///vfZz0/bdo07bbbbiVds694/vnn9dFHH2Ud88UvfrGHdgMAAPqzo381Uava16eeSLoloMJKHVII05Yqo+7XdDyW1OqR5E9z0nAfPtOnJRcuUaW/snubAQAAAAAAAAAAAAAAAAAAAACgxIheAwCA3nXRRdLIkYnHPB5pwIDEWHUhAgH3eo/HfR4LXBtG15ymKVVVuRHsYni97vWm6c7r8biP4cOlb39b2m23xMeECdJ110k/+5m0yy5d43M90hk9WutvvUkH7PKYtrZvK27/ZZYueO0xPWmD1zFhOyzHcQpax2t6tU/9PgWHr2PB6/pgvSSpPlhfVPi62l+tfer3kdfM/e/RoKpBRYevK7wVmjZqmiRp2qhpRYev9x+6vwZVDSrqWgAAAAAAAADY2Zx77rlZz//5z3/Wxo0bS7LW+vXrddddd2Udc84555Rkrb7o2muvzXq+vr5eBx54YM9sBgAA9Fvf+PVUvdX8XoazRsIdt4bTEb4u7DYHSW7oOtARzQ5YqeFr05ZapczBa7nB66UXLdXe9XsXvgEAAAAAAAAAAAAAAAAAAAAAAMqM6DUAAOhd1dXSL38pDRmSeNwwpGBQqq2V/OnexZeG3++ODwbd62NM051/yJDE44YhVVS4UexC1qipca9Lijpr4EDpkkvcGHYmU6dKt90m/fjH0qRJ+a0Zc+CB0p/+pPBz/9Lkd76rrW1bC7u+jJJj0cnBa5/pU02gJuP1HsOjoDeYcl0+Cg1fJwevYwoNXxcSvI4pJnwdH7yOKSZ8TfAaAAAAAAAAQH9z5plnaujQoRnPt7a26qqrrirJWldeeaXa29sznh82bJjOPPPMkqzV19x8883697//nXXM6aefLk+mDwsFAAAogSv//C0talopU1l+5zATzxUTvjZtKWDLjVd3POLD16YthR1JlWkuJngNAAAAAAAAAAAAAAAAAAAAANhJEL0GAAC9b/hw6aabpJEjU895vW4Yu67OjU3HAtWxR2Wle7yuzh3nTRMgHjFCOvNM9zFwYOp5j6fwNZLjzPX10uWXS4MH5369Xq90xBHSDTdId90lXXWVNGuWdMAB0u67S6NHu18POMA9ftVV0l//Kj34oHTiifJXBnXOpHPSTu04jpxC3k3ZTabMzki0IUN+j19m0q+YXtOrusq6lOMxHsOjoK+44HX8GvmErzMFr2PyDV8XE7yOKSR8nS54HVNI+JrgNQAAAAAAAID+qKKiQpdddlnWMXfeeacWLFjQrXUeeOAB3XPPPVnHXH755QoEAt1aZ+3atTIMI+vj2muvLXr+TZs26bXXXuvWHgv197//XZdffnnWMR6PRxdffHHPbAgAAPRL1999oR74+O8yDI9qfD55MoWvTVPJtxMYyj983Rm8jtdxXcCSvLakqGSlC153IHgNAAAAAAAAAAAAAAAAAAAAANgZFF7pAwAAKIfhw6Xf/1665RZp4cLU84Yh+XzuoxDTp0vf+pb01lvu8zPPlJ59VlqxontrmKbkOJJtu3HqM86Qqqq65jHz/GyRYcPcx1e+kv68xyMFg24QvLLrXY03TL9BknTTKzd1HuuN4HWFr0KWbSlshWUapqp8VYp6omqNtLrbNzwaEBiQMSJdiuB1TCx8vXzLcjWHm1PO5wpex8TOr966Ou3PszvB65hY+HrJp0syjskWvI6ZNmqaXl7/stqj7RnHELwGAAAAAAAA0J9dfvnlmj9/vtatW5dxzNlnn61ddtlFBx98cMHzv/rqqzrvvPOyjhkzZkzO+PaOYNOmTZo6daqOP/54XXvttTrooIPKtpZlWfr973+vH/7wh4pGo1nHnnPOORo/fnzZ9gIAAPq3mx74nv7y/gOdzw15VO2TmiOSJSv1Ao9XSvr9JRa+bvcoJYod0xm8znBbh8eRfveotGCS9MgX0gwwCF4DAAAAAAAAAAAAAAAAAAAAAHYeRK8BAMCOo7pauuIK6bDDpPnzpU2bip9r+HDpooukqVOl5rgAckWFdPzx0vjxbvy6oaH4NYYMkU4+WTr8cDdKHRMMSl9I9w7E0ooPX/dG8Nrv9UuSPKZHfvkVtsIKW2FVeitlyFDICqnGXyPTSB8AD/qCsh27JMHrmEzh63yD1zGZwtelCF7HZAtf5xO8jskWviZ4DQAAAAAAAKC/q6qq0m9+8xt985vfzDimqalJM2bM0F//+ledeOKJec/96KOP6qyzzlJzc+oHMcb79a9/rcq4D7bc0f3jH//QP/7xDx199NE67bTTNHPmTNXV1ZVs/pdeekmXXnqplixZknPs8OHDdcMNN5RsbQAAgHh/fPQnunnVn1PutoiFr1siUjQ5fG0a7sN2kq7JHL42bSmQpp/ded6Rfvov6awPfDrr84GaGWjUI2NDCWMIXgMAAAAAAAAAAAAAAAAAAAAAdibpC4QAAAC9aepU6bbbpB//WJo0qbBr999fuvpq9/qpUzOPGzdOOu886aSTpNGjJcfJ/7HXXu61V18t7btvt15qd90w/QadNP6kHg1eGzI6g9cxHtMjv8evtkibQlZI+w7dV9cccY08piftHNX+ak0YPKGkweuYWPi62l/dud9Cgtcx9cF6jR80XkbHu1FLGbyOiYWv4xUSvI6ZNmqaKrwVCccIXgMAAAAAAACAa9asWTr99NOzjmloaNBJJ52kM844Q++8807WsStXrtSpp56qr3/962psbMw69owzztDJJ59c8J53BM8884zOO+88DRs2TMcff7xuueUWLV++XLZtFzSP4zhavXq1brjhBu2zzz46/PDD8wpee71e3XXXXRo8eHCRrwAAACCzu56+Sb9ZMi/j3RaGPAr6fPIpzX0PXm9K2Nq9xg1fx0+aK3gtSd97UZrzXlAaPFjyerVg4SB9fU2g87zPQ/AaAAAAAAAAAAAAAAAAAAAAALBzKV2xDwAAoJS8XumII9zHli3SihXS++9LH3wgNTRI0ag7ZsAAaY893Ij1PvtIQ4bkv4bH4was99pLqqqS1q+X1q1zvzY3d61RXS2NGiXtuqu71sCBZXvZhVqwaoHe2PCGgr6gWiItPbKmI0eWbaUErT2mR1VmlcJWWMeNO07H7XmcKrwV+s2rv0kYF4tHG3bpg9cxsfD1ii0rNLJ6ZMHB65jYdRuaN2hi/cSSBq9jYuHrJZ8uKSp4HTNt1DS9vP5ltUfbCV4DAAAAAAAAQJJbbrlFb731lt59992MYxzH0T333KN77rlHBxxwgKZNm6axY8equrpaTU1NWrNmjV566SUtXbo0rzW/8IUvaP78+aV6Cb0mEonoySef1JNPPilJCgaDGj9+vMaPH68RI0Zo2LBhCgaDCgQCCofDamxsVGNjo7Zt26bly5dr2bJlam5uLmhNwzB022236eijjy7HSwIAAP3cghdu1c9f/ZWiyv5hHm742qPWSLvCSipX+7xSJKrkarYhqcKW2k3JdHIHry98S/rxB0OkWl/iHhcO0syvtuofo1q1hOA1AAAAAAAAAAAAAAAAAAAAAGAnQ/QaAADs+OrrpS9/2X2Uy8CB0rBh0uTJ5VujxBasWqA5T86R7diqDdRKUo+FryN2RIYMmR4z4bjP41OFt0Jz35irCm+Fjhx7pAZVDtJPnv+JpK7gtdf0yrJzvLOzm7ymV/sN3U+G0b24dn2wXkOqhnR7nmwGVQ3SEbscIZ/Pl3twFtNGTVMkEun2PAAAAAAAAADQ11RXV+vpp5/WEUccoXXr1uUcv3jxYi1evLjo9UaPHq2nn35a1dXVRc+xo2ppaen2zycbv9+vO+64Q6eeempZ5gcAAP3bv954UP/9/I9TI9ZZVPkqZETaFUq4xsgcvnakSqtrmKTEMR3HvvWOV796p15K91f8Y8dqwdX3qW3YEFX6K/PeKwAAAAAAAAAAAAAAAAAAAAAAOwKi1wAAADuh+OB1TLnD14YMOXHvwgzbYRmGIY/pSRlrO7ZufOVGSdIZ+52huso6/fqVX8tjeOQ1e+5X0FKFqssZvI4pVaia4DUAAAAAAAAApDdmzBg9++yzOvbYY/XBBx+UbZ1x48bpqaee0ujRo8u2Rl+1xx576O6779YhhxzS21sBAAB9xYYN0uuvS8uW6Y0Vz+jS4a8o5Om498EwJI+n6+FLvf8hptJXIUVCCikad9SQfD4pGpVsJ+O1saHxTvjQo7lv1qcfe8op0vXXS7W1IncNAAAAAAAAAAAAAAAAAAAAANgZEb0GAAD9k2lKTtwbDg3DfRQ7Vw+ybEu3L7k9IXgdUxuoleVYao+2l3RNI/ndlx2idjRt9FrqCl8Pqhykcw88V/VV9frp8z8t6b4AAAAAAAAAACjEuHHj9MYbb+i0007T008/XfL5jz32WN17770aOHBgyefuywKBgP7rv/5LP/nJT1RdXd3b2wEAADu7SER66inpjjukl1+WJL1d0axzj2lSuyRZcWOjcRFrr1fy+6UKf9ppK30BmRFDbYoknvB63ei1FZVytK8l6SvrTP315aGpJ0aPln72M2n69NyTAAAAAAAAAAAAAAAAAAAAAACwAyN6DQAA+j5vml95Ro9OjFyPHStVVJRmPZ+vNPNk4DE9uvsbd2v2Q7O1dNPSlPNVviqFoiE5+byTshtMw5Tfk/6NnjG2Y+vq565WXWWdhlcPL+t+AAAAAAAAAADIR11dnZ566indcccd+uEPf6hPP/2023MOHTpUN954o84666wS7LB37LnnnvrDH/6gJ598Us8995xaW1vLvmZtba3OPfdcXX755RozZkzZ1wMAAP3AwoXS1VdL69Z1Hnrf36wzZzSpOfstDm4AOxqV2tqlqiopkHq/ScDnlyJKDV+bhmT6JNuWbEtK/RxzSdIhGw397YVhiQcPP1w6+2xpxoyy33MCAAAAAAAAAAAAAAAAAAAAAEBPIHoNAAD6PtOUAgEpFOqZ9Wpqyr5EbaBW98+6P234ujXS2jPBa9MvIz4cnoHt2Jrz5BxdetClZd0TAAAAAAAAAACFOPvsszVr1izdcccd+sMf/qBVq1YVPMeECRN0ySWX6JxzzlFVVVUZdtlzgsGgLrnkEl1yySVqb2/XCy+8oOeff16vvfaa3nzzTTU1NZVkncGDB+srX/mKTj75ZJ144okKBoMlmRcAAPRzjY3SNddIDz6YcPgTf7NOndGkhkABczm21NIsRfxSoFLyJd4b4YavDbUpnHqtaboPOZLtSE7HfHK0z/aAntp4uPTFIdLEidJ++0kHHyyNGFHoqwUAAAAAAAAAAAAAAAAAAAAAYIdG9BoAAPQPgwdLGzdKTnlj0Kqqkurry7tGh3Th68ZQo9qj7SVfy5DRGdI2DVM+0yfl7l13sh1bT7z3RN6hbAAAAAAAAAAAekIwGNTFF1+siy++WKtXr9ZTTz2lRYsWacWKFfrkk0/U1NSk1tZWVVVVqaamRqNGjdKECRN04IEH6rjjjtOee+7ZY3vdbbfd5JT77zk6VFRU6JhjjtExxxwjSbJtW6tWrdLSpUu1Zs2azseGDRvU3NyslpYWNTc3y7IsBQIBBQIB1dXVaejQoRo5cqTGjx+vvffeW1OmTNGECRP63N8V/PSnP816fuDAgT2zEQAA+qt166TZs6W1axMOb7WadfLRTfq8suOA0/GIMZT93odwWIpEpeqg5PMknAr4fDIjhlqU6QPYDcmMTe7V7sER+s+v1uT7igAAAAAAAAAAAAAAAAAAAAAA2KkRvQYAAP1DICCNGCFt3SqFMr3hsBs8HqmuTho1SurBUEN8+Po/H/1HLZGWsqxjy5bH8MiRI5/pKzhGMWn4JF0x9Qr9z4v/U5b9AQAAAAAAAADQXePHj9f48eN7exs7JNM0NXHiRE2cOLG3t7JDuvbaa3t7CwAA9F8ffyx9/evSpk0Jhz+xNmrXb0uBkDQ8020iyRFsM90YW2puSRu+9vm8CkaUJXztGu2r0wsXL8nxQgAAAAAAAAAAAAAAAAAAAAAA6DuIXgMAgP4jFr62bWncuMQ49Re+IFVVFTevYUg+X2n2WITaQK32GryXnnr/qbKuYzmWhgeHqyHUICfhXZ/ZTaifoPtn3a8Vn64o4+4AAAAAAAAAAAAAAEC/0tgonXpqavA6ulGjvy05htReIW2QNDKfz0e3O74mx687w9c1ki/xQ8J9Pq+qo4ZanFDaeymG+mr10mWrVD1gQN4vCwAAAAAAAAAAAAAAAAAAAACAnR3RawAA0P+Yphupjo9e+/3uYyd05cIrNff1uTINU7Zj576gSIYMbWrZpBHVI7S9fXte4evxg8Zr/gnzVRuoLdu+AAAAAAAAAAAAAABAP3TNNdLatYnHolGN+bZkx4WrwxXSeo80qjXPeW2lD1+H2iRf6geqe70eBa2AWuzE8PUgX1AvXPKmqgcOzHNhAAAAAAAAAAAAAAAAAAAAAAD6huTb8gEAALATuXLhlbrplZs6n5tG6q93hoyUY4WKn2Nj80YNrBiYc97xg8brl0f9UjWBmm6vDwAAAAAAAAAAAAAA0GnhQunBBxOPRaMKnLdFVpo7Y6M+6eNgx5N8bqNI95nj4bAUiqYd7vV4VO0JyOy4LXeAr1L/Pv81DR+yWx6LAQAAAAAAAAAAAAAAAAAAAADQtxC9BgAA2EklB69j4mPUpQhep7OxeaMGVQzKOH8seF3try7L+gAAAAAAAAAAAAAAoJ+KRKSrr0485jiqOnuLwp7Ml9le6aOg3Oi1GffIdGtFuvB1a2vG+T2mRzVev2q9lXr61IXaZeT4bK8CAAAAAAAAAAAAAAAAAAAAAIA+i+g1AADATihT8DrG6PhPtvPd9UnzJ6qvqk+Za49BexC8BgAAAAAAAAAAAAAA5fH009K6dQmHak/fpLZA7ksdr7S2KulgLIKdTnL42rGl9nDG+QcaQT1xxj+0114H594MAAAAAAAAAAAAAAAAAAAAAAB9FNFrAACAnUw4GtZflv6l2/MMDAzs9hybWzbr0FGHdoavR9eO1k+++BOC1wAAAAAAAAAAAAAAoDzuuCPhaf03N6qpsoDrPdLaoNSSfDzfO2rD6aPXVQroTyffpX33PKyAzQAAAAAAAAAAAAAAAAAAAAAA0PcQvQYAANjJ+L1+vXXBWxpUOajoOQ7b9TB979DvaeouU4ueI+AJ6OS9T9a4QeN0+K6Ha2jVUF160KUK+oNFzwkAAAAAAAAAAAAAAJDRhg3SSy91Ph158kZ9VlPEPKa0pTrP8LWd9DwalSJWwqEK+XTL127VQfscXcRmAAAAAAAAAAAAAAAAAAAAAADoW4heAwAA7IRG1Y7S4gsXFxW+3qNuD83YY4Yk6fg9j9fomtEFz+H3+HXM2GNU7a+WJI2tG6vjxh2nSl9lwXMBAAAAAAAAAAAAAADk5fXXO7/d66sbtXFAN+YyMoSvjTyutbqi1wF59evpN+nw/U/qxmYAAAAAAAAAAAAAAAAAAAAAAOg7iF4DAADspIoJX4+uHa0JQyYkHBs3aJwGVeQ/h9/j11FjjlKVvyrhuGnwqyUAAAAAAAAAAAAAACijZcskSQccs1Gr60swnyFtqUkKXxcQvfbK1HWH/0THTzurBJsBAAAAAAAAAAAAAAAAAAAAAKBvoEwIAACwEyskfD26drTGDRqX9tyw6mF5ha8zBa8BAAAAAAAAAAAAAADKbsUKffHIjVqyS2mn3VIjNWcb4CQ9tyx5ZeqqKd/T7KPmlHYzAAAAAAAAAAAAAAAAAAAAAADs5IheAwAA7OTyCV9nC17H5ApfV3orCV4DAAAAAAAAAAAAAIBe87XKJ/WfseWZ+7MaqTHTyaToteE4unTf83XeCT8uz2YAAAAAAAAAAAAAAAAAAAAAANiJEb0GAADoA7KFr/cdum/O4HXMsOphqq+qTzle/f+zd+dxUtQH/v/fVX3OzcBwCggoIniAYrzQxHiQGOMx6oqK0ayJZlclMZvDbIyJJm4So/G7RlnNoRtNQFGUREyM0Yg/V40XICAgoICA3Mx99FVVvz+anume6Wtmunuu19NH79BVn/p8PkNY4PGg6tXeUn3t+K8RvAYAAAAAAAAAAAAAAL3iq3+4Us+ObczrGjVlUp0hyUg/7vqPh+sbF/88r3sBAAAAAAAAAAAAAAAAAAAAAKC/InoNAAAwQMTC12W+srZjs8bN0kmHnNSleUaXjtbIkpFt7z2mR3eecafK/eU52ysAAAAAAAAAAAAAAEC2vrHoOj28+fGCrFVXKtWmubv2so1efa/+qILsBQAAAAAAAAAAAAAAAAAAAACA/ojoNQAAwAAytnys7vv8fSr2FGvWuFmafdjsbs0zrnycRpaMlNt0a9a4WRpaPDTHOwUAAAAAAAAAAAAAAMjsl8/fqV998LuCrllfKh1wxR0wol8u2OzRXauGSVVVBd0PAAAAAAAAAAAAAAAAAAAAAAD9ibu3NwAAAIDcqiqu0rdO+ZbcZs/+qjeufJwOKT1Efrc/RzsDAAAAAAAAAAAAAADI3v8u+x99++3bemXtxlLJbpaGRyQZ0pnb3bpv+cHY9VFH9cqeAAAAAAAAAAAAAAAAAAAAAADoD8ze3gAAAAByr6fB6xjT5K+LAAAAAAAAAAAAAACg8Ja887iuffXGXt1Dc4m02yudtNulh98c3n7i2GN7b1MAAAAAAAAAAAAAAAAAAAAAAPRxuakhAgCAnmltlZqbpQMHEo+3tEheb37XNk3J55NKSiTD6Hw+EIjuLxLJbj63Wyoujn5taZGCQclxur8/tzu6v+Li7s8RDnf/2gzW7Vun5zY8p51NO2XZVt7W6YrNNZu1v3V/2/vGYKPqg/UJY9bvW9/249rWWllq37spUy7T1fb+k4ZPdKD5gBrCDQpZoYRxPrev7b3LcGnDgQ0q9ZTK4/a0HS/1lKrEW6Jd9bv0wb4P2o7btq3mUHPCvlbvWS23wV9R0X3xv5YBAAAAAAAAAAAAAP3T21te08V/vbK3tyFJsrzSE/83IvHgiSf2zmYAAAAAAAAAAAAAAAAAAAAAAOgHKAoCANCbHEfatUuqPxgkbmhIPN/xfT55vdKIEZKnPVasmpr2vXVFKBQNTZeU5G5/xcXS8OHRSHcfce8b9+qptU8p4mQZBC+QukCdmsPtMelwJKyAFUgY0xBs/7Vl2ZZs2W3vDRky4gLoLrm0xd4i27FlO3bCPG4z8a+TjeFGeU1vQjTba3rlcXnUGGxUQ6h9XcdxZDmJgWLLshRSSAAAAAAAAAAAAAAAYHCq2bdPn37sjOQnPZLy99nnnbhsKfTrSskfd/C006TRowu3CQAAAAAAAAAAAAAAAAAAAAAA+pm+U40EAGAw2r+/e1HpfAiFovtxnOj7xsbu7c2222PZzc2Zx2erpUWqrc3dfD30wqYX9Pj7j/e54DWA9OID7wAAAAAAAAAAAACAvqVm3z5N+p/xisiSkXl4Xhm29PH/k+T3J5645ppe2Q8AAAAAAAAAAAAAAAAAAAAAAP0F0WsAAHpTTU1v7yBRICAFg9EfdzfGHQhEw9dSbqPXUjTEHYty97JF6xb19hYAAAAAAAAAAAAAAAAGlCP+31g1hQOSoje4Jg1fewqwEUd68y7pkCGjEo+PHy/Nnl2ADQAAAAAAAAAAAAAAAAAAAAAA0H+5e3sDAAAMWuFwexw6xkj6qF5+FRVJLlfi+7Iyye+PvmKamzMHpw1D8nik4uL2Y15v9HvtrpKSxJ+X4mLJ5+v+fKl08ed+d+PuhPf7W/YrYkVyuaNua4m0KGy1/5zbji3LsVKOt21bttP+a9GQkfDUqG3YUkRyHKfTuLDRvo5hGHIcR4YMmUb7Z6u4TJdchkuBSEDBSLDtuOM4stXh/wcAAAAAAAAAAAAAAMCgNOo/i1XnCkXfhCV5ouFrW1JBPyLdkd76mXRi1fDO95PceWf03hgAAAAAAAAAAAAAAAAAAAAAAJAS0WsAAHqL2x19MC4+JJ0pKp0PZWWJkeoRI6SKCqmhIXFcS0vnSHdHLpc0dGjiw33FxVJdXff3N3RoYpR75MhomDuXDKPLIe2InRi4rgvWJQSde5PlWLIz/W8Vx3EcOR0fD417azu2bNlysvj1GbY7B84NGW1B7IgT6XQOyKVOv5YBAAAAAAAAAAAAAH3eobeXa7+rNfFguvC15+D5XHOkZ/5wMHjt7nCL7WWXSWefnYdFAQAAAAAAAAAAAAAAAAAAAAAYWMze3gAAAIOWYUjl5b29C0jSkCGSOXD+WmTm+K942Yapk40zDv4nSYZh5HxvAAAAAAAAAAAAAACgf5tyR5U+iTQmP3kwbG2qMDe8PrJIqg6P6hy8njhR+vGPC7ADAAAAAAAAAAAAAAAAAAAAAAD6P6qDAAD0phEjJJ+vt3cxuPn90rhxvb2LnDIMQy7T1aXxqcLWhgwZZnu0Oh0zSTjckKH4qd2mO+uINpAP/PoDAAAAAAAAAAAAgL7juDvG6qPwgfSDDoavDXW46dWT27384GXpX1tGRz/IPt7o0dITT/Dh9gAAAAAAAAAAAAAAAAAAAAAAZMnd2xsAAGBQc7uliROl2lqppaVzANswch/FDgQS3xcVRV8xxcVSSUniMSm6D8tKP7fbHR0XCrUf8/s7fw9+f/LrI5Hoq+P+XHEB5+Li6KunPB6ptFQaPlxKEmvOBbfZu3/VckxHlm3Jlp3deMeR4zht703DlGl0+LkxJCfuP1NmQhi7fZghU6Y69YVNyWN7FLJDsm1bjhwBuWQpw+9TAAAAAAAAAAAAAIA+4bQ7D9Oa8CfZDQ5LckmGGQ1ft90J4VFbFLsnvv5P6SdbR3c+MXFiNHg9wD5QHQAAAAAAAAAAAAAAAAAAAACAfCJ6DQBAbzMMaejQ6KuxMfHcxImpA9HdtWlTYlh63Lho/Dn+/bBhnePY4XDn6yRp+/b2Yx5PNJhdV9d+bNiwxIB2SYk0fnzyvYXD0ocfJh6bMCExej1lSnSOPq7cW65xFTzwCBTa8l3LiakDAAAAAAAAAAAAQB/3uZ8fozcDm7t2kSXJkQxXbsPXl6+R7lufJHh92WXSj38slZd3f3IAAAAAAAAAAAAAAAAAAAAAAAYhotcAAAAAAAAAAAAAAAAAAAAoiDn/7zT9o+n97l1sR1+GR3Ip2sGWFA1fS12OX1+wXnr8nQ7B6/HjpZ/8RDrnnO7tEQAAAAAAAAAAAAAAAAAAAACAQY7oNQAAAAAAAAAAAAAAAAAAAPLu+ge+oKcPvN7zicKSOoavpS7Fr0/fIv35n3HB69NOk665Rpo9W/J4Ul8IAAAAAAAAAAAAAAAAAAAAAADSInoNAAAAAAAAAAAAAAAAAACAvLrld3P1v7ufz92EqcLXUsb49YwDXr1qVUv/fpR07LHSiSdKo0cnHwwAAAAAAAAAAAAAAAAAAAAAALqE6DUAAAAAAAAAAAAAAAAAAADy5vaHr9W9WxfKyfXE6cLXUnv8Os5hvkO08s4dud4JAAAAAAAAAAAAAAAAAAAAAAA4yOztDQAAAAAAAAAAAAAAAAAAAGBgemDRLfqvLf+b++B1TDj6xZXF0NHuYfrwewSvAQAAAAAAAAAAAAAAAAAAAADIJ3dvbwAAAAwitbXS++9LL7wgbd4s1ddLkYjkdksVFdKhh0olJdJhh0mVlb29WwAAAAAAAAAAAAAAAPTA75+9U/+x5hf5C17HhCV5ouFrK8WQoSrVzlv353snAAAAAAAAAAAAAAAAAAAAAAAMekSvAQBAfkUi0ooV0muvSZs2SYYhuVzJx65cGR0vSZMnS6efLk2alHo8AAAAAAAAAAAAAAAA+qS/v7JA//b2bbILtWCa8HWZ/Drwo8ZC7QQAAAAAAAAAAAAAAAAAAAAAgEGN6DUAAMifNWukP/1J2ru369du2hR9vfCC9O//Lp18cs63BwAAAAAAAAAAAAAAgNx7e8VfdOGLVyliFHjhJOFrvzxq+FFrgTcCAAAAAAAAAAAAAAAAAAAAAMDgRfQaAADkXmurtHix9Pbbkmn2bK49e6Tbb5fOPlv6t3/LyfYAAAAAAAAAAAAAAACQYytWSE89pQ9f/ZM+e9oHCnt6aR9x4esKlejAj5p6aSMAAAAAAAAAAAAAAAAAAAAAAAxORK8BAEBu7dsn/eIX0v79yc87jhQOS5GIZFntx12u6Mswoq+OXnpJWrdOevJJacqU/OwdAAAAAAAAAAAAAAAA2WtpkX72M+l//1fatUsfOrZmfFsK9lbwOiYsDfGUaD/BawAAAAAAAAAAAAAAAAAAAAAACo7oNQAAyJ39+6V775VqajqfsywpGIzGrtNxHMnjkXy+aAQ73s6d0uWXS88+K40bl7t9AwAAAAAAAAAAAAAAoGt+/nPpzjul1lZJUo1t64RvSwFvL+9LUqnt1sYbtvT2NgAAAAAAAAAAAAAAAAAAAAAAGJTM3t4AAAAYIFpbpfvuk+rqEo87TvRcU5MUDkffZxIOR8e3tnYev3t3NHzd0JCzrQMAAAAAAAAAAAAAACBLO3ZIM2ZIt97aFryWpMn/ITX5em9bMX7H1Oavb9fQ4cN7eysAAAAAAAAAAAAAAAAAAAAAAAxKRK8BAEBuLF4s7d+feMyyonHqUKh7c4ZC0Yi2ZSUe37JF+uEPuzcnAAAAAAAAAAAAAAAAuuett6SpU6U1axIOj5pnq76ol/YUx+eYeu9ryzV01Kje3goAAAAAAAAAAAAAAAAAAAAAAIMW0WsAANBza9ZIb7+deMyypOZmybaTX+N2Sz6f5PdHv7rdycc5TjSc3TF8/eST0osv9nzvAAAAAAAAAAAAAAAAyOyf/5Q++1mppSXh8Lgbbe0v7aU9xfE4hpb9y190+PgZvb0VAAAAAAAAAAAAAAAAAAAAAAAGtRR1SQAAgDj79knvvCNt3Sp98onU1BSNVLtc0deHH0qhkOTxRN87TvQBR8dJnMcwooHroiLJTPLZG7YttbZKwWDitY4jNTZKFRWJ42+7TTrjjOi6AAAAAAAAAAAAAAAAyKlQJCSv2yvt2CHNnh29pyPO5Ott7Srvpc3FcUv687kLdeKMz/f2VgAAAAAAAAAAAAAAAAAAAAAAGPSIXgMAgOQiEemNN6TnnpNWr46+j+dyRb8GAtHAtRQNVrvd0Ui1ZUUj1/Hji4ujX5MFr6XocZ8vGrFuaYnOEWPb0WPx4ett26S//10677yef78AAAAAAAAAAAAAAABos6Nhh2b+Zqa+PP3Luus7L7TfH3LQ9C/b2jIs8zyxjz030o7qPlPSgjPna/Zpl+dpBQAAAAAAAAAAAAAAAAAAAAAA0BVErwEAQGcvvih9+9vSnj2Zx4ZCie8jkWj0Wop+NYxo6LqkJDGCnY5pRsc3N0dj1zHBoBQOS15v+7FHHyV6DQAAAAAAAAAAAAAAkEM7GnbouF8fp5rWGt3zxt3ScEd3qf1Dzk+7wtba0ZnncQ6+jLivuWRIuve47+uSM2/I8cwAAAAAAAAAAAAAAAAAAAAAAKC7iF4DAIB2TU3SrbdKf/lLNC6diW1HI9fxYsHr+PdFRdHgtW1LlhU9Fotjx8LYhiG5D/7VxO2Ohq+Li6N7itfamhi9fu01aedOacyYrn+/AAAAAAAAAAAAAAAASBAfvJYk2Y7uOVWSbN31sqnPXWLrzQmZ54kFr2M/znX42pD006O/oZsu+a8czQgAAAAAAAAAAAAAAAAAAAAAAHKB6DUAAIjavVv6/velPXuiwemOHCcarI69YhHrWLQ6nebm6JyWFX2fanwshC1Fw9der+T3S4FA+5hgsPOa77wjXXhh9t8rAAAAAAAAAAAAAAAAOkkWvI6551TpL2NtfXBI5nnig9fxx3IVvjYk/ceEK/Wdy/+7hzMBAAAAAAAAAAAAAAAAAAAAAIBcS1K0BAAAg87u3dK3viXt3Nn5XCQiNTVJjY3ReHUgIIXDUigU/SpFI9SxVzK2nRi0zkYkIrW0tEeuYxynfd2Y1auznxcAAAAAAAAAAAAAAACddApeSwn3bJTWSusO6Ryz7ihZ8Dr+nNKcz9a/jjpXd311QQ9nAQAAAAAAAAAAAAAAAAAAAAAA+eDu7Q0AAIBe1twsff/70oEDiccdpz06HXufC44jGUbXxsdehhF9hcOS19s+Zu3a3OwNAAAAAAAAAAAAAABgEEoevG7/Yek+qXFo4uFkd3+kC17HjzHivnbVJcNm6Tc3/bUbVwIAAAAAAAAAAAAAAAAAAAAAgEIgeg0AwGD3yCPSzp2JxyIRqb5esu38rBkLaMeHtLMJYcfGRyKJx/fvz82+AAAAAAAAAAAAAAAABpmkwWup7T6Nsn1Sw9AOpw5+NTocy/Yj1bsbvv5c8dFa9M3XunAFAAAAAAAAAAAAAAAAAAAAAAAoNKLXAAAMZmvWSK+8khiczhS8drsl05RcLqm1NTFcna1k13Q8Fr8nw0gMZXfcWzjc9T0AAAAAAAAAAAAAAAAMcimD15IkR6X7pcahSU4pMXzdleB1/PVdCV+f7DlUf/n+mi6uAgAAAAAAAAAAAAAAAAAAAAAACo3oNQAAg1UkIi1enHjMcZIHrw1D8vkkjycavJai0etwODpPd8LXmcTP2XH+UCi6x9hePJ7crw8AAAAAAAAAAAAAADCAhSIhzfzNzBTBa8lXJzVVpo9Zdyd23fH6bMLX0z2j9NqPtvZgJQAAAAAAAAAAAAAAAAAAAAAAUChmb28AAAD0kjVrpJoODy22tHQOXrvdUnl5NHptdvirg2Ekfs2HZEFtx5EaG9vfV1Xlb30AAAAAAAAAAAAAAIAByOv26svTv5z0nN1kK1Tas6B1tjKtcdh+afmPdhVgJwAAAAAAAAAAAAAAAAAAAAAAIBfcvb0BAADQS/7v/xLfRyJSMJh4zO2WysqiUetIpPMcLpcUDudvj+kEApLfH41xH3VUp9O2Y2tX4y7VBeoUiATSTmUYhorcRaoqrtLwkuH52jEAAAAAAAAAAAAAAECfYNmWXKZLd51zlyTpnn/e03bObrHl9khWgfZiHHwlc0ittOGJCumhAm0GAAAAAAAAAAAAAAAAAAAAAAD0mNnbGwAAAL2gtlbatCnxWCBJGLqkJBq8TsV98PMzHKf7ezGM9ldXrpGkxsbo2scem3DacRxtPLBRu5t2Zwxex8a3hFu0rX6bPq77uCu7BwAAAAAAAAAAAAAA6Fcagg26aNFFWrJ+iSTprnPu0rdP+bYkyQ7Zcrskqwu3cfREuuD1iEbp44dMyeRWVwAAAAAAAAAAAAAAAAAAAAAA+hN3b28AAAD0go8+SnzvOFIolHisqEhyudLP487xXyViMet0Ee34OLZlScGgdOKJCUP2Nu9Vc6i5W1vY37JfQ4uGqsxX1q3rAQAAAAAAAAAAAAAA+qqGYIPmLJ6jVbtXaeWulZKk6qnVuuucu9S4Y49+u+lRWQVqTKcLXg9plXY+cHAjpaWF2RAAAAAAAAAAAAAAAAAAAAAAAMgJotcAAAxG27cnvo9EEt8bhuTzZZ7HzNNTjoaRPnwdr6REGj064VBDsKFHyzcEG4heAwAAAAAAAAAAAACAASU+eC1JtmNr3vPzJEmfGXqq/rhpoew+ELwua5U23isptpfJkwuzKQAAAAAAAAAAAAAAAAAAAAAAkBNErwEAGIw++STxfcfotdudXdDatnO3p+5qaZF27pTGjGk7FLSCCUN2N+1Wc7g55RRD/UNVWVSZ8noAAAAAAAAAAAAAAID+rGPwOsZ2bM198jJ5glKLGWkLUWf5UeXdki547Q9JH90rDY2/b+Wkk/K4GwAAAAAAAAAAAAAAAAAAAAAAkGtZ1CwBAMCA09SU+N6yEt97PNnN0zGWnQuOE32lOx/jckk+n/TOO2mnjNgRhSKhlK+Ik4fvAwAAAAAAAAAAAAAAoA9IFbxu0xpRoxlpC12ni1L3VLq5fWHpvXs6BK8l6bLL8rQbAAAAAAAAAAAAAAAAAAAAAACQD0SvAQAYjDLFqo0sH12MzZPt+GRiketMseuO10hSWVn06+rV3V8fAAAAAAAAAAAAAABggMoUvG7cu0sBd/THzsGXlJ/wdbo5PRFp2e+kwzuOGDNGmjEjxzsBAAAAAAAAAAAAAAAAAAAAAAD5RPQaAIDByO1Ofz7b+LRl9Xwv3VVUJPl80R+vXdt7+wAAAAAAAAAAAAAAAOiDMgWvm/fsUrMn8VjH8HUupZrPbUl//p10Yo06f/D6V76S410AAAAAAAAAAAAAAAAAAAAAAIB8I3oNAMBgVFqa+N7lSnwfDmc3T3wcu+NDh7liJvnrimFIZWXt7/fvz8/aAAAAAAAAAAAAAAAA/VCm4HVg1y41epNf6ygxfp0ryeYzbWnB49LsA+p8j0hRkfTd7+Z4FwAAAAAAAAAAAAAAAAAAAAAAIN+IXgMAMBgdckjie7c78X0kItl25nmcXD/eGDe1YcgxzehDlIaR8ECl4/XKlmQ7jmzHUSTYqvpAvZpDzbKdLPYNAAAAAAAAAAAAAAAwQIUiIc19Zm7K4HVo1y7V+dPPka/odfychiPd+6x0ycdK/mHrP/yhVFyc410AAAAAAAAAAAAAAAAAAAAAAIB8c2ceAgAABpxx4xLfd4xeO44UDEpFRennSfbAYU8cnM8xdPApR0eSkRjXNg3ZhmQ5kbZDAUX0Yc2HB0+bagw1qsRTktu9AQAAAAAAAAAAAAAA9HENwQbNfWauplVN08pdKzt9eLj1yS7V9GJHOnYHiOlIP/2rdNNaRe8X6XgPyrHHSt/9bqG3BwAAAAAAAAAAAAAAAAAAAAAAcoDoNQAAA8G+fdLatdKmTdLmzVJ9vRSJRGPWFRXSpEnS5MnSUUdFxx92WOL1hiF5vVIo1H6stTV6zOVKve7BBw4tw5HL6WYAO+6hRcuMPtQoJ9m42Fij054iQyvafhy2wtrVtEtVRVUa4h/SvT1JsmxLLjPN9z6AOY4jIwdB81zNAwCDSSAQkN/v7zPzAAAAAAAAAAAAoP9oCDZozuI5WrV7lVbuWqm5x8zVgjUL2sLX9vZd2lfay5tU9LaQkzdK33lPkml2HlBSIi1dWuBdAQAAAAAAAAAAAAAAAAAAAACAXCF6DQBAfxWJSG+8IT33nLR6dfqxK1e2//iww6RZs6TDD5c+/LD9uN+fGL2WpOZmqawsIUydwOVSgxHS3Iula99zVP2BITnJitUpxM275EhHjxwn/fFpqTzUftwxjGg4OW6s40n8K0zrEdGId1OoSbctu02fOuRTmjl6Zrej1y989IL+uumvWnDxApX7yrs1R39l2ZY2121WVXGVKv2V3Z6nNlCr/S37NWnIpEEbDweArqoP1Ks2UCsFpAlDJnR7nq11WyVJlapUhb8i/WAAAAAAAAAAAAAMCPHBa0myHVsL1ixoC19bWz/R3j5yC0RZnfTGNOmWs6W7Xu5w0ueTXnxRGju2N7YGAAAAAAAAAAAAAAAAAAAAAABygOg1AAD90ZtvSg8+KO3Z0/VrN2yIvnw+KRyWXAeDxG539Fgw2D42EpEaG6WSkqRTNRS7NOfz0qpR0srRkhxH1R90fUtLjnQ071zJNqTLL5WeWOyozPHILvJLli1XS2vCeNvtkuLa2o1HTlBta61+9MqPtLFmo9buWyvLsjShYoJ8bl+X9rJsyzL98p+/lGEYmrN4jhZdumjQhK8t29JHdR+pNdyqbfXbJKlb4evaQG3b9R/VfaTDhhxG+BoAMmgLXh+0tW5rt8LXseC1pLb5CF8DAAAAAAAAAAAMbB2D1zGx8PWEpiK90UdufShrlJqGRX98z6mSZOuul83ogZKSaPD6pJN6a3sAAAAAAAAAAAAAAAAAAAAAACAHzN7eAAAA6IKmJumee6Tbb+9e8DpeIBB9NTdLzsGCdHGxZHb460EkItXXR2PYtt12uMFja875Aa0aFX1vG9K8L0hLjkyylmFE5zWM9h97PJLbrSVHmW3BaxmGVo02NOcKl2qGFsv2uGW2tsqJ+8/yuhWRrYgTaXu9c4ipb/39W9pYs1GS5DiOHlv9mJZtXdaln5JlW5bp7n/eLVvR73PV7lWas3iOGoINXZqnP4oPXsdsq9+WEGDNRnzwWpJaw636qO4jWbaVs70CwEDTMXgdEx+wzkay8bWBWtUH6ru5MwAAAAAAAAAAAPR1qYLXMfbuXfpn6EMZBd5XMuVNUtOQxGP3nCrdcqYtHXustG4dwWsAAAAAAAAAAAAAAAAAAAAAAAYAotcAAPQXu3dLX/+69NJLyc87jhQOS62t0Th27NXaGj0eC1vHGIbk90dj1vX10aC1YUgVFZ3D11I0kN3YKDU3q8Fq0ZzZ9Vo1LJIwJGX42nGir1j0urRUqqjQkuP8mvd5R7bLbI9iS1pdZWvuuc1qCTZ12nfE70t4v3nmYbpnyx+1rWFbwnFHju576z4t25Jd+LoteO3YCccHQ/g6WfA6pivh647B6xjC1wCQWqrgdUy24et04whfAwAAAAAAAAAADEyZgtehhn3a7bXlSHKkXg1flzdJjRXJz91zmqFbfjFbGju2sJsCAAAAAAAAAAAAAAAAAAAAAAB5QfQaAID+YPdu6Vvfknbu7HwuEonGrWtro1Hq1lYpFGp/tbZGj9fWRsdZceFhj0fy+aLB64aG6Fe3W6qsTB6+ltRghnXZBSGtGm4nPZ8xfO31Sl6vlkwK6qZPN8lO8UTlmqERXXFhWA3e9ui15fPK9rja9+Jx9JXTD3QKXrftxbF19z/v1ps73ky+yEGvb389afA6ZiCHr9MFr2OyCV+nCl7HEL4GgM4yBa9jMoWvswljE74GAAAAAAAAAAAYWDIFr62mfaqxIm3Ba6n3wtdlzSmC14YhuaIfkv77Vb9XKBIq+N4AAAAAAAAAAAAAAAAAAAAAAEDuEb0GAKCva2qSvv996cCBxOOOIzU3R2PVoSwf+guFovO1tkavl6SiomjgOha+dpxo+LqiIhrEjtPgdXTJZdIrE6WAO/UyacPXLpeWTAzoq59t0gG/I1tO/ID2cZJWjZQuvzS6rkxTkWJ/+148juZeENJGsy7tt2w7tn674rd6d+e7Sc+/u/NdPfjOgymD1zEDMXydTfA6Jl34OlPwOobwNQC0yzZ4HZMqbJ1N8DqG8DUAAAAAAAAAAMDAkCl4HWrap33hSLI7MvISvjbSzFnaIjWVxw80ovepuEzJjF41tGioll+/XF63N8c7AwAAAAAAAAAAAAAAAAAAAAAAvYHoNQAAfd1DD0k7dyYesyypvl4KBrs3Zyx+bVnRBwnLyqIPFdp29LgUfV9SIpWXS16vGnzSJZdJ/3eoFDalel83wteGoSXjW/TVzzapzucobEp1PicanLZtyXbaY9wHrT4Yvt4/rEiOachluNTiM3XN51r03hhXVk9i2o6tx1Y/1il8/e7Od/XY6sfkyElxZaKBFL7uSvA6Jln4OtvgdQzhawDoevA6pmPguivB6xjC1wAAAAAAAAAAAP2bZVua+8zclMHr1qZ9qg1Fkt4J4XT4mgtGh1e84qDUPORg4NplRu9RMY2EgUOLhmrl11ZqbPnYHO4KAAAAAAAAAAAAAAAAAAAAAAD0JqLXAAD0Ze+8I730UuIxy5IaGqKR6GTcbsnnk/z+6Fd3ijK1bUvNzdH5XK5o3No0pUAgMabtdquhsliXXG62Ba9j2sLXRvLydEL42jC05Ejpq+c7qvO3jwmbUp1fSvHdSJJWjTJ01RcCavA4avDYmju7UavGumR701S3O3DkJISvuxq8btvLwfB1xI506bq+pDvB65j48HVXg9cxhK8BDGbdDV7HxELX3QlexxC+BgAAAAAAAAAA6L9cpkvXzrhWphF3A0cwKNXWqmnHLjWGIrLTfIB4LoPXsflic8aHr/0hqbUs/S2qBK8BAAAAAAAAAAAAAAAAAAAAABiYsi9FAgCAwopEpN/8JvGY40iNjdGv8QyjPXJtJnlg0LajDzi2dogcx+YbMqQ9fB0IRI9VVEiSLMPRZZ9r0P+NtRKC1zH1PklBR37L6LwvSbZpaN550p+mOnpushKC1zFhU6orkoa0dvhEDkNyZEiGtKbK0r/ObpYhadUIR1ZJuaTsosmO4xycKxq+Xr5rudbuWyvbsWWkCHans2r3KoWtsA6tOLRb1/cmx3G0uW5zt4LXMdvqt6kuUKeGYEO352gNt2pz3WYdXnl4v/s5BIDuCgQCPQpex/QkeB1TG6iVTz75/Un+YAYAAAAAAAAAAECfVj21Wmpp1rwl18sORP/9v96SgsWSlcU/wcdHqnOhY/S6xDbUXJp+doLXAAAAAAAAAAAAAAAAAAAAAAAMXEnSlQAAoE9Ys0bauzfxWEtLNGAdz+2OxqqLipIHr6Xo8aKiaMja5Uo8Z9vReWPjysqir9JSSVKz29HeYidp8Dqm3icF3IrGt+MZhmQYsk1DS6cYSYPXMbHwdey7s01DNf6D80oyHemadV5dvGeYaotNBe1Q6sniBCNBNYebo+FrRcPX7+97X0Er8XhXmIapQ8oO6ZexZsMwVFVc1eN5ehK8jqkqruqXP4cA0F19LTDd1/YDAAAAAAAAAACALH3lK6o+8Rrd/3SrTEeqsaRQUXbB63hdv2Mi/VyOpDJ5tfUbu/TtU76dcizBawAAAAAAAAAAAAAAAAAAAAAABjai1wAA9FX/93+J7yMRKRhMPOZ2RwPVHUPWqbhcUklJ5/HBYHT+GJ9POvpoNXz/W5rzL4Z2lziqCKV/MrLe60QD1V5vdP6DwWtJCrgc1XszPyoZC19HTKnOFw1tN3gdhUzpl68W6VPWKD3yhdHyu4vUHG5WyEofvo6FrSN2JCFwHbJCag23yrKtLoevTcPU/eferxElI7K+pq+p9FdqfMX4Xt3D+IrxqvRX9uoeAKA3TBgyobe3IKnv7AMAAAAAAAAAAABdsH69NHy49Mgjkm2r+gPpjqWSffBei+7IZfjabUv3nH2fho4cqbvOuStp+JrgNQAAAAAAAAAAAAAAAAAAAAAAA5+7tzcA9DXBYFAbN27Ujh071NjYqJaWFhUXF6usrExjx47VlClT5PV6e3ubAAa62lpp06bEOHUg0HlcSUlbWDprhiEVF0tNTVJ87DkQkEpL2942rH5Hc849oFWjDckeIn8kIllB1RvBZJNKhlTvl+T2yW96pZYWKRjMOngdEzal/UVts0qSHDnaNmOSfn6Mox0t2+V1e1WiEjWFmiRJXlfn35dDVkiBcKBtkljg2mN6FIi0/1xatqWmUJPKfGUyjfRPgMaC19VTq/XgOw9m/T31RbHg9Lb6bQVfm+A1gMFuwpAJ2lq3tVfXBwAAAAAAAAAAQD/z7LNSdbVk2wmH//M8yepm8DrGUfs9Gt3ldiSvz9SPVtypoSNHqnpqte465y5J0j3/vEcSwWsAAAAAAAAAAAAAAAAAAAAAAAYLoteApDfffFN/+tOf9Pzzz2vt2rWyLCvlWJfLpaOOOkpf+MIXdOGFF+rkk08u4E4BDBoffZT43nGkUCjxWFFRYhS7K0xT8vkSQ9qhUFsEu8Fja87ZdVpV+0F0nONIbrf88kfD1+HG6BOPSdRbzbJNU57yEoUCUpPVmnJsMnb8U5SOVB42ZBf7dGvxB/LWe1XkiRaxfW6fbMdWS7hFUmL4OmSF1BpulSQZcY9lWraliB3pdDxiR9QYbEwbvo4PXg8UvRG+JngNAFG9Fb4meA0AAAAAAAAAANAPLVkiXXJJ4oebSxrzdammJBqsNiXZSS/OTk/C1y5HKvWa8peOlO3Ymvf8PElKCF//ftXvtfz65QSvAQAAAAAAAAAAAAAAAAAAAAAYBJJXHYFB4oknntDMmTN1yimn6K677tLq1avTBq8lybIsrV69Wj//+c91yimn6IQTTtCiRYsKtOO+paWlRW+88YZ+9atf6eqrr9a0adPkcrlkGEbK1+23394re/3973+fdl/5fo0dy8Na6KLt2xPfRyKdx/h8PVvD4+l8LBKRZTiae1adVg0LR9c1jGgk2+WSXC75vcWq8FVEn3RM9pLUGG5UY7BRTU5QMkzJNLJ6MtLuMMY0TUVKitWksCzHUmukVUEr2P4tuDwq9hSrNdyqkBWNggcjwbYQdkdOXH3b6VDithxLjcFG2U7nR0AHYvA6ptJfqfEV4wuyFsFrAEhU6AA1wWsAAAAAAAAAAIB+aP166dJLOwWvJ/27tLes/X0sfN0TXfhM8zYuRxrqigavY2Lh6yXrl0iS7jrnLm2/eTvBawAAAAAAAAAAAAAAAAAAAAAABgl3b28A6A0ffPCBvva1r+nVV1/t8VzLly/X5ZdfroceekgPPfSQpkyZkoMd9j3BYFCrVq3Su+++2/Zat25dxkg4gG765JPE9x2j1253NETdE6YZnSd+7khELsevaz8o1spZ9bLD4aSX+t1+SVJ9sD7l9GH74LXGwf9jGO0PYDpt/6dNW2raiH0x5HP7FbACCSHqllDLwXPR6LfH5VGxitUSbpHt2G3x6446Rq5jx4y4GncsfF3hr5DLcEka2MHrmFiIelv9trytQfAaAJKbMGSCttZtLcg6AAAAAAAAAAAA6Ic+/WnJTvwA76O+Km0b2nloLHzd+eO+s+coq881lw6uNdJlyq4Y2elcLHwtSdVTq+V1e3uwKwAAAAAAAAAAAAAAAAAAAAAA0J8Qvcag88wzz+iaa65RU1NTTud95ZVXdMIJJ+ixxx5TdXX/DqOGw2GtWbMmIXD9/vvvK5wifgsgDzr+HtUxMO9y5WadjuHsg+tUb41Greed0ZLyQch04WvH6RyYTmC0/Z/o+CRBap/bp6AVTAhex8Y2h5slSS4z+vPgcXnktb0KRAIJEevYXpLNHz9fx/B1Q7BBlf5KuU33gA9ex+QzfE3wGgDSy3f4muA1AAAAAAAAAABAP/WVr0j79yccOvFqaUPnxnQb4+Arw50baWUTvjYljbJN2ZWpN2M7th557xFdMOWCtns8AAAAAAAAAAAAAAAAAAAAAADAwEf0GoPK/PnzNW/evMwx1m5qamrSJZdcogceeEA33HBDXtYohL/85S/9PtwN9HuRSPrzRqZHC7OUZp7qrX5pw2jNm1XfKTwdkyx83dXfY5MFqf1uv8JWOOW6ktQcbpbf7ZfX5VXICilkhWTI6BSxThe8jh8Tf03EjqguUKeHL3h4UASvY/IRviZ4DQDZyVf4muA1AAAAAAAAAABAP1VfL/3+9wmHzrhcWjEu/WWOeha8jp8nVUDbkDQiZMoemaa+LWn6qOlacPECgtcAAAAAAAAAAAAAAAAAAAAAAAwyZm9vACiURx99NK/B6xjHcXTTTTfpsccey+s6AAY4d4bPpcjV72UZ5qmuH637z71fppH6rwwel0ce09O95bsZvI5pDbeqOdSs1nBrp3lj/2W9lw4/F6Zh6om1T8iyraznGAgq/ZUq95XnZK5yXznBawDoglwHqgleAwAAAAAAAAAA9C/1Le0fOq6vfU2y2++duOBi6bXD0l/vSMp8t0X2YgHt+I9UNySNDJhSFsHrRZcuytk9CAAAAAAAAAAAAAAAAAAAAAAAoP8geo1B4e2339Z1112XVfD61FNP1QMPPKAVK1aopqZG4XBYNTU1evfdd/WrX/1KJ510UsY5HMfRddddp3feeScX2wcwGJWWJr53uRLfWzkKMdsdHnXsuE5VlaqnVqcNXwfCAYXtcLeWNxIei2zncWUf0Y7YkW6t3WkvRuJeglZQ06qmyWW6UlwxMNUGatUQbMjJXA3BBtUGanMyFwAMBlvrtvbp+QAAAAAAAAAAAJA/y7Ys05C7h2jyryZHD/z5z23nrv689Nep6a/PdfA6ft748PWIRkMaTfAaAAAAAAAAAAAAAAAAAAAAAACk5u7tDQD51tDQoMsvv1zhcPog6+TJk/Xggw/qrLPO6nSusrJSM2fO1MyZMzVv3jz9/e9/1w033KCPPvoo5XyhUEhz5szRe++9p/JyHt7p637+859r2LBheZu/pKQkb3NjgDrkEGnDhvb37g5/ZEci0WC12YPPr7Dt6DzxOq5z1FGSpOqp1ZKkec/Pk+20PyLZGmlVU7ip+3tQNHztyGn7cTASlM/tk8/tUzASzHqe2Bzd3UNHFb4KLVizQCePPbnt+x/oagO12la/Ladzxuar9FfmdF4AGGjyFajeWrdVE4ZMyMvcAAAAAAAAAAAAyI1lW5bpzMfOlCR9WPuhJv/8EG0KBCRJ3zhDWjgz/fX5Cl7Hzy9JMz3jtOtQO+HekY4IXgMAAAAAAAAAAAAAAAAAAAAAAKLXGPB++MMfasuWLWnHnH322Vq8eLEqKiqymnP27Nl69913dfHFF2vZsmUpx23ZskW333677r333i7tuT8qLi7W9OnTtXfv3rQx8L5qzpw5mjBhQm9vA2g3blzi+44xakkKBqWiou6vkezDADquc+yxbT/sGL4ORAJqCDZ0a2nDSIxM+11+Ba2gHCf6mGRXw9e5Dl6Xecvkd/tlO7bmPT9PkgZ8+DofwesYwtcAkF6+gtfx8xO+BgAAAAAAAAAA6Jvig9cxHwZ2avJN0ty3pP+Zlf76fAevY8oD0q6htuYeM1cL1ixIGr4meA0AAAAAAAAAAAAAAAAAAAAAACTJ7O0NAPm0bt06zZ8/P+2YU045RX/+85+zDl7HDBkyREuXLtWJJ56Ydtz999+v9evXd2nuvs7v9+ukk07SjTfeqEceeUSrV69WQ0OD3njjDZ122mm9vT1gYDjssMT3hiF5vYnHWlsly+re/LYdjWbH83qj68Tr8Htc9dRq3X/u/QpaQdUH67u3dgclnhKVeEtU6ilNiGHHYtc+ty/5hU7sS26D1yWekoQ1Y+HrJeuXdHudvi6fweuYbfXbVBuozesaANAf5Tt4Xeh1AAAAAAAAAAAAkL1/fPSPTsHrmC0+6cezlfauiEIFr8tapeLRo2U7thasWaC5x8yVaSTefkrwGgAAAAAAAAAAAAAAAAAAAAAAxLh7ewNAPt1xxx2KRCIpzw8dOlSLFi1ScXFxt+YvKSnRk08+qRkzZqiuri7pmEgkoh//+Md6/PHHu7VGb/P5fDrmmGN0wgkn6IQTTtDMmTN19NFHy+3mtw8gryorpcmTpc2b24/5/VIolDiuuVkqK+scq07HcaSWlujXeH5/4vvTTpNGj046RWu4Nfv10vCYnrbAtNftVYlK1BRqajsfjATlc/vkc/vaItgxzsH/uiub4HVMLHwtRcPfA0khgtcxsXUq/ZUFWQ8A+rpCh6i31m3VhCETCromAAAAAAAAAAAAkntuw3M6/4nzk59slWx/NGptSXIlGVKo4HVJUCod037/SHz4esGaBbIdm+A1AAAAAAAAAAAAAAAAAAAAAABIYPb2BoB82bx5s55++um0Y+68806NGzeuR+sceuihuuOOO9KOeeqpp7R169YerVNIRxxxhH7961/r3XffVWNjo9555x09+OCD+spXvqIZM2YQvAYK5fTTE9+73ZKvQ5A5EpEaGyXLym5Oy4qGsjuO9/mi88e75ppOly9Zv0RfffarClrBTue6I2yHE2LWXpe3U3Q6dj5ZjLq7uhK8jomFr5esX5KzffS2QgavY7bVb1NtoLagawJAX1To4HVvrwsAAAAAAAAAAIB2mYLXhkcJHwPe8a6QQgWvi4NS+ajOH5geH76eOWYmwWsAAAAAAAAAAAAAAAAAAAAAAJCA6DUGrPnz58tKE4GdPHmyrr/++pysdcMNN2jSpEkpz1uWpfnz5+dkrUKYNm2arr/+es2cOVMej6e3twMMXsccI40YkXisuFgyO/zxHYlI9fVSa6tkp3ik0baj5+vrOwevTTM6b7zx46XZsxMOxYLXdcG6rn8vaTSHmxPC1x7TkzZ8bciQ4zhyEh7vzF7S4LU3ffA6ZiCFr3sjeB1D+BrAYNfb4eneXh8AAAAAAAAAAGAwSxu8DkqmS0nviIi/26N7d0wk6nz3RCJ/SKpIs5Dt2Fq3f52e/penCV4DAAAAAAAAAAAAAAAAAAAAAIAERK8xIFmWpccffzztmG9+85tyuVw5Wc/tduvrX/962jELFy6UnSpGCwDJuN1Sxzi/YUhlZdGvHbW2SnV1UkOD1NwstbREvzY0RI+3tna+JtV8d94pxUXv8xW8julK+Nrr9uY0eF3kKZLX5c16jlj4em/z3m7toS/ozeB1DOFrAINVXwlO95V9AAAAAAAAAAAADCZpg9chyTQkO02NOha+7mn02ox7JeMLS5UZbnWbPmq6Fly8QF539vdcAAAAAAAAAAAAAAAAAAAAAACAwYHoNQakl19+Wbt27Up53u/366qrrsrpmtdcc4283tQP8OzcuVOvvPJKTtcEMAgcf7x05pmJx1yu1OFrSYpEpGBQCgSiXyOR5ONMUyopic4X74ILpLPPbntr2Zb+6//+K2Xw2nGchFcqLjP9Bw00h5sVtBLD1x2vCVthRawU308G8cFrt+lu+9qV4HWM7dj6pPGTtN9vX+U4jva37O/xPOW+8h7Psb9lf7/8OQSA7goEAr29hQR9bT8AAAAAAAAAAAAD2fba7amD15HozZzpgtcxVuYhGcV61oY630TqtaShGRaZPmq6Fl26KCf3DgAAAAAAAAAAAAAAAAAAAAAAgIGH6DUGpKVLl6Y9f95556msrCynaw4ZMkTnnntu2jGZ9gUAnWzbFg1QV1ZG49WxlySVlkoej+Q4XXtJktcbvb5j8HrMGOmWW9re7mvap5v/drM2HtgoQ0anwHWyYLGT5D+X6ZLH9Mjn9qX9dltCLQrbYUlS2A7LstufojQNU0XuIvnd/m78REb3JUk+t09FniIVe4oVsSMKWaEuzzV91HQdM+IYGanC432YYRiaNGSSijxF3Z5jfMV4TRwyUeMrxnd7jiJPkSYNmdQvfw4BoLv8fr8q/ZU9nmfCkAk9nqPSXym/v3t/pgIAAAAAAAAAAKBrGoINuv6v18tlJPnAcEtyWdkFr/MhPnztsSUj/nNTO95XIoLXAAAAAAAAAAAAAAAAAAAAAAAgM6LXGJBeeumltOfPO++8vKybad4XX3wxL+sCGOCKiqQbb5SGDEk8bhjRc7H4dSaGER1XWhq9rmNsuKpK+ulPpYMfCrCvaZ/m/W2eHlr+kMJ2WEWeIplG1//q4DbdkqRAJCDHcVTkTh1bduQoGAkqEAkoGAm2HY8FryNORC3hFhnq3pOebtMtjxn9ufK4PCr2FKs13Nql8HXs4c3Y99UfuUyXDhtyWLfC1+MrxrcFWyv9ld0KXxd5inTYkMPkMpM8zAsAA1yFv6JH4etY8Lon4etKf6Uq/BXdvh4AAAAAAAAAAADZawg2aM7iOVq1e5VGlIxIDF9bkjsiWQW+k7Pjv9YbkorDkrtFGhp/ssP9KASvAQAAAAAAAAAAAAAAAAAAAABANoheY8DZtWuX1q9fn3bM2WefnZe1zznnnLTn165dq927d+dlbQAD3LBh0s03S8OHdz7ncknFxVJ5uVRSIvn90YcOYy+/P3q8rCw6zpUkNDxmjHTPPdKoUW2HfvTKj7R43WJZtqVgJKiIHely+DoWho7YETlyFLJCMgxDpZ7SlNc4chS2w3LkSEoMXgcjQTlyZBhGt8LXETuisB1uex8LX7eEWhIi26kMpIc3uxO+jg9ex3Q1fE3wGgC6H77uGLruTvia4DUAAAAAAAAAAEDhxAevY+LD1+6IFOnl4LUk+UPSqrulBS9IphN3ori47YcD6Z4JAAAAAAAAAAAAAAAAAAAAAACQX0SvMeC8/fbbac+PGzdO48aNy8vaEyZM0OjRo9OOeeedd/KyNoBBYNgw6TvfkU46Kfl5w5Dcbsnniz50GHv5fNHjRopI9BlnSL/6VULwesHqBfrtyt/Kduy2Y10NX8cHr2McOWqNtMrj8qQNX7d9SzISgtfJzmcrNjYYCSpsdQhfe4vVHG5OG74eiA9vdiV8nSx4HZNt+JrgNQC062r4OlXguivha4LXAAAAAAAAAAAAhWPZluY+MzcheB0zomSEPIG+Ebz2RqSXH5YOd6TqD6T7/xoXvvb5JA3MeyYAAAAAAAAAAAAAAAAAAAAAAED+uHt7A0CurVixIu35448/Pq/rn3DCCVq6dGnK8ytXrtT555+f1z0A6CfcSf4Ynjw583XHHiu99Zb0m99Ie/Z0f/2RI6Xrr5dOPTUhiF0badTNL9wsy7YShjtyFIgE5Dbdcpku2ZYtR07HWSVJLsMlr+lVS6Sl0znbsdUQbFC5r1ylKlVTuCk6v+N0ms8wDIXtsEJWKOW3YchIuY/4MfECkYAMw5DX5ZUkeV1emTLb9tIxAj2QH96Mha8/qvtIreHWpGPSBa9jYue31W9Lep7gNQB0FgtQ1wZq047LFLaeMGSCttZtTTuG4DUAAAAAAAAAAEBhuUyXrp1xrVbuWpnwoeOSVLtvl8IFvnsz2b/WeyLSn34nnVjTfqz6g+jXeZcUydbAvmcCAAAAAAAAAAAAAAAAAAAAAADkh9nbGwBy7b333kt7/thjj83r+pnmX7lyZV7XB9CPuN2Sz9f5WDavWbOkhx+Wbr1Vmj69a+vOmCH94AfR62fNSgheN4SbdOU/bpBpmDKN5H9NiNgR2Y4tj8vTKSYtRYPXFb4KhexQyjksx1JDsEEel0elntKkwWuX4ZLbdKcNXsck20emc63h1oS5vW6vSj2lag43KxgJth0fDA9vxsLXHWPfUnbB65hKf6XGV4zvdJzgNQCkVuGvSPv7bKbgdTbjCF4DAAAAAAAAAAD0juqp1br/3PsT7p+o37NLgT4QvDZt6Y9PSLMPdD5XvdHU/dW/0cwxMwf8PRMAAAAAAAAAAAAAAAAAAAAAACD3CvzoBJB/GzduTHt+8uTJeV3/8MMPT3t+06ZNeV0fPVdbW6vNmzdrx44damxsVDgcVlFRkYqLizVixAiNGzdOo0ePlmnyuQHIgXHjpA8/7N61brd0+unR17590tq10bk++kiqr5cikeiYigrpsMOkww+Xjj5aqqpKOl1DuElz3r9dq+o3yDRMFbmL1Bpple3YncZG7Ijcplsel0dhK9wWrHYZLlUWVaouUCdJMg1ThgxZjtV2bSxCHQtf+93+TvN3JXgdP2/HcHa6GLYUDV9LatuD1+1VqUrVGGqUaZg6aexJg+bhzVj4+qO6j9p+XroSvI6Jjd9Wv00SwWsAyEYsSF0bqE04nm3wOn781rqtCccIXgMAAAAAAAAAAPSu6qnVkqR5z89T3a5P1OLLcEGOpQpe/2axdMnHKS669lpVz7xKFxx3Bf/eDwAAAAAAAAAAAAAAAAAAAAAAuozoNQYUx3G0devWtGMyRal7KtP8mfaH3vHkk09q9erVev3117P636ikpEQzZszQySefrHPPPVenn366vF5v/jeKgaeiQpo0Sdq2LRqp7q7hw6Uzzoi+uqEh0qw5a+/QqvoNbccMw+hS+No0TFUVV+lA64GEcaZhyjAMRezO31/Ejqgx1Cjj4H+OnG4Fr9v2HBe+zhS8jmkNt8o0zITwdZlRptZIq6465qpBEbyOiYWvN9dtVlVxVZeD1zGx6/a37NekIZN4ABYAstAxfN3V4HVMfPia4DUAAAAAAAAAAEDfUD21Wj/68zf1SR8IXhuOdO+z0pc3pbioqkr67W+j1/Pv/QAAAAAAAAAAAAAAAAAAAAAAoBuIXmNA2bNnjwKBQNoxY8aMyeseMs3f3NysvXv3asSIEXndB7rmlltu6dL45uZmvf7663r99df1y1/+UpWVlbrmmmt0ww03aPLkyXnaJQasysroKxCQwuGCL98Qadacv3xZq+o+6HTOMAz5TJ+CdlCWY3U6b9mWXC6Xij3FOnLYkfrgwAcJ4enYHC7DJcdxEuZwHKdtnCNHhgx5TI+8Lq8CkfS/l8dzmS5Zdvu8sdi1aZhJY93JBCNB+Vw+GUb0Wp/bp2JPsZ5Y+4QuP/ryQfUQp8t06fDKw9t+Lrqr0l+pIb4hPZ4HAAaTCn+FfPLJ7/cnHHccp0u/n04YMkGBQKDH8wAAAAAAAAAAACA3znvgNK0LfixTUnZ3MvRc0uC1pFtflG5am+Ii05RefTWPuwIAAAAAAAAAAAAAAAAAAAAAAIOB2dsbAHJp586dGceMGjUqr3vIZv5s9on+pba2Vv/93/+tqVOn6qtf/Sr/G6N7/H6prKygL6ukWHP/dp1W7VmddEu2bavFapFhGG0x6ZjY+5AV0vDi4dpUs0mmYco0TBlx/0lS2ArLciy5jPZHKpPNWeotlWmYKvIUyTTS/zXFkCGf26cid5F8bl/COa/LK5/b1+l4Mi7TpVJvaacI6PRR07Xg4gWDKngdk6sgKmFVAOi6jqFq27G1t3mvmkPNPZqnOdSsvc17s/5ACAAAAAAAAAAAAOTGnN9+Xi8ceF2SZHgKd9Nm5482l254Xbr9nRQXGIa0ZIk0dWo+twUAAAAAAAAAAAAAAAAAAAAAAAYBotcYUA4cOJD2fHl5uXy+zAHUniguLlZpaWnaMZn2if7Lsiw9/PDDOuqoo/SHP/yht7cDZOQyXbp2xrVJA9O2bas5Eg1sRuxIQsQ6ns/t04HWA3LkJF0jYkdkOdFHKS3Hkttwt52Lha8NGSr1lLbtw5CRMXxd7C2Wx/RIkjympy1w7XP72kLVbtOdNnztMl0q8ZR0ijMfWXWkFl26SOW+8pTXAgCQb7Zja1/zPoWskGpaa7ocvo5pDjWrprVGISukfc37CF8DAAAAAAAAAAAUyA1/uEpP73wh4Vhvha+vXC7d90qKgaYp/elP0gUX5H9TAAAAAAAAAAAAAAAAAAAAAABgwCN6jQGlpqYm7fny8sLESzOtk2mf6P/q6up09dVX68Ybb1QkEunt7QBpVU+t1v3n3p8QmI7YkbbgdYwtu1P42uf2tYWnk7Fsq1NYM+yEVeQuanvvcXn0/dO+r2NGHpMwLl34usRTIp8rMWbtNb2aNW6WvKY34bjH9Mjv9neaI1Xw+oihR+hXn/8VwWsAQK+KD17HdCd8HQtexxC+BgAAAAAAAAAAKIyf/+kW/e/mJ5J8vHjhw9fnvy899rcUA6qqpPffJ3gNAAAAAAAAAAAAAAAAAAAAAAByxt3bGwByqba2Nu35srKyguwj0zpErweP//mf/9GOHTv09NNPy+3u+7/lzp8/X//zP/+T93U++uijvK+BrqmeWi1Jmvf8PIWskA60HEg6zpYt8+Bjlx6XJ3PwWsmDmi3hFhV7ihW2w7rt9Nt07uRzdc5h5+iWl27Run3r2sbFwtet4da2OGeJt0Q+t0+O4ySM+8LkL2ja8GkaWz5WSzculaP2827TLZ/bp2AkKEkyDTNl8PqnZ/1UZb7C/HkBAEAyyYLXMbGAdYm3JOM8HYPXMbHw9fCS4Uk/XAIAAAAAAAAAAAA985sX79ZPVt0rR5IpU7bsuLsYogyPpHD+91LUIr0/LskJ05S+/GXp4YfzvwkAAAAAAAAAAAAAAAAAAAAAADCo9P0CK9AFgUAg7fmSksxhuFwoLS1Nez7TPlE4fr9fp556qo499lgdc8wxOuqoo1RVVaXy8nJVVFQoFAqppqZGBw4c0NatW/Xqq6/q1Vdf1XvvvSfbTh7z7ejZZ5/Vl770JS1cuLBTYLev2bdvn9atW5d5IAak6qnV2t+yX1977msJweiOYuFrt5n6rxHpgteS5MhRS7hF35v1PZ07+VxJUqm3VLd/5nbN+9s87Wna0zY2PnztcXnkdXkT5ooPXkvStOHTVB+s16sfv5owzmN6JLcUtsIq9hSnDF6XetP/Hg4AQD6lC17HZBO+ThW8jiF8DQAAAAAAAAAAkB9/eHW+vvnG92UdvPfCkCGXXLLajkRZBQhe+4NSa7n0oaTJN0mbHpBUVCRddJH04INSRUX+NwEAAAAAAAAAAAAAAAAAAAAAAAYdotcYUEKh1GE4SXK7C/NLPtM6mfaJ/KqqqtIll1yi8847T2eddZaKi4tTjvV6vSotLdX48eN13HHHqbq6WpK0ZcsW/fKXv9Qjjzyi1tbWjGs+8cQTmjFjhm655ZacfR9Aru1o2KHvv/z9rMbashWyQipyF3U6F7bDaYPX8R5890GdNv40jSwdKSka77xs2mV6ct2TCeFrU6YumnKRVu1dlRDw7Bi8jplUOUm2beuNHW8kHB9bPlbTR0zXP7b8I3H8kEkErwEAvS6b4HVMuvB1puB1DOFrAAAAAAAAAACA3PrL8kX6t2U3KyJbhhI/jDs+fF2I4LUvJAXi/inpw2HS5J+N0abvfZL/xQEAAAAAAAAAAAAAAAAAAAAAwKBG1QoDCtFrpGIYhmbNmqU//vGP2rFjhx566CGdf/75aYPX6UycOFEPPPCAtm7dqnPPPTera2699VatWLGiW+sB+bajYYeO+/VxqmmtkWEYnR68TCZiRxSIBBKOBSIB2U7m4LUhQ4ZhqCHUoLnPzE0IXPvdfl027bK2EHYsbD191HRdNu0yTRoySZJkGmbS4HXMxMqJmj1pdtv3MrJ0pC6bdpmmj5quS6dd2nZ8fPl4fe/07xG8BgD0qq4Er2NqWmvUHGpOOJZt8DomFr7O5s9vAAAAAAAAAAAApPbK+89rznNfUli2HEmOnE5jXHLJKUTwOiwFSyQZia8Pgzs1+VeT878BAAAAAAAAAAAAAAAAAAAAAAAwqBG9xoBi2+lDbS6XqyD7yLSOZVkF2QfazZ07V6+99prmzp0rn8+Xs3lHjBihv/zlL/rpT38q00z/W6plWbrxxhvlOJ0faAN6U3zwOsYwMkevJSlsh9vC14FIQGE7uycz4+dPF74eXTY6IWztd/t16+m3amrVVN188s0pg9cxR1YdqS9M/oLGlI3RZdMuk9/tlyRNHzldVx97tSZUTNBNn7pJJZ6SrPYNAEA+dCd4HRMfvu5q8DqG8DUAAAAAAAAAAEDPvLf+n7rg6YsUUvt9YcnC15GwlcXHkPeMNyIFi1Of/7D2Q8LXAAAAAAAAAAAAAAAAAAAAAAAgr4heY0Bxu91pz0cikYLsI9M6Ho+nIPtAu0y/NnrCMAz953/+p373u99lHPvmm2/q2WefzdtegK4KRUKa+ZuZSQOZRpaPWYbtsJpCTdkHr5PM2xBq0JeWfEmhSHvs0+/268qjr9TU4VMTxpZ4SnTPOffoM4d+Jqv1pg2fpiuPvrIteB1zwpgT9M2Tv6kiT1FW8wAAkA+O43Q7eB1T01qjfc37uhW8jomFr/mAFgAAAAAAAAAAgK7ZuvsDnfHkGQrYne8Ziw9f2+H2DyB1SXmJX3ssKZTFbRAf1n6o+pb6POwAAAAAAAAAAAAAAAAAAAAAAABAyl8FFugFXq837flCRa/D4fTh10z7RP/0r//6r1q/fr3uvvvutOPuueceXXjhhQXaVdcMHz5c06ZNy/s6H330kYLBYN7XQWZet1dfnv5l3fPPe5KeN2S0PXyZTjZjMvniEV+U1534+6NpmEnndpmurCPb6eYxDT7/AwDQuwzDUKm3tEfBakkKRAI93kupt1SGkY+8AgAAAAAAAAAAwMBUt3+/jv/1DLXE7hdzjGjROo4jyQ5bne5aMCXZB8/ngtuWwp7sxr589cuqKK7I0coAAAAAAAAAAAAAAAAAAAAAAACJiF5jQPF40j+1EwqFCrIPoteD15133qlnn31WGzZsSDnmtdde05YtWzRx4sQC7iw7N954o2688ca8r3PUUUdp3bp1eV8H2bnrnLskKWn4Ohcx62xcdcxV+vpJX1dLuKUg6wEA0JeUeEskqcfh654YWjS0bR8AAAAAAAAAAADIrG7/fh05f4KawnH3pNlONHwdd2emE7ZlH/xxx48fzVX42mVLEbc6BbeTefnql/XZiZ/t4YoAAAAAAAAAAAAAAAAAAAAAAACpmb29ASCXSktL055vamoqyD4aGxvTns+0T/RfXq9XP/3pTzOOW7x4cQF2A2TvrnPu0rdP+XbCsXwFrzvOGwteAwAwmJV4SzS0aGivrE3wGgAAAAAAAAAAoOuOmj9JNck+3NtxpPDBH8YFr6XkcWtTnWPYXWE6kuUSwWsAAAAAAAAAAAAAAAAAAAAAANBnEL3GgDJ0aPpIXENDQ0H2kWmdTPtE/3bRRRdpwoQJaccsW7asMJsBuiA+fO04+Qlex8TmJ3gNAEC73ghfE7wGAAAAAAAAAADoukl3VGlfuCnNiGj4OtndF6nC1925mdPlSLZLkjvz2JeueongNQAAAAAAAAAAAAAAAAAAAAAAKAii1xhQhg0blvZ8XV1dQfZRX1+f9nymfaJ/M01Tl156adoxb775ZoF2A3TNXefcpQuOuEBO0kcsc8eRo0+P/zTBawAAOihk+JrgNQAAAAAAAAAAQNcd+eNR2hGuyWKkI1OGjKRnOjOU/IZOlyf5cdORir1uja4YLZfhSruTpZcv1VmHnZV5ywAAAAAAAAAAAAAAAAAAAAAAADlA9BoDSlVVVdrzwWAw7+HrmpoahUKhtGOIXg98n/3sZ9Oer62t1Z49ewq0GyB7S9Yv0Ts731Gxpziv6/jdfq3bv07LtizL6zoAAPRHhQhfE7wGAAAAAAAAAADouuN+eqg2h/Z26ZqehK9dnoPHO4SvTUkVXrdKS4dLkkaUjEgZvl56+VJ9ccoXu7RnAAAAAAAAAAAAAAAAAAAAAACAniB6jQFl/PjxGcfkOzSczfzZ7BP92/HHH59xzNatW/O/EaALlqxfonnPz5Pt2Cr3lctjevKyjtt0q9RbKtuxdfc/7yZ8DQBAEvkMXxO8BgAAAAAAAAAA6MyyrbTnT//FNK1t2d6tudOFrzvGr2Pha1eH2zZi4WtDUpXHLf/B4HVMsvA1wWsAAAAAAAAAAAAAAAAAAAAAANAbiF5jQCktLdWwYcPSjvn444/zuodMIeMRI0aopITA3EA3atQo+f3+tGP27t1boN0AmcUHr2P8bn/Ow9cuwyWvy9v2nvA1AACp5SN8TfAaAAAAAAAAAACgs4Zggy5adJGWrF+S9Pznfnm83mr4IOM8jhzZnTLWUanC19HrEnk8LrmS3N5pegxdP+VKecpGJp0nPnxN8BoAAAAAAAAAAAAAAAAAAAAAAPQWotcYcCZOnJj2/KZNm/K6/ocffpj2fKb9YeAoLy9Pe76lpaVAOwHSSxa8jvG7/Wkeuew6j6tzRJvwNQAAqZV4S+R3p/8wlWz53X6C1wAAAAAAAAAAAB00BBs0Z/EcLd+5XPOen9cpfH3ZA5/Vstr3Ms7jyGmLV3cnfB077/ZEo9WGDLlkto03ZOjWY7+hh760QPefe79MI/ntn+ccdo62fX0bwWsAAAAAAAAAAAAAAAAAAAAAANBriF5jwDnqqKPSniwbG9kAAQAASURBVN+wYUNe1880f6b9YeDwer1pz4fD4QLtBEjNsi098t4jSYPXkhSIBOIeyey5sJX8173t2Hp247OybCtnawEAMBA0h5oViARyMlcgElBzqDkncwEAAAAAAAAAAAwEseD1qt2rJEXvX4gPX3/lN+frT7v/v4zzOEnuruhq+NqQZHiMDscMmTJlyNQNk6/W7dX/T5JUPbU6afh6+qjpWnTpIo2rHJdxzwAAAAAAAAAAAAAAAAAAAAAAAPlC9BoDzvHHH5/2/MqVK/O6/ooVK9KeP+644/K6PvqO1tbWtOeLiooKtBMgNZfp0oKLF2j6qOmdzgUiAYXt7OLsyR/H7MxyLIWsUKfjRww9Qj/57E/kMl1ZzQMAwGDQHGpWTWtNTuesaa0hfA0AAAAAAAAAAKDOweuYWPj64vtO1x+3/SXjPMmC121zZRm+NiUZHrNtvo5jbzxsru678vcJxzuGr2PB63JfecY9AwAAAAAAAAAAAAAAAAAAAAAA5BPRaww4maLX7733nizLysvakUhEq1atSjuG6PXgEAqFVFtbm3ZMaWlpgXYDpFfuK9eiSxclhK8bgg1dDl5nG76O2BE1hZra3h8x9Aj99KyfqtTL/08AABCTj+B1DOFrAAAAAAAAAAAw2KUKXsdYu/fq2X2vpYxWx6QLXsdkCl8nBq/b5425ctz5+u+rHks6Ryx8PXPMTILXAAAAAAAAAAAAAAAAAAAAAACgzyB6jQHnhBNOkN/vT3m+qalJy5cvz8vab7/9tlpaWlKe9/v9mjlzZl7WRt+yefNm2baddswhhxxSoN0AmcWHrxuCDWoJp/69LF7H0HW24etAJKCmUBPBawAAkshn8DqG8DUAAAAAAAAAABisMgWvPZ/s1X5v9IPCHSll1jqb4HVM2vC1J/E2Tidu3YtGnaWHr12Sdu7qqdX605w/EbwGAAAAAAAAAAAAAAAAAAAAAAB9BtFrDDh+v1+zZs1KO+bFF1/My9ovvfRS2vOnn3562iA3Bo633nor45gJEybkfyNAF5T7yjVl2BQ1h7MLYGYbuE4lEAno0IpDCV4DABCnEMHrGMLXAAAAAAAAAABgsGkINujiJy5OHbzevVe7iqyEY8nC110JXsekCl8rnPz4GZWf0hNfeyGruV2mq4u7AQAAAAAAAAAAAAAAAAAAAAAAyB+i1xiQzjnnnLTnn3nmmbysu3jx4rTnZ8+enZd10ff85S9/SXt+0qRJKi0l9Iu+5ZYXb9H9b98v0yjMXw8MGVq0bpF+9davCrIeAAB9XSGD1zGErwEAAAAAAAAAwGDREGzQmb8/U//Y+g/tadrT6XxxzX7tc1tyDn4GePxHgceHr7sTvI5JG76OOzWz+Ei98PU3u7kKAAAAAAAAAAAAAAAAAAAAAABA7yJ6jQHp0ksvTXt+xYoV2rBhQ07XfP/997VmzZqU5w3DyLgvDAw1NTUZo9ennnpqgXYDZOeWF2/RPf+8p+19vsPXhgwZRvTx0D+u+SPhawDAoNcbwesYwtcAAAAAAAAAAGCgs2xLZz12lpbvXi5JsmUnhK/dtfu12wrLNiTDbr8uWfi6u8HrmJTh60g0fD3VN17//M7aHq4CAAAAAAAAAAAAAAAAAAAAAADQe4heY0A67LDDdPLJJ6cdc//99+d0zV/9Kn2w9dRTT9WECRNyuib6pvvuu08tLS1px3zuc58r0G6AzDoGr2OMhEc3cyc+eB1D+BoAMJj1ZvA6hvA1AAAAAAAAAAAYyJ7f9Lze3fluwrFY+Npu2q/acFiRg3dTmkofvu6pdHdjTHBVadX3tuRgFQAAAAAAAAAAAAAAAAAAAAAAgN5D9BoD1rXXXpv2/P/+7/9q165dOVlrx44d+sMf/pB2zJe//OWcrIW+bfPmzbr77rvTjvH5fLrwwgsLtCMgvVAkpN+v+n3K89mGr4f4h/R4L89tfE6hSKjH8wAA0J84jqOmUFOP5/G7/T2eoynUJMfJRaoBAAAAAAAAAACgb7BsS89teE7nP3F+0vN20FZzU1hhV+LxdOHrnjCU+l6MMZ4KbbxtT45WAgAAAAAAAAAAAAAAAAAAAAAA6D3u3t4AkC9f+tKX9IMf/EB79+5Ner6lpUXf+9739Oijj/Z4rVtuuUWBQCDl+ZEjR+pLX/pSj9dB3xYIBDRnzhy1tramHXf55ZerrKysQLsC0vO6vVp+/XId9+vjVNNak3RM7GFLR8kjmLPGzdLsw2br7x/9Xa9vf71b+yj3lusP1X+Q1+3t1vUAAPRXhmFoeMlw7Wvep5DVvQ9/GFo0VCXeEjWHmlP+eZ6J1+XV8JLhMoxcJRsAAAAAAAD6r2AwqI0bN2rHjh1qbGxUS0uLiouLVVZWprFjx2rKlCnyevk3DQAA+rqGYIPOfPRMLd+1PPFE7PaHkFQeloKeDscPMiU5lmQfDGIbnYd0SbrgdZWnVFt/2L1/5wEAAAAAAAAAAAAAAAAAAAAAAOhriF5jwPL7/frGN76hW2+9NeWYxx57TBdddJGqq6u7vc6TTz6phQsXph1z8803y+fzdXsNSdq6dasmTpyYdsyPfvQj3X777T1aZ6B57bXXdNppp+V9nUAgoEsuuUTvvvtu2nGGYeiWW27J+36ArhhbPlYrv7Yybfg6lVjwWlLb19e2v9alOcq95Vpw8QKNLB2plnBLl64FAGAgMA2z2+HrWPBaUtvXrv55Hgtem4bZpesAAAAAAAAGkjfffFN/+tOf9Pzzz2vt2rWyLCvlWJfLpaOOOkpf+MIXdOGFF+rkk08u4E57V0NDg95//32tXbtW27Zt07Zt27R9+3bt3LlTTU1NamlpUXNzsyzLks/nU0lJiUaMGKHRo0drypQpOvroozVr1iwdffTRfeoD2Pbu3as1a9a0fW8bNmzQgQMHVFdXp7q6OgUCAfn9fpWUlGjUqFE65JBDNG3aNE2fPl2f+cxnNH78+N7+FgAAHTQEG3TG78/Qyt0r2w/GF6tDUkVICsR/jkWSqrVhSKYt2WbKIVlJF7we4inSuhs3RxcDAAAAAAAAAAAAAAAAAAAAAAAYAIheY0C7+eab9dBDD2n79u0px1xzzTU65JBDdOKJJ3Z5/jfffFNf+cpX0o459NBD9Y1vfKPLcyM3vvjFL2rmzJm69dZbdeaZZ+ZljU2bNulf/uVftGrVqoxjr7/+ek2dOjUv+wB6ojvh6xkjZ7SFrmNmHzZbOxt3anPd5qzmiA9eAwAwmHUnfB0fvI7pavia4DUAAAAAABjsnnjiCd19991asWJF1tdYlqXVq1dr9erV+vnPf66ZM2fqO9/5jubMmZPHnRZeS0uL3nrrLb3++ut66623tGbNGn388cddur6lpUX79u3T2rVr9dJLL7WdGz58uKqrq3XVVVfp9NNPz8f20zpw4ICWLVumf/zjH3r55Ze1cePGjNc0NzerublZe/fu1erVq/X888+3nZsyZYquuOIKXXPNNZowYUIedw4AyEan4HWSSvXQgNTsT3JxfNXaaP/Sk/B1uuB1qcert7+2XEOqqrowIwAAAAAAAAAAAAAAAAAAAAAAQN9G1QoDWnFxse699960YxobGzV79mw999xzXZr7z3/+sz73uc+pqakp7bhf/vKXKioq6tLcyK2XX35ZZ511lmbMmKH58+erpia7AGAmra2tuv/++zVz5sysgtdjxozRz372s5ysDeRDLHw9tGhoxrHjy8dr1rhZSc9Nq5qmkSWZI9YErwEASBQLX3td3oxjkwWvY0q8JVn9eU7wGgAAAAAADGYffPCBPvOZz+iKK67oUvA6meXLl+vyyy/XZz/7WW3YsCFHO+w9b7zxhk488URVVFTozDPP1G233abnnnuuS8HrTPbt26ff/OY3+vSnP62ZM2d2+d/ru2P79u269957dfLJJ2v48OH6l3/5Fz300ENZBa8z2bBhg26//XYdfvjhmjt3bk7mBAB0TzbB6xF1UrMv+TlJsUp1p0Omnfg+G+mC18Uej1Z87T1NGHVklrMBAAAAAAAAAAAAAAAAAAAAAAD0D+7e3gCQb5deeqmuvPJKLVy4MOWY+vp6XXDBBbriiit022236cgjUz9ItG7dOv34xz/WokWLMq49d+5cXXLJJd3ad29ramrSE0880eXrNm3alPb8ihUr9Lvf/a5Lc5aVlWnOnDld3ktHq1at0k033aRvfvObOv3003Xeeefp9NNP14wZM+TxeLKaw7ZtrVmzRkuWLNH8+fO1f//+rK7zer1avHixKisre/ItAHkXC1/PeGiGalqTB+LHl4/X4UMPTzvPuPJxkqQ9zXuSnid4DQBAcrHw9b7mfQpZoaRj0gWvY2LnU/15TvAaAAAAAAAMZs8884yuueaajB9w3FWvvPKKTjjhBD322GOqrq7O6dyFtHnzZr3zzjsFW2/FihU6//zzNXv2bD388MMaO3ZsTue///779fjjj+vNN9+U46Sqm+aGZVlauHChFi9erO9973u67bbb5HZzaw4AFEpDsEHVC6vTBq9H10o1xXEHHGVdsI6Fr22z/X2mP1lSBa/9pluvXPoPgtcAAAAAAAAAAAAAAAAAAAAAAGBA4sk6DAq//vWvtXz5cm3YsCHlGMdxtHDhQi1cuFDHHXecTj31VE2cOFGlpaVqbGzUli1b9Prrr2vVqlVZrXnkkUfqoYceytW3UHD79+/Xddddl/N5ly5dqqVLl3bpmkMPPTQn0euYcDisl19+WS+//LIkyefz6YgjjtCUKVN0yCGHaOTIkSotLZXP51Nra6tqampUU1OjrVu36rXXXlNdXV2X1nO5XHr00Ud1yimn5Ox7APJpbPlYvXntm5r+m+lqDbcmnMsmeB2TKnztc/sIXgMAkEa68HU2weuYVOFrgtcAAAAAAGAwmz9/vubNm5e3+HFTU5MuueQSPfDAA7rhhhvyssZA9fe//13HHnusnnrqKZ111lk5m/c73/mOgsFgzubLRigU0o9//GP94x//0JNPPqkxY8YUdH0AGIwagg2as3iO1teslyEj6Z/1hxyQ9pcmuTjP4euOvHLp2Yuf0YyjTuvilQAAAAAAAAAAAAAAAAAAAAAAAP0D0WsMCqWlpXrhhRd0+umna/v27RnHr1y5UitXruz2euPHj9cLL7yg0tJkT0mhrwkGg1qzZo3WrFmT87n9fr8effRRXXbZZTmfG8inQ8oP0b/P/Hc9uPzBtvD1hIoJmlQ5qUvzjCsfJ6/Lq+0N0d97vS6v5hw1h+A1AAAZJAtfdyV4HdMxfE3wGgAAAAAADGaPPvpoXoPXMY7j6KabblJpaamuvvrqvK410NTW1urcc8/VwoULdemll/b2dnrs9ddf16xZs/SPf/xDkyZ17d/ZAADZiwWvV+1eJUkaZRdrt9MsJ+6fQ8buk/aVp5kkD+FrM8mEbpn63ez7dcaML2a3GAAAAAAAAAAAAAAAAAAAAAAAQD9E9BqDxqGHHqqXX35Zn//85/XRRx/lbZ3DDz9cf/vb3zR+/Pi8rYH+Yfz48Xr66ad1wgkn9PZWgG6p8Ffo32f+ux5a/pCOG3Wcir3FiliRLs9z2NDDVOQu0sf1H+vMQ89UqZcPBAAAIBvx4etSb2mXg9cxseuaQk0ErwEAAAAAwKD19ttv67rrrssqeH3qqafqyiuv1KmnnqoJEyaorKxMjY2N2rx5s9544w0tWLBAb731Vto5HMfRddddp6lTp+pTn/pUrr6NPqWiokJHHHGEpkyZopEjR6qsrEzl5eUqLi5WY2OjGhoatG/fPq1atUqrV69Wc3NzVvOGw2HNnTtXVVVVOuOMM/L7TSRRVVWl4447TpMmTdK4ceNUVlYmj8ej2tpaHThwQGvXrtXrr7+upqamrObbunWrzjzzTL311lsaOZIPhgWAXOsYvFYwKLW2apRM7fbbckzp0D3S7iFZTNad8LURfdMxfJ1sGpcMPfCZn+nyT/9bdosAAAAAAAAAAAAAAAAAAAAAAAD0U0SvMagcfvjheuedd3TFFVfohRdeyPn8n//85/X4449ryJAhOZ8b/YfL5dKNN96oO++8U2VlZb29HaBHKvwV+tYp35LbdOu17a91e55jRhyjo6qOkmkS2QQAoCtMw9SIkhEyjCwLCymUeEtU7Cnu8TwAAAAAAAD9UUNDgy6//HKFw+G04yZPnqwHH3xQZ511VqdzlZWVmjlzpmbOnKl58+bp73//u2644Ya0H7gcCoU0Z84cvffeeyovL+/x99GbvF6vTjjhBJ122mk6/fTT9alPfapLAWfbtrVs2TI99thjevLJJxUIBNKOD4VCuvLKK7V69WpVVVX1dPtpFRUV6XOf+5zOPfdcnX322Zo0aVLGayKRiJYtW6Zf/OIXeumllzKO//jjj3XxxRfr1VdflcvlysW2AQCSLNvS3GfmtgevJamxse2HowKmfPW2dg3twqRdDV87kn3wTewyR7EAtiPj4FGXDN0x81u69pzvdGEzAAAAAAAAAAAAAAAAAAAAAAAA/RPRaww6lZWV+tvf/qZHH31U3/3ud7V3794ezzlixAjdfffduvrqq3OwQ+TSOeeco7///e9qaGjI+1oej0dXXHGFbr31Vh1xxBF5Xw8DS1OoSSt2rtCe5j29vRVJUigc0vt73084trtxt2zbbnvfGm5Vqbe007Xb6rYpbLdHI5rDzWoJtbS9rw3U6tkNzyZdN2gFtaV2S+LBDg+U1gfrVeIpUcgKaXPt5qTz1AfqZTmW9nj3yOPyyJAh5+AjpZJU4ilRibek7X2Zt0zl/vbYRKm3VCNL0ocadjXuUnOoue19OByW7diEvQEAOZerUDXBawAAAAAAMFj98Ic/1JYtW9KOOfvss7V48WJVVFRkNefs2bP17rvv6uKLL9ayZctSjtuyZYtuv/123XvvvV3ac18wevRonX/++brwwgt15plnyu/3d3su0zR11lln6ayzztKPfvQj3XTTTXr++efTXrNr1y794Ac/0EMPPdTtddOZNWuWrrvuOl188cVd/jBjt9utc845R+ecc45eeeUVzZ07Vzt37kx7zRtvvKFf/vKX+u53v9uTbQMA4rhMl66dca1W7lop27GlYFCyrLbz5QdsbR3RjYljtxdk8U8rhiSXI1lx4w0lhq9dMvWfx96g71b/ohubAQAAAAAAAAAAAAAAAAAAAAAA6H+IXmPQuuaaa3TppZfq0Ucf1QMPPKD169d3eY5p06bpxhtv1Je//GUVFxfnYZfoqaeeekqWZWn58uVatmyZXnvtNa1cuVKffPJJTub3er065ZRTdMkll+iKK65QVVVVTubF4PLbd3+rZ9Y/o5Ad6u2ttLFsSx83fJxwrC5Qp7hutNSY4lrHkuO0D3QZLnlcnrb3HtOjXU27kl7rOI4CVqDDQSU8SLpq9yqZppl2bDgSli1bXpc3aeDTbbgT9uQ1vQnv3aZbxZ70v6/vaNyhiB1pex+wArJly7RNuU3+igUAAAAAAAAAQF+wbt06zZ8/P+2YU045RX/+85+7/G++Q4YM0dKlS3XmmWfq7bffTjnu/vvv13XXXaepU6d2af7e8qlPfUr//Oc/ddJJJ+Xlg9QmTZqkv/71r7rlllv0i1+kj3/+7ne/0/e//32NHz8+J2u73W5deeWV+uY3v6kZM2bkZM4zzjhD7733ni666CK98cYbacfeeeeduvbaa/l3ZQDIoeqp1ZKkec/Pk93cLB28X6HigKMt6T/rOrMO9yukky58/YXhp+qHl93fw80AAAAAAAAAAAAAAAAAAAAAAAD0HxQZMaiVlJTohhtu0A033KCNGzfqb3/7m1asWKG1a9fqk08+UWNjo1paWlRcXKyysjKNHTtW06ZN0/HHH69zzz1XkydPLtheJ0yYkBCRHWjr5ZPL5dKJJ56oE088Ubfccosk6cCBA1q5cqXWrVunbdu2afv27dq+fbv27t2r5uZmtbS0qKWlRY7jyOfzqaioSFVVVRozZowOPfRQHX300Zo+fbpOOeUUlZSU9PJ3iP5s0ZpFemLtE729DeSQLVthO9zb2wAAAAAAAAAAAJLuuOMORSKRlOeHDh2qRYsWdftDjktKSvTkk09qxowZqqurSzomEonoxz/+sR5//PFurVFoU6ZMKcg6d911lxoaGvTQQw+lHGNZlh5++GHdcccdPVrL7XbrX//1X/Wf//mfmjhxYo/mSmb48OFaunSpZs2apQ8++CDluMbGRt133336yU9+kvM9AMCgFQ6r+kO3tGKk5o38RLYhDalVz4PXMdmGr52D4WtDkhk9ZEga2Si9PXSLlqxf0hboBgAAAAAAAAAAAAAAAAAAAAAAGOiIXgMHHXHEETriiCN6exsokGHDhunss8/W2Wef3dtbwSC3cM3C3t4C8sCRo1Ak1NvbAAAAAAAAAABgUNu8ebOefvrptGPuvPNOjRs3rkfrHHroobrjjjv0jW98I+WYp556Sj/72c80YcKEHq010PziF7/Qs88+q507d6Yc8+yzz/Yoel1dXa3bb7897zHvoUOH6s9//rOOPvpohcOpPyD10Ucf1R133CHTNPO6HwAYFF58UfrBD6Tt21UdCEijDH19lqMtI6Kt6pzJFL6OW8wlybIlmdKoRskaP1pybM17fp4kEb4GAAAAAAAAAAAAAAAAAAAAAACDAtFrAAB6ye6m3WoKNyUcawg09NJuElmyOkWbHcuRk8VjoY6TOM5yLBnxT386UjASTHlt2EqMADhyEq93SaZtph0btsJyHEdyJNPoHAywDVu2Y7fv0bQUttvnchkuRaxI2u8zYkUUsdvH2LITzsfPBwAAAAAAAAAACm/+/PmyLCvl+cmTJ+v666/PyVo33HCD7rvvPm3evDnpecuyNH/+fN199905WW+gKCsr080336zvfve7KcesWrVK9fX1qqio6NYajz/+eHe312VHHHFE26+FVLZv364VK1bohBNOKNi+AGDAaWiQbrtNeuqp9mPhsIIhR7XDJMuQTCm35etU4eska7gkjWyQwoeObjtmE74GAAAAAAAAAAAAAAAAAAAAAACDCNFrAAB6yd6mvZ2OfVj7YS/sJLnWSGu3rusYvZakoN0euXYZLgWsQIqLo8HtdFxyRR8kTTM2FrQ2w2bSh05NmTKMZE+jRhmGIZfhSruP1khrwvfZMc7dMYINAAAAAAAAAAAKx7KsjLHjb37zm3K50v97QLbcbre+/vWv6+abb045ZuHChbrrrrtkmp0/sHMwu+iii9JGrx3H0YYNG3TiiScWcFfd9+1vfztt9FqSXnnlFaLXANBd27dLc+ZIW7cmHH62qklfu1iyJbmcg+Hrg/cW5Eyy8HWSNUY0JQavYwhfAwAAAAAAAAAAAAAAAAAAAACAwYInKQEAQFJmN/+aYCSrTGd7Pv2liWPSThP9L9WYHu0RAAAAAAAAAAD0eS+//LJ27dqV8rzf79dVV12V0zWvueYaeb3elOd37typV155JadrDgSTJ0/WsGHD0o7ZuXNngXbTc2PHjtX06dPTjlmzZk2BdgMAA8y2bdKFF3YKXr9ZXKMvXyKFD97mYDjR8LUtycn1P/8ni2jHrVHVKEWSBK9jbMfWI+89IstO/4HgAAAAAAAAAAAAAAAAAAAAAAAA/RnRawAAkJTH5ele/NlIHY02DVMu05X2cpdSn+94LtVYQ4YMI8UeZKaPaxvRfQIAAAAAAAAAgP5r6dKlac+fd955Kisry+maQ4YM0bnnnpt2TKZ9DVYjR45Me765ublAO8mNT3/602nPb968uUA7AYABpKFBuvxyaffuhMPrig7o/IuCCrgTh8fC144KF74e2iLZZak/AEOSpo+argUXL8h47wQAAAAAAAAAAAAAAAAAAAAAAEB/RtERAAAkZRqmvC6vTJldjl8bhqHYf7H3LsMlj+HJ4uLOMWtDRvRYx22kGmu45JKr075NmSlj2DKi+3Qb7uTnAQAAAAAAAABAv/HSSy+lPX/eeeflZd1M87744ot5Wbe/q6ioSHu+uLi4QDvJjVGjRqU9X1dXV5iNAMBActtt0tatCYd2BvbpjAtDak7xz/yGE71B0jEkO8/h69JWac+Q9JdMHzVdiy5dpHJfeY43AwAAAAAAAAAAAAAAAAAAAAAA0LdQdQQAoA+bOGSiyjxlvb0NSZJlW92+1jT6/udspIxhp/DGjjfkdHyKFQAAAAAAAAAA9Lpdu3Zp/fr1acecffbZeVn7nHPOSXt+7dq12r17d8Yo8mCzd+/etOerqqoKtJPcGD58eNrzra2tBdoJAAwQL74oPfVUwqGdgX066aqIWtN89nZC7NqQbElmLv+Z34nOWxyUDhz8/IY93pBGJhlK8BoAAAAAAAAAAAAAAAAAAAAAAAwmRK8BAOjDTJlyu/vGH9du/toAAAAAAAAAAAD6gbfffjvt+XHjxmncuHF5WXvChAkaPXq0du3alXLMO++8o/PPPz8v6/dHlmWl/fmSpEmTJhVoN7nR0tKS9rzf7y/QTgBgAAiHpR/8IOFQY7hGp18RUV1R9L3LkawOn3PtGJLV8fO58xC+Lg5Jtb7297Yh7Wnao5Gl7elrgtcAAAAAAAAAAAAAAAAAAAAAAGCw6fhYBwAAAAAAAAAAAAAAQL+1YsWKtOePP/74vK5/wgknpD2/cuXKvK7f37z66qtpI9ETJ07UIYccUsAd9dz27dvTnq+srCzQTgBgAHjhBanD76snXhrU3tLEYS5HinWvkwavY4xomDoXiiJSrUeSN/G4LVt7mvZIIngNAAAAAAAAAAAAAAAAAAAAAAAGJ6LXAAAAAAAAAAAAAABgwHjvvffSnj/22GPzun6m+YleJ3r88cfTnv/85z9foJ3kTqbw+mGHHVagnQDAAPDoowlvZ3xxl3Yk60cbkulkCF7Hje1p+NofkercknzJz9uydaDlAMFrAAAAAAAAAAAAAAAAAAAAAAAwKBG9BgAAAAAAAAAAAAAAA8bGjRvTnp88eXJe1z/88MPTnt+0aVNe1+9PVq5cqUceeSTlecMwNG/evALuqOfq6+v1+uuvpx1z9NFHF2g3ANDP7dwpxf2eeuJ5u/RRZZJxBwPWtiHZ7W/T60H42mtJ9ZZSBq9jQnZIkXCke4sAAAAAAAAAAAAAAAAAAAAAAAD0Y0SvAQAAAAAAAAAAAADAgOA4jrZu3Zp2TKYodU9lmj/T/gaL3bt368orr5RlWSnHXHzxxZo6dWoBd9VzixcvVigUSjvmM5/5TIF2AwD93Ntvt/3ws7N3af2w1ENtSZYRDV4bdv7C125bCkUklSefL97Sy5dqaOnQri0AAAAAAAAAAAAAAAAAAAAAAAAwABC9BgAAAAAAAAAAAAAAA8KePXsUCATSjhkzZkxe95Bp/ubmZu3duzeve+jr1qxZo8985jP64IMPUo6pqqrS/PnzC7irnnMcR/fdd1/aMWPGjNHMmTMLtCMA6OdWr5YkffGM3Xp3VIoxhmQpGrxOOGxLhpPFGl0IX7tsydUkBZMFrztYevlSfXHKF7ObGAAAAAAAAAAAAAAAAAAAAAAAYIAheg0AAAAAAAAAAAAAAAaEnTt3ZhwzalSqamZuZDN/NvsciLZs2aL/+I//0PHHH6+NGzemHOfz+bRw4UKNHDmygLvruSf+f/buPMzusr7//+vMnm2yQ4KsAkGIQgRERFBRVrEgSoGiFb6tooJUrdXaihtSt1q1IFSsPytakEUIqMgSVMSC7AYQEBQIBJJAIMtkm/Wc3x+TyTKZObNklmTyeFzXXJn53Pe573eqBa9rzjzniivy8MMPl91z2mmnpaLC23UAeuWRR3LKIYvy2527r1e3JWmrSEpdhKsLpYELX1eUkvFLk4ap3Z/RQfAaAAAAAAAAAAAAAADY1lUN9wAAAAAAAAAAAAPh5ZdfLrteX1+f2traQZ1h9OjRGTt2bFauXNntnp7m3NqtXr06K1asyNKlS/Poo49m7ty5+fWvf50777wzpVL5+mhdXV1mz56dI488coimHRirVq3Kv/zLv5TdU1VVlY985CNDNBHA1u/M6lvyy902+PdG53+FrI1Vlzb4unPkuuPrrqLYm5yV9rh1ZxWlZMKLycKde55Z8BoAAAAAAAAAAAAAAED0GgAAAAAAAAAYIZYsWVJ2vb6+fkjmqK+vLxu97mnOLd1JJ52Ua665ZsDP3W+//XLZZZdl5syZA372YPvnf/7nPPPMM2X3vO9978suu+wyRBMBbN0+/v+dkp/suKzHfdWlpGVtsLqU9C98XUoqS0nb2oj2huHrQpJdFyfLJhdSKJZSquji9WvPFbwGAAAAAAAAAAAAAABoJ3oNAAAAAAAAAIwIS5cuLbs+bty4IZmjp3u29uj1QNthhx3yyU9+MmeddVZqamqGe5w+u+WWW3LxxReX3TNu3Lj827/92xBNtHkuuuiiHv8+A+HJJ58c9DuArdPn/vf9+cHT1/a8sZSkkFQXk5aKfoavS0lVsf3Tymwavt71hWTZpCSFQqY1FrKorrhx+FrwGgAAAAAAAAAAAAAAYBOi1wAAAAAAAADAiNDY2Fh2fcyYMUMyx9ixY8uu9zTntmDUqFE5+uijc9JJJ+Wkk05KbW3tcI/UL88//3ze+973plQqld133nnnZdq0aUM01eZZvHhxHn300eEeA9hGfePqf8p//unSFJP2oHT5f7yu06/w9QbB6471DcPXO7+YLJ+08RnTGivWh68FrwEAAAAAAAAAAAAAALpUMdwDAAAAAAAAAAAMhObm5rLrVVVD87vBe7qnpzm3Bdtvv3122WWXTJkyJRUVW+fbV5qbm3PyySdn8eLFZfe96U1vyj/8wz8M0VQAW6/v//xLOf/BC7KuQ10obLyh0PkVG6surn9DZCkbxK03PKK0Nn7dKXi94XplKdluebJ6QtdzTCuMSU1lTRLBawAAAAAAAAAAAAAAgK5snT81CAAAAAAAAADQiej11mPevHn5z//8zxxzzDF55Stfmf/4j//IihUrhnusPvngBz+YO++8s+ye+vr6/PCHP9xqw94AQ+WaG7+VT911XtqyQYm6c/S6K6WNv+wyfL3BMZWlpKYtqW3r/si/eiy58DeFVHQ6O5WVyYQJ2W/GYVn8qcV5+RMvC14DAAAAAAAAAAAAAAB0wU/UAQAAAAAAAAAjQrFYLLteWVk5JHP0dE9bW5nS5jboueeeyz/90z9ljz32yM9+9rPhHqdXvv71r+eHP/xhj/t++MMfZrfddhv8gQC2Yjfe9v2c+btPpSXFpFTKupJ1b6LXXegcvu74XweVpY3fMFnZOWqd5M1PJ1f9vCInPl7IhTeuDV/X1CQTJiRTpmS/XQ7KlSddmfra+kwaO6lf8wEAAAAAAAAAAAAAAIx0VcM9AAAAAAAAAADAQKiqKv82iNbW1iGZo6d7qqurh2SOwfLhD384xxxzTJdrxWIxy5cvz7Jly7JkyZI8+OCDmTt3btasWdPjuS+++GJOOOGEfOADH8h//dd/DVmkvK8uv/zyfPrTn+5x3yc+8YmceOKJQzARwNbrt/dcndNv+XCaCxv84opSKSkkSaH9zw3j1J2/ztqvO/Wxq4tJS0V78LqQpGLD4HVh/esqS0nb2q8PeD65cXZ1UlOZVFXlxEXVyYuvzDmvXZRiqZj9pu23LngNAAAAAAAAAAAAAABA90SvAQAAAAAAAIARoaampuz6UEWvW1payq73NOeW7m1ve1uf9re2tua+++7L97///VxxxRVZtWpV2f3//d//neXLl+eyyy7rMWQ+1G6++eacccYZKZU6F1c3duKJJ+brX//6EE01sKZOnZp99tln0O958skn09TUNOj3AFuuxx/5fU6+7r1Zs2HwukNH+LqiImnrYn2T/ek6fF1oD15v8msUNvjHeGUpmbE4+d3sMcmUjYPWJ576xeSVzfnB3B/ksnddJngNAAAAAAAAAAAAAADQC1vWTwYCAAAAAAAAAPRTdXV12fXm5uYhmWOkR6/7qqqqKgcffHAOPvjgfPOb38xnPvOZXHTRRWXD0VdddVXGjBmTH/zgB0M4aXl33HFH3vWud/X4n+/hhx+en/zkJ6moqBiiyQbW2WefnbPPPnvQ75k5c2YeffTRQb8H2DI9/qd789bLDs/qQplfSFEqJYXCps8L2ShavX7/ButrVXfe18XrZryU3P+/1cnkcRsv7LxzctRRObG6OsfvdXwqKzZJZwMAAAAAAAAAAAAAANCFrfOn6wAAAAAAAAAAOhk7dmzZ9ZUrVw7JHCtWrCi73tOcI1l9fX0uvPDC3HbbbZk6dWrZvf/zP/+Tn/70p0M0WXlz587Ncccdl9WrV5fdd9BBB+VnP/tZamtrh2gygK3PgoVP5IgfvTkNhfK/RCBJe/i6q18i0EULe/1rNvjo6usN7LQ8uf9HVcmECZsGts8/P1n7CzUErwEAAAAAAAAAAAAAAHpP9BoAAAAAAAAAGBEmTZpUdr2hoWFI5ujpnp7m3Ba86U1vypw5czJx4sSy+z74wQ9m+fLlQzRV1/70pz/lqKOO6nGO17zmNbnxxhu36ag5QE9WvPxy3njh/llWaOr9iwrpOnJdLnzdoYvQdYfpDcnd30sycWJSVbXx4sknJ0cc0fsZAQAAAAAAAAAAAAAAWEf0GgAAAAAAAAAYESZPnlx2fdmyZUMyR09x5J7m3Fbst99++elPf1p2z5IlS/K9731viCba1NNPP50jjjgiixcvLrtvzz33zJw5cwTNAcpY8fLLOeg/ds9LhTV9f3Ghm7c69iZ83YWJq5P7f5iM237apsHr3XZLzjuvfwcDAAAAAAAAAAAAAAAgeg0AAAAAAAAAjAxTpkwpu97U1DTo4eslS5akubm57B7R6/Xe+ta35uSTTy6754ILLkhbW9sQTbTe888/n7e97W15/vnny+7bZZddcuutt2b77bcfoskAtk5v+MaMPFdY0b8XF5JUdFO4LqRP8evxTcldl1Vl3MTpSaHTC6dPT664Iqmv79+cAAAAAAAAAAAAAAAAiF4DAAAAAAAAACPDzjvv3OOeF154YVBn6M35vZlzW3L++eeXXX/uuefywAMPDNE07V544YW87W1vy9NPP1123/Tp0/OrX/3Kf6YAPTjoc9PzTMWyzTukUOg+fJ2sj193tWXt87Etya9+MSo71E3ddM9uuyXXXZfstNPmzQkAAAAAAAAAAAAAALCNE70GAAAAAAAAAEaEsWPHZvLkyWX3PPPMM4M6w7x588qub7fddhkzZsygzrC12XPPPbPPPvuU3fPb3/52iKZJlixZkiOPPDKPP/542X1Tp07Nr371q+y+++5DNBnAVmTBgvaA9Hnn5fAPjspjzYuStuL6j+Laj1Kpb+cWCklFRddh6432ZZMI9uiW5Oc/G5W9Vk/YdP/JJyc33ih4DQAAAAAAAAAAAAAAMABErwEAAAAAAACAEWO33XYru/7nP/95UO//y1/+Una9p/m2Vccdd1zZ9XvvvXdI5li+fHmOOuqoPPzww2X3TZw4MXPmzMnee+89JHMBbBVaWpKf/zw56aTkwAOTs87KMY9/PvdNaExK2fijuPajrbQ+gt1bhbSHryt6Kl+vV9uaXPXzuhzYOXi9887JpZcm3/52Ul/f+xkAAAAAAAAAAAAAAADoVtVwDwAAAAAAAAAAMFBmzpyZ++67r9v1xx9/fFDv7+n8mTNnDur9W6ueYuAvvvjioM+wcuXKvP3tb8/9999fdt+4ceNy0003Zb/99hv0mQC2GnPmJOeem8yfv+7RSYcuzB07pT1yXc66GHYxKRR6H7MuFJLKtXuLxW7vqW5LfjCnLm9eOXH9w0MPTU4/PTnqqKS6unf3AQAAAAAAAAAAAAAA0Cui1wAAAAAAAADAiLH//vvn0ksv7Xb9D3/4w6De/8ADD5Rdf+1rXzuo92+ttt9++7LrL7/88qDev2bNmvzVX/1V7rzzzrL7Ro8enRtuuCEHHXTQoM4DsNVoaEg++9nk6qs3enzmgS/k5leu/aKjYd2r+HWp/aOiYv3reqOyqv2A0oYfSVUpufDRXXL83gcnJ81M9t03OeigZPr0PhwOAAAAAAAAAAAAAABAX4heAwAAAAAAAAAjxv777192fe7cuWlra0tlZeWA393a2poHH3yw7B7R667V19eXXV+zZs2g3d3U1JR3vvOdue2228ruq62tzfXXX5/DDjts0GYB2KrMn5+cckoyb95Gjz++34v5yT7F9i96Cl13pZSkWEwqCkmhl+XrUjEpVLTvX/uSyhTypQM/lfd87fx+DAEAAAAAAAAAAAAAAEB/VQz3AAAAAAAAAAAAA+XAAw9MXV1dt+srV67M/fffPyh333PPPVm9enW363V1dTnggAMG5e6t3apVq8qujxkzZlDubWlpycknn5xbbrml7L7q6upcc801OeKIIwZlDoCtzrPPJiecsEnw+l9nvpjv79vWHq7uT/C6QylJsZSU+nBIqbju04okn5x5Zj7yTsFrAAAAAAAAAAAAAACAoSZ6DQAAAAAAAACMGHV1dXnjG99Yds+cOXMG5e5bb7217Pphhx1WNsi9LZs/f37Z9YkTJw74nW1tbXnPe96Tn/3sZ2X3VVVV5Yorrshxxx034DMAbJUaGpJTT00WLdro8Zf3fCEXHNCWUmGA7lkXvu7La9rD1x/a49R85m++M0CDAAAAAAAAAAAAAAAA0Bei1wAAAAAAAADAiHLkkUeWXb/22msH5d6f/vSnZdePOuqoQbl3JHjwwQfLru++++4Del+pVMrf/d3f5eqrry67r6KiIpdeemne9a53Dej9AFu1z342mTdvo0cX77gwX3lDMcWk/WNAw9fFPr3kbycfnq+d8eMBGgAAAAAAAAAAAAAAAIC+Er0GAAAAAAAAAEaUk046qez6Aw88kMcff3xA7/zjH/+Yhx9+uNv1QqHQ41zbqlKplDlz5pTds/feew/onR/+8Ifzox/9qOyeQqGQ733veznttNMG9G6ArU1bsW39F3PmJJ1+YcD/TFuYTx+ebLCrvVU9oOHrUq+2vmvCwbn447cM0MUAAAAAAAAAAAAAAAD0h+g1AAAAAAAAADCi7L777jn44IPL7rnwwgsH9M4LLrig7PohhxySXXfddUDvHCluu+22PPPMM2X3vOlNbxqw+z7+8Y/nkksu6XHfhRdemL//+78fsHsBtkYNTQ1555XvzOzHZictLcm55260/rPJL+ZjRyStXQSu14WvC+1/tlW0f77uoy9KPUev3zZ6Zi795B19PBgAAAAAAAAAAAAAAICBJnoNAAAAAAAAAIw4f/d3f1d2/X/+53+ycOHCAbnrueeey49//OOye84444wBuWsk+sIXvlB2ferUqdl///0H5K5zzz033/72t3vc941vfCNnn332gNwJsLVqaGrIKT89JfcvuD/n3HhOZl/xhWT+/HXrvxqzOO87ti0tZd6FWEp7ELut0P5524ax677Er0tJisVul99Ys0eu+8xDvTwMAAAAAAAAAAAAAACAwSR6DQAAAAAAAACMOH/7t3+b7bbbrtv11atX59Of/vSA3PXP//zPaWxs7HZ9++23z9/+7d8OyF0jzcUXX5zbb7+97J7TTjstlZWVm33XV7/61fzbv/1bj/vOP//8fOITn9js+wC2Zh3B6wcXPZgkKZaKOefxb2X2LquTxsbc1rYw7z6+Nc09vQNxbey61PFnOoWv1+7plVLXj2fVvCI3ff7xXh4CAAAAAAAAAAAAAADAYBO9BgAAAAAAAABGnLq6unz0ox8tu+dHP/pRZs+evVn3XHXVVbn88svL7vnYxz6W2trazbpn3rx5KRQKZT++8IUv9Pv8RYsW5e67796sGfvqhhtuyMc+9rGyeyorK3PWWWdt9l0XXnhh/uVf/qXHfZ/5zGfymc98ZrPvA9iadQ5eJ0nWrEmxcU3OOWR5Ltlhad71t8nq2m471O0KSbHj09IAhK9LSUob3zgjU/K7zz/bixcDAAAAAAAAAAAAAAAwVESvAQAAAAAAAIAR6WMf+1h22mmnsntOP/303HPPPf06/6677srf//3fl92zyy679Bjf3hIsWrQoBx98cI477rjce++9g3pXW1tbvvWtb+Wd73xnWlpayu4944wzMmPGjM2673/+53969Z/BJz7xiZx//vmbdRfA1q6hqSEnX33y+uB1U1OyeHGybFmSpKU5+fqbk6piUlFK2iq6CV9vELxe96in8HVvbBC93rk0Pvf/2wv9OAQAAAAAAAAAAAAAAIDBJHoNAAAAAAAAAIxIo0ePzje/+c2ye1asWJGjjjoqv/jFL/p09vXXX5+jjz46K1euLLvvP/7jPzJq1Kg+nT2cfvnLX+aggw7KkUcemR/84AdZunTpgJ5/xx135MADD8w//uM/prW1tezeadOm5Wtf+9pm3XfVVVflAx/4QEqlLpOs65x11ln5xje+sVl3AWztGpoa8q4r35Xb5t2WxpbVyUsvJUuWJGv/eb26KRlXTBrq2uPV9U1JZUf4esOAdRfB63VL5cLXfYhgTy+NyV2f+HPf/oIAAAAAAAAAAAAAAAAMiarhHgAA2PqVSqUUCn346dNBPge609zcnJqami3mHAAAAAAABt9JJ52U0047LZdffnm3e5YvX57jjz8+f/M3f5PPfvazedWrXtXt3kcffTTnnXderrzyyh7vfs973pN3v/vd/Zp7uN1666259dZb86EPfShHHHFETjjhhLzxjW/MPvvsk4qK3v+O9VKplD//+c+ZPXt2fvzjH+eRRx7p1euqqqry4x//OJMnT+7vXyF33XVX3vve96atra3svp133jmzZs3K97///X7f1VfHHXdcpk+fPmT3AfSkoakhJ1xxQm5/5vaUisW0tDQlpaRu7frqpmRaa/Ly6PWvKRWScU3JytqktZBUpr1b3V3wukNH+Dprfx9BW6E9nt0rpWRKaVTu/8TTGbcZ/44AAAAAAAAAAAAAAABg8IheAwCbpbXYmkcWP5Idxu6QqWOm9vucxasWZ8HKBZk5dWaqKvxPFAbektVL8tTyp1JVqMqsabP6fc7cRXPTWmrNK8e/MpNGTxq4AQEAAAAAGDSXXHJJ7r///jz++OPd7imVSrn88stz+eWX57WvfW0OOeSQ7Lbbbhk7dmxWrFiRp59+OnfccUcefPDBXt35qle9Kt/97ncH6q8wbFpaWnLjjTfmxhtvTJKMGTMmM2bMyIwZMzJ9+vRsv/32GTNmTGpra9Pc3JyGhoY0NDRk6dKl+eMf/5iHHnooK1eu7NOdhUIh3//+93PEEUds1ux/+tOf0tLS0uO+Z599NmeeeeZm3dVXv/nNb0SvgS3GuuD1vN+mWFpbny4ky2vbP61rTXZoThaP3fS1HeHrFTVJa2WSUlLRi4B1f8PXE5qSOz71gOA1AAAAAAAAAAAAAADAFkxREgDot9Zia/64+I9Z2bwyTyx5Ikn6Fb5evGpxnljyREop5Y+L/5hXT3218DUDqiN4nSStpdbMXTS3X+HrjuB1knXnCV8DAAAAAGz5xo4dm5tvvjmHHXZY5s+f3+P+P/zhD/nDH/7Q7/t23nnn3HzzzRk7tos66FZu1apVm/1/n3Jqampy6aWX5tRTTx2U8wHYWFuxLe++8t357bzbUtogOl1K1oWvpy3tOnjdoVhIxrQkKwtJa0VSzOCEr+ubk1vvmpkdps/o+XAAAAAAAAAAAAAAAACGTcVwDwAAbJ02DF4nSSmlPLHkiSxetbhP52wYvE6Slc0r88fFf0xrsXXAZ2bbtGHwukNH+LovNgxed3hq+VNZsnrJ5o4IAAAAAMAQ2GWXXfLrX/86u++++6Des8cee+TXv/51dt5550G9ZyTafffdc/vttwteAwyhhSsX5q5n7tgoeN2hlORVC8sHrzc0tjmpamsPWRcLvXtNR/i6tPbzrjclo1uT66+ryV5jpvXuYAAAAAAAAAAAAAAAAIaN6DUA0Gedg9cd+hq+7hy87iB8zUDpKnjdoS/h666C1x2ErwEAAAAAth577LFH7r333hx99NGDcv4xxxyTe++9d9DD2iNNbW1tPvnJT2bu3Ll5/etfP9zjAGwznmt4LvtdtG9Wtq3pcv21zyYvjuvbmWNbkup+hK8Laf/oSm1rctXPanNg0+RkypS+DQQAAAAAAAAAAAAAAMCQE70GAPqku+B1h96Gr7sLXncQvmZzlQted+hN+Lpc8LqD8DUAAAAAwNZj4sSJuemmm/LDH/4w22233YCcud122+XSSy/NjTfemAkTJgzImUNtzz33zHe+850cd9xxGT169JDcWV9fn4997GN5/PHH8/Wvfz1jx44dknsBWBu8/u5+WdK0tMv1Wc8kz03sPkRdzpgNwtdtFenmXQHrVaQ9fF3Mpntr2pIf31KbN6+a1P5g5sx+TAQAAAAAAAAAAAAAAMBQEr0GAHqtp+B1h57C1z0FrzsIX9NfvQledygXvu5N8LqD8DUAAAAAwNbl9NNPz1NPPZWLLrooe++9d7/O2GeffXLRRRfl6aefzvve974BnnBojRkzJmeffXZ+8Ytf5OWXX85NN92UT3/60zn88MMzbty4Abtn8uTJ+eu//utcccUVWbBgQb71rW9ll112GbDzAejZuuD1mq6/vzlrXvL8pPVf9zd8XdvW/nmxTPi6ItlosVhoj2UnSVUxueA3NTn2pQ2G2XfffkwDAAAAAAAAAAAAAADAUKoa7gEAgK1Db4PXHTrC10kydczUdc97G7zu0BG+fvXUV6eqwv90oWd9CV536Ahfz5o2a92zvgSvO3TcO2n0pB52AgAAAACwJRgzZkzOOuusnHXWWXniiSdy00035YEHHsgjjzyS559/PitWrMjq1aszevTojBs3LjvuuGP22Wef7L///jn22GOz5557Dtmsu+66a0ql3n1/ZXPV1dXl6KOPztFHH50kKRaLeeyxx/Lggw/m6aefXvexYMGCrFy5MqtWrcrKlSvT1taW2tra1NbWZuLEidluu+2yww47ZMaMGdl7771z4IEHZp999kmh0J98at+dccYZOeOMM4bkLoCtxdI1SzPru7Pag9dd/GtlxvPJ/MlrY9QbKKT7cHV3RrUkhWLSWN0evq4odhHQ7uLQYtrf2PjvtyTvWTx548WDDurjFAAAAAAAAAAAAAAAAAw15UgAoEd9DV536By+7mvwuoPwNb3Vn+B1hw3D1/0JXncQvgYAAAAA2DrNmDEjM2bMGO4xtkgVFRWZOXNmZs6cOdyjALAZ2opt+Ztr/ibLm5Z3GZvec37y3NrfaV3bsumbC/sTvq5ra/+zq/B157B2Nnj+6duS9y+YklRvsHDoocn06X2cAAAAAAAAAAAAAAAAgKHW3c+NAAAkSUqlUh5Z/Eifg9frXr82fP3o4kf7FbzusLJ5ZR5Z/EhKpf69npGvubm538HrDq2l1ty38L5+B687PLX8qTQ3N2/WGQAAAAAAAAADaVXLqry46sUUS8V14ekOuyxMFkxtj1qX0h6pbu28Kdnkdb1R15aMamn/vFjRfn4h6bagffadyb8+Miaprt544fTT+3E7AAAAAAAAAAAAAAAAQ030GgAoq1AoZIexO6TQrx9dbVdKKUsal/Q7eJ0khaydo9D/ORjZampqUlWoGu4xkiRVharU1NQM9xgAAAAAAAAASZKGpoac8tNTsmjlooyvGptCaX3A+pWLksUTk2Kn1zRWDVz4urYtGb329wYXK9Jt8PqM+5Ov3VWdjBu38cLOOydHHdWPmwEAAAAAAAAAAAAAABhqotcAQI+mjpmaGZNmbFb4enMUUsiMSTMydczUYbmfrcesabOGPXxdVajKrGmzhnUGAAAAAAAAgA5txba859r35MFFDyZJ6ta0ZHxTUiglOz2bvDi+2wZ1GquSlgEKX9cUk7HNSUUpaavY9M7jH00uvq0qmTAh6fwLsc8/P6mu7setAAAAAAAAAAAAAAAADDXRawCgV4YrfC14TV8NZ/ha8BoAAAAAAADY0lRWVObvZv1dKgoVSVNTsmZN6lqT3Z5Jlk9J2np4G0BTVdLSxTsN+xW+bkvqm9pfu2H4+m1/Sa64qTqZODGp6vT93pNPTo44oh+3AQAAAAAAAAAAAAAAMBxErwGAXhvq8LXgNf01HOFrwWsAAAAAAABgS7Gmec1GX5/43NhceNuoVCxdliQZvzh5abuuY9ZdaapMmgcgfF0sJFWlZHxj+5sX2yqSA+cnP59dkUyevGnwerfdkvPO6+MtAAAAAAAAAAAAAAAADCfRawCgT4YqfC14zeYayvC14DUAAAAAAACwpXhs8WOZ8PUJOfGKE5OGhuSjH01OPz0n3rcqF94xPuOWJou26zpiXU5zZXv8urO+vnugtZBUpj18PfOF5PYrKtpj14VOJ02fnlxxRVJf38cbAAAAAAAAAAAAAAAAGE6i1wBAnw12+FrwmoEyFOFrwWsAAAAAAABgS/HY4sey33f3S3Nbc657/Lqc+M+7JldfvW79Nc+tzMpxSWs/3znYUpE0DlD4ep8Xkj/8cO0gFZ0G2m235Lrrkp126s+YAAAAAAAAAAAAAAAADCPRawCgXwYrfC14zUAbzPC14DUAAAAAAACwpegIXrcUW9oflJLrtl+aE49ckiRZ1PhSjjyhJaurk8pS+0d/vuPfujZ8Xez0vC9nTV2Z/HlaMnuvUvuD6ur1iyefnNx4o+A1AAAAAAAAAAAAAADAVmpw6n8AwDahI0z9xJInUkpps88TvGawzJo2K3MXzU1rqXXAzhS8BgAAAAAAALYUXQWvO1y3W1OOPGxh5k1NltW1PyuUksq168VC+vwd/9aK9j9r2pKKDZ4X0vNZk1cnC2qS0YXknGPbd5+4qCrZeefkS19Kjjyyj9MAAAAAAAAAAAAAAACwJanoeQsAQPemjpmaiXUTB+SsiXUTBa8ZNAMdqBa8BgAAAAAAALYE5YLXSZLG5E/bJy+M3vhxoZRUlpKKUnusuq9aK5KmyqTY6Xm5s8Y3JouqktG17V8X14avZ3/5b5Pf/U7wGgAAAAAAAAAAAAAAYAQQvQYANsviVYuztHHpgJy1tHFpFq9aPCBnQWdzF83dos8DAAAAAAAA6KtNgtdd2HllsmxUUiokbZ2K1IVS+0d/w9dtFUlTVe/C1/WNyYqK9cHrJElFRYqj6nLO6msy+y+/6McEAAAAAAAAAAAAAAAAbGlErwGAflu8anGeWPJESikNyHmllPLEkieErxlwcxfNTWupdUDPbC21Cl8DAAAAAAAAw6bL4HWnb9/v8UKyZMwGy12Er0trv+53+LqQNFWXD1+PbklWlJLK2mxq9OgUS8X8YO4P0lZs68cEAAAAAAAAAAAAAAAAbElErwGAfhno4HUH4WsG2mAErzsIXwMAAAAAAADDocvgdSd7LUheqG+PT28YoN4wfN3W6R2E/Q5fJ2nsJnw9qiVZUpW8PDVprNrwsoqksjKprc1+0/bLZe+6LJUVlf24HQAAAAAAAAAAAAAAgC2J6DUA0GeDFbzuIHzNQBnM4HUH4WsAAAAAAABgKK1pXpNZl8zaNHi9wbfw91iULJi48XLn8HVrRbr8rn9/w9fFbBq+rm1LmpqTlfXtdy6v7RS+Hjcu+03bL1eedGXqa+v7cSsAAAAAAAAAAAAAAABbGtFrAKBPBjt43UH4ms01FMHrDsLXAAAAAAAAwFAZVTMqb9/j7d2u77EwWTS+66B1b2PWAxG+rm5LKhqTF6e1r5XSKXw9alT22+UgwWsAAAAAAAAAAAAAAIARRvQaAOi1oQpedxC+pr+GMnjdQfgaAAAAAAAAGCqzT52dd844of2LUtYVrvdckCyasH7fcIWvWyqT6hXJs9M2XlsXvq5Lpm2/u+A1AAAAAAAAAAAAAADACCR6DQD0ylAHrzsIX9NXwxG87iB8DQAAAAAAAAyJOXMy+9sL886natc92md+snDipls3aGKvM5jh64okk5Ymz+zU9XopSUVFVbarn54x1WP6eDoAAAAAAAAAAAAAAABbOtFrAKBHwxW87iB8TW8NZ/C6g/A1AAAAAAAAMGgaGpKPfjQ5/fRk/vzMnjMp73y6NvvMT16ckFS3df/SzQlf9+WNhtNfSua9osyGQjK+bnx+8u6fpLKisg8nAwAAAAAAAAAAAAAAsDUQvQYAyiqVSlmwcsFmBa8LKWRS3aQUev0js13MkbVzlIYnvM2Wr7m5ediD1x1aS61pbm4e7jEAAAAAAACAkWT+/OSYY5Krr07a2pLGxmTFirx9blNeHt++pbI0OOHrQi/C1xVJdngp+cuO5Q5KJo2alLkfmpuJoyb28nYAAAAAAAAAAAAAAAC2JqLXAEBZhUIhM6fOzNiasf17fQqZMWlG9pm6T2ZMmtHv8PXYmrGZOXVmCoX+h7MZ2WpqavLK8a/crDOqClU5cPqBqSpUbdY5rxz/ytTU1GzWGQAAAAAAAADrPPtscvzxyZ/+lCxdmrz0UrJ8ea7YYWXOf0tSUVz/ZsDKUlIzSOHryu7Wkuy4OHmyh+D12JqxefBDD2bH+nIbAQAAAAAAAAAAAAAA2JqJXgMAPaqqqMqrp766z+HrjuD11DFTkyRTx0ztV/h6bM3YvHrqq1NVsXkhYka+SaMn9Tt8XVWoyqxps5Iks6bN6nf4+pXjX5lJoyf167UAAAAAAAAAm2hoSI45JnnkkWT58qS5OUly407FfPropGXtt+Ar29a/IbCilNS2dn9kf8LXhVL7C7sKX+/0cvL4TuVe3P4egoNfcXCmj53ei9sAAAAAAAAAAAAAAADYWoleAwC90tfwdefgdYe+hq8Fr+mr/oSvNwxed+hP+FrwGgAAAAAAABhQDQ3Jm96UPP540ta27vGvpxdz1vFJc6d3AG4Yvi5kbfi6c+F6rb6EryuLSWWp/c/O4etdXk7+vEOZ1xeSikJF3rzrm3PNKdeksqKrbDYAAAAAAAAAAAAAAAAjheg1ANBrvQ1fdxe87tDb8LXgNf3Vl/B1V8HrDn0JXwteAwAAAAAAAANq/vzkDW9IHn54o8cPTCrmg+9Mmrp591/l+jZ2e/i6LZsVvq4srn9eyAbh61Ky08vJ8vHJ+KakUOr0+kLWBa/ftMubcv2p16e+tr7rQQAAAAAAAAAAAAAAABgxRK8BgD7pKXzdU/C6Q0/ha8FrNldvwtflgtcdehO+FrwGAAAAAAAABtSzzybHH5/8+c8bPf7TqGJO++tkVZlvYbZVbvz15oavi4VN1yuLybRlyYrx7c/qWjuFr9e+RvAaAAAAAAAAAAAAAABg2yN6DQD0WXfh694Grzt0F74WvGaglAtf9yZ43aFc+FrwGgAAAAAAABhQDQ3Jqae2h6/b2tqflUp5tq6Yd783aajp/qVtFUmxi+cd4etCP8LXpULS1il8/ZoXk6/fnlR0vLBQSF2xIuPrxqdQUZFCCoLXAAAAAAAAAAAAAAAA2yjRawCgXzqHr/savO7QOXwteM1A6yp83ZfgdYeuwteC1wAAAAAAAMCA++xnk3nzkhUrkmIxKRbzUkr5q/ckS+u6f1lbRXugutDNeiFJTdsGoepOehu+fuWS5Hf/W5ETX5qSC38/MRWFiqRQSGpqUlczOuNrx6emsiaH73q44DUAAAAAAAAAAAAAAMA2SPQaAOi3jvD1uJpx/Qped+gIX4+rGSd4zaDYMHzdn+B1hw3D14LXAAAAAAAAwICbMyf53/9NXnwxaWlJkqxOcvT/SxaP7v5lHcHrDuXC19VtSWU/w9eTVie//UGSUaOS6uqcOK8uF94xvj2kPbp9wLqqurxl17fk2lOuFbwGAAAAAAAAAAAAAADYBilKAgCbpaqiKvtut28Khe5+ZLZ3po6Zmimjp2z2OdCdSaMnZWzV2NTU1GzWObOmzUpzc/NmnwMAAAAAAACwkZdfTk45JVm6dN2j1UneekaycFz3L+scvO5QyKYR647nVW1JKpO2Ll5Xysax645zxjUmT41L/vbUQmbftn6gE+fVJVOn5Jw3r06xVMx+0/bLlSddKXgNAAAAAAAAAAAAAACwjaoY7gEAgK3fQIWqBa8ZbAMVqha8BgAAAAAAAAbUo48me+yxUfA6Sd7+3uTZ8d2/rLvgdYfulgpJqtuSyq6q2Nk0lj2uMVlYl6QuuW6vUk48auM5Tzzn4lx47IU5YIcDBK8BAAAAAAAAAAAAAAC2cVXDPQAAAAAAAAAAAABss+66KzniiGTVqo0ef+DYZN7E7l/WU/C6QyGbRqw7VLclhcqktYtzSmtfO6p5bfB61Pq163ZryolHLsnsOZOSk09OjjgiJyY5fq/jU1lR2fNQAAAAAAAAAAAAAAAAjFgVwz0AAAAAAAAAAAAAbJMeeaQ9eL169UaP//Ftydwdksmrk9q2TV/W2+B1h3Jbq9qSqmLXazWtybK2bBS87nDdbk058Z2NyXnnrXsmeA0AAAAAAAAAAAAAAIDoNQAAAAAAAAAAAAy1hob24PWaNRs9/txhye92bf+8IsmkNZuGr/sSvO5QNnxd3DR8Xd2WNLYlzZO6f90vp6/Mmrrqvg8DAAAAAAAAAAAAAADAiCV6DQAAAAAAAAAAAEPt9NOTF1/c6NHXX5/cOGPjbR3h67rW9c+qOkWwe6sjfF2R9qj1hm8g3DB8XdmW1KxJVk3o/qzqiurM/dCDGVUzqn/DAAAAAAAAAAAAAAAAMCKJXgMAAAAAAAAAAMBQuvHG5IYbklJp3cd3DkiufnXX2yuSTG5MRg9A+Lqi1B61Ttr/7By+rmtNxjYkL0zt/ozqyuo8+OEHs/fUvfs3BAAAAAAAAAAAAAAAACOW6DUAAAAAAAAAAAAMldWrk/e/P2lpWRe8/uGrk0tn9fzSiY3JmM0IXxdKSWVx42cbhq8rSsm4huT5Hbo7YG3w+kOC1wAAAAAAAAAAAAAAAHRN9BoAAAAAAAAAAACGwpw5yWtfmyxYsO7RVXslF7++90dMaEzGNa//urfh666C1x0q25KqUjJhRfL0K7p6cftHdYXgNQAAAAAAAAAAAAAAAOWJXgMAAAAAAAAAAMBgamhIPvrR5PTTk2eeWff4hlcm3zokKfXxuPrmZHzT+q97Cl+XC14n7cHrz/062WdF5xeu/YjgNQAAAAAAAAAAAAAAAL0jeg0AAAAAAAAAAACDZf785JhjkquvTorFpLk5SfKbnZIvvylp7ee7+Ma29C583VPwupDkrLuSDz9ckdnX1+WdT9duskfwGgAAAAAAAAAAAAAAgN4SvQYAAAAAAAAAAIDB8OyzyQknJPPmtX+9Nnh973bJZ9+aNFdu3vFjW5IJje3h6mTT8HVPweskef/9yafvXXtCVVVmz5nUHr5e+0jwGgAAAAAAAAAAAAAAgL4QvQYAAAAAAAAAAICB1tCQnHpqsmjR+metrZk7pZR/OiZpqhqYa8a0toevO94M2BG+7k3w+rSHki/+X5JCR+G6Okky+/FZeeeME1JTWSN4DQAAAAAAAAAAAAAAQJ8M0I/NAAAAAAAAAAAAAOt89rPJvHkbPXqysCIfPzpZXT2wV41uTSrXJEtGJcWsD1+Xc9yfk2/8JklFxfqHa6PXOf/8zD7iiKxpXpNRNaMGdlgAAAAAAAAAAAAAAABGtIqetwAAAAAAAAAAAAC9NmdOcvXVGz16ruXlfPgdycrawbmyti2ZtCap7MXeN89L/vuX2Th4XVOTVFYmJ5+cHHFEkgheAwAAAAAAAAAAAAAA0Gei1wAAAAAAAAAAADBQWlqSc8/d6NHi0vKceURzlg5yQ7q2LZm0unz4+vXPJT+5vouFUaOS3XZLzjtvsMYDAAAAAAAAAAAAAABgGyB6DQAAAAAAAAAAAAPl5puT+fPXfdnQ1JD3v2l1Fo8ZmutrisnkVV2Hr/d9MZl9TRcLlZXJrrsmV1yR1NcP8oQAAAAAAAAAAAAAAACMZKLXAAAAAAAAAAAAMFAuvXTdpw1NDfm7t67KgnFDO0J1KZnSKXy9x5Lkpp9s8KBQWP/5nnsm11+f7LTTUI0IAAAAAAAAAAAAAADACCV6DQAAAAAAAAAAAANhwYLkjjuSJE1NDfngW1blmfHDM0pVKZm6sj18vfPy5KYfd7Nx332T3/9e8BoAAAAAAAAAAAAAAIABIXoNAAAAAAAAAAAAA+Gee9Z9+sE3rcpfJg7jLGkPXu8/P/nFpcnozotVVcmrXpX89rdJff0wTAcAAAAAAAAAAAAAAMBIJHoNAAAAAAAAAAAAA+Ghh5IkZ+2/KI9MHuZZkuywIvnx7GRKqdNCdXXy6lcnN90keA0AAAAAAAAAAAAAAMCAEr0GAAAAAAAAAACAgfDII/nHfRfl3mmdK9NDb+qq5PvXJ/VdjbLHHsn11yc77TTkcwEAAAAAAAAAAAAAADCyVQ33AAAAAAAAAAAAADASfG71jfndjsMfvJ64JvnedcnUpi4WJ0xIfve7ZPLkIZ4KAAAAAAAAAAAAAACAbUHFcA8AAGz9WlpatqhzAAAAAAAAAGCoffmLR+bG6SuHe4yMbUq+fUOyY2MXi5WVyU9+IngNAAAAAAAAAAAAAADAoKka7gEAgK3bktVLMvfFuamrqsshOx7S73PufO7ONLY2ZtZ2szJp9KQBnBAAAAAAAAAABsGCBck99yQPPZTv3P/dzN5+UVIsDetIo1uSb92c7LO800Kh0P7n8ccnxxwz5HMBAAAAAAAAAAAAAACw7RC9BgD6rSN4nSSNrY2587k7+xW+7gheJ8ncF+cKXwMAAAAAAACwZWppSW66Kbn00uTOO5Mkn5q5MHN2SaqKwztabWvyb3OSWYvXPugIXXf8uf32yQ9/OByjAQAAAAAAAAAAAAAAsA2pGO4BAICt04bB6w4d4eu+2DB43WHui3OzZPWSzR0RAAAAAAAAAAbOnDnJoYcmH/zguuD1x/ddmP/aP3lufNI6jKPVtCVf+nVy6MK1DwqF9R9JMmpUcuutSX39sM0IAAAAAAAAAAAAAADAtkH0GgDos66C1x36Er7uKnjdQfgaAAAAAAAAgC1CQ0Py0Y8mp5+ezJ+/7vHnXrUoP9iv/fPGqvbwdcswjFdVTP719uTw+d1sGDUq+dWvkn32GdK5AAAAAAAAAAAAAAAA2DaJXgMAfVIueN2hN+HrcsHrDsLXAAAAAAAAAAyr+fOTY45Jrr56o8ff2P3FXHBgKcUNnjVWJc9OGNrwdSHJx+9Mjnuqmw3bb5/cc0/y+tcP4VQAAAAAAAAAAAAAAABsy0SvAYBe603wukO58HVvgtcdhK8BAAAAAAAAGBbPPpuccEIyb95Gj7//isX5t4Pb0lbY9CUtlckzE5PmoZkwZ92dnPx4FwtVVe2z/+lPyT77DNE0AAAAAAAAAAAAAAAAIHoNAPRSX4LXHboKX/cleN1B+BoAAAAAAACAIdXQkJx6arJo0UaPr5n0Yj71lta0lnnnXWtF8uykpKmLKPZAOn1ucsYfu1h4xSuS669Prr02qa8f3CEAAAAAAAAAAAAAAACgE9FrAKBH/Qled9gwfN2f4HUH4WsAAAAAAAAAhsxnP5vMm7fRoxvrF+bMY9rS0ot33bUWkmcmJmsGKXx94mPJR+5f+0Wh0P5RW5vstVfyxBPJsccOzsUAAAAAAAAAAAAAAADQA9FrAKCslpaWfgevOzS2NubX837d7+B1h7kvzk1LS8tmnQEAAAAAAAAAZc2Zk1x99UaP7isszOlvT5ore39MsZDMn5is6sNreuPYJ5J//f3ayPW4ccmECcl22yWTJiXf+U4yevTAXggAAAAAAAAAAAAAAAB9UDXcAwAAW7bq6urUVdVtdrB6INRV1aW6unq4xwAAAAAAAABgpGppSc49d6NHj1e9mOPenazpx7eri4XkuQnJjsuSMW2bP95h85Lz7qpOpkxIqjq9/e/kk5Mjjtj8SwAAAAAAAAAAAAAAAGAzVAz3AADAlu+QHQ9JXVXdsM5QV1WXQ3Y8ZFhnAAAAAAAAAGCEu/nmZP78dV8uaFyct76rLatr+n9kKe3h64bN/B3Pr1uQfPOuMcnkyZsGr3fbLTnvvM27AAAAAAAAAAAAAAAAAAaA6DUA0CvDGb4WvAYAAAAAAABgSFx66bpPFzQuzuv/tjUNtZt/bCnJgvpkeT/j2a95Ibn43ilJfX1SKGy8OH16csUV7WsAAAAAAAAAAAAAAAAwzESvAYBeG47wteA1AAAAAAAAAENiwYLkjjuSJCsaF+ew01qzbIC/Rb5wXLK0jxHtPZYm/3XnmKS6etPF3XZLrrsu2WmnAZkPAAAAAAAAAAAAAAAANpfoNQDQJ0MZvha8BgAAAAAAAGDI3HRT0tiYFS8vzEGntObFMYNzzQtjk5d6Gb7epSH54W1jUltbv+niyScnN94oeA0AAAAAAAAAAAAAAMAWRfQaAOizoQhfC14DAAAAAAAAMOhaWpKf/zw56aTkYx9Lli/PG05PnuuiMT2QXhqbvDiq/J4dViY/+FUXweudd04uvTT59reT+kEeFAAAAAAAAAAAAAAAAPqoargHAAC2TofseEjufO7ONLY2DvjZgtcAAAAAAAAADLo5c5Jzz03mz2//uqUlB51ezDMTh+b6JaOTUiHZfvWma1PXJN+/fUzqNwxeH3pocvrpyVFHJdXVQzMkAAAAAAAAAAAAAAAA9JHoNQDQb4MRvha8BgAAAAAAAGBQNTQkn/1scvXVGz0+/N2NeWzq0I6ydFRSLCTTV61/NrEx+d7CAzL1TXskM2cm++6bHHRQMn360A4HAAAAAAAAAAAAAAAA/SB6DQBslkN2PCS/nvfrAT0PAAAAAAAAAAbF/PnJKack8+Zt9Pgdb1qY+14xPCMtr0vaCsmOK5P65uS/ntwnO/7+vuEZBgAAAAAAAAAAAAAAADZTxXAPAABs3e587s4t+jwAAAAAAAAASJI8+2xywgmbBK9POmRhfrvL8IzUYWVt8uKo5D/+b0x2HzN9eIcBAAAAAAAAAAAAAACAzSB6DQD0253P3ZnG1sYBPbOxtVH4GgAAAAAAAICB1dCQnHpqsmjRRo/PmrUwN+8+TDNtoKqYfPmOqsxqrE+mTBnucQAAAAAAAAAAAAAAAKDfRK8BgH4ZjOB1B+FrAAAAAAAAAAbUZz+bzJu30aPLtl+ce3ZIqtuGZ6QOlaXkS3dU5T2LprY/mDlzeAcCAAAAAAAAAAAAAACAzSB6DQD02WAGrzsIXwMAAAAAAAAwIObMSa6+eqNHs6e8nO+8tjWFJLsuS+pah2WyVJSST95dyEfmTV3/cN99h2cYAAAAAAAAAAAAAAAAGACi1wBAnwxF8LqD8DUAAAAAAAAAm6WlJTn33I0e3TxxWb5+YHNa1757rjLJrsuTUS1DP96H7k4+8+dpGz886KChHwQAAAAAAAAAAAAAAAAGiOg1ANBrQxm87iB8DQAAAAAAAEC/3XxzMn/+ui//b9zynHfQmnXB6w3t0pCMaR660f72geRrj07Z+OGhhybTpw/dEAAAAAAAAAAAAAAAADDARK8BgF4ZjuB1B+FrAAAAAAAAAHqjrdi28YNLL1336dza5fnMwavTXNn963dakYxrSkqDNF+Hd/0xufj3Y5Lq6o0XTj99kG8GAAAAAAAAAAAAAACAwSV6DQD0aDiD1x2ErwEAAAAAAAAop6GpIe+88p2Z/djs9gcLFiR33JEkebRmeT7+ptVZXV3mgLW2XzW44eu3PZlcOqc6GTdu44Wdd06OOmqQbgUAAAAAAAAAAAAAAIChUTXcAwAAW7aWlpZhD153aGxtTEtLS6qre/FTyAAAAAAAAABsMxqaGnLKT0/Jg4sezB8W/iFJcuLjhSTJk1XLc86bVmdlL77V3FqRNFUkkxuTQpKGuqQwgPXr189Prru+Kpk4ISkUNl48//zE98MBAAAAAAAAAAAAAADYylUM9wAAwJaturo6s7abtVln1FXV5a27vjV1VXWbdc6s7WYJXgMAAAAAAACwkQ2D10lSLBVzzo3nZPaDV+b50vKc9ebVaajp+ZyO4HWSFJNMakwmrk5KhbIv67VZC5Jbf1qdTJyYVFVtvHjyyckRRwzMRQAAAAAAAAAAAAAAADCMRK8BgB5NGj2p3+Hruqq6HLLjIUmSQ3Y8pN/h61nbzcqk0ZP69VoAAAAAAAAARqbOwesOxVIxn1x8RU4+enUW9+Lb1K0VSXOnd9MVk4xvTiav3Pzw9YyXkt/NHpNMnrxp8Hq33ZLzztu8CwAAAAAAAAAAAAAAAGALIXoNAPRKf8LXGwavO/QnfC14DQAAAAAAAEBn3QWvkyTLl2V8Y7JobLKqJmkrE61urUhaKpKuthSTjGtNpqzs/5w7LU/u/9mUpL4+KXS6Zfr05Ior2tcAAAAAAAAAAAAAAABgBBC9BgB6rS/h666C1x36Er4WvAYAAAAAAACgs3LB68aVy/KKhWuybO23pVsL7eHr1i6q1h3B6w4V2TR+XUwypjWZsiop9XHO6Q3J3Zckqa7edHG33ZLrrkt22qmPpwIAAAAAAAAAAAAAAMCWS/QaAOiT3oSvywWvO/QmfC14DQAAAAAAAEBnS9csLRu83vPZNVlSu/Hz1kKyunrj8HXn4HWHQjYNX5eSjG5Npq1Mr8vXE1cn9383GVdTs+niyScnN94oeA0AAAAAAAAAAAAAAMCII3oNAPRZufB1b4LXHcqFrwWvAQAAAAAAAOjsuYbnstd39srdz93d5fqr5q3JS6O6fm1rRbK6qj183dJN8LpDd+Hr2rZk2or0GL4e35TcdVEyrqIiqdjgop13Ti69NPn2t5P6+vKHAAAAAAAAAAAAAAAAwFZI9BoA6Jeuwtd9CV536Cp8LXgNAAAAAAAAQGdL1yzN/pfsn5fXvJzlTcvT2Nq40fqeDy/MC2PKn9FamayoTdZU9Xxfd+HrmlKyQ0NS6CZ8PbY5+dUPkh0Ka9+eV1WVHHpo8t//nfzud8mRR/Z8OQAAAAAAAAAAAAAAAGylRK8BgH7bMHzdn+B1hw3D14LXAAAAAAAAAHTW0NSQ0649La3F1nXPNgxf7/nwwjw3tndnlZK0ViQtlT3v7S58PbqY7LIsqewUvh7dnPz8B8leLXXJmDHJ+PHJBRckV12VHHdcUl3duyEBAAAAAAAAAAAAAABgK1U13AMAAFu3SaMn5bBXHJbqzfzB3EN2PCQtLS2bfQ4AAAAAAAAAI0tDU0NO+ekpeXDRg+t+ofLypuXr/nzVn5bmyQlJVdumEepyWgtJqTKpaSu/ryN8XVz7dW0xqSq2v/lu1yXJvAlJW2VS25ZcdXVy4JjpyZgNDjjmmN4PBQAAAAAAAAAAAAAAAFu5iuEeAADY+g1UqFrwGgAAAAAAAIANbRi87lBXVZfxteOTJAc+Wcyz7Z+mtTJpK/Tt/LZC0lyZ9KaVXZH1wesO1Ul2W5aMaU5+fEXy5qYpG7/o0EOT6dP7NhQAAAAAAAAAAAAAAABsxaqGewAAAAAAAAAAAADorKGpISdffXIeeuGhTdbqquryqj8tzbMTN37eWpmkmFQWN3lJt9oKSakyqWlLyjWzqzsFrzuMaU1+fnnyulVjkvpOv+z59NN7PwgAAAAAAAAAAAAAAACMABXDPQAAAAAAAAAAAABsqKGpIe++6t25bd5taWxt3GR990cXZ/74rl/bWtH+0RfFQtJclZS6We8ueF3Tlnzp18nrllYn48ZtvLjzzslRR/VtEAAAAAAAAAAAAAAAANjKiV4DAAAAAAAAAACwxegIXv/umd+lpdiS5U3LNwpfv/LRlzJvXGu3geokaetP+Dpdh6+7C15XFZPP/iY5fGFVMmFCUihsvOH885Pq6r4NAQAAAAAAAAAAAAAAAFu5quEeALY0TU1NeeKJJ/Lcc89lxYoVWb16dUaPHp1x48Zlxx13zF577ZWamprhHhMAAAAAAAAAAEactmJbTr765HXB6w7LG5clqc2r/tKYZydtGqbu8qyKpFRIqtqSQs/bk6wPX9e0tr+murXrN9kVknzyd8kxC6qTiROSqk67Tj45OeKIXt4KAAAAAAAAAAAAAAAAI4foNSS56667ct111+XGG2/MI488kra2tm73VlZWZubMmXn729+eE044IQcffPAQTgoAAAAAAAAAACPXqpZVeXHVi+3B61Jp7Uf72pQFjXluUlLsbcE67XtbK/sevm6qSkY3dx+8Puvu5F0LxySTxyWFTifvtlty3nm9HxIAAAAAAAAAAAAAAABGkIrhHgCG0xVXXJEDDjggb3jDG/K1r30tDz30UNngdZK0tbXloYceyle/+tW84Q1vyIEHHpgrr7xyiCbesqxevTp33nlnLrjggrzvfe/LPvvsk8rKyhQKhW4/vvCFLwz32APi8ssvL/v33PDjtttuG+5xAQAAAAAAAAC2eA1NDTnlp6dk0cvPZHxTISmuD17v9FyyZnTSWmiPUvdFsZC0VK47qvevq+j6Nf/vgeSMRVOS+vpNg9fTpydXXNG+BgAAAAAAAAAAAAAAANugquEeAIbDn/70p3zwgx/M7bffvtln3X///Tn11FPz3e9+N9/97nez1157DcCEW56mpqY8+OCDue+++9Z9PProoz1Gwkeil19+OR/72MeGewwAAAAAAAAAgBGjoakhp1zx7jz41O+TNWtSlyTFQpbXlLLD4qQ0OmnboC9dTFLRh/NLa8PX1W1JoeftKSVpqUhSldS2rr/rr5+ozIcXbZdUd/Gi3XZrD17vtFMfJgMAAAAAAAAAAAAAAICRRfSabc61116b008/PStXrhzQc2+77bYceOCB+dGPfpQTTzxxQM8eai0tLXn44Yc3Clz/8Y9/TEtLy3CPtkX4+Mc/nsWLFw/3GAAAAAAAAAAAI0JDU0NO+fEJefDJO5INfgF7XVshkxeU0lKXNFdu+rrBDl+3ViQptL+urjU54S8V+dRftut688knJ+edl9TX92EiAAAAAAAAAAAAAAAAGHlEr9mmXHTRRTnnnHNSKpUG5fyVK1fm3e9+d77zne/krLPOGpQ7hsINN9yw1Ye7B8stt9ySH//4x8M9BgAAAAAAAADAiNAevD5+bfC6uNHa2IZiijVdB6879Ct8XZVUt/YyfF1ov+DghcnnHt9+0w0775x86UvJkUf2YQoAAAAAAAAAAAAAAAAYuUSv2WZceumlgxq87lAqlfKRj3wkY8eOzfve975BvYuhtXr16nzoQx8a7jEAAAAAAAAAAEaEtmJb3nPlKXnwyTs3CV7XLiumsiJZWd3zOcW0B6x7E7FOklLaw9dVrb0LZm/fkByxZOLGDw89NDn99OSoo5LqXgwJAAAAAAAAAAAAAAAA2wjRa7YJ99xzTz7wgQ/0Knh9yCGH5LTTTsshhxySXXfdNePGjcuKFSvy1FNP5c4778xll12Wu+++u+wZpVIpH/jAB7L33nvnda973UD9NRhm5557bp5++unhHgMAAAAAAAAAYESorKjM3z1UmT8U2lLcoFhdaixmdCFZXpdUJmnrxVkd7wrqS/i6tRfh6+1XJn/ZqSbn7NKY1BydE/c7NTnooGT69F7eBAAAAAAAAAAAAAAAANuWcj+vAyNCQ0NDTj311LS0tJTdt+eee+bWW2/NHXfckbPPPjuvfe1rM3HixFRVVWXixIk54IADcs455+Suu+7KzTffnN13373sec3NzTnllFPS0NAwkH8dhsm9996bCy64YLjHAAAAAAAAAAAYOebMyYmXP5AL7xifirXV6jWNxUxZkywf1f51Ke3h697ErEtZH7/ujY7wdbGb9e3WJH/abVQyeXKKEyfknLG/y+wZRcFrAAAAAAAAAAAAAAAAKEP0mhHvc5/7XJ5++umye4444ojce++9edvb3tarM4866qjcd999Ofzww8vue/rpp/OFL3yht6Nu1UaPHp03vOENPcbAt0atra15//vfn7a2tk3WJkyYkIkTJw7DVAAAAAAAAAAAW7GWluTcc5MkJ86ry4V3jE/TmmJ2XZ0sHbPx1lKSQmnwwtctVUmx0+GTmpLHdx6VurET1j0rloo558ZzMvux2X24AQAAAAAAAAAAAAAAALYtoteMaI8++mguuuiisnve8IY35Prrr8/48eP7dPaECRPy85//PAcddFDZfRdeeGEee+yxPp29paurq8vrX//6nH322fnBD36Qhx56KA0NDbnzzjtz6KGHDvd4A+7rX/96HnrooS7XvvrVr6a+vn6IJwIAAAAAAAAA2MrdfHMyf/66L0+cV5fXLE0Wj+1mf6E9ej0Y4eskaalcH76e0JQ8P33j4HUH4WsAAAAAAAAAAAAAAAAor2q4B4DB9MUvfjGtra3drk+aNClXXnllRo8e3a/zx4wZk6uuuiqzZs3KsmXLutzT2tqa8847Lz/5yU/6dcdwq62tzWte85oceOCBOfDAA3PAAQfk1a9+daqqto1/fDzxxBP50pe+1OXaIYcckjPPPDNf+cpXhngqAAAAAAAAAICt3KWXbvTlXx+yMM9MTCrbkrbK7l9WSO+C1h17ehPJ7tBSmUxcnSydNioZP6HbfcVSMT+Y+4Mcv9fxqawoMywAAAAAAAAAAAAAAABsg7aNai3bpKeeeirXXHNN2T3nn39+dtppp826Z5dddskXv/jFfPSjH+12z9VXX52vfOUr2XXXXTfrrqEyY8aMXHLJJTnggAOy7777prq6erhHGhalUilnnnlmGhsbN1mrrq7OJZdckkKhLz8aCQAAAAAAAABAFixI7rhj3Zf/76CFuW96++cVSdKL8HXSc/y6r+Hr0S1J66S6NE6YUHbfftP2y2XvukzwGgAAAAAAAAAAAAAAALpQMdwDwGC56KKL0tbW1u36nnvumTPPPHNA7jrrrLPyyle+stv1tra2XHTRRQNy11DYZ599cuaZZ+aAAw7YZoPXSfL9738/v/3tb7tc+8QnPpFXv/rVQzwRAAAAAAAAAMAIcM896z791MyFuWuHpGKDgnVFksoyReu+/IryUnqOYydJbVtSWZMsnzqx7L79pu2XK0+6MvW19X2YAgAAAAAAAAAAAAAAALYdoteMSG1tbfnJT35Sds/HP/7xVFZWDsh9VVVV+Yd/+Ieyey6//PIUi8UBuY/Bt3DhwnzqU5/qcm233XbL5z73uSGeCAAAAAAAAABghHjooSTJ51+1KL/YIymUkpq2TuHrYs/h646PnpSSlHvXTnVbUmpNnphYkcbWxm73CV4DAAAAAAAAAAAAAABAz0SvGZF+/etfZ+HChd2u19XV5b3vfe+A3nn66aenpqam2/UFCxbktttuG9A7GTwf+chHsmzZsi7XLr744owaNWpoBwIAAAAAAAAA2No98EDyL/+SfOc7+caOC3P1Xuur1oW0h6/Lha476wheF/rwms6qismE5uSZ6e1vpVvetLzL8LXgNQAAAAAAAAAAAAAAAPSO6DUj0s9//vOy68cdd1zGjRs3oHdOmDAhxx57bNk9Pc3FluG6667Ltdde2+XaKaeckmOOOWaIJwIAAAAAAAAA2EqtXp189rPJjjsmr3td8vWv5+IdF+d/Dth0ayFJ9drwdTFJsbDpnq5eUyisD2CXU+z0dWUp2a6pLi/MmJ7xtePXPe8cvha8BgAAAAAAAAAAAAAAgN4TvWZEuvXWW8uuH3fccYNyb0/nzpkzZ1DuZeAsX748Z599dpdrEyZMyLe//e2hHQgAAAAAAAAAYGv11a8m222XfPnLycKFSZIf7l3MRa9PSt28pJCksi3rKta9iVn3ZV8x7XdXlJJXvJw8N2NikqSuqq7L8LXgNQAAAAAAAAAAAAAAAPRN1XAPAANt4cKFeeyxx8ruOeKIIwbl7iOPPLLs+iOPPJJFixZl2rRpg3I/m+9Tn/pUFixY0OXaV77yFf/ZAQAAAAAAAAD05Lnnkne8I3n44Y0e/3SPYr75xu6D10n7WrEiqS4mLWs/L6T8azpUJCmVklIPBexSkh1fTubtXLPR87qquiTtweskqaqoyuXvulzwGgAAAAAAAAAAAAAAAPqgYrgHgIF2zz33lF3faaedstNOOw3K3bvuumumT59eds+99947KHez+W6//fb893//d5drb3jDG/LBD35wiCcCAAAAAAAAANjK3H13svfemwSvb9y5mPPfkrT28I61YtYHrquLSUWx/fMeOtbrFApJZQ+F7O2WJ3/aqZBUbDpMXVVdxteOz+RRk/PABx/IxFETe3kzAAAAAAAAAAAAAAAAkIheMwI98MADZdf333//Qb3/wAMPLLv+hz/8YVDvp3+amppy5plnplTa9Kceq6qqcskll6RQ6O2PTwIAAAAAAAAAbDsWNyxu/+T3v08OPzxZvXqj9f/bvph/PTJp7uHdam1J2jr2rH0LR3UxqWhr/7y379wolQlfT1uePLxzsrymlMbqrve8fsfX5/GPPJ4d63fs5Y0AAAAAAAAAAAAAAABAB9FrRpy5c+eWXd93330H9f6ezhe93jKdd955efzxx7tc+8d//Me85jWvGeKJAAAAAAAAAAC2fFf98aps963tMvHL45OjjkqamjZanzu+mI8elzRVlj+nuTJp67ynI3xdSir7Gb7ecP/2y5MHd17/9fI0pbG1caPX7Tdtv1x50pWZOGpiL28CAAAAAAAAAAAAAAAANiR6zYjzxBNPlF3fc889B/X+PfbYo+z6n//850G9n7576KGH8u///u9dru266675/Oc/P8QTAQAAAAAAAABs+a7641U55ZpTkiTLmhsy8ayVG63fPamY95+YrKkqf07zhrHrzlXrteHrqn6GryvWhq9fsTx5aOdOGwqFLG9avi583RG8rq+t7+UNAAAAAAAAAAAAAAAAQGei14wopVIp8+bNK7unpyj15urp/J7mY2gVi8V84AMfSEtLS5frF198cUaPHj3EUwEAAAAAAAAAbNk2DF53WDYqmfhPxSTJ3DHFvOs9ybMTkmKZczYKXncoE76u6kf4eqeXk+enVmR88wav2uDT5U3LM23sNMFrAAAAAAAAAAAAAAAAGABVwz0ADKQXXnghjY2NZffssMMOgzpDT+evWrUqL774YrbbbrtBnYPeueCCC3LPPfd0uXbyySfn2GOPHeKJAAAAAAAAAAC2bJsEr0vrP102Kpn2d8XU1SWrq9ufvTwmmbwqqeh0TpfB6w6Fjc9Nqf1ZZSlJW9JauX5LodQet+7KjsuSZ6e1L9a1FZLmZHlNKSmsf0F1RXW2H7N9xlSPKTMQAAAAAAAAAAAAAAAA0Budf44ItmoLFizocc+0adMGdYbenN+bORl8zzzzTM4999wu18aPH59vf/vbQzsQAAAAAAAAAMAWrlzwOkmyJqkelSyva49SJ0lroT183bbBtrLB6w6dQ9Zr76osJVWtaz9vS6qKa2PYnWzfkDw7JRsFruvaChnfWrnuWXVFdQ7b5bBc+ddXprKiN0MBAAAAAAAAAAAAAAAA5YheM6K8/PLLZdfr6+tTW1s7qDOMHj06Y8eOLbunpzkZGh/60IeyatWqLte+/OUvZ/r06UM8EQAAAAAAAADAlmuT4HVna5JdViWratt71aV0Eb4u9DJ43aG78HWSupb1b4CrKLYHsDtMXpk8NTpJxaZvkasbMz7ja8evC15fc/I1qa+t78NQAAAAAAAAAAAAAAAAQHdErxlRlixZUna9vn5ofjitp3t6mpPB97//+7+56aabulw7+OCD86EPfWiIJwIAAAAAAAAA2HL1GLxeney+ImkYtf5RodOfbYXkhTFJc18v7yJ8XdmWVBeT2rb1yxVpfz5xVfJsXTJqdBdvjxs1KqmtTV1VXd6y61sErwEAAAAAAAAAAAAAAGCAVQ33ADCQli5dWnZ93LhxQzJHT/eIXg+vl156KR//+Me7XKuqqsoll1ySiopt83cCXHTRRbn44osH/Z4nn3xy0O8AAAAAAAAAAAZGt8Hr0vpP92pIXhzb/RmFUtJa2f758tHJ+NVJTV+GKKy/r7KYrD0qFaWktjVpqmpffsWK5O/vTj7/jooUO59RWZmsfV/PftP2y5UnXSl4DQAAAAAAAAAAAAAAAANM9JoRpbGxsez6mDFjhmSOsWPL/ARfep6TwfWxj30sL730UpdrH//4x7PvvvsO8URbjsWLF+fRRx8d7jEAAAAAAAAAgC3E4obFXQevNzDz+WTB+LVflNIeqO6s0B6rbqtISoVk2drwdW1fhikklW3rg9cbPE5tazKuKbnm5xWZXrt9Jt3RmHPeuDzFjlkqK5OJE5NCQfAaAAAAAAAAAAAAAAAABlHFcA8AA6m5ubnselXV0HTee7qnpzkZPDfddFMuu+yyLtd22WWXfOELXxjagQAAAAAAAAAAtmDFQjFVFd2/F2a/+RsErzuU1n50Ukh7+Lrji+VjkqbOBesedLd9UlNy9Y11mV67fZLkxHl1ufCO8akoZX3wurJS8BoAAAAAAAAAAAAAAAAGmeg1I4roNeWsWrUqH/rQh7pdv+iiizJ69OghnAgAAAAAAAAAYMt17/P3Zvo3p6eyUJlCCpus7/9M8uzEMgf0FL5Osrwuaexl+Lqmrevn45qT/+/WuuxS2HiYE+fV5cIcm4opUwWvAQAAAAAAAAAAAAAAYIgMTQEYhkixWCy7XlnZy5+Q20w93dPW1s1P4DGoPvOZz+SZZ57pcu2kk07KcccdN8QTAQAAAAAAAABsme59/t68/vuvTymlNLU1pbayNs1tzSmtLVkf+FTy5NReHFRKOveyO8LXbYX2LxrqkmJjMrrMW2q6C16PaU4umZ28qq5TfXvnnZMvfSknHnlk8tjs/GDuD3LZuy4TvAYAAAAAAAAAAAAAAIBBJnrNiFJVVf6/0q2trUMyR0/3VFdXD8kcrHfPPffkwgsv7HKtvr4+F1xwwRBPBAAAAAAAAACwZdoweN2hqa0ptYXqNJdacuCTyV+268OB3YWvS0nb2i9W1iWlpmRMF2+76S54Pao1ueiGZNayQjJt7cNDD01OPz056qhk7Xt0Ttz7xBy/1/GprCj/i+wBAAAAAAAAAAAAAACAzSd6zYhSU1NTdn2ootctLS1l13uak4HV0tKS97///SkWi12uf/nLX8706dOHeKot09SpU7PPPvsM+j1PPvlkmpqaBv0eAAAAAAAAAKBv/vjCHzcJXnd82lRqyev/kjwxrevXltWL8PWq2vbnG4avq7sJXtcUk6/flBz0QpLx9cl//Vdy0EFJN+8BEbwGAAAAAAAAAAAAAACAoSF6zYhSXV1ddr25uXlI5hC93rJ87Wtfy8MPP9zl2kEHHZQPf/jDQzzRluvss8/O2WefPej3zJw5M48++uig3wMAAAAAAAAA9N5jix/L/t/bf33wurTx+oFP9jN43aGX4etiIRnXklS2bbI9SVJVTL74q+RtCyqSiiQHHJCccMJmDAYAAAAAAAAAAAAAAAAMFNFrRpSxY8eWXV+5cuWQzLFixYqy6z3NycB5/PHHc/7553e5VlVVlUsuuSQVFRVDPBUAAAAAAACwpWpqasoTTzyR5557LitWrMjq1aszevTojBs3LjvuuGP22msvv+h4G7Jo0aI88cQTWbp0aRoaGpIk9fX1mThxYmbMmJFp0zan/gtblscWP5b9vrtfWootm8Suk+SAJ5Ontx+Ai3oRvl5TkxRKyaS2TV9eVUw+fXtywtMbvN/j9a8fgMEAAAAAAAAAAAAAAACAgSB6zYgyadKksusdP4A62Hq6p6c5GRilUilnnnlmmpqaulz/6Ec/mlmzZg3tUAAAAAAAAMAW56677sp1112XG2+8MY888kja2rqorK5VWVmZmTNn5u1vf3tOOOGEHHzwwUM46fBqaGjIH//4xzzyyCN59tln8+yzz2b+/PlZsGBBVq5cmdWrV2fVqlVpa2tLbW1txowZk+222y7Tp0/PXnvtlVe/+tV54xvfmFe/+tUpFAo9XzgMli1blmuuuSa//OUv85vf/CZLly4tu3/SpEl5y1vekuOOOy7vete7MmHChKEZFAZYT8Hr/Z5KntkuKQ7UhT2ErytKSVN1sjTJxKaN95xzV3LaE51+wfnJJw/UZAAAAAAAAAAAAAAAAMBmEr1mRJk8eXLZ9WXLlg3JHMuXLy+73tOcDIzvfe97uf3227tc22WXXfLFL35xiCcCAAAAAAAAtiRXXHFF/v3f/z0PPPBAr1/T1taWhx56KA899FC++tWv5oADDsgnP/nJnHLKKYM46dBbvXp17r777txxxx25++678/DDD+eZZ57p0+tXr16dxYsX55FHHsmtt966bm3q1Kk58cQT8973vjeHHXbYYIzfZ88991y+8pWv5NJLL82qVat6/bolS5bk2muvzbXXXpt/+Id/yBlnnJFPf/rT2XHHHQdxWhhYPQWv93k2WTAlaRvoVn034evqtqS4tmndWJ0sKSQTGpOKJB+8N/nAw4WNX7fDDolfeg4AAAAAAAAAAAAAAABbjIrhHgAG0pQpU8quNzU1DXr4esmSJWlubi67R/R68C1YsCD//M//3O36d77znYwZM2YIJwIAAAAAAAC2FH/605/y5je/OX/zN3/Tp+B1V+6///6ceuqpOfzww/P4448P0ITD584778xBBx2U8ePH561vfWs++9nP5he/+EWfgtc9Wbx4cb73ve/lTW96Uw444ID84he/GLCz+6pYLOY//uM/svfee+fiiy/uU/C6s1WrVuWiiy7K3nvvnW9+85spFosDOCkMjjXNazLrklndBq93fzJ5aXzSOljvMuvizlJFUrXB//s0VSVLRiWnPpT8w/1JCp1K2X//94M0HAAAAAAAAAAAAAAAANAfoteMKDvvvHOPe1544YVBnaE35/dmTjbPRz7ykSxfvrzLtXe/+915xzveMcQTAQAAAAAAAFuCa6+9Nq973ety++23D+i5t912Ww488MDMnj17QM8dak899VTuvffetLa2Dsl9DzzwQP7qr/4qRx99dJ577rkhubPD8uXL8453vCP/9E//lJUrVw7YuStXrswnPvGJHH/88d1+3xq2FKNqRuXte7y9y/j0K55PVk1JWioHeYgu7m5bG77uyFu/6Znkc3cmqej0drdRo5JPfWqQBwQAAAAAAAAAAAAAAAD6QvSaEWXs2LGZPHly2T3PPPPMoM4wb968suvbbbddxowZM6gzbOv+7//+r9sfJK+vr89//ud/DvFEAAAAAAAAwJbgoosuykknnTSggeMNrVy5Mu9+97tz8cUXD8r5I9ktt9ySfffdN7/61a+G5L7FixfnkEMOyY033jhod9xwww154xvfmJdeemnQ7oCBMHvyWXnn07UbPatflhRGD0HwukM34evKYvKGZ5KfXpukUNh00+c+l4wePejjAQAAAAAAAAAAAAAAAL1XNdwDwEDbbbfd8vLLL3e7/uc//zlHHXXUoN3/l7/8pez6brvtNmh3067cDwwffPDBA/5Dyz39QPwNN9zQ438v3v/+9w/kSAAAAAAAAEAnl156ac4555yUSl2UVQdQqVTKRz7ykYwdOzbve9/7BvWukWbp0qU59thjc/nll+ekk04atHuWL1+eo48+Oo8++uig3dHhkUceyVFHHZXf/OY3GT9+/KDfB33W0pKce25mz5+UE49ckut2a0rNsmRiW7K6JqlY+4/MYhe96QFXStLpnu0bkl9enfbgdefo9b77Jp/61BAMBgAAAAAAAAAAAAAAAPSF6DUjzsyZM3Pfffd1u/74448P6v09nT9z5sxBvZ/ybrnlltxyyy1Deuc3vvGNHveIXgMAAAAAAMDgueeee/KBD3ygV8HrQw45JKeddloOOeSQ7Lrrrhk3blxWrFiRp556KnfeeWcuu+yy3H333WXPKJVK+cAHPpC99947r3vd6wbqr7FFGT9+fGbMmJG99tor22+/fcaNG5f6+vqMHj06K1asSENDQxYvXpwHH3wwDz30UFatWtWrc1taWvKe97wnU6ZMyVve8pZBmf2MM87IH/7whx73TZgwIX/zN3+Tt7/97Zk1a1amTJmSUqmUl156KXPnzs0NN9yQK664IsuXLy97zh/+8If8v//3/3LttdcO1F8BBs7NNyfz5ydJZs+ZlBMOW5iHpiaratdvqUiS0tCHr6esSB55RTLxU8nSb3S6fMyY5Oc/H4KBAAAAAAAAAAAAAAAAgL4SvWbE2X///XPppZd2u96bH1zdHA888EDZ9de+9rWDej8AAAAAAAAA6zU0NOTUU09NS0tL2X177rln/uu//itve9vbNlmbOHFiDjjggBxwwAE555xzcsstt+Sss87Kk08+2e15zc3NOeWUUzJ37tzU19dv9t9jONXU1OTAAw/MoYcemsMOOyyve93rsv322/f69cViMb/5zW/yox/9KFdddVUaGxvL7m9ubs5pp52Whx56KFOmTNnc8TdywQUX5Lrrriu7p1Ao5KMf/Wg+//nPZ8KECZus77TTTtlpp53yV3/1V/nKV76Sz3/+87nwwgvLnjl79uxceOGFOeecczZjehgEG7zHZnXjkjw3Lllds+m2iiSFUtI2ROHrSauSP49v/3LZqGTiPxWz9BsV7Q9qa5M5c5IddxyCYQAAAAAAAAAAAAAAAIC+qhjuAWCg7b///mXX586dm7a2tkG5u7W1NQ8++GDZPaLXAAAAAAAAAEPnc5/7XJ5++umye4444ojce++9XQavu3LUUUflvvvuy+GHH15239NPP50vfOELvR11izJ9+vSceeaZueGGG7J8+fLccccd+drXvpZ3vOMdfQpeJ0lFRUXe9ra35dJLL80jjzySY489tsfXLFy4MOeee25/x+/S888/n3/9138tu6empibXXHNNvvWtb3UZvO5s4sSJueCCC3L11Venurq67N5//dd/zYIFC/oyMgyuBQuSO+5IkqxpXJq3ndCUhWOTymJ74LqzQpLKLp4PtMmrkyfHJRm1/llH+DpjxiS/+U3y+tcP/iAAAAAAAAAAAAAAAABAv4heM+IceOCBqaur63Z95cqVuf/++wfl7nvuuSerV6/udr2uri4HHHDAoNwNAAAAAAAAwMYeffTRXHTRRWX3vOENb8j111+f8ePH9+nsCRMm5Oc//3kOOuigsvsuvPDCPPbYY306ezi97nWvy+9///s8//zzueSSS/L2t7+97Pfg++qVr3xlfvnLX+ZTn/pUj3u///3v59lnnx2wuz/5yU9m1apV3a4XCoX85Cc/yYknntjns0866aRcdtllZfesXLkyn/zkJ/t8Ngyae+5Z9+m7j23MwnHtYetk+MLX9U3JX8YmGb3p2rJRycRPFwSvAQAAAAAAAAAAAAAAYAsnes2IU1dXlze+8Y1l98yZM2dQ7r711lvLrh922GED+sPA8P+zd+dhVpb1/8A/wwwzAwyoiCwqmygumBiZGpqV+9K3LMncCrNcwvyGlW2/rLTV/LaoadkqabhLaaZmLlmWYbGooGAqigEi+84MM8/vDzNZZp4zM2c/83pd11yXnPs+94Jv55znuc/5CAAAAAAAALTtkksuiU2bNrXZ3rdv37j55pujZ89Wqqu2Q69eveKWW26J7bffvs0+mzZtiksvvbRT4xfDnnvuGQcffHBUVVVl7pyFyy67LM4777zUPs3NzfHzn/88J/PNnj07brrpptQ+n/70p+P9739/p+f4wAc+EBMnTkztc+ONN8YzzzzT6Tkgp554IiIi3v/2hfF039eKXHdvaX/h61z/lmhojHixR7Ra8DqqXvtZ0bQqXl31ao5nBgAAAAAAAAAAAAAAAHJJ0Wsq0lFHHZXafscdd+Rl3ttuuy21/eijj87LvAAAAAAAAABs6fnnn4/bb789tc/Xv/71GDx4cFbzDB06NC655JLUPrfeemvMmzcvq3kq0Xe+853YeeedU/vceeedOZnr8ssvjyRppXrvfwwdOjS+9rWvZT3PN77xjdh1113bbE+SJC6//PKs54GcmDUrTj94YUzv/8ZDVUlE7VaFr1tTFRHd2v5PqsN6NkUsaYm2C17/x80n3Rw79dkpdxMDAAAAAAAAAAAAAAAAOafoNRVp3Lhxqe3Tpk2LOXPm5HTOp556Kp588sk226uqqjKui9w48cQTI0mSgv0MHTo0dT0PPfRQxjEAAAAAAACA3Lr66qujubm5zfY99tgjzjnnnJzMNWHChNhtt93abG9ubo6rr746J3NVkt69e8fEiRNT+8ycOTNWrlyZ1TxLly6NyZMnp/a59NJLo76+Pqt5IiJ69uyZsQj6DTfcEMuWLct6LsjWuZt+G3/dpZWGJKK2+bVa083VbT+/KiKqc/CRhx6bIjY0R6zvt9Xgr//8x80n3Rwn73ty9hMCAAAAAAAAAAAAAAAAeaXoNRVpxIgRcfDBB6f2ueqqq3I655VXXpnaPnbs2Bg2bFhO5wQAAAAAAABgW83NzXHjjTem9rnwwgujujqlmmsH1NTUxP/+7/+m9pk8eXK0tLTkZL5KcuKJJ6a2J0mS9f/U+uabb47GxsY223fZZZc49dRTs5pjc6effnoMGDCgzfbGxsa49dZbczYfdMbEz46JP+y6Metxsi18XdscUb8qYulO0Wqh69cpeA0AAAAAAAAAAAAAAADlQ9FrKtZZZ52V2v7LX/4yFi5cmJO5Xn755bj++utT+5x55pk5mQsAAAAAAACAdA8++GDqeXB9fX2cccYZOZ1z/PjxUVtb22b7ggUL4uGHH87pnJVgjz32iB133DG1z4IFC7Ka49e//nVq+5lnnhndu3fPao7N1dXVxfjx47NaE+TTl798aPx20xOpfTZVv1Z7uqa51RrUW3i98HWmflvr3hzRsCTi+SHp/RS8BgAAAAAAAAAAAAAAgPKi6DUV60Mf+lD079+/zfZ169bF5z//+ZzM9bnPfS42bNjQZvuAAQPiQx/6UE7mAgAAAAAAACDdXXfdldp+wgknRO/evXM65/bbbx/HHXdcap9M6+qqBgwYkNq+du3aTo+9dOnS+Nvf/pba55RTTun0+G059dRTU9sfffTRWLZsWc7nhUy+fckxcf2ax1L7bOoWkfznn/9b+DpJe8Zr/bpl6LO5mpaInZdGPL9ber8xA8fESfuc1P6BAQAAAAAAAAAAAAAAgKJT9JqKVV9fH5/85CdT+/zqV7+KKVOmZDXPLbfcEpMnT07tM3HixKirq8tqnnnz5kVVVVXqz1e/+tWs5gAAAAAAAACoBH/84x9T20844YS8zJtp3Pvvvz8v85a77bbbLrW9Z8+enR77gQceiCRpuxLvkCFDYt999+30+G3Zf//9Y5dddmmzvaWlJR588MGczwtpfvR/H4yfrHzgjQeqtu2zqdu2j1fFa0Wq21P4urodha+rk4hdFkfM2C2itiWiqpV1RESMHjA6HjrzoajuVp15UAAAAAAAAAAAAAAAAKBkKHpNRZs4cWIMHjw4tc/48eNj6tSpnRr/sccei49+9KOpfYYOHZqx+DYAAAAAAAAAubFw4cJ4+umnU/sceeSReZn7qKOOSm2fNWtWLFq0KC9zl7PFixentvfr16/TYz/wwAOp7fnKQnvGzlScHXLp+qvOie/9+/bYsib1ltWmNy94vXUd6o4Wvm6jjnV0i4ihiyNm7P7anzdWR9RWdY+qrZ4xesDoeOQjj0Sfuj7pEwIAAAAAAAAAAAAAAAAlR9FrKlrPnj3je9/7Xmqf1atXx9FHHx2/+93vOjT2b3/72zjmmGNizZo1qf2++93vRo8ePTo0NgAAAAAAAACdk+l/ejx48OCM//Pkzho2bFgMGjQotc/jjz+el7nLVXNzcyxcuDC1z2677dbp8TPl4ZBDDun02JmMHTs2tV0WKJQpP/9cfP35X8ambSpRv/HA5gWvt2194881LRHd2lH4ulvSeoHs4a9E/HPElo9tTJqitrr2v4WvFbwGAAAAAAAAAAAAAACA8lZT7AVAvo0bNy5OO+20mDx5cpt9Vq5cGe95z3vi1FNPjYsvvjj22muvNvvOnj07Lr300rj55pszzn366afHSSed1Kl1F9uaNWvipptu6vDznn322dT2adOmxc9+9rMOjdm7d+/44Ac/2OG1AAAAAAAAAF3PtGnTUtvHjBmT1/kPOOCAuOuuu9psnz59evzP//xPXtdQTh555JFYt25dm+3Dhw+PXXbZpVNjNzY2xqxZs1L75DMPBxxwQGr7U089FU1NTdG9e/e8rQH+MeWa+L9/XhmN9a1UoO5WFZFEbIrYtsL1f1RFRLLVn6tbIqJbREsbz3m9X7eIaEkikv/0231RxOO7t95/Y/PGqKuui0N2PSSmnDpFwWsAAAAAAAAAAAAAAAAoY4pe0yVce+218c9//jPmzJnTZp8kSWLy5MkxefLkePOb3xxjx46N4cOHR0NDQ6xevTpeeOGFePTRR2PmzJntmnOvvfaKH//4x7naQsEtWbIkzj777JyPe9ddd6V+wbs1Q4cOVfQaAAAAAAAAaJcZM2aktu+33355nX+//fbLWPSaN9x4442p7ccee2ynx541a1Y0NTW12V5dXR377LNPp8fPZN99941u3bpFS0tLq+2NjY0xe/bsGD16dN7WQNc2+4Gb4pJ7Px/1VVXRb0N1LKlv3rZT1dZlrVvpEtsWvq5piWiuimjulv68bhGRJBG7vdpGwevNCmc3NjfG5JMmK3gNAAAAAAAAAAAAAAAAZU7Ra7qEhoaGuO++++Ltb397zJ8/P2P/6dOnZ/VF4yFDhsR9990XDQ0NnR4DAAAAAAAAgI6bO3duavsee+yR1/l33721qq5vePbZZ/M6fzmZPn16/OIXv2izvaqqKi644IJOj58pC0OHDo3a2tpOj59JbW1tDB48OF588cU2+zz77LOKXpMX//rLnfGFW8+NdVWbIiKiT0t11GyoilfqN21Z4rpbt6hpbo5NVa0O81+tlcauTiKiJaKlW0R182sFsJOqbZ+3y7KIx3fLNH5V/P1jf48BvQdk3BsAAAAAAAAAAAAAAABQ2hS9pssYOnRoPPjgg3HsscfGc889l7d5dt9997j33ntjyJAheZsDAAAAAAAAgG0lSRLz5s1L7ZOpKHW2Mo2faX1dxaJFi+K0006L5ubmNvu8//3vj7333rvTc7zwwgup7fnOwutzpBW9zrRGaLcFCyKmTo144olY9Oj98fm+f401da+Xqa6KqO4WPau6xYCkWyzu0RItmz+3qlvUNLfEpur0KVorfF2TRFRtithUFVHdsm3h611WRMwYmjJgvFHw+q27vLWdmwUAAAAAAAAAAAAAAABKWbdiLwAKaffdd4/HH388jjnmmLyMf+yxx8bjjz8eI0aMyMv4AAAAAAAAALTtlVdeiQ0bNqT22XnnnfO6hkzjr127NhYvXpzXNZS6J598Mt7xjnfEM88802affv36xdVXX53VPJkKjOc7C+2ZQ9FrstLUFHHXXRHjxkUccEDEhAmx7JrvxMTef4nl3VsiWpL//LRENG2KaGyMnmubYuDK5qhu2azsdbeqiG4RNW3XoP+vqq3+uab5tWLXNf+phl3dElH1n38etCpixuBM4yl4DQAAAAAAAAAAAAAAAJVG0Wu6nB122CHuvffeuO6666J///45GbN///4xadKkuOeee2L77bfPyZgAAAAAAAAAdMyCBQsy9hk4cGBe19Ce8duzzkr0wgsvxKc+9akYM2ZMzJ07t81+dXV1MXny5BgwYEBW82X6e853FtozR1fNAjlw//0Rhx4ace65EX/9a0RErNmwKi4YuzZe7Zn+1PqmiAErkqhpbH6tKHZERLfqiKr2F76uSrbsW90S0b3ljX8esjziiV3SB+nerXs8cd4TCl4DAAAAAAAAAAAAAABAhakp9gKgWMaPHx/jxo2LSZMmxQ9/+MN4+umnOzzGPvvsE+eff36ceeaZ0bNnhm8MAgAAAAAAAJBXS5cuTW3v06dP1NXV5XUNPXv2jIaGhlizZk2bfTKts9ytW7cuVq9eHcuXL4/Zs2fHjBkz4sEHH4y//vWvkSRJ6nPr6+tjypQpcdRRR2W9jkx/z7n6H2WnyVS4u9KzQB6sWhVx8cURt966xcNrNqyKTx66NhY1tG+Y+paIgWsiFjW0xKbqeK3odbduEc0tUdMcrz3WliSipmXbh7slrxW+HrYi4k/39Iv3Hb86fjN847Yd/1PweuZ5M2PvnfZu34IBAAAAAAAAAAAAAACAsqHoNV1ar169YsKECTFhwoSYO3du3HvvvTFt2rSYNWtW/Pvf/47Vq1fHunXromfPntG7d+/YddddY5999okxY8bEcccdF3vssUfB1jps2LCMX/4t5/nK2cSJE2PFihVttg8bNqxgawEAAAAAAICubNmyZantffr0Kcg6+vTpk1r0OtM6S924cePi9ttvz/m4o0ePjl//+tcxatSonIxXCnnINEcpZuHqq6+Oa665Ju/zPPfcc3mfo+LMnx/xwQ9GzJu3xcONG1bFZ8aujXnb/+eB1j7uUbXtQ7UtEYPWRCxsiNiUNL9W9Lq6W0RLSuHrNgpev263FRG//119RH33mHJ/33jfUcu2LHyt4DUAAAAAAAAAAAAAAABUPEWv4T9GjhwZI0eOLPYyKEMTJ04s9hIAAAAAAACAiFi+fHlqe+/evQuyjkzzlGKh42Laeeed46KLLooJEyZEbW1tzsYthTyUYxZeffXVmD17drGXwdZeeinixBMjFi3apumig9bGsztE68WuX7d522YFsLu3RAxaHfFKQ0Rj0vJa0evq6oiW5m0LX2coeL3L6tcKXveo3+G/j21R+FrBawAAAAAAAAAAAAAAAOgSuhV7AQAAAAAAAAAAubBhw4bU9l69ehVkHQ0NDantmdbZFfTo0SNOPPHEuOGGG+L555+PiRMn5rTgdURp5EEWyIlVqyJOOWXbgtdJEp/fe2E81a+D4yWxRRHs7slrha/rmiOi5T9VraurI6q7RU3yxnPSCl4PWBdx551bFryOiIghQ2LKGXfFiXudGLXVtQpeAwAAAAAAAAAAAAAAQBdQU+wFAAAAAAAAAADkQmNjY2p7TU1hPiaRaZ5M6+wKBgwYEEOHDo1+/fpFt275+X+2l0IeZIGcuPjiiHnztnxs06b48j6vxuM7ZzFuEhFVr/1jdUQMXBPxSkPEhqrm14ped6uKiOqoaWmJLapkb2XHjRG331MXfTcveH3ooRHjx0ccfXRE9+4xJY6K9Y3ro0dtjywWDAAAAAAAAAAAAAAAAJQDRa8BAAAAAAAAgIpQCkWO2zOPQscR8+bNiyuuuCKuuOKK2HXXXWPixIlxzjnnRO/evXM2RynkQRbI2v33R9x665aPbdoU39791Xh0cA7Gb63wda+I9XXJf4peR8Trhemrkv88IflvDeztNkbc9K/Rscthe0WMGhWx334RBx4YMWjQNlMpeA0AAAAAAAAAAAAAAABdg6LXAAAAAAAAAEBFaGlpSW2vrq4uyDoyzdPc3FyQdZSLl19+OT7zmc/Ed77znfjpT38a73nPe3IybinkQRbISlNTxJe+tOVjSRJXDX017h/RxnOqUsZLUh5/vb51RAxYG/FqtMTaHlvlt1vVFhM0tHSL60+9MXZ/x0kpkwIAAAAAAAAAAAAAAABdjaLXAAAAAAAAAEBFqKlJ/xjEpk2bCrKOTPN07969IOvIl49//ONx7LHHttrW0tISK1eujBUrVsSyZcti5syZMWPGjFi/fn3GcRcvXhzvfe974+yzz44f/ehHWRelrqmpiaampjbbC5GHcszCTjvtFPvss0/e53nuuedi48aNeZ+nrN13X8T8+Vs8dN2ARfGbvVrpm1bseus+rRW/bqXw9eLqiDW1rQ9Vn1TFjw7/XrxJwWsAAAAAAAAAAAAAAABgK4peAwAAAAAAAAAVoba2jeqs/1GootdphZYjMq+z1B1xxBEd6r9p06b4xz/+ET/72c/ipptuirVr16b2/+lPfxorV66MX//61xkLmaepra0tetHrcszC+eefH+eff37e5xk1alTMnj077/OUtUmTtvjjzTstjuvf1Eq/9hS83rp/a4Wvt9J/TRLdGqpjVW3LFo/XJVXxw7HfjEPf84kOTgwAAAAAAAAAAAAAAAB0Bd2KvQAAAAAAAAAAgFzo3r17antjY2NB1lGOhY7zqaamJg4++OD42c9+FgsWLIhPfOITUVWVXqX3lltuiXPOOSereUshD7JApy1YEPHoo//94292WhY/3a95234dLXid9rytC2G3tES/xurYvvGNj5jVJlXxrX0/FUd84KJOTgwAAAAAAAAAAAAAAABUOkWvAQAAAAAAAICK0NDQkNq+Zs2agqxj9erVqe2Z1lnJ+vTpE1dddVU8/PDDsdNOO6X2/eUvfxm33XZbp+cqhTzIAp02dep///G+HZbHj960cZua1AXR0hJ9N9VE38ZuUZNEfGm3j8T7PnpZMVYCAAAAAAAAAAAAAAAAlAlFrwEAAAAAAACAitC3b9/U9lWrVhVkHZnmybTOruCwww6L+++/P3bYYYfUfueee26sXLmyU3OUQh5kgU574omIiHikz8r43ps3xKbWPuVVleUc7Xl+0hIRETtsqolvDv1YfOiCn2Q5KQAAAAAAAAAAAAAAAFDpFL0GAAAAAAAAACrCjjvumNq+YsWKgqwjU5HmTOvsKkaPHh233XZbap9ly5bFT37SuSK7pZCHTHPIAm2aNSv+0XNVfHvMutcKXicFmnfreZpfK3p97h6nxgcm/rhAiwAAAAAAAAAAAAAAAADKmaLXAAAAAAAAAEBF6NevX2r7xo0b817oeNmyZdHY2JjaR6HjNxx++OFx8sknp/a58soro7m5ucNjZ8rDokWLOjxmR2WaQxZoy+wFM+OSt66NjTXFXkkSH9rl+PjAp39e7IUAAAAAAAAAAAAAAAAAZULRawAAAAAAAACgIgwZMiRjn1deeSWva2jP+O1ZZ1fy9a9/PbX95ZdfjmnTpnV43Ex/z/nOQnvmGDp0aN7XQPn511/ujC8MeTbWdS/2SiLGze8dZ158W7GXAQAAAAAAAAAAAAAAAJQRRa8BAAAAAAAAgIrQ0NAQO+64Y2qfF198Ma9rmDdvXmp7//79o1evXnldQ7nZY489Yp999knt86c//anD4w4bNiy1Pd9ZiMich+HDh+d9DZSXRU89Fp+/4cxY0z0p9lLiuBe6xcer3lrsZQAAAAAAAAAAAAAAAABlRtFrAAAAAAAAAKBiZCoi/Oyzz+Z1/n/961+p7Yoct+6EE05IbX/88cc7PGaxsxAhD3TMsn/NjguuOiGWx4aIqCrqWt4+vyo+89yAiH79iroOAAAAAAAAAAAAAAAAoPwoeg0AAAAAAAAAVIxRo0alts+ZMyev82caP9P6uqpMxZ8XL17c4TEz/V0vWbIkli1b1uFx26s948sDr1uz+OW44P/eGcuq1r/2QPVWH+sqVA3sqoi3LqyKr84Z+NqfZRQAAAAAAAAAAAAAAADoIEWvAQAAAAAAAICKMWbMmNT26dOn53X+adOmpba/+c1vzuv85WrAgAGp7UuXLu3wmMOGDYsddtghtU8+85ApCzvuuGMMHjw4b/NTPtYsfjk+8eUDYlGseePBqnZ8rCvJcuJWnr/f4ohvzxq42QP7ZTkJAAAAAAAAAAAAAAAA0NUoeg0AAAAAAAAAVIxMRa9nzJgRzc3NeZl706ZNMXPmzNQ+il63rk+fPqnt69ev79S4mfLwz3/+s1PjtkemsWWBiIjGVaviU18+OObHqi0buhX+Y117LI24bGqvLR888MCCrwMAAAAAAAAAAAAAAAAob4peAwAAAAAAAAAV44ADDoj6+vo229esWZO3QsdTp06NdevWtdleX18fb3nLW/Iyd7lbu3ZtanuvXr1S29ty6KGHprY//PDDnRq3PR566KHU9kxro/I1rloVF33hzfFcLNu2sVvVtoWvq1oZJOnk5Fs9b9jyiCv/XBu19ZsVoD/00IhBgzo5AQAAAAAAAAAAAAAAANBVKXoNAAAAAAAAAFSM+vr6OOSQQ1L73H///XmZ+49//GNq+9vf/vbUgtxd2fz581Pbd9hhh06Ne+SRR6a2P/LII9HY2NipsdNs2LAh/vKXv6T2Oeqoo3I+L+Xli188IJ5qXth2h5qa9g3U0cLXW/XfZXXEFfdG1PbeccuG8eM7ODAAAAAAAAAAAAAAAACAotcAAAAAAAAAQIXJVEz4jjvuyMu8t912W2r70UcfnZd5K8HMmTNT20eMGNGpcQ8++ODo3bt3m+1r166N++67r1Njp/n9738f69evb7N9u+22iwMPPDDn81I+vjxx/5i+6eX0TjXV2366q6qNvklkLn7dSp+d1kb84J6Ihp0GbtkwZEiE31kAAAAAAAAAAAAAAABAJyh6DQAAAAAAAABUlHHjxqW2T5s2LebMmZPTOZ966ql48skn22yvqqrKuK6uKkmSuP/++1P77L333p0au6amJk488cTUPpMnT+7U2NmM+b73vS9qampyPi/l4dufGRuPbpjbvs7d67Z9rK3C1xFvFLZu7WcrO6yP+MHvI/put1NE1VaDfv3rEd27t2+NAAAAAAAAAAAAAAAAAJtR9BoAAAAAAAAAqCgjRoyIgw8+OLXPVVddldM5r7zyytT2sWPHxrBhw3I6Z6V4+OGH48UXX0ztc9hhh3V6/NNPPz21/fbbb48FCxZ0evytvfTSS/Hb3/42qzVRua764lFx/5oZ7X9CdbeImuptH08rfN0OfTZGfO++iIF9dorYugD7ySdHHHlkdhMAAAAAAAAAAAAAAAAAXZai1wAAAAAAAABAxTnrrLNS23/5y1/GwoULczLXyy+/HNdff31qnzPPPDMnc1Wir371q6ntO+20U4wZM6bT4x955JExePDgNtubmpri8ssv7/T4W7v88stj06ZNbbYPGTIk3vWud+VsPsrHTy/5n/jNskc7/sTuta1/yquTha97NkV84+GIIQ0Dty14PXx4xKWXdm5gAAAAAAAAAAAAAAAAgFD0GgAAAAAAAACoQB/60Ieif//+bbavW7cuPv/5z+dkrs997nOxYcOGNtsHDBgQH/rQh3IyV6W55ppr4pFHHkntc9ppp0V1dXWn56iuro6JEyem9rn66qtjzpw5nZ7jdbNnz44f//jHqX0uvPDCrPZDebr58vFx08IHOvfkqoiorW+78HUHil/XbYr4xt9qY5+aQRFVWz1x0KCIm26K6NOnc+sEAAAAAAAAAAAAAAAACEWvAQAAAAAAAIAKVF9fH5/85CdT+/zqV7+KKVOmZDXPLbfcEpMnT07tM3HixKirq8tqnnnz5kVVVVXqz1e/+tVOj79o0aL4+9//ntUaO+ruu+/OWIy6uro6JkyYkPVc55xzTvTt27fN9qampjjjjDOisbGx03Ns3LgxzjjjjNi0aVObffr27Rsf+9jHOj0H5ek3P5gQP33u1uwG6VbVduHriDeKX7dVALsqorYl4uJpvWK/ph23bR8+POI3v4kYPDi7dQIAAAAAAAAAAAAAAABdnqLXAAAAAAAAAEBFmjhxYgzOUMB1/PjxMXXq1E6N/9hjj8VHP/rR1D5Dhw7NWHy7FCxatCgOPvjgOOGEE+Lxxx/P61zNzc3x/e9/P0488cRoampK7XvmmWfGyJEjs56zoaEhLrnkktQ+//jHP+IjH/lItLS0dHj85ubmGD9+fEyfPj2139e+9rVoaGjo8PiUr/t+8rn44TPXRZKLwbpVRdT1iKipTu9Xte1PTUvERdN7xNtW99m2/8knR9xzj4LXAAAAAAAAAAAAAAAAQE4oeg0AAAAAAAAAVKSePXvG9773vdQ+q1evjqOPPjp+97vfdWjs3/72t3HMMcfEmjVrUvt997vfjR49enRo7GL6/e9/HwceeGAcddRR8Ytf/CKWL1+e0/EfffTROOCAA+JTn/pUbNq0KbXvwIED47LLLsvZ3B//+Mdjv/32S+0zefLkGDduXKxatard465cuTLe//73x80335zab/To0XHuuee2e1zK3yM3fDO+N+3q3BS8fl1VRNTWRtTVtfuTX1VJxAUz6uLwFdtv2TBkSMSkSRE/+EFEn1aKYQMAAAAAAAAAAAAAAAB0gqLXAAAAAAAAAEDFGjduXJx22mmpfVauXBnvec974vTTT49nnnkmte/s2bPjlFNOiRNPPDFjYeTTTz89TjrppA6vuRT88Y9/jI9+9KMxYMCAOP744+Paa6+Np556KlpaWjo0TpIkMXfu3Ljsssti3333jUMPPTRmzJiR8Xk1NTVx/fXXx4477tjJHWyruro6rr/++qivr0/tN2XKlBg1alRcd911sWHDhjb7rV+/Pn7+85/HqFGj4s4770wds0ePHnH99ddHdXV1p9ZO+fnHlGviW3/5VmyKjv03027V3SLqe7xWALtb2x8Bq0oizn2yNt69rO8bDx56aMRPfxrx5z9HHHVUftYHAAAAAAAAAAAAAAAAdFk1xV4AANC2F1e9GLVra4u9DFqRRJLavnHTxnhu2XMFWg3wukz/bSaRxIJVCwq0GgBa09jSmLHPxtgYjesz9wMAoPRkujYHKJZrr702/vnPf8acOXPa7JMkSUyePDkmT54cb37zm2Ps2LExfPjwaGhoiNWrV8cLL7wQjz76aMycObNdc+61117x4x//OFdbKJqmpqa455574p577omIiF69esXIkSNj5MiRMWjQoBgwYED06tUr6urqorGxMVatWhWrVq2K5cuXx1NPPRVPPPFErFmzpkNzVlVVxc9+9rM48sgjc76f/fbbL6666qo4++yzU/u9/PLL8ZGPfCQuvPDCeNe73hWjR4+Ofv36RZIksWTJkpg5c2Y8+OCDGQufv+6qq66KN73pTbnYAmXgid//Mi659/PRWNWc/8lqql/7aUkiWloikpaI5paI/7wvG//SjvGBvY6IOGlUxH77RRx4YMSgQflfFwAAAAAAAAAAAAAAANBlKXoNACVsU8um2NSyqdjLoJM2NG8o9hKAVjS3FKDABABZUywRAACAXGpoaIj77rsv3v72t8f8+fMz9p8+fXpMnz690/MNGTIk7rvvvmhoaOj0GKVq7dq1Wf/9pKmtrY1JkybFKaeckpfxIyI+9rGPxfz58+PSSy/N2HfFihUxZcqUmDJlSqfn++pXvxof/ehHO/18ysu//nJnXHznxFhXVeBz3m5VEd2qI6I6ovtrD43r/4740HX3FHYdAAAAAAAAAAAAAAAAQJfXrdgLAAAAAAAAAADIt6FDh8aDDz4YI0aMyOs8u+++ezz44IMxZMiQvM5TiUaMGBGPPPJIXgtev+6SSy6JL3/5y3mf5ytf+Up85Stfyfs8lIaX/vFAXHT9h2NNNBV7KXHcdm+Nj1+q4DUAAAAAAAAAAAAAAABQeIpeAwAAAAAAAABdwu677x6PP/54HHPMMXkZ/9hjj43HH38874W1K01dXV1cdNFFMWPGjDjooIMKNu8ll1wSN998czQ0NOR87IaGhrj11lvjq1/9as7HpjQteuqx+PRPT45VVY3FXkoc3nPf+Mxlfyr2MgAAAAAAAAAAAAAAAIAuqqbYCwCArqqmatuX4b71fSOJpAiroaPWbVoXScsb/66qkqqoqqr6759ru9VG79rexVgadGmNmxqjJVr+++etf6dWR3XU19QXelkAbKZxU2M0RVNqn6qoiuqoLtCKAADIp83vmb2uV69eRVgJwBt22GGHuPfee2PSpEnx2c9+NhYvXpz1mP3794/LL788PvzhD+dghcWxxx57xA9/+MO455574qGHHop169blfc4+ffrEWWedFRMnToyhQ4fmfb7WnHzyyTF27NiYOHFi3H777TkZc9y4cfH9738/dt1115yMR3n4wU/OimVV64u9jDi4bkT8v+9NLfYyAAAAAAAAAAAAAAAAgC5M0WsAKJLdd9g9aqpqYlOy6b+PDdthWPEWRIesb1ofa5rWtNk+oNeA2KHHDgVcERARsbF5Y6xtWttme0P3htiux3YFXBEAW2tqaooFaxek9tmxx44FWg0AAIXWo6ZH9O/Vv9jLAIiIiPHjx8e4ceNi0qRJ8cMf/jCefvrpDo+xzz77xPnnnx9nnnlm9OzZMw+rLJxevXrF+eefH+eff35s2LAh/vSnP8XDDz8cf//73+Mf//hHrF69Oifz7LjjjnH44YfHSSedFO9+97tL4n+GsOuuu8Ztt90W06ZNi+9///tx++23x/r1HSte3KNHjxg3blxceOGF8eY3vzlPK6WUfelLf4hPfuWtMS9ZWbQ17Fe9c3zjiieLNj8AAAAAAAAAAAAAAABAhKLXAFA0tbW1ccAuB8RjLz9W7KXQCf169os1K1svet2tqls0dG8o8IqAiIi+Pfq2WfS6KqqiZ015F50BqATdu3eP7t26R1NLU6vtNVVuVwEAVLIDdzmw2EsA2EKvXr1iwoQJMWHChJg7d27ce++9MW3atJg1a1b8+9//jtWrV8e6deuiZ8+e0bt379h1111jn332iTFjxsRxxx0Xe+yxR8HWOmzYsEiSpCBz1dfXxzHHHBPHHHNMRES0tLTE008/HTNnzowXXnjhvz8LFiyINWvWxNq1a2PNmjXR3NwcdXV1UVdXFzvssEP0798/dt555xg5cmTsvffeccABB8Q+++wTVVVVBdlHR40ZMyauv/76+MlPfhIPPvhg/OlPf4qnnnoq5s6dG8uXL/9v4e/evXtH3759Y+TIkTFq1Kh45zvfGe9617uiR48eRd4BxdTQf9e44pLH4zNfGRvPJksKPv9eVQPism9NK/i8AAAAAAAAAAAAAAAAAFtTRQgAiugLb/9CfOLuT8T8VfOLvRQ6qH9D/1jdtDqWrlu6xeNVVVUxsNfA6F7TvUgrg66tb4++sXbj2li2cdkWj1dFVWxXt1107+6/TYBSsFOPnWLR2kXREi1bPN4tukWvml5FWhUAAPk2ZLshMendk4q9DIA2jRw5MkaOHFnsZZSkbt26xahRo2LUqFHFXkpB9OjRI0444YQ44YQTir0UykxD/13jysueiou+8OZ4qnlhweYdVrVdfP+ymVHbp0/B5gQAAAAAAAAAAAAAAABoi6LXAFBEDbUNcd37roubn7w5nlj8RKzYsKLYS6ID9uq3V/x71b9j3op5sWHThmjo3hDDdhgW9d3ri7006NL27LdnLFy1MOatmBfrN62Pupq6GNhrYPSqU0QVoJTsFXvFnCVzYvWG1dFS1RK9uveKnXvvXOxlAQCQB33r+8a7hr0rvviOLxZ7KQAAeVfbp09ccfVz8fn/3Sceb5yX9/l2id5xxSWPK3gNAAAAAAAAAAAAAAAAlAxFrwGgBHzwTR+MD8YHi70MAAAAAAAAAHLg21fOji9P3D8e3TA3b3PslPSKH1z0UDT03zVvcwAAAAAAAAAAAAAAAAB0VLdiLwAAAAAAAAAAAKDSXPqDGXFUw/55Gbtv0iN+cMFd0Xf3ffIyPgAAAAAAAAAAAAAAAEBnKXoNAAAAAAAAAACQB5//v7/GiX0PyemYfZLa+O7Zt8TAfQ/O6bgAAAAAAAAAAAAAAAAAuaDoNQAAAAAAAAAAQJ5c8M3740O7HJ+TsRqie1z+oV/FkAOOyMl4AAAAAAAAAAAAAAAAALmm6DUAAAAAAAAAAEAenXnxbXHOiA9EVRZj1CU18bX3/CB2P/Q9OVsXAAAAAAAAAAAAAAAAQK4peg0AAAAAAAAAAJBnH7xoUnxirzOjphMf2aqN6rj4iK/Gfsd/JA8rAwAAAAAAAAAAAAAAAMgdRa8BAAAAAAAAAAAK4MSJ18SnxpwftVHd7ufURLf4wqFfiLed/Kk8rgwAAAAAAAAAAAAAAAAgNxS9BgAAAAAAAAAAKJBjzrksvnDoF6IuqcnYtyoiPjXm/DjsjC/mf2EAAAAAAAAAAAAAAAAAOaDoNQAAAAAAAAAAQAEddsYX49Jjvx09UwpfV0XEuXucGsecc1nhFgYAAAAAAAAAAAAAAACQJUWvAQAAAAAAAAAACuyA902Iy07+STRE91bbxw95T3zg0z8v8KoAAAAAAAAAAAAAAAAAsqPoNQAAAAAAAAAAQBHsc8Qp8d0zro8don6Lx08ZdER86Is3FWlVAAAAAAAAAAAAAAAAAJ2n6DUAAAAAAAAAAECR7H7oe+KHn/h99E16RETEu/scFGd/5a4irwoAAAAAAAAAAAAAAACgcxS9BgAAAAAAAAAAKKKB+x4c11705zhl0BFx4XceKvZyAAAAAAAAAAAAAAAAADpN0WsAAAAAAAAAAIAi67v7PnH2V+4q9jIAAAAAAAAAAAAAAAAAsqLoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZU/QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKwpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABA1hS9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBril4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDVFrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImqLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRN0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsqboNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZU/QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKwpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABA1hS9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBril4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDVFrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImqLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRN0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsqboNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZU/QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKwpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABA1hS9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBril4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDVFrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImqLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRN0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsqboNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZU/QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKwpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABA1hS9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBril4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDVFrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImqLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRN0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsqboNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZU/QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKwpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABA1hS9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBril4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDVFrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImqLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRN0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsqboNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZU/QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKwpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABA1hS9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBril4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDVFrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImqLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRN0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsqboNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZq0qSJCn2IgDoWnr37h1r1qzZ5vG6uroYMWJEEVYEAAAAAAC599xzz8XGjRu3ebyhoSFWr15dhBUBQOlwbgwAAAAAQFfg3BgAAAAAAACArkjRawAKrr6+vtUPawEAAAAAQFdQV1cXGzZsKPYyAKConBsDAAAAANCVOTcGAAAAAAAAoJJ1K/YCAAAAAAAAAAAAAAAAAAAAAAAAAAAAACh/il4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDVFrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImqLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGStptgLAKDr2X777WPFihXbPN69e/cYMmRI4RfUxTz33HOxcePGbR6vq6uLESNGFGFFkB2ZptLINJVGpqk0Mk2lkWkqjUxTSeS5Mrz00kvR1NS0zePbb7994RcDACXGuXFxeb9JpZFpKok8U2lkmkoj01QamabSyDSVRqYrg3NjAAAAAAAAALoiRa8BKLhFixYVewld2qhRo2L27NnbPD5ixIiYNWtWEVYE2ZFpKo1MU2lkmkoj01QamabSyDSVRJ4BgErn3Li4vN+k0sg0lUSeqTQyTaWRaSqNTFNpZJpKI9MAAAAAAAAAQLnqVuwFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFD+FL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGuKXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQNUWvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMiaotcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZE3RawAAAAAAAAAAAAAAAAAAAAAAAAAAAACypug1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAFlT9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACArCl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDWFL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGuKXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQNUWvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMiaotcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZE3RawAAAAAAAAAAAAAAAAAAAAAAAAAAAACypug1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAFlT9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACArCl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDWFL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGuKXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQNUWvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMiaotcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZE3RawAAAAAAAAAAAAAAAAAAAAAAAAAAAACypug1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAFlT9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACArNUUewEAQGFNmDAhXn311W0e32mnnYqwGsieTFNpZJpKI9NUGpmm0sg0lUamqSTyDABAPnm/SaWRaSqJPFNpZJpKI9NUGpmm0sg0lUamAQAAAAAAAIByVZUkSVLsRQAAAAAAAAAAAAAAAAAAAAAAAAAAAABQ3roVewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlD9FrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImqLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRN0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsqboNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZU/QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKwpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABA1hS9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBril4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDVFrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImqLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRN0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsqboNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZU/QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKwpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABA1hS9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBril4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDVFrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImqLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRN0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsqboNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZU/QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKwpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABA1hS9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBril4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDVFrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImqLXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRN0WsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsqboNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZqyn2AgCgEDZu3Bhz586Nl19+OVavXh3r1q2Lnj17Ru/evWPXXXeNPffcM2pra4u9TApk0aJFMXfu3Fi+fHmsWrUqIiL69OkTO+ywQ4wcOTIGDhxY5BVmJtNUGpmm0sg0lUamed2rr74a8+fPj4ULF8bq1atjw4YNUVVVFfX19dG7d+8YNGhQDB48OPr161fspbZJntmc60MoPTINAEA+eb/J5sr9voA8U2lkmkoj01QameZ1lXBmHCHTbKncrw8jZJrKIs8AAAAAAAAAAJVB0WsAKtZjjz0Wv/nNb+Kee+6JWbNmRXNzc5t9q6urY9SoUXH88cfHe9/73jj44IMLuNLiWrVqVTz11FMxa9aseOmll+Kll16K+fPnx4IFC2LNmjWxbt26WLt2bTQ3N0ddXV306tUr+vfvH4MGDYo999wz9t133zjkkENi3333jaqqqmJvp1UrVqyI22+/PX7/+9/HQw89FMuXL0/t37dv33jnO98ZJ5xwQrz//e+P7bffvjALzUCm26dSM7148eJ48skn/7u3OXPmxNKlS2PFihWxYsWK2LBhQ9TX10evXr1i4MCBscsuu8Q+++wTo0ePjne84x0xZMiQYm9hGzLdPpWa6Uok0+3TVTO9evXq+NOf/hSPPfZYzJkzJ+bOnRtLliz575dy6urqoqGhIRoaGmLw4MGx2267xYgRI2L//fePgw46qChfBpXp9qn0TD/11FNx9913x0MPPRTTpk2LV199tV3PGzBgQIwZM+a/76tHjRqV55Wmk2de5/pQpiuB60OZBgCgY7zfbJ9Kv88VURn3BeS5fSo1z+4JyHSlZboSyXT7dNVMOzOuXJWe6Uo5M46Qad5QCdeHETLd1VXaNaI8AwAAAAAAAABUoAQAKsyNN96YjBkzJomITv+85S1vSW666aZibyXn1q5dmzz44IPJ1772teTd7353MnTo0Kz+njb/2WmnnZJzzjkneeSRR4q9zf+aP39+MmHChKRXr16d3levXr2S888/P5k/f37R9iHTbavkTC9ZsiS59dZbk/POOy8ZOXJk1vvZc889k69+9avJCy+8UJT9bE6m21bJmc6Fb3zjG+3ebyGzLtNt6+qZXr9+fXLDDTck73rXu5Kampqs9rv77rsnH/vYx5IpU6Ykq1evzuu6ZbptXSXTGzZsSH7yk58kb3rTm3K2v9GjRyc///nPk40bNxZ0L/JcGKX6Gr0514cy3RGllmnXhzKdrVLLdC5U4p4AgNzzfrNtXeU+1+sq4b6APLetkvPsnoBMV1qmc6FU7wnIdNu6eqadGct0uWa6ks6Mk0SmC6VUX6c3VwnXh0ki04VSapmu1GtEeS6MUstzLlTingAAAAAAAACg0ih6DUDFePrpp5PDDjss6w9wbv7zzne+M3nmmWeKvbWsPfroo8lb3/rWrL84096fMWPGJHfddVfR9tvc3Jz83//9X9LQ0JCzPTU0NCTf/e53k+bm5oLtQ6bbVqmZfumll5Lvfve7yUEHHZRUVVXlZS/V1dXJaaedlsyZMyfv+9maTLetUjOdS3PmzEnq6+vbvcdCfEBdptvW1TO9fv365Dvf+U7St2/fvOy3trY2ueGGG3K+bpluW1fK9M0335wMHjw4b3sbNmxYMmXKlLzvQ54LpxRfozfn+lCmO6pUMu36UKZzpVQynUuVuCcAILe832xbV7rPlSSVcV9AnttWqXl2T0CmKy3TuVSK9wRkum1dPdPOjGW6nDNdKWfGSSLThVSKr9Obq4TrwySR6UIqlUxX8jWiPBdOqeQ5lypxTwAAAAAAAABQiRS9BqAi3H777Tn9IPLWH0q+4447ir3FrFx//fV5+bvJ9HP00Ucn8+fPL+heV6xYkRx33HF529MJJ5yQrFixIu/7kOl0lZbpK6+8Mnnb296Wtw+kt/ZTW1ubfPnLX06amppyvp/WyHS6Sst0rrW0tCTveMc7OrS3fH9AXabTdeVM/+53v8vrlz9f//n+97+f03XLdLqukOlVq1YlH/zgBwu2t/Hjxydr167Ny17kuXBK8TV6c64PZbqjSiHTrg9lOpdKIdO5Vol7AgByy/vNdF3hPtfrKuG+gDynq7Q8uycg05WW6VwrxXsCMp2uK2fambFMl2umK+nMOElkupBK8XV6c5VwfZgkMl1IpZDpSr9GlOfCKYU851ol7gkAAAAAAAAAKlW3AIAyd/XVV8e4ceNizZo1eRl/zZo1cdJJJ8U111yTl/Er2R/+8IfYb7/94oEHHijIfK+++mqMHTs27rnnnrzNcffdd8chhxwSS5YsydscMl268pXpiy66KP72t79FkiQ5HTdNY2NjXHrppfHOd74zFixYkNe5ZLp0Ffr3dGf99Kc/jT/96U/FXsZ/yXTpKmamN2zYEOeff368+93vjvnz5xd8/mzIdOkqVKZfeeWVOOyww+Lmm2/O6zybmzRpUhx++OGxbNmynI4rz4VVaq/Rm3N92D4yvaVSyLTrw+zI9JZKIdO5Vol7AgByx/vN0uXcuOPkuXQ5M+4cmS5dzow7R6ZLlzPjzpHp0uXMuHNkurBK7XV6c5VwfRgh04VWCpmu5GtEeS6sUshzrlXingAAAAAAAACgUil6DUBZmzRpUlxwwQV5/0BnkiTxiU98In71q1/ldZ5KtHz58jjuuOPitttuy+s8K1eujGOOOSZmz56d13kiImbNmhVHH310rFy5Mudjy3TpK1SmC+XRRx+NQw45JJ5//vm8jC/Tpa/UM71w4cL47Gc/W+xl/JdMl75iZHrFihVx9NFHl+UXZWS69OU706tWrYqjjjoqZsyYkZfx0/z973+PY489NtatW5eT8eS5sErtNXpzrg87RqZfU8qZLhTXh5WlEjNdiXsCAHLH+83S59y4/eS59JX6+VpHuSdAqWe61O4JyHTpc2bcMTJd+pwZd4xMF1apvU5vrhKuDyNkutBKOdOFks9rRHkurErMcyXuCQAAAAAAAAAqWU2xFwAAnTV16tQ4++yz2/Whx7Fjx8Zpp50WY8eOjWHDhkXv3r1j9erV8fzzz8df//rX+PWvfx1///vfU8dIkiTOPvvs2HvvveOtb31rrrZRUrbbbrsYOXJk7LnnnjFgwIDo3bt39OnTJ3r27BmrV6+OVatWxauvvhozZ86MJ554ItauXduucZuamuL000+Pfv36xTvf+c68rP3MM8+M6dOnZ+y3/fbbx6mnnhrHH3987L///tGvX79IkiSWLFkSM2bMiLvvvjtuuummjB88nz59enzkIx+JO+64I1dbkOk8KOdMp+nXr1+8+c1vjt122y0GDx4cvXv3ju7du8fy5ctj6dKlMWvWrHj00UdjzZo17Rpv3rx5cfjhh8ff//73GDBgQM7WKdO5V6mZTnP++efn5ctAnSHTuVcJmV68eHEcccQR8dRTT7X7OSNHjozRo0fH7rvvHjvuuGP06tUrNmzYECtWrIgVK1bEc889FzNmzIiXX345jyuX6Xwox0yPHz8+nnzyyXb1bWhoiPe///1x6KGHxlvf+tbo379/9O3bN5IkiWXLlsUrr7wSU6dOjT//+c8xZcqUWL9+fcYxH3/88Tj33HPj+uuvz2of8lx4pfQavTXXhzLdGaWc6TSuD1sn0+Wb6TSVuCcAIDe838y9crzP9bpyvy8gz7lXznlO455A62S6fDOdppTuCch07lVCpp0Zy/TmyjHTlXJmHCHTxVBKr9NbK/frwwiZLoZSznSacrhGlOfCK9c8p6nEPQEAAAAAAABARUsAoAytXLkyGT58eBIRqT977LFH8sc//rFdY953333JiBEjMo45fPjwZOXKlXneYW5df/312+yjtrY2GTt2bPLZz342ueuuu5JFixZ1aMzm5ubkj3/8Y/LhD384qa+vz/j3FhHJoEGDkldffTXn+7viiisyzl1VVZVMnDgxWb58ecbxli1bllxwwQXt2tOVV16Zkz3IdMdUWqbr6upS5+nRo0dy4oknJtdee23y3HPPtWvMpqam5A9/+ENy5JFHtmsvEZGMHTs22bRpU9b7SRKZ7qhKy3Su3H777e3O79Y/L7zwQk7XItMd01UyvWbNmuSAAw5o11pGjx6dXHnllcmCBQvaPf6SJUuS3/72t8lZZ52V9O/ff4vxvv/972e1dpnumErN9OTJk9s1b48ePZJvfetbyYoVK9o99pIlS5KvfOUrSW1tbbvmuPPOOzu9D3kuvFJ6jd6a68PWyXS6Usq060OZzoVSynSuVOKeAIDc8H6zYyr1Ptfryv2+gDx3TKXl2T0Bma60TOdKKd0TkOmO6SqZdma8JZkuv0xXyplxksh0MZTS6/TWyv36MElkuhhKKdOVdo0oz4VXSnnOlUrcEwAAAAAAAABUOkWvAShLn/zkJzN+MO3II4/s0AfskyRJli9fnrzrXe/KOPaFF16Yp53lx+tfuBg0aFByzjnnJHfffXeyfv36nI3/3HPPJccdd1y7PjB47rnn5mzeJEmSl19+OenVq1fqnLW1tckdd9zR4bFvvfXWpHv37qljNzQ0JP/+97+z3odMd0ylZbqtD6cfcsghyXXXXZesWrUqq/EfeuihZOedd27Xfi677LKs95MkMt1RlZbpXFixYkUyaNCgVte42267FfwD6jLdMV0h0y0tLcm73/3ujPMPHTo0ue2225KWlpas5mtubk4eeOCB5H3ve19SXV2d9ReYZbpjKjHTTU1N7fp9OnLkyOTJJ5/s9Dz/+Mc/kmHDhmWcZ5999kmam5s7NYc8F1apvUZvzvVhOpluXall2vVh+8l060ot07lQiXsCAHLH+82OqcT7XK+rhPsC8twxlZZn9wTaT6Y7pxTO1zqq1O4JyHTHdIVMOzNunUx3jjPj7M6Mk0SmC63UXqc3VwnXh0ki04VWapmutGtEeS6sUstzLlTingAAAAAAAACgK1D0GoCyM2vWrKSmpib1Q2lve9vbkrVr13Zq/DVr1iQHHnhg6vg1NTXJ7Nmzc7yz/HnmmWeSv/3tb1l/cSaTz372sxk/MFhdXZ28+OKLOZvz1FNPTZ2vqqoquf322zs9/i233JJxT6eddlpWe5Dpjqu0TG/+4fSamprkwx/+cDJ9+vTcbOI/Fi9enIwdOzbjfnr37p28+uqrWc0l0x1XaZnOhbPPPrvNNd57770F/YC6THdcV8j0d77znYxzf/CDH0xWrlyZ87lffPHF5Iknnuj082W64yox03fccUfGuQYOHJjMmzcv67nmzp2b9OvXL+N899xzT4fHlufCK6XX6K25PsxMprdVapl2fdgxMr2tUst0LlTingCA3PB+s+Mq8T7X68r9voA8d1yl5dk9gY6R6c5zZtw5Mt1xXSHTzozbJtOd58y442fGSSLTxVBKr9NbK/frwySR6WIotUxX0jWiPBdeqeU5FypxTwAAAAAAAADQFSh6DUDZOfnkk1M/kNa3b9/kpZdeymqOefPmJdtvv33qPKecckqOdlRZzjvvvIwfGvzyl7+ck7lmzZqVVFVVpc71mc98Jut5Jk6cmPED8E8//XSnx5fp0laITNfV1SU1NTXJ2WefnTz//PM5Wvm2li5dmuy1114Z9/OlL30pq3lkurQV8vd0Zz388MNt/n5//d9rIT+gLtOlrRiZnjZtWlJbW5s654UXXpj3L7t2lkyXtkJl+qSTTso4z/3335+DHb3md7/7Xcb5zjjjjA6PK8+FVWqv0Ztzfdh+Mv2GUsy068OOk+k3lGKms1WJewIAcsf7zdLm3Lhj5Lm0OTPuOJkubc6MO06mS5sz446T6dLmzLjjZLqwSu11enOVcH2YJDJdaKWY6Uq6RpTnwirFPGerEvcEAAAAAAAAAF2FotcAlJXnnnsuqa6uTv1A2jXXXJOTua644orUeaqrq334rRWrVq1Kdt5559S/u/333z8nc5155pmp8wwdOjRZv3591vOsXbs22XXXXVPnOuusszo1tkyXvkJk+pRTTkmeeeaZHK043Zw5c5Lu3bun7mfw4MFJc3Nzp8aX6dJXyN/TnbF+/fpk5MiRra5r++23TxYtWpQkSeE+oC7Tpa/QmW5paUkOPPDA1PnGjx+fs/lyTaZLXyEy3dLSkvTt2zd1jiOOOCJHO3rDYYcdljrnoEGDOjSePBdWqb1Gb831YcfIdOlm2vVh58h06WY6G5W4JwAgd7zfLH3OjdtPnkufM+OOkenS58y4Y2S69Dkz7hiZLn3OjDtGpgur1F6nt1bu14dJItOFVqqZrpRrRHkurFLNczYqcU8AAAAAAAAA0JV0CwAoI1dffXU0Nze32b7HHnvEOeeck5O5JkyYELvttlub7c3NzXH11VfnZK5K0rt375g4cWJqn5kzZ8bKlSuzmmfp0qUxefLk1D6XXnpp1NfXZzVPRETPnj3jkksuSe1zww03xLJlyzo8tkyXvkJk+sYbb4w999yz08/viJEjR8aECRNS+8yfPz+mTZvWqfFluvQV6vd0Z33ta1+LuXPnttr27W9/OwYMGFDQ9ch06St0pq+//vqYOnVqm+377rtvXHvttTmZKx9kuvQVItPz5s3L+N71Yx/7WKfHb0umbC1cuDD+/e9/t3s8eS6sUnuN3pzrw46T6dLNtOvDzpHp0s10NipxTwBA7ni/WfqcG7efPJc+Z8YdI9Olz5lxx8h06XNm3DEyXfqcGbf/zDhCpgut1F6nN1cJ14cRMl1opZrpSrlGlOfCKtU8Z6MS9wQAAAAAAAAAXYmi1wCUjebm5rjxxhtT+1x44YVRXV2dk/lqamrif//3f1P7TJ48OVpaWnIyXyU58cQTU9uTJIk5c+ZkNcfNN98cjY2Nbbbvsssuceqpp2Y1x+ZOP/301A9FNjY2xq233tqhMWW6fBQi04X0mc98JmOfhx9+uMPjynT5KNVMP/HEE3H55Ze32va2t70tZ19uaC+ZLh+FynRTU1N86UtfarO9qqoqrrvuuqirq8t6rnyQ6fKR70w/99xzqe3dunWLI488stPjt+Woo46Kqqqq1D7/+te/2jWWPBdWqb1Gb831YcfJdGlnupBcH1aGSsx0Je4JAMgd7zfLh3PjzOS5fJTq+VpnuSdAqWa61O4JyHT5cGbcPjJdPpwZt49MF1apvU5vrdyvDyNkutBKPdOFlI9rRHkurErMcyXuCQAAAAAAAAC6GkWvASgbDz74YCxcuLDN9vr6+jjjjDNyOuf48eOjtra2zfYFCxZ06kt+lW6PPfaIHXfcMbXPggULsprj17/+dWr7mWeeGd27d89qjs3V1dXF+PHjs1rT1mS6fBQi04W06667xujRo1P7PPnkkx0eV6bLRylmuqWlJc4+++xoamrapq2mpiauvfbajF96yzWZLh+FyvRNN90U8+fPb7P9tNNOi7e85S1Zz5MvMl0+8p3p5cuXp7YPGjQo+vXr1+nx29K/f/8YOHBgap8lS5a0ayx5LpxSfI3emuvDzpHp0s10Ibk+LH+VmOlK3BMAkFveb5YP58aZyXP5KMXztWy4J0ApZroU7wnIdPlwZtw+Ml0+nBm3j0wXTim+Tm+t3K8PI2S6kMoh04WUj2tEeS6cSsxzJe4JAAAAAAAAALoiRa8BKBt33XVXavsJJ5wQvXv3zumc22+/fRx33HGpfTKtq6saMGBAavvatWs7PfbSpUvjb3/7W2qfU045pdPjt+XUU09NbX/00Udj2bJl7R5PpstLPjNdDIcddlhq+/PPP9/hMWW6vJRapq+44oqYOnVqq22f/vSn401velNB1xMh0+WmEJn+3ve+l9r+//7f/8t6jnyS6fKSz0xv3LgxtT0fX15+3U477ZTavn79+naNI8+FU4qv0Ztzfdh5Mr2tUsh0Mbg+LG+VmOlK3BMAkFveb5YX58bp5Lm8lNr5WrbcE6DUMl2K9wRkurw4M85MpsuLM+PMZLpwSvF1enOVcH0YIdOFVOqZLoZcXyPKc+FUYp4rcU8AAAAAAAAA0BUpeg1A2fjjH/+Y2n7CCSfkZd5M495///15mbfcbbfddqntPXv27PTYDzzwQCRJ0mb7kCFDYt999+30+G3Zf//9Y5dddmmzvaWlJR588MF2jyfT5SWfmS6GgQMHpravWLGiw2PKdHkppUzPmzcvLr744lbbhg8fHl/5ylcKtpbNyXR5yXemp0+fHjNmzGiz/bDDDou99947qznyTabLSz4znWnsXr16dXrsTDKN3adPn3aNI8+FUaqv0ZtzfZgdmX5DqWS6GFwflq9KzHQl7gkAyD3vN8uLc+N08lxeSul8LRfcE6CUMl2q9wRkurw4M85MpsuLM+PMZLowSvV1enOVcH0YIdOFUg6ZLoZcXyPKc2FUYp4rcU8AAAAAAAAA0FUpeg1AWVi4cGE8/fTTqX2OPPLIvMx91FFHpbbPmjUrFi1alJe5y9nixYtT2/v169fpsR944IHU9nxloT1jZ/qA7utkuvzkM9PFsNNOO6W2r1+/vkPjyXT5KaVMn3feebF27dpW26655pro0aNHwdbyOpkuP/nO9I033pjaftppp2U1fr7JdPnJZ6Z33HHH1PalS5d2euxMMo2daW0R8lxIpfgavTXXh9mR6TeUSqaLwfVh+arETFfingCA3PJ+s/w4N26bPJefUjpfywX3BCilTJfiPQGZLj/OjNPJdPlxZpxOpgunFF+nt1bu14cRMl1I5ZDpYsjlNaI8F04l5rkS9wQAAAAAAAAAXZWi1wCUhalTp6a2Dx48OAYPHpyXuYcNGxaDBg1K7fP444/nZe5y1dzcHAsXLkzts9tuu3V6/Ex5OOSQQzo9diZjx45NbW9vFmS6vOQ708Wwbt261Pb6+voOjSfT5aWUMn399dfHfffd12rbBz/4wTj22GMLso6tyXR5KUSmb7nlltT2d7/73VmNn28yXV7ynem99torqqqq2mx/5ZVXOj12JpnGbs++5LkwSvU1emuuD7Mj068ppUwXg+vD8lSJma7EPQEAuef9ZnlxbpxOnstLKZ2v5Yp7Al1bKWW6VO8JyHR5cWacmUyXF2fGmcl0YZTq6/TWyv36MEKmC6VcMl0MubxGlOfCqMQ8V+KeAAAAAAAAAKArU/QagLIwbdq01PYxY8bkdf4DDjggtX369Ol5nb/cPPLII6kffB0+fHjssssunRq7sbExZs2aldonn3nIlIWnnnoqmpqaMo4j0+Uln5kulvnz56e277DDDh0aT6bLS6lkesmSJfGpT32q1bbtttsufvCDH+R9DW2R6fKS70zPnTs3XnzxxTbb99xzz5J/HZDp8pLvTPft2zdGjRrVZvuKFSviySef7PT4bZk5c2asXLmyzfbddtst45fOIuS5EEr5NXpzrg9zQ6ZLJ9PF4vqw/FRipitxTwBAfni/WV6cG6ffF5Dn8lIq52u55J5A11YqmS7lewIyXV6cGWcm0+XFmXFmMp1/pfw6vblKuD6MkOlCKJdMF0surxHlOf8qMc+VuCcAAAAAAAAA6OoUvQagLMyYMSO1fb/99svr/JnGr4QPPubSjTfemNp+7LHHdnrsWbNmpX74u7q6OvbZZ59Oj5/JvvvuG926tf0WqrGxMWbPnp1xHJkuL/nMdLFk+kD5iBEjOjSeTJeXUsn0Jz/5yViyZEmrbd/61rdi4MCBBVlHa2S6vOQ70w8//HBq+0EHHZTV+IUg0+WlEL+njz/++NT23//+91nPsbW77747tf2II45o1zjynH+l/Bq9OdeHuSHTpZPpYnF9WH4qMdOVuCcAID+83ywvzo3T7wvIc3kplfO1XHJPoGsrlUyX8j0BmS4vzowzk+ny4sw4M5nOv1J+nd5cJVwfRsh0IZRLposll9eI8px/lZjnStwTAAAAAAAAAHR1il4DUBbmzp2b2r7HHnvkdf7dd989tf3ZZ5/N6/zlZPr06fGLX/yizfaqqqq44IILOj1+piwMHTo0amtrOz1+JrW1tTF48ODUPu3Jg0yXj3xnuhhWrlwZjz76aGqffffdt0NjynT5KJVM33vvvTF58uRW2w4++OA477zz8r6GNDJdPgqR6UceeSS1fcyYMe0aZ+nSpfHnP/857rjjjpg0aVLccMMNMWXKlPjLX/4SL7/8ciRJktU608h0+SjU7+kJEyZEdXV1m+1XXHFFrF+/Put5XrdmzZq44oorMq6pPeQ5v0r9NXpzrg9zQ6ZLJ9PF4Pqw/FRipitxTwBA/ni/WT6cG2fOgzyXj1I5X8sl9wS6tlLJdKnfE5Dp8uHMuH1kunw4M24fmc6vUn+d3lwlXB9GyHS+lVOmiyHX14jynF+VmOdK3BMAAAAAAAAAEFFT7AUAQCZJksS8efNS+2T6YGK2Mo2faX1dxaJFi+K0006L5ubmNvu8//3vj7333rvTc7zwwgup7fnOwutzvPjii222Z1qjTJePQmS6GG677bZobGxM7fOOd7yj3ePJdPkolUyvWbOmzQ+g19TUxE9+8pOoqqrK6xrSyHT5KFSmZ8yYkdqe9u/roYceiltvvTXuvvvueOmll1LH2W677eLggw+Oo446Kk466aQYNmxYJ1a7LZkuH4X8PT106NA4/fTT41e/+lWr7QsXLoyvfe1r8c1vfjPruSIivvzlL8fixYvbbD/88MNj//33zziOPOdXqb9Gb831YW7IdOlkuhhcH5aXSsx0Je4JAMgf7zfLh3Pj16StUZ7LR6mcr+WaewJdV6lkutTvCch0+XBm3D4yXT6cGe/frrFkOr9K/XV6a+V+fRgh0/lWbpkuhlxeI8pzflVinitxTwAAAAAAAADAa7oVewEAkMkrr7wSGzZsSO2z884753UNmcZfu3Zt6ofxu4Inn3wy3vGOd8QzzzzTZp9+/frF1VdfndU8mT5kmu8stGeOTB9Ol+nyUKhMF1qSJHHFFVek9tl5553jLW95S7vHlOnyUEqZ/tKXvtTml3w+9alPxZve9Ka8ryGNTJeHQmW6qakp5s6dm9pnxIgR2zx2xx13xOjRo+Pwww+PH/3oRxm/vBwRsXLlyrjvvvviM5/5TAwfPjyOOeaYePDBBzu99tfJdHkoxu/p733vezFgwIA227/1rW+1+QXnjvjxj38c3//+99tsr6+vj2uuuaZdY8lzfpX6a/TWXB/mhkx3Xa4Py08lZroS9wQA5I/3m+XBufEb0u4LyHN5KKXztVxyT6DrKqVMl/o9AZkuD86M20+my4Mz4/adGUfIdL6V+uv01sr9+jBCpvOt3DJdaLm+RpTn/KrEPFfingAAAAAAAACA1yh6DUDJW7BgQcY+AwcOzOsa2jN+e9ZZiV544YX41Kc+FWPGjEn9ck9dXV1Mnjw59QsS7ZHp7znfWWjPHJnWKNOlrdCZLrSbbropnnzyydQ+p512WnTr1v5LBZkubaWW6alTp8ZVV13VatuwYcPiK1/5Sl7nbw+ZLm2FzvSzzz4bTU1NqX02n2PBggVx7LHHxkknnRRPPPFEVnP/4Q9/iCOOOCLe+973tvmljvaQ6dJWzN/TO+64Y9xwww1RW1vbZp+PfOQj8cUvfjE2bdrU4fE3btwYEydOjI9//OOp/S6//PLYc8892zWmPOdPObxGb831YW7IdNfl+rC8VGKmK3FPAEB+eb9Z2pwbbyttjfJc2krtfC3X3BPoekot0+VwT0CmS5sz446T6dLmzLhjZ8YRMp1P5fA6vbVyvz5sT3t75siWTHddub5GlOf8qcQ8V+KeAAAAAAAAAIA31BR7AQCQydKlS1Pb+/TpE3V1dXldQ8+ePaOhoSHWrFnTZp9M6yx369ati9WrV8fy5ctj9uzZMWPGjHjwwQfjr3/9ayRJkvrc+vr6mDJlShx11FFZryPT33P//v2zniOTTF8aybRGmS4NpZLpQlq7dm184QtfSO1TU1MTn/jEJzo0rkyXhnLIdFNTU3zsYx+LlpaWVtuvvvrq6NmzZ17X0B4yXRpKJdPz589Pba+pqYntt98+IiL++te/xkknnRSLFi3Ket7N3XnnnfHnP/85Jk2aFP/zP//T4efLdGkolUxv7cgjj4xbbrklxo0b1+qXlFtaWuJb3/pWTJkyJS688MI444wzMv6uXr16dUyaNCl+8IMfxHPPPZfa90tf+lKH3nvIc36Uy2v01lwf5oZMd02uD2W62CpxTwBA/nm/WRpK5T5Xud8XkOfSUCp5LiT3BGS6Lc6MtyTTpaFUMu3MODdkunQyvbVyOzOOkOl8KZfX6a2V+/Vhe9plunPKNdOFlI9rRHnOj0rMcyXuCQAAAAAAAADYkqLXAJS8ZcuWpbb36dOnIOvo06dP6gcfM62z1I0bNy5uv/32nI87evTo+PWvfx2jRo3KyXilkIdMc2RaYyns4fV5ZLrjcp3pQvrc5z4XL774YmqfD3/4wzF06NAOjSvThVEJmb7sssviySefbLXtAx/4QBx//PF5X0N7yHRhlEumFy5cmNreu3fvqKqqir/85S9x7LHHxtq1a3My79aWL18eJ554YlxzzTVx7rnndui5Ml0Y5ZLp1rz3ve+Nhx56KE4//fR46aWXWu3zzDPPxLnnnhsXXHBBjBkzJt761rdG//79Y4cddogkSWL58uXxyiuvxN///veYMWNGq1+G3lz37t3jG9/4Rlx00UUdWqs850e5vEZvrRTy4PqwNJVrpgvJ9aFMF1sl7gkAyD/vNwujXO5zlUIesrkvUArrf30eee44Z8bbkunCqIRMl8s9AZkujHLJtDPj3JHpznFmvC2Zzo9yeZ3eWinkwblxaSrXTBdSPq4R5Tk/KjHPlbgnAAAAAAAAAGBLil4DUPKWL1+e2t67d++CrCPTPOX2wcd823nnneOiiy6KCRMmRG1tbc7GLYU8ZJuFUthDe+aR6S3lK9OF8oc//CGuueaa1D69e/eOb3zjGx0eW6bLU6EzPWfOnPj617/eatt2220XV1xxRd7X0F4yXZ7ylelMX2Cura2NZ555Jo4//vi8fXn5dS0tLXHeeedF9+7d46yzzmr382S6PBX69/Shhx4aM2fOjIsvvjh++tOfxsaNG1vt19jYGI899lg89thjnZ5r1KhR8fOf/zwOOuigDj9XnnOvnF6jt1YKeXB9WHrKOdOF4vpQpoutEvcEABSG95vlyblx60ph/e2ZR5635My4bTJdnpwZt02my5Mz47bJdHlyZtw2mc69cnqd3lop5MG5cekp50wXSr6uEeU59yoxz5W4JwAAAAAAAABgW4peA1DyNmzYkNreq1evgqyjoaEhtT3TOruCHj16xDHHHBPjxo2LcePGRV1dXc7nKIU8ZJuFUthDhEy3RyEyXQj//ve/44wzzogkSVL7XXrppTFw4MAOjy/T5aNYmU6SJM4+++w2vwz3zW9+MwYNGlSQtbSHTJePQmR65cqVqe0tLS0xbty4WL16dZt99thjj3jve98bxxxzTAwZMiQGDBgQtbW1sWjRoli4cGE8/PDDceedd8bUqVMz/q6OiDjvvPNi9913j8MOO6xde5Dp8lHs9x7bb799XHXVVfGFL3whrrrqqrjtttviX//6V87GHzNmTFx00UVx8sknR7du3To1hjznVrm9Rm+tFPLg+rC0lHumC8H14WtkungqcU8AQOF4v1k+nBu/Jm2NpbD+CHluj2Lft80V9wReI9POjNtLpsuHM2NnxpWm2O89yuHMOEKmc63cXqe3Vgp5cG5cWso904WQz2tEec6tSsxzJe4JAAAAAAAAAGidotcAlLzGxsbU9pqawrycZZon0zq7ggEDBsTQoUOjX79+WX0hIU0p5CHbLJTCHtozj0wXJtP51tjYGCeffHK8+uqrqf0OO+yw+N///d9Oz5FGpktHsTJ97bXXxp///OdW2w466KA477zzCraW9pDp8lGITK9fvz61/dVXX23zd+yQIUPi8ssvj5NPPrnV9uHDh8fw4cNj7Nix8cUvfjGmTp0aF1xwQUydOjV1zqampvjwhz8cTz75ZPTu3TvjHmS6fJTKe4+dd945Lr744jj44IPjm9/8ZsZMZjJ69Oi49tpr46CDDsp6bfKcW+X2Gr21UsiD68PSUu6ZzjfXh2+Q6eKpxD0BAIXj/Wb5cG78mrQ1lsL62zOPPJfOfdtsuCfwBpl2ZtxeMl0+nBk7M640pfLeo5TPjCNkOtfK7XV6a6WQB+fGpaXcM51v+b5GlOfcqsQ8V+KeAAAAAAAAAIDWlee3MADoUnzwsXzMmzcvrrjiijj22GNjt912i+9+97uxevXqnM5RCnnw4fSuoxCZzrdzzz03/vrXv6b26dOnT1x33XWd/qKUTJePYmR6wYIF8fnPf77Vtpqamrj22mtLrkCATJePQmR6w4YNnXre//zP/8TTTz/d5peXW3PggQfGY489Fl/60pcy9n3xxRfj4osvbte4Ml0+SuG9x7/+9a84++yzo1+/fnHiiSdm/eXliIiZM2fGIYccEm9/+9vjF7/4RTQ1NXV6LHnOnXJ8jd5aKeTB9WHpqIRM55vrwzfIdHFU4p4AgMLyfrN8ODd+jaLXlaEU7ttmyz2BN8i0M+P2kuny4czYmXGlKYX3HqV+Zhwh07lUjq/TWyuFPDg3Lh2VkOl8y/c1ojznTiXmuRL3BAAAAAAAAAC0zacAACh5LS0tqe3V1dUFWUemeZqbmwuyjnLx8ssvx2c+85nYfffd484778zZuKWQh2yzUAp7aM88Mr2lfGU6n77zne/Eddddl7HfddddF8OHD+/0PDJdngqV6fPPPz9WrlzZatvEiRNj9OjReZu7s2S6POUr0535ouXJJ58cd9xxR/Ts2bPDz62qqoqvfe1rcdlll2Xs+6Mf/ShefPHFjP1kujwV+r3HypUr46yzzoq99torfvazn8X69etzOn5zc3P85S9/iY9+9KMxYsSI+PGPfxxJknR4HHnOnXJ8jd5aKeTB9WHpqIRM55Prwy3JdHFU4p4AgMLyfrM8OTduXSmsvz3zyPOWnBm3TabLkzPjtsl0eXJm3DaZLk/OjNsm07lTjq/TWyuFPDg3Lh2VkOl8KsQ1ojznTiXmuRL3BAAAAAAAAAC0rTD/e3QAyEJNTfrL1aZNmwqyjkzzdO/evSDryJePf/zjceyxx7ba1tLSEitXrowVK1bEsmXLYubMmTFjxox2falh8eLF8d73vjfOPvvs+NGPfpT1B1VrampSv0hUiDxkmwWZLoxyyXS+TJ48OT7/+c9n7PfpT3863ve+92U1l0wXRjlm+rbbbovf/OY3rbYNHTo0LrnkkpzNlUsyXRjlkumOPn/vvfeOSZMmZcxRJp/97Gdj2rRpcfPNN7fZp7GxMa688sr47ne/mzqWTBdGuWS6NX/+85/jjDPOiJdeeinnY7dm/vz58fGPfzxuv/32mDRpUuy8887tfq4850a5vkZvzfVh7sh0ZXN9uC2ZLrxK3BMA/5+9Ow+XqjrzBfwdODIeVEAGJxAH4hRFouhFNBrRaGiNRFuNJi0hmhgT6XSbdMxt0w7R7rRj4tCJQ0e4RnEgamwHnJjijCJqVFAbMKAoo8wzdf/ohw4SatxVp2rXed/n4Z+sVWutLb+Hql1f7S/Q/HzebB5p+Z4r7d8LyHPzSEueK8V3An9NprdOzfivyXTzSEum1YzLR6ZrI9Nbk6aacYRMl0ta36e3lPb7wwiZLpd6yXSlNNc9ojyXRz3muR6vCQAAAAAAAADITdNrAGpemzZtco431w8fc/0gOiL/OWvdMcccU9T89evXxyuvvBK333573HPPPbFixYqc82+77bZYsmRJ3HXXXYke6GnTpk3Vf5yeNAsy3TzSkulKeOKJJ2LYsGGRyWRyzhs6dGhcddVVifeT6eaRtkx/+umnccEFF2Qdv/nmm6NDhw6J96kEmW4eacl0Mf+dW7duHaNGjYp27dqVvN/mbr755pgwYUJ88sknWeeMHDky/vVf/zXatm2bdY5MN4+0ZHpLjzzySJxyyimxdu3avHN33XXX+PKXvxxHHHFE9OvXL7p06RJdu3aNTCYTixYtioULF8bUqVPjj3/8YzzxxBMxZ86cnOs9/fTT0a9fvxg3blzsv//+BZ1XnpNL83v0ltwflo9M1y/3h1sn082rHq8JAKgOnzebR1q+50r79wLy3DzSkudK8J3A1sm0mnGhZLp5pCXTasblI9OfVe1/pzdJW804QqbLIc3v01tK+/1hIeMynV89ZboSmvMeUZ6Tq8c81+M1AQAAAAAAAAD5tar2AQAgn2222SbneCE/tC+HNP/wsRIaGxvjsMMOi9tvvz0++uij+MEPfhANDQ05X3PffffFd77znUT71kIekmahFq4hQqa3VK1Ml9tzzz0XX/va1/L+/R599NExevToaNUq+S2BTNemamf6Rz/6UXz88cdbHTvllFNiyJAhZdmnEmS6NlUr08X8dx46dGgccsghifbbXNeuXePCCy/MOWfRokUxfvz4nHNkujZV+9/piIixY8cW9PDy/vvvH3fffXfMmDEjbrvttvi7v/u7OOCAA2KXXXaJ9u3bR4cOHWKXXXaJAw88MM4+++y4/fbbY+bMmfG73/0u9t1335xrz58/P4455ph4++23CzqzPCeX5vfoLdVCHtwfVl89Zbrc3B9mJ9PNqx6vCQCoDp83a5O6cXa5slAL54+Q5y3Vwve25eA7gexkWs24UDJdm9SMt07NOL2q/e90RDprxhEyXQ5pfp/eUi3kQd24+uop0+XW3PeI8pxcPea5Hq8JAAAAAAAAAMhP02sAal5TU1PO8eXLlzfLOZYtW5ZzPN8569m2224bN954Y0yYMCG6deuWc+4dd9wRY8aMKXmvWshD0izUwjVEyHQuzZnpcpo6dWoMGTIkVq5cmXPegAED4uGHH462bduWZV+Zrn3NnekJEybEb3/726xnueGGGxKtX2kyXfuaM9MdO3YseO73vve9kvfJZvjw4dGuXbuccx577LGc4zJd+6rx2WPu3Llx1lln5X2Q7IILLohXX301vv71r0djY2PB6zc2NsZZZ50VU6ZMifPPPz/n3Hnz5sVJJ50UK1asyLuuPCeT9vfoLdVCHtwfVle9Zbqc3B/KdK2ox2sCAKrH583ap278WbnOWAvnj5DnXNSMiyPTtU/NuDgyXfvUjD9LzTj91IwLrxlHyHRSaX+f3lIt5EHduLrqLdPlVI17RHlOph7zXI/XBAAAAAAAAAAURtNrAGpely5dco4vXbq0Wc6Rb59852wJjjzyyHjqqaeic+fOOed997vfjSVLlpS0Ry3kIWkWauEaCtlHppsn0+Uybdq0OO644/Ke4/Of/3w8/vjjZf2xtkynR3NkevXq1fGd73wnMpnMVsevvPLK2GmnnUpau7nIdHrUwmePTXr16hVf+tKXStojl65du8aJJ56Yc86LL76Yc1ym06M5P3sMHz48Fi1alHPOr371q7jhhhuiTZs2Je/Ttm3buPnmm+Paa6/NOe+///u/48ILL8y7njyXrh7eo7dUC3lwf1g99ZjpcnF/KNO1oh6vCQCoLp8306MWvrut9e8FauH8hewjz2rGhZLp9FAzLoxMp0ctfO7YRM04P5nOT804f804QqaTqIf36S3VQh7UjaunHjNdLtW6R5Tn0tVjnuvxmgAAAAAAAACAwml6DUDN69q1a87xTz/9tFnOke8Hn/nO2VIceOCBMWbMmJxzFi1aFLfeemtJ69dCHvLtke+MtXANETJdqEpnuhxmzpwZgwcPjvnz5+ect9dee8VTTz1V9h9qy3S6VDrTl112Wbz33ntbHRswYECcf/75Ja3bnGQ6Xar92WOTgQMHlrR+OdZ+4403Yv369VnHZTpdmuOzx7hx42Ls2LE551xwwQUxYsSIkvfY0j/+4z/G9773vZxzbrnllnjjjTdyzpHn0tXDe/SWaiEP7g+rpx4zXQ7uD/+HTNeGerwmAKC6fN5Ml2p/d1vr3wvUwvkj5LlQasb5yXS6qBnnJ9PpUu3PHZuoGecn04VRM85dM46Q6STq4X16S7WQB3Xj6qnHTJdDNe8R5bl09ZjnerwmAAAAAAAAAKBwml4DUPN22GGHnONr1qyp+I8fFy1aFGvXrs05pxZ/+FgtX/rSl+K0007LOeeGG26IDRs2FL12vjx8/PHHRa9ZrHx75MuCTKdPJTOd1IcffhjHHHNMfPjhhznn9e7dO55++uno0aNH2c8g0+lTqUy//vrrcc0112x1rLGxMW655ZZo1ar2b0NlOn2q+dljk8MOO6zotQt16KGH5hxfs2ZNzvcBmU6fSn/2uPbaa3OO77zzznHVVVeVtHYu11xzTfTs2TPnnOuuuy7nuDyXpl7eo7fk/rA8ZLp+uD/8HzJdG+rxmgCA6vN5M33UjbNnQZ7TR804N5lOHzXj3GQ6fdSM1YzrjZpxbjJdmnp5n95S2u8PI2S6VPWa6aSqfY8oz6WpxzzX4zUBAAAAAAAAAMXxywAAal6vXr3yzvnkk08qeoZC1i/knC3JFVdckXN8zpw5MWXKlKLXzfffudJZKGSP3r175xyX6XSqVKaT+OSTT+KYY46JmTNn5py34447xjPPPFOxv1OZTqdyZ3rDhg1xzjnnxPr167c6/vd///fRr1+/Yo5YNTKdTtX67LHJvvvuW/TahSpk7dmzZ2cdk+l0qlSm586dG48//njOOf/8z/8c7dq1K3rtfDp06BAXX3xxzjmjR4/O+WCbPBevnt6jt+T+sDxkuj64PyxufZmurHq8JgCgNvi8mU7qxlsnz+mkZpydTKeTmnF2Mp1OasZqxvVGzTg7mS5ePb1Pbynt94cRMl2Kes50ErVwjyjPxavHPNfjNQEAAAAAAAAAxdP0GoCa19TUFF27ds0554MPPqjoGWbNmpVzvHv37tGxY8eKniFt9tprr7wP20ycOLHodXfbbbec45XOQkT+PPTp0yfnuEynU6UyXapFixbFscceG9OnT885r1u3bvHMM8/EHnvsUbGzyHQ6lTvTo0ePjldeeWWrY7169YrLLrusqPNVk0ynU6X+nc73vr7J9ttvX/Tahdp2222jVavcX+EsWrQo65hMp1OlMj1x4sTIZDJZxxsbG+PMM88set1CnXXWWdG6deus42vXro0//vGPWcfluXj19B69JfeH5SHT6ef+8LNkuvrq8ZoAgNrg82Y6qRtvnTynk5pxdjKdTmrG2cl0OqkZqxnXGzXj7GS6ePX0Pr2ltN8fRsh0Keo506WqlXtEeS5ePea5Hq8JAAAAAAAAACheY7UPAACF6NOnTyxcuDDr+HvvvRfHHXdcxfZ///33c44X+mBLSzNkyJB4++23s45Pnjy56DXz/bd+7733il6zWOXIg0ynUyUyXYolS5bEcccdF2+++WbOeZ07d46nnnoq9tlnn4qfSabTqZyZXrBgQdaxww8/PEaPHl3U2ZK69957cz440alTpzj99NOzjst0OlXi3+mmpqbo1q1bzJ8/P+e8Sj7A3NDQENttt10sXrw465yVK1fmXEOm06kSmc73cPCAAQNiu+22K3rdQm2//fZxyCGHxIsvvph1zqRJk+LEE0/MOi7Pxam39+jNuT8sD5lOppyZLoX7w78m08mUI9P1eE0AQO3weTOd1I2zj8tz+qgZZyfT6aRmrGZcb9SMs5PpdFIzzk6mi1Nv79Obq4f7w01zZLpw9ZzpUtTaPaI8F6ce81yP1wQAAAAAAAAAFE/TawBSYb/99otXXnkl6/j06dMrun++9ffbb7+K7p9W+X4QOm/evKLXzPffesGCBbFo0aLo0qVL0WsXYtP6uRSSB5lOp0pkuljLly+Pr3zlK/Hqq6/mnNepU6cYO3ZsHHjggRU/U4RMp1VzZXr06NHN/gP1iy66KOd47969c/5AXabTqVKZ3n///WP8+PE557Rv376ktQvVvn37nA8wr1+/PufrZTqdKpHpGTNm5BwfMGBA0WsW69BDD835APO0adNyvl6eyyeN79Gbc39YHjKdTDkzXSz3h6WtL9O5VTrT9XhNAEDz8nkzndSNs4/Lc/qoGWcn0+mkZqxmXG/UjLOT6XRSM85Opssnje/Tm6uH+8NNc2S6PNKe6WLV4j2iPJdPPea5Hq8JAAAAAAAAANi6VtU+AAAUon///jnHX3vttYruP2XKlJzjBx10UEX3T6sePXrkHF+4cGHRa+62227RuXPnnHMqmYd8WejatWvsuuuuedeR6XSqRKaLsWrVqjjxxBPj+eefzzmvQ4cO8eijjzbLA0ibyHQ6VTvTtUym06lSmf7CF76Qd86SJUtKWrtQ+dbP9wC1TKdTJTKd7zXdunUres1i5dsj3xnlmU3cH5aHTKeT+8PsZBoAoL75vJlO6sZbJ8/pVO36mu8EspPp0lQ707VMptNJzTg7mU4nNePsZJpN6uH+MEKmKU2t3iPKMwAAAAAAAAAAEZpeA5AS+X74OHXq1NiwYUNF9l6/fn28/vrrOef44ePWbbvttjnHV61aVdK6+fLw6quvlrRuIfKtXWgWZDqdKpXpQqxZsyZOPvnkmDBhQs55bdu2jT/84Q9xxBFHVOwsWyPT6VTNTNc6mU6nSmX64IMPzjvn008/LWntQqxbty5WrFiRc05TU1POcZlOp0pkevHixTnHd9hhh6LXLFa+PZI2vZbnlsX9YTIynU7uD7OTaQCA+ufzZjqpG2+dPKeTmnF2Mp1OasbZyXQ6qRlnJ9PppGacnUyzubTfH0bINMWr5XtEeQYAAAAAAAAAIELTawBS4uCDD4527dplHV++fHnFfpD88ssvx8qVK7OOt2vXLr7whS9UZO+0y/egTceOHUtad9CgQTnH8/14N4nx48fnHM93tk1kOp0qlel81q1bF6eddlo8+eSTOedts8028fvf/z4GDx5ckXPkItPpVK1Mp4FMp1O1PntERMybN6+ktQtRyNo777xzznGZTqdKZLp169Y5x9esWVP0msVavXp1zvGGhoac4/LM5twfJiPT6eP+MDeZBgCofz5vppO68dbJczqpGWcn0+mkZpydTKeTmnF2Mp1OasbZyTSbS/v9YYRMU5xav0eUZwAAAAAAAAAAIjS9BiAl2rVrF4cffnjOOU899VRF9n766adzjh9xxBE5f5TZks2ePTvneOfOnUtaN98PbydNmhRr164tae1cVq9eHc8++2zOOccee2xBa8l0OlUq07ls2LAhzjrrrHj44YdzzmtsbIx77rknhgwZUvYzFEKm06kamU4LmU6nSmV65513jv322y/nnMmTJ5e0diFeeeWVvHN69eqVc1ym06kSmc730PP8+fOLXrNY+fbo0KFDznF5ZnPuD5OR6XRxf5ifTAMA1D+fN9NJ3Xjr5Dmd1Iyzk+l0UjPOTqbTSc04O5lOJzXj7GSazaX9/jBCpilcGu4R5RkAAAAAAAAAgAhNrwFIkXw/+n3ggQcqsu+YMWNyjh933HEV2bcevP766znH99hjj5LWPeyww6JTp05Zx1esWBFPPPFESWvn8thjj8WqVauyjm+33XYxYMCAgteT6fSpVKazyWQyMXz48Lj//vtzzmvVqlWMGjUqvva1r5V1/2LJdPo0d6bTRqbTp5KZPv7443OOv/jiiyWvnU++tfv06RPbbrtt3nVkOn0qkemePXvmHJ8zZ07RaxYr34PZPXr0yLuGPLOJ+8NkZDo93B8WRqYBAFoGnzfTR904O3lOHzXj3GQ6fdSMc5Pp9FEzzk2m00fNODeZZpN6uD+MkGnyS9M9ojwDAAAAAAAAAKDpNQCpceqpp+YcnzJlSkyfPr2se/7pT3+KN998M+t4Q0ND3nO1VJlMJp566qmcc/bZZ5+S1m5sbIyTTz4555y77767pLWTrDl06NBobGwseD2ZTpdKZjqb733ve/H//t//yzmnoaEhbr311jjzzDPLuncpZDpdyp3pH/7wh5HJZJrtTz4zZ87M+fpZs2blXUOm06XS/06fdtppOcdfeumlWLp0acnr5/Lkk0/mHD/00EMLWkem06VSme7Tp0/O8fHjxxe9ZrHGjRuXczzfGSPkuRj1+B69OfeHpZPp2sx0Nu4P85Pp2sl0PV4TAFBbfN5Ml0xG3TgXeU6XSuY5G98J5CfTpSt3puvxOwGZTpdK/zutZlwamS5dpTJdLzXjCJkuRj2+T2+uHu4PI2S6GPWe6WzSdI8oz4WrxzzX4zUBAAAAAAAAAMXT9BqA1Nhjjz3isMMOyznnxhtvLOueN9xwQ87xgQMHxm677VbWPevFhAkT4oMPPsg558gjjyx5/bPOOivn+O9///v46KOPSl5/S3/+85/jD3/4Q6IzbUmm06XSmd7SP/zDP8Qtt9ySd96NN94Y3/72t8u2bxIynS7Nnek0kul0qXSmBwwYEHvvvXfW8ZUrV+Z9oKgUL7/8ckyZMiXnnC9/+csFrSXT6VKpTB900EE5x2fNmhXTpk0ret1CvfnmmzFnzpyccw444IC868gzm3N/WBqZTg/3h4WRaQCAlsPnzXRRN85NntNFzTg/mU4XNeP8ZDpd1Izzk+l0UTPOT6bZXNrvDyNkmtzSdo8ozwAAAAAAAAAAaHoNQKoMHz485/gdd9wRc+fOLctec+bMiTvvvDPnnGHDhpVlr3p06aWX5hzv1q1b9O/fv+T1Bw8eHLvuumvW8XXr1sXVV19d8vpbuvrqq2P9+vVZx3v16hVHH3100evKdHpUOtObu/jii+OXv/xl3nnXXHNNfP/73y/LnuUi0+nRnJlOM5lOj+bI9DnnnJNz/D/+4z9iw4YNifbYUr4HexobG+PEE08seD2ZTo9KZXrgwIF551xzzTVFr1uof//3f887p5AzRsjJjY92AAEAAElEQVQzf+H+sHgynR7uDwsj0wAALY/Pm+mhbpyfPKeHmnFhZDo91IwLI9PpoWZcGJlODzXjwsg0m9TD/WGETLN1ab1HlGcAAAAAAAAAgJZN02sAUuWb3/xmdO/ePev4ypUr46KLLirLXj/5yU9i9erVWcd79OgR3/zmN8uyV735j//4j5g0aVLOOWeeeWa0bt265D1at24dP/zhD3POufnmm2P69Okl77HJ22+/Hb/5zW9yzvmHf/iHkq5HptOhOTK9yS9+8Yu48sor88674oor4sILL0y8X7nJdDo0Z6bTTqbTobky/Z3vfCc6d+6cdfydd94p68Nx48aNi7vuuivnnKFDh0bXrl0LXlOm06GSmd5nn31ir732yjln1KhRMW3atKLXzmfq1KkxevTonHN69+4dBxxwQEHryTObuD8snkyng/vDwsk0AEDL4/NmOqgbF0ae00HNuHAynQ5qxoWT6XRQM1YzrjdqxoXVjCNkmr+oh/vDCJnmr6X5HlGeAQAAAAAAAABauAwApMyVV16ZiYicfx544IFEe9x777159/i3f/u3xNcyc+bMvPtccsklJa8/d+7czIsvvpj4nMV45JFHMttss03Oa2rdunVm+vTpifdatmxZpkuXLjn3OvjggzNr1qwpeY/Vq1dnDjrooJx7dOnSJbNs2bKS95DpwtV7pm+44Ya8//0iIvPP//zPZbiyypHpwtV7pisp39/LzJkzy7aXTBeuJWT6kksuyblXmzZtMlOnTk28z+LFizO9e/fO+/f1/PPPF722TBeuXjOdL8cRkdlnn30yixcvLtt1zZs3L7P77rvn3fcnP/lJUevKc+1pzvfozbk/LJxMF6damXZ/WDiZLk61Ml1J9XhNAEBhfN4sXL1+z7VJPXwvIM+Fq/c8+06gcDJdOjXj4sl04VpCptWMCyPTpVMzLq5mnMnIdC1qzvfpzdXD/WEmI9O1qFqZrod7RHmuPdXKcyXV4zUBAAAAAAAAQD3Q9BqA1FmxYkVm1113zfmjtE6dOmVeeumlktZ/4YUXMk1NTTnX7927d2blypWJr6XSP3x87bXXMhGR+cpXvpJ5+eWXE583l/Xr12euu+66TGNjY95r+va3v122fW+88ca8+5155pmZDRs2lHRNp59+et71b7755kTXINOFq+dM//a3v800NDTk3evCCy8sw9VVlkwXrp4zXWnN+QN1mS5cS8j08uXL8+ahe/fumddff73kPRYsWJDp379/3us6+eSTS1pfpgtXr5n+5JNPMu3atcu7z5FHHplZuHBh4mv7+OOPMwMGDMi7X5s2bTKzZ88uam15rj3N+R69JfeH+cl08aqRafeHhZPp4lXz3+lKqcdrAgAK4/Nm4er1e67Npf17AXkuXD3n2XcChZPp0qgZl06mC9cSMq1mnJ9Ml0bNuLSacSYj07WoOd+nt5T2+8NMRqZrUTUyXS/3iPJce6r5b3Sl1OM1AQAAAAAAAEA90PQagFS6//778/4wbbvttsv813/9V1HrPvTQQ5ltt90279pjxowpy3U01wMXm/4MHjw485//+Z+ZRYsWleX8mzz77LOZfv365b2WiMj07Nkzs2DBgrLtvX79+swBBxyQd9+hQ4dmlixZUvC6n376aeakk07Ku+6BBx6YWb9+feLrkOnC1Gum77333kzr1q3z7nX++eeX6QorT6YLU6+Zbg75rqPcP1CX6cK0lEw/8MADefft3Llz5sEHHyx67SlTpmT222+/vOs3NTVl3n///ZKvQaYLU8+Z/slPflLQfrvuumtm0qRJJe/z1FNPZXr27FnQXiNGjChpD3muLfmuoZIPkbk/zE2mS9PcmXZ/WDiZLk01/52ulHq8JgCgcD5vFqaev+fapB6+F5DnwtRrnn0nUDiZLk2162uVkO861Iy3TqbLQ804O5kujZrx//wptWacych0rcl3DerG+cl0bWnuTNfbPaI815Zq/htdKfV4TQAAAAAAAABQDxoDAFLo1FNPjTPPPDPuvvvurHOWLFkSJ510Unz961+Pn/3sZ7H33ntnnfv222/H5ZdfHvfee2/evc8666w45ZRTSjp3tT399NPx9NNPx3nnnReDBw+Or371q3H44YfHvvvuG61atSp4nUwmE++99148+OCDceedd8Zbb71V0OsaGxvjzjvvjK5du5Z6CX+ldevWceedd8ahhx4aq1evzjrvwQcfjMmTJ8fPf/7zOOOMM6Jdu3Zbnbdq1aq4++6745JLLokPP/ww597t27ePO++8M1q3bp3oGiJkulT1kOkXX3wxvvGNb8SGDRtyzuvVq1f069cvbr/99pL3KtaQIUNixx13LOm1Ml2aesh0vZLp0tRrpocOHRrf/va34z//8z+zzlm8eHEMHTo0jj322Lj44ovj8MMPz/mZ4a233oobbrghbr/99ti4cWPeM/zqV7+KPfbYo6TzR8h0qeop0//yL/8S999/f8yYMSPnvNmzZ8eRRx4ZxxxzTFx44YVxzDHHRJs2bXK+Zs2aNfHEE0/EtddeG5MmTSroPLvssktcccUVBZ9/c/LMJu4Pt06m08P9oUwDAFA8nzdLU0/fc21SD98LyHNp6iHPvhOQ6c3VQ6brlUyXpl4zrWb812Q6fZmup5pxhEzzF/Vwfxgh0y1ZPd4jyjMAAAAAAAAAQMvUkMlkMtU+BACUYvny5XHwwQfH9OnTC5p/0EEHxcCBA6NPnz7R1NQUy5Yti5kzZ8Zzzz0Xr7/+ekFr7L333jF58uRoampKcvT/NWvWrOjTp0/OOZdccklceumlJa0/derUOOigg/LO69ixY/Tt2zf69u0bO+64Y/To0SM6duwYbdu2jbVr18bSpUtj6dKlsXjx4vjTn/4Ub7zxRixfvryoszQ0NMQdd9wRZ599dknXks/tt98e5557bkFzt99++zj66KPjwAMPjB122CEymUwsWLAgXn/99Rg3blwsXbq04D2//e1vJzn2Z8h0fvWY6ZEjR8a3vvWtRGtUyvjx4+Ooo44q+fUynV89Zrq5NDQ05ByfOXNm7LbbbmXdU6bza0mZXr16dQwaNCheffXVgubvsMMOMXjw4OjVq1f07NkzGhsbY968eTF37tyYMGFC/Pd//3fBe48YMSJ+9atflXr0/yXT+dV7pqdOnRoDBw6MVatWFfyadu3axaGHHhoHHnhgdO3aNbp06RKZTCYWLVoUCxcujNdeey0mT54ca9asKXjNtm3bxqRJk2LAgAGlXEZEyHMtqcZ79JbcH8p0OTVnpt0f/oVMV04t/DtdbvV4TQBAcXzezK/ev+faXNq/F5Dn/Ooxz74T+AuZzi5NmW4uasalkenyUTOW6c2lNdP1VDOOkOlaUgvf3af9/jBCpmuJuvH/SHKPKM+1oxb+jS63erwmAAAAAAAAAKgHjdU+AACUqqmpKZ544ok44ogjYvbs2Xnnv/baa/Haa6+VvF+vXr3iiSeeKNuPHmvJihUrEv/3yaVNmzYxatSoOOOMMyqyfkTEOeecE7Nnz47LL78879xPP/00HnzwwXjwwQdL3u/SSy8t6w/TI2S6nOoh0/VApstHpmuDTJdPPWS6Xbt28fjjj8fRRx8db731Vt75CxYsiHvuuSfxvt/85jfj+uuvT7xOhEyXU1oz3a9fv3jggQdi6NChsXr16oJes3r16pg4cWJMnDixLGdo06ZN3HfffYkfXpZnNuf+sHgyTaXJNAAAleTzZvmk9XuuzaX9ewF5Lp96yHM9kOnykenaINPlUw+ZVjMunkyXTs24MDLN5tJ+fxgh09QXeQYAAAAAAAAAaHlaVfsAAJBE7969Y9y4cbHHHntUdJ8999wzxo0bF7169aroPvVojz32iEmTJjXLQ3GXXXZZ/Mu//EvF97nkkkvikksuqcjaMl37mjPT9UCma59MF0ema19zZrpbt24xfvz4sjx4WYh//Md/jFGjRkWrVuX7Okema1+lM3388cfH2LFjo3v37hVZP5cuXbrEI488EieddFJZ1pNnNuf+sHAyTXORaQAAKsnnzdqnblw4ea596mvFkenaJ9PFkenap2ZcHJmufWrGxZFpNpf2+8MImaa+yDMAAAAAAAAAQMui6TUAqbfnnnvG5MmT48tf/nJF1j/++ONj8uTJFf9xZb1p27Zt/PjHP46pU6fGoYce2mz7XnbZZXHvvfdGU1NT2dduamqK+++/Py699NKyr705ma5N1cp0PZDp2iTTpZPp2lStTHfr1i0mTZoU5513XsX26Ny5c9x///1x7bXXRkNDQ9nXl+na1JyZ/uIXvxivvvpqHH/88RXdZ3PHHHNMTJkyJY499tiyrivPbM79YX4yTXOTaQAAKsnnzdqkblwaea5N6mulk+naJNOlk+napGZcOpmuTWrGpZNpNpf2+8MImaa+yDMAAAAAAAAAQMuh6TUAdaFz584xduzYGDlyZHTv3r0sa3bv3j1GjRoVjz/+eGy//fZlWbO57bXXXnHTTTfFkCFDokOHDs2y57bbbhs//OEPY/r06XHVVVdV5Efi+Zx22mnxzjvvxCmnnFK2NU899dR455134tRTTy3bmrnI9Na11EzXA5neOplOL5neupaa6bZt28avf/3rmDhxYhx44IFlW3ebbbaJ7373u/Huu+9W/DOITG9dS8r0LrvsEo8//ng89NBDcdBBB1VsnwMPPDDGjBkTTz/9dPTu3bsie8gzm3N/uHUyTTXJNAAAleTz5ta1pO+5Npf27wXkeetaap7rgUxvnUynl0xvXUvNtJrx1sl0adSMy0Om2Vza7w8jZJr6Is8AAAAAAAAAAC2DptcA1JWzzz47ZsyYETfffHPss88+Ja2x7777xs033xwzZ86Mv/u7vyvzCZtXx44d4/vf/3488sgjsXDhwhg7dmxcdNFFcfTRR0enTp3Ktk/Xrl3jb//2b+Oee+6Jjz76KK6//vqKPoxQiF122SXGjBkTr776anzjG9+I9u3bF71G+/bt45vf/GZMmTIl7r///thll10qcNLcZPqzWnKm64VMf5ZMp59Mf1ZLz/SRRx4Zr732WjzyyCNxwgknRGNjY0nr7LbbbvHTn/40Zs6cGb/5zW9ihx12KPNJs5Ppz2qJmf7qV78aU6ZMiQkTJsQ555wT3bp1S7xm165dY/jw4TFu3LiYOnVqWR8izUWe2cT94V/INLVEpgEAqCSfNz+rJX7PtUk9fC8gz5/VkvNcL2T6s2Q6/WT6s1p6ptWM/4dMF6+WMl1PNeMImeYv6uH+MEKmqS/yDAAAAAAAAABQ3xoymUym2ocAgEp59913Y+zYsTFlypR466234sMPP4xly5bFypUro0OHDtGpU6fYZZddYt99943+/fvHCSecEHvttVe1j90sNm7cGO+88068/vrrMXPmzP/989FHH8Xy5ctjxYoVsXz58tiwYUO0bds22rZtG507d47u3bvHTjvtFH379o199tknDj744Nh3332joaGh2peU06pVq2LcuHExceLE+NOf/hTvvvtuLF68OJYtWxYREZ06dYouXbpE3759Y7/99oujjjoqjj766JJ+1F5JMp1dS8t0vZDp7GQ6t0svvTTn+A9/+MPYfvvtm+Usm5Pp7FpippcsWRJPP/10PPfcc/HOO+/E+++//7+fPzZs2BDt27eP7bffPnr16hV77rlnHHLIITFo0KDo169ftY/+v2Q6u5aS6UwmE2+++Wa88MIL8eabb8a7774bH330UXzyySexcuXKWLNmTUREtG3bNjp06BA9evSInXbaKfbaa6/Yf//947DDDot+/frVxPXJc/Oo1ffozbk/pBhpyHS9kOnmUY+ZrsdrAgDKz+fN7FrK91yb1MP3AvKcXUvLc72Q6exkOrda/U5AprNriZlWM65vLSXT9VQzjpDp5lKr79Obq4f7wwiZbi5pyHQ9kOfmUY95rsdrAgAAAAAAAIB6oOk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIm1qvYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEg/Ta8BAAAAAAAAAAAAAAAAAAAAAAAAAAAASEzTawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS0/QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMQ0vQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMU2vAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEhM02sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEtP0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAIDENL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDFNrwEAAAAAAAAAAAAAAAAAAAAAAAAAAABITNNrAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLT9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAxDS9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACAxTa8BAAAAAAAAAAAAAAAAAAAAAAAAAAAASEzTawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS0/QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMQ0vQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMU2vAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEhM02sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEtP0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAIDENL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDFNrwEAAAAAAAAAAAAAAAAAAAAAAAAAAABITNNrAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLT9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAxDS9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACAxTa8BAAAAAAAAAAAAAAAAAAAAAAAAAAAASEzTawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS0/QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMQ0vQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMU2vAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEhM02sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEtP0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAIDENL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDFNrwEAAAAAAAAAAAAAAAAAAAAAAAAAAABITNNrAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLT9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAxDS9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACAxTa8BAAAAAAAAAAAAAAAAAAAAAAAAAAAASEzTawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS0/QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMQ0vQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMU2vAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEhM02sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEtP0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAIDENL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDFNrwEAAAAAAAAAAAAAAAAAAAAAAAAAAABITNNrAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLT9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAxDS9BgAAAOrSsGHDoqGhYat/dtttt2ofDwAAAAAAAIAKUzcGAAAAAAAAAAAAgOan6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiWl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEBiml4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJim1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpuk1AAAAUBETJkyIhoaGrH8mTJhQ7SNSRbNmzcqZj5EjR1b7iAAAAAAAAEBC6sbkom4MAAAAAAAAAAAAUJ80vQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMU2vAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEhM02sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEtP0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAIDENL0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDFNrwEAAAAAAAAAAAAAAAAAAAAAAAAAAABITNNrAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLT9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAxDS9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACAxTa8BAAAAAAAAAAAAAAAAAAAAAAAAAAAASEzTawAAAAAAAAAAAAAAAAAAAAAAAAAAAAASa6z2AQAAAABq0Zo1a+KZZ56JZ555Jt58881477334tNPP41ly5ZFmzZtoqmpKXr16hV9+/aN//N//k8cf/zxsddee1X72J+xfPnyeOGFF+K5556Lt956K2bOnBkffvhhrFixIlauXBnbbLNNdOzYMXr06BG77757fP7zn49BgwbFkUceGU1NTdU+ftWtWLEiXnnllXjnnXdi2rRpMW3atPjwww9j6dKlsXTp0li+fHm0bt062rdvH9tvv33svPPO0adPn+jXr18ccsghMXDgwGhs9PUbAAAAAAAApJW6sbqxujEAAAAAAAAAAABA8RoymUym2ocAAAAA0u2oo46KiRMnNtt+X/ziF2PChAk55wwbNixGjRq11bHevXvHrFmztjo2c+bMuO6662LkyJGxfPnyos41YMCA+Kd/+qf42te+Fg0NDUW9tlw2bNgQDz30UPzud7+Lxx9/PNasWVP0Gh06dIgTTzwxfvCDH8SgQYMSnynX30Ul5Pr7zWX9+vUxceLEGD9+fIwfPz4mT54c69atK/kc2267bfzN3/xNnHfeeXHEEUeUvA4AAAAAAACkgbrx/1A33jp1Y3VjAAAAAAAAAAAAoOVoVe0DAAAAANSC1atXx//9v/83+vbtGzfddFPRDy5HRLz88stx6qmnxlFHHRXvv/9+BU6ZXSaTiZEjR8bee+8dp556ajz00EMlPbgcEbFy5cq4995744gjjoijjjoq3nzzzTKftnZs3Lgxxo8fH9/97nejZ8+eMXjw4Ljyyivj+eefT/TgckTE0qVL4+67744jjzwyBg4cGM8//3yZTg0AAAAAAABUgrrxX6gbqxsDAAAAAAAAAAAAlErTawAAAKDFmzlzZhx88MHxb//2b7F+/frE602aNCkGDBgQ48ePL8Pp8nv77bdj0KBB8a1vfavsD01PnDgx+vfvH5dffnlkMpmyrl0Ljj/++PjSl74Ut956ayxcuLBi+7zwwgsxaNCguPDCC2Pt2rUV2wcAAAAAAAAojbpxdurG5aFuDAAAAAAAAAAAALQUml4DAAAALdorr7wShx56aLz11ltlXXfx4sUxZMiQePbZZ8u67pbuueeeGDBgQDz//PMV22P9+vVxySWXxMknnxyrVq2q2D7VsHTp0mbbK5PJxHXXXRcnnHBCLF++vNn2BQAAAAAAAHJTN85P3bg81I0BAAAAAAAAAACAlkDTawAAAKDFevvtt+P444+P+fPnV2T9VatWxSmnnBIff/xxRda/6qqr4utf/3qsWLGiIutv6eGHH46TTjqp7h5gbm7jxo2LIUOGxNq1a6t9FAAAAAAAAGjx1I2Lo25cHurGAAAAAAAAAAAAQD1rrPYBAAAAAKph0aJFccIJJ8TChQuzzjnwwAPjkEMOie7du0f37t0jImLevHkxa9asePLJJ2PBggV595k3b16cd9558dBDD5Xr6BER8e///u9x0UUXFTy/a9euMWjQoOjTp0906dIlunbtGitXroz58+fH7NmzY9y4cfHJJ5/kXefpp5+OYcOGxb333pvk+KnSvXv3OPDAA2P33XeP7bbb7n//bNy4MZYsWRJLliyJadOmxauvvhpz584taM1JkybFiBEj4je/+U2FTw8AAAAAAABko26sblwodWMAAAAAAAAAAACAwml6DQAAACT24x//OL7xjW985n+bPn16XHPNNVlf86Mf/Sg+97nPlbTfjjvuWNLrNjds2LD485///Ff/+0477RQ//elP45RTTsm5z8aNG+OZZ56JH/3oR/HGG2/k3OsPf/hDjB8/Po4++ujE546IGDNmTPz0pz/NO6+pqSnOPffcGD58eOy3337R0NCQdW4mk4kpU6bENddcE/fee29kMpmsc++7774YMGBAXHjhhQWdd/jw4TFo0KDP/G8LFy7M+fD1t771rRg4cGBB62+pU6dOJb1uk169esVJJ50UJ5xwQhx00EFF5W3GjBlxxx13xMiRI2POnDk5595yyy1x6qmnxuDBgxOdFwAAAAAAAGqBurG6cS7qxlunbgwAAAAAAAAAAADUo4ZMrl+iAgAAAJRowoQJOR/WHT9+fBx11FEV23/YsGExatSogue3atUqfvazn8U//dM/RYcOHQp+3YYNG+LHP/5xXH/99TnnHXfccfHEE08UvG4206dPj/79+8fKlSuzzmloaIi///u/j0suuSS23377ovd47bXX4swzz4xp06ZlndOuXbt4/fXXo2/fvkWvHxExa9as6NOnT9bxO+64I4YNG1bS2sU47LDD4qWXXortttsuzj333DjjjDPiC1/4QuJ116xZE5dffnlcffXVsW7duqzz9tlnn/jTn/4UrVq1SrwnAAAAAAAA1Bp1489SN/4sdeP/oW4MAAAAAAAAAAAA1Bu/igQAAABavHbt2sWYMWPi0ksvLerB5YiI1q1bx3XXXRcXXHBBznlPPvlkzJgxI8kxY+PGjTF8+PCcDy536dIlHn744bj++utLenA5IuKggw6K559/PufD5atXr44RI0aUtH4t6dWrV1xzzTUxe/bsuPrqq8vy4HJERNu2bePKK6+McePGRVNTU9Z577zzTowZM6YsewIAAAAAAAClUzf+LHXj5NSNAQAAAAAAAAAAgJZK02sAAACgRWvVqlU8/PDDMXTo0ETrXH311bHHHnvknJP0IdXf/va38fzzz2cd79ixY4wdOzb+5m/+JtE+ERGdO3eOxx57LD7/+c9nnfPEE0/kPE8a3HfffXHhhRdGp06dKrL+oEGD4tFHH41tttkm65xbbrmlInsDAAAAAAAAhVE33jp14/JQNwYAAAAAAAAAAABaGk2vAQAAgBbtoosuimOPPTbxOm3bto2rrroq55wnnnii5PXXrl0bP//5z7OONzQ0xL333huHHHJIyXtsqX379nH//fdHU1NT1jnXXntt2farV0ceeWSMGDEi6/j48eNjzpw5zXgiAAAAAAAAYHPqxtmpG5eHujEAAAAAAAAAAADQkmh6DQAAALRY+++/f1x22WVlW++kk06KHXbYIev4Sy+9FOvXry9p7d/97nfx5z//Oev42WefHUOGDClp7Vw+97nPxQ9/+MOs4//1X/8V8+fPL/u+9eaSSy6JbbfddqtjmUwmnnzyyWY+EQAAAAAAABChblwIdePyUDcGAAAAAAAAAAAAWgpNrwEAAIAW68ILL4zGxsayrdfY2Binnnpq1vEVK1bE+++/X9Lat956a9axpqam+Nd//deS1i3EiBEjon379lsdW7duXTzwwAMV27tedOrUKY4//vis4+PGjWvG0wAAAAAAAACbqBsXRt04OXVjAAAAAAAAAAAAoKXQ9BoAAABokXr06BFf//rXy77uYYcdlnN82rRpRa85ffr0eOmll7KOf+Mb34gdd9yx6HUL1a1btxg6dGjW8SeffLJie9eTE044IevYa6+91ownAQAAAAAAACLUjYuhblwe6sYAAAAAAAAAAABAS6DpNQAAANAiDRkyJNq2bVv2dQ844ICc47Nnzy56zUceeSTn+BlnnFH0msU66qijso5NnDix4vvXg969e2cde/fdd2Pt2rXNeBoAAAAAAABA3bg46sbJqRsDAAAAAAAAAAAALYGm1wAAAECLdPjhh1dk3b333jvn+Lx584pec+zYsVnHunfvHkcccUTRaxbryCOPzDq2cOHCkh7Kbml69uyZdWz9+vXx4YcfNuNpAAAAAAAAAHXj4qgbJ6duDAAAAAAAAAAAALQEjdU+AAAAAEA1DBw4sCLrtm/fPrbZZptYt27dVseXLFlS1HqZTCYmT56cdfyggw6KVq0q//9r1rt375zjb775Zuy6664VP0c1bdy4MWbPnh2ffPJJzJ8/P5YvXx5r1qyJdevWRSaTyfv6hQsX5hyfO3du9OnTp1zHBQAAAAAAAPJQNy6OurG6MQAAAAAAAAAAAEAhNL0GAAAAWqRevXpVbO1OnTrFokWLtjq2Zs2aotaaMWNGzgee991336LWK1W7du2iQ4cOsXLlyq2Oz5kzp1nO0Zxmz54djz32WLzwwgvxyiuvxPvvv1/0318x8j3cDAAAAAAAAJSXunFx1I3VjQEAAAAAAAAAAAAKoek1AAAA0OK0bds2OnToULH1m5qasj68vHbt2qLWmjZtWs7xjz/+OG6//fai1izVNttsk3Xsww8/bJYzVNrKlSvjrrvuittuuy0mT57crHuvWrWqWfcDAAAAAACAlkzduDTqxpWlbgwAAAAAAAAAAADUA02vAQAAgBanc+fOFV2/oaEh61gmkylqrdmzZ+ccHz16dIwePbqoNSth6dKl1T5CIplMJm677ba49NJLY+7cuVU5w5o1a6qyLwAAAAAAALRE6sblp26cnLoxAAAAAAAAAAAAUA80vQYAAABanLZt21b7CAX76KOPqn2EgqxataraRyjZxx9/HGeeeWaMHz++qufYsGFDVfcHAAAAAACAlkTduPzUjZNTNwYAAAAAAAAAAADqgabXAAAAADVs2bJl1T5CQdasWVPtI5Tkvffei2OPPTY++OCDah8FAAAAAAAAYKvUjStL3RgAAAAAAAAAAACgvFpV+wAAAAAAZLdq1apqH6EgmUym2kco2ieffBLHHXecB5cBAAAAAACAmqZuXDnqxgAAAAAAAAAAAADl11jtAwAAAACQ3bp166p9hLo1bNiwmDVrVkFz27ZtG4ccckj0798/+vbtG3369ImePXvGDjvsEB07doyOHTtGY2NjNDZm/7pt1qxZ0adPnzKdHgAAAAAAAGgp1I0rR90YAAAAAAAAAAAAoPw0vQYAAACoYW3btq32EerSmDFjYuzYsXnnfelLX4rzzz8/TjjhhOjQoUOiPTOZTKLXAwAAAAAAAC2TunFlqBsDAAAAAAAAAAAAVIam1wAAAAA1LN8Ds7fddlucc845zXSa+nH55ZfnHO/YsWPcfvvtccYZZ5RtzyVLlpRtLQAAAAAAAKDlUDeuDHVjAAAAAAAAAAAAgMrQ9BoAAACghnXt2jXn+OrVq5vpJPXj5ZdfjjfffDPr+DbbbBPjxo2LAQMGlHXfxYsXl3U9AAAAAAAAoGVQNy4/dWMAAAAAAAAAAACAymlV7QMAAAAAkF2vXr1yjs+bN6+ZTlI//vCHP+Qcv/TSS8v+4HJExKJFi8q+JgAAAAAAAFD/1I3LT90YAAAAAAAAAAAAoHI0vQYAAACoYbvvvnvO8VmzZjXPQerIs88+m3WsXbt2ccEFF1Rk3xkzZlRkXQAAAAAAAKC+qRuXn7oxAAAAAAAAAAAAQOVoeg0AAABQww444IBo3bp11vHXX3+9GU9TH95+++2sY8cff3x06tSpIvs+99xzFVkXAAAAAAAAqG/qxuWnbgwAAAAAAAAAAABQOZpeAwAAANSwjh07xn777Zd1/K233orFixc344nSbeXKlbFgwYKs4/vuu2/F9n7++ecrtjYAAAAAAABQv9SNy0vdGAAAAAAAAAAAAKCyNL0GAAAAKqJ169Y5x9etW9dMJ0m/wYMHZx3bsGFDPProo814mvKoVj6WLVuWc7xnz54V2fell16K+fPnV2RtAAAAAAAAqFXqxuWjblw+6sYAAAAAAAAAAAAAlaXpNQAAAFARbdq0yTm+atWqZjpJ+g0dOjTn+G233dZMJymfauVj7dq1OcfzPVRdql/96lcVWRcAAAAAAABqmbpx+agbl4+6MQAAAAAAAAAAAEBlaXoNAAAAVESnTp1yji9durSZTpJ+AwcOjD59+mQdnzRpUjz33HPNeKLkqpWP9u3b5xyfN29e2ff86KOPYsyYMWVfFwAAAAAAAGqdunH5qBuXj7oxAAAAAAAAAAAAQGVpeg0AAABURLdu3XKOz5gxo5lOkn6tWrWK888/P+ecESNGxLp165rpRMl16NAhOnTokHW8Uvno3LlzNDY2Zh2fPHly2fdM298NAAAAAAAAlIu6cfmoG5ePujEAAAAAAAAAAABAZWl6DQAAAFTEDjvsEO3bt886/vbbbzfjadLv3HPPja5du2YdnzJlSvzkJz9pxhMlt+uuu2Ydq1Q+WrduHb179846Pn78+FiyZEnZ9hs1alT8/ve/L9t6AAAAAAAAkCbqxuWlblwe6sYAAAAAAAAAAAAAlaXpNQAAAFARDQ0N0bdv36zjTz75ZKxfv74ZT5Ru2223XVx66aU551x//fVxxRVXNM+BImL9+vXx8MMPl/z6vffeO+vY5MmTY/78+SWvncshhxySdWzVqlVx5ZVXlmWf1157LUaMGFGWtQAAAAAAACCN1I3LS924fNSNAQAAAAAAAAAAACpH02sAAACgYg499NCsY4sXL45f//rXzXia9DvvvPNiwIABOef87Gc/i1NOOSWWLFlSsXMsW7Ysbrrppujbt2+cf/75Ja+TKx8bN26MX/ziFyWvnctxxx2Xc/yXv/xlPPHEE4n2eOGFF+K4446LpUuXJloHAAAAAAAA0k7duLzUjctD3RgAAAAAAAAAAACgcjS9BgAAACpm8ODBOcd//OMfxzXXXBMrVqxophOlW2NjY9x1113R1NSUc94DDzwQ/fv3j9GjR8f69evLsvfGjRtjwoQJce6558ZOO+0UF1xwQcycOTPRmvny8ctf/jIuuuiiWLx4caJ9tjR06NDo0KFD1vF169bFKaecEvfff3/Ra2/YsCGuueaaOProo2PBggWfGWvdunXR6wEAAAAAAEDaqRuXl7pxeagbAwAAAAAAAAAAAFROQyaTyVT7EAAAAEB9WrFiRfTs2TOWL1+ec17Hjh3jiCOOiP322y969OgRTU1Nsc0222Sdv+OOO8aQIUNyrjls2LAYNWrUVsd69+4ds2bNynv+Uu22227xwQcfbHXs7LPPjpEjRyZa/9FHH42TTz65oAeTe/XqFT/4wQ/i+OOPj/333z8aGhoK3uf999+PF154IZ5++ukYO3ZszJs376/m7LzzzjFnzpyizr+5PfbYI2bMmJFzTps2bWLQoEGx//77x8477xwdO3aMtm3bZp3fqVOnOP3003OuecEFF8RNN92U93ynnHJK/OhHP4rDDjss57ylS5fGfffdF1dffXW8++67W51z8cUXxxVXXJF1jTvuuCOGDRuW90wAAAAAAACQJurGf03d+LPUjf9C3RgAAAAAAAAAAACoB5peAwAAABV14YUXxnXXXVfWNb/4xS/GhAkTcs6p54eXIyJGjRoVw4cPj40bNxb8ms6dO8fAgQOjd+/e0blz5+jSpUs0NTXF2rVrY+XKlTF//vyYO3duvP/++zF9+vT49NNP866Z9OHlG2+8MUaMGFHy67emkL/fBQsWRN++fWPx4sUFrbnbbrvFwIEDo2/fvtG5c+do06ZNLF++PD744IOYOnVqvPzyy7F27dqsr//qV78av/zlL6NPnz5Z53h4GQAAAAAAgHqlbvxZ6safpW78F+rGAAAAAAAAAAAAQD1orPYBAAAAgPp28cUXx1133RWffPJJtY9SV84+++xoamqKs846K9asWVPQaxYvXhyPPvpohU9WnO9+97txyy23xFtvvdWs++6www5x6623xt/+7d8WNH/WrFklP/Dev3//uPPOO2PhwoUlvR4AAAAAAADSTt24MtSNk1E3BgAAAAAAAAAAAKiMVtU+AAAAAFDfOnfuHL///e+jQ4cO1T5K3TnllFNi0qRJsccee1T7KCVr06ZNPPDAA9GtW7dm3/vUU0+Nn//85xXdY//994/HHnssOnXqVNF9AAAAAAAAoJapG1eOunEy6sYAAAAAAAAAAAAA5afpNQAAAFBxhx9+ePzxj3+Mz33uc9U+St0ZMGBAvPbaa/H9738/Ghsbm3Xvjh07xsknn5x4nb59+8aLL74Yhx56aPJDFeniiy+OX//619GmTZuyr/2Vr3wlnn/++ejRo0fZ1wYAAAAAAIC0UTeuHHXjZNSNAQAAAAAAAAAAAMpL02sAAACgWfTv3z/eeOONuPXWW6Nfv37VPk5d6dSpU9x0003xxhtvxGmnnVbRh5gbGhri6KOPjpEjR8bHH38cN910U1nW3X333eOFF16Ie+65JwYNGhQNDQ1lWbcQ5513Xjz77LOx5557lmW9rl27xu233x6PPPJIdOrUqSxrAgAAAAAAQD1QN64cdeNk1I0BAAAAAAAAAAAAyqdyv2QFAAAA2EKbNm3i3HPPjXPPPTdmzZoVEyZMiFdeeSXefffdmDNnTixYsCCWLVsWa9eujY0bN1b7uKmzzz77xL333hsffvhhjBw5Mh544IGYMmVK4nV79+4dxxxzTAwePDiOOeaY6N69exlO+9caGhri9NNPj9NPPz0+/vjjGD9+fEyePDmmT58ef/7zn2P+/PmxdOnSWLNmTdnzccghh8Q777wTo0ePjl/84hfx9ttvF73GnnvuGeeff34MHz48tttuu78ab9u2bXzhC1/I+voddtih6D0BAAAAAAAgbdSNK0vduHTqxgAAAAAAAAAAAADl0ZDJZDLVPgQAAAAAlfHRRx/FCy+88JmHgOfOnRvLly+PVatWRUNDQ3Tq1Ck6deoU2267bXTt2jX22muv2HvvvWPvvfeO/fbbL3r37l3ty2h2b731VowfPz4mTJgQM2bMiIULF8bChQtjzZo10bFjx2hqaorevXvH5z73uejXr18cd9xxsffee1f72AAAAAAAAAB/Rd24NOrGAAAAAAAAAAAAAKXR9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAxFpV+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApJ+m1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpuk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIlpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAYppeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJCYptcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKbpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAACJaXoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGKaXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQmKbXAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSm6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiWl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEBiml4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJim1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpuk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIlpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAYppeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJCYptcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKbpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAACJaXoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGKaXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQmKbXAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSm6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiWl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEBiml4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJim1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpuk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIlpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAYppeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJCYptcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKbpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAACJaXoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGKaXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQmKbXAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSm6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiWl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEBiml4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJim1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpuk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIlpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAYppeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJCYptcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKbpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAACJaXoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGKaXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQmKbXAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSm6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiWl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEBiml4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJim1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpuk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIlpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAYppeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJCYptcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKbpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAACJaXoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGKaXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQmKbXAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSm6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiWl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEBiml4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJim1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpuk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIlpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAYppeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJCYptcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKbpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAACJaXoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGKaXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQmKbXAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSm6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiWl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEBiml4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJim1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpuk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIlpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAYppeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJCYptcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKbpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAACJaXoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGKaXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQmKbXAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSm6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiWl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEBiml4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJim1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpuk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIlpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAYppeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJCYptcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKbpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAACJaXoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGKaXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQmKbXAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSm6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiWl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEBiml4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJim1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpuk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIlpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAYppeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJCYptcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKbpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAACJaXoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGKaXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQmKbXAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSm6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiWl6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEBiml4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJim1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkpuk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIlpeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAYppeAwAAAAAAAAAAAAAAAAAAAAAAAAAA/H/2/jxMrrLOG//fVd3ZFwIJJOxhk21GBBQVXBCURWaUmGhQHGWYwVEwM+q4jT4KuA2KzoiAIzPPzxEVMAoEhmdUZFfhq0EIAVkShYBIIIFA9qQ73VW/P4omW29JV3VVd79e13WudJ/7rvv+nD7d6bP0eRcAfSb0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAIA+E3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ8JvQYAAAAAAAAAAAAAAAAAAAAAAAAAAACgz4ReAwAAAAAAAAAAAAAAAAAAAAAAAAAAANBnQq8BAAAAAAAAAAAAAAAAAAAAAAAAAAAA6DOh1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0mdBrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPpM6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfSb0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAIA+E3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ8JvQYAAAAAAAAAAAAAAAAAAAAAAAAAAACgz4ReAwAAAAAAAAAAAAAAAAAAAAAAAAAAANBnQq8BAAAAAAAAAAAAAAAAAAAAAAAAAAAA6DOh1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0mdBrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPpM6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfdZc7wIAGHqmTJmS5cuXb7V+2LBh2Wuvvfq/IAAAAAAAqIE//elP2bBhw1brJ0yYkGeeeaYOFQFA43DfGAAAAACAocB9YwDonHvGAAAAAAAMBUP5nnGhXC6X610EAEPLyJEj09LSUu8yAAAAAACgLkaMGJH169fXuwwAqCv3jQEAAAAAGMrcNwZgqHPPGAAAAACAoWwo3DMu1rsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY+odcAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9JnQawAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6TOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAH3WXO8CABh6hg0blpaWlq3WjxgxIvvtt18dKgIAAAAAgOp79NFHO70ePmzYsDpUAwCNxX1jAAAAAACGAveNAaBz7hkDAAAAADAUDOV7xkKvAeh3e+21Vx566KGt1u+333558MEH61ARAAAAAABU36GHHtrp9fC99tqrDtUAQGNx3xgAAAAAgKHAfWMA6Jx7xgAAAAAADAVD+Z5xsd4FAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDwCb0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM+EXgMAAAAAAAAAAAAAAAAAAAAAAAAAAADQZ0KvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAOgzodcAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9JnQawAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6TOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAH0m9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAPhN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAECfCb0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM+EXgMAAAAAAAAAAAAAAAAAAAAAAAAAAADQZ0KvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAOgzodcAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9JnQawAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6TOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAH0m9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAPhN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAECfCb0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM+EXgMAAAAAAAAAAAAAAAAAAAAAAAAAAADQZ0KvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAOgzodcAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9JnQawAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6TOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAH0m9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAPmuudwEAAAAAAAAAAAAAAAAAAAAA0OjK5XLa29tTKpVSLpfrXQ4AfVQoFFIsFtPU1JRCoVDvcgAAAAAGDaHXAAAAAAAAAAAAAAAAAAAAALCJUqmUdevWZc2aNVmzZk1aWloEXQMMYoVCISNGjMiYMWMyZsyYjBo1KsVisd5lAQAAAAxIQq8BAAAAAAAAAAAAAAAAAAAAGPLK5XJWrVqVF154IevWrRNyDTCElMvlrF+/PuvXr8+yZctSKBQyatSo7Ljjjhk3blwKhUK9SwQAAAAYMIReAwAAAAAAAAAAAAAAAAAAADCkrVu3LkuWLMm6devqXQoADaBcLmft2rVZu3ZtRo0alcmTJ2fUqFH1LgsAAABgQBB6DQAAAAAAAAAAAAAAAAAAAMCQVC6Xs2zZsjz77LP1LgWABrVu3bo8/vjj2XnnnTNx4sQUCoV6lwQAAADQ0Ir1LgAAAAAAAAAAAAAAAAAAAAAA+lu5XM7SpUsFXgPQK88++2yWLl2acrlc71IAAAAAGprQawAAAAAAAAAAAAAAAAAAAACGnKVLl+b555+vdxkADCDPP/98li5dWu8yAAAAABqa0GsAAAAAAAAAAAAAAAAAAAAAhpQ1a9YIvAZguzz//PNZu3ZtvcsAAAAAaFhCrwEAAAAAAAAAAAAAAAAAAAAYMkqlUp555pl6lwHAAPb000+nVCrVuwwAAACAhtRc7wIAAAAAAAAAAAAAAAAAAAAAoL88//zzaW1t7XX/ESNGZMyYMRk1alSamppSLBZTLBZrWCEA/aFUKqVUKqW9vT3r1q3LmjVr0tLS0qvXtra25oUXXsjEiRNrXCUAAADAwCP0GgAAAAAAAAAAAAAAAAAAAIAhY9WqVb3qt9NOO2XixIlpbhbPATDYjR8/PknS1taWZcuW5fnnn+/xNStXrhR6DQAAANAJV9UBAAAAAAAAAAAAAAAAAAAAGBI2bNiQ9evXd9unUChkjz32yNixY/upKgAaRXNzcyZPnpwxY8bkz3/+c8rlcpd9169fn7a2Nm+OAAAAALCFYr0LAAAAAAAAAAAAAAAAAAAAAID+sHr16h777LzzzgKvAYa4sWPHZuedd+6x36pVq/qhGgAAAICBReg1AAAAAAAAAAAAAAAAAAAAAENCT6HXhUIhO+64Yz9VA0Aj23HHHVMoFLrt05s3UwAAAAAYaoReAwAAAAAAAAAAAAAAAAAAADAkrFu3rtv2MWPGpFgUxwFAUiwWM3r06G779PR7BQAAAGAocpUdAAAAAAAAAAAAAAAAAAAAgEGvXC6nvb292z5jx47tp2oAGAh6+r3Q3t6ecrncT9UAAAAADAxCrwEAAAAAAAAAAAAAAAAAAAAY9EqlUo99hg0b1g+VADBQDB8+vMc+vfn9AgAAADCUCL0GAAAAAAAAAAAAAAAAAAAAYNBrb2/vsU9TU1M/VALAQNGb3wu9+f0CAAAAMJQIvQYAAAAAAAAAAAAAAAAAAABg0CuXyz32KRZFcQCwUW9+L/Tm9wsAAADAUOJKOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9JvQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD4Teg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAnwm9BgAAAAAAAAAAAAAAAAAAAAAAAAAAAKDPhF4DAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GdCrwEAAAAAAAAAAAAAAAAAAAAAAAAAAIDqKBTqXQF1JPQaAAAAAAAAAAAAAAAAAAAAAAAAAAAA6LuOwGvB10OW0GsAAAAAAAAAAAAAAAAAAAAAAAAAAACgb7YMuhZ8PSQJvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAC2X1cB14Kvhxyh1wAAAAAAAAAAAAAAAAAAAAAAAAAAAMD26SnYulBIZszon1qoO6HXAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLbrKfC6wzXXCL4eIoReAwAAAAAAAAAAAAAAAAAAAAAAAAAAANumt4HXHa65Jpk0qTa10DCEXgMAAAAAAAAAAAAAAAAAAAAAAAAAAAC9t62B1x2WLRN8PcgJvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAB6Z3sDrzssW9b3MWhYQq8BoJ+0l9obahwAAAAAAAAAAAAAAAAAAAAAAAAAgG0yaVL1xhJ8PSgJvQaAfrCyZWVOnX1q5jw8p0/jzHl4Tk6dfWpWtqysUmUAAAAAAAAAAAAAAAAAAAAAAAAAAL0wY0aybFl1xxR8Peg017sAABjsVraszMyrZ2b+M/Mz7+l5SZJpB09LFi9O5s5N7r8/efDByoHbhg3JsGHJxInJoYcmL395ctRRyW67Zc7DczLrZ7NSKpcy8+qZmT1jdsaPGF/nrQMAAAAAAAAAAAAAAAAAAAAAAAAABr0ZM5JrrqnN2IVCUi7XZmz6ndBrAKihTQOvk6RULmXWnLOSC7+WaT9/ovsX/+pXL30456SpmbX/wpRGDE+SzH9mvuBrAAAAAAAAAAAAAAAAAAAABpRvfvObWb58+VbrP/KRj2TChAn9Xg8AAAAA26BWgdcdBF8PGkKvAaBGtgy8TktLsmpVSu3tmTVxbjJ1h0x7fGSP48yZuj6zJv42peVJmpqSceOSESMEXwMAAAAAAAAAAAAAAAAAADCgfPOb38wTTzyx1fozzjhD6DUAAABAIysU+m8ewdcDntBrAKiBzQKvy+Vk1apk3bqX2kuFZNYxK5KkEnzd3p6sXVv5dxNzDmjPrKNbUyonKScplZLnn0+am5Pm5sxffkdmfv7gzF7yhowvD+/HLQS61N6erF9f+XkFAAAAIDnooOQDH0imTq13JQAAALVXKiXLlycrVtS7EgAAAIDGMGxYMmlSMnJkvSsBAAAAAAAAYHv1V+D1pvMJvh7QhF4DQJVtFnjd3p688MJWYdbJJsHXq1Zm2u+3bp9zUDLrzUmnsbltbZUlyfysy8zyjzP7+uEZ39rPB4PA5srlTn/eAQAAAIa0//f/kn//9+Tkk5Nrr613NQAAALWzdGny//1/lTdHBwAAAGBzBxyQHHlk0uyxVgAAAAAAAIABpb8DrzedV/D1gFWsdwEAMJhsHXj9fNcBuOVySuVSZp3QnjkHbd4056Bk1lsrwdi9MX/nUma+vTUrhzsog7oReA0AAADQtfb2Svj12WfXuxIAAIDaWLs2ue02gdcAAAAAXfnDH5J77ql3FQAAAAAAAABsi3oFXjfK/Gw3odcAUCWbBV6Xy8kLLyTtpa07lstJqfTSu4aUCpWA647g620NvO4g+BrqrNTJzzsAAAAAm7viinpXAAAAUBsPPJBs2FDvKgAAAAAa2x/+kKxeXe8qAAAAAAAAAOiNRgmcbpQ62CbN9S4AAAaD9lJ7Tr/29ErgdZKsWpW0t2/dsYtQ3I7g6+sOSm7Zd9sDrzvM37mU009Zn+t+XExT2cFZI2hLKStHdt9n/Pqk2XuRDHyd/cwDAAAAkAwbtvHjdeuS5cuTCRPqVQ0AQEN5dvWzaW1v7bJ97PCx2WHUDv1YEbXQ037eYdQOGTt8bD9WRC20PPtMSqVN9nPL+qSt7aVPh6UpzYWmOlRGNbWUN6SUrt+Q3n4eHNaXN6RsPw969vPQYD8PDfbz0GA/Dw3289BgPw9Ro0YlTZvs12XLkrGuhwEAAAAAAAA0NEHT9JHQawCogqZiU858xZmZ9/S8lNavqwS3bKmLwOuXmgvJTfv1rY5iOTnz3qSprfu56D8rRyY/3bf7Pn+1MJnQIjAZAAAAgCHi8ceTV7yi3lUAADSE2Q/NzgvrXuiy/ajdj8qJ+5/YjxVRCz968EdZvn55l+328+Dwx9V/yvoNyzeuWPRY5U3TX7RbaXR2LY3p/8Koqj80P5+WdP03HruXxmRKaXQ/VkQt/NF+HhL+0Lwsren67+z2KI3JZPt5wFvYvCwb7OdBr6f9vGdpbHYpjerHiqiFBc3Ppa2bkNy92sdm57L9PNDZz0PDI83Ppb2b/bx3+9hMsp8Hn7/4i2SHTd7cb/36+tUCANBHpXIpLW0t9S4DtjKieUSKhWK9ywAAAABgsGi0wOty139rQOMSeg0AVTLt4GlJe1tm/fD0rf90vofA62oolpOLf5pMe6TmUwEAAAAAAAAAAAAAAAAAwJDS0taSh559qN5lwFYO2fmQjBrmTYQAAAAAqAKB11SJt+kDgCqa9vioXPzLsSluemwk8BoAAAAAAAAAAAAAAAAAAAAAAAAAaFQCr6mi5noXAACDyuWXZ9rjI5Mks45ZkVJZ4DUAAAAAAAAAAAAAAAAAAABDz5o1a7Jo0aLN1m3YsKHTvgsXLszq1at7PfYuu+ySXXbZpU/1dXj++edz44035tZbb81DDz2URYsWZeXKlWlpacmECROy33775fOf/3ze+ta3VmW+RtXe3p5f//rXueOOO/K73/0ujz76aJ555pmsWbMmpVIpY8aMya677poDDjggr33ta3PSSSflFa94Rb3LBgAAAKpB4DVVJvQaAKpl8eLkzjuTJNMeG56sTGadmJRqePzWaeD1yJGNd9A4lI0sJcN7CD8fWUyKxf6ph9ppa9v889IW+71Q8LMJAAAADH5dPIQAAAAw5O26WzL1L+pdBX3V8mSStq7bm3ZMmif0VzXUiv08NPS4n3dKmnfot3KokZY/JWnvut1+Hhzs56Gh5Ykk3fw9bvPEpGl8v5VDjdjPQ0OP+3lS0jSu38qhRu66y8PHAADAS+6+++686U1v6lXfE088cZvGPvfcc3Peeed12jZ16tQ88cQTW61ftGhRpk6d+tLnTzzxRL7whS/kyiuvzPr16zsd67nnnstzzz2XhQsXdhp63du5ttf3vve9/O3f/u1W69///vfne9/7Xp/HT5Jnnnkm//7v/57LL788S5Ys6bLf8uXLs3z58jz88MP5n//5n/zLv/xLDjnkkHzyk5/Me9/73jQ1NVWlHgAAAKCfNVo+mnvOg4J0RQColrlzN368cmWmPVjKxT+tBFPXQqeB18nWQbsAAAAAAAAAAAAAAAAAAADASy655JIccsgh+e53v9tl4PVg19rami996UvZd99987Wvfa3bwOuuPPTQQznjjDNy1FFH5f77769BlQAAAEBNCbymRoReA0C1dNyAaWlJ1q1LUgmkrkXwdZeB14nQawAAAAAAAAAAAAAAAAAAAOjCOeeck1mzZmXt2rX1LqVunnzyyRxzzDH53Oc+l3Uv5iP0xb333pvXvva1ufrqq6tQHQAAANAvBF5TQ831LgAABo0HH6wcKK1YsdnqjmDqWW9NSlU4rus28DqphF47YGsc5XLP+6M3fWh8W+5D+xQAAAAAAAAAAAAAAAAAABrK//k//yff/va3611GXT3yyCM57rjj8vTTT1d13LVr1+a0007LD3/4w5x22mlVHRsAAACoMoHX1JjQawColmXLkvXrk/b2rZqmPZJcd1By0359n+b4x7oJvE4EKDea3uwL+wwAAAAAAAAAAAAAAAAAAKCmfvGLX+TLX/7yVuunTJmSU045JW94wxsyZcqU7Lzzzmltbc2TTz6ZuXPn5ic/+Ukdqq2NP/3pT3nTm96UZ555pss+48ePz5ve9KYce+yx2W+//TJx4sSMGDEiS5cuzaOPPpqf//znueWWW7J+/fqtXtve3p73v//92WefffLqV7+6lpsCAAAAbK9Jk+pdwebk8A1KQq8BoFo2bEhWr+60ac5ByS37VmeaW/atjNdt8HWpVJ3J6LtSKelpd5TKPfeh8W15wuQECgAAAKBi0+skjfauzwAAAAAAAAAAAADUzLHHHpvyFs/cTp06NU888cRWfRctWpSpU6fWtJ5PfOITm30+ceLEfPnLX85ZZ52VYrG4Vf9Xv/rVmTFjRr7yla9k6dKlNa2tP6xfvz6nnnpql4HXkyZNyic/+cl88IMfzLhx47oc58Mf/nD+/Oc/5zOf+Ux+8IMfbNXe2tqamTNn5sEHH8yYMWOqVj8AAABQBZMmJcuW1buKjeS1DVpCrwGgWkqlpK1tq9VzDkpmvTUpVSnLpVSojJd0EXxdLjt4ayTlctLT7ijHPhsMhF4DAAAAdK7jOkmh4JoJAAAAAAAAAAAAAHWzcuXKlz4+9NBDc/PNN2fKlCk9vq65uTm77bZbLUvrF+eee27mzZvXadsxxxyT2bNnZ/fdd+/VWHvssUe+//3v53Wve13OPvvstLe3b9b+xBNP5LzzzsuFF17Y57oBAACAKpkxo7ECr6dPr3cF1NDWbzEHAGyf9eu3WlXtwOsOHcHXcw6q7rhADRWq/B8BAAAAwECzafg1AAAAAAAAAAAAANTJ/vvvn9tuu61XgdeDxcMPP5x/+7d/67Tt9a9/fW655ZZeB15v6gMf+EC+9a1vddp26aWXZsmSJds8JgAAAFAj11xT7wo2mj49ufrqeldBDTXXuwAAGDRWrdrs0y0Dr8tJqhHl0jFOR/B1kkx7ZItOQmMaR6HQ844vxD4bDLbch53tU/sZAAAAGOrK5aTofXkBAAAAAAAAAAAAqJ//+q//ys4771zvMvrV+eefn7a2tq3W77XXXpkzZ05GjBix3WOfffbZuemmm3Lddddttn7dunW57LLL8vnPf367xwYAAACqpJEy0CZOFHg9BAi9BoBqWbbspQ+3DLwuJVk+Khm9IRm59X2gXlvfnKwdlkxYlxTTTfB1ubz9k1Bd5XIlqbzbPrHPBoMt96F9CgAAANC5UqneFQAAAAAAAAAAAAAwRJ122mk59thj611Gv3rqqadydRdBUhdccEEmTpzY5zm+8pWv5Prrr095i2esL7/8cqHXAAAAUG+NFHidJM89V+8K6AdCrwGgWtauTdJ14PWGYrLixTc33Z7g6/XNG1+/fFQPwdfCduuivVBOU3mLg/re7IstQq87HYfG16t97WcTAAAAQOg1AAAAAAAAAAAAAPXyD//wD/Uuod99//vfT3t7+1brDz300Jx22mlVmePggw/OCSeckBtvvHGz9Y899lgeeeSRHHTQQVWZBwAAANhGjRZ4LYttyCjWuwAAGDRaW7sMvG4tVtaVCpXg6vXb+LYTHYHXHWO0FivjdkTDdARfz3Gfp25WDi/n1HeVMufAvh1IzzmwMs7K4Q7IAQAAABhkCoXKIvQaAAAAAAAAAAAAgDrYe++988Y3vrHeZfS766+/vtP1p512WgpVDL56y1ve0un62267rWpzAAAAANtA4DV1tI2RmwBAV+Yc0J5ZJ3ceeF3e5HivI/g6SUa29TzupoHXHcqbBF9PWFd5F4uO4OskmfbHBjvAHORWDi9n5jvKmT85mTellBSKmbbgxfcW6c3BfqHSb86Bpcw6sZRSIZk5vZzZ1xYyvtW+HDA23dddnVQ12skfAAAAQLV1dl3ENREAAAAAAAAAAAAAGsAxxxxT1ZDngWD58uW5++67O22bNm1aVed63ete1+n6efPmVXUeAAAAoBca7RqIwOshR+g1AFRBe6k93z283GPgdYfOgq+L5eT4x5Jb9t0YcN1Z4HWHroKvv3t48rZHy2nqbGKqrhJ4Xcr8yZUD6VIhmXViKUkybUExrcVylozpfozWYjYLvE6S+ZMr486+tij4eiDpOKHq7MTKyRYAAAAwVHVcF2m0m+MAAAAAAAAAAAAADClHHHFEvUvod/fee29KpdJW60eMGJGDDjqoqnPtvvvuna5/5JFHqjoPAAAA0INGe6ZXBtuQJPQaAKqgqdiUK+YUM/Mdpcyb0n3gdYdNg69Hb0i+9dNk2iPJnIOSf3xrsnZY14HXHbYMvj78meSKayPwup9sGXjdYdPg66OequzL7vy/A8r5/JvKW+1rwdcDTLnc80mVky4AAABgKCuXG+8mOUAnWlpasnDhwvz5z3/OqlWrsnbt2owePTrjxo3LHnvskQMPPDDDhw+vd5kAAAAAAAAAAABso0MOOaTeJfS7Bx54oNP1+++/f5qamqo618SJEztd/9RTT1V1HgAAAKAbjfYsr+y1IUvoNQBUyfjSsPzX/7Tk8A/2HHjdoSP4+qzfVQKvk8q/v909+fox3Qded+gIvm4vJv/1P8n4lvgN3w+6Crzu0BF8fd4dSdL1jnxoUjn/8cqu5xF8PcB0nOh1dYLVaCeCAAAAANXmTcGAAeo3v/lNrrvuuvzsZz/Lgw8+mPb29i77NjU15dBDD81b3/rWvP3tb89rXvOafqwUAAAAAAAAAACA7TVhwoR6l9DvnnjiiU7XP/jggyn007PPy5Yt65d5AAAAYMhrtJwzzxUPaSIxAaBKVu44Omcd35K2XgZedygXkisOS179VCXwes5Blc+3dYy2YnLW25LZVyfj2xzg1dLGwOvu+5UKyeeOTY59vJyDn9u6/eFJyU8PSEa1JcVudlkl+Lo9s68RfN3QenNi5eQLAAAAAKCh/OhHP8qFF16Ye++9t9evaW9vz/3335/7778/F1xwQY488sh84hOfyMyZM2tY6cD2la98JZ/97Gd71XfRokWZOnVqbQuqgsG4TQAAAAAAAAAAMNiNHz++3iX0u8WLF9e7hKxbt67eJQAAAMDgJ/CaBlOsdwEAMBi0l9pz+inr89vdk+Ujt+215SSLxyb/+NbkjFMr/y4eW1m/LZaPTH67e3L6O5L2goO8Wlk5vJyZ03sOvO5QKiQ3HJjctUfy9NiNy117VNa3FXu3r+dPTmZOL2XlcPu2ITmxAgAAAAAYUB555JG88Y1vzLvf/e5tCrzuzD333JPTTjstb3rTm7JgwYIqVTh4LFy4MF/84hfrXUZVDcZtAgAAAAAAAACAoWDMmDH1LqHfrVq1qt4lpLW1td4lAAAAwOAm8JoGJPQaAKqgqdiUA18YlhdGbd/ry4VK0PVN+70YeL2dx40vjEoOXJo0lVI52LNUdVk5rNRt4HVXh9flJL/eO1k0ofL5ogmVz7vr35mXgq+Hler+tbB0sgAAAADQuVKpsriGAjSIa6+9Nq961avyy1/+sqrj3n777XnlK1+ZOXPmVHXcgaxcLucDH/hA1q9fX+9SqmYwbhMAAAAAAAAAADB4tbS01LsEAAAAoJYEXtOghF4DQBU8u/LZfOMvV/ZpjHIheboPgdcdvvG65NkRpb4NwlbaC+Wc/o5yl4HXpVRCx9c3d97eEXx96z7dB16vb66M09UenD85Of0d5bQXHNADAAAAMMB0vHlYU1O9KwGGsEsvvTQzZszI6tWrazL+6tWrM3369Hz729+uyfgDzX/913/ljjvuqHcZVTUYtwkAAAAAAAAAABi8ikXxQgAAADBoCbymgXURywgAbIudx++cCeuT5SPrXUkyYV2yc4sbT9XWVC7kzHnJvCnllLY4vi8lWT4q2VBMVoyorBvZtvUY5SR/Ht/1HOubN75++ajKvtxyTxbLyZnzCmnqazo6AAAAAAAMMZdffnlmzZqVco3/cKZcLufDH/5wxo4dm/e97301nauRPf300/nkJz9Z7zKqajBuEwAAAAAAAAAAMLiNHj260/Uvf/nLc8UVV/RzNQAAAEDVCLymwQm9BoAqeeE/xmfHD67M8lH1q2HCuuSFryVparCD0EFi2sJCUihn1kmll4KvNw28LhWSQroPvu5KR+B1uVAJx95Q3Dr4ulhOLv558cU6qrddVImTLQAAAICuddw4LxSSpqb61gIMSXPnzs1ZZ53Vq8Dro48+Ou95z3ty9NFHZ+rUqRk3blxWrVqVxx57LHfddVeuuOKK/Pa3v+12jHK5nLPOOisHH3xwXvWqV1VrMwaUc845JytWrKh3GVU1GLcJAAAAAAAAAABobC0tLX16/cSJE7sc9y/+4i/6NDYAAABQJwKvGQCKPXcBAHqlrS0vfK0SUlwPLwVeU1PTFhRy8c+LKZa3DrxOKoHV5UIlwHp9L99epKVp88DrpDJeR/B1KZsEXi9osJMMAAAAAOjJljfOS6X61AEMWStXrsxpp52WDRs2dNvvgAMOyM0335w777wz55xzTg4//PDsuOOOaW5uzo477pgjjzwys2bNym9+85vceOON2W+//bodr7W1NTNnzszKlSuruTkDwrXXXps5c+bUu4yqGozbBAAAAAAAAAAA9F1TU1On69vb26sy/vPPP9+n1++11141GRcAAACok0mT6l3B5gRe0wWh1wBQLS8GtdQj+HqrwOtCwVLDZdrCYr56S2GrwOsOmwZft3R+j/IlbYVk1RaB1x02Db7+6i2Veeu97ZZuFgAAAAA6t+U1FDevgX72+c9/PosWLeq2z5vf/ObcfffdOf7443s15gknnJDf/e53edOb3tRtv0WLFuW8887rbamDwooVK/LhD3+407Z99923n6upjsG4TQAAAAAAAAAAQHWMHTu20/WrV6+uyvjLli3r0+sPPvjgTtc/99xzeeGFF/o0NgAAANDPJk1K+nitoKo8M0w3hF4DQLVsEnr7wteS8f0UfD1+y8DrpHIAaKnZsnJYKT/8y3JGbdg68PqlXZBKkPWqEZVg6860FZINzZ0HXncoFZJRG5If/mVl3npvu6WLBQAAAICubXr9xJuHAf3soYceyqWXXtptn9e+9rW5/vrrs8MOO2zT2BMmTMgNN9yQo446qtt+F198cR5++OFtGnsg+8QnPpGnn36607Zvf/vb/VxNdQzGbQIAAAAAAAAAAKqjq789W7lyZVXGv/fee/v0+q7+xq1cLudXv/pVn8YGAAAA+tGMGY0VeD19er0roMEJvQaAahk+/KUP/zwuGd5PObjDy5X5NlPvAOBBvKwcVsrM6aXcNzlZNyzpLqKnnKT8YrD1lsHXLwVev9ivK4VU5rlvcjJzeknwdSMvAAAAAHSt4/qJ0Gugn51//vlpa2vrsn2nnXbK7NmzM3r06O0af8yYMfnxj3+cCRMmdNmnra0tX/jCF7Zr/IHmjjvuyP/9v/+307bTTjstJ554Yj9X1HeDcZsAAAAAAAAAAKCempqaOl3f2traz5VUx/jx4ztd/8c//rHPY7e1tWXu3Ll9GmPq1KnZd999O227+eab+zQ2AAAA0E9mzEiuuabeVWw0fXpy9dX1roIGJ/QaAKqluTlJJYD68A8mz49KijXOwS2WK/Mc/sFOgq+pupXDy5k5o5z7JicvjEo2FJNCuRfB19k8+HrTwOvuFFIZf0OxMt99k5OZM8pZ2V+J6vSe0GsAAACArnVcO/HmYUA/e+yxx3JND3/I86UvfSl77rlnn+bZe++9c/7553fb5yc/+Ukef/zxPs3T6NavX58PfOADKXfyf/2ECRPyzW9+s/+L6qPBuE0AAAAAAAAAAFBvI0eO7HT9unXr+rmS6pg6dWqn6++///4+j33DDTdkzZo1fR5n2rRpna6//PLLs3z58j6PDwAAANRYIwVeT5wo8JpeEXoNANUyYsRmgdcdahV8vem4WwVfFwqWKi/txeT0d2weeN2hp+DrZGPwdUvTtgVed9g0+Pr0d5TTXrSfG2opOqwGAAAA6FJhk6tn5bJrKUC/ufTSS9Pe3t5l+wEHHJAPfOADVZnr7LPPzr777ttle3t7ey699NKqzNWovvjFL2bhwoWdtl1wwQWZPHlyP1fUd4NxmwAAAAAAAAAAoN522mmnTtc/9dRT/VxJdRx++OGdrr/xxhv7PPZFF13U5zGS5O/+7u86Xb9y5cp861vfqsocAAAAQI1s+pxuI3juuXpXwADhiXIAqJI/jytvFXidJOUaHSduOe5mwdf1DgAehEtTijntweJWgdcdCr0INy8nKRV7DrzuaryO4OvTHiymKcW6f00smywAAAAA9J7rKUA/aG9vz1VXXdVtn49+9KNpamqqynzNzc35x3/8x277XHnllSmVSlWZr9Hcf//9ufDCCztte+1rX1u1cPH+NBi3CQAAAAAAAAAAGsEee+zR6fqHH364nyupjiOOOKLT9Q8//HDuvffe7R73xz/+ce64447tfv2mDj744Jx00kmdtn35y1/OXXfdVZV5AAAAgCprtGdyy71J0YMKodcAUAWtba058tQlnQZe1+rQrJzOg6+P/IektdBeOSi0VG1pTyk/OrSU0Rs63x+lXp4T9Pb7oavxRm9IfnRoKe0p1f1rYtliAQAAAKB3BmngK9BYbr311jz99NNdto8cOTLvfe97qzrn+9///gwfPrzL9sWLF+f222+v6pyNoFQq5ayzzsqGDVvfRGlubs5ll12WQqP9cVUPBuM2AQAAAAAAAABAozj44IM7XX/DDTf0cyXV8Zd/+ZfZeeedO2379Kc/vV1jPvroo/mHf/iHvpS1lQsuuCDF4tZRQ62trZk+fXoWLlxY1fmS5Nlnn81tt91W9XEBAABgSGi055dkrbGNmutdAAAMBsObh+eMx3bI1w9+4aV1tQy8fmmOJCkkhU0mOmNeMrzclDTYcepA15RCzpyfzJtSCeRZMWJjW28Dr7dVqZAUN9m3O7RUQq/PnF9MU4r2MQAAAAADk5vaQD/o6eGnU045JePGjavqnBMmTMjJJ5+c66+/vtu6jjvuuKrOW28XXXRR5s6d22nbP//zP+cv//Iv+7mivhuM2wQAAAAAAAAA9N2I5hE5ZOdD6l0GbGVE84ieOzWQo48+utP1d9xxR773ve/ljDPO6N+C+qi5uTnvfe978+///u9btd100035xje+kX/+53/u9Xj33XdfTj755CxfvryKVSaHHXZYPvaxj+XrX//6Vm3PPPNMXvWqV+W73/1upk+f3ue5Hn300XzjG9/I9773vbznPe/Jm970pj6PCQAAAEOKwGsGAaHXAFAlX/39lOT5F/L1Y/on8LrDpsHXH78z+eot8Ru+RqYtqLxz7awTNwZf1yrwukNH8HVH4PXFNxZfqgMAAAAABpRGu8EODGo333xzt+2nnHJKTeY95ZRTug29vummm2oyb708/vjj+dznPtdp2z777JNzzz23nyvqu8G4TQAAAAAAAABAdRQLxYwaNqreZcCA94Y3vCETJkzoNNT5b//2b3P55ZfnbW97Ww499NDsuOOOGTWq85+7XXbZJbvsskuNq+2dM888s9PQ6yT5+Mc/nmeffTaf//znM3r06C7HWL16dS688MJ8/etfz9q1a19av9tuu2Xx4sVVqfPLX/5yfvnLX2bu3Llbta1cuTIzZszICSeckE996lM57rjjtmnsxx57LNdcc02uueaazJ07N2VhWAAAALB9Gu15XOf4bCeRmABQLcVivnpLsnBict3B/Tt1OcnbH3kx8DppvIPVQWTawqakUMg5J7RnxfAk/fGlLicjNyQX/6Ip0xYW+2dOtt2mP3dO0AAAAAA22vS6SdEbugG19/TTT+fhhx/uts+b3/zmmsz9lre8pdv2Bx98MM8880ymTJlSk/n72wc/+MGsWbOm07Zvf/vbXT5s1sgG4zYBAAAAAAAAAEAjGT58eP7+7/8+X//61zttv/3223P77bf3OM65556b8847r7rFbae/+Iu/yBlnnJHvfe97nbZ/9atfzfe///1Mnz49xx57bHbdddeMGDEizz77bJ588sncdNNN+cUvfpEVK1Zs9rqDDz44H/7wh3POOedUpc7hw4fnhhtuyDHHHJM//vGPnfb5xS9+kV/84hfZc88984Y3vCHHHHNMdt999+y0004ZN25cVq1aleXLl2f58uX5wx/+kHvvvTfz5s3LU089VZUaAQAAYEhrtAxBeWr0gdBrAKiiOQcld+9Rn7nv3qMy/7QFhaSpqT5FDBHH/6mYke3tKfVTPk+pmIxsT47/U3PS1GAnI1SUy0mptPnnnWm0k0kAAACAanNdBGgAc+fO7bZ9zz33zJ577lmTuadOnZpdd901Tz/9dJd97r777vz1X/91TebvTz/4wQ9y4403dto2c+bMnHTSSf1cUd8Nxm0CAAAAAAAAAIBG9JnPfCZXXnllFi9eXO9SquYb3/hGfvazn2XJkiWdtj/99NO55JJLcskll/RqvJ133jnXX3997rzzzmqWmV122SV33HFHTjrppDzwwANd9nvyySdzxRVX5Iorrqjq/AAAAEAXGu1ZXIHX9FE/RTUCwOA3Z9flmfXWZPHY+sy/eGwy663JnANfDN+11GRZ2dyeY9/Tkid2SPrr1KCQ5IkdkmPf05KVze11/xpYOlna2ysnZx0LAAAAAJtzzQToR/fee2+37UcccURN53/lK1/Zbfu8efNqOn9/eO655/Kxj32s07Yddtgh3/zmN/u3oCoYjNsEAAAAAAAAAACNascdd8z//u//ZvLkyfUupWp22mmnXH/99ZkwYUKfx9pll13y85//PAcccEDfC+vEbrvtll//+td5z3veU5PxAQAAgG0k8JpBqLneBQDAYNBeas93py7P4rFJuU7HjOVCJfj6u4cnb3s8aapXIYPYyuHlHHv6hszfpfJ5oZykkNTysLzQMU+S+bskx753Q26/YnjGt9q/DaVYrIRfd+jqZK3RTioBAAAAqq27m9hucAP95L777uu2/eUvf3lN53/5y1+eG264ocv2wRB6/U//9E957rnnOm3713/910yZMqWfK+q7wbhNAAAAAAAAAADQyF7xilfk/vvvz+c+97lcfvnlaWlpqXdJffbqV786t912W0455ZQsXrx4u8Y46qijMnv27EydOrW6xW1h/PjxueKKK/LOd74zH//4x/Poo49WdfyJEyfm3e9+dz70oQ9VdVwAAAAYdBotm8zzwFRJsd4FAMBg0FRsyq8mralb4HWHciH51Z4Cr2uhvVDOce/eGHjdoVCuBFPXwqaB1x3m75Ic9+4Nad+yAQAAAAAASJIsXLiw2/YDDjigpvPvv//+3bb/4Q9/qOn8tfbzn/88V155Zadtr3nNa/LBD36wnyvqu8G4TQAAAAAAAAAAMBDssssuueyyy7JkyZJcddVVOeecc3Lsscdmn332yfjx49Pc3FzvErfZK17xiixYsCCf+cxnMmrUqF6/bo899si3vvWt3HXXXTUPvN7UqaeemkceeSRXXXVV3vjGN6ZY3P44or322it/93d/l2uvvTaLFy/OxRdfnEMOOaSK1QIAAMAgI/CaQWzgXdkDgAb07Mpns2JEvauoWDEqeXZES3ZuaZCCBpGuzgsK5dQk8LyrXOtGOz8BAAAAgF5zsxuosXK5nMcff7zbPj2FUvdVT+P3VF8jW716dZcB0M3NzfnP//zPFAbYjYzBuE0AAAAAAAAAADDQ7LDDDjnttNNy2mmnVWW8ev+d1tixY/PlL385n/jEJ/KLX/wiP/3pT/PAAw/k2WefzbPPPptyuZwddtgh+++/fw4//PCccsopefOb35xhw4ZtNdYZZ5yRM844o6b1Njc3v/T1X7JkSW6++eb89re/zYMPPpgnnngizz33XNauXZtyuZxx48Zl3LhxmTBhQvbbb78cfPDBOfjgg3PUUUflZS97WU3rBAAAgEGl0Z5Z8gwwVSb0GgCqYOfxO2f2bZMy803P9WmcYjkp9fH4c/aPkp3XNidp79tAbKYpyS0/KObYv2nP/Mmbt9XqEL2cZMtvh8OWVOpoaivVaFa2S7mclHqxT3rTBwAAAGCw6bjJ3XHzva2tfrUAg96SJUuyfv36bvvstttuNa2hp/HXrFmTpUuXZpdddqlpHbXwf/7P/8kTTzzRadvHPvax/OVf/mU/V9R3g3GbAAAAAAAAAACAxjBhwoS8613vyrve9a56l9JrkydPzumnn57TTz+93qUAAADA4CXwmiGgWO8CAGCweNdzu2T27O1/fbG8+b/bY/aPknct2P7X073xrYXc/oOmHLZk47pyknKNzhvKhc0DtQ9bktz+g6aMb22wExUAAAAA6I0tw68BamDx4sU99pkyZUpNa+jN+L2ps9HMnTs3F198cadtU6dOzbnnntvPFfXdYNwmAAAAAAAAAAAAAAAAoIE12nO2Aq+pEaHXAFAtO+2Udy0oZPaPtv2lWwZdb0/wtcDr/rFp8HUtA687dARfC7wGAAAAAICeLVu2rNv28ePHZ8SIETWtYfTo0Rk7dmy3fXqqs9Fs2LAhf//3f59SqdRp+6WXXprRo0f3c1V9Mxi3CQAAAAAAAAAAAAAAAGhgAq8ZQoReA0C17LZbkkrw9LYEX3cVcL0twdebBV432sHsIDS+tZB//k0xzf10nN5cTv75N0WB1wAAAAAA0IPnn3++2/bx48f3Sx09zdNTnY3mq1/9ah544IFO2975znfmrW99az9X1HeDcZsAAAAAAAAAAAAAAACABjVpUr0r2JzAa2qsud4FAMCgsddeLx28vWtB8sOHkhsO6f4lPQVbF8tJqYec479+aJPA6yQpFpOmpp7rZbvNeVl7PnV8KWM2JMtH1H6+MRuSTx1fyuhSMdMW2rcNqVSqLB26OpETSg8AAAAMdr25LuImOFBDL7zwQrft48aN65c6eppnIIVeL1iwIF/60pc6bdthhx1y0UUX9XNFfTcYt6maLr300nz729+u+TyPPvpozecAAAAAAAAAAAAAAACAupsxI1m2rN5VbDR9er0rYAgQeg0A1dK88dfqp45P/vfgpFBOyl1k3PYUeL1pv66CrwvlyjyfOj756i0vriyXNw/fparmHFjKrLe0Z+2wZOXw3gWT90WxXJmnUE5mvaUtKZczbUGxdhOyfQQ1AQAAAHSvXN4YfO36JVBD69ev77Z9zJgx/VLH2LFju23vqc5GUS6Xc9ZZZ6WlpaXT9q985SvZdddd+7mqvhmM21Rtzz77bB566KF6lwEAAAAAAAAAAAAAAAAD34wZyTXX1LuKjaZPT66+ut5VMAQIvQaAannhhSSVAOqvH1NZVUiSToKvext4vWn/LYOVC+UXx8/G+b56SyqBMUWhyLUw58BSZp1QytphyYoRG9fXKvh60++TjvlmndAu+LoRlcu9C74Wjg0AAAAMZZsGXwPUSGtra7ftzc3982cSPc3TU52N4rLLLsuvfvWrTtte/epX54Mf/GA/V9R3g3GbAAAAAAAAAAAAAAAAgAbVSIHXEycKvKbfSEsEgGr5/e83C7zuUEgloLrDtgZed/a6TQOvO3z9mErgNrXRXijnu4eVtwq87rC9+7UrnY23YkSydljy3cPKaS8ITwYAAABgAPKmYECNCb2unsWLF+fTn/50p23Nzc257LLLUhxgb8Q6GLcJAAAAAAAAAAAAAAAAaFCFLRMD6+y55+pdAUOIJ/UAoEo+NeX3WwVed+gIvu5rMHKx3HngdQfB17XTVC7ktAcrodOdKVf5nKKr8dYOS057sFIPAAAAAACwuVKp1G17U1NTv9TR0zzt7e39UkdfnHPOOVmxYkWnbR/5yEdy2GGH9XNFfTcYtwkAAAAAAAAAAAAAAABoQI0WeF3uYxAibCOh1wBQBa1trfnefiu77dObw86py3vu09M43zs8aS12H+jAtmsvlPOjQ5MJ65JhW3x5y4Wkt4fxTb3sWM7WwdfDSpX5f3RopR4aSKOdWAIAAAAADFHNzc3dtre1tfVLHT3NM2xYF++y2SCuvvrqXHfddZ227b333jn//PP7t6AqGIzbBAAAAAAAAAAAAAAAADSgRsslE3hNHXT/tCcA0CvDm4fnnu+PyuF/szbPj9q+MT5+Z3LBLcmnj0++fsz2jbHTuuSey5LhJe9rUW1N5UKuuK6Yme8oZd7kcpaPSjYUty3welh7JfS6WEg2NPXcv5wkhaRQ3hh4ffiSSh1NWyZiU19O5gAAAAAAGsLw4cO7be+v0OsNGzZ0295TnfW0fPnyzJo1q8v2Sy+9NKNHj+7HivpuMG5TLe2888455JBDaj7Po48+mpaWlprPAwAAAAAAAAAAAAAAAP1G4DUkEXoNAFWzx4py5n0nOfyD2ebg647A62Tjv9safL3TumTed5I9VsVv+BoZ31rI7Gs3Bl8vG5209XBeUShXgrE7Aq+TF/9t733wdVN5Y+D17GuLGd/aYCczAAAAAADQIIYNG9Zte2tra7/UMZBDrz/+8Y/nmWee6bRt+vTpOeWUU/q5or4bjNtUS+ecc07OOeecms9z6KGH5qGHHqr5PAAAAAAAAAAAAAAAANAvBF7DS0RiAkC1lErZY1W2Ofh608DrDtsafL1Z4HXiALOGxrcks68p5Nj3lbN0TPd9C+WkkKR5k8DrDpsGX3cEY3elvZDstroy7/jWpBKFTUPxMwcAAADQtXJ54036RrtZDww6Y8eO7bZ99erV/VLHqlWrum3vqc56uf322/Pd736307bx48fnW9/6Vj9X1HeDcZsAAAAAAAAAAAAAAACABtNoz9DKRqPOhF4DQJVtS/B1Z4HXHXobfL1V4HXiILPGbplazpIxyfBS0lrsPLC6I/B6bGvS2tT5OB3B1+3FJF0EXxfKlXmWjKnMO21BFTeE6vEzBwAAANC9TYOvAWpop5126rZ95cqV/VJHT/P0VGc9rF+/Ph/4wAdS7uKa95e//OXstttu/VxV3wzGbQIAAAAAAAAAAAAAAAAaTKM9QysXjQYg9BoAqqVYfOnD3gRfdxd43aGn4OtOA6+TxjvwHUTmHFjOrJPKKReSHdclL4zaOvi6I/B6h5akudR16HVSCb4e1ZqsHp6tgq87Aq93XFdZP+vkSjDQtAX2b0NyggcAAADQs3J5s2upANU2ceLEbtuXL1/eL3WsWLGi2/ae6qyH888/P3/4wx86bTvqqKNy9tln93NFfTcYtwkAAAAAAAAAAAAAAABoII2W+ycPjQbhiXIAqJGO4Oud1m3d1pvA6w5fvaXSf0tdBl5TM5XA61JKL55bFFIJpB5eqgRUJ5sHXo9s6924I9oq/QvZfJyOwOuOU5lSIZl1UilzDnQyAQAAAMAA1HGTvNFu3gODyqRJk7ptb2lpqXnw9fPPP5/W1tZu+zRa6PX8+fPz9a9/vdO25ubmXHbZZSkOsDctGIzbBAAAAAAAAAAAAAAAADSQRntmVuA1DcTTewBQLU1NW63qLPj643dWgqy3xZbB1z0GXpfLliov7Snlu6/YGHjdYcvg6+4CrwtJdlmzMcR6UyO3CL7eMvC6Q6mQfPcVpbSnVPeviWWLBQAAAICeuZYC1Nhee+3VY58lS5bUtIbejN+bOvtLe3t7/v7v/z5tbZ2/m+c//dM/5RWveEX/FtVHg3GbAAAAAAAAAAAAAAAAgAYi8Bq6JfQaAKqlubnT1R3B15PWbl/gdYeO4OtJa3sIvE4qB8GWqi5NKeaKOcUc1klOxabB190FXh/2dPKqpyr/dhd83VXgdZIctiS5Yk4xTSnW/Wti2WIBAAAAoGeupQA1Nnbs2EycOLHbPk888URNa3j88ce7bd9ll10yZsyYmtawLa666qr87ne/67Rtr732yvnnn9/PFfXdYNwmAAAAAAAAAAAAAAAAoEE02rOyAq9pQJ2ncwIA266bg889ViVP/lslzLgvvnpL8sXbejFOqY8T0anx65PZP0lmzkjmT9m8rZBkp3Wdv64j8Hr3F4PKO/6dv2uy5SnCyLbOQ7OT5LBnktlXJ+Nby9n6ldSVkz0AAACArnVcOykWN/8coEb22WefLFu2rMv2P/zhDznhhBNqNv8f//jHbtv32Wefms29PZ577rku24455phcddVV/VhNMnv27G6Dy8eNG5eZM2d2O8Zg3CYAAAAAAAAAAAAAAACgAQi8hl4Reg0A1dLU1G1zXwOvt2kcB581M76lEjzdWfB1Zwrl5LDFG4OuO+y+Mkk5mb9b7+Z9KfC6JRF4DQAAAMCAVCpVrqM22s18YNA59NBD87vf/a7L9gULFtR0/p7GP/TQQ2s6fzVdddVV/R4Q/elPf7rb9r333rtPAdGDcZsAAAAAAAAAAAAAAACAftBoz8jKHKSBFetdAAAMGo12EErNdARfH/ZM9/2K5eQzd2wdeN1h91WVQOxiD+cLmwdeAwAAAMAAVqrSuwMCdOOII47otn3evHk1nf/ee+/ttv3www+v6fwAAAAAAAAAAAAAAAAAVFmjZQ0KvKbBNde7AAAYNBrpwK/RDooHofGtyeyry5k5I5k/Zev2Yjm5+GfJAc8mv5ra9Ti7r05Ovz+54I1JqZPd9lLgdWshsVsbVyP9/AMAAAA0snI5KXpfXqC2egq9vu+++9Le3p6mpqaqz93W1pb58+d320foNQAAAAAAAAAAAAAAAMAAMmlSvSvYnNwzBgCh1wBQLY0U1CL0ul+M31DI7GvKmTmjnPmTN66vBF4XMm1BIU+NLuWwZ7of5x2PJLuvLWTWyeXNgq8PW5LMvqaQ8RsEXjc8J38AAAAAvddI11KBQemVr3xlRo4cmfXr13favnr16txzzz056qijqj733Llzs3bt2i7bR44cmSOPPLLq8wIAAAAAAAAAAAAAAABQAzNmJMuW1buKjaZPr3cF0CtCrwGgWkaNqoRNN0L4bSPUMESMb0lm/ySZOSOZP6Uj8DqZ9kiSlDOqPdlnRfdjjG7r6J/MOjkpFZLDnklmX52Mb62MQ4NrlJ99AAAAgEbnOgrQD0aOHJljjjkmt9xyS5d9brrpppqEXt98883dtr/+9a/PyJEjqz4vAAAAAAAAAAAAAAAAAFU2Y0ZyzTX1rmKj6dOTq6+udxXQK8V6FwAAg8YOO3Tb3F6ozjS9GqdQsPTjMn5DMbOvKeTIp5OLf1bItAXFTdrTy6Xyuot/Vhln9jWVceu9bZZtWAAAAADoWdHtSaB/vOUtb+m2/dprr63JvFf38AdDJ5xwQk3mBQAAAAAAAAAAAAAAAKDKGinweuJEgdcMKJ4qB4Bq2XvvpFzutGnliOTU05I5B/VtijkHVcZZOaJv41B941sLuW52IdMW9C38eNqCyjjjW4UoAwAAADDIFItCr4F+M2PGjG7b77333ixYsKCqc/7+97/PAw880GV7oVDosa56+MhHPpJyudxvS08WLVrU7esff/zxIblNAAAAAAAAAAAAAAAAQD8qNFgW3HPP1bsC2CaeKgeAatltt05XrxyRzJyR3LNbMuut2x98Peegyuvv2a0yXrfB14WCpQ5LU4qdt6WHpbfjWAbGAgAAAMDmisWkqamyAPST/fbbL695zWu67XPxxRdXdc5vfetb3bYfffTRmTp1alXnBAAAAAAAAAAAAAAAAKDKGi1PrFyudwWwzZrrXQAADBrPPrvVqo7A6/lTknKSUqESXJ0kpz7S+6E7Aq9Lhco486dUxp19dTK+ZYvOhUIlRIbGUEwl27qnPvbZwFYubzxB7fi3VNq8j1BsAAAAYCjY8ppIUrn25boIUAdnnnlmfvOb33TZ/t///d/57Gc/m1133bXPc/35z3/OD37wg277nHHGGX2eBwAAAAAAAAAAAAAAAIAaarRnYgVeM0BJVwSAannmmc0+3TTwupTkhVHJ+uaNwddzDurdsJsGXq9vroxTysbg65UjtnhBuWyxWPp76Y1GO4kFAAAA6E/bch0FoEr+5m/+JrvsskuX7WvXrs2nP/3pqsz1qU99KuvXr++yffLkyfmbv/mbqswFAAAAAAAAAAAAAAAAQA00WlaYZ3MZwJrrXQAADBpPPvnSh1sGXi8flWwoJiteDKge2Zb841srH097pOsh5xxU6dcReN3x+uWjkgnrNgZfz746Gd+yyQsdoNZFe6GcpvIWJyu92Rflzft1Og6Nr6d97ecSAAAAwDUSoF+NHDky//RP/5TPfvazXfb5/ve/n1NPPTXTpk3b7nl+/OMf58orr+y2z0c+8pGMGLHlO5lum8cffzz77LNPt33OPffcnHfeeX2aBwAAAAAAAAAAAAAAAGDIEXgNVVWsdwEAMGisXp2k68DrDitGVAKsS4VKoPWcgzofrqvA66Qy3vJRlfE7gq9X9i0ngT5aObycU99VypwD+3aCMOfAyjgrhzvRAAAAAACAvvrIRz6SPffcs9s+73//+zN37tztGv83v/lN/u7v/q7bPnvvvXf+6Z/+abvGBwAAAAAAAAAAAAAAAKDGBF5D1TXXuwAAGDQ2bOgx8LpDR4D1yLZKsHWSTHtkY3t3gdcvTfdi8PWEdRuDr2dfnYxviQPVfrZyeDkzp5czf3Iyb0opKRcybcGLJy+92RflSr85B5Yz66RySoVk5vRSZl9dyPjWBjsJoms97Ws/lwAAAAAA/W706NH5t3/7t7zzne/sss+qVatywgkn5Ic//GH+6q/+qtdjX3/99Xnf+96X1S++MWpXvvGNb2TUqFG9HhcAAAAAAAAAAAAAAACAfiLwGmpC6DUAVMnK4oZeBV536Cr4ujeB1x26DL5u72Ziqmrl8HJmvqMSeJ1U9tusk8tJsZBpC4pJb3ZFMZlzcDLrxErgdZLMn/zi/rxW8PWAVSpt/nnRzyUAAAAwBGx5TaQzTU21rwNgEzNmzMh73vOeXHnllV32WbFiRd72trfl3e9+dz73uc/loIMO6rLvQw89lC984QuZPXt2j3OffvrpmT59+nbVDQAAAAAAAAAAAAAAAEANCbyGmhF6DQBV0F5qz+l/vaHXgdcdtgy+vv6g5JZ9exd43WHL4OvT35Fc95NSmsoNdhA9CFUCr0svBV6XkxTyYvD1iaWknLzxiZ5PHv7f/uV8+s15KfC6Y5z5k8uZ+Y72zL6mKPh6IOjpRLFUaryTWwAAAID+Vii4RgLUxWWXXZZ77rknCxYs6LJPuVzOlVdemSuvvDKHH354jj766Oyzzz4ZO3ZsVq1alUWLFuXOO+/M/PnzezXnQQcdlO985zvV2gQAAAAAAAAAAAAAAAAAqqXRnncVeM0gI/QaAKqgqdiUM+8v5p7JpSwf3bvA6w6bBl/ftF/l494GXnfoCL7eaW1y5rykqZRUopOplZXDy5k5vfxS4HVH2PnoDZV9WSoks04q5Qu3VtZ35YFdkhv33/j5+uZk7bBKiHkxyfzJyczppcy+uiD4utH15mTRCSUAAAAwFHVcE+kIvC5uwwVUgCoZO3Zsbrzxxrz+9a/Pk08+2WP/efPmZd68eds931577ZUbb7wxY8eO3e4xAAAAAAAAAAAAAAAAAKgBgddQc0KvYQstLS1ZuHBh/vznP2fVqlVZu3ZtRo8enXHjxmWPPfbIgQcemOHDh9e7TPrJsmXL8sgjj2TZsmVZtWpV2tvbM27cuOywww454IADsueee9a7RBrI8U80ZcrqtizZjuyCTYOvtzXwusOGYjJldXL8om1/Ldtm5fByZs7YOvB6Q3HzfVkqJJ89Pjn28eSQ57Ye56FJyU8PSEa1JcXy5vt++agtgq9nlDP76gi+BgAAAGBg6rj532h/BAAMKXvvvXduvfXWnHTSSXn00UdrNs/++++fn//859lrr71qNgcAAAAAAAAAAAAAAAAA26HRnnUVeM0gJfQakvzmN7/Jddddl5/97Gd58MEH097e3mXfpqamHHrooXnrW9+at7/97XnNa17Tj5XW39KlS/PAAw/k97//fR588MEsWLAgy5Yty/Lly7N8+fKsX78+I0eOzJgxYzJlypTsvvvuOeSQQ3LYYYfljW98Y8M/2L127dpcf/31+d///d/ccssteeaZZ7rtP27cuLzuda/LKaeckunTp2fKlCn9VCmNpr3UntPftiHPjEt2aNm+0OoVIyqhxy1N21fDDi3JM+OS09+RXHd1IU3lBjugHiRWDi9n5js6D7zusGnwdblQCbZOkkOe27hPHppUzk8PqLQnW4edbyh2FnydzL62IPi6EZXLW5/EbnkS2WgnuQAAAAC10NmN9eKLF89cHwEawP7775+777477373u3PjjTdWffyTTjopV111VSZMmFD1sQEAAAAAAAAAAAAAAADog0Z71lXgNYOY0GuGtB/96Ee58MILc++99/b6Ne3t7bn//vtz//3354ILLsiRRx6ZT3ziE5k5c2YNK62fZcuW5bbbbsstt9ySW2+9NQsXLuzxNWvWrMmaNWuydOnS3H///fnZz372UtuBBx6Yd7/73Xn/+9+fqVOn1rDybfPCCy/kwgsvzGWXXZbnn3++169btWpVfvazn+VnP/tZPvaxj2XmzJn5zGc+k4MOOqiG1dKImopNOfP3wzJvl5aMbKus257g674EXo9sS4rl5Mx5SVOKSYMdUw8GlcDrUubvUjlB6CzwukPH/h/evnXw9VaB103Jqk6+X7YOvi5n5vRSZl/bJPi60XR2Elsqbf55sZNvFAAAAIDBprM3Fu24dtJofwgADFk77rhjfv7zn+fyyy/PJz/5ySxdurTPY+6yyy658MIL8773va8KFQIAAAAAAAAAAAAAAABQVY32nKvAawY5odcMSY888kj+4R/+Ib/85S/7PNY999yT0047Ld/5znfyne98JwceeGAVKqyvJ598Mj/5yU/y4x//OHPnzk25ir8MFyxYkPPOOy9f/OIXM3PmzJx77rl52cteVrXxt8f3v//9fPzjH8+zzz7bp3FaW1vzgx/8ILNnz84///M/59xzz82IEduResyANe2xEcn6lsx6a/oUfL2tNg28vvinybRHkowQrltt7YVyTj+1vVeB1x1WjEjGtVQ+LheSn76snEd2Th7bsZyO/1k3FJPWYV2PsVXw9S7lnH5qKddd05ymcoOdPA11W/6+3PLkttFOdgEAAAD6i+siQIN6//vfnxkzZuTyyy/PJZdckocffnibxzjkkENyzjnn5Iwzzsjo0aNrUCUAAAAAAAAAAAAAAAAAfdJoz7oKvGYIEHrNkHPttdfm/e9/f1avXl3VcW+//fa88pWvzPe///1MmzatqmP3l4svvjhXXXVVfvOb31Q16Loz7e3tufLKK3P11Vfn05/+dD73uc+lubl//0tqaWnJhz70ofz3f/93VcdtbW3Nv/7rv+aWW27JnDlzsttuu1V1fBrYyJGZ9sjKJOm34OtOA6+TpCj0utqakpz5QDJvSmva0nPgdYdVI5Lh7cmwUlJO8uiOG/9/3VBMWpqTQg//5W4afN2c5MwHmtNUaEoa7PxpyCuVNv9c6DUAAADA1gqFpKmp3lUAvGTMmDE5++yzc/bZZ2fhwoX5+c9/nnvvvTcPPvhgnnrqqaxatSpr167N6NGjM27cuOyxxx455JBDcsQRR+Tkk0/OAQcc0G+1Tp06teb3cfvDueee2237hAkT+qeQKhqM2wQAAAAAAAAAAAAAAACDwqRJ9a5gc4PgGTHoDaHXDCmXXnppZs2aVbMHgVevXp3p06fnkksuydlnn12TOWrpE5/4RFpaWvp1ztbW1nzhC1/ILbfckh//+Mf9FhC9bt26nHzyybnjjjtqNsfcuXPzqle9Kr/85S+z33771WweGsioUUk2Bk/XOvi6y8DrxMFsjUxbWMza5ub83VvbehV43aGlOUlb0rxJJnLbi4HXvdURfP3/+2lzpi0sphKhTUPZ8ueup88BAAAAhiJvDAY0sJe97GV52cteVu8yBr3zzjuv3iVU3WDcJgAAAAAAAAAAAAAAABjwZsxIli2rdxUbTZ9e7wqg3wi9Zsi4/PLLaxp43aFcLufDH/5wxo4dm/e97301nWswufPOO3PMMcfklltuyb777lvTuTZs2JBp06bVNPC6w+LFi3P88cfn17/+dfbYY4+az0edTZyYPPFEktoHX3cbeJ0kbW3Vm4yXrBxezg8PKWX0hm3fny3NSaktaS4nbYVkw3YchY3ekPzwkPb89SPljG8VDtRwSqXuPwcAAAAYqjruzTQ1VRYAAAAAAAAAAAAAAAAAAKilGTOSa66pdxUbTZ+eXH11vauAfiP0miFh7ty5Oeuss3oVeH300UfnPe95T44++uhMnTo148aNy6pVq/LYY4/lrrvuyhVXXJHf/va33Y5RLpdz1lln5eCDD86rXvWqam1Gw5k0aVIOP/zw7Lvvvtlzzz0zbty4DBs2LC+88EKWLVuWBx98MHfeeWdWr17dq/Eef/zxHHfccfntb3+byZMn16zuT3ziE7nxxht77Dd69OhMnz49b3/723PEEUdk8uTJaWpqyrJly/LAAw/kpptuyg9/+MMsWbKk23GeeOKJTJ8+Pb/+9a8zbNiwam0GjWjHHZNC4aUAly2Dr9c3Jy1VyHMZ0d5D4HWyMUSGqmkvlHP6qaXMn7z9QeYbmpP2UlIqbvv8HUHn8yeXc/qp7bnux8U0lQVfN5Sefu78XAIAAABDVXt75d/idlwYAwAAAAAAAAAAAAAAAACAbdVIgdcTJwq8ZsgRes2gt3Llypx22mnZsGFDt/0OOOCA/Md//EeOP/74rdp23HHHHHnkkTnyyCMza9as/OIXv8jZZ5+dRx99tMvxWltbM3PmzNx3330ZP358n7ejEYwaNSonnnhiTj755Lz5zW/Ovvvu2+Nr2tractttt+VrX/tabr755h77P/HEE3nHO96RX/7yl2lqqkI68Bb+53/+JxdddFGP/U4//fRceOGF2XXXXbdq22233bLbbrvlxBNPzBe/+MV8/etfzxe+8IW0tbV1Od7cuXPz6U9/Ot/4xjf6VD8NbuLErVZ1BFKf+fZkXXNSSFLoQ+5tuVAZZ0Rz8t3ruwi8LhQqC1XVlELOnJ/Mm1JKqdB58HWp0PM+7inwulxIyqmEmnfoCLzOi+vPnF9MU4qVyWgcW/7cbRly7ecSAAAAGAo6e+OvjusibW2ukQAAAAAAAAAAAAAAAAAAUFuN9DzrxInJc8/Vuwrodz3ELsLA9/nPfz6LFi3qts+b3/zm3H333Z0GXnfmhBNOyO9+97u86U1v6rbfokWLct555/W21IZ1zDHH5Hvf+16WLFmSOXPm5AMf+ECvAq+TpLm5OW95y1ty00035bbbbstuu+3W42vuuuuumoRDr1mzJmeffXa3fQqFQi655JL88Ic/7DTwekujRo3K5z73udx66609hpt/85vfzLx587apZgaYHXfsNNDluVEbg5HLqYQab4+OMOSkMt5zo7ZvHLbftAXFXHxj8aVA6pFtlUDqpBJ4nVRvH3eMt2Xg9cU3FjNtgUM4AAAAAAaoHt6kFAAAAAAAAAAAAAAAAAAAtlsjBV4nAq8ZsprrXQDU0kMPPZRLL7202z6vfe1rc/3112f06NHbNPaECRNyww035LjjjsvcuXO77HfxxRfnrLPOysEHH7xN49dbc3Nz3vOe9+SjH/1oXvGKV1RlzGOPPTb33XdfTj311Nx1113d9v3Sl76UM888M5MmTarK3Eny5S9/OU899VS3ff7t3/4t55xzzjaP/frXvz4//elPc9xxx6W1tbXTPqVSKbNmzcqvf/3rbR6fAeLZZ7da9V+HJx/8681DkMtJUkgKW+djd2nTMOSOzz/415WPz9oyS72T4G2qpyNwetaJpZQKyYj2Shh1qcr7OKmMO6J948cCrxtcTz97fjYBAAAAKlwnAQAAAAAAAAAAAAAAAACg2hot8NoztQxhQq8Z1M4///y0tbV12b7TTjtl9uzZ2xx43WHMmDH58Y9/nFe84hVZvnx5p33a2tryhS98IVddddV2zdHfmpub87d/+7f5l3/5l+yzzz5VH3/nnXfODTfckGOOOSaPPPJIl/1WrVqViy66KF/84herMu+yZcty0UUXddtnxowZ+chHPrLdcxxzzDH52te+1u0Yd955Z2688caceOKJ2z0PDeyPf9zs047A61Inx77bEorcWRhyUhm3y+Dr9vZeFMz2mvZQklLy4ZOT50dV9kUhWwSTJ33ax4VUxn1hZDJxbXLxz5Jpj5ST2LcNS+g1AAAAQOc6rot0/KHAhg31qwUAAAAAAAAAAACAhvTb3/42t9xyS+6+++48/PDDWb58eVasWJH169dv1fftb397rrvuuv4vsg/OOOOMXH755Vut/+///u+cccYZ/V8QAAAADDYCr6GhFOtdANTKY489lmuuuabbPl/60pey55579mmevffeO+eff363fX7yk5/k8ccf79M8/WHatGn5/e9/n//8z/+sSeB1h5122inXX399hg0b1m2/yy+/PKVSqSpzXnLJJVm7dm2X7ePGjcsll1zS53n+8R//MUceeWS3fb72ta/1eR4a1KOPvvRhd4HXHcqphB13p6vA6w4dwdf/dfg2VUoVHP9YMnl1suHFo6nOwq17tY/T+T7uGG9DsTLP8Y/1oVgAAAAAaARuzgMAAAAAAAAAAACwheuvvz5HHnlkXvOa1+Szn/1srrvuuixYsCBLlizpNPAaAAAAYCsCr6HhCL1m0Lr00kvT3t7eZfsBBxyQD3zgA1WZ6+yzz86+++7bZXt7e3suvfTSqsxVS1dddVUOPPDAfpnrZS97Wc4+++xu+zz55JO59957+zxXW1tbvv3tb3fb5+Mf/3gmT57c57kKhUKPoda33nprfv/73/d5LhrQunVJehd43aG7UOSeAq87CL7ufyuHlzNzRvLMuGSHlsq6Lvdjut6P3e3fjvF2aKnMM3NGZV4AAAAAGNCKbk8CAAAAAAAAAAAAUMniOPvss3PqqadWJVsCAAAAGKIEXkND8lQ5g1J7e3uuuuqqbvt89KMfTVNTU1Xma25uzj/+4z922+fKK69MqVSqynyDxcc//vEe+9x+++19nucXv/hFli5d2mX7qFGjcs455/R5ng7HHXdcDj+8+/ThK664omrz0UBKpW0KvO7QWfB1bwOvX5pa8HW/6Qi8nj+l8vnItmTUhp7315btvek/akNl/KQyn+BrAAAAAAasQqESeO1GPQAAAAAAAAAAAABJPvWpT+U//uM/6l0GAAAAMJAJvIaG1VzvAqAWbr311jz99NNdto8cOTLvfe97qzrn+9///nzyk59Ma2trp+2LFy/O7bffnuOOO66q8w5ke+yxRw477LDMnz+/yz4PPPBAn+fpKWD6He94RyZOnNjneTZ11lln5eyzz+6y/corr8xXvvKVFBrtIIk+2Z7A6w7lJCkkhfK2B1536Ai+TpKzfu9XfC2sHF7OzHe0Z/4uG/fQ+uZk3bCN+6475SSF9G7/FsqVcYeXtgi+flchs69tyvhW/380nC3f3GLLz4vebwYAAAAYAtrbt1635XURbxIKAAAAAAAAAAAAMKTdfvvt+cY3vlHvMgAAAICBrNGyHAVew2Yk7zEo3XDDDd22n3LKKRk3blxV55wwYUJOPvnkbvv0VNdQ9IY3vKHb9scee6xP45dKpfz0pz/tts9pp53Wpzk68853vjPNzV2HDv/pT3/K/fffX/V5qZ91revy4VO2L/C6QznbH3jdoVRIPnxKsq6pk2AZ+qS9UM7pp24deL1iROXj3u763u7fjvFWjKjM02H+LpU62gtObAAAAAAYoNy0BwAAAAAAAAAAABjSvvrVr3bZdvTRR+eb3/xmbr755txzzz154IEHtlq+9a1v9WO1AAAAQMMReA0Nr+tEVhjAbr755m7bTznllJrMe8opp+T666/vsv2mm26qybwD2ZQpU7ptX758eZ/G/93vftftGCNGjMjxxx/fpzk6M2nSpBx11FG56667uuxz00035bDDDqv63NTHqOGj8qG5yUWv7ds41Thc/dDcZFRbsUqj0aGpnJx5XyHzTiynVNg88Dqp/le7nM2Dr5NkZFtSfLGOplItZqVPtjzh7OlzAAAAAAAAAAAAAAAAAAAYYhYvXpyf//znnbZdcMEF+dSnPtXPFQEAAAADisBrGBCK9S4Aqu3pp5/Oww8/3G2fN7/5zTWZ+y1veUu37Q8++GCeeeaZmsw9UO28887dtq9bt65P499yyy3dth9zzDEZNWpUn+boSk/fDz2FszPwvPFPydjW+tYwtrVSB7UxbUExF99YTEvT1oHX5Sqf/5QLm0darxiRtDQlF99YzLQFDuEAAAAAGMAa7Y8JAAAAAAAAAAAAAOg3d955Z6frjzjiCIHXAAAAQPca7RlVgdfQpeZ6FwDVNnfu3G7b99xzz+y55541mXvq1KnZdddd8/TTT3fZ5+67785f//Vf12T+gWjt2rXdto8cObJP4/f0/XDMMcf0afzuHH300d2233333TWbm/7XXmrPdw9PxrVWworXDOv/GsZsqMz/3cOTty0qpKnaKcxUFJKk9NKntQi8fmnsQmWCzYYvFJOi0OuGtOWJ55Ynxo12ogwAAABQL65vAQAAAAAAAAAAAAxZXWUtTJs2rZ8rAQAAAAaURsvxEngN3RJ6zaBz7733dtt+xBFH1HT+V77ylbnhhhu6bJ83b57Q6008+eST3bbvuOOOfRq/nt8Pr3zlK7ttf/755/OnP/0pe+21V81qoP80FZtyxbXJzBnJ/CmVddsafF14Mdx4e0KUx2xIxrckhz2TXHFt0pTiFknJVMOcl7Vn1lvaMqI92aElWT6idoHXHTqCrye0JCPak1kntCWF5kxb2FTbidl2PYVcN9rJMgAAAEA9uEYCAAAAAAAAAAAAMKQ988wzna4/+OCD+7kSAAAAYMBotOdTBV5Dj4ReM+jcd9993ba//OUvr+n8L3/5y3sMvWajnkKp99tvv+0euyNUuju1/H7Yaaedsvvuu+epp57qss+8efOEXg8i4zMis69u2a7g647A6+TFf8u9D1PeNPB69tWVjzOywQ7MB4H2QjnfPayU0qZf2v76Mm8yT6mQfPewUt72x6Y01Tpxm95z8gkAAADQe432hwUAAAAAAAAAAACdaGtry6OPPprHH388q1atyurVqzNy5MiMHz8+u+66aw488MCMHj263mUCDDgvvPBCp+snTJjQv4UAAAAAA0OjPZcqcwx6Reg1g87ChQu7bT/ggANqOv/+++/fbfsf/vCHms4/kKxYsSJ33nlnt33+4i/+YrvH7+lrPWzYsOy9997bPX5v7L///t2GXvt+GGRGj874F1oy++psU/D1poHXL61LehV83WngdZK0tW17/XSrKckV1xYy8x2F/Hb3claMqOy7FJJtOfUoZNv7F8rJihGVz1/9VCFXXFtI04b2bRiFftG+xT7Z8qTUSSoAAAAwVLW3J8Vi0tRU+cOCYrHeFQEAAAAAAAAAAHTqgQceyLXXXpuf/vSnue+++9La2tpl30KhkAMOOCAnnXRS3va2t+W4445LodHCV6iuUilpaem5H/S3ESMG1N9nrl69utP1TU1N/VwJAAAA0PAmTap3BZuTJQa9JvSaQaVcLufxxx/vtk9PodR91dP4PdU3lFx99dXd3uhNkje+8Y3bPf6iRYu6bd9nn31qftNj//33zx133NFle081MsC8+P00viW9Dr7uLPD6pbak2+DrLgOvqZnxrYW894FCbpu68YRjW4KvC5v829v+hU06rh2WvPeBQsa3+qMXAAAAAAaYUqmyeBgBAAAAAAAAAAAGlccffzy/+93vXlruueeeLF++vNvXlBswFOTGG2/MBRdckNtvv73XrymXy1m4cGEWLlyYb33rW3nZy16Wj370oznrrLMEtw5WLS3JQw/VuwrY2iGHJKNG1buKXmvE3wMAAABAA5oxI1m2rN5VbOSaBmwTodcMKkuWLMn69eu77bPbbrvVtIaexl+zZk2WLl2aXXbZpaZ1NLpyuZyLLrqo2z677bZbjjzyyO2eo6eA8Vp/L/RmDqHXg0x7+0sf9ib4urvA65f6JJ0GXwu8ro85B5byqeNL2XF98sLIZMOLb3jcm+DrLfd1T8HXWwZeDyslO65PPnV8KaPbkmkLBs67LQMAAADAS9zQBwAAAAAAAACAAevPf/7zVgHXzz33XL3L6pOnnnoqs2bNypw5c/o81sKFC/OhD30o3/nOd3LZZZfl1a9+dRUqBBi4li5dmqVLl261fs2aNZ32X7RoUSZNmtTjuAceeGCGDRvWYz8AAABgAJsxI7nmmnpXsdH06fWuAAYcodcMKosXL+6xz5QpU2paQ2/GX7x48ZAPvf7Rj36UBx54oNs+73nPe1Isbn+oa0/fD7X+XujNHL35nmUAKZU2+3TL4Ov1zUn7i8nHvQm87rBl8HVTWeB1PbQXyvnuYeWUCpX911nw9Zbh5MnW+7lYSkrFjW1dRfx0FnhdKCelQvLdw8p528JymjqbkPoQ1gQAAADQs0LBdRQAAAAAAAAAABgglixZkrvvvnuzkOslS5bUu6yq+tWvfpUZM2Z0GsjaF/Pnz8/rX//6XHTRRfnQhz5U1bEBBpJvf/vbOf/883vd/8wzz+xVv0WLFmXq1Km96vvnP/85v/rVr/Lggw/m4YcfzsKFC/PCCy9k5cqVWbt2bYYPH55x48Zl9913z/77759XvvKVefOb35zDDz88hcLAeZa7XC7nV7/6VX7zm99k3rx5eeihh17aztWrV2f48OEZPXp0xowZk9122y1777139tlnnxxxxBF57Wtfmz322KNmta1evTo33XRTfvWrX+X+++/PokWLsmzZsqxZsyZNTU0ZN25c9tprrxx88MF53etel7/6q7+qaT0AAAAMEI0UeD1xYnL11fWuAgYcodcMKsuWLeu2ffz48RkxYkRNaxg9enTGjh2b1atXd9mnpzoHuzVr1uRf/uVfuu3T3NycD3/4w32ap6evc38Ej0+ePLnb9qH+vTDoFItbhbZ0BF+/4h+2L/C6w6bB1+2FZOQGgdf9ralcyBXXFTPzHaXMn1zeKvi6q8DrTcOwh7clzaWkrZi0Nm/sk2wdfl1+MVx708DrJDlsSaUOgdcNqKfAJoFOAAAAwFC15R/8t7iwCQAAAAAAAAAAje7EE0/M/Pnz611GzVx//fV55zvfmQ0bNtRk/A0bNuTss8/OE088kQsuuKAmcwCwtfb29tx666255pprcuutt+YPf/hDt/3XrVuXdevWZenSpZn3/2fvvuOkqu7/j7/vnZ1twNCLWMCCVAUEDbF3VGxLERSDEcVEzPo1lmh+lhg1iYUkGiTRGFFQUJRiiaAiohgV61KkSxOlt13YNjtz7++PYdhld9ru3ik7+3o+HvexO/ecOeezewd27p1737egQK+//rok6eijj9bYsWM1duxY5ebmJqL0OtmzZ4/+9re/afLkyfrhhx/C9gv+nLt27dIPP/yghQsXHtJ+1FFHafDgwRoxYoR+9rOfOVLb4sWL9cQTT2jWrFkqKSkJ2cfn86m8vFw7d+7Ut99+qylTpmjs2LE6//zzde+99+qss85ypBYAAAAAQAOTSjeiat1a2rkz2VUADRKh10gru3fvjtju8XgSUofH44kYeh2tznR39913a+PGjRH7jBo1Sp06darXPKnweog2R6q9FiZMmKB//vOfcZ9n7dq1cZ8jKZo2lQoLawTb/ul0aUOLwPd1CbwOqhp8vaFFYNzH5oXpTLhuXHjKpWkzDA0fYmtx+8D2bFkq7cyVfNU2bDDwOijLFwiwlqRMSzJ8Unkw+NoOPKHqVrMluQ6MHxy697bA/B5vsAdSBv/mAAAAAAAAYmdZya4AAAAAAAAAAAAAAAAAQCM2d+5cDR8+PG6B11U99thjatKkie6///64zwUAjd3tt9+uKVOmaPv27fUea/369brrrrv05JNP6plnntGll17qQIXOmjJlim6//XZHft4ffvhBTz75pJ588kktWrRIvXv3rvNY27dv1x133KGXX365Ts+3bVtz5849+Pd6woQJat26dZ3rAQAAAAA0MKkUeC0ReA3UA6HXSCt79uyJ2N6sWbOE1BFtnlQLOk6k999/P2qocrNmzfSnP/2p3nOlwush2hwlJSUqLy9XVlZW3GuJxY4dO7R8+fJkl9FwHXec9NNPkmkeDG25+zxp3GmVgdX1fRtddZxxpwXWhQ2+Rlx4vIamzTA1fIilxe0DwdVWLQKvg9yWpCjB15YRaM/2BQOvTXm8KbYzBgAAAAAAAAAAAAAAAAAAAAAAAABAA7FhwwZdddVVKi8vj9r3hBNO0C9+8QudccYZ6tKli5o3b67i4mJt2rRJCxcu1LRp0zRv3jzZth1xnAceeEAnnniirrjiCqd+DABACP/+979VXFzs6Jg//fSTLr/8cj300EO67777HB27Ph544AE9/PDDcRk72t+1SBYsWKBhw4Y5EsQtSdOmTdOXX36pt99+Wz179nRkTAAAAABACku1wOt67CMDkMxkFwA4qaysLGJ7kyZNElJH06ZNI7ZHqzNd/fTTT7r22mujHuB+6KGH1KFDh3rPlwqvh2ivBanxvh7S0s9+dsjDYOB1kFNvo6uOM+60wDyHdkixN+xpKBh83WG/VHggs9488F9b9cDrZuU1A6+D3FYgEDvIqBKMHhyvMEvqsJ/AawAAAAAAAKQJjl8CAAAAAAAAAAAAAAAASBKfz6fhw4dr7969Efu1b99er732mpYsWaK77rpLAwYMUOvWrZWRkaHmzZurV69euvHGGzV37lx98cUXOumkk6LOff311+uHH35w6CcBACSSbdu6//779eijjya7FEnSE088EbfA6/qYPn26zj//fMcCr4PWr1+vc845R8uXL3d0XAAAAABAikm1608JvAbqLSPZBQBO8nq9EdszMhLzko82T7Q605HX69VVV12lHTt2ROx35pln6tZbb3VszkgS8XqIZY7G+HpIW8OGSY8/Ltl2jcDreArO89i8AysMI/XeuKehecfY2tokEFxdceA2Ima1/ZPm5VKmXyqJcJuRYPD1vgPh2VWDr4PtW5tI846R8laxXVOWYdTcQWWHFQAAAAAAoBLHLAEAAAAAAAAAAAAAAIC017lzZx1//PF6//33k11KSE8//bS+/PLLiH169+6t2bNnq2PHjjGNefLJJ+uzzz7T9ddfr1deeSVsvz179ui2227TzJkza1UzADRkDz74oB588MEa688++2x9/PHHNdbPnz9fZ599tqM1mKapbt266eSTT1a/fv3UsWNHtWzZUi1btlR5ebn27NmjDRs26PPPP9fcuXO1devWsGPde++9OuWUU3Tuuec6WmNtrF27Vg888EDYdrfbrdNPP11nnXWWjj/+eHXs2FFNmjSRy+VSUVGRCgsL9eOPP2rx4sVasmSJvvnmG1VUVNS7rtmzZ+vqq6+Wz+cL2+eII47QeeedpzPOOEMdO3ZUmzZt5Pf7tW3bNi1dulTvvPOOFi5cGPK5O3bs0KWXXqqvv/5arVq1qne9AAAAAIAUk2rXoJIfBjiC0GuklVQIOY5lnsYYcvyrX/1Kn332WcQ+Ho9HL774okwzQjpsLaTC64HQ60bmpJOkww7T3d1+SljgddAhwddZWYmdvBGa1cWv/AsCH7i1KJX25lQGXwc1L5eyfZIVw39p2X7JLJcKq206txUYX4aUf5EluTKUt8blzA8BZ4XaQfX7D31smqm3Yw0AAAAAAOC0UCeqc0wEAAAAAAAAAAAAAAAASDtHHnmk+vfvr379+ql///7q37+/WrdurQ0bNujoo49Odnk17NixI2TwalXHHXec5s6dq7Zt29Zq7KysLL300ksqKSnRm2++GbbfrFmz9MEHH+j888+v1fgAgNoxTVNnnHGGRowYoaFDh6pNmzZRn3PzzTeroqJCr7/+un7/+9/rhx9+qNHHsizddNNNWrFihdxudzxKj+oPf/iDysrKQrb9+te/1v333x/zjRskqaioSHPmzNEbb7yhmTNn1in/Ys2aNbrmmmvCBl737NlT999/v4YNGxY2T+SKK67Qfffdp4ULF+q3v/1tyPDr9evX66abbtL06dNrXSMAAAAAIIWl2jWoBF4DjiH0GmnFsqyI7S5XYoJCo83jrx6CmeYef/xxvfjii1H7vfjii45+iJ0Kr4dY5mhsr4d0d3deM41L0o1Bx50myZAeW8BrKp5mHW8p/3yfgv/DmKoZfB0MvJYkxbjvEuwfDL4OBl4HP7azJOWf75WsDOWtdubmAHBY1R1V266542pZgeBrAAAAAACAxsa2U++kAwAAAAAAAAAAAAAAAAAx69ix48Fg6379+unkk0+udTB0so0bN06FhYVh2zMzM/Xaa6/V+edyuVyaNGmS+vTpow0bNoTt98ADDxB6DQBxkpGRoWuvvVb33XefunbtWuvnu91uXXPNNRo0aJBGjRqlt956q0aftWvXavLkybrhhhucKLlWvF6v3n777ZBt48eP129+85taj+nxeDR8+HANHz5cW7du1YQJE9SkSZOYn29Zlq677rqwf2Nvuukm/eMf/1BWVlZM4w0YMECffPKJxowZEzKnZMaMGZo9e7YuueSSmGsEAAAAAKSwVLv2lMBrwFGEXiOtZGREfkmHuyug06LNk6w7NibD1KlTdc8990Ttd8cddygvL8/RuVPh9RDLHKn0emjbtq169OgR93nWrl2r8vLyuM+TaHfPvVvjWq+MOeQ4HsadKsn06bH5iQn5b2xmdbWUf6FfVrV9pKrB17kVVQKvayn4vBL3oYHXQZYh5V/ok+RS3irCk1NK9ZDrcDuu7NACAAAAAIDGKnhcJNVOQAAAAAAAAAAAAAAAAAAQUn5+vtq3b6/+/furQ4cOyS6nXoqKivTss89G7HPbbbepb9++9ZqnefPmeuqpp3TFFVeE7fP555/rk08+0RlnnFGvuQAANRUUFOjoo4+u9zjNmzfX66+/roEDB+qjjz6q0T5hwoSkhF5/9tlnKioqqrH+7LPPrlPgdXUdOnTQww8/XKvnPP/88/r8889Dtv3ud7/TY489Vus6MjIy9MILL6ikpESvvfZajfb777+f0GsAAAAAaAD8ll8uM0IeXozXm/olJSRVj3wwwHGEXiOtZGZmRmxPVOh1RUVFxPZodaaL9957T7/85S9lR/kDnpeXp8cff9zx+VPh9RDttSCl1uvhlltu0S233BL3eXr27Knly5fHfZ5E8vq8evHbifUOvO68V9rQon5jvHiipYc/NpRpEYrsJL9ha2Jvq0bgdZApqWWpFGkXyrClY/ZI61pKdpiO2T4pyxd+HMuQJva2dPlqQ65wgwAAAAAAAACpig/9AQAAAAAAAAAAAAAAgAYhGWGe8TJp0iQVFhaGbW/RooXuvfdeR+a6/PLLdcYZZ+iTTz4J2+cf//gHodcAEAdOBF4HZWZmatKkSTr++ONVXl5+SFtBQYFWrVqlrl27OjZfLDZu3Bhy/YgRIxJaR5DX69UjjzwSsu2yyy7To48+Wq/xn3vuOX3xxRc1fu5vv/1WCxYs0Jlnnlmv8QEAAAAA8VNUXqSRM0dqdJ/RyuueV7NDjIHXwSRHS5LbsepC4NpXIC5Iw0Racbsj/ynyer0JqYPQa+nTTz/V4MGDo/4uzjnnHL3yyisyTef/O0qF10NDC71G3WVmZOqbo/+iVmV1DyG+81Pp+38EvtZVq1Lpm+cIvI4Hl21oyhsu9d4efhtHC7y+ZI2hwStNXbLGkBFh/ybSOL23B+og8BoAAAAAAAAAAAAAAAAAAAAAAAAAgOheeumliO033XSTPB6PY/PdcccdEdvffvvtiCHcAIDUcNRRR+nGG28M2TZ37twEVyNt27Yt5PrOnTsntpADZs6cqR9++KHG+qysLP3jH/+QEWOAWTgej0f33HNPyLZJkybVa2wAAAAAQPwUlRdp+PTh+mbzN8qfk69ZK2Yd2qGWgdfhHjuGwGsgbkjERFpp2rRpxPb9+/cnpI59+/ZFbI9WZ0O3aNEiDRo0SCUlJRH7nXLKKXrrrbeUlZUVlzpS4fUQ7bVgGIZyc3PjXgcS44iVm1Uw0a1WpaHbI72lvfNT6dF5ge8fnRc5+DrcOK1KpYJnpCP2EYYcLx6voWkzIwdfhxIMvO6xM/C8HjuNqMHXofTeHpjf42Ubp7x6fggLAAAAAAAAAAAAAAAAAAAAAAAAAKi/NWvW6KuvvorYZ8yYMY7Oedlll+mwww4L215eXq4ZM2Y4OicAID6uuOKKkOsXLlyY4EoUNkQ6Wq5FvLzwwgsh199www2OBXFfd911atGiRY31s2fPdmR8AAAAAICzgoHXi7culiRZtnVo8HUdA6+jra8zAq+BuCL0GmmlVatWEduLiooSUke0eaLV2ZCtXLlSF154YdS7C59wwgmaM2dOXAPAU+H1EG2O5s2by+Vyxb0OJMjXX+uIXRUqeEY1gq9tSbYROrC6auB1ULjg63DjVAZeS7KsOv8IiK62wdfVA6+Daht8TeB1A8OOLAAAAAAAAAAAAAAAAAAAAAAAAAAk3dtvvx2xvV+/fjruuOMcndM0TV111VUR+0SrCwCQGk477bSQ67/77rsEVyK1bt065Pp33nknwZUEgrbnz58fsu3qq692bJ6cnBydfvrpNdZv3bpVK1ascGweAAAAAED9VQ+8DgoGXy+vZ+B1rO0xIycMiLuMZBcAOCncAdqgvXv3JqSOaIHP0epsqNavX6/zzz9fO3bsiNivS5cumjt3btzDv1Ph9RBtjnR9LTRaGzdKCgRPFzwj9f21tDunMqhawa+2FHzbHSrwOii4ftyBz8HCjXNI4HUQb6TjylMuTZthavhgS4vbh/9dm7b04MfSlqZSqMjzHjsDXz/uHHm+3tsMTZtpyuMNPQ5SRNV/d6H+DfLvEgAAAAAANFa2HfPdtwEAAAAAAAAAAAAAAADASR988EHE9kGDBsVl3kGDBumpp54K2z5//nz5/X65XK64zA8AcEZubq6aNm2q/fv3H7J+w4YNCa+lV69eIddPnjxZI0aM0MCBAxNWy/z581VRUTNmrF27dmGDwuvq9NNP13//+98a6wsKCtS9e3dH5wIAAAAA1E24wOugKXf8pC4KBFa7I4wTa6B1tHGiIg8MSAgz2QUATmrTpk3E9vLy8rgHHe/evVterzdin3QMOv7pp5903nnn6aefforYr1OnTvrggw/Uvn37uNcU7fWwdevWuNcQbY50fC00aoWFB9/EBoOvW5RWBlUH2UYgtjhS4HXQo/MC/aoGXlcdp0WowGskhMcbCKLuva1yw1TdhTFtafx7pi5eGznMp8dOQ498GOgfapzKwGtCgVIaO7AAAAAAAACR2TbHUAAAAAAAAAAAAAAAAAAklM/n04IFCyL2Of/88+My9xlnnKHs7Oyw7YWFhfrqq6/iMjcAwFmtWrWqsa6wsFBlZWUJraNfv35q0aJFjfWWZemyyy7TPffcox07diSklq+//jrk+hNOOEGG4ex18YcffnjI9StXrnR0HgAAAABA3UQLvH7qzi36eZXH4YKtYw28rmv/g7jWFUgYQq+RVo466qiofbZt2xbXGmIZP5Y6G5Jt27bpvPPO0/r16yP2O+ywwzRv3ryE/fzR5on3ayGWOTp16hT3GpBA1e7O6vFKJ26XjBDvbZtUSD+LnBF/0ICfAv2rM+zA+J7IOfuIo6rB15akPTlSWUZl4HXeqtjeal3yvaHx75ky7cDz9+RIlgi8blAc/vAVAAAAAAAAAAAAAAAAAAAAAAAAAFA/y5YtU3Fxcdh2t9utU045JS5zZ2dnq2/fvhH7EHoNAImxfPlyTZo0SXfeeacGDhyoXr16qVOnTmrZsqUyMjJkGEbE5Ycffgg57r59+xL6c7hcLv3qV78K2VZRUaHHHntMRxxxhIYMGaKXX345rgHYS5cuDbm+W7dujs/VunXrkOt/+inGwAYAAAAAQNxEC7z+1Z1bdIWk6gld1WP16hpgXevnEXgNJFRGsgsAnNS0aVO1bt1au3btCttn48aN6tq1a9xq2LBhQ8T2du3aqUmTJnGbP9F2796tCy64QKtWrYrYr23btpo3b56OPfbYBFUmde7cOWL7xo0b415DtNfD0UcfHfcakEA+38Fvi7Kk4UOllW0ktyV5XZXdDAXW3XpJ4HFehBuIzuoW6Oe2As+r+lbZbQXGHz5UmjZd8pRXaSSAN2E8FYaee0fqO8avClMqzJLGFJjKW+0KbLRYtoUh5a12aeHh0rgBliTJ75Kee8eUp8KsubeG1GPbNbd19Z1bw+DfJgAAAAAASH+RPvDn2AgAAAAAAAAAAAAAAACABPr2228jtvfo0UNZWVlxm79///76/PPPw7YXFBTEbW4AaOy2bNmiF154QVOnTtWyZcviMkdZWVlcxo3kzjvv1OTJk7Vly5aQ7V6vVzNnztTMmTNlGIZ69OihM844Q6eeeqpOP/10xzIuwuV1TJgwQRMmTHBkjmgiZcsAAAAAAOIvlsDr3yt8hFqFJLfqHnhdfZyoCLwGEo7Qa6Sdo48+OuKByTVr1ujCCy+M2/zff/99xPZ0CjkuLCzUhRdeGPYOjEEtW7bU3Llz1b179wRVFhDtd71lyxYVFxfHNYS8Mb0eUCkYeL2og7QnR/KZkmlLlnEgA9kOBCNLkYOvg4HXJe5Af8OWZASCr007MO6enMA8NYKveWOdMEWZtsYMspRhBYLIcyukKb0sDfhJyltlxrYtbGnW8X5N6WWpeXlgm2dY0phBlqbNlDxewoBSnm0fuq1DbXf+XQIAAAAAgMYu1I3DAAAAAAAAAAAAAAAAACBOFi1aFLH9xBNPjOv80cYn9BoAnFdRUaG///3vevjhh7V///64zuX3++M6fiht2rTRzJkzdf7556u4uDhiX9u2tWzZMi1btkzPPPOMpEDGxbnnnquLL75Yl156aZ1v/rB58+Y6Pc9JpaWlyS4BAAAAABotv+XXyJkjwwZe684tukfhA6+D6ht4fbAeSa5IHYYMcWgmALVB6DXSTs+ePfX111+HbV+1alVc5482fs+ePeM6f6Ls379fl1xyib755puI/Zo1a6Z3331XvXv3TlBllbp06aLMzEx5vd6wfVatWqWTTjopLvPbtq01a9ZE7JMurwdUqh54XWFWtpnV8m4jBV9XD7wOMuxD38BXhAu+Jlw3IYoybQ0fbGlx+8C2aXXgczHLkPIHWpItnfJT9G0x+1jpgXNtWYaU7QsskrS4va3hg/2aNsMk+DrVVQ+9jtQPAAAAAACgMbNtKQkn+AMAAAAAAAAAAAAAAABofFavXh2xvUuXLnGd/7jjjovYHu06ZABA7fz444+69NJLtXhxmMCtNDFgwAB9/vnnGjx4sL7//vtaPXf9+vV6/vnn9fzzz6tFixYaNmyY7rzzTh1//PG1Gmffvn216h8PkbJEAAAAAADx5TJdGt1ntAq2FMiyrRrt6yWZNZ8Wv3oiNQ4ZIk2fnqhSAFSRyP8HgISIFmAc7zvefvvttxHb+/btG9f5E6G0tFSXXXaZPvvss4j9cnNz9c477+iUU05JUGWHyszMjBoqHc/Xw5o1ayIeqDcMIylh4IifSIHX4RRmBYKtb70kEHQthQ+8Dqd68HVRlioDeFnithS5LQ0fEgi8DsUypPyLLM05NvL2W95Guu+8QP9QFreXhg+xVOS2kv4zs0RYAAAAAAAAAAAAAAAAAAAAAAAAAAApZf369RHbo4VS11e08YuLi7Vjx4641gAAjcW2bdt01llnpX3gddAJJ5yg7777TuPGjVObNm3qNMbevXv13HPPqUePHrrhhhu0Z8+emJ9bXl5epzmdZHONNwAAAAAkVV73PI2/eLxM49DAvXV3bklo0K07UmPr1gReA0mUkewCAKdFC71etGiR/H6/XK6I92OoE5/PF/UAeEMPvS4vL9eVV16pjz76KGK/rKwsvfnmmzrjjDMSU1gYJ510UsRg62+++UY33HBDXOb+5ptvIrYfe+yx8ng8cZkbiee3/Bo5sFiL2oUPvLYMyZBkVPvsJBhsfesl0pvdpHnHhA+8tg3JlmRWG6Nq8PXIwdIbr9ly2WFSlFFvRZm2hg+1wwZeB1mGdP850tkbpB47a7YvbyPN7iLl+Gpu06oWt5eGD7U1bbrk8bJdUxIfigIAAAAAAAAAAAAAAAAAAAAAAABAyrBtWxs3bozYp2PHjnGtoUOHDjJNU5Zlhe2zfv16tW3bNq51AEC6s21bv/jFL7Ru3bqI/Q4//HCdcsop6tmzpzp16qT27dvL4/GoadOmysjICJtDMnDgQG3evDkepddLVlaW7rjjDuXn5+utt97SlClT9OGHH6qoqKhW4/j9fk2cOFHz5s3TzJkzo+a2SJJpmvL7/XUtHQAAAACQJvK650mS8ufky7Itrb1zi5xP+QwvYuC1JO0MEf4GIGEIvUba6d+/v7Kzs1VWVhayff/+/frmm290yimnOD73l19+qZKSkrDt2dnZ6tevn+PzJkpFRYWuuuoqvf/++xH7ud1uzZgxQ+eff36CKgvv9NNP1/PPPx+2PVp4d33Mnz8/Yvvpp58et7mReC7TpRErTM09KnzgtRQIrJYRPvh67rFSWUbkwOvgeCGDr7OlEd9JLr+tyt5wUlGWNHyIQgZe2woEmx+yzggEW8uWelS54frytoH1obLJQ42zuL00fIitadNteZJ/41sAAAAAAAAgdsEbhhnc0A0AAAAAAAAAAAAAAABAYuzZsyfs9eZBHTp0iGsNGRkZat26tXbs2BG2TyqGqAJAQzNz5kzNnTs3ZJtpmrrhhhs0duxY9enTp07jhwvDThWZmZkaOnSohg4dKr/fr6+++krz58/XJ598os8++0yFhYUxjbNx40YNHDhQX3zxhY455piIfXNzc0OOe8MNN+i2226ry49Ra02aNEnIPAAAAACAyILB1wN7DE5owG3UwGubHD4g2Qi9RtrJzs7Waaedpnnz5oXtM3fu3LiEXn/wwQcR28844wxlZ2c7Pm8i+P1+jRw5Um+99VbEfhkZGXr11Vc1aNCgBFUWWbTg7RUrVuinn37S4Ycf7vjc0V4PF1xwgeNzInn8ll+vdvMp1ycVVvvMyqqW4xIp+LosQyoP8ZlX1cDrquNWD77O9Umv9joQfM17bccVZUnDh0qLQ5zHYknamyPlVkjZvkPbbEOafXzg+x47DgReHx868LosQypxSy1Kper56Ys7BOafNl0EXwMAAAAAAKDhsW2CrwEAAAAAAAAAAAAAAAAkxK5du6L2adeuXdzraN++fcTQ61jqBABE9te//jXk+mbNmun111/XwIED6zX+nj176vX8RHK5XBowYIAGDBig3//+97IsS4sWLdKCBQv03//+VwsWLFBFRUXY5+/cuVMjR47U559/HnGe1q1bhwy9zsjIUK9ever9cwAAAAAAGpa8HoMVfm/TeQReAw0DoddISxdccEHE0OuZM2fq3nvvdXze6dOnR2y/8MILHZ8zEWzb1ujRo/X6669H7GeapiZNmqTBgwcnqLLojjjiCHXr1k0rV64M22fmzJnKz893dN5vv/1W69evD9tuGEbUQG40LC7TpdFLXCpoZ0kKBFhLNQOvg8IFX8caeB1UNfi6eXkgcHl0geSSIZEd4yi/YWvk4MiB1xVm5bYPF3y9sq20rmX4wOvg8/fmhA++HjlYemOa5Ao1CJKDHVwAAAAAAIDYEXwNAAAAAAAAAAAAAAAAIM52794dtY/H44l7HdHmiKXORJowYYL++c9/xn2etWvXxn0OAI3Dpk2bwgY0P/300/UOvK6oqND+/fvrNUYymaapk046SSeddJJuu+027d27V5MnT9ZTTz2ldevWhXzOwoUL9c4772jQoEFhxz3qqKNCPj/V/q4BAAAAABLgwDWjbikhwdcEXgMNB6HXSEtDhw7VPffcE7b922+/1apVq9S1a1fH5vzuu++0dOnSsO2GYWjo0KGOzZdIN998syZPnhyxj2EY+ve//61rrrkmQVXFbtiwYXr44YfDtk+dOtXx0OupU6dGbD/rrLMScvdnJFbe927JW6H8SwIh1XuzI/cPF3x9SJ8IgddBliG1KAsEXo+fLeWtFIHXceCyDY1eZKvgsEPDzKsGXgdFCr5e2yr0+FUDr6XAeKGCr01bGr2IwGsAAAAAAAA0QMGwa7P6rd4AAAAAAAAAAAAAAAAAwFl79uyJ2J6TkyOXyxX3Opo1axaxPdXCQXfs2KHly5cnuwwAiNn//ve/kOuPPfZYjRo1qt7jhwuGbqhatGihW2+9Vb/61a90++23h73Rwauvvhox9Lp79+766KOPaqxfs2aNU6UCAAAAABoC49AstHgHXxN4DTQsXFGOtHTsscdqwIABEfuMHz/e0Tn/8Y9/RGw/9dRT1blzZ0fnTITf/va3evbZZ6P2Gz9+vG644YYEVFR7I0eOjNi+cOFCff31147NV1xcrIkTJ9arJjRQbrfyVkqPzZVKMyKHWQfZCgQhh2yLIfBaCsxTmhGYN29lcKXBEoclb5Wp8XMMmQc2TKjA66DCrECQdSzKXIcGXgcFg6+tA49NWxo/J1BHsn8XLNUWgpoAAAAAAADCCx5DqfoYAAAAAAAAAAAAAAAAAOKorKwsYnuTJk0SUkfTpk0jtkerEwAQ2apVq0Kuv+yyyxwZ/5NPPnFknFSTlZWlCRMmaODAgSHbP/zww4jPP+WUU0KuX7Jkifbu3Vvf8gAAAAAADUGYa0WjBlPXEYHXQMNDOh/S1ujRoyO2v/DCC9qyZYsjc/3444966aWXIvb55S9/6chciXTffffpySefjNpv3LhxuuWWW+JfUB117dpVp556asQ+f/rTnxyb75lnnol49+cmTZpo6NChjs2HFOLxqChLevlEKdcnGVKdg69rE3htKDDfyydKRcHg5GQHAKfxkrfa1Ph3TckOH3gdVJgVCLSOpMKU9oUIvK7avjdHki2Nf9dU3moCr1NyAQAAAAAAQGwMgxuIAQAAAAAAAAAAAAAAAIg7r9cbsT0jIyMhdUSbJ1qdAIDItm/fHnJ9p06dHBk/WvhzQ3fnnXeGXL9582ZVVFSEfd65554bcr1lWWn/OwMAAAAAKGrultPB1wReAw0TV5Qjbf3iF79Qu3btwraXlJTonnvucWSuu+++O+JddNu3b69f/OIXjsyVKI8++mhMQdCPPPKI7rjjjgRUVD/RanzjjTc0f/78es+zY8cOPfzwwxH73HjjjWrRokW950LqKeraWcOHSos7SNk+qXm56hR8XdvA6+blgfkWd5CGD60SfI24OW+91KE4cuB10L6s8P0qTKk8hvNiKszAfOetr12dAAAAAAAAQErhBmIAAAAAAAAAAAAAAAAAEoTQawBoHML9P5qTk1Pvsbdt26aZM2fWe5xU1r9//7Btu3btCtt21FFHqV+/fiHbnnrqqXrXBQAAAABIYTFcJxr+Nkp1E3E8Aq+BlEXoNdJWdna2/u///i9in8mTJ2vWrFn1mue1117T1KlTI/a57bbblJVVvxTaDRs2yDCMiMuDDz5YrzmCxo8fr9///vdR+91777269957HZkz3q688kp17do1Yp/rr79ee/furfMctm3r+uuvV2FhYdg+brdbt99+e53nQOryW36N/PlmLe5Qua4uwddWHQOvgxZ3kEYOlvymKgNkWBxdirKk4UNsbW0a+P3HojyjZvB1rIHXOrCdtzYNzFuUxbZN+QUAAAAAAAChcfwEAAAAAAAAAAAAAAAAQIJYlhWx3eVyJaSOaPP4/f6E1AEA6apVq1Yh12/evLneYz/55JMqL4/xgvIGKjMzM2xbkyZNIj73hhtuCLl+wYIFWrBgQb3qAgAAAACkqBiuEXU68DriuAReAyktMbcfBZLktttu0zPPPKNNmzaF7XPdddfp8MMP1ymnnFLr8RcuXBj2IGxQp06dooZvp5IXXnghpnrvuOMOPfLIIwmoyBmmaWrcuHG67LLLwvbZuHGjBg8erHfeeadOd+2866679M4770Tsc9ttt+moo46q9dhIfS7TpdHdr1HB1w/LqvJ+PBhIXZgVW5h1rAzVDLyWJNOWRi8y5JIZ6ARHFWXaGj7Y0uJ2ga1ZdftGU54hySe5rdoHXgfnWdze1vAhlqbNdMnjZQOnHHZ+AQAAAAAAIgseP0nQxWIAAAAAAAAAAAAAAAAAGq+MjMgX8fl8vojtTok2j9vtTkgdsWrbtq169OgR93nWrl2b9kGyABKjbdu2IdfPmzdPf/zjH+s87pdffqlx48bV+fkNxerVq0Oub9q0qZo1axbxuaNGjdIDDzygnTt31mi77rrr9NVXX6lNmzaO1AkAAAAASAFJDLyuOv7BI6pkfgEpj9BrpLXc3Fz97W9/07Bhw8L22bdvny688EK9/PLLuvTSS2Me+80339SoUaO0f//+iP3++te/1ilAORlee+01jRkzRnaUP+Bjx45tkAfnL730Ug0aNChiMPX8+fN14YUX6rXXXtNhhx0W07jl5eXKz8/Xc889F7HfYYcdpvvvv79WNaNhycs5SZpjKP9iu0bwtdeUisPf5LTWcipCB16Pny3lrTYCD+Aov2Fr5BWVgddBtQ2+9lmS34xtzlDB5ovb2Rp5hV9vvG7KZRN8nTLY+QUAAAAAAAiv6rGTGE5qAAAAAAAAAAAAAAAAAID6ysyMfFFnokKvKyoix7xEqzPRbrnlFt1yyy1xn6dnz55avnx53OcBkP769u0bcv2nn36qTz/9VKeddlqtx9y8ebOuueaahP2tiNWkSZN03nnn6YgjjnBszIkTJ4Zc36tXr6jPbdKkiR544AHdeuutNdo2bNigIUOG6L///W/U8OzaWrZsmWzbjqlGAAAAAIBDUiDwOmi/pKZkfgENAqHXSHtDhw7VNddco6lTp4btU1hYqMsvv1xXX3217r//fnXr1i1s3+XLl+uhhx7StGnTos49cuRIDRkypE51J9rChQt17bXXyu/3R+x31FFHqU+fPvrPf/6ToMqkQYMGxRxAHc2///1v9enTRzt27Ajb53//+5969eql++67TzfeeGPYA+g+n09vvvmm7r33Xq1atSrivKZp6sUXX3T8YDxSzJIlyvshV5pdrPxLdDD4uixDKnX4RtulbinTqgxEPhh4vVKSYRPAGwcuWxq9yFBBh0NDzaXaBV/XJ/BaCmzr0YsMuSxJYjunDP7NAQAAAAAARGdz7BIAAAAAAAAAAAAAAABAYrjdkS/s9Hq9CamjoYVeI4qsLKlHj2RXAdSUFcNFzmnqjDPOUG5urkpKSmq0jRo1Sp988ok6duwY83irVq3SwIEDtXHjRifLdMQLL7ygMWPG6JprrtEdd9yhE044oV7jvfHGG5owYULItquuuiqmMcaOHaupU6dq4cKFNdoWLFig/v37a8aMGY4EVH/yySd6/PHH9c4772jy5MmEXgMAAABAoqRQ4HWFpG5/PVzjV8xSXve8BM0KoK4IvUaj8Oyzz+qbb76JGExs27amTp2qqVOnqm/fvjr11FN19NFHq2nTptq3b5/Wr1+vTz/9VIsXL45pzm7duumZZ55x6keIu5UrV0b90FSSfvjhB910000JqKjS/PnzHQu97tixo1566SVdcsklsiwrbL/du3fr9ttv17333qtzzjlHffv2Vfv27eVyubR7924tXbpU8+fPjxieXdX/+3//TxdeeKEjPwNS2LJlUtOmyltZLEnKv0QqcQeCkO3o79drxTYqA5ZzK6oEXiOu8lYZkkzlX2SFDL4uy5DKXfWfJ8sfPvB6/LvmgTqQUghrAgAAAAAAiI1tSxGOzwMAAAAAAAAAAAAAAACAE5o2bRqxff/+/QmpY9++fRHbo9WJFGOaUk5OsqsAUEVWVpaGDh2qyZMn12hbt26dBgwYoP/85z9R8x6Ki4v1+OOPa9y4cYcEaHs8HhmGocLCQsdrr4uKigpNmjRJkyZN0oknnqirrrpKV111lbp06RLzGLt27dJjjz2mv/71ryFzN5o0aaKrr746prFcLpemTJmik08+Wbt3767Rvnr1avXr10+/+MUvdNddd6lr164x12nbtr766itNnz5dM2bM0Lp162J+LgAAAADAISkUeO2TdNy4wyTbUv6cfEki+BpIcYReo1Fo2rSp3nvvPZ1xxhnatGlT1P4FBQUqKCio83xHHXWU3nvvPT5kTFEDBw7Uc889pxtvvFF2lJDS0tJSzZ49W7Nnz67zfNdff70eeuihOj8fDciuXYEPq01TeSstLTxcGndaIKDa6ThcW5IOBF+P+bpa4DXhu3EVLvg6UuB1tC1SfZeu3BUYr2rwNYHXKY5/dwAAAAAAAJFVPbHBF+KObwAAAAAAAAAAAAAAAADgoFatWkVsr6ioUFlZmbKzs+NaR1FRUcT2aHUCAKL7wx/+oFdeeUUVFTVjtjZt2qSBAweqb9++uvLKK9WvXz+1bdtWpmlq+/bt2rRpk95//33NnTs35I0KnnzySf3xj39MmdDrqpYsWaIlS5bovvvuU4cOHXTyySerf//+OvbYY9WqVSu1atVK2dnZKi4u1o4dO7Ry5Up98sknmjdvnsrKysKO+9hjj6lDhw4x13HMMcforbfe0gUXXKDS0tIa7V6vV88//7wmTpyoXr166cwzz9TJJ5+stm3bqlWrVsrKylJhYaH27t2rXbt2admyZSooKNCiRYu0d+/euvxqAAAAAABOSKHAa7+kY8cddvCxRfA10CAQeo1Go1OnTvrwww910UUXae3atXGb57jjjtO7776ro446Km5zoP5Gjx4tv9+vsWPHyhfHcI0bbrhB//73v2XE8KYNaaCiQiovlyTN6iZN6S3lVEjFmfGZzpaUWxGYZ8BP1YKvEVfVg6/LMgIB5E4KjpftI/AaAAAAAAAADRzHyAEAANCI+C2/XGaYOyYnYRwAAAAAAAAAAIDGqnXr1lH77N27t1ahnnURLawzljoBAJEdc8wxevDBB3XvvfeG7VNQUKCCgoJajXvzzTfr+uuv1x//+Mf6lhh3W7du1dtvv6233367XuMMHTpUY8eOrfXzTjvtNL3//vu67LLLwv7ts21bS5cu1dKlS+tVIwAAAAAgAdq0idolUYHXlqRjqgReH1xP8DWQ8sxkFwAk0nHHHaevvvpKAwcOjMv4F110kb766isde+yxcRkfzhozZozmzp2rdu3aOT622+3WP/7xD/3nP/+RafJfbaPhdkslJZrV1Vb+JVKJWyp1S/GKczEUGL/ELeVfEgjaRuLkrTI0/l1T5a7KgGrLkOx6bnDbCIwjBcYtdxF4DQAAAAAAgDRDCDYAAADSVFF5ka6cdqVmrZhVr3FmrZilK6ddqaLyIocqAwAAAAAAAAAAaHzaxBDKsnXr1rjXEW0OQq8BwBn/7//9P1133XWOjffLX/5STz/9tGPjNQTXX3+9Xn31VRl1PNf39NNP15dffqmTTjrJ4coAAAAAAAk1dKi0a1fELv4ElWJJOjpSu21p4qKJ8luJqghAbZDEikanZcuWevfdd/Xiiy86Fnbcrl07TZo0SXPmzFGLFi0cGROJcfbZZ2vFihW66aabHAunPuecc7R48WLl5+c7Mh4akNxczTq6XPkX2ypxVwYhG3Z8pguOW5hVLfjaMFgStlRuj2BQta26B1/bRuD5VccLbGy2a4NYAAAAAAAAEJ1hSNwsEgAAAGmoqLxIw6cP1zebv1H+nPw6B1/PWjFL+XPy9c3mbzR8+nCCrwEAAAAAAAAAAOooNzc3aqD0tm3b4lpDSUmJ9u3bF7FPp06d4loDADQmEydO1B/+8Id6ZUdkZ2dr3LhxeuGFFxzLoHDKCSecILfb7fi4hx12mF5++WVNnDhRLperXmN16dJFn3/+uR577DF5PB6HKjx0/EceeUQXXXSR42MDAAAAABQIvJ4xI2q3+u09Voq0l2vrQOD1uMPC9undobemDJ4il+lURQCclFpH14AEuu6667Ru3TpNmDBB3bt3r9MYPXr00IQJE7R+/XqNGjXK4QqRKK1atdKzzz6rlStX6pZbbqnTgXO3260rr7xS8+fP14cffljn1xQatlnt99QIvJaqhRc7qOq4hwZfxyllG4eY1dVS/kBLbr9kVvuV1yX4umrgdZBpS26/lD/Q0qyuVn3KRbwReg0AAAAAABAdNw8DAABAmgoGXi/euliSZNlWnYKvg4HXlh34fHjx1sUEXwMAAAAAAAAAANRD586dI7Zv3LgxrvPHMn60GgEgHZ111lkaMmRIjaVt27b1Gtc0TT344INasGCBLrjgglo9NzMzU6NGjdJ3332nO+64o151xMv48eO1c+dOvfbaa7ruuuvq/TfkhBNO0BNPPKFVq1Zp5MiRzhSpwO/yd7/7nTZu3KgnnniiXvkbhmGod+/euvPOO/W///1Pq1ev1r333qs2bdo4Vi8AAAAAoIoYAq+D6ntbJne1r1XZkv4iRQ28njZ0mjxZzt90CYAzMpJdAJBMTZo00dixYzV27FitXr1a7777rr799lstW7ZMP/30k/bt26eSkhLl5uaqWbNmOuKII9SjRw+ddNJJuvjii9WlS5eE1dq5c2fZdvyCbH/5y1/ql7/8ZdzGbwi6dOmip59+Wn//+9/1ySef6MMPP9R3332nlStXateuXdq3b5/8fr+aNWum5s2b67jjjlPPnj11+umn68ILL4zLXSbRcPgtvya2WKcSV2ICr6uOHwxcDs47sa+hyzfnyFXb1GXEbNZxFco/p0w+Q9qbHdgOhn1o0LUtSQfWRxMq8NqwA+PuzZFalEn5F9lSllt53zt/9104wOeTyssrH1uWFOrvdj3vbgwAAAAAAJDy/P6a68xq9+HlGAkAAADSSPXA66Bg8HWsqgdeBwWDrzkZFwAAAAAAAAAAoPaOPvpoffPNN2Hb16xZE9f5v//++4jt7du3V25ublxrAIBU9Mc//jGu45922ml6//339d1332nOnDn6+OOPtWbNGu3atUt79+5VVlaWmjVrpqOPPlo9evTQOeeco4suuihskPKqVatC5n1kZWWF6B3eiy++qBdffLEuP9JBHo9Hw4YN07BhwyRJW7du1WeffaYlS5bo+++/19q1a7Vlyxbt27dP+/btk2EY8ng88ng8ateunU488UT17dtXp512mk444YR61RJNixYtdOedd+rOO+/UypUr9eGHH+qrr77S6tWr9cMPP2jv3r0qLS1VRkaGmjVrJo/Ho9atW6tr167q1q2bevToodNPP73eYegAAAAAgBgZtc+tc0uqqMNU1ZPUqo5jS3pT0rMEXgMNHqHXwAHHH3+8jj/++GSXgRTgdrt17rnn6txzz012KWhAXKZLI7a319yjNh9cV9vAa8OWDAXebNcmr7pq8HWJWxqxTHIZrsBgcNysY73KP7tMPsPW3myp4kBeT3DbVRUMvo4mVC528GkVZiBYu0WZrfxzyiTDUN7azLqWj3gxzUN32E2zZsBT9T4AAAAAAACNEcdHAAAAkEbCBV4HBYOvLzruInVq3insOJ9u+lQTCybWCLwOIvgaAAAAAAAAAACgbnr27Knp06eHbV+1alVc5482fs+ePeM6PwA0dr169VKvXr1011131Wuc2oZbJ1KHDh00ePBgDR48ONmlRNStWzd169Yt2WUAAAAAAMKpx7WftQ2+rh54XXW9V9Lnkv6PwGsgLRB6DQCAA/yWX68236QWpdKeHMnrqt3zg4HXWX6p3CXJrn3wdaZfalEqvdpLGrHZJVdtBkBMZh1Trvwzy+QzpL1ZlYHXUujg6kjro7EVIvi6XIHga5dLeetS98PRRivaTrthEOoEAAAAAAAap+o3CwMAAADSQLTA6yDLtjR9+XRdfNzF6tG2R4325TuW64N1H8jtCnfqbgDB1wAAAAAAAAAAALV30kknRWwvKCiI6/zffvttxPa+ffvGdX4AAAAAAAAAiMqBXKxYg68jnzUvZUravXymzDn5smyrRjuB10DDQug1AAAOcJkuTfnueF1xzF593MRX+wEMqXmZlO2TyjICAce1VWFK3XdKU2YacmX5az8AIvIbtiZ2K5VPVsjA61gzxl225I+hr20EBj4k+DrLVouyQB2XrzEJNk8lPp9kV4k4t2ruLMuyCL0GAAAAAACNk20HjosQeA0AAIA0EWvgdZAtW7PXzJakQ4Kvl+9YrtlrZivDFdtpfARfAwAAAAAAAAAA1E600Osff/xR27dvV7t27eIy/zfffBOxndBrAAAAAAAAAEnlYCZWtODraIHXkiTbVt6Bb/OrBV8TeA00PIReAwDgkKJsQ0va+GIOP67KluQ1pewDX+1oTwg1hiEtaScVZdry+OoQvI2IXJL+9X6m+o7y1T3w2pLcliRT8seQ7xMq+NpvBupwVRBsnlIqKipDr207dOi1bUt+thsAAAAAAGiEqh434aZgAAAAaOBqG3gdVD34Ohh4bdfyDAGCrwEAAAAAAAAAAGJ3xBFHqFOnTtq4cWPYPh999JGuuuoqx+fevHmzVq9eHbHP6aef7vi8AAAAAAAAABCTOFzvGS74OtbA66C87oHo62DwNYHXQMMUQ9wiAACIxuvzql+/r7Unq+5jFGdK25sEvtbVnhyp3xhbXjNE4C7qxW/YuvmCcmVYRiC4WrULvJYCgdVeV2yB10G2URmC7rakDMvQzReUy2/UJRodcWOagR1mm+0CAAAAAAAQUvCGYBw/AQAAQAPmt/waOXNkrQOvg4LB1zNXzKxT4HXQ4q2LNXLmSPktbroLAAAAAAAAAAAQzfnnnx+xfe7cuXGZ94MPPojY3qVLF3Xq1CkucwMAAAAAAABARHEIvA6qHnBd28DroLzueRp/8Xj169iPwGuggcpIdgEAAKSDzIxMXZ3RV0/ZC+s1jr+e+wC2IV29zFCmxX0tnOayDY1e6lZBu3K1LDO0M8eWrw6/ZqsO29g2JJcltSwz5LKl0UvdctUmbRvxZwWT0KNclE6oEwAAAAAAaOwsbtgHAACAhstlujS6z2gVbCmQZdftva0tW2v3rK1XHaZhanSf0XKZrnqNAwAAAAAAAAAA0BhccMEFev7558O2v/XWW3rmmWfkcjn72cv06dMjtl944YWOzgcAAAAAAAAAMYlj4HWQW5JfUkxHXSPkcuV1z9PlXS/n3HmggSL0GgAAB/gtvz7N2SGjREpmpK0h6dMjbfm9ZYQix0HeMkk+Uzde4o85vNqQM68Jy5C8pq3/zHYpb5Vfgd05pAy/n8AmAAAAAACAcIInHBhG4HuOowAAAKABy+ueJ0nKn5Nf5+Dr+jANU+MvHn+wDgAAAAAAAAAAAEQ2aNAg5ebmqqSkJGT79u3b9cEHH2jgwIGOzbl792699957EfsMGzbMsfkAAAAAAAAAICYJCLwOqm/g9cFxCLwGGiwz2QUAAJAu7CZNZNiBkONkMCQZdnJDtxsbM8ovO7hNoon2mok2DwAAAAAAANAgBE8+IPQaAAAADVxe9zyNv3i8TCOxp98ReA0AAAAAAAAAAFB7TZs21eWXXx6xz/jx4x2d85lnnpHX6w3bfuSRR+rMM890dE4AAAAAAAAAiCiBgdcxiSHwGkDDRug1AAAOcJkufXjjJ+q9OyMpwdfBcOXeW6UPp2TIZafYjkWamNXVUv6FfmX5peblgXXhAqljDbzWgX7htlhw/OblUpZfyr/Qr1ldCQUCAAAAAABAA2XbqXdiBAAAAFAHiQ6+JvAaAAAAAAAAAACg7kaPHh2xffbs2Vq0aJEjc+3fvz9qiPaoUaNkcB4VAAAAAAAAgERJteORBF4DjQKh1wAAOMSza78+eq2Jem+NPezYKcHA648mSZ7yxM7dWPgNWxN7W7IO7Ldl+8IHX0cKvA4bkh0i+Lpq4HW2L/C9ZUgTe1vyJ/pFhshSbYceAAAAAAAgVXEcBQAAAGkkUcHXBF4DAAAAAAAAAADUzwUXXKATTzwxbLtt27rtttscmesvf/mLtm7dGrY9KytL+fn5jswFAAAAAAAAAFGl2nWdBF4DjQah1wAAOOXLL+Up9umtV6Qm3sRO3cQrvfXKgcBr3szHhcs2NOUNl3pvr9x5CxV8HSnwOsOqXEKpGnwdKvBaknpvD9ThslNsJxIAAAAAAACIJnhiBMcwAQAAkEbiHXxN4DUAAAAAAAAAAIAz7r777ojtH3/8sf7+97/Xa47PPvtMjz/+eMQ+v/zlL9W+fft6zQMAAAAAAAAAMSHwGkASZSS7AAAA0saSJSryFWvMUKlJhVTqlnwJuL1EhhWYb8zl0rTpkscyJbc7/hM3Qh5bmva2reGXl2txu8COU7ZfUrmtwqzKoOpQMqzKdtMOPA71+qgafN28XMr2GwdX9N5uaNrbWfLYhsQmTi0VFZLfn+wqAAAAAAAAUpdhVJ4ckWonSQAAAAD1FAykzp+TL8sOcxfkOiDwGgAAAAAAAAAAwDlXX321nnzySX311Vdh+9x999067rjjdNlll9V6/DVr1mjo0KHy+Xxh+zRr1kwPPvhgrccGAAAAAAAAgFpLtWs5CbwGGh1CrwEAcEjR5x9p+FBpcYdARnGrUmlHrmTH8T2/YQfmMRSYd/hQadr0Cnls/sTHi6dcmvZmpoZf4dXitoGLlbN9ge28NyuwLYxq+1VVA6+DwgVf24ZkS2pRHhg38EjqvcPUtDcz5fFWrkMKMc3AEmSFuZDdTEASPgAAAAAAQDKFOi4SPDHCtjk+AgAAgLTldPA1gdcAAAAAAAAAAADOMgxDTz/9tAYMGCA7TLhKRUWFhg0bpqefflo33nhjzGN/+umnGjZsmLZs2RKx3x/+8Ad16NChVnUDAAAAAAAAQK0ReA0gBZCICQCAA/yWXyPbf6rFbQKPbUmF2YEA5Hi+zTYOzNOySvD1yMHSG7P8csUzbbuR85RJ02ZlaPiVFVrczpZtSKUH3lXZkmRUBl838UrlYd5xBYOvrWDmj1H5einNCIReG7bUe7uhaW9kyOO1ReB1irKs2Haq2fEGAAAAAACNUfCYiGlyfAQAAABpLa97nt5Y9Ybmrp1b77HOO+Y8Aq8BAAAAAAAAAEDSLViwQKtXr67Vc3bt2hW1z3/+859a13LWWWepS5cutX5eVaeccop+//vf689//nPYPuXl5RozZoxmzJihhx56SCeffHLYvhs3btRjjz2m5557Tj6fL+LcZ511lm677ba6lg4AAAAAAAAAsWnTJtkVHIrrSoFGi9BrAAAc4DJdGv21TwUDJb8h7cmRKsxAm2lXhho7yTzwHr7CDMzXslRy2dLoAhF4nQAer6Fpb7g1ZHCFPjnSltdV2RYMvm5RJrms8KHXUmA75lZI+7IOjbP2uqQ92dIZmwLzeLxs05TGTjUAAAAAAEB0HEMBAABAmpu1YpbmrZvnyFjz1s3TrBWzCL4GAAAAAAAAAABJNXHiRE2aNMnxcceMGVPr57zwwgv1Dr2WpIceekj/+9//tGDBgoj93n33Xb377rvq1q2bzjjjDHXp0kUej0fFxcXatGmTvvjiCy1cuFB2DOdFtWvXTlOnTpXL5YraFwAAAAAAAADqbOhQKYYbEybMkCHJrgBAEhF6DQCAQ/KWWSoxpRsurwy8lqR45U/bhmRUDb7Olp5/S8pbKSmT8JiEsG3JtuU3Dg2sDrTVdixJxqEP/UblHLUeD4kXS2gTwU4AAAAAAKAxsm3JMCq/AgAAAGlo1opZyp+TL8u2HBnPsi3lz8mXJIKvAQAAAAAAAAAAHORyufTGG2/onHPO0eLFi6P2X7lypVauXFnn+Vq0aKH33ntPHTt2rPMYAAAAAAAAABDV0KHSjBnJrqLSkCHS9OnJrgJAEpnRuwAAgFgUZUkvnyjl+irX2aHCkB1i69BA7VxfYP6iLFUJSmaJ11LktjQ8z6dvDjsQTl2FYQfyqwuzpPIoN163DGl/ZqB/MMQ8yG9I3xwmDc/zqchtJf1nZomyAAAAAAAAIDyOowAAACCNOR14HRQMvp61Ypaj4wIAAAAAAAAAADR2LVu21Ny5c9W/f/+4ztOuXTu999576tOnT1znAQAAAAAAAICUCrxu3ZrAawCEXgMA4AS/5dfIwdLiDlK2T2perrgGXgfZCszTvDww7+IO0sjBkr96ejIcVZRpa/hgv77oaKswK3Lf4sxAsHUoliH5orwbK8ySvugYmK8ok+0KAAAAAACABo7gawAAAKSZeAVeBxF8DQAAAAAAAAAAEB9t27bVJ598olGjRsVl/JNPPllff/21TjnllLiMDwAAAAAAAAAHGWGCzpJl585kVwAgBRB6DQCAA1ymS6MLJPNAVovXjH/gdZB9YD4pMP/oAsllp9jORxqpHngdDB6vqnrguc+sGXxdPfA60jgEXwMAAAAAACBtGIZk8hElAAAA0kO8A6+DCL4GAAAAAAAAAACIj+zsbE2aNEn//e9/dcwxxzgyZrNmzfS3v/1Nn3/+uY488khHxgQAAAAAAACAsFIt8NomJw1AAFeUAwDgkLyV0vjZ0r5MqTgzsXMXZwbmHT87UIdsmyUOS5Hb0vC8yIHXQZGCr2MJvK4+zsHg6zy/itxW0n8XLNUWAAAAAAAAhBc8hhI8cYLjKQAAAEgDiQq8DiL4GgAAAAAAAAAAIH4GDRqklStX6qWXXtLJJ59cpzE6deqkv/zlL9qwYYN++9vfyuVyOVwlAAAAAAAAAFRD4DWAFJaR7AIAAEgbhqGFh9sqdidn+mK3tPDwA6HXcJzfsDXySktfHB498DrINnRI8rXPlEy7Mvz6kH4xjFOYJX1xeKCON1435Yr2RCQOO9oAAAAAAADhVQ27NgzJ709uPQAAAEA9JTrwOigYfC1Jed3zEjo3AAAAAAAAAABonF588UW9+OKLyS4jIdxut6699lpde+212rRpk+bMmaOvvvpKy5cv18aNG1VUVKSSkhJlZWWpWbNmOuyww9S9e3f16dNHAwcOVO/evZP9IwAAAAAAAABoTAi8BpDiCL0GAMAhd58vjft5cmsYd1rg62MfJ7eOdOSyDfXYIc0+LrbA66Dq/aoHXseqavB1jx0i8BoAAAAAAAANj2Gk3kkUAAAAQC0lK/A6iOBrAAAAAAAAAACA+DvyyCN100036aabbkp2KQAAAAAAAABQU6pdq0ngNYAQCL0GAMABXp9XL/apXRiy04KhyC/2lR7+3FSmZSankDTlN2wtb2/JU25rb3bdxzHt+gVfNy+Tlrc35He7CL5OJX6/ZCXnonYAAAAAAICUZ1Y7VplqJ1MAAAAAMfJbfk1cNLFegdeGDB3T8hit27NOtup2Yq9lW5q4aKIu73q5XKarzrUAAAAAAAAAAAAAAAAAAAAAABqYVLtGk8BrAGEQeg0AgAMyMzL1yIrD9OuTNtfxklRnGJIemSdlmpkSmdeOckn61wcu9R1VogP54rVmWlKGLfkMqS6Z5IYCz//XB9lyudjAKcfvr/zetkPviKfawQIAAAAAAACnxXJyAsdIAAAA0EC5TJemDJ6i4dOHa/HWxbV+viFDl3S5RD3a9tDyHcs1e83sOgVf9+7QW1MGTyHwGgAAAAAAAAAAAAAAAAAAAAAak1S7PpPAawAREHoNAIAD/JZfbx3tVesSaUeT5NXRukR6q7s0+ntbLjvFdkwaOL9h6+YLymXahgzbVl1+vZYpVdiq03MlybAl0zZ08wXleuONbLZxKjGMyp3vSDvh7KADAAAAAIDGyLIk0zz0MQAAANBAebI8mjZ0Wq2Dr6sGXks6+HX2mtm1mr93h96aNnSaPFmeWj0PAAAAAAAAAAAAAAAAAAAAANCAEXgNoIEh9BoAAAe4TJf+tWuA+h7xX5m2ZNVxv6C+z7UN6V/vGHL5CI1xmkvSiGWm5nby12uc+uZUF2bZGrHMZBunGv+B1wU74QAAAAAAAKEFg65druTWAQAAADigtsHXhgxd3OXig0HXQcHHH6z7IKZ5CbwGAAAAAAAAAAAAAAAAAAAAgEaIwGsADZCZ7AIAAEgHfsuvm49fLZdtyG0FAqjroj6B125LclnSzYMkv8HOgNP8hq1Xe/iVWxF4XNdtXFfB+XIrpFd7+NnGqYidcAAAAAAAgMgMozL8GgAAAGjggsHXvTv0jtjPNEwN7TG0RuB1UI+2PXTzyTfLNCKfykfgNQAAAAAAAAAAAOAMI4aAIItz3QAAVcTydyGWvy8AAAAAUCeptr9B1haAGGUkuwAAANKBy3RpdOc8FSx9XJ5SaWfTxM5vG5KnVMqwpdHfZchl8ifeaS5Jo7+TCtqXS7JVmBUIoq5rUHltBAOvm5dLuT5Do7/LZBunGts+9MAAO+UAAAAAAACVUu2ECgAAAMAhweDr4dOHa/HWxTXaTcPU+IvH68eiH7W3bG/YcU478jT17dBX+XPyZdk1L5Ik8BoAAAAAAAAAAABwjsvlitrH7/cnoBIAQEMRy9+FWP6+AAAAAECtpdr1mWRrAagFM9kFAACQLvIuuFWPfSDtyZUS/ZbcVmDex96X8r53J3j2xiPv+wyNn5elXJ+h5uWBdWacN3b1wOvx87KU9z2B1ynHtg9dAAAAAAAAEJ5VM8QPAAAAaKiCwde9O/Q+ZH0w8Dqve15M4+R1z9P4i8fLNA49pY/AawAAAAAAAAAAAMBZphk9ZqOioiIBlQAAGgqv1xu1Tyx/XwAAAACgVgi8BtDAkZgIAIBDirz79Nef2fIn6bMIvyn99VTpsh/88viSU0NjkLfalGy38s+vkCVbhdnxnc8ypOZlBwKvP3Arb40piVCglMPOOAAAAAAAQHi2fejJFRxLAQAAQJoJBl8Pnz5ci7curnXgdVCwf/6cfFm2ReA1AAAAAAAAAAAAEAeGYcjlcsnv94fts3//frVs2TKBVQEAUtn+/fsjtrtcLhmpFkYHAAAAoGFLtX0MrgsFUAeEXgMA4AC/5de5L52nxR0kw5ZkSIl8e24oMO/iDtK5I8r1xeRMuewU22FJI3krDZWYpm4Y5A9s6Hj+qm2pzC1NeN9U3kpDUviTKJBEFkHkAAAAAAAAEQVPaEi1Ey0AAAAAhwSDr0fOHKnRfUbXOvA6KPi8iYsmasrgKQReAwAAAAAAAAAAAHGQk5MTMcC0uLhYlmXJNM0EVgUASEWWZamkpCRin5ycnARVAwAAAKBRSLXrMAm8BlBHhF4DAOAQY89eqVmyqzgQuo24Ksq09XIvSzkVUnl2nCczpJwK6eVeli773pbHm2I7owAAAAAAAAAAAAAASYHg6zeGvyGX6arXOHnd83R518vrPQ4AAAAAAAAAAACA0Jo2bRox9Nq2be3Zs0etW7dOYFUAgFS0Z88e2VEC3po2bZqgagAAAACkvTZtkl3BoQi8BlAP3FYSAAAHuEyX5k3LVu+tkq3AkkjBOXtvleZNllw2wcjxUpRpa/iVFSpoZ6vEnZg5S9xSQbvAvEWZ7AACAAAAAACggUq1u4sDAAAAceBUUDWB1wAAAAAAAAAAAED8xBJOumPHjojB2ACA9Ld//37t2LEjar9mzZoloBoAAAAAaW/oUGnXrmRXUWnIkGRXAKCBy0h2AQAApAvPrv26+UvpV1ckqQBDuvlLyVMuKYf7WsRDUaat4VdUqKCtrT05kjdB1xh7XdKenAPB13k+TXszUx4vAUEpx+dLdgUAAAAAAACpibBrAAAAAAAAAAAAAAAAAEAKcbvdys7OVllZWdg+tm1r06ZNatWqlVq3bq2MDOI5AKCx8Pl82rVrl3bv3h21b3Z2Nn8jAAAAANTf0KHSjBnJrqLSkCHS9OnJrgJAA8cREwAAHDKlm1f5l0q2LSkJGS62LeVfKuX6pJFrEz9/uvMbtkZe5lVBWyuhgddBB4Ov21oaeZlXb8zMlMsmLAgAAAAAAAANkG0nuwIAAAAAAAAAAAAAAAAAQCPXrFmziKHXQbt379bu3buVlZWl3Nxc5eTkKCMjQ6ZpyjTNBFQKAIgny7JkWZZ8Pp9KS0tVUlKi8vLymJ/v8XjiWB0AAACARiOVAq9btybwGoAjCL0GAMABXp9Xt19gy2sqKYHXUmBeryndfpE07F+WMi0+KHeSyzY0YrlLcztbCQ+8DvK6pL050ojlLgKvAQAAAAAA0HAZHNsCAAAAAAAAAAAAAAAAACRXq1atVFhYKK/XG1P/8vJylZeXa8+ePXGuDADQUGRmZqply5bJLgMAAABAQ5dq11zu3JnsCgCkCUKvAQBwQGZGph75UPrVpcmuRHpknpRpuKUkBTOnK79h6+UTLPmSnCXuM6WXT7A0Yo1J8DUAAAAAAAAaJpMb9gEAAAAAAAAAAAAAAAAAkss0TXXo0EE//PBDsksBADRQhx12mEzOjQYAAABQH6kWeG3bya4AQBoh9BoAAAf4Lb/e6m6qebmlvdnJq6N5ufRWN2n0Ci+ByE4zbK1p7pc/yb9WvyGtae6XKioktnHq8PuTXQEAAAAAAEDqCp7kYBiVCwAAAAAAAAAAAAAAAAAASdakSRO1atVKu3fvTnYpAIAGplWrVsrNzU12GQAAAAAaslS71pLAawAOI/QaAAAHuEyXRq/IUkH7UtmSCpMQfN28TGpSIY0ukFwmf+IdZ9hqUW7IsO2kZk0bttSi3JBcLkKvUwk76wAAAAAAAJGl2skXAAAAAAAAAAAAAAAAAABIateunSQRfA0AiFmrVq0O/v0AAAAAgDpJtWsuydACEAckYgIA4JC87a1V8v6PuuFKyZCUyLfvhqQytzThHSlvpaQsfwJnbxxckj6c6tbZI70qaKfALz3RbKnP9kAdLp+VhAIQlsX2AAAAAAAAAAAAAAAAAAAAAAAAAACgoTEMQ+3atZPL5dKOHTuSXQ4AIMW1bdtWrVu3lpFqAXUAAAAAGo5U258g8BpAnBB6DQCAQ4o6ttbLXX5UToVU7krs3LaknArp5d7SZWskj2kmtoBGwuOTbv42Q7+62JfQUPMgwwjM7/G5JDZxavETNA8AAAAAABCRbafeiRgAAAAAAAAAAAAAAAAAACgQfN2mTRs1adJE27ZtU2lpabJLAgCkmJycHLVv3145OTnJLgUAAABAQ5Zq11kSeA0gjohLBADAAX7Lr5E/+0mLOkj7M5NTw/5MaVEHaeQQyW+wExEPU7r7lH+hL6k15F/o05Tuya0BIaTagQQAAAAAAIBUYhiVx084AQIAAAAAAAAAAAAAAAAAkKJycnLUqVMnHX744crNzZXBtYMA0KgZhqHc3Fwdfvjh6tSpE4HXAAAAAOon1Y41cb0ngDjLSHYBAACkA5fp0ojSY/Vei53yJemWEj5T2pUrjfjOkEumlGL7Ng2d17R0+3kV8rqkZO2m2ZK8Lun28yo0bLVLmRb3LwEAAAAAAAAAAAAAAAAAAAAAAAAAAHCKYRjyeDzyeDyyLEulpaUqLi5WcXGxysvLZRMGBABpyzAMZWVlqUmTJmrSpIlycnJkmlzTDwAAAMABBF4DaIQIvQYAwAF+y6+/H/GDfFZy6/AZ0t8H2BqxwZTLTrEdnAYuUy5dvcKnp/r5klqHLenqFRnKNNySK6mloCrLkioqkl0FAAAAAABA6jMMycWBLQAAAAAAAAAAAAAAAABA6jNN82DwaZBt2/L7/bIsiwBsAEgDhmHINE25XC4ZqRZCBwAAACA9pNq+Bse0ACQIodcAADjEyMmVUSzJlpKRN23YkqHAhyqBHZwU28lp4PyGrbUtpeblUmFW8upoXi6tbSn5TRFsnkrYiQcAAAAAAAgveOwk1U7MAAAAAAAAAAAAAAAAAACglgzDUEYGUR0AAAAAAACIQapdV0lWFoAEMpNdAAAA6cBlujTvqnfUe1dyP6TuvU2a91qOXJYCOxYsji0uS/rX3Cy5LUnJ2mezJfeBOtjGKbak2oEFAAAAAACAVGQn68AaAAAAAAAAAAAAAAAAAAAAAAAAAABAAqVaLhXXeAJIMEKvAQBwiKdzV91R1lcZSXpPn2FLdyw05fG5klNAmvMbtm6+oEwuS8pKRvC1HZjXZUk3X1Amv8HOIwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBSCLwGAGUkuwAAANLFrBWzdPcx69R6r6Gd2bZ8Cby1RIYltS6R7j7PUq5Robzv+RPvNJctjV7qVkE7Sy3KbO3NlspNSYnYrzwQeN2iTMqwDY1e6pbLOtCA1MAOPQAAAAAAQHTmgYOmHEsBAAAAAAAAAAAAAAAAAAAAAAAAAADpiMBrAJBE6DUAAI7wW35NXDRRVqZbhi21KZG250pWAoKvTSswnyHJMg1NPNGnyzdmyWWn2E5PGsjbkCF9ZCr/7FJlV9gqz07QxIaUXREIvB7/UY7yNmTyLi7V+P3JrgAAAAAAACB1BU/QsO3A96l2wgYAAAAAAAAAAAAAAAAAAAAAAAAAAEB9pdr1kwReA0iiBERxAgCQ/lymS1MGT1FvV0dJUnmGAinUiWAcmE9S7+2GpszJlctSYEeDxfEl73u3Rq5wa1+WZCRoX86wpX1Z0sgVbuV9707674AlxGLythoAAAAAACAmweMpAAAAAAAAAAAAAAAAAAAAAAAAAAAA6aJNm2RXcCiu5QSQZBnJLgAAgHThyfJo2sIjdXbbJVrc2qdEvdW3JRVmSZ33SNNmmPK4zcQFbjdCs471akr3CuX4pGJ3Yua0DSm3QprSvUIDtmUob21mYiZG7Ni5BwAAAAAAiF2q3akcAAAAAAAAAAAAAAAAAAAAAAAAAACgroYOlXbtSnYVlYYMSXYFACAz2QUAAJA2Nm/WvE0LtC3XkmkHgooTwTYk05a2NZXmHeWTLCsxEzdCs471Kv/sUpVk2CpJUOB1UIlbKsmwlX92qWYd603s5IgNYU0AAAAAAADRcQwFAAAAAAAAAAAAAAAAAAAAAAAAAACki6FDpRkzkl1FpSFDpOnTk10FABB6DQCAU2bN/YfyTytUqcuWleDcFsuQSt1S/sXSrGPKEzt5I+E3bE3s6VVJhq292ZKd4PltSXuzA8HXE3t65TcSXQFiYhgENwEAAAAAAFQXPGbCsRMAAAAAAAAAAAAAAAAAAAAAAAAAAJBOUinwunVrAq8BpIyMZBcAAEA68Ft+TdwwSyUZtgozA2HEpq2EhF+bB7KPC7MCXyf28unyLW65bMJjnOSSNGKtpfc67Ut44HWQLWl/pjRibY5c7qwkVYGQbFsqLY3ej1AnAAAAAACQ7uwIR88IvQYAAAAAAAAAAAAAAAAAAAAAAAAAAOkila6ZbN1a2rkz2VUAwEGEXgMA4ACX6dKIH1tqbofKQJdEBSPbkoK7PCVuacRyU66MzATN3nj4DVtP9imTP8n7l35DerJPmUZsbEaweSrx+STTrHzs94fuV7UPAAAAAABAOgp1XCR40kYqnbwBAAAAAAAAAAAAAAAAAAAAAAAAAABQV6l2zSSB1wBSDKHXAAA4wG/59WrOWrX0mtqTaclrSonKI7YNSbaUaUkty6RXe/g1ooxAZMcZtlpXFMpt+1Rh2LKSUIIpyW0bal2RKXk8iXuRITrDkPbtO3Rd9YAn0yT0GgAAAAAApL9IodcAAAAAAAAAAAAAAAAAAAAAAAAAAAANXapdN2nbya4AAGogdQ8AAAe4TJemfHe8+ux0K8dv1CmL2JBk2oGvtWUbUk6F1GeroSn/zSLwOg5ctqHXPj9cZ+zIkdsy6rSd6sOQ5LYMnbEjR699fjjbGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgkAq8BICaEXgMA4BCPmaNr12Sr1GXXOhDZkGQc2Gcw6hB8bUgqdUvXLjXk8abYzlAa8fhcmvHpEepa5Faid/FsSV2L3Jrx6RHy+FwJnh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoxAi8BoCYEXoNAIBDZnUu1d0/26ccv1GrQOSqgdcH19Uy+NqWlFMh3X2epVnd2AGJp3nti7Uzy1Kmldgdz0zL0M4sS/PaFyd0XgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRI/AaAGolI9kFAACQDvyWXxOP3KmSMltFblumLcWSiVw98DrLL5W7DrTZgQ6x7FKYtlSUFRhvYo9yXf7edrnsFNs5SgOzjilXfp9i2bbUqkzamS35otxCxFBs2zCSDCswny1L+X22SEVFyluXVc9R4aiyMqmiInIfywosAAAAAAAAjY3PJ5lmYAEAAAAAAAAAAAAAAAAAAAAAAAAAAGhICLwGgFoj9BoAAAe4TJdGHHWJ5q578uC6aMHX1QOvm5dL2T6pLEMqPJBnHEvwtVmlscQtjVhiy7W3qA4/BSLxG7YmdvHLsm3JlsozogebG1Jg48XQL9I2tgyp3LSV7bNlSZrYZb8uX1RKsHkq8fuTXQEAAAAAAEDqsu3A8RPLkjL4eBIAAAAAAAAAAAAAAAAAAAAAAAAAADQQBF4DQJ2YyS4AAIB04Lf8elXfqUW5IbdVud4Ms18QKvA6t0K6YG3ga/PyKn3t8JnJVcd3W1KLUunVXoGAZjjLZRua8oZLvbcbhwSTx7qNdeCxaddcrxi2cWFWIBC99/ZAHQReAwAAAAAAoMGxbcnnS3YVAAAAAAAAAAAAAAAAAAAAAAAAAAAA0RF4DQB1Rug1AAAOcJkuTblmhvr626pFqSIGX4cLvP7HbOnFNwJfYwm+DhV43XerNOVNApHjxeM1dO1SQyXuQ9dH28bSodswWnu4cUvc0rVLDXm8bF8AAAAAAAA0UJxQAQAAAAAAAAAAAAAAAAAAAAAAAAAAUh2B1wBQLxnJLgAAgHThyfJo2pbTNdycqYIO0t4cqeLA7SVMW7KMyIHXeSsD64Jfb70k8LUwK/DVsCUZkq3wgdfTpkueiiqJ23DUx5nk/gABAABJREFUrK627j7XVovSQ7evFH4bG5IMK/SdRixbsqo0hNvGUuV2vvtcS7nltvJWpdjOcGNn8e8OAAAAAAAgZi5XsisAAAAAAAAAAAAAAAAAAAAAAAAAAAAIjcBrAKg3Qq8BAHCQZ8EXmrZTGj5UIYOvqwoVeB0UKfi66m5QjcDrch2auAzH+A1bE/sEgq1NKWzwdXWecinDqmw/ebP0VcfAOJJU7pKKMyv7V9/GUuV2NhV43sQ+ti5fZctlp9hOMQAAAAAAABCLzMzofQAAAAAAAAAAAAAAAAAAAAAAAAAAABKNwGsAcIQZvQsAAIjJt99KW7bI4zU0bXogiLpFaSCwuLpIgddBeSsD7bkVgf7VhQy8ltg5iROXbWjKTKn31sDjYPB1qO0b1LxcyvYd6G9Ld30m/fGjwNdgQHaWv8q2C6Fq4LUUmH/KTBF4nWpS7SAFAAAAAABAquI4CgAAAAAAAAAAAAAAAAAAAAAAAAAASEWpdg0kmXIAGjBCrwEAcMrrrx/81lOuQ4KvXZZkGZJtxBZ4HZS3UhpfJfjaNgLjuMIFXiOugoHm4YKvg9tYCh14fc6GwONzNhwafJ3tqww2D25jKXTg9bTpgToAAAAAAACABsntTnYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAhyLwGgAcReg1AABO+eKLwNcDOwnB4OvuO6SKA39xbQW+Hx9D4HVQMPi6wgw8XwfG6L6DwOtkCBV87Smt3Da2pJyK8IHXQaGCr3MqDh3HQ+A1AAAAAAAA0oVhSFlZUmZmsisBAAAAAAAAAAAAAAAAAAAAAAAAAACo1KZNsis4FIHXANJARrILAAAgbXz/fY2dhKJMaUkHSVVyioszpYWHS1fGGHotBfoXV82CMQLjFmWGCL02DKlJk9pWj1rwSJo2x9bwy8pU0NavouzKsGrZUqlbyrSkXJ+hcR9nqsteU8qpOc452yR97dff+1WoNMNWqTvwfBmBL0U5Uosyqe8Ol6bNyZbHbUjuBP2QqD2//9DHlnXoY5P7zQAAAAAAgEbA6615nKRp0+TUAgAAAAAAAAAAAAAAAAAAAAAAAAAAEMngwdKuXcmuohKB1wDSBKHXAAA4Zf/+Q3YUfmwm9blZ2l0t7NiW9MRpge8fnRd92LvPC/SvvguyOycw/qJ/SUfsqzqBLfl8dfkJUAsen/TcOy71He2X11RlsLkR2ASFWdKYxaauWCUtb+0PO84566UtOYaePNkObOMq43hNyW8G5vGUhB8DKaJ6mFP1AwfVQ7ABAAAAAADSUfVjJFLgeKVpclMwAA1GeXm5Vq9erR9//FH79u1TSUmJcnNz1axZMx1xxBHq2rWrMjMzow8EAAAAAAAAAAAAAAAAAAAAAAAAIHUNHSrNmpXsKioNGZLsCgDAMYReAwDglIqKg98GA6935YTuahuxBV/fEwy8NkK37woXfB0qWAaOKsq0NeZiv8wQOca2IeV6pSk9/Oq72VaXPeHDfOZ3svRqd0s5FVJxiHwM05LGXFyhaTNd8njDvBCQGqqHXHO3LAAAAAAAgADbDhyztCwpg48nAaSmhQsX6o033tCcOXO0bNky+SN81uJyudSzZ09dcskluuKKKzRgwIAEVop42L59u5YuXarvvvtOy5Yt06pVq7Rr1y7t3btXe/fuVVlZmbKzs9WkSRN16NBBhx9+uHr06KHevXvrrLPO0lFHHZXsHwEAAAAAAAAAAAAAAAAAAAAAAAC1NWNGsiuoNGSINH16sqsAAMdwVTkAAE7x+SRFD7wOihZ8HS3wOihs8DXipijT1vDBfhW0s1WYLRmSqsYbG5JK3VKmJd1xgaXffiGds7Fm8PX8Tpae+LklrxnoH2qcwmypoF1gPoKvAQAAAAAA0KDZduA4qsExLgCp49VXX9UTTzyhb7/9Nubn+P1+LVmyREuWLNGjjz6qfv366a677tLw4cPjWGnD9uc//1n33ntvTH3Xr1+vzp07x7WeXbt2af78+Zo3b54+/PBDrV69OupziouLVVxcrO3bt2vJkiWaM2fOwbauXbvq6quv1nXXXRf32gEAAAAAAAAAAAAAAAAAAAAAAOCAVLrWsXVrAq8BpJ2a6YsAAKBubDvmwOuDTzkQfH3PeYeujzXwOigYfP1jswMrDIMlTktRlg4GXu/NkSoOvJsyD6RVG5KMA98XZkklGdITP7c0v7N1oDGwzO8cCLwuzZCKsg481w40Vx2vwpT25lQGXxdlsX1TdgEAAAAAAEBoth1Ygt+bfEQJIPlWrlyps846S1dffXWtAq9D+eabbzRixAidc845WrVqlUMVpo/Vq1fr4YcfTnYZ2rRpk/72t79pwIABatu2rYYNG6ZnnnkmpsDraFatWqUHH3xQxx13nEaOHOnImAAAAAAAAAAAAAAAAAAAAAAAAIiTVMuM2rkz2RUAgOMykl0AAADp4semlvrcEHvgdVAw+FqSHp1X+8DroGDw9aJ/SUeUWrV7MmJSlGlr+JVWjcDroGBQ9SHPyZKaeKUnBliSJZ2z0dD8TraeGGCp1CUVuw/tXzX4OuiQ4OsrfZo205THm2I7zJAsK/JjwpwAAAAAAEBjZVmVJ4AYhuT3J7ceAI3ezJkzdd1112n//v2OjvvRRx+pf//+mjx5svLy8hwdu6GybVs33XSTysrKklbD+PHj9corr2jhwoWy7RAf5jjI7/dr6tSpmj59uu655x7df//9ysjg1BwAAAAAAAAAAAAAAAAAAAAAAICUkWqB13G+3gUAkoUr6wAAcIDX59VJoytqHXgdFAy+nt5TWt+i9oHXQbtypJN+Jf34lF+ZFgG7TvIbtkZeaamgvUIGXkdSnCnJKz3xc0sfdZK+6qhA4HVm7GMcDL5ub2vklX698ZopV11fKIifSAcPOLAAAAAAAAAaK9sOLKaZeieDAGh0JkyYoPz8/LiFH+/fv19DhgzR008/rbFjx8Zljobkueee08cff5zUGu666y6Vl5cndE6v16uHHnpI8+bN02uvvaaOHTsmdH4AAAAAAAAAAAAAAAAAAAAAAACEkGrXOJJLBSCNkYYJAIADXKZLzep5rbxtSOta1j3wOqhZuQhDjgOXbWjEd0atA6+DijOl0gzpi8MDX2sTeB0UDL4e8Z3BNk5FHDwAAAAAAACIzLKSXQGARm7SpElxDbwOsm1bv/nNbzR58uS4zpPqtmzZot/97nfJLiOpPv30U5122mlat25dsksBAAAAAAAAAAAAAAAAAAAAAABo3Ai8BoCEykh2AQAApAOX6dK4j9waNahC++sQZuyUpl5p3FxCr+PBb9h6tZet3AqpMKtuYxRnSl6/VOGqex25FdKrvWyNWG6znQEAAAAAANAwVD0RxLIIvwaQFF9++aXGjBkTU+D1qaeeqmuuuUannnqqOnfurGbNmmnfvn1at26dPvvsM02ZMkVffPFFxDFs29aYMWPUvXt3nXzyyU79GA3KLbfcosLCwmSXUWtt2rRR3759dcwxx+jII49Us2bN5Ha7tWfPHu3atUvLli3Tp59+qv3798c03oYNG3Tuuefqiy++UPv27eNcPQAAAAAAAAAAAAAAAAAAAAAAAGog8BoAEo7QawAAHJK3JkOTZ1VoVJ6SEnzd1CtNniXlrZRksjPjNJctjS4wVNAh8Luta/B1fQKvm5cHQq9HFxhyWZLEdk4p0Q4icJABAAAAAAA0dsGTQvz+5NYBoNEpKirSiBEjVFFREbFfly5d9K9//UvnnXdejbaWLVuqX79+6tevn/Lz8/X+++9r7NixWrt2bdjxvF6vhg8frkWLFsnj8dT752hIZs6cqVmzZiW7jJjk5ORo4MCBuvjii3X++efrmGOOifocn8+n+fPn6/HHH9cHH3wQtf/GjRs1ePBgLViwQC5XPT4sAgAAAAAAAAAAAAAAAAAAAAAAQO0QeA0ASWEmuwAAANJGRobyVgaCp5t6Ezv1IYHXUmAHi8XxJW+1qfHvmsqtCARQx8o2Ii+xCAZej3/XVN5qM+m/C5YYFgAAAAAAAARUPwHD5CNKAIn1wAMPaP369RH7nH/++frqq69CBl6HcuGFF+rrr7/WOeecE7Hf+vXr9eCDD8ZaalooLCzUb37zm5BtsQRKJ8ppp52mF198Udu2bdOsWbN00003xVxfRkaGLrjgAs2dO1fz589Xx44doz7ns88+01//+tf6lg0AAAAAAAAAAAAAAAAAAAAAAIBYpVoWFIHXABoRrigHAMBhiQ6+rhF4jbjKW2XUKfi6Pg4JvF6VYjvQAAAAAAAAQCxsW7KsZFcBoBFavny5JkyYELHPz3/+c7355ptq3rx5rcZu0aKF3n77bZ1yyikR+40fP14rVqyo1dgN2V133aUtW7aEbPvnP/+Z4GoOlZGRoVGjRqmgoED/+9//dN1116lZs2b1GvPss8/WokWLdOqpp0bt+8gjj2jnzp31mg8AAAAAAAAAAAAAAAAAAAAAAAAxIPAaAJKK0GsAAJxSJbAlGHydG+fg61wCr5MikcHXBF4DAAAAAAAgraTaSSIA0t4f//hH+Xy+sO2tWrXStGnTlJubW6fxmzRpotdee00tWrQI28fn8+mhhx6q0/gNzccff6z//Oc/IdtGjBihgQMHJriigIyMDI0ZM0arV6/WpEmT1KdPH0fHb9u2rd5++21169YtYr99+/bpqaeecnRuAAAAAAAAAAAAAAAAAAAAAAAAVJNq1zISeA2gESL0GgAAp5Qfmn588k+SGed9DNMOzIPES0TwNYHXAAAAAAAASCuGwYkZABJq3bp1mjFjRsQ+jzzyiI488sh6zdOpUyf98Y9/jNjn9ddf14YNG+o1T6orKyvTTTfdJDvE//UtWrTQk08+mfiiJOXl5em7777Tv//9bx199NFxm6dVq1Z688035Xa7I/abNGmSrCo30wUAAAAAAAAAAAAAAAAAAAAAAICDCLwGgJRA6DUAAE6pcnH6j82k3r+W9mfFd8r9WYF5fmxWrcEwWBKw5K02Nf69+ARfHwy8fs9U3moz6T8rS5Sl+kEFDjIAAAAAAABUMgzJPHCMS+LYCYCEmTBhgvx+f9j2Ll266KabbnJkrrFjx+qYY44J2+73+zVhwgRH5kpVDz/8sFavXh2y7dFHH1X79u0TXFHAK6+8oq5duyZkruOPP15jx46N2GfTpk369ttvE1IPAAAAAAAAAAAAAAAAAAAAAABAoxK8jjFVcD0lgEaM0GsAAJxyIPQ6GHi9Ozcx0+7ODRF87fezJGjJW25r/JxAQHVW+NyMWsnyHwi8niPlLbeT/jOyxLDY9qELAAAAAAAADlX1mEmVGwgCQLz4/X698sorEfv89re/lcvlcmS+jIwM3XrrrRH7TJ06VVaa/h+4ZMkSPfHEEyHbfv7znzsWLt4Q3HnnnVH7fPTRR/EvBAAAAAAAAAAAAAAAAAAAAAAAoDEh8BoAUgqh1wAAOCjRgddBIYOvkTB5Kw2NXCKVO5OLoXKXNHJJYFwAAAAAAACgwQveKMyyUu+kEQBp68MPP9SWLVvCtmdnZ+vaa691dM7rrrtOmZmZYds3b96clmHHlmVpzJgxqqioqNGWkZGhZ599VkYj+v//iCOOUO/evSP2Wbp0aYKqAQAAAAAAAAAAAAAAAAAAAAAAaARS7doVAq8BgNBrAACckqzA6yCCr5NnVjdbU06UsvzOjJfll6acGBgXAAAAAAAAaPAsK7AEw69NPqIEEH9vv/12xPZBgwapWTNnP1Rp0aKFLr744oh9otXVED311FP68ssvQ7bdcccdOuGEExJcUfKdeeaZEdvXrVuXoEoAAAAAAAAAAAAAAAAAAAAAAADSXJs2ya7gUAReA4AkQq8BAHCE1+dV318lL/A6aHeu1PdXktdkhydRZnWzlX+xVOKWyl3OjFnuCoyXfzHB1wAAAAAAAEhDLocOpAFABB988EHE9kGDBsVl3mjjzp07Ny7zJsuGDRt0//33h2w7+uij9Yc//CHBFaWGDh06RGzfu3dvYgoBAAAAAAAAAAAAAAAAAAAAAABIZ23aSLt2JbuKSgReA8BBGckuAACAdOAyXWrmlXY2SXYlUjNvoB4ZRrJLSXuzulrKH2irxC0VZjk7dnC8/IslmYbyVnGvkpRm25Lfn+wqAAAAAAAAUlPVY5WWJZkc6wIQX1u2bNGKFSsi9jn//PPjMvcFF1wQsX3ZsmXaunVr1FDkhuLXv/61iouLQ7b985//VE5OToIrSg1t27aN2F5aWpqgSgAAAAAAAAAAAAAAAAAAAAAAANLU0KGpFXg9ZEiyKwCAlELoNQAADmlVKm1oKSXzHjvGgTpk28ktpBGY1dVW/kArLoHXQQeDrwdaki3lrSLIPGVxdy0AAAAAAIDYGIbk8yW7CgBp7ssvv4zYfuSRR+rII4+My9ydO3fWYYcdpi1btoTt89VXX+myyy6Ly/yJ9NJLL+m9994L2TZ8+HBddNFFCa4odZSUlERsz87OTlAlAAAAAAAAAAAAAAAAAAAAAAAAaWjoUGnGjGRXUWnIEGn69GRXAQApxUx2AQAApAOX6dK9/5Nalia3jpal0r2fSC6bcOR4mtXVVv5F8Q28DirMkkrcUv5FlmZ1JVgZAAAAAAAADZhhBBZuIAYgzr799tuI7SeddFJc5+/fv3/E9oKCgrjOnwg7d+7U7bffHrKtefPmevLJJxNbUIrZtGlTxPaWLVsmqBIAAAAAAAAAAAAAAAAAAAAAAIA0lEqB161bE3gNACFkJLsAAADSRd5qlyZv8OuN7smr4cwNUt5KSSahMfESCLy2ExJ4HRScJ/8iS7IN5a0i1BwAAAAAAAANiHHgeJZpHvoYAOJk0aJFEdtPPPHEuM5/4okn6u233w7bng6h1//3f/+nnTt3hmz7y1/+og4dOiS4otQSLXj92GOPTVAlAAAAAAAAAAAAAAAAAAAAAAAAaSbVrlEMc40NADR2hF4DAOCQuweaerObP6k1vNlNuvs86bGPzaTWka5mdbWUPzCxgddBB4OvL7Yl01DeKrZxSrLt0N8DAAAAAAA0ZsETSGy7MvgaAOJo9erVEdu7dOkS1/mPO+64iO1r1qyJ6/zx9u6772rq1Kkh2wYMGKBf//rXCa4otRQWFurTTz+N2KdXr14JqgYAAAAAAAAAAAAAAAAAAAAAACCNpFrgNTlTABAWV5UDAOAAr8+rZ3v7ZCd5X8g2pGf7S17TSm4hachv2JrYu/6B1+565KIXZkklbmlib1t+gx3dlJRqB0QAAAAAAABSiWFw/ARA3Nm2rQ0bNkTsEy2Uur6ijR+tvlS2f//+sKHWGRkZ+ve//y2jkf9fP336dHm93oh9zjrrrARVAwAAAAAAAAAAAAAAAAAAAAAAkCZS7ZoVAq8BIKKMZBcAAEA6cJku9S9qqg9b70tq8LVhS/03S65kp2+nIZdtaMQyQ3OPCb+TaRmSocB2CCW3IhB6XWEFwqtDsQ3JlmSGGaPELY1YZrCNU1nwwEj1AxIm95sBAAAAAACNgBXihnzVw65T7cQSAGll27ZtKisri9inY8eOca0h2vjFxcXavn272rVrF9c64uG+++7Txo0bQ7bdfvvtOuGEExJcUWqxbVtPPfVUxD4dO3ZUv379ElQRAAAAAAAAAAAAAAAAAAAAAABAGki16xIJvAaAqAi9BgDAAS7TpZm7ztcV+2bp485KSvC1YUtnbZBmvkbodTz4DVuv9rTVskzaky1VVMsvtoI5x5Jk1Ay+zq2QMv1Szx3SsraBddWDr4OB18Hxqgdfuy2pZZn0ak9bI5bbbOdUE+0gBAcpAAAAAABAYxc8qSTVTi4BkFY2b94ctU+HDh3iWkMs42/evLnBhV5/+eWXGj9+fMi2zp076w9/+EOCK0o9r776qpYuXRqxzzXXXCOTG2UCAAAAAAAAAAAAAAAAAAAAAADEJtWuSSRLCgBiQug1AAAO8XTvozf/PEtXDFfCg6+DgddvTpM8FabkSrEdtDTgkqEpbxoaPtivRe3tQ4KvrWq/7urB18HA61FLTPXfYujrw2xNPtGSVBl8XTXwOqhq8HUw8LrPNkNT3nTJJUNiM6eW6gEVlhW5HQAAAAAAIB35/aHX23ZgcblS7wQTAGll165dEds9Ho+ysrLiWkNubq6aNm2q/fv3h+0Trc5UU1FRoRtvvFFW9WPfB0yYMEG5ubkJriq1FBcX6/e//33EPhkZGfrNb36ToIoAAAAAAAAAAAAAAAAAAAAAAAAauFS7HpHAawCIGaHXAAA4xeeTpzwQPJ3I4OtDAq/LJckiXDdOPOXStBmmhg+2tKiDrd3ZktcVum9wt7R5eSCbetRiQ/23BFr6b5ZkG5rcO9CrxF0z8DrIMgKB2S3LpD5bDU2bacrjrToDUkb1gxHRHgMAAAAAADQWtp16J5YASFu7d++O2O7xeBJSh8fjiRh6Ha3OVPPYY49p6dKlIduGDRumSy65JMEVpZ67775bGzdujNhn1KhR6tSpU4IqqrsJEybon//8Z9znWbt2bdznAAAAAAAAAAAAAAAAAAAAAAAADVSqXZdIhhQA1Aqh1wAAOOXrryUFgpFfmiWdeLO0Jyf+07YoC8wXCLxGvHm8geDpIUP9WnBU9P6VgdeH7jwHHz/fN7ad2F7bdSDwOsV2wnGoSAclOGABAAAAAAAaM9sO3Kwv1U4yAZB29uzZE7G9WbNmCakj2jwNKfR61apVeuSRR0K2NW/eXE899VSCK0o977//ftSQ6GbNmulPf/pTgiqqnx07dmj58uXJLgMAAAAAAAAAAAAAAAAAAAAAADRWqXYtIvlRAFBrhF4DAOCUFSskSUVZ0pjLJbdfkq1A6nG82IF5xlwuTZteJfjaNOM4KWTakvy16G8ElhrrJVt27K8T0ww9DlJD9YMS1R+n2kEUAAAAAACAeIh24gYndgCIs7KysojtTZo0SUgdTZs2jdgerc5UYdu2xowZo/Ly0Hdf/fOf/6zDDjsswVWllp9++knXXnut7Ch/4x566CF16NAhQVUBAAAAAAAAAAAAAAAAAAAAAAA0UKmW1cR1kQBQJ4ReAwDglK1bVZQlDR8qFXSQduYqvoHXCoy/Mzcw3/ChVYKvXa44T9x4FWXaGn6FV0vbxtDZkCxJk0+wJMOl/lsrw8i/7mBpci9LtqGYXidL20rDB/s17c1MebwptkOOAMuKfLCEMHoAAAAAANAYWFbNdcFjJrbNyR0A4s7r9UZsz8hIzGkS0eaJVmeqePbZZ/XJJ5+EbPvZz36mX//61wmuKLV4vV5dddVV2rFjR8R+Z555pm699dYEVQUAAAAAAAAAAAAAAAAAAAAAAJC6/JZfLjNMTlotAq/9kuKetsY1kQBQZyTvAQDgkCKVHwy83pErWQn6K2uZgfmCwddFWYmZtzEKBl4XtLW0N0fymZIZZn/UkGTY0r4sqdwlTe7l19cdAoE/gcBrv8pdUqk70C/cbrZpB+bZmyMVtLU0/AqvijLZCU45HJgAAAAAAAAAgJRA6LVzNm/erHvuuSdkW0ZGhp599lmZjfyGj7/61a/02WefRezj8Xj04osvNvrfFQAAAP4/e3ceJ1dV5///fe+t6urudDqdPVEghD2JGrZBBwaMBsK+FEQ7GkUmiKNgC45+B0accXk4v3F/jEZGmdEIjIG0BjoshiUE4oIiBJJmCQTIgoBJIEmv6e5a7j2/P6qr19q6u7auej19lE3VOXXO6f5Udfreuvd9AQAAAAAAAAAAAAAAAABAe6hdlzVepqaXmoY3jiDwOiLJ6/2aM+RKAcCY5OdsTgAASpzruVoeNHkPvI4bGHy9/HJpXZMrx2S+8Yb0XMto+UXRvsDryAhq3O2XjCXd9l5XfzzM02uTjcKO1DOCv8QiA4Kvl18U1rq7fdS4mBgzfAeF5xVmLQAAAAAAAMUqfsBJJKeHkQAoc16afbOO4+RlHenmcV03L+sYi+uuu05tbW0J22644QYtXLgwzysqLt/97nd12223pe132223ae7cublfEMYF13Pl2GP/PZStcZAb1BkAAAAAAAAAAAAAAAAAAAAAhmsPtat+bb2a9zZry54tkqTgvGCscYSB10Pv+7OzxH4EXgPAmBF6DQBAFji2o2UvSOuPyX/gdVw8+HrZ85JjORJ5yFnlSFr2ktGGud6gwGsvyc/ZSJIlWb3brT2+2GOvTDGK2FJowF9hxurtn4BnSXZvYzz4etlLDjUuNsakD7kewU4VAAAAAACAkhLfLxL/ysEeAHLI50t9GEQ0Gs3LOtLN4/dn/VC6rFq7dq3WrVuXsG3OnDn6xje+kd8FFZk777xTN910U9p+X/rSlxQMBvOwouyaPn265s+fn/N5duzYoVAolPN5ikV7qF3L71muFSeu6D8odxSaXmrSqq2rtPry1aoN1GZxhcgG6gwAAAAAAAAAAAAAAAAAAAAAww0MvJYkz3hqeLBBkhScf3nG4wwNvB74eNbO1uEcSADICkKvAQDIAtdz9e+LChd4HefZ0r9/SFr2ui3HELCbTa5ltGaBp+qI1BaIPZYs8DouHnwdF/JJUU9y7SF90hgYfF0dkdYs8LTsVWpcVIyRXHfwY/aQXwiEXgMAAAAAgHLFfhEAeVRRUZGyPV+h15FIskPoYtKts5BaW1vV0NCQtP2WW25RdXV1HldUXB5++GFdddVVMmkOYAwGg/rud7+bp1Vl13XXXafrrrsu5/MsWLBA27Zty/k8xWDgwblb9myRpFEFIje91KSGBxvkGU/1a+vVuLSRQOQiQp0BAAAAAAAAAAAAAAAAAAAAYLihgddxnvEUnX+5wpIyOdMm9dk6WQq+JvAaALKmwNGcAACUBtdztXdioVcRs7cmFtCM7HKMpRXP+1UdtVQbTh94HWc0ONh6pIHXcZ4l1Yal6mhsHQReAwAAAAAAAAAwnN+f+tC0cDicl3WM59DrL3/5y9q7d2/CtiuuuEIXXnhhnldUPJ544gldfvnlaev7oQ99SHfddZfsoRfIRFkaenCuZzw1PNigppeaRjTOwCBkSWre26z6tfVqD7Vnfc0YOeoMAAAAAAAAAAAAAAAAAAAAAMMlC7yWpH/68h5dKslSZoHWmci0X0IEXgNAVvkKvQAAAEqBYzs65qD03MxCr0Q6pkVyoh4bTzkQ3G6py/bp6gsisjSy0Gqj2Ib1wPsjYUnq9kk/ecSn4HZLkjvCEZBzQ99zie5bhJUDAAAAAIAyFN9Pwr4RAHlQU1OTsr2zszMv6+jo6EjZnm6dhbJp0yatWrUqYVttba1+/OMf53lFxWPr1q268MIL1dXVlbLfaaedpvvuu0+BQCBPK0MxS3ZwbjwQOVNDg5Dj4oHIjUsbVRuozcqaMXLUGQAAAAAAAAAAAAAAAAAAAACGSxV4rS/v0U0anMsVkeRPMM5Ig6yTjZPSFVeM9BkAgDQIvQYAIEtmH7L0kmsUcQq3Br8rze6Q5HmSIUAm29orjH61IKrqiBSxJVmjC74eTeC1ZaTqiPSrBVFd/Kql2jD1LSrGDA65Hno//hgAAAAAAEA5GrhfhOBrADk2ZcqUlO3t7e15WUe6edKtsxB6enr0mc98RibJ/uz/+I//0Lve9a48r6o4vPzyy1qyZIna2tpS9nvve9+rBx98sGhDzZFfKQ/OVX8g8vnHnK8jJh2RdJwn3nhCq7asGhaEHEcgcmFlWufzjjlPcybNSToOdQYAAAAAAAAAAAAAAAAAAABQStIFXu+SZCd43tDA6pEGXicbJ6UrrpDWrh3lTACAZBL9ngcAACPk2I5+fX+lzvhrLJx4NCxJthl81aERPd9IZ/xV+vVaySHwOutcy2j5JVE1zzCqjEqTQrGf+Uh/0qMNvJ4UkiqjUvOM2Drc0b7QAAAAAAAAgEJJdKEwAMiyqVOnpmxvbW3NyzrShSOnW2chfOMb39Crr76asO20007Ttddem+cVFYddu3bp7LPP1jvvvJOy37HHHqsNGzYUZaA58i9dEHKcZzyt3bZW297ZlrB92zvb9NOnf5o0CDkuHojcHspPsD9iqDMAAAAAAAAAAAAAAAAAAAAADJfuWOudSh2EGhnydbQyev7UqQReA0COEHoNAEC22LZ8RvKnPg81Z/ye5CMvJmccY2nFc7bs3p/xWIKvMzU08FqKBaOveM4m2BwAAAAAAADjE6HXAHJs2rRpKdtDoVDOg68PHjyocDicsk+xhV43Nzfr+9//fsI2n8+nW2+9VbZdfoeYvPXWW1q8eLHeeuutlP3mzJmjRx99VDNnzszTylDMMg1CjvPkaf2r64cFIm97Z5vWv7penjL7AJpA5PwaaZ2NDHUGAAAAAAAAAAAAAAAAAAAAUPJcz9Xye5YnPdZ6x5f3yMlgnLEGXvetJ12H/fuzNBMAYChfoRcAAEApcD1Xyy8O68Vp0pRu6WCVFM5kq2oAI2m0OcYVbmzeF2dIyy+X1jUZQpFzIPhKrKgN50TlWf1B1G0BSVashtmSLPB65QZf3zpQRIzJLLCJUCcAAAAAAAD2kQDIqSOOOCJtn3379qmuri5na9i3b1/aPpmsM19c19WnP/1pRaPRhO3XX3+9TjzxxPwuqgjs27dPixcv1q5du1L2mz17tjZu3FhUNUXhjDQIOS4eiCxJ86fP7wtCNiP8BDIeiNy4tFG1gdoRPReZo84AAAAAAAAAAAAAAAAAAAAAkJhjO1px4gpt2bNFnvEGtb325T15D0BNmdbFuY4AkFOEXgMAkAWO7WjF7snaMvVtedbog69HIx54bSkWirxiq+RYTuwBZF3wNVuybDWcE5anwcHX2cwZHxZ4LWnloxUKvubE7qC4WNbgHRjGxB4b2mfoYwAAAAAAAKXG89L3cbioG4Dcqamp0dSpU3XgwIGkfV5//XUdf/zxOVvD7t27U7bPmDFDEyZMyNn8I3XXXXdp8+bNCduOOOIIfeMb38jzigrv4MGDOuecc7R9+/aU/aZPn66NGzfq6KOPztPKUMxcz9Xye5aPOAg5Lh6I/PL+l7WzZeeIg5Djmvc2a/k9y7Wufp0cm7+7so06AwAAAAAAAAAAAAAAAAAAAEBqwXlBSVLDgw19wdevfnmP/HleR8r5CLwGgJwj9BoAgCwJRo+V1r+thguUt+DroYHXK9dLwVdsKZC7OSEFX3UkVQwKvg7b0qGK7M1RFRkSeL2hondeFLX4jgxjhu/UYCcHAAAAAAAoVwP3i9g2FwYDkHNz585NGXr96quvasmSJTmb/7XXXkvZPnfu3JzNPRr79+9P2nbGGWforrvuyuNqpMbGRk2dOjVp+8SJE1VfX5+z+dva2rRkyRI9//zzKftNnjxZGzZs0Lx583K2Fowvju1oxYkrtGXPlr6DckfKyGhHy44xrcO2bK04cQVByDlCnQEAAAAAAAAAAAAAAAAAAAAgvYHB1y9/6S1lMZ4rIwReA0DhEXoNAEC2fOADCv7gCUkaFHz9TrXk2tmfzvESBF6/LMkhMCYfBgZfd/mk7ixfQqrbL1V4UnWUwOtxgx0ZAAAAAAAA6RF4DSAPFixYoM2bNydt3759e07nTzf+ggULcjp/Nt111115D72+6aabUrbPmTMnZ6HXnZ2duuCCC/TMM8+k7Ddx4kQ99NBDWrhwYU7WgfFr4EG5ow1EHgvbsrXy/JV960BuUGcAAAAAAAAAAAAAAAAAAAAASC84L6jF8y9XIM/zEngNAMWB0GsAALJl9mxJvcHTigVfd/klk6MMF2NJIZ9UHRkQeC0RGpNHwVcdPfkun75/WlTZ3ow1ktoC0jXNPgKvxwNjBu/MSLRjg50dAAAAAACgXHmeZNuxG/svAeTBySefrNtvvz1p+5YtW3I6/7PPPpuy/aSTTsrp/Bid7u5uXXzxxfrTn/6Usl91dbV++9vf6rTTTsvTyjDeFCoQmSDk/KLOAAAAAAAAAAAAAAAAAAAAAJCGZalWUiSPUxJ4DQDFwy70AgAAKBm7dvX9Z/BlaXlzLLQ4V5s48VDk5c0DAq8lNqryqOlYV6sXRFUVyX64ubGkqoi0ekFUTce62R0c2Tf0fZcovIlAJwAAAAAAUK7iYddDLxwGADly8sknp2zfunWrXDc3+96j0aiam5tT9iH0uviEQiFddtll2rRpU8p+gUBA9957r84888z8LAzjVnBeUCvPXynbys+hWQQhFwZ1BgAAAAAAAAAAAAAAAAAAAIAkBuQtpQyiziICrwGguBB6DQBAtmzb1vefTSdIqxcqJ2HIcX2hyAtj8/U3sGGVD03Humo4J6wun9Ttl7JdZkuxcbt8UsM5YYKvi108uCl+S4T3JgAAAAAAKGfxwGvPi90AIIdOPfVUVVZWJm3v7OzUM888k5O5n3rqKXV1dSVtr6ys1CmnnJKTuTE6kUhEH/3oR/XII4+k7Of3+3X33Xfr7LPPztPKMN7lKxCZIOTCos4AAAAAAAAAAAAAAAAAAAAAMESCDKZcB18TeA0AxYfQawAAsuW11yTFAqgbLpC6/LkJQ47rC0X2x+brC75m4yrnBgZetwVij1lZ/rHHx2sLEHw9LvE+BAAAAAAASI59JwByrLKyUmeccUbKPhs2bMjJ3I8++mjK9jPPPDNlIDfyy3VdLV++XPfdd1/Kfj6fT2vWrNGFF16Yp5WhVOQ6EJkg5OJAnQEAAAAAAAAAAAAAAAAAAACgV4LA67hcBV8TeA0AxYnQawAAsqWzc1Dg9cAw5GwHX1saEoo8MPiaDaycShR4LUkmy0UeOB7B1wAAAAAAACgZ7L8EkCfnnHNOyvZ77rknJ/OuXbs2ZfuSJUtyMi9GzhijFStW6De/+U3KfrZt6/bbb9fll1+ep5Wh1OQqEJkg5OJCnQEAAAAAAAAAAAAAAAAAAACUvRSB13HZDr4m8BoAipev0AsAAKBUNM0NqWHR4MDrOMtkNxTZGrIdFZ+v4YLY1+AuL3uToU/Tca4azo4mDLzO9qatkSRrcLi5JDWcHZaMT8FXnCzPiDHxvME7OBLt7GAHCAAAAAAAQEw0WugVACgDS5cu1U033ZS0/dlnn9X27dt1/PHHZ23OF154Qc8//3zSdsuytHTp0qzNly033HCDbrjhhrzNZ6U5gHHXrl068sgjc76Oz33uc7rjjjtS9rEsS//zP/+jj3/84zlfD0pbPLC44cEGeWbsn+UShFycqDMAAAAAAAAAAAAAAAAAAACAspVB4LUkRbI8bURJgq/JewKAgrMLvQAAAEqB67la9Z5wwsBrKbuB18nGawvEArdXnSS5Q1OxMWauZbTqfd6wGuci8LpvbA2udV+N3+dR42IzdIdLhjtgAAAAAAAAyhL7TgDkwdFHH60PfOADKfusXLkyq3P++Mc/Ttl++umn5yXMGel98Ytf1K233pq238qVK3X11VfnYUUoB8F5QS0+anFWxlp81GKCkIsUdQYAAAAAAAAAAAAAAAAAAABQdgoUeJ10XAKvAaAoEHoNAEAWOLajZa8E1OUb3pZpKLIlyTaxr+kMDUOO6/JJy16QHE+xjS5uWbs5nrTsRUtdAy7pNJrA65HG+QytdZc/tg5qPA5uAAAAAAAAGI7AawB5tGLFipTtv/zlL7Vnz56szPXmm2/q//7v/1L2ueqqq7IyF8bmq1/9qv7rv/4rbb/vf//7uu6663K/IJSNppeatHHnxqyMtXHnRjW91JSVsZBd1BkAAAAAAAAAAAAAAAAAAABAWSlw4PWw8cl+AoCikSCaEwAAjJTruVqzwNPkHqmlSor0XlZiJIHXlpECrhRyYg+ke57pfaLV29HvSZN7pDXvkZa97MpJlIqNUXMtozXze2tcKYWd0QVe257k2SN7brzWFW5vjed7WvaiqHExyTTomh0iAAAAAACgHMX3iRB4DSDPPvnJT+qrX/2q3n777YTtXV1duummm3T77bePea4bb7xRPT09SdtnzpypT37yk2OeB2Pz7W9/W//xH/+Rtt+3vvUtfelLX8rDilAuml5qUsODDfKMl5XxPOOp4cEGSVJwXjArY2LsqDMAAAAAAAAAAAAAAAAAAACAslIkgdeS5Ep6YNs94shrACgehF4DAJAFju1o9V8OU/3CV7V1Viz4OtNQ5Hjg9aSQVBmVenxSW0AjCr6ucKXJ3dKJe6XV90iO4x/rt4QhHEmrHzCqvzSiJ9/txcLJR8CS5I9KPiNFPSniG3nwdVVUOnGfrdUP+OU4BAQVFdeVvAEnrycLtybYCQAAAAAAlLpE+0UG7hPhomAA8qiyslLXX3+9br755qR97rjjDl122WUKBkd/SNuvf/1r3XnnnSn73HDDDQoEAqOeQ5J2796tuXPnpuzzta99TV//+tfHNE+pWrlypf71X/81bb+bb7455WsGGKlsByHHEYhcXKgzAAAAAAAAAAAAAAAAAAAAgLIybVpG3fIVeH3U92fL5thrACgqdqEXAABAqaitnqzGtbHg6arI6AKvpdjXSaHY45nE4xrF5jtxr9S4VqoNE6qbK7VhS5940Va3T7IzzOaxNDjwWop99Uczq2+cbaRun/SJF21qXIyGhlkTbg0AAAAAAAAAReGGG27Q4YcfnrLPpz71KT311FOjGv/JJ5/U1VdfnbLPnDlzdP31149qfGTHL3/5y4xq8KUvfUnf+ta38rAilItcBSHHxQORm15qysn4yAx1BgAAAAAAAAAAAAAAAAAAAFBWli6VDhxI2y0fgdeepKPi/82x1wBQVHyFXgAAACXDtlUbkj7RLD0+NxZS7KXIvU0UeB0Xv98WiHVMla9sG6nbH5u3NiRJRnLdMX0rSKzpeE83LnJV1y21VkkRO7Ma+9z+wOs4n5EUlSK9f42lq7Hfk+q6pRsXRVUdNgpu59olRcWY1PcBAAAAAAAAAAVRXV2tH/7wh/rIRz6StE9HR4eWLFmiX/3qV7rooosyHvvee+/VlVdeqc7OzpT9fvCDH6iqqirjcZFdv/71r3XNNdfIpNl3f+211+r73/9+nlaFcpDrIOS4+EG5khScF8zpXBiOOgMAAAAAAAAAAAAAAAAAAAAoK0uXSnffnbZbvgKv50rS92f3P8ax1wBQNAi9BgAgW7q61HSCdOMSpQ1FThV4HZdJ8PWgMOQlUnVUCr6cpe8Hg7iW0aqFnjxLspV5jSeGY33ij727XXqrNlbPePB11FFGNbYVm2vVQk+XvGLJMSkSt5FfhFwDAAAAAABkjn0pAPJs6dKl+vjHP64777wzaZ+2tjZdcskl+tjHPqZ/+7d/0wknnJC077Zt2/TNb35TjY2Naedevny5rrjiilGtG2P35JNP6hOf+ITcNBeMPeKII3TiiSfq5z//eZ5WJl144YWaPXt2+o4Yl/IVhBzHQbmFQZ0BAAAAAAAAAAAAAAAAAAAAlJ0iCbw2kr4tDQq8juPYawAoDoReAwCQJU0zW9TwXqUNRc4k8DouVfB1ojDkhgtibcEdWfu20Msxllavc1R/uavmGSbjGvu9WLsl6R9el+a2WtpVZ/THOf3B11UhqSODGkvSwrdj6yDwushYGdaDQCcAAAAAAFCOjBm8/yTTfSkAkEW33nqrnnnmGW3fvj1pH2OM7rzzTt1555066aSTdPrpp2vu3LmqqalRR0eHdu3apSeeeELNzc0ZzXnCCSfoZz/7Wba+BYzCyy+/rEgk/aGSf/3rX/WZz3wmDyvq9/jjjxN6XaLyHYQcx0G5+UWdAQAAAAAAAAAAAAAAAAAAAJSdDM4NdPOwDCPpXkm3Jgi8jvOMp1VbV+mS4y+RYzt5WBUAYChCrwEAyALXc7Vqbsug4ON4KHJLlRQesr2TKPDaNtLindLGowYHKMf7tVYO7u8bEoYsxZ636iTpktdcQpFzoLZHalxrqf4Ko+aZicPNh4aau9bAwGtJMr1f1Rd8HXAlOzQ43Dxh4PU+qfFuS7Vho8Hx2Cg4Ywi0BgAAAAAASCa+78SyJNtO3x8AcqCmpkYPP/ywzjzzTL3xxhtp+2/ZskVbtmwZ9XxHHHGEHn74YdXU1Ix6DADjT6GCkOMIRM4P6gwAAAAAAAAAAAAAAAAAAACg7GQQeC1JjqRsHGntlxRJ8LiR9GdJ16cIvJakhbMWavXlqwm8BoAC4qxyAACywLEdrf7zu7RwbwadE+Ti2kb68XrptnWxr3ai7NwM8nQX7pVW3yM5nvqDZLhl9VYbigVfL9zXWztJtd395TGSqiL9YeWDA6/7zW2NPR7fjK+Mxp43cJzaoYHXay3Vhqht0d4AAAAAAACQmOfFbvH9KH5/oVcEoEzNmTNHjz32mI4++uicznPMMcfoscce0xFHHJHTeQAUF9dztWrrqjEFIVuydPTko2Vp9Bc49oynVVtXyfXcUY+B5KgzAAAAAAAAAAAAAAAAAAAAgLKTYeB13FjPIPQP+TrQ85I+lkHgdePSRtUGase4EgDAWBB6DQBAltT2GDWuVV/wtSeptUqK2pLVm4drmVjIcVtA6vHFHosHXgdfjt0Pvjw4+LrHF+tvafA4UTs2fvxU2oV7pca1ioUi2za3HN5qo44a73G0cJ8lT1J7Vf/rwDJStz9WN9tI//674YHXcfHga9vE+nf7+2us3nE9SQv3WWq8x1Ft1Cn4984tyW2EO2UAAAAAAADKimXFbvHQa/alACigY445Rk8//bTOPffcnIx/3nnn6emnn855sDaA4uPYjlZfvloLZy0c1fMtWbrg2At0+bzLdcGxF4w6EHnhrIVafflqObYzqucjNeoMAAAAAAAAAAAAAAAAAAAAoKyM8nzA0QZfD33ewPuvSrqYwGsAGDfsQi8AAICS0dOj2lAseHrB27FA6kjvv7SWJPUGXse1BaSQMzjwOi4efB1yYv3iho4TsWPzLHh7QOC11B8iwy1nt9qIrf/9rS3XidUhHkoer01bQFr+gq1zdsWCq5Pd5rRKl27vr/PAcSK25DrS//7WVm3ELvj3zC3FzebPagAAAAAAgIwZk74PAOTQ5MmT9dBDD+m2227TjBkzsjLmjBkzdPvtt+vBBx9UXV1dVsYEMP7UBmrVuLRxxIHI8SDk+dPnS5LmT58/qkBkDs7ND+oMAAAAAAAAAAAAAAAAAAAAoCxYIzvWeaiRBl8n6++X9DdJS37w7pTP51hrACgupPMBAJAtXV1Jm4wkWb1fxyBb42Ds2iuMrrnIk8+T/N7w9kkhafV7PK0/RjpQnfz23Exp3Qmx/kP5PcnnSddc5Km9gqoDAAAAAACgRLhuoVcAAJKkT33qU9q5c6duueUWzZs3b1RjzJ8/X7fccot27dqlK6+8MssrBDAejTQQ2ZY9KAg5Lh6IbGd4eBcH5+bXSOs8NPA6jjoDAAAAAAAAAAAAAAAAAAAAKEpjDLyOyzT4Ol2/OcZo5fkrZVuJj73mWGsAKD6+Qi8AAICS4XlqD0j1S6UXZ0iTu6WWKilsS6Z3281YkoxkKRZyHHClL1wQawu+3D9U0wmxxwNurF9bIBZ0PXScCi82z4szYvM2rpVqQ5IcJ2/fdjlqrzCqvzSi5hlGlpEm90gHK6WwI8lIdSGpMip5lvSf/yC9Z590ZNvwDfjdk4yemyXVRGL9Jak1EKuv342NaxmpeYZR/eWeGu/1qzacnR0ByK6Q5Wr3pNR95rZKFeQ5jWs9Pul16gwAAAAAwMhZ1uADXNh/CaCITJgwQddee62uvfZavfLKK3rooYf07LPP6sUXX9Rbb72ljo4OdXV1qbq6WhMnTtRhhx2m+fPn6+STT9b555+vY489Nm9rPfLII2XM+L9I5te+9rWU7XV1dVmb66qrrtJVV12VtfGATMUDkevX1qt5b3PSfrZla+n8pTpi0hEJ2+dPn69jpx6rVVtWyTMJrsTbi4NzC2OkdZ4zaU7CduoMAAAAAAAAAAAAAAAAAAAAoKhkKfA6zi8pkqY9pd7zaYLzgpKkhgcbBh17zbHWAFCcCL0GACBL2p2o6pdKzbNi9y1Jk7qldyYM7mcsqTrcH3LsWYODr+OB117vNl9lNBacfahi+JyTumPzSLF5+4KvXRJXcyUWeO2qeUZ/qMSgfIkh2+rGkp48XPJ5RnNb+xt31Rk9eXi8U+LnGzOgvjM81V8aVuM9DsHXRchzPHUmeI8O6kPZxj3PUto6j/+4GQAAAAAAcsCY2M22hwdgA0AROe6443TccccVehkl7+tf/3qhlwDkRbpAZNuytfL8lXqr4y21dLckHeeMw8/QSbNOGnZQbhwH5xZWpnV+s/1Ntfa0Jh2HOgMAAAAAAAAAAAAAAAAAAAAoCjk6/y9Z8HWmgddxQ4OvOdYaAIqXXegFAABQClzP1fILuvsCryXJk9RWNSwDWZakbr/UM+DSE/Hg66suGxx4LcX6dfsTj9NWFZsnrnmWtPxyybWIXc2F9gqj+ssHB157klqrpKgt2UayjNQWGFxfI+mPc2JB11Ls6x/nDA7H7fHFnmeZ2DhROzbuoPrOiM3fXkF9ixJZTQAAAAAAAKl5XuyAF8cp9EoAAADyIh6IvHDWwkGPx4OQ4wfbphOcF9TK81fKtgYf6sXBucWBOgMAAAAAAAAAAAAAAAAAAAAoCTkKvI4bGnA90sDruPix16e86xSOtQaAIkboNQAAWeDYjla8XC27d/soHoQc6f2XdmAGdfy/hwYje5a04ejhgddtgeRjRIYEI9tGWrFFcgzpu9nmWkbLL0sceB2vs2dJ8R99suDrx+YOD7wOOf11Nlb/a2BofaVY8PXyy1yCzYuRZRF8DQAAAAAAkIrjEHgNAADKztBA5JEGIccNDUQmCLm4UGcAAAAAAAAAAAAAAAAAAAAA41qOA6/j/IqFoI428DouOC+odfXrONYaAIqYL30XAACQieD+adKD7brufKm1uj8I2ag/CDl+P343HnRcGR0+3sDA6/jz+v7bij1gqT8YeUqXtHK9FNxuSVVpN+cwQo6kFS9EtWVWRJ4leTJqrRwceC311smKBZO3BaSJ4f4xjKQ3h2wfRy2pZ0DgdbzOnhULMY/Xt65HsmXFgs1f8Mvx8WdcUbFdyYr2v7mNkTxvSB9bckjFHtdsk/6yQY5E+nkJGLrTM81OUAAAAADAAIm2oRyn94JhFttYAACgLMUDkZffs1wrTlwx4iDkuPjzVm1dpdWXr+bg3CJDnQEAAAAAAAAAAAAAAAAAAACMS3kKvI5z0nXI8DxEx047EgCggEhLBAAgW2bP1uJndmlWp9G+mthDQwOvpcGB1VLi4OtEgdepxonY0qxOafGu3sahYbvIiuB2WzI+XXd2ZFCwuTe0NlJf8HVHheRzJV+CbeioJUV8sX4DA6/jBgVfV0pTuoxWPupX8BVbEjUuKpYZsqMkQcHNwMh7AOPK0B2hdrr0cwAAAAAoY4kOJolvR8UPfHHd/K0HAACgSNQGarWuft2YD6oNzgvqkuMv4eDcIkWdAQAAAAAAAAAAAAAAAAAAAIwreQ68TivDwGsAQPEj9BoAgCxp//uTVT/3Ce2dKE0KSa2B4UHVcamCrzMJvB46Tl1I2jtRql8qNTbZqk32BIzZ4tcdzeqKal9NbMN4aOB13MDg64hPUnRw8HU88FpKHHgdNzD4elaXpcWvO8W3kwCxmgysi1Gs+Kn6YPyxlD633BJ1LkVDQ66pMQAAAACMDNtRAAAAkpS1AGOCkIsbdQYAAAAAAAAAAAAAAAAAAAAwLhTbuX8EXgNASbHTdwEAAOm4nqvl7/qzmmfG7ldEJSfNttPQoOO2gNRamXngdZxjYvNJUvMsaXnQkzs0bBdZ0V5hVH9pWHsnGNWGkwdexw2sX8QXC7qWhgReK3ngdZxnSbVhae+E2PztFdQXAAAAAAAA41SxHQQDAAAAAAAAAAAAAAAAAAAAAAAAAEC5KbZz/Qi8BoCS4yv0AgAAKAWO7WjFaZ/VlqZrFJVRa1X6QGSpNxDZSPGuIWdAm9IHXkuxeVqrpLpuyWekFc/75VhO/6DICtcyWn5xWM0zjIwsdfuMesuXUrzdUizo2jX9r41MN7EtSd0+qTJqqXmG0fKLI1q3LiAnkxcI8mNo0LxlDS9wse3kAQAAAAAAKATLYj8JAAAAAAAAAAAAAAAAAAAAAAAAAACFMm1aoVcwGIHXAFCS7EIvAACAUhE842p9Z+dRaq2SInZmoddSLNh66OZWpoHXUmyeiB0Lvv7OBim4wz+SZSNDjrG04gWfLCO1VBpF7FjOcabxPPEajybw2jKxGrdUGllGWvGCj8DrYpNJUBM7VgAAAAAAQDmzLMnu/WjS5iNKAAAAAAAAAAAAAAAAAAAAAAAAAADybulS6cCBQq+i3xVXFHoFAIAc8RV6AQAAlIr2ULt+9e4DqopIocqRPddYknoDlEcSeB3nWVJVRPrVQunit6TaMIHIubD4rz7N7Ipo74T+8GLLSEoQXJ5Ib9cRB17HRWxpZpelxX/1ZRayjPyxrME1MWZ4jYb2wfhjKX3SvSXqXA6oMQAAAACMjOfFvtq25OPjSQAAAAAAAAAAAAAAAAAAAAAAAAAA8m7pUunuuwu9in5XXCGtXVvoVQAAcoSzyoEhQqGQXnnlFb355pvq6OhQV1eXqqurNXHiRB122GE6/vjjVVFRUehlIsdc19Ubb7yh3bt368CBA+rq6pIxRhMnTlRtba2OOuoozZkzR7ZtF3qpKBKu52r5nVdoa3W7uv0jCzaOMxkGJydiSer2S1tnSssv6Na6e6vkjDQ5Gym5ltHyC3u0d4LRpJDUFuhvs0zmQeUjqbE1pPOkkLR3Qmwd69ZVUmMAAAAAAACML8bEbgAAAAAAAAAAAAAAAAAAAAAAAAAAIL+KKfB66lQCrwGgxBF6DUh68skntW7dOj344IN68cUX5bpu0r6O42jBggW64IILdOmll+oDH/hAHleKXHruued09913a9OmTdq8ebO6urpS9q+srNTf/d3f6bzzztNll12m+fPn52mlKEaO7WiZ3qMNFY8qYo8+vHq0jKSILbVUSsu22YQh54BjLK143q8tM0KqdC0pZPqCr70c/bg9S7J7X0yTQlKla8k20orn/dS42FhWLH2+/4HhvwgsK3bD+GVpeBr9sD7UuSQQwAYAAAAA2RXfVrYsKcVnMAAAAAAAAAAAAAAAAAAAAAAAAAAAIAeKKRNn6lRp//5CrwIAkGOEXqOsrVmzRt/73vf07LPPZvwc13X13HPP6bnnntO3v/1tnXLKKfp//+//qb6+PocrLU5dXV3aunWrNm/e3Hfbvn27PM9L+pyvfe1r+vrXv56/Rabhuq7uvPNO/eAHP1Bzc/OIntvT06M//OEP+sMf/qCbb75ZH/rQh/TlL39ZF1xwQY5Wi2Lmeq7W/HW9qlxLIacwQZmeJVVFpTXzPC3bSfB1LgR3OdLjtho+1K1K15IXMmqrzO2cniVN6ukPvF75eJWCu/ySk9t5MUJWorAm3oPAuDVwJ60xiXfaFtOOXAAAAAAodkO3objYEAAAAAAAAAAAAAAAAAAAAAAAAAAA+VFsOSkEXgNAWSD0GmXp5Zdf1j/90z/p97///ZjHeuaZZ7Rs2TL97Gc/089+9jMdf/zxWVhh8QmFQmpubh4UcL1t2za5bqKQz/Fh06ZNamho0AsvvJCV8R5//HE9/vjjOv/88/WTn/xERx11VFbGxfjg2I6WvTlZG2YZWUYqRN60ZaRun7TsBcmJJg+fx9gEX7ElL6DrFveox6+c19syUo9fqo4ardxYqeBrtqTx+7u3dHnSwKwmYzT4gd7HCHQa34wZVtZR9UHxG/peHXpRF8vi/QwAAAAAY5Hi4pkAAAAAAAAAAAAAAAAAAAAAAAAAACBLii3wmswWACgbhF6j7Nxzzz361Kc+pc7OzqyOu2nTJp166qm64447FAwGszp2vkUiET3//PODAq5feOEFRSKRQi8tK6LRqL761a/qu9/9rkwO/vB98MEHdfLJJ+uOO+7QJZdckvXxUZxcz9Waqh2qjlqKVMQCT/MZfG0ZyZJUHZXWLPC0bKeRU4jk7TKx+K+OZnXZ2jfBi/3gc8mSIrY0q8vW4r86OZ4MANCHHaQAAAAAkD2e139gjG0Xdi0AAAAAAAAAAAAAAAAAAAAAAAAAAJQDAq8BAAVE6DXKyi233KKGhoacBB1LUmdnp6644gr95Cc/0bXXXpuTOfLht7/97bgP7k6mq6tLH/nIR7R+/fqcztPW1qbLLrtM//Vf/6UvfOELOZ0LxcGxHa14a4a2zD0gGam1Ms8LsKRJPVJ1RFqxxZLjGkls3OVCe4VR/UUh7Z1gVBWVDvlzO59RLMx87wSj+ou61XhfQLXhItuRAMnyhu9QSXSfnS7jmzHpf7Xy67c0eN7g+7x3AQAAAGDs4ttWxXaQDAAAAAAAAAAAAAAAAAAAAAAAAAAApabYzuUjvwUAyg6h1ygbt99+e04Dr+OMMfr85z+vmpoaXXnllTmdCyMTCoV04YUXatOmTXmZzxij66+/XhUVFfrsZz+blzlRWMG22dKGV/Xp8yKxwNN8bu8ZyTLSyvVS8BVLCrBxlwvtFUb1l4TVPN1Tty/3gddxh/yS3zNqnm5Uf0lIjfdWEHxdbNIFXgMAAAAAAJQ7y4rd2G8CAAAAAAAAAAAAAAAAAAAAAAAAAEDuEHgNACgChF6jLDz11FO65pprMgq8Pv300/Xxj39cp59+uo488khNnDhRHR0d2rlzp/70pz9p9erV+stf/pJyDGOMrrnmGs2bN09/93d/l61vA2N01VVXZRx4ffTRR+vSSy/VeeedpyOOOEKzZs1SRUWF9u7dqz179mjTpk2677779NRTT6V9XX3+85/Xcccdpw9/+MNZ+C5Q1KqrpUhUUm/etZFMHrb7LDMkX9txpAkTcj9xmXEto+UXtKt5htTtWGrNc7B4a0CSLDXPlJZf5mrd+lo5+XiBYRjXMgl+9lHJ191/1xjJdQd38fskz04zDopFwvr4TOyWit+S7P7nUedxKNH7d+jfe8W2YxcAAAAAionnDX/Mtoc/BgAAAAAAAAAAAAAAAAAAAAAAAAAAsqvYclEIvAaAskXoNUpee3u7li1bpkgkkrLfscceq5/+9KdavHjxsLbJkyfrlFNO0SmnnKKGhgY98sgjuvbaa7Vjx46k44XDYdXX12vr1q2qra0d8/eBsfnv//5vrVmzJm2/d7/73frud7+rj3/84wnb586dq7lz5+r000/XV77yFf3lL3/R5z//eW3evDnpmK7r6mMf+5i2bt2q2bNnj/p7QPFrmtmihmONAq40KSS1BXq3tXK5/dcbeD0pJAVcqeECSY8YBffmcM4y5RhLK16q1BOzO/MeeB3XGjCyQtKKlyoJ0S2Qdr+n5Us6tOKlSgV3Bvoe73GMXqsbGOhkJHfw6+SYdqPK3i5Nx7pa9b6oVt9fodowtSw27RVGyy8Oa8VzPgVfdfoe7/YNrfNwx7bYCrixmlLnEsLOUwAAAADInkQXGwIAAAAAAAAAAAAAAAAAAAAAAAAAAGND4DUAoIgQeo2S9+///u/atWtXyj5nn3221q5dq0mTJmU05pIlS7R582Zdfvnlevzxx5P227Vrl77+9a/rhz/84YjWPB5VV1dr4cKFevvtt1OGgRfC7t279eUvfzltvyVLlujuu+9WTU1NxmO///3v11NPPaWvfOUr+va3v52039tvv63rr79ev/71rzMeG+OL67laVbdTXu/2VWVUCtvSoYocT2xJVeHYfJLkWdKqhZ4uecciFDkHuvxSh7+wG9EdfqMuvyTbLug6ylG731P9kk41T3O1ZfohybIV3BULvjaOo4hvwHvO9N4GMJYl2baajo2qYXFEniXVXxpR4/0BApGLSHuFUf3FYTXPMNoyMyLZloKvxjabjC1FfGl+B9g2dR7vPK/4duACAAAAQKlhuwsAAAAAAAAAAAAAAAAAAAAAAAAAgOwptvP2CLwGgLJHWiJK2rZt23TLLbek7PP3f//3uvfeezMOvI6rq6vT/fffr9NOOy1lv5UrV+qll14a0djFrrKyUu9///t13XXXadWqVXruuefU3t6uP/3pT/qHf/iHQi9vmJtuuknd3d0p+1x88cW67777RhR4HWdZlv7zP/9T3/zmN1P2+81vfqNHH310xONjfHBsR6tffZ8W7o3d7/FJ3X4p15uAlmLz9PRexmLhXmn1vQ6B1zkQtj398xmd8izJKtC2tGViweb/fEanwrZXmEWUqVjgdbuap8US5j1LajizQ01zQ7EOxvQHXad4fTQdE1HD4rC83rdo8wxP9Rf3qN3v9Y7BrZC3dn+sHs0zvP46Lw6r6ZjIgH5KczPUebzfAAAAAAC5xwXdAAAAAAAAAAAAAAAAAAAAAAAAAADIDgKvAQBFyFfoBQC59I1vfEPRaDRp+5QpU9TY2Kjq6upRjT9hwgT9+te/1oknnqjW1taEfaLRqL75zW/qrrvuGtUchRYIBPTe975Xp556qk499VSdcsopes973iOfb3z8+njppZfU2NiYss9RRx2lu+66S4FAYExz/du//ZueffZZrVu3Lmmfr3zlKzr77LPHNA+KV+2eg2pslhZ9SmqeFXvMMlIu86fj4cttAenIFqlxrVQb9aRKApGzrcKTfvjHCbr6w52K2L3b1Pnczjex6fy966iIShJ1zodY4HWHmqe5gx6PB1/LePrg67Y0MO06wU6XB452ddOHorGqDWhunm5Uf0lIjfdWqDZcZDuPykh7hVH9JWE1T/cG1ceT1HB2WDLSmW9YUqpUc0n3HxXVjdR5fCP8GgAAAAByq9gOngEAAAAAAAAAAAAAAAAAAAAAAAAAYLwqtnP2yG0BAPSyC70AIFd27typu+++O2Wfb33rWzr88MPHNM+cOXP0jW98I2Wf3/zmN9q9e/eY5smn4447Trfeeqs2b96sjo4OPf300/rpT3+qq6++WieeeOK4CbyWpFtuuSVlu2VZ+uUvf6kJEyZkZb5bb71V06ZNS9r+9NNP69FHH83KXChCe/Zo41xpX00smFhKF406dvHx/V5s3o1zJXkEIefK8lcq9YvHamTnO/BasflsI/3isRotf6Uyz5OXr3a/p/rzhgdex3mW1HDWIT0wN5JynM2zTX8QcgLN0z3VXxpWewU7bAqhvcKo/tLewOsEPEkN54T126MTvw7iNs/y9C/UGQAAAACA5Irt4BkAAIA8c73UnzXkexwAAAAAAAAAAAAAAAAAAAAAwDhWbOfsEXgNABhg/CTXAiN0yy23yHWTn+R37LHH6jOf+UxW5rr22mv1ox/9SDt37kzY7rqubrnlFn3ve9/Lyny5Nn/+fM2fP7/Qyxgz13W1Zs2alH3OP/98nXXWWVmbc8aMGbrhhhv01a9+NWmfH/7whzr77LOzNieKR9PMg2o4SzKWNLlb2l8tRXN8eQljSY4Xm89YUsMFkiyj4AGua5Er1a6jiRFLLYH8b1xPjFiqdh3Jpr750O73VL+kM2ngdZxnSTf9Q7c++pKjU/f21mbAvqDNs43uWGgUcCUrRVp684xY8HLjfQHVhotsZ1IJa68wqr8krOYZqdPsPUn/uiiqj77k66/zAJtnebrjPS51LhXpduhaVvHt9AUAAACAYhbfhmJbCgAAlLH2ULuW37NcK05coeC84KjHaXqpSau2rtLqy1erNlCbxRUCAAAAAAAAAAAAAAAAAAAAAMaNYjtfj8BrAMAQhF6jJLmuq7vuuitlny9+8YtyHCcr8/l8Pn3hC1/QDTfckLTPnXfeqe985zuyCSrNmz/+8Y86cOBAyj6f+9znsj7vpz/9aX3zm99UOBxO2P7II49o7969mjVrVtbnRuG4nqtVJ3TL690GDPnU99+55lmx+Sqjsf9edaJ0yR/9ckyRbZCWgKY53Wo4vVOVrqUJUemQL38b2ROilipdSw1ndUo+n4KvV+Vt7nLU7vdU/+EDap4Szai/Z1u64z1RyfLr1H2OJCNZXizw+n1GsVdK+vdkXyDyA1UEIudBe4VR/UXdap6e2XvZs4bWOWbzTFd3LIgq9muXOo97xgzfiep5g+/bdvHt+AUAAACAYmFZw7erhm5DsU0FAADKTHuoXfVr69W8t1lb9myRpFEFXze91KSGBxvkGU/1a+vVuLSR4GsAAAAAAAAAAAAAAAAAAAAAKDfFdo4egdcAgAQIvUZJeuyxx7Rnz56k7ZWVlfrEJz6R1Tk/9alP6V/+5V+SBh3/7W9/06ZNm/ThD384q/Miud/97ncp22fMmKELLrgg6/POnDlT559/vu69996E7a7r6s4779Q///M/Z31uFI5jO1p9n1/1F4f0l8OktoCUr8xpY8Xmk6T3vymtvkdyZvvzM3kZcS2jVSd0ybOkHkfqdowsSfnY1LYUm6/CZ6nSlVad0KVL/lZDsHmOtPs91X8wHnid6c/YyFjSHe+JSLalU/fa2vwuozve6/X/LsjwBdM83VP9xT1qXD+BQOQcaq8wqr/gkJqneek7DzCozvucWOD1/Eh/aanz+Od56cPYLKv4dv4CAAAAQLFIFHo9FBcIBQAAZWRg4LUkecZTw4MNkkYWfD0w8FqSmvc2E3wNAAAAAAAAAAAAAAAAAAAAAOVm2rRCr2AwAq8BAElwRjlK0v3335+y/cILL9TEiROzOmddXZ3OP//8lH3SrQvZ9fTTT6ds//u//3vZOQrWOOOMM1K2JwvExvhWG3X0ieekLl8sFDVfm2FGsfm6fNInnpNqQ3mauMw4xtLq30/XrG5bbf7YieSWyTwSebSs3nkkqc3vaVa3rdW/n07gdY64ltHys95R85TEF7FIx0i6Y35Yt74vPDjweoSap7laft4huRY7dHLBtYyWn3dIzdPcUT2/r87vDeuO+eFR/76nzgAAAACAssRFhAAAQBkZGnhteg/mjQdfN73UlNE4QwOv4+PEg6/bQ+05WD0AAAAAAAAAAAAAAAAAAAAAoKgsXSodOFDoVfQLjy6nCQBQHgi9Rkl69NFHU7ZfeOGFOZk33bgbNmzIybxI7OWXX07Z/oEPfCBnc7///e9P2f7nP/9ZHR0dOZsfhdF0gnTjOVJVNH+B13FGsXlvPEdqmpfnycvIxtnd2lvpyj+gwLkMvh4YeC1JfiPtrXS1cXZ3jmaEYyyteLVG9hjexEbSC9NGH3gtSbaRVrxYQbh5jjjG0ooXK7JQZ3dMv++pMwAAAACg7FgWodcAAKBsDA289oynlp4W9UR7+u43PNjQ157ME288MSjwuifao5aelr77BF8DAAAAAAAAAAAAAAAAAAAAQBlYulS6++5Cr6LfFVdIfn+hVwEAKGK+Qi8AyLY9e/bopZdeStnn7LPPzsnc55xzTsr2F198UXv37tWsWbNyMj/6GWP0xhtvpOwzf/78nM2/YMGClO2RSESbNm3SxRdfnLM1IL9cz9WqEz11+aX2QCysOJ/B15b65111knTJXyxCVLPMtYxWHXtIsizVhWy1BjxF8vgj9hupLmRLlqVVxx7SJW/VUOMcCb45UbJsNZy2X14BfsS2kVZuqlJwR0X+Jy8j8Z9vw6Ju6ozBMglgI6QNAAAAAEZm4HYU21MAAKAMJAq8bu1pVcSLqC3UJkmq9FXKM57Wblur8445T/OnDz+GYds72/Tozkfld2IHAvdEe/qe39rTqrrKOtmW3Rd83bi0UbWB2jx9lwAAAAAAAAAAAAAAAAAAAACAvCmmwOupU6W1awu9CgBAkSP0GiXnqaeeStl++OGH6/DDD8/J3EceeaRmz56tPXv2JO3z9NNPE3ScBx0dHQqFQin7TJ48OWfz19XVybIsGZM89vjJJ5/ktVBCHNvRss652vCul2Ss0QVeW6Y/LHukWcZGkiypyy8t2+bI6QmPYgVIxZG0euMk1S8+qOYpEdX1WGoNGIWd3AWcx+ta4Up1IUu2pIUHfVq9cZKcCDXOpeBrPik6SQ1/3zr6QOShLwxjFHuXJ2cbaeVjAQVfcyS5o5wYmQq+4kheQA0fDmUv+DqDXwjUucgZI7nu4PtD/6ZzXULaAAAAACCZZPvFjWFbCgAAlIVUgddxg4Kv5Wn9q+slaVDw9bZ3tmn9q+vlc2KHdw0MvJakiBch+BoAAAAAAAAAAAAAAAAAAAAAykExnZs3daq0f3+hVwEAGAcIvUbJefbZZ1O2n3zyyTmd/9RTT9X999+ftH3Lli0EHedBV1dX2j51dXU5m99xHNXU1KijoyNpn3SvVYwvrudqzfFhVYWlkDPy58cDrwNu7/PN6IKvqyLSmvdIyx5z5Yx0AKRVG5IaN9Sp/uxWNU+NqCpqRlXvkTCSqqKSLUsLD/jV+GidaiOS5OV2Yii4MyB5k9RwRlv2ApFTsI20cmMgFridsyh1DBV81ScZqWFxFoOvU6DO40CKi5YAAAAAAEYpvq1ljGTbhV0LAABADmUSeB03MMDayAwKvo4HXpvezxKGBl7HEXwNFDFjJM+N3eJCPVJPT+HWhOyIhCUTTd7uhKQodR73qHN5iIQkk+Ji5dS5NETC1LkcUOfyEAlLJsWxs9GQ5FDncY86l4dwSCmPoY32SI4/b8tBjrju4GNyPc5/AAAAAAAAAAAAGLViCryWCLwGAGSM0GuUnK1bt6Zsf9/73pfT+d/3vvelDb1G7kUiw08YHaqqqiqna6iqqiL0uow4tqNlx12hDdu/K2uEgdXxwOtJIakyKvX4pLaARhx8bRmp2y8tey1A4HUO1UZsNT5ap0UXH1DzVG/E9R4py0jtFdLcA3Zv4DWhQPkU3F0pSTkPvh4chIx8i//ccx18TZ0BAAAAABAXGwIAACXL9Vwtv2d5RoHXcW2hNgWcgHy2ry/4+uX9L2tny86+wOuwG1ZXJPmFvxMFXy+/Z7nW1a+TY+f4Cr5IyPXcrPzsszUO8sz1pLbWWLh1S4t0aMD7t+tNaX+oYEtDlvgOSkoRqulNkLzqvC0HOUKdy4PvgKQUwXvUuTRQ5/KQts41kpfb48aRB779ShmS69ZIhjqPe9S5PFDn8nDw4ODPht98U+rslCZPlmpqCrcuAAAAAAAAAACA8abYAq85PxAAMAKkJqLkvPLKKynbjz322JzOf8wxx6Rsf/XVV3M6P2ICgUDaPm1tbTldQ7rx33777ZyvAfnjeq7WvPOY6rqlCk8pj8EcZEDgdXVEOmdH7OukUOzxkYxT4Ul13dKa4yJyLTYMc2nju8PaV+3J76m3UMmNeZeBJfk9aV+1p43vDo91NIxCcHelVj4xSXaO3lYEIReH4Gs+rdwYoM4AAAAAAOQaB7UAAIAS5diOVpy4QrZlJw289ownM+TvoZ5oT18/I6MdLTv6Aq8jXkSHwocG9TfGyDODw9ziwdee8WRbtlacuIKw5AJpD7XrssbL1PRS05jGaXqpSZc1Xqb2UHuWVoa8MJ70zjtSd0/mx3sAAAAAAACUi2g0tu+Ec6kAAAAAAAAAAAAyQ+A1AGCcI3ENJcUYo927d6fsky6UeqzSjZ9ufciOCRMmpO3T2tqas/l7enoUCoXS9tuxY4dOPvnknK0D+ePYjla3n6P6/Vv09DRXoZoMn2hJ/mgs6PrH66Xgy1LTCdIXLpC6fFIo03+pLammWzppr7T6oYCcgJ2FtGUk0nRktxpOb5ORVOVaCjnJN8St3lu6TfVUfeLzGEkNZ7RJlhTcXTWKlWMsgq9XSZbUcHqbvCy+twhCLi7xOjQsDlHncmZMZjt9i23HMAAAAAAAAACg4ILzguqKdOnq+65OGHgtxYKtZSRrwH7mUDQk+SS/7e97LOJFYo8PYIzpC8SOB1wP7N/a06pfXPILBecFs/69Ib32ULvq19areW+ztuzZIkmjqkXTS01qeLBBnvFUv7ZejUsbVRuozfZykQvtHZLrFnoVAAAAAAAAxa2lJRaADQAAAAAAAAAAgOSKLdeEwGsAwCiQuoaSsm/fPvX09KTs8653vSuna0g3/qFDh/T2229rxowZOV1HuZswYYJqamrU2dmZtM8777yTs/nffvvtjPrt3LmT0OsSUrtth37YPEkLP3JwRM8L+aS/ezMWeC3Fvv7f+6R180Y2f3uV9MOHpdpDUamCDcRcaDqypy/0uMcxavcb2UYJw3EtSZZRRuHj8S6JqmYbqd1vZBmp0rXUcHqbZKTg7srRfyMYleCuSsnEwsezEYhMEHJxynbwNXUehywrsx2t7IwFAAAAgMQy3a4CAAAoQe2hdv3q+V+p2l+ttlBb3+PxwOu4dMHX6QKvB447MPi62l+tXz3/K118/MWEJOfZwMBrKVabhgcbJI0s+Hpg4LUkNe9tJvh6PAmlPm4NAAAAAAAAin2enOb8PwAAAAAAAAAAgLJG4DUAoETY6bsA48ff/va3tH1mzZqV0zVkMn4m68TYHXbYYSnbN2/enLO5Mx2b10JpebPjLZ11WYvcEf7rakm67wTppsWx+zctjt0f6Wana0tn/aP0ZnV0hM9EJlzLaNUJXX2B120DgsXtIdvkfYHXCQzt2/ccM7zmA/u2VRj1OEaeJa06oUtusgmQU8HdlVr8ViArYy3+q0MQcpEKvubT4r86WRmLOgMAAAAAMITNx5MAAKA0uZ6r5fcsV/PeZlX6KjUpMEnS8MDrOCMjM+Tg31A0pO5od0aB13Hx8ScFJqnSV6nmvc1afs9yuZ471m8JGRoaeB0XD75ueqkpo3GGBl7HxYOv20PtWVszciTh29QMuAEAAAAAAJQRY/pvQ4MZCEYAAAAAAAAAAABIjMBrAEAJIX0NJeXAgQMp22traxUIZCeoMpnq6mrV1NSos7MzaZ9060R2zJ8/Xy+//HLS9ieffDJnc//lL3/JqB+vhdIRjoZ1yklP6aAvtoFmG8nLYNtxYDjy98+Q1i6Qdtf1tplYh0w2+eLhyAerpFNWRPXGLftV4REek02OpNVrjRYtN2qeMbgqQ2ttJMnqrWFvHSXJ5/W/NqL24CeYBLX2rOHB10e+HVuHE27JxreFEWo6ztXG2VFpaDaBpfRvVqNBnTYeHlXT4Z0KvlxkO5qgphOMNh6u4TU1Sn/ZoCE76qjzOMTOVgAAAADIvlAodrCNzyc52bnQFAAAQLFxbEcrTlyhLXu2yDOeAr6A7LCdNPRaigVfW0MujZsorDpZ4HWcbdkK+AJ9/73ixBVybP7uyodkgddx8eDr8445T3MmzUk6zhNvPKFVW1Ylfb3Eg68blzaqNlCblbUjByoDUtvQB/mcEAAAAAAAlKFEQddxliVVVeV3PQAAAAAAAAAAAOMBgdcAgBJDGiZKysGDB1O219bm56SvdPOkWyey45RTTknZvnnzZrW05CY0dsOGDRn1I/S6dFT4KnTVvtmDHrPTbK8NDLyOiwde9/Ux6U9/HDrPVVulCuPENmC5ZfW2ca7R3moj/4DzjJOFmxvFgqzj4oHX8Zr5BoyRKPA60fh+T9pbbbRxrin4z6Icb03He2o4J5pRoH0mPEtqOD8WsIzi0XSCUcP5mV24IBPUeRyyslR8AAAAAMBw0ajkDg9xBAAAKBXBeUGtPH+lLMtSS3eLPOMNC7UeyvT+b6RtcZYsecZTS3eLLMvSyvNXKjgvOOrvAZlLF3gd5xlPa7et1bZ3tiVs3/bONv306Z+mDEiX+oOv20Pto14zcmziRMnhkEwAAAAAAICU6upiF0wGAAAAAAAAAABAv2LLOyHwGgCQBRwdgJKSLsB44sSJeVlHunkIvc6PD37wgynbQ6GQbrvtNn3xi1/M6rx/+ctftGXLloz6Fttr4ZZbbtF///d/53yeHTt25HyOQvjO2wul1/+q758eu58uMNVIkqVhwdeD+qQIQ47zrP4w5S8/IX3ncVsKFNkGbAlwLaNV73MlS6rrllqqpLCT+jnxGscDry1Jk3ufGw++jtqZ1bjCjc0rS1r1PleXvObIMdQ5X5qOddVwTkSpTzMfuXggsiQFt1PPQms6Pk3g9ShLRJ3HGXa6AgAAAED2DTzgJhot3DoAAADyYPFRizVzwkzt7dwrSbKs2Ie+6cKrjcyggOx0/aVY4LXV+7dWxIto5oSZWnzU4jGsHpnKNPA6zsho/avrJUnzp8/ve3zbO9u0/tX18jmZHcYXD75uXNqo2kDtyBeO3LIdado0qbVNCoUKvRoAAAAAAIDiYtuxwOtJkwq9EgAAAAAAAAAAgOJC4DUAoEQReo2S0tPTk7J9woQJeVlHTU1NyvZ060R2fOADH9DUqVN14MCBpH1++tOf6gtf+IIcJ01y7Qj85Cc/ybhvsb0W3nnnHW3btq3Qyxi/JkzQd35rK+Tz9KP3Z/aUVMHXmQRex3mWdP2T0nc2SrIledmO5oUjafW9PtVfFtHWmSPYKO/takk67oA0vUt6p1p6ZerI12BZ0sJ9llbf65PjGmX+CsFYNB3nquHsaNYDr+NigcixegZfLrIdUGWk6YQ0gdfSmN5y1HkcYccrAAAAAGSfMf0H3rDvEgAAlLB4EPLezr2aFJiktlDbiJ4fD77OJPB6qEmBSdrbuZdA5DwYaeB13NDg63jg9UjrTfB1kfP5pGlTJdeTOjtjQdhxdbOlw+cVbm3IjujfJJPigk7OJMkmvGvco87lIfqWZNzk7U6dZPNv7bhHnctD2jpPluyJ+VsPciP6pmRSfMZAnUsDdS4P0TdSH6vpTJHs1OdlYRzYsmVwnWfNil0sDAAAAAAAAAAAAIMReA0AKGGEXqOkhMPhlO0+X35e8unmSbdOZIfjOFq2bJluueWWpH1effVVfec739FXvvKVrMy5adMmrV69OuP+vBZKT3uF0fZp0oSwdKgis+ckCr4eSeC1FJtv+zSpPSDVhjyJ11ZO1Ial/11ndNJnpagdq5lJsc/AMrGwa9eWTnxTOmt3f1vgSOmZw2LtymCcqC1Frdj8tZ2RrHw/SK/pBKOGc9IEIUtjzh+PBSJLMkbBl8c2Fkau6QSlD7zOAuoMAAAAAChb8aBr244dhBNh/xYAACg9rudq+T3L+4KQK32VkqTWntYRhRqPuK+R6irr+uZr3tus5fcs17r6dXLs7F0AHDFD6zxS8eDrl/e/rJ0tO0cVcC5R53HBsWMB2AOPI5swQaolVHPcC7VJShWGPFHyUedxjzqXB+pcHkKtklKFIVPnkpC2zjXUuRSEJkhKEYbsmyg51Hnco87lIVSj9HUm3Hzc8/sHByL4/YVbCwAAAAAAAAAAQLEi8BoAUOLsQi8AyCZCrzHUZz/72bR9vvGNb2jr1q1jnqutrU3/+I//KDOCP9p5LZSW9u5W1S81ap4ZC0eeMILyGvWHHo8m8Lo2LDXPkuqXxoKvkRvtFUbXXCI5nuT3YoHVVpJixQOvJSkQlV6ZLv1tklQXiX19ZXrscSmzcfxebN5rLomtA7nXdILJSxBynGdJDRfEApiRP00nxH7u1BkAAAAAgDyIh19zQjMAAChBju1oxYkrZFv9h2NVOBWD7ueCbdmqcCoG3V9x4gqCkHMkUZ1HyshoR8uOUQdeS9QZAAAAAAAAAAAAAAAAAAAAGNcIvAYAlIH8JAADeeLFwxKScJz8nOiVbh7XdfOyDkjvec97FAwG1dTUlLRPOBzWueeeq0ceeUQLFy4c1TwHDx7Ueeedp927d4/oebwWSofruVp+xGY1959LrNpwLLy6qyLp0wYZGHydqerewOu45lnS8suldY1GzkgHQ0quZbT88tjP2JZU1y21VkkRW5IZXLuBgdcTQ5Jnx9rXHye9PF3aOTl23+9Jikphp7d/knH8Xmw+W9Q4X/IdeB0XD0SWpODL+Z27HOU78DqOOgMAAAAAAAAAUJqC84KSpIYHGxT1omrpbpFrcntcgGtctXS3aHLVZPlsn1aev7JvHciNgXX2zPBjlYwxsrJwEHqycWzLps7FzvWkcEjq6pK6u/sf7+yUWlsLtixkSbRDUjR5u+3EDvDA+Eady0NGdeZErnEv2iEpxd/k1Lk0pK2zjzqXgmiHpBTni9g+yU59PgnGAepcHtLW2S/ZnGsz7h06NDgYoaNDCgSkysrCrQkAAAAAAAAAAKBYEHgNACgThF6jpPh8qV/S0WiKg9OzKN08fr8/L+tAzH/+539q/fr1CoVCSfu8/fbb+tCHPqRVq1bpsssuG9H4zc3N+sQnPqEXXnhhxGsLBAIjfg6Kk2M7WvHWDG2Ze0CeYhtwniTXUSzNOhfbmCY2vqf+c6hsI63YIjlebwdkjdP7s90yOxZYmyz4emDg9aSQVOFKXb0FMpa0Y8rgcf2eFIhKHYHBwdeJAq8lapwPTSeoIIHXcQQi50ehAq/jqDMAAAAAoCzZduzGBSEBAEAJC84LqivSpRX3rlDYC6d/QhaEvbBaulu06tJVBCHnSbLga894au1pVbW/WpW+0Qf49ER71BXpUl1lnWyrP1WVwOtxoLs7FmztGam7S+rp6W/r7JBaWgq2NGSJaVfKUE1JstjuHfeoc3lIW2eLOpcC066UoZrUuTRkVOf8nEeAHDJpQnJlU+dSQJ3Lg2lX6uPgbcmK5Gs1yJWursHhCC0tUiQiVVdL06YVbl0AAAAAAAAAAACFVmyflRB4DQDIIUKvUVIqKipStucr9DoSSX1wVbp1IruOP/54ffOb39SNN96Ysl9LS4uCwaDOOeccffWrX9UZZ5whx3GS9t+2bZt+8pOf6H/+53/kJgno8Pl8KV93lZWjP8ExF6ZPn6758+fnfJ4dO3akDCEfr4Jts6VNu9XwwS5Frf4wZFuxcxmzGnxtYuNG7Ng8dd2Sz0gr1/eGpxbblZxKRHC7JMv0BSInCr4eGHhdGc0sULfSleyQ1DYg+DpZ4PXKB6Xgdis3QeqQaxmtOmlsQciWkRa8I704PRZgPhqeJa06SbpkeyxwHdnl9v58qTMAAAAAAHli27F9lnbvni5CrwEAQAlrD7Xrtubb5KUMaMo+T55ua75NFx9/sWoDtXmdu1wNDb6OB15HvIjaQm2SNKrg655oT9/zW3ta+4KvCbweByLhWIATn/0BAAAAAAAk1tUl7d9f6FUAAAAAAAAAAAAUxrRp0oEDhV5FPwKvAQA5Rug1Sorf70/ZHg6H87IOQq+Lz5e//GU98cQTuu+++9L23bBhgzZs2KCpU6fqnHPO0RFHHKGZM2eqoqJC+/bt0549e/S73/1Or732WspxLrroIh04cEB//vOfk/YpttDr6667Ttddd13O51mwYIG2bduW83nybupUBf/oqiskXX1ZbwhyL1vK6inNA4buC77+xboBgdc+/onPleBrkh7x1LDEHRZ8He4tTDzweiTi/dsCsa8JA68fcRR8zeYvuBxyJK2+z6j+clfNMxLvlEmYYW/1f7nyOUun7rG0ebanOxYOOJ/Z0qCTm1Nl4S/cZ2n1vbYch3TzXHAkrb7XqP5yT80zx1pnozsWGupcSowZvFN26H0p9m8tF5gAAAAAgMS8BHtCB15gku0pAABQwtpD7bri11foD6//Qa6X3wt9uJ6rP7z+B13x6yt090fvJvg6T+IB1Netv64v8NoznixZowq+jgdeG2NkZBTxImrtadWUqikEXo8HHZ0EXgMAAAAAAKTT1SWFQoVeBQAAAAAAAAAAQH4tXVpcgddXXFHoFQAAygCRiSgpNTU1Kds7Ozvzso6Ojo6U7enWieyzbVt33nmnzjnnnJQh1AMdOHBAa9asGdV8xx9/vG6//Xade+65KftNmTJlVOOjSB1+uNoV0q8WStWR/vBiKbuB1/HxBgZfV0ekXy2ULn5Vqs1Pvn9ZC26P/fQHBl/XdksHJkhVkZEHXsdVRmPB2d3+2HjDAq+32ymfj+yoDVtqvMdJGHztKRZwXp2gzpakK5tjQciSer+awcHXvXp8Upd/cLB53MJ9lhrvsVUbJgAql2J1thMGX4+8zhocfN2LOgMAAAAAkACh1wAAoES5nquP/uaj+sPrf1DYDWv4Jwe5ZWQUdsP6w+t/0Ed/81H99uO/lWM76Z+IMVt81GLNqpmlfYf2yTOxowOMjGTUF3xtjJEZepHNgczwwGtJ8oyniBfRrJpZWnzU4px/Lxij8JADNqJRKRrpvx8KS93d+V0Tss8KSUpxYIjxi0NzSwB1Lg9Wj6QUFyoxFYpdWh3jmhUSdS4D1Lk8WD1KeUS2CWj4kXoYd6hzebBCos5lIByWBu4PG3rxZPaRAAAAAAAAAACAcnP33YVeQb8rrpDWri30KgAAZYAjrlFS0gUIt7e352Ud6eYh6LgwJkyYoEceeUTBYFCPPvpozuY55phj9Nhjj2nKlCnq6elJ2Xf27Nk5Wwfyr93vqX6p1DyrPyS1LdB7OGa2c1wsyTOxQzknhWLzNc+S6pdKjXdLtSmO3Ud2DAy+jlpSe1Xs8W6/VOGNLvi6xxd7vhQbr65b8hF4XRCJgq/jQcgRuz/UPl5n2wwOQo4bGHwd1+Prf35r1eBAZIKQ8ytR8PXo6xwLvo6jzgAAAAAADGFZBF4DAICSd6DrQEECr+PiwdcHug4UZP5y1B5qV/3aeu3p3CPbsvtCr6XBwdcVdoVsO/lnvj1uj3qiPYMCr+Nsy9aezj2qX1uvxqWNqg3U5uz7wRgNDTYPhQYHOFkdkq8lv2tC9vnalTJU0/MkL5K8HeMDdS4PvnalDFv0PMkLJ2/H+ECdy0PaOhvqXAp87VKq7W3XSCaUt+UgR6hzeaDO5eHQocH7SqJDTrBIdYE4AAAAAAAAAACAUlNM59VNnUrgNQAgbwi9RkmZOnVqyvbW1ta8rKOtrS1le7p1Indqamr00EMP6d///d/17W9/W56X4gDnUTj77LO1Zs2avhofPHgwZf9Zs2ZldX4Ujuu5Wq571DygpJVRqcsnhXL1r60l+aODw5WbZ0nLr5DW/bZKjimiDd0SFXxD6vpjWFcv6VZkwPnJfUG5rhULPLfSHJBpWepxTN/zpFjgbmuV9ItHqhR8o0KqzvrykUatpMaHjOov6NKW6VG1Viphnaujlv6/P1TI9ozkHzBA778xp74t6XlPv5nnqXtAELLUX+e6Humktx01/jagWsuSBvRBbtVKavytUf3FIW2Z4aas83/83i/HaHCde526X9KLnn5zfJQ6j3eeJ7lDTl4eet9x8rceAAAAABhvwgmCQ1KE+wEAAJQKx3Z0xhFnaPOezQVdh5HRGUecIcdmX3auxQOvt+7dqpbuFnnGkyVrUGh1PPg65Ibkl18+e/gBBFEvqogb6e8/gCVLnvHU0t2irXu3EnwNAAAAAAAAAAAAAAAAAAAAjCfFFHgtSfv3F3oFAIAyQug1Ssq0adNStodCIbW2tqquri5nazh48KDCiQIdBiD0urAcx9F//Md/6PLLL1dDQ4P+/Oc/j3nM2tpafeMb31BDQ4OcASGIBw4cSPm8OXPmjHluFAfHdrTi5SptOUryercx2ytyGHjdK+SLzVPb+2vHNtKKLZYc2bGwZeRUe4XRr+ZHVB211FYx+OTjtoCkkFGFl74QPY5RR8Xwx6ujln41P6KLd1eoNkxBC6E2Yul/H63WScs7FLGHh5e3BaRrXvDrot0BrZ8TGtw4YIfTqfscyba18uSohorYkmtL//tIQLUR3ruFUBux9L+PBHTSlV2DAq/j2gLSNc/5dOEunx6a6w7v0OvUfbG/AajzOGfbfaH1fRLtQC62ncoAAAAAAAAAgIIKR8O664W7Cr0MSdJdL9yl7579XVX4EnwIiawYGngd8WKh1ZZlyZjBnyvGg6zjwdYDg69TBV7Hx5OkiBch+BoAAAAAAAAAAAAAAAAAAAAYT4otm8QMP14ZAIBcIvQaJeWII45I22ffvn05Db3et29f2j6ZrBO5d8opp+hPf/qTNm3apFtuuUW//e1v1d3dPaIxpk+frs9+9rP6/Oc/rxkzZgxqO3jwoEKhUJJnxixYsGDE60bxCjaHpJelhguk1oB0KE/nD8fnqQtJK9dLwe1GmuilfhLGrL3CqP78LjVP81TZm2/bNqTmbQFpYjjRqcn9opYUTvBamRSWKqNS8zRX9ed3qvG31QRfF0B7hdE1Z3fJZyS/p2GByJPC0uoTIlrwjiXPDH3f9d9/ZpbR3cd7mhTqDUQfwO9JPs/SNUtCarw/QJ0LoL3C6JolIfk8S37PDK9zSFo9P6p5aS5U98xMT/cc71Ln8c6Y4Ttp090HAAAAAAAAAJS9Cl+FvvWhb+mfHvinhOHF+WLJ0rc+9C0Cr3MoWeC1pGGB1wMZmUHB1/HA61SvF2MMwdcAAAAAAAAAAAAAAAAAAADAeEPgNQAAhF6jtNTU1Gjq1Kk6cOBA0j6vv/66jj/++JytYffu3SnbZ8yYoQkTJuRsfozcokWLtGjRIh06dEiPP/64/vznP+u5557Trl27tHfvXh06dEiRSEQTJkzQ5MmTdcIJJ+jEE0/UueeeqzPPPFM+X+Jfpa+99lrKeadMmaLZs2fn4ltCoXR2KrhLuuN90rp5+Z36UIV0zg4p+LIkGckj9DqX2iuM6i/sUfP0/p9zZdRSj2MUcgb37aiQfJ7kS7DNH7WkiCNZQ9oCbmy8uObpnuov7FLj/ZUE5ebRwDpbRprcY6mlsj8QeVJIqnQteZZ041khLXrd1vwDA9KSe+u6barR+mM9VUXUH5DeG4js96TJPZJljJqnu6q/uEeN91ZQ5zxqrzCqvzg8oM5SS6UG1zkqeTL61w9Ghte517apntYfQ51LQqLQ60R9AAAAAAAAAAAYwPVc3ffKfar2V+tQ5FDB1lHtr9Z9r9ynFSetkGM76Z+AEXE9V8vvWZ408Dpd4Hk8+Nr1XHnGy6i/jBIGXy+/Z7nW1a+jzgAAAAAAAAAAAAAAAAAAAEAxIfAaAABJhF6jBM2dOzdl6PWrr76qJUuW5Gz+dEHHc+fOzdncGJsJEybooosu0kUXXZSV8dK9FhYuXJiVeVBEQiHduFi67wTJktKcmppdlmLz3rhY+s7GPE5chmIBuYMDryUlDLyOiziS3MHB1/HA60RCTmy8SndI8PXFPQRf50miOlvqD76ujmhQfYwlrT8m1ndgIHI88Hrg74N4IHKXPx6E3N/WPN1T/aVhApHzpL3CqP7S8OA6Dwi+rh4QYC1JXtI6xwKvqTMAAAAAAAAAAOXLsR3NnzZf619dL0tW2jDjXLBkqTvarfnT5hOEnCOO7WjZgmXasGPDiAOv+/rKZBR4PbB/ouDrZQuWUediZ9mxW5zjk3wcsjnuOWned5Yj2dR53KPO5cFxFDsiKAnLR51LAXUuD2nrzO/tkuD4JHnJ2y2fZKjzuEedy4PjKOXZFtS5NNj24PCEYgt2AAAAAAAAAAAAyJVi+1yEwGsAQAFxBAhKzoIFC7R58+ak7du3b8/p/OnGX7BgQU7nR/F45plnUrZ/8IMfzNNKkC83nt6l758W+2/LSLLyE3xtqT9M9ftnxL5+5y95mLgMpQq8bgukfu7A4OtUgddxbQFJIYKvCyFZnaXY+21KT+KfvdHgQOREgddxlVGp0lXCXxIEIudHosDrOMtIU3qUsD7D6zw88DqOOgMAAAAAAAAAUD5cz9W2/ds0KTBJbaE2xXKKM/zEOFW3DD9GsGTJsixNCkzStv3b5Hougcg54Hqu1ry4RtX+6lidNbLA67hR9R8QfF3tr9aaF9do2XsIvi4q/iGHY1ZXDT5RoG6SNGNGfteE7DNGkpuiw0TJmpiv1SBXqHN5SFvnWsmqyddqkCvGU8rwVOpcGqhzeUhb50mSNSFfq0GuUOfyYJIcXNuHOpeEvXsH7xfx+we3D70PAAAAAAAAAABQCgi8BgBgELvQCwCy7eSTT07ZvmXLlpzO/+yzz6ZsP+mkk3I6P4rH008/nbJ90aJF+VkI8iIcDeu290YHPZavzb2h89x2khS2Ux3si9FwLaPlF44u8Dou4kghJ33gdVxbIDb+QM3TPS2/sEeuxQ6FXEhW50zFA5HvOd5NGng9qHMSzdM9Lb84TJ1zxLWMll+cOPC6T4of/aA6Jwm8zmQc6jyOFdtOZgAAAAAAAABAwTm2o9WXr9b7D3u/JgUmpX+CGXDLRj9JkwKT9P7D3q/Vl68mCDlHHNvRihNXqNpfrUmBSaMKvB4tIyNjjCYFJqnaX60VJ66gzsUmUFnoFQAAAAAAABQ/25aqqgq9CgAAAAAAAAAAgOwqtiwSAq8BAEXAV+gFANmWLvR669atcl1XjpP9k76i0aiam5tT9iH0ujx0dHToL3/5S9L2iRMn6gMf+EAeV4Rcq/BV6Jlf+HTS1VEdrJK80Wx/mtjVKDxJGuHzPUuyjTSlW3rmVqnCqeDSFlnmSFqxzWjLjO6++vb4pLaKkY0z0tdGW0BSWKrszVS3jbRiW0CO4x/ZQMhIojpnxlI8acBI2lGXYKeP1fd/adlGWvFChRybP9dzwZG04gVpy8zQCOtsBv0XdS5RxgzfcTv0vmUV385mAAAAABhPcvAZDQAAQDGoDdSqcWmjFt22SFv3bk3caSzHDsefm2QX9ZF1R6pxaaNqA7VjmATpBOcFJUmfvu/TBZnfkqWV56/sWweKyMQa6WCFFAoXeiUAAAAAAADFa9o0PjMGAAAAAAAAAAClpdgySAi8BgAUCdLVUHJOPfVUVVZWqqenJ2F7Z2ennnnmGZ122mlZn/upp55SV1dX0vbKykqdcsopWZ8XxeeRRx5ROJz8BLZLL71UgUAgjytCPhx2yNHvV0X13s8plqg6QvaAr94o5rc86ferpMM6JNVERzEC0glutyU3oIbFIXX5zIgDr0errcJIRqqOWlq5MaDga7YkapwrA+uceSByBjt6jDLaIWRLWrmhQsFXLUlupgvACAW3W5LnV8M54cx/52byeqDO458xkucNf2wgzyu+Hc4AAAAAMF6wPQUAAErcxp0btbdzryqcCoXdsEz8c6RsHjc8JPzakqUKp0J7O/dq486NhCHniyVZliUZ9dc5p9NZsfn4k7qIWdLUqVJnp9TdnaCZC6uWhnQ1pM6lgTpDos6lgvdzeaDOkKhzuaDOpcFS6p1l1Lkk2bZUVSXV1UmVlYVeDQAAAAAAAAAAQPYU22dbBF4DAIoIodcoOZWVlTrjjDO0cePGpH02bNiQk9DrRx99NGX7mWeeqUoOzCkLv/rVr1K2L1u2LE8rQT61V9m69kLJG0XgtSQZS7JM7OtoeI507YXSvY1S7eiGQAaCr/n05GxX3/+7SF7nbQtI1zznU/A1/nzLh/jPeWTB12PXH4Q8yl8kGJHYz7liZMHXWUCdAQAAAAAAAAAoTU0vNanhwQZJUl1lnVp6WhR2w9kNvB7ISLIkv+NXXWWdJPXNT/B17sTrHHACqg3UqrWnNS/zGhlNCkxSwAlQ52JmWdLEibFbR6dU0dHfNnOWdOSRBVsasiTkKOWFyp3Jkq8uX6tBrlDn8pC2zlMk36S8LQc5ErKV8oL01Lk0UOfyELKkVEf6+aZKDkdQj3vUuTykrfM0yZmYt+UgR/72t8GBCocdJk3i32MAAAAAAAAAAFBiCLwGACAlu9ALAHLhnHPOSdl+zz335GTetWvXpmxfsmRJTuZFcdmzZ48eeOCBpO2HHXaYzj333DyuCPngeq4uvyyk380d/fnKRpJnje35v5srXf5RybXY+MyVpmOiWj0/qkmh/M47KSStnh9V0zEpTrRCVgVf82nlxoDsPL2dCEIujOCrjlZuqMjbhhF1HofYoQsAAAAA2WFZ/TcAAIAS5HquVm1dJc/EAnuMjCK5DLyOM1LEDcv0TuQZT6u2rpLrpQh8w6gNrLORUVekK6/zd0W6ZGSoMwAAAAAAAAAAAAAAAAAAAFBIxXaeHPkoAIAi5Cv0AoBcWLp0qW666aak7c8++6y2b9+u448/PmtzvvDCC3r++eeTtluWpaVLl2ZtPhSvb3/724pGk4fSfuELX5DPx6/fUuN6rv78bi/n5yunYyT9+fBY6LVjimyjuAQ0HRNVw+KQPEuqdC0pZNQWyP28k0Kx+TxLalgcS9sOvsbvkXyI/5zjdc8VgpALK/Zzr1DDOWF5OZyHOo8jQ3fkDr1vWezsBQAAAICRsLkOLwAAKH2O7Wj15atVv7Zez+55VvsPvZO3XcnGSPsPvaNpE6br5Nkna/Xlq+XYfB6RC/E6X/HrK/T713+vsBse1TiWrL6g8pEIu2Ed7D6os+acRZ2LmTFSJCKFeqTwgCtqd3dLnZ2FWxeyI9olmRQXLLcrJIdjOsY96lweIl2SUtU5IDn8WzvuRbokpbhQCHUuDenq7AQk/nYe/yLdSl3nSj6PKAXUuTxEuqRUR+w6hySbcyHGvZ6ewcfadndLEyZInE8FAAAAAAAAAABKAYHXAABkhKMEUJKOPvpofeADH9CTTz6ZtM/KlSv1k5/8JGtz/vjHP07Zfvrpp+vII4/M2nwoTjt27NCtt96atH3ixIn6zGc+k8cVIV8c29GsHr921kQKvRTN6pQc21d8G8bjnGsZrXpfdFDw8WiCr22jEYUnxwOv4zxLWvW+qC7ZXUGweZ4EdznS47YaPtSdonaWlO6kdKvv/waxjbRyY0DBnT6J82oKJrjTkTbaaQLOM9jBR53HP88bfFKMMcP/TbUs/p0FAAAAgLEgjAAAAJSo2kCtfrjkh1r4s4Xy8nzgsGeMWrpb9MMlP1RtoDavc5ejqBdVxC3M8QERN6KolyKgE4UVCkstLZLrxgKuD3X1t/lbpcp3CrY0ZIlpUcoQPrmSNbpAfBQR6lwe0tbZk6xQinaMC6ZFKUM1qXNpoM7lIW2djWT15Gs1yBXqXB5Mi1Ifk2skqztfq0GudHQMDld4551Y8PXEidKUKYVbFwAAAAAAAAAAwFgVW94IgdcAgCJG6DVK1ooVK1KGXv/yl7/UzTffrNmzZ495rjfffFP/93//l7LPVVddNeZ5UNyMMVqxYoVCoeQHRX/lK1/RpEmT8rgq5ItjO/rdloU69gOb1eMv3DoqI9LvbrfkWHaizFWMgSNLqx+aoPoLDql5Wv/JTiMJvq5wJcdIriWFMwi9HRp4LUkL9zta/dAEObKocR4Fd1ZIltSwKFXw9cj1BSG/xp/lxSBeh9TB1yNHnceZRIHWhF4DAAAAQOYsK/WBMmxTAQCAEvZm+5s667azFPEKFIbsRXTWbWdpyz9t0WG1hxVkDaXO9VzV/6Zef37jz2Max2RysdUU/vzGn1X/m3o98PEH5NhccbVoRKPSwQOSx8kDAAAAAAAACXV0FHoFAAAAAAAAAAAAozdtWqFXMBiB1wCAImcXegFArnzyk5/UjBkzkrZ3dXXppptuyspcN954o3p6epK2z5w5U5/85CezMheK14033qjf//73Sdvnzp2rL37xi3lcEfLJ9Vx97j27VReSbK8wa7A9qS4kfe5CybXYGM2F2rClxvUTtHD/4JOGK11Lk0JKeVpyPPBain2tcJP3NUoeeN24foJqw4QCFUJwR4VWbqqSlaWdPZYxBCEXoeBrPq3cGJCdpV+jBF4DAAAAADAEgdcAAKBEhaNhnfI/p+hA14HUHxzmkpEOdB3QKf9zisLRcIEWUfre6XpHES8iy7Jk5flKxZYsWZaliBfRO13v5HVuZKCjncBrAAAAAACAdDo6pDD7LwEAAAAAAAAAwDgzbZp04EChV9GPwGsAwDhA8hpKVmVlpa6//nrdfPPNSfvccccduuyyyxQMBkc9z69//WvdeeedKfvccMMNCgQCo55Dknbv3q25c+em7PO1r31NX//618c0D0bnu9/9rr73ve8lbbcsSz/96U/H/DpA8XJsRyv2ztaWw/ZrYkRqK0CpJ0ZiYcornrPlOP78L6BM1HpS48O1qj+vQ83T+pOrKzzJkpGRhp3WPDDwOi4efB0enJ/d9/wKzxoUALRwv6PGhyeq1rP5C66AFv/Nlm316JDPDAklN8MLP2y/UH+HHsdoQtTS4r8FJB9BT8UmuNundW+42nBEdEiLJaW9qMDgei5+w6fg7kret+OJ58VuAw3d0WvbhLQBAAAAQDK2LblJrvgW355ynMTtAAAA41iFr0KnH3a61m1fV9B1GBmdftjpqvBVFHQdpcqxHd185s369H2fVmuoVZZlSUa9nxTnVjzwWpLqAnW6+cyb5dj8bV1UwpHB91138PZRJEqgU0mISEpxpXNFJFHn8Y86l4d0dQ6LOpeCiCQvRTt1Lg3p6szv7dKQyfuZ46fHP+pcHiJKfdU4fm+XhGh08PG3Q4/N7e7O73oAAAAAAAAAAADGYunS4gq8vuKKQq8AAICMEL2GknbDDTfoZz/7md54442kfT71qU/p3e9+t0477bQRj//kk0/q6quvTtlnzpw5uv7660c8NrLrzTff1I4dO/TBD34wq+OGQiF96Utf0i233JKyX0NDg84999yszo3iE9w7Wb9rl370/sLM3xaQrnpWCm63pSmc2JpLtZ6jxg11ql/SpuapUXkyOlBp5MXzTwfkH0+MWIrYiQ/KjQdfR+y+p8nEzonWgUqjqT2SLUsLD/jUuGFSLPCa0hZMu9/Tokvb9bfq3gNuw+oPvrYspT74ul+PY9QWkNoCRouWdmrTPbWqDROeW0yajgpr47DA69HZeERUTcdEFdxJsMS4YtuD7w8NuCb0GgAAAABGJr6dxbYUAAAoYa7n6o32N2SZTD81yg3LSG+0vyHXcwlEzpHgvKAk9QVf51tdoE4/v+TnfetAERka3tTTI3UdGvBAm2Tvz+uSkAO+VqUMyfUikteTr9UgV6hzefC1KGWoJnUuDb5WUecykLbOUckjWHPc87Uo5Ra3G5UMdR73qHN58LUqfZ278rUa5EpHx+DQ6+iQY7OH7kcBAAAAAAAAAAAoVkuXSnffXehV9LviCmnt2kKvAgCAjBB6jZJWXV2tH/7wh/rIRz6StE9HR4eWLFmiX/3qV7rooosyHvvee+/VlVdeqc7OzpT9fvCDH6iqqirjcZEbb775phYtWqQTTzxR119/vZYuXaqampoxjblx40bdcMMNeuGFF1L2O/XUU/Wd73xnTHNhfFg9fY9+Ni92ErEpQHaLZaSfnSb93duulu+z0z8BY1Lr2mp8dLKuOKdFm94VVnTAj9z05h/XhS35veSh11Is+LoyYqndbwa9bqJ2LPh60d/8anx0smpdW6KsBdPu97To4hY1T+0/2LatwgwOvh4qwcM9PqltQPZx8zRXiy5v16amSaqNUOBi0HRUSA1ndclLFMJlZRhRMeC5nqSGRV2SbSm4M5CdRSL3htY/0X2C2gAAAAAgsYTb1AMecwheBAAApWu6M1GOp0GfHeab40nTTZXU2ioRep0zwdkfkhb/SFc+8ll1Rg6lf0IWGBlN8FXr54t/FJu/tTUv82IEenqk0IDQzEhkcKBTOCKFQvlfF7LLC0tWijDkqE/y+P077lHn8uCFJStF0F7UT51LAXUuD2nrHJI8js8b97xImjqHqXMpoM7lwQunPiaXOpeGSGRw6HU4LLkunxcDAAAAAAAAAIDxp5gCr6dOJfAaADCuEHqNkrd06VJ9/OMf15133pm0T1tbmy655BJ97GMf07/927/phBNOSNp327Zt+uY3v6nGxsa0cy9fvlxXXHHFqNZdaJ2dnVqzZs2In/fqq6+mbH/22Wf185//fERjTpw4UfX19SNeSyJbt27VP/7jP+pzn/uczj77bF122WU6++yzNWfOnIye39LSovvuu08///nP9cc//jFt/7lz5+qBBx5QZWXlWJeOIheOhvXPx+1WxO7Nuc1z8LVlYvNGbOmfz/b0kbs8VXCgZ168XeUlPml9pPVP0D9qx8ZHYcUCrw8MCryOiwdfV3jpC97jGHVUDH+8eZqrRcE2gq+LQCzw+pAyKOeIeJbUcFYs7IDgawAAAABAWXMcLiIEAABKlmM7+oR9oh43mzT8U6U8rsNIn2g5XM6u3QVcRZnYu1cV8smSJaMML546BpYsVcgn7d0rWTtyPh9GobVF6urov9/dMzjk2uuSrPb8rwvZFehME8LnDQ47x/hEnctD4FAGdY7kbz3IjcpDil22PgnqXBrS1TniSS51HvcqO6VU214RI7nhvC0HOUKdy0PlIVHnMtDdPTj0uqVF8jxpwgRp4sTCrQsAAAAAAAAAAGAkiu1cuP37C70CAABGhNBrlIVbb71VzzzzjLZv3560jzFGd955p+68806ddNJJOv300zV37lzV1NSoo6NDu3bt0hNPPKHm5uaM5jzhhBP0s5/9LFvfQt7t379f11xzTdbHvf/++3X//feP6Dlz5szJWuh1XE9Pjx544AE98MADkqTJkyfrpJNO0rx58zRlyhTV1dVpwoQJ6unpUUtLi3bu3Knnn39ezz33nDwvswDad7/73XrooYc0c+bMrK4dxanCV6Ef7jxGVx/7Ut6Dr+OB15Lkd6UfPuZThb8q9xOXuXa/p0Xn7dELk6OyjQaF5FqK1aWtwmhiJP5IYlHLqKfCyDKxbgMP37WN9MKUqBZdelCbHppNIHIBxOvcPDn5iYrJ69xfzYglhRMEXsc1T3O16PJ2bbpvCnUukKYje9TwD+kCrzP4pW5ZCY/D7wu+th0Fd3MxjKLmeZLr9t83RrKHvC8JaQMAAACA5BJtL7EdBQAAyoDruVrz1/WqjEohp3DrqIxKa9r+pGXmBjlWARdS4pr2PK6GF7+Xl7DrgYyMGl78niQpOPtDeZ0bAAAAAAAAGLNDhwq9AgAAAAAAAAAAgMwU2/lwJr/HLQMAkA2EXqMs1NTU6OGHH9aZZ56pN954I23/LVu2aMuWLaOe74gjjtDDDz+smpqaUY+B/GppadFjjz2mxx57LCvjHX/88XrkkUd0xBFHZGU8jA/L35wivSRdfYnyFnw9NPD6F/dJy19xpNm5mxMDg5AjfY/Fg6/jgddxHRVGPlfyJXghRC2jiNNfw4HB1/aAMZonR7TovD0EX+dZojon01FhVBGV/AnqHLGkkG/w6yKR5qlRLbrkoDbdP5U651nTkT1qOKM9TeD12HmW1PAP7ZJlEXxdzCwrsx3PxbZzGgAAAACKRaLtJbahAABAGXBsR8venKwNszTsorn5Yhupxyct2zGRwOscigded7k9aot0ylLCa6JmnSWpLdIpSQRfj1eVAWn69EKvAmPlcyS5ydu9CZJXnbflIEeoc3nw2ZK85O3UuTRQ5/KQts41kleVt+UgR3xptr7cGslQ53GPOpcH6lwe/vrX5G2HDkmR9MfoAwAAAAAAAAAAFEyxnQ9H4DUAYJwi9BplY86cOXrsscd03nnnaceOHTmb55hjjtFDDz1E2HEZu+yyy/SLX/xCU6ZMKfRSkG+WpeUvxA6cHxh8ncvNxWGB189LqjBSOJzDWctbu9/TonP3q3lyNLMnGCniSHKNfANeDFGr9/HePuk0T45o0bl/06b7pxGInAejqXPIJylq5B9Qz3jgdaaap0a16KL92tQ0iTrnSdNRITWccSjD4AmjtG9YI/X/dh7Os6SGM9okN6rgzkDmC0X+GCNFh7z3vSEnxbnu8McAAAAAADFsLwEAgDLleq7WVO3Q5LCtlgpPETu/wde2kfyeNDlkaU3dG1rW00XwdQ64xtWq19epK9qttughSUZeXiKvJU9GtnqDr43RqtfX6ZLJ76fOxSTqxj5HivM8yRvw+nDd4Z9DYRyKSlaKbV83KnnUefyjzuXBpc7lwIoqdagmdS4J1Lk8WK6ocxmgzuUhbZ1d6lwKPG9w+MLQIIaenvyuBwAAAAAAAAAAIFMEXgMAkDWEXqOsHHPMMXr66af1sY99TA8//HDWxz/vvPN01113qa6uLutjo/jV1dXpO9/5jj7zmc8UeikoFNuWKiq0/IWwJE9XXyyFc/wvrbGkiuiAwOu+BjZUc6Hd72nRRQfUPGX4QbTxE9bjebfWkBLEgq8lnxkSeD2AsfoP3/Ws2InpAzVP6Q1Evn8qgcg5lKrO6cSCryW/GXngdVzzNFeLgm0EX+dB01EhNZyVaeB19niW1HDWIUki+LoY8W8oAAAAAAAAAGAUHNvR6heOU/3cZ/TstIjeqRr5xUAs039hZTPCzy+MpEkhSye+42j109PlnP76iOdHeo6kZdZ7tSH6F+Uz8DouHnzdFe3WMuu9cnZR56LS2iKFuvrv93RLoQEBTlaX1NKS/3UhuwLtqUNyoxEpGsrfepAb1Lk8UOfyUNkhiTqXvHR1jkQkl2DNca+yXSlDciNR6lwKqHN5yKjOHF877nV3Dz4md+CFwhLdBwAAAAAAAAAAKAYEXgMAkFWEXqPsTJ48WQ899JBuv/12/cu//IvefvvtMY85Y8YMfe9739OVV16ZhRUiFyZOnKja2lq1t7dnfeyqqip97nOf080336wpU6ZkfXyMI36/VF0thcNa/oKtp2d5+tHf53ZKI+mzTw8IvC62jeYS4lpGiy86qOapyQOv44YGX8d3HYQdyTWSO6S/pcGB1wPHHRZ8PTWqxRcd1JPrpsoZ6ZnuSCtVnTMV8klRT3LHkFfdPM3V4sva9OTaOuqcI4UKvI4j+HocMKZ/56835KS4ofcBAAAAAP0SHUjjurF9l/EbAABAiaq1q/S/v6vVwqXvjDwKuTfwWur9/NCo/4FMnm5JUcvofzdUq7aOzx5yxTWe1hx6UrVWtfabjoKswUiqtaq15tCTWjbx7+VYXEgXAAAAAAAAAAAAAAAAAAAAGJNiO++NwGsAQAngjBeUrU996lPauXOnbrnlFs2bN29UY8yfP1+33HKLdu3aReB1kVuwYIH279+vjRs36p//+Z+1cOFCOY4z6vEsy9JJJ52kH/3oR/rb3/6mH/zgBwReQ5o6VQoEJMdR0/FGvzglP9P+4hSp6YTeO5Yl2fzznismwanpyQJzjWInlmdyInqiwOtU4ydaB7InGz/fbORUU+XccS2jVfN6xhR4bRnp6FanL9x+NDxLWjWvR+5YBkFuGBMLth4YfD20HQAAAACQufh2VnxbCwAAoES1T6/VPy5qU6d/FE8e8Jlh/CK7I9VZIf3jkkNqr6scxQKQCcey9dPp/yhjGY3lE72xfZxoZCyjn07/RwKvAQAAAAAAAAAAAAAAAAAAgLEi8BoAgJzwFXoBQCFNmDBB1157ra699lq98soreuihh/Tss8/qxRdf1FtvvaWOjg51dXWpurpaEydO1GGHHab58+fr5JNP1vnnn69jjz02b2s98sgjZfL4R2i+58sHv9+vD3/4w/rwhz8sSers7NTmzZv1zDPP6LXXXtOOHTv0+uuvq62tTYcOHVJXV5cCgYBqamo0ZcoUHXPMMTruuON06qmnavHixZo5c2aBvyMUnQULpD/8QU0LA7rynIg6K/IzbWeFdGVQumOdpeArVix4uyJPk5cRR9Jjj8zWovP2qnlKRFLywOu4ob9F/Z7kGMm2pIidvN9QniXZvZ0WHvTrsUdmyfFz8nIuJKpzRga8FircWJ1dSwqP8voKCw/49NgDU+Q41DkXHEmrH5us+nNa1Tw1OoJnWn3/f8HrAc1v8Wnb5KjWHxnqfx9bKVLsh1h4wKfVj9VR52LjeVI4LMUvkGLM8J3Tts1FJgAAAAAgmVQH+MQvLsQ2FQAAKEGu5+qjJzynP0TDitqxz/dGegHOVBfLTcc2UtSW/vBuVx+d/IZ+azwCkXPANZ4+984v5bNsVcinsKKjqtlo62xJqpBPPsvW5975pdbN+iJ1LkaRsOS6Uk9Iigz4PDLcJnWP8kNkFI+aLsn2krf3VEhhjtsZ96hzeag51H9QViLUuTRQ5/KQts4BKTyaqxOhqEw8JFkp6twdkCLUedyjzuWBOpeHUGjw/Y6O2LkuVVX9x+gCAAAAAAAAAAAUAwKvAQDIGUKvgV7HHXecjjvuuEIvA3lUU1OjRYsWadGiRYVeCkrF+96npiN7dOWizrwFXsd1VkhXXmZ0x71Gwf2B4tuQLhG1UUebHp6tM8/fo+cmZxaIHN+FEA+8lnq/eoODr9PxLOl9LX5teni2aqP2oJBlZFe8zovO3avmKeERPTceeC3Fvla4Iw++XnjAp033T6XOOVYbddT46GTVn92q5qmZB5z3BV63+iRLsa+vS+vnhEYUTrDwgF+Nj9ZR5/HAsob/u8q/swAAAACQXLptpkQXFwIAACgRB6qkyKH++6MJvh6NgdluEVs6UJ37OcuVY9laMfGD2hJ6XZOdCWpxDymkkVxkdWwq5NNkZ4IcxdZB4HUR6umWIr2fPxpP8tz+NuP1t2H8ikZThyFHbSnCdu+4R53LQzSaOiQ3Qp1LAnUuDxnVOX/LQY5E0tQ5Sp1LAnUuD9Fo6tBrfm+XBs8bHMgQjUrd3VJPjzRpUuHWBQAAAAAAAAAAMFCxnedG4DUAoMQQeg0AQJY0TT+gKxe15D3wOq6zQrryUk93/N5V8K3CrKFczOh25JsUUTSP5w/7vNi8yI/aiK1ND8/KPPjaSBUDgs3jRhp83Rd4PZJEdIxabcRW46N1GQdf20a6cFdA81sGb0YtOOCT5Um/PTKU0bx9gdfUeXwwJnbg/UCeV3w7rgEAAACgWKQ7sMa2h29nAQAAlADHdvSVM/5Vn37gGrVWxP4mMnnalWys/pygupClr0y/hDDkHArWnCpJath/h6rsCoW8/IVeV9kVcmRr5bQr+9aBIhKJEGoNAAAAAACQijFSezuBDQAAAAAAAAAAoPCKLTeEz08AACWI0GsAALLA9Vx9+Zn/r2CB13GdFdKX39+mS5pq5OTrDOoy0u73VP/Bd/Ti5IimhmwdCHhpg68tSUZSxJbUG4rsWr33M+TzpKkhWy9Ojqj+g++o8XfTCcvNg5EEX0+MWopYiXccxYOv05WMwOvCyDT42jbSv2+eqH3VrkyCEs1r88n8Vfrdu1K/Vgi8LhHsKAYAAACA0bHt2MFAbFcBAIASFTzjaukXv9CnZz6ploBRvv7qMZJkSZN7LP1829EKfvSDeZq5fAVrTtWTPa/pe23r8zpvm9etz0z6EIHXxYrAawAAAAAAgPQ8TwqFCr0KAAAAAAAAAABQzgi8BgAgLwi9BgAgC1zPVUeoo9DLkCR1+D25FT45HoGq2eRaRsvP2tMXfmzLSht8bak/9FqKhR57vaHXQ/sl2+0QD7y2FXtS85Swln/wgNb9fjbB5nlQK2nTxsO06Jw31VyXOMx4UsSW35Miw/6y7q+qY6TKiKUOf+JKLzzo16YHZ6jW2PyFXgC1RmrcNE31HzqQMODclqWVT9bplLf9uv3YrqTjzG+t0LlvVemrf9cuL8G7euHBCjVumkqdi50xsRC2OM8bvrPasgb3AYD/n717j4+jLvT//56ZvSVpN+m9XMqtcmuVKiAgIIeLIBfpcQUJnvo7ahGOB07Ur4p4vCHHu3BU7MG7PUePVaNA6q1yhAKColwEAhQLUlqg0EJvSdoke5uZ3x+TSXaTvSa7m0329fRRQ3ZmZz7bd5JmZz7zHgAAABRmWd7HepsMBAAAUAWxt31cP+p8m9Yurm35rSvptK2mYie9R9p//5ruuxF17fyjvt9/76Ts+/v99+qk/U9QbO6pk7J/FBCJSE7G+cZgSLKdkc+NsBRsqv24UFlhRzKdQitIZqhmw0GVkHNjKCVni5ynvIgjGeQ87RXL2SXnaSFiS0aBi3zJeXog58YQLpZzRAoEazceVEcolF3OMPpccTpd2/EAAAAAAAAAAAD46u0aNwqvAQDTGFVrAABUQCgQ0sP/+Dst+eHr85baFuVKpiRHksb5vnhmUnr41nkKJZkAWGmWpJVPNeuRk+JyhvIpVHxtaGgu7qgsRxdeK2OV0V85owuvJcl0vXFYidpeJN/Ioknp7nULdPq529U9O/vvvTVlKmIbsg1X+avLPWHbkOlKvaHs9ZbtCujuX81SNGVLsis8epQqmpI6fx9V+9k96p4z8jPUdKVVf5yp2Jagnm+2vQLkAi54NqzW+Ex1nNo3/LNC8nLuvD1KzlOBbXt/fK479gCx43DQGAAAAADyyfV+yb+hUL1NCAIAAKiCa8y79KvDUjJcqZb3sDVc6VeLbV2z/wZ9ufXNtdtxA+radpfe+8xX1ZPeJ2PoXK5b5FxhJRhD/+tJ79N7n/mq1Nys2H5nVH2/KENTk5SKj3wesCQrYzKBaUlBSrumvECgcEmuHZBccp7yyLkxFM05SM7TQSBQuAyZnKeHYjkHg5LIecoLBAqX5JLz9EDOjaFYzoGAyHkasKzsc8fmqAsuotHajgcAAAAAAAAAAECqv+vb6C4BAExzlF4DAFAhD/75F2pOutoXGMfFy0OF19JQ8XWOsuRiDFdqTkgPzujVgS9QqFoNsb9JSjSr47T+jOJraU7c0K6IO1x8PVx4LXk9yMWydIdWMUZqkwOOt11zeCND5bv3tCj2rCupvzIvCiWJSrr7lpk6Pdar7rne91dr0lDElrx8SjiA5LqKpCXJGC6+XrbT1N03tyiaTFZn4ChLNC51/qZJ7ef3q3uu7X3P3d2k2CZJiksBW0oXKZxPGIpttKRURB2nD8oxpGU7LXWuayLnqcK2pXTGzSNcd2zZueuOnXwPAAAAAPDkmmjjv8+yrKGL1AEAAKana26/Rjc8+PVJHcMNz/1UsgL68pL3T+o4pivbtfWFZ1arJ7V3+LFaFF/7hde+ntRefeGZ1Vq+8DRZhlW1/SI/27XH/t03NUt9e8rbjlxZ470zOqquUvmQc30j58ZAzo2BnBsDOTcGcm4M5NwYyBk5zZxJ6TUAAAAAAAAAAKg9Cq8BAKg5rioHAKACbMfW6i1dMg1Tcwcc7WwpqQLXk1F4HbalhFV+8bUhaW6/ZBrS6qVJLd/qyiq7eRuliD0blqRRxdeG5sSlHU2uXCOj8LpMxlDmhusXXo9kOFJ4HZ7gK8B4RVOm7u5q1dJ/2qP+oBSxx/c95hdft6Sku2+eqWiS79V6Ek0a6lzXohXn9mvlhpBim0Lj2o7/vNVLk1pzWws5TzeGUX8HswEAAABgKrBt3k8BAIBpK5lO6n+6/0dyHe+WqTX+tcc15N1s13X1P8/9Up+NnKeQGaztIBqBa2uOHVbQMJVyR25G7cdd6qliS6ZsOcVXHNq2X6vtCxqW5thhacsWidLrmuuzB7Ri641aOetMxaInjizYt9e7mWo87l2IEE9Iycyb6sal1MgNrrsW7NbqA3doTfdiRdNM5aw3fYG0VizbpJVb5yn28uyRBcagN4kjn7gtJUduskvO9Y2cG8P4c3ayfo6Tc33Lm7M5WHhCHzlPKeTcGArnXOCJ5DylkHNjGHfOg46UIucpL5HILmro7/dukjxrlnTggZM3LgAAAAAAAAAA0Jjmzp3sEWSj8BoA0CCY6QEAQAVYpqU1G5eqvXmL7p+X9N5TlnIRc0bhdWvCK8ONB6TecHnF164rpQPScVulNb+0ZEUojqmmXMXXyaHriMdbeO3zn5+0pMjQNdIUXteP9YtScg1jOJvxiqS9S9LXL0qNu1QZ1RNNGlr765YJ3zwgtimk5c8GuQkBAAAAAACZ7AkeWAEAAKhToUBIf12+TstWH6/dkfFtw5B3vtA1yrjJcgbXkGYNSn89+j8UmtE6vkGgIEvSz4/8pC76++d0794NSrkjhaeGvObxYtmFjYAsw5Lt2kpkPD8XY3i7I4JGQG+cuVQ/P/yTsqzmcb0OjF+fPaD2Z25Ud3yzHtm2WgqFFZt9srcwFJKam6RIREqnpb19Xgm2z4pIM72Sr65Z29VxyPNyJLW//jl1PvNaRW2K6utFn5VS+6seVXfzoB5pe16aMUOxPQu9hU1ByShQWt8UkVLe/A5yrm/k3BgmlHMkIqXJeSoonHOg8KQ+cp4yyLkxFMy5OaCC75bJecog58YwsZybpLQ3v5qcp7C+vuyyhpkzpdmzpWh08sYEAAAAAAAAAAAa08UXS7t2TfYoRlx00WSPAACAmqH0GgCAConu6NM7e6W7zi2xsDpH4bU08rHk4uuh7QwEpXd2S9G4K4UKXIyDiog9E5ScZnWc3q8By1VvhXuLe0OulHDVbBtadXeLYs8GJZHrZOo6LOkVnUvjaxkYxTGkjtMHJVeKbWLydb2xXGlM0CXdJc/NWi/ndlDf3OwM5brZZQSSZBjcNREAAAAA8in2fmn0+y4AAIBpJPr4Uzpmd1D37JcavnluWdyMj+N4vulKx+wKKLpzr/Sa+eMYAEoRlXTL3K/rooc+qnt3P6KUO3JjF0OG3ALndcNmUJbh3VHZMgIKu4YSTirv+sbwrAJP0LD0xtmv0y3Hf0XR4IyJvRCUrS+1T+0Pf07d8eck05QjqWPrd6XWVsX2O0NqbpaUcaOfnp7sDcycKy08WF3hzeqIPi1H3tdC98wBtb/mKXX2nK2oy02TJ1ufkVR72+3qDgxIsrycFz8t9c1XLHGoFNitrJxHc1okp5mc6xw5N4biOe9SwflY5DwlkHNjmHjOMySniZzrXPGcd6rgXDx7huSSc70j58ZAzpAk7dyZfV64rU2aMcObk9vTwzljAMCUkkqltGXLFm3btk07duzQ4OCgUqmUQqGQmpqaNHfuXO2333465JBDFAxyjRgAAAAAAEBdufhi6ZZbJnsUIy66SLr55skeBQAANUPpNQAAFdLVuk3XLEuqbVDqaZJSZoHC6jyF176Si6+HthN0pLZB6ZpzpGbHUewlypFrIfZMQH9ZENQNxyWrsv3esHT5X4OKPRMQhdeTq2txUh3/MFheCmPm4Y79RnYMqeOMQclxhnJGXbPtseXHozl2weteMQU4ztjSayPHP8JMtgcAAACA8Sv2/hoAAGAKsh1bK564Tk+1pjV3QNrZrLKLr11j/LfSNF1p7oD01CxbK3Z+R2v7TxkuV0blRWXqlqXX6aLHP6l7ex5TyvVO8rsFEgwbQVkys2+gKlNhI6ikm8r5TFeOjKFzjEEjoDe2HaNbll6naMqUUgMVfU0orC/dr/YnPqPufc9kPe64tjqe+IqUTOiIVEpKZ0wAsdOSnfH+J55Ql/6mjpkPyhl1rqnb2qn2mbepc/sbKe6aRH1GUu0L71W3tSfrB7IjVx0z75UScR0+OFMF53DYhroiz5FzHSPnxlBKzq8i5ymvlJwXk/OUV7mct5BzHSsl58MGZ6jgu+a0qa4mcq5n5NwYSsn5UHJuDLadPdc2nR6Zk5tOS/H45I0NAIAi+vv7tW7dOq1fv15/+tOf9NRTTymVyn8TU18wGNRRRx2lU089VWeddZbOO+88NTc312DEAAAAAAAAyKueCq/nzKHwGgDQcGjWAwCgAmzH1uoFL8oxvBLqYsXXuQqvTVc661lp/WHexc9jiq9H73RU4bUp73mrX+to+TZXllvmFdQoW9fipNYclVJr0lBvqPLlp61JQ2uOSumk7UnFNjEpd7J0LU6q4/TBsksJSuUYUsdZCUmi+BqoV6MLrim8BgAAAID8cr1nyndDIQAAgGnEMi2tfGGuHml9WjI07uLr8fALry1XMl1XKzdYshY8Uv0dN7iopFvci3SR0ad73WeVlJ2zrsmQobAsma4kd2wRnyWpWSENKDWmNNsd+v+QLL3ROES3pC9S9NG/Vfy1oLA+N672gR+p23kp53JHUscT1+vqvQfp1D0zMp64V0omhj/93cx9+nTbDjnp3Oeaus0dap/5f+rsPlxRm3PHtdZnpdW+7O/qNvul9NjljqSOtj/r6s3769SemXm3s25Gvz69cCs51ylybgyl5vyRzfvpjT3RvNtZN6NfnyLnulVqzh/evJ9OI+cpq3I5D+iTC18g5zpVcs5b9tNpe/Ln/NuWAX1yP3KuV+TcGErN+UNb9tM/FMn5E+Q89fX1ZX++Z4933ri5WWpqkpLJyRkXAAAFPPHEE/rP//xP/eIXv1B/f3/Zz0+lUnr88cf1+OOP61vf+pZmzJih9vZ2feQjH9FRRx1VhREDAAAAAACgoHq7nm3nzskeAQAANcfMDgAAKsAyLa25d77al/Wqe+FI8fWeJilpjV3fNaS2eHbh9TfWSbGNUtdR0vvPzy6+7onk2KkhBeyRwmtJWrZdWnOrIStSZ2+4p6HMImQvJ0M9IXd0v/m4uJLakoYi6aFC5NMHJYni60mQq/DalSujAklnbofia6AO+SVtFFwDAAAAwMS57kjxdYBjHwAAYPqKPWVKuwx1nOcdW547IO1oUc4i5EoxlFl4La36nRTrd6Q37KviXuHziq/frjfqB3pML49ZbkhqU1gpOXIKfCUEZapNYfUoPmYtV9KRmqtb3Lcr2p+WRLa11OfG1e7+XN058s3kyNUX5z+ljyQW6YzeWUMP2pJtS5LuWhjXV5fs1Zi7po/SPbNf7cc8pc6HFyuazjHhBFXRF7DVfswmdc8cLLieI1dfOGyrrt60QGfsGlvQdtecPn31sFeK7o+cJwc5N4Zycv7iYS8qvSlNzlNQOTl/6bAXZZPzlETOjaGsnA99UbZDzlMROTeGcnL+8qEvyiHn6c+2x87BdV2pv3/k/DEAAHVi+/btuuaaa/S///u/civ4b9S+ffv0gx/8QKtXr9bKlSv1pS99SXPnzq3Y9gEAAAAAAFBAvRVec24EANCgzOKrAACAUkT3pdR5s1c8XVTGe9DMwmvJ+/iNdd7judbPZ9l2qfNmKZqsszfc01CuIuRQ2iu8nujhBVfeJa6h9MiW/OLrrsXJCW4d5ciVsyNXeyJS3JpY0nHL207mhe1+8XXXq9IT2jaACuBgMQAAAABUnmHU32QhAACAStu9W7GnDK36nSHTlVI16ttJWRmF1xsNabBwuRAqa72e1U4NKKTswL3C64giCpa0nYiCalNkTCVySJZ2akDr9WxlBoySlVp47XMM6fpFz+uu1j1Zj9+1MK7rX90rxyjtHFR3dFDtx25SX8Aue8woX1/AVvuxm9QdLe1npyvp+sUv6645fVmP3zWnT9cvfpmc6xQ5N4aK51ziTDByri1ybgzk3BjIuTGQc2MoN2dH5NzwBgakNHPmAQD1Yd26dXrNa16jH/3oRxUtvM7kuq5+8IMf6DWveY3Wr19flX0AAAAAAAAgQ71dw0aHCQCggQUmewAAAEwbe/cqmvCKpy+6RLr3YCltSoYruRnvgw3Xu7i1N+z99/d+NVJ47fM/v3z50HqSlGM7aVPqaZLe+NxQ4XVC3i0t2tqq+UobWtdB/eo4ca8cY+TeIY5c7Yq4I+XIQxlL0pgrknMZast25WXsStrVLM2JGzKHNuBI6jgzIbW0KPZ8S6VeDvLIl3NP2FXK8L4vlTIUsYcCNlyNqTwfnf3QtuKWq96Q91BPRGpLaCRnQ+p4U1JqalJsS6TyLwwT02xL4YEi6zRLgRo1WKA6/En0/kFj1x07sT4QqL+D3AAAAABQLxzH+5PJNLOXAwAATFdDZdOxpwz95QBX15888ZvmFuNK6glLlz80VHgtURhTQ13uk+pw18mVNFtN2q1BJWWXXXjt84qvpR7F5corvJ6tJrmSOtx1kqSYsaSyLwI5lVt47XPkFV9L0hk7MwuvpXLOInrFXc+q85HFiqY5/1gtfQFb7a97tuRiNp9f0CYZOmNXNKOYjZzrETk3hqrkPDSnqxTkXBvk3BjIuTGQc2Mg58bA79vIq9g820SiNuMAAKCAb33rW/q3f/s3OTWaz7R9+3ade+65+sEPfqB//ud/rsk+AQAAAAAAGk69dYFQeA0AaHCUXgMAUCl5LhzOLKw23NI6kCe0HdeVUqlx7gWFdB0yqI4TeuRIwxOmHbna1eQqnRGIOzShuuSsMwqvfWlD2hVxNGdwVPH1Cbsk21ZsS9NEXw7yyJezX3jt6w06kptRfF2Uq7gl9YZGDkalTKkn7I4tvj6l18t5c7girwnlsw1XlpudrWun5TiFSyLcdEpKj2Scazuoc+m0ZNsjn7vu2EI2x6m/A90AAAAAMFW4LpN1AADA9DV0zrjrSEffP7a2u/7+cdJJL7qKPWVwo5Ea8QuvnaGTioYMzVaT9mhQzQpmFV6bMgqePzYzlvrF1wNKaZaahp/pyKX4ukZs19EK9+ayC699fvH13c1NenBWvxw/X8NQObNGulsHteL457R2wzGyxj3bBPnYcrVi6WPqnjGosmbzDK3qSLr+VS/r7gWDenBm30jOmSuVgJyri5wbQ/VyLi8rcq4ucm4M5NwYyLkxkHNjqFrOhlHWneTIuU7192efF7ZGlZIHuKwVADC5/vu//1tXXnllzfebTqf17ne/W5FIRJdccknN9w8AAAAAADCt1VsPCNfQAQBA6TUAAJXUF5baL5Y2zJdmDUp7mrxS26EO5Iz/kFoTUtiW3n++93ls48h2uo7yHg/b3nq9fu+tkfVBQcfbz4b53n47b5aiSXERcxXYhqvVR/TLyTi24cjVrkh24bUvX/G16SprG9LYwmufV3ztak48uxB59RH9Wr45RJFuFeTLuSfsKmUOfW54uRruUIF1UgpmPMFwpQP2mXpxhpOVa8JytXfounZ3aC626eYvvl599KCWbw6S8yToCzpacc5erfxbRLFnR4rH46ar7c2FDygmjZHirq7DElp9dFxrfj9TUf8LCPWvlIPGlF4DAAAAQH6lvq8CAACYjoJBdR3p6r0XSj2R7BsbV4t/w+SeiPTe5ZJ+7Sr2kqSenurtFOoK/F0dkbuGC699hqTZigx9lvF7r+GqYFuT62atH5GliKyh54w8z5HUod9I8X7F0odP7EUgL0vSysCReiTy0piMCxvJy5F0/+xR5U5uxqSREpgytPL5ObIG42WMAaWyJK18fo4eOXpveTkb2d+T98/szV7uGmVdqELO1UXOjaF6OausskVyri5ybgzk3BjIuTGQc2MgZxSUTGZ/Ho9LwaAUCkmmKbW2Ts64AACQ9NBDD+lf/uVfSl7/+OOP13nnnadTTjlFr3rVqzR79mzNnDlTfX192rNnjzZu3Kj77rtPv/nNb/TYY48V3Z7runrXu96lpUuXaunSpRN5KQAAAAAAAPDVWwcIhdcAAEii9BoAgIrpixhqf4vUvdD73JBXSL27SUpa3mP+W9G2hBRJe//tGNnF137htd+h66/XEx55vmNIIdvbvv92u3uhX3ztKlq9l9mwLNfQmvVtan9Tj7rnpEYKrwv02I6+eD3oSJYr2YaU2X9b6CL3tJldfL1sV1Br1rdRhFwluXIeXXgtjZTY+8XXM1Pe44YrnfpSQIf2Wdo8M60/HmDLNbwC8/iowmt/e7mKr5fttLTm9zPJeRL0BR21n7tX3XNtPTKvX5Kyiq9L1XVYQh2neQXq7efuVedtFF8DAAAAAAAAADDddS1O6r2vc9UTGXmsmsXXfuG1rycivfdCSXemFRsYqPwOIUnqCm9WR8sf5ZQ1Gb3Yum7Jk9sdueoI3yklkoolDi1jDChHTAdIiVPUEf1jecVdbp7/Hn6gtB8Gpiut2rBIse1RSanS94+yxF6MSvYidSx9fswNzPMq+uVAzvWGnBtDVXJ2ybnekHNjIOfGQM6NgZwbAzkjL9vOPt6VSEiW5ZVfH3GEFInkfy4AAFWUTqf1rne9S6lU8d8dTj31VH3xi1/UqaeemnP57NmzNXv2bC1evFgXXHCBPv/5z2v9+vX62Mc+poceeqjgtuPxuN797nfrgQcekFFvhUwAAAAAAABTTb0dX6HwGgCAYbSuAQBQAbZja8UF8eHC63L5xdfvfmt24XW5uhdKKy6SbIM3vtUQTZnqvKNNS3cHihZe+/wk/MJryfsYdErfr198vXR3QJ13tFGcW2WZOecqvPa5Gikn2Bt0ZWuk8FqSDu01deqLlmxJKb/43hg7T9vfrl98vXSXSUHyJMksvJa8bDpO61fXYYmytpNZeC1J3XNttZ+7V33lfOMDAAAAAAAAAIApxXZsff7Ve7IKr32GvILqShpdeO3riUifPyEhW5yXqAZbjlY3bSyvBHkUQ9LidLTE6qbcHLla3bSRnKssljhUq/pOlVlOWoZRai9XXl5h10GKbZ81sQ2hJLHts7Rqw0EyazzVhpxri5wbAzk3BnJuDOTcGMi5MZBzYyBnlCwYlObNkwKByR4JAKCB/ehHP9KTTz5ZdL1PfepTuvvuu/MWXudz1lln6b777tOHPvShous+9NBD6uzsLGv7AAAAAAAAGIXCawAA6hozBAAAqADLtLSy71V6pO2J4ZJTV9KeJq+w2HBHynENSb1h778j6ZFtOIZ0++Kx244HvPUNjZTlGq633T1N0qzBkeslTVda+agpa29/xV8jhoRcvRJOlVR4ncXV2LbjMqRN6ZVwSurvl5J1drBlOgq5kmMPf5qviN6VJGOopMCQZDtSeihox5HskbaBXIXXmdsfnujtONLgIDnXWF/IVfv5CXXPcbOCciR1vHGflEhoyQ5JaTvfJiRJv9t/n65741C9QMZ2uuek1X52jzp/FVaUbOtbOi3ZGTk7ztiDyhxkBgAAAID8cr1nsu2h4reMPwAAANPQPDUr6PQr171NM8/35mO4UsSW4tbI+eW86+Z5POhI89Ihaf+FkrjJaqVZktboHWrXzerW9jKeaUpyZUg6X4drSWientQOrdPfh74uTJWT1zIt1BrrYlkLc7Sso6JiWiipTR1aV7zs3DUzTh5r6DxTxnerYUhG4ZxN19Cqra9RzNpfOmBCQ0cZYjpA2jZbHQc+LqfoXQqK/jQvuj9ynhzk3BjIuTGQc2Mg58ZAzo2BnBsDOWMM180+d3zwwdKsoYLyZFKKxydnXACAhnfjjTcWXeff//3f9R//8R/j3kcwGNR//ud/Kp1O6xvf+EbBdb/+9a/r0ksvHfe+AAAAAAAAGlq9XaNGFwkAAGNQeg0AQIXEXvUW6Zcb1HGeK9vwCqlT5lDXccb7Y//yxlzF16P5hdf+84a3MXRFdCqj+NpypVXrpNgmSwrzBrga+kKuTr9kUE/MdWW6+YuQc0lZkmwvJ9sY+rwMpis9MdfV6ZcM6O7OJkpzq6gv5Kr9LXFtmOOoNWFoZ1Ph7ydXUpPt/ccfFzmSTB3aa2jzLOmPiyTLkSxDJRWltyakDXMctS9PqPOXIXKukb6Qq/blSXXPc3LOo3ckdbwpqY/dV/gbd3Orq7VH2N517Dm20z3PJdupoNSD2vV28BsAAAAA6kWuyTmZFzRblmRSvggAAKYfy7TU+fJpusi6RfcerDHF16UUXrclvPPH8YDUEy5cfJ1Rqzss6EhvfE7qfOIQWTGmhVVLVM3qdC9Ru/tzdevlkp9nyND5OkJLNE+StEQLJJlap6eH1yjFMi1Qp3GJogaF17US01LJNdThllB8XZChQjmbMrRq2zLF+g9gZuckiPUfJG2z1LF/d+Gci5W3+XfPzoOcJxc5NwZybgzk3BjIuTGQc2Mg58ZAzshimtnnjq1R87CTydqOBwAASU888YQee+yxguuceuqp+vznP1+R/X3ta1/TX/7yFz3wwAN517n//vu1adMmLV68uCL7BAAAAAAAaBj11vlB4TUAADkxtQMAgEp5+9sV+8pXNBBwddny3IXX0khhdbHi69GF1/m2kzKlPRHpB7+SYhslNfHPezXYhquzLhn0SnFVXuG1L2VJdpll2T7H8Iqvu+c5OuuSQf1lTZOsQle5Y1xsw9WKC+LqnudNte4toUDekBS3vBIBy/GKrze3GXpxpitXkm16f4a+ZQvqDUuz4l7OKy5Mau2tIXKusr6Qq/Z/TA5/b+fjSPrcKbZe+7JXaj7a5lZXf1zkqCXlldvn0z3PUfs/Jim+ng7q7QA4AAAAAEwVTOABAADTWNQJ6pZbDV30djer+DrX+d5MmYXXkvexTYWLrzPPO0sjhde3/FyKHlHmHXhRtqgRUadKL742ZOg8HT5ceO3zP79Dm0raL4XXkydmLJGkChRf52bK0KqXlinWd0DFt43S+X//RQvaxomc6wM5NwZybgzk3BjIuTGQc2Mg58ZAzshr9HniUGhyxgEAaGjr168vus4Xv/hFGRW6XsQ0TX3pS1/SmWeeWXC9O+64g9JrAAAAAACActRb3wfXywEAkJc52QMAAGDaOPZY9S2arx8fIzWnC1+47Boj5be9Ya/gOlOxwuvR22lOSz8+RuoLS7K4gLla/MzGU1rtm8ghE3+/HOaoHss1tPLxoAxJeyLucBGBmecv3ZBXQiBJScsrt3Ylbc0ovE4OfUsabv78/e37JfaGpJWPBSi8rrJSC699jjFUat6a/QXhF16X+r3pF1/3hfhuBgAAAAA0ICbxAACA6ay/X9GkoVt+7hVQB53yC699kbT3uFHg1yf/fHFW4XXSkJLJSrwaFBE1Iuo0LtEyLSi4nilDF2vJmMJr3xLN07/q9TKLnE2m8HryxYwlWmWcXzSrclHYVV9ifQdo1UvLyHmaI+fGQM6NgZwbAzk3BnJuDOTcGMgZRQUCUjg82aMAADSghx9+uODyI488UqeeempF93nGGWfoVa96VcF1HnrooYruEwAAAAAAYKpLpgvMhS6j8DpVgbEUxbVyAAAUROk1AAAV0pfoU/vbpe6FUigtWUXej+Yrvi618Npnud7+uhdK7W8XJapVYrmG1q6NqGUCRzMsV7Kc4l8bhbSkpLVrI5QhV9FZz1ta0G8MF177RhdfZxZeS973a8KSUpZXjpyyvM9djXyv5yq+Hr3dlCkt6Dd01vOWd6CNP1X50xeWV3g93y39eUNZZhZf5yy8LmFb3fO9wu2+cGnr86fGf0bnCQAAAACYOMOQTJP3WQAAYHobGJBCIUVTpm75uXTkzvEVXvtKLb4+cmdG4bVlSamaTNGGihdfmzK0yjhfy7Sw4HZO0UEFy5QpvK4flS6+prCrPlW6oI2c6xM5NwZybgzk3BjIuTGQc2Mg58ZAzsjLsqRZszhvDACYFJs2bSq4/JxzzqnKft/85jcXXP7MM89UZb8AAAAAAABT0da+rVr09UW65vZrxi4s4/xCatTHqqDwGgCAogKTPQAAAKYD27G14tYV6g73yIlLe5qkdAm3lnANSUMluH7xdcIaWqbihdeSt589TdKsQal7gbTiLQmt/XULpcgVZhuu/vWcuFrShgYDbkn5jt2G5JpeIfJ4BBypJW3oX89JknGV2IarFW/p1/YWV62JkQJ6n+l6+RnKXy6QGsrYzhOP4UoyvO/x0YXXktSakLbPkFZcmKTgvEpsw9WKCxNe4XW5jIzi6zZDL850S/pZnUv3fJec65HrFj/QnascGwAAAACQn5lxMI33UwAAYDpLpaSmJimZ1PrDDO1sdhWypaQ1dtVihde+SFpqk9QTzn3+OGRLO5ul9YdJsY2SgkHv96/ZsyvwglCKqKRO51/Uvve/1W1vHX7clKlVLW9XLLxMqwbuLjwBIDBDsfBSKTFTHf2/kCNneNEy60B1znyPomZT9V4EyhLTqVq791ndntqYvSDnzVUzzkkaY9c5a3A/xewjpJaqDBUTELOP0Nr4K7q9aVv2gqLva42hPyPIuX6Rc2Mg58ZAzo2BnBsDOTcGcm4M5NzgAoHsoodIRJo5U2ppyT5/DABADe3Zs6fg8mOOOaYq+y223Z07d1ZlvwAAAAAAAFPN1r6tet13Xqfdg7t1w59vkCR9+ewvewvHUXid+XmwMkMcQeE1AAAlofQaAIAKsExLKw96q/768G+1pyn3Rcv5ZBZfl1t47UtaXvH1nAFp5RNBylOrwHINrdwQ0iPzBjU3bmhnZHzF1xMpvJ4bN2Q50soNITKuksycI7YhJdycxdfF5Cu89hnu6KnYntaEFLENma608nG+l6vFcg2tfDyoR+Ynxv096RrS1ujEDkCSMwAAAACgIXEBMwAAmM6CQSkcVtcSQx3nOHINafagtHvUOeRSC699+YqvQ7a3fdeQOs6TZBqKbW/2Cq9POqmCLwzFRCV1pl6v9oc/rkd7n5JlWlq19GrF9jvDW2HzFim1L/8G2pZI809STCdJ245Qx4brZTu2Xtt6pDqP/YKiwRm1eBkoUde2u7R+wxYpGMpe4NjKKrmWsi9qMCzJyp6yuX7mTnVFk4oZS6oyVoxfl/uk1rs7NXaarV3kmYak7Pe+5Fy/yLkxkHNjIOfGQM6NYfw5mxo9M5Oc6xc5NwZybnAvvph9XKS11Su9BgBgEiUSiYLL586dW5X9zps3r+DywcHBquwXAAAAAABgKsksvPYNF1+/4wclb2d04XXm4xUrvqbwGgCAknFVOQAAFXLW9ibNi1tlFV77XGPkssdyC699SUuaNyCdtZny1GqJbQpp1d1NsoYKqANO8edUIo3MwutVdzcptilU/EkYNz9n0/UKqFsLz2eqmMzC61Xrw4o9w/1pqin2TECr1odLKjGvBnIGAAAAADQk06T0GgAATG9z5qjr0IQ6znWGb7xpyCumDg11+ZRbeO2LpL3nGUPnNvzCa/98pGNIHee66lqc9ApkUHPR4Ax975hPyJGrFfufO1J4XabYfmdoxf7nypGr7x3zCQqv60zXtrvUseF6OW4JEwZK4MhVh7tOXe6TFdkeKqPLfVId7jo5o0vMx4mc6xM5NwZybgzk3BjIuTGQc2Mg58ZAzgAAoB61FjmH1tLSUpX9FttuNBqtyn4BAAAAAACmilyF174bzvmKErt2lbSdfIXXpS4vyUUXVWIrAAA0DBrWAACoANux1f7EtXqqLS1DGtfUzMzi6/EwJD01V2pfntBv7miVNZ7mbBQV29Ys/TmsjpN7NTdhaGfYUTpPT48x9KdYroXWCTjS3IQpy5VW/blVsW1NUvO4h48SZeYccQwp6ao3VCDJCX67DRdey9Cqe5oVeyEshSe2TRQXeyEs3RNQxz8MlDap3ij1O7owcq5zti05GSUFjpP9uSRZFiVtAAAAAJCPbY+9W71peu+lAAAAprmuJaY6DuqVYwydLxj6vcgvvt7TJDWnyi+89kXSUpukgaA0a3DsWQnHNNRxWr+UMhUb52vA+PWl9unyxz4vyzC15qXbdNKs14yr+Lpr211a89JtsgxTlz/2eXUe+wWKr+tEpQuvfX5xlyTFjCUV3TbKV+liNh851xdybgzk3BjIuTGQc2Mg58ZAzo2BnAEAQL2aM2dOweW7SixPKlex7RYbFwAAAAAAwHRWqPBa1zoakGTKK6wOFthOqYXWxbZT0EUXSTffPN5nAwDQkCi9BgCgQnYM7lIqLK8PdTL6pl0pZUo7mlwpGvVatFEVsd1R6ZFmdRz3suYmDe0M2WOKr/3C61L4642e1htwpLlJS5YMrXpkgWK7Z0rcuL1mMnOOuJJSjnpDE7h4OU9fcmvKVMQ1ZBrSqr/MVuyVZolr1msm9soM6f4mdZy0W06xb1qjxGJsI/+GTJec614yKaUyDmfnK72mrA0AAAAAckunveLrTLyHAgAADcB2bK2OPiOnf+gBw8i6GYhffF2I6UpnPSutP0x5z1tE0nlKs4fOTziGtHru81ru2rIMfg+rlb7UPrU//HF19z0tSXJcRx0brpeksoqvR5cqd/c9rfaHP07xdR2oVuG1j+Ku+lCtYjYfOdcHcm4M5NwYyLkxkHNjIOfGQM6NgZwBAEA9W7JkiW6//fa8y7dv316V/Rbb7mGHHVaV/QIAAAAAANS7goXX0nDhtS9fYXWphdfFtlPQnDkUXgMAMA6UXgMAUAGWaekTmw/UZYfu0Z7I5IzBNaS2QekT91myBhOTM4gGEtsUlFKz1HHibs1NWNoZHim+NpTRjVti87UxVJbuPy3gSHMTlixXWnX/LMWeD0qKV/Q1oLjMnCOuISVN9QZzXMRcSs65Cq+ThiK2ZLquVv2pVbEtAUnJiQ4bZYo9E5DSUXWc0lu8+LroJPzsAotMpityngpSqeyS61x5uu7YImwAAAAAAAAAQEOzTEtrYj9W+2eXqXvO2KnTrqQ9TVJzKndptelK31gnxTZKXUdJ7z8/d/F1PCANBKVZg7lPUS3baWnNP3yOwusaGl147cssvi5FvlJliq8nX7ULr30Ud02uahez+ch5cpFzYyDnxkDOjYGcGwM5NwZybgzkDAAA6t0b3/hG3XjjjXmX33vvvfrgBz9Y8f3ec889BZefeuqpFd8nAAAAAABAvStWeN1/rZNVeO0bXVhdbuF1vu0UtXPnOPcEAEBjo/QaAIAKOWvHTB0yS+pZ4BVQ15rhSof0SGdtNqQ5td9/I4o93yJJw8XXr0RsuUZG4XWZ/OJrw80svJ49vB9MjsycI7ahuGUoYU58MnbYliK2kVGEPEmN+ZCk4b//0oqvy0fOAAAAAAAAAABMf9FDjlTnvnPVrtvUPXvkBph+4XXKlHrD3mOZxdeZhdfSyMfRxdfxwMjz9zSNKr52XS3bYarzyaMVPW6btGVbNV4iRulzBtW+97/VbW/NudyR1PHI53Vu4GgdbM3Ou50/Pb9Zq5P3y1HuUuXuXU+o/c4r1TnzPYqaTZUYOkrUlehWR/8v8maTxbY1fBNdV5Jjj7qnbvEbqzqSOty10tZNivXuP64xo3xdrS+p48DH5ZQ04aOEGyUXQc6Tg5wbAzk3BnJuDOTcGMi5MZBzYyBnjDG6+GHrVikYlGbOnJzxAAAg6cwzz1QkElE8Hs+5/M4771QikVA4HK7YPgcHB3XnnXfmXW6aps4444yK7Q8AAAAAAGAqKFZ4ve9aR1aB5/uF1eMtvB69naLc6t70FQCA6YzSawAAKsB2bK046kltb5baElJPuLbF14br7Xf7TGnF8pTW3ufKmozm7QbkFyK/9+RdksZfeO3zn580XX3/vjkUXteJzJwrUXgtSQlLSpiuvn9PG0XIdaJaxdcUXgMAAAAAAAAA0Dii/9971Xn5PWp/U0LdC7ILr32ZxdejC699o4uvMwuvJW97mcXXy7ZLnWsNRZfNkO66q5ovEUP6zJTaD7pf3ZHegus5km5OPaTzeudrSSI6ZvmT4T7dEd2hoGuOfXKGbj2r9t03qPP5ExV1Sppijwnqir6ojv275RQt4xripJVVei03u8fLlWQXL892JHUseFjasoU5AzXQdVC/Oo7Y7cVXCsMt3L/mqqRJQ+RcW+TcGMi5MZSdc7G5XuRcl8i5MVQ8Z0cquSiXnGuGnBsDOSOnRCL7c9uWtmyRFi6UXvvayRgRAACaNWuWVqxYoR/84Ac5l/f09Ohb3/qWPvjBD1Zsn6tWrVJfX1/e5RdeeKEOPPDAiu0PAAAAAACg3iXTSR333ePyFl73XeuUVI450cLrzO0UnJVL4TUAABNS+EoZAABQEsu0tPLpFpmud2Fyc6XeFZeoOTVyQfTKbpPCa2Cq4Fu17sS2RLTqT61F59OXisJrAAAAAAAAAAAazJlnKro3qc6bDS19ZWzhta837N0kNVfhtS+20VuesLILr31+8fXSV6TOm6Vo3JXmzavs60FOpRZe+1y5Wtf6sp4MZ5caPBnu07rWl0suVe6O9Kr9oPvVZ9Z4UkIDKrvwOlMFzjU6htRx4m51HdQ/8Y0hr66D+tVx4u6K3hS5HORcG+TcGMi5MZBzYyDnxkDOjYGcGwM5o2zbt0uPPjrZowAANLCPfOQjCoVCeZd/4Qtf0IsvvliRfT333HP60pe+VHCdD33oQxXZFwAAAAAAwFQRCoT07mXvzrms91pH+Y/cVAeF1wAAVFcpN7MAAAAliG0KSi9K710uDQa9LttavG015O0vbEvf/5UU22RKiylXrZWuA/aq47g9Crumwo6rhDXO1DMm+oZtQ2HXVMdJe6RgSLEXZ1ZmsBi3iuQ86odC2DEUdkx1nNonBQOKPd9SsfFiYmLbwrp1e0Lr909kLzBcFW0qN5S1zhnbwopta5VyFFGgjlnWyH/b9tjlhpG9DgAAAABghFHCFe0m9+UFAADT2J13SuGwNDBQ+31blrRjh7TffrXfdwMpt/Da50pa1/qy1CstSUSHC6/LPfPoF193Pn+iok7BqfYYJ1uuVs/aMqHCa1PS618J6cG5yXEXfzmGtPrwfVr+QjM3P68C23C1+vB9EypmM13p9TvDenBugpzrFDk3BnJuDOTcGMi5MZBzYyDnxkDOGLft26WdOyd7FACABnXUUUfp05/+tD75yU/mXL5jxw695S1v0T333KOZM8d/Td/u3bt13nnnac+ePXnXec973qPTTjtt3PsAAAAAAACYqr589pclSTf8+Ybhx/Zc69S8moXCawAAqo/SawAAKmXvXimja9rvRq3m21fD308m2y6tWAYT1nVAnzqOfVmOIQ1ajgYt18tkAtt0JQ1arsKOoybbVMdxL0uGFHsxWqFRo1xVydkYytkayvnE3ZJE8XWdWHPoXt18yICabFMRe/xJxy1XNx8yoHNf3KsVmymvnzJG/xtqGLkfAwAAAACMT673WQAAANPJD3+ovhlBtb/F1IZ5ttoGpZ4mKTXqvh+tCe/Gxu8/3/s8tnHsprqO8paHbW/93lEzuYOO1DYobZgvtb9d6lzrKvr3v3ul26gKW65WvPpxdYf2Sk4ZTzRcufLOB/82ul1PDvZoc1N8ZD68K8kpfYPdoT1asfBPWvvEa2RN6MwlcrEkrek9XO1LNqi7ZV/pT3S9DE1XuvrxqM54ztRdCw1df1x86MvFKOsiiGW7Alpz+0xZqUTxlVE2S9Ka389U+9k96p6TLv2Jhiu5kukauvrRZp3xUlh37W/p+tcOyDFcb0IAOdcNcm4M5NwYxp3zUIbkPDWQc2OoWs78vl1XyLkxkDMKSqWyc0wmvZv2BQLe+eLnn5+8sQEAGt7HPvYx3XPPPfr973+fc/mjjz6q17/+9ers7NSyZcvK3v7999+vd7zjHdq8eXPedRYvXqyvfe1rZW8bAAAAAABgusgsvt59raOmGu+fwmsAAGqD0msAACqk6+BBdZyefcFxNYuvMwuv/QuiO86XZDiKVWF/yDa6CLkn6F2i6mc9nsuK/YucJQ1vr8k21XHsy5Iovp4MVck542dCT8iVkhRf15M1h+7VZafsUsqUkqYjaXzF13HLVe/Q18tlp+ySJIqvAQAAAACQJNMsvg4AAMBU9dJL6nvgXrW/qUfdc1zJkUxpTPF1a0KKDPUAOUbu4mu/8NoZOk3hr+8XX/uF1/5vV90LpPa3ptV5625FX3hBChacio1xsiSttCJ65Nje4WxK4ZhO1vrPNA1kL3eNskq0TVda+beIrO0vl/4klCUqqfPluWo/OaHutlJLs1yv8PrhJp3xoqRUQmdskWQHdf3rk/4qJVm201LnuiZFk8myx47SReNS52+a1H5+v7rn2qU9yfV+9l79UEhnbJWkoZzTIV1/fMK72IWc6wo5NwZybgzk3BjIuTGQc2Mg58ZAzsgrPaoI3S+9TqWkSITzxgCASWVZltauXavzzjtPf/jDH3Ku89RTT+mEE07QihUr9IEPfKCk8usHH3xQX//61/Xzn/9c6dH/FmY48MADdccdd6i1tXXcrwEAAAAAAGA6+PLZX9Y153xFzTXeL4XXAADUDrMDAACoANuxtfrVyawLjlsT2eW2lebK2/7oC6JXv06yDd48V1O+ImRfZnl1qXI9pyfoaNDyLn7uOPZldR3QN4FRo1xVyTnHz4SekDuS84m71XVQ/0SGjQnILLz29QYdxa3yks4svJa8AovLTtmlNYfurdRQAQAAAACYegzDu4jZGM9txAAAAKaGvj/fPVR4nfIeGCpu8Yuvg072+V2fX3zddZT3+ejCa59/Hnp04bWve4Gr9rc56rMHhOqJvRjVqocXyJyk0/KmK616eAE3Ta6BaNpS530HaFlPuKT1TdcYKrwOZT1+xguWrn4wVPLXjFfY1aJokvdPtRBNGupc16JlO62S1jdc6eqHwjpjayDr8TO2BnT1Q2FyrlPk3BjIuTGQc2Mg58ZAzo2BnBtDuTl7hdfk3LBc1yu+njFjskcCAGhwTU1Nuu2223TllVfmXSeZTOq///u/9drXvlYHHHCALrnkEn3iE5/QDTfcoG9/+9u6/vrr9fGPf1wXXXSRFi5cqBNOOEE/+clPChZeH3vssfrDH/6gQw45pAqvCgAAAAAAYIoxDM2u8S4pvAYAoLYCxVcBAADFWKalNf83w7uAeWHGAldSNedQjnqfvGy7tOZWQ9aB+SdGYGK6Fu1Tx+t2yJE0aLpjipB9fjSlxF+oPLkn6Eiu1GQb6njddsm2FXuBCZ7VVvOcQ66UdNSUNtRx4m7JdhR7rqn8gWPc1hzWr8tO2ZNVeO3rDTqSayjgFk86YbraGxybtF98LdvRimdbKjFkVEsqJTkZ3/O2nf25/xglbQAAAACQ2+j3UD7D4L0UAACY1mzH1oonrhspvJayJj77xdc5TkVIGim+/uVR0vrDxhZe+yJpKZTOv53uBa5WnLZDax+Myirh3AbGxy+c9m+im8mVK6MCEwVybYfC69rzi6/bT35R3W2JvOuZrnTNozN16jZTuc4Mn/GCpdkJU58+OZH3+1uisGuy+AVt7ef3q3uunXc905WueSisU1/KPfX2jK0BzY4b+vQb4uRch8i5MZST80cfCuuNBXKeEzf0KXKuS+XkfPVfwzrtRXKeiiqZ89xBQ588mZzrETk3BnJuDOXk/JEHw/qHAjnPGzD0iVPIeVqbMSP/eWUAAGooEonopptu0lve8hZdc801evzxx/Ou+9JLL+kXv/jFuPcVCoX0/ve/X5///OcVCoWKP2GS3XTTTfrmN79Z9f1s2rSp6vsAAAAAAAB1KuM6s6CkVP41K4bCawAAao/SawAAKiQamqnOm3vUfrF0/4FSb9grwnWrVXztepvtDXufnrhV6rxZiqZNqcDdwDF+XQf1q+P43XIMadByvKLiAko9lFFsvZ6QIyUNNdmmOo7f4RVfP09pbrVMXs7eGk1pqeMNeyTHUWxLpMStYyLWLB7UZaf15Cy89vWGXM1ISa6RP0nbkOJW/m2kTOmy0/ZIjqsVmyg1r2uZB6NzlbIZBgesAQAAACCffMXWjuP9sQq8eQYAAJjCLNPSyhfm6pFZz+Qs5HEk9TRJzSmvuDoXx5BuX1x4P/GANBDMX6BtutLKxyxZaUpjqi32fIvkzFPH8TvkDJ0NdOSqJ+yoOW0qYpcxUcBV1rmHuOVqIOCoLWHKHJpwYMrQqofmKba1RVL+8ihUXtSWOu9dqPZTt+UsvvazOWJ7SnHDkeR6ebpOVq7nPWtqViKijjNyF3ct22Gq87dNiiYL3VIZ1RKNS52/aVL7BQPqnjf2Z6jpSqvuiujwPaYSVv58zn/W0qw4Odcrcm4Mpeb8qh5TSbNwzm3kXLdKzXlxj6kUOU9Zlcy5ld/D6lapOR/WYypdIOcLyLmukXNjKDXnQ3tN2QXm417wrKVokpynvFzzbMNhr/A6FJKSydqPCQCAPM477zyde+65Wrt2rVavXq077rhD8Xi8ItuORqP6p3/6J3384x/XokWLKrLNWtixY4eefPLJyR4GAAAAAACYrnJcf1bt4msKrwEAmByUXgMAUCmvepWiL7ygd3ZLdx3qPeRK1Sm8HtquO1R8PRCU3tktRROSIgXfYmOcbMPV6sP3lVyE7Bu9lukq5+TbYnpCrpR01GSbWn34Pi1/oVmWW60vrsZVFzlLakobWn3UgJY/FybnKluzeFCXnT628DrX/Qr2hVxZjpTrulbb8EqtR19rMXo7KVO67PQeSaL4GgAAAADQmBzKFwEAwPQV29IkPdmqjlN6s84V+YXXKXPkpsb5iq8LiQdGnt/TNLb42nSlVXcEFds2UzrtNeN9GShDTJJ2vKiO/buVlqMeK6WUIfWGHMkOKuIO3fTFLDIN3zIl01s3btjqtbz1eyJSmx1QQKZWvbRMsVkHSLOq93qQX1RS556lap95v7ojvcOPmzKGs9lg/l1yM7Le1y+lMz5vbVHMbJOe2qOOpc9n/ZxY1tekzqcWK3oINwqaTFFJnU/Zam/ZpO7o4PDjpiut2nCQYuYsPXHIoGQWeG8bDymWCJJzHSPnxlBKzo8fPDB2okemwZBiSXKuZ6Xk/Bg5T3nk3BhKybmbnKc8cm4MpeT86MEDUoHSaw2EFEuR85T3zDPZn7e1SbNnj3xOeQQAoM4YhqFYLKajjz5aa9as0Q033DCh4utgMKiPfvSj+sQnPqGmJq4fAgAAAAAAGJaj8NpXreJrCq8BAJg8ZvFVAABASZYsUddR0jXnDF1c7ErV7qp1DW8/bYPefruOkhSk9LoaLNfQmnvmaV7cLLkIebSAIwVc7+N49IRczYubWnPPPIqQq6QSOQcdKeR4H8ejJ+Rq3qCpNevbyLnKChVeu8bYMnPJK6OwR8XiF16Plm87fvH1msWDY58EAAAAAMB0x0QgAAAwnaVSim2JaNWfWr1+JtfNKrz29Ya9AutyZBZeS972epq8Qm0po/D6aYvfuWos1neAvrxt6VDhtSNH3vmhXiuluGGXtS2/8NqVl23K8Iq0v7xtqWJ9B1Rh9ChH1Amq8/kTtSzeKimj8LrMbGLbZ2nVhoOGe9yW9TWp8+HFiqYp7KoH0bSlzocXa1mfV0IyXMy2vbzGeXKub+TcGMi5MZBzYyDnxkDOjYGcGwM5AwCAqSadTutHP/qRXv3qV+voo4/W5z73uQkVXktSKpXS5z//eR166KF63/vep6eeeqpCowUAAAAAAJjCChRe+yrdnEXhNQAAk4vSawAAKqRr0T51nC85hpQMSHaN/pW1TW9/jiF1nC91Hel4b/D5U/E/v140oI3RatwPrHQboyn9etHApP9dTOc/dZFzW1q/PigxqWOY7ooVXkulFV8XK7zOtx2Kr6cQ1x37BwAAAAAwMby3AgAA09XQDYpjWyJadU+L5I4tvPaVU3w9uvDa5xdfy5VW/T7gFV5L3nkv1EyfmdKPZ72gJscaLiF3VX7xdWbhtf8bsyOpybH041kvqM+c3HOY8PjF18cNto2r8NrnF3cd19tMYVcd8gvajuttHlcxm4+c6xs5NwZybgzk3BjIuTGQc2Mg58ZAzgAAYKr47W9/q8MPP1zvete7tGHDhopv/+WXX9Z3vvMdLVmyRG9/+9u1adOmiu8DAAAAAABgSihxfnOlZ8vm3R7XtwEAUBMlXjoFAAAKsR1bq+N/lmN4Fxz3RHIXpVaDK29/bXEpkpZWL0lo+b2OLJcLmSspaTr60Ot3K21KhjtSZluOtClFbCk5zrm2hutt40Ov3623b2lWyOH+JZVWiZxTphRKSfFx3jpuOOeT+/T2zWFyroKk6ehDJ/cVLLwefszwFoz+UiiUc6nbSZHz1OCX4gMAAAAAKof3WQAAYLqaM2f4P8/q3quFr5VenpF/db/IOpLOv06+wmtfypQW7pPO+nta0tCJSMuS9u4tedgYvz4rrfYjuvVoeK8GzbSGTglJGR97rZRCjqlCZ4OSshW3nKzCa8k7tzRopvVoeI/a9/+TOp9epqjNlL/JFpW0tvc1smRIyvheSyQkN+MbOp2S0hml505aSsWHP41tadLyLQfKUkqVv0wDExWVtPbeA4dyHslNoYRkFpgVFHekxEju5FzfyLkx5M85WTjnhEvOU0jenMNJb0JWPuQ8pZBzY8ifc2LsRL5McVdKkvNUQc6NYdw5J8h5WrBH3QgukfD+BIOSybxpAMDkGxwc1Ic//GF961vfqsn+HMfRzTffrNtuu0033nijVq5cWZP9AgAAAAAA1IVJKrzO3G5WPQyF1wAA1AxXwAAAUAGWaWnNxqU6fdYzenS+U7PCa59ffP3abdKaXwVltVEaU2khx9RXH5ity07Z6RXllliInHlRc8CVHMP7mC4zImOoLDfoSF99YDYFuVVSiZyDjmSb3sfRpcpFt5OZ859nknOVhBxTX/3zTF32D73DGeUqqvblKqzOl3M52yFnAAAAAEBD4gJmAAAwnS1dKt17r/r27VL7xdL2mVJronBpdaHi62KF15K3/e0zpfaLpc6bE4q6IampSUoXaNJGRfRZabUf/oQebdmnPYGUUoabdd5QGf+dMB0FHUOBHI1OablKWW7W+j5DUspwtSeQ0qMte9V++KPq/NurKb6uAznvdW3bkjJLrl3JcUY+T6ezl+fbDupGznwcW2O/WzOXm2OKvci5vpFzYxhXzrYp2dn/dpNzfcv773OhcnNynnLIuTHk/rntFC43d8h5qiHnxjCunPm5PT2MLotwHK/0OpmUWlomZ0wAAAwZHBzUW97yFt15551F17UsS2eeeaZOO+00nXLKKTrwwAM1Z84cRaNR9fb2avfu3XrhhRf0pz/9Sffcc4/uvPNOOZnnBkbZt2+fLrvsMv31r3/VTTfdVMmXVVHz5s3TkiVLqr6fTZs2KZFIVH0/AAAAAABgEs2dW9Jq1b716XDxNYXXAADUFFe/AABQIeudZ7Sl1a154bXPlbRllrT+oLRifZM0iGluxeYZkqTLTtmpZJndPAF35JoK0/V+CSu3+DroSD/409zhcaA6JpJz0JGGrkf3Po6j+DroSD/4Q6tWPNNc3hNRFv/v97J/6FXSLF5unrm8UM4lbceVQuQMAAAAAGhEhkHpNQAAmN6OOcYrQl6eVPdC7yG/zLrc4utSC6/953QvHCq+XusoOoPzidXWZ6XVfvQTenTGSOG1lLs2038sZbqSo6zi67Rc7/ECz80qvp6xT+1HP0HxNQAAAAAAAKYm15UGBiiUAABMmmQyqeXLlxctvA4Gg7riiiv0oQ99SIcddljOdebMmaM5c+bo8MMP15lnninJK3H+6le/qu9+97tKF7hJ7Te/+U0ZhqH/+q//Gv+LqaKrrrpKV111VdX3s3TpUj355JNV3w8AAAAAAJgkF18s7dpVdLVqF15LkiPpmqj05RrsCwAAjODKFwAAKsB2bH3hwM3qDbkyXckps8y4EkzXu+j5C29Ia/ldAVnFmlcxLiu2ztLAg4b+5aQdJa3vysvGHDUn03QlU2V8rRjSqgfnacXWtqHbhqGaxpOzlVGE7LNcyXEku4wup1V/nqUVz80k5xpY8VyrBv5s6l9O2VPS+uTcIFw3u4DNtseuQ0kbAAAAAJTHfx9lcMwSAABMb32vPVrtZ+xU9/zsx8stvi638NrXvVBqf2tanS80K1re0FGGQoXXhap6XGUXX/uF18WeI1F8DQAAAAAAgGnEcaRULeorAAAY69prr9Udd9xRcJ2DDz5YnZ2dOvHEE8ve/uLFi3XTTTdpxYoVuvTSS/XCCy/kXfemm27Sq1/9ar3vfe8rez8AAAAAAAB17+KLpVtuKbparQqvmyXpw6Z0+zX68tlUXwMAUCtc9QIAQIXMSYcUcKSkNb7nG64UsaW4JY2nr9oxpJAtzel3pW3bxrcRFNUXcnXryXG1JqSeIheaS97Fx44hOaOKrx2jvHL01oR068Ldan9wQNEk2VbbeHK2Tcm0swuRbaO8IuTWpHTrAb1qf2iQnGugL+Tq1gOSak2SMzLYdnbRteN4Rdij17HG+Q8+AAAAAEx3uW4eFI9LgYAULuENOAAAwBRlO7ZW/Pkj6p6fu8LYL7NOFDi83Bsuvo4khe2xhde+7oXSitmbtPbJY2SJ8xCVZsvViqOeLLvw2ucXX9uuK8co/TnS2OLrFUc9Sc71bnQ0RomhAwAAAAAATDejb5BM6TUAYBLcd999+spXvlJwncMPP1z33Xef5s6dO6F9nXzyyfrrX/+qN7zhDdq0aVPe9T7ykY/o7LPP1uLFiye0PwAAAAAAgLpTJ4XXrqQvSdJ1XjHMDX++QZIovgYAoEYovQYAoAIs09L3d56so1t+M+7S6+aUFE1KfSGpPzS+bYTS0vd/JVnJPFc4Y0L6Qq7aL0ipe66rpqGjJoWKcg15ZeauIaVNKeB4xdfO0OeZ6xW6rrUtITWlpO65ttovGFDn2iBFuVU0kZxTlqShQmTb/zxjvYI5x6WmtNQ9z1H78oQ6b7XIuYr6Qq7al9vqnjeUsyv1RPKvT84NxHW9ouvMz3PJXAcAAAAAUJjjSMmkd+FypMAbcAAAgCnMMi2t3PsqPeLmvvltKWXWUunrxAO5i69NV1r5t/DQDTxp1600S9Klr8zX7bN2lV147XOlkguvM58jZRdfX/rKfHKud0QDAAAAAADgGT3vNhicnHEAABraxz72MTkFrgWZPXu2fvvb30648No3b948/fa3v9VJJ52knp6enOv09/fr6quv1q233lqRfQIAAAAAANSF0TfDzKFWhddflPQf15lZj1N8DQBA7ZjFVwEAAMXYjq23HvFX9U9g3t1g0CtcHZzANvpD0lsvlWyDKycrzTZcrVieVvf8kb/bppRXSJ2LX5CbKW2O/Mla1/XWz8UvvPZ1z/fGQcbVUYmcU5aUtLKLkKUiOQ8VIfu657ta8VabnKvENry/36yc014OuZAzAAAAAAAV4rpe+TUAAMA0Ffvvv2jVOq94OlM8IPUWuMnqePSGve1mMl1p1Top9sDeyu4Mw2y5+tn8l9VseyeJyi289o33Of7zmm1LP5v/smxalQEAAAAAADDVBAJSKDTZowAANJgHH3xQ9957b8F1PvOZz+jwww+v6H6PPPJIffrTny64zi9/+Utt2rSpovsFAAAAAACYNHVUeP1LjS289t3w5xt0ze3X1GAkAAA0NkqvAQCoECcSkVv8PXde7qiP49qGITkTGAPys1xDKx8zx1ygnqsQOVdBri9fPrmKckcXXkveheorHzNlTeSLDXlNSs6jipCloZy7yblaLNfQyu4cOecoviZnAAAAAAAqzLYnewQAAADVs3GjYhuVVXydWXjtGJrQOWUp+5xwZvH1cOH1RkkDAxPbCfKyZGjl9v3V7Fhqss2aV067kppsU82OpZXb95eV93asAAAAAAAAQB2yLCkSmexRAAAa0OrVqwsuX7Roka644oqq7PvKK6/UgQcemHe54zj6zne+U5V9AwAAAAAA1FSdFF5L0gOSLs1TeO37n+7/UTKdrM2AAABoUIHJHgAAANPFgrkHK/DcZqXHe0sJY9THcQg40oJ+Sen0xK+WxhixJyXZpjrOdbLKbptSklypJ1K4ILcYw5VkeBcq5yvIXXWbqdhTrqR0ji2gEuoi598ZQzlTAlUtXs6GOs5zs3NOS4qTc0NznNLWc2tdYwEAAAAA0wgljAAAYLrau1fSUPG0pPcuzy68loZugmyM7xyEa4zcRNkxvPMNvWFvW9//1ch+ZdvSzJnjfBEoJpacqb/sGdQNC56RoYnd2LpchqRBy9FVOxcpljxMIuY6E5HcjBOD6XT2HBAzJFlNNR8VKiwsjbnDciY3KBnBmg0HVULOjaGUnE1ynvIiOe5en4mcp4diOTvkPC2EybkhkHNjKJpzSLK45HHKM0ddWBMISE1N3scSCi8AAKi0u+66q+Dy9vZ2hcPhquw7HA7rkksu0Ve/+tW866xfv74q+wYAAAAAAKiZEo//B1WZ4utC2/m7pH8oUng9u2m2/nrFXxUKhCowGgAAkA8zQAAAqADLtHTFye/XY5v/olcUL7v42i9WTVjZRanlCDjS/H7pir8ashyptpfWNo7YRklu7qLceFpKWhPbvuFKYbtQQa5EttU3uTn7hQTkXG1+8UPHeSJnAAAAAABqqdQbDgEAAEw1eX7PcUbN4R5P8bWb4xyyX3w9dmVX2m+/0jeOsnSFN2tNdJta3bB6jaQktyZnfAxJhgy1uiGtmbdNJ4UXK5Y4tAZ7RsmMnZKTGPnccaRUMmN5ixRuq/mwUGHNAcks8L42FJZS1SlGQQ2Rc2MomnNESnFR25TXEpAMcp72yLkxtFiF30iT8/RAzo2hWM7BiJQm5ylvdOl1KCQFKa0HAEyOV155RU899VTBdc4555yqjuGcc84pWHrd3d2tvr4+RaPRqo4DAAAAAACgKsq84eVEi6+DGR9Hb+c5Sa8pofD6kX95RAdGD5zAKAAAQCnKrOQEAAD5xI6O6b8OvlLz+70C6lL5hddZj7ne46XyC6//a50Ue6q8gwAoX+wpQ6t+Z2RdQD4YkOKBidfXuvK2M5hxa5KRwmuyraXJyVmKbSTnWoptNLTqdyJnAAAAAABqpcxJTAAAAFOK651d6DpK6jhfCtl5SqnlnUdwS/zVKFfhtc90vf10nO/tF9Vly9Hqpo1y5CriWmp1QzJklHV+fzwyC68jriVHrlY3bZQtbigDAAAAAAAAAABQyObNm4uuc8IJJ1R1DCeeeGLB5bZt6+9//3tVxwAAAAAAAFAV47xWbLy3yhz9vMzPX5Z0JIXXAADUlUDxVQAAQKlit78gPS792/nSKy1SusjtJXIVXg8vc70VipWuZhVebxS3tKgRv4C64zxX/UGpJ+I97hqSyiwt92Ve2N4TkRSXWlIUXk+m2uZMEfJk8f7eXXWcJ3IGAAAAAKCaDIPSawAAML0ZhrqOdNVxvmQb0p4myTG8c7+5Cq5dSTLynzOWChdeG663/T1N0qxBr/haGjpvbNsTey3IyZK0Zvfpap+9Xt3B3Yq4lqSgeo2UJLfkm6oOnYYqeV2v8Do4tD9pWWq21uw+XZbrSiLruuG6kjMq2dFBOxSVT3muMzbnMcvJecoj58ZQLGeHnKcFxyn8Czc5Tw/k3Bgcl5wbATk3BtcpfGCE37cBAECF7dq1q+DyUCik1tbWqo6hra1NwWBQqVQq7zrFxgkAAAAAAFB3JnidWFBS/qMludfP9/jLkg6m8BoAgLpD6TUAAJX0618rFvf+s1jxdaHC6+F1ihRfjym8lqQA/7zXSmyT9Ie/pXTjCdkJjacoN7Mg19cTkd71mKHYpiC/tU2imuTcLcX+HvCuksekiP1d+sPBad14Yvbj5NyAuCgGAAAAACrPn8BE4TWAKSKRSOjpp5/W1q1btXfvXg0MDKi5uVkzZ87UgQceqCOPPFKhUGiyh4ka2b59u55++mnt2bNHfX19kqRoNKpZs2bpiCOO0MKFCyd5hKgnXUdJHeeNFF6nhs4VG5I0juLrYoXX/uZSZo7i6927J/JSUEBUUueeY9V+0P3qjvQqIlMyAuq1vGn3xcqsjYyPpaxrSGq1A4q4piRHy+Kt6nz+WEWdfRN4FaiK/n2Sm3H5RTwupTM+dwelJLlNecagZBY4nxhPS4lyLsNBXSLnxmAMSGaBf40H01IyWbvxoDrIuTGQc2Mg58ZAzo3BHCx8IcVAWkqR85SXTmd/Pjgo7dsnhcNSMF8lBQAA1bFnz56Cy+fMmVOTccyZM0fbt2/Pu5zSawAAAAAAMKVU6DqxUouvi51dWOC6+sjt1+iGP9+QczmF1wAATA7qEwEAqJT/+z/vgkWNFFDnK74upfB6eN08xdc5C68lbxJgODyOF4ByrTkirm8fl8x5MXI5Rbm5CnIl77nfPs7V63tDWvF0ZKLDxTjVJOfjpdfvCWrFU3zvTpY1Ryb07ePT5Axvkn0iMfK560q2nb2OZVHUBgAAAAD5pHJMM+I9FIAp4C9/+YvWrl2r3/3ud9qwYYPs0ceEMliWpaVLl+r888/XP/7jP+qkk06q4UhRbT09Pbrlllu0bt063XXXXUUvgJ49e7ZOP/10XXDBBXrb296mtra22gwUdcd2bK0+zpBtuFmF175CBceZxddhW0pYhQuv/e1lyiy+Xn2stDzhyirrtp4oR9QJqvP5E0eKr11LsqVeK1VWbsWKr73C66C3fWmo8PpERR2KgQAAAAAAADDFOI5Xfu2WeDENAAAVYllWweWJzGtIqig+dO1pPgZzrAAAAAAAwFRR4eMYxYqvi86aHTr38OWzvyxJY4qvKbwGAGDyUHoNAEClfPe7WZ/mK74up/DaN7r4Om/hteQVb1N6XXVrjojrsjP3KWXmLyZ3i12hnLneKP7XScqULjtznyRRfD0Japrz2YOSRCHyJFhzZEKXnT1IzgAAAAAAAEAD+tnPfqbrr79eDz/8cMnPsW1bjz32mB577DF96Utf0nHHHaerr75a7e3tVRzp1PaFL3xBn/jEJ0pad/PmzTrkkEOqO6Actm7dqi9+8Yv64Q9/qP7+/pKft3v3bt1666269dZb9f73v1/vfve79bGPfUwHHsiE2EZjmZa+9cB8ve4ft48pvJaKn2ZwJTWnpGhS6gtJ/aHi6+cqvk6b0rd+H5J1Wil7xURE7YA6nztB7Qc9oO4mr/g66TjqN3PfOCHf9H7/8VxpNTnWSOH1YKs6nz9BUSeQZ21MOtcdVdo06vMxyzElFcuRnKcHcm4Mrsi5EfD93BjIuUGQc2Mg54bguip6bIOcp75CGSYSXgE2AAA10tLSUnD5nj17ZNt20XLsiUilUurp6Sm4TnNzc9X2DwAAAAAAUDFVunFXvuLrUguvfaOLrym8BgBgclF6DQBApeQoQ8gsvt4+wytDLbfw2ucXsRpugcJrSbJzX0CLysksQvYZbu6y21yPlSLz64Ti68kxKTlTiFxzmYXXPnIGAAAAAAAApr+NGzfqX/7lX3TPPfdMeFt//etfdemll+rb3/62vv3tb+vII4+swAinj6efflqf/exnJ3sYeTmOo6997Wv6zGc+o3379k1oW/39/brpppv0wx/+UNddd50++MEPyjRztB9jWrIdW//6prgsRwo6yjr34Kr4eQZD0mBQckwpYXmfFzq17N+wM3OzQUeyHOlfz3O09sU9svLWLKNSopI6e49U+9FP6P6ZfRrMUXhdagq5Mh80bYUcQyfujarzb0cqapdeyo9JEB+UlB75PJmS0hmf2wnJHaj5sFBhwbhkFvgJPWhL8VyX3mBKIefGUErOCXKe8si5MZBzYwjFC0/CJufpgZwbQ7GcB2wpySWPU97oUut4XAoGvT+W5RVfAwBQIwsXLiy43HVdvfjiizrooIOqNoatW7cWXWfBggVV2z8AAAAAAEBFVKnw2je6+LrcwmufX3z9P93/o79e8VcKrwEAmETMAAEAoFJefjnnw7GN0l8OkG44ZfyF1z7/+e/szlN4LXmTAzMvmkRFrTkyocvOzC7IlcZfhpvP6IL04eJr26YotwYmNeezByXH0YqNocruDGOsOSqpy85OkDOy2Xb2gW3XHXugO8+BbwAAAAAAAEwNt956q971rndNuOB4tLvvvlvHH3+8fvSjHykWi1V021OV67q64oorFI/HJ3soOfX29uod73iHfve731V0u/v27dOHP/xh3XnnnVqzZo1aW1srun3UJ8u0tHLnIj1yYI/aBqWeJu+cQKmF1/65hIQ19NjQTZFLLb4OOlLboBRwpZUbgrKsyv6MQ35RSe98rk13HbNnTF6GiheYZ66rUeu6kgZMW+98rk3RnsGJDxbV5SQkZRSfp1LZNy5PpSS7Pv9NRBkiycKlmnFbijM1d8oj58ZQLOeEI8WZhzflNSULT9wk5+mBnBtDIlH4rkJxR0qQ85RHzo2hWM4Jcp4WRpde2/bIn3CYa14AADV16KGHFl3nzjvv1Lvf/e6qjWH9+vVF1yllnAAAAAAAAJOmyoXXPr/4eryF174vn/1lffaMzyoUoNcFAIDJxIxrAAAqJZnM+XDXUdL/LvP+e3Txabn85//vMumkFwsUX6Mq1hyZ0GVn5y5CrnT9qStJ+YpyJYqvq6gucn5zQnKlFRuLHoLDOK05KqXL3py78JqcAQAAAAAAgOnrpptuUkdHh9wq3dhs3759uuiii/Rf//VfuvLKK6uyj6nke9/7nv7whz9M9jBy2rFjh04//XQ9+eSTVdvHb3/7W51yyim6++67NXfu3KrtB/Uj9lyz9JjUcb5XQL2rWUqbhZ+TWXg9ZlmJxddWRuH1qnVS7HlDWsINHGula+EeXXPUC2qyTSXMkYJjv/C6HKOLr11JTbapa456Qc22odj2WRMfMKrHVeFJIblutoqpx3VV5CczOU8H5NwYiuXMz+3pwXX597kRkHNj4PftxkDODaJIhuQ8/SWTY0uxAQCoorlz5+rAAw/U1q1b865z2223VbX0utiNmBcuXKj58+dXbf8AAAAAAAATUqPCa99EC699FF4DADD5ilxWBQAASmbbYx7qOkq66nxpR4vkDF2M7I7zPbxfxOoY3vauOt/bPmojaTr60GnxmhTkDm9bY79eUqb0odPiSppM8qyGSuVczrd53pzPSJBzlSRNRx86Y+KF1+QMAAAAAAAATC0//OEPq1p47XNdV//2b/+mH/3oR1XdT73btm2bPvrRj072MHLq7e3Vm9/85qoWXvs2bNigc845R729vVXfF+rA4KBiT5tatU5KWd653UIKFV4Pr+MWPyfhGN7+Vq0bunEyhTE107VwjzqWPq8By1Ff0B6ejDeewmtf5nNNSX1BWwOWo46lz6tr4Z6JDhkAAAAAAACYXK7rFV8DAFBDJ598csHlt956qzZv3lyVfW/cuFG//OUvC67zhje8oSr7BgAAAAAAmLAaF14Xxc1TAQCYUgKTPQAAAKarzMLrdEaxqitJRvGLlzONLmJNmyPF19LQhcuoqpBj6qv3NOmysweGi3KrWXjtG/31EnSkr97TpJDDvUuqoVI5j2v90TnfFSbnKgk5pr56V1iXnZsgZwAAAAAAAKBBPPDAA7r88stLKrw++eST9U//9E86+eSTdcghh2jmzJnau3evnn32Wd13331as2aN7r///oLbcF1Xl19+uY4++mi9/vWvr9TLmFKuuuqqui16fve7361HHnmk6HptbW16xzveofPPP1+vfe1rNXfuXLmuq507d+rRRx/Vb3/7W/3sZz8r+jofeeQRvec979Gtt95aqZeAepXjRsmmm7v8upTC6+F1Xe8JuVY3mbc9aTILr3uDI9lX4szP6NJsf/sdS5+XJMW2z6rAXlBxxvD/eXL93lFvF3+gfEUzNMh5OiDnxlAsQ4OcpwVybgzk3BhG/749Zjk5Twvk3CD4uQ1RSAEAqLnly5fr5z//ed7lqVRKn/rUp/TjH/+44vv+xCc+ITvHecRMF154YcX3CwAAAAAAMGFz5072CLJxfgEAgCmH0msAAKogX+G1r5zi63xFrAWLr00KVKthxd8jkmHosjf1K2lVv/Da53+9hGzpB3e0aMXfw5W5Uho51UXOv49oxdMhcq6iFU+HJdPQZefEyRljpVIj/82FEwAAAABQeRy/BFBjfX19uvTSS5XKPO6Tw+GHH65vfetbOuuss8YsmzVrlo477jgdd9xx6ujo0O9//3tdeeWV2rRpU97tJZNJtbe369FHH1U0Gp3w65hKbr31VnV1dU32MHL6xje+obVr1xZcxzAMfeADH9C1116rtra2McsXLVqkRYsW6cILL9QXv/hFXXvttVq1alXBbXZ1dWnVqlXq6OiYwOgxFXQd6arjPClsS60JqTc8tvi6nMLr4efkKL72C69bE97+Ovxzx1vGP36UJl/hdTVRfD0FuMr+5s51nokLLqY+11XhM8wuOU8H5NwYiuXskvO04LqFf/km5+mBnBvD6N+3xywn52mBnBtEkQzJeXoafZwkHJ6ccQAAGtby5cs1Y8YM7du3L+86a9as0WmnnaYrrriiYvv9z//8z6I3R45EInrrW99asX0CAAAAAABUxMUXS7t2TfYoRnD+CACAKYnSawAAKqxY4bWvlOLrfIXXvrzF15TGVM2KZ5r04AJbN742XtP9upLe93hEK55poiC3BiY158dCWvF0hJxrYMXTET240NGNr0vWdL/kXOccJ3tiveuOnWhvGJRhAwAAAMBE8J4KQI19+tOf1ubNmwuu86Y3vUk333yzWltbS9rmOeeco4ceekhve9vbdNddd+Vdb/PmzfrMZz6jr371q2WNeSrr7e3Vv/3bv+Vcdthhh+nZZ5+t8YhGvPjii/r4xz9ecJ1QKKSf/exnisViJW1z1qxZ+sY3vqHTTjtN//RP/1SwXP3jH/+4LrroIu2///5ljRtTR9eifepY4g4XXEfS3sfM4uvxFF77MouvMwuv/f04xlDx9R2OSvsKxnhMRuG1j+JrAAAAAAAATHnBINe8AABqbubMmbr88sv1ta99reB6V111laLRqC699NIJ73P16tX66Ec/WnS997znPZo1i3M+AAAAAACgjlx8sXTLLZM9ihEXXTTZIwAAAOPE7AAAACqo1MJrnyuv2DrnsiKF177M4uuuo8oZLcaj67CEbj48qbZEaetXqr6nLSHdfHhSXYeVuGNMyOTmnFLX4tqWMDeqrsVJ3Xx4ipwBAAAAAKglCq8B1NiTTz6pm266qeA6b3jDG/TLX/6y5MJrX1tbm37961/rhBNOKLjeqlWr9Le//a2sbU9lV199tbZt25Zz2Te/+c0ajybb1Vdfrf7+/rzLDcPQT3/605ILrzNdfPHFWrNmTcF19u3bp6uvvrrsbWNqsB1bqw/rHS689kXSXjG15BVVFyu8DhfpUDbc3IXXPseQVh9jyy7pbDPKZcvV6kU7J1x4bU0gnt6grQHL0epFO8kZAAAAAAAAU0swKIVCkz0KAECD+uhHP1p0XkA6ndY73vEOXXXVVRoYGBjXfvbu3av3vOc9uuyyy+Q4TsF1W1pa9O///u/j2g8AAAAAAEDV1FPh9bx50s03T/YoAADAOAUmewAAAEwXXUcbuuo8t+TCa58rSUb2xc2lFl77MouvJSm2s4wno2RdhyXUcVq/HENqsk0p4agnnH99Q16u+YrNM9crlHdbwtufY0gdp3lFDLFnC+wYEzKpOacNL+fTByVJsU1M6K2WrsVJdZw+6OWc9tIhZwAAAAAAqswwKL0GUHPXXXed0ul03uWzZ89WZ2enmpubx7X9lpYW/fznP9drX/ta9fT05FwnnU7rP/7jP/TTn/50XPuYSv7whz/o+9//fs5ll156qd785jfXeEQjnnzySf3sZz8ruM6HP/xhve1tbxv3Pt7+9rfrgx/8oL7+9a/nXeenP/2pPvWpT+moo7ib7XRjmZbWPLNM7QvuVff87IvX/WLq3iKn+PwS63ig9HVHW/aytOaOqKxlc8sYPUplSbq0L6nb5z0x7m2EHVNB11DKcJUwCxcd5DMQcHRp30Gy5pBzXRnYK7mjvjHTGeXogSbJnVHbMaHymuMjdx/IKSBZwZoNB1VCzo2haM5BKcBU+ymvOV7kzjPkPC2Qc2NoHvQm6OXjBqUgOU955NwYmixybgTmqItqgkGpuZnzxQCASbVw4UJ96Utf0r/+678WXfeb3/ymOjs7deWVV+q9732vDjrooKLP2bx5s7773e/q29/+dt75A6N97nOf06JFi0paFwAAAAAAoCbq6Vj+nDnSK69M9igAAMAEMAMEAIAKsB1b3zleZRde+/yp9hFbilvlFV77/OLr7xwnLV/bL6tYMyvKYhuuVh+RkCN3OKCmtCG5rnoiY9f3C3JHM13JGRWN4XpPyJV7W1xqskdqdB1Jq4/o1/INaTKugkrlbLmSXW7OaSkr56Pi5FwltuFq9VHp7JxTklyRMyTHkTJLkNwcaabT9XWgHgAAAADqnetSeA1gUjz77LO65ZZbCq5TiQtIDz74YF133XX6wAc+kHedX/ziF/riF7+oQw45ZEL7qmfxeFxXXHGF3BzH1Nra2goWQdfC9ddfn3NsvoMPPlif/exnJ7yfz3/+87r55pu1devWnMtd19X111+vHyFpzVwAAQAASURBVPzgBxPeF+pPtG2BOm9vVfub9qh7QfYyv8w6YeV+bmaJdbGS7LCdp/B6u9R5sxQ1BqXu7vG9CBRkG65+9uYetQ1KPWEpVer8gKFfhcNpKeS6OqzX1LOtjuRICX8GX4kTBYKOd6PVnwWf1qWPvcJ5pnrS3C9lFpnbdva5psF90uDu2o8LlTXH9hrw89lnSAPjmDyE+kLOjWGuLRWKkZynB3JuDMVy3mtIg+Q85ZFzYyDnxjDPLlx63WdIcXKe8pxRN3tLp6VUyiu/5rwxAGASve9979M999xT0k2rd+3apc9+9rP67Gc/q0MOOUSnnnqqDjzwQM2ePVszZ85UX1+fdu/erRdeeEF//OMf9fzzz5c1lre97W0F5xkAAAAAAADUXL0dw9+5c7JHAAAAJojSawAAKuSV1oDSZmpSx5A2pVda5F00OZ7mbORludKaX4fU/o9Jdc8bmYDZlJYUzy7KzVeQG3BGSq9Hl6PnKsodXZArSct2mFrz65AsJ/txVEa+nCO2l18ppfZBR7IcyTSkVKELIIcEHG/7mZa9YmjNrwJcoF4lluv9/ba/NaXu+SPfR+PK2SytzICcp5jRB+JzFeHU28F6AAAAAKgXhd5DOUNvpgGgRm666SbZtp13+eGHH64rrriiIvu68sordeONN+rZZ5/Nudy2bd100026/vrrK7K/evTZz35WTz/9dM5lX/rSl7RgwYKcy2ph165d+slPflJwnf/4j/9QJJLjzohlam5u1nXXXafLLrss7zo//vGPdf3112v27NkT3h/qzNKlit57rzpvMdX+NkfdC0cWlVp47StUfJ2wvO1lPme48DppSE1m9g0eUTGWpDX/16L2cx09MjetnrBbcvF1OC2FHOn8LUEt2W3pydmm1h2SlNIZxddFeIXXhl63M6A1/9ciK5X/3zlMAsfOnizgupKbWYJtjC18wtTjOoWnaziGdwdkTG3k3Bgcp3DZIjlPD+TcGIrl7JLztFD032eT37enA3JuDI5TuNzcJedpyXW90utUSqrAsXgAACZi9erV2rNnj2677baSn7NlyxZt2bKlYmM488wz9b//+78yuDYFAAAAAADUi3o7TpHrGjUAADDlcFU5AAAVYjW3yBzne2VDI/PtM/+7XKbrlfaiOqJJQ52/DGnZjuxfoZrSUmt85PN8hdfGUBe54Xqfj5b5vNbhwusRy3aY6vxlyLtQHVUzOmfXkPZEvOubRmfrDi33+UXIkve9GMy4xtw1xs7DN4ZK0PdERraz7BVDnWuD5Fxl0aT397zsFe/vedw5O97nw+uSMwAAAAAAhTHhCECN2Latn/70pwXX+X//7//Jskq4e2EJAoGA3v/+9xdc5yc/+YmcaVrU8dhjj+Ut9H7DG95QsXLx8ers7FQymcy7/IADDtA73vGOiu1vxYoVBUu+k8mkfvGLX1Rsf6gjxxwjua53HuJmr4ha8gqqc5VXS7kLr32RtLc8l96wt10po/DaX7dCP9uQWzRlqvO2mXrdzoDaEkbWuaJ8IsOF1yEt2e3ls2S3pfO3hBRypJb8P6KGZRZed942U9FS27YBAAAAAACAepJMct4YADCpIpGI1q5dq3/+53+elP23t7frN7/5jZqbmydl/wAAAAAAAGNQeA0AAKqEK18AAKgAy7S0/rQfaNl2lV18bcgrRG1NSG1x76Phll98bbrexczrfxqU5dbZgYRpJFfxtSMpHhxZZ/SXgOXnaYz8MTS2oDzz03jQ266Pwuva8nNeutPUnojkXy+e62/fL0TOLEL2ZRZf5/rR4G8vZXqFyEt3UoRcS37x9dKdxsRyzii+JmcAAAAAAIpg0hGAGrnzzju1bdu2vMsjkYje+c53VnSf73rXuxQKhfIuf+mll3T33XdXdJ/1wHEcXX755UqlUmOWBQIBfec735ExyZNg16xZU3D5u9/9bgWDwYLrlCMcDutd73rXhMaEKeqEE6REwiu+TnhF1Av3jq/w2les+Hrh3lGF15JUwa9n5FZO8XVr0lDIMbIKr31+8XXEMdRa4NwRhdcAAAAAAACYNhxHynFOAQCAWgqHw/rhD3+o733ve2pra6vJPqPRqL75zW/qZz/7mZqammqyTwAAAAAAgKIovAYAAFUUmOwBAAAwXUQveJvuvkg6/V1S90LJKeH9fGbhtX8xs/+xN+ytUMrbcL/w+u4fStFgWLKKPwfjF7Wlzt9Yar8wrkfm2eqJSMmMv3PXkDRUdN2SkuJ5fuPyC9JdjRTq+pKW1NPkFaG/boelzt9EFLUNsq0la2z7/LgOixX4WeDmWmyakllnBwSnsxx3Kqj04U9ynoKcUc0Uow+KG0b9HbgHAAAAgKnE4iAXgOr79a9/XXD5BRdcoJkzZ1Z0n21tbTrvvPP0y1/+suC4zjzzzIrud7LdeOONeuCBB3Iu+/CHP6zXvOY1NR5Rtl27dunPf/5zwXUuvfTSiu/3He94h77yla/kXf6nP/1Ju3fv1uzZsyu+b0yi/feXmpulnh5J0vpDpe0zvMLi0R3FpRRe+7LOIWcIOt721x8qxTYOPWhZEl9XNRGV1PmXNrWful2PzIqrJ+woNer0QWvKVLNt6NwXm3TwQFCKjN3OkgHp8Kel1a/qk1Kuekc1aAddqS1p6nU9EXX+ZaGiLRRe162gK5kZ+SVT2eedwkHJzNOCj6kjkh57l/NMaVNM7pgGyLkxFM3ZksS/u1NeUzrn/KBh5Dw9kHNjiKQKx5iyJIOcpzxybgzk3Bji8ez5t4bhfe7Pv+XGfQCAOvHe975Xy5cv1+c//3l973vf0+DgYMX3EYlEtHLlSn3qU5/SwoULK759AAAAAACAcau33gwKrwEAmHYovQYAoFL+7/8UTXjF06e/S3p0YXaJcS6jC699mRctl7KN4cLrhCTLkUKhcb8MlCbqSN+7w9LrVuxV0nLHlOS6htSckkJ2/tJrybvOwnLGruPKK762TUPfu6NFUcfkN7ca6gu5aj+/XxvmumqLyys2N3N/P/rl9X5RgZVxzbJtjjw+1IWexS9IDzlewfmGeVL7W1Pq/HVE0WSdHRichvpCrtovjGvDPJEzshU7ME/pNQAAAACMn2FQeg2gJu64446Cyy+44IKq7PeCCy4oWHp9++23V2W/k2XLli361Kc+lXPZoYceqmuvvbbGIxpr/fr1cgtMfj3ooIP06le/uuL7fe1rX6sDDjhAL774Ys7ljuPozjvv1MUXX1zxfWMSvfSSNDAgua66jpI6zpdkSG2D3g1v/fMJ5RRe+0YXXwcdb7syhvajoeJrv2CX0pia8IqvD1T7yS/qkba4ekKOUkNle61JU822qVWPLNDWprR6gnbe7ZyyO6LXPdKsjmNfliT1hrwcg47hFV73RtT5lwMUlSURbf2yApKRkbPlZN8d17Ikh/dDU57pFC5ns0ze904H5NwYLHJuCHw/N4ZiOZvkPC3w/dwYyLkxjH6/PGa55WWNqc0claHjeEXYgYD354ADJmdcAADkMH/+fN1444361Kc+pZ/+9Kf66U9/qgceeEC2nf/cTjGmaer1r3+9Lr30Uq1YsULz5s2r4IgBAAAAAAAqoN46Myi8BgBgWmIGCAAAlfLd70ryiqd/9VNpRrL4U5pS+S9mjqS95cXMSHr7iyaGHkiWsGNMWF/I1eVnDyhtji24lbx5uIMBKVFkXrUjr9w612EgV1LalC4/e0B9IQ7M1IpfeN0915uYZMpQJFW4CNmXMr0CZCm7CFlD6+XM2ZAiKW8/ktQ9z1H7hXEyrzK/8Lp7nlcYQM4AAAAAANTI6IubAaAKtm3bpr/97W8F13nTm95UlX2fffbZBZdv2LBB27dvr8q+J8P73vc+9ff351z2zW9+U01NTTUe0Vjr168vuLxaXwulbLtYOTumoAcekKThwmtn6KSBKSk66P13oXPExWSeQ44Ojkz8coaKr7uOGnogHh/fDjAu0bSlzvsO0Ot6Rm542pQ2vMLrhxco9mK0pO3EXoxq1cML1Gybakp724kmDb2uJ6LO+w5QNE2pFwAAAAAAAKa4dFpqbZUOOWSyRwIAwBhz585VR0eH7rvvPu3atUu/+tWvdN111+mSSy7RiSeeqIMPPljRaFShUEiGYSgUCikajerggw/WiSeeqEsuuUSf+cxntHbtWu3cuVN/+ctf9MEPfpDCawAAAAAAUH8ovAYAADUSmOwBAAAwbTz8sCSpLyxdvlxqSUmDQa+0OBdD3vKQk/ui5njAW24od6myJAUcbz+XL5c6bx4qvnacCrwYFOKXIt+/0FZfyJXpjlywLmUX5A4Evf/O9WXgyCvMNd2h9Y3srE3X29f9C221n9+vznUtwxdJozpsw9WKc0cKryUpbrnaG1bBnDOlTG89O1d5cp6c94YlM+EqYo8UIq+4IK61ayOycrUwY0Jsw9WKC0YKryVyBgAAAACgJixLCnB6EkD1PTBUOpvPokWLtGjRoqrs+5BDDtF+++2nbdu25V3nwQcf1IUXXliV/dfS//7v/+r//u//ci5rb2/XueeeW+MR5Vbs6+GUU06p2r5PPvlk/fCHP8y7/MEHH6zavjFJHntMXYv2qeNN2ecbHEl9Td65g0LniIvxzyG7Q9try1F8LcNR7OUBKRKZ8MtB6aIp6Xv3zdPrLnherisNWq6uemqGYluaJKW8Mh+zwLn8tC2lUoptadJf2mbohiU9cl3vxqrfu2+eooOOvK8k1LdROTu2ZGd8btveH0xtjpP7JLLPdiVinvrIuTHYjvLPzJOXMTlPfQ45N4RiOTsi5+nAKRIi38/TAzk3BtvOPbl+eLm837kxtTlOdkGFbXs3SJ41SzrqKO94GQAAday1tVUXXnjhtDi3DwAAAAAAkIXCawAAUENcVQ4AQKW8/LL6wlL7xVL3Qq8ode6AtLN5bPF1Zolqb9j7mHlRczww8niu8lTJK7yeO+Btq3uht1+v+NqRmpoq/vLg6Qs6an9Tj+6fb6s3NJKKX5Q7uiDXNYYuaHey5+b6hdeShpvNM7M2M7bR6xdfvyWuzjvaFE0VmuWLibAkrfy7qUfm98oxvCLk3tDI8nw5j5arCNmXN+ewpKFCZFOGVm5skhUKT+j1IDdL0sqNhh5ZMCBHrpdzxl81OTe4dDr7BhK2PfagvWl6RW0AAAAAgLFyXZxsWd6fepsUBWDaenjoRqX5HHvssVXd//HHH69f//rXeZc/8sgjU/7C2J07d+pDH/pQzmWtra36+te/XtsB5ZFMJrVhw4aC61Tz6+H4448vuPyJJ55QKpVSMBis2hhQW13P/Fodb0qNKbzuafJuqOk/nOsccTFZ55Dlba8nV/H1eZL+mFJsxkETei0oT5+V1uVHP6GAGVBIKTXbltYcPqiTjCbFds2TZksKFAjcikqhueqas0NrXjWoVjugActWwAzo8jP61Pm3VytqM9Wv7sUlGRntawOD2e+RQhHJiNZ8WKiwaFyyCpxIDge9H9qY2si5MbTGsyd1jBYKSglynvLIuTGQc2Mg58ZAzo2hLV54gm4wKCXJecrbuTP78zlzpLlzpfnzvYwHBydnXAAAAAAAAAAANLJ6u7aLwmsAAKY9ZoAAAFAhfUZyuPDal6v4OleJauZFzZkXKw9vZ1TxdWbhtS+r+LqtrVIvCxn6ArbaT35R989OqTfoZgegjFLrHMd3bFPDxddZhdejnmP4/zlqG70hV/cvSKn9vH3qvO8ARdOUrVZLrEfSo8167+u3ZRWb+wrlXNBQubnkfU/nenpvWDKShr5/3xzFdrRIM8vcB0oW2zFTeqBf7z15V+6ccx0XLSVzcp76kkmv6NpnWd5jmYJBSq8BAAAAIJ90Ovt9lSQFOCUJoLYeffTRgsuPOeaYqu7/mGOOKVp6PdV94AMf0M7RhRVDvvjFL2rhwoU5l9Xahg0blEql8i63LEtLliyp2v5f/epXyzRNOZk32suQTCb15JNPatmyZVUbA2rHdmytbn4qb+H1aLmKr01XOutZaf1hytpOrnPIUv7i69VHx7W86VWyxM10a6HPSKq97XZ1B+IyFNBsNyCZkmNKHUc9K/XtL5kLJCORfyOt89W1yFZH9Fk5shSRpYgryZK6W+NqP36zOnvOVtQN5d8GJt/2hORk5BzolZIZ/w4ZUSk0u/bjQmW17CtcztYSkpLc+HjKI+fGUCzn5rCU4t/eKY+cGwM5NwZybgzk3Bhm7C28nJynh4GB7KKKBQuktjbvXPK+fblvpgwAAAAAAAAAAKqHwmsAADAJuMIcAIAKsB1bK95qZxVe+/zi61daJNfIPw+3N+xdrJzI06HpF18b7tjCa1/3QmnF26S13a4st84ONExxtuFqxUkv6f7Zg+oNOuUXHssrunZc7+ugbIbUG3R0/+xBrTjpJa3904FkXAtD33cAAAAAAAAAgKnj6aefLrj88MMPr+r+X/WqVxVc/ve//72q+6+22267TT/5yU9yLjvppJP0vve9r8Yjyq/Y18LBBx+sUKh65SmhUEiLFi3Sc889l3edv//975ReTxOWaWnN+ja1n7hX3QsLF177MouvTVf6xjoptlHqOkp6//legXW+wmvf6OLrZdulNbeFZb2dwutaGCm83pVzuSNXHdE/6tz4Ih1sz8i7nT8Ft3ul6co9oaA7sEvtbbdTfD0VuBq5yWo8IaUzSq+Te7M/x9TUGs9zF+Uhg0HvhzemNnJuDMVyHghKCXKe8si5MZBzY2iLFy5DJufpgZwbQ6JIzv1BKUnOU14ymV1WsXevZFlSJDKyHAAAAAAAAAAA1AaF1wAAYJIwAwQAgAqwTEsru009stCRk+M9vj+3ttDcTCl/4bXPf34i4F34PJrpSisfkawUF0lWmiVpyR5L6/ZzvAdKPXYy6ushb091idvrDTpasseSlSDjaulatE8dr9upsG2oVaZXcl5MKcf2Ssi4NWUobEsdJ+ySbFuxLU0lbBjj0XXIoDpO6FHY9v7ee4MVOiBKzlNfOi05Gd/3jjP2gLnj1N9BfQAAAAAAAEiSXNfVli1bCq5TrJR6ooptv9j46tm+ffvylloHAgF997vflVFHx842b95ccHm1vxb8fRQqvS42Rkwt0Z5Bdd4sXXSJdO/BhQuvfb1h7zzw937lFV5LIx8vX1648NrnF1+/8Tmp82YpauQ4mYyKK1Z47XPk6uamZ3VefJGWpGeNWf5kYI/uiLyooFv4C4bi6ykiHpcce7JHAQAAAAAAMPlGny9Ip6V9+6TmZkqvAQAAAAAAAAColTqa3y+JwmsAABoMpdcAAFRI7NmwtG5QHecrq/g6HijtQuRy+NvLLL42XWnVOin2lCEdzAWUlWYbrp5sTao1VWIJch6GSu/LzqU1ZerJ1qRsJy0rb4M2xss2XK1e3Df8PRyxDanU4usMpqucBfiFtCaNof15z119RL+Wbw6RcxXYhqvVR/SP5Jw2JFfqDZX33UnO01SukutcOJAOAAAAAABQl15++WXF4/GC6+y///5VHUOx7ff39+uVV17R/PnzqzqOavjkJz+Zt8D5Qx/6kF7zmtfUeESFFSsYr/bXQin7oPR6mqmXmxM74z+fidKUWnjtc+VqXeR5Ka6s4usnA3u0LvK8AiqhIV0UX9e9ZJLCawAAAAAAAF++ubaDg5JZ2vEwAAAAAAAAAAAwARReAwCAScbsAAAAKmXBAsU2esXT5tD762oUXvt6w972pYzC642SLKs6O2xwlmtozT3zdOKOsFpT4/sVynKlgON9HI/WlKkTd4S15p55FORWiZ/zst0jF4hHbKOszIOOFHK8j6XKLEKWpGW7glqzvo2cq8RyDa1Z36Zlu4LDj0VsQ63J0v++yRkAAAAAAACoTy+99FLRdRYuXFjVMZSy/VLGWW8eeOABrVq1KueyQw45RNdee22NR1Rcsb/nan8tlLKPqfi1gPz6Qq7aL5Y2zJdmDZZ2HqE1IYVt6f3nS11HeY91HeV9Hra95cUEHW9/G+ZL7Rd740D1lFt47XMlrYs8rycDeySNFF6Xm5ZffN1nJMt8JqrOThdfBwAAAAAAoNFReA0AAAAAAAAAQPXNnTvZI8hG4TUAAA2JGQIAAFTKscdK0nDxdcKqXuG1rzfs7We48FqSQqGCz8H4RVOmOv8wvuJryx0pQzfd8ouv/cLrzj/MU3ScpdsojZ/zeIqvgxml5pZbYpFBjiLkzjvayLnKoilTnXeMr/ianAEAAAAAAID6tWtX4QLSaDSqcLi6J3Cam5s1Y8aMgusUG2e9SaVSeu973yvHyX1A9KabblJzc3ONR1Vcsb/n+fPnV30MCxYsKLh8qn0tID/bsbXivAF1D/WcGypefN2akCJDHbmO4RVdv/ut3kdn6LRCJF24+NovvPbPQnQvlFb8Y1q2yrhzJ0pmy9GK1vVlF177/OLrWyObx1V47esO7NKK1vXkXG9yBmpk/AEAAAAAAGgghjHyxy+yME2ppYViCwAAAAAAAAAAqmnuXKme5qlzXgAAgIYVmOwBAAAwbVxxhXTrrZM9Cqm1VQrwT3y1RF2p80/7qf3U7bp/bly9RdpuDXkl1+aoYy/+53YJ17W2pkyduDOizj8tVNQ1+Q2uBjJz7p7ltQh4hcVm3swzi5B9livJkVKmvC+GUctbU6OKkHcH1XnXHEUdU7Iq9nKQR9Sx1HnXHLWfuUvds1OShnJOSb3B3AdMi+acAzlPMY7jTaj32fbYdQwjex0AAAAAwAijhANepawDAOO0e/fugsuj0WhNxhGNRrVv3768y4uNs958+ctf1uOPP55z2dvf/nadf/75NR5Raerh66HYPqba1wLys0xLK/8W0SNz9w0XVvvF13uaxp5HyCy89jmGdPvisdv21xt90+XRhdeSdx5y5eNBWefPnsjLQR6WpJXmsXrEvENOWZXVIym5kjYF9yo7OUMySj/3YMrQSvNYWW3kXFeam6VExtdFMDlqhaBkVfnu6ai+oDN2EkgmOyi5wfzLMTWQc2MIOZJRIOdwUBI5T3nk3BiK5Rwi52khWCznkJhgOw2Qc2MI5ZiXmSkckgxynvJGz7MNBr1jJ6GQd744EpmccQEAAAAAAAAAMN1dfHF9FV5fdNFkjwAAAEwiZoAAAFApb36zFImo65C4Os6XwrZ3ofLoC48rqTXh7adjqEcg9pQhtbVVb4eQJEUldf7lQLWf/KLunz2o3lCe4mtXakkZio9uyB3iXxvnGsq+njlDa9LUibub1PmXAxSVxXUXNZSZc3fbUPG1YyjuuEqMynRGylTSzP114Bci26Pm7YYdQxHbHM5+2e6QOu+ZR7F5jUVdqfOeBWr/hx3qnu1ddB6xDcUtR4lRF7C2JA2l8nw/Z+WcsQo5T0GOk12+Zppjy9gMg4I2AAAAABgvbiQEoMr27NlTcPnMmTNrMo5i+5lKRcdPPfWUPve5z+Vc1traqhtvvLHGIypdPXw9TMWvhZtuuknf/OY3q76fTZs2VX0ftRZ7ZY60bp86zlfB4utchdfFjC6+zld4vWqdFNsxU1q6dCIvBQXEtFTad5A6dv6o9OJrx9aYO+RmMqySy5xMGVo1958Vm3F8aftG7cSfl3a+LLkZWScTI//tzJCM2vwugipq3iflmR8gSYqEpRTl5lMeOTeGojlHpFSoduNBdbTskwxynvbIuTG07C1chkzO0wM5N4aWYJGbUkSkNDlPeb292cdImpul8ND7qKYmKcBEagAAAAAAAAAAquKWWyZ7BCMuuki6+ebJHgUAAJhEzA4AAKCCut55nDqifxq+gHn0hceVlHkhtGMMFV9HQor1xiu/M4wRldR511y1n/aK7p+XUG9w7AUTrSlTpqu8pdeSd+F5JG2oPzB2ndaUqRN3hNV5z1xFUylJqQq+ApQiM+fu2UnFLdcrQs6IqzVlKuBIyQJdTZYrNSUN7QuOPDFhuoqbjiK2oWW7gupc36poqsx2A1RENCl13t6q9rP2qHtOaiTnDK1JQ5abv/Ra8nJuThraS85TWyrlFV/7HCf7c/8xSq8BAAAAIDc3x3tn/zFuIgSgBuLxwudJWlpaajKOGTNmFFxebJz1wnVdXX755UokEjmXf+ELX9B+++1X41GVrh6+Hqbi18KOHTv05JNPTvYwpqbWVsUeNyS5OYuvdzVJM1LlF177/OftCxYovN4o6cAmKc/3LSojFnyN1PYOdfT8VI6bfR7BdV0ZY37vdVWw9NrVmOW5tmMapla1vcPbPxnXH8fxSpsG+iXb8crOnYxcHVuSPWnDQ4U4juQWKNV0HMkm5ymPnBuDY+c+luWzbXKeDmy7cKkmOU8P5NwYbIecGwE5NwbHUcHjJPy+PT2M/l3b/7ypSarRuRoAAAAAAAAAABpOPV23NWcOhdcAAIDSawAAKqXrb13qOGqznG3Zj1ej+Dqz8NrnGFLHm1LSn3oU2xKp3M6QVzQudf4+qvY39ej++Un1hkYmZrYmDUVsKWkWmJA7JGxLAccY8/wTXwmq846ooqlkVcaP0vg5n37hLnXPyZ5A7eecLlB47QvbkuVm59wbcnXITlOdv2uhCHmSRZNS5+9adHqsV91zsy9c9XI2lCp0IcWQsC2Z5Dy1pdPZF0vkusB1dAk2AAAAAGBEofdRpllfk6cATEvJZOFj6oFAbaZJFNtPsXHWi+985zu69957cy478cQT9b73va/GIypPPXw9TJevBZTo4IOlxx/3iqelrOJrW5JtejdSncjZ3KTpbcfWyMSvrMJrSbIs6aGHJrAXlCImSeET1BH9o5yhoiZHrnrMhJqdgCKZU/OMYkVN6azfpeNKa8BMq80JyxyqNzdlaFXfqYq96Egi37q0/QXJGSojd1ypf8C74arPNSSrCndNR22FUpJZ4Hxh0pD4533qI+fGEEp5v0jlkyLnaYGcG0PRnE1yng7CqcJlyElTSuVfjCmCnBtDqpSci8/ZRZ1z3exzx7btnSsOBDhnDAAAAAAAAABANdTb8fedOyd7BAAAoA5Qeg0AQAXYjq3Vj672LmRtapIGB7OWR9JSPCAlrMLbCdulrTO68FqSZBhyDGn10YNavrVZlltnByKmqahjqfOuOWo/c5f+sDChhCW1pryCXI8hqdikW684WSmpN+gqbEsn7gip8645ijqmVORrAtW3flFS25sdBR3v+hdppAi5HBHbu0jKL0QOOtL2ZkfrF6UV28zFzZNt/aI0OcOTeTA/V1nb6HUAAAAAAIWZQ2+0eS8FoAbqoeS4lP1MhaLjl156SR/72MdyLgsEAvrOd74j0yzhrpCTqB6+HqbD1wLKcPzx0u23S4mEYhu948sd53u9mDtbvL7b/pC3anQc0feFRp6/s0Wa2y+FchVez58/8deCksQSh0p9Ukf0j0rLUY+ZUEques2U5Ci7+LpEcaW950vqMRNqc8IKyPQKrxOHVvoloFpMw/t+dDIKz82QFGqavDGhMsJ24TJkhSk3nw7IuTEUzTkiWaGaDQdVErElg5ynPXJuDOF04ZJcRaQAOU955NwYiuXskvO0YJrZc3ADAe/zvXvzz80FAAAAAAAAAADjU2/XbHEuAAAADKH0GgCACrBMS2vetkbtN7erO/HAmNLrUgqvWxMj5di9Ba6JSljeOmOKrw1Dy/aEtebeebKs+i4YmG6irvTOZ2fq7v0Sak2ZXuHtcOd1iQdhDL9Y19Wg5eidz85U1A3x21od6DqoXx0n9kiGobakqZ6wo+a0qYiTkXPRYnPJX9kvRB4IuGpLGJJhqOO0fZJlKbYlUqVXgWK6Domr45R9Xs4JqSfsqjk9qvDaKK3EXiLnKc11sw/om+bYA/y5HgMAAAAAeHK9X8p8zClUPAIAE+cU+TljWbW502Sx/di2XXB5PbjqqqvU29ubc9kHP/hBLVu2rMYjKl89fD1Mh68FlOGYY7ybJCeTkusqtlHaGZH+ZblXeO0bT/F1ZuG15G1vZ4v0nV9lFF4bhlceM3v2hF8KShdLHKqBvrQua7tbqYxzSeMpvs4svJaklFz1mEn9oOd0Cq8BAAAAAAAwPezbJ3FsHAAAAAAAAACAyqi37gsKrwEAQAZqFAEAqJBoOKrOf/yx2q9ZrO4Wc7i8pViJtTRSeC2NfCz0HH9ZZvH1su2uOv88V9E0hde11nVQv645fo9mJSdejBCxDUVsS9ccv0fNtqHY8y0VGCHGyyu83i1n6PieKUOzEqYMTeyAX8Q2FLY1vB3HkDpO6ZUMKbalaaLDRpm6DhlUx8m9o3IWOTcq1x17ED3XQXUOtAMAAABAbsXeL/F+CkCVBQKFp0Gk06PvKlodxfYTDAZrMo7xuvnmm7V27dqcyw4++GBdd911tR3QOAUCAaVSqbzLa/H1MNW/FlCmE06QwmHJsiTX1dYZrj5+tpTrlEM5xdejC6+HGdLHz5bO2yQduFfepHXTlObPn8CLQLn6jKR+3Py0mt2Aeo3sQP3i61KMLrz2NbsB/bj5aV2YPNi7cTIAAAAAAAAw1SUSkz0CAAAAAAAAAACmPgqvAQBAnaP0GgCACore/Wd1/iai9jfF1T07qbjlllV47Su3+HrZy1LnLYaiMxNSc/P4XwDKNroUuVIcQ+o4cbckUXw9SfJlO9Ei5HzbcQyp4+ReyZViWyIV2QeK6zoknlV47SPnBmYY2Qf2XTf3gf56O/gPAAAAAPXCHLkhIABMhlCocBlorUqvCxUtS8XHOZl6enrU0dGRd/lNN92k5ilyPioUCk166fVU/FqYN2+elixZUvX9bNq0SYnpVmyy//76/9m78/jK6sL+/+9zzt2y3UxmYYAZhkF2UIZNRRDFjSoqNTIa2rGgg6hf/KUidfvWrxWsreULtaUjrbbfTis6aCwY3BCLLEJBZBuCDMi+DPvMZLJMkruc5ffHyU1ukrtm7n5ez8djyCTn5JzP8M69ufec83kfvfnN0s0363l7WMd9UhpukwxPkiHNv4y7lOLrfIXXhvztDrdJx31K2vptaXUqLO23n3/OmIvGa2LMSKmv+9caCu1SzLMkRXIWX0c9UyHlv4F1So4mTWfB17u9iGKepaHQLvV136iBkXdSfN3IPG/hAz3XOmhuxXLOdZNdNB9yDghyDoRSbtJHzs2PnIOhlNfa5Nz8yDkYeN6GRMYAAAAAAAAAAOytRuu84Ng/AADIgdJrAAAq6bvfVTxtauDXS3Ta+3dpaFnhifK5Cq8zSi2+XjsiDVxrKp4ypD17KL2uoWoVXmdQfF0/1c42H9eQ+k8ZlUQhci0Mrk2o/5SFhdfVRs4AAAAAgEBrtAuqALSccDhccHkqVaBZtoKaseg443Of+5xefvnlnMvOOussvfe9763xiBavEX4emvFn4dOf/rQ+/elPV30/Rx99tB5++OGq76fmzj1Xz2/9jY47SxrOPg0wXXw9X6Hi63yF1zPbmzZTfP1dQ6sPP5zXXDUyZqTUt8QvvM6IeZYShqmk5t4IJmE4inpSOEfxdVqukoaz4GaqUZnTRdq+ofAu9fX8WgMj76L4ulEZRs7H+YJ10NwMY/puBoWWk3PTI+eAIOdA4PEcDOQcDIYKv94m59ZAzsHA8zYkKVpgogwAAAAAAAAAACis0c6lUHgNAADyWDiLBgAALM6LL0p33CFJumlVSq+0uwq7+VcvVHidEbP99fIJu9IrndJNB01/IZmU7CIbRUXUqhQ5U3w9uGaiujvCjHoVXmdkCpEH1ybqM4CAqFfhdQY5AwAAAAACy7KKrwMAe6Gzs7Pg8j179tRkHOPj4wWXFxtnvdx6663avHlzzmXxeFz/9E//VOMR7Z1G+Hlo1p8FLN7zb3qtjvvw7jmF154kr8A5iYmIX3CdrWDh9fT2si8PH26TjvtYUs+vWbKIUaNcfuH1jXMKryVpyrA1JUeeFl68nzQcpeeVYWcKr+fz5GlKjqaMuef/h0K71LfkRo0ZtbmJAwAAAAAAAFBxbW1SKFTvUQAAAAAAAAAA0JwovAYAAE2EqwMAAKiUu++WNFuk6knqmZJ2t0npebeZKKXwOiOz3mh07tfDrr99T1L/u11JpnofNaR0WooUmP2MvTZ4wIT631C7UuRM8bUMU73bO2qz04ByDE+bD53Yq2wNSSumTO2IuQXLCwpxDWnzEZM687mYrMVuBHk5hqfNR0xWJuc2N0dlQWnIuUE12gF+AAAAAGgVhkHhNYCaWLp0acHlY2NjNRlHsf0UG2c9JBIJfeITn5CX56LTv/mbv9H+++9f41HtnaVLl+r555/Pu7wWPw/N+LOAxXt+7Hkdt/n1Go46ynQbFyu8zsgUXMdTxQuvMzzD30Fm88MxT8etHNTWneu12qVQvVoKFV6PTJdRe9P/NTQ3/KThSJ4Ullmw8DrzTJzZXps3e5lfpvh6YORdintcGwAAAAAAAIAmYRh+4XV7e71HAgAAAAAAAABAc2q0PgwKrwEAQBGUXgMAUCkPPjhTeO0akjxPhhYWX5dTeJ0xv/g6U3idOQzhGtPF16al3mFLYnJ81Qzuu1v9Rw/LNcziK0uS4UrFjheZhuQV3p4rqf+kYamrU70v95S2b5TNkrRl2xL1Hf+khuJTpX+j4cmftC6t2x3VqqmQXoimNLQsNVuIbBqlNRpIWjcS1ZZ7V8mKUwRVDZakLfd2qe/kFzS0JFn6NxqeNF1NMJNzwtZQT5KcW0ky6d9AIsN1JWde4UQkQlEbAAAAAOQz/z2UJIU4JQmgdpYtW1Zw+cjISE3GMTo6WnB5sXHWwyWXXKLHH38857I3vOENuuCCC2o8or3XCD8PxfbRiD8LWJyUndIJ/3qChqeGZy7gLrXwOmMiIiXCklPG98wpvvakYTOpE1b+RNuXfE0Rk9dhleZ4rjaM/5uG7FFlX3o3pbRGvNScdQsVX9vy5GSa0SVlTipnF15njBgpybDUpvDM14ZCo9qw+m5d13W+rFLPXaMGdkjprPPMpuWfe8qILpO6musGEsghslua8/idx2mXnLaaDQdVQs7BQM7BQM7BQM7BEBmWFrxjymJ3SG6sZsNBlZBzMJBzMLz44tyii3hcWras8co4AAAAAAAAAABoFo12jJ3CawAAUAJmNgEAUCGDz/1qtvA6S3bxdbttKOYakinJ8+RNF2OXIlN8PRmeW3id4RpS/+mOdNuoesUkyWrwC6+fW5BxrbiG1H/0c5JE8XUVxW1LA/cfXHbxdXYRsiStmrQkReYWX5dg3UhUA3euUtymULea4ralgTtXlV18vSDn6Y9ziq9LQM4AAAAAAABAdSxfvrzg8mQyqZGRES1ZsqRqYxgeHlYqlSq4TqMVHQ8NDenyyy/PuSwUCuk73/mOTLP5SlWL/Ty8/PLLVR9DsX002s8CFi8Siuij6z6qy++8XPLKL7zOKKfwOmN+8fVHu9+iyNLCP/9YHEvSxvA7tHXnVXKnzw5NeSmNuLnPK+Y7f+TkKOTzCqw/4k1JpqE2IyJJMmVo49J3yOrkhtgNpb1dyn4JEAlLbtaNgaJRqaOj5sNChYWSknLc8CnDbff/oLmRczCEEipYkkvOrYGcg6Fozh2SS+l10wtNqWBJrtMueeTc9Mg5GMg5GExzbtmFZTVeGQcAAAAAAAAAAM2i0Y6xU3gNAABKROk1AAAV4LiONrc/lrcM2ZC0NGEsOIDgGbOXa5qedOqz0u0HamY75rz39zF7tvw6F9eQNh+Z0JkPpmSVXKeNUjjytHnVDn/icjnHXaYnmGfE06bGwjkmV5R4MMeVtHnVDp25vYOMqyielgZ+t0Z9r39WQ93Fi68NeVo3HJkuup7O0vW0ao8peWENLU/7GReJed1IVAO3r1Tc9iQVeLCjIuK2NHDbSvWd+nJJxddmrpwlrZqwJC+ioaWp6TaCwkGTc4NzHMnNep523YWZum7jnRQAAAAAAACAJGnNmjVF13nllVeqWnr9yiuvFF2nlHHWiuM4+vjHPy7bzn288jOf+YyOPfbY2g6qQor9fy4lq71VbB8HHnhg1ceA2rn0XZdK1w3qsuWPL6rwem9kiq8//8Q+uvSd66U8j2nsvd7YsdJSR/3DWzThJjXiTRZc35s+r1T4R8Irehp6xJ2UDKnDjGrT0g3+OMi5sTi2f64pw5PkZiVrO1Ky9BvyokG5KckoUIZshySXmx83PXIOBjclGQVKcu0wObcCcg6GojknJbf5buaFedx0kZxT5NwKyDkY3JRkFDgSQs6twfPmXn9L+QUAAAAAAAAAAIvTaN0WHPMHAABloPQaAIAKsExLWx46TH0H3aehZemyv9/0pL+9STrjMen6Q6W/fKfyFmgXsu4VQ1t+HpG1X/ljQGGWpC137qu+k18oqRx3RtaBmjV7QupJWdodcfRcpz1vndICXzcS1ZY795Vlk3G1xVPSwB37Fc3c9KQvPtSj25dPyK8lnzadvV98HdLT3QUuwpe0bjiigd8sVzztzt0OqiqelgZuWa6+t+7wS6vzMD3pcw926c6VKeXKZ9WEX3D+dJetQo9ncm4Ctj239DrXAff5xdgAAAAAgFm8XwJQZ52dnVq2bJl27dqVd51nn31Whx9+eNXG8MwzzxRcvs8++6ijo6Nq+y/XD37wA9177705l61Zs0aXXHJJjUdUOWvXri24/Nlnn636GIr9PBx00EFVHwNq6MUX9eVrd+g//kzaUYeH+fJJ6cs/H5X22ybF47UfQID0ah/9xj1cV+iukr8n31nhci79H/Emda5zjHp37SPt2l7Gd6ImRkYlOzH7+Z49UirrXPPEsLSbc/1Nr32PZBZ475uMSulo7caD6iDnYCiac0xKR2o3HlRHx57C5ank3BrIORg6xguX5JJzayDnYCiWcyIm2eTc9BKJudfgjoz4pRwdHVIsVrdhAQAAAAAAAADQVCi8BgAATY7SawAAKiRutmng10vU986RsoqvZwqvH/c/z3z8y3eWt/91rxga+LGpeInlyShf3LY0cOeq8ouvNVt4Lcn/uEdzi69LsG4kqoE7VyluW2V9HxavWOamJ226f6UO3W1Nl17ntmrC0obH2/R3x0/kLLRftyusgV/HFU8zwbke4klp4L/jeZ+/TU/adEe3DhqxdOfyRI4t+FaNGzrnkQ79zYnk3NTSab/UOsPzFh54J0MAAAAAyI/SawAN4KCDDipYev3444/r9NNPr9r+n3jiiYLLG63keOfOnXmXnXLKKfrBD35Qw9FIAwMDWrZsWd7lXV1d6uvrK2lbxf5fP/7442WNbTGa7ecBe2fst7fq1A+O1KXwWvKLtk/9k4Ruf+kZxePH1GcQAbHFHdK3dY8MlVdaPb/4utxL/w1J39Y9er27ShvMdWV+NwAAAAAAAFBHriuNj3NOGQAAAAAAAACAUlB4DQAAWgCl1wAAVMqyZYo/bM4WXy9NzV3ueQsOJswvvM7IfP5/3qGcxanzzRRepwypnV/v1VRu8bWpuYXXGeUWX1N4XT/5Ms8UXve+ENdD7fkLrzPe9XxUq6ZC6j9ldM7j2i9CXqJ42qzG8FGieNrMeeOCTOF17zMxPbCkeNHx6duj2jdJzgAAAAAAAEA9HX300br33nvzLn/00Ueruv9i2z/66KOruv9K+sEPflDz0usvfelLBZcfeOCBJZdeF/t/vXPnTg0PD2vp0qUlj68cme0X0kw/DyjMcR2dNnShHtynvuN4cKV0WvsvdY/3WlkG5yWqYYs7pPN0ndJyZUzXXi+m+HoxhdeGDKXl6jxdJ7mi+BoAAAAAAADNZ3JSskubRwEAAAAAAAAAQCBReA0AAFoErZgAAFTK0UdLt98+W5z69uE5xanzmZK+nqPwOuOMx6V2W7rojwoXX697RRq41lA8JUmeZJrS1NTe/EtQRFzSwM3L1PfWHQvLzbOYnnThti4Nrp2U5C5Y3pM0JM/SeNQreHBn3XBEA79Zpng6/75QXfMzNz1p0++Wqve5sKQpKZyW3KyMPUnevMydtHofD0tOh/rfMiHXkNbttDRwQ4fiaUeSU7t/EHKKp6WBX3ao793jGlru+Dnf1qHepyxJaclOL8x1vjQ5Nz3bnvuc7DgcgAcAAACAcuR6D+U4/nHLzAVXjXbhFYCWc/zxx+u73/1u3uVbt26t6v7vv//+gsuPO+64qu4fs9auXauenh7t3r077zpbt27VO97xjqrsv9jPwrJly3TAAQdUZd+oPcd19JQ77J8IrrOnopNyPJfS6ypIubYu0g1KZ53/XUzxdbkyhdcZabm6SDfoQ+7RiphcAggAAAAAAIAm4nlSirkRAAAAAAAAAADktHx5vUcwF30bAABgLzDjBQCASjnmmJm/xtOmBm7qUd9bX9XQyqx1PE8yDJme9M1bojr9kYRCrhRy/YLkDNeQbFPqfUQKu4b63+PlLL5e9/J04XU6a2EkUvl/GxaIp00N/GZF3uLrTCnyij3mdOl1bj0pU5/4Q4f+6XXjuTMejmjgNysUTzMhvd4ymW94yw5tfLxTvc91zF2hxGN0vU9FJUmbj0xoy393kW2DiadNDdzQpQ2nj2vjI7GZvMpFzk2Og+4AAAAAUFme5xdfG4ZkWX4BNgBU0fHHH19w+QMPPCDHcWRZVsX3bdu2hoaGCq5D6XVtHX/88brpppvyLr/vvvuqVnp93333FVzOz0JriYQiuvJ/uvXRU4dlV/7ppWQhR7ryVyFFjniifoNoYRFJ3+xap/NW3qW0MVt8Xe0zC54kI2svYc/UN19Zp8g4OTeU3a9Ibtb1A4mk/14ow0lIXh2fIFAZZkIyC9wsOeFKKW6G3PTIORhKytmu3XhQHebU3Isz5yPn1lA0Z4+cW4GVkIwCOU95Upqcmx45BwM5B0M6PffzyUkpFpPCYf98MdfqAgAAAAAAAACw0Pr10q5d9R7FrLPOqvcIAABAk6P0GgCASnnDG+Z8GrctDfy8TX3vm5otvvY8vwz5xpA+8FBSXoE5MxFHMiT1PuJJntR/huaUIq97WRq4Rorb8wpiKL2umXzF15nC697nOrQ7YuvTj7QX3M4Hnu/SoZNh9b9xeG7GFF43nHja1HU37yPLm9tQfvBEWJ8fihX83gOTbVLY/77e7WGd+XyHLBlSuGrDxSLFJV13Y8TPOSufwxIhff7Bwt+72iHnZjcZNfWHJVNZXzGleY/5o3caijo57lSApjER9vTo0sITJl67w1Ak1x0p0DTIORj2hD09ViTn1+0wFCbnplZKzse8aijkkXMzG494eryHnFvdWMTTE0VyXveqseB9N5qMbft/cslMXO7urt14AATSiSeeqFgspkQikXP5nj17dN999+kN887tVMLdd9+tycn8N8OMxWI64YQTKr5f5PfmN7+5YOn1rbfeqi984QtV2fctt9xScPmb3/zmquwX9bNhqy0NSx/9Y9Wl+DrkSP/5E2nDI550ULL2AwiIDcn9pPQJOm/1fUobrgqc9s/JyPpYTrWPK8mUX3j978+foA2j+0ki54biunPfDzmO5DrzPqe0q+k5jgpe8OM4+d8Xo3mQczA4duGiPZucW4LjkHMQFM3ZlmzOPTQ92ylcbu6Qc0sg52BwnMKl1zxvtwbXnfv72bb94mvTlDo7pWi0fmMDAAAAAAAAAKARrV8vXXttvUcx66yzpGuuqfcoAABAk6P0GgCAStl/f+mUU6Q77pj5UjzUoYFrEupb7+mBlZLlSZuu99T7mCPPm53MWkzvH/yP/WdIjiEdmym8TptzNxKNSiF+vdfS/OLr7MJryZ+kHDKKt91m1s8UX1N43XxCZkRyy5mWjmYUor26pTiGt7BMzzTlmcbcx7Mxbx3DmPO1nNtBYzMWdJnnWMdYmD2aCzkHAzkHgrfwHhQLGYZKf5eNhlTq45mcmxs5B4Nl+ROYczEMbtoHoCZisZhOOeWUgkXHN954Y1VKr3/9618XXH7qqacqFit8E0VU1jvf+U5dcskleZffdtttSqVSilT4d1QikdD//M//FFznXe96V0X3iQaQSmnD7/2/1rr4eqbw+veSzHJrmFGuDaNrNGna+tSqrWV93/x3O+UWX0vSphfXacPomjK/CzURiUhOSkokpHRKSqbmljsl01KaovKm5yX9Bvp8Ji0pwbU7TY+cg4Gcg4Gcg4GcAyJZ+BTSREhK1uEOVKgwcg4Gcg6Eqam5x0V27/aLrzs7/fPJFhkDAAAAAAAAADBHIxVeL1tG4TUAAKgIrtwDAKCSzj13Tum1wmHFzTZ97deTeuMnpNe/kCmwLn+Sce8fpL87RbpnlfS1m6R4UpI172rPri7K3Oogblv6tzuX64T3v6A/e7JLvds7sy7ENWSWMkvZMNS7vVN3rUjpPw8Z17/duVxx26LjqcGMhV1tOPVVbXyia6aoXJLSprSzw5BsJ+/32qOSXD/QwbVT2nz4pLbc3EOxeQMaC7va8Pbd2vhou3qfaZv5etpwtbOt8PO3bUpRj5ybQcGc42Epmb9wwDGkzBP04KGONh9ja8vPIoqneNIGAAAAgJwyN6EwDGn58rmTmwGgSt71rncVLL3+8Y9/rC9/+csV3+81RS7sPP300yu+TxR20kknqaurS+Pj4zmXT0xM6Fe/+pXe//73V3S/119/vaampvIu7+7urkrxOups+nVOrYuv5xReZyQS1d9xgI2Zaf2483l12SGNhuySv8/T3FPA5b4y7rJD+nHn8+p7ZYXiLjdrbTiu7Rc6JaYkx/WLnLLf/6QNKZWq3/hQGel04VLNtCuluPlA0yPnYCiWc4qcWwI5BwM5B0M6Xfia2rQrpShQbXrkHAzFck6Rc0tw5l1Xn0pJk5N+4XVHR8HrdAEAAAAAAAAACJxG64vaubPeIwAAAC2C0msAACrpj/5IOuAAaft2/3PH0SNdCZ3ycckzpLtXS70flgZ/VP6mez/sf78knfJxaehfpCNHNHvQIhSSenoa7yBGAIyFHJ1/8qsyZWjLwRM6abRTvS/E/YVhW26kyCTnWEyyQxpcNaYtB0/IlKHzTx3WwJ2r/OJrNISxkKO+k1/Q0JK0ti4blsLhmZztsK0dXWnJM/0LdHMUN9nRsGRaGlwzof43jsk1pL53jWrgNysoRG4gY2FXfW/doaGltrYuH5NCoZmC83TE1o7O/MXmkuREI5JtknODK5rz0qiUMqVUMvfjOWxJnqnBQ2z1vyPt5/yBtAZ+FqP4ullYnmQVmcxombyuanbkHAzkHAxmiTl75NzUyDkYSn3eJufm5nkLf/daln/8csUKqbOT380AamL9+vX60pe+lHf5/fffr0cffVSHH354xfb50EMP6fe//33e5YZhaP369RXbX6VceOGFuvDCC2u2P6PI74Gnn35aa9eurdj+QqGQPvCBD+h73/te3nWuvvrqipdeX3311QWX9/b2KhTisp2Wk/XzveH30mRI+uT7q/sS1/Ckf/7FvMJr15V2767eTgNuzLLVt+4xDcUm1O4YkmdqNFz9Ar3utKl219BQbER9B96tgaHDFHd4Hmko9rCUmvT/PnOOKetck+dyE6BW4Klwjp5Hzq2AnIOhWM4i59bgFbnTCDm3hiI587zdGoplSM6tgZyDgZyDYX6OmZskO440POwXYAMAAAAAAAAAgMabZ8V5GgAAUEHMegEAoJLCYenrX5fOPdcvvNYOrTvfUzqrt/i6I/0C6x+XUXzd+2H/+zLSlrTuf0lD/+LoyBHLP3ixzz6NdxAjAGaLkJMyZMg1pP7jX5Gk2eLrEgyuGlP/8a/INSRDhoaWJNV38gsUXzeI7Jwl5c/ZMPwCp1yiUQ2umVL/CbvlTj9Wh5al1fe2XRq4c39ybgB+zi9qqCctZR7PJ+2WwhH1vtAlRWwpXLj0WrGIBleScyMrOedwWOpol2zHLyDItrRdg/tPqf+Nw3INv8x8aKXU90GXgvNmEXKl7nThdbyI/4SP5kXOwVBKzm6E8tRmR87BQM7BEHalODm3vKkpaWxs9nPTlNaskSIR//NwuD7jAhA4Bx98sE466STdddddedfZtGmTvvWtb1Vsn//0T/9UcPnJJ59c0TJnlG7Dhg0FS6+vvfZavfjii9p///0rsr/nnntOP/nJT4qOCS0o63ztWFT68VH+IedUFa/QCjv+fvoeluLJrHGkUtXbaYA58rTh9U9oqHO2lKfdtZS2PU2GSrvIfzFTAdptQ+3u7Hmmoc4JbXjto7runkNkifdQDSOdkNys84meK7nZpdeeX+yE5lYsQ2f6D5obOQeDS86B4LhSocs4yLk1kHMwkHMwkHMwuK4KHs5wDXJuBfkKMWzbL7weH6/teAAAAAAAAAAAaESN1hVF4TUAAKgwSq8BAKi0d71LOvNMPXLdvy0ovM647kjpgyUWX88vvM6YU3w92Sal09LIyF4PH6UbC7vqe+eIhuJpKasP1ZXUf+xL0sSk3vpiROpO5t2GJP18yaS+dOy4P9c169jPUHxKfa9/VgO/XkKBah1VLOeeSX3puBw5d0+p7w3PkXOdzeTcnSPn416SJid16kvFc/7Zkkl9kZwbVsVy3ndUX3zDuL+J7Jx7kuo79RVybgaOK6WKzIpJepQhNztyDoZSck6Rc9NzS3w8U5Lb3Mg5GMg5GNLphRc4pVL+1zo6ZsuvAaAGNm7cWLD0+j/+4z/05S9/Wfvtt99e7+v5558vWKosSR/96Ef3ej9YnHe+85064IADtH379pzL0+m0LrvsMv3DP/xDRfZ32WWXybbtvMvXrFmjt73tbRXZFxpMJCJNTWksKvWtl25fU93Ca8nf/u1r/P0NXDNdfG1ZUk9PdXccUJakjcNrtXXJH+Qa/uvehOEqEfJkaHGF1sUYkhIhT1F5inn++QfTM7RxeK2snqVV2CMWbWSn5GWdI0okJG/e7wMmhDQ/zyv8YPc8cm4F5BwM5BwM5BwM5BwQxXIWObcEcg6EYhnyvN0a5mfoZl24mym+BgAAAAAAAAAgyCi8BgAAAUDpNQAAVfBIaLfWfcJVob7LUoqvP5in8Dpjpvh6s6MjXQ4c1NJMceqy2QmqnjwZ8g8ouYbUf8qo/vZ3XTILRHPvirT+65DEnOuzs7cztCytvnfu1sCNFKjWQ66cs+1NztnIub5Kzflvftcli5ybFjljjlImxRSbEInGR87BQM7BQM7BQM7BQM7BkD1ZWfIztW3/65YlxWL1GReAQPqzP/sz/Z//83/06quv5lw+OTmpL33pS/rud7+71/v64he/qEQikXf5ypUr9Wd/9md7vR8sjmVZuvDCC/UXf/EXede58sor9alPfUqHH374Xu3r4Ycf1re//e2C63z2s5+VZeW4cy6aXyg0p/B6okb3+5iIzCu+diQlC9/gEYvX+1K3lD5Y/Yc9oUnL1WjIP/eQmXpQybc0RtZ2R0O2ZIfU7pja9NjB6t3ZLYmcG4rjSMq62ZNtT39tWkpSmje9Tc+2Cz/QbVNKuwVWQFMg52CwbanQaf00ObcEcg6GYjnzvN0abHv2DVIuaVcFL9xGcyDnYCDnYHDdudcHpFL++eJQyP8TDtdvbAAAAAAAAAAA1BuF1wAAICAovQYAoMIe+cn/07qlPyrpOstCxdfFCq8z0pa0bmNKQz9K6shUd/kDRtnGwq763rpDQ0sdZa64deVpJOqp3TYUc2aLr7/0pj368NPtOnFXdMF27l2W1FWHJBR1NFNynbA8TYY8LUkaMjPF18sd9f3RuAZ+s4IC1RrKlXMui8k5F3Kuj3Jy/t8l5VwoZXKuF3LGAiFXiqYLrxOL+D8UaF7kHAyl5ByNSB45N7VSH8/k3NzIORjC5BwInje3YNEwZicsJ5PSxER9xgUgkGKxmD7zmc/oy1/+ct51rrrqKn3gAx9Qb2/vovfzox/9SFdffXXBdS688EJFowuPOZXjmWee0UEHHVRwna9+9au6+OKL92o/reoTn/iE/uZv/kbDw8M5l6fTaX3kIx/RHXfcoUhkcU3FyWRSH/nIR2TbuW++J0lLly7Vxz/+8UVtH41vbEmb+t5d28LrjDnF1z8xFJ+crO0AAqb3uXbd1d6jyw9+Zc7XDVW+9DrbaMjW+c+uVO9z7ZLIuOGkUpKRVXLtOv6fmc8lObznbXquKxkFHumO5/9BcyPnYHBcFfzN7ZJzS3DJORCK5czzdmtwXMnk8dzyyDkYXKdw6TXP261h/s2SJf9ccjotRSLSXp4zAQAAAAAAAACgaVF4DQAAAoT2LQAAKuiRl36vdfd/oqTC64xM8XW2UguvM9KWtK5vtx7pShZfGXtltjg1NfM1v/DaVdqQRsOuEpY3Z9lVh0zo3mVzs/GLUyfmTLNIWJ5Gw/52RqKu3KylQ0tT6nvrDo2Fc1z8iYrLlXMh5eRcCDnXFjkHAzkDAAAAQIOZmqr3CAAEzIUXXqgDDjig4Drnnnuu7r777kVt/6677tJ5551XcJ0DDzxQn/nMZxa1fVROZ2enLrnkkoLr3HvvvfrYxz4mN1cZRxGO4+jcc8/V1q1bC67313/91+rs7Cx7+2h8jutow9t216XwOiNTfL3hjx05Fa1exnyD++7WllXD6k5bc75e6f/r87fXnba0ZdWwBvfdXeE9AQAAAAAAADUQiUixmOQ4xdcFAAAAAAAAAKDVUHgNAAACJlTvAQAA0Coe2fGI1v3rcUob5b+ZzxRf//hH5RdeZ6RNad0HXtLQj1fqyLE6zaJucWNhV31v2aWhntTM7GK/8NpTOuuY0mjYlTxDMceQDMmTp6sO3iO5nk7cGdG9y1O66uDs4lRDCdPVaHj2K2lDGom4WpI0ZMrf+FBPUn1veVUDtyxTvJxmdZQlV85FlZhzKQf7yLk2qpezStoeOdcGOSMvw5WcIsVFjiO5DXbSCOUh52AoNWePnJuaSc6BQM7BQM7B4Dhzj4HMPx7iOExgBlBT7e3t+uY3v6kPfehDedcZHx/X6aefru9///t63/veV/K2f/KTn+icc87Rnj17Cq7393//92prayt5u6ie//W//pf+7d/+TQ8++GDeda6++mpNTU3pP//zPxWPx0va7ujoqM455xz99Kc/LbjeunXr9MlPfrKsMaN5WKalkIy6FV5nTESkkCtZ8e76DqSFDS7bof5DnpcrQzHPkmxDoyFbnqpXem1I6rZDinmmXFPqf93zUlu7enetqPAesXeikpee/dS25y62QlI0WtshofIitmQWeLRHTMmx8i9HcyDnYIikpUKn8sm5NYTJORCK5Ry1JJdrd5peJC0VOoUUIeeWQM7BEDYL5xy1JI+cm14iMffzaFRaskQKTU9nTSZrPiQAAAAAAAAAAOqKwmsAABBAlF4DAFABU6kpHfudY5X2Fl/Wct2RUvx/S3v2YhJ02pSO/eArGvm3pWpjIkZFOYanDW8f09DS2UmpM4XXOa6pHY14UkqKTP9IeIZ01aETum9ZQtuWOnO6mxKmq1w95WlTGol6WpLUbPH10pQ2nLpD1/0yLosCqIrLlXNJpg/kFcrZX6e0zMi5usg5GMgZBYU8qa3Iz0aCMuSmR87BEPakVJGck+Tc9BxXihV5v52gJLfpkXMwkHMwpNNzS61d1/+aaUqW5X8EgBpbv369/vRP/1RXX3113nVGR0d15pln6k/+5E/0la98RUcccUTedR9++GF97Wtf08DAQNF9b9iwQWedddaixo3KsyxL3/ve9/TGN75RifmFG1kGBwd1zz336K//+q919tlnKxaL5VxvampKV199tb761a/qhRdeKLjvtrY2fe9735NlcQ6vVaXslO5cPiVDlS8+Loch6c7VnlKpbkUKtr5hMRx52nzAw3JNQ5lzBTGZSrmeJszq3NzFk9TuWoopNFPk50rafMAOnekeKqvEcxaogXSb5GQ97lxvbvG1FZPUVfNhocK6E0XKkMNSG5fmNj1yDoZiOYfJuSWQczCQczB0JySjSM5Jcm565BwMxXIOhaUUOTe9+aXWbW2zhdeS/3gGAAAAAAAAACAoKLwGAAABxRUgAABUQFukTWesfruue+aGvdrO3hReZ5zxVEhtKUmqzoTaoLIkbdwW0dYVabmaLryOKWfhdcZoxFNXSjKmi5o8SQ8tzbRg+x9SpqdEges1Z4qvE55MGTKnx2HZbgX+VZhvfs4ly2ovyJXzjBIP+pFzdZFzMJAzCjI8v3CxEIeS3KZHzsFgknMglJozJbnNjZyDwSLnQHDdhe+ZMiVvliV1dtZ+TAAg6Tvf+Y7uu+8+Pfroo3nX8TxPV199ta6++modd9xxOvnkk3XQQQeps7NT4+Pjevrpp3XHHXdoaGiopH0eccQR+va3v12pfwIq5JhjjtGmTZt0/vnnF1zv+eef18c+9jF99rOf1dve9jatW7dOy5cvl+d52rlzp4aGhnTzzTdrbGyspP1u2rRJr3vd6yrxT0CDioQiuu/G1+i4tz+uXe31Kb42JC2blO77fociJ1N4XQ2WDG3Z/gb1rfmdhmKjkqSE4WiqzMLrcsvRp0xHEc9UzPOL89clurVl+xsovG40psmlGgAAAAAAAMUYhhSP13sUAAAAAAAAAADUBoXXAAAgwCi9BgCgQgaXfFLve+JX+sUh9Xtj/95HpcGfRaUwxZrV0PtESPLa9OnTJjXSVrjwOmM8IsVsT5EckaRMaSrs9zEWkjalkZi0dMrTplvb1ftkSCqvwhVlyOTcf9pUmd2IxR77pW3M9KRNt7aRc5WRczCQM/JyPckrkolrUJLb7Mg5GMg5GErNmZLc5kbOwUDOweDOy9jzpGTSL3/LfA4AddDZ2alf/epXOvXUU7V9+/ai62/dulVbt25d9P7WrFmjX/3qV+qk7L8hffzjH9f27dv1ta99rei6IyMjGhwc1ODg4KL3d/HFF+u8885b9PejeaxOt2nrd6SjLpDGo7Xff2dS2vptabVhLnxdhoqJu5YGnnm9+g68R79rH9aoVd4NOI2sj6W+OnYljVppyZHeOLlUA8++XnHXEucfGkwoJNmG//43H94TNT9PhR+8nkfOrYCcg8HzyDkIyDkYyDkYimVIzq2BnIOBnNHdLYXD9R4FAAAAAAAAAADVR+E1AAAIOEqvAQCokLE7bpZjeIrZUqIOv2FjtuRY0phlKx5qq/0AAuIdL5radyqpVzqckr9nKiy5thTOOu6TNqRkGT8naVPad8rSO16MSaES2raxV3qfDUm3W+p/y0SJ/YieSirBLXIw0vSkTbd3qPfZKK/Ua4Ccg4GckVPIk6wiOYcsSnKbHTkHAzkHQ8gtLWdKcpsbOQeDRc6BYNtzPzdNybL8P5KUStV+TAAw7cADD9TNN9+sd7/73XryySertp9DDjlEN9xwg9asWVO1fWDvXXLJJZJUUvH13vjqV7+qr371q1XdBxpIe7vuWSVZdboe3PKke1ZJq1+UNDpan0EERFzSR0LLdMvhry6q8Dr783KKrydNWx95YZniuyfL2CtqJjHlTwhxbMlxpXRacrKuLUilJCdRv/GhMmKpwk/0yTpdOITKIudgKJqzIyXs/MvRHNpS/kUc+ZBzayDnYEgWyTnh+L+j0dzIORhSycKXaSbJuSXMP2+cSEiRiLRsmV96DQAAAAAAAABAq6PwGgAAgOotAAAqwXEdbZj6voZWSj0JaThWXqHx3ora/n6H9pU2vD+l626LyqIcqOLGwq763r5LL3d46k4bGg2XfjAnGZJkS2HPUNrwyv756E4bernDU98ZExq4eZniaYqvq633xZj024j6Tx6RW2yquWFIRgnrFFjFlKFNv12i3hfbpFj548XikHMwkDMWCLlSpMikmFiYktxmR87BUErO0TDlqc0uXOLjmZybGzkHAzkHg+v6E5azhbIOhqXT/joAUCeHHHKI7rnnHv3Jn/yJfvWrX1V8++9+97v1gx/8QEuWLKn4tlF5l1xyiY4++midd9552rNnT0W33dnZqf/4j//Q+vXrK7pdNLbBNRP6+FppNFqf/Y9GpY+fKelWqTcer88gAmKw+0V9ftWTJRdWV4on6fMHP6n2WKd6R/ev8d5RXEzS9PteT9KePXMLniIdktFVj4GhkrqmCpfwhcL+cWk0N3IOhvhU4esDQmH/eCWaWxc5B0KxnC1ybglFc45IKaZINT1yDoauIjfzIufWMD4+9/MlS6SlS/2/J5M1Hw4AAAAAAAAAADVF4TUAAIAkSq8BAKgIy7S08aGItp4g2YakWh93MCRXUsiTNm41ZNmUxlSaY3jacNpuDS1NS5Jitl94Ohopr/jadj05ZfZVd6cMxRz/h2poaVobTtul637VQ7F5DfQ+FZHcuPpPGa1qH6bpSZvuiKv3mYgkp3o7Qk4VzblQETI51xU5Yw7DLV6y5ziUITc7cg6GUnJ2ybnpmSU+nnmP1NzIORjIORhcd+6FUPMzd0v4OQCAKuvp6dENN9yg7373u/rCF76gV199da+3uc8+++iyyy7TOeecU4ERopY+/OEP6+STT9aFF16oa6+9tiLbXL9+vf7hH/5Bq1evrsj20Bwc19HfHvicdsfq95LWM6TdMelvT5zSma+Ysmp+4joYBuMv6NP7P6hhKy3b8GSo4KmDOTzNvZygnCkEhiTb8DQcSuvTqx+UTFO9Y6vK2AKqzjRnnwCM6c/N7MQNyeKSzaYXCvnHOAotd8i56ZFzMFhW4XJzKzT3Zm5oTuQcDMVyDoUkl5ybXtGcLXJuBeQcDFaoSLm5xe/nVjC/zCM706kp/9oAAAAAAAAAAABaEYXXAAAAM7gCBACACul92NXksHTeH0tp07/etha9aqbn72+kTfr366TeRzxpWbr6Ow4YS9LGbRFtfUt6JteYY0ip8oqv96bwWvLz3rgtIitll7chLFrv45bkdKj/LRP5H9OeV3xGujd/CrvP9KRNt3Wo9ylLEo/deqlYzguqCnzk3BjIGTM8T7KLTJhI1+jFHKqHnAOCnIPBlYrd3CntUZLb9Mg5GMg5EOwix608j9JrAA3j3HPP1fr16/Xd735X3/rWt/TII4+UvY2jjjpKn/70p/XRj35U7e3tVRglamH16tW65pprdP/99+sf/uEfdO2112pqaqqsbbS1tWn9+vX67Gc/q+OOO65KI0Wj6/DCe/dy1pPaHGnK0qJvtOwZUgeHqKvGkafv9DylYSultOG/ri2n9FrT64Y8Q3ahcqccMj8SacPVsJXSd3qe0plj+1NuDgAAAAAAgObieVIqVe9RAAAAAAAAAABQecuX13sEc1F4DQAA6ozSawAAKmTMTOv766T2tDQa9b9W7eJrM+u4Qnta+v466f2Pe4pzwKEqep+MSJ6n/rdOyp2ethyzJckoq/i6VN0pY3r7/rZNGdr0m3b1PhVRedOmsbdyZT9HqY/zeY9NMm0s5BwM5AxJ0+XmRXIqqQAdDY2cg4Gcg8ETOQcBOQcDz9vBkCtnz5MMivgANKaOjg5dcMEFuuCCC/TYY4/phhtu0P33369t27bphRde0Pj4uCYnJ9Xe3q6uri6tXr1aRx11lI4//ni95z3v0aGHHlqzsa5du1ZeC5wD+upXv1pw+ZIlS2ozkByOP/54fe9739O//uu/6uabb9ZvfvMbPfTQQ3rssce0e/dujY+PS5K6urq0dOlSHXbYYTr66KN12mmn6W1ve5va2trqNnbUn+M6ejg2vncbMaTUXhReZzy81JEz7FGGXCXGvNe2tXpmnn9LzvnjQCNq/t/bAAAAAAAAi2IYc88bz78xMjdKBgAAAAAAAAC0mvXrpV276j2KWWedVe8RAAAAUHoNAEAlOK6jDe+e1NDyTAly9Yuvswuvu5P+fof2lTZ8ULruBluWxwTXauh9PCS5MfWfNjWTazWKr2cLr32mJ226NabeJ0OSnIrtB6XLlf1cxfKf+01k2pjIORjIGTI8yS2SlaPq3r0E1UfOwWCScyCUmjPvg5sbOQeDRc6BkGtycirlT2oOhSTTrP2YAKBEhx12mA477LB6D6PlXXzxxfUeQlFtbW1673vfq/e+9731HgqaSCQU0cd2rtbl+zy5V4cinL18OWx60sf+0KZIiNdd1WDJ0CeGD9KDsVHtslJKGTlvsVmQIckxPBkqrxI5s27EM7XMiegTwwdRbN6IPE+ybclxpVTa/3tGclJKcy6p6TmpuRftzDdpSQkuzW165BwMRXMOSQmrduNBdbgp/9xxPuTcGsg5GNxk4ZtETYSkJDk3PXIOBnIOhnR67udTU1IkIkWjkmX5HwEAAAAAAAAAaBXr10vXXlvvUcw66yzpmmvqPQoAAABKrwEAqATLtLTxmSXauuxVuUb1i69zFV5nvr7xAYPC6yrrfTIiSQuKrxNWZa6vjTrKUXjdNrNf1E/vkxFdd3BaN66xi69cxDu2h8i0QZFzMJAzAAAAANSY5/kTm8Pheo8EAACgai59fK30zDO6/A1OXe7BZXrS5+6ULh1ql95S+/0HRe/YKknSeavuU9LKcdOXAub/WCym+LrdtfStF4+dGQcaiOf5RdeFbvjkVe5m2qgTz1PhR65Hzq2AnIOhWM4eObcEzytchkzOrYGcg8ETOQcBOQdEkQzJuTVlbhRm29KSJf4NkwEAAAAAAAAAaBWNVHi9bBmF1wAAoGGY9R4AAACtotc+VJuuny2kjtl+IbVU2cLr7O3NL7zedL3U+xi/3muh98mINt3aNpN3IlSZwmvJ305i+hpOCq8by+DBKd10wN4X5ErSTQfYGjw4VZFtobLIORjIGQAAAADqxClQ/gYAANDs0mld+ru4Pnfn3BsZ14LpSZ+7Q7r0N2FKgWrEkFHWxXf5LhswCiybz5zeLxqU7RQuvAYAAAAAAAi6aFRyXf8PAAAAAAAAAACtwGiw6zp37qz3CAAAAGZwS2wAACrlta9V73fukCT1n+EXU8dsaTxS+dJryZ+0vKDw+g+SwiaTmGuk94mw5Ekff9eURiOV/X8+GvFkeIb+341t6n0yLIlM623w4LT6T5uq2OPZNaT+06YkT9MZoxGQczCQM+R5xX+1lrIOGhs5BwM5BwM5BwM5BwM5B4PnFT4+6bocvwQAAK0rHJaiUb94WmlddrLk1eA6dsOTPnendOktphQLS+3t0oEHVn/HATUYelz9sYcUVVjdnqFRIyW3wBuZUn8EDBV+O2TKULcXUdQMqf+Ah6TECvXah5YzdFRbcruUnne3bDvrJqxWTIq21XZMqLyOROE7GxghKcQ5w6ZHzsFQSs5hcm567VMqeKcScm4NRXMOS2GmzjS9jqkib7DCUoScmx45B0N7iJyDYHx87nnhWEzq6pot/kgm6zMuAAAAAAAAAAAqqdEKr5mzBQAAGgxXgAAAUCk9PZKmi6flF1/vbJPsQhfS7wXblIZj0vKprMJrSTLNxjsg0soMqXpNTJ6/ffKsu8GDUxUtyM1wDan/bf4F+r1PRiq7cZSNnIOBnCFp+vdrsXUMfgc3O3IOBnIOhlJzLrlCCg2JnIOBnINh/u/e+b+H+d0MAABa2bJl/mudri6d9MJudaQ97anBIeOOtHTSC5KiUcmypHhcWrKk+jsOIMdztdl7VO70G5yYIvIkjai8kh5Lphy5ZX1PXBHFDP8HypW0uf1RnWmcIMuo0kUJKF80JplZuSbm/1xEJDda0yGhCiLu3JzncyOSKE9teuQcDBGncOm1Q84tgZyDgZyDIVxCzgY5Nz1yDoaI49/FLR+bnFvC/PPCljX3c8ep/ZgAAAAAAAAAAKikRpsfReE1AABoQMx4AQCgUmx75mBE7x+kfcekZJVvL5EM+fuZKbxGTWWKU6OOoe7y5jAX1Z2Uoo6h/tOmNHhwqrIbR1mqVZCb4Roi5wZAzsFAzgAAAABQA8Uu2DI5PQkAAFrY0UdLkgYP99R/htSVktqrfMi4PeXvp/890uAR0xer77NPdXcaYJZhaouxXuu0UpLkytOU7IK37vE09zbKUYXUppCiCuVdZz5D0pRsudNrrdNKbTHWU3jdaCzyAAAAAAAAyGn+eeRYrD7jAAAAAAAAAACgEii8BgAAKEmVqzgBAAiQ556TolEpkdD7zpbuW1Wb3d63Snrf2dLPfzj9Bc+TQvyKr7bB1yTV/5aE3OmDUDHXUMJxlbT2fttRR4q5pmRMF6i+LSFZlnqfiu79xlGW+Tnn50kFp7JPy7Mdcq4vcg4GcsYcIU+yiuQcslS1hnTUBjkHAzkHQ8gtLWePnJsaOQeDRc6BkHVzQEkL/x4KSVYFDqIBAAA0omOO0eDahPpPGZVrGHJdT06VX/o4luRKkmmo/+3+nXp7V66s7k4DLm7ENKAP6yzvh7pdzyotV4YMSV7B4mpPUkwhheUXI/sfQ0rILrg/Q5IhQ2m5GtGUTtWBGjA+rLhBMVDDicak5ASTRwAAAAAAAAqJRJjzAgAAAAAAAABoXhReAwAAlMys9wAAAGgZu3ZJ7e16359Ivzi8trv+xeF+8bUMgwMRNeAXp07M6c1LWF5FCq8lKWn528twDan/LRMafE2yMjtASXLlXE3kXB/kHAzkDAAAAAANwDSlcJjJywAAoKUNrtg1XXgtufI00ialTcms0ilc0/O3P9Lm7881pP63JzV44GR1doiCjOnq68puU1XYKqrGNKW2dsngskwAAAAAAICcIhGpvb3eowAAAAAAAAAAYHEovAYAACgLs8oBAKiUdFrve9+4fnFQfXbvF197+vk1ojimigbXJtT/5oWF16ORyh4EGo14UkqKOf6OMgWqMi31PhOr6L6wUK6cCzIMySjyM2AYUpFVyLm2qpJzCaUD5Fxb5IycQq5U7GYVoZBq1pSO6iDnYLDIORBCrmQ5RdYJSR45NzVyDgZyDgYrxy/nUMj/umFw7BIAALQsx3W0+bnr5EYjclNJjUQ9pbN6b02vsocosou006Y0EpOWTHmSYWjz2G068zevyKIsuSrGLFt96x7Xtq4J9RimdodcpacDMZT7lGAmiaRsyTUU9gylDU9J05tZlv/7/CVh11CPbWqbt1194/+sgaFDFXd4fd1Q7Jckw5YcR3JcKZGQ3Kz3wZMhKUFmTW+pXfi49IQpTVJ83vTIORiW2VKhGPeY0hQ5Nz1yDgZyDoZiOY+bUoKcmx45B8Nyu/BlmOTcGtLpuZ/v2SO1tUkdHY1XCAIAAAAAAAAAQCka7fg2hdcAAKAJMIMCAIAKed+6h/SLpeniK1bRLw6T3vehtH5+S4MdJGkRg2sT6j9lrOqF1xk5i6/fPCYZBgWqVZQr51oi59og52AgZ+RlGMVPKpWyDhobOQcDOQdDqTlT5NXcyDkYyDkY5udsGJLr+hdStbVJppm7GBsAAKDJWaalLR/corNeeotu3z00p/BaKq3w2pB/X0av+L1U5Ro5iq/bpFNfjWnLg2tl2Xa5/wSUwJGnDcc+oaGuSUl+Xj1pS7vDjtKmJzfH98yPPml6sj1PjrFwvfm5u/K7vsKuoZ70bI35UNeENrzuMV13zyGUmzcS15GcpOQykQQAAAAAAATc/GsDDEOamvJvErZsWX3GBAAAAAAAAADAYjXaPGUKrwEAQJOg9BoAgArYk9ij65cO13sYkqTrD5H23G2p0+bXfCU5hqfNR43INWcPQiUsT6PhIgeB5h2zsjwtmLxcyGjEk9LGnOLrzUcldObLcVlegx0QawG5ci6Np0zYhqSjR8LatiS9sIygxIOY5FxdVc25jAPV5Fxd5IyCQq4UKXKzkmiktBYaNC5yDoZSco5E/KYoNK9SH8/k3NzIORjC5BwItj33fZNpSuGw//d0Wgpx3BIAALS4Zculkbn1xdU6BDW/+FoSr7eqzJKhjduXa2v8uZlcDfmF1Dsi9oLzw5nb+syPKdc548yX5q+bKdY2sjZuetLG7cspvG40rkPhNQAAAAAAQCGeJw0P++eVAQAAAAAAAABoBhReAwAALJpZ7wEAANAKOmOduiLx9noPQ5J0xS1RCq+rwPIMbblthdYNRyRlCq/dsrYRdQy12Yai5bReSxoNu0pY/gGndcMRbbltBcWpVTI/53IZks55okOffLRL5zzRsegp5uRcXeQcDOQMAAAAAA3IMBrvQi8AAIAKcVxHG368Qdt2Pqye2BJlTiWWU3jtTa9fzqXome2HXb8YeVs8oQ3HPSWnrK2gHL0v92jTtjVzCscTplvWzY/L4Rj+9jNMT9q0bY16X+6pzg6xeG551xAAAAAAAAAEkutK4+P1HgUAAAAAAAAAAMU12jwoCq8BAECToRETAIAK6TfeoKH7b9a/H1+/MZx3n9Q/FJV6OEBRDfGUoYFbl+u0d7+soaXpBcs9KW8patQxZia2+x8NJa3cOeXazmjY1drxsAZuXa542lB5U91RjkzOfaftyJlzPoakcx5v14m7IpI8nbgzInmerjp0Ul7Bn4651g2Tcy1UL+fMWoWRc22QM/LyvOIndDyP2JodOQcDOQcDOQcDOQcDOQfD/Jw9z7/Ay7KkUKi0nwMAAIAmZJmWNh67UVtf2io3GlNPsl2vepOlniLaO57UkzJlhEIyJW0cfY2sFfvUYMfB1euskLbH1b/2YU2Ytkas3GXH5bzy9QqsPxJ2JcdQhxvSpmeOUq+zr7Si3FGj6oaHJS81+7lpSrY9+3k0LClc82GhwqJpzWm9n8+2JNeq3XhQHeQcDJEiOccsySPnphdNFX5NTs6toVjOUXJuCaU8nkXOTY+cgyFSwvM2OTe/9Lzrdk1z7uecMwYAAAAAAAAANDoKrwEAAPYapdcAAFTIoPewbjhUiielsWjt9x9PSDccJg2+mFbvcIMdNGkhN+2f0CvtrsKelM763+xJ8qY7Tef83/ekqDtbeJ2Rr/g633bCnvRKu6ub9k+o97mOyv2DkFPctjTwm33U99YdGlqaKrq+KUPnPNGuE4ejc4I7cTgmPWHoqkMmStrvuuGIBn6zQnHbrE0BQsBVJ+dSipDJuZbIGTkZRvGTTKWsg8ZGzsFQas48GTc3cg4Gcg4Gcg6G+TkbhhSLzV3HzV0ICAAA0Ox6j+yVJPX/sl+7Q65cpzb7dU1pLCL1eKY2vbhOvclVUntt9h1kvcnX6DejY7pi+ZMF1yvldpqlTEMYsRydu3utepOvId9GNRGR7Kz3O6n03EKnzM2A0NwsV8pzk3NJUoicWwI5B0OxnK2QnzWam+UWLjcn59ZQLOcQObcEHs/BQM7BEHIKHygJhSSHnJue684t35hfer3//rUdDwAAAAAAAAAA5Wi0+ecUXgMAgCZlFl8FAAAU47iONtv3yDWkjrQUS9d2/7G01GFLriFtPiopx+BARTUMrplQ/xuH5UnqSVoKT/9vnimqnv6Y/X+/K72w8Doj7EpRZ/YgV77thD1/f56k/jcOa3BNaQXK2DvxtKmB36zQuuFIwfVMT/q7e5foxF252+5P3BXVOU90yCxS2DVTkJvmJXotlZPzN0rJucjTLznXBzkDAAAAAAAAAGql98heHbvyWE06iZrud9JydexkXL1jq2q63yDb0v2svr3s6ZJv25Pv9EKpZ/cNSd9e9rS2dD9b4neg5kKhxpvoAgAAAAAA0GhWrJBWrqz3KAAAAAAAAAAAyK3RrgOk8BoAADQxGrgAAKgAy7S05feHad2ukKZCUiJc/jYM+WWbiznskQhLUyFp3SvSlp+GZXkNdvCkBTiGp82H7pE7/b/WkF9EHfJmi6ozMoXV3WlTMXd2oSHp4PHQnIzDrl+MnV14nb2d0HThdWaRa0ibD91DsXmNFCvKNT1p0++W6n3PtxXczom7orr0niV5i3IpyK2vUnN+bwk5/997e8i5QZEzAAAAAAAAAKAWLrzhQv3iiV/UZd+/iL+iC/d9oC77Dpot3c/qvNX3K224MlT6ef75pxfKKbw2JKUNV+etvp/i60ZlmlI4IhmcJwIAAAAAAMhp+XLphBPqPQoAAAAAAAAAAHKj8BoAAKCiQvUeAAAArSKe8PTBp9v032vGy/5eQ1Kmw9jw/C+Ue8hhLCp98GEpnjIa7wBKC7BkaMvt+6jvLa9qaGlKkuQVSslY+OkZ29t01GhED3endP0BU3O/u0BknjwZ0yusG45oy+37yJK5uIZ0lC1uWxq4bW720nRB7t3L1Lu9Q8MRu+h23vd8hzpcS/1v2KWsLnS/IPe2fRS3ybSeSsl5Zwk5v//5DrW7Jjk3KHLGDKOEChKD11RNj5yDodSceWJubuQcDOQcDOQMAACAFnfhDRfqit9dUf7J3gq6YsWT0r776R+jZ9ZvEC1uS/p+nZd+QGlNn9yf+W/BM8gzMt9VXuH17PuktOHpvDUPSOFDtCF8fOkDR/U9mpbshOS5kuNIO3dJ6dlzUnI7pdjy+o0PldE2Lplu/uWpmJSO1m48qA5yDgZyDob2cckg55ZXLOdkTLLJuem1j81ebJ1Lsk2yI7UbD6qDnIOBnIPh+efnfn7wwdKBB0rLltVnPAAAAAAAAAAAFLO8wa7vo/AaAAC0AEqvAQCokC3771L/IeOLmr/sSZLhX7vpLaLwOrON/jOkdsPVhsnYIraAYuKSBn53gPpOfkFblyQ0EvFkm5IpKXu6RKaaaTTiqitlypChM17s0FETUSkkHTURkl60dP3+E0qZnlKWNzNFOTt7U5JtSiNRT0tSho4biWngd6sUtyzJqs2/Gb7s7IeWJP2C3K0r1ftqXIpJCtv+n0JiUfW+2iFtDav/+FfkGtK6kSiZNpCiOUdKyTmi3lfbybmBkTMkSZYrRYsUKcZimtNqjuZDzsEQKjFnj5ybWsgh5yAg52Ag52BIJOo9AgAAgLqYSk3pX+79l70uvC6nDDknT/oX5y59Y/Un1WZRDlRpKdfWRU98XWk5C5YZZVVfl5a0MafuelZaji5yr9eHDni/IiaXADaMnQ9LycnZz11Pmsz6vHNfqWdN7ceFyrJ2STmeA2a4HZLXUbPhoErIORisnZp71dc8bqfktddsOKgScg4Gcg6Gojl3SV5bzYaDKiHnYLB2qOBxEXJuDbt3zy3jiMcly/JvFGZxoS0AAAAAAAAAoMGsXy/t2lXvUcw666x6jwAAAKAimPECAEAFpOyULjrkCaXMxXfyeFpYnlzW9xtSypQuentaH7reVcQ1F7klFBK3Lf3b3fvquD96Rmlz9iLMTHaZwuuM8Yird7/Yrne/PHei25rJkMbCjn65/+TM+tnF19nppU1PjiH92937Km5zgWe9xG1LA3eu0oaTXtTGp7vV+0I8a6mXc7L5XP7PS+b7Nh80qi137U+mDaZgzl7xnD1ybgp7m3NmrgU5N69Jy9UTnamC6xw+FlWkhGd3AAAAAAAAAJCktkibvvWeb+mTP/3EXt3HJXOj5L35/m+tOFdtjiSn8HFQlC8i6ZvLNui8V/+f0lp4E83SS8tLWyvfj0JYIX1z2QZFbFcSOTcM2/GLmzIcW/KyrgKxbf8PmpyjwmXIjuSSc/Mj52BwVLhU0ybnlkDOwVAsZ563W4Otgu+lHFvyyLn5kXMwOCLnAPA8yc36/ZxO+zcHm5qSli2r37gAAAAAAAAAAJhv/Xrp2mvrPYpZZ50lXXNNvUcBAABQEZReAwBQAZFQRF8P/ZE+6f50r7ZT2rTWwr5+VzuF11U0FnJ0/hteVsiTwq6xoPh6Dk+K26Z+uzyhQ/dEdeJwbGbRvUsT+u3yhNodQ1OmNzNbeX5ptuTvJ+RJ57/hZQ3cuYpS1TqK25auu2O1rAVNA0YJj9/Z7+l9Ia4zX+zKsR00grw5G8VzNsi5aexNztlP1OTcnDxJaaMSr7wAAAAAAAAAYNb5xgnSz6VPvE/524oLyJx6ND3JXcxhZ0/6zs+k8z+4VupexPejJBu6TpaknMXXpRx5zr4pcrH1PeU4f6yQ/n2fj8+MA00kbUspSsqbnpdWwTJkJyW5XJrb9Mg5GLy0CpbkOmnJ5Xm76ZFzMBTNOSW5XHfZ9Ly0CpfkknNLIOdgKJpzmpxbgZcnY8+Tdu+eW4gNAAAAAAAAAEA9NVLh9bJlFF4DAICWwhXXAABUgOM6+mn8RXXvMDQSWXyB4qImLmfpTko/PTitjS9MUb5ZBWNhV32nvKqh7pQMT+pJmtoddZTO87+6O20q4khJS7pq7ahk2zpxV1T3LkvqqrUT8iSFHUNhx9BYOPdFm+Hp/RiShroT6nvjdg3cto/iaYrN6yXnJdSuLaXThb8xkZTs2UnvXIrd2Bafc4qcmwg5B5hXQs7JhGTz+7aphVwpWezxrL1/EY76CrlSpISceX/U3Mg5GMg5GMLkHAip1NwJzJ4nOY5kmpJBtgAAoMX913+p72FDV7zR07Z9yvvW+ffpM7zyXxofvUPqe1jS6rultWvL+2aUJVfxtSfJK1JjvfDWuoWLr73p2uvM91F43eQcWxodrfcosLei45JRoJjLdiS7yPEPND5yDobonhJypgy56cX2qGAZMjm3hmI5px2/KBfNLbZHBd9BpV1ybgXkHAwl5Zys2XBQB44jJRL1HgUAAAAAAAAAAI0312nnznqPAAAAoKIovQYAoAIs09LGN3xKW6/7hOR6GonVfgxLElJHWtr4SJusKS7yrDTH8LThtN0a6knPXGNraLr4OuJqfgd1d8pQzMl0KPpTka86eI/uW5rQth57zmW6MceQ4RkanVeYHnalnpQpI6skaKgnqQ2nvKzrftVDsXkjcV0pbRdeJ5WUUpSnNjWvhJwTlOQ2PXIOCIecgyDkSjGn8DoJl9LrZldKzklybnphV0qV8HjmPVJzI+dgcFwpSs4tz5mXsef5RdiSFA5LIU5PAgCA1jV27x3qW+9puN2/YfFotPTv9abbjzMlyOW+LO5OSsPtUt96aeD+bYq/8kp5G0DZNuhgKfohnZf8kVKyC5ZXF4ozsyzf92eKtCMK6d+jH9KGyYOlSfJtSONjUjqrsGkq4d9kc0ZYMsI1HxYqzJmUzAKlmqkSzjei8ZFzMLiThUuvybk1kHMwFMs56c65wT2alDu58I5R2ZIeN6VoBeQcDOQcDInE3Jslu/N+V6cosAcAAAAAAAAA1FmjFV57ha5EBQAAaE7MKgcAoEJ6TzlPuuz/qv/gxySppsXXmcLrTTeY6n3JlJQo+j0ojyVp4+9D2vrW1Jy+PMOTepKGdke9meLr7pShmC3NTEvO+vBQjz3na/7fven1Z4uvw66/XWPeASnT88dBsXmDcV0pXeTi6oRH6XXTKyHnpKcFLfhoMuQcDCU+b1N63dxCXgnlqTZlyM0uTM6B4HhSWwk5U5Lb3Mg5GNwSn7fJubmlUgsvsrLt2QvBGu2CMAAAgApxXEcb1tyjoR7/8/bpQ5DlFl8v5nL17uTs/ob2lTa8/jldN7FHlsExzmrboCN0j07UFbor7zqlvgLOFJ7n4kn6lE7UhvQRUnqyzFGiZlLpuaVctj33xkCuLRmUdjW9sF24DDmd5lxiKyDnYEgXy9km51Zg24XLkMm5NRTL2SbnlmDbhUty7bSU5hxE0yPnYCiWczot2eTc9ByncOk1AAAAAAAAAAD11Gjzmyi8BgAALYrSawAAKqj3MUt6VOo/Q0pb0kS4+vvsSE8XXl8v9T4mKc5BjGrpfSIseW3qP20qb/F1u50pvJ7lFLooV5InQ4Y0U3w9GfKmC6/nrmd60qZb29T7ZFiLm+6OqvG84gcQS1kHjY2cg4Gcg4Gcg6HknGszHFQJOQcDOQcDOQcDOQdDrowzJW+uK5kUiwAAgNZkmZY2Pmhp61tm77/VlpbGI9W9H5fp+fvJ/nzjA6asQ3jdVQuD3sP6kbYpJFO2qlfcE5KpH2mb3uqtVa9xVNX2gwozDSm7fN4weE/UCkyzcJu9aZJzKyDnYCiaM8/bLcGY9/t4PnJuDUVz5nm7JZimCp5EMsi5JZBzMBTLmeft1mAYjVcYAgAAAAAAAACA1HjHr+k0AAAALYzSawAAKuXFF6Wnn1ZvQrprlXT5Kf6cmGoeVjAkTYWkTw9JvX+QJNcvkOEiz6rxi6+l/rctLL5emshzUKuMY10xW4rZC7/B9KRNt1B43bBKOYBIeWrzKyk/cm565BwMPG8HQymFmZRqNj9yDgZyDgZyDgZyDgbDyP9a2nWlVKq24wEAAKih3sdD0oTU/x7JMaSd7dUtvJb87e9sl5ZPSpY3fbPkpxvsYvwWNeg9rE97v9CwJuUWeCOTWVIslUJvhVx5GtakPu39QpIovm5Ulill3yQ7GpUsa/Zzo1MKddd8WKiwqCSjQMm93SbZsZoNB1VCzsFAzsEQk1To5iTk3BqK5ZxukxxybnoxTwXfOUXbJSdas+GgSsg5GMg5GEZH5543Ds2bxhoO13Y8AAAAAAAAAABIFF4DAADUGKXXAABUyg03SKmUBo+UtqyTupPSaFTyqnisw/D8/WxZJ530wnTxtW37EydRNb1PRSRD6j9tquqT1KXpwutb22b2iwZUykFNw2i8g58oT0n5kXPTI+dg4Hk7GAwVf+1Ezs2PnIOh1Jx5w9TcyDkYyDkYPG/u715+DwMAgCAxTfU+Ik2GpI99QLJrdK9i25R2tUv/cd30OeOopFdfrc3OA2ow8qQ+3fEbDZsJpeUVLL3O8JT73U4p0xVceUrL1bAm9Gnnp9LEqHpTB5c7bFTb5KQ0tWf282TSv3F5hmdJ4ibmTa99T+GS3FRaSidrNx5UBzkHAzkHQ3rcv9AyH3JuDUVztsm5Fdh7VPAdVNKW7EjNhoMqIedgIOdgmJqa+/n4uH9zsLY2vwA7xg0pAAAAAAAAAAA11mhznCi8BgAAAUDpNQAAlXLjjRo83FP/eyTXkKK2ZEZU1VJk0/P34xpS/xn+13qfpPS6Fnqf9C+krXbx9Uzh9ZNcuAsAAAAAAIAm0GgXgAEAANRSZ6fGJnfr798k2TV+WWQb0t+/SXr/Y1I8HPZvloyqGIw+rU933D5deO2qQFXmAvOLr8uZruAXX3saNhP6dMdvJMdVb/KgMraAqguF/PdE7nTRtevM/l2SXLdwuSqag+tKZoEcXdf/g+ZGzsFQNGePnFuB50mFXrGRc2somjPP2y3BdQuXm3vk3BLIORiK5czzdmtw3bllHem0X4SdSEhr1vgF2AAAAAAAAAAA1EqjzXei8BoAAAQEpdfAPMlkUo899pief/55jY+Pa3JyUu3t7erq6tLq1at1+OGHKxKheDQIRkZG9Oyzz+qll17S6OioEomEPM9TLBZTZ2enVq5cqdWrV2u//far91DRIAZ33aH+93hyDX9i6u42v4za8CSvCsc9DM/f/u42qWcqq/j6l7Z6X6r8/rBQtYuvKbwGAAAAAABA08u+CMs0Jc6xAACAFja2arlOe892De1bnXPEhXiGNLSvdNq50q0/DSueTNZ2AAHhyNV34g9p2Ci/8DrDkxSSIbusymufKyktV8NGQt+JPqQzx/aVJXMRo0BV2LYUCUtJz/+740h2Vum1Z0teun7jQ2XYduGSXNuS0jwumx45B0PRnNNSusEmPKJ8tl34phPk3BqK5Zwm55Zg24VLcsm5NZBzMBTL2bbJuRU4ztxzxbbtny/u7JSSSco8AAAAAAAAAAC1Q+E1AABA3VB6DUi66667dN111+mXv/yltm3bJsdx8q5rWZaOPvponXHGGfrjP/5jnXTSSTUcKarpqaee0s9+9jPdcsstuvfee/XCCy+U9H09PT069thjddppp+k973mPXv/611d5pGhEjuto86pX5hReZ+Y1GdIipqoWlzmckjbnFl9vPtbTmS97smo9izqgqlV8TeE1AAAAAAAAmlKuC8FM0/96KOT/AQAAaEGO6+gdb3pMQ12qyg1zS+FOF1+/o3dMd706KkucM648T8ZSv656MYXXWZvRYuNxM9/u2NLY+OI3hMpLT0qy/b9bpmRZc5c7lmTwnqjpWZb/PrfQct77Nj9yDoaQJRmFcuZYVkuwyDkQiuUcCkkeOTc9K1S4JJecWwM5B4NlFT6cYVnk3ApMc25ph2VJruuX19u2NDVVv7EBAAAAAAAAAIKDwmsAAIC64goQBNoPf/hDXXbZZbr//vtL/h7HcfTggw/qwQcf1N/93d/phBNO0Oc//3n19fVVcaSNaXJyUg888IDuvffemT+PPvqoXDf/tL6vfvWruvjii2s3yCIcx9E111yjK664Qr/97W8XtY3du3frlltu0S233KKvfvWrOuSQQ3TBBRfo/PPPV2dnZ4VHjEZlmZa2XN+ms/4opdsPnC28lqRSu6cN+dfoekZpJdmeMXtNb6b4+tRnpS0/lqyetnL/CdgLvS/EpDsi6n/z2MIJ7KXkP+8AmelJm+6I+9uNVWyYqKaIK4WLhB2LFp4QicYXLSHnaNSfwI7mRc7BEHNKe962ybmphVwpkv+mVpKkWKh+DUSoDHIOhnCJOXPzp+ZGzsFAzsHgeQsvCAuH/a+FwwtL3wAAAFpISk7dD0O4hpQqVA6FvWLJ0Ed2r9EtHTsWvQ1DkmN4e3UDbUPSR3avodi82RhG402gQfkMo3AJHzm3BnIOCHIOBB7PwUDOwWCo8DW55NwayDkYeN4OjuwcM3+fmvLPKafT9RkTAAAAAAAAACA4Gu18A4XXAAAggCi9RiD94Q9/0Cc/+Unddttte72t++67T2effba+/e1v69vf/rYOP/zwCoyw8SSTSQ0NDc0puH744YflOEUKShrYTTfdpD//8z/Xww8/XNHtPvHEE7rooov0jW98Q9/4xje0ceNGGY32Bhg1U2qB9aK2LeWfd0NxTM31bu/QdS8mdeOq5F5v6x0vRtW7vUMixuZhGf6fgutYlOQ2O1Ol5eyRc1Mj52CwPHIOAsvwsy64jtV4JyxRnlJyNsm56ZX6eKYkt7mRczCQczDMn4RumlIk4n/kdzIAAGhhjuvoxcjenyushBc7XDnyKESuAkeefrhku9pdS2nLVf7bwue3t9cQmJLaXUs/XLJdZ48eQM4AAAAAAABoPIaRv7wjkWDOCwAAAAAAAACguhptDhOF1wAAIKAovUbg/PjHP9a5556rPXv2VHS7t956q0488URdddVV6u3trei2ay2dTuv3v//9nILrhx56SOl0ut5Dq4hUKqUvfOELuuKKK6q6nx07dujjH/+4rr32Wl111VVavnx5VfeH+nJcRxvOmNK2ZdKSKWmkTUpZ5U1W9VR+n0+m+Dri+Pvdto+04Szput+GZFEOVFODayZ006rUwoNeOVvJc8j6vptWpTR4cEq9z3VUcISoqrAtWUVeWodCksfFuU0tbBTPORyWDEpymxo5B0PIkKwiN/Ah5+YXcosf+QqHJZfXzU2t1Jx5f9TcyDkYyDkYwuQcCOHwwq8xYRkAAARAJBTRxt+HddmJqbq+pDU8aeMDhiJtjqTmvZF5o7IkbdxxgLYeMCJ5nkZCdtVuhJ2LIanbDqnds7RxxwGy0nYN946ibEcysh53tu3/yXBTklI1HxYqLJyWzAKP/LQppTi20fTIORiK5pziabsVRNKFr+Ej59ZQLOdUSmqNy+CDLZJWwXv+pNLk3ArIORiK5Zwm55ZgzztulV3mEQ5T7gEAAAAAAAAAqB4KrwEAABoGpdcIlCuvvFL9/f3yqvQmYM+ePTrrrLP0rW99SxdccEFV9lELv/jFL5q+uDufPXv26IMf/KBuvPHGmu3zl7/8pU4++WTdeOONOvDAA2u2X9SWZVra+MJKbV26XTKktrSUrFGPiyd/f6b8OTgbH7QovK6xwTUT6n/jcMX6El1D6n/jsCRRfA0AAAAAAAAAAAA0iUtvDUnJlP7vKSpc3FMtnvT5O6RLb5Z0xON1GEAw9ErSS8v08de/VJf9G66rTfcsU+8LeySRc0OJjUuGLaVtyXX8cqfs69QmQ1KCSzab3lLbb8DPZ8KUJrmxatMj52BYZvsX3eWzx5SmyLnpkXMwkHMwFMt53JQS5Nz0yDkYltuFj52Rc2uYX3pt21J3t7TfftLSpZLDDfsAAAAAAAAAAFVA4TUAAEBDYQYFAuO73/1uVQuvMzzP0//3//1/6uzs1DnnnFPVfaE86XRavb29+vWvf13zfT/++ON629veprvuukv77LNPzfeP2uhddor0ywF9/P2exqLy26hrcRzEk8aifuH1//up1Ls9Jq2owX4hqfKF1xkUXwMAAAAAAAAAAABNxnV10gtSZ1raE6n97jvT0kkvTH8SDtd+AEESCkkyZi4JqMWUBEOZSxAMf/9k3HgsU0rakutKMiTT8suvM0xTsmp0B3VUj+X5F+nkQ86tgZyDwXQLl2pa5NwSyDkYiuZs+VmjuVlu4euyybk1kHMwmOQcCK47t8gjND2N9dVXpVisPmMCAAAAAAAAADS9qdSU2iJtuReWUXidllT1qzApvAYAAKD0GsFw99136/zzzy+p8Prkk0/Wn/7pn+rkk0/W2rVr1dXVpfHxcT311FO68847tWXLFv3ud78ruA3P83T++efryCOP1Otf//pK/TOwl77whS+UXHgdiUT0x3/8x3rLW96ik046Sfvuu696enoUCoU0PDysnTt36t5779Udd9yha6+9ViMjI0W3+fTTT+tDH/qQbrnlFpkmF+C1pHe9SxoakDQ9obVWN/4y5h3jiMeltjwHZ1BRg6vG1H/8brnFDnoV+1kwjJwruYbUf9JuKRJR7wvxRY8TNRC2pbBTeJ1YbPZiXTSnSAk5t0Ulm5ybGjkHQyk5x9okh9ftTc1ypWiRDNtiqvjdS1BboRJz9si5qYUccg4Ccg4Gcg6GdNovfsqYfzzcMCiRAQAALWvwMFf975S6Uv4544kaFl93pPz99p8hyfDUOzpau50HzOCaSfW/blhRR+pOmRoN+0VN1ZyaYEgyPKk7bSrqSP2ve16amFTvc+1V3CvKFh2TPHv2c9fVnJ+MtCclipyfQONLOlKht7VJQ0pwjqnpkXMwkHMwpJzCZcjk3BqK5Zwg55aQ5PEcCOQcDCmn8PX1PG+3BmfeMZA9e/xzxe3t0gsvSFNT9RkXAAAAAAAAAKBpPbLjER37nWN1xiFnaPDswbkLly8veTvprI9VK76m8BoAAEASpdcIgLGxMZ199tlKp9MF1zv00EP1L//yL3rHO96xYFlPT49OOOEEnXDCCerv79d///d/64ILLtCTTz6Zd3upVEp9fX164IEHFI9TVFpvd9xxh6644oqi61mWpYsuukh/8Rd/oZUrV+ZcZ7/99tN+++2n173udfrYxz6mf/zHf9S///u/6ytf+YrGx8cLbv+2227TlVdeqf7+/kX9O9DYBg/31P8ez+/kqXUvj+F3AfWfIWmrp96Xa7z/APILr1+pekeia0j9x78iSRRfAwAAAAAAoPlxU0gAANCiHNfR5mOcmfOH8ZRkm1KyBldnRW1/f5J/fnHzsdKZv0nK4oYyFecYnjYfMiZXnuRJMVuSZ2g04lWt+Hqm8DplKOZIkidX0uZDxnTmkxY5NxIzLZnu7OeuN3fiijP9B83NLVLO5hiSw4SlpkfOwUDOwTC/bHHBcnJuCcVydsm5JbjFHs8mObcCcg4Gp0i5uUvOLWH+7+dUShobkyYmpGXLpF276jMuAAAAAAAAAEBTemTHI1r37XVKu2ld9+h16v1h72zx9fr1JR93nt9CV5Xi67POqvQWAQAAmhal12h5f/VXf6Wnn3664DrvfOc7dc0116i7u7ukbZ5++um699579cEPflC33HJL3vWefvppXXzxxfrmN79Z1pibUXt7u9atW6dXX321YBl4vfzv//2/5RW5+9HKlSv1X//1Xzr11FPL2nZnZ6c+85nP6H3ve5/Wr1+vBx54oOD6X/va1/Sxj31MnZ2dZe0Hjc1xHW1+7jpNxiyNhhwZnqo2oXW+zATX0aj/+ea1u3XmYwYTW6tocO2U+o8dleupeMiGit99zSu8jiup/9iXpMlJ9T7TVt5gURsRV1qSKLzOuCelKHVqahFH6k4WXmfU8xss0LzIORhittSdKrzOGDk3vZArmXbhdUaTqvpdTFBdIVcySsiZ90fNLUzOgUDOwUDOwTA1Jbnu3K8lk37ZdTgsRSL1GRcAAECVWaalLT8Nqe/9job2lRIhKW1Nny6s4n4N+ftJhPxDn+telrb8WLIO5Ia61WBJ2vK7DvW9+SUNLfHPJ8RcQ0p7Gg27JV8nUOrPxUzhddr09zP9dmndSFRbfrefrE5rcf8QVIeR0JxWaztNSRcAAAAAAEA2x5F275YSRa69BwAAAAAAAABgWnbhdcZM8fU1lnTttSVtZ37hdfbXK1Z8fdZZ0jXXVGprAAAATY/Sa7S0hx9+WFdeeWXBdd70pjfpJz/5idrb28va9pIlS/Szn/1Mb3/723X33XfnXW/Tpk06//zzdeSRR5a1/UYWi8W0bt06nXjiiTrhhBN04okn6qijjpJlWfroRz/acKXXW7du1e23315wnY6ODl1//fU6/vjjF72fgw8+WP/93/+tN73pTQX/H+zcuVPf//739alPfWrR+0LjsUxLZx99tm58/Ff+RXjyJ56W08+TmazqlVmWbWStPBmWzn4iJsuValO5HTyDaxPqP3m05t2IriH1nzwqeVLvM7Ha7hxFpQxXr8ScoutQ2tXckqZXNOe0yLnZkXNAlHLjCs8rfuMKNDbPKzHnmowG1VJShuTc9Hg8BwM5BwM5B1emBNvzJIP3UwAAoHXFE54GrpFOO1ca2tf/WjVvmJw5xyz5N0leu1sauEaKpwz/hiOoirjCGvjdGvWd9LyGpm+MG3MNyZZGQ27RUwhG1sei91j2pG7bVMw1swqvYxr43WrFDauCsyxQEY4pmVmppjnXAAAAAAAAAmr+MZHsz9Np/6bJAAAAAAAAAAAUkavwOuO6R69T8lopWsJ28hVeZy/f60syly2j8BoAAGAeSq/R0i655BLZtp13+dKlSzUwMFB24XVGR0eHfvSjH+nYY4/VyMhIznVs29bXvvY1/eAHP1jUPuotGo3qda97nU488cSZkuvXvva1CoWa5+ljy5YtRdf5x3/8x70qvM5YsWKFfvzjH+u4446TmynxyDMmSq9bi+M6+uG2H6rH6tDu9IjSpsoqRc5MRo46UtJSWZOeXcOfMxl2pZ6koR8emtTZz8VlUcZZcYMHTqr/pDG5ZRXzlJhkCdt0Dan/zWNSyFLvs4v73YXqcCKGJiOFL7x1Q2EpbNVoRKgGJ+wVzzkSlkTOzYycAyJsSFbhcnOFw5LBpIqmFnKlUJHXWOFweS/c0XhKyTkU5mYFza7UxzM5NzdyDoYwOQeCbc891mUYUiw2+7VUqj7jAgAAqAXH0U2HSq90+i9/09OHGMu9YXKpsm+QHHb9/d50kNT7B0967rnK7xAz4pIGnpf63udpaIV/fUjMkVKSJgrMepj/Y1Cs+LrNlmIpT5J/THvdDlMDP5fiqRcWP3hUT9fU3CsyHVdzEk7aUoJzD00v6RU+VZiUlODYRtMj52Ag52BIeVKhX7/k3BqK5ZwQObeCJI/nQCDnYEh5Cw+SZON5uzXMn1Pluv71ALGYtGQJN0sGAAAAAAAAABRVqPBakqYu9k8tFSusLlZ4nb3eoouvly2Tdu5c7HcDAAC0rOZprQXK9NRTT+naa68tuM7Xv/51HXDAAXu1nwMPPFCXXHKJPvOZz+Rd57/+67/0jW98Q2vXrt2rfdXKYYcdpu985zs64YQTdMwxxygc3ut7ENXVTTfdVHD54Ycfro997GMV298xxxyjj3zkI7rqqqvyrnPXXXdpYmJCHR0dFdsv6ssyLW354Bb1ffkw3Wca2tFeamW1z/Ck7qQUs6VESBqNljfp2TWkeEI69lVDW367jyzDLHwhKMrmGJ42HzZRfieiMfevrxkP6akuu+RS8/lcQ9p82ITOfL6DYvM6cQxv4f970/D/FGIakjl7JX7O7aBh5M7ZLCFnk5ybCDkHQ858DHIOBFOl5cwL5+ZWas48fpsbOQcDOQcDOQeDYSwsvc7+3ClyAxoAAIAmNniYq/73+C9pe6ak3W1+8XW1XuJ6hn+uOez6+/MMqf8Mf1nvs/lvEo/KiNvSwHVh9f1xSkMrXCVC0lSBq/Hy/RgUKr6eCkkRx1PMni68/klY8RSvqRuWJ8ktcDWA5/l/0Nw8r3BbvafS73SPxkXOAUHOgcDjORjIOSDIORjIORCKvTcm59bluv5Nkk1T6uys92gAAAAAAAAAAA2sWOH15MVz73Wer7C61MLrYtspisJrAACAnCi9Rsu68sor5RQoTjj00EP1iU98oiL7uuCCC3TFFVfoqaeeyrnccRxdeeWVuuyyyyqyv2o76qijdNRRR9V7GBWRTqf1+9//vuA6H/3oR2VZVsF1yvWJT3yiYOm1bdt64IEHdMopp1R0v6iv+K49+uYvbK37UPlXWIYdv/Ba8j9OhqRkmb+lR2LSN3/pKh51pZBZ/BtQFssztOW2Fep76w4NLU0tWO5J2h111G6bijkLpysbks7Y3qajRiN6uDul6w+YynktbsLyNBly1ZO0ck56Xjcc0ZbbVlC6WSdjYVcb3rJDGx/vVO9zi79xweCaCW0+dI+23LZC8TSP10ZDzsFAzsFAzgAAAECdGBy7AgAAweO4jjYf583cRNeQX0S9s12yq1V6Lcny/P1kduEa0ubjpDNfiXBOsQbikgZuiOq09eMaWu7mLDg3PBW9954h+b1e89bzDP+m2WvHTQ3c0KW4YUjRyowdVRByJdOd/dxxNSd8U3NuuIkmZXp+lnmXq/hNv9D4yDkYDHIOBB7PwUDOwcDzdjCQczCYXuFjJeTcGuaXm0ciUizmn0uemuJmyQAAAAAAAACAvIoVXk9cnLs8cX5hdbmF1/m2U1SxG34CAAAEGKXXaEmO4+gHP/hBwXU++9nPVqzoOBQK6c///M914YUX5l3n6quv1qWXXiqTiUs19eyzzxYsP5ek008/veL7feMb36ju7m6Njo7mXeeJJ56g9LrFPP8/1+stZw4vasJyMiSNRaR4yv9YbuG1JNmm9JaPSlv/a1KrFS9/AygqnjY18JuFxdeZwuu0IY2GXUlzi6+zC68lzXycX3ydsLzp7/e3N7/4et1wRAO/oWyzXsbC7kz2W5cOS9KiClQH10yo/43Dcg2p7607yLTBkHMwkHMwkDMAAABQR9kXa80vwOY8CQAAaFGWaWnLoKm+D7oa2tf/WjKkmRLsanENfz+Zmyyve1na8mPJ6qYZuVZuOiipl9s9md7CgnNjusOplOkMuYqvM8XmL7d7uukgqffpSMXGjSoIpf3Sazcr8ey/m6Zk8Z6o6Zlu4RI+y/D/oLmRczBYRXI2ybklFHs8k3Nr4Hk7GCy3SEkuObcEcg4Gs0jOPG+3hvlzuUIh/49l+R9ffLE+4wIAAAAAAAAANLRihdfjFxcupM4UVi+28Hr+doqi8BoAAKAgSq/Rkm6++Wa99NJLeZfHYjF95CMfqeg+zz33XH3hC19QKpXKufzFF1/Urbfeqre//e0V3S8K2717d9F1Xve611V8v6FQSEcddZR++9vf5l1n586dFd8v6idlp3TCIxdqOOblnIhaiomIlAhLziKuz8xMlB1uk0740G5tv7ZTEZeJktUwv/g6u/A6I7v42vDmFl5nZBdfS3MLryUpbcwtvqbwur6yi1Mlvzyg/43lF6hmF6dK0tDSFAWqDYScg4Gcg4GcAQAAgAYWLumSLwAAgKYUV1QD10ypb730u9XSaLT888bl8gx/P5L0xuelgWukeFKS6xb8PlTG4GuS6j91QonQwnP9mfP4pTCyP8673sAxpERI6j91XPJc9T5FoXnDM43piSzG3PJF0+RGQK3AVPHyVJNytqZHzsFgiJyDgMdzMJBzMPC8HQzkHAymipebk3Pzm1/yEQpJkcjssZH03taNAAAAAAAAAABazVRqSsd+59i8hddjF0ulXEFZqSPQRYuvKbwGAAAoitJrtKSf/exnBZe/973vVVdXV0X3uWTJEr3nPe/RT37yk4LjovS6tpLJZMHl3d3dClepYGPFihUFl09NTVVlv6iPSCiij768ry7f50lJuSeilmJvCq8zPvp7i8LrKssUX5/1tld1+8rEnMLrjNGwK8Mzdem9S/RSe+4J5Zni61+tTswpvM7IFF+f+kqMcs06ml+cmpFdoPqGHZFc3zrH9aun9FfHj8wUp2ZQoNoYSsn5hB3FXzP8YvWk/s8J5NyoyDkYSsn5lFeKn8766QGT+sKJu8kZAAAAqBTD8CcxW1a9RwIAAFA9y5crvn27PjIk3XKQf7642peze5JkSJNh6SND04XXlOrWxOBrkup/y4QmQ55GI3NvkF1O4fV8ubYzGvF/kvrfMiFJFF83KsOY+3fTnDupxTR4fLYC0ytcwmeQc0sg52AoljPP263BIOdAIOdgKPq8bVKS2wrIORiKPm+Tc0vIVXqd/ft4v/1qOx4AAAAAAAAAQMNri7TpjEPO0HWPXrdg2cjFUqzG46HwGgAAYO9Reo2W9Otf/7rg8ve+971V2e973/vegqXXN954Y1X2i/y6u7sLLu/o6KjavottOx6PV23fqI9L7+yQ9pEuP3n6C7W6ztLQzEzpz90hXfo/lnRoZ412HmAhZ7qgZ3qmcS6GpEhUCjsFtuNJSuT/efEMfz8dHZJNIVCtjYUc9Z20XUPdaeUKyTWk/pN26+KHVkjh/MXXD8eT+pcjR3NuQ5KGlqXV945hDdx1gOLkXHOl5vxXD5NzMyPnYCg1568/tFIhL/9prXt7pvRfB4zKI+fmZrlSW+EbISkVlTwmtjY1y5HaUoXX6YyVf0ciNJYQOQcCOQdDKTl3xFS7A2uoinR6btGbaUqxGGXXAAAgGFat0mDHdn3xdP+whVejl0Ce/P198XSp3ZZ6H+c1dbXNL7zOyBRW720CubZD8XUz4LEHAAAAAABQ1LJlUpH5XgAAAAAAAACAYBo8e1C9P+ydU3y962KpvcbjoPAaAACgMii9Rst56aWX9MgjjxRc553vfGdV9v2ud72r4PJt27bp5Zdf1r777luV/WOhZcuWFVw+PDxctX3v2rWr4PJiY0MTGh3VpQ+ZklxddvJMD3XVZfbz+TukS2+SFPH8EhlUzVjIUd/xz2lbPKUlaUsjYUdpc27i3WlLUc/UV47ZqdN2duqoPQszebgzoetXjqvNMdWdNjQ6rxw77Bpakra0rTulvpNf0MD9B1OsWUOZnIfiSRWanOwaKjlns8B2hpYkybkOysn5q6/dodN2dpFzEyLnYCgn57885lV9+MUlOnF04Y1q7u2e0FWrRxR1DRnk3NwsR4oWeVUei1F63ewsRyrW7ROj3LzplZQzZchNj5yDIVRizpSENbdodG7ptWFQeA0AAAJj8Nio+tulkag0mf/+ilUxGfFfSfefIelGQ70v1Xb/QZKv8Doj89Y1372TS+EZ/rUA87dB8XUTsCzJKXBjbAAAAAAAgKAyDL/wevXqeo8EAAAAAAAAANDAsouvX71Y6qrx/im8BgAAqBxKr9Fy7r777oLLDzjgAB1wwAFV2ffatWu133776aWX8s8cvOeee/T+97+/KvvHQvvtt596enq0e/funMsTiYRGRka0ZMmSiu/75ZdfLrj8Na95TcX3iTqbmpIknfSCoY60pz01nMTckZZOemH6E9et3Y4DyC/UfFJDcT9vU8aC4uvutKWY65fquYann+87qomdjg6ZmJ1w/ERHUrcs3yNP/oTlmGtKac0UX2cKrzOlqkPxKfUd/yTFmjUyP+diPHm6fuWoJM0pyvULckdLLsEn59oqN2dXIucmRM7BUH7Onq5a7d8AJ7v42i+8Hi65S5OcAQAAAAAAAGQ4rqPNHY9pJCJN1LjwOiOz380nmDrz+XWyuKFMxTnytPmoIU1GpzQashcsz5yt9yTJyH9Ln5BnyJ7faG3Mfm9miWtI82/nNhr1JMvS5pOiOjNOzo3lVclL+3/1PCmZlJysazicNslpr8/QUDldU5JZ4KxhIiwlC057QjMg52Ag52CITxa+zyI5t4ZiOU+FpRQ5Nz1yDgZyDoaiOUekFFMem95zz839fPVq/w83TAYAAAAAAAAAlGDw7EG9ZBhaUuP9UngNAABQWVwBgpZz//33F1x+/PHHV3X/J554on72s5/lXb5161ZKr2vIMAydcsop+vnPf553ndtvv73imQwPD+uhhx7Ku7ytrU0nnHBCRfeJxjB4uKf+93jqSvmTUGsxmbkjJXWlpP4z/M97H5+eOImKGws56jvxOQ11JZTdempKWpIyNRJx1W4birmGZlfw5MrTzcvHlfIcHTQR0dMdKf3P8snZTXie5Ekxx5A8U5MhT0tS5vTk5dkdDXVNqu/YxzXwuzUUa1ZRvpwLMjx5mi7KdVwdNR7Vw11JXb9yPGsTXknbI+faIOdgIOdgWFzO/g0Lrlo9LDmuTtzdpnt7pnTV6hF5mXy97N/n+ZFzA7NcKZIuvE7SlLz5lTFoKpZTQs6WSm6zR2MKOVKqWM5Jcm525BwMjiOFS8iZwrbmli6SMQAAQIuyTEsHj1r6+arFb8Pw/FfDM4coF2EiIh08FpZ1yKGLHwjysiSdbUg3hm7V3PcunubfnjpzhNnQ3OPNbV5IEZlKea6mjOzibEOef5R6DleZ4uvZ/U2GPJ1trCPnRjNhSW7We6KpScnOytiIS6Ge2o8LlRUdlYwCN6S32yQ7ln85mgM5BwM5B0NsVFrwSi0LObeGYjmn2ySHnJtebEQFr+VJt0tOtFajQbWQczCQczC8/PLc8o/OTgqvAQAAAAAAAAClMwztJ6mWs5QovAYAAKg8Sq/Rch544IGCy4855piq7v+YY44pWnqN2jrjjDMKll5ff/31FS+9vuGGG+S6+S+efvOb36xIpAZtyKipwcM99b/ekzs9zzSe8j9Ws/i6IzW7H9eYLr7+b6k3e9IkKsIxPG046XkNdSdyLjdlqCdlTk9YXsiT9D/LJ/V0R0ovtNl5L9ONuaaiKS/vdoa6E9pw4nO67o7Vsij6qrhiOeflzX64fr9x/aEroac603NzLuP4JTlX16JznkbOzYGcg2Hxz9t+iJ48XbVmt+7rntS27uS8aD2VWrZIzg3KcyWnyOtiJyQVeO+GZlBCzrZNSW7Tc8g5EMg5GErI2SHnpsdFXAAAIKBSdko/2OcVGd7iXtJmCq/XjkjPLJF//8VFbucHh0zp/47ZinBpWMU5cvXDtie0xI1oxEzKP4OwsPA6w8v6r+QXXkdl6eh0j7aFd0ueZoqvcxVeZ/jF1/5x67AMLXEj+mHbEzo7ebAscWM/AAAAAAAAAAAAAAAAAADQIozZC2jDqk3xNYXXAAAA1cGMF7Scxx57rODyQw89tKr7P+SQQwouf/zxx6u6fyz0Z3/2Z1qyZEne5d/97nf10ksvVWx/ruvqG9/4RsF1LrjggortD43BcR1tPioxU3idEU/5xdTVkF14neEa0uZ1rhyDgyWVZnmGNj7dLXMv/td6hvR8u71XvU2mJ218uptCzSopJef8U82nlxvSk13pojkX2g45Vxc5BwM5B0Olfj8/tCTJ72cAAAAAAAAAeyUSiui+rW/QsqShck/XZgqvP3eH9MQ/+R+N6a+Xu51lCem+wRUUXleJJVNbRt+h4+zlWuJGFZKRt/A6IxNjpvD6nMnD9MnJo3TO5GGKylKbF5quzi7MlRSSoSVuVMfZy7Vl9B0UXgMAAAAAAAAAAAAAAAAAgNZhLJyvX7CQugIovAYAAKgeZr2gpXiep2eeeabgOsVKqfdWse0XGx8qr7OzU3/+53+ed/nU1JQ+97nPVWx/3/rWt/TQQw/lXX7ooYfqzDPPrNj+0Bgs09KWl0/RulcWLiu1+NqQX5hYSlVirsJrSVr3srTll+0ULlZJ7wtxbbp/Zc5iTVeedkdcJcxiU5oLS5iudkdcuTmmNJuetOn+lep9Ib5X+0Bh5BwM5BwM5BwMhXKuBXIGAAAAAAAAkLG6a5W2XrO8rOLr7MLrv7vJ/9rf3VR+8XWm8Hrrf8a02u1czPBRorgX0cDIu/Q6e6mKV1X7PPl5njN5mE5Mr5AknZheoXMmDyvpGoHsLb3OXqqBkXcp7kXKGzgAAAAAAAAAAAAAAAAAAECjylF4nVGt4msKrwEAAKorVO8BAJX0yiuvKJFIFFxn//33r+oYim1/YmJCr776qvbZZ5+qjgNzffnLX9a1116rbdu25Vx+9dVX64gjjtBXvvKVvdrPz3/+c1100UV5lxuGoX/913+VaXLPgVYUP/5NGvj7W9R3ZlJDK+ctS0mJsOTkObaSPVnZmJ7tmu+wh+XlL7weuEaKL+mUwtW+R1lw9b66THowpP51L84UnLryNBJxlTY9jUY8KSXF3PIf5wnT1WjEL18dibhakjJlTk9xNmVo04P7q/fV7urfgg7l52wYKjqh3fAf2OTcOMp/PJNzMyLnYMiVc0GlPG+XUDNCzg3OcqWQU3idUEjyeH/W1CyneM7hsMSNgZpbyJRCRW5UQc7Nj5yDoZScQ2GVdls4NKxQSMo+Bp7rgrMCF6EBAAA0taOP1urbb9fWa5bruPU7tSvqFXwbk6vwOiPz+eWnSPIKvx0yPGnZlLT130NavceVOlzpscf29l+DQixbOmpSRnjmtEFemegM15VGhqVxe3Zh15iMmCvD8j8tth3DkzQ5KT3xhORw6V/jeVUyHCmdltK2lEpKTtb74ElLSlFW3vSWpPyLd/KZtKQpHp9NL5Oz40pejuNZE5Y0ZdV+XKisnnThxzM5t4alaRW8izY5t4ZiOe+xpAQ5Nz1yDgZyDoalKanQJVvjlpQk56Y3Njb382eflcbHpZUrpba2+owJAAAAAAAAANC4SphrFJaUruAuKbwGAACoPq6sR0t58cUXi66z7777VnUMpWz/xRdfpPS6xiKRiK6++mq99a1v1cjISM51/uqv/krPPPOMNm3apPb29rK277quLr30Uv3VX/2VHCd/2dZFF12k0047raxto4kcc4ziVrsGrkmpb703p/h6LFJa4fXM1woUXzuGv73s4uuZwmvbkjo7pQiTJKupd+cKaVtI/Uc/J9vwNBL2i1MzRiOulDb8AlVDKlrUZBhKmJ5Gw7OT5NKmX8i6JG0p5BnatG2Nenf2SERbM2XlXErBqqSERc6NhpyDgZyDITtnt+g5La/4ia8iv8NNT+Tc6CxHChcpQ45EKL1udpYjhYuUp0bC5NzsSso5QhlysyPnYAiVmDOl180tFJr7env+TSBNc+HXAAAAWsUxx0iSVk+GtPXqbh139oh2tin3S9wChdcZ2cXXnpd/O8umpK3/amj11PTrrM7Ovft3oKAxy1bfkQ9pW/uEeuywhkNppeaf9J+nw/HPH1y18hVJ0onjcd3bNaarVr6ikGeq0zE0bhU+nhn2DPXYYW1rn1DfkQ9p4JHXKk7xdeOZnPLLriXJdiQ3632w40lJJsI0vVRaKtS9lnT8P2huqbRfYu/mecymHCnJ8Y2ml7alQg/XJDm3hJRduFSTnFtDsZx53m4NPJ6DgZyDIW0XPiXM83ZrmD+3ampK2rVLGh2VDjywPmMCAAAAAAAAADSm5ctLWq2ShdeZ7eUsvqbwGgAAoGK4AgQtZdeuXQWXx+NxRaPRqo6hvb1dnUUmDxYbJ6rjmGOO0Q033KCurq6862zevFlHHHGELr/8cu3evbvoNpPJpK666iodf/zx+su//EvZtp133XPOOUeXXXbZosaOJvGGN0jRqOJOSAPXGFrnz1XVWESayFOEmKvwemaZl/9azomIv10pq/A6ZfhlMh0de/OvQIl6X+7RpY+s1kjYmSlOzY5yNOwoYRYpcZqWNF2NZhUyZraTNj2NhB1d+shq9b7cU6GRoxy5cs5WTs6JeTlnkHP9kXMwkHMw9L7co03b1ihHxBU1U3hNzgAAAED5wjkvBwMAAGgNb3jDzF9Xbx/RbZsL3PfFkM78Q/7C64y/u8lfL9/J47Ar3bZZWj2adWA0Hi9r2CidI08bjtimoY49i/p+T9JVK1/Rd/Z7UVetfKXEW3EuNNSxRxuO2CZn0VtAVaTSs4XXAJqb5+UvvAYAAAAALJ5tS9u3S+lKV5MAAAAAAAAAAJrS+vX+TROLqNZR5QXbpfAaAACgokL1HgBQScPDwwWXx2s0qS8ej2vPnvyT24qNE9Xzxje+UXfddZfOPvts/f73v8+5zvbt2/X5z39eX/rSl/S6171OJ510kvbdd18tXbpUlmVp9+7d2rFjh+677z7dc889SiYLT1YzDEMXXnihLrvsMhlGvgrjxnDllVfqn//5n6u+nyeffLLq+6iL/feX3vxm6eabFR8Z0cA10rGf8PRSnh78QoXXM+t4/oq5VpuISPtMTBdeJyVZptTVJUXyNGyjosZCjr6/epfaHVOjpj+VOJNT5pE+GnbUZRe+x4hteEpYswnP3067Y+r7q3fp/a8uUdy2KvuPQFHzc85lNOyoK10457ThKRXK/4An5/oi52Ag5+DIFFH3H/2c3Cq8/KbwGgAAANgLoRDHLwEAQGvbf3/plFOkn/5UY1HpondLPQlpR7vkzTte2ZGS7lktDR4h9f4h/yYHj/DX60gtvNmy4fnbv+jdmRslp6UVK6Qq3xA+yCwZ2vjy/tp6yGNyDE+7Q2nZhidTUq5+c2P6z4TlqN01FXZNeZIe6piYWSdtupoy3ZnzzLnOQpjyzy3vDqXVY4dlef44rLy30kZdpFL1HgGASvG8vDecAAAAAADspVRKevnleo8CAAAAAAAAAFBv69dL115bdLVq30YxLSksSWedVeU9AQAABA+l12gpu3fvLri8q6urJuMoth9Kr+vrqKOO0t13362//du/1RVXXKGxsbGc6zmOowceeEAPPPDAovd14IEH6p//+Z91xhlnLHobtbRjxw49/PDD9R5Gczv3XOmOO6RYTH9z8qSeXZJ7tVIKr2fWLVB8/ewS6W/eLF16iymZprTPPn5xDKpqzLLVd+xTGuqaUsw15aU9jYT9Kczzi6/HQ65CrqHQ/Fns8iclp01vzuRlL+vv3WlTMdfUUHxKfSc8pYEHDlXcId9amZ+z0n4hbi7jYVcR11A4R85pw1MyK+f5utMWOdcROQcDOQdP784V0iOW+o96Rm6uV1GGodyvruastOArpgxtemStencu5YhKM7AMySpSPh8KSV7hsns0OHIOhpJzpoGkqZFzMFgqLWcahZqbaU6/5p5mGH7RtWVJ4XD9xgUAAFArH/iAxn52jfrWS0P7+l/KdzTSNaQ/n76cIFfx9eAR/vJ8N/jLbHdoX6lvvTRwjaf4smV7M3qUoHfXCk2ajs47/BGlSz3xL2nSdBWV5pw7tg1PSdM/11zKO6H0dPH1vz96pHp3rShz5Ki2HeGUJiJZ56BSacmdrUPvTFrarxp37ERNvRp1NGXlqrn3xROW9iXn5uc4kpmVs+fN/YWeNqQiN1RGE0g7/jHLfGxybgm2499BJO9ycm4JxXLmebs18HgOBnIOBtspfCCE5+3W4OZ/7yxJyjOXCwAAAAAAAAAQIA1QeC35lwX1Shq85poa7A0AACBYqGhCS0kkEgWXd3R01GQcnZ2dBZcXGyeqLxaL6Wtf+5o++9nP6p//+Z81MDCg3//+9xXb/uGHH64LL7xQ5513nsKUeATLH/2RdMAB+uLrR3X5sQWqFEuf9zq7fo4LOz1Jl58iyZIuvatN2m8/v1QGVTNm2eo78jENdUxJMuTK01TIL0DNLqyWZiNLm57kSqGsEG35hdfK+p7sHwtD0lTIUzTtF2zOFKg+8loKVGtgfs6SFPMsyTY0GrJzfk/S9KR5RbmZgtx8uu2QYp4588NCzrVFzsFAzsHVu6ddejKq/kMeW1h8bcz8Jz9j7nJThjY9cZh696yQ2is6VFSL6UixIi+8nXbKkJudaZNzEFgl5Gy3qfDMVzQ8cg4Gy5ZiRdax20XpdZObmJhbbm5ZUqxY8AAAAK1j7F83zRReO4a0I89L3ImI/zGeyl18nV14PRaZXX+O6e2vmMwqvv7V84rvt1+l/1nIMmbZ+v7Kl9XuWDPnGvJV+Mx/p5s0XXmeIcsz5BieUkb+c8bZXM2+I253LH1/5ct6//ByzkE0mNGIp3EjuyTXkbzZz6cMwy/SRVMbDdmaCOc/jjVlknNLcF0p+8YGjqs5z9KOITnlXgCGhuMWKVsk59ZQ7DmZnFtDsZxdcm4JbrHHs0nOrYCcg8EpUm7uknNLmF96Pf/zaLR2YwEAAAAAAAAANB6j+PyxWhVef0PSdRdLvT/s1eDZgzXYKwAAQHDQDoGWkkqlCi4PhWoz0avYfoqNE7XT09OjL3zhC/r7v/97vfvd797r7a1du1a//OUv9Yc//EGf+tSnKLwOonBYX/z4Wl1+7KQ/ITXP8RXPKL33upTtXH6Sqy++L0rhdZX5xakPaahjjyTJlaeRsK204S2Y/zR/QnLa9GRPf6VY4bXkz6dKG/72M0WdQx171HfkQxqzcpe0ojLm55wt5pqKuvkfZ0nTVXp60qNfkJtversUdU3FcmyLnGuDnIOBnNG7a4XeMdJTkW29Y6RHvbtWVGRbAAAAAAAAAFrTWHJMfWt+N6fwOt+5Xskvsh6L+P1rf36GX3QtlVh4Pc2b3o9jTBdf/9E4x6WryJGnDUds01DHHsVcU3E7lLfwOmP++eCU4SlpuHMKr6Xi1xC4kuJ2SDHX1FDHHm04Ypucsu+4jarKvgEQAAAAAAAAcotEpLa2eo8CAAAAAAAAAFAvDVR4/RNJF1/sf37do9ep94e9NdgzAABAcNCMiZZC6TXK8dJLL+lzn/ucli9frtNPP1033HDDXm/zmWee0Xve8x6dcMIJ+sd//EdNTExUYKRoJl+88Yu6/KVr/DLqIsdXSim+LlR4PX87lx+6Q19c+0QZo0U5sicvS3MLr6XcWeYqvk4abtHC6+zt5Sq+ZvJy9czPeb6E6RYsvpX8otypEtdL5FmHnKuLnIOBnCFJg8t26KYluyuyrZuW7Nbgsh0V2RYAAAAAAACA1uO4jjZsOk1DK0srvM6YX3z90Q+UXnidMb/4esPa+zkuXSWWDG18eX+ZMuQZ0mQZBePZibjG3K+XmtakZcszJHN6HNaC2zOjrgxJVm2uTwMAAAAAAGhKkYjU1VXvUQAAAAAAAAAA6qVBCq8l6beSPnzx3K9RfA0AAFBZzLBAS3HdwmV0lmXVZBzF9uM4Tk3GgdySyaS+8pWv6J/+6Z+UTCarso/7779f999/v77+9a/roosu0uc//3mFw+Gq7AuN44s3flGX//ZyeZ7nT14uYVZqZr1ch2NKKbyesx1Jlx/wnCTp0mcOKe0bUbLM5OWthzwmW+6Cwut8cWe+noly/uTlfLK/L1N8vSQdUkgmk5erKDtnd15CCdPVaKi0SeuOUdq09NGQLdkhxdy596Jhknp1kXMwkDMGl+1Qf478F8uVp/5DHpMk9e5aUZFtAgAAAAAAAGgdlmlp4+0TuvfQ0guvMzLF1vGUdOPB/t9LLbzOyBRfr5yQNt7nylpRxjejLL1j+2vyOWnjwQ8pVebhf09zrw8o9wh2ypCGQ2ltfvK16h3bX+JSlLpx5C08/2OGJMOTLEvyXMlxpOxzR2FL6uiYux3Dk1XOEwZqKmc+UUnhAo/etojUMfc5mJybUMSTsi8DdRzJy8o9akpuba5HRRVFbf3/7P15nBx1of3/n6rq7unZs+8kYU0gSCCExSCIbCJCdCAyaNh+KO6j6Ecv/tR7P7hevW4fb/Re9CIXghEGgSAoIBhA9rAkDJAQCGELCQnZZp/ppaq+f/T0pHtmepvpvV/PxyOE7qquek/OdM90db1PyUy23Ix/HUdpIufKQM6VwZdGzi45lzxyrgxV4ZEnUAwuJ+eyMHS+lmlK1dWS359WoQkAAAAAAAAAoAwVUeH1BkmnXjPysmjx9eqLVudpNAAAAOWL0muUFY8n+bd0OJxesd1YpdoP5ceF89JLL+lTn/qUXnzxxbzsb8+ePfrOd76j22+/XatWrdL8+fPzst/Rmjx5so444oic72fLli05KxwvlGA4qBvabogUXkenpY6i+Hpuu/TmuMwKrwe3M/D3DdPe1Q/ePEi+pGf8YjSa9kxWr2nr0/NeTqvwOtZoJi+PVHz9h1cOp2gzx6L/vrFFqZkU5GZqaFGuKUMrXjuMnHOMnCsDOVeubBdeR1F8DQAAAAAAACCZ457boe4jMv+sV4ovvs608DrKNaRur3TcGwHpwLrMN4C0dJoh3TBth5xRPj762fFoj2A7km6YtkPnBQ9Ug8M5SIXQaYa0/ICndcW+uWrqnLl/QcgbKb2OclzJjvlcqq5O8k8avLl62j5df8BurVp/kBrClOcWm06PreXHvK4rtk5S047x+xc0eiSPneSRNZKnZvAWOZcor0cyYnIOhSUn5rbXL9X58z8uZFdjv2Qm+Ylc5ZUCnGpf8si5MpBzZRjXH//79lDkXB7IuTKkytnnlYLkXPK6uuJvR+f89fdLVVX5Hw8AAAAAAAAAoLCKqPD6LUnHXJN8nXteu0d9wT5V+6rzMSQAAICyxRkgKCs+X/IZf/kqvQ6Fkr99SjVO5MbTTz+ts846Sx0dHSnXnTx5ss4++2ydfPLJOvbYYzVp0iRNmDBBXq9Xe/bs0d69e7VhwwY9+uijuv/++7V58+ak21u3bp2OPfZY/fWvf9WHPvShbH1JWfelL31JX/rSl3K+nwULFmjjxo05308++Tw+PXzZw1p47UKFnJjXgAyKrz/2snTHrdL5F0p3Hj66cXhcQw+3HUPhdY50WmH9ceoO1diWOjzhtAuvo0YzeTm2+LrGtvTHqTt03t5JarD5NS6XYotye007ZwW5UdGi3BrHoiA3j8i5MpBz5clV4XUUxdcAAAAAAAAARhIMB3XMJzvVPYa+lh6f1O+V7FGUZkd1V0nHfNrWts1BPjfOAVuuLjzoST1au1uO4Y66vHq0R7ANSY7h6tHa3bpw1pP62+vvl6UxfMMgY51mSM1znlVbdYfW+9sl21ZTx4zIQscZcjXsIdXo7sA6klZPa1fLgq1yDKn5mC1qfe5ACpGLSKfHVvMxb6itsU/rG96WHFdNO8ZFFrqOkrbeOw45l4Ohz19nhNtubj6PRB65bvIfyq5LzuWAnCsDOVeGVBmSc3kg58pAzggGh7/PAgAAAAAAAACUrzQKryXJq+wUXyfbzk5Jh16T4vGmV89/7nkKrwEAALKAtkSUFa/Xm3R5MBjMyzgovS4+69evT6vwes6cOfrWt76lyy+/XH6/f8R1ZsyYoRkzZujII49Uc3OzXNfV3/72N/34xz/Wk08+mXDbvb29Ovfcc3XPPffogx/84Ji+HhQf27H19b9/XcZIB1nSmOVqSHpkrnRpU+Tv0U6MNSR9/eDX9NeXFjKxNctsuVo+f4Paarvld0wFbUs9lp3xdkY74bnGtuR3TLXVdmv5/A26c8NRZJxjTXsm66n6Dv38gLfzsr8OT1hXbp1BgWqekXNlIOfKkevC6yiKrwEAAAAAAAAMZZmWGoPS7tqxbWcshddRjQHJ6uqW+DwxB1ztMfsVMiLHoY3Be3PPiNlfyIiMQ11dIuf86bTCaj78JbVVdUvOwOcFM1+Q+vojnxdYAcmMuQBr2JbsmPMKQkGpr0+rZ3aq5cidkd5kV2pr6FXzMa+p9YmZFCIXgU6PrebjtqmtISC5kX7rliPfloIBNW1riBRzWUmKuQKG1GeQc8kLSUbM8zdsxxeyhU0p0J//YSG7/EHJSvJTPGBL/bm9sDbyoDoomeRc9si5MgRS5NxvSwFyLnnkXBmCgeSHMwLkXBaGllqHQlJ/v+T1SpYVeX8NAAAAAAAAACh/aRZeR421+Nob8/fQ7eyWdMA1KR5vetX2+TYdPvnwMYwCAAAAUZReo6zU1dUlXd7d3Z2XcXR1dSVdnmqcyK6enh5deOGFKQuvL7zwQv3P//yPGhoaMtq+YRg699xzdc455+hHP/qRvve978m2Ry7C7e3t1fnnn68XX3xRM2bMyGg/KH67encp7IRlGqYcd8gJeklmuhqSDFdq90u3HyEFrMhtGZlNjDUlhQ1Xu7yc/JcLlgxdsWOG1h/yqnpNW32WPepy8kwZkvosWz7XUI1j6YodMyi8zoPVE3dp1dSdagx71OHJ/YnTjWGPVk3dqRO7GilQzSNyrgzkXBnyVXgdRfE1AAAAAAAAgFiWaeln90cudNxdwGuh1wWlnz0gWY29hRtEGbMkfXvzNH3myD61eyOfOeSj+Dq28FqSxoU8+vbmabJ6yDlfOj1hNR/9mtpqeuPCduSq5eBNUqBfZmdIir14djgsObGl12GtnrJXLcfsHixCjmpr7FfziVvV+shUNYTMXH85SKDT66j5xJ1qawwOyVlqOWaHFApHZkINPS8oVjCo1VN6ybnUeUKSGVtyPaT0OmiMbXYdikM4LLlJfoKHXSmU5PmO0hAOJy9PJefykCrnEDmXBZ7PlYGcK0MoHJn8kHA5OZeFob9rO07kvmAwUnwdptgcAAAAAAAAAMpehoXXUaMtvvaOcDu6nXZJM65J8XgKrwEAALKO0muUlQkTJiRd3tnZmZdxpNpPqnEiu77xjW/otddeS7rO17/+df3iF78Y035M09S//uu/6vDDD9eFF14oN8FkiL179+rTn/607r333jHtD8XFMi195+Tv6DN3fUbtgfaRi68lDW1JjhZeRwWsmGUZFF9Hz/kcF/boO28fSCFyjjTtmayn6jv08wPelpT/ycsdnrCu3DqDYs08iC1O9TumlOOi3MawR37HpEA1z8i5MpBzZch34XUUOQMAAAAAAACI1fSKoZWr3YIVX9cFpZWrpaZNkhaPfLFujF3T9kbJmaPPHPWm2r2Rf+dcfnY8vPDa0nUvzFHTjkZJ5JwPnR5bzQu3qK2+b8TljqSWw9/UJa/VasG+xKdkPji9T79c2CsnwSkdbeODaj55p1r/OZlC5ALo9DpqPnmX2saPfLF5x5Bajt+t5Vtq9b72xC/ya6b16hcLOsm51Lmu5MS+qo/wCu9QwlfyXCfyIp6I4yjhkxmlI9VzlZzLAzlXBnKuDORcGVw3+e9hrsvv2+UuFEp+ARoAAAAAAAAAQOkbZeF1VKbF10MLr2Pv3ytpyjUpHk/hNQAAQE5Qeo2yMnHixKTL29vb8zKOjo6OpMtTjRPZ89prr+n3v/990nU+9rGP6Wc/+1nW9rls2TL95Cc/0dVXX51wnfvuu0933XWXli5dmrX9ovCaDm+SpOTF10kKr0eSTvH1YOF1yKPrNh6spvfqJfVnNnikZfWUPVo1ZYcaQ5Y6CjB5uTFkadWUHTpxb7Wa3uNnSa6snrJHLQe/ISfmRFq/bUju/tyzqTFkye/sb8R35Krl4FekUJCcc4icKwM5V4aRck5Lql/E5Kb1A56ci5hlS9bIxRSD+vsll0KJkkbOlcGyJTNFzoGA5DKxtaSRc2Wwwqlz7u+XuKBbaQsE4icoO45k25JpjvmENQAAgKJnGGra5GrlaumSJqknj8XXtbGF1xKlMTnW9O44yZ2jzyx8S+1eW65yd7Hk6HYNDRRet81R045xOdwjYnV6bDUvel1tDSMXXkc5hvQ/h3bq4i21WrynatjyZ6eEdfNhAVlu8pNA2sYH1HzKTrWumUAhch51eh01n7JXbeNDSfNxJF13WJcu2VytxbuHv8g/Oymomw/ul5XiRYGcS0A4LJkx533ZTqQgeXC5IeXuWsvIl7CtyBM20XJLCvPztuTZdvLfjcm5PKTK2SbnssDzuTKQc2Ww7eTn74VdKcx7pbIXTHHuAAAAAAAAAACgdGVp/lC6xdeJCq+jJriuPn5Lk+585c6RH0/hNQAAQM5Qeo2yMmnSpKTLA4GA2tvbNW7cuJyNYe/evQqmOPGG0uv8+dWvfiXHcRIur6mp0bXXXivTzO4Jcd/85jd188036/nnn0+4zi9/+UtKr8tQwuLrIedkplN4PbhukuLrwcLroKnrnpmqpm2mpH2jGzySsg1X1y/YJsd1BgpTTXX4Er++ZFtj0JTfMeTI0fWTt2npq0ZkMiyyKjbnoTLJ3XIlO414orkOfYY7csk5h8i5MpBzZUiWc1KuO/jLmOFKCzqqtKExEN+h6ThKt2yRnIuU5Uh2IPk6HcFIEwlKlyeNnNuDlOSWOo8t2SkmupFz6SPnykDOlaGvLzJRPVZPT6T02u+XPHw8CQAAypjPJ/X36/Q3pMP2SM9Pz08tsaHI/k5/I+bOnp487LmyNW3xSf3TdOmJ29XtyW3SrqTasKHr1k5T0zafJPLNh06PreZjt6utPpDehTINVysP7pbCthbv8kZKc11Hz061tXJ+UJZjyEqjkL5tfFDNH9qt1nvrKETOg06vo+azutU2PpxWzq6klYf2SWFHi9/b/x732SlhrTw0II+jtLZDzkWuKihZMbedIeWLIUnB/J03hBwJ2ZE2+2TLgzw/S17I3n+iZaLl5Fz6UuUcJOeywPO5MpBzZQjZyU/N43W7PAydyzX0mEiYKwkBAAAAAAAAQFnKUuF1VKri61SF19Hj06svWq2mEYqvKbwGAADILWaVo6zMnj075To7d+7Maen1zp07U66TzjgxduFwWDfddFPSdb785S9r2rRpWd+3YRj64Q9/qHPPPTfhOv/85z+1ceNGHXHEEVnfPwortvh6X/++kSeyZTrfdaD4etjdrjQ+ZOq6Z6araVtDpkNFBizX0KqnZqh5yTa1jQvI75hSUGr3ORnFObwONbHoeuOCZmR/kha2V2nVUzMo1MyRoTkP5XdM9duuAlbiFKtsQ17XUMhIvV4016HIObfIuTKQc2VIlXMqhitd+majFu/169kJ/Vo5t2NU/YrkDAAAAKTBcaTeXqmmptAjAQAAyB2vV51uv5qXSTvqpYZ+qcOf+9029Ef217xMar1Naggaw0tlkBuuI+8IF8XMBa9jSK5DtnnS6bHVvOTdyOcP6cZrRK7jtHJen+S6WrzDiBQhHx7K+DukbWJYzWd3q/W+ushzGjnR6XPVfHa32iZmVrTlSlp5eCCS83uegZyD5FxukpXUu27y5SgRbvLXeFfkXA5ccq4I5FwZyLkykHNlSJUhOZencFgKhSTLilwwGQAAAAAAAABQfrJceB2VqPg63cLrqKHF1xReAwAA5B6l1ygrdXV1mjhxovbs2ZNwnbfeekvz5s3L2RjefPPNpMunTJmi2tranO0f+z377LPq6upKus6ll16as/2fc845mjRpknbv3p1wnTVr1lB6XaaaDm9S74639f97+CqFRiqrHpjzms6hGje6/gg8rvSfz0yi8DpPGsKWWp+YOVis6XMMWa4UzuCYW6an31qu5HMiO1jYXqXWJ2aqIWxluBVkYmjOsfpNJ62CXEmRv20lXD9gueq3nWFFueScH+RcGci5MiTLOZnYwmtJg39nWnxNzgAAAECGAplfsAYAAKBUdFZJzUultmmSPXA7X/utCkf227xMar1darA4Zplrq2d26kuL3lOvx83o4sejYUjq9bj60uL3JNPkHIEcsw1Xy0/arrbxQaV3Zkc815BWzu/Xc5MtbZgYjv/eyGBST9tkW8s/3K0772ngwps5YBuuln+4S22TbWWWszv435VHBPXcNFsbJtjkXG4MQ4r9+Nc24r9NTJOStnJguJKZ5Cc4OZcHk5wrAjlXBnKuDORcGUwn+dswci5fzsAF3TxMaQWQXTt27NCGDRv0zjvv6N1339WePXvU39+vQCAg0zTl9/tVW1urKVOmaPr06Tr44IN1xBFHqLq6utBDBwAAAAAAKB85KryOGlp8nWnhdVS0+Pqe1+7R8597nsJrAACAHOMMAZSdAw88MGnp9ebNm3XWWWflbP+vvfZa0uUHHnhgzvaNeI8++mjS5TNnztSCBQtytn/DMHTGGWfolltuSbjOI488opaWlpyNAYXTuesd/fH2a1RXb6i9yh1xcms6xdfJCq8NV6oLSn+csVvnba9Xg+sb+8CRUrRY84KT3tGjk/vkDMxpy8UEZkOSY0jtPkcn76qmUDOPRipQ7TcddfichI+JLciNSlWU2+FzpKAGi3IpTs0vcq4M5FwZMi2+NmXo0jcbBouuo2KLr9NBzgAAAMAoOE7CE8cAAABKme3YWv7hnsHC6121iT/rzTbXiOxvck+k+Hp5k6s71/ZRnppDq2f36EvH7NbeKmfEC2HnQshwtbfK1peOeVcKhdT0dm1+dlyBLElXvFqj9cdHzglIW8zJA66klyaGh6+TwfshU4au2Fgly4luEdlkudIVG6u0fnKvnFH++7qSXppgj7CAnMuCm/CGZNuSSwlfyXPd5E871+U4Vjkg58pAzpWBnCsDOVeGVBGSc3kYmmE4HHkvZVmR/weAMXj11Vf117/+VQ8//LCeeOIJ7du3L+NtGIahQw45RB/84Ad12mmn6aMf/ajq6upyMFoAAAAAAIAKkOPC66ho8fVoC6+jVl+0Wn3BPlX7uCgaAABArlF6jbKzYMECPfvsswmXv/LKKzndf6rt57JkGfFef/31pMuPO+64nI/hhBNOSFp6vWnTppyPAfnXGehU8//7gNpqOuW3DY0LaFTF16kKr8cFJH9YapvsqPn4t9T63EEULhaAq9xNOeRU3cKKLVBdO6EvcUGuK9WHzYSTnaNFucEURbkn7KXYvBDIuTKQc2VIt/jadKUfvjBZngQ/aKPF138+oCtpIQ2F1wAAAEAC6ZyolqeT2QAAAPLJMi1dsV569mxpV13+Cq+josXXU7ulK9ZLls+f+kEYldUzu/SlY/dob5WrkJnbz4yjXEkypJAh7fW7+tIJeySPV03b6nO858rVtLNKWudVy7E7My++jr3hDlmW5vsh05VWPN6opnf8EtdAz5mmd3zS4161nNSRQc4prnBPzuXBsiMN+FFDu829luSknD6HYuc1pGTd5R5T8lJuXvI85FwRUuXsNaUwOZc8ns+VgZwrg8dI/r7Ka0o2OZe8oe+NDSNygWTHkTxMaQWQud7eXv3v//6v/vCHP6itrW3wfneUF0pwXVevvvqqNm/erOuuu05+v18f/ehH9cUvflGnnnpqlkYNAAAAAABQASZNyuvuxlp4HUXhNQAAQH5whgDKzqJFi3TjjTcmXL5+/fqc7n/dunVJlx9zzDE53T/227NnT9LlkydPzvkYUu0j1RhRejoDnWq+9nS1hbYO3hctvt5XNfJBkZGKr5MVXkv7C6+j2iaG1Xz822p9ejbFiznW6bHVvGSbNjQGVW0bCpi5nb7sSqq2DW1oDKp5yTbKNfOsIWzp4jcb9NCU3pFXcKXGkCmfY6g3UXuqIkW5VSFDXR5nxJO0ez2uLn6zgWwLJN2cva6hvgRlx1IkZ3/IUCc5FyVyrgypiq9NV1qxbqpO2lWj+6d1J9zO4r1+Hb+nWv9y9HsjFhxQeA0AAACMAROYAQBAGTvuHUc9vvwXXke5htTjk47bJmlysDCDKHO24ep3B+7V3ipbISM/hddR0f2EDFd7q2z97sC9WvqmT1ahvuEqQNMbVVJ4olqO351eIfLA+R/xYu5IMyvTlVY8Uqum1y1JofQGi1Fr2mxJdq1aTulJv/g62RM/zRcFci5yjiMp5mLKjiu5sbcNKRwe9jCUmLAtJTk/QDYluWXBtpNPaCXn8pAq5zA5lwWez5WBnCuDHU5ees3rdnkY+lyOve04AoB0BQIB/fznP9cvf/lLtbe3Dyu5NsZ44fXo9vr6+nT77bfr9ttv16JFi/TTn/5Up5122pi2DQAAAAAAUPYmTZKKqT9rlBdIAwAAQO4wqxxlZ9GiRUmXP//887JtW5aV/XKycDgcd5XokVB6nT/79u1LunxSHq4SlWoflF6Xl85Ap5pvvVBtO0Z4HXDdkec2RhfHFF+nKrxOtKhtXL+a379NrU9SwJgr0cLrtnEB9ZuOOj2OTMVNccs6U1Knx5HhSm3jAhRf59nqmZ26euEujQ+a2udzFIotOR8oyPU7ppw0Zq36bUOma6rDG1+U63UMjQ+aunrhLtXYppq2NeTgK0Ey6eZsG6lzrrINNZJzUSLnypGo+DpaeN20rUHv+VJPQF+6vV7VjqGWRTvjCg4ovAYAAADGwDCkqqpCjwIAACAnguGgjv2s1O0r7Di6fdKxn5O23h6Sz6EcKOsMV8bAZ4Oukb/C6yhXGjyxwJA7UAZG6XUuNb3pl5wJajlx7yiKr0f4DkkxqcZ0pRUPVatpiymKkPOn6RVTCvvV8qG+NHJO9cw3yLkchEORoKJcxZey2ZJClLSVvLCT/PkaMqUQP2dLXtiJfz4PRc7lIVXOYXIuC2E7clJtIjyfywM5V4awnbr0mpxL39DftZ2B379NU7IsKcT7YQCp3Xffffrc5z6nd955J67semjR9dAi7HREtxG7reh2nnvuOZ155plaunSpfve732nKlCmjGT4AAAAAAEB5W7asuAqvL7ig0CMAAADACCi9RtlZvHix/H6/+vv7R1ze3d2t5557Tscff3zW9/3000+rt7c34XK/369jjz026/vFyFIVmwcCgaTLsyHR92HUWK8kjuJhO7aW37FcbVufiUwqjdFvOmqvSj3lLd0Jsa6k9ippnCT/kL7GtsY+LT9xu+58fJYsJrZmlW24Wn7i9sHC69ii02SF5mNhxPxPh9eRQpHiazLOj9UzOweLTg0Z8UW5MQW5mfA7phTS4PdPtCDXkCHHkFoW7ZQkinLziJwrAzlXnqHF17GF15mIrh/9/qHwGgAAABglw5A8nkjhtUnxIgAAKE8+j0+ffEn69QmFHYdrSJ98QfL1p774HzJnSfrshmqtnRRQoCrfldcRrqSakKHPbqiWFaAcKB+aXvNI4Qa1nNSRuhDZHfxPgoWJN2C60oo1PjVtNiTxHM63plcMyfGp5fRg8pyTx5hyBXIuEWE78qIf5Q4puA65ks1nhiXPSVFcbruSzflZJc92kp/cR87lgZwrg0POFYGcK4PtJH9fRc7lybalcFjyevffBoAEbNvWVVddpf/6r/8aLKIeqZx6LIZuwzCMwX24rivXdXXXXXfpiSee0MqVK/XhD394zPsEAAAAAAAoG5/7nHT77YUexX4XXCDddluhRwEAAIARUHqNsuP3+3XSSSdpzZo1Cdd54IEHclJ6/Y9//CPp8pNPPll+vz/r+8XIamtrky7ftWtXzseQah81NTU5HwPywzItXXH0FVq/YY1ip8L0W67afZGJxdnkGiMXX5uudMW+ObKmTM7uDiFL0hX7LD0x5RV1ePan7Co3hdfRbUsD5/QaUofPkRE2yTgPVk/apZZDd8nR/hImQ9L4sKV9npBqHEt+mRpcbLiSkWIinGlKMiKPsx31mrbGh70yYnqeHEktx+2Sxo1T024yzjVyrgzkXLkaJLW+NkXLD39ZV+yYpqbwZGnqwEJPUGpMMQk9NElyPGoKT5VeH6frp+3QqtcOV8NEDqWUDNOWahJfmEqSVFUruZQuljQrLFX3JV+HnEsfOVcGcq4M6eTsq1OK5igUu927pc7O/bdNU6qvL9x4AAAA8sR2bG2ZZMofdtRfwMOI/rC0ZWLkor5cRDd3DDfy+XzKAuQcMN3I/pFfTW9GzvlKXXw9unAiRchVkYJtnroF0/SaV5KhltMDOXl+k3MJMYwhGZmKe36bZmQdlLihOQ9dbJBzORj2fB5pOTmXPHKuEORcGci5IvC6XZmi76PCAxNgPJyLCWBknZ2duuCCC/Tggw/Kdd2UZdfGGH9mRLcZu+3Y8utdu3bp3HPP1a9//Wt98YtfHNO+AAAAAAAAysbvf1/oEew3cSKF1wAAAEWMswNQls4888ykpdd33HGHvvOd72R9v7elePNz1llnZX2fSGzatGlJl7/zzjs5H8PWrVuTLp86dWrS5SgtTY0nSA/61XJSZOJbpPDazXrhddTQ4mvTlVb83VRT4zipigKonDDi/11zWXgduw9pyHm9hjlQuIpcWD1xl1oOeU0jVd4akiaEvaPbsKHBQP2OKb8zcoaOpJZDX5MMU017KMrNldzlbJBzESFnNLg+3bnxKFkypNiY0pmEbpqKPqhp71Qt3Ttl+HZQ3ExXMtPImfLU0maY5FwJzDRyNsxh79lQYsi5MqST88BFZlDChv6uzYR0AABQISzT0hHtXt1zUCD2Y6G8MiQFLemIXaLwOkdsw9X183tV5RhqDErtVW5eszYkNQYNVTmGrp/fq6VvVZF1HqVffJ2ZuCJkFFw0h2wXX5MzAAAAAAADosXXADBET0+Pzj77bK1duzau8Hpo2fXQouuRyrBTiW5jpH1E/z+6zLZttbS0KBgM6qqrrsp4XwAAAAAAAGWl2OYJ7d5d6BEAAAAgCc6eR1latmyZvvWtbyVcvm7dOr3yyiuaN29e1vb50ksv6cUXX0y43DAMLVu2LGv7Q2oHHnhg0uVPPvmk+vv75ff7czaGZOXrUuoxosQ8/fTgBMfPfLA9p4XXUdHi6/GudN09HjW9akrzOqXJFGtmmy1X10/brirHVGPYo3ZPOG+Tl6P7GRf2qMoxdf207Vq6Z1KkeBNZFc3ZGUO6hqSD+vx6vbp/1FtxBsZBzrlBzpWBnBGVrX938gMAAAAAAACQjO3Y2jhZagxI7bk7DSGlxoC0cYpkb3QpQ84ByzW0as04NZ/RrrVTgnJd5fW6PdHOjYV7vFq1ZhwZF0C2i68pQi5O2S6+JucyVGyT9wAAAACglFiW1NNT6FEAKDKu6+qCCy7QU089JcMwZBhG0rLr6LK6ujq9733v08KFC7Vw4UJNnz5dDQ0Ng39CoZA6OzsH/7z66qtqa2tTW1ubNm/eLMdx4rY9tPw6diz/5//8H02fPl3Nzc25/ucAAAAAAAAoTsV2zswoLoYGAACA/OIMepSlgw8+WCeeeKKeeuqphOusWLFCv/nNb7K2z//8z/9MunzJkiWaO3du1vaH1I455piky/v7+/Xwww/r7LPPzsn+9+3bp7Vr1yZd56ijjsrJvlEgL7ww+L9BI/eF11GuIQWtmDu6uym9zgFLhlZtWqDmw1/S2vrOgo1jYU+dVm1aQPFmjsTm3FbbnfHjDUnn7JmgI3prtbGmR/dM3Duqolxyzi1yrgzkDAAAAAAAAADIJ8u0tOqfk3T0udu0r0Cl166kcX3SqtWmrImcFpYrDY6li1+r0T9mBvJaeC1JMqQur6uLX6tRg+OVrNQPQfY1ba3VndsDemBm/5i3dfrblpq2ePP/vYSUmrZ4deehYT0wxx7ztsi5BBlGfF5Dr3LgupJh5ntUyLahOY+4nCduySPnykDOlYGcKwM5VwZyrkyGESm7jmZr8p4KQLwf//jHuv/++0csn5biS6nr6ur0sY99TJ/61Kd01llnybJGd7B89+7duuWWW3TzzTfrySefHLaf6N+xxdef/exntXjxYh188MGj2icAAAAAAEDJKrZj9xReAwAAlARmN6FsXXHFFUlLr//3f/9X3/nOdzR9+vQx7+udd97RTTfdlHSdyy+/fMz7QWaOP/54eTwehcPhhOv8/Oc/z1np9S9+8Yuk+5YiZegoIxs2aPXcfn3mlHb1eiXDVV6Krw1X6vVKnzknLMmjpvd6cr/TCtVge3Txzml6aNy+wfNs83EIzBj402vZunjnNDXY/AqXSw22R60vH5lxUW5sQa6kwb8zLcpd2FOn1pePJOccI+fKQM4AAAAAAAAAgHz60THdemNcYcfwxjjpRx9w9dPNHJvOldWze/SVJR1yCjR/wzGkryzpUI08anq7tjCDqHCrZ/dozczACJN4hpTiDt4XNfybZs1sW6sPs9W0xZflUWKsVh8c1JrZIxReG4aSny1CzmXBDEtx/Wtm/EQ5y6KgrRyY7pCchy43yLkcGORcEci5MqR83TYjWaO0kXNlSPm6Tc5lyTTjj6WMsqAWQHnavHmzvv/9749YeB17X1VVlb72ta/p29/+turq6sa830mTJunLX/6yvvzlL+uFF17QVVddpYcffjiu5Dq67+g4urq69PnPf14PPPDAmPcPAAAAAABQMii8BgAAwChx5h7K1iWXXKIpU6YkXN7b26tvfetbWdnX1Vdfrf7+/oTLp06dqksuuSQr+0L66uvrdeqppyZdZ82aNfrHP/6R9X2/++67+n//7/8lXaempkann3561veNwlmtl/WZD7arvSpyYMRQ5HzMXDLc/VPl2v2R4uvVsym9zpXVE3fp6oO2aHzYK69rDJZR51J0H17X0PiwV1cftEWrJ+7K8V4RLcpd2JPeSXCGa8QV5EYd0Vurc/ZMSPv7hILc/Mo0Z5OcSxI5AwAAAAAAAADyIRgO6nfzunL/AWIqhvS7Ra6CplPggZQn23D1o6M61O5z8nKB5JG4ktp9jn50VIfsXJ+UgGFWz+5Rywl7E5eeZ/ga4BhSy6l9Wn1wcMxjQ/asPjiollP7slZuT84AAAAAAMTwcG4tgHhXX321QqGQpMSF12eeeaY2btyoH//4x1kpvB7qqKOO0oMPPqjbb79dkyZNitt/dAzR2w8++KDuvfferI8BAAAAAACgKFF4DQAAgDGg9Bply+/366tf/WrSdVauXKnVq1ePaT+33nqr/vSnPyVd56qrrlJVVdWY9vPmm28OXiE60Z9rrrlmTPsoR8uXL0+5ziWXXKK33nora/vs6+vTxz/+cfX0JC8ePu+881RbW5t0HZQO27H141lvqN0Xf2Akl8XXsYXXUe1+6ceL+2QXbHpt+bLl6vpp2+XIleEq7eLrocusDPY5tPDacCVnYBxknHvpFuWaMvSDN+cOK8iNihblmm7yA7kU5BZGJjl/L62ck++PnAuDnAEAAAAAAAAAuWaZlo7rqk95DDnXTFc6bochK8VnUxi9yf2mPK40ln9izxg6yV1D8riRcSC/UhZeR2V4BW0KkYtLtguvo8i51BhJbwIAAAAARsE0Ja+3+ApSABTUG2+8obvuuiuuYFqKFE5HC7BbWlp033336cADD8z5eJqamvTss8/qsMMOGxzHSH7xi1/kfCwAAAAAAAAFV2zHcym8BgAAKDk0cKGsXXXVVbr22mu1devWhOtcdtllmjlzpo4//viMt//UU0/p05/+dNJ15syZk7J8G7nzyU9+Ut/+9rf17rvvJlxnx44dOuecc3TPPfdozpw5Y9pfV1eXPvWpT+npp59Oue7Xv/71Me0LxWdi2CevI4WGzCs1JCmNCa+GK/ltqd9Kb92RVvE60sQ+JrbmgiVDqzYtUPPhL6mttnuw+HqfJ6TQQLP50ENj0Xms0fu9bmRyuWm4g4/RkHWGPja28FqKFKmu2rRAFrPp8iJalBvNfShThla8dpiO76rT9VMT/6w5ordWZ+6dqH876A05IxSWU5BbWOnmfGxXnW5MkfOH907Ud8m5KJEzAAAAAAAAACCXLNPS7btO08e679QjB7hZL0tNh+lKp7wl3X6rIcvcnf8BVABL0v/cbejoy6Q91aPbhtfef25AKJOrJseoD0TGYXWTc76sPjSsluOCclwN/4A/auhV0Yeu57oJH+tIavlgrxQIqulVzvsolNWHOWr5YFiOlDhnV8kLkMm5PFTb8Ve2d+z45b2S+kb5Io7iEXClZE/Ffkl9nKNV8si5MqTKuU/kXA4CCU6ejuL5XB7IuTKkypnX7fIUDkuOI1m8lwIQ74YbbpDjOHEl19H/NwxDn/3sZ/XrX/86r2M64IAD9NBDD+mEE07QO++8Mzie6Jhc19VDDz2kt956a8zzUQEAAAAAAIoWhdcAAADIAlq4UNZqamr0y1/+Up/4xCcSrtPV1aWzzjpLf/zjH3Xuueemve2//OUvuvTSS9XdPbwwL9YvfvELVVePcpYbxqyqqkr/9m//pi984QtJ19u4caOOOeYY/eEPf1BTU9Oo9rVu3Tp98pOf1Kuvvppy3aVLl46qaB3FyzIt3frW8bqg4T49Omfk4utkh04MVxoXkPxhqd8jtVclL75OVHh98lvSrQ/UyzqiyA4clYmhhalDi69jM46WVkdFC68lDf4dLb6Orjf08SMVXlOkmn+JinKjBblNeyZrm68v5XbO2TtR4x2vWg55Na4ol1yLQzo5v51Gzh/dO0mN5Fy0yBkAAAAAAAAAkEsNhx+tv/z3w/ro2fv0WAE6Dpa8Lf3lFqkh4Ejqyf8AKoBtSF9YGimu9tlScBQdPWEr0ttkj7Lv1mdH9v+F0/p05y2SxTyOnFs9X2o5TcmLkFMtS4NjSC1nhaWw1LRpbNtC5lbPl1rOUnoXLRhD1uRcIuzUq8hOZyUUtVQR2mmsg+LnpFhOzuUhVc6OyLkc2Epebs7zuTyQc2VwlLz0mtft8hQIRIqvvV6prq7QowFQRP72t7/F3Y4tvD766KO1YsWKgoxr2rRpuuWWW3TyySfHlV3Huueee1LOWwUAAAAAAChJFF4DAAAgS2jiQtlbtmyZPvWpT+lPf/pTwnU6Ojq0dOlSffKTn9S//uu/av78+QnX3bhxo77//e+rtbU15b6XL1+uCy64YFTjLrTu7m7dcsstGT9u8+bNSZevW7dO1113XUbbrK+vV3Nzc8ZjifrsZz+rlStX6sknn0y63r59+3T++efruOOO0ze+8Q2de+65qqmpSfqYcDisRx99VL/61a/017/+ddiJCyOpr68v2MkWyK2G6nG6/c+GLviEO6z4Ot3Cayny9zglL752NaRQeaDw+vZbpYZG75i+DiSXqPh6tyc4OPExWeF1VKria3NguxReF4ehuccW5GYiun60KJdciws5VwZyBgAAAAAAAADkzFFHST6f/I4hj+MqPMpS49HwOJKfMqCcs1zpivXSuulj285oC6+jzIFxUHide6vnSy3npFmEnAWOEdmfRCFyPpEzAAAAAAB5EgpJ3d2FHgWAItHb26v169fLSFCi9J//+Z/yeAp3fv773/9+XXLJJbrxxhtHHOPjjz9O6TUAAAAAACg/FF4DAAAgi2jjQkX43e9+p+eee06vvPJKwnVc19Wf/vQn/elPf9IxxxyjJUuW6MADD1RdXZ26urr0xhtv6PHHH1dbW1ta+5w/f76uvfbabH0Jebd7925deeWVWd/u3Xffrbvvvjujx8yZM2dMpdemaerWW2/Vscceq/feey/l+s8884yam5vl9Xq1aNEiLV68WJMmTdKECRNkWZb27dunvXv36sUXX9STTz6pnp6etMdiGIZWrlyp2bNnj/rrQXFrCBq6/c+KK752lbi8emjhdVSq4mvXkORGipLjCq8DWf1ykMDQwtSA4SQsvK6zLQWNkQ+gRYuv7RGKrx1DChiO/K5JkWqRiOa+fP4GXbFjRsYFuVHRx10/bbtWbVpArkWGnCsDOQMAAAAAAAAAcqHz6MPVfEa7npvs5q04NcoxpOdmSM3LpNbb+Ow4l05/Q5raLe2oi5RPZ5p19CLXo5mGYbpS2Izs//Q3RrEBZCTfRchRFCLnFzkDAAAAAJBnoZDU3l7oUQAoAps2bZLrujIMI+5vSTruuON00kknFXiE0je+8Q3deOONw+53XVcbNmwowIgAAAAAAAByiMJrAAAAZBmNXKgIdXV1+vvf/66TTz5ZW7duTbn++vXrtX79+lHvb/bs2fr73/+uurq6UW8D2TVr1izde++9OvPMM7V37960HhMKhbR27VqtXbs2K2MwDEO//e1v9fGPfzwr20MRGihAjy2+fnhuZMLpSBIVXkelU3xtjVR4HQpJvb1j/GKQSoOk1ucO0qnHb1RbQ+Tfe2jUjSFLHtdQ0OMk3I7lStW2pW6PLSm+NLvDE9bczhq1PneQGuygpGC2vwxkqEHSnc8cIkuGpJjnWTgohRI8maMCfVIwknNTb62Wbj1Elsi1GCXOuT91zr29kh1Zh5yLGzlXOG9Qqk2RV2+v5HDYpKRZtmT2J1+n15TcBL+wozSQc2WwbMlIkXOflfiKUygN5FwZrHDqnHstxV9SDCUnQLsiAACoTLZja/mT39DaGY46zMKUp3ZUSWtnScvPl+68JfJZJLLLNiL/vjvqpcZA5N98NAXWo4km+i3VGIjsn5xzq1BFyFEUIufHqHKONtdnATkDAAAAACrG0GKSHTsKMw4AReWdd94Z8X7DMLRs2bI8j2ZkCxYs0Lx58/Tqq6/KGCh9ipZzb9u2rcCjAwAAAAAAyCIKrwEAAJADtDehYsyZM0cPPvigzj77bG3ZsiVn+znkkEN03333afbs2TnbB0Zn0aJF+uc//6mPf/zjOf0eGEl1dbX+53/+R8uXL8/rfpFnvb2SzycFg2oIGrr8eVePzpFGqs1MVXgdlar42nKly5+PKbw2DCkcjvxBzq2ZtE87q0LyOoZCZvzBssaQJb9jKmykPohW5RiyQpY6vHbc/V7H0M6qkNaM36emHeOzOnaMnjXSnWZYcuyRluwXDse14I+4HRSNkXO2U+fskHMpIecKlu7rduLrVqAUuLZkp5EzZciljZwrQ9o5F9lJFcgMOVeINHOm9BoAAAAlyDItHTHpCN3j+ZucAp1nHy2+PmK3IcvkeEguWJKuaHO1frojf1gKmlKPLz/7diXVhCLnEZiudEWbKcvk/VMu2Iar6xc5Yyq8NiQteE/aMHn0hzMcQ7r+GGnpK5Sb54I98O+bcc4x6xuutGAXOQMAAAAAkLHxzI8AIHV1dSVcdvLJJ+dxJMl94AMf0CuvvDJYeh2VbPwAAAAAAAAlhcJrAAAA5Aizm1BRDjnkED3zzDP68Ic/nJPtn3322XrmmWd08MEH52T7GLsjjzxSzz77rC6++OK87fPYY4/VU089ReF1JQiFpJoaSdLqea6uPlMa3yf5hvT4pFt4HeUPR9Yf2p3ssyPbv/pMafX8gTtNkwM3ebJ62j61LHhbrqTxIUvemFmQ0cLrTPgdU42h/bWpXsfQ+JAlV1LLgre1etq+LI0cAAAAAAAAAAAAQLbZjq0Xdr4g0yzspRJNV3phqis7jYvzYnSaXjG04j5TAUvq8w7/LD9XDDeyv4AlrbjPVNMrRTbJpIxYrqFVq00t3Dm6xxuSLm2TPvds5O/Rfo8s3CGtuoMi5Fyx3Mi/78Ido3u84ZIzAAAAAACjYhjS4YcXehQAioCbZA7coYcemseRJJdoLMnGDwAAAAAAUDIovAYAAEAOUXqNijN+/Hjdd999uuGGGzRlypSsbHPKlCm68cYbde+992rcuHFZ2SZyZ9y4cbrpppv0z3/+U6eeemrO9nPQQQfp97//vZ5++mkdddRROdsPiojXK1VVafURhlo+4soxIhMZJ8QUX2daeB01tPjaZ0e2a0hyDKnlHGn14YqUXhfbwaQyFC28jvZcGzIGi69HU3gdFS2+jhZeG4rswDEovgYAAAAAAAAAAACKnStXjuNIBfzI1pHE6f75ZSj3xdeGW9Bvq4rUEDTUenuGxdfG/sLrxdsjdy3ePrpC5IU7pNbbpIZAZo9DZhoCkX/nTIuvo4XX5AwAAAAAwChMmiQ1NhZ6FACKQH19fcJljUX0OpFoLMnGDwAAAAAAUBKKraOIwmsAAICy4yn0AIBCueyyy7Rs2TLdeOON+s1vfqOXX345420cccQR+tKXvqTLL79cNTU1ORglcumUU07RQw89pHXr1ummm27S7bffrq1bt45pm/X19TrnnHO0fPlynXPOObIsK0ujRUmYOFGr5/ar5SRHTswxlGjx9b5qqSaUeeF1lD8sjZPU65XG98VPaHUMqeUjku531bSjSvL7R/1lILnVk3erZd5WOUMO3BkyNCFsaHAW6+CCdA6oGYMHAv2uJX94eHm5Y0gtR26VvF417Zo0ti8C2eeTZHmTr+P3S6YvL8NBjvjc1Dn7/JJFziWNnCuDx5Q8/cnX8fslh8MmJc20I8/pZPx+yeWacCXNIueKYIXTzLnITrBAZsi5MqSbM1Vupa2vL/7YljnCz+FiOykOAAAgCyzTksfwyJFT0HE4puSxJUsmv1rnyOp5jlo+7KjKlhoDUkfVwD+1m5u3rbGF140BqcqWWs52JMNU0ysc98qlhpCh1jsMNZ/vqG1q6s/+TVe6+AVp8buKhDbwkGgx8s3vS2+/FCHnV7T4unmZ1DYt9fqGK10SU3gdRc4AAAAAACRhmpLXK02dGim9BgBJ48ePT7jMtu2imZtp2/aI90+YMCHPIwEAAAAAAMiiYjtWS+E1AABAWaK9CRWttrZWX/ziF/XFL35Rr776qu677z6tW7dOGzZs0LZt29TV1aXe3l7V1NSovr5es2bN0hFHHKFFixbpIx/5iA499NC8jXXu3Lly8/jGLN/7K6RFixZp0aJF+tWvfqVXX31Vjz/+uF588UVt2rRJ27Zt044dO9TT06P+/n65rquqqipVV1drypQpmj59ug455BAtWLBAJ5xwghYvXiyPh5fWSrX6CFMtszv2lyHHPIeixddj5Q8nLs12DKnlrLD0nKkmijhzYvXEXWo55I0k09RHmsFsJLh/yCru0DuGcwypZf4bkserpj2TU4wWeeWzIwWqyVheycdzs6Slk7PPJ9nkXNLIuTJ4JHlSnATt81F6XepMW/KGkq/j81GGXOrMMDlXAsuUvCmuIOX1SiLnkkbOlSGdnH0+0cxX4rxeKXbS4dAJiJY1chE2AABAiesL9umBNx6I3Cjw6RYPHGqo76zTVa3iKIMoJ7ZcXX/oc3L8HZIkvyTZtjo84cF3MtmM39D+a8Y0hj3yW5ZkSY6k689o1NI5x8riPVRONUhqbQ+pedLzaqvpTLieKUNXbpuoBbU10iEDdwaCkhspQ1ksafabrn55yC45Sb5LFnbVqvWtQ9WwiM8o8qlBUutbYTWP26y2+p6E65ky9JntE/W+2lpphFMHF0uaszWkXxz4LjmXOmuPZMScIRQMSk7s7Sop7M//uJBdDf2RKxYk0ueVAjxPS15jf+SKBYmQc3kg58qQKuderxQk55JHzpWhsS/5R8LkXB5efz3+9syZ0rhxBRkKgOI1f/78hMt2796tGTNm5HE0ie3Zsyfutuu6MgxD8+bNK9CIAAAAAAAAxmjZMmnIMY+CuuCCQo8AAAAAOcIZIMCAww47TIcddlihh4EC4/sAo2U7tq5veE1OdN6bYWR8BTHTlU5/XVpzUKTceDQcQ7p+fp+WbnaZ2JpltlxdP2170kmJqRiSJge92uULjXorzsA4lu6ZRMYAAAAAAAAoPVwUDAAAlKlqX7U+ffSn9d/P/Xehh6JP7z1Q1dV1hR5GWbIkrdp+oppnr1XbYPG1R7INdVgpLs4WY9h1kVNotL3yyxoshFrY36hV20+QVe3NYCsYrQZVq3Xb++Nyj2XK0IrtC2X29anLE9y/wHHiTgA5ratRB26ZoJZDXh3x3IOFPXVqffVINfg4rbMQGiS1vnqUmg9/SW213cOWmzK04rXDJNdVj9dOuJ3Te8Zr7pYGci55PsmIydl1JSfmtumX7Or8DwvZ5XeTl167PsnkZ23JqyLnikDOlSGdnC1yLnnkXBn8bvJyc4ecAaBSTJkyRZMmTdKePXtkGPFzpF5++eWiKb3euHHjiPe/733vy/NIAAAAAAAAsmDZMun22ws9iv0uuEC67bZCjwIAAAA5YhZ6AAAAlAPLtLSq6Y9auCfm5Eoz/R+zpiv95z3SDXdG/k52rm4yC98ztOrlIyhDzgFLhlZtWqCFPaObHG5IWthVq+O66rWwq3bUCS3sqdOqTQvIGAAAAAAAAKXH55Oqqgo9CgAAgJywHVtbu7aqMWQVdByNQUNbfb2yx3AxXyTX4HjV+vYJWtjfOHif37XUYHvS+lc3hvydjCupwfbI7+7/vlrY36jWt09Qg0P5Uz6NlLu0v/C6qXNmWttp2jNZK147TOaQ74CFPXVqfflINdgUIRdSg+1R68tHDjs3JFp43bRnclrbIWcAAAAAAAAgPWeeeaZcd/jR9QcffLAAoxnZww8/PKyUW5LOOOOMAowGAAAAAABgjIqp8HriRAqvAQAAyhxnzgMAkCUNc+eptftsNes+tU0MRe40DGmEE29ima7063ukpk2R202bIhNXv3qO5GTQa7zwPUOtD09Ww4Lxo/sCkFKDfGrdskjNhz6vtpquNB/lRgqvu+s1M1QlGdLMULXUbaqtrmv/pOcRTn4aamFvvVq3HK0GyyMVdq48hrJsyUrxq7XPI9m+/IwHueFLJ2cfOZc6cq4MHlfypJGzw2GTkmaGJW+K0hefT3K5JlxJM03JG0q+DjmXvnRz5hqPpY2cK4OVbs5c7KukeTzxx7pMU/L7I/en+v0MAACghFmmpVXnr1LzPY16cpbUUYBrfTQGpPdvdbUqeDwX0c2xaAFy8+y1avN3yJGrbtNO+bihqRhSyqLsbtNWlW3JlEHhdYENzT3TwuuoaHFyyyGvypFLEXKRiRZfNx/+ktpquzMuvI4iZwAAAAAAACC1pUuX6uabbx68bRiGXNfVzTffrB/+8Icjlk3n0wMPPKCdO3cOG8e4ceN0yimnFGhUAAAAAAAAo1TgYy3D7N5d6BEAAAAgxzh7HgCALGq45DNq/dJTaj6jPVJ8HT3Yk6D42nSlX98rffyV+ILrj78iyZC++pH0iq8Xvmeq9S9eNRx5iFRbO/YvBAk1SGrdtmRwEmsqhkwt7KvTTMcf95vXTKdG6jPVVtMx8H2SPOiF/Y1q3XaCGvxMXi5Klpm6tKm2VrKr8zMe5IalNHL2k3OpI+fKYFpSVYrGmdpaSq9LnRGWqpwU69RShlzqzLDkS5GzakVJbokzQ+RcCci5MqSdc5GdQIXMdHfHX2TG45GqeQ8FAAAqQ8Ptf1Xrn6XmZdKTB+S3+DpSeC213iY1vG+7NGdO/nZeoaIFyBfMflIP1+5W2EheX53onU70/kSPDhuu9lhBndozicLrIhDNffkBT+uKfXMzLryOihYiXz9tu1ZtWkARcpGJFl8vn79BV+yYkXHhdRQ5AwAAAAAAAMk1NTVp2rRp2rlzZ9z9b731llatWqWLL764QCOL+NGPfhR323VdGYahz3zmM7Isq0CjAgAAAAAAGIViK7xO0MUEAACA8sIZ9AAAZNOHP6yGaXPU+g/FF1+PcKDFdKVf3yM1bRp5cmvTy5LhSl85J3nx9WDhtadWmjo1e18LEopOYk1VfG3K0NU7D9OjtbtGXD4z5Jd6pTeqepPub2F/I5OXAQAAAAAAAAAAgGK3YoUaApHi6QsulB6eK4XzcO0ejyMdt22g8DogafNmadKk3O8YkhXWe2ZfysLrsQobrt4z+6TeXonS3IJrkHTnxoWyZEjq2b+gKiBZ4f23Q2HJsfffDgSlQN/gzaZ36rT0nUNlKSQplOthI0MNku589tCBnPfnplBQcpJc1CsQkPr2P0/JuUR5QpJinr+hkOTG5B4K5ueHPHKrKhQ5iS+RoCsFUl3ED0WvKpj8eprkXB5S5ixyLgf+YPLrpgYkBcm55JFzZQimyDkoci4HQ+fQhMORPx6ObQGI5/P59LWvfU1XX321jIHiJcMw5Lqu/uVf/kUf/vCHNXny6C5KN1Y33HCDHnnkkcFxRVVXV+trX/taQcYEAAAAAAAwKhReAwAAoEA4SwAAgGzyeqUf/lANl12m1n+M2198bZpxE95MV/rPgcLrRAztL8RuSVB8PVh4HTSko46I7Ad5kar42pShFdsXan5frZ6o2ZNwO7ODNfpU+yz9dOprcjT8oByF16XBlSvTTX6Q1x0hX5QWQyLnCpDO89lIOtsCpcFVqqcrz+fS58qVTY5lj5wBAAAAAEBR2RT/AbDlRuoyc3n0whjYT5yenkh5EHKq0wrr1AXr9FJNt0xJqaqYXI3c55TO94cp6aWabp06/yk9/MIiNVB8XXDWSHd6wpJiSq9tO7702g5FinNTbQdFY8R8wrbiypCHLQ+Tc1kIS0ZMzo4z5PlsR7JGabPDySdRho3IH5Q22ybnSpBWzvkbDnLEtqVkFxyyybkskHNlSJUzr9vlYejPZtuOXCgqFJL8/sKMCUDR+trXvqabbrpJGzZsiLt/586dWrZsmf7+97/Ln+fXjqeeekpf+tKX4gqvXdeVYRj63ve+p2nTpuV1PAAAAAAAAKNG4TUAAAAKiNkvAABk25lnSp/4hBr+/Of44mvDkFxXpiutuEf6eJLC61jRYuyhxddxhdezZklTp2b/a0FSiYqvo4XXTZ0ztdcM6rzu6Um3c27XdM2ya9Uyoy2u+JrC69JR43o0J1yTdJ1ql1+9S121a6XM2U/OJa82jeezz+UiE6XPGLlZJG6NIvsADxnrNWy9WtWVdJ0jgg08p0tcj5k65yP7G+QVOQMAAAAAgDzo6lJnldS8TNowRRrXJ+2pkcI5PDRhOZH9bJgS2W/rbVJDgFagXOu0wjr1qHVqq+uWlH6x+dDi60wf11bXrVOPWkfxNQAAAAAAAEqT40TKrwEghsfj0U033aQPfOAD6u3tlSQZhiHXdfXYY4/p7LPP1u23366JEyfmZTz/+Mc/9IlPfEJ9fX1xpdeGYei0007T17/+9byMAwAAAAAAYMwovAYAAECB0fYCAEAu/OAH0oEHqiFkqvWBRi3cGVN4fe/+Iut0NW2KFGWbA8duFu6UWu/0RAqva2ulI47I/teAtESLrxf2N0qKL7zORFPnTK3YvlDmwBRnCq8BAAAAAAAAAACA0tLpsdW8TGqbFrkd9Eh2jucL2EZkP1Jkv83LpM6q3O6z0o1UeJ3JNAx3yN/pPia6frT4utOi3BwAAAAAAAAlyLalMMe2AMRbuHCh/vznP8vj2X/Bx2jx9aOPPqpFixbpjjvuyOkYurq69M1vflPnnHOOOjo64gqvXdfVwoULtXr16rj7AQAAAAAAilaxHcOg8BoAAKAieVKvAgAAMtbQIN1yi3TOOWp45RW13upo+fnSFesNNb1iRC474TgZbTJalH39MdKqO6SGYEiqr5eOP17yUoxcSNHi6+UHPK0r9s3NuPA6Kvq468e/qVVbj6fwGgAAAAAAAAAAACgRtmNr+fn7C6/7PVJHlWQos3LjTBmK7EeS/OHI/pefL925NSBLRTZhoQzYcnXacc+rra5HUuaF11FjeYyhSPH1aUc+p7XPHE3OxaTKllwn8sdxpGAwfnl3j9RuF2ZsyJ6aHsmT5Jyf9qDU3pe/8SA3anskK+bVOhyOn3jXE5TC/vyPC9llheJzHqrHkvqs/I0HueEJSSY5l71UOXdbUj85lzxyrgzkXBk8wch8ikS6LClAziVv6HyZUCjyx+OJFK0EAoUZF4CidvbZZ+tvf/ubLrzwQrW3t8swjMHi661bt+oTn/iETjnlFP3oRz/SkiVLsrbf3t5erVy5Utdcc4127dol13WHFV6feuqpuv3221VXV5e1/QIAAAAAAOQMhdcAAAAoEpReAwCQK647eNClIWjozlbJcsd2UKhpk7T0lYG5NkV2fKnSNThe3fnWkjFPKG7qnKmlnTOYmAwAAAAAAAAAAACUEMu0dMXz0vrpUq93fxH1GD8iTsk1JMPdv7+akHTFesmqozQmN1wZA+cBjLbwemx7jzCkyDj6+8XJA0XEH5YU2F/qZNuSE/NdEnKl/oKMDNkUDCZ/8gdcqZ9JWiXPF5LsmBwdO37ynS0K2spBKBzJMpGALQWStTGiJATDyUs1ybk8pMo5SM5lgedzZSDnyhAKJz+cwet2eRhaYGLbkQsK2bbk81FwAiChM844Q08++aQuueQSPfvss4PF11KkfPqRRx7RySefrLlz5+qiiy5SU1OTjjrqKPl8voz2s3v3bj3++OO65ZZbdPfdd6uvr0/uwGtT7P5M09TXv/51/fu//7s8HqbkAwAAAACAEkDhNQAAAIoIn7ABAJALnZ3SRRdJe/dKEyZIXV2y+gdmLsaUYY+G5UoyTcmyIhNYH39cWrhQ4sSZgrNGutMTlMye5A/cu09yvMm3g+I2ipxRgtLKuV1yeD0uaeRcGdLKeS85lzpyrgyegKQUObeTc8mzwlJ1X/J1um0ln/mKokfOlSGtnB1R2FbiOjsjE5WjDCNSAuXxRI5pAgAAlLGmV0w9NcPRz0+K3HaN3Jciu5IUU3x95bORiylrcY53XKEsGVrz1DwdffIGvVETHPV2DI3+e8OVNLfXpzVPzeNiygVkyx3+7+84kpzMtmO4Y76AOnInW/mQMwAAAAAAA1xXCoUoOQEQZ+XKlcPu+/znP6/f/OY3ev755wdLqA3DGCymfuONN/STn/xEP/nJT2RZlubNm6ejjjpKM2bMUENDgxoaGlRfX69QKKTOzk51dXWpo6NDmzdvVltbm3bs2DG4r6Fl19H7TNPU5z73Ob3vfe/Tn/70p5x87ZdeemlOtgsAAAAAACoUhdcAAAAoMrS9AACQC//6r9Kbb0b+3zSlxkbJ640Uvoz1gEy08FqKbKuvT3rlFWn27LFtF7nhCUs1KcqcerqlML+WlTRyrgyeUBo5d5FzqSPnyuALps65q4uS3FJHzpUhrZy7JYeCzZJm2ZLbn3ydbjfSJIbSRc6VwZNGzl2uKL0uccHgQNHbAMeRensj/+/3S9XVhRkXAABAHqw+yqtVCwNqDEjtVbkvvI6K7mdcQFq1UDpxu6GmPO27Eq2Z1Kl+05HHlcKjePtixPw9mu8Rjyv1m47WTOpU047xo9gCxqrTY2v5Ma/riq2T4jNw7Iyu17V6br+un9+rVWvGqSHEhb6KTafX0fLT23XFpho1vekf9XbIGQAAAACAIRwnUnwNAAMuv/zyuMLpodyYuXhDi6klKRwOa8OGDdq4cWNa+3OHzO0baZvR/7/22mt17bXXprXd0aD0GgAAAAAAZA2F1wAAAChCtPoAAJBtDzwg/fnP8feFw1JPT3YOyDhOpPg69mDTvn2RYu3GxrFvHwAAAAAAAAByob9//wX9AAAAyozt2Lp+kSGnwHMGHEO6fpG0dIsliwvKZJ0tV9fP3iMZhiYGPdrjC2dUfB1d1XIN2YabcfG1x5UmBj2SYej62Xu0dPckcs6zTius5qNfV1t9r9Y3bpVMS03vTYgsNMzIn0FOfAm2YQ2+J1o9p08tSzrlyFXzme1qfXAihchFpNPrqPm0drVNCGn9Bzol01TTWwMXcbIsyXQSP9gi57JgGPHPX9eUXHvIcrIseYYpmUl+EpsmOZcDk5wrAjlXBtNIfpEZci4P5FwZhv6+PRQ5VwYnyXtrABVraBl1snUMwxhWVp3O46OPTWff6W5vtJIVfQMAAAAAAGSk2I4zUHgNAACAAZReAwCQTaGQ9N3vxt/nulJ7u2TbIz7ElUacgprofkmRbVlW/EGn7dul+npO8AQAAAAAAABQvPr7Cz0CAACAnLBMS6s2LdCpRz6ntmmSm+f5A64hdVRJc/dJq+6rlbWwNr8DqBCWpFWbj1Lz4S+prbZbE0Ne7fGGFTZST9CIfktUOaa8rqGQ4SpgOmkXX3tcQxNDHpmGoYU9dVq1+UhZNZz+l0+dVljNh7+qtto+SYYcSS0L3pKqqtS0Z7Lk9WlYmm5MgZPHkjwerZ7do5YT2gdK8g21TQyr+fR9av3nZAqRi0Cn11HzB/eobUJYgzkvaZcsU01v10bOy7GSvMiTc3nweCRjSAFb7HlaHo8U5sJeJc9ykpctWiYXcCsHJjlXhFQ5m+RcFng+VwZyrgyWk2SihAYuJsT7prIztODEw3EtAMOlW0Y99P6hBdjpSKfQOpel1Lku1AYAAAAAABWEwmsAAAAUMc4AAQAgm/7+d2nr1vj7OjsjZdhDD8oYxuBUR3eEP0m57vAS7WAwsi8AAAAAAAAAKBZDj4smuDggAABAOVgzK6gddVIa/cc5YbjSjjppzYFMGMilBtuj1peP1MKeOpkyNCHsSdrTJA0vvJYkr2uoyjHjlid7/ISwR6YihdetLx+pBptioHyKFF5Hys5jOXLVcsirWj1x1/CLl48gUoS8d6AIeb+2CUE1f3CXOr3OyA9EXkQKr3epbUIw7n7HkFpO2KvVs3vS2g45AwAAAACQhGVReg1gRK7rDvsz2sel+pOr7WZr3wAAAAAAAGmh8BoAAABFjtJrAACy6cYb42/390u9vcPXM83BA0dGkj9Jua7kDJkEt2fPKAYNAAAAAAAAAHli8vEkAAAoT7Zj6/op29TnlewC/cpjm1KfV7r+iIDs1JdaxhhEi68X9NaqwxNO6zGxhddRscXXqXR4wlrQW0vhdQEkKryOihZfPzWhR7I8CScSPTi9f8Qi5CgKkQsrUeF1VLT4+qnJgaTbWUPOAAAAAAAkZpqS11voUQAAAAAAAABA6aPwGgAAACWA2S8AAGTL9u3S44/vv23bUnv78PWipS6Ok7rYOhXbjhyEih6I6u6WgkHJ5xvrlgEAAAAAAAAg+5jADAAAypRlWlq6d4r+NmHvmLZjukpYlJqOjipp6RavrKoim8xQrgbmaBjxN7Mq7qLZzAnJu1SF11GOXP3P7F262Jygxe21kj1QaGxH/np2YkA3z+2WleJMkbaJITV/aI9an5ihhrCVjS8Baej02Gpesl1t40NKdpl6x5Cum9etS95s1OK9/mHLn53Qr5vndMpyybnkeYKSGVNMHpZkxLwIe72SwzGOkudV5JevhMs9ks1ztOSRc2VIlbPPIznkXPLSeT6Tc+kj58rgVfzv18OWk3NZ8ngi81xMs/iKWAAUDYPXBwAAAAAAgPRMmlToEcSj8BoAAAAJUHpdBBzHUWdnpwKBgILBoNw8/gI/e/bsvO0LAMre00/v/3/HkfbtG35QxjAi92XztT4cjpwAGD2xp6eH0msAAAAAAAAAxcc0Jf/wUjAAAIByEAwH9d2D3pChsfUSj7XOwZD03ZP6ddmzjnwyx7g1JBItQt5Q26NxIY/avWEFE5Q1RTMNmI7kmPLGlOGGDDdy/8B6ib53vK6hcSGPNtT2qPnwl9T68pFqsDn1L9fSLbyOciStnBUpvl/cUTtY0PXshH6tnNslS0bKMmRJapsQVPMpO9W67mAKkfOg02OredEWtTUElc6rsGsYWnlgp+T1RHIe8Gxjj1bO6pTHjauqT4ici5w3JBn2/tuhsOTE3Db9klWV/3Ehu/xm8lJNxyuZ/LwteeRcGci5MlSbyUtyHa9kkXPJI+fK4E+Rs03OZWFoca1lRf4AQAL5nFcNAAAAAABQ0pYtk/bsKfQo9rvggkKPAAAAAEWMM0DyKBwOa+3atXrsscfU1tamTZs2aevWrdq3b19BPpA1DEPhcDjv+wWAsvXCC/v/v6srUkY9VK5e7x1n/wmAgUCkBBvFwSPJTHFypscjfi0rceRcGTxO6pxND6/BpY6cK4OVRs4ej+SQc0kj58qQzuu2xyLnUmcZqSe9eTxSGoVBKGLkXBkspZfzmGv+UFCWFT+B2TAkrzeSbVXV8MnNAAAAZcLn8emXno/q0+E7FDIlZxS/9kRLj0dbnG26kteRfrl2vHyh4Ci2gHR0WmE1H/Gq2mp6JFcyJTUETe2uskdcPzbPSPG1Ia9rDBReuyOuN1RD0ByoMHfVVtOl5nkvqLXtMIqvc2hozmkxJFdupPjadrR4t0/PjuvVyrn+ngOYAAEAAElEQVRdkU24Svu8kbb6XjUfvVmta2dTiJxDnR5bzYvfVlt9f0YvvHE576vWs+P7tHJWu9zoRtLcFjkXs5BkOPtvhoeUXgeDUohjHCUvFFLSa4SEXCnoJFkBJYGcKwM5V4ZQKPlHSEGRczkg58qQKueQyBkAKswbb7xR6CEAAAAAAACUhmXLpNtvL/Qo9rvgAum22wo9CgAAABQxZr3kwdq1a3XttdfqL3/5izo6Ogbv58rDAFBmNmyI/B0ISP39o9pEdAJzxqKl19HSoJkzR7V/5IAZlOpTrOOZLjm+vAwHOULOlcHsl+qTzY4SOZcDcq4MaeU8k5LcUkfOlcHTL9WmyNmcKQ6DljgzJPm6k69T36jkM9lR9Mi5MqSV8zhRel3idu6U9u7df9vrlerqCjceAACAPFq+8BLpl2v06Q92ZFx8bUgyBk4lMgY+OM7kzCLTlby29Ie7pOWvByTvxgwejXTZhqvl5/WozW9LA9fBduSq05/4Me6QEwECpquw48o2k68Xq9Nja1y/LXNghTZ/h5YfuE533l0riwtEZd1IOafFcgefuytn7dFzflMbJjn7e64dSSN3o4+orbZbyxds0p13+Mg5B2zD1fLzg2qrdTLLWRqSs6ENk1y50T42ci4PE8LxHy24bvwP5m5D6uVYZckLOJEL9SXSaUi9PC9LHjlXBnKuDEEn+UeFHYbUR84lj5wrAzlXhqHzJoPByFwbjyf1xbIBVJw5c+YUeggAAAAAAACloZgKrydOpPAaAAAAKXHGdQ6tX79eH/rQh7RkyRKtXLlS7e3tcl138I8kGYZRkD8AgBzYsydyYl5XV9oPcYf8GXpfRsLhyP4DgUwfCQAAAAAAAAAAAAAYq+OP1/LN1frDXZLXSb16VGzh9eB9bmaXg/E6A4XXL4rSmByyXENXbPDJHMjLkat2vxS0En/G745QYD6s8HpgvREfr8j22/2R/UmRkvMrNlCQmytDcx4N15BemuwkzDUdpqQrXvCQc45YrqErXvCM6STaSM4uOQMAAAAAkA7HiZRf2xlcLQoAAAAAAAAAEFFsvXG7dxd6BAAAACgBlF7ngOu6uuaaa3T88cfrkUceGSy5TlY+HVuGnes/AIAcCYUihdPpnoCX7YNJrhs5CZDXegAAAAAAAAAAAADIvxkzpLlzdd4r0rw8n8s/b7d03quSTDPyBznTtMWnFQ9XS27qwutYCUux03xstPharqsVD1eraYsv7TEjc9Gcx1J8PRampBUP+NS0mRL7XGrabGnFA76CnUhLzgAAAACAihQMFnoEAAAAAAAAAFBaiq3wmm4jAAAApIkZTlkWDAb1iU98Qj/4wQ9k23Zc2bWUuNwaAFAGvF6pry+9dQ0jNweUbLv4DlQBAAAAAAAAAAAAQIXo3PGWmpdJWxslI81TglxJ7pCPeV0jvTJkKbKfrY1S8zKp0+tkMlyM0ulbvZrWZ6ZdeB01dN1MHxu0pGl9pk7f6s3gkRitQhVfU4ScX4UqviZnAAAAAEBFo/gaAAAAAAAAANJTbD1C9OUBAAAgA55CD6DcXHrppbrjjjskKa7oeiij2N5IAADGrqYmvRPvclV4LUmOI3n48Q4AAAAAAAAAAAAA+db55itqPuldrZ0ldVRJhiS5wwutR+JKkhEpsM608NpQZH9rZ0WKr1ufqFGD6xvtl4EUOr2Omj+4S282ju7xriKZjXbax5uNUvPSoFr/OVkNoXzX9Faepj2SnulRywl75aR6LhvOwBM/0XJJZvKNmK604rEGNb3nl0b5PYbMNb0n6fF+tXygM42cXXKuBHWByHM6yrHjX7gdSzI5R6vk1YSVtPHeNiWTn7Ulj5wrAzlXhppw8t/DwqZkkXPJI+fKQM6Vob8//rZhROa7RH8m19Tkf0wAAAAAAAAAUGqKraeOwmsAAABkiDOus+jXv/61br311rhC66GF10PLrkcqxAYAlKja2tTr5LLwOorSawAAAAAAAAAAAADIK9uxtfyPTYOF11GZFl+ns97gtof0rkaLr5ef/J7u/Od0WZlsDGmxDVfLT96ltZOD6vA6MgYarDM9A2w0Z4wZimTe4XW0dnIgkvOayeScB01vVkvueLWcuC91IfIYDBYhv+nP3U6QUPTfPa3i6zEg5xLhOJKVZDnn/gIAAABAZhxHCoUipdcejzR/fqFHBAAAAAAAAADFjcJrAAAAlAFaMbNk+/bt+u53vztYap2o7Dp6v2EYmjNnjo466ijNnz9fjY2Nqq+vV11d3bBibABAGXHd4juoBAAAAAAAAAAAAAAYE8u0dMQr+3TPQYUdR0eVdMS7tqxguLADKVOWpCP2WLpnljN432iLrzMRLbyO6vA6OmKPRc551PSaVwo3qOWkDjmG5MqVoRHO/0j2jTDCsuh2TFda8Uitml73SCLXQml6zSM5tWo5pYecK53jxL/w2o7iwnUk2Xa+R4VsG5rrUI4r2UzYLHkOOVeEVDnb5FwWbCdyBZFEeD6XB3KuDI6tkd5qDeJ1uzw4Tvzt6Hso05RmzpRmzMj/mAAAAAAAAACgVBRbNxGF1wAAABglSq+z5D/+4z/U09MjwzCSFl4vXLhQl19+uS666CJNnTq1EEMFAORKT0+hRxARZlIcAAAAAAAAAAAAAOST7djaaO5WYyBSPB3lSnJzNPfANSI7iN18Y0DaOMmVHQ7KytWOK5htuNo4LqjGoKEOX8w5YgPF1zkzZL5IY9DQxnFBcs6zps2WZNfqS6d0a5/fVU1Y8tsj/fsnmuBjxE3+6bdc9XqlCX2uVjxco6YtlihCLrymVy3J9utLp/ZqX7VUE3JHyDnZJC5yLgtDC60dJ37yniNpxOc/SoqToricssXyYNvJX7bJuTyQc2VwyLkikHNlsJ3kx1EoNy8PiUqvp0yR5s6VAoG8DwkAAAAAAAAASgKF1wAAACgjlF5nQTAY1A033DBYbh0Ve3vChAn6yU9+ok9/+tP5Hh4AIF96eyWfTwoGk6/nOJJp5mYMpknpNQAAAAAAAAAAAADkmWVaWvVnR83nS2tnRYqvMy28NiQZbuQx6U4RiC2+bgxIJ7wjrbpDshYenPHXgNQsSas222qufU1rx3Wrw2tHcs5gG7HfEhnlPPDYxpClEzrrtGrzIbIOtDLYM7LhdI+tafbL2mn1qsNypZApvzNwDojpJA/YMCQzskK/6ajDGyl7mmZX63TPYdLB5FksIjm/op1WnzosDc85GXIuD969kR/KUaGQ5MZkX1clhf35Hxeyq7FfSnYaX51HCnCqfckj58pAzpVhXH/yklxyLg/kXBlS5VzrkYLkXPL27IkvQpkyRZo8WfJ4pP5+qaurcGMDAAAAAAAAgGJF4TUAAADKDGeAZMEDDzygzs5OGYYhd+CX9Gjhteu6mjFjhh566CEdeuihhRwmACDXQiGppmZ/6XWyAzeOk5sDTZbFASMAAAAAAAAAAAAAKICGflett0nNy6QnZ0kdGXRhRguvFf07w+Lrhv5I4XXrbVJDQFJ9fWaDR9oaJLW+drSa57+kJ+vb1eGx037s0LMEBjrL0+JKaghbOqF7nFpfO1IN1Zz6l2+dVljN81/SDn9YVY6pQLTQOGxECpGHngcy7LQQQ5IRKUIe+L6pckztqLbVfMJWtW46Ug02uRbaYM7Vdno5D0POZcENSEbM63vAkpyY255aya7O/7iQXTWmZCb5SWz4JK83f+NBbpBzZSDnylBNzhWBnCtDjRl/kZlhfJKPnEteV1f83Ja6uv3zXXp7pZ6ewo0NAAAAAAAAAIoRhdcAAAAoQ5w5nwWPPPJI3O3Ywuuqqio98MADFF4DQCXweqWqqsiJeLYdOZiU7ACO62Y0gTUlw4jsu9gOYgEAAAAAAAAAAABAJXBdNQSkX94nLfxCZg8d2vNjuJEy63T1eiP7bQjsHwtypyFs6ZdbDtbCY5/J6357LUe/3HKwGsKWsni2AdIQLUJuq+1Wv+koYDqDyzo8YSmc3qmYkSLk8ODtgOmo33TUVtul5vkvqvVlCpELiZwBAAAAAMgS1018jNJxIn8AAAAAAAAAABHF1hXEOagAAADIEs6az4J169YNu891XRmGoa9+9as6/PDDCzAqAEDeTZwY+bu+XmpvT/thWTvsZFmRE/8MI6P9I8c8QcnqTb5Oe7vk+PIyHOQIOVeGtHLulBzeZpU0cq4Mab9uk3NJI+fK4AlIRoqcO9vJudRZYak6Rc7driQzL8NBjpBzZUgrZymLR8xQCH19hR4BAABAQb1TL51yhWRn+PbFNeKLrzMpvJYi+zvlCmn9tdKsLkm9KX73xpi84wvolIUvyh7aVp6Cq/h3PJlOC7ENV6csXKf1j71Ps4JVGT4ao9VphdV89Ga11fSq33DU4bGHrdPhCas6bMqb5D1twHDU4xle6NThCUshS201XWo+rE2tzx9KIXIBZDPnbnIufZ6gpJjvgVAovpAtFJDCHMMqeb6gZCb5aRxwpcDw1wKUmKrg8CvMxCLn8kDOlaEqkPwjpH5XCpJzySPnypAq5wA5l4VwOL4UJfY9lWkWX4ELgJLU3d2ttrY2vfjii3rnnXe0bds2dXZ2qq+vT4FAQO7A65BhGFqzZk2BRwsAAAAAAJBAsR0vpfAaAAAAWcQZ81nwxhtvyBh442DEvIEwTVPf/OY3CzUsAEC+LVggPfqoVFUlVVcPm0RsG5KVheM6I27HNCN/JKm2lgNIxcR1U+fhisxKHTlXhrRyTmMdFDdyrgzkXBnIuTKQc2VIN+eMa6JQVMi5MqSdMwAAAFCa3qmXjvm8tLc683cvriQNFF+7xugev7c6sv/110qz+N06Z96pCuiYD7ykvd6wpMjlmYbX2yYWLb7ONKFoj/peb1jHfOBFrX/sSM0KUHyda52esJqPfk1t9b3qNx11eBOXbvV6HFXbpnwjtNYHDVf9VuLvlA6vLYWktvpeNR+9Wa3PH6KGMKd35gs5Y5i4Y5FupJzNifm+sO3IH5Q2x1bSn8i2GTlZD6XNtpOXm5NzeSDnyuA4ycvNHXIuC+RcGVLlzOt2+Ygtaol9D1VdLVlW/scDoCy88MILam1t1f3336/169cPFlsn4rpu3LzvdDnOyMf5TDPDq54CAAAAAAAkQ+E1AAAAyhxny2fB7t27425HPwQ97rjjNHHixAKNCgCQd0cdtf//6+ulYFAKhSRJnVXS8vOlK56XmjYZoz7Is3q+dP0x0qo7pIbAwJ2GIXlifqTX1Y1u/AAAAAAAAAAAAACAUQmGgzr2c/sLr0foQk1ptI9T9HFuZP/Hfk7aem+HfC7FC9kWNBwd+6HN2htTiDuaT/9H+5jot8deb1jHLnlRW+8+lJxzqNNjq/n976itLhApQvakrjfvsxwpbMQVIgcNV32Wq1RP7w6PLYVdtdX1qPnITWp9cpYawhRA5Ro5Y0TVfZJsKWxLrhMpZ3NiXr37w1IgkPDhKBFmSLKS/FTusaQ+np8lzwolL0Mm5/KQKuduS+on55JHzpWBnCuDJ5S89LrLkgLkXPKCwfjbnZ2R91aTJ0s+X+QPAGTglltu0S9+8QutW7dOklKWXUsaVdm1JN11111qamoacdkFF1ygW2+9dVTbBQAAAAAAiEPhNQAAACoApddZ0NvbO+L9J554Yp5HAgAoqOOP3///hiGNHy/t3q1Or6PmZVLbNGn9dEmuq6ZNmW9+9Xyp5RzJMaTmZVLrbQPF154hP84bGsbyVQAAAAAAAAAAAAAAMuTz+HT5Sx797PjwqIurxypafH35eslneJSyeRUZ88nU5W+O188P2y0ZA0Xledp3dD/GwI3L3xxPzjnU6bHVfOI2tTUG1G+5kSLkNP+t+zyuFJZ8rhEpQvak+V1iaKBw2VDbuICal2xT61MHUIicQ+SMpMLhyN+GIckYXspXbBMPkTnDSP6cNwxyLgfkXBnIuTKQc2Ug58qRLEdyLg+GEV+QEs21vV2yLKmqqmBDA1BaHn30UX3hC1/Qyy+/LCm+7Hq0pdapLF26VEceeaRefPHFYcvuvvtutbe3a9y4cTnZNwAAAAAAqBDFdhycwmsAAADkCKXXWeD1emXb9rD7p0yZUoDRAAAKZsYM6aSTpMcfj9y2LHVOaVTz6fvUNi0yAdUxIsXVkvTxDIqvYwuvXUUKtJuXSa13etQQNvevOHGiNGlStr4iZIMZlPwjXyBjUH2d5PjyMx7kBjlXBjOQRs615FzqyLkyePrTyLlecjhsUtLIuTJ4vJK/L/k6tfXiMGiJM0NSVYqTOIx6SWbydVDcyLkypJ1zkZ24hcyEQpIv5j2T1zt8HZPnMgAAKE8n7vKpNhRWdwEPIdeGpBO3G5KGn8uE7Php22TJdfSz+XvzVngdFd3fN1+ZoJ++MFnknBu24Wr5ce+orbFf/aaTURFyVJ/HVchxFc707Y8hdXhsyTXV1tiv5cdt1Z2Pz5JVqDb9MkbOSCoUHjKZz42/yoHrSo6T71Eh21xHShaj40RO2ENpS/VcJefyQM6VgZwrAzlXBtdN/nsYv2+Xh6EFKY4jBYOSbUt9fVIgUJhxASgZtm3r61//un7729/Kdd3BsuuhRddukkKmsZRi/5//8390+eWXx23DdV0Fg0Hdcsst+vznPz/qbQMAAAAAgApXbL1AFF4DAAAgh2h7yYKGhgb19/cPu3/8+PEFGA0AoKAuu2yw9LrT66j5jF61TTDkuK7aq6WakOQPRwqsXUlNaRRfxxZe93ukXq80rm+g+Pp8R61/sdQQHDiBZu5cycOP96JiOpKVYnajx0PZYqkj58pghsm5EpBzZTA95FwJyLkyeNLMmcOgpc10JctKvo7HI8qQSxw5V4a0c2aiekmzLCl20uDQCYQez/D7AAAAyoDt2Lr+yJDqg5HPgnsKUHxdG5Tqg9L1x7ha+qIli9+tc+bE9jrVhvep25P/yR61YUMnttdxbkAOWZKueHuCnpi0TR3ezIuQozIuQo4ypA6vIyNk6Iq3J8iyRriYEMaMnJGUYUhGTLiuGzk3JMo0Ux/nQvEzncgxy0Qsi5zLgWUnf40n5/JAzpWBnCsDOVcGM0XO/L5dHgwjvijF45GqqiJ/B4NSe3vBhgag+O3bt08f+9jH9Pjjjw8rux5acp1JCXYmLrroIn3jG9/Qnj17hi274YYbKL0GAAAAAACjs2yZNMLxhoK54IJCjwAAAABljpkvWTB9+nTt3Llz2Iej+/btK9CIAAAF8+EPSwccoM4db6n5jHa1TQzJcSKF1yFT6qiKrOYPS185J/L/yYqvV8+PrBctvI4+vr16oPh6iqPmj4XU+hevGjy10tSpuf36AAAAAAAAAGAsamsLPQIAAICcsExLq/7mV/OHQ2qbFrkvn8XXtUGpISgt3CGtWm3Kev+U/O28wqyeuEsth+xUveOVa4fVYzmpH5QltbapesejlkU7pYZGNe2ZnLd9V5wGSeb2rF6XyVUGmzMkmYbU0CiFyDlnyBmJ9PdJCu+/3dsn2fb+21xYtTxYjmQlK732SB7KFkuelarcnJzLQqqcPeRcFng+VwZyrgyeFKXXHo9kk3PJG1pc7vXuv4ibbUuhUP7HBKAk7N27V2eccYba2trkuu6IZddD53JHZavwWpJ8Pp+WL1+uX//61zIMY3AsruvqmWee0bZt2zRz5sys7Q8AAAAAAFSAZcuk228v9Cj2u+AC6bbbCj0KAAAAlDnOuM6CBQsW6Pnnnx92/3vvvZf/wQAACsvrVec1/38133bRQOG1M1h4HZVu8XWiwmspsr1hxddvH6YG0xy+IQAAAAAAAAAoNMOIFF778tj8CACjFAgE9Oqrr+qdd95RV1eXent7VVNTo/r6es2aNUvz5s2Tj9ezirBr1y5t3bpV7777rrq6utTf3y/DMOT3+1VfX6/p06frgAMO0KRJkwo9VBSJhn5XrbdJzcuktmmSbUY+6801f3h/4XXrbVJDSFJ/f+53XIFsubp+yjty3EjRdUPYUliuAskKM7OkyjbUELYkuXIGxrF0W52sbLb1QtL+nKtsQ42upQ6vnfpBI7BcQ7Yxuu+NxpClKscg5xwiZyQVDiuu9NqxI39il4c5T6vk2baUrAzLlhTO/c945JgdlpJdo4Scy0OqnMMi53LA87kykHNlCKcoveZ1uzw4Tvzv27H/bxhSVdXwxwCoeKFQSOedd56ef/55GYYxrPA6tuw6ep9lWZo0aZImTpyoQCCgLVu2DJZTj1W09HokDzzwgC6//PIx7wMAAAAAAFSQYiq8njiRwmsAAADkBaXXWbB48WKtWrVq2P1vvfVWAUYDACikzkCnmvf+Tm0zLTm9gWGF11Gpiq+TFV5HxRVfTzfUPH2rWt87UA0uJQtFxeyX/P7k67h1kkNuJY2cK4Ppkfwdydex6ySRc0kj58pgWqlft+0akXOJI+fKYJpp5FwnDoOWOCMkeZPNapXkqZNEwUhJI+fKYATTyLlW5Fzi+vokr3f/bZ9PamyUPJ7Iz24AKFJPPfWU7rzzTt17773asGGDbDtx6aFlWVqwYIHOOeccfexjH9OJJ56Yx5EWVmdnp1566SVt2LBBb7/9tt5++21t3bpV27dvV3d3t3p7e9XT0yPbtlVVVaXa2lpNmTJF06dP17x583TkkUfqpJNO0pFHHhk3Kb1YvPTSS/rb3/6mhx56SOvWrdOuXbvSetzUqVO1aNEinXrqqfroRz+qBQsW5HikKFqGoYZApHj61MuknbWR/p5cVvQYkoKWNK1roPA6oMiv1J2dOdxr5bIkrXp8mppP3Kq2xn71m45CeSi8lqSQ5arftuV3TC3s8GvVU9Nkhbvysu9KMzRnuaY6fCnezw5RZRvyuoZChjIuRW8MmvI7hhZ2VJFzDpEzkjL7pNgy81B4SOm1IQXzPyxkWSgsJXvuBh0pOLpCfBSRUFgyybnspco5RM5lIRRK/hESz+fyQM6VIVXOvG6Xh1Ao/nYwGPns2OOJfH7MxUUBjOBrX/uannzyyWFl15Li7ps5c6Yuu+wynXrqqVqyZIlqamokSX/4wx905ZVXZm08ixcv1uzZs7V169Zhn23+4x//oPQaAAAAAACkr5jOm54wQdq9u9CjAAAAQIWg7SULli5dqq997WuDt6NXAX7ooYfkOI5MJvADQEXoDHSq+bZmte1okyM3YeF1VKLi63QKr6MGi69DUptvn5qnP6bW9jMpvi4qhuRNkYdTJSlFUR+KHDlXjFQ5V1eL8tQyQM7lz3DJuRKQc2Uw08nZL8mbfB0UN8OSrEDydaxqUZJb4si5MhiWZKVoAyLn0ldVFZmoHOXxMGEZQFG75ZZb9LOf/Uzr1q1L+zG2beuFF17QCy+8oJ/85Cc69thj9c1vflPNzc05HGn+9fb2au3atXr88ce1du1avfjiixld/Lu3t1e9vb3atWuXNmzYoH/84x+DyyZPnqympiZdfPHFOvnkk3Mx/LQFAgGtXLlSK1as0IsvvjiqbezcuVP33nuv7r33Xl199dVauHChvvKVr+jiiy+Wj5+DlWXgHKE1B0o76iLXfAmZkozcFF8bGjgM5kT2t+bAmIstJynvx9g02FLr4zN06ofeUtv4sKTIu5jMqnIzE32X1OFzNHefV62Pz1BDWJLIOVeiOTcv2aa2cQEpqLQLkaNFyJIif9vpFyJHipBNLWyvUusT5Jxr5IyEDEluzPeC60b+RDlO5A9Km+sk/wHupFiO0pDquUrO5YGcK4OT4nctci4P5FwZXJffwyqBO+T5HA5H/lRXS3V1hRkTgKL22GOP6b//+7+HFV7H3p4xY4a+//3v65JLLpHXm5/zQj/ykY/od7/73eA4ovPHH3zwwbzsHwAAAAAAlIFiKryWpD17Cj0CAAAAVBBKr7PgwAMP1OLFi/Xss8/GXa23o6NDTz75pE466aQCjg4AkA+2Y2v5Hcsjhdf9/Wp3+5IWXkcNLb7+y3xpzUHpFV5HhUyp3WtrnB1Wm2ePljeu0Z3tH5ZFORAAAAAAAAAAAMCINm3apM997nN65JFHxryt5557ThdddJGuvfZaXXvttZo3b14WRlg4TzzxhK666iqtX79e4XA4J/vYtWuXfv/73+v3v/+9Fi1apO9973s699xzc7KvZG699VZ94xvf0NatW7O63ba2Nn3605/WD37wA/3qV7/Sxz/+8axuH0XM49Hq+VLLOZIMaVyftK9aClq52Z2rSOH1uL7I/lqiF1t+zZQmTszNTiFJWjN5t3bWuPI6hkJmpHgjV8XXsZ/8ex1DO2tcrTnEVNMuMs61Bkmtmyao+X2vqK2+Rwo76vAk/9lY5ZjyyogU5g7wypAcV0Ez+XdIY9gjv0wt7KlV66Z5amjk9M58IGeMKNwvuTFF5P39Qy4oUSX5a/I+LGRZfSBygdVELI9UxXO05JFzZUiVs0nOZSFlzl7Jn6M34Mgfcq4M9YHIldwSIefysG9f/O3x4yN/JKm7e3gpNoCK95WvfEWu6w6WSkvxhddnnnmmVq1apUmTJuV1XKeffrp+97vfDY4jOqadO3dqy5YtOvjgg/M6HgAAAAAAUGKKrfCaY7MAAADIM87cy5Kvf/3r+tSnPjXs/hUrVlB6DQAVwDItXXH0FXpu+3NqD7SnVXgdFVt8/cDAeS7pFl5HhUypXUFNkEdX9M2n8BoAAAAAAAAAACCBO+64Q5dddpm6u7uzut2HH35Yixcv1sqVK9XU1JTVbefT66+/rmeeeSZv+1u3bp3OO+88nXXWWfrDH/6gWbNm5XyfXV1duvLKK9Xa2prT/bz55ptqamrSZZddpv/6r/9STQ3FiOVu9QJTLYsjFzmW4rpQcyq6HydafP2gR02ULOTM6pq31DLxbbmyNN61tM8NKGRESm6zXXwdV3jtmhrvVsn1SC0L3pb2TFNT75ws7g0jaZDU2n2gmmseUZu1V3JMdZjBEdY0VO2asgxjxCe/V4Y8rqlew1aksj5eo+OT37C00J6g1u5T1DDXl+0vBUlkkrPfNeVJkrPXNdVDzqVvd7/kxJSfd3ZKsReEqa2XvOPzPy5kV21P8lLNOp8U5Hla8up6kpdqknN5SJVzrU8KkXPJq+tO/ka7tkoKefM2HOQIOVcGcq4MwSHvq30xP4sdh2IVAHHuuecePf/888MKr6Ml0xdddJFWrVo1WDidTyeeeGLCZRs3bqT0GgAAAAAAJEbhNQAAAEDpdbZceOGF+vGPf6wNGzZI2v+B6p///Gd94xvf0OLFiws8QgBArp1+0OmaZldrZ7IT5xOILb7OtPA6KmRK0/osnR6cmfmDAQAAAAAAAAAAKsBvf/tbtbS0DE6Wzrbu7m5dcMEF+s1vfqMvfvGLOdlHubr//vt11FFH6c9//rNOP/30nO1n586dOvvss/X888/nbB9D3Xjjjdq0aZPuueceTZgwIW/7RX7Zjq3r5/UOFl67kvZVS2Ez0r3m5mDuguFGtr+vWhrfF+kKcgzp+gVBLX3xBVl5q92uHLZcXX/8FjnhkKTIv/l4mdrndRUy3awWXkuRAm1TktcxND5kylB48P7r3XVa+mIHOedBg6RWzyQ1H9ultsawZFrq8Npx6zSGTNmGK3eEouMon2vIK3OEx1ryO64WdnjV+twkNYRfycWXgRSymbOHnEufu1MyYjIMBCQ75lW+r0cK7s3/uJBdE0LxV5gYqseU+qy8DQc5Qs6VIVXO3abUT84lj5wrAzlXhomh5KXX3ZbUn+wbASWht3f4fbW10oQJUlWV5Pfnf0wAita1114bdzu28HrJkiW64YYbClJ4LUmzZs3SpEmTtGfPnmFj2LRpk84777yCjAsAAAAAABQ5Cq8BAAAASZReZ41pmrruuuu0ZMmSuMmxruvqs5/9rB599FHV1tYWcIQAgFyyHVvL71iuHZ3b1Wgb6vCNrvi63yMFRnkebmNA2mH0annjGt3Z/mFZSc/4BQAAAAAAAAAAqCw33nhjTguvo1zX1Ze//GXV1dXp0ksvzem+ys2+ffv0kY98RH/605+0bNmyrG+/s7NTZ555pl588cWsbzuVtWvX6uyzz9bDDz+smpqavO8fuWeZlla9NE/NB63T89MiRdShgY9s0y28NrS/IDudVyrXiKwfiim+PnqHtOpur6yZ/aP9UpCEJWnV49PUvGSb2sYFJA0UXwdNvVdlJy9simEovYylyIrjg+bApiOPWthepVVPTJMVJud8aZDU+tj+7PtNQwHLldxIEbLfMdRjucm/B1xXfseUXFMdXkcypCrbkN82tLDdp9YnpqkhHMzXl4QRkDMGecKSYkqvw7bkxpRe24YUCuV9WMiycDh5qWbIlELZvqQF8o6cK0OqnMPkXBZ4PlcGcq4M4XDy91UhZ/+BNZQuO/5iUAqHpb4+aft26aCDpOrqwowLQNFpb2/X3//+98FC6dhiaa/XqxtvvFE+n69Qw5MkzZ8/X4899tiIpdcAAAAAAADDUHgNAAAADKL0OouOP/54/fCHP9S3v/1tGYYxeDXhtrY2XXDBBfrb3/4myxplkykAoKhZpqUrZn9c69fdI79hSEGNqvh6LIXXftuQ6Tq6onMuhdcAAAAAAAAAAAAxnn76aV155ZVpFV4vWbJEn/rUp7RkyRLNnTtX9fX16urq0uuvv64nnnhCq1at0tq1a5Nuw3VdXXnllTr88MN13HHHZevLKCqNjY067LDDNG/ePE2dOlX19fVqaGhQTU2Nurq61NnZqV27dqmtrU0vvPCCenp60tpuKBTS8uXLNWnSJJ166qlZHfNll12WduF1XV2dzj//fH3gAx/QcccdpylTpmjChAlyXVd79+7Vzp079fTTT+vRRx/V6tWr1dfXl3KbzzzzjD73uc/ppptuGuuXgiLV4K3T/9wlHfP5/b08ToaF14r+nWbxtWNI5kDxddiU/ucuqSFkSEEKVXOlISi1/nOKmk/eobbxkX/nLq+TUdbRv9PNuMvjqGHgm2rhPp9aH52ihpCtuEJW5Fw0+1PP3Kad48P7i5DtaJqpEjUihci2ISlSiBwwXU3rNdX6TzItFmPO2SXn8hCWjJicHCfyJ8q2I8XXKG22o6TPaceVbCZ+ljwnxWsuOZeHVDnb5FwWeD5XBnKuDLadvNyc1+3y4AwpqA+HJcuSamqk7m6OXwIY9PDDDysUCg3Ox479+8orr9RBBx1U6CHq4IMP1mOPPTbs/tdee60AowEAAAAAAEWNwmsAAAAgDqXXWfatb31Lmzdv1v/+7//GFV8/8MAD+shHPqKVK1dq2rRphR4mACAHmnZNlB5vVMtJHZGJa6Msvs7U/sJracU/vGqa5pcOzPluAQAAAAAAAAAASkJnZ6cuuugihUKhpOsdeuih+u///m+dfvrpw5aNHz9exx57rI499li1tLTo/vvv1xe/+EVt2bIl4faCwaCam5v1/PPPq6GhYcxfRyH5fD4tXrxYH/jAB3TyySfruOOO09SpU9N+vOM4euihh7Ry5Urdeuut6u/vT7p+MBjUpz71Kb3wwguaNGnSWIcvSbr55pt15513plyvurpa//Zv/6YvfOELamxsHHGdmTNnaubMmVq0aJE+//nPa8+ePVqxYoX+/d//XcEURR1//OMfdeGFF+q8884bzZeBItdpBHXlUslyJK+T2UWPXUkyIoXXbpqF11GOIVXZkf1euVRq/avUUF2d4eiRiQZJrc/MVfOJW/XoxF71eNJLbOh0lnSLryPbd3Xynhq1PnOAGjwWZ/4VyJoZndpZ48jrGqqxTfkdIybYVBOWjMFJTX7HkMKGei1HO2scrZltq2l7bS6HjgwkzTnVxDSDnMuC2SMZMT/IXcUXMHq9ks0LccnzGJKV5Cexx5K8ydoYURI8A1eJSbicnMtCqpy9VuQqQShtHiUvyeX5XB7IuTKkytlrSTY5l7xwOP623x8pvDZNKRSSdu0qzLgAFJ2RyqSjvvzlL+dxJImNNCfcdV3t27evAKMBAAAAAABFi8JrAAAAYBjOuM6B6667TlVVVbr22mvjiq/XrFmjhQsX6je/+Y0+8YlPFHqYAIBse+EFNb3pl6RI8XVYkit1VOVul40ByR+OnPO54h9eNW32SL690oG0XgMAAAAAAAAAAEjSv/3bv+mNN95Ius4ZZ5yh2267LWHJ8VBnnXWWnn32WZ1//vl66KGHEq73xhtv6JprrtEvf/nLjMZcDKZPn67zzjtPH/vYx3TaaafJ7/ePelumaer000/X6aefrv/7f/+vvvzlL+vee+9N+ph3331X3/3ud3XttdeOer9R4XBY3/3ud1Oud9hhh+n222/XkUcemdH2J06cqGuuuUbnnXeeli1bpjfffDPp+t/61rf00Y9+VKZJcUs5sR1by498RW3+yOe3li0pg9JrKdKn6Y5yzoNlR/bbNk1afl5Qdz7dL2u0G0NaGgLSvH2W7pvqpFw3WRLRZamml/R4HM3bZ6mhJywpnGJt5MLqWd1qOXqXXNfVhED0NXx/cqabPEfTjV/BH5b8YVOuXLUcvV0KhdT0Tl1Oxo70pczZSf5abZBzefCGJSPm9d114ycCMikQAAAAAJIzjPj3Tqa5/75AQOrrK9zYABSVjRs3Dv6/EVMMNWfOHM2bN68QQxpm6EV6o3PGu7q6CjQiAAAAAABQdCi8BgAAAEZE6XUOGIah//qv/9JBBx2k73znOwqHw4MfYu7atUsXXXSRvv3tb+urX/2qmpqaNHPmzEIPGQCQDRs2SNL+4usl7ZHia+Wm+Hqw8NqVVqwZKLyWpL17s78zAAAAAAAAAACAErRx40b99re/TbrO+9//fv3lL39RTU1NRtseN26c7r77bp122ml6+umnE663YsUKXXnllTr88MMz2n6hHHfccXryySd1wgknxE0sz5aDDjpI99xzj66++mr9x3/8R9J1r7vuOn3729/W7Nmzx7TPu+++W6+//nrSdaZNm6b7779fc+bMGfV+jj32WN1///1asmSJdu/enXC9jRs36v7779fZZ5896n2h+FimpSt2ztT62fvUXiX1+vK7/15fpDx5XEC64gVLVpBS5Fy7etFerZjXKdOVnGQFuGlsK53ia9OVVszrUFXI1U/XTchgpMiG1bN71LJ4r5JVnBtS6vbyBBy5aln8nmSH1fR27eg2gjHLRs7JnvPkXEI8ruTGll6P8F3hpL7oAYqc6yjpE95JsRylIdVzlZzLAzlXBifFL9vkXB7IuTK4Lr+HVYJkP58dR/IwrRVAxOuvvx73maTrujIMQ6eeemrhBjVEdXX1iPdTeg0AAAAAACRReA0AAAAkwdkBWbJy5cph902ZMkWf/vSnde2118owjMEPXl3X1ZYtW/TVr35VX/3qV3XAAQdoyZIlmj17tsaPH68JEyaoqioH7agjuPTSS/OyHwCoCHv2DP5v05t+qderltODOSm+jiu8/ruppjdifqT392dvRwAAAAAAAAAAACXse9/7nsLhxMWvEyZMUGtra8aF11G1tbW69dZbdfTRR6u9vX3EdcLhsL7//e/r5ptvHtU+8m3evHl52c9Pf/pTdXZ26tprr024jm3b+sMf/qDvfe97Y9rXqlWrUq5z0003janwOurQQw/VDTfcoHPPPTflmCi9Lj9N7zZqpSXdOb8w++/xSWdukZo2GdIUSq9z6erF7fr5kd2DtxMVXxuSDFdy05jTYriRB4w03cSMufPnR3ZKjqOfPjsuw1FjtFbP6VPLCe1y5CYvtXbd5I3HrpF0QpEjqeWEvZLtqOmtkUtUkDtp55yq2Zycy4PrSq69/7bjxhe22bZkD38YSoztKOlz2nElm4mgJc9J8WQl5/KQKmebnMsCz+fKQM6VwbYlM9lyci4LQ98bx96uqqL0GsCgRBeSnT59ep5HkpjX6x3xfkqvAQAAAAAAhdcAAABAcpwdkCWXX3553NWEh3IH3gwMLb+WpLfffltbt27N/SBHQOk1AGRRKBR3s2mzRwqG1PIRV/6w1O+RAtbYd1NlxxRe3ys1bTYlX8wKsROsAAAAAAAAAAAAKtTrr7+u22+/Pek6P/zhD3XAAQeMaT9z5szR9773PX31q19NuM6f//xn/fu//7vmzp07pn2Vm//4j//QXXfdpe3btydc56677hpT6bXrunrooYeSrnP66afrjDPOGPU+hvroRz+qU045RY888kjCddasWZO1/aF4XH3Im7prTqTzthDTBgxJd82Xrj41rJ+2hVKuj9G5+oQu/fyo3mH3Dy2+jhZeZ2Kk4mtzhG38/KjuSPH12vrMdoCMrT6wXy3v71J2zsQYCDgJR65a3r9PssNqesOflb0itYxyThkjOZeFaAmfPfBd4TrxkwIpvS4PlORWBttJ/ss5OZcHcq4M5FwZyLkyOORcEWx7+G3Xlfx+adw4ilcADOrp6Rnx/ilTpuR5JIl1dnaOeH+yOeUAAAAAAKACFNuxAY67AgAAoAhRep1lbopf/Ecqv07ncbnAB6oAkGUjXLW96ZXIa+1nznOzUngtRYqzA5Z03d1S0yZDGrpd08zOjgAAAAAAAAAAAErYb3/7W9lDSxViHHroofrsZz+blX198Ytf1K9//Wu9/vrrIy63bVu//e1v9bOf/Swr+ysX9fX1uuqqq/Qv//IvCddpa2tTR0eHGhsbR7WPN998U3v37k26zmc+85lRbTuZz372s0lLr999911t27ZNM2fOzPq+URjBcFA3zHxP0sjFxemyXMkexSk9sQXLNyx09IM3auRz+Ow424KmoxsO35VwebT4OlXh9eR+U7v8I9frxn7/jFR4HXXD4f36wctTyTmHVh/QrZbjuuWMcJ6dI0emhvzbp3ruGho20Wmk7TiG1HJyt+T3q2lr3ShGjkyQM0bk18CLsCs5rmSH43+w25Zk+go0OGRNdUhDn+JxHFMysnTSHwqHnCtDqpxtUzLJueSRc2Ug58pQHUr+3sq2JIvjHSUvNOSifB5PpPC6pqb4imAAFFSiz3O9I8zTK5REnzVWV1fneSQAAAAAAKBoFNtxTgqvAQAAUKQovc6ykYqkRyq0jr1vaAF2PhSiZBsAyt7EifG3PXn6MTv0Z4jfn5/9AgAAAAAAAAAAFCnbtnXzzTcnXedrX/uaLCs7BSkej0df+cpXdNVVVyVc509/+pN++tOfyuQCpnE+/vGPJy29dl1Xr7zyio4//vhRbX/Lli1Jl5umqTPOOGNU207mzDPPlGEYSc/PeO211yi9LiM+j0/P/X2ujjlts/ZWR4qL3QxPB6oNSg1BqdMn9WTYoxktWJ7QJz33vz755k5M/gCMik/Sc4/V65hTNmivL/GFFSQlLG86Z2eDLnp3gm6Zvlf3TO1Mvn6CbUwIWnrusQXyNVK4miurp+1Ty4K9cozhP7fDcrSnylV12FWDHfO7hOEkL+1yDMncv0KnZavP42piQPIMLUSW1HLCXqmuTk07xo/xq0Ei5IyEvJKMmNf5UFhyYm57/FKYc7RKXn1/8itMWF6pilPtSx45V4Z0cvaTc8lr6E9+dSFyLg/kXBnqU+RsknNZ6OqKv+3zRebYBIOFGQ+AolVTU6Ouoa8Zkvbs2VOA0YwsUel1fX19nkcCAAAAAACKAoXXAAAAQNo4AyTLRlMmne8C6nwXbANAxViwQHr00f23PR6tnueq5SOuqmypypYCWehNiG6r5SOS5Krp9SET78aNk8Lhse8IWRKWvE6KVcKR9VDCyLkimLbkpJMzhTUljZwrgxkm50pAzpXBDEtWqpxtJW8gQdEzwpJSlEjxfC595FwZyLkyhMPxJ8w5TuQ2n08ByLMHH3xQ7777bsLlfr9fF198cVb3edlll+lf/uVfFExQ2LB9+3Y9/PDDOu2007K631J36KGHauLEiUknrm/fvn3U29+3b1/S5dOnT9ekSZNGvf1EpkyZomnTpiX9Pty9e3fW94vCmvXGHq2/Vjrm89Ke6sweGy28lvb/nUnxtStpYp+0/lppVq8tzc1s/0jfrIBP6x9ZMGLxdfRIVfQ34qG/BUcLryUN/h1XfD3w2OjjHQ1/hzQhaGn9Iws0K0Dhda7YcnX9AbvljPA2JixHu6tsuZJ6PJHE4wqRBxiutKDLrw31/SMW4Hda9uDjd1fZmjRSIbIhXX/Abi3dMU4WxzizjpwBAAAAACiQYJA5LwAG1dXVFX3p9dCL7LquK8MwuLgtAAAAAACVKAfnHI8JhdcAAAAocpReAwCQLUcdFXdz9WGOWpa4cgyp35Odwmspsp1+j+QPDxRf32+r6dWYg1CBgDTkZBoUkCcoTdibfJ3dYcnx5mc8yA1yrgxp5WxLDm+zSho5VwZyrgzkXBk8AWlC8vIyci4DVliq7ku+Tvc+UZJb4si5MqSVc7u4WEGJ6+6W+vv33w6Hpd27JZ9Pqq2VPPxcBpAfd999d9LlH/3oR1VfX5/VfY4bN04f+chH9Je//CXpuCi9Hm7q1KlJJ6739PSMetuBQCDp8lwUXkdNnjw5ael1X1+K341Qenp7NatfeuR6aeEXpFCanxFXhfcXXUc1BKWwKQXS/PXJ40T2O6tLkpHiImEYs5GKr4f+q8cWXxuSPhJTeB0VvX3vQPF1bOF1VGzxNYXX+WHJ0Kr1B6l50Ra1Nex/rY4tQo4aqRDZcKVL35mgxR21eraxRytn7Y0rRI4tQpYimY9UiLyws1qr1h9EEfL/x96dx0dR3n8A/8zMXjlJCAn3IfehnAIq3uBR/RWNoCh4lXpr1HrbVqVW26alrRbxFkSLCoJBq4AioIgioIQIciogN4RA7mz2mPn9sZmwm+zO3ud83q9XDLvz7PM88ZtzZp7PEyWsM/nlvoGX0PwfF27wlRoEQftUpCCwzqmAddYH1lknWGd9YJ11gd+39all8IqPDUSJSH+6du2KgwcPQmjxvX/nzp1xmpEnp9OJb7/9ttX8AKBbt25xmBERERERERERxc3EiUACbdTF86xERERElAy4qjzCvF24JCIinRg1qvmfJT2sKBpTDRkCrJKCKnNkh1L7sziAoosdACQUbm9aECeKgJcd7ilODA4g3U9gQV0t4OCvZUmNddYHgz2AOtewzsmOddYHk81/nWtqGJKb7FhnfQiozrWAHKFdiCg+JCegWLXb1CrwSJSh5MM664MhgDrXKGDodZLzFSxqswF2O5CbG9v5ECUwh8OBAwcO4NChQ6ioqEBDQwMaGxvhdDqjPna7du1w2WWXRX2cePr88881j19++eVRGffyyy/XDL1etmxZVMZNdm3atNE8np6eHrW+MzIyQu7bH399Z2dnR21sihObDdVm4IFLgVwrcDQdfn+9FeAKx1Y3PlZZDa7nBbQOQW5FcY33wKXAvAVAdqPfV1AEqMHXQ877EceN3n9+q5W48lAbXHXE++/C1x5qizybAW93Pe6z1jKAtnYGXsdStkPCvA29mgORvQUhq9RgY5MieAQhA2h+/1YX1yaNLYOQVS0DkYdUp2Hehl7IdvDcZjSxzqTJPZBNaf6PiyC0Dmyj5KMo2nX0d5ySA+usD6yzTrDO+sA664LibduvFsdZ59TTcs2lyE3PicjllFNOwdq1a5sfC4IARVHw9ddfQ1GUuK/Z3rhxI2pra5vn5T6fgQMHxnFmRERERERERBRTEycCCxfGexYnTZgAGI3xngURERERkV9M9YkghTfUEBHpW6dOwJgxKDmwHEVjqiALgFUCqprWm8qCa0GyEMaPC0Vw3d4pKi2Dr10LaAsPZAMmLnAlIiIiIiIiIiKiBKQoQG1tvGdBFDcHDx7EZ599hhUrVqC0tBQ7duyAw+Hw/8IoGDFiREqHXh86dAhbt27VbDNu3LiojH3RRRdpHv/xxx9x+PBhdOjQISrjJ6ujR49qHm/Xrl3Ifefl5Wker6ioCLlvf/z17W9ulHyqjTImTQTKOrhCigPZz0Xd9sX9+q/VcPJxQJeXBdd4ZR2ASRObgq9DmD+FRvFTpUBvEfDXzt84FHlqIPIVp+/El3m1mhWoM8hwOgXcvrddcwCySn38WrdjqJd896IGIp9XwSDkWGKdiYiIiIiIiGJMELjuhYiaDR48GO+99x4AeIRK19TUYMOGDRgxYkQ8p4f//e9/Po+NHDkyhjMhIiIiIiIiorhKpMDrvDxgwYJ4z4KIiIiIKCAMvY6Q3bt3x3sKRESUAErG90XRDx80BV4rqDK5FrHJTYuZFQAQQgu+VgOv1f68Bl+XmlFYE+5HQURERERERERERBQldnu8Z0AUcwsWLMArr7yClStXNm+kzA2Vo2vdunWax7t27YquXbtGZewePXqgY8eOOHTokM8269evx69//euojJ+MnE6n5v8vAOjZs2fI/ffv3x+CIPj8ujty5EjIffvjr+9wPi5KPE7ZiSlXuYKn7QJwLMP/a1Tu13+tBqBROvl8oI5lAO3qXONPuQpYtFOBFEjqNoVsv9mGYef+iCqjDAG+Q6tFAB92rIJNVHDtobatjr/X8TiWtK+GiKawdC8EAFVGGcPO/RGlqwahSyNDgWKlWnJiU3ZDQJHjjZKCn9IbW4UhA8BP6Y1o0AhCVikANmU3oFpyMgw5hlhnIiIiIiIiohiyWABRjPcsiChBjBkzxuexV155Ba+++moMZ+PJarXipZdeag7iVt8DgCiKOPPMM+M1NSIiIiIiIiKKJSGB7sXMywOOHYv3LIiIiIiIAsbQ6wjp3r17vKdARERxVrK1BEXlcyAbJFjhaBV4rQol+No98FrVKvjaKaBoVAXwYwYKD+eG+mEQERERERERERERRY+iuN6IdGDFihW49957sXXrVgCtg66FRLr5NcVs2LBB8/jw4cOjOv7pp5+O//3vfz6Pl5aWMvTazapVq1BfX+/z+CmnnILOnTuH3H/btm0xaNAgbN682evxyspKbNq0CaeddlrIY3hTVlaGqqoqn8d79uyJjh07RnRMii9JlDB1I7CuU3CB1yr1+m8ogdeqYxlAQS0wtRSQMvlzJprUwOvjJicANMeLt/xNV3R7fnH7agDwCL5+r+NxLG5f3fx6b8HXglv/x01OBl/HkFrnE0anZig5cLJGgdRZ6y8iEcAJI+scS6wzERERERERUYwYDIDZDEjcAIqITho1ahQyMzNRV1fnES6tKArefvtt/PnPf0b79u3jMrc5c+agvLy8eT7u78866yzk5nL9HhEREREREVHKS7R7/hl4TURERERJhqHXREREEeCUnZi1cRZkRYY1w4wqux2A74XIvoKvzc6Ti5ib23oJvFZ5BF/bBVggYFaPSoyv7QIJCXbiTK8MNsBs1W6TkQE4jbGZD0UH66wPBhtgbtRuk54JyPwzK6mxzvpgsAFmm3abTNY56bHO+mBsDKDOGaxzspMcQJqo3UbOABQ/bSixsc76EEidnZkAz2slN4MBaDo/2vzYndHIRcyU8hwOB+6991688sorAE6GXXsLuW4ZhB1N6gJcPdi4caPm8cGDB0d1/MGDB/sNvaaT3n33Xc3jl156adhjXHbZZT5DrwFg8eLFEQ+9/uSTTzSPjx07NqLjUWLofwyoSA/99er131ACr1UV6UD/cgCDuofeCWnab6jHsD7LcVxyejzfMujW218/i9tXA2lpuLaqK95rsw+Ls6tbtXEP3XUPvFYdNzkx7IJtKN05Fl0cYXzCkSZvdfYViKzWSa29Vp21ApHdP2dY59hgncknuwGAw/VvBUBDA+B0+75vtwBCVjxmRpGUUQeIGlH3aWbAxlD6pJdZBwisc8rzV2eLGbCzzkkvs7b1jdfuWOfUwDrrg986WwA777lOegcPej62WIB0/u1LRK2ZzWaMHz8e77zzjkeoNADYbDY8/PDDeOutt2I+r0OHDuHJJ5/0uZn1hAkTYjwjIiIiIiIiIoq5RAu81slaACIiIiJKLUx7ISIiigBJlDD3qrk4/83zUVZ3BBAEyD6jql1aBl+3aQQsDsBqaAqxhnbgtao5+Noko0etCXO3D4IkMjQmUdgl4LjRod1GBEO7kp0o+j9hLYiudpS8AqmzKMJ7hAElDdZZH1hnfWCd9UFgnXVBFAExgN+3BdY5qbHO+hBInUURDL1OcoLg+fO55c/q3NzEu/GPKILq6urwf//3f1i1apXXsGu9hE7H244dOzSP9+nTJ6rj9+7dW/P4zp07ozp+MiktLcWsWbN8HhcEAUVFRWGPc9ddd+Gf//wnnE6n1+PPP/887r33XqSlpYU9FgDU1tbi+eef9zsnSi0NtgYMvR1whvlnSziB14Br/KF3ApVbnUgDrxtHmg0yRvRegeOS943YhBbvvVmcfQTr0ytRbvC9CacI170Cvvo5LtkwovcK7Nt2GUw89xVxWnVuGYjsLZgc0K6zt0Bkb1VknaOLdSa/ZAWwNQJOGWhsBGS33yUbnIDVz2bKlPjsVteNd77UG4FG3mqf9FhnfWCd9cFh1Q7JZZ1TA+usD/7qXGcEbKxz0mt5Pt5qBWprAZPJ9UZE5Oamm27CO++80/xYDb5WFAVz587FhRdeiJtvvjlm85FlGddddx3Ky8tbBXEDQFpaGm688caYzYcSz5YtW7BixQps3rwZO3bswJ49e1BTU4OamhrIsoyMjAxkZmaibdu26NmzJ3r16oV+/fph1KhROPXUUyFJvIZHRERERESU8BJt3QvXIRARERFRkuIdIERERBGyfNdyHKk7AoNogE2x+U+rxskmOU2B18DJ95XmgLoA4Fr4bFIEHDHZsDznBAor8oOdPkWJQ1BQZdAOvfYer0BERERERERERJRCRBHIygLy8uI9E6KosdvtuOKKK/Dll18COBl27R50Lfi4+dVXGLav9v5e5+u1/vpLBYqiYM+ePZpt/IVSh8tf//7mpxeHDx/G5MmTfQZRA8BVV12FAQMGhD1W9+7dMWXKFLz11ltejx86dAh//vOf8Ze//CXssQDgySefxNGjR30ev/DCCzF06NCIjEWJI82UhsuO5WJR+xPxngou22Ng4HWUmCDi5hPdMT3f9wYLgfy01Qq8DrSfm090Z0BulPirsxqI7CsIWaVVZ/dAZK0qss7RwzqTJkVxBbIpsv+2REREREREFBhZbvpbi+EsROTpoosuwpAhQ/DDDz80h0wDaP73Pffcg4KCAlx22WUxmc9dd92FVatWecwFOBnGff311yMnJycmc6HEsXXrVrz++ut47733cPDgQc22lZWVqKysxP79+/HDDz94HMvIyMCoUaNw6aWX4vLLL8egQYOiOW0iIiIiIiIKRaLdc89zqkRERESUxBh6TUREFAFO2YlZG2dBdl/oJCDw1GoAogJcuAtY0TPUWQiQJRGzehzHePNpkLgYLjFIdUBWnXabTh0AZ1ps5kPRIVqBdD8LHc0dAdkUm/lQdARSZ2MHAKxzUmOd9YF11gfWWR/EeiDdzx9exk7gadAkJ9gBU7V2m+xcaMfGUMJjnfVBsAGmGu02rHPyq6pyLVRWGY1Abi5gMgE5Oa73RCnq8ccfx4oVK/yGXWsFVbfkL9Raq99gxkklR44cgdX9+5AXnTp1iuoc/PVfV1eHo0ePoqCgIKrzSGSbNm3CxIkTsWOH79DYdu3aYebMmREb81//+hc+/fRTHDlyxOvxv/71r+jfvz9uvPHGsMZ5+eWX8e9//9vncYvFghdffDGsMShxlZzzAgo/nIJF4We1h+zKrUDJ7mFAt/jNIdUVHzkNADSDr6PtofK+zfOg6PBX50j85eovTJl1jj7WmXyy2Rh4TUREREREFC02G6CxISYR6dOf/vQnXHnllR7X29Vr4vX19bjyyivxwgsv4LbbbovaHGpqavDb3/4WCxcu9LgW7/7vtLQ0PPHEE1GbAyWeDRs24LHHHsOyZcsi0l9dXR1WrlyJlStX4tFHH8WgQYOwefPmiPRNREREREREEcDAayIiIiKiiGLaCxERUQRIooSXLn8Jw14ZBofsgCiIrgBsP8HX6sK2KjPwm1Lg2RXAHy4Anjvz5IK3QE4/iRDgEBQ4JAEvGQshdcsO+2Oi4DkhewkbrwaEY9ovzO4MINNPP5TY6gGhUbtJ2y4ALDGZDUUL66wPrLM+1AZQ525gGHKyY531odYVlKulbRewzsmuERCOazdR2oMhucmOddYH1lkXjh1zBV+rTCagY0fAYEi8m/+IImjNmjX497//rRl4rSgKsrOzcemll+JXv/oVunfvjg4dOuCjjz7CY489BkEQmhfuqu937doFRVFQVVWFEydO4Pjx49i1axe+/vprfPPNNygvL28eo2UAtsFgwOOPP46pU6e2mq/ZbI7m/464OnjwoN82HTp0iOocAun/4MGDugy93r17N2bMmIEZM2bA4XD4bGc2m/HOO++gffv2ERs7Ly8P//3vf3H55ZfDZrN5bfOb3/wG27Ztw9NPPw2DIbhbahobG/Hoo4/i+eef12z3j3/8A/369Quqb0oikyfjxmeux9I+CqxxuCvL4gBu/AFA3WHg8OHYT0BHigHg9ExMP602sBcE8qtwgGtTHtqUieLvGgCsC+wFFDLWWR9YZ/LKUg2IbqHXsgLIbo9rBaCe57CSntWpfSqSdU4NrLM++KtzjQA0sM5Jr9Gp/bsY65waWGd9YJ31oeU1gPp6QJKA9HTX40Y/9/YRke6MHz8el19+OT755JPma+bqdXdBEOBwOHDnnXdi/vz5eO6553DqqadGdPx3330Xjz32GPbv3+9x3V6lPvfwww+jc+fOER2bElNVVRXuu+8+vPXWW1HddHz//v1R65uIiIiIiIiClGhrXhh4TUREREQpgKHXREREEeCUnbjzkzshCRKMohF22e43+FoAIDQ9n9UIvHsacCAbWNXd9bjG3HRc0FgLJ7gCrwHACBESJNxp+gyLhMmQBN7oGUvVihVTlA8wVRiOQmHgyQNyIwCjn1ebAdEVnlqibMEsZQPmChORLTBQNWnIMvwHKZ6sMyUp2Qn/dbawzsmOddYH2YHAvm+nbgCYLrDO+iDbEdj3bYZeJzVFAODva9UMCFIsZkPRwjrrgwL4r7MF4Hmt5GYyuQKuVQYDYPR3fowo+T300EOtFr66h1AbDAbce++9eOqpp5CZmenx2q+//tpnv927d/c5HgCsW7cOzz33HBYuXAi73d48prro95lnnsHmzZvx1ltvISMjI6yPMVlUVFRoHs/Ozo566Hd6ejoyMzNRW+s7ONHfPJNdfX09ampqcOLECWzZsgUbN27EihUr8M033/hdEGyxWFBSUoKLLroo4vMaN24c5s+fj4kTJ3oN3ZZlGX/9619RUlKC3/3ud7j++uuRrgZw+FBTU4M5c+bgueeew88//6zZ9o9//CPuueeesD4GSmwlW0tQdIURuVYbjluAxhjemWV2ALlWoOgyAKsrUbiL572irfgrC+BwYPowa9h9Nd0a4NdDpRYUr7EAaAh7TAoM66wPrDO1YnC0Dr12/z3WKQAOufXrKLk4ZEDrlLODdU4JTll7MwLWOTX4qzO/b6cGh6wdbs6v59TAOuuDU9b+w4l1Tg0trwU4HEBDgyvsOjs78cJjiCghvPzyyxg+fDiOHTvWKnRafbxy5UoMGzYMF198Ma699lpceeWVyMrKCmm8H3/8ER9++CFmzZqF3bt3e1zrb/lvQRAwYsQI/PGPfwz/A6WEt3r1alx//fX45Zdf4j0VIiIiIiIiipVEO2fJwGsiIiIiShEMvSYiIooASZQwdehUlB4qRY4lB5XWytbB10DzTfUtA68tTkAWgC96uJ6zOAFoBV839eceeJ2DNBggYqownIHXMVatWDFJmY8yHEGpshgAPIOvA1SibEGRshgyFExS5mMermHwNREREREREREREVGCW716NdasWeM18FpRFGRlZeHjjz/GOeecE/GxR40ahXfeeQeHDh1CUVERPvjgA4/ga0VRsGjRIlxwwQX45JNPkJ+fH/E5JJrjx49rHs/Ozo7JPLKzszVDr/3NM9FNnDgRCxcujHi/Q4YMwdy5czFo0KCI96264oorsHLlSkyZMgV79+712mbbtm24/fbbUVRUhOHDh2PkyJEoKChAbm4uFEXBiRMncOTIEaxduxYbN270GqDtzmg04tlnn8XDDz8cjQ8p4mbOnIkXX3wx6uP4CwlPNk7ZiVkbZ0HOzQGOHkVbK2IWfG12AG2bclplUcCsAVaM322CpCTYIowUVLzGtZlFJIJy/XEF5Gb6b0gRxzrrA+tMREREREREFAOyDNTWcuNkIvKqc+fOePfdd3HJJZdAluXma95q6LT62Ol0YunSpVi6dCkkSULv3r0xcOBA1NXV+ez7ySefhNVqxdGjR7Fnzx788MMPqKqqAgCv1/ndHwNAbm4u3n33XUiS1g5alAreffdd3HzzzbDZbPGeChEREREREcUKA6+JiIiIiKKGoddEREQRUjigEABQtKQIOZYcnLCegM3Z4uaGpvNcSlOQdba1KeDaC4sTEBuBSov3wGsAkKHABKk58HqGcFlIYcsUOvfAa8BVk6IQgq/dA68BoAxHGHxNRERERERERERElARefvllj8fuC2FNJhOWLFmCs846K6pz6NixIxYsWIA5c+bgvvvuQ01NTfNcFEXBd999h4suughff/01MjIyojqXeDtx4oTm8aysrJjMw984yR56HWmdOnXCww8/jLvuugsmkynq45199tkoKyvDE088gddeew2NjY1e29lsNnz77bf49ttvQx5r0KBBeOONNzB69OiQ+4i18vJybNmyJd7TSDqSKGHuVXMx6a/DUYajAFxB1BUWwBbFO7RMboHXADDkiIC5n2VAcsjRG5Q8FK9OAxQF04d7/14SCQ9tMKP46zQAPm4woKhjnfWBdSYP7gsIFaXFY7S4oYuSk6JdR9Y5NSissy6wzjrBOusD66wL/sI6WOfU0LLODocr8FoUXW8NDfGZFxElvAsvvBBvvfUWbrjhhuawazX4GmgdTO1wOLBt2zZs3769uQ/1mPv7Z5991mMcxe37lHu4tbdx0tLS8NFHH6FXr14R/Vgp8cycORNFRUUenx9aMjMzMWrUKPTp0wfdu3dHZmYmjEYjKisrUVlZifLycvzwww/YvHkzrNbob7hIREREREREIWDgNRERERFRVDH0moiIKILU4Ot7ltyjfaNl0zkvm0mA4BAgyQpEBc0nn2QBcIoCFIMEwOERdN2aAgkCA6/joGXgtco9+HoUOvvtZzF24EllZXPgtYrB10RERERERERERESJzel04uOPP/ZYBAugefHtww8/HPXAa3c33XQTBg8ejEsuuQQVFRUATgZfb9q0Cddddx0++uijmM0nHvwtFI1V6HdmZqbmcS5oBdLS0nDJJZdg4sSJmDhxIsxmc0zHz8nJwYwZM/D4449jxowZWLBgAX766aeI9T98+HA8/PDDuOaaayCKYsT6pcSWbc7GvDn1mHQ2UNYekBH99RCC4BpHBDDkMDBvoYLsTAMgRXdc8lT8bRYgCJg+LPLf3x8qtaD420zWNAGwzvrAOhMAVwCbJACyAihy63u3BCHxFj1SCATt+/JY59QgsM66wDrrBOusD6yzLvD7tj54Oy/udJ4MvbbZYj8nIkoa1113HRRFwdSpU2G325uveQMnr8V7u0avpeVxrde7B15nZmbigw8+iOl1f4qPefPmBRR4nZaWhuuuuw433ngjxowZA4PBf1SD0+nEli1bsGTJEnz44Yf49ttvIcvcwJaIiIiIiCjuEu1cNAOviYiIiCgFMfSaiIgowsb2HIv2Ge1xuPYwBAhQvKRfCxAgAGiQFDgkAZK6ms158mYFp6DAKTibbpTx1ovrXk8HFLRHBsaiZzQ+HPLBV+C1Sg2+nobzNfvZgnK8hHXwdecug6+JiIiIiIiIiIiIEtc333yD6urq5kW27gtju3TpgieffDLmcxo2bBg+/PBDXHjhhbA1BQao8/vkk0/w5ptv4uabb475vGLF5ickIZAFp5Hgbxx/89SD9u3bo3v37mjXrl1cQ6E7deqEJ554AmeccQb+8pe/YN26dWH1N2TIELzyyisYPXp0hGZISWXDBmTvPYJ5CwRMuFrBV90BW5Q/vW0iUJkGnPMLMG8BkN2oABkKYDJFd2Bqpfi7XECsxvQhdRHr86GyDBR/lw0YI9YlhYl11gfWmSA5XOHkakC50+F53CwBCm/BTnppDtfOIb44RGg3oKRgYZ11gXXWhzSHdkiuXQQE1jnpsc76YGGddaGx0fOxyQQYm/4ottuB/PzYz4mIksrkyZPRo0cPTJgwAUeOHPEIovYWUO1+3JuWIde+2rr307lzZyxatAgjRowI74OhhLd69WrceOONfgOvb7nlFjz99NPo2LFjUP1LkoTTTjsNp512Gh555BEcPXoUs2fPxksvvYTKysowZk5EREREREQhY+A1EREREVFM8I7rBOBwOLB161Zs2rQJv/zyCw4ePIjy8nI0NDTAarUCACwWC9LS0lBQUICOHTuie/fuOO200zBgwICYLcolIiL/qhurMWnBJByuPYw25jaoaqwCFM/IagFNu8k3nXCywxV0LbndUO8UFNgFpekZNSLbM/haaDrSBmYcRh2DkWPIX+C1SoaCJ7AC5+MUDETrmzK3oByLsQNpMEDUuHOXwddEREREREREREREiWn9+vWtnlPDr2+++WYYjfFJtDvzzDPx5z//GY888ojHIl9FUfDII49gwoQJyMrKisvcoo2h18ljz549eP755/H888+jS5cuuP/++3HbbbfF9HPzp59+QnFxMebOnYuGhoaI9FlWVoYxY8bgzDPPxG9+8xvccMMNcfteQHHw/vseDxUASpTXRSgCWm+gbLUy9DpOitdlY0FPK/ZkOcPuq0eNhOJ12RGYFUUa66wPrDNpEoTEW/xIwRME7bBF1jk1sM76wDrrBOusD6yzLvD7NlksQLt28Z4FESWBs846C5s3b8bdd9+N+fPnQxAEj/DqlgHYWvy1axmaXVhYiNdffx25ubkhzp6SxYkTJ3DddddpXsPPzc3FO++8g0svvTQiYxYUFODRRx/FQw89hGXLlkWkTyIiIiIiIgpCop2DZuA1EREREaUwpiXHyebNm1FSUoLPP/8ca9euhd1uD6kfk8mEM844A+PGjUNhYSEGDhwY4ZkSEVGg1MDrssNlAACLwRVO7B583Rx43cLJ4OuTgdctuQdfuwdeW+BaJM9g5NgINPBapUDBYuwAAI/gazXwWmm9BN0r1peIiIiIiIiIiIgo8WzcuNHnsd/85jexm4gXDzzwAF5//XXs3LnT4/mKigrMnj0b9957b5xmFl2yLGselyQpJvPwN47TGX54YirZv38/HnroIfz973/Ha6+9hvHjx0d1vKqqKvzud7/DW2+9FZVaOJ1OrF69GqtXr8a0adPw+9//HrfffrvX64SUYtauRbVJwaSJCjYVAHKMSi4LwKYCYNJEYN4CINtmA/x8P6ToeHR0TUQCcgFgT5YTj46sQvHa1NyoIpmxzvrAOuucogCyguatJZwyPLaZsMmuN0pudicgah0XAJtWA0oKrLM++KuzjXVOCfx61gfWWR/sTu3Qa37fTg0tz086na7n0tOBHj2Axsa4TIuIkk9eXh7ee+893HLLLfjjH/+IdevWAUCrAGzAf7C1O1+v7d+/P/7xj3/g8ssvD3PmlCxuu+027N+/3+fxTp06YdmyZVFZvy9JUsSCtImIiIiIiChAiXYvLwOviYiIiCjFMfQ6hhwOB95880289NJLHoufg7mQ2lJjYyNWrVqFVatW4cknn8Tw4cNx991344YbbojZYl0iIgKcshNTPpjSHHitahl8rbWQ3Q4ZsghoLZdTg69bBl6rynAEU5QFWITJkATe6BlpwQZeq1oGXwcbeK1i8DURERERERERERFRYtm9e3fzv92vAXTs2BE9evQIu39ZliGKoZ3vF0URDz30EG677bbmuQmCAEVRMHPmzJQNvTYYtG+DcDgcMZmHv3GMRqPm8UR35513+lx8K8syqqqqUFlZiePHj6OsrAwbN25EQ0OD336PHj2KK664ArfeeiteeumlqNz38NVXX+H666/H3r17I963N/v27cOdd96JhQsXYs6cOejUqVNMxg1Hfn5+TDZd//nnn9GYYsEm1b/swKSJCkrbAxXpgCNGl2wdomu80g5NwdclMrLbtInN4NTs0SHlmD6gPqJ9Th9aD5jNKC7L99+YYoJ11gfWmZAmAnC6QtkAQHR6LjI0i4CT92YlPYOgHappEAEj65z0WGd98Fdnoxi7P9AoeoyCdkguv55TA+usDwY/dTby9+2U0DL02mIB2rYF2rUDzGYGuRBR0MaNG4dx48Zh5cqVeOWVV7Bo0SLYbLbm495CsP1xX9t97rnnoqioCIWFhSFfo6fk88knn2DBggU+j2dlZWHx4sUxuXZKREREREREMdCuXbxn4InnSYmIiIhIBxh6HSNz5szBk08+if3797cKuQ72QmpL7v19//33+O1vf4tp06bh2WefxZQpU8Lqm4iIAiOJEqYOnYrSQ6WQFc+b8zyCr/3QCrxW+Qq8BgARAqYKwxl4HQVORcYUZUHQgdcqNfh6G8qxCyeCDrxWMdiciIiIiIiIiIiIKHEcOHDA43qvoigQBAEjRoyISP8OhwMmkynk10+aNAn33HMP7Ha7x/M//fQTduzYgb59+4Y7xYTj7/9XrEKvW/4/bymcuiaCsWPHBtXe4XDgu+++w+uvv4733nsPdXV1mu1fe+01VFVVYe7cuX6DzIPx8ccfY8KECR4L4H3p2rUrLrnkEpxzzjkYOnQo2rZti7y8PCiKguPHj6OiogIbN27EV199hU8//RT79+/X7O/zzz/H0KFDsWLFCpx66qmR+pCi4u6778bdd98d9XEGDRqELVu2RH2cWHHKTkw5+yhK82MbeK1yD76eUihjkfVUSJrpQRRJj7bfhOn5JwAACrRzm3xq8SK1n+kDTwD5+Sg+clp4k6Swsc764F7nkPn45GCdk4h1L2CtA9T7exptgOx2Z1eaEbDyFuyk18YKiBr3cFmMQCPrnPRYZ31gnfUhxwoIrHPKY531wV+dzUbAxjonvfJyz8ft2gFt2rg2F6qP7EZTRKQvF1xwAS644ALU1NRg2bJlWLp0KdauXYutW7cGdS24Q4cOGDVqFMaNG4crr7wSXbp0ieKsKRHZ7XY8+OCDmm1efvllDBkyJEYzIiIiIiIionDVWmuRacn0frBdO6CiIqB+7ICXRJ8IY+A1EREREekE7wCJsn379uHGG2/EqlWrPMKpWwZdtwzCDlTL3YcVRYGiKNi7dy9uvPFGvPnmm3jzzTfRuXPn0D4AIiIKWOGAQgBA0ZIir8HXVocVjc7GsMcxQ/IZeD1DuAyFAncOjwZJEDEVw1GqLIYcYmC1AgU/43hY82CwOREREREREREREVHiqKys9Pp8//79A+5Da5Pkurq6sMKRs7KyMGrUKKxevbrVOJ999llKhl4bjdq3GAcSdhwJqR56HSyDwYAzzjgDZ5xxBv71r3/hD3/4A2bOnKl5r8T8+fORkZGBWbNmRWQOS5cuDSjw+tRTT8Xvf/97XH311T4Dt9PT09GlSxcMGTIEN910ExwOB+bNm4e//OUvmiHO5eXlGDt2LFauXImBA3lNL9VIooRrtxnwaXd7zAOvVQ4ROJ4OXLsZkHoz8DpWXAG5OwC4olHVt3A+DdzvOBCA5v4ZlBs/rLM+uNcZcNVIQIgB501afq6wzknCbgdCvD+IiIiIiIiI/LDZmv7uIiIKXVZWFq666ipcddVVAFzXgX/66Sfs27cPBw8eRE1NDRoaGmC322E2m5Geno68vDx069YNPXv2RIcOHeL8EVC8vfHGG9i+fbvP4+PHj8fkyZNjOCMiIiIiIiIKx/oD6zH69dEY2Wkk1t661vPgxIlBBV6r76MWfD1hQrR6JiIiIiJKOAy9jqLPP/8ckydPRkVFBRRFaRVOHQkt+2k5xvLlyzF8+HDMmzcP559/fkTGJCIi33wFX0cq8BoAGuGEFXaP4GsGXseG+v+3KIzg63CwzkRERERERERERESJpaGhwevzbdq0CbgPrZDmuro65ObmBj0vd0OHDsXq1atbPb9x48aw+k1UmZmZmsdra2tjMo+amhrN4/7mmcqys7MxY8YMXH311Zg4cSLKy8t9tp09ezYuu+wyTJw4MawxDx06hClTpvgNvC4qKsL06dODDiU3GAyYMmUKJk6ciAceeAAvvviiz7ZHjx7F+PHjUVZWhoyMjKDGocTmlJ14boQNjjhnTTsE4LnRwLVVIqSw4ngpEI/ml2F6nmcQskpGaIHI7kHIan/NgciiiOLyIaFMlcLAOuuDe52BkzVyr0+w3D9f3D9XWOckIUpu/xYAuD8WAUlq9RJKMqIEiBr3gEkS65wKJAkQWOeUxzrrgyhq/1Imss4pgXXWB3915vdtfWiMzPoaIiKVyWTCwIEDufEsBUSWZfzrX//yeVySJBQXF8dwRkRERERERBQONfBagYJ1B9dh9GujPYOvFy4MqJ+WW/VFJfh6wgRgwYJI90pERERElLAYeh0lH3zwASZPnty8YFINo/YVdu0eVh2Mlv2pjwVBgCAIUBQF5eXluPTSSzF//nyMHz8+pHGIiChwLYOvrQ4rqhqrIjpGFVw3+FlgZBByjMUr+Jp1JiIiIiIiIiIiIko8TqfT6/PBhF6bzWafx44dO4YuXboEPS933bt39/r89u3bw+o3UbVt21bzeHV1dUzm4W8cf/PUg3PPPRfLli3DBRdcgBMnTvhsd/vtt+Oiiy4K6uuqpalTp+L48eOabZ5//nnce++9IY8BuL6eZ86ciV69euHBBx/02e7nn3/Ggw8+iJdffjms8SjxKKIIAc44bJ97kgBAEQCkpSG0KF4K1KM532F6G9fP05ZByKpAA5HVO8dkL8c8ApHztgMGA4orTw9ythQq1lkf3OsMtK5RMMHXahtvny8ewdesc2KrNwMOt8eyEXC4/f1nMABO3oKd9Ax+QnINEuucCvyFIbPOqSGQ0GsD65z0JIOfr2cDILPOSY911geDn0Br1lkf+LOZiIji6KOPPsLOnTt9Hp8wYQL69+8fwxkRERERERFRqNwDr1UewdcB5rq1DLx2fz5iwdd5eQy8JiIiIiLd4d0BUbBkyRJce+21cDgcmmHXLYOufQVi+6IGW3t7vXv4NQDYbDZcffXV+N///oeLL744qHGIiCh4avD1LR/d4j/w2t+3fx8/H6pghWB34PXt/VB47BCAQ8FPlEJSCADtuqKoz07I/s5vCgogeluy6sapQGtppKgAM3b2YZ0TmcEGtPUdyAEAqDjMBVLJLpA6HzvMG+2THeusD6yzPrDO+mC0Abmsc8qTHEBag3abusymRC9KWqyzPgRS59pMBBYhRQmrvh6ocjsnKklAejrQpg3QrZvrMVEKyczMRFVV6+sAohh4yGhmZqbPY4cPHw5pXlr9q5sn//LLL2H3nYjy8vI0j1dWVsZkHt4+L9z5m6deDBkyBAsWLMDYsWN9tjl+/DheffVVPPzwwyGNsWLFCixdulSzTVFRUdiB1+4eeOAB/PTTT3jppZd8tnnllVdw1113YfDgwREbl+JLEiWs2H4Guo34ClWW+M0jqxFYsSAD0ilb4jcJHXi0/z5Mb3MEgO8gZJWMwP7K0bqqfDJwV8H0NpuBY+Uo3tY1oLlS6FhnfXCvM+C7RsHc3an1+XIy+Jp1TmhCOSDbTj52OAHZ7bOjTgQaeI4j6dnt2rsWsM6pgXXWB391rhUBK+uc9FhnfWCd9cFh1/4julYCrNzMLek5HJ6P6+pc14pNJsBicb0nIiKKk9mzZ2sev+OOO2I0EyIiIiIiIgqHt8Br1bqD69AgCEgLoB9fgdfuxyMSfH3sWCR6ISIiIiJKKkx7ibDt27fjuuuu0wy89hZU3aNHDwwbNgzDhg1Dnz590KZNm+Y3wLUgVn376aefUFpaitLSUuzevbtVvy3Dr9VwbLvdjmuvvRbr1q1D7969o/M/gIiIPPlb0RjcfgfeO2i0um4ApJgqrEsDGruiaNBe7eBrRXEFX2vR2PhCVIAZP3ZD4eE0AKxzwjI4gEyrdpv6OsDBX7+TmsHuv84NrHPSY531wWQDbH7qXFfHkNxkxzrrg8kGZPircz0gc8FjUpOcgOCvzgLDkJMd66wPhgDrzNDr5Gazud5UBgNQWel6Ky8Hhg2L18yIoiI7O9truLG/wGN3+fn5Po+5Xw8Olc39a9JNbW1t2H0nonbt2mkeb2xsRGVlJXJycqI2h+PHj/v8/65i6PVJF154Ia655hrMnz/fZ5v//Oc/eOCBByCFsHnCP//5T83jnTt3xt///veg+/Vn+vTpKCkp0Qyv/9e//oU333wz4mNT/Nx0+n5UmeM7hyoLcNNlNpRsje88Utmj/fdheq/AgpBV2tsgawchu/eBpn7U8RmUGz2ssz641xnwXyN/NVbb+Pt8ORl8zTonLEkCIAGyM94zISIiIiIiSh2yDFitrk2Tg9hAloiIKJIqKys1N03u2LEjzj///NhNiIiIiIiIiEKiFXgNAHXTXOF6/gKr/QVeu7cLK/haI1eGiIiIiCiVMdUnghRFwY033ojq6mqvAdQtnxswYABuuOEGXH/99ejSpUtIYx46dAhvv/02/vvf/2Lz5s3NAdfu47gHX1dWVuKGG27AmjVrQv44iYjIv5KtJShaUgSzZEYbcxtUNQYebhGoNnYJZllE0aC9AIDCw7kRH4O0qf/P/QZfh+hk4DVrS0REREREREREKaC+Hvj553jPgiiisrOzm6/Hugsm9Lp9+/Y+j+3YsSPkualOnDjh9fm6FN1Qs1u3bn7bHDlyJKqh10eOHPHbJpB56skzzzyjGXq9f/9+bNiwASNHjgyq30OHDmHJkiWabf7whz/AYrEE1W8g0tPT8cc//hH33HOPzzbvvvsunnvuuah+PlLsNNgasNiyNwIbH4dvcQ8bGn6wIg3cCCzSbJDxZpcKAIEHIavcw3LzGyWUm53NzwfTB5r6ebNLBf68qQAmMCAo0lhnfXCvMxBYKDnQOvjavc7q8UC4B1+zzglIcDYVWgCguILZ3BcfKgoXI6YCRdH+omWdUwPrrA+ss074qzNY55TAOuuCvxry+3ZqkOXWj0XRFXjtcLjeiIiI4qCkpERzE+v/+7//a3UPCBERERERESUWf4HXtdM8A6p9BVYHGnjtrx+/eM6biIiIiHSModcRNHPmTKxfv95v4PXAgQPxn//8BxdeeGHYY3bs2BGPPPIIHnnkEaxatQr33nsvfvjhh+aQ65bB1wCwbt06vPjii7jrrrvCHp+IiFpTA69lxXWTnsXgWiTvLfhaDPS8VIv7JNrYJVhk10I3WQCDr+MoWsHXDLwmIiIiIiIiIqKUdPx4vGdAFFGdO3fG5s2bWz0fTOh1165dYTabYbPZWi2c3LBhQ9hz9BWcbTabw+47EWVmZiIvLw8VFRU+2/zyyy/o169f1OawZ88ezeMFBQXIyMiI2vjJqE+fPhg4cCC2bNnis82XX34ZdOj1l19+6XHvRksGgwGTJ08Oqs9gTJkyBffddx+cTqfX4zabDV999RV+/etfR20OFDtppjRsxB0Y4pwJexhZ06KCsK47Gp3AxndzkGZyAvD+uUehMwH4/tPuGHzpLpwwBb8QRQFw+cEMXLs3G+91q8YnnYLfhEIBkGMT8P2n3WGyMRwoGlhnfVDrPPTS3agwBRp57aIGX1/mVufFneqC3vdABpBnE1nnRCQ6ANHt80IUPQPbDAbAkpp/U+mKSQQkja9chwFQuIlI0jOL2jdqss6pIZA6c1Og5GfyU2c765wSWGd9MAut1kd4YJ1Tg9Xq+Vj9u6qxEbBYAHuwcTJERESRsWzZMs3jkVj7T0RERERERNHjL/C6eprrvqCWWgZWh3qGMujgawZeExEREZHOMfQ6QhobG/GXv/ylVeC1+2Oz2Yy//OUvuPfeeyFJkb/55txzz8WGDRswc+ZMPPbYY7BarR7B1+p8FEXBs88+i1tuuQUmk7c/0YiIKFQtA69VFoMFVocVjc5G1416wZ6TcmtvlgVYHIBr6ZuLDKBo4C9AQwMK92eFOn0KUWGNAWjIR9GIo5BbFlcA/BZcUTxOVIoQMOP7AhTuNwCoifR0KRpMDqDBqt2mpqZp8QwlLdZZH1hnfTA5gEw/da6rAxxibOZD0cE664M5gDrX1AIy65zUDDIg2LTb1DgBJYI7EVHssc76YHDC721htaxz0rPbPRcwG1r8/WSzAQ4GeVHq6N+/Pz799NNWz+/atSvgPgRBQO/evT3CftXruuvXr4fVaoXFYgl5jt98802rMG0AyMvLC7nPRHfKKadohl7v3LkTF198cdTG/+mnnzSPn3LKKVEbO5ldfvnlmqHX69evD7rPr776SvP4qFGj0KZNm6D7DVROTg5GjhyJb7/91mebVatWMfQ6hXQu/Rmjc4HV3UN7veD2PtRlDqP3A52rZaBbeog9kF8WAwRBRMih4pIEmM2u9yESBBFITwdE3vsVNayzLmQbzDitJh1f5tUG/X3XLAvobU0HzGb0tqbDLNfDqhXO54UA4LSadGSbsgCRgW4JxdgICG73fwl2wP1+MMUMSKH/nUYJwgxA6xKSwwDeap8CTGCd9YB11gcztENyLQZAYJ2THuusDyZo19nMOqeElteJxaYf1mrYdRTWVhJR8urZs6fX54uLi3H11VfHeDae5s+fj8cee6zV84Ig4Oeff47DjChcX3zxhebx0aNHx2YiREREREREFDR/gdeV0wCtuznUwOpwt+QLOPiagddERERERLxzL1LefPNNHD582CNk2j3wum3btli8eDFGjRoV1XmIooiioiKcddZZuPzyy1FeXt48J0VRmud0+PBhvPXWW7jllluiOh8iIj3xFXgNwBV4bbdG5IRUo6jAKimwOD3v9JShoGj4EcBuR+HejLDHoeAU/mzCoo5mLOvUMnBP8b8iXVHgfufu2INmFP5sAtAY4VlS1CgO/2FNNhtgD3FBNCWGQOrcaAccrHNSY511IpA6NzIMOemxzrogBFhnhl4nN6cMWPzcStIIhuQmO9ZZH2T55AJWX1jn5Odo8fO55TlRUXR9LhCliP79+3s8Vq/NlpWVBdXP6aefjh9//LH59ep13cbGRixduhRXXnllSPNbu3Yt9uzZ49Gvej07lUOvBw0ahO+++87n8e3bt0d1fH/9Dxo0KKrjJyt/YeBHjx4Nuk9/AfTRvocDcC2K1gq93rZtW9TnQLHhlJ2Y0uFr7MwEjE7AHkJmi4Lwfh02OoGdecCUS2qxaBsgaaYHUShskDHi3K2oNDohwn2r6sAIABa3r8b6nHqUmx0hBZyLACqNTow4dyv2LRsMk2a6H4WCddYHJxRMGb4b2zMbkd8oodzsDLhOZlmARRbxVtfj+D6nHj9mWWGRRSiQ0Rhg8LUAIL9RwvbMRkwZvhuL1vfm9+1EIgieIXyC4PmFLAiuN0puggAIGl+zrHNqYJ31gXXWB9ZZH1hnfWCd9UEQfK+fsduBMDZ8JaLU435NWyUIAmpqauI4K5eamhqf86Pk89NPP+HQoUM+j+fk5AS0ibXD4cDOnTuxe/duVFVVobGxEenp6cjKykLXrl3Ro0cPZGZmRnLqREREREREuldrrdUMvD4+DUgPoJ9wA6/d+9EMvmbgNRERERERAIZeR8zbb7/t8dg98DozMxOff/45hg4dGrP5jBgxAp999hnOOecc1NbWtrqgCriCuhl6TUQUGU7ZiVkbZ3kPvG6sQ1VjdUD9mJ1AYwCLn6uMMqC4FtC5kwVgVp9ajN+XDonhQDFV0q0Oyzu2DLwOzfKOVpR0q2N4ORERERERERERpR4uXqYUM2DAgOZ/u4dVHz16FEeOHEH79u0D6ufMM8/EnDlzvB578cUXQw69nj59utfnBUFAz549Q+ozGQwfPtzn/08AKC0tjer4GzZs0Dw+bNiwqI6frPx9vVRUVATdp7/X5OfnB91nsPyNEcrHRYlJEiVcu92EZWcDThEQFdf121gRFde4lWnAtZsFSAI3GokGE4Cb97bF9N6uIP5gApHdPx3KzQ6P5wNd3uJ+h8DNe9vC5FQAcKPOSGOd9UECMPWXtig9rR4QhICDr82ygDSnq0oKgM1ZTfeKKECaU4SoyGiQtHtRA68lCBAV1zwkJ79vJxRJ9gzhk2XPxYiyzE29UoGsQPO7s8I6pwRF1v5BzjqnBn915vft1CDL0NwjhHVODayzPrDO+qBVwzZtYjcPIkoq7uuyE1Giz4/827hxo+bx3r17+zx27NgxzJ07F//73//w1VdfwWaz+WwrCAIGDBiAs88+G1dccQXGjRsHk8kU6rSJiIiIiIgIQKYlEyM7jcS6g+taHTs2DYj11kMMvCYiIiIiCgxDryPg4MGDWLNmTaudedVFzS+++GJMA69VgwcPxssvv4wpU6Z4XExVA7DXrFmDgwcPolOnTjGfGxFRqpFECXOvmotJCyah7HBZ8/PWhhpU2WsD6qNNI2BxAFYDUGX2377KpAA22SP4eshxE+auymfgdYyVdKtD0ejjEVu0LgtA0ejjAMDgayIiIiIiIiIiSh1ms+uNKIWcfvrpMBqNcDgcra4Xl5aW4tJLLw2on8suu8zjsft13eXLl+P999/H1VdfHdTcFixYgIULF3rdIBkAzj///KD6SybDhw/XPL5x40Y4nU5IUgA7kQbJ4XCgrKxMsw1Dr73Lzs7WPN7Q0BB0nydOnNA83q5du6D7DJa/MRh6nTqcshPv9ahBuj2w673Rkm4H3hvoxLUbG3jdOEqKN+QBDgem9zsOCP4DkQOpgghX5KbWUpfmOwMU4KHtbVH8Qx6AyGzMTK2xzvpQuNsC2ApQNPyIK/jaKqLcIvusUYZDgEkWoAi+q5jpcAVf1xm8txEA5FvF5sDrGRsKUHjAAtY50dgA0e2r3uH0DGyzCYCdP2eTns0GaIXUN8pAIzcdSHo2u2uHGF9Y59Tgr8421jkl8OtZH1hnfbDbtP+Q5vft1OBsUUNZBkQRyM52hV4z2JyIiOJg8+bNmsd79erV6rmjR4/iqaeewpw5cwK+Zq0oCrZs2YItW7bg1VdfRX5+Pu6++27ce++9yM3NDWnuREREREREBKy9dS1GvzbaI/j68DRA+w7kyGPgNRERERFR4Bh6HQGrVq3yWHTs/v68887D9ddfH7e5XXfddXj99dexcuVKr4uZv/zyS1x33XVxmh0RUWrJNmdj3sR5zcHX1oZqVNnrAnqtGngNnHwfcPC1XYFFkTCkOg3zNvVEdnbkAxrIt5IOJ1B0aiVkQfTRQgEEPzdkiiJa3rkrAyg6sxLIykLhYd7MkvAMDiCzSrtN2zaAg79+JzVjAHXOY52THuusDyYbkFmj3Sa3DSCzzkmNddaHQOqclwvIvn5fp6QgOYFMP4EvQjrAIK/kxjrrg8EJZPgLcEpHYFFhlLCqq12BQSpJAtLTAYPB9W+iFJOeno6RI0fim2++aRV6vWTJkoBDr7t06YKRI0di/fr1Htd11X//9re/Rc+ePTFixIiA+lu2bBl+85vftJqTuwsuuCCgvpLR6aefDovFAqvV+8+d2tpafP/99xg1alTEx163bh3q6+t9HrdYLAHXUW/q6rSvq2VkBL9RqL9g88bGxqD7DJavz0OV1tcpJRdJlDB1axpK29qgAKi0xHZ8WQByrK7Q66k/SJBy82I7AZ0p3t8WsOzB9B4HAPgORBaa3gJZxqJ+N/DW1v3s1kO/dEbx/h5A28DnS6FhnfWhsKEtsCMLRf13uYKvbSLKTY5WNcpwisiWJVhFf/eACMiWDYDTiTrJs60AIN9mgCQKEBUBM7b3RGFDHuuciETZM/TaZgdkt8A2YxrgTIv9vCiyshq0QzUlI2DWXKpKySCTddYFf3UWWeeU4LfOJsDGe0CSHuusD5kNgMZmQqxziqhpcU9XejrQti1gifGJUyJKKuq67ESV6PMj/7Zs2aJ5vH379h6P33jjDTz00EOorKwMa9zy8nJMmzYNL7zwAv7yl7/g1ltvDas/IiIiIiIiPXMPvt43Lfa33TDwmoiIiIgoOLwDJAK++eYbn8cee+yxGM7E9xxWrlzp9diaNWsYek1EFEFq8PX5L5+BMvuhgF7jHnitCir42iijR30G5pWfj+wuvCk/lkqyD6Co0yHI8B2YoECBonXzNQBAgrcwJxlA0dBDwMECFFZ3DmuuFF1OsREN2dpBirK5MyAH8EVNiUu0All+vs+aOwKyKTbzoehgnfVBtAJZR7TbmDszDDnZsc76YLACGX7qbOwMngZNcqIdMNVqt8ltA89YIEo6rLM+BFTnHDD0OskdOQLUutXZYADMPCdCqe2CCy7wuGasBlV/9NFHeP755wPu55ZbbsH69eubH6sLZgVBQG1tLcaMGYM//elPuOeee3yG/9bU1ODZZ5/Fc889B5vN5jVAGwAGDhyIAQMGhPLhJgWLxYIxY8Zg+fLlPtssW7YsKqHXn3/+uebxc845BxYGOni1b98+zeO5ucFvEuovKLu8vDzoPoPlb4z09PSoz4Fip3B/JuqXVeG34wMPwI0UAUCDAXhhMVC40wCM4e9g0Va8rx8gSZjedS+A1oHIahByMLwFInsEIe/rhuJ9vQGWN2ZYZ30orO4E/GxEUe8dABTk240oN9qba5ThFJHtVM8z+6u467PC1d7RHHwtAMi3GyFBgAgBM37ui8LqfNY5YRkBwS3k2il7ll4xuAJUKbkZ7NqhmgYjILPOSY911gd/dTYaAYV1Tnp+62xgnVMB66wPBrt26LWBdU4JougZ8CKKrs2T7XYgMzN+8yIiIl3zd006Pz8fAGC323HHHXdg1qxZER3/2LFjuO2227B06VLMnj0b2dnZEe2fiIiIiIhIL9beuhY/CQLa+28aUQy8JiIiIiIKHtMhImDHjh3N/3bfpTc/Px8XX3xxPKbk4aKLLkJBQQEAtNpF2H3uREQUGct3Lcfh/dtglP239RZ4rbI4XMf9McrAYbkGyzOPBjdRCosr8LoMcgBL1WU/b1o9yFBQ1KkMJdkHwp80RY1NkHHYYNV8swkBfFMgIiIiIiIiIiKipHPBBRc0/1txu1l17969KC0tDbif66+/Hh07dgRw8rquoijN4dc2mw2///3vUVBQgAkTJuCJJ57AzJkz8fLLL+Ppp5/Gr3/9a3Ts2BH/+Mc/WgVeuxMEISE2b462iy66SPP4Bx98EJVxFyxYoHk8Ee4hSFRlZWWax3v16hV0nx06dNA8vn///qD7DJa/hdPt28f6lnuKpuo0Ef8dDKT7uAYcbekO4L+DgWoTF0/ESvGe3nhoX7fmx+rNeKEEIavcX9sqCHlP7xB7pXCwzvpQWJGPGT/1hQgBkiIg326EiJaB18HJdhqQ4RQhoinwWmkKvP6pLwor8iM6fyIiIiIiIqKkoChAXR0g8956IiKKvUOHDmkez87OhsPhwHXXXRfxwGt3H3zwAc4///yYbNJMRERERESUkgQBsb7DioHXREREREShCe1OfPKwe/dujzBpddHx+eefH79JtXD++edj/vz5zfNUFzjv2rUrzjMjIkotJVtLUPTO9YCiIKcBqEwD7D62mNAKvFapx6vM3o8bZSCnAYAAFLVbDwAorO4c2uQpYMEEXkeCGnwNsL5EREREREREREREiea8885DXl4ejh8/3moT4nnz5mHYsGEB9ZOWloannnoKd9xxR6t+gJPXeBsaGrBo0SIsWrSoVRs15Lrl692vE/fu3RvXXXddQHNKZhMnTtQM996wYQO2b9+Ofv36RWzMzZs3Y9OmTT6PC4KAiRMnRmy8VKIoCpYtW6bZZsCAAUH3e8opp2geX7lyZdB9BmvFihWax/3NkZKHU3ZiynkVKMtpekJB6Gm4oWi6dFnWAZhyhQOLDiqQYjoB/VIDiqd33QvAM8A4VC3DlBmEHH+ssz6oQdRFvXcAClBgM0II83tpttOALKcCAQy8JiIiIiIiIgLgCry22+M9CyIi0qHDhw9rHjeZTLjrrruwcOHCqM+ltLQUF154Ib7++mtkZ2dHfbxgzZw5Ey+++GLUx/n555+jPgYREREREaUYt/vkjQBicaaRgddERERERKFj6HUEVFRUeH0+lAWX0TJw4ECvz/uaOxERBa9kawmKFt8DuaEegGuBo6/g60ACr1W+gq/VwGu1a1l2oqjjRgAMRo6mWAdeqxh8TURERERERERERJSYJEnChAkT8Oqrr7bahPjVV1/FE088gYyMjID6uu222/Dee+/hiy++aO4DOLnxstq/4uPm2JabNbs/pygKzGYz3nnnHYhiJGIaE1uvXr1wxhln4Ntvv/XZZsaMGXjhhRciNuZ//vMfzeNnnXUWevToEbHxUskXX3yBX375RbPNueeeG3S//kLn9+zZg23btqF///5B9x2ITZs2Yf/+/ZptBg8eHJWxKfYkUcLU7Wn45qx6n5saR1uVGRAUYGqZCKkdgBhf09Sz4t29AAWY3m1vSK/Xykh/aG83FO/pBdYz/lhnfSg81g5QFBT12Qk5Qn02B17v7IPCinZgnZOBEtvNK4iIiIiIiPSGoddElCQaGxub/+1+PV4P19xTjdVq9ainN/Pnz9fcODktLQ1jx47FFVdcgeHDh6N9+/bIz89HVVUVDh8+jO3bt+N///sfPvnkk4DW72/evBnXXnstPvnkE6+bo8dTeXk5tmzZEu9pEBERERERefLyt1O0g68ZeE1EREREFB6GXkdAXV2d1+fbtWsX45n4lpeX5/X5+vr6GM+EiCg1OWUnZm2cBfnEcY/nvQVf+wq8FhVg7C5geU9AbnGerWXwdcvAa5Vst2FW7h6Mr+4EiSuvIi5egdcqBl8TERERERERERERJaZrr70Wr776KgDPQOqqqiq89tpruP/++wPu691338Xo0aOxb9++VsHXADzCr73xFoithmY///zzGDFiRMBzSXZTp07VDL2ePXs2/vCHP6Bjx45hj7V//368/fbbmm1uvvnmsMdJVdOmTdM8np+fj+HDhwfd71lnneW3zfTp0/H6668H3XcgiouL/bYJZI6URByuC7sKACXGl2sVASczVGUZqKmJ7QQIxZsKAHsjpvc6ErE+H/q5PYq3FQBgPRMF66wPhTUWwNoFRYP2trqHB4qfMGQFrTKtRQWY8WNXFB62gHVOEkYrIDhPPrY7ANntsU0AHFy4mPQMVtcXqC/1DqCRt9onPdZZH1hnfTBaXTs9+cI6pwbWWR8CqbONdU56LUOta2sBgwEwmU6+JyJKAr7Wj5vNcdoBlULW0NDgt42vwGtBEHDDDTeguLgYHTp0aHU8Pz8f+fn5OO200zBx4kQ0NDSguLgYf//73/2Ou2TJEsyYMQP33ntvYB8IERERERGRXmlkuUUr+JqB10RERERE4eNWshHgcHhJLgVgNGr+2RJTBoP3m32cTqfX54mIKDiSKGHuVXMxZK+t1TE1+Nooawde/2cx8OYi13tv995bHK7X+wq8BoAhh2TM3TeKgddR4ISCWbl7wgq8FgB0sVvCqo7cNA9nnIK3iYiIiIiIiIiIiKi18847D+PGjcOoUaMwevTo5rdRo0Zphi570759eyxbtgzdunVrDqt2D7lWFEXzTaW+Tn3u6aefxm233RaZDzhJ3HDDDSgoKPB5vL6+Ho899lhExnr00UdhtVp9Hm/fvj1uuOGGiIyVal588UWsWrVKs83kyZMhSVLQfQ8YMAB9+vTRbDNnzhxs27Yt6L792bhxI959913NNt27d8fgwYMjPjbFh1N2Yla/elf4dLwu1wqu8OtZQ2ReT4yT4m1d0aM+MkEXPerNKN7WNSJ9UWSxzvpQeDgXY49lR6SvsceyUXg4NyJ9ERERERERESUthwOor3eFwTD0moiSxIEDB7w+n50dmXOHFDta1/O1pKenY8mSJZgzZ47XwGtv0tLSMG3aNJSVlaFHjx5+2z/++OM4ePBgSPMjIiIiIiLShXbtgIoKzSaRTnpj4DURERERUWRw2/MIyMjIQE1NTavnq6qq4jAb77zND3BdOCMiosjI/mIN5s2XMWkiUNbi/gURQG6D97XNauB1YdNaevX9vZcBcosXWByA2eG9nyGHgXkLgOzTK4AAb6CgwEkQMHffKEzqthZlluB/xgsAzq5ti1NsGdhtqsPqzOMhLTMfYm3DYHMiIiIiIiIiIiKiBCMIAj777LOI9denTx+sXbsWN910Ez799NNWwdcAPAKu1Tm0pCgKcnNz8eqrr2LChAkRm1+ysFgsuO+++/CHP/zBZ5u33noLV155JQoLC0MeZ/78+XjnnXc029x///0wm8MLx9yzZw9OOeUUzTZPPfUUpk2bFlL/hw8fxi+//ILRo0eH9PpQfPLJJ7j//vs120iShLvuuivkMSZPnow//elPPo87HA5cddVV+Oabb5CTkxPyOO7Ky8sxYcIEyLKs2e7aa6+NyHiUGCRRwrVbDVjWxQ5BgSuAOobjCwAEBag3ANduFiClR3oJBwXi0T6/YE96Y0T62pPeiEcHHEDxzu4R6Y8ih3XWh5KC41ie7/2+y2Atz69BSadqFB5tG5H+KAZabrgitvi9ThRbt6HkI0qum/d8kSTWORVIkusXZa3jrHPyY531QRS1N5kSWeeUwDrrg7868/t2avBy3QoAYGhazurn/DkRUaLYvHmzx2P1On1+fn48pkNhsNvtQb8mKysLS5YswZgxY0Ias0+fPvjqq68wduxY7Nixw2e7+vp6PP3003j55ZdDGoeIiIiIiCilTZzoN/AaAIL/q89/f17vwtThPflEREREROFg6HUEZGVleQ2V/vnnn+MwG+98zSUrKyvGMyEiSmGvvorsRlfwtLfg60ACr1VawdeagdeNAHbvZuh1lGTLRszbOzro4Gv3wGsArve1CDr4eoi1DebtHY1smQvUiYiIiIiIiIiIiFJdQUEBlixZggULFuDPf/4zNm3a1HzMWwi2Sl1km56ejqlTp+Kpp55CXl5eTOaciO6//368/PLL2Ldvn882N910Ezp37oxRo0YF3f+3336L3/72t5ptunfvjvvuuy/ovmPt8OHDOOOMM3DZZZdh2rRpGDlyZNTGcjqd+M9//oNHHnkEDodDs+3NN9+Mvn37hjzWXXfdheLiYlitVp9ttm7diiuuuAIlJSVo2za8MMojR45g/Pjx2LVrl2Y7k8mEe+65J6yxKLE4ZSfe62dHrhU4kQbYRcQs+FoNvDbKQK4VeO9U4NrKXG6kG2OPdtmG6R0PRbTP6T0PAWlpKN7fP6L9UuhYZ30oyT2Mou57Ibu+w3oeFAHN7+6iCCier5EBFJ26F/glE4UneE9PUpBtAJwnHzc2ArLbY3MGoGTEfFoUYZkG7ZBcowmwmWI3H4oO1lkf/NXZYAIsrHPS81tnM2Dn/bVJj3XWh0xJO/SadU4N5eWA+wauFguQkXEy0Jyh10SUBCorK7F69epW1+YFQUC3bt3iNCsKlRTCphozZswIOfBa1aVLF7z//vsYOXIkbDabz3ZvvvkmnnnmGbRr1y6s8YiIiIiIiFLKxInAwoV+m0U68Nq9X4+z1RMmAAsWRGk0IiIiIqLUxNDrCOjWrRsOHDjgceFSURR8++23cZyVp3Xr1nk8VhSFF1aJiCJtwwYA0Ay+ducr8FqlFXztziPwGgAqK4OeOgUu2ODrloHXKvfg60Aw8JqIiIiIiIiIiIhInyZOnIiJEydi/fr1+PDDD7F69Wps2bIFx44d82hnMBjQvXt3jBw5EhdffDEKCwvRpk2bOM06caSnp+Nf//oXrr76ap9tampqcPHFF+O///0v/u///i/gvj/88EPceOONqK2t1Wz3z3/+E2lpaQH3G2+LFy/G4sWLMW7cOFx33XUoLCxEbm5uxPr/+uuvcc8992Djxo1+23bo0AHFxcVhjVdQUID77rvPbz+rVq3C0KFDMXfuXJxzzjkhjfX555/jhhtuwOHDh/22veOOO9ClS5eQxqHEJIkS5n6agUkXVWFjh9gFX3sEXjcAQw8DcxeJkM6K1jIO8ubRHjsxveMvAFz1DjZu3Ft7tZ/pHXcBshPFe/qEN0kKG+usDyV5R1HUbTtkRYECBULLyil+vqsrSqtv/AoUyBBQ1O1HwOFAYUVBZCdNUeCAR+i10wE43QLZHHZA4c/apOdwaIdq2kXAzk1Ekh7rrA/+6uxgnVNCQHWO3XQoSlhnfXA4tP+otrPOKUFRPP+GNhhOBl6LouuNiCjBFRcXw2azQRCE5jXZqn79+sVxZhQKkym4zZDGjx+Pm266KSJjDx48GE8++ST++Mc/+mzT2NiI2bNn4+GHH47ImOHKz8/HwIEDoz7Ozz//jMbGRv8NiYiIiIhIn+IYeO3evxEA8vIYeE1EREREFAKGXkdAz549sWbNGgAnw6QVRcGmTZuwZ88e9OjRI67z27dvHzZu3NhqN2EA6NWrVxxmRESUoo4caf6nv+Brf4HXqsJtrvs5i3wEX7cKvAYAXuSPukCDr0UI+OOR/thkrvR6XA2+Lkuv1hyPgddERERERERERERENHLkSIwcObL5cUNDA2pqamCz2ZCWlobc3FyIDAjwauLEiZg8eTLeeecdn22qqqowfvx4XHfddXjiiSfQv39/n223bNmCp59+GvPmzfM79pQpUzBhwoSQ5h1vn3/+OT7//HPccccdGDduHK644gqMGTMGAwcODOpzTVEU7Ny5EyUlJXj77bfx448/BvQ6g8GAt99+G3l5eaF+CM2efPJJvP/++9i1a5dmu3379uHcc8/F2LFj8eCDD2Ls2LF+Fz83Njbi008/xT//+U+sWrUqoPl06dIFzzzzTMDzp+SR7TQ0Xyfe2AE4lg44opyrpgCQlJOB1/MWANlOAZBlv6+lyHi0x0+Y3nkvAFc91Ldwfiq7V08AML3zL4CsoHhP7zB6pXCwzvpQkleOop47IEOBDAWVBgfSZQkWOfRKW0UZ9aITOQ7X7bpFPbcDsoLCivxITZuiQgYEt69SWQEUt8eKwp+1qUCWXTfyaR1nnZMf66wPrLM+sM76wDrrg6L+Ve0D65waWoZeqwQBSE9n6DURJbSKigr87W9/w3PPPed1XTYAj2v3lByCDb1+9tlnIzr+gw8+iH//+9+oqKjw2WbhwoUJE3p999134+677476OIMGDcKWLVuiPg4RERERESUhH3+Tu4vF/okKgPcBXH3sWAxGIyIiIiJKPQy9joARI0Zg7ty5Xo+9+OKL+Pvf/x7jGXmaOXOmRxi3+0XWESNGxHFmREQpxu55OsxX8LWoADMWA1f6CbxWqcHYLYOvvQZeA7zBM0b8BV+LEDDj4BCcVt/GZ+g14Aq+LqzpjD+33w7Zy827DLwmIiIiIiIiIiIiIm/S0tKQlpYW72kkjVdeeQXff/89tm/f7rONoih455138M4772DYsGE466yzcMoppyAzMxM1NTXYvXs3vv76a5SVlQU0Zv/+/fHyyy9H6kOIG7vdjiVLlmDJkiUAgIyMDPTt2xd9+/ZFx44d0b59e2RkZMBsNsNms6G6uhrV1dU4ceIENm/ejB9++AG1tbVBjSkIAl5//XWMGzcuIh9Deno6Fi5ciLPOOgsNDQ1+2y9fvhzLly+HxWLB6NGjMWTIEOTl5aFt27ZQFAXHjx9HRUUFSktLsX79ejQGsSmt2WzGwoULkZWVFc6HRIkqIwPZFRWYtwA4/ybgaEZshpUFoGON2/Vjk8jNkmPk0d57ML3rAQAnQ5BVMkILRHa/4q/2JwCY3nUv4HSi+KceIfRK4WCd9aEkvwJFvXadDLw2OmEXFFSJDsDhHnytEczWglWUUWVwAgAqjQ7k2CUAAop6bQfsdhSWh7+5B0WJaAdEt69UpxOQnScfOxyAMxZLJymqHA7tUE2HEJsVshRdrLM++KuznXVOCX7rLLLOqYB11geHAxC0fj6zzinB6fR8rK63ycoCJCn28yGimHnrrbci1tc333wDgyG6y+DtdjsaGhpQXV2NXbt2YcuWLVi/fj1kWfa5LlsQBFxwwQVRnRdFXnp6esBtzznnHJx66qkRHd9iseA3v/kNpk+f7rPN+vXrcezYMbRr1y6iYxMRERERESWdBAm8BoA1AK6ZBox6bTTW3ro2RqMSEREREaUOhl5HwDnnnNPqOfVC5gsvvIC77roLPXr0iP3EAOzduxczZszwuZuwt7kTEVGIlNY3XrYMvlYDrwu3BbMErnXwtc/Aax/zoOjwFXytBl4XVnfGTwb/IQ6X1LRHgdOCok5lHsHXDLwmIiIiIiIiIiIiIoqMzMxMfPrppzjnnHOwb98+v+1LS0tRWloa8njdunXDp59+iszMzJD7SFR1dXVh///RYjKZMGfOHFx77bUR7Xfo0KH44IMPUFhYCKvVGtBrrFYrvvzyS3z55ZcRmYPJZML8+fMxatSoiPRHCajpa375KcDhTNf1Ydn/2ouwiYprvOWnNF1bNhoBszn6A+vcoz1+8hmErAo2ENnbFtcegcg9DgCShOI9vYOZKoWBddaHkrxyFPXeDRmu+qiB16oqgxNwCE3B1/6+sQsABI/AawCwC64g7Ry7ARCAogG7AaMRhRX5UfiIKHxGQHALaHPKnqVXDIDI+3mSnsGuHappMAK8byv5sc764K/ORiOgsM5Jz2+dDaxzKmCd9cFg1w69NrDOKUGSPNe2GJtqWlvbfB6ViFLTzTff7HM9sxal6XuG+/vZs2dj9uzZEZ1fMHNR14m7Py8IAsaMGYOCgoKYz4vCYzQakZWVhZqaGr9tb7755qjMwV/otSzLWLduHS677LKojE9ERERERJQUEijw+gcA509z/XvdwXUYzeBrIiIiIqKgBbPWgnwYPnw4OnbsCKD1RUyr1YrrrrsOdnvst5h3OByYMmUKGhoaAKDVbsIdO3bEiBEjYj4vIqKU5ePEmRp8PeLgycDrUBRuc71+xEGNwGuNeVB0qMHXQ6xtAHgGXgejsLozZhwcArFphRwDr4mIiIiIiIiIiIiIIqt79+5YsWIFevXqFdVxevfujRUrVqBbt25RHScV9erVC6tWrYp44LXq0ksvxdKlS+OyCL1t27b4+OOPMX78+JiPTTHUti1K+rs2M7YaYxN4DbjGsRpd45b0hysYiKLKFYS8F4DvIGSVt4DjYNu5jzG961482uOnAHulcLDO+uAKvN4BGQpkKKg0OjwCr1VVBgesYmCVdgVeO1o97wq+djSPVdR7B0ryysP+GIiIiIiIiIiShiwD9fXxngURxYCiKAG/RaKPSL4JgqAZ3H3PPfdE438ZxUBeXl5A7caMGROV8QcMGICcnBzNNhs2bIjK2EREREREREkhgQKvfwFw+jTP59TgayIiIiIiChxDryNAEARcc801XnfsBYB169Zh0qRJcDhaL2KIFlmWccMNN+Drr7/2uZtwtBaJEhHpltF3OHF2I7DovdADr1WF21z9+Ay8BgCRP95jTQ2+HtGQE1LgtUoNvh7RkMPAayIiIiIiIiIiIiKiKOjduzfWr1+PSy65JCr9X3rppVi/fn3Ug7VTjdlsxsMPP4yNGzdi9Ojo3gx+3nnn4fvvv8ell14a1XHcjR07Fhs2bMBFF10UszEpPkr6ySi6DKg3AlXm2IZeV5ld4zYHX1PUBBOErPLXJpAYXQYixxbrrA+BBl6rqgwO2ATtSjYK3gOvVQy+JiIiIiIiIt1zOACbLd6zIKIoU4OjA3mLRB+RfANOBm6r81Dfjx49GldffXX0/wdSVLRr185vm9zcXPTt2zcq4wuCgFGjRmm2+fnnn6MyNhERERERUcJLoMDrgwD6TPN+jMHXRERERETBMcR7Aqni7rvvxgsvvABZlptDptVwaUVR8OGHH+Kiiy7Ce++9h/bt20d1LseOHcPkyZOxfPlyjwu+7v+WJAl33nlnVOdBRKQ77dsDe/b4PCwFsgIyAH77MRqBEyciMxgFLBvAoooBkCAAcPv/b671k1IO4EQ14HCdXi08kY7xvwyAhNqozZWiwNQApDVotzlRBTitsZkPRYfBBoh12m1OVAEy/8xKaqyzPgRU5xOsc7JjnfXB0AjAT52rWOekJzmAtHrtNrUyuMdjkmOd9SGgOisAYpQMSNHR4OccCRFRAsjNzcXSpUsxZ84cPPLIIzh69GjYfRYUFOAf//gHbrzxxgjMMD769OmDF154AUuWLMHKlStRX+/n53YEZGdnY+rUqbj//vvRvXv3qI+n6tKlC5YsWYIPP/wQf/rTn1BaWhqVcYYMGYInnngCEyZMiEr/lFicshOzuh5DfUNsA69VavA1AMw61Ybxu5Wma5cUSTbIeLPDIQCBByGr3P/aybcbUW60Nz8fTB9o6ufNDofw5z09YeLfyhHHOuuDEwpmdTgYcOC1ql6SkeYETIoIAcCgugz8mFEHBYBNkGGV/Mebq8HXOXbXuetZHQ5ifEU7ft8mIiIiIiIi/bDHKp6GiOJFDYyOdx/hcg/BLigowDvvvBPnGVE4unXrhu+++06zzYABAzTD2MM1cOBAfPbZZz6P79u3L2pjExERERERJawECrw+BqDHNO026w+uR621FpmWzFhMiYiIiIgoqXElRIT07t0b11xzTauLqO7B119++SX69euH5557Dk6nM+JzUBQFL7zwAvr164fly5c3z8V9Tup8Jk2ahF69ekV8DkREujZ8eLxn4JKVFe8Z6FakFh9yESMRERERERERERERUfTddNNN2LVrF2bOnIkBAwaE1MfAgQMxc+ZM7N69O6kDrwEgIyMDd999Nz7++GNUVFRg6dKleOyxx3DBBRcgK4LXn/Ly8nD11Vfjvffew8GDB/Hvf/87poHX7q644gps2LABX3zxBW655Rbk5+eH3WdeXh6mTp2KFStWYOPGjQy81hFJlHBt2/NQZww98FoAICqhbwMjC0CdEbh2Xw6vOUaJCSK+3zASbexSUCHGKgXAZRVt8c+fe+OyirYh99HGLuH7DSMZhBwlrLM+SBAwd9sgDKrLCDjwWtUgybALMm480h63H+qEG4+0h12Q0RBA4LVKDb4eVJeBudsG8fs2ERERERER6YvRGO8ZEBG1IghCqzfAtS570KBB+Oqrr9CjR4/4TpLCcsopp/htk5OTE9U55Obmah4/fvx4VMcnIiIiIiJKOAFuPBSpM4pa/VQC6DRN+/UCBKy9ZS0Dr4mIiIiIAmSI9wRSyd///nd8/PHHqK2tbQ66BjyDr6urq/Hggw/ilVdewe23347JkyejoKAgrHHLy8vx7rvv4rXXXsOWLVuax3Wfg/uusllZWSguLg5rTCIi8uK224APPoj3LIBOneI9A3IjAFD8rosMZYkrJRIZCux+6qiwzkRERERERERERCmpZ8+eXp8vLi7G1VdfHePZeJo/fz4ee+yxVs8LgoCff/45DjNKPBkZGbjrrrtw1113YceOHVi6dCk2bNiAH3/8EQcOHEBNTQ3q6+uRnp6OrKwsdOnSBQMHDsTw4cPxq1/9Cn369InZXHv06NFqI+5osVgsuOSSS3DJJZcAAGRZxtatW1FWVobdu3c3vx08eBC1tbWoq6tDbW0tnE4nzGYzzGYzcnNzUVBQgE6dOqFv374YMGAATj/9dAwcONDjHoZEcN555+G8887Dq6++ik2bNmHNmjXYtGkTduzYgYMHD+LIkSOor69HY2MjAMBsNiM9PR3t27dHp06d0KdPH5x66qk444wzMHTo0IT7+Cg2nLITb9athj3MbFqzE7CGcUeXXQTe7FmFa3coDFCNonh/ncd7fL2I9//neI+vG2FsVBCBbsJ4IcWVwwE47fGeBYXL4XDtOOLzuACwzMmPddYHf3W2s84pwW+dRdY5FbDO+uBwAFobDzlY55SgdT1DFBl6TaQDwZzf9HUNNF7nSN3n07NnT9x///24/fbbYeT3rqTn6/4Od9EOvfbXf319fVTHJyIiIiIiSihB/u1vRHinj41u71v2UwOgYJr269XA65GdR4YxCyIiIiIifWHodQR17twZ//jHP3DHHXe0upiqBl+r/96+fTsefPBBPPLII7jgggtw9tlnY9iwYRg6dCi6dOmiOc7BgwdRWlqK0tJSfP3111i+fDmcTmergOuWF3rVOfzzn/9EJwaiEhFF3iWXABYLYLXGbw6iCOTlxW98akVBIOdZuYIx2TUKMspNNj9tGHpNRERERERERESUivbs2eOxITHgumZbU1MTx1m51NTU+Jwftda3b1/07ds33tNISKIoYtCgQRg0aFC8pxJVgiBg8ODBGDx4cLynQknIKTuxsfEXKGF8i1UA2KTwtsxVBGBjmwY4wdDraLBBxojh61FpcEAEIAf5egHA4rzjWJ9dg3Kj3bWJcpB9iAAqDQ6MGL4e+74dAxPCTFqnVlhnfXBCwZT+P+LH9DrkOow4YbDDHuB1/XRZhEER8Vb7I/g+sxY/ZtTBoIhIl4EGMbDPGKMiINdhxI/pdZjS/0cs+nEwv28nE0UBbNr3iVASsNu1QzVtAGy83yfpsc764K/OdrDOqcBh1w7JtQOwBfvbOyUc1lkf7H7qbAPrnMpEEcjMDDrMhoiSS6Q28o3VhsCq9PR0dO3aFf3798fo0aMxbtw4nH766TGdA0XXqaee6rdNWlpaVOfgr3+HwxHV8YmIiIiIiBJGiOcIQw2+brmVlXs/9QDypmm/noHXREREREShYeh1hN12221Yt24dZs2a1WrhsBo67R5K7XA48Pnnn+Pzzz9vbmc0GtGmTRtkZ2cjOzsbAFBdXd38Zmtxo7y3xcktn1PHvuWWW/Db3/428h84ERG5XHEFMG9e/Mbv2BFo+tlBCcIgAiazdpvsDMCRGZv5UHSwzvogNgJpDdptsjMB2RSb+VB0sM76IFkDqHM2IPO0SVJjnfXBYAXS/Gw8lJkNngZNcqIdMPsJ9RGzAQb/JDfWWR8CrjMXtyY1hwMwuf3NZGx5ayBcC5mJUpCvzYkTRaLPj4go2ZkMJkw91hV/z9seVj/OcH8dVoCp29JhSssIsyPyxgTg5mNdMb3jLgAIKhDZvbTlRrvH84H+dHb/TfrmY11Z5yhhnfVBAjD1eA+UZv0IGQpyHaam4GvtaqfLEoyKAAiumm7OrGs+ZlRESE4RtZJ2KIlREZHrMEIAIAoCph7vASktPfwPiiJHNgNwnnysKIBTOvnYaQQUL+c8KLmYZO2wRbMRrZe9UtJhnfXBX51NrHNKMPqrswm8NyAFsM76YHJqHzebAIF1TnotrwlLEpCW5vo65vViopS2e/fuoNorioKePXt6rINW3//tb3/DNddcE6WZukiSBJPJhKysrKiHHVP8DRs2DKIoQpZ9nweuqqqK6hz89c/PQyIiIiIi0oUwN8ULNvja15VCI4BqADnTtF/PwGsiIiIiotDxDpAoeOmll3Ds2DF89NFHrRYOq+9bhl+7s9lsKC8vR3l5eUDjCW5/xLXsy/1YYWEhXnzxxSA/GiIiCsorrwDvvw9o3PgQVcOHu24GpMQRSD0kCVBYt6TGOuuDKAKinwsokgQIrHNSY531QZRYZz1gnfVBCrDOYJ2Tmij7X+wmSWAYcpJjnfUh4Doz9DqpiaLnDYgtb0Y0GMK+QZGIiIgoUZ1x1ITMLKA2jvsmZtqBM46ZgdO6xm8SKa4YXYG6bzE9owwAIELRDEQO5LdfEa7wXK1QZNGtt4fqhqBYPANgmaOGddaHQnQF6tqhKHu1K/haEXFCaITdR5XaKCZX2LVGCJ9ZESEpEqoEm9fjRgjIVcwQJAEiBMyoPhuFWacAWRH5kChS6hyA7LY8sqHetdGXymIG7H42R6fEl17rOmfpi8UC2LkhdtLLqAW0NjRgnVMD66wPGTXaYcisc2pgnfUhw+hnUwoL4GCdk97Ro64NhFRpaa6vYSJKed27d49YX3l5eRHtjygrKwt9+/bFtm3bfLaprKyM6hxOnDiheTwzMzOq4xMREREREcVdhNaTBBp87W9r3GxFwajXRmPdwXVejzPwmoiIiIgoPAy9jgKj0YgFCxbgpptuwrvvvtsccO0eSO0t/Nob93ZaWoZdu79GURTccMMNmDVrFiQGoRIRRVebNsDNNwOzZsV+7B49ABNv7iQiIiIiIiIiIqIElpER7xkQRY2iKH6v68ZTos+PiCjZOWUnZhUcQJbDFY1bF4dLtxk2IMsuYFbfOoyHDIkbB0VNce0ZANAUiCz4DEQW4Fr0omjGHKttBcBHy1ZByE3jU3SxzvpQ2HgKUI2m4GsgVzbjhNg6+LqNYoJFkWAVnH77tCgSAFOr4GsjBOTKZghwC7xuPCWCHw1FjSh53nEtG+F/WSQlPKNBOyRXNoB1TgEG1lkX/NXZyTqnBINBOyTXyZ/PKYF11gd/dTYaAYF1TnotN8RueY2K16yIiChOzj77bM3Q66NHj0Z1fH/9d+7cOarjExERERERxVWEzwv6C772e6a5KbNt7a1rMdpL8DUDr4mIiIiIwsfQ6ygxGAyYO3cuRowYgccffxwOh8MjhFqlFVbd8t9ar/H2ekVRYDKZ8I9//ANFRUUhfRxERBSCN94APvoIOHYsdmOaTMCIEbEbj4iIiIiIiIiIiCgYggBkZXHjPiIiIkpZkihh7o7TMKnLtyjLswMhBF8LcOX9KAICiM71lGEDsu0ChhwVMHdVW0iXMvA62vwFIqtByIFQPNp7BiIzCDm+WGd98Bd8rQZeB6Nl8DUDr5OMKMLji91s9jxuTAMclphOiaLA7NQOyWWdU4PFCXjdtqIJ65wa/NXZkAY4WeekZ3FA869lQzrgNPs+TsmBddYH1lkfjMbmwBgAgCS1Pk5E1AI3caZYuOSSS/D666/7PL5lyxbU19cjPT09KuN/9913mse7d+8elXGJiIiIiIjiLkp/9/sKvg408FrVMviagddERERERJHB0Osoe+CBB3DJJZfgjjvuwNdffw1BEDwuvHoLsPYXau2Ntz7PPfdcvPzyy+jfv38IMyciorCsWgWceioga9xEHymCAFx+OZCdHf2xKHiSApj9rGZPzwKQFZPpUJSwzvogmgBLtXYbJRsAw7uSGuusD6IxgDpngnVOcqyzPoiGAL9v8zRoUhPsgNHPOVNTNtRoIEpSrLM+CLYA6pwF1jnJWa2ewdZGI5CTAxgMUbtJkYiIiChRZOe0x7zPczBpXGXQwddq4DXU90EEX2fYgGwbMKRcwLyPzMjOi84ifGrNVyByMEHILbkHIjMIOTGwzvrgPfjahnTFEHTgtUoNvq4XHMiVTQy8TiZGI+BojPcsiIiIiIiIUpMott5ciIh0L5R11UShGDduHCRJgtPp9Hrc4XDgu+++w7nnnhvxsevr67Fp0ybNNkOGDIn4uERERERERHEX5bUkLYOvgw28VqnB1+sPrmfgNRERERFRhDDtJQYGDRqEr776Ch999BGeeeaZ5l1YWwZgu/N1gVZrp2L1NWeccQb+8Ic/4PLLLw9z5kREFLIBA4CSEuDKK32e7IqYggKgrCy6Y1DoMhqBQVXabX6oB6wMW0xqrLM+mBxA5wbtNvv2AQ6GsyU11lkfzA6gE+uc8lhnfbA4gI5+6vzLPkBmnZOaQQayve237uaECVAYpJrUWGd9MMpAFuuc8ux2V/C1ShSBbduAzEygc2fPQGwiIiKiVDNoELK/+qop+PoEynJtUADU+/kVyD3wuvm5AIOv05sDr0VX4LVNANq2Df1joKB5C0RGiEHIKgECBLd+GIQcf6yzPrQMvm4rhx/AZVGk5tBsBl4nEYvFFXpt93Mui4iIiIiIiIIjCEBWlus6MhFRk5tuusnr83379o3xTEgPcnJycPHFF2PJkiU+23z22WdRCb1evny5z7Bt1ejRoyM+LhERERERUVy1axeTYdTg61ADr1Vrb12LWmstMi2ZEZoZEREREZG+MfQ6hsaPH4/x48djw4YNePvtt1FSUoK9e/d6tFFDrbXCrYHWodg9evRAYWEhbrjhBgwdOjSi8yYiohCNHw8sWgQUFgKyHJ0x8vOBtLTo9U/hUxT/K9EVhTVMdqyzPsiy/40MZBlgmZMb66wPrLM+sM76wDrrgywDip8iyjJDcpMd66wPrLM+KErrn8+Nja636mrXhoFEFDONjY3N/3a/Bi0ySICIKDoGDwYAZNtFzPtAwoRfA191d8XZ+jqD4S3wuvmYn+BrAYBTAgYdBeYtFJCtBvAy9DrmWgYiRwaDkBMN66wPnsHXkdvonoHXSSgz03U+w24H5BZBNLIISFJ85kWRI4na385liXVOBSLrrAuB1Bmsc9ITJUDQuM4ki2CdUwDrrA+i6PuEGMDv26mi5dpISXJtMJSezt+/iKiV2bNnx3sKpDM33XSTZuj1G2+8gaeeegpGo9+otKC89NJLmsd79OiBfv36RXRMIiIiIiKiuJo4EaioiNlwfv+KmzAhoH4YeE1EREREFDkMvY6D4cOHY/jw4fj3v/+NnTt34quvvkJZWRk2b96MX375BYcOHUJDQ4PX16alpaFjx47o0aMHTj31VAwZMgTnnnsuevXqFeOPgoiIAjJ+PLB5M3DuucCxY5HrVxSBDh0AkylyfRIRERERERERERFFk90OtNgQloiiq66uzuvzZrM5xjMhItKJUaNc7xsbAau1+WlB0djbxe/GqvAZ3uaRDeR0AnC6AmMKCgKbL0WUZyByZDAIOfGwzvoQ6eBrBl4nMbPZ9daSnAHI6bGfD0WWQYHmzqmsc2pgnfXBb50zATktZtOhKDHI0Pwj2pkJKKxz0mOd9YF11geLxXOz5OxsICsrfvMhIiJyc8UVV6Bdu3Y45mO95+HDh/H+++9j8uTJERtz586d+PTTTzXbXHnllREbj4iIiIiIKO4mTgQWLoz3LE6aMAFYsCDesyAiIiIi0h2GXsdZnz590KdPn1bP19fXo6GhAdamBXAWiwVpaWlIT+dNtURESWfAAKC8HPjtb4E33wRkjRvrA5GRAeTnR2RqRERERERERERERDFVUxPvGRDpyoEDB7w+n52dHeOZEBHpRKdOwJlnovrTjzBpooIfC4DcBuB4GmCTvL9EEQAo3nOtFWiEZcOVD5TbAPxYAEyaCMxbaEN2+x6ua8oUF8W1Z2CBZRf2SOH/3tvDmcUg5ATFOutDYeMpWGTbjWWm/WH3NdbWmYHXRERERERERERERAnCYrHgvvvuwxNPPOGzzUMPPYRf/epXyM3NDXs8RVFw2223QfazrvTWW28NeywiIiIiIqKEkUiB13l5DLwmIiIiIooThl4nqPT0dAZcExGlmjfeAP71L+D224EPPwSaNjYIiCAAFguQkwNIEuBwRG2aFGEO2X/QudMJODRWq1PiY531QXS46qjF4QAcYmzmQ9HBOuuDgXXWBdZZHxwB1llmnZOaIAOOAOqslQJGiY911gfWWR8cDs/zl4rieVwO4DwKEUXM5s2bPR4rTV+T+dxck4goaqoH9cakdAfK2rseK9rNXW28BF/7C7x2bycAKOsATJqgYN5PbcCtDeLn0cxvIxKEDAB7pBo8mvktA5ETEOusDyXm3Vhu8r6JTLCWmw6gxLybwddERERERERERERECeKee+7B9OnTUVVV5fX4oUOHcNddd+Hdd98Ne6znn38eX3zxhWabiy++GAMHDgx7LCIiIiIiooQgJNi6oGPH4j0DIiIiIiLdYug1ERFRLLVpA7z3HgBg3/PPYP/zf0KvYzLa1MswyK7FyApcuXtVFsAMI3JMma7Aa5W/QDdKLE5n62CflmQn4Eywk7YUHNZZH2TF9abF6QScgcRXUMJinfXBKbPOesA664PT6b/OMuuc9MQAN5lhSG5yY531gXXWh5Y1bnnOxGj0fx6FiCKisrISq1evhtDipmFBENCtW7c4zYqIKLVVN1ZjUt2c5sBrGUBlGmCX/L/WPfg60MBru+TqP6cBENEUfC2WYd4Hu5Ft4+/VsfbomHpMH2HznnQeSDm8/J48PX0jsHULir9OD3d6FCGssz6U9LKh6PwGyA1eDhoAzS0NZMH1A8D9KQBFhs+A1Wko/NkUuYlS9OQ5AUmjzrUiUM8NN5Me66wP7ZyAyDqnPH91rhGBBtY56bHO+sA660O+Q/tv6GoRsLLOSc9q9Xx84gTQqxdw2mnxmQ8REVELOTk5ePrpp3Hffff5bPPee+8hNzcXM2fObHXvRaDeeOMNPPjgg5ptBEHA3/72t5D6JyIiIiIiSjiJFnjN9StERERERHHF0GsiIqI4aThzBP61sy1gs518srbWo820DdnIqeZiNyIiIiIiIiIiIkoRbdrEewZEulFcXAybzQZBEKAoiscCzH79+sVxZkREqckpOzHlnQkok8oB+WTgtU3SjEb1oAiBtwVcbW0tg68LFEwZW4VF72lnOFJkPToWmD4ijA40ajV9hA2w2lC8PIz+KSJYZ30o6Q8UndeUW+2tZv6+tyqK1zYygKLz6oG6ehRuC3uaFG0mAFqbVtQAqNU4TsnBX52rAdTFaC4UPWa4flH2hXVODayzPvircxWA+hjNhaKHddYHC/yEXoN1TkVHjgBHjwKlpcDFF8d7NkRERACAu+++G3PmzMGGDRt8tnnppZdQUVGBF154Afn5+QH33djYiL/+9a94+umnofgJWLvjjjswbNiwgPsmIiIiIiJKWAy8JiIiIiKiFrjtORERUTwZJMBojPcsiIiIiIiIiIiIiKJLFIG2bYH09HjPhCjlVVRU4OGHH8b06dM9gq7djRw5MsazIiJKfZIoYao4AqISWuB1qNyDr2UAogJMLWXgdSw9OhaYPia6Y0wf4xqH4od11oeS/kDRZYAcpfV3suDqv6R/dPonIiIiIiIiSnhWK7BsWbxnQUQ6t2LFCjz++OM4++yz0atXL7Rp0wYWiwXt27fHmWeeiaKiInz66afxnibFgCRJ+O9//4vMzEzNdvPnz0ffvn0xffp0HD58WLNtbW0t3n33XQwaNAh/+tOf/AZe9+vXD9OnTw967kRERERERAmHgddEREREROSFId4TICIi0j2jwfXmcLqCX9xlZwPZ7eIzL4oMixXIOKTdpmMHwGqJzXwoOlhnfTDYgbZV2m0cOYCDf2YlNdZZH0w2oG21dhtbDiCzzkmNddaHgOqcC8hSbOZD0SE5gQyrdpu0dEBJsBtjKDissz4YnEC6nzpb0gGwzkmtuho4ceLkY0kC8vMBs9n1b6IE99Zbb0Wsr2+++QYGQ3T/5rDb7WhoaEB1dTV27dqFLVu2YP369ZBlGYqiQBCE5vcqQRBwwQUXRHVeRER6VfhLOuq/MOK3lzbGJPBa5R58/cYioHBbjAammAQhq9RxipfHZjw6iXXWh2gHXqvU4GuA36+JiIiIiIhIpxoaXMHXl14a75kQkc4sWLAA06ZNw9atW5ufcw8kLi8vx7Fjx7Bu3Tq8+OKL6N69O55++mlcf/318ZguxciAAQMwa9YsTJo0STOgurKyEg8//DAeeeQRnHHGGRg+fDjat2+PvLw8VFdX48iRI9i2bRtWrlyJxsbGgMZu164d/ve//yE9PT1SHw4REREREVF8MPCaiIiIiIh8YKoPERFRojBIrU/kFbQDLN3iMx+KDEMtkFmj3aZTJ8ChvSM8JTjWWR9EK5Dl508oU0dANsVmPhQdrLM+iFYg64h2G1NnhiEnO9ZZHwxWIMNPnQ2dwdOgSU60A6Za7TY5bQCI2m0osbHO+hBQnXPA0Oskd+SIK/haZTQCXJhFSeTmm2/2CIgOlLrw0f397NmzMXv27IjOL5i5qIHX7s8LgoAxY8agoKAg5vMiItKD6q0b8d/+jRCU2AVeqxQAggL8dwjw651AdmBr6SkMsQxCVjEQOfZYZ30IJvBagXY7OYDxGHyd+PZnAPVG38fTrECH2E2HouS4GWjQqHObeqB97KZDUWIVAavGpUIbT0enhAYRaNSocyPrnBIEBbH/Y5tiLsMOODW+Zo2B/MJNCS/T5qfOztjNhWLIPWRGEID16+M3FyJKOIqi4A9/+AMcDofX44888gjatWsXcv8OhwO33HIL3n777ebxVC3vD3A/tmfPHtx0002YN28e3n77beTk5IQ8B0psV199NcrLy3H33Xf7basoCtasWYM1a9aENWZubi4++eQT9OnTJ6x+iIiIiIiI4o6B10REREREpIFpL0RERERERERERERERERERG6UCNzsGok+QuEvtPuee+6J0UyIiPTFKTsxJXclvsrRDtWLJqsB+KobMOUqYNF7gMS1G1ETShCyVjkEwU8DNwxEjp2IB16zzgkpmMBrALCLgKLRVlIQUPI1g68T28qeQLXZ93FZBAaeiN18KDq+7wTUaex3bXEAvatiNx+Kjr052r+ft7UCXf3s1UiJb1+Odp3zrABY56SnCOC+qTrQ+3i8Z0CxwDoTFAXwEWxLRPr05Zdf4m9/+5vXa92DBw/G3//+95D7ttvtuOyyy7BixQqPDaR98RaCvXjxYpx33nn4/PPPkZ+fH/JcKLHdddddMBqNuPvuu2G326M6VteuXbF48WKceuqpUR2HiIiIiIgo6hh4TUREREREfojxngARERFRqnAGujo1Rv1QdLDO+sA66wPrrA+ssz6wzvrAOhMRERFRLAmCEPBbJPqI5BvgWnjbcsGuIAgYPXo0rr766uj/DyQi0iFJlGCot2oGJ8ZCnQkwOBl4HU3+gpAj9b9eq5/pY1zzoOiJeOB1CFjn6As28DrS1ODrkv7xGZ+IiIiIiIgobtLS4j0DIkog77//PoCT17ndr3f/7ne/C6vv3/3ud1i+3LW7oHpNveU4vt7U1yiKgk2bNmH8+PGw2WxhzYcS26233oovvvgCXbp0idoYV1xxBTZu3MjAayIiIiIiSn4MvCYiIiIiogAw9JqIiIgoAqpFO67s/g1Ksg+E1U9J9gFc2f0bVIvR3RGeQsM66wPrrA+ssz6wzvrAOusD60xEREREsRboIldF4+bYYPqI9JvKPQQ7Pz8f77zzTtT/3xER6ZXNYcM3BY0Q4rxuQlCAb7oBNt4VFhU2EXhzmO/jCgBF8B98neEnEyOQft4cxjpHi786ByqrMfw+WOfocQrArGHhBV4LALpUu96HSm6ahzPB1gESERERERERRY0kxXsGRJRgFi5c6HWz54KCAkyePDnkfletWoUXX3zR6+bRKq2Nr9X26nPr1q3Dk08+GfJ8KDmcddZZ2Lp1Kx599FGYTJHb7bZv37748MMPsWjRIrRt2zZi/RIREREREcUFA6+JiIiIiChAXA5BREREFKZq0Y5J3dbi+7RKFHUqCzmIryT7AIo6leH7tEpM6raWQXwJhnXWB9ZZH1hnfWCd9YF11gfWmYiIiIgoML4W4yqKgkGDBuGrr75Cjx494jtJIqIUZjKY8P2bJuQ1IOTgawGAqIQeniooQF4D8P0rgEkOsRPSZJJd/3/bNrQ+pgZVA9qB1X3LgUt3ut57E0g/bVnnqNKqc6CGHAIm/+B6HyrWObokBZj7ATDkcGivFwCc/Qtw4S7X+1C/dw857JqHxLV3RERERERElOoEwRV4LQgMoSGiZlu3bsXRo0cBoDmQWg2avuKKK2AwGELu+8EHH2z+t6+wa2/HWx5Tn1MUBc899xx27NgR8pwoOWRmZuJvf/sb9uzZg6eeegpdunQJqR+TyYTLLrsMixYtwtatWzF+/PgIz5SIiIiIiCgOGHhNRERERERBCP1qHxERERE1B/CVWaoAADIUFHUqAwAUVncOuB81gE9uWrJcZqnCpG5rMW/vaGTLxshPnILCOusD66wPrLM+sM76wDrrA+tMRERERPHScgGrlpaLY0PpI5Lc59OzZ0/cf//9uP3222E08ndfIqJo61IjoPRlYNgdQEXayeDiQAg4GZYtKK4nglmKoQZel74MdKkBEEYIBGnr0gCUviZj2K0yjqe5nnMPqlYpguuA+9N9jwGnlQMQTr7f0c7tNQH007YBKH1NRJcGkXf/RZG3OgdqyCHgjAMAhKb3AMo6BtcH6xwb2U5gXomCSVfJKGsf+HddNfD6lErXg1MqXc+v7h7c+EOOCJhXIiLbKbDOiUZwaCeZi+DP2lQgOl219MUAwCDFajYULZIcQJ21GlBS8FdnEaxzKpCUAL6eEyxkgYhIzxyO1s9Jkvd/E5Guffvttz6P/frXvw65308//RTff/99c1i1O/cNpAVBQO/evdGuXTscO3YMe/bsgd1ubw6+VhSluR0A2Gw23HvvvVi6dGnIc6Pk0bFjR0ybNg3Tpk1DWVkZli1bhrKyMmzbtg0HDhxATU0N6uvrYTQakZGRgQ4dOuCUU07BqaeeijPPPBPnn38+2rRpE+8Pg4iIiIiIKHIYeE1EREREREHS/R3Xb731VrynEFc33nhjvKdARKQbTtkJSQz/xjwnFEiaq6ooVloG8Kncg/hOq/d/Y8qnWUfw5/bbmwP4VAziSwyssz4EUudzavP89vO/rEN4tOOPrHOCYp31IZA6jwmgzh9lHcQjHTezzgmKddaHQOp8Zn0Adc4+iIc6sc5EREREFDhfIdbx6idQ6enp6Nq1K/r374/Ro0dj3LhxOP3002M6ByIi3RNFdKlB0MHX7oHXzc8FEXzdKvCaoq5LrYjS14Bht8qadVYDq4GmwOujnsfVxzvbeQ+8btlPnhqEXMvAvlhwr3OgwdfNgddumoOvOwTWR1vWOaaybQLmfSAGHHwtABjzy8mga5X6eH2A+zUOOeIaN9vGe4CIiIiIiIhIZwQBEHneg4hc1qxZ0/xv942l09PTMW7cuJD7feGFF1o95x52bbFY8Oijj+LOO+9EQUFBc5vjx4/j9ddfx7Rp09DY2Ngq+FpRFCxbtgzbtm1D//79Q54fJZ8hQ4ZgyJAh8Z4GERERERFR/DDwmoiIiIiIQqD70Oubb77Z40Ko3jD0mogoNqobqzHlgymYOnQqCgcUhtxPSfYBzMrdg7n7RjGULc58BfCp1CC+3x/pp9nPblMdFuUcguAjyJxBfPHFOutDoHV+9tBAzU0Hvks7gfdzDvgMn2Cd44t11odA6/zMoYEwsM5Ji3XWh0Dr/PSRgTDJrDMRERERRc7u3buDaq8oCnr27Nm8uNX9/d/+9jdcc801UZqpiyRJMJlMyMrKQlpagEmMREQUPUbX+QX34OtjaYDWnsbeAq+bjwUSfM3A67jpUiti1RwFQ25TYNfY/1oRgO6VrQOvVacdBSxO4If22uMZZGDVHIFByDEWTPD1qP3AsMPej51xAOhaDXzSV7sPBl7HR6DB16ICjNsFdKj1fvyUStfX9LunARqnrhl4TURERERERPql43WcROTdxo0bPR6r19tHjRoFs9kcUp9HjhzB0qVLPdaOuwdep6en4+OPP8b555/f6rVt27bFI488gosuuggXXHABampqmu8DcPff//4XzzzzTEjzIyIiIiIiIko6iXZej4HXRERERERJQ/eh16qWFxz1QM9h30REsVTdWI1JCyah7HAZSg+VAkBIwdcl2QdQ1KkMMhSGssWZvwA+lQwFT7ffiqH12TjFltHq+G5THVZnHkeGbIDGGmgG8cUJ66wPwdT58Y4/4prKzji9IbfV8e/STuCt3L0wK6LPcHOAdY4X1lkfgqnz71nnpMU660Mwdf5je9aZiIiIiCKre/fuEesrLy8vov0REVESyMgAqlznNLrUAKtmAUPuhGYgsq/Aa/fjisYtPkbZNU6rwGtZDmzOFLJqk4IHLlaQawWOpfsOuM2wAeUZwIEsoLOXYPIDWcDeNq52dSbvfYgKkGsFHrhYwbwFTgblxliXaqD0FWDY7fAZfP3QN4AkAyc0grEnbwYGHAOmn+X9eNsG1zhdagGAX8Oxlm0F5i0AJk0EyryE0IsKMGOJgG87K6jWyNoZvR84a7+Aol8pXr8vDDniGifbpsDPtgaUyBTwZ21K8PM1KIN1TgWyDM2btmTwx24q8FdnBaxzKlAU7W/dMrR3HiEiosTBNY1E5Gb37t1e1zqfdtppIff5wQcfwOl0tgqrVgO1n3nmGa+B1+6GDRuG2bNnY8KECa3CsxVFYeg1ERERERER6Ueinc/TYU4cEREREVEyE+M9gUQhCIKu3oiIKDbcA68BQFZkFC0pQsnWEkjlFRj5sxUT19bgd4tP4MkPKvCnz2x48nMbfveVHRN/cCDr8AmgocEj8Bo4GcpWLdrj+eHpUqABfCoFwOrM49htqvN4Xg1CDvR0KmseW6yzPgRbZxkK3srdi+/STng8rwZqss6JiXXWB9ZZH1hnfWCdiYiIiIiIiCiptW3b/M9qM/DApUC6Q/sl/s5f+Due7nCNoxXASpFXbVIwaaKCsvaApADt6l2BuC1l2IBsm+vfZR1dAdfuDmS5npcFV7sMW+s+xKb+JcUVxDtpooJqExfuxFqXWhGlr7iCqVt66BugeEVgt2IWrxDx0Detnz8ZeM1bOuMp2yZg3gIBQ454Pq8GXhduD+zey8LtAmYsEVp9X3AFXgsMriciIiIiIiJ9UhTXZhUMpSGiJnV1daioqAAAj3BqABg8eHDI/X744Ycej93XVHfs2BH33HNPQP0UFhbinHPOaQ7Ldp/jvn37sG3btpDnSERERERERJQU2rWL9ww88dwiEREREVHS4QqJJoqi6OaNiIhio2XgtUq2NqBo7hRsfPpO3LqyChdvqseAgzZ0Oe5AxxoFXaoUDDgq4+KdTnTa/AtK9i9DUd46yE7P1dAMZYu9YAP4VC0DkYMNQlax5rHBOutDOHV2D9YMNlBTxTrHBuusD6yzPrDO+sA6ExEREVGy4+bDRESEnBwArgDqSROBtV2AGpP3MGSVIvgOtlaajvsiKq7+13Zxjcfg69hwD7xWeQu+dg+8Blz1dA++VgOv3evfMvjaPfBaxeDr+PEWfB1M4LWqZfA1A68TS8vg62ADr1Utg68ZeE1ERERERETURFEYTkNEAIA9e/b4PDZo0KCQ+rRarVi1alWr6/dqcPWtt94Kg8EQcH/333+/z2OlpaUhzZGIiIiIiIgoKUycCDRtVpUQJkyI9wyIiIiIiCgEXCVBREQUBV4DrxsbgWPHgMpKyLZG3H9uHT7uo32j3qK+MorG2SErMmC3u/qQ5ebjDGWLHScUTOm6LugAPpUaiLwiqzykIGRVmaUKU7qugzPkHkgL66wPkajzW7l78Urb3SEFaqpY5+hinfWBddYH1lkfWGciIiIiSnbchJiIiAAAaWkegddVbiHUWhGn3oKv/QVeux+qMjP4OlacgoIpV3kGXqvcg69bBl6r1ODr9Z1bB16r1OBrb4HXqrL2wJSrFDgF/u4Ra2rwdbv60AKvVWrwdbt6Bl4nIjX4esSh0AKvVWrw9YhDDLwmIiIiIiIiaqYogNMZ71kQUQI4duyYz2Nt27YNqc+1a9fCarUCgNfr99dff31Q/V1yySWwWCwAWm+EzdBrIiIiIiIiSlkTJwILF8Z7FidNmAAsWBDvWRARERERUQgC3442xbW82EhERBSqVoHXigLU1AANDR7tZAF4bKzr5pn/29n659DHfYDfj3NCdj+kKIDNBkgSYDAAgtAcfD1v72hky8ZofVi6J0HA1BM9UJpWBjnEADwFwH6jNax5iE3zkDSXxVOoWGd9iFSdN1uqw5oH6xxdrLM+sM76wDrrA+tMRERERMnspptu8vp83759YzwTIiKKt2rBhklXA2s7ewZeewu1bkkRACiuMGt/gddoagMBUDOP3YOv5y0Asm0MQ44GSQGmlgKlHeB5Ld/tePs67T4UAEcztNtk+wjNVolN85BktUeKpS41Avb9W4FJVr9im/j9Qofrvo8mxcsF/Hmll34oIWQ3AoveU4PnQ69z4TZg/HYv/VBiC7LOlKQUaNeadU4NrLM+sM76oCgB1DlWkyEiorDZNE5+EZFu1NfX+zzWpk2bkPpcvXq1x2NBEJrDrwcNGoRevXoF1V96ejqGDRuGNWvWtFqH/sMPP4Q0RyIiIiIiIqKEl0iB13l5DLwmIiIiIkpiDL2G9916iYiIQtEq8NrpBE6ccL33QhGAxy9UYHIouHKbAKHpfuxFA4DHx2ksZHY6AVkGTCYGX8dQYXVnAEBRp9CD+MIhQsCMg0Oa50HRwTrrA+usD6yzPrDO+sA66wPrTERERETJavbs2fGeAhERJQCn7MSUvpuwNiP4wOtQ2gK+g6+nXAUsmg9I/pKzKSSF210BxUW/UrwGX0ebqAAzlgiuebDEcWNSvPz/F/x8BQsAWoSieO2HEoaEyNTZaz+U2EKoMyUhQdH+2mSdUwPrrA+ssz4IYJ2JiJKJv/WakhSbeRBRQotG6PU333zj9XlBEPCrX/0qpD4HDBiANWvWeDynKAqOHDkSUn9ERERERERECS3RrrccOxbvGRARERERURh0H3q9e/fueE+BiIhShPfA6+OAU/b+AlmBANfC5YcuBoxOBYVbgZL+rsd+1x8rCmCzMfg6xuIVxMcAvthinfWBddYH1lkfWGd9YJ31gXUmIiIiIiIiomQliRIGNmRicdvjzc8FG2IdCm/B1wOPMvA62lzB14h58LVH4DUREREREREREVGyMpniPQMiSgBaoddGY2hr47799lsIPsK5xo4dG1KfPXr08HgsCAIURUF1dXVI/RERERERERElrEQLvPa3uR4RERERESU83Yded+/ePd5TICKiFOCUnZjywZSTgdeKApw44T3wWlFanViTBeC+XwEf9gNW9ETgi2K9BF9P6boOi345CxIS7GRiCol1EB8D+OKDddYH1lkfWGd9YJ31gXXWB9aZiIiIiIiIiJKRU3ZiS44dbWwCqkxKTAKvVe7B120agS0FgFNQGHwdZbEOvmbgdWKJ1NcYv1YTG+usD6wzERERERFRjCiKKzRHFF1vRKR7osb3grq6OmRlZQXV35YtW3DixInmUGr38GtJknD22WeHNM/MzEyvz1dVVYXUHxEREREREVFCYuA1ERERERFFAe8OICIiigBJlDB16FSIQtOP1poawOn0aKNAAWTZ54k1WQA+7+U/8LrVqxUFcDgAuMLapp7owcDrGCis7owZB4dAjPL/awbwxRfrrA+ssz6wzvrAOusD66wPrDMRERERERERJRtJlDA362aMPmpEmj20wGsBrmDjUM6IKADS7MDo/cDcD8DQzRgp3C5gxhIBYlPBFQDH0wCrIbx+rQZXP+rnEQOvE0u1ScGVkxSU9AtvYVVJP1c/1SYu0EpErLM+sM5ERERERERxIAiAJMV7FkSUALKzs30eq6urC7q/L774otVzStM6viFDhiA9PT3oPgH4fF1NTU1I/RERERERERElHAZeExERERFRlIS5vIaIiIhUhQMKAQBFi26D3NDgcUyGgkqzgnQ7YHF4f737KTdfpwOtBqDe+P/s3Xl8VPWh///3OTOTCSEkQTaViuKGYhVR3Fu17tpqjVLjFasWSrVL2t7e+7329t7+6q29vbXaFettq2D1Fi0uYNVacatareKGUUFwQUVA2UlIyDIz5/P74+QkM8lsSWbNeT0fjxEy58znfOIbkjDnfN5Hqmvvc+eKWEy2HdC8jUdQ1lZA3v/rxj2b5Axq2Xp6FPCVBnL2B3L2B3L2B3L2B3L2B3IGAAAAAADlpmba0br0QUt/O1OyjDSQ3mlL7mvk/WoNrDjbMlLUli59TaqJBqSAnflFyIn6dyQ94ugbZ8a0bYQUsaXmsLst1fUB6XQEe1+/fYQ0pl2a90hA9e/YEl1ARddSYdRwQUxN46XluxspYKt+dfffNzvD31pLPYVOS6Y4ajzDkWNJDV+QFi22VdNVYovHfCxtzlaGnG2Rc5kgZ2QUEEV8w0HASn9XmYD42Xk4yJSzLXIeDmzT5+LpPgJy/ywAAEqD4/R/zu7+Qm5M6ZXoACiK2tralNs++OAD7b777gMaL1nptSRZlqVPfepTAxorXiwWS/p8gPcNAAAAAADDQam9V0fhNQAAADCscOUeAAA5VL//5zTvubqEdYxe4bW3sLUj7pYTRu5CZ8dyfzXdzznqv4DZW9gasaUdI9x9PLaR5j1Wofode+TrU0MK9S0TNW/DNNlpV0wMHAV8pYWc/YGc/YGc/YGc/YGc/YGcAQAAAABAOVkybquuPrFTozukCidzX6YnvvC65zmTvrOt774VjjS6Q7r6dGnJQSz6KLRT37M0oc09n+/pe31ANuILryV3vAlt7vgovt6CXPfvmGNJjWfEtGRKkhKnNNyC3Jic7libxrvjtlTwd7cUkLM/kDMAAAAAFIlluY9kpdgAfKempibltnfeeWdAY8ViMT3++OOyUhR1nXjiiQMaL96uXbuSPl9dXT3oMQEAAAAAKAkUXgMAAADIswEuqwEAAGktXar6l9qkLbVqPKFZUau38NrjLVCtjFky/aqtexn1LmJOtrB1xwiprl0KGmneYyHVvxWVKjZKe1B8XWheUV7jnk1y0mSaLQr4ShM5+wM5+wM5+wM5+wM5+wM5AwAAYDhbv369Xn/9da1bt07r169XS0uL2tvb1dnZKdN90a5lWZo/f36RZwoAyCTmxLTg9dvkWO553tHt0vYRUpft3gA5lb6F1+GY1Bno3tZ90jjdOyI9hdft7liOJS2Y5ui8t20F0h0YOeMVp348UqrtTDy3H//7TPpeFyC54308Umq4IKZFiwOq6SLTYulbkOvxinKz1bcg1+MV5ZJzcZGzP5AzAAAAABSJHbewJpb9v78ADF/77LNPym3Lli3TrFmzsh7rqaee0vbt22VZlowxCeXXlmUNqfR606ZNSZ8fNWrUoMcEAAAAAKDoKLwGAAAAUACUXgMAkEu33SZJqn+/UrsCRnNO3tFTeO0tbrZM90LVLqOKaOYh4xe2mu4FzbbpLb6e/1BQ9W91r3r+4ANKr4ukvmWi7qvZoEerk1/INBCnto6jgK9EkbM/kLM/kLM/kLM/kLM/kDMAAACGi61bt2rx4sV65JFH9NRTT2nr1q1p9/cW41J6DQClL2AHtPCDGWr4+O9q2t09N1zbIW2pSl1a3bfwurZTqowmniPOVHztHcdbfjLtY2nhYovC6wLpW5zq5ecVl0tulkHHPc+fStSWWvtcyReOueNJFKgWW6qCXI9XlHvMeml8a+p8XtzTaNEh/QtyPeRcXNnmfNR6afc0OS/b0+jOQ8m5VJEzAAAAABRJqRXoACgJdXV12nvvvbV27dqekmqvtPrhhx8e0FiLFi3q95x3o+lDDjlEY8aMGfQ8169fn3Tc2traQY8JAAAAAEBRldr7dRReAwAAAMOWnXkXAACQlQ0bpGeflSS1hBz98cB2VUXcTd4CJyO3uFqSmivcha6WcRe32sb9xuw9LCUvvI4fryoi/fEQRy0V3Vu2bpXa2/P6aSK5JTXr9Xj15pyM9Xj1Zi2pWZ95RxQcOfsDOfsDOfsDOfsDOfsDOQMAAKDcPf/88/rCF76giRMn6qqrrtLixYu1ZcsWGWPSPgbjgQce0KRJk5I+vvWtb+X4MwMAxKtZ9qoW3eMWTxtJzZXp948/f+wVXkvur7Wd3fukKbz2NFe6+0z7WFp0j1TTOfjPAdlLVpzat/DaEwlIsRTrhGKW1B7q/3xnwB3P4xWo9lwfgILIVJDrcSzp0X2l9+qS7/dendEfpillQa6HnItjIDk/liHnBdPJuVSRMwAAAAAAQOmZPn16z7nx+HPk7777rv72t79lNcbOnTt1xx139BRnx7MsS6eccsqQ5rh69eqk4+69995DGhcAAAAAgKKg8BoAAABAAVF6DQBArrzwgiS38LrhtB1qGhNROOqWWceLX7jcEpY6g0qqM0Xhtcc2UjgqNY131PD5SO8Cqe3bc/LpIHtLatarcc8mORmXm2fHkVHjnk0U8ZUYcvYHcvYHcvYHcvYHcvYHcgYAAEA5e+edd3TOOefohBNO0OLFi9XV1dVTaG1ZVsbHYJxzzjkKhUJat25dv8ett96qXbt25fizBAD0eOcd1URs3Xy/FLWlSPeVWX3PGcczkkZEeguvPZVR9/l074h440Zs93g3399deM0ikLxLVXjtneNPJlnxdcxyn0+lOUzxdTFlW5DrMZKe2bt/Ue57dUbP7J25INdDzoU14Jyt9Dkbci5J5AwAAAAAAFCajj322KTPG2P0/e9/P6ubRV9//fVqa2vreV1fp59++qDn5ziO3nzzzaTn7/fbb79BjwsAAAAAQFFQeA0AAACgwCi9BgAgV157LaHw2sho2wh3cXFf8cXXfRepSomLYZMVXkvuuNtGuNsTiq+bm3P5WSGDXBfweSjiKy3k7A/k7A/k7A/k7A/k7A/kDAAAgHL2i1/8QtOmTdPSpUuTFl1L6nk+2WOwAoGA/vmf/1mS+h2vra1NixcvHvonBwBIrrVVLRVGcz8vBRwp5PRuslJ8abcktYeSnzNuD7nbk74ubryQ4x5v7nnujZfdHSweeXq0hDXgwmtPJCDFuq8hiNnpC689KYuvw+Rc6Jyz0VN8PdpIlvvrM3unL7BPhpzJmQc58yjEQxkexZ4fj5w8RM6+eJCzTx7kzIMHDx5l9QCALF188cXyzmdbltVzXl2SnnvuuZ5z36k899xzuv766xVfSh3/+zFjxuiMM84Y9Pxee+21nhtL9z2Pv//++w96XAAAAAAACq7U3rej8BoAAADwhWDmXQAAQDZa3ny1t/DakrZVGHWlWaBqJMmSLNO7+LUyml3htacrIG2rlHbr6C2+XvTMDtXk6HNCevkq4PN4RXySVN8yMS/HQGbk7A/k7A/k7A/k7A/k7A/kDAAAgHLV2dmpK664QnfddVfPotf4RbXJCq3jS7Bz4YorrtD3vvc9tbW19dv2hz/8QZdeemlOjgMASNQSjKlhplHTBMmWVNcu7Rghddm9N0WOZ0k95dWpzhlbxt2x73cIY0kyUoXjHseW1LS71DBTWnSPVOOwICQfYpbRrM8PrvDaE7Elx5JiA1hDFP/nQ3ILVGd9Pqr77g4okOwPF4YkWc4DYSQ9M0l6r85ofc3AC3I95Jxf5OwP5Iy0jNKHagyLbIcLcvYHch7+svq6XajJAAAGzPt+XGrFOgCKbtKkSTrppJP05JNPJpw39wqw582bp7feekvXXnutjjzyyJ7XdXZ26tZbb9V3v/tddXZ29uzv8ca45JJLFAwOfin9008/nXLblClTBj0uAAAAAAAFVWrvy3HuDgAAAPANu9gTAABgOIg5Mc0a9/fewuuwk7bw2mPUu7i5OSztqMy+8NrjFV8byy2+nnXiFsW4ajvv8l3A5/GK+JbUrM/rcZAcOfsDOfsDOfsDOfsDOfsDOQMAAKBcdXR06LzzzuspvLYsq2dxrffwnot/5Fp1dbUaGhoSFvV683jyySe1ZcuWnB8TAPwu5sQ06+x2NU3ofc6WVBnJXHjt6XvOuGdf4+7fl7Hc8eMvAGvaXZp1gVvyidwLGEuzm2zZ3f97B1p47RlI4bWnOeweT5JsI81usilOzZO+OQ+GkbRuCAW5EjnnGzn7AzkDAAAAQAkxRnKcYs8CQAm66qqr+j0XX3y9dOlSHX300dpzzz117LHHasaMGRo3bpy+/vWvq6WlJaHwOv78u23buvLKK4c0t4ceeqjn933HPuqoo4Y0NgAAAAAABUHhNQAAAIAiovQaAIAcCNgBzV4/Xpa6C68H8B02vvi6s7soO9vCa49XfG1Jmv1mWIGkS56RK4Uq4PNQxFcc5OwP5OwP5OwP5OwP5OwP5AwAAIBydvHFF+vRRx+V1LvgNX5xbfxz8Y8RI0aopqYm4XVDdemll/b8Pr782hijxx9/PCfHAAD0CtgBzV5Tk1Cq2RGUdob7l1tLyZ+Tes8ZZ7O/ZdzxvSJkqbtUc7ko1cyj+tW25j0SUGdgcIXXQ9Ecdv+MzHskoPrVXPqXT17OQynKHQrbkHMhkLM/kDMAAAAAlBjHodgGQIKLLrpIJ510kqTE8+XxxdfGGH388cd64YUX9Morr6i1tbVne1/e85deeqkOPvjgQc9r586devLJJ/vNSZKmTp2q6urqQY8NAAAAAEBBUHgNAAAAoMiCmXcB/KWzs1NvvfWW1q1bp507d2rXrl2qqqrSqFGj9IlPfEJTpkxRRUVFsacJoASd2jpOY9vf0oYqZ8CvNZJkuYuSB1p47ekKSGPbpFPXVUh7DWIAZKXQBXwer4hPkupbJhb02H5Ezv5Azv5Azv5Azv5Azv5AzgAAAChn1157re6///5+ZddSYgH2iBEjVF9fr5NPPlknnnii9t57b4XDYc2fP19z587N2XxOPPFEjR8/Xps3b+630Pexxx5TQ0NDzo4FAHDVhw6THvqbGs+RdoXcguL4myDHM9KAbmWc7N0SY7kbvOLlqog07yGpfrXFVWFADngFtY1nxOQUcP0XBbmFRc7+QM4AAAAAUGJisWLPAECJuemmmzR9+nRFIpGeomtJ/Yqt4286ne656upqXXvttUOa0913362urq6e+XjjW5al448/fkhjAwAAAACQd2PHFnsGiSi8BgAAAHyJ5U2ApOeff1733Xef/vrXv2rFihWKpblwJhAI6JBDDtE555yjz3/+8zr22GMLOFMApSrmxHTRoau0ekS0p7h6oFItds6WZaTVY6WLzm7VX3YYBQa0RBrZKFYBn4civsIgZ38gZ38gZ38gZ38gZ38gZwAAAJSzN954Q9dee22/wuv4j6urq/Xtb39b3/zmNzW2ABcRW5als846S7fffnvC4ltjjB5//PG8Hx8AfGnqVNX/7W96fqJ0wwnpzwF7hdXZnNXNZpzmsDT3Jal+VfcrWCCSN0umOGo8w1E4JtV29paOF0JtpxSOuaWtMoYS1QKoX2VJxlbjmU5BinJtI81barvl9UV6r9SPBpTzQO9akAQ5Fwc5o78MuRjxM9VwYEz6qMl5eCBnf8gq50JNBgAwZI5T7BkAKDEHH3ywbrrpJn35y1+WZVn9iq8l9TzvSXUjatu29Yc//EGf+MQnhjSn2267LeW2T33qU0MaGwAAAACAvJo5U9q6tdiz6HXhhcWeAQAAAIAi8X3p9dq1a7Pab9KkSTkZp9Rk+ryGuz/96U+6/vrr9corr2T9mlgsptdee02vvfaafvKTn+jII4/U//t//08NDQ15nGlp2rVrl1599VW99NJLPY/Vq1fLSXPh0Q9+8ANdc801BZvjK6+8MqB8C+nAAw/UiSeeWOxpIIe2jgoo4rjrnUwOFj4NSPdi6IgtbR1pSTsKeGyfiMlowej3h1TAZ0maGKnU+lDHoEdxuudxXsueFJvnATn7Q65yPqSjRisqW8i5RJGzP5CzP5CzP5AzAAAAyl1jY6Oi0WjCwtv4RbWHHnqo7r77bh144IEFnddpp52m22+/vWce3pw++OADffjhh9prr70KOh8AGPYmT9aSg6SF06SaTmlHZfrdsym+zubmycaSajvc4x67Xt3lmsiHmGW0YJrpKUutjLq/DrT42jYacIFybWfv8RxLWjDN6Ly3jAJDubs2suKVi+e7+Lq3IJcy82IgZ38gZwAAAAAAgNI1e/ZsdXZ2qrGxMeH8tuSe7zYpbmYTf27esiz99Kc/VX19/ZDm8sYbb+jvf/97zzUA8XOxLEtnnnnmkMYHAAAAACBvZs6U7r232LPodeGF0j33FHsWAAAAAIrE96XX++yzT8LJxmQsy1I0Gh3yOKUmm89ruFq1apWuvPJKPf3000Me6+WXX9bFF1+s3/72t/rtb3+rKVOm5GCGpaezs1NNTU0JBdcrV65ULBYr9tTSuv/++/Vf//VfxZ5GUpdffjml18NIwA7oe/t8UV9e9VNtr8iwKjkfLLdoe3SH9L0PJikQLK/vSeUgIEsLPzxaDZOWqamyecCvtyR9qnU3Te4aqfcq2vRM9bZBFfFN66jVwg+PpoAvT8jZH3KR82XbJ2lG+2i9NGK7bh+9lpxLEDn7Azn7Azn7AzkDAACgnD377LN66qmn+hVeewtfP/OZz+gvf/mLKiszNJ/mwXHHHZdy24oVKyi9BoAcW9L6khrPkaKW1B7qvmFyhtekK77OpvBacl/bHpLCUanxHPeJ+rcHOHlkJWAsLbzPVsMFjpomuOkOtPg6FJMCRopZUiSQ3WviC68ladpGdx4UXhdOvotyKcgtDeTsD+TsTzErNzeKyNU4AAAAAAAgua9+9av65Cc/qdmzZ+vdd9+V5J5/z7R+2xijsWPHasGCBfrc5z435Hn8+te/7vl938Lro446SmPHjh3yMQAAAAAAyItSKrweM4bCawAAAMDnuKJavXf4TffI1Til9vCjxYsX66ijjspJ4XW8J598UjNmzNCSJUtyOm4xRCIRvfLKK/r973+vr3zlKzriiCM0atQoHXPMMfr617+uW2+9Va+//nrJF14DhVZ/+jf15TcqijqHL79qqz6yf1HnMJzVOCEtWnuMpnXUDuh18UXIkjS5a6Q+1brbgGv0pnXUatHaY1TjhAb4SgwEOfvDUHL2CjUlaUb7aF22fRI5lyhy9gdy9gdy9gdyBgAAQLm68cYbEz6OL7w+6KCDtHjx4qIUXkvSfvvtp7q6up55xVu1alURZgQAw1fMiWnBzqcUtaUdI6SILVlZ3i/ZWL3l2OHuSzEGUnhtGfd4O0a4hdsLDjeKWf68LqgQarosLVpsa9rG3oAqo24xtSQ5VursvMJryf01lOLSG2Opp4g1WeH1osW2aroo3Cy0+tW25i21ZUnaNkLqCA5tvI6gO44lCnJLCTn7Azn7S0uF0flfcLRkijOkcZZMcXT+Fxy1VPBzFgAAAAAA+fTpT39aq1at0i233NJzo+d066QPPPBAXXfddXrvvfdyUni9fv163X777T3n/r212N6v55577pCPAQAAAABAXmS4aVRBjRkjbdlS7FkAAAAAKLIhXqY9PKS7w+9AiqEz3Sm4lPi18Po3v/mNGhsb8/b5t7a26sILL9SNN96or33ta3k5RiH85S9/UX19fbGnMezZNgtbhpslzcu08KCI6jqlHeHsFiDnimWkuk5p4aGOjt22TfUtEwt3cJ/xivgaJi1TU2Vzxv37FiF7JneNlFqlZ6q3ZXVcCvgKi5z9YaA527ISCjU93se3j16b1XHJubDI2R/I2R/I2R/IGQAAAOWmra1NDzzwQM+54vhzxpZl6Y477lBt7cBu7JJrU6ZM0bJlyyi9BoA8C9gB/e/KfTX9sI8VsXuvS7GMpLhS61SMJVV1STVdUkuF1JbF/Za9wmtPxJZitvS/D0qBQp6w9iGv+LrhAkdNE9wQwjHJNt2l15JkJeYTX3jtCRhJMSka6H0uvgTdNr1F6BKF16Xg1PcsTWiVPh4pNYfd5+JLybPVEex9/YRWd1yUDnL2B3L2h5YK0/P9evnu7nfYwZSSL5niqPFMR44lNVzg8P0YAAAAAIA8CwQCmj17tmbPnq3t27frpZde0po1a7R9+3ZJ0pgxYzRu3DgdffTR2nPPPXN67MWLF+vggw9Ouf3888/P6fEAAAAAAMiJUus+o/AaAAAAgCi97pGsBHkwJdblUCZdTuXcuXTbbbfltfDaY4zRN77xDVVXV+uyyy7L67FQ3k4++eRiTwE5FHNiWvD8TXJkVBmV6lS44muv8LoyKjmSFtSs0Xkteyogf369L4Rsi/hsWfrPjQfp9fCOpNu9QuSmqpa0x6OArzjI2R8GkvN/fzQ15ddWr1jz7rr1aUsryLk4yNkfBpLzjz6aqiA5lyVy9oeB5PzDjVNV4ZAzAAAAiufpp5/Wrl27ZFmWjDEJvzY0NGjatGnFnqL2339/LVu2rN/zb7/9dhFmAwDDV8yJ6av7vamgsRRyjCJxXYrZXKliSWoPSY4tdQbcjzMWZXe/zhNypKAjffVz0n33UnydbzURS4uWWGq4IKZXJxhtr3QLrz3xxdehqJSqXjNgpGBE6gwmFl5L7njbK6XRHdLhGy0tWhJQTcQSlwMUh1ec+nG1W0beGRhcUW58QW44Jn1cLTVc6GjR4gAFqiUgY85ZRkTOpY2c/aGn8Hq8+93VsaTGMx3JsrqLrzNkZEmyLLfw+gyn5/t80wRDzuXEyvCzU3fOKHPk7A+WyBkAAMCnRo8erdNPP71gx2tsbFRjY2PBjgcAAAAAwJCV2jmSMuhgAwAAAFAYqdbSAMPKCy+8oLlz52ZVeH388cfrxhtv1CuvvKJt27YpEolo27Zteumll/TrX/9axxxzTMYxjDGaO3euXnzxxVxMH8NQTU2NZs6cWexpIIcCdkALa76kadsqJLmLn+o63cWr+RRfeC1J0zbZWvjy3hReF4BXxDetozbpdluW5m2YpjN2Tkg7zuSukbpm48GyU2RGAV9xkbM/ZJvzZ3funnacGe2j9dOPPknOJYqc/SHbnM/JIufrPzqUnEsUOftDLnP+2QZyBgAAQP4888wzKbf967/+awFnktoee+zR7zljjLZu3VqE2QDA8BWwA5q9aaICjjS6y1bIcZ9Pcb+uBJZ6zy13BrqfM9n1bXrjhxxpdLtboDz7VQqvC6Wmy9LND9qK2lLE7n9jbCNpREQKZrh2IOS4+/XdzVjuuFFbuvlBm2LNInKLU2NqGm/UEez9uyq5hbcdwezGiS/IldxxOoJS03h3/JYKFnwVEzn7Azn7Q3zO8RxLajwjpiVTnKzGcQuvY/1+piNnAAAAAAAAAAAAAEBJoPAaAAAAQAmj9LqbZVn9Hrkap9QeftPS0qKLL75YkUgk7X4HHHCAHnvsMT377LP6+te/runTp2v06NEKBoMaPXq0jjzySDU2Nur555/X0qVLtd9++6Udr6urSw0NDWppacnlp4Nh4p/+6Z9UVVVV7Gkgx2pWvKNFj9Vp2la3LC3fxdf9C68tLfpzSDXb2vJzQPSTqojPK+Crb5mY1Thn7pygeRum9Svio4CvNJCzP+Qq53N37kHOJYyc/SFXOZ+3c09yLmHk7A85y7mFnAEAAJA/r7/+es/v48/FTpgwQdOnTy/GlPoZN25cwsfePDmPCQC5V6+DNe/ZWgUcqTbLcuL4wut+27Isvpak2g638HreQ1L9Kv9dH1QsLRVGcz/nKBCTbNO/tNoyUnvILa1OJ2q7+/X9s2DkjhuISXM/51CsWSR9C3LjS249zeHMOUcCqV9LUW7xZZtzLMOX2C5yLmnk7A+pCq89XvH16ym2e/6+l0laeO0hZwAAAAAAAAAAAABAUZValxiF1wAAAAD6oPRakjEm5SNX45Taw0/+v//v/9N7772Xdp/TTjtNL774ok499dSsxjzjjDP00ksv6TOf+Uza/d577z1dc8012U61rFVVVem4447LWAZeaNdcc03B/379+Mc/zjivOXPmFOCzR8GtWKGaiK1FD1dr2sfuU5VRqSp95/6gVUXiCq8/lhYtCaqmy5IoqSiovkV8Ay3g89S3TEwo4qOAr7SQsz+Qsz+Qsz+Qsz+Qsz+QMwAAAErdmjVrEsqujTGyLEunnHJKEWeVKNWNWHfu3FngmQCADxxyiOrfr9R1y0apOcvyQyPJpFh3Yqz+JcqpNIel6x6V6lep9BayDFPxhZpdwf4FqfGl5ZFA6gLVmOUWXkvJS9BjltRFgWrRZFOQ6+kMSrEUV2TGbGlXMPVrKcotLnL2B3L2h0yF1x7HkpYcbLRybPL9Vo41+vVRJmXhtYecAQAAAAAAAAAAAABFUWrXCfqs0wwAAABAdtJcdu0Pt956a0mNg9xauXKlfvOb36Td57jjjtOf//znlIu9U6mrq9MDDzygU045RS+88ELK/ebNm6e5c+fq4IMPHtD4payyslLTpk3TjBkzdOSRR2rGjBmaOnWqAoGArrjiCr377rvFnmJRLViwIO32Qw89VEcddVSBZoOC2rpVklSztVWL7rXUcKHRsk+4i1MtZb8YORuW3HErHOmYddKie6SarqhUYUvt7VJbWw6PhkxqJC1adahm7d+k2Zs+ofrtdZK6Mwi2SXXR9AO07ZKilurb6qSOg7Rg/DotfOdQ1cS6JHXlde7IHjn7Q/qcu6SKzvQDtLVLToScSxw5+0P6nDuzyLlNcoLkXOLI2R/S59zhZp1OOzmXPTsqOe3p92kLins8ljly9odANjmH1FsLh7LUniFjYJjZuHFj0uf32muvAs8ktYqKiqTPU3oNAHlw2GFqCTn64wEdqopaaq4wWZ0rNpJkJZYdZ1t47f30XBWV/niYdO5bUk2Un6nzLVlxqiVJxs0uvvDaEwlIikmBuGBjlvt8/L7JxvGKWb1izUWLA+5NsZFXAynI9XQFpApJAaf3uZjtPi8p7V9sci4OcvYHcvaHbAuvPUbSQwe4+07d0pvPyrFGDx1gFHJSvLAPcgYAAAAAAAAAAAAAFBSF1wAAAADKhO9Lry+//PKSGge59V//9V+KRlMXUO62225atGjRgAuvPSNHjtRdd92lww8/XDt27Ei6TzQa1Q9/+EPdeeedgzpGsYXDYR166KGaMWNGT8n1Jz/5SQWDvv/ykdRTTz2ld955J+0+c+bMKdBsUHCRiNTZKcViqolZuvQ1o7/tk99D7gpKl74m1XRKkpFiMffRRXFbodVIuu/1TyogS/HFeVGrU+0ZivSiXREp6u5Tv3G0zttYp4AcUcBXelLlLKtLcmLpX9wVJecykTJnp0tK87OlJPfrr+OueiTn0kbO/pA65wg5DyPk7A/k7HOBqBSMpN+nq0uUIZc5cvaHQFQKZJNziV18BwBptKW4CeW4ceMKPJPUWltbkz5vuLgYAHKu5fCD1XDaDjWNiagyZqkratz7umQhvvg628Jr73VVEakyKjXtLjXMlBYtkWoy/OiNwUtXnOoVVqf6V0188bVXeJ1MsnEoUC2swRTkeuKLchMKcrNAzoVFzv5Azv4w0MJrj7ESi6+9wmszwKjIGQAAAAAAAAAAAABQEBReAwAAACgjtENg2FqzZo3uvffetPv86Ec/0l577TWk4+y99976r//6r7T73H333Xr//feHdJxCOvDAA/W73/1OL730knbu3KkXX3xR//u//6s5c+bo8MMPp/A6jQULFqTdXlFRoUsvvbRAs0HBhULSrl2SpCVTjK4+XRrdIdkm+wXJ2TJyxx3dIV19urTkoO4NjlN6b1D6SCDJ0uWoZdQacNI+YpbJOA5KR67yIefSRs7+QM7+QM7+QM7+QM4AAAAoRZFI8kbRwd50Nx+2bduW9PkRI0YUeCYAMLzFnJhmPfevatrDfe+hI2DUHnRLrLNlJDkDKLyW3PHbQ1JH96UcTbtLs+r7n4NEbsQso1nnpy9OzfTuUyTQ+0gn2TjNYTfrpvHuPMg5P7LJOZOugNQZGFhBroecC4Oc/YGc/SE+58Hwiq8XH+QMqvDaQ84AAAAAAAAAAAAAgLwqtT4ZCq8BAAAAZEDpNYat3/zmN4rFYim3H3DAAfrKV76Sk2N97Wtf07777ptyeywW029+85ucHKsQpk6dqq985Ss68sgjFQqFij2dstHS0qJ77rkn7T7nn3++xowZU6AZoeCqqqSuLi2ZYtR4tpFjSZ1BKZan9wxj3eM7ltR4TnfxteNIgUGssAIAAAAAAAAAAAOWqtx669atBZ5Jatu3b0/6fHV1dYFnAgDDW8AOaPbhs2VXjVRHwKi5wl3MYWlgxdcDYZneYmSvVNM20uwmW4HBtjUirYCxNLvJVmdg4MWpVtzDsRI/HojmsFu+Ss75M5Sc4zlDuDqTnPOPnP2BnP3By9kews9cxpLe3U2DLryW+DkMAAAAAAAAAAAAAJBHFF4DAAAAKEPBYk8AyIdYLKY777wz7T7//M//rECOimGDwaC++c1v6tvf/nbKfe644w5dd911sm265oerP/3pT9q1a1fafebMmVOg2aAoRo5MKLzuCEo7wkNbCJOOsdzx6yRVRt3ia0mqbw5J4SGs0sKgxWQU6LskOVghWRm+9oeDkt2bWdJxUDKS5xyR7Aw/V4SDUoCcy1rQkoIZbggSrpAcbhpS1sjZH4LKIuew5PC2SVkjZ38IGnL2AzsghaLp9wmHxT0eyxw5+0PAzjJn/r1c1kKhxBvzJTsXU2oXWwJDMHLkSLW2tvZ7ftu2bUWYTXIffPBBwsem+wLjPfbYoxjTAYBhrf7gej2/9h+64R83JDxvSZLJ7bnj+MJrT3NYmvuKpfpVlntA5EepLNYxpnTmMhyVyv9bcs6vUvl/S875VSr/b8k5r+pXWZKx1XimI6cIbz3ZRpq31Fb9an4OKznGpI/EiL+bwwE5+0NWORdqMgAAAChFxhi1traqvb1dnZ2dPefGJWnSpElFnBkAAAAAAENUamswOPcGAAAAIEu0vWBYeuKJJ/TRRx+l3F5ZWalLL700p8e8/PLL9W//9m/q6upKun3Dhg168skndcopp+T0uCgd8+fPT7t90qRJOu200wo0GxTDkup1BSu89iQtvn6hS/VVVfk9MPppsSOatdcLmr19H9W3TOzdEIpIwQxlyFUjpIib2ZKa9Vow+n0t/PBo1VCoWnJS5hx0pGCGH62rqqQoOZc123bLjtOpGiE5GfZBaSNnf8gq5ypKcssdOftD0JbCO9PvU1kl3gYtc3ZEqohl2KlKlCGXOXL2BzsiVTgZdqoSpddlrr098X2SvqXXtu0+gGFi4sSJ+vjjj2X1uZD4vffeK9KM+vvHP/7Rb36WZbGoFwDyYMmbS7RwxZ2qjdhqDiX+7Jvr+sNkPzXXdkoLDzU6doOj+tX8zJUPMctowTSjcMz9/908yPtR247kDDKi2k4pHJMWTDM67y2jQL4vTPAhcvYHcvYHcvYX7+efQhdf9xZe8/MXAAAAkJZXhFNqBT0AytKKFSv01FNPafny5Xr99de1bt06bdy4UY7T/9oky7IUjUaLMEsAAAAAAHKg1N5Po/AaAAAAwADQ9oJh6YEHHki7/bOf/axGjRqV02PW1dXp7LPP1p///Oe086L0enhasWKFXnjhhbT7XHHFFbIp8hi2Yk5MC6rfLmjhtadv8fWCA1p1XotRgHKggmmxI2qYtExNlc1aPqJJkhILkbO0pGa9GvdskiOjhknLtGjtMRQilxByBgAAAAAAyIHKymLPAMipyZMn6+WXX+752LIsGWP0zDPPFHFWvd544w1t3769Z17x5ddTpkwp4swAYPiJOTEteHWBnI52VUYlOYnFmrle5mGUWHxd2+meL3YsacFhjs5b6SjA2pKcC0haeK/UMFNq2t19bqAFqqGoFDRS1JEiA7x6z8t52sfSwnuNApFMN5DCYJCzP5CzP5Cz/9SvkBSTGs9RQYqvbSPNe0iqX+VIynTDPxRFTOnvsxiV+xcc5S1Tzo7IeTiIKf0/rqPdDwBA6TLGLeihFAfAIL3xxhtasGCB7rrrLn300Uc9z5scf115/fXX9eKLLybdduihh+qoo47K6fEAAAAAAEiJwmsAAAAAZY72VQxLjz32WNrtn/3sZ/Ny3EzjPvroo3k5Lopv/vz5abdblqUvfelLBZoNiiFgB7Rw5UHavc0adOG1ZdxFMNYg3uPziq93b5UWLq2m8LqA4ouQJcmRUeOeTVpSs35A48QXIUtSU2WzGiYtU4sdyfmcMXDkDAAAAAAAkAMVFVJVVbFnAeTUIYcc0vP7+IW0W7du1cqVK4sxpQQPP/xwym0sxAWA3ArYAS28YKGmbXNvdlrp2KrtdLcZZXcO2VL3OeMsjmes3q4vr1BT6i7VXCwKr/OoplNadI/7/7oyqp6cs+EVp0rur6EBFLLFF6cuusedB/KHnP2BnP2BnP2nfpVbRG3n+eeh3sLr/B4HAAAAGFa882kON6QAkL1ly5bprLPO0rRp0/SrX/1KGzZskDGm5yG56zeTPQajqqpKV155pebOndvvceWVV+byUwMAAAAAIDUKrwEAAAAMA8FiTwDItY8++khvvvlm2n1OO+20vBz79NNPT7t9xYoV+vjjj7X77rvn5fgojkgkoj/+8Y9p9zn11FO1zz77FGZCKJrHqzfrvVozqMJrxS1cttT9Xt8AxzGW9F6t9PgnIqqvqBjEJDBQLXZEDXu8qKbKFsUH5khq3LNJCgZ1QOcoKRBIO86jddv0kzFvyrGUME7TiBY17P2iFn10gmqcUF4+B2SWTc6HdtRJwfQ5Lx29VdeOWUHO5cx2pGCGf0JVVEgOX4PLGjn7QzY5B4OSyLmskbM/2LHsvm7zNmh5sywplOFnZadC3OOxzJGzP9jZ5BwSOZe5YDDx/bBgUKqsdLOvrCzevIA8OeGEE1Juu/XWW3X99dcXcDaJYrGYbrzxxpQLeY877rgCzwgAhr+ara1adLfUcFpITWMiqoxZ6ooYtWXxFpSl3hskW93nizMtETGWVNWVWHhNqWZheAWqDTOlpu7LgJrD6V8TX5zqCRpJUSmS4e0rilOLg5z9gZz9gZz9xyuibjxH3dfq5BaF1wAAAMAQGEPpNYCsNDc361/+5V906623SlJCwXUq8TerHmzp9X777aeLLrpId955Z79tTU1Neu2113TYYYcNamwAAAAAALIydmyxZ5CIwmsAAAAAg0TbC4adF154Ie32vfbaS3vttVdejr3PPvtojz320EcffZRynxdffFHnnntuXo6P4rj//vu1efPmtPvMmTOnQLNBscScmH44ea12DLazxXLf46uMSR0BDbjw2rNjhPTDo3bpvNgoBSgHyqsWq0sNdc+oKdisZIE5ltS4+3L9v5bD0pbwrQ+06Ucj35SdIvSmEc1qmLRMi3acrhpDIWOhZZvz91qmS6HU+bwXaNF9NStkkXOZq5DCzel3sWtFeWq5I2dfsEJSBTkPe+TsD3ZICrVk2KdGEjcXKWtWlxTIcGFMZa0oyS1z5OwP5OwPHR3dN53oVlEhjRpVvPkAeXbccccpHA6rq6urZ8GsZVkyxuj3v/+9vv/976umpqYoc7v77ru1du3anvl4v0rSEUccwY16ASAfXnhBNRFbix6rU8Np27VsXJfaQ903Pk7zsvjC657nsii+tiS1h6QKRzpmHaWahTaQAtVw1C3HTCZopGCX1JHiLSyKU4uLnP1hIDlXRFO/vRE0UqjL/dqcDDkXFzn7T76Krym8BgAAAHIgGi32DACUuFdffVX19fVau3Zt0rJrk+eyrW9/+9u68847kx7z9ttv1w033JDX4wMAAAAAfGzmTGnr1mLPoheF1wAAAACGgNYADDuvvPJK2u1HHHFEXo8/Y8aMtNuXL1+e1+Oj8BYsWJB2+2677ab6+voCzQbFEnNiWj8iMuRx9tg59Lmsr3YUkzP0gZCSW4T8qJqC6d8odmT045pXtT7QlnT7+kCbmkLb5KRdqi41Bbeqoe5RtVhdg54zBm4gOf+w5mW9F0hetvheoEXPhDdm/FtJzgAAAAAAAED5GTlypM4+++yexa3xC2tbW1v1wx/+sCjzamlp0X/+538mLMD1WJalCy64oAizAgAfeO01SVJNxNalTdKu7nvjWib1fY+TFV73bMvydbuC0qWvUapZDF6B6rSP3YLT2iQZ1HZKwQwnCyuc1K+lOLX4yNkfyNkfyNl/6le5BdWpbkowUBReAwAAAACQfw899JBOOOGEnsJry7J6bvLsPST1PB//yJWjjjpKRx55ZMI1AN4cFi5cmPfSbQAAAACAT82cKd17b7Fn0evCC4s9AwAAAABljtJrDDuvvvpq2u2HHXZYXo+faXxKr4eX9evXa+nSpWn3mTVrlsLhcIFmhGKpCFboF8HPKhwb3OstI9V1Su0h99dUi5ozCcekX6zaRxUKDm4AZJRtEbLHyKgptK1f8bVXeJ1t1BQiF9Zgcn4mvLFf8bVXeE3OAAAAAAAAwPB16aWX9nvOW+z6y1/+Un/9618LPqfZs2drzZo1ktSzCNgTDAZ1xRVXFHxOAOALK1ZIkpZM3KmrT+rS6A4p1F2amewccLrC6559UhRfe68LOdLoDunq06UlB8XvYPEo0KOmy0ooUI2/bsArP81G3/LVcKxPcWpX8T9XPz/I2R8PcvbHg5z996hfbenUNdnlmsmpa6T61cX/nHgM4CHJ/cE73aME5skjvzmLnIfHg7/PPHjw4FFWj0xGjBjaD+cAhq2lS5fqggsuUHt7uyQpvuza+zi+4Dq+CDvXRdSXXXZZz+/jx960aZNeeumlnB4LAAAAAABJpVV4PW6cdM89xZ4FAAAAgDJH6XUZW716tW655RZde+21+ta3vqWrrrpKV199tX73u9/p5ZdfLvb0iuatt95Ku/2AAw7I6/H333//tNvffvvtvB4fhXXbbbcpFkvfcjxnzpwCzQbFNmvaFzX/qdoBF197hdfegqnK6OCKr8Mxaf5fKzSrI79f5/xsoEXIHiMlFF8PtPDaQyFyYQwl5/ji64EWXnvIGQAAAAAAACgv559/fs85Qm/Brfd7x3F02WWX6ZVXXinYfP77v/9bixcvTpiL1Ft+fcEFF2iPPfYo2HwAwFe2btWSvdvVeGKrHEuyJI1ud4upTZ+eF0vZnxNOVnxtrO7C63Z3m2NJjef0Kb5GwXgFqru3Sp0B97mBFKd64gtUOwPueD3FqSg6cvYHcvYHcvaXJQcZPb5vbsZ6fF93PAAAAABDYFlSKFTsWQAoQatXr1ZDQ4O6uroSSq09fYuu99hjD1188cW6+uqr9dOf/lRf/OIXE/Ybqosvvli2bScd87HHHsvJMQAAAAAA6JGjf8/mxJgx0qZNxZ4FAAAAgGEgWOwJYGDa29v1q1/9SjfddJPWr1+fdt/dd99dc+fO1be//W3V1dUVZoJFZozR+++/n3afTKXUQ5Vp/EzzQ3m59dZb024/8sgjNW3atALNBkV39NGa9U6VJGnOSc09C6LS6Vt47amMSnWSdoT7L35OJhyT5j8U0qw3A9LZI6WdOwc8faQXk6NZezytpsA2JWsxNjLabnepygRVaQIJW2SZnuLrDVabNgc7ZeIHMUbeoB1WTLusqEY7FbL6LV2XmgJbNGvkUt330YkKcP+SnMtFzs+EP9Z7kRatD+1KHMI48u45Q85lyu6QTHv6fdp2SqaiMPNBfpCzP9gdUlWGnFt3SiLnskbO/mDvyiLnVvE2aJmzIlJFW/p9OivEPR7LHDn7gx2RQuQ87LVlyBgYhmzb1ve+9z3Nnj07YZGtZVmyLEtbt27VySefrLvuuktnnXVW3uYRi8V09dVX6xe/+EXCgtv43weDQV1zzTV5mwMA+N2S2o/UeHiznLjnLEkjIko4fzyQwuue1xj3hd7LTPe48WeavOJrSapfPcDJY8ge31f6eKRbRl4VGXhxqsd73a6QO97j+0r1q3I3TwwNOfsDOfsDOfvDkoOMGs92f07KBceSGs+WJKP6VSW04BgAAAAoF5Yl2VwTAKC/aDSqiy66SC0tLf0Kr+M/HjVqlK688kp95Stf6beWd/78+fq///u/nM1p3LhxOuaYY/Tcc88lLb3+93//95wdCwAAAADgc6VUeC1JW7YUewYAAAAAhgnaXnJo9erVisViSbftu+++qqysHNL4jz32mC699FJt3rw54e7EqXz00Ue69tpr9Zvf/EY33XSTvvCFLwzp+OVg48aN6ujoSLvPnnvumdc5ZBq/ra1NmzZt0vjx4/M6D+TfU089pXfeeSftPnPmzCnQbFAS9txTOuEEzXr2WUmZi69TFV57si2+dguvg5q1MiCN2c19MzPD10IMXEDS7K17afme2+T0aUM2MtoeiChiOWq2uqRYKK4Q2STstymYJJvu0usOK6ZmOyJJ2m53aXQs1K8Q2Zal2Vv3UqCjK4efHTyDz1k9URtJ64K7+pdmG/c/5FzG7A4pFEm/T2eH5Djp90FpI2d/yCbnri5yLnfk7A/Brsw5d3SIt0HLnB2RTIafjTs6RElumSNnf7AjkpMp504pyQ2iUEb4+Qo+dcUVV+jmm2/W888/L8uyZIxJKL5ubW3V5z73OV1xxRX67//+b02YMCGnx3/uuef0zW9+U6+88krPcePPKXvPXXnllZoyZUpOjw0AcMWcmBZM3NTvHFNHUGoJS7ZxSxIzFV6HY0p5njm++No27riWEs85O5a0YLp03juWAtncYRk5sWSKUeNZRrKk0e1D/1dNZVQKRyV5xZqWpfrV5Fls5OwP5OwP5OwPXs65Krz2OORcXmwn/V9yW5QuDgeZcrZEzsOBbbL4+8zXZQAoGcnWWAYCpVfeA6Bk/OxnP9Prr7+etvB67ty5+ulPf6ra2tqCzevss8/Wc8891/Oxdy7+ueeeU2dnp8LhcMHmAgAAAAAYpkrtPbMses0AAAAAIFu0veTI+++/r4MPPrjf3Xolqa6uTh9++OGQxr/lllv09a9/XZGIW+KT7DjJGGO0detWXXzxxXrttdd07bXXDmkepW7Dhg0Z99l9993zOodsxt+wYQOl18PA/Pnz024fMWKELrnkkgLNBiXj8sulZ5/VrHeqJKUuvs5UeO3JVHzdW3jd/S19772HNH2kV98yUZLUuGdTz2L1+CJkT3MgIsWUWIicQYcVc1/XLWI52h6IJBQi27I0b8O0nnkgP8gZAAAAAAAAwGDcfPPNOuaYY7Rr166kxdeO4+jWW2/V3XffrS9+8YtqaGjQpz/96UEfr7m5WX/5y19088036+mnn5akfoXX3nlly7K033776X/+53+G/okCAJIK2AEtXDtDDaMeVlP3vQ06glJzXNeBnWEtSG33OeS+r4tn9en48vbzzj1P+1hauFgKyOZ+MgWyZIqjxjOdnkLNXP1v98ZxLKnxLEeybNWvpqivWMjZH8jZH8jZH/rmnGvkXEYyXXNvZbEPSh85+0emcnNyBoDS5pXl8PUaQB8tLS36yU9+klBwHf/7cDisW265RbNmzSr43OLP6cfPq7OzU6+//rpmzJhR8DkBAAAAAIaRUnuvjMJrAAAAADlG6XWO3H333ZJ67x7ssSxLX/7yl1VVVTXosR944AFdeeWVCSdEkx2rL2/xtLfvj3/8YwWDQf3gBz8Y9FxK3datW9Nur6mpyfudk6uqqlRdXa3W1taU+2SaJ0pfS0uL7r333rT7XHjhhQW9azhKxJlnSnvtJX34oWatDksttuac6yQUX2dbeO1JVXwdjknz/yzNeivgXqhdVSVNmJDDTwbJxBcix+T0K0L2eIXIwWRt5X102o5a7f5/IOILkQOyKUIuoIHmHDKZF6912jHtJGcAAAAAAABg2Jo6dapuvvlmXXLJJT3navsWXxtjtHPnTv3v//6v/vd//1fjx4/X9OnTNXXqVH388ccpx16wYIE6Ojq0adMmvf/++2pqatKKFSsUi8UkKaHkum/htTFGlZWVuuOOOzRy5Mg8/18AAH+rGVGnRfdYaphptGxi6uLqZGrjziF7v2b7R28rggABAABJREFUem+/Y9ZJi+6RarosKfv7tmII8l2o6XEsqfFM93wlxZqFR87+QM7+QM7+QM4AAABACaM0B0ASv/vd79Tc3Nxzvjv+XLdt27rtttt00UUXFWVuRx11lGzb7re+W5JWrVpF6TUAAAAAYPAovAYAAADgA5Re58hdd93V74SlMUbBYFDf/OY3Bz3u5s2bNWfOnH4narMRv5jZO9n7wx/+UDNmzNBnP/vZQc+plG3bti3t9pqamoLMo6amJm3pdaZ5ovTdeeed2rVrV9p95syZU6DZoKSEQtKPfiR98YvS9u2atUWSkeacJ3UGBl547elbfN1TeP26JDsiVVRI06dLlFUURH1kf+3aamvO+OeTFiF7mgNRVTsBpd5DciyjLiv1HwivEHn+pmNVH9lXGjGEiWNABpLzKCfols+nEJNRhxVLuZ2cy4RtuV9v0wmPkJRhH5Q2cvaHrHIOi5zLHDn7g20y5zxihHgbtMxZQakikmGfEZIolChr5OwPViCLnCtFzmWus9N9n9QTTPJ9uNQuzgRy6OKLL9batWv13e9+N2XxtdR7Lnfjxo1aunSpli5d2jOGty3+17lz5yYcJ9nNmOOfj/84EAho4cKFLLYFgAKp6bJ0aZPR3/bpv80o+Sml2iTnkNMVXycbZ1dIurRJqulMcRDkXKEKNT0UaxYHOfsDOfsDOfsDOQMAAABlgPIcAH3cfvvtSddnW5al//zP/yxa4bUkVVVVafLkyVqzZk2/batWrSrCjAAAAAAAw0KprangPTsAAAAAeULbSw5s2bJFL7/8csJdhL1fTzvtNE2cOHHQY3//+9/Xli1bUhZe9z2RGy9+EXT8gurGxkaddtppCoeTrIorc9u3b0+7fdSoUQWZR6bjUHpd/hYsWJB2+3777aeTTjqpQLPJnd/85je66aab8n6cd999N+/HKKrTT5d2313avFmSNOsNW7uCjq76nDQiMvDCa09lVKqypfaQNO8v0qw3LHexsjFu2fUBB+Tuc0BaLVaX/lj3oapMUM1W+qKmVjsqW5bsJCvLHRlFZbprnFJ/T68yQf1x9Ic61zpINYZSxkIZSM477YhCshUw/RevxSxHXXK6Eybn8haQwpUZ9qkW5anljpx9wbKlCnIe9sjZH2xbCmXKeaSkUIZ9UNKsLimQ4R/ToWpRklvmyNkfrC4pkPqmUJLIeTjo6kq8KUWoz/fhQMD9Hg4MY//2b/8mY4y+973vSVJC8bX3cfx53mxuepxsn1RjxJ9bDgaDuuWWW1RfXz+4TwYAMDBtbVoyxejq06W6dmnHCCnS/aOPkXuDY5nEM0bJCq89yYqvk40TctzjXX2GVBWV6ler9BbFDDNLpjhqPKNwhZqenmJNy6JYswDI2R8GnHOO/jyQc2GRsz/wdRtJWVb6v9OW+Nl5OCBnf7BEzgBQzvgaDSCFVatWacWKFQnrsj177bVXz3n3YjrooIP07rvv9lvPTek1AAAAAGBQSu29MgqvAQAAAOQRpdc58Pzzz6fcdu655w563LVr12rBggUZC69TLYL2TvJ6+3j7f/DBB/qf//kfXXPNNYOeW6nq6OhIu33kyJEFmUd1dXXa7ZnmidK2YsUKvfDCC2n3mT17dtpS+lK1efNmrVy5stjTKH+PPipt3OiWt8RiaqkwWjxVCsfcwuoKZ3DF1x1B9/XhmLR4qtSw0qimy3Lf0Ny1S/rwQ2mvvXL/+SBBi9WlhrpH1RTcqkoFJUdqttMXIkdlFJQSiq+9wutMap2QKhVUU3CrGuoe1aIdp1OIXACDyblLjiosJRRfe4XXmZAzAAAAAADwjaqqYs8AKIirr75a++23n6644gq1t7cnnNvtW1CdTQF2qvNO6c4hV1dX609/+pPOOeecIX0uAIDsLRnxvhrPNnIs91YuXvF1l91dVK3Ewup0hdee+OLrnsLruHEquguvbXUXLp4jyTKqf5uFKPlSrEJNj2NJjWfEJGMo1swjcvaHQeVslNtCZHLOO3L2B75uIyVjlPYyPSMWcQ8H5OwPWeVcqMkAAAaM78UAUnjqqaf6Peeth/7+97+viorir63ZK8l6PWOMPvzwwyLMBgAAAABQ1kqti4j37QAAAADkGVfV5sBzzz2Xctt555036HF/9atfKRp1V64lW/hsjNH++++vn/70p3r22We1evVqPfvss/r1r3+tQw89tN9djb3XGmN0/fXXa+fOnYOeW6nq6upKuz0YLEzPe6bjZJonStv8+fPTbg8EArriiisKMxmUnkhE+s//dN9oHD1aLSNsNcw0WjZR6gy4uzSH3QLrgegIuq+T3HGWfUJqmCm1hCWFw+7xXnxRisVy+ukgUXwRsqdSQdU6oYyvjcrI6b6afqCF1x6vELnF4vtIPg0l5y45illuyfVAC6895AwAAAAAAIatcFjKcONQYDiZOXOmXn75ZR177LE953uTlVzHP1Lpu1+68mxjjI4++mgtX76cwmsAKKCYE9OC8evl2L1f521JNe399zWWNCLSv/DaNtJp77q/xquMuvubJOtdatoTLwBzLGnB4VLMYjFKPsQsowXTzJAKNS1Jn2gZWpeqY0kLphlyzhNy9gdy9gdy9oec5Gyk/ba5vw4WOQMAAABZsKzSK/YBUFTPP/98z+/jz6UHAgHNnDmzGFPqZ/fdd0/42JtnS0tLMaYDAAAAAChXpfa+GIXXAAAAAAqgMA3Aw9wLL7zQ83uvVFqSPvnJT2rPPfcc1JiRSET/93//l7K02rIsXXXVVfrVr36lUKi3gPGAAw7Qcccdp6997Wv693//d11//fU9r4kvwe7o6NA999yjL33pS4OaX6mi9Br55v3dTOess84a9N99DANLl0rdd2lvqbTU8Flby8b3FlZ7vI/7LmJOJr7wOv71yz4hNVxkadEDlmq6LKmtTdq4UZo8OQefCPqKydGskUvVFNymvsvYKhWSjKXmDCXFURnZUk/5dTq1pkKVVv/vJ02hbZo1+m+6r+1zCnD/kpzLRc5dcmRbhpyHpZgUyvTzZIWkcIZ9UNrI2R+yyTksN2uUL3L2h2iWX7fJubxZUiDDTWgCYXGPx3JHzr5BzsNfRYUUf54kGJSqqtzC6xEjijcvoEimTJmiZ555RvPnz9ePfvQjrV27VpL6nQdOV3idTN/Xe2OMGTNG11xzja666ioFAoHBTxwAMGABO6CFbx2qhk88r6bRnZIkR1LLCPesU/xXektSe0iqcHrPGdtG+tVDUv0qaclB0rfOUU9xY0fQ3T/ZOC0jpLq44utpH0sLF0uBZA3ZGLKAsbTwPlsNFzhqmjDwRT+WpE99IE3eIb1XJz2zt7I4q9jftI3uPMg5P8jZH8jZH8jZH4acs5HOeVuausXSyrFGDx2Q/GYjmZAzAAAAkAGF1wCSeOeddxI+9tZBH3300aqtrS3SrBKlmsfOnTsLPBMAAAAAQNkqtffFKLwGAAAAUCCUXufAO++8k7Sc+vDDDx/0mI8++qi2bNmSUKIdX3h9/vnn66abbkr5etu2dd1112nHjh26+eabE8bx3H777cOu9NpxnLTbC7WwO9NxYrFYQeaB3Lv//vu1ZcuWtPvMmTOnQLNBSbrtNklSS8hRw2k7tGx8RM0putWyKb5OVngd//plezhqOK9Tix4c4RZfv/uuNGPGED4BpBKQNNsco+XmoaRlxpWqUIdi6lTfr/GJS8+TFyEn/hwRVkCVVvI/OLYszQ4fo0DluIF9AsgKOSMtp1LStgw77SbZlYWYDfKFnP3BCSu7nCk3L2vk7A9OhaTtGXYaI9mUXpc106nMNSK7SRaljmWNnP3BdGSx0xjJovS6rMVibsm1p6JCqqsr2nSAUmBZlr785S/r8ssv1//93//p5ptv1rJlyxK2JyuxziT+/O/kyZP1ta99TXPnzlVNTU1O5g0AGLiaugla9FidGk7ZpuVjItoxQop0/3hrG7fE2pJbrCj1nguuiki/7i68lqQLVrn7ffMcaVeodz/LSLLcfz3Z3WNEbGlHd/H19I+lRffIPXccLLFFMsNITcTSoiWWGi6IqWl89ot/eotT3Wwm75Ako2f2Htjxp22ytGhJQDURq+8pSOQQOfvDoHK2yLnckLM/DPrrtpHOedvS1C1uOO6vRg8dMLAFvuRcwqwMmVgqvQXmGDhy9gdL5AwA5YzCawApfPDBB0nPlx9xxBFFmE1ylZXJ1w5Qeg0AAAAAyEqpvS9G4TUAAACAAqL0eohisZjWrVuXdNthhx026HEXL16c8HH8SdtgMKhf/vKXWY3zy1/+Uvfff782bdrUM4ZXgP33v/9dW7Zs0dixYwc9z1ITDKb/Ix2NpmmWzaFMxwmFQgWZB3Jv/vz5abePHz9en/vc5wo0G5ScDRukZ5+NK7zuUnNF+jf70hVfpyu8jn/9st1javhcu1t8vXat1NIiUWiRF/XWVElSY5JC5A5FkhQhD06nYupQRJVK/H5hy9I865yeeSA/yBkAAAAAAABAPoRCIc2ePVuzZ8/WW2+9pQcffFAPP/ywXnzxRTU3Nw9orEAgoEMOOUSnnXaa6uvrdfzxxw+qOBsAkGOHHKKav/9dN/+9TtMv3NxTeO2xk5w+bg5Lc1/qLbz21K+Slk2Ubjgh8XnL9O/4ithSzJZuvl+q6ZQUsEtvocww01OsWR/NqljTknTCWmlyc2IZ3+RmS1pr9MLE7I7rFmoGKdQskFzn/OKe2R2XnAtrwDkb6YQPybnckLM/DObr9tnvWJq6NTEf7+PHJme30Jecy0DaklzKF4cNch7+kv2DOGE7OQMAAJSjlpaWpM+PGzeuwDNJzaQoA9u1a1eBZwIAAAAAKDuldu6CwmsAAAAABUbp9RCtW7dOsVisp0g6fiHxUEqvH3744X6Lkr3xZ86cqb322iurcUaMGKHvfOc7uvrqq/vN0Rijl19+WWeeeeag51lqKioq0m4vVOl1JBJJuz3TPFGa1q9fr0ceeSTtPpdddllZl5qPGzdOU6fmv2T13XffVWdnZ96PU3AvvDCgwmtPsuLrbAqv41+fUHy9fj2l13mUrBC5QxE1K7d/pr3xvEJkipALi5wBAAAAAAAA5NOBBx6o73znO/rOd74jSVqzZo1WrVqlDz/8UBs2bNDOnTvV3t6uSCSicDisqqoqjRkzRpMmTdK+++6rww47TFVVVUX+LAAA/Rx2mFpCjuae1KKgsRVynH7F133VdkoLp0nHrE8svl5ykPt8bWfmc8chRwo60tzzpEX3SDUxir4KoSZiadF9ITWcH0lbrGkb6fQ1lsbvSl6EObnZ0sFbpbsPduSkiW3aJvd4FGoWVi5zPmSztOgQci5FA8n5tPcs7d6WOudDN0t3knNJImd/GEjO9ats7ducPJ+pWy1N3Wr0u+nkXPasTNnws/OwkClnypCHB/4+AwAADEttbW1Jny+l0utt27YlfT4cznLxHwAAAADAn0rtvAWF1wAAAACKgNLrIVq/fn3KbRMnThzUmKtWrdKGDRt6Sqr7+tKXvjSg8S666CJdffXVSbe9+uqrw6r0OlPZcFdXV0HmQen18PSHP/xBsVgs7T5z5swp0Gzy4+tf/7q+/vWv5/04hxxyiFauXJn34xRaS9MLAy689sQXXw+k8Dr+9T3F1xvWq0YHD2wADEh8IfIudeW8CNnjjVulCoqQi4CcAQAAAAAAABTKvvvuq3333bfY0wAADFHL4Qer4bQdahoTkSVpdKet7eHUxde1ne45YseSvnmO+1z9Krfw+pvnuM97N09OdQ455Eij293er6bdpYaZ0qI/W6pJf+kKcqSmq3+xplFvD5ttpHmPBvXi7o62V6Ye56iPLJ24LqjG06M9xZrx4/QUanaV2EIon0iWc7ysc95g6VMbEnOOR87FlW3Oz+/hqCXNdT3HbLB0PDmXLHL2h2xzfq/GqC3N5byf/tDWJ7fY5FxGYpZRwAw9j1yNg/wgZwAAAGB4CYVC6uzsv16nvb29CLNJLlXp9YgRIwo8EwAAAABA2aDwGgAAAAAkSSmWVCFbra2tKbfV1tYOasxnnnkm4WMr7h+xu+22m0455ZQBjbf33ntrypQp/caSpOXLlw9qjqWquro67fZ0eeXSzp07027PNE+UHmOMbr311rT7HH/88TrooIMKNCOUmpgT06ydfxhU4bWnOSxtrxx44XX865ftHtOsycsVM87gBkHW6q2pmqXD8laE7GlWp2bpMIqQi4ScAQAAAAAAAAAAkI2YE9Os5/5VTXv0XpvjFl9bCnWfvnUsyetU8wqvPV7x9RXn9xZeeyqj7v6S+3pvW3zhtadpd2nW52OKWSxSKRSvWHPaJksxS9o0Umqp6C3UrH8rkNU49W8FNO/RoGzjvn7TSClmUahZKuJzNpa0bYR7U/Oh5NwRdMcx5FwyyNkfyNkfyNl/WiqMzr8wqiUHxoY0zpIDYzr/wqhaBnkdKPKLnAEAAIDhp6qqKunzW7duLfBMUks1l912263AMwEAAAAAlIWxY4s9g0QUXgMAAAAoomCxJ1Dudu3alXJbTU3NoMbsW3otuYW7lmXpjDPOkG0PvKv8k5/8pFavXp1Qem2M0XvvvTeoOZaqTCeJW1paCjKPTMfhZHb5eeqpp/Tuu++m3WfOnDkFmg1KUcAOaOqOkB6amPrNPsdyFxunW1vclWEtjbEkI3fxTTLNYWnqVluBT3Bfi3xbYlZqoV5TrcJ5LUSuVVgL9ZqONZ+gELkIyBkAAAAAAAAAAADZCNgBzT58tpa/95ycrq6e5y1Zquk02tzd2WAkhWOJhdcex5Ie3S/5+JVRqT3oli16+9Z0JBZeS+655NlNlgIx0300FEJNh/TzRyxN+4qRY0ltFdLp71mqX2VJctyFQ+nuXW2M5DiqX2Xp9kMs3TfFzW77CHfcmg7yLAU1HdLND9qaPjemiO1eozF3uZ19zurN+fk9bN1wrLtz1HbHJefSMOScHXIuB+TsDxlzdrL5/myRcxloqTBqOD+mpvFGyye4f4frV3dfQ5nVz2Hub5dMcdR4ekyOJTWcH9GixQGKzUvIkHJ2yHlYcDJ8ze3+ug0AKFEU6wBIYfTo0dq+fXu/5zdv3lyE2SS3fPnyhI+99d577bVXkWYEAAAAAChZY8dKJXQjJ96XAwAAAFBslF4PUbrS6+rq6kGN+dxzzyWUU8c788wzBzXmgQcemPCxZVkyxqi5uXlQ45WqMWPGpN2+Y8eOgswj0//XTPNE6Zk/f37a7dXV1brooosKNBuUopgT08oRrartstRc0f9NP+8aaiNJVuri64pY6uJrr/DaGy9Z8XVtl7Sytksx4yhgUXydL0vMSjWah+TIqFIhScpLIXKtwqpUSI6MGs1DkkQhcgGRMwAAAAAAAAAAAAai/uB6KRZV4x9nyXFikqSYjLaMSNyvIyi1VEg1XUkGSaGlorfw2rOlShq3Swp0nzu2jTTvr5bq35IyNO8ix9ZVOzrxMqNY97UBlqT7DzS6+uSornvCzrx4yJHkOLr6FEf3H2hkyb0+IGZJJ17maPnvjT7RyjUAxdZSYTT3s44CMSnkSFURaeEnHR27TqpfbWXO2UhyHC2ZYrTwk45qO6VdISkQk+Z+NqZF9xoKF0vAkHPu/vtMzqWNnP0hY86Zfl5yJDkWOZe4lgqjhnpHTePdjx1LajwjJjnGzdlxpHQ/RjnuY8kUo8YznJ5rPZvGGzXUR7XoXpucSwA5Q1IW5eai9BoASl0sJlmWZPM+F4BekydP1rvvvpuwptoYo5deeqmIs+rV3NysN954I+ma78mTJxdhRgAAAACAkjVzZmkVXl94YbFnAAAAAABpL+1DFiKRSMptHR0dAx5vy5YtevvttyW5J2b7+sxnPjPgMSWprq4u6fMtLS2DGq9UjR07Nu32zs7OvBdfb9u2TV1d6VclUnpdXpqbm3Xvvfem3eeiiy4adNE9hoeAHdDCtw7VMZsqVNvnwve+108buQXWfY3qlGo73V/7ii+8TjVubZd0zEcBLXx2AoXXeRRfhOypVEi1Cuf0OF4RsscrRF5iVub0OEiOnAEAAAAAAAAAADAY9Z/8guYd/u+yjVt4vXmESXp+uK3CLbLORkuFu39fxpI2V7nFyL2F15wrLrR11Y6mf8VoW3e5uW16b4R9w3FGV5/iKOgo7SPgSFef4uiG49wXWqb3RtjbRkjTv2K0rpoi82JqqTBquNBR0wT3osvR7VJltLtw8Sy3+DaQRc5Lphg1nuUWLVZG3XFsSU0TpIYLHbUkudE6CiebnDP9fbYNOZe6nPx9JueSl03O2SDn0hafc7yh5ByPnEsDOQMAMMwY496wAgC67bvvvgkfe+XSr732mnbu3FmMKSV45pln5HR/3eq75vvwww8vwowAAAAAACUrQzdRQV14oXTPPcWeBQAAAABQej1Uo0aNSrmtra1twOM9/fTTCR/H3/134sSJ2muvvQY8pqSUZbzDrfR60qRJGffZuHFjXueQzfjZzBOl484771R7e3vafebMmVOg2aCU1dRN0KLH6hKKr/teHO/pW3w9qlOqjLm/r4wlFl8nK7z2eON7hdeLHhyhmhAF7PmSrAjZU6mQwgrk5DhhBRKKkD0UIhcGOQMAAAAAAAAAAGAo6i/+L/2g9aiUhdeebIqvUxVee7zi6x/8TRReF0HfwutkbjjO6B+fkMbvSv2492D1FF4nQ/F1cSUrWoz/q+0VLn40Kn3Ob4xXv6LF+HEoXCyurHOuzpDzBHIuZdnm/HGGnF8n55KWbc6vj08/zt8nkXMpS1WE7PFyXrZn+nwe3yd5EbKHnIsrVzk/NpmcAQAoKcZIsVixZwGgRBx99NE9v48vlXYcR4888kgxppTgtttuS7ntqKOOKuBMAAAAAAAlzUpzoWChjRlD4TUAAACAksFKpyGqqalJuW3Lli0DHu/JJ5/s95wxRpZl6dOf/vSAx/MEAsnLGbu6ugY9Zimqrq7WmDFj0u7zwQcf5HUO77//ftrt48eP18iRI/M6B+TWggUL0m4/6KCDdPzxxxdoNihphxyimoitRY/V6cgtIdkZrn33iq/jC689XvF1usJrj22kIzd2F153WdL4DKtxMCgx42iBeSVpEbIkdSiiTmW+8NJW5jerOxVThyJJtzkyWmBeUcywmDkfyBkAAAAAAAAAAABDta5lnb5buyxt4bUnXfF1psJrj7Gk754mCpELLJvCa88T+0qP7Jt82yP7SvdOzTwGxdfFkalo0eNY0j1TpZVjk29fOVa66ajUN0/3ULhYHAPJeXGGnOcdTc6lipz9YSA5Lzk4fc6/JueSNZCcF0yXXtojeT4v7WH040+Rc6nKZc7/82lyBgCg5HR2FnsGAErECSeckHLbz3/+8wLOpL/33ntPS5YskdVdXGbFFZjV1tbqyCOPLNbUAAAAAAClpJQKryVpEJ1nAAAAAJAvlF4PUW1tbcptb7/99oDHe/zxxxNOfMYbSul1R0dH0uerq6sHPWapmjx5ctrtg8llIN5555202zPND6XljTfe0Isvvph2nzlz5hRoNih5hx3W+3sjBYwy195mujY+w3ZL7nEUdyd7TchwhT8GJWDZWmjN1DT1///boYialfmiy6DsnkcmzepMWog8TRO00JqpgMWPcfmQi5xDCiisoEJKftOReOQMAAAAAAAAAAAwvKxrWadpN+ynbZXZvyZZ8XW2hdeebVXStK8YrRsZc88f88jrY93IWNaF155nJ/Uvvn5kX/f5bGv1eoqvybkgj5aQk1XRosdIeuiA/gWqK8e6z2cqWvT0FC6GnKL/P/DDI9c5Z3PDA3ImZx7kzKOAOVvS7dO8QuTex0t7GN0+jZxL9ZHrnPk5bBg9lOZR7Lnx4MGDB4/EBwBkacqUKdp///0luaXSxpieX59//nk9/fTTRZvbT37yE8ViMUmS6f7a5s3vs5/9rAKBzOuGAAAAAADDXKkVXvPeHAAAAIASQ4veEI0fPz7ltjfeeGNAY73zzjt68803JfWeAI134oknDmxycbZv3570+eFYen3IIYek3b569eq8Hj/T+Jnmh9Iyf/78tNtDoZAuu+yyAs0GJe/oo90L7U/boRW7RVXXaakilrr42jLutp1hqaPPNS4dAfd5q3u/pK+XVBGT6jqkFWONGj7XrpYKI33iE7n7nJCgxqrUIuuihELkgRRe291/GmxZgyq+nqYJWmRdpBprACvkMWBDyTmkQE+2QdmDKr4mZwAAAAAAAAAAgPK0rmWdpt10mLbZXQN+bXzx9UALrz3bqqRpV0rrRlLQls/HupGOpl+pARVee56dJD0yWZJxf3120iByHiFNJ+e8P9yiRZN10aLHWN0FqmPcnFeOGVhxqsctXDQULpIzD3LmQc48cpGzvEJk94OX9nA/NgMbhpzJmQcPHjx48OAxkEcmFMUCiHPRRRep75pqr/j6y1/+slpbWws+pwcffFC33HKLrBTlZf/0T/9U4BkBAAAAAEoOhdcAAAAAkBGl10O09957q6amRpL6nbxcunTpgMZavHhxwsfx440bN05Tp04d5CylDRs2JHzsnQAeNWrUoMcsVUcccUTa7cuXL8/r8V955ZW026dPn57X4yN3urq69Mc//jHtPp/73OfSlt/DX1rGVKvhC1LTGLe81paVsvjaK7z2xBdfe4XXPfuqf/F1fOG1V6TcNM5Rw0yppTqUy08LfcQXIg+m8Noz0OJripALazA5xxdeewZafE3OAAAAAAAAAAAA5akr2qXpv5uubR3bBz1GW4W0aeTgCq8926rcQuQumwUs+dBlGx05yMJrz7N7S7841v11sLaNkI4k57yJWUazLpCadh/c640lPXSgtPhg99eBFqd6mnaXZl3gzge5R87+QM7+QM7+MOSc5RYg/+7IwRUhe8g5v8gZAIBhLr4Qu9QKgQAU1Ve+8hUFg0FJvWXXnnfffVdz584t6Hw++OADXX755T0fG2MS1nvvu+++Oueccwo6JwAAAABAiSm197covAYAAABQoii9zoHDDz884SSqd1L1ueee61c2nc78+fP7FWd7J0NPPvnkIc1xzZo1/Z6zLEt77LHHkMYtRZlKr1999VXFYrG8HDsajaqpqSntPpRel4/7779fW7ZsSbvPnDlzCjQblLqYE9OsxbPUtFsk4Xlbluo63IJqT9/Ca8/OsNQcTiy87nmNEouvK2JSXbv6FSk3jYtplrlHMeMM/pNBRjVWpS7VNO1SJOO+IxXql5Mn2+LrXYroUk2jCLnABpLzKFWkzDLb4mtyBgAAAAAAAAAAKF8BO6DacO2Qx4nlYC1MbZcUYA1LXlQ4lq54dejj7BhCabbnilfd+SD3AsbS7FeloXSKG0t6d7fBF6dK7vFnv+rOB7lHzv5Azv5Azv6Qk5wlvTF+8EXIEjnnGzkDAAAA/jRp0iRdfPHFCeu0vbXVxhjdddddmjVrliKRzOt7huqDDz7Q6aefru3bt/fMo++cvvOd7+R9HgAAAACAEkbhNQAAAABkLVjsCQwH06dP19NPPy0p8Y690WhU119/vX7xi19kHOPBBx/U22+/3e8uxJ5TTz11SHNcsWJFv0JtSdpvv/2GNG4pmjFjhiorK9XR0ZF0e2trq15++WUdffTROT/2Cy+8oF27dqXcXllZqSOPPDLnx0V+zJ8/P+32PffcU2eddVaBZoNSF7ADmn34bC3/aLmcwE4prlzftmyNiDjqDKQuvPZ0penFtSTJuAtrRkQku+/XdcuSHQhqtnWEAhb3tcinJWalrtajqtMI7VC7IkpeMl6rsAKy1anUN1uwZalKQbWmKFYOyVadRuhqPaoqE1K9NTUnnwMyG0jOIQUUUVfKsYKyNUJB7UyxDzkDAAAAAAAA/uA4jt555x2tWrVKH374oTZt2qTm5mZ1dnaqq6sr6bnifLAsK+O5MADAwATsgK4fd4ku+/hatVYUbx7VXdL1j0gB2elPTmPQrnvCkuTohuOLN4d//Yd03RNknE/1qy1JRo1nGxWjW9w20ry/Wu48yDlvyNkfyNkfyNkfyNkfyBkpWUqfiaXSK5kAAD9Lds4r/us0RTwA+rj22mu1ePFitbe396yzji++/tOf/qQNGzZo/vz52nffffMyh/vuu09z587V1q1bE9Zje3OwLEtTpkzRlVdemZfjAwAAAADKQKmdi+B9NgAAAAAljtLrHPj85z+vX/3qVwnPeScxf/Ob3+i8887TZz7zmZSvb2tr03e+851+J0E9gUBA55577qDnt2HDBn388ccJJ1Y9+++//6DHLVWVlZU64YQT9Pjjj6fc59FHH81L6fVjjz2WdvunP/1pVVZW5vy4yL1169bpkUceSbvPFVdcoUAgTUMxfKf+4HpJUuN9X5GzfVvP8x0Bo5aKzIXX2fCKr1vCktVlVBntHdEOV2qe/VnKcvNsiVmpRvOQHBnZslIWItcqrEqFFElTeO0JK6iAbDWrM+F5rwjZliVHRo3mIUki4wIYaM6xFIXY8cIKypZFzgAAAAAAAIDPvP/++7rnnnu0dOlSLVu2TG1tbUWdj3fOmNJrAMi9+ntW6PaV0mX1KkrxdXWXdPsSqX6VpCA3Ss6n6560JSumG44r/KKhf33O0nVPBiQizrv6tyXZjhrPdApauGgbad5SW/Vv2+RcAOTsD+TsD+TsD+TsD+SMpDJdiG1LskusaAIA/MzJcH19LPM6CwD+svfee+v73/++/v3f/z1hDXR88fVTTz2lqVOn6pvf/Kb+5V/+RRMmTMjJsZ966in9+Mc/1mOPPZZwo+q+67Ety9KNN94o2+YfDAAAAADgSxReAwAAAMCAUXqdAyeffLL23ntvrV27NqFY2rIsRaNR1dfX63e/+50aGhr6vXbTpk26+OKL9c477/S81uONc8YZZ2j33Xcf9PyeeeaZlNuGY+m1JJ1++ulpS68XL16s//iP/8j5ce+55560288444ycHxP58Yc//EFOmgusLMvS7NmzCzgjlIue4us/fVFOe7s6AkbNFe7X9ly9femN01whSW7xtR0MaV7oPEpy8yy+CNmTrBDZK0IeCG9/rxA5vgjZQyFyYZAzAAAAAAAAgFx46qmn9JOf/CThRquGi4sBYHi7/37VR93i6UIXXycUXkuUxhTAdY9JMtINxxfumP/6D+m6xyVlcfNl5Eb9SkmO1Hi2ClK4aBtp3l+l+lVG5Fw45OwP5OwP5OwP5OwP5Ix+nAzvrcYkxUqsbAIAkMg7T2ZZmUuxAfjSv/3bv+mJJ57Qo48+mrDeOr74uqurSz/72c/0i1/8QieeeKJmzpypI488UlOnZrf+xnEcrV27Vk1NTXrmmWf05z//We+++27Ccbzfe7znv/3tb+uUU07J8WcNAAAAACgLFF4DAAAAwKBQep0jX/ziF/WjH/2o3wlNy7LU0tKiSy65RD/60Y907rnnatKkSYpGo3r11Vd17733qqWlJeE1fQ21WPfRRx9NuW369OlDGrtUzZw5U9/97ndTbn/llVe0evVqTZkyJWfHfOONN/T666+n3G5ZlmbOnJmz4yF/jDG69dZb0+5z0kknab/99ivQjFBu6g+ulz7/O3353ivUHIzm9VjNFZIlS7cEzqUcN89ixtEC80pCEbLHK0Terl0aqYqURciWpNGq1HZ1JBmltxC5TV39ipA9jowWmFd0ng5SwLKH8ikhiWxy3qF2VSmUNueJqtF6taTNeZci5AwAAAAAAAAMQ5s2bdJVV12lP//5z5ISzwNbJXDBM8XbAJBHUff8cP0q6bcPSJddULhytt8+EFd4jYK57nFLkilI8bVbeF38nyX8qH6Vm3O+Cxd7ixbJuRjI2R/I2R/I2R/I2R/IGQCAYYpzVQBSsCxLd955p4499li9++67SYuvvd/HYjE9+eSTevLJJ3teP3LkyJRjT5o0SR0dHdq+fbucuOL9ZOfz49eHe7+ecsop+slPfpKbTxQAAAAAUF5K4PrvBLy/BgAAAKCMUHqdI9/5znf0+9//Xps3b044kSqp5+MVK1Zo5cqVCa+LP/nZ9/eWZenQQw/VBRdcMKS5PfjggwknVz0TJkzQPvvsM6SxS9V+++2nY489Vs8//3zKfebNm6cbb7wxZ8f89a9/nXb78ccfP2z/fw83Tz75pNasWZN2nzlz5hRoNihbI6qk6mqpc4eStt7mUkWFFEhevovcCVi2FmqmGsxdatLGpPtYScqLe7dJB2o3jdNIbVab3tK2lH800o0zTRO00JpJEXKeZMrZlqXRGpEyI0vSpzRJkzVa72m7ntHalMXXYQVTjkPOAAAAAAAAQHn6xz/+oQsvvFCbNm3qtxDWU8zS6VIo3QYAP2gJSz87Pv+nij1G7vHOfVuq6fSeZGFLoVz3mCQj3XBC/o7xr89K1z0uFe5PFfqqf1OSkRrPyU/hom2keQ955fXkXCzk7A/k7A/k7A/k7A/kjB5G6SMy4t/CAAAAw8Buu+2mv/3tbzrppJO0Zs2apMXXfcupPa2trQnPx/+6bt26pMeLP4eeqgD7yCOP1JIlSxQMsiQfAAAAAHyn1K695lwIAAAAgDJDi16O1NXV6frrr+93krTvQmZjTMLDO8GaamHzUO/8+/TTT2vjxo0Jc/GOe9xxxw1p7FI3e/bstNtvvfVWffTRRzk51rp16/R///d/afe54oorcnIs5N+CBQvSbq+trdWFF15YoNmgHC15c4ka/9qocMUI1YZrlaa/eMhqFVbYDqnRPKQlZmXmF2BIaqxKLbIu0jRNSHjekdEOtSsiR83qVIciCdvjC68laZxG6kDt1u+PRocialanInK0Q+1y+lydP00TtMi6SDVWZa4/NcRJlbMnm8JrSZqs0fqUJqX8EpCu8JqcAQAAAAAAgPLz5JNP6owzztDGjRv7nQuOf/Tl7VeIBwAg/1rC0smXS0275/VUcQJL7vFOvtw9PgrvusfdYupBS/OHpbfwGsVWv8otRLRzvHYssWgRxUbO/kDO/kDO/kDO/kDOAAAME8b0lvLEYsWdC4CSNnHiRP3973/XjBkzkhZdx6/bzvaceLpz6H3P5cc/f9JJJ+nxxx9XdXV1vj5dAAAAAECpKrVrrym8BgAAAFCGKL3OoS9+8Ys699xze06ievoWXCc7IerxFj1blqUrrrhCZ5111pDmdNttt6Xcdvzxxw9p7FL3xS9+UePHj0+5fdeuXfrud7+bk2NdffXV6ujoSLl9woQJ+uIXv5iTYyG/mpubde+996bd55JLLtGIESMKNCOUG6/w2jGOJKmyokq1lXW5fzPTkmqtSlXaFZLc0mWKrwujbyFyfOG1J7742paVUHjt6Vt87RVee/oWX1OEXFiZiq/76lt47clUfN0XOQMAAAAAAADl6d1339WFF16oXbt29Su7jkcRNQAMb/GF15JUqCUm3nEovi6uIRdfJ0HhdenJdeEiRYuliZz9gZz9gZz9gZz9gZwBABhGKOcBkIU99thDf//73/WlL32pX8m1pH43n052A+pUUr2u77n+q666SkuXLlVNTU1uPzkAAAAAQOkrtWu8eU8NAAAAQJkKFnsCw82dd96ps88+W3//+9/7lVpnOmkav6D52GOP1W9/+9shzaWlpUV33313yoXSp5122pDGL3WVlZX61re+pf/4j/9Iuc/tt9+u888/X/X19YM+zl133aU77rgj7T7f/va3FQ4PbUXh+++/r8mTJ6fd5wc/+IGuueaaIR3H7+688061t7en3WfOnDkFmg3KTd/Ca09laIRkWWru2OG+kTjU9xItqdaEVamAFHcsR1KjHpQ621UfO2CIB0E6NZIW6WxdWPln/T2wPqHw2tOsTllG+m7n0Xo4uEZStN8+4xSWrDqttXdqpxXpt90rvv50bKIWdZytGnVJ6sr9J4SkvJwbKh9Qk7055X62LP1n57F63d6sZPlM1kjJ3lNNgc1Skj8rnmnOOHIuebukwK70u8RaRH7ljpz9oS2LnHdKcTekQDkiZ39ozfLrdkVBZoN86ZLs1vS7OFXiHo/ljpz9oTOLnFtEzmWuNUPGwDA1Z84cbd++PemNjyX1u2lyvFAopFGjRqm6upoSbAAoYzEnplMvSyy8NgX6sm4s94CW3OOfepn0/HwpUKgJoMd1T0j3HGL0ft3Qx9pnh3TdE5ayvsMuCqZ+tXTfQUaP7jf0sU5dI9WvJudSRM7+QM7+QM7+QM7+QM4+Z5n0eVkqvQIKAPAzSngA5EA4HNb8+fP1hS98QV/72tf0/vvv97u5dPz593RruFNt63uO3hijvfbaSzfeeKPOPffcIX4GAAAAAICyVGrnG3ivDQAAAEAZo/Q6x6qqqvToo4/qG9/4hm655RZJ/U96puKdNP3CF76gW2+9VaFQaEhzWbBggVpbW3vuLBw/j4kTJ2ratGlDGr8cfPvb39Zvf/tbffjhhyn3ufzyyzVx4kQdffTRAx7/+eefz1iAvPfee+tb3/rWgMdGccyfPz/t9mnTpunII48s0GxQTmJOTAteXdCv8NpTGaxUR7BSnbHO7uLr5OXXFTGpK5DiIJb7n7CxVWkCSjaAI6MF1qs6r3WCApQD5ZfVJYViUiDdG8RG6uiUKmOpd7GdDD1ORorFpLY2yfQvxkZ+1Uha1HaKGuoeVVNwa7/ttizNazlBh3aO1uvVG1KOM1lVqo8coWtrlstJ8nd3WnSMFu04RTUmIomcS1e7FM5QjNq5S8lK7lFOyNkXrF1SRaacW0VJbpkjZ3+wd0mhTDm3iZsVlDmrSwqkv0mZoq2iJLfMkbM/kLM/RPn3Evxn8eLFevrppzMWXhtjNHbsWM2cOVPHHnusDjvsMB100EGqrKws+JwBAPlh4n4tdN90fPE1S1yK5+pTc1N4LUnv17njXfd4iS2igpYcZPT4vrkZ6/F93fHqV5FzqSFnfyBnfyBnfyBnfyBnAACGESf52hsASOass87SW2+9pZtvvlk//elP9cEHH0hSvwLseMlKrjPtO3bsWH3729/Wd77zHc7jAwAAAIBfjRlT7BkkovAaAAAAQJmjNSAPKioq9Pvf/15PPPGEPvWpT8kYk/Dw9H3+kEMO0Z/+9CctWrRIVVVVQ5pDNBrVr371q56TsPEnYy3L0mc/+9khjV8uqqqq9POf/zztPjt37tQZZ5yhBx98cEBj//nPf9aZZ56p1tbWtPv97Gc/04gRIwY0Norj9ddf10svvZR2n0wl5/CvgB3QwgsWatruyW8o0BHtcAuvJfeufrYt2ZaM5S4+NpJGRqTqLvfXnkXQPQ/vN1Kn5agjRdHmtOgYLWw+lcLrPGuxutRQ96hWBLdrtBNWSP0veqo1FQqbgG6oadJmuyPpOJvtDr1V0awKY6vW9C9bDMnSaCesFcHtaqh7VC0WRX3FUGMqtGjH6ZoWTTxB4RZef0r1nZOzGufMzr00r+VTsvv8eXELr09XTZI/AwAAAAAAAABK309/+tOe38efD/YW2BpjtO++++ree+/VRx99pJtuukmXXXaZDj/8cBbKAsAwErADeuJ26ZMbC1947TGWe/wnbpcCxZqEj119qtENx+d2zBuOd8dF6VhykFHj2ZKTo79ijiU1nu2Oi9JBzv5Azv5Azv5Azv5AzgAADCPemhoAGIBgMKivfvWrWrNmjf7617/q4osvVm1tbcr12975+viHJ37/QCCgU089VQsWLNCHH36o733ve5zHBwAAAAC/GjtW2rat2LPoReE1AAAAgGEgWOwJDGcnn3yynn76ab399tt66KGH9MILL2jNmjXavn27JGnMmDEaN26cjj76aJ166qk65phjcnbs2267reduxcl87nOfy9mxSt3MmTN1ySWX6I477ki5T3Nzs8477zz90z/9k77//e/roIMOSrnvypUr9cMf/lCLFi3KeOxZs2bpwgsvHNS8i621tVV/+tOfBvy6t99+O+32V155RbfccsuAxhw1apQaGhoGPJeBmj9/ftrt4XBYs2bNyvs8UL5qwjVaNHORGu5pUNPHTT3Pd0Q71NzZ3G//nmJrSbZlqT1sqT3kSHKv4XO697OSFCo32xHJkSrjvpVTnFsYXuF1U3CrJDef0U5Y2+1OReS+aVxrKlRpApLcHN+qaJa6pHFO70VPXuG19zazu3+FmruLrb3Cay//puBWNdQ9SsZF4hVfe9kPtPDaU985WWqRGmuekSPD31sAAAAAAACgzL3zzjt64YUXesqtPfEfNzY26vrrr1dFBe8DAoAfjN8lBR0pWoTOlqDjHl8SC14K7OpTNbTC6zRx3XC8JGN03eNDGB85seQg5bRo0eMVLsoY1a/K7dgYOHL2B3L2B3L2B3L2B3KGpO4LrzNt59/CAFDyvNLZQKC48wBQtizL0plnnqkzzzxTjuPo+eef17Jly7R8+XKtWrVKH374oTZt2pRw/t4TDoe11157ad9999X06dN1zDHH6KSTTtLo0aOL8JkAAAAAAErKzJnS1q3FnkWvMu2rAgAAAIC+KL0ugAMOOEDf+ta3CnrMU089VcuXL0+5/ZBDDingbIrvd7/7nV5++WWtXr065T7GGN1xxx264447NH36dB1//PGaPHmyqqurtXPnTr333nt69tln1dTUlHKMeAcddJB++9vf5upTKLgtW7Zo7ty5OR/3gQce0AMPPDCg1+y99955L73u6urSwoUL0+5TX1+v3XbbLa/zQPnrW3ydqvA6nt1da2zirsS2jGRnuDi/2Y5IxlKlgpoWG6tF7eeoJhzOwWeBVFrUqYaRj6spsE2KKyO3ZGm0qdQ2q0MjTcgtI4/Lz0haXdGsSFQaayq1xerQmmDvnwu3/NzNUkZqsyIabSplWYl/CJpC29Sw2+Na1HaOakTWhVajSi1q/5xmjXxYs7sOUb21v9TdY+6oQh0ZfrKOVYYkVapeB0sdIS2oWKGF7Wfx97asOFIolH4XKyzx97PMkbM/ZJNzpSTKyMobOftDLMuv2+Rc3mwp0J5+l2Clux/KGDn7gyUFMnxNJufyF4lI8cW+yb5XWzluJgGK6OGHH+73nFd4bVmW/vmf/1k33HBDEWYGACi0mBPTrAukFeOlsbukLVWFLb4OOu5xV4yXZl0g3fcnKUDXV0Fcfap0wwm9Hxspya2tBy5+HG98iq+LZ8lBUuM5uS9a9DiWO74kCheLiJz9gZz9gZz9gZz9gZwBABhmjOF8MYCcsW1bxx9/vI4/PvGulLFYTG1tbWpvb1ckElE4HFZVVZVGjhxZpJkCAAAAAIptc8tmjasZl3zjzJnSvfdmNU5EUobVjEN34YXSPffk+ygAAAAAUBCUXg9T++yzT7GnUFKqq6u1dOlSffrTn9aHH36Ycf/ly5enLQ3PZNKkSVq6dKmqq6sHPQYK689//rO2bNmSdp85c+YUaDYod17x9cl/OFlNG1MX5Vtyy5Ktvk/G/XaEQtplRVOO0Wx1aR+N1qLALNWEK4c6daQRM45mmTvUpG1KVrxkZNw0LSthu5HTU2f+bqhZm9WhFnUmvtiy417j/qkwlt33T4ckqcnepll1j+s+6xIFLAqgCq1G0n3mcgXCif/vu5wu7czw2mhlrWS7N0+o19E6z8zoNw5KnBOWlOkOraMlm6/HZY2c/cGpUHY5U25e1sjZH5yQpG0ZdtpNsim9LmumU5KTYafRkhUoxGyQL+TsD6ZDUqbWvd263ytB2QoEpB07ej/uW3odDEo2GWP4eO655xI+9gqvJemwww7T9ddfX4xpAQCKIGAHNHt1lZbvsUuOJYVjhS29Dsfcc8y2kWYvp/C6UJIVXhv3rtdDKr5ONg7F18WT76JFD4WLxUXO/kDO/kDO/kDO/kDOAAAAAAYjEAiopqZGNTU1xZ4KAAAAAKAE3PXGXWq4t0F14Tpt/+72/jsMoPDa+zVvxddjxlB4DQAAAGBYYUU5fGPvvffWE088of322y+vx9l///31xBNPaNKkSXk9DnJrwYIFabfvs88+OvXUUws0GwwHj695XBvbNipk975V6Rinp+hCkqpCIzMucq1QQLXqLeEzCRXKUki2NqpNj2tNzuaO5AKWrdnWEbKTpObIaIfaFZGjZnWqo+ft6v76FV7H6VBEzepURI52qD0ha48tS7OtIyi8LqJc/b8nQwAAAAAA4EtVVcWeAZBTb731VtLnLcvSDTfcIMvKcyMPAKCk1H/+as17SNpZIbXlbVVLcm0h97jzHqKkrVBSFl53/zrY3vF049xwgntcFE6hihY9XuHikoMKczy4yNkfyNkfyNkfyNkfyBkAgGHIstyHJDmZbowOAAAAAAAADJ1XeC1JOzp3aPRPRifukOW13n0bRFI3igzRli35GhkAAAAAioKmPfjK/vvvrxdffFFnnnlmXsY/66yz9OKLL+a9WBu5tW7dOj3yyCNp9/nSl75EKQGytuTNJWr8a6OMMRo9YrSCdlCOcS/IMzIyxqg2XKtwICRlrL2WKhVSrcLua7ufc2QUlK3RGiEjqdE8pCVmZd4+J7jqramaZ52TUHwdX3jtyVR8nYxXeO1JVnxty9I86xzVW1OH8FkAAAAAAAAARVJRIY0enXk/oIysXbu25xxS/LmksWPHckNVAPCjww7T8xOl1gIXXntaQ9LzE4tzbL9JV3jd89wgiq+zGYfi68IpdNGih8LFwiJnfyBnfyBnfyBnfyBnAAAAAAAAAAAADFV84bUnofh6kIXXmZ4fNDPQq80AAAAAoPQFiz0BoNBGjx6thx9+WLfddpv+7d/+TZs2bRrymOPHj9f111+vyy67LAczRKH94Q9/kOM4Kbfbtq0rrriicBNCWfMKr72S6+xYyrzUNf2bpY6MGs1DUjCo+sAnB3BsDFS9DpdiQTVG7le0u5g6vvDa4xVY21ncY6RTUbUleUvbK76u0wgFZWte6DzyLVWRkORkyNoOSaGKwswH+eF0SU4g/T52hftA+SJnf3Aqssg5RM7ljpz9wQnxddsPjJFMhreyrQrJyvBnAaWNnP3BOFnmzD1by1ooJAXi/q4GAlJVlVRZKdXUZH1hKFAuWltbEz42xsiyLJ1xxhlFmhEAoJiubl2i609QNvc+zg9L7vElXfc3fq7Ol6tPcXTD8b0fJyuq7tmWzeUAAxjH23xD95+z654g53xZMsWo8WxT8KJFj1e4KMtS/Wr+HZUv5OwP5OwP5OwP5OwP5IyUbKO0l+TakmwyA4CSkWadliQpHC7MPAAAAAAAAOBLyQqvPTs6d6jNsjQyi3EyFVtHJIUGOrlkKLwGAAAAMExReg3fuvzyyzVz5kzddtttuvHGG/Xmm28OeIypU6fq61//uq644gpVVVXlYZbIN2OMbr311rT7nHbaaZo0aVKBZoRy1rfw2shoe/t2RZ2obMuWYxxZsmRZlpo7m1UVjP+6keIia9tWh+Wo2emQ1b2PkZEtS1E52q4OjQ6MlCVLjqRG5y/SbmNUXz0jv5+sz9Vrona1VGvO5luSFl57mtWpKiucemWy3MLyZIXXHrf4ukPzx31Z9TUnDGneyKN2R9oxIv0+u02QwnsWZj7Ij2iL1L4l/T4j95Bsfi4sa+TsD9HmLHKeKNmVhZkP8oOc/SE6Umrfln6fkXuQc7lz2qVIhsXJFRMpQy535OwPTrsUyVDIVjGR0utyV1kp7djR+3FFhTRhQtGmA+RbV1dX0uf32Wefwk4EAFB0XdEu/e69e9KdGiwIY0m/myFd+5Sjikw3bcWAddmO/nB478fpiqp79uneHr9bXXvi6UXTd4dU48QVX//hcOnaJ8k5H2KW0YLp6YsWjdJHZhlp3+3SmtHp/4ykG8expAXTjc57SwoU+4vLMETO/kDO/pBNzplkm3M65JxfOclZ0iGbpRXjsr4vST/knF/kDACAT1gWpdcAAAAAAADIm3SF15K08xqpQpkLqzMVXsfvN6TiawqvAQAAAAxjlF7D10aOHKmvfe1r+trXvqa33npLDz/8sF555RWtWLFC69ev186dO7Vr1y5VVVVp1KhR+sQnPqGpU6fqiCOO0Nlnn60DDjigYHPdZ599ZAr4JkWhj1cslmXp3XffLfY0MAzEnJgWvLqgX+F1xOl9G9PuU9azK9ImSd1l1kYyUmXMUofdW6LcFe3SLjsm79J7S+qpvpakiKLaHt2p0U5YlpEcSQveX6zzNjcrIBa25kuL1aU/jv2bqipsNcflk8wu0yFLkp1kWZsjo5iUISlLVY6tP659QOduaVWNqRja5JEf9lapbnP6fVYtk1RXiNkgX+wOKbwu/T7trXJPc6FskbM/2Luk8Ib0+5Bz+SNnf8gq513ibdAyZ0WkYHP6fSJrlOlfVyhx5OwPVpcUbEm/DzmXv7Y2aefO3o+DQam6Wqqrc8uvbfLF8DJq1Cg1N/f/HjZ+/PgizAYAUEwBO6CjnN31hFkzpIK2obKNdNQGitnypcKx9fLvHU2/Uto6YmClmF4Z6glrpTPWSI/sKz07KbvC654xui8vGNMuvfx7UXidJwFjaeFiqWGmUVOSe/g4ckvLqyJSZbT/dstI57wtTd0irRwrPXRA8j8rHUFpV8gtQU+W5LSN0sLFFn+f84Sc/YGc/SFTzplkm3Mm5JxfQ85Z0mVN0oyPpJf2kG6fNrhCZHLOL3IGAMAHLMt9AAAAAAAAAHmQqfB6xzVS/O3YUhVWZ1t4nWmcjHzQ7QQAAADA32h7AbodeOCBOvDAA4s9DQBlKmAHtPCChWq4p0Gvfvxqv8LrZIzccmzbGFmytFs0rJFdRm2BmLZVRGUsqc2KZlzbGpGj7VanRjshHd5Rp4Vrpyvg7MzwKgxWix1Rw6Rlago2q9KxJRNUcyB11kbuAjkZk1B87cgolsW1mrWxoCqNrabgVjXUPapFa49RjTOk+zwiH0Jt0siu9PvsapEiXKBb1uwOadSu9PvsbJYcylPLGjn7Q1Y575Qc3jYpa+TsD8EOycmQc3OzeBu0zNkRqaI1/T4dAVGSW+bI2R+yyjmorNveUJq6uqSOjt6Pg0Fp2zb3sXmzNHVq8eYG5EFdXV3S0msAgP8E7IDuXTVNn61Zq2f2SNKamQVLbumisQZXzCZJx6+V7r1L7k2S+dE6Lz7RFtDTf4hp2pVSJDCw107Z7BZeS+6vW0ZIq8YNbIygIz39B3ceZJw/NRFLi+41arjQSShc9ApyI7bU3L0CLr4oN744Ver99aEDEsfvCPa+fseI/kW50zZKi+61VROxyDmPyNkfyNkfUuWcSbY5Z0LOhTHonOUVIbvhzPhIkoxunzaw45NzYZAzUsqUhyVKVAGg1Nk2N0kGAAAAAABA3mQqvN52jVSV5Pm+hdUDLbxONU5GFF4DAAAA8AHaXgAAyJGacI1uPvdmTf/d9IyF1z2Mu4CqJhbUSBOUFNHIWECdUUctISfr6+UjlqOoZXTzuiMoRM6jnsLryt4Ck0oTkGJKW3wtyS247i6+zr7wOuSO362pslkNk5ZRfA0AAAAAAIDytHOntHZtsWcB5NQBBxyg999/X1afMpVNmzYVaUYAgKLatk2V1bYqHKlrMN0tJu7XQfR0VcSkylj3B5TH5E1LhdF3zrI0usNoS5XkZJlVRUzaUCOtHGtp6hZLK8cabagxqohJXVmWZ9tGGt0hfecsS4sWW6rpotAtn2qi0qIlthouiKlpvEkoyPXEF+Vaks5+2803nlugavTYvu5f8viCXMkdL74od9omS4uWBFQTtbj/VwGQsz+Qsz/0zTmTbHPOhJwLa8A5G+mLr9ua8XFigfGMj92Ndx7iZHVcci6sXOf8J3IeHiyTPhdbks2/kQCgZMRiyZ83hpsUAAAAAAAAIOcyFV5vuUaqTvN6r7B6sIXXfcfJiMJrAAAAAD5B6XUJ2Llzp1asWKEVK1Zo3bp1+uijj7R161Z1dHSos7NTtm2rsrJSI0eO1Pjx47XHHntov/320yGHHKIDDzxQNovUAKAktHS2aO4DcxWwAgrZoayLr21JbYGowiagkZLaAjG1BR3ZRjJZXssXMrYCxtLcT7xCIXKexGQ0a68XEgqvPQMpvnZklM3bz30Lrz1Nlc2atdcLuu+D4xUYzEp3AAAAAAAAoJi2bi32DICcOvTQQ/Xoo4/2e57SawDwn5gT06wDX9eKEVHt1mlrW4WTdZGxx1jK6lxiMhUxabd2acV4adYF0n33GgWyPeGMrMUso1nnu8V7ASON3SVtrsp8br8iJoVj7n4PHWC0aqzRmtHux+GYW2bdkeFKPqv7eAEjNY1353Hf3QFyzrOaLkuLFgd04YVR/X1SYkGupzns5jNzpaW9m5PnMXWLpQO3STceZRIKcj1eUe6n10qLFgcoNC+wgeR8wZuWJu9InfPBW6VfHU3OpYic/cHLOVNRrm2k+jct7Zsm56lbpd8dYdLe4GLaJouci2AgOc9usjVtY/J8ZnxkaXKzreuPdci5BOU05+22rj+enAEAKAmU+QAAAAAAACDHNrdsTlt4/fE1Uk0W4wy18Dp+nLSNL7xHBgAAAMBHKL0uAsdx9Nhjj+nBBx/Uk08+qZUrV8oM8h+jVVVVOv7443XKKafowgsv1P7775/j2QIAshFzYpq1eJaaPm6Sbdmqq6zTjo4daYuvrZ6He4H8tmCndslSR8Dp2V4Vs7Wr++NUQsZSXTQoW1JTeIdm7fmc7lt9BIXIORaQNPujPbR8n+1JFz5UGlsdlq1OO31e2XzHDzu2Kh076d62cecRaNuV1bxRIKE2KRpLv09buxThx++yFuySKjrT79PWLmV50wOUKHL2h2BnFjm3SQ5ft8saOftDsMPNOp12ci57dlRy2tPv0xaUe1splC1y9odANjmHJN7XKm/RqNTR0ftxsM/34a4uyUn/HhpQTk499VT9/Oc/T3jOGKMXX3yxSDMCABRLwA5o9qaJWj5phxxJlTFLXYHCLU6pjLo/SdtGmv2qKELOk4CxNLvJ1vIJMTmW+6/UkKO0BeeWpGDcj8DGkt7dLXGfoOPul+5PTMjp/VexV+xHzoWUKaFcHgfFQ87+QM7DXaaiXNtI8x4J6L1RRm0Vqcf59IeWPrnFVuMZsaTXi1GQW1zZ5hyzpI40P6ud+r6lSS0Bci5Rucr5tPctTWolZwAASoYxUizDtfcAAAAAAABAlsbVjFNduE47Onf02/bhNdJu/Z7NLwqvAQAAAKAXbS8F9OGHH+rXv/61br/9dm3ZskWSBl127Wlra9Njjz2mxx57TN/73vd0xBFH6Bvf+IYuueQShUJp/wkMAMihgB3Q7MNna/lHy+UYJ6vi66pgldojicXFHX0KriscWyFjqzkYTTpGyFiqiwS7F7Ya2bI0e8PuCnRRxJkP9RtHS9ED1bj/W3L6LH7rsJ2MhdfZ6rQddTix7uLrXrYszXvnQNVvHS2pKyfHQo7YEclkyL8rKkXIraw5XW5xVzoUd5U/cvYHJ0LOfkDO/kDO/hCISsEM/87t6hJlyGWOnP0hEJUC2eRMqURZi0S6c+zW91xYMMiFmhhWTj31VFVXV6utrU2SZFmWjDFqamrSxo0bNWHChCLPEABQSPU6WHp2nWafvEMtFYX9macl7Ba+LfizVL/akgpYuO039assydj6xlmOtlVKUdv9f5+sPM+SZBmpPSSFo4nl156oLXUG3P1kJa9htY273/ZKaUy7NG+p7eZckNJWf2upMGqod7RinNHoDjeDSJ+3J2o7pXBMuudgo7PfNpq6pf84K8dKj+3n7lfbKTWHE7eHHGl0h7RinFFDfUyLFtuULhbQQHJefLDR2W+RczkiZ3+p6ZQW3Wur4QJHTRN6v1/apvf76O8OT3/+KByV6lfZkrHVeKaT8L1+2karO1uJ78fFk03O9xzkpI/IkHOpI2f0MCZjzkQIAGWE0msAOeI4jlpaWtTZ2amurq4hr9keiEmTJhXsWAAAAACA9LZ/d7tG/2R0QvH1+9dIhb6Sm8JrAAAAAEhE6XUBbNq0Sf/xH/+h2267TbFYrN9JU8sa2sXs8eO9/PLLmj17tr73ve/p2muv1ezZs4c0NgAge/UH10uSGv/amLH4ujZcK9uoX+l1MpWOLUWD/Yqvewuv3e8jvYXI43L0GSEZ7/9vfPF1h+2kLCYfrOZgVIoGe4qvyRcAAAAAAADDQnV1sWcA5FRFRYUuv/xy/eY3v+l33nfx4sX66le/WqSZAQCK4pBDtGXTw2oucOG1pzksbRkhaYjXIiGzU9+zNKFV+nhk73N9i6+9wmtPZ1AyMSn+XtgxW+oKdH9gkhdf23EfRGxpQqt7fORfS4VJKFe0jPoV5dZ2SpXdlwsYS3roQEmWNHVLb0Yrxxo9dEBv6bm3v1eU6xXken9emia4x6UotzAGnLPS5xwi55JEzv5U0+UW2XrZ9xbkuqGPbbc0Ms09+kZ139fN298ryu0tyCXTUpAp52yRc2kjZwAAAADRaFTPPfec/vGPf+jVV1/V6tWrtXbtWu3YsaOgRdcey7IUjeZ2LRkAAAAAYGjii69XXCPtWeDjU3gNAAAAAP0N7Co/DNhvf/tbHXDAAVqwYIGi0aiMMbIsK+EhucXVg3lISjrWRx99pLlz52rGjBl68803i/b5A4Df1B9cr3lnz5NtdRcVdxdfh+zetydrw7WqDFa6H2R5nXylY6s22nuvCgqvi6t+6zjNe+dA2bLyUnjtaQ5G1WE75AsAAAAAAIDhYeRIqaqq2LMAcu5f/uVfFAz2vodvWZaMMfrxj3+sjo6OIs4MAFBoN+/5sa46qUXFWp5iLOmqc6WbD3cy74xB84pTP652C1LjeQXVfQuvPV0Bt+ha6lN4HccyvZcS2H3GqO2UPq6WGi5w1FKkcnW/6FuQ6/GKckNOYkGux1jSQwe4xbhSb0Gu6XN9SGXUfX3fglyPV5RLzvlFzv5Azv7mFeUe+ZE1qIJcT/1qW/OWuuNQkFt6yNkfyBkAAADwp2effVaXX365xo8fr5NPPlnf+973dNddd+nVV1/Vtm3b5DjOoNdnD/UBAAAAACg927+7XS9dIx1Q4ONSeA0AAAAAyQUz74LBaG1t1SWXXKK//OUvCeXUnlyd0Ow7Tt9jvPLKK5oxY4Z++ctfau7cuTk5JgAgvfqD6yVJjX9tlGOcnuLrHR07VBWq6i289lhSylXPliXZ7irXSgUkx9YuK6o6p0J2oLvw2kjzNh2p+uBe0oQ8fVLop14T9HxrRDfstiqvx2kORjV32/6qD36SfEtZKCxVfpx+nwljpEhtYeaD/LA7pJEZSu6D4ySnojDzQX6Qsz9kk7M9ThI5lzVy9ge7XRoZy7DPBPE2aJmzIlLFzvT7jKwT93gsc+TsD3ZECpHzsNfcLMXivj+HQlJNjVRR4T6AYWifffbRv/7rv+onP/lJwvnaDRs26Prrr9f3v//9Is4OAFAo7V3t+sZHt6jYddOOJX3jHOnSFTGNiCVpVMaQxCyjWef3Fqd6BanN4d59+hZV99UVkGxLctL80ye++NoTX8jaNMGdx3132wr0bV/FkPXNuS/LSLu1p369V5S7aqzRmtH9C3I9ldH+JbvxyDm/yNkfyBmSW5Sbi//39attnfeWIcMSRc7+QM4AAACAfzz77LP6f//v/2nZsmWSkq/Jjj8/X0gUXgMAAABACbMsHSkpUsBDUngNAAAAAKnR9pIH69ev19lnn60VK1bIGJOx7HqoJ1bjx4wv2PbGbW9v11VXXaW3335bP/3pT4d0LABAdpIVX4+uHJ36a773dN9vEwFbsnu/XVcqqLAqZNndhdeyNM86R/V7Tc3xZ4BMlpiVWmg2qFaValZnmj2zeRM69c8CtQpr4ZgNOnbs4aq3yLkUxIyjgNVnBbrzsaT307+wZr/uYs0046C0OW3KXLw2RbIrM+yDkkbO/uC0KnPOB0l2OMM+KGnk7A/OTkmZypumSDYFm2XNdErammGnCZJFkVdZI2d/MB2StmXYaXeJfy+Xt02bpJUrez+uqJCqq4s3H6BAfvCDH+j+++/Xm2++Kck9X2uM0Q9/+ENNmzZN5513XpFnCADItxEVI/TVGV/Tr5b9qthT0VdfEoXXeRIwlmY3WVq+u5HTfZo3WfF1JukKr5OJL7yW3GLt2U0WJX15kizngTKW9O5uQ5sHOecXOfsDOcOTq//3ZFjayNkfyBkAAAAY3iKRiP7lX/5FN910k4wxCWumUylkCXWxirYBAAAAAFmI+zdbSIUpvqbwGgAAAADSo/Q6xzZu3KjPfOYzeueddyT1nsDse9K074nNwZ5UjS+3jh+nb/m1MUY/+9nPFI1G9fOf/3xQxwL+f/buPD6q8u7///vMmh1iWF0AFVnEioIK1UpVXMEthYpLrf2hrVZvWttbrf3Wttra+7attVVua+/WYrE3Koqi1bqjqMW6AlFBUFEUZV+yL7Oc8/tjmGQmmTWZNef1fDzGMOdcc11X/CST5JxzvQ+A9HQPvs7URS2GugVeE4Scc0uttZpnPSlTlkr2HoZuUIdMWTLUVaPesGTJUqi+A+RVidwyZWme9aQkUe88a7TadZG1RHM1qU+1WGqt1QJrpRZptqoMgnMBAAAAAACAYuf1evX4449r6tSp2rlzp6TQudpgMKgLLrhAjz/+uE466aQ8zxIAkG2/OOkXuu/1v2iHWvM2h8Et0i9ecUUt4EFm1X7glAxD804N9in4OlWxAq/nP+tU7QeORPdXRh/FqnMuUefcoM72QJ0Rn5G4Job4nao/MKizLVBnezBEnQEAAPq5PXv26JxzztGKFStihl3nMtwaAAAAAFBkBg3qsSnbwdcEXgMAAABAcoReZ5DP59PMmTP10UcfpRR2Hd43duxYTZo0SRMnTtTEiRM1fPhwVVVVdT78fr8aGxs7Hx988IHq6upUV1enN998U7t37+7su/u4lmVFBV/ffvvtGjFihK6++ups/+8AAKhn8HWmEHidP5GB12FeueSQT+bewGrJ6lXwtdX5+lCNvRG/qhF8nX+NVrvmWA+qTtu0qg+1iPwammM9qMU6j+BrAAAAAAAAoB848MAD9c9//lNnnHFG1DnctrY2nXbaafrxj3+sG2+8UQ6HI88zBQBkQ9AMavrC6dqlVhmS8rFkxZC0q0yaflFAr/3NJadF2Fe21K4P/TzPdvB13MDr9fw+kQux6pwL1Dm3qLM9UGcAAAAAAIDC1tbWppkzZ+q1116TpLhrtCP3AQAAAAAgSZo9W9q1K+aubAVfJwy8njUrCyMCAAAAQHEi9DqDrrnmGq1cuTJp4LVlWTrooIN0wQUX6MILL9T48eMT9utyuVRaWqqhQ4dKkiZPnqwLLrhAkhQIBPTMM8/ovvvu02OPPabW1taokOvweJHbrr/+eh1//PGaPHlyRj9/AEBsmQ6+JvA6f2IFXluytEdt3baF/ptO8HVk4LUUCrneozZVq7SzH4Kv8ycy8FrqfS26fw3VaRvB1wAAAAAAAEA/ctRRR+mll17SGWecoU2bNnWepw0Gg/rVr36lxx57TNdcc43OP/98ud0JL3cGABQhy++TrFD4tIzcBl8bkoy9A+YjcNuO4gVft7ukDmff+/cGCbwuBLkOyqXO+UGd7YE6AwAAAAAAFK7vf//7eu2116ICrSPXaHcPuo4Vhg0AAAAAsKHZs6WHH07YJNPB10kDr5csyeBoAAAAAFDcCL3OkLffflt33nlnzMDryG2DBw/WL3/5S1122WVyOPp+IbvL5dLMmTM1c+ZMbdu2TT/+8Y+1cOHCznFjBV/7fD5dccUVevPNN/s8PgAgNbXja/Xo+kf13Ibn+tzXdB1E4HEeBC1TC6yVMQOv/TK7RVZ3BV93Z8TY2j3wOrzNLzNm8PUCa6XO1jg5DRbF5UL3wOuwyODrQ7RP0n6e0wbdYv0r6mtIIvgaAAAAAAAA6G8OPfRQrV69Wt/61rf0+OOPR92g+N1339W3vvUt/ehHP9LMmTN13HHH6dhjj9WIESNUUsLxQQAoZk6HUy8M+5FOeP8S1dUEQgHUOQq+jgy8nrhVeuHvDjmtHKR5okeAaqYCr6VQP+2uUPA1wan5laugXOqcX9TZHqgzAAAAAABA4Xn55Zd19913x1yfLanHdo/HozFjxujQQw/V6NGjVVlZqYqKCpWXl/cIxwYAAAAA9HNJAq+lzAZeh/uLGXxdU0PgNQAAAAB0Q+h1hlx77bWdwdLxAq/nzp2r2267TVVVVVmZw9ChQ7VgwQJdddVVuvDCC/Xhhx/GDL6WpJUrV+r+++/XBRdckJW5AACiLX1/qZZ9vCwjfS3Tx1pqrSX4OsechkOLNLsz/Lh74HWsxep717F39SFDDhkyZSkYFZ4d+7WKEXw9UUO1yJhN4HWOxAu8DgsHX1+rYxP284UadbNekkOx60bwNQAAAAAAAJB7Bx10UE7HC5+7tSxLW7du1YIFC7RgwYLO/V6vV9XV1fJ6vTmZy4YNG7I+DgDYTdWaj7T88RqdcNaunAVfdw+8Xr5QqvJLylDwMpILB5peNiOohgz/GG/whup795MEp+ZbtoNyCcgtDNTZHqgzAAAAAABAYfnpT3/a+e9467MNw9C5556r888/XzNnzlR5eXnO5wkAAAAAKDAp3Pgo04HXkf32CL7euTNLowEAAABA8SL0OgPeffddLV++PGbgdfhk6u9+9zv94Ac/yMl8Jk+erDfffFMzZ87UihUresxLCp3k/cMf/kDoNQDkwNL3l2reU/NkWmbUdiMQUEWHJVdQcpldC5ElyTKkgCE5nQHJ7ZScXSuSwyG7kgi+zrEqo0SLdZ5mWQ/oFX2aMPA6LLwvHHgtqfNjMMny9u7B18drpBYbhCLnSrLA6zBTlv5Lr+ggDdR+6nlzky/UqDptU4W8cSKvQwi+BgAAAAAAAHJr48aNMc+lZkrkAtzu27pvl6T29nZt2bIlK3OJNzcAQIatWaMqvyMq+DpXOgOvOxR98hlAxmQrKJeA3MJCne2BOgMAAAAAABSG9evX65VXXom7PluSjjrqKN155506+uij8zVNAAAAAEChyWPgdWT/ncHXWboeHQAAAACKHVdVZ8C9997bY1tk4PVNN92Us8DrsKqqKj399NM67LDDOucjdd3RWJLeeustvf/++zmdFwDYTY/Aa8uSmpqkbdvkrm9SmU/yBEMLngx1PRyW5DElpz8otbZKzc1SR0fngc5w8PVSa22+PjVISQOvMzOGcjAKuks18DrMkqU6bdMXaozaHg68TrWC4eDrRqs9zRkDAAAAAAAA6C3DMLLyiBWmbVlW5/ZsjZvsAQDIol27JKkz+Hpkg3JyPnFkfUTgNXJu6VhT804NyhuUBnRkruaWQv15g6FQ1qVjzaSvQfbVrndo/rNOOTJUaAJyCxN1tgfqDAAAAAAAkH+PP/54j22R67PPOOMMvfTSSwReAwAAAAC6FEDgddjbEoHXAAAAAJAAV1ZnwJNPPhm1ODjyhOoJJ5ygG264IS/zKi8v14MPPii32905r+6eeuqpXE8LAGyjR+B1c7O0bVvoo5nmYlTLkny+rvBrEXydD+Eg5DXaoRK5U1qsHP7pG5QlU12h5cE0ljpbkkrk1hrtIBA5B9INvA6zpKjg63QDr8MIvgYAAAAAAAD6h0QB0+Hw68gHAKAf8HctlVm2n08dLsmV5Zxilyl1uKRlB2Z3HMQWDrw29/7Y9wRC54j7+pPdUqgfTyD03DQIvi4ktesdmr4xMzcTmb7RICC3QFFne6DOAAAAAAAA+fWvf/0r6nnkefaDDjpIjzzyiEpLS3M9LQAAAABAoSqgwOsPJR11o1R9S3WORgQAAACA4sPV1X3U2Nio999/X5JiLkS+/fbbcz2lKOPGjdN3v/vduIukX3vttRzPCADsISrw2gxKO3ZITU2ZuUOfzye1tEimSfB1DgUtUxdZS1SnbWqXX03qkEOJD4h33xuUpYDMHoHXyQ6rO2SoSR1ql1912qaLrCUKWixmzobIOvdGOPj6TW3uVeB1GHUGAAAAAAAAcidWAHWmHoUyD4K1ASBH9t6Yfumods07rkGWYWhQa/aCr12mNKhVsgxp3gxp6bjsjIPYugdem5J2lYUCqi2j98HXlkKvN429/e3dTvB14Vg61tSyUZn53WrZKIuaFijqbA/UGQAAAAAAIL/Wr1/f44bSlmXJMAzdfvvt8nq9eZoZAAAAAKDgFFDg9WZJE24M/bu+o57gawAAAACIg9DrPlq3bl3Uc8MwOk+onnTSSTrssMPyNLMu3//+92NutyyrM7AbAJA5UYHXfr+0fYcUCGR2ENMMBV8HgwRf54jTcGiuMUkdCqhBHZ3b4wVfG5KMGPtiLZMzYrbs2X+DOtShgOYak+Q0+DUuG8J1ThZonoglabtaer2IXQrVnToDAAAAAAAAuWEYhm0eAIAsq6npDLwOByEbkrzB7AznDXbdYNck+Dqn4gVeByJO76UVfG11fbAifmQHHARfF5rute8ralqYqLM9UGcAAAAAAID827JlS+e/I89pDx48WDNmzMjHlAAAAAAAhaiAAq+3SRp1Y/Q2gq8BAAAAIDZS9Poo8oRqd7W1tTmcSXyjRo3SEUcc0RnGLXWd/E00fwBA+noEXu/cKVl9ib5NorWV4OsC0D0gOV7gdSKxgq/7EryM3qs1DtV8Y0be/v87ZGi+MUO1xqF5GR8AAAAAAACwE8uybPcAAGTP0kMdUYHXktTokVrc2RmvxR3qP4zg69xIJfA6LJ3g6+6B12EEXxeOTAfkhlHTwkKd7YE6AwAAAAAAFIaWlpao5+F10KeffnqeZgQAAAAAKDgFFHi9W9IBN8beR/A1AAAAAPTkyvcEil1TU1PcfVOmTMnhTBKbOnWqVq9e3WN7c3Nz7icDAP1UVOC1GZR27crNwK2tUnm5TIdD86wnJYmw3CwIWqYWWCvllUsD5FWDOqL2O2TIlJU08NpQ/EXNxt69lmIHXg+QV165tMBaqbM1Tk6D+5dkS/h7aJ71pMyUl6H3HYHXAAAAAAAAQO5ccskl+Z4CAKAfCZpBLaj6SGZENkM2A6/DWvaGXlf5Qh9NQ1pwpKWzN1hyxkpQRp8EDUsLJpopBV6HhcsQWQ2nKQUjXmN1b9BNOPi6plVyaG+dJ5o6+wODOudItgJyw8JBuZJUu55rAfKFOtsDdQYAAAAAACgcpaWlPYKvJWnUqFG5nwwAAAAAoPAUUOB1o6RhNyZuU99Rrx2NOzS4anAupgQAAAAABY/Q6z5yOOJfkD569OgcziSxgw8+OOb2RPMHAKQuaAa1YPWCUOC1JO3aLVnpBeU6LGn6x9Kyg5T+oqq2tlDwtSwCkbPEaTi0SLM1x3pQddomSTGDrxP2IaMzHDsYJ0jZiBOZPUBelcitiRqqRcZs6psDuQ6+JvAaAAAAAAAAyK177rkn31NAgero6NAHH3ygzz//XE1NTWptbVVZWZkqKyu1//77a+zYsfJ4PPmeJoAC43Q4taj2/zTnlxNVV+NXo8dSiys3N1eNDL6euFVa9KiTIOQscVqGFj3q1JyvBbVqiJU08DqSpVCutTcguU3J75A6XMkDr8Mig6+P3G5Q5xzKdkBuGEG5+UWd7YE6AwAAAAAAFJYBAwbEDL0eOnRoHmYDAAAAACgoKQReS5JbmQm+TtRPs6RBNybvY/GsxQReAwAAAEAEQq/7qLKyslf7ci3eXAppjgBQzJwOpxZ9bZHmLJmjuo9WSIFAWq93WNIdT0rnrpMeHSd9b0aawdemKXV0aKJ3BIHIWVRllGixzksYfB1POPBa6grHjhd83V1k4PVi4zxVGSW9mD16I1fB1wReAwAAAAAAAEB+vfbaa3r00Uf11FNPac2aNQoGg3HbOp1OTZgwQTNmzNA555yjqVOn5nCm+dXY2Kj33ntPa9as0WeffabPPvtMmzZt0ubNm9Xc3KzW1la1tLQoGAzK6/WqvLxcQ4YM0fDhwzV27FgddthhOu6443TYYYfJSHExQiFoamrSSy+9pNdee03r16/XBx98oJ07d3aGonu9XlVUVKiiokIHHHCADjroIB188ME64ogjNGXKFA0aNCjfnwJypGrUWC1uPl1HDHxCW1xmTsdu8UhDWqTFS6Qqk/PF2VTlM/SXJxw69IpgyoHXYa5gKPBaCn0MBiW/M/XXBxxSq0f6yxMOVfmK5320mOUqIDeMoNz8oM72QJ0BAAAAAAAKz7Bhw/TFF1/0OHfY1taWpxkBAAAAAApCmteY9jX42p2gnzZJ+9yYvI/FsxbrvMPO68MsAAAAAKD/IfS6j2pqauLu8/l8KikpjFBKn88X9dyyQqGNLKwEgMyp8lZp8Yx7NOfq/VWXxo33HJZ0+1PSOesly+j6+P0z0gu+nvi5X4tH1qrKUxg/e/qrdIOvDYUCjcNB12GpBl8TeJ1/2Q6+JvAaAAAAAAAAAPLngQce0G9/+1utXLky5dcEg0G98847euedd3TLLbdo8uTJuvbaazVnzpwszjT3Wltb9frrr2vFihV6/fXX9e677+rTTz9N6/Wtra3asWOH1qxZo+eff75z3+DBg1VbW6tvfOMbOv7447Mx/T5rb2/Xww8/rL/+9a965ZVXFEhw09vw57p9+3Z9/PHHeumll6L2jx49WieccIJmzpypk08+WRUVFdmePvLoVye6tHFL/OD8bNo4UPrVNEO/Xp6X4W2j0WPp7DlBtbiTt+0u4JT8Vijw2u8IPU9Xi1s6e05Qy/9uEHydZbkOyA0jKDe3qLM9UGcAAAAAAIDCNHHiRL399ts9tm/bti0PswEAAAAAFIQ0A6/Deht83f0ysMh+OiQNuDF5HwReAwAAAEBshF730fjx4+Pu2759u0aMGJHD2cS3Y8eOHtsMw9C4cePyMBsA6L+qfv9HLX7Q1JzZUt3Q5O3DgdfnroveHn6eavD1xK3S4iWWqr78pnTSSelPHGlJJ/i6TB51KHYIQjj4Ol6MMoHXhSNbwdcEXgMAAAAAAABAfqxbt06XX365Xn755T739fbbb+v888/Xn/70J/3pT3/S2LFjMzDD/Hn11Vd19dVXa9WqVQmDnvtix44d+vOf/6w///nPmjRpkm666SadeeaZWRkrXe3t7Zo/f75uueUW7d69OyN9fvTRR/roo4909913y+PxaMGCBbrooosy0jcKy4+e+5Fu3b5UymMO8a1ftiTLr18vIww5G4KGpekXSnVDQs8dVuo3sw4363BJAVMKOqK3p3IW0rG3Ud0QafqFAb32V8lpUetsWDrO0rxT07tZeSZ1BuUGg6pdR42zhTrbA3VGXKYlmQn2BxT6oY3iFrAS/35OnfuHZHUOijr3B0Er8R9OAUkBftYCQEELBkOBRQ5uCgSgy+TJk7VgwYIe2z///PM8zAYAAAAAkHe9DLwOSzf4unvgdeT2FkmVNybvg8BrAAAAAIiPKwT6qLq6Wvvtt5+kUIh0pPfeey8fU4op3lwmTpyY45kAQD+3YIGqfIYWLzE0MckN5eMFXoedu06646muRavxhAKvpSqfIa1c2bt5I21VRokWG+dpooaqRG4NkLdHmwHyyitnwn4cMlQe41A4gdeFp9Y4VPONGZ1h5X1F4DUAAAAAAAAA5Mcjjzyio48+OiOB15GWL1+uo446SkuXLs1ov7n28ccf680338xa4HV3K1eu1FlnnaXTTjst74vX//nPf2rMmDG67rrrMhZ43Z3P54t543IUP1/Ap7/V/U2WZakvGcTOPtx/1TJC+V9/O0LyJTvRjF7r/n822f9qQynkoCfJ6Is1DhXOnqBhacERfQvINSzp4N2hj71lGtKCI0LzQeZRZ3ugzgAAAABQYCxLMrkZBYAuZ511VtTabMMwZFmWXnjhhTzOCgAAAACQF30MvA6LF2Sdbrtyy9JA78CEbQi8BgAAAIDECL3OgNNOO02W1fNC9Oeeey4Ps+kpGAzqxRdf7BHKLYXmDgDIkJUrpS1bJKkr+Hpr7KYOKxRoHS/wOqx2nTQ/QfB1VOC1JDU1SZs39/ITQLq6B19HBlyHQ6tT4ZUrKjTbKyeB1wWq1jhU03VQRvqaroMIvAYAAAAAAACAHLvzzjs1e/ZsNTc3Z6X/5uZmzZo1S3/84x+z0n9/9uyzz+rwww/XsmXLcj52e3u7rrrqKp155pnatGlTzsdH/+BxebT8kuVyGI5epxGXBKQhLaGPveWwpOX3SJ6+pHsiLqdl6IV71eNagHjn9A31DEn1BqTSQOhjVNsEwdfd+5+4VXrh3tB8kHlOy9CiR3rWOVWGJc34QPra+6GPvc24nbhVWvQIdc4W6mwP1BkAAAAACpBlScFgvmcBoEDsv//+OvbYY3us0d6+fbveeOONPM0KAAAAAJBzGQq8DkuW9JE0CWTv36l7rt8TN/iawGsAAAAASI7Q6ww499xzo56H7yR8//33y+/352dSER599FHV19f32D5s2DBNmTIl9xMCgP7qoYeinoaCr2Mvdp3/lKHa9akddK1dZ8QMvu4ReB22Zk26M0cfhIOvh6lCHQpdeJlO4HVYidydwdcdCmqYKgi8LkBLrbVapo8z0tcyfayl1tqM9AUAAAAAAAAASG7hwoWaN29ezJtaZ5JlWfqP//gP3XvvvVkdpz/as2ePzjjjDC1ZsiRnY9bX1+vUU08lqBx9FjSDunjpxb1+jzEk+ZxSfUnoY2+X8FiGdPHXpGBvUzmRVJXP0PKFyYOv4wVeu83Qv91masHXsa4VWL4wxrUCyKh413wkEw7IPXRn6PmhO3sXlBv3mhBkFHW2B+oMAAAAAAXI58v3DAAUkP/8z/+Muf2OO+7I8UwAAAAAAHkxaFBWuo2X+JFq4HVYrOBrAq8BAAAAIDWufE+gP5gxY4YOPvhgffxxdADijh07dNddd+l73/tenmYWWkx7880399hmGIauuuqqPM0KAPqp11+Pfm5ZquoILVqaM1uqGxYdeG0p9RVQtesMSZbmnSGZRsRiqA5JsqLvWvj555n4bJCGZfpYW9UstxwqkzvtwOuw8Ota5ddWNWuZPlatDs3kVNEHS621mmc9KTON791ETFmaZz0pSao1qDMAAAAAAAAAZNMbb7yhb3/72ymF0R577LG68MILdeyxx2rUqFGqrKxUU1OTPv74Y7366qtatGiRXu9+Xqgby7L07W9/W+PHj9fRRx+dqU+joAwYMEBjxozR2LFjNXToUFVWVqqqqkplZWVqampSY2OjduzYobq6Or3zzjtqaWlJqV+/36+LLrpIgwYN0gknnJDVz2H79u2aPn263nvvvZRfM2bMGE2cOFGjR49WTU2NysvL1d7ervr6etXX12vDhg1avXq1PuecnS0ZMiTLlMMKnddN/XU9AzQNK7QjnTNT4XBkQwq9MMsh/3ZW1REKnj7hktC1AGHh2seqaUlAcpnR29ymZASkDmfXtsjaxw28Dl8rgKzqfs1HMk5TOu896YhuwbpfbZYGtEuPpHhauMc1Icgq6mwP1BkxWUpcFn6f6j+osz0kKyN1Ln68bwNA8Qu/TxsGodcAopx77rmaPHmyVq5cKUkyDEOWZen+++/X97///X57vhUAAAAAIGn2bGnXrqx175bk7/Y8oVmzYm7ec/0eVd9SrfqOegKvAQAAACANhF5ngMPh0I9+9CN95zvfkbE3dDR8UvVnP/uZzjzzTB100EF5mdtvfvMb1dXVdc4rrLq6mtBrAMi0jz6Kfr73grzwoqmLvibNXR0KvO6NcPD1giOkRY+EF0PFsHt3r/pH74SDkCWpWqWhhex9UCK3vHt/RSMQuXBkOvA6jOBrAAAAAAAAoPiddNJJMbdfe+21OuOMM3I8m2hPPvmkbr311h7bDcPQsmXL8jCj/GhsbNT5558vv9+fsN0hhxyiu+66S9OnT++xr7q6WpMnT9bkyZM1b948Pfvss7ryyiu1YcOGuP35fD7NmTNHq1evVlVVVZ8/j3zyeDw66qij9JWvfEXHH3+8jj76aA0dOjTl15umqRdffFH33nuvHnzwQbW3tyds7/P5dOGFF+qdd97RoEGD+jr9mFpaWjRz5syUAq8nTpyoSy+9VLNnz9bw4cNT6n/Xrl1asWKFHnvsMT3xxBPavn17X6eMAud0OLXskmU64fsDtDr1b4+QvaegBnSEgpHbXVKDd+/2NE4/WgqFcy67V3KS85V1iYKvuyv1x6+JywyFq7ZGrKgyrJ6ljw68Rq6kGpTrsKTL35YmxHm7/8omacxu6bZjE4fiRwfkIlfSqfO335a+lKDOY3dJvzuOOhci6gwAAAAABcKyJIcj37MAUGDuvvtuTZ06Vb6IUHzLsjR37ly9/PLLqq6uzuPsAAAAAABZMXu29PDDWR8mHHydUuD1kiVxd++5fo92NO7Q4KrBGZwdAAAAAPRvXB2QIZdddpmOP/54WVb06qTGxkadc8452rlzZ87n9Oijj+qGG26ICry2LEuGYei2227TgAEDcj4nAOjXmpvj7qrqkB59QL0OvA6rXWfo0QeSLIaKuLgH2dU9CLmvgddh4X7CgchLrbUZ6Re9k63A6zDqDAAAAAAAABS35cuX66WXXup8hJ9v2bIl31PTli1bYs5v+fLl+Z5aTv3sZz/TJ598krDNySefrDfffDNm4HUsp556qt566y2deOKJCdt98sknuvHGG1OdakEZPny4vvOd7+if//ynGhoatGLFCv3617/WmWeemVbgtRS6mfj06dO1cOFCrVmzJqVA+C1btuiGG27o7fQTsixL559/vt56662E7UaOHKklS5Zo1apVmjdvXsqB15JUU1Ojs88+W3/961+1ZcsWLVu2TLW1tXI6nX2dPgpY1cNP6B/3SRVpnrK1jFAockkg9LwkEHpupXn6scIn/eN+wjVzKRx8PXFr/DYDOkLB1ol4gqF28RB4nV/hoNx4dXZY0vwnpamfJ+7npE9C7WIFo0sE5OZbynX+InE/06lzQaPOAAAAAFAgjMysvQDQf0ycOFG/+c1vOtdoh9dFr127VjNnzlRra2s+pwcAAAAAyIYcBF6HJQ28rqlJGHgdRuA1AAAAAKSH0OsMWrhwoYYMGdL53DAMGYahNWvW6IQTTtCGDRtyNpd77rlH559/voLBYNR2wzB0wQUX6Jvf/GbO5gIAtmEmXqXqzFBebtJ+kswDmZHtIOQwApHzizoDAAAAAAAASFX3GyQXmkKfX7asXbtWd955Z8I2X/7yl/XYY4+lfePogQMH6vHHH9cxxxyTsN38+fP1/vvvp9V3Ph199NH697//rS+++EL/+7//qxkzZqikpCRj/R900EF68skndd111yVte/fdd+uzzz7L2Nhht956q5544omEbebMmaN33nlHs2bNirrZeG84HA6ddNJJeuSRR/Txxx+nHK6O4tP4x9/r22dL5f7kIceRDEltbqndFXre7go9T+crz2WGxv322VKjN51Zo68SBV8P6OgKM0+mJBA7+JrA68IQLyg3HJBbuy61fmrXxQ7KJSC3MFBne6DOAAAAAJBnhsG6FwAxzZs3T9ddd11U8LVlWXr99df15S9/We+++26eZwgAAAAAyJhCuynazp35ngEAAAAA9EuEXmfQqFGj9M9//lMVFRVR2w3D0Nq1azV58mTddtttCgRSXMnUC59++qm+/vWv67LLLpPP54taeGlZlk4++WT97W9/y9r4AGBrjgL5sVoo8+jHchWEHEYgcn5QZwAAAAAAAADp6GsobrYV+vyy5aabbkp4jn6fffbR4sWLVVZW1qv+y8vL9eCDD2rgwIFx2wQCAf3iF7/oVf/5MHbsWE2dOjXrXzO//vWvdcUVVyRsEwwG9de//jWj465atUo33HBDwjY/+MEPdP/996uqqiqjY0vSiBEj9KUvfSnj/SL/gmZQFx28WnXDQmHVg1pTC742JBl7T0c1eKX6ktBH7d2eyneiywyNZ0iqGyZd9DUpaM+3/byJFXydTuB1WPfgawKvC0v3oNx0A3LDugflEpBbWKizPVBnAAAAAMiT8LkHm96sFUByt9xyi370ox/1CL5+9913dfTRR+vnP/+5duzYkedZAgAAAAD6pNCuaeZYFQAAAABkDamYGTZ58mT961//0v777995UlUKnVhtbGzUtddeq0MPPVT33Xef2traMjbuJ598ouuvv17jx4/XI488IsuyOhegWpYly7J04YUX6vHHH5fL5crYuACACN1uepCUZUnW3oXKVmjxU/gR3iZL6R8g9XjSa4+05DoIOYxA5NyizgAAAAAAAADSZRX4Bc+FPr9s+Pjjj/Xwww8nbHPzzTfrgAMO6NM4I0eO1E033ZSwzUMPPaSNGzf2aZz+6De/+Y323XffhG3+8Y9/ZGw8y7J0xRVXyOfzxW1zySWX6LbbbrNtUDx6z+lwau5bZmfoZSrB15GB12Edzm5tkgRfRwZeS6HzzXNXSU4ZocVBPHL2qPIZWr5QGt7Uu8DrsHDw9fCmvYHXvvx/bjyi67x4iTR5szT/Kal2fcT+zm/sRI9Q29r1huY/Fepn8RLqXGiPPtVZ1LlYHtSZR/L3bGV5fB45eaTx85lHET/SeN/mUcwPvp958ODBo6gesURut+F5KwCp++///m8tWrRIpaWlUWulfT6fbr75Zo0YMUIXX3yxlixZoi+++CLPswUAAAAApCXesaN84TgVAAAAAGQV6cdZ8KUvfUlvvfWWLr/8cj366KOdJ1TDdxT+6KOPdPHFF6usrExnn322amtrNWnSJB100EEpj9He3q733ntPK1as0AMPPKA33nhDkqLuXhx+XlFRof/+7//WVVddleHPFAAQZfRoKfJCGcPoeYDTNKO2x7v7RI/DtOkcKN1nn9TbIi35CkIOCwciS1KtcWhe5mAH1BkAAAAAAAAA+oc777xTwWAw7v5DDjlE3/nOdzIy1pVXXqnbb79dH3/8ccz9wWBQd955p377299mZLz+orKyUldffbWuu+66uG3q6urU0NCgAQMG9Hm8v//9753XV8Ry2GGH6X//93/7PA7sq/Z9SzKleTMk01Bn8PXOMinQ7eSwIfUIvI7HsEIv6N48VuD1/Cel2nWKcdIZufD4GGlXmVTay8DrSLvKQv1d9F7f+0JmVfkMPbrYktPq2zda7TpDZ6/vez/IDupsD9QZAAAAAACgMF1wwQU68sgjdfnll+uVV16JWjPd0dGh++67T/fdd58kad9999X++++v6upqVVdXy+v1Zn1+hmHor3/9a9bHAQAAAIB+hcBrAAAAALAdQq8z5Be/+EWPbUcccYQ2btyo1atXRwVfS6ETqy0tLXrggQf0wAMPSJIqKip02GGHad9991VVVZWqqqpUWVkpv9+vxsZGNTU1qaGhQR9++KE+/PBDmabZOVb3sOvwNofDodmzZ2vXrl0x55gJP/vZz7LSLwAUnSlTpJde6noeK/RayvyBz+4HdvffP7P9Q5IUtEwtsFb2OQi5Sl41qqPXrzdlaYG1UmdrnJxGvNh09FYm6mxIGqxy7VBLr3uhzgAAAAAAAADQN8FgUPfff3/CNj/4wQ/kdDozMp7L5dL3vvc9XX311XHb3Hffffr1r38th4PjvpHOPffchKHXlmVp/fr1OuaYY/o0jt/v1w033BB3v2EY+tvf/paTRfDoxywrFDitxMHX6QReh3UPvk4YeI28WHSYpUvPkfwOybf3x0tJL8Kv211Sw963okvPkSRLF71XYAu+kLFgWwJyCxt1tgfqDAAAAAAAUJjGjRunl156ST/84Q/1hz/8QYZhRK3RDvviiy+0efPmnM3LsixCrwEAAAAgXQReAwAAAIAtEXqdITfeeGNU4HR3kSdQ451YbWpq0muvvZZ0LCvGH83dw64j/71w4cKkffYFodcAsNfXvy795jf5noV02GH5nkG/5DQcWqTZmmM9qDpt61UfIzRA1SrRHrXrMzX0qo+JGqpFxmyCkLOkr3U2FKrRfqrSF2pUnbb1KviaOgMAAAAAAABA37zwwgvasmVL3P0lJSX6xje+kdExL7nkEl133XXy+Xwx92/evFnLly/XSSedlNFxi90hhxyimpoa7dq1K26bTCxSf+CBB7Rp06a4+y+88EJNnjy5z+PA5vbeGDle8PX2csky0g+87ux+b/C1YRF4XWgiA6/DwsHV6QRfRwZeS6H+CL4GAAAAAAAAANjRY489pt/97ndasWKFDMPoXDsduUY7LNa6awAAAABAgSDwGgAAAABsi9DrDEvlxGhfT6zGCteO97psn6hNFPQNALYzaZI0fLiUIEAh68rKJIdD2ta7UGYkViVpsXGi5lQ9ozrnzhRfZUkOaUSgQtWmS1JA1XJJjgp95moONTHNlHqaGBykxY0nqspqkHoZmo3keldnU4bD0kTfIO1neiV1aD95JUeN6jw7Q8HXpimlEIFNnQtZm+RNUpOOHZI8OZkNsoU620NrCnXeLupc7KizPbSkUOdtos5FzvBJzvrEbQKGJG4aU9Sosz1QZ3vYvVuKDHu1LKmtTfJ4JKczf/MCbMrv93f+O/LcrsPR/99rH3/88YT7Z86cqcrKyoyOOXDgQJ1xxhl67LHHEs6L0Ouehg4dmjD0uqWlpc9j3HbbbQn3/+QnP+nzGIAcDikYlKQewdcde6/S6m3gdVj49R2uUJhy3MBrrunJmUUTzB6B12GRAdbJdA+8DosKvl7T/3+GFzXD6kqjj7lffG/2B9TZHqizPVBne6DO9kCd7cEQdQaAYkJwEIA++PDDD3XllVfqhRdekNRznXT357HWamcTAdsAAAAAkIZCO3bP33QAAAAAkFOEXmdYXwKp0z2x2tuA7EzhxCwAxDB3rvSrX4X+nav3ychxDjhA2ro1N+PaVJWkxduO0JwRr6uuJHkgsUOmRvhKVB10SOoKF6mWQwqU6DNvm2SZSbOQJ7YP0OLPjlCVubtvnwBSkm6dDVma2Fal/fwOSW2d2/eTQ/JXqa6sQTKDShbaRZ0LnKNdqqxP3KZpq2QSqlnUqLM9pFTn7ZLJYZOiRp3twdUuldcnbtOwXRwGLXIOv+RpTtymPSBCcoscdbaHlOocVOLEAhS81lapvb3reTAo7dkTuli1slKqqMjf3AAbam6O/b7r8fT/YxvPP/98wv0zZ87MyrgzZ85MGHr93HPPZWXcYjdgwICE+8vKyvrU/6pVq7R69eq4+6dNm6bx48f3aQxAUuj3nfr6zqfhIOrLzk4v/DgVDd5Qrtvd/4gReC2lfONd9M2iwxQ38DqswSt5A5IrwTlhn1Nqdcff3xl8bZm66L1eTxfZZklK9K1niu/N/iBZnS1R5/6AOtuDKd637YCfz/bA+7Y9JCuhKclkjQsAAECxe/LJJ3XhhReqqampcw2zYRgJ1zPncq1zLsO1AQAAAKDoFdrfUGRlAQAAAEDOkQ6RYZZl9Xj05bWJHtnoM5NjA4AtXX+9VFoaOtiZ6/dLp1MaOza3Y9pUlenW4s+maGJ74gAGhwxdvWO0qoOxw0Oqgx6N6CiVI6XA6ymqMhOsckbGpVPn/7dtrPbzl8Tcv5+/RBNbB8iRJLCLOgMAAAAAgH7NsqTGRqmtLXlbABmzbdu2mNsrKytzPJPc2rJli95///2EbU4++eSsjH3KKack3L9mzRpt5QamPWzfvj3h/kGDBvWp//vvvz/h/gsvvLBP/QOdxo1LuNs0JKuP63gsI9QP8m/RYdKl5yYOvA5rd0sBIxRU3v0RMBIHXof5HaHxFh3W15kDAAAAAAAAeZCPdTYAisqDDz6oc845R42NjbIsS4ZhJA28ltTZLhcPAAAAAECKCu1vKI5LAQAAAEBeEHoNAEAmlZVJN9yQnwOe48dLLlfux7WpZIHIDhmav3mipjUnDmGoDnr0nztGxw1EJgg5v1Kt8/TmIQn72c9fohu2jaXOAAAAAAAAzc35ngFgK2vWrIl6Hl4M3NcA4UL3xhtvJNx/wAEH6IADDsjK2KNGjdLw4cMTtnnzzTezMnaxCgaD2rJlS8I2Bx10UJ/GePDBBxPuP/PMM/vUP9Bp3ryop0vHSfNmSO6gOm+Ea6n3wdeWEXq9FOrPHQz1vzRx1jayIJ3Aa0mS1RV87bC6HgEjtD1VBF8DAAAAAACg6BEwBCCGV199VZdccomCwWBU2HX3wGuCqAEAAACgCBTa32ocjwIAAACAvCEZM8M4QQoA0OTJofDpQCB3YxqGNHBg7saDpK5A5DkjXlddSUPn9nAQcm3jfvqXd0fSfk5sHqRD/FWat2+dTHUdMCcIuTCkUuf33A0Jegg5pXmI9guWUWcAAAAAAGBvfn++ZwDYRmtrq1555ZUe57ANw9D++++fp1nlxsqVKxPunzRpUlbHP+qoo/T444/H3b9q1SqdddZZWZ1DMXn55ZfV2toad/+BBx6o/fbbr9f9f/DBB/r000/j7h87dmyf+geiXHih9I1vSJbVGXgdMKT6UsmMeDu2JMmQjDTW0kQGXkuh/upLpYFtoXEkqXZdBj4HJJV24HWENo8kn+QxJZ9j7/M0hYOvJemi99J/PQAAAAAAAJB3BA0BiODz+fStb31LHR0dnee3Y4Vdh3Xf5/V6VVFRofLyctZ4AwAAAEC+FdrfZRyHAgAAAIC8IvQ6g7qfKAUA2JDfL91wg7TPPtKOHbk7AOrxSGvXSoMHS45erKxFr3UPRI4MQk5HuH04EJkg5MJCnQEAAAAAADKE45dAztx1111qaWmRYRiyLCtqce+YMWPyOLPsW716dcL9hx9+eFbHP/zww5OGXqPL/fffn3D/6aef3qf+ly9fnnD/lClT+tQ/0MM++2jp4F1Rgdd+R3RgtZRe8HX3wOvw6/0Ogq9zzeeQfnh6LwKvI9ZytXmk8hapoaT38/DvncfX14YCtAEAAAAAAICiwjpMABF+97vf6aOPPooZeN1924QJE1RbW6tJkyZp/PjxOvjgg+VysVQeAAAAAAoCgdcAAAAAgG44k5chpsnqIQCApGeekTZtkpxOqaZG2rkz+2N6PKGDv62t0rZt0vDh2R8TUcKByBcd8Ibm7hmVdhByWPh1C6o3atGmYwhCLjDUGQAAAAAAIANK+pDsByAlpmnqrrvu0g033BAVdB3pqKOOyvGscuuDDz5IuP+QQw7J6vijR49OuP/DDz/M6vjFZNWqVVqwYEHc/YZhaN68eX0a4+WXX064f9KkSSn1s2vXLq1du1Y7duxQU1OTnE6nysvLNXjwYI0aNUr77bdf3O852MjmzVp6sF/zvtIz8NqK8eWRSvB1rMDr8HZZBF/nmseUbntGuvRsye/sXR/egNTuDn3s2Hv1nqWoXOyk3MHQPAi8BgAAAAAAQFFy9vLgGoB+xzRN3XnnnUkDr8855xz96le/0qGHHpqXeQIAAAAAkii06ycJvAYAAACAgkDoNQAAmbRwYde/3W5p4ECpvj5747ndksPR9fzTTwm9zpMq061HPz1WzrSWIvdU27ifzm7ct8/9IDuoMwAAAAAAQB+4XFJVVb5nASSULBw3HevXr89of7H4/X61tbWpsbFRH3/8sdauXatnn31We/bskWVZMgwjalFw2AknnJDVeeWTZVnauHFjwjbJQqn7Kln/yeZnF1u3btWFF16oYDAYt83XvvY1jR8/vk/jrF69OuH+RPV68cUX9dBDD+mf//ynPvvss4T9DBgwQFOnTtUpp5yiWbNmadSoUb2YLYrd0ufu0LxpzQpYyQOvwxIFX8cLvI7cT/B17l30buhjb4KvvQHJvTeo2m1Kigi+TpU7KP31H13zAAAAAAAAAIpOeXm+ZwCgQDz11FPavHlz1LntyLDrkpIS3X///TrnnHPyOU0AAAAAQCIEXgMAAAAA4iD0GgCATNm8WVqxInqbzxcKpTbN7IxpmpIzYhXtrl2hMUtLszMeEoq5ntnpUNJcY6czqo5protGjsWvsyPWnog2TsmkzkXN4Yy+0UAsTqdkUN2iRp3tIZU6G47o37NQfKizPRiO1N63+e2ruDnM0O/ciTidkpK0QWGjzvaQUp0dos5FztHt57PDEbp5n9crVVQk/9kN5NkJJ5zQuYA2HeHFt5Efb731Vt16660ZnV86c+m+KDgcgn3EEUdoxIgROZ9Xrmzbtk3t7e0J2+y7775ZnUOy/ltaWrR9+3YNGTIkq/MoZO+++65mz56tDz74IG6bQYMG6c477+zTOH6/P+EYknTwwQf32PbII4/opptu0jvvvJPyWA0NDXrmmWf0zDPP6JprrtGpp56qH/3oRzrppJPSnjeKU9AMasHGpQoYlupLUgu8DosMvvYGpQ5n8sDrztfGCL5ecKR09nrJydqdrOlN8HVk4HVYOPjal2IfBF4DAAAAAACgX3CxrBVAyPLly6OeRwZeO51OPfHEE5xvAwAAAIBCNmhQvmcQjcBrAAAAACgoXB0AAECmvPFG9HPLkjo6Qv92OELPM3WANBy4YZqhi/0iAzgqKqTx4zMzDvrO3ChpfeI2B4+WHAfkYjbIFnOrpE2J2wwcIzkG52Q6yBKzRZI7SaOxkqMkF7NBtlBnezCblbzO4ySHNxezQbZQZ3swmyR5kjQaLzmStUFBszok7UrSaCg3pSh21NkerHZJu5M0Gpb8xlIobNu3S21tXc89Hmkwx0RQfKwMHM/PRB+9kSy0+8orr8zRTPJj8+bNSdsMGzYsq3NIpf/NmzfbMvT6k08+0fz58zV//nwFAoG47bxer+677z4NHTq0T+N9+OGH8vv9CdtEjrF582bNnTtXzzzzTJ/GlaRnn31Wzz77rM4++2zdcccdGjlyZJ/7RGFzOpy664MxOvKAD9MKvA6zJJX5pSqf1OiRWtI4nBEZfB10SHc9QeB1LqQTfF3qj18Ttym5TKk1yeFMAq8BAAAAAABQ1CwrtPaFwGsAEV5//fUe28I3dL788ssJvAYAAACAQjZ7trQr2VqgHJo1K98zAAAAAAB0wxUCAABkyjvvRD/3+aJDrh0OqaZGam0NPUwz9b4NQ3K7Q4/W1uh9wWD0RX/bthF6DQAAAAAAAABAHyQLjo4UL9w6nT4yLXJO4XkYhqGxY8fqkksuyde0cmJXkovnq6qq5PVm9wZIZWVlqqioUHNzc9w2yeZZ7FpbW9XU1KQ9e/Zo7dq1Wr16tV544QW9+uqrSQPhS0pKtHTpUp1yyil9nsemTYlvWOlyuTRw4EBJ0quvvqpZs2Zp69atfR430j/+8Q+98sorWrhwoc4666yM9o3CEjSD+m7Na3JZhhyWpUCa93IxJLW5JdMhdThDz9PJrbYMybk3PPm7Z0qPPkDwdS6kEnw9oEMKGolD0D3BUPh1Q5wfUQReAwAAAAAAoOgRdg0ghk8//TTqnHaYw+HQz3/+83xNCwAAAACQzOzZ0sMP53sWXWbNkpYsyfcsAAAAAADdcKUAAACZsmZN9PNAIPq5yyU5nVJlpVRZKX9bs/ytTXIHQ4uPjYgFx5YhBR2Sw+GUy+0NvS7M6QwFXYd1D8/evj0znw8AAAAAAAAAADaVLJQ3V330VXhRsGVZKi8v13333SdXPw8U2L17d8L9VVVVOZlHVVVVwtDrZPMsdLNnz9bDWVisMHHiRC1atEgTJkzISH9btmxJuL+yslKGYehf//qXTj/9dLW0tGRk3O727Nmjc889V3/84x91+eWXZ2UM5J/T4dTcL4bo1UN2yUzzvgeGus4Xd+w9NWxYoR3p/DQxDcnnlOaukpzO/v1+X0guel+Sw9SlZ5nydws7H9AhlQSkFnfyfkr2XmLQPfjabUp/fcKhi953cLVfoXOYUqLAe6ckV5qJ+Cg81NkeqLM9OJPU2SXq3B9QZ3tIVmeHqHN/4LRS+H7O340IAQDddF9PE8myQg8AUOg8WiTLsmQYhqZMmaLBgwfnaVYAAAAAgKQKKfC6pobAawAAAAAoUCyDAQAgU3btin7e/SI9d/QqVsvlUrOn28XV3S7cGyCXXA5ndBuHI3HodWtrqjMGAAAAAAAAAAD9SDjkOpJlWRo6dKgefvhhHXHEEbmfVI51XxTdXWVlZU7mkWycYg+9zrR9991X1157ra688kp5PJ6M9Zss9Nrj8WjdunWaMWNG1gKvw0zT1BVXXCG32625c+dmday+uvPOO/XHP/4x6+Ns2LAh62PknKvr3K7DUkrh15GB1z32pRF87YhsRMZXzl20JpS8Fhl8HQ68Tkf34Gu3Kf31cUdn/wAAAAAAAEC/0H0dDADbam9vj7l96tSpOZ4JAAAAACBlMa5XzpuaGmnnznzPAgAAAAAQB6HXAABkit+feH9vDtxaVnTAdXhbojZtbdLmzemPhSzZKQ1M8rVRv0OSM3EbFLidUlVb4iaN2yQl+VpAgWuTvIkDc9SxVVLmAlmQD9TZFoxWyZOszltEnYscdbYHR6vkTqXO7sRtUNgMn+RsSNwmYEoi/KmoUWd7oM720Nyc7xkAGRErPDoeq/tx+170kUmR86moqNB3vvMd3XDDDRo4cGBe5pNr8RZFh5WXl+dkHhUVFQn3J5unHZSWluq0007T7NmzNXv2bHm93oyP0dCQ+HcP0zQ1e/ZsNTU1xW1zyCGH6JxzztFpp52mESNGaOjQofJ4PNq6dau2bNmi5cuX6x//+IfeeOONuO8Hka644gqNHj1a06ZNS/vzyZUdO3Zo7dq1+Z5G0QmaQS04YKe8AUsDFAotThZ8HSvw2huUOiJOHaYSfB0OvB7QEXr9giOksz805bQKaHGRDVz0niFZhi47y1JpIP3A67Dw69pc0t2PG7pojaHUos+RfynUKYWfFShwyWpopdAGhY862wR1tgW+n+2BOtuElfit2xJ/OgFAMem+TgaAbVVWVqq+vr7H9iFDhuR+MgAAAACA5Aop8Foi8BoAAAAAChyh1wAAZIo7SYhapi6YT9aPg1AgAAAAAAAAAAB6K5XQ2lz2k47S0lKNGTNGU6ZM0cknn6wZM2aorKws5/PIJ5/Pl3C/y5WbyySSjZNsnnYwdOhQjRw5UoMGDZIjS+e32toS37Byx44d2rFjR8x9I0aM0G9/+1udd955MfcfeOCBOvDAA3Xsscfq//2//6c33nhD8+bN0xtvvJFwTL/fr29+85t69913VVlZmdongqLgdDi1SLM0Z9v/qG5oaFt9siz3bj8qBnSEAo/bXaHQ7Kh2CdYKWZIG7n3txK3SokdE4HWeXLTGoWdGB/X8gX3rpyQgnflhqD8AAAAAAAAAAPqrAQMGxAy9rqqqyv1kAAAAAACJFVrgNTc9BQAAAICCR+g1AACZUlMT/bx7mIHfn5lxuh947X5guKQkM+MAAAAAAAAAAGAzL774YlrtLcvSSSedJMMwZFlW1MdrrrlGM2bMyNJMQ5xOpzwejyorKzV48GANGjQoq+MVA0Kvi8fGjRt1++236/bbb9f++++vq6++Wt/5zncyGgTd3t7eq9edddZZeuCBB9IKjT/mmGP02muv6Wc/+5luvvnmhG0//fRT/fSnP9Uf/vCHXs0PhavKXaHFSwzNmW1p1VDJ6ZECicKqDUlWKM86HHgtdX1s8IYCrZPlVzstybM38HrxEqnKZ0hkJefF0rGWXhiVmb5eGBXqr3Z9gS0WAwAAAAAAAAAgQ8aMGaONGzfK6LY+bufOnXmaEQAAAAAgJgKvAQAAAAC9QOg1AACZMmGC9MorXc+7hxkEApJpSo4+rC62rFAfkbr3t88+ve8fAAAAAAAAAAAb++pXv5qxvsaOHZvR/pAas/t5lG6cTmdO5pFsnGAwmJN5FIvPP/9c11xzjX7zm9/oL3/5i84+++yM9OvvxU1pzzvvPC1atKhXAemGYeiXv/ylKisr9aMf/Shh27vuuks/+MEPNHLkyLTHQQELBFTlM/SXf1g68nLJNEKB1omW11iGVObrCroOKwlIPofU4kk8pKHQOEGH9Jd/SFUdezci55aOtTTvdFNmhv7/m4Y073RTkoPgawAAAAAAAABAvzRhwgQ9++yzPbZv27YtD7MBAAAAAMRE4DUAAAAAoJcIvc6ztWvXatWqVXr33Xf1+eef64svvlBjY6Pa2trU0dEha+8f2YZhaMOGDXmeLQAgocMPj37u8YQO3oYPmFqW1NYmlZfH76PHsV5DMiJCrWMtzHe5og8SH3igNHhwOjNHVrVKciduMrhaEjUrbqakksRNBtdIGpSLySBrWiU1JGlTo6RfCyhw1NkemiU1JmkzWFKSNBkUOOpsD6nUeZCoc7HrkJTsBlKDU2iDwkad7YE624LHIzU3dz3vHhhqGH27MSAAJJEsqDgQCCTcnynJxnG7k5w7KHDf/e53dfrpp8fcZ5qmGhoaVF9fr927d6uurk6rV69WW1tb0n63b9+uc845R9/+9rd111139TmkPN3Xjx8/XgsXLuxV4HWk6667TitXrtTixYvjtvH5fLrjjjv0u9/9rk9jocB89pkaK9z69tkdcpmS25T8DklG/OBrQ1KbW/KY0cHX7a7Q9kSh2YYkwwqN4zKlb58tLV4iVfky+UkhFZkOvA4j+BoAAAAAAAAA0J+ddNJJ+v3vf99j+zvvvJOH2QAAAAAAeiDwGgAAAADQB4Re55hpmnriiSe0ePFiPf/889q5c2ePNlaMP66NNA8AhBePxrLPPvto4MCBafUHAEjBMcdEPzcMyeuV2tu7trW0SCUlktMZI+A6BtOUFAz927Ikny/6IKzTubdNt9d8+mlvPgNkg2erVJNkVfn2rVIwmJv5IDvcu6WBrYnb7N4sBVtyMx9kh6NdKu35+3uUlhIRqlnkqLM9ONqosx1QZ3twtKZQ5zJxGLTIGX7JnSTc3NcuQnKLHHW2B8MnuZsSt6HOxa+lJXTcMqx7aGj4ZoFAP5TuOV1kh8eT+O+8XIVe+2PdyDRCsnkWuunTp6fVPhAI6K233tLdd9+tBx54QC0tiY+X/+Uvf1FDQ4MWLVrUpwDqdP4/O51OLVy4UCUlmbnh3Z133qnly5dr27Ztcdv87W9/03/913/J6/VmZMxMGTx4sA499NCsj7NhwwZ1dHRkfZxcaqzfpjlfM1VXEzodXN0m7SmNH3wdDq2WpIa9XwYlgVDgdfi5YSV+rdsMjWNIqhsmzZktLV5iqSrIz6VcWTrW1LzTMh94HdYZfG04VLuev5cKWwpfBPzOWPyS1dBIoQ0KH3W2CepsC3w/2wN1to9EZaTOAAAARWn69OkqKyvrvIGuYRiyLEv//ve/tWfPHlVXV+d5hgAAAABgY4V23J3AawAAAAAoOqS95EhLS4vmz5+vO+64o3NBY6xw67DIBdGJ2sXzzjvv6MQTT4y577TTTtOTTz6Zdp8AgCT23Vc67jhpxYqubWVl0aHXliU1NEjhC24M9Vyd3J1lhR5+f8+DsE5n9LaamtDzJEEByKFAuzQwSaB1R4vUUZab+SA73O1SReIAE7W1SH5+/S5qjvbQI5G2FslM8rWAwkad7SGlOrdR52JHne3BlUKdW1rEYdAi5/BLnrbEbdo9IiS3yFFne0ipzl6ldrc4FC0WI6If6815XWSe2+1OuN/nS3Kjygzp76HX6XK5XJo6daqmTp2q2267TT/5yU905513Jvy+efDBB1VeXq4FCxb0etx0/j/X1tbq6KOP7vVY3dXU1Og///M/dd1118Vts3v3br344os6/fTTMzZuJlx11VW66qqrsj7OhAkTtHbt2qyPkytBM6iLxryrutKgtPe+xd2Dr62IX3UjA6/DGryhwOsOZ/T2WMHX3QOvw+qGSRd9TXp0iSWnxe/W2ZbtwOsw05DmnRb6wiL4GgAAAAAAAADQX5SUlOgb3/iG/vznP0etqw4Gg1q6dKnmzp2bx9kBAAAAgI0ReA0AAAAAyABWwOTA//3f/+mggw7ST37yE23dulWWZcmyLBmGEffRV9OmTdOxxx7bOVbk47nnntOWLVsy8JkBAHq45JLo5263VFoavc3vl/bskYKmJCN5hk848No0o7c7nZKj24/ykSN7M2sAAAAAAAAAyC6HQxo8uOfxUqAfmDZtmqZNm6avfvWrnY9p06Zp+PDh+Z6aLVVUVCTc39zcnJN5NDU1JdyfbJ79WVVVlebPn6/ly5dr8ODBCdvec889WrJkSa/HKi8vT7ntd7/73V6PE8/cuXNVUlKSsA03Le8/nA6n5m7fTw5LUQt+wsHXjog1N7ECr8O6B153vsaKPrXssHoGXoe3z10tAq9zIFeB12Hh4OulY83kjQEAAAAAAAAAKBLXXHONnM6uEySGYciyLN14441qb2/P48wAAAAAwKYIvAYAAAAAZIgr3xPoz5qamnTxxRfr8ccfl7X3j+fugdZWkj+q+xKA/cMf/lArVqyI6sOyLJmmqUWLFumaa67pdd8AgDhOO0064ABp06aubZWVks8nBYNd2/x+uRv8KnVZandLlmFIsqSIhceGZckZMKVAoOdBWMOQPJ7obeXl0ujRPYOwkV+ullBAeSLeCslTmZv5IDtc/lDIfSKlFVIJdS5qDrdU2pC4jVkpyZO4DQobdbYHhyuFOpeLOhc56mwPDqdUmjg8LPS+zWHQomb4JXeSMCd3pbjHY5GjzvZg+FKoc4Wocz/j8UjDh4c+cuwS/dTy5cvzPQVE2GeffRLub2xszMk8ko2TbJ52MG3aND333HM68cQTtWfPnrjtLr/8cp1yyikaMGBA2mOk+v95xIgROumkk9LuP5mamhqdddZZeuihh+K2ee211zI+LvKnVuOlFZ9r3nENoSDkved5O1zqDEZOFHidjGGFOrAU6q/DJZUEuvY7LGn+k1LtekNKcooSfZPrwOuwcPC1JNWu5/drAAAAAAAAAEDxGz16tP7zP/9Tv/nNb6LWQ3/xxRe6+eabdfPNN+dxdgAAAABgMwReAwAAAAAyiLSXLNm4caNOP/10ffjhh7Isq0fwdKR0g7BTdc455+iAAw7Q559/3qP/v/3tb4ReA0A2uN3SzTdLl1zStc0wpIEDpT17JLMr1MewLFX4LJX7pKBTCjoMWXu3O03JaUoOmV19RPZXWtozIObss0Oh1ygoQ3z76AjtSNhm4MhxkmdQjmaEbKjy1WusEodqlleMkTwDczMhZEewWYaVJJzNOFhyluZmPsgKK9hEne0g2CQj2d/exmjJmSRIF4WNOtuCFWxMHhJlHCw5vTmZD7Kjw2zRNuvzhG2CxkFyOZLciAaFzeqQrJ2J2xjDJIPUtqJmtUvWrsRtjOGSQXBbv+JySSXdfuci/BpAFtXU1CTcX19fn5N5NDQkPmacbJ52MXHiRC1ZskTTp0+P22b37t3685//rGuvvTbt/lP9/3zsscem3Xeqjj322ISh1++8844CgYBcLi7h6RcmTFDtK69IUij4WpbaXVLD3kMTjgxcEmRYoeBsqavfkkBE4PU6SY4CW3jUz+Qr8DqM4GsAAAAAAAAAQH9z00036amnntJ7770nKbTu2rIs3XLLLRozZoy++c1v5nmGAAAAAGADBF4DAAAAADKMFXNZ8Mknn+jEE0/UZ599Jqkr1DoyzDpbQdeRHA6HLr74Yv3Xf/1X5wne8Mf3339fH330kUYTjgoAmXfKKdLXvy5FLl53uaTqaqm+XgoG9240Ov/rCkquYPefBTEOCDscUlmZ5OwW8DRlinTiiRn6BJBJgwLV+mpba8I2g0vHSK7yHM0I2VARqNb4tsbEbUoPos7FLtAoq2134jbl+0uOstzMB1lhBBplte1J3Ig6F79AQwp1PkByEIZc1KizLRiBellt9Ykble9PnYucL7BHu9sSh+Ra5ftLDk+OZoSsMNskf5JAa88BhF4XO7NN8ic5NeU5gNDr/q6yMnS8FACyZNCgxDeZ7OjoUH19vQYOHJi1OezevVs+ny9hG0Kvu5x00kk677zz9OCDD8Ztc8cdd+iHP/yhnN3PkSWR7OshbOrUqWn1m44pU6Yk3N/R0aEvvvhCI0eOzNockEOHHy5Jqt0YOhZx2bR6NXizu/CmwRsKwr77H3sDr5FVQcPSgolW2oHXhqTwV4JhSaN3Sx/tI1lG1/50mIa0YKKlsz+w5LQKbLEZAAAAAAAAAABp8nq9+uc//6mpU6dqy5YtkkLrsE3T1GWXXSbTNPWtb30rv5MEAAAAgP6MwGsAAAAAQBaQGpBhTU1NmjFjhj777DMZhtEZMh0Ote6+zbIsDR06VFOmTNGMGTN0zDHHdLbLhG984xtx9z3//PMZGQMAEMMvfykdeGD0NpdLqqmRSkt716fHI1VU9Ay8HjxYmjWrd30CAAAAAAAAQC5xQ1YAWTZixIikbbZt25bVOaTSfyrztJObb7454f7PP/9cK1euTLvfVP8/H3rooWn3napU+t60aVPWxkeO7b3uJ+8KbQFSP+K0DC161KGJ29L7f+ywJKcpuUzp/1tt6AevO/T/rTbkMkPbjTTXaE3cFpoHgdcAAAAAAAAAgP5i//331wsvvKCRI0dGrckOBAK69NJLdd5552n37t15niUAAAAA9EOFdr0ZgdcAAAAA0G8Qep1hc+fO1fr16ztDq62IP6Ijw66PPvpo/fnPf9YHH3ygzZs369///reeeOIJffvb387ofMaNG6exY8d2jh+J0GsAyKKqKumBB6Thw6O3G0Zo3z77SCUlUirHft3uUNh1aWnPg8UDB0pXXdX7IG0AAAAAAAAAyJUDD5QmTMj3LAD0cxUVFaqpqUnY5tNPP83qHDZu3Jhw/5AhQ1ReXp7VORSbQw45JGk49EsvvZR2vwd2v0ltHAMHDky771RVVVXJ4Uh8eQ6L8/uRffeVjjtOS0e1a95xDfKahgb4srsgaECH5A1K82ZIS8cpdE650BYh9TNVPkOLH0k/+NqQ9M06Q0dtCb3uqC2GvllnpHTZQKSJ20LjV2X5awsAAAAAAAAAgFwbM2aM/v3vf+vYY4+NCr62LEsPP/ywDjroIF199dX64IMP8jxTAAAAAOgnCu1aMwKvAQAAAKBfceV7Av3JY489pocffrhH4HXk88MPP1y33XabTjrppJzN64wzzogK4g6f4F2+fHnO5gAAtnTAAdKjj0rnny998kn0PrdbVnm5/E7J6QvICARkmJYMWbJkyHIYspwOOdxeGR6PFGsh/PDh0o03SkOH5uKzQW/5GqVdXyRuUzNC8lTmZj7IDupsD756adeWxG0Gj5BcFTmZDrKEOtuDb7e0a2viNoNHSK6y3MwH2UGd7aFjl7R7W+I2g0dJrpKcTAdZ0l4h7dmeuM3gkZLLm5v5IDsCrVJrkvt0VoyUHJzWKGqBluR1rhwpGc7czAe5U1YWCoAcNizfMwFgEwceeKB27doVd/+HH36oU089NWvjf/TRRwn3pxrEbDczZ87U2rVr4+5/88030+6zoqJCgwcP1o4dOxK2y2botWEYGjBggPbs2RO3TWtra9bGR+4tPXuM5r3ziMy9a4FKgobUYakhC3+2DuiQSgKhf5tGKPhahlT7YebHQrRw8PWcr5mqG5p8oZXDkr7xTlfgdVj4+f2HpbZYi8BrAAAAAAAAAEB/89lnn/XYdu+99+rXv/61/vKXv8gwjM510Y2NjZo/f77mz5+vcePG6ctf/rKmTp2qAw44QNXV1aqurpbXm5trCUeMGJGTcQAAAAAgawYNyvcMohF4DQAAAAD9DukQGWKapq655prO593vICxJl156qebPn6+SktyG7Jx44on6wx/+0DmvcPj1nj179P7772v8+PE5nQ8A2MoBB0hPPSX97GfSgw+GDrJ2dEhtbTJ8PrkVcdDVkCztvUGBZckIBGUE2qS2NsnjkUpLJa83dKfE886TfvELqaoqT58YUta6W/pwd+I2Y78slQzMyXSQJdTZHlp3Sh/WJ24z9liphPfmokad7aF5u7ShMXGb8cdKHsLNixp1tofmrdKGpsRtxh8reQg3L2qNm6VPmhO3mXAc4ebFrqNJ2lWTuM2wiYReF7uORmlXkvS9YUdIDkKvAQB9M2HCBL311ltx969fvz6r4yfrf8KECVkdv1glCwPfvj3JzXDiOOyww/Tiiy8mbFNaWtqrvlNVWlqaMPQ6EAhkdXzkztL3l2rejoUyXU4pGOzcXmI6pA4zo8HXkYHXYaYhzTvDkhymatcnueEM+izV4GuHJX17paEJO2IHVR+1xdD+TdIfplidYemxEHgNAAAAAAAAAOiPRo0a1bnuOZbI9dqRz99//32tW7dO99xzT/Yn2Y1hGJzjAwAAAFDcZs+Wdu3K9yy6EHgNAAAAAP0S6RAZ8sADD2jDhg1RIdfhfxuGoR/84Ae69dZb8zK3qVOnxt1H6DUA5EBVlfSHP0jDhkk33xwKsU6Xzxd6lJZKN9wgXX99xqcJAAAAAAAAAADQH0yaNEkLFy6Mu3/VqlVZHX/lypUJ9x955JFZHb9YDR06NOH+Xb1cXDF58uSkodcNDQ3af//9e9V/KhoaGhLuz3boNnIjaAa1YPUCmZYpVVZK9fVR+0tMh9qDpjqS3OPFG1RKbboHXoeZhrTgcFNnrzXlZB1Q1lUFpMUPSXNmS3XDeu53WNL8JyWHZanJE78gJ22QDt4lzZuhmMHXE7dKi5dYquoI9tyJwmHufcQTlBRI1ABFgTrbA3W2h6CkRPcJCYg69wdBSYnuGUKd+4dkdTZFnfuDoKREf+cG9j4AAIUrHA7rYkkrgJ6sFMLNwuu1I8OvU3kdAAAAAKCb2bOlhx/O9yy6zJqV7xkAAAAAALIk0aW6SMNf//rXqOeRgdfnnHNO3gKvJWnw4MHad999O+cVad26dfmYEgDYS2Oj9P3vS3fcEQrAHjhQ8njS68PjCb2uqirUz/e/H+oXAAAAAAAAAAAAUSZNmpRw/+rVqxUMZic0NBAIqK6uLmEbQq9jq6qqSri/rTc3lpV01FFHJW1T3y2cOJP8fr9aWloStqmoqMja+Mgdp8OpRV9bpInDJkpeb+iGxhHanVbSMOsBHdLA9tDHRDqcUnucXJiJW6VFj4jA6xyq6pAWLwn9v48UDryuTfHyrNp14YDs6O2hwOvQOAAAAAAAAEDRC3CXAgA9hcOsuz+6CwddRwZg5/oBAAAAAEWvkAKva2ulJUvyPQsAAAAAQJYQep0B27Zt00svvdR5sjLypGV5ebn+9Kc/5WtqncaOHRvzjsWEXgNAlm3aJJ1+uvTQQ13bvF6pulrWoBr5y0tlut2S0e1HsuGQ6XbLqqyUBg+WqqtDrwt76CHpjDNC/QMAAAAAAAAAAKDTUUcdpZKSkrj7m5ub9fbbb2dl7DfeeEOtra1x95eUlGjy5MlZGbvYJQuGLi8v71W/X/nKV5K22b59e6/6TkUqfe+3335ZGx+5VeWt0uLZi0PB15WVkjOUct3utNTgSZxCPaBDKtmb9VISSB583eDtGXxNOHL+dA++TjfwOqx78DU1BQAAAAAAQL/k9+d7BgAKUGSgdfiRbvtsPwAAAACg6BXSzXxqaqRHHsn3LAAAAAAAWUTodQa8+OKLMk1TkjpPWobvEnz11VdryJAh+ZyeJOnAAw+Muf3jjz/O8UwAwEY++0w65xxp48ae+/x+Gc0tcre0yeH3S5YZvd8y5fD7ZTQ1SU1NsS/o++QT6dxzCb4GAAAAAAAAAACIUFJSouOOOy5hm+eeey4rYz///PMJ9x9//PEJA7ntbFOSc17V1dW96ne//fbThAkTErZ58803e9V3Kt56662kbUaMGJG18ZF7ncHXw4+QqqvV7jbSCrwOSzf4mnDk/AsHX0/e3LvA67Bw8PXkzdQUAAAAAAAA/dTu3fmeAQAAAAAAgP0UUuC1JO3cme8ZAAAAAACyzJXvCfQHK1asiLvvsssuy+FM4hs2bFiPbZZlqb6+PveTAQA7aGyUzj9f2ro1ertlhUKs29pS76u9PfQoLZUqK6MPJG/ZEhrnqaekqqrMzB0AAAAAAAAAAKDInXLKKVq2bFnc/Y888oh+8pOfZHzcJUuWJNx/6qmnZnzM/qKuri7h/oMPPrjXfZ9++ulas2ZN3P2vvfZar/tOJlnfBx54oKo4z9fvhIOvT/jbCapr2ylZCj1iiBV4HRbe3uCNP1aDVxq1h3DkQlHVIT36gOTsVm/Dkgwz9mtiqV0nnb2+Zz8ocEnqTDn7h2HNUrsz/n7ei/sH6mwPw5uljgR1rqTO/cKwZsnviL+fOvcP1BkAgCLU3p7vGQAoQEahha8BAAAAQH9SaH9zWVxJAwAAAAB2kODSPqRq3bp1nf+OPKk6duxYjRgxIh9T6qGmpibqeXieTU1N+ZgOAPR/P/2ptHFj9LZAQNq1K73A60htbaHXB7qteP7kE+lnP+tdnwAAAAAAAAAAAP3Q7NmzE+5fuXKl1q9fn9Ex33vvPb377rtx9xuGkXRedmVZlp577rmEbcaPH9/r/s8777yE+19//XU1Njb2uv9Enn322YT7p0yZkpVxkX/LPl6mbS3b5HY4exV4HVYSCLWLx21K2yqkZQf2fq7IrFhB1ZYhWY74j1T7QYFLUucCWzqIXqr0SVUJHiXBfM8QmUCd7YE620OiGlPn/oM6AwBQhEaOzPcMABQYy7KK5gEAAAAARYfAawAAAABAnrjyPYH+4JNPPokKu7YsS4Zh6Pjjj8/jrKKVlJTE3E7oNQBkwXPPSQ89FL0tEJD27JFMM+ZLTJdTltMpy5AMy5IRNOUIxLjKPhiUdu+WBg6UXBE/xh94QJo6VZo2LXOfBzKjfY9Uvydxm81bpJLW3MwH2UGd7aF9d/I6b90seZpzMx9kB3W2h9adKbxvb5Y8FbmZD7KDOttD6/bU3rddZbmZD7KjZWtq38+u2MdAUSR8zVLDjsRtzM2Sg9MaRc3XlGKdnbmZD3LH45EqKqQ456sAIBsOPvhgTZ06Va+99lrcNvPnz9f//M//ZGzMO+64I+H+Y489VqNGjcrYeP3J8uXL9emnnyZsM60P58GOOeYYjRs3Luqm5pFaW1t177336j/+4z96PUYsb7zxhlauXJmwzWmnnZbRMVEYlr6/VPOemifL51N1o197SiR/t2DjVAKvw8LtGrzR292mVN0WClSeNyO0rTb2lzkAAAAAAAAAFI5Jk/I9AwAF5J577sn3FAAAAACg/yLwGgAAAACQR6RDZMDu3btjbh86dGiOZxKf0xk7IKK5maA2AMgov1+64YbobZYl1df3DLw2DAVKvQq44/w4Ni2VBCwZbW09+2tokAYMiD7A/KtfSQceGB2GjfzzNYTqn4hnq+QhDLmoUWd78NWnUOdtkqclF7NBtlBne2jfnbzOJdskFzeKKmrU2R7adyav85ZthCEXu/YdKdR5C3UudoEWqXln4ja+LYReFzt/s9SSpM7+LZJB6HW/ZBjSsGHSvvvmeyYAbGTu3LkJQ6/vuece/eQnP9Hw4cP7PNbnn3+uv//97wnbfOtb3+rzOP3VjTfemHD/4MGDNamPARiXXXaZrrnmmrj7//jHP+q73/1u3OsremP+/PkJ97tcLp111lkZGw+FIRx4bQb90q5dMqxQMPWe0q7g63QCr8O6B1+HA6/DZ4xNgq8BAAAAAAAAFIOBA/M9AwAF5pJLLsn3FAAAAACgfyLwGgAAAACQZ458T6A/aG2NHV5YSKHXDQ0NMbdncrEmAEDSM89ImzZFb2tqkoLB6G1ut6yBA2QZhtztHfI0t8nb1Nr58DS3ye3zSQ6HVFXVM8jaNKXuP3+2bpUSBDcAAAAAAAAAQN5YVugmBbt25XsmAGzk4osv1pAhQ+Lub21t1fXXX5+RsX70ox+pvb097v6hQ4fq4osvzshY/c0f//hHvfzyywnbXHjhhX2+vuE73/mOqqur4+5///339dvf/rZPY0R64YUXtGjRooRtamtrVVNTk7ExkX+dgdeWKe3a3blIx1AooNpl9i7wOqwkEHq9q1vgdVg4+HrpuD59GuijYIbWimWqH2QHdQYAAAAAAEhTaak0fHjoIwAAAAAAALKLwGsAAAAAQAFwJW+CZKw4f1SbppnjmcS3e/fumNvLyspyPBMA6OcWLox+7vdLbW3R2/YuyDf21Msd52eIIUmBoAzDH3rmdIYCsCN/tnR0SF5vdCD2E09IX/lKnz8NAAAAAAAAAMiKbdskwj0B5EhJSYm+//3v6yc/+UncNvfee6/OPfdc1dbW9nqcBx98UPfdd1/CNldffbW8Xm+vx5CkjRs36sADD0zY5uc//7luvPHGXvW/detWffrpp5oyZUqvXt8b//znP3X11VcnbON0OnXllVf2eazKykp973vf00033RS3zc9//nOdccYZmjhxYp/Gqq+v19y5c+NeTxL2gx/8oE/joLAEzaAWrF4QCrxubpYC0cnWpqSAQ/I5pJI4fTgsafrH0rKDQgHWsfgcoX5MST2i4A1DpsPQgi+7dXZjtZxWgS1csoFGt6mLptdr7roy1W6MqHR1m+RO8ELLKRmezqdLR7VrwbhWLVo2UFV+R/YmjF7pU50d1LnoVftjvAFHKHVIlX27WQcKAHW2h338UqK331KH1Eadix51todkdS5xSO3UuehRZwAoLlu3Rj+vqpJYxwgAAAAAAJAbBF4DAAAAAAoEodcZUF5eroaGhh7b4wVN50O8uVRWVuZ4JgDQj23eLK1YEb2ttbXr35bV9Uj1ILG19z+BQNeB3MjXtrVJFRVdz1etkjZskAYN6s1ngGzwNUZ/HcTS1CS5OFBf1KizPfgaUqhzg+QK5mY+yA7qbA+pvG83NEguf27mg+ygzvbga0qxzh25mQ+yoyPF37cd1LmoBVqltuYkjRolg4XqRS3QkkKdG6hzf+NwSJHno9rb0ztGCgB9dPXVV+tPf/qTNm3aFLfNJZdcov3220/HHHNM2v2/9tpruvTSSxO2GTlypL7//e+n3Xeubd26VVOnTtWMGTN044036uijj87aWMFgUHfccYeuu+46BboFA3f3rW99S2PGjMnIuNdee60WLFgQ9+vB5/Pp1FNP1XPPPafDDz+8V2Ps2rVLp556qj799NOE7c4991x9+ctf7tUYKExOh1OLvrZIcxbPVt3W56P2BSXtKJcsQ2rZm3db5Yt+vcOSbn9Sql0nLR0nfX9Gz+DrRk/X63eUS4NbuuVxWpYm7nZr0bKBBF7nQaPb1JyT61VX49eq40LXkkUFIqdo6ah2zTuuQaYhzTm5XoufJxC5kFBnAAAAAAAAAAAAAAAAFKxCu06fwGsAAAAAsDVCrzOgsrIyZuj1rl278jCb2NatWxf13LIsGYahAw44IE8zAoB+6I03op9bltTR0fXvcJBLbw8SG0ZXP+Hnfn8oEDuyz3//W5o8uXdjIPMCzVJbfeI2HVskV3lOpoMsoc72EGhMXmf/VslRlpPpIEuosz0EGlKsc/ohFSgg1NkeAvUp1HkzdS52gT0p1tmTk+kgS8w2yb8jcZvGUsKQi11KdS6TDEK++hW3Ozr02rIk05ScfD8DyI2ysjLddttt+vrXvx63TVNTk0499VT93//9n84888yU+37sscf0zW9+U83NiW/q8Lvf/U6lpaUp95tvTz75pJ588kmdfPLJuuCCC1RbW6vq6uqM9b9ixQr9x3/8h1avXp207bBhw/TrX/86Y2OXl5fr9ttv19e+9rW4bbZv364TTjhBCxYs0LnnnptW/6tWrdLFF1+sNWvWJGxXUVGhW2+9Na2+URyqvFVa/NGRmrP1OdUNDW2LDLwO6x58HRl4LXV9jAy+jgy8lkL9dQ++nrhVWvyUW1VefqfOtcggZClUt3m9CESODEKWpLoaP4HIBYQ6AwAAAAAAAAAAAAAAoGAReA0AAAAAKDCEXmfAiBEjtGnTJhnd/vB/77338jSjaD6fT2+88UaP+UnSyJEj8zAjAOin3nkn+rnP1xXgEkfondmSYh2rNbpaxBQ+wBsMSq6IH+mbNhF6DQAAAAAAAAAAsNfs2bN14YUX6r777ovbpqGhQWeffbYuuOAC/fSnP9W4cePitl27dq1+8YtfaPHixUnHvuiiizRr1qxezTvfnn/+eT3//PO64oordPLJJ+ucc87Rcccdp0MPPVQOR+qBnJZl6cMPP9TSpUv197//PWkgdJjL5dLf//531dTU9PZTiKm2tlaXXnqp/vrXv8Zts2fPHtXW1uqUU07RDTfcoOOOO07OBDdsWLNmje644w7dfffdMhOcGwy7/fbbdfDBB/dq/ih8VQsWafEuQ3NmW1o5tGfgdVg4wHpgR3TgdVhk8HW9NzrwOiwy+HrSVmnxEqnK3yYNrsjsJ4WEQkHIDaqrCURt7wxEtkw5TElmgkVcpqGlI1s177imziDksFAg8h4tfnYAgch5lJk6O6hzf2BZSeos9Sgwig91todkv7tT5/6BOttDsjpbRvI2KHyWGfqejcekzgBQULoHGllW6FFowUsAAAAAAAD9RaEddyHwGgAAAAAgQq8z4qCDDtKKFSs6nxuGIcuy9PrrrysQCMjlyu//5jfffFMdHR2d84oMv54wYUIeZwYA/Uz3Bfo+X8+LpyMPFFtm7LDrzv2d/+l6nWFEH9y1LCkQiA69/vzzNCcOAAAAAAAAAADQv/3v//6v3n77ba1fvz5uG8uydN999+m+++7TkUceqWOPPVYHHnigKioq1NTUpE8++UQrVqxQXV1dSmOOGzdOf/rTnzL1KeSN3+/XU089paeeekqSVF5erjFjxmjMmDEaPny4hg4dqvLycnm9Xvl8PjU2NqqxsVF79uzRe++9p3feeUfNzc1pjWkYhu6++26dfPLJ2fiU9D//8z9avXq13n777YTtnnvuOT333HMaNGiQTj75ZI0YMULDhg2Ty+XS9u3btWXLFi1fvlwbNmxIeezvfe97mjt3bl8/BRSqlSulLVtUJUO3PW1p4hWxA6/DWjzSyRt6Bl6H1a6T/u9w6dHx8fuwDGlPqXTb01JVhySZUnu75Hb35TNBihrdpuac0qS6mmDM/aYhzftKky5e59GE3fGvIXtheEB/OLI9bt5iXU1Ac06p1+KnKwlEzoPM1bldt1Hn4heM/XXQyZSUpAmKAHW2h2TBqEFR5/6AOttDSnUmWKHoBU0p0a/J1BkACptphta+OByhBwAAAAAAADKHwGsAAAAAQIEi9DoDjjzySP3973+XpKhQ6fb2dr366quaNm1aPqenRx55JO6+Y445JoczAYB+bteurn9bltTaGrudZaV/kNbqFn4dqaNDKinp2tfaKnm96fWP7HH6JX+SX7m8HslFzYoadbYHpzd5nd1e6lzsqLM9pFJnr1dyUOeiRp3tgTrbg8OTYp09uZkPsiNoSkpSQ69XMpw5mQ6yJBhUanVmgWtR6+jI9wwAIKaKigo988wzOv7447Vp06ak7VetWqVVq1b1erwRI0bomWeeUUVFRa/7KFQtLS19/v+TiMfj0cKFC3X++ednpX9JKikp0VNPPaUTTzxRa7rf2DaGnTt36oEHHujzuBdffLF+//vf97kfFLCHHpIkfV5hatr/JwWT/GprSHp8nHT9dOmWZT33Xz9d+se4ULtEZ5iDDmnaXGnVn6T9mxT6nYzQ66xrdJuac3qT6gYlTkk0DekvEzr0jfXSUdt7HuN4a0hA94/pkDNRQrqkukFBzTm9iUDkHKPOAAAAAAAAGZTsZhUAAAAAAABID4HXAAAAAIACRuh1Bhx33HFx9/3xj3/Ma+h1Y2Oj7r777s4gbiPiQIXb7daUKVPyNTUA6H/8/q5/NzX1vBjPMPp+gV6sA7yWJbW1SaWlXfMIBPo2DjInEJDMxItfQ/WiZkWNOttDKnUOUueiR53tIdX3bQd1LmrU2R6osz0EU60zIUBFzQzs/T0rgUBAMrj4ragFU60z389Frb099Ahzu6WGBqmsjOBFAHk3cuRIvfDCCzr99NO1YcOGrI0zevRoPf300xoxYkTWxuivDj74YC1atCgn1zIMHjxYL774os4880y98cYbWR/vhz/8oW699dao6zbQD73+uj6vMHXk5dLuvadvHVYoDLc7Q11/4vxu76VHkcHX10/v2m5YoRfE+ovIsXfj7lLpyCv2Bl+3J/k7Gn2WahBymGlI944L3SAmMhD5rSEB3TuuQ05LcqbwJy+ByLmV8TqbUiq386LOAAAAAACgXzPNvTfNBgAAAAAAQJ8U2vWIBF4DAAAAALoh9DoDJk2apJqaGu3evTsqXNqyLD388MPauHGjRo0alZe53XXXXWpqauqcT+THE088URUVFXmZFwD0S+HAlo6OUAi1YUQflM3mAVqfLxTu5XKF/v3RR9kbC+kxWyVtT9LoE8lRmovZIFuosz2YLUpe548lR0kuZoNsoc72YDYreZ03SA5vLmaDbKHO9mA2KbX3bU8uZoNsMRuV2vczQapFzeqQtCtJI79kpBINhYJltUvanaQRodf9jsslbd4cOl46aFDoAQB5NHr0aL355pu64IIL9Mwzz2S8/9NPP13333+/Bg4cmPG++zOv16vvfe97+tnPfpbT6xgGDx6sl19+WVdffbX+9Kc/ZWWM6upq/fnPf9bs2bOz0j8Ky+eb10UFXqcjMvg6MvA6HZ3B1//r1/4sIMqaUBBys+pqArGTyOOwtDcQ2QoFIoeDkK3wzhRrVlcTCAUiP1VBIHIWZaXOEnXuDywr8deEZbGIsz+gzvZAne2BOtsDdbYJ6gwARa37e3QgyQ2zAQAAAAAAkFihXZfPMXoAAAAAQAyEXmeA0+lUbW2t7r777qhQaUkyTVPf/e539dRTT+V8XuvXr9fNN9/cOZfuvv71r+d4RgDQz9XUhD42NaX1MsuQpPB7dfSBXCOd47odHZLTKZWVpTU+AAAAAAAAAGSdZUk7dkgebkYBIP+qq6v19NNPa+HChbruuuu0fXuym6wkN2TIEP32t7/VN7/5zQzMMD8OOeQQ/c///I+eeuopvfjii2ptbc36mFVVVZo7d66uvvpqjRw5MuvjxeL1enXXXXfpggsu0Pe+9z3V1dVlpF+32625c+fq5ptv1qBCW1yCrPAFfJp89tYegddm7Mt2QmeGjehzwr87Tnp4grRxYLe2RvxcL9OQHBE7d5dKk78jbVrgl8ckKDfTgoali05tUV1NsBevtkKByOPb9fZgp9YMCkbUNc4XShx1NQFddGqTHn28XE4rvdciOeqMhEwz8QU9QSv0QHGjzvYQNJUwPdWkzv2CSZ1tIVmded/uH4Jm9B/A3fH9DADFxTTzPQMAAAAAAIDiNWiQtGtXvmfRhcBrAAAAAEAcrGzKkEsvvTTqeTj42rIsPfvss7rllltyOp+2tjZ9/etfV0tLS9R8wgYOHKgLLrggp3MCgH5vwoRQ8HQwxUWPDocsw1DCRY2GEXqkwrJCYw8Zklp7AAAAAAAAAMi1nTvzPQMA6HTJJZfo448/1p133qnx48f3qo9DDz1Ud955pz755JOiDryWpPLycl111VV64okntGvXLj399NO6/vrrdeKJJ6qysjJj49TU1OjrX/+6HnjgAW3evFm///3v8xZ4HWnatGlatWqVnnjiCZ1xxhlyuXp3H/lRo0bpxz/+sT755BP96U9/IvDaRjwuj761xh21LV7gdZil8E2Su6QTeB1vnG+tEoHXWeK0DM1d40mYs5aMJem9qCDk9Dksae4aD0HIWUKdAQAAAAAAAAAAAAAAUJBmzy6swOtZs/I9AwAAAABAAevdCj30MGXKFE2bNk0vv/xyZ9i1pM5///SnP1V1dbUuv/zyrM/F7/frggsu0HvvvRc1F6kr/Pqyyy5TaWlp1ucCALZy+OFSa2vXc8OIf0dCR5oLjBP1FRmK7fdLw4alHpSN7EupFmmEm6MwUWd7oM72QJ3tgTrbA3W2B+psD6nWjzoXOb6f7YE6Q5LPl+8ZAECU8vJyXXnllbryyiv1wQcf6Omnn9bKlSu1Zs0affHFF2pqalJra6vKyspUWVmp/fffX4ceeqgmTZqkM844Q4ccckjO5jpq1Kio8//ZVFJSotNOO02nnXaaJMk0Tb3//vuqq6vTJ5980vnYvHmzmpub1dLSoubmZgWDQXm9Xnm9XlVXV2vIkCHad999NWbMGI0fP15HHXWUDj300KibdhcSwzA0c+ZMzZw5Uw0NDXr++ee1YsUKvf/++/roo4+0Z88eNTU1KRgMqrS0VAMHDtSIESM0evRoHX300frKV76iI444It+fBvLo1/8ul3w+3Xps8sDrMEsK/Roc49s7lcDrMNMIBeRes0L69QuGNCDFFyJttRs8kqR5J7SlXOdMcljS/OWlnfNAdlBnSFLQsDISOp6pfpAd1NkeqLM9UGd7oM72QJ0BAAAAAAAAAIjh8sulhx/O9yy6zJolLVmS71kAAAAAAAoYodcZ9Mtf/lJf/epXO59HBl8Hg0FdeeWV+vTTT/XLX/5STqczK3PYtGmTLrjgAv373/+OWiQa+e/q6mr9+Mc/zsr4AGBrI0akFtiSzUX8waBUVRU/IBu5l1ItLGpW7KizPVBne6DO9kCd7YE62wN1todU60edi1uq388px72hIFFnSFKWzpEBQCaMGTNGY8aMyfc0CpLD4dCECRM0YcKEfE8lZwYMGKBZs2Zp1qxZ+Z4KiklFhX7yr3o9dKilT6pTf1ms4Ot0Aq/DRtZLP/lXmi9Cr8QLRLYMaY/XUlnAUEmg9/23u6RWl6XqDiPq64Ig5NyizvbW6LF00ektmrvG06daLD3YpwUTfFr0dLmqfAQuFhrqbA/U2R6osz1QZ3ugzgAAAAAAAAAAxPHnP+d7Bl1qagi8BgAAAAAkReh1Bh1//PG65JJLtHDhQhmG0Rl6bVlW5/Nf//rXevTRR3XrrbdqxowZGRu7paVFd9xxh2655RY1NzdHjRkW3nbTTTdp4MCBGRsbALDXZ59JHk/y4Ovwe3M64depBnc5nVJDg7Tvvqn3DQAAAAAAAAC5UlmZ7xkAAABkTePYUZrz1U1qd0vlPqkljWyuyODr3gRel/ukdrc0Z7a0+FGnqlxcFpZttZ+6pFecmjetRaYhWbK0x2vJ75AaPJYkQyXB8HUBoedxGeq8hqDdae19fShYubrDkCEjFIT8SrlqP/Vy1V8OZbTOEnUuEo1uU3NOb1LdIFOrhrRLTqdqP/aGdjr3PuJxOUIPSUsP6tC8ae0yDWnOzFYtfrpSVX5H1ueP1FBne0hYZ5ekRKVyUudikfT7mTr3C32qM+/bRYPvZwAAgOLy2WefpdRuxIgRGemn0CT7vAAAAAAgo9LJJ8mFnTvzPQMAAAAAQBFgWUSG/f73v9fLL7+sjRs39gidDj9ft26dzjrrLI0fP15z5szR7NmzNX78+LTHqq+v14oVK/TYY4/pwQcfVFNTU+d4kWOH/20Yhk455RRdddVVmflkAQDR3nlHKi3tCr1OFFSdaoh1Km0tq+sAtdstbdsm9eLnCgAAAAAAAABkldcrDR6c71kAAABkRdAM6qIvb1Zda+h51d7TxukGX1u9WJtU7usar26YdFGtqUefseTsTWdISzh87T+mNWt3SSgIOazBY0k+RQQiJxcZhCxJfkcoELmmXZr/ckVX2BtyijrbS1fQYlCSZBrSvGktkpRWbUJBi6GwdEmqGxTUnNObCFwsENTZHqizPVBne6DO9kCdAQAAis+oUaNkJAldMwxDgUCgz/0UmlQ+LwAAAADImEL7mymdvBQAAAAAgK0Rep1hAwcO1COPPKKvfOUram1t7QycjgygliTLsrR27VrdeOONuvHGG1VaWqpx48YlPDH7zW9+U+3t7dq+fbs2btyoTZs2de6L1X/kcyl01+B77703s58wAKDLmjWh0BanUwoGk7ePPJAb6/3f6vxPahwOyeWSdu0KhW+jMJiWFHQnbuMskRzUrKhRZ3swgynUuVRylORmPsgO6mwPKdW5hDoXO+psD6Y/xfftNNKlUHhMX4rfz9S5qFmGZCZZrO4olQxnbuaD7Ei5zgQOFDW/P/q52y2VlUnl5VJNTeFdcAsAAJAhTodTc6dcoVUvXNsZrNWb4Ot0RQZeS5LDkua+X0LgdQ5N3+TW0FaHtpb1vE4gHIiciu5ByGF+hzS01aHpm5IcH0FWUWd76B60GBYZuHhIffLjU92DFsMIXCwM1NkeUqnz6AbqXOxSqfPB1LnoUWd7SKXOB1FnAACAgmRlKOgsU/0AAAAAQL9TaNff8/cbAAAAACANhF5nwcSJE/WPf/xDZ555ptrb2zuDr6XQiVfDMHqEYbe2tmrlypU9QqsjPy5atKhzjO4ncCPDrWMFYNfU1Ojpp5/WkCFDsvEpAwCkUNi0YUiVlVJ9fUov6Xz3Dr/fR25Lh2GEQmM8nlDw9okn9qYXZIOvQdqepKpDviJ5qnIzH2QHdbYHX720PcnCmSHHS56KnEwHWUKd7aF9t7QzSZ2HfVVyleVmPsgO6mwP7TulnUlCYIZ9VXIRbl7U2ndIO5Okg1Hn4hdokZo/S9ym6hDJwWmNouZvllo2JW4zYAzh5sWuuVmKuHGr3G5p5Mj8zQcAACCHamdeI/33f2velN05Cb6OFXg9/ylDtTs45pUr4WC2reWWBviMmGHGDR5LZQHJ1T11LYLPITW7Yy8IG+AztLXcIqAtjzJWZyd1LmTxghbDwoGL164s0Ve2xH9Tf3KkTz+b0tojaDGMwMX8os72kGqdr1lVouM3J67zT6dS50KVap3/c1WJplHnopXJOt9AnQtWpur8z5E+3fBl6gwAAJBrRoLwtXSCrBP1U2gI6AYAAACQM4X2txJ/DwEAAAAA0sSVWlly4okn6oknntDAgQMlqTPoWlJn2HV4W/d98YRfl+i1sQKvhw8frmXLlmns2LHZ+nQBAJLk94c+er1SSYygrRQOKPf6kLPHE3pIUiDQ214AAAAAAAAAAAAAAH1Qe9JVmv+UIUfEJUBVPqnMF/81vVEWK/D6Sal2IzeFypXuwWwlQUMDfLHP+re4Jb8z9nVhfqeVMAi5JBjqMxzQ1ug2MzB7pIo620OyoMUw05D+66g2vbhf7Df1F/fz6YapLXGDFsOoc35QZ3tIp87/PTlxnX/yZepcqNKp8y3UuWhlss7/jzoXrIzW+VjqDAAAkC+Ra58j1zlnop9CewAAAABAzhB4DQAAAADoBwi9zqITTzxRr732msaNGxcVRt09pDrWvljihVx3P1kauX/ixIl69dVXdfjhh2flcwQARHC7u/5dWRn7ILLD0beDy7FeaxhSWVnXc5er9/0DAAAAAAAAAAAAAHrv+utV+1lZVPC1KSnozOwwQWeoXyki8HqdpNLSzA6EmOIFs5UEDXnjZLW1unoGIvudllpdinmHbG9QnUHIYQS05VbG6xwDdc6/VIMWwyxJv53UM3Dxxf18+u2ktqRBi2HUObeosz1kvM4pjkudc4s62wN1tgfqDAAAAAAAAABAHAReAwAAAAD6CUKvs+yQQw7RqlWrdN1118nhcMQNuE7lTr+J7ggcGYhtWZYMw9APfvADvf766xo5cmR2PjkAQLSamq5/OxzRQdRS14FcwwjtT0f4NbEOTpeURPc3YEB6fQMAAAAAAAAAAAAAMqOsTLrhBtWuNzT/KUOypPpSyZfh0GufM9SvIgOvy8rSPxeNtCUKZmt3WupIUOvIQOREQciS1OEM9dcdAW25QZ3tId2gxTDTiA5cTDcIOYw65wZ1tgfqbA/U2R6osz1QZwAAgP4lcn1z97XTfe2n0B4AAAAAkHWF9rcHgdcAAAAAgD5IsJwCmeLxeHTLLbdo7ty5+ulPf6olS5Z0BlN3P8mZKPQ6UqyTo+HXnnzyyfrd736nL33pS32fPAAgdRMmSK+80vXc4wkdUI58b7es3h3Ujfc6wwiNE+ngg9PvHwAAAAAAAAAAAACQGddfLz3wgKavf0fDWqStlVKml/5YCgVfD2uWpn+iUNi10yl1dGR4JEQKGpYuOqNNdTVmj6K2Oy01eGK/LlKrS3I7LPkj88njfIE0eCypw1JJMPpasbqagC46uUGPPlYqp1VgC936gazVOQ7qnB+J6pyQIcmSTEm/PbJNy4d36M1hpkyFtoceqXdInbOLOttD1uosUecCQp3tgTrbA3UGAJsKBkPv04UW2gSgz1JdE52rfgAAAACgqBXasRP+VgMAAAAA9BGh1zk0ZswYLV68WBs2bNBf/vIX/d///Z82b97cuT/dO/1GnsQtLy/XrFmzNG/ePE2ePDmj8wYApOjww6OfezyhhcWm2XUwN9MHdQ2ja4ywoUOlnTszOw56L9AoNTUlbuPaLbl8uZkPsoM624OvIYU675Jc7bmZD7KDOtuDrz6FOu+UXGU5mQ6yhDrbg293inUuyc18kB2p1NmzW3KkkDaEwhVsldrqE7fx75IMZ06mgywJtEjt9Ynb+HdS52LX0hJ6hLlcks/X8+Z9AAAA/VzjI/drzi++pA/2CWY88DrMkvRBjTRntrT4Hy5VBQJZGglhTklz65xadUpQEWfp1e6SGryp95NKEHJYg1ehQOSI8jr2zsPpD6beEVJGne0hXp2TshQKXJRkGtLrw2PUJ403fuqcXdTZHrJW53DAeYqoc3b1us4RqHPho872QJ0BwMaCe99zXSxpBfqLe+65p6D6AQAAAICiRuA1AAAAAKAf4gqBPDj44IN1yy236JZbbtHKlSv19NNP6/XXX9eqVav0+eefp9RHSUmJJk6cqClTpujkk0/WKaecIq83jRU1AIDMO+aY6OeGIXm9Ultb9sZ0OKSOjuhtH38sbduWvTGRpnbJ+1niJh07JBHCV9yosz20Sd5NiZt07JJEiFdxo862YLRKniR/f1Pn4ked7cHRKrmT1Xm3JHdOpoMscbRI7i8St+nYIw53FznDJzkbErcJvKvQ8nMULepsT06ntHmzNGCANGGCNHBgvmcEAACQdY0djZrz7x/qldEetQSyeL5YUotHemWkNKc2oMWPOVTlK7DFT/1Q7YdOSR7NO8UnU+kHIfdGuP+SQOgvpvnPefbOA9lCne2he51zjTrnBnW2B+psD9TZHqizPVBnALC5IDccAPqLSy65pKD6AQAAAICiReA1AAAAAKCfIgUkzyZNmqRJkyZ1Pm9tbdWmTZu0efNmNTU1qa2tTX6/X16vV2VlZaqpqdGIESM0fPhwGYV2wAIA7G7ffaXjjpNWrOja5nZLra3ZG9PRLQBo2DCpvDx74wEAAAAAAABAbzQ0SP/+d+gYKgAAQD/W2NGoOUvm6JVPX1FLsE0yJGV5DVCLW3plf1NzzvFp8WMegq9zIBzQdtkZvqwHIYc1eENfTnc/RTBbrlBne8hX4CJBi7lFne2BOtsDdbYH6mwP1BkAbMyyJDMftz0AAAAAAAAoQIWWH0XgNQAAAAAggwi9LjBlZWUaO3asxo4dm++pAAB645JLukKvfb5QkEs2+Xyhg9jOvRde8/MDAAAAAAAAQKGyLGndOmnatHzPBAAAICuiAq/9LV07chp87dfix70EX+eCI0/BPA6j5w2ykT3U2RZqNzgkh6F5030yk719Gim8oSdZkOqwpPnLPKrd4AqlLiInqLM9ZLTOKSwup875kVadk/0iTp0LFnW2B+oMADYWCOR7BgAAAAAAAPlH4DUAAAAAoJ8j9BoAgEw67TTpgAOkjRul3btzM2ZHh1RSIlVVSfvvn5sxAQAAAAAAAKA39uzJ9wwAAACyImgGddEjF/UMvM6hUPB1UBed2aFHHy2R0yqwRVH9yNLRAc2b7pM3aGhAh6UGb/bHHNAheYOhMDjJUO1HXPqXbdTZXmo/cksyNG96RwqBi4mkEoTsDdWWt+mco872kLk6J0ad84s62wN1tgfqDAA20T3AyZuDAy0AAAAAAACFjMBrAAAAAIANsCICAIBMcrulm2+WZszI7UHdjg5pzJjcBW0jdQ6fVNmYuE3TLsn05GY+yA7qbA+O9hTqvIM6FzvqbA8p1XmXZHLYpKhRZ3twtUvlSercsFMcBi1yrrYU6rxD1LnIOfySpzlxm3ZTkiMn00GWpFRnSyQN9DNutzR0aNdzy5KCQcnpzN+cAAAAssDpcMpluHoGXud4LVCLW3IFReB1FoWCkLvC2EqChpTlQOQBHXvHkWQa0rzpHZJEIHIWUWd7Cv+/zlbgYlTQIvKGOtsDdbYH6mwP1NkeqDMA2IzDQeg1AAAAAACwNwKvAQAAAAA2QToEAACZ9vbbodCWXLIsac+e3I4JAAAAAAAAAOli8TIAAOinfAGfXv38VRmRN3HJw1ogw5Je3S8on8PM/eA2EDQsLfiSv0cIW0nQ0ICO1PtxpVGeyCDkMNOQFnzJr6DBgrNsoM72VvuRS/OXeeXI8P92ghYLC3W2B+psD9TZHqizPVBnALAJw5A8nsILdgIAAAAAAMiVQYPyPYNoBF4DAAAAALKIq7YAAMik1lbp5ptDF+Dl+uDuunXS6NGSix/vAAAAAAAAAAqQYUj77JPvWQAAAGSFx+XR2995W0f+75Ha1bpLVi8Srw2FQqsto3d52YYl1bQbevu+SnkcDsnRi06QkFPSomdcmjOjRXWDom+GXRI0JJ/U4ElcvVK/5DEln0Nqcyceb4DPUEmMe25P3OnUomfK5XQSDpQN1Bm1G13ScofmndDWI/xcSr8eDkuav7xUtRs9XLVbQKizPVBne6DO9kCd7YE6A0A/ZhiS2y05nQReAwAAAAAA+5o9W9q1K9+z6DJrVr5nAAAAAADo57hsCwCATLrlFqmtLfRvh0MyzdyNHQxK69dLEybkbkwAAAAAAAAASIXXK9XUSB5PvmcCAACQNftX7a9Vl6/SoXceqqaOprReGw68VvhjL4KvKwKGVj08SPubLqk0zRcjZVWSFr9Qojkn16uuxh+1ryQotZuWOuIEjpcGJI9lSIbksSQFLLW5FPoC6FZwr7k3YLlbBtDEXW4tfmGgqpwO6pxF1Bm1m0v16GZLz+3fEb2jF7lc07/wqnbzAGpZgKizPVBne6DO9kCd7YE6A0A/0dAQ/dztllwsZQUAAAAAADY2e7b08MP5nkWXWbOkJUvyPQsAAAAAQD/HlQIAAGTSggXRzw1DstJdipwmI+Iq7q1bpe9+N7vjIT1mi+Rfm7iNe4LkKMvNfJAd1NkezGbJ/37iNu4vSY6S3MwH2UGd7cFskvzrErehzsWPOtuD2Sj51ydu454oOQjXLGpmg+T/IHEb6lz8rHYpuCNxG+e+kuHMzXyQHSnVeT/JiJMahuJQXy9t2tT13OORRoyQnHz/AgAAe3jzizdVtqtJTeVKOZArMvC6c1u6wdeWVNZu6c0hAe2/kUvCsq3K79Di5wf2CERudyYJQjajvyg8piEFLLXHKFmHI9RfSbDrNRN3ubX4+YGq8vN3Uy5QZ3tbOqpdy/brSN4wBcv269DSUe2q3cg5iUJDne2BOtsDdbYH6mwP1BkAAMB+TjrppJjbr732Wp1xxhk5nk20J598UrfeemuP7YZhaNmyZXmYEQAAAICiVUiB1zU1BF4DAAAAAHKCFU4AAGTKypXSli3R27IdeN1dQ4PU2CiNGpXbcRFfwCO1VSRuU1otucpzMx9kB3W2h4AreZ3LBxJuXuyosz0EnCnUeR/CkIsddbaHgCPF923qXNQCRorfz4ReFzWzTfInWbzu2YfQ62KXcp0J9SpqlhV9nNTlIvAaAADYxtL3l2reP66QJLlNyZ/qr0HxTivvDb5OhdsMtZ13bL2kgQR65UD3QOR2p6UGT+xilvkltxW7mB7TkNNnqcXdc1+Dx5J8UknQIAg5T6izPS0d1a55xzXITPE9OBnTkOYd1yBJvD8XEOpsD9TZHqizPVBne6DOAAAA9rR8+XIZRtcvgZZlyTAMfeMb38jjrEK2bNkSd34AAAAAkLJC+xti5858zwAAAAAAYBOsjAAAIFMeeijfMwh54418zwAAAAAAAAAAAAAAbCVoBrVg9QIFdmxXfakUdEiOFO+RbBldudfe4N5te7enwmGFxqsvlQKytGBcq4JGjm/QbFPhQORhrY64QcgDfIY8SRLbvKahAb7YbRo8loa1OghCziPqbC+ZDloMCwcuLh3VntmO0SvU2R6osz1QZ3ugzvZAnQEAAGBZhX1uo9DnBwAAAKBAFVrgNX/bAAAAAAByiNURAABkyuuvRz+PdbDXMHp/UDre67qPs2FD7/oHAAAAAAAAAAAAAPSK0+HUXTPvUtAhRebVphN8XeqXBraHPqYTeB3md4TCr+96uUrOVDtAny3bz6etpUG5zZ77BvgMlQRTq0VJMHYgstuUtpYGtWw/X1+nij6gzvaQraDFMAIXCwN1tgfqbA/U2R6osz1QZwAAAEiSUWhBcN0U+vwAAAAAFKBC+zuCwGsAAAAAQI4Reg0AQKZ89FH080Sh1w6H5DCkVI5RRwZlp3JQe+vWFDoFAAAAAAAAAAAAAGRK0AzquzcdI5epHqG4qQRfG5La3FJ9SehjKqeSu/frNiWXKX136k4FDRYo5UI4mE2GoYEdRlTt0wlCDuseiOw2pYEdoWsGCGjLH+psD9kOWgwjcDG/qLM9UGd7oM72QJ3tgToDAAAgzCrw8LVCnx8AAACAAkPgNQAAAAAAhF4DAJAxzc1pvsCQJUOWEflQ1KNXB7I7OtJ/DQAAAAAAAAAAAACg15wOp+Y+s01OS6pu6xl8nejMryEpnFHd4dy7zUr+mkhuMzSu05Lmvm3JaRXYoql+qHswm0Ndgci9CUIOCwcih4OQHXurTUBbflBne8hV0GIYdc4P6mwP1NkeqLM9UGd7oM4AAAAAAAAAgH6JwGsAAAAAACQReg0AQOaYZvI2uVAo8wAAAAAAAAAAAAAAG6ldY2r+k+oRfG0ZUrxlQ5GB1z32JQi+tvb2K0UHXs9/Uqpd1/vPAamJF8wWCkRWr4OQw0qCoX4c3b4CCGjLrUR1ru7ofeB1WEkw1A91zq9cBy2GUefcos72QJ3tgTrbA3W2B+oMAAAAAAAAAOiXCLwGAAAAAOD/Z+/O4+SoC/z/v6u6p+fumdwJSUgCmIQECTk45BCUQwkr2oIMiIK/KLKC47Uo7noFr1VB16+Ra3WDsBtkBBnkVgggAnKHQRKSIEkICUnINVdm+qz6/dHpOfuc6btez4dj0l3V9fkM7+nJTFd/3tXHXegJAABQNswiuZZEscwDAAAAAAAAAAAAABwmVjjdvDRaRL2nRgonWMeUrPC6bx87umO83Wz1F2wPK7wOhUY0f6TWelhAzScdiFvMZslWe6VUE7aHFyJnsH7M77LV45YaA3bCQmRFwvJtqhzBZ4B0JMtZkoxElfTJco6zLdFxyDk/UuUcl53kigR90jsgOecHOTtDTnK2JXIuLuTsDOTsDOQMAA4wtEwpHJYikeh6l2IrfgIAAAAAAMiWYnvdg8JrAAAAAECB0YoJAEC21NUVegZRlbz5GgAAAAAAAAAAAAAKxbc+WkAddClJYW7qwuu+fZP0ellGdJxBhdfImYhha+WR/iSF17ZCptThseV3xQ/YkHTUPlfCTP0uWx2e6HHaK21ZcZqSLUNaeaRfkXS/iJCRZDmnK1XO6SDn3MpGzqYtHb/TLXMUEZFzbpGzM5CzM5CzM5CzM5AzADiYZUXLrylbAlBCQgMuMmoMKK8zTZbnAwAAABiCwmsAAAAAAIbhrBoAANlyxBGDb8d7UXq0Lwyn8/jJk0c3BgAAAAAAAAAAAAAAGMZlG1r1l3ot2OMadP/AwuuYeMXXhqRL1lfq8teqdMn6ymGFyLHC65hExdcL9ri06i/1ctlFtliuTCTKOV2pck4XOefWaHM2benrL1frmudr9fWXq0dcuEjOuUXOzkDOzkDOzkDOzkDOAACFw4WeAQCkrbu7O+79Ho8nzzNBsdq/f78mT54swzBSfnzmM58p9HQBAACQKxReAwAAAAAQF6XXAABky/HHD76di9LreIaOc/jh2R8DAAAAAAAAAAAAAJCW1rlS81LJE1HC8i1bUrq9WrYhJTrTbNrRcZqXRsdF7nlDploe7i9oi1d4HTOw+DpWhLzkXbckacm77kGFyEMLr2OGFl8v2ONSy8P18sYbEFkzNOd0pco5XeScHyPNOVa0+IHt0WKbD2z3jKhwkZzzg5ydgZydgZydgZydgZwBAAqFCj0DAEjLrl274t5fX1+f55mgWP3bv/1bwq8TAAAAOASF1wAAAAAAJOQu9AQAACgbn/iE9LOfpd7Ptkf2wnW6Ly4PLd8GAAAAAAAAAAAAAORFrPA6Ykj7qyXLkAw7fsG1LUkHtyeSrPDasKPH318tjemNjitJvvWSwuHRfSJIyhuWWh6o0XnndOtvU624hdcxHR5b9UHpP16o1GnbXBqY6Oy9Lh3S5dF/Lgmo05P4GLHi61O2m2p5oEbeoCXJytrng/hiOTctPaC28ZGU+1dEpH972ZMw5/9aGFTiZ3S/BXtcanmQnPMl05wNSV9/qVIf2GZK6v9e+4GtpmRV6heLAiLn4kPOzkDOzkDOzkDOzkDOAOBwvH4JoESsXbt20G374Pq+8ePHF2I6KDKPPfaYbrnllkJPAwAAAIVE4TUAAAAAAEklWW4DAAAysmiRNGXK4PvivUht25m/WJxo/6HHHzNGmjEjs2MDAAAAAAAAAAAAAEZtaOF1rAjZUOJia1vxC7Gl1IXXsYeFzOh4ESM6fuvckX8OyFT6C9dM25ArzodpGxmsfyuyhXIO4A0aanmwVgv2uJLuZ9rSfzxfqdPfroib8+lvV+hHz1TJTPF2kWgBX628QbLOp4xyfqFSH9jmjrv9A9vc+iE5Fy1ydoZMcv73FDnzfbt4ZZLzN18k51KVzZx//DQ5FytyBgAAQDHr6enR3/72NxlDXsQ3DEPTpk0r0KxQLHp7e/X5z3++0NMAAABAIVF4DQAAAABASvHf8QUAAEZm2TLpRz/qv20Y8V8cPlh8bRhKvEo5umNm48+ZI7W1ZfYY5Fiv5Hor+S4Rt6SqvMwGuULOztBDzo5Azs5wII2cPZI8eZkNcoWcnaGbnB0hnZyrxMvdpS4omfuS72K1i2t5lrqAZO5Pvgs5l76ODmn/gJwrKqS9e6XGRsmVvLQCAACglEWsiFYuHF54HZPs1LB9cAfDliojUsCVvPA6dryBYsXXY3qllQulcx+25UrUpo1R6/TYalp6QGvHRTQmYGh/pT0s85iGoCG3JV27JCBJg0raHp8W1rVLAvJEDDUEpQ5P/NQrLGlMwNDacRE1LT1ASVuexYr4mpYeUNv4yLDtpi2teKJas/e75HcnfuaevaVCYwKGmk/rlRUnPgr4CivdnN/T7lLAlTjnpeRc1MjZGdLN+Yh2l4Ipcm4k56KVbs6Hd7gUStKCS87FLZs5NwTJuVilm/NhHS6Fk+R8DjkDAAAgy2688UYdOHBAhmHItu1B5dezZ88u4MxQDL73ve/pzTffLPQ0AAAAUCgUXgMAAAAAkBZaQAAAyKZvflP6xS+k3t7++0xTsqz4+4/2teOBLz6bpuT3S088McqDIqvcYWlSe/J9du2QwvxYVtLI2RncIWlSR/J9yLn0kbMzeILShM7k++zYIVnkXNLI2RnSynmnZFGwWdLSynmXZFGSW9JcEanOn3yfzppo6xtKlzsi1abIuaNGw+v7UNLcbikYjJZfH320NH16oWcEAACQEy7TpRufGaOFF+yPW36c6tSwLakmJHmDUqdHOpDiGl624hdfh03pxvsll4ufq3MlVngdK2MzbCUsvm4IGqoKR3OxNLj4OlZ4bUlySaoKS5IxrPg6VnhtHLy7bTzF14WQqIgvVsDne9OjtWOHF/QN5Xsz+uQeWsRHAV9xSCfn18aRc6kjZ2dIJ+d/kHPJSyfnV+MU6A5FzsWNnJ0hnZzjFWIPRc4AAADIBsuydOONN+rb3/72oKLrgZYsWZLnWaGYrFmzRv/1X/9V6GkAAACgUCi8BgAAAAAgbbT6AACQTTU10re/LX3rW4PvN4zcv1g8ZYrkosgNAAAAAAAAQBEKhaSXXpI8KdobAQAASlTEiugLHzHksqIlxQPLj22lvoaPIam3InpNp4ArejvZGWb74A4DD1thSS5L+sJHpHsesuXiwkFZFzFsXfzhA8PK1uIVX8cKrweKFV8/MS2sFyZHNPTy2UOLr4cWXse0jY/o4g8f0D331ZJzHg0t4htYwJeJoUV8FPAVF3J2BnJ2BnJ2BnJ2BnJ2BnIGAAAoD08++WTWjrVhw4asHi+eUCik3t5edXZ2atOmTVq3bp3+8pe/aP/+/bJtW4ZhyI6zJvC0007L6bxQvCKRiD772c8qHA6n3hkAAADlZ/z4Qs9gMAqvAQAAAABFjtJrAACy7ZvflO64Q/rHP/I3ZnV1tPQaAAAAAAAAAIrZunWFngEAAEBOuEyXlr07VWum7VNjr9ReHS2+TrfwOlZqHDh4nWPDjm5It/i6wpIaeyW3LS1rMylCzhGXbWjZWo/WTIiWpw00sPi6Jjy88DrGkvTc5Ej8jeovvu5x23ELryXJtKVlaz3kXACxIr6LP3xAy9Z6Mi7gi4k9buX8oFY9TAFfsSFnZyBnZyBnZyBnZyBnZyBnAACA0nfaaafJMDL/+StWLD3wz+uuu07XXXddVueXyVwGFl7H/m4Yho455hgdeuiheZ8XisPPf/5zrVmzJu62ww47TJs2bcrzjAAAAJA3558v7d1b6Fn0O++8Qs8AAAAAAICUKL0GACAX7r9fmjdPOnBAsixJUsSQXFm4UOKw45imdPjhfeOgcCKy5dLgN2bZVkRBO3k2thWRLDPpcVA84uVjkbMz2Ha0hSAZy+L7cakjZ2ewLHJ2AnJ2hrRytsm51KX9fM7LbJArhhV9viZjWamb4lDcrDRz5vfl8jL03+HOTimSuOAPAACglPl0pPTkZjW/v1uNvdLeGilsJn/MwMLrYdvSLL52DSi8XvGg5HvTJdWO8JNASrHytObT4hdfj/WP/neaqrBUFY5/HNOWVjxRPeLyN4yeN2joj/fXyGOleIKn4HvTo3M2u+UZ+oWEouANGrrnvtpRl8v73vTo3E0VlNQXKXJ2BnJ2BnJ2BnJ2BnIGAAAoD7Gy6EIfYyRSlXZfccUVeZoJis2bb76p5cuXx9124okn6owzztD3v//9/E4KAAAA+XH++dIf/1joWfQ77zzprrsKPQsAAAAAAFKi9BoAgFyYNk363/+VfD5JUmeldPHHpWVrJN/6kR+2da60cqG06m7JGzh455Qp0ZKY3t7Rzxsj1umO6OIT3tGyzQ3ybff23e+vDGq7uyfpYwOBCikYXZDcOrVTK2d1aNWzh8gbduV0zshcopwD5OwMkbAUDCTfp7dXCvNrVkkjZ2dIJ2d/QIqE8jMf5AY5O4OV5vftUZbPoMDsEDk7gTsiVQST79MrSq9LnTsiuVPk7Bc5lxv3kN+fUiwMBAAAKGnz58v3t79JD3brc+dqWCHyUMkKr/v2SaP42jKkkEu68V7Jt8GQKjn/lGuJiq9tQ9pfaasmbKgqPPLj+91Sj9vWmIAx6GuEwuvi0OmxdfGHe7RsrWdUWbQeHtTK+UGterhW3iC/KxWjbBUkUrRY3MjZGcjZGcjZGcjZGcgZAACg9KUqjh4oUbl1JsfItoFzis3DMAzNmTNHl156aaGmhQK7/PLL1RtnDWdFRYVuvvlm3UXpIAAAQPkqpsLrceMovAYAAAAAlAxaugAAyIXOTumnP5XGjlVn9141nS+1TZbWTIluHknxdetcqXlpdMFy0/lSy12SN2RK+/ZJtbWSi4XLhdLpjqjpxO1qawxozRi/JA0qRE5X69RONS/aFc34xO1qeWYqhchFhJwBAAAAAACyoK6u0DMAAADInaOPjv45Zoyk/ZKiJcXxyq/TKbzu2zdJ8bU58M7YOBUVnD/OA9+WaulJU82n9siS3Vd4HTKlDk80tFjxdchMcX0fSzIj0b/63bHHR48XK742ZWjFkzXybamUiLdgOissNZ19QG3jIloz0S+ZpnybKiVJO+ojOuBOHHRNxNCUQDS81sMCaj7VL0u2ms7pUctDddH3gKD4mbaULCqXGf1AaSNnZ3ClyNkk57KQ6vlMzuWB79vO4LL7f++Nh+czAJQWk+/ZQLlLVGSd72OMVqzw2rZt1dbW6vbbb5d76AXg4QgrV67U6tWr4277t3/7Nx111FGUXgMAAJSo7fu2a+rYqYl3SPOCPCFJFdmZUnJ79uRjFAAAAAAAsoIzawAA5MJ3viNt2aLOWreazvWobWxQUnQxc/PS6C4fy6D4emDhtRQt0G76hNRytyFvMCTt3i1NnpzlTwLpGFiELB3MeNEuSZkVIg8sQpaktsYAhchFhJwBAAAAAACywDSlqUneEAwAAFDqjjtOrTP9aj6pQ5WWoYaArY7K3A/bEJAqI1Lz2dHbvl0VaS+2wuj4NldJhqEvvr9b+w4WXsf0FV9HDFmGLTtJy7klQzIM+V12X+G1FC3L3l9pa5zf0Iona+XbXJm85A051VlhqenD3WobH5FkyJLUfGqPZBjybarUAY/UVZE454A7mnPrYQE1v7/n4HljQ23jI2o6u1stD9dTfF0KDCP589Aw+B5cDsjZGcjZGcjZGcjZIcgZAMpKRV4qoAAgY0acnylt29akSZP0xz/+Ucccc0z+J4WC27Vrl6666qq42w477DB997vfzfOMAAAAkC03Pn+jrnjoCnlMjwLfCQzfIYPC69ifOX3VowguDgQAAAAAQCZYIQEAQLY98oh0553RxY5ntKttfHjQ5ljxdevc9A43tPA6pm2S1PRxS50eW+rqkrq7s/QJIF1Di5BjYoXIrVM70zrOg1O6BxUhx8QKkTvdkWxNGSNAzgAAAAAAAKPkdkuNjdKcOZLHU+jZAAAA5Exrx3Nq/qA/ej7IMFQZkcwE64xsSXaaXVy2Ed0/HtOWKg+ekrYMqflsW61HhBLsjVw4/e0KTeoxFa+ruMNjy+9Kb7HZ0MLrmJApTeoxdfrbFAEVUrTwuutg4XU/y5Ca339ArYfFWfgYR7Tw+sDw88bjI2r6cJc6K6xsTRkAAAAAAKA4mWb0A0BZMwwj7Y9sHCNbH1K05Dr2UVtbq6997Wt6/fXXdeKJJ+brPx+KzJe+9CXt378/7rYbbrhB1dXVeZ4RAAAAsiFWeC1JQSuoyh9UDt4hw8LrRLezhsJrAAAAAEAJchd6AgAAlJVQSPr2t/sLr8cGJWv4i8eWIX1pafTvvvWJD9c6N7rf0MWOMW2TbDV9Qmq5r1Jey5I+/nHJ5crCJ4JUOhVQk3GX2mRIqhq23ZLUfFKnltvHSDqQ8DjrtFs3Gm/FPYYktU2Wmj4eUYvtk1eVcfdB7pAzBuuR9M8U+8xWopxRKsjZGbolbUqxz1xJlPGVNnJ2hjRyPp6cS1+npC3Jdzl+nni5u9QFJO1Nsc9kcS3PUkfOjrBnj7RuXf9tj0eaP79w8wEAAMiTiBXRyldWyqqploIB2Ya0vzJ6rtdQ/NJqW5IMyRiwsTIiBQac8k1WeG0oevz91dKY3oO3TUMrj/Tr3M0eudJt1caIxYqQd9baaggacUurOzy2qiJSsu7roMtWT4KXNhqChnbW2mr6cJdaHq6XN167NnIqUeF1TKz4+tPrPZq/L/FrVI9NC+oXC/2J3wNysPianAEAAAAAQNkyTda8AA5gZ6mILVvHyUR1dbVmz56t448/XmeccYaWLl2qmpqavM8DxeO+++7TH/7wh7jbmpqa9KEPfSjPMwIAAEA2DCy8jokVXwe+Exhx4fXA+7N6eXsKrwEAAAAAJYoWEAAAsunPf1bnzrf6C6+TvHicqvg6VeF1TNv4iJo+4lfL/R3ybtkizZkz8vkjLZ22X032H9WmdxVdOh6fJek7xl91mmZpniYM275Ou/Wg/qlquWUmKXNq07tqMv6oFuMCeQ1KVvOFnDGM5ZKU6k3Wbsnk16ySRs7OYLmVOmcXOZc6cnYGvm87A89nZ7AjSn3KwiUZLHwsaXZYqXN2SwbFXiXNNKMfA28DAAA4gMt0adXHV6npDxfola7HtN8dUqyz1rAlJSivHlh83RCQqsKS3y11VKYuvI6VZYfMg8XXfumYvRVatbpBLn4Oy7nOCktNZ3WrbVy0CLkqYkhBxS2+7nVHC80r4rwBIGTaCroUN+yGoBE9rg6+N+DsbrX8pYFC5DwamnMiliH9Zn5An9pgaMnu4csWX5wQ0u9n+1OW0ZNzCXDZkplkMSnlXeWBnJ3BtJJff89FzmWBnJ0hZc6uaNYobS4r2Vs5yRkAip1hSBVZrXoCUKQef/zxjPa3bVsf/OAHZRiGbNse9OdVV12lpUuX5mimUS6XSx6PR/X19ZowYYLGjx+f0/FQWrq6unTFFVfE3dbY2Khf/vKX+Z0QAAAAsiJe4XVM0Aqq0zDkTeM4iQqvB27PyqshFF4DAAAAAEoYLSAAAGRR5//+Nlp4PS4kWalfPE5UfJ1u4XVM2wRLTf/Sq5ZXXpKX0uucihYh/0Ft2pXW/rZsPaiNkjSoEDlahLxRdsJl6oO1aZea7D+oRRQi5wM5AwAAAAAAAAAAIFPeSq9+89HfauHW+QoFBy9rMuxoiXU8tqSaULTwWor+GTSlA57EYxlDTj+FTClsGvrNkw3yRtzJC98wap0VlprO6FTbuPCg+6sihvwRW4E4vYnR++xBxdchs3/foV8elRH1FV7HtI0Lq+msTrU82kghch4kyjkRy5Bum+uXTENLdvc/gV+cENRts/1y2dEe3VTIucgZhmQmeUPP0ItBoTSRszOYZvKfmci5PJCzM6TK2TDIuRwYqZ7P5AwARcUY8jsVFxoBHOPUU0/N2rHmzJmT1eMBmfrmN7+pbdu2xd32n//5n5o8eXKeZwQAAIDRSlZ4LUnty6VqpS6sTlV4PXC/URVfU3gNAAAAAChxvKMLAIAs6dyyQU11Dx8svLbSflys+Lp1bvR2poXXkiTbjhZfH/OGOjt3ZzZxpC3TIuSYWCHyOkWzybQIOSZWiNxp+zN6HDJDzgAAAAAAAAAAABiJzkCnLrvvMrkqq1VhDC5xSVR4LUULrHsrJL87etvvjt4eWmyd7HgVVrRM97JTO9VZkf75amQuWoR88GLYQ/hd8QuvYwKuaNG1NLjwOtG+/jgNyW3jQmo6o52ccyxZzsnYhnTb7F69OCEoKVZ43Zv0e0A85AwAAAAAAAAAQOE888wzuvHGG+Nue9/73qfLL788zzMCAADAaKUqvN67XKoZcDvRO0YyeydJ5vv3ofAaAAAAAFAGKL0GACALIlZEF7d+KrrYcQQvHseKrz/zsREUXsccLL6+WH9UxGbRY7ZFbEsX23dlXIQcEytEvlvrRlSEHNOmXbrYvouMc4ScAQAAAAAAAAAAMBIRK6KL775YbTvbZBqmGmvHqeJgy61tKOFZI8OWYqeHOyql9qron1L0/kTF17b6i68rLKkxYMiUobZxIV18ersiyRqzMWIRw9bFpycuvO7wpP7vHnBJvSnKsWM6PHbC4mtyzp1kOacjVnx987wDIyq8jiFnAAAAAAAAAE5iGCN8MRXIsmAwqM997nOy46wTdbvduvnmm/l6BQAAKDGpCq/fXS7Vx7l/6DtHRlpgnfHjKLwGAAAAAJQJSq8BAMgCl+nSss4jZNoa8QvIliE9cvgIC68PMm1p2Vvj5DL4Jz7bXIapZcYimRp5QLZsval9Iy5CliRThpYZi8g4R8gZAAAAAAAAAAAAI+EyXVp2zDKZB8/vmKZLjbXjZCq9wuuYoUXIqYqvTbu/8FoHby9bXyPXSFt2kZTLNrRsfU30vQEDpFt4HRPJ4DRgvOJrcs6tRDlnwjak18aGR1x4LZEzAAAAAAAAAGexbTtuyTCQbz/60Y/0+uuvx932ta99Te9973vzPCMAAACMRqrC63eWS41JHh8a8udIpf14fi8CAAAAAJQRd6EnAABAufCts6SNFWr+YGBUxdUjZdrSir+45JMt8b6JnPAZ8yRJzfaDskZRaDxSpgytMJb2zQO5Qc4AAAAAAAAAAAAYCd+RPklS80PNsmxLQUUUMY24C5HiFV4nYkiSrbjluRFDCrqkqsjBc8ZPN8i3pWrEnwNSi/33bT6pQ5aReeH1SHR4bCkoVUUMcs6ToTnnGzkDAAAAAAAAcIr3v//9MozhL8ROmTKlALOB061bt04/+clP4m6bOXOmvve97+V5RgAAABiN7fu2Jy283rJcGp/GcUZbeD3wOBXJdqDwGgAAAABQZii9BgAgW/bule/VkOSXmpcqr4seTVta8aDk2xCRZvXkb2AHKlQhMkXI+UXOAAAAAAAAAAAAGIlY8fXn7v2cOgIdfSUN9oAFSZkUXvc9RhpWfB07TofHlhGQfvtkIwW5eRL77/y597dnpfA6na8Hcs6/QhVfU3gNAAAAAAAAwEmeeOKJQk8BkCRZlqXPfe5zCgaDcbffcMMNqqmpyfOsAAAAMBpTx06Vx/QoaA3/GW/tcumQPM+HwmsAAAAAgNOYhZ4AAABlY98+ybLkWx8toDbz9JpyX+H1ekVfyO6h9DrXfMY8rTCWysx4KfrIUIRcGOQMAAAAAAAAAACAERtYTm0Y0fLr6P9GfPbJULToWopTnJ3HQl4MkO//7uScd74tVVrxdEN+3wNC4TUAAAAAAAAAAHl3/fXX6+9//3vcbRdccIHOPvvsPM8IAAAA2RD4TkAe0zPovheXS+/J8zwovAYAAAAAOBGl1wAAZMu+fX1/zVfx9aDC65je3twOCkn5K0SmCLmwyBkAAAAAAAAAAACZaH29Vc0PNavSVamGyoa++w3DkCFDhmlKpjHi8uJY8fXAhzcEDVVGDDWf1KHWmf5RzR/paZ3pV/NJHaqMGGoI5qeJmpwLJ1/F1xReAwAAAAAAAABQGG+//ba+9a1vxd3W0NCgX/7yl/mdEAAAALJqYPH1E8ulo/M8PoXXAAAAAACnchd6AgAAlI2enkE3Y0XUzUslKwdrXOMWXktSOJz9wRBXrKC42X5QlrJ/MoEi5OJAzgAAAAAAAAAAAEhHrPDasi1JUpU7WlzbEeiQFC2+PviX6IckWZYyPQU1tPC6KhK9xzKk5pOiY1GamzuxwuvY+wCqIoYUlDo8uVuARs6FF/tvPTD7bKLwGgAAAAAAAACAwrniiivU1dUVd9uPf/xjTZkyJc8zAgAAQLYFvhPQnYah9+V5XAqvAQAAAABOZhZ6AgAAlI1AYNhdvvXRYmozy681Jyy8lii9zjOfMU8rjKUyld1VrRQhFxdyBgAAAAAAAAAAQDIRK6KVr6zsK7yOqXJXqaGyIeHjbEm20f/hsgbfTmZgEXKMZUgr5/YoYrAgKhcihq2Vc3uGlR5XRQw1BNM/l+i2Uu8TQ87Fw7elSiuebsjNe0AovAYAAAAAAAAAoCDuuOMO3X///XG3nXDCCfrXf/3XPM8IAAAAOTF+vD4hZbktIDkKrwEAAAAATucu9AQAACgbVvxVqbFi6ualGrbwdSSSFl5LvLhdALHC4mb7QVka/X9/ipCLEzkDAAAAAAAAAAAgEZfp0qqPr1LTXU1q29k2aFuVO1pk2xHoSHqM6rDkCUvBiNTrST5evCJkSVqwt0KrVjfKlaoxGyPisg2tWt2opjPa1TYuNGhbVcSQglKHJ/m5xOqw5LEMBU1bvSnevUfOxSdWTN18Ukf23gNC4TUAAAAAAAAAAAWxb98+ffnLX467ze126+abb5ZpmnmeVeFdf/31uuGGG3I+zptvvpnzMQAAACRJ558v7d0rKVpEHUq+d1YkLbw+77w8zAAAAAAAgMKj9BoAgGwxEq9m9K2X7pkrPXL46Ic5fVOSwmsUjM+Yp3vs9XpEo3+jxek6jCLkIkXOAAAAAAAAAAAASMRb6VXL+S0Ji6/9Yb8CkUDcx8aKkCVbHktSMHHxdaWlhEXILY82yhty3sL7fPKGTLU8mrj42m/ZCiSIoD/ng3+GExdfk3Px8m2p0j0z/XpkWvzncyZO315J4TUAAAAAAAAAAAXyta99Te+++27cbV/96ld19NFH53lGxWH37t1at25doacBAACQHeefL/3xj4PuynXxdcrC67vuyuHoAAAAAAAUD1a+AACQLe7E15JonSutPiw7w6w+LHq8hFyu7AyEjLTa67Ram7JyrNXapFabN4UUI3IGAAAAAAAAAABAMrHi6wWTFwy6P73C634eS6oOxh8jYEp+lz3oPoqQ8ytWfL1g7+Alan5XeoXXMR7LUHU4/v7kXLxaZ/q1euroC68lafXUgFpn+rNyLAAAAAAAAAAAkL5HH31Ut956a9xtM2bM0PLly/M7IQAAAOTGkMLrmKTF1KOQ9LjjxlF4DQAAAABwFFa/AACQLXV1kmEMu7t1rtS8VLKGbxoRy4geL2HxtceTnYGQtlZ7nZrtB2XJTr1zGizZarYfpBC5yJAzAAAAAAAAAAAA0jG0+Nof9qsj0BF335qwMawIOcZjSbWh+GN0eOy+QmSKkAtjaPG132WrwxP/XGJNaHjhdYzHMlSboOCcnItP60y/mk/qyO57QE7qoPgaAAAAAAAAAIA86unp0eWXX55w+/XXX6+ampo8zggAAAA5Eaf/Y6BsF18nPd7YsdKePVkeEQAAAACA4sYKGAAAsuWII4a96J3twuuYhMXXhhF9sRt5k+0i5BgKkYsLOQMAAAAAAAAAACATseLryXWTExZeN1Q2JCxCjqmMSA3B+Pt0eGxN7jEpQi6gWPH15B4zYeF1QzBxsXlMpWWQcwnIduF1DMXXAAAAAAAAAADk13e/+11t2rQp7rbzzz9f55xzTp5nBAAAgKxLUXgtSaEsD5n0eHv3Znk0AAAAAACKn7vQEwAAoGwcf7z0179GX/y27ZwVXsfEiq8lybd+wIZDDpFC2X55HfG0ar2azYezVIQ8/BjRQuQHJCsin4Y2nCNfyBn9wpIiKfYJSRFXPiaDnCFnZwgpdc5hKUJ5SGkjZ2dI9/t2jn4xQ56k+3zOx1yQOyFFn9PJhCVZeZgLcies1DmHxDVbS1w4VcYAAADOsXrTau3s3qkKs0Iha/A53IbKBlW5q+RX/ELsgaoihhTUsFLlCkvaWR3R6qlB+bZUZXXuSN/qqUHtrI6owpKGdlI3BA1VRQz5XanPNZJzcctV4XVMrPhaEjkDAAAAAAAAAJBDL730kn75y1/G3eb1evWrX/0qvxMCAABA9hWg8HrgcSuG3mlno6cAAAAAAIDSQ+k1AADZ8olPSD/7mWQYap1rq/ns3BVexwwqvt5wcLDJk6Xdu3M7MNRauVnN3qdkWalOMNiSkWIf25IU/4vFktSsB6XOTvkCs0YyVYwCOWOwXqmyM/kugb2SPHmZDXKFnB3B6JE8qXLeLXIuceTsDGaPVJEq5z2K81YhlBLzQBo57xYvd5c4Iyi5UhS9hU1RhlziyNkZursLPQMAAICi0Pp6q5ofapYkNVY1qt3f3ld8HSu8zsTQQuQKS2oMGJJhUJRbQLEiZBmGGgNSe6XdV3wdK7zOBDkXp1wXXsdQfA0AAAAAAAAAQG6Fw2F97nOfUyQSibv9xz/+saZMmZLnWRWfCRMmaN68eQKQDGoAAQAASURBVDkf580331QgEMj5OAAAwGEKWHg98Ph9q9kovAYAAAAAOBgtIMAQgUBAGzdu1LZt29TV1aWenh7V1NSovr5e06ZN05w5c+TxUIgFII5Fi6QpU9TqfScvhdcxfcXXhi3f1lppwoT8DOxgfUXIys8JBku2mr1PSZ2iEDmPyBkAAAAAAAAAAAAjESu8tmxLkmQaZl/xdU1FTcaF1zGxQuQet63GgCHz4AVXKcotjKFFyKb6i69rwpkXXseQc3HJV+F1DDkDAAAAAAAAAJA71113nV555ZW424477jh94QtfyO+EitSVV16pK6+8MufjzJ8/X+vWrcv5OAAAwEGKoPA65p+SjqDwGgAAAADgcJReA5KeffZZ3XPPPXrooYe0du3ahFfolSSXy6X58+dr6dKl+uhHP6oTTjghjzNFIfj9fj311FN6+umntWHDBm3YsEG7du1Sd3e3uru75fF4VFtbq7q6Ok2dOlWHHXaYDj/8cL33ve/VCSecoEMOOaTQnwLyqHXZiWo+cGfeFjvGWIbUfLakDZPky+/QjpPvIuQYCpHzi5wBAAAAAAAAAAAwEkMLr2NMw9SYqjEy0lhYlUxVxFBlRDI0+DgU5eZXoiJkU4bGBIbnkylyLg75LryOIWcAAAAAAAAAALLvn//8p6655pq429xut26++WaZppnnWQEAACBriqjwepek9yyXPD+oVOA7gTyNCgAAAABA8aH0Go52xx136Nprr9XLL7+c9mMikYheffVVvfrqq/rJT36ixYsX6+tf/7qamppyONPi1NPTo1deeUUvvvhi38eGDRtkWVbCx3zve9/T8uXL8zfJEYpEInrggQf029/+Vo888oj8fn/CfXt7e9Xb26s9e/Zoy5Ytevrppwdtnz59uk455RSdc845+vCHP6yxY8fmevookNbXW9Xc8LSsXkMqwBUXLUNqXrhT6tpMWW6OFKoIOYZC5PwgZwAAAAAAAAAAAIxEosLrmNEWXvcdJ0GhMkW5+ZGqCHm0hdepjkPO+VGowusYcgYAAAAAAAAAILs+//nPJ1wr/OUvf1nHHHNMficEAACA7Cmiwut9kqYvj/49aAVVSfE1AAAAAMDBKL2GI61fv16XX365nnzyyVEf66WXXtKFF16om266STfddJPmzJmThRkWn0AgoLa2tkEF1+vWrVMkEin01LIqEonolltu0TXXXKNt27Zl5Zhvv/22br/9dt1+++1yuVz60Y9+pKuvvjorx0bxiFgRrXxlZbQkt65O6urK+BimLZ2+SVp9mEa2aLLSI8vt0soxm3Wu8T65DK4qnk0R29JK+zFZyvS/qyUdXIxsyNBhGqNN2i97UKGyefAjvaORce6QM5KyDkjqTrHTZMlk0XlJI2dnsLolHUix0xTJrMzHbJAr5OwMVpfSy9mTj9kgV6xOST0pdpoimRX5mA1yxQ5ISvVcnSQZrnzMBrli+5U658kSvwuXto4Oqbe3/3bFkO/Ppim5eC4DAIDy03fOOEHhdToMW5q/W1o7QSO+PKtlSCvn9ujctyrlsgvU1lvGIoatlXN7RlWEbNjS/P1urR0T1kgjIufcImcAAAAAAAAAAMrL//zP/+jxxx+Pu23GjBm65ppr8jwjAAAAZE0RFV53Spq8fPB9FF8DAAAAAJyM1gA4zt13361jjz02K4XXAz3xxBNasmSJWltbs3rcQgiFQnr55Zf13//93/r85z+vRYsWqb6+Xscff7yuvPJK3XLLLfrHP/5RdoXXzz77rN773vfqsssuy1rh9VCRSEQ7duzIybFRWC7TpVUfX6UFkxdES6/dmV1XwrSlXz0o/e6e6J9mpiuYTVPyVGqBJmmVcT4luTngMkytMs7XAk0a0eMNGVqq2fq45mmpZsvQyBakknFukTMAAAAAAECOVXERIQAAUJ4GnTMeAcOWLtlYrctfMnVJm0Z4lklasLdCq1Y3UpCbIy7b0KrVjVqwd2QX3+rLeV2tLtlYLWOE7ebknFvkDAAAAAAAAABA+di1a5e+/vWvJ9z+61//WrW1tXmcEQAAALKmiAqvuyWNXx5/W6z4GgAAAAAAp6FFD45y/fXX6/zzz1d3d3dOjt/d3a3zzjtPN9xwQ06Ony8PPPCAFi9erMsvv1y/+c1vtGbNGoVC+XoZL/8sy9L3v/99nXLKKXr99dcLPR2UMG+lVy3nt0QXMY8bm9YL5FJ/4bVvffS2b/0Iiq+rq7VAk9RiXCCvQWlMrniNKrUYF2RciBwrQp6nCZKkeZowokJkMs4PcgYAAAAAAMgRw5DGjCn0LAAAAHJm0DnjDMQKcpfs9kiSlryjERVfL9hboZZHG+UN8ZawXPKGTLU8mnkh8rCcd3tGVIhMzvlBzgAAAAAAAAAAlIcvfvGL2r9/f9xt5513nv7lX/4lzzMCAABAVhRR4XWPpLHLk+8TtILavm97HmYDAAAAAEDxYEUEHOPWW29Vc3OzbDvDFUQZsm1bX/ziF3XbbbfldBxkRyAQ0AUXXKDvfe97CofDhZ4OykDfIuZDFknjxqXcf2jhdUxGxdc1NVpgTqEkN08yLUQeWoQck2khMkXI+UXOAAAAAAAAWVZVJR1yiOTxFHomAAAAOZVp8bWpwQW5MbHi63QvlkxBbn5lWoicMOeDhcimneb5RHLOK3IGAAAAAAAAAKC03XvvvbrrrrvibvN6vfrVr36V5xkBAAAgK9IovJakzC51PrLjBCQ1Lk99jBvOvkFTx07N0owAAAAAACgN7kJPAMiH559/XpdddllahdcnnniiPvnJT+rEE0/UzJkzVV9fr66uLm3atEnPPPOMVq1apeeeey7pMWzb1mWXXaYjjzxSxx57bLY+DWRZT0+PzjnnHD3xxBNpP2bGjBlavHixDj/8cE2YMEF1dXUKhUJqb29Xe3u7tm7dqjVr1mjz5s05L1hH8YotYm66q0ltelHau1eK8/Vg2tL/i1N4HRO7/0tLJSvRa+51dVpQPVMt4/5VXrM6O58AUvJKarG+oqa9N6kt+HbC/UzD1HLvR7Qj0hl3+zx5pVC1/hrYkHS8BZ7pZFwA5Ixhwl1SYG/yfaqnSGZNfuaD3CBnZwh3SoF9yfepPkQyuQhBSSNnZwi3S4H9yfepPkQyK/MyHeRIuEYKtCffp/oQyaREtaRZvVI4RZFTxVTJcOVnPsgNq1cKp8iwYqpkUOpV0qqrpY6O/tsejzRjhmSSKwAAcI5B54x3tiXczwxHdM1THp33alD1vb1yR2wZtmQr+qPzGW9KR++Qvnu6lficsaQFO6WWuwLyBt/N/ieDhLySWlbZajpfapuceD/Tli57WZq/u0dSz7DtSzqkae9IvzwxyXsDRM6Fks2cD31H+gU5l76Infydt52SDqS3uBZFjJydwbKlZC9XknN5IGdnSJVzh6Qeci55th290kwi5AwAxWXoGppQKPpRka2qKQAA0vO1r30t4bYf/vCHOuSQQ/I4GwAAAGRFmoXXMRWSQqMYrmLAn0OPE5RUvzz1MW44+wZ94bgvjGIWAAAAAACUJkqvUfY6Ozt14YUXKhRK/hLUe97zHt144406/fTTh20bM2aMFi9erMWLF6u5uVl/+ctfdMUVV+jNN99MeLxgMKimpia98sor8nq9o/48kF2RSEQXXnhhWoXXhx9+uD772c+qqalJhx12WFrH7+zs1LPPPqt7771X9913n7Zu3TrKGaPUDFrE7HpZ2rtPCof7tpu29KskhdcxvvWSIak5XvG1260F7xpqecGQN/zbrH8OSM4rqcVtqOlYS23e3mHbTRla8epUHbf3Ra2ckbhscZ6kM/31+u68XbI0vBx9QWc1GRcQOTtXRLZcGvKN1xOWJsQvN++z61kp3P9rVtzjoGiQszPEzzkkTehK/sAdz0oWOZcKcnaG+DkHpQndyR+443nJ6l/5Ss7FLW4+lUFpPDmXk7j5uCNSbSD5AzurJbv/ceRc3Eacc0e1JHIuaZHI4Nsul7RjhzRhgnTccVIlF6MAAADOkLD42ral7m6ZB3q04gFbH3vdjnP2SKqwpOqQ9P+1SWMCCc4ZK1aQK3kDkuIeCbnkDUT/+ycqRDZtacWD0T+7klyv64NbpMPbyblYZS3nzdKsdnIuC6niGVrshdJEzuXPVvKcbZFzuSBnZ+D7dvnj+zYAlDbLiq6pCYelqqpCzwYA4CB79uyJe7/X61VlZaV++9vsreV6+eWXk25/4403Uo536qmn6j3veU/W5gQAAFB2Miy8jhlp8fXQy3cNPE5IUt3y1Meg8BoAAAAA4GSUXqPsffe739XmzZuT7nPGGWforrvuUkNDQ1rHPOuss/Tiiy/q4x//uB5//PGE+23evFnLly/XL37xi4zmXIpqamq0YMECvfvuu0nLwIvFl770Jd13331J9xk3bpx+8pOf6DOf+Yzc7sy+XXq9Xp111lk666yz9Otf/1ovvPCCrr/+et1xxx2jmTZKzKBFzGab1N4u9fb2LXb8WIrC65hYMXbfokfDkFwuLWivVMszU+QNhyWFkx0COeINSC1PTVHTidv1SqNf+z2WasKGaiKmVrw8Ub7t1dpeGZAiyfNZurVWY3onqnnRLvW4LPW4bY0JmjqmvYqMiwA5O0+nO6KLT3hHyzY3yLd9wMVL7LAUTnFKMxCQwtFyr9apnVo5q0Ornj1E3rArhzPGSJCzM4wq52Cor6yPnIsbOTtDwpyV5vftg2XI5FzcEuZshMi5jCTMORKJFtknEzD7Sq/JubiNKucgOZcd25Y6OqIf27dLH/1ooWcEAACQN8OKr7u7o4XXlq0VDxnybTAUv/J6sGHnjA8aXJCLQklUiBx7b4BvvfSnOamPQ87FjZwBAAAAAACyJMALIACAwuvs7NTll1+e1zGfeeYZPfPMM0n3ueWWWyi9BgAASGSEhdcxmRZfDy28Hnh/r6Ta5amPQeE1AAAAAMDpzEJPAMildevW6frrr0+6z/ve9z796U9/SrvwOqaxsVH33XefjjvuuKT7rVixQq+//npGxy52VVVVOv7443XllVdq5cqVevXVV9XZ2alnnnlGJ598cqGnl9Kdd96pG264Iek+H/jAB/Taa6/pc5/7XMaF1/Ece+yx+t3vfqdt27bpk5/85KiPh9LhrfSq5azfaME+jxQIyDRMrXisSr6Nmf0T7FsvrXgoulhStq0Fu6SWv02m7KcIeMMu/eb5yQobUsi01VFh6eK3vEOK+FLzbffq4re86qiwFDJthQ3pN8+TcbEgZ+fodEfUdOJ2vTTWr+ZFu9Q6tXNEx2md2qnmRbv00li/mk7crk53JMszxWiQszOQszOQszOQszOQszOQszOQM5Lq7ZX+/vdCzwIAACCvvJVetbzvF1rwz26pq2tQ4XUmfOujxbrmwY5sCnKLS6wQecHO6O2BRciZIOfiRs4AAAAAAABZYNvRc8cAAAAAAADpmjIlK4dJVGSd6X7Vti2P6Um6D4XXAAAAAABIo29yBYrYNddco3A4nHD72LFj1dLSopqamhEdv7a2Vn/4wx90zDHHqL29Pe4+4XBY3//+9/X73/9+RGMUWmVlpd773vdqyZIlWrJkiRYvXqyjjjoqK0XQhbBt27aUV1++4IIL9L//+7/yeJK/wDgS48eP1/jx47N+XBSxt9+Wt6lJLdv9uvj0Ci1bXyPfrippkmT5exXp6pArYvctZBzIMiTDMGQYpmQY8r0hybS0coGtVffY8trvSFOnShXpvrSOXOh0R3TZcTvlsqUKy1BN2NCqGZ06YW91RoXIrVM7tWpGpxpCpnrctly2dNlxO9XyzFQKkYsAOTtDrJitrTG6mtwypOZFuyQp45ybF+2SdbCroq0xoKYTt5NzkSBnZyBnZyBnZyBnZyBnZyBnZyBnpGXHjkLPAAAAIL+ee07eM85QS/iALv64tGzN8MLrdOuvY8W6KxdKq+4+WJBrGJKZ2UWXkRvesNRyt62LfZaWvWLK94YhHfwVxjAiSXM2DEmu6M6+NyQ9bGvlMZZWtZryhvuPg8JLlvMEv6WaxG9VU31Ykiv6fCXnEmbaUrJvu6YkV2YXNkARImdncKXI2SVyLgepns/kXB74vu0MLjv5L9A8nwGguA19DZPXNAEAAAAAQLouukjauTNrh6uQFEqxPanPf16SFPhOQJU/qFTQCg7bhcJrAAAAAACiSrO1FkjDpk2b9Mc//jHpPj/84Q81ffr0UY0zY8YMXXPNNfryl7+ccJ8777xT//mf/6mZM2eOaqx8mT17tm6++WYtXrxYRx99tCrKqFD3q1/9qvbv359w+xlnnKH/+7//K6vPGQW0dav0sY9JO3fKK1P3/HmMXPbBN1OHQjJ6/XJHbCn6v2EMWzJsWzKsgytcJd/r0rnrJZdtSwpIb70ljR8vlWgRfanrrLDUdOJetXmDMi1pjD/6fnpLlpoX7pT8fh2/q0JGYPiJioEeHLtP313YKcu2VRWWKsOSIVtt3l41HbdVLY+PkzfEmzoLJZ2cT97p0eT2SNLj/GXMPv0HORetgTnL6r/fkvpyPmWHR/IHkh7nvrEBXb2wQ5Y9+Js7ORcHcnaGdHI+aVfqnO8dt1vfIOeiRc7OkE7O70sn57G7dRU5F610cj7+3dQ5/2nsbv0bORetdHI+450qyZWkFUrSPeO69JWF7eRcpNLJ+fQ0c/4yOZcXl0uaOLH/digkhcNSDi48CQAAUHT+/nfp9NOlQEBeGbqnRf3njG07+pEh33rp3A3Rrq++47hcfYXJKCyvpHvusaM5D/iR164Iy07yI7DtMSVP/+86vs3SuVtsuTT4OCgOiXJusCxVJjltXGMYkqe/hI+cS1SFlbyg3GNIIcoWSx45O4M7Rc4Vg79vo0RVWMnLkMm5PKTK2WNIYXIueW6ezwBQ0oau0zr66MLMAwAAAAAAlJaLLpLuuCPrh01UfJ2yaea886Sbb+67Ga/4msJrAAAAAAD60ZCJsnX99dcrEkm8iug973mPPn/w6mmjdcUVV+j//b//p02bNsXdHolEdP311+vaa6/Nyni5Nm/ePM2bN6/Q08i6J598UnfddVfC7ZMnT9Ydd9xB4TWyo7NTuvDCQVeMdNlGdMFxV5fU2ytDaa5hji12NgzJMPoXQUtSJCLt2SONHSuZlP3kU2eFpabT2tU2tv90hqH+bCzZaj5hv5a/UC/btuIdQpK0bkxYN8wbXIo98DhtY4NqOm2PWh5tpNCpANLN+cfP1as6yWLGFycEdefh/kEF9+RcPOLlPFAs5x89Xy+XlVnOA5FzYZGzM6Sb8w9fqJebnEsWOTtDujl//4U6eazE+ZBzcUs352teqFNlqpwPI+dilW7OP3uuXnPaE78u9/ghAf3yvQeU6Ddsci6sdHP+6XP1mkvOqKiQrMSvlwEAAJSNbduks86SAv0Xcuo71zvKn4dcQ38JDgalykrOGReJQef0i+A4yA1yBgAAAAAAGCGvVzrzzELPAgAAAAAAlIIcFF7HDC2+Ttk0M26cFKezZmDxNYXXAAAAAAAMxkonlKVIJKLf//73Sff56le/KpfLlZXx3G63vvSlLyXd5/bbb5dFiUNBXX311Um333DDDRo3blyeZoOy953vSFu2DL4vHJb27pV6e/vvy2Ttom3HX/wciUSLtJE3nRWWms5oV9u4+EVOMZYhfee4Lq0bE467fd2YsB6cEVCSLkZJUtu4kJrOaFdnBf+O5FMmOX/zhC69OCEYd/uLE4K6bXYvORepTHL+9+PTyDnFeORcGOTsDJnk/B/HkXOpImdnyCTnbx/XTc4lKus58/N2Ucok56+f0KXHDwnE3f74IQFdu+AAORepTHL+BjlDil7ADwAAwAn+5V+knp7B9yU655sNwfi/OwMAAAAAAABA0aipkS65pNCzAAAAAAAApcDI/YXEK4b8mdDkydKePQk3B74T0LbmbRReAwAAAAAwhLvQEwBy4bHHHtOOHTsSbq+qqtKnPvWprI556aWX6hvf+IaCCRYRvvPOO3riiSf0wQ9+MKvjIj1/+9vf9OyzzybcftJJJ8nn8+VxRihrjzwi3Xnn4PvCYWn//vgLmA0pYkiWaci2bRmSTFtyJVrrbFmSOeS6FX6/VFUlVVZm4zNAEukWOcXYhvTgjGiZ07z9/T96xQqv7TTHjRU6tTzaKG+I65bkWqY5W4Z02+xoof2S3Z6++2MFfHaa59TIOb/I2RnI2RnI2RnI2RnI2RlG8nsVOZeekTyfr11wQJL0gXf6X98YWITsSuOXaHLOL3JGRgxDGjdO8noLPRMAAIDc+8lPpH/8Y/B9th39yBXbjp4zHjMmd2Ng5MYckJJevKdCclXlbTrIkYZg8l9sa11SL2/ZLHmNwegbexKpcUl+ci555OwM5OwMjQEp2cvI5FweUubslvyuvE0HOTImICU7N1ztlgLkDABFw+8ffHv8eGnmzOjFAqurCzIlAIAztbe3522s5cuX65prrkm4/dJLL9Xvfve7vM0HAACgpOWh8DomZeG1JCXpMIqZOnbqqOcCAAAAAEC54R2aKEv33Xdf0u3nnHOO6uvrszpmY2Ojzj77bP3pT39KOi9Krwvj5z//edLt3/rWt/I0E5S9UEj69rcH32fbUnv78MJrw1DQbSrkNqMvutu2FIkMelxt2JQRryjbtiX3kH/Gg0Fp9uzhhdjImk5XWE0LNqqtzpKU5hvjDck2I3pwZkiqrdW8A9VaV9urByf0yo6dbHG5lE77ddtES03nBtTSNlveCD/G5crIc7Z029yA5PVqSWedXvR267ZDumQbseekSc5FJGc5u8m5mJCzM5CzM5CzM5CzM5CzM4w0Z8uwde0ivzR2rD6wr0GPj+3QtTM7ZMVyNg1yLiI5yznNN6eScxHr7JR6evpvu93S5MnRhcsVab0lGAAAoLT19Eg//OHw+5MUXtvSgJ+F7UEbkv6EPPTn554e6Wc/i5Zfo2AitiWXMeS8/YGXJMsf/wGSVDFVqpqZ+jgobsFtkp3kwlCuMZK7MW/TQY4E3pYUTrydnMsDOTtDypzHSu6GvE0HORLYKimSeDs5lwdydobAW5KSXEzIPU5yceFNACgazzwz+DXRo46SGvj3GAAAAAAApCGPhddpSfK+LwAAAAAAkBwtAChLjz76aNLt55xzTk7GPeecc5KWXj/yyCM5GRfJ7d69Ww888EDC7TNnztSHPvShPM4IZe3Pf5befnvwfV1dg8usJamiQlZtjUKB7v77DGPwC/CGIbuyQrKNaJn20PJr25Y8nv7bliWNGSPNmJGdzwWDRGTp4sY/q60iqDSv13lQdCW6LenByZ1aH5Y2uTtla8DiZMOtFMvV+7SNCerik3bpnvYPySUWOGfb6HKOyJZ026H79VJIWluxX/bA0i/TJXIuDuTsDOTsDOTsDOTsDLnNOf2XQMk5t8jZGUaVs2xZkq494l09EbL1QsVuWYPKlNPPi5xzK6c5u8i55O3aJa1f33/b45G8lEwAAAAH+clPpN7ewffFu9CxlHqBlnHw/xItnLLtwccIBqUHH5Q+/vF0Z4ss67R6dfGuG7Ss/lT56paM+Dit3S9qZddftWrSFfKa1VmcIQAAAAAAAAAAAAAAAFCkKLwGAAAAAKCs0ACAsrNjxw69/vrrSfc544wzcjL2mWeemXT72rVrtXPnzpyMjcTuvPNOhcPhhNsvvPBCmSbfDpElt946+HYoNHxBc0VFtJza5VJaTDNaDDP06zQSGb44esOGzOaLtLlkalnvXJlpliLGY0t6092p0ZzaMGVoWe9cipxyJDs523qtYp/sUSRNzrlFzs5Azs5Azs5Azs5Azs5Azs6QjZwt2Xqu4l1Z5Fy0yBkAAABIYuXKwbcTLXwaelHkZDJZzPXXv6a/L7Kq0+pV085f66XAFjXvuU2t3S+O6Dit3S+qec9teimwRU07f61Oqzf1gwAAAAAAAAAAAAAAAIBSRuE1AAAAAABlhxYAlJ3nn38+6fbp06dr+vTpORl75syZmjJlStJ9XnjhhZyMjcRaWlqSbv/IRz6Sp5mg7L3zjvT004Pv6+kZfNswpIaGzF9wN4xoWfZQQwvdd+6UDhzI7NhImy8wSys6Tx5VodNomDK0ovNk+QKzCjK+U5CzM5CzM5CzM5CzM5CzM5CzM5CzM5CzM5AzAAAAEMfLL0s7dgy+L97ip0wKrwc+Jp6hx9+/X9qyJbNjY9Rihddtwa2Sohf6GUnxdazwOnaBoLbgVoqvAQAAAAAAAAAAAAAAUN4ovAYAAAAAoCxReo2y8/LLLyfdvmjRopyOv2TJkqTb16xZk9PxMdiBAwf097//PeH22tpaHX/88XmcEcra0NJ925YCgb6bQdOSamsll2tkxzdNye1W0BzwAnkkMvwF83ffHdnxkZZkhU62snPyIt5xKHLKr0IVd5FzfpGzM5CzM5CzM5CzM5CzM5CzM5CzM5AzAAAAMMSdd6a330gXaaX7uBQXjEd2DS28jsm0+Hpo4XUMxdcAAAAAAAAAAAAAAAAoWxReAwAAAABQtii9Rtl55ZVXkm4/+uijczp+quNTep1fTz/9tEKhUMLtixcvlmukBcTAUK++Ovh2MNj3gva2OkvTvyJdfVq4b7PhD6imN6y6A6H+D7816MP0B6Vw/2OuPt3W9K9K2+oGvFBuWYPH3bcv258ZhohX6GTJ1n4zIL/CSR6Zml9h7TcDgxYyU+RUGPku7iLnwiBnZyBnZyBnZyBnZyBnZyBnZyBnZyBnAAAAYIDnnht8O94CqFws0ho6zptvZn8MxJWo8DomVnz9rP+fSY/zWO+6uIXXMRRfAwAAAAAAAAAAAAAAoOxQeA0AAAAAQFlzF3oCQLZt3Lgx6fb3vOc9OR3/iCOOSLr9jTfeyOn4GOzJJ59Mun3RokVpHaezs1Nr167Vrl271NnZKcMwVFNTo/Hjx2vGjBmaPn065dmQ1q4dfPtgWfW2OksLL5f2VUvXHdMj+f366V8sGVLqKiDbjpZnB4O6+gzpuuOidy/8V2nNTbamdRvR0uuBX3+UXueFLzBL6pSavU8pLEvtZkAh2eowQ5IlVY3gxyy/wtHHS2o3A2q0KuWWSZFTAQ3MOdEC82ygsKuwyNkZyNkZyNkZyNkZyNkZyNkZyNkZyBkAAAA46J9Dio1zUXptGKkXV+3cOboxkJZUhdcxlmz9pvMJfar+JC2pHP77zIuBzfp919/lMsykx4kVX7dM/qK8ZvWo5g4AAAAAAAAAAAAAAAAUFIXXAAAAAACUPUqvUVZs29aWLVuS7pOqlHq0Uh0/1fyQXa+88krS7cnyevHFF3XHHXfo/vvv14YNG5Iep7a2VkuWLNHpp5+u8847T/PmzRvJdFHq9u4dfDscHlR4HXPdCZYUkX6yOv1DX326dN2J/bf3VQ8ovu4d8uK535/53DEivsAs9XSG9dnGJxQaUOg0kuLrgYXXkhSSrXYzqP9pP40ipwLLdXEXhV3FgZydgZydgZydgZydgZydgZydgZydgZwBAAAASd3dhZ5BVCBQ6BmUvXQLr2Ms2bqt6ylJGlR8/WJgs27rekoumUrnUusUXwMAAAAAAAAAAAAAAKDkUXgNAAAAAIAjmIWeAJBNu3btkj9F2eshhxyS0zmkOv6BAwf07rvv5nQO6Pfaa68l3X744YcPu++JJ57QKaecomOPPVY///nPUxZeS9Fc//rXv+q73/2u5s+fr/e97326++67RzxvlKhQaNDNeIXXMdedJH3z9PQOe/Xp0f2HihVfb6uzBm+wrOE7Iyc6jaD+r2ajauzh5dYdZkh+hdM6jl+RQYXXMTW2W/9Xs1GdRnDUc8Xo+AKztKLzZJnK7gk0CruKCzk7Azk7Azk7Azk7Azk7Azk7Azk7AzkDAADA8TI9V2vbfR9G34f6PmQP2CeX80BGMi28jrEPFl+/GNgsqb/w2s7wwkGx4utOqzejxwEAAAAAAAAAAAAAAAAFR+E1AAAAAACOMbyhEShh77zzTsp9Jk+enNM5pHP8d955RxMnTszpPBAtot66NfkCw0mTJvX9vbOzU1dccYVWrVo16rGfffZZnXfeeTr55JN1ww036L3vfe+oj4kSUFHR99dtNWEtPM+vfVWJd48VWf9kdeJ9vpmg8DpmX7W08DJLa34X0bTug9eysCypszODiWMkOs2QmqY8pTZXu6osUzIq1GEOLqfuMIOqt9xKtkY5JEtBc/ii8wbLoyrbVJtrj5rqHlLLjpPltSriHAH54tM4qXeRmie8KGvYubRY60ASQ054mba0Yvdi+brHSeI5WyzI2RnI2RnI2RnI2RlGn7MlDShfJefiRM7OMOqcRc6lgJyhAwcKPQMAAIDCMc3U+8Rekxrw2lSiZVyD7s9kcVU688CIRGxLF++6IePC65hY8fVLgc1aG9yeceF1TFtwqy7edYPumfxVuQzyBgAAAAAAAAAAAAAAQAmg8BoAAAAAAEeh9BplZe/evUm3e71eVVZW5nQONTU1qqurU3d3d8J9Us0T2bFt2zbZKV5gnDBhgiRp/fr1+uhHP6qNGzdmdQ5PPfWUjjvuOP3qV7/SZZddltVjowiNGyfpYOH1+Xu0L41vN8mKr1MVXsfsq5YW/n8BrVnpiRZfV1RIgUAGE0emOs2Qmg59Tm2ejr6epirblN9wKWBEBu3bZYblsUxVaPhC45AsBUxr2CL2StsVLdI+ePA2z341TXpSLVuPp/i6wHyBibqneoIeqXt3yJY0TmgN+Tfp9O6J8u2dKInna7EhZ2cgZ2cgZ2cgZ2cgZ2cgZ2dImrORqtzc0MCvB3IuXuTscNbwC7wBAAA4Rl2d1NGRfJ98LJTK8XtjnMxlmFpWf6rWBN6SNcLCalu2XgtuG9U8TBlaVn8qhdcAAAAAAAAAAAAAAAAoDRReAwAAAADgOKx6QVnZt29f0u1erzcv80g1Tqp5Ijt27NiRch+v16v169frtNNOy3rhdYzf79fnP/95ffvb387J8VFE5s8fUHid/gvc150ULbgeKN3C65h9VdLCZUFtq7OkPH2vc6q+wuuqwYvV/UZkWOF1TMC0FNLgsp9Y4XXc/Y2I/EOO1VbVoaZDn1OnGRrF7DFard7tWl23OyvHWl23W63e7Vk5FrKLnJ2BnJ2BnJ2BnJ2BnJ2BnJ2BnJ2BnAEAAOBYRxwx+PaQhVqRLK3bSnmcyZOzMxDi8tUt0Yrxl8gcdnnj/DBlaMX4S+SrW1KQ8QEAAAAAAAAAAAAAAICMUHgNAAAAAIAjuQs9ASCb9u/fn3R7fX19XuaRahxKr/MjndLr9vZ2nXHGGdq1a1fO5/OjH/1Ipmnq+9//fs7HGqnrr79eN9xwQ87HefPNN3M+RiFsm3tIxoXXMbGC65+szrzwOiZWfL3muSpNy/zhSEOywusOV/Iy6oBpSZZUITNp4XVMhyskRaQq29V3X6z4umXr8fJaFSP/RDAird7taj6kTZaycxLLkq3mQ9okSb7OqVk5JkaPnJ2BnJ2BnJ2BnJ2BnJ2BnJ2BnJ2BnAEAAOBoxx8v/fWv/bcNo2+BVGeldPHHpWVrJN/6kQ/ROldauVBadbfkDQwYZ6DDDx/5AEhLrHC6ec9tWfv9Jx0UXgMAAAAAAAAAAAAAAKCkTJlS6BkMRuE1AAAAAAB5Q+k1yorf70+6vba2Ni/zqKurS7o91TyRHR0dHSn3+cxnPqPt27cn3D5t2jSde+65OuecczRr1ixNmjRJtbW12rVrl3bu3KlnnnlG9957r/72t78pHA6nHO8HP/iBjjzySF100UUZfS75snv3bq1bt67Q0yhJwXBQizf/+4gKr2OuO0m6a760pXHk89hXJS0+ea3efmu2PPwzn1URWbp4yrNqq+yU1L9o3G9E1GGmfv5L0eLrsG0rYqT3ddLhCkuWMbj4urpTF898SffsOFUumRl9Dhi51tqtap7wqqJV5QmuJJvyArPGsJ0sSc1TX5U8HvkOHDraaWKUyNkZyNkZyNkZyNkZyNkZyNkZspfzYORcXMgZkqRAQPJ4+m9XxLl429BSRgAAgHLxiU9IP/tZ/+0BhddN50ttk6U1B9dwjaT4unWu1LxUsozo8VruOlh8bduDf8Y6/viRfw5IW76Lrym8BgAAAAAAAAAAKF6nnXZa0u3HHHNMXuYBAABQVKZMkXbuLPQs+lF4DQAAAABAXtGGibISDAaTbne78/Mln2qcVPNEdvT29qbc5/HHH497/7hx4/SDH/xAl19+uUxzeKnsoYceqkMPPVTHHXecvvKVr2jDhg36yle+oocffjjlmF/4whd08skna/r06ak/CZQMj9ujzyxapuue/plGs5Z1NIXXMZ8JHClPXRYOhEFckpYFj9Kaqqf6Fiz7jYg6jNDBPRIV9Qz+gkhceB3/8R1mSLL7i69NGVoWPEquOm9mnwBGrLVys5q9LyUv7JLSKGsaXsInHSzumviS1FktX2DWiOeJ0SFnZyBnZyBnZyBnZ8hezvEvFkPOxYGcnSHtnFNJ8HVAzsWBnNEnGBxcdD209NrlkuK87g4AAFAWFi2KLtTasSO6QMq2BxVeS9HC6ual0b9nUnw9sPBaih4vbvH1mDHSjBlZ/bSQWL6Krym8BgAAAAAAAAAAKG6nnXZayuJrAAAAR7noouIqvL7wwkLPAAAAAAAAx2FFOcoKpdcYyO/3j+hxxx9/vDZs2KAvfOELcQuv45kzZ44eeugh3XTTTSkf09HRoebm5hHNDcXtp2f+VFetH1fQOVz1cqV+2n1CQedQznyBWVrRebJMGQcLr/Pz/bzDCMpvRKILmTtPptgpj6KFXU/ldIG6JFmy1ex9Sq2Vm3M6DuIjZ2cgZ2cgZ2cgZ2cgZ2cgZ2cgZ2cgZ2SkpqbQMwAAAMitZcuif8YpvI6JFV+3zk3vkEMLr2NixdedlQPuPPXUEU8dI+OrW6IV4y+ROZoLACVB4TUAAAAAAAAAAAAAAABKzh13FHoG/S68UPr97ws9CwAAAAAAHCc/DcBAnliWlXS7y+XKyzxSjROJRPIyD6cLhUIZP+bUU0/V/fffr7q6uhGNefnll8vr9erTn/500pz/9Kc/6e9//7ve9773jWgcFK+f/mGf9EHpupPyP/ZVT0s/XR2QLurI/+AO4tNYPWtN13Vj12f5yMlLoTqMgC7bP0u+PWMlkXE+tNa9rea6l2Sl1ddlK1WGspNvt2Srue5JqeeAfN3T050mRomcnYGcnYGcnYGcnSH7OVtSksIhci6MzHK2RM6lKevPZ5FzMSJnDNPVJQ28KGU4HL2vokJqbJRG+Po7AABAyfjmN6Vrr1Wn7Y9beB0TK762JfmSnHpsnSt9KU7hdUys+LrlLskbcUnvf7/U2TnqTwOZ8Wm2VHu+mrvvjH9BIDvV70Pxt5sytKLufPms2eRaCsLdkh1OvN10Sy4zf/NBboQPJM/Z5ZZMci555OwM4W7JTvJ+XleFZObmohbIo/ABcnaClDl7yLkchA8cPC+cgMsj8c8zABSPYHDw7XCS37EAAAAAAED5MYrodfnJkym8BgAAAACgQCi9Rllxu5N/SYfz9AaZVONUVFTkZR5Ol2nJ+cSJE3XnnXeOuPA65qKLLlJbW5t++tOfJt3vuuuu0x//+MdRjYUic/vtkm3rp6ujN/NZfB0tvD54Y9Mm6bDD8je4w7TWva1V3rfUYHnUYQZTPyBLGiyPVnnf0gn+8RQ65UFr3dtqnvhSwvKAXLEMqXniS5JEznlAzs5Azs5Azs5Azs5Azs5Azs5Azs5AzshIMb1xGQAAIJcqKtQ5ZayaTnwnYeF1jGVEC62l+MXXqQqvY/qKr+815f3TnyjhLBCfJI2bruYjNg4vvjaTFLNJ0WJVe3DQpgyt+Ods+fa+KenNbE4VuVLTnTzrYGX0A6UtVc6BSilEziWPnJ0hZc5VUsiTv/kgN2q7JYOcyx45O0Ntl2QkuZgQOQNAcQuHpTFjpOnTpYkTCz0bAAAAAACQS8X2vvEdOwo9AwAAAAAAHIvSa5QVjyf5mxTzVXodCoWSbk81T2RHpv+db7rpJk2YMCErY19zzTW6//77tXbt2oT73HvvvdqxY4emTJmSlTGzYcKECZo3b17Ox3nzzTcVCARyPk7erVjR99d8Fl8PKryWpM2bpYULcz+wA7VWblazd40sGaqSW7KkDjP593wNXcycUOKTNw1WharklmVKzZPXSJ218gVmpT1vZGZgzhlJeQLOULKcYyyDnPOBnJ2BnJ2BnJ2BnJ0hdzmnV/JEzvkxspzN5IuXY/ukgZzzY8TP55TIuZiQMxKKRKSqqv7bFRVSfX30736/1N1dmHkBAADkSeeDrWr6wF61jUlv/0TF1+kWXse0TZaaPhZSy9rd8jZOymzSyBrf3gm6Z/xuPdK4b9THOr19jHx7s/M+FgAAAAAAAKDg/H7pjTekUEg69thCzwYAAAAAAORCsRVe2+l2PQAAAAAAgFyg9BplpaKiIun2YDCYl3lQel0cMvnvvGTJEvl8vqyNXVlZqe9973u64IILEu4TDof1pz/9Sf/6r/+atXFH68orr9SVV16Z83Hmz5+vdevW5XycvFu/ftDNfBRfDyu8lqT29twN6GARWVpZvV7WgBLr9Iuv+7lkKJJ2EXZ/4XWMJVsrq9fr3MAMudIsgUL64uWcKUOG5ofGaG3FftkjPA455xY5OwM5OwM5OwM5OwM5OwM5O0M2cjZl6NjQBL1QsXvExyHn3CJnjEpPT6FnAAAAkDOdgU41/e1LahsXkmRKlpXW44YWX2daeB3TNtFWk/sNtWwbJ2+Et4UVQuu43VrduD8rx1rduF+t43ZTfA0AAAAAAIDy8tZb0QJsAAAAAABQXii8BgAAAAAAQ7C6CWWlrq4u6fbu7u68zKOrqyvp9lTzRHbU1tamve8XvvCFrI/v8/k0ZcoU7dixI+E+Dz74YFGVXmOU4jz3c1l8HbfwWpJCISlP3++cxCVp1YHj1TT5KbVV9i9SrpLrYPF16gsrVNouVdiGQoatgBEZsnX4SZMGy6Mq2zVo24LAGK3aebxcNuVAuZAo59RsSbYMGbqkc6aWBMbpxcq9us27ub+IL4MTY+ScW+TsDOTsDOTsDOTsDLnN2ZKU3pumyDm3yNkZRpWzYcu0pa+3H6kP9E7W49U7dW3juv6SN75vFw1yRlI9PVKyi5BGImmXPwIAAJSSiBXRxbefpzZz94geHyu+/tNcafVhmRdex7SNDerimn/ontePkSvN35WRHa3jdqv5iI2jukDQQJZsNR+xUZIovgYAAAAAAED5sG2pvb3QswAAAAAAANlE4TUAAAAAAIiD0muUlbFjxybd3tnZmZd5pBon1TyRHen+d66srNRFF12U9fHdbrc+9alP6dprr024z7PPPpv1cVFACYpaclF8nbDwWoq+AN/bm73B0McrqWXLEjUd+pzaqjr67q+yTcmuUIcrlPCxlbapCjt6sib6p6mAkbjcpyFSET3uwMJrf4Nati6R14pIIuNcSZRzcrYMSZfsn64lvfWSgloSrJfC03XbmK3RFNM8OUbO+UHOzkDOzkDOzkDOzkDOzkDOzjDSnE1b+vru2frAgTGSAvqAf4wUnK1rJ2yUZdjkXGTIGQn5/dEL88XEewMzbyIGAABlyGW6tMxcrDX2Y9HC6hH8zGMZ0iOHj24epi0te6NerugvzKM7GNIWLbx+I2uF1zF9xde2TfF1KbCV/Glnp/97L4qYbZOzE5CzQ5CzI6TKkJzLAzk7Q6oIyRkASgvfswEAAAAAKB8UXgMAAAAAgAQovUZZGTduXNLt7Xm6CnxHR/KCj1TzRHak+9954cKFqq6uzskcTjzxxKTbd+/erW3btmnatGk5GR95luTF75+ulu6aL21pHP0wM9uTFF4j57xWhVq2Hh+n+Nolvx2JW2QdLbw2B90Xu51o/yrbNei+aJHT8fJaFdn4NJBCopwTMWXokv2HaknvmEH3x27fNmZrWuOSc36RszOQszOQszOQszOQszNkmrNBziVpJM/nf9v9Hn3gwOACr9jtaydsTGtccs4vcgYAAAAG871VIz3doOaT2mUVYPGUaUsr/uKW74BLmlVki8nKWK4Kr2Ms2Wp+zxuSYVB8XeyMgx8JtxvFt9ATmTMMyUjyfCfn8kDODkHOjsDz2RnI2Rn4eRsAStvQ10sbGwsyDQAAAAAAkGXF9roshdcAAAAAABQVM/UuQOkYP3580u2BQCDnxdf79u1TMBhMug+l1/mR6ush5oQTTsjZHI4//viU+7z55ps5Gx95luQF+atPz07htRQ9ztWnZ+dYGJlYodMCf0PffX4jfuF1vVUxrPA6psI2VRlnW8Cw5DcifbcpciqMeDnHY8rQT3YcNayAL2ZJ7xhdsv9QmUlXW5BzoWSS83/umE/OJYqcnSGTnH9MziWLnJ0hk5x/uIucS1VmOc8j5xKVSc7X7njvsCLkmA8cmKCv756d8oQGORdGJjn/jJwBAABQ7taulW9LlVY8bMrM8/op05ZWPCT5NprSgQP5HdzBooXXG3NWeB1jyVbzERvVOm53TscBAAAAAAAAcm7qVKm6utCzAAAAAAAAo0XhNQAAAAAASMFd6AkA2XTooYem3GfXrl1qzOHV4Hft2pVyn3TmidFL97/zvHnzcjaHKVOmqLGxMWnZ+ttvv52z8ZFnpilFIsPuvvp06bqTsjtU7Hg/XR1no2FIlZXZHRDDeFWpll3vV9OUp/Rc1V51mKFh+zRYHnlsQz3G8K+LmGjxtUtdQx7f4QpJlqHj/ePUsutkeSsociqEgTm3VbYP227a0ordS3RqcIIerN2R8DhLwhO1ZM9EfXP8K7LinL9bEGgk5wJKN+dTghP0cIqcj90zUVeTc1EiZ2dIN+eTghP0lxQ5H7d7or4xgZyLETk7Q7o5v88/Xo/W7kx4nCXhiTph9yRdNWENORehdHM+3j9Oj9Umfs1tSXii3rd7kv6NnItSujmfEZisjZ6uhMf5QGiqZu5u0FcmvETORSjdnE8PTtYbKXKetbtBXybn0lZsb14GAADIp717pUBAvnW2FDHUfLYd92fbbDNtacWDkm+9JLclhYafu0T25avwOiZWfC1Jvr3xLygEAAAAAAAAFC3DkKZPj5ZeAwAAAACA0lZs7xmn8BoAAAAAgKJE6TXKSl1dncaNG6e9e/cm3Oett97SnDlzcjaHLVu2JN0+ceJE1dbW5mx89Kuvr0/59SAppyXokjRmzJikpdf79u3L6fjIo/p6aUjWuSi8jklYfF1RIXm9uRkUg3glfSp0pB6v+aukwSdmGmyPquSSZdiSYSU9TpXtlmmb6jCCg+7vMSP6VOhIeevGZXnmyIRXUkv32WpyP6I2d/+/KaYMreg6WT5zlvbV+aU4pV4D/UvgUNV2e9XsfWrQwvcF4XFq6T5T3jpPjj4DpCOdnPfU9abM+SOBmaoh56JFzs6QTs7v1vdInuqkxzk3MFPV5Fy0yNkZ0sl5p7dHquhIepxzA7NU2V1PzkUqnZzf8R6QKjqTHuejgcPkIeeilU7OXd6g5Er++/PHwofK1V1LzkUqnZw769PL2STn0tbbW+gZAAAAFE4oJPX0SJJ8GwzJttW8VDktvu4rvN5g9J+ybGiQTj89d4NCrdZaNUdelKV0f0cJS0nLsU1JrpRHsSQ1z39Lcr1XPnN+mmMjb+xdimadSL1k8H6OkpcyZ69k1OdrNsgVcnYGe6ekSJIdGiSjLl+zQa6QszOQszPYOxT9rSiRRslgnQYAFI316wffPuooadIkyTQLMx8AAAAAAJA9FF4DAAAAAIA0UXqNsjNr1qykJcdvvPGGzjrrrJyN/89//jPp9lmzZuVsbAx32GGHFbz0OtXxew4ueEUZmDtXevbZvpu5LLyOiVt8neOvafRrrdysq+uf0xjLo/1mQKGDi5QbbI+q7NQLkgeK7u/pK76ukKExlkdX1z+nGrtCvgD/fhSS1/aopf1MNTVGi7tMGVrReXLGufgCs6RO9RV3LQiPU0v7mfLaFHYVA3J2BnJ2BnJ2BnJ2BnJ2BnJ2BnJ2BnIGAACA41mWFOy/0K3vYK9Lroqv+wqv16u/8DoSic4jnKyoE6PRar+uZj046EI9qWVvcZ0lW82R+6WIJZ9xZNaOiyywI0pethiRDJ6bJc8OK3nOYXIuB+TsDCm/b5NzWbDDSl6SS85lgZydwY6InAGghAwtmwqHJb9fqqkpzHwAAAAAAEB2UHgNAAAAAAAyQOk1ys78+fP14osvJty+YcOGnI6f6vjz58/P6fgY7KijjtILL7yQdJ/q6uqcziHV8cMsNC0fzc19pdf5KLyOGVZ8PWeO1Nubn8EdrLXmLTXXPy/LtmVIGhOp1H4zoBrbrSrbVP+iZVsyUpwsOXgypco2JaNCPUZYY6xKGZIsWWqu/5sUDMjXMyOHnxFS8Upq6T1ZF0/8m5Z1HSFfz2RJB59rpl8yg8keLgUCkmXL1ztZCh6rlfX/1Kp3T5bXjvQfBwU36px7eyVFyLnIkbMzpMzZIOdyQM7OkDznXkmpcvZLCpNzkUv5fE6Zc68kNzkXuaQ5GyGpIpD8AMFeSSY5F7nkOQfJ2QkCKTIGAAAoZ3EWUeWq+HpQ4XVs7NiismBQ2rEje4OhT0SWVjb+XVZFhu/1MGzFziEbMjQ/NEZrK/bLjp1XznD9nSVpZejvOrfdK5fMzB6M3HHvU9LyVKtHsrrzNh3kSMqce8m5HJCzM7j3Kml5qtUrWV15mw5yhJydIWXOfnIuB+49SvrLU8Qv2bldFwAAyMDQNS0dHdHi66oqaeLEwswJAAAAAACMDoXXAAAAAAAgQ5Reo+wsWrRIt956a8Lta9asyen4L7/8ctLtCxcuzOn4GGzx4sW65ZZbku7T0dGR0zmkOn6uS7eRR5/8pPTpT+vqD1h5K7yO6Su+fsyIvgGwm0VVudTq3a7msW2yBpwIMSSNjXgO3hp4gsROvUB5wHGqbFNV8gw6hiVbzWOfk/x++Tqnjnb6GAWvpHu6jpNLhqQBzzMzKBn+5A/u7pas6NeIr3uczn13rFwKKmV5H/Iucc7+1Dn3kHOpIGdnGF3OPZIVzZScixs5O0PCnN1p5NzdrdjLoORc3BLn3EvOZSTx9+2Q5OlJ/mB/hXSwyIuci9vocvYo+koLOZesIFkBAAAH83j6/z7gHGC2i6+HFV4P5XKNfhDE5ZKpVR2nq6nxEbW592b8eEOGLumZrSWhCXqxYrduq9nYX3ydgQXhcVrVcTqF1wAAAAAAACgtfr+0Z0+hZwEAAAAAADJF4TUAAAAAABgBVr2g7CxatCjp9ldeeUWRSCQnY4fDYbW1tSXdh9Lr/FqyZEnKfdrb23M6h/379yfdXldXl9PxkV9XXzIl74XXMdedJF19TmVhBneQVu92NR/SJmsEC49Hw5Kt5kPa1OrdntdxMZxL2Tkpl63jIDfI2RnI2RnI2RnI2RnI2RnI2RnI2RnIGQAAAI4UuwCIbQ9bWOVbL52+KTvDnL4pQeF1bMwcvS8GUV7bo5b2M7UgPC6jxw0svJakJaEJuqRntowMf+9ZEB6nlvYz5bU9qXcGAAAAAAAAik1PjxQIFHoWAAAAAAAgXRReAwAAAACAEaL0GmVnyZIlqqqqSri9u7tbL730Uk7Gfv7559XT05Nwe1VVlRYvXpyTsRHfwoULVVtbm3Sfd999N2fjRyIR7du3L+k+U6dOzdn4yK+rH7la183aUdA5XLfYr6sn/aOgcyhnhSq8jqH4GgAAAAAAAAAAAChisQVecRZWtc6VVh+WnWFWHxY9Xlws6sqLTIuvTWlQ4XVMrPjaTLP4msJrAAAAAAAAlIShZViWNfi235+/uQAAAAAAgJGbMqXQMxiM90YBAAAAAFBS3IWeAJBtVVVVOumkk7R69eqE+zzyyCM67rjjsj72o48+mnT7KaeckrSQG9nn8Xh02mmn6YEHHki4zwsvvJCz8V977TX5U7wRa8aMGTkbH/kTDAf1u7bfRW8Y0kg7kWe2S1saRzeX3419Sz/Yd7Q8/DOfVRFZWjlua+aF18bgvx4WrNMmT/fgo2TwNWPJ1spxW3Vu76Fycf2S4mFakivFc66iQrIq8jMf5IYZIWcnIGdnSCdnl1tykXNJI2dnMMPpfd/m96PS5gqRsxOYktzp5MzvwiUtrZzdIucS53ZLLlf/bTNOnkMXOAMAAJQL04z+LDSkwKV1rtS8VLKy9GOQZUSPJ0m+9XHmwM9beRErvm5qfERt7r0J9zNl6LKeIzU/NDbu9iWhCZpm1eqXtf9Iej6awmsAAAAAAACUjKEFVENfs6zgfXsAAAAAABS9KVOknTsLPYt+FF4DAAAAAFByaAFBWTrzzDOTll7ffffd+ta3vpX1ce+6666k288666ysj4nUPvzhDyctvX722WdzNnaqY1dWVmru3Lk5Gx/543F79NLnX9LCmxdqX+8+KWKlftAQVz0t/WS19M3TpetOGsEkDENj7Uq9tO98eRrrRnAAJOOStOrAh9VUkXzB8nC2ZFgyJC31H6p54TFaZ+/Xg1VbByxXTn/h+YLwOK06cKZcjSxkLi5+qbIj+S4uryQuflHaeqXKzuS7uBol8fwsbeTsCEaP5EmVc4PIucSRszOYHqmiK/k+rgZJLJIqaWaFVNGdfB9Xo3i5u8QZwegv38lUN4oy5BJHzs5gWdLAC4AOXaxsmvGLsAEAAMpBnKKWbBdex6QsvkZepCq+NmVoRefJMiV1KZTwOB8MTtXhkQY1e5+KW3xN4TUAAAAAAADKhtstVVcXehYAAAAAACCZiy4qrsLrCy8s9AwAAAAAAMAIsMIJZen8889Puv3ll1/Whg0bsjrma6+9pn/84x8JtxuGkXJeyI3zzjtPLlfiJpXNmzfrn//8Z07G/stf/pJ0+8KFC1URZ9ErStM07zStuXyNxlaPzXgRcazwWor+edXTGQ5uSGPtSq3Zc76mWRRe50pswfKC8LiMHjew8FqS5oXHaKn/UGW6rp2FzAAAAAAAACh5VVwUDAAAlLGaGikc7ruZq8LrmFjxdevAa21bVrQ0BnmT6DxyrPDaF5iV1nF8gVkHC7IHf8FwnhgAAAAAAABlwzSlCRMkI0cvmgIAAAAAgNG76CLpjjsKPYt+F14o/f73hZ4FAAAAAAAYAVY4oSwdfvjhOuGEE/Tss88m3GfFihX69a9/nbUxf/WrXyXdfuKJJ2rmzJlZGw/pmzJlis4880w9/PDDCfe56aabdN1112V13HfeeUf33ntv0n0+9KEPZXVMFF6s+HrhzQu1r2evZNkpHzOw8Domdvu6k9IY1JDG2lUUXudJbMFyU+MjanPvTbm/IWNQ4XXMvPAYyS89WLU1rXFZyAwAAAAAAICS53JJ9fWFngUAAEDu1Nb2lbW0zrFzWngdEyu+liTfekXHr66OFnAjb7yqUUvgXDW5HlCbuTtaeO3/gHyu90g1ktyVUrLLIltVklUjn+ZLAY+aqx6XJVsLrAlqCZwjb3Vlvj4VjIbZIymSeLtdLdk8N0seOTsDOTuDeUCSlXg7OZcHcnYGcnYGs1rkDAAlZOiF+SorpYYGyevlon0AAAAAABS7Yiq8njyZwmsAAAAAAEoY7xBA2Vq2bFnS0utbbrlF3/rWtzRlypRRj7Vt2zb97//+b9J9PvOZz4x6HIzc5z73uaSl17fccouWL1+uurrsFQbfeOONCofDSffx+XxZGw/FI5Pi63iF1zFpFV/HCq/3XaBpqpPMkc8b6fOqSi2dH1KT9y9qc+9JuJ8pQ8u7jtUO14G465fnRcZKAUN/9byTdLwF4fFq6TxLXsOTdB00CsmUzBThmKZ4kpY6cnYGcnYGcnYGcnYEI52cDZFziTMNns9OkNbzmZxLHjk7g2n2FT1Kiv69okLyeKKF1yb5AgCA8tc6V2o+e3jhta3snO4bepy+4mvjYPH1mDHSwoVZGAmZ8EpqsRbokzuv12e9p8lXt6R/4wFLsvyJH1wxVaqaKUnyaaHUfZj+p/MJ3T75SnnN6pzOG1kU3CbZocTbXWMkd2PepoMcCbwtKcl7wsi5PJCzM6TMeazkbsjbdJAjga1KWmJPzuWBnJ0h8JaSll67x0kub96mAwBIobdXsgespZk0KVp6DQAAAAAAiptRZGUGO3YUegYAAAAAAGAUKL1G2fr0pz+tb3/723r33Xfjbu/p6dE3v/lN3XrrraMe6+qrr5bfn3hh2qRJk/TpT3961ONg5Hw+n2bPnq2NGzfG3b5v3z5dddVVuummm7Iy3uuvv67rrrsu6T7HHnusFixYkJXxUHwGF1/vk6zhb7JOVngdk7T42jA01qjWGuMLmjaRN//lm1dSi/0pNdl/UJt2DdtuytAKY6mOa5yqlVqT8DjzVK8zNV/f1eOyNLwgfYEmqcV9gbzVVdmcPrLN6pHUkWKnSRIL0kubdUBSZ4qdJkomz9eSRs7OYHVL6kqx0yTJrMzHbJAr5OwMVpdS5zxZMj35mA1yxeqUdCDFTpMksyIfs0Gu2AGlPmUxSTJc+ZgNcsX2K3XOk6Pl2ChdpikNPDfj8UgTJhRuPgAAAPl04IBa59hqPtseVnhtSWqvlmpCUlXy62cn5XdLPRVSY+/gy8VYRrRoW7LlCwRGPgBGL1uL/4ptESEAAAAAAAAAAAAAAADKV7G9V8Ue3r0AAAAAAABKC60BKFtVVVX68pe/nHSf2267Ta2traMa5w9/+INuv/32pPt85StfUWXl6Eq0tmzZIsMwkn4sX758VGOUM9M09e///u9J97n55pv18MMPj3qsYDCoSy+9NGkRuiR99atfHfVYKG6x4uuxNWMllykNeI0/ncLrmJ+uju4/iHmw8Fpf0DSTwutC8RpVajEu0AJNGnR/rPDaZ8xL6zhLNVsrjKUyNfhE0AJNUotxgbwGxaoAAAAAAAAAAABAsWut3pK08DpkSh2V0eLqkfC7o48PmdHjDb30cqz4unXc7pENgFHptHrVtPPXejmwRc17blNr94sjOk5r94tq3nObXg5sUdPOX6vT6s3yTAEAAAAAAAAAAAAAAIABKLwGAAAAAAA5QOk1ytpXvvIVTZ8+Pek+l156qZ5//vkRHf/ZZ5/VZz/72aT7zJgxI2X5NvLjkksu0eLFi5Puc/7552v16jSbiOPo7e3VRz/6Ub3wwgtJ91u0aJEuvPDCEY+D0tFXfF09VjJNyWXqqq1T9dPHM/sn+KePGbrqNW/0ZIFpaKwovC4WQ4uvMy28jvEZ8wYVX1N4DQAAAAAAAAAAAJSOiBXRyonbZZmDF4ANLLyOSVR8bdrSmW9G/xwqVngdk7D42jS0cuY+ReyhW5BLscLrtuBWSZIle0TF17HCa0vRL4K24FaKrwEAAAAAAAAAAAAAAJA7FF4DAAAAAIAcofQaZa2mpka/+MUvku7T1dWls846S/fff39Gx/7Tn/6kD33oQ+ru7k66389//nNVV1dndGzkhmmauummm2Saib/1HThwQOecc45++9vfys7whdA333xTZ511lh5++OGk+7lcLq1YsUJGsb3wi5yJFV+Prxmvq953lX56yzYpEtG7131fb06rVU+VS9aQLwfLkHo8hvxTJkjnny9dc41+esxVuso4SeNVQ+F1kYkVXy/WlBEVXsfEiq8XawqF1wAAAAAAAAAAAEAJcZkurdr4Xi3Y5+m7L17hdczQ4mvTln71oPS7e6J/Diy+Hlp4HROv+HrBHpdWPT9dLoO3heXL0MLrmEyLr4cWXsdQfA0AAAAAAAAAAAAAAICcKLbeEwqvAQAAAAAoK+7UuwCl7fzzz9cnP/lJ3X777Qn36ejo0LnnnquLLrpI3/nOdzR37tyE+65bt07f//731dLSknLsiy++WOedd96I5l1o3d3duuOOOzJ+3BtvvJF0+8svv6zf/va3GR2zvr5eTU1NGc8lniVLluiaa67Rd77znYT7BAIBXXbZZbr55pt1zTXX6IwzzpDH40m4/6ZNm/Sb3/xG//Vf/6VAIJByDv/xH/+hE088cUTzR+ma5p2mt7/ytjzu/q+l3o98WD/vvnfwjtu3D7r5b96zdUTDzL7bPzXP0g+sD8pj8k94sfEaVbpHnxz14nGfMU/nai6L0AEAAAAAAAAAAIAS422cpJZHG9X0wX1aMy6UsPA6JlZkXROKFl371kdvx/780lKppyJ+4XVMrPi6sVdauMellodq5Z3FBZTzJVHhdUys+PrT9SdpvmdawuM81rtOv+x4eFjhdUys+Lpl8hflNauzMncAAAAAAAAAAAAAAAA4GIXXAAAAAAAgx2jMhCPcfPPNeumll7Rhw4aE+9i2rdtvv1233367Fi5cqBNPPFGzZs1SXV2durq6tHnzZj399NNqa2tLa8y5c+fqpptuytankHd79uzRZZddlvXj3nfffbrvvvsyesyMGTOyVnotSd/61rf03HPP6f7770+634svvqhzzjlH9fX1OvPMM3XYYYdp0qRJqq6u1u7du7Vz5049/fTTeu2119Ie+2Mf+5iWL18+ys8ApWpg4fWojkPhddHKVlE1hdcAAAAAAAAAAABACZo/X96//U2/+VujFp63O2nhdUxHpXTZi/1F1zG+9dJzU6XrTkp9jJApRVzSbx6tlTdoSNMSlysje1IVXsdYsvWbzif0qfqTdGzlrGHbXwhs1u+7/p7yPDHF1wAAAAAAAAAAAAAAAMgKCq8BAAAAAEAe0JoJR6irq9Of//xnnXLKKXr77bdT7r9mzRqtWbNmxOMdeuih+vOf/6y6uroRHwO5YxiGWlpadM455+iJJ55IuX9XV5fuvvvuUY97xhln6Pbbb5dpUmYLAAAAAAAAAAAAAEDZOfpodVZYuuzUTrltUxWWlbL4uiEgrVogHb99cPF169zo/Q2BaDF2MhWW5LYNXXZmj1oerJV3+vTRfy5IKt3C6xhLtm7rekqStGRA8fWLgc26respuWTKlcZxKL4GAAAAAAAAAAAAAADAqFB4DQAAAAAA8oTmVTjGjBkz9Nhjj+nwww/P6ThHHHGEHnvsMR166KE5HQejU1NTowceeEBLly7Ny3hNTU164IEHVF3NgkMAAAAAAAAAAAAAAMpR5zFHqumMdrWNC8mQNCZgqsJKvH9DQKoKS5YhfWlptOhaiv75paXR+6vC0f0SqbCkMQFDhi21jY+oaekBdc46JKufFwbLtPA6xj5YfP1iYLOk/sJrW5kt3IsVX3davRk9DgAAAAAAAAAAAAAAAA5H4TUAAAAAAMgjd6EnAOTTEUccoRdeeEEXXXSR/vznP2f9+B/+8If1+9//Xo2NjVk/NrKvpqZG999/v77//e/rBz/4gSKRSNbHqK6u1rXXXqsrr7wy68dGGQmFpa4uKRCQOrsGb3v2YelAVWHmheyoDkpHdCffZ8MbUrAiP/NBbnjC0tQUi8rffkEK8+N3SUsr55ekMNcWKmnk7AyVYekQci575OwMVWFpSoqc33pJssi5pJGzM7gtyRtKvs9+j2QX2RsskZkKS6on57I39I3HbrdkmlJDg3T44ZLHU5h5AQAA5FjEiujiv1+ltimGFIzeFy2+NrS/0lZoyK+tscLrmFjx9Z/mSqsPi96Oie3XUTn4GBWWNMZvaOBP0G2TDV0cuF332F+Vy+B35WyL2JYu3nVDxoXXMbHi65cCm7U2uD3jwuuYtuBWXbzrBt0zmZwBAAAAAAAAAAAAAACQBgqvAQAAAABAntG6B8cZM2aMHn74Yd166636xje+oXfffXfUx5w4caKuvfZaXXLJJVmYIfLJMAx973vfk8/n05e//GU98cQTWTvuJz7xCf3sZz/TjBkzsnJMlKlgWNqzR7ITlK7bkiwrr1NCllm2Uq5Ttm1yLnWWlfrEGjmXvnRytiyJmEsbOTsDOTsDOTsDOTsDOTuDZUl2ihAtizLkUkfOzmTbkt8f/di/X1q8uNAzAgAAyAmX6dKyY5Zpzea/ywoG++43ZGiM39b+KvUVXw8tvI6xDOmRw+Mff2jxdbTwWhr607PpqdSy+lMpQs4Rl2FqWf2pWhN4S9YIC6tt2XotuG1U8zBlkDMAAAAAAAAAAAAAAADSQ+E1AAAAAAAoAFa9wLEuvfRSbdq0Sddff72OPPLIER1j3rx5uv7667V582YKr0vc0Ucfrccff1xPPvmkmpqaVFlZOaLjTJ48Wc3NzVq/fr1aWloovEZqHe2JC68BAAAAAAAAoJwEg9LGjYWeBQAAQM74jvRpxbk3yjRdg+43DFNj/NGi6kSF1+moCkcfX2FJY3qjhdoDmYapFZM+I1/dkpF+CkiDr26JVoy/ROawyvH8MGVoxfhLyBkAAAAAAAAAAAAAAACpUXgNAAAAAAAKxF3oCQCFVFtbqyuuuEJXXHGFNm7cqIcfflgvv/yy1q5dq+3bt6urq0s9PT2qqalRfX29pk2bpnnz5mnRokU6++yz9Z73vCdvc505c6bsPL5wl+/xisUpp5yiU045RT09PXriiSf05JNPat26ddq4caP27t2r7u5uBYNBVVdXy+v1avr06Tr88MO1ePFinXTSSTruuONkmlxPAGkKBaVgoNCzAAAAAAAAAID8aW8v9AwAAAByynfUJ6RjXlPzSz+UNWC9mGGYGttrjfr4VeGDpdlDFqOZtrSi4lz5vMePegykFiucbt5zmyzl7/01FF4DAAAAAAAAAAAAAAAgbRReAwAAAACAAqL0Gjho9uzZmj17dqGngSJRU1OjpUuXaunSpYWeCsqYJxjRhGDF4Dv9g0vTKyMqvhMJyJiR4uSLLZFziQu4pHeqw0n3CZoi5xLnTydnl6QIOZeydHIO8Xwueb1um5ydIJ38DIOcSx05OwM5O4NhSEqRYTr7oLiRszMNfW3MGn3RIwAAQLHzXXiN9OJLatZDg4qvZZrZ+XkoXuH1OwvkW/rx0R8bact38TWF1wAAAAAAAAAAAAAAAEhbsa2zofAaAAAAAADHofQaAIACMb2NqjArJCvSf6c9uPTalMGL92XATnFCyJDIucRZshVwpd6HnEubJStlzrZNzqUunZx5Ppc+y079fdsm59KXTn583y595OwM5OwMti2lKgiz7ZS7oMiRszMNfW2surow8wAAAMgz33dvly49Ts1HvDG8+Ho0v8fGK7x+ebJ8F10x8slixPJVfE3hNQAAAAAAAAAAAAAAANI2ZUqhZzAYa34AAAAAAHAkM/UuAAAgZxoaCz0DAAAAAAAAAMifmTMLPQMAAID88Hrl+9UjWrFupsyha7YMI1p+neLiucMeE6/w+oXx8n30ai4uUkC+uiVaMf6S6EWtc4DCawAAAAAAAAAAAAAAAKTtoouknTsLPYt+F15Y6BkAAAAAAIACcRd6AgAAOFpjg2RHpPYOSVydEgAAAAAAAECZMk3psMOkiRMLPRMAAID8mT5dvpuekL50ppqPeEPW0E5kw5AtyZCd/HRxnHJs05ZW/L1RvqN80rZt0Q8UjE8Vkuv9aq5cLStemEY4+QFsW5I17G5ThlYETpevo0JSW1bmihwy90hKkrVdF/1AaTN3S4ok3m7XS3Zt3qaDHCFnZyBnZyBnZyBnZzDfVbzfm/pYXkk1+ZoNACCV/fsH3969W7IsyeuVXK7CzAkAAAAAACe46CLpjjsKPYt+F14o/f73hZ4FAAAAAAAoEEqvAQAotDFjpTqvFPBL/sDgbbMOk1yNBZkWssTVK03Ymnwf81ApUp2f+SA3yNkZXD3ShLeT72POkCJV+ZkPcoOcncFzQBqbogDGnCVFPPmZD3LD7Ze8u5PvUz9Fsnh5rKSlk3PtFPEyaIkjZ2cww1JVd/J9erySzLxMBzlihqSqA8n36WmQNLzQDyWku1vq7Oy/7XZLRx0VXbzs4WdsAKUhEAho48aN2rZtm7q6utTT06OamhrV19dr2rRpmjNnjjx8TwOQrunT5bv1eekHn1Sz/dDw4msd7Ls2ht4RFe+nY9OWVrw2Xb65Z0QvLtKd4vcp5IVPU6TKk9TsfSp+8XWyZnPbHrbdlKEVnSfJF5giiYxLgrtHScsWLSNpRx9KhLtXyXM2JYsL35c8cnYGd4+Sl6eSc1kgZ2dImbOLnMuBu0dJf6+KuCSbH7gBoGiEQoNv+/1Se3v0XPLkyQWZEgAAAAAAjlBMhdeTJ1N4DQAAAACAw9ECAgBAMahwSxV1UlXl4PunHSk1TCvMnJAdVodSrlqdulAy6/MyHeQIOTuD1a6ki2akgznX5WM2yBVydgZrX+p9pi6UzJrczwW5Y3VLejPFTnMlszLFPihqVpekTcn3mXWkZFJGV9KsTkmbk+8za55kVuRlOsgROyBpb4qdJkmGKx+zQa7YfkmpfhabLBmUm5e0d9+V1q3rv+3xSOPHF24+AJCmZ599Vvfcc48eeughrV27VpFI4oI7l8ul+fPna+nSpfroRz+qE044IY8zLazOzk699tprWrt2rbZu3aqtW7fq7bff1jvvvKPu7m719PTowIEDikQiqqysVG1trSZOnKgpU6Zozpw5Ouqoo3TSSSfpqKOOkmFwoQs4iNcr37X3654bztQjb/9VSvI9JiXD0On+KfLNWpq9+SFrfIFZuie4WY94Ulx4MQ2nB6fKF5iVhVkBAAAAAAAARcKypN27D14EDgAAAAAAZFWxvSdvx45CzwAAAAAAABQYpdcAAAAAAAAAAAAAAMCR7rjjDl177bV6+eWX035MJBLRq6++qldffVU/+clPtHjxYn39619XU1NTDmeafz09PXruuef09NNP67nnntM//vEPvfXWWxk9vqenR7t379batWv16KOP9m2bMGGCfD6fPvWpT+mUU07JxfRz7sc//rG+9a1vpbXv5s2bNXPmzNxOCEWv9fVWrfa/Hr0gSCAg9fRIwWD6BzBNye2WXC6trmpXa+dmCpGLUGvlZq32bM/KsVZ7tqu1kpwBAAAAAABQZkIhye8v9CwAAAAAACgvxVZ4zQWvAAAAAACAKL0GAKBgzF3vas7ruzVxV7cm7D6g6p6QXD09ipiGeitN7W70qOrQLdJsr+T1Fnq6AAAAAAAAAAAAZWP9+vW6/PLL9eSTT476WC+99JIuvPBC3XTTTbrppps0Z86cLMywcJ555hl95Stf0Zo1axQOh3Myxu7du/Xf//3f+u///m8tWrRI11xzjf7lX/4lJ2PlwsaNG/WDH/yg0NNACWl9vVXNDzXLsq3oHZWV0Q/LUrizXUYkIsOyZNiKLvgyJNuQbNOQYbjkcrkHLUyzZKvZ+5TUJfkChxXmk8IwrZWb1Fz/lCyNYNGeIQ19GDmXIiP5IlIjxXaUDnJ2BnIuf4ah6D/CSbaTc+kjZ2dIlXPfPihpqTJM5+sAAJA/hjG43Gpo0VUmFwQEAAAAAADJFdtr4BReAwAAAACAgyi9BgAgn0Ih6eGHpVtv1bi/PamzezoGb49E+v566K6Aat54Snr879Khh0rHHCMdcYTkcuV3zgAAAAAAAAAAAGXk7rvv1qWXXqru7u6sHveJJ57QkiVLdNttt8nn82X12Pm0adMmvfDCC3kb7+WXX9ZHPvIRnXXWWfqf//kfTZs2LW9jj4Rt2/r85z8vv99f6KmgRAwsvLZtW8bQRWYjWHNmy5Ylqbn+KcmWfIFZWZkrRq61cvPIC6+lYYXXMZZsci4pdvKFm3aK7Sgd5OwM5Fz+bFsJ/xGObSfn0kfOzpAq5759UNJ4PgNAaUn1PbmyMj/zAAAAAACg3FF4DQAAAAAAiphZ6AkAAOAYjzwinXyydPnl0jPPZPbYrVule++Vfvtb6Z//zM38AAAAAAAAAAAAytz111+v888/P+uF1zHd3d0677zzdMMNN+Tk+OXsL3/5i44++mitXr260FNJ6je/+Y3++te/FnoaKBEDC68t29J+/375w34pEJD275d275a7NyhXKCwzYsmwLBm2LcOyZUZsuUKWXMGQ5D/4mEhEfoW13wzIkh0tRPY+pdbKzYX+VB2ttXKzmr2jKLxOgZwBAAAAAABQVqqrpaqqQs8CAAAAAIDSR+E1AAAAAAAocpReAwCQa52d0pe/LF16qfT226M/Vmur9OCD0YXNAAAAAAAAAAAASMutt96q5uZm2TleWGHbtr74xS/qtttuy+k45Wj//v06++yzdddddxV6KnHt2LFD3/jGNwo9DZSIoYXX7f52hSJBdfTul79rvxQMZnZAy5I/ElCHEVRIltopvi4KuS68jiFnAAAAAAAAlIXKSmn8+ELPAgAAAACA0kfhNQAAAAAAKAHuQk8AAICy9vbbUlOTtGVL3M2GJDNiybRsmZYtWbZkSJYhWYYhGQle3F+7Vtq+XbrgAqmhIWfTBwAAAAAAAAAAKAfPP/+8LrvssrQKr0888UR98pOf1IknnqiZM2eqvr5eXV1d2rRpk5555hmtWrVKzz33XNJj2Latyy67TEceeaSOPfbYbH0aRaWhoUGzZ8/WnDlzNGnSJP3/7N17nCR1Ye7/p6r6NreeGfYyu9yXywK7kQVERFEjNxHwKHNEd4FEfZFoPOBE4onBX0SB6Ek0Jh51gwmJwQNmgUV0UOMiWUEx4AUQGHSXi8Iu7MLe537pW1X9/ujpmemZ7uqemb7X553XuHTXt6u+k2dndqaqv0+1tbUpGo2qublZIyMjGh4e1oEDB9TX16dnnnlGY2NjRe03mUzqqquu0tKlS/X2t7+9vJ/EPF177bUaGhqq9jRQB+YWXg8omUpOLe4aCrlSQorYmcVnmT/d7IczxCxXQ+HpYUnD0aCZUIcikgz1dPxcUru6dUr5PjFk6dWz6tHP5chQztCyON5jDFOSWXAP5FzrDEkpj+1tkx+ob4VyjkpqrdBcUD7k7B+2xzZybhzk7A9eObdLaqnURFA2rtK/GeVDzgBQU0ZHsx9Ho+my6+bm2ivlAgAAAACg3tTa79YUXgMAAAAAgDwovQYAoFxeeUW67DJp796525JJGWOjao4lsp93sx8YyZgUCEjBoGRZ2WMHB6U775SuvJLiawAAAAAAAAAAgDyGh4e1YcMGJZNJz3Ennnii/vmf/1nnn3/+nG2dnZ16/etfr9e//vXq6enRf/3Xf+maa67Riy++mHd/iURC69ev19NPP61oNLroz6OaQqGQzjzzTL3lLW/RW9/6Vr3hDW9QV1dX0a93HEc/+clPdMcdd+iee+5RLBbzHJ9IJHTllVfqmWee0dKlSxc7/ZL47ne/q97e3mpPA3VgTuH1xICSdmLWteDp4utwSjLkztk+xZhVeJ3hSknZGjRj6jBbJcNQj7ZKS1equ/XMcnxqmKF39An1HNwqR1bhwdLk4j6vBX6WZBTelyORcy1LRCTX4+cNq1MKdFRsOiiTeFieZcjk3BjI2R8K5nyYFOB9eXUvHpJnGTI5NwZy9od4UJ6l14ElklXf5+AAoKHs359deNXRIbVwcwIAAAAAABaNwmsAAAAAAFBHzGpPAACAhjQ8LG3YMLfw2nXT2/r7ZcQTuV87WyolTUxIsdjck/6jo9I996S3AQAAAAAAAAAAYI7Pfvaz2rFjh+eYCy64QI8//njOwutc3vGOd+iJJ57Queee6zlux44duummm4qdak1ZuXKlPvKRj+iHP/yhhoaG9Oijj+qLX/yi3vWud82r8FqSTNPU+eefr9tvv13btm3TxRdfXPA1e/bs0Q033LDQ6ZfU0NCQPvaxj+Xcdtxxx1V4NqhlxRZeZwyFXMUtj8JrSTFLcwuvZ0g6tgadUTmuK0eueg7eod7RJxb3icBTuvD6DjmeJdblQ84AAAAAAAAAAAAAAAA+ROE1AAAAAACoM5ReAwBQDp/5jLRzZ/ZzqZR06FC6wHohUilpfFxynOznBwelhx5a2D4BAAAAAAAAAAAa2Pbt23XLLbd4jnnTm96k733ve2pvb5/Xvjs6OvSDH/xAZ511lue4jRs36tlnn53XvqvpDW94g37xi1/o1Vdf1a233qpLLrlEkUikZPs/7rjjtGXLFv3VX/1VwbHf+MY39Morr5Ts2Av1yU9+Unv27Mm57etf/3qFZ4NaZTu2bnv6tunC65h34XXGUFiKBdL/bbrSBS+m/5TSz3sVXmeki6/Hpoqvbxt5WLbrFH4h5s12Hd028vCiCq8NGfqD0JEytPCFiOQMAAAAAAAAAAAAAADgIxReAwAAAACAOkTpNQAApbZ1q/Ttb2c/l0pJAwOSbed8iW0aSgZMJQKGkgFDtinlXN/quunS7NnF19u2Sb//fUmmDwAAAAAAAAAA0ChuvvlmpVKpvNsPO+wwbd68Wc3NzQvaf0tLi+655x51dHTkHZNKpfQ3f/M3C9p/NZx00kk6++yzZZR5kcwXv/hFffSjH/UcY9u2/v3f/72s8yjk4Ycf1je+8Y2c2zZs2KCLLrqowjNCrbJMS5v+5yatXb5Wg7FBJVPJgoXXGUNhKW5JX71f+n/fS/8Zt4orvM5IuikNOmNaGzxCm7qukWXwtrBysAxTm7qu0brQ0Qt6vSFDH2h7i/4sep4+0PaWBRdfrwsdTc4AAAAAAAAAAAAAAAB+QOE1AAAAAACoU6x6AQCglJJJ6YYbsp9zXWlwcG5RtWEoEbI01hxUrCmoRDigZNBUImgqFrY0FjblBgNzj5Epvp59MeChh/KWagMAAAAAAAAAAPjNSy+9pO985zueYz7/+c/rqKOOWtRxjjnmGN18882eY7797W9r586dizpOI/r7v/97HX744Z5jvv/971doNnPFYjF95CMfkZtjkU5HR4e+8pWvVH5SqA+Os6DFXU7AVCpoybEWsFDNVfqYNbbGrRFFzSZtXvGxeRVfWzIUkKW/aL9Il7WcoSMDnbqs5Qz9RftFCsiSOY/FietCR2vzio8pajYtZPoAAAAAAAAAAAAAAACoFxReAwAAAACAOpajSRMAACzYAw9Iu3ZlPzcyMreMOhiU09qiZHx08gl3ehHyDK5lSaaVLtOeWZrtulIsJoVC08/190uPPSYdc0zJPh2UwqjUPOw9ZHyPpJGKzAblQs7+MFJEzvskFRiDGkfOvmAMSU3FfN+mMKSuGeNSaMB7THyPpJD3GNQ2c1wKFpNzsCLTQZmYY0XmzOnuumYkJGvIe0zKEffyrHPk7A/9/dLwjJ+3g0Fp3770ucxoVLKs6s0NgO/ccsstsj1uGHriiSfqIx/5SEmOdc011+irX/2qXnrppZzbbdvWLbfcoi996UslOV6jaGtr03XXXae/+qu/yjumr69PQ0NDam9vr+DM0j73uc/phRdeyLntC1/4grq6uio8I9Qy27F11Xev0rb929Q5IQ0EpGSRP9pGE1LIMXTdOxzdd5Kpnx7jKuRI0bg0HC5uH0FH6kxI28xdumr313Rf24dlGfxsXS5RSZsjf6T1qW+qL/VqwfGWDP1l03k61zleGktNPX+JjldTxNY/TvxEkpN/B5PWBY7Q5sgfKToclxRf+CeA8kiNSErm326a/MrbCFIjklL5t5sWOTcCcvaHonJm0X7dS41Iyn9ugJwbRMGcA+TcCFIj8vy9yQxIZuHfqwAAFTI2lr0+ZmRECoelSKR6cwIAAAAAoN5QeA0AAAAAAOocLSAAAJTS7bdnP04mpYmJ7OeCQamzU3Im32Bf6OS+aaYLYRKJ7OJr204/NmesoHr+eUqvAQAAAAAAANQW206fJ43FpOXLqz0bAD5h27buuusuzzF/8Rd/IatEZfyBQEB//ud/ruuuuy7vmDvvvFNf/OIXZZq048102WWXeZZeu66r559/XmeddVYFZyU988wzeUvK3/SmN5WsMB2NwzItXX3a1Xpqxy/k2LY6HVMDIadg8XV7QgqnJMmVY0gPHetM3jBZiqQkQ9JQgeLroCN1xgwZcmQmkrpafyBrsMANZ7BoUUmb3W6td+9Rn/blHWfK0PV6i94ysVKamHuT3HO1Up3uubpRP5Gj/O8fWKcubU51KzoUkxQrwWeAknOH5VmeKkkGJXx1zx2WZ6mmJBkFtqP2kbM/FMzZIOdG4A7L++Yi5NwQisq5wM9pqH1ugdJrmeQMALVkfDx7rczAQHp9TXOztHRp9eYFAAAAAEC9oPAaAAAAAAA0AFZSAgBQKq+9Jj36aPZz4+PZjw1Dam+fvshQ7Ml9w0iXZc+WmvXm7L17pbGx4vYJAAAAAAAAAJXkutIQ5YsAKuOhhx7Snj178m6PRCL6oz/6o5Ie84Mf/KBCoVDe7a+99pp++tOflvSYjeDEE0/UkiVLPMe89tprFZpNmuM4+vCHP6xkMjlnWyAQ0K233iqj1hYVoSZ0n9Ktjb9fLdOVDFfqTJgKevRxtScMhVPef5cidroYO5/pwmvJdKWNjy1Vt7FmYZ8A5i1qRLTZeL/WqSvndlOGNhqX6ALjeM/9XGycqI3GJTKV++/DOnVps/F+RY3IoucMAAAAAAAAVM34uHTwYLVnAQAAAABAbVu5stozyEbhNQAAAAAAWCBKrwEAKJXHHst+7LpSPJ79XEuLZFmZAfPbv2lKgUD2c7Y99yLB/v3z2y8AAAAAAAAAVMrsc6YAUCY/+MEPPLdfeumlamtrK+kxOzo6dPHFF3uOKTQvv+rqyl0WmzFW4Zu+fvWrX9Vjs6/9Tfrf//t/63Wve11F54M68tpr6v7RTm18tH26+DqmnMXX7QlDEbu48vRIyshZfJ0uvNZ04fVDYXX/clAaHl7Up4H5yVd8nSm8LraEvNtYk7P4msJrAAAAAAAANJTxca4bAwAAAACQzxVXSHv3VnsW0zZsqPYMAAAAAABAHQsUHgIAAIryzDPZjxOJ7EJqw5CamqYfF9N57TjKWs9qmnNLrm07/XzG7t1Se3uxs0a5WeOSMeE9ZmhIsnOsUkf9IGd/sEaLyLlfspu8x6C2kbM/WKOSCuTcP1h4DGqbGZNaR73HDA9IClZkOigTc6LInDkNWtcC41JzoZz7Rc51zkxKoRHvMTFD3MuzzpGzPwwNSRMzfpZOpbK3u276nCYAlNmPf/xjz+2XXnppWY576aWX6nvf+17e7Vu3bi3Lcetde4FrW83NzRWaibRz50595jOfyblt1apVuvHGGys2F9ShybL07p3pcuKec4bkuFLnhDTQJCUnf9SdT+F1RiRlSK6roXD6cdBJ7zfzE/TGB8Pq/n1Akivt2CGtXl2azwlFiUrarHdrffA+9Rn704XXqQvU7aySNCEZMUmp/DtwA5KC6tYqybxAPYGtcuRqnbtcm5PvVlSuOGddBwrmHBTnsBqAERc5+wA5+4MRk+RxnsoNSbIqNRuUixEXOfsAOfuDEZOU465SGW5YXGMCgBoyez2NM+t7+ATnugAAAAAAmOOKK6S77672LKZt2CDddVe1ZwEAAAAAAOoY77gGAKBUtm3Lfjy7zCUQyC6nXgjDSO9j5hv+HCd7v0NDlMbUFGfuGzRns20yq3vk7A/k7A/k7A924ZzlkHO9c4vI2XUkh5zrmlHk923Nr0QKNYac/cG1JbuYnIu5ixhqVlE5OyLnOmfP+jls9k38AKAC9uzZo2effdZzzAUXXFCWY1944YWe27dt26a9e/dqxYoVZTl+vdq/f7/n9qVLl1ZoJtJHP/pRjY2N5dz29a9/XU1N3BAPHmbcKLl7Z0RKJtXztlE5xnTxdXMqu/DaKPTzkjv5P8bk6+KuxoMzCq9daeNWS90vmpoq/3rlFWnZslJ/diggKmmz8XZd1f6grp44Wd3x5ZIG0hsDw/Is4XNsyUm/x6Bby6Xwm3Vb03PaNPR2Rd1xSeNlnTtKpKickxWbDsqkYM4OOTcCcvaHwLA8y1MdR3K4wX3dI2d/KJizS86NIDAsz2tItiu58YpNBwBQwNhY9rXiXDdLBgAAAAAA2Wqp8HrFCgqvAQAAAADAoi2yeRMAAEw5dCj78ew35QWD2Y9tW4GUo1DCViSWUtNESk1xR00JR5GEo1DKTZf8zH4znzGrxGv29jhv2AYAAAAAAAAAAP712GOPeW4/6qijdNRRR5Xl2Mcee6xWrlzpOebxxx8vy7HrlW3b2rNnj+eY4447riJz+da3vqUHHngg57b169frne98Z0XmgTo260bJ3S+Y2ni/IdNNF1QfNqF0cbXrTpbrFbo53wyuK7muIrahw2YWXt8vdT836xpyf/+iPxUsTNQN6b7Bi9QdX7Wo/XTHV+m+wYsUdUMlmhkAAAAAAAAAAAAAAABq1uwOiWor8J4+AAAAAACAYlB6DQBAqSST3tuNycXLsZg0MCBzcEjhhK1gypHluDJdV6YrmY5kOVIw5cpMpdIl1omEZNvp1xe6YDG7BBsAAAAAAAAAAMBHnnzySc/tZ5xxRlmPf+aZZ3puf+qpp8p6/Hrzs5/9TOPj43m3r1q1SkcccUTZ53Hw4EF94hOfyLmtvb1dX/nKV8o+BzSAHDdK7n7emCq+lpQuul7MNd3J12YVXs/eXyy28P1j0awSvSWvVPsBAAAAAAAAAAAAAABADau1wmv6KgAAAAAAQIkEqj0BAAAaRjDovT2ZTC9ytu3579tx0h+GMfeixezngkGprW3+x0B5WIYUCXuPaWmV3ObKzAflQc7+UEzOzW2SmioyHZQJOfuDpSJybhY51zkzIDUNeY9xWiSFKjIdlIlpSU0R7zFOmzgNWudMS2oa9h5DzvXPSEpBx3tMsE3cy7POGYkicm4VOdc5ChYB1ICnn37ac/upp55a1uOfeuqp+sEPfpB3O6XX2e666y7P7e985zsrMo+Pf/zjOnjwYM5tf/d3f6cVK1ZUZB6oc3lulNz9vCHJVc/FklOCNWqmK23cktlvDq4rBfg9uaZYlvd205IcMqt7hXI2Aulz16hvBXO2yLkRkLM/WJYkjx/O+L7dGMjZHwrmzPfthmAFJHlcZzICkkvOAAAAAAAAAOoMhdcAAAAAAKCB8Y4uAABKZcmS7MeZRcSum/6IxSRzAYU9sy9UOE72ttml183NUqRA6RsqKDX5RnsP4ZAkMqtv5OwPycI5RyIi53pHzr5gxMnZDwxHChQotI5EROl1nTOLyTksqcBNilDbTLvIr2dOd9c1w5SsAjelMCOiDLnOGaZkxb3HkHP9C/HzFYDqe+GFFzy3n3jiiWU9/gknnOC5/Xe/+11Zj19PnnrqKd122215txuGoZ6enrLP40c/+pHuvPPOnNvOPvtsffSjHy37HNAg8t0o2XHU/ax030nS1uMXf5jzX5K6n5Mkd/p68cxyzkhEWr588QdC6biSlPIY0CoZ0QpNBmVTMOc2yeAm5nXPdSV53fCenBsCOftDwZyjktFaqdmgXFxHniW55NwYyNkfCubcLhktlZoNAKCQZ5+t9gwAAAAAAKh9FF4DAAAAAIAGR2sAAAClsnZt9uNAYLrwWlIi37+6rmRkPjT9kXusm70f151bpH3YYfOeOkrDzvFmeleunAIfrtyC+0HtKFU+5FzbyNkfyNkfyBkAAAAAAH9xXVc7d+70HFOolHqxCu2/0Pz8Yu/evbryyitl2/lL5v7n//yfOuWUU8o6j9HR0byl1oFAQP/6r/8qo9YWF6F2zb5RsmlO3dS492TpweNKc5gHj0vvT1L6mvHsv6PNzaU5EBbEdkt0XrpE+0F5kDMAAAAAAAAAAAAAAFiwWntPGoXXAAAAAACgDCi9BgCgVE49NfuxZU2d3N/dJh35Cen682YsVnScqaLrXKaen1Gcff356f3sbvOYB6XXVTFsJHRZxwPqDe/Iej4mW3vNcc+P+IwSzd7wDl3W8YCGjUSlPwUUIV/O80XOtY2c/YGc/YGcAQAAAADwn3379ikWi3mOOfzww8s6h0L7Hxsb0/79+8s6h1r3m9/8Rn/4h3+o5557Lu+YpUuX6pZbbin7XG644Qa9/PLLObd94hOf0Ote97qyzwENZOaNkl1Xmvx+1Huy9LFLpIPNUiywuEPEAun9fOySGcXXqVT2wrPlyxd3ECzYsBvTZe6d6nW3L2o/ve52XebeqWHX+980VAc5AwAAAAAAAAAAAACABaPwGgAAAAAA+ASl1wAAlMpZZ03/t+NIg4OSYWh3m7Tuo9KBFulLb5auP9dJb5+n689z9aVz0vtZ99EZxdfJJAuYq2zYSGh9x1b9OnhAPdFHFlys2RveoZ7oI/p18IDWd2ylWLPGkLM/kLM/kLM/kDMAAAAAAP702muvFRyzYsWKss6hmP0XM89GtGPHDn3iE5/QGWecoRdeeCHvuHA4rDvvvFNdXV1lnc9jjz2mjRs35tx27LHH6sYbbyzr8dGAZt4oeWREcpypwutDzVLSlIbCCy++jgXSr0+a6f1NFV+7rhSPTw8s89cOcht2Y1rv3qNfa4963C0LLkTudberx92iX2uP1rv3UIhcY8gZAAAAAAAAAAAAAAAsGIXXAAAAAADARxa4hAoAAMxx+OHSOedIjz6aXsBs29rd5mrdn0n9zekhriF96Zz0f3/hweJ3ff356de5k9cw+pvTxdd9/yIdOeJIiYQUCqUXLweD6ceoiGEjofVLf6I+q19yJUeuetr+W0ol1T1xrGQmCpecJ1LqbXpBPW2/lDN5YajPOqj10Qe0+eC5irqh8n8i8FRUzrbtvRNyrnkFc7aSReScUG/TLnKuYeTsD+QMSel/n82U9xh+bq5/ZkIyCuWclMQbsOqamSwi54Sk+d9gCjXESEqBpPeYZELcy7POGQly9oNkgYwBoMwOHTrkuT0ajSocDpd1Ds3NzWptbdXo6GjeMYXmWe/Gx8c1MjKigYEBbd++XU8//bQeeugh/fznP5dbYJFMJBJRb2+vLrzwwrLOMZlM6k//9E/l5LmOc8stt6i5ubmsc0ADytwoOR6XJibUe5Krj108XXidMTT5bShS4NfdmTKF1xkzi69luOp+LpX+/diypEhE2r9/0Z8OijdsJLS+7Ufqsw5KSp+l6NEPpLEhdSeOl6xDkjzOS7sxyYmpN/Sielp+JmfyfFafXtN6+z+0eeSdnJeuAYvO2YlL7gQ51zurX8XkjDpHzv5gHZLntQUnIbnjFZsOysTqFzn7ADn7Q8Gck5I7VrHpAAAAAAAAAMC8UXgNAAAAAAB8htJrAABK6YMflB56SIrFtLvVySq8zphv8fXswuuM7OJrW0ql0sXbQ0Ol+VxQ0LCZ1Pqjf6W+wFBWh54jVz0dv5DGx/W6kXYpHPfczwPm7/S5juenCjUz+gKHtL5jqza/8kZFnWA5PgUUoZiczxo+TLJinvvZYrygz3Y8S841qpicXz/UIZneOf/QeF43kHPNImd/KCbn04baC+b8n8bv9Ncd28i5npkxqa3AotWREcnh9FhdC8Qkp0DOQ0PiNGidC0yQsx+YSSmUvxRSkhSzRBlynSsq54CkGnszL+Yn5v2zNgCUW39/v+f2aDRakXlEo1HP0utC86x1l19+ub7zne+UfL/r1q3Tpk2btHbt2pLve7YvfvGL+s1vfpNz2/ve9z5dcsklZZ8DGtDhh0tvepP0gx9MFl67cwqvM+ZTfD278Dpjqvj6Ykly1f18Mj2HcDh9/RgVMWwktL5jq/qs7BsaOHLV0/IzyXa02m6Xd3mqrd7g79TT8shUEXJGn3VQ61vv1+bBCylErqLS5Jwi54Zgq9DXsxy+B9c/cvYHW97lqSlybgjk7A+Fcub7dmNIyfOG13ZKcskZAAAAAAAAQI2i8BoAAAAAAPgQLSAAAJTSeedJ8XjewuuMYouvP5Wn8Dojq/h63JGWLVvc/FG0qULNSO6ScUeueg7v01/vO8lzPztCY7qvY4+MPGVOfZEhrT/6VxRrVkmxOd+09xTP/WwPD+ufl+7Iu52cq6vYnD+792TP/ZBzbSNnfyg25xv2ev/7TM4AAAAAANSvgYEBz+1tbW0VmUeh49R76XWpHX744frkJz+pa665RqFQ+Ys+n3/+eX3+85/Pua29vV1f/epXyz6HWnbLLbfo61//etmP8+KLL5b9GFWxdq16n+31LLzOKKb4Ol/hdUZ28bWj7ubDFjJrLNBUEXLgUM7tjlz1RB/RJ8fW6S2JlXn3c3/oFd3Y9sScIuSMqRsyUohcFaXM+bPkDAAAAAAAAAAAAACAv1B4DQAAAAAAfIrSawAASumhh7T7sKDWbchfeJ1RqPi6UOF1xlTx9b8bOvLAAWll/gWUKI1ChZoZjlz9TdezOm08qlWJljnbd4TG9Ehrv1qcgCyP/VCsWR3zyfkzK7br7SNLtCYenbN9e3hYW9r3qcmxZOYpN5fIuVrmk/ONK7br7SNLybkOkbM/zCfnm1c8S84AAAAAADSoWCzmub2lZe75+nJobW313F5onn7Q1NSkiy66SJdffrkuv/xyhcMerb4l5LquPvzhDysej+fc/rd/+7da6fPrbQcOHND27durPY261bvrv/SxS1wdavIuvM7wKr4uVHidkVV8/etd6tYb5jVnLEyhIuQMR67+ruUp/aUcnZs4Ys72n4Re1T+2PONxRjqNQuTqKGXOX255puDxyBkAAAAAAAAAAAAAgAZC4TUAAAAAAPAxSq8BACih3Zv+WeuuHFR/pLjx+Yqviy28zuhvltb9aUp9972kIw8/fH6TxrwMm0mtP6pwoWaGK+mR1n5pzMgqvt4RGtMjLf0q9rLQVLHmrrMp1qyA+efsakv7PmnYyCpQ3R4e1pboPnKuUfPN2ZHIuQ6Rsz+QM3IyjMJvCipmDGpckTkXrAxCTTNEzn5Q7Pdtcq5v5OwP/IwFoMoSiYTn9kCgMm+TKHScQvP0g66uLh1zzDFaunSpTLOIZuASufXWW/Xf//3fObe98Y1v1Ec/+tGKzQWNp/fRf9fHlj2uQ+HiCq8zchVfF1t4nTFVfP2GA5L9srrD64p/MeZtWHGtD/6X+swBSYXDTimlL7T16VBKOtuZLkT+pfmq/i3QJ1OGAkXspy80oPVLf6rNyfcoqsrcLMDPyBk5GUlJdv7tbqsk7xugoA6Qsz8YCaWvHufhtkmqzI2TUEbk7A/k7A9GXPJ6V48bldRcqdkAAAppbs4u0Zp93YRrygAAAAAAP6i1338pvAYAAAAAABVG6TUAACWy+4Vfa90xW4ouvM6YXXw938LrjP4mad1le9W3z9GRTcvn92IUZdhIaH3HVvUFRlTMgtY0R65hpIuv40GtsqPaYQ3rkXC/3EyBk2mqmDKnvuYRrT/+SW0evFBRN7TQTwMFLCxnV67hpAtUY2GtSXVqe2BAWyL7yLlGkbM/kLM/kDPyMsal0Lj3mOBhksitrpnjUrBQzkskUUxf18wxKRjzHhNcKk531zkjIVkFMkwtUfH/3qMmkbM/mKY0MDD9ODjr32HDkCyrsnMC4CuUXtePnTt36qtf/aq++tWv6sgjj9R1112nj3zkI2prayvbMV977TV96lOfyrktEAjo1ltvrWgBNxqL7dj611/dokNhZ16F1xlDYclwpXe9IP3n6vkVXmckTelQxNW/xp7Wu5veKMvg73M5DLsxrXd/oD4dULE37XFkyJWrW4N9mpB0po7QE3pVd6hPrlwZKv4GQH3WAa23fqDNxvsVNeb5BgUUjZyRlxuRZxmymiSDssW6R87+4DaJnH3AjcizDJmcGwM5+4PbJHIGgDoSDmcXac0+997UVNn5AAAAAABQaRReAwAAAAAA0BoAAEApJFIJnX7PefMuvM7IFF+f8OcLK7zO6G+STj/iB0ootbAdIC9bjq5qf1B9gUMLer0r6ZHwPj0Ufk2PhPdpoZeF+gKHdFX7g7I937iPhSpFzlsir+i7kR3aEnmFnGsUOfsDOfsDOQMAAAB1KLyA9kYAmAfH8f793KpQ8X6h49i2V7Ga/+zevVt/+Zd/qRNOOEHf//73y3aca6+9VkNDQzm3XXfddVq3bl3Zjg1/cEeGqz0FSZKbKHDzKCyY7Tq6yr1Xfdq3oNe7cnWH+nSrHp8qQl6IPu3TVe69sl3OS5cDOQMAAAAAAJRRczPXjQEAAAAAjY3CawAAAAAAAElSoNoTAACgEVimpXbb0sFF7MM1pJc6Fz+X9qQpi/talJwlU1dPnKynggflLHBBqitptzW2qHmYMnT1xMlkXCalyvnFwOIKDci5vMjZH8jZH8gZAAAAqDOGIbW3V3sWABpcIOD9NohUqjI3Di10nGAwWJF5lMv/+l//S+985ztzbnMcR0NDQxocHFR/f7/6+vr09NNPa2JiouB+9+/fr/e85z368Ic/rH/+538uaUn5vffeq/vuuy/ntmOOOUY333xzyY4Ff7JMS3+2q0vPdL6k/oir5DxPF7bHpbAtbT0+/Wd7XBqaZ+9L0JEOm5D+7Lk2WW/hfGU5WIapq3WGnnK3LOK8tKvfav+i5mHK0NXGGbIMci4HcgYAAAAAACiTpiZp6dJqzwIAAAAAgPJZubLaM8hG4TUAAAAAAKgiSq8BACgBy7T0pV2n6ANdP9doFTsKWhPSlx7vkHUyCx7LoTu+ShqWeqKPLHhh62KYMrRx+C3peaBsyNkfyNkfyNkfyBkAAACoE5GIFI1KJSwvBYBcQqGQ5/ZKlV4nk0nP7YXmWevOP//8eY1PpVJ64okn9I1vfEN33323xsa8bxL6b//2bxoaGtKmTZsKFpkXY3BwUD09PXm333LLLWpubl70cRrFsmXLtGbNmrIf58UXX1Q8Hi/7cSqpe2eTtL1D154zOK/i6/a4FJn17SnzuNji60zh9S0/aVL3aER6V0fR88b8dOvNUqJFPWP3zuO8tFHE9kJj0kwZ2thyubpD64o8NhaCnJFXalySx8+UZrtkRis2HZQJOftDwZyj5NwIUmOS7PzbybkxFMy5XTLbKjYdlElRX8/kDAA1o7k5u1SroyNddt3UVLUpAQAAAABQdldcIe3dW+1ZTNuwodozAAAAAAAAPkfpNQAAJdK9s0l3/NzQBy5zNVqFnoLWhHTHfVJ3rFl6+4rKT8AnurVCUod6tKXIha2GPN9kL0kyVWhhqylDG3WJujtPKW6iWJT55+yq8OJkcq415OwP5OwP5IzcRiWNFBjTJanI1iDUqBEVl3N9l8lhWOmvaS9dkqp4FyqUQFyFL1l0SaIst77FVDjnFUr/LIa6ZRjS/v3Tj0MhaeXK9PMAUAHBoPfPhYlEoiLzaPTS6/kKBAI6++yzdfbZZ+vLX/6yPv3pT+uWW26R6+Y/l3PPPfeopaVFt91226KP/5d/+Zfam2cx0Xvf+15deumliz5GI7n22mt17bXXlv04a9eu1fbt28t+nIpKJtW9MyKpQ9e+eUD9TSpYfJ2r8Dqj2OLroCMdNi7d8tMmdf8+KC1NSRX6fudX3TpFCl+mnvh9xZ2X9vh+N6WIH5lNGdoYvix9fDIuO3JGTnZSnu8DMRKSSW51j5z9oWDOSXJuBHZSkpN/Ozk3hoI58327IRTK2UymswYA1IZUKvtcSTKZPs8RDksm7wkAAAAAADSgK66Q7r672rOYtmGDdNdd1Z4FAAAAAADwOUqvAQAolYEBdT/r6g5X+kC3Klp83ZqQ7uiVup+TtDLGmwDLrFtrJddQj5tdrOnKlTFnhWoxxZvSzJWts/djytBG4xJ1G2sWMWvMV76cc5t/zrORc3WQsz+Qsz+UPmdD5FznHFOFCzNNfnaud+TsD+TsD26RORvkXNfI2R8sK/t7smlSeA2golpbWz23j44WuqFKaYyMeN+gp9A8G1k0GtXGjRv1vve9T5dffrkOHDiQd+w3v/lNXXLJJbr88ssXfLyf/vSneYuzo9Govva1ry1438Ack8X73c8b0qChay921d+cv/jaq/A6o1Dx9VTh9f1S905Jgcnzn+Pj854+5qdbx0u6uMjz0pL3uWm3YGFy+rz0xepOHC8lyLdSyBlzuDF53/w8KBm8NbfukbM/FMw5JBnciLHuuTF5luSSc2MgZ38omPME15gAoJYkEtnnQcbG0teNh4elrq7qzQsAAAAAgHKppcLrFSsovAYAAAAAADWBd3QBAFAqhw5JShdP39GbLqKuhKzCa0mamKjMgX2u21ijjcYlMifLMB25GtCEYkouar8xJTWgianFshRqVtfsnMuFnKuLnP2BnP2BnAEAAAAAwGGHHea5fXh4uCLzKHScQvP0g7e97W3aunWrOjs7Pcf92Z/9mYaGhhZ0jFgspo985CNy8xSM/p//8390+OGHL2jfQE5LlqSLXEZG1P28oVvuTxdSB3N0chVTeJ0RSaXHzzZVeL1F6n7OkOLx9PGbmxf3eaBonJf2B3IGAAAAAAAokVRKOnCg4I3BAAAAAACoK0Z5308wLytWSHv2VHsWAAAAAAAAkii9BgCgdGaUTZ+/QzrxkMq83DG9/xMPpY83Jbm40mUUL7OwVZIGNaGkHA0pnlV87UpyC/xfRkxJDSmupBwNKv33iQWt1VfMAma3iI98WLhcG8q9UJ2cawM5+wM5AwAAAADgb0uWLPHcPjg4WJF5FCppLjRPv1i3bp3uvfdezzH9/f3613/91wXt/+abb9bvfve7nNvOOussXXPNNQvaL5DX2rXp4mnblpQuor5ly9zi6/kUXmfMLr7OLryefNJ108devnxxnwfmhfPS/kDOAAAAAAAAJZJISLFYtWcBAAAAAEBp1FLhtUThNQAAAAAAqCmBak8AAICGMfmmu+GwtP5yaW+b1BGTBiPehbcLZSi9/71t6eNtvleKxiWl5rk6Gotyvo7TCrVqn0annhtSerV5REEpq9Y6N1fThdcZSTlaoVadr+NKP2nMW2ZhcY+7RU6eRPM9n5FrKwuXa0sxOS8EOdcWcvYHcgYAAAAAwL+WLl3quT0ej2twcFAdHR1lm0N/f78SiYTnGEqvp5133nl6//vfr3vuuSfvmK997Wv6xCc+Icuyit5vX1+f/uEf/iHntkAgoFtvvVWmyb3iUWKnnpp1s2QZhrqfS5+jvPYSqb9Zak7Ov/A6I/O68eCswuuZi+cSCSkalYaHF3YQLEi3jpSsc9UTfjD3eWnDmfvcTK4rae4YU4Y2xs9Tt32kJDKtNnKGJMkclWTn3+4ak1mjrpGzPxSVc4Hv7ah95pjI2QfI2R/MUeX6eXqKY8rz7wEAoLLGx7N/b7JnfY+m9BoAAAAAUAee3vm0Tjv2tPwDiiy8TkoKlmRGBXANEwAAAAAA1BhKrwEAKBXbniq87luRfiqSKk/xdabwOrOouW/FjOJrLkZUzLAb03r3Hu3VqNoVziqtzvx3QIXLEuJKaVTZ5RftCmuvRrXevUeb9X5FjUhpJ495K3WBKsWptYmc/YGc/YGcAQAAAADwp6OPPrrgmH379pW19Hrfvn0FxxQzTz/5/Oc/71l6vXv3bj355JN6wxveUNT+bNvWn/7pnyqV52axH//4x3XaaactZKqAt6OPTpdOz9L9XPrPj12S7lpbjEhKakpK/7Rler9ZHEeyLGl0NMdGlFO3Vkrhc9QTfSTPeWmPc9WuO2e7KUMbh89Rd3ylJPKsFeQMBSbkWabomJLDe3fqHjn7Q2BcBctTybn+kbM/FMzZIudGEBiX58/btkW5OQDUknjcu/QaAAAAAIAa9ye9f6LbnrlNkuTemOvG2MUXXmf+LGvxNR0TAAAAAACgBhVuYQQAAEUZjhhZhdcZmeLrUppZeJ2RKb4eDnFBohIyhdd9ShdXRBRUWFbWmCHFFVfuMoUMW86cwuuwLEUmL1v1aZ/Wu/do2C3xXyIsSLexRufruJLs63wdR3FqjSJnfyBnfyBnAAAAAAD8p7W1VUuWLPEc8/LLL5d1Djt37vTcvnz5crW0tJR1DvXmxBNP1Jo13udeHn744aL3d9ddd+mJJ57Iue3oo4/WzTffPK/5AUV75RUpFMq5qfs56YKXSnOYC16aVXg9c9GaaVJ4XUXd8VU6P3FESfZ1fuIIdcdXlWRfKC1yBgAAAAAAAAAAAACgcc0svJYk4+ZZBdfzLLzO97hkKLwGAAAAAAA1KlDtCQAA0Ahsx9ZVl8bVtyz39kSJbzORMKVIjuf7VkhXXWbrPteRZXBvi3KZXXgtSTElFZc9Z+yokrJkyMpxrxFbjpJyZCr7wlZctmJKzim+3qz3K2rkSh6V0utu14MqTRvBg3pJve52ClRrEDn7Azn7AzkDAAAAAOBPq1at0qFDh/Ju/93vfqd3vOMdZTv+73//e8/tq1ZRbJnLpZdequ3bt+fd/vjjjxe9r4MHD+bdds455+iuu+6a19wWa/PmzZ5l7G1tbVq/fn0FZ4SyeeYZqblZSkze9HbGgrLek6UHS3OPPj14XHp/WcXXGYGA1N8v8b2mKnrDO/Rg6NWS7OvB0KvqDe+gELkGkTMAAAAAAAAAAAAAAI1pduF1hnGzIfdGd8GF1zOfDy58enNReA0AAAAAAGoYpdcAAJSAZVq6+qWonlp6SM6s6xTDIWksVNrjZfYXTWQ/b7rS1dsjslZTeF0u+QqvhxTP+5qkHEnKKr7OFF7nk9kfxde1o9fdrh53ixyV5uKfI1c97hZJokC1hpCzP5CzP5AzAAAAAAD+tXbtWj3xxBN5tz///PNlPX6h/a9du7asx69XhcrA9+/fX5Lj3HXXXRUvvf7Upz7luf2YY46h9LpRbNsmhcOSZUn29A1ze0+Wei7RnGvJC+UY6f1Js4qvDSNdej00JDU1leZgKFpv4PfqaXp08ipwrrA9/gIYxpztjqSe9keliZC6UyeUbJ5YHHKGzLCU46boU9yI5PI9uO6Rsz+YEZGzD5hhyeN9euTcIMjZH8yIyBkAAAAAAABAOeUrvM7oNwwdVsR+8hVez9xekuJrCq8BAAAAAECNo/QaAIAS6Q6eKt3/E/VcPL1YuRyF1xmzi69NV9q4ReqOd5XngFhQ4XXGzOLrQoXXGRRf146ZxamuXBleC5WL5MpNL2CmQLVmlLogN4Oi3NpCzv5AzgAAAAAA+NsZZ5yh22+/Pe/2p556qqzHf/LJJz23n3766WU9fr3q6vK+xnXo0KEKzQRYhMzf07Y2aXBQUukLrzNyFl+Hw5JpSqmU1NlZ2gPCU/q89MNyNLfUOM2UPM9ZG5NjsjmSeloelowWzkvXAHKGJMlNyLMkV22S0Vap2aBcyNkfCuYclYzWSs0G5eLG5VmSS86NgZz9oWDO7ZLRUqnZAAAAAAAAAGgwhQqv998ktalwYXWhwuuZ4xZVfE3hNQAAAAAAqANzV1AAAICFeeMb1f28qY33pwuoy1l4nTEWSh9nqvD6eUM68sjyHtSnbNfRVe69noXXmULkfJJylJDtWXidLkKe3seQ4orNuLzVp326yr1Xtlu4NBulMbM41ZGrAU1kZbIQMSU1oImpffa4W9Trbi/RjLEQ5SrIzSDn2kDO/kDOAAAAAADgjDPO8Nz+9NNPy7a9is0WLpVKqa+vz3MMpde5RaNRz+0TExMVmgmwCMnJa0jhsNTUpN6T3LIUXmdkiq97T5YUCKQ/JKlM3+OQG+el/YGcAQAAAAAAAAAAAABoTIUKr1+7SeqY8TjfKvP5rj5f8Gp1Cq8BAAAAAECdCFR7AgAANIz3vU/6+79X9/Om7nido/tOqcxhx0LShS9OFl5L0po1kkMhcqlZkq7W6XpKe+TIVUypOYXXkqb+11DuleteC2BnVmY7cmVO7iNznIgCMmXoap0uy5VE8XXZ9epZ9Wi68HpQMSXlZGUyP9l/dwY1oQ5FJBnqcX8oua66VaFvHpgyM+fSyL2f9EJ1cq4WcvaH0uacfx/kXC+cyY8CY/jZuc6Rsz+Qsz8UmbNbpqY4VEixOVdiLigb3kQNoAaceeaZikQiisViObePjo7q17/+tc4666ySH/uxxx7T+Ph43u2RSESvf/3rS37cRjA2Nua5vaWlpUIzARYhGJz6z97XBdXz5vIVXmdkiq/1kKXuFyeftKzyHhRTyl2EnJEpRJakbmNNWY+FucgZAAAAAAAAAAAAAIDGVKjweudN0tIczyclBWc9XojZ+ymI92oDAAAAAIA6Quk1AAClcsYZ0sqVuv6UV/W9kyt76O+dLF1/vqsv/qJFMgxp797KTsAnutUphd+sP23/qYaMxOSz7pyqpuzi62IuHKXLrmePTBdfS5KhIcVluK6+MfR2dcc7JZFxufWGd6gn+sh04bUZV3JGSkOKS44zWXztSEaBrF1HMdkaMqcvWyblpIuvnbAkQz36T2l4UN3xVeX5pDDHzJwLc4vKWXlK76V0tRs5Vx45+wM5Yw5jXAoNeY+J75MUqsh0UCbmuBQsJud5vf0LtcYcKzJnTnfXNSMhWQVyTkma/E0ZdYqc/WF0tNozAABFIhGdc845evDBB/OO2bp1a1lKr3/84x97bn/rW9+qSCRS8uM2gl27dnlu7+zsrNBMgEVYskSS1HtsTD3nDMuRUZGFZo4h9Zyfvulq9+8DUlOTZNtlP67fpW/EeH/x56UXOWbqhoxyuCFjBZEz5nIkeX2PLbQd9YGc/cGWd46FtqM+FPp6JefGwPdtf7DlfXNVvp4BAAAAAAAAzE+hwuvf3SQd7vH6TGH1QguvZ++nIAqvAQAAAABAnaEFBACAErr+6mP0JeNVufn7EcvCNaQvvVlSV6u+WNlD+5OryQ7MuYXXM4eki6+L212+S0yOJDNzQK5DVUyhwuuMITMpOVKwiDKuuGyNmHMvWyYn958uvpZ6oo9Iw6JAtQLmV5BbOo5ccq4gcvYHcgYAAAAAALNdeOGFnqXX3/3ud/XpT3+65Me99957Pbe/4x3vKPkxG0VfX5/n9uOPP75CMwEWYe1a9e7aqp5zhuQUe3/cEpkqvnYddYeapX37KndwH5r3eWnD66qw96aZ0jdk/KE0PMR56QogZ+QU6JdnmaITl5yxik0HZULO/hA4JM/yVHJuDOTsDwVzTkgON2yse4FD8vyh2k5ILjkDAAAAAAAAKM7TO5/2LLx+4ibpmCL2s9jC65n78Sy+pvAaAAAAAADUocLtfAAAoCjXb71eX7J+UfHC6wzXkL50wj5d3/rL6kzABzILWsOy1OYEvZZISPIus549zosjqc0JKixLPdFH1BveUdR8sTDFFl5nDJlJxb0WOkpKydGImci7PVN8nTkmOZdftQpyM8i5MsjZH8gZAAAAAADkcvnll3tuf/LJJ/X888+X9Ji//e1v9Zvf/CbvdsMwCs7Lr1zX1datWz3HnHLKKUXv77rrrpPruhX7KGTHjh2er9+5c2fRnxtqW+8x49OF15JkVPbisWNIPRck1XtCqZbTIRfOS/sDOQMAAAAAAAAAAAAA0LhOO/a0vNt+epN0asVmkkbhNQAAAAAAaESUXgMAUAKJVEK3/vpWuXKlKpVeS+ny5FubtiuhVPUm0aBsObqt6bmpUuKYmSoq6tmXkKwF/AUxJMXM1NSxb2t6TnbBym0sxOycCxVeZ4yYSaUmMzEkHWm3TCWdkqOkUTiv2cXX5Fw+M3NeKEPS8anoor7lk3N5kbM/kDMAAAAAAMjn+OOP19lnn+05ZuPGjSU95te+9jXP7W9+85t17LHHlvSYjeKnP/2pXn75Zc8xb3vb2yo0G2BhbMfWbc6vpwuvM+ZRfG260gUvpv+clxnHcAzptiMPcL6yTEpzXtrQHyQPk7GIM9Ocly4vcgYAAAAAAAAAAAAAoPG5N859X8A9N0lvqvA8KLwGAAAAAACNKlDtCQAA0Ags09IbDn+DHtr5kBx3YYsNDUmRlBQLzC1KLpYpQ28wj5DVtVLc26K0LEmbdIXeq3v033pZSbmTi1PdovMKypQlU6YcJYtclGoovRg2XYic0Ft1jDaF3y+rK7zAzwRecuVcHENJw5EhQ2/XMVoV6NQODeinenlG1oUXM5NzZWRyXq971ae983ilK01+5V+iE7UmuEzbdUBb9LvpvymGqWLvfrBOK7QpfDk5lwk5+wM5w9uopOECY7okhSowF5RPMTkvFznXu2FJIwXGdInT3fUurvS/7l66xPmOekfOvhCJSKOj04+Ds96GbRiSScYAKuPqq6/WL3/5y7zbv/nNb+rTn/60Vq5cuehj7d69W9/61rc8x3zoQx9a9HEa1U033eS5fdmyZTrjjDMqMxlggSzT0qYrv6P1n16tPvPA9AbDKGrxmelKX71f6n5W6j1Z+vglmlugXYR1QxFtClwki5+ry8KSqU1D52t9x1b1BQ7N+/WGDH1gfLXOTC7TE8EDuqP5hXlccZ62LrVEm4bOJ+cyIWcAAAAAAAAAAAAAAPzBvdGVcXP6TTo33SS9R8WuKiwNCq8BAAAAAEAjowUEAIASsExL31n/Hb3n7vfoZy//TI6ceTVXG5I6YtOl14OR+Rdfm4aht+kYfce4QpbheXkDC+Wac4KZb/H1fGQKr+duMCWjUEEUFixHzvNjzPhYzG7IuZyiatZm9/1a796jPu0r8lXpsvtLtFprtEyStGayjG2LZi5UL5z9OnVps/F+RY3IguaP4pCzP5Qv5+K+l5NzDXMsFS7VNCWTf2/rmmOqcM4WOdc7vp79wS0yZ35Pqm9ukd+3Dcq86pplpT9mPp4pHE4XPwJABfzxH/+xbrjhBu3fvz/n9vHxcX3qU5/S7bffvuhjXX/99YrFYnm3d3V16Y//+I8XfZxG9PWvf10/+9nPPMdceeWVsmb/mwLUoGg4qs1v/ZrWf/8D6luSnN6Qr/jaNCXXkelIX33AVPcLkkx38k/p4+90Cxdfz/jZat0BU5vtdyl6wtGl+HSQR1TSZl01rxsyZt6k97/1Zr299VhJ0ok6TivVpX/UzyevCxd/I8bN1uWKdnFeupzKkbNJzg3CkGR7bG+b/EB9I2d/KJRzVFJrheaC8nI8tpFz4yBnf/DKuV1SS6UmAgAoZP/+7HOis2+WHGBZKwAAAACgdrg3ujIMQ/+fKLwGAAAAAAAoJd4dAABAiUTDUX1vw/fmXXw9s/BaSv/ZEZtf8XWm8Pp7xpUULpaJ7Tq6yr1X23RAnWrSgCaUnHzzfLHF10k5cuTKLiLZ2YXXQZnqVJO26YCucu/VfbpSFgVQJeeVcyEhWbJk6hG9oh0a1KsaliVTIUkJzwVy08i5sqJGRJtVfFGuOasgNyPzeIteKOq4FORWFjn7AzkDAAAAdaSzs9ozAOAjkUhEH//4x/XpT38675g77rhDl112mbq7uxd8nHvuuUd33nmn55jrrrtO4XB4wceQpJ07d2rVqlWeY2688UbddNNNC9r/3r179fLLL+uNb3zjgl6/ED/84Q913XXXeY6xLEvXXHNNZSYElED0km5t/vs/0PqTfztdfJ2v9NpxZLrS/30opP/xSkCpZkm2Lbmu/scOyfmxrb+4wM5ffD278PpnXYp+YE26TBtlNd8bMpoy9Jd6i841sr+PX6ATZLmW/lGPihsx1p5S5/xlcm4Mrinvd/SY3NCrEZCzP5CzP7iFMiTnhkDO/kDOAFBfTDP7nOjMGyMbhhThvAcAAAAAoIZccYVcScmCA0vHs/B6w4ZKTQMAAAAAAKCseEcXAAAllCm+ftsxb5NpmAXXKs4uvM7IFF8XcydQCq8rwzJMXW2cIVOGDBnqVJOCM36UMvKkNfvZYgqvZ+8vU4RsyJApQ1cbZ1CEXCaFcs6nTSFZk+NcSbs1PJV0uvjaKrgPcq6OqBHRZuP9Wqcuz3GmDN2sc+cU5Gas0TJdotUyC3znZoF6dZCzP8wn5xv1dnIGAAAAKs2ypK4uFi8DqLjrrrtORx11lOeYD37wg3rssccWtP9f/vKX+pM/+RPPMcccc4w+/vGPL2j/lbR3716dffbZuvTSS/X444+X9Vi2bev//t//q8suu0zJpPdSoQ996ENavXp1WecDlFQwqOhNf6fNP+7QukMzlqflKKI2Xelr90uX9yUVmIjLiidkJlOykikF4kld/htbX7s/PW6O2YXX/9mk6NsuTP/chYqYz3np/09vm1OEnHGusUqf1/mcl65R5AwAAAAAAFBi7e1S0LPaCwAAAACAyrr7bkkFiqhLyPM4hx8u3XVXhWYCAAAAAABQXoFqTwAAgEaTKb5+87+/WdsObEu3HudYhJyv8DojU3w9GMn58qk25VOslfre0usUNZtK8wkgr251SbEO9QzdLUeuOtWiAWdcSdlyc6RkTFZX59qWPW5uxq5cGTIUlKVOs3mqCHlj+wZ1R04v2eeEubxyzqXdaFLQsJR04nn3aclSxAhpxI3l3E7O1RWVtNn5mNYP/pv6krvnbM9k8vrgMbp9/Od597NGLbrIOl03jHxfTo6v+3XBI7W548N8v64ScvaHYnM+LXCU/mPil3n3s0Ytuth6vf565D5yrmd2k5Q44D0mvFwyKQ6pa6mIlDzoPSbcJZmhyswH5ZEKS8lD3mPCy8m53jkxyS5wo6hAl2RQ3lbXnAnl+fV6WqBL4iZQ9S0YlPr7px+HQtIRR6SfN4q5zR8AlFZzc7O+/OUv633ve1/eMSMjI3rHO96h//iP/9C73vWuovf9ve99Tx/4wAc0OjrqOe4f//Ef1dRUP+cRtmzZoi1btuiCCy7QFVdcoe7ubnV2dpZs/48++qg+9rGP6emnny44dsWKFfriF79YsmMDFXPhhYpetl6b79us9RcMqm/JZLm7aUqOk/5PV9p4v6HLnktvMmxHhi1JbtbFw+7n0tcTey6WnMyPU7kKr0/8A+n448v9mWGWqBHRZr1f69171Kd9c7abMrTRuESrtVQx5XlzgKSLjRN1mJrU427JfV6aIuSqKl3Oq9VJzgAAAAAAwK8MQ+roSJdeAwAAAABQK2a9vzkoKVnGw3kWXq9YIb36ahmPDgAAAAAAUFmUXgMAUAYPvvSg+if6FbJCStiJqYLqzJrFQoXXGXmLryf3F5KlfndcD2qHupvPLO0ngZy6m8+RQmH1HLwjXYhsteigPaLUrAWpmcLrYmRGzizHdiVZMtRptUwXIS/9gLpbybkScuU8YI/NKb5uN5sVMYKyXUeFAg8bQZmGqSFnPOv5oCxyrgFRNWtz88e1fu8/qS/xytTzMzN5JXFQSnoXKV7afpbaI51Tf3cy1oWO1uYVH6Mgt8rI2R+KyXlHYr+U8s75Xe1vVFuknZzrWSopKew9prmZ0ut6l0pIE4VyjpBzvUvFi8i5mdLreucYUrLA12qomdLreld0zpRe17WJCSk84/t2KJT+AIAquvzyy3XllVfqzjvvzDtmaGhI7373u3XFFVfoM5/5jE4++eS8Y7dv366/+Zu/0ebNmwse+6qrrtJ73/veBc272n784x/rxz/+sT760Y/qggsu0Hve8x6dc845WrNmjUyz+H+vXdfV7373O/X29upb3/qWtm3bVtTrAoGAvvWtb2nJkiUL/RSA6vrc5xR94glt/vGLc4qvTcfVxvul7ueN3DfQNbIfdD8nSW66+NqcWXhtafOWZkU7lklXXinVUcF+I0nfkPHPtb7/X9WX3DX1vClDGzuuUHfTGdqWfFVyPd4gYLWr2zpJmuhUz+Bd2eelg0dp82Ef4bx0lZUu59XkXO+SToGcOySL8q66R87+kLQl1+MufVanZEUrNx+UBzn7Azn7QzIluU7+7dZhktVWufkAALy98orkzjj3uWKFtHQpN0oGAAAAANSWPL+nlqv42rPwWpL27CnDUQEAAAAAAKqH0msAAEqs99le9dzfI0nqjHRqIDaQLr6WJEMyXKkjbiiSyrF4OYes4usZ101CstSpJsmx1bPvm9Khg+o215b600EO3eqSjEvUk/qBxpXIWogqpdegz/etmLN60SVJjlzF7biaFdLGwP9Q90CXNLAr18tRBjNzduSqUxENaEJJpRdNtCuiiGNKsiU5Uq5CgplcWxGZkiIaUkySFJSpTkVk2E56MTQ5V1VU0mb3Mq137lafu2duJvaA5A5572T4NXVb2X931hkrtTl1maKvHqzI5wFv5OwPhXPuLyLn3eRc75xRyT3kPaZ/F2XI9c4ZKSLnVylDrnfOcJFfz+Rc19y45Bb4N9YwKL2ud26s8NezYVJ6Xe9GR6s9AwDI6dZbb9Wvf/1rPf/883nHuK6rO++8U3feeadOP/10vfnNb9aqVavU2tqqkZER7dixQ48++qj6+vqKOubJJ5+sf/mXfynVp1A1yWRS999/v+6//35JUktLi1avXq3Vq1dr5cqV6urqUktLi8LhsBKJhIaHhzU8PKyBgQH99re/1TPPPKPRef77YBiGvvGNb+iCCy4ox6cEVEY0Kt19t6KXXabNP9ZU8bXpSht/3qHuA5YUGZdiEwUvMykYVPfusPSwrZ63T8gxpHUHLW2+v0XRlk6pp0fq7KzIp4Xcoopoc+TPp27IOOdmt2ZYcj1+17HCUiCi7sibpWBo6oaM3Iixtiw+5wg5NwIjJKnw1zPqHDn7gxGW5FVuTs4NwQgp/f6uPMi5MZCzPxghSR6l14Fw+mduAEBtCAazS69DIQqvAQAAAAC1pcDvqaUuvi5YeO0W1z0BAAAAAABQTyi9BgCghDKF146bflO1aZhZxdeGDHU0dSjSFlEqNq7k2LACtmQ5rowZ1yFcQ7JNyTIDMoMhRSxLHUpqUDG5mi68Nierkh256kn9QDJsdRtrqvCZ+0+3TtIv9bL+QY9KkkwZcuROFl4v7M2Y6de5cif3J0lDiuvDOlPdzkmS47HICmXRrZMkw1aPu0WOpE41aUATalZQkQX+KJ1+XVjjSqpTTTJkpBdDG5eQcw2IKqDNulxX6V5dbZyRnYmTKTj3kpLc1NTfndvcJ7VJlytqB+S5UBIVRc7+4J1zSoVztsm53hWbs0meda2onFOSSXlqXePr2R/clDzLCCRJKWWdQEH9KTpnvm8DAEqvtbVVDzzwgN761rdq167CNx586qmn9NRTTy34eEcffbQeeOABtba2LngftWpsbGzR///xEgqFdPvtt2vDhg1l2T9QUUcdJd13n6IbNmjzj1/UVecP6urnmtW9M5JeydberlTQkpFKybAdyZn8kCTTkGuYMoJBWYH0srfuF9M3ArptbUKbftSiaPty6dprpSVLqvQJYqao2aTNKz6mq/Z9XVe3/eF0EfI8ZV5328jD2tR1DUXINYacAQAAAAAAAAAAAACoc0XcmKmUhdeZ/eUtvqbwGgAAAAAANChKrwEAKJHZhdcZmeLrwdigmoPNigQi6Q3BgMbDVvZOZr02qqBMIz0moqA6JI0rqY4ZhdcZjlz1uFskieLrCuh1t2uTnlG7whpSXJLmZLIQxqzK7HaFtUnP6Gz3SHKtksz/3zPF14epSVpk1pGp0uwZhdfkWzOiRkT36UpZiyxZ6zbW6N06edH7QXmQsz+QMwAAAAAAmOmYY47RQw89pHe+85168cUXy3acE044QT/60Y909NFHl+0Yjer444/Xpk2b9MY3vrHaUwFK56ijpPvvV/Szn9V9394sy511nck05AQC0+/islOSM72QzZo1vPvFkN79UlDWWWdL732v1ERRbi2Jmk26b8VfLP68dOuZenfLGZyXrlHkDAAAAAAAAAAAAABAnapC4fXM/c4pvqbwGgAAAAAANDBWSwAAUAK2Y+u2p2+bU3idkSm+niq8zsGQdJgd9qzSjSiozhyF1xmOXN3mPik7zzxQGr3u9skCZFcRBdWucFmO066wIgpOFZr3utvLchwU1m2s0UbjksmvvcWXm6dReF3LSrWwnAXqtY2c/YGcAQAAAADATCeccIIef/xxXXTRRWXZ/zvf+U49/vjjOv7448uy/0YVDof1yU9+Uk8//TSF12hM0aj0la/I+n93SDML8R1HZiIlKxZXYHxCgbFxBcbjCsQSCsQTspIpGSlbcmZc/12yRNaH/0z6oz+i8LpGcV7aH8gZAAAAAAAAAAAAAIA6U8XC65z7p/AaAAAAAAA0uEC1JwAAQCOwTEub/ucmrb93vfr29uUcY3hcBDEkrQ52aVkyoAP2mF6wBuRKkmlKsxY4el1KWRc8Ups6PizLZHFzufTGnlLP0I/kGNPlxxGFJdfUkDtRsuO0G02KGNP3anUk9ehHUnuHuiOnl+w4KF63uqRYh3qG7pajHBcRnQIXOk1TM+85Y8rQxvYN5FlP7KA03uI9pnmZZEUrMx+UBzn7Q8qSJorJubUy80F52E1S4oD3mPByycx/YxrUgVRESh70HhPuksxQZeaD8kiFpeQh7zHh5eRc75yYZBd4w2agSzKsyswH5eFMSHaBMYGuOefDUGcmZp0jCwazHxvG5HkSAKiezs5O/ehHP9Ltt9+uv/qrv9L+/fsXvc/ly5frS1/6kj7wgQ+UYIbVceKJJ+qf/umfdP/99+snP/mJxsfHy37MaDSqq6++Wtddd52OOeaYsh8PqLoLL5TOOUf6whek226T9u2TOWfxmqvMpSjDdqSULcXi6eLss86SzjtPCoWkEnzvQgXZ/fJcFmmkJLPcyyZRdgVztiUzUbHpoEzsfkmp/NvJuTGQsz8UzNmRzHjFpoMysfvleWKanBsDOfuDPSDvnF3JjFVsOgCAAoaHs4u7+vvT14lbWrheDAAAAACojhoovM7YI2klhdcAAAAAAMAHKL0GAKBEouGoNl++2bP4Opsx9b+rg11aZkWl4ISWqVWSoRfUn754UsQFFElaFzpam1d8TFEKr8umd/QJ9Qxvnuw2zs4lYoQUc1KKu4u/nBU2gorkKGtzJPUMb5ZCYXW3nrno42D+upvP0X3J32rrxG+zN7iGdyO9JCn76/n8pj9Q92HnlHyOKKPEuJQsUKTY3CRZzZWZD8qDnP0hEZFShXJuJud6l0pKCnuPaW6m9LrepRLSRKGcI+Rc71LxInJupvS63jmGlCzwtRpqpvS63hWdMwtc615kRs6BWZcjw+Giz3kCQLl98IMf1OWXX67bb79d//RP/6Rnn3123vtYs2aNrr32Wn3oQx9Sc3N9n0toaWnRtddeq2uvvVaxWEwPP/ywfvrTn+pXv/qVnnjiCY2MjJTkOEuWLNF5552n9773vXrXu96llpYCNycDGsnWrdINN0i7dqUfL10qe2xESqVk2I4Md7Lw2pBcw5BrGDJMS1YwKDmO9MtfStu3S+efL51wQlU/FcyTOyHPUk0FJIO38tW9gjkHObfRCNwJed/Vi5wbAjn7Q8GcxzlX2QjcCaXfeZcPOTcEcvaHonLm+gMA1Ix4PLv0enQ0/efQkNTVVZ05AQAAAAD8q4YKrwclHX6TpJsNuTdSfA0AAAAAABobK2UAACih+RZfG4ah1YHl6cLrGZYpvbh/n2JFHZfC6/KzXUe3jTwsR7kvHsXcZFGF16aMvPvIiLtJxdykIkZwzjZHrm4beVjvbjlDFoswKq539Ak9OLGtJPt6cGKbekefoMAcAAAAAAD4y9Kl1Z4BAGRpaWnRNddco2uuuUYvvPCCfvSjH+nJJ5/Utm3b9Oqrr2pkZETj4+Nqbm5WW1ubjjzySK1Zs0ZnnHGGLr74Yp144okVm+uxxx4r163MIpdIJKKLLrpIF110kSTJcRw9++yz6uvr044dO6Y+XnvtNY2OjmpsbEyjo6OybVvhcFjhcFidnZ1avny5Dj/8cK1evVqnnHKKzjzzTK1Zs0ZGgxUQ3XjjjZ7bOzo6KjMR1K7hYekzn5G+/e3s5y1LbjAo15zxNWHbWWUwlmFJ5ozrgsPDUm+vtHatdN552TccAQAAAAAAAIBalkxKBw5kF2IDAAAAAFBONVR4PSJp+U3Tjw2KrwEAAAAAQIOj9BoAgBIrtvjaMEytbjk6XXCdmnspZJla9Mdtb9NXRx/yLEmm8LoyLMPUpq5rtH7vP6kv8UrWtpib1JAzXnAfQVmyDFO26ygp23PskDMumc1ziq/XhY7Wpq5rKLyugt7RJ9Rz8I6CpeXFcuSq5+AdkkTxNQAAAAAAaHyGIS1bJrW1VXsmAJDX6tWrtXr16mpPoyaZpqm1a9dq7dq11Z5KTbrpppuqPQXUsl27pPXrpZ07c293HJkpW4bjSI6bLntxXck05BqGFMhzXXDbNunVV6X3v19qby/b9AEAAAAAAACgpOLx9AcAAAAAAOVWQ4XX45KW3DT3eYqvAQAAAABAI6P0GgCAMihUfG0apj551nX6z998O/1EMCg5tpTKLkI+t+tNOqFrrXp2fl2O68zZz7qW47T5xL9WNNBSls8D2aKSNi+9Set/97fqG3tJkhRzEhpyJgq+NqjAVFG1ZViSayiplOdrhpwJyTIUMUOSyLuaeg89qp6BTXJMQ1KOC5yuKzkFLnyapjSrrNyR1DOwSWpvV/eSc0o2X5RJTJJb4OtvyTIp1FGJ2aBcyNkfJpwicl4ihSiKqWuJkDQU9R7TuVQKNFdmPiiPRKCInJdLgUhl5oPySFiFc16yXJr83Ql1yh6XJhLeY1qWS4ZVmfmgPFJjUqxQzsvIud6NjUnJGW//DgSkI46QmpvT/w0AAOAnr7wiXXaZtHfv3G3JpDQ+rsDErGuN7uQitsyl46QtWan0NWVzVgF2f7/0H/+RPka0wO/OqC5jTDI8rg+7RvoD9a2onCs3HZSJMSYZHjc6J+fGQM7+UChnxxRBNwBjTDLmvvdyCjk3BnL2B3NM6Xdd5uFY3tsBAJUVi02f65Qkx5m7HQAAAACAcqqhwuuYpI6b8m+n+BoAAAAAADQqVpYDAFAm+YqvTcPUxos36vimI6dLr01DMgNSYFahT7RD3SveLrW1qWfbl7KKr9dFV2vzGX+raLC1Ap8NMqJaos2H/YPWP/nX+tXgbzVkj09uyXfhy1XQmC68zrAMU3IDSrqZBa+5Xz9kj0umqTd2/AF5V0nvnp+o55V/SXdaz8pxiusWXoSeo/Ramiy+fuVfpLY2da88d9HzRRlNJKWxAsWonZ1S5LDKzAflQc7+MBaTxgvkTOl1/YsZkl3gZ6clSyi9rncxt8icKb2uazGncM6dneRc71IRaXTUe0z0sPT5E9SvZDhdiOylfQml1/UuPCvnYJACRgAA4E/Dw9KGDXMLr11XGhmRZpdd5+O6km2nPywr/fPVzEV5IyPSffdJl14qhbghVM0KjGm6yTwHR5LD4sW6R87+EBiXd84GOTcCcvaHQKHyVGNuMR/qT2Bc5OwDBXM2ybkRBMbkWV5um5Lr8e83AKCyJiayS69Ts24U5vI7FQAAAACgjGqo8DohKXpT4XFP73xapx17WplnAwAAAAAAUFl5WvsAAEApZIqv161YJ2m68Lr7lO557ad75bnauPaTMicLcym8rq5osFV/dMTFGrdjBce2BprnFF5nWIapoFG4rGvcjumPjriYvKugd89P5hTOl4PjOurZ9iX17vlJWY8DAAAAAAAAAACACvnMZ6SdO7OfS6WkQ4eKL7yezbaleHxuWdvIiPT44wvbJwAAAAAAAAAAAAAAANAoiii8lqRgiQ7ntZ+kpNabCu/j6lOvpvAaAAAAAAA0JEqvAQAos0zx9esPf/2CCq8zMsXXr28/hcLrKuvd8xNd/9xGdQRaFTSsvOPaAy0KmyHPfVmGqdZAc97tQcNSR6BV1z+3kULkCqtU4XUGxdcAAAAAAAAAAAANYutW6dvfzn4ulZIGBtLF1Tm4liknaMkOWHIsU66ZZwGe6+Yuvn7xRWnXrhJMHgAAAAAAAAAAAAAAAKhDRRZeZyy2+Do468+ZUpJabiq8j6tPvVr/3v3vi5wJAAAAAABAbQpUewIAAPhBNBzVfevvk2XmL0guRvfKc/XuFW+T5VG0jPKaWYRsGqY6gm0aTI4o6WYvTm8PtChihZVycy9anylshmQFTA2lxrKeDxqWOoJtMg1zqhBZSv89QHlVuvA6g5wBAAAAAAAAAADqXDIp3XBD9nOuKw0Ozi2qNgw5oaDsgDm96C6Vkhx36nUBRzJyFWUnElIkkr1Y79e/lo47TrK4nlxzzLBkpPJvd8KSG6ncfFAeBXOOkHMjMEOS4fFeEL6eGwM5+4MZJmc/MEOS4fEeMHJuDOTsD2aYnAEAAAAAAADkt3Llgl4WlJRc4Ovy7ceW1HxT4X1QeA0AAAAAABodpdcAAFTIYguvp/ZD4XXV5CpCzlV8nSm8no/M+Ezx9czC6wwKkSujWoXXGeQMAAAAAAAAAABQxx54QNq1K/u5kRFpdnF1MCi1t8uJjUv5rksZhtygJYXDUjyevQ/XTRdsR2YUeo2NSf390kknleZzQem4KUkeZchqlYxopWaDcimYc5tktFVqNigXN6n0EuV8yLkhkLM/FMw5KhmtlZoNysVNSPJ6Hxg5NwRy9oeCObdLRkulZgMAAAAAAACglqxcKe3du+CXz7f4enbh9czn45Kabiq8DwqvAQAAAACAH5iFhwAAAMB2bd226/s5i5AzxddB0/IsvDZkaHnoMBkycm6PWGG1B1oUNOcWXmc4rqPbdn1ftuu14AoL5ZVzsQwZOjKyPG/OxSBnAAAAAAAAAACAOnX77dmPk0lpYiL7uWBQ6uyUrCJveGya6XLr2eNTqbll2k8/Pa/pAgAAAAAAAAAAAAAAAHXriisWVXidka/Ier7jwhs2FNwHhdcAAAAAAMAvKL0GAAAogmVY2nT657QuujrndtMw1RmIehZer4uu1hs61mhddLVn8XVnIJqz8FqS1kVXa9Ppn5NlFLkAHvNSKOdCDBl6S+c6nbfkDXpL57oFF1+TMwAAAAAAAAAAQB167TXp0Ueznxsfz35sGFJ7e/rP+TAMKZzjWmQymf34lVek4eH57RsAAAAAAAAAAAAAAACoR3ffXbJdFSq0LliMvWGDdNddcm908w6h8BoAAAAAAPgJpdcAAABFigZbtfmMv81biGzkWZieKbw+IrJMknREZJln8XW+/ayLrtbmM/5W0WDrAmaPYhXKOZ9M4fWq5iMkSauaj1hQ8TU5AwAAAAAAAAAA1KnHHst+7LpSPJ79XEuLZC3wxqemKYVC2c+lUunjzPTqqwvbPwAAAAAAAAAAAAAAAFAv5nvT+SLkK7YuWHi9YoV0111TD3MVX1N4DQAAAAAA/IbSawAAgHmYbyHy7MLrjELF17NRhFxZ88/ZzCq8zphv8TU5AwAAAAAAAAAA1LFnnsl+nEhkF1IbhtTUtLhjBHMsobPt7Mf79i3uGAAAAAAAAAAAAAAAAEAtK0Phdcbsd+cULLyWpD175jw1s/iawmsAAAAAAOBHlF4DAADMU7GFyKZh6q+P/9CcwuuMTPG1WaAQmSLk6phPzp898U/nFF5nZIqvyRkAAAAAAAAAAKDBbduW/TiVyn4cCEjmIt+uZRiSZWU/5zjZj/fvX9wxAAAAAAAAAAAAAAAAgFpVxsLrjOCsPz25bv5NN7p66oNPUXgNAAAAAAB8idJrAACABShUiGwapjau/aTOX3qW536OiCzTDcf/iUwj949lFCFXV7E5v2PZ2Z77WdV8hG468SPkDAAAAAAAAAAA0MgOHcp+PLv0OljUMrjCZhdnzy69Hh8vzXEAAAAAAAAAAAAAAACAWlKBwuuMxRZeZ5x27GmLnQoAAAAAAEBdovQaAABggfIVImeKkLtXnlvUfi5c+kZtXPvJOYXIFCHXhlLlfNGyN5EzAAAAAAAAAABAI0smvbeXatFdof3YdmmOAwAAAAAAAAAAAAAAANSKChZeF6WIwmsAAAAAAAA/o/QaAABgEWYXIs+3CDmje+W5WYXIFCHXFnIGAAAAAAAAAABAQcGg9/ZSLXQrtB/LKs1xAAAAAAAAAAAAAAAAgFpA4TUAAAAAAEDdCVR7AgAAAPUuU4h81VOf0dVHvXveRcgZmdfdtuv72nT65yhCrjHkDAAAAAAAAAAAAE9LlmQ/Dsx6a1YyWZrjOE72Y9PMftzcXJrjAAAAAAAAAAAAAAAAANVG4TUAAAAAAEBdovQaAACgBKLBVt33hn+QZViL2k/3ynP17hVvW/R+UB7kDAAAAAAAAAAAgLzWrpX++7+nH88uvU6l0oXVs0uq58N1JdvOfm72/pYvX/j+AQAAAAAAAAAAAAAAgFpB4TUAAAAAAEDdovQaAIBakUhJiUT2c7t3ScPN1ZkP5i1nffH4K9LoiPcLd+6Qmqazpwa5tuXMJ7ZXGhr0fuFLL0mRUe/9oLYlDkojB73HpF6UAgXGoLaRsz8k9hfO2X5RslorMx+UR2pIGt/jPWb095IZqcx8UB6pwSJyfoGc612qv8iv51Bl5oPycCakRIGcw5K4eVB9s8el5F7vMWFDMhZRAIjqm5iQBgamHwcC0rJlUnt79eYEAABQKaeemv04FEovvMssdnPd9M9LLS0LP0YyOfc5a9bvSl1dC98/AAAAAAAAAAAAAAAAUAsovAYAAAAAAKhrlF4DAFBt4+PS0LBk23MXKD/7Mynx2+rMC6URHJK6dnuPeeIBKUnpT10LjEpLX/Qec/B+KUV5al2zxqTOl73HDIxLdlNl5oPyIGd/sEalzle8xwzEJZvy1LpmxqS2fd5jRl6THE6P1bVATGopkPPQa+I0aJ0LTEgt+73HkHP9M5NSaNR7TKxdEmXIda2onDsk1dibk7E4pik995zU2iqdc4501FHVnhEAAED5nHVW9mPDkMJhKRabfm5sTIpEpoqqk64t13VmvMaRzOkFcq7M6ZupOs7cGykHAnMX+B155OI+D5TcU+5rGlYs7/bXaYUON6IVnBHK4SW3X6OK590ekKGVRlsFZ4Ry6HfHFVMq7/YOhTm10QAOueOKk3PD6y8i5y6D9/rUO9M1ClxZcPl6bgDL1SJH+YtGWsT7PxpBV4GcmxWs4GwAAAAAAAAAlB2F1wAAAAAAAHWPFhAAAKppfELqH6j2LAAAAAAAAACgvEZHpf/6L+nSS6s9EwAAgPI5/PD0jT4efXT6uebm7NJr15WGhqTOTskwlJIjRzNKr+VKxvQiOSOzzXWleI4y3eCsUq+jj5baKNWtNdt1QAOayLu9Q9xssxHs1KAGPcrNl6qlgrNBuRzShMaUzLt9hSjIbQT95OwLBzWhCY+cDxc3pGgEjuFm/bQ9V40VZmBBVnBjEV8gZwAAAAAAAMBHKLwGAAAAAABoCGa1JwAAgK8ND1V7BgAAAAAAAABQGa4r/epX1Z4FAABAeX3wg9mPg0GpaVahcTIpDQxItl3cPh0nXZw9e3wgIFlW9nOnnTav6QIAAAAAAAAAAAAAAAA1g8JrAAAAAACAhhGo9gQAAPArd3xUVspV1j0oZl3zcO1U8QudUZNMMyWzwLUscq5/rpGSQc4+YBe8OE3O9c8tImfZNjnXO4Oc/cBVSo7jeA+ybcmpsTdCYX4MW3KK+HoWOdc1cvYH106XuHmxbc05eYL6UnTOfD03lNk/ex86lM55djkjAABAo7joIumoo6Rdu6afa2uTEonsc47JpHTokIIBQ4mA5OZYsGe4rgIpW0qNzz2OYUjhcPZz7e3SCSeU6BMBAAAAAAAAAAAAAAAAKojCawAAAAAAgIZC6TUAAFXSFejQW5Mrs5/c82rWw8N3D0mJiQrOCqXWHkrodQX6ezpe7ZcSo5WZEMqiOZTQykDcc0zTawekxFCFZoSyCMWloHeGxmt7pWSoQhNCORhF5KzX9pBzvWuKSYECOe/eLdnkXM/Gm2J6OXjIc0zi1RQ517tQQlo27D1mjyM5lGrWtaJydiXH9B6D2mbZUmvMe8zwiOTW2JtYMT8BW2opkPPQiCi9bjDBoLR8+fRj1+UGMwAAoLEFg9LnPy998IPTzxmG1NEhDQxk3wjGdRVO2AonpJRpyDENuXJluK5MVwo4UvrmP7N+RjYMqalp7kK/88/n5iIAAAAAAAAAAAAAAACoPxReAwAAAAAANBxaQAAAqBbLkkz+KQYAAAAAAADgI+FwtWcAAABQfhdeKL3vfdnPBQJSZ2feUuqA4yqUchROuQrZmcLrHDKF17OvNa9dKx1//OLnDgAAAAAAAAAAAAAAAFTSypXVnkE2Cq8BAAAAAABKgqZNAACqKdJU7RkAAAAAAAAAQOVEo9WeAQAAQGV87nPSqlXZzwUC0pIl6dLqhQgEpObmuYXXHR3SeectbJ8AAAAAAAAAAAAAAABAtaxcKe3dW+1ZTKPwGgAAAAAAoGQovQYAoJoCltTcIllWtWcCAAAAAAAAAOUTDkvLlqWLGgEAAPwgGpXuvju9MG8mw0hvO+wwKRIpbl+BQLooOxJJv36m1lbp/e8vfl8AAAAAAAAAAAAAAABALbjiitoqvN6wodozAAAAAAAAaCisKgcAoNoClhRokeRKB8PZ2047TWpdUY1ZoWRGJOs33kOOPlVSa0Vmg3IhZ38Ykqxt3kPIuQGQsz8MStZ27yFHny6pqRKTQdkMkrMvjErmy95DTjpRUqgis0G5jEjmK95DTjpJnO6ud3HJGPAe4i4X9/Ksd+TsC4cOSS++OP04FEoXPc4uZwQAAPCDo46S7rsvvSBux47sbcGg1N6uMTMlw7ZlOa5MR5LrSpIcQ7JNyTIDagrkKbTu6EgXXre3l/OzAAAAAAAAAAAAAAAAAErriivSN5SvFRs2SHfdVe1ZAAAAAAAANBRaQAAAqBmGNLv3pSkitVKqWdccW4UL9lokk5zrGjn7g5NS4ZxbybnekbM/OAkV9327uRKzQbmQsz84rqQ8pU9TWiWT0uu65jgqnHOLZAYrMRuUixuUFC8wqEUyrErMBuXiBlQ451bJoPS6ro2PS+aMDE2TwmsAAOBvRx0l3X+/9NnPSvfcM2ezaxiyLVOpzK87jiPJndqe96fjtWul886TIoV+ZwYAAAAAAAAAAAAAAABqTC0VXq9YQeE1AAAAAABAGdAaAAAAAAAAAAAAAAAAAADlEo1KX/mKdPvt0tFHL25f7e1Sd7d0ySUUXgMAAAAAAAAAAAAAAKD+GEa1Z5Btz55qzwAAAAAAAKAhBao9AQAAAAAAAAAAAAAAAABoeBdeKL397dIDD6QLsB99tPjXHn20dNpp0gknSJZVrhkCAAAAAAAAAAAAAAAA5VNrhdeuW+0ZAAAAAAAANCxKrwEAAAAAAAAAAAAAAACgEoJB6V3vSn+89pq+/6lLFd29X4fvn1DreEpmPCFHrkYjpl7rDKh96ZH6w1P/h9TWVu2ZAwAAAAAAAAAAAAAAAAtH4TUAAAAAAICvUHoNAAAAAAAAAAAAAAAAAJV2+OF6du1y9R8/4y1cBw5KifjUw7eaSyi8BgAAAAAAAAAAAAAAQH2j8BoAAAAAAMB3zGpPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBgKrwEAAAAAAHwpUO0JAADgV+a+/Trp2QNavm9Uyw6MqWk8KWt8XLZpaCJs6kBHSJGjd0qro1I0Wu3pAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFIfCawAAAAAAAN+i9BoAgEpKJqUf/Ui6/XYt+e+f6eLxoezttj31n0fvi6v5d49IP/mFdPTR0mmnSSecIFlWZecMAAAAAAAAAAAAACivWEyaiEmjo1IqNf38gZekx++r2rRQIie9KoXs/NsPHpD27KjcfFAex+6Xgh45978iHfpt5eaD8lgxIFkei6CHI9JIc+Xmg/IgZ38gZ3+IjkteXRqxoBQPVmw6AAAAvjExkf04HJa6uqSjjpKC/PwFAAAAAL5B4TUAAAAAAICvUXoNAEClbN0q3XCDtGvX/F/7yivpj2hUOv/8dPk1AAAAAAAAAAAAAKB+PfmkLrz/Ba14cZ+WD8QVTroyXFeuIcUtQ/vbTNnhmJRSuhQG9Ss2ITlO/u1jrtRfYws9MX/Lx6SQxwLZEVvqT+XfjvrQMiYFvUpy49JArHLzQXmQsz+0jkkBj5wHE9IQOdc9NyGZHjmPBaSYVbn5AAAA+NXAgBSPS3v2SK97XbVnAwAAAACoBAqvAQAAAAAAfI/SawAAym14WPrMZ6Rvf7s0++rtldaulc47T4pEFr9PAAAAAAAAAAAAAEBljI9Lf/d30je/Ke3Zo7e5s4qQJ9fXNclVx4QtyZa0R7IsqbVVam+XTLPSswYAAAAAAACAxUsmpeeek2y72jMBAAAAAJQThdcAAAAAAAAQpdcAAJTXrl3S+vXSzp05NxuSTNuR6bgyHVdyXMmQHENyDEMy8lxA2bZNevVV6f3vTy9qBgAAAAAAAAAAAADUti98Qfr856WJifm/1raloaH0jZLb26WOjpJPDwAAAAAAAADKbnxcOniw2rMAAAAAAJQLhdcAAAAAAACYROk1AADl8sor0mWXSXv3zt2WTMoYG1VzLJH9vJv9wEjGpEBACgYly8oeOzgo3XmndOWVFF8DAAAAAAAAAAAAQK3avVt617uk3/xm8fty3fS14rExqasrfT0ZAAAAAAAAAOrJ4GC1ZwAAAAAAKAcKrwEAAAAAADCDWe0JAADQkIaHpQ0b5hZeu256W3+/jHgi92tnS6WkiQkpFpt7YWV0VLrnnvQ2AAAAAAAAAAAAAEBt+dWvpFNOyV947UrGzA/N/cgpmZRefZVrxQAAAAAAAADqT2dntWcAAAAAACg1Cq8BAAAAAAAwC6XXAACUw2c+I+3cmf1cKiUdOpQusF6IVEoaH5ccJ/v5wUHpoYcWtk8AAAAAAAAAAAAAQHn84hfSueemr/PO5rqS4+QvtS6G60r79lF8DQAAAAAAAKB+tLRIy5dXexYAAAAAgFKi8BoAAAAAAAA5UHoNAECpbd0qffvb2c+lUtLAgGTb08+5ruQq/THTzGs6rpt9UcV106XZs4uvt22Tfv/7EkweAAAAAAAAAAAAALBou3dL73iHFI/P3eY4pVtclym+TqVKsz8AAAAAAAAAKJemJumUU6o9CwAAAABAKVF4DQAAAAAAgDwC1Z4AAAANJZmUbrgh+znXlQYHsxcuT/5pSHJnX8fJdR1l9sWViQmpuTn7ItBDD0mrVkmWtYhPAAAAAAAAAAAAAACwaO96lzQ+nv3c7Jsel4rrSv390qmnln7fmDdbrizNeiNAa1wK2LlfIEkdbdKKZYX3g5qRM5+o651zqlVSR+H9oLZ19kuWR85msxRuqdx8UB7k7A8dhyTLyb/daJaayLnutY5JpsfP4C0hKRGq3HwAAAD8Yng4+/GyZdIRR0hdXax5AQAAAIBGsnJltWeQjcJrAAAAAACAmkLpNQAApfTAA9KuXdnPjYxItj13AbNhyM3ZcK2sMZKyX5f573hcikSmnx8akn7/e+mkkxY+fwAAAAAAAAAAAADA4nzhC9JvfpP9XDkKr2feJHliQmptld72ttIeA/My7MZ0lXuvrjbOULexZnqDs1XSRP4XHnOMZK6betjrbtdt7pPaZFyuqBHJ/zpURf6cfykp5vHKIyXzhKlH5FynnO2Skh4DlktmjS3sxvyRsz8UzHmFZHZVajYoF3evJI9yc0Ulo7VSswEAAPCPhx/OPh96/PHSYYdVbz4AAAAAgNK74gpp795qz2Lahg3VngEAAAAAAABmofQaAIBSuv327MfJpDQ+PnfxsmlKriuj0Jpm100vVDaMucXXyaQUDEqWNf38009Teg0AAAAAAAAAAAAA1TI+Ln3+83Of9yi8diXJyL0h19N5PfywdOaZUig0n1ehRIYV13rjXvVpn55y90iuo26dPLnVkTxvim1LTkqS1Kvn1GPcL0eu1rubtdm9XFGFyz19FMk7Z1vepZrk3BgcpbP22D6ZM+oZOftDSt45p8i5IdgqmLPIGQAAoOQcJ/ucqON1zgQAAAAAUHeuuEK6++5qz2Lahg3SXXdVexYAAAAAAACYhdJrAABK5bXXpEcfzX5udHTu4mXDmN8b9jwWPyuRkJqaph+/8oo0PCxFo8XvHwAAAAAAAAAAAABQGl/4gjQxkf1cvuvDhiE3VxGym/2feYuvMzdRzkilpK1bpTe8YR4TRikMGwmt79iqvsAhSemq1B79UBoeUnd8ldQyLhmx/DtIDkvx/eoN71BP9BE5k+8T6NMerU/dqc2DFyrqUmZebQVzbhqVjHj+HSQHpCQ5173wkKRk/u12UErN65YFqEXk7A/hYXmWHaeCkk3OdS/QL8+bUjgJyRmv2HQAAAB8Y/ZamgMHJNtOr3WZuQYGAAAAAFCfaqnwesUKCq8BAAAAAABqlFntCQAA0DAeeyz7cSolxXIsWvUqsZ6vVCr9xr+ZXn21dPsHAAAAAAAAAAAAABTvttuyH+e7PmwY2YXVXrzGzd7/c88Vt0+UzOwi5AxHrnqij6g3vKOo/UwVIc8qQu8LHNL6jq0aNhIlmzPmj5wBAAAAAAAWybalgYF0ITYAAAAAoH4V+36XStmzp9ozAAAAAAAAQB6UXgMAUCrPPDP9346TfjNeJcRi2QuZ9+2rzHEBAAAAAAAAAAAAANOefHLuQrpcpdfzKbye+ZpijI9LBw7Mb99YsHxFyBmZQuTnA4Oe+3k8eCBnEXIGhcjVVWzO+bZnPBLaS84AAAAAAAAjI1IqVe1ZAAAAAAAWotYKr/PdjB4AAAAAAAA1gdJrAABKZdu26f8eGZFsuzLHdRwpHp9+vH9/ZY4LAAAAAAAAAAAAAJj27W8XN26hCwDzvW72Ar6XXlrY/jEvhYqQMxy52hrerR3WcM7tO6xh3d78Qt4i5AwKkatjPjnf2/SStgdy3yB9e2BAX2/eTs4AAAAAAACum70GBgAAAABQHyi8BgAAAAAAwDwFqj0BAAAaxqHJBY7xuBSLVfZCSSqV/ggEpPHxyh0XAAAAAAAAAAAAAJD2q19lP851zbjQAsBcl5mLufY8c8zu3dLxxxd+DRZs2Exq/VG/VJ85JDmFx7umo0dCe6WxpFYlWqae3xEa0yNNhxR0TMktvDi0zzyg9c0/1OZdZyvqBBfzKaAIC8l5S/hlKR7Xmnh06vnt4WFtadmrgGvm/hqfhZxrXNuwZKbyb4+ZUpzF1XWPnP2hbVgy7fzbJywpQc51LzwoGR45JuOSzXsuAQAASm58PPucZWrW71jJZGXnAwAAAABYHAqvAQAAAAAAsACUXgMAUCrJZPoCychIdY4fj0uWJdkeC3EAAAAAAAAAAAAAAOXx+99nP15I6XUpjI6yuK+M0kXIv1JfZGher3MlPdJySHJdrUq0pAuvW/qL6UDO0hcZ0vqjfqnNr7yRQuQyWkzOW6J7pSFXa+LRdOF1dN9kzsWnTc41zHW9v8cW2o76QM7+4KpAjuTcMMgZAACg8vi9CQAAAAAaB4XXAAAAAAAAWCCz2hMAAKBhBIPp4mnbrvzFkswbAm07XXwNAAAAAAAAAAAAAKis0dFqzyAtlar2DBqWLVdXHfXYvIuQM1xJj7T266G2A3qkdf6F1xl9kSFdddRjshe8B3gpRc5b2vfpu+2vaUv7PnIGAAAAAAAAAAAAANQnCq8BAAAAAACwCIFqTwAAgIaxZIk0MTFdQF1prislEunS64MHK3985DEqhce9h8QPSYpXZDYoF3L2h+Eicu6XFKvIbFAu5OwPQ0V+3y4wBjWOnP1hTAqOeA9JHpQUqshsUC6jReR8SJzurncJyRr0HmIHxL08611csgoUhpFz/RsYSJ+nnCkeT9800CRbAADQ4Byn2jNIY4Ff2VgydPXAsXqqqU/OAouIXUm7g4u7zmBOzsNSjS0ubRClyvnF8Nii5kHOAAAAAAAAAAAAAICqofAaAAAAAAAAi0QLCAAApXLUUekyl2peMLHt9J+vvlq9OSCbNSF1FihzGtgr2U2VmQ/Kg5z9wRorIufXyLnekbM/WKNFft+mJLeukbM/BGJSS7/3mKEmcRq0zgUmisj5VZFznTOTUmjUe0wsLsqQ61xROSckyrzq29iYFJtR4Gfb0qFD6Te+t7dLzc3VmxsAAEC5lesmH7MXEea6Jj1zjGlKHR3lmQvUrQ5pqEU9Hb+Qk+PXF1eujNm/1xRcCGpIRvbfn5z7kWS60sbBN6nbPFbqmM/MMR+Fcs6pYM7mnJzzjiTn2tU0KCmVf3uwTWrqqNBkUDbk7A9NA5Ls/NvJuTEEHUkeN6exWySH94AAAAAAAAAAAJCFwmsAAAAAAACUAC0gAACUSjBYGxdMyrWQGgAAAAAAAAAWynWlwUHJsqo9EwAAgPJpbZWGCtyIrRJCofT1a5RNd+pEaSSgnugjcjT9PgFHrgbNuJqdgCLzeWueIc3YjWJKadxMqcMJy5xRfG3K0MaRt6g7tUoi4rLLl/OCzco5H3KucVZA3kEGJYPg6h45+4NV4N9qN0DOjSAQkGfptRmQHHIGAAAAAAAAAGAKhdcAAAAAAAAoEVoxAQAolVSqNi6aOB4LNAAAAAAAAACgmoaHqz0DAACA8jnhhOzHuRYBLvaacjGvb29f3DFQlO74Km0cfstUKXWm8DopV0NmUjGlFrTfmFIaMpNKTu4vU7ZsytDG4beoO76qZJ8DCpudc7mRMwAAAAAAAAAAAACgaii8BgAAAAAAQAlReg0AQKk8/3y1Z5A2OlrtGQAAAAAAAADwq0Jvdk8mKzMPAACAanjjG7Mfl6P0uhjLl5f/GJA0XYgsaarwOmMhxdeZwuuMTPG1JIqQq6hSxdcUXgMAAAAAAAAAAAAAqobCawAAAAAAAJQYpdcAAJTKyy/XxsWc8fFqzwAAAAAAAAAAcquFc6gAAADl8r73FTduoYvy8r1u9s9Yxx23sP1jQc5PHKEVTnNW4XXGfIqvZxdeZyTlaoXTrPMTRyx6rli4chdfU3gNAAAAAAAAAAAAAKiaWnt/L4XXAAAAAAAADYHSawAASmVoqDYu6CTnLoIFAAAAAAAAgJoQiVR7BgAAAOVzxhnSypXZz+W6huy681+cV+z45mZp2bL57RsLNmwktL5jq/aa42p3QznHDJlJpeR47ichJ2fhtSS1uyHtNce1vmOrho3EoueMhStX8TWF1wAAAAAAAAAAAACAqqmFfoSZKLwGAAAAAABoGJReAwBQKhMT6T+rfWHHtqt7fAAAAAAAAADIxbKk9vZqzwIAAKC8rr46+3G+68fzKb72Gjd7/yefXNw+sWiZwuu+wCFJUsS18hZfxw0nb/F1So4mjFTObe1uSBHXkiT1BQ5RfF0DSl18TeE1AAAAAAAAAAAAAKBqqt2LMBuF1wAAAAAAAA0lUO0JAADQcDIXd6p5UaXWLjD5mWEUzqOYMaht5OwP5OwP5OwPRWVIznWPnH2iyO/bJSqgQZUYImc/KPbnMHKub+TsX4GAFA5LbW2SyT15AQBAg/vUp6Qvf3n6pslS+mcgJ0fhsevKkORKeX8MntdPx5YlnXbafF6BBZpdeJ0RcS3FDFPxHAXXScORXCmg6Z+JU3LSz+cQljlVeJ2RKb7ePHihonkKtlF+3fFVui+xQ1tDuxe9r/MTR1B4DQAAAAAAAAAAAACovJUrqz2DbBReAwAAAAAANBxKrwEAKJWmpun/NozKXliZWRYUiUgnnVS5Y6OAYUkj3kOWnCCptRKTQdmQsz8MSRrzHkLODYCc/WFA0rj3kCUnSGryHoMaR87+MCqpQHHmihMlUQBU30ZU8FT2ipMKj0GNi0vqLzCmSwW/5lHjyNkXDhyQ4vHpx6GQtHx59eYDAABQac3N0g03SJ/+dPbzhiFbrqwcl5ENabL5uji2ofR+Zt9U5vWvl4LBeU4Y85Wv8FqSYoads/A6Y2bxtVfhtSTF5Shm2BRf16De8A49GHq1JPt6MPSqesM7KL4GAAAAAAAAAAAAAFTOFVdIe/dWexbTNmyo9gwAAAAAAABQBrSAAABQKu3t0q5d1Z6FZFnSobmLa1Eto1JzgbLF8UNKlz6hfpGzP4wUkfOgyLnekbMvGENSUzHftylDrmvk7A/muBQc9R4T75dE2VNdM8eKyPmQON1d54yEZA15j0kFRBlynSNnfxgrcCMhAAAAP/jUp6S775Z+85upp4bD0lXd0tVPSd3PLXzXvSdLt50ubfquFE3M2HDYYdLppy98xyiKLUdXtT+Yt/B6yEjkeFW2pOHIliuniKbz9P5COYuvr2p/UPcNXiSL36Eqqje8Qz3RR4rKrxiOXPVEH5GGRfE1AAAAAAAAAAAAAKD8rrgi/b6WWrFhg3TXXdWeBQAAAAAAAMqAFhAAAErlmGOk3/52+rFhSO70IseEKYWcxR+m4H7a2hZ/EAAAAAAAAAAAAADAwv3nf0pr1khjYxoOuVp/uau+LumplenNCym+7j1Z6rlEcgxp/eXS5ntdReOSTFM64gjpiSdK+ilgLkvS1SsCemptUo4x/XzMdDQUtIveT+7C5NwlykNGXEpZijjT5damK129LSBr75NFHxOL17tiQD1rX5GTzDPAKvB3wHUkZ+4bPhxJPZGHpBePVvfezkXPE2XWNSAFPLIe3iuNNFduPigPcvaHFf2S5fFGvKG90ig517228fQPT/lMhKQEN9AFAAAouYmJrPU0GhyULEtqaZGC/PwFAAAAAFVVS4XXK1ZQeA0AAAAAANDAzMJDAABAUc48UwqFcm7a3SYd9Qnp+vMXd4jrz0/vZ3e+XmvTlJYvX9xBsGC2StBqXsL9oDzI2R/I2R/I2R/I2R/I2R/I2R/IGQAAAADQMI48Utq6VcNtoanCayldWN1zidR7yvx2N7PwWpL6VqSLr4fDklavznutGqXXvbdTG7cdPdWdON/C64UYCtqKmenzHaYrbdxGOXKlTRVeG4XHLoRjSD1rX1HvioHyHAAAAAAAAKCaXFdKJtPl17FYtWcDAAAAAP5llOmi90Lt2VPtGQAAAAAAAKCMAtWeAAAADePUU6WmJimRSD82DMl1tbtNOu1/SYeapC+dk970xQfnv/vrz0+/3jXS+3v6n6UjR5R9cSkQkJYuTZdfo6KGjYSuim7V1ROnqDtx3IwtZuELgKapzL1IekMv6bamZ7Vp+EJFXRam1xpy9gdy9gdy9gdy9gdy9oe8ORumZBbK2RA514e8OZtGETnz9Vz3ivp6ns4ZdYqc/cGysn8Oq7U3xwMAAFTQ8GmnaP3/OU19O3+VLnWZ5BhSz8WSZOg9z7ky3Ly7kDS38Dqjb4W0/oMt2vxMk6Kpkk8fHjKF03966s6yF15nDAVtGUnpG88cS+F1hZW78DojU3wtiYwBAAAAAEDjGh2V7MqcUwMAAAAAzFBr7+l1C7xhBgAAAPj/2bvz+Kjqe//j73Nmkky2CXvYFRUQUKOAK2iruIF1iaVGpWpLq7ZiWvtrrfbaBa3ttbW9rSJWreUKLWoQDWqFWgS9XvG6sEUEwQVQdpAl+zKZOb8/wgAJmTMzyWyZ83o+HnlQcr7z/X7SNyBk5rwHAAB0eZReAwAQK2ecIWVltZS6HHwB3pGF11JLYXWw+PqBKIqvjyy8llr2O1R8XXNwkWFIGRnSSSdJ+fmx+ZoQkSqrQSXWPFVon1ZlvS0Z3VRsjGy5GKiUtNV+g/xCycxXubVOpdbbCshSSe83VGZcI6/hifv8iAw5O4N9zh5J2+w3yO8tmXnknOLI2Rnsc86UFOZd4PMLJTOHnFMcOTuDfc7VkqrD7NBXMjPJOcXZ51wlqTbMDoWSmUHOXZnVqPBPWRRKhisR0yBerAaFz7lvSzk2uq7KSqn2iD+3MzJaXzfNlu+hAgAApLmqxiqVzC9RRcPnUp/e0t59UvPhZuqW4mtLAUnF6494YJv7+cpPlH7YTuG1JMntVkWPJpWM/kxlK4+Xt5m/ZyVcou+/5H7PhEtU4XUQxdcAAAAAACDtWZbU2JjsKQAAAADAWSi8BgAAAAAAQBJQeg0AQKz07y+NHy8tXSodOKCteQGd+r3DhddB0RZfty28DjpcfG1pYI3RUrh9zDEUXifY4WK2XZKkgCyVWgsl6XBBWwRaitkWKnDwLuUK7VKJNU9loqAtFZCzM5CzM5CzM5CzM5CzM5CzM5AzADiMhz+TAQBA+jtUeL2zouUTpkvq3VuqqWn5OHjjXsCQfjixZUmr4uuDQhZeu1yt3kikoqBBJad/rrJ1I+X183KwRCjvtUelQ7coSy4VNBuqdDeHf1AnFTS7lSVTpSdvkTweFX/ZO+5nOl0w54AivPk37E3CRkQ3EgcMkXMqy66XTH/o6znZkpWXuHkQH+TsDJ46yQyEvp6TI4mcu7wcSYZNcYaZJWVmJmwcAAAAx6ipaf1zs82bX6da2RoAAAAApLNU+zcYhdcAAAAAAACOwV1OAADE0k03ScuWaWuvTJ36rYajCq+DIi2+vjtE4XXQoeLrv5oa6HNJI0ZItbWd+xoQsSo1qiTzRVWYe1p9vqWg7Z9SU6POCPSVXE22+yy0PtQvM/9XbW+hqtBOlfifUVnTlfIqK8bTI1Lk7AyR5DwmUBg251esNfo5OacscnaGSHI+NdAnbM7/tNboPzL/h5xTFDk7QyQ5nx3oL5mNtvu8pAr9JPN1ck5RkeR8ZqBf2JxfVIV+nLmUnLu0Rsmot19i1Uky7dcgxUWSc63IuYurqwt9zTSlnj0TNwsAAEASHFV4faS8PCk3t6Xwpa5OCgRCFl+3W3jdpuz6SBV5NSoZtU5lH51E8XWclffco9ITPj30fQhPwJSa3XEtvi5odrecIykgqXTop5Jhqngvhcjx0jbnRCPnVBamvNwwjy7yQhdEzo5gmGHKkMk5LZimZNj8F52cAQAA4sM0W5eYtf03VkFBYucBAAAAAKei8BoAAAAAAABJxB1OAADE0iWXaOsJhTr1nJ3a67FfGq74OlzhddDebOnUm/1aPS9TA7t3lyorOzY7olJlNKmk22JVaK/au8s1IKnU/W9NrxojuRpC7rPOvV9/yVrZ7h6SVKFdKjGfV9mBi+S1MmMzPCJGzs4Qac6/JOcujZydIdKcf159mmSSc1dFzs4Qac73VZ+uTCv0TejLM/bouezPZJFzSoo053urxyrLar/QSyLntGE0Sa4a+zXNWaIMuYsjZ2dobOeNCkxT8nhaCq/dPD0JAADSl23hdZBhSPn5LR8+n5qq9sts9qt0ktTkNnTleksvDpd+fInUbLasd5vuiG5CrMitUcmIDym+jiO/LM3qu10Btb4JM9ria9NqU2hu48jC66DAwTmu2NtLLqXYDappIFTO0TAkHVfv0cbshg7vQs4AAAAAACAt9egh5eQkewoAAAAASH8UXgMAAAAAACDJuLsJAIAY2lq/S6de8pn2+iJ70iVU8XWkhddBe7OlU2+o0WpXngaqIMqpEa0qNahE81Wh/bIrYQpI+kX3lfqqjtFI9T7q+jrt0UJtUbYyZNrcoFrh2q+SwjdVpsnyKkybOmKGnJ0hmpx/Rc5dFjk7QzQ539ttlb6qY8m5CyJnZ4gm5593W65rNEpj1f+o68u1XXP0ibLktq2DIefkiC7nFSohZwdoVPinLAolhS5AR1fQoPA59xWl111cQ4OUkXH455mZ0jHHJG8eAACABPEH/JrywhT7wuu2MjLUmOVWINOQLEs3XyVNr3Nrm6fp0HPFmQFT7kifOFZL8fWUE9dqwdpTKMmNA5cMzV0/SiUjPlRFbus39Ym0+DrTMuSyDPllqcmwf21Be4XXklRUm6e560eRcZzY5RwJQ9KkvT00si5X63JqtbDnvg4VX5MzAAAAAABIOz16SP36JXsKAAAAAEh/FF4DAAAAAAAgBVB6DQBAjGyt2qpTHztVe5uro3pc2+LraAuvg/aaTTpVj2m1btNAk+LreKmyGlRizVeFdkkR3FhqKaCF+lSS2apwsaVo8dMjbmy136tCu1Si+SozrpHXoKAt3sjZGaLNOUDOXRI5O0P0OVsR5GyE3YucE4ucnaEjf27P0QeSDI3VgEOfX65tmqMP+HM7RXXk79vk7ACWqfBFx6ZkUIbcpZGzM5hmy8eRPwcAAHAAl+nS1FOnatWOVQpYgegebBiSYciyLG3N8bV+stg0JCPyl3iZMjTVHCvXsCHRzYCIeSWV+U5QiRarwr231TWPpAbLUqPR9tdAy3cwMmXKJVMyWt7WKVMBNSm4tvX3NrIsUx4z86h/RhU191SZ7yJ5j8+M1ZeEdtjlHJJhtRReNwzWyOzuUrY0Ur2kJq8Wer6QZEpmZG/oRc4pLCtDki/0dX9PqblnwsZBnJCzM2S5Jdm8WUVzz5as0bW590qy+ft5IFcK5CRsHAAAAMeor29daDZwoNS/f+s3UAYAAAAAxAeF1wAAAAAAAEgRlF4DABADTc1NGv34aO2t3yt14HmXYPH1/FHSpm7RF14H7VW9Rusxbc34D2Wa/Gc+1qqsBpU0zVeFtSuKRxmyZGmhPpZMUyPNPloX2K2FgY9lHfrFElngFdqlEmO+yjKnUNAWR+TsDOTsDOTsDPHLOTLknBjk7AydyXmOKiSXS2PNgVoe2Ko5/gr+3E5R5IyQLElWmBsbjSzJiKwYCinKsiLMmZLkLs2ypMwjStky2yloS7UX0wMAAMRI8YhiSVLpotLIiq8bG5Vd75PpD8hs51tWAUOyTEvKtCR3+Od/TRmaYUxScc+R0Y6OKHkllVk3qMSad/CNvVo0yKfGEKWKmXIdKrwOcsmlTBlqkv+o9Y1GQA0KyKPD/44qUqHK3NfI24/vayRCqJxDMRTQRA3VyJzerT4/Ul5JOXpNn6ml7tweOae4wAHZliGrl2T2S9AwiBtydoawOfeRzMIEDYO4sUzZll7LKxl5iZoGAADAOT75pHWpWX4+hdcAAAAAkAip9hpdCq8BAAAAAAAcjTZMAABiwGW6lJ+Vrz11ezq8h2VIG7t3chBLys/IkWvAQMqBYsxvBTRl559UYeyWXFEUbFkByTJlSVpofaz15n5t9O+RZRg6dDezaUqKLK8K7dYUs1wL+v5ILjKOOXJ2BnJ2BnJ2hvjm7FLkBarkHE/k7AwdzlmHc55jrdYK1x6t9W+TZR6Rs2GKnFMDOcNWoN6+W0SSMvtTet3VBeolX5jfq5n9+b5WV1dX1/oF823LGd3ug/+uAgAASE9hi68tSzpwQGpokGT/4i3TkuS3pPr6lk+43ZLH0+4NiocKrw0KrxPFa3hUpmsOFSI3yKdKNba7NktumSG+d+GSqRyZqlfzUdeC+3mU0VKEbFzDG3klWNucQzFlaLJG6hh1a/f6SPXWMPXU37RSAZs3ZiRnAAAAAAAAAAAAAECHUHgNAAAAAACAFMMd5QAAxIDLdOkPF/1Bef7kvp9EXrOpP/S8ntKuOHAZpqbmfyXkjciRsGTpM99uWTY3sIZjytDU/K+QcZyQszOQszOQszOQszOQszPEKucPm7aScwojZwCAJCkvL9kTAAAAxF3xiGLNmDhDZtt/ex44IO3ceajwOmrNzVJNjdRQ3+rTFF4nj9fwqMy4Rn2VG7LwuuBg5bWdDLlUoKx2r1WqUX2VSxFyEgVzLlJhu9eDvweL1Nd2n/EarBnGpJDfH6PwGgAAAAAAAAAAAADQIRReAwAAAAAAIAXR6gEAQIwUF5ypx17PkytJz8G4LOmx17JU7Ds+OQM4QHHeWM3odWOnCto6w5ShGb1uVHHe2KSc7xTk7Azk7Azk7Azk7Azk7Azk7AzkDAAOl5Eh9e6d7CkAAAASolXxdXOztGuXVF8f/oGR8B0sv/b7KbxOAUu0UbtUq4x2XopXoCx5lBHRPh5ltFt8nSFTu1SrJdrY6VnRcaGKr6P9PVhsjGy3+JrCawAAAAAAAAAAAABAh1B4DQAAAAAAgBTlTvYAQKppbGzUxx9/rK1bt6q6ulp1dXXKyclRfn6+Bg4cqOHDhyszMzPZYwJIQVX/94b+Maxe3iZDB7IsJfLpGEOSt8nQP0b4dPnmDfL2GpfA052luOBMyTRVume2AlYg/AMMKfwvhvBPJpqGqRm9b1Jx/umRjIlOImdnIGdnIGdniE/O4ZFzYpGzM0Sdc4yKk8k5saLPORL897nLM1ySP8z7dLpcLevQhZmSGUnOvGdrl+Zytc7Z5ZI8HiknR+rVq+XnAAAADlE8olh6/z2VVjygQKzvL7QsmbV1mlE9XsWDKLxOlnJrnUqthbIkdVe29qtePrV8vyOawuug4PpKNUpqKbzurmxZkkqthZJEwXkSeQ2PynSNSqx5qtCuDpfOB9eXWgsVkEXhNQAAAAAAAAAAAACgYyi8BgAAAAAAQAqj9BqQ9M4772jBggVatGiR1q5dK7/fH3Kty+XSqFGjNGnSJF155ZU666yzEjgpgFTlD/g15cN7VdHTJ4/fULdGJaz42pDUrdGQx2+oondAU1z/1IKhN8pFCVTcFGuYtKO/Stc+GL6gzQpIarZfE6bMyTRMzRh1p4r7nR/9sOgwcnYGcnYGcnaG6HL2SwpTpOh2y65AlZyTg5ydIeo/twNh1rjIORVFn3OYf2G7XCLnLq65VqoJ82aD3qGSydMaXZqvRqrNsl9TMJRy866upkbKOiLnjAxpyJDkzQMAAJBM5eUq/tbvpOFS6STFtPjatKQZC6Xi9W9J1w2SRoyI3eaISLDwOnDwlQGGjEPF1znKiLrwOij4uDr51F3ZMg5+zyMgi+LrFBAsvp5izddUY3SHswg+bpa1UnONyRReAwAAAAAAAAAAAACiQ+E1AAAAAAAAUlyY5h8gvT377LMaM2aMzj77bP3ud7/TBx98YFt4LUl+v18ffPCBHnjgAZ199tkaO3asysrKEjRxaqmrq9Pbb7+thx9+WDfeeKNGjhwpl8slwzBCfkyfPj0psz711FO2c8X7Y+DAgUn5upE4LtOlqVt6yTz4XExGLO9WjkDGwX4w05KmbupG4XUCFPc7XzNG3SnTpvQ0FihmSy5ydgZydgZydgZydgZydgZydgZyBgAAAACktY8+kiZPlixLxetbCqrNGN3bd7jw+uAnnn1W2r07NpsjIm0Lr4MMGeqh7A4XXgd5lKEeRxReBwWLr8utdZ3aH53jNTxaYFzf6fLxYmOkFhjXU3gNAAAAAAAAAAAAAIhOv37JnqA1Cq8BAAAAAADQDneyBwCSYf369br11lv15ptvdnqvFStW6Nprr9Vjjz2mxx57TMOHD4/BhKmnsbFRFRUVWr58+aGPdevWhS0JB5ykeHO2tK5At42v1JfZbW9tjR9L0pfZlvrUSTPezFOxshJ0MoKFaaVrH1TACsR8f4rZUgM5OwM5OwM5OwM5OwM5OwM5OwM5AwAAAADS1nnnSYHD/9YtXi8tOFFafHznt56w8YjCa6nlxsFZs6S77+785ggrVOH1YbF6k+z29wkWX0vqdOkyOs4Vozdyi9U+AAAAAAAAAAAAAACHuO46aefOZE9x2LXXJnsCAAAAAAAApChKr+E4L7zwgm666SbV1NTEdN833nhDY8eO1Zw5c1RcXBzTvRPN5/NpzZo1rQquP/zwQ/l8vmSPBqQ2n0+n73ar1h1Q7Gu67AUk1botnb7TLfVqTvDpzhavgjaK2VILOTsDOTsDOTsDOTsDOTsDOTsDOQMAAAAA0s53viN9+WWrT5WfKC05LjbbLzmuZb9Wxdd1dVJ5udTFX7OS6vxWQLOslTaF1+EZkgbIq22q6vAuAVmaZa3UFTqR0mQAAAAAAAAAAAAAAJziuuukZ59N9hSHXXut9MwzyZ4CAAAAAAAAKYo7XuAoM2fO1OTJk2NeeB1UU1Ojr3/963r00Ufjsn+ivPLKKxozZoxuvfVW/fWvf9WqVasovAYisDXXr9Mmf6naDMno+P2tHWJYUm2GdNp1B7Q1N9GV2yjud75mjLpTZoxuJqaYLTWRszOQszOQszOQszOQszOQszOQMwAAAAAgbVRWSk891epT5SdKpZOkgBGbIwJGy37lJ7a5sHq1VF8fm0PQLpdhaq4xWUUqtFkV+gUDhqTxGqwLNETjNVj2vyRC71OkQs01JlN4nUT+GL15W6z2QXyQszOQszOQMwAAAAAAAAAASAupVHjdty+F1wAAAAAAALDFXS9wjNmzZ6u0tFSWFd8mWsuydPvtt2vOnDlxPQdAamlqbtKYMcu1L6vlzxhDiSu+NiwduhF2X5alMeeuVVOgKTGH45DifudrQq/TY7LXhF6nU8yWosjZGcjZGcjZGcjZGcjZGcjZGcgZAAAAAJAWbr1VChwuQ4x14XVQu8XXliX985+xPQhH8RoelRnXtFt8bcnSPtWrQUe/uXyw8HqIukuShqh7yOLrBvm0T/Wy2im+LlKhyoxr5DU8nf1S0EFVVoOusp5WubWuU/uUW+t0lfW0qqyGGE2GWCJnZyBnZyBnAAAAAAAAAACQFowYv/ikM/r2lXbsSPYUAAAAAAAASHGUXsMR3nvvPd18880RFV6fc845euSRR7Ry5Urt27dPPp9P+/bt0/Lly/Xwww/rzDPPDLuHZVm6+eab9f7778difABdQKY7U99yty7mSkTx9ZGF10HfahqlTDMzvgfjKOU7XteSL2Pz5/6SL99X+Y7XY7IXYoucnYGcnYGcnYGcnYGcnYGcnYGcAQAAAABp4cUXD/3PeBVeB7VbfP3RR/E5DK20V3xtydJ+1cungCrV2Kr4um3hddDh4uvDv0ga5FOlGuVTQPvbFF9TeJ18VVaDSqx5WqEdKrUWdrhAtdxap1JroVZoh0qseRSophhydgZydgZyBgAAAAAAAAAAaSGVCq8lCq8BAAAAAAAQEXeyBwDiraqqStdee618Pp/tuqFDh+ovf/mLJkyYcNS17t27a8yYMRozZoxKS0v173//W7fddps+++yzkPs1NTWppKREq1evltfr7fTXgfh64IEH1LNnz7jtn5ubG7e9kTp+V/Rj6alV+kNR7aHPWXF+/sgyWhdr/2SVR7/7yjfjeyiOUr7jdZWufVABKxCT/QJWQKVrH5QkFfc7PyZ7ovPI2RnI2RnI2RnI2RnI2RnI2RnIGQAAAACQFl59VWpoKUCMd+F1ULD4WpKK10tqbpY++UQaOjS+B6Ol+FrXqMSap9XaeajwOqhSjZKkHGXqIh2vPmr/tSND1F0j1FvPaZ3q1HTocZIOFV93V7ZOVV8Kr5MsWJxaoV2SpIAslVoLJUnFxsiI9wkWpwYOFppXaJdKrHkqE/mmAnJ2BnJ2BnIGAAAAAAAAAABpIdUKry0r/BoAAAAAAABAlF7DAX75y19q06ZNtmsuvPBCzZ8/XwUFBRHtefHFF2v58uW6+uqr9frrr4dct2nTJk2fPl3/9V//FdXMXVFOTo6Kioq0e/du2zLwVFVSUqJjjz022WOgqzvjDP3utpaS+z8U1cb95uWggCGZ1sHC6//Lk6adlJiDISn2xWxBFLSlFnJ2BnJ2BnJ2BnJ2BnJ2BnJ2BnIGAAAAAKSNJ56QFLrw2pIUi6eR2+5zVPH1ihWUXieI1/Dor9aVOk1/aVV4HVSpRt2ssXLJ0H7Vh9zndA1Qptz6g5Yddc2ngJoV0F91JcWaSdS2ODXoyALVSLQtTg2iQDU1kLMzkLMzkDMAAAAAAAAAAEgLFF4DAAAAAACgCzOTPQAQT+vWrdPMmTNt15x99tl68cUXIy68DurWrZtefvllnXHGGbbrZsyYoY8++iiqvVOdx+PRmWeeqWnTpmnWrFn64IMPVFVVpbffflvjx49P9nhA8vTvL40bp9+959XY3Yl9X4mxu10thdennir16pXQs50sXsVsQcGCtvIdod9gAfFHzs5Azs5Azs5Azs5Azs5Azs5AzgAAAACAtLJyZcjC64Ck/dlSQyefSm5wt+zT9l/SweLr8hMlbd/euUMQsSqrQTfrRblkKqOdl+IVKEtz9YE26Evbfd7XNs3VBypQ1lHXMmTKJVM360VVWQ0xmx2RC1WcGhQsUK3QTtt93tIX7RanBgULVMk5OSLN+R1ttd1niTaScwojZ2eINOd3yRkAAAAAAAAAAKQyCq8BAAAAAADQxVF6jbR27733qrm5OeT1Hj16qKysTDk5OR3aPzc3V/PmzVO3bt1CrmlubtZ9993Xof1TQVZWlsaOHavvfe97evLJJ7Vq1SpVV1frnXfe0SOPPKJvf/vbOvnkk+VyuZI9KpAabrpJd51RpfcLQ//ZEw/vF/p119k10te+ltBznSzexWxBFLQlFzk7Azk7Azk7Azk7Azk7Azk7AzkDAAAAANJNuXd7yMLrA9mSz5QqszpefN3gbnm8z2zZL2Tx9cDqjh2AqBxZqGnKUDdltyq+LlCWPMpQQJYW6zNt0v5299mk/ZqtCgVkyaOMVsXXGTLVTdkyZVCsmSThilODArI0X+u0Tnvavb5Oe/So3gtZnBpEzskRTc5PaoWWa1u715drmx7QW+ScosjZGaLJ+W9hcv6t3iRnAAAAAAAAAACQHBReAwAAAAAAIA1Qeo20tXHjRj3//PO2a+6//34NGjSoU+ccc8wxuvfee23XPPfcc9q8eXOnzkmkYcOG6fHHH9fy5ctVXV2t999/X3/5y1/0ne98R6eeeqrc7g7efQk4wF0Z/6MHT60Nc6tL7FmSHhzdoLu6L0/wyc6UqGK2IArakoOcnYGcnYGcnYGcnYGcnYGcnYGcAQAAAADpxh/wa9ZJPtvC66BQxdemJV30WcuPbQULr4Psiq9nneKXP0H/5naq9go1jyy+DhZeB1mS3tIXRxVfb9J+vaUvZB3xKoNg8fWRhddBFGsmVqTFqUGWLC3Ux0cVX6/THi3Ux2GLU4PIObE6kvMcVRxVlLtc2zRHFa1+P9sh58QiZ2cgZwAAAAAAAAAAkBYovAYAAAAAAECaoPQaaWvmzJny+/0hrw8dOlS33HJLTM667bbbdNxxx4W87vf7NXPmzJiclQgjR47ULbfcojFjxigjIyP8AwBIku5afJcefOePspL0PJJlSA9umqu71j2cnAEcItHFbEEUtCUWOTsDOTsDOTsDOTsDOTsDOTsDOQMAAAAA0pHLdGluuaGinYc/117hdVDb4mvTkh5eKD21oOXHI4uv2xZeB7VXfF20U5r7vOQyeFlYvNgVapoy1F3ZrQqvg9oWXx8uvD6aRxnq3qbwOohizcSItjg1qG3xdbDwOtLi1CByTozO5HxkUW60BblB5JwY5OwM5AwAAAAAAAAAANIChdcAAAAAAABII9zdhLTk9/v1zDPP2K750Y9+JJfLFZPz3G63fvCDH9iuefrppxUIJLbIB0DiNDU36fEVj0d9s0usWbL0+BcvqCnQlNQ50lWyitmCKGhLDHJ2BnJ2BnJ2BnJ2BnJ2BnJ2BnIGAAAAAKQzr89U2fyW4mm7wuugYPF1sPC6eH3L54vXHy6+DlV4HXRk8XXRTqlsfssciA+/FdAUa75toabRTlF1ULD4eqk2hSy8jmSfCu3SFGu+/En6Hku6iyRnO8Hi6xe0rkOF10HkHF+xyHmOKvS43u9QQW4QOccXOTsDOQMAAAAAAAAAgLRA4TUAAAAAAADSjDvZAwDxsHTpUu3YsSPkdY/Ho29+85sxPfOmm27ST3/6UzU1tV80u337dr3xxhu64IILYnougNTgMl0a23+slm5a2nLTiyEltP/aCP5gaGzWELm+2CoZsSn2Rwu/5desz59VoNkX3QOtQMuHWvI5LrNQG5t2tb45yu+XjMh+wQTk16yPn9UVjcfIRcYxR87OQM7OQM7OEPecbQpFjkTO8UXOztDhnBWQDr7JmGFIo7IGaW3jljavqyPnVBGT38/knL789VJT6O/pSpIOZPH9jq7OX0fOTlBXl+wJAAAAkicjQ976Zv31Jem079kXXgdVZkk3Lz9ceB1UvF56d4D0h3Hh9/CZkt+U/vqS5G2UlMHfqePFZZiaqtFaZS1UoIMvCrAkbVVVp+YwZWiqMVoug4LzeIhNzpY+075OzUHO8RWrnD/U7k7NQc7xRc7OQM4AAAAAAAAAAKDLo/AaAAAAAAAAaYjSa6Sll19+2fb6ZZddpvz8/Jie2a1bN02cOFEvvvii7VyUXgPpyWW69ELJC7ry2Sv1xuY3Wj6ZqOLrI57D+krWcL3Qp1Su+sYEHOwsLklze92qkp2PqKLpi8gfaFlq6UE3NCmnSCMzB2ida5sW1lUcLlw0rIif/CvKHKy5vW4l4zghZ2cgZ2cgZ2eIa85RvDCHnOOLnJ2hwznLkmTJkKEb88ZrbNYQLc/YpDnVb5FzCiJn2ArUS76GMGvqKEPu6iLKuV6iFAYAAABdVWGhqnZs1s1XSO6AlBEIX3xd0CjNLZLO3Na6+Lr8xJbPFzS2FGPbyQi0nHfzFVLZfMmbndv5rwUhFRsjJUmlnSjW7AxThmYYkw7NgfggZ2cgZ2cgZ2cgZwAAAAAAAHSWz+fT+vXr9eGHH2rt2rX68MMPtXXrVh04cEAHDhxQZWWlXC6XPB6PevToof79+2vIkCE65ZRTdPrpp+ucc85RZmZmsr8MAEBXROE1AAAAAAAA0hStAUhLr732mu31yy67LC7nhtt38eLFcTkXQGrwZnn13dO+q0zXES9MiPdzTEfsnym3vltwvrxmdpwPdS6vma2yvrerKHNwVI87smhRkkZmDtCknCIZUf4CKcocrLK+t5NxnJGzM5CzM5CzM5CzM5CzM3Qm5xvzW4qQJWls1hDdmD+enFMUOQMAAAAA0lnV2JNVMlmq6NvyVG73+pZC6lAKGiVPsxQwpB9Maim6llp+/MGkls97mlvWhZIRaDnHUMu5JZOlqsGFsfyy0I5iY6RmGJNkxv1FAa1RqJlY5OwM5OwM5OwM5AwAAAAAAIBoBAIBrVixQg8++KAuvfRSdevWTaeccoquv/56/eY3v9GLL76oFStW6LPPPtPevXvV3NysxsZGVVZWatOmTVq2bJn+8Y9/6Kc//anOP/98de/eXcXFxVqwYIGam5uT/eUBALoKCq8BAAAAAACQxii9RtrZsWOHPvroI9s1F154YVzOvuiii2yvr127Vjt37ozL2QCSr/yjct312l3qkd0jMcXXbQqve7hyddfeZ1VeszxOB0KKvqDNMFoXLQZFW7hIMVtikbMzRJuzSc5dEjk7Azk7Azk7Q9Q5y2xVhBwUbSEyOSdW1H/fblN4HUTOAAAAAIBU4g/4NWX8blX0Pfw5u+LrYOF1ULD4+ltXHS68DgpVfH1k4XVQRV9pyiW18ls2bduIiUQXa1KomRzk7Azk7Azk7AzkDAAAAAAAADvNzc169dVXNXXqVPXu3Vtjx47VT3/6U7366quqq6vr1N51dXVasGCBiouLNWzYMD3xxBPy+/0xmhwAkJYovAYAAAAAAECacyd7ACDW3nvvPdvrgwYN0qBBg+Jy9rHHHqt+/fppx44dIde8//77uvzyy+NyPoDk8Qf8mrV6lgJWQIYM9cjuod21uxUI3kgcfM4pFs/1tHn+ypShHhn5MmQoIGlW0zu6os+lchmuGByG9ngllfW+VyUf/0YVtRtDrjMNU78YeJ0+rtumA+2E3z+rv76SYen92o9l145elHucyobdI687NwbTI1Lk7AzR5PzLAVO0y7e/3esjc4dJHo/+p+oD2/PIOTnI2RmiyfnnA67THl9lu9fJObWRszNEk/N9g25UptH+tzjHqkjKztZze/9Xls0/xsg5OaLJ+d5BNyorXM77/leWzQssybkL8NdJ9U32a3ILJb7f0bU110oN4XLuQ87pxmznPXhT7UX6AAAAMeAyXZp68V1a9eTVrQqrg8XX+7Ml38G/GrUtvA4KGNKLb5JKAAEAAElEQVTi49vfP7i+Mqvlx/YKryXJtKSpeePlMtr5exhiLlhwWWotVCAmLwhoH4WayUXOzkDOzkDOzkDOAAAAAAAAaGvt2rX685//rPLycu3duzfu523atEm33nqrHn/8cT355JM67bTT4n4mAKCLSbXX0lJ4DQAAAAAAgDig9BppZ+XKlbbXR48eHdfzx44dq5dffjnk9VWrVlF6DaQhl+nS3KvnqmR+iSp2Vqi6sfpw4fWRbMqvDavlsiXJau95qhDPXQVkqTrQIK87V0XeYZo7+rdyZeR17AtBxLzqobLuf1DJyv9QRdXHR103DVMzRt2pk/NP0OqN/wi5z4DMgbpswAX69Wd/a/fXTJF3mMpG/1ZeMk0KcnaGSHMe022EZm/5Z8h9RuacqEsGnKeff/wYOacgcnaGSHM+1TtM/9i2KOQ+I3NO1MSB5+s/Nswk5xREzs4Qac5ndz9Zr30Z+g3QxuaN1ln9TtdPPnqInFNQpDmf2f0kLf3y/ZD7jM0brbP7na4fk3PX1pwlZVTbr/F2l0ye1ujSfJlSbY39moIelF6nO4+n/SJsAACANFA8oliqGqdS77KQxdc5vvYLryMRfFxdRujC6xlrB6t4HMWLiRTvYk0KNVMDOTsDOTsDOTsDOQMAAAAAAOBIL7/8sp588smEn7ty5UqdffbZeuihh3Trrbcm/HwAQIrq1y/ZE7RG4TUAAAAAAADihDvKkXZWr15te/2UU06J6/nh9l+1alVczweQPN4sr8omlynTlalaX639YkNH3YFstPnRbm1btf56ZZoZlHglmDcjT2Wjf6si77BWnw8WsxX3Oz+ifS7pfbZmjLpTptH6r2YUs6UGcnaGWOV8WZ/x5JzCyNkZYpXz1wrJOZWRszPEKucrCr9CziksVjlfSc4A0HX06ZPsCQAAAOKq+A+vaMYiQ2ab+wENST3qO154HeRpbtmn3cLrRVLx6CmdOwAdUmyM1AxjksxwT+5HiULN1ELOzkDOzkDOzkDOAAAAAAAASAWNjY363ve+p1/96lfJHgUAkAquu07auTPZUxxG4TUAAAAAAADiyJ3sAYBY+/jjj22vDx06NK7nn3DCCbbXP/nkk7iej87bv3+/Nm7cqK1bt6q6ulo+n0/Z2dnKyclRnz59NGjQIPXr10+myfsG4Gi/fP2X+rzy88gfcMT9NIFO3lvzef0O/XLD4/rzST/u3EaISrCgrWTlf6ii6uOoi9mCgutL1z6ogBWgmC3FkLMzkLMzkLMzkLMzkLMzkLMzkDMAOEjv3i0fAAAA6aygQMVnf1taOEulkzr/PHAkTEuasVAqzhktZWfH/0C0K1h8WWotVECdvymUQs3URM7OQM7OQM7OQM4AAAAAAADoCJfLpVGjRmnEiBEaMmSIevXqpdzcXDU0NGjv3r3asWOH3nrrLW3YsCHiPe+77z7l5OTorrvuiuPkAICUdt110rPPJnuKw669NtkTAAAAAAAAIM1Reo20YlmWNm/ebLsmXCl1Z4XbP9x8SI558+bpgw8+0LJlyyLKKDc3V6eeeqrOOussTZw4Ueeee64yMzPjPyhS2h3/ukMPvftQUmd4aPMzUk62/nwm7/qdSF71VlmvJzTlzR9q6tBrVHzMpYcvZtZK28PcWN6rh5TfW8W9r5EKvJr1yTzNPe8heTPz4zs4okLOzmCbc02TtDfXfoNevaTsnuSc4sjZGWxz9jRI+8Pk3KOHlN2DnFMcOTuDbc51ltTotd+gd0/JnUPOKc4+50AEOfeW3B5y7sp82VJGtf2aHr0lk6c1urQmj5RZY7+mR2/JdCVmHiROZqaUny/lhvn7GQAAQLr4299U3PslaeGXcS++PlR4/UWOdPdV8TsIESk2RmqBtV6L9Vmn95qg4yjUTFHk7Azk7Azk7AzkDAAAAAAAgEiceOKJuvzyyzVx4kSdeeaZysnJCfuYHTt26IknntCMGTO0d+/esOt/9rOf6eSTT9akSZNiMTIAoKtJtcLrZ55J9hQAAAAAAABIc7RDIK3s2rVLDQ0Ntmv69+8f1xnC7V9bW6vdu3erT58+cZ0D0Yn2nZFra2u1bNkyLVu2TH/84x/VvXt33XTTTbrttts0dOjQOE2JVFbfVK+/LP9Lp/cxZMiS1ak9/rLhH/rPKx9RdmaYAl7ElFfS88cuVKa7TQH+3ibp8zz7Bw8YIHUbLEkqHnyLLjv7W0fvg5RAzs7glbTguFflaluyVilpT4H9gwcMlPJ6S2rJ+Ypx3zl6H6QEcnaGkDnv90tfhsl58GApu4ckck515OwMIXOuyZQae9o/eOBgKbPlRefknNpC5lzlDp/z4MGS2yOJnLusxmopu95+Td/BlF53dY1V0l777+G35MzvXwAAAKSBN99U8UknSQrErfj6UOH1BkOaNjX2ByBq5dY6LdHGmOy1RBtVbq2jWDMFkbMzkLMzkLMzkDMAAAAAAABC6datm771rW/phhtu0OjRo6N+fL9+/fSrX/1KP/nJT3THHXfoySeftF1vWZa++93vat26derWrVsHpwYAdElGHN8xPVp9+1J4DQAAAAAAgIQwkz0AEEvbt28Pu6Zv375xnSGS/SOZE13L/v379ec//1kjRozQd7/7XTJ2oOzMbD0y8REZ6vgTToYMuUxXp/d4ZCKF18lQ1Vilrz/3dZV/VN6pfco/KtfXn/u6qhqrYjQZYomcnSNWBYkULaY2cnYGcnYGcnYGcnYGcgYAAAAApI0RI6TychVvMDRjYUtBdSwdKrxeL+naayXefD3pyq11KrUWKtDJN7oOCshSqbVQ5da6mOyH2CBnZyBnZyBnZyBnAAAAAAAAtOeEE07Q448/rm3btulPf/pThwqvj5Sbm6u//vWvmj17tlwu+9ew7tixQ7/73e86dR4AoItJpcJrSdqxI9kTAAAAAAAAwCEovUZa2bt3r+11r9errKysuM6Qk5OjvLw82zXh5kTX5ff79be//U2jRo3S3//+92SPgwS7eczNevxrj3eotDpYeC2pw8XXhgw9/rXHdfOYm6N+LDqnqrFKJfNLtGL7CpUuKu1wIXL5R+UqXVSqFdtXqGR+CYXIKYacAQAAAAAAAAAAEJUrrpAWLFDxx2ZMi68PFV5vMKTrrmsp2EZShSvUNGWE/WgPxZqpJVzOLhlyyQz5Qc5dQ6wLcoPIObWQszOQMwAAAAAAANoaNmyY/vGPf2j9+vW65ZZblJOTE9P9b7zxRs2YMSPsuhkzZqiqinvKAMARUq3w2orxu7YDAAAAAAAANtzJHgCIpX379tle93q9CZnD6/WqpqYm5PVwc6LrO3DggG688Ua98847euihh+R2d40/bmfOnKlHH3007ud89tlncT8jWYKF07f+81ZZEd4sc2ThdZDLdMkf8Ee1B4XXyREsQq7YWSFJClgBlS4qlSQVjyiOeJ9gEXLACkiSKnZWqGR+icoml8mblZj/fiE0cgYAAAAAAAAAAECHXHGF9OGHKj7vPC3Y+KUWH9/5LSdslIq/yJGmTZX69On8huiUSAs1O3oba7BYU5KKjZEd3AWdFVnOhtTBYlVyTg3xKsgNIufUQM7OQM4AAAAAAAA4UmFhoR599FHdfPPNcb/f9/vf/77eeecdzZkzJ+Sa2tpazZs3T9/97nfjOgsAIMkovAYAAAAAAIDDdY0WViBC+/fvt72en5+fkDnCnUPptXM8+uij2rp1q55//vkuUXy9Z88erVu3LtljdHnRFF+3V3gd5DJdcptuNTQ3hN2DwuvkaFuEHHRkIfLJfU4Ou8+rn76qX7/560NFyEEUIqcGcgYAAAAAAAAAAECnjBih8jef0JKnvynV13V6uyXDM1R+2hUqNii8TrZ4F2oGUayZXOTsDOTsDOTsDOQMAAAAAACAtr797W8n9Lzf/va3mj9/vurqQj83uGDBAkqvAaAL+9eaf+nSky8NvSDCwmufpIzYjGSPwmsAAAAAAAAkgZnsAYBYamiwL4bNzc1NyBx5eXm218PNicTxeDy64IILdMcdd+hvf/ub3nnnHX366afavXu3GhsbVV1drc8//1wrV67UCy+8oDvuuEOjR4+WaUb+x+dLL72kG264QRZPBDhKyUklGtkr/I0sRpgnrNxm+LL0kb1GquSkkohnQ2yEKkIOChYi//uzf9vus2n/Jk3/n+lHFSEHBQuRqxqrOj0zokfOAAAAAAAAAAAA6Kzyj8pVuqhUgW4FUt++ksfTsY3cbikvT4Fsj0qthSq3eFPrZEpUoWZQsFiT3BOLnJ2BnJ2BnJ2BnAEAAAAAAJAKBgwYoOuuu852zf/+7/8qEGj/XjMAQGob/9fxmvjCRBn3hugJiKLw+sgf44aeCwAAAAAAACQJpddIK01NTbbX3e7w5bGxEO6ccHMivnr16qVbb71VL730kvbu3aslS5boT3/6k6ZOnaozzzxTxx9/vHr37q3MzEzl5eVp8ODBOu2001RcXKw//elPWrFihT799FNNmzZN2dnZEZ357LPP6ve//32cvzKkimBJ7r6GfSrILAi5zpChgBUIWYIbsAKq89XJNEL/57ogs0D7GvZRlptg4YqQgwJWQPe9eZ827d/U7vVN+zfprS1vhfw1EEQhcnKQMwAAAAAAAAAAADrrUOF18Lkiw5C6d5f69ZN69JDfbcoKca+jZUgBlyllZ0v5+S0/HrwxkoLF5Ep0oWYQuScWOTsDOTsDOTsDOQMAAAAAACCVfO1rX7O9XlVVpc8//zxB0wAAYmX8X8dr2fZlh35+VPF1lIXXoX4eMxReAwAAAAAAIIkovUZaofQaoRiGoXHjxukf//iHtm7dqscee0yXX365cnJyOrTfkCFD9Mgjj2jz5s2aOHFiRI+55557tHLlyg6dh66jbUluTmZOu8XXRxZZt1d8HfycdfCJpPaKrwsyC5ST2fJrmLLcxIm0CDnIsiy9teWtowqRg0XIVoQ3WZFxYpEzAAAAAAAAAAAAOuuowuu2srLUkJOp2rxM1eQf/MhxqybbpZpsl2o9Lvmy3FKI16FQsJgcySrUDCL3xCBnZyBnZyBnZyBnAAAAAAAApJrzzjsv7JqNGzcmYBIAQKy0LbwOOlR83cHC63Cf7zAKrwEAAAAAAJBklF4jrQQCIW4SPMjlciVkjnDn+P3+hMyBw6ZMmaK33npLU6ZMUVZWVsz27dOnj1555RX99re/lWna/5Hq9/s1bdq0QyXGSD+hSnLbFl+3V2B9ZPF1eyXYbR93ZOF1EGW58RdtEXKQpdaFyNEWIQeRcWKQMwAAAAAAAAAAADorbOF1jFCwmFh+K6BZ1spOFWoaMnS8eshQZDe7ticgS7OslfLH+deXU8Uq55PUh5xTGDk7Azk7AzkDAAAAAAAgFfXo0UOZmZm2aw4cOJCYYQAAnRaq8DpoRycLryO9HjE6LQAAAAAAAJAC3MkeAIglt9v+l3Rzc3NC5gh3TkZGRkLmwGHhfm10hmEY+tnPfqa+fftq6tSptmvfeecdvfTSS7ryyivjNk9n9O7dWyNHjoz7OZ999pkaGxvjfk4i+QN+TXlhSsiS3JzMHDU0N8hnhX6qKWAFZFmWbUGuaZjKMDKOKrwOqthZoSkvTNGCkgVymYkp+neKcBmHc6gQ+cAmbaveFnURchAZxxc5AwAAAAAAAAAAoLMSVXgdFCy+lqRiI/7P+TuZyzA1V5NVYs1ThXZF/XhDhiZpmEaqt9Zpjxbq4w49p1ikQs01JsvVzptuo/NikfONKtJYDdBybdMcVZBzCiJnZyBnZyBnAAAAAAAApKpevXpp+/btIa/X19cncBoAQEeFK7zeMl3qpZbCarsmkUgLrcPtExaF1wAAAAAAAEgRlF4jrYR7x9tElV77fPbfbg43J7qmb3/72/roo4/04IMP2q77wx/+kLKl19OmTdO0adPifs6oUaO0bt26uJ+TSC7TpamnTtWqHavavXE5XOF1UCQ3y/gsnxqaG+Rxe466Zhqmpp46lZLcOAiXcSQsWdpavbVTc5BxfJEzAAAAAAAAAAAAOiPRhddBFF8njtfwqEzXRF2seWThtaRDPy7Ux1GdX6RClRnXyGsc/ZoBxE5ncg4Wp0o69OMcRffGy+ScGOTsDOTsDOQMAAAAAACAVFRXV2d73ePh+0kAkOrCFV5/Ml0qPOLnoQqrIy28DrdPWBReAwAAAAAAIIWYyR4AiKWMDPtv2zY1NSVkDkqvnev+++/X8OHDbde89dZb2rRpU4ImQiIVjyjWjIkzZBqt//Pa0NygysbKmJ5V2ViphuaGVp8zDVMzJs5Q8YjimJ6Fw0JlnChknBjkDAAAAAAAAAAAgI5IVuF1ULD4utxKrzehTkVew6My4xoVtbp1NbS2hddBI9VbkzRMpoyI9qFQM7GizdmUWhWnBo3VAN2oInJOUR35/WyXs0HOKYmcnYGcAQAAAAAAkEqqq6tVWWl/X2n37t0TNA0AoCPCFV6vnS4d087n27aNRFt43eHHUXgNAAAAAACAFEPpNdJKXl6e7fWampqEzFFdXW17Pdyc6LoyMzP129/+Nuy6+fPnJ2AaJEPbstx4FF4HHVl8TUlu4iSrEJmME4ucAQAAAAAAAAAAEA1/wK9Zq2d1qvDakKHjG3MjrFdsX0CWZlkr5U9S8baTRFqsacrQZI08qvA6aKR66/s6PWwhMoWayRFNzjdrzFHFqUFjNUB3aTw5p6hocv5umJzvJueURc7OEE3O3wmT83/oPHIGAAAAAABAh61atUpWmPLR448/PkHTAACiFa7w+o3p0lCbx/va/NhRET+ewmsAAAAAAACkIEqvkVZ69Ohhe72qqiohc4Q7J9yc6NquuuoqHXvssbZrXn/99cQMg6QIluU2NjfGrfA6qLKxUo3NjZTkJliiC5EpQk4OcgYAAAAAAAAAAECkXKZLc6+eq6K+RR16vCFDkzRMV1f216S9PTpcfF2kQs01JsuV4Dd3dapwxZqmDM0wJqlIfW33GafBmmFMClmsSaFmckWa81kaZLvPBTqOnFNY5DkPtN1nAjmnNHJ2hkhzPpOcAQAAAAAAEEevvPKK7XWv16vBgwcnaBoAQDT+teZftoXX86ZLZ0ewT2cLryPeh8JrAAAAAAAApCjubkJa6dmzp+31AwcOJGSOykr7kttwc6JrM01TkydPtl3zzjvvJGgaJFVH70JO1XPQSqIKkSlCTi5yBgAAAAAAAAAAQKS8WV6VTS6Luvg6WHg9Ur0lSSPrcjtUfE3xYnKEKtYMFmoWGyMj2qfYGNlusSa5pgZydgZydgZydgZyBgAAAAAAQDL5/X6VlZXZrhk/frxMk6oHAEhFl558achr06dLVyqxt/dn2F2k8BoAAAAAAAApjGdCkFZ69eple72xsTHuxdf79u1TU1OT7RpKr9Pf+eefb3t9//792rVrV4KmQaKVf1Su0kWlynJlqSCrIK5nFWQVKMuVpdJFpSr/qDyuZ+Fo8S5Epgg5NZAzAAAAAAAAAAAAIhVt8bXZpvA6KFh83bZgMRSKF5OrbbFmtIWaQW2LNck1tZCzM5CzM5CzM5AzAAAAAAAAkmXBggX6/PPPbddcccUVCZoGANAR1q+OLpOePl36mSi8BgAAAAAAACJF6TXSyuDBg8OuiXfRcCT7RzInurbRo0eHXbN58+b4D4KECxZeB6yAJMnj9sSt+Logq0Aed8uNMwErQPF1ksSrEJki5NRCzgAAAAAAAAAAAIhUqOJrq83NhqZhanLGqUcVXgeNrMvV9w8MO6r42lLrfSheTA3BYs0x6tehQs2gYLHmGPUj1xREzs5Azs5Azs5AzgAAAAAAAEg0v9+vX/7yl7ZrMjMz9Y1vfCNBEwEAOqpV8fV06W6lUOH1tdcmagwAAAAAAACgw9zJHgCIpby8PPXs2VN79+4Nuebzzz/X8OHD4zZDuCLjPn36KDc3N27nIzX07dtXHo9HDQ0NIdfs3r07gRMhEdoWXgcFi6krGytjdtaRhddBweJrSRToJljw/+/28u8IipBTEzkDAAAAAAAAAAAgUsHi65L5JarYWaGAFdCBhgPKyciRx+059FzRtn8+rf1N+0LuM66ht04zRqnUWqiALDXIpzr51E3ZMmVQeJ1ivIZHC3S9XJ18M91iY6Su0Imd3gfxQc7OQM7OQM7OQM4AAAAAAABIpL/85S9at26d7ZqbbrpJPXr0SNBEAIDOsH5lybjXUIOkRD5DELbw+plnEjUKAAAAAAAA0GG86hZpZ8iQIbbXP/nkk7ie/+mnn9peDzcf0ofX67W9XldXl6BJkAj+gF+zVs8KWYTrcXuU5coKu48Rwfu7Zrmyjiq8DgpYAc1aPUv+gD/sPoit4hHFmnDchJjsNeG4CRQhpyhyBgAAAAAAAAAAQKSCxdej+ozSgYYD8gV8qmysVGNzY1RvjlpsjNQMY5Ia1axKNcqngA6oXqPUm8LrFBSrIkwKNVMbOTsDOTsDOTsDOQMAAAAAACARNm/erJ/97Ge2azIyMnTXXXclaCIAQCxY01Oo8LpvXwqvAQAAAAAA0GW4kz0AEGujRo3S8uXLQ17fsGFDXM8Pt/+oUaPiej5SR2Zmpu11n8+XoEmQCC7TpblXz1XJ/BJV7Kw46npDc4Ma/Y22e5iGKdMwFbACIcuzJanR36iG5oZ2i6+L+hZp7tVz5TJd0X8R6JTyj8q1ZOOSmOy1ZOMSlX9UTiFyCiJnAAAAAAAAAAAAdFr490IGAAAAAAAAAAAA0IX4/X7ddNNNqqmpsV13xx136Pjjj0/QVB0zc+ZMPfroo3E/57PPPov7GQDQaUbLizwyJCWiHcK28FqSduxIwBQAAAAAAABAbFB6jbQzevRozZ49O+T1VatWxfX8lStX2l4/7bTT4no+Ukd9fb3t9ezs7ARNgkTxZnlVNrnsqOLrhuYGVTZW2j42WHgd/N+SbIuvg/sdWXxd1LdIZZPL5M3ydvhrQMeUf1Su0kWltplFI2AFVLqoVJIoRE4h5AwAAAAAAAAAAIBoVDVWqWR+idbuXqvu2d21v36/cjJylOXKOvQ8USTKrXUqtRYqS24VKEt18qm7srVWe1RizVOZrpHXOPpNkwEAAAAAAAAAAAAkxi9+8Qu9+eabtmsGDRqkX/ziFwmaqOP27NmjdevWJXsMAEg+o/W7mse7+Dps4bVlxfF0AAAAAAAAIPbMZA8AxNro0aNtr69evVp+vz8uZzc3N6uiosJ2DaXXztDU1KT9+/fbrsnLy0vQNEikYPF1Ud8iSdEXXrf9nCEjxKNaiq8bmhskUXidTLEuQg4KFiKXf1Qe033RMeQMAAAAAAAAAACAaAQLr4NvmGzIUI/sHofe2Dj4PFFF8zbbfZZ59qjUWqiAWm5c9ChDPZR96LnkCu1SiTVPVVZDHL8aAAAAAAAAAAAAAKG8/PLLeuCBB2zXGIahWbNmKT8/P0FTAQA6xWj/Hv+wxdQdROE1AAAAAAAA0pE72QMAsTZ27Fh5PB41NLR/M19NTY1WrFihM844I+Znv/fee6qrqwt53ePxaMyYMTE/F6ln48aNCgTsi1EHDBiQoGmQaMHi668+9VVV7ApdhG/IkGEYRxVeB5mGKU+GR3W+0H+uVDZW6thux1J4nSTxKkIOCt7oLknFI4rjcgbCI2cAAAAAAAAAAABEo23hdSgBK6D5vtW6VCdoZKCn1Nws+XwtP0pal1uv1wq2KyPQ3q2Nh29mrNAOlQSeVln91+RVViy/FHSAXwG51OZ1AO46yWgK/aBAreRv/Yba7e6DlNFuPq5ayfCFflCgWgrkhN8HKaP9nOvC5FwrBfj93JWQszOE/nO7OfSDAtVSwBN+H6SMdvMxayTZvO7LkmT5w+8DAACA6DQ0tC5kq62VcnKkrKyQxXEAAHRVH374oaZMmSIrTBnp7bffrgsvvDBBUwEAOiXMv1syJNk8kxQ1Cq8BAAAAAACQrii9RtrxeDwaN26clixZEnLN4sWL41J6/dprr9leP/fcc+XxeGzXID28++67Ydcce+yx8R8ESbNk4xLtrNmpDDNDvkD7T1vlZOaoobn9gv6gLFeWMswMVTZWtns9w8zQzpqdWrJxCWW5CRbvIuQgCpGTi5wBAAAAAAAAAAAQjUgLr4MClqWF1gYZDYM10te9pfC62a91+Q1a2LtSbssV0c2LFcZulWS+qLIDF8lrZXb2y0AHVRlNmlKwRFPrT1Rx45BDn/d6JCn0TbE5/mbJV3vo5+VZmzQre73mVk4gzxQUKmdlNcr21mZ/vdRMzl0FOTsDOTuDfc42pdfN9ZKfnLuKkDm762Vbeh0wW10mZwAAgBhpamr9fc2aGsnlkjIzpe7dkzcXAAAxtnv3bl1++eWqrq62XXf66afrD3/4Q4KmAgB0SgRv1BPLwuvgfiGLrym8BgAAAAAAQBdmJnsAIB4uuugi2+svvPBCXM6dP3++7fWLL744Luci9bzyyiu214877jjl5eUlaBokWrAkV5K6ebopwzz6aaaCrAJlubIi2s/j9qggq+Coz2eYGerm6SZJKl1UqvKPyjs+NKKSqCLkoGAhMhknFjkDAAAAAAAAAAAgGtEWXgdZlqVXPJ9rbcY+WYa0Nr9BrxRWKtrbFivce1XSbbGqjKYoH4lYqDKaVNJtsVZk7FGp9y2VZ206dK2blaXuNh+51uHXFZRnbVKp9y2tyNhDninILudokHNqI2dnIGdnIGdnIGcAAIAupKlJOnAg2VMAABATNTU1mjRpkjZv3my7rmfPnnruueeUmckbbAFAyktC4bXtvhReAwAAAAAAoItzJ3sAIB4mT56su+++O+T1lStXasOGDRo+fHjMzvzwww+1Zs2akNcNw9DkyZNjdh5S1759+8KWXp9zzjkJmgaJ1rYk1zRMdfN004GGA/IFWp5uKsgqkMftUZM/8hsiPG6PJKmysVLS4cJr02h5/4pgWa4kFY8ojtnXg6Mlugg5iIwTi5wBAAAAAAAAAAAQDX/ArykvTIm68FoHq60tSQs9X2h9r0xt9NRHXXgdVOHeqykFS7TgwCVyyezgLohWsGixwr1XkhSQpVLvW1KVVNw4JOJ9gkWLgYO/AoJF5mUHLpLXoggh2cjZGcjZGcjZGcjZGcgZAACgC2psbPkAAKALa2pqUnFxsVasWGG7Ljs7Wy+++KKOOeaYBE0WG71799bIkSPjfs5nn32mRv5eACBVJLHw+sj9D71lNoXXAAAAAAAASAOUXiMtHX/88TrrrLP0zjvvhFwzY8YMPfLIIzE78+GHH7a9fs455+jYY4+N2XlIXQ899JDq6ups11xyySUJmgaJFKok98ji65yMnEMF1tEKPq7OV9eq8DqIstz4S1YRchAZJwY5AwAAAAAAAAAAIFou06Wpp07Vqh2rIn+eKRCQ2+eX4Q/IDFgyJG03ffI0tZRgB0xDhhGQFIjo5kpJMmVoauUQueq5OTxRqowmlfR5UxWufTqyrTwgS6X5/ys1NcpslGQ2h97E16hy93qV5r+nQJsbVytcX6ok/1WV7T6PwsUkiknOTY0qzyDnVBZJzgqbcwM5pzhydoaY5NzYqPJMck5lkeR8fEO+ZNgUgzS7VO75gpwBAABizdemCq5tWVtDQ+JmAQAgxvx+v6677jq99tprtusyMjL03HPPady4cQmaLHamTZumadOmxf2cUaNGad26dXE/BwDCSoHC66B9knpQeA0AAAAAAIA0Qek10tbUqVNtS6//+7//W/fcc4/69evX6bO2bt2qv//977ZrvvWtb3X6HKS+jRs36sEHH7Rdk5WVpSuvvDJBEyFR/AG/Zq2eFfLmZdMw1d3TXUaYJ71yM3JV66sNed3j9ijLlRVyn4AV0KzVs3TF8CvkMl2RfwEIK1zGkTBkaED+AG2r3iZLHXvCkYzji5wBAAAAAAAAAADQUcE3NA37BquNjVJdndTUpMy26454eskVsCT5JZ9fMk3J5Wr5CMGUoRnbT1FxVU9JNR3/QhCxKtOnksHvqiKjUu09NRiQpdIe7+qG/YM0qsEbcp+l7s/15x6fHlW0GFSRsVclPZeq7Isz5Q1kxGp8RCiWOf8XOaesSHOesn+QTrbJeYl7s/5IzimLnJ0h0pyv3z9Ip4TJ+cEen5Bzioo05x/vGarzanuF3Gdh9g79osc6cgYAAIi1pqbWRdd+f+vrFLgBALooy7L03e9+Vy+88ILtOtM0NWfOHF122WUJmgwA0GEpVHhdJ6nndEn3GrJ+xb+bAAAAAAAA0PWZyR4AiJcbbrhBffr0CXm9rq5Od999d0zOuuuuu9Rg8w7zhYWFuuGGG2JyFlJXQ0ODSkpKVF9fb7vu2muvVX5+foKmQqK4TJfmXj1XRX2LQq4JV3hdmFuo/vn9VZhbaLvObp+ivkWae/VcSnLjIJKM7RgyNH7QeF0w5AKNHzRehsI/CdoeMo4vcgYAAAAAAAAANDY2as2aNVq0aJHmzZunp556SvPmzdOiRYu0Zs0aNTU1JXtEACmseESxZkycIdNo/bIsS5b21X6phn27pQMHWkpfohEISD6fGvyN2mc2HvXmqy2F10UqrhrQya8AkTpUtOiptF0XkKW/9tis5dn7272+PHu/Huz9sQJh3lC3wlOpksHvqspM1O20kGKb8+/IOWVFk/OTYXJ+gJxTFjk7QzQ5/y1Mzr/tvYGcU1Q0OT/Qe4Nez93T7vXXc/fonsK15AwAAAAAACL2wx/+UE899VTYdY899piuvfba+A8EAOicFCq8rpfUbfrhnxv3duz+ZAAAAAAAACCVuJM9ABAvHo9HP/zhD3XPPfeEXDNnzhxdddVVKi4u7vA58+bN09NPP2275o477lBWVlaHz5CkzZs3a8iQIbZrfvWrX2n69OmdOifdvPXWWxo/fnzcz2loaNDXv/51LV++3HadYRi666674j4PksOb5VXZ5DKVzC9Rxc6KqB5bmFsob5b30D6StKt2V1R7FPUtUtnkskOPR+x1NONgEfKQ7i1/jgd/fGvLW0fdjG6HjBODnAEAAAAAAADAed555x0tWLBAixYt0tq1a+X3+0OudblcGjVqlCZNmqQrr7xSZ511VgInTa6qqip9+OGHWrt2rb744gt98cUX2rJli7Zv366amhrV1dWptrZWfr9fWVlZys3NVZ8+fdSvXz8NHz5cJ510ksaNG6eTTjop7BvGJtLu3bu1Zs2aQ1/bhg0btHfvXh04cEAHDhxQQ0ODPB6PcnNz1bdvXw0YMEAjR45UUVGRvvKVr2jw4MHJ/hKQYopHtLwOpXRRqQJWQFbAr/21e+Wz/Kp0SwoY8vij/z3Q4JYqM1ued9pvNqp7IEuGDAqvkyDSosWggCzN6f6FJGlsffdDn1+evV9zun8hlwy5rPC/JoKFi2VfnClvIKNjwyNi5OwM0eZshcnZLUMi55RDzs5Azs4Qdc6GpQd7fyxJOr+296HPv567Rw/2/liGWt5AJhxyBgAAAAAA//Ef/6EZM2aEXffHP/5RN998cwImAgB0SgoVXjdKKph+9OeNew1Zv4r8/mQAAAAAAAAg1VB6jbR2xx136LHHHtOWLVtCrrnppps0YMAAnXHGGVHv/8477+g73/mO7ZpjjjlGP/zhD6PeG7Hxta99TWPGjNE999yjCy64IC5nfPLJJ/rGN76hiorwxai33HKLRowYEZc5kBo6UpZ7ZOH1kftIUqO/MaI9KMlNnGgzNozWRchBRxYiR4KME4ucAQAAAAAAAMAZnn32WT344INauXJlxI/x+/364IMP9MEHH+iBBx7QmDFjdOedd6qkpCSOkyZeXV2d3n33XS1btkzvvvuu1qxZo88//zyqx9fV1WnPnj1au3atXnvttUPXevfureLiYn3zm9/UueeeG4/xbe3du1evv/66lixZoqVLl+rjjz8O+5ja2lrV1tZq9+7d+uCDD7Ro0aJD14YPH67rrrtON910k4499tg4To6uJFh8ffs/v6991XvkMw7fhFiZaUlNOlx8ffDSkbdTBlcHP9fgliqPeL91nyHtNxrVM5ClGbvHqLhuIK8ES5Aq06eSAe+pIiuyosUgy5Dm9PhCOmBqbEMPLffs05xuX7RkHUGhZlCFp1Ilx7ynsm3nULgYR+TsDB3K2Wj5M5qcuw5ydgZydoaO/ffZUMCw9GCfj6W9ps6v66PXc3brwZ4fKyBLruAvhAiQMwAAAAAAzvXb3/5W//mf/xl23b333qv/9//+XwImAgB0SgoVXvsk5U8PfZ3iawAAAAAAAHRl3OqEtJaTk6P/+q//0je+8Y2Qa6qrq3XxxRfrH//4h772ta9FvPeLL76oG2+8UTU1Nbbr/vjHPyo7OzvifRF7S5cu1dKlS1VUVKSbb75Z1113nXr06NHpfevr6/Xkk0/qnnvuUXV1ddj1/fv3j+hJbXR9kZblmobZbuH1kfuUjCzRX1f9VQErEHIfSnITL5qMf37uz7Vm95p2rwcLkSt225cqk3FykDMAAAAAAAAApK/169fr1ltv1ZtvvtnpvVasWKFrr71Wjz32mB577DENHz48BhMmz9tvv6077rhDq1atUnNzc1zO2LNnj5544gk98cQTGj16tO69996onq/viC1btui5557TvHnz9N5778myYncz2IYNGzR9+nT9+te/VklJiX71q19p2LBhMdsfXdeEjGEq3F6pnd6jf71VZlpSoyVPiN9mR95e2bbwOshnSoX7mjWhcYDUvXtshoYtvwKa0u1VVWRUSTIjf6BhSbJaijW7f6EVvmqtzdgv61DShmREvl9FdpWmHLNCCw5cIlc0cyAi5OwM5OwM5OwM5OwMHc5ZAUmGApIe7PWx3vDt1/sZexSQIQU/Iig3CSJnAAAAAACc56GHHtI999wTdt2dd96pX/7ylwmYCADQKR5P2CWJKrxulpQ7Pfy6f635ly49+dJ4jwMAAAAAAADEHKXXSHuTJ0/W9ddfr6effjrkmsrKSl1xxRW67rrr9Itf/EInnnhiyLXr1q3Tfffdp7KysrBnT5kyRV//+tc7NHey1dTU6Nlnn436cZ988ont9ZUrV+rJJ5+Mas/8/HyVlJREPUtbFRUVuv322/WjH/1I5557ri677DKde+65OvXUU5WRkRHRHoFAQGvWrFF5eblmzpypL7/8MqLHZWZmav78+erOTaaOEa4s1zRM3XHGHfrHh/+w3Wf84PE6pe8pKl1U2m7xNSW5yRNJxjMmztDJfU4OWYYstRQiF48o1q/f/DUZpyByBgAAAAAAAID088ILL+imm24K+wbH0XrjjTc0duxYzZkzR8XFxTHdO5E2btyo999/P2HnrVy5Updffrkuvvhi/e1vf9PAgQNjuv+MGTP0zDPP6J133olp0XV7/H6/nn76ac2fP1933323fvGLX8jt5qU5TlW1Z6tK/jxeO3OaVNBktJRctxEssg5VfC2FLryWpIJGaWdOQCUNC1Tmu0bejLwYTA47LpmaWn+iVmV8qYA69meKJUsfZuzr1BymDE2tP5GixTghZ2cgZ2cgZ2cgZ2eIRc4BWXo3Y3en5iBnAAAAAACc5YknntAdd9wRdt3tt9+u3//+9/EfCADQOR6P1NgYdlmGYlN8bbePX1LO9PB7jOs/jsJrAAAAAAAAdFncWQdHePzxx7VixQpt2LAh5BrLsvT000/r6aef1mmnnaZzzjlHQ4YMUV5enqqrq7Vp0yYtW7ZMFRVHF16258QTT9Rjjz0Wqy8h4b788kvdfPPNMd/35Zdf1ssvvxzVY4455piYlF4H+Xw+LV26VEuXLpUkZWVladiwYRo+fLgGDBigwsJC5eXlKSsrS/X19dq3b5/27dunzZs366233tKBAweiOs/lcmn27Nk6++yzY/Y1oGsIVZYbLMntnd07bOm1JBWPaClFaFt8TUlu8oXLuHhEsT7d+2nYfS454RL1ye1DximKnAEAAAAAAAAgfcycOVOlpaVxKz+uqanR17/+dT3yyCO67bbb4nJGuvr3v/+tU045Rc8995wmTJgQs33vvPNONUZws1osNTU16b777tOSJUs0b9489e/fP6HnI/mqGqtU8ufxqsipkiR5/IbUpKiLr8MVXnv8hiSpoodPJTULVGZcI6+VGZOvAaEVNw6RqqRS71sdLlzsDFOGZlSNb5kDcUPOzkDOzkDOzkDOzkDOAAAAAAAgkf7+97/re9/7Xth13/nOd/Twww8nYCIAQKecdFJEhddBnS2+zrDZJyApe3r4Pcb1H6e3bn6rE1MAAAAAAAAAyUXpNRwhLy9Pr776qs4991xt2bIl7PpVq1Zp1apVHT5v8ODBevXVV5WXl9fhPZA4jY2NWrNmjdasWRPzvT0ej2bPnq1rrrkm5nuja2hblntkSe5bmyN/kqlt8TUluanDLuNokHFqI2cAAAAAAAAA6Ppmz54d18LrIMuydPvttysvL0833nhjXM9KN/v379fEiRP19NNPa/Lkyckep9OWLVumcePGacmSJTruuOOSPQ4SpKqxSiWPTVCFr/XrUzx+Qw1+S42uox9zZPG1JcmQfeF1lv9gSbZx+HMVebUqaX5ZZY2XU3ydAMkqXKRoMbHI2RnI2RnI2RnI2RnIGQAAAAAAJMJzzz2nb3/722FfX3DdddfpiSeekGEYtusAAEl2++3S2rVRP6yjxdcZ7fw8uE9AkieCPSi8BgAAAAAAQDqg9BqOccwxx2jp0qW69NJL9dlnn8XtnBNOOEH/+te/NHjw4Lidga5h8ODBev755zV27Nhkj4IkC5blTnlhiqaeOjXqktyg4ONmrZ6luVfPpSQ3hZCxM5AzAAAAAAAAAHRd7733nm6++eaICq/POeccXX/99TrnnHN07LHHKj8/X9XV1dq4caPefvttzZ07V++++67tHpZl6eabb9aIESN0+umnx+rLSCkFBQUaNmyYhg8frsLCQuXn58vr9SonJ0fV1dWqqqrSnj17VFFRoQ8++EC1tbUR7evz+TRlyhT16tVLX/3qV+P7RbSjV69eOu2003Tcccdp0KBBys/PV0ZGhvbv36+9e/dq7dq1WrZsmWpqaiLab/Pmzbrgggv07rvvqrCwMM7TI9mqGqtUMu8aVeysOOpagxlot/A6qDKrpfDa0yzVu6WqEIXXktToainF9jS3/jOtwv2lSnwvqGzNcHn9vCws3oolqfcglZ64UQEjzH9fTEuyK2W0ApJlX4ZgWoZmrD9OxXtqJMX+jd3RPnJ2huhyDthfJ+eURc7OQM7OEFXO4a6HyVgiZwAAgA5paJCOfE6mulrKyZGys5M3EwAAEXrppZc0ZcoU+f1+23XFxcWaM2eOTNNM0GQAgA65/XZp5swOPzza4uu2hddHfr5JBwuvp9vvQeE1AAAAAAAA0gV3N8FRTjjhBL3//vu67rrr9Oqrr8Z8/0svvVTPPPOMunXrFvO90XW4XC5NmzZN999/v/Lz85M9DlKEN8urBSUL5DJt7mKOQPGIYl0x/IpO74PYI2NnIGcAAAAAAAAA6Hqqqqp07bXXyuezv/1o6NCh+stf/qIJEyYcda179+4aM2aMxowZo9LSUv373//WbbfdZvuGy01NTSopKdHq1avl9XbtN0DMzMzU2LFjNX78eJ177rk6/fTToypwDgQCev311zVnzhzNmzdPDQ0Ntuubmpp0/fXX64MPPlCvXr06O76t7OxsXXLJJZo4caIuvPBCHXfccWEf09zcrNdff12///3v9dprr4Vd//nnn+vqq6/Wm2++KZeL5wbSlT/g15QXpqhiy/tSmxvgG8yAKm1KrIOqsqRGt2zLsYOC+3maj/ikZakip0pThn6gBUv7yBVBgR86p3ibpH0FKj1znwK2/3eHK1u0ZLeBaUkz3u2h4i8aJG3rwKToDHJ2BnJ2BnJ2hpjlHLBsC5HJObkiztkM9/tZ5AwAABAPTU2tS6/37Wv5XE6O1K9f8uYCACCMV199Vddcc03Y1xdMnDhRzz77rNxuqhoAIOV1ovA6KNLi61CF10GZfftK39tpu4bCawAAAAAAAKQT3joUjtO9e3f961//0lNPPaU+ffrEZM8+ffpo9uzZWrRoEYXXKeaiiy5K2A3kGRkZuvHGG7Vu3To99NBDFF7jKLEqt6UkN3WRsTOQMwAAAAAAAAB0Lb/85S+1adMm2zUXXnih3n///XYLr9tz8cUXa/ny5Tr//PNt123atEnTp0+PdNSU0q9fP91yyy165ZVXVFlZqWXLlul3v/udvva1r0VVeC1JpmlqwoQJmj17ttauXauJEyeGfcyOHTv085//vKPjhzVu3Dg99dRT2rVrl8rLy3XLLbdEVHgtSW63WxdddJEWL16s119/Xf379w/7mLffflt//OMfOzs2UpjLdGnqqVNl1tW3+nyDy4qo8DooksLroMosqaHNffRmwNLUT/IovE6g4i9yNePdHmH7FDvqcNFibnwOQETI2RnI2RnI2RnI2RnIGQAAoAuqq5N27Ur2FAAAtOuNN95QcXGxGhsbbdddcMEFeuGFF5SZmZmgyQAAHWbE7rUT4Qqtw12XJO3YIetXob+pTeE1AAAAAAAA0g2l13Csm266SRs3btTMmTM1YsSIDu0xcuRIzZw5U5s2bdKNN94Y4wkRC88995z27dund999Vw888IC+9rWvacCAATHbPzMzU1/5ylf08MMPa/v27Zo9e7aGDRsWs/0BAAAAAAAAAAAAdNy6des0c+ZM2zVnn322XnzxRRUUFES1d7du3fTyyy/rjDPOsF03Y8YMffTRR1HtnUynn366/u///k/btm3T448/rkmTJsnj8cRs/+OOO04LFy7UT3/607Brn3zySX3xxRcxO9vtduvGG2/UqlWr9NZbb+mmm27q9JsZf/WrX9Xq1at1zjnnhF17//3368svv+zUeUhtxQVnasZSz6HSvQaXpcrMODXwHXRk8bVpSTMWGSreGEXLNmIiXoWLFC2mFnJ2BnJ2BnJ2BnJ2BnIGAADogmpqWj4AAEgh//d//6fLL79c9fX1tuvGjx+vl156KabPoQMA4iSGhddBoYqtIyq8tg5/I7u94msKrwEAAAAAAJCO3MkeAEim3Nxc3Xbbbbrtttv08ccf61//+pdWrlyptWvXatu2baqurlZdXZ1ycnKUn5+vgQMHauTIkRo9erQmTpyooUOHJmzWY489VpYV3xshk3lePLlcLp1xxhk644wzdNddd0mS9u7dq1WrVmndunX64osvtGXLFm3ZskW7d+9WbW2t6urqVFdXJ8uylJWVpezsbPXq1Uv9+/fXMccco5NOOklFRUU6++yzlZvLC9oBAAAAAAAAAACAVHTvvfequbk55PUePXqorKxMOTk5Hdo/NzdX8+bN06mnnqoDBw60u6a5uVn33XefnnnmmQ6dkWjDhw9PyDm/+93vVFVVpcceeyzkGr/fr7/97W+69957O3WW2+3Wt7/9bf3sZz/TkCFDOrVXe3r37q2XX35Z48aN0/r160Ouq66u1kMPPaRf//rXMZ8BKeK991S8ueUG9++edyDuhddBlVmSYUlP/tNU8QZDKgxImZkJORuHFe/MlFa4VTp2jwJqJ3u7+2mtoy+aMjRjRW8V78yXiDNlkLMzkLMzkLMzdCpnw1Dbh5BzarLPOfpSE3IGAACIgUCg9c/bls1Reg0ASCErVqzQxIkTVRPmv0+nn366XnnlFe4pBoCuIA6F10EZknxtfh5WO70d1q8sGfe2zEnhNQAAAAAAANIVpdfAQcOGDdOwYcOSPQYSpGfPnrrwwgt14YUXJnsUAAAAAAAAAAAAAHGwceNGPf/887Zr7r//fg0aNKhT5xxzzDG699579cMf/jDkmueee07/+Z//qWOPPbZTZ6Wb3//+93rppZe0ffv2kGteeumlTpVeFxcXa/r06XEv8+7Ro4defPFFnXTSSfL5fCHXzZ49W/fee69M04zrPEiSDz44/L/jd/9kaIZabtxsapJcriQMgOId3bRgV50W961tcyWCAvQ2N91O2Jmr4h3dJKJMOeTsDOTsDOTsDOTsDOQMAACQYlyu1qVubQvnvN7EzgMAQAhr1qzRJZdcosrKStt1RUVFevXVV+Xlv2EAkPriWHgdFCy+7mjh9aFLv7L0rzX/0qUnXxqjyQAAAAAAAIDUwh10AAAkSc/cnioqLLL9KMwtTPaY6KwI7pmxbJ6wRNcQSYbk3PU1NDdod+1u248mf1Oyx0QnkbMzRJKzzx+6mAgAAAAAAHQNM2fOlN/vD3l96NChuuWWW2Jy1m233abjjjsu5HW/36+ZM2fG5Kx0kp+frzvuuMN2TUVFRdgbjO0888wzcS+8Dho2bJhuu+022zVbtmzRypUrEzIPkmDtWpUf26DScZXK8hsqSNC3kwsapSy/VHpJQOXDAy2l10iK8gFVWlLYtmixY5YU1qp8QFVM9kJskbMzkLMzkLMzkLMzkDMAAEAXkpUlFXKvDAAg+T7++GNddNFF2rt3r+26kSNHavHixerevXuCJgMAdFgCCq+DOlt4HUThNQAAAAAAANIZpdcAACRJdka2unm62X54MjzJHhOdFcHzo0YCn0RFfESSITl3fZZlqTnQbPtBuXnXR87OELAC4XOO5J0rAAAAAABAyvL7/XrmmWds1/zoRz+Sy+WKyXlut1s/+MEPbNc8/fTTCgQCMTkvnVx11VW21y3L0oYNGxIzTAz85Cc/CbvmjTfeiP8gSIpyfaTScZUKHHxayONrKaSOp4JGydPc8r8DxsHi6yEN8T0U7SofUKXS0bsO5d9ZAUMqHb2LwsUUQ87OQM7OQM7OQM7OQM4AAABdiNstDR8uxej5GQAAOmrz5s2aMGGCdu3aZbtu6NCheu2119S7d+8ETQYA6LBUu4eXexABAAAAAAAAuZM9AAAAAAAAAAAAAAAAQCwtXbpUO3bsCHnd4/Hom9/8ZkzPvOmmm/TTn/5UTU1N7V7fvn273njjDV1wwQUxPberGzp0qHr27Km9e/eGXLN9+/YETtQ5AwcOVFFRkSoqKkKuWbNmTQInQqL4A37N6rPtqKK9YCF1ZVZk+2T5pcYI+16OLLwOChjSrJP9uuIDt1yRvEMvYqK8f6VKi3Yr5FsbGIZk92aLIS4HDKl0zG7J7Vbx9oLOD4pOIWdnIGdnIGdnIGdnCJ9zuB0McgYAAIiHts+VeDxSYaE0ZEjL/wYAIIm2b9+uCRMmaOvWrbbrjj32WC1dulT9+vVL0GQAgA6j8BoAAAAAAABISZReAwAAAAAAAAAAAACAtPLyyy/bXr/sssuUn58f0zO7deumiRMn6sUXX7Sdi9LroxUWFtqWXtfW1iZwms4777zzbEuvN27cmMBpkCgu06W5H5+skoHvqKKnr9UNjJEWXwdLrBvcka9tq2i3qblLu8l19rAovwJ0VLl3m0r7f6KAbNrKDX+YXQzJNNu9EtDBwsV+/VRcNaDDc6JzyNkZyNkZyNkZyNkZIss5ZB12C8tQqGZscgYAAOiEL75oXfLWr59UUCA1NEiZmcmbCwDgeHv27NGECRPCPmc7cOBALV26VAMHDkzQZACADqPwGgAAAAAAAEhZ7b8SFwAAAAAAAAAAAAAAoIt67bXXbK9fdtllcTk33L6LFy+Oy7ldXUFBge31nJycBE0SG3379rW9fuDAgcQMgoTzditU2WvdVLTHddRNjJ5mKcumV/HIEmtPc8vPQ8nyhyq8NlT2Yoa8ZnYHpkdHtBQtViig+N60GpCl0v4VKvdui+s5aB85OwM5OwM5OwM5OwM5AwAAdFF1dVJVVbKnAAA41IEDB3TxxRdr/fr1tuv69u2rpUuXasiQIQmaDADQYRReAwAAAAAAACmN0msAAAAAAAAAAAAAAJA2duzYoY8++sh2zYUXXhiXsy+66CLb62vXrtXOnTvjcnZXtnv3btvrvXr1StAksdG7d2/b6/X19QmaBAk3apS8PlNlz1kq2tX6UoNbanS1/7AjC6+D7IqvG10t+x2paKdUNs+St8mQvN6OzY+oJKpoMYjCxeQgZ2cgZ2cgZ2cgZ2cgZwAAgC6urk5qakr2FAAAh6mpqdHEiRO1evVq23W9evXSkiVLNHTo0MQMBgDoOAqvAQAAAAAAgJTnDr8EAAAAAAAAAAAAAACga3jvvfdsrw8aNEiDBg2Ky9nHHnus+vXrpx07doRc8/777+vyyy+Py/ldkd/vt/3/S5KOO+64BE0TG3V1dbbXPR5PgiZBwp1yitTYKG99QGXzDZVMtlRR2FJQXZnV/kPaK7wOCn6+vccGP+dpPlh4PV/yNkrK8EsFBZ3+UmAv0UWLQcHCRUkqrhqQ0LOdiJydgZydgZydgZydgZwBAAC6qLblbw0NyZkDAOBY1113nd55552w60pKSvT222/r7bffTsBUUr9+/XTZZZcl5CwASCsUXgMAAAAAAABdAqXXAAAAAAAAAAAAAAAgbaxcudL2+ujRo+N6/tixY/Xyyy+HvL5q1SpKr4/w5ptv2pZEDxkyRAMGdK1CsS1btthe7969e4ImQcKdcYZ08Nezt8lQ2Xzpqzdaqujb/nK7wuugcMXXx+4/ovBakvx+iV9jcZWsosUgChcTg5ydgZydgZydgZydgZwBAAC6sLaFdG5uawUAJNaaNWsiWjdz5sw4T9LaV77yFUqvASBaFF4DAAAAAAAAXYaZ7AEAAAAAAAAAAAAAAABiZfXq1bbXTznllLieH27/VatWxfX8ruaZZ56xvX7ppZcmaJLYCVe8fvzxxydoEiTbkiHSzjwpI3D0tUgKr4M8zS3r28oItOy/ZEjn5kTk/LI0q/vmThUtGpJOavCqM7fhBg7O4U9S4WO6I2dnIGdnIGdnIGdniEXOpmXozLoeMq2OJ03OAAAAMWCakseT7CkAAAAAdEUUXgMAAAAAAABdCqXXAAAAAAAAAAAAAAAgbXz88ce214cOHRrX80844QTb65988klcz+9KVq1apVmzZoW8bhiGSktLEzhR51VWVmrZsmW2a0466aQETYOEe+89KTtbklQ+3FLpREsypG71rYuvoym8DmpbfJ0RaNlXhlQ6SSo/8eAFl0vav79TXwZCc8nQ3C1nqKihoEOPNyTduH+wbt03RDfuH9zhYs2ihgLN3XKGXJ2q5kQo5OwM5OwM5OwM5OwMnc3ZtAzduWeY7t01UnfuGdbh4mtyBgAAiIGCgpbiawAAAACIRqq9eQ6F1wAAAAAAAEBY7mQPAAAAAAAAAAAAAAAAEAuWZWnz5s22a8KVUndWuP3DzecUO3fu1PXXXy+/3x9yzdVXX60RI0YkcKrOmz9/vpqammzXfOUrX0nQNEi4Dz6QsrJUPtJQ6cUBBQ724JlqKag+kC3l+KIvvA4KPq4uo2W/YC1M4GDxtQypeKMpVVZKAwZ08otBKF4rU2VbzlLJoHdU4amM+HGGpBsPHKOxDd0lQxrb0EM6YGhOt8+jOr+ooUBlW86S18oQXYvxQ87OQM7OQM7OQM7O0NGcTRm688thOr+uj2So5ccvpQd7279pVlvkDAAAEAWjzV+YTLOloC4vT8rMTM5MAAAAALquk06SGhvDr0sUCq8BAAAAAACAiFB6DQAAAAAAAAAAAAAA0sKuXbvU0NBgu6Z///5xnSHc/rW1tdq9e7f69OkT1zlS2Zo1azR58mR9/HHogrFevXpp5syZCZyq8yzL0kMPPWS7pn///hozZkyCJkLCrV2r8iGNKh0XUKDN/Y2mpO71ne/G8zRLWc1H73Oo+HqpoWKfKZ1ySidPgh2vpDJrlEqsearQrrDrTRn6poo0tlfrMvKxGiypl57RGh2uMQ+tSIUqy7xG3pM8HRscUSFnZ4g2Z0OGbiDnLoecnYGcnSH6nAO6U+N1fv8hrT5/voZKVn/9l5Ypkr+lkzMAAECU9u9vXQLXu7fUo0fy5gEAAADQdd1+u7R2bbKnOGzatGRPAAAAAAAAAHQZ4V+JCwAAAAAAAAAAAAAA0AVs37497Jq+ffvGdYZI9o9kznS0adMm/b//9/80evRo28LrrKwsPf300yosLEzgdJ337LPPas2aNbZrrr/+epkmL9dJV+X6SKXjKhUwDMk4ujivs4XX4fYJGIZKL2hUec89MToJdryGR2XGNSqS/Z9VpgzdrDEaqwHtXh+rAbpT42WG+RVSpEKVGdfIa1C0mEixzPkuck5Z0eT83TA5303OKYucnSGanL8TJuf/0HnknKKiyflunavzjSHtXj/fGKLf6EJyBgAAAAAAAIBUdfvt0syZyZ7isGnTpEceSfYUAAAAAAAAQJfBXXQAAAAAAAAAAAAAACAt7N271/a61+tVVlZWXGfIyclRXl6e7Zpwc3Z1dXV12rVrl9avX68XXnhBv/zlLzV+/Hgdf/zx+tOf/qTm5uaQj/V4PFqwYIEuuuiiBE7cebW1tfrZz35mu8btduv2229P0ERINH/Ar1l9tikQ7Mtrp/Q6HNOSLvqs5ceoHTwvYEizjq+S3wp0YBNEK1zhoilDM4xJOkuDbPe5QEM0w5gUsnCRosXkil3Ox5FzCos854G2+0wg55RGzs4Qac5nknOXFmnOE4zjbPeZZAwjZwAAAAAAHGDz5s2yLCvlPt54441k/18DAKktlQqvR42i8BoAAAAAAACIkjvZAwAAAAAAAAAAAAAAAMTCvn37bK97vd6EzOH1elVTUxPyerg5U93kyZP1/PPPx3zfoqIizZ07V6NGjYr53vF211136fPPP7ddc+ONN+qYY45J0EQdN3PmTD366KNxP+ezzz6L+xmJ5DJdmvvxySoZ+I4qevqifrxpSQ8vlIrXS+UnSj+YpMMF2lEo2mNq7juFch1rRv9gdIjX8KhM16jEmqcK7Tr0+WDRYrExUi9aH4Xdp9gYKUkqtRYqoMPN5xQtpgZydoZIci631oXdh5xTGzk7QyQ5P0/OXV4kOX9g7Qy7DzkDAAAAAAAAQArqwJuNx01WlvThh8meAgAAAAAAAOhyKL0GAAAAAAAAAAAAAABpYf/+/bbX8/PzEzJHuHO6eul1rPXv31933nmnbrvtNmVmZiZ7nKj9+9//DlsSnZ+fr9/85jcJmqhz9uzZo3XrwhcA4mjeboUqe62bSi480FJ8bRiSZYV93JGF19LhH6Mtvi7aY6rsn9ny9svrwPTojLaFi0cWLUajbeEiRYuphZydgZydgZydgZydgZwBAAAAAAAAIA2lUuG1JDU0JHsCAAAAAAAAoEui9BoAAAAAAAAAAAAAAKSFhjA3GOXm5iZkjrw8+8LZcHM6QXZ2ti655BJNnjxZkydPVlZWVrJH6pBt27bpm9/8pqwwxcb33Xef+vbtm6CpkDSjRsn7v/97uPi6R1PYh5iW9NAi6aoNkmVIOvhL6ar1Lf/zhxEWXx8qvG4ypD59OvVloGOChYtTrPmaaoyOumgxKPi4WdZKzTUmU7SYYsjZGcjZGcjZGcjZGcgZAAAAAAAAANJIqhVeR/Bm5wAAAAAAAADaR+k1AAAAAAAAAAAAAABIC01N9gWzbndiXiYR7pxwczpBYWGhjjnmGPXq1UumaSZ7nA5pamrSNddcoz179tiuO++88/SDH/wgQVMhqU45RZLk9ZkHi6/3q6J76N/vpiU9vKil4Lo9xetb7uX8wUT74uuiL12HC68lqbCwo18BOslreLRA18tldO7PtWJjpK7QiZ3eB/FBzs5Azs5Azs5Azs5AzgAAAAAAAACQBii8BgAAAAAAANIKr8YEAAAAAAAAAAAAAABpgdLrrmPz5s166KGHdOmll+q4447TH//4R1VXVyd7rKjceuutevvtt23XeL1ePfXUU1222BtROuOMQ/+zpfi6u4r2tJO9Yci0pBmLDBWvt79hs3i9NGNRS0F2e4p2G60LryVp4MCOTI8YiVVBIkWLqY2cnYGcnYGcnYGcnYGcAQAAAAAAAKALo/AaAAAAAAAASDu8IhMAAAAAAAAAAAAAAKSFQCBge93lciVkjnDn+P3+hMzRVWzdulU/+clPdMIJJ+ill15K9jgR+f3vf6+nnnoq7LqnnnpKQ4YMif9ASA39+0vjxh36qddnqmxxNxXtar3MDFia8XY3Fe/tLZ8nQ80ZbgVcpizTlGUaskxDAdNQs9tUc4ZbxV/kasZSz1HF10U7pbKXPa0LrwcPlvLz4/hFAgAAAAAAAAAAAAAAxBCF1wAAAAAAAEBacid7AAAAAAAAAAAAAAAAgFhwu+1fBtHc3JyQOcKdk5GRkZA54uX73/++Lr300navBQIBVVZW6sCBA9q3b58qKiq0evVq1dfXh9139+7duvLKK3XzzTfrL3/5S8JKyqP19NNP6+677w677sc//rGKi4sTMFFs9e7dWyNHjoz7OZ999pkaGxvjfk7C3XSTtGzZoZ96laWyV3JUclmdKgol05JmLDJUvLFeKshUIMOtgOuIwn6/v9XNk26z5fdB8YfNUqNUOlEKGAcLrxe45TXb/Ll36qnx/OoAAAAAAAAAAAAAAABih8JrAAAAAAAAIG1Reg0AAAAAAAAAAAAAANJCZmam7fVElV77fD7b6+HmTHUTJkyIan1zc7OWL1+uJ598Us8++6xqa2tt1//1r39VZWWl5s6dG7bIPNFeffVVfetb35IV5ga34uJi/f73v0/QVLE1bdo0TZs2Le7njBo1SuvWrYv7OQl3ySXSoEHSli2HPuXN8qqsvElTrmzW1FWGijcYknzS3r1yZZgKuMz2b+K0LJk+v9TcJEkqXm9IsjTrVGluuSGv29N6fUGBdMIJcfvSAAAAAAAAAAAAAAAAYobCawAAAAAAACCtmckeAAAAAAAAAAAAAAAAIBYyMjJsrzc1NSVkjnQvvY6W2+3WWWedpSeffFLbt2/X7bffLiPMTWvz5s3TLbfckqAJI7Ns2TJdffXVYfM9//zz9cwzz8g0eVmOI2VkSPff3/pzhiFvTncteM51sPD6IMuSu7FZnrpGZdY3KaPRJ7fPrwyfX5lNfnka/XK1KesvXm9owTxDXlfO0Td/TpgguVxx+sIAAAAAAAAAAAAAAABihMJrAAAAAAAAIO1xdx0AAAAAAAAAAAAAAEgLeXl5ttdramoSMkd1dbXt9XBzpjOv16sZM2bojTfeUO/evW3X/vd//7fmz5+foMnsrV69Wpdddpnq6ups151xxhl66aWXlJWVlaDJkJIuukj6xjdaf87tlqtbj5Cl1GYgIFezX+7mgFx+S2YgxM2UhiGXJ0dqW6o+apR0/PExGB4AAAAAAAAAAAAAACCOKLwGAAAAAAAAHMGd7AEAAAAAAAAAAAAAAABioUePHrbXq6qqEjJHuHPCzekE5513nhYvXqzzzz9f+/fvD7nu1ltv1UUXXaSCgoIETtfa+vXrdfHFF6uystJ23cknn6xFixY5utQcR/j1r6Xly6VNmw5/zu2WevaUqqul+vrI9rEkBe/1dLulYKH6kTdcdusmfeUrUnNzDAZHfPgPfthcD5Bf1xcu52ZyTgsB2eccIOe0QM7O0Cz+3HaCCP77LHIGAACIOcuSAoFkTwEAAAAgFVF4DQAAAAAAADgGpdcAAAAAAAAAAAAAACAt9OzZ0/b6gQMHEjJHuHLkcHM6RVFRkebPn68JEyaEXLNv3z498cQTuvPOOxM42WGbNm3ShRdeqD179tiuGzp0qBYvXkyhOQ7zeqVnn5WuukrasePw5w2j5Vp2tlRXJyuS8mvTlFyulh/bFlt7PNLJJ0uffhrT8RFj+dsl0xf6emOV1LAvcfMgPsjZGfK3SaZNOWpDtdT4ZeLmQXyQszOEzbmGnNOBp1ItRfYhNGdLzZ6EjQMAAOAY1dWti+P27JH8/pbvjQbf2A8AAACA81B4DQAAAAAAADiKmewBAAAAAAAAAAAAAAAAYqFXr1621xsbG+NefL1v3z41NTXZrqH0+rALLrhA11xzje2ahx9+WH6/P0ETHbZt2zZNmDBB27Zts113zDHH6LXXXlNhYWGCJkOXMWiQtGCBNGTI0dcyMqSCAjXleeTLylBzhkt+l6mAy5DfZajZbciXYao5y92y1mznZV65udLZZ0s5OXH/UgAAAAAAAACgwyxL8vmkvXulurpkTwMAAAAgGSi8BgAAAAAAAByH0msAAAAAAAAAAAAAAJAWBg8eHHbNrl274jpDJPtHMqeT3H///bbXt27dqpUrVyZomha7du3ShAkTtGnTJtt1/fr105IlS8gUoQ0aJC1aJLVX7u73y/T5ZfgDMv2WzIAlI9DyoxmQjIAl+a32b7QcOFAaN47CawAAAAAAAABdS2WllIQ3ugQAAACQRB5PsidojcJrAAAAAAAAICEovQYAAAAAAAAAAAAAAGkhLy9PPXv2tF3z+eefx3WGzZs3217v06ePcnNz4zpDVzN06FCNHDnSds3//M//JGgaad++fbrooou0YcMG23W9e/fWkiVLdPzxxydoMnRZXq/05z9Ls2e3lFU3NEj790tffqmMxia5m/0yAwEZliXDkgxLMgOW3H5L7ma/1NgoNTW1FMFkZ0tjx0pFRVJGRrK/MgAAAAAAAACIjmW1fI8UAAAAgDOcdFLL6x5SBYXXAAAAAAAAQMJQeg0AAAAAAAAAAAAAANLGkCFDbK9/8skncT3/008/tb0ebj6nuuyyy2yvv//++wmZo7KyUhdffLHWrFlju6579+5avHixRowYkZC5kGYMI9kTAAAAAAAAAEDitC2VCwSSMwcAAACAxLr9dmnt2mRPcdi0acmeAAAAAAAAAHAUSq8BAAAAAAAAAAAAAEDaGDVqlO31DRs2xPX8cPuHm8+pwpWB7969O+4z1NTUaNKkSVqxYoXtuvz8fP3rX/9SUVFR3GdCmqiqkn74Q+mmm6StW6WsLKl7d6l3b/k8mfK7XQqYpizDkGUaskwpYBryuw35M1wt6zMzJZdLqq+Xli+XVq+WfL5kf2UAAAAAAAAAEL3s7GRPAAAAACDebr9dmjkz2VMcNm2a9MgjyZ4CAAAAAAAAcBR3sgcAAAAAAAAAAAAAAACIldGjR2v27Nkhr69atSqu569cudL2+mmnnRbX87uqwsJC2+t79+6N6/n19fW6/PLL9fbbb9uuy8nJ0SuvvKIzzjgjrvMgjWzZIpWUSJs3H33NNBVwu2RYARmSDEsyApYsSZYhWZJMSQoEjn7sF19Iu3dLw4a1lGIjtfn2SW5/6Ou1TVJ1Q+LmQXyEy7mmSaoh5y7Pv08y2/lzOajGJ9XUJ24exAc5O0O4nKt9Um1d4uZBfOTVtvxFO5TGTKkpM3HzAAAAOMWBA5J1xN/DduyQGhtb3gywWzfJzW2tAAAAQNpLpcLrUaMovAYAAAAAAACSgFcHAAAAAAAAAAAAAACAtDF69Gjb66tXr5bf75fL5Yr52c3NzaqoqLBdQ+l1+7xer+31+vr4lQo2Njbqqquu0htvvGG7LisrSy+++KLOPffcuM2CNPPFF9JVV0k7dx59zeeT6uqUWd8gyWppuG6l5ROG/JJpSaYpGUbrJQ0N0kcfSSecIGVS1JfSmpslw6YM2eeTmpoSNw/ig5ydwee3Lzcn5/RAzs7Q3Cy5bEqvyTk9+Hwtf58OpcmQiBkAACD2mptbl143NLQUYTc1ST16JG0sAAAAAAnS9vUNyTRqlPThh8meAgAAAAAAAHAkSq8BAAAAAAAAAAAAAEDaGDt2rDwejxoaGtq9XlNToxUrVuiMM86I+dnvvfee6urqQl73eDwaM2ZMzM9NB7W1tbbXc3Nz43Kuz+fTNddco3//+9+26zIyMvT888/rwgsvjMscSENVVdK11x5deG1ZUnW1dLDI3ZDVqvulXYFAy4fL1fJx5M2hfn9LufbYsZKbl4KlLK9fcjWHvu7KkzILEjcP4iNczmaelEXOXZ63WTJtypDNfCnL/s080AWQszPkh8vZK3nyEzcP4iOnWjJsys1zPJIvK3HzAAAAOEVNTevS69xcyetteXO/rVtbvq8JAAAAID2lUuG1ROE1AAAAAAAAkETc6QQAAAAAAAAAAAAAANKGx+PRuHHjtGTJkpBrFi9eHJfS69dee832+rnnniuPxxPzc9PBli1bbK9379495mf6/X5NmTJFL730ku06t9utZ599VpdddlnMZ0Aa+8UvpM2bW3+uuVk6cKDjhS5+f0v5dUZGSzlMUENDy1lFRR0cFnHn8Uimz2ZBtmTEp9wfCRRJziY5d3lZHsm0KTe3yDktkLMzkLMzeJol2ZReu7OlZv6dDgAAEHOm2br02u0+/D3NpiapsjI5cwEAAACIr1QrvA77LuQAAAAAAAAA4onSawAAAAAAAAAAAAAAkFYuuugi29LrF154Qffcc0/Mz50/f77t9YsvvjjmZ6aLiooK2+vHH398TM+zLEtTp07Vc889Z7vONE3Nnj1bV199dUzPR5pbvFhq+2uruVnav7+ltLotQwoYhizTkGVZMixLhiWZ7d17aVmSz9dSEnPkzaJffCFlZ0s9esT0S0GMWFWSy6bsvC4g1XSwDB2pI1zOtQGplpy7vmrJtMvZkmptSnTRRZCzM1RJpk0Zco0l1dm9mQG6hNwaybApNWmsl3yZiZsHAADAKerqWpfL+dr83bq2NrHzAAAAAIg/Cq8BAAAAAAAAtEHpNQAAAAAAAAAAAAAASCuTJ0/W3XffHfL6ypUrtWHDBg0fPjxmZ3744Ydas2ZNyOuGYWjy5MkxOy+dWJalxYsX264ZMWJETM/8/ve/rzlz5tiuMQxDTzzxhK6//vqYno005/NJP/95689ZlnTggPyWXy4dcZOnYajZ5ZbPpcM3f/r9rR6X6TfkDrS+EdMvS67mZsnlan3T6MaNUkaGZJqx/ZrQebkNUoZNeWq9IdWSW5dHzs6Q1yC57XI2pdoUu6Ef0SNnZ8hvkFw2pdfknB7M+hDvJnNQvV9qotwcAAAg5pqaWhfMtX0zwPbeHBAAAABA10XhNQAAAAAAAIB2cAcFAAAAAAAAAAAAAABIK8cff7zOOuss2zUzZsyI6ZkPP/yw7fVzzjlHxx57bEzPTBdvvPGGPv/8c9s15513XszO+9GPfqTHH3887LoZM2boO9/5TszOhUO8+qq0ZUvrz1VXq8rVrKtKLJUPP3hjZUaG1LOn/Bmu0Dd/GoYCLkNyuw+tKT9RuupaqSrTOroYpqlJqqqK8RcEAAAAAAAAAAAAAAAQAoXXAAAAAAAAAEKg9BoAAAAAAAAAAAAAAKSdqVOn2l7/7//+b+3YsSMmZ23dulV///vfbdd861vfislZ6Wj69Om213v37q3Ro0fH5Kyf//zn+vOf/xx23R/+8AdNmzYtJmfCYWbPbv1zn09V/jqVTLa0op9UOtFS+ShT6t5dMgyZfr8yfH5lNjUrq7FZWb6AsnyWMpstZfgtmYGDN2O6XCofIZVOklb0l0omS1UZgaNv1ty7NzFfJwAAAAAAAAAAAAAAcDYKrwEAAAAAAADYcCd7AAAAAAAAAAAAAAAAgFi74YYb9POf/1y7d+9u93pdXZ3uvvtuzW5bUNsBd911lxoaGkJeLyws1A033NDpc9LRo48+qjfffNN2zfXXXy+Xy9Xpsx544AH95je/Cbvu/vvv149//ONOnwcH2r5dWras1aeqmmtVMtlSxf9n78/DJC8Lc+H/rqreZqFnhk0WQUEWWSK4L7hEUQwaNa3mjAav6EvicoQ25iTGLB5Fj2+M0eSc14Ek5uRwfiZBHRcGkyguKOpRj4ICjWyiAi5sssx0z9ZbVf3+qGlmpqe7eq2q7q7P57rq6q56vvU8T83d3TTV9b3rUbXrlULSf045+cpD6bupnM5qJZnqnMvqvp+MZ8sphfSfW7t/kgwcUSu+3vzZcnornXvvt3Nn0tWVdHcv8oNjITp7RtNZKk873rFqVVI9qIk7ohE6ekbSWapMO15avSqJnJe7zu76ORdXrU6ytnkboiE6eobTWZy+FEHOK0Nn93DG6+W8ek1SWNPEHdEQawpJoU7JSak7Getq3n4AAAAAAFYKhdcAAAAAwAyUXgMAAAAAAAAAK05PT0/+4A/+IH/xF38x7TH//M//nN/6rd9KX1/fvNf51Kc+lY9//ON1j3n729+e7gUW0N5111057rjj6h7znve8JxdddNG85r/vvvvys5/9LE9/+tPndf/5+PznP5+3v/3tdY8plUp561vfuuC1Nm3alD/7sz+b8bi/+Iu/qPs1A3Vdc81+V4c6ytn4m7sfKbyeUEk1/S8cS8YK+a3bZp52y+OT/nOrjxReTxg4Itn4qmo2/1vSO1bcO1CtJgcfPM8HQSM8prsjw4XpS68PLfYkPauauCMa4bFybguP7S5lpDB96fWhxVXJqp4m7ohGOE7ObeG47lJG6+R8iJxXhp5SkulzzviqZFzOAAAAAABzovAaAAAAAJiF4syHAAAAAAAAAAAsP29/+9tzzDHH1D3m9a9/fa6ZVFQ7W9/97nfze7/3e3WPecxjHpM/+IM/mNf8zXTfffflGc94Rl760pfm2muvbeha5XI5//2///f81m/9VsbGxuoe+4Y3vCEnnXTSgtb73//7f88qgz/6oz/K+9///gWtRZu78cZHPh3qrGTj2VsfKbyuJnl4VTLcUbteKdSKrLecXH/KLY9P+l+SRwqvhztq80ycrjlwRLLxt8Yy1LXPCZyDg4vycAAAAAAAAAAA9qPwGgAAAACYJaXXANAk5Up5Sc3D4pNxe5Bze5Bze5Bze5Bze5AzAAAA01m9enX+9m//tu4x27dvzznnnJP/+I//mNPcn/vc5/LiF784O3bsqHvc3/zN32TVqlVzmruVvvCFL+RpT3taXvSiF+XSSy/N1q1bF3X+b3/723nKU56S//Jf/kvGx8frHnvEEUfkgx/84ILW+9SnPpU3vvGNqc5wgttb3/rWfPjDH17QWpCbb06yp/D6hdsycGjta7yaZOuqZKyYDHbvX3z9tpfUiq2nsuXxtfF9C68Hu2vzbN23+Prwaja+Yp/i66Ghxjw+AAAAAAAAAKB9KbwGAAAAAOago9UbAIB2MDQylPMuPy/nn3l++k7pm/c8W27dkktvuDSXvfKy9Hb3LuIOWSgZtwc5twc5twc5twc5twc5AwAAMJNXv/rV+Z3f+Z18/OMfn/aYwcHBvPzlL89rX/va/Nf/+l/z+MdP00Cb5JZbbsn73ve+bN68eca1zzvvvLzqVa+a175b7aqrrspVV12Vt7zlLXnhC1+YV7ziFTnrrLNy6qmnplic/XusV6vV/PjHP86WLVvyL//yL7l5TynwTDo6OvIv//IvOeSQQ+b7EPLd7343r3vd61Iu13+jq2OPPTZnnnlm/umf/mnea83VS1/60hx55JFNW48meeihvYXXh4wllep+hdeVQlJIrbg6SXrG9xZfJ0nfbXunmq7wulqolV1PFF9v2F2bc+DwSja+YiybP9eZ3pGR5j1mAAAAAAAAAGDlU3gNAAAAAMyR0msAaLChkaFs/MzGDNw3kOvvvT5J5lXGt+XWLem/sj+VaiUbP7Mxm1+9WRnfEiHj9iDn9iDn9iDn9iDn9iBnAAAAZuujH/1ofvCDH+RHP/rRtMdUq9V8/OMfz8c//vE88YlPzLOe9awcd9xxWbt2bbZv354777wz3/72tzMwMDCrNR//+MfnH/7hHxbrIbTM2NhYrrzyylx55ZVJkjVr1uSkk07KSSedlCOPPDKPetSjsmbNmnR3d2d0dDRDQ0MZGhrK1q1bc9NNN+XGG2/Mjh075rRmoVDIP/3TP+WFL3zhgvZ+2223ZWxsbMbjfv7zn+dNb3rTgtaaq6uvvlrp9Qo0VNm9t/A6OaDweuK2FOoXX89UeJ3UxqYtvr6qHM9utU451ZSy8JN9F2seAAAAAAAAAFgQhdcAAAAAwDwovQaABtq3hC9JKtVK+q/sT5I88cgnznqefUv4kmTgvgFlfEtEvYznUrgo46VNzu1Bzu1Bzu1Bzu1BzgAAAMzF2rVr86UvfSnPec5z8otf/GLG46+//vpcf/31817v2GOPzZe+9KWsXbt23nMsVTt37lzwv089XV1d+djHPpbXvOY1DZkfGqVcKee802/PQM+ewutq9YDC6wn1iq8/9/jkq8fXL7yeMF3x9Xnn7MgVOxQmt8JQcSznHXNNzt/62PQNHT3vebb03p1LN9yVy37xtPRWOhdxhwAAAAAAAAAwBz09rd7B/hReAwAAAMCyUWz1BgBgpZpcwjdhoozvSz/50qzmmVzCN2GijG9oZGjR9szczJTxllu3zGqeL/3kSzJewuTcHhYr5yt/cqWclzA5t4fFyvkLP/6CnJewxcr5P27/DzkDAAC0kcc85jH52te+lsc97nENXeeEE07I1772tRx77LENXWcletzjHpdvfvObCq9ZlkrFUs7fdVKK1aSaarb2VKcsvJ5QTa3IerC7Vmyd1I79yuNmV3g9Yd/i62ohKVaT839ykMLrFhgqjmXjsd/LD1ZtS/9RA9nSe/e85tnSe3f6jxrID1Zty8Zjv5eh4tgi7xQAAAAAAAAAZuH005ORkVbvYi+F1wAAAACwrHS0egMAsBJNV8I3oVKt5KJvXJQzDj8jx204btp5vvzTL+cvv/WXB5TwTZgo49v86s3p7e5dlL0zO7PJuP/K/vz5s/+87jx3br0zV/zoihSmOelcxq0l5/Yw25z/9Nl/WnceOS9tcm4Ps835Hc96R9157tx6Zz73o89NOy7n1pptzu967rvqznPLA7fk77//99OOyxkAAGBlOuGEE3Lttdfmta99bb70pdm9Qelc/MZv/EY+8YlPZP369Ys+90rW3d2dt73tbXn3u9+dtWvXtno7MG99x744u666Ob/3vMG6hdcTqkmyp/g6SXrG947NpvB6wiPF193J//p8KX3bDko6H1rAI2Guhkrj2XjqLRno2pFUkkqS/iOuS7ZvT9+DhyWrdybFqf/unyQZ3Z2M7sqWQx9I/xE/TmXPoQNdW7PxiG9l8y2nprfspX5L3ixzZplbsyMp1PnJPLo7Ge1u3n5oDDm3h5lyHhlOxrqatx8aQ84AAK0xPr7/9eHhZHQ06fK7FwAALBsXXpjcfHOrd7HXBRe0egcAAAAAwBw5EwYAFtlMJXwTKtVKvvWLbyXJlMXXd269M1tu25JioVh3HmV8zTeXjN/3zfflzEedOW3G3/rFt7Kma01KhdK088i4NeTcHuaS8/u/+X45L1Nybg9zyfkD3/rAjDmv7Vpb9/cwObfGXHJ+79ffm19/7K/n1MNOPWD8lgduyRd+/IWs6lwlZwAAgDa0YcOGfPGLX8zHPvax/Mmf/El+9atfLXjOww8/PB/60Ifyu7/7u4uww9Y48cQTc/HFF+fKK6/M1VdfnV27Gl/K2dvbm/PPPz9vf/vb85jHPKbh60GjDZ12Qv71zl3pGUtGemZ3n6mKr+dSeD2hUqjd919PL+dl3x5N7/33z+MRMB9DHeVsfNbdGVg9Umu73qOSpP/4HyXbtuWkh7qTUp0y5N0d2XLI7vQff/8jhdcTBlYPZeMJ12fzd45O7/j0f59gCegdmTHnDHc2bz80xrrhpFjnp/PuztoPcpY3ObeHmXLe1ZmMyHnZkzMAQGuMju5/fXCwVoS9Zk2yYUNr9gQAAMzehRcml1zS6l3sdcEFycUXt3oXAAAAAMAc1W/RBADmZLYlfBOqqeZbv/hW7tx65363T5QtVquzO4V5ooxvaGRozntmbuaccXWGjGd5mrqMm0vO7WGuOU+8WYGclxc5twc5t4c555xKvvDjL+SWB27Z7/aJwms5AwAA8PrXvz533HFHLrnkkpxyyinzmuPUU0/NJZdckjvvvHNZF14nyZo1a3LBBRfkP/7jP/LQQw/li1/8Yv70T/80z3/+83PQQQct2jqHHHJIfvu3fzuf/OQnc8899+S///f/rvCaFaFcKee8of+d6w8Zy3BnUphtW3VqxdbVPcXX23rmXnid1NYb7kyuf1Ry3tnbUp7LBpi3Rwqv149MOV4pJP1Puj9XPWpn3XmuPHJH+p90fyqFqccH1o9k47PuzlBHeaFbBgAAAIDW2bkz2bq11bsAAABmspQKr087TeE1AAAAACxTHa3eAACsFHMt4ZswUXydJMdtOG7OZYsTJsr4Nr96c3q7e+d0X2ZHxu1Bzu1Bzu1Bzu1Bzu1hITl/4cdfSJKcetipcy68niBnAACAlWvNmjV561vfmre+9a25/fbb88UvfjHXXXddbr755tx9993Zvn17du3aldWrV+eggw7Kox/96Jx66ql50pOelHPPPTcnnnhi0/b62Mc+dtZvmLpQPT09efGLX5wXv/jFSZJKpZJbb701AwMDufPOOx+53HPPPdmxY0d27tyZHTt2pFwup7u7O93d3dmwYUMOP/zwHHXUUTnppJNyyimn5ClPeUpOPfXUFArTtLousje84Q15wxve0JS1oFQs5TXHvyJfueOqjBWTQpJUa+XVs1FNkkIyUppf4XUhyVgx2bYqec3A2pRmuzDzNlPh9YRKIfnAqQ/mj287OM//1ZoDxq8+fGf+5uSHU0j9zCaKrzd/5+j0jpcWtHcAAAAAaJmdO5Ph4VbvAgAAmE6TXtczK6edltx0U6t3AQAAAADMk9JrAFgE5Uo5511+3pxL+CZMlC7eue3O3L397jmX8E0YuG8g511+Xq7YeEVKRSe5LiYZtwc5twc5twc5twc5t4fFyPkLP/5Cbnvwttyx9Q45AwAAMK2TTjopJ510Uqu3sSQVi8WcdtppOe2001q9FViyypVyPnndx7J6LBnsrt02n+LruXZVTxReT1g9lnzymMG85pfrFV830FBHORufeW8G1g3PqqG8Ukg+9PiHk0ry/F+tfuT2qw/flQ89/uFajrN4Y4OBdcPZ+My7s/nbRyq+Xooqldo35bTj1doxLG+Vaup+41cqcl4J5NweZsq5KucVoVpJ6sUoZwCAxpj8XNfk64ODzdsLAAAwe0up8Lq7W+E1AAAAACxzSq8BYBGUiqWcf+b5uf7e61Opzu8EiGqq+eX2Xy5oH8VCMeefeb4SvgaQcXuQc3uQc3uQc3uQc3tYrJx/uvWnC9qHnAEAAACop1Qs5fyhE3L92PeTzL/4ei4mF16vG6mVXp9/Yyml4dHFX5AkyVBnJRuf+UAG1s/h37harRVfn/JQUh7P8+/rydVHDOdDpwymkqT2rOPsvkgG1u8pvv7GYekdK87jEdAwY6N7ClSnMVpORsrN2w+NMTqalOS84sm5PcyU80hFzivB6FhSlDMAQNOVJ/2ONfmNRoqe1wIAgCVnKRVeJ8nwcKt3AAAAAAAskNJrAFgkfaf0JUn6r+yfdxnfQhQLxWw6d9Mj+2Dxybg9yLk9yLk9yLk9yLk9yBkAAACA5aDvyjuTwaT/JbXrjSy+nq7wetMXkr6fjCaHK71uhHKhmvOe/3AGNowldboTD1BIUk0qST50+mC+fviuXHv4WCqp3V67zH7CgQ0jOe/Z9+eKLx+cUiMa1ZmfsbEZSq8rtQvLm5zbg5zbw0w5j1WSUW+Iu+yNzVB6LWcAgOYrFJLOzlbvAgAA2NdSK7yew9/PAQAAAIClS+k1ACyiVpXxKeFrHhm3Bzm3Bzm3Bzm3Bzm3BzkDAAAAsOTdemv6hmqfTlV8vZinZE5beH1bkow7AbRBStXk/NtW5/qzBlOZ5zm/lSTfO3xsQfso7tlH6ZHWbJaEanWGOKq+N1eCmXKuynlFkHObkHNb8P0MALD09PQkxWKrdwEAAExQeA0AAAAANIjSawBYZM0u41PC13wybg9ybg9ybg9ybg9ybg9yBgAAAGBJ27kzyUTx9P7F14t9SmY1teLrAwuv91Aa0zB9P1+dFAvpf+a2eRdfL0Sxmmz6v+vT9/NViZiXlmKxFtB0CkXfmyvBTDkX5bwiyLk9FOTcFnw/AwAsDYVC0tGRdHcnpVKrdwMAAExQeA0AAAAANJDSawBogGaV8Snhax0Ztwc5twc5twc5twc5twc5AwAAALBklcuPfLpv8fVoMdnZtbhLVQvJ6tFpCq+T5MgjF3dB9tM3kuS2rek/7eezK74uzOLE3OrMExWryaabj03fyIZExC1VTjWlTMps7e6kVOd567Wdycj+PwymnIel7aDdSbFezl3JSGfz9kNjyLk9HLSrfhnymq5kVM7LnpwBAFpjzxsEPmLVqmT16tbsBQAAmJrCawAAAACgwZReA0CDNLqMTwlf68m4Pci5Pci5Pci5Pci5PcgZAAAAgOWg77bku0cnHz4rKSRZzNMzC0l2dyYXXDNF4XWSrFmziKsxlb7ta5Kf9KT/xB8/UnxdTTVbO8azulJKT6X4yLHjxWr9/KuFFPcpPh4uVrKrWM6G8Y4U9txerCabfnJi+rYfmoi3pYZK4znv1Ftz/r1Hpu/BQ/cOrEr9ktxiV9LR/cjVLYc+mEuPvDeX3XJKesteyrlsrEpSqJdzd9KxyO90QPPJuT2sqtZ/Y4pCd9Ip52VPzgAArdHRsX9hXam0/3ixGAAAoIUUXgMAAAAATeBMCQBooEaV8SnhWzpk3B7k3B7k3B7k3B7k3B7kDAAAAMBSt+XxyWVnJL0jybaexZ27mmTdSG3+Z9w9RfH15BIZGqJv66OSnxbTf8LtKRdqhddjhWoGi+PJeMd+xdezNVysZLBjPEmytXM8G8Y7U6oWsumnJ6Vv62GJaFtqqDSejafcmoE1O3L9QT9JisX0PXRYbbBUTOpFXio98r255ZAH0n/CT1JJNRtPvzWbbz1d8fVyUZwh52LRz+CVQM7toViq/2YFpVJSkfOyVyrVL7GXMwBAY0wu0Jt8vWeRnzAFAABmT+E1AAAAANAk3hIbABqs75S+bDp3U4qFxfnPrhK+pUfG7UHO7UHO7UHO7UHO7UHOAAAAACxVWx6f9L8kKReS3Z3JYp8yWkht3nKhts6Wxy/yAsxa30OH5YN3PC5bO8YyVth7Mu5gx3iG6xVpTmHfwuskGStUs7VjLB+843F7i5VpmVrh9U0ZWLMjSVJJNf0n3J4thzwwp3lqhde3p5La18vAmh3ZeMpNGSqNz3BPAAAAgBWgqyvp8OZfAADQEgqvAQAAAIAm8uoAAGiCvlP6csWPrshXfvqVBc919vFnK+FbgmTcHuTcHuTcHuTcHuTcHuQMAAAAwJJRLCaVyn6F11tXJaOlZLFP06ymNu/WVcmG3bX1kqTvtj0HPDC3El7mb6ijnH896edZPVbIYNf+SQ+WxpPqxBdAna+CaiHDhWSwVD5gaPVYIf+64ed52e1J73hpcTfPrA11lLPx6T/PwKrhZJ8u80qS/uNuTYYGc9LD3UmpTs7DHdly8K70H3dPKpP60AdWDWXj467L5u8dK+elrnc4KdbJeXdHMtLZvP3QGHJuD3JuDyO7k3rvoSxnAIDGKJf3L68bGUnGx5PVq2sXAACg+RReAwAAAABNpvQaAJpgy61b8tU7vrooc331jq9my61blPEtMTJuD3JuD3JuD3JuD3JuD3IGAAAAYMno7c2WI7Y1vPB6wrTF17cXayUyNNxQRzkbn3lvBnpH0lMuJKPFDHbu32Y82FHO6nIhHdXpTyAeLVSzo2PP/fb5glk3VkxPuZCB3t3Z+NS7svlbRypEboF9c57qG7qSpP+Me/KOWzbk2Q+smnaeKw/Znnc/4aFUUp1yHjkvE6Oj9UtyRyvJSGX6cZYHObcHObeHsbGkIGcAgKabXKZXKj3ypoEHvBsYAADQeAqvAQAAAIAWUHoNAA225dYt6b+yP5Xq4rwwr1KtpP/K/iRRxrdEyLg9yLk9yLk9yLk9yLk9yBkAAACApWTLcw9P/wnbmlJ4PWHK4uuuUvrGFOY22lBHORufdV8G1o8mqZ0g3FMpZLhSzUhp/+R3dlSzupx0Vg48kXisWM3u0oFfKd3lQnoqxYmpM7BhNBufc182f+dohchNNFXOU6kk+cDpD+ePbzs4z//VmgPGrz58Z/725If3zDH9PHJeBkrF+iW5pVLtwvIm5/YwU85FOa8IRTkDALREsbh/iV1HR+228fFk9+7W7QsAANqRwmsAAAAAoEWKrd4AAKxki13CN2GijG/LrVsWdV7mTsbtQc7tQc7tQc7tQc7tQc4AAAAALCXlSjmXPmdNUwuvJ+xbfF0uJJc+uZhywUmijVQrQr47A+tH9rt9uFg5oPB6wq5SNWOTChfHitXsmub4kVI1w8X9n/8cWD+Sjc+6O0Md5QXsntmaLufpVJJ86PEP5+rDd+53+9WH78yHHv9wpug8n5KcAQAAgBVtbCwZHW31LgAAoD309LR6B/tTeA0AAAAAbaWj1RsAgJWqUSV8EybK+JKk75S+hqxBfTJuD3JuD3JuD3JuD3JuD3IGAAAAYKkpFUv5+zf9W574/mMWVHhdrGbWxbj7mii+Hi8mf3/TY1Mqdc5zB8xkqKOcjU+/JwPrDiy8Huyq/5zlrlI1q5N0Vgp1C68nDHZVktGkp1J85LaB9SPZeNY92fy9Y9M7Xpr346C+6XKeSaVQK75OsZTnP7A2Vx+2Ix86qVZ4XarO/ptbzktYqaP2w3ra8VLS4aW5y56c28NMOXeUkrKcl71SKSnWGZczAEBjFGZ4HmRsrDn7AACAdnb66cnI3P7e2VAKrwEAAACg7XiFJgA0QKNL+CYo42sdGbcHObcHObcHObcHObcHOQMAAACwFJUr5fznz/4/GS/Ov/A6mV/h9YRqaqXX//lJ9+SKH5yUUhYwGVMqp5rznvqTPUXIe/99h4uVDHbO7jnLXaVqOovJWGF2XymDXZVkrHBA8fV5z7g7V1x7gpwbYLqcZ7Tn0Eoh+dDJD+brj9qda9fvTGVioLDPQbMg5yWqq5IU63y/V7qSeOOBZU/O7aGrXL/0uiznFUHOAACt0dGxf6FdcdI7kaxe3dz9AABAuzn99OTmm1u9i70UXgMAAABAW1J6DQCLrFklfBOU8TWfjNuDnNuDnNuDnNuDnNuDnAEAAABYqkrFUk7dfVC+0J1a+3Qr+mmryVB3cuqDxZTGyy3YwMpXSnL+XRty/RN2pbKn3nwuhdcTZlt4PWGws5yMVh8pvi6mkPPv2iDnBpkq51nZJ9dKku+t37H/eLUwp5O55bxEjY/XL08dH0/GlZQve3JuD+VyUqlXhiznFUHOAACtUans/zxIuVy7rVhMOjuT3t7W7Q0AAFa6Cy9cWoXXF1zQ6h0AAAAAAC2i9BoAFlGzS/gmKONrHhm3Bzm3Bzm3Bzm3Bzm3BzkDAAAAsJSVK+Xc8sDNWTWe7Oxs0SYKyarR5Ja1u1IeHU6pqryvEfruWpWMHZ7+J92fXaVKBrua85zlYFclGU1Wl4vZdN3h6bt7VZKRpqzdjvbNuTLLb6VqtdZrPe34HBrxi9XIeanqGa1fhjxaTUaa+7cMGkDO7WF0hpxH5LwiyBkAoDXGx/e/PjycFApJT09y9NG18msAAKAxLrmk1TvY64ILkosvbvUuAAAAAIAWUXoNAIukVSV8E5TxNZ6M24Oc24Oc24Oc24Oc24OcAQAAAFjqSsVSXvPLDfnKEbVK2zq1etMqJCnsKc2d7/3HS8lrbutMqatnHjMwW30PHpbv/nI0Hz7xgaauO9hVyRt/fEj6Hjws6W7q0m2p78HDkh92pv8Jd6cyi+/KcrH+924hSWkW39zFFLLph0en78H1cl6KOiv1y1PLnUm1Ve9+wKKRc3voqtR++ZpOd2cSOS97cgYAaI1SqfYOYRM6O5ODDqpdKt50BAAAGqawhN4c+7TTFF4DAAAAQJtTeg0Ai6BcKefSGy5dUAlfIYUcfdDRuXv73anO6xTmWhnfpTdcmpef/PKUiqV574UDybg9yLk9yLk9yLk9yLk9LFbOx284PndsvUPOAAAAADREuVLOJ1f9NBtGi9naVcloaW7F1ROF193lZKRUu2Gu9+8qJxuGk08+fjyv2XF8SllCJ7OuMFt6785lR+3IunJnBktjTVt3Xbkzlx23I8/o7knf0NFNW7ed9SXJr45I/1EDMxdfF8ozzFZIisW6RxRTyKZ7zkjf6qOTx81lpzRN92BSqPM3i/FVybg3Hlj25Nwe5NweegaTyBkAoOkGB/cvvT700GTdutrnw8PJWPOeUwMAgLaxlAqvu7uTm25q9S4AAAAAgBZTeg0Ai6BULOWyV16WjZ/ZmIH7BuZ8/0IKefYxz85xG47LnVvvzLd+8a15lfGdccQZueyVlynhawAZtwc5twc5twc5twc5t4fFyPklJ74kpx52am554JZ84cdfkDMAAAAAi65ULOWym07KxuN+kBsOHZtT8fVE4fW6kaRnPBnuSAa7M+vi630Lr8+8v5DLvrImpafPVL7LfG1Zd0/6j/xhKqmmp1pMmlR8va7cmZ5qMZVU0n/kDUm5nL7Boxq+Lknfw49Kyqen/9E/TKUwvzdWTLLnG3r6+xerhWz65enpG3xUkvH5r0NjdZRnKMkdr11Y3uTcHuTcHsbHa79s1xuXMwDA4qtW9y+9rk76nWxkpLn7AQCAlW4pFV4ntTe7AQAAAADantJrAFgkvd292fzqzXMu49u3bDHJIx+/9YtvzWn9M444I5tfvTm93b1zuh+z14iM51K4KOPmkHN7kHN7kHN7kHN7WEjOE4XXSR75ONfiazkDAAAAMBu9xVXZfNX6bHzhttxwyFi2ds9cfD258DrZ+3E2xdeTC683b+lIb2eS7dsX4yExSTnVXHrsHalUK48E05NCUu3IYMfsyxI7qoWMz6E8ed14R3oqhUwsWkk1l667Iy//5dqUssROXl6h+rYflOw+Mf0n3J7KdN+VxRkyrWbab+hiCtn0kxPT99BBSXz/LmnlnUmxTknuyHgy1vgifBpMzu1hxpzLcl4JKrvql5vLGQCgMUZH9y+6Lk96k77J1wEAgPlbaoXXk9/0BgAAAABoW0qvAWARzbWMb3LZ4oSJ6zfcf8Os1lXC1zxzzrhQP+PZlpvLuLnk3B7mmnOxUJTzMiTn9iDn9jDnnFPcr/B6wr7F17MhZwAAAABm7ZBD0ntLsVZ8/esP5IbDkq2rMm3x9VSF1xNmU3z9SOH17uTM+5PNW0rpHU3SmWRoaBEfGBNKSS679thsfNJPM9C7+5Hbe8qFpFrKYOfMZT2rysV0VQsZLVSzu1SngHGPdWOl/Qqvk+SMoVW57LpjUxpXjtxMfUPdye5Hp/+0n6cy1Xnj1WrqdpBPU3pdrCabbj4mffd1J/G9u+RVd9cvyR0eS0ZGmrcfGkPO7aG6q/4bFuweS0Y7m7cfGkPOAACtMTa2f9Hdjh1JV1eyalXS4ZRWAABYNAqvAQAAAIAlrNjqDQDASjNRxnfGEWfUPW66ssUJx204Lu9+7rtTLNT/z7USvuabS8bvfu6762b87GOeLeMlSs7tYS45v+u575LzMiXn9jCXnP/s2X8m52VqLjm/59ffc0Dh9YRTDzs1LznxJXIGAAAAYHGddlqSpHfHWDZ/qpoz76sVUneVD+zBrVd4PaFnvDZemKJHd7/C6/uSzZ9Oeof3nDy6atUiPigm6x0vZfN1j8sZQ/v/O/dUilk3Vqp734nC6yTpqhayqlz/Ocpa4fX+x5wxtCqbr3tcesfrr0Vj9N23IZtuPrZud+Zc1Aqvj03ffRsWZ0IAAACApWp8PNm+3ZsIAQDAYlF4DQAAAAAscUqvAaABZirjKxaKueh5F01btjjhnMedk03nbpq2jE8JX+vMJuNN527KOY87p+48x204Lhc97yIZL1Fybg+zzflFx7+o7jzHbTgu73ve++S8RMm5Pcw25xce/8K68xy34bi8/wXvl/MSNducX/y4F9ed59TDTs1fvfCv5AwAAADA4nnCE2oncW7fnt7RQjZ/JvsVX0+YTeH1hOmKr/crvP5M0juSpFKprb96de3kVpeGXXrLHdl8/Qk5Y2j1/nlViumuTH1i8b6F14/kWKf4urtSmKLwenU2X39CessdLf83aOdL3/0H5+yHFue547Mf6k3f/Qe3/DG5zOGSJLWf5FNfWr0/Fzm7zDFrObfFRc4uLi4uLi4uLs2/1LN7d+25TAAAYP5m+r272RReAwAAAABT6Gj1BgBgpZoo49v4mY0ZuG/gkdsnSvieeOQTc8N9N8w4T98pfUmS/iv7U6nufWGfEr7WmynjvlP68pOHfjLjPC8+4cU5fM3hMl6i5NweZpPzjx780YzznHvCuTl0zaFyXqLk3B5mk/PNv7p5xnlecuJLsqFng5yXqNnkfOfWO2ec5zdP+s0c1HWQnAEAAABYHE97WjIykpTLSbWa3pFaIfXGVyfffXQyUsqcCq8nTBw32J2kkFSTrBqbVHid7D2J9FGPSrq7F/excYDeJJt/fEY2nnJTBtbsSJIMFysZKR54Mu/qcjGd1anLrbuqhZTGC9nZUd7v9pFiNcOl6iPF12fsXJvNPz49vau85K/VthzyQL562I4kk04kn+nE8kLhgPt89bAd2fLY4fQ9dNii7pEGWl1IinWKuTq6ky4/g5c9ObeHGXPuSca6mrcfGmNNISnIGQBgSalWa8+jAgAA86PwGgAAAABYJpwBAwANNLmMb98Svru23TXreSYXXyvhWzrqZTwXMl7a5Nwe5Nwe5Nwe5Nwe5AwAAADAknPUUcnq1cng4CMndfaOJK8bSK4+LpnoQp5L4fWEfYuvC0l2d9bm7Z3cDVMoJNu31y40XG+SzQ8dmY1P+3m+d/CuDE4qrk6SdaPFpFBINdOXLXZXC+kYLWawa/9jBjvGk7FSnv7w6my+5sj0jm9b5EfAXG05ajD9x9+TSmWKE7cL1dRq6adRLSSV/U9AryTpP/62ZPtQ+u5Zt6h7pUF6h+uX5O7uTEY6m7cfGkPO7aF3995f0KYi55VhVM4AAC0xOppU9vn/qt27k56epLOz9hzm2Fjr9gYAAMuZwmsAAAAAYBlReg0ADTZRxnfe5efl/DPPn3MJ34SJ+116w6W57JWXKeFbQmTcHuTcHuTcHuTcHuTcHuQMAAAAwJJyzz218pZ9Turc8vjkneck63cn21Ylq8fmXng9YeJ+uzpr873znGT1eNJ32z4HlcvJrl218hiaoncsed2da3P1YTsOGFs3WkxPpZjhYqXWVj6datJTLSajOaD4elepktfduTa9uytJneJsGm/L0UPpf8L906dQrc6Y81Qqqab/CXcn4+Ppu9vz00ve+Fj98tTxQqK3a/mTc3sYH6+f85icVwQ5AwC0RnnSm8ONjSXDw7Uy7FWrWrMnAABY7hReAwAAAADLjNJrAGiC3u7eXLHxipSKpQXN03dKX15+8ssXPA+LT8btQc7tQc7tQc7tQc7tQc4AAAAALBnXXJN0dT1ydcvjk/6XJJVCUkyyYXf9PtzZ6BlPusdr81QKtfmTfYqvC4VaeYzS66bZcvRQ3nnGA1k/Wsy2rkrG9pQqThRez0VPZf/i685KIetHi3nnGQ9kdbmoELmFthw9lP4n3Z9Kg84jrxSS/ifdnyRyBgAAAFauSqX2/KVyPAAAmBuF1wAAAADAMjS3s2oAgHlbrPI8JXxLl4zbg5zbg5zbg5zbg5zbg5wBAAAAWBJuvDEZGUmyf+H1hMU6BXXfeSaKr7c8fs8N1WqtNIam2LcIuZhaQXVnpTCvwusJPZVi1u2ZZ/1oMcUUHilE3nL00CI/Amaj0YXXE+QMAAAAtIVyORkdbfUuAABg+VB4DQAAAAAsUx2t3gAAAAAAAAAAAMCyd/PNye7dtcLrc9PwgtwJE8XXSdL3o2qtMGapnfS6Am05eij9T9y/CLmYQjaMFlOYVHFeTKHueb+T67F7KsV0j1b3m2eiEDmFQvru7l2ER8BsTJXzdOaa81TkvBwU6r+LQaHgZ/CKIOe2UJBzW5AzAEBrTH6SpFLZ//rYWPP2AgAAy9lSe/5S4TUAAAAAMAdKrwEAAAAAAAAAABbqnnuy5biR9J9bbVrh9YS9xdfV9N016kTTBqtXhDy58DpJitWkXiJTfblMNU+lkPQ/8b6kWlWI3ARzKbxO5pfzVOS81FXr/4ytzjDOMiHntjBTjnJeGeQMANAak0uuJ/M7GAAAzKynp9U72J/f4wEAAACAOSq2egMAAAAAAAAAAADL3ZZVd7Wk8HrCRPH1lhPGW7OBNrHl6KH0P2n2RciLrVJI+p90f7YcPdSaDbQJOQMAAAAAAAAtc/rpychIq3exl8JrAAAAAGAelF4DAAAAAAAAAAAsQLlSzqXHPrSggtxiNXnRT2sf56tSSC49o5xywQmnjVAuVHPpcYMLyznJ0x/uWdAL9yqF5NLjBuXcIHIGAAAAAAAAWub005Obb271LvZSeA0AAAAAzFNHqzcAAAAAAAAAAACwnJWKpVx29cHZ+Ky7M/Coud+/WE0+8oWk77Zky+OTt70k8yrcPeO+5LIrSikd3zn3OzOjUpLLvn9sNj795xlYNzy3OxdqOb/j9sPy/AfW5urDduRDJz1Qy7k6t7DPGOzJZd8/NqVSaW57YFbkTF2ljvrvTlAqJR1emrvsybk9zJRzRykpy3nZK5VS910o5AwAAAAALCUXXri0Cq8vuKDVOwAAAAAAljGv0AQAAAAAAAAAAFig3nRn86eTja9OBo6Y/f32LbxO9n6ca/H1Gfclmz+T9JaT7N49+zsyJ71JNn/j8Gx89n0Z2DAyuzsVqilWCnnHLevz/Ps7kgzn+b/sSMbW50OnbktSTep0bu7rjK3d2fytw9M7Njq/B8CsyJlpdY0kpTpBDnckw+PN2w+NIef20D1Sv/RaziuDnAEAWqM66Xew0dHapbMzKczj3f4AAKAdXHhhcsklrd7FXhdckFx8cat3AQAAAAAsY0qvAQAAAAAAAAAAFqqnJ70jteLp2RZfTy68njDX4utHCq9HknQWknHFfY3UO55s/vqh2fi8BzJw8MylxMVq8sc39eb593UlKT9y+/Pv6Uoqvfmb04Zmte4ZD3dl8zcOTe9YJUllnrtnthY757+V88pQLqdue3k5iR/By5+c28N4uX65+XhBzitBuXxg4eK+5AwA0BiTfwerVpOxsdrzlj09rdkTAAAsdUup8Pq00xReAwAAAAALVmz1BgAAAAAAAAAAAJa9tWuT5JHi6zPuq3/4dIXXE/puq40X63T0JZMKr5OkMIuWbBasd6yYzd84LGc83FX3uGI1+bMb1+X5901d5vP8+3ry/uvWz5zzw13Z/I3D0jvmJX/NJGcAAACARVStJiMjMx8HAADtZin9nb+7O7npplbvAgAAAABYAZwZAQAAAAAAAAAAsFDVvW22MxVfF6vJpjqF1xP6bqsdN11R7gGF1zTVTIXIxWqy6XsH54X3rqo7z7l3r8qm7x08fc6KkFtKzgAAAACLqFJJRkdbvQsAAFg6llLhdZIMD7d6BwAAAADACtHR6g0AAAAAAAAAAAAse7t373d1ovh646uTgSP23r5v4fU03bf7mSjG7n9JUtnnXNdpC68rlWRsbF4PgbnrHUs2X7U+G89+OAMH7/13L1aTTf93ffru6srNG8b2K0U/wHg1fT/tSsrr0v/Mbfvn/HBnNn91fXrHyknKjXsg1LUoOY/JeUUYH58x54zN5qc7S5qc28NMOY9Xk7FK8/ZDY4yPT/8OMomcAQBaZXy81TsAAIClYakVXtd73hwAAAAAYI6UXgMAAAAAAAAAACzU4OABN00uvt638HouJhdfT1t4ndRKryuK+5qpdyTZ/JX12fjCbRk4ZKyW87fXpe+u7iR78qh3rnKlklQK6bujO6msS/9Zg7WcH+rM5qvWp3cstXloqQXnXJXzijDL72eWOTm3h2ql/o9dOa8MM/1eLGcAgNbo7m71DgAAoPUUXgMAAAAAK5zSawAAAAAAAAAAgIXatWvKmyeKr897ZXL+9XMvvJ4wcb9Ln5hcdvk0hdeJE1FbpHesmM1Xrc95Z2/L+betTt9dPfOaZ+J+lz5+Vy776vr0jhUXc5sskJwBAAAAFqhUql0AAKCdKbwGAAAAANqA0msAAAAAAAAAAICFKpenHeodSa74ZFJa4HmifbclL//RwuehMXrHirniSxtSqi7sBOW+u3ry8p91L3geGkPOAAAAAPNUKiXd3a3eBQAANNSbP/vmfPRVH53+gFkWXo8l6VycLdWn8BoAAAAAaBCl1wAAAAAAAAAAAA22WEXVM85TKCRr1izOYsxZaaobV43MEFxHUtj/pXxTzsOSIec2NlPO1Y6k6KW5y56c28OqkaQo5xVPzgAArbFt2/7FeRNl1x17fveaZckfAAAsN4X31n7X/ceb/jHV90zx3OQcCq8nPja0+FrhNQAAAADQQF6hCQAAAAAAAAAAsFBdXa3eQU2xmBx0UKt3wb7WdNQvWyx1Jh0NPVWZZpgp56KcV4TZ5Nwp52VPzu1htZzbwpqOpCBnAICmKxb3v97RUSu+nuB3MAAAVqCJwut9r+9XfD3Hwut9rzfkN2iF1wAAAABAgym9BgAAAAAAAAAAWKjDDkt+9atW76JWKDM83OpdsK+u0aRUmX58uFy7sLzNlPOInFeE7pH6JbkjFTmvBHJuDzPlPFyp/exmeZMzAEBrVCY9RzI6muzeXSu77u5eOm8gCAAAi2Ry4fW+t1ffU5134fW+ty9q8bXCawAAAACgCYozHwIAAAAAAAAAAEBdJ5zQ6h3UKIwBAAAAAJaaajUZH6+9ad8sC/8AAGA5mK7wesJPFlh4PdvxWVN4DQAAAAA0SUerNwAAAAAAAAAAALDsPfrRrd5BTWdnUiq1ehfsq1RMinVOZC6VZLYSyLk9FEtJsU4RQLEo55VAzu1hppz93F4ZSqWkIGcAgKabXOpXLCbd3UlHR1Iu18qvAQBgBZip8Prmi5LHpFZY3VnnuNkWWs80z4wUXgMAAAAATaT0GgAAAAAAAAAAYKFWrWr1Dmq6umoFMiwdnZWkVJl+vNKZVLuatx8aY8acu5Lqgk5BZynoqiTFGXJeWNUAS4Gc28NMOZflvCJ0luuXm8sZAKAxisX9r3d21gqvk1rJ3uho8/cEAACLbKbC6+9flJy4z/XpCqtnW3g90zwzUngNAAAAADSZ0msAAAAAAAAAAICF+vnPa+UtY3M9JXWR7d6d7NrV2j2wv46R+mXIu8eT4fHm7YfGmFXOSjWXvc7h+uWpu8vJcIv/O8DCybk9zCbnETkve3IGAGiNcnn/65PL9SaPAwDAMjNT4fXXL0p+bYrbJxdWz/fZyTkXXyu8BgAAAABaoDjzIQAAAAAAAAAAANT10EPJ2rWt3UOxmIwrTwYAAAAAAACARpip8PpTFyXPTDLdUWOTPs7XrO+v8BoAAAAAaBGl1wAAAAAAAAAAAAs1Npb09CSlUuv2UPRyMAAAAAAAAABohDd/9s11xy+6KHlFpi+8nrDQwutZz6PwGgAAAABoIWc5AQAsknKlvKTmoTHk3B7k3B7k3B7kDAAAAAA0TWdn7eO6dUlhplNYG6CVZdsAAAAAAAAAsMJ99FUfnX7wouRPM3Ph9WLqrDd4wQXN2gYAAAAAwJQ6Wr0BAICVYGhkKOddfl7OP/P89J3SN+95tty6JZfecGkue+Vl6e3uXcQdshjk3B7k3B7k3B7kDAAAAAA01SGH1D52dyerViW7djVv7WKxdplYf/Xq5q3NzHoKSalS54DOpNjVtO3QIDPm3JUU6552znLQU0iKcl7x5NweZsq52pWU5Lzs9SQpVqcflzMAAAAAMEfV91RTeO+kauuLkuEkxSbuY8bC64svbtZWAAAAAACmpPQaAGCBhkaGsvEzGzNw30Cuv/f6JJlXseaWW7ek/8r+VKqVbPzMxmx+9WbFmkuInNuDnNuDnNuDnAEAAACApjvttOT//J/a5729ychIUi43Z+3iPqfOrlqVFArTH0vzFQr1M5lpnOVhxpwj55XA93N7kHN7mOnnspxXhkKhlnXdcTkDAAAAAHMzufh6d5ZQ4fVppym8BgAAAACWhGY+bwoAsOLsW6iZJJVqJf1X9mfLrVvmNM++hZpJMnDfQDZ+ZmOGRoYWfc/MnZzbg5zbg5zbg5wBAAAAgJZ4whP2fl4oJAcf3Jx1Ozr2L+pbtao56wIAAAAAAABAm6q+p5ok2XVRUmriunULr7u7k5tuatZWAAAAAADqUnoNADBPkws1J8y1WPNLP/nSfoWaExRrLg1ybg+LlfOVP7lSzkuYnNvDYuX8hR9/Qc4AAAAAwNw87Wn7X+/oaHwBdaGwf+F1kqxZ09g1AQAAAAAAAIBUL0o6mrhe3cLrJBkebsY2AAAAAABmRek1AMA8TFeoOWGiWPPLP/1y3Xnu3HpnLvrGRQcUak5QrNlacm4Ps835K3d8pe48d269M+/+xrvlvETJuT3MNuer7riq7jx3br0z7/rau+QMAAAAAMzNUUclZ521/22NLr0uTnr519q1SVdXY9cEAAAAAAAAgHa35w2qZyyiXiQzrlOtNmMbAAAAAACzpvQaAGCOZirUnFCpVvK+b74vd269c8rxO7femW/94lvTFmpOUKzZGnJuD3PJ+f3ffL+clyk5t4e55PyBb31AzgAAAABAY7z+9Xs/L5eToaFHTnRtiEpl/xNXDzmkcWsBAAAAAAAAAAe8DqDRxdcKrwEAAACA5UjpNQDAHMy2UHNCtVrNt37xrQOKNScKNauZ3R+SFWs2l5zbw1xzrlQrcl6G5Nwe5AwAAAAALBkvfnFyzDG1E0q3bq2VUjey9LparZVrV6tJV1fS29u4tQAAAAAAAACg3U3zGoBGFV8rvAYAAAAAliul1wAAszTXQs0J1exfiDzXQs0JijWbQ87tQc7tQc7tQc4AAAAAwJLS2Zm8//3J9u21MuoJxQa+TKtarZVrH310Y9cBAAAAAAAAgHY2w5teL3bxtcJrAAAAAGA5c5YTAMAslCvlnHf5eXMu1JwwUaz5tTu/Nq9CzQkD9w3kvMvPS7lSnvlg5kzO7UHO7UHO7UHOAAAAAMCS1YoTS53MCgAAAAAAAACNMUPhdZKMLfKSdefzGgEAAAAAYIlTeg0AMAulYinnn3l+ioX5//pUTTW/3P7LeRdqJkmxUMz5Z56fUrE07zmYnpzbg5zbg5zbg5wBAAAAgCVnbCx517uSgw5KSvs8Z1ipNG7NQiEpFpN77mnsOgAAAAAAAADQjlpQeF13XoXXAAAAAMAyoPQaAGCW+k7py6ZzNy2oWHMhioViNp27KX2n9LVk/XYh5/Yg5/Yg5/YgZwAAAABgSfnSl5Jf/KJWQr1hQ+1jo082LZVqJ9iOjiZDQ41dCwAAAAAAAADaSQsLr6ecX+E1AAAAALBMKL0GAJiDVhVrKtRsLjm3Bzm3Bzm3BzkDAAAAAEvGxz629/NSKTnooKlPOC0Wa5eFmii8nvDQQwufEwAAAAAAAABYEoXXE4YShdcAAAAAwLKi9BoAYI6aXaypULM15Nwe5Nwe5Nwe5AwAAAAAtNw99yTf/vb+t42MHHgS7GKUXU+YfELrjh3J6OjizQ8AAAAAAAAA7WgJFV6PJFl3UVJ478x7AgAAAABYKpReAwDMQ7OKNRVqtpac24Oc24Oc24OcAQAAAICWuuaa/a9Xq3tLr4vF2sdSaXHXrFQOLL7euXNx1wAAAAAAAACAdrKECq9Hkxx00d7riq8BAAAAgOVC6TUAwDw1ulhToebSIOf2IOf2IOf2IGcAAAAAoGVuvHH/66Oj+xdSF4vJwQcnq1bVrlcqc5u/WKxdJptcer1799zmBQAAAAAAAABqllDh9XiStRcdeLviawAAAABgOeho9QYAAJazicLL/iv7U6nO8aT0OhRqLi1ybg9ybg9ybg9yBgAAAABa4uab978+Pr7/9WIx2bYtKZdr1wuFAwur65muJLta3X+enTuT4eHZz0vjdY0kxTpZj1SS4cV7PpsWkXN7mCnn4UoyUm7efmgMObeHrtEZfm5X5bwSdI8mBTkDALTEvs9Zlsu167MoDwQAgJbq6ZnxkGYVXpeTrL5o+vHCewupvmcOrzkAAAAAAGgypdcAAAu02MWaCjWXJjm3Bzm3Bzm3BzkDAAAAAE330EP7X58ovZ4opZ5c6jLX0uvpTC69HhlJduxY+Lwsno7RpFQn612lZLeX8i17cm4Pcm4Pcm4PM+W8syMZLjVvPzRG5wzl5nIGAGiMyW/gNzaW7NqVdHQk3d2t2RMAAMzk9NNrf2+vo5mF16sumvm4N3/2zfnoqz7a6O0AAAAAAMxLsdUbAABYCfpO6cvZx5+9KHOdffzZCjWXKDm3Bzm3Bzm3BzkDAAAAAE01NsXprZMLqZuh2esBAAAAAMzG+PiMJYIAANASF16Y3HzzjId1LtJy9eapJFk1y3kUXgMAAAAAS5nSawCARbDl1i356h1fXZS5vnrHV7Pl1i2LMheLS87tQc7tQc7tQc4AAAAAQFN1TjottVKpX0C9WOXUk+cpFBZnXgAAAACAxTY+XnvuFAAAlooLL0wuuWTWhy+0+Lpz0sd9VZL0JMlFM89TfY83xAYAAAAAlraOVm8AAGC523LrlvRf2Z9KdXFeeFmpVtJ/ZX+SpO+UvkWZk4WTc3uQc3uQc3uQMwAAAADQdIccsvfzSiUZG9t/vFqtFVJXq4tXeD157iQplRRfLzeFyGwFmNV3tZxXvGoi5xWgOmOEBTmvBDNF6L/PK8Lp27rqjhcSOQMANMLE86DTGR5u3l4AAGAmcyi8ntCZZGzGo6a+33TzVJP8VaLwGgAAAABYMZReAwAswGIXak5QrLm0yLk9yLk9yLk9yBkAAAAAaInTTkv+z/+pfb59e634erKpblsM+5Zed3Yufqk2jVWNzFaAWdVlynnFKyRyXgEKM0bYgDewoPlmitB/n1eE4qyOkjMAwKKb6XfpUqk5+wAAgJks4E3x5lp8Pbnwet/bR5N8LslFF808j8JrAAAAAGC5mN3rOAEAOECjCjUnTBRrbrl1S0PmZ3bk3B7k3B7k3B7kDAAAAAC0zBOeUPs4MpIMDy/o5Ng5q+5TvtnV1bx1AQAAAADmolCovXEfAAC02iL8TX+2v9nOdFxXkv900czzKLwGAAAAAJYTpdcAAPPQ6ELNCYo1W0vO7UHO7UHO7UHOAAAAAEBLPe1pteLp7dv33tbM4utKpba+0msAAAAAYKnq6kqKTmsFAKDFFvFv+TMVWs+qGLtanbHQWuE1AAAAALDcdLR6AwAAy02zCjUnTBRrJknfKX1NWRM5tws5twc5twc5AwAAAAAtd9RRyfHHJ7/61d7bCoVaEXWSciEp7XsO6j5jc3HAPPvq7KxdWFpmOmG6UGhuQTqNIef2MGOGcl4R5Nwe/NwGAIDmKRSSUqn23GWp1OrdAADQ7hrw3G9nkrFpbp/RPq8bqL6nmsJ7D9yfwmsAAAAAYDlSeg0AMAfNLtScoFizueTcHuTcHuTcHuQMAAAAACwZ05wcO9SdnPfK5Pzrk77b9jl2jqXXWx6fXPrE5LLLk96RKQ7o7EwOOWRue6bx1u5OSnWew+7pTFZ3NW8/NIac28NBu5NivZy7khFvPrDsybk9HLQrKdb5Xay7KxmVMwAAzMt99+1/vbs76elpzV4AAGBfDXyzw8nF13MtvH7kpknF1wqvAQAAAIDlqtjqDQAALBetKtScMFGsueXWLS1Zv13IuT3IuT3IuT3IGQAAAABYMu65J7njjqRU2ntbtZqh7mTjq5MfHJX0v6RWXJ0kqcztec0tj6/d/wdH1eYb6p50QKGQjIwko6MLehgAAAAAAAAAsOI0sPB6Quekj3XVeZPs6nuqedPpb1J4DQAAAAAsa0qvAQBmoVwp59IbLl1QoWYhhTz6oEenkPn/YbxSreTSGy5NuVKe9xxMT87tQc7tQc7tQc4AAAAAwJJyzTW1jwcd9MhNQ13VbHx1MnBE7XqlMKn4epYmCq8re57KHDhiiuLr4p6Xgu3cOb/9AwAAAAAAAMBK1ITC6wkLLbye8NFXfXTBewEAAAAAaCWl1wAAs1AqlnLZKy/LGUecMa/7F1LIs495dl5w3Avy7GOePe9izTOOOCOXvfKylIqled2f+uTcHuTcHuTcHuQMAAAAACwpN95Y+9jdnaxalaHOyn6F1xPmWnw9ufB6wn7F18Xi3tLr3bsX9DAAAAAAAAAAYMVoYuH1rMyi8BoAAAAAYCVQeg0AMEu93b3Z/OrNcy7WnCjUPG7DcUmS4zYcN69izTOOOCObX705vd29c7ofcyPn9iDn9iDn9iBnAAAAAGDJuPnmRz4dOnhNNv72gYXXE2ZbfD1d4fWER4qve/Y5QOk1AAAAAAAAACi8BgAAAABoIaXXAABzMNdizUJh/0LNCXMt1lSo2Vxybg9zzblYKMp5GZJze5AzAAAAALAkPPRQkmSos5KNLxrMwKPqH14pJG+rU3y95fG18ekKrycMHJFsfFUlQ117To4dH5/jxgEAAAAAAABghVF4DQAAAADQUkqvAQDmaLbFmsVCMe9+7rsPKNScMFGsWSzU/5VMoWZryLk9zCXndz33XXJepuTcHuaS8589+8/kDAAAAAAsvrGxWuH1C7dl4JCxA06gner01emKr+sVXk81z8Dh1Wx8ZblWfO1EWQAAAAAAAADamcJrAAAAAICWU3oNADAPMxVrFgvFbDp3U8553Dl15zluw3G56HkXTVusqVCzteTcHmab84uOf1HdeY7bcFze97z3yXmJknN7mG3OLzz+hXXnOW7DcXn/C94vZwAAAABgToZ6CnsLryepJNm6KhnuOPB+k4uv6xVeD3fU5qlMsf4jxdfdC3oYAAAAAAAAALB8KbwGAAAAAFgSlF4DAMzTdMWaE4Wafaf0zWqeF5/w4mw6d9MBxZoKNZcGObeHxcr53BPOlfMSJuf2sFg5v+TEl8gZAAAAAJi1cqWc837t9mkLr7etSsaKyWB3/eLrN/xW/cLrwe7aPNvqFF+f99KRlOOkWQAAAAAAAADajMJrAAAAAIAlQ+k1AMACTC7WnGuh5oS+U/r2K9ZUqLm0yLk9yLk9yLk9yBkAAAAAaLZSsZTzD3peipPOV9238HpCveLrrzyufuH1hOmKr4vV5PyfrE0pS+xEXgAAAAAAAABopJ6eVu9gfwqvAQAAAIA2N8XpUwAAzMVEseZ5l5+X8888f86FmhMm7nfpDZfmsldeplBziZFze5Bze5Bze5AzAAAAANBsfWdsTP76S+k/azCVQq28elvP/oXXEwa7kxQK6Rmb+STXyYXXEyaKr9fvToqpFV5v+nIpfbsPTjYs+OEAAAAAAAAAwPJw+unJyEird7GXwmsAAAAAAKXXAACLobe7N1dsvCKlYmlB8/Sd0peXn/zyBc9DY8i5Pci5Pci5PcgZAAAAAGiqpz0tfXf1JEkuOGtbtvVUpyy8njDYVU2qSc/49MdMV3g9YaL4+uBdewqvf1RMTlkzzwcAAAAAAAAAAMvMhRcmN9/c6l3sdcEFrd4BAAAAAMCSoPQaAGCRLFYRpkLNpU3O7UHO7UHO7UHOAAAAAEDTHHVUctZZOfua/5Mjdpdy/+r926yrSQqT7jJRaD1V8fV0hdeT5xkrJkfsTM7+aTXp6UlGRmoXlo7CSFKqTj8+3JHsltmyN1POuzuSYTkve8WRpFgv59Ha9zTLm5zbg5wBAKBxqpN+1x4fr106/I4NAMAiu/DC5JJLWr2LvS64ILn44lbvAgAAAABgSfAqAQAAAAAAAAAAgEUw9Lrfzsbef899qytZN1rIYFet3KWapFqofTJV8XU1+xdfD3ckQ9MUXk+eZ91Ict/aZOOrKtl8dXd6FV4vPWOjSaVOqeZIuXZheZsp51E5rwijo/XLzeW8Msi5PcyU80hFzgAAMF+TS6/L5dob9Y2N1d64DwAAFstSKrw+7TSF1wAAAAAA+yi2egMAAAAAAAAAAADL3dDIUDYOXZqBwytJkp5yIetGC3uLqvd8nKpacai7VnSdzKLwep951o3sLcseeFSy8dwdGeqsLOKjAgAAAABYJJVKrfwaAAAWQ2HyW0630GmnJTfd1OpdAAAAAAAsKR2t3gAsNSMjI7n99tvzy1/+Mtu3b8+uXbuyevXqHHTQQXn0ox+dk08+OV1dXa3eJgAAAAAAAAAAS0S5Us55l5+XgV/dmBx0ULJtW5Kkq5yUqsn4PufaVgtJqsnk02+HupORjmSkdOD8+xZeTyhVk67xfW4oFjNw8FjOe+4DueJrh6c0+Q4AAAAAAK1WLifj4zMfBwAA9SylwuvuboXXAAAAAABTUHoNSb773e/miiuuyJVXXpmbb7455XJ52mNLpVJOO+20vOQlL8krXvGKPOMZz2jiTgEAAAAAAAAAWGpKxVLOP/P8XH/v9al0dyerVqWye1e2dVdTKdQKrqv7HD9d8fVsC68LSSqFZNuqZP3upFgoJIVCitXk/B+vVXgNAAAAACwd1er+10dHW7MPAABWhqVUeJ0kw8Ot3gEAAAAAwJJUbPUGoJU++clP5slPfnKe+cxn5oMf/GBuvPHGuoXXSVIul3PjjTfmr/7qr/LMZz4zT3nKU7J58+Ym7Xhp2bVrV77zne/kIx/5SH73d383p556akqlUgqFwrSXiy66qNXbXhQf//jH6z7OfS9f//rXW71dAAAAAAAAAKDB+k7py6ZzN6VYKKaydk229SRje16dVageeHy1sH8R9lSmKrzed76xYq34ulKsFV5v+t7B6fv5moU8DAAAAACAxuroaPUOAABYrpZa4fXkN3gBAAAAAOARXh1AW7rtttvy5je/Od/85jcXPNcPfvCDvOY1r8k//MM/5B/+4R9y8sknL8IOl56RkZEMDAzk+9///iOXW265ZcaS8JXooYceytvf/vZWbwMAAAAAAAAAWGL6TunLrrFd+b1/+72MlQq1E1yrUxdXJ3turyZTDU9XeD1xv/2Kr7sq+V/fPkThNQAAAACwtJVKSVdXq3cBAMBypPAaAAAAAGBZUXpN27n88svz+te/Pjt27FjUeb/+9a/nKU95Sv75n/85fX19izp3s42NjeWHP/zhfgXXN910U8bGxlq9tSXhD//wD/PAAw+0ehsAAAAAAAAAwBIzNDKUf/3hv2Z15+oMVgaTFFNNJfVOdZ2q+Lpe4fXEePYpvl5dLuZfH7crL/vlmvSOFRf4KAAAAAAAGqBYVHgNAMD8KLwGAAAAAFh2lF7TVi655JL09/en2qA/IuzYsSOvetWrcvHFF+etb31rQ9Zohs9//vPLvri7Ub785S/nX/7lX1q9DQAAAAAAAABgiRkaGcrGz2zMwH0D6enoSZJsG95Wt/B6wr7F1zMVXj9ynyQpJOtHi+kpFzJw8Gg2Pv/BbP7WkekdL837cdAAndWkWOcroasjKXsp37I3U86dcl4R5Nwe5NweZvPf54qcAQBgXiYXEpZKSXd30uF3bAAA5kHhNQAAAADAsuRVArSNj33sYw0tvJ5QrVZz4YUXZu3atfnd3/3dhq5Fc+3atStvectbWr0NAAAAAAAAAGCJKVfKOe/y8zJw38DeGyuVOZ3sWi1kVgXZBygUkmIxSTJw8FjOe96DueLaE1LKEjvxt52t2Z2UKtOPd3QmnV3N2w+NMZucu+S87K3dnRTr5dyVdHU2bz80hpzbw9pd9UuvS3IGAIB5m1xK2Nmp8BoAgPlReA0AAAAAsGwVW70BaIZrrrkmb3zjG2dVeP2sZz0rF198ca677ro8/PDDGRsby8MPP5zvf//7+chHPpKnP/3pM85RrVbzxje+Mddee+1ibJ8l4l3velfuvPPOVm8DAAAAAAAAAFhiSsVSzj/z/BQLtZdjDY/tzuDIYArVNKx6upCkUE0GO8oZ3lPMWawm5//iUIXXAAAAAAAAACxvCq8BAAAAAJY1pdeseENDQ3nNa16TsbGxusedeOKJueqqq/Ltb387F1xwQZ74xCdmw4YN6ejoyIYNG/LkJz85/f39+e53v5svfelLedzjHld3vtHR0WzcuDFDQ0OL+XBokWuvvTYf+chHWr0NAAAAAAAAAGCJ6julL5vO3ZSR8kgGhweTPee7NqL4eqLwesJgRzkjxUo23Xxs+u7bsMirAQAAAAAAAEATKbwGAAAAAFj2lF6z4r373e/OnXfeWfeYF77whbn22mtz9tlnz2rOc845J9///vfz/Oc/v+5xd955Zy666KLZbnVZW716dZ75zGfOWAa+HI2Pj+f3f//3Uy6XDxhbv359NmxwsigAAAAAAAAAsMfY2AEnvBYW+fzXKedzki0AAAAAAAAAy53CawAAAACAFUHpNSvaLbfckksuuaTuMc985jPzuc99LuvWrZvT3OvXr8+///u/52lPe1rd4zZt2pRbb711TnMvdT09PXn605+eCy64IJdeemluvPHGDA0N5Tvf+U6e/exnt3p7i+6v//qvc+ONN0459ld/9Vfp7e1t8o4AAAAAAAAAgKVmy61b0n9lf7p3DGfd6P4n4VYX+ZzcyfOtG0m6x6rpP+3n2XLE1sVdDAAAAAAAAACaQeE1AAAAAMCK0dHqDUAjvfe97834+Pi04wcffHA2b96c1atXz2v+NWvW5FOf+lTOPPPMbNu2bcpjxsfH8773vS+f+MQn5rVGq3V3d+fXfu3X8pSnPCVPecpT8uQnPzmnn356Ojra48fH7bffnv/23/7blGPPetaz8qY3vSkf+MAHmrwrAAAAAAAAAGApKVfKufSGS1MZ3p2Uy+lJIRlNBruqqRaSxT4NtpokhaRQrRVe94zXbq1UK7n0mAfz8vvWp5QldjIwAAAAAAAAAExH4TUAAAAAwIpSbPUGoFHuuOOOfPazn617zPvf//4cc8wxC1rnMY95TN773vfWPebTn/507rrrrgWt00wnnXRSPvrRj+b73/9+tm/fnmuvvTZ///d/n9/7vd/LmWee2TaF19VqNW9605syPDx8wFhnZ2c++tGPprDU/ngGAAAAAAAAADRdqVjKZa+8LGc83PnIbT3lQlaNz77wupCkWM2sq6qrSVaNTRRe15zxq0Iuu/54hdcAAAAAAAAALB89Pa3ewf4UXgMAAAAALJjSa1asSy65JOVyedrxE088MW9605sWZa23vvWtOf7446cdL5fLueSSSxZlrWY49dRT86Y3vSlPfvKT09nZOfMdVqh/+qd/yje+8Y0px/7oj/4op59+epN3BAAAAAAAAAAsVb0P7cjmTydnPFR7rcVwqZrdHUlhFufCFrL3uMIsi68L1WR3ZzK8573Lz/hVIZs/nfTumv71MgAAAAAAAACwpJx+ejIy0upd7KXwGgAAAABgUSi9ZkUql8v5xCc+UfeYP/zDP0ypVFqU9To6OvK2t72t7jEf//jHU6lUFmU9Gu/ee+/Nn/zJn0w5dtxxx+Xd7353k3cEAAAAAAAAACxp11yT3rFiNl+1PkfsKmawq3Yi7L6F1lOZanym4ut9xwe7kyN2JpsvL6V3tJDs3LmABwEAAAAAAAAATXLhhcnNN7d6F3spvAYAAAAAWDRKr1mRvva1r+Xee++ddrynpyeve93rFnXN17/+9enq6pp2/J577snXv/71RV2Txrnwwguzbdu2Kcf+7u/+LqtWrWruhgAAAAAAAACApe3GG5MkXz16NPevrqRzn/dGn67Aul4hdr3i631v76wk969Jvnrcnol2757DpgEAAAAAAACgBS68MLnkklbvYq8LLmj1DgAAAAAAVhSl16xI//7v/153/KUvfWkOOuigRV1z/fr1Offcc+seM9O+WBquuOKKXH755VOObdy4Mb/xG7/R5B0BAAAAAAAAAEvezTdny2OH03/WYKpJNowUHim+nqrXul7h9SPHTFN8PXG3zkqyYXftev855Ww5uaL0GgAAAAAAAIClbykVXp92WnLxxa3eBQAAAADAiqL0mhXpqquuqjv+0pe+tCHrzjTvV77ylYasy+IZHBzMBdO8C+v69evzP/7H/2juhgAAAAAAAACAZWFLbk3/WYOp7GmpLlRrhdTFalKd1Fw9m8LrR46dovi6WqjNu2H33rFKYU/x9WOVXgMAAAAAAACwhBWmevvnFjnttOSmm1q9CwAAAACAFUfpNSvOvffem1tvvbXuMS984QsbsvaLXvSiuuM333xz7rvvvoaszeL4kz/5k9xzzz1Tjn3gAx/IEUcc0eQdAQAAAAAAAABLXblSzqWH3/1I4fWEkY4ccFu9wuvu8tS3T1V8XSnU5p9826Wnj6WcWTZqAwAAAAAAAEAzLaXC6+5uhdcAAAAAAA2i9JoV55prrqk7fswxx+SYY45pyNqPfexjc+SRR9Y95tprr23I2izcN7/5zfzP//k/pxx75jOfmTe/+c1N3hEAAAAAAAAAsByUiqVcdvuv5YyHOh+5bbhUzWB37fPing7qeoXX60aS9cO1j1PZt/h6Yr7B7mR4n+LrM35VyGVfWJXSARXZAAAAAAAAANBiS6nwOkmGh1u9AwAAAACAFatj5kNgebnuuuvqjj/pSU9q6PpPecpT8u///u/Tjl9//fV52cte1tA9MHcjIyN505velGr1wDNLOzo68tGPfjSFpfZHNAAAAAAAAABgyehd/6hsvmp9Nr5wW753+GgGu/Yf37e0erJ1I0nPeO3ziY8ThdmT55hs4rin313I5suL6e3qSMbH5/UYWLhyqgeWjpfHkylek7J3vHhAZlPOw5Ixr5zH5bzcTJnP+Pjedx6Yyvh4Mr7/feS8tMm5PUz9c7ucVOr991nOAAAwb5OfIymXa7c5NwsAoL0ttd8H6/1tDwAAAACABVN6zYpzww031B1/whOe0ND1n/CEJ8xYes3S8773vS8/+tGPphz7L//lv+TXfu3XmrwjAAAAAAAAAGBZOe209P6f/5PX/bgnVx81st9QNUm1UPs4uUNz38LrCdMVX1cmzgGeVKC9qzN53Q8L6R0tJKs7kpH916c5hjrKOe8Z9+T8O9el7+7evQPdY0mpMv0dRyq1yx5bjh7KpccN5rLvHpXe8VIDd8x8zDvnUTkvJ9Pm3DNavwx5tCrnZUTO7WHanEdnyHlEzgAAMG+TywPHxpJdu5KOjqR7inf7AwBg5VN4DQAAAADQdpRes+LcfvvtdcdPPPHEhq5/wgkn1B3/8Y9/3ND1mbsbb7wxH/rQh6Yce+xjH5v3vOc9Td4RAAAAAAAAALDsPOEJ2fLY4bzz6duzYTjZ2pOMFfcWXk+oFPb2K05VeD1hcvF1ZZ85qoU8UnzdWUk27E7eeXYlq8eTvsGeRX5gzMZQRzkbn3V3BtaP5PoNw0myf7HmLG05eij9T7o/lUKy8Vl3Z/N3jlasuYTIuT3IuT3IuT3IGQAAlpjxaZ4MBQBgZVN4DQAAAADQloqt3gAspmq1mrvuuqvuMTOVUi/UTPPPtD+aq1Kp5I1vfGPGxsamHP+7v/u7rF69usm7AgAAAAAAAACWmy2HPZT+swZTSTWFaq2IulTZv/B6QiX1C68n9IzXjqtMMVYt1ObfsLtWfl0pJP0vrmTLiYpjmm3fQs1kTxZPuj9bjh6a0zz7FmomycD6kWx81t0Z6igv9paZBzm3Bzm3Bzm3BzkDAMASNT6u/BoAoJ0ovAYAAAAAaFsdrd4ALKb7778/w8PDdY856qijGrqHmebfuXNnfvWrX+Xwww9v6D6YnY985CO55pprphz7T//pP+Xcc89t8o4AAAAAAAAAgOWmXCnn0p9fkUp3V7LntSuVJOPFae5QSEaLSc8+NxWrydl3JF89Po+UKia14zLNecDjxdo6pT3XK8VCLj1he15+b29KU7Vts+iGOsrZ+Mx7M7BuONnn/OhKasWaqVZz0lBXUqhz8nS1mi1HDab/Sb9KJdX95hlYN5yNz7w7m799ZHrHS9PPQUMtSs4VOS91s8n5xO1d2W9wskpFzkucnNvDbHI+Yaacq3IGAICGGR1t9Q4AAGgGhdcAAAAAAG1N6TUryj333DPjMUcccURD9zCb+e+55x6l10vAz372s7zrXe+acmzdunX5H//jfzR3QwAAAAAAAADAslQqlnLZKy/LxutOzkDuSznJA2uSer3TO7tqH3tHa4XXH/lC0ndbsuXxydteUiu+Hurae9xUqoXaOoftrBVfn/GrQi77zsEpjY0s5sNjGkOdlWx8zgMZWD825Xgl1fQ/6f6844e9efavuqed58pDtuc9TxpMZZrxgfXD2fjMX2bz1w9L79h0Teo0yqLlfOj2vFvOS9Zi5fyFQ3fk3U/aJuclSs7tYbY5//FNvXnO/fVz/q9yBgCA+SmX979eqdS/DgDAyqPwGgAAAACg7Sm9ZkV56KGH6o739vamu3v6F6gvhtWrV2ft2rXZsWPHtMfMtE+a4y1veUt27tw55dhf/uVf5sgjj2zyjgAAAAAAAACA5aq3uzebP1PIK56bfOOx9QuvJ+zsSgpJPralVnid7P34+r76hdcTJoqvn3dXsvlT1fRuGJ/nI2Auhjor2fjcbRnYMJbUOT+6kuQDTxjMHw+syfPvOfB1S1cfNZK/ecLOFJK68wxsGM3G5/4qm69ar1iziRYz5799wp7XKcl5yZlLzn/5hMG8Q87Lkpzbw5x+bv/aYMYrcgYAgKYYG0uGh5POzqRUavVuAABoNIXXAAAAAAAk8epaVpSHH3647nhvb29T9jHTOjPtk8b713/913zxi1+ccuwZz3hG3vKWtzR5RwAAAAAAAADAsnbddRl6+N788IjZFV5P2NmZfO/o/W/73tG122erWkh+eEQy1FlNRkdnf0fmZaizko0v3JaBQ8ZmdXylkHzojJ25+qiR/W6/+qiRfOiMnbP+ehk4ZCwbX7gtQ52VuW6ZeVjsnCtyXpLmmnNVzsuSnNuDnAEAYImr7nnuctyb9gEArGgKrwEAAAAA2KOj1RuAxbR169a64wcddFBT9jHTOkqvW+vBBx/MH/7hH0451tHRkY9+9KMpFtvzPQEuueSS/N3f/V3D1/npT3/a8DUAAAAAAAAAoJl++en/lSe+OdnakxSrmVVRYmHP5cNn1a7/1VeTPz27dn3i7rM5BbdYra37xLck1//zrjy60D2/B8GMhjor2Xj27As1J1QKyYfO3JkUkuff0723UDNJaQ7nWU8Ua27+6ob0jrXn61uaQc7tQc7tQc7tQc4AALCMjI8n5XKrdwEAQCMovAYAAAAAYB9Kr1lRhoeH646vWbOmKftYu3Zt3fGZ9kljvf3tb8+DDz445dgf/uEf5glPeEKTd7R0PPDAA7nllltavQ0AAAAAAAAAWFZGx0fz5OL/zMNde28rVJPqDOf0FvY5x/bDZyWfOS25a/3853h4VfLk392dX3z2sHRVFC4utnKhmvNe8KsMHDKevbXks1FNCkklyYfO2JmvHz2eaw8dmVSMPvv5Bg4dz3kvHMwVXzs8pZm+QJgzObcHObcHObcHOQMAwDJTrSZjc3vDGgAAlgGF1wAAAAAATKL0mhVldHS07nhHR3O+5GdaZ6Z90jhf/OIXc9lll0059pjHPCYXXXRRczcEAAAAAAAAACx7XR1decOt3fnwr9XKWqqZuax64rh9D9u38HpifMY5CpnobEySvOH6pGt4fBb3ZK5KSc6/tSfXP2tyIeZe1VRTmFyQuSejpFas+b1DRyYO3vtx0knXU86zR7Fa20dpRDlQI8i5Pcwm5ynNI+d65NxYcm4PcgYAgCVo8u/Sk6+Xy83bCwAAjdfT0+od7E/hNQAAAADAkqD0mhVF6TX17Ny5M295y1umHb/kkkuyevXqJu4IAAAAAAAAAFgpPvj1zmR78qFnza7wOjmwsHq/scx9nnd8O/ng1wrJEU7ibZS+O3uSatJ/1uABxZqVVLOtu5rV40lPeS6tm/sbLlWzq6Oa9SNJcdJXR7GabPr2uvTd1ZPZ1aIzH3JuD/VybgY5N4ec24OcAQAAAABa5PTTk5GRVu9iL4XXAAAAAABLRrHVG4DFVKlU6o6XSqWm7GOmdcrejb4l/uIv/iI/+9nPphx79atfnZe+9KVN3hEAAAAAAAAAsGJUKvmLbxXy2G1zu1u1cGA14lwKryc8dlvyF9+a232Yn767erLp2+tS3Ce4iSLksWIy2FXNcGl+J1MPl6oZ7KrNs627mso+Xx37F2rSaHJuD1Pl3Axybi45twc5AwAAAAA02emnJzff3Opd7KXwGgAAAABgSVF6zYrS0dFRd3x8fLwp+5hpnc7Ozqbsg72uueaabNq0acqx3t7efOQjH2nyjgAAAAAAAACAlWSop5CNr65muDNZMzq3++5bfD2fwus1o8lwZ7Lx1clQlxN5m2HfYs19i5AnzKcQeaIIecK+hcgKNVtDzu2h2UW5cm4NObcHOQMAAAAANMmFFy6twusLLmj1DgAAAAAAmKR+QzAsM11dXXXHm1V6PTY2Vnd8pn2yuMbGxvL7v//7qVQqU47/5V/+ZY488sgm72ppOuyww3Lqqac2fJ2f/vSnGRkZafg6AAAAAAAAANAM5Uo55710OAMbatd7R5MUkp1zeF/0fYuv52LN2J71kgwckZz3quSKb3ekNNfmbOas7+7O7Pp+Ib/37If3K0KeMNhVTcYK6agkqRdHNRnuSAY7D/wKmChE/l/f2pC+u9cmc/iaYnHIuT303d2ZfK+U/mdsTaXuj8/qjDmnMP0BxWqy6Xsb0nf3ajm3gJzbg5wBAAAAAJrgkktavYO9LrggufjiVu8CAAAAAIBJlF6zonR21n/V+OjoaFP2ofR6afngBz+YH/7wh1OOPe1pT8t//s//uck7WrouuOCCXNCEd7I97bTTcssttzR8HQAAAAAAAABohlKxlPOHTsj1629KZU959Xix1qM4nyLr2SrsWae65/NiNTn/ps6UCqX6JY4siqHOSv71hN1ZXS5msDj1m7EPdlaydqyQrjol5MOlarZPUYQ8YXW5mH89YXdedvfa9E7VukxDybl99P1ibVIopP/pD89QlFtHnR/8tYLcg9P3izWJiFtGzu1BzgAAAAAADVTnDQOb7rTTFF4DAAAAACxRSq9ZUdauXVt3fMeOHU3Zx/bt2+uOz7RPFs+PfvSjvP/9759yrKOjIx/96EdTLDrjAAAAAAAAAKgZGRnJ7bffnl/+8pfZvn17du3aldWrV+eggw7Kox/96Jx88sne6LiN3Hfffbn99tuzdevWDA0NJUl6e3uzYcOGnHTSSTniiCNavEOWkr4TfjP53M258NxqHl6djBWTwp426kYUXxdSm3+smGxdlRyyK9n0haTv3tXJhgYsyH6GOivZ+LwHMnDwaHrKhSTFDHZOXYi8o6uaNWNJ9xStmyPFanZ2Vqf9Ilk3VkxPuZCBg0ez8XkPZPM3DlOI3ERybj99P1+TJAsryp3CIwW5e+anteTcHuQMAAAAANAAS6nwurs7uemmVu8CAAAAAIBpKL1mRTn44IPrjk+cgNpoM60z0z5ZHNVqNW9605syMjIy5fgf/MEf5Mwzz2zupgAAAAAAAIAl57vf/W6uuOKKXHnllbn55ptTLpenPbZUKuW0007LS17ykrziFa/IM57xjCbutLWGhoZy00035eabb87Pf/7z/PznP88vfvGL3HPPPdmxY0d27dqVnTt3plwup7u7O2vWrMnhhx+eI488MieffHJOP/30nHXWWTn99NNTWEonQe5j27Zt+exnP5svfOELufrqq7N169a6xx988MH59V//9bz0pS/NK1/5yqxfv745G2Vp+u3fztn/44N51M7kvn3eD70RxdcThdcTxorJo3YkZ9+ZZFUhadIbw7eroc5KNj5/ewY2lB8Jtmc8SbWQwa4pkq6mVng8Wt2vELlWhJzpi5BHC+kp55EDBjaMZOOz783mLx6kELkJ5Ny++m5JMrw6/c/dOUVR7gw/zasHHlKsJpu+uSZ9d1ST+Pm8VMi5PSwo5yne40DOAAAAAEBbW2qv9RgebvUOAAAAAACoQ+k1K8ohhxxSd3zbtm1N2cfg4GDd8Zn2yeL4x3/8x3zzm9+ccuwxj3lM3vve9zZ5RwAAAAAAAMBS8slPfjIf+tCHct111836PuVyOTfeeGNuvPHG/NVf/VWe/OQn5x3veEc2btzYwJ02365du/K9730v3/72t/O9730vP/zhD/Ozn/1sTvfftWtXHnjggdx888256qqrHhk77LDD0tfXl9e97nV5znOe04jtz9kvf/nLfOADH8jHPvax7Ny5c9b3e/jhh3P55Zfn8ssvz9ve9ra84Q1vyJ/+6Z/m0Y9+dAN3y1I1dNoJ2XheV+5bO5J1I8lg996xQjWpLuL5v4VJHY3rRpL7Dko2/nay+avF9I4t3lrsb6izko2/sT0Dhx74Bgk95UKGy9WMlKa+786uPFKIPFKs1q5Po7tcm2+ygUPL2fgb2xUiN5ic6bujO1ccP5qvHLPwH6hn/7IzfXd0z3wgTSfn9iBnAAAAAIBFsNQKr6uL+bbTAAAAAAA0grMhWFEOPfTQuuMjIyMNL75++OGHMzo6WvcYpdeNd8899+Sd73zntOMXX3xx1qxZ08QdAQAAAAAAAEvFbbfdluc973l57WtfO6fC66n84Ac/yGte85o8//nPz49+9KNF2mHrfOc738nTnva0rFu3Li94wQvyX//rf81//Md/zKnweiYPPPBA/vEf/zHPfe5z8+QnPzn/8R//sWhzz1WlUsnf/M3f5JRTTsnf/d3fzanwerKdO3fmkksuySmnnJK//du/TaVSWcSdstSVK+Wcd/l5GXh0Z5KkZ7xWRD1hMQuvJ8+3bqS2XpIMPCo575ztKU9uxWZRlAvVnHfO1EXISTJcmr4IecLOrmR7Z/0i5CQZKdXmm8rAoWU5N5CcSZItx4/kq49enHcQ+Oqjx7Ll+JGZD6Tp5Nwe5AwAAAAAsEAKrwEAAAAAmAel16woxx577IzH3H///Q3dw2zmn80+WZgLL7wwg4ODU4696lWvym/+5m82eUcAAAAAAADAUnD55ZfnqU99ar75zW8u6rxf//rX85SnPCVbtmxZ1Hmb7Y477si1116b8fHxpqx33XXX5WUve1le/OIX55e//GVT1pwwODiY3/zN38wf//EfZ8eOHYs2744dO/JHf/RHefnLXz7t361ZeUrFUs4/8/wUD+p95ITfieLraiFZ7FNuq6nNu2/hdZIUC4Wcf2tPSovdsk2SpFSt/fsWpwh0uFTNYNfskh6boTB5wmBXdcpC5GI1cm4gObPl+JH0P3dnKov0T18pJP3P3akod4mRc3uQMwAAAADAAim8BgAAAABgnjpavQFYTGvXrs0hhxyShx56aNpjfvazn+Xkk09u2B7uuuuuuuOHH3541qxZ07D1Sb71rW9NeyJ5b29v/r//7/9r8o4AAAAAAACApeCSSy5Jf39/qg06AW7Hjh151atelYsvvjhvfetbG7LGSvXlL385T3jCE/LpT386Z599dsPXe+CBB/Lrv/7rueWWWxq2xuc///mcddZZ+frXv55DDz20YeuwdPSd0pck6f/UG1LZPpQkGS0ufuH1hOqe+Xv2XC+mkE3fPTh9965OVjVoUdJ376rku13pf+a2VPakO9xRzWDn9EnP1FlcKGTaL5TBrmoylvSM1yap5bxezg0m5/a15TG70v/MXalMd8A8ix0qhaT/ebuSrq70/Wz1vPfH4pBze1hwztP83JYzAADMwtat9cc7O5uzDwAAFkbhNQAAAAAAC6D0mhXnuOOOq1t6/eMf/zjnnHNOw9b/yU9+Unf8uOOOa9ja1Dz44IPTjj3jGc/IlVdeuajr7dixo+745z//+Rm/Ln7/939/MbcEAAAAAAAATPKxj32soYXXE6rVai688MKsXbs2v/u7v9vQtVaarVu35txzz83HP/7xvPrVr27YOoODg3nxi1/c0MLrCTfffHPOOeecXH311Vm3bl3D16P1+k7pS06+If3Xvi/bupOdXY1db2L+9SPJpm+uSd/dXUnGG7so6ftpV1LuTf9Zg9k1QxHyYhjsrCbVZPV4IZu+3Zu+u+TcDHJuP1seO5z+ZwxOX5C7QJVU0/+MrUm5kr67ema+Aw0h5/YgZwAAaLHJ5YjlcjI6mnR0JMVismZNa/YFAMDsKbwGAAAAAGCBlF6z4px22mn5/ve/P+34j370o4auP9P8p512WkPXp74vf/nL+fKXv9zUNT/84Q/PeIzSawAAAAAAAGica665Jm984xtnVXj9rGc9K7/zO7+TZz3rWXnsYx+bgw46KNu3b88dd9yR73znO7nsssvyve99r+4c1Wo1b3zjG3PKKafkqU996mI9jCVl3bp1Oemkk3LyySfnUY96VA466KD09vZm9erV2b59e4aGhvLAAw9kYGAgN954Y3bu3DmrecfGxnLeeefl0EMPza//+q83ZO9veMMbcv3118943Pr16/Pa1742L3nJS3LmmWfm0EMPTbVazYMPPpgbbrghn//85/PJT34yg4ODdee5/vrr8//8P/9PLr/88sV6CCxlY2Pp++9fzD+f3JUrjh9typI7u5IX3ZH0DYwkh6xdeicfr1B9d/Xku4eP5sNnzO7n20INdlXzxltXK9ZsMjm3jy2PHU7/WYOpNPhHaKWQ9J9V+91Bzs0n5/YgZwAAWKKq1WRsLFm7NunubvVuAACoZ6n9zVnhNQAAAADAsqT0mhXnSU96Uj72sY9NOz6bE1cX4rrrrqs7/sQnPrGh6wMAAAAAAACw19DQUF7zmtdkbGys7nEnnnhi/v7v/z5nn332AWMbNmzIk5/85Dz5yU9Of39/vvzlL+etb31rfvrTn0473+joaDZu3Jgbbrghvb29C34crdTV1ZWnPOUpefazn53nPOc5eepTn5pHPepRs75/pVLJ1VdfnX/+53/Opz71qQwPD9c9fnR0NL/zO7+TG2+8MYceeuhCt7+fj3zkI7niiivqHlMoFPIHf/AHec973pP169cfMH7MMcfkmGOOycte9rJ84AMfyHve855s2rSp7pxbtmzJpk2b0t/fv4Ddsyx86Ut555E359+OG00hSTNOvS0k+beTk3c+bywf/MFI0qN0sRm2PHY4l524O+tGCxnsanzS60YLuezE3XnGr7oUazaRnNtDswpyJyjKbQ05twc5AwDAEtfdnXR0JJVKq3cCAMB0FF4DAAAAALBIlF6z4jzpSU+qO37DDTekXC6nVCot+trj4+MZGBioe4zSawAAAAAAAIDmefe7350777yz7jEvfOEL85nPfCbr1q2b1ZznnHNOvv/97+eVr3xlrr766mmPu/POO3PRRRflb//2b+e056XgyCOPzMte9rK84hWvyAte8IL0LKBEt1gs5uyzz87ZZ5+d97znPbnwwgtz5ZVX1r3Pvffem3e96135h3/4h3mvO9ndd9+dP//zP697TFdXVz75yU+mr69vVnNu2LAhH/nIR/Lc5z43v/M7v1O3XP3P//zP86pXvSpHHXXUnPbN8vLOK/8oHz5jZ5KkUE1SaGzxdWFinSQfflaSzu354O0HN3BFkmTLMTvS/9ShVAqF9FQKyVg1g52NK+pZN1ZMT6WQSjHpf/ZQ0t2Vvl+sbdh61Mi5Peyb86wUZvqpPrt5KgU5N5Oc24OcAQBgCZn8e3lPT7Ju3d7bR0ebvycAAGam8BoAAAAAgEWk9JoV5ylPeUp6enoyPDw85fiOHTvygx/8IE972tMWfe1rrrkmu3btmna8p6cnT37ykxd9XQAAAAAAAAAOdMstt+SSSy6pe8wzn/nMfO5zn8vq1avnNPf69evz7//+73nBC16Qa665ZtrjNm3alDe+8Y055ZRT5jR/qzz1qU/N//2//zdPf/rTU2jAyYzHH398vvCFL+Sd73xn/vqv/7rusf/0T/+UP//zP8+xxx67KGu/4x3vyM6dO6cdLxQK+cQnPjHrwut9vfrVr061Ws1/+k//adpjduzYkXe84x257LLL5jw/y8M7t1yQDx96+/437im+bphJ5/h++KnjSc/9+eANhzVw0fa25did6X/qQ6nsk2tPuZCk2JBC5HVjxT3z11QKSf9TH0yq1fT9fM2ir0eNnNvDVDkv3Ox/8Mu5OeTcHhqT8+zJGQAAZlAs7l+gOD7eur0AADA1hdcAAAAAACyyYqs3AIutp6cnZ511Vt1jvvKVrzRk7auuuqru+HOe85z09PQ0ZG0AAAAAAAAA9vfe974343WKEw4++OBs3rx5zoXXE9asWZNPfepTWb9+/bTHjI+P533ve9+85m+Fk08+Oc94xjMaUni9rw9+8IN5y1veUveYcrmc//W//teirHfLLbfkk5/8ZN1j/uiP/iivfOUr573Gb//2b+ftb3973WM+8YlP5Lbbbpv3Gixdo+Oj+f/dsn+heTVJtcHnBVcLB/Re5/934s6MFsq1k4BdFvVSTiWXnrB9ykLNnnIh68Zm93K82XYmTy5CnlApJJeesD3lVFr+b7ISL3Juj0u9nOuq7v20WE2e/kB3itXpD5+JnOXsspRznlvocnZxcXFxcXFxcXHZ5wIAwPKi8BoAAAAAgAZQes2K9KIXvaju+OWXX96QdT/zmc/UHT/nnHMasi4AAAAAAAAA+7vjjjvy2c9+tu4x73//+3PMMccsaJ3HPOYxee9731v3mE9/+tO56667FrTOSvTXf/3XOeqoo+oe82//9m+LstaHPvShVOucFPmYxzwm/+2//bcFr/P//r//bx796EdPO16tVvOhD31oweuw9HR1dOUH47+Xg0dqJwNXkzkXXhdSK1ycc1/jPsXXB+9OfnDZQemqeFlYI5SqhVz2zcNyxsNdU473lAvpnqFxc/V4IavHi1k9Xv+47kphyiLkJDnj4a5c9s3DUmp0q3qbknN7mCnnmRSryTtuWpf33rA+77hp3bwLkeXcWHJuD3IGAAAAAFiAnp5W72B/Cq8BAAAAAFYMZzexIr361a+uO37dddflRz/60aKuedNNN+WHP/zhtOOFQmHGfbE4fuu3fivVarVpl8c85jF193P11VfPOAcAAAAAAACwuC655JKUy+Vpx0888cS86U1vWpS13vrWt+b444+fdrxcLueSSy5ZlLVWkoMOOihvf/vb6x4zMDCQwcHBBa3z0EMP5eMf/3jdY973vvelZxFO5Fy9evWMJej/+q//mocffnjBa7H0PPqWX+b6zxyaNWPzK7wu7Hn5QGGexddrRpPr/7GQR28dn+O9mYvesWI2f2PqYs3hUjUjdZoyV48X0rmnLLmzUqhbiDxSrGa4dOBcZzzclc3fOCy9Y17610hybg/1cq5noiD3+ffVfnd4/n098yrKlXNzyLk9yBkAAAAAYB5OPz0ZGWn1LvZyzj0AAAAAwIrS0eoNQCM87nGPyzOe8Yx897vfnfaYTZs25eKLL160NT/ykY/UHX/Ws56Vxz72sYu2HgAAAAAAAABTK5fL+cQnPlH3mD/8wz9MqVRalPU6Ojrytre9rW6B88c//vF88IMfTLGoBG1fv/Vbv5U/+ZM/mXa8Wq3mRz/6UZ72tKfNe43NmzdndHR02vGjjz46r33ta+c9/2TnnXde/vzP/zz333//lOOjo6P59Kc/nTe/+c2LtiZLxEMP5drDx7NmvJidXZVUZnm3fQuvH7mtWhuY7Sm9xWqyZiy59uhCHn1Xkq65FT4yN71JNn/nqGx89r0ZWF87CXy4VM1g5/Sprx4vpLNa2K/RvLNayOrxZHfH1EnX5iump1y70xnburP5O0emt1BKRNxwcm4PU+VcTyGFvOPWDXn+g6v3ewXu8x/sTG4t5W9P2TqrdeXcXHJuD3IGAAAAAJiD009Pbr651bvYS+E1AAAAAMCKo/SaFev888+vW3r9v//3/85f/MVf5Mgjj1zwWr/85S/zL//yL3WPecMb3rDgdQAAAAAAAACY2de+9rXce++904739PTkda973aKu+frXvz5/8id/Mm258j333JOvf/3recELXrCo6y53J554Yg455JA89NBD0x5zzz33LGiNyy67rO74G97whnR2di5ojX11d3fn9a9/ff76r/+67p6UXq88W9bdm/4nDqaQ5NDdxTzYU0mlUP8+UxVePzI2y+LrYjU5dFdtrv7fqOT/z96dh8lZlfnjfnrvpDudDQKBrGQBEiUDREQWR2RfBBmibEJUNg2iwVFhfn5ZdRSGcQ1BEAUDQyQg26AsA0REQSSQBZNAQEyQJRAg+95L/f6IgSzdb3V3Ld1Vfd/X1Rd0ndPnPM2pNynqqfpUPNYQJ27MTqg/LatLlcW0Pw+Ikw94I/7SZ12sqGwhCDkVUdNQEuWp5u8MFamSKGsoidVlTVsFJW+2orIpYmNpfHRpt5j2512jLlUW4XjzJqvnXF8Sq8udc2e05TknBeWWpiIueqFPHPRu92bP55B3a6PPXyvi0g+9k/jn/5jlVc65AzjnrqEt5/ytF/rEwQnn3Pf5irjkw84ZAAAAAChCX/lK5wq8Pv/8jq4AAAAAAIAcEHpN0TrjjDPi//2//xdLlixpdnzt2rVx8cUXx5QpUzLe66KLLor169e3OL7TTjvFGWeckfE+AAAAAAAAAKR3//33J44fe+yx0aNHj6zu2atXrzj66KPjvvvuS6xL6PX2dtppp8TQ6zVr1rR77ffeey/+/Oc/J8455ZRT2r1+S0499dTE0Osnn3wyli5dGn369Mn63nSMxqbGuGnXJe+HIpalInpsjFhR1fLPNBd4XdkYsWVedWuCr3ts3LRfRERTScRNH26I45/eEGUthO+SPXUbIz73t5r4/QFrWjyknvWlEZF8hpVNET2bSmNFRfOBymvLm+Jzf6uJurWNEdGYWdG0WdbOObVpnnPunOo2Rkz7Q784+eC3Yk7v7T/EpDQVMWnGDjFiVUVsKG1ocZ1jXq2M3mv7xgUfebfZoNwxyypj2h/7RV29c+4IzrlraO05D19VERuTzvkfldFrnXMGAAAAAIrMV74SMXlyR1fxgfPPj7j22o6uAgAAAACAHBB6TdGqrq6Or33ta/Htb3+7xTm33HJLfPrTn44TTzyx3fvccccdMXXq1MQ5EydOjKqqhHcxtsKiRYti6NChiXMuu+yyuPzyyzPaBwAAAAAAAKDQPfroo4njxx57bE72PfbYYxNDrx955JGc7FvoevbsmTjevXv3dq/92GOPRSrVcgTpoEGD4kMf+lC712/Jv/zLv8Suu+4ab7zxRrPjTU1NMX369Bg3blzW96ZjlJWWxW3vHBwnd38g5vStj/VlqVhVuSlUsbmQxOYCr+s2RFQ3RKwvj1i5xctMkoKvS1Px/j7VDRFj3o647bdVUdar+VBdsuueQWvion2WRu8NZbGsqjHqtznrnvWlUd1YEuvLkqKQN6luLImI7QORK1IRvTeUxUX7vBfd61Nx4j9qsvgb0BrOueuoa4yY9viOcfK/vhNz+nwQlFuaipj0lz5x4j+6xdxeGyMx3rwp4sRF3SKa+sQFH1261d8BY5ZWxrQ/7Bh19akQkNtxnHPX0Jpz/mu6c24scc4AAAAAQPHpTIHXo0cLvAYAAAAAKGKlHV0A5NLEiRNj4MCBiXPGjx8fzzzzTLvWf/rpp+Oss85KnDN48OD42te+1q71AQAAAAAAAGibxYsXxwsvvJA457DDDsvJ3ocffnji+Lx58+Ktt97Kyd6FbMmSJYnjO+ywQ7vXfuyxxxLHc3VfaM3a6cLZKTx1e/5LTHu0V+y8tjRWVH4QoFi6TZZiUuB1xKZ/1m3Y5mdSm35uS1uuu6IqYufVEdPuKo26yOyD2WmdewateT8AsyQ2BRZXbHEmm4OQ26K6sSR61n/wkr7NQcglsSk8/YKPLo17Bq3Jzi9AqzjnrqeuvjSm/WHHGLO0MiK2DMhtWxD5if+oiUl/6fP+n9UfBOR62W5n4Jy7BucMAAAAALCNkrb1tXKqqipi7tyOrgIAAAAAgBzyaluKWvfu3eOHP/xh4pxVq1bFEUccEb/97W/btPZ9990XRx55ZKxevTpx3g9+8IPo1q1bm9YGAAAAAAAAoH3SfejxwIED0354cnsNGTIk+vfvnzhnxowZOdm7UDU2NsbixYsT5+y2227tXj/d/eHAAw9s99rpHHDAAYnj7gtFaK+94rFdN8Zb3Rqjomnroc0hiekCrzdLF3y9bZB2RVPEWzURjw2NiMrKDH4JWmPLIOTNtgxEbk8Q8mabA5G3DELeTCByfjnnrmtzUO6+71W2KyB3s81Bufu+JyC3M3LOXYNzBgAAAAD4p84UeB0RsX59R1cAAAAAAECOlXd0AZBr48aNi9NOOy2mTp3a4pwVK1bE8ccfH6eeempccsklsccee7Q4d/78+XHllVfGtGnT0u59+umnx0knndSuujva6tWr4/bbb2/zz7388suJ4zNnzoxf/OIXbVqzR48ecfLJJ7e5FgAAAAAAAKDrmTlzZuL4Pvvsk9P9x44dG/fff3+L47NmzYpPfepTOa2hkDzxxBOxdu3aFseHDh0au+66a7vW3rhxY8ybNy9xTi7vD2PHjk0cnzt3btTX10dFRUXOaiC/7tnxvbjgwBURJSXRa0PE8qpUbJmHuG1QdUREzw0RVQ3b3x6xKfi6JCJWVH1w25bB15tVNEX0WhcRJREXHNUU8VzEiW+6X+XKPQNWxwUfWRZNzYyVRESfDWXb3V6aikglvIe8dJtTrW4sierG7deJ+Gcg8v7LIsrK48TXa9tQOW2Rk3NOOedCUhcR9/5x1yhLlURs+UdqeVNEWTN/oL8/Xh5R8cFLc09c3CuOf6tnlMU269ApOOeuocVzrmhq/gHa++PlEY3OGQAA2mXbQMVtvy/1QTIAAHnV2QKvUwnPzQIAAAAAUDSEXtMl3HDDDfHcc8/FggULWpyTSqVi6tSpMXXq1Nh7773jgAMOiKFDh0ZtbW2sWrUqFi5cGE8++WTMmTOnVXvusccecf3112frV8i7d999N84555ysr3v//fcnvsG7OYMHDxZ6DQAAAAAAALTK7NmzE8f32muvnO6/1157pQ295gO//vWvE8ePOuqodq89b968qK+vb3G8rKwsRo0a1e710/nQhz4UpaWl0dTUXGTqplDu+fPnx5gxY3JWA/nT2NQYN/3j3miqqozYuDFKo/ng6y313FgS1Q0fvJm3NBVxyMKI3w/dFHgbsSn4OmLr4OstbQ683rxFU2lJ3DRybRz/Tp9NwY5kVWNJKm4avuqf59P6/76l8cH7tksj4iNLq2NGn/XvBypvWq716zVFxE3DV8Xxb/d0zjmQs3Nu43rOueM1G0le3pAckltevukr3Tp0Gs65a2j2fMrSnHOZcwYAgHZL91yXD4MEAMgfgdcAAAAAAHQQodd0CbW1tfHwww/HwQcfHK+99lra+bNmzcrojcaDBg2Khx9+OGpra9u9BgAAAAAAAABt99JLLyWOjxgxIqf7Dx8+PHH85Zdfzun+hWTWrFlx0003tTheUlISF1xwQbvXT3dfGDx4cFRWVrZ7/XQqKytj4MCB8eqrr7Y45+WXXxZ6XSTKSsvitn+7LU5+65CYs3h2RERi8HXPDRHVTSURsekNvaWpiB/9X2mc8EJT3Ld7xIVHpQ++3jbwOiJizLLKuO2ZXQTk5khZqiRue3qXOPmAN2JOrw1t/vnSiPjmi33ikCU18ft+a+KaPZZG87H4ycYsr4rbnnbOueKcAQAAAHKorEzoNQBAvgi8BgAAAACgA5WmnwLFYfDgwTF9+vQYNmxYTvcZPnx4TJ8+PQYNGpTTfQAAAAAAAADYWiqVikWLFiXOSRdKnal066err6t466234rTTTovGxsYW5/zbv/1b7Lnnnu3eY+HChYnjub4vtGaPdDVSWOqq6mLaOf8XY9b0eP+2TcHXJVGxReJtzw3/DLJu2nTj+4HXCza94fiEBRE/emjT7ZtVN2z6uc2aDbxeUhrT/jIo6hrKcvDbsVldQ1lMe2rXGLO8Kv3kLWwZhBwRcciSmvjmi33a/AK+McurYtpTuzrnHHPOAAAAADlQWhqRww+jBABgCwKvAQAAAADoYOUdXQDk0/Dhw2PGjBlx6qmnxsMPP5z19Y866qj49a9/Hb169cr62gAAAAAAAAAke/vtt2P9+vWJc3bZZZec1pBu/TVr1sSSJUuiX79+Oa2jM/vrX/8a48aNi5deeqnFOTvssENMnjw5o33SBYzn+r7Qmj2EXhefutq+Me24X8XJvzkl5vStj4jNwdcRy6tS0b3+n4HX/1SaivjpAxEnvrgpADsVESURMW5+RFlTxFePiWj653uRN//c2opmAq/fLolpzwyMuqpqrwjLg7ooj2nPDI6TP/qPmNMz+e+diE33gW+8tEMc8l5txBYZxoe81zPipbL4wYh3W7XvmBXVMe2ZQVEXZc45D7J9zj90zsWhrHzrTyXYbrwsotzBFTzn3DWkO+fysohG5wwAAFlRVhZRVbXpn50tfBEAoBh1tsdcAq8BAAAAALokr8Sly+ndu3c89NBDMWXKlPjWt74VS5YsyXjNfv36xTXXXBNnnnlmFioEAAAAAAAAoD3efPPNtHN23nnnnNbQmvXffPPNLhl6vXDhwpg0aVJMmjQpGhoaWpxXVVUVU6dOjZ122imj/dLdH3J9X2jNHq25z1J46o7+dEx76PNx8nu/2ir4uveGiJKmD97M+0Hg9Qc/u+Vbjzffvm3wdVXD1vPGLCmJab/vG3X9d8zNL0Sz6iJi2uwRcfI+r8ScunUtzitNRVz0t53joBW1EZXbjx+yonf0XlAVl+3+5vvn3JwxK7vFtNnDoq6sbKtAZXIrm+fcZ0FVXOqcC19lU0RpU8vjTZURUZG3csgR59w1VDYmh143OmcAAGi30tKtv6+o8OFBAAD5IvAaAAAAAIBOwisF6LLGjx8f48aNiylTpsS1114bL7zwQpvXGDVqVJx//vnx+c9/Prp3756DKgEAAAAAAABorffeey9xvK6uLqqqqnJaQ/fu3aO2tjZWr17d4px0dRa6tWvXxqpVq2LZsmUxf/78mD17dkyfPj2eeuqpSKV5M2N1dXXcc889cfjhh2dcR7r/zvkIHk8X3F3s94WurO47/xXTjpsVJ8ec94OvS7a4+5emIiY9EPHpF1tY4J9OfHFTwPUFWwRfbxV4/XZJTPtdt6gbuEtEY2NWfwfSq2uMmDZjSJw8dmHM6bl9IHJpqiQm/XVAjFxdFesTwlOPfrtH9Nk4IC748OvRVLL9n5NjVnSLac8OibqGiAjnnG9ZO+e3ekRv51z4GhuTwxkaGyMaS1sepzA4566hsSn5nJucMwAAZE1TwgcLAQCQPQKvAQAAAADoRIRe06XV1NTEhAkTYsKECfHSSy/FQw89FDNnzox58+bFG2+8EatWrYq1a9dG9+7do0ePHjFgwIAYNWpU7LPPPnH00UfHiBEj8lbrkCFD0r75t5D3K2QTJ06M5cuXtzg+ZMiQvNUCAAAAAAAAXdnSpUsTx+vq6vJSR11dXWLodbo6O7tx48bFXXfdlfV1x4wZE7fddluMHj06K+t1hvtDuj0K/b5Agrq6qLvtNzFt3Kfi5A+9EHP61L//ht7SVMSkB0vixAURqUj/2owT/xmMvWXwdUTEmLcjpv1vZdT12yWivn7TF3lXFxHT/tQ/Tj7gjZjTa8P7t5emIibN7BcnvlEd8+o2RJQlBPusb4wTF1ZHbOwXF+zz9tbnvLwqpj3VP+oa6iPCGXeUrJzzBudcFKo2bDr4lmxoilgvtLzgOeeuId05r2+K2OCcAQCgXbYNud64MWLt2oiKik1fAABkn8BrAAAAAAA6GaHX8E8jR46MkSNHdnQZFKCJEyd2dAkAAAAAAABARCxbtixxvEePHnmpI90+go63tssuu8Q3v/nNmDBhQlRWVmZt3c5wfyjE+8LkyZPjuuuuy/k+r7zySs736HADB0bdT2+IacceFicfvTHm7LRl4HVJREm0+o2+2wZfj3krYtpdJVG3085CYjqBuoaymPbUru8HIm8KQt4pTnyjbeH6m+dvDkTeFIS8a9Q1lOWibNrIOQMAAABkIJXaFH4t/BAAIPsEXgMAAAAA0AkJvQYAAAAAAAAAisL69esTx2tqavJSR21tbeJ4ujq7gm7dusWRRx4Z48aNi3HjxkVVVVXW9+gM94dCvC+88847MX/+/I4uozj84x8RX/5y1JXXxLTfNsbpx6yLL876Z+B1RJvf6Ls5+PqmvSNuuzuirqE04u23IwYMEHzdCWwORD59/zfjiwt7tjkIebPNP3fT0BVx29O7CELuZJwzAAAAQIbq6yMaGzu6CgCA4iHwGgAAAACATkroNQAAAAAAAABQFDZu3Jg4Xl6en5dJpNsnXZ1dwU477RSDBw+OHXbYIUpLS3OyR2e4P7gvdGErV0acckrEW29FlJZGXbdece/D1VG2cnVEqqHdb/Q98cWI418uibKSsoiSiGhoiHjjjU3B12VCcztaXX1p3PunXaMsVRIRW5xxKrXVt9tJpba6T5z4eo84/o3a7dehU2j/OYdzLgapaNP1TIFyzl1DG/9+BgAAsshz4wAA2SHwGgAAAACATkzoNQAAAAAAAABQFDpDyHFr9hF0HLFo0aL4yU9+Ej/5yU9iwIABMXHixDj33HOjR48eWdujM9wf3Be6sEsuiVi0aKubykrLs/Im3+0Ccjdu3BSu3bdvxmuTuWajx6s3RpQlnP2Gsoj1jenXodNo3zk3RKzf+u8F51yA2nHOFCDn3DWkPefGiPUN+asHAACKSVPT1t9v+7xo49bPhQFAZ7dhw4Z46aWX4vXXX49Vq1bF2rVro3v37tGjR48YMGBA7L777lFZWdnRZdLVVFd3dAVbE3gNAAAAAMA2vOIaAAAAAAAAACgKTduGKGyjrCw/0ZLp9mkU5rCV119/Pb7xjW/Ef/3Xf8WNN94Yxx9/fFbW7Qz3B/eFLuqRRyLuvHPr2xoaIpYt2xT2UlKy6SuVat8bf5uaIkpLN62x2dq1Ed27R3TrllntAAAAAAAAQDz99NNx7733xoMPPhjz5s1L7O2WlZXF6NGj45hjjokTTjgh9t9//zxWSpf0oQ9FbNjQ0VV8QOA1AAAAAADNEHoNAAAAAAAAABSF8vLkl0E0NDTkpY50+1RUVOSljlz58pe/HEcddVSzY01NTbFixYpYvnx5LF26NObMmROzZ8+OdevWpV13yZIlccIJJ8Q555wTP/vZzzIOpS4vL4/6+voWx/Nxfyj2+wLNqK+P+H//b+vbUqmI5cs3hVVvqbQ0miIVjSXxQYB1U2PE5vcDpza9uKukufcHNzVFbHuNLFsWUV29dRg2AAAAAAAA0Gq33357XHPNNTFz5sxW/0xjY2M8//zz8fzzz8dVV10V++67b3zzm9+Mk08+OYeV0mV95SsR8+Z1dBUfOP/8jq4AAAAAAIBOSug1AAAAAAAAAFAUKisrE8fzFXqdFLQckb7Ozu7QQw9t0/yGhoZ49tln4xe/+EXcfvvtsWbNmsT5N954Y6xYsSJuu+22tEHmSSorKzs89LoQ7ws77rhjjBo1Kuf7vPLKK7Fhw4ac75N3Dz8c8dprW9+2alVEY+PWt1VURPTsGU3Ll24KxW5OSUQqSjaFWG8bmB2x6bbS0g++b2yMWLcuonv3zH4HAAAAAAAA6GJefPHFOO+88+KJJ57IeK3nnnsuTjnllLj++uvj+uuvj9133z0LFUJsCryePLmjq/jA+edHXHttR1cBAAAAAEAnJfQaAAAAAAAAACgKFRUVieMbN27MSx2FGHScS+Xl5bH//vvH/vvvHz/84Q/j29/+dkyePDlSLQX9RsQdd9wRNTU1cdNNN7V7385wfyjE+8L5558f559/fs73GT16dMyfPz/n++TdlClbf19fvymIeksVFRG9e28Ks26N0tIPgq+3vG42//uW66xbF9GnT9vrJrcqSyLKWv4zLxrLIlLJf2ZRANKec3lEyks2C15VSUSpcy56zrlrqIqI0oTxhvLwUnsAAACAruHuu++O8ePHx+rVq7O67uOPPx5jx46NW265JU488cSsrk0X1ZkCr0ePFngNAAAAAEAir8QFAAAAAAAAAIpCbW1t4ni236DaklWrViWOp6uzmNXV1cWkSZPiM5/5TIwbNy7eeeedFufefPPNccwxx8S4cePatVdtbW0sX768xfF83B/cF7qYN9+MePLJrW9bu3br70tKInr2bH3g9ZY/V1oa0di49e1NTRFlZR98v25dREPDpmBtOo+SkoiShPDUkpK23yfofNKeczjnYlDyz68Wx13PRcE5dw3+fgYAAAAgIiZPnhwXXHBB4oc2Z2L16tVx0kknxbXXXhsTJkzIyR50EZ3p+cqqqoi5czu6CgAAAAAAOrnSji4AAAAAAAAAACAb+vTpkzi+cuXKvNSRbp90dXYFH//4x+ORRx6J3r17J84777zzYsWKFe3aozPcH9wXuphnntn6+1QqYsOGrW+rqdk6pLotNgdfb7vHtm/AX7++fesDAAAAAABAFzJlypScBl5vlkql4itf+UrccsstOd2HItaZAq8j9KQBAAAAAGgVodcAAAAAAAAAQFHo27dv4vjy5cvzUke6kOZ0dXYVY8aMid/85jeJc5YuXRo///nP27V+Z7g/pNvDfaHIPP/81t9v3Lh1IHVJSUS3bpnt0Zo3M3uDMQAAAAAAACR65pln4pxzzmlV4PUBBxwQ1157bcycOTOWLl0a9fX1sXTp0nj22Wfjpz/9aXz0ox9Nu0YqlYpzzjknZsyYkY3y6Uo6W+B1jkPiAQAAAAAoHkKvAQAAAAAAAICisMMOOySOb9iwIedBx0uXLo2NGzcmzhF0/IFPfvKT8dnPfjZxzk9/+tNobGxs89rp7g9vvfVWm9dsq3R7uC8UmXnztv6+oWHr78vLI0ozfLlWScn2b2re9k3Faf4MAgAAAAAAgK5s5cqVccopp0R9fX3ivBEjRsSjjz4aTz75ZJx//vmx9957R+/evaO8vDx69+4d++67b1xwwQXx9NNPx8MPPxzDhg1LXG/jxo1x8sknx8qVK7P561DMBF4DAAAAAFDAhF4DAAAAAAAAAEVh0KBBaee8/fbbOa2hNeu3ps6u5Lvf/W7i+Ouvvx4zZ85s87rp/jvn+r7Qmj0GDx6c8xrIo/fe2/r7bUOvKypys++2byzedl8AAAAAAADgfZdeemksXLgwcc5hhx0WM2bMiEMPPbRVax5xxBHx7LPPxiGHHJI4b+HChXH55Ze3tlS6MoHXAAAAAAAUOKHXAAAAAAAAAEBRqK2tjb59+ybOefXVV3Naw6JFixLH+/XrFzU1NTmtodCMGDEiRo0alTjnD3/4Q5vXHTJkSOJ4ru8LEenvD0OHDs15DeRRfX3yeLbelNzZ3twMAAAAAAAABWL+/PkxefLkxDkf+9jH4r777ouePXu2ae1evXrF/fffH/vtt1/ivEmTJsULL7zQprXpYjpbT1jgNQAAAAAA7SD0GgAAAAAAAAAoGulChF9++eWc7v+3v/0tcVzIcfOOPfbYxPEZM2a0ec2Ovi9EuD90ORUVyePZeiOwNxQDAAAAAABAu1xxxRXR0NDQ4nifPn1i2rRp0b1793atX1NTE3fccUf06tWrxTkNDQ1x5ZVXtmt9ugCB1wAAAAAAFAmh1wAAAAAAAABA0Rg9enTi+IIFC3K6f7r109XXVaULf16yZEmb10z33/rdd9+NpUuXtnnd1mrN+u4PRaZv362/Ly/f+vv6+tzsu+2bnrfdFwAAAAAAAIi///3vcddddyXO+e53vxsDBw7MaJ/BgwfHFVdckTjnzjvvjEWLFmW0D4Vn7HfGJk9oZeB1jjrP2xN4DQAAAABABoReAwAAAAAAAABFY5999kkcnzVrVk73nzlzZuL43nvvndP9C9VOO+2UOP7ee++1ec0hQ4ZE7969E+fk8v6Q7r7Qt2/fjN8sTSezbYj5tuHTDQ0RTU2Z7ZFKbf/G4m3f+FxZmdkeAAAAAAAAUIQmT54cjY2NLY6PGDEizj333KzsNWHChNhtt91aHG9sbIzJkydnZS8KQ8kVJfFc03NRcsUW/d2Skq2/WqF+m3/mjMBrAAAAAAAyJPQaAAAAAAAAACga6UKvZ8+enfgm1kw0NDTEnDlzEucIvW5eXV1d4vi6devatW66+8Nzzz3XrnVbI93a7gtFaK+9tv6+snLrNyanUhHtvC9vtUY61dWZ7QEAAAAAAABFprGxMX79618nzrnwwgujrKwsK/uVl5fHV7/61cQ5U6dOjaZMPzSXgrBV0HUqouTS1odcb2nboOucBV8LvAYAAAAAIAuEXgMAAAAAAAAARWPs2LFRnRD4unr16pwFHT/zzDOxdu3aFserq6tj3333zcnehW7NmjWJ4zU1Ne1a96CDDkocf/zxx9u1bmv8/ve/TxxPVxsFaL/9tv6+pCSiqmrr29asiWhv8H4qFbHtm95LmnkztNBrAAAAAAAA2Mr06dNj8eLFLY5XV1fH5z73uazuOX78+KisrGxx/M0338xpz5rOYdvA64iIKI0ouaRt67QUcJ314GuB1wAAAAAAZInQawAAAAAAAACgaFRXV8eBBx6YOOeRRx7Jyd6PPvpo4vjBBx+cGMjdlb322muJ4717927Xuocddlji+BNPPBEbN25s19pJ1q9fH3/6058S5xx++OFZ35cOtssuEdv++dO9+9bfp1IRK1a0/Y3CzQVeR0SUbvPyr27dIioq2rY2AAAAAAAAFLn7778/cfzYY4+NHj16ZHXPXr16xdFHH504J11dFLb3A69T8UHg9WalEa39yPZ0wdZZC74WeA0AAAAAQBYJvQYAAAAAAAAAikq6MOG77747J/v+5je/SRw/4ogjcrJvMZgzZ07i+LBhw9q17v7775/4xuQ1a9bEww8/3K61kzzwwAOxbt26Fsd79uwZ++23X9b3pRMYP37r7ysqNgVRb6m+PmLZsojGxtatuTnwets3GJeUbPraUs+ebasXAAAAAAAAuoB0H2J97LHH5mTfdOvm6kO76XhbBV434/ErIj4c2Qu0zjj4WuA1AAAAAABZJvQaAAAAAAAAACgq48aNSxyfOXNmLFiwIKt7zp07N/7617+2OF5SUpK2rq4qlUqlfSPvnnvu2a61y8vL49Of/nTinKlTp7Zr7UzWPPHEE6O8vDzr+9IJHHlkxMCBW9/Wo0dEWdnWt9XXR7z3XpQ2NhNmvVkqoiSV2hSO3dyc0m1e+lVeHlFb2/7aAQAAAAAAoAgtXrw4XnjhhcQ5hx12WE72Tveh3fPmzYu33norJ3vTcdIFXt9xRcTHImLzRxy3FFjd1iDrdgdfC7wGAAAAACAHhF4DAAAAAAAAAEVl2LBhsf/++yfOmTRpUlb3/OlPf5o4fsABB8SQIUOyumexePzxx+PVV19NnPPxj3+83euffvrpieN33XVXvPnmm+1ef1v/+Mc/4r777suoJgpYRUXEd7+79W0lJRG9em0fUp1KRWljU1Q0NEV5Q2OUNTZFaVNEWVNEeVNERSqipKX3FpeVbVp3S/36bX8bAAAAAAAAdHHPPPNM4vjAgQNj4LYfbJslQ4YMif79+yfOmTFjRk72pmOkC7y+/IqIE+KDwOvNtg2sbm+AdZt/TuA1AAAAAAA5IvQaAAAAAAAAACg6X/ziFxPHb7755li8eHFW9nr99dfj1ltvTZzz+c9/Pit7FaPLL788cXzHHXeMffbZp93rH3bYYYlvUK6vr49rrrmm3etv65prromGhoYWxwcNGhSHHHJI1vajEzr88IjPfGbr28rLI3r33hRW3YySVERpUyrKUpte0JUYXd1c4HWPHhE1NZlUDQAAAAAAAEVp5syZieOZ9KNbY+zYsYnjs2bNyun+5M/7gdctuSLi4mi5H1y/zT/bq9U/f/75Ge4EAAAAAAAtE3oNAAAAAAAAABSdM844I/r169fi+Nq1a+Piiy/Oyl4XXXRRrF+/vsXxnXbaKc4444ys7FVsrrvuunjiiScS55x22mlR1kJQcGuUlZXFxIkTE+dMnjw5FixY0O49Nps/f35cf/31iXMuvPDCjH4fCsR3vhMxdOjWt5WXR/TtG9GtW/vWLClpPvC6oiJixx3btyYAAAAAAAAUudmzZyeO77XXXjndP936Qq+Lw9jvbBFunmpmwhUR6yN9wEemgdetXuf88yOuvTZLuwEAAAAAwPaEXgMAAAAAAAAARae6ujq+9rWvJc655ZZb4p577slonzvuuCOmTp2aOGfixIlRVVWV0T6LFi2KkpKSxK/LL7+83eu/9dZb8Ze//CWjGtvqd7/7Xdow6rKyspgwYULGe5177rnRp0+fFsfr6+vjc5/7XGzcuLHde2zYsCE+97nPRUNDQ4tz+vTpE2effXa796CA1NVF3H57RP/+W99eUrJprE+fiOrq1q21Oey6ucDr8vKIXXfdNAYAAAAAAABs56WXXkocHzFiRE73Hz58eOL4yy+/nNP9yY9nL3l20780F3gdrQu8zqaKpMHRowVeAwAAAACQc0KvAQAAAAAAAICiNHHixBg4cGDinPHjx8czzzzTrvWffvrpOOussxLnDB48OG34dmfw1ltvxf777x/HHntszJgxI6d7NTY2xo9+9KP49Kc/HfX19YlzP//5z8fIkSMz3rO2tjauuOKKxDnPPvtsfOELX4impqY2r9/Y2Bjjx4+PWbNmJc77zne+E7W1tW1enwI1cGDEvfdGDB26/VhFRUTPntFQWR6N5aXRVFYSTaUl0VQS7381lkY0lZY0H3a9eY0BAzb9EwAAAAAAANhOKpWKRYsWJc5JF0qdqXTrp6uPwpG6LBXRzEsO1l3RiQKvq6oi5s7NVykAAAAAAHRhQq8BAAAAAAAAgKLUvXv3+OEPf5g4Z9WqVXHEEUfEb3/72zatfd9998WRRx4Zq1evTpz3gx/8ILp169amtTvSAw88EPvtt18cfvjhcdNNN8WyZcuyuv6TTz4ZY8eOja9//evR0NCQOHfnnXeOq6++Omt7f/nLX4699torcc7UqVNj3LhxsXLlylavu2LFivi3f/u3mDZtWuK8MWPGxHnnndfqdSkSAwdGPPhgxGc/2+KUppKSaCwtjcay0mgsjWgs2fSVGL/eo8emtQVeAwAAAAAAQIvefvvtWL9+feKcXXbZJac1pFt/zZo1sWTJkpzWQP6kvhNbNXvXXhFRlsf903aQ01wPAAAAAACQLUKvAQAAAAAAAICiNW7cuDjttNMS56xYsSKOP/74OP300+PFF19MnDt//vw45ZRT4tOf/nTaYOTTTz89TjrppDbX3Bk8+uijcdZZZ8VOO+0UxxxzTNxwww0xd+7caGpKjOHdTiqVipdeeimuvvrq+NCHPhQHHXRQzJ49O+3PlZeXx6233hp9+/Zt52+wvbKysrj11lujuro6cd4999wTo0ePjl/96leJb35et25d/PKXv4zRo0fH//7v/yau2a1bt7j11lujrCyfb2Wl06iri/jxjyOmTIkYNCiztcrLI/r3j9h55wj3JwAAAAAAAEj05ptvpp2z884757SG1qzfmjopACUlEfFB8PWaKyLK87h92sDrVCofZQAAAAAAQETk9zlyAAAAAAAAAIC8u+GGG+K5556LBQsWtDgnlUrF1KlTY+rUqbH33nvHAQccEEOHDo3a2tpYtWpVLFy4MJ588smYM2dOq/bcY4894vrrr8/Wr9Bh6uvr48EHH4wHH3wwIiJqampi5MiRMXLkyOjfv3/stNNOUVNTE1VVVbFx48ZYuXJlrFy5MpYtWxZz586N559/PlavXt2mPUtKSuIXv/hFHHbYYVn/ffbaa6+YNGlSnHPOOYnzXn/99fjCF74QF154YRxyyCExZsyY2GGHHSKVSsW7774bc+bMienTp6cNPt9s0qRJ8eEPfzgbvwKF7PDDIz7xiYiHH94UgP3kk634oVREU1NERUVEVVVEZWXE+vWbvigcTQ0RZQlvIF9TGrFWiHnBc85dQ9pzLotYW5q/esgN59w1pDvn1WUR65wzAAAAQKF77733Esfr6uqiqqoqpzV07949amtrE3vn6eqk8KS+E1Gfx/0EXgMAAAAA0NkIvQYAAAAAAAAAilptbW08/PDDcfDBB8drr72Wdv6sWbNi1qxZ7d5v0KBB8fDDD0dtbW271+is1qxZk/F/nySVlZUxZcqUOOWUU3KyfkTE2WefHa+99lpceeWVaecuX7487rnnnrjnnnvavd/ll18eZ511Vrt/niJTURFx3HGbvt58MxYfc1CULV0W3dZujPKGpijZ0BSpVERDacS6ipLo1hjRZ0PppuDrdes2fVF4ylPJr9RbHRGrS/JVDbninLuGilREUnb5qohY45wLnnPuGpwzAAAAQJewdOnSxPG6urq81FFXV5cYep2uznyaPHlyXHfddTnf55VXXsn5Hh2tIvITfC3wGgAAAACAzkjoNQAAAAAAAABQ9AYPHhzTp0+Po446KqdvnBw+fHg89NBDMWjQoJztUayGDRsWt912W3z0ox/N+V5XXHFFRESrgq8zcdlll8Vll12W0z0oYLvsEqv79Yx1NVu8wXjxWxENDe9/2391RGwUtggAAAAAAADtsWzZssTxHj165KWOdPt0ptDrd955J+bPn9/RZRSNXAdfC7wGAAAAAKCzKu3oAgAAAAAAAAAA8mH48OExY8aMOPLII3Oy/lFHHRUzZsyIYcOG5WT9YlVVVRXf/OY3Y/bs2XkJvN7siiuuiGnTpkVtbW3W166trY0777wzLr/88qyvDQAAAAAAAEDrrF+/PnG8pqYmL3Wk60unq5PCljaYOlfrCrwGAAAAAKADlXd0AQDQVZVHefSu7p08p8xf1YWuuqw6/Tl7SFbwystacT0754JXVV6V/pzLnXOhKyspc85dQFVZK65nf24XvLLSsuhV3St5TpTlpxhypry0PHpU9UicU1rqc/8KXWvOmcJXWlIa1eXViXNKoiRP1ZArrTlnAMiH3r17x0MPPRRTpkyJb33rW7FkyZKM1+zXr19cc801ceaZZ2ahwo4xYsSIuPbaa+PBBx+M3//+97F27dqc71lXVxdf/OIXY+LEiTF48OCc79ecz372s3HAAQfExIkT46677srKmuPGjYsf/ehHMWDAgKysR3GraiqNVOOWz1+URTQ1vv9deZRElPr/oUJXlUpFNLX8hvKKlHMuBunOudw5F4WqpqYoSThGf24XB+fcNVSlmqK0qeVx5wwAAFnkNVwAdKCNGzcmjufrPSLp9klXJwUg6Ynl2BRQXZ/F7QReAwAAAADQ2UlwAoAOMqDXgPjeYd/r6DLIMefcNQzpNcQ5dwHOuWsY3ne4c+4CnHPXMKjnoLjgoxd0dBnk2A7dd4gT9jiho8sgx/rV9nPOXUBNZU2M7je6o8sgx2ora50zAJ3K+PHjY9y4cTFlypS49tpr44UXXmjzGqNGNEkOggAAja9JREFUjYrzzz8/Pv/5z0f37t1zUGX+1NTUxPnnnx/nn39+rF+/Pv7whz/E448/Hn/5y1/i2WefjVWrVmVln759+8YnP/nJOOmkk+K4446LmpqarKybiQEDBsRvfvObmDlzZvzoRz+Ku+66K9atW9emNbp16xbjxo2LCy+8MPbee+8cVUoxGla5U8TKLe5v1YMitvysmLq8l0QODE83wTkXBefcNYxIN8E5FwXn3DWMTDfBOQMAQO4MT/tMCgBkjdBr8qaqKmLDhhaHsxl4vXm9tMHXAAAAAADQgYReAwAAAAAAAABdUk1NTUyYMCEmTJgQL730Ujz00EMxc+bMmDdvXrzxxhuxatWqWLt2bXTv3j169OgRAwYMiFGjRsU+++wTRx99dIwYkTYOL2uGDBkSqVQqL3tVV1fHkUceGUceeWRERDQ1NcULL7wQc+bMiYULF77/9eabb8bq1atjzZo1sXr16mhsbIyqqqqoqqqK3r17R79+/WKXXXaJkSNHxp577hljx46NUaNGRUlJSV5+j7baZ5994tZbb42f//znMX369PjDH/4Qc+fOjZdeeimWLVv2fvB3jx49ok+fPjFy5MgYPXp0fOITn4hDDjkkunXr1sG/AQVp7NiIRYs6ugoAAAAAgPyoqor45Cc7ugoAupCmpqbE8bKysrzUkW6fxsbGvNRBDq1fH9HC6yGyHXi95bqCrwEAAAAA6KyEXgMAAAAAAAAAXd7IkSNj5MiRHV1Gp1RaWhqjR4+O0aNHd3QpedGtW7c49thj49hjj+3oUugK/r//L+LJJyMWL+7oSgAAAAAAcu/00yN23rmjqwCgCykvT45TaGhoyEsd6fapqOg80cU77rhjjBo1Kuf7vPLKK7Fhw4ac79PRchV4veX6nefeAwAAAAAAHxB6DQAAAAAAAAAA0BGqqyN+97uIr389YvbsiOXLO7oiAAAAAIDsqqyM2HHHiPPOixg3rqOrAaCLqaysTBzPV+h1fX1y9HG6OvPp/PPPj/PPPz/n+4wePTrmz5+f8306Uq4DrzdbExE1edoLAAAAAABaS+g1AAAAAAAAAABAR6mujrjuuo6uAgAAAAAAAIpORUVF4vjGjRvzUkchhV6THSWXRKz9Tu4DPeojovayiGiKSH0nx5sBAAAAAEAblHZ0AQAAAAAAAAAAAAAAAAAAAADZVFtbmzi+evXqvNSxatWqxPF0dVIgUqmI2BR4HaUR3S/bFEqdKw0RUXPZP78p/ee+W9QBAAAAAAAdSeg1AAAAAAAAAAAAAAAAAAAAUFT69OmTOL5y5cq81JFun3R1Ujg2B15vVnNZxMYc7NMYm0K1t7Jl8DUAAAAAAHQwodcAAAAAAAAAAAAAAAAAAABAUenbt2/i+PLly/NSx4oVKxLH09VJYSi5oqTZBI/ayyI2ZHGfpojo1tJg6T/rAAAAAACADib0GgAAAAAAAAAAAAAAAAAAACgqO+ywQ+L4hg0bch58vXTp0ti4cWPiHKHXhW/sd8Zu+pcW8qZ7XBaxLgv7NEVEdUTEZS1MKNmmHgAAAAAA6CBCrwEAAAAAAAAAAAAAAAAAAICiMmjQoLRz3n777ZzW0Jr1W1Mnnduzlzz7wTctBF/3vCxidZp1KhLGUhFxVUTawOvt6gEAAAAAgA4g9BoAAAAAAAAAAAAAAAAAAAAoKrW1tdG3b9/EOa+++mpOa1i0aFHieL9+/aKmpianNZAfqctSaef0uSxiZQtjFdv8c6u1I+L7EXF5S4HXbawDAAAAAAByTeg1AAAAAAAAAAAAAAAAAAAAUHSGDh2aOP7yyy/ndP+//e1viePp6qOwvB84XdLynB0ui1i6zW3bBl1v+X0qIu6LNIHXJdvsDwAAAAAAHUzoNQAAAAAAAAAAAAAAAAAAAFB0Ro8enTi+YMGCnO6fbv109VF4WhN8vfNlEW//89+3DbyObW7/c0R8VuA1AAAAAAAFRug1AAAAAAAAAAAAAAAAAAAAUHT22WefxPFZs2bldP+ZM2cmju+999453Z+O0Zrg64GXtBx4vVlFRHzikoQJAq8BAAAAAOikhF4DAAAAAAAAAAAAAAAAAAAARSdd6PXs2bOjsbExJ3s3NDTEnDlzEucIvS5eWwVfbxt+3RSR+k4r1/nOpvlb2WJNgdcAAAAAAHRGQq8BAAAAAAAAAAAAAAAAAACAojN27Niorq5ucXz16tXx3HPP5WTvZ555JtauXdvieHV1dey777452ZvOYatA6s3B120IvH5/nS2Dr7cI0BZ4DQAAAABAZyX0GgAAAAAAAAAAAAAAAAAAACg61dXVceCBBybOeeSRR3Ky96OPPpo4fvDBBycGclMctg2+Tl2Ziki1Maw6ldr0cwKvAQAAAAAoEEKvAQAAAAAAAAAAAAAAAAAAgKJ0+OGHJ47ffffdOdn3N7/5TeL4EUcckZN96XxSl6Vi39J9tw6qTqVa/5W0DgAAAAAAdEJCrwEAAAAAAAAAAAAAAAAAAICiNG7cuMTxmTNnxoIFC7K659y5c+Ovf/1ri+MlJSVp66K4PHvJs51qHQAAAAAAyCWh1wAAAAAAAAAAAAAAAAAAAEBRGjZsWOy///6JcyZNmpTVPX/6058mjh9wwAExZMiQrO4JAAAAAADQWQi9BgAAAAAAAAAAAAAAAAAAAIrWF7/4xcTxm2++ORYvXpyVvV5//fW49dZbE+d8/vOfz8peAAAAAAAAnZHQawAAAAAAAAAAAAAAAAAAAKBonXHGGdGvX78Wx9euXRsXX3xxVva66KKLYv369S2O77TTTnHGGWdkZS8AAAAAAIDOSOg1AAAAAAAAAAAAAAAAAAAAULSqq6vja1/7WuKcW265Je65556M9rnjjjti6tSpiXMmTpwYVVVVGe0DAAAAAADQmQm9BgAAAAAAAAAAAAAAAAAAAIraxIkTY+DAgYlzxo8fH88880y71n/66afjrLPOSpwzePDgtOHbAAAAAAAAhU7oNQAAAAAAAAAAAAAAAAAAAFDUunfvHj/84Q8T56xatSqOOOKI+O1vf9umte+777448sgjY/Xq1YnzfvCDH0S3bt3atDYAAAAAAEChEXoNAAAAAAAAAAAAAAAAAAAAFL1x48bFaaedljhnxYoVcfzxx8fpp58eL774YuLc+fPnxymnnBKf/vSnY+XKlYlzTz/99DjppJPaXDMAAAAAAEChKe/oAgAAAAAAAAAAAAAAAAAAAADy4YYbbojnnnsuFixY0OKcVCoVU6dOjalTp8bee+8dBxxwQAwdOjRqa2tj1apVsXDhwnjyySdjzpw5rdpzjz32iOuvvz5bvwIAAAAAAECnJvQaAAAAAAAAAAAAAAAAAAAA6BJqa2vj4YcfjoMPPjhee+21tPNnzZoVs2bNavd+gwYNiocffjhqa2vbvQYAAAAAAEAhKe3oAgAAAAAAAAAAAAAAAAAAAADyZfDgwTF9+vQYNmxYTvcZPnx4TJ8+PQYNGpTTfQAAAAAAADoTodcAAAAAAAAAAAAAAAAAAABAlzJ8+PCYMWNGHHnkkTlZ/6ijjooZM2bkPFgbAAAAAACgsxF6DQAAAAAAAAAAAAAAAAAAAHQ5vXv3joceeih+9atfRb9+/bKyZr9+/WLKlCnx4IMPRq9evbKyJgAAAAAAQCEReg0AAAAAAAAAAAAAAAAAAAB0WePHj4+///3vMXny5Nhzzz3btcaoUaNi8uTJsXDhwjjzzDOzXCEAAAAAAEDhKO/oAgAAAAAAAAAAAAAAAAAAAAA6Uk1NTUyYMCEmTJgQL730Ujz00EMxc+bMmDdvXrzxxhuxatWqWLt2bXTv3j169OgRAwYMiFGjRsU+++wTRx99dIwYMaKjfwUAAAAAAIBOQeg1AAAAAAAAAAAAAAAAAAAAwD+NHDkyRo4c2dFlAAAAAAAAFKTSji4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMIn9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAjAm9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBjQq8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJjQawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJvQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIwJvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgY0KvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMiY0GsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMib0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICMCb0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGNCrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImNBrAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIm9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAjAm9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBjQq8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJjQawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJvQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIwJvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgY0KvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMiY0GsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMib0GgAAAAAAAAAAAAAAAAAAAAAAAAAAAICMCb0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGNCrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImNBrAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIm9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAjAm9BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBjQq8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJjQawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJvQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIwJvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgY0KvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMiY0GsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMlaSSqVSHV0EAF1Ljx49YvXq1dvdXlVVFcOGDeuAigAAAAAAIPteeeWV2LBhw3a319bWxqpVqzqgIgDoPPSNAQAAAADoCvSNAaB5esYAAAAAAHQFXblnLPQagLyrrq5u9i9eAAAAAADoCqqqqmL9+vUdXQYAdCh9YwAAAAAAujJ9YwC6Oj1jAAAAAAC6sq7QMy7t6AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKHxCrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADImNBrAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIm9BoAAAAAAAAAAAAAAAAAAAAAAAAAAACAjJV3dAEAdD29evWK5cuXb3d7RUVFDBo0KP8FdbBXXnklNmzYsN3tVVVVMWzYsA6oCGgP1zIUD9czFA/XMxQP1zMUD9czXc0//vGPqK+v3+72Xr165b8YAOhk9I0/4HEyFA/XMxQP1zMUD9czFA/XMxQP1zNdjb4xADRPz/gDHiND8XA9Q/FwPUPxcD1D8XA9Q/FwPdPVdOWesdBrAPLurbfe6ugSOpXRo0fH/Pnzt7t92LBhMW/evA6oCGgP1zIUD9czFA/XMxQP1zMUD9czAACb6Rt/wONkKB6uZygermcoHq5nKB6uZygermcAACL0jLfkMTIUD9czFA/XMxQP1zMUD9czFA/XM3QdpR1dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFT+g1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABkTeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAxoReAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJAxodcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZEzoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZE3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMaEXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQMaHXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRM6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDGhF4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDGh1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkTOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABkTeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAxoReAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJAxodcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZEzoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZE3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMaEXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQMaHXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRM6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDGhF4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkLHyji4AALq6CRMmxDvvvLPd7TvuuGMHVAO0l2sZiofrGYqH6xmKh+sZiofrGQAAtudxMhQP1zMUD9czFA/XMxQP1zMUD9czAABszWNkKB6uZygermcoHq5nKB6uZygermfoOkpSqVSqo4sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoLCVdnQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQ+odcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZEzoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZE3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMaEXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQMaHXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRM6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDGhF4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDGh1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkTOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABkTeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAxoReAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJAxodcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZEzoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZE3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMaEXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQMaHXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRM6DUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRN6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDGhF4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAkDGh1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkTOg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABkTeg0AAAAAAAAAAAAAAAAAAAAAAAAAAABAxoReAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJAxodcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZEzoNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZE3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMaEXgMAAAAAAAAAAAAAAAAAAAAAAAAAAACQsfKOLgAAurINGzbESy+9FK+//nqsWrUq1q5dG927d48ePXrEgAEDYvfdd4/KysqOLhMAAAA6RH19fSxatCgWL14c77zzTqxbty7q6+ujsrIyunXrFjvssEP0798/hgwZEhUVFR1dLtBJNDQ0xCuvvBKLFi2KVatWxerVq6O6ujrq6uqif//+sfvuu0f37t07ukwAAIgIPWMAAABIR98YaCs9YwAAComeMQAAACTTMwbaSs8YOg+h1wCQZ08//XTce++98eCDD8a8efOisbGxxbllZWUxevToOOaYY+KEE06I/fffP4+VAluqr6+PF198MebOnRvz5s2LuXPnxuuvvx7Lly+P5cuXx4oVK6KsrCyqq6ujT58+scsuu8TQoUNjr732io985CNxwAEHeHEJAHSQ+fPnx/Tp02Pu3Lnx0ksvvf/E9KpVq6KpqSlqamqitrY2+vTpE7vttlsMGzYsdt9999hvv/3iQx/6UJSVlXX0rwBdxpo1a+KBBx6Ixx57LJ588slYsGBB1NfXp/25ioqK2GOPPeKggw6KQw89NI4++miNJuhi/vrXv8bdd98dDzzwQMyePTs2btzY4tySkpIYMWJEHHXUUXH88cfHJz/5ySgpKcljtQAAdHV6xlCY9IwBoHDpGUNh0TcG2kPPGACAQqJnDIVL3xgACpOeMRQWPWOgPfSMoXMqSaVSqY4uAgC6gttvvz2uueaamDlzZrvX2HfffeOb3/xmnHzyyVmsDGhOU1NTzJo1K6ZPnx6PPfZY/PGPf4y1a9e2e73u3bvHEUccEePHj4/jjjsuyst9/gwA5NILL7wQv/jFL+L222+PN998s93r1NTUxH777RdHHXVUHHvssTF69OgsVglsNnfu3PjBD34Qd955Z6xZsybj9Wpra+Pkk0+Ob3zjG7HHHntkoUIoPosWLYpnn332/a/nnnsuli9fnvgznbGl9PDDD8dVV10Vjz/+eLvXGDlyZFx44YVxzjnneBEaAAA5pWcMhUXPGAAKm54xFB59Y8gvPeMP6BkDAJAvesZQePSNAaBw6RlD4dEzhvzSM/6AnjHkjtBrAMixF198Mc4777x44oknsrbmJz7xibj++utj9913z9qaQERDQ0M89thjMW3atLjvvvti6dKlOdln6NChcfHFF8dZZ53lf3KhQCxbtiz23HPPePvtt9POHT9+fPzqV7/KfVFAs2bOnBkXX3xxPPLIIzlZf/To0TF37tycrA1d0VtvvRUXXXRR3HrrrTlpcpWUlMQXv/jFuOqqq2KHHXbI+vpQKF5//fXtGs/vvvtum9fpTC2lN954Iy644IK45557srbmmDFj4oYbboiPfvSjWVsTAAAi9IyhkOgZAy3RM4bCoWcMhUffGHJPz7h19IwBAMgVPWMoLPrGQEv0jaEw6BlD4dEzhtzTM24dPWPIPqHXAJBDd999d4wfPz5Wr16d9bVra2vjlltuiRNPPDHra0NXM2/evPjxj38c99xzT7z33nt523efffaJX/ziF7H33nvnbU+gfb74xS/GzTff3Kq5GtHQMVasWBFf+9rX4pZbbsnpE+U9e/ZM++mUQOs88MADMX78+HY1xNpq5513jv/5n/+JQw89NOd7QUd7++23Y8aMGVs1n1vzgsrW6CwtpT/+8Y8xbty4WLJkSdbXrqioiJ/85Cfx5S9/OetrAwDQNekZQ2HQMwbS0TOGzk/PGAqTvjFkn55xZvSMAQDINj1jKBz6xkA6+sbQuekZQ2HSM4bs0zPOjJ4xZFdpRxcAAMVq8uTJMW7cuJw0oiMiVq9eHSeddFJcd911OVkfupL7778/fvGLX+S1CR2x6RMiP/axj8UNN9yQ132Btpk+fXqrm9BAx/jTn/4UY8aMiSlTpnSaJ8mBZD/72c/iU5/6VF6a0BGbPuX5qKOOiltuuSUv+0FHOvLII+NTn/pUXHHFFfG73/0ua43ozuK+++6LQw89NCeN6IiI+vr6mDBhQlx88cU5WR8AgK5FzxgKh54xkETPGDo/PWMoTPrGkBt6xpnRMwYAIJv0jKGw6BsDSfSNoXPTM4bCpGcMuaFnnBk9Y8guodcAkANTpkyJCy64IOdPhKVSqfjKV77if6ShgG3YsCG+9KUvxWWXXdbRpQDNWLduXZx77rkdXQaQ4Ne//nUceuih8eqrr3Z0KUAr3XzzzTFhwoRoamrK674NDQ3x+c9/Pu6444687gtkzyOPPBInn3xy1NfX53yvq6++Or7zne/kfB8AAIqXnjHQWnrG0LnpGUPnp2cMhUnfGGgPPWMAAAqJnjHQFvrG0LnpG0PnpmcMhUnPGGgPPWMoPOUdXQAAFJtnnnkmzjnnnFY1og844IA47bTT4oADDoghQ4ZEjx49YtWqVfH3v/89nnrqqbjtttviL3/5S+IaqVQqzjnnnNhzzz3jIx/5SLZ+DSBBWVlZjB49Ovbcc88YOnRo7LDDDlFTUxPr16+P9957LxYvXhx/+tOfYsGCBa1e88orr4zu3bvHRRddlMPKgba67LLL4pVXXunoMoAWTJ48uU0vAq2trY399tsvRowYEYMHD47a2tqoqKiI5cuXx/Lly+Odd96J559/PubOnRvr16/PcfXQNT377LNx3nnntXr+2LFj4+ijj44DDzwwhg8fHn369IkePXrEypUrY9myZfHiiy/GU089Fb/97W/j+eefT7teKpWK8ePHx+jRo2P06NGZ/CpAni1atCg++9nPxoYNG9LO/fCHPxxnnHFGHHzwwTFixIjo2bNnrFmzJl577bV4+umnY9q0afHYY4+lfQxx6aWXxl577RUnnHBCtn4NAAC6CD1jKH56xtB16BlD56ZnDIVJ3xhoDz1jAAAKiZ4xdA36xtB16BtD56VnDIVJzxhoDz1jKEwlqVx/NCQAdCErV66Mf/mXf4mFCxcmzhsxYkT87Gc/i0MPPTTtmv/3f/8XEyZMSPsk+NChQ2P27NlRV1fXppqBiKuuuir+4z/+I3HOHnvsEZ/61Kfi6KOPjo9+9KPRvXv3tOsuXrw4fv7zn8ekSZPivffeSzu/pKQkfvvb38YxxxzT6tqB3Jk1a1bst99+0dDQ0KafGz9+fPzqV7/KTVHA+6ZNmxannnpq2ieRu3XrFqeeemqceeaZceCBB0Z5efrPgGtsbIz58+fHgw8+GPfdd188/fTT739KbM+ePWP58uXZ+BWgy2loaIgxY8bE/Pnz08496KCD4vvf/34cdNBBrV7/sccei4svvjieffbZtHPHjh0bzzzzTJSUlLR6fSgU//Iv/xJz5szJydod1VJqaGiIAw88MJ555pnEeTvttFNMmjQpPvOZz6Rdc8aMGfGlL30pZs6cmTivd+/eMXv27Bg0aFCbagYAoOvSM4bCpGcMNEfPGDo3PWMoTPrGkHt6xnrGAAB0LD1jKFz6xkBz9I2h89IzhsKkZwy5p2esZwydSWlHFwAAxeTSSy9N24g+7LDDYsaMGa1qREdEHHHEEfHss8/GIYcckjhv4cKFcfnll7e2VKAVevXqFRMnToznnnsuXnjhhfiv//qvOOSQQ1rVhI6I6N+/f1x22WXx6quvxtlnn512fiqVirPPPtsT3NAJNDY2xllnndXmJjSQH3/605/izDPPTPuE+Nlnnx2vvPJK/PKXv4x//dd/bVUjOiKirKwsPvzhD8e3vvWtePLJJ2Px4sVx1VVXxeDBg7NRPnRZt9xyS6ua0Jdcckk8/vjjbWpCR0Qceuih8dRTT8XXv/71tHOfffbZmDZtWpvWh2I2ZMiQOOKIIzq6jBZde+21aRvRY8aMiZkzZ7aqER0R8ZGPfCSeeuqpOPXUUxPnLVu2LCZOnNjaUgEAQM8YioyeMXRdesbQuekZQ+HSN4bOSc+4ZXrGAAC0lZ4xFB99Y+i69I2h89IzhsKlZwydk55xy/SMITNCrwEgS+bPnx+TJ09OnPOxj30s7rvvvujZs2eb1u7Vq1fcf//9sd9++yXOmzRpUrzwwgttWhvY3vDhw+OGG26IN954I370ox/FPvvsk9F6NTU1ceONN8aUKVOirKwsce7ixYvj6quvzmg/IHM/+MEPYtasWc2O7bbbbnmuBtjSsmXL4tRTT42NGze2OKd3797x4IMPxo033hj9+/fPeM9+/frFRRddFK+88krcfvvtGa8HXdVPfvKTtHP+4z/+I6688sq0j5tbUlFRET/4wQ/iq1/9atq5P/7xj9u1BxS6gQMHxoknnhjf/e5346GHHop33303Fi5cGDfccENHl9asd955J+0bMIYPHx6PPPJI7LLLLm1au6qqKm699dY44YQTEufdc8898eijj7ZpbQAAuiY9YygeesaAnjF0XnrGUNj0jaHj6Rl/QM8YAIBs0zOG4qJvDOgbQ+ekZwyFTc8YOp6e8Qf0jCH3hF4DQJZcccUViZ/Q2KdPn5g2bVqrP7V1WzU1NXHHHXdEr169WpzT0NAQV155ZbvWByJGjhwZ//M//xMvvvhinHvuue2+Xlty5plnxqRJk9LOmzRpUqxcuTKrewOt98orr7T4ZNcBBxwQn/vc5/JbELCVc889N15//fUWx3fZZZf405/+FEcddVTW9y4rK8vJutAVzJ07N55//vnEOQcddFD853/+Z1b2+9GPfpT2Bd1/+ctf4pVXXsnKftBZ7bLLLnH88cfHlVdeGb/73e9iyZIl8Y9//CPuvvvu+Pa3vx1HHnlk9O3bt6PLTPTf//3fsWLFihbHKysr44477ogdd9yxXeuXlZXFlClTYsiQIYnzLr300natDwBA16JnDIVPzxiI0DOGzk7PGAqXvjHkn55xenrGAABkk54xFAd9YyBC3xg6Mz1jKFx6xpB/esbp6RlDbgm9BoAs+Pvf/x533XVX4pzvfve7MXDgwIz2GTx4cFxxxRWJc+68885YtGhRRvtAV7PTTjvFddddF/PmzYvTTz+93Z/01hpf/vKX48wzz0ycs2bNmrjjjjtyVgOQ7Lzzzot169Ztd3tFRUXccMMNUVJS0gFVARERv/vd7+I3v/lNi+M9evSIBx54IEaNGpXHqoDWeOyxx9LO+f73v5+1v2dLS0vjqquuSjvPJ6pSjC644IK4//77Y/HixfHGG2/EfffdF5dcckkcc8wx7W7YdpSVK1em/WToiRMnxt57753RPj179kz7CfF//vOf449//GNG+wAAUNz0jKGw6RkDW9Izhs5LzxgKm74x5IeecdvpGQMAkA16xlD49I2BLekbQ+ekZwyFTc8Y8kPPuO30jCF3hF4DQBZMnjw5GhsbWxwfMWJEnHvuuVnZa8KECbHbbru1ON7Y2BiTJ0/Oyl7QVXzhC1+IL3/5y1FeXp6X/b73ve+l/WTne++9Ny+1AFu76aabWnyi/N///d/jQx/6UJ4rAjarr6+Pf//3f0+cc/3118eYMWPyVBHQFjNnzkwc33333eOggw7K6p6HHHJIDB8+PHHOs88+m9U9oTM466yz4rjjjoudd965o0vJ2JQpUxI/fblXr17x7W9/Oyt7HX/88XHwwQcnzvnpT3+alb0AAChOesZQ2PSMgc30jKHz0jOGwqdvDPmhZ9w+esYAAGRKzxgKn74xsJm+MXROesZQ+PSMIT/0jNtHzxhyQ+g1AGSosbExfv3rXyfOufDCC7P2aa7l5eXx1a9+NXHO1KlTo6mpKSv7Adm36667xqmnnpo4549//KPrGPLs7bffjm984xvNju22225x6aWX5rkiYEu//OUvY8GCBS2OH3/88XHaaaflsSKgLV555ZXE8SOOOCIn+x555JGJ43/7299ysi+QHbfeemvi+Lnnnht1dXVZ2y/dC9/uv//+xOY4AABdl54x0FZ6xtA56RlD56ZnDIVP3xhoKz1jAAAKhZ4x0B76xtA56RtD56VnDIVPzxhoKz1jKHxCrwEgQ9OnT4/Fixe3OF5dXR2f+9znsrrn+PHjo7KyssXxN998Mx5//PGs7glk13HHHZc4vnLlynj11VfzVA0QEfHVr341li1b1uzYddddF926dctzRcBmTU1N8cMf/rDF8bKysrj66qvzWBHQVi39HbvZXnvtlZN906377rvv5mRfIHMvv/xyzJgxI3HOOeeck9U9P/WpT0X//v1bHN+wYUPcddddWd0TAIDioGcMtIeeMXQ+esbQeekZQ3HQNwbaQs8YAIBComcMtJe+MXQ++sbQOekZQ3HQMwbaQs8YioPQawDI0P333584fuyxx0aPHj2yumevXr3i6KOPTpyTri6gY3384x9PO+fvf/97HioBIjb9vXnHHXc0O3byySen/eRGILf+93//N15++eUWx0866aTYY4898lgR0FYbNmxIHN9hhx1ysu+OO+6YOL5u3bqc7AtkLt1zW/vuu28MHz48q3uWlpbGZz/72cQ5nnMDAKA5esZAe+gZQ+eiZwydm54xFAd9Y6At9IwBACgkesZAe+kbQ+eibwydl54xFAc9Y6At9IyhOAi9BoAMPfroo4njxx57bE72TbfuI488kpN9gezo06dP4iepR0QsX748P8VAF7dq1aqYMGFCs2O9evWKH//4x/ktCNjOzTffnDj+pS99KU+VAO3Vs2fPxPGampqc7Jtu3bq6upzsC2Susz7n9vvf/z4aGxtzsjcAAIWrsz5+1TOGzk3PGDoPPWPo/PSMoTjoGwNt0Vmfc9MzBgCgOZ318aueMXR++sbQeegbQ+emZwzFQc8YaIvO+pybnjG0jdBrAMjA4sWL44UXXkicc9hhh+Vk78MPPzxxfN68efHWW2/lZG8gO9J9wpxPgoP8uPjii+P1119vduz73/9+7LzzznmuCNjS8uXL46GHHmpxvH///vGJT3wifwUB7dK3b9/E8ffeey8n+6ZbN11dQMdoaGiIJ554InFOrp5zO/jgg6O6urrF8RUrVsSMGTNysjcAAIVJzxjIhJ4xdA56xtC56RlD8dA3BlpLzxgAgEKiZwxkSt8YOgd9Y+i89IyheOgZA62lZwzFQ+g1AGTgmWeeSRwfOHBgDBw4MCd7DxkyJPr37584xwNj6NzWrl2bOJ70P79Adjz11FPxs5/9rNmxj33sY3HeeefluSJgW/fcc09s3LixxfHjjjsuSkpK8lgR0B6jRo1KHM/Vi6nTrbvbbrvlZF8gM/PmzYs1a9a0OF5RURH77bdfTvaurq6OvffeO3GO59wAANiSnjGQCT1j6Hh6xtD56RlD8dA3BlpLzxgAgEKiZwxkSt8YOp6+MXRuesZQPPSMgdbSM4biIfQaADIwc+bMxPF99tknp/uPHTs2cXzWrFk53R9ov1WrVsWKFSsS5/Tu3TtP1UDXtHHjxjj77LMjlUptN1ZeXh433HCDBhd0Ao888kji+Cc/+ck8VQJk4uCDD04c/+Mf/5iTfdN9gutBBx2Uk32BzKR7zm3UqFFRVVWVs/095wYAQFvoGQPtpWcMHU/PGAqDnjEUD31joLX0jAEAKCR6xkAm9I2h4+kbQ+enZwzFQ88YaC09YygeQq8BIAOzZ89OHN9rr71yun+69T0whs5r1qxZzTa/tjRs2LA8VQNd03/+53/GCy+80OzY17/+9fjwhz+c54qA5jz++OOJ4x/96EfzUwiQkU9+8pNRXV3d4vj06dNjw4YNWd1z3bp1MX369BbHS0tL45BDDsnqnkB2eM4NAIBC4vEr0F56xtDx9IyhMOgZQ/HQNwZay3NuAAAUEo9fgUzoG0PH0zeGzk/PGIqHnjHQWp5zg+JR3tEFAEAhe+mllxLHR4wYkdP9hw8fnjj+8ssv53R/oP1+97vfJY7X1dXFoEGD8lQNdD3z58+Pq666qtmxIUOGxGWXXZbnioDm/O1vf4vFixe3ON6rV68YOnRo2nUaGhri5ZdfjoULF8aKFStiw4YN0b179+jRo0cMHDgwhgwZErW1tdksHdhG79694/TTT49f/vKXzY4vX748fvazn8XEiROztuekSZNi5cqVLY5/6lOfigEDBmRtPyB7POcGAEAh8fgVaC89Y+hYesZQGPSMobjoGwOt5Tk3AAAKicevQCb0jaFj6RtD56dnDMVFzxhoLc+5QfEQeg0A7ZRKpWLRokWJc9I9cM1UuvXT1Qd0jMbGxpg2bVrinIMOOihKS0vzVBF0LU1NTXH22WfHxo0bmx2/7rrronv37nmuCmhOuk9fTHo8/O6778Ztt90W999/f/zxj39s8ZqPiCgpKYk999wzDjrooDjhhBPisMMOi8rKyvaWDbTgG9/4Rtx6660tXo/f+9734jOf+UzsuuuuGe/16quvtviis82+/vWvZ7wPkBsLFy5MHO/o59zWrFkT77zzTuy44445rQMAgM5PzxhoLz1j6Fh6xlA49Iyh+OgbA62hZwwAQKHQMwYyoW8MHUvfGAqDnjEUHz1joDX0jKF4eGYLANrp7bffjvXr1yfO2WWXXXJaQ7r116xZE0uWLMlpDUDb3XvvvfHqq68mzjn++OPzVA10PZMnT44///nPzY599rOfjaOPPjrPFQEtmTt3buL4sGHDtrttyZIl8eUvfzkGDRoUEydOjMceeyyxER2x6YWm8+fPj5///Odx7LHHxoABA+KKK66IZcuWZVQ/sLU99tgjLr300hbH33nnnTjuuONi1apVGe2zdOnSOProoxOv4S984Qvx8Y9/PKN9gNxIpVJp/58518+57bzzzmlfHJ6uYQ4AQNegZwy0l54xdCw9YygcesZQfPSNgXT0jAEAKCR6xkAm9I2hY+kbQ2HQM4bio2cMpKNnDMVF6DUAtNObb76Zds7OO++c0xpas35r6gTyp7GxMfHJt4iIysrK+MxnPpOniqBree211+Lb3/52s2M9e/aMH//4x/ktCEg0f/78xPGddtppq+9/+ctfxu677x7XX399rFu3rt37vvPOO3H55ZfHyJEj48Ybb2z3OsD2Lr744jjiiCNaHJ89e3Z85CMfiTlz5rRr/b/85S8xduzYeOGFF1qcM2zYsPjRj37UrvWB3Fu2bFnaN4Dk+jm38vLy6Nu3b+Icz7kBABChZwy0j54xdCw9YygsesZQnPSNgSR6xgAAFBI9Y6C99I2hY+kbQ+HQM4bipGcMJNEzhuIi9BoA2um9995LHK+rq4uqqqqc1tC9e/eora1NnJOuTiC/fvazn6V9Yn38+PHRp0+fPFUEXcuECRNa/ETH733ve9G/f/88VwQkee211xLHd9xxx4iIqK+vj7POOivOPvvsWL58edb2f/fdd+Pcc8+Nk046KVauXJm1daErKysri3vvvTf+9V//tcU5CxYsiP322y+++MUvtrohPWPGjDj99NPjoIMOSvxU1AEDBsSjjz4aPXv2bHPtQH605rmsfv365byObV/0ti3PuQEAEKFnDLSPnjF0LD1jKCx6xlCc9I2BJHrGAAAUEj1joL30jaFj6RtD4dAzhuKkZwwk0TOG4lLe0QUAQKFaunRp4nhdXV1e6qirq4vVq1e3OJ6uTiB/Fi1aFP/xH/+ROKeioiIuuuiiPFUEXcvtt98ev/3tb5sd23///eNLX/pSnisC0lm8eHHieF1dXTQ0NMSpp54ad911V87quPvuu2PhwoXx8MMPv98AB9qvW7du8dBDD8W///u/x3XXXdfsnI0bN8bNN98cN998c+yyyy5x4IEHxogRI6J3795RW1sbq1atimXLlsWCBQviySefjLfffjvtvvvss0/ceeedMWTIkCz/RkA2tea5rHw875ZuD8+5AQAQoWcMtJ2eMXQsPWMoPHrGULz0jYGW6BkDAFBI9IyB9tA3ho6lbwyFRc8YipeeMdASPWMoLkKvAaCdli1bljjeo0ePvNSRbh8PjKFzaGxsjPHjxye+eCQiYuLEiTFs2LA8VQVdx9KlS+NrX/tas2Pl5eVxww03RGlpaZ6rAtJ56623EscrKytjwoQJOW1EbzZr1qz45Cc/GU8++WTeXngKxay6ujomT54cxx13XFx00UXx17/+tcW5b775Ztx5553t3quysjK++tWvxn/+539GZWVlu9cB8iPdc27dunWLsrKynNfhOTcAAFpDzxhoCz1j6Fh6xlCY9IyhuOkbA83RMwYAoJDoGQNtpW8MHUvfGAqPnjEUNz1joDl6xlBc/F82ALTT+vXrE8dramryUkdtbW3ieLo6gfy45JJL4oknnkicM3DgwLjkkkvyVBF0LV//+tdjyZIlzY5deOGFsddee+W5IiCd9evXx4YNGxLn3HHHHXHjjTe2ON6tW7c47rjj4sYbb4znnnsuXn/99diwYUMsWbIknn/++bjzzjvjzDPPjL59+7aqprlz58Ypp5wSqVSqTb8L0LKjjz465syZE3fffXccd9xxUV1dnbW16+rq4ktf+lL87W9/i2uuuUYTGgqE59wAACgkHr8CbaFnDB1LzxgKj54xdB36xsCWPOcGAEAh8fgVaCt9Y+hY+sZQWPSMoevQMwa25Dk3KC7lHV0AABSqjRs3Jo6Xl+fnr9l0+6SrE8i9+++/P6666qrEOSUlJXHTTTfl7dPboSt59NFHY8qUKc2ODR48OC6//PL8FgS0yrp169LO+f3vf9/s7SUlJXHGGWfE1VdfHTvvvPN24zvuuGPsuOOO8eEPfzjGjRsX69ati6uvvjr+67/+K+2+Dz74YEyaNCm++tWvtu4XAdIqKSmJE088Mfbcc8+47bbb4r//+78zavJUVFTEt771rfj2t78d3bp1y2KlQD54zg0AgELi8SvQWnrG0LH0jKEw6RlD16JvDGzmOTcAAAqJx69AW+gbQ8fSN4b/v737jq+6uh8//g6RTVBkOUBwoDKq4AAHCiJK3VL166qCVVxoa92ttc622rrqFhdo66i4tSICIhRQEREn4AAElaEiewSS3x/9dWi5K/feJDd5Ph8P//h6Ts45MdLefl75nk/h0YyhdtGMgX/xzA1qljpVfQAAKFQ+GAPpeP/99+PEE09M+abGc845J/r27VtJp4LaY+XKlXHGGWckHL/jjjuiUaNGlXgiIF0VjVCNGjWKl156KYYNG7bBEL0hDRs2jCuvvDKmTZsW7du3Tzn/V7/6VXz55ZcVOh/wfevWrYuHHnoounTpEh07doxrr70267ealpaWxu9+97vYeuut48wzz4wZM2bk6LRAZfDMDQCAQuLzK5AOzRiqlmYMhUszhtpDNwb+m2duAAAUEp9fgXTpxlC1dGMoTJox1B6aMfDfPHODmsWl1wBQQWVlZUnHi4uLK+UcqfZZv359pZwD+F8LFy6Mww47LJYtW5Z03u677x433HBDJZ0Kapff/va38dlnn21w7Oijj45DDjmkkk8EpKu0tDTjrykpKYmRI0dGv379KrRnhw4dYvz48bH99tsnnbdy5cq4+uqrK7QH8B8vvvhidOjQIQYMGBAffPBBztdfsGBB3HPPPdGpU6c45phj4tNPP835HkDueeYGAEAh8fkVSEUzhqqnGUPh0oyhdtCNgR/yzA0AgELi8yuQDt0Yqp5uDIVJM4baQTMGfsgzN6hZXHoNABWU6i0s69atq5RzpNqnbt26lXIO4PuWL18eBx98cMyePTvpvObNm8cTTzwR9erVq5yDQS0yZcqUuOWWWzY41rRp07j11lsr90BARiryoPm2226LvffeO6t927Rpk9Z/Nw8dOjS+/vrrrPaC2mrVqlVx9tlnx6GHHpry83IulJWVxfDhw6Nr167xwAMP5H0/IDueuQEAUEh8fgWS0Yyh6mnGUNg0Y6jZdGMgEc/cAAAoJD6/AqnoxlD1dGMoXJox1GyaMZCIZ25Qs7j0GgAqKNXDqcr6YJzqzXTiFlS+tWvXRv/+/WPKlClJ5zVs2DCeffbZaNeuXSWdDGqPdevWxWmnnZbwrWi///3vY/PNN6/kUwGZyPRz7OGHHx4DBgzIyd477bRT/Pa3v006Z82aNfHggw/mZD+oTVatWhWHHnpo3HXXXSnnFhcXxwEHHBDXXHNNjBkzJmbOnBnffPNNlJaWxtdffx0zZ86M0aNHx9VXXx19+/aNOnWSP+5evnx5nHrqqTF48OBcfTtAHnjmBgBAIfH5FUhEM4aqpxlD4dOMoebSjYFkPHMDAKCQ+PwKJKMbQ9XTjaGwacZQc2nGQDKeuUHNkvwaewAgoVRvWVm7dm2lnMMHY6he1q9fH8cff3yMGjUq6by6devGE088kfVbIoENu+GGG+Kdd97Z4Fj37t3jrLPOqtwDARnL9HPs7373u5zuf8EFF8TNN98c33zzTcI5Tz75ZFx00UU53RdqsrVr18bhhx8eY8aMSTqvbt26cfrpp8f5558f22yzzQbnNG/ePJo3bx4dOnSIPn36RETEp59+GjfddFMMGTIkaay68847o6ioKG6//faKfzNA3njmBgBAIfH5FdgQzRiqB80YCp9mDDWTbgyk4pkbAACFxOdXIBHdGKoH3RgKm2YMNZNmDKTimRvULMlfRwEAJNSkSZOk48uXL6+UcyxbtizpeKpzArlTXl4ep512Wjz11FNJ59WpUyceeuihOOSQQyrpZFC7fPLJJ3HVVVdtcGyjjTaKe+65J+XbGYGq16hRo7Tn7rPPPtGlS5ec7t+gQYM45ZRTks6ZPHlyfP311zndF2qyK664IuUvbLZr1y7Gjx8ft99+e8IInci2224bd9xxR7z22mvRtm3bpHPvuOOOuPvuuzNaH6gcnrkBAFBIfH4FfkgzhupBM4aaQTOGmkk3BlLxzA0AgELi8yuwIboxVA+6MRQ+zRhqJs0YSMUzN6hZ/C9vAKigTTfdNOn40qVLK+UcqfZJdU4gd37xi1/E0KFDU867++6747jjjsv/gaCWOv3002P16tUbHPvFL34RXbt2rdwDARVSt27dKCkpSWvuwIED83KGVDG6rKws3nzzzbzsDTXNxIkT449//GPSOR06dIi33norevTokdVee+21V0yZMiW23XbbpPMuvPDC+PTTT7PaC8i9VM+ySktLE37ezyXP3AAASIdmDPyQZgzVg2YMNYNmDDWPbgykQzMGAKCQaMbAhujGUD3oxlD4NGOoeTRjIB2aMdQsLr0GgApq3rx50vHvvvuuUs6xZMmSpOOpzgnkxq9//eu47bbbUs678cYbY9CgQZVwIqid7r///nj11Vc3ONauXbuEb2UGqqd0P8vuvffeedm/Y8eOsckmmySd8/bbb+dlb6hpLr300igrK0s4vummm8aLL74YLVq0yMl+LVu2jBdffDHpn+EVK1bERRddlJP9gNxJ57//K+O5W6o9PHMDACBCMwa+TzOG6kEzhppFM4aaRTcG0qEZAwBQSDRj4Id0Y6gedGOoOTRjqFk0YyAdmjHULC69BoAKSvU/jtesWZP3D8bffvttrF27NukcH4wh/37/+9/HH/7wh5Tzrrrqqjj//PMr4URQOy1YsCDpw+Tbb789GjduXIknArKVTpBq1qxZbL/99nnZv6ioKLp37550jje3QmqTJ0+O8ePHJ51z5ZVXRocOHXK67w477BC//e1vk8559tln/TmGaiad//6fP39+3s+Rag/P3AAAiNCMgf/QjKF60Iyh5tGMoebQjYF0acYAABQSzRj4b7oxVA+6MdQsmjHUHJoxkC7NGGoWl14DQAVttdVWKecsWLAgr2dIZ/10zglU3J///Oe47LLLUs676KKLUj4EA7JzzjnnxOLFizc4dtRRR8Whhx5ayScCspXOZ9mOHTtGUVFR3s7QqVOnpONz587N295QUzzwwANJx9u2bRunn356XvY+++yzo02bNgnHy8rK4p577snL3kDFNGrUKGXozfczt5UrV8ayZcuSzmnXrl1ezwAAQGHQjIEIzRiqE80Yah7NGGoO3RhIl2YMAEAh0YyBf9GNofrQjaFm0Yyh5tCMgXRpxlCzuPQaACqoSZMmKT8Yz5kzJ69nmD17dtLxVq1aecsk5NGQIUPivPPOSznvnHPOiT/+8Y/5PxDUYs8991wMHz58g2NNmzaNW2+9tZJPBOTC1ltvnXLOJptsktczNGvWLOn4t99+m9f9oSZ49dVXk44fe+yxUb9+/bzsXb9+/fi///u/pHNGjx6dl72Bimvfvn3S8Xw/c0tn/VRnBACgdtCMAc0Yqg/NGGomzRhqDt0YyIRmDABAodCMgQjdGKoT3RhqHs0Yag7NGMiEZgw1h0uvASALqR6Offzxx3nd/5NPPkk6ns7DO6BiHn744TjzzDNTzjv11FMFMKgE559/fsKxa6+9NrbYYotKPA2QK9tss03KOfmO0anWX7lyZV73h0K3cOHCmDFjRtI5Bx54YF7PkGr9adOmxdKlS/N6BiAz1f2ZW+vWraNRo0Z5PQMAAIWjun9+1YwhfzRjqF40Y6iZNGOoGXRjIFPV/ZmbZgwAwH+r7p9fNWPIL90YqhfdGGoezRhqBs0YyFR1f+amGUP6NqrqAwBAIevcuXO89dZbCcdT/Y/tbKVav3PnznndH2qrJ554Ik455ZQoLy9POu/444+PIUOGRFFRUSWdDGqvr7/+eoN/v2nTplG/fv247777crbX22+/nXT8448/Trlfr169okOHDjk7E9RUXbp0STmnYcOGeT1DqvXXrVuX1/2h0M2aNSvlnO7du+f1DD169Eg6vn79+vj4449j1113zes5gPR17tw5hg8fnnDcMzcAAKoTzRhqJ80Yqh/NGGomzRhqBt0YyJRmDABAIdGMofbSjaH60Y2h5tGMoWbQjIFMacZQc7j0GgCysMsuu8SwYcMSjk+dOjWv+6d6EN6tW7e87g+10XPPPRcnnnhirF+/Pum8/v37x0MPPRR16tSppJMBG7J06dI444wzKnXPiRMnxsSJE5POefDBB4VoSEO3bt2iTp06UVZWlnDOkiVL8nqGVOvnO4ZDofvmm2+SjterVy823njjvJ5hk002ibp160ZpaWnCOanOCVSuXXbZJem4Z24AAFQnmjHUPpoxFBbNGAqbZgw1g24MZEozBgCgkGjGUDvpxlBYdGMoXJox1AyaMZApzRhqDk/FACALqT4Yv/POOyljVUWtW7cupk2blnSOD8aQWy+//HL83//9X9IHWBERBx10UDz22GOx0UbeMQMA2SgpKYntt98+6Zzvvvsur2dYvHhx0vEmTZrkdX8odKn+DDVv3rxSzpFqHyEaqpdUz9zmzZsXCxcuzNv+U6ZMSTrumRsAAP9NM4baRTMGgMqlGUPNoBsDmdKMAQAoJJox1D66MQBUHs0YagbNGMiUZgw1h0uvASALu+22WzRo0CDh+PLly1N+eK2oN998M1auXJlwvEGDBrHrrrvmZW+ojcaOHRv9+/ePNWvWJJ3Xp0+feOqpp6JevXqVdDIAqNl69uyZdDyfD6LTWX/LLbfM6/5Q6IqLi5OOp/p8nSurV69OOl5UVFQp5wDS06ZNm2jXrl3SOWPHjs3L3l9++WXMnDkz6ZxUn08AAKhdNGOoPTRjAKgamjEUPt0YyJRmDABAIdGMoXbRjQGg8mnGUPg0YyBTmjHUHC69BoAsNGjQIPbee++kc1555ZW87D1q1Kik4/vss0/SUA6kb9KkSXHYYYfFqlWrks7r2bNnPPfcc/7sAUAO9evXL+n4hx9+mPSXNLP11ltvJR1P9aAcarvGjRsnHV+8eHGsX78+r2coLS1N+bb2Ro0a5fUMQOb69u2bdLyqnrl16NDBf/8DAPA9mjHUDpoxAFQdzRgKn24MVIRmDABAodCMofbQjQGgamjGUPg0Y6AiNGOoGVx6DQBZOuCAA5KOP/XUU3nZd/jw4UnHDzzwwLzsC7XNlClT4qCDDorly5cnnbf77rvHiy++mPJBGwCQmb59+yZ9e+u6detSBuOKWrlyZbz33ntJ5+y888552Rtqis022yzpeHl5eXzxxRd5PcO8efNSzmndunVezwBkLtUzt+eeey4vv8jimRsAABWhGUPNphkDQNXSjKHw6cZARWjGAAAUEs0Yaj7dGACqjmYMhU8zBipCM4aawaXXAJClo48+Oun422+/HTNmzMjpnu+//37Sh2JFRUUpzwWk9t5770W/fv1iyZIlSeftvPPO8fLLL0fTpk0r6WQAUHtssskmKR/6jhw5Mi97jx49OuVD7h49euRlb6gptt5665RzxowZk9czjB49OuWcdM4JVK5DDjkk6ZvRFy5cmPJtyZn69ttv4+WXX04655hjjsnpngAA1AyaMdRcmjEAVD3NGAqfbgxUhGYMAEAh0YyhZtONAaBqacZQ+DRjoCI0Y6gZXHoNAFnadtttY4899kg657bbbsvpnrfeemvS8b322ivat2+f0z2htpk5c2YccMAB8c033ySd16lTp3jllVeiWbNmlXQyYEO+++67KC8vr5S/rrjiiqRnGTBgQMo1Bg4cWDn/YKCGGDBgQNLx+++/P0pLS3O+71133ZV0vH379rHDDjvkfF+oSVq0aBFt2rRJOmfEiBF5PcNLL72UdHyzzTaLVq1a5fUMQOaaNGkShx9+eNI5uX7mdvfdd8fatWsTjrdt2zb23XffnO4JAEDNoBlDzaQZQ2HRjKFm04yhsOnGQEVoxgAAFBLNGGou3RgKi24MNZdmDIVNMwYqQjOGmsGl1wCQAz/72c+Sjj/44IPx1Vdf5WSvefPmxcMPP5x0jofbkJ3Zs2fH/vvvHwsWLEg6r0OHDjFq1Kho2bJlJZ0MAGqnI444Ilq0aJFwfP78+fHEE0/kdM+PP/445RsYjzzyyJzuCTXVXnvtlXT8qaeeilmzZuVl7+nTp8ezzz6bdM6ee+6Zl72B7KV65vb3v/893nnnnZzstXz58pRx++STT46ioqKc7AcAQM2jGUPNohkDQPWiGUPh042BitCMAQAoJJox1Dy6MQBUH5oxFD7NGKgIzRgKn0uvASAHTjrppKRvalq5cmVceumlOdnrkksuidWrVyccb926dZx00kk52Qtqoy+//DL233//mDdvXtJ57du3jzFjxsTmm29eSScDgNqrQYMG8Ytf/CLpnAsvvDAWL16ck/3Ky8vj9NNPj7KysqTzBg0alJP9oKZL9QbV0tLSuPzyy/Oy92WXXRbr169POuewww7Ly95A9g444IDYaaedEo6Xl5fHeeedl5O9/vCHP8T8+fMTjtevXz/OPffcnOwFAEDNpBlDzaEZA0D1oxlD4dONgYrQjAEAKCSaMdQsujEAVC+aMRQ+zRioCM0YCp9LrwEgB9J5OPbQQw/F008/ndU+f/vb3+KRRx5JOue8886L+vXrZ7UP1FaLFi2K/fffPz777LOk89q0aRNjxoyJNm3aVNLJAIBzzjknNt5444TjX331VZx99tk52evPf/5zjB07NumcAw88MDp16pST/aCmO/zww6NJkyZJ5/z1r3+NIUOG5HTfG2+8MZ566qmkcxo0aOBt6lDNXXLJJUnHX3vttbj55puz2mPixInxxz/+MemcgQMHRuvWrbPaBwCAmk0zhppBMwaA6kszhsKmGwMVpRkDAFAoNGOoOXRjAKieNGMobJoxUFGaMRQ2l14DQI6cd9550bZt26RzBgwYEG+++WaF1n/99dfj1FNPTTqnXbt2KaM4sGHfffddHHjggTF9+vSk8zbbbLMYM2ZMbL311pV0MgAgImKTTTaJq6++Oumcxx57LM4+++woLy+v8D73339/XHDBBUnnFBUVxXXXXVfhPaC2KSkpSeuN5YMHD47HHnssJ3s+8MADcfHFF6ecd8opp0SzZs1ysieQH8cff3zsvvvuSedccskl8fzzz1do/Y8//jiOPvroWLduXcI5JSUlceWVV1ZofQAAahfNGAqbZgwA1ZtmDIVNNwYqSjMGAKCQaMZQ+HRjAKi+NGMobJoxUFGaMRQ2l14DQI40atQobrrppqRzli1bFgceeGC88MILGa397LPPRr9+/WL58uVJ5914443RsGHDjNYGIpYvXx4HHXRQvPPOO0nntWjRIkaPHh0dOnSonIMBAN8zePDg2GWXXZLOueuuu+K4446LRYsWZbT2mjVr4sorr4xBgwZFWVlZ0rlnnnlmdOvWLaP1oba7+OKLk75FPSJi3bp1cfzxx8fgwYNj5cqVFdpn2bJlccopp8Spp56a8s9y48aN41e/+lWF9gEqT1FRUdx+++1RVFSUcE5paWkcc8wxcd9992W09oQJE6JXr17x1VdfJZ13xRVXxGabbZbR2gAA1E6aMRQuzRgACoNmDIVNNwYqQjMGAKCQaMZQ2HRjAKj+NGMobJoxUBGaMRS2ovJsXkkDAPyPE088MR555JGkc4qKiuL444+Pyy+/PHbccceE8z788MO4+uqr4/HHH09r37/85S8ZnxeIOOyww9L6JZHBgwdH165d83+g/2/zzTePQw45pNL2A9Jz5ZVXxlVXXZVwfMCAATF06NDKOxDUMh999FF079495S9qbrLJJnHZZZfFT3/606QPj5cvXx7PP/98XH755fHpp5+m3H+HHXaIt99+Oxo1apTx2aG2u/vuu+Oss85Ka27z5s3j7LPPjtNOOy222mqrlPNnzZoVQ4YMibvvvju+++67tPa4+eab47zzzktrLhSacePGxcyZMzP6mm+++SYuvfTSpHPuvffejM/Sq1evnPxC92WXXRa///3vU8778Y9/HFdffXXStzbPmTMnrr/++rj33nuTvnk54p/nHz16dBQXF2d8ZgAAai/NGAqPZgxkQjOGqqUZQ2HTjaFyaMaaMQAAVUszhsKkGwOZ0I2h6mjGUNg0Y6gcmrFmDNWFS68BIMeWL18eu+22W8yYMSOt+d26dYu99tortt5662jSpEksW7YsZs2aFRMmTIhp06altcaOO+4YkydPjiZNmmRzdKi12rdvH3PmzKnqY/yPXr16xdixY6v6GMAPCNFQ9Z544ok49thjI53HWkVFRbHHHnvELrvsEq1bt47mzZvH0qVLY8GCBTF9+vR49dVXY82aNWnt26JFi5g4cWJOHqhDbXXCCSfEo48+mtHXtG/fPnr27Blt2rSJTTfdNEpKSmLp0qXx7bffxty5c+Mf//hHfP755xmt+ZOf/CSGDx+e9I2uUMgGDhwYw4YNq+pjRETEgw8+GAMHDsx6nfXr10efPn1i3Lhxac3fcccdY5999okOHTpE06ZNY8WKFTF37tx444034vXXX0/rc0SrVq1i6tSpscUWW2R7fAAAahnNGAqPZgxkQjOGqqcZQ2HTjSH/NGPNGACAqqUZQ2HSjYFM6MZQtTRjKGyaMeSfZqwZQ3WxUVUfAABqmiZNmsTLL78c++yzT8ydOzfl/KlTp8bUqVMrvN9WW20VL7/8shANAECtccwxx8SiRYti8ODBKeeWl5fHpEmTYtKkSVnt2axZs3jxxReFaMjSAw88EIsXL44RI0ak/TWzZ8+O2bNn5+wMffr0iYcffliEhgJTXFwczzzzTOy3335p/T9wTJ8+PaZPn17h/TbZZJN4+eWXhWgAACpEMwYAgPzSjKGw6cZARWjGAAAUEs0YAADySzOGwqYZAxWhGUNhqlPVBwCAmqhdu3YxZsyY2HbbbfO6z3bbbRdjxoyJrbbaKq/7AABAdXP22WfHkCFDom7dunnfq23btjFu3Ljo3r173veCmq5BgwbxzDPPxMknn1wl+x977LHxwgsvRKNGjapkfyA7zZo1i1deeSV22223vO7TqlWrePnll6Nr16553QcAgJpNMwYAgPzSjKFw6cZARWnGAAAUEs0YAADySzOGwqUZAxWlGUPhcek1AOTJdtttF5MnT45+/frlZf0f//jHMXny5LwHbwAAqK4GDRoUY8eOjTZt2uRtjyOOOCLeeeed6NKlS972gNqmfv36MWzYsLj33ntjk002qZQ9mzZtGnfeeWc89thj0bBhw0rZE8iPli1bxvjx4/P2Cy277757vPXWW34JDQCAnNCMAQAgvzRjKFy6MVBRmjEAAIVEMwYAgPzSjKFwacZARWnGUFhceg0AedSsWbMYMWJEDB06NFq1apWTNVu1ahXDhg2Ll156qdL+BzsAAFRXe+21V3z00UdxySWXRL169XK27vbbbx/PPvtsPPPMM7HpppvmbF3gP0477bSYMWNG/PznP89bHG7QoEGcffbZMWPGjDjrrLPysgdQ+Ro0aBDDhg2LF154IbbZZpucrFlSUhI33XRTTJo0Kdq2bZuTNQEAIEIzBgCAfNOMobDpxkBFaMYAABQSzRgAAPJLM4bCphkDFaEZQ+Fw6TUAVIIBAwbEZ599FnfccUd07NixQmt06tQp7rjjjpg1a1be3jADAACFqEmTJnHdddfF7Nmz44orrqjwG5nr1asXBx98cDzzzDPx0UcfxeGHH57jkwI/1KpVq/jzn/8cn3/+edx6662x5557RnFxcVZr1qlTJ3r06BE333xzfP7553HHHXfEZpttlqMTA9XJIYccEtOnT4+HH344dt999wqt0a5du/jDH/4Qs2fPjl/+8pdZ/2cQAAAkohkDAED+aMZQ2HRjoKI0YwAAColmDAAA+aMZQ2HTjIGK0oyh+isqLy8vr+pDAEBtM3PmzBgxYkS8/fbb8cEHH8QXX3wRy5Yti5UrV0ajRo2ipKQk2rRpE506dYpddtklDjrooOjQoUNVHxsAiIgrr7wyrrrqqoTjAwYMiKFDh1begYANmjZtWrzyyisxbdq0mD59+vc+c9etWzcaN24cm222WWy99dbRpUuX2HPPPaN3796x8cYbV/XRodZbsmRJjBs3LqZOnRoffPBBzJkzJ+bPnx+LFy+O1atXR2lpadStWzcaNGgQzZo1i8022yzatWsXnTp1iq5du8a+++4bzZo1q+pvA6gCc+fOjZdeeikmT54cH374YcyZMyeWLl0aK1eujPr160dJSUlsvvnm0bFjx+jatWv069cvdt5556o+NgAAtZRmDACFSzOGwqAZQ2HTjYGK0IwBACgkmjEAFDbdGKo/zRgKm2YMVIRmDNWPS68BAAAgA2PHjo2xY8cmHO/atWsceeSRlXYeAAAAAAAAACqPZgwAAAAAAABQu+nGAAAAkJpLrwEAAAAAAAAAAAAAAAAAAAAAAAAAAADIWp2qPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhc+l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAUGCGDh0aRUVFCf+aPXt2VR8RAAAAAAAAgDzRjAEAAAAAAABqN90YAACA6s6l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTNpdcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZM2l1wAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzaXXAAAAkKGxY8dGUVFRwr/Gjh1b1UeEWmn27NlJ/2wOHTq0qo8IAAAAAABADaAZQ/WkGQMAAAAAAFBZdGOonnRjAACoPlx6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDWXHoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNZceg0AAAAAAAAAAAAAAAAAAAAAAAAAAABA1lx6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDWXHoNAAAABWbgwIFRXl6e8K/27dtX9REBAAAAAAAAyBPNGAAAAAAAAKB2040BAACo7lx6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDWXHoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNZceg0AAAAAAAAAAAAAAAAAAAAAAAAAAABA1lx6DQAAAAAAAAAAAAAAAAAAAAAAAAAAAEDWXHoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNY2quoDAAAAAFD4Fi9eHLNnz46lS5fGkiVLYunSpVFWVhaNGjX6918tWrSI9u3bR5MmTar6uFSyBQsWxPTp02Px4sWxbNmyKCoqipKSkmjTpk3suOOO0bhx46o+IgAAAAAAAJAFzZhkNGMAAAAAAACo+XRjktGNAQBqH5deAwAAADmzatWqGD16dIwZMyY++OCDmDlzZixZsiSWLVsWDRo0iGbNmkW7du2iR48e0bt37zjooIOiuLg4633nzp0bzz//fEyZMiWmTZsW8+fPjyVLlsSqVauicePGsfnmm8cOO+wQPXv2jMMOOyx23HHHHHy3uTN9+vSYMGFCvPnmm/HZZ5/FrFmzYvHixbFy5cooLS2Nxo0bR9OmTaNdu3ax3XbbxR577BG9evWKjh07VtmZ58yZE4899li8/vrrMXXq1JgzZ07aX9u8efPYeuuto2vXrrHnnnvGHnvsER07doyioqI8nrh6Wr16dbz55psxYcKEePfdd2PWrFkxd+7cWL58eaxcuTKKi4ujcePG0aJFi9hmm22iU6dO0bNnz+jdu3c0a9asqo+f0Jo1a+Lpp5+O5557Ll555ZX4+uuvE84tKiqKbt26xSGHHBIDBw6MbbbZphJPCgAAAAAAQC5pxhWjGWvGmrFmDAAAAAAAUFPoxhWjG+vGurFuDABQ0xSVl5eXV/UhAAAAoLrq3bt3vPbaa5W2X69evWLs2LFJ5wwdOjROOeWUhOOzZs2K9u3bV2j/iq798ccfx4033hgPP/xwrFy5Mu39tthiixg8eHBccMEFUb9+/YzP+8wzz8QNN9wQEydOjEweceyzzz5xzTXXRK9evTLeM1fmzJkT9957bzz++OPxySefVGiNzp07x8knnxxnnHFGbLzxxjk+4Yb97W9/i7vuuitee+21jP6Zp9KqVas46qij4phjjolevXpFnTp1ks4fOHBgDBs2LGf7p9KuXbuYPXt2ztYbOXJkDBs2LJ577rlYvnx5xl9ft27d6NevX5x55plxyCGH5Oxc/2327Nmx9dZbJxx/8MEHY+DAgd/7e6WlpXHLLbfETTfdFPPnz894zzp16sThhx8e119/fWy//fYZfz0AAAAAAECuacbpra0ZZ04z/j7NODOaMQAAAAAAQOXRjdNbWzfOnG78fbpxZnRjAACqu+Sf6AEAAACSWL16dVx66aXRsWPHuOeeezKK0BERX375ZVx22WXRpUuXmDBhQtpfN23atNh9992jf//+MWHChIyD6Pjx46N3794xaNCgjM+crdmzZ8fJJ58c2223Xfzud7+rcISOiPjggw/ikksuiXbt2sV1110XpaWlOTzp93300Uex3377xbHHHhtjx47NaYSOiFi4cGHcdddd0adPn/j1r3+d07Wrk+eeey66desW/fr1i0ceeaRCETrin8H3hRdeiEMPPTS6desW48ePz/FJMzdt2rTYdddd4+KLL65QhI6IKCsri2eeeSa6dOkS1157bZSVleX4lAAAAAAAAOSSZpw5zXjDNOPMaMYAAAAAAABUF7px5nTjDdONM6MbAwBQ3bn0GgAAAKiQefPmRY8ePeL666+P9evXZ7XWJ598Evvvv388/vjjKefedttt0aNHj3jrrbey2jMi4r777ov9998/vv3226zXSqWsrCyuv/766Ny5czz88MOxbt26nK29ZMmS+NWvfhW77rprTJ8+PWfr/ssDDzwQXbt2Tflm8FzJ5T+b6mLevHlx2GGHxRFHHBHvvPNOTtd+5513olevXjF48OBYu3ZtTtdO14gRI2LvvfeO9957LyfrlZaWxuWXXx4HHXRQhWM9AAAAAAAA+aUZZ0YzTp9mnBnNGAAAAAAAgKqiG2dGN06fbpwZ3RgAgOrIpdcAAABAxmbOnBl77LFHvPvuuzlbc82aNXHCCSfECy+8kHDOpZdeGj//+c9jzZo1Odv39ddfj8MPPzyna/7QN998EwcddFBceumleX3b83vvvRc9evSIESNG5GzNu+66K0499dQqC5w1wZgxY2KXXXZJ+u92tsrLy+POO++M3r17xzfffJO3fTZk1KhRcfjhh8eKFStyvvbIkSOjb9++8d133+V8bQAAAAAAACpOM86MZly7acYVpxkDAAAAAABUX7pxZnTj2k03rjjdGACgcLn0GgAAAMjIggUL4sc//nF88cUXOV+7rKwsTjjhhJgxY8b/jP3qV7+K66+/Pud7RkRMmDAhLrjggrys/cUXX8See+4ZI0eOzMv6P7R06dI44ogj4sUXX8x6rfHjx8c555yTg1PVXo8++mgceOCBsWjRokrZb9KkSbH//vtXWoyePn16HHPMMVFaWpq3Pd5444046qij8roHAAAAAAAA6dOMM6MZ126acfY0YwAAAAAAgOpHN86Mbly76cbZ040BAArTRlV9AAAAAKBwrF+/Po466qiYNWvWBseLi4tjzz33jJ122ilat24dLVq0iKVLl8bChQvj9ddfjzfeeCPKysqS7rFs2bI4++yzY/To0f/+e48++mhcd911Cb+mVatW0adPn2jTpk20bt06GjZsGAsWLIjZs2fHiBEj0oqAd955Zxx77LGxzz77pJybri+//DJ69eoVn376aVrz69SpEzvttFPstttu0bJly2jevHk0bNgwFi1aFIsWLYq333473nzzzVi/fn3SddauXRtHH310TJgwIXbZZZcKnX3dunXxs5/9LOXPKyJi2223jR//+MfRo0eP2G677aJdu3bRuHHjaNy4cZSWlsaSJUtiyZIl8e2338YHH3wQ7777brz33nvx5ptv5vVt1FXtkUceiZNOOimtf4YRESUlJbH33ntHhw4donnz5tG8efMoLS2NhQsXxldffRVjx46NOXPmpFxn2rRpccQRR8Srr74adevWzfbbSGj9+vVx0kknJXwzcrt27eL444+PPn36RMeOHaNFixZRXFwcS5YsiY8//jjGjx8fw4cPj8mTJ6fca8yYMXHeeefFHXfckePvAgAAAAAAgExoxpnRjDVjzVgzBgAAAAAAqGl048zoxrqxbqwbAwDUVi69BgAAgCQuuuii+OlPf/q9vzdjxoy44YYbEn7NhRdeGDvssEOF9tt8880r9HWV5frrr48JEyb8z9/fcsst44orroif/OQn0bx584Rfv2DBgrjqqqvinnvuSRrnxowZE08//XT0798/pk+fHqeddtoG5x133HHxi1/8Irp37x516tTZ4JyysrL4+9//Hr/4xS/is88+S7hneXl5XHTRRfH6668nnJOJ1atXx5FHHplWhO7Ro0ecf/750a9fv9h4442Tzl28eHEMHz48rrnmmpg7d27S/fv37x/vvPNONGvWLOPzP/TQQ/HJJ58knbPHHnvENddcE3379k04Z6ONNoqGDRvGZpttFhERe+6557/HVq1aFaNGjYrnn38+nn322Vi4cGHa5/vZz34WPXv2/N7f++abb+LSSy9N+DWnnHJK7LXXXmnv8d9KSkoymj9x4sQ45ZRTUkboevXqxU9/+tM488wzY5dddoni4uKk8z/66KO4/fbb49577036NuIJEybE+eefH7fddltG587E7bffHu+8887//P3WrVvH9ddfHz/96U83+P20aNEiWrRoEXvuuWdcfPHFMX78+Pj5z3++wbX+25133hmHHHJIHHzwwTn6DgAAAAAAAFLTjL9PM06fZvxPmrFm/EOaMQAAAAAAUGh04+/TjdOnG/+Tbqwb/5BuDABQOxSVl5eXV/UhAAAAoJCMHTs29ttvv4Tjr776avTu3Ttv+w8dOjROOeWUhOOzZs2K9u3b52XtHyoqKopLLrkkLr/88mjUqFHaXzdq1Kg47LDDYvXq1Qnn7L333jF+/Pjo3bt3jBs37ntjHTt2jAceeCD22GOPtPdctWpV/OQnP4kRI0YknTdu3LicvIH51FNPjQceeCDpnG222Sbuu+++pP8+JbJ69er4/e9/H9dee20ke7xzyimnpDzHhuy1114xadKkhOPnnHNO3HLLLSnDabrWrl0bjzzySNx8881xwAEHJP1lj0Rmz54dW2+9dcLxBx98MAYOHJjFKdPz9ddfR5cuXWLBggVJ551wwglxww03VOgXUD755JMYMGBATJw4MeGcoqKiePXVV6NXr14Zrx+R+p/nhuy9997x5JNPRuvWrTP6urVr18a5554bQ4YMSTqvTZs2MXPmzGjYsGFG6wMAAAAAAOSSZvwfmnFimnFmNOPMaMaaMQAAAAAAULV04//QjRPTjTOjG2dGN9aNAQCquw2/lggAAAAgheLi4rj//vvjD3/4Q0YROiKib9++8eijjyad86+3x/4wQnfv3j3Gjx+fUYSOiGjYsGE8+eSTsdtuuyWdlyqEpWPEiBEp4+8xxxwTU6dOrVCEjoho0KBBXH311fHII49E/fr1E8578MEHkwblDfn222+TvoX6wAMPjFtvvTVnETrin28hHjhwYEybNi0uvvjinK1bFc4555ykEbphw4Zx3333xV//+tcKv3F9u+22i9GjR8exxx6bcE55eXmcddZZKd8AnSs9e/aMkSNHZhyhI/7587/nnnvi3HPPTTpv3rx5FfolBQAAAAAAAHJPM05MM86cZpwZzRgAAAAAAIDqQDdOTDfOnG6cGd0YAIDqzqXXAAAAQIXcc889Gb2p+YeOPPLIOOKII5LOueWWW773f3fu3DlGjx4dzZs3r9CejRo1ijvuuCOKiooSznn++edj7dq1FVo/IqK0tDTOPvvspHOOPfbYePzxx6Np06YV3udfjjvuuLjvvvuSzrniiisyWvOtt95K+kbna665Juk/w2y1atUqb2vn26hRo+Lxxx9POF5cXByPP/54nHrqqVnv1aBBg3jkkUfigAMOSDjno48+isceeyzrvVJp06ZNPPXUUxn/UsoP3XLLLUm/n4iIm266KZYvX57VPgAAAAAAAGRPM94wzTh7mnF6NGMAAAAAAACqmm68Ybpx9nTj9OjGAABUZy69BgAAADL2k5/8JCch7Xe/+13ac+vWrRt/+ctfokmTJlnt2b1796QBfMmSJRm/rfi/3XfffTFr1qyE4/vss08MGzYspyH3pz/9aQwaNCjh+CuvvBLvvvtu2ut99tlnCcdat24d3bt3z+h8tclvfvObpOO33XZbHHbYYTnbr06dOvHXv/41tthii4Rzbrzxxpztl8hNN90ULVu2zHqdOnXqxN133530jeLfffddPPjgg1nvBQAAAAAAQMVpxolpxrWbZpwdzRgAAAAAAKBw6MaJ6ca1m26cHd0YAKDmcOk1AAAAkJGSkpK45557crJW586do3PnzmnNvfjii6Nr16452fe4445LOj5x4sQKrVtWVhbXX399wvG6devG/fffnzSyVdQf//jHKCkpSTj+wAMPpL3W4sWLE45ttdVWGZ2rNhkzZky88cYbCcd79+4dZ511Vs73bdmyZVx99dUJx99+++145513cr7vv+yzzz5xzDHH5Gy9bbbZJn75y18mnXP//ffnbD8AAAAAAAAyoxknphnXbppxbmjGAAAAAAAA1Z9unJhuXLvpxrmhGwMA1AwuvQYAAAAyMmDAgGjRokXO1uvfv3/KOfXq1Ytzzz03Z3secsghUa9evYTjFY12I0eOjDlz5iQcP/fcc6NDhw4VWjuVTTbZJM4444yE43/7299yss+6detysk5NNGTIkIRjderUiVtuuSVve5900kmx5ZZbJhx//PHH87Z3Jm9RT9evf/3rpG9anzZtWkyfPj3n+wIAAAAAAJCaZpyYZly7aca5oxkDAAAAAABUb7pxYrpx7aYb545uDABQ+Fx6DQAAAGRk8ODBOV1vl112STnn6KOPjtatW+dszyZNmsT222+fcHzGjBkVWnfYsGEJx+rUqRMXXnhhhdZN1+mnn55w7Kuvvor33nsvrXWaN2+ecGzmzJmxatWqjM9W0y1dujSefvrphOMHHnhg7Lzzznnbv169ejFgwICE4yNHjszLvu3bt4999tkn5+uWlJTEEUcckXTOCy+8kPN9AQAAAAAASE0zTkwzrr0049zSjAEAAAAAAKo33Tgx3bj20o1zSzcGACh8Lr0GAAAA0rbjjjvGjjvumNM1O3bsmHJOqiBVEZ06dUo49vnnn2e83vr162PEiBEJx/fdd9/YfPPNM143Ex06dIgtttgi4fhrr72W1jotW7ZMOLZixYp48MEHMz5bTffKK6/E2rVrE44fd9xxeT9D7969E45NnTo1li5dmvM98/l9nXDCCUnHx44dm7e9AQAAAAAA2DDNODHNuHbTjHNPMwYAAAAAAKiedOPEdOPaTTfOPd0YAKCwufQaAAAASNuee+6Z8zW33XbbKtl3u+22Szj23Xffxbp16zJa7/XXX4/vvvsu4fjRRx+d0XoVte+++yYcmzp1alprdO/ePen4pZdeGhMnTszoXDVdsl9CKC4ujiOPPDLvZ9hrr72iuLh4g2Pl5eUxbdq0nO/Zv3//nK/5LwceeGA0adIk4bh/BwEAAAAAACqfZpyYZly7aca5pxkDAAAAAABUT7pxYrpx7aYb555uDABQ2Fx6DQAAAKRtjz32yPmadevWjfr16ycc32KLLaJt27Y537ekpCThWHl5ecZvqn3jjTeSju+6664ZrVdR7dq1Szj23nvvpbXGlltuGTvssEPC8WXLlkWfPn3i8ssvz8sbfQtRsp//dtttFxtvvHHez9C4ceNo0aJFwvF0f/7pKi4ujp122imna/63jTbaKH70ox8lHF+8eHF8+eWXedsfAAAAAACA/6UZJ6YZ126ace5pxgAAAAAAANWTbpyYbly76ca5pxsDABQ2l14DAAAAactHEI6IpG9YbdOmTaXvGRGxZs2ajNZL9WbjTp06ZbReRTVv3jzh2Lx589Je52c/+1nS8TVr1sS1114bW2yxRZx++ukxevTojN9YXVOsWbMmPvroo4TjlfWzj8jdzz8dO+ywQzRo0CCna/7QzjvvnHT8gw8+yOv+AAAAAAAAfJ9mnJhmrBknohlXnGYMAAAAAABQ/ejGienGunEiunHF6cYAAIVro6o+AAAAAFA4mjVrlpd1GzduHN98802l75nM2rVrM1pv+vTpSff629/+ltF6FZXsDbsLFiyI9evXR3Fxccp1zj777PjTn/4UX3/9ddJ5K1asiHvvvTfuvffeaNasWey///7Ru3fv6N27d3Tq1CmKiooy/h4KzSeffJI0wq9YsSLuu+++SjlLsl+g+OKLL3K6Vz7fvPwvqUJ0ruM6AAAAAAAAyWnGiWnGmnEimnHFacYAAAAAAADVj26cmG6sGyeiG1ecbgwAULhceg0AAACkLV9ROFmsrIo9IyLKy8szWm/u3LkJx1asWBGDBg3KaL18KCsri+XLl8fGG2+ccm6TJk3igQceiCOOOCLtfxaLFy+O4cOHx/DhwyPinz+7PfbYI/baa6/o2bNn9OjRIxo2bJjV91AdJfvZR0SMHDkyRo4cWUmnSWzp0qU5XW+LLbbI6Xobsvnmmycd/+qrr/J+BgAAAAAAAP5DM05MM9aME9GMK04zBgAAAAAAqH5048R0Y904Ed244nRjAIDCVaeqDwAAAAAUjvr169eKPTO1bt26WLhwYVUfIy2rVq1Ke+5hhx0Wf/rTnyr8BuXFixfHSy+9FJdffnnst99+semmm0a/fv3izjvvjPnz51dozeroyy+/rOojpCWTn306mjZtmtP1KrJHore2AwAAAAAAkB+a8YZpxhumGVcvmjEAAAAAAAC5oBtvmG68Ybpx9aIbAwBQmVx6DQAAAJClFStWZPy25qqyZs2ajOZfcMEF8cQTT0STJk2y3nv16tUxcuTIGDx4cLRp0yYOPfTQGDFiRNbrVrVly5ZV9RHSkunPPpXqEKJXr16d9zMAAAAAAABAKppxejTjqqUZAwAAAAAAQP7oxunRjauWbgwAQGVy6TUAAABAlnL9Vtt8qkgwP+qoo+KDDz6Ik08+OerUyc3jpPXr18eLL74YBx10UOy2227x2muv5WTdqlAoP/9c/7JESUlJTtfbkFQhOtdxHQAAAAAAACqiUJphhGacD4Xy89eMAQAAAAAAIH8KpRtG6Mb5UCg/f90YAIDK5NJrAAAAgCyVlpZW9RHybquttophw4bFu+++G+eee240b948Z2tPmTIlevfuHYMHD461a9fmbN3KUht+/htSGd93qj1y9YsRAAAAAAAAkI3a0Aw148Rqw89/QzRjAAAAAAAA+I/a0A1148Rqw89/Q3RjAACS8UkNAAAAIEv169ev6iNUms6dO8ett94aX375ZTz//PPx85//PLp06RJFRUVZr33nnXfGQQcdVHAxujb9/P/b0qVLq3yPBg0a5P0MAAAAAAAAkEptaoaa8f+qTT///6YZAwAAAAAAwH/Upm6oG/+v2vTz/2+6MQAAyWxU1QcAAAAAKHSNGjVKOr7lllvGvHnzKuk0laNevXpx6KGHxqGHHhoREYsWLYpx48bFuHHj4h//+EdMmzYt1q9fn/G6Y8aMidNOOy0eeuihXB85b1L9/C+77LK49tprK+k0lWfZsmV53yNViG7cuHHezwAAAAAAAACpaMaacTKaccVpxgAAAAAAABQK3Vg3TkY3rjjdGACgcNWp6gMAAAAAFLrGjRsnfQPv6tWrK/E0VaNly5Zx1FFHxZ///OeYMmVKfPfdd/HSSy/FhRdeGJ07d85orYcffjj+9re/5emkude8efOk4zX1579kyZK875EqRLdq1SrvZwAAAAAAAIBUNGPNOJma+vPXjAEAAAAAAOA/dGPdOJma+vPXjQEASMal1wAAAABZKioqirZt2yYcX7x4caxbt64ST1T1mjRpEj/+8Y/jT3/6U7z//vsxc+bM+O1vfxubb755Wl9/5ZVXRllZWZ5PmRtbbbVV0vGFCxdW0kkq18cff5z3PWbOnJl0PN1/nwAAAAAAACCfNOP/pRn/h2ZccZoxAAAAAAAAhUI3/l+68X/oxhWnGwMAFC6XXgMAAADkwDbbbJNwrKysLD7//PNKPE3106FDh7jqqqti9uzZceONN0bDhg2Tzv/oo49izJgxlXS67CT72UdEzJ49u3IOUsmmTZtW5Xtsu+22eT8DAAAAAAAApEMzTk4zrnk0YwAAAAAAAPg+3Tg53bjm0Y0BAEjGpdcAAAAAOdCtW7ek45UR7QpBvXr14vzzz48XX3wxGjRokHTuK6+8Ukmnys7mm28em222WcLxd999N8rLyyvxRJVj/vz5eX+zdLI/N0VFRdGpU6e87g8AAAAAAADp0ozToxnXHJoxAAAAAAAAfJ9unB7duObQjQEASMal1wAAAAA50KNHj6Tj//jHPyrpJIVhv/32i0suuSTpnPHjx1fSabLXvXv3hGNLliyJ999/vxJPU3kmTJiQt7UXLVoUH3/8ccLx7bbbLho3bpy3/QEAAAAAACATmnFmNOOaQTMGAAAAAACA/9CNM6Mb1wy6MQAAibj0GgAAADJUXFycdLy0tLSSTkJ10qtXr9hoo40Sjj/77LOVeJrCcNZZZ0VRUVHC8a+++iqj9aryz2bfvn2TjtfUn/9jjz2Wt7Uff/zxKCsrSzjeq1evvO0NAAAAAACQjGbMhmjGmdOMC59mDAAAAAAA1Fa6MRuiG2dONy58ujEAAIm49BoAAAAyVK9evaTjq1atqqSTUJ1suummScPYp59+Gq+++molnqj6a926dWy33XYJx7/++uuM1qvKP5tHHnlk0vEHHnggaVQtVM8//3wsX748L2s/8sgjScf79OmTl30BAAAAAABS0YzZEM04c5px4dOMAQAAAACA2ko3ZkN048zpxoVPNwYAIBGXXgMAAECGSkpKko4vXbq0kk5CdXPiiScmHf/9739fSScpHC1atEg4tmbNmozWqso/m23bto1999034fisWbPi0Ucfzdv+VWXVqlXx0EMP5Xzdd999NyZNmpRwvEGDBnHIIYfkfF8AAAAAAIB0aMYkohlnTjMubJoxAAAAAABQW+nGJKIbZ043Lmy6MQAAibj0GgAAADLUsmXLpOOfffZZJZ2E6ub4449PGlZHjRoVTz31VCWeqPpL9obljTfeOKO1GjVqFI0aNUo4nu8/m+eee27S8UsvvTSWLFmS1zNUhSuvvDLn39d5552XdPzggw+Opk2b5nRPAAAAAACAdGnGJKIZZ04zLnyaMQAAAAAAUBvpxiSiG2dONy58ujEAABvi0msAAADIUIsWLaJhw4YJxz/88MNKPA3VSYMGDVIGtEGDBsWsWbMq50DV3DfffBOzZ89OOL7NNttkvGbbtm0TjuX7z2b//v1jxx13TDg+b968OPXUU6O8vDyv56hsixYtiquvvjpn6z399NPx6quvJp0zePDgnO0HAAAAAACQKc2YRDTjzGjGNYNmDAAAAAAA1Ea6MYnoxpnRjWsG3RgAgA1x6TUAAABkqKioKLbffvuE4yNHjox169ZV4omoTs4///ykMfTbb7+NAw44IGmAzbVPPvkk3n333bTn33rrrTFv3rw8nuif7r///igtLU04vttuu2W8ZrIQPHny5Fi0aFHGa6aruLg4/vSnPyWd8+STT8aZZ54Z69evz9s5/lt5eXk8++yzUVZWltd9/vznP8fIkSOzXmfu3LlxxhlnJJ3TrVu36NOnT9Z7AQAAAAAAVJRmTDKacfo04/zTjAEAAAAAAPJDNyYZ3Th9unH+6cYAAFQVl14DAABABfTo0SPh2OLFi+Ouu+6qxNNQnTRs2DBuv/32pHM+/fTT2GWXXeL555/P61nefPPNOPHEE2PHHXeMN998M+2ve+CBB2LbbbeNQYMGxXvvvZeXs02dOjWuuOKKpHMOPfTQjNdN9mezrKwsrrvuuozXzMShhx4a/fv3TzpnyJAh0adPn/jyyy/zdo41a9bEQw89FF27do0jjzwy7yF6/fr1ccwxx8SkSZMqvMb8+fPjwAMPTPnLAtdff32F9wAAAAAAAMgVzZhENOP0aMaa8Q9pxgAAAAAAQKHRjUlEN06Pbqwb/5BuDABQs7j0GgAAACqgb9++SccvuuiiuOGGG2LFihWVdCKqk8MPPzzOPPPMpHMWL14cRxxxRJx++unx2Wef5WzvhQsXxm233Ra77bZb9OjRIx555JEKvel37dq1cd9998VOO+0U++67b9x///2xdOnSnJzx6aefjt69e8fq1asTzmnXrl3069cv47VT/dm85ZZb4tJLL43FixdnvHa67rvvvthyyy2Tzhk3blx07do17r777li1alXO9p48eXL88pe/jDZt2sSAAQMyeut2poqKir73fy9dujT233//ePDBBzNea9KkSdG9e/eYPn160nmHHXZYHHDAARmvDwAAAAAAkGuaMcloxslpxprxD2nGAAAAAABAIdKNSUY3Tk431o1/SDcGAKh5isrLy8ur+hAAAABQaFasWBGbbbZZLF++POm8xo0bxz777BOdO3eO1q1bR5MmTaJu3boJ52+++eZxyCGHJF1z6NChccoppyQcnzVrVrRv3z7pGlWxdjLt27ePOXPmbHBswIABMXTo0Jzvme/vdc2aNdGvX7947bXXUs4tLi6O/v37x4ABA6Jnz56xySabpL3PihUrYvLkyTF+/Ph46aWX4o033tjgm3bvvffeOO2009Jas2vXrjFt2rT/+fv16tWL3r17x8EHHxz77rtv7LTTTlFcXJz2OUeOHBm33HJLjBs3LuX8oUOHxoABA9Ja+4e23XbblHG/Xr160bNnz+jSpUtsueWW0bhx46hfv37C+SUlJXHsscemfYa33nor9ttvv5T/GRER0bJlyzjrrLPisMMOi65du8ZGG22U9j5z586N119/PUaPHh0vvfRSfP755xucV1pamtG6ERGzZ8+OrbfeOuH4mWeeGUOGDNngv2/77rtvXHbZZXHAAQf8T7D+b++//37ceOON8dBDD6V8Q3SLFi3ivffei8022yz9bwIAAAAAACBPNOPc0ow14x/SjNOjGQMAAAAAAFQd3Ti3dGPd+Id04/ToxgAAVFeZffoEAAAAIuKfgfn000+Pm266Kem8FStWxIgRI2LEiBFprdurV6+UIZrCUL9+/Xj22WejT58+8fbbbyedu379+hg+fHgMHz486tSpE126dIlu3bpF8+bNY9NNN41NN900ioqKYvXq1bFkyZKYP39+zJ07N6ZPnx6zZs1KGfByZe3atTFy5MgYOXJkREQ0atQoOnbsGDvssENsueWW0apVq2jUqFEUFxfHypUrY/ny5TF79uz46KOPYurUqUnftvzfDjrooDj55JMrfM7zzjsvfv7zn6f8XsaMGRNjxoxJa8127dplFKJ32223eOqpp+Lwww9P+X0vWrQorr766rj66qujSZMmsccee8S22277759906ZNo7S0NFatWhVff/11zJ8/Pz799NOYPn16fP3112mfKdd69OgRjRo12uB/Do4bNy7GjRsXrVu3jt69e0enTp2iefPmUVxcHEuWLImPP/44/vGPf8SMGTPS2qtOnToxbNgwERoAAAAAAKg2NGNS0Yw1Y81YMwYAAAAAAGo23ZhUdGPdWDfWjQEAajOXXgMAAEAF/eY3v4m//vWvsWDBgqo+CtXUxhtvHK+++mr0798/7eBZVlYW7777brz77rt5Pl32Vq5cGVOmTIkpU6bkbM3OnTvHX/7yl6Rv7E3ljDPOiHvuuSc++OCDnJ2rIg444IB45ZVX4vDDD4/Fixen9TXLly+PUaNGxahRo/J8uty47rrr4u23346xY8ducHzBggXx+OOPZ73PLbfcEgcffHDW6wAAAAAAAOSSZkwqmnHmNGPNeEM0YwAAAAAAoLrSjUlFN86cbqwbb4huDABQeOpU9QEAAACgUDVr1iyefPLJaNSoUVUfhWqsadOm8dJLL8Uvf/nLrOJqbbD77rvH6NGjY9NNN81qnXr16sVTTz0VLVu2zNHJKq5nz57xxhtvxK677lrVR8mLunXrxpNPPhk777xz3va44YYb4txzz83b+gAAAAAAABWlGZMOzTh9mnHh0YwBAAAAAIDaTjcmHbpx+nTjwqMbAwCQiEuvAQAAIAt77713jB8/PnbYYYeqPgrVWL169eKmm26KkSNHVsm/KzvttFP86Ec/qvR901W3bt248MILY9y4cdG6deucrLn99tvH66+/Hj169MjJetno0KFDTJo0KX77299Gw4YNK3XvevXqxU9+8pMoLi7O2x6bbrppjBs3Lvr06ZPTdZs0aRJ//etf44ILLsjpugAAAAAAALmkGZMOzTg5zTh/NGMAAAAAAID8041Jh26cnG6cP7oxAABVxaXXAAAAkKVddtkl3n333RgyZEh07dq1qo9DNda3b994//334/bbb49tttkmr3u1atUqzjvvvJg6dWpMmzYtoyD7l7/8Ja655pro3r173t8Y3bdv35g2bVr86U9/igYNGuR07W222SYmTZoUjz32WPTs2bNK335dt27duOqqq2LGjBkxaNCgvAfp3XffPW6//fb46quv4sknn8z79960adMYOXJk/PGPf8zJ97bffvvFlClT4oQTTsjB6QAAAAAAAPJLMyZdmvH/0ozzQzMGAAAAAACoXLox6dKN/5dunB+6MQAAVW2jqj4AAAAA1AT16tWLQYMGxaBBg2L27NkxduzYeOutt2LmzJkxb968+Prrr2PZsmWxdu3aKCsrq+rjUoU22mijGDx4cJx11lnx97//PR599NF48cUXY8mSJVmtW79+/dhzzz2jb9++0bdv39htt90q/MbdLl26RJcuXeI3v/lNLFy4MF5++eX4xz/+ERMnTowPP/ww63+H27ZtGyeeeGKcdNJJ0alTp6zWSqWoqCiOPfbYOPbYY2P+/Pnx6quvxuTJk2PGjBnx+eefx6JFi2Lp0qWxZs2aSvmz2bZt2xgyZEhcd9118dBDD8WTTz4ZEydOzHrv1q1bR58+faJv375xwAEHRNu2bXN04vQVFxfHRRddFCeeeGLcfPPNcd9998V3332X0Rq9e/eOCy64IA499ND8HBIAAAAAACBPNGPSpRlrxppxYpoxAAAAAABQyHRj0qUb68a6cWK6MQBAzVFUXl5eXtWHAAAAAKjNSktLY8qUKTF58uR45513YtasWTF37tz49ttvY9WqVbFmzZpo1KhRlJSURElJSTRt2jTatm0bO+6447//+tGPfpT3N/pGRCxduvTfIfeTTz6JTz/9NObMmRNLliyJZcuWxfLly2P9+vVRUlISG2+8cTRt2jRat24dO+20U3Tr1i26desWHTt2rNI3IVc333zzTUyaNCkmT54cH374YXz++efxxRdfxLJly2LVqlVRXl7+7599SUlJNGvWLLbbbrt//+w7deoUHTp0yPm5Zs+eHVtvvXXC8QcffDAGDhyYcLy0tDTGjRsXo0aNivfeey9mzJgR3377bSxbtiyKioqipKQkttxyy+jcuXPsvffecfDBByfdDwAAAAAAAGoqzbh204w1YwAAAAAAANCNazfdWDcGAKiJXHoNAAAAAPyPbEM0AAAAAAAAAIVLMwYAAAAAAACo3XRjAACyUaeqDwAAAAAAAAAAAAAAAAAAAAAAAAAAAABA4XPpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZc+k1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAFlz6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWXPpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZc+k1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAFlz6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWXPpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZc+k1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAFlz6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWXPpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZc+k1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAFlz6TUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWXPpNQAAAAAAAAAAAAAAAAAAAAAAAAAAAABZc+k1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAFkrKi8vL6/qQwAAAAAAAAAAAAAAAAAAAAAAAAAAAABQ2OpU9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKHwuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgay69BgAAAAAAAAAAAAAAAAAAAAAAAAAAACBrLr0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAIGsuvQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAga/8P/kBL2UalLtMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "# Step 2: Constrain theta and epsilon, so that 2 epsilon <= theta\n", + "# Step 2: Constrain theta and epsilon so that 2 epsilon <= theta\n", "\n", - "SAVED_RESULT_TO_USE = os.path.join(SAVED_RESULTS_DIR, \"cddf5173-7555-4641-b74a-23a01cf4f9cf.json\")\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", "\n", - "with open(SAVED_RESULT_TO_USE, \"r\") as f:\n", - " results: FunmanResults = FunmanResults.model_validate(json.load(f))\n", + " epsilon = funman_request.parameter(\"epsilon\")\n", + " theta = funman_request.parameter(\"theta\")\n", + " \n", "\n", - "# Plot the trajectories\n", - "results.plot(variables=[\"Infected\"], label_marker={\"true\":\",\", \"false\": \",\"}, xlabel=\"Time\", ylabel=\"Infected\")\n", + " funman_request.constraints = [\n", + " StateVariableConstraint(name=\"peak_infected1\", variable=\"Infected\", interval=ramp_up_infections, timepoints=Interval(ub=peak_time.lb)),\n", + " StateVariableConstraint(name=\"peak_infected2\", variable=\"Infected\", interval=peak_infections, timepoints=peak_time),\n", + " StateVariableConstraint(name=\"peak_infected3\", variable=\"Infected\", interval=ramp_down_infections, timepoints=Interval(lb=peak_time.ub)),\n", + " LinearConstraint(name=\"2_eps_le_theta\", variables=[epsilon.name, theta.name], additive_bounds=Interval(lb=0), weights=[-2, 1])\n", + " ]\n", "\n", - "# Plot the parameter space\n", - "ParameterSpacePlotter(\n", - " results.parameter_space, plot_points=True, parameters=[\"epsilon\", \"theta\", \"timestep\"]\n", - " ).plot(show=True)" + " results_parameter_constraint = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIDARTHE demo step 2\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " summary = summarize_results([\"Infected\"], results_parameter_constraint, ylabel=\"Infected\")\n", + " print(summary)" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqUAAAITCAYAAAA+S2VaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABH4ElEQVR4nO3deXxU9b3/8fdMVkKSCZFFlLAIyE6ChC0QdhAFWpWquHD1JypdrMtVL3B779V7q6W17b3uLda61KKoWK2IigZZAmFfIiK77MhmkklCINuc3x/DZIEsM8nMnFlez8djHpzMOfM9HxgL736/5/v9WgzDMAQAAACYyGp2AQAAAAChFAAAAKYjlAIAAMB0hFIAAACYjlAKAAAA0xFKAQAAYDpCKQAAAExHKAUAAIDpCKUAAAAwHaEUQEjq3LmzevToobS0NPXu3VsvvfRSo5+5/vrrtXv37kav++ijj7Ru3bo6z917771KS0tTWlqaoqOjq2pIS0tTUVGRW7UfP35cmZmZbl1bnyeffFLnz59v0mc3bdqkW2+9tVn3BwBPWdhmFEAo6ty5sz766COlpaXp0KFD6t+/v7Kzs9W/f/9mt3333XcrLS1NDz/8sNs11FRRUaHIyMhm19EQi8Wi/Px8JSUlefQ5f9QGAHWhpxRAyOvUqZN69OihPXv26NSpU7rpppvUr18/9e3bV/Pnz6+6rnPnztq2bZskafTo0XrssceUmZmprl276qc//akk6dNPP9XHH3+s3//+90pLS9Orr77qVg1333237rnnHo0cOVJ9+/aVJN1xxx1KT09X//79NXnyZJ04cUKSdPDgwVphcuPGjRo7dqzS09M1YMAAvf/++1XnlixZokGDBik1NVVpaWlav359Va2ZmZlKS0vTqVOnGv19z549W4MHD9Zdd92lFStW1ArSS5cu1YgRIzRw4EANHjxYy5cvlyTt3btXw4cPV2pqqvr166f/+I//cPMbAYA6GAAQgjp16mRs3brVMAzD+Prrr42EhARjz549xi233GLMmTPHMAzDOHnypNGhQwdj7dq1l3xm1KhRxg033GCUl5cbJSUlRufOnY2cnBzDMAzjrrvuMv7v//7Poxruuusuo3///kZhYWHV+VOnTlUdz5s3z5g1a5ZhGIZx4MABw2azGYZhGPn5+UZaWppx/PhxwzAM4/Tp00ZKSopx9OhRY/fu3UabNm2MnTt3GoZhGGVlZUZBQYFhGIYhycjPz69qv7Hf98yZMw2Hw2EYhmEsX77cSE1NNQzDMPbv328MHTrUsNvthmEYxt69e43LL7/cOH/+vPHggw8av/nNb6ru8cMPPzT6ZwIA9WGMBkDIuvXWW9WiRQvFxcXptddeU/fu3ZWVlaXNmzdLktq2baubbrpJWVlZGjp0aJ2fj4yMVGRkpNLS0rR//34NGzasyfXcfPPNSkhIqPr57bff1ltvvaXz58/r/Pnzat269SWfycnJ0Xfffafrrruu1vu7d+/Wzp07NWnSJPXs2VOSFBUVJZvNVue9G/t933333bJYLJd87vPPP9e+ffs0cuTIqvesVqsOHz6skSNH6vHHH1dxcbFGjRql8ePHe/gnAgDVCKUAQta77757yfOcF6sriLnExsZWHUdERKiioqJZ9cTHx1cdr169Ws8//7zWrl2rtm3b6uOPP9Z//dd/XfIZwzDUp08f5eTkXHJu586dTa7l4t93zdouvv+ECRP09ttvX3Kue/fuysjI0JdffqkXX3xRzz77rD799NMm1wQgvPFMKYCwMn78eP3lL3+RJJ0+fVr/+Mc/NGHCBI/aSExMlN1ub1Yd+fn5SkhI0GWXXaaysrJaz3jWlJGRoQMHDigrK6vqvW3btqmsrEzXXnutli5dql27dkmSysvLq+pKSEioVWNTf9/XXnutsrKy9PXXX1e9t2HDBknOZ0rbtWunf/mXf9EzzzxT74oEAOAOQimAsPL8889r586d6tevn8aMGaNf/epXGjJkiEdtzJgxQ++9954GDBjg9kSni02aNEk9evRQjx49qiYk1eTqyWzVqpWWLFmi3/zmN0pNTVXv3r01Z84cORwOdevWTa+//rruvPNOpaamasiQIVVLWj366KOaMGFC1USnpv6+u3XrprfffluzZs1SamqqevXqpWeffVaStGjRIvXr108DBgzQrbfeqj//+c9N+rMAAIkloQAg4GzYsEF33HGH9u7da3YpAOA39JQCQAD55z//qdtuu43llQCEHXpKAQAAYDp6SgEAAGA6QikAAABMRygFAACA6QilAAAAMF1Q7+jkcDh0/PhxJSQkNLgrCwAAAMxhGIaKiop0xRVXyGqtvz80qEPp8ePHlZKSYnYZAAAAaMSRI0fUoUOHes8HdShNSEiQ5PxNJiYmmlwNAAAALlZYWKiUlJSq3FafoA6lriH7xMREQikAAEAAa+xRSyY6AQAAwHSEUgAAAJjOb6F09uzZyszM1IwZM1ReXl71/ooVK5SSkqLRo0dr3Lhx/ioHAAAAAcQvoTQ3N1fHjh1Tdna2evbsqUWLFtU6f+utt2rFihVatmyZP8oBAABAgPFLKM3JydHEiRMlSZMmTdKaNWtqnf/ggw+UmZmp5557rsF2SktLVVhYWOsFAACA4OeXUJqfn181O95msykvL6/qXHp6unbv3q1ly5bp888/1+bNm+ttZ968ebLZbFUv1igFAAAIDX4JpUlJSVW9mna7XcnJyVXn4uPjFR0drejoaE2dOlW5ubn1tjN37lzZ7faq15EjR3xeOwAAAHzPL6E0IyNDWVlZkqSlS5dq+PDhVedqDsGvXr1a3bp1q7edmJiYqjVJWZsUAAAgdPgllKalpaldu3bKzMzUjh07NG3aNM2aNUuS9N5772nw4MHKyMjQlVdeqZEjR/qjJAAAAAQQi2EYhtlFNFVhYaFsNpvsdju9pgAAAAHI3bzG4vkAAAAwHaEUAAAApiOUAgAAwHSEUgAAAJiOUAoAAADTEUoBAABgOkIpAABAuMjOlj78ULLbza7kEoRSAACAcPHss9JNN0kvvGB2JZcglAIAAISDigpp2TLn8YQJ5tZSB0IpAABAONi40Tlsn5QkpaebXc0lCKUAAADh4Msvnb+OHy9FRJhbSx0IpQAAAOHgiy+cvwbg0L1EKAUAAAh9dru0bp3zmFAKAAAAU6xYIVVWSt27S126mF1NnQilAAAAoS7Ah+4lQikAAEDoc4XSiRPNraMBhFIAAIBQduCAtG+fc8b9mDFmV1MvQikAAEAocy0FNXSolJhobi0NIJQCAACEsiAYupcIpQAAAKGrsrJ6a1FCKQAAAEyxaZNUUCDZbAG5tWhNhFIAAIBQ5Rq6HzdOiow0t5ZGEEoBAABClWuSU4AP3UuEUgAAgNBUVCStXes8JpQCAADAFMuXSxUVUteuAbu1aE2EUgAAgFAUJEtBuRBKAQAAQlEQPU8qEUoBAABCz6FD0p49Ab+1aE2EUgAAgFDj6iUdMsS5RmkQIJQCAACEGtfzpBMmmFuHBwilAAAAoaSyUsrKch4HyfOkEqEUAAAgtGzZIuXnS4mJ0uDBZlfjNkIpAABAKAmirUVrIpQCAACEkiB8nlQilAIAAISOINtatCZCKQAAQKhYuVIqL5euusq5vWgQIZQCAACEiiAdupcIpQAAAKEjyLYWrYlQCgAAEAoOH5Z27ZKsVmnsWLOr8RihFAAAIBS4ekkHD5aSkkwtpSkIpQAAAKEgiIfuJUIpAABA8KusJJQCAADAZFu3Snl5UkJCUG0tWhOhFAAAINi5eknHjpWiosytpYkIpQAAAMHOtT5pkA7dS4RSAACA4FZcLK1Z4zwOwkXzXQilAAAAwWzVKufWop06Sd26mV1NkxFKAQAAgplr6P7aayWLxdxamoFQCgAAEMxC4HlSiVAKAAAQvI4elXbuDNqtRWsilAIAAAQr11JQgwZJrVqZW0szEUoBAACCVYgM3UuEUgAAgODkcEhZWc7jIF4KyoVQCgAAEIy2bZPOnJHi46WhQ82uptkIpQAAAMHINXQfxFuL1kQoBQAACEauUBoCQ/cSoRQAACD4nD1bvbVoCExykgilAAAAwWfVKqmszLm1aPfuZlfjFYRSAACAYFNz6D6ItxatiVAKAAAQbFyL5ofI0L1EKAUAAAgux45JO3Y4e0jHjTO7Gq8hlAIAAASTmluLJiebW4sXEUoBAACCiSuUhshSUC6EUgAAgGDhcITk86QSoRQAACB45OZKp09LLVuGxNaiNRFKAQAAgoWrl3TMGCk62txavIxQCgAAECxc65OG2NC9RCgFAAAIDiUlUna285hQCgAAAFNkZzu3Fk1Jka6+2uxqvI5QCgAAEAxqDt2HyNaiNRFKAQAAgkHN/e5DEKEUAAAg0H3/vfTNNyG3tWhNhFIAAIBA51oKauBAqXVrc2vxEUIpAABAoAvxoXuJUAoAABDYHA4pK8t5HIJLQbkQSgEAAALZ9u3SyZPOrUWHDTO7Gp8hlAIAAAQy19D9qFFSTIy5tfgQoRQAACCQuSY5hfDQvUQoBQAACFznzkmrVjmPCaXeMXv2bGVmZmrGjBkqLy+/5Pxvf/tbpaen+6scAACAwLd6tVRaKl15pdSzp9nV+JRfQmlubq6OHTum7Oxs9ezZU4sWLap1vqioSNu3b2+0ndLSUhUWFtZ6AQAAhKwQ31q0Jr+E0pycHE280OU8adIkrVmzptb55557Tg888ECj7cybN082m63qlZKS4pN6AQAAAkIYrE/q4pdQmp+fr8TEREmSzWZTXl5e1Tm73a7t27drmBtLHMydO1d2u73qdeTIEZ/VDAAAYKoTJ6Svv3Yejx9vbi1+EOmPmyQlJVUNtdvtdiUnJ1ede/bZZ/XLX/7SrXZiYmIUE8JLIQAAAFRxLZh/zTVSmzbm1uIHfukpzcjIUNaFP9ilS5dq+PDhVef27dunp556SpMmTdLevXv19NNP+6MkAACAwBZGQ/eSn3pK09LS1K5dO2VmZqpjx4567LHHNGvWLM2fP19vvfVW1XXp6en61a9+5Y+SAAAAApdhhM36pC4WwzAMs4toqsLCQtlsNtnt9qpnVgEAAILe9u1S//5SixZSfn5Q7+Tkbl5j8XwAAIBAEyZbi9ZEKAUAAAg0YTZ0LxFKAQAAAsv589LKlc5jQikAAABMsXq1M5hecYXUu7fZ1fgNoRQAACCQuIbuJ0wI+a1FayKUAgAABJKa+92HEUIpAABAoDh5Utq2zXkcBluL1kQoBQAACBTLljl/TUuT2rY1tRR/I5QCAAAEijAdupcIpQAAAIEhDLcWrYlQCgAAEAi+/VY6flyKjZWGDze7Gr8jlAIAAASCmluLxsaaW4sJCKUAAACBIIyH7iVCKQAAgPlKS6UVK5zHhFIAAACYYs0a6dw553GfPubWYhJCKQAAgNlcQ/czZoTV1qI1EUoBAADM5prkdO215tZhIkIpAACAmU6flrZscR6H2daiNRFKAQAAzOTaWjQ1VWrXztxaTEQoBQAAMFMYby1aE6EUAADALIZRHUonTDC3FpMRSgEAAMyya5d07JhzB6cRI8yuxlSEUgAAALO4eklHjpRatDC3FpMRSgEAAMzC0H0VQikAAIAZ2Fq0FkIpAACAGdaulUpKnMtA9etndjWmI5QCAACYoebQfZhuLVoToRQAAMAMrE9aC6EUAADA386cYWvRixBKAQAA/G3ZMufC+f36Se3bm11NQCCUAgAA+BtD95cglAIAAPiTYUhffuk8JpRWIZQCAAD40+7d0pEjUkyMlJlpdjUBg1AKAADgT66h+9LSsN9atCZCKQAAgD+5hu6fecbcOgIMoRQAAMBfysqk5cudxzxPWguhFAAAwF/WrpXOnpXatmVr0YsQSgEAAPzFNXQ/YYJkJYbVxJ8GAACAv9Tc7x61EEoBAAD84YcfpE2bnMeE0ksQSgEAAPzBtbVo377SFVeYXU3AIZQCAAD4Q83nSXEJQikAAICvGQb73TeCUAoAAOBre/ZIhw9L0dHSyJFmVxOQCKUAAAC+5hq6HzFCioszt5YARSgFAADwNYbuG0UoBQAA8KXycrYWdQOhFAAAwJfWrZOKi6U2baTUVLOrCViEUgAAAF9yDd2PH8/Wog3gTwYAAMCXeJ7ULYRSAAAAX8nLY2tRNxFKAQAAfOWrrySHQ+rdW7rySrOrCWiEUgAAAF9xDd3TS9ooQikAAIAvsLWoRwilAAAAvrBvn3TokBQVJY0aZXY1AY9QCgAA4AuuXtIRI6SWLc2tJQgQSgEAAHyB50k9QigFAADwNrYW9RihFAAAwNvWr5eKiqTLLpMGDDC7mqBAKAUAAPA2thb1GH9KAAAA3vbll85fGbp3G6EUAADAm/LzpQ0bnMdMcnIboRQAAMCbXFuL9uwppaSYXU3QIJQCAAB4E0P3TUIoBQAA8BbDkJYudR4TSj1CKAUAAPCW/fulgwfZWrQJCKUAAADe4hq6z8iQ4uPNrSXIEEoBAAC8xbU+KUP3HiOUAgAAeEN5uXPmvcRSUE1AKAUAAPCGDRukwkIpOVm65hqzqwk6hFIAAABvcD1POn68FBFhbi1BiFAKAADgDa7nSRm6bxJCKQAAQHMVFEjr1zuPCaVNQigFAABoruXLnVuL9ughdepkdjVBiVAKAADQXAzdNxuhFAAAoLnY777ZCKUAAADNsX+/8xUZKY0ebXY1QYtQCgAA0Bw1txZNSDC3liDmt1A6e/ZsZWZmasaMGSovL696Pzc3VxkZGRo1apSmTp2qs2fP+qskAACA5nOFUp4nbRa/hNLc3FwdO3ZM2dnZ6tmzpxYtWlR1rnfv3srJydHKlSs1cOBAffjhh/4oCQAAoPkqKqRly5zHPE/aLH4JpTk5OZp44YuaNGmS1qxZU3UuKiqq6vjcuXPq0aNHve2UlpaqsLCw1gsAAMA0GzdKdrvUqpU0cKDZ1QQ1v4TS/Px8JSYmSpJsNpvy8vJqnf/88881YMAArVixQt26dau3nXnz5slms1W9UlJSfFo3AABAg1xD9+PGsbVoM/kllCYlJVX1atrtdiUnJ9c6P2nSJG3dulXTpk3T/Pnz621n7ty5stvtVa8jR474tG4AAIAGudYnZei+2fwSSjMyMpSVlSVJWrp0qYYPH151rrS0tOrYZrMpLi6u3nZiYmKUmJhY6wUAAGCKwkJp3TrnMZOcms0voTQtLU3t2rVTZmamduzYoWnTpmnWrFmSnEP3o0aN0ujRo/XFF19o5syZ/igJAACgeZYvlyorpe7dpc6dza4m6FkMwzDMLqKpCgsLZbPZZLfb6TUFAAD+9YtfSC+/7Pz1xRfNriZguZvXWDwfAACgKdha1KsIpQAAAJ46cEDau9c5456tRb2CUAoAAOApVy/psGESjxB6BaEUAADAUwzdex2hFAAAwBOVldKFpS5ZCsp7CKUAAACe2LRJKiiQkpKk9HSzqwkZhFIAAABP1NxaNDLS3FpCCKEUAADAE66tRRm69ypCKQAAgLuKiqS1a53HTHLyKkIpAACAu1askCoqpG7dpC5dzK4mpBBKAQAA3MXQvc8QSgEAANzlCqUM3XsdoRQAAMAdhw5Je/Y4txYdM8bsakIOoRQAAMAdrqWghgyRbDZzawlBhFIAAAB3MHTvU4RSAACAxlRWSsuWOY+Z5OQThFIAAIDGbNki5eVJiYnS4MFmVxOSCKUAAACNcQ3ds7WozxBKAQAAGuOa5MTQvc8QSgEAABpSVCTl5DiPmeTkM4RSAACAhqxcKZWXO7cV7drV7GpCFqEUAACgIa6he3pJfYpQCgAA0BDWJ/ULQikAAEB9Dh+Wdu2SrFa2FvUxQikAAEB9XEP3gwdLrVqZW0uII5QCAADUh+dJ/YZQCgAAUJfKStYn9SNCKQAAQF22bnVuLZqQIA0ZYnY1IY9QCgAAUBdXL+nYsVJUlLm1hAFCKQAAQF1cS0ExdO8XhFIAAICLFRdLa9Y4j5nk5BeR7l44aNAgWSwWORwO5efnKz4+XsXFxWrVqpU2bdrkyxoBAAD8a9Uq59ainTtL3bqZXU1YcLundOPGjdqwYYMGDhyoJUuWKDc3V59++qmGDRvmy/oAAAD8r+YuThaLubWECY+H77/55hv17NlTktSjRw9t3rzZ60UBAACYiudJ/c7t4XuXqVOnasyYMerfv7+2b9+uqVOn+qIuAAAAcxw9Ku3c6dxadOxYs6sJGx6H0jlz5uiee+7RgQMH1LlzZ7Vr184XdQEAAJjDtRTUoEFScrK5tYQRj4fvjx8/rl//+td66aWX1Lp1a73++uu+qAsAAMAcDN2bwuNQevfdd2vGjBk6cuSIIiIitGDBAl/UBQAA4H8Oh5SV5TxmKSi/8jiUVlZWavDgwbJcmInmcDi8XhQAAIAptm2TzpyR4uOloUPNriaseBxK+/TpoyeffFJnzpzR008/rdTUVF/UBQAA4H+uofsxY9ha1M88nuj0/PPPa8mSJWrZsqV69uzJ7HsAABA6XJOcGLr3uyY9Uzp58mQ9/vjjmjp1qh555BFf1AUAAOBfZ89Kq1c7jwmlfud2T+m+ffu0e/dubd26VZ9++qkkqaKiQlu2bPFZcQAAAH6zapVUViZ17Ch17252NWHH7VB67Ngxbdq0SYWFhdq0aZMMw1BUVJR+97vf+bI+AAAA/2BrUVO5HUpHjRqlUaNGadq0aerTp48sFosMw9C3337ry/oAAAD8g+dJTeXxM6UPPvhg1XJQFotFDz74oNeLAgAA8Ktjx6QdO5w9pGwtagqPQ+n58+dr/VxSUuK1YgAAAEzh6iVNT5cuu8zcWsKUx0tCTZkyRTfeeKMyMzO1evVqTZkyxRd1AQAA+A9D96azGIZhePqhr7/+Wrt27VKvXr3Ur18/X9TllsLCQtlsNtntdiUmJppWBwAACGIOh3T55dLp09LKldLIkWZXFFLczWseD98XFxfryy+/1LZt29S7d2999tlnzSoUAADAVLm5zkDasiVbi5rI41B65513KiUlRdnZ2YqIiNAf//hHX9QFAADgH66h+zFjpOhoc2sJY03qKb3lllsUdWE/2CaM/gMAAASOmuuTwjQeh9L27dvrjTfe0NmzZ7VgwQJ16NDBF3UBAAD4XkmJlJ3tPJ4wwdxawpzHofTVV1/V2bNnlZ6ervz8fL3yyiu+qAsAAMD3srOdW4umpEg9ephdTVhze0moiRMn6osvvtCjjz6qF1980Zc1AQAA+AdbiwYMt0NpeXm5HnnkES1evFhxcXG1zj3zzDNeLwwAAMDnXKGUoXvTuR1KP/30U23btk05OTmaPHmyL2sCAADwvePHpW++cfaQjhtndjVhz+1Q2qJFCw0bNkzr169XUVGRCgoKmHkPAACCV1aW89eBA6XWrc2tBZ5vM/rggw9q06ZN6tChgwzDkMVi0XvvveeL2gAAAHyHpaACisehNDc3Vzk5Ob6oBQAAwD8cjupF83meNCB4vCRUenq61qxZo7Nnz6qkpEQlJSW+qAsAAMB3tm+XTp1yHg8bZm4tkNSEntItW7Zo69attd776quvvFYQAACAz7mG7idPlmJizK0FkjwIpTfffLMsFota8yAwAAAIdiwFFXDcDqV/+MMffFkHAACAf5w7V721KJOcAobbobRTp06+rAMAAMA/srOl0lKpQwepZ0+zq8EFHk90AgAACGo1h+7ZWjRgEEoBAEB4cS0FxdB9QCGUAgCA8HHihPT1184e0vHjza4GNRBKAQBA+HBtLTpgAFuLBhhCKQAACB9sLRqwCKUAACA8GAbPkwYwQikAAAgP33zjfKY0Lk7KyDC7GlyEUAoAAMKDa+h+1Ci2Fg1AhFIAABAeeJ40oBFKAQBA6Dt/Xlq1ynlMKA1IhFIAABD6Vq92BtMrrpB69TK7GtSBUAoAAEJfzVn3bC0akAilAAAg9PE8acAjlAIAgNB28qS0bZvzeNw4U0tB/fwWSmfPnq3MzEzNmDFD5eXlVe8vXrxYQ4YM0YgRI/TQQw/5qxwAABAuli1z/pqWJrVta2opqJ9fQmlubq6OHTum7Oxs9ezZU4sWLao6l5qaqjVr1mj16tU6deqUNm3a5I+SAABAuHAN3V97rbl1oEF+CaU5OTmaeOEZjkmTJmnNmjVV5zp27KjIyEhJUnR0tKzW+ksqLS1VYWFhrRcAAEC9DKM6lE6YYG4taJBfQml+fr4SExMlSTabTXl5eZdcs3HjRp06dUrXXHNNve3MmzdPNput6pWSkuKzmgEAQAj49lvp+++lFi2k4cPNrgYN8EsoTUpKqurVtNvtSk5OrnX+6NGjevjhh/Xmm2822M7cuXNlt9urXkeOHPFZzQAAIAS4eklHjpRiY82tBQ3ySyjNyMhQVlaWJGnp0qUaXuP/qRQVFWn69OmaP3++2jby8HFMTIwSExNrvQAAAOrFUlBBwy+hNC0tTe3atVNmZqZ27NihadOmadasWZKkZ599VgcOHNADDzyg0aNHa+XKlf4oCQAAhLrSUsmVKwilAc9iGIZhdhFNVVhYKJvNJrvdTq8pAACo7auvnOuStm8vHTvGTk4mcTevsXg+AAAITTVn3RNIAx6hFAAAhKaa+90j4BFKAQBA6Dl9WtqyxXk8fry5tcAthFIAABB6Lqz6o9RUqV07c2uBWwilAAAg9LCLU9AhlAIAgNBiGDxPGoQIpQAAILTs3OlcAio2Vhoxwuxq4CZCKQAACC2uofvMTOee9wgKhFIAABBaGLoPSoRSAADgdZ/t+Uxny876/8alpdKKFc5jQmlQIZQCAACv2vb9Nl3/zvWKnxev3Wd2+/fmOTlSSYnzuF8//94bzUIoBQAAXuMwHBrxevXkor0/7PVvAa6h+zvuYGvRIEMoBQAAXnPvP+/V2XLnsH2kNVJjuozxbwGuSU7XXuvf+6LZCKUAAMArdp/ZrddzX6/6eeG0hWoZ3dJ/BZw5w9aiQYxQCgAAms0wDA15dUit937y/k90svik/4pYtsy5cH6/flL79v67L7yCUAoAAJrtkc8fkb3Ufsn75yvO+68I19A9s+6DEqEUAAA0y+GCw3puw3N1nmsR6afF6w2D/e6DHKEUAAA0mWEYGviXgfWeP1Nyxj+F7N4tHT0qxcQ4d3JC0CGUAgCAJnty+ZMNBk/XTHyfq7m1aFycf+4JryKUAgCAJjlRdEL/k/0/DV6z6/Qu/xTD0H3QI5QCAIAmaWjY3iUqIsr3hZSVsbVoCCCUAgAAj/0h5w86XnS8wWsssmjy1ZN9X8zatdLZs1LbtlL//r6/H3yCUAoAADxScK5A//blvzV63StTX1FCTILvC3IN3Y8fL1mJNsGKbw4AAHhk4CsDZcho9Lr7Ft+no4VHfV8Q65OGBEIpAABw2yubXtF3Bd+5de3NvW/WlQlX+ragH36QNm92HjPJKagRSgEAgFuKS4v10yU/devaDokdNH/KfFksFt8W5dpatE8f6YorfHsv+BShFAAAuGXIq0PcGra3yKIOCR30+f7PfV8UQ/chg1AKAAAa9c7X7+jbM9+6de3wlOFad2ydbv/gdm0+vtl3RRmG9OWXzmNCadAjlAIAgAadrzivOz+8061re7XupdVHVlf93OOyHr4qS9qzRzp8WIqOlkaO9N194BeEUgAA0KCRr4+UQ45Gr4uLirtk7dJTZ0/5qqzqofsRI9haNAQQSgEAQL2W7F6ijcc3unVtl6Quspfaa733/PrnfVGWk2vonln3IYFQCgAA6lReWa4b3r3BrWtT26Vqx+kdl7zfNq6tl6u6oKxMWr7ceXzttb65B/yKUAoAAOo08a2JqjAqGr2ubcu22n5ye53nEmMTvV2W07p1UnGx1KaNlJrqm3vArwilAADgEisPrtSKQyvcutZhOOp95vRHPX7kxapqcA3ds7VoyOBbBAAAtVQ6KjXxLfeWWOrVupfOlJyp89xDgx9Sx6SO3iytGuuThhxCKQAAqOWGhTeozFHW6HWdkzpr55md9Z5/bsNzOlZ4zJulOeXlSRsvTL5iklPIIJQCAIAqm45v0id7P2n0utjIWLcCZ6Q10htl1fbVV86F83v3lq680vvtwxSEUgAAIMn5bGjma5luXWuLsancUd7odYWlhc0t61IM3YckQikAAJAk3fnBnTpfeb7R665qdZVOnj3pVpuxkbHNLas2w6gOpQzdhxRCKQAA0K7Tu/TOjncavS65RbK+y//O7XaTYpOaUVUd9u2TDh2SoqKkUaO82zZMRSgFACDMGYah9L+ku3VtSXmJR22XVTY+YcojNbcWbdnSu23DVIRSAADC3E8/+anOlp9t9Lr28e11vqLx4X2XmIgYj0Nsoxi6D1mEUgAAwtjBgoN6ZcsrjV53efzl+r74e4/aLq0srXenpyYpL6/eWpRJTiGHUAoAQBgbMH9Ao9fERMToRPGJJrV/deurm/S5Oq1fLxUVSZddJg1ovG4EF0IpAABh6vGlj6vgfEGj10VZo5p8j7xzeU3+7CVcQ/dsLRqS+EYBAAhDJ4pO6A/r/tDodW1btlVxeXGT7tGvbT+lX+HeBCq3sD5pSCOUAgAQhvr9uV+j1yRGJ+rU2VNNaj82MlYvXPeCrBYvRY38fLYWDXGEUgAAwsxTq57SmZIzjV7X1B5Sq6w6X3Feo98crZ2ndzapjUt89ZXkcEg9e0opKd5pEwGFUAoAQBjJP5ev/1z+n41elxCdIIfhaNI9HKr+XFPbuARD9yGPUAoAQBjp96fGh+2TYpNUVFbUpPYvHq6Pi4prUju1sLVoWCCUAgAQJl5Y/4KOFR1r8JpIa6RbM/LrEmWNqtUzes+Ae9Q5qXOT2qpl/37p4EHn1qKjRze/PQQkQikAAGGguLRYD37+oM/aj7ZGq9xRXvVzl6Quujv1blksluY37uolzciQ4uOb3x4CEqEUAIAwkDY/rdFr4qPjVeGo8LjtSEukyhzVe9y3jWurAwUHNPKNkTpYcNDj9i7x5ZfOX3meNKQRSgEACHGvb31d+/P3N3hNi8gWKi7zfLa9RRZVGNVBNj4qXqdKnMtItYhooUhrpMdt1lJR4Zx5LxFKQxyhFACAEHa+/Lxmfjyz0evOVZxrUvuGjKrjKGuUSipKqtusPKfSitImtVtlwwapsFBKTmZr0RBHKAUAIISl/yW9VnCsS7Q12iv3slgslywB1exQWnNr0YiI5rWFgEYoBQAgRP3j239ox+kdDV4TFxVX63lQd1lUewJTy6iWKqus3U7fNn2VYmvmQvesTxo2CKUAAISg8spy3bzo5gavscqqkvKSBq+p83MWa63eV1uMTWfLz9a6pqOto7666yslxCR43H6VggLn8L3E+qRhgFAKAEAIGv7a8EZ3U2psWL8uVou1VrutYlvJXmqvdU1yi2QtnLZQiTGJHrdfy/LlUmWl1KOH1LFj89pCwCOUAgAQYrL2Z2nj8Y0NXhNtjW5SKK0ZSG0xNuWfz691Pi4qTu/c9I6u/fu1in06tkk9sVUYug8rhFIAAEJIpaNSkxZMavCa6IjoJj1HWlPLqJaX9JBGWiP17rR3Nf2D6VXblO4+s7vpN2F90rBCKAUAIISM/9t4VRqVDV5z8YSkprj4GVJJ+vtNf9fMxTNr9Z5GWJs4Y37/fucrMlIaNaqpZSKIEEoBAAgR646s04pDKxq8xtrMf/ovnnXv8pepf9FjXzymU2dPVb3XOq61uiR1adqNXL2kGRlSQjMmSyFoEEoBAAgBDsOhkW+MbPCaKGuUHGp48lNTPDP+Gf1u9e90tPBorffPlJxRYWlh0xpl6D7sEEoBAAgBN7xzg8od5fWet8jS4Hl3RFgiLpkcNWf4HL2Z+6b25e+75Ppoa3TTHhWoqJCWLXMesxRU2CCUAgAQ5HK/z9XivYsbvKYpM+1rio6IvuRZ1ZkDZurL/V/Wu0B/maNMreNae36zjRslu11q1UoaOLAp5SIIEUoBAAhihmFoyF+HNHiN1dK8f+5jImIu6fGcevVU7TmzR5tPbG7ws1/s/8LzG7qG7tlaNKwQSgEACGIzPpyh0sr695e3ytroIvoNibZGX9J+RocMlVaWKvtIdqOf79W6l+c3da1PytB9WCGUAgAQpPbn7deC7QsavKY5E5siLZGXrGfaq3UvtY1v63YPaHxMvGc3tduldeucx4TSsEIoBQAgSKX+OdVnbVtkUYVRUeu9KxOuVOrlqfpo10dutfHAoAfU0ebh9qArVji3Fr36aqlzZ88+i6BGKAUAIAj9Yskv6lzA3qW5z5FePDGqVWwrTbxqohZ+s9DtNl7c+KIOFhz07MYM3YctQikAAEHmWOExvbzp5Qavac5zpBdrEdlCt/S5Ra/nvu7xZ8+UnPHsA+x3H7YIpQAABJk+L/fxWdsX79gUaYnUzAEzNX/zfI/birBEqFVsK/c/cOCAtG+fc2vR0aM9vh+CG6EUAIAgMufLObKX2n3StkWWWsP2Fln0s/Sf6cWNL3rcVrQ1WmvuWaOuyV3d/5BrKaihQ6XERI/vieBGKAUAIEicKTmj3+X8zidtXxxIJeln6T/TCxtf8LitllEtNejKQRr616GefZCh+7BGKAUAIEj0frG3T9qtK5DeO+DeRp9brUurmFbq2qqr1hxZo7ioOB2xH3Hvg5WVbC0a5iLNLgAAADRuXvY8nT532uvt1hVIb+t7m/669a8et9WuZTvFRcXp61NfKy4yTvPGzVOKLcW9D2/aJBUUSElJUnq6x/dG8KOnFACAAFdUWqR//+rffdL2xYF0cvfJWvjNwkveb0zHxI4yZOhAwQHFR8erpKJED33+kPbl7XOvAdfQ/bhxzolOCDt+C6WzZ89WZmamZsyYofLy8qr39+zZo7S0NMXGxqq4uNhf5QAAEDR6vdSErTqbYETKCH2+93OPA2n35O7KP5+vU2dPKSE6QcVl1f+eF5wrcK8R1yQnhu7Dll9CaW5uro4dO6bs7Gz17NlTixYtqjrXoUMHrVy5UkOHevgwNAAAYeBPG/6kY0XHfH6ffm37af3R9apUpUef69Omjw4WHFRRWZHiouJUVFZU6/w17a9pvJHCQmntWucxk5zCll9CaU5OjiZe+I9s0qRJWrNmTdW5uLg42Ww2t9opLS1VYWFhrRcAAKHqXNk5/fyzn/v8Pp1tnbX3h70qN8obv7iG1Lap2nF6h8od5YqJiFFJeckl17gVqFeskCoqpG7dpC5dPKoBocMvoTQ/P1+JF9Ybs9lsysvLa1I78+bNk81mq3qlpLj58DQAAEGo75/6+vwebeLa6EzJGZ2vPO/R59LapSn3VK4k5wL7pZWldV5XabjR88rQPeSnUJqUlFTVq2m325WcnNykdubOnSu73V71OnLEzWUmAAAIMgtyF+i7gu98eo+E6ASVV5aruNyzOR392vbTtpPbJDln71cYFfVeu+PUjsYbZH1SyE+hNCMjQ1lZWZKkpUuXavjw4U1qJyYmRomJibVeAACEmrKKMs34aIZP7xEdEa3oiGgVlBZ49LmerXtq+6ntVT83Nimqe3L3hhs8dEjas0eKiJDGjPGoFoQWv4TStLQ0tWvXTpmZmdqxY4emTZumWbNmSXIO7Y8fP165ubmaOnWqPvvsM3+UBABAwBowf4DHM+A9YbVY1Sq2lX4494NHn7sq6SrtOrPLo8+cLT/b8AWuofshQyQ355ggNPltIbDf//73tX6eP3++JKlVq1ZVvagAAIS7xbsW69sz3/r0Hpe3vFzHi4+7fb1FFrWPb6/vCr5TlDVK5Q73J0S1atGq4QsYuscFLJ4PAECAqHRU6ob3bvDpPTomdvQokEYoQsktknW8+LjHgVSSYiJi6j9ZWSm5OqaY5BT2CKUAAASIoa8OlcNw+Kz9TrZOOlx42O3rI62Rio2M1Q/nflCEJcLjQCpJqw6uqv/k5s1Sfr6UmCgNHuxx2wgt7OMFAEAAWHFghTZ9v8ln7XdM7KhD9kNuXx8TEaPSylJVOCpktVjdW9qpDq3jWtd/0vU8KVuLQvSUAgBgOsMwNP6t8T5rv0NCB496SOOi4qrWHbXI0qze2xaRLeo/6XqelKF7iFAKAIDpxr45tsk9kY25vOXlOlp01O3r46Pja+3M1NxVADoldar7RFGRlJPjPGaSE0QoBQDAVJuPb9aKQyt80vZlLS7TibMn3L4+MSZRxWWeLaTfmHonVa1c6dxa9KqrpK5dvXpPBCdCKQAAJjEMQ0P/OtQnbduibR6tQ2qLsamwtNBr90+OTVbOPTkadOWgui9g6B4X4aliAABM8uN3fqwKR/1bdDZVXGSc7GV2t6+3RdtkL7XLIotXFu2/uffNWnDTAkVFRNV/EeuT4iKEUgAATLDr9C4t3rvY6+1GR0SrpKKk8QsvSIhOkL3MO4E0Pjpei25epGu7XSvDMHSu/JxaRNUx0enwYWn3bslqlcaObdY9EToYvgcAwARp89O83maEJUJllWVuXx8XGaeisiKvBNIJV03QqcdO6dpu12rvD3s1+o3RivtNXN0X19xaNCmpWfdF6CCUAgDgZzP+MaNqySVvscji0Qz+aGt1j2pzAmlsRKwWTluoL2Z8oUhrpOZlz1Ofl/to1WHnovlH7XXM/Od5UtSB4XsAAPzoUP4h/X37373erqfBsszhfo9qfYZeOVSf3/m5bLE2rT+6Xnf/827tOrOr6ny7lu1ktV7U/1Vza1GeJ0UN9JQCAOBHvV/ubXYJzRZpjdSfrv+T1t67VlaLVQ9+9qCG/XVYVSC1yCKrrDp59qTaxLWp/eGtW6W8PLYWxSXoKQUAwE9+/snPPZqEFIj6tumrrH/JUrv4dlqyZ4nuXXyvThRXr4UaY41RqaNUhgyN6DhC+efz1bZl2+oGXEP3Y8ZIUQ3MzkfYoacUAAA/OFV0Sn/a/CevtmmRxavXNcRqserpsU9r+8+3S5J+8t5PNOWdKVWBNMISIUkqdZSqVWwrRVmitPrw6tqBVKqe5MTQPS5CTykAAH7Q/aXuXm3P3Rnz3phZ3zmps5bNWKYurbrota2v6aHPH6q181OEIlRpVMoii2zRNuWfz68699V3X2nsVReWfSoultascR4TSnERekoBAPCxuVlzvbpbkrtB0yprswKpRRY9Nuwxfffgd6o0KpX5eqZmfjyzKpBGWpx9W5Wq1GUtLpMhQwVlBbXaWHVwVfUPK1dK5eVS585sLYpL0FMKAIAPFZ4v1G/X/NZr7XkSSB1yNPk+l7e8XEtnLFWv1r00b/U8PbHiiUt2n6owKhRrjVWpo7TeLU0PFhys/qHm0L2l+Y8UILQQSgEA8KGrnr/Ka235K5DOHDBTr0x9RRuPbVTfl/tqT96eOtuOscbovON8g23d0OOG6h/YWhQNIJQCAOAjv13123p7ED3lyTOkTQ2kthiblty+RKmXp+rBzx7USxtfuuT+DjkUFxmnkooSlTrq3wAgrW2acu7Nqd5m9OhRaedOthZFvQilAAD4wLnyc5q7fK5X2vJkslJTnyG9oecNenfau8o6kKWuz3fVqbOnLmnX1Uva0LJWtmibtv98u1JsKbVPuIbuBw2SWrVqUo0IbYRSAAB8oOvz3pvI09zZ8w2JiYjRB7d8oPQr0jX9g+n6cNeHdV7X2CMBVlm19M6lGt91fN0XMHSPRjD7HgAAL3t5w8v6vvh7s8to1IiUEfrh337QybMndfkfL68zkEZe6L9qKJD+ZsxvVPlEZf2B1OGo3lqU/e5RD3pKAQDworKKMv3is1+YXUaDrBarXv/x6xrWYZjG/W2c1h9bX++1Faqo99zkrpP1z9v/qQhrRMM33LZNOnNGio+Xhg5tYtUIdfSUAgDgRT1e6mF2CQ3qmtRV3//r9zpsP6zeL/duMJDWJyUxRfbZdn1y5yeNB1Kpeuh+7Fi2FkW96CkFAMBLFuQuqL0uZ4D5z8z/1JQeU5TxWob25+/3+PPR1mhtm7VNvdr28uyDrlDK0D0aQE8pAABeUOmo1IyPZphdRp3io+K19f6tOllyUkNeHdKkQLpw2kKV/mep54H07Fm2FoVb6CkFAMAL+r7c16ez5Jvqum7X6WfpP9P4t8Y3ac3UB9If0PPXPy9LU3dgWrVKKiuTOnWSundvWhsIC4RSAACaafHuxdr1wy6zy6jFIotenfqqPtz1oX608Ecefz69fbpyZuYoKqKZz4DWXAqKrUXRAEIpAADNYBiGfrzwx2aXUUvrFq01d8RcPfDZAzpXcc6jzybFJGnvL/eqdcvW3inGtWg+z5OiEYRSAACaIf2V9IAatv/R1T/S0cKjevTLRz36nFVWrblnjYameHHJpmPHpB07nD2k48Z5r12EJEIpAABNtPLgSm05scXsMqpM7zNd73/7viqNSo8+9+zEZ/XQsIe8X1DNrUWTk73fPkIKoRQAgCYwDEPj/hYYvX+tYlopLjpOC3cs9OhzN/a4UR/c+kHTJzE1hqF7eIBQCgBAE4x6Y5THPZK+0MnWSYfsh5Rfmu/+ZxI6adcvdyk2KtZ3hTkc1aGUpaDgBkIpAAAe2nJ8i7IPZ5tdhuKi4nTIfsjt66Ot0dr9wG51btXZd0W55OZKp0+ztSjcRigFAMBDQ/46xNT7R1giVGlUqqS8xO3PLJm+RNf3uN6HVV3EtRTU6NFSdLT/7ougRSgFAMAD1//9elU4Kky7v0UWjx4beHzI43pm0jM+rKgeDN3DQ4RSAADctOfMHn22/zNTa3B3+alB7Qdp3X3rZLX4eUfx4mLpn/+Usi883kAohZsIpQAAuKnfn/uZXUKjbNE2HX74sBJbJPrvpuXlzuH6BQucgbTkwmMF3btLV1/tvzoQ1AilAAC4Yfr701VWWWZ2GfWyyqot929RavtU/9zQMKScHOntt6X33pPOnKk+17WrdMcd0n33sbUo3EYoBQCgEUcKjujdb981u4x6zb9uvu4ffL9/bvbtt84e0bfflg4erH6/bVtp+nRnGB00iDAKjxFKAQBoxNUvBeYQ9E96/kTv3/q+72909Ki0cKEzjG7bVv1+fLx0003OIDp2rBRJrEDT8V8PAAANuP/j+3W+4rzZZdTSMbGj9j+4X5ERPvxnPD9f+uADZxBdudI5XC85g+d11zmD6NSpUlyc72pAWCGUAgBQjzPFZ/SXrX8xu4wqUdYoHX3kqNrGt/XNDc6flz75xBlEP/1UKqvxDG1mpjOI/uQn0mWX+eb+CGuEUgAA6tHl+S5ml1Al644sjes2zvsNV1ZKK1Y4g+gHH0iFhdXn+vVzBtHp06VOnbx/b6AGQikAAHV4bOljKi4vNrsMzRk2R/MmzvNuo4YhbdniDKILF0rff199LiVFuv12ZxjtF/hLYCF0EEoBALhIcWmx/rjuj6bWMPDygdp4/0ZZvDmLff9+ZxB94ona77dqJd18szOIjhghWf284D4gQikAAJdI+b8U0+7dMqqlTj92Wi2iW3inwZMnneuILlggrV9f/X5srPSjHzmD6KRJ7E8P0xFKAQCo4dcrf62C0gK/39cii3b9fJeubuOF5aeKiqSPPnIG0aVLq9+3WqXx451B9IYbpEQ/7voENIJQCgDABefLz+u/VvyX3+/76uRXNTN9ZvMaKStzBtAFC6SPP5bOnas+N3iw8znRW2+VLr+8efcBfIRQCgDABSnP+nfY/sfdf6yPbv+o6Q04HNKaNdVbfeblVZ/r3t3ZI3r77c5jIMARSgEAkPTcuud0puRM4xd6QfuW7XX0X4/K2tQJRd98U73V5+HD1e9ffnn1Vp8DB7LVJ4IKoRQAEPYqKiv08NKHfX6fCEuEfvi3H2SLtXn+4cOHpXfecYbR7dur309IkKZNc/aIjh0rRUR4r2DAjwilAICw1+lZ3y8Mv/zO5RrddbRnH8rLkxYtcgbRVauq34+Kkq6/3tkjOmWK1MJLM/UBExFKAQBh7Y2tb+h48XGftf/okEf1h0l/cP8D585Jixc7g+hnn0nl5dXnRo1yBtFp06TkZO8XC5iIUAoACFsOh0P/7+P/55O2+7bpq+0/3974hZJUUSEtX+4Mom++WftcaqpzaP6225y7LQEhilAKAAhbXZ/v6vU2YyNiZZ9jV3RkI4vRG4a0aVP1Vp8nT1af69SpeqvPPn28XiMQiAilAICw9NHOj3TQftCrbX73wHfqclmXhi/au9c5a37BAuexy2WXSbfc4gyiGRnMnEfYIZQCAMKOYRi68b0bvdbe/Ovm6/7B99d/wYkT0rvvOoPoxo3V77do4dxZ6Y47pIkTnROYgDBFKAUAhJ3eL/X2Sjsjrhyh7Huz6z5ZWCh9+KEziH75ZfX7ERHShAnVW33Gx3ulFiDYEUoBAGHlq/1fadcPu5rdzrl/P6fYqNjab5aVOWfML1jgnEF//nz1uaFDq7f6bNu22fcHQg2hFAAQVsb9fVyzPv/zgT/XS1Neqn7D4ZCys53Pib7/vpSfX32uR4/qrT67en9SFRBKCKUAgLCR9nJasz6//F+Wa3SX0c4fvv7a2SP6zjvSkSPVF7Vv71y+6fbbpWuuYcIS4CZCKQAgLKw/sl65p3Ob9Nl2Ldtp1y92KemUXZo3z9kr+s031RckJjoXtL/jDmn0aLb6BJqAUAoACAtDXxvapM/9uMskfXj2R7JMnCqtXl19IjpamjzZGUQnT5ZiY+tvBECjCKUAgJA35JUhTfrcX7/rr3ueypIqPne+YbE4e0LvuEO66SapVSvvFQmEOUIpACCk7Ti5Qxu+3+DRZ2LLpZ0vSJ0Lv3a+MWCA8xnR6dOlDh18UCUAQikAIKT1/XNfj67vd0La8ooU2amL9MsLW3326uWj6gC4EEoBACGp0lGpuF/Huf8BQ/q3zbH6XaeZUvbt0rBhzJwH/IhQCgAIOSeKTqj9/7Z3+3qrIa3s+YxG/OphtvoETEIoBQCElL9u+qvuXXKv29e3jr1MBx85pJbRLX1YFYDGEEo9ZPlvi4wnDLPLAABcxDAMdfm/LjpUdMjtz0zpPkWLb1/sw6oAuItQ6iECKQAEnvziH5T8x9YefebVqa9q5jUzfVQRAE8RSgEAga+8XLLbna+CglqvYbsf07q4AsnNOUmRlkh999B3SrGl+K5eAB4jlAIAfK+01Bki6wiVrvccBXnaX7hPD0Tn6IvWJc5/oayqDps1Q2fN45qPghpqMJx2Seqi/Q/ul4VZ9UDAIZQCABpmGFJJSd2h0m6XIy9Ph4r26c6SRcqJK5Yi1HCYtMgZHmuKltRGUttm1tpA1vzloF/q+eufb+YNAPgKoRQAQp3DIRUXX9ozmZenXQe3aYpe0oFz5Y2HSV30c81g2eLCy111hUcfdl6uvHulRnYa6bsbAGg2QikABLrKSqmwsCpUOvLztWHTco0995TOSc5wWCnPeiZd77mu9SRQ1mzDh2yRNj06+FE9kvmI4mPja50zjOrfkMViUfL/JCvfyL+kDausKv73YrWIaspvEIA/EUoBwNdck3QKCrRi2ccac+LR2ucrL/zqSc/kxdc29re5H3smh7QbolemvqL+V/b3SfuuQOp6LtR+1l5nIO2e1F17HtrjkxoAeJ/fQuns2bOVk5Ojzp0767XXXlPUhR0zKisrdd9992nv3r0aOHCgnn32WX+VBCBcGIZkGHJUVMhhVKqiokzFZ4t0PO+oDhQc0Cdbl2jlqbU6rVMqULHn7TtqHLvbM1lThJv3aShENjLBxx1PDn1Sc0bPUUxMTPMa8pGLe0ddkv6QdMm1vxr2Kz018Sl/lAXAS/wSSnNzc3Xs2DFlZ2fr6aef1qJFi3TbbbdJkj755BNdccUVeu2113Tfffdp7dq1GjZsmD/K8ojlv5mpCaAe1jrec7dnsr7eT0954a+oJ9c9qSfXPdn8hky2+2e7dXXbq80uA4CH6vqr1OtycnI0ceJESdKkSZO0Zs0at85drLS0VIWFhbVeABDULDVeaLbK/6wkkAJByi+hND8/X4mJiZIkm82mvLw8t85dbN68ebLZbFWvlBQWPgYAOBlPGLJa/fLPGgAf8MvwfVJSUlWvpt1uV3JyslvnLjZ37lz967/+a9XPhYWFfgumbC8KAADgO375v5QZGRnKysqSJC1dulTDhw9369zFYmJilJiYWOsFAACA4OeXUJqWlqZ27dopMzNTO3bs0LRp0zRr1ixJ0pQpU3T48GFlZmYqNjY2ICc5AQAAwLcsRs01NoJMYWGhbDab7HY7vaYAAAAByN28xhPhAAAAMB2hFAAAAKYjlAIAAMB0hFIAAACYjlAKAAAA0xFKAQAAYDpCKQAAAExHKAUAAIDpCKUAAAAwHaEUAAAApiOUAgAAwHSEUgAAAJiOUAoAAADTEUoBAABgOkIpAAAATBdpdgHNYRiGJKmwsNDkSgAAAFAXV05z5bb6BHUoLSoqkiSlpKSYXAkAAAAaUlRUJJvNVu95i9FYbA1gDodDx48fV0JCgiwWi8/vV1hYqJSUFB05ckSJiYk+vx/cw/cSuPhuAhPfS+DiuwlMfC/NYxiGioqKdMUVV8hqrf/J0aDuKbVarerQoYPf75uYmMh/lAGI7yVw8d0EJr6XwMV3E5j4XpquoR5SFyY6AQAAwHSEUgAAAJiOUOqBmJgYPfHEE4qJiTG7FNTA9xK4+G4CE99L4OK7CUx8L/4R1BOdAAAAEBroKQUAAIDpCKUAAAAwHaEUAAAApiOUemD27NnKzMzUjBkzVF5ebnY5YW3Dhg0aNmyYRo4cqdtuu03l5eV6//33lZGRoXHjxuno0aNmlxjW3nnnHbVp00aS+F4CxIoVKzRu3DiNGTNGH374oVavXq2MjAyNGDFC27dvN7u8sOVwOHT33XcrMzNTI0aM0K5du/huTGS32zV48GDFx8frm2++kVT332G7du3SyJEjlZGRoWXLlplZcmgx4JZt27YZd9xxh2EYhvHUU08Zb7/9tskVhbfjx48bJSUlhmEYxpw5c4z333/fGDp0qFFaWmqsXr3auP/++02uMHxVVFQYN954ozFgwACjvLyc7yUAlJSUGFOmTDFKS0ur3hs5cqSRl5dnHDp0yLjuuutMrC68bd682Zg+fbphGIaxatUq47777uO7MVFZWZlx6tQp46677jK2b99e799hN954o7Fnzx7DbrcbGRkZJlcdOugpdVNOTo4mTpwoSZo0aZLWrFljckXhrX379mrRooUkKTo6Wrt371avXr0UHR2t4cOH6+uvvza5wvD1zjvv6Oabb5bVatXevXv5XgLA2rVr1aJFC02dOlU33nijvv/+e0VERKhVq1bq2LGj8vLyzC4xbHXo0EGGYcgwDOXn56tly5Z8NyaKioqqGuWRVO/fYcePH1f37t2VmJio5ORknTlzxqySQwqh1E35+flVW4vZbDb+oggQhw4d0hdffKERI0bU2vqtsrLSxKrCV2Vlpd577z3deuutkmr/78Z1Hv538uRJ7du3T4sXL9Z9992nJ554otb3EhkZqbKyMhMrDF+tW7dWVFSUevbsqV/+8pd65JFH+G4CSH1/hzkcjqr3yATeQyh1U1JSkgoLCyU5nzlJTk42uSIUFhZqxowZeuONN9SmTZuq70eSIiIiTKwsfP3973/XLbfcIqvV+VdLzf/dSHwvZklKStLw4cMVHR2tcePGaevWrbW+l4qKCkVHR5tYYfj64osvFBkZqd27d+uDDz7Qo48+yncTQOr7O8z1d5xEJvAmQqmbMjIylJWVJUlaunSphg8fbnJF4a2iokLTp0/XE088oR49eqh79+7auXOnysrKlJOTo/79+5tdYlj69ttv9be//U2TJk3S3r179cILL/C9BIBBgwZp586dMgxD27ZtU+/evVVRUaGCggIdOXKEf1BNZBiGLrvsMknOXtOioiK+mwBS378t7du31/79+1VUVKS8vDy1bt3a5EpDAzs6eeDxxx/XunXr1LFjR73++uv8v1cTvfXWW3r44YfVr18/SdLPfvYzSdJzzz2n2NhYvfnmm0pJSTGzxLCXnp6uTZs26d133+V7CQAvvfSS3n33XVksFr322ms6duyY5syZI4vFopdfflmpqalmlxiWKioqdMcdd+jEiRMqLS3V//7v/6qiooLvxkTXX3+9tm3bpk6dOmnWrFlq0aLFJX+Hffvtt5o1a5YqKyv13//935owYYLZZYcEQikAAABMx/A9AAAATEcoBQAAgOkIpQAAADAdoRQAAACmI5QCAADAdIRSAAAAmI5QCgAAANMRSgHAD86dO6fRo0dr9OjRSkhI0OjRo9W5c2etWbPG7NIAICCweD4A+JlrtysAQDV6SgHAJE8++aQ++eQTHTx4UBkZGbr11lvVp08fvfvuu5oyZYpSU1O1d+9eSdIbb7yhzMxMZWRk6KuvvjK5cgDwvkizCwAASPn5+crOztayZcs0d+5cbdy4UYsXL9Zbb72lhx56SAsXLtSqVatUUlKiyZMna+zYsWaXDABeRSgFgADQu3dvRURE6IorrlDfvn1ltVp15ZVXKisrS/v379eOHTs0ZswYSdLp06dNrhYAvI9QCgABwGKx1HlsGIauuuoq9e/fX5988oksFovKy8vNKBEAfIpQCgABrnXr1po+fbpGjRqliIgI9evXT88//7zZZQGAVzH7HgAAAKZj9j0AAABMRygFAACA6QilAAAAMB2hFAAAAKYjlAIAAMB0hFIAAACYjlAKAAAA0xFKAQAAYDpCKQAAAExHKAUAAIDp/j+pJSeP/93bBwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAFqEAABb5CAYAAAANwfJQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdd5TU9dk/7nuXtuxSBGnSFEURUBEQKRZAEWxgJAp+LVFU1KiJmMSuCTHWaCyxdyWWILFgQSMoqCAGFRRROtKkKh12qfv7I7/4pAgzuzszuyzXdQ7nOWFfn/d9zzLz2TnnWV+TVVhYWBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlCvZpb0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKmnhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAgBTq1q1bZGVl7fDPmDFjUjJrzJgxCWd169YtJbPKoqeffjrh4z/nnHNKe02AInFvAwAAAAAAAAAAAFJJCTUAAAAAAAAAAAAAAAAAAAAAAAAAAABAOaSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKAcqljaCwAAAAAAAAAAAACpMXfu3GjWrFlpr5FQ165dY8yYMaW9BgA7ib322ivmzZuX8nOzsrKiSpUqUaVKlahatWrUq1cv6tWrF40bN44WLVpEy5Yto0OHDtGwYcOUzwYAAAAAAAAAAACATFFCDQAAAAAAAAAAAADALqewsDAKCgqioKAgVq9eHUuWLPnRXLNmzeLoo4+OU089NY466qioWNGv4QMAAAAAAAAAAACw88gu7QUAAAAAAAAAAAAAAKCs+uabb+Lxxx+PXr16RaNGjWLw4MGxbNmy0l4LAAAAAAAAAAAAAJKihBoAAAAAAAAAAAAAAJKwbNmy+P3vfx9777133HLLLbFx48bSXgkAAAAAAAAAAAAAdkgJNQAAAAAAAAAAAAAAFMH69evjuuuui/bt28fXX39d2usAAAAAAAAAAAAAwHYpoQYAAAAAAAAAAAAAgGL46quvokOHDjFixIjSXgUAAAAAAAAAAAAAfpQSagAAAAAAAAAAAAAAKKYNGzbEySefHG+++WZprwIAAAAAAAAAAAAA/6NiaS8AAAAAAAAAAAAAAAAldfbZZxcpv3Xr1li1alWsWrUqVq5cGTNmzIjNmzcXa/amTZvi//2//xcff/xxtGrVqlhnAAAAAAAAAAAAAEA6KKEGAAAAAAAAAACAXUzXrl1jzJgxpb0GlFteX1A6nn766RJdX1BQEBMnToxx48bFk08+GdOmTSvS9WvXro1TTz01Pv/886hUqVKJdmHXds4558Q555xT2msAAAAAAAAAAAAA5UR2aS8AAAAAAAAAAAAAAAClLScnJ7p06RJXXHFFTJ06Nd55551o3759kc74+uuv409/+lOaNgQAAAAAAAAAAACAolNCDQAAAAAAAAAAAAAA/+WYY46J8ePHx29+85vIyspK+rrbbrst1q5dm8bNAAAAAAAAAAAAACB5SqgBAAAAAAAAAAAAAOBHVKpUKe644464/fbbk75m9erV8dhjj6VxKwAAAAAAAAAAAABInhJqAAAAAAAAAAAAAADYgSuuuCLOPffcpPNDhgxJ4zYAAAAAAAAAAAAAkDwl1AAAAAAAAAAAAAAAkMDdd98dtWrVSir7xRdfxOzZs9O8EQAAAAAAAAAAAAAkpoQaAAAAAAAAAAAAAAASqFGjRlx++eVJ50ePHp3GbQAAAAAAAAAAAAAgOUqoAQAAAAAAAAAAAAAgCRdddFFkZWUllf3444/TvA0AAAAAAAAAAAAAJFaxtBcAAAAAAAAAAAAASJd58+bFzJkz45tvvomFCxfG+vXrY/369bF58+bIzc2NvLy8qF+/fjRr1iyaN28eLVu2jOzs7NJeu0jWrVsX06ZNixkzZsR3330Xa9eujTVr1sSaNWti8+bNUbVq1cjJyYnatWtH48aNo3HjxnHAAQdE3bp1S3v1ItuyZUvMmTMnpk+fHgsWLIhly5bFqlWrYuPGjbFp06aoXLly5Obm/vCnevXq0aRJk9hzzz1jzz33jFq1apX2Q4Bd4r5UntWtWzcOOOCA+PLLLxNmk8lkynfffRfTp0+POXPmxLx582LNmjWxYcOGyM/Pj5ycnMjLy4vatWtHs2bNolmzZnHQQQdFTk5Oaa/NTmD9+vXx1VdfxZw5c+Kbb76JVatWxfr16//juVWzZs1o1qxZ7L333tGqVauoUaNGaa9NktasWRPTp0+PWbNmxeLFi2PZsmWxfv362LhxY2zbti2qVq0aubm5P/zfOnXq/PC+q0mTJlGlSpXSfggAAAAAAAAAAACEEmoAAAAAAAAAAACgHFm2bFm89NJLMWrUqBg3blwsXbq0SNfXrFkzOnfuHCeeeGKccsopUb9+/TRtWjwbNmyIcePGxZgxY2LChAkxderU+Pbbb4t1VuPGjaNLly5x3HHHxfHHHx/16tVL8bapMWnSpHj11VdjzJgx8cknn0R+fn6xz6pevXoccMAB0blz5+jUqVN06tQpmjRpksJtd36rVq2Kv//97zFx4sT46quvYtasWbF69epYs2ZNbNq0KapVqxY1atSIvffeO1q2bBkdO3aMXr16RYMGDUp79TKrvN+XdkXdunVLqmB63rx5Gdjmx+Xn58ebb74ZI0aMiHHjxsWMGTOKdH3lypWjffv20bNnz+jfv3+0bNkyTZumzrRp02LkyJExceLEmD59esyfPz/Wrl0b69evj6pVq0b16tWjVq1a0aJFi2jdunV06NAhevToEbm5uaW9+k5nwoQJMWzYsHj//fdj0qRJsWXLlqSvzc7OjoMOOii6du0ap5xyShx22GGRlZWVxm0zY9myZfHWW2/FpEmTYsqUKfHNN9/E6tWrY+3atRERkZubG7Vr14699tor9ttvv+jSpUt07do1mjZtWsqb/6f8/Pz4+9//Hm+88UaMGzcupk+fHoWFhcU6KysrKxo2bBiHHHLID++7OnToEHl5eSneGgAAAAAAAAAAgESyCov722AAAAAAAAAAAABAmTJ37txo1qxZwlzXrl1jzJgx6V8og0aMGBH33HNPvPfee7F169aUnFmhQoU48cQT45prromOHTum5Mzi+OKLL+Kll16K9957LyZMmBCbN29O+YyKFSvGSSedFJdeeml069Yt5ecXVX5+fjzxxBPxwAMPxLRp09I6q3nz5tGvX7/o379/HHTQQSk5s1u3bvH+++/vMDN69OiUfK/HjBkT3bt332Em0Wt+69at8fLLL8fDDz8cH3zwQZHKRCP+WTLZuXPnuPjii+PUU0+NypUrF+n6knj66adjwIABO8ycffbZ8fTTT2dmoX9Tnu9LmbbXXnslVeicqV+Nv/fee2PQoEEJc1lZWbFx48aoVKlS+pf6/3355Zdx5513xssvvxzr1q1L2bnt27ePq666Kn76059GdnZ2ys4tqaVLl8ZTTz0Vjz/+eMyePbvI11etWjWOOeaYuPTSS+OYY47ZYfbiiy+OZcuW7TDz0EMPRd26dYu8x38ri/e2/Pz8eOyxx+K+++6LWbNmpezcpk2bxsUXXxwXX3xxVK9ePWXnJpKKn9WbN2+OF154IR599NEYP358bNu2rch7dOrUKc4777z42c9+ltGfn/9txowZ8ec//zmGDBnyQ3F2OlSsWDG6desW/fv3j5NPPjl23333tM0CAAAAAAAAAADg/5Sd3/4EAAAAAAAAAAAAKKI333wzDj744DjhhBNi5MiRKSt6jfhnMe/w4cOjU6dO0bt375g7d27Kzk5k+vTp8fvf/z5atmwZBx98cPzhD3+IcePGpaWAOiJiy5Yt8dJLL0X37t3jmGOOic8//zwtc5Lx9NNPR/PmzeMXv/hF2guoIyJmzZoVt9xyS7Rp0yb233//2LBhQ9pnliV/+9vfokWLFtGvX7947733ilxAHfHP4t+PPvoozjzzzNh3333jhRdeSMOmO4/yel/i/yRbmlpYWBjr169P8zb/NHXq1Ojdu3e0adMmhgwZktIC6oiIzz77LPr16xcHHnhgwuLeTFi7dm1cf/310axZs7jmmmuKVUAd8c9i5ddeey169uwZ7dq1i9GjR283O2LEiHjppZd2+CdT/96ZVFhYGI888kg0a9YsLrvsspQWUEdEzJ8/P66++urYa6+94q677krpPTOdnnrqqdhnn33i7LPPjnHjxhWrgDoi4uOPP46BAwfGPvvsEy+++GKKt0xs5cqVcdFFF0Xr1q3jgQceSGsBdcQ/33OOGjUqBg4cGA0aNIhrrrkmrfMAAAAAAAAAAAD4JyXUAAAAAAAAAAAAwE7n22+/jZ/+9Kdx4oknxhdffJH2eW+88Ua0atUqHnjggbTP+vOf/xz7779/DB48OCMlzP9t1KhR0aFDh7jllluKXahYHCtWrIgTTjghBgwYEIsWLcrY3H83ffr02LRpU6nMzrTly5fHT3/60zj11FOLXd76Y+bPnx+nn356HHPMMbFkyZKUnbszKM/3Jf5TsiXUEZH2YvuCgoK49tpro02bNvHGG29EYWFhWud9/fXX0a1bt7jwwgujoKAgrbO2Z/To0dGqVau4+eabIz8/P2XnTpo0KY4++uj4+c9/Xi7LpItj1qxZceSRR8ZFF10US5cuTeusFStWxK9//evo2LFjTJkyJa2zSmLu3Llx9NFHx7nnnhsLFixI2bkLFy6M/v37x6mnnpqx5997770XBxxwQDzyyCPF+hCKktqyZUtMnTo143MBAAAAAAAAAAB2RUqoAQAAAAAAAAAAgJ3Ke++9F23bto2XX345o3Pz8/Pj0ksvjbPPPjs2btyYtjlr1qxJ29nJ2rJlS1x33XVx0kknpbTgc3vmzp0bnTt3jhEjRqR9Fv8sFe3cuXNaX0OjRo2KNm3axIcffpi2GWVJeb8v8Z+KUvScnZ2+X9mfO3duHHbYYXHrrbfG5s2b0zbnxzz66KNx+OGHx8KFCzM696abbooePXqkbW5hYWE8/PDD0a1bt1i2bFlaZuws3nnnnejQoUOMHTs2o3M/++yz6NSpU8bvp8n44IMP4pBDDon33nsvbTP+9re/xWGHHRbfffdd2mZERAwZMiSOPfbYUvvgDwAAAAAAAAAAADJLCTUAAAAAAAAAAACw07j//vujZ8+esXz58lLbYciQIfGTn/wkCgoKSm2HTHnjjTeiV69eaS2iXr58efTs2TNmzJiRthn8n6+//jq6dOkSs2fPTvusZcuWRa9evcp9ubj70q7n+++/Tzq72267pWWHsWPHxiGHHBITJ05My/nJ+Oyzz+KII46IuXPnpn3Wtm3b4uKLL44bbrghtm3blvZ5n376aXTu3HmXLeh95pln4vjjj49Vq1aVyvz169fHKaecEvfee2+pzP8xw4YNi2OOOaZIr//i+uKLL6JXr15p+2CSl156KQYMGJDx8noAAAAAAAAAAABKjxJqAAAAAAAAAAAAYKdw5513xi9+8YvYunVraa8Sb7/9dpx88smxZcuW0l4l7T788MM4++yzo7CwMOVnFxYWxhlnnBEzZ85M+dn8r2XLlsUJJ5yQ0bLk/Pz8+MlPfhLvvvtuxmZmkvvSrinZEtoqVapETk5Oyue///77ceyxx2akDDeRuXPnRteuXdNe1nz55ZfHQw89lNYZ/23OnDnRu3fv2LBhQ0bnlrbnn38+zj333FK/rxUWFsagQYPiwQcfLNU9IiL+/ve/xxlnnBGbNm3K2MyJEyfGBRdckPJzZ8yYEWeffXZGytwBAAAAAAAAAAAoOyqW9gIAAAAAAAAAAAAAidx3331xxRVXFOmarKysOOSQQ+Loo4+O9u3bR/PmzaNx48ZRrVq1qFy5cmzYsCGWLVsWM2fOjI8//jjeeuut+Mc//pH0+W+//Xb8+te/jnvvvbeoD6fEsrOzo1WrVnHooYfG/vvvH/vvv380bNgw6tevHzVq1IicnJzIysqKVatWxapVq2LlypUxZcqUmDBhQkyYMCEmTZpUpHnDhg2LTp06xa9+9auUPo4nn3wyRo4cWaRrGjVqFD179oy2bdtG8+bNY5999okaNWpEXl5e5ObmRn5+fqxZsyZWr14dq1evjgULFsTkyZPjyy+/jMmTJ8fcuXPTUqhd1m3dujX69u0bc+fOTZitUKFC7LPPPj98b7Ozs2Pt2rXxzTffxMyZM4tcwrl58+b46U9/GmPHjo0DDjigmI+g7HFf2nVNnz49qVz9+vVTPvsf//hHHH/88UUuRt57772jV69e0aFDh2jVqlU0adIkatasGVWrVo2CgoJYtWpVzJkzJz799NMYNWpUjBw5MunX+vz58+Pkk0+ODz74IKpUqVKch7VDd911V/z5z38u1rU1atSI/fbbLxo1ahTVqlWLzZs3x+rVq2POnDkxZ86chEXLEydOjAEDBsTQoUOLNX9n868PnihqQXGLFi2id+/eceSRR0bLli2jXr16kZeXF/n5+fHdd9/FtGnTYuzYsfH666/H5MmTi3T2pZdeGk2aNInevXsX6bpUmTRpUvTt2zc2b96cMLv77rvHPvvsEw0bNvzh8S9btiyWLl0as2bNKvL7j6FDh8aJJ54YZ555ZnHX/x/nn39+rF+/Pul8dnZ2tGvXLnr06BH7779/NG/ePJo0aRK5ubmRl5cXlStX/uF915o1a2LlypUxffr0H957ffnll7Fy5cqU7Q8AAAAAAAAAAEDxKKEGAAAAAAAAAAAAyrSRI0fG5ZdfnnS+du3acemll8bAgQOjcePG281Vq1YtqlWr9kMx5+9+97uYPn163HrrrfGXv/wlqQLGP//5z9GlS5fo379/0vsVV8OGDaN3795x/PHHR/fu3aN69eoJr6lbt27UrVs3IiIOPfTQOPfccyPinwWqjzzySDzzzDOxYsWKpObfcMMNcdJJJ8U+++xT/AfxbzZt2hSDBw9OKpudnR19+/aNK6+8Mjp06LDD7L/+XRs2bBgREZ06dYpTTz31h68vXbo03njjjXj99ddj5MiRRS5y3VndfffdMW7cuO1+PTs7O0488cQ455xzokePHtt9fhUUFMSYMWPi2WefjWHDhiVdUrt69ero27dvTJo0KfLy8or1GMoS96Vd2+jRo5PKtW3bNqVzv/322zj55JOTvm9VqlQpzjrrrLjkkkuiXbt2283l5uZGbm5uNGzYMA4//PAYNGhQfP/993HffffFXXfdFWvXrk04a8KECXH55ZfHgw8+mPTjScb48ePjqquuKtI1jRo1inPPPTd+8pOfRNu2bSMrK+tHc2vXro3Ro0fHs88+G8OHD9/u/ezFF1/8j58j5dXixYujX79+sWXLlqSvOeyww+IPf/hDdO/e/Ue//q972l577RXHHnts3HTTTfHxxx/HDTfcEKNGjUpqRmFhYfzsZz+LTz/9NGXvQZK1du3auOCCC3b4mjvssMPi9NNPj549e0bz5s23m1u8eHG8+eab8eSTT8b48eOT3uGqq66Kk08+OSU/O0eMGBEffvhhUtndd989fvnLX8bPf/7zH95Lbk+tWrWiVq1aP/zvrl27/sfXP/vss3j99dfj9ddfj4kTJxZ9cQAAAAAAAAAAAEosu7QXAAAAAAAAAAAAANiehQsXRv/+/WPr1q0Js9nZ2TFo0KCYM2dO/P73v99h0ev2tGjRIp5++un46KOPki46/MUvfhHfffddkWclo1KlSnH66afHO++8EwsWLIiHH344+vTpk1QB9Y60aNEi7rrrrpg5c2acfvrpSV2zYcOGuPLKK0s099+9+uqrsXDhwoS5PfbYIz744IMYNmxYwgLqZNSvXz/OO++8ePXVV+P777+PoUOHRqdOnUp8blk2f/78+O1vf7vdrx999NExZcqUGD58eJx88sk7fH7l5OTEscceG88++2zMmjWrSMWsM2fOjMsuu6xIu5dFu/p9aVe3aNGimD59elLZ9u3bp2zu1q1b45RTTonFixcnle/Vq1dMnTo1nnjiiR0WUG/P7rvvHoMHD46pU6dGr169krrm4YcfjjFjxhR51vasXbs2Tj/99KRLkWvUqBF33313zJkzJ2688cZo167ddguoIyKqV68effr0iRdffDGmT5++w/vZpZdeGuvWrSvyY9iZDBw4MJYsWZJUNicnJx555JEYO3bsdguot6dTp04xcuTIePbZZ6NatWpJXbNq1ao466yzorCwsEizSuo3v/lNzJw580e/dvjhh8fHH38cY8eOjYsvvniHBdQR/3w/c/7558dHH30Uzz77bNSvXz+pHRYtWhQPPPBAkXf/Mffff39Sud69e8fs2bPjt7/9bcIC6mS0b98+Bg8eHJ999lksWLAgfve730W9evVKfC4AAAAAAAAAAADJU0INAAAAAAAAAAAAlFkXXHBBrFy5MmFu9913j1GjRsXdd98dNWvWLPHcjh07xqeffhpHHnlkwuzy5cvj6quvLvHMf1etWrW45pprYt68efHcc8/FMcccE9nZqf+1z9q1a8dzzz0XL730UlStWjVh/pVXXokpU6akZPYLL7yQMFOnTp34xz/+EYcddlhKZv63nJyc6NevX4wfPz7Gjx8f/fr1S8v3ubR98803kZ+f/z9/n52dHbfddluMHDkyWrZsWeRzmzRpEi+++GI8+eSTUaVKlaSueeKJJ1JaUlsadtX7Ev903333JZ094ogjUjb3zjvvjI8//jhhrkKFCnH33XfH22+/nXRp+Y40atQoRowYkVSBfGFhYVx00UVJFbQn46abboq5c+cmlT344INj4sSJMWjQoKhcuXKRZ+21117x4osvxl/+8pfIycn5n68vXbo0vv/++yKfu7N46aWX4s0330wqu/vuu8eHH34YF1xwQYlmnnHGGTF+/Piky5jHjx8fjz32WIlmFtWMGTP+5+8qVaoU99xzT3zwwQfRsWPHYp17xhlnxNixY6NRo0ZJ5e+///6ky9i3Z8WKFfH3v/89Ye60006L4cOHp+Tn1o9p3LhxDB48OObPnx9PPPFEtG7dOi1zAAAAAAAAAAAA+E/l77fkAQAAAAAAAAAAgHLhueeei7feeithrk6dOjFu3Ljo3r17Sufvtttu8dZbb8UhhxySMPvMM8/ErFmzUjL3+OOPj2+++SZuueWW2GOPPVJyZiJ9+/aN119/PSpVqrTDXGFhYdx7770lnrdt27Z4//33E+YeffTRaNKkSYnnJaNTp04xdOjQqFGjRkbmlbYKFSrE008/HVdddVVkZWWV6KwBAwbEa6+99qPFrT/m8ssvj23btpVoZmnZVe9L/NOKFSvigQceSCrbpEmTpArDkzFr1qwYPHhwwlx2dna88MILMWjQoJTM/fdz77nnnrj44osTZqdPnx5/+ctfSjxz9uzZcc899ySV7dKlS7z//vspKd0+88wz46233oq8vLwSn7Wz2Lx5c/z6179OKlu9evV49913k7oHJeOAAw6IMWPGRK1atZLKX3PNNbF27dqUzC6OqlWr/lDKXtKfnc2bN48xY8YkVfa8YMGCGDVqVInmffDBBwl/9jZu3DgeffTREj+2ZFSpUiXOPffcuPnmm9M+CwAAAAAAAAAAACXUAAAAAAAAAAAAQBm0adOmuO666xLmcnJy4rXXXosWLVqkZY/c3Nx48cUXExYEbtmyJW655ZaUzGzXrl3UqVMnJWcVxdFHHx133HFHwtyLL74Y+fn5JZo1b968WLly5Q4zzZo1i5/85CclmsP2/fGPf4yzzjorZef17NkznnrqqaSyn3/+ebzwwgspm50pu/J9iX+W8P/85z9PugD3rLPOiuzs1Py6/g033BAFBQUJc3feeWeceuqpKZn5Y+6+++6kyodvuummKCwsLNGsW2+9NTZt2pQwt++++8brr7+e0g8Q6NatWzz77LMp+/cr64YMGRLz5s1LKvvss89GmzZtUjp///33j6FDhyb1/V6xYkU8+OCDKZ2frAoVKsQrr7wSPXr0SNmZzZs3jz/84Q9JZYcNG1aiWZMmTUqYOe+886J69eolmgMAAAAAAAAAAEDZtGv8ViQAAAAAAAAAAADwg/fffz+ysrIy+uecc84p0o6PPfZYUoWITzzxRHTu3LmY34nkNGvWLB5//PGEuaFDh8bq1avTuku6/eIXv4j27dvvMLNmzZoYMWJEiebMnj07YaZ3796RlZVVojn8uJNPPjl+9atfpfzc0047LS699NKksnfeeWfK56eb+9Ku7cYbb4wXX3wxqWxeXl5cfPHFKZk7ZcqUpOaef/75cfnll6dk5vZUrlw5XnzxxahWrdoOc7Nnz45Ro0YVe87ixYvj2WefTZirVKlSDB06NGrXrl3sWdvzk5/8JAYNGpTyc8uawsLCuP3225PKDhw4MPr06ZOWPY455pikf37cddddSRWUp9pNN90UvXr1Svm5F198cRx00EEJc2+99VaJ5iTz3uukk04q0QwAAAAAAAAAAADKLiXUAAAAAAAAAAAAQJlSWFgYd911V8Jct27d4vTTT8/ARhGnnHJKHHLIITvMbNiwIV544YWM7JMu2dnZccMNNyTMlaRcNCJi5cqVCTNNmzYt0Qx+XM2aNePBBx9M2/m33nprUv92n3/+eYwePTpte6Sa+9Kuq6CgIC655JIYPHhw0tdcc8010ahRo5TM/9Of/hTbtm3bYaZWrVpJFwmXVLNmzeKiiy5KmHviiSeKPeOJJ56IjRs3Jsz95je/ibZt2xZ7TiI333xz7LXXXmk7vyz48MMPY+bMmQlztWvXjjvuuCOtu9xyyy3RoEGDhLlly5bF66+/ntZd/lv79u3jiiuuSMvZFSpUiAsvvDBhbvHixUkVSW+P914AAAAAAAAAAAC7NiXUAAAAAAAAAAAAQJny7rvvxpw5c3aYycrKij/96U8Z2uifrrrqqoSZV155JQObpNcJJ5wQderU2WHm3XffLdGMZMpF8/LySjSDH3fFFVckVfJZXNWqVYvf//73SWWHDBmStj1SzX1p11NYWBgjRoyIjh07Fqm4vVWrVvHrX/86JTusWbMmXnzxxYS53/72t1G7du2UzEzGoEGDonLlyjvMvPnmm7F58+Zinf/8888nzNSuXTup539J5OTkxI033pjWGaUt2fvwlVdeGTVr1kzrLnl5eUl9EEZE5n9+/PGPf4wKFSqk7fx+/fpFxYoVE+YmTJhQ7BneewEAAAAAAAAAAOzalFADAAAAAAAAAAAAZcpTTz2VMNOnT59o165dBrb5P3379o3GjRvvMPPBBx9Efn5+hjZKj4oVK0b37t13mJk5c2asWbOm2DOSKbL89ttvi30+P65GjRpx2WWXpX3OWWedFXvvvXfC3CuvvJJUKWZZ4L60aygoKIiPPvoobr/99mjRokWccMIJMXny5KSvr1u3brzxxhuRk5OTkn2GDh0aGzZs2GGmTp06cckll6RkXrIaNWoUp5xyyg4z69ati7Fjxxb57C+//DKmTp2aMHfRRRelvRQ5IuL0009P+BrbWW3bti2pkvq8vLy46KKLMrBRxIABA5IqVH/rrbdi/fr1Gdgo4tBDD42jjjoqrTPq1KkTRx55ZMJcMq+N7fHeCwAAAAAAAAAAYNdWsbQXAAAAAAAAAAAAAPiXLVu2xIgRIxLm+vfvn4Ft/lN2dnYcddRRMWTIkO1m/lVgevTRR2dws9Q75JBDYtiwYTvMTJkyJbp06VKs8+vUqZMw8/bbb8cf/vCHYp3PjzvrrLOiWrVqaZ9ToUKFGDhwYFxzzTU7zK1evTpGjx4dxx57bNp3Kgn3pZ3HOeecU6T81q1bY/Xq1bFq1apYsWJFzJgxIzZv3lys2TVr1oxXX301mjVrVqzrf8zw4cMTZvr27RuVKlVK2cxk9ejRI55//vkdZt57772EH2rw3/7+978nzGRlZcWFF15YpHOLq0KFCnH++efH4MGDMzIvkyZOnBgrVqxImOvfv39GCr8jIqpWrRo/+9nP4p577tlhbvPmzfH+++/H8ccfn/adzj333LTPiIg4+OCD47333tthZtq0acU+P9n3XpkutQcAAAAAAAAAACAzlFADAAAAAAAAAAAAZcb48eNj1apVO8xUrVo1evfunZmF/suRRx65w7LXiIhJkybt9GWvyZSoTp06tdgl1HvssUfCzKeffhpvv/12mS8o3pmcddZZGZ117bXXRmFh4Q5zO0MJtfvSzuOZZ54plbn77bdfvPbaa9GiRYuUnblx48YYPXp0wly/fv1SNrMojjzyyISZSZMmFfncRCW8EREdOnSIpk2bFvns4jr11FPLZQn1qFGjksr99Kc/TfMm/+nUU09NWEIdEfHuu++mvYQ6KysrTjrppLTO+JcDDzwwYWbRokXFPj+Z91533XVXDBgwIHJzc4s9BwAAAAAAAAAAgLIpu7QXAAAAAAAAAAAAAPiXZAoRjzrqqKhWrVoGtvlfhx12WMJMcUo3y5oaNWokzJSkCHGvvfaKRo0aJcwNGDAgvvrqq2LP4f80aNAgDj300IzNa9SoUbRv3z5hLpmS3dLmvsT2VKhQIS644IKYMGFCSguoIyI++uij2LBhww4zNWrUiG7duqV0brL22WefqF+//g4zxXnejR8/PmHmxBNPLPK5JdGqVaukPpxhZzNhwoSEmapVq2a8wL5z585Rt27dhLl//OMfad+ldevW0aBBg7TP+desRJYuXVrs8w8//PCEmTlz5sTPfvaz2Lx5c7HnAAAAAAAAAAAAUDYpoQYAAAAAAAAAAADKjE8//TRh5sADD8zAJj9ujz32SJiZNWtWBjZJrypVqiTMLFmypEQzjjrqqKRmHHHEEfHkk0/Gtm3bSjRvV9e9e/fIysrK6MxkiksnT54cW7ZsycA2xee+xH+rUKFC9OnTJ7744ot45JFHombNmimfkczzrlWrVlGhQoWUz05WoufeokWLIj8/P+nzFixYEKtWrUqYS6ZMN9WSKXvf2UyePDlhpkOHDkm9J0ilrKyspL7fX375Zdp3adu2bdpn/EutWrUSZlasWFHs8w877LCk/i1feuml6NatW1LPDwAAAAAAAAAAAHYeSqgBAAAAAAAAAABgF9O1a9coLCzM6J+nn346qd0mTZqUMNOyZcsSfgeKr2bNmlGxYsUdZhYuXJihbSJWrVoVI0eOjHvvvTd+8YtfxIknnhiHHnpoNGvWLGrXrh15eXlRqVKlyMrKKtKf7t27J5z93XfflWj3/v37J5VbuXJlnHfeebH//vvHPffcE8uWLSvR3F1V586dy+TMjRs3xsyZMzOwTfG5L/EvNWrUiDvvvDMWLlwYw4cPj9atW6dtVll/3kVE7L777gkzRXnuffXVVwkzWVlZ0aFDh6TPTJVDDz004zPTacOGDTFnzpyEuY4dO2Zgm//VqVOnhJk1a9bEvHnz0rpHJl9jNWrUSJjZuHFjsc+vWrVq9O7dO6nsRx99FAcffHD06dMn3njjjTL/YREAAAAAAAAAAAAkpoQaAAAAAAAAAAAAKBNWrFgRixcvTphr1apVBrbZvtq1a+/w60uXLo1t27alZfa2bdtizJgx8etf/zpatWoVtWvXjp49e8agQYPi/vvvjzfffDM++eSTmDt3bqxcuTI2bNiQtuLA/Pz8El1/wgknRLt27ZLOz5w5My6//PJo2LBh9OjRI+65556YOnVqiXbYlbRp0ybjMw866KCkcskUz5YW9yX+3Zo1a+Lxxx+P999/P+2zpkyZkjBT2s+7ZEqoFy1alPR5s2fPTphp1KhRVKtWLekzU2X//ffP+Mx0mjdvXhQWFibMldbjTrb8ee7cuWndo3Hjxmk9/99Vr149YaagoKBEM66//vrIyspKKltYWBivv/569O7dOxo0aBADBgyIYcOGxYoVK0q0AwAAAAAAAAAAAKWjYmkvAAAAAAAAAAAAABARsWDBgqRyHTp0SPMmJbN169bYsGFDSksyV65cGQ888EA8/vjjMW/evJSdWxIlLUKMiLjlllviuOOOS6oI81+2bt0a7777brz77rsREdGgQYM44ogj4rDDDovOnTtH27Zto1KlSiXerbzZb7/9Mj5zzz33jJycnITPlYULF2Zoo6JzX+K/TZs2LU477bR47rnnYsiQIbHbbrulZU4yz70rrrgirrjiirTMT5W1a9cmnU2m8L158+YlWafYSmtuuiRbDr7vvvumeZMfl+zPrKKUnBdHooL/VKpatWrCzNatW0s0o02bNnHaaafFCy+8UKTrvv/++3j66afj6aefjuzs7DjwwAPj8MMPjy5dukSXLl1ir732KtFeAAAAAAAAAAAApF92aS8AAAAAAAAAAAAAEFG2i2iLKj8/PyXnbN68OW699dZo1qxZ3HDDDWWmgDrin7uVVK9eveK6664r0RlLliyJYcOGxaBBg6Jjx45Ro0aNOPLII+Paa6+Nt956K9avX1/iPXd2VapUiQYNGmR8bnZ2djRp0iRhLpni2dLivsT2vP7669GlS5eYO3duys9ev359rFq1KuXnloaiPO+SuRfUr1+/JOsUW2nNTZdk77t77LFHmjcp2dx0//zIyclJ6/ml4ZFHHolWrVoV+/pt27bFF198EQ888ECcccYZ0axZs2jYsGGccsopce+998akSZOK9OEiAAAAAAAAAAAAZIYSagAAAAAAAAAAAKBMWLJkSWmvkDKpKHv98ssv45BDDolrr702Vq9enYKtUitVBYM33nhj9O/fPyVnRUQUFBTEhx9+GLfeemscf/zxUbt27TjqqKPiz3/+c3z77bcpm7MzqVu3bpmeXZZf+2V5t6LaFUqoCwsLk/6zbt26+Pbbb2PKlCnx17/+Na699tpo3759keZNnTo1jjrqqFi0aFFKH8eu+rxLpni7Tp06Jdim+HJzcyM3N7dUZqdDsu8r6tWrl+ZNflzNmjWjSpUqCXPpfn9UoUKFtJ5fGqpXrx7Dhw+Phg0bpuzMxYsXx0svvRSDBg2Kdu3aRYMGDeLss8+O1157LTZu3JiyOQAAAAAAAAAAABSfEmoAAAAAAAAAAACgTFi/fn1pr5Ay27ZtK9H1I0aMiC5dusTkyZNTtFHZlZWVFc8//3xcddVVkZWVlfLzN23aFKNHj47LLrssmjRpEj179oxhw4bF1q1bUz6rrNp9991LbXYyhbHr1q3LwCbF475UfuXl5UXDhg2jdevW0b9//7j55pvj008/jRkzZsTFF1+cdPnsN998Ez179oy1a9embLdd9XlXUFCQMJOXl1eSdUqkPJVQJ/O9joioVq1amjcp2exdoVw/HZo3bx7jx4+PDh06pOX8ZcuWxZAhQ+Kkk06KBg0axCWXXBJTpkxJyywAAAAAAAAAAACSo4QaAAAAAAAAAAAAKBOSLUQs795+++046aSTynQxb6plZ2fHbbfdFqNHj45WrVqlbU5hYWGMHDky+vXrF/vtt188/fTTu0Qxb05OTpmeXZZf+2V5N9Jj3333jQceeCAmT54cbdu2Teqar776KgYMGJCyHXbV593GjRsTZipXrpyBTX5clSpVSm12qiXzHKtQoUJkZ5fef3KSzPd7V32tpELTpk1j3LhxcfPNN6e1YH3VqlXx4IMPxkEHHRS9e/feJT5gBQAAAAAAAAAAoCyqWNoLAAAAAAAAAAAAAEQkVz5Z3n311VdxyimnxJYtW0p0TuXKlaNu3bpRv379qFGjRlSrVi1yc3OjYsWKUbFixcjKytrh9UuWLIm///3vJdqhOLp27RqTJ0+O559/Pv74xz/GlClT0jZrzpw5MWDAgLjvvvviqaeeioMOOihts0pbWS9tLcslou5Lu65WrVrF2LFjo0+fPvHuu+8mzL/00kvx5z//OX75y1+WeLbn3fYl+vlVXmenWjIfwFCaBdQR/yzBTmRX+CCJdKpUqVJce+21ce6558af/vSneOyxx2L16tVpmVVYWBhvvPFGjBgxIn7+85/H7bffHnl5eWmZBQAAAAAAAAAAwP9SQg0AAAAAAAAAAACUCZUqVSrtFUrV5s2b48wzz4z169cX6bp69erFUUcdFR07doyDDz44mjdvHo0aNSpRWeaYMWNKpYQ64p+lk2eddVacddZZMXbs2PjLX/4Sr7zySixfvjwt8yZOnBgdOnSIhx56KM4999y0zChtpVnSuXXr1oSZZIpGS8uufl/a1eXm5sbw4cOjW7du8emnnybMX3PNNXHcccfFvvvuW6K5u+rzLpnS+tIs6C7LhflFlcz3evPmzVFYWFhq5dvJ/Fvn5ORkYJPyr0GDBnHHHXfE73//+xg6dGj89a9/jffee6/EH4ryY7Zt2xYPPPBAvPvuu/H6669H8+bNUz4DAAAAAAAAAACA/6WEGgAAAAAAAAAAACgTqlatmlRu5syZ5bKw7tFHH43PP/88qWx2dnaceuqpcdFFF0XXrl1LrSAy3Q4//PA4/PDD46GHHopPPvkkRo4cGWPHjo3x48fHmjVrUjZn06ZNcd5558XWrVtj4MCBKTu3rNi0aVOpzd7ZS0R39fsSEXl5efHKK69E27Zt47vvvtthdsOGDXHuuefGBx98UKL7crLPu8ceeyzOP//8Ys8pa5K5F2zYsCEDm5S92amW7H1348aNpXaPTqb0uyz//NgZ5ebmxoABA2LAgAGxZs2aGDVqVIwePTrGjRsXkydPTuqDJZI1bdq0OOKII+If//hHNG3aNGXnAgAAAAAAAAAA8OOUUAMAAAAAAAAAAABlQm5ublK5ZEoJdzabN2+Om2++Oalsy5Yt4y9/+Uu0b98+bfvk5+en7eziyM7Ojo4dO0bHjh0jImLbtm3x+eefxwcffBBjx46NcePGxZIlS0o85+KLL45mzZpFjx49SnxWWbJ+/foyPbssl4juyvcl/k/jxo3j8ccfj5/85CcJs2PHjo1nn302zjrrrGLP21WfdzVr1kyYWb58eQY2+V8bNmwoVyXUeXl5SeW+++67aNy4cZq3+V8bN25M6sMmkn0cFF2NGjWib9++0bdv34iIWLNmTYwbN+6H916ffvppie9BS5YsiRNPPDHGjRsX1atXT8XaAAAAAAAAAAAAbEd2aS8AAAAAAAAAAAAAEBFRv379pHLJlBLubF5//fVYvHhxwlz79u3jo48+SmsBdUSU+aLN7OzsaNeuXQwaNCj+9re/xeLFi2PWrFnx2GOPxWmnnRa1a9cu1rlbtmyJM844o1RLm9Nh2bJlZXp2cf+9MmFXvi/xn0466aQ47bTTkspeffXVsW7dumLP2lWfd3vssUfCzNKlSzOwSdmZmy4NGjRIKldaPz+SnZvs46DkatSoEccdd1zceuut8eGHH8bq1atj7Nix8Yc//CGOOOKIqFixYrHO/fLLL+Pqq69O8bYAAAAAAAAAAAD8NyXUAAAAAAAAAAAAQJnQtGnTpHLffvttmjfJvL/+9a8JMzVq1IhXX301dtttt7Tvs2TJkrTPSLV99tknzj///HjhhRdi+fLlMWbMmLjkkkuKXHC8bNmyuPfee9O0ZelYsWJFbN68uVRmJ1PcmkzxbGnZle9L/K+77747atSokTC3aNGiuOOOO4o9p0aNGlGzZs2EufL2vEvmXjBr1qwMbFJ25qZLsvfduXPnpneR7fjmm2+SypXlnx/lXeXKleOwww6L66+/Pj744INYvnx5DBkyJHr16hXZ2UX7T5Uef/zxUnuuAQAAAAAAAAAA7CqUUAMAAAAAAAAAAABlwp577plUbt68eWneJPPGjBmTMHP11VdH48aN079MRCxcuDAjc9IlOzs7unbtGvfff398++238eijj0aTJk2Svv6OO+6IgoKCNG6YWdu2bUu60DOVNmzYEIsWLUqYK8slorvyfYn/1aBBg7jmmmuSyt59993x/fffF3tWMs+98va822effRJmvv3221i/fn0GtvlP06ZNy/jMdEr2Z+L06dPTvEnJ5mbqfRGJ7bbbbnHWWWfF22+/HbNnz45LLrkkKlWqlNS1mzZtittvvz3NGwIAAAAAAAAAAOzalFADAAAAAAAAAAAAZUKtWrWiUaNGCXNffPFFBrbJnNmzZ8fy5ct3mKlQoUIMHDgwQxtFfPnllxmblW45OTkxcODAmDp1avTv3z+pa1atWhXjxo1L82aZVRpFojNnzozCwsKEub333jsD2xTPrnpfYvsGDRqU1HNi7dq1cdtttxV7zoEHHpgwU96ed61bt06YKSwsjE8++SQD2/ynCRMmZHxmOtWtWzfq1KmTMDdp0qQMbPO/Jk6cmDBTqVKl2G+//TKwDUW11157xf333x+ffPJJUvfLiIg33ngjzVsBAAAAAAAAAADs2pRQAwAAAAAAAAAAAGXGoYcemjBT3oogZ8yYkTDTtm3bpMoiU+Wzzz7L2KxMycvLi+eeey569+6dVH7kyJFp3iizynJp6wEHHJDmTUpmV7wvsX05OTlx7bXXJpV94IEHYunSpcWak8zzbuHChbF48eJinV8WNW3aNGrWrJkw9+GHH2Zgm//00UcfZXxmuh100EEJM6X1gQzJfL9btGgRlStXzsA2FFebNm1i9OjRSb2uFy5cGNOmTcvAVgAAAAAAAAAAALsmJdQAAAAAAAAAAABAmdGxY8eEmRkzZsScOXMysE1mzJ8/P2HmwAMPzMAm//Tll1/GkiVLMjYvkypUqBAPPfRQ5ObmJsyOHz8+AxtlTmkUiSbzPaxTp040aNAgA9sU3654X2LHzj///GjSpEnCXH5+ftx+++3FmpHM8y4i4q233irW+WVV586dE2befPPNDGzyf77++uty+fpu27ZtwsyiRYvi66+/zsA2/znzyy+/TJhLZn9K37777huDBw9OKlve3nsBAAAAAAAAAACUJUqoAQAAAAAAAAAAgDLjuOOOSyr38ssvp3mTzFm7dm3CTL169TKwyT8NHz48Y7NKQ6NGjeKEE05ImFu2bFkGtsmcsWPHJvVcS5XCwsKkynG7dOmSgW1KZle8L7FjlStXjquvvjqp7MMPP1ysYv9DDjkk6tSpkzBX3p53Rx11VMLMhAkTkvoAh1QZNmxYxmZlUvfu3ZPKZfp9wfDhw6OwsDBhLpnnCmXDgAEDolKlSglz5e29FwAAAAAAAAAAQFmihBoAAAAAAAAAAAAoMw466KDYe++9E+Yef/zxDGyTGfn5+Qkz2dmZ+ZXPwsLCePrppzMyqzQdffTRCTPLly/PwCaZs2nTphgxYkTG5o0fPz6p4t2doUR0V7wvkdh5550XjRo1SpjLz8+P22+/vcjnV6hQIXr37p0w9/bbb8eCBQuKfH5Z1atXr4SZwsLCePTRRzOwTcTWrVvL7Wu7a9euSRUDDxkyJAPb/J8nn3wyqVyPHj3SvAmpUrNmzWjfvn3CXHl77wUAAAAAAAAAAFCWKKEGAAAAAAAAAAAAypR+/folzEyfPj1eeeWVDGyTfskUQGaqlO/ll1+O2bNnZ2RWaWrYsGHCzOrVqzOwSWY98cQTGZuVbGnrzlIiuqvdl0isSpUqcfXVVyeVfeSRR5IqZf9v/fv3T5jZunVr3HnnnUU+u6w66KCDYv/990+Ye/jhhzNyn37++edj4cKFaZ9TGqpVqxbdu3dPmJs2bVqMGjUqAxtF/OMf/4hPP/00Ya5NmzbRuHHjDGxEquyq770AAAAAAAAAAADKCiXUAAAAAAAAAAAAQJly0UUXRYUKFRLmrrnmmti0aVMGNkqv6tWrJ8zMnz8/7Xts2bIlBg8enPY5O4vc3NzSXiHlRo0aFV999VXa5yxdujT++te/Jsy1bNkyWrdunfZ9UmFXuy+RnPPPPz/22GOPhLn8/Py47bbbinx+z549Y999902Ye/jhh2PmzJlFPr+s+n//7/8lzHz//fdx++23p3WPgoKC+O1vf5vWGaXtzDPPTCr3u9/9Ls2b/NMNN9yQVO5nP/tZmjehNJTH914AAAAAAAAAAABlhRJqAAAAAAAAAAAAoEzZc889o0+fPglz06dPj+uvvz4DG6VXkyZNEmY+/PDDyM/PT+sed955Z0yZMiWtM8qKBQsWJMzsvvvuGdgkswoLCzNSJHrrrbcm9XxNpmi2rNjV7kskJycnJ6666qqkso888kgsXry4SOdnZWXFpZdemjC3adOmOPvss2Pr1q1FOr+sOv/886Ny5coJc3feeWdMmjQpbXtcd911MXfu3LSdXxb07ds3qlWrljD30UcfxYsvvpjWXd54440YOXJkwlzFihXj9NNPT+supN6u+t4LAAAAAAAAAACgrFBCDQAAAAAAAAAAAJQ5gwcPjuzsxL/m+Kc//Sn+9re/ZWCj9Nl3330TZvLz82P48OFp22H8+PEZKScuK955552Emf333z8Dm2TeSy+9lFTJZ3FNnjw5HnzwwYS5ihUrxjnnnJO2PdJhV7ovkbwLLrggGjRokDBXUFAQt912W5HPHzhwYFIfVjB+/Pi4/PLLi3x+WdSwYcOkSoY3b94c/fv3j5UrV6Z8h+HDh8c999yT8nPLmry8vLjwwguTyl566aWxbNmytOyxcuXKuOiii5LKnnHGGUm95ig7li9fHp9//nnCXHl97wUAAAAAAAAAAFAWKKEGAAAAAAAAAAAAypyDDjooBgwYkDC3bdu2OPPMM2PEiBEZ2Gr7li9fHldeeWVs2rSpyNfuv//+UbNmzYS566+/vljnJzJr1qzo27dvWs7enjvuuCO++OKLjM37d3Pnzo0333wzYa5jx44Z2KZ0DBw4MFasWJHycwsKCuLss8+OzZs3J8z2798/qWLdsmRXui+RvKpVq8aVV16ZVPbRRx+NxYsXF/n8W265JansfffdFzfccEORzk+1TZs2xYMPPhiffPJJic659tpro1KlSglzM2fOjN69e8eaNWtKNO/fvf/++3HGGWfEtm3bUnZmWfab3/wmcnJyEuaWL18ep5xySlL3+KLYunVr9O/fP7799tuE2ezs7Lj22mtTOn9XsGTJkrjppptS+jopikceeSSp5015fu8FAAAAAAAAAABQ2pRQAwAAAAAAAAAAAGXSLbfcEvXq1UuY27hxY5x00knxwAMPZGCr/zR//vy44oorolmzZnHHHXcUq7AyKysrjjrqqIS52bNnx69+9avirLldX3/9dXTv3j2WLFmS0nMTefPNN6Nt27bxk5/8JD744IOMzd28eXP8v//3/2LLli0Js8cff3wGNiod8+bNi379+qW0nLiwsDDOO++8+PzzzxNms7Oz46qrrkrZ7EzaVe5LFM1FF12U1POioKAgbr311iKff8YZZyT1cyIi4qabbopzzz038vPzizynJNauXRt//vOfo3nz5nHJJZfE999/X6Lz9t133/jlL3+ZVHbcuHHRrVu3+Oabb0o0MyLiueeei2OPPTbWr19f4rN2Fg0aNIhBgwYllf3www/jtNNOS1kR9datW+NnP/tZjBw5Mqn8ueeeG/vtt19KZu9KCgoK4oYbbog999wzbrjhhli0aFHGZn/22Wfxhz/8IWGuVatWseeee2ZgIwAAAAAAAAAAgF2TEmoAAAAAAAAAAACgTKpXr1489dRTSWW3bNkSl156aZx44okxb968tO61bdu2eOedd6Jfv36x9957x5133lnissr+/fsnlXvggQfi6quvjsLCwhLNi4gYOnRodOrUKRYuXFjis4qjsLAwhg8fHl27do02bdrEQw89FCtXrkzbvBUrVsSJJ54YH3/8ccLsAQccEB06dEjbLmXBu+++Gz/96U+joKCgxGdt27YtBg4cGM8//3xS+XPPPTcOPPDAEs8tDbvSfYnkVa1aNa644oqkso899liRC2CzsrLimWeeidq1ayeVf+qpp6Jdu3YxduzYIs0pji+++CIuv/zyaNy4cVx22WWxYMGClJ3929/+Npo2bZpUdtKkSXHwwQfHvffeW6yC5Llz50b//v3jzDPP/NH7Yv369WP33Xcv8rk7ixtuuCH22muvpLIvv/xyHHfccbFs2bISzVyxYkX07t076Z8ddevWjdtvv71EM3d1q1atiptuuin23HPPOO2002LkyJFp/aCCMWPGxLHHHpvUh16ce+65adsDAAAAAAAAAAAAJdQAAAAAAAAAAABAGXb88cfHVVddlXT+zTffjBYtWsQvf/nLmDFjRsr22Lx5c7z33ntx+eWXR5MmTaJXr14xbNiw2Lp1a0rOP/nkk2OPPfZIKnv77bfHUUcdFXPmzCnWrMmTJ0efPn3itNNOi7Vr1/5opl27dsU6u7gmT54cF198cTRo0CD69u0bQ4YMie+++y4lZ2/ZsiWefvrpaNu2bbzzzjtJXXPllVemZHZZ98Ybb8Rhhx0Ws2fPLvYZS5cujZ49e8YTTzyRVH633XaLm266qdjzyoJd5b5E0fz85z+PunXrJswVFBTErbfeWuTzGzduHM8880xUqFAhqfy0adPiiCOOiJNOOinef//9Is/bkS+++CJuvvnmaNOmTRx88MFxzz33xJo1a1I6IyKiRo0a8dxzzyX9mNesWRODBg2KZs2axe9+97v4/PPPd/ihDevWrYs33ngjTjvttGjRokW8+OKL283ed999Ua1atSI/hp1Fbm5uPPbYY5Gdndx/YvLuu+9GmzZt4plnninWB2MMHTo02rRpE2+99VbS19x///1JF7GzY1u2bImhQ4dGz549o0mTJvGrX/0qRo8eHVu2bEnJ+YsXL47LLrssjjnmmKTez9WuXTvOO++8lMwGAAAAAAAAAADgx1Us7QUAAAAAAAAAAAAAduTWW2+NhQsXxnPPPZdUfuPGjXHffffF/fffH507d44+ffpE165do02bNlG1atWE1xcWFsa8efNi6tSp8emnn8a4ceNi/PjxaSnY/JfKlSvH1VdfHZdddllS+TFjxsR+++0XJ510Upx33nlx2GGHRc2aNbebnz9/fowaNSqee+65GD169A4LI1u2bBk33XRTHH/88UV+HCW1adOmeOWVV+KVV16J7OzsaNu2bRx++OHRuXPnOOCAA2K//faLSpUqJTxn9erV8emnn8Ybb7wRr7zySsybNy/pHTp27BhnnnlmSR5GmdOpU6dYs2ZNfP311//ztYkTJ8YBBxwQv/rVr+Kyyy6LevXqJXXmmjVr4uGHH46bb765SK+Nhx9+OOrXr590vqzaFe5LFE1eXl78+te/jquvvjph9rHHHourr746GjVqVKQZJ554Yjz44INx4YUXJn3Na6+9Fq+99lrsu+++cdJJJ0XPnj2jffv2SZf5Llu2LKZOnRqff/55fPTRRzF27NhYtGhRkfYuicMPPzxuueWWIhW/f/vtt3HjjTfGjTfeGDVr1owWLVpEw4YNo1q1arF58+ZYs2ZNzJkzJ2bPnp1U6e6pp54ap556alxxxRUleShlXo8ePWLw4MHx29/+Nqn8kiVL4pxzzombbropLrzwwujdu3e0aNFiu/lvvvkmXn/99XjkkUd+9OfRjlx22WXRr1+/Il1DchYtWhR333133H333VGjRo047LDD4vDDD48OHTpEq1atkrpPFRYWxoIFC2L06NHx+uuvx4gRIyI/Pz/pHW666abYbbfdSvAoAAAAAAAAAAAASEQJNQAAAAAAAAAAAFCmZWVlxVNPPRXr16+PV199NenrCgsL46OPPoqPPvooIiIqVKgQTZs2jSZNmsTuu+8eVatWjQoVKsTGjRujoKAgvv/++1i8eHEsWrQoCgoK0vRotu/iiy+Oxx9/PL788suk8lu3bo2XX345Xn755cjKyor9998/GjZsGLVq1YqcnJzYsGFDLFu2LGbOnBlLly5N6szc3Nx4/vnnY9WqVSV4JKmxbdu2+Oyzz+Kzzz6Le++9NyIiKlasGI0aNYqGDRtG3bp1IycnJ6pUqRIFBQWxfv36WLNmTcyaNSuWLFlSrJk1a9aM5557LrKyslL5UEpdlSpV4sknn4wuXbrEtm3b/ufrBQUFccstt8Sf/vSnOO6446JXr17Rtm3b2HvvvaNmzZqRlZUVa9eujblz58bkyZPjnXfeiddffz3WrVtXpD3OPvvs6N+/f6oeVqnaVe5LFM0ll1wSd9xxR3z//fc7zG3cuDFuvfXWuP/++4s844ILLojVq1fHlVdeWaTrZs6cGXfeeWfceeedERGxxx57RNOmTaN+/fpRtWrVqFy5cmzevDkKCgpi9erVsXjx4li8eHGsXr26yDum2pVXXhnz5s2LBx98sMjXrl69OiZMmFDs2e3atYunnnoq6Xx2dnaxZ5UF119/fUyZMiVefPHFpK+ZNWtWXHHFFXHFFVdEnTp1omXLllG3bt3Izc394T42derUYv9s7tmzZ9xxxx3FupaiWbNmTbz11lvx1ltv/fB31atX/+G9V82aNaNq1aqRnZ0d69evj/Xr18fy5ctjxowZsX79+mLN7N27d1x00UWpeggAAAAAAAAAAABshxJqAAAAAAAAAAAAoMyrVKlS/O1vf4tLLrkkHnnkkWKdsXXr1vjmm2/im2++SfF2qVGxYsV44YUX4tBDD40NGzYU6drCwsKYOnVqTJ06tUTzX3zxxTj44INjzJgxxT4nnbZs2RLz5s2LefPmpfzsnJyc+Nvf/hb77LNPys8uCzp27Bi///3v44YbbthuZuPGjfHqq68WqVQ5WYcffnixX7tl1a5wX6JoqlWrFr/+9a/j2muvTZh9/PHH45prrolGjRoVec4VV1wRdevWjYEDB8aWLVuKs+oPJdM7i/vuuy82b94cjz32WMZm7r333vHaa69FXl5e0tdUqVIljRulX1ZWVjz77LNRUFAQr732WpGv/+677+LDDz9M2T7du3ePV199NSpVqpSyMymatWvXxrRp02LatGkpP7t9+/bxl7/8pdx9+AcAAAAAAAAAAEBZlF3aCwAAAAAAAAAAAAAko0KFCvHwww/HfffdFzk5OaW9Tlq0bt06XnjhhahYsWJG51asWDGefPLJOOGEEzI6t6yoUaNGvPrqq9GjR4/SXiWtrr/++jjrrLMyPrd169YxfPjwnb6c9cfsCvcliubSSy+N2rVrJ8xt3LgxbrnllmLPOeecc+Kdd94pVon1zig7OzseffTRGDx4cEYKa9u1axcfffTRf3x/N23alPC68nAfqFSpUgwbNizOOeecUt3jpz/9abzxxhtRtWrVUt2D9OjcuXO88847UbNmzdJeBQAAAAAAAAAAYJeghBoAAAAAAAAAAADYqVx66aXxySefxMEHH1zaq/yHatWqRXZ2yX81s0+fPjF06NCMlS7WqlUr3nrrrVIpJy4LWrduHePHj49evXqV9ioZ8fjjj8cpp5ySsXmHHnpofPDBB0mV8u7Myvt9ieRVr149Lr/88qSyTzzxRCxcuLDYs7p37x6TJ0+Ofv36FfuMdKhQoULk5eWl5ezf/e538c4778Qee+yRlvMjIs4777x4//33o379+v/x9wUFBQmvLQ8l1BERlStXjqeeeiruvvvuqFy5ckZnV6hQIX7/+9/HsGHDIjc3N6OzyYwLL7wwRo8eXe7fGwAAAAAAAAAAAJQlfqMYAAAAAAAAAAAA2OkccMAB8dlnn8Vjjz0WDRo0KLU9srOzo0ePHjFkyJBYsmRJyooa+/btG++//37ss88+KTlve7p37x4TJkyIHj16pHXOfzvmmGOiYcOGGZ3536pWrRo33HBDTJw4MVq1alWqu2RS5cqVY+jQoXHZZZelfdaZZ54Z77333i5TMlne70sk75e//GXUqlUrYW7jxo1xyy23lGhW7dq1Y+jQoTF69Oho27Ztic4qqQMPPDDuuOOOWLBgQRxxxBFpm9OjR4+YOnVqXHXVVSn9wIYDDzwwRo4cGY8//nhUq1btP762bdu2WLt27Q6vz8vLiypVqqRsn7Jg0KBBMWnSpOjSpUtG5rVt2zYmTJgQv/3tbyMrKysjM3cFNWvWjGOPPbbUS9L322+/+Pvf/x4PP/xwuXutAAAAAAAAAAAAlHVKqAEAAAAAAAAAAICdUnZ2dpx//vkxe/bseOSRR+LAAw/MyNyKFStGly5d4rbbbot58+bFyJEj46yzzoq8vLyUzunQoUN88cUXceWVV6a8NHDvvfeOIUOGxHvvvRfNmzdP6dnJuO666+Lbb7+NiRMnxo033hgdO3aM7OzM/FprzZo147LLLovZs2fHjTfeuEsW9GZnZ8c999wTw4cPT0sZeN26deOZZ56Jv/zlLyl/XZR15f2+RHJq1KgRgwYNSir7xBNPxIIFC0o8s1u3bvHZZ5/Fm2++Gb169cpYgW/Lli3jV7/6VUycODEmT54cv/nNb2KPPfZI+9yaNWvGbbfdFnPmzImbbropmjVrVqxzqlSpEscff3y8+eabMXny5O1+KMPy5ctjy5YtOzyrfv36xdqhrGvVqlWMHTs2XnrppWjXrl1aZrRu3Tqee+65+OSTT9I2Y1dWq1ateOutt+L777+P4cOHxwUXXBCNGzfO2PwDDjggnnjiifj666+jZ8+eGZsLAAAAAAAAAADA/6lY2gsAAAAAAAAAAAAAlERubm5ccMEFccEFF8Qnn3wSr7zySgwfPjy+/vrrlJyfnZ0drVu3jqOPPjqOPvro6Nq1a1SvXj0lZyeSl5cXt99+e1x22WXxyCOPxNNPPx3z588v1lm5ublx9NFHx8CBA+OEE07YYelz48aN47LLLtvheakor27btm20bds2brjhhli5cmV8/PHHMX78+Bg/fnxMmDAh1qxZU+IZERHVq1ePY445Jk4++eTo27dv5ObmpuTcnV2fPn2ia9eucdddd8UDDzwQ33//fYnOq1mzZlx44YVx7bXXRs2aNVO05c6pPN+XSM5ll10Wd999d6xatWqHuU2bNsUtt9wSDz30UIlnZmVlxfHHHx/HH398zJ07N15++eV49dVX46OPPoqtW7eW+PyIiCZNmsRRRx0VRx99dPTo0SMjhdM70qBBg7juuuviuuuui6+++ipGjRoVEydOjOnTp8f8+fNj7dq1kZ+fHzk5OVG9evXYbbfdokWLFtG6devo0KFDHHPMMUmVtc+dOzepXcqrrKys6Nu3b/Tt2zfGjRsXzz33XPztb3+L5cuXF/vMWrVqxcknnxxnnHFGdO/ePWPF6buy3Nzc6NOnT/Tp0yciImbMmPHD+67x48fHlClTYtu2bSmZtc8++0Tv3r3j1FNPjS5duqTkTAAAAAAAAAAAAIovq7CwsLC0lwAAAAAAAAAAAABIte+++y4++eST+Oyzz2LWrFkxb968WLBgQaxZsyY2bNgQBQUFERFRpUqVqFq1atSuXTvq1KkTjRo1imbNmkXz5s3jgAMOiDZt2iRVUJkpn3/+eYwZMyY+++yzmDFjRixcuDBWr14dBQUFUbFixcjLy4tq1arFHnvsES1atIgWLVpEp06d4vDDD4/KlSuX9vpJ27ZtW8ycOTNmzJgRs2bNilmzZsXs2bNj6dKlsXbt2li3bt0P5aKVKlWKKlWqRI0aNaJ+/frRsGHDaN68eey///5x6KGHxkEHHRQVKlQo7YdUpm3YsCGGDRsWr732Wrzzzjuxbt26pK6rWrVqHHnkkdG3b98444wzytRrpSwqr/clyrYNGzbExIkT45NPPolp06bF/PnzY/78+fH9999Hfn5+bNiwIbZt2xaVK1eOnJyc2G233aJOnTrRoEGDaNasWey9997RqlWraNu2bdStW7e0H06pePzxx2PgwIE7zJx11lkxZMiQDG1U+goLC+Orr76KsWPHxueffx5z5syJuXPnxsqVK3+4n1WpUiVyc3Njt912i7322iv23nvvOOigg+Lwww+Pgw46aIcfiEHmrVu3Lr7++usf3nfNmjUrvvnmm1i5cuUP77vWrVsXW7ZsicqVK0fVqlVj9913j3r16kXTpk1/KHjv0qVLNGrUqLQfDgAAAAAAAAAAAP9GCTUAAAAAAAAAAAAA8IMtW7bEjBkz4quvvoqZM2fG6tWrY+3atbFp06bIy8uLGjVq/FBK26ZNm8jJySntlQHS6sILL4xHH310h5lbb701rr766gxtBAAAAAAAAAAAAJC8iqW9AAAAAAAAAAAAAABQdlSsWDFatWoVrVq1Ku1VAMqEd999N2GmdevWGdgEAAAAAAAAAAAAoOiyS3sBAAAAAAAAAAAAAACAsmjy5Mkxe/bshLmOHTtmYBsAAAAAAAAAAACAolNCDQAAAAAAAAAAAAAA8COeeuqphJmWLVtGvXr1MrANAAAAAAAAAAAAQNEpoQYAAAAAAAAAAAAAAPgv3333XTz22GMJc0cffXQGtgEAAAAAAAAAAAAoHiXUAAAAAAAAAAAAAAAA/+V3v/tdrF+/PmGuX79+GdgGAAAAAAAAAAAAoHiyCgsLC0t7CQAAAAAAAAAAAAAAgLJi9OjRcfTRR0ei/+SiSZMmMW/evMjKysrQZgAAAAAAAAAAAABFk13aCwAAAAAAAAAAAAAAAJQVs2bNilNPPTVhAXVExAUXXKCAGgAAAAAAAAAAACjTlFADAAAAAAAAAAAAAABl0pw5c+Lmm2+OdevWZWTel19+GUceeWR8//33CbPVq1ePSy65JANbAQAAAAAAAAAAABSfEmoAAAAAAAAAAAAAAKBM2rBhQ1x//fWx1157xe9+97tYunRpWuYUFhbGI488Ep06dYrFixcndc2gQYOiVq1aadkHAAAAAAAAAAAAIFWyCgsLC0t7CQAAAAAAAAAAAAAAgP82ZcqUOPDAA3/435UrV47evXvH2WefHT179owqVaqU6Pxt27bFm2++GYMHD46JEycmfd3ee+8dX331VeTk5JRoPgAAAAAAAAAAAEC6KaEGAAAAAAAAAAAAAADKpP8uof53eXl5ccwxx8SRRx4ZnTt3jgMOOCCqVauW8MzvvvsuPv3003j77bfj5ZdfjgULFhRppwoVKsTIkSOje/fuRboOAAAAAAAAAAAAoDQooQYAAAAAAAAAAAAAAMqkHZVQ/5hGjRpF48aNo169epGbmxuVK1eOTZs2RX5+fixevDgWLFgQS5YsKdFOf/zjH+OKK64o0RkAAAAAAAAAAAAAmVKxtBcAAAAAAAAAAAAAAABIhW+//Ta+/fbbtJ1/6aWXKqAGAAAAAAAAAAAAdirZpb0AAAAAAAAAAAAAAABAWXfllVfGfffdV9prAAAAAAAAAAAAABRJxdJeAAAAAAAAAAAAAAAAoKyqXr16PProo3HaaaeV9ioAAAAAAAAAAAAARZZd2gsAAAAAAAAAAAAAAACURX379o0vvvhCATUAAAAAAAAAAACw01JCDQAAAAAAAAAAAAAAlEktW7aMd955Jy644IKoV69eRmZmZ2dHnz594sMPP4yXXnopmjVrlpG5AAAAAAAAAAAAAOmQVVhYWFjaSwAAAAAAAAAAAAAAAOzI1q1b48MPP4z33nsvxo8fHxMmTIg1a9ak5Ozs7Ozo1KlT9OnTJ0477bTYc889U3IuAAAAAAAAAAAAQGlTQg2UGw0aNIhVq1b9z99XqlQpmjZtmvmFAAAAAACAMmf+/PmxefPm//n73XbbLZYsWVIKGwEAAAAAxbVt27b4+uuv48svv4y5c+fGvHnzYu7cubFo0aJYt25dbNiwITZs2BD5+fkREVG1atXIycmJ3XffPRo3bhxNmjSJli1bRvv27aNdu3ax2267le4DAgAAAAAAAAAAAEgDJdRAuZGTkxMbN24s7TUAAAAAAICdUJUqVaKgoKC01wAAAAAAAAAAAAAAAAAAAEip7NJeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDUU0INAAAAAAAAAAAAAAAAAAAAAAAAAAAAUA4poQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAoh5RQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJRDFUt7AYBUqVSpUmzcuPF//r5KlSqxzz77lMJGAAAAAABAWTN79uwf/f8nVKpUqRS2AQAAAAAAAAAAAAAAAAAASC8l1EC50bRp0/j666//5+/32Wef+Oqrr0phIwAAAAAAoKxp3br1j/7/E5o2bVoK2wAAAAAAAAAAAAAAAAAAAKRXdmkvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDqKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAPj/2LvvMLvqAv/jnzuZVEJCrwpGghQFhNAWUAiBxRKkqCSKDSyIYlspPxVlFbGhLLII6iKwikBioQRdQUgUZBclBEGKGEKkJdSUSWPS7u+PSZvMnTvJJHPunZnX63l85p7vOffMx33Wv+bhDQAAAAAAAAAAAPRAItQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZAINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAPJEINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0AOJUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAD0QCLUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2QCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABADyRCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANADiVADAAAAAAAAAAAAAAAAAAAAAAAAAAAA9EAi1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9kAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA8kQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQA4lQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAPRAItQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZAINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAPJEINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0AOJUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAD0QCLUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2QCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABADyRCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANADiVADAAAAAAAAAAAAAAAAAAAAAAAAAAAA9ECNtR5A7/Diiy/m3nvvzbRp09LU1JS+fftmyy23zJ577pn9998/ffv2rfXEujRz5sxMmTIlM2fOzJw5c9Lc3JyhQ4dms802y+6775699947/fr1q/VMAAAAAACgDpW+WkqaWz6Xv1Gu7RgAAAAAAAAAAAAAAAAAAABqQoSaLvXLX/4y3//+93P33XenXK4cN9h0001z0kkn5eyzz87rXve6ghe2VS6XM3Xq1Nx3332ZPHlyJk+enPvvvz/z5s1r9dwHP/jBXH311Rv990+fPj1XXHFFfv7zn+fJJ5+s+my/fv0ycuTIfOQjH8nxxx+fxkb/kwYAAAAAANYIUDesuP63UsoXCVEDAAAAAAAAAAAAAAAAAAD0Noq1dIlnn302J598cv74xz92+Oy8efPyk5/8JD/72c9y7rnn5txzz02pVCpg5Wq//vWvc88992Ty5MmZMmVK5s6dW+jvT5LFixfnggsuyLe+9a0sXrx4nb9z66235tZbb80+++yTK664Ivvvv38XLwUAAAAAAOrSjBnJX/6SPPhgqwB1kmRQUvp0KeUjb0gOPDDZYYdarQQAAAAAAAAAAAAAAAAAAKBAItRsdP/4xz9yxBFHZObMmev1vcWLF+crX/lKHn300fzsZz9Lnz59umhhW6eeempNwtMrLVy4MKNHj86kSZM6/Y4HHngghxxySMaNG5cTTjhhI64DAAAAAADq1pIlyc9/nlx6afLww8nSpSmduTSp9GeWIUnpDyek/Intk0MPTT74weSYY5K+fQufDQAAAAAAAAAAAAAAAAAAQDFEqNmoXn755Rx99NEVA9QjRozIcccdl2HDhmXRokX5xz/+kWuvvTYzZsxo9dx1112XbbbZJhdffHFBq2vvpJNOqhig7tu3b9761rfmkEMOyY477pj+/ftn9uzZefDBB/Ob3/wm//znP1s9v2TJkowZMyaTJk3KoYceWtB6AAAAAACgcEuWJF//evK97yULFqw6Lv2/VA5QrzQ4KY2dmfLVdyR/+lOy004t7zn66C6fDAAAAAAAAAAAAAAAAAAAQPFEqNmoPvaxj+Wpp55qdbbpppvmmmuuyTve8Y42z3/jG9/IN77xjfz7v/97q/Pvf//7OeaYY/LWt761K+d2aMstt8yIESOy+eabZ9y4cV3yO8aNG5ff/OY3bc5Hjx6dH/3oR9lhhx0qfu+SSy7J1Vdfnc9+9rOZN2/eqvMlS5bktNNOy/3335++fft2yWYAAAAAAKCGbrwxOeWUZM6cVselc1I9QL3SoKT0odkpX9InWbw4+eAHk3e/Ozn//GTIkC4YDAAAAAAAAAAAAAAAAAAAQK001HoAPcfvf//7/PrXv2511q9fv0ycOLFigDpJ+vbtm/POOy8XX3xxm3uf/vSns3Tp0q6YWtHQoUMzcuTInHXWWRk/fnyeeOKJvPTSS7n11lvz8Y9/vMt+70UXXdTm7Pjjj89NN93UboA6SRoaGnLqqafmN7/5TZvY9MMPP5zbbrtto28FAAAAAABqqKkped/7khNPbBugPjvr96+fHZSUPrssmT07mTs3GTcueetbk6ef3piLAQAAAAAAAAAAAAAAAAAAqDERajaa888/v83Zeeedl/3337/D737mM5/J0Ucf3ers8ccfz7XXXrvR9lVz//33Z/bs2Zk4cWK+853v5N3vfneGDRvW5b/32Wefzb333tvqbMCAAbn88svT0LBu//N805velNNOO63N+U033bRRNgIAAAAAAHXg6aeTQw9Nfv7zpFxudat0dpK+lb9W1YCk9PlysnBhMmtW8vjjyfHHC1EDAAAAAAAAAAAAAAAAAAD0ICLUbBQPP/xw7rrrrlZnW221Vc4888x1fsc3v/nNNmeXX375Bm9bF8OGDUupVCrkd63pscceS3mtUMTIkSOz3Xbbrdd7Tj755IrvBgAAAAAAeoCnnkoOPzx56KE2t0pnpXMB6pX6r3jHkiUtIepnnknGjk2amjbgpQAAAAAAAAAAAAAAAAAAANQLEWo2iuuvv77N2SmnnJJ+/fqt8ztGjBiRESNGtDq75557Mn369A3eV69eeOGFNmd77LHHer+n0neef/75Tm0CAAAAAADqSFNTMmpUUuHvJaUzk6z7n2La129FiHrp0mT27GTatOQrX9kILwYAAAAAAAAAAAAAAAAAAKDWRKjZKH73u9+1OXvXu9613u+p9J1K7+4pKkW61yfcvVL//v3bnA0YMKBTmwAAAAAAgDry7ncnjz/e5rj0+SRt/zzQef2S0tlpCVHPm5eMH5/8/vcb8RcAAAAAAAAAAAAAAAAAAABQCyLUbLAFCxZkypQprc4GDRqU/fbbb73f9aY3vanN2V133dXpbfVu2LBhbc6efvrp9X5Ppe/ssssundoEAAAAAADUia99LbnttjbHpX9L0hX/Lsq+SenscrJoUdLcnHz5y8mSJV3wiwAAAAAAAAAAAAAAAAAAACiKCDUb7K9//WuWL1/e6mz//fdPY2Pjer/rgAMOSN++fVud3XfffRu0r57tvffe2XLLLVud3XHHHVmynkGH3/72t23ORo0atUHbAAAAAACAGvrTn5LzzmtzXPpckoFd+HsbV4So581LnnyyYgQbAAAAAAAAAAAAAAAAAACA7kOEmg3297//vc3Z8OHDO/Wufv365VWvelWrs2nTpmXp0qWdel+969OnT0477bRWZ88991wuueSSdX7HrFmz8u1vf7vV2WabbZb3v//9G2UjAAAAAABQsD//OXnTm9oclz6TZFABv78xKX1+SdLcnPz3fxfwCwEAAAAAAAAAAAAAAAAAAOgqItRssH/+859tznbeeedOv2+nnXZqdb1s2bI89dRTnX5fvfvCF76Q1772ta3OzjnnnFx55ZUdfveZZ57JW9/61sycObPV+SWXXJJNN910o+4EAAAAAAAKMG5ccvDBbY5Ln04yuMAdfZLSabNTuuUXyYwZBf5iAAAAAAAAAAAAAAAAAAAANqbGWg+g+3vuuefanL361a/u9Psqfff5559vE2ruKQYPHpz/+Z//yciRIzNjRcRh2bJl+fCHP5yrr746p556ag499NDssMMO6d+/f2bPnp2//e1vmTBhQq688so0NTW1et/Xv/71vP/976/Ff5V2/eAHP8hll13W5b9n2rRpXf47AAAAAACgy5x/fvKVr7Q5Ln0qSS3+3ZN9knw2Kf3XjimfV67BAAAAAAAAAAAAAAAAAAAAADaUCDUbbNasWW3OBg8e3On3Vfruyy+/3On3dQeve93rMmXKlHz84x/PjTfeuOr8rrvuyl133bVO7xg2bFguueSSjB49uotWdt6LL76YRx55pNYzAAAAAACg7oz42ojc95X7ks99Lrn44jb3S6cnGVL4rNUakjQnpa+WhKgBAAAAAAAAAAAAAAAAAAC6oYZaD6D7W7BgQZuzgQMHdvp9lb67cOHCTr+vu9h2221zww035L777ssZZ5yxzv83HDFiRMaPH59//OMfdRmgBgAAAAAAKit9tZQp5SkpfbVUOUB9WpItCp/VVkOStn8OAgAAAAAAAAAAAAAAAAAAoBsQoWaDLVmypM3ZgAEDOv2+SvHlxYsXd/p93cm0adPyk5/8JOPHj8+iRYvW6Tv33XdfvvjFL+biiy/O/Pnzu3ghAAAAAACwMZS+Wlp9UU5KX17r/keSbFXopPYtT7JJrUcAAAAAAAAAAAAAAAAAAADQGSLUdIlSqdTxQ+vx3XK5vCFz6t6SJUvy5S9/Obvttlsuu+yyvPDCC63uDxo0KK95zWuy5557ZocddkhDQ+v/6T7++OM566yzsscee2TixIlFTgcAAAAAANbT2gHqJEnD6hB16ZQk2xa9qh3Lk9ySlM/r2X+rAQAAAAAAAAAAAAAAAAAA6KlEqNlgffv2bXO2aNGiTr+v0nf79evX6ffVu8WLF+fEE0/M17/+9SxbtmzV+cCBA3PGGWdk8uTJaWpqyvTp0/Pwww/n2WefzaxZs/LrX/86b37zm1u965lnnskxxxyTX/3qV0X/1wAAAAAAANZBxQD1Sg1J6X1JdihyURXlJN9KytuMqvUSAAAAAAAAAAAAAAAAAAAAOqmx1gPo/gYNGtTmbGNHqDfZZJNOv6/efeYzn8ktt9zS6mz48OG58cYb8/rXv77id4YOHZoTTjghJ5xwQi6//PKcccYZWb58eZJk6dKlOfnkk7P77ru3+/2ibb311tlzzz27/PdMmzYtzc3NXf57AAAAAACgM6oGqJNkWpKdi1rTgXKSbyblvv2Srbaq9RoAAAAAAAAAAAAAAAAAAAA6SYSaDbblllu2OZs/f36n31fpu5V+R0/wv//7v/nhD3/Y6myLLbbIbbfdlmHDhq3TO04//fQ0Nzfnc5/73Kqz5ubmnH766bnzzjs36t7O+uQnP5lPfvKTXf57Xv/61+eRRx7p8t8DAAAAAADrq8MA9aNJdi1qTQdWBqjLSRoakjr5l14CAAAAAAAAAAAAAAAAAACw/hpqPYDub9ttt21z9swzz3T6fU8//fQ6/Y6e4Hvf+16bsy996UvrHKBe6dOf/nT23nvvVmd33XVXpkyZskH7AAAAAACADddhgHpK6itAfdOKAHWplDQ2Jmv9DQIAAAAAAAAAAAAAAAAAAIDuQ4SaDVYpmPzkk092+n1PPfVUq+s+ffpkp5126vT76tXSpUtz2223tTorlUp5//vfv97vamhoqPi9W2+9tdP7AAAAAACADddhgPrOJPXSeC4n+b+k/PAaZ337JgceWKtFAAAAAAAAAAAAAAAAAAAAbCARajbYbrvt1ubs8ccf79S7Fi9enKeffrrV2S677JLGxsZOva+ePfHEE5k/f36rs1122SVbb711p9538MEHtzl78MEHO/UuAAAAAABgw+341R1XX7QXoP6Xotasg/9LypPWuC6VkkMPTbbfvmaTAAAAAAAAAAAAAAAAAAAA2DAi1GywfffdNw0Nrf9fafLkyVm6dOl6v2vy5MlZsmRJq7P99ttvg/bVq5dffrnNWWcD1O19d9asWZ1+HwAAAAAA0Hm3PHZLZmRGy0WlAPWf0xKgLhU4qpoH1wpQJ0m/fsnHP16TOQAAAAAAAAAAAAAAAAAAAGwcItRssE022ST77rtvq7MFCxbk/vvvX+93/elPf2pz9uY3v7nT2+rZgAED2pwtWrSo0+9buHBhm7NBgwZ1+n0AAAAAAEDn3DHtjhx7/bEtF5UC1NOT7Jf6CVBPTcoTKpzvtFPyr/9a+BwAAAAAAAAAAAAAAAAAAAA2HhFqNoq3vOUtbc5++ctfrvd7Kn2n0rt7gq233rrN2ZNPPpnly5d36n1PPPHEOv0OAAAAAACg60yaPilHXXNUy0WlAPVTSV6V+gpQj69w3rdv8v3vt/wEAAAAAAAAAAAAAAAAAACg2xKhZqMYO3Zsm7OrrroqixcvXud33H///bn33ntbnR100EEZNmzYBu+rR9ttt10GDx7c6mz27Nm55557OvW+3/72t23OXve613XqXQAAAAAAwPqbNH1SjvzpkS3x6fYC1NunfgLUT7YToE6S0aOTHvovCgUAAAAAAAAAAAAAAAAAAOhNRKjZKN7whjfksMMOa3X24osv5j/+4z/W+R1f+MIX2pydfvrpG7ytXjU2NmbUqFFtzi+44IL1ftf06dNzzTXXtDk/5phjOrUNAAAAAABYP60C1JU8mWS71E+AekZSbvunhRbbbptcfXWRawAAAAAAAAAAAAAAAAAAAOgiItRsNOeee26bs/POOy9Tpkzp8LuXXnppbr311lZnr33ta/Pe9753nX73a17zmpRKpVb/+cMf/rBO362lMWPGtDn77W9/m29961vr/I65c+fmhBNOyOLFi1ud77nnntlrr702eCMAAAAAAFDd3IVzWwLU7Xkyyfapn7/MPZ+Ur2rnXp8+ycSJyZAhhU4CAAAAAAAAAAAAAAAAAACga9TLP+pOD3DMMcfkuOOOa3XW3NyckSNHZsKECRW/s2TJkpx//vn51Kc+1ebeJZdckr59+3bJ1noxZsyYvPGNb2xz/oUvfCGnnnpqnn/++arfnzhxYkaMGJEHHnigzb31CVkDAAAAAACdN3TQ0Awf+tqkXOFmvQWoX0rKV1S5f/fdyZ57FjYHAAAAAAAAAAAAAAAAAACArtVY6wH0LP/1X/+V++67L88888yqs6amprzjHe/I/vvvn+OOOy7Dhg3LokWLMnXq1Pz85z/Ps88+2+Y9Z5xxRt7+9rcXtnvy5Mn5yEc+0u79+fPntzm7+eabKwakV9p///1zxRXVKg5JQ0NDrrjiihxxxBFtfsdVV12Va6+9Nsccc0wOOeSQ7LDDDhk4cGDmzJmTRx99NL///e/zt7/9reJ7P/jBD+bYY4+t+rsBAAAAAICNpKkpU78wI7t+JHl8y7XubZf6CVDPSso/qnL/5puTgw4qbA4AAAAAAAAAAAAAAAAAAABdT4SajWrrrbfObbfdliOPPDLPPfdcq3uTJ0/O5MmTO3zHSSedlIsvvriLFlY2f/78PPDAA+v1ndmzZ2f27Nnt3t9ss83W6T0jRozIjTfemOOPP75NiLq5uTk333xzbr755nXedeKJJ3YYvwYAAAAAADaSp59ODjsseeWVTL002fWMNULUzUn61HLcGpqS8uVV7l93XeJfcAkAAAAAAAAAAAAAAAAAANDjNNR6AD3PHnvskb/85S857LDD1ut7ffv2zXnnnZfrrrsuffrUS5GhGKNGjcoDDzyQww8/vNPvGDx4cC677LL86le/SmOjvjwAAAAAAHSlZcuXJU89lRx+eMvPFaZemgx/OfUVoJ6XlP+zyv1rr03Gji1sDgAAAAAAAAAAAAAAAAAAAMURoaZLvPrVr86dd96ZcePG5ZBDDkmpVGr32cGDB+eUU07Jgw8+mH//939PQ0Pv/H/L1772tfnDH/6QO++8MyeffHK22GKLDr/Tp0+f7Lvvvrn44ovz9NNP5/TTTy9gKQAAAAAA9G6zF83O8deMzg3v3S+ZPr3N/cc3Sf0EqOcn5Uuq3L/55uQ97ylsDgAAAAAAAAAAAAAAAAAAAMUqlcvlcq1H0PO98MIL+ctf/pInnngiTU1NaWxszFZbbZU99tgjBxxwQPr161friXXp8ccfz4MPPpiXX345c+bMyeLFizNkyJBsttlmec1rXpP99tsvm2yySa1n1o3Xv/71eeSRR9qc77nnnnn44YdrsAgAAAAAgJ7mmaZnst8P983SObMyqHl5/vO3yQl/X32/dHaSvjWb19rCpPwfVe7fc09y0EGFzakX/p4AAAAAAAAAAAAAAAAAAAD0Jo21HkDvsM0222T06NG1ntHtDB8+PMOHD6/1DAAAAAAAIMmTc57M/j/cL7MWzWoJTS9PPvW2lnsn/L3OAtSLOghQ//nPyYEHFjYHAAAAAAAAAAAAAAAAAACA2mio9QAAAAAAAACodw/MfCC7/ueuefmVWavO5vZPFvZtCVGXzkr9BKhfSbJpUvpyO/evv16AGgAAAAAAAAAAAAAAAAAAoJcQoQYAAAAAAIAqJk2flDf++I1ZsmxJyknKpdX35vZPnm1I0q9W69bSnGTwis8NFULU55+fjBlT8CgAAAAAAAAAAAAAAAAAAABqRYQaAAAAAAAA2nHL32/JkT89MimvPlszRL18QZL+tVhWweIkm6x1tmaI+swzk3PPLXgUAAAAAAAAAAAAAAAAAAAAtSRCDQAAAAAAABVc/pfLc+y4YyveKydZPi/JgEIntW9JkkHt3GtISv+e5MILi9sDAAAAAAAAAAAAAAAAAABAXRChBgAAAAAAgLVc/pfL84n/+UTLRbnCA01pP/pctCVJBla5X2r5MeJrI4pYAwAAAAAAAAAAAAAAAAAAQB0RoQYAAAAAAIA1/Ne9/1U9QD0n9ROgXpp1ClAnyX1fua+r1wAAAAAAAAAAAAAAAAAAAFBnRKgBAAAAAABghSvvuzIf++3HWi4qBahnJxlc5KIqliUZUOX+GgHq8nmV/ssAAAAAAAAAAAAAAAAAAADQ04lQAwAAAAAAQJKr7786H77lwy0XlZrNLyXZtMhFVSxL0r/KfQFqAAAAAAAAAAAAAAAAAAAAIkINAAAAAAAAuf7B63PKzae0XFRqNr+QZLMCB1WzPALUAAAAAAAAAAAAAAAAAAAArBMRagAAAAAAAHq126belvfc8J6Wi0rN5ueSbFHkoiqWJ5lZ5f4aAeo5Z83p4jEAAAAAAAAAAAAAAAAAAADUOxFqAAAAAAAAeq1J0yflmGuPabmoFKB+NslWRS6qYmWAeud27q8RoJ74gYkZOmhoAaMAAAAAAAAAAAAAAAAAAACoZyLUAAAAAAAA9Eoz5s7IkT89suWiUoD6qSTbFrmoivUMUI8cNrKAUQAAAAAAAAAAAAAAAAAAANQ7EWoAAAAAAAB6nabmprzzl+9suagUoJ6WZIciF1VRjgA1AAAAAAAAAAAAAAAAAAAAnSJCDQAAAAAAQK/S1NyUY645Jvc8c0/lAPWjaT/4XLRykmcjQA0AAAAAAAAAAAAAAAAAAECniFADAAAAAADQayxbvixv+/nbqgeody16VTvKSR5I8pp27gtQAwAAAAAAAAAAAAAAAAAA0AERagAAAAAAAHqNKTOn5O6n764coJ6S+gpQ35QMH9bxowLUAAAAAAAAAAAAAAAAAAAAtEeEGgAAAAAAgF7h3mfvzUFXHFQ5QP1Qkr2KXtSOcpL/S8oPJ1MvTYa/XOGZUssPAWoAAAAAAAAAAAAAAAAAAACqEaEGAAAAAACgx1sZoC5XKlA/nGS3rAo719z/JeVJqy/bhKgFqAEAAAAAAAAAAAAAAAAAAFhHItQAAAAAAAD0aK0C1Gs3qB9K8rrUT4D6wdYB6pWmXpoMn9OQlFri03POmiNADQAAAAAAAAAAAAAAAAAAQIcaaz0AAAAAAAAAukqrAPXank+yW+onQD012XHX5IbdkxP+vta9/v0z9fNTM3fLIRk6aGhN5gEAAAAAAAAAAAAAAAAAAND9iFADAAAAAADQI5W+WkoppZYA9doN6qeTbJf6CVA/mTTsnixsTj71tpajVSHqhobk/vuTV7868tMAAAAAAAAAAAAAAAAAAACsDxFqAAAAAAAAepzSV1vq0hUD1E8l2T71E6CekTS8tuXj3P4tP1eFqB8rJbfdluyxR222AQAAAAAAAAAAAAAAAAAA0K011HoAAAAAAAAAbCzLli9bFaBO0hKgXr7GA08m2S71E6B+PslOSXmNPXP7Jwv7toSob7j6nGTUqJrNAwAAAAAAAAAAAAAAAAAAoHsToQYAAAAAAKBHmDF3RhrPb1x9UF7xsyEtIeonk2yf+vkL2fNJdmz5WE6FEPUWm+bKvg9l2fJltVgHAAAAAAAAAAAAAAAAAABAD1Av/4g9AAAAAAAAdNqk6ZOy48VrFp3XeuDp1FeAelZWBahXWhWiLiXp05DGfgPy0+N/mj4NfYrfBwAAAAAAAAAAAAAAAAAAQI/QWOsBAAAAAAAAsCEmTZ+UI396ZMvF2vHplbZL/QSo5yTZpvKtcilJStly4BaZctqUbD5w8+J2AQAAAAAAAAAAAAAAAAAA0OPUyz9qDwAAAAAAAOttnQLUzUn6FLWoA01JtmrnXqnlR2NDYyZ/dHJeNeRVRa0CAAAAAAAAAAAAAAAAAACghxKhBgAAAAAAoFtapwD1K6mfAPW8JFt0/Ni9H7k3O2+2c5fPAQAAAAAAAAAAAAAAAAAAoOcToQYAAAAAAKDbWecAdWNRizowP8nmVe6XWn5M/MDE7LP9PkUsAgAAAAAAAAAAAAAAAAAAoBcQoQYAAAAAAKBbWacA9aLUT4B6YZLNqtxfEaCeMGZCRg4bWcAgAAAAAAAAAAAAAAAAAAAAegsRagAAAAAAALqNdQpQL0zSt6hFHViUZEiV+ysC1Je99bKM3n10EYsAAAAAAAAAAAAAAAAAAADoRUSoAQAAAAAA6BbuefqedQtQ9ytqUQdeSbJplftrBKhPP/D0IhYBAAAAAAAAAAAAAAAAAADQyzTWegAAAAAAAAB0ZP4r83PIlYdUf2hBkv6FzOlYc5LBVe6vCFD/+G0/zkcP+GgRiwAAAAAAAAAAAAAAAAAAAOiFRKgBAAAAAACoe39+9s8pp9xyUa7wwPwkA4pcVMXiJJtUub8iQP2T0T/JqSNOLWIRAAAAAAAAAAAAAAAAAAAAvZQINQAAAAAAAHVt0vRJOeqao9p/oCnJoMLmVLck67TlqndclQ/t+6GuXgMAAAAAAAAAAAAAAAAAAEAvJ0INAAAAAABA3bpj2h2tA9TltR6opwD10iQDO3imlFx3wnUZu/fYIhYBAAAAAAAAAAAAAAAAAADQy4lQAwAAAAAAUJduevimHP/L41cfrB2gnpNkcHF7qlqaZEAHz5SSW997a/51138tYhEAAAAAAAAAAAAAAAAAAACkodYDAAAAAAAAYG0X3X1R9QD1rNRPgHpZ1ilAPfEDEwWoAQAAAAAAAAAAAAAAAAAAKJQINQAAAAAAAHXlorsvyudv/3zLRTltA9QvJRlS8Kj2LEvSv4NnSi0/Dtj+gK5eAwAAAAAAAAAAAAAAAAAAAK2IUAMAAAAAAFA3xv1tXOsA9dpeSLJZgYOqWZ7qAepSy39KKeUvH/lLBg8YXNAwAAAAAAAAAAAAAAAAAAAAaCFCDQAAAAAAQF246dGbMvbXY1suKgWon0uyRZGLqlieZGaV+6WVP0r580f+nAN2PKCIVQAAAAAAAAAAAAAAAAAAANCKCDUAAAAAAAA1N/6h8Tl+/PEtF5UC1M8m2arAQdWsDFDvXOFeKQLUAAAAAAAAAAAAAAAAAAAA1A0RagAAAAAAAGpq/EPjM+ZXY1ouKgWon0qybZGLqlieliB2pQD1GgSoAQAAAAAAAAAAAAAAAAAAqAci1AAAAAAAANRMhwHqaUl2KHJRFeUkzyUZlpYY9dpKK38IUAMAAAAAAAAAAAAAAAAAAFAfRKgBAAAAAACoiZseval6gPrRJDsXuaiKcpLnk+y04rohFUPUAtQAAAAAAAAAAAAAAAAAAADUExFqAAAAAAAACvf07Kdz/PjjWy4qBainJNm1wEHVlJM8lORVa52vGaIuCVADAAAAAAAAAAAAAAAAAABQf0SoAQAAAAAAKFRTc1M+9tuPpU+pT+UHpiTZu9BJ7SsneTjJvu3cb4gANQAAAAAAAAAAAAAAAAAAAHVLhBoAAAAAAIDCzF40O2N+OSYPzPxrtlnaP32WrfXAg0n2qsWyCspJ7k/yxirPlFY+WhagBgAAAAAAAAAAAAAAAAAAoO401noAAAAAAAAAvcMzTc9kvx/tl6VLF2dA08Jk6dJsU05eGJQsa0jyUJI9sirsXHN/TXJglftr7CyfV+7iMQAAAAAAAAAAAAAAAAAAALD+RKgBAAAAAADocrMXzc5+P9ovLy98OSkvT1LKgHJLuHmbhcnM6Ul2T/0EqB9MckCV+wLUAAAAAAAAAAAAAAAAAAAAdAMNtR4AAAAAAABAz9bU3JT3/vq9WbpsSUuAupzM7VfOKyv+dakzn0t9BainJtmvyn0BagAAAAAAAAAAAAAAAAAAALoJEWoAAAAAAAC6TFNzU8b8ckweeO6BDFi0JEObVxec5/ZPZr6UZOfUT4D6ySR7rNujAtQAAAAAAAAAAAAAAAAAAADUOxFqAAAAAAAAusSaAeo0NyeLFmXAslKGLm4pTi9/LsmOqZ8A9Ywku1S5X8qqrQLUAAAAAAAAAAAAAAAAAAAAdAci1AAAAAAAAGx0Tc1Neff4d7cEqJNk3rykXE6WL8+AJeUsfzLJlqmfAPXzSXaqcn+NnQLUAAAAAAAAAAAAAAAAAAAAdBeNtR4AAAAAAABAz9LU3JS3X/P2/O8z/5uBfQdmSHOSJUtW3Z/5QpJXpX7+dakvJdmxyn0BagAAAAAAAAAAAAAAAAAAALopEWoAAAAAAAA2mqbmphxx9RG5/7n7kyQLFi9IliRDVtxfnNRXgHpWku3auVdqfSlADQAAAAAAAAAAAAAAAAAAQHcjQg0AAAAAAMBGsXjp4hx+5eH56wt/bTlY0Wxe0K/l55DFyct9Uz8B6jlJtqlwXmp7JEANAAAAAAAAAAAAAAAAAABAdyRCDQAAAAAAwAZram7KwT8+OI/OenRVfHpNC/olC8pJ+hQ+rbKmJFutdVYhPv3gRx/MXjvsVcQiAAAAAAAAAAAAAAAAAAAA2OhEqAEAAAAAANggTc1NGfGjEXl89uMVA9RJkldSP3+Zmpdki44fmzB2ggA1AAAAAAAAAAAAAAAAAAAA3VpDrQcAAAAAAADQfXW7APXCJJt3/NiEsRMyerfRXT4HAAAAAAAAAAAAAAAAAAAAulK9/OP+AAAAAAAAdDNNzU3Z94f75ok5T7QfoF6UpG+Rq6pYmGRIO/dKqz/e/r7bM2qXUUUsAgAAAAAAAAAAAAAAAAAAgC4lQg0AAAAAAMB6W6cA9cIk/YpcVcWitB+gXsPED0zMyGEju3wOAAAAAAAAAAAAAAAAAAAAFKGh1gMAAAAAAADoXpqam3LAjw5oCVC3Z0HqJ0DdnGTTKvdLLT9uf9/tAtQAAAAAAAAAAAAAAAAAAAD0KCLUAAAAAAAArLOm5qa8+co35x+z/9FyUK7w0IIk/YtcVUVzkk06fuzGd92YUbuM6vI5AAAAAAAAAAAAAAAAAAAAUCQRagAAAAAAANZJU3NTRv73yDzwwgPtPzQv9ROgXpyOA9Sl5HtHfS/Hvf64IhYBAAAAAAAAAAAAAAAAAABAoUSoAQAAAAAA6NCy5cvy9mvenikzp6w+LK/1UFOSgUWuqmJJkkEdPLMiQP1vh/5bEYsAAAAAAAAAAAAAAAAAAACgcI21HgAAAAAAAED9u+WxW/KnZ/7U/gNN6Tj6XJSl6TiGXUquP/H6jNlrTBGLAAAAAAAAAAAAAAAAAAAAoCZEqAEAAAAAAKjqlsduyfHjj199UF7rgdlJNi1wUDVLkwzo4JlScuNJN+a4PY4rYhEAAAAAAAAAAAAAAAAAAADUTEOtBwAAAAAAAFC/7ph2R469/tiWi3LaBqhnpX4C1MuS7ZcmfZZXeaaUjHvnOAFqAAAAAAAAAAAAAAAAAAAAegURagAAAAAAACqaNH1SjrrmqJaLtePTSfJSkiFFLqpiWbL9kpaP2yxsJ0S9IkB90htOKnQaAAAAAAAAAAAAAAAAAAAA1IoINQAAAAAAAG1Mmj4pR/70yJaLSgHqF5JsVuCgapYnDf2SVxpXH7UKUZciQA0AAAAAAAAAAAAAAAAAAECvJEINAAAAAABAKx0GqJ9LskWRi6pYnpYgdpK5/dcIUZdK2SaD0qehT5LkxpNuFKAGAAAAAAAAAAAAAAAAAACg12ns+BEAAAAAAAB6i9un3Z6jrzm65aJSgPrZJNsWuaiK5UmeTjbfMZm74mhu/ySlUgakMRkyJEdv/8b8+G0/zqs3f3UNhwIAAAAAAAAAAAAAAAAAAEBtiFADAAAAAACQJLn50Ztz3PjjWi4qBaifSrJDkYuqKCeZkWy/bZKlLUdz+6/8WU76D8pB278x4941LkP6D6nVSgAAAAAAAAAAAAAAAAAAAKiphloPAAAAAAAAoPb+NvNv1QPU01JfAepnk+23Wn00YGkydHEpKSUpNaSxsV+uPfFaAWoAAAAAAAAAAAAAAAAAAAB6tcZaDwAAAAAAAKC2Hn3x0ez7432rPJBk18LmVFdO8lLrAPVKA/oNSgb0TWOfvply2pRsPnDzwucBAAAAAAAAAAAAAAAAAABAPWmo9QAAAAAAAABq59EXH82el+2ZZVnWclBe64H7U18B6ulJtk+a+q11b9NNkyFDctCrD85jZzyWVw15VQ0GAgAAAAAAAAAAAAAAAAAAQH1prPUAAAAAAAAAamNlgDpJ2/h0kvw9yV5FLqpiZYD6dS2XC1ZEqIcsTlIqJYMHZ5/t9sm4d43LkP5DajQSAAAAAAAAAAAAAAAAAAAA6osINQAAAAAAQC+0TgHqXYpcVMVaAeqVVoWoN9lMgBoAAAAAAAAAAAAAAAAAAAAqaKj1AAAAAAAAAIq1zgHqUoGjqnkkbQLUKy3olwwYvJkANQAAAAAAAAAAAAAAAAAAAFQgQg0AAAAAANCLTH5mcvUA9SOprwD1w0n2qXK/lMxfPD8D+gwoahEAAAAAAAAAAAAAAAAAAAB0GyLUAAAAAAAAvcRNj96UA35yQMtFpQD1i0l2Tf0EqKemwwB1ktz1wbvSr7FfEYsAAAAAAAAAAAAAAAAAAACgWxGhBgAAAAAA6AXumHZHjh9/fPsPvJhks9RPgPrJJHtUub9i54SxE7LbNrsVsQgAAAAAAAAAAAAAAAAAAAC6HRFqAAAAAACAHu6ep+/JUdcctfqgvNYDLyYZmvoJUM9IskuV+yt2/uLEX2T0bqOLWAQAAAAAAAAAAAAAAAAAAADdkgg1AAAAAABAD3bvs/fmX678l9UH7QWo6+WvRs8n2anK/RUB6gtHXZh37fWuIhYBAAAAAAAAAAAAAAAAAABAt1UvOQEAAAAAAAA2snufvTcHXnHg6oN6D1C/lGTHKvdXBKgvOOKCnHnYmUUsAgAAAAAAAAAAAAAAAAAAgG6tXpICAAAAAAAAbEQdBqiT+gpQz0qyXZX7KwLU5x9+fr54+BeLWAQAAAAAAAAAAAAAAAAAAADdXr1kBQAAAAAAANhI2gSoK2lO/fylaE6SbarcXxGg/vJhX865R5xbwCAAAAAAAAAAAAAAAAAAAADoGRprPQAAAAAAAICNp2KAurzWQ81J+hS1qANNSbZq515p9ccvH/blfG3U14pYBAAAAAAAAAAAAAAAAAAAAD2GCDUAAAAAAEAPMXfh3LYB6rW9kvr5C9G8JFtUOC+1vvz2qG/n7MPOLmIRAAAAAAAAAAAAAAAAAAAA9Cj1khgAAAAAAABgAzQ1N2XkT0e2vVFe43M9BagXJtm848euf+f1GfOGMV0+BwAAAAAAAAAAAAAAAAAAAHqieskMAAAAAAAA0ElNzU1505VvyoMvPNj+Q4uS9C1sUnULkwxp515p9ccJYydk9G6ji1gEAAAAAAAAAAAAAAAAAAAAPZIINQAAAAAAQDfW1NyUw686vHqAemGSfoVNqm5R2g9Qr+HPH/pzDtz5wC6fAwAAAAAAAAAAAAAAAAAAAD2ZCDUAAAAAAEA31dTclEN/fGgemvVQ+w8tSNK/sEnVNSfZtMr9UsuPG0+6UYAaAAAAAAAAAAAAAAAAAAAANgIRagAAAAAAgG6oqbkpe1+6d56c/2T7D81P/QSoFyfZpMr9FQHqCWMnZPRuo4tYBAAAAAAAAAAAAAAAAAAAAD2eCDUAAAAAAEA309TclN3+c7c8t+C5Kg8lGVjYpOoWJxlU5f6KAPXt77s9o3YZVcQiAAAAAAAAAAAAAAAAAAAA6BVEqAEAAAAAALqRpuam7HrxrnnhlRfaf2huqkefi7Qk6xSgnviBiRk5bGQRiwAAAAAAAAAAAAAAAAAAAKDXEKEGAAAAAADoJpqam7LLf+ySl5pfan2jvMbnOUkGFziqmqVJBla5L0ANAAAAAAAAAAAAAAAAAAAAXaqh1gMAAAAAAADo2LLly7LHf+7ROkBdTusA9ezUV4B6QJX7KwLUjQ2NOXjHg4tYBAAAAAAAAAAAAAAAAAAAAL1OY60HAAAAAAAA0LGP3vjRzFgwo+WiXOGBWUmGFLmoimVpP0BdWv2xIQ158OMPZmC/gUWsAgAAAAAAAAAAAAAAAAAAgF5HhBoAAAAAAKDOjbl+TMY/Nr7lolKA+qUkmxU4qJplSfq3c6/U+nLKx6Zkj6336OpFAAAAAAAAAAAAAAAAAAAA0GuJUAMAAAAAANSxo646Knc8dUfLRaUA9QtJtihyURXLkzQl2brjR29/3+3ZZ/t9unoRAAAAAAAAAAAAAAAAAAAA9GoNtR4AAAAAAABAZWN/MbZ6gPq51FeAem7aD1CXVn+cMHZCRu0yqoBRAAAAAAAAAAAAAAAAAAAA0LuJUAMAAAAAANShc+84N+MeGddyUSlA/WySrYpcVMV6BKivf+f1Gb3b6AJGAQAAAAAAAAAAAAAAAAAAACLUAAAAAAAAdeYbf/xGLvjTBe0/8FSSbQubU1056xyg/vaob2fMG8YUMAoAAAAAAAAAAAAAAAAAAABIRKgBAAAAAADqyvUPXp8v/eFLqw/Kaz0wLckORS6qYj0C1GcffHbOPuzsAkYBAAAAAAAAAAAAAAAAAAAAK4lQAwAAAAAA1IlbHrsl77nhPe0/8GiSnQubU93KAPVWHT966t6n5tvHfLurFwEAAAAAAAAAAAAAAAAAAABrEaEGAAAAAACoA7c8dkuOvf7Y1oflNT5PSbJrkYuqKCeZluoB6lLLj4++8aP5yQk/KWAUAAAAAAAAAAAAAAAAAAAAsDYRagAAAAAAgBq7Y9od1QPUdybZu8hFVawMUO9e5ZkVAerRrx2dHx/34wJGAQAAAAAAAAAAAAAAAAAAAJWIUAMAAAAAANTQ3IVzc9Q1R60+KKdtgPpfCh7VnvUIUL9rt3dlwvsnFDAKAAAAAAAAAAAAAAAAAAAAaI8INQAAAAAAQA0NHTQ0wzcf3jY+nST/m5YAdan4XRU9lHUKUL9nz/fkF2N/UcQiAAAAAAAAAAAAAAAAAAAAoAoRagAAAAAAgBpYtnxZy4dbbsnUzzye4S+v9cD/Jjkg9ROgfjjJvu3cK2XVzpN2PynXvvvagkYBAAAAAAAAAAAAAAAAAAAA1YhQAwAAAAAAFKypuSnHjzs+N5z59uTYY5MkUy/N6hD11NRXgHpqkn0qnK8Rn06S0954WsaNGVfQKAAAAAAAAAAAAAAAAAAAAKAjjbUeAAAAAAAA0Js0NTdlzC/H5IG//zH3lxcluycn/L3l3tRLk9JbkuyX+glQP5lkjxWfq2z6t4P+Ld97y/eKWAQAAAAAAAAAAAAAAAAAAACsIxFqAAAAAACAgqwKUE+7O1m0KMtLyafe1nLvhL8nP0uSfVM/AeoZSXZJh3suOuqifO7QzxWxCAAAAAAAAAAAAAAAAAAAAFgPDbUeAAAAAAAA0BusClDPmJI0zVt1vjJEPbZv8oEvpH7+evN8kp06fuzCURcKUAMAAAAAAAAAAAAAAAAAAECdaqz1AAAAAAAAgJ5uVYD6uQeS519oc//Zp5JxZ6Z+AtQvJdlxxedS+4/98K0/zGkHnlbEIgAAAAAAAAAAAAAAAAAAAKATRKgBAAAAAAC60KoA9cy/Ji+9VPmhXVM/AepZSbbr+LFx7xyXk95wUpfPAQAAAAAAAAAAAAAAAAAAADpPhBoAAAAAAKCLNDU35cTrTswjL/wtmT07Wbq0zTMz+6Z+AtRzkmzT8WMC1AAAAAAAAAAAAAAAAAAAANA9iFADAAAAAAB0gabmpoy8emSmPDclDcuSbZeW2jwzs2+SPsVvq2hekq06fuymk27KO/Z4R5fPAQAAAAAAAAAAAAAAAAAAADZcQ60HAAAAAAAA9DTLli/LwZcfnCnPTUnKyfKG5PmB5VbPzGxM/QSo5yfZvML5Wt3snx33MwFqAAAAAAAAAAAAAAAAAAAA6EZEqAEAAAAAADayj9740Tw699Fkje708obk+UEtn2f2SdJYk2ltLUyy2bo9+s4939mVSwAAAAAAAAAAAAAAAAAAAICNrF7yBgAAAAAAAD3CmOvHZPxj4yveW96wIkDdt9hN7VqYZEg790qtLx/5xCMZ2G9gVy8CAAAAAAAAAAAAAAAAAAAANiIRagAAAAAAgI3kqKuOyh1P3dFyUa7wwMIk/YpcVMUraT9AvZZHPvFI9th6jy6dAwAAAAAAAAAAAAAAAAAAAGx8ItQAAAAAAAAbwRE/OSJ/fOaPLReVAtQLkvQvclEVzUkGV7lfWv1RgBoAAAAAAAAAAAAAAAAAAAC6r4ZaDwAAAAAAAOjuOgxQz0/9BKgXJ9mkyn0BagAAAAAAAAAAAAAAAAAAAOgxRKgBAAAAAAA2QIcB6nlJBhS5qIrFSQZVuS9ADQAAAAAAAAAAAAAAAAAAAD2KCDUAAAAAAEAnnfjzE6sHqJuSDCxyURVLIkANAAAAAAAAAAAAAAAAAAAAvYwINQAAAAAAQCd86Fcfyg2P39ByUSlAPSfVo89FWpr2Y9ilCFADAAAAAAAAAAAAAAAAAABADyVCDQAAAAAAsJ6+e+d3898P/XfLRaUA9ewkg4tcVMXSJAMqnK8Vn04EqAEAAAAAAAAAAAAAAAAAAKCnEaEGAAAAAABYD+f/4fycNemslotKAepZSTYtclEVy1I5QL2WLx32pSz8wkIBagAAAAAAAAAAAAAAAAAAAOhhGms9AAAAAAAAoLu47oHr8pU/fqXlolKA+qUkmxU4qJplSfq3c6+0+uMFR1yQLx7+xSIWAQAAAAAAAAAAAAAAAAAAAAVrqPUAAAAAAACA7uCOaXfkvTe+t+WiUoD6udRPgHp58tNvJcNfrv7YdSdcJ0ANAAAAAAAAAAAAAAAAAAAAPZgINQAAAAAAQAduevimHHXNUS0XlQLUzybZqshFVSxPrv9m8v4kUy+tEKIutfyYMHZCxu49tuh1AAAAAAAAAAAAAAAAAAAAQIFEqAEAAAAAAKq46O6Lcvwvj2//gaeSbFvUmg4sT/KPpN/uq48qhagnjJ2Q0buNLnQaAAAAAAAAAAAAAAAAAAAAUDwRagAAAAAAgHZcdPdF+fztn199UF7rgWlJdihyURXlJFOT7V+TfOptyQ1rh6jn9U1Kye3vu12AGgAAAAAAAAAAAAAAAAAAAHqJxloPAAAAAAAAqEdtAtRrm5Zk58LmVLcyQL1iz/JSS4g6SU74e5IhQzL1sw9l7pZDMnTQ0FqtBAAAAAAAAAAAAAAAAAAAAAomQg0AAAAAALCWigHq8hqfH02ya5GLqigneTzZfqfWx6tC1H0acsL4/0te/erITwMAAAAAAAAAAAAAAAAAAEDv0lDrAQAAAAAAAPVkwqMT2gao13R/6itAfV+y/asr315eSq789JuybPfdCp0FAAAAAAAAAAAAAAAAAAAA1IfGWg8AAAAAAACoF5OmT8o7xr+j9WF5jc//SLJXkYuqKCe5J9l+33buNzRkn9e9OT9//03p09CnyGUAAAAAAAAAAAAAAAAAAABAnRChBgAAAAAASEuA+sifHrn6oLzWA/9IMqzIRR24t0qAeuDA7DP80Iwb+6sM6T+k0FkAAAAAAAAAAAAAAAAAAABA/Wio9QAAAAAAAIBaaxWgLqf9AHWp2F3tejDJIcnzgyrc22KL7LP74QLUAAAAAAAAAAAAAAAAAAAAgAg1AAAAAADQu81dOLd1gHptL6W+AtRTk+zX8nF5wxoh6j59km23zT47H5hx7xonQA0AAAAAAAAAAAAAAAAAAACIUAMAAAAAAL3brU/c2vKhUoD65SRDU18B6j1aH60KUW+5ZfbZYV8BagAAAAAAAAAAAAAAAAAAAGAVEWoAAAAAAKDXGv/Q+Iz51Zj2A9RDUj8B6ifTJkC90vI+ydwl8wWoAQAAAAAAAAAAAAAAAAAAgFZEqAEAAAAAgF7poWcfqh6g3jT1E6CekWSXdu6t2Lhw6cKUl1X6LwMAAAAAAAAAAAAAAAAAAAD0ViLUAAAAAABArzNp+qTsdcVelW+uDFDXy19Rnk+yU8eP/e69v8vQQUO7fA4AAAAAAAAAAAAAAAAAAADQfdRLPgEAAAAAAKAQk6ZPypE/PbLlopxk+Ro36y1A/VKSHavcL7X8uPRfL80xux5TxCIAAAAAAAAAAAAAAAAAAACgG6mXhAIAAAAAAECXu/3x21sHqJOWv5asDFHXU4B6VpLtqtxfEaA+Za9T8sl/+WQRiwAAAAAAAAAAAAAAAAAAAIBupl4yCgAAAAAAAF3qsnsuy9E/P7ryzYYkzamfv5w0Jdmmyv0VAeqTdjspV554ZRGLAAAAAAAAAAAAAAAAAAAAgG6oXlIKAAAAAAAAXeacW8/JJ2/95OqD8loPNCfpU+SiKuYl2aLK/RUB6lE7jcq4seOKWAQAAAAAAAAAAAAAAAAAAAB0U421HgAAAAAAANCVzvrdWfnun7/b/gOvpH7+YjI/yeZV7q8IUB/+qsNz+ym3F7EIAAAAAAAAAAAAAAAAAAAA6MbqJakAAAAAAACw0X32N5/N9yd/v/VheY3Pi5L0LXJRFQuTbFbl/hoB6j98+A9dPgcAAAAAAAAAAAAAAAAAAADo/hpqPQAAAAAAAKArVAxQr6meAtSLkgypcl+AGgAAAAAAAAAAAAAAAAAAAOgEEWoAAAAAAKDH+fqkr1cPUC9M/QSoX0myaZX7KwLUJww/QYAaAAAAAAAAAAAAAAAAAAAAWC8i1AAAAAAAQI/y9T98PV++88vtP7AgSb/C5lTXnGRwlfsrAtQffMMH8+uTf13EIgAAAAAAAAAAAAAAAAAAAKAHaaz1AAAAAAAAgI3lnFvPyXfu+U77D8xLMqCwOdUtTrJJlfsrAtQXjrwwZ775zCIWAQAAAAAAAAAAAAAAAAAAAD2MCDUAAAAAANAjnH3b2bnwngvbf6ApycDC5lS3JMmgKvdXBKi/dvjXBKgBAAAAAAAAAAAAAAAAAACAThOhBgAAAAAAur3L/nxZLvy/KgHquakefS7SkrQfwy6t/njt8dfmPfu8p4hFAAAAAAAAAAAAAAAAAAAAQA8lQg0AAAAAAHRr3/jjN/KlP3yp/QdmJxlc2JzqlqZygLrU+vL2992eUbuMKmIRAAAAAAAAAAAAAAAAAAAA0IM11HoAAAAAAABAZ333T9+tHqCelfoJUC9LMmCts1LaBKhHbDMiRww7opBJAAAAAAAAAAAAAAAAAAAAQM8mQg0AAAAAAHRLF919Uc6646z2H3gxyaaFzaluWZL+HT+26+a7ZuKpE9OnoU+XTwIAAAAAAAAAAAAAAAAAAAB6PhFqAAAAAACg27no7ovy+ds/3/4DzyfZrKg1HVieygHqUuvLXTffNZNPm5wh/YcUsQoAAAAAAAAAAAAAAAAAAADoBUSoAQAAAACAbuUH9/ygeoB6ZpItCptT3fIk89bt0dtOvk2AGgAAAAAAAAAAAAAAAAAAANioRKgBAAAAAIBu48r7rswZt57R9kZ5xX+eSbJVwaPaszJAvWWFe6XWl+PeOS6v2fI1Xb8JAAAAAAAAAAAAAAAAAAAA6FVEqAEAAAAAgG7hj0/8MR++5cOtD1fGp5PkqSTbFjyqPdUC1GsZ985xOekNJ3X1IgAAAAAAAAAAAAAAAAAAAKAXEqEGAAAAAADq3r3P3puRPxu5+mDN+HSSTEuyQ8Gj2lNO9QB1afXH6064ToAaAAAAAAAAAAAAAAAAAAAA6DIi1AAAAAAAQF2b/8r8HHTFQSmvrE6X13rgqSQ7F72qHeUkc7JOAeqr3nFVxu49tus3AQAAAAAAAAAAAAAAAAAAAL2WCDUAAAAAAFDX7p15b/UA9Q5FL2pHOcnCJFsnWV790avecVU+tO+Hun4TAAAAAAAAAAAAAAAAAAAA0Ks11noAAAAAAABAe+YunJsjf3pky8XaAeqnU18B6peTbLfiuiEtIeo1/3WgpZYf151wXcbuPbbIdQAAAAAAAAAAAAAAAAAAAEAv1dDxIwAAAAAAALUxdNDQDN98eNsA9dQk29diUQVrB6hXWhmiTlYFqMe9c5wANQAAAAAAAAAAAAAAAAAAAFAYEWoAAAAAAKCuTd3jsgyfs8afNB5L8pparalgVtoGqFdqSKsA9UlvOKmgUQAAAAAAAAAAAAAAAAAAAABJY60HAAAAAAAAtGvJkuTsszN1+qbZ9QNz8/gLSXbJqrBzzT2dZFiV+yt2/u0jf8sbdnxDEYsAAAAAAAAAAAAAAAAAAAAAVmmo9QAAAAAAAIA2lixJbrgh2XPP5K9/TebOzQ6Xpr4C1P9M+wHqUlbtnPiBiQLUAAAAAAAAAAAAAAAAAAAAQE001noAAAAAAABAK//zP8lHP5rMmJGUy0mSw0vJnV9I/QSon0wyvML5WvsmfmBiRg4bWcQiAAAAAAAAAAAAAAAAAAAAgDZEqAEAAAAAgPrQ1JSMGZPceuuq+HSSnJc6C1DPSLLLis9VNv3+5N8LUAMAAAAAAAAAAAAAAAAAAAA1JUINAAAAAADU3iOPJAcemCxY0Or4S0m+UW8B6p07fuwHx/wgRw0/qsvnAAAAAAAAAAAAAAAAAAAAAFTTUOsBAAAAAABAL3fzzckb3tAmQP25rAhQ18tfM57POgWozz747Hzi4E90+RwAAAAAAAAAAAAAAAAAAACAjtRLtgEAAAAAAOiNrrsuOe64pFxudfy5JBfXU4B6VpJXdfzYmQedmW8f8+0unwMAAAAAAAAAAAAAAAAAAACwLuol3QAAAAAAAPQ2t9+evPe9FW9d/P9SP3/FmJNk244f+8z+n8mFb7mwq9cAAAAAAAAAAAAAAAAAAAAArLN6yTcAAAAAAAC9yTPPJEcfXfFW6f8l6VPsnHY1Jdmq48c+s/9ncvHbL+7qNQAAAAAAAAAAAAAAAAAAAADrRYQaAAAAAAAo3p57VjwunZP6CVDPS7JFx4+d/+bzBagBAAAAAAAAAAAAAAAAAACAuiRCDQAAAAAAFOKxGY8lTU0tAep589rcL52TpLH4XRXNT7J5x4+df/j5OXfkuV0+BwAAAAAAAAAAAAAAAAAAAKAz6iXlAAAAAAAA9GDn3HpOvnPPd5JlSfnRtvdLZ6d+/mqxMMlma1yXKj929sFn59wjBKgBAAAAAAAAAAAAAAAAAACA+tVQ6wEAAAAAAEDPdtbvzmoJUJeTNCSlL7e+XzorSd9aLKtgUZIhHT921r+clW8f8+0unwMAAAAAAAAAAAAAAAAAAACwIUSoAQAAAACALvOJCZ/Id//83ZYA9UprhKhLZyXpV4tlFbySZNOOH/vBW36Q7/zrd7p8DgAAAAAAAAAAAAAAAAAAAMCGaqz1AAAAAAAAoGc66fqT8ovHftE6QL1SQ1I6M/UToG5OMrjjxy444oJ84qBPdPkcAAAAAAAAAAAAAAAAAAAAgI1BhBoAAAAAANjoDr/i8Nz57J3tPzA/yYDC5lS3OMkm7dwrtb785AGf7Oo1AAAAAAAAAAAAAAAAAAAAABuNCDUAAAAAALBR7fuDffPXl/7aclFue7/UlJQHFTqpfUuSrOOWiR+YmKGDhnbpHAAAAAAAAAAAAAAAAAAAAICNSYQaAAAAAADYaPa6ZK88NPuhlosKAeqGpmR5vQSolyYZWOV+afXHiR+YmJHDRnb1IgAAAAAAAAAAAAAAAAAAAICNSoQaAAAAAADYKHb+3s55av5TLRcVAtR95yRLBhc6qX1LkwxYt0cFqAEAAAAAAAAAAAAAAAAAAIDuqqHWAwAAAAAAgO7vsB8eVjVAPXBWHQWolyXDF3TwTKnlhwA1AAAAAAAAAAAAAAAAAAAA0J2JUAMAAAAAABvkLf/9ltz9/N0tFxUC1Ju8lCwaUuymdi1Lyt9Kpl6aDH+5nWcEqAEAAAAAAAAAAAAAAAAAAIAeQoQaAAAAAADotGN/dmxu/eetLRcVAtRDX0gWbFbopPYtbwlQrzT1B6UMn11q/YwANQAAAAAAAAAAAAAAAAAAANCDiFADAAAAAACdMnb82NzyxC0tF5UC1M8lc7codlO7lidf/Gbb46nXb53hc1b8uUSAGgAAAAAAAAAAAAAAAAAAAOhhRKgBAAAAAID1dvatZ2fco+NaLioFqJ9N5m5V7KZ2LU8++83kgrXP+/dPhg3L1Lf/LsO3GJ5EgBoAAAAAAAAAAAAAAAAAAADoWRprPQAAAAAAAOherrzvylx4z4UtFxUC1Js/lczeodhN7VoRoP6Ptc/79k3OOSf50peSvn0z9eipmbtwboYOGlqLlQAAAAAAAAAAAAAAAAAAAABdoqHWAwAAAAAAgO7j6vuvzodv+XDLRYUA9RbT6ihAXU7e+K0KAeqGhuSNb1wVoF5JgBoAAAAAAAAAAAAAAAAAAADoaUSoAQAAAACAdTLtxWk55eZTWuLTFQLUWz2azNq58FmVlZM9v5ncX2FnNtss+cY3WgWoAQAAAAD+P3v3HWV3XeB9/HOnJCGNhJYEaRFYpAlCqLIqoGAJwaibYAMhuGtDfCyou6xYVlx3Vx+7WwhFH5QgghBsCwS7AqEqNSAlIQktIZNGMuU+f0zazdy5MySZe+/MvF7n5My93+9v7nyOh7/Gc94DAAAAAAAAAAAAADAQiVADAAAAAAA9alnTkg/974dS6OZ+3B3Js/tWdVL3ismQa5N7ywWoGxuTd787ee1rqz4LAAAAAAAAAAAAAAAAAAAAoNpEqAEAAAAAgIpa1rRk+lXTc/eC2zN+eVLoKL3f5Y7kqZfXZlsX6wLUa+7t5v7QQ5PPf76aiwAAAAAAAAAAAAAAAAAAAABqRoQaAAAAAADo1oYA9aK7kmeeSZKMX7UxRL3D75KnD67dvhLFJH+sEKDeeefkmmuS0aOruQoAAAAAAAAAAAAAAAAAAACgZkSoAQAAAACAsjYEqBffnSxdWnI3flXScEey5Kgkhdrs6+KPSfHmbu6ampLbb092372qkwAAAAAAAAAAAAAAAAAAAABqSYQaAAAAAADooiRAvWZN579NdNyfdByc+glQ31MhQJ0k99wjQA0AAAAAAAAAAAAAAAAAAAAMOk21HgAAAAAAANSXpauX5h1Xv6MzQF0sJs8/X3K/aH6SQ1M/Aep5SXF2hfubbkr2379qcwAAAAAAAAAAAAAAAAAAAADqhQg1AAAAAACwwdLVS/Oyb78sre2tGdZeSJYtSzo6Ntwvmp9kn9RPgPrxJPsnhX9Oil8ocz9zZnLCCdVeBQAAAAAAAAAAAAAAAAAAAFAXGmo9AAAAAAAAqA8ta1ryjqvfkda2tVm2+vm8sHxp0t6+4X7RE6mrAPX4J5Psve5NQ2eIusRFFyVnnVXlVQAAAAAAAAAAAAAAAAAAAAD1Q4QaAAAAAABIy5qWTL9qeu5+8o4MW7Yy269Jlg0p5oWmzvtFT6auAtQ7P5Us3nOzw01D1DfdlMyYUe1ZAAAAAAAAAAAAAAAAAAAAAHWlqdYDAAAAAACA2to0QJ0lS5L29gwrFpNismxosvTJJBNTN3/acuwzyTMv6eayISl8NimecEI1JwEAAAAAAAAAAAAAAAAAAADUpTrJRQAAAAAAALWwIUC96K7kueeStrakWEySDGtLtlueZPfUzf+jMHpJsnRChQcKnV8eXPhgVfYAAAAAAAAAAAAAAAAAAAAA1LM6SUYAAAAAAADVVhKgfuaZpL29yzMrh6Zu/t+EEc8nLbv0/Nx5R5+X/Xbdr8/3AAAAAAAAAAAAAAAAAAAAANS7ploPAAAAAAAAqm9DgPrJOzoD1MVil2cWNSdprP62crZrSVbuVOGBQueXjx/18Xz55C9XZRMAAAAAAAAAAAAAAAAAAABAvROhBgAAAACAQWZDgHrB7Z0B6jIWNaZuAtSF5cnqHSo90Pnl/Ye9P//++n+vyiYAAAAAAAAAAAAAAAAAAACA/qCh1gMAAAAAAIDqae9ozzuvfmfFAPWKYpLm6u7q1oqkOLbCfWHjy6+c/JU+nwMAAAAAAAAAAAAAAAAAAADQn4hQAwAAAADAINLY0JizdjslDc88W/Z+ZXuyfLsqj+rOqiRjKtxvEqC+7wP3Zbsh9TIcAAAAAAAAAAAAAAAAAAAAoD6IUAMAAAAAwGDS0pKpb/98vvnTYhqKpVdrWpOWEbWZ1cXqJKMr3G8WoN5/5/37ehEAAAAAAAAAAAAAAAAAAABAv9NU6wEAAAAAAEAVzZiRPPlkpq57e84bk45C0v5CsmRMLYdtYk2SURXuBagBAAAAAAAAAAAAAAAAAAAAeqWh1gMAAAAAAIC+tWzVss4Xl1+eXHXVhvOpDyTf/FlSXJ08PaY227pYk2REhXsBagAAAAAAAAAAAAAAAAAAAIBea6r1AAAAAAAAoO/c/OjNOeF7J2SfkXtl3ifnd7n/1HHJ4rE1GFbO2ghQAwAAAAAAAAAAAAAAAAAAAGxDDbUeAAAAAAAA9I31AeokeXj5Y9n3/e0l9wefmTw0rhbLymhNMrzCvQA1AAAAAAAAAAAAAAAAAAAAwIsmQg0AAAAAAAPQpgHqFDu/PLxjsu+HOl8fcEbyl11rs62LtiTbVbgXoAYAAAAAAAAAAAAAAAAAAADYIiLUAAAAAAAwwJQEqDfz8I7JS96b3L9blUd1py2Z0JYUOnp+VIAaAAAAAAAAAAAAAAAAAAAA4MURoQYAAAAAgAGkS4C6WHo/YWGycJfqbupWe2eAOknGr+omRF1IPnH0J7Lq06sEqAEAAAAAAAAAAAAAAAAAAABepKZaDwAAAAAAALaNLgHqzez6ZLJwXBUHVdKeTGgtPRq/Klk8PCmu/xOahWTm5Jk56/Czqj4PAAAAAAAAAAAAAAAAAAAAYCBo6PkRAAAAAACg3t30yE1dA9TFjS93WVhHAeqOrgHq9cavSgodSQrJJVMuEaAGAAAAAAAAAAAAAAAAAAAA2ApNtR4AAAAAAABsnesfvD6nXHFKt/fjFiZP7VLFQZV0JHk0yUu6ud9uu5y89yvzrTf+Z/beee8qDgMAAAAAAAAAAAAAAAAAAAAYeESoAQAAAACgH5u/dH7XAHVx48sJTyaLxlV3U7fWBagnlAtQFwrJmDE5ZK+jMuttszJ66OhqrwMAAAAAAAAAAAAAAAAAAAAYcESoAQAAAACgn2pZ05K//9nfp6HQkI5iR0l8Okl2fSJZuGtttnXRkeTpZOyeSdo2uxs1Mhk5KoeMP0SAGgAAAAAAAAAAAAAAAAAAAGAbaqj1AAAAAAAA4MVrWdOS6VdNz92L7sq41qFpaC+93+2ROgpQF5M8lozdKVk2NHlh/Z/IbGxMxo8XoAYAAAAAAAAAAAAAAAAAAADoI009PwIAAAAAANSTDQHqJ+9Ili5NWlszLslTw5OOhmTP+5PH9631ynWKSRYkE3ZN0tZ5tGxo59dho7dPCgUBagAAAAAAAAAAAAAAAAAAAIA+IkINAAAAAAD9SEmAesmSpK1tw924VUnzw8njB9Vw4CYKxeSAe5Ml+2w8G7Y+RD0sSWMxRwlQAwAAAAAAAAAAAAAAAAAAAPQZEWoAAAAAAOgnNgSoF92VLF2atLeX3I9+KHnw5bXZ1kWZAPV6w9qSDBuT5sbm/OAtPxCgBgAAAAAAAAAAAAAAAAAAAOgjDbUeAAAAAAAA9GxDgHrx3cny5UlbW1Isbrgf9XDy4ME1HLipYnLo7eUD1EmS7bfPUbsfnQc++EDGbje2qtMAAAAAAAAAAAAAAAAAAAAABpOmWg8AAAAAAAAqa+9ozzuvfmdngHrNmmT16pIAddNjyUMHJinUbGKJw/6cLDqom8vGxhzy0mMy622zMnro6KruAgAAAAAAAAAAAAAAAAAAABhsGmo9AAAAAAAAqKyxoTFnHXpWGgoNyfLlXQLU8/dL/QSo70kW/U3394cccLwANQAAAAAAAAAAAAAAAAAAAECViFADAAAAAEA/MHX/qfnmzmekoa19Q4T6uaV1FqCe10OAeo8jMuu0HwtQAwAAAAAAAAAAAAAAAAAAAFSJCDUAAAAAAPQTU697KN/87ag0FDsD1GvHp24C1P94Y3L+PUlDsfz9IWP2y6x/uFGAGgAAAAAAAAAAAAAAAAAAAKCKmmo9AAAAAAAA6IWFC5Pf/z5TX2jIw48n552ZuglQn/vr5Iu3bHx/zhuTjk22HTJq38z6xK0C1AAAAAAAAAAAAAAAAAAAAABV1lDrAQAAAAAAQC/cemuS5OGlSzsD1HXyG/5T70i+9ruN76c+kHzzZ0lDsfP9IWP2y6xPzRWgBgAAAAAAAAAAAAAAAAAAAKiBploPAAAAAAAAKli4MPnhD5NvfCP3LVqUAz+duglQ7/t48pOfdz2f+kDn14vfc0gu/8hvBKgBAAAAAAAAAAAAAAAAAAAAakSEGgAAAAAA6k1ra/KTnySf+Uzy0ENJR0eS1FWAereFyby9k30/lMz7Vtf7qV++NlMmvymNDY3VHwcAAAAAAAAAAAAAAAAAAABAkrpJVQAAAAAAAEmSG25IXvrSZPr05IEHNgSoC59K3fxWf/zTyYI9Ol8/vGNniHqDpqbk1luTKVMEqAEAAAAAAAAAAAAAAAAAAABqrE5yFQAAAAAAMMi1tCQzZiRvfGOyYEFSLG64KnwqSZ30nHd8Llm8a+nZhhD1Djskf/1rcsQRNdkGAAAAAAAAAAAAAAAAAAAAQKmmWg8AAAAAAIBBb/785E1vSv7yl5L4dJIUPpm6CVDvsDR5blz5u4d3TPb9p9GZt/vu1R0FAAAAAAAAAAAAAAAAAAAAQLcaaj0AAAAAAAAGtSeeSE48Mfnzn8sHqOvkz0lu35Is2bnCA4Xk4eWPZdmqZVXbBAAAAAAAAAAAAAAAAAAAAEBldZKuAAAAAACAQailJXnLW5J587pcFc5L3fwWf/TyZNkO3VwWNr6cc/qcbD98+6psAgAAAAAAAAAAAAAAAAAAAKBndZKvAAAAAACAQeiTn0zuuKPLceETSZqrP6ecUcuTlrFlLgqlb+ecPifHTzy+KpsAAAAAAAAAAAAAAAAAAAAA6J2GWg8AAAAAAIBB6fLLk//+76RYLDlu+HiSIbWZtLkRq5Ll5QLUmxGgBgAAAAAAAAAAAAAAAAAAAKhPItQAAAAAAFAlS1Ys6XzxyCPJe9+bdHSU3Bc+nhSH1mBYGcNXJytHd3NZ2PhSgBoAAAAAAAAAAAAAAAAAAACgfjXVegAAAAAAAAwGP7znh3nHNe/I+OHjsujiscnq1SX3hY8mqZMA9bC1yfaF5IWOpKPCn7MUoAYAAAAAAAAAAAAAAAAAAACobxXSEQAAAAAAwLZw4a8vzDuueUeSZPHKpzLhTQ+U3Bf+T5LtajCsjCGtydiOztfjViUNHZs9UOj8IkANAAAAAAAAAAAAAAAAAAAAUP9EqAEAAAAAoA9d+OsL80+/+qeSs8Ujkwkf7XzddG6S4dXfVU5TW7Jje+lZuRD1je+6UYAaAAAAAAAAAAAAAAAAAAAAoB8QoQYAAAAAgD7SJUBd3Phy8aik8OGkfWT1d5XT2Jbs3Fb+btzqQmeIupDMPm12Ttz7xKpuAwAAAAAAAAAAAAAAAAAAAGDLNNV6AAAAAAAADERdAtSbW5JkdNXmVNae7NJNgDpJ0tiYk/Y4Lv/91u9l97G7V20WAAAAAAAAAAAAAAAAAAAAAFtHhBoAAAAAALaxsgHq4iavn00ypoqDKmlPJrRWuG9uziF7vzKz3n1tRg+tl2o2AAAAAAAAAAAAAAAAAAAAAL3RUOsBAAAAAAAwkHQJUBdTGqB+OvUToO5I557ubLddDnnZqwWoAQAAAAAAAAAAAAAAAAAAAPopEWoAAAAAANhGSgLUm8enk2Rxkh2qPKo7Hcm8LyVX/7GQhs13NjQkY8d2BqhP+7EANQAAAAAAAAAAAAAAAAAAAEA/1VTrAQAAAAAAMBBce9+1pQHqzTQ/mbSOq+6mbnUk934p2SfJPg8WkiTnvKGYjoZCMnJkMnJkDhl/SGa9bZYANQAAAAAAAAAAAAAAAAAAAEA/JkINAAAAAABb6ZmWZ/LmH725802ZAPWQJ5K1u1Z1UveKnQHqA9a/Hz48U8e+PNl3Us5Z9eN0FDsEqAEAAAAAAAAAAAAAAAAAAAAGCBFqAAAAAADYCgtaFuTg7x7c+aZMgHroI8maPau7qVvF5EebBqgPPjj55S+TCRMyNUnuf00uvuviXP6WywWoAQAAAAAAAAAAAAAAAAAAAAYAEWoAAAAAANhCC1oW5MDvHJiWNS1lA9TN9ydr9q3+rrLWBajftn5noZBMnpxMmLDhkan7T82U/aaksaGxNhsBAAAAAAAAAAAAAAAAAAAA2KZEqAEAAAAAYAssaFmQA799YFrWtpR/4JGktY4C1F/9ySYB6qQzQj1tWpdHBagBAAAAAAAAAAAAAAAAAAAABg4RagAAAAAAeJEWtCzIAd8+IMvXLu88KG72wMIke1Z7VTfWBaj/z32bne+6a3LooTUYBAAAAAAAAAAAAAAAAAAAAEC1NNR6AAAAAAAA9Cd/XfLXngPUO1d7VTeKySeuLROgLhSSGTNqMgkAAAAAAAAAAAAAAAAAAACA6mmq9QAAAAAAAOgvbnvythx50ZEbDzYPUD+dzgB1oYqjKjjzpuTf7i1zMXx4ct55Vd8DAAAAAAAAAAAAAAAAAAAAQHU11HoAAAAAAAD0B70KUI9N/QSob0wuvqXMRaGQfOYznSFqAAAAAAAAAAAAAAAAAAAAAAY0EWoAAAAAAOjBnIfnVA5Qr0xdBajf8IcKAepDDknOO6/qmwAAAAAAAAAAAAAAAAAAAACoPhFqAAAAAACo4LK7LsuJl5+48aBcgHpI6iZA/fIHk5/d3M3liBHJ7NlV3QMAAAAAAAAAAAAAAAAAAABA7YhQAwAAAABANy6989K859r3dL4ppmuAelWS5tRNgHqfx5K7r+rmctiw5MYbk912q+YkAAAAAAAAAAAAAAAAAAAAAGpIhBoAAAAAAMq49M5Lc+Z1Z3a+2Tw+nXQGqJtSN79pf8nCZN7l3VwOG5b86lfJUUdVcxIAAAAAAAAAAAAAAAAAAAAANdZU6wEAAAAAAFBv+luAuvnZZMEl3VzuuGNy113JbrtVcxIAAAAAAAAAAAAAAAAAAAAAdaBO8hgAAAAAAFAfegxQJ3UVoC4sSVrHJxM+WuZyjz2Sv/5VgBoAAAAAAAAAAAAAAAAAAABgkKqTRAYAAAAAANTe1fde3XOAek3q57frzyfFXTpfLh61LkRdKCQjRiSHHpr87nfJ6NE1HAgAAAAAAAAAAAAAAAAAAABALdVLJgMAAAAAAGrq+gevz1uvemvlh9YkaazKnJ61JNmp9GjxqGTCx5Icckhy3XXJ7rvXYhkAAAAAAAAAAAAAAAAAAAAAdUKEGgAAAACAQe/6B6/PKVecsvGgWOahF1I/AeoVSXYof7V4RDET3vyIADUAAAAAAAAAAAAAAAAAAAAAItQAAAAAAAxu85fO712Auqlai3qwKsmYbu4Knf8Wr3oqS1Ysqd4mAAAAAAAAAAAAAAAAAAAAAOqSCDUAAAAAAINWe0d73n7N2ys/tDr1FaAeXeZ8XXx6vR9M/UF2GLlDlUYBAAAAAAAAAAAAAAAAAAAAUK9EqAEAAAAAGLTuWHRHfj//990/sCpJc9XmVPZCug9Qb+KLr/li3v7yHsLaAAAAAAAAAAAAAAAAAAAAAAwKItQAAAAAAAxKtz15W4666KjSw+Imr1cmGVLNRRWsSTKy58e++Jov5h9f/Y99PgcAAAAAAAAAAAAAAAAAAACA/kGEGgAAAACAQWd9gLpYUp3exIokQ6s6qXtrk4zo5q6w8aUANQAAAAAAAAAAAAAAAAAAAACbE6EGAAAAAGBQWfHCisoB6uVJhlV1UvfWJhne82MC1AAAAAAAAAAAAAAAAAAAAACUI0INAAAAAMCgMnLYyByx6xHlL1uSbFfVOd1rTeUAdaHziwA1AAAAAAAAAAAAAAAAAAAAAN0RoQYAAAAAYNC55b235Mhdjyw9XJrK0edqakvlGLYANQAAAAAAAAAAAAAAAAAAAAC9IEINAAAAAMCgVBKiXpJkZE3nbNSWZFiFewFqAAAAAAAAAAAAAAAAAAAAAHpJhBoAAAAAgEHrlvfekjyXZFStl6zTnl4FqJPkg0d8sK/XAAAAAAAAAAAAAAAAAAAAANDPiVADAAAAADBoNXyukIyu9Yp12pMMrXC/SYB6zulzsv3w7ft6EQAAAAAAAAAAAAAAAAAAAAD9nAg1AAAAAACD0ojPFVJsrfWKdTrSGaHuziYB6hvfdWOOn3h8Xy8CAAAAAAAAAAAAAAAAAAAAYAAQoQYAAAAAYNAZ+7nmrKqnAHVbkuE9Pzr7tNk5ce8T+3oRAAAAAAAAAAAAAAAAAAAAAAOECDUAAAAAAIPKuM+NyPOtbbWe0ak3AepC55drp12byftNrsIoAAAAAAAAAAAAAAAAAAAAAAYKEWoAAAAAAAaNPT+3U55uXVXrGZ2K6XWAetZbZ2XK/lOqMAoAAAAAAAAAAAAAAAAAAACAgUSEGgAAAACAQWHPz+2UJ1qfq/WMTi8yQD3toGlVGAUAAAAAAAAAAAAAAAAAAADAQCNCDQAAAADAwLVwYfKTn+Rl72msvwD1dhWeWRegnnnKTAFqAAAAAAAAAAAAAAAAAAAAALaYCDUAAAAAAANLa2sye3Zy4onJ3/xNDrt4ah7craPWqzoVk6xI9wHqQjYEqP/5uH/OWYedVZ1dAAAAAAAAAAAAAAAAAAAAAAxITbUeAAAAAAAA28zs2cn73pcsXpx0dORvj0/ufHmtR61TTLIyydhu7gsbX170posyY9KMKowCAAAAAAAAAAAAAAAAAAAAYCAToQYAAAAAoN9asmJJdhi5Q9LSkrzhDckf/5gUi0mSvz0++d0xNR64qZVJxnRzt0mAetZbZ2XaQdOqMAgAAAAAAAAAAAAAAAAAAACAgU6EGgAAAACAfun6B6/PKVeckvFDdsyif1mdrFq14e5tB64LUBe6//6qejbJ+G7uNtl47bRrM2X/KdVYBAAAAAAAAAAAAAAAAAAAAMAg0FDrAQAAAAAA8GKtD1AnyeI1z2XC+zYGqP9nTPLjU1M/AepH0qsA9ezTZgtQAwAAAAAAAAAAAAAAAAAAALBNiVADAAAAANCvbBqgTrHzy+JRyYSPJj8oJH//gdRPgPqxJPuVOS+kZOON77oxk/ebXJ1NAAAAAAAAAAAAAAAAAAAAAAwaItQAAAAAAPQb5QLU6y1uTN756dRPgPrxJPuUOd9s3+xps3Pi3idWYxEAAAAAAAAAAAAAAAAAAAAAg0xTrQcwODzzzDO57bbb8sgjj6SlpSXNzc3Zcccdc8ABB2TSpElpbm6u9UQAAAAAoM5VClBnVTp/410vAeqFSfbe5H03u77zhu9k8v6Tq7EIAAAAAAAAAAAAAAAAAAAAgEFIhJo+ddVVV+XrX/96fv/736dY3LwK02nUqFGZNm1azjvvvPzN3/xNlRd2VSwWM2/evNx+++2ZO3du5s6dmzvvvDPLly8vee6MM87IpZdeulU/67Of/Ww+97nPbdVnVNLd/+YAAAAA0N/0KkDdUOVR3XkqyZ49P3bTO2/KCfuc0OdzAAAAAAAAAAAAAAAAAAAAABi8RKjpE08++WTe+c535te//nWPzy5fvjwzZ87M97///Zx//vk5//zzUygUqrByo6uvvjp/+tOfMnfu3Nxxxx1ZtmxZVX8+AAAAANC9fhWgfjbJbj0/duvZt+aIlxzR53MAAAAAAAAAAAAAAAAAAAAAGNxEqNnmHnroobzmNa/JokWLXtT3rV27Np/5zGdy//335/vf/34aGxv7aGFXZ5111oALTx9zzDG1ngAAAAAAW+1Hf/lRpv14WuebzQPUSX0FqJckmVD5kUIKueXsWwSoAQAAAAAAAAAAAAAAAAAAAKgKEWq2qeeeey6ve93rygaoDz/88Jx66qmZOHFiVq9enYceeig/+MEPsnDhwpLnfvjDH2aXXXbJ1772tSqtrp3x48fnkEMO2erPufvuu7ucnX322Vv9uQAAAABQS398/I+VA9RrklTvb9lVVGhOOr5TzFH/c1RuXXhr+WcEqAEAAAAAAAAAAAAAAAAAAACoMhFqtqm///u/zxNPPFFyNmrUqPy///f/MmXKlC7PX3jhhbnwwgvz2c9+tuT861//ek4++eS84Q1v6Mu5Pdpxxx1z+OGHZ+zYsZk1a9Y2//z3ve99ed/73rdVn/GnP/0pxxxzTMnZqFGjMn369K36XAAAAACopb889Ze8+nuv7nxT5wHqNCQdF3SOvOW9t5QNUQtQAwAAAAAAAAAAAAAAAAAAAFALItRsMzfccEOuvvrqkrMhQ4Zkzpw5mTRpUtnvaW5uzgUXXJAxY8bkIx/5SMndhz/84dx///1paqrOf6bbb799DjvssEyaNClHHHFEJk2alIkTJyZJfvWrX/VJhHpbuOiii7qcTZ8+PSNGjKjBGgAAAADYOu0d7bntydty7MXHpphi+QD1C6mf3263JcV/LR25eYhagBoAAAAAAAAAAAAAAAAAAACAWqmXTAcDwBe+8IUuZxdccEG3AepNnXvuufnpT3+aG264YcPZww8/nB/84Ac5/fTTt+nOcu68887stddeKRQKff6ztqUVK1aUjWOfffbZNVgDAAAAAFunZU1LTv7+yfnTk3/qPCgXoF6dpLmaqyooE6Beb32I+raFtwlQAwAAAAAAAAAAAAAAAAAAAFAzDbUewMBw77335re//W3J2U477ZSPf/zjvf6ML33pS13Ovvvd7271tt6YOHFivwtQJ8mVV16ZFStWlJwddNBBOeqoo2q0CAAAAAC2TMualpxw2Qn9J0C9uvsA9Xq3vPeWtHyyRYAaAAAAAAAAAAAAAAAAAAAAgJoRoWabuOKKK7qcnXnmmRkyZEivP+Pwww/P4YcfXnL2pz/9KY8++uhW7xuoLrrooi5nM2bMqMESAAAAANhyLWta8upLXp3bF93eeVCu7bwq9ROgfiEpzn1Vrx4dOWxkH48BAAAAAAAAAAAAAAAAAAAAgO6JULNN/OIXv+hy9ra3ve1Ff0657yn32ST3339//vjHP5acDR06NO9+97trtAgAAAAAXryWNS05+j+Pzl1P3dV5UC5AvTJJ7//eXd9akxS/Wkia66WIDQAAAAAAAAAAAAAAAAAAAADdE6Fmq61cuTJ33HFHydnw4cNz2GGHvejP+tu//dsuZ7/97W+3eNtANnPmzC5nb37zm7PjjjvWYA0AAAAAvHgta1ry8u+8PPc/f3/nQbkA9YokQ6u5qoK1SfE/1r3eaaeaTgEAAAAAAAAAAAAAAAAAAACA3hChZqvddddd6ejoKDmbNGlSmpqaXvRnHXHEEWlubi45u/3227dq30DU2tqa73//+13OZ8yYUYM1AAAAAPDitaxpySHfOiSPtzze/UPLkwyr2qTKWpPiv697XSgkBx5Y0zkAAAAAAAAAAAAAAAAAAAAA0Bsi1Gy1Bx54oMvZPvvss0WfNWTIkOy2224lZ4888kja2tq26PMGquuuuy5PP/10ydlee+2V1772tTVaBAAAAAC917KmJft/c/88tuKxjYfFzR9Ksl0VR1XSmhT/bZP3TU3Jy19eszkAAAAAAAAAAAAAAAAAAAAA0Fsi1Gy1xx57rMvZnnvuucWft8cee5S8b29vzxNPPLHFnzcQzZw5s8vZmWeemUKhUIM1AAAAANB76wPUC1cu7P6h55MMr9aiHrRtFqBOkubm5MgjazIHAAAAAAAAAAAAAAAAAAAAAF6MploPoP9bvHhxl7Pdd999iz+v3Pc+9dRTeelLX7rFnzmQLFiwIL/85S9LzhoaGnLWWWfVaFHPvv3tb+c73/lOn/+cRx55pM9/BgAAAABbrr2jPQd/++CuAeriJq+XJhlVzVUVtCfFL5c5P/bYZMKEqs8BAAAAAAAAAAAAAAAAAAAAgBdLhJqttmTJki5nI0eO3OLPK/e9zz333BZ/3kBzySWXpKOjo+Ts5JNPzm677VajRT175plnct9999V6BgAAAAA1NuMnM/LE8ie6f+DZJGOqtaYH7UnxX8ucNzQk555b9TkAAAAAAAAAAAAAAAAAAAAAsCVEqNlqK1eu7HK23XbbbfHnlfveVatWbfHnDSTFYjGXXHJJl/MZM2bUYA0AAAAA9N5rL3ltbnripu4feDrJDlWbU1lHMn5tN3cTJiQnnVTVOQAAAAAAAAAAAAAAAAAAAACwpRpqPYD+r7W1tcvZsGHDtvjzykWo167trvgyuMyZMyePPvpoydkuu+ySKVOm1GgRAAAAAPTs9Ze9vnKAenHqKkCdtmTxqGTCRze7KxSS//zPpLm5FssAAAAAAAAAAAAAAAAAAAAA4EUToaZPFAqFbfq9xWJxa+YMGBdddFGXs9NPPz3NojcAAAAA1KnTZp2WXz72y+4fWJBkp6rNqWxdgDrDO992CVEfe2wyeXINhgEAAAAAAAAAAAAAAAAAAADAlhGhZquVCyCvXr16iz+v3PcOGTJkiz9voFiyZEmuueaaLuczZsyowRoAAAAA6Nkp3z8lsx6YVXpY3OTf40nGVX9XWZsFqNfbEKIePjz52c9qMAwAAAAAAAAAAAAAAAAAAAAAtlxTrQfQ/w0fPrzL2baOUI8YMWKLP2+guPzyy7NmzZqSs1e+8pV52cteVqNFvbfzzjvngAMO6POf88gjj3T53wgAAACA2jjr6rNy/V+v33hQ3OyBR5LsWc1FFRRTNkC93uJRyYTzt8ui0aOruQoAAAAAAAAAAAAAAAAAAAAAtpoINVttxx137HK2YsWKLf68ct9b7mcMNjNnzuxydvbZZ9dgyYv3wQ9+MB/84Af7/OcceOCBue+++/r85wAAAABQ2Yev/3Au+fMlnW82j08nycLUV4B6TZKRFZ4pJIvXPpclK5Zkh5E7VGkYAAAAAAAAAAAAAAAAAAAAAGy9hloPoP8bN25cl7MFCxZs8efNnz+/Vz9jMJk7d27uvvvukrNRo0bl7/7u72q0CAAAAADK+8hPP5Jv3v7NzjflAtRPJtmlmosq6GWAOklmnzZbgBoAAAAAAAAAAAAAAAAAAACAfkeEmq02ceLELmePP/74Fn/eE088UfK+sbExe+yxxxZ/3kAwc+bMLmdvf/vbM2LEiBqsAQAAAIDyPvLTj+Trc7/e+aZcgPrPSerl780VkzyXXgeoJ+83uQqjAAAAAAAAAAAAAAAAAAAAAGDbEqFmq+23335dzh5++OEt+qy1a9dm/vz5JWd77713mpqatujzBoLVq1fnhz/8YZfzs88+uwZrAAAAAKC8WXfNqhygfjjJ/tVcVMH6APX4Cs8IUAMAAAAAAAAAAAAAAAAAAAAwAIhQs9Ve8YpXpKGh9D+luXPnpq2t7UV/1ty5c9Pa2lpydthhh23Vvv7uRz/6UZYtW1ZydvDBB+eII46o0SIAAAAAKHXzozfntGtP63xTLkD91yR7VnNRD56JADUAAAAAAAAAAAAAAAAAAAAAg4IINVttxIgRecUrXlFytnLlytx5550v+rN+97vfdTl71atetcXbBoKZM2d2OTv77LNrsAQAAAAAurr50ZtzwvdO6P6BvybZPRvCzjX3eJJdK9wLUAMAAAAAAAAAAAAAAAAAAAAwgIhQs028/vWv73J21VVXvejPKfc95T57sJg3b15+85vflJwNHTo073rXu2q0CAAAAAA2WrZqWWmAurjZA8+kvgLUjyTZu8K9ADUAAAAAAAAAAAAAAAAAAAAAA4wINdvEaaed1uXskksuydq1a3v9GXfeeWduu+22krOjjjoqEydO3Op9/dXFF1/c5Wzq1KnZYYcdarAGAAAAADZatmpZth++ffYZu09nfHrzAPWzScakfgLUjyfZr8K9ADUAAAAAAAAAAAAAAAAAAAAAA5AINdvEQQcdlOOOO67k7Jlnnsn//b//t9ef8elPf7rL2fvf//6t3tZftbW15bLLLutyfvbZZ9dgDQAAAABsdPOjN2fMv4/Jvl/bO/P+bXX2eW6zB55Nsn3qK0C9d4X7dTuvfOuVAtQAAAAAAAAAAAAAAAAAAAAADCgi1Gwz559/fpezCy64IHfccUeP3/utb30rv/zlL0vOXvrSl+Yd73hHr372XnvtlUKhUPLvV7/6Va++t1797Gc/y6JFi0rOJk6cmBNOOKFGiwAAAACgM0B9wvc6f0f18PN/zb5Tn8y8b2VjiPrZJKNTPwHqhekxQN3c0Jw/vOcP+buD/q5aqwAAAAAAAAAAAAAAAAAAAACgKkSo2WZOPvnknHrqqSVna9asyfHHH5/Zs2eX/Z7W1tZ84QtfyDnnnNPl7hvf+Eaam5v7ZGt/MHPmzC5nZ511VgqFeqn3AAAAADDYbBqgTrHzy8M7Jvt+KJn3rSQPpjNAXS+/eX4qyR4V7gtJIYXc8fd35Jg9j6nWKgAAAAAAAAAAAAAAAAAAAAComqZaD2Bg+Z//+Z/cfvvtWbBgwYazlpaWTJkyJZMmTcqpp56aiRMnZvXq1Zk3b14uv/zyPPnkk10+50Mf+lDe9KY3VW333Llzc/bZZ3d7v2LFii5n1113XQ499NBuv2fSpEm56KKLtmjPokWL8rOf/azkrLGxMWeeeeYWfR4AAAAAbK1yAer1Ht4xKUxPMjH1E6B+NslLKtyv+1tvfzjrDzlo3EHVWAQAAAAAAAAAAAAAAAAAAAAAVSdCzTa1884753//939zwgknZPHixSV3c+fOzdy5c3v8jGnTpuVrX/taHy0sb8WKFbn77rtf1PcsXbo0S5cu7fZ+zJgxW7znsssuS1tbW8nZ61//+rzkJZWqOQAAAADQNyoFqDeopwD180nGV7hfF6Cec/qcHL370VUYBAAAAAAAAAAAAAAAAAAAAAC1US9JEAaQ/fffP7feemuOO+64F/V9zc3NueCCC/LDH/4wjY2NfbSuf7j44ou7nM2YMaMGSwAAAAAY7EoC1N1Zk6RefqXXkmSnCvfrAtQ3vuvGHD/x+GosAgAAAAAAAAAAAAAAAAAAAICaEaGmT+y+++75zW9+k1mzZuXYY49NoVDo9tmRI0fmzDPPzD333JPPfvazaWgY3P9Z/uY3v8m8efNKzsaNG5dTTjmlRosAAAAAGKxKAtTFdf8290LqJ0C9PMkO3dwVsiFAfe20a3Pi3idWaRQAAAAAAAAAAAAAAAAAAAAA1E5TrQcwcBUKhUybNi3Tpk3L008/nVtvvTV//etf09LSkqampuy0007Zf//9c8QRR2TIkCFb9bMee+yxrfr+17zmNSkWyxV0qu9Vr3pV3WwBAAAAYPDqEqAu54XUz2+ZVyQZW+Z8s7+P99+T/ztT9p9SjUUAAAAAAAAAAAAAAAAAAAAAUHP1kgdhgNtll10yefLkWs8AAAAAAHph2aplPQeoVydprtaiHqxKMmbd60L3j5139Hl57+HvrcIgAAAAAAAAAAAAAAAAAAAAAKgPDbUeAAAAAABAfdl++PbZZ/uXdh+gXpX6CVCvTjJ63esKAep/Pvaf8+WTv1yNRQAAAAAAAAAAAAAAAAAAAABQN0SoAQAAAADoYt6jk7PP82V+hbwqyZCqzynvhSSjen7sHw79h3z+dZ/v8zkAAAAAAAAAAAAAAAAAAAAAUG9EqAEAAAAAKHXDDcmPfpR5V44rDVGvTP0EqNckGdnzY/9w6D/kP0/9zz6fAwAAAAAAAAAAAAAAAAAAAAD1SIQaAAAAAICNWluT88/f8HbeleOyz5IkK5IMrdmqUmuTjOj5sXMmnSNADQAAAAAAAAAAAAAAAAAAAMCgJkINAAAAAMBGv/xlMn9+ydHDTUmG1WZOF61Jhpc5L5S+PePgM/KNN32jGosAAAAAAAAAAAAAAAAAAAAAoG6JUAMAAAAAsNFll5W8LZy2qHz0uRbakmzX82Njmsdk5ptn9vkcAAAAAAAAAAAAAAAAAAAAAKh3ItQAAAAAAHRauDD5/e83vC1Mq7MA9bBu7gqlb+95/z1pbGjs60UAAAAAAAAAAAAAAAAAAAAAUPeaaj0AAAAAAIA68YtfJC+8kLS2Zpd3rUhG1nrQOu3pPkC9mdmnzc7uY3fv0zkAAAAAAAAAAAAAAAAAAAAA0F+IUAMAAAAADGatrZ3x6csuS/73f5OVK/OSGR15ZsdaD1unPcnQCveFjS9nnzY7k/eb3NeLAAAAAAAAAAAAAAAAAAAAAKDfEKEGAAAAABisbrghOf/8ZP78zvetrXnp6R1ZuEttZ23QEQFqAAAAAAAAAAAAAAAAAAAAANgKDbUeAAAAAABAdSxZsaTzRUtLcu65yRlnbAxQJ9n/rS/k0ZfUaNzmOpK0VLgXoAYAAAAAAAAAAAAAAAAAAACAHjXVegAAAAAAAH3v+gevzylXnJLxw3bOomv3SR57rOR+v5MW5aHdarOti/UB6p26uRegBgAAAAAAAAAAAAAAAAAAAIBeaaj1AAAAAAAA+tZ191+XU644JUmyePUzmfDKP5Xcv+L4+gpQX/OlZJ9Cz48KUAMAAAAAAAAAAAAAAAAAAABAZSLUAAAAAAAD2JV/uTKnXnlq55ti55fFI4qZ8M7FyQsv5JVHLspdE2u3r0QxybLkEx9K5n0r2ee5Ms+si1MLUAMAAAAAAAAAAAAAAAAAAABAz0SoAQAAAAAGqCv/cmWm/3h655ti6d3iEcUMO2lp/nBQ9XeVVUzyfJKdk4d3TPYtF6JeF6C+8V03ClADAAAAAAAAAAAAAAAAAAAAQC+IUAMAAAAADEAlAepynkzW7FO9PRUVkzycZOeNR+VC1HNOn5PnP/F8Ttz7xFqsBAAAAAAAAAAAAAAAAAAAAIB+p6nWAwAAAAAA2La6BKiLmz3wZJJx1VxUQTHJvCQHdL3aEKJ+8HVZ9pMfZfvh21d7HQAAAAAAAAAAAAAAAAAAAAD0aw21HgAAAAAAwLbTY4B6SZJdqrmoggoB6vUe3ikC1AAAAAAAAAAAAAAAAAAAAACwhUSoAQAAAAAGiF4FqEclKVRxVCWPpGKAOoVkzulzBKgBAAAAAAAAAAAAAAAAAAAAYAuJUAMAAAAADACPPfdY/wpQ/znJy7q5K2RDgPr4icdXcRQAAAAAAAAAAAAAAAAAAAAADCwi1AAAAAAA/VzLmpa8/xfvT2F9YXrzAPXq1FeAel6SV3Rzt26jADUAAAAAAAAAAAAAAAAAAAAAbD0RagAAAACAfqy9oz3vvPqduXvx3Rk/cvzGEPV6q5M0pX4C1I8n2b+bOwFqAAAAAAAAAAAAAAAAAAAAANimRKgBAAAAAPqxxobGnHXoWWkodP66d/wLTSl0rLtclboKUDcvTPYZ282lADUAAAAAAAAAAAAAAAAAAAAAbHNNtR4AAAAAAMDWmbr/1KS9LedcNSMdra0Z35osSpIhqZsAdeNTydpfTEiS7DvtqTw8pmPjpQA1AAAAAAAAAAAAAAAAAAAAAPSJhloPAAAAAABgK91wQ6bO+I9885oX0lBMFq1KZ4C6Tn4DfOi8pO2nEza8n3fluOzz/LpxAtQAAAAAAAAAAAAAAAAAAAAA0GfqJEECAAAAAMCL1tKSnHtucsYZyeOPZ+pf2nPGNUnGpG5++zvxyeTOnwzpcj4v52SfMS9NIkANAAAAAAAAAAAAAAAAAAAAAH2lqdYDAAAAAADYAvPnJ9OnJ4891vl+7dokyYXTUzcB6l2fTv76vYZkyCaD9tgj+cIXkte9LvPytSxbtSzbD9++diMBAAAAAAAAAAAAAAAAAAAAYAAToQYAAAAA6G+eeCJ585uTxYs3nrW1pXBeR9JYs1Uldn4ueXLmuvh0U1Ny3HHJGWckJ52UNDdveE6AGgAAAAAAAAAAAAAAAAAAAAD6jgg1AAAAAEA/sOKFFRk5bGTS0pKcdlppgDpJ4QPL6yZAPfb55OlLhyUjmjsD1F/5SnLmmbWeBQAAAAAAAAAAAAAAAAAAAACDjgg1AAAAAECdu+3J23LURUfliF2PyC1/OTp57LGS+8Lpi+rmt73brUiWXD0hGbvJ4etfX7M9AAAAAAAAAAAAAAAAAAAAADCYNdR6AAAAAAAA3fvT/D/lqIuOSjHF3Lrw1hy19jsl94V310+AunlVsurbm4057rhkwoTaDAIAAAAAAAAAAAAAAAAAAACAQU6EGgAAAACgTt386M055uJjUkyx86CY3DquLUed+kySpPCuRUlzDQduomF1svZrhaRhs187n3FGbQYBAAAAAAAAAAAAAAAAAAAAACLUAAAAAAD16OZHb84J3zuh7N2t49pSeOeiZEiVR3XnhaT9q0kKm0Wo99gjOemkms0CAAAAAAAAAAAAAAAAAAAAgMFOhBoAAAAAoM6UDVAXN3m9MsnQai6qYE2SkcmEj65739y88e5f/qX0PQAAAAAAAAAAAAAAAAAAAABQVSLUAAAAAAB15Jp7r+kaoN7U8tRPgHptkhGdLxePSiZ8pCNpauo8mDYtee1razYNAAAAAAAAAAAAAAAAAAAAABChBgAAAACoGxf++sK85aq3dP9AS5LtqjanstYkw0uPFo9KJsx4Ppk4Mfn852uxCgAAAAAAAAAAAAAAAAAAAADYhAg1AAAAAEAduPDXF+affvVP3T/Qki7R55ppS7cx7MUjipkwZV4yenRVJwEAAAAAAAAAAAAAAAAAAAAAXYlQAwAAAADU2KW3X1o5QL0k9RWgHlbhvpAsfuGZLFmxpFqLAAAAAAAAAAAAAAAAAAAAAIBuiFADAAAAANTQlX+5Mmdef2b3DzyXZFTV5lTWnh4D1Eky+7TZ2WHkDtVYBAAAAAAAAAAAAAAAAAAAAABUIEINAAAAAFAj191/Xab/eHr3DzyTZHTV5lTWnmRohft1Aeprp12byftNrsYiAAAAAAAAAAAAAAAAAAAAAKAHItQAAAAAADVw/YPX59QrT+3+gaeSjKnWmh50pHKAep1Zb52VKftP6fM5AAAAAAAAAAAAAAAAAAAAAEDviFADAAAAAFTZ9Q9en1OuOKX7BxYl2aFqcyrrSNLWwzOFzgD1tIOmVWMRAAAAAAAAAAAAAAAAAAAAANBLItQAAAAAAFV03f3XVQ5QL0iyU9XmVNaR5PmkMKzCMwLUAAAAAAAAAAAAAAAAAAAAAFC3RKgBAAAAAKrk7vl359QrTy09LG7y7/Ek46q/q6yOJEuTCcOT8auSQkeZZwSoAQAAAAAAAAAAAAAAAAAAAKCuiVADAAAAAFTB9Q9en0MvPnTjwfrw9HqPJNm1upu6VUy++6/J1b8upGHdxi4hagFqAAAAAAAAAAAAAAAAAAAAAKh7TbUeAAAAAAAw0F355ysz/erpnW+KSTpS+icCn0iyZ/V3lVVMvvul5H2FhuTBzqNz3lBMRyEZ39qcxcPaUkxRgBoAAAAAAAAAAAAAAAAAAAAA+gERagAAAACAPvTV3381H7vxY51viusOG7IxRL04ya41mdZVMfnHa5P3pbDhaOqDhaS5KedMHZaOUSNz8vhD8t3Xfzd77bhX7XYCAAAAAAAAAAAAAAAAAAAAAL0iQg0AAAAA0EfKBqjXa0iyMMkuVR7VnXUB6i/eV0iGDk2am5OmpmTIkEzdbq/kbR/LxX/+Xi5/y+UZPXR0rdcCAAAAAAAAAAAAAAAAAAAAAL0gQg0AAAAA0AcqBqiT5PkkO1dxUCXF5Mwbki8+2JTsNLYzPr2pf/mXTD3otZlywFvS2NBYm40AAAAAAAAAAAAAAAAAAAAAwIsmQg0AAAAAsI31KkA9IkmhepsqOeOG5OK7mpOxY7oGqKdNS1772iQRoAYAAAAAAAAAAAAAAAAAAACAfkaEGgAAAABgG+pvAerR9ySX3jci2XFUUths1MSJyec/X5thAAAAAAAAAAAAAAAAAAAAAMBWa6j1AAAAAACAgeLffvdvlQPUL6SuAtR5JGk5LDnq3Wu6BqgnTEiuuCIZPbo22wAAAAAAAAAAAAAAAAAAAACArSZCDQAAAACwDXzld1/JJ2/6ZOeb7gLUjamfAPXjSfbrfHnruLYcdeozG+8mTkx+8pNk991rsQwAAAAAAAAAAAAAAAAAAAAA2EZEqAEAAAAAttJ3b/1uPn7TxzvfdBegbkj9BKgXJtm79GhDiHratOTnPxegBgAAAAAAAAAAAAAAAAAAAIABQIQaAAAAAGAr/PSBn+YDP/9A55tKAep6+W3sU0n2KH916/i2HHXgH5PRo6s6CQAAAAAAAAAAAAAAAAAAAADoG/WSPQEAAAAA6HdufvTmTJ41ufNNfwhQP5vkJWXOC+v+Jblt4W1Z8cKKKo4CAAAAAAAAAAAAAAAAAAAAAPpKU60HAAAAAAD0Rzc/enNO+N4JnW/KBaiT+gpQL0kyft3rQvlHCinklrNvychhI6u1CgAAAAAAAAAAAAAAAAAAAADoQyLUAAAAAAAvUq8C1GuSNFZrUQ+eTzKu58f+cNYfcsRLjujrNQAAAAAAAAAAAAAAAAAAAABAlTTUegAAAAAAQH9SEqDuTj0FqFuS7NzzY3NOn5Ojdz+6z+cAAAAAAAAAAAAAAAAAAAAAANUjQg0AAAAA0EtdAtTFMg+9kPoJUC9PsmPPj805fU6On3h8n88BAAAAAAAAAAAAAAAAAAAAAKpLhBoAAAAAoBeWrVrWuwB1U7UW9WBVkrE9PyZADQAAAAAAAAAAAAAAAAAAAAADlwg1AAAAAEAv3PHUHZUfWJ36ClCP7vmxq992tQA1AAAAAAAAAAAAAAAAAAAAAAxgItQAAAAAAD34/eO/zwnfO6H7B1Ylaa7anMpWZ2OAutD9Y198zRcz9cCp1VgEAAAAAAAAAAAAAAAAAAAAANSICDUAAAAAQAU3P3pzjrv0uNLD4iavVyYZUs1FFaxJMqrnx774mi/mH1/9j30+BwAAAAAAAAAAAAAAAAAAAACoraZaDwAAAAAAqFc3P3pzTvjeCd0/sDLJ0KrNqWxNkhE9P3bJ5EvynsPf09drAAAAAAAAAAAAAAAAAAAAAIA6IEINAAAAAFBGjwHq5Um2q9qcytamVwHqWW+dlWkHTevzOQAAAAAAAAAAAAAAAAAAAABAfRChBgAAAADYTMUAdTFJS5Lh1VxUQWs6t3QkadjkvFD62LXTrs2U/adUbxcAAAAAAAAAAAAAAAAAAAAAUHMi1AAAAAAAmygboC5u8rqeAtRtSbZb97ohXUPU68w+bXYm7ze5ersAAAAAAAAAAAAAAAAAAAAAgLpQJkcCAAAAADA4dQlQF1MaoF6a+gpQD9vsbH2IurDxSIAaAAAAAAAAAAAAAAAAAAAAAAYvEWoAAAAAgCQLly3cGKDePD6dJEuSjKryqO60p2uAer1Nfut77bRrBagBAAAAAAAAAAAAAAAAAAAAYBBrqvUAAAAAAIBaa1nTkjOuOyOFJMXN49NJ8mySMdXd1K32JEMr3Bc6v9x11l05ZPdDqrEIAAAAAAAAAAAAAAAAAAAAAKhTDbUeAAAAAABQS+0d7Zn+o+n57aO/TqGjzANPp34C1B2p/FvddQHq2afNFqAGAAAAAAAAAAAAAAAAAAAAAESoAQAAAIDBbWXryjz1+H1pbW9NkjQUN7lcnGSHmszqqmPdv+Zu7tcFqGe9ZVYm7ze5SqMAAAAAAAAAAAAAAAAAAAAAgHomQg0AAAAADFota1oy/Rt/m8VLn8j2azaeNxSTPJlkp1ot28z6APWwbu7XBai/8tqvZNrB06o0CgAAAAAAAAAAAAAAAAAAAACodyLUAAAAAMCg1LKmJdP/67W5+6l7kiTD2rIhRN0xP8m42m0rUUyvA9QffeVHqzQKAAAAAAAAAAAAAAAAAAAAAOgPmmo9AAAAAACg2lrWtGT6N1+VuxffXXI+rC1Z8WTSsWeNhm2umKQ9AtQAAAAAAAAAAAAAAAAAAAAAwBYRoQYAAAAABpX2jva889+Ozt3L7u9y9/z8pHXfGowqR4AaAAAAAAAAAAAAAAAAAAAAANhKDbUeAAAAAABQTY3f+nbO+sH9aSiWnq94KFldTwHqlRGgBgAAAAAAAAAAAAAAAAAAAAC2SlOtBwAAAAAAVM1ttyXnnpup696e88ako5CsviNZfmxNl220PkA9ppv7dQHqL5/4ZQFqAAAAAAAAAAAAAAAAAAAAAKAiEWoAAAAAYHBYsCA58sgNb6c+0Pn1zAnJsmNqtGlzvQxQ/8eJ/5GPHfex6mwCAAAAAAAAAAAAAAAAAAAAAPqthloPAAAAAADoc7fckuy+e5fjSxvXBagL1Z9U1nPpMUB94I4H5iPHfqQ6ewAAAAAAAAAAAAAAAAAAAACAfk2EGgAAAAAY2G68MTn66C7Hpx6YXHdq6idA/WyS8d3crdt42C6H5Q/v/UMaGxqrtQoAAAAAAAAAAAAAAAAAAAAA6MdEqAEAAACAgevWW5OTTupy/LFCnQWoF6R8gLqQDRsn7TopN591c0YPHV3FYQAAAAAAAAAAAAAAAAAAAABAfyZCDQAAAAAMTE88kRx7bFIslhx/rJB89dOpnwD140n2KnO+yb5Ju07KTaffJEANAAAAAAAAAAAAAAAAAAAAALwoTbUeAAAAAACwzbW0JPvsk7S3lxzPTvLVT6V+AtQLk+y9yfsyuwSoAQAAAAAAAAAAAAAAAAAAAIAt1VDrAQAAAAAA29RttyVjxiStrSXHs5NM+XTq57eiTyXZY5P3AtQAAAAAAAAAAAAAAAAAAAAAwDZWL7kVAAAAAICt961vJUcemRSLJcd1F6B+NslLNnkvQA0AAAAAAAAAAAAAAAAAAAAA9IF6Sa4AAAAAAGydz342Oeecsld1FaBekmR8z49dO+1aAWoAAAAAAAAAAAAAAAAAAAAAYKvUS3YFAAAAAGDLXXxx8rnPlb0qfCr185vQ55Ps0vNjc06fk12337Wv1wAAAAAAAAAAAAAAAAAAAAAAA1xTrQcAAAAAAGyVW25JZswoe1X4VJLG6s7pVkuSnXp+7Hfv+V1euecr+3wOAAAAAAAAAAAAAAAAAAAAADDwNdR6AAAAAADAFps9Ozn66LJXhU+mfgLUK5Ls0M1dYePLOafPEaAGAAAAAAAAAAAAAAAAAAAAALYZEWoAAAAAoH/65jeTKVPKXhU+maSpunO6tSrJmJ4fm3P6nBw/8fi+XgMAAAAAAAAAAAAAAAAAAAAADCIi1AAAAABA//ONbyQf/nDZq8J5qasAdcOoCveFzi8C1AAAAAAAAAAAAAAAAAAAAABAXxChBgAAAAD6lzlzknPPLXtV+ESS5urO6dYLGwPUDcXuHxOgBgAAAAAAAAAAAAAAAAAAAAD6igg1AAAAANB/tLQkr3td2avCx5MMqe6cbq1JJiTZfs3Goy4h6kJy9EuOzqv2fFU1lwEAAAAAAAAAAAAAAAAAAAAAg4gINQAAAADQfxxxRNLR0eW48LEkQ6s/p6y1yYR1welhbd2EqAvJpF0n5Zfv/mUaGxqrPhEAAAAAAAAAAAAAAAAAAAAAGBxEqAEAAACA/uG//it56KEux4WPJhlW/TllrU0mbNbI3jxEPbSxOa/Z8zW56fSbMnro6OruAwAAAAAAAAAAAAAAAAAAAAAGlaZaDwAAAAAA6NEjjyQf+ECX48L/SbJd9eeU1do1QL3esLbOr6tGDMnf7vWq/HjajwWoAQAAAAAAAAAAAAAAAAAAAIA+11DrAQAAAAAAFbW0JG98Y9JRWniefkqS4bWZ1EVbcvV1SUOxm/uGhgzbYZe8ZuLxAtQAAAAAAAAAAAAAAAAAAAAAQNU01XoAAAAAAEBFZ5yRPPRQydG735hcfXDSVEzaCjXatV5bUvzyxrfnvDHp2HTT0KHJ2LE5ZMKhmfW2WQLUAAAAAAAAAAAAAAAAAAAAAEDVNNR6AAAAAABAWS0tydSpybXXlhyffVJyxaEb3zcVqzurRHtpgHrqA8k3f5Y0rN80bFiyww4C1AAAAAAAAAAAAAAAAAAAAABATTTVegAAAAAAQBfz5yfTpiW3315y/KETk8smdX28qZi0Faq0bb32pPivXY+nPtD59ZxTGtMxdmwOGX+IADUAAAAAAAAAAAAAAAAAAAAAUBMi1AAAAABAfXniieTNb04efzxpb99wfP4xyX8f1f23VTVE3ZFcVyZAvd7UR5qT0y7JxQ9ekcvfcrkANQAAAAAAAAAAAAAAAAAAAABQEyLUAAAAAED9aGlJTjstWbw4WbWq86xYzPtfnfzXK5PGHr69qZi0JUlfxqg7kuu+lJzS3X2hkPzud5l62JGZcuhpaWzoaTUAAAAAAAAAAAAAAAAAAAAAQN9oqPUAAAAAAIAN/vmfk8ceS1pbkzVrkmIxHz82+c/jkmIhaetFXLopSYp9tK+nAHWS/OQnyZFHJokANQAAAAAAAAAAAAAAAAAAAABQU021HgAAAAAAkCT5+c+T738/Wb16Q4D6giOSrxxf+lhbIWnqITLdlKStmKQX0epeK/YiQH3jjcmJJ27DHwoAAAAAAAAAAAAAAAAAAAAAsOVEqAEAAACA2vv5z5O/+7tk1arO98ViPnNE8oWTyj9e9RB1MfloTwHq++5L9t9/G/wwAAAAAAAAAAAAAAAAAAAAAIBto6HWAwAAAACAQaylJfnQh5Jp05KVK5NiMSkW868v7z5AvV5bL+LSTUnSQ6y6R8XkS19KvlLpc265RYAaAAAAAAAAAAAAAAAAAAAAAKg7TbUeAAAAAAAMUvPnJyedlMybl7S3bzj+zr7Jp0/p3Ue0FZKmHiLTTUnaikl6Ea3uoph84NrkU5V+xrXXJkceuQUfDgAAAAAAAAAAAAAAAAAAAADQt0SoAQAAAIDqu/fe5JhjkuXLS46vmJB8cNqL+6g+C1GvC1B/+94Kz1x3XXJKL4vZAAAAAAAAAAAAAAAAAAAAAABVJkINAAAAAFTXrbd2Bqg7OkqOr5iQvOPMLfvI3oaoU+x8tkfF5OQ/9hCgvumm5IQTej8SAAAAAAAAAAAAAAAAAAAAAKDKGmo9AAAAAAAY+J5peabzxXXXJUcd1SVA/YvxnQHqYm8C0d3oVVw6Pceqk+TwPye/uLnCAwLUAAAAAAAAAAAAAAAAAAAAAEA/0FTrAQAAAADAwHbFPVfk7de8PWMKw7P0glVd7n8xPnnjWVsXoF6vrdC7yHRTsfto9SvuSebOrvDNN94oQA0AAAAAAAAAAAAAAAAAAAAA9AsNtR4AAAAAAAxcl955ad5+zduTJM93rMrY80rv7yokb9pGAer12gpJey+eKxer/pt5yR3dBaibm5N7701OPHFr5gEAAAAAAAAAAAAAAAAAAAAAVI0INQAAAADQJy6989Kced2ZnW/WBZ+f3y4bQtR3FZLDP510bMMA9XrFLQhR7/Z48uCV3Tw4alTy7LPJAQdsi3kAAAAAAAAAAAAAAAAAAAAAAFXRVOsBAAAAAMDAUy5Avd7z2yWF05KmiX0ToF6vWEjai0ljD88N6Uhe+Ydkzq+7eaCxMVmwIBk9eltPBAAAAAAAAOD/s3ffUXbXBf7/X/dOS50U0igBI6ISxEAkgA1pYlmKgBsQXPuyNna/v3V3/fq17rrq1++qa1nrKiIgAiJ9FRUIghSpgtIEBElCCiE9mUlm5t7fH5NJMpmWNvfeSR6Pc+bM3Pfncz/zmhz/YTznOQAAAAAAAAAAAMCgKlZ7AAAAAACwa+kvQJ0keaYzQN1egd9OlgtJRz/Xi+XkU7/qJ0CdJLffLkANAAAAAAAAAAAAAAAAAAAAAAxJItQAAAAAwE4zYIB6btIwuTIB6i59hagLSf755uTj9/bz5quvTg4/fHCGAQAAAAAAAAAAAAAAAAAAAAAMsvpqDwAAAAAAdg0DBqiT1E1K2uoqt6lLuZB0lJPNv/Xf/zb59zv6eEOhkPz618lxx1ViHgAAAAAAAAAAAAAAAAAAAADAoBChBgAAAAB22FYFqNclHVUIUHfZPET9d79LvnRLHzeOHp08/HCyzz6VnAcAAAAAAAAAAAAAAAAAAAAAsNMVqz0AAAAAABjannzuyZoPUHcpF5Kz7kv+68Y+bpg6NZk3T4AaAAAAAAAAAAAAAAAAAAAAANgliFADAAAAANuto9SRD/3yQ50v+ghQN7TWRoA6SV755+RH1/dyoakpOeSQ5LbbkubmSs8CAAAAAAAAAAAAAAAAAAAAABgUItQAAAAAwHZbtGpRFq9ZnGKp9+tNa5O2+spu6ssrnklu/0kvFxoakkMPTa65Jpk6teK7AAAAAAAAAAAAAAAAAAAAAAAGS43kXwAAAACAoebOuXfmlee9Mg2lQsasS1Y0JaXCpuvD1iStTdXbt7lD5iX3XLjhRXGLv8134onJ+ecnzc2VngUAAAAAAAAAAAAAAAAAAAAAMKhEqAEAAACAbXb3/LvzqvNelSRpK5SzujHdQtQjVyZrRlR55AYvfC65/0cbXhQ2q2TX1XUGqK+4oiq7AAAAAAAAAAAAAAAAAAAAAAAGmwg1AAAAALBN7p5/d474/hEpp5yUO8/aitkYom5bl6weWd2NXfZdmjz5vS0OGxuTESOSl7wkOf/8aswCAAAAAAAAAAAAAAAAAAAAAKgIEWoAAAAAYKt1C1Bvoa1YWwHqPVckf/n2ZgeFQrLHHklDQ7LnnsmllybNzVXbBwAAAAAAAAAAAAAAAAAAAAAw2IrVHgAAAAAADA2/+tOvugeot+hQD1teOwHqCauSZ/9rs4NCIWlq6gxQT5uWXHVVMnVqteYBAAAAAAAAAAAAAAAAAAAAAFSECDUAAAAAMKCv3PaVvOEnb9gUoN7CiJVJ66gKj+rDuDXJc1/v5cLw4cns2ckvfiFADQAAAAAAAAAAAAAAAAAAAADsFuqrPQAAAAAAqG1fue0r+cgNH+l+uFmLeuTyZE2NBKhHtyRLv9rLhREjkh//OHnTmyo9CQAAAAAAAAAAAAAAAAAAAACgaorVHgAAAAAA1K5eA9SbGbWsdgLUo9YlK7/Sy4XGxuTyywWoAQAAAAAAAAAAAAAAAAAAAIDdjgg1AAAAANCry/5wWb8B6uYlyerRFRzUj+Hrk1Vf6uPiOeckb3xjRfcAAAAAAAAAAAAAAAAAAAAAANQCEWoAAAAAoIerH7k6Z1xxRu8Xy8nYxcnKsRWd1Kem9mTtf/RxsbEx+dznKroHAAAAAAAAAAAAAAAAAAAAAKBWiFADAAAAAN1c9sfL8pbL3tL9sLzpY9zCZPn4KgzrRUNH8vQX+7nh1luT5uaK7QEAAAAAAAAAAAAAAAAAAAAAqCUi1AAAAADARpf98bKc8bMzNh10xac32GN+smxCxWf1qqEjaVuUHPgvfdzw4hcnhx9e0U0AAAAAAAAAAAAAAAAAAAAAALVEhBoAAAAASJL86L4fbQpQbxGfTpI9nkmen1zxWb2qKyVti5PsmywfnozrLUT92GOVngUAAAAAAAAAAAAAAAAAAAAAUFNEqAEAAACAXPXQVXnXte/qfFHueX3yk8nze1V0Ut/KSceiJFM3HfUIUd90U6VXAQAAAAAAAAAAAAAAAAAAAADUnPpqDwAAAAAAqmvOU3Ny6uWndr7oJUA96Ylk0QsqOqlv5aSwICnv2/NSV4h62fJzkmOOqfw2AAAAAAAAAAAAAAAAAAAAAIAaU6z2AAAAAACgeuY8NSfHXnBs54teAtR7PJIsfkFFJ/WtnwB1l+XDk+f+498rtwkAAAAAAAAAAAAAAAAAAAAAoIaJUAMAAADAbmqgAPWER5LnD6jspj6Vk/0e7D9AnSQ/Oe0nmdg8sTKbAAAAAAAAAAAAAAAAAAAAAABqnAg1AAAAAOyGBgpQj346WVJDAeqD7k7+8op+7ikkPzzlhznz5WdWbBYAAAAAAAAAAAAAAAAAAAAAQK0ToQYAAACA3cydc+/cFKDuxaink1V7V27PQKbfnTz0qn5uKCQzJs/I38z4m4ptAgAAAAAAAAAAAAAAAAAAAAAYCkSoAQAAAGA3cvf8u/PK81656aDc/XrhiWT13kkKFZ3Vp4MeTB4eIEB98KSDc8u7b0ldsa5iuwAAAAAAAAAAAAAAAAAAAAAAhgIRagAAAADYTdw9/+4c/v3D+75haVLeLzUToH7R48lDM/u5YUOA+rfv+W2am5ortgsAAAAAAAAAAAAAAAAAAAAAYKgQoQYAAACA3cDq1tU9A9Tlzb5emmR0aiZAPfXx5PlpSbHcxw0C1AAAAAAAAAAAAAAAAAAAAAAAAxKhBgAAAIDdwLKWZX1frLEA9aS/JHMPTFY3JmPW9RKiFqAGAAAAAAAAAAAAAAAAAAAAANgqItQAAAAAsItbuW5lzvn5OSkWNvw6sLzhI+kMUI9KzQSoJz6bLN6/8+u2Yi8hagFqAAAAAAAAAAAAAAAAAAAAAICtJkINAAAAALuwletW5ozLz8gDC36fyR3DU+zY7GJXgLpGfku4x6LkuX27n20MUbcV01TXmKP2PUqAGgAAAAAAAAAAAAAAAAAAAABgK9VIXgYAAAAA2Nk2Bqjn35c891yyZk0mr02KpdRcgHrckuT5vXu/1lZMVg8v5uhpx+Tas64VoAYAAAAAAAAAAAAAAAAAAAAA2Eo1kpgBAAAAAHamjQHqp+5MFi9OOjo2Xpu8NsnI1MxvB8cuTZZN6eeGQtJWas95J50nQA0AAAAAAAAAAAAAAAAAAAAAsA3qqz0AAAAAANi5Vq5bmTMuOT0PPHl7snZtj+sLGpLUVX5Xb0YvT5ZP6uNioetTIbe/5/bsNWavSs0CAAAAAAAAAAAAAAAAAAAAANgliFADAAAAwC5k5bqVOePCU/LAk7clbW09ri+oT80EqEetSlZN6OVCYfMvC/nd+36XWXvPqtguAAAAAAAAAAAAAAAAAAAAAIBdhQg1AAAAAOwiOgPUJ+eBx3+bdHT0uL6gPjXzG8GRq5PV4zY7KPS8R4AaAAAAAAAAAAAAAAAAAAAAAGDHFKs9AAAAAADYcR2ljpx96Rl54Inbeg9Q16VmAtTD1yZrxm52IEANAAAAAAAAAAAAAAAAAAAAADAoRKgBAAAAYBdQV6zLe363PsW29h7XFhSTNFR+U2+aWpKW5oHvu/5t1wtQAwAAAAAAAAAAAAAAAAAAAADsIBFqAAAAABjCOkodnV9cdVVO/facfOPnSbG86fqCYpLGqkzroaE1WTd64Pu+fPyXc8KLTxj8QQAAAAAAAAAAAAAAAAAAAAAAuzgRagAAAAAYolauW5m3XPqWXHnzt5PZs5NyOac+mo0h6gWF1EyAum5d0jaqlwuF7i+/fPyX84+v/seKbAIAAAAAAAAAAAAAAAAAAAAA2NWJUAMAAADAELRy3cqccfkZuXfuXTn35+fmyv3bNl479dFkfiFJU/X2ba64PukYOfB9AtQAAAAAAAAAAAAAAAAAAAAAADtXfbUHAAAAAADbpitA/cCC3yfLlqVU6si5b+68duqjScP/l2RYNRdupi0pjejjWmHTl5eedmlmHzy7IpMAAAAAAAAAAAAAAAAAAAAAAHYXxWoPAAAAAAC23sYA9cIHklWrko6OJEmpkJz75qT+/0va+4o+V1pbkuED33bV7KsEqAEAAAAAAAAAAAAAAAAAAAAABkF9tQcAAAAAAFunW4B63bqkpSUplzden9+RZFT19nXTnv4D1IXOT5eefmlOOfCUSiwCAAAAAAAAAAAAAAAAAAAAANjtFKs9AAAAAAAYWLcAdZKsWtX5eUOEetH61E6AuiPJsH6ubxagnv2y2ZVYBAAAAAAAAAAAAAAAAAAAAACwWxKhBgAAAIAa1yNAvW5d0tGx8fqS1qTUXKVxW+pI0tTP9Q0B6vNPOl+AGgAAAAAAAAAAAAAAAAAAAABgkIlQAwAAAEAN6xGgTpK1azs/l8tZvTZpG1uVaT2VslUB6iR5y0vfMshjAAAAAAAAAAAAAAAAAAAAAAAQcrJqZQABAABJREFUoQYAAACAGtVR6sjZV5zdPUDd0pK0tialUlauKmfV+Ort66aUZHU/1zcLUN/0jpsyZsSYwV4EAAAAAAAAAAAAAAAAAAAAALDbE6EGAAAAgBpVV6zLew55T4qFYrJuXbJkSbJiRZLOT2smVHlgl64AdW9B7EJ6BKiPmXZMZXYBAAAAAAAAAAAAAAAAAAAAAOzmRKgBAAAAoIaduvdx+cazh6S4bHnS0ZEkWbU0WTu5urs26itAvUV8OhGgBgAAAAAAAAAAAAAAAAAAAACoNBFqAAAAAKhVc+cmb3xjTr34vnzjtjEplpPVC8tZvVe1h21QTrI8PQPUvRCgBgAAAAAAAAAAAAAAAAAAAACoPBFqAAAAAKhFzzyTnHJK8vTTSZJTnx6WCc+Usmq/6s7aqJzUz0/2HJEUS1tcK3R/KUANAAAAAAAAAAAAAAAAAAAAAFAdItQAAAAAUANWrF2x6cXKlcmZZyYLF248+vfxC/LAAVUY1ptyMuJPycQJnS8nr+0lRL2BADUAAAAAAAAAAAAAAAAAAAAAQPWIUAMAAABAlc15ak7G/sfYHPD1DZXpT34yefrpjde/NWFBPvmWqkzrqZyMfzgZs1/348kthc4QdWHTmQA1AAAAAAAAAAAAAAAAAAAAAEB11Vd7AAAAAADszm588sYcf9HxSZInlj2RA/7v3nn8p+WN1y9pXpAPn1StdVsoJ5MfSIov7eVaoZDJhRFZVGhJqVzKDW+/QYAaAAAAAAAAAAAAAAAAAAAAAKDKitUeAAAAAAC7q+seu25jgLrLE63P5oDZi5Ik149ZkLNOT8qFaqzracIjfQeoU1eXjB6dE/Y/Ic/8/TM5bv/jKr4PAAAAAAAAAAAAAAAAAAAAAIDu6qs9AAAAAAB2R9c9dl1OuuSkXq89MbaUqa9fkPn71E6AevwfkoYD+rhYV5eMG5cZex6SS996aZqbmiu6DQAAAAAAAAAAAAAAAAAAAACA3olQAwAAAECF9RmgLm/43JrM2ydJrQSoH0+a+gtQjx+fGXvPFKAGAAAAAAAAAAAAAAAAAAAAAKgxxWoPAAAAAIDdSZ8B6i6tSepSMwHqFz+RDN+nj4uFQjJxogA1AAAAAAAAAAAAAAAAAAAAAECNEqEGAAAAgArpM0Bd3vBRYwHqGX9KHrs0+cbPk2K5lxsmTcyMPQ8RoAYAAAAAAAAAAAAAAAAAAAAAqFH11R4AAAAAALuDXgPUm4edW9P5J+NqJEC97zPJ73/a+fWpj3Z+PvfNSalr34QJmbHXTAFqAAAAAAAAAAAAAAAAAAAAAIAaVqz2AAAAAADY1c1dNrd7gLqc3gPUNfLbuhGLko6JyZUv3XR26qPJN36+YeKECZkx9TABagAAAAAAAAAAAAAAAAAAAACAGldf7QEAAAAAsCubu2xuzvn5OSkWiimVS93j00nSkqQuNROgblyajBmTlJKc++bOs1Mf3fB5yYTkLZ/PeXOvyY9P+7EANQAAAAAAAAAAAAAAAAAAAABAjROhBgAAAIBBcuOTN+b4i45PsVDM5GETsmj14pS2jE0XUzMB6pHLk+YRm16XChtC1IXk1DX7Jn/4Q05tbs7JpfekrlhXrZkAAAAAAAAAAAAAAAAAAAAAAGylGsnbAAAAAMCuZc5Tc3L8RccnSUrlUhatXpzJLYUUS5vdtC5JjbSch69Mmof1PC8VCzn35IZcedEnkubmJBGgBgAAAAAAAAAAAAAAAAAAAAAYIkSoAQAAAGAnm/PUnBx7wbGbDspJqZgsGl7O5LXpDFG3pmYC1MVVydjGzQ4Khc6PYjGpr09p/LicN++adJQ6qrYRAAAAAAAAAAAAAAAAAAAAAIBtV1/tAQAAAACwK+ktQN2lVEwWjUhK61M7v5lbnUxu2Ox1V4A6SYYPT0aPzow9D8mPT/tx6oo1Us0GAAAAAAAAAAAAAAAAAAAAAGCr1ErqBgAAAACGvP4C1F1K65I09DyvirXJnr39hrCuLhk9OmlqyowpM3LpWy9Nc1NzxecBAAAAAAAAAAAAAAAAAAAAALBjRKgBAAAAYCfYmgB11iZprNSiAbQkexZ7OR8zJhk+PEkEqAEAAAAAAAAAAAAAAAAAAAAAhjgRagAAAADYQVsVoF6TpKlSiwbQmuydpJQkhULnWaGQNDYKUAMAAAAAAAAAAAAAAAAAAAAA7EKK1R4AAAAAAEPZUAtQ770sKf9nMd+4qSnFQrEzPt0Voh4xIokANQAAAAAAAAAAAAAAAAAAAADArkKEGgAAAAC204q1KwYMUNetSs0EqCetSOZ9p5jU1eXUhePyjdvGpNi1ua4uaWoSoAYAAAAAAAAAAAAAAAAAAAAA2IWIUAMAAADAdirUFTKiYUTni14C1A0rk47hld3Ulz1WJ4u+VUyKxWTs2KRQyKlPD9sUoh49WoAaAAAAAAAAAAAAAAAAAAAAAGAXU1/tAQAAAAAwFC1rWZazrjgrY8pNWdexNh1b/Lm3xpXJ+hHV2balMWuTJd8oJnV1nQHq+k2/Fjz16WHJq1+V86YV8uPTfixADQAAAAAAAAAAAAAAAAAAAACwCxGhBgAAAIBt9Jflf8ms/56V9rZ1GbZsZSYlWTwiG0PUjcuS9aOrOnGjprZk+deKyfDhyejRSaHQ/YZp03LqJy/OyaNGpq5YV52RAAAAAAAAAAAAAAAAAAAAAAAMimK1BwAAAADAUPLIc4/kgG8ckCVrl2TFupVp3fBn3iatTepKybCltROgbuhI1g1PDjg3SXNzzwD1nnsml1ySNDcLUAMAAAAAAAAAAAAAAAAAAAAA7IJEqAEAAABgKz3y3COZ8Z0ZaSu1pVwup1xIVjRlY4h62NKktbm6G7vUdyRtTZ1fPzG2lANmL+p+w7RpyVVXJVOnVnwbAAAAAAAAAAAAAAAAAAAAAACVIUINAAAAAFvhzmfu3BigTrnzrJxsDFGvXJusGVvNhZspJe1N3Y+6hahnz05+8QsBagAAAAAAAAAAAAAAAAAAAACAXZwINQAAAAAM4Pz7z88rf/jKbgHqLuUkDYuSNeOrMq2n0oaPXjwxtpQD/r6QfPWrSXNzJVcBAAAAAAAAAAAAAAAAAAAAAFAFItQAAAAA0I/z7z8/777m3Z0vyj2vD5ufrJtQ2U196gpQD+vlWqHz44l1z2bF2hWV3QUAAAAAAAAAAAAAAAAAAAAAQFWIUAMAAABAHy558JLOAHU5vQaohz+TtE6u+KzelZJ0pGeAekN8ustN77gpY0aMqdwuAAAAAAAAAAAAAAAAAAAAAACqRoQaAAAAAHpx2R8vy9uufFuv8ekkGfZk0rJXZTf1qZykLcnw/m+74e035Jhpx1RiEQAAAAAAAAAAAAAAAAAAAAAANUCEGgAAAAC2cM0j1+SMn53R5/XGR5LW/So4qD/lJOuSjOzlWmHTl9eeeW2O2/+4Co0CAAAAAAAAAAAAAAAAAAAAAKAWiFADAAAAwGZufPLGnHLZKZ0vyj2v1z2WrD+gspv6VE6yJMmo/m+79sxrc+JLTqzEIgAAAAAAAAAAAAAAAAAAAAAAaogINQAAAABsMOepOTn+ouM7X/QSoM4TScf+FZ3Ut3Iy8s9JcXIf1wudnwSoAQAAAAAAAAAAAAAAAAAAAAB2XyLUAAAAAJDOAPWxFxzb9w3PJNmvYnP6V04aFiQtByST1ybFUu+3CVADAAAAAAAAAAAAAAAAAAAAAOzeRKgBAAAA2O2tWLuie4C6vMUN85LsmaRQwVH9GD4vads3KRWTRSN6CVEXBKgBAAAAAAAAAAAAAAAAAAAAABChBgAAAGA3t7p1dS7+48V93zAvyeTUTIB67ONJy7RNrzeGqFsKnSFqAWoAAAAAAAAAAAAAAAAAAAAAADaor/YAAAAAAKiWu+ffncO/f3jfN6xITQWoxz2eLDuw53mpmCwaXs4J+x6d751+QaaOm1r5cQAAAAAAAAAAAAAAAAAAAAAA1JxitQcAAAAAQDX0GaAub/i8IsmI1EyAevxfeg9QdynVRYAaAAAAAAAAAAAAAAAAAAAAAIBuRKgBAAAA2O3cPf/uHPH9I/q+YWWS4amdAPWzydL9+7mhkNzw9hsEqAEAAAAAAAAAAAAAAAAAAAAA6Ka+2gMAAAAAoJK6AtTllHu/YWWSYamZP982blGydN9+bigkN73jphwz7ZiKbQIAAAAAAAAAAAAAAAAAAAAAYGiokZQOAAAAAAy+AQPUq1JTAeqRS5Jle/dzgwA1AAAAAAAAAAAAAAAAAAAAAAD9qJGcDgAAAAAMrgED1EnSmJr5jdmopcmaKf3cIEANAAAAAAAAAAAAAAAAAAAAAMAAaiSpAwAAAACDZ6sC1K2pmd+WjVyetEzo5wYBagAAAAAAAAAAAAAAAAAAAAAAtkKNZHUAAAAAYHBsdYC6rmKT+lW3Mmkelkxam9SVerlBgBoAAAAAAAAAAAAAAAAAAAAAgK0kQg0AAADALmt16+qBA9QtqZkAdVYl5XFJa33nyx4hagFqAAAAAAAAAAAAAAAAAAAAAAC2gQg1AAAAALusUqGU5sbmvm9oSVJfsTn9W5tkXFIuJCuaeglRC1ADAAAAAAAAAAAAAAAAAAAAALCNaiWxAwAAAAA71cp1K3PG5WdkROOIrGlfk/ZSe/cb1iZpqMq0ntYm2dDKLifJhhB1kgxrTyYNG5+X7zsrR+13VJUGAgAAAAAAAAAAAAAAAAAAAAAwFBWrPQAAAAAAdrZlLctyxuVn5IGFDyRJJo6YmPrUdRaey0nWpHYC1C3ZGKDuUk5S3hCibh3fnBn7HZ7L/vqy1BXrqrEQAAAAAAAAAAAAAAAAAAAAAIAhqr7aAwAAAABgZ5q3cl5mfndm2kvtGVbXlCxfnrS2ZmKS54Yn7a1Jmqo8ssu6JKN7v1ROkmIh9Q1Nufi0i9Pc1Nz7jQAAAAAAAAAAAAAAAAAAAAAA0AcRagAAAAB2GctalmXmd2fm+Zbnk1IpaU2GtW+6XnMB6pH9XC8k9cX63P23d2fc8HGVWgUAAAAAAAAAAAAAAAAAAAAAwC6kWO0BAAAAALAzPLvi2Zx1xVlpb1uXdJSScrKiKWnd8GfYFpRTOwHq9RkwQN1QbMgD738g+43dr1KrAAAAAAAAAAAAAAAAAAAAAADYxdRXewAAAAAA7Kg5T83JsRccm/oUM3FVKanvDFAnnZ+XrU8yoqoTN2lL/1s2C1AfOPHASq0CAAAAAAAAAAAAAAAAAAAAAGAXVKz2AAAAAADYEV0B6iRpL5fy3PBkWHsyZl3n9dKq1E6Auj3J8H6uFzo/3fLOWwSoAQAAAAAAAAAAAAAAAAAAAADYYSLUAAAAAAxZmweoU+781F6XjSHq0vLUVoB62MC3/fDkH+bIfY8c9DkAAAAAAAAAAAAAAAAAAAAAAOz6RKgBAAAAGJJ6C1B3aa9LFqxPMrris3rXkf4D1IUNH0neeuBbKzAIAAAAAAAAAAAAAAAAAAAAAIDdgQg1AAAAAENOfwHqJMmSJM2VXNSPjiRN/VwvbPryxrNvzKhhowZ7EQAAAAAAAAAAAAAAAAAAAAAAuwkRagAAAACGlDvn3rkpQN2bxUnGVmrNAErZ6gD1t970rRz7on5+LgAAAAAAAAAAAAAAAAAAAAAA2EYi1AAAAAAMGXfPvzuvOu9Vmw7KW9ywMMn4Si7qRylJax/XCukRoP7A4R+owCgAAAAAAAAAAAAAAAAAAAAAAHYnItQAAAAADAl3z787R3z/iJR7lKc3mJ9kQkUn9a2UZF2S5s3OCukRn04EqAEAAAAAAAAAAAAAAAAAAAAAGDwi1AAAAADUvNWtq/sPUD+TZHJFJ/WtnM4IdXP6DE93EaAGAAAAAAAAAAAAAAAAAAAAAGAwiVADAAAAUPNGDRuVWXvN6n7Y1aN+OsleFR7Ul3KS9iTDB75VgBoAAAAAAAAAAAAAAAAAAAAAgMEmQg0AAABAzVrfvn7j17/729/l8L0O737D/CT7VHZTn7oC1CMGvlWAGgAAAAAAAAAAAAAAAAAAAACAShChBgAAAKAm/WHBHzL1q1Pz0V9/dONZtxD1/CSTq7Oth3KS1RGgBgAAAAAAAAAAAAAAAAAAAACgpohQAwAAAFBzzr///Lz8ey/P4jWL86U7vtQjRD28nNoKUK9NMn7gW6+dfa0ANQAAAAAAAAAAAAAAAAAAAAAAFVNf7QEAAAAAsLnz7z8/777m3Rtfl8qlfOmOLyVJvvj6L+a0rx+dlrYkhSoN3Fw5yZok4/q+pZBCfve+3+XF416cMSPGVGoZAAAAAAAAAAAAAAAAAAAAAACIUAMAAABQO7YMUHfpClFff/tleXD907URoE6S55NM6ftyV4B61t6zKjYJAAAAAAAAAAAAAAAAAAAAAAC6FKs9AAAAAACSvgPUXUrPl2orQL0k/QaokwhQAwAAAAAAAAAAAAAAAAAAAABQVSLUAAAAAFTdQAHqrE0yKrUToH46qZ/Y/y2vnvrqzNxzZkXmAAAAAAAAAAAAAAAAAAAAAABAb0SoAQAAAKiqrQpQ16d2AtR/SfackkxsSeo7er/lyH2OzM/P/nnqinWV3QYAAAAAAAAAAAAAAAAAAAAAAJsRoQYAAACgagYMULckqUvtBKifTfacvOnlxJakvtA9NH3kPkfml2//ZZqbmis8DgAAAAAAAAAAAAAAAAAAAAAAuhOhBgAAAKAqrnjoioED1MXUzm+wFiXFqUlrfffjiaMmpb7YeShADQAAAAAAAAAAAAAAAAAAAABALakf+BYAAAAA2LmWrl6a0y8/ve8bai1AvSQp7tX55Yqmzs/D2pMMH54kmThiYg6acFB+dubPBKgBAAAAAAAAAAAAAAAAAAAAAKgZtZLxAQAAAGA3UqgrpJBC3zfUUoB6abLnqGTMuk1HK5qS1vokY8YkSWZMmSFADQAAAAAAAAAAAAAAAAAAAABAzamVlA8AAAAAu4llLcty1hVnZeywsb3f0Jra+a3V8iSTkueGJ8PatwhRDyuktWNdZkyZkUvfeqkANQAAAAAAAAAAAAAAAAAAAAAANae+2gMAAAAA2H3MWzkvM787M+2l9gyrH5ZxdaOyrH31phvWJamr2rzuViaZ0Plle11niHpiS+frFU1JioXUF+tz8WkXC1ADAAAAAAAAAAAAAAAAAAAAAFCTRKgBAAAAqIh5K+fl0O8emqUtS5NykvUrM6ytnHF1hSxrKietqZ3fVq1KMr77UbcQdXNz6huact/f3Zdxw8dVYyEAAAAAAAAAAAAAAAAAAAAAAAyoWO0BAAAAAOz6ugWoS+WkVMqK+o601pUzrKNQWwHqtUn66Eq31yXPjS7miP1elcc+/Fj2ad6notMAAAAAAAAAAAAAAAAAAAAAAGBbiFADAAAAMKgeXvhwZ4B67dKkVErK5Y3XVjSWs6BQqq0AdXM/1wtJe0r5wYk/yLjhfZSqAQAAAAAAAAAAAAAAAAAAAACgRohQAwAAADBoLvvjZTnouwdlydolSbmUlLtfL7UkaajKtJ5aMmCAOkluesdN2WvMXpVYBAAAAAAAAAAAAAAAAAAAAAAAO0SEGgAAAIBBcdkfL8sZPzuj80U5KW1xvbQ2SWOlV/VhXZLR/VzfLEB9zLRjKrEIAAAAAAAAAAAAAAAAAAAAAAB2mAg1AAAAADvdxb+/uFuAuktpQ8y5tDZJU8Vn9W59kpF9XCtEgBoAAAAAAAAAAAAAAAAAAAAAgCFLhBoAAACAnerzv/l8zr767D6vl1antgLUI7Y4K6RbfDoRoAYAAAAAAAAAAAAAAAAAAAAAYGgSoQYAAABgp/mP3/5HPn7zxzcdlLe4YWWS4ZVc1I+2pPz/yjl878N7DU93EaAGAAAAAAAAAAAAAAAAAAAAAGCoEqEGAAAAYKf4ym1fyb/c+C+bDrYMUC9PMqKCg/rTnpS/2Dnwd3/7uxy+1+E9bimkkDvec4cANQAAAAAAAAAAAAAAAAAAAAAAQ5YINQAAAAA77Cu3fSUfueEjmw62DFAvSzKqkov60Z4URxTz0V9/dOPRliHqQgr53ft+lyOnHlmNhQAAAAAAAAAAAAAAAAAAAAAAsFOIUAMAAACwQ7oFqMvpGaBemmR0hUf1pSPJ8KRULuVLd3yp1xB1V4B61t6zqrcTAAAAAAAAAAAAAAAAAAAAAAB2gvpqDwAAAABg6Lrqoau6B6i3tCTJ2AoO6k9HkmGbXnaFqJPki6//YpLOEPXq1tUZNWxUFQYCAAAAAAAAAAAAAAAAAAAAAMDOVaz2AAAAAACGpjlPzcmpl5/a+aK3APXi1E6AupReN3aFqD/6649uPBOgBgAAAAAAAAAAAAAAAAAAAABgVyFCDQAAAMA2u+HJG3LsBcd2vugtQL0wyfhKLupHacPH8D4ul0s5/4Hzs759fSVXAQAAAAAAAAAAAAAAAAAAAADAoBOhBgAAAGCbzF02N6+/6PWdL/oKUE+o5KJ+DBCg7nLD2Teksb6xEosAAAAAAAAAAAAAAAAAAAAAAKBiRKgBAAAA2Gor163MO655R+eL3gLUi1I7Aepyko4MGKA+eOLBmT55eiUWAQAAAAAAAAAAAAAAAAAAAABARYlQAwAAALBVlrUsyymXnJJbnv5N3wHqPSq9qg/lJO0ZMEB90ISD8tv3/jZ1xbpKrAIAAAAAAAAAAAAAAAAAAAAAgIqqr/YAAAAAAGrfvJXzcsh3DsnSlqUpl3spUC/NkAxQ3/6+29Pc1FyJVQAAAAAAAAAAAAAAAAAAAAAAUHHFag8AAAAAoLbNWzkvM74zI8+3PN93gLpWOs7lJKuyKUBd6P02AWoAAAAAAAAAAAAAAAAAAAAAAHYHItQAAAAA9KkrQL20ZWnvN6xObQWolycZ3/9tAtQAAAAAAAAAAAAAAAAAAAAAAOwuRKgBAAAA6FWPAHV5ixvWJmmq9Ko+lJMsS/YcWcy4dYU+bxOgBgAAAAAAAAAAAAAAAAAAAABgdyJCDQAAAEAP81bOyyHfOWRTgHpLa5M0JOm791xZy5LixKS1rpxhHYVeQ9QC1AAAAAAAAAAAAAAAAAAAAAAA7G5EqAEAAADoZlnLshz63UPzfMvzmw7Lm92wOrUVoF7aGaBOkhWN5U0h6vpRG2+ZMWmGADUAAAAAAAAAAAAAAAAAAAAAALud+moPAAAAAKB2rFy3Mm/72duyvHV57zesT9KUmgxQd1nRWE7aixk2fHTGtTekmGLmvGuOADUAAAAAAAAAAAAAAAAAAAAAALudYrUHAAAAAFAbVq5bmTMuPyMPLnowoxtHp7BlaXpdOuPTtRKgXtwzQN1lRWM5re2tOWKfI/L43z+eccPHVXYbAAAAAAAAAAAAAAAAAAAAAADUABFqAAAAANJR6sjZV5ydBxY+kCQZVj8sY4eN3RSirrUA9cIkeyWl3vYUCkkhqS/W5+LTLhagBgAAAAAAAAAAAAAAAAAAAABgtyVCDQAAAECS5D2HvCfFwqZfF3WFqNOazvh0rfwmaVGSfTa97BaiLiQpFjJ++Pjc93f3CVADAAAAAAAAAAAAAAAAAAAAALBbq5V0EAAAAABVMnfZ3Lzl0rckSb7xpm90C1Eva11WWwHqJUn27nlcKqRzZ6GY8cPH5/6/uz/7NO/T80YAAAAAAAAAAAAAAAAAAAAAANiN1Eo+CAAAAIAquO6x67Lv1/fNLx7/Rc79xblJtghRr0vt/AZpaZIpfV8uFZLxIwSoAQAAAAAAAAAAAAAAAAAAAACgS60khAAAAACosGseuSYnXXJSkqSj3JGFqxd2C1EvWLKgdn57tDzJpH6uFzo//eZvfiNADQAAAAAAAAAAAAAAAAAAAAAAG9RXewAAAAAAlXfB7y/IO69+Z7ezzUPU85+bn9RVadyWViWZ0Me1wqYvLz390kyfMr0SiwAAAAAAAAAAAAAAAAAAAAAAYEgoVnsAAAAAAJX1+d98vkeAuktHuSPzF9dQgHp1knF9XNsiQD37ZbMrsQgAAAAAAAAAAAAAAAAAAAAAAIaM+moPAAAAAKByPv+bz+fjN3+8+2F5s69bkjRUclE/1iYZ28e1zQLUPz7lxwLUAAAAAAAAAAAAAAAAAAAAAADQCxFqAAAAgN1EjwB1eYsbai1A3dzHtc0C1J87+nM565CzKrEIAAAAAAAAAAAAAAAAAAAAAACGHBFqAAAAgN1AtwD1lvHppDP63FjJRf1oTd8B6s38v+P+X/75Nf886HMAAAAAAAAAAAAAAAAAAAAAAGCoKlZ7AAAAAACD69/m/Fv/Aeo1qZ0A9boko/q5Xuj89OXjvyxADQAAAAAAAAAAAAAAAAAAAAAAA6iv9gAAAAAABs8///yf86W7v9T5orcA9eokwyq5qB/rk4zs5/pmAep/fPU/VmIRAAAAAAAAAAAAAAAAAAAAAAAMaSLUAAAAALuo0y4+LVc+fmXni94C1KuSDK/kon6sTzKin+sC1AAAAAAAAAAAAAAAAAAAAAAAsM1EqAEAAAB2Qaf++NRc9cRVnS96C1CvTP/R50pqy1YFqK9865V5y0FvqcAgAAAAAAAAAAAAAAAAAAAAAADYNYhQAwAAAOxiTrropFz35HV937A8yahKrRlAe5Lh/VzfEKA+cp8jc9KBJ1ViEQAAAAAAAAAAAAAAAAAAAAAA7DKK1R4AAAAAwM5z2sWndQ9Ql7e4YVlqK0A9rJ/rGwLUs/aclV++/ZepK9ZVYhUAAAAAAAAAAAAAAAAAAAAAAOwyRKgBAAAAdhGnXXxarnz8yr5vWJpkdMXm9K8jWxWgHj9sfH75N79Mc1NzJVYBAAAAAAAAAAAAAAAAAAAAAMAuRYQaAAAAYBfQa4C6vNnXS5LUSse5I0lTP9e7AtTDx+eBDzyQccPHVWIVAAAAAAAAAAAAAAAAAAAAAADsckSoAQAAAIa4XgPUm1uYZGyl1gyg1M+1QjYFqIeNzwPvfyD7NO9TiVUAAAAAAAAAAAAAAAAAAAAAALBLEqEGAAAAGMLef/X7+w9Qz08yoWJz+ldKUk7StMX5ZvHpJBk3bFwe+IAANQAAAAAAAAAAAAAAAAAAAAAA7CgRagAAAIAh6icP/CTf/f13+77hmSSTKzanf6UkbUmhKZui01vEp5POAPWDH3hQgBoAAAAAAAAAAAAAAAAAAAAAAHaC+moPGMqeeuqp3HvvvXnssceyYsWKrFixIm1tbdv9vEKhkB/84Ac7cSEAAACwq5rz1JycddVZfd/wTJK9Kjanf+UkTcmee+yZ1vbWLG9dnnLKPW4ToAYAAAAAAAAAAAAAAAAAAAAAgJ1LhHobrVq1Kt/+9rfzgx/8IE888cROe265XBahBgAAALbKirUrcuwFx/Z9w9wke1ZsTv/KSRqSPUd1DhpWPyxjh43tFqIupJBxw8flgfc/IEANAAAAAAAAAAAAAAAAAAAAAAA7UbHaA4aSX/3qVznooIPysY99LI8//njK5fJO+QAAAADYFrfOvbXviwuSTKnYlP6VkzMfSK4444oUC5t+DdUVoi6kkGKKed0LXpcnzn1CgBoAAAAAAAAAAAAAAAAAAAAAAHYyEeqtdO211+akk07K/PnzUy6XUygUdtoHAAAAwNa67rHrctIlJ/V+cWGSCRWd07dykrXJrS9vSpJ8403f6BGiPmTKIXn9C1+fq8+8OuOGj6vSUAAAAAAAAAAAAAAAAAAAAAAA2HXVV3vAUDBv3ryceeaZaWtr6xaOLpfLG+8ZOXJkxowZk4aGhmrNBAAAAHZx/QaolyXZo6Jz+lZO0pJkTLIw63PuL87NN970jXzjTd/Iub84N6VyKTOmzMilb700IxtGpq5YV+3FAAAAAAAAAAAAAAAAAAAAAACwSxKh3gqf+tSn0tLS0i0+XSgUMnv27Lz97W/P4YcfnkmTJlV5JQAAALArGzBAPbKic/rXmqS588uOQjkLVy/sFqI+7/fn5cen/TjNTc1VnQkAAAAAAAAAAAAAAAAAAAAAALs6EeoBtLW15ac//Wm3APUee+yRq666Kq9+9aurvA4AAADYHSxdvbTvAPXydAaoCxUc1J+VScZ3P+ood3QLUV91xlWpK9ZVZR4AAAAAAAAAAAAAAAAAAAAAAOxOitUeUOtuv/32rFmzJklngLpQKORnP/uZADUAAABQMeNHjc+UkVN6XmhJMiI1HaDu0hWiPu/351V0EgAAAAAAAAAAAAAAAAAAAAAA7M5EqAfw5z//eePXhUIhxx13XI466qgqLgIAAAB2Rwv+aUH3EHVLkroMiQB1l45yR771xm+lrlhXkUkAAAAAAAAAAAAAAAAAAAAAALC7q6/2gFq3ZMmSJEm5XE6hUMgJJ5xQ5UVD03PPPZe77747Tz75ZFauXJmGhobssccemT59eg477LA0NDRUe2LNe+aZZ/KHP/whTz/9dFauXJlyuZxRo0Zlr732yv7775/p06enqamp2jMBAAAYRAv+aUH2/NKeWbhkYW0FqJ9PMrmX8y32XXvmtZk6bmolFgEAAAAAAAAAAAAAAAAAAAAAABGhHlC5XO72eupUoaRtcfnll+drX/tabrvtth7/ll1Gjx6d2bNn51/+5V/y4he/uMILeyqXy3n88cdz77335p577sk999yT+++/P6tWrep23zvf+c6cf/75g7pl3rx5+d73vpef/OQneeKJJ/q9t7GxMYccckhOOOGEnHbaaTn00EMHdRsAAAAV9OyzyV13JQ8+mEvubcnRB6V2AtRLkkwZ+LarZ1+dE19y4qDPAQAAAAAAAAAAAAAAAAAAAAAANhGhHsCkSZO6vW5vb6/SkqFl/vz5Ofvss/Ob3/xmwHtXrVqVH/zgB7nwwgvziU98Ip/4xCdSKFS2pHXFFVfkzjvvzD333JP77rsvK1asqOj331Jra2s+85nP5Gtf+1paW1u36j3r16/PXXfdlbvuuit33HFHbrjhhkFeCQAAwGDoKHWkrliXtLUl11+f/OhHye23J0l+07ogR78/SbG6GzdalGTvPq5t9p/2PzrlRzn5wJMrsQgAAAAAAAAAAAAAAAAAAAAAANiMCPUADj744CTZGEVeuHBhNecMCX/6059y9NFHZ8GCBdv0vvXr1+dTn/pUHnnkkVx44YWpq6sbpIU9vec976l6eLrLU089lZNOOikPPfRQtacAAABQYXOXzc0Hr/9g3lOYmVP/8/pk7tykVErWr8+vVy/LCf+U2glQL0nfAerNfO7oz+Udh7xj0OcAAAAAAAAAAAAAAAAAAAAAAAA9iVAPYObMmZk8eXIWL16cJLnlllvykY98pMqratfzzz+f17/+9b0GqF/xilfklFNOybRp09LS0pI//elPufjii/Pss892u+8nP/lJJk2alK9+9asVWl07Hnvssbzuda/LokWLelybPHly3vzmN+fAAw/MpEmTMmLEiCxfvjxz587Ngw8+mNtuuy1LliypwmoAAAB2huseuy4nXXJSiuVC7l/z86Q0Iqcua0/Wr0+SnPDR1E6AemmSKf1c7/xbXvnc0Z/L/3nd/6nEIgAAAAAAAAAAAAAAAAAAAAAAoBci1AMoFAo555xz8tnPfjZJcuONN2bRokWZPHlylZfVpnPOOSfPPPNMt7PRo0fnoosuysknn9zj/s9//vP5/Oc/n8985jPdzr/2ta/lDW94Q970pjcN5twB7bHHHnnFK16RcePG5dJLLx3U77V48eKccMIJPQLUBxxwQL785S/nxBNPTKFQ6PP9pVIpd911Vy688MIsXLhwULcCAACwc3UFqFNOSilnwfByzj1qdbKmkFMfK6TwL6XaCVCvTDKpn+sC1AAAAAAAAAAAAAAAAAAAAAAAUDMK5XK5XO0RtW7VqlWZPn16nn322STJO97xjvzwhz+s8qra8+tf/zonnHBCt7PGxsbcdtttOeyww/p979e+9rX8r//1v7qdvehFL8ojjzyS+vrBb6WPHTs2STJz5swcdthhmTVrVg477LBMmzYtSXLzzTfnmGOO6faed77znTn//PN3yvcvl8t54xvfmF/96lfdzmfPnp0LL7wwjY2N2/y8/oLVu6qDDjooDz/8cI/z6dOn56GHHqrCIgAAgIFtHqDeXLGU7Lkmmd+YpK4q03palWRcP9cFqAEAGAL8/wkAAAAAAAAAAAAAAAAAAMDuZPDrvruA0aNH5+KLL87rX//6tLW15YILLsiLX/zifOxjH6v2tJry2c9+tsfZpz/96QED1EnyD//wD/mf//mf/PrXv9549sQTT+Tiiy/OO97xjp26szf3339/XvCCF1Qt3HzhhRf2CFCfeuqpufjii1NXt+2lsd0xQA0AADAU9RWgTpJSMZnfkNoJUK/OVgWo//WofxWgBgAAAAAAAAAAAAAAAAAAAACAGlGs9oCh4rWvfW0uv/zyNDU1pVwu5xOf+ERmz56dp556qtrTasJDDz2UW2+9tdvZhAkT8k//9E9b/YwvfOELPc6+/e1v7/C2rTFt2rSqhZvXrVvXI2i+xx575Hvf+952BagBAAAYGvoLUCdJWlI7fz5sbZKxfVwrZGOAer+R++Xjr/t4ZTYBAAAAAAAAAAAAAAAAAAAAAAADqpWUUU275ZZbkiTNzc35whe+kI997GNpbW3Nz372s1x55ZU59thj87rXvS4HHHBAxo8fn4aGhu3+XkcdddTOml1Rl1xySY+zd7/73WlsbNzqZ7ziFa/IK17xitx7770bz+6888489dRTmTZt2k7ZWYsuuuiiPPvss93OPvWpT2XChAlVWgQAAMBg++kff5rZP5vd9w0tSbb/1ws7V0uS5l7Ot/hbThOGT8iD5z6YuqI/qAQAAAAAAAAAAAAAAAAAAAAAALVChHorHH300SkUupeVCoVCyuVyOjo6csMNN+SGG27Y4e9TKBTS3t6+w8+phuuvv77H2Vvf+tZtfs5b3/rWbhHqrmd/4AMf2O5tte773/9+t9eNjY15+9vfXqU1AAAADLZv3/XtfPAXH+x8Ue7lhrVJtv5vOg2u1iSjN3xd6Pu2PYbtkSf/4ck0N/VWqwYAAAAAAAAAAAAAAAAAAAAAAKqlWO0BQ0m5XO72USgUNsaod9bHULRmzZrcd9993c5GjBiRmTNnbvOzXvva1/Y4u/XWW7d7W62bO3du7rzzzm5nJ5xwQsaPH1+lRQAAAAym8+49b1OAujdrUjsB6nXpDFAX0m+AenzT+Pz5f/1ZgBoAAAAAAAAAAAAAAAAAAAAAAGpQfbUHDCWFQu/Fpb7Ot8VQDVAnye9///uUSqVuZ4cddljq67f9f16zZs1KQ0ND2traNp7de++9O7yxVt1www09zo488sgqLAEAAGCw3fXMXXnvde/ddLDlrwJWJxlWyUX9WJ9k1MC3TRgxIU/+/ZMC1AAAAAAAAAAAAAAAAAAAAAAAUKOK1R4wVJTL5UH9GMoeffTRHmcvetGLtutZjY2N2WeffbqdPfnkk2lvb9+u59W62267rcfZIYccsvHrcrmcX/7yl3nve9+bl73sZRk9enQaGxszZcqUHHzwwfmbv/mbXHDBBXn++ecruBoAAIBt9chzj+Q1P3pN3zesTO0EqNuSjBz4NgFqAAAAAAAAAAAAAAAAAAAAAACoffXVHjAUzJkzp9oTatrTTz/d42y//fbb7uftu+++eeqppza+7ujoyDPPPJMXvvCF2/3MWvWHP/yhx9kBBxyQJPnjH/+Yd77znbnvvvt63LNo0aIsWrQof/zjH3PRRRdl1KhR+Yd/+If88z//c8aMGTPouwEAANh6jzz3SGZ8Z0baSm2bDjf/e1Qrk4yo9Ko+tGWrtghQAwAAAAAAAAAAAAAAAAAAAADA0CBCvRVe97rXVXtCTVu4cGGPs6lTp27383p776JFi3bJCPWf//znHmdjxozJeeedlw9+8INZt27dVj1n9erV+dznPpef/vSnufbaa/PiF794Z08FAABgOwwYoF6eZFSFR/WlPVsdw777PXcLUAMAAAAAAAAAAAAAAAAAAAAAwBAgQs0OW7p0aY+zUaO2v6DV23uff/757X5erWpra+v157rpppvyt3/7tymVSt3OR48enSlTpqSjoyMLFixIS0tLj/f+6U9/ypFHHpnbb789L33pSwdt+7b65je/mW9961uD/n2efPLJQf8eAAAAW+uPi/6Ymd+buSlAXd7ihmVJRld6VR86kgzfulsvPf3SvGCPFwzmGgAAAAAAAAAAAAAAAAAAAAAAYCcRoWaHrVmzpsfZ8OFbWa7qRW/vXbt27XY/r1YtX7485fKWBbLkve9978YAdaFQyNvf/vZ8+MMfzqxZs1IoFJIk7e3tufXWW/PFL34xv/zlL7u9f9myZTn99NNz1113ZeTIkYP/g2yF5557Lg8//HC1ZwAAAFTM3fPvzhHfPyLllHvGp5NkSZKxFR7Vl44kw7bu1qtnX52TDzx5UOcAAAAAAAAAAAAAAAAAAAAAAAA7T7HaAxj62traepwNG7aV9ape9BahXr9+/XY/r1atW7eu1/OWlpYknf+GV155ZS644IIcfvjhGwPUSVJfX59jjjkm119/fb7+9a93u5YkDz/8cD772c8O3ngAAAD6tGjVov4D1ItTOwHqUrY6QH3tmdcKUAMAAAAAAAAAAAAAAAAAAAAAwBAjQs2g2DKKvKPvLZd7q3YNbQP9TN/97ndzyimnDPicc889Nx//+Md7nH/729/O8uXLt3ceAAAA22HlupV51zXvSmOxofcA9cIk4yu9qg+lJK1bd+u1Z16bE19y4qDOAQAAAAAAAAAAAAAAAAAAAAAAdj4RanZYQ0NDj7OWlpbtfl5v721sbNzu59Wq3v7duhx99NF5xzvesdXP+tSnPpVp06Z1O1u5cmUuueSS7d4HAADAtpm7bG7OuPyMPPDsfRm/qj1N7VvcMD/JhGos60UpufkLSfnZMzJl5JR+bxWgBgAAAAAAAAAAAAAAAAAAAACAoau+2gN2FcuWLcv999+fJUuWZOnSpVm1alVGjx6d8ePHZ8KECZk5c2bGjh1b7ZmDYsSIET3OdnaEeuTIkdv9vFrV38907rnnbtOzGhoa8nd/93f53//7f3c7v/nmm/P+979/u/YBAACw9a577LqcdMlJKaaYyWuSlEoZ35osHZasq0+yMMnkKo/sUkp+9YXkdY2NyUEHZcE/XZI9v7RnFq5Z2ONWAWoAAAAAAAAAAAAAAAAAAAAAABjaRKh3wOOPP55vfvOb+fWvf53HHnss5XK5z3sLhUJe8pKX5A1veEM+9KEPZf/996/g0sG1xx579DhbvXr1dj+vt/f29j2GutGjR6exsTHr16/vdl4sFnP88cdv8/NOOOGEHhHq3/72tzu0cWeZOHFipk+fPujf58knn8y6desG/fsAAABsritAnSSlcimLhiWT13ZeG9+aLFiTZEL19nVTTv7P/01eXywmxWLy8pcnSRb804IeIWoBagAAAAAAAAAAAAAAAAAAAAAAGPpEqLfDvHnz8qEPfSj/8z//k3K53G98uku5XM4jjzySRx99NF//+tdz8skn5+tf/3r22WefCiweXJMnT+5xNm/evO1+3ty5c7fqe+wKpkyZkmeeeabb2Qtf+MI0Nzdv87Ne/vKXp66uLh0dHRvPFi5cmHK5nEKhsMNbd8SHPvShfOhDHxr073PQQQfl4YcfHvTvAwAA0GXzAHU2/HqgVEwWjegMUS9YkaRW/pO2nPyfLySfKxQ7Xzc0JIcfvvHy5iFqAWoAAAAAAAAAAAAAAAAAAAAAANg1FKs9YKi5/PLLM2PGjFx33XUplUobA79b+1Eul1MqlXL11VdnxowZ+dnPflbtH2mHTZs2rcfZX/7yl+1+3pZR5rq6uuy7777b/bxa9sIXvrDH2R577LFdz6qrq8uYMWO6nXV0dGT58uXb9TwAAAD611uAukupmCxoS00FqE+8erMAdZIcfHCy557dblvwTwvy/EeeF6AGAAAAAAAAAAAAAAAAAAAAAIBdhAj1Nrjkkkty5plnZtmyZd3i00lSLpcH/EjSLUa9bNmynHHGGbnkkkuq+WPtsJe85CU9zp544ontetb69eszd+7cbmf7779/6uvrt+t5te7AAw/scdbU1LTdzxs2bFiPs9bW1u1+HgAAAL278ckbNwWoe7MiyeiKzelfOcma5P43JFe+ZLNa9vvf3+vt40eNr8wuAAAAAAAAAAAAAAAAAAAAAABg0O2aZd9BcOutt+Zd73pXSqXSxvB00hmfrqury2tf+9rMmjUr06dPz7hx4zJy5MisWbMmy5cvz8MPP5y77747t956a9rb27vFq0ulUt71rndln332yWte85pq/Xg75NBDD02xWEypVNp4ds8996S9vX2b49H33HNP2traup3NnDlzp+ysRbNmzcq3v/3tbmcrVqzY7uctX768x9kee+yx3c8DAACgpzlPzcnxFx2/6aC8xQ1rk4yo5KJ+lJO0JBmbLCgl576pc+ypi8YlZ55ZzWUAAAAAAAAAAAAAAAAAAAAAAEAFiFBvhVKplA9+8INZv379xnh0uVzO8OHD89GPfjTnnHNOpkyZMuBzFi9enO9+97v54he/mJaWliRJoVDI+vXr88EPfjAPPPBAt8D1UDFy5MgceuihuffeezeerVmzJvfff39mzZq1Tc/67W9/2+PsqKOO2uGNteroo4/ucfaXv/wl5XJ5m/+38Nxzz2Xt2rXdzpqbm9PY2LgjEwEAANjMnKfm5NgLju37htYkDUlq5T/vW5I0d35ZKiYLRm4IUY99Y05taKjqNAAAAAAAAAAAAAAAAAAAAAAAYPAVqz1gKPjRj36Uhx56KIVCIeVyOeVyOS972cvy0EMP5VOf+tRWBaiTZNKkSfnkJz+Zhx56KAcffHDK5fLGaw899FB+9KMfDdaPMOje+MY39ji7/PLLt/k5vb2nt2fvKqZNm5YDDzyw29ny5cvz8MMPb/Ozbr/99h5nhx566HZvAwAAoLteA9Tlzb5uTVKX2glQL8vGAHWXjSHqkb/JlY9cWZVZAAAAAAAAAAAAAAAAAAAAAABA5YhQb4Xzzz+/2+sDDzwwv/nNb/KCF7xgu56333775eabb94YHy4UOutUP/zhD3dkZlWdeeaZPc5++MMfZv369Vv9jPvvvz933313t7Mjjjgi06ZN2+F9teztb397j7MLL7xwm59zwQUX9Dg77rjjtmsTAAAA3a1Yu6JngHpz7am9APXE3i+V6pIFqxfkvN+fl45SR0VnAQAAAAAAAAAAAAAAAAAAAAAAlSVCPYBVq1bljjvuSKFQSLlcTrFYzHnnnZdx48bt0HPHjh2b8847b+PrcrmcO++8M6tWrdrRyVXxspe9LK95zWu6nT333HP5z//8z61+xsc+9rEeZx/4wAd2eFute+9735vhw4d3O/vud7+bZ599dqufcd999+Xqq6/udlYoFHL66afvlI0AAAC7u/sW3dfzsLzhc9uGr2slQL04fQaou5TKpXzrjd9KXbGuIpMAAAAAAAAAAAAAAAAAAAAAAIDqEKEewJ133pn29vYknVHfI488MkccccROefYRRxyRV73qVSmXO6tV7e3tufPOO3fKs6vhE5/4RI+zT3/607nvvl5CXVv4r//6r/zyl7/sdvbCF74wZ5111lZ97xe84AUpFArdPm6++eatem+1TZ48OR/60Ie6nS1fvjxnn312WlpaBnz/4sWLc/bZZ6ejo6Pb+emnn57p06fv1K0AAAC7ozlPzcmxFxzb+8W2DZ9rKUC9Vz/XN+y89sxrM3Xc1EosAgAAAAAAAAAAAAAAAAAAAAAAqkiEegCLFi3q9vrNb37zTn3+ls9buHDhTn1+Jb3hDW/IKaec0u1s3bp1OeaYY3Lttdf2+p62trZ89rOfzbnnntvj2te//vU0NDQMytZa8+lPfzr77rtvt7Obb745xx13XB599NE+33f77bfnta99bY97Ro0alX//938flK0AAAC7kwED1OXUToB6YbY6QH3iS06sxCIAAAAAAAAAAAAAAAAAAAAAAKDK6qs9oNYtXrw4SVIul1MoFDJ16tSd+vwtn/fcc8/t1OdX2n//93/n3nvvzbx58zaerVy5MieffHIOO+ywnHLKKZk2bVpaWlry+OOP58c//nHmz5/f4zkf/vCH81d/9VcV233PPffkfe97X5/XV69e3ePsmmuuySGHHNLnew477LB8//vf36rvP2rUqPz0pz/NUUcdlXXr1m08v+OOO3LwwQfn9a9/fY477rjstdde6ejoyDPPPJPrr78+t956a6/PO//88/OSl7xkq743AAAAvbv64avzlp++pfeL7ekMUNfKn/dalGSffq4LUAMAAAAAAAAAAAAAAAAAAAAAwG5JhHoAHR0d3V7X1+/cf7K6urokSaFQ6PX7DTUTJ07Mr371qxx77LFZuHBht2v33HNP7rnnngGfMXv27Hz1q18dpIW9W716dR544IFtes+yZcuybNmyPq+PHTt2m553+OGH56qrrsppp52WlpaWjeft7e35xS9+kV/84hcDPqOxsTHf/OY3c/rpp2/T9wYAAKC7r9z2lXzkho/0frE9SUdqJ0C9NMne/VwXoAYAAAAAAAAAAAAAAAAAAAAAgN1WreSSatakSZOSbIpEz58/f6c+v+t55XI5SWfEeag78MADc9ddd+U1r3nNNr2voaEhn/70p/OTn/xkY5x7d/PGN74xd9xxR172spdt83sPOOCA3HTTTXnf+943CMsAAAB2H9c8ck3fAeqkM0JdK79RWZ5kUh/XChGgBgAAAAAAAAAAAAAAAAAAAACA3VytJJNqVleEussNN9ywU59/00039fv9hqqpU6fmlltuyaWXXppXvepVGyPevRk1alTe/e5358EHH8xnPvOZFIu79/8sZ8yYkd///vf54Q9/mMMPP7zff7u6urq88pWvzPnnn59HHnkkr371qyu4FAAAYNdz45M35pTLTun7htYktfJ3k1YmmdDL+Wbx6SS57PTLBKgBAAAAAAAAAAAAAAAAAAAAAGA3VSiXy+Vqj6hlzz33XKZMmZIkKZfLaWhoyMMPP5z9999/h5/95JNPZvr06Wlvb0+5XE6xWMyCBQsyceLEHX52rVm8eHHuuuuu/PnPf87KlStTX1+fCRMm5MADD8ysWbPS2NhY7Yk1a9GiRbnnnns2/ts1NjZmwoQJ2WuvvfLKV74yzc3N1Z5YMw466KA8/PDDPc6nT5+ehx56qAqLAACAoeS6x67LSZec1PcNLUnqKzanf6uSjOvlfIu/Y/StN30rHzj8A5VYBAAAQ4b/PwEAAAAAAAAAAAAAAAAAANid1Eo6qWZNnDgxM2fOzL333ptCoZC2tra8973vzQ033JD6+u3/5+vo6Mg555yTtra2FAqdhahDDjlklwxQJ8mkSZNy4oknVnvGkDR58uT81V/9VbVnAAAA7NJ+8oef5Kwrzur7hloKUK/OVgWof3DiD/KeV7ynEosAAAAAAAAAAAAAAAAAAAAAAIAaVaz2gKFg9uzZ3V7feuutOf3009PS0rJdz2ttbc1f//VfZ86cOSkUCimXyykUCnnb2962M+YCAAAA2+Dzv/l8/wHqtamdAPXaJGP7v6Wh2JDfvft3AtQAAAAAAAAAAAAAAAAAAAAAAIAI9dY499xzs/feeyfJxmj0ddddl+nTp+eKK65IqVTaqueUy+VceeWVOeigg3L11Vd3u7bXXnvlwx/+8E7fDgAAAPTt87/5fD5+88f7vmFNkoaKzelfS5LmPq4VOj81FBvywPsfyOH7Hl6pVQAAAAAAAAAAAAAAAAAAAAAAQA2rr/aAoWDYsGH50pe+lLe97W0pFAobQ9R/+ctf8td//deZMmVK3vKWt+Swww7LgQcemLFjx2bkyJFZs2ZNli9fnkceeST33HNPrrrqqixcuDDlcjnJpqB1oVDIl7/85TQ1NVX5JwUAAIDdR68B6vJmX69N0ljJRf1oTfYsJEvbk3V9/DanK0B94MQDK7sNAAAAAAAAAAAAAAAAAAAAAACoWSLUW+mMM87In/70p3z605/eGKJOknK5nAULFuQ73/nOgM/YPD69uc985jOZPXv2zh8NAAAA9OrSBy/tHqAub3HDmiS18rei1iV7bvhyfGuydNgWIeqCADUAAAAAAAAAAAAAAAAAAAAAANC7YrUHDCWf/OQn86//+q8pFjf9s3UFqcvl8oAfW8ari8Vi/u3f/i2f/OQnq/UjAQAAwG7nuseuy5lXntn5opyeAerVqZ0A9fokI5NFIzYdjW9Nmto3vCgkhRRy3zn3CVADAAAAAAAAAAAAAAAAAAAAAAA9iFBvo09+8pO5+eabc8ABB2yMSyebYtT9fSTZ+J6XvvSlueWWW/KJT3yimj8OAAAA7Faue+y6nHTJSZ0vtoxPJ8nKJMMquagfbUk2xKdLxV5C1HWNKaSQ373vd3nZ5JdVZSIAAAAAAAAAAAAAAAAAAAAAAFDbRKi3w6tf/eo8+uijueaaa/KGN7whTU1NG+PS/X00NTXlTW96U6677ro8/PDDeeUrX1ntHwUAAAB2Gzc+eePAAeoRvZxXQ3uS4d2PuoWox47NMS88Ngv+cUFm7T2r0usAAAAAAAAAAAAAAAAAAAAAAIAhor7aA4ayE088MSeeeGLa2tpy33335b777suSJUuybNmyrFq1KqNHj864ceMyceLEzJw5MzNnzkx9vX9yAAAAqLQ5T83J8Rcd3/mitwD18iSjKjioP+1JhvV+qStEfcK0I3PpWy9Nc1NzRacBAAAAAAAAAAAAAAAAAAAAAABDiyLyTtDQ0JAjjjgiRxxxRLWnAAAAAFtYsXZFjr3g2M4XvQWolyaplZZzR/oMUHcp1SXfe/P3BKgBAAAAAAAAAAAAAAAAAAAAAIABFas9AAAAAGAwjRkxJi8a96LeLy5JbQWomwa4p5Bce+a1mTpuaiUWAQAAAAAAAADA/8/enUbZVRf43v/tqspAQiamEDQoEoUQFNsBELGbwUZFpqASQFvaYXlb2qBe2/W0PI6ttj6t0q3t0I19wQEwCUMEojQtJKgoKHoRMCJGBAlQhCFDhQxFUmc/LypVSSVVpwqoOudU1eezVq2cvfc/m1/6vjpx3W8AAAAAAAAAAAAY5kSoAQAAgBFvxXt/l1lPju1589EkU+uxpheVDDhAfdJBJ9ViEQAAAAAAAAAAAAAAAAAAAAAAMAKIUAMAAAAj3/XXZ8Wle2bW2m1/FfJIkj3qumi7SpKinzMC1AAAAAAAAAAAAAAAAAAAAAAAwDMgQg0AAACMfN/+dpJkxaLpyUNJ9qrvnG6VdP7tzJg+nhcRoAYAAAAAAAAAAAAAAAAAAAAAAJ6xlnoPAAAAABhSDz+c/OxnSZLi9a3J9Drv6dIVoO7tb2eK7R9veNsNOf7A42s0CgAAAAAAAAAAAAAAAAAAAAAAGElEqAEAAICR7Ze/TJIUx7cm+9V5S5cyPQPURd9HXzHjFTUYBAAAAAAAAAAAAAAAAAAAAAAAjESjNkL9ghe8oN4TdlEURe699956zwAAAICR5c47U7ymNXlevYdsU6YzOj2m/6NL3740UyZMGepFAAAAAAAAAAAAAAAAAAAAAADACDVqI9T3339/iqJIWZb1ntKtKIp6TwAAAIBhqaPSkeam5l6fFb/6RPKSGg/qS5mkkmR8/0eXvn1pjj3g2KFeBAAAAAAAAAAAAAAAAAAAAAAAjGBN9R5Qb0VRNMQPAAAA8My0tbfltIWnZfHdi3d5VnyqEKAGAAAAAAAAAAAAAAAAAAAAAABGrZZ6D6insizrPQEAAAB4Ftra2zLvinm545E7cnvr7UmSud+6NfnmN1O8dE3yqiSN8G8/lUk6kuzW/1EBagAAAAAAAAAAAAAAAAAAAAAAYLCM2gj1OeecU+8JAAAAwLOwY4A6HR2pPPZI5v/X6ckPk9P3S+MEqJPOAPX4/o8JUAMAAAAAAAAAAAAAAAAAAAAAAINp1EaoL7744npPAAAAAJ6hHgHqVauSSiVJUimS01+Q5KVpnAD15iS7939MgBoAAAAAAAAAAAAAAAAAAAAAABhsozZCDQAAAAxP3QHq+3+RrFnT41lraxo3QF1l0/ff8n0BagAAAAAAAAAAAAAAAAAAAAAAYNCJUAMAAADDRneA+p6fJBs39njW2prk+WmcAPWTSab2f+xLr/1STj3k1KFeAwAAAAAAAAAAAAAAAAAAAAAAjEIi1AAAAMCwMBID1FefcXVOmX3KUK8BAAAAAAAAAAAAAAAAAAAAAABGKRFqAAAAoOGt2bQmZ191du64/xe9B6ifl8YJUK9Lsmf/x2542w05/sDjh3wOAAAAAAAAAAAAAAAAAAAAAAAweolQAwAAAA1tzaY1OfhrB2dLx5aMX7Omx7PuAHVTXabtam2SvXq5v1Mg+9ozrxWgBgAAAAAAAAAAAAAAAAAAAAAAhlyjJJoAAAAAdtHW3pazrzo7Wzq2ZN3GNdm8wz+n1boqjRWgXp3eA9Q7uez0y3LSQScN+RwAAAAAAAAAAAAAAAAAAAAAAICW/o8AAAAA1F5be1vmXTEvdzxyR8YXY5L2ZN24zmfjtyZ5bhonQL02yT59PCu2f/zsMZ/NWS8+qwaDAAAAAAAAAAAAAAAAAAAAAAAARKgBAACABrRyzcq854fvyR2P3NF54/HHM77S+XHduGRNkaS5bvN6akuyV//HPnvMZ3P+X50/5HMAAAAAAAAAAAAAAAAAAAAAAAC6jNoI9Qte8IJd7hVFkXvvvXdAZ4dCX/99AAAAGE2uufuanLro1DQVTZk+cXrnzUpngXr81mRN0jh/o7E+yR5VnhedvwhQAwAAAAAAAAAAAAAAAAAAAAAA9dAoyaaau//++1MURcqy7L5XFMWAzw6Fvv77AAAAMFos+u2izLtyXpKkUlayasOqTO/Yrft5a0sa528zNiaZVuX5tq/5C+YuyLyXzKvFIgAAAAAAAAAAAAAAAAAAAAAAgB6a6j2g3oqiGHD8uevsUPwAAADAaLdjgLpLpaxkVbkhSdLanIYKUJcLZmTW2j7+amXbV/1rz7xWgBoAAAAAAAAAAAAAAAAAAAAAAKibUR2hLsuy++fpnB2KHwAAABjNegtQp+z8qTQlrU1JxtRjWS82dQaok2TFoum7hqh3CFCfdNBJNR4HAAAAAAAAAAAAAAAAAAAAAACwXUu9B9TLOeecMyRnAQAAgKfnmruv6Rmg3vnfatqQZFwtF1XRnpTfm9Hj1opF0/PCt67OH3dv7753w9tuyPEHHl/rdQAAAAAAAAAAAAAAAAAAAAAAAD2M2gj1xRdfPCRnAQAAgIFbcs+SnLro1M6LnePTSeMFqC/tGaDO0Ucn55yTFSeckBd+45D8cc0fs/TtS3PsAcfWZyMAAAAAAAAAAAAAAAAAAAAAAMAORm2EGgAAAKivJfcsyckLTu686C1AvT7JbrVcVMVTSfnFJPP+MpkzJ3nJS5LDD09mbI9SrzhvRdZtXJcpE6bUbycAAAAAAAAAAAAAAAAAAAAAAMAORKgBAACAmltw54KctfiszoveAtRtSSbUclEVW5LyC9s+L1hQ9agANQAAAAAAAAAAAAAAAAAAAAAA0Eia6j0AAAAAGF2GVYB6a1L+S71HAAAAAAAAAAAAAAAAAAAAAAAAPDMi1AAAAEDN3HjvjdUD1GvSUAHqq67e4brJX6MAAAAAAAAAAAAAAAAAAAAAAADDi3oSAAAAUBPL7luW117y2s6L3gLUq5NMquWiKjqSGVuT+Scmiw/edm/KlLpOAgAAAAAAAAAAAAAAAAAAAAAAeLpa6j1gNNm8eXPWrVuXvfbaK83NzfWeAwAAADWz7L5lOe47x3Ve9BagfjzJ1BoOqqYjmbGl82Ol6AxRJ8ncuX9Xv00AAAAAAAAAAAAAAAAAAAAAAADPQFO9B4x0a9asyUc+8pG86EUvysSJE7Pffvtl3LhxefGLX5x/+Zd/yebNm+s9EQAAAIZUvwHqR9M4AerK9gB1961tIerFf/PK+mwCAAAAAAAAAAAAAAAAAAAAAAB4hlrqPWA4eOKJJzJ//vzu6+bm5nzzm9/M+PHjq/6+22+/PSeddFIeeeSRlOX2ylZZllm+fHk+8pGP5OKLL87ixYtz8MEHD9l+AAAAqJd+A9SPJNmrlouqqCT5c5IZvTxqbsr86zr/bmDu7Lk1nQUAAAAAAAAAAAAAAAAAAAAAAPBMNdV7wHCwePHiLFiwIAsXLszChQuzbt26fgPUjz/+eN74xjemtbU1ZVmmKIpdfsqyzD333JPXv/71aW1trdGfBgAAAGqj3wD1Q2m4APWMXgLUSZK99kqlrOSi31yUjkpHLZcBAAAAAAAAAAAAAAAAAAAAAAA8YyLUA3DNNdckScqys5j17ne/u9/f85GPfCSPPPJId3C66/d3/STpvr9y5cqce+65QzEdAAAA6qLfAPUDSabXclEV/QWom5qS5uYctu9hufT0S9Pc1FzLdQAAAAAAAAAAAAAAAAAAAAAAAM9YS70HDAe33npriqJIWZYZN25c/vqv/7rq+QcffDDf+c53esSnm5ubc/LJJ+fggw9Oa2trFi9enLa2tu73XnPNNbn55ptz9NFH1+KPBAAAAENm3cZ11QPU9yZ5Xi0XVVEmWVklQJ0k06fnsH0Py8I3L8zkcZNrtQwAAAAAAAAAAAAAAAAAAAAAAOBZa6r3gEb35z//OY8//niSpCiKHHHEEdltt92q/p7LLrssW7ZsSdIZoN5tt92ybNmyXHXVVfnnf/7nXHzxxbnrrrsya9asHr/v4osvHpo/BAAAANTQlAlTMmvarN4f3p3GClA/nMyYXuXMtGkC1AAAAAAAAAAAAAAAAAAAAAAAwLAlQt2PP/3pTz2uDz300H5/z+WXX56iKFKWZYqiyAc/+MEcffTRPc7MnDkz3/rWt7rPlGWZxYsXD+p2AAAAqJcV7/1dZj05tufN5UleWJc5uyqTLE+a9k82t/RxZsKEHPb8IwSoAQAAAAAAAAAAAAAAAAAAAACAYUuEuh8PPPBAkqQsyyTJi170oqrn165dm9tvv737uqmpKeeee26vZ4866qi87GUv675et25d/vjHPz7byQAAAFB/11+fFd+dlllPbLtenuSgeg7aQZnkrmTGrGRKe7JuXC8h6gkTcthBfylADQAAAAAAAAAAAAAAAAAAAAAADGsi1P1Yu3Ztj+upU6dWPf/Tn/40lUolSVIURV75yldmv/326/P8scce2x24TpK77rrrGW8FAACAhrBlS/K5zyWrV2fFV5PclqT6v+lUO2WS25IZ2/aM39pLiHraNAFqAAAAAAAAAAAAAAAAAAAAAABgRBCh7semTZt6XO++++5Vz//iF79Iku6w9Otf//qq51/0op4VrkcfffTpTgQAAIDG8aMfJUcckdx6a7J1a4o5SV6apKjzri53JTNe0vNWjxD13tNy2POPEKAGAAAAAAAAAAAAAAAAAAAAAABGhJZ6D2h0XTHpLu3t7VXPd0Wouxx99NFVz0+dOjVJUhSdNa62tranuRAAAAAaQFtb8rGPJZdfnmzenCQpDimTU9M4Aeo7k7wsWVVJpm/c4X5TU8bvsVdSbsmY5jG57PTLBKgBAAAAAAAAAAAAAAAAAAAAAIARQYS6H5Mn94xOPfHEE32e3bp1a2655ZYURZGyLNPc3Jwjjzzyaf33tmzZ8ox2AgAAQK11VDrS3NScrFyZzJuX3HtvsmVLsmFDirLSWAHqFUle1vmx0pSsmpBMb9o9mTSp+8gR+74sl51+WabtNq0+GwEAAAAAAAAAAAAAAAAAAAAAAAZZU70HNLo99tgjSVIUndWs3//+932evfnmm7Nx48bu60MPPTQTJkyo+v61a9cmScqyTJJMnDjx2cwFAACAmmhrb8tpC0/L4mXfSI45Jrn99uTxx5N161JseSr5SBonQP3nJLN73qo0J6uatn+HP2zfw7LwzQsFqAEAAAAAAAAAAAAAAAAAAAAAgBGlpd4DGt2hhx7a/bksy9xwww19nr3iiiu6zxVFkde85jX9vv+xxx7rcT116tRnNhQAAABqpK29LfOumJc77v9Fbv/1D5JxydyniqQsM74sGytA/XCSA3t/VCkrWbVhVU448IQsfPPCTB43uabTAAAAAAAAAAAAAAAAAAAAAAAAhlpTvQc0utmzZ2e33Xbrvv7DH/6QH/7wh7ucW7NmTS699NIUxfbK1nHHHdfv+++6664e189//vOf+VgAAAAYYm3tbZm34E254w8/TdauTSVl5r+hzOIXVTK+LNP+kTTO3zasSrJ/L/d3CGRXykouPPFCAWoAAAAAAAAAAAAAAAAAAAAAAGBEapQsVMNqaWnJySefnLIsUxRFyrLMO9/5ztx8883dZ9avX5+3vvWtWbduXfe9SZMm5fWvf32/7//Nb37TI1x94IEHDu4fAAAAAAZJW3tb5n331Nzx+x8nGzcmZZkkqRTJ6UeksQLUjyd5Tv/Hrj7j6sycNnPI5wAAAAAAAAAAAAAAAAAAAAAAANRDS70HDAd/93d/l0WLFiVJiqLIo48+mr/6q7/KC1/4wuy555656667smHDhu5IdVEU+Zu/+ZuMGzeu6ntXrlyZe+65pztCvddee+W5z33ukP95AAAA4Ol4cvOTqRSVzPvuKbnjjz9Ltm7d9dB+aZwA9eok+/bxbPu/A5WFb1qYU2afUotFAAAAAAAAAAAAAAAAAAAAAAAAdSFCPQDHHHNMTjvttHz/+99PURTdsek//OEP3Z+TdMekJ06cmPPPP7/f9y5evLj7c1EUOfLII4fmDwAAAADP0G0P3ZYj/uuITB47KRPWbew1QN06Jo0ToF6bZJ/+jy1808KccegZQ70GAAAAAAAAAAAAAAAAAAAAAACgrholEdXwLrroorz4xS/uEZzuik7vGKYuiiIXXnhhZsyY0e87v/e97/WIWB9zzDFDth8AAACerq4AdZky69rb8tiYPgLUzbXf1qu2JHtVed75NV6AGgAAAAAAAAAAAAAAAAAAAAAAGDVEqAdo6tSp+fGPf5xzzjknSVKW5S4/M2bMyBVXXJEzzzyz3/f98pe/zC9+8Yse90488cQh2Q4AAABP144B6i5bm5PHdtt+prUljROgXp9kjyrPtwWorz7jagFqAAAAAAAAAAAAAAAAAAAAAABg1Gip94DhZOrUqbn44ovz6U9/Otdcc03+9Kc/Zf369dlzzz1zxBFH5HWve13Gjx8/oHddd911Oeyww7qv99133xx00EFDNR0AAAAGbJcA9fYOdXeIeuuWNM7fKmxMMq3K820B6mvPvDYnHXRSLRYBAAAAAAAAAAAAAAAAAAAAAAA0hKIsy7L/YwCNb86cOfnd7363y/1DDjkky5cvr8MiAAAYfqoFqLttSjKmlquq2JhkcpXnAtQAAMBO/O8JAAAAAAAAAAAAAAAAAADAaNJU7wEAAABAYxhQgHpjGidAvSkDClB/b+73BKgBAAAAAAAAAAAAAAAAAAAAAIBRSYQaAAAAGFiAekOSsbVcVUV7kklVnu8QoD7zJWfWYhEAAAAAAAAAAAAAAAAAAAAAAEDDaan3AAAAAKC+BhygHlfLVVW0J5lY5fm2APUNb7shxx94fC0WAQAAAAAAAAAAAAAAAAAAAAAANCQRagAAABjFntz8ZP8B6vVJdqvlqiqeyoAC1EvfvjTHHnBsLRYBAAAAAAAAAAAAAAAAAAAAAAA0LBHqQfDQQw/l1ltvza9//es8+uijWbt2bdavX59JkyZl6tSp2WefffLyl788Rx55ZJ7znOfUey4AAAB023387tUD1G1JJtRyURVbUn2LADUAAAAAAAAAAAAAAAAAAAAAAEAPItTP0Pr16/Pd7343//Ef/5Hly5cP+PfNmTMn733ve/O2t70tkyZNGsKFAAAA0L/iU9vKzR1JmnZ6uDbJ7rXd06etSfkvyQvfl/xxz16eC1ADAAAAAAAAAAAAAAAAAAAAAADsYue8FAPw3e9+NwcccEDmz5+f3/72tynLcsA/v/3tb/O+970vBxxwQC655JJ6/1EAAAAYxboD1GU6/4agssPDNWmsAPX/1/lxxVeTWU/s9FyAGgAAAAAAAAAAAAAAAAAAAAAAoFci1E9De3t75s6dm7/927/N6tWrU5ZlkqQoigH/JElZllm9enXOOeecnH766Wlvb6/nHwsAAIBRZvWTq3sGqLt0hahXJ5lU+1296tgeoE5RJEWRFV9vyqwnx3bGpwWoAQAAAAAAAAAAAAAAAAAAAAAA+iRCPUCbN2/OKaeckmuuuSZlWfYIS5dlOeCfnX/f1VdfnVNOOUWIGgAAgJpYcs+S7PmlPTsvyl4OrE4yuZaLquhIys9v+9zU1BmhHjcuOeqorPjck5k1bVYSAWoAAAAAAAAAAAAAAAAAAAAAAIC+tNR7wHAxf/78/OhHP+oOSCdJWXbWul71qlfl9NNPz8te9rIcfPDBmTJlSiZMmJCNGzdm3bp1ueeee/LrX/86V111VW655ZYk6RGivuGGGzJ//vxceOGFdfvzAQAAMPItuWdJTl5wcudFbwHqR5PsUctFVVSScV0B6rFjk4kTO39takr+8R+TMWOy4rwVWbdxXaZMmFLXqQAAAAAAAAAAAAAAAAAAAAAAAI2qKLtKyvTpJz/5SY499tge98qyzDHHHJN///d/z5w5cwb8ruXLl+e8887LsmXLesSsi6LITTfdlNe85jWDuh1Gkzlz5uR3v/vdLvcPOeSQLF++vA6LAACgcfQIUCe7RqgfSbJXLRdVUUnGfS7Z3HU9bVoyfnzn5/33T37602TMmHqtAwAAhjn/ewIAAAAAAAAAAAAAAAAAADCaNNV7wHDw+c9/Pl2t7q5f//Ef/zFLly59WgHqpPP/U/uNN96Y888/Pzv3vz//+c8PzmAAAADYQb8B6ofSUAHq/NcOAeqi6Bmc/sxnBKgBAAAAAAAAAAAAAAAAAAAAAAAGSIS6H2vWrMmNN96YoihSlmWKosg73/nO/PM///Ozeu9nPvOZvOtd7+p+Z1mWueGGG7JmzZpBWg4AAAA7BajL7BqgfiDJ9BqP6kuZ5OHkOX+TLD54272WlqS5ufPzGWckr31tvdYBAAAAAAAAAAAAAAAAAAAAAAAMOyLU/bjllluyZcuW7uvJkyfnggsuGJR3f+lLX8qUKVO6r7du3ZpbbrllUN4NAAAAuwSod3Zvkv1quaiKbQHqGXsllSKZf+K2EPXEiZ3PDzgg+ad/qudCAAAAAAAAAAAAAAAAAAAAAACAYUeEuh8PPfRQ9+eiKHLqqadm0qRJg/LuyZMn59RTT01Zbi+B7fjfAwAAgGfq6ruvrh6gvjvJ82q5qIquAPWe22/1CFHPmJEsWJBMnlyvhQAAAAAAAAAAAAAAAAAAAAAAAMOSCHU/HnvssSTpDkW/4hWvGNT3v/KVr+xx/fjjjw/q+wEAABh9Fv12UU5bdFrnRW8B6uVJXljDQdWUSe7uGaDuUmkqMv+YjVn8b3+XzJxZ82kAAAAAAAAAAAAAAAAAAAAAAADDnQh1P3bbbbce19OnTx/U9++zzz5JkqIokiTjx48f1PcDAAAwutz/xP2Zd+W8zoveAtR/SnJQLRdV0RWgfkEfzydMSGXPPXLRg9eko9JRy2UAAAAAAAAAAAAAAAAAAAAAAAAjggh1P2bOnNnjeu3atYP6/q73lWVnGey5z33uoL4fAACA0aOtvS3v/e/3pqno4+v+n5LM7P1RzZVJ/py0zOnj+e67J5Mn57AZL82lp1+a5qbmWq4DAAAAAAAAAAAAAAAAAAAAAAAYEUSo+/Hyl788SVIURZLk7rvvHtT3//73v+/1vwcAAABPx5pNa3LG5WfkjtbfZPrW8Wmq7HSgK0Bd1GFcb36fZFaytTl5bLedno0bl0yalMP2PSwL37wwk8dNrsdCAAAAAAAAAAAAAAAAAAAAAACAYU+Euh8HHHBAXvziFydJyrLMVVddlbIsB+XdZVnmyiuvTFEUKYois2fPzgte8IJBeTcAAACjx4NtD2bWV2Zl6Z9uzOY1jyWbNmX6hqSp6+trowWo707y4u2XPULUTU3JtGkC1AAAAAAAAAAAAAAAAAAAAAAAAINAhHoAPvCBD6QsyxRFkZUrV+bLX/7yoLz3y1/+ch544IHuqPUHP/jBQXkvAAAAo8eDbQ/mkK8dktWbV2dLZWvWjunI5ubO75nTNyRZncYKUK9IjwB1l+4Q9Z575rAZLxWgBgAAAAAAAAAAAAAAAAAAAAAAGAQi1APwjne8I0cffXTKskxZljn//PNz3XXXPat3/vd//3fOP//8FEWRoihy1FFH5V3vetcgLQYAAGA06ApQr39qfdLZnU6ZZO34ZHNL0romyaQ0ToD6z0lm9/14a0syZ9/DBKgBAAAAAAAAAAAAAAAAAAAAAAAGiQj1AF155ZU56KCDkiSbN2/Oaaedls985jN56qmnntZ7tmzZks9+9rM57bTTsnnz5pRlmRe96EW56qqrhmI2AAAAI9SDbQ9m9r/P7hGg7lImWbMpyfQ0ToD64SQHVnleJEc+98hceeaVAtQAAAAAAAAAAAAAAAAAAAAAAACDRIR6gPbee+/ccssteeMb35ikMyb9iU98IrNmzcpHP/rR3HbbbX0Gqbds2ZJf/epX+ehHP5pZs2bl4x//eJ566qkURZE3vvGNueWWW7L33nvX8o8DAADAMLZm05oc9O8H5cmtT/ZxIMnENM63/lVJ9q/yfFuA+vq3XS9ADQAAAAAAAAAAAAAAAAAAAAAAMIha6j1gODjuuON6XI8fPz7t7e0pyzIPPvhgPve5z+Vzn/tcWlpasv/++2fKlCmZOHFiNmzYkHXr1uWBBx7I1q1bkyRlWSZJiqLI+PHjs2HDhpx++ulPa09RFLnxxhsH5w8HAADAsNLW3pZXXPiKbNy6sfNGudOBRgtQP57kOVWeF8mrZ746P3zrDwWoAQAAAAAAAAAAAAAAAAAAAAAABpkI9QDcdNNNKYpil/td97rC0lu2bMm9997b/azrfm+/J0k2b96cH//4x09rS1mWvW4BAABg5Gtrb8tf/Mdf5E9r/9T3oUYKUK9Osm/fj4uiyC/e/Yu8bMbL0tzUXLNZAAAAAAAAAAAAAAAAAAAAAAAAo4UI9dPUWwS6ryj0QGLRotIAAAAMxC4B6l3/3aOkPUmjtJzXJtmr78ddAepXPueVtVoEAAAAAAAAAAAAAAAAAAAAAAAw6ohQPw1lWfb4dbDfCwAAAL3pqHTk8P84fPgEqNuyPUBdSdLU87EANQAAAAAAAAAAAAAAAAAAAAAAQG2IUA/AX/7lX6YoinrPAAAAYJRacveS3LP2ns6L3gLUm9M43/CfTLLHDtdN6RGiFqAGAAAAAAAAAAAAAAAAAAAAAAConUZJVDW0m266qd4TAAAAGKWW3bcsp11xWudFoweoNyaZ2sv9bSHqolmAGgAAAAAAAAAAAAAAAAAAAAAAoJaa6j0AAAAA6N2y+5bluO8c13nRW4B6UxorQD25yvPmpEwpQA0AAAAAAAAAAAAAAAAAAAAAAFBDItQAAADQgNZtXLc9QN2bjUnG1GxOdZtTPUBd7PDxU0Xf5wAAAAAAAAAAAAAAAAAAAAAAABhUItQAAADQgKZMmJJZ02Z1XpQ7PdyQZGytF/WhPcnuVZ7v1JwuP7HzHwYAAAAAAAAAAAAAAAAAAAAAAIChIkINAAAADWrFe3+XWR3Tet58Msm4uszZ1VNJJlZ5LkANAAAAAAAAAAAAAAAAAAAAAABQVyLUg6ijoyOPPfZYHnjggTzwwAP1ngMAAMBwdvnlybRpWfHpNZn1xLZ765OMr+eoHTyVZEIfz4oIUAMAAAAAAAAAAAAAAAAAAAAAADSAlnoPGM7uuuuufP/7389NN92U22+/PevWret+VhRFtm7d2ufvXbduXTo6Orqvd99994wdO3ZI9wIAANC4OiodaW5qTtrakhe/ONnhHzda8dWk+GD6jj7X2pZUD1DvRIAaAAAAAAAAAAAAAAAAAAAAAACgPprqPWA4+s1vfpOTTjopL33pS/PJT34yN910U9auXZuyLHv8VHPeeedl77337v4577zzarQeAACARtPW3pbTFp6Wxd89P5k6tUeAOkmK96dxAtRbk+w28OMC1AAAAAAAAAAAAAAAAAAAAAAAAPUjQv00/ed//mde9apX5brrrusRmy6KovtnID784Q8nSfc7Fi1alPb29iHbDQAAQGNauWZl5l0xL7/+w48z/zefy+KDekabi/OS7F6fbbvYmmR8lec7fSUWoAYAAAAAAAAAAAAAAAAAAAAAAKgvEeqn4TOf+UzOPffctLe3pyzL7uh0V0i6K0g9EIceemiOP/747ut169blhz/84VDMBgAAoEEtuWdJ9v/K/vmfP16frF+fSpHMPzFZfHDn82J+kkl1nbhdRwSoAQAAAAAAAAAAAAAAAAAAAAAAhhkR6gG68sor84lPfGKX+PSsWbNy3nnn5V//9V8zc+bMp/XOefPmJUmKorPUdf311w/6bgAAABrTknuW5OQFJydJKmWZVRM673eFqIu/TzK5fvt66EhmbEma+upKC1ADAAAAAAAAAAAAAAAAAAAAAAA0JBHqAdi4cWPe9773dQeoy7LMpEmTcskll+See+7Jv/3bv+X9739/9thjj6f13rlz56a5uTlJUpZlbrzxxqGYDwAAQIPZMUCdbb3mSlO6Q9QPbUgytR7LelFJsrrz4/QNvYSotwWorz3z2iQC1AAAAAAAAAAAAAAAAAAAAAAAAI1EhHoAvvrVr2bVqlU9AtQ/+clPcvbZZz+r9+6xxx6ZPXt29/Wf/vSntLW1Pdu5AAAANLDeAtRdKk1J67oke9V8Vu8qSTYkxYxkc0vnre4QdZHuAPX3z/h+TjroJAFqAAAAAAAAAAAAAAAAAAAAAACABiNCPQDf/e53uwPURVHkX//1X/OSl7xkUN798pe/PGW5PdJ19913D8p7AQAAaDzVAtRJkgeSTK/loiq2BagzrXPq2vHbQtRFkemZmKai868UFr5pYU6dfWodhwIAAAAAAAAAAAAAAAAAAAAAANAXEep+PPLII1m+fHn39f7775+//du/HbT3H3LIIT2u77333kF7NwAAAI1jwZ0Lqgeo702yXy0XVVGmO0C9462145PNY5uSSZNywoEn5L733ZczDj2jTiMBAAAAAAAAAAAAAAAAAAAAAADojwh1P2677bbuz0VR5A1veEOamgbv/2zTpk3rcb127dpBezcAAACN4Ys3fzFnLT6r7wP3JnlezeZUVyZ5Mj0C1Ds+Wju2kn0nzcjCNy/M8/d8fm23AQAAAAAAAAAAAAAAAAAAAAAA8LSIUPfj0UcfTZKUZZkk+Yu/+ItBff/UqVOTdAauk2T9+vWD+n4AAADq64KfXZAP3/jh7TfKnQ78McMiQJ0kKZIyZfaZuE8mjplYw2EAAAAAAAAAAAAAAAAAAAAAAAA8EyLU/Xj88cd7XO+xxx6D+v729vYe101N/p8EAABgpLj27mvzoRs+1PeB+5I8v1Zr+lEmWZmqAeou33zjN9Pc1FyDUQAAAAAAAAAAAAAAAAAAAAAAADwbisf9GDduXI/rzZs3D+r7V69enSQpyzJJsueeew7q+wEAAKiPZfctyymLTul5s9zh8yNJZtZyURVdAeoX9PKsSI8A9bVnXpuZ0xplOAAAAAAAAAAAAAAAAAAAAAAAANWIUPdj77337nH9+OOPD+r7ly9f3uNahBoAAGD4W3bfshz3neP6PvBIkkb6+vdQeg9Q7+TaM6/NSQedNORzAAAAAAAAAAAAAAAAAAAAAAAAGBwi1P2YPn16kqQoiiTJ7bffPqjvv+mmm7rfnSQHHnjgoL4fAACA2hpwgLro+0hN3Zvk+X0822HjgrkLBKgBAAAAAAAAAAAAAAAAAAAAAACGGRHqfrzyla9Mc3NzkqQsy9x4440py3JQ3n3zzTfnD3/4Q/f1HnvskUMPPXRQ3g0AAEDt9RugbktjBahXJDmo/2OfPeazmfeSeUM+BwAAAAAAAAAAAAAAAAAAAAAAgMElQt2PKVOm5PDDD+8OTz/88MNZvHjxoLz74x//eJLOuHVRFDnmmGMG5b0AAADUXr8B6ieT7JbGClDPrvJ8287PHvPZnP9X59diEQAAAAAAAAAAAAAAAAAAAAAAAINMhHoA3vSmNyVJiqJIWZb54Ac/mPXr1z+rd37yk5/MTTfdlKLYXh97xzve8azeCQAAQH2s27iu/wD12DROgPrPEaAGAAAAAAAAAAAAAAAAAAAAAAAYBUSoB+Dcc8/NjBkzuq8ffPDBnHjiiWlra3va76pUKvngBz+YT3/6091R66Iocthhh+XEE08czNkAAADUyO7jd8+EMRN6f7ghyZg0ToD64SQHVnkuQA0AAAAAAAAAAAAAAAAAAAAAADBiiFAPwPjx4/OpT32qOxhdlmV+/vOfZ86cObnkkkvy1FNP9fuOxx57LP/5n/+Zgw46KF/5yldSlmX3s6Io8vnPf34o/wgAAAAMoeam5lwy95I0F809H2xI0pLG+fa9KikvTmY90cfzbQHqLxz/BQFqAAAAAAAAAAAAAAAAAAAAAACAEaBRMlgN793vfnfe+c539ghRP/TQQznnnHOyzz775LjjjssDDzzQIy599tln5/Wvf31mz56dfffdN+eee27uvffeHu8oiiLnn39+TjjhhDr+6QAAAHi25s6em8vfcvn2EPXGNFaA+vGk/K/Ojyu+ulOIukh3gPr7b/5+/uHof6j1OgAAAAAAAAAAAAAAAAAAAAAAAIZAUe5YTaaqrVu35tRTT811112Xouisc3X9n2/n6/7udd0/66yzcumllw75dhgN5syZk9/97ne73D/kkEOyfPnyOiwCAGA0Wnz34rzl8rekY3NH4wSoVyflN3a9/cJPTMsfizXd10vfvjTHHnBsDYcBAADUnv89AQAAAAAAAAAAAAAAAAAAGE0aJYc1LLS0tGTJkiX52Mc+lqIoUpZliqLoNTbddb3jmZ3PffKTnxSgBgAAGGHmzp6bjk0NFKBe23uAOrvvnhX/76rMmjYriQA1AAAAAAAAAAAAAAAAAAAAAADASNQoSaxhoyiKfOpTn8pPf/rTvOENb+gOTe8cm+4tPN31c8wxx+SnP/1pPv7xj9f5TwMAAMBgKz5SJM31XrHN+uQ545LFB/fy7OKLkzFjsuK8FVn74bUC1AAAAAAAAAAAAAAAAAAAAAAAACNQS70HDFevetWr8oMf/CDLly/PFVdckR//+Me59dZbs3nz5l3OFkWRl770pfnrv/7rnHrqqTnqqKPqsBgAAIAh8fDDyS9/mdx5Z4qNn2icb9pPJjPGJJUk80/svDX399uePe95yZvf3H10yoQpNZ8HAAAAAAAAAAAAAAAAAAAAAADA0GuUNNawNWfOnMyZMydJUqlU8sQTT+SJJ57ImjVrsttuu2WvvfbK3nvvnXHjxtV5KQAAAINmy5bkv/87+fa3k5//PElS/E1rMqbOu7psTDI1WVVJpm9MKsUOIep7iuTOO+u5DgAAAAAAAAAAAAAAAAAAAAAAgBoRoR5ETU1N2XvvvbP33nvXewoAAABD5Uc/Sj760WTlyu5bDRWg3pRkcufHSlOyasJOIerz/zFzJ0+u50IAAAAAAAAAAAAAAAAAAAAAAABqpKneAwAAAGBYaGtL3v/+5Jxzegao39ZAAerNSSb1vNUVok6SypRJuajlrnRUOmo+DQAAAAAAAAAAAAAAAAAAAAAAgNprqfcAAAAAaHgrVybz5iX339/jdvHW1mRsfSbtoj3J7r0/qjQlqyYVOeHAV+fS0y9Nc1NzTacBAAAAAAAAAAAAAAAAAAAAAABQHyLUAAAAUM0DDySnnZY88kiP28XZrcm4+kzaxVNJJlZ5XiSVlLnwxAszedzkWq0CAAAAAAAAAAAAAAAAAAAAAACgzprqPQAAAAAaVltbcuaZuwaoz2pNxtdp0862JJlQ5XnR+cu1Z16bmdNm1mIRAAAAAAAAAAAAAAAAAAAAAAAADUKEGgAAAPrysY8l99/f41ZxZmuyW33m7GJLqm/ZIUB90kEn1WIRAAAAAAAAAAAAAAAAAAAAAAAADUSEGgAAAHrzox8ll1/e41ZxRmsyoU57drY1AtQAAAAAAAAAAAAAAAAAAAAAAABUJUINAAAASToqHdsvtmxJPvrRHs+Lt7Qmu9d4VF86kozv41kRAWoAAAAAAAAAAAAAAAAAAAAAAACSiFADAABA2trbctrC07L47sWdN66/Plm5svt5cXprMqlO43bWkWRcL/d3iE8nAtQAAAAAAAAAAAAAAAAAAAAAAAAkLfUeAAAAAPXU1t6WeVfMyx2P3JHbW29Pksz99mXdz4vTWpOpdRq3s0q2B6iLvo99b+73BKgBAAAAAAAAAAAAAAAAAAAAAAAQoQYAAGD02jFAnSSVspL5Pzg3eag9czM+xSmtyR51HtmlkmRrtkeo+zB7r9l5y6FvqcUiAAAAAAAAAAAAAAAAAAAAAAAAGlxTvQcAAABAPaxav6pHgLpLpb0981+9LsUbW5O96jRuZ10B6onVjx2858G59d23prmpuRarAAAAAAAAAAAAAAAAAAAAAAAAaHAt9R4AAAAAtXbryltz1EVHZWzz2Oyx2x49H27dmoeeqCT71WfbLipJOtJvgPpl+74sy/52WSaPm1yLVQAAAAAAAAAAAAAAAAAAAAAAAAwDTfUeAAAAALW07L5ledVFr0qZMu0d7Vm9aXWP561/XN84AeoyydYkE6ofO3y/wwWoAQAAAAAAAAAAAAAAAAAAAAAA2IUINQAAAKPGsvuW5bjvHNfj3o4h6tZ7W5Pn1WNZL8okY5Pm3ZurHjt8v8Pzo7f/SIAaAAAAAAAAAAAAAAAAAAAAAACAXYhQAwAAMCr0FqDu0t7RntY7W5M9ajyqL2WS65PyE2Uuf8vlaS56D1ELUAMAAAAAAAAAAAAAAAAAAAAAAFCNCDUAAAAj3q0rb+0zQJ0kuTfJzJrNqa5McnVSTj0+STJ39txeQ9QC1AAAAAAAAAAAAAAAAAAAAAAAAPRHhBoAAIAR7baHbstRFx3V94GHkuxfsznVlUluScrVM5K99uq+vXOIWoAaAAAAAAAAAAAAAAAAAAAAAACAgRChBgAAYMS67aHbcsR/HZEy5fab5Q4/DyXZuz7benVLUv5+RufnOXN6POoKUb/uwNcJUAMAAAAAAAAAAAAAAAAAAAAAADAgLfUeAAAAAENhlwB1udOBh9MZoC5qPKwvd+4QoE6Sl7xklyNzZ8/NKQedkuam5hoOAwAAAAAAAAAAAAAAAAAAAAAAYLgSoQYAAGDEWbV+1fYA9c7x6SRZn8YKUK9Iyl/N6Hnv8MN7PSpADQAAAAAAAAAAAAAAAAAAAAAAwEA11XsAAAAADKaOSkfetvhtnRd9BajHp3EC1H9OyqV79bx39NHJjBm9nwcAAAAAAAAAAAAAAAAAAAAAAIABEqEGAABgRPnJn3+SG+67IWXZS4G6EQPUiycmY8b0vH/OOfXZAwAAAAAAAAAAAAAAAAAAAAAAwIgiQg0AAMCIsey+ZTnuO8clvfSnsz7JuDROgPrhpFw4Jpk0qef9/fdPTjihPpsAAAAAAAAAAAAAAAAAAAAAAAAYUUSoAQAAGBEGFKBulG/Bq5Lyuy3J1KlJsVMV+zOfScaMqcssAAAAAAAAAAAAAAAAAAAAAAAARpaWeg8AAACAZ6s7QN2bRgtQP56U3x6TTJuatOz0tfyMM5LXvrYuswAAAAAAAAAAAAAAAAAAAAAAABh5RKgBAAAY1m5deev2AHXZy4GxaZwA9ZqkvGRisuekpCh6PjvggOSf/qk+uwAAAAAAAAAAAAAAAAAAAAAAABiRRKgBAAAYtm5deWuOuuiovg+0J2mu2Zzq2pJy0V7J5DG7PpsxI1mwIJk8ufa7AAAAAAAAAAAAAAAAAAAAAAAAGLGa6j0AAAAAnoll9y3Lqy56VcqUnTfKnQ5sTuMEqNcn5RUzkjG9BKgPOCD5/veTmTNrPgsAAAAAAAAAAAAAAAAAAAAAAICRTYQaAACAYWfZfcty3HeO6/vA5iQtNZtT3ZNJefmM3p+dcUZy3XUC1AAAAAAAAAAAAAAAAAAAAAAAAAwJEWoAAACGlYfXPVw9QL0pjROg3pg8Z0xTFj9/c8/7+++ffPvbyb/9WzJ5cl2mAQAAAAAAAAAAAAAAAAAAAAAAMPI1SpYLAAAA+rVyzcq854fvSUtTS7ZWtu56YGOSsTWf1btNyYyWplSSzH/1uiTJ3Oe+NjnnnOSEE5IxY+q7DwAAAAAAAAAAAAAAAAAAAAAAgBFPhBoAAIBhYck9S3LygpPTXDRnn4n75LGNj20PUZdprAD15mTGuLFJU1MyZkwqLS2Zf/r45I1nZe7sN9Z7HQAAAAAAAAAAAAAAAAAAAAAAAKOECDUAAAANrytAnSQdZUcefXJV9tkyNo8VW7O1OcmGJOPqOnG79mTGjBm73K4kmX/d/CTJ3NlzazwKAAAAAAAAAAAAAAAAAAAAAACA0aip3gMAAACgmh0D1EmSMukoK3m0aXP2bm9KnkzjBKifSrJ7snrT6l4fV8pKLvrNRemodNR2FwAAAAAAAAAAAAAAAAAAAAAAAKOSCDUAAAANq0eAutz2s01HU9K6tZKMr8u0XW1JMqHzY3tHe68h6sP2PSyXnn5pmpuaa7sNAAAAAAAAAAAAAAAAAAAAAACAUUmEGgAAgIb0Pyv+p2eAemdt6Y4+192WJLv1vLVziPqwfQ/LwjcvzORxk2u7DQAAAAAAAAAAAAAAAAAAAAAAgFFLhBoAAICGc83d1+R1l72u86K3APXaNE6Aemu2B6iLno+6QtQC1AAAAAAAAAAAAAAAAAAAAAAAANSDCDUAAAANZdFvF+XURad2XvQWoF6dZPdaLqqiI8n46kee6ngq3zrlWwLUAAAAAAAAAAAAAAAAAAAAAAAA1JwINQAAAA1jwZ0LMu/KeZ0XvQWoH0/SKC3njiTj+j/283f+PNMnTR/yOQAAAAAAAAAAAAAAAAAAAAAAALAzEWoAAAAawi8f+GXOWnxW50VvAepHk0yt4aBqKhlQgHrp25fmyJlHDvkcAAAAAAAAAAAAAAAAAAAAAAAA6I0INQAAAHV392N35+hvH9150VuA+pEke9RyURWVJO293C96Xi59+9Ice8CxtVgEAAAAAAAAAAAAAAAAAAAAAAAAvRKhBgAAoK7ufuzuHPYfh2VLZUvvAeqHkuxV61V96ApQT6p+TIAaAAAAAAAAAAAAAAAAAAAAAACARtBS7wEAAACMXv/34f+bI//PkX0HqB9Msm+tV/WhWoC62P7xlnfekiNnHlmjUQAAAAAAAAAAAAAAAAAAAAAAANC3pnoPAAAAYHRadNeivPybL+87QP1wGidAXabvAPUOXj3z1Xnlc15Zi0UAAAAAAAAAAAAAAAAAAAAAAADQLxFqAAAAau5rv/ha5l01r/OitwD1Y0n2qeWiKsokm9N3gLro/OXI5x6ZH771h2luaq7RMAAAAAAAAAAAAAAAAAAAAAAAAKhOhBoAAICauujXF+V9//2+zou+AtTTarmoijKdewYQoL7+bddn8rjJNRoGAAAAAAAAAAAAAAAAAAAAAAAA/ROhBgAAoGa+dfu38q4l7+q8GC4B6v36eF4kRYoc+7xjBagBAAAAAAAAAAAAAAAAAAAAAABoSCLUAAAA1MSCOxfkHde8o+8DbUmm1mpNPwYQoO48VuaSuZcIUAMAAAAAAAAAAAAAAAAAAAAAANCQWuo9AAAAgJFv0W8X5azFZ22/Ue50oC3JbumOO9ddXwHqnfYtffvS7Delr1I1AAAAAAAAAAAAAAAAAAAAAAAA1FdTvQcAAAAwsi367aLMu3Je3wcaLUC9KrsGqIv0GqA+9oBjazQKAAAAAAAAAAAAAAAAAAAAAAAAnr6Weg8AAABg5Oo1QF3u8Lk9jRWgfjzJc7Z9rrJJgBoAAAAAAAAAAAAAAAAAAAAAAIDhoKneAwAAABiZfnL/T3YNUO+oPZ3fShslQN2aZN9tnwWoAQAAAAAAAAAAAAAAAAAAAAAAGAFEqAEAABh0T25+Msd8+5i+DzyVxgpQP5zMmJa0dPR9pEiRW955iwA1AAAAAAAAAAAAAAAAAAAAAAAAw4YINQAAAIPuttbbUqbs/eFT235tlAD1qiT7J49OSPZub+ozRP3zd/48R848sqbTAAAAAAAAAAAAAAAAAAAAAAAA4NkQoQYAAGBQLbtvWY77znG9P2zf9mujfBt9PMlzOj92NCWPjq9k73J8Wppaehxb+valAtQAAAAAAAAAAAAAAAAAAAAAAAAMO42S/QIAAGAEqBqg3rrt10b5Jro6yb49b3U0JY+OeSp7T9i7O0S99O1Lc+wBx9Z+HwAAAAAAAAAAAAAAAAAAAAAAADxLjZL+AgAAYJhbt3Fd3wHqpDNC3SjfQtcm2af3Rx2p5NENj+a1L3htHvrAQwLUAAAAAAAAAAAAAAAAAAAAAAAADFuNkv8CAABgmJsyYUpmTZvV+8PNSZprOqdvbUn26uNZ0flLR9mRC0+8MPtN2a9WqwAAAAAAAAAAAAAAAAAAAAAAAGDQiVADAADwjHVUOnpcrzhvxa4h6k1pnAD1+iR79H/s2jOvzcxpM4d8DgAAAAAAAAAAAAAAAAAAAAAAAAwlEWoAAACekbb2tpy28LQsvntxj/s9QtSbkrTUfluvnkwyrcrzovOXa8+8NicddFItFgEAAAAAAAAAAAAAAAAAAAAAAMCQapQUGAAAAMNIW3tb5l0xL3c8ckdub709STJ39tzu5yvOW5Hi/ymSMfVauJONSaZWeS5ADQAAAAAAAAAAAAAAAAAAAAAAwAjUVO8BAAAADC87BqiTpFJWMv+6+Vl89+LuM8WnGihAvSnJ5CrPBagBAAAAAAAAAAAAAAAAAAAAAAAYoVrqPQAAAIDhY+cAdZeuEHWSnL7o9GRLPdb1oj3JpCrPtwWorz/7+pzwwhNqsQgAAAAAAAAAAAAAAAAAAAAAAABqpqneAwAAABge+gpQd6mUlZx+UYMFqCdWeb4tQH31GVcLUAMAAAAAAAAAAAAAAAAAAAAAADAiiVADAADQr/4C1EnS2tqajKvhqGqeyoAC1AvftDCnzD6lFosAAAAAAAAAAAAAAAAAAAAAAACg5kSoAQAAqGpAAeqHWpPxNRxVzZYkE6o83xag/t7c7+WMQ8+oxSIAAAAAAAAAAAAAAAAAAAAAAACoi5Z6DwAAAKBxDShAvbq1evS5lrYm2a3K8yIZ0zQmN59zcw7f//BarQIAAAAAAAAAAAAAAAAAAAAAAIC6EKEGAACgVx2Vjpx95dnVA9RrW5OihqOq2ZpkfJXn2wLUd/zdHZm99+xarQIAAAAAAAAAAAAAAAAAAAAAAIC6aar3AAAAABrThi0bsnLNyrR3tPf6vHVda1LWeFRfOiJADQAAAAAAAAAAAAAAAAAAAAAAADsRoQYAAGAXbe1tOf47x+fOx+/M2k1rdwlRt7a1JpU6jdtZR5JxVZ4Xnb/c+q5bBagBAAAAAAAAAAAAAAAAAAAAAAAYVUSoAQAA6KErQP2rh3+VJKmk0iNE3bq+tTP83AgqGVCAeuHpC/Oy/V5Wi0UAAAAAAAAAAAAAAAAAAAAAAADQMFrqPQAAAIDGcf8T9+ctV72lO0DdpStEXemodIafG0G1HcX2j199/VdzxovPGPI5AAAAAAAAAAAAAAAAAAAAAAAA0GhEqAEAAEiSfO/O7+XsxWf3+byyoZKMreGgaroC1DvvKXpe/p+T/k/e+fJ31mIRAAAAAAAAAAAAAAAAAAAAAAAANJymeg8AAACg/r75q2/uGqAud/jZlMYKUBfp3FPs9LODi0+5WIAaAAAAAAAAAAAAAAAAAAAAAACAUU2EGgAAYJS74GcX5D0/eM/2G13h6S6bk7TUeFRfyvQMUFcx96C5NRgEAAAAAAAAAAAAAAAAAAAAAAAAjatRMmIAAADUwQU/uyAfuuFDnRdlLweeSuN8c+zaN7b/o0vfvjRTJkwZ0jkAAAAAAAAAAAAAAAAAAAAAAADQ6JrqPQAAAID6+NqtX+s/QN0o3xrLJFsz4AD1sQccO9SLAAAAAAAAAAAAAAAAAAAAAAAAoOE1Sk4MAACAGvrGL7+R913/vs6L4RKgntD/UQFqAAAAAAAAAAAAAAAAAAAAAAAA2K6l3gMAAACorW/88hs597pzOy96C1BvTVLUclEVZZKx2376IUANAAAAAAAAAAAAAAAAAAAAAAAAPTXVewAAAAC1M6AAdZmGiVAfPHZWyk+UmTVtVtVzAtQAAAAAAAAAAAAAAAAAAAAAAACwKxFqAACAUeKW+2/ZHqDuTYMFqA8Y89zc/YkVSZIV563oM0QtQA0AAAAAAAAAAAAAAAAAAAAAAAC9E6EGAAAYBf689s856ttHbb9R7nSgkoYKUKdIvnTGV3rc6i1ELUANAAAAAAAAAAAAAAAAAAAAAAAAfROhBgAAGOGe2vpUDvnKIX0fqCTpSOMEqMckM6bOyPzr5mfx3Yt7PNoxRC1ADQAAAAAAAAAAAAAAAAAAAAAAANW11HsAAAAAQ+urv/hqNpYbt98od3hYSbI1jfNPFDUlM3afkSSplJXMv25+kmTu7LndR1actyLrNq7LlAlT6jIRAAAAAAAAAAAAAAAAAAAAAAAAhgsRagAAgBHsgp9dkA/d8KHeHzZagHrM9gB1l75C1ALUAAAAAAAAAAAAAAAAAAAAAAAA0L9GSY0BAAAwyL548xeHdYC6S6Ws5KLfXJSOSkeNRwEAAAAAAAAAAAAAAAAAAAAAAMDw1ii5MQAAAAbR937zvXz4xg/3faCRAtQtfQeok+SwfQ/Lpadfmuam5hqOAgAAAAAAAAAAAAAAAAAAAAAAgOGvUZJjAAAADJKVa1bm7KvP7v1hmaQ9jfNtsDmZMal6gHrhmxdm8rjJNRwFAAAAAAAAAAAAAAAAAAAAAAAAI0OjZMcAAAAYBG3tbXnPD9+TpqKPr3vtSZprOqlvTcmMyQLUAAAAAAAAAAAAAAAAAAAAAAAAMFREqAEAAEaItva2zLtiXu545I5Mnzh91xD1pjROgHp9MmOKADUAAAAAAAAAAAAAAAAAAAAAAAAMJRFqAACAEWDHAHWXHiHqTUla6rNtFxuTpilJe0d7r48FqAEAAAAAAAAAAAAAAAAAAAAAAGBwiFADAAAMc70FqLtMnzg92ZiGClBnclJpStZuWrtLiFqAGgAAAAAAAAAAAAAAAAAAAAAAAAaPCDUAAMAwtnLNyj4D1EnSuqo1GVPjUX3ZlKSrLV0klVR6hKgFqAEAAAAAAAAAAAAAAAAAAAAAAGBwiVADAAAMU0vuWZL9v7J//ufe/+n1eesjrcnYGo/qS3uSSbve7gpRP2fScwSoAQAAAAAAAAAAAAAAAAAAAAAAYJCJUAMAAAxDN957Y05ecHKSpFJWsmrDqh7PWx9pTcbVY1kv2pNM7PtxJZX87rHfZeKYKocAAAAAAAAAAAAAAAAAAAAAAACAp02EGgAAYJhZdt+yvPaS1/a4t2OIuvXhBgpQP5WqAeouG7duzJObnxzyOQAAAAAAAAAAAAAAAAAAAAAAADCaiFADAAAMI0t+vyTHfee4Xp9VykpaH2pNdqvxqL5sSTKhl/vFrreWvn1ppkyYMtSLAAAAAAAAAAAAAAAAAAAAAAAAYFQRoQYAABgmvvHLb+TkhSf3fWBdeo8+18PWDDiGvfTtS3PsAccO6RwAAAAAAAAAAAAAAAAAAAAAAAAYjUSoAQAAhoFv/PIbOfe6c/s+sDqNFaAe38ezouelADUAAAAAAAAAAAAAAAAAAAAAAAAMHRFqAACABvfFn36xeoD6iSSTajanuo70HaDeiQA1AAAAAAAAAAAAAAAAAAAAAAAADK2Weg8AAACgbx/4wQfy5V99ue8DTySZXLM51XUkGVflebH9owA1AAAAAAAAAAAAAAAAAAAAAAAADL2meg8AAACgd1+8+YvVA9Sr0zgB6kqSsVWeC1ADAAAAAAAAAAAAAAAAAAAAAABAzYlQAwAANKBv/PIb+fCNH+77wNokk2q1ph+VJC3pEZruQYAaAAAAAAAAAAAAAAAAAAAAAAAA6kKEGgAAoMF87dav5dzrzu37wLokE2s2p7quAHVf3y4FqAEAAAAAAAAAAAAAAAAAAAAAAKBuWuo9AAAAgO0u+NkF+dANH+r7wKYkE2o2p7oynfHp3gLURc/LP//9n7P/XvvXYBQAAAAAAAAAAAAAAAAAAAAAAADQRYQaAACgQSz87cLqAerNaZxvcWU6Q9M77yl2PXr1W64WoAYAAAAAAAAAAAAAAAAAAAAAAIA6aJR8GQAAwKi25J4lOfPKM/s+0J6kuWZzqtsxQN1LdHpHX3rtl3LKIafUYBQAAAAAAAAAAAAAAAAAAAAAAACws6Z6DwAAABjtLrvjspy84OS+DzyVxvn2ViapJBmTAQWo//er/3cNRgEAAAAAAAAAAAAAAAAAAAAAAAC9aZSMGQAAwKh00a8vylu//9a+D2xJv7HnmukKUI/v/6gANQAAAAAAAAAAAAAAAAAAAAAAANSfCDUAAECdLPrtorxrybv6PrAlneHnRiBADQAAAAAAAAAAAAAAAAAAAAAAAMOOCDUAAEAdLPrtosy7cl7fB7amM/xc1GpRP8YmM/aakaai+tdIAWoAAAAAAAAAAAAAAAAAAAAAAABoHCLUAAAANTagAHUljROgHpPM2H1GkmT6xOl9hqgFqAEAAAAAAAAAAAAAAAAAAAAAAKCxiFADAADU0DV3X1M9QN2RxgpQF9sD1F16C1F/4fgvCFADAAAAAAAAAAAAAAAAAAAAAABAgxGhBgAAqJFFdy7KqYtO7ftAx7afRgpQT53R66MdQ9SXnXpZ/uHof6jlMgAAAAAAAAAAAAAAAAAAAAAAAGAARKgBAABq4IKfXZB5i+f1faCSZGsaJ0C9oe8AdZcTDjwhD5z3QM566Vk1GgUAAAAAAAAAAAAAAAAAAAAAAAA8HSLUAAAAQ+yCn12QD93wob4PVJJsSeN8Q2tLMjVZtWFVn0cO2/ewLHzzwsycNrNmswAAAAAAAAAAAAAAAAAAAAAAAICnp1ESZwAAACPSj/7wo+EVoN6QZM/Oj5Wy0muIuitAPXnc5NpuAwAAAAAAAAAAAAAAAAAAAAAAAJ6WRsmcAQAAjDi3PXRbTvjeCdUPNVKAen2SqT1v7RyiFqAGAAAAAAAAAAAAAAAAAAAAAACA4aNRUmcAAAAjym0P3ZbD/+vw6oc2p3G+lbUl2aP3R10hagFqAAAAAAAAAAAAAAAAAAAAAAAAGF4aJXcGAAAwYgw4QN1ckzn9a0uyZ/UjlbKSC0+8UIAaAAAAAAAAAAAAAAAAAAAAAAAAhhERagAAgEE0oAD1pjROgPrJ9BugTpJrz7w2M6fNHPI5AAAAAAAAAAAAAAAAAAAAAAAAwOBpqfcAAACAkWLAAepG+Sa2Mcm0/o/d8LYbcvyBxw/5HAAAAAAAAAAAAAAAAAAAAAAAAGBwNUr6DAAAYFh7cvOT/QeoNyYZU5M5/duYZEr/x5a+fWmOPeDYIZ8DAAAAAAAAAAAAAAAAAAAAAAAADD4RagAAgEFw5uVn7nqz3OHzxiRja7WmH5szoAD1tfOuFaAGAAAAAAAAAAAAAAAAAAAAAACAYayp3gMAAACGu9MvOz0/+NMPtt8o0zNAvSGNE6BuTzKp/2Nff8PXc9LBJw35HAAAAAAAAAAAAAAAAAAAAAAAAGDotNR7AAAAwHD2v67+X1m8YnHnRdnLgQ1JxtVyURVPJdm9/2Nff8PX897D3zvkcwAAAAAAAAAAAAAAAAAAAAAAAICh1VTvAQAAAMPVB37wgVz4mws7L3oLUK9PYwWoJ/Z/7AvHfUGAGgAAAAAAAAAAAAAAAAAAAAAAAEaIlnoPAAAAGI7mL5mfr/76q50XvQWo25JMqOWiKrZkQAHq97/i/fmH1/zDkM8BAAAAAAAAAAAAAAAAAAAAAAAAakOEGgAA4Gn62PUfqx6gXptk9xoOqmZrBhTD/sLxX8g/HC1ADQAAAAAAAAAAAAAAAAAAAAAAACOJCDUAAMDT8OmbPp3P3PqZzoveAtRrkkyq5aIqtibZrf9jX3/D1/Pew9875HMAAAAAAAAAAAAAAAAAAAAAAACA2mqq9wAAAIDh4oKfXZCP//jjfR9YncYJUHdkQAHqr77uqwLUAAAAAAAAAAAAAAAAAAAAAAAAMEKJUAMAAAzAwrsW5kM3fGj7jXKnA6uTTK7loio6kozv/9iXXvul/P2Rfz/kcwAAAAAAAAAAAAAAAAAAAAAAAID6aKn3AAAAgEa35J4lOfOqMzsvdo5PJ8m6NE6AupJkbP/HFrxpQeYdOm/I5wAAAAAAAAAAAAAAAAAAAAAAAAD101TvAQAAAI1syT1LcvKCkzsv+gpQT6zloioqScak3296L5/x8rz5kDfXYhEAAAAAAAAAAMD/z96dR9ldF+Yff+5kZhKyhyAkUJawWUAxmgQ3QBZRWYQGKSAoCkegymZb2p9CaEQWt1I2CYelbmAAl1AQlYIELFg1CZsLVBNEgpJRTGJ2sszM749kIJNZk8zc7507r9c5OZn5fD/33sce/pg5PecdAAAAAAAAAAAAoEAi1AAAAB3oMkC9PH0uQP2Gbd+QmR+ZmQE1A8qxCgAAAAAAAAAAAAAAAAAAAAAAACiQCDUAAEA7uhWgHlTORZ1oTrcC1PuO2jc/OesnGT5weDlWAQAAAAAAAAAAAAAAAAAAAAAAAAUToQYAANjEQ8891LcC1APS5W93+2+/f3569k8FqAEAAAAAAAAAAAAAAAAAAAAAAKAfEaEGAADYyKLli/Lu29/d8YVVqbwA9YDOr+2//f559IxHBagBAAAAAAAAAAAAAAAAAAAAAACgnxGhBgAA2GDp6qU59b9OTX1N/fqD5k0urEpSV+5VHWjO+t/oBKgBAAAAAAAAAAAAAAAAAAAAAACADtQWPQAAAKASLF29NB/41gfy6AuPZl3zutQ0JU2ljS6sSWUFqEvp8je68TuMz49P/7EANQAAAAAAAAAAAAAAAAAAAAAAAPRTNUUPAAAAKNrGAeq1TWuT5uYkSU3Thgtrsj76XAm6GaCuSU0e/PCDAtQAAAAAAAAAAAAAAAAAAAAAAADQj4lQAwAA/drS1Utz4rdPfC1AnbwaoU4pySsb/q6kCHUXAeok+enpP812Q7br9TkAAAAAAAAAAAAAAAAAAAAAAABA5RKhBgAA+q2lq5fmpO+clF/86RcZXDd4/WFz8/rQc5KmtUkGpHIC1E1J6jd83cmmOybfkQN2OaAciwAAAAAAAAAAAAAAAAAAAAAAAIAKJkINAAD0Sy0B6qcbnk6SDKodlBEDR6yPUCdpasr60HOlBKjX5rUAdSe+csxXcvL+J/f6HAAAAAAAAAAAAAAAAAAAAAAAAKDyiVADAAD9zqYB6haDauozYnVpfYC6JUJdCV5Jsk3X1y458JKcPuH0Xp8DAAAAAAAAAAAAAAAAAAAAAAAA9A0i1AAAQL/y4uIX2w1QJ0nWrMnitc1JYyorQD2062uXHHhJPnv4Z3t9DgAAAAAAAAAAAAAAAAAAAAAAANB31BY9AAAAoFx+9NyPcsTtR2RAaUC2H7J9m+cL1ixO6lM5/1zPiiQj2jnfJJD9L2/9FwFqAAAAAAAAAAAAAAAAAAAAAAAAoI1KSasBAAD0qoeffzhH3H5EkqSxuTF/XvHnVs8XLF+QrE3l/JbUUYB6Eyf87Qn54vu+2OtzAAAAAAAAAAAAAAAAAAAAAAAAgL6nUvJqAAAAvebh5x/OYd84rNVZmxD16lTOb0jL0nGAuvTal4fvcni+fdK3y7EIAAAAAAAAAAAAAAAAAAAAAAAA6INqix4AAADQm9oLULdoCVE3rmpMBpR5WEeWJtm262tH7HxEHjj9gV6fAwAAAAAAAAAAAAAAAAAAAAAAAPRdNUUPAAAA6C2dBahbVFSAelk6D1CX1v919O5H54EzBKgBAAAAAAAAAAAAAAAAAAAAAACAzolQAwAAVak7AeqsSuUEqJcnGdXJ8w0B6sl7Tc59H76vHIsAAAAAAAAAAAAAAAAAAAAAAACAPk6EGgAAqDrdClCvTFJbljldW5lkZCfPNwSozxp/VmacMqMMgwAAAAAAAAAAAAAAAAAAAAAAAIBqIEINAABUlW4HqOvKMqdrq5IM7+T5hgD1BRMvyE3H3VSORQAAAAAAAAAAAAAAAAAAAAAAAECVEKEGAACqxpKVS7oOUK9I5QSoX0kyrINnpbwaoD53wrm55uhryrMJAAAAAAAAAAAAAAAAAAAAAAAAqBoi1AAAQNW4YfYNnV9YnqS+LFO6tjrJ0A6elV77csrbpuT6Y64vxyIAAAAAAAAAAAAAAAAAAAAAAACgytQWPQAAAKAn3PWLu3LxIxd3fGFZkkFlm9O5NUmGdH3ts+/6bC455JJenwMAAAAAAAAAAAAAAAAAAAAAAABUJxFqAACgz7v32Xtz8t0nd3xhaZJtyjanc2uTDO7keWn9X1e9+6r80zv/qRyLAAAAAAAAAAAAAAAAAAAAAAAAgColQg0AAPRp3/rVt3LSd0/q+MKSdB59Lqe16TyGvSFAfefxd+akN3byvwkAAAAAAAAAAAAAAAAAAAAAAACgG2qKHgAAALClvvnUNzsPUC9O5QSo16XzAPUGE8dOzAn7ndDrcwAAAAAAAAAAAAAAAAAAAAAAAIDqJ0INAAD0STfOujEfuudDHV9YlGRo2eZ0rjGpGZjUNHVyp5S8ecyb89BHHsqAmgFlmwYAAAAAAAAAAAAAAAAAAAAAAABULxFqAACgz7lx1o35xA8/0fGFhUmGlW1O5xqTmvoNX5c6CFFvCFA/8tFHMnzg8HKuAwAAAAAAAAAAAAAAAAAAAAAAAKqYCDUAANCnzPztzM4D1IuSVErHuWmjAHWLTUPUAtQAAAAAAAAAAAAAAAAAAAAAAABALxGhBgAA+oy7f313Dr/j8PYfNif5a5JhZRzUmaYk6zp4Vtrwy1gpmTB2ggA1AAAAAAAAAAAAAAAAAAAAAAAA0CtEqAEAgD7ha09+Lcd/5/jWh80b/VmSZEj5d7WrKcmaZGxqMmJNqfWzUpKaUupqB+awXQ/LzI/MFKAGAAAAAAAAAAAAAAAAAAAAAAAAeoUINQAAUPFunHVjTr/39NaHzRt9vTyVF6CuWf/r1qDG0voQ9Yb4dGpqUjegPgftelDu/uDdAtQAAAAAAAAAAAAAAAAAAAAAAABAr6ktegAAAEBnLn/k8lzy40teO2je5MIrSQaVc1EnmpOsS8bW1yc1NUldXVJbm0H19UnTmixZvSR1NXU5aNeD8t0TvytADQAAAAAAAAAAAAAAAAAAAAAAAPQqEWoAAKBiXfnjKzsPUK9J5fxW05ykPhm77dh2Hw+qGZTdRu6W7Ydsn2/9/bcEqAEAAAAAAAAAAAAAAAAAAAAAAIBeVym5NgAAgFau++l1ufiRi187aC9AXVPORZ1oTlKTDCgN6PDKm8a8KXedcFeG1A3JgJqO7wEAAAAAAAAAAAAAAAAAAAAAAAD0lEpJtgEAALzqxlk35oIHLnjtoNID1ElSmzQ2N+bPK/7c5kpLgHr4wOEC1AAAAAAAAAAAAAAAAAAAAAAAAEDZVEq2DQAAIMn6APUnfviJ1w42DVCvS+X8JtO84U/9a0ebhqg3DlADAAAAAAAAAAAAAAAAAAAAAAAAlFOlpNsAAADy3V99t3WAelPr0jZKXaTmJAPbHreEqAWoAQAAAAAAAAAAAAAAAAAAAAAAgCKJUAMAABXhJy/8JCd894TWhxsHp1sC1KUyjurMurQboG7R2NyYm4+6WYAaAAAAAAAAAAAAAAAAAAAAAAAAKIwINQAAULjZf5ydA792YOvDjQPUTamsAPXaJNt0fuXBDz2YnUftXJY5AAAAAAAAAAAAAAAAAAAAAAAAAO0RoQYAAAq1/JXlOeDWAzq+0JSkMZUVoB7c9bVJYyf1+hQAAAAAAAAAAAAAAAAAAAAAAACAztQWPYD+4eWXX87s2bPz3HPPZenSpamrq8vo0aOz7777ZuLEiamrqyt6IgAABXl24bMdP1y74e9KCVCvTjK062szT5uZEYNH9PocAAAAAAAAAAAAAAAAAAAAAAAAgM6IUNOrvvOd7+Taa6/NT37ykzQ3N7d7Z9iwYTnxxBPzr//6r9l7773LvLCt5ubmzJ07N48//njmzJmTOXPm5Mknn8yyZcta3fvIRz6Sr33ta1v9eY888kgOPfTQrX6fFgsWLMiYMWN67P0AAHrT8leW5623vrXtg+asD1A3J6kp86iOvJJkWNfXZp42M4eO67mf7wAAAAAAAAAAAAAAAAAAAAAAAAC2lAg1veKPf/xjTj311Pz4xz/u8u6yZcvyn//5n7ntttsyZcqUTJkyJaVSqQwrXzNjxoz87Gc/y5w5c/LEE09kyZIlZf18AID+auigoZm046TMemlW6weVFqBemWRE19cEqAEAAAAAAAAAAAAAAAAAAAAAAIBKIkJNj/vtb3+bQw45JAsWLNis161Zsyb/9m//lmeffTa33XZbBgwY0EsL2zrjjDOEpwEACvLzM3+et97y1tdC1JUWoF6RZGTX1wSoAQAAAAAAAAAAAAAAAAAAAAAAgEojQk2PWrhwYY444oh2A9QTJkzIcccdl3HjxmXVqlX57W9/m+nTp+ell15qde+OO+7I9ttvn2uuuaZMqyvPHnvskaFDh27Ra+vq6np4DQBA72sVom5MUr5/j6Rzy5Js2/U1AWoAAAAAAAAAAAAAAAAAAAAAAACgEolQ06POOuuszJ8/v9XZsGHDcvvtt+fYY49tc//KK6/MlVdemc985jOtzq+99tq8973vzZFHHtmbc7s0evToTJgwIaNGjcpdd91Vts+99dZbc8ghh5Tt8wAAKsHPz/x5Sp8uVU6Aemm6FaD+7ge+K0ANAAAAAAAAAAAAAAAAAAAAAAAAVCQRanrMgw8+mBkzZrQ6q6+vz8yZMzNx4sR2X1NXV5epU6dm5MiR+eQnP9nq2fnnn59nn302tbXl+c90xIgRectb3pKJEydm0qRJmThxYsaNG5ckeeSRR8oaoQYA6I9Kl1ZQgHpZuhWgvuKQK3L8G47v9TkAAAAAAAAAAAAAAAAAAAAAAAAAW0KEmh5z2WWXtTmbOnVqhwHqjV1wwQX5/ve/nwcffPDVs3nz5mX69Ok57bTTenRne5588snstttuKZVKvf5ZAAC0Vbq0lKwtesUGy5OM6vraFYdckYvedVGvzwEAAAAAAAAAAAAAAAAAAAAAAADYUjVFD6A6/PrXv86jjz7a6my77bbLhRde2O33+NznPtfm7MYbb9zqbd0xbtw4AWoAgIJUVIB6ZZKRXV+7c/KdAtQAAAAAAAAAAAAAAAAAAAAAAABAxROhpkfceeedbc5OP/301NfXd/s9JkyYkAkTJrQ6+9nPfpbnn39+q/cBAFCZKipAvSrJ8K6v3XPiPTlp/5N6fQ4AAAAAAAAAAAAAAAAAAAAAAADA1hKhpkfcf//9bc5OOOGEzX6f9l7T3nsDAND3VVSA+pUkw9o5L7X+9q4P3JVj9zm2HIsAAAAAAAAAAAAAAAAAAAAAAAAAtpoINVttxYoVeeKJJ1qdDR48OG95y1s2+70OOuigNmePPvroFm8DAKAyVVSAenWSoV1fu/2423PiG07s9TkAAAAAAAAAAAAAAAAAAAAAAAAAPUWEmq321FNPpampqdXZxIkTU1tbu9nvNWnSpNTV1bU6e/zxx7dqHwAAlaWiAtRrkgzp+tq0I6fl1PGn9vocAAAAAAAAAAAAAAAAAAAAAAAAgJ60+ZVg2MT//d//tTnbc889t+i96uvr8zd/8zd5/vnnXz177rnnsm7dui2KWvdV99xzT77xjW9kzpw5aWhoyF//+tcMHTo0o0ePztixY/OOd7wjBx10UA4//PAMGjSo6LkAAN1WUQHqtUkGd/K8tP6vaUdOy8cP+Hg5FgEAAAAAAAAAAAAAAAAAAAAAAAD0qP5T9aXX/P73v29ztuuuu27x++2yyy6tItSNjY2ZP39+dt999y1+z77mmmuuaXO2ePHiLF68OPPmzcujjz6aL3zhC9lhhx1y3nnn5dxzz82IESPKPxQAoCsvvZTMmpX84hcp/XVq59HnclqbZJtOnm8IUD/0wYdy2N6HlWMRAAAAAAAAAAAAAAAAAAAAAAAAQI8ToWarNTQ0tDnbeeedt/j92nvtn/70p34Voe6uP/3pT5kyZUpuvvnm3HXXXXnb295W9KR23XDDDZk2bVqvf85zzz3X658BAHTD2rXJ/fcnX/968r//myQpnbggGVrwrhbr0nmAeoMZJ8wQoAYAAAAAAAAAAAAAAAAAAAAAAAD6NBFqttqiRYvanA0duuWFwfZeu3Dhwi1+v75qm222yXbbbZfhw4dnxYoVWbhwYZYtW9bu3fnz5+fggw/ON77xjZx88sllXtq1l19+Oc8880zRMwCAcnjwwWTKlOT3v18fo167NqXTl1dOgLoxyaAu7pSSrx771Uzeb3I5FgEAAAAAAAAAAAAAAAAAAAAAAAD0GhFqttqKFSvanG2zzTZb/H7tvXblypVb/H59xejRo3PUUUflqKOOysSJE7P77runpqam1Z25c+fmRz/6Ua6//vo8++yzrZ6tXbs2H/3oR7PTTjvloIMOKud0AIBk6dLkoouS6dOTVauSNWuSJKWPNyXDC97WojHJwC7ulJJpR07LR9/80TIMAgAAAAAAAAAAAAAAAAAAAAAAAOhdItRstbVr17Y5GzRo0Ba/X3sR6jUbIobVaMcdd8ztt9+eE044IQMHdl5F3GuvvbLXXnvlH/7hH3LDDTfkwgsvzOrVq199vnr16px44omZN29ehgwZ0tvTAQDWe/HF5L3vTebNSxobXz0und2UjCxuVitN6VaA+rJ3XZaPH/DxciwCAAAAAAAAAAAAAAAAAAAAAAAA6HU1RQ+gOpVKpR59bXNz89bMqWh77713Tj311C4D1BsrlUo599xzc99996Wurq7Vs4aGhlx99dU9PRMAoH2//nUyYULym9+0DlCf2ZRsW+CujTUl6erH0w3PP/m2T/byGAAAAAAAAAAAAAAAAAAAAAAAAIDyEaFmq20aQU6SVatWbfH7tffa+vr6LX6/avbud787X/jCF9qcX3311WncKAIJANArnnkmedvbkoULWx2XzmhKtito06ZaAtRtf2Rdr5RXA9SzPjYrQwcNLc8uAAAAAAAAAAAAAAAAAAAAAAAAgDKoLXoAfd/gwYPbnPV0hHrIkCFb/H7V7txzz811112X3//+96+eLVq0KLNmzcrb3/724oZt5HWve1323XffXv+c5557LqtXr+71zwEAksyfnxxySLJyZavj0keakh2KmdRGdwLUG8z62KxM2mlSGUYBAAAAAAAAAAAAAAAAAAAAAAAAlI8INVtt9OjRbc6WL1++xe/X3mvb+wzWq6ury9///d/nS1/6Uqvzhx56qGIi1Oecc07OOeecXv+c/fbbL88880yvfw4A9HtLlyZHHpksXNjquHRKU7JjQZs21Zz2A9SltlcFqAEAAAAAAAAAAAAAAAAAAAAAAIBqVVP0APq+HXbYoc3ZH/7why1+vxdffLFbn8FrDjnkkDZn8+fPL/8QAKCqfXD6B9d/cfHFydy5rZ4NPKEp2bWAUe1pTlK/4U9pkz+bEKAGAAAAAAAAAAAAAAAAAAAAAAAAqpkINVtt3Lhxbc5eeOGFLX6/TePJAwYMyC677LLF79cfjB07ts3Zyy+/XMASAKBalS4t5c65d6Z0aSmZPj1pbFz/oLk52x3dlDV7FbvvVXVJ6pPmqc05YMcDOr0qQA0AAAAAAAAAAAAAAAAAAAAAAABUOxFqttrrX//6Nmfz5s3bovdas2ZNXnzxxVZne+yxR2pra7fo/fqLIUOGtDlbtWpVAUsAgGpUurT02jfNSemcRUlTU9LUlOHHNGfh/sVta2XDbzfNU5uTJD8/8+cdhqgFqAEAAAAAAAAAAAAAAAAAAAAAAID+QISarfbmN785NTWt/1OaM2dO1q1bt9nvNWfOnKxdu7bV2Vve8pat2tcfvPzyy23OtttuuwKWAADVplWAukVNUrok2eXQZNkby7+pXc1JBrwWoG6xaYi6lJIANQAAAAAAAAAAAAAAAAAAAAAAANBviFCz1YYMGZI3v/nNrc5WrFiRJ598crPf67HHHmtzdvDBB2/xtv7i2WefbXP2ute9roAlAEA1aRWgbt7wp8W65MW3J2mnUV2I+rYB6hYtIepSSvn5x34uQA0AAAAAAAAAAAAAAAAAAAAAAAD0GyLU9Ij3ve99bc6+853vbPb7tPea9t6b1n7wgx+0OXvTm95UwBIAoFq0CVBvbE3Wx6crJUBd13GAusXPz/x5lv6/pQLUAAAAAAAAAAAAAAAAAAAAAAAAQL8iQk2POPnkk9ucffWrX82aNWu6/R5PPvlkZs+e3ersrW99a8aNG7fV+6rZs88+m3vvvbfVWalUEu8GALZYpwHqxvS5AHWLoYOG9vIYAAAAAAAAAAAAAAAAAAAAAAAAgMoiQk2PeMMb3pADDzyw1dnLL7+cq6++utvv8elPf7rN2cc//vGt3lbNVq9enTPPPDONjY2tzt/5zndmzJgxBa0CAPqyLgPUTemTAWoAAAAAAAAAAAAAAAAAAAAAAACA/kiEmh4zZcqUNmdTp07NE0880eVrv/zlL+e///u/W53tvvvuOeWUU7r12bvttltKpVKrP4888ki3Xluka6+9Ni+88MIWvXbZsmU56aST8pOf/KTNsyuuuGJrpwEA/VCfClC/JEANAAAAAAAAAAAAAAAAAAAAAAAA0BURanrMe9/73hx33HGtzlavXp1DDz003/ve99p9zdq1a3PZZZflvPPOa/PsuuuuS11dXa9srRRf/epXs+eee+aUU07Jvffem1deeaXL1zQ2Nubb3/523vKWt+See+5p8/zkk0/OwQcf3BtzAYAqtWTlkrzrund1fKFxw59KClDPP7zoFQAAAAAAAAAAAAAAAAAAAAAAAAAVr7boAVSXW265JY8//nj+8Ic/vHq2dOnSHHvssZk4cWKOO+64jBs3LqtWrcrcuXPzzW9+M3/84x/bvM+5556bo48+umy758yZk4997GMdPl++fHmbs3vvvTfjx4/v8DUTJ07Mrbfe2uVnr1u3LnfccUfuuOOODBkyJG9+85vzpje9KXvssUdGjhyZYcOGZeXKlVm4cGGeeOKJPPzww+3+3yxJDjzwwHz1q1/t8jMBAFo8/PzDOewbh7U+bN7o65YAdaX88zV/SprvH5scvF3RSwAAAAAAAAAAAAAAAAAAAAAAAAAqngg1Pep1r3tdHnjggRx22GFpaGho9WzOnDmZM2dOl+9x4okn5pprrumlhe1bvnx5nn766c16zeLFi7N48eIOn48cOXKzd6xYsSKPPfZYHnvssc1+7bHHHpuvf/3rGTRo0Ga/FgDon9oNUG+s0gLUi5Lmb9Qno5Pst1/RawAAAAAAAAAAAAAAAAAAAAAAAAAqXqXk5Kgi++yzT2bNmpUDDzxws15XV1eXqVOn5o477siAAQN6aV312WGHHXLzzTfnnnvu2aLwNQDQP3UYoG7e6Ot1qZzfGP6aNN9Uk9RsGLT//oXOAQAAAAAAAAAAAAAAAAAAAAAAAOgLKiUpR5XZeeed8z//8z+566678o53vCOlUqnDu0OHDs3pp5+eX/ziF/nMZz6Tmpr+85/ljBkzcvPNN+fUU0/N61//+m7/bx82bFiOOOKI3H777Zk/f37OPPPMXl4KAFSTDgPUG1udpFL+XZClSfONG35Oqq1d//cBBxS3BwAAAAAAAAAAAAAAAAAAAAAAAKCPKDU3NzcXPYLq9+c//zmzZs3K7373uyxdujS1tbXZbrvtss8++2TSpEmpr68vemJFWLlyZX7729/mxRdfzEsvvZRly5bllVdeycCBAzNq1KiMGjUqe++9d/bbb79+Fevurv322y/PPPNMm/N99903v/71rwtYBACVp8sAdXOSV5LUlmtRF5YlzV/e6OeeESOSd787+da3itsEAAAA9Gn+/wkAAAAAAAAAAAAAAAAAAEB/UilpOarc9ttvn2OOOaboGRVv8ODBGT9+fMaPH1/0FACgCnUZoE4qK0C9PGm+vpSUNjqrq0s+8pHCJgEAAAAAAAAAAAAAAAAAAAAAAAD0JTVFDwAAAHpftwLUK1M5AeqVSfO1SUobFajr65Nx45L3vKewWQAAAAAAAAAAAAAAAAAAAAAAAAB9iQg1AABUuW4FqFckqSvLnK6tSpqvTlKzya8r22yTXH55UlcpQwEAAAAAAAAAAAAAAAAAAAAAAAAqmwg1AABUsSUrl3QvQF1fljldeyVp/o8kpVLr8wEDklNPTd797kJmAQAAAAAAAAAAAAAAAAAAAAAAAPRFItQAAFDFbnnils4vVFKAenXSfNWGrzeNUO+1V3LFFWWfBAAAAAAAAAAAAAAAAAAAAAAAANCXiVADAECV+o+f/Ef+5aF/6fjCylROgHpN0vzvHTwbPTq5//5k+PCyTgIAAAAAAAAAAAAAAAAAAAAAAADo60SoAQCgCt3z63vyzz/6544vrEpSV7Y5nVubNH9po+9Lpde+HjIkeeSRZOedy70KAAAAAAAAAAAAAAAAAAAAAAAAoM8ToQYAgCrz8PMP5+++83cdX1iVpLZca7qwLsnADp5tt13ys58l++5bzkUAAAAAAAAAAAAAAAAAAAAAAAAAVUOEGgAAqsjDzz+cw75xWMcXXkllBagHJalJSpdsdF5bm/zt3yZz5ghQAwAAAAAAAAAAAAAAAAAAAAAAAGwFEWoAAKgSS1Yu6TxAvTrJgLLN6Vxj1geoW7SEqOvrk3/4h+SnP0123rmgcQAAAAAAAAAAAAAAAAAAAAAAAADVQYQaAACqxIjBI7LnqD3bf7g6lfPTf2OSge2c1ySli9Yk112XDB9e7lUAAAAAAAAAAAAAAAAAAAAAAAAAVadSMnQAAEAPmHv+3LYh6jWpnJ/8m9J+gHojpUtLZZkCAAAAAAAAAAAAAAAAAAAAAAAAUO0qJUUHAAD0kDYh6kppOjclGdDJ8412fnD6B3t7DQAAAAAAAAAAAAAAAAAAAAAAAEDVE6EGAIAqNPf8ua99U1fcjle1BKg7i1Bv5I5T7ujNNQAAAAAAAAAAAAAAAAAAAAAAAAD9ggg1AABUodKlpdYHRYaouxOg3mhu89TmXh4EAAAAAAAAAAAAAAAAAAAAAAAA0D+IUAMAQJVpE6BuUUSIujkC1AAAAAAAAAAAAAAAAAAAAAAAAAAFEaEGAIAq0mGAukU5Q9TNWf8bhwA1AAAAAAAAAAAAAAAAAAAAAAAAQCFEqAEAoEp0GaBuUY4QdXPWB6YFqAEAAAAAAAAAAAAAAAAAAAAAAAAKI0INAAB9wG2zb+v0ebcD1C16M0TdEqCu7eB5KQLUAAAAAAAAAAAAAAAAAAAAAAAAAGUgQg0AABVuj6v3yGk/OK3D0PRmB6hb9EaIurMA9Sbx6USAGgAAAAAAAAAAAAAAAAAAAAAAAKA3iVADAEAF2+PqPfK7pb979ftNg9O1l7ZXe94MPR2iHpDXAtSlTf5sQoAaAAAAAAAAAAAAAAAAAAAAAAAAoHeJUAMAQIXaNEDdoiVEXXtpbRrTuPUf1FMh6pqsj1B3EJ1ucfCogwWoAQAAAAAAAAAAAAAAAAAAAAAAAMqgtugBAABAWx0FqFu0hKh7TF2StVvx+lLWB6i7cM+J9+TYfY7dig8CAAAAAAAAAAAAAAAAAAAAAAAAoLtqih4AAAC01lWAutfUbeHrSunWP29z1wfuEqAGAAAAAAAAAAAAAAAAAAAAAAAAKCMRagAAqCCFBahbbEmIuhsB6v885j9z4htO3II3BwAAAAAAAAAAAAAAAAAAAAAAAGBLiVADAECFKDxA3WJzQtTduHvJgZfkjAlnbPEcAAAAAAAAAAAAAAAAAAAAAAAAALaMCDUAAFSAiglQt+gqLt3cjTtZH6D+7OGf7YlFAAAAAAAAAAAAAAAAAAAAAAAAAGym2qIHAABAf3fb7NsqK0Ddoi7J2nbOm5PUd/3y6464Lue947weHgUAAAAAAAAAAAAAAAAAAAAAAABAd9UUPQAAAPq7UcNHFT2hY3WbfN+UbgWoLznwEgFqAAAAAAAAAAAAAAAAAAAAAAAAgILVFj0AAAD6s/t+c1/ef+f7i57Ruboka7M+QD2w6+uXveuyTDlkSi+PAgAAAAAAAAAAAAAAAAAAAAAAAKArItQAAFCQFxe/WPkB6hZ13bt2xSFX5KJ3XdS7WwAAAAAAAAAAAAAAAAAAAAAAAADoFhFqAAAowNLVS3PWD85KTakmTc1NRc/pEV86/Eu58MALi54BAAAAAAAAAAAAAAAAAAAAAAAAwAY1RQ8AAID+ZunqpTnpOyfl6Yans8OQHVJTquwfy5unNmfPUXt2eueqd18lQA0AAAAAAAAAAAAAAAAAAAAAAABQYSq7dgcAAFVm4wB1i0oOUTdPbU6SzD1/boch6v864b/yT+/8p3LOAgAAAAAAAAAAAAAAAAAAAAAAAKAbKrN0BwAAVaixqTGnzji1VYC6xQ5DdihgUedaAtQt2gtRzzxtZo7b77hyzgIAAAAAAAAAAAAAAAAAAAAAAACgm0SoAQCgTAbUDMgZ489ITantj+ELli8oYFHHNg1Qt9g4RD3ztJk5dNyh5ZwFAAAAAAAAAAAAAAAAAAAAAAAAwGaoLXoAAAD0J5P3mZwkOe+H56WpuSlJ3wlQt5h7/twsWbkkIwaPKNMiAAAAAAAAAAAAAAAAAAAAAAAAALZETdEDAACgv5m8z+Rcf+T1qSnV9LkAdQsBagAAAAAAAAAAAAAAAAAAAAAAAIDKJ0INAAAFmLzP5Pxx2R+LntFKdwPUAAAAAAAAAAAAAAAAAAAAAAAAAPQNItQAAFCA0qWloie0IkANAAAAAAAAAAAAAAAAAAAAAAAAUH1EqAEAoMwEqAEAAAAAAAAAAAAAAAAAAAAAAAAoBxFqAAAoo0oLUCeVuQkAAAAAAAAAAAAAAAAAAAAAAACArSdCDQAAZTLg0gFFT+iQEDUAAAAAAAAAAAAAAAAAAAAAAABA9RGhBgCAMhh46cA0panoGZ0SogYAAAAAAAAAAAAAAAAAAAAAAACoLiLUAADQy4ZdOixrsqboGd0iRA0AAAAAAAAAAAAAAAAAAAAAAABQPUSoAQCgF42+dHSWZ3nRMzbLbbNvK3oCAAAAAAAAAAAAAAAAAAAAAAAAAD1AhBoAAHrJTpfvlEVZVPSMzbL78N3z4UkfLnoGAAAAAAAAAAAAAAAAAAAAAAAAAD1AhBoAALbAouWdx6WPu/a4vNT4UpnW9Izdh++e5/7xuaJnAAAAAAAAAAAAAAAAAAAAAAAAANBDRKgBAGAz3feb+zL6qtEZ++9j231++YOX596/3lvmVVvvibOfKHoCAAAAAAAAAAAAAAAAAAAAAAAAAD1IhBoAADbDfb+5L++/8/1JkoYVDW1C1NMem5ZL/veSIqZtlZmnzcyIwSOKngEAAAAAAAAAAAAAAAAAAAAAAABADxKhBgCAbto4QN1i4xD1tMem5ZyHzili2laZedrMHDru0KJnAAAAAAAAAAAAAAAAAAAAAAAAANDDaoseAAAAfUF7AeoWDSsaUrq0VOZFPUOAGgAAAAAAAAAAAAAAAAAAAAAAAKB61RQ9AAAAKl1nAeq+7Ecf+pEANQAAAAAAAAAAAAAAAAAAAAAAAEAVE6EGAIBO9MUA9dihY1NT6vxH/e+d/L0cvsfhZVoEAAAAAAAAAAAAAAAAAAAAAAAAQBFEqAEAoAN9NUCdJDsM2aHDEPX3Tv5ejnn9MeWcBQAAAAAAAAAAAAAAAAAAAAAAAEABRKgBAKAdfTlA3aK9ELUANQAAAAAAAAAAAAAAAAAAAAAAAED/IUINAACbWLR8UZ8KUNekJjsN26ndZxuHqAWoAQAAAAAAAAAAAAAAAAAAAAAAAPoXEWoAANjEtkO3zZghY4qe0S31qU/j1MZcf+T1r8amN/WePd6T+efPF6AGAAAAAAAAAAAAAAAAAAAAAAAA6GdEqAEAYCNLVi5Jkiy4cEHFh6hrUpPVU1cnSSbvM7ndEPWbxrwpd51wV3YetXMREwEAAAAAAAAAAAAAAAAAAAAAAAAokAg1AABs8PDzD2fkl0Zmr+v2SlL5IerGqY2tvt80RN0SoB4+cHgR8wAAAAAAAAAAAAAAAAAAAAAAAAAomAg1AABkfYD6sG8cliSZt3hexYeom6c2t3veEqKesOMEAWoAAAAAAAAAAAAAAAAAAAAAAACAfk6EGgCAfm/jAHWLjUPUC1csLGJWhzoKULeYvM/k/NdJ/yVADQAAAAAAAAAAAAAAAAAAAAAAANDP1RY9AAAAitRegLrFvMXzUrq0VOZFnesqQN1iQM2AXl4CAAAAAAAAAAAAAAAAAAAAAAAAQKWrKXoAAAAUpbMAdSXqboAaAAAAAAAAAAAAAAAAAAAAAAAAABIRagAA+ikBagAAAAAAAAAAAAAAAAAAAAAAAACqnQg1AAD9Tl8KUI+sHylADQAAAAAAAAAAAAAAAAAAAAAAAMAWEaEGAKBf6UsB6uF1w7P404uLngEAAAAAAAAAAAAAAAAAAAAAAABAHyVCDQBAv7Fk5ZI+E6AePGBwlly0pOgZAAAAAAAAAAAAAAAAAAAAAAAAAPRhItQAAPQbIwaPyJ6j9ix6RpcGZmBWTFlR9AwAAAAAAAAAAAAAAAAAAAAAAAAA+jgRagAA+pW558+t+BD1K1NfKXoCAAAAAAAAAAAAAAAAAAAAAAAAAFVAhBoAgH6n0kPUY/99bNETAAAAAAAAAAAAAAAAAAAAAAAAAKgCItQAAPRLc8+fW/SEDjWsaBCiBgAAAAAAAAAAAAAAAAAAAAAAAGCriVADANAvTbpxUtETOiVEDQAAAAAAAAAAAAAAAAAAAAAAAMDWEqEGAKDfOewrh2XOn+cUPaNLQtQAAAAAAAAAAAAAAAAAAAAAAAAAbA0RagAA+pXjbjsuD7/4cNEzuq1hRUMWLV9U9AwAAAAAAAAAAAAAAAAAAAAAAAAA+iARagAA+o1T7jol9/7u3qJnbJbvnfy9bDt026JnAAAAAAAAAAAAAAAAAAAAAAAAANAHiVADANAvfPQ7H80d/3dH0TM2y/dO/l6Oef0xRc8AAAAAAAAAAAAAAAAAAAAAAAAAoI8SoQYAoOqdOePMfP3XXy96xmYRoAYAAAAAAAAAAAAAAAAAAAAAAABga4lQAwBQ1S78wYW59Ze3Fj1jswhQAwAAAAAAAAAAAAAAAAAAAAAAANATRKgBAKhalz94ea6afVXRM141/ZjpGTNkTKd3BKgBAAAAAAAAAAAAAAAAAAAAAAAA6Cki1AAAVKVpj03LJf97SdEzXlWf+nxwwgez4MIFHYaoBagBAAAAAAAAAAAAAAAAAAAAAAAA6Eki1AAA9DmNTY2dPp/22LSc89A5ZVrTPWuyJntdt1eStBuiFqAGAAAAAAAAAAAAAAAAAAAAAAAAoKeJUAMA0KcsXb00f3fX3+XuZ+9u9/kdj99RcQHqFvMWz2s3RC1ADQAAAAAAAAAAAAAAAAAAAAAAAEBvqC16AAAAdNfS1Utz0ndOytMNT+fJBU8mSSbvM/nV53c8fkdOue+UouZ1S0uIeu75c7PgwgVZtHxRth26bdGzAAAAAAAAAAAAAAAAAAAAAAAAAKhCNUUPAACA7tg4QJ0kTc1NOe+H5+XuZ+9Okjw2/7GKD1C3aAlRJxGgBgAAAAAAAAAAAAAAAAAAAAAAAKDX1BY9AAAAurJpgLpFS4h61vxZ+fzPPl/Qui0zb/G8LFm5JCMGjyh6CgAAAAAAAAAAAAAAAAAAAAAAAABVqqboAQAA0JmOAtQt/rjsj30uQJ0kM0+bKUANAAAAAAAAAAAAAAAAAAAAAAAAQK8SoQYAoGJ1FaBesHxBmRf1jJmnzcyh4w4tegYAAAAAAAAAAAAAAAAAAAAAAAAAVU6EGgCAiiRADQAAAAAAAAAAAAAAAAAAAAAAAABbR4QaAICK01WAuq8SoAYAAAAAAAAAAAAAAAAAAAAAAACgnESoAQCoKI1NjTl1xqmdBqgXLF9QxkWdm7j9xDRPbc6eo/bs9J4ANQAAAAAAAAAAAAAAAAAAAAAAAADlJkINAEBFGVAzIGeMPyM1pfZ/VK2kAPX+2+6f2R+fnSSZe/7cDkPUAtQAAAAAAAAAAAAAAAAAAAAAAAAAFEGEGgCAijN5n8m5/sjr24SoKylAvfvw3fP0eU+3OmsvRC1ADQAAAAAAAAAAAAAAAAAAAAAAAEBRRKgBAKhIm4aoKylAvfPQnfPcPz7X7rONQ9QC1AAAAAAAAAAAAAAAAAAAAAAAAAAUqbboAQAA0JHJ+0xOkhz/reMLXvKanYbslPn/PL/TO3PPn5slK5dkxOARZVoFAAAAAAAAAAAAAAAAAAAAAAAAAG3VFD0AAAA6c9K3Tip6wqtGDxydP1z4h27dFaAGAAAAAAAAAAAAAAAAAAAAAAAAoGgi1AAAVKxBlw7K2qwtekaSZGT9yPzlU38pegYAAAAAAAAAAAAAAAAAAAAAAAAAdJsINQAAhViyckmnz4d8dkhWZ3WZ1nRu6IChWfzpxUXPAAAAAAAAAAAAAAAAAAAAAAAAAIDNIkINAEDZPfz8wxn5pZHZ67q92n0+7PJhWdm8ssyr2jd4wOAsm7Ks6BkAAAAAAAAAAAAAAAAAAAAAAAAAsNlEqAEAKKuHn384h33jsCTJvMXz2oSot/3ctlneuLyIaW0MzMCsmLKi6BkAAAAAAAAAAAAAAAAAAAAAAAAAsEVEqAEAKJuNA9QtNg5R7/CFHbJ4zeIiprVRl7q8MvWVomcAAAAAAAAAAAAAAAAAAAAAAAAAwBarLXoAAAD9Q3sB6hbzFs9L6dJSmRd1rDa1WTN1TdEzAAAAAAAAAAAAAAAAAAAAAAAAAGCr1BQ9AACA6tdZgLrS1KQma6euLXoGAAAAAAAAAAAAAAAAAAAAAAAAAGw1EWoAAHpVXwpQJ0nj1MaiJwAAAAAAAAAAAAAAAAAAAAAAAABAjxChBgCg1/S1AHWS3P3s3UVPAAAAAAAAAAAAAAAAAAAAAAAAAIAeIUINAECv6IsB6rFDx+a8H54nRA0AAAAAAAAAAAAAAAAAAAAAAABAVRChBgCgxy1ZuaRPBqiTpKm5SYgaAAAAAAAAAAAAAAAAAAAAAAAAgKogQg0AQI8bMXhE9hy1Z9Ezuq0lQN1CiBoAAAAAAAAAAAAAAAAAAAAAAACAaiBCDQBAr5h7/tw+EaLeNEDdoqm5KV956itpbGos8yIAAAAAAAAAAAAAAAAAAAAAAAAA6Bki1AAA9JpKD1F3FKBOkjeNeVO+efw3M6BmQBkXAQAAAAAAAAAAAAAAAAAAAAAAAEDPEaEGAKBXzT1/boZmaNEz2ugqQH3XCXdl+MDhZVwEAAAAAAAAAAAAAAAAAAAAAAAAAD1LhBoAgF5151N3ZnmWFz2jFQFqAAAAAAAAAAAAAAAAAAAAAAAAAPoDEWoAAHrNnU/dmVPuOaXoGa0IUAMAAAAAAAAAAAAAAAAAAAAAAADQX4hQAwDQK+7/5f055Z5T0pzmoqckSf5x/D9mxokzUlNq/0dgAWoAAAAAAAAAAAAAAAAAAAAAAAAAqk1t0QMAAKg+TzU8laNnHF0xAerT9zk9/3Hcf7z6/Xk/PC9NzU2vfi9ADQAAAAAAAAAAAAAAAAAAAAAAAEA1qil6AAAA1eWphqcy4aYJaUpT15fL4PR9Ts9XTvzKq99P3mdyrj/y+tSU1v8oLEANAAAAAAAAAAAAAAAAAAAAAAAAQLWqLXoAAADVo9IC1MfvfnyrAHWLyftMTpJ85amv5JvHf1OAGgAAAAAAAAAAAAAAAAAAAAAAAICqJEINAECPaGhoyKSbJlVMgPq9O7833/3wdzt8PnmfyTn29cdmQM2AMq4CAAAAAAAAAAAAAAAAAAAAAAAAgPKpKXoAAAB9X0NDQ3a5aZesy7qipyRJDhx7YO4/4/4u7wlQAwAAAAAAAAAAAAAAAAAAAAAAAFDNRKgBANgqDQ0N2fXmXbM2a4ue8qpHz3q06AkAAAAAAAAAAAAAAAAAAAAAAAAAUDgRagAAtsput+yWNc1rip7Ryl7X7VX0BAAAAAAAAAAAAAAAAAAAAAAAAAAonAg1AABbbPDlg7O6aXXRM9qYt3ieEDUAAAAAAAAAAAAAAAAAAAAAAAAA/Z4INQAAW2TYFcOyqnFV0TM6JEQNAAAAAAAAAAAAAAAAAAAAAAAAQH8nQg0AwGYbfuXwLF+3vOgZXRKiBgAAAAAAAAAAAAAAAAAAAAAAAKA/E6EGAGCzbPu5bbNs7bKiZ3TbvMXzsmTlkqJnAAAAAAAAAAAAAAAAAAAAAAAAAEDZiVADANBt239x+yxes7joGZtl5mkzM2LwiKJnAAAAAAAAAAAAAAAAAAAAAAAAAEDZiVADANAtO35xx7y86uWiZ2yWmafNzKHjDi16BgAAAAAAAAAAAAAAAAAAAAAAAAAUQoQaAIAu7XrVrlmwakHRMzaLADUAAAAAAAAAAAAAAAAAAAAAAAAA/Z0INQAAndrj6j0yf/n8omdsFgFqAAAAAAAAAAAAAAAAAAAAAAAAABChBgCgE2/88hvzu6W/K3pGkmT0oNFpntqcPUft2ek9AWoAAAAAAAAAAAAAAAAAAAAAAAAAWE+EGgCAdo2fNj6/WviromckSUbVj8pf/t9fkiRzz5/bYYhagBoAAAAAAAAAAAAAAAAAAAAAAAAAXiNCDQBAGwfcdECefvnpomckSYbVDcuiTy9qddZeiFqAGgAAAAAAAAAAAAAAAAAAAAAAAABaE6EGAKCVw79yeGY3zC56RpJkcO3gLL1oabvPNg5RC1ADAAAAAAAAAAAAAAAAAAAAAAAAQFu1RQ8AAKByHHXbUZn54syiZyRJthmwTVZcvKLTO3PPn5slK5dkxOARZVoFAAAAAAAAAAAAAAAAAAAAAAAAAH1HTdEDAACoDB+Y/oH88Hc/LHpGkqS+VJ+VU1Z2664ANQAAAAAAAAAAAAAAAAAAAAAAAAC0T4QaAICc+u1TM2PujKJnJFkfoH7hrBeKngEAAAAAAAAAAAAAAAAAAAAAAAAAfZ4INQBAP3fm3Wdm+jPTi56RJKlLXV4464WMGTOm6CkAAAAAAAAAAAAAAAAAAAAAAAAA0OeJUAMA9GOf/P4nc+svbi16RpKkNrWZf/Z8AWoAAAAAAAAAAAAAAAAAAAAAAAAA6CEi1AAA/dTFD1yca+dcW/SMJElNajL77NkC1AAAAAAAAAAAAAAAAAAAAAAAAADQg0SoAQD6oc//z+dz5U+vLHpGkvUB6sfPfjzjx4wvegoAAAAAAAAAAAAAAAAAAAAAAAAAVBURagCAfuaqR6/Kpx/+dNEzkghQAwAAAAAAAAAAAAAAAAAAAAAAAEBvEqEGAOhHpv10Wi6ceWHRM5IkpZTy/eO/L0ANAAAAAAAAAAAAAAAAAAAAAAAAAL1EhBoAoJ+486k7c+4D5xY9I8n6APX046bnfW98X9FTAAAAAAAAAAAAAAAAAAAAAAAAAKBqiVADAPQD9//y/pxyzylpTnPRU5Ik04+bnpPHn1z0DAAAAAAAAAAAAAAAAAAAAAAAAACoaiLUAABV7v5f3p+jZhxVMQHqG95zgwA1AAAAAAAAAAAAAAAAAAAAAAAAAJSBCDUAQBV7quGpHD3j6IoJUH/u0M/lE2//RNEzAAAAAAAAAAAAAAAAAAAAAAAAAKBfEKEGAKhSTzU8lQk3TUhTmoqekiSZ8o4p+dTBnyp6BgAAAAAAAAAAAAAAAAAAAAAAAAD0GyLUAABVqKGhoaIC1Be9/aJcdsRlRc8AAAAAAAAAAAAAAAAAAAAAAAAAgH5FhBoAoMo0NDRk55t2rpgA9QUTL8gV77mi6BkAAAAAAAAAAAAAAAAAAAAAAAAA0O+IUAMAVJGGhobsctMuWZd1RU9Jknxs/4/lmqOvKXoGAAAAAAAAAAAAAAAAAAAAAAAAAPRLItQAAFWioaEhu968a9ZmbdFTkiSn7HtKbpl8S9EzAAAAAAAAAAAAAAAAAAAAAAAAAKDfEqEGAKgSu92yW9Y0ryl6RpLk/bu/P9/8+28WPQMAAAAAAAAAAAAAAAAAAAAAAAAA+jURagCAKjD48sFZ3bS66BlJksN2Piz3fvjeomcAAAAAAAAAAAAAAAAAAAAAAAAAQL8nQg0A0McNu2JYVjWuKnpGkuSdO74zD53xUNEzAAAAAAAAAAAAAAAAAAAAAAAAAICIUAMA9GkjrxyZ5euWFz0jSTJpzKQ8duZjRc8AAAAAAAAAAAAAAAAAAAAAAAAAADYQoQYA6KO2/dy2WbJ2SdEzkiRvGP2GzDp7VtEzAAAAAAAAAAAAAAAAAAAAAAAAAICNiFADAPRB239x+yxes7joGUmSvUfunV+e+8uiZwAAAAAAAAAAAAAAAAAAAAAAAAAAmxChBgDoY3b80o55edXLRc9Ikuw+fPf85oLfFD0DAAAAAAAAAAAAAAAAAAAAAAAAAGiHCDUAQB+y61W7ZsHKBUXPSJLsNGSnPPePzxU9AwAAAAAAAAAAAAAAAAAAAAAAAADogAg1AEAfsdfVe2X+8vlFz0iSjN1mbP5w4R+KngEAAAAAAAAAAAAAAAAAAAAAAAAAdEKEGgCgD3jjl9+YeUvnFT0jSTJ64Oi89K8vFT0DAAAAAAAAAAAAAAAAAAAAAAAAAOiCCDUAQIUbP218frXwV0XPSJKMrBuZv3zqL0XPAAAAAAAAAAAAAAAAAAAAAAAAAAC6QYQaAKCCHXDTAXn65aeLnpEkGVY3LIsvWlz0DAAAAAAAAAAAAAAAAAAAAAAAAACgm0SoAQAq1OFfOTyzG2YXPSNJMnjA4Cy9aGnRMwAAAAAAAAAAAAAAAAAAAAAAAACAzSBCDQBQgY667ajMfHFm0TOSJNsM2CYrpqwoegYAAAAAAAAAAAAAAAAAAAAAAAAAsJlEqAEAKswHpn8gP/zdD4uekSSpL9Vn5ZSVRc8AAAAAAAAAAAAAAAAAAAAAAAAAALaACDUAQAU59dunZsbcGUXPSLI+QP3CWS8UPQMAAAAAAAAAAAAAAAAAAAAAAAAA2EIi1AAAFeLMu8/M9GemFz0jSVKb2rxw1gsZM2ZM0VMAAAAAAAAAAAAAAAAAAAAAAAAAgC0kQg0AUAE++f1P5tZf3Fr0jCTrA9Qvnv2iADUAAAAAAAAAAAAAAAAAAAAAAAAA9HEi1AAABbv4gYtz7Zxri56RJKlJTWafPVuAGgAAAAAAAAAAAAAAAAAAAAAAAACqgAg1AECBPv8/n8+VP72y6BlJ1geoHz/78YwfM77oKQAAAAAAAAAAAAAAAAAAAAAAAABADxChBgAoyLSfTsunH/500TOSJKWU8v3jvy9ADQAAAAAAAAAAAAAAAAAAAAAAAABVRIQaAKAA0346Lec8cE7RM5KsD1D/4Pgf5H1vfF/RUwAAAAAAAAAAAAAAAAAAAAAAAACAHiRCDQBQZnc+dWfOfeDcomckWR+gnn7cdAFqAAAAAAAAAAAAAAAAAAAAAAAAAKhCItQAAGV0/y/vzyn3nJLmNBc9JUky/bjpOXn8yUXPAAAAAAAAAAAAAAAAAAAAAAAAAAB6gQg1AECZ3P/L+3PUjKMqJkB9w3tuEKAGAAAAAAAAAAAAAAAAAAAAAAAAgComQg0AUAZPNTyVo2ccXTEB6s8d+rl84u2fKHoGAAAAAAAAAAAAAAAAAAAAAAAAANCLRKgBAHrZUw1PZcJNE9KUpqKnJEkuevtF+dTBnyp6BgAAAAAAAAAAAAAAAAAAAAAAAADQy0SoAQB6UUNDQybdNKliAtQXTLwgV7zniqJnAAAAAAAAAAAAAAAAAAAAAAAAAABlIEINANBLGhoasvNNO2dd1hU9JUnysf0/lmuOvqboGQAAAAAAAAAAAAAAAAAAAAAAAABAmYhQAwD0goaGhuxy0y4VE6D+0H4fyi2Tbyl6BgAAAAAAAAAAAAAAAAAAAAAAAABQRiLUAAC9YNebd83arC16RpLk+L2Oz20n3Fb0DAAAAAAAAAAAAAAAAAAAAAAAAACgzESoAQB62KDLBmVN85qiZyRJjtz9yHz3lO8WPQMAAAAAAAAAAAAAAAAAAAAAAAAAKIAINQBADxpy+ZCsblpd9IwkyWE7H5YffPgHRc8AAAAAAAAAAAAAAAAAAAAAAAAAAAoiQg0A0EOGXTEsKxtXFj0jSfLOHd+Zh854qOgZAAAAAAAAAAAAAAAAAAAAAAAAAECBRKgBALph0fJFnT4feeXILF+3vExrOjdpzKQ8duZjRc8AAAAAAAAAAAAAAAAAAAAAAAAAAAomQg0A0IX7fnNfRl81OmP/fWy7z7f7/HZZsnZJmVe17w2j35BZZ88qegYAAAAAAAAAAAAAAAAAAAAAAAAAUAFEqAEAOnHfb+7L++98f5KkYUVDmxD19l/cPgtXLyxiWht7j9w7vzz3l0XPAAAAAAAAAAAAAAAAAAAAAAAAAAAqhAg1AEAHNg5Qt9g4RP03//43eXnVy0VMa2O3YbvlNxf8pugZAAAAAAAAAAAAAAAAAAAAAAAAAEAFqS16AABAJWovQN2iYUVDSpeWyryoYzsN2SnP/9PzRc8AAAAAAAAAAAAAAAAAAAAAAAAAACpMTdEDAAAqTWcB6krzum1elz9c+IeiZwAAAAAAAAAAAAAAAAAAAAAAAAAAFUiEGgBgI30pQD164Oj8+V//XPQMAAAAAAAAAAAAAAAAAAAAAAAAAKBCiVADAGzQlwLUI+pG5C+f+kvRMwAAAAAAAAAAAAAAAAAAAAAAAACACiZCDQCQvhWgHlo7NH+96K9FzwAAAAAAAAAAAAAAAAAAAAAAAAAAKpwINQDQ7y1avqjPBKgHDxicZRcvK3oGAAAAAAAAAAAAAAAAAAAAAAAAANAHiFADAP3etkO3zZghY4qe0aWBNQOzYsqKomcAAAAAAAAAAAAAAAAAAAAAAAAAAH2ECDUAQJIFFy6o6BB1fak+r1zyStEzAAAAAAAAAAAAAAAAAAAAAAAAAIA+RIQaAGCDSg1R16UuL5z1QtEzAAAAAAAAAAAAAAAAAAAAAAAAAIA+RoQaAGAjCy5cUPSEVmpTm/lnz8+YMZUXxwYAAAAAAAAAAAAAAAAAAAAAAAAAKpsINQDARj75/U8WPeFVtanNi2e/KEANAAAAAAAAAAAAAAAAAAAAAAAAAGwREWoAgA0ufuDiXDvn2qJnJElqUpPZZ88WoAYAgP/P3r0GW10eZh++N7BRTqIidmsEFKNOrEQSIB2rTaNpDUInTkjjMNtJo/FACzaYxjoCvjGtERgbJ9AqGcTYvq91h7SRjs2AhIyaGB0zAnEbjKkHVMDDqgc8cIqA7PcDLQ3dqMA+PGutfV0zfFjPWv/n/2OG8eMtAAAAAAAAAAAAAAAAAAAAAAAHzQg1AECSuQ/MzeyHZ5fOSLJ7gHr1lNUZ3TS6dAoAAAAAAAAAAAAAAAAAAAAAAAAAUMOMUAMAPd6Chxdkxv0zSmckSRrSkKWTlhqgBgAAAAAAAAAAAAAAAAAAAAAAAAA6zAg1ANCjLW5dnGkrppXOSLJ7gHrZpGUZP2p86RQAAAAAAAAAAAAAAAAAAAAAAAAAoA4YoQYAeqzFrYvTfHdz6YwkuweoW85vMUANAAAAAAAAAAAAAAAAAAAAAAAAAHQaI9QAQI+0fM3yNN/dnLa0lU5Jktx87s2ZPHpy6QwAAAAAAAAAAAAAAAAAAAAAAAAAoI4YoQYAepzla5ZnwpIJVTNAfcu5t2TqGVNLZwAAAAAAAAAAAAAAAAAAAAAAAAAAdcYINQDQo7RWWjNxycSqGaBOYoAaAAAAAAAAAAAAAAAAAAAAAAAAAOgSRqgBgB6jtdKaMQvHZFd2lU7ZyzHfOqZ0AgAAAAAAAAAAAAAAAAAAAAAAAABQh4xQAwA9QqVSybiF46pugDpJKlsqhqgBAAAAAAAAAAAAAAAAAAAAAAAAgE5nhBoAqHuVSiXDFg7LzuwsnfKeDFEDAAAAAAAAAAAAAAAAAAAAAAAAAJ3NCDUAUNcqlUqGLxxe1QPU/80QNQAAAAAAAAAAAAAAAAAAAAAAAADQmYxQAwB1bcStI7IjO0pn7LfKlko2bt5YOgMAAAAAAAAAAAAAAAAAAAAAAAAAqANGqAGAunXo9Ydme9v20hkH5IeTf5gjBx5ZOgMAAAAAAAAAAAAAAAAAAAAAAAAAqANGqAGAujTgmwPyzq53SmcckB9O/mH+5JQ/KZ0BAAAAAAAAAAAAAAAAAAAAAAAAANQJI9QAQN0ZNHtQtr67tXTGATFADQAAAAAAAAAAAAAAAAAAAAAAAAB0NiPUAEBdOXz24dm8Y3PpjANigBoAAAAAAAAAAAAAAAAAAAAAAAAA6ApGqAGAunHU3KPy1o63SmckSU4bclrarmtL04Cm9/2dAWoAAAAAAAAAAAAAAAAAAAAAAAAAoKsYoQYA6sLv3Pg7ef2d10tnJElOPvzkrLliTZLk5atefs8hagPUAAAAAAAAAAAAAAAAAAAAAAAAAEBXMkINANS84751XF7Z9krpjCTJ8IHD8+T0J/c629cQtQFqAAAAAAAAAAAAAAAAAAAAAAAAAKCrGaEGAGraiJtG5MUtL5bOSJJ8aMCHsu5r6/b53W8PURugBgAAAAAAAAAAAAAAAAAAAAAAAAC6Q5/SAQAAB+uU+adk/eb1pTOSJEP7Dc0LV73wvr95+aqXs3Hzxhw58MhuqgIAAAAAAAAAAAAAAAAAAAAAAAAAerJepQMAAA7GqJtH5ak3nyqdkSQ5ou8ReeXqV/brtwaoAQAAAAAAAAAAAAAAAAAAAAAAAIDuYoQaAKg5n1j4iTz++uOlM5IkgxsHZ+OMjaUzAAAAAAAAAAAAAAAAAAAAAAAAAADaMUINANSUsxadlZWVlaUzkiQD+wzMmzPfLJ0BAAAAAAAAAAAAAAAAAAAAAAAAALBPRqgBgJrx6ds/nYdeeqh0RpKkf+/+2TRrU+kMAAAAAAAAAAAAAAAAAAAAAAAAAID3ZIQaAKgJE+6YkPs23Fc6I0lySK9DsuXaLaUzAAAAAAAAAAAAAAAAAAAAAAAAAADelxFqAKDqfb7l87nn2XtKZyRJ+jb0zUvTXiqdAQAAAAAAAAAAAAAAAAAAAAAAAADwgYxQAwBV7aK7LsqSp5eUzkiSNKYx6y5flyOPPLJ0CgAAAAAAAAAAAAAAAAAAAAAAAADABzJCDQBUral3T83/ffz/ls5IkvRJn6yfsj5NTU2lUwAAAAAAAAAAAAAAAAAAAAAAAAAA9osRagCgKl259Mp8p/U7pTOSJL3SKxumbDBADQAAAAAAAAAAAAAAAAAAAAAAAADUFCPUAEDVmbViVuavml86I8nuAerVU1YboAYAAAAAAAAAAAAAAAAAAAAAAAAAao4RagCgqsx9YG5mPzy7dEaS/xmgHt00unQKAAAAAAAAAAAAAAAAAAAAAAAAAMABM0INAFSNBQ8vyIz7Z5TOSJI0pCFLJy01QA0AAAAAAAAAAAAAAAAAAAAAAAAA1Cwj1ABAVVjcujjTVkwrnZFk9wD1sknLMn7U+NIpAAAAAAAAAAAAAAAAAAAAAAAAAAAHzQg1AFDc4tbFab67uXRGkt0D1C3ntxigBgAAAAAAAAAAAAAAAAAAAAAAAABqnhFqAKCo5WuWp/nu5rSlrXRKkuTmc2/O5NGTS2cAAAAAAAAAAAAAAAAAAAAAAAAAAHSYEWoAoJjla5ZnwpIJVTNAfcu5t2TqGVNLZwAAAAAAAAAAAAAAAAAAAAAAAAAAdAoj1ABAEa2V1kxcMrFqBqjnnD3HADUAAAAAAAAAAAAAAAAAAAAAAAAAUFeMUAMA3a610poxC8dkV3aVTkmSzDxjZq755DWlMwAAAAAAAAAAAAAAAAAAAAAAAAAAOpURagCgW1UqlYxbOK5qBqinj52eG869oXQGAAAAAAAAAAAAAAAAAAAAAAAAAECnM0INAHSbSqWSYQuHZWd2lk5Jklz60Uszb+K80hkAAAAAAAAAAAAAAAAAAAAAAAAAAF3CCDUA0C0qlUpG3Dqiagaom09tzqLPLSqdAQAAAAAAAAAAAAAAAAAAAAAAAADQZYxQAwDdYsStI7K9bXvpjCTJpJMm5c4v3Fk6AwAAAAAAAAAAAAAAAAAAAAAAAACgSxmhBgC6XP9v9q+aAerzRp6Xu5rvKp0BAAAAAAAAAAAAAAAAAAAAAAAAANDljFADAF1qwDcHZNu720pnJEnOGXZOln1xWekMAAAAAAAAAAAAAAAAAAAAAAAAAIBuYYQaAOgyh80+LFvf3Vo6I0ky7thxuffL95bOAAAAAAAAAAAAAAAAAAAAAAAAAADoNkaoAYAuceScI7Npx6bSGUmS04eenkcue6R0BgAAAAAAAAAAAAAAAAAAAAAAAABAtzJCDQAcsLe2vvW+3x8196i8sf2Nbqp5f6cNOS2tU1tLZwAAAAAAAAAAAAAAAAAAAAAAAAAAdDsj1ADAAbn/uftz+N8dnpP+/qR9fn/sjcfm9Xde7+aqfRt52MisuWJN6QwAAAAAAAAAAAAAAAAAAAAAAAAAgCKMUAMA++3+5+7POf/vnCTJM288026I+rhvHZeXt71cIq2d4QOHZ+1X15bOAAAAAAAAAAAAAAAAAAAAAAAAAAAoxgg1ALBffnuA+r/99hD1id8+MS9uebFEWjvH9Dsm6762rnQGAAAAAAAAAAAAAAAAAAAAAAAAAEBRfUoHAADVb18D1P/tmTeeScPfNHRz0Xsb2m9oXrr6pdIZAAAAAAAAAAAAAAAAAAAAAAAAAADF9SodAABUt/cboK42R/Q9Iq9c/UrpDAAAAAAAAAAAAAAAAAAAAAAAAACAqmCEGgB4T7U0QD24cXA2zthYOgMAAAAAAAAAAAAAAAAAAAAAAAAAoGoYoQYA9qmWBqgH9hmYN2e+WToDAAAAAAAAAAAAAAAAAAAAAAAAAKCqGKEGANqppQHqfr37ZdOsTaUzAAAAAAAAAAAAAAAAAAAAAAAAAACqjhFqAGAvb219q2YGqA/pdUi2Xru1dAYAAAAAAAAAAAAAAAAAAAAAAAAAQFUyQg0A7GVw/8H58BEfLp3xgfo29M3zlz1fOgMAAAAAAAAAAAAAAAAAAAAAAAAAoGoZoQYA2nn6K09X9RB1Yxqz7vJ1aWpqKp0CAAAAAAAAAAAAAAAAAAAAAAAAAFC1jFADAPtUrUPUfdIn66esN0ANAAAAAAAAAAAAAAAAAAAAAAAAAPABjFADAO/p6a88nYEZWDpjj17plQ1TNhigBgAAAAAAAAAAAAAAAAAAAAAAAADYD0aoAYD3NGvFrGzO5tIZSXYPUK+estoANQAAAAAAAAAAAAAAAAAAAAAAAADAfjJCDQDs09wH5mb2w7NLZyT5nwHq0U2jS6cAAAAAAAAAAAAAAAAAAAAAAAAAANQMI9QAQDsLHl6QGffPKJ2RJGlIQ5ZOWmqAGgAAAAAAAAAAAAAAAAAAAAAAAADgABmhBgD2srh1caatmFY6I8nuAeplk5Zl/KjxpVMAAAAAAAAAAAAAAAAAAAAAAAAAAGqOEWoAYI/FrYvTfHdz6YwkuweoW85vMUANAAAAAAAAAAAAAAAAAAAAAAAAAHCQjFADAEmS5WuWp/nu5rSlrXRKkuTmc2/O5NGTS2cAAAAAAAAAAAAAAAAAAAAAAAAAANQsI9QAQForrZm4ZGLVDFD/3Tl/l6lnTC2dAQAAAAAAAAAAAAAAAAAAAAAAAABQ04xQA0AP11ppzZiFY7Iru0qnJEnmnD0nV/3BVaUzAAAAAAAAAAAAAAAAAAAAAAAAAABqnhFqAOjBqm2AemAG5ppPXlM6AwAAAAAAAAAAAAAAAAAAAAAAAACgLhihBoAeqlKpZNzCcVUzQJ0km7M5J/39SaUzAAAAAAAAAAAAAAAAAAAAAAAAAADqghFqAOiBKpVKhi8cnp3ZWTqlnWfeeMYQNQAAAAAAAAAAAAAAAAAAAAAAAABAJzBCDQA9TKVSyYhbR2RHdpROeU+GqAEAAAAAAAAAAAAAAAAAAAAAAAAAOs4INQD0MCNuHZHtbdtLZ3wgQ9QAAAAAAAAAAAAAAAAAAAAAAAAAAB1jhBoAepD+3+xfEwPU/+2ZN57JW1vfKp0BAAAAAAAAAAAAAAAAAAAAAAAAAFCTjFADQA8x8JsDs+3dbaUzDsh9f3ZfBvcfXDoDAAAAAAAAAAAAAAAAAAAAAAAAAKAmGaEGgB7gsNmHZcu7W0pnHJD7/uy+nH3C2aUzAAAAAAAAAAAAAAAAAAAAAAAAAABqlhFqAKhzR845Mpt2bCqdcUAMUAMAAAAAAAAAAAAAAAAAAAAAAAAAdJwRagCoY0fNPSpvbH+jdMYBMUANAAAAAAAAAAAAAAAAAAAAAAAAANA5jFADQJ069sZj8/o7r5fOSJKMPGxk2q5ry4eP+PD7/s4ANQAAAAAAAAAAAAAAAAAAAAAAAABA5zFCDQB1aMRNI/LytpdLZyRJhg8cnrVfXZskeforT7/nELUBagAAAAAAAAAAAAAAAAAAAAAAAACAzmWEGgDqzInfPjHrN68vnZEkOabfMVn3tXV7ne1riNoANQAAAAAAAAAAAAAAAAAAAAAAAABA5zNCDQB15Hf/4Xfz7NvPls5IkgztNzQvXf3SPr/77SFqA9QAAAAAAAAAAAAAAAAAAAAAAAAAAF2jT+kAAKBzjF4wOk9sfKJ0RpLkiL5H5JWrX3nf3zz9lafz1ta3Mrj/4G6qAgAAAAAAAAAAAAAAAAAAAAAAAADoWXqVDgAAOu4TCz+Rx159rHRGkmRQ46BsnLFxv35rgBoAAAAAAAAAAAAAAAAAAAAAAAAAoOsYoQaAGnfWorOysrKydEaSZGCfgXl75tulMwAAAAAAAAAAAAAAAAAAAAAAAAAAiBFqAKhpE+6YkIdeeqh0RpKkX+9+2TRrU+kMAAAAAAAAAAAAAAAAAAAAAAAAAAD+ixFqAKhRn2/5fO559p7SGUmSQxoOydZrt5bOAAAAAAAAAAAAAAAAAAAAAAAAAADgtxihBoAadOG/XpglTy8pnZEk6dvQN89f/nzpDAAAAAAAAAAAAAAAAAAAAAAAAAAA/hcj1ABQYy77t8vS8kRL6YwkSWMas+7ydWlqaiqdAgAAAAAAAAAAAAAAAAAAAAAAAADA/2KEGgBqyJVLr8xtv7ytdEaSpE/6ZP2U9QaoAQAAAAAAAAAAAAAAAAAAAAAAAACqlBFqAKgRs1bMyvxV80tnJEl6pVdWTllpgBoAAAAAAAAAAAAAAAAAAAAAAAAAoIoZoQaAGjD3gbmZ/fDs0hlJdg9Qr56yOqObRpdOAQAAAAAAAAAAAAAAAAAAAAAAAADgfRihBoAqN/eBuZlx/4zSGUkMUAMAAAAAAAAAAAAAAAAAAAAAAAAA1BIj1ABQxRY8vKBqBqgb0pClk5YaoAYAAAAAAAAAAAAAAAAAAAAAAAAAqBFGqAGgSi1uXZxpK6aVzkiye4C65fyWjB81vnQKAAAAAAAAAAAAAAAAAAAAAAAAAAD7yQg1AFSh5WuWp/nu5tIZe7Sc35LJoyeXzgAAAAAAAAAAAAAAAAAAAAAAAAAA4AAYoQaAKrN8zfJMWDIhbWkrnZIkueXcWwxQAwAAAAAAAAAAAAAAAAAAAAAAAADUICPUAFBFWiutmbhkYtUMUM85e06mnjG1dAYAAAAAAAAAAAAAAAAAAAAAAAAAAAehT+kAeoZXX301K1euzNq1a/P222+nsbExQ4YMyamnnpqxY8emsbGxdCJAca2V1oxZOCa7sqt0SpLdA9TXfPKa0hkAAAAAAAAAAAAAAAAAAAAAAAAAABwkI9R0qR/84AeZP39+HnroobS1te3zN4MGDcoFF1yQq6++OieffHI3F7bX1taWp59+OqtXr86qVauyatWqPProo9m0adNev/vSl76Uf/qnf+r2vttvvz2XXHLJPr977rnncvzxx3dvENApKpVKVQ1QzzxjpgFqAAAAAAAAAAAAAAAAAAAAAAAAAIAaZ4SaLvHiiy/mwgsvzE9/+tMP/O2mTZvy3e9+N3fccUeuvfbaXHvttWloaOiGyv+xZMmS/PznP8+qVavyi1/8Im+99Va3vn9/vfDCC/mrv/qr0hlAJ6tUKhm2cFjVDFBPHzs9N5x7Q+kMAAAAAAAAAAAAAAAAAAAAAAAAAAA6yAg1ne6pp57Kpz71qbz88ssH9Nz27dvz9a9/Pb/+9a9zxx13pHfv3l1U2N6Xv/zlqh2e/m2XXHJJTXQC+69SqWT4wuHZmZ2lU5Ikl3700sybOK90BgAAAAAAAAAAAAAAAAAAAAAAAAAAncAINZ3q9ddfzx//8R/vc4B6zJgxOf/883PCCSdk27Zteeqpp9LS0pKXXnppr99973vfy9FHH5158+Z1U3VtuPXWW7NixYrSGUAnqlQqGXHriOzIjtIpSZLmU5uz6HOLSmcAAAAAAAAAAAAAAAAAAAAAAAAAANBJjFDTqS6//PKsX79+r7NBgwbln//5n/PZz3623e9nz56d2bNn5xvf+MZe5/Pnz89nPvOZnHfeeV2Z+4GGDBmSMWPG5Igjjsj3v//9Yh3r1q3LVVddtefz4MGD09TUlCeffLJYE9Bxxy86PtvbtpfOSJJMOmlS7vzCnaUzAAAAAAAAAAAAAAAAAAAAAAAAAADoRL1KB1A/fvzjH2fJkiV7nfXt2zf33XffPgeok6SxsTHXXXdd5s2b1+67r3zlK9m5c2dXpO7T4MGDc/bZZ+ev//qv8y//8i959tln89prr+VHP/pR/vzP/7zbOv63tra2XHLJJdm0adOes5tuuilNTU3FmoCO6//N/nln1zulM5Ik5ww7J3c131U6AwAAAAAAAAAAAAAAAAAAAAAAAACATtandAD14/rrr293dt1112Xs2LEf+Oz06dOzdOnS/PjHP95z9swzz6SlpSV/9md/1qmd+/Loo4/m+OOPT0NDQ5e/60B95zvfyb333rvn8x/90R/lkksuyR133FGwCuiIQTcMyrZ3t5XOSJKceeyZuffL937wDwEAAAAAAAAAAAAAAAAAAAAAAAAAqDm9SgdQH371q1/lZz/72V5nRx11VK666qr9vmPOnDntzr7zne90uG1/nHDCCVU5QP3cc8/l6quv3vN5wIABWbRoUcEioKMOn314Nu/cXDojSTKuaVwevOzB0hkAAAAAAAAAAAAAAAAAAAAAAAAAAHQRI9R0isWLF7c7u/jii9O3b9/9vmPMmDEZM2bMXmc///nP89xzz3W4rxa1tbXl4osvzpYtW/aczZkzJ8cff3y5KKBDjpxzZN7a8VbpjCTJ6UNPzyNTHimdAQAAAAAAAAAAAAAAAAAAAAAAAABAFzJCTadYvnx5u7M//dM/PeB79vXMvu7uCf7hH/4hP/3pT/d8Puuss3LFFVcULAI64ugbj84b298onZEkOfnwk9M6tbV0BgAAAAAAAAAAAAAAAAAAAAAAAAAAXcwINR22ZcuW/OIXv9jrrH///vn4xz9+wHf9wR/8Qbuzn/3sZwfdVqvWrl2bGTNm7Pl86KGH5rvf/W4aGhoKVgEH69gbj82r214tnZEkGXnYyDw5/cnSGQAAAAAAAAAAAAAAAAAAAAAAAAAAdAMj1HRYa2trdu3atdfZ2LFj06dPnwO+a9y4cWlsbNzrbPXq1R3qqzW7du3KxRdfnK1bt+45+5u/+ZucfPLJBauAgzXiphF5edvLpTOSJB8a8KGs/era0hkAAAAAAAAAAAAAAAAAAAAAAAAAAHQTI9R02H/8x3+0O/vwhz98UHf17ds3xx133F5na9euzc6dOw/qvlo0f/78/OxnP9vzeezYsfna175WsAg4WCd++8Ss37y+dEaS5Jh+x+SFq14onQEAAAAAAAAAAAAAAAAAAAAAAAAAQDcyQk2HPf/88+3ORowYcdD3DR8+fK/P7777btavr44R16721FNPZdasWXs+NzY25vbbb0/v3r0LVgEHY9TNo/Ls28+WzkiSDDlkSF66+qXSGQAAAAAAAAAAAAAAAAAAAAAAAAAAdLM+pQOofZVKpd3ZsGHDDvq+fT37n//5nxk5cuRB31kLdu3alYsuuijbtm3bczZr1qyMGjWqYFXnuOWWW7JgwYIuf8/atWu7/B2wP0YvGJ3HX3+8dEaS5Ii+R+S1a14rnQEAAAAAAAAAAAAAAAAAAAAAAAAAQAFGqOmwjRs3tjsbOHDgQd+3r2dff/31g76vVtx00015+OGH93weNWpUZs6cWbCo87z66qt54oknSmdAt/jEwk/ksVcfK52RJBnUOCgbZ7T/bzQAAAAAAAAAAAAAAAAAAAAAAAAAAD1Dr9IB1L4tW7a0O+vXr99B37evZ7du3XrQ99WCX//61/n617++53Pv3r1z++23p7GxsWAVcKA+ffuns7KysnRGkqR/7/55e+bbpTMAAAAAAAAAAAAAAAAAAAAAAAAAACjICDUdtmPHjnZnhx566EHft68R6u3btx/0fdXu3XffzUUXXZTf/OY3e86uuuqqjB07tmAVcKAm3DEh9224r3RGkqRf737Zcm37/0EAAAAAAAAAAAAAAAAAAAAAAAAAAAA9ixFqukRDQ0OnPtvW1taRnKp244035pFHHtnz+ZRTTsk3vvGNckHAAft8y+dzz7P3lM5IkvRt6Jut124tnQEAAAAAAAAAAAAAAAAAAAAAAAAAQBUwQk2HNTY2tjvbtm3bQd+3r2f79u170PdVs1/96ld7DU43NDTku9/9bg499NByUcABufBfL8ySp5eUzkiye4B63eXrSmcAAAAAAAAAAAAAAAAAAAAAAAAAAFAl+pQOoPb179+/3Vlnj1APGDDgoO+rVjt37syXvvSlbN++fc/ZFVdckTPPPLNgVdcYOnRoTj311C5/z9q1a/POO+90+Xvgv132b5el5YmW0hlJkj7pk3WXr0tTU1PpFAAAAAAAAAAAAAAAAAAAAAAAAAAAqoQRajpsyJAh7c42b9580Pft69l9vaPWzZ07N6tXr97z+fjjj8+cOXMKFnWdadOmZdq0aV3+nt/93d/NE0880eXvgSS5cumVue2Xt5XOSLJ7gHrDlA0GqAEAAAAAAAAAAAAAAAAAAAAAAAAA2Euv0gHUvt/5nd9pd/bCCy8c9H0bNmzYr3fUshdeeCHXX3/9XmeLFi3KgAEDChUBB2LWilmZv2p+6YwkSa/0ysopKw1QAwAAAAAAAAAAAAAAAAAAAAAAAADQTp/SAdS+E044od3ZunXrDvq+9evX7/W5d+/eGT58+EHfV41ee+21bN++fc/nvn375qqrrjqgO5555pl2ZxMmTEjfvn33Ovvbv/3bfPaznz24UKCduQ/MzeyHZ5fOSLJ7gHr1lNUZ3TS6dAoAAAAAAAAAAAAAAAAAAAAAAAAAAFXICDUddsopp7Q729dA8v7Yvn17NmzYsNfZiSeemD596vuf6vbt2/PYY491+J5f//rX7c42btzY4XuB3RY8vCAz7p9ROiNJ0pCGLJ201AA1AAAAAAAAAAAAAAAAAAAAAAAAAADvqVfpAGrfxz72sfTqtfc/pVWrVmXnzp0HfNeqVauyY8eOvc4+/vGPd6gPoDMseHhBpq2YVjojye4B6mWTlmX8qPGlUwAAAAAAAAAAAAAAAAAAAAAAAAAAqGJGqOmwAQMG5GMf+9heZ1u2bMmjjz56wHc9+OCD7c4++clPHnQbQGdY3Lo4V6y4onRGkt0D1C3ntxigBgAAAAAAAAAAAAAAAAAAAAAAAADgAxmhplOMH99+DPUHP/jBAd+zr2f2dXetGz16dNra2jr05w//8A/b3fvcc8+1+91FF13U/X9BqCPL1yxP893NaUtb6ZQkScv5LZk8enLpDAAAAAAAAAAAAAAAAAAAAAAAAAAAaoARajrF5MntB1H/8R//Mdu3b9/vOx599NGsXLlyr7Pf+73fywknnNDhPoCDsXzN8kxYMqFqBqhvOfcWA9QAAAAAAAAAAAAAAAAAAAAAAAAAAOw3I9R0itNOOy1nnXXWXmevvvpqvv3tb+/3HTNmzGh39hd/8RcdbgM4GK2V1kxcMrFqBqjnnD0nU8+YWjoDAAAAAAAAAAAAAAAAAAAAAAAAAIAaYoSaTnPttde2O7vuuuvyi1/84gOfvfnmm/OjH/1or7ORI0emubl5v959/PHHp6GhYa8/P/nJT/brWYD/rbXSmjELx2RXdpVOSZLMPGNmrvnkNaUzAAAAAAAAAAAAAAAAAAAAAAAAAACoMUao6TSf+cxncv755+919s477+Tss8/OD3/4w30+s2PHjlx//fX5y7/8y3bf/f3f/30aGxu7pBXgvVQqlaoaoJ4+dnpuOPeG0hkAAAAAAAAAAAAAAAAAAAAAAAAAANSgPqUDqC+LFi3K6tWr88ILL+w5e/vtt/PZz342Y8eOzfnnn58TTjgh27Zty9NPP50777wzL774Yrt7rrjiikycOLHbuletWpVLL730Pb/fvHlzu7N///d/z+jRo9/zmbFjx+a2227rjDygm1QqlQxbOKyqBqjnTZxXOgMAAAAAAAAAAAAAAAAAAAAAAAAAgBplhJpONXTo0KxYsSLnnHNOKpXKXt+tWrUqq1at+sA7LrjggsybN6+LCvdt8+bNeeyxxw7omTfeeCNvvPHGe35/+OGHd7AK6E6VSiXDFw7PzuwsnZIkufSjlxqgBgAAAAAAAAAAAAAAAAAAAAAAAACgQ3qVDqD+fOQjH8kjjzySs84664Cea2xszHXXXZfvfe976d27dxfVAezbiFtHZEd2lM5Ikkw6aVIWfW5R6QwAAAAAAAAAAAAAAAAAAAAAAAAAAGqcEWq6xLBhw/LAAw/k+9//fn7/938/DQ0N7/nbgQMH5uKLL84vf/nLfOMb30ivXv5ZAt3r0OsPzfa27aUzkiTnjTwvdzXfVToDAAAAAAAAAAAAAAAAAAAAAAAAAIA60Kd0APWroaEhF1xwQS644IK88soreeSRR/Lss8/m7bffTp8+fXLUUUflIx/5SMaNG5e+fft26F3PP/98h57/1Kc+lba2tg7d0d1+8pOflE6AujDgmwPyzq53SmckSc4Zdk6WfXFZ6QwAAAAAAAAAAAAAAAAAAAAAAAAAAOqEEWq6xdFHH50/+ZM/KZ0BsJdBNwzK1ne3ls5Ikpx57Jm598v3ls4AAAAAAAAAAAAAAAAAAAAAAAAAAKCO9CodAAAlHD778Gzeubl0RpJkXNO4PHjZg6UzAAAAAAAAAAAAAAAAAAAAAAAAAACoM0aoAehxjpxzZN7a8VbpjCTJaUNOyyNTHimdAQAAAAAAAAAAAAAAAAAAAAAAAABAHTJCDUCPcvSNR+eN7W+UzkiSnHz4yVlzxZrSGQAAAAAAAAAAAAAAAAAAAAAAAAAA1Ckj1AD0GMd967i8uu3V0hlJkpGHjcyT058snQEAAAAAAAAAAAAAAAAAAAAAAAAAQB0zQg1AjzDiphF5ccuLpTOSJB8a8KGs/era0hkAAAAAAAAAAAAAAAAAAAAAAAAAANQ5I9QA1L1T5p+S9ZvXl85IkgztNzQvXPVC6QwAAAAAAAAAAAAAAAAAAAAAAAAAAHoAI9QA1LVRN4/KU28+VTojSTLkkCF55epXSmcAAAAAAAAAAAAAAAAAAAAAAAAAANBDGKEGoG6NXjA6j7/+eOmMJMngxsF57ZrXSmcAAAAAAAAAAAAAAAAAAAAAAAAAANCDGKEGoC6dteisPPbqY6UzkiSDGgflzZlvls4AAAAAAAAAAAAAAAAAAAAAAAAAAKCHMUINQN359O2fzkMvPVQ6I0nSv3f/vD3z7dIZAAAAAAAAAAAAAAAAAAAAAAAAAAD0QEaoAagrE+6YkPs23Fc6I0lySK9DsuXaLaUzAAAAAAAAAAAAAAAAAAAAAAAAAADooYxQA1A3Pt/y+dzz7D2lM5IkfRv65jf/5zelMwAAAAAAAAAAAAAAAAAAAAAAAAAA6MGMUANQFy781wuz5OklpTOS7B6gXnf5utIZAAAAAAAAAAAAAAAAAAAAAAAAAAD0cEaoAah5l/3bZWl5oqV0RpKkT/pk3eXr0tTUVDoFAAAAAAAAAAAAAAAAAAAAAAAAAIAezgg1ADXtyqVX5rZf3lY6I8nuAeoNUzYYoAYAAAAAAAAAAAAAAAAAAAAAAAAAoCoYoQagZs1aMSvzV80vnZEk6ZVeWTllpQFqAAAAAAAAAAAAAAAAAAAAAAAAAACqhhFqAGrS3AfmZvbDs0tnJNk9QL16yuqMbhpdOgUAAAAAAAAAAAAAAAAAAAAAAAAAAPYwQg1AzVnw8ILMuH9G6YwkSUMasnTSUgPUAAAAAAAAAAAAAAAAAAAAAAAAAABUHSPUANSUBQ8vyLQV00pnJNk9QL1s0rKMHzW+dAoAAAAAAAAAAAAAAAAAAAAAAAAAALRjhBqAmrG4dXGuWHFF6YwkuweoW85vMUANAAAAAAAAAAAAAAAAAAAAAAAAAEDVMkINQE1YvmZ5mu9uTlvaSqckSVrOb8nk0ZNLZwAAAAAAAAAAAAAAAAAAAAAAAAAAwHsyQg1A1Vu+ZnkmLJlQNQPUt5x7iwFqAAAAAAAAAAAAAAAAAAAAAAAAAACqnhFqAKpaa6U1E5dMrJoB6jlnz8nUM6aWzgAAAAAAAAAAAAAAAAAAAAAAAAAAgA9khBqAqtVaac2YhWOyK7tKpyRJZp4xM9d88prSGQAAAAAAAAAAAAAAAAAAAAAAAAAAsF+MUANQlSqVSsYtHFc1A9TTx07PDefeUDoDAAAAAAAAAAAAAAAAAAAAAAAAAAD2mxFqAKpOpVLJsIXDsjM7S6ckSS796KWZN3Fe6QwAAAAAAAAAAAAAAAAAAAAAAAAAADggRqgBqCqVSiXDFw6vmgHq5lObs+hzi0pnAAAAAAAAAAAAAAAAAAAAAAAAAADAATNCDUBVGXHriOzIjtIZSZJJJ03KnV+4s3QGAAAAAAAAAAAAAAAAAAAAAAAAAAAcFCPUAFSNQ68/NNvbtpfOSJKcN/K83NV8V+kMAAAAAAAAAAAAAAAAAAAAAAAAAAA4aEaoAagKA745IO/seqd0RpLknGHnZNkXl5XOAAAAAAAAAAAAAAAAAAAAAAAAAACADjFCDUBxg24YlK3vbi2dkSQ589gzc++X7y2dAQAAAAAAAAAAAAAAAAAAAAAAAAAAHWaEGoCiDp99eDbv3Fw6I0ly+tDT8+BlD5bOAAAAAAAAAAAAAAAAAAAAAAAAAACATmGEGoBijpp7VN7a8VbpjCTJaUNOS+vU1tIZAAAAAAAAAAAAAAAAAAAAAAAAAADQaYxQA1DE0Tcendffeb10RpLk5MNPzpor1pTOAAAAAAAAAAAAAAAAAAAAAAAAAACATmWEGoBud9y3jsur214tnZEkGT5weJ6c/mTpDAAAAAAAAAAAAAAAAAAAAAAAAAAA6HRGqAHoViNuGpEXt7xYOiNJ8qEBH8q6r60rnQEAAAAAAAAAAAAAAAAAAAAAAAAAAF3CCDUA3eaU+adk/eb1pTOSJEP7Dc0LV71QOgMAAAAAAAAAAAAAAAAAAAAAAAAAALqMEWoAusWom0flqTefKp2RJBlyyJC8cvUrpTMAAAAAAAAAAAAAAAAAAAAAAAAAAKBLGaEGoMt9YuEn8vjrj5fOSJIMbhyc1655rXQGAAAAAAAAAAAAAAAAAAAAAAAAAAB0OSPUAHSpsxadlZWVlaUzkiQD+wzMmzPfLJ0BAAAAAAAAAAAAAAAAAAAAAAAAAADdwgg1AF3m07d/Og+99FDpjCRJ/979s2nWptIZAAAAAAAAAAAAAAAAAAAAAAAAAADQbYxQA9AlJtwxIfdtuK90RpLkkF6HZMu1W0pnAAAAAAAAAAAAAAAAAAAAAAAAAABAtzJCDUCn+3zL53PPs/eUzkiS9G3om9/8n9+UzgAAAAAAAAAAAAAAAAAAAAAAAAAAgG5nhBqATnXhv16YJU8vKZ2RJGlMY9Zdvq50BgAAAAAAAAAAAAAAAAAAAAAAAAAAFGGEGoBOc9m/XZaWJ1pKZyRJ+qRP1k9Zn6amptIpAAAAAAAAAAAAAAAAAAAAAAAAAABQhBFqADrFlUuvzG2/vK10RpLdA9QbpmwwQA0AAAAAAAAAAAAAAAAAAAAAAAAAQI9mhBqADpu1Ylbmr5pfOiNJ0iu9snLKSgPUAAAAAAAAAAAAAAAAAAAAAAAAAAD0eEaoAeiQuQ/MzeyHZ5fOSLJ7gHr1lNUZ3TS6dAoAAAAAAAAAAAAAAAAAAAAAAAAAABRnhBqAg7bg4QWZcf+M0hlJkoY0ZOmkpQaoAQAAAAAAAAAAAAAAAAAAAAAAAADgvxihBuCgLG5dnGkrppXOSLJ7gHrZpGUZP2p86RQAAAAAAAAAAAAAAAAAAAAAAAAAAKgaRqgBOGCLWxen+e7m0hlJdg9Qt5zfYoAaAAAAAAAAAAAAAAAAAAAAAAAAAAD+FyPUAByQ5WuWp/nu5rSlrXRKkuTmc2/O5NGTS2cAAAAAAAAAAAAAAAAAAAAAAAAAAEDVMUINwH5bvmZ5JiyZUDUD1Lece0umnjG1dAYAAAAAAAAAAAAAAAAAAAAAAAAAAFQlI9QA7JfWSmsmLplYNQPUc86eY4AaAAAAAAAAAAAAAAAAAAAAAAAAAADehxFqAD5Qa6U1YxaOya7sKp2SJJl5xsxc88lrSmcAAAAAAAAAAAAAAAAAAAAAAAAAAEBVM0INwPuqVCoZt3Bc1QxQTx87PTece0PpDAAAAAAAAAAAAAAAAAAAAAAAAAAAqHpGqAF4T5VKJcMWDsvO7CydkiS59KOXZt7EeaUzAAAAAAAAAAAAAAAAAAAAAAAAAACgJhihBmCfKpVKRtw6omoGqJtPbc6izy0qnQEAAAAAAAAAAAAAAAAAAEwYHCUAAQAASURBVAAAAAAAADXDCDUA+zTi1hHZ3ra9dEaSZNJJk3LnF+4snQEAAAAAAAAAAAAAAAAAAAAAAAAAADXFCDUA7fT/Zv+qGaA+b+R5uav5rtIZAAAAAAAAAAAAAAAAAAAAAAAAAABQc4xQA7CXAd8ckG3vbiudkSQ5Z9g5WfbFZaUzAAAAAAAAAAAAAAAAAAAAAAAAAACgJhmhBmCPw2Yflq3vbi2dkSQ589gzc++X7y2dAQAAAAAAAAAAAAAAAAAAAAAAAAAANcsINQBJkiPnHJlNOzaVzkiSnD709Dx42YOlMwAAAAAAAAAAAAAAAAAAAAAAAAAAoKYZoQYgR809Km9sf6N0RpLktCGnpXVqa+kMAAAAAAAAAAAAAAAAAAAAAAAAAACoeUaoAXq4Y288Nq+/83rpjCTJyYefnDVXrCmdAQAAAAAAAAAAAAAAAAAAAAAAAAAAdcEINUAPdty3jsvL214unZEkGT5weJ6c/mTpDAAAAAAAAAAAAAAAAAAAAAAAAAAAqBtGqAF6qBO/fWJe3PJi6YwkyYcGfCjrvraudAYAAAAAAAAAAAAAAAAAAAAAAAAAANQVI9QAPdAp80/Js28/WzojSTK039C8cNULpTMAAAAAAAAAAAAAAAAAAAAAAAAAAKDuGKEG6GFG3TwqT735VOmMJMkRfY/IK1e/UjoDAAAAAAAAAAAAAAAAAAAAAAAAAADqkhFqgB7kEws/kcdff7x0RpJkcOPgbJyxsXQGAAAAAAAAAAAAAAAAAAAAAAAAAADULSPUAD3EWYvOysrKytIZSZKBfQbmzZlvls4AAAAAAAAAAAAAAAAAAAAAAAAAAIC6ZoQaoAf49O2fzkMvPVQ6I0nSr3e/bJq1qXQGAAAAAAAAAAAAAAAAAAAAAAAAAADUPSPUAHVuwh0Tct+G+0pnJEkO6XVItl67tXQGAAAAAAAAAAAAAAAAAAAAAAAAAAD0CEaoAerYhf96Ye559p7SGUmSvg198/xlz5fOAAAAAAAAAAAAAAAAAAAAAAAAAACAHsMINUCduuzfLkvLEy2lM5IkjWnMusvXpampqXQKAAAAAAAAAAAAAAAAAAAAAAAAAAD0GEaoAerQlUuvzG2/vK10RpKkT/pk/ZT1BqgBAAAAAAAAAAAAAAAAAAAAAAAAAKCbGaEGqDOzVszK/FXzS2ckSXqlVzZM2WCAGgAAAAAAAAAAAAAAAAAAAAAAAAAACjBCDVBHZq2YldkPzy6dkWT3APXqKasNUAMAAAAAAAAAAAAAAAAAAAAAAAAAQCFGqAHqxNwH5lbdAPXoptGlUwAAAAAAAAAAAAAAAAAAAAAAAAAAoMcyQg1QBxY8vCAz7p9ROiNJ0pCGLJ201AA1AAAAAAAAAAAAAAAAAAAAAAAAAAAUZoQaoMYtbl2caSumlc5IsnuAetmkZRk/anzpFAAAAAAAAAAAAAAAAAAAAAAAAAAA6PGMUAPUsMWti9N8d3PpjCS7B6hbzm8xQA0AAAAAAAAAAAAAAAAAAAAAAAAAAFXCCDVAjVq+Znma725OW9pKpyRJbj735kwePbl0BgAAAAAAAAAAAAAAAAAAAAAAAAAA8F+MUAPUoOVrlmfCkglVM0B9y7m3ZOoZU0tnAAAAAAAAAAAAAAAAAAAAAAAAAAAAv8UINUCNaa20ZuKSiVUzQD3n7DkGqAEAAAAAAAAAAAAAAAAAAAAAAAAAoAoZoQaoIa2V1oxZOCa7sqt0SpJk5hkzc80nrymdAQAAAAAAAAAAAAAAAAAAAAAAAAAA7IMRaoAaUalUMm7huKoZoJ4+dnpuOPeG0hkAAAAAAAAAAAAAAAAAAAAAAAAAAMB7MEINUCOGLxyendlZOiNJculHL828ifNKZwAAAAAAAAAAAAAAAAAAAAAAAAAAAO/DCDVAjThm4DGlE5Ikzac2Z9HnFpXOAAAAAAAAAAAAAAAAAAAAAAAAAAAAPoARaoAase5r6zLysJFFGyadNCl3fuHOog0AAAAAAAAAAAAAAAAAAAAAAAAAAMD+MUINUEPWfnVtThtyWpF3nzfyvNzVfFeRdwMAAAAAAAAAAAAAAAAAAAAAAAAAAAfOCDVAjVlzxZqcPvT0bn3nOcPOybIvLuvWdwIAAAAAAAAAAAAAAAAAAAAAAAAAAB1jhBqgBrVObc24pnHd8q5xTeNy75fv7ZZ3AQAAAAAAAAAAAAAAAAAAAAAAAAAAnccINUCNemTKIznz2DO79B2nDz09j0x5pEvfAQAAAAAAAAAAAAAAAAAAAAAAAAAAdA0j1AA17MHLHsx5I8/rkrtPG3JaWqe2dsndAAAAAAAAAAAAAAAAAAAAAAAAAABA1zNCDVDjln1xWSadNKlT7xx52MisuWJNp94JAAAAAAAAAAAAAAAAAAAAAAAAAAB0LyPUAHXgrua70nxqc6fcNXzg8Kz96tpOuQsAAAAAAAAAAAAAAAAAAAAAAAAAACjHCDVAnbjzC3fm0o9e2qE7jul3TNZ9bV0nFQEAAAAAAAAAAAAAAAAAAAAAAAAAACUZoQaoI4s+tyjTx04/qGeH9hual65+qZOLAAAAAAAAAAAAAAAAAAAAAAAAAACAUoxQA9SZeRPnZeYZMw/omSP6HpFXrn6li4oAAAAAAAAAAAAAAAAAAAAAAAAAAIASjFAD1KEbzr0hc86es1+/HdQ4KBtnbOziIgAAAAAAAAAAAAAAAAAAAAAAAAAAoLsZoQaoU9d88prccu4t7/ubgX0G5u2Zb3dTEQAAAAAAAAAAAAAAAAAAAAAAAAAA0J2MUAPUsalnTM0t596ShjS0+65f737ZNGtTgSoAAAAAAAAAAAAAAAAAAAAAAAAAAKA7GKEGqHNTz5ialvNb9hqiPqTXIdl67daCVQAAAAAAAAAAAAAAAAAAAAAAAAAAQFczQg3QA0wePTnLJi1LQxrSt6Fvnr/s+dJJAAAAAAAAAAAAAAAAAAAAAAAAAABAF+tTOgCA7jF+1Pgsy7KMHjo6TU1NpXMAAAAAAAAAAAAAAAAAAAAAAAAAAIAuZoQaoAcZP2p86QQAAAAAAAAAAAAAAAAAAAAAAAAAAKCb9CodAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDnM0INAAAAAAAAAAAAAAAAAAAAAAAAAAAAUIeMUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADUISPUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHXICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAHTJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFCHjFADAAAAAAAAAAAAAAAAAAAAAAAAAAAA1CEj1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1yAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQB0yQg0AAAAAAAAAAAAAAAAAAAAAAAAAAABQh4xQAwAAAAAAAAAAAAAAAAAAAAAAAAAAANQhI9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdcgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAdMkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAUIeMUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADUISPUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHXICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAHTJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFCHjFADAAAAAAAAAAAAAAAAAAAAAAAAAAAA1CEj1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1yAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQB0yQg0AAAAAAAAAAAAAAAAAAAAAAAAAAABQh4xQAwAAAAAAAAAAAAAAAAAAAAAAAAAAANQhI9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdcgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAdMkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAUIeMUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADUISPUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHXICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAHTJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFCHjFADAAAAAAAAAAAAAAAAAAAAAAAAAAAA1CEj1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1yAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQB0yQg0AAAAAAAAAAAAAAAAAAAAAAAAAAABQh4xQAwAAAAAAAAAAAAAAAAAAAAAAAAAAANQhI9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdcgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAdMkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAUIeMUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADUISPUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHXICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAHTJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFCHjFADAAAAAAAAAAAAAAAAAAAAAAAAAAAA1CEj1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1yAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQB0yQg0AAAAAAAAAAAAAAAAAAAAAAAAAAABQh4xQAwAAAAAAAAAAAAAAAAAAAAAAAAAAANQhI9QAAAAAAAAAAAAAAAAAAAAA/5+9O4+2ui73B/4czgAIyBEQEJQLIipOKKKCIoM4VU5gDj+JHMDb9UZlwy29ecVySF15HdOrAaJYZjlBhqgJKA7IZCpIIIgMxhRwmIcD7N8frbDtPsjZ+wwbvr5ea7FW+9nfz/N59rH1ALl6bwAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhWkUqlUvocAqA6NGjWK9evXZ9Tr1q0b7du3z8NEAAAAAADAnmbevHmxZcuWjHrDhg1j3bp1eZgIAAAAAAAAAAAAAAAAAACg5gihBhKjXr16FYZGAAAAAAAA7E7dunVj8+bN+R4DAAAAAAAAAAAAAAAAAACgWtXJ9wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVD8h1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkUFG+BwCoLqWlpVFWVpZRLy4ujjZt2tT+QFBJ8+bNiy1btmTU69atG+3bt8/DRAB7BvsRIJPdCFAx+xEgk924awsXLozy8vKMemlpae0PAwAAAAAAAAAAAAAAAAAAUMOEUAOJsXTp0nyPADk58sgj48MPP8yot2/fPmbOnJmHiQD2DPYjQCa7EaBi9iNAJrsRAAAAAAAAAAAAAAAAAACAiIg6+R4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOonhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIoKJ8DwAAX3b/+Z//GStWrMio77///nmYBmDPYT8CZLIbASpmPwJkshsBAAAAAAAAAAAAAAAAAACIiChIpVKpfA8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPWqk+8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKh+QqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASKCifA8AADVtxYoVMWXKlJg3b16sXbs2iouLo2nTpnHEEUdEly5dori4ON8jAtQ6uxGgYvZj1S1cuDA++OCD+OSTT2Lt2rWRSqWiYcOG0apVq2jfvn0cccQRUbdu3XyPCWTBbgSomP2YmyVLlsT06dNjyZIlUVZWFlu2bInGjRtHaWlpHH744XHMMcdESUlJvscEAAAAAAAAAAAAAAAAAABIDCHUACTW008/Hffee2+8+eabkUqlKnymUaNGcfHFF8ePf/zjOPTQQ2t5wkypVCo++uijmDZtWkydOjWmTp0a7777bqxbty7tucsvvzxGjBhR6/MNHz48Bg4cWOF78+fPj7Zt29buQEDW7MbdmzBhQvTu3bvKff5pyZIl0bJly2rrB9QM+7FqFi9eHI888kg8+eSTMXfu3C98tqSkJI499tg488wzo1+/fnHcccfV6GxA7uzGL3bTTTfFz372syr1+CK7+pkD+Wc/Zm/+/PkxdOjQ+M1vfhMLFiz4wmdLSkqid+/eMWjQoLjggguiqMi/zgQAAAAAAAAAAAAAAAAAAKgK/69tABLn008/jf79+8drr72222fXrVsXw4YNi5EjR8YNN9wQN9xwQxQUFNTClJ959tlnY9KkSTF16tSYPn16rFmzplbvr6zFixfHD37wg3yPAeTIbgSomP1YNZs3b46bbrop7r333ti8eXOlzmzdujUmT54ckydPjrfffjv+/Oc/1/CUQLbsRoCK2Y/Z27p1a9x6661x++23x9atWyt95qWXXoqXXnopOnXqFEOHDo0uXbrU8KQAAAAAAAAAAAAAAAAAAADJJYQagESZM2dO9OrVK5YsWZLVua1bt8aNN94Ys2bNipEjR0ZhYWENTZjpqquu2isCsgYOHLhXzAlkshsBKmY/Vs38+fPj3HPPjZkzZ+Z7FKAa2Y17hm7duuV7BOBz7Mfsbdy4Mc4555wYP358zj3ee++9OPnkk+Opp56Kvn37VuN0AAAAAAAAAAAAAAAAAAAAXx5CqAFIjJUrV8YZZ5xRYRDM8ccfH+eff360a9cuNm3aFHPmzInf/va38be//S3tuSeffDKaN28e99xzTy1NvXd45JFH4uWXX873GEAO7Mbq0b59+2jYsGFOZ4uLi6t5GqA62I9VM3v27OjZs2csW7Ys470WLVrEV7/61ejYsWM0b9489tlnnygrK4tFixbF+++/H2+++Wb8/e9/z8PUwO7Yjdlp2bJldOrUqcp93nvvvYzaoEGDqtwXqD72Y24uvvjiCgOoi4uL4ytf+UqcfPLJ0bp166hbt26sXr063n///fjTn/4Un3zySdrz5eXlcckll8T48ePjlFNOqaXpAQAAAAAAAAAAAAAAAAAAkqMglUql8j0EAFSHCy+8MJ599tm0WqNGjeKJJ56I8847L+P58vLyuO222+Kmm27KeG/MmDHxla98paZGTVNaWhpr1qzJqDdt2jSOP/742G+//eKpp55Ke+/yyy+PESNG1Mp8CxYsiKOPPjrWrVsXERGNGzeOli1bxuzZs9Oemz9/frRt27ZWZgIqz27M3oQJE6J3795ptfHjx0evXr2q3BvYc9iPuVu+fHmccMIJsXDhwrR6hw4d4q677opzzjknCgoKdnl+x44dMXny5Bg5cmQsXbo0nnnmmWqbDagau7H2TZo0Kbp165ZWa9SoUSxZsiQaNGiQp6mAz7Mfs/fUU0/FpZdemlE/55xz4uGHH45WrVpVeG7Hjh0xYsSIuPbaa3f+75H/dOSRR8a7777ry54AAAAAAAAAAAAAAAAAAACyVJTvAQCgOrzyyisZQTAlJSUxbty46NKlS4VniouLY8iQIVFaWhrXXntt2nvf/e53Y9asWVFUVDu/VTZu3Dg6d+4cXbp0iRNOOCG6dOkS7dq1i4h/hKF+PgymtqRSqRg4cGBa4Mtdd90VI0eOzAihBvY8diNAxezH3KVSqRgwYEBGAPXFF18cI0eOjJKSkt32qFOnTnTt2jW6du0avhsN9hx2Y34MHTo0o3bJJZcIoIY9iP2Ym//93//NqF1wwQXxzDPPRJ06dXZ5rk6dOnHVVVdFhw4dok+fPlFeXr7zvZkzZ8bLL78cX/va12pkZgAAAAAAAAAAAAAAAAAAgKQSQg1AItx8880ZtSFDhuwyCOZffe9734s//elP8corr+yszZ07N37729/GN7/5zWqdsyLvvvtutG3bNgoKCmr8rmw99NBD8eqrr+58ffrpp8fAgQNj5MiReZwKqCy7EaBi9mPuRo4cGS+//HJarW/fvvHb3/42CgsLs+5nz8Oew26sfevXr68w/HXQoEF5mAbYFfsxe59++mlMmTIlrVavXr146KGHvjCA+l+deuqp8a1vfSseeOCBtPqoUaOEUAMAAAAAAAAAAAAAAAAAAGSpcv9PbwDYg82cOTMmTpyYVmvWrFn86Ec/qnSPX/ziFxm1hx56qMqzVUa7du32yKCs+fPnx49//OOdrxs0aBC//vWv8zgRkA27EaBi9mPutmzZEtdff31arWnTpvHII4/kFEAN7Dnsxvz4/e9/H+vXr0+rHXXUUXHSSSflaSLg8+zH3MyePTtSqVRarXfv3tGyZcus+vTv37/C3gAAAAAAAAAAAAAAAAAAAGRHCDUAe73f/e53GbUrr7wySkpKKt3j+OOPj+OPPz6tNmnSpJg/f36V59sbpVKpuPLKK2PDhg07a7/4xS+ibdu2+RsKyIrdCFAx+zF3TzzxRPztb39Lq914443RrFmzPE0EVBe7MT+GDh2aURs4cGAeJgF2xX7MzfLlyzNqHTt2zLpPRWeWLVuW00wAAAAAAAAAAAAAAAAAAABfZkKoAdjrjR07NqP29a9/Pes+FZ2pqPeXwf333x+vvfbaztfdu3ePwYMH53EiIFt2I0DF7MfcfT4staSkJL7xjW/kaRqgOtmNtW/WrFnx9ttvp9Xq1q0bAwYMyNNEQEXsx9xUFNKdTXD3P9WtWzejVq9evZxmAgAAAAAAAAAAAAAAAAAA+DITQg3AXm3Dhg0xffr0tNo+++wTnTt3zrrXqaeemlGbOHFizrPtrebNmxfXX3/9ztf16tWLYcOGRUFBQR6nArJhNwJUzH7M3aJFi2LSpElptTPPPDOaNGmSp4mA6mI35sewYcMyahdccEE0bdo0D9MAFbEfc9euXbuM2qJFi7LuU9GZ9u3b5zQTAAAAAAAAAAAAAAAAAADAl5kQagD2an/5y19ix44dabUuXbpEUVFR1r1OOOGEKC4uTqtNmzatSvPtbXbs2BFXXnllbNy4cWftZz/7WRx66KF5nArIlt0IUDH7MXd//vOfM2pdu3bNwyRAdbMba195eXmMHDkyoz5w4MA8TAPsiv2Yu2OOOSYjVP/VV1+N8vLyrPqMGTMmo9anT58qzQYAAAAAAAAAAAAAAAAAAPBlJIQagL3aX//614zaIYccklOvkpKSOPDAA9Nq8+bNi23btuXUb2907733xsSJE3e+7tKlS/zwhz/M40RALuzG6jdq1Ki46qqr4phjjonmzZtHSUlJNGnSJDp06BA9evSI6667Lv70pz/F5s2b8z0q8AXsx9y9+eabGbVjjz12539OpVLx0ksvxcCBA+Ooo46KRo0aRUlJSbRs2TKOPvroGDBgQDz++OOxcuXKWpwaqAy7sfaNHj06li9fnlZr27ZtnH766XmaCKiI/Zi7wsLC+Na3vpVWW7p0adx3332V7rFq1aq444470mqlpaUxYMCAapkRAAAAAAAAAAAAAAAAAADgy0QINQB7tU8++SSj9m//9m8592vTpk3a6+3bt8fChQtz7rc3mTNnTvz0pz/d+bq4uDiGDx8ehYWFeZwKyIXdWP3uueeeePTRR+ODDz6IFStWRHl5eaxevTrmzp0bEydOjDvuuCPOOeecaNu2bdx6662xZs2afI8MVMB+zN0HH3yQUevQoUNERMyYMSO6dOkSZ599dgwfPjxmzpwZ69evj/Ly8li2bFnMmDEjnnjiibj88sujbdu2ccMNN9iTsAexG2vfsGHDMmpXXnllFBQU5GEaYFfsx6q5/vrr4+CDD06r/eQnP4nhw4fv9uzixYvjK1/5SixZsiStft9990WjRo2qdU4AAAAAAAAAAAAAAAAAAIAvAyHUAOzVli5dmlE76KCDcu5X0dlly5bl3G9vsWPHjrjiiiti06ZNO2s//elP4+ijj87jVECu7Mb8WbZsWdxwww1xzDHHxKRJk/I9DvA59mPuPv7444xa48aNY/jw4dGlS5eYPn16pfqsX78+br311jjxxBNjzpw51T0mkAO7sXYtXrw4XnrppbRanTp14qqrrsrTRMCu2I9V07Bhw3jxxRejVatWO2vbt2+PgQMHRo8ePWLEiBHx0UcfxYYNG2Lbtm2xYsWKGDduXHz/+9+PI488MiZPnpzW75ZbbokBAwbU9scAAAAAAAAAAAAAAAAAAABIhKJ8DwAAVbFq1aqMWsOGDXPuV9HZlStX5txvb3HXXXfF22+/vfP10UcfHf/93/+dx4mAqrAba0b9+vWjWbNmse+++8aGDRti5cqVsW7dugqfXbhwYfTo0SMef/zxuPTSS2t5UmBX7MfclJeXV/i5xo0bF1dffXXs2LEjrd6oUaNo2bJlbN++PZYsWZL2RSf/NGfOnOjatWu89dZbcfjhh9fY7MDu2Y2169FHH83Ym2eddVYceOCBeZoI2BX7seoOPfTQmD59evzHf/xHPP/88zvrEydOjIkTJ1aqR7t27eK+++6Lc845p4amBAAAAAAAAAAAAAAAAAAASL46+R4AAKpiw4YNGbX69evn3K+isxs3bsy5395g1qxZceONN+58XVhYGMOHD4/i4uI8TgVUhd1YPZo2bRoDBgyIJ598Mj766KNYv359LFy4MGbMmBHz58+PtWvXxpw5c+LBBx+Mjh07ZpwvLy+PK664otLBWkDNsx9zU1ZWFqlUKqM+cODAnUGqBQUFMWDAgHjnnXdizZo1MWfOnJg3b16sXbs2xo0bF2eddVbG+dWrV8eFF15Y4T8XoPbYjbUnlUrFo48+mlEfOHBgHqYBdsd+rB4tWrSI5557LqZNmxaDBw+u9M/w+OOPj9///vcxZ84cAdQAAAAAAAAAAAAAAAAAAABVJIQagL1aeXl5Rq1evXo596soBGXr1q0599vTbd++Pa644orYvHnzztqPfvSj6NKlSx6nAqrKbqyaVq1axRNPPBGffvppPP7443HppZfGIYccEnXqZP71qUOHDnHNNdfEzJkz4/7774+6deumvb9ly5a4+OKLBazCHsJ+zM2WLVsqrG/atCki/vEzfO655+Lxxx+PE088MQoKCnY+U1RUFL17946xY8fGfffdl/ZeRMSHH34YN998c80ND+yW3Vh7xo0bF/Pnz0+rNW/ePM4777w8TQR8Efux+sybNy+GDRsWv//973f+GXJ3pk2bFv/93/8d99xzT6xfv76GJwQAAAAAAAAAAAAAAAAAAEg2IdQAJM7ng+2qejaVSlVlnD3anXfeGZMnT975+rDDDoubbropfwMBNcZurLxDDz00+vfvnxEo/UUKCgpi8ODB8cILL0RxcXHae0uXLo277767uscEqon9uHu7+0wPP/xwnH/++bvt853vfCd++tOfZtQfeuihKCsry3U8oAbYjTVj6NChGbVvfvObGX9+BPZc9mN2ysvL43/+53/isMMOiwcffDCWL1+e9v4+++wTbdu2jSOOOCJatWqV8eVPc+fOjf/6r/+Kjh07xrhx42pzdAAAAAAAAAAAAAAAAAAAgEQRQg3AXq2ioKZNmzbl3K+isyUlJTn325PNnDkzLXC6oKAghg0bFvXq1cvfUEC1sBvz5/TTT4877rgjo3733XfH9u3b8zAR8K/sx9x8UThqr1694pvf/Gale914443Rrl27tNratWvjd7/7Xc7zAVVjN9aOVatWxXPPPZdRHzhwYB6mASrDfqyarVu3Rr9+/eKWW25J+/tw/fr1Y/DgwTF16tRYu3ZtzJ8/P2bOnBmffvpprFq1Kp599tno0aNHWq/FixfHWWedFc8880xtfwwAAAAAAAAAAAAAAAAAAIBEEEINwF5tn332yahVdxhMgwYNcu63p9q2bVtcfvnlsXXr1p21wYMHxymnnJLHqYDqYjfm1+DBg6Nt27ZptVWrVsXkyZPzMxCwk/2Ymy/6TN/5zney6lVcXBzf+ta3MuoTJkzIdiygmtiNteM3v/lNbNmyJa12yimnxOGHH56niYDdsR+r5nvf+1688MILabVDDjkkpkyZEvfff38cf/zxUVhYmPZ+48aNo2/fvvHaa6/Fgw8+GHXqfPavMbdt2xb9+/ePmTNn1sr8AAAAAAAAAAAAAAAAAAAASSKEGoC9WtOmTTNq69evz7lfRWcrumNvd/vtt8e0adN2vm7btm384he/yONEQHWyG/OruLg4Lrroooz6q6++modpgH9lP+amUaNGUVJSklGvU6dOnH766Vn3O/PMMzNqb7zxRk6zAVVnN9aOYcOGZdQGDRqUh0mAyrIfc/fWW2/F//3f/6XVmjRpEi+//HIceeSRlepxzTXXxF133ZVW27JlS1xzzTXVNicAAAAAAAAAAAAAAAAAAMCXhRBqAPZqLVq0yKgtXrw4536LFi2q1B17s8WLF8fNN9+cVvv1r38dDRo0yNNEQHWzG/OvV69eGbWFCxfW/iBAGvsxdy1btsyoHXzwwbHvvvtm3euYY46JwsLCtNrSpUsjlUrlPB+QO7ux5k2dOjXee++9tFqjRo0q/OISYM9hP+bu8+HRERE//elPo127dln1+e53vxvHHHNMWm3ixIkxffr0Ks0HAAAAAAAAAAAAAAAAAADwZVOU7wEAoCoqCi5ZsGBBzv0+HxBaWFgYbdq0ybnfnujvf/97bN26defrkpKS+NGPfpRVj7lz52bUvvrVr0ZJSUla7ec//3mcd955uQ0K5MxuzL8DDjggo7ZixYo8TAL8K/sxdwcffHDG523atGlOvQoLC6Nx48axatWqnbXt27dHWVlZ7LffflWaE8ie3Vjzhg0bllH7f//v//kyKNjD2Y+52bZtW7z88stptYKCghgwYEDWverUqRMDBgyI//qv/0qrv/TSS9G5c+cqzQkAAAAAAAAAAAAAAAAAAPBlIoQagL3aYYcdllGrKCC5MrZu3RqLFi1Kq7Vv3z6KipL92+XWrVvjvffeq3KfWbNmZdT+NVgQqD12Y/5VFCi4adOmPEwC/Cv7MXcdO3aMCRMmpNXq1q2bc7969epl1DZv3pxzPyB3dmPN2rRpUzz55JMZ9UGDBuVhGiAb9mNuPv7441i/fn1arX379rH//vvn1K9r164Ztffffz+nXgAAAAAAAAAAAAAAAAAAAF9WdfI9AABUxXHHHRd16qT/djZ16tTYtm1b1r2mTp0a5eXlabXOnTtXaT6AfLAb82/FihUZtWbNmuVhEuBf2Y+5O+GEEzJqa9asyblfWVlZRq1p06Y59wNyZzfWrD/84Q8Z+/Loo4+ucK8Cexb7MTcrV67MqOUaQL2rs774DgAAAAAAAAAAAAAAAAAAIDtCqAHYqzVo0CCOO+64tNqGDRvi3XffzbrXG2+8kVHr0aNHzrMB5IvdmH+zZs3KqFUldAuoHvZj7nr16pVRW7BgQaRSqax7rVixIjZu3JhW23fffaOkpCTX8YAqsBtr1rBhwzJqgwYNysMkQLbsx9zUq1cvo7Zp06ac+33+z40REfvss0/O/QAAAAAAAAAAAAAAAAAAAL6MhFADsNc7++yzM2pPP/101n0qOlNR773dscceG6lUqkq/evbsmdF3/vz5Gc9dccUVtf8BgYiwG/NtzJgxGbVOnTrlYRLg8+zH3LRr1y46duyYVisrK4sPP/ww615vvfVWRu3zAY9A7bIba8ZHH30Ur7/+elqtbt268Y1vfCNPEwHZsh+zV9EXMC1YsCB27NiRU7+PP/64UncAAAAAAAAAAAAAAAAAAACwa0KoAdjrXXrppRm1Rx99NLZu3VrpHu+++25MmTIlrXbSSSdFu3btqjwfQD7Yjfkza9asGD16dFqtoKAgsQFjsLexH3NXUWjqyJEjs+7z+OOPZ9T69OmT00xA9bAba8bw4cMzan379o0mTZrkYRogF/Zj9lq2bBkNGzZMq61evTomTZqUU7+KvuTp0EMPzakXAAAAAAAAAAAAAAAAAADAl5UQagD2ekcddVR07949rbZixYq4++67K93j+uuvz6hdc801VZ4NIF/sxvzYsmVLXH311bF9+/a0+imnnBItW7bM01TAv7Ifczdw4MCoX79+Wu3hhx+Ov/3tb5XuMX369Bg1alRaraCgIC688MJqmRHIjd1Y/bZt2xaPPfZYRn3QoEF5mAbIlf2YvaKiogq/YOTWW2/Nutf8+fPjiSeeyKifddZZOc0GAAAAAAAAAAAAAAAAAADwZSWEGoBEuOGGGzJqQ4YMienTp+/27AMPPBAvvfRSWu3ggw+Oyy67rFJ3t23bNgoKCtJ+TZgwoVJnAWqS3Zi9e++9NxYsWJDT2XXr1sUll1wSb775ZsZ7uYRtATXHfsxNixYt4tvf/nZaraysLPr37x+bNm3a7fnly5dH//79M4L6L7zwwjjiiCOqdVYge3Zj9RozZkwsWbIkrdauXbs47bTT8jQRkCv7MXuXXHJJRm3MmDFx++23V7rHmjVrom/fvrF169a0+hFHHBFHH310lWcEAAAAAAAAAAAAAAAAAAD4MhFCDUAinHXWWXH++een1bZs2RK9e/eOP/7xjxWeKS8vj5tvvjm+853vZLx33333RXFxcY3MClBb7MbsPfroo3HIIYfEZZddFqNHj47Nmzfv9sz27dvjD3/4Q3Tu3DlGjRqV8f6ll14aPXr0qIlxgRzZj7kbMmRItGnTJq02YcKE6NOnT/z1r3/d5bm33norTj311IxnGjZsGLfcckuNzApkx26sXsOGDcuoXXXVVVFQUJCHaYCqsB+zd8kll8Sxxx6bUb/++uvjqquuimXLln3h+XHjxsXxxx8f7733XsZ72QRZAwAAAAAAAAAAAAAAAAAA8A8FqVQqle8hAKA6rFixIjp37hyLFy/OeK9Lly5x/vnnR7t27WLTpk3x0UcfxW9+85v49NNPM54dPHhw3H///ZW+t23btrFgwYK02vjx46NXr16VOj916tQYNGjQLt9fv359zJs3L6223377ZYT//asuXbrE0KFDK3V/Lnr16hWvvfZaWm3+/PnRtm3bGrsTyI3d+JnK7MZjjz02LeSqQYMGcdxxx0WnTp2iffv2UVpaGo0aNYqNGzfGypUrY/r06TF+/PgKf2YREd27d49XXnkl6tWr94X3ArXPfvxMtn92nDx5cvTo0SO2bNmSVi8qKoozzjgj+vTpE61atYrt27fHwoULY+zYsTFx4sQKez399NNx4YUXVvpuoGbZjZ+pyt+rlyxZEm3atIlt27btrBUWFsaCBQuidevWOfUE8st+/Exl9+O0adOiV69esX79+oz36tatG2eddVacfPLJ0apVq6hfv36UlZXFrFmz4pVXXokPPvigwp6XX355jBgxYrd3AwAAAAAAAAAAAAAAAAAAkK4o3wMAQHXZf//94+WXX47TTjstli5dmvbe1KlTY+rUqbvtcfHFF8c999xTQxNWbP369WmBp5WxevXqWL169S7fLy0treJUQFLYjZ/JZTdu2LAh3njjjXjjjTeyPnveeefFY489JoAa9lD242ey3Y8nnnhiPP/889GvX7/YtGnTzvq2bdvixRdfjBdffHG3PUpKSuJXv/qVAGrYw9iNn6nK36sfe+yxtADqiIizzz5bADXsxezHz1R2Px5//PHx/PPPxwUXXJARRL1ly5YYPXp0jB49utJz9evXr0a/dA8AAAAAAAAAAAAAAAAAACDJ6uR7AACoTh07dozJkydH9+7dszpXXFwcQ4YMiSeffDIKCwtraDqA/LAba1eLFi3ikUceiVGjRvlSANjD2Y+5O/vss+Ptt9+Oo446KuuzHTp0iHHjxsWgQYNqYDKgquzGqhs+fHhGbeDAgXmYBKhO9mP2+vTpE++991707Nkz5x4NGzaMBx98MJ555pkoKvLdugAAAAAAAAAAAAAAAAAAALkQQg1A4hx00EHx+uuvx1NPPRUnn3xyFBQU7PLZhg0bxpVXXhnvv/9+3HTTTVGnjt8agWSyGyvn2WefjUceeST69+8fhx12WKU/e6NGjeKMM86IJ554IhYuXBhXX311DU8KVBf7MXedOnWKv/zlL/Hoo4/GiSee+IU/u8LCwujWrVuMGDEiZs2aFaecckotTgpky27M3euvvx4fffRRWq1FixZx7rnn5mkioDrZj9k7+OCDY8KECfH6669H//79o0mTJrs9U1hYGMcdd1zcc889sWjRorjmmmtqYVIAAAAAAAAAAAAAAAAAAIDkKkilUql8DwEANWn58uUxefLk+Pjjj2Pt2rVRVFQUzZo1i44dO8YJJ5wQJSUl+R4RoNbZjZWzcePGmDNnTixatCj+9re/xbp162Lz5s1Rt27d2G+//WK//faLQw89NI488sgvbaAYJI39mLtly5bF1KlTd/7sSkpKolmzZtGqVavo1q1b7LvvvvkeEciR3QhQMfsxN3Pnzo33338/Vq5cGWVlZbF169bYd999o7S0NNq2bRudO3eOBg0a5HtMAAAAAAAAAAAAAAAAAACAxBBCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAdfI9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVTwg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAL50rrjiiigoKNj5q23btjV6DgAAAAAAAAAAAAAAAAAAAAAAIB+EUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAL50RowYEalUauevTz75JN8jAQAAAAAAAAAAAAAAAAAAAAAAVDsh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkUFG+BwAAAACyV1ZWFlOmTIlly5bFihUrYsuWLdGsWbNo3rx5nHDCCXHAAQfU6P0ff/xxTJs2LRYtWhSbNm2K/fffP1q3bh3dunWLJk2aVNs95eXlMWvWrJgxY0asWrUq1q5dGwUFBVG/fv0oLS2NNm3axMEHHxxt27attjtr2/Lly2Pq1KmxfPnyWL58eRQWFkbz5s2jRYsW0bVr19h3331rfIYdO3bE9OnT44MPPojly5dHQUFBNGvWLA4++OA4+eSTo6SkpMZnAAAAAAAAAAAAAAAAAAAAAAAAqp8QagAAANhLbNq0KR566KF4+umnY/LkybF9+/ZdPnvkkUfGgAEDYvDgwdGgQYNK39GrV6947bXXdr7u2bNnTJgwISIiUqlUjBgxIu6+++744IMPKjxfXFwcffr0ieuuuy569uxZ6Xs/b/z48fHwww/H6NGjY9OmTbt9vlmzZtG1a9c477zzom/fvtGsWbMvfP6KK66Ixx57bOfrf/u3f4tPPvkk53mztWnTpnjggQfiqaeeiunTp0cqlarwuaKioujWrVtcccUVcfnll0dhYWFW90yYMCF69+6dVhs/fnz06tUrIiLWrl0bd911Vzz88MOxbNmyCns0aNAgLrroovj5z38eBx10UFb3AwAAAAAAAAAAAAAAAAAAAAAA+VUn3wMAAAAAuzd06NBo3759/PCHP4y33377CwOoIyJmzpwZ1113XbRv3z6efvrpKt+/YsWK6NmzZ1x11VW7DKCOiCgvL4+xY8dG7969Y9CgQZUKkP5Xq1evjn79+sVpp50WTz31VKXP//3vf48XXngh/v3f/z0GDx6c1Z217amnnooOHTrEj3/845g2bdouA6gjIrZt2xYTJ06MgQMHRqdOneL111+vtjkmTpwYRxxxRPz85z/fZQB1RMSGDRtixIgRcdhhh8Xo0aOr7X4AAAAAAAAAAAAAAAAAAAAAAKDmCaEGAACAPVh5eXkMGjQorr766liyZEnW55ctWxYXX3xx3HzzzTnPsHr16ujRo0dMnDix0mdSqVQMGzYszjvvvEoHSa9evTp69eoVzz33XK6j7vFuvvnmuPTSS+PTTz/N+uzMmTPjjDPOiCeffLLKc7zwwgtx+umnZzXHpk2b4sILL4yxY8dW+X4AAAAAAAAAAAAAAAAAAAAAAKB2FOV7AAAAAKBiO3bsiAsuuCDGjBmT8V6rVq2iT58+cdxxx0WzZs2iXr16sWrVqnj33XfjxRdfjIULF+58NpVKxY033hjNmjWLa665Jus5BgwYEH/96193vj7ooIOiX79+0bFjxygtLY1ly5bF1KlTY9SoUbF27dq0s3/+85/j0ksvjVGjRu32nh/84Afx/vvvZ9QPPfTQOP300+Pwww+Ppk2bRt26dWP9+vVRVlYWc+bMiRkzZsQ777wTW7Zsyfqz1aabb745brzxxox6UVFR9O7dO04//fRo3bp1bNu2LRYtWhRjxoyJSZMmRSqV2vns1q1bo3///lFYWBgXX3xxTnP85S9/ieuvvz62bt0aERH169ePPn36RI8ePaJly5ZRVFQUixYtipdffjleffXVtLPbtm2LQYMGxcyZM6Nx48Y53Q8AAAAAAAAAAAAAAAAAAAAAANQeIdQAAACwh/rZz36WEUB94IEHxv/+7/9Gv379orCwsMJz27ZtixEjRsT3v//9WL9+/c76tddeGyeddFJ07ty50jO88847sXnz5oiIqFu3btx6661x7bXXVnj3mjVr4gc/+EEMHz48rT569Oh47LHH4vLLL9/lPYsWLYrHHnssrbb//vvHsGHD4txzz93tnBs2bIhXXnklhg4dusufSz69+eab8bOf/Syj3r179xg2bFgceuihGe/dcMMN8fbbb8dVV12VFgKeSqXiW9/6VnTt2jXatGmT9SzXX3/9zn+mAwYMiDvuuCMOOOCAjOd+/OMfx4QJE+LCCy+MVatW7ax/+umn8dBDD8V1112X9d0AAAAAAAAAAAAAAAAAAAAAAEDtqpPvAQAAAIBMb7/9dtxyyy1ptW7dusWMGTPioosu+sKg5aKiohg0aFC88cYbse++++6sb926NW644Yas5vhnWHFRUVE8/fTT8cMf/nCXdzdu3DiGDRsWP/nJTzLe+/73vx9r1qzZ5T2jR4+OVCqVVvvDH/5QqQDqiIgGDRrEBRdcEC+88EL8+te/rtSZ2pJKpWLgwIGxffv2tPrXvva1ePXVVysMoP6nbt26xZtvvhlHHXVUWr2srCy+/e1v5zTPP/+Z3nzzzfH4449XGED9T7169YpRo0ZFQUFBWn3YsGE53Q0AAAAAAAAAAAAAAAAAAAAAANQuIdQAAACwB7rllltix44dO1+3atUqxowZE40bN650j06dOsWDDz6YVnvxxRfjvffey3qeG264Ic4555xKPXv77bdHr1690mqrV6+OkSNH7vLMxx9/nPa6Q4cO0bNnz6znjIjYZ599cjpXU/70pz/F7Nmz02pt2rSJp556KkpKSnZ7vkmTJjF69OioX7/+bvtWVr9+/SodSN69e/e46KKL0mpz586NefPm5XQ3AAAAAAAAAAAAAAAAAAAAAABQe4RQAwAAwB5mxowZMWbMmLTabbfdFqWlpVn3uuyyy6JDhw5pteeffz6rHq1bt46f/OQnWZ25//77M2r/93//t8vn161bl/a6adOmWd23J3vggQcyar/85S+jQYMGle7Rrl27jH8GqVQqfvWrX2U9T506deLOO+/M6sw3vvGNjNq0adOyvhsAAAAAAAAAAAAAAAAAAAAAAKhdQqgBAABgD/P000+nvW7UqFFccsklOfUqKCiIr3zlK2m1CRMmZNVjwIABUa9evazOHHXUUdGtW7e02syZM2PRokUVPv/50OkPPvgg1qxZk9Wde6KtW7fGa6+9llZr2bJl9O3bN+te//7v/x6FhYVptVdeeSXrPqeddlq0b98+qzMnnnhiRm327NlZ3w0AAAAAAAAAAAAAAAAAAAAAANQuIdQAAACwh/l8aHHnzp2zDoH+V+3atUt7/e6772Z1/oILLsjp3n79+mXUJk2aVOGzJ510UtrrDRs2xKWXXhqrVq3K6e49xfTp02Pz5s1ptQsuuCCKioqy7nXAAQfEqaeemlabPXt2rFy5Mqs+PXv2zPruFi1aRIMGDdJqSQgJBwAAAAAAAAAAAAAAAAAAAACApMs+8QgAAACoMdu3b88Ian7//ffj2GOPzbnn54Oc16xZE+Xl5VFcXLzbs0VFRdGpU6ec7u3cuXNGbdq0aXHRRRdl1M8666w44IADYsmSJTtrY8eOjYMPPjj69+8fX//616N79+6VmnlPMn369Ixaly5dcu53wgknxIQJE3a+TqVS8e6778bpp59e6R4dOnTI6e7GjRvHhg0bdr4WQg0AAAAAAAAAAAAAAAAAAAAAAHs+IdQAAACwB1m5cmVs3rw5rbZ69epYvXp1td6zatWqaNGixW6fa9OmTdSrVy+nOw4//PCM2vLlyyt8tn79+vHAAw/E17/+9UilUjvra9asiQcffDAefPDB2GeffaJbt25x0kknxUknnRSnnnpq7LfffjnNVlv+/ve/Z9Q6duyYc78jjjiiUnd8kSZNmuR09+cDwMvLy3PqAwAAAAAAAAAAAAAAAAAAAAAA1J46+R4AAAAA+MzKlStr5Z5NmzZV6rnGjRvnfEdFZ8vKynb5fL9+/eKJJ56IBg0aVPj+xo0b49VXX43bbrstzj///GjWrFl06dIl7rjjjli0aFHOc9akisLDS0tLc+5XUej2qlWrsurx+TBpAAAAAAAAAAAAAAAAAAAAAAAguYRQAwAAwB6kotDifNpVIHRl7LPPPhm1devWfeGZyy67LGbPnh3/+Z//GY0aNfrCZ3fs2BHTpk2L6667Ltq3bx+DBg2KFStW5DxvTajo81blZ1rR2d39TAEAAAAAAAAAAAAAAAAAAAAAgC8vIdQAAACwB6lfv35G7ZJLLolUKlWtv9q2bVupeTZs2JDzZ9m4cWNGbXfB0hERrVu3jl/96lexbNmyePbZZ2Pw4MHRqVOnKCws3OWZ8vLyGDZsWBxzzDExffr0nGeubhV93qr8TCs6W5mfKQAAAAAAAAAAAAAAAAAAAAAA8OVUlO8BAAAAgM80a9Yso7Zq1ao8TPIPa9asqdazpaWllT5fv3796Nu3b/Tt2zciItavXx+TJk2KN954I8aOHRtTpkyJHTt2pJ1ZunRpfO1rX4sZM2ZE06ZNc569uuy3334ZtbKyspz7VXS2SZMmOfcDAAAAAAAAAAAAAAAAAAAAAACSrU6+BwAAAAA+s//++0dBQUFabcGCBXmaJmLhwoWxZcuWnM7Onj07o9a8efOcZ2nYsGGcfvrpcdNNN8WkSZNiwYIFcf3110e9evXSnlu6dGnceeedOd9Tnfbff/+M2qxZs3Lu9+GHH2bUKgouBwAAAAAAAAAAAAAAAAAAAAAAiBBCDQAAAHuUevXqRadOndJqc+bMiWXLluVlnm3btsV7772X09lp06Zl1I4//viqjrTTgQceGLfddlu8/PLLUVhYmPbeM888U233VEXnzp0zalOnTs2535QpU9JeFxQUVHgHAAAAAAAAAAAAAAAAAAAAAABAhBBqAAAA2OOcccYZGbVnn302D5P8w/PPP5/TuYpm7tq1axWnyXTqqafGueeem1abN29ebNy4sdrvylbnzp2jXr16abXnn38+tm/fnnWvZcuWxcSJE9Nqhx12WDRp0qRKMwIAAAAAAAAAAAAAAAAAAAAAAMklhBoAAAD2MOeff35G7Ze//GVs27YtD9NEjBw5MrZs2ZLVmZkzZ8bbb7+dVjvyyCPjoIMOqs7Rdjr88MMzamvWrKmRu7JRXFwcvXv3TqstXbo0p2DvRx55JOO/A2eeeWZVxgMAAAAAAAAAAAAAAAAAAAAAABJOCDUAAADsYU455ZTo1atXWu3jjz+OH/7wh3mZZ/HixXHnnXdmdea73/1uRu0//uM/qmukDEuWLEl7XVBQEM2aNaux+7Lx7W9/O6P2ox/9KDZu3FjpHgsWLIjbb789rVZQUBCDBw+u8nwAAAAAAAAAAAAAAAAAAAAAAEByCaEGAACAPdAtt9wSBQUFabX77rsvhgwZEqlUKqeeM2bMiG9+85uxevXqrM/efPPN8eKLL1bq2RtuuCHGjRuXVttvv/1iwIABuzxz0003xTvvvJP1XBERixYtiueeey6t1rFjxyguLs6pX3X76le/Gocffnha7ZNPPonLLrsstm3bttvzq1evjvPPPz8jtPrcc8+NDh06VOusAAAAAAAAAAAAAAAAAAAAAABAsgihBgAAgD3QKaecEkOGDMmo//znP4/TTjstJk6cWKk+K1eujKFDh8YZZ5wRxxxzTIwcOTK2b99e6Tnq1asXERHl5eXRr1+/uPvuu2PHjh0VPrtmzZq4+uqr49Zbb8147+67747GjRvv8p7nn38+unbtGl27do177703Fi5cWKn53nrrrTjttNNi7dq1afVvfOMblTpfGwoKCmLYsGFRWFiYVh81alSceeaZMXfu3F2efeedd6J79+7x3nvvpdVLS0vj/vvvr5F5AQAAAAAAAAAAAAAAAAAAAACA5CjK9wAAAABAxW688cb461//Gr/73e/S6hMmTIgePXrEoYceGr169YojjzwymjRpEnXr1o2ysrJYvXp1fPjhhzFt2rSYNWtWVqHTn3fSSSdFgwYNYsyYMbF58+b4wQ9+EPfcc09ceOGFcfjhh0dpaWksX748pkyZEqNGjYo1a9Zk9DjvvPPi8ssvr9R977zzTrzzzjtx7bXXxmGHHRbHHntsHH300bH//vtHaWlpRESUlZXFnDlzYvz48TF9+vSMHh06dIjvfe97OX/mmnDyySfHkCFD4sYbb0yrjx8/Po444ojo06dPnHbaadG6devYvn17LFq0KMaMGRNvvfVWpFKptDMFBQXx8MMPR5s2bWrzIwAAAAAAAAAAAAAAAAAAAAAAAHshIdQAAACwhyooKIjf/OY30b59+7jtttsywojnzJkTc+bMqfE5Ro4cGSeffHLMnj07IiIWLlwYd999d6XO9unTJyNEu7Jmz54ds2fPjqeeeqrSZw488MB47rnnYp999snpzpr0P//zP5FKpWLIkCFp9fLy8hg7dmyMHTt2tz2Ki4vj0UcfjYsvvrimxgQAAAAAAAAAAAAAAAAAAAAAABKkTr4HAAAAAHatTp06ccstt8SYMWOiU6dOVerVuHHjGDRoUDRs2DCrc02aNInXX389Tj755KzOXXXVVfHHP/4x6tevv9tnW7ZsmVXvipx77rkxadKkOPLII6vcq6bceOON8eSTT0arVq2yPnvEEUfEK6+8Ev3796+ByQAAAAAAAAAAAAAAAAAAAAAAgCQSQg0AAAB7gbPPPjv+8pe/xB//+Mfo169fNGnSpFLnDj744Lj66qvj6aefjiVLlsSvf/3rqFevXtb3N2/ePCZOnBiPPPJIdOzYcZfPFRUVxVlnnRXjx4+PYcOGVSqAOiJi7Nix8eGHH8Yvf/nLOOecc6JZs2aVOte4ceO4/PLL47XXXovRo0dH69atK3Uuny699NKYO3du3HnnnXHcccdFQUHBLp8tKiqK7t27x9ChQ+P999+Pnj171uKkAAAAAAAAAAAAAAAAAAAAAADA3q4glUql8j0EAAAAkJ1UKhUffPBBzJs3L1auXBkrV66MHTt2RKNGjaK0tDTat28fHTt2jNLS0qz69urVK1577bWdr3v27BkTJkzIeG7u3Lkxbdq0WLx4cWzevDmaNWsWrVu3jm7dukXTpk2r+On+YeHChTFv3rz45JNPoqysLDZs2BDFxcWx7777RvPmzePoo4+OQw45JOrU2bu/Y2vZsmUxZcqUWL58eaxYsSIKCwtj//33j5YtW0bXrl2jcePG+R4RAAAAAAAAAAAAAAAAAAAAAADYSwmhBgAAAHaqbAg1AAAAAAAAAAAAAAAAAAAAAAAAe746+R4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOonhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASKCCVCqVyvcQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSvOvkeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDqJ4QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAACA/8/encdJUtf343919xy7yx7cLKggl4IYRUFFjgQVgkmMAQ8wHl8SzE8wJphETbzxiGc0XyRG5RsNGoxRPKJ4hSMGRVC5wQDqLtfCwsKy1+w1V3f//iiGmZ6ZvWZ6pmd6n08eRU99qurzeXd1dffsVPWrAQAAAAAAAAAAAAAAAACANiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKANCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgDQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhDQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAA2pAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIA2JIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA0JoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQ0KoAQAAAAAAAAAAAAAAAAAAAAAAAAAAANqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACANiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKANCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgDQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhDQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAA2pAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIA2JIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA0JoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQ0KoAQAAAAAAAAAAAAAAAAAAAAAAAAAAANqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACANiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKANCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgDQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhDQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAA2pAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIA2JIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA0JoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQ0KoAQAAAAAAAAAAAAAAAAAAAAAAAAAAANqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACANiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKANCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgDQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhDQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAA2pAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIA2JIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA0JoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQ0KoAQAAAAAAAAAAAAAAAAAAAAAAAAAAANqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACANiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKANCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgDQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhDQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAA2pAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIA2JIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA0JoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQ0KoAQAAAAAAAAAAAAAAAAAAAAAAAAAAANqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACANiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKANCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgDQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhDQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAA2lBHqwsAaJbFixdn7dq1Y9o7Ozuz//77T39BAAAAAADAjLNs2bIMDAyMad91112zYsWKFlQEQLM4ZwwAAAAAAGyLc8YAAAAAAAAA7IxK9Xq93uoiAJphzpw56evra3UZAAAAAADALNTd3Z3e3t5WlwHAJDhnDAAAAAAATJRzxgAAAAAAAAC0s3KrCwAAAAAAAAAAAAAAAAAAAAAAAAAAAACg+YRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAALQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAb6mh1AQDN0tnZmb6+vjHt3d3dOfjgg1tQEQAAAAAAMNPcdddd455P6OzsbEE1ADSTc8YAAAAAAMC2OGcMAAAAAAAAwM5ICDXQNvbff//ccccdY9oPPvjg3H777S2oCAAAAAAAmGmOOOKIcc8n7L///i2oBoBmcs4YAAAAAADYFueMAQAAAAAAANgZlVtdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADNJ4QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA0JoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQ0KoAQAAAAAAAAAAAAAAAAAAAAAAAAAAANqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACANiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKANCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgDQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhDQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAA2pAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIA2JIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA0JoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQ0KoAQAAAAAAAAAAAAAAAAAAAAAAAAAAANqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACANiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKANCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgDQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhDQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAA2pAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIA2JIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA0JoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQ0KoAQAAAAAAAAAAAAAAAAAAAAAAAAAAANqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACANiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKANCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgDQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhDQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAA2pAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIA2JIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA0JoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQ0KoAQAAAAAAAAAAAAAAAAAAAAAAAAAAANqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACANiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKANCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaENCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgDQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhDQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAA2pAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIA2JIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA11tLoAdg4rV67M9ddfn7vuuis9PT3p7OzMHnvskac97Wk5+uij09nZ2eoSZ6SHHnooN910Ux566KGsXbs2fX19WbRoUXbdddccdthhecYznpGurq5WlwkAAAAAAACwVc4ZT8zAwECuv/763HnnnVm1alUGBgaycOHCHHzwwXnOc56Tvfbaq9UlAgAAAAAAM9il3/hI7lvx6/zlX3yx1aUAAAAAAAAAAC0khJop9Y1vfCOf+tSncs0116Rer4+7zoIFC3L66afnb//2b/OUpzxlmiscq16vZ8mSJbnxxhtzww035IYbbsjNN9+c9evXN6x35pln5otf/GLTx7/nnnvy+c9/Pv/+7/+e++67b6vrdnV15QUveEH+7M/+LKeeemo6OjylAQAAAAAAgJljNp4z3pY777wzz3rWs9LX1zdm2UUXXZQ/+ZM/mfQYv/71r/Pxj388X//618ecqx5SKpVy/PHH581vfnNe/vKXT3pMAAAAAACgvVz53U/nDde9O4PlevrO35y3/tXXWl0SAAAAAAAAANAiEmuZEsuXL89rXvOa/PjHP97muuvXr88XvvCFXHzxxXn3u9+dd7/73SmVStNQ5bBvfetb+fnPf54bbrghN910U9atWzet4ydJf39/PvShD+WjH/1o+vv7t3ubyy67LJdddlme+cxn5vOf/3yOPvroKa4UAIBp8+CDyXXXJbfdltx+e7JqVTIwkHR2JnvskRxxRPKMZyTPfW6y336trhYAAAAAHjfbzhlvr2q1mjPPPHPcAOpmqNVq+eAHP5gPfehDGRgY2Oq69Xo9V199da6++uqceOKJ+cpXvpJ99913SuoCAAAAAABmlyu/++m89uo3p69cS5J8ZMUl6ftEb9711u+0uDIAAAAAAAAAoBWEUNN0v/nNb3LiiSfmoYce2qHt+vv78973vjd33nlnLr744lQqlSmqcKyzzjqrJcHTQzZt2pSXvOQl+Z//+Z8J93Hrrbfm2GOPzde+9rWcdtppTawOAIBpNTCQ/Nd/JV/6UnL11cX8wEAyOJjUasPrlcvJD35QBFJ3dia//dvJmWcmp5xSzAMAAABAi8zGc8bb62Mf+1iuv/76Kem7Wq3m1a9+dS655JId3vaqq67Kc57znFx11VU55JBDpqA6AAAAAABgtrjmii/lzKv/6vEA6iSpJfnHRy9N38denA/83X+1rjgAAAAAAAAAoCWEUNNUq1atysknnzzuh4mPOuqo/NEf/VEOPPDAbN68Ob/5zW/yla98JQ8++GDDev/xH/+RvffeO+eff/40Vd16p59++rgB1J2dnfm93/u9HHvssXnCE56Q7u7urFmzJrfddlu+//3v5957721Yf2BgIGeccUb+53/+J8cdd9w0VQ8AQNNccUXyzncmd92VbN6c9Pcn9XqxbOh2pFJp+PZ730v++7+Tgw9OPvzh5OSTp69uAAAAAHhMO58z/t///d+8//3vn7L+zz333HEDqHffffe89rWvzeGHH56FCxfm3nvvzeWXX54f//jHDestX748v/u7v5sbb7wxu+2225TVCQAAAAAAzFy3/PQ7OePyP8umSnXMslqSf1pzWTa8//j843k/nf7iAAAAAAAAAICWEUJNU73hDW/IsmXLGtoWLFiQL3/5y3npS186Zv0Pf/jD+fCHP5z3ve99De2f+tSncsopp+T3fu/3prLcbdpjjz1y1FFHZbfddsvXvva1KRnja1/7Wr7//e+PaX/JS16SCy+8MPvtt9+4211wwQX54he/mL/6q7/K+vXrH28fGBjI2WefnZtvvjmdnZ1TUjMAAE3W05O85z3Jl7+crF+fDA6OHzo92siA6t7epK8vufXW5FWvSl772uSDH0wWLpza2gEAAABghHY7ZzxkcHAwZ555Zvr7+x9ve97znpdf/OIXTen/0ksvzWc+85kx7eecc04++clPZt68eQ3t73znO3PNNdfk5S9/eR5++OHH2++5556cc845U3Z+GwAAAAAAmLmW3vrjvPQ7r8jGyuBW17to8zUZfP/zc8F5P5umygAAAAAAAACAViu3ugDaxxVXXJFvfetbDW1dXV350Y9+NO6HiZOks7Mz5513Xs4///wxy84999wMDm79gpdmWrRoUV7wghfkbW97Wy655JLcfffdefTRR3PZZZflnHPOmbJx//Ef/3FM26mnnprvfOc7WwygTpJyuZyzzjor3//+98eETd9+++25/PLLm14rAABT4P77k5NOSj7/+WTNmmRgYPsCqMdTrxfbr1lT9HfyyUX/AAAAADANZvs546358Ic/nJtuuunx+de+9rV58Ytf3JS+BwYG8uY3v3lM+1//9V/ns5/97JgA6iHHHXdcfvazn2X33XdvaL/kkkty1VVXNaU2AAAAAABgdlh6649z0pdPyvptBFAPuXjzz3P2+589xVUBAAAAAAAAADOFEGqa5oMf/OCYtvPOOy9HH330Nrd985vfnJNPPrmhbenSpfnKV77StPq25uabb86aNWvyox/9KB//+Mfzyle+MgceeOCUj7t8+fJcf/31DW1z5szJZz/72ZTL2/f0POGEE3L22WePaf/Od77TlBoBAJhCy5Ylv/d7yS23JJs3Tzx8erR6vejv5puT3/99QdQAAAAATIvZfM54a2699db8/d///ePz++yzz7ih2RN18cUX5957721oe/rTn56PfvSj29z2wAMPzAUXXDCm/QMf+ECzygMAAAAAAGa4FcvuyMkXn5x12xlAPeSSzTfntX93+BRVBQAAAAAAAADMJEKoaYrbb789V199dUPbnnvumbe+9a3b3cdHPvKRMW2f/exnJ13b9jjwwANTKpWmZayRfv3rX6c+KmjwBS94QRYvXrxD/bzmNa8Zt28AAGawnp7ktNOSX/86GRhoXgD1kHq96PdXvyrG6elpbv8AAAAAMMJsP2e8JQMDAznzzDMzMDDweNunP/3p7LHHHk0bY7z7+P73vz9dXV3btf1rXvOaPP3pT29o+5//+R/njAEAAAAAYCewYtkdOe6CI7O2Y2DbK4/j+6Vf5VVve0qTqwIAAAAAAAAAZhoh1DTFV7/61TFtf/qnf7rdH4pNkqOOOipHHXVUQ9vPf/7z3HPPPZOub6Z65JFHxrQdfviOf3v8eNs8/PDDE6oJAIBp8rd/m9x2WzI4OLXjDA4W4/zd303tODCVHnww+fa3kw98IDnjjOSkk5Lf+Z3i9owzivZvf7tYDwAAAGiJdj1n/MEPfjC33nrr4/Mve9nL8opXvKJp/S9dujQ33HBDQ9u+++6bl770pTvUz9lnnz2m7T/+4z8mVRsAAAAAADCzbVi5MsdfcGRWTzCAeshllSU59W8PaFJVAAAAAAAAAMBMJISapviv//qvMW0T+eDteNuM13e7GO8D1zvyIewh3d3dY9rmzJkzoZoAAJgGV1yRXHzx1AdQDxkYSP7t34pxYbYYGEi++93kFa9Ijj46+fM/Tz73ueTqq5M77kiWLClur766aP/zPy/We+Urk+99r9geAAAAmDbteM74pptuykc+8pHH53ffffd85jOfaeoYl1122Zi2U089NR0dHTvUz3j77Yc//OGE6wIAAAAAAGa2DStX5qiP7Z9VkwygHvLj8rK85G+f2JS+AAAAAAAAAICZRwg1k7Zx48bcdNNNDW3z5s3Ls5/97B3u64QTThjTdvXVV0+4tpnuwAMPHNN2//3373A/421z8MEHT6gmAACm2MBA8pd/mWzaNL3jbtqUnHuuYF5mhyuuSI4/Pjn77OTaa3ds22uuSd7whmJ7wesAAAAwLdrxnHF/f3/+5E/+JIMjvkju/PPPzz777NPUcca7b8cff/wO97N48eIccsghDW033nhjNk333yEBAAAAAIApt2Hlyhzz0QPySEdvU/u9prw8J711cVP7BAAAAAAAAABmBiHUTNott9ySWq3W0Hb00Ueno6Njh/t6znOek87Ozoa2G2+8cVL1zWTPeMYzssceezS0/fd//3cGdjAY8Ac/+MGYthe96EWTqg0AgCny/e8nS5e2ZuwlS5JxfneEGaOnJ3nzm5Mzz0xGftlOtZr09ibr1ydr1iSrVg1Pa9YU7b29xXpD7r+/6OfNby76BQAAAKZMO54zfv/7359f/vKXj8///u//fl73utc1fZzx7tvzn//8CfV17LHHNsxXq9XceuutE+oLAAAAAACYmTasXJnjPnpglndunpL+b+x4OCe8ZY9trwgAAAAAAAAAzCpCqJm0X/3qV2PaDjnkkAn11dXVlSc+8YkNbXfddVcGBwcn1N9MV6lUcvbZZze0rVixIhdccMF297F69ep87GMfa2jbddddp+QD0AAANMHHP94YlDudqtVifJiJ7r8/efGLk69/vZiv14tg6TVrkpUrk7Vrkw0birb+/uGpt7doX7u2WG/NmqKtXi/6+frXk9/7vcZQawAAAKCp2u2c8Q033JCPj/g72sKFC3PhhRc2fZyBgYHcfffdDW2dnZ054IADJtTfwQcfPKbt17/+9YT6AgAAAAAAZqbf+ejBWda5cUrH+N/O1Tn2LbtN6RgAAAAAAAAAwPTqaHUBzH733nvvmLaJfig2Sfbff//cc889j89Xq9UsW7YsBx100IT7nMne8Y535Ktf/WrDh4v/7u/+LrvttlvOOuusrW77wAMP5OUvf3keeuihhvYLLrggCxYsmJJ6mcU2bUrWry+C+gB2FvV60tOTbN6cVCrJggXJnDmtrort1dGR7LJLsnBhqytpngcfTK6/vrU1XHddUcd++7W2jmbq60vWrStumZmGgqIHB5O5c4vndak0vHz58uT/+/+SRx4p5vv7i99da7XhMOltGVqvt7c4Fsrl4nW/qytZujT5/d9PPv/5xmN/YGD4d+Tu7uI154EHkiVLinr33DM5+OCin9E1N9O29s9MUK8Xz7Pe3uL1ef78ib2ndnYW+3OXXYbbarUiRHzz5uLnyejuLvbfDHq/X71hdS79zaX5zm3fybfv+/ZW1z100aE55eBTsnDe5N77Hlj3QB5Y90AGa4PZZ/4+OXTPQ/OFn34hD+fhcdcvpZRj9jkmLzj0BQ3tSx5dkpWbVmb5quVZunFp6hl+Ph6x2xGZW5mb/330f9Of/tRTTyWVzOmYk0Xdi/L8Jz0/h+x+SMpl34EHk9LfX7yvbe/7YbPUaklvX/ElJpVK0tVZvP7TXkY/zt1dxS1tqVKu5EmL9s8fHnl6Fu/6xG1vALCD2umccV9fX84888yG0OuPf/zjY4Kxm2HZsmWpjfq38BOf+MQJ/1tq//33H9M2OuQaAAAAAACYvZ73N7vm7q710zLWnZ1rc9RbFubGT/ZMy3gAAAAAAAAAwNSSGsGkrVixYkzbk570pAn3N962Dz/8cNuGUM+fPz8//OEP84IXvCAPPvhgkuJD1K9//evzxS9+MWeddVaOO+647Lfffunu7s6aNWvyy1/+Mt/97nfzr//6r+npabyQ5+///u/zute9rhV3ZYv++Z//OZ/5zGemfJy77rpryseYtR54IHl4/LAxgLY1OFi8/m3e3Ni+557JXnu1pia2z/r1ycaNxVSvF0GlT3xie4Sh/ed/FsdmKw0OJl/4QnLqqa2to1lWrRr+PWfOnCLAd9dd2+N4aRerViUrVzaGZ86ZUzyvOzuL8OVzz01WrCiCEDdtmnzYZr1ehCmuW1eEEs+bV/T/hjckF1xQBChv2FAEslerxTa9vcnNNycPPVSM39tbBEHvtVdy/PHJ4sXJE55Q1NxMjz5aTFvaPzNBf3/xnjoy6H1o3+yxx8T63Guv5ElPKvbz3XcXt81SKhVh44sXN6/PCfrJvT/JJ6/9ZP57yX9nYzZuc/0l65ZkyU1Lcvjuh2ffhftOaMylq5amp3/E3wpWJl//1de3uk099fzs4Z/luoevy3MXPzflSjl3rb0rvYO9Wdu3dtxtbl9z+5i2wQxmw+CGbBjckG/86hvZo2uPHLH4iHSU/QkSdly9eG0cGJj+oau1pK931HtxKZnTlVQ8n9tGtTr2d65S6bEgao9z27r/mvznnd/Knx9zbl7yrNNbXQ3QZtrpnPF73/ve3HHHHY/Pv+AFL8gb3vCGKRlruvbbTOCcMQAAAAAATMCDDybXXZfcdltOuP+D+c1ug8nI77csbeHnJrm7c32e9Zb5ufrt92S+a/ABAAAAAAAAYFaTJMCkrV69ekzb/PnzJ9zfeNuuWrVqwv3NBk95ylNy00035Zxzzsm3v/3tx9uvvvrqXH311dvVx4EHHpgLLrggL3nJS6aoyolbuXJlwwe1mWaPPiqAGtg5PfTQ2ADqpHhd7O5OFi6c/prYunq9CDm9776kp6cIoR6yyy4TDzqdSb75zVZXUPjGN9pjf/b2Jo88Mjzf2ZksWFAEzx58cBHkS2tt2ND4GA3p7U2WL0+e/OTkc58bDoPu6RkOhW6G+ogAz4ULi3EuvLAIvV6+vAi9Tooxf/3r5De/KdYtlZJyudj+kUeKD3C86EXFe8v++zevvg0bioDu0Ubun1ar14v9NjKAeqj9kUeK99SJ/A1g5cpi21WrmhtAPVTb8uVFKP2iRc3te5RqrZpKuQi9X7dpXX5w5w/ylN2ekgP3PjDrNq3Lu773rvxq1a+2K4B6pDtX35nB9YPZZ699UiqVsn79+lQqlXR3d2fOVl7b7l93f2MAdbLFEOlx70+q+eWKX2a3BbttNYB6e63qX5V71tyTQ/c4dFL9wE6pb6A1AdS1+jgB1EkRit2XzK0k5Sn4xCLTq1Yf/0s/6vWkt9/j3Ob6qn355599Ks/Y76jsv8/BrS4HaCPtcs74F7/4RT75yU8+Pj9v3rx8/vOfT6k0Ne+N7bLftodzxgAAAAAAsJ0GBpL/+q/kS19Krr02SXLSix7K/y5OMs4lHY8rjZia6N7OjTnmowfk52+/TxA1AAAAAAAAAMxiQqiZtI0bxwYpzZ07d8L9jbftpk2bJtzfbLHPPvvkP//zP3PTTTfloosuyhe+8IVsHi84c5Sjjjoqf/d3f5fTTjstHR2e0oxjvNA/gHbX318Ee27J6tVCqGeiRx5JbryxCAqv1RqDaB99tAhJm6Kwl2mzZEmrKygsWVKE6c52a9c2hs2XSkWw7YoVxQX4z3zm7D9mZrs1a7a8bPPm5OqrkyuvLJ7v69YNh0I321D/ixYlV1yR/NZvJU960vDyTZuS++8vxu/rSzo6kq6u4eUrVxZhyeVysby7uzl1jRM09bjNm4tw5laHqff2jv+lDkPWrp1YCHWS3HVX8/bleB55ZEpDqHv6evKab70mZx15Vnads2te+G8vbGr/SwaWZMmDY983nrrbU/OERU8Yd5s1vVt5zm2nDdmQcm855XJ50n0lyZrNa9I/2J+ujq5trwwMG+jb9jpToVYdJ4B6hMGBxvdIZqfBrT3O9WRwMOnqnNaSmF79tf5ccvOX8tYXf6DVpQBtpB3OGff29ubMM89MdcTfJT/0oQ/loIMOmrIx22G/AQAAAAAATXTFFcm7311c0/iYF5/4UG5cvB3b1jMcSl1OU8Ool3duzjEfPSD/+0nnHQAAAAAAAABgtpJYy6QNDAyMaZsziZCs8T4Y29/fP+H+ZpO77rorX/jCF/KNb3xjuwKok+TGG2/MO9/5ztx3330555xzMn+i4V+0p3q9CI0baSrD/QBmivXrk56e4fl6vTGIdsOGKQ2lZIKuuy65++4itHbTpuL9amQw2oMPJpVK6+prhu38HW/Kbd6c3HJLq6uYvPXrG8PKK5WkszPZddfiPu6xx8TDcWmOlSuLQPDxVKvJP/9zcdvTM/W/o9ZqxTgLFyaf/3zyV381/JqyZk0RMt3fX/z+PPoLfmq15L77isDkFSua90UGjzzSeAyP9vDDrf/ShHXrGt9TS6XG1+ZNm5Jddtm+vkql4vk5ZP36Yl8PPQ79/ck44VvbraMjWbBgeL6Jr7nVWjWV8vB7UE9fT874xhm5dcWtuWbZNU0Jf95ev17z66zqXZXd5uzW0D5YHcyG/lFfwjHBp9X6gfXprjQnIHzD4Ibcu+bezO2aeIga7JRG/z2nvpX3i2YaqCXVwa0srxQTs5vHeae0S2Vedp+z6+Pz969d1rpigLbUDueM3/Wud+XXv/714/PPf/7zc+65507pmO2w3wAAAAAAgCbo6Une857k619vaD71+IfyiydMoL9aihDqcjOKKxy38LDmdQYAAAAAAAAATDsh1EyJUmniX5U+3rb1kQFXbWhgYCAf+MAH8pGPfCTVcQLI5s2bl7333jvz5s3L2rVrs2LFitRGBLQtXbo0b3vb2/KpT30qX/rSl/LCF75wOstnJqvXGwPikq0HAQK0iw0bijDRIaMDM0slwbQzTa2W3H57cu+9RQBpvT42cLq3d/aHUM8kK1e2uoLJGzpWhgz9Lr1yZRGc++tfJ0+YyJX3NM0jj2w5XPrXvy4eq02bth7E3EzVavEeUa0mv/hF8tSnFu3r1hXH08BA0tdX1NzRkQw+Fs7Y0ZEsW1YEm5dKRc3N8Oij2w7fbtZYE7VuXbJ69fD86PfUSiWZN2/7+qpUGkOoR/97pbe3CPmeqLlzG0OomxRs3tPXk9d86zU568izctrhpzUEUG8e2Jy1fWubMs6OeHTzo9mweUPmdA8Hkw1WBzNQbfy3Xj0T+3tKPfUxfU3Gqt5V6R5sTqg17DRGBwQPTtN7ZeqPTVtQLRUTs5zHeWc02FltCKHuq/W1rhhgpzGbzhlfc801Of/88x+f7+7uzr/+67+mXG5iMsN2mk37DQAAAAAAaIL770/OOKO4jnqEVxz3UH58wCT6rWc4jHqSlwG8rOu3cuF5N02uEwAAAAAAAACgpYRQM2mdnZ1j2jZv3jzh/sbbtqura8L9zXT9/f15+ctfnu9973sN7XPnzs3rX//6/Mmf/EmOPPLIVEYELq5bty4/+tGPcv755+cnP/nJ4+0PPPBATjnllHz1q1/Ny1/+8mm7DwAAk1avF8GjPT1FCOx4IdS1mhDqZtq4sdUVTF5vb2OAba1WzA8OFuHHPT1CqGeyW24pnu/T/QUpAwNJZ2cx/lAINWzByMDpmx+6OZsGNuXLv/xySwOoh/SmN+lLQxA1AABAq8zmc8abNm3Kn/7pnzZ8CfB5552Xww47bErGG2k27zcAAAAAAKAJli1LTj21uI56hNc+96H895Ob0P/Q91SXM+Eg6lOqh+YLH7itCcUAAAAAAAAAAK0khJpJmzdv3pi2Zn8wdpdddplwfzPdm9/85jEB1Icccki+/e1v54gjjhh3m0WLFuW0007Laaedls9+9rP5i7/4i8c/FD04OJjXvOY1Oeyww7a4/XTba6+98rSnPW3Kx7nrrrvS19c35eMAAFNk/fqkv394vlptXD4iBIYmGL1/Z6NqtTGEesjgYBGyPYl/lzDFenqS++4rgsRbobe3GL+nJ1m4sDU1MOONDKBOkmq9mtdf+vrM65yXer3e0gDqIYKoAQCAmWI2nzN+xzvekSVLljw+/+xnPztve9vbpmSs0WbzfttRzhkDAAAAAMAoPT3Jq141JoD69Uc/lO8f2uSx6plQCPXv1PbPV//hN00uBgAAAAAAAABoBSHUTNoee+wxpm3Dhg0T7m+8bccbox1ce+21+dznPtfQtvvuu+fyyy/PgQceuF19vPGNb0xfX1/++q//+vG2vr6+vPGNb8xPfvKTptY7UW9605vypje9acrHOeKII3LHHXdM+Thtae7cVlcA0Fzb87uI176Zpb+/CBMulYrboWDhkQHD1WqxnOYYL7x5tqnXx4aTl8vDt7Wa5/pMtXx5ERbeqnD5Wq0Yf/nyiYVQT+dx1epjeN26ba+zpRqbEQS/tfs/hUHzowOo66lnzeY1GagNZE3vmikbdyJ605uOgY50VjqzOTM3fL+r0tXqEmB2qY36vbdUHrvOVPxqXKum+NThlpSScmUKBmZaeZx3Cv21gVaXAOxkZus545/85Cf5p3/6p8fnOzo68q//+q/p6JieSylm636bCOeMAQAAAABglPe8J7n33oamc5/xUL711CkYq56klmScS1C25LjaE/Ltj983BcUAAAAAAAAAAK0ghJpJ22effca0PfDAAxPu7/7779+uMdrBJz/5yTFt73rXu7Y7gHrIueeem4suuii33Xbb421XX311brrppjz72c+edJ20uSc9KZk/v9VVADRXpZKsXLn1dZ785Gkphe3U11e8H23eXEzV6th1SqUiNJbm6O1tdQWTNzAwNsS4VEq6uorg2n339VxvtSVLxg+aXrGiCJ9vpf7+5OGHk8MP37Ht9tknOeCA5tSwpf0zZO+9W38MV6vJ6tVbXl6pbLnGjRuTZcsmPnZX19bv/9q1yUMPTbz/LdhSAHVfta/pYzXLhtqGHLDLAekZ6Gl1KePqKHfk6Xs/vdVlwOxRqyUbR4UHbtyUhtDgOXOTyg58KnB7rd+Q9G/l98SOrmTRBL7AgZmlZ0My4HFud79ae1c2Vdvg333ArDFbzxmfc845qY/4sra3v/3teeYzn9n0cbZktu43AAAAAABgkq64Ivn61xua/ubpD+Xi35rCMeuPTdvxxedHDe6T731i4ucsAAAAAAAAAICZRwg1kzZeYPJ99038W86XjQqoqlQq2X///Sfc30w1ODiYyy+/vKGtVCrlda973Q73VS6X87rXvS5ve9vbGtovu+wyIdQAwOxQKiW77TYcdFqtFsHUI/X2JuUpCNrbWa1f3+oKJq9aTUaEBKWjI+nuTjo7i9vdd29dbTTq7y+ew0MB8/fdt/Xw5elQqyX33pusWVM8H/r7G48ndkqzMYB6yH3ri7/FVFJpcSUAAMDOaLaeM37wwQcb5r/1rW/lu9/97nZvv2LFijFt733ve3P++ec3tL30pS/NBz7wgTHr7r///imXy6mN+DvJ/fffn1qtlvIE/hY6er8l4z82AAAAAABACw0MJO9+d0PT2w9/KBdNx/dkbkcI9TMH9syVnxx7DgQAAAAAAAAAmN2EUDNpT33qU8e0LV26dEJ99ff35/77729oO/jgg9PR0X6H6t13350NGzY0tB188MHZa6+9JtTfMcccM6bttttum1BfAAAtsXBhETy9cWMRBFsadYVzuTy2jYlrl3058n5Uq8mmTUW48H77FWHUtF5PTzLq3z6PB8632urVyebNRUB2f39xDFWrjp2d1OgA6iSzJoB6pGqqgqgBAIBp1y7njO+4445J93H//fePqf/II48cd92urq4ceOCBueuuux5vGxgYyLJly/LkJz95h8ce2c+Qww47bIf7AQAAAAAAptBllyUjziV86NAV+ZdnTdPY9Ww1iPrwgV1z1SdXTlMxAAAAAAAAAMB0ar9kX6bds571rJTL5dRqtcfbbrjhhgwODu7wB4FvuOGGDAwMNLQ9+9nPbkqdM82qVavGtE00gHpL266eKcFuAADbUq8nq1YVt/PmFSGwg4ON63R0FEHUNEdXV6srmLxSqThmhlQqxTHS2ZmsW1eECtNamzcn69c3Bj0nRdj8TLBxY7JiRRFe3ttbHFMDA0l3d6srY5qNF0CdJJ3pTF9mVwi1AGoAAKAVnDOeuKOOOmpMePTPfvazCYVQX3vttQ3zlUolz3zmMydTHgAAAAAA0Gxf+tLjP37ioIfzj8+tp7aV1ZtuCyHUBw0syLWfXDOdlQAAAAAAAAAA00gINZO2yy675FnPelZuvPHGx9s2btyYm2++Oc95znN2qK+f/vSnY9p++7d/e9I1zkRz5swZ07Z58+YJ97dp06YxbfPmzZtwfwAA06pUSlauTIZ+RyqXi9DpkTo6ipBhmmPu3FZXMHnjhZJXKkWAcF9fcUzRWhs2FAHzPT2NwfKjQ+ZbZXCwqK23twjKHlKttq4mpl21Vs1rvvWaMQHUmwc2Z0N1Q4uq2nGllFKOL2sAAABawznjiTvhhBNyySWXNLT99Kc/zR//8R/vUD8PP/xwlixZ0tB21FFHOWcMAAAAAAAzyYMPJtdckyT5pyc/ko88vza9AdRJEUI9Koj6yQO75MZP9kx3JQAAAAAAAADANJJMQ1O8+MUvHtP2jW98Y4f7GW+b8fpuB3vttdeYtvvuuy+12sQuHbr77ru3awwAgBmpWi3CYAcGivlKpQidHjl1dc3+aSZp9b5oxjT6GKlUikDzgYGkXk/Wr2/1Xmbt2mTNmuHQ6Xq98bbVRtdTrSb9/TMnJJtpUSlXctaRZ6VcGv4z2eaBzVnbt7Z1Re2gcso5evHRrS4DAADYyc3Gc8Zr165NvV6f8HTeeeeN6fOiiy4as94Xv/jFLdZwyimnjGn7zne+k8Ed/PvEN7/5zTFt7XquHQAAAAAAZq3rrkuS/L8nrcz7j61OfwD1OJ4wMC9Xv/2eVpcBAAAAAAAAAEwxIdQ0xate9aoxbRdddFH6+/u3u4+bb745119/fUPb8573vBx44IGTrm8mWrx4cebPn9/QtmbNmvz85z+fUH8/+MEPxrQ95SlPmVBfAADTrlIpQoUn+IUc7KRKpfHnhwKFd911WsthHOvXDz8etdrwNJPUao2h2LWaEOqd0GmHn5Z/+r1/SrlUnpUB1Cc++cRWlwEAAOCc8QQdeuihOeqooxrali9fnu9973s71M+FF144pu2P//iPJ1UbAAAAAADQZLfdln9bvDLvOn4w1dK2V59qiwfm5Odvvzfz99qr1aUAAAAAAAAAAFNMCDVN8fSnPz3HH398Q9vKlSvzf//v/93uPt7xjneMaXvjG9846dpmqo6OjrzoRS8a0/6hD31oh/u655578uUvf3lM+ymnnDKh2gAAWmK33ZLu7qSjIymP80+V0YHDMF4IdaVSHEfd3cUxRWuVSkWo86ZNyYYNSV9f0tvb6qoa9fYmmzcn/f1JtVq0eb3ZKZ12+Gl5w7PfIIAaAABggpwznrjx7uN5552XgYGB7dr+q1/9am677baGthNPPDGHHXZYU+oDAAAAAACa4+vXXZy3vGAwg63+VGc92XuwO9e/fZkAagAAAAAAAADYSbT6cgXayLvf/e4xbeedd15uuummbW776U9/OpdddllD20EHHZRXv/rV2zX2k5/85JRKpYbpqquu2q5tW+mMM84Y0/aDH/wgH/3oR7e7j3Xr1uW0005Lf39/Q/vTnva0/NZv/dakawQAmBb1erL//smCBUlXVxEgPHdu47TLLrN/mklavS+aMY0+RubMGT5+Dj64CKSmtebNK8KdBweL+cHB4Z9nisHBIig7Gb517OyU/uee/8l5Pz6v1WVsNwHUAADATOSc8cS87nWvywEHHNDQdtttt+Wd73znNre999578xd/8Rdj2t/znvc0rT4AAAAAAGDyLv3GR/Kmpy5tfQB1kj02JT8+9yYB1AAAAAAAAACwE5kBlyzQLk455ZT80R/9UUNbX19fXvCCF+S73/3uuNsMDAzkgx/8YP7yL/9yzLILLrggnZ2dU1LrTHHGGWfkyCOPHNP+jne8I2eddVYefvjhrW7/ox/9KEcddVRuvfXWMct2JMgaAKDlSqUiRPiZz0wOOCDZbbciSHjk1NVVhAzP5qk8Q/4JVi63fl80Y+rsbDxG5s9PFi9Ofuu3kr33Lo4ZWmvosZo3r3g8OjqKaSY9Fzo6itoqleKYSoRQ74TWbVqXF/7bC1tdxnYTQA0AAMxUzhlPTFdXV84///wx7Z/4xCfypje9KZs3bx53u2uvvTbPf/7zs2rVqob2V7ziFXnhC2fPv3MBAAAAAKDdXfndT+cN1707AzPg8sRde5OfXnd4Fu//tFaXAgAAAAAAAABMo45WF0B7+Zd/+ZfceOONeeCBBx5v6+npyUtf+tIcffTR+aM/+qMceOCB2bx5c5YsWZJ///d/z/Lly8f08xd/8Rf5gz/4g2mr+4Ybbsif/dmfbXH5hg0bxrRdeuml4wZIDzn66KPz+c9/fqvjlsvlfP7zn8+JJ544ZoyLLrooX/nKV3LKKafk2GOPzX777Ze5c+dm7dq1ufPOO3PFFVfkl7/85bj9nnnmmfnDP/zDrY4NADDj7LJLUq0WIdRJUq83Lt999yJoeDb75S+TdetaXUWyYEFy0kmtrmLyHn44qdUa20ql4nYooJrW6u5Odt21OO47RvwJolIZ+9i1QqVSBGT39hY/1+tFaDY7nUXzFuWQ3Q7J0jVLW13KNgmgBgAAZrrZes641U499dScffbZufDCCxvaP/OZz+RrX/taXvva1+bwww/PggULsmzZslx22WW56qqrxvRzwAEHjOkDAAAAAABonWuu+FJee/Wb01euJS2+dHJRX3LFtzuy+Kn7tbYQAAAAAAAAAGDaCaGmqfbaa69cfvnleeELX5gVK1Y0LLvhhhtyww03bLOP008/Peeff/4UVTi+DRs25NZbb92hbdasWZM1a9Zscfmuu+66Xf0cddRR+fa3v51TTz11TBB1X19fLr300lx66aXbXdfLXvaybYZfAwDMSPPnJ4ODSU9PMjBQBFKP1NVVtM9m8+bNjBDqefOScb5oZdbZtKnxOKlUimnu3CL4eCiQmtYplZK99y6e35s2FWHPycx5Pnd1Fc+Hcrk4bkqlpL9/bAg+O4Ul5y7JoRccOuODqAVQAwAAM91sPWc8E3z605/Oo48+mm9+85sN7atWrcqnPvWpbW6/77775vLLL8/uu+8+VSUCAAAAAAA74JorvpTTr3h9EUDdYgsGkiv/syOHVPdK9tyz1eUAAAAAAAAAANOs3OoCaD+HH354rrvuuhx//PE7tF1nZ2fOO++8/Md//EcqlcoUVTczvehFL8qtt96a3/md35lwH/Pnz89nPvOZfPOb30xHh3x5AGCWKpeL8NdarbgdOdVqs3/q7Gz1Hi50drZ+XzRrGnmMVKtFW7ksgHqm6O4ubufNKz6w8MQnFtO8ea2ta8i8eUU9ixcnc+YUIebJ8C2ts2ZNcv31yb/8S/KOdyR//ufJG95Q3L7jHUX7NdcU6zXRknOX5OBdD25qn8121b1XtboEAACAbXLOeGI6OjpyySWX5D3vec8On/P97d/+7Vx//fV5ylOeMkXVAQAAAAAAO+KWn34nZ1z+Z9lUrg43tujy1l0Gkku/+VgAdZIccURrCgEAAAAAAAAAWkZSLVPiSU96Un7yk5/k61//ej71qU/lZz/7Wer1+rjrzp8/P6985Svzt3/7tznssMOmudKZ46CDDspVV12Vq6++OhdeeGF++MMfZvXq1VvdplKp5BnPeEbOPPPMnHnmmdl1112np1gAgKmwaVOyYUMRkDxeWPOiRUVI7Gw2d26rKyjMnZu0w++Ovb1F6PRoAwPJ2rXTXg7jWLAgWb9+7OM0U0KkxqujUpk59e1sBgeTm25KfvrTZMmSIkx+S4/FzTcPh88femhywgnJc587qeGrtWo2DmzM4Xsfno0DG7Ni44pJ9TdVaqnlqnuvyolPPrHVpQAAAGyVc8YTUy6X84EPfCCvfvWr87GPfSzf+MY3smHDhnHXLZVKOfbYY/PmN785r3zlK6e5UgAAAAAAYEuW3vrjvPQ7r8jGymCrS8m8geRrl1Zy5FAAdZI84xmtKwgAAAAAAAAAaAkh1EyZUqmU008/PaeffnoeeeSRXHfddbn77rvT09OTjo6O7Lnnnjn88MPznOc8J11dXZMa6957753U9ieeeOIWP/A83U444YSccMIJSZKlS5fmtttuy6pVq7J27dr09/dn4cKF2XXXXfPkJz85z372s7PLLru0uGIAgCYZHaQy+vezen38wOHZZIb8zplk9u/LpNifo/dpqVTc9vcXIdW0VqWS7Llnsm5d0tc33D70OLVSqdRYR6lUBODPpOfpzuTnP08+/elkxQSCn5csKaZLL03+6q+SY47Z4S56+npy+tdPzyMbH8mKDStSKVeyeJfFgqgBAAAmaTadM56I973vfXnf+943JX0fdthhueiii3LhhRfm+uuvz5133plHH300g4ODWbhwYQ466KA897nPzd577z0l4wMAAAAAABOz9NYf56Qvn5T1MyCAuruaXHJJclxGnU947nNbUxAAAAAAAAAA0DJCqJkWe++9d17ykpe0uoxZ55BDDskhhxzS6jIAAKZerZYMDibVarJxY7J589gA4TVrkkkG0bTcgw+2uoLCgw8mS5e2uorJW726MTC4oyOZN6+YuruLIGpar6Mj2WOPZGCgCKKu14uw50qleM63Srlc1LFgQfHzvHnF69DAQOtq2hlt3Jj8y78kV145+QDwVauS970vOemk5JxzkkWLtmuznr6evPySl+fq+67OQG0gi7oXZU7HnFTKlezavWvW9q2dXF1TRBA1AAAw2zhnPDFdXV057rjjctxxx7W6FAAAAAAAYBtWLLsjJ198ctZ1bCGAuvTYNMnL5bZHdzX58leT4wb2TDpHLDj++GTffae+AAAAAAAAAABgRhFCDQAAtF65XISP3n9/smxZsmnT2HDarq5ivdlsw4ZWV1BYvz75xS9aXcXkDQUaDymVilDh/fZLDjywCD+m9fr7k7Vri4DnIZ2dkw8cnqyhMOz164vn5saNRVur69qZrFyZ/MM/JA89NP7yWq3xSwqGVCrF83tL7wlXXpnccUfysY9ts4Q1m9fk9G+c/ngAdZKs61uXgdpAqrVqegd7t9FDawmiBgAAAAAAAAAAmBlWLLsjx11wZNZ2DGx9xWkIoe6sJf/vW8lJPbskCzsbF5555tQODgAAAAAAAADMSBK5AACAmWHt2iI0dGALF16XSrM/hHom2dJ+nk0GB8cGBg8MJPfcU9yefHJr6mLY4GCyatXYx2mXXYpw4Vaq1ZL58xvbqtXi2OnsHH8bmmfFiuT970/WrRu7rFotQuZHBpdvSUdH0t1dBFOP9OCDyd/8TXLEEcmTnjTupg/0PJAjP3dk1vWtS61eS71eT6lUSr1ez4b+GfKlAdthKIj6qMVHtboUAAAAAAAAAACAndKGlStz/D89O6u3FUCdFCHUU6izlvzzpclLH+xM9ljQuHD//ZPf/d2pLQAAAAAAAAAAmJGEUAMAADPD0qVF8ChMVrWaPPxwEX5Ma61fPzaAOpk5gfJDdWzaVIQhb9pUTCND7zs6itDsej05+ODW1TrbrVlTBMT/+MfJb36TXH990ttb7OtSqdjP5XLS398Ykl/ayqdt6vVi3YGBpKsrmTu3cfnKlcmrXpX88IfJwoUNix7oeSDP/Nwzs3rz6lFdjnO8zgK11HLDihtSzgx5bgEAAAAAAAAAAOwkNqxcmed8dP+s6uzb/o3KSWrNr6WjlnziB8kr7+1Idtt17DV4f//3SWdn8wcGAAAAAAAAAGY8IdQAAEDr1WpFAGxnZ/FzrTbcPqRcnjnBte2gHfbl6AvjR4YG1+vJffclxx8//XUxrL9//PaZEvS7Zk1y+eXJQw8NBx/X68PByEM2bEgefTS5447kmmuS009Pnv/84lhjywYHk5tuSn7602TJkqKto6PYn/39w/s6Kfb/eMfF1kKoR+rvL8ZbuDCpVIbb77knee97k/PPf7xpSwHUs1099VRTTSWVba8MAAAAAAAAAADApG1YuTLHfPSArOjs3bENS49NTbycslJPPnR58n/u6iwCqEdf43j66clJJzVvQAAAAAAAAABgVpGWBAAAtF61OvzzyLDpkYGk3d3bH0bKtnV1tbqCyavXG4PKRx8fI48rWqNUKh6njRuLkOChx+uBB1pb15D77iteW+r17Q/G/tWvkg99KNlnn+SNb0yOOWZqa5ytfv7z5J//uQj4Hqm/f2w4+db2f71efEFBpTJ8PFWrReD0aLVa0tMzNoj6kkuSP/iD5OST2zaAeiRB1AAAAAAAAAAAANPjhI8emOWdmye2cTlJLU0Joq7Uk/P+O3nDPbskeywYe03tgQcmH/jA5AcCAAAAAAAAAGYtIdQAAEDrdXYmixYlq1Y1to+8ALpeHw6nZvLaJdB7S/ejoyPZf//prYWxurqS5cuT9euTDRuS3t7iubx2basrKwwFGo8OQd6e58fDDyfve19y0knJOeck8+dPWZmzyoYNyec+l1x55fjB0ps2Nc5vTwB4uZzMndv4HlCrJX19yebNjdvX68XxtmhRquUMRzG/5z154NmH5sgvHN3WAdRJBFADAAAAAAAAAABMg6PesjD3dm6cXCelTDqEulxP3v7j5C8f2DNZ2Dl2hX33Tb761WThwskNBAAAAAAAAADMakKoAQCAmeFpT0uuuy7p7x8OJR0ZLFqrta62dlSttrqCyavXG4+LoYDajo5kv/2SJzyhNXUxrF5PVqxIVq9uPOZm0vE33utNtdoYRF0ubzko+corkzvuSD784WTx4qmtdaZbsSJ55zuTBx8cf3l///Bjv63g6aH9XyoV2w0OJgsWJJXHApbL5WTOnGJ+06bGY6pWS8/gxrzm1GrO+s38nHbvnKxZcU+e/bkjs2pw3eTu4wx2wIID8sD6B1pdBgAAAAAAAAAAQNs79m275+7O9ZPvqJSknCKIegJh1OUkf3Nd8tbl+ybj5E/nwAOLAOonPWlSZQIAAAAAAAAAs1+51QUAAAAkSQ4+ODn88KTzsSugtxVQCuMplZJ99kme+9zhUGpaZ8WKIiC4VGoMdZ5JhsLMR4ZRD7UNTYODSV9f0ttb/Dzagw8mb31rcX93VitWJG95y/gB1NVqcRxs2jQ28Hs84x0rtVrS0zM2wLxcTnbZZTicOklPVz1n/GFvbtxrMH953Lr8+8Gb8+oXrcvm3p4J3LHZ4am7PTV777J3q8sAAAAAAAAAAABoeye8/8Dc2bU+RYJ0EwwFUU+guzfdmLxr6b7jLzz99OSHPxRADQAAAAAAAAAkSTpaXQAAAECSIth1n32S+fOT9euTRx8tQkeHzJs3HFA9W917b9Lf3+oqkq6u5KCDWl3F5K1b1zi/YEGy667JokWNxw6tMxTK3N1d3NbrMy+MenSo8dYMDiYbNhS38+Y13pdHH03e+c7kgguK17GdyYYNxX1ftaqxvV5PNm/e8de9oZDq0cdKvV68Pyxc2BgyXyoVj8eGDUUA9SvquXWfYv3BcvL6E9emazDZUElbeupuT80TFj0h63vXt7oUAAAAAAAAAACAtnbSB5+S/+1/oJipVB67BrHenM7Lj3U1NG3Dn96WfOBX4wRQ779/8sEPJief3Jy6AAAAAAAAAIC2IIQaAACYGXp6iiDR+fOLad9RF0XvvnsyZ05ramuWNWuSX/yi1VUkRx2VHHtsq6uYvBUrthw2vWlTMjAwvfUw1ujHoFSaeSHUE9HXV9y3BQuKD5EMefDB5MILk7e8pXW1tcLnPlfc95Gq1eJ1fTKB8PX6cCD1kFotWb26+FKCSiXp6Cimcjk9C7pyxh/2FgHUKT6Ds7a7nr5y0tc98TJmsqEAagAAAAAAAAAAAKbWiz/0tNzYe09jY7ODqEuPTdsIo37d/yb/+MtR11off3xy5pnJ7/5ucY0dAAAAAAAAAMAIQqgBAIDWq9eT/v6tr9MOwbUnnDAzQqiPP77VFUyPvr5WV8DChcn69Y1to0OFZ6pyebjW8Wqu1YqQ5YULG4Oor7giOe645JhjpqfOVluyJLnyysa28QKom/24DwwMh5yXSumZ35kzXlbNrXsOr1JK0jWQ9M3y7y/YEgHUAAAAAAAAAAAA0+PUjxyZX2xaMv7CZgdRJ41h1EMe+/n0u+fmgoFjk9/eMzniiOQZz0ie+9xk333H6QgAAAAAAAAAoCCEGgAAaL1SqZi2FlI6W4Jrt2bhwiLYdmQw63Qrl5MFC1o3/nRqh+Dy2e6JT0zWrEk2b575z+Gh16BSqXiejDx+htqr1cZt6vUiZHvRosb1P/e55Oijk442/7NLtZpcfnlj29A+2drjva3X+x3U01XPGS/tbwigTpLeJOtHB1DXU3wwZ5YTQA0AAAAAAAAAADA9XvUPx+THG27f+kpTEUSdNF7vVkr+oH5YLvzGnc0dAwAAAAAAAADYKZRbXQAAAECSpLu71RVMvZ6e4iLzVqpUijraXam0cxxTM92++yb77ZfMn5/MnZt0dhZTeQb9OaJUKsKixwufHrlOpZLMmzc2WLpWSzZtamxbsSL5+c+nruaZYunSZO3axrZNm8YG7Vcqw/u2yeHwPd3JGa9Ibl3c2N6bZM38JC3M/J8qAqgBAAAAAAAAAACmx2s/cVwuW3vj9q1cqaQxNbq5Tqkemi9/TAA1AAAAAAAAADAxHdteBQAAYBosXJj09SX1eqsrmTrLlxfByAMDrauhu7uoY+HC1tUwHRYsGBsWzPSrVJKDDip+Xr066e0tAoq7uoqfZ4KRx8nWApLr9SJIeZddiqDlwcHhZX19xXNrZF/f+15y/PHNr3cmueWWxvnBwWJfjFSpJHPmJJs3N/31fZsB1Enx9Wu1zNqvYTty9yOzYO6CrF+/PpVKJd3d3ZkzZ06rywIAAAAAAAAAAGh7Z59/cr6/5rod26hSSarVJM29Xu53avvnq//wm6b2CQAAAAAAAADsXCRyAQAAM0NHR7LXXklPT/uGUa9YUYTczp1bBLJOt7lzi/Effjg5/PDpH3+qlUrFxfsLFhT3ldarVpM1a5Jdd00WLSoCqJNkw4axAcatUKkknZ3F681QbfX61sOoS6UiiHrdusb23t5k/vzh+VtuSVauLF7X2lFPT7JsWWPb6GDxUqkI597a/pygail5zcu2EUA9ZBYHUXd1daWzszO77757q0sBAAAAAAAAAADYaZz76ZfkkpVXTWzjSiWp1lJcuDZ5x9WekG9//L6m9AUAAAAAAAAA7LyEUAMAADNHR0cyFLRZG3Xh9ZFHJnvvPe0lNdWPf1wEsnZ3JwMDyeDg9I3d0VEE5yZFIOxJJ03f2FPlRz9q3IflWZgw2+56eoYD5YdCwpPkt35rZoRQd3VNbLtKZWyYfH//2ADr229PTjxxUiXOWMuXN87X68U+GGnOnOHn5cj90oQvGajUk7NuTm7eN6k91vW4AdRDZmEQdSWVVpcAAAAAAAAAAACw0/mbz5yaix+6bHKdVMrFNWv1yQVRHzW4T773iQcmVwsAAAAAAAAAQIRQAwAAM9XoQOHOzokHxs4U69cP/7xwYbJ69fSNvXBhYx2zfV8mRbD2yLDyUqkp4bY00ehQ4qHHZ968IhR948bpr2mkkcHIO6q7uzGEOilC0Ts7h+eXLm3fEOoVKxrnxwvV7+pKqtXi53J5+OcmOe1Xxe1f/n6yqbSVAOohQ0HUsyDbWQA1AAAAAAAAAADA9Hvvp16Wi1Z8LylP4vrCIeXJBVE/fWD3XPnJFdteEQAAAAAAAABgO5S3vQoAAABNMTKktVwuQmynQ3d3Y6j3eGGxMB1KpeHp0ENbW0tlkiG/5XIRhD7S6OfWXXdNboyZbOXKxvnR972jo/F1Z2h/Nzko/rRfJedeux0B1EOm8S9h5ZTTVelKd6U7neXObW+QInxaADUAAAAAAAAAAMD0+9Cn/zj/vOI7SepJbWLB0WOUy0lpxy9cO3xg11z9yVXNqQEAAAAAAAAAIEKoAQAAps/owNqhMN6pNN4Yo+uAqbK1oPV166avjqkyOsi6Wm2cb4f7uCWbNjXOj77vo/dNudz0AOokuX5x8vbf3YENpvgld6RaaqnVa6mnnnKpPCaIeq+5ezWETpf9mQ4AAAAAAAAAAKAlPnHhn+Yfl1+ShujpFgVRHzSwINd+ck1zxgYAAAAAAAAAeIx0GwAAgOmyaFHjfKUytUHUQ32PDoMdXQdMlYULiw9PjLZxY/Lww8mcOdNf05BabfKhyNt67g4OTq7/mWx06PRoo/dNudz017rrFyfPe0NSn8Zg6R01WBscN4j6yL2PzLzOeY+vNxREDQAAAAAAAAAAwPT6py/8eT5678UZN3J6moOonzywS2786KrmjAkAAAAAAAAAMIIQagAAgOly0EGN8x0d0zPu6HEOPnh6xoVyOdlrryJsemQA8SOPFLcdHeOHVE+X8T4csiNBydsKsZ6u53grjA63H228fTPZ0O8RNnTM/ADqIaODqA/f/fDsPm/3hnXqGd431TQGfNe3sd8GBgYath35X238j0Vtl9F1TMbAwEDWrl2b3t7e9PX1pbe3N7VmfTgLAAAAAAAAAABggv7fxX+T9y/9f6lmK9dpTVMQ9RMG5ubqt9+TdHY2ZzwAAAAAAAAAgBHaOA0JAABghjn00Mb5jo4ilHV0wGipNLGw1tHbDf08Ogj3kEN2vG+YqEol2X334nisPhZqe+edxYcpOjqSRYuSNWtaU1u9XtRRrw+HT+/Ic686KqR3dDDzokWTq28mmzevcX70fR+9bwYHmzr8/MHkOcuT657Y1G6nzGBtMB3ljpRL5dy97u50VIZfl+upp5ZaSik9HhpdTTWVVFKtVXPbI7dlv/n7Za9d9hrT7+pNq3PLI7dkTsec9A72Ttv92VG96c1Na29qaCullOc/8fmZ0zGnRVUBAAAAAAAAAAA7s3/76rvyrtsvSLW0HdcN1mrF9YaTVS4ntST1xmDrxQNz8vO335f5e429TgwAAAAAAAAAoBmacOUDAAAA2+WIIxrna7Xx15tIAPXWths9ztOfPrH+YTJKpSJ0uqMjWbWqmC+VivDiuXOnv556vXhuDIVP76habWyw8ujA94MPnljfs8HoD7qMvu+Dg42vPU0OoU6SX3whee4DO7jRBF9em2GwNphavZZ66vnN6t9k08CmxwOoi9Iai6ummqVrl2Z9//r8ZvVvsnLjyoblQwHUSWZ0APWW1FPPtQ9cOytrBwAAAAAAAAAAZrev/+eH89ZbPpbB7QmgHrKl6353VLmclCqPz+4x2Jnr375MADUAAAAAAAAAMKWEUAMAAEyXvfZKnvnM4udaLVm/fnrGXb9++ML3I49M9txzesaFLdm0qXG+Xp94GPRkTDTwPUn6+sa2jQ5iPuSQifc/0y1e3Dg/+r4nSX//8M/N+vDNKBMKom6hkUHU6/rWPR5AvSXr+tclyePB1UNB1CMDqGc7QdQAAAAAAAAAAMB0uvT7/zdv+sV7M7AjAdRDmhZEXUpKlew+2JmfnnuLAGoAAAAAAAAAYMqNkxAEAADQQn19RXBptdrYfvvtyYoVrampmY44IrnhhmTz5rH3capUq8mGDcncucnTnpbceuv0jDvVHn208WL+crkIwp0zp/iZmWu8Y38ohHoywdA7aqJjVavFc3ikrq6xQdpPf/rE+p8NnvCExvlSqdgHI4One3uL151yecpCqJMiiPp5r0+ue+KUDdFU1Vo1czrnZNPApm2vnKS/2p+uStfjQdTr+9bn3p57p7bIaXbtA9fm2Ccemzkdc1pdCgAAAAAAAAAA0Mau/O6n84afvi0D5Ulcq1irJaVyUtr2qluza3lurvnbW7N474Mm1xEAAAAAAAAAwHYQQg0AAMwca9cmm7YQyrl2bRFoOtvttlsRlDwwUMxPdeBuvV6Eww4MJAsXFuMvXz61Y06XTZvGD7bt6CjuJzNXpTJ+e6lUTEPPkal+ftRqOz5GvT7+69ScUeG5Rx6Z7LnnhEub8RYuTPbfP1m2bLhtzpzGEOp6vfhigTlzpuyxHOr1519IjpkFQdSllDKvc176q/0plUrDd2AbhoKo+6v9bRdAPUQQNQAAAAAAAAAAMJWuueJLee3Vb05fuZbUJxkiXa8lmXgfi9KdK/7PVQKoAQAAAAAAAIBpU251AQAAAEmSDRu2HEDdbkqPXXE+1QG7Q6ZrnJlicLAILd/Z7vdsMm9e4/x4odS7714EHXd17VjfXV3FdgsWbN/6vb3jh5mPp1ZLNm4sjrGRuruL4OyRXvKS7etzNjvyyMb5jo5iX4xUrU7bFwj8/AvJIaumZagJq5QrGagOJKWkWq/u0Lb91f7Utze1epa69oFr0zvYBl84AQAAAAAAAAAAzCjX/fQbOf2K1xcB1EmS2uSvM63XMpFLuhakK1f+nx/nkKceNbnxAQAAAAAAAAB2gBBqAABgZti4sdUVTI+lS5O+vvFDd6dSpVKMu3Tp9I7bKgMDxf1lZtprr8b50QHOg4PFhzuGAqV3260IlZ43r2jr7Cy26ews5ufNK5aPDK4e3WcyHAA/0lBIcm0rHyip14v1Nm0aG0BdLo8N1V68ODnmmK3vg3ZwyCHJrrs2ts2bV+yTkao7Fra8vUY/Wv95WLK5K+mYmuGaYrA2mMH6YBFEzbgEUQMAAAAAAAAAAM10y0+/k5d954+zqTz64rJ6k4Kot7+PXdKVS//4UgHUAAAAAAAAAMC0E0INAAC03lDA69aMFx47G91yS3E7Osh2qg2NNzR+O9jWMTEg5HXGWry4cX68wOiRIeKVStLdXQQcL1yYLFpUhB8vWlTMz5tXLB8ZftzfP/4xsqXjplYrXoeq1eLnkfND03h9LVgwts83vnH8+9RuKpXkd3+3sW1L+2SK/edhybm/n9RKyV6bZ3YQda1eS31MhDYjCaIGAAAAAAAAAACaYemtP85Lv/OKbKxs6brdZgRRb18f80qd+dorvpIjn/6iyY0HAAAAAAAAADABQqgBAIDWK5WKMNOtmewF3jNBT0+ybNn0B1APGRwsxu/pac34zbatY2JnCAGerZ7whMb5Uinp6mps27x52+H0W1KtFtuPDkIulYanofnx1OtFCPXWPhhSLhcB2KNfu04+OXne8yZW92x06KHJSSc1tlUqxb4pT8+fnUYGUA/Za/O0DM0U+tkDP0utVmt1GQAAAAAAAAAAwCy19NYf56Qvn5T1WwygHjL1QdTdpUouefl/5Lhn/dHkxgEAAAAAAAAAmCAh1AAAwMwwd26rK5h6y5cXF5hvblE66ubNxfjLl7dm/OlUqSRz5rS6CrZk4cJk//0b28Z7vDZu3PEPdtTrxXZDthQ43dEx8aDy7u5k0aKxAdT77ZecffbE+pzNzjmnuO8jDQVRT2EY/IbO5FuHjw2gTpKVO8FbSrt70sInpTxNQeYAAAAAAAAAAEB7WbHsjpx88clZt80A6iFTF0TdnUq+/PufF0ANAAAAAAAAALSUJBcAAGBmWLCgCHZtZytWtC6AesjmzcnDD7e2hqlWKiW77TY2dJiZ5cgjG+c7Osa+BgwOJuvXJ9Xq9vVZrRbrD4740EipVPQ7Osy2s7MIvp47d2yY9JZ0dCTz5ye77DL2+Npzz+TDHy6W72zmzy/u+557NraXSju+j7elXE7K5Vy/b7Lonckfv3z8AOrBJg03FUrx2rQt+y/cP4fsfkirywAAAAAAAAAAAGahFcvuyHEXHJm1HQM7uGXzg6g7S+X8vxd9Kicd+9rJ9QsAAAAAAAAAMEkdrS4AAAAgSRFWusceyaZNSV9fMjDqwu/OziLIdDZbvXr7w3SnSrWarFo1+/dlUgQC12rD8+VyETa8yy5jA4eZeQ45pHjOr1073DZvXvHcH/m4Dg4m69YVx+x4YdJJsX5f3/gh7+VyEZJcqxUB1bVa0TYUilypDIdf1+uNYyfFa1OpVGwzZ05x3I22335FCPPixTu0C9rK4sXJJz6RvPOdyYMPNi6rVIrHdv36yY3x2GN//T61PO//S+pJBipF6PRejz302wygngH5z/XUU0op9Uzyw0ptSgA1bKeB/qQ6BYn71cFtrwMAAAAAAAAAMENtWLkyv3PBs7N6hwOoh9SLi9NKk7jY7LEQ6o5SJf98/Mfy0heePfG+AAAAAAAAAACaRAg1AAAwcwwMFCHU/f3jLxsvYHY2WbOm1RUU1qyZ/fsyKcKJRwcGV6tFUO0uu7SmJrZfpZK86lXJ5z433FYqJQsWJD09j38I43GbNxdTR0exbalUrFOtFsfCeIb6K5WKbRYuLF5jhrYfb/2hkOvRy7f0gZKTT07OPrsIut7ZLV6cXHBBcuGFyRVXjF3e1TX+6/u2DAWBZ0QA9YiHY/CxIOqhn2eDSrmSer2ear3FX0wwwwighh1Qrbb+y00AAAAAAAAAAGaQDStX5jkf3T+PdPZNsqfJB1F31JJPPu9deeWL/2qStQAAAAAAAAAANEe51QUAAAAkKUKmH310YgGls8Ujj7S6gsJMqWMqVKvJunXJ+vWtroTt8cxnJied1Ng2FBZd3sKfLAYHk76+pLe3uN1SAHW5XPRTqTS2nXZactZZyaJFO1br6A+TLF6cvO99yVveIoB6pPnzi33yvvcle+3VuKyzc2J9biWAeshgZfYEUHeUO1Iu+ZPcaAKoAQAAAAAAAACAidqwalWO+cTBWTHpAOoh9aRen9CWlZTyoSPOzf857b1NqgUAAAAAAAAAYPI6Wl0AAABAkqSnpwiUXbIkWb16bIhwZ+eWQ2lni97eVldQ6O1NLr641VVMXt+oDwrMmZMsWJAcemgxv6VwYqbf5s3FcTf6MRkYSJ71rOQXv0hWrWpcNndu8RgPDOz4eJ2dSXd3EUperQ6377FHcuSRxVgvfWmybFnyq18ly5dvf9+HHZaccUZyzDFJhz+rbNExxyQHHJB89avJLbcU+7pcTrq6dvzLBmq1XL84Wwyg3m6T2bZJBFCPTwA1AAAAAAAAAAAwGSf8wyFZXt6YpJTUk8f+N0n1opvS9l98Vkkp5x3yhrzhdf/YhPEBAAAAAAAAAJpHWhIAADAzrF+f/PSnxW19nAu/a7XZH0I9k4wOcJ6NRgfZ9vcXx88jjyTPeMbMCf3e2a1eveXHor+/OBZf9rLkK19JNmxoXN7dXQQ9DwxsX6h4R0cRQF2pFPMjX0vmzy/G6esrxq3Vkic+sZgefji58cbi+OnrK7Yb+tBIR0cyb14RqPzbvz0crjzTrFyZ3H57EeR/993JunXFPuvoSBYtSg46qAhoP+KIZK+9pqeOO+9MHnigCALfbbdieXd3ct99OxREff3i5HlvEEDdrgRQw3bqmKbXj2qt8f2zVk9Sm56xAQAAAAAAAAAm4Ki375F7Sz3DDaXWBFGXk7z9ya/LX77+M00YFwAAAAAAAACguYRQAwAArVevJ7fckvT0bD1odjsu4GY7DQy0uoLJ29KxUq0mv/xlcsop01sPY23cuH1h4IsWJa9+dXLJJcnatY3LKpXhx3q8gPohpVIxDQVQj7TrrsnppxfjjGfevGLZvHlFzd3dydy5RVB1R0cyZ06y337JggXbvi/TaXAwufba5HvfS267bevr3nzz8M/PfGbykpckz39+cf+mqo56fWzYdKVS7M+h9qHHbWj9UY9xUwKoZwAB1OMTQA1bUC4/9mHIEa+J3XOmafBSMjji9WqwmgyOeC33+zgAAAAAAAAAMIMc+459cndp7dgF0xxEXU7yN084PW89+6ImjAcAAAAAAAAA0HxCqAEAgNYrlZJHH916ADVsr1qtCD5etiw59thWV7Nz27Rp+9ddtCh53euSH/0ouf32Iii9r2/rwdMjDQUe9/cXrynd3UlnZ3LEEckLX1gEH2/LUIh1Z2eyyy7Dr0kzMXDz5z9PPvvZ5OGHd3zbW28tpn32Sd74xuSYYyZex5IlycUXb7mO0SGqSRGuOn9+smHDcPD0UBj10Pr1enMCqGfAQyeAenxzOuYIoIat6eiYmV8aMt6XPQAAAAAAAAAAtMAJb983d5Ye3fIK0xhE/abFf5R3/cV/NGEcAAAAAAAAAICpIYQaAABovYGB8UP2RgeXbm8YLdvWDvty9H0YfWH/6tXTVwvjq1a3vrxUKgKJh8ybl7zkJclvfpOsXz/xcev1Ioh8qL+JbD9TbdiQfO5zyZVXTr6vhx9O3ve+5KSTknPOKYKht1dv73BgeHf3ltcrl8c/Djo6hoOokzFh1Bs665MPoJ4BthZAXa1v4/nR5noHe7N09VJB1LAl3d3JYDWp11pdybBKR+P7NgAAAAAAAABAi5z09v3zv6VHtr3iNARR/+keL8oH3vytJvQPAAAAAAAAADB1hFADAACt19GRzJlTBJBWq8MBsKNDhUfPM3HtsC/L5fHDgiuVYtkee0x/TTTq6Ej6+ra8vF5PaiPCNe++O/nSl5oXAr16dfKe9yRnnpkcdND2bzdTnx8rViTvfGfy4IPjL6/Xk8HBYhoZ/FypFI9FR8f49+3KK5M77kg+/OFk8eJt17FuXXLJJcnatVuvY2CguB0yFFxaqRR1dHYmu+2W9PQM1/tYEPX8wXKe82At1z1h2+VsUYsfxq0FUPdX+6e5mplpWc+yJBFEDeMplZP585K+/qRaa3y/nNJxK0lpxFilalKuFK/dlcr01AAAAAAAAAAAsBUvee/BubG0fPs3mMIg6tft9jv5x7de3oR+AQAAAAAAAACmlhBqAACg9Uql5IlP/P/Zu/c4uerC/v/vc5mZvW9umywBQUMCYrBEKRCIKFWotxQFkVBvbfVbgVq0FVot9uul34rWRh8tVg38arWi1qIVL4GqBJQCIUCRBAkK2YAEEpYs2ex953Iuvz8+mcx9d3Z3bjv7evIYds+Zc87nM7szu8nmnNdKfX0mklpMOqKKyojF6j2D6mpvl9asqfcs0NEhjY+Xt+3dd0u33175OYSh9PWvSxdcIJ177vTb23ZjRjb7+6Wrr5YOHSq8z/OkeFxKlhE2jkZN9D//6+mBA9I110ibN08doh4akr79bWlsbPp5FIuJp+9Lz6O11bwdGzO3dJjctnX/v9k6672zCFE3SEOcAHV5CFEDU7GlWEtth3QnpVTW94hkREpN8QslAAAAAAAAAAAAAAAAauitn3qp7k39duY7ViFE/baus3T9X99ZgeMBAAAAAAAAAAAAAABUX/EaDgAAAADU2itfKS1fbk7yLsbmry/IU+q50tYmrVtnAsior5YWqatr+u3uuqs6Aepst99uQtdTsW0TRy713KqXsTHp2msLA9RhaCLfIyPlBagls93IiNkvPxL9wgtmnGKBackEpm++ufD+ucxjZMTs39Fhvge0t5vPQxBIku7/N1unHyjvkLLUMAFqSUr5qYJ1BKiL2zeyT32DffWeBgAAAAAAAAAAAAAAAIAGdtnfv0J3xffM/gBW5U4ye3N4sv712vsqciwAAAAAAAAAAAAAAIBacOs9AQAAAACQJC1aJJ1zjvTssyaE+vzzRyOkkqRIRHKcuk2v6bS01HsGlbd4sbkdf7zU28vzpVF0dJjnWyIheV7ufV1d0uiodMcdtZnL7bdLp59u5pT9/PB9M8cgkCYmajOXmdiyRTqQV2L2ffOxy/46OROJhJRKSZ2duR+LAwekG26Qrr66cJ8775SGhnLXBYE0PDz7eUxOmiD1okWS65rnRFeXWfeSl2hkcZt6ggfk+nF5xV7SDRSdzhcqVMpPKeJEJBGgns6+kX2SpNVLVtd5JgAAAAAAAAAAAAAAAAAazbs+c6Z+OvErmZPGwtkfyLKO7D77Y7wuWKVvfu7Xs58DAAAAAAAAAAAAAABAHRChBgAAANAYHEdavlxqbZVOOKEwVrt06fwPJ19/vTQwUO9ZSD090jvfWe9ZzN1zz+WGb23bxMo7OqRYrH7zQiHXNbd8J50kbdpU27l87nPSv/yLid1nc10TZW40O3ZI27blrvN9aWRECktcBOO65muqZZltfL/wa6pkXj8jIyb6nB2ivv12acMGaf36zLq+Pmn37sL9JydLzz0SMXNIzyMIzFzyhL6vcHBQ8c5WBY59dP3Is4/rzW/t1pN2VG2KajQ5qnAuFw/VQTpEPd/mXS+EqAEAAAAAAAAAAAAAAADku3zzebp19JdmwZIUViJEbUkKpt0032uC4/W9z+2d/dgAAAAAAAAAAAAAAAB1QoQaAAAAQONwHGnRouL3nX66tGJFTadTcc8+K91wQ71nIb3tbdIb31jvWczdtm1SMplZToduMX985CO5IfFaCALpM5+R/vRPazvubHie9JWv5K4LQ2l0tPC5blkm1B+LmSB7viCQEonCaHT6eN3d5hhpW7ZIv/u75n3fl+64o3C/yUnzNnu/7HlYVmF02rZz5hFKCsNAYShFR8c13BFRaEm+FepPft/T/pExxTsi8zriPJ/nXg+EqAEAAAAAAAAAAAAAAACkffALr9fNg/fkrqxIiFpSaGsmIeqzvGP0g81Pz35MAAAAAAAAAAAAAACAOipSJQIAAAAAVMWaNbmx1nqwLGk1YU80gOFh6ckn6zP2M8+Y8Rvdrl3S88/nrpuYKAx3u67U1SW1thYPUEtmfWuriU27eb+TLAjMcbP190s7dpj3+/qkkZHc+xOJwhD2DOcRuq4JUB+5ywpCtcU9SZITWnrHbkeuHyri+fICj5jzArJvZJ/6BvvqPQ0AAAAAAAAAAAAAAAAAdfTRL16km164o/id1tH/zZ4llXt55eneCv1k84G5jQcAAAAAAAAAAAAAAFBHRKgBAAAAoFbWrpU6O+s7h85O6dRT6zsHQJK+8Y2FPX45fvGL3GXPM/HnbK5rXteOU94xHcdsnx+iTiTM8bNt3Wre7tyZu973C7edxTwS7TGlnNyLgKLJQK5nYtNv3mvr4/c4SoY+AeoF6JmRZxTkB9cBAAAAAAAAAAAAAAAALAgf/8om3fDcj6feyJJkVT9EfWpqibZt7p/bOAAAAAAAAAAAAAAAAHVGhBoAAAAAaqWnRzrjDMmu01/FbFs680xp2bL6jA9kGxhY2ONPZ2REevzx3HXxeOF27e0zv4jGssx++fKPv3On9OST0r59uetTKUmSb2WFoWcxD0+Bxttc+XlfEqNJT0EQaNj19d2XBmpPzeiwaBJnH3e27Hp9vwQAAAAAAAAAAAAAAABQN5/+/96jLz3zX+XvUIkQtVX8XKWTkt26+/OH5nZ8AAAAAAAAAAAAAACABkDJBQAAAABqaeNGacmS+oy9ZIkZH6i3HTvqPQOjUeZRzP79ucthKCWTuetaWyXHmd3xHcfsny2ZNONky/8YhaHkeRqJhnrrJumWl4aznkcYhvrxmlBv+UNpJJpZH02F8kJPV7zR1+6eUDFPivozPjzmsXOOO0ctbku9pwEAAAAAAAAAAAAAAACgxjZ/7f36wlPfVjDTHecaopYKQtSrUp26/wtDcz8uAAAAAAAAAAAAAABAA3DrPQEAAAAAWFDOPltasUJKJKTR0dqN29kp9fZK69fXbkwg7emnpeeflwYHzfJDD9V3Pml33ikNDZmw8sGDhVHmeurvz132vMJtYrG5jRGLSZOTheNEIpnlvr7c+31fI9FQmy6RdvVKDx8j6X8sXfTbmQ//4xM9/c15ngJL+sNLpP/4ntSVlCxJLb6lP3w01O7lUmBJMU9KOZZChdMeF/MbAWoAAAAAAAAAAAAAAABgYfritz6kz+752swD1GmWZc4HnAvLlsJAx6fadddH987tWAAAAAAAAAAAAAAAAA2ECDUAAACAxhIEJoLqeeZk8LT+/uIR1vno0kulf/onKRqVksnqjxeNSq4rvf3tJgTcLMbGJN/PLNu2iefadv3mhFxhKN1/v7R/v3n9pi/uqMXzvhyJhDQ8LKVSJkY9PCy1tUnd3fWemTQwkLuc//XPdef+XLdtc5zsY+dHqPNi2COur00XmgC1ZALRV503Lv1CuujJaO7xp7iY55ZVCf3VuSkFR77MP9KbG6J2/VBv7LMkhfrb10rurK8qah5RJ6qUn2rqEDcBagAAAAAAAAAAAAAAAGBhuvHmj+pTu78sf67nR1UgRH1s0Kl7P7pXHT09c5sLAAAAAAAAAAAAAABAAyFCDQAAAKBxTE6aEGyxk7/37jUh22ZgWdLJJ0u7d2ei29XiulIsZsazLGnXruqNVWuDg+bjl6+tTerqqv18UOiJJ6Snn86NhUtzvsCjYsLQPIfStzA0IerWVqm9vbxjDAyY1/KePdKTT5r9Pc+89rq7pVWrpDVrpLVrpZlckDIxkbuc/zF0nPKPNRXHyf0alD9OPH40dj0SDbXpTSntWp67SSDpqteMS2Ggi/bmhaiLuGVVQle9elzZr95QuSHq6JE733QkRP2R89XU8eXpRJ3o0bfHtB+j3478tr4TqgIC1AAAAAAAAAAAAAAAAMDC9I1b/k4f2/n5uQeo0+YQou4N2rTjI0+pY+nSyswFAAAAAAAAAAAAAACgQRChBgAAANAYEgnp8OF6z6J2XvvaTFQ7mTSPv9JiMSkalRYtMuMtFBMTjRM5XuiefDI3atyIn5cwNKHl8XETYw4CE5JOsywTau7uNtscc4x07LHS9u3S1q3SI49MffyHH868f9pp0saN0tlnm0j1VPJj0Pksa+r7yzXdcY58zkaioTZtnNSuZcU/h4ElXXXepCRNGaI+GqA2bekC6RD1138gWbLkOq4ufEr6lJ8qvsMCkA5QW7J00pKT1NPeo0Uti7Tz4M76TqyCCFADAAAAAAAAAAAAAAAAC9N3t/6jrnng/8mzKnx+2CxC1EuDmB78698SoAYAAAAAAAAAAAAAAE2JCDUAAACAxjAyUu8Z1FZLi3TppdK3vy2NjZlY9Oho5Y7f2WnednSYcVoWWNxzclJKpeo9C6SD4J5nospBULl4cqU8/vjUF5qk53/okPSzn5lbNGpusdjMHs+uXea2YoV05ZVTb+s4U99fqaD3dMexrEyAuieYsgM9XYj6lhOTuurVcROgnsIjvdJ7Lpa+dFuoxb70+kuT2tc53QNpTt3Rbk36kzkBakla0rZE65ava4oQNQFqAAAAAAAAAAAAAAAAYGH60U//RR/Y/jGlKh2gTptBiHpJENM9H9pJgBoAAAAAAAAAAAAAADQtu94TAAAAAACF4fTB4EYL11ZCd7f0jndIixaZ5c5OE7Wdi1gsE6BetMgcv7t7bsecrxKJes8A0aiUTJqIcxg25ut4NjHnZNLE4wcHzfsz9fzz0ic/Kf34x1I8Xnybtrbc5fwote/PfNxi8o+TN85IZzQToC5DYElX/d6kblntSbZ99HbLak9X/d5kyQB1/upfLZcu3xjq/MuS+uUxZT6WJuPI0epFq9UZ7cwJUKelQ9SS5mXE2ZJFgBoAAAAAAAAAAAAAAABYoLb9z9f1/l98WCmVd27arJVx3uKiIKp7P7RTvStPqu5cAAAAAAAAAAAAAAAA6sit9wQAAAAAQJZlblPFYGcTip0Puruld79buvNOafduKRIx0dZUyoR7y+W6Zt90QHbtWum1r5VaFnDcsxGDxwvN8uXSgQP1nkX1hKE0MmJi2y0tJuicHXV2HPPadN3iz8df/Up65hnp0ksLY/E9PdL+/ZllN+9HOJ4nBYH5ejFbQVD4dSZrnJFIoE1vSWlXR9ZFPqW+Vh95fJ4CubJ11XkTkm3poidjumVVQle9ekLBDF6TKUu6+0WS50y/bTNyZB64Yzv6neW/I6vEx25J2xKde+y5ikQiGo2P6sH+B2s5zbK1qEUvW/QytbS0yLIshWGoaDQqey7PXwAAAAAAAAAAAAAAAADz0r33/qfeddufKmHV6NzgKc5R7g4iuv3ddxKgBgAAAAAAAAAAAAAATY8INQAAAIDGEItJ8Xi9Z1EfLS3Sm94kdXRId92VicLOJKKcjt+6rvSa10ivfnV15jpfWNbCDnA3iuOOMxHqgYHmDclLUjJpbumgfjHpUHV+THpoSPr2t6V3vCM3RN3bm7td/n6SlEhIra2zn3ciUbjuyDi+Feqdvz+qXUsdqchmxcQV6HCb5PqBehK2rnr1uH6wKqk7jkspmOLLWf51RAOtCzc+XUypAHVaJBI5+n46Xp0WKlSgIH+Xsjhy5MuffsMyRCIRLVq0qCLHAgAAAAAAAAAAAAAAADB/7fzf/9alP363EtaR85pCS5rB6bKzViRE3Rm42vbun2v1qWfXYAIAAAAAAAAAAAAAAAD1Zdd7AgAAAAAgycRX7QX6V5R4XLrtNun++02Mu6VFcmZYYHUcs18sZo5z220LN+otSV1dM/8YovJcV3rZy6STTpJWrDDP0axgbtMJw9Kx7WRSGhmRxscLtxkbk26+Ofc1e+yxudtYlglZZ5ucNPH52fB9s3+2aPRoRNsJLb331y2yY2XE3MNQ8dAEqCUTkB6IBQos6fYXTR2glnKvHyoZoK7FRUYNpFLxZwAAAAAAAAAAAAAAAABoFDv/97+18btv1YSVfX5UKJU47a7irMyJaO2Bqx+9/QcEqAEAAAAAAAAAAAAAwIKxQAtvAAAAABqO40g9PVJr68KKBw8PSzfdJO3ebZYty4R7W1ultjYTlXacnBPfj27nOOb+tjazvetmttu92xx3eLi2j6ee0pHeJUuk9vZ6zwaS+Xy0tEgnnGBi1GeeKZ19tnneNqupQtSSlEiY12V+PHpoSLrzzsxyV5d08sm527QUCUIXi1qXM8fx8cL1ece/qOssfXHNB2U7bu52eV+P4pIO573k0iHq6dhZUy8ZoF6gCFEDAAAAAAAAAAAAAAAAaBZ9j96nC7/7Vo3bXpF7axuibgsd/eeF39C6331jjQYFAAAAAAAAAAAAAACoP3f6TQAAAACgRhxHWry4+H2nny6tWFHb+VRbf7909dXS5GRhlNfzpFRKSiYz6/JD1EFg7o9GpUjERKizTU5Kt94qbd4s9fZW5zHU07ZthR+fmcZ4UV2dndLoqGTbuc/x9nYTY25WjmNek75vXsv5gkAaGTHRZzvr94Pt3i2ddJK0erVZPu88qa8vc7/rmo9j9sfO88zHuL29vIC/75sAdf68YrHCryEbN+qipS+TwjfoqnCrgvSXoKzXWlzS4Y7iQ6VD1EvjhfdZkiwC1NPaeXCnXnX8q+o9DQAAAAAAAAAAAAAAAACYtb5H79P5N/2eRosGqNNCKbTMyWVVFAtt3Xzxf2jDmW+r7kAAAAAAAAAAAAAAAAANxp5+EwAAAABAxY2NSddeKx06lLs+DE0gdmQkN7A8lWTSbD8+XhhhfuEFM87YWGXmDcyE60rLlpkgc/76ZuZ55jF3dUmLFkmtrYXbhKEJxee/Zu+804SiJem00wrj+21tueHq9HjDw+Z4QVB8TkFg7h8eLgxQ27Y5brbeXmn9eknSRadcrC/+73LZ2VO1rCkD1Een5kiHWrJ2k4lPzyhAXeWLihpZMkhq+7Pb6z0NAAAAAAAAAAAAAAAAAJiV/v4+XfDN8zVsp8rYOpTC6bearVho65tvvJEANQAAAAAAAAAAAAAAWJCIUAMAAABAPWzZIh04kLvO900gNpGY3TETCbN/OmCbduCAdMMNszsmMFeRiNTTY2LKS5eaW37wuBmNjZnAtG2bCHV3d2F8OwwLX+/Dw1Jfn3nfdaUrr8y937Kkzk7zNt/kpDQ0lInST0xkovZDQ+b+fKWOd+WVmfm6ri4664/0xV+0Hg1Rx61w2gB1WjpEbR+JT2ePNG2AGop7cULUAAAAAAAAAAAAAAAAAOad/v4+ver6dRqyE8o9c2wq1QlRR0JLN573BZ3/6j+u/MEBAAAAAAAAAAAAAADmASLUAAAAAFBrO3ZI27blrvN9E4oNguL7uK4Ui0ktLeZtfsw2LQjMcfJD1LffbsYF6sVxzHM3FpM6OkyYuZkFgZRKZZYdx8Se81+7nlf4et25M/P++vXS+efn3u84UleXCVwX43kmbh2Pm7eeV3w72zbHcfIq0BdcIJ11Vu66l79cFy19lb54V5uSYaDDM+yIe44JTmcrK0Bd7nVHTS7uxZXKfj4BAAAAAAAAAAAAAAAAQAMbGxzUa65/pQ4pblZYR/9XhsqGqF1Z+tKG63Th6/+8cgcFAAAAAAAAAAAAAACYZ4hQAwAAAEAteZ70la/krgtDaXTUvM1mWSbUu2iRCcW2t0ttbeZtV5dZXyzkW+p4W7aUjtECtdTTY8LH+fHjZhOP5y5blnn95suPC+/bZ2LyaVdcIa1cmbuN40jd3SbqPRuxmNk//3OwcqV0+eXF97nkEh3nLNWhIg+hHNkh6rIC1Dhq3fJ1ikQi9Z4GAAAAAAAAAAAAAAAAAExrbHBQZ2xepYOayL2jDiFqV5Y+f/rH9PaNfzX3gwEAAAAAAAAAAAAAAMxjRKgBAAAAoJbuu096/vncdRMTUhDkrnNdE5pubZXsEn91s21zf3e32T5bEJjjZuvvl3bsmNv8gZkKAhNUPnhQeu45c4vFzPpmj+omk5Lv565znMJ4vOcVRuP378+839EhXXedtGxZ7jbpqHVXlxSNljenaDQTtbfyLuZZtsyM09FRdNexiKWz3rivvHFK8BzpuY4yA9TlXmvU5NYtX6clbUvqPQ0AAAAAAAAAAAAAAAAAmNbY4KA2bF6jfo0V38BS4blrJc0tRO3I0qd/58N6z9s+OfuDAAAAAAAAAAAAAAAANAki1AAAAABQS1u35i57npRI5K5zXamz08Rqy+E4Zvv8EHUiYY4/1fhANYWh9MIL0thYJrQchlJPj7nfdZs/RJ3/GpRMhDtffqw6P1bf2ytt3iytXFm4r+uacPTixeZrQWuriU2nb62tJjrd3m7i9RMT0vCwNDRk3o6MmK8jb3vblF93OtwWndGyujZxaALUkqSTF51MgBoAAAAAAAAAAAAAAADAvHHu5pO0T8PTb1jlELUt6ROn/Jnef9k/zHxnAAAAAAAAAAAAAACAJuROvwkAAAAAoCIGBqRdu3LXxeOF27W3z+Dk+iMsy+w3nHfifjxu4rRpO3eaeaQjwGg+AwPS7t3Snj3Sk0+a54TnmVBxd7e0apW0Zo20dm31nwejo8UjzO3tJqp88KAJMvu+FATVnUu95MelJROCdl0plcqsCwIT6E7r7zefu8HBzLpoVPrUp6RvfEO6667i4zlOJkgfhmaMRCJ3rHyxmJRMSlu2mNvLXy694Q3SWWcVfI26f80/6Kx9H9cDw7tndWFPWZo4QO3arrygyGuihO6W7irOBgAAAAAAAAAAAAAAAAAq56y/6dVvraHyd7Cs3PPmSjoSoi7z3Fpb0t+sea+uevc/lz8XAAAAAAAAAAAAAACAJkeEGgAAAABqZffu3OUwNOHXbK2tJiI7G45j9p+czKxLJs042Sfe794tnXfe7MZAY/I8aft2aetW6ZFHpt724Ycz7592mrRxo3T22ZlwcSUVi6ynnXyyiVBbVuZ524wh6mIRbsm8XrPD0L6f+9ofHjYh8QMHcvdLJKRjjzWfswcflMbGTNQ6/+IazzOv/6k+ppZlAtSum5mnZZlY/c6d0pIl0iWXmCh1lo+u/mNt+uXfKKUj+1QqRt3E8WnJBKgdy9EpPadoz+E9intTvD4kOZrl9wIAAAAAAAAAAAAAAAAAqLFzPrZST1gvzHzHskPUKjwftoQPnnCZrvmTG2c+FwAAAAAAAAAAAAAAgCZGhBoAAAAAamXPntzlYnHaWGxuY8RiuRHq9DiRSGa5r48IdTPZsUP6ylek55+f+b67dpnbihXSlVdK69dXdm5TBZCPO07q7MxElJs1RF3q4pjpLoQp9nFIJqVDh8z7L3qRtHKl9Oyz0uOPZ4LeYWhC1aXi15KJXUci5m3+PMLQjG3b0uCgdOON0plnmhh1a6tuGb5fVx38upZFF2kgcVie/Ew8ei4x6jIC1JYsRZyIUn5KYcXK17XhWiZAfdKSk9TT3qOe9h79z9P/Iy8s/nkiQA0AAAAAAAAAAAAAAABgvjjvkyfo1+HB2R+ggiHqy4/5A33i8m/Ofi4AAAAAAAAAAAAAAABNigg1AAAAANTKk0/mLudHYl3XhF/nwrbNcbKPnR+h3rt3bmOgMYyNSVu2SNu2zf1Yzz8vffKT0vnnS1dcIXV0zP2YkhSNmiByMY4jnXuu9N//bZbTIeqJifIvJpkPSj2W6R5jsa8Fw8O5y44jnXCCuU1OSocPS7/4hTl29v6WZZbT68LQfF1If51I35eOUodh7oU6DzwgPfWUbvnTc3VV8gcKHHOcnthiDSSHMiHlmcSoy4hO5zxUy5FjmzDzfAxR+6GvkxabAHXasZ3H6umRpwu2JUANAAAAAAAAAAAAAAAAYL54w6fWaFdy/9wPVIEQ9Z/0vF6fveqWuc8FAAAAAAAAAAAAAACgCc2xbgYAAAAAKFt+QNb3c5edCoVH84+TP07+PDD/9PdLH/xg6QB1GEqplAkTj41lbpOTZn2pCzW2bTPH7e+vzDw7O6e+/yUvkdauNe8HgZlfsylyoYukwtdl/nYtLZkYdBiaj08ymbsu+5ZKmVh0GJqYd1ubucViJgYehiYInkhIyaR8P3U0RO2nEvITk9L4uBSPF85N0i1d+3XVwL8rCHLvWxZdJNfO+x1nVhm3GTp5ycnqiGbi6BEnIms2B6qTUKGeG3tOXpD7ywfyg9MEqAEAAAAAAAAAAAAAAADMFxs/dbLuTzxVuQOWOt+umLzzIN+97HX6wl/eWrm5AAAAAAAAAAAAAAAANBki1AAAAABQK5439f0zOXl+LseZbh5obP390tVXSwcOFN7neSY2ffiwNDpqos7JZOY2OWnWHz5stiv2XDhwQLrmmsqEqCMRackSyZ7ixw+vfa2JVU9OZi4KqdRroREUeyxBUPixz/8YLVli9k3f0scqti6Vku64w3xOJROidxxzzHSMPGu8kWiot26SbnlpqJFoqDf/obT+fWZZnme2TyTMMVxXt5zk66rfiytQaELVRz5PcT+hw6kRLW1dKruKP2KKOlHtHdqr3rbenBC1bdnzKkQ9FB/Srw7+qmSIupofQwAAAAAAAAAAAAAAAACopEv+32m6N7G38geeRYj64kXrdf2Hf1r5uQAAAAAAAAAAAAAAADQRt94TAAAAAIAFw53mr2DpAO9cTXec6eaBxjU2Jl17rXToUO76MJQmJkw4uFzpMHUsJrW15V648cILZpzrr5c6OkofoxwtLdLy5SaGnB9e7u2Vli0z21hW7nM3f3m+KvZ6K/Z5KhahLtcDD5i4ePYxfN88J4IgZ9ORaKhNl0i7eqWHjpF6JqTHl0kpW3rfH0hSqIt+Y5k5ep5uWRfTVa+eVJB+egSBNDGheIurYW9csqRDk4cUKHecSnFt8/ELFWrv0F6duOhE9atfY8mxsva3ZClUYzyPQoVHQ9QvX/7ynPscOQ0zTwAAAAAAAAAAAAAAAACYymXXna47JndXb4AZnD/45rZ1+upf31O9uQAAAAAAAAAAAAAAADQJe/pNAAAAAAAV0d2du+w4ucu+X5lx8o+TP07+PDB/bNkiHTiQu873peHhmQWosyUSZv/8582BA9INN8zumPls28Su29tzb8cdJ916qzQyInV1medqOobdDAFqqfjrfHKycJvsCLhkwt2ljI9LTz0lPfSQ9MMfSo89JsXj5riTkyY+PTZW8DnNDlAHkg61SY+skJKOFFjS4VbpPW+Vbnmp+djfssbXVa8eV5AXR457cQ17JgIdhqG8IC8uXkFe4CkITeA6HaLubetVR7RD4ZH/5pPsEHX6cQEAAAAAAAAAAAAAAADAfPG+L/yefjr+SPUHyj+nrojXtbxU3/zb/63+XAAAAAAAAAAAAAAAAJqAW+8JAAAAAMCCsWqV9PDDmWU3769knicFgQn2zlYQmONkyx/nxBNnf3zUz44d0rZtuet83wScSwWbXTcTOA5Ds33+80Myz5vsEHTa7bdLGzZI69dX7nFk27Ur85gcx4w/Pl5eUDv9mBpdJJJ5PwzN45tqG0nq7TWR7my+L/32t9ITT0j9/Zn18Xjm45B+m/05PrJuJCZt2mRr1/JQgUIdbjHxaUk5GeexqAlRf/0Hob7+ChOnPnpcy1LcCTUcDaVQCi3VJALtB74s25JlWUdD1N2x7rIizo0YqU6HqCdTkwoVytL0F0sBAAAAAAAAAAAAAAAAQL1d/k8X6PuH7jELtTiHb4oxXtOyWt/7xO7qjg8AAAAAAAAAAAAAANBE5lA2AwAAAADMyJo1ucv5cWipvPjuVIrtnz/O6tVzGwO153nSV76Suy4MpdHRwgssLEtqbZUWLTJR5/Z2qa3NvO3qMutbWwvHKHW8LVuKh6vnyvel73yncO6+b97msyxzs21zy3+/EUUimai875uPb7FIfDoWnn48Z50lrVghrV0rnXee+dzdfLN0zz3SwYOZ7cKw8PNV5IKbkZi06e0qGqAuZiwq/fFbpcselU57PrP+aID6yDC1Cjy7tisr63McKtRQYkh2GT/WatTAs2M76ox2Nuz8AAAAAAAAAAAAAAAAACDbh7/8Vt088IvclbU4d6/IGGdZx+sHn3i8+mMDAAAAAAAAAAAAAAA0ESLUAAAAAFAra9fmLluWFI3mrpucNLHa2fB9s3+2aLTwBPxTT53d8VE/990nPf987rqJCSkIcte5rglNt7Zm4sf5bNvc391dGCgPAnPcbP390o4dc5t/MX190qFDuevSjykdnC52K2aq++qptdU8nslJaXi4MEBtWVIslru8aJF00kkmSh2G0pe/LH3mM9ILLxR+LFKpaacwEpM2XSLtWiEF4fQB6rSxqHTFm6V3PWJC1DkBakmhdeSdGkgFxR+nZVnTRpxrFcqeCdd2dcrSU9QWaav3VAAAAAAAAAAAAAAAAABgWh+9YZO+tv/W4nfWOER9Wtirn1z3VPXHBAAAAAAAAAAAAAAAaDJEqAEAAACgVnp6pNNOy13X0lK43fi4ic/ORBia/fLlH3/dOmnZspkdG/W3dWvusudJiUTuOteVOjtNvLgcjmO2zw9RJxKFseT88Sth587c5fzHZFlSJCItWWLCzO3t5vnsumbutm3euq5Z397eeDHqyUlpaKgwDi+Zeba2Fs73da8zj2t4WPr0p6Vt24of2/fNxywMc29ZjgaoeyVf0vPt5QWo09Ih6pMHpIkjT5PAOhKgrrGknyx533Qh6kbiWI5OWXqKetp76j0VAAAAAAAAAAAAAAAAAJjWx7/6bt2w7/tTb1SjEPWp4Qr94rP7qz8WAAAAAAAAAAAAAABAE3Kn3wQAAAAAUDEbN0q7dmWWXVeKxXLju54njY6aqG45QWHfNwHq/HBwLFYYGN64cfZzR30MDOQ+ZyQpHi/cLh1hngnLMvsNDxcev6Mjs7xzp5lHT4XCuSMj0r59uc/PqR6T45T3WkgmM2HmRuD7xdfbtgmA579mTz1VOvFEE67+j/+QJiakIMgEp32/ZHA6X36A+mC7NJtW81hU+uezpEUJKWXP7hiVkvSTijrRovelQ9ShGuRzX4JlWVrcurje0wAAAAAAAAAAAAAAAACAaX366/9HX3rqO+VtbFlVPXfvpHCZ7v7sgaodHwAAAAAAAAAAAAAAoNnZ9Z4AAAAAACwoZ58trViRu66tzURps3meCQNPTpoIbTFBYO4fHi6M2dq2OW623l5p/fq5zR+1t3t37nIYmthyttbW8iLNxTiO2T9bMll4MUj+POZi//7c5Uo9ppYW8zb/9VQPpeYQi0nd3YWPbdEi6bWvNUH5b3zDRL9HRsxyPC6lUiZCHQTTXqjjW9I7LzYB6kDSwCwD1EdZ0lCLFDTAhzXpJ0veZ1mWXLuxf9+aF3h65PlH5AXe9BsDAAAAAAAAAAAAAAAAQJ1s/taf6wt9/65gJl1pay4nqpW2Klyi+z/TX5VjAwAAAAAAAAAAAAAALBQNkA8CAAAAgAXEdaUrr8xdZ1lSZ2fxk+8nJ6WhoUyMdmLCvB0ZMesnJwv3KXW8K68042N+2bMndzk/OC6ZsPFcFNs/f5y+vrmNka0/72KQSj2maDQTf67SxSxlKTZ2NCp1dUnt7YX3d3RIl14qPfus9C//Ih06ZILTaWE4bXg6mxNK731YskJpqHX67edkJhcYVchUIeqgVLS/gQwnhvWrg79SEDb+XAEAAAAAAAAAAAAAAAAsPDd+/2/12V/fOLMAdVqFz907Xt26669+U9FjAgAAAAAAAAAAAAAALETUxwAAAACg1tavl84/X9q2LbPOcUygdnRUKhZR9bziod58tm0C1I6Tu/6CC6SzzprbvFEfTz6Zu5z/PHDdTHh5tmzbHCf72J4nRSKZ5b175zZGtoGB3OVKPqa2NmlszFzIMoNwc8Vkh7AdxzwW1y19Yc2iRdJb3iLde6+0a5cUj+feP8MAddrrnpJWjEn9HVJYxx53tST9pBzLKVjvOq4831Ogxg08hwo1FB/SZGpSoUJZasJPEAAAAAAAAAAAAAAAAIB56Rs//rSu/eXn5M/l/LsKnb93rDp17zV71LFkyZyPBQAAAAAAAAAAAAAAsNARoQYAAACAerjiCumxx6QDBzLrHEfq7pYmJqREYubHjMVMgDc/drtypXT55XObL+pneDh32fdzl/OD47PlOLkx6Pxx8ucxFxMTucuVfEzRqLklk7M/xmx1d+eGu6fz8pdLr3yl9MMfSocPF3/dz+JCnJGYtOkS6blOKQilZm0c+6FfNOA8H0LUlmWpM9qpwcnBek8FAAAAAAAAAAAAAAAAACRJ3/3JP+nqHX8nX3MPSM81RL1cbdpxzV4C1AAAAAAAAAAAAAAAABVi13sCAAAAALAgdXRI110nLVuWu96ypPZ2qavLhHTLEY2a7dvbCwPUy5aZcTo6KjNv1F52GLqY/M/5bE13nOnmMRP50emZzmU67e2SbVfuY1OOmQSoe3ulT35SOvdc6b/+SxoaMh+T/Atu5hCg3tUrxaWG/MlPxJ5BqLuEdHw6LHGxk1XLz/0stEfa1eq21nsaAAAAAAAAAAAAAAAAACBJ+tGdN+gD93xEnoLKHXSW53EtVYvuuuZRAtQAAAAAAAAAAAAAAAAV5NZ7AgAAAACwYPX2Sps3S9deKx04kHuf65pwdBia+K/n5YZ7Hcds47qlT9JfudIEqHt7q/cYUH3uNH91n0WoeFbHmW4eM+E4c5vLdCzLhNkPH57bccrhumYsu4za87p10saN0vr1Ujwufe5z0tiYuS+Vymw3y8c/EpMuvUR6pFealDTUoO35IAjkypWn2YXN0wHqtFBhzjo/8OWH04TO66gj0qFX9L5CTw89Xe+pAAAAAAAAAAAAAAAAAIB+dOcNev8dH1KqkgHqNMua0TlxS8IW3fOhnepdcnzl5wIAAAAAAAAAAAAAALCAEaEGAAAAgHrq7ZWuv1664Qbp9tsL77csKRIxt5m44ALp8stNyBrzW3d37nJ+wNmvUGw3/zj54+TPYy7a2qYeqxKPybZNIDo77pwOtlci3O040v/9v9JZZ0m7d0t9fdLevdLwsInGu675mJ14orR6tXTqqdKyZZn9t2zJRLKDIPOYZzk33zIB6l+8RHJT0njLHB9fldiyZR39PMx8/3RsOszbOR2iDoKg4QPUrzzmlXJtfiQHAAAAAAAAAAAAAAAAoP62bf+m3n/nh5RQFc+7KjNEvSiM6d4P7VRv7+rqzQUAAAAAAAAAAAAAAGCBongDAAAAAPXW0SFdfbW0YYMJ0/b3z/5Yvb3SFVdI69dXbn6or1WrpIcfziy7eX+V9zwTMbbt2Y8RBOY42fLHOfHE2R8/X0+P9PTTpceq1GPy/cKLV8q8mKUkx5HOOUf6xCekRYvMuvPOM7dy7dghbduWO1dpTvMaj0oH26WELSUaNEBtyZJtzf5zWipAnRaGoWzHluVbJbepJwLUAAAAAAAAAAAAAAAAABrJvbd9Ve+6+0ol7BqcbzXNuXudiuj2d/+cADUAAAAAAAAAAAAAAECVUL0BAAAAgEaxfr30u78r3XeftHWrtGtX+fuuWydt3GiOkR/0xfy2Zk3ucrHPbyIhtbbOfoxEonBd/jirK3hhR2/v1GOl51SJx2RZmYtXHMcEny0TM1YsZtalUuZW6gIXyzJB7OXLpT/9U+nCC2c/L8+TvvKV3HW+P32AOj3nbEf2GYlJmy6RftspqchmjSJUqCAMZhWini5Anb4v5acaMkAtScd3HU+AGgAAAAAAAAAAAAAAAEBD2HnPD3XpL96vhBVIllP8HLVKKxGibg8j+tE7fqzVLzuz+nMAAAAAAAAAAAAAAABYoCjfAAAAAEAjcV3p3HPNbWBA2r1b6uuT9u6VhodNwNZ1pe5u6cQTTRj41FOlZcvqPXNUy9q1ucuWJUWjUjKZWTc5adY5zsyP7/tm/2zRaOEFJaeeOvNjl3LssbnLtXhMsZjU0WHGmJgw2ziOiUtHIiZOLWUucMl+/G1t0gknSBdfLP3O78x8Ptnuu096/vncdanUrA+XDlA/1Csd7pjb1GZlhtcdBQrUarfKtm2NpkbLHGL6AHVaowaoJemJw0/IsR31tPfUeyoAUJ4glLyU5PlZK/2Sm1dMGEphIIUy36drcZHr0bED82cC25Zm8UsT5o1UXEoFuetsW5rFH7sAAAAAAAAAAAAAAPPPznt+qI0/vEQTzpF/n0+fT1eHEHVb6Grrph9q3cvPr/7YAAAAAAAAAAAAAAAACxgRagAAAABoVD090nnnmRsWrp4e6bTTpF27MutaWnKDzZI0Pi51ds7sIpAwNPvla2nJXV63rrKh864u6fjjpQMHcsesxWNKB7ZXrJBOP90Eoffvl5591uwbBCb03tKSe1u6dHZB7Hxbt+Yu+37OBTUzcTgmveMSaVevNPuMdW0d33W8Vi9ZLUna8ewOTXgTU24/kwB1o/MCT78+9GtJIkQNoLEFoZRISIFvAtRe3vfn/OVKSgUmfJ3NdaVIlevIoaSkZx5zmu2YsZsxzJz0zJ9B8qUfM/9yBAAAAAAAAAAAAABNq2/XXbrwh5do3PHMCkuZELXtSHbtQtQtoaObL/qW1q37/eqPCQAAAAAAAAAAAAAAsMCREgAAAAAAoNFt3JgboXZdKRYzgcg0z5NGR6X29vJiyb5vYs2el7s+FjPHzx+/0taty41Q1/oxnXGGdPLJ0imnSMPD0s9+ZvabnDwSX3RnFr8ux8BA7udRklJl5KOLzOPZjlCvvFzyHCn0pKGOCs2xirID1APjA5r0JsvarxkC1GnZIWoAaFjxuBQGtR+3WIBaOvJ93ZIidvXGTqQKH3PgS6lQciLVG7fRpB9zLFrvmQAAAAAAAAAAAAAAqqB/32O64KYLNOrmnWOXDlEHvqTahKhjlqub3nijNpz5tqqPBQAAAAAAAAAAAAAAAKmK1QYAAAAAAFARZ58trViRu66tTbLz/lrveSaoPDkpBSXikUFg7h8eLow127Y5brbeXmn9+rnNv5jVq6WlS3PX1eoxLV5sxq+13btzl8OwcL7FhLkR5mc7Qr3iCulQm3Q4VscA9QyuM8oPUD8x+ERZ+zVTgDotHaKeSE3UeyoAUMjz6hOglswvkyh5XxnfL2crFZR+zGFg7l9IwmDqzwUAAAAAAAAAAAAAYF7q3/eYNly/TkNukV8QLWXOBwt8KajueVsxOfrmm/9V55/7nqqOAwAAAAAAAAAAAAAAgAy33hMAAAAAAADTcF3pyiulT34ys86ypM5OaWSkIFKsyUlzc13Jccy2YWiCgqWix+njWXll4SuvNMepNMeRLrtM2rKlcA7VfkwXXmiOUWt79uQul4pqTyEdoB5slQJpRiHoipplgDoMQx0YOzDnuLRt2QrqFUmtAC/wNDA5MO12D/Q/IEflPVd9VTYYWunjAZgn/Dp+bZ3q63oYmm98Vfm1mtM85rBqAzeukO8BAAAAAAAAAAAAANBM+vc9plddv06DpQLUaZakUCZELVuyK//v5RHL1o2v/Wedf867Kn5sAAAAAAAAAAAAAAAAlLbAygkAAAAAAMxT69dL55+fu85xpK6u0hd6eJ6USEjxuHlbKtZs2+Y4+WHmCy6Qzjpr7nMv5bTT6vOYXvrSuc99Np58MnfZLxJ4zA9mZzkcC/XKyxsgQD1D3bHuo+9blqW1PWvVEe0oa1/XLgygu7Yr13ZlzZcPAADMJ/X60lrO7yaoVh97urHn9nsT5im+xwIAAAAAAAAAAABAsxgbGNBrrn+lDk0XoE5L/5NxEJhbBbmy9aVX/YMufO3lFT0uAAAAAAAAAAAAAAAApldY8gEAAACAegkCaXTUhGXz46zbt0utrfWZFxrTc8/lXuBg25LrSp2dUjRav3lV0xVXSI89Jh04kFnnOFJ3tzQxYV47MxWLSW1thfHjlSuly2twoUc9HtNjj81tzrM1PJy7XOoCHcuSwtzi5Ug01DveJnlOAwSoZzj27hd2a63Wqqe9R5KJSJ/ac6q2P7NdXlgiIn6EbdlybVde4B3d17bsI9OwFM7TMqgtW0HVaqqNJ5lK1nsKAMrl8k8GUOlfBgIAAAAAAAAAAAAAmFfGBga0/rMn6GBkhufhWTK/tDl9jlsF/h3Zla3Pr/+43v6Gv5jzsQAAAAAAAAAAAAAAADBzFCUAAAAANAbfl154oTA+nRaGpYOtWJjCMDfU6/vmlkhIixbVbVpV1dEhXXeddM015vWSZllSe7uJL8fjUrKM4Gs0KrW0FI9NLltmxunoqNzcS2nGx1SKVyK4XCQ6nW0kJm26RNrVK4WepJbqTK8ss4hfB2FQNETd5rZpJDUy7f7pEHX6/fnOli2rrhXx2vM0dWwcQAOxbcmNSF6q3jNBvTiOZDv1ngUAAAAAAAAAAAAAYI7GBga04bMv0f7I5OwOUMEQtWNZ+vQr/0rv+YOPzfoYAAAAAAAAAAAAAAAAmBsi1AAAAAAaw8hI6QD1QjUyIu3fL/X3SwMD0sSE+Rg5jtTWJvX0SL290rHHSl1d9Z5tYxkebt7nU2+vtHmzdO210oEDufe5roksh6EJHnte7sfBccw2rmvCx8WsXGlizb291XsM+ZrxMRVTLI5dypEwdXaAOiVpqI4N7bl0k4uFqC3Lki1bgab+BQOWLJ2y9BRJ0hODTyhU6WD3fBAomFGEerqPz3ww3z9nwIITi0qOLaU8ScX+PFWFkL5VxtcJq1pj5y/n/XKIao1bT8Ues2WbC4Yj8/8XPgAAAAAAAAAAAAAApHM/+xLti4zP7SAVCFHblvSJUz+o91/893ObCwAAAAAAAAAAAAAAAOaECDUAAACAxpBI1HsGjcH3pT17pJ07pWeemXrbp5/OvH/88dK6ddLq1SbKu9CFYXM/p3p7peuvl264Qbr99sL7LUuKRMxtJi64QLr8chN9rrVmfEz5urtzl6e5ICc7QC1JEUkKJNW6DVmh7mYQBnpq+Ckta1sm60gw3NLUIWpLlk5actLRcLXUHCFqS1ZZj8HRzL6e+0VjsfVn1/xJC2DO0r/gwXGlVNbXItuRWlsqP54fSBqcepvORVK0Cv+kMTImpeKl73ejUneT/cKX6R4zAAAAAAAAAAAAAGBeO+vDi/Tb6BwD1GnZIepQ5hdbl8m2pA+f9Ce66rLNlZkLAAAAAAAAAAAAAAAAZo0INQAAAID6C0NzcvpUbNtEaJtZX590xx3S8PDM9923z9y6u6XXvc7EqJvddM+H6Z5T811Hh3T11dKGDdKWLVJ//+yP1dsrXXGFtH595eY3G834mLKtWiU9/HBmOTsYb1nma2EYSpYl3wr1zoszAWpJmpTmbYA6Le7F9cLECzlRaUklQ9T5Aer0+08MPlHZidVYoGDK+HazsS0i1AAAAAAAAAAAAAAAAEAtnHP1Ej0RncV5qFNJh6jDQPLD3HPfpvCBl1ymj73nxsrOBQAAAAAAAAAAAAAAALNChBoAAABA/VmW5LqS55XeJghMnLUZxePSnXdKu3fP/VjDw9L3vy+tXSu99rVSS8vcj9mopns+RKO1mUe9rV8v/e7vSvfdJ23dKu3aVf6+69ZJGzeaY7gN9COCZnxMkrRmTe6yXTrM64SW3rsz1MPHSIFlAtRDHdWd3lFV7P37ga8DYwe0rG2ZJClUeDTEbMlSqMzr2pFTEKuWMiHq3QMV+JpZR9MFqB2Vd6FW/j6+/NlOSVLh52GurGo+oQAAAAAAAAAAAAAAAAAcdd7VPfp15HB1Dn40RB1Kvj9tiPry4y/W373vpurMBQAAAAAAAAAAAAAAADPWYDUmAAAAAAtWV5c0OFjvWdTe8LB0883S0FDx+9Mn6weBuaXZtrk5jol459u9W9q/X7r0Uqm7uypTb2gtLQsnQi2Z2PK555rbwID5/Pf1SXv3mueY55lturulE0+UVq+WTj1VWras3jMvrRkf09q1ucv5AX7LMq/5MJQsSxf9xry23/fGUEOdVZxXDRvBi1oWaW3PWlmWpVSQygkxhwply1agQLZs2VbpSHdPe4+ig1HF/Xgtpl1xESuixS2Ljz5Gz/eUClKyZcuxHbnO3H5k56U8+Uf+i9pRua6r/vH+KffpUIc62nNL56lkSr58pbyUxsPxnPts2eqwOjQSjpQ85mxC2gAAAAAAAAAAAAAAAABm7g3XrNSuyAvVHaTMEPWfHPtmffby/6zuXAAAAAAAAAAAAAAAADAjRKgBAAAANIaWFmnRIhOXDcN6z6Y2hoak//gPaWys8D7fl1KpTJx2Kq4rRSKFJ/MPDUnf/rb0jncsrBB1+rm0UPX0SOedZ27NolkeU0+PdNpp0q5dmXWRSO7rPC9EvWgs1OFqBqhr7JiOY+TargbGBzTpTRbcnw5QW9OUsQfGB5T0k9WaZtV1xDr00p6XyrVr96O5l/W8rGrHfnD/g5pITVTt+AAAAAAAAAAAAAAAAABK2/jXx+l+97naDJY+tatEiPrSnvP0hT/7QW3mAgAAAAAAAAAAAAAAgLIRoQYAAADQONraTEA4lTInpmc74QRp2bL6zKsaJiakv/97KR43Eem0MJQmJ6XkDOKqnmdu0ajU2moitmnxuLR1q/S3f2s+vs0kHpeCILNs2+Zj6fJXXTSwjRtzI9SOY56zRULUw26o1763yvOZuvVccf2j/bJla8/hPQpV/BcOBArkyCl6n2QC1E8MPlGtKdbEWHJMuwd263eW/44sq8afBAAAAAAAAAAAAAAAAABN45K/PlH32vtrP7ClghD1xUtfpRv+4vbazwUAAAAAAAAAAAAAAADToswFAAAAoLHYthSLFa4/7jhpxYraz6daNm+WDh06euK9JHMi/tiYCSvPJkqajnd3duYe99Ah6bbbpKuvnvu8G8mePbmx7iPhXqChnX22+Vr2/POZdbGYee1mP38tS92pUKsPSX1LqzSXGrePu6Pd6u3o1Z7De5T0pw7t+/Jlyy5Ynw5QhwoVKCiyZ+OzZcu2bK3sWEmAGgAAAAAAAAAAAAAAAMCsvesjp+gO+8n6TSArRP36pWfqqx/+ef3mAgAAAAAAAAAAAAAAgCkV1nwAAAAAANW1Y4e0bVvuOt+XRkZMgLoY1zWh2pYW89Yt8TuFgsAcx/dz199+uxkXQH25rnTllbnrLEtqbS2Mz1uW9vyLtPpQFeZRh/axa7vaO7RXST+pUNMH41NhKmc5O0Cd8lMl9mpstmxFnIhOWnKSetp76j0dAAAAAAAAAAAAAAAAAPPU+/5hg261flPvaUiW9DrveH3nrzhHFQAAAAAAAAAAAAAAoJERoQYAAACAWvI86StfyV0XhtLoqHmbLR2mXbRI6uqS2tultjbztqvLrG9tLRyj1PG2bDHjA6iv9eul88/PXWfb5vVdLET9JatyIWpLdQlQS9Kh+CEl/ERZAeq07c9sl5QboJY0o2M0CgLUAAAAAAAAAAAAAAAAACrh8i++Qd8feUCynXpPRRuCY/W9zb+t9zQAAAAAAAAAAAAAAAAwDSLUAAAAAFBL990nPf987rqJCSkIcte5rtTRYcK08bg0MiIND0tDQ+btyIhZb9tSZ6fZPlsQmONm6++Xduyo+EMCMAtXXCEtXZq7znHM6zkazayzLBOi/rI99xB1neLTcxH347p73905Aeqkn6zzrGaOADUAAAAAAAAAAAAAAACASvjwl9+qm/vvMAuWVdcQ9VneMdr6uWfrNj4AAAAAAAAAAAAAAADKR4QaAAAAAGpp69bcZc+TEonMchiasLQkjY5K4+MmNu15ku+buLTvm+V43Nw/Omq2t22zf1oiYbabanwA9dHRIX3gA+ZtNsuSWlvN+uwYtTS3EPU8DFCnpYKUEr75OkmAGgAAAAAAAAAAAAAAAMBC9dEbNulr+2/NXVmnEPVpqWX6yeYDNR8XAAAAAAAAAAAAAAAAs+PWewIAAAAAsGAMDEi7duWui8cz74ehuaVj00FQ/rE9L7O/ZC4qSB8/O3K7c6eZRw8hVGBavp95XSUS0siItHevNDlpluNx81praTFB+L17pWeekfbtM9v6vglJL1okrVolveQl0sknS0uXmuP39poQ9Y03SocP547tOFJ7uzm+5x0N0e/5V2nNn8bVt2QGj2MeB6izEaAGAAAAAAAAAAAAAAAAsFB9/Kt/pBv2fb/4nekQdeDXZC6npBbpF58fqMlYAAAAAAAAAAAAAAAAqAwi1AAAAABQK7t35y6HoZRM5saj0+uzl8uRHaxO729ZmeNbWRXa3bul886b8fSBBcP3TfQ5LQjMa2lszLyWnnvOhKh930Snn3hCev55ybbNtvmvX8uSfvUrE5aWpDVrpHPPlV7+cumEE6SPflT67ndNJD77teo45phu7o9vLn7a1ucWT5QXl26SAPV8RIAaAAAAAAAAAAAAAAAAQCVs/taf60tPfXvqjWoUoj4p2a3tXzhc1TEAAAAAAAAAAAAAAABQeUSoAQAAAKBW9uzJXfa82QWny5U+rudJkUhmfV8fEWpgKqlUQfj5qLEx89p65hnpwQfNcppf4uKdMMyE4h3HfC3Ys0daskS65BITo37ve6WDB6WvfU3q7zfb2ra5ZfnImSPafNqEbElBqNKR6QaKT7uWK9u2lfST9Z5KzRCgBgAAAAAAAAAAAAAAAFAJX/zONfrMr28w54tNp8oh6hen2nX/F4aqcmwAAAAAAAAAAAAAAABUFxFqAAAAAKiVJ5/MXU4mqxegTgtDM052hHrv3uqOCcxnExPmNWNZJgAdiUjRqIlIh6E0PCz96leFr2fJbJMXjT4q/VoPQ3NsSRoclG68UTrzTBOjPuMMacMG6b77pK1bpUcfzTnE9148qetfPm6GkoqHphsoPi1lAtSSFHWiCyZE7TquFrcsJkANAAAAAAAAAAAAAAAAYNZu/P7f6lOPXl9egDqtSiHq41PtuvujT1X0mAAAAAAAAAAAAAAAAKgdItQAAAAAUCvDw5n3g0CKx2szbjwutbZm4rjZ8wCQMThoXh+WlQlFu64JR8fj0sCAdPfd0vh48f3DUPL9TLA6zbYzt+xjpz34oLRvn3TdddLxx0vnnmtusZiJxj/yiG7Z91P9Rc//qtuP6Hk7ZWLTDRaczpcdoE5bKCFqz/d0OH5YA+MDhKgBAAAAAAAAAAAAAAAAzNg3fvxpfeyhf5SvmRSoj6hwiLrXa9G9H31KHT2cCwUAAAAAAAAAAAAAADBf2dNvAgAAAACoCM/LvD8xkRupraYwNOMVmwcA85oYGSkel/Y8aXLSRKjvuEMaGyvcJgikZDJz8zwTo07fUikpkTDHn5w0r0nHyb298IJ07bVSf3/muC9+sfSWt+iWS07VVaf8VsHSJRpo8c1Pc+ZhgDot6kRrPJvaCxQo5af0xOATGhgfqPd0AAAAAAAAAAAAAAAAAMwj3/3JP+nqHX8nT8HsD5IOUc/xZLPlXkwPfmQfAWoAAAAAAAAAAAAAAIB5jgg1AAAAANSK65q3yaQJ2tZSPG7GzZ4HsJAFgTQ0JD33nLkNDZlgdPq+IMiE4lMp6cCBwtdtGJrXVSJh9i0nLJ9MZoLX+dunQ9RjY1I0KrW16ZZf36Kr/vsqBWGgVCqlIJzDRUU1MlWAOo0QNQAAAAAAAAAAAAAAAAAU+tGdN+gD93xkbgHqtDmGqJd6Ed31wV8SoAYAAAAAAAAAAAAAAGgClMcAAAAANA7fN3HWRMIEYLPF41JLS33mVSkTE+ZxTEzUZ/yxMamtzYx/2231mUMl9ffnPk8sS4pEpI6O+f9cQXWFoTQ4mAmzp1KFz6UgkNIhZc8zy5FIZpsgMPuXE54uJpEw43Z2So6TWX/ggHTDDdINN+iWx3+oq/77KiW8hFJBSqFmOVYNOXKmDVCnWbLmxWOai+wQtST1tHMxFgAAAAAAAAAAAAAAAIDitm3/pt5/x4eUqkSAOs2SOUfN96UZnK+1xIvong/uVO/xL6vcXAAAAAAAAAAAAAAAAFA3RKgBAAAANAbflwYGCuPTzaSnR9q7t36PMQjMx3n58vqMX21haKLAg4NSd3e9Z4NGNj6eCVCnOY6JTUsmQp0OQ/u+WW/bZr1knmuJROnjp7fN3t73C7cLAhPe7+7OjGdZ0i9+If++e/XF576owclB+aHZN+knC4/RYAIFskNbVvqxgxA1AAAAAAAAAAAAAAAAgGltu+/betdt/0cJFTnXrBJmEKLu9l39/IoHCFADAAAAAAAAAAAAAAA0ESLUAAAAABrD8HBzB6glqbdXmpys7xwmJ6UVK+o7h1oYGSke/QWkwoB0JGJu+WFqyQSoLcuEpdOh6FKv40hEikbNtmnpIHU6Ah+Pmyh1WhhKo6PS0qWZaLUk6/9+Qss/9CK1Rlo1lhybFwFqSQoVygs8ubZLiDoLIWoATSPwpYkq/Hk24M9tAAAAAAAAAAAAAICF696Hf6g/uvX/KBFW+d/PywhRd/qutr1rm45fva66cwEAAAAAAAAAAAAAAEBN2dNvAgAAAAA1kB+FbUbd3fWegbFoUb1nUH1haGK/QDFh3gU0kYjU2moC0tnhZN/PbJsOSE9MmKB0GGZuliW5rlmf3mZiwsSq43EplTLHaGmRFi8242XzfROizpJ8qk+rHtyjU3tOled7Ff4AVFc6RB3mf5wXuOwQ9cD4QL2nAwCzFwaVvwEAAAAAAAAAAAAAsEDt3PkzXfrdTZoIU7UZ0HEkWUXvavdd/egt39Pq015Tm7kAAAAAAAAAAAAAAACgZohQAwAAAKi/dMh1KlbxE97nleHhes/AGBqq9wxqgwAuSmlpKVwXjUodHVIsZpZTqUw8Ov01KjtKnS0IzLa+b95P33xfSiZNkHp01Nw8r3iIenIyM56kVJDS79/brwcOPKBA8y/OWU6IOtTCe40SogYAAAAAAAAAAAAAAACQ1vfYA7rwP9+iCXm1PeexSIi6LXC09S3f07pXvaV28wAAAAAAAAAAAAAAAEDNuPWeAAAAAADIskyQNZmU4nETYp2czN0mHs/EYeerO+6o9wyMO+6QurrqPYu5e+EFE/pNi0RMSLi11VwgMd+fL6ie9nbzfMmKPksyyxM2y2nqAAEAAElEQVQTJh49W+kLgYqF81MpaWREGh83c/DyLhyamJC6u9MH0ot+O6C4N39DzekQtWu7svI+Hkk/WadZ1V+gQEEY6MDYAS1rW1bwsQEAAAAAAAAAAAAAAADQ/Poee0Dn33SeRq2s89jCsPi5Z9XgOEfOlQsVC2zdfMFXCVADAAAAAAAAAAAAAAA0MSLUAAAAABpDZ6f0q19Ju3dLY2OFEVjHqd2J9dVy8GC9Z2AcPCj94Af1nsXceV7hupYW6YQTpFe8wkSGgWIsS1q6VBoeNsH7ffukp56aW3w631QXA/m+iVG7bu7zOJHI2a87FdE7B1fqW0t+W7l51ZhjOwSo87iWq85Yp9b2rCVADaAB5X1dch3JrsEv9ghCyQ9y13l53y/s6k8DAAAAAAAAAAAAAIBa6O/v0wU3/Z6GrSLnUtU4RB3zQn3z3H/Shgv+qDZjAgAAAAAAAAAAAAAAoC6IUAMAAABoDAcPSv/7vyYIWwqxzsqpZGy3Xoo9hvFx6fHHJduWXvWq2s8J80ciIf30p9JvfiMFwfTbz0YYmrelvnalUmYb285sn0pJ0ejRTV73jKXdL12nnQd3VmeOVeTarmwrtxhKgNpVV0uXTu05Va7Nj+UANCDHllJZy7Yl1eLrVRCa4HW2/N83YlGhBgAAAAAAAAAAAADMf/39fdrwz+s0ZCVKb1SjEHVMjm58/T/r/NdeXvWxAAAAAAAAAAAAAAAAUF/UbgAAAAA0hrvvNvFV98hfU9Lx1jTHyYRaMXduE/x1MP85ImUuutizR3ruOWnNmtrOCVPL/5wFQXUC0JZV/PmR9u//Lt1/f+XHLaVUjDo9zyDIfH07EqH2LbPPi/ePa0nbS3Rc53F6dvTZ2s15jghQFyJADWBeiLhSwpbCKv2Chtly+LoJAAAAAAAAAAAAAJj/xgYH9arr12nQik+/cZVD1BHL1hdf/TldSIAaAAAAAAAAAAAAAABgQaDcAAAAAKD+wlAaGjLv+37peGw1YrULlefVewZz5/vF1zuOue/RR6VXv7q2c0KhIJBGR6V4vPBzNjEhPf545cYaGzPH9H3zPGhvN7e0gwelG2+UknWKIZeKUUuZELXnaSQS6A9/P67LHrV06lhKktQebVe73a7xYLysoaJOVH7gyw99WbIUaooodxV4gaeoEz26vNAD1JLUEe0gQA1gHrCl1lZpcrJxQtS22xy/QAUAAAAAAAAAAAAAsKCNDQ7q9M0v0SGVEaBOq1KI2pWtL73qH/T23/9gxY8NAAAAAAAAAAAAAACAxkS5AQAAAED9pVImwJodRs4PUZcKU2N2muXjmf040hdapAPEiUR95oSMIJBeeKE20fPBQRO6TvM8aXjYBKcXL5YeeUT63veqP4/phKG52bZZtqzM8zgMNRINten8Ie1cEmjXeaH+amfmeRyJRNSemj5EHXWiCsJAfmii36HCuoSok35Sve296h/vr+m4jWosNSYv8IhQA2h8jiN1tEmeL/mBVIvvH2EoeancdZ5vvl/alb+YFgAAAAAAAAAAAACAWhobHNT6zSfqoKY+96uoCoeoHcvS58/6uN7+hr+o2DEBAAAAAAAAAAAAAADQ+KjeAAAAAKi/aNTcUlnhufwT5i2roifRL3jN8rEs9TiCQFq1qrZzQaHR0doEqBOJ3AB1tslJ6fHHpdtuq/48ZiIITFgzK6Q+Eg216Q/i2rXUkkIpsKTPnj6pFeMDR7eZLkSdDlB7Qe7HvV4hagLUGV7g6cEDD+qMlWeoxW2p93QAYBq25Nq1+xeEIMj9u4BUuAwAAAAAAAAAAAAAwDw0NjioDZvXaL9GZ3+QCoWoHcvSJ077C73nDz4252MBAAAAAAAAAAAAAABgfrHrPQEAAAAAkCSddFLzhJFRX5YlLV4snXBCvWeCRKL+4zz7bOMFqNOC4Oi7IzFp0yXSruW5kWjftvTE4BMaTWQuQHLd4kXQUgHqtFoHqFEoFaT04IEHFfdKRNMBAAAAAAAAAAAAAAAANJXX/ONLtU/Dcz9QOLfzv2xL+ugp79dVb//c3OcCAAAAAAAAAAAAAACAead4tQgAAAAAaikMpTVrpIkJ6cknTZg1K84qSbJtItWVZDfB7yRynNzniWVlAtRnnlm/eSEj/3VcLV5edNmyzNeVZFK69dbazGEOjgaoe4+syLpYyHMshQp1cOKgonZUETui8dS4bMtWGIZHw9LTBaizWbIIUtdROkS94bgNspvhazEAAAAAAAAAAAAAAACAos76m149aQ1W7oBhKMmSZng6rW1JH179R7rmnf9SubkAAAAAAAAAAAAAAABgXiFCDQAAAKD+LEtqaZHWrZNe/GLp4EHpuedyw7KxmIkOz2cHD9Z7Bhm9vdNv0+ji8dzI8dKl0ooV0vLlkuua5wzqKxqVEonaj5uOOH/vezlB50ZUEKCWzJyPRPd9xzqyKtSEN3E0Pm1ZliJORCk/pYgTKTtALYkAdQM4puMYAtQAAAAAAAAAAAAAAABAEzv34y/SE9YLVThyKIU6eo5ZOT7wksv0sT/+1yrMBQAAAAAAAAAAAAAAAPMFEWoAAAAAjaGzU0ompcWLze3kk3PvX7LEhKrnsyeeMOHkemttlS65pN6zmLv+/twIdba2NhNARn11dUmjo/UZ+9FHpZGR+oxdpqIB6jyek7lQyJKlIAxkKbNupgFq1N/xXcdr9ZLV9Z4GAAAAAAAAAAAAAAAAgCo5/1Or9Kj3XHUHCcOyQtSXH3+x/u59N1V3LgAAAAAAAAAAAAAAAGh4dr0nAAAAAACSpFjMhKbtJv5rytKl9Z6BsWRJvWdQXe3tJn6M+nNdadkyyXFqO248Lt1zT23HnKHpA9ShPNdWYOdeJGTJUqhQYRhKEgHqeYYANQAAAAAAAAAAAAAAANDc3vCpNXoosa82gx05j6yUdx/zen328v+szVwAAAAAAAAAAAAAAADQ0Nx6TwAAAAAAjmppkVaskDxP8v3c+046ycRs57Nly6T9++s9CzOPV76y3rOYu/vvz32e2LaJHjdzyHw+ikal5cvN69rLiyUfe6x0wglzH2PnTmliIrP8ve/N/ZhV5FvSOy+eKkAtWaGUiBZ/LlsyYWov8BSEQTWmWHeOHNmWLcdxFPfi9Z5ORRCgBgAAAAAAAAAAAAAAAJrbWz+1VvcnnqrtoGEoWVbB6kt7ztP1f761tnMBAAAAAAAAAAAAAABAwyJCDQAAAKCxWJYUiZhbtp4eE6iez5Yvl2IxKZGo3xxiMTOP3inqt/NFe7uUTGaWLctcTIHGU+p1vWKFdMwxcz/+s89KAwPm/b4+c2tgTii992Hp4WOkoPDaH0lSaElJ15ZKPKUty5Jt2U0ZoXbkHH3/nOPO0fZnt8/7EDUBagAAAAAAAAAAAAAAAKC5XfL363RX4vH6DJ4Xor546at0w1/cXp+5AAAAAAAAAAAAAAAAoCHZ9Z4AAAAAACwYq1ZJHR31nUNHh3TiifWdA1Atvi/97GfzIkZ+0W+kL94m2SWm6luSF3hHb0EYKDzyX5pt2XLt5vr9YtkB6rRzjjtHLW5LHWZTGQSoAQAAAAAAAAAAAAAAgOb2rs+cqTsmHq3vJI6cN/f6Rafrqx/+eX3nAgAAAAAAAAAAAAAAgIZDhBoAAAAAamXNGsmypK6u+ozf1WXGX00MFU2qr08aGqr3LKblW+btW38jXV8kRB1KCq38dWHO+2Fobs0Uoran+DHVfA1RE6AGAAAAAAAAAAAAAAAAmtv7Pvcq3Tr6y3pPQ5L0ura1+s5f7aj3NAAAAAAAAAAAAAAAANCAiFADAAAAQK2sXWveRqMmBl1LlmXGlaRTT63t2ECt7NwpBUG9ZzGlkZj01sukW15qli8qEqI2AerM14hAhY8pVCgv8BSGofzAr+6kG8R8C1EToAYAAAAAAAAAAAAAAACa2wdvvFjfH7m/3tOQJG2InajvfWxnvacBAAAAAAAAAAAAAACABkWEGgAAAABqpadHOu008/7ixbUdOz3eunXSsmW1HRuohZERad++ho5Qj8SkTZdID62UrnpTboj6n4+EqMMj7engyE9sigWo00KFSgUphQpLbjOfTPVY0+ZLiLrFbSFADQAAAAAAAAAAAAAAADSxD//rpbpp31ZJlmRbdZ3L6bHjtfUTj9d1DgAAAAAAAAAAAAAAAGhsRKgBAAAAoJY2bjRvbbt2IerFi8142eMDzWb/fvM2rG2Q2S/z2qF0gHpXr1kOLOmDWSHqP9gjffpOW9aR6aessKwoc7Px5U+7zXwIUce9uPoG++o9DQAAAAAAAAAAAAAAAABV8NGvvVtf++0PstZYmfM0a+y06LHa9okn6zI2AAAAAAAAAAAAAAAA5g8i1AAAAABQS2efLa1YYd53nOqHqBcvNuNIUm+vtH59dccD6qW/3wSoaxihHolJb70sE5KearvsAHVaOkT9kddJF77D0oZnpb//uSU7lCac6s270ZUbom50+0b2EaIGAAAAAAAAAAAAAAAAmsynv/1numHvzcXvrHGI+hRruX7xyadrOiYAAAAAAAAAAAAAAADmJ7feEwAAAACABcV1pSuvlD75SbPsONKSJdL4uJRIVG6cWExqb8+9oOHKK834wHwzMCDt3i3t2SM9+aQ0PCx5nnk+d3eb5/ujj5rXUY0i1Nlh6YePMesu+s3U2xUzEZE+v0HqTIR6/5tD3XCrpXfulDa/qmpTnxd8+bKn+N1p25/dXsPZzN6+kX2SpNVLVtd5JgAAAAAAAAAAAAAAAADmavN/flhfeOyrkqY4T822pSCo+lxOCpdp+3UHqj4OAAAAAAAAAAAAAAAAmgP1MQAAAACotfXrpfPPl7ZtM8u2LXV2SpGINDY29+N3dEgtLbnrLrhAOuusuR8bqBXPk7Zvl7ZulR55pPR2YSiNjkrJZM2mlh+WDizpqjeZ97ND1NMFqOOuNBwz74/GpF/2Sm9/a6hdx0qyqjb9eSMVpoqu3/7sdsW9eI1nM3uEqAEAAAAAAAAAAAAAAID574v/da0+86svKZgqQJ1W5RD1i7VI93+mv2rHBwAAAAAAAAAAAAAAQPMhQg0AAAAA9XDFFdJjj0kHDmTWtbRI0agJUc8mqBuNmgC1beeuX7lSuvzyuc0XqKUdO6SvfEV6/vmptwsCaWRE8v3azEulw9LpEHUoE6IeiUmXlRmgThuOyQSocdT2Z7frnOPOyVmeTwHqNELUAAAAAAAAAAAAAAAAwPx144/+Tp96+AvlBajTqhSiPl7duvuaJyp+XAAAAAAAAAAAAAAAADQ3ItQAAAAAUA8dHdJ110nXXCO98EJmvW1LXV2S50mTk5kYdVjkwgXLMm+jUam1VXKL/BVv2TIzTkdH5R8DUGljY9KWLdK2bdNvGwTS8HDx10aVlApQH52SJX3wTdKEK33rtJkFqANJsio52+YQ9+JHQ9TzNUCdRogaAAAAAAAAAAAAAAAAmH++8d+f08ce+Ix8zSIoXeEQda86dO81e9SxZEnFjgkAAAAAAAAAAAAAAICFgQg1AAAAANRLb6+0ebN07bXSgQO597mu1NlpArueZ26+n7nfccw2rpuJUedbudIEqHtLlHCBRtLfX/y1kJb/WkgkzLpSz/8Kmy5AneZb0p++RWr1pBav8P64Kx2OSXbWuoIANTHqHHEvrnv33atEkKj3VOaMEDUAAAAAAAAAAAAAAAAwf3z3ji/p6ns/IU/+9BuXUqEQ9XK16cFrniRADQAAAAAAAAAAAAAAgFkhQg0AAAAA9dTbK11/vXTDDdLttxfeb1lSJGJuM3HBBdLll0sdHZWZJ1BN/f3S1VdLhw4V3ud5UjwuJZOZddkX5IRh1adXboBaMv3oVk8ajpnl7BB1OkAtSwrCTIja1pEQdfoATaLFbdE5x52j7c9uV9yLz/o4UTvaFAHqNELUAFCGIJT8vAtwk0lzYW6leSkplT1WKPMNOf1NOSUlkoX7VVr6zzfVeIz58h+zZUuOmurPIQAAAAAAAAAAAAAwVz+6+9/0gZ9fM7cAddocQ9RL1aK7PvhLAtQAAAAAAAAAAAAAAACYNSLUAAAAAFBvHR0mwLthg7RliwnyzlZvr3TFFdL69ZWbH1BNY2PStdcWBqjDUJqYkBKJwvU1NJMAdVo6PJ0dos4OUEvKCVGHTRh8TAeoJc0pRB21o0oGNQh/1thzY89p1aJVsmsRGgWA+cT3TPA5DKVU3p8B8pcrJelJvm9u2Rf82rbkOFLgSBqpztiSiUH7XubPOJYlOa4UqeL3iPRjzpmHJNuRovyzEQAAAAAAAAAAAABse+A7ev9P/1ypSgSo02YZol4UxnTPh3aqt5dfeg8AAAAAAAAAAAAAAIDZoyYAAAAAAI1i/Xrpd39Xuu8+aetWadeu8vddt07auNEcw+WvephHtmyRDhzIXef70uho8Qtuahih9i3pnRfPLECdlh2ijrvSpKNMgDrNkoK85WaQHaBOm22IuhkD1BE7ojNWnkGAGgDy+Z4Ur1JoejqeL4V5f+4IAvPnjqhTvXFTgeSlcteF4ZF1keqGqIsJfCkRSpFobccFAAAAAAAAAAAAgAZy7yO36l0/eq8S8ip/8BmGqLvDqG5/988JUAMAAAAAAAAAAAAAAGDOKJMBAAAAQCNxXencc81tYEDavVvq65P27pWGhyXPM9t0d0snniitXi2deqq0bFm9Zw7M3K5d0rZtuet8XxoZKR6bzl5nWVUPUjuh9N6HpYePkYIyAtFHcpFHtXhSKGkopukD000coE6bbYi6maQD1C1uS72nAgCNJ5GafptqCILCAHVaGJowc7X+KcX3p7jPq08MOgymnhcAAAAAAAAAAAAANLF7H7lVl968qToB6rQyQ9SdYUTb3v0LrX7ZmdWbCwAAAAAAAAAAAAAAABYMItQAAAAA0Kh6eqTzzjM3oNn4vvSd7+SuC0NpdLQwLm1ZUkuLlEwWRhGrHKK+6Dfm7VVvmjpEPSlpqEOyA2nFhIlPh5YkXwsmQC2pZIA6+/5yQtSOHPlqrgAmAWoAmEapEHTVx53mzxLV/LPGVI85DKVAkl294UuP3VzfgwEAAAAAAAAAAACgHDt3/kybvnupJqwa/BLlaULU7WFEP9r0QwLUAAAAAAAAAAAAAAAAqJh65AsAAAAAAMBC19cnHTqUu25iovDCGteVurqkWKwmAWq/SBD6ot9IX7xNsksMlw5QS1JgS8+3mWB1QtJQ+xSDWWqqALUkbX92+7TbnHPcOVOGmB05kqSIFdG65esqNbW6IkANAChQTnO7Tl3upvsDCgAAAAAAAAAAAABMo++xB3Thf75F42GidoPaxS/rawtdbd30Q61b9/u1mwsAAAAAAAAAAAAAAACaHhFqAAAAAABQezt35i57npTIu4DHdaXOTslxzP3ZqhCgHolJb71MuuWlhfeVClFnB6jTAls62DpFgLoJ49NpcS9edojaKvJBSAeo05a0LZlViNo58l8jRKwJUANAmWxn+m2qwZrmn0msJv2mPZUSFzoDAAAAAAAAAAAAQDPqe+wBnX/TeRq1UmZFUMPfGGzbyj6ZLBbauvmibxGgBgAAAAAAAAAAAAAAQMVREgAAAAAAALU1MiLt25e7Lh4v3K69PRN+zI9QF2NZsw5FjsSkTZdID62UrnpTeSHqYgHqo/J/4mKpqePT2coNUXdFu3KW7RI/ppppiDo7ZL2kbYmiipa9b6URoAaAGYjF6jOubZWOLlt2/eLY9eI4C+8xAwAAAAAAAAAAAFiw+vv7dMFNv6dhK5l7R01D1Oa8t1ho65tvvFEbznxb7cYGAAAAAAAAAAAAAADAgkGEGgAAAAAA1Nb+/bnLYSgl8y7iaW01EcS0ciLUaTMMUacD1Lt6zXJgTR+ijodZAWqrjNsCU26IOh2Mzg5HF1NuiLrYcSJOZNr9qoEANQDMkG1JrW253/9rxXEkx1Xmm/aRMLW7gGLMli25rhR16z0TAAAAAAAAAAAAAKiJ/v4+bfjndRqyEsU3CAJJYU3mErFc3fi663X+q/+4JuMBAAAAAAAAAAAAAABg4aEmAAAAAAAAaqu/P3e5WGA6FstdDsOpl2fpcIv0jrdlAtRp6RC1ZMLT2RaNS4c7jywswMB0udIh6nOOO2fK7aYLUKelQ9Q7D+4ser89xe9ac+TIl1/WOLMRUUSWbSkZJLW8bbkOxw8ToAaA2bAtqeXI187w6P+MlhbJrkIUenRU8pKl73dcqau78uMGvjQ8NPU2HV1SpAq/TGG6xwwAAAAAAAAAAAAATW5scFCvun6dBq341BsGocxpSdU7USwiR1/6vc268HVXVG0MAAAAAAAAAAAAAAAAgAg1AAAAAACorYGB3OX8CLXrSnbpoHBZLKsgVO1bkpO16tlO6ZWXS54jtRTpYBcLUf/8BOm1f5weY25TXAjiXlypVEqRCgU0S4WoHTkKNXWYvNoh6pWdK3V85/FyXVdBEMie63MYABY66+j/jizbJlJd8XGm+XpdrXHDMr5P1OsxAwAAAAAAAAAAAEATGxsc1BmbV+mQpglQp1UxRO3K0eYNn9LbX/eBih8bAAAAAAAAAAAAAAAAyEZpAAAAAAAA1NbERO6ynxcGdpyKDzkSk956mXTLS83ys53SK66QDrVJwzEpfuTXdOW3qNMh6v86RbrzRQSoZ2rd8nUVC1CnpUPUaY7Kf76kt53JPjPhuuaJRIAaAAAAAAAAAAAAAAAAaDxjg4Nav/lE9WtsZjsGoaSwonNxZOvTZ/6N3vPGv67ocQEAAAAAAAAAAAAAAIBi3HpPAAAAAAAALDD50el8VpHCc/46y5LC8i7qGYlJmy6RdvVKDx8jvdAiXXuBNNia2WY4JqUkjbVIri/1TGbuCyzpA2+Unu9Mj13WsAveuuXrtKRtSVWOvaRtiRa7izXijcx4X7vI72Rz5MjXNM9LAAAAAAAAAAAAAAAAAPNWMpnUqzafpP0and0BglDm1KO5n0DmyNYnXvFhvf/Cj8/5WAAAAAAAAAAAAAAAAEA5Cqs7AAAAAAAA1eQ4U99fLC7tzu73aGUHqCUpaUmXXygdajPLgTJvx1rM+54jDbTmHicRmdXwC1Y1A9RpkQifFAAAAAAAAAAAAAAAAADlOfsTx+lpDc3tIEEoqcj5bTNgy9JHX/5nuupt181tLgAAAAAAAAAAAAAAAMAMzK7gBAAAAADVFASS5+WuGx6WYrH6zAeNKR7PfZ7YtokbW1b95oTytLXlLudHqX2/cJ9yItRhmPP5zw9QxyUNtUvhkU3Sb4NQUt7TJh2iXhaX4q40EpXsUAp4ek2rFgFqAAAAAAAAAAAAAAAAACjXOR9bqSetwcocLAglWyo46awMtix9+GXv0zWbvlCZuQAAAAAAAAAAAAAAAABlIkINAAAAoHEkk9LQUGGAWpIefVRqaan5lNDADh40wfJ8nZ1SR0ft54Py9fRITz+dWc4PTHue+dzadultLMtEp0sYiYY5AeoJScOlnhYlrgXyHOlga979RKinRIAaAAAAAAAAAAAAAAAAQCM59+Mv0q/Dg5U9aBCac8msmZ1Q9oGT3qWPvePLlZ0LAAAAAAAAAAAAAAAAUAYi1AAAAAAaQzIpvfBCvWeBZjA6WjxOjcbR25u7nB+YlqREQmptzSzbttkuO1JfLEQdhhqJqfwA9TQCW1Io2ZICAtRTIkANAAAAAAAAAAAAAAAAoJGc/6lVetR7rjoHT5+7VmaI+vITN+nv3vPV6swFAAAAAAAAAAAAAAAAmAYRagAAAACNYWSk3jNAMxkfl1Kpes8CpRx7bO6yZUnRqAlPp42PZ5YtK3PLvnCnSIS6kgHqzPwksuZTI0ANAAAAAAAAAAAAAAAAoJG84VNr9FBiX3UHKTNE/e7jN+qzf3JTdecCAAAAAAAAAAAAAAAATMGu9wQAAAAAQGEoJZOF67JNc4I+UCA7aIzG0tUlHX+8eT8MzefK98376ZskeZ5Z7/vm/VQqc38Q1CZAnY0vQ0fZWT9SIkANAAAAAAAAAAAAAAAAoJG89VNrdX/iqdoMln3OWxGXHnuBrn//92szFwAAAAAAAAAAAAAAAKAEItQAAAAA6s+yCiPT+ctTnKAPYB5at85EpYeHpfFxE5ouJv8CneyvDVnrfUt658WZAPWkKhygxlG2bFmy5MiRJALUAAAAAAAAAAAAAAAAABrGZdedrrsSj9d20BIh6jcv36Abrry1tnMBAAAAAAAAAAAAAAAAiiBCDQAAAKAxRKP1ngGaTUtLvWeAUuJxac8eaXJSCoLM+vz4fFr6Ap0wLLmNE0rvfViyQxOgHqp0gLrE1BYa68h/aa7cOs4GAAAAAAAAAAAAAAAAADLe9Zkz9dOxXfUZPC9E/fqlZ+mbH/x5feYCAAAAAAAAAAAAAAAA5CFCDQAAAKAxdHWVDtACM9XZKbnEcRvS8LB0003Sr38ttbbm3mdZ04eos6PVeS76jfT++6sQoIYkyZadE6AGAAAAAAAAAAAAAAAAgEZx+ebzdOvoL+s7iSPnub2m+zR95y/vru9cAAAAAAAAAAAAAAAAgCwUuQAAAAA0hkhEWrbMBGqTyXrPBvOV40gdHVJ7e71ngmzj41I8Lg0NSbfdZpYlybZNLDyVMsthOKdhfv4i6RPnz22qRdFdliQFCmTz+8wAAAAAAAAAAAAAAAAANJgP3nixbh68p97TkCRtiK7SD/7qwXpPAwAAAAAAAAAAAAAAAMhBhBoAAABA40iHqIPA3LK9/OVST0995oXGdNddku9nlm3b3NA4wlA6dEhKJExc/ic/yQSo0yIRE6GeY4B6OCK99r1zOkRxBKhzBArkyKn3NAAAAAAAAAAAAAAAAABAkvThf3+XbnruNnP+YP65pzV2eux4bf3E43WdAwAAAAAAAAAAAAAAAFAMEWoAAAAAjadYTLitTeroqM980JhiMRM2TrOsOYeMUWHj4yZALUkPPCCNjubeHwRSPF6RobpT0upDUt/SihzOIEBdlC+fEDUAAAAAAAAAAAAAAACAuvv4d67U1377PbMQsaWUJQV+XeZyqnuMtn3iybqMDQAAAAAAAAAAAAAAAEzHnn4TAAAAAACAWZicNG+feUZ6Mu/imiAw96fD4dbci897/sWEqOfMEgHqafiqz4VaAAAAAAAAAAAAAAAAACBJn/7eX+hLj389d2XEkmyn5nM5xVquu//umZqPCwAAAAAAAAAAAAAAAJTLrfcEAAAAAABAgxoYkHbvlvbsMRHp4WHJ8yTXlbq7pVWrpDVrpLVrpZ6ewv09T/J96cEHc9eHoZRMFm5vWeYWBMWj1OlgdSmWpT1fktZ8IFTf0vIfZmb/WeyzgPny5fKjJQAAAAAAAAAAAAAAAAA1tvkHH9UXdt+gQEXOKYtYUsqRAr8mc1kVLtH26w7UZCwAAAAAAAAAAAAAAABgtigFAQAAAACADM+Ttm+Xtm6VHn44E5L2PBOBDsNMLPreeyXHMVHqV75S2rhROvtssyxJ0agJWI+N5Y6RShUGpR1HisUk2zZjJRKF26TD1KVi1GEo2bb2fNnSmj8LygtRE56eE09evacAAAAAAAAAAAAAAAAAYAH54tZP6rO7ri8eoE6rUYj6xVqkhz5zsKpjAAAAAAAAAAAAAAAAAJVAhBoAAAAAABg7dkhf/rL0zDMmAp1KZe4rFn7Ovv/uu6UHH5SOO076sz+T1q+XOjqkxx/P3ScITNQ6m+NILS2ZyLTrmnW+b8bI396ySoeoHUdqbdWe70S15p2D6lsUEJqusgcPPKgzVp5R72kAAAAAAAAAAAAAAAAAaHI3/uSz+tRDn5OvYPqNqxyiPladuvuaJ6pybAAAAAAAAAAAAAAAAKDSiFADAAAAAFAPAwPS7t3Snj3Sk09Kw8OS55kAc3e3tGqVtGaNtHat1NNT3bmMjUlbtki33SZNTJjoc6nIc7bsbZJJE4x+4gnp2mulN71JWrlSOngwdx/PKzxOLJYJUKdZlvlYuK4JV6fj1UGQO246UJ3e33GkaFSStOfbS7XmHYfUt7iMC44wa6PJUXmeJ9flx0wAAFRUMi75Vfj+6hf58xgAAAAAAAAAAAAANLhv3PFP+tj9/6+8AHValULUverQjmv2qmPJkooeFwAAAAAAAAAAAAAAAKgW6kAAAAAAANSK50nbt0tbt0qPPDL1tg8/nHn/tNOkjRuls882UeZK6u+XPvIRae9eKZEoLz5dShiaxzg6Kv3gB1J7u1ln25n7/byLeVpapEhk6uPattk3vZ1lmdi0JMXj0uRkJkKdTGbutyztuXmFjvlAXP3e4dk/Lkzp9N7TCVADAFANoSp+ITQAAAAAAAAAAAAAzEff/Z8bdc09H5OnWfwbasSSUq4UVOYX9i5Xmx685kkC1AAAAAAAAAAAAAAAAJhXKAQBAAAAAFALO3ZIX/mK9PzzZjmVMtFn3ze3MDQ3y8pElB1HisWkXbvMbcUK6corpfXrKzOn/n7pgx+U9u0z8ehKCUMTh04kzHJbmwlJ5weoLUtqbc1Eqqc6Xva+lpXZp6XFjJUtCI7Gum95cVyO58u2bAVhMIcHhVK6W7rrPQUAAAAAAAAAAAAAAAAATepH992kD/z8L5WaTYA6LaKKhKiXhC2660O/JEANAAAAAAAAAAAAAACAeYcINQAAAAAA1TQ2Jm3ZIm3bZuLIk5MmmhyGxbdPx6iDwISq43ETXW5pkZ57TvrkJ6Xzz5euuELq6JjbvK65Rnr66cI4dKWkH+PEhNTebh5TNseZPkA9Hds2wensiHYqJUWjuuXFcV21YVhBKqoVi1foubHn5jYWCrj8aAkAAAAAAAAAAAAAAABAlWz75X/p/T+7cm4B6rQ5hqgXhTHd+6Gd6u1dPfe5AAAAAAAAAAAAAAAAADVGKQgAAAAAgGrp75euvVY6cMCEmCcmZnecMDTx6slJqa3NBK0fe0y67jqpt3d2x/ziF6W+vuoFqLOFYSamnc1xKnN8x8mNUHteJkBtSQoC9Y/1V2asObBlK1Aw/YZTcC1XXph7EdTpvadLkh7qf2hOx54pRxX6/AEAAMONSMr681LUlawq/DNOGEp+1i8CCXxzAwAAAAAAAAAAAIAGcu/un+pdP/5jJTS7aHRRR0PUvqSw7N26w6huf/fPCVADAAAAAAAAAAAAAABg3rKn3wQAAAAAAMxYf7909dXSM89Ihw/PPkCdb2LCHO+ZZ6RrrjHjzNSOHdKtt+aGm6vN86QgL8CcH6Werbzj3LLGywSoJfW7SYUzuGCoWgIF6op0SZI6o51yZxiVTG/vWq6sI4HK03tPV3dLt7pbuo/GqOei3DkRoAYAYI4sSznBacn8Yg03+xY1IepK3yKR3HHsvH8qyl8GAAAAAAAAAAAAgBq799fbdOn3LlVCqcofPCLJdso+f60zjGjbu3+h1S87s/JzAQAAAAAAAAAAAAAAAGqEkgAAAAAAAJU2NiZde60JRB8+LPl+ZY/v++a4zz1nxhkbK39fz5P+8R+leLyycyqH70thVgw6rFAYOus4t5wc6qrzU5kAdUugsIF++hEo0KuPe7XOWHmGpPKjz65yt4vZMb36uFeru6X76LpKhqgdq3RkmgA1AAAV4jTo99RGnRcAAAAAAAAAAACABWFn3z3adPMlmlCieoOUGaJuDyP60aYfEqAGAAAAAAAAAAAAAADAvNdAGSYAAAAAAJrEli3S009Lw8PVHWd42Ixzww3l73PPPdIzz1RvTuUIQ3NLJMxjGBoyb0dGpIkJ+cn40XD3YDSp4Uhq6uMd2faWk0Nd9cawYQPUkjSWGtPDBx/OWTddiDpiR4qud93C/UqFqGcajl4UW6TOaGfBepsfJQEAUDluxFzU3DAsKRKV7KkvsgYAAAAAAAAAAACAaunr26kLv/Umjfvx6g/masoQdVvo6j8v+qbWrfv96s8FAAAAAAAAAAAAAAAAqLKpK0cAAAAAAGBmduyQfvrT6geo04aHpZ/8RNqwQVq/fvrtv/ENKQiqP69yhKGUSuVcxDNip/TOjaH+aKfU4kt/cJlZv/qwpT3f6C48RhBIniffCvVvrygRoG6wjuJoclQPHngwZ51rufJCr2DbUgHqqaRD1A/1PyRp5gHqtDNWnqH/efp/js7LkaNQ4ayOBQAAirAkRaOSH0iBL0Vc5fzBJeJKThUi1X7enwXD0Izr2CUvrgYAAAAAAAAAAACAauvr26nzv/UajaaOBKhDu/pXvrmSAkfy/CP/dmrEQls3X/QtbTjzbVWeAAAAAAAAAAAAAAAAAFAbRKgBAAAAAPNbKiXF45KfexGIfvMbaWSktnPxPOnzn69dgDpteFj67Gelv/xL8zHwfSkSkdracsOFQ0PSo4/Wdm7lOPJ5G4lJm94mPdwr3fYSKcj6qUXf4lBr3jOcE6L2w0CpyVFFwkAKpW/8l/SHb5d+9pIwE6CWpCNdxUYymhwtazsvMAHoUKGy+89BGOj+Z+6fcl9LlkKF8uWXPa90cHowPqj7n7lfQZiJVJY6zo5ndpR9/GwT/sSU9/uhP+Wx435cgaYOqt//zP0a98ennctMPkYAAFScY5tbNJYbgY61Sm4VItSSlMr6w5JlS6lkdcYBAAAAAAAAAAAAgDL0v/BbXfCt8zScmsysDAPJq0GI2pb5t9kjIepYaOubb7yRADUAAAAAAAAAAAAAAACaChFqAAAAAMD8NTpqbsVEItJzz9V2Po8/Lu3fLwVTh3ErLgjMY73pJunUU6WODrPetqXFi6VYzCw/9FDt51amwy3SO44EqA+2SmGR3uLREPVNi5QIkhpNjmlRPPN4upLSL1coN0Ct/5+9O4+Psrz3//++Z8lMNoJAABGtIOKCVRQ9YhB3j7UuVavYHqs9LsflWO051Z622m+1m/X05+lia7VWahe1m5XWalsVsYqmWFEDFhc2UQGBSCD7rPf9++PmJpkts889SV5PHlOYa+77uj9ZqElIXqOqC1Dnwxpcnh7ElKlQPFTQubleN5fIsySF4+GCr1PM3rnMlu11VCpErAEAAAAAAAAAAAAAAIDCbPlgg+bddbh2RtM8qb1l2k+y6y/zEB5JNV75o9K98+/QKcf9e5kvCAAAAAAAAAAAAAAAAFQWEWoAAAAAqFbt7dKqVdKaNdL69VJnpxSLST6f1NQkTZ8u7b+/NGuW1Nzs9rSVFwplDlC75ZVXpEjEnWvH49LGjfb7Qk2NfTNNaccOe83rld58053ZstjYKB1xlRT1Sp3+9AFqx9o9LO1/8U79/X6PGkJmQl96wuelnbVlH7ckvPISLh5BTJmKxWJujwEAAAAAAAAAAAAAAAAMKz07d+r4u45UR7R3iKMqE6L2y6u7/vW7Ovu4K8t7IQAAAAAAAAAAAAAAAMAFRKgBAAAAoJrEYlJrq/TYY9LKlUMf++qrA38+7DDpzDOlY46xI9WjQe9QP3Tigq4uad06d2fo6JD6+uw49/jx9ppp2sHu+nrp3XfdnS+NjY3SIVdLXbWSZWQ/XrJD1HM/Hddbdw2s/fepwytAjZEnHA+7PQIAAAAAAAAAAAAAAAAwbPTs3Kmjvj9T26JdORxd3hC1T17dcew3dQEBagAAAAAAAAAAAAAAAIxQo6RMBgAAAADDwLJl0t13S1u35n/uihX2bdIk6ZprpLlzSz9ftYnFhn7c45GMHKvGpbBpkxSNVu566ZimHcMeNy5xPRazXxehkDtzZbCxUZp1tdRVl/+568ZLB14rvXmX9KWTpR9kepev4LtALjzyyJJVkr1KtY9b+1dihkq+DDEzy/8nAQAAAAAAAAAAAAAAAJBkB6jnfv9AbYnuzOOs8oSovfLom0f/P11y8n+VdmMAAAAAAAAAAAAAAACgihChBgAAAAC39fRI99wjLV5c/F5bt0q33iqdcop09dVSQ0Pxe1YrX5ZPaU1TsioY0V2zprLXy2T7dmmffRLXLGvgViWKCVA71o6XJnxe2hlU1cWm0/HKW9L9jCwvtFdexRUv2/6VUOwMlXwZTJkVuxYAAAAAAAAAAAAAAAAwnM3//ixtinYUcGZpQ9ReeXTLnP/RlR/5Ymk2BAAAAAAAAAAAAAAAAKqUx+0BAAAAAGBU27JFuv76zAFqy5KiUam/345VO7f+fns9U1R48WJ73y1byje72+qKqBeXw4YNbk9g27nT7QmyKkWA2rGzVpkD1O43lHcrdYC6UqohRD3aWSWKx5dqH9h4u2AkiEajVbUPAAAAAAAAAAAAAGB0mPP1vbUh2l7EDqZUgn+q9sjQFw+7XtedeWvxmwEAAAAAAAAAAAAAAABVjgg1AAAAALhlyxbphhukzZtTH4vF7Nj0jh1Sd7cdnY5EBm79/fb6jh32cbFY6h6bN0s33jhyQ9S1tVJ9vdtTDOjpcXsCWyTi9gRD2hGQZl1VmgD1cJEpQF1MmLrcUWtnf0+WLx2V82Uo1eOVCIBnez0VKmbGtHLbSrX3FvNDd1J7b7tWblupmJnmvxXIG28XjAQdfR1aummpWje2FrVP68ZWLd20VB19HSWaDAAAAAAAAAAAAAAwkrV8Y7rWh7eWYKfiQtQeGfrcrKt04zm3l2AWAAAAAAAAAAAAAAAAoPr53B4AAAAAAEalnh7pppuk7dsT1y1L6uuTwuHc93LC1IGAVFcnGcbAYx98YF/nzjulhobSzF5NmpqkYNB+fSWHuOvqpAkTKjdLtIifaCmleFzy++3XiyMYrOzrIoOugPSv/yZ1VaIdbmQ/JPOphrzyypIlSYorXtA+Pvnk8w79pRe//IrFY7J2/fLII0OG/D6/JCkWi8nc9cvY9Svbnsn7S1IkPhAnH7yXKVOSdl9Xkvxef8oeZtxMmEOSarw1Oc8xlFg88WX0yiuvN7dwtF9+xeNxmTJ3v7088qS8jpzXs3OcIWP3cdG4/Xd38OslrrgMGbv3HEq5ItcxM6Z/tv9TPZEere5YLUlqrm/Oe5/23nat7lgtS5b+2f5PHdJ8iHweviRYKN4uGAk6+jrUtq1NkhSKhdS6sVUtU1vy3qd1Y6tCsZAkqW1bm2ZPnK1xdeNKOSoAAAAAAAAAAAAAYASZf9tMvRHaWMIdTSnqkfzZj0x27QH/rpvP/14JZwEAAAAAAAAAAAAAAACqG2UTAAAAAHDDPfdImzcnrsXjUne3ZJqF7RkO2yHkxkZpcMB182bpxz+Wbrih8HmrWSBg3wzDjng7DjhA2m+/ys1hZY/VVoRlSWPGSOMGRSD32ks67DD3ZpIdoD7536Tl+1TgYgUEqA0ZOnHfExWLxeTzpX65ZHBoc7BaX636Y/2778+ZPEdNwaaM+2D4ev6d5xW3BoLkTsy6HAaHjp1rFRI8Hhw6lqSeSA/B4yLwdsFIMDhA7SgkRJ3uv4uEqAEAAAAAAAAAAAAAmZxy+yz9s29DGXbOP0R96b7n62ufuLsMswAAAAAAAAAAAAAAAADVy+P2AAAAAAAw6ixbJi1enLgWj0tdXZkD1D6fHVoOBu3fM8VtTdPeJx5PXH/qKfu6KJ9qiVBXobgh/esnqzdALUkn7nuiJGUMR7dMbVHQF0xYmz1xto6ZeowaaxolDQSoh9oHyCY5dOxwgsftve057ZMcOnY4weOYGSvZzKMBbxeMBOkC1A4nRJ2LTE/MINkh6o6+jkJHBAAAAAAAAAAAAACMQGd++3C93LOmjFcwpWhu37938T7n6DuffqCMswAAAAAAAAAAAAAAAADViQg1AAAAAFRSLCbdfXfimmVJ3d2pEWPDkGprpbFjpTFjpPp6qa7O/n3MGHu9tjb1Gpn2u+ce+/ooD6PA+vEo8NxU6cUPVeBCRbwJ4snh9jQGh6hnT5ytcXXjJElHTTlKx009bneAGihUptCxI9fgcabQsYPgcX54u2AkGCpA7cglRD1UgNpBiBoAAAAAAAAAAAAA4Djn/ztKL3StqsCVrKwh6gV7na47L/11BWYBAAAAAAAAAAAAAAAAqg8RagAAAACopL//Xdq6NXGtr08yzcQ1n88OTdfWSp4Mn7p5PPbjTU328YOZpr3vYFu2SMuWFTc/MquWCHW1zLFLp1866TK3pxjahNoJ8nq9GR+3BgXdW6a2aP5e83cHqB2+5L+DQJ6yhY4d2YLH2ULHDoLHueHtgpEglwC1Y6gQdS4BagchagAAAAAAAAAAAADAJ747X892rqjgFTOHqM+YdLx+fMWiCs4CAAAAAAAAAAAAAAAAVBci1AAAAABQSY89lng/FpPC4cQ1n09qbJSGiOIm8Hrt45MjuOGwvf9Q10fp5Pr2Krcqi1A3RaUZ292eIrMJtRN06KRDMz7e3tuuldtWJgRh/X5/JUbDKJJr6NiRKXica+jYQfB4aLxdMBLkE6B2pAtR5xOgdhCiBgAAAAAAAAAAAIDR61N3nqgntr/owpVTQ9SnTZinB65+woVZAAAAAAAAAAAAAAAAgOpBhBoAAAAAKqW9XVqxInEtlCbmV1+ff0jYMOzzkiXv39Zmz4HSs3KLi5ZdtcwxyJofVmeIOpcA9eqO1eqOdBOERdnkGzp2JAeP8w0dOwgep8fbBSNBIQFqx+AQdSEBagchagAAAAAAAAAAAAAYfa66+ww9vu0FFycYCFEfv8cc/frap12cBQAAAAAAAAAAAAAAAKgORKgBAAAAoFJWrUq8b1lSJJK4Vlsreb2F7e/12ucPFomkRomT50BpmKbbE9iqMEItVV+IOtcAtROOJQiLcrAsS6vaV+UdOt59/q7g8evtrxcUOnb0RHq0qn2VrCr9/49K4+2CkSAajRYcoHaEYiEt2bCk4AC1o21bm6LRaFF7AAAAAAAAAAAAAACGh+vvPU+/3fSU22NIsnR03QH6w/VuxrABAAAAAAAAAAAAAACA6kGEGgAAAAAqZc2axPuxNDHbQKC4a6Q7P/k6a9cWdw2kNxwioYbh6uWrJUSdb4DaQYgapWYYhqY0TJGhwv9uWrLUEeooOHQsSYZ2zeHy/0dUC94uGAn8fr+CvqDbY0iSgr6g/H6/22MAAAAAAAAAAAAAAMrsiw//p375/l/cHkOSNKdhf/318yvcHgMAAAAAAAAAAAAAAACoGkSoAQAAAKBS1q9PvJ8ch/b5JE+Rn6Z5PPY+Q11n3briroH0TNPtCbLzet2ewPUQtSGjoAC1gxA1Sq25vlkzx80sKnhcDEOGZo6bqeb6ZleuX614u2AkaJna4nqIOugLqmVqi6szAAAAAAAAAAAAAADK7yuL/ks/XvUzSYbkd/f71A6p+5AWf3GVqzMAAAAAAAAAAAAAAAAA1YYINQAAAABUSmdn4v14PPF+qQLByfskXyd5DowejY1uTyDJ3RC1JUtL312a9rFsAWoHIWqUmlvBY0LHQ+PtgpHAzRA1AWoAAAAAAAAAAAAAGB2++egXdNdr9w1acS9EPTM4RUtvWuPKtQEAAAAAAAAAAAAAAIBq5nN7AAAAAAAYNWJZgrVGiSKX2fbJNgdGrokTpR073J5CkrTmLkP7X2tp7fjKXztqRrX03aWav8/83Wu5BqgdToj6kOZD5PPw5RUUzwkO5/N+WAxCx7nh7YKRoGVqi1o3tioUC1XsmmUJUFumFM9+WEH7Jhv84bIRL8/Hz6Zl35LXBv9/jRWX0oxX/LVNKT5o43g8cRarTC8zKiv5/csq/3/HAAAAAAAAAAAAMPrc8Zev6Dttd8lM+bfXXSHqaDn+oTe96YFJevHLGyp2PQAAAAAAAAAAAAAAAGA4oZIEAAAAAJXiy/IpWKmiYNn2yTYHCuPx2EG/alZb6/YECaolRJ1vgNpBiBqlVqngMaHj/PB2wUhQyRB1WQLUkhQOl35PaeDjt2hMiqX54ee4144yV4Kh1CeU8XpKf51wWIpG7dB0PGb/0Hc8bn88W7PrY5pwf+mviwqLK6FiHotKvb2Szy/5/a5NBQAAAAAAAAAAgJHjB0/epttf+m6aALXDkPw++99jy+xD/mY9e91rZb8OAAAAAAAAAAAAAAAAMFyVoV4AAAAAAEirqSnxvtebeD9eorhd8j7J10meA6VRLSE3zxCf6pcqdF6k+KC24nlvlmhTI/shyaJmVH/b8LeiwrI9kR6tal8lq0petxj+muubNXPcTBmFvFPngNBxYXi7YCRomdqioC9Y1muULUBdbpEMAeqRLBq1A9QOy7I/jwiX/4e/4bJYtHxRdwAAAAAAAAAAAIwa9z7zHX112bcUz+VJff2+ss6yl3+cnv/sKjWMHVvW6wAAAAAAAAAAAAAAAADDGRFqAAAAAKiU6dMT7/uSfrAiFpNMs7hrmKa9z1DX2W+/4q6B9MaMcXsCW01N5se2b6/cHBl0BaRzPiEtOtDSF0629G2XO5WmTIXjhUf4DBma0jBFhlGeMC1Gp3IFjwkdF4e3C0aCcoaoh22A2oyX7slghot43H650zHjUrTIz0lQ/cy4FI64PQUAAAAAAAAAAACGqV88f7duXnprbgFqR5lC1JP9Y7Xss28SoAYAAAAAAAAAAAAAAACyKO9TyQMAAAAABuy/f+L95Di0JIXDUm1t4dcIp4npJl9nxozC90dmzc1Se7vbUwz9/rN1a+XmSKMrIF14vrRisvS3faUev1TilmvBIvGIarxDBLzTIByLcnLer1Z3rJYlq+j9eH8tDd4uGAlapraodWOrQrFQyfYctgFqSbKK/7s87GR74hvLFM9hOgpEY9mPAQAAAAAAAAAAAJL8btn9uvGZLyhmFfDvTX5fSf+dary/QS99djUBagAAAAAAAAAAAAAAACAHRKgBAAAAoFJmzUq8bxhSTY0UiQys9ffba15v/vvH4/b5g9XU2NcZ7JBD8t8b2TU0uD2Bze+X+vqkN96Qtmyxw9jxuB2njkZdG2twgLqrRurNr/c8tBKFrPMJUROORSU01zerva9dHaGOovfaI7gH768lwtsFI0HL1BYt2bCkpPsVJV3vuL6+uD1zZVmJH0tETSk26GOmSj5hRjgpDG5ZqR/Ll0IoJIXSPHnN7uuW/pIAAAAAAAAAAAAAhr9HX/61rn3qs4qaRYSk/T4pGlex/zA5zl+v5699hQA1AAAAAAAAAAAAAAAAkKN0aQcAAAAAQDk0N0uHHZa4FgymHtfbawfn8mFZ9nnJkvefPVuaMCG/vTG8dHZKjz8uPfaYtHy59M470ubN0rvvujbS4AB1v686A9SOaDx7qJsANSqlvbddO0I7SrLXjtAOtfe2l2Sv0Y63C0aC1o2tVbafp7AnYSkFT5Z/JjHc+mcUT3kC1FL59sXw4ud5agEAAAAAAAAAAJC7xSsf1ZV/vqq4ALXD71Ux3/g11l+nF659VZMn7Fv8LAAAAAAAAAAAAAAAAMAoQYQaAAAAACrpzDMT7/t8UiCQuBaLSd3dUjye257xuH18LOmHOwIBe/+hro/SicWk2lq3p5DCYam/346SRyKSabo6zuAAdcgn7QxkP8cthgz5vf6sxxCgRiW097ZrdcdqWcrzSQkysGRpdcdqgsdF4u2CkaB1Y6tCsVBJ9wzFQsWHqGvSPDlLJXi9kidDANvjlfwu/TNKOQPBHq970W9UB49XCpTymWEAAAAAAAAAAAAwkr3w1tP61B8vUdiMlm7TAkPUTf5aPXXR3whQAwAAAAAAAAAAAAAAAHkiQg0AAAAAlXTMMdKkSYlrdXWSJ+nTs1hM6uy0Y8KZIsKmaT/e2ZkaoPZ47H0HmzxZmju3uPmRmc9XHRFqh2naQereXvt9JByu+AjJAeodARXyc0OZlXAvAtSoJqUOHTsIHheHtwtGgnIEqB1Fh6h9Xqm2PvXj4krw+yXvoOizYdiR5kAZQ9AZeSR/oPyR6Bqf/TrH6OPzS8EqfmYYAAAAAAAAAAAAVJW2Dcu04HcXKGxGSr95niHqRk9Qiy96VjNmzC79LAAAAAAAAAAAAAAAAMAI50ZBAQAAAABGL59PuuYa6dZbB9YMQ2pslLq6JCspbNnfb998PjtEZxj2MfF4ang6eT8j6YczrrnG3gfl0dRkRxMDAVeCz1l1d1f0coMD1JakHTWq2gC1JALUqBrlCh07nOCxJN6f88DbBSNBOQPUDidE3TK1pbANfF7J1yDJlMzy/H1L4fVKkejA/Ugk8eNsw6hcsNeQKvLcobG4ZEry++ybJA3+1MLvlcY0ln8OlFfXTska9P7k80v19a6NAwAAAAAAAAAAgOGnbcMynfngGeqLl/Hfmv1eKRqXsnxPRr0V0KP/9igBagAAAAAAAAAAAAAAAKBA1McAAAAAoNLmzpVOOUVavHhgzeuVxoyxQ8GmmXpOLJY5Oj2Yx2MHqL3exPVTT5WOPrq4uTG06dOlV16xA+Gj3OAAtSRtq1Npe4olDlBLUjwelzf5783uyxGgRmWUO3TsIHicH94uGAkqEaB2FB2iliR5KtJiti/lkbyDLub1Seagj+e83pH3RC5Gmlfu4BdxJL7Mo5HHkAZ/apL8JEUAAAAAAAAAAAAY1Tr7OtVU15Tx8bVvv6azHzxTvfH+8g+TJURdpxr95sJfa/aBJ5R/FgAAAAAAAAAAAAAAAGCEqlTGAQAAAAAw2NVXS1OmJK55vVJTkxQIFLZnIGCfnxzSnTJFuuqqwvZE7vbfX4pGR32EOm5IF503EKCOSjJL9dUHQ2UJUHvlzRiglqQ9gnsQhEXZVSp07HCCx+297RW53nDF2wUjQSUD1A4nRA0AAAAAAAAAAAAAqD7PvP2Mxv5/Y7X/nfunfXzt26/plF8cr+54z5D79EX71RPpV0xm8UP5vUr3zWEB+fTbBb/RvEPPKP4aAAAAAAAAAAAAAAAAwChGhBoAAAAA3NDQIN12mzRhQuK6YUj19dKYMVJNTW571dTYx9fX2+cPNmGCfZ2GhtLMjcxmzZL6+yWrMqHSauW1pMtelTy7Xg1+SWOH/lmk3JQhPi1lD1BL0o7QDoKwKKtKh44dBI+HxtsFI4EbAWoHIWoAAAAAAAAAAAAAqD7PvP2MTvrFSZKktTvWpoSot3S8q1N/eYI61bdrJX1gui/aL3PXt1SEIuEShqgHftQtIJ8eOPunBKgBAAAAAAAAAAAAAACAEiBCDQAAAABumTxZuuMOacqU1Md8PjscvcceUmOjVFtrx6adW22tvb7HHvZxPl/qHlOm2PtPnlz+lwW2WMztCarCuW9KP/jzQIi6VgWGqI1BtzLIJUAtEYRFebkVOnbw/p0ebxeMBG4GqB2EqAEAAAAAAAAAAACgegwOUDsGh6i3dLyrY++ao51Wb9KZiYHpwQFqR+lC1B5JHvnl1b2n/VCn/Msnit8TAAAAAAAAAAAAAAAAABFqAAAAAHDV5MnSnXdKp56a/nHDkPx+Ozrd0DBwq621140Mdd5TT7X3JUBdOatWSZY7sdJqVHCIuszhaUeuAWoHQViUg2VZ2tyzuajQsSFD44LjZBTxl8bSrjn4/zBJvF0wMkSjUdcD1I5QLKRoNOr2GAAAAAAAAAAAAAAwqqULUDvW7lirPb8+Ucf/6F+03ezOsIMdmE4XoHaUKkTtq6nRXSd/R2fPv6zovQAAAAAAAAAAAAAAAADYiFADAAAAgNsaGqQbbpBuvbX4aPTkyfY+N9xg74vKaWtze4KqkzFEbQxxG4IhQzXeGtV4a4qaK98AtYMQNUrNMAzNap6lhprC/v/akKGZ42bq4OaDNXPczIKDxw01DZrVPEtGpic2GGV4u2Ak8Pv9mj1xdlF7BH1BnbTvSQr6gkXtM3vibPn9/qL2AAAAAAAAAAAAAAAUbqgAtSQpLvV0t+vdvq1D7hMK9yvbc2kXG6L2GT7930m364ITryl4DwAAAAAAAAAAAAAAAACpiFADAAAAQLWYO1e67z7p5pulww7L79zZs6Uvf9k+f+7csoyHLF54we0JqlJyiNpoCBQUZDVkyO8dCFh6jfwj0lLhAWoHIWqUms/j0yHNh+QdPHZCx831zZKk5vrmgoLHDTUNOqT5EPk8vrzOG+l4u2AkGFc3ruAQddAXVMvUFklSy9SWgkPUsyfO1ri6cQWdCwAAAAAAAAAAAAAoXi4B6sZ+KeqTLEmhcDjtYaFwWJbs7wPL9l0QhYaovYZX35x/qy459j/zPhcAAAAAAAAAAAAAAADA0KiYAAAAAEA18fmk+fPtW3u7tGqVtHattG6d1NkpxWL2MU1N0n77STNmSIccIk2Y4Pbk2LTJ7Qmq1rlv2r9fd4ahaI1fikbyOj85QF2oYgPUDidELWl3aBYohhM8/mf7P9UT6cl6fHLo2OHcX92xWpasrPsQOh4abxeMBE6Ium1bW87nDA5QO1qmtqh1Y6tCsVDO+xCgBgAAAAAAAAAAAAB3ZQ1Qyw5QRwZ9a5YTog4GArvXnAC1w2NJpqEhvwsiFAkrWBOQT56cZvUYHt0y90u68sTP5XQ8AAAAAAAAAAAAAAAAgPxQMgEAAACAatXcLJ1wgn1D9YtG3Z6gqp37pqRbv6J/e+t/c4qwOjIFqONWPK/rlypA7SBEjVLLNXicKXTsyDV4TOg4N7xdMBLkE6JOF6B25BOiJkANAAAAAAAAAAAAAO7KJUA9pksKB1LXB4eokwPUjlKGqD2GR1866nO67l9vGvI4AAAAAAAAAAAAAAAAAIXL7enkAQAAAADA0Kzcw8qj0rnnauy/HK+QlT1cKe2KRsubNkAdiUdyvqyzTykD1A4nRN3e217yvTE6OcHjhpqGtI9nCx07muubNXPcTBky0j5O6Dg/vF0wEjgh6qEMFaB2tExtUdAXHPIYAtQAAAAAAAAAAAAA4K7Ovs6sAeqm7vQBaoclqT9DgNrhsSQjy7fNhSLhoQ+Q9LnZ1+rG07+W9TgAAAAAAAAAAAAAAAAAhSNCDQAAAAAAymufffTM1y7L+oNNg8UVTxuOzidALUmmzIwBakOGxgXHZQzC5sKSpc09m2URIUeJZAoe5xo6dmQKHhM6LgxvF4wEQ4WocwlQO4YKUROgBgAAAAAAAAAAAAD3NdU1acYeMzI/3iWFakpzLY+GDlF7snxr1lWz/l03n/2/pRkGAAAAAAAAAAAAAAAAQEZEqAEAAAAAgCQpXniLOfM+fr+e+c23ddLvz8p7n+TgdL4BasmOREfj0ZR1Jxx7cPPBaYOwuWqoadCs5lkyjBK98gClBo/zDR07koPHhI6Lw9sFI0G6EHU+AWpHuhA1AWoAAAAAAAAAAAAAqB5rrl+TNkQ9tlMKBUp7rUwhao8h1flrM5536YGf1O3n/6i0wwAAAAAAAAAAAAAAAABIi7IJAAAAAAC5aG+XVq2S1qyR1q+XOjulWEzy+aSmJrenK1pXQLroPOmyV6Vz3yx8n0UHSj89XHrwEWlMWHrmxOk66YlPFLxfJB5RjbemoAC1wwlR+71+SanhWOf31R2rZSnNT0NlQDgW5eQEj1e1r9KUhil5h44dznmbezZrVvMs3l+LxNsFI4ETom7b1lZQgNrRMrVFrRtbFYqFCFADAAAAAAAAAAAAQBVac/0a7X/n/lq7Y60kO0DdH8xyUoE8kkxLsoxd97MEqC+eeYG+c+HC8gwDAAAAAAAAAAAAAAAAIAV1EwAAAAAAMonFpNZW6bHHpJUr3Z6mbLoC0oXnSysmS6/uaa8VEqJedKB03Ucl05AuvNCje5eO0UnHvFX0fMUEqB1OiLrGW5MQoHbkG6ImQI1K8Hl8OnTioTIMo6h9muubNaFuQtH7wMbbBSPBuLpxmr/XfPn9/qL2aZnaomg0WvQ+AAAAAAAAAAAAAIDycELUH7y9Vv2Zm9Al4YSoDc/QAerzPvRR3fnJn5d3GAAAAAAAAAAAAAAAAAAJKCUBAAAAAJDOsmXS3XdLW7e6PUlZDQ5QS3ZA+rqP2n/OJ0Q9OEAtw9CKSdKVJ/ZreqRe6wO9JZ+7EJkC1I5cQ9QEqFFJpQoUEzouLd4uGAlKFY4mQA0AAAAAAAAAAAAA1W2Odx/9sXZtRa7llRT0BzM+fsbeJ2vhvz9ckVkAAAAAAAAAAAAAAAAADKCWBAAAAADAYD090j33SIsX53eexyOZZnlmKpPkALUj3xB1coBau6KqK8ZHNTkwTh71y5S7r5uANzBkgNqRLURNgBoAAAAAAAAAAAAAAADAcHH5vWfpiQ9eUDAQUCgcTvMdUaVjSAoGAtLuqyQ+OffJe87TA5f9qYwTAAAAAAAAAAAAAAAAAMiEYhIAAAAAAI4tW6SbbpI2b07/uGVJsZh9i8cH1r1eyeeTIpHKzFkCmQLUjrQhaq93IDLt9UqWpUXTw7ru9F0Baml3gFqSQl5LK7RFfm+NovGoayHqXAPUjkwhagLUAAAAAAAAAAAAAAAAAIaLq+47V4+8/9Tu++UMUQ8EqB2JIerjJx2th698Kvk0AAAAAAAAAAAAAAAAABVCNQkAAAAAAMkOUN9wg7R9e+pjsZgUCg0dmbbK8aM55ZEtQO3YHaI2pHPf8khNTZLHYz/o8WjRhA903UcyB6g7ayzJ8ChqRuX3+l0JUecboHYkh6gJUAMAAAAAAAAAAAAAAAAYLj7784v0201/SVkvR4g6NUDtsK9y9PjD9YernynhFQEAAAAAAAAAAAAAAADki3ISAAAAAAA9PdJNN6UGqC1L6uuTwuHsexjGsAhR5xqgdpiGdN3pkrwenbtlV4DasrRoUoeuO9UcCFBLuyPUAwHqgYecEHU4nsPrskSC3qD2H7d/3gFqh3Pe5p7NmtU8iwA1AAAAAAAAAAAAAAAAgKr3xUXX6Rcbfp/x8WAgoP5cvicuR+kD1LbD6mbor59pLdm1AAAAAAAAAAAAAAAAABTG4/YAAAAAAAC47p57pM2bE9ficamzM7cA9TCRb4DaYRrSdafFtWh6WIrHtWjPTl13aixtgFqS+nxWyppkh6i9hrfA6fPn8/g0oW5CUXs01zfr0ImHEqAGAAAAAAAAAAAAAAAAUPW+8vgX9OPXfyZ5Mn+fVqjE3xOXab9D6qbrb59/raTXAgAAAAAAAAAAAAAAAFAYCkoAAAAAgNFt2TJp8eLEtXhc6uqSLCv9OT6f5PXakWXLso+Pxco/axHihnTRefkHqB2mIV03v0d/2MvS09OUGKCWEoLTe0Q82hGwFDWSD5JMy5QhQ5YyvG5LaK+GvWSkmSFfpdgDAAAAAAAAAAAAAAAAAMrpm098RXe13WPf8Xjs3814wjGhcLjk37ll7do3GAjsXpsZ2FtLP/96ia8EAAAAAAAAAAAAAAAAoFBEqAEAAAAAo1csJt19d+KaZUnd3akBasOQgkEpEBj4AZ3BTFPq7ZXC4fLNWwSvJV32qvTqnmkC0rmwLJmSnpqe5rGk14dhSXsEx2qH2aeoGU2dxeOVx/AoEo8UMEhuPPLI6/GWbX8AAAAAAAAAAAAAAAAAqBZ3PH2bvrP8+zJlDiwmhajLEaB2DA5RT6/ZUy9+cU2ZrgQAAAAAAAAAAAAAAACgEESoAQAAAACj19//Lm3dmrjW12cHpQfz+aT6esk7RNTY47HD1YaRGrCuEue+af9+3UcLDFGnYRmSZSW+viI1XvWZfbJkSZZkypSx61fAF5C56/gab01ZQtQeeWSoRC8gAAAAAAAAAAAAAAAAAFSxe1/4oW5f9u3EALXD45FkKNTfW7YAtcOSZPRF9Ox/tZX5SgAAAAAAAAAAAAAAAADy5XF7AAAAAAAAXPPYY4n3YzEpHE5c8/mkxsahA9SSFI/b5xvVHT8+903pB3+WPEX+RJElO2SdvI3pMdQX9NoBakk+r0+GDFmy5PF4Ek4gQA0AAAAAAAAAAAAAAAAAhfvFP+7TTX/7suKKZzymJ9yraAV+gqwmKu0IWDr850eW/2IAAAAAAAAAAAAAAAAA8kKEGgAAAAAwOrW3SytWJK6FQqnH1dfnFpaOxQb+7KnuT7eLCVFbkizDviUzPYa6630pj/m9fjXUNMhjeBQ1o5JVngC1JJkyy7IvAAAAAAAAAAAAAAAAAFST373yoG546vNDB6j7e2TK/r6vmMf+vRz8Mam7VpJXWrtjrfa/c/8yXQkAAAAAAAAAAAAAAABAIaq7igUAAAAAQLmsWpV437KkSFIYubZW8npz2y+e9IM8uYSrXZQtRG0l3wzJ3BWfTneKE6A2PYkvtyFDB4w7QEdMPkINNQ2SpIhZngC1Y6gfqgIAAAAAAAAAAAAAAACA4e7Rlb/XtX+9TjHFMh7jBKgdlqR4GULUvrjUE5Q06FvtCFEDAAAAAAAAAAAAAAAA1YUINQAAAABgdFqzJvF+LM0P4wQCue+X7vwqlzZEbRiyDMOOTQ++DbFPyG+oo85QRHHFzFjCLegNqsZbI5/Hp0OaD1HcqkwgmhA1AAAAAAAAAAAAAAAAgJHo0ZW/15WPXamoFc14THKA2lHqELUvJvXWKCFA7SBEDQAAAAAAAAAAAAAAAFQPItQAAAAAgNFp/frE+8kRaZ9P8uTxabNlDX2/2hiG5PHo3LcM/eAvhh2iNgz7lqO4IXUGDXUFJFOWLCvxFvQGZRiG4qYdhP7H5n+U6YVJb82ONdkPAgAAAAAAAAAAAAAAAIBhYvHrf9GVj12lsBXJeIxlKW2AevfjKk2I2heXegOSfJmPWbtjrTr7Oou8EgAAAAAAAAAAAAAAAIBiEaEGAAAAAIxOnUk/2BKPJ973evPbr9qj04MFAtLYsfbtwx/WuTWH6gfPN8qj3ALUEa8dn+6oNxTO8ANEtb5a1Xhrdt9v3diqUCxU/Ox5iJpRtW5sreg1AQAAAAAAAAAAAAAAAKAcXlj7rD71x4sVtsJDHmcYUl2gdshjLEmxIULUhqTaQCDjd5R541KvT0MGqCVpySVL1FTXNPRBAAAAAAAAAAAAAAAAAMouy7f6AAAAAAAwQsViQz9u5BZkLuh4wxiIVns8ks8nRaOJIevBx5RSc7N01lnSwQdLhxwiTZggSTq3vV1/ePnLeir6lmKRfsk0ZViSZUimIUUNSzGvoYjXvj8Un8eXEKB+/YPXFTEjpX9ZchCKhdS6sVUtU1tcuT4AAAAAAAAAAAAAAAAAFKtt43ItePgChc2hA9QOn8erukCt+sL9Qx4X80g+UwmxaUNSMBCQdv0eCocTYtXeuNTnk1SjIS25ZIlOnHZiTvMCAAAAAAAAAAAAAAAAKC+P2wMAAAAAAOAKX5bnZco3AJ0coc4WpTYM++b1SmPGSHvsYc/k8di3cgSovV47vr18uXTggbsD1JK0KPZPPe3fKDU2qq8hoK4Gvzob/fbvtR71BAyFfAMBao/hyXiLmTFF4nZ0ujPc6VqA2uGEqAEAAAAAAAAAAAAAAABguGnbuFxnPniG+uJDB6WTOSHqbGIe7Y5MDw5QO4KBwO5ItceU+rwiQA0AAAAAAAAAAAAAAAAMM1mKWwAAAAAAjFBNTYn3vd7E+/F4fvv5fHbgOV9OrNrjsWfq65P68/thoZzF49KOHZJpSjfeKN1xhzR5sha9/4yue/0Omd7cnqvKMAx5Pd6Mj5txU/2xfsViMVkqQ0y7AKFYSNFoVH6/3+1RAAAAAAAYldrb2/XSSy9p3bp16urqkt/v1/jx43XwwQfryCOPrLrP2bds2aK3335b7733nrZt26be3l5Fo1GNGTNGTU1N2nfffXX44YdrzJgxZZ3j/fff1yuvvKL3339fO3fuVDgcVlNTk8aOHasDDzxQhx56qGpqstReAAAAAAAAAAxbaze9pbMfPEu9sb6CzndC1H3hob8nLeaR/JYUrAmkfTwYCCgaCqtXktIfshsBagAAAAAAAAAAAAAAAKD6EKEGAAAAAIxO06dLr746cN+X9ClyLGbHmj25hZlTIta5Gnxdw0idoxw6O+1r3XKLFv3vv+u6t76bc4A6H1FFVaMaRRQpeI+gL6iWqS1q3diqUCxU8D6zJ86uupgVAAAAAACjwcMPP6zvf//7euGFF2RZ6Z+sqrGxUQsWLND//M//aObMmRWeUNq5c6eef/55vfDCC3rxxRf12muv6YMPPsh6nmEY+vCHP6xLLrlEF198sSZOnFiSed5++23dd999evDBB/XOO+8MeWxNTY1OPPFEXXHFFTrnnHPkq8TXlgAAAAAAAABUxLsfbNCpD56k7lhPUfvkEqL2SKqtbZDiMUmpX8sNyK/fXfCgrnn+i1q7Y23GfQhQAwAAAAAAAAAAAAAAANWp9IUpAAAAAACGg/33T7yfLtATDue+X/L5hpH/efG41N2d+zWL0dmpRd41uu65L8lM80NDpRJVVBNrCwswOQFqSWqZ2qKgL1jQPrMnzta4unEFnQsAAAAAAAqzadMmnXDCCbrgggv0/PPPZwxQS1J3d7cWLlyoD3/4w/r6178+5LHlcPvtt+uss87S7bffrmeeeSanALUkWZallStX6sYbb9R+++2n73znO4rFYgXPEYlEdMstt+jAAw/UbbfdljVA7ZzzxBNP6IILLtCRRx6p5cuXF3x9AAAAAAAAANVjS9dmnXj/fO2MdpVkPydEnY5HUkNtg2RI8vpk/2FAQD49cNbPdMoRH9ea69doxh4z0u5DgBoAAAAAAAAAAAAAAACoXkSoAQAAAACj06xZifcNQ6qpSVzr77fD0LnwehOD0kPFkgY/Nviczs7crlUCiw6wdN2xXTL7+/KLbRdgR3iH9m3aN69zBgeoHYWEqAlQAwAAAABQeatXr9ZRRx2lZ599Nq/zIpGIvvKVr+iiiy5SPNevyVSJnp4e3XDDDTrzzDPV39+f9/l9fX36yEc+oq997WuKRCIFzbBixQq1tLRo0aJFBZ0PAAAAAAAAoDps6dqsY++dq47IzpLumy5EvTtA7dgdorZ/5Mwvr+7917t1yhEf331IuhA1AWoAAAAAAAAAAAAAAACguvmyHwIAAAAAwAjU3Cwddpi0YsXAWjAoJUd+enulxkY7Up1NMCj19NiR6aEi1JL9uN8veXY9P1RPj2Sa+b0MBVp0oHTdRyXT2DVHd7cUCJTtepYsvd/zvvZt2lcbOjdkPT5dgNrRMrVFrRtbFYqFsu6zT+M+BKgx7EWjUfn9/qrZBwAAAACy2b59u0499VS9//77KY/NmTNHH/vYxzRt2jT19/dr9erVeuihh7R58+aE4371q19p4sSJ+t73vlehqRPV19friCOO0AEHHKAZM2aoublZjY2Nisfj6urq0urVq9Xa2qply5bJSvoa0BNPPKFzzz1Xf/nLX2Tk8vWkXRYsWKBnnnkmZd3v9+v0009XS0uL9tprLwUCAe3YsUMrV67U448/rg0bNiQcH41GdeGFF+qZZ57RvHnzCnr5AQAAAAAAALinp7tbx/9knraHd5RlfydE3RfuTw1QOwxJXq98cUN3nfhdnX3MxSmHrLl+jfa/c3+t3bGWADUAAAAAAAAAAAAAAAAwDBChBgAAAACMXmeemRih9vnsGHM4PLAWi9mR5vp6yesdej+/345V5xqTdo6Nx6VQ9qhyseKG9OgBgwLUkh2hjsftlznHEHVyXCmnc3aFqJv8TeqMdmY8ziNPxgC1o2Vqi5575znFrNiQxzXUpPkBKWAY6ejrUNu2tiHD7Llwwu2zJ84mzA4AAACg7K688kq9++67CWuNjY164IEHdPbZZ6ccf9ttt+m2227TrbfemrD+/e9/X6eddppOP/30co4rSQoEAjrppJN0+umn6+STT9ahhx4qb7avA0lau3atPve5z+lPf/pTwvoTTzyhn/zkJ7ryyitzuv5vfvMbPf744ynrZ555pn784x9rypQpac+788479bOf/Uz/9V//pe7u7t3r0WhUV111lV599VWekAgAAAAAAAAYRnq6uzX3J3O0LfRBWa/j83jVGGzQUM+j5zN8+r/T/z9d8C9XZDxmzfVr1NnXqaa6pjJMCQAAAAAAAAAAAAAAAKCUPG4PAAAAAACAa445Rpo0KXGtrk7yJH26HItJnZ1Sf3/mwLRp2iHpXAPUkhSNSjt22HuXWVdAmnuFdMXZgwLUu1imqUj3TnX0d6ijv0PhWFjReFTReFSReERxKy4r+VeeIepoPCpLlnpiPdojsEfaYwwZGl83Pqf9po+dPuTjXmUPRQHVzAlQS1IoFlLrxtaC9nEC1JLUtq1NHX0dpRoRAAAAAFI89dRTeuSRRxLWampqtGTJkrQBakny+/265ZZb9L3vfS/lseuvv16x2NBPQlUKX/3qV/X000/rxhtv1OGHH55TgFqSZsyYoT/+8Y+65pprUh67/fbbc77+d77znZS1c845R3/84x8zBqglyePx6LLLLtPjjz+eEptetWqVnnzyyZxnAAAAAAAAAOCunu5uzbvvX7Sp//2KXG+oALVXXn3zhK/rkiEC1A4C1AAAAAAAAAAAAAAAAMDwQIQaAAAAADB6+XxSciTIMKTGxvQ/ZdPfL+3cKXV1Sb29Ul+f/XtXl73e35/+PMPI/FM7ecacC9EVkBacL702SdoZlEK+pPEk+WKmDNPcHZmWtPv3dGJmLOcQdcyMyZKlaDwqSYqYER3WfFjSDIaaAvn9QFKm0DQBagx3gwPUjkJC1IMD1A5C1AAAAADK6etf/3rK2i233KIjjzwy67mf/exndeqppyasrV27Vg899FDJ5isHwzD03e9+Vx/60IcS1t9++20tX7486/mbNm3SSy+9lLAWDAZ19913y5P8RGkZzJ8/X1dddVXK+h//+MeczgcAAAAAAADgvvk/PVrv9m10ewx55NEt876sK+d9xu1RAAAAAAAAAAAAAAAAAJQQEWoAAAAAwOg2d650yimJa16vNGaMlCn0E4tJ4bAUCtm/x2KJjw8OTg/15woFqC88X1o5WdqjX/KbUmcgQ4g6PjDPUAFqQ4YsWTmFqAfvY8mSYRma3DBZ4+vHa/bE2bv3yzdA7UgOThOgxnCXLkDtyCdEnS5A7SBEDQAAAKAcVq1apaVLlyasTZgwQTfeeGPOe3zrW99KWbv77ruLnq3cAoGAzj///JT1119/Peu5b731VsrXV0488URNnjw5rxkuuuiitHsDAAAAAAAAqH5H/3C2NvS85/YY8sijL839H113Qu5f1wUAAAAAAAAAAAAAAAAwPPiyHwIAAAAAwAh39dXS669LmzcPrHm9UlOT1Ndnh6bzYRhSTY0UjaaGpj0eKRCwH0uOV5eYE6BesatZZMgOUe+otUPUkhR0RrAkb9yS/JJpmVn39nl8ipkxxcyYfB6fjMGB7d1bpgaqY4rpg54PFPQGJUkTaiao1+xVOG6/jsPxsN76IHsgqSfSI1PmrpfL2H0tU6Y8POcWhqmhAtQOJ0TdMrUl4zFDBagdbdvaNHvibI2rG1fIqAAAAACQ4te//nXK2qWXXqqampqc95gzZ47mzJmjl19+effasmXL9Pbbb2vatGklmbNc9ttvv5S1999/P+t527ZtS1k76KCD8r5+unO2bt2a9z4AAAAAAAAAKqvlrjla3bnO7TEkSdfOvlo3nnyz22MAAAAAAAAAAAAAAAAAKAOqTAAAAAAANDRIt90mTZiQuG4YUn29NGaMHZXORU2NfXxjo1RXZ+8xeL/aWsnnk/z+xMdKLDlAvXsE2SFqv2mHqEO+gXVPLK5IPJJ1b0uWPIZHPo9PlizFzJispNh2ugC1ozPaqQ0dG7Spe5N64j2KxCIJty09W7LeuiPdsgb9GnzduOK5vpqAqpFLgNrhhKjTySVA7Wjb1qaOvo5cRwQAAACAIf31r39NWTv//PPz3ifdOen2rjahUOrnYrkEuNMdk0+42xEIBFLWgsFg3vsAAAAAAAAAqJwT7j5Gb+xc7fYYkqSrPnyFvnbG/7o9BgAAAAAAAAAAAAAAAIAyIUINAAAAAIAkTZ4s3XGHNGVK6mM+nx2q3mMPOy5dW2vHpp1bba29vsce9nG+XWVnj8cOUft8AwFqz65PxaPRsr0omQLUjkwh6ljmbnRamULUQwWoHb1mr6JlfB0QosZwkk+A2pEuRJ1PgNpBiBoAAABAKfT29uqVV15JWKurq9MRRxyR917z589PWVu6dGnBs1XKSy+9lLK23377ZT1v2rRpKWvvvfde3tdPd04u1wcAAAAAAADgjo/ce6JWdPzT7TEkSZfOuli3n/1dt8cAAAAAAAAAAAAAAAAAUEZEqAEAAAAAcEyeLN15p3TqqekfNwzJ77dj0g0NA7faWnvdMNKfc/jh0lln2aFq05RiMSlenkhytgD17rGUGKLu9kndtblfJxKPSEoNUTvrueg1exWNly9EDQwHhQSoHYND1IUEqB2EqAEAAAAUq62tTaZpJqwdeeSR8jlP1JWHo446Sn6/P2Ht5ZdfLmq+cluzZo0WLVqUsBYMBnXcccdlPffQQw/V+PHjE9aefvrpvJ+8689//nPK2sknn5zXHgAAAAAAAAAq48yFp+jF9uVujyFJ+uTMBfrOOT9yewwAAAAAAAAAAAAAAAAAZUaEGgAAAACAwRoapBtukG691Y5SF2PsWOn006UjjpD23NMOUR93nDRmjGRZ9q2EsgWok9NFTohaptQTzP966ULU+Yrv+mUV8CubaIzANapbNBotOEDtCMVCWrJhScEBakfbtra8A2cAAAAA4HjzzTdT1mbMmFHQXjU1NZo6dWrC2rp16xSLxQrar9zWr1+vs846S6FQ4udll156qcaOHZv1fK/Xq6uuuiphbcuWLbrzzjtznqGjo0P/+7//m7A2duxYXXzxxTnvAQAAAAAAAKAyzv/ZmXphy4tujyFJOm/62frRBQvdHgMAAAAAAAAAAAAAAABABRChBgAAAAAgnblzpfvuk26+WTrssPzOnT1b+vKXpSuvlMaNG1j3eqUPfUiaNEnylPZT8rghXXRe5gB1v6QPGqStdYnrIUmmt/DrOiHqmFlcCMqUKSPPXzlsClQ1v9+voK+AAnwZBH1B+f1+t8cAAAAAMExt2LAhZe1DH/pQwfvts88+Cffj8bjefffdgvcrtXA4rGXLlum//uu/NGvWLL311lsJj0+bNk3f+ta3ct7vS1/6kqZPn56w9oUvfEE//elPs567ceNGnX766Xr//fcT1u+88041NjbmPAMAAAAAAACA8rvowY/r6U3Puj2GJOmMfU/Twk8+6PYYAAAAAAAAAAAAAAAAACrE5/YAAAAAAABULZ9Pmj/fvrW3S6tWSWvXSuvWSZ2dUixmH9PUJO23nzRjhnTIIdKECfb5f/hD6p7d3dKbb0qWJRmG/XsB4oMazF7Lvl32qvTqnpKZ1Gful7Szwf6z6bFD1JP6pOig9WI4IepixRWXV0UUsZP4awjqovq1TG1R68ZWhWIh12YI+oJqmdri2vUBAAAADH9btmxJWdt7770L3i/duVu3bk0JNZfT4sWLdeONNyasxWIxdXd3a/PmzYrF0j8h1/77768nn3xSTU1NOV+roaFBf/nLX3TiiSdq8+bNkuzw9uWXX66f/exnuuyyyzRv3jxNmTJFgUBAO3bs0GuvvaY//elP+ulPf6qurq6E/b7xjW/o4osvzvMlLq+77rpLP/rRj8p+nXXr1pX9GgAAAAAAAEAhLv/VRfrzhifdHkOSdPJex+uBix52ewwAAAAAAAAAAAAAAAAAFUSEGgAAAACAXDQ3SyecYN9yFY0m3o9EpMWL7Xh1gfFpSeoKSAvOl7bV2/Hpm5ZK575p3yTpuo8OhKgHB6gdToi6KSLJlOQpeJSSKmWAGhhO3AxRE6AGgCwsSWbhH7dVJct0ewIAwAjU0dGRstbQUPgzX6U7d/v27QXvV4idO3dqxYoVOR9fX1+vq6++Wl/96ldVX1+f9/VmzpypV155RVdffbX+MOiJzZYuXaqlS5fmtMe0adN055136swzz8z7+uXW3t6u119/3e0xAAAAAAAAAFdc9dt/1yPrH3V7DEnSvMlz9fC/P+b2GAAAAAAAAAAAAAAAAAAqjAg1AAAAAADl4kv6tPvFF6UdOyQzt/Bf3LAj04N1BaSPL5Ce+5AU8UqGJV1xtv1Ycoi610gNUDtMj7QjmMfLUmalDlATtMZw40aImgA1AOTAjEv9fWXc37KfuMSKl+8aySIxKZ50PcMjeT2Sn4+hAACF6e3tTVmrra0teL905/b1lfG/yUUwDEOXX365brvtNjU3Nxe116RJk7Ro0SK98soruv/++7Vw4UL19/dnPW/OnDn6whe+oHPPPVe+5K9HAQAAAAAAAHDV5/7wn/rtmt+7PYYk6ejmI/XY5U+5PQYAAAAAAAAAAAAAAAAAF/DThwAAAAAAlEtDg7R9u/3nV16R3nhDsqyhz9mlKyBddJ502asDYenkALUkWYYdk04OUb82XrrllDznNfI8vgQCnoCOmHhE3ue93/u+NnRvSFgjPI3hrpIhagLUAFAFTEuKVO7JB4ZkmVLMtGfy1bg9DQBgGIpGoylrwWDhz36VLkIdiUQK3q+cLMvSfffdp0cffVT/+Z//qc997nNqbGwseL9169Zp4cKFevjhh3MKUEvSyy+/rJtuuknvvPOOrr76ajU0ZHhWMgAAAAAAAAAV9cVH/1v3r/ql22NIkg4bd4j+euUzbo8BAAAAAAAAAAAAAAAAwCUetwcAAAAAAGDECgTs29Kl0vLleQWoLzxfenmKdN1HpUUHpg9QOwaHqB85UFqydwEBahcEfUHN22eeaoO1ed9q/DXyDvrl4UscGCFaprYo6Cs81JYLAtQAUCXSxDpdZ8btGwAAJWAYhT/bVbpzrRy/rlIq559/vizLSrj19vZq06ZNWrx4sb761a9q2rRpu4/ftm2bbr31Vh166KF68cUX875eNBrV//t//08HHHCAfvSjH2nbtm0Jj9fV1WnffffVwQcfrClTpsjjSfxayNq1a/X5z39eBx10kJYsWVLYCw0AAAAAAACgZL7y9Ff041X3uz2GJOmgsQfob9f83e0xAAAAAAAAAAAAAAAAALiIQhMAAAAAAOWyY4f0yCPSunV5B6hXTLbvm4Z07Uel+f+ePkDtcELUl54jnXxZAbMW3oUqCBFcILNyhqj5uwcAVcKyJKtKY8+m6fYEAIBhyO/3p6z19/cXvF+6c2tqagrer1Tq6uo0ZcoUnXzyyfrKV76idevW6Yc//KHq6+t3H7Nhwwadcsopam1tzXnfSCSi8847T9/4xjcUjw98jFBbW6vPfOYzWr58ubq6uvT2229r1apV2rRpkzo6OvTII4/ouOOOS9hr48aNOu200/T73/+++BcYAAAAAAAAQEHueP4O3fXSXZJhSJ4M3/BVITOb9lPrtctdnQEAAAAAAAAAAAAAAACA+3xuDwAAAAAAQMEsS+rpkUIhKRZLfKy3V1qzpnzX7u+3rxGNSj6fVF8v1dUNPL5zp/Tznw8ck4PkALUkmZJ21EnvN2Y/3zLsPaqdRx4iuEAWLVNb1LqxVaFYqGR7EqAGgDSMpGfi8HslX136Y0sp3ROUhMOScnvikvKqhhkAAMNNXV3qfz9LHaEeHHquFoZh6Nprr9WHP/xhfeQjH9k9d09Pjy688EKtXLlSe+yxR9Z9PvvZz+qxxx5LWJsxY4b+8Ic/aNasWWnPaWpq0rnnnqtzzz1Xd999tz7zmc/I3PVkErFYTBdddJEOPPDAjOdXWnNzsw4++OCyX2fdunUKh8Nlvw4AAAAAAACQyQ/+/gN96/lvydSuJ391QtRm5Z+kdt+GvfXiZ9oqfl0AAAAAAAAAAAAAAAAA1YcINQAAAABgeLIs6YMPMgeeLUvaFd7JqqtL2rRJ2rJFam+X+vqkeFzyeu2wdHOzNHmytNde0pgx9vE9Pfa5vb3Stm3S9u32eixmz7Rtm/1nw7D3yjZCpgB1rRTx5vZiFMzIfkgpja8dX9kLAsNUy9QWLdmwpKT7AQCSeD2J9w2jMh8bmUoNYFdL/Nko9wefAICRaPz41M/1e5yvnRQg3bnprlEtjjvuON166636whe+sHtt48aN+r//+z994xvfGPLc1tZW3XPPPQlr48aN05NPPqlp06bldP1rrrlG4XBY//3f/717LRwO65prrtFzzz2Xx0tSPtdee62uvfbasl9n1qxZev3118t+HQAAAAAAACCde1+6V1997qsDAWqHCyHqfeqmaullL1bsegAAAAAAAAAAAAAAAACqGxFqAAAAAMDw1NOTOUCdi3hcWrNGamuT3ntv6GPfeWfgz1OnSvvsY0eu1661w9WDeTxSOGwHqCX7uCwyBajbayVzhAWovSJqCOSqdWNryfcjRA0ASXw1kjea05OGjAqGx34iFgAA8jRp0qSUtY0bNxa833tpvlaT7hrV5LOf/ay+8Y1vqLu7e/favffeq69//esyUp58YsD//d//pazdfPPNOQeoHddff73uv/9+rVy5cvfa0qVL9corr+iII47Iay8AAAAAAAAA+fvFq7/QzUtuVtzK8G+PhiF5fJIZK/sse9XuqReu+IcaGhvLfi0AAAAAAAAAAAAAAAAAwwMRagAAAADVJR6XIpHUCNyGDdKggAug9nYpFBq479kVzPP7s5+7dq309NNSV1f+1337bemtt+w/+/2pkb5YbCBAnYOugLTgfGnloAC1pQoFqCuMADWQu9aNrQrFQtkPzEMoFiJEDQDp1NZK4ZAULf8Pe1c1r1fy889GAIDCpAsmvzP4Sb3y9O677ybc93q92meffQrerxICgYBOOukk/fGPf9y91t7ertdff12zZs1Ke04sFtOTTz6ZsGYYhi6++OK8r+/xeHTxxRfr85//fML6E088QYQaAAAAAAAAKLPf/fN3uuHJGxSzsvybo6Gyh6gnBido2X+8TIAaAAAAAAAAAAAAAAAAQAJqAgAAAACqR09P5ijwpk3S9u2VnQfVratLikZT12tqpMZGyTDs22ChkB2fXrUq/+tZlhQOJwamI5GB8LVh2MdEIrm/CAHp4wukpR+S6qJScNfWIVUoQG1kP6SU4ooTogZyUI4AtYMQNQCkYXikYJ0UNKWYJcks/zUtS7KSnngnnnRtf439RCul1tsrRQZ9HG14+NciAEDRDjjggJS1tWvXFrRXJBLRe++9l7C23377yeer/v9g7bvvvilr69evzxihXr9+vXp6ehLW9ttvPzU3Nxd0/blz56asrVy5sqC9AAAAAAAAAOTm0Tce1bV/vjZ7gNphSPL6pHjpQ9TjA3vo2f94gQA1AAAAAAAAAAAAAAAAgBTV/1OaAAAAAEaH/v7MAWogHZ8vfYQ6EpG6u6WxY+24n6OzU/rtb6WdO9PvZ1lSPC6Zpn1zOOG/aDRxP4dzjs838OccxA1pwfl2gDrqkToDu8aISTsbctqiOBUOUDviimc/CBjFyhmgdhCiBoBMnBhzBZ40wzTtHywfzGskXrumRvKWIUIdjqQGsAEAKNLhhx8uj8cjc9DXRZYvX65YLJZ3PHr58uWKJn3N54gjjijJnOUWDAZT1rq7uzMevz3Nk+4VGqDOdG5HR0fB+wEAAAAAAAAY2uK1i3Xln65U1EzzfWzZlDhEPa5mrJ6/cpkmj5lSsj0BAAAAAAAAAAAAAAAAjBxlqBcAAAAAQAGGiLEAadXVSUaGknIkkhio3rlTeuih9AHqeFwKhaTeXvv3SESKxQZu4bB9M007Qj04RO3cN037vHjuMb/eGmlbvR2gdvJMOwMjO0Dt2N6fGlgCUJkAtcMJUQMAAABAKdTX1+vwww9PWOvt7dWrr76a917PP/98ytpxxx1X8GyVtG3btpS1CRMmZDw+XbS6v7+/4Ov39fWlrNXV1RW8HwAAAAAAAIDMFq9drE8t+pTCZrjwTZKfuLZAY2ua9MJVLxKgBgAAAAAAAAAAAAAAAJAREWoAAAAA7rMsO/Y7lEyxYYxePp/U2Ch5Mnxq60SoQyHpd7+TenoSH7cs+7H+/szvf4OD08nrmR7LQVdAuvB8aUujVB+WZNghamuUvJubMonfAkkqGaB2EKIGAAAAUEof+chHUtYefvjhvPdJd066vavRsmXLUtYmT56c8fjm5uaUtXfeeUemaaY5Orv169fndA0AAAAAAAAAxXnh7Rf06T98WuF4EQFqR5Eh6kZfg576t6cJUAMAAAAAAAAAAAAAAAAYEhFqAAAAAO4zjMwhYUcRwV+MYIGAtMceUlOTHaQefNtrL2nWLKmtzQ5Q+3wDN8MYOj5dRk6AesVkKSSpO7jrgUoFqKskdE38FhjgRoDawd9FAAAAAKXyiU98ImXt/vvvVyQSyXmPV199VS+99FLC2tFHH61p06YVPV+5tbW16Y033khYGzt2rA466KCM50yePFkNDQ0Jazt27Egbs87Fn//855S1mTNnFrQXAAAAAAAAgPTatrRpwe8XqC/WV7pNCwxR1/vq9OhFf9KMvQ4o3SwAAAAAAAAAAAAAAAAARiQi1AAAAACqQzCY/RggHY9Hqqmx34ecW22tNG2a9P770j/+IXm9AzdJ6u21w+aGkXrz++09ampKPmpygHpHQ9ZTSqtKAtQO4reAuwFqB38XAQAAAJTCIYccomOPPTZhrb29Xd/97ndz3uNLX/pSyto111xT9GzlFo/Hdf3116esn3HGGfL7/RnP8/l8Ovnkk1PWv/nNb+Y9w9tvv60HHnggZf20007Ley8AAAAAAAAA6b2+5XWd/dDZpQ1QO/IMUdd5a/XYRY9r9tQjSz8LAAAAAAAAAAAAAAAAgBGHCDUAAACA6jBmjOTL74cogIzGjpXicenuuxPXLUvq7rZ/H8ww7HD12LH2+2JdnX2+x2PfnEB1PpKOdz1AXaWI32I0i0ajrgeoHaFYSNFo1O0xAAAAAAxzX/7yl1PWbrnlFr3yyitZz/3hD3+oJ554ImFt+vTp+rd/+7ecrr3vvvvKMIyE29/+9res5/3gBz/QU089ldM10gmHw7rooou0dOnShHXDMPSZz3wm6/kXXnhhytqf//xn3X777TnP0NnZqXPPPVeRSCRh/eCDD9aHP/zhnPcBAAAAAAAAkNnaLWv10V99VN2R7vJdJMcQdcAT0G/P/x0BagAAAAAAAAAAAAAAAAA5o/AGAAAAoDp4PNKECVJPjxSJSLFYYsTX55OCQffmQ/XxehPfRwzDfj9paJBqaqQVK6StWxPP6euTTDNxzeeT6uvt/RzRaOJxhpF6XjaDQtcEqIfmhKhbpra4PQpQUX6/X7MnzlbbtraC9wj6gmqZ2qLWja1FBa1nT5wtv99f8PkAAAAAIEmnnXaaPvaxj+mPf/zj7rVwOKwTTzxRDzzwgM4666yUc6LRqG6//XZ95StfSXnszjvvLPvnKi+//LKuv/56zZ07VxdffLE+/vGPa9KkSVnPi0aj+tOf/qQvfvGLWrNmTcrj//Ef/6G5c+dm3efCCy/Ut7/9bbW1tSWsf+lLX9Lq1av1rW99a8h5lixZoiuvvFLr1q1LeSyfkDUAAAAAAACAzLb0bNGpvz5VneHO8l/M65PisYwPB4waPfCxX2rejOPLPwsAAAAAAAAAAAAAAACAEYMINQAAAIDq4fFIY8akf2zOHCmH+AtGkcWL7WC5wzASws969tnE42MxKRxOXPP5pMbGxJi1JIWSQq6D981T3JAuOq8KAtRG9kPcFIqFFI1GieBi1BlXN67gELUToJZUVIh69sTZGlc3Lu/zAAAAACCdn/zkJ3r55Ze1cePG3WtdXV06++yzdeSRR+pjH/uYpk2bpv7+fq1Zs0YPPvigNm3alLLPZz7zGZ1xxhkVm3vZsmVatmyZrrvuOh100EE6/PDDdfDBB2vcuHEaO3asDMNQV1eXNm/erLa2Nj333HPavn172r1OPPFEfec738npuh6PR/fdd59OOOEE9fT0JDx2//3366GHHtJpp52mlpYWTZkyRbW1tdq5c6feeOMNPfXUU3rttdfS7vvpT386bfQbAAAAAAAAQH629GzRvIXztDO0s3IX9fqkeFxS4vetBYwa3XvWT3TKwadXbhYAAAAAAAAAAAAAAAAAIwIRagAAAADAyNPVJa1eLXm9A2vJYWlJqq9PDVDH43awerAiItReS7rsVenve0o7GgvepqrVeGsUiUeyHziE2RNnE6DGqFVIiHpwgNpRSIiaADUAAACAUmtubtaTTz6pk046SVu2bEl4bPny5Vq+fHnWPRYsWKDvfe97ZZpwaKZpatWqVVq1alVB559zzjl66KGHVFtbm/M5c+bM0R/+8Aedc845KSHqcDisRx99VI8++mjO+5133nm67777cj4eAAAAAAAAQHo9PT069qfHqqO/o/IX93oTQtR+w697z7xXZ3/4vMrPAgAAAAAAAAAAAAAAAGDY87g9AAAAAAAAJbdpU+J9y5IiSZHk2trESLWjhAFqx9Sd0vYRGqCWpEg8onG14xT0Bgs6nwguMBCizkW6ALWjZWqLgr7c/i7ydw8AAABAuRx00EH6xz/+oWOPPTav8/x+v2655Rb96le/kjfd123KoL6+viT77L333nr44Ye1aNGivALUjpNPPlkrVqzQ8ccfX/AMDQ0N+tGPfqTf//738vl4TnIAAAAAAACgGD09PZpz/xxt79vu3hBeryRDPvl010d+oLMP/bh7swAAAAAAAAAAAAAAAAAY1ohQAwAAAABGni1bEu8nh6UlKRBIf248nts1DCOnw3p80tFX5rZl2eQ2alH6In1q2Tv3+K2DCC4wIJcQ9VABakcuIWr+7gEAAAAot7333lvPPfecfvOb36ilpUXGEF9LaWho0KWXXqqVK1fq1ltvlcdTuW9luOuuu7Rq1SrdcccdOuusszR58uScz500aZI+8YlP6M9//rPefvttffzjxQVgpk+frr/97W967rnndNFFF2ncuOyft3m9Xh1++OH63ve+p/fee0/XXHNNUTMAAAAAAAAAsAPUc38+V9t6t7k9irw+v/7v1Dt0wREXuT0KAAAAAAAAAAAAAAAAgGHM5/YAAAAAAACUXHt74v3kCLXPJ2WKGaULVifLMUAtSQ0x6ahN0j+m5nxKaVUgQC1JoXhIrRtb1TK1RUs2LMnpHCK4QConRN22rS3lsVwC1I6WqS1q3diqUCyU8hh/9wAAAABUimEYWrBggRYsWKBt27bpH//4h9avX6+uri75fD5NmDBBBx10kI466ijV1NQUda0NGzYUfO7BBx+sgw8+WDfccIMk6f3339e6deu0YcMGdXR0qLe3V5ZlqbGxUU1NTZo4caIOO+ww7bnnnkXNnMn8+fM1f/58SdLatWu1cuVKbd++XTt37lQkEtGYMWM0duxY7bvvvjriiCNUX19fljkAAAAAAACA0ainp0fzfjFPm7o3uT2KvIZXt510my456nK3RwEAAAAAAAAAAAAAAAAwzBGhBgAAAACMPH19iffj8cT7Xm/mcy1r6PsFeHGhdPTlLoaoKyQUs0PUXnkVV3zIY4ngApmlC1HnE6B2pAtR83cPAAAAgFsmTpyoM8880+0xcrLnnntqzz331LHHHuv2KJoxY4ZmzJjh9hgAAAAAAADAqHH8g8fr3a533R5DHnl087E368qjrnR7FAAAAAAAAAAAAAAAAAAjgMftAQAAAAAAKLnk6HQyw8j8WAmi0+m8uFD6l41l2TqzIV7McgnFQoorLq8yh77H+MYQwQWycELUUmEBakfL1BYFfUFJBKgBAAAAAAAAAAAAAACGcvRPjtb6HevdHkMeefS5uZ/Tf8/7b7dHAQAAAAAAAAAAAAAAADBC+NweAAAAAACAkvNmDiBLGjo0PVSgukgvLpSOvlz6x9SyXWKACwHqwZwQdVypQfCAP+DCRMDwM65unObvNV9+v7+ofVqmtigajRa9DwAAAAAAAAAAAAAAwEg1f+F8rd6+2u0xJEnXHnWtbj7hZrfHAAAAAAAAAAAAAAAAADCCeNweAAAAAACAkqurS7yfHKWOp4aRd0uOUBcbpU46/8WF0r9sLG7L7Ncs8/458Mqb8HvyOoDclCocTYAaAAAAAAAAAAAAAAAgvRN/dqL+2f5Pt8eQJF11xFX62slfc3sMAAAAAAAAAAAAAAAAACMMEWoAAAAAwMjT3Jx43+dLvB+LSaaZ/tzkY9OxrPzmqVSI2pDrAerZE2enhKaNXUMRoAYAAAAAAAAAAAAAAABQTT7y84+obUub22NIki459BLd/q+3uz0GAAAAAAAAAAAAAAAAgBGICDUAAAAAYOSZPDnxfrqwdDic/lxvjqHkdCFqw0gMTmf6s+wQ9YztuV0qJy7HpyU7QD2ublzaxwhQAwAAAAAAAAAAAAAAAKgm5zx0jl58/0W3x5AkLThogb7/0e+7PQYAAAAAAAAAAAAAAACAEYoINQAAAABg5Nlrr8T7hiHV1CSu9fdL8XjqucnBaqOEdedBe8UNqSksKU3LejgaKkANAAAAAAAAAAAAAAAAANXk/F+dr2fffdbtMSRJ5x1wnn78sR+7PQYAAAAAAAAAAAAAAACAEYwINQAAAABg5BkzRpo5M3EtGEw9rrdXspIq0F5vYSHqwccYhuT3S57Mn3Y/eoD0fqMUMLNvnf3aJdijCASoAQAAAAAAAAAAAAAAAAwXn/r9p/T0O0+7PYYk6bTpp2nhuQvdHgMAAAAAAAAAAAAAAADACEeEGgAAAAAwMh1/fOJ9n08KBBLXYjGpu1uKxxPXk4PVuUSok4+vrbVj2F7vwPm7gteLDpSu+6hkGVJ8iG1yu1axGxSHADUAAAAAAAAAAAAAAACA4eLyRZfr8TWPuz2GJOnkD52sXy/4tdtjAAAAAAAAAAAAAAAAABgFiFADAAAAAEamww6TJk1KXKurkzxJnwrHYlJnp9Tfb/85HJaiUTsYbZoDt2x2BaYl2deoqbED1I2N9v2kALVpSO21UsxbxMtYwQC1keZiBKgBAAAAAAAAAAAAAAAADBfXP369HnnrEbfHkCTN23ueHv7kw26PAQAAAAAAAAAAAAAAAGCU8Lk9AAAAAAAgg/Z2adUqac0aaf16O5Qci0k+n9TUJE2fLu2/vzRrltTc7Pa07nJC0YND0P390iWXSN/+duKx9fVSd/fAsc7vvb3Fz+Hs5fPZ+8Xj9ttMkgxDiw6wShOgrmB8euCS9i9TdpB7auNUhWIhbe7anHKstevX4PsAAAAAAAAAAAAAAAAA4JbP/fVz+uVrv3R7DEnSkXseqccuesztMQAAAAAAAAAAAAAAAACMIkSoAQAAAKCaxGJSa6v02GPSypVDH/vqqwN/Puww6cwzpWOOsQPIo0UsZse5w+HUx8JhqaHBDnWvWmWvOaFqvz/9OaUSiaQsLTpQuu704RmglrQ7Pu14v/v9nI+VpLjikiSvCn3BAQAAAAAAAAAAAAAAACB/X3zyi7q/7X63x5AkHTbpMD316afcHgMAAAAAAAAAAAAAAADAKDOKymQAAAAAUOWWLZPuvlvaujX/c1essG+TJknXXCPNnVv6+apNPC598IEdlh7KSSdJmzZJHR12gDoWk6LR8s3l8aQsLTrA0nWnW4UHqF0KT5dDXHFZllWSvSxZMkbSK6cMotGo/H5/1ewDAAAAAAAAAAAAAAAAVNI3//ZN/fiVH7s9hiTpoAkH6W+X/s3tMQAAAAAAAAAAAAAAAACMQqllLAAAAABAZfX0SHfcId16a2EB6sG2brX3ueMOe9+RrLs7e4BakoJB6ZRTJMOQQiEpErFj1OWStHfcsPTTw3MIUBtD3EaYznCn2nvbi9qjO9ItU6YslfFtOcx19HVo6aalat3YWtQ+rRtbtXTTUnX0dZRoMgAAAAAAAAAAAAAAAKD87nj+Dn1n2XfcHkOSNHP8TLVeUdz38QAAAAAAAAAAAAAAAABAoYhQAwAAAICbtmyRrr9eWrw4/eOWJUWjUn+/HZV2bv399nqmmPLixfa+W7aUb3a3RSJDPx6PS2++Kf361/atry+3aHWhDMO+SVJNjR2/bmiQd+w4Pbh0onr9WQLUw4w1xK9sYlZMqztWFxyibu9t330uIer0Ovo61LatTZIUioUKDlG3bmxVKBaSJLVtayNEDQAAAAAAAAAAAAAAgGHhB3//gb71/LdkqozfM5ajfZv21Yv/8aLbYwAAAAAAAAAAAAAAAAAYxXxuDwAAAAAAo9aWLdINN0jbt6c+FotJoVD20LI0EDz2JX2Kt3mzdOON0h13SJMnl2bm4eK996RXXrGD3aZpvy4zBbtLyYlQx+NSU5PksZ/76dQz2tUVKP/lS8GQkVPU2SiynG3J0uqO1ZKk5vrmnM9r723X6o7VCTOaMmXs+oXEALXDCVG3TG3JeZ/BAWpH27Y2zZ44W+PqxpViVAAAAAAAAAAAAAAAAKDk7n3pXn31ua9WRYB6nzH7aOnFS90eAwAAAAAAAAAAAAAAAMAo53F7AAAAAAAYlXp6pJtuSg1QW5bU2yt1deUWoJbs47q67POSQ8sffGBfp6enNHNXk0CaqnMkIj3/vPTMM/brxDSlvr7KBKgta+A68bjU3S1J6vHF9NKkWPpzjF23KmHIkKeCXypwQtTtve05HZ8uQD14r1zi2SNdugC1wwlR5yJdgNrRtq1NHX0dhY4IAAAAAAAAAAAAAAAAlM0vXv2Fbl5ys+JW3O1RNLl+sl645AU1NDS4PQoAAAAAAAAAAAAAAACAUc7n9gAYHdrb2/XSSy9p3bp16urqkt/v1/jx43XwwQfryCOPlN/vd3tEAACA6tfeLq1aJa1ZI61fL3V2SrGY5PNJTU3S9OnS/vtLs2ZJzc1uT4ts7rlH2rw5cc0JF5tmYXuGw1I0KjU2Sl7vwPrmzdKPfyzdcEPh81ajMWPsvwfO66unR3rqqd3xZ1mWHaCuJMuSjF1V6VBICgbVoIBe/P0eOvrjOwYSyVUQnvbKq7gGftBqcIA6+bF05xbDGPQKcELUktRcn/n/u4YKUDtMmfLIk7D/aDJUgNrhhKhbprZkPGaoALWjbVubZk+crXF14woZFQAAAAAAAAAAAAAAACi53/3zd7rhyRsUs2Juj6KJ9RP10qUvEaAGAAAAAAAAAAAAAAAAUBWIUKOsHn74YX3/+9/XCy+8IMtKHwprbGzUggUL9D//8z+aOXNmhSdMZVmW1qxZo5dfflnLly/X8uXL9eqrr6rbCdnt8ulPf1o/+9nPirrWrbfeqq9+9atF7TGUTK9zAAAwjMRiUmur9Nhj0sqVQx/76qsDfz7sMOnMM6VjjrEj1aguy5ZJixcnrsXjUleXHTFOx+ezw9KGYR8Tj9vvH8lM095nzJjEEPVTT0nz5klz55bu5XCbYdjB9c5OO9L+xBMD0WnLsiPQbvB47Jvjyit11OGH6z93/kp3bfiNOzMNUu+plwwpEo9IkuKKJwSo3ZAtRJ1LgNoxWkPUuQSoHUOFqHMJUDsIUQMAAAAAAAAAAAAAAKBaPPrGo7r2z9dWRYB6fN14PXvpswSoAQAAAAAAAAAAAAAAAFQNanQoi02bNumiiy7Ss88+m/XY7u5uLVy4UL/85S/15S9/WV/+8pdlGJWNhT3yyCNatmyZli9frldeeUWdnZ0VvT4AAEBay5ZJd98tbd2a/7krVti3SZOka64ZWeHh4S4Ws9+ug1mW1N2dGqA2DCkYlAKBxKixwzSlcFjq70+/X1OTvYfjnnukI48cWWFyr1eqq5Oee86OTns89svf35856F1OhmHfxo0beN0fdZR0xhka98zLmhOao5e3vJz3tn6PXzP3sJ+0pz/ar829mxWK5x/Znjl2ppqCTbvvR6IRRRTJGncOR8IK1ARyvs6b29/Me7ZMIep8AtQOJ0Q9WuQToHakC1HnE6B2EKIGAAAAAAAAAAAAAACA2xavXawr/3SlombU7VE0NjhWz1/2vCY3THZ7FAAAAAAAAAAAAAAAAADYbQSVx1AtVq9erRNOOEHvv/9+XudFIhF95Stf0RtvvKFf/vKX8nq9ZZow1WWXXTbiwtPHHHOM2yMAAIBC9fTYseDFi4vfa+tW6dZbpVNOka6+WmpoKH5PFOfvf08Ni/f12UHpwXw+qb7ejixn4vFItbVSTY3U22sHrh2mae9bXz+wtmWLHTc/9tjiX45qsmSJtHPnQPQ5HC55gDpuSF7L/l2y/5yWZUnxuD1DMGiv/fzn0hlnSJLGBMZozuTcQtS1vlr1x/oV9AUTQsGStO+4ffXS5pfUHenOuo9PPsUUSx8KDmY9vSCrt6+WKTP7gUmSQ9SFBKgdpkzFzXje5w03hQSoHYND1IUEqB2EqAEAAAAAAAAAAAAAAOCWF95+QZ9a9CmFzbDbo6gp0KSnPvEUAWoAAAAAAAAAAAAAAAAAVYcINUpq+/btOvXUU9MGqOfMmaOPfexjmjZtmvr7+7V69Wo99NBD2rx5c8Jxv/rVrzRx4kR973vfq9DU7pk8ebIOO+ywovdZsWJFytoVV1xR9L4AAMAFW7ZIN90kJX2MtJtl2aHhWMwO3Tq8Xjta7PMNhHgHW7xYev116bbbpMn8cIOrHnss8X4sZgeLB/P5pMbG9G/LdLxe+/ju7sQQdTgsBQL2foOvP5Ii1GvXSqtWDdx3/n6UUFdAuug86ROvSb88TNpeJ920VDr3zQwnWJbU3z8QoX7+eWnzZr35wZtauW2lJtVPUp2vTn2xvozXbKxp1FFTjlI0GpXf7097zFFTjsoaop4zeY6agk1D7lNqlmUVFKDeff6uEHV7X7t2hHYUFKB2bOrZpCljpsjI9e/SMBONRgsOUDtCsZCWbFhS9Cxt29o0f6/5FXs/AwAAAAAAAAAAAAAAAF54+wUt+P0ChePuB6gbaxq1+JOLNWPyDLdHAQAAAAAAAAAAAAAAAIAURKhRUldeeaXefffdhLXGxkY98MADOvvss1OOv+2223Tbbbfp1ltvTVj//ve/r9NOO02nn356OcfNavz48ZozZ4722GMP/eY3vyn5/ldffbWuvvrqovZYtmyZjjnmmIS1xsZGXXjhhUXtCwAAXLBli3TDDdL27amPxWJSKCRFItn3qamx47e+pA/3N2+WbrxRuuMOQtRuaW+Xkp9AJBRKPa6+PvcAtcMw7PM6O1P3b2gYuN/WZs/R3Jzf/tUoHpeefnrgvmXZ4W2r8Ghxsq6AdOH50quTpSf3k0zDvl2x69ObtCFqy7L/rsbjdiBc0qKnfqC/bv6r+mP92t6f5u/4IE6AWlLWoO9QIWonQJ3LPqVkGIY88hQdou4IdRQ9y9jA2BEboJbst2vQF1Qolub/Ryos6AsSoAYAAAAAAAAAAAAAAEDFtG1p04WPXKi+WJ/bo6jeX69H/+1RAtQAAAAAAAAAAAAAAAAAqpbH7QEwcjz11FN65JFHEtZqamq0ZMmStAFqyQ5m3XLLLfre976X8tj111+vWCxWjlHTampq0oknnqjPf/7z+u1vf6v169frgw8+0BNPPFF0KLqc7rvvvpS1Cy+8UPX19S5MAwAACtbTI910U2qA2rKk3l6pqyu3ALVkH9fVZZ+XHOP94AP7Oj09pZkb+Vm1KvG+EyserLZ2d7g4b16vff5gkUjq+0HyHMPV6tX2+7ojEpHMwsPHjviuZvHgAPWOWinilWIeyTKknUE7RL3owAybWJbiMfttu2jfkK7b8CNFzahi5tCf4wwOUOfqqClHqbGmMWFtcIDaDYbsELWbPPJoTGCMqzNUQsvUFgV9QVdnCPqCapna4uoMAAAAAAAAAAAAAAAAGD3Wblmrsx86W73RXrdHUZ2vTo9d9JhmT57t9igAAAAAAAAAAAAAAAAAkBERapTM17/+9ZS1W265RUceeWTWcz/72c/q1FNPTVhbu3atHnrooZLNN5RXX31VO3bs0JIlS/Ttb39bF1xwgaZNm1aRaxejp6dHv/nNb1LWr7jiChemAQAARbnnHmnz5sS1eFzq7JTC4cL2DIft8+PxxPXNm6Uf/7iwPVGcNWsS76d70pVAoLhrpDs/+Tpr1xZ3jWrxyiv275YlhUK5h9qH0BWQzvmE9OAhqQFqh6X0IWpr0O2RAy197KNdemBGn66b16m+WL9CsdCQ1/bKm3eA2jE4RO12gNrhZojaI48MGa5c2w1uhqgJUAMAAAAAAAAAAAAAAKCS1m5Zq1N+dYq6I91uj6KAN6Dffvy3BKgBAAAAAAAAAAAAAAAAVD0i1CiJVatWaenSpQlrEyZM0I033pjzHt/61rdS1u6+++6iZ8vFtGnTZBjDL1D229/+Vj09PQlrhxxyiI4++miXJgIAAAVZtkxavDhxLR6Xurok00x/js9nx4aDQft3ny/9caZp75Mcon7qKfu6qKz16xPvJ8ehfT7JU+SnaR5P6vtD8nXWrSvuGtWgvV3asMF+H+/rSx/0zlNXwA5PvzRFuvwcadnU1AC1IzlE/ciBA48tOlC6/nSpdS9TVxzfqV6/pZ3eaNbrezwexczCX46jphyl46YeVxUBaocbIerRFqB2uBGiJkANAAAAAAAAAAAAAACAStrSs0Wn/vpUdYY73R5FAU9AD5z7gOZNm+f2KAAAAAAAAAAAAAAAAACQFRFqlMSvf/3rlLVLL71UNTU1Oe8xZ84czZkzJ2Ft2bJlevvtt4ueb6S67777UtYuv/xyFyYBAAAFi8Wk5CfesCypu9v+fTDDkGprpbFjpTFjpPp6qa7O/n3MGHu9tjb1Gpn2u+eekoR7kYfOpB98SY6De9PUjguRvE/ydZLnGI5WrbLfp/v77d+T37/z5ASoX50s7ayVIh47MJ0uQO0YHKL+j7Pt+PSiA6XrPyr1+aXOwK59aizlMl3UjOq1ba8VFaL2ZQrSu6iSQejRGqB2VDJETYAaAAAAAAAAAAAAAAAAlbSlZ4vmLZynnaGdbo+iGk+N7j3rXp0y4xS3RwEAAAAAAAAAAAAAAACAnBChRkn89a9/TVk7//zz894n3Tnp9ob0xhtv6O9//3vCWiAQ0MUXX+zSRAAAoCB//7u0dWviWl+fZJqJaz6fHZqurZU8GT6M93jsx5ua7OMHM01738G2bJGWLStufuQnW/TbKFE8N9s+IyE+vmrVQIC6SOkC1FaOb4rBIepPn2vHqJ0AtfNYPnaGduYcorZK8LJXiiFDnjJ/CcLY9Wu0q0SImgA1AAAAAAAAAAAAAAAAKqmnp0fH/vRYdfR3uD2K/B6/fvjRH+rsg852exQAAAAAAAAAAAAAAAAAyBkRahStt7dXr7zySsJaXV2djjjiiLz3mj9/fsra0qVLC55tJFu4cGHK2jnnnKPx48e7MA0AACjYY48l3o/FpHA4cc3nkxobJa83tz29Xvv45BB1OJwaH06+Psor+W2SrFRR4Wz7ZJtjOFi8ODXWXoBiAtQOJzbdUyPtqJV2FhigtveycgpRt/e2a+W2lTnFqqtFOUPUHnkIUA9SzhA1AWoAAAAAAAAAAAAAAABUUk9Pj466/yht79vu9ijyGT7dceoduuCQC9weBQAAAAAAAAAAAAAAAADyQoQaRWtra5OZFH878sgj5SsgbHfUUUfJ7/cnrL388stFzTcSRaNR/fKXv0xZv/zyy12YBgAAFKy9XVqxInEtFEo9rr5eMvKMqxqGfV6y5P3b2uw5UBlNTYn3k8Pi8XhprpO8T/J1kucYbpYtk7ZsKXobJ0DdVkSA2mEN+t0yCt/H3sMOUa9qXyUrTVC8vbddqztWqzvSrX+2/3PUh6gJUKdXjhA1AWoAAAAAAAAAAAAAAABUUk9Pj+b+fK629Bb//WLF8hpeffuUb+uSwy9xexQAAAAAAAAAAAAAAAAAyBsRahTtzTffTFmbMWNGQXvV1NRo6tSpCWvr1q1TLDZ8omqV8Oijj2rbtm0Ja/vuu69OOeUUlyYCAAAFWbUq8b5lSZFI4lptbWpAOFder33+YJGIfZ2h5kD5TJ+eeD/5iVtiMSnpCV7yZpr2PkNdZ7/9iruGm2Ix6e67U9+P89QVkBacL62YLBmS6qIqb8Y4z829Hq+mNEyRkRSgdwLU1q7sdU+kZ1iGqP1ef/YDc9yLAHVmpQ5GE6AGAAAAAAAAAAAAAABApfT09GjeL+ZpU/cmt0eR1/DqluNu0aVzLnV7FAAAAAAAAAAAAAAAAAAoCBFqFG3Dhg0pax/60IcK3m+fffZJuB+Px/Xuu+8WvN9ItHDhwpS1Sy+9NCVQBwAAqtyaNYn30z3xRiBQ3DXSnZ98nbVri7sGcrf//on3k+PQkhQOF3eNdOcnX6fAJ42pCn//u7R1qzT4Y988g9RdAenjC6S/TZNCu141gZhkFte1LhlDhmaOm6nm+uaE9eQAtWO4hagtWYrGoyXbK/n1gQGtG1urej8AAAAAAAAAAAAAAAAgk+MfPF7vdrn/syQeefTFeV/Udcdc5/YoAAAAAAAAAAAAAAAAAFCwNMUzID9btmxJWdt7770L3i/duVu3btX06dML3nMk2bhxo5544omENY/Ho8suu8ylibK766679KMf/ajs11m3bl3ZrwEAQEmtX594PzkO7fNJniKfN8bjsfcZvHcsJvn9A/f5b2jlzJqVeN8wpJoaKRIZWOvvt9e83vz3j8ft8werqUkMNkvSIYfkv3e1eOwx+/cCn4AlbkgXni8t/ZAU9UidAcmS1OVX1TxNk9fj1dberZpUP2n3E81kClA7nBD1Ic2HyOep3k/1LVkyZcpTwld2qfcbKVo3tioUC5V0z1AspNaNrWqZ2lLSfQEAAAAAAAAAAAAAAIDB5v5krtbvWJ/9wDLzyKPPzf2cbjz2RrdHAQAAAAAAAAAAAAAAAICiVG+ZCsNGR0dHylpDQ0PB+6U7d/v27QXvN9Lcf//9Mk0zYe20007T1KlTXZoou/b2dr3++utujwEAQPXp7Ey8H48n3i8kQpyO15sYoU6+TvIcKJ/mZumww6QVKwbWgsHECLUk9fZKjY35hZYtyz4vWTCYeH/2bGnChNz3rSbt7QOvO59PikbtlzsPvTXS1no7QO3YGcx8fEnk2cs2TVN7NuyZc4DaUe0haidAXQ6mTBm7fqE8AWoHIWoAAAAAAAAAAAAAAACU0/yF8/XW9rfcHkOSdO1R1+rmE252ewwAAAAAAAAAAAAAAAAAKJon+yHA0HrThO5qa2sL3i/duX19fQXvN5JYlqX7778/Zf3yyy93YRoAAFC0wWHodPIJEBezT7Y5UFpnnpl43+eTAoHEtVhM6u5ODYZnEo/bxye/LQMBe/+hrj+crFo18Oc8Iu3xXX8FugLShedLWxqlprC9ZlZhs3hyw2RNrJ8oKfcAtcMJUcfM6vp7Xc4A9eBr5Pp6GsnKGaB2OCFqAAAAAAAAAAAAAAAAoJRO+dkp+mf7P90eQ5J01RFX6Wsnf83tMQAAAAAAAAAAAAAAAACgJIhQo2jRaDRlLRgMFrxfugh1JBIpeL+RZMmSJXr77bcT1iZOnKizzz7bpYkAAEBRkuPAyawSxVSz7ZNtDpTWMcdIkyYlrtXVSZ6kT89iMamzU+rvl8wM8V7TtB/v7EwNUHs89r6DTZ4szZ1b3PxuWrNm4M85vt92BaRzPiE9+GE7QL1isr0eiElmJXrFBUSut/ZuVSgWyjtA7ai2EHUlw9CmzFEdoq5EgNpBiBoAAAAAAAAAAAAAAACl9JGff0Qvb3nZ7TEkSRd/+GLd/q+3uz0GAAAAAAAAAAAAAAAAAJQMtTmUhWEUUFob4lyrVAHGYe6+++5LWbvkkkvk9/tdmAYAABStqSnxvtebeD8eL811kvdJvk7yHCgvn0+65hrp1lsH1gxDamyUuroSo+GWJfX12bd0H2MPPnbw485+yedcc83wjo6vXz/wZ6/XfvmG+FyhK2CHp1+aLD01XaqLScFdXeZuqWqfliluxbVs4zJ5Da8MT2GfW/VEerSqfZUOnXhoUZ+fFcuSJVMZIuplYsqURx4ZhRTAh7FKBqgdToi6ZWpLRa8LAMCoEeovz77xXR8UR037iW0sM/Hjam9MiqU++WR5GPYT6Ph96T/nKbV4XIrF7Zd5xItJgz8Wj0al/pD9uh7OnxcCAAAAAAAAAIAR6ZyHztGL77/o9hiSpAUHLdCdZ9zp9hgAAAAAAAAAAAAAAAAAUFJVmtzCcJIugNzfX3gcI925NTU1Be83UnR0dGjRokUp65dffrkL0wAAgJKYPj3xfnIEKhazg2DFME17n6Gus99+xV0D+Zs7VzrllMQ1r1caM2YgrGzuCsE5N9NMvSU/bln2+WPGpMbGTz1VOvroyr2M5dDZmXh/iEidE6BeNlna3iCFvVJnQAr5pC5JvQ3lHbVohgoOUNunG5rSMGXUBagdpkxZGj1PZuRGgNrhhKgBAMAwE90VmjbjqU/sYjn/U4mbKZkxKRyWzDJ//BaNStGIZMUr+PK5eUtm2W/vcFgKRwp9LQIAAAAAAAAAAJTcJ377CT377rNujyFJOvuAs/Xjj/3Y7TEAAAAAAAAAAAAAAAAAoOR82Q8BhlZXV5eyVuoIdX19fcH7jRQPPvigwuFwwtq8efN04IEHujRR7pqbm3XwwQeX/Trr1q1LeR0BAFDV9t8/8X5yHFqy41C1tYVfI91/G5OvM2NG4fujcFdfLb3+urR588BaPD4QoS6EE6GOxxMj1FOmSFddVdy81SA5qJ4hsDw4QL3TiU0bdtNuR0BSsKxTDpqvsNM8hkc+T+GfrhsyNHPcTDXXNxe8R7HcDFA7TJnqCndpcuNkV+coNzcD1A4nRN0ytcXVOQAAQI5MU4rF3Z4iiWVHogNlekLKuCXFY9mPGy1iUSkSdXsKAAAAAAAAAAAAfer3n9IT659wewxJ0mnTT9PPz/2522MAAAAAAAAAAAAAAAAAQFkQoUbRxo8fn7LW09NT8H7pzk13jdFm4cKFKWtXXHGFC5Pk79prr9W1115b9uvMmjVLr7/+etmvAwBAycyalXjfMKSaGikSGVjr77fXBgeFcxWP2+cPVlOTGu495JD89y6nUMiOZ8eTomgrVkjjxrkzU7l84hPSPfdIO3faL3d0VwTMeRvlE6N2zonHpe5uye+XgkFp7Fj7Om++WcrJ3dHXN/A6yiBtgNpRYBS6IIUGqDUCAtRW8QFqQ4b2CO6hHaEdslRglF3SzvBOWZYlI0OwfLiLRqOuB6gdoVhI0WhUfr/f7VEAAEBW7j5ZSEZWfOCJdUrNJECdIsrrBAAAAAAAAAAAuOuqP16lx9c87vYYkqTj9zlev17wa7fHAAAAAAAAAAAAAAAAAICyIUKNok2aNCllbePGjQXv99577+V0jdFk+fLlWrFiRcJaY2OjLrjgApcmAgAAJdHcLB12mB1XdgSDiRFqSertlRob8wtxWZZ9XrJgMPH+7NnShAm571tOliXt2GHHmNPp6ZFiIzCSddpp0s9/nj6unEuMOtP7hbPfaafZr7dt24qbsxr4fJI5KJhnGPZt1+tnyAB1JRXRzDNlFhxNroYAtSQZhiGPPAWHqAe/HO297VrdsbrgEPVeDXuN2AC1JPn9fs2eOFtt29oK3iPoC6plaotaN7YWFbSePXE2AWoAAPLhSbMWrK3MtWNxafB/tq2Yveao5IdPNUmfowaDkpHulVMkwyPFB/2TWDxm30azfJ70CAAAAAAAAAAAoMSuf/x6/faN37o9hiRp3t7z9Id/+4PbYwAAAAAAAAAAAAAAAABAWZXhJ/kx2kybNi1l7Z133il4v3fffTfhvtfr1T777FPwfiPBwoULU9Y++clPqr6+3oVpAABASZ35/7N353GS1/W979+19DI7jDMyLBJF3CKJGIPiIEoMJEaJEWPQuOW4RDRezH2Ij3OMnhuN55iT+3gQ7zl6TKKJelzjFs0hxJMo4ga4oAIGosKICAgDA7N2z/RSVb/7x29qpqv3vXpmns95VLrrV7/f9/ep6p6iy0y/6sLO6/V60tfXua3RSPbtS5rNzEqzWe4/Ptjc11euP935u2lgYOoA9dFq9+7kyiuT3t6JX5ukjILNFAabap96vVz3yiuTPXsWZdyu2zwurlw9/JJ2RQSoK1mUYN9oazTFHINwKyVA3VZJGaKez3Fj78fmNZvz6I2PTmUeD2w11dSqtTkfd6TZuHpjznzomfM6th2gTpKtp2xNf71/hiMmd+ZDz8zG1RvndSwAHLuqE2PLteryXOq18i1K25fxP2stRQR6KpVKUh1zqSzV/R5/nqP3jUpm7Rj4WRkAAAAAAFiZ3vgvb8xH/+2j3R4jSfKkLU/KlS+5sttjAAAAAAAAAAAALLlJKmcwN495zGMmbNu2bdu81hoZGcldd93Vse2Rj3xk6pMF+Y4RBw4cyN///d9P2P7qV7+6C9MAkB07kltuSW67Lbn99jLs2miUsdcNG5LTTkse9ajk8Y+fGEuFyTz1qckJJyT33Xd42+rVyeho0mod3tZolN9vq1aVMenqJFGwVisZHk4OHJh4W7VarjvWli3J2Wcvzv1YDPv3d3uC5TU0lHzmM2V8u1JJ+vvLr/PQ0Mzh6cm0j2mv1f4ZemAg+fSnk5e9rNx+JNuypfN6rYymrZgA9SIabY2mp9qTyizieCstQN3WDlG30pp550x9P9rXb915a4rM7u9GNdV5hauPVO0Q9Y333zjrY8YGqNu2nrI11919XYYas39DAAFqAFiA/t7kQBfeiKdeS/kepZP8nFapJj3ev/SoV6km/X0z7wcAAAAAALDI/vTLf5oP3fihbo+RJPnlh/5yrvoPV3V7DAAAAAAAAAAAgGVx7JZ9WTRPfOITU61W0xoTSfzud7+bRqMx53j0d7/73YyOjnZs+5Vf+ZVFmfNI9ZnPfCZ79uzp2PZLv/RLOeuss7o0EcAxqNFIrrsuufLK5Ac/mH7fG244/PkTnpBceGEZGT6G31CBGdTryetel7z97Ye3VSrJunXJ3r0TY8QHDpSXer0M8FYq5T7NZvm9Opn2euNjtq973cr53mzfh+lUq5PHt49UX/lKsnt357aimF+AeqY1du8uz/ec5yxs7W572MMmbGrWq3nJ85vdC1AvUee4Xq0f0QHqttmGqGe6H3MJUR9rAeq2uYSoJwtQt80lRC1ADQALVO9N+pIML3eIupL09SYjo0kx5nVYtbZyXiOydKq1g29u1e1BAAAAAACAY807v/rOvPf693Z7jCTJ4zY9Ll975de6PQYAAAAAAAAAAMCyURNgwdasWZMnPvGJ+d73vndo2+DgYG644YY5h5KvueaaCdue/vSnL3jGI9kHPvCBCdte/epXd2ESgGPUt76V/PVfJ/fdN/djb7qpvJxwQhn7PfvsxZ+Po8PZZyfnn59cddXhbbVasn59sm9f0pok3tpoTB2dHqtaLQPUtVrn9gsuSJ7ylIXNvZgqlXLG6ULUrdbkj8WRaNu25OabD18vimRoaHZf09lor9Xffzg+fvPNyaMelZx++uKcoxvWrk1OPTW5885Dm2q1npx1VzNXProL8yxR57haqaZambkIt9ID1G0zBaFnez9mE6I+VgPUbbMJUU8XoG6bTYhagBoAFklvb9JbTxrNhb8hzVzUauXrhWYrGR0pXz+M/Rm0t3fxz1kUybg3oUx/37jr/UltierItTGvtyrVTPiBfinuczftfzAdpelaLelftXSPLwAAAAAAwDQuv+byvOtb75rxzeyXw2nHn5brXn1dt8cAAAAAAAAAAABYViLULIpnPetZHRHqJPnsZz875wj1Zz/72UnXPlbddttt+frXv96xra+vLy996Uu7NBHAMWRgIPmbv+mMAs/Xffclb397GRl+7WvLiCqM99rXJv/+78k99xzeVqslGzYk+/cnw8NzX7OvL1m9+nCEuO2kk5JLLlnYvEth9eoyun20azaTL3/58PVWKxkcXPzzNBrlc9maNWWMPEmuvjp5xCMmRsmX0969yc9/nmzfnuzYUX5/N5vlTKtXJ5s3J1u2JCefXIbYxzvzzI4I9Z6+Zt7268s3fpIli0+3tYpWWkVrxhD18f3Hr/gAdVvl4J/xv0Q215D22BD1VOc41k0Xop5NgLptuhC1ADUALLZqUl/GMPDYN/+pp3zNOPZ1YztQvdhaRVKMiwrUx/2/qXp6lub1SnPcG/6Mn6VeS/qW4D5303C9835XawLUAAAAAABAV7znm+/JX1z7FysiQP3wDQ/P9y753sw7AgAAAAAAAAAAHGX8tjmL4kUvetGEbR/60IcyMjIy6zVuuOGGXH/99R3bnvKUp+QRj3jEguc7Un3wgx+csO2iiy7Kxo1iXwBLavv25A1vmDpAXRTJ6Ghy4EAZeG1fDhwotxfF5MdddVW57vbtSzc7R661a5M///Nk06bO7ZVKGRFevz7p7Z3dWr295f5r1kwMUG/aVJ5nJcbQ165dmtDZSrNtWxliTpYuQD3W4GB5niTZs6c8/3JrNpMf/Sj55CeT970vufLK5LvfTX72szJEvXNn+fFnPyu3X3llud+nPpX8+MedkbzTT++IU28Y7cnpO5f/Li21RquR1vhA3zi7hnZlx+COZZpo4SqppDrmf4aYa4C6bfOazXn0xkd3BKerqQpQj9EOUY81lwB129ZTtqa/3vm8LEANAAAAAAAAAMBsvf/69+fPvv5naRbNmXdeYqesOyXfeNk3uj0GAAAAAAAAAABAV9S7PQBHhzPOOCNPe9rTcs011xzatmPHjvx//9//l//0n/7TrNb4kz/5kwnbXve61y3ajEeaRqORD3/4wxO2v/rVr+7CNADHkO3bk8suSx58cOJtjUYyNJTM5k0WenvLmG593I9b99yTvOlNyeWXJ1u2LM7MHD22bCm/N97ylvJ7Zax6vYw0F0X5vdhodIZ5a7Vyn3p9Yni67aSTygD1Sv3eq1SSjRsP/z1rNDpvX7OmvP1I94//mFSr5ddyqQPUbYODZbi5Ukl++MPkaU9bnvMm5fmuuCLZtau8Xp3DeyHdfXd5Of745LnPTR73uHL77/5u8uEPH4pr3/bBNXnUKwezbTm+PZaxc9xsNVOpVlKZ4u90kSK37rw1SeYccu6Wdoi6SDGvAHXb5jWb88CBB3LvwL2HAtRFpngTiGNUO0R94/03zitA3bb1lK257u7rMtQYEqAGAAAAAAAAAGDWPnLDR/LWq9+6IgLUW9ZsyTf/4JtZu3Ztt0cBAAAAAAAAAADoChFqFs1//s//Oc961rM6tr3tbW/LBRdckF/5lV+Z9tj/+T//Z/71X/+1Y9tpp52WF7/4xbM698Mf/vD87Gc/69j2la98Jeedd96sjl+JvvCFL+Tee+/t2PaIRzwiz3zmM7s0EcAxYGCgjP+OD1AXRbJ/fzI8PPu1RkbKS19fsnp1ZxT4gQfK87z73WVUGMbasqX83njf+5IvfWni7ZVK0tNTXubigguSSy45Mr7n+vvLy3hnnpmccMKyj7OoduxI7ryz/Po98MDynnvv3mTTpvL8D394snmJo8UDA8nf/E1y1VXl9bl+z45f6xOfSM4/P3nta5Ozzkruvz/5P//ncIj6f63Lo14xkG3HL2GIeBkD1JVUUq/WpwxQtx2JIepWDn7Ndt22oJl37N9xaL1aaosy29Fm4+qNOffkc9OzkL9/KUPUo6OjC14HAAAAAAAAAIBjw2du/kwu+9JlaRSNbo+Sh655aK5/xfUC1AAAAAAAAAAAwDGt2u0BOHr85m/+Zn7nd36nY9vw8HB+7dd+Lf/0T/806TGjo6P5L//lv+TSSy+dcNu73/3uYzpw9YEPfGDCtle+8pUzRugAWIC/+Zvknns6tzWbyZ49cwtQjzU8XB7fbHZuv+eeMjIMk1m7NrnssuTtby+j1AuxZUu5zmWXHRkB6qPdLbeUH0dGunP+9nnbcyyV7duTN7zhcIB6vKJIRkeTAwfKwHT7cuBAub2YIiR91VXlutu3lzHqcVHy2z68PqfvOjp+Xq5WqrP+2b8dot4xuGOJp1q4Zg7/93CoMZTr7r5uXutcd/d1abQO/4La2HXptFivq4/l1+cAAAAAAAAAAMzeFT+8Iq//wus7/n1Ptzxk1UPytVd8TYAaAAAAAAAAAAA45tW7PQBHl7/927/N9773vdx9992Htu3duzfPfe5z86u/+qv5nd/5nTziEY/IgQMHctttt+XjH/94fv7zn09Y5//6v/6vPOc5z1m2ub/73e/m1a9+9ZS3DwwMTNh2xRVX5Mwzz5zymF/91V/N3/3d381rnnvvvTdf+MIXOrbVarW84hWvmNd6AMzCt741MZbabCZ7904dQ63Xk1otqVTKfZrNpDHJP5hvtcp11q8v92/70peSc85Jzj578e4HR5ezz05+9VeTb34zufLK5KabZn/smWcmF15YrlH3Y/+Kcdtt5fPF3r3dOf/evclDHpJs25acd97SnGP79jJ6/uCDE29rNJKhodlFuHt7k/7+id+/99yTvOlNyeWXl0Hqyy9Pdu489Fx920c25FEv35Ntx0/x3D1fy9y2bhWtVIu5h6iTZPOazUs52rxNFopuh6i3nrJ11utcd/d1GWoMTdjeSiu11CY5AgAAAAAAAAAAWA5Xbbsqr/mn12S0NdrtUXJc/3G55lXXZMvaLd0eBQAAAAAAAAAAoOvU6FhUmzdvzhe/+MU885nPzPbt2ztu++53v5vvfve7M65x8cUX57//9/++RBNObmBgIDfNJeqYZNeuXdm1a9eUtx933HHznufDH/5wGuMips961rNy8sknz3tNAKbRaCR//ded24oi2bdvYoC6UimjqH19SbU6ca1WKxkeTg4cmHy9DRvKNdr+5m/KyLBIMFOp15Nzzy0vO3Ykt9xSBoR/8pNkz57y+7deL7+3HvnI5PTTkzPOSDZt6vbkTOb228vngm7at6/8/lkKAwPJW94yMUBdFMn+/eXz42yNjJSXvr5k9erO584HHijP88d/nPzf/3fy3veWfz8OvjHAbZ94SB71kp3ZdlxrUe7Wcgeok6RWqc06QN22kkPURaaOgs8lRD1VgLqtmaYQNQAAAAAAAAAAdMG1P702L/38SzPcmsO/E1siG/o25Esv+pIANQAAAAAAAAAAwEFqhyy6xz3ucfnOd76TF7/4xbnmmmtmfVxPT0/e8pa35E//9E9TnSzqeQz54Ac/OGHbq171qi5MAnCM+OY3k/vu69y2f38ZlB6rXk/WrCkjp1OpVpNVq5Le3mRwsAwEt7Va5bpr1hzetn178q1vJU972sLvB0e/zZuT884rL0ezRqOMDzebndtvv70Mbx/J7rmnvG/dNDJSznHrrYu/9oc/nNx5Z+e2Vqt8Phz/nDpbQ0PlzGvWdMb/77wz+ehHk9/93eQP/zD5wheSm24q96lUctvHNy5OiLoLAepKKvN+TbQSQ9TNNGfcZzYh6pkC1GPPJ0QNAAAAAAAAAADL59qfXpuL/+HiDDe7H6Be17suV/3+VTl9y+ndHgUAAAAAAAAAAGDFEKFmSTzsYQ/L17/+9XzmM5/J//gf/yPf/OY3UxTFpPuuXbs2v/d7v5f/+B//Yx772Mcu86Qrz9e//vXcdtttHdtOOOGE/PZv/3aXJgI4Blx5Zef1RiMZHveP4Ov1ZN26pDLLGmmtVu6/b19niHp4OOnrK9cbe34RaigNDCR7905+2733Jrt2Le88i2337m5PUNq9O9m2bXHX3LYtue66zm2tVnLgQDLFa4HUaoei0SmKcv/x8fH2OgMDZeR/bJz5e99LTj01Of305JnPTJ7whPI5defOpFbLbZ/cnBNfdn+2r5ni/NPpQny6rUiRRquRenV+L9lXUoh6NgHqtulC1LMNUI89rxA1AAAAAAAAAAAsvRu335gXfu6F2d/Y3+1RsqZnTa548RUC1AAAAAAAAAAAAOOIULNkKpVKLr744lx88cW5//77853vfCe333579u7dm3q9nk2bNuVxj3tczjrrrPT29i7oXHfccceCjj/vvPOmjGQvt6c//ekrZhaAY8KOHclNN3VuG5okcrlmzewD1G2VSnncnj0T11+79vD1G28s59jc3VAodN2BA4cD1EUxMUbcaCSjo8s/12J64IFuT1B64IHFfSybzeSqqzpj00UxdYC6t7eM8U/2vFoU5dd6ZGTi9gMHyhD12OO+/OXklFPKoPVjHpOceWbyb/+WfPOb+Xzx76mlkmQOP193MT7doUiKVpFKdX4DFSlyz8A92bR6Uypz/e/XIplLgLptshD1XAPUCzk/AAAAAAAAAAAwe9u2b8tzP/HcDI4OdnuUrK6vzqee/6mcueXMbo8CAAAAAAAAAACw4ohQsywe+tCH5sILL+z2GAAw0S23dF4vionh01WryrjpfNRq5fEHDhzeNjJSnmdsFPSWW5LzzpvfOeBosW9fGUa+445k+/Yyzj42lFyrJdVq18ZbFMPD3Z6gNDycvO99i7vevn2d21qtyfetVMqv62wi2OMD1kWRDA52fh/s35+8971JX1/yyEcmv/ALydat+fyjmrl097bcM3xwjZk61CslPp2kVqnlKSc/JfuG9+XWnbemmEtE+6C1vWvz+M2PP6IC1G1jQ9TzDVC3DYwMzPtYAAAAAAAAAABgatu2b8v5f39+9o3sm3nnJdZX68unf/fTOecR53R7FAAAAAAAAAAAgBVJhBoAOLbddlvn9UZj4j59fQs7R19fZ4S6fZ6ensPXt20ToebYVhTJ0FDy1a8m998/MT6clFHjLgV1j0rjg/tzURRJc0xkeGho8q/ZdMcvxPiQ/4ED5XPqT3+a3HFHPn//13LpuQO5pzJwOOB8hHzrtAPU/fX+9Nf7k2TOIeq1vWtzxuYzUq925yX/6GwC4zMYagzl6juuXvA6d+67M7+w/hfSM/a/uQAAAAAAAAAAwIJsH9ieCz55QfYM7+n2KOmr9uVjF31MgBoAAAAAAAAAAGAa1W4PAADQVbff3nl9fIS6Xk+qC/yRqVot15nuPD/5ycLOAUe6SiX57neT++5beKCYpTU+QN1qdV5v7zOZuUbEp9p//PqNxqEZPv/woVz6K/fl3ta+OYWbV4rTjz/9UHw6STav2ZxHb3x0KrOsaHc7QJ1kRQWfe6o9K2oeAAAAAAAAAAA40m0f2J5zPnBOdg/t7vYo6an25P2//f6cf/r53R4FAAAAAAAAAABgRROhBgCObXv2dF4fH1Kt1RbnPOPXGX+e8XPAsaYokrvu6vYUzMb4569Wa3bHzTVAPdNxk4SoP//woVx6zp7cu6qV1hH6ave2nbdlx+COjm2zDVGvhAB1Wy2L9N/PBXrU8Y/q9ggAAAAAAAAAAHDUGBgYyDM+9IzsPLCz26Okp9qT9z77vXnu457b7VEAAAAAAAAAAABWvO6XqQAAuqnRmP72+UZT57rOTHPA0W54eGLceLxWK6keoWXhlagdj57L89xkwenZRqiX2OdPG86lT2t0BqiLZIZu84rTSiu37Lglj8/js3nN5kPb25/fuvPWFCkmHLeSAtRttdTSzAx/r5f4/AAAAAAAAAAAwOIYGBjIWR86K/cP3t/tUVKv1HP5BZfn9874vW6PAgAAAAAAAAAAcERYOXUqAIBuqM/w41AxMfQ5LzOtM9MccLTr6yv/HhRFGaNutSb+vanVZg5VM3ujo+XHSmX2ce/216f9talUOq9PZaFB/0pl2nN8/jFFLj1/JPeuyuEAdXLEBajbWmnl53t/nk2rN6Uy5rGbKkS9EgPUbd0KUQtQAwAAAAAAAADA4hkYGMjZHz472we3d3uU1Cq1vPOZ78zLn/jybo8CAAAAAAAAAABwxFh5hSoAgOW0YUPn9dq4aOViBW/HrzP+POPngGNNpZJs3pzcdVd5fbIocq228Jgxh41/Hprp8W0HqCuVzv2KYsZIdIf5fg0nW79SSbNS5INPLHLv6nEB6iPYht4NOeOEMzoC1G3jQ9QrOUDdttwhagFqAAAAAAAAAABYXOd+9Nz8fN/Puz1GapVa3vb0t+U1Z72m26MAAAAAAAAAAAAcUY6SRBcAwDyddlrn9fq4iGejkbRaCztHq1WuM915HvnIhZ0DjgZPfWqyapXQdLfMFN2f7vbZBqjnuu9YU3xf1IpK/v0hkwSoj9Bvow29G/KELU+YNiq9ec3mPHrjo7Oud92KD1C3VZbpCyJADQAAAAAAAAAAi+tJ73tS7thzR7fHSDXVvPmcN+fSp17a7VEAAAAAAAAAAACOOCu/VAUAsJQe9ajO6+Pj0EkyPFyGcedreHjitvHnOf30+a8PR4OiSHp7k2c9K/nud5Pdu5MDBzr3qdUEqhfTZM93Mz3Gk0X52/u3P04VmV6Kr12lkj09jdy+cfz2xT/VcpkpQN22ec3mbFq9KZUj6O9ELbU0M0PsfAGq3mcLAAAAAAAAAAAW1da/25rbd93e7TFSTTVvPPuNedPT3tTtUQAAAAAAAAAAAI5IItQAwLHt8Y/vvF6plCHckZHD2w4cKLfVanNfv9mcGNLt7Z0YYz3jjLmvDUebSiVZsyZ5xjPK2PH44PHxxyf9/d2ZbbG8733J/fd3e4pk48bk+c+fuH3DhmT16onbR0aSBx8sP+7dW4am289j119f3qd2fLrZ7AxRt59Xa7XyUq8n1XnEgvfuTRqNw9fXrk3WrMmGJFf/41Ce+bzdR3R8Okn6Kn2zClC3HUkB6ralClHXUkuRKQLoAACsPEVRvuYbaXT+HD86kjTn8b+/zGS0UV7aGo2kWSTVyhH/OgIAAAAAAGCpnPuBc/PDB37Y7TGSJK8/6/V563lv7fYYAAAAAAAAAAAARywRagDg2LZ5c/KEJyQ33XR4W39/Z4Q6SQYHk3XrJsajp1MU5XHjjY/onnlmsmnT7NeFo1E7VDw8XF6vVieGint6ysuR7PTTV0aE+mEPK2PQ4031GBfF4Xj04GB5vSiS7dvLOPTo6NTnKorO59R6PVm1qjzPbJ9TW60ybj12/zHH/9r9q3J15Xl5Zv7X7NZbgWqpHZFR6flY7BB1LUsQKQQAYOk0Gknj4GuIaq0zAl2tJrV5vGnNTIaHksaYn0EPzVAtX4sCAAAAAADQ4fz/dX5u3nFzt8dIkrzizFfkHb/+jm6PAQAAAAAAAAAAcERbgt/kBwA4wlx4Yef1ej3p6+vc1mgk+/aVEdTZaDbL/RuNzu19fRPDr+PPD8eq9eu7PcHS27u32xOUBgbmd1y1mqxendx3X/LVryY33JAMDR2+faqIclEc/rzRKM+/Z8/E4P9U2nHyscaF4n7tzOfl6pdfPbv1VpixAepi7GM1R6PTxcC7sM5UFjNAvRTrAQCwhBrNwwHqFaFVvi5pdXsOAAAAAACAlePCj1+Y723/XrfHSJK87Jdelnc9613dHgMAAAAAAAAAAOCIJ0INAPDUpyYnnNC5bfXqMrY6VqNRRlMPHEhaU9SJWq3y9j17Jgao2/HWsbZsSc4+e2Hzw9GipyfZtKn8eLTav3/qUPNyGhuOnouRkTI8/f3vl891ycTnytnev1arjFEPDEz9nJqUUf/2udr6+yee58lPzq894tcWFKLurfbmkRseOe/j52NsgLpZNPOD+3+QRqsxw1ET7dy/M9/4+Tdy3d3XLWie6+6+Lt/4+Teyc//OBa0zlaUKRgtRAwAcIcb/byUrQitprsS5AAAAAAAAlt/zPvG8XHvXtd0eI0ly8eMuzruf8+5ujwEAAAAAAAAAAHBUqHd7AACArqvXk9e9Lnn72w9vq1SSdeuSvXuToujc/8CB8lKvJ7VauW9RlKHUqWJK7fXGR1Nf97pyHaDU25ts3lxGiZvjorJnnFHediT77GeT449Pdi5N4HdW1qwpn7s2bz78/NX26EcnJ5888Zjdu5OvfjW58sry81qt8/ZGo/yajX++HKsoyvONfx4cGSm/1scdN3Hdokj27Zu41vig/9Oelpx4YpIcClE/8yPPnHqWSfTX+7P1lK1JknV963Lj/TfO6fix6pXyeb1RdP43YX19ffY19qVI+TjVU08OPhytopVWWtk3si8377g5Z2w+I/Xq7P77sHP/zkPzDjWGct3d1x26L3Nx3d3XZahRBspvvP/GnPnQM7Nx9cY5rzOVpQ5Ft9JKLbWZdwQAoDuKIsm4N6AZ/4Y0zVaSaV5XzFezOLj22FmmmQMAAAAAAOAY9KJPvyhfu/Nr3R4jSfKcRz0n7/ud93V7DAAAAAAAAAAAgKOG4iEAQJKcfXZy/vnJVVcd3larJevXlwHUyWJEjcbU0emxqtUyQD0+rnrBBclTnrKwueFoVa2Wl7HWri3/Th7J+vvL+7V+fRm5X26rVpXnr9eTnp6JEeqpHuN7700+85lkYKDcvx0Jb7UOX2ajfa7xIepmM9m1K9m48fBzZbOZ7NmTjI5OvA89PZ3b/uAPOq7OFKLuSU9Gc3jdsQHqJNm4emPOfOiZ04ao19XXZaQYyXBzeMJtraKVaqWanmpPRlvleSqppK+nLwdaB9JsNVOtVFNJJUWKQwHqtoGRgVmHqMcGqNvmE6IeG6BuW8wQdbEUIcFJNNMUogYAWLEmed0wOu7n6UolqVYm7rdQIyNJa5o3RVmeH1cBAAAAAABWrJf+w0vzr7f/a7fHSJL85mm/mY/97se6PQYAAAAAAAAAAMBRpTrzLgAAx4jXvjY56aTObbVasmFD0tc3vzX7+srjxweoTzopueSS+a0JHLk2bCg/9vZ25/z1g0Hj1atnf8zAQPJf/2uye3dy4ECyf38yNFTGoRuN2Qeo29oR6/FarTJE3Wgkg4PJgw9ODFDXamXUf6xTT01+4zcmLNcOUY9VPfinkUZ6Uoase6o9k8aaN67emHNPPjfPfPgz01/vn7DOcDGcVjH5fW+ldei2nmpPx8ckqVVrqRwMcY8PULe1Q9SN1tRvdjBZgLqtHaKejckC1G033n9jdu7fOat1ptLMNLG/JbDc5wMAAAAAAAAAgCPZJf/7kvzzbf/c7TGSJM849Rn55MWf7PYYAAAAAAAAAAAARx0RagCAtrVrkz//82TTps7tlUqyZk2yfv3sw7G9veX+a9aUx4+1aVN5nrVrF2du4Mhx2mmHP9+4cXnPPfZ8D33o7I97+9uT224rw9PNMXHfoljYPK1WeSmKw5fR0eSBB8rw9fj1q9XkuOMmPqf+1/+a9PRkMr/2iF/LmQ89szw81dRr9UO3tUPUp288fcoRew6uu/WUrYdC1O11RpujGW2NppLKoe0dd2+SEPWEh2CKAHXbdCHq6QLUbbMJUU8XoG5bSIi6W0FoIWoAAAAAAAAAAJjZG/75Dfn0Dz/d7TGSJOc87Jz844v/sdtjAAAAAAAAAAAAHJVEqAEAxtqyJbn88uSkkybeVq+X4ejjj0/WrUtWrSpj0+3LqlXl9uOPL/er1yeucdJJ5fpbtiz9fQFWnkc96vDn7ajycjjuuPJ8bSecMPMxAwPJm96UfP3rnfHpZOEB6vFrtS9jr49Vq5XPreOfVy++ODn//GmXX9+/Puvq6zoC1G2NNLJ3eO+sxnzU8Y/qCFAXKWcsUqSSyqHrYzWL5qEQ9XitojWrUPJkIerZBKjbpgtRzyZA3TafEHW3Q9DdPj8AAPNUqSz+BQAAAAAAgAne/MU356P/9tFuj5EkedKWJ+XKl1zZ7TEAAAAAAAAAAACOWiLUAADjbdmSvPvdyQUXTH57pZL09JTR6bVrD19WrSq3TxU3uuCCcl0Bajh2Pf7xndfr9aSvb2nP2dc3Md58yinTH7N9e3Lppck110y8bTED1FMZG6JetSp5yEMm3odHPCJ5xzumXWbv8N7cvOPmDBfDU+5z3+B92TG4Y9p1dgzuyK07b50QoD407sE/k5ksRN0qWmkWsw8kjw1RzyVA3TZZiHouAeq2uYSoV0oA+rZdt3V7BAAA5mJVf7J69eJfJnlTGgAAAAAAgGPZn375T/O+77+v22MkSc7YfEau+g9XdXsMAAAAAAAAAACAo5oINQDAZNauTS67LHn72xcejd6ypVznssvKdYFj1+bNyROe0Llt1aqp4/ULVamU64916qnJunVTH7N9e/l89bOfJa3OePKyBKjbenuTjRuT9esnPj4nnph88pPlbVPYO7w3L/zsCzMwMjDjqW7deeuUIep2gLpIMWmAejbGhqjnGqBuGxgZyA333DDnAHXb2BD1fALUbbMJUY+Ojs5r7aUw2hpdUfMAAAAAAAAAAEC3vfOr78x7r39vt8dIkjxu0+PyjVd9o9tjAAAAAAAAAAAAHPXq3R4AAGBFO/vs5Fd/NfnmN5Mrr0xuumn2x555ZnLhheUadT92AQddeGHnc0m9nvT3J8PDZeR5MULPlUp56eub+Pxz5plTH7d/f/L//r/Jgw8mQ+MixcsRoG7Hptvz9/RM3OcRjygD1A972JTLtAPUN22f3XN2kSK37rw1SbJ5zeZD2xcjQN3WKBrZO7J3XgHqJGk0GxnJyLzPn5Qh6qvvuHpBayRliPrck89Nz2Rfn2TK7XPRX+/P1lO2LiiYnSSnrjt1UeYBAAAAAAAAAICjweXXXJ53fetdaaXV7VFy2vGn5bpXX9ftMQAAAAAAAAAAAI4JaogAADOp15Nzzy0vO3Ykt9ySbNuW/OQnyZ49SaNR7rNhQ/LIRyann56ccUayaVO3JwdWoqc+NTnhhOS++w5vW706GR1NWmN+sWc+0eexEedqtVx3rA0byueoqXziE8k99yTNZvnc1p5juQLU7fmTZGSknKNWO7zt4ouTd7wjWb9+ymXmGqBuGx+iHhugTpJatZZGqzGnNccbbY7O+9h6rZ6R5sIi1Iulv94/Y9i5llqamV9wux2gTrLgEPXa3rXzOg4AAAAAAAAAAI427/nme/IX1/7FighQP3zDw/PNV3yz22MAAAAAAAAAAAAcM0SoAQDmYvPm5LzzygvAfNTryetel7z97Ye3VSrJunXJ3r2d28bGn8cGmtumur293vhjzj+/M+o81rZtyXXXlbcvd4C6fa7x846OlvOcemryX/5LcsEF0y7RbDXzks+9ZM4B6kMjHAxR79i/I7uGdh0KUCdJtVJNvVpfcIh6viqp5Jc2/1Ju23XbvIPMi2FsIHom8wlRT7b+fEPUtUzxvQ4AAAAAAAAAAMeY91///vzZ1/8szWJ+byy/mE5ed3K+8bJvpLe3t9ujAAAAAAAAAAAAHDOq3R4AAADgmHP22WUQeqxaLVm/PqmOeZlWqRy+TGay26vVcp3xsekLLkge+cjJ12k2ky9/+fD10dHZBajHnn+mWWdj/PlOOin5279NvvGNGQPUSVKr1vLKM1+ZamX+L3WLFNk5tLMjQN3WDlEvt0oqefTGR2fzms3ZesrW9Nf7l32GZG4B6ra5hKCnW3+u91uAGgAAAAAAAAAASh+54SN569VvXREB6i1rtuRbf/CtrF27ttujAAAAAAAAAAAAHFNEqAEAALrhta8tI8tj1WrJhg1JX9/81uzrK48fH6A+6aTkkkumPm7btmTPnmRkJNm7NxkamjlAnRwOVY/fd6YY9VS312rJmjXlfdi8OTnjjOQ5z0l6emae5aCLHndR3vNb71lQiHo6yx2iHhugbutGiHo+Aeq22QShZ7P+bO+3ADUAAAAAAAAAAJQ+c/Nn8qYvvSmNotHtUfKQ1Q/J9a+4XoAaAAAAAAAAAACgC0SoAQAAumHt2uTP/zzZtKlze6VShpjXr096e2e3Vm9vuf+aNRPjzps2leeZ7hd3rrkm2b+/vDTm+ctGU8WoJzNZhLpaLe/H2rVJf395/YEH5jXK0RKinixA3bacIeqFBKjbKpk6Sj6X9We63wLUAAAAAAAAAABQuuKHV+T1X3h9Rluj3R4lG1dtzDWvvEaAGgAAAAAAAAAAoEtEqAEAALply5bk8suTk06aeFu9XgaZjz8+WbcuWbWqjDS3L6tWlduPP77crz5JFPmkk8r1t2yZ/PxDQ8k//mNy550TA9LzNZsQdXufqSLVbaOz++Wn0dHR3HjvjfnnH//zoUtvtTd/8IQ/SKtodVyKLM79XOoQ9XQB6rblCFEvRoC6bbJA9HzWn+p+V/1PHAAAAAAAAAAAkCS5attVec0/vWZFBKiP6z8u177q2mxZO8W/YwMAAAAAAAAAAGDJLV0xCwAAgJlt2ZK8+93J+96XfOlLE2+vVJKenvIyFxdckFxySRmonsyePcmnP5088EDn9sWIURdFZ2C6Uulct337+G3jzeI+f+uub+X933t/9g7vnfT2VfVVGRwZPHyaMRHqSmaIYM+gHaJutBqppLJogevZBKjbtp6yNdfdfV2GGkOLcu6xFjNA3VZLLc00F7z+1lO25ut3fj2NVuPQuov1+AMAAAAAAAAAwJHs2p9em5d+/qUZbg13e5Rs6NuQL73oSwLUAAAAAAAAAAAAXVbt9gAAAADHvLVrk8suS97+9jJKvRBbtpTrXHbZ1AHq3buTT3yi/NhsLux8U5kpZj3Z7fVx75O0adO0S/zkgZ/kv3/rv08ZoE6Svlpf1vSumXyERYgW1yq1nLr+1AUHrdvmEqBu23rK1vTX+xfl/G1LEaBuq6WW4+rHLXj904477dB6AAAAAAAAAABAcuP2G3PxP1yc4Wb3A9Tretflqt+/KqdvOb3bowAAAAAAAAAAABzz6jPvAgAAwLI4++zkV381+eY3kyuvTG66afbHnnlmcuGF5RrjY85jDQ0ln/lMMjBQXm+1Dt82Uzh6rooiqUwRZx5/rqJIeno6tz3+8dMu//GbP55GqzHjGH21vqQ3GRwZnGSMIvPtR48NRv9878/nt8g46+rr5hSgbtt6ytZcfcfVizJDe72l1DP+az1PAtQAAAAAAAAAAFC6cfuNufDjF2Z/Y3+3R8manjW54sVXCFADAAAAAAAAAACsECLUAAAAK0m9npx7bnnZsSO55ZZk27bkJz9J9uxJGo1ynw0bkkc+Mjn99OSMM5JNm2a3/tVXJ7t3H77ejkEvdoB67PpThajHGx8m/uVfnnb3u/be1XF9cGQwo63Rjm2NZhmprqWW/nr/ov2C1dgA9R277kgzzUVZ94HhB3LHrjvy8OMfPqfjrrv7ukU5/9j1ljpEDQAAAAAAAAAALI5t27fluZ94bgZHB7s9SlbXV+dTz/9UztxyZrdHAQAAAAAAAAAA4CARagAAgJVq8+bkvPPKy2LYtq2MWo9VFEsXoB6rUkkzRapTnKqoVDI4OtCx7X2Nr2fgqzdM2LdVtFKtVPPtu7+dRqtxaPt9g/elKIr0VHtSq9WSJIONzl+qqqSSIoeHGPv5XBzff/yhAPXte26f1xpTaa832xD1dXdfl6HG0KLOMNQYEqIGAAAAAAAAAIAjwLbt23L+35+ffSP7uj1K+mp9+fTvfjrnPOKcbo8CAAAAAAAAAADAGCLUAAAAx4JGI/nylzu3FUXSai39uYsie/uSlzw/ecUNyUU/mrhLs5oMN0cOXb/5Ucfl/wzcmHR2qbNjcEfuGbgnj9/8+Ny3/760xsy/f3R/mkUztUot6+rrUu/pfMnbKlrzjk6Pt2toV26+/+bcv//+RVlvvNmGqJciQN0mRA0AAAAAAAAAACvb9oHtueCTF2TP8J5uj5K+al8+dtHHBKgBAAAAAAAAAABWoGq3BwAAAGAZfPObyZ5xv2g0PLwsp97bl7zwBcn3Tkre8Ozk84+duE+rWum4/sVztkzYZ8fgjty689bsG9mXm3fcnFYxeUC7WTSzr7Gvc/2ilWbRnP+dGGe4ObxkAeq22/fcnjt23THl7UsZoG5rh6gBAAAAAAAAAICVZfvA9jztg0/L7qHd3R4lPdWevP+335/zTz+/26MAAAAAAAAAAAAwCRFqAACAY8GVV3ZebzaTRmPJT9sOUN90sCndqkwMUReVpFk7HKG+f2N/vnvGxo512gHqIkWSZGBkIHuH904boh4ZHSnPucgB6pHmyKKtNZOpQtTLEaBuE6IGAAAAAAAAAICVZWBgIM/40DPy4P4Huz1K6pV63vvs9+a5j3tut0cBAAAAAAAAAABgCvVuDwAAAMAS27Ejuemmzm2jo5PvW6kkRbEopx0foG5rh6iT5Hk/Tooko9UirVYZlP7LZx+Xu4fuO7zO8N7cN3hf5yJFGZre09qT/mp/KpVKms1mx1strepZld0ju6cNUE8VsZ7Kcgao227fc3uS5OHHPzzJ8gao29oh6q2nbF3W8wIAAAAAAAAAAJ0GBgZy1ofOyv2D93d7lNQr9fzlb/xlfu+M3+v2KAAAAAAAAAAAAExDhBoAAOBod8stndeLImk0ys/HRqcrlUWLUE8VoG5rh6iLSvK8HyXD1SLNopl//KWefO7kvcm+vUnK6POBxoEJxxcpZ2wWzexv7k811VQO/mnbP7p/2gB120hzJL213lnt1y3tEPU9g/cse4C6TYgaAAAAAAAAAAC6a2BgIOd85JxsH9ze7VFSq9Tyzme+My9/4su7PQoAAAAAAAAAAAAzqHZ7AAAAAJbYbbd1Xm/OEGauVKa/fQYzBajbWpXkj38r+cwvJs1KcufGav7bBasO3T5TgHrs9VZaHdtbRSu7R3bPeuaZAtPdDFC33b7n9q4FqNvaIWoAAAAAAAAAAGD5nfvRc3Pn3ju7PUaqlWre9vS35TVnvabbowAAAAAAAAAAADAL9W4PAAAAwBK7/fbO661W5/VqNSnGhJ0rlc7rczDbAPWhUSrJG5+VvOmblXzw3DXZ118GsGcboB67vZVWKkUlRYo0i2aqlbm979JIcyS9td4J2xvNxpzWmUorrZl3OgIMNYYyOjqanp6ebo8CAMBCNJtJYzQZHklGx/3Mu3/iz+ILVjSTodEZdtqdVGqLf+6R4aQ57rVEtZJUqkmP92sFAAAAAACODE/526fkjj13dHuMVFPNn5zzJ7n0qZd2exQAAAAAAAAAAABmSYQaAADgaLdnT+f18RHqWq0M0C0wRD3XAHXbaC35TxcUWd2X9NV6MtwYzlBzKJVK5dA+RVFMGaA+tE+KNIqFBaMnC1HXa/WMNEcWtO5K0F/vz9ZTtua6u6/LUGNo3uuc+dAzBagBAI50I6PJ6MGfcYsiGf+GKfN7T5rptZIUM7wxSyNJvbn45y4mOXez/X9qSX3im9EAAAAAAACsJFv/bmtuffDWbo+RJHnj2W/Mm572pm6PAQAAAAAAAAAAwBxUuz0AAAAAS6wxQ5i5Wk36+jq3VSrlZZaaleQlz597gHq4nuxcVUmrWslwczi1Si3DzeHUq/WOy3JqNBuppPO+jw9Td8PanrU586FnzuvYdoA6SbaesjX99f55rXPmQ8/MxtUb53UsAAArRKt1OEBN0mjOHMcGAAAAAADoovM+dF5++MAPuz1GkuSPnvRHeet5b+32GAAAAAAAAAAAAMyRCDUAAMDRrj5DxLkoyn16x4WW5xCirhXJK29IqsXsxxquJ7tWVVIcPEWRIjuHdqZI5yKjzdEJ25ZSK620itaKClGv7VmbJ5/85GxcvXHOIeqxAeq2+YSoBagBAI4SM71JzbGoKUINAAAAAACsTOf/r/Nz0303dXuMJMkrznxF3nnBO7s9BgAAAAAAAAAAAPMgQg0AAHC027Ch83p13EvB1sHg2qpVE2+bQ4j6oh8l7/nCzCHqopKM1pLd/TOvO58AdTXVCQHpuRptjU4IUY80Rxa05ny1A9RtcwlRTxagbptLiFqAGgDgKNIa//P1wn52nrXZ/H+kaks+xRREqAEAAAAAgJXnwo9fmO9t/163x0iSvOyXXpZ3Petd3R4DAAAAAAAAAACAeap3ewAAAIAOQ0PJ8HDSbHZuv/HGZONRHsE9cKC8/61W0teXrFkz6wB0iiIZHCwfu0ol6e9PVq9Odu9Odu1K9u1LGo1yv/alrdEoH+96PVm3Ltm793CYuq09RzF9EPqiH5UfL3120ho3epEyQN2qVrJ3VTVFZfrQ23wC1EnSSivVVNNT7clwc3jOxx86f2s0PdWeVCvVBa2zEOMD1G3tEPWN99845bHTBajbtp6yNdfdfV2GGkNT7iNADQBwlKmNr0HP/WfueatUpn9NsUw97Inn7Vr9GgAAAAAAYFIv+PsX5Nq7ru32GEmS333c7+bdz3l3t8cAAAAAAAAAAABgAUSoAQCAlaEoyljy0BQx3MHBiWHqo8muXWWEeqx6PXnIQ5LaDEG0ZjPZuTMZHT18/a67km3bkvvuS0ZGyst0sbf9+8t9+vrKePX+/RND1ElnFLso0qwktXHLThmiPhig3remnmZaHa27Ytxs8w1Qt7XSSnMRvl9GW6MLXmO+pgpQt00Xop5NgLptuhC1ADUAwFGoVk8q1aSY/k1hluzcjSl+xq536f9lVanM/JoLAAAAAABgGb3o0y/Kl3/25W6PkSR5zqOek7/7nb/r9hgAAAAAAAAAAAAsULXbAwAAACRJBgamDlAf7QYGJgaok6TRKOPUM9mz53CA+q67kv/9v5Ovfz25554yJF2d5Uu/ZrOMT+/fX8aoe3un3rdSyd7+Sp73+8nnHzfx5ot+XMl7/k8l1TEd6ZGeavau7UmrWpap25Hpov1nTIi6Vl14BK5V6UJUb5HMFKBua4eox5pLgLpt6ylb01/v79gmQA0AcJSqVsqf9ytd+H8R9VST+iQ/69drSU8XQtCValKf5nUPAAAAAADAMnvV51+Vf739X7s9RpLk13/h1/Ox3/1Yt8cAAAAAAAAAAABgEdS7PQAAAECSMnx8rJruvo+MlHHo2hRBtlarjHePjCTf+U5y++0Tb69UyhB1szn9HEVR7ttqlVHsnp5k1apkeLjcNsbe3iIvfEGRm05IbtiSpEgu+tGYHSqVXPTj8tNLf6vIaE81A6sPvwRtFuUs7RB1kjRajdSr9VQqlVQr1dSr9TRajelnPgrNNkDd1g5R33j/jfMKULdtPWVrrrv7ugw1hgSoAQCOdrVqsqo/aTWT4crE23t6lu7cq1K+vmi1klTKKPZs3zhnvor95WudQw5+3uO9WgEAAAAAgJXjkv99ST734891e4wkyTNOfUY++/uf7fYYAAAAAAAAAAAALBIRagAAoPuKYvJA8thIWLW69GGybiiKw6HosdvGXm82p47AjY4mg4PJF7+Y7Ns3+frJ7CLU4889Oloes2ZN+XFkJGk0Dgaok5tOKHdrVZJLn50UORyiLooijXo1v3FXT/7i60Ve+1vNQ0HpVtGaeN6UQWoh6swpQN22cfXGnHvyuelZYCxw6ylbMzo6uuB1AAA4AlQqSa2e1IvDrxuS8g1w+vu7N9dSaDSTynC3pwAAAAAAAJjSG/75Dfn0Dz/d7TGSJE858Sn5xxf/Y7fHAAAAAAAAAAAAYBGJUAMAAN1XqZShs/GR5LEhtFarvBxt2hHqyba3NZtT3/ddu5L/83+S/fsn3tZqlSHpuT5uY0PURVFGrtevT1atyt56My/8zb25aVPn16pVSd7w7KSoJL/xs3pG65W0qpUkRX5lZ39Wr6pn/8iuFCkmnm/sqYWoc/091+esk86a83GLFY4WoAYAAAAAAAAAgOXz5i++OR/9t492e4wkyZO2PCn/8gf/0u0xAAAAAAAAAAAAWGTVbg8AAACQJFm9utsTHHmGhpLPf35igLrVSoaHy9ubzTIkXUwff56gfUyrVa6xZ0/2juzLCy/YPSFAfei0leTSZyefe1wOBqhLH/rd09LXu3rGAPWhUx8MURcHZ26HqI8V+0b25fp7ru/2GAAAAAAAAAAAwBL70y//ad73/fd1e4wkyRmbz8hV/+Gqbo8BAAAAAAAAAADAEhChBgAAVoa1a5P+/m5PcWS5+upkz57D15vNMjzdjk8vor09rbzwt4dz00OnDkkXlTJE/SfnNfLPj2wlSb521kPz/cdvzJ4De6Y8btK1JglRH0uEqAEAAAAAAAAA4Oj2zq++M++9/r3dHiNJ8uiHPDrfeNU3uj0GAAAAAAAAAAAAS6Te7QEAAACSJJVKsnFjMjxcXhqNztvXri1vP9oURbJrV+e2SqXc3rZmTbJpU+c+//7vyQ9/WO7baiUjI+XHJbC3L3nhC5Kbtkx+e5EyQN3WDlHfv6aejzyzmjt//t3sa+6b83nbIep6tZ5ma+5R7VaxNI/HcmmHqM866axujwIAAAAAAAAAACyiy6+5PO/61rvSSvf/jdNpx5+Wb//ht7s9BgAAAAAAAAAAAEtIhBoAAFhZ+vrKy3hPeEJywgnLP89kduxIbrklue225Pbbkz17ymh2vZ5s2JCcdlryqEclj398snnz9Gu1WuV603nCE5ITTzx8/d57k3e+swxPDw/PPj5dGVOKHhu5nsa0AepKJalUUkwSex6tJm/5tWaaw3elyOzONZkiRUZbo/M+/kgnRA0AAAAAAAAAAEeX91///vzFtX+xIgLUp64/NV97yde6PQYAAAAAAAAAAABLTIQaAABgNhqN5LrrkiuvTH7wg+n3veGGw58/4QnJhRcmT31qGalejPN/97vJvn2zDkkfMnb/SmXG45uV5CXPnyRAfTA+nSSjaaU2/rhqsntVJY3K/OPTHCZEDQAAAAAAAAAAR4eP3PCRvOXqt6RZNLs9Sk5ed3Kuffm1Wbt2bbdHAQAAAAAAAAAAYImJUAMAAMzkW99K/vqvk/vum/uxN91UXk44IXnd65Kzz577GjfckHzqU4fPf+DA3APUYzQrSW0Wx9eK5JU3JDecmLQqY24oiqRSyYG0snt1Um0lmw+UN430VrO3N2mmNe/5mEiIGgAAAAAAAAAAjmyfufkzueyLl62IAPWWNVvyrT/4lgA1AAAAAAAAAADAMUKEGgAAYCoDA8nf/E1y1VULX+u++5K3vz05//zkta9NZvPLO0NDydVXJ7femlSr5bZGIxkdnfcYe/uSlzy/jEtf9KOZ97/oR0kqyaW/1Rmi3ltrZbCv/LxVTXasSlZV6hntqabVnP98TE2IGgAAAAAAAAAAjkxX/PCKvP4Lr0+jaHR7lDxk9UNy/SuuF6AGAAAAAAAAAAA4hohQAwAATGb79uQtb0nuuWfy24uiDEI3GkmzeXh7rZbU6+WlUpl43FVXJf/+78mf/3myZcvU59+zJ/n0p5Pdu5OensPbBwfndXeSMkD9whckN21Jbjix3NYRoq5Uyvs1zkU/TJJKLv2tIq1KsreeQwHqtlYtGUwj9aKeIhPXYHHsG9mXRqORet3LeQAAAAAAAAAAOBJc8cMr8pp/ek1GW6PdHiUbV23MNa+8RoAaAAAAAAAAAADgGFPt9gAAAAArzvbtyWWXTR6gbjSSgYFk165k377kwIFkZOTw5cCBcvuuXeV+jcbENe65J3nTm8rzTGb37uQTnyg/jjUykozO7xeRxgaok6RVSS59dvL5x47ZqSiSanXSePZFt9Xyni/Ws6+WDPYf3FgZczmo0Zrk/pIk2bxq84LXeNKWJwlQAwAAAAAAAADAEeKqbVflNf/0mgy3hrs9So7rPy7XvurabFm7pdujAAAAAAAAAAAAsMxEqAEAAMYaGEje8pbkwQc7txdFMjiY7N1bxqBnY2Sk3H9wsDx+rAceKM8zMNC5fWgo+cxnJm5vtcq49TyMD1AfWnKyEHWrNWmEOqtX598e1peBVfMa4ZjXW+1NkvRUe+a9xpO2PCkb+jcs1kgAAAAAAAAAAMASuvan1+aln3/pighQb+jbkC+96EsC1AAAAAAAAAAAAMcoEWoAAICx/uZvknvu6dzWbCZ79iTD8/xloOHh8vhms3P7Pfck739/57arr0527554/t27J4asZ2GqAHXbpCHqSc7zjifuzduePDjn8zMxPD2fELUANQAAAAAAAAAAHDlu3H5jLv6HizPc7H6Ael3vulz1+1fl9C2nd3sUAAAAAAAAAAAAukSEGgAAoO1b30quuqpzW7OZ7N2btFqTH1OvJ319SX9/+bFen3y/VqtcZ3yI+qqrkm3bys+3bUtuuWXicfv2TX3+acwUoD50ivEh6qJIKpVDt7/jacnbzpvz6TlotDU6YdtcQtQC1AAAAAAAAAAAsHLsHNg57e03br8xF378wuxv7J92v6IoFnOsSa3pWZMrXnyFADUAAAAAAAAAAMAxToQaAAAgSRqN5K//unNbUZQB6PG/7FOpJKtWJccdl6xfn6xZk6xeXX5cv77cvmrVxHNMtd7VVycjI8mXvzxx/wMHlixA3Rjz+aQh6hwMUP/6nE/POCOtkQnbeiozh6gFqAEAAAAAAAAAYOW48sdX5iF/+ZCcePmJk96+bfu2PPcTz83g6OC06+we3p09I3sy0pz474oWy+r66nzq+Z/KmVvOXLJzAAAAAAAAAAAAcGQQoQYAAEiSb34zue++zm37908MQNfrZWh61aqkOsVLqmq1vH3DhnL/sVqtct2x9uxJvvGNZO/ezu3DwxOD1bMwmwD1UJIda5MdY1rZ40PUH3+8APViGh0dnbCtXqlPsmdJgBoAAAAAAAAAAFaOK398ZX77k7+dJNk+uH1CiHrb9m05/+/Pz76RfdOus3t496HP9zf2L0mIuq/Wl088/xM55xHnLPraAAAAAAAAAAAAHHlEqAEAAJLkyis7rzcaZQR6rHo9WbcuqdVmt2atVu4/PkQ9PFyuP9YNN3RebzYn7jMLzUrykufPHKDetbb8vFGbPET9B89L/tNvJtXWZCskqcx5tCNSf60/z3z4M9Nf71/QOpVU0tPTM+ltk4WoBagBAAAAAAAAAGDlGBugbhsbot4+sD2/+anfzJ7hPdOuMzZA3bbYIeq+al8+dtHH8ozTnrFoawIAAAAAAAAAAHBkE6EGAADYsSO56abObUNDE/dbsyapzLG+XKmUx403dv1WK9m3r/zYNjo6+VoznL9WJK+8IakWk98+NkDdNlmI+kuPLD+esH+aEPVRrr/Wn60P25ok2XrK1gWFqHuqkweo2+qVeioHy94C1AAAAAAAAAAAsHJMFqBu2z64Pev+bF2e9sGnZeeBndOuM1mAum2xQtQ91Z68/7ffn/NPP3/BawEAAAAAAAAAAHD0EKEGAAC45ZbO60WRjIz7hZ5Vq5JabX7r12rl8WONjJTnSZJms/zYjlAXRdJodO4/iwB120U/St7zhYkh6skC1G3jQ9RjHYsh6rEB6rb5hqhnClC39VX78vRTni5ADQAAAAAAAAAAK8R0Aeq2gQzkJ7t+Mu0+0wWo2xYaoq5X6nnvs9+b5z7uufNeAwAAAAAAAAAAgKOTCDUAAMBtt3VeHx+ATpK+voWdY7Lj2+dpx6fbMer2x8nMM0Q9XYD60DhC1EkmD1C3zTVEPdsAdVu9Xp/T/gAAAAAAAAAAwNKYTYB6rKlC07MJULfNN0Rdr9Tzl7/xl/m9M35vzscCAAAAAAAAAABw9FO3AgAAFsePfpRcdVVy883JXXclBw6UceVqNVm1KnnYw5IzzkjOPz957GO7PW2n22/vvD4+Ql2vl/djIarVcp2xazcaSU/P4Qj1+I9tlcqs49NjXfSj8uMfPjvZtW52x7RD1JsPzPl0R4XpAtRtW0/Zmuvuvi5DjaFp95trgBoAAAAAAAAAAFgZ5hqgbts9vDvH9R3XcX2u9jf2J0l6a72z2r9WqeWdz3xnXv7El8/5XAAAAAAAAAAAABwbRKgBAID5GxpKPvSh5IorkgceOLy9KDr327s3uf/+5HvfSz784WTz5uS5z03+w39I+vuXdeRJ7dnTeb3Z7Lxeqy3OeWq1zgh1+zztx6v9cbII9Tydsjt5cJYB6rbJQtT3rU5a7Q73/MdZ8Z588pNntd9MIep6ZX4vt4uiSGUBX28AAAAAAAAAAGBh5hugbmuHqOcToG6bbYi6mmre9vS35TVnvWbe5wIAAAAAAAAAAODoV515FwAAgEl86EPJ+ecnH/xgsmNHGVBuXyYz9vb7708+8IHy+A99aHnnnszYMPRkFisKPN91quNeus1yneu3JE+Z5+8WtUPUybgA9VHu2ruuTaM1w/fDQVtP2Zr++sSIei21FEUx4dJsNSfdXhz8O9MsmvnB/T+Y9fkBAAAAAAAAAIDFtXNg54IC1G0LCVC37W/sP/RviyZTTTV/8rQ/yaVPvXTB5wIAAAAAAAAAAODodoxkxAAAgEVz333Ji1+c/NVfJUNDU0enZ1IU5fF/9VfJy1+e7NmzuHPORb0+/e3zvY+Ltc484tUD9TJAXSygn92oJfeuHRegXqQe90rVLJpzClE/+aQnp1o5/ABVp3iZXaRIK60p12kVrYwWo9k3si8377hZiBoAAAAAAAAAALpg49qN2bJmS7fHOKQyzb8de8OT35A3Pe1NyzgNAAAAAAAAAAAARyoRagAAYPb+7d+SF7wgufXWxQ0zb9uWvOc9yV13Lc6ac7VhQ+f1Wq3zerO5OOcZv077PO1fFGp/rI57qTb+sZ5FlHptIznr5/OYkVmHqButRm7ecXPq1XoqB+vcrbRSZG5/N8YHqgdGBoSoAQAAAAAAAACgS+59070rIkR9XN9xU952ya9ckrc9823LNwwAAAAAAAAAAABHNBFqAABgdn7wg+SSS5IDB5Zm/ZGR5EMf6k6I+rTTOq/X653XG42k1cqCtFrlOpOdpx2dHv9x7LHjw9izCFF/+wPJk++ex6xTmfmUR42ZQtTtAPXAyECSHIpQJ3MLUY8PULcJUQMAAAAAAAAAQPd0O0Q9XYD6FWe+In/xG3+xfMMAAAAAAAAAAABwxBOhBgAAZnbffcnrX1+GopdSo5H8r/+V7NmztOcZ71GP6rw+PkKdJMPDCzvHZMePj1C3Q9Pjg9NFMTFMPYsIdbIEIepjSDtEXRSdQenxAeokE6LTrbTSKlopiqI8vsihz9uX1sE/UxGiBgAAAAAAAACA7ulWiHq6APXLfulledez3rV8wwAAAAAAAAAAAHBUEKEGAABm9oY3JAcOLM+5RkeTj31sec7V9vjHd16vVJLe3s5tBw4kzeb81m82Jz5+vb2HQ9Lt6HQ7NF2pTAxhj4yU24vi8GU5Q9SzO9VRp1k00xzzdZ8sQD2VVlqH4tRFijSLw+sUKaYNULcJUQMAAAAAAAAAQPecc/I5y3q+6QLUz3/M8/Pu57x7+YYBAAAAAAAAAADgqFGfeRcAAOCY9qEPJT/5yfKe8777kq9/PXn60xdnvR07kltuSW67Lbn99mTPnqTRKEPPGzYkp52WnHRSctddh4PQ/f1l+HmswcFk3bpZx5+TlLHowcGJ2/v7D39erZbrFsXhbT095Yzj1xqvHaaewZuvTV74gmS0Nsu5jwKVVA5FoOfrSVuelPrBIPhcAtRtrbRSTTWVMRXv2Qao29oh6jM2n5F61ct4AAAAAAAAAABYDi/69Ivy5Z99Ocf1HZfdw7uX/HzTBaif86jn5AMXfWDJZwAAAAAAAAAAAODopF4FAABMbWgo+du/7c65v/rV5Oyzk97e+R3faCTXXZdceWXyve8lw8NJs1leiqK8VCrl5atfLT+OjJTn6+8vI9B9feVxY9fcty9Zs+ZwrHo6zWYZoB4fk+7rKwPYYz3xicn3v3/4eq1W7jP22Kli0zOEqD//2OTSZyebDiQ7ViWNuYao59DcXky91d6MtEZm3nGJPGnLk7Khf0OS+QWo29oh6mTuAeo2IWoAAAAAAAAAAFg+r/r8q/Kvt//roetLHaKeLkD967/w6/nY735syc4NAAAAAAAAAADA0a/a7QEAAIAV7IMfLMPM3dBoJF//+vyO/da3kle8InnrW5OvfCXZs6cMao+OJq3W4WBzUZTXR0cP38+RkWTv3mTXrjICXR33sqnRKNc7cKA8djKtVnn7nj0TA9TVarJ6dee2DRuSc89N1q/v3N7XVwamx2oHtMdHp8fvd1A7QN06ePPmA0m9OfnYk+pSgDpJRloj6a3OM0K+QGMD1EVR5JYdt8wrQN3WSitDjaF5BajbBkYGcsuOW1JMExwHAAAAAAAAAAAW5pL/fUk+9+PPTdg+XSh6IaZb9xmnPiOf/f3PLsl5AQAAAAAAAAAAOHaIUAMAAFP7zGe6e/7vfGdu+w8MJJdfnvzH/5j88IdlCHq+wd5WK9m3L6nVJr/9wIFk9+4yWD04mOzfX37cu7fcfuDAxGMqlWTduonB6F//9aS3t/zY3q9SORysHrv/2M/HBqknuZ/jA9Rtcw5Rd1E3QtRjA9RJUqlUctLak1JZYJG7WSzsQa/k4BxTBMcBAAAAAAAAAICFeeO/vDGf/uGnp7x9sUPU0633lBOfkn988T8u6vkAAAAAAAAAAAA4NtW7PQAAACyp4eGk0UiaY+KvlUryox91b6al1myWAeRGI+npSVatKmPGc3XHHWWEuZuGhpJ77klOOmnmfbdvT970puS22zq/3gs1PHw4CD1Z0LrRKC8zqVbLAPX4qPX55yePfWwyOpqcfnry+MeXAe12aLhaTdavLwPbrVa5rVKZMjzdNlWAum3zgeTetTPMvEJax+0Q9UhrZMnPNT5A3bZ5zeYkya07b02ReYbNF6CSSh698dGH5gAAAAAAAAAAABbXm7/45nzoxg9Nu8/u4d2Les7dw7snDVE/4YQn5F/+4F8W9VwAAAAAAAAAAAAcu0SoAQA4OjWbye7dZUB4MrffvqzjLJvh4WTXrsOx4iSp15Pjjkt6e+e21hVXLOpo8/a9780cod6+PfmjP0ruvHNpZiiK8jHt7S1j0XPV15esXn04LN120knJJZckN99cft2S5JnPTB54oLy01WrJhg3J/v2Hv6fba00Sop4pQJ0kO1ZNM+8KiU+PNdIayS8/5Jfzgwd/sGTnmCpA3datELUANQAAAAAAAAAALK0//fKf5n3ff9+0+yx2gHrsumND1GdsPiNffcVXl+RcAAAAAAAAAAAAHJuq3R4AAACWxJ49Uweoj1bNZrJzZ2eAOkkajYlh6pns35/ccsvizjdft9wyffh5YCD54z9eugB1W1GUc6xbN/ugd29vsn59smbNxAD1pk3Jn/95snZtGZhedbAK3d9fhqmPO65z/0qlXGf9+sPnr1SSarVj7WYl+eATZw5QN2pT3LjIAepKKjn9uNNTWeDCZz70zGxatylP2vKkRZqs00wB6rbNazbn0RsfveD7M1sC1AAAAAAAAAAAsLQuv+byvPf69067z1IFqMev/+iHPDrfeNU3lvRcAAAAAAAAAAAAHHtEqAEAOPqMjiZDQ92eYvkNDpah5Mk0m7N/TFqt5Cc/SQ4cWLzZFmL//uRnP5v69ne9q5x3ObRa5eOydm1y/PFlkHrVqjIK3b6sWlVuP/74cr96feI6J52UXH55smVLeb1SKT/ftKkMTZ98cvLmNycnnFDeNvbS01Ouv3FjGaRevboMV/f1Jb29qVVr+fjnkifcN/ldmDJAXcmSBKg39JVh5zX1NfNe58yHnpmNqzcmSTb0b1j0EPVsA9RtyxWiFqAGAAAAAAAAAICl9Z5vvif/7Zr/llZaU+6z1AHqtr3De/PtP/z2spwLAAAAAAAAAACAY8skNTQAADjCjYzMvE9laeOxXdFozHz7bO73wEBy112LM9NiueOOMi4+3re+lfzzPy/vLCMj5aW3twxC9/TM7fgLLkguuaQMVI+3bl15+YVfKKPS73tfefnKVyb/2k1x7vXNZj71pZG88Fn7ctOm5qHtHQHqJf4rMDZA3VZLLc00pzhicmMD1G0jzZH01noz0pzF3/UZVFOd1zrtMPStO29NkSni7wsgQA0AAAAAAAAAAEvr/de/P3/29T9bEQHqJGmllRMvPzH3vuneZTsnAAAAAAAAAAAAx4ZqtwcAAIBFN5socFEcfZfW1L8Ik6S8fTbr7NyZ7NixOF+LxbJ9ezI42Lmt0Uje8Y6kObeo8aLYt698rOZiy5bk7W9PLrts8gD1ZNauLff/q79KTj119ueq1bK+uiqf+sqmPGFXX1KtZsfqpFFPGZ9ehgZ7ZYqT1FKbdPtkJgtQ7xjckVt33rqg2TpUypD0jsG5f89vXrM5j9746Cnv6/xHEqAGAAAAAAAAAICl9JEbPpK3Xv3WNIup//3Zcgao27YPbs+Jl5+47OcFAAAAAAAAAADg6CZCDQDA0aenJ6nXuz3FkWvv3mRoqNtTdDpwIBke7tz2ta8l99/fnXmKYuI8UznzzOQ//+fk7/4uOfvs+Z3v134t+cY3kve/PznnnFkftn60mk8N/lb2r+tPY/bt50XRSit7h/dOettsQtTTBaiLzDEAPoMixYoJUQtQAwAAAAAAAADA0vrMzZ/JZV+8LI2iMeU+3QhQtwlRAwAAAAAAAAAAsNiU+QAAOPpUKslxxyUPPljGgpmbokharW5P0akokp/+NDnxxKR2MGD8P/9nd2fq70+e/ezkZz8rw92NRhk/X78++YVfSB7xiOS008p5b7st+au/Su64I9mzp3x8e3uTDRuShz88WbcueeQjk+OPn/p8PT3JhReWl3vuSa6/PvnBD5JbbkkeeCAZHS332bQpefzjs+9Rj8gtp63JK77zlux5cP9yPSod2iHqWqWW4eZwWpnd99WJa07MvpF92Tey79C2gZGBPHDggaUa9VCIOsmcA9Cb12xOz4M9GW7NMkw+jeP7jxegBgAAAAAAAACAJXLFD6/I67/w+hUboG5rh6jvfdO93R4FAAAAAAAAAACAo4AINQAAR6fe3uSEE5J9+8o47/io8tq13ZlrKbXjxm2VSmeEu7d3dvd7/fry2JVk167kc59LvvKVMu68eXNy113dnenBB5OHPjQ5/fTO7a1Wsnt38u1vJx/9aLJ9++HHc+zXo1IpA9Xf//7hbY96VHLuucmppyZ9fVOf+6STkt/5nfIyzrad2/Lfvv7fcseer+b6L1/fEXLuhlZaeXDowTkdc//g/R3XixSzDlgvxHxD1DsGd2S0NbooM+wa2pUdgzuEqAEAAAAAAAAAYJFdte2qvOafXjPtv/Upxv4bry7bPrg9Owd2ZuPajd0eBQAAAAAAAAAAgCOcCDUAAEevajXZsGFijLlSSZ7+9O7NtVS++c0y1tw2/n6fckryy7888zq9vckXv7j48y1Eq5X09CRDQ8lttyU339zticrH9gc/SJ72tM7tN92UXHttMjBweFuzWX6sVjuPbzbLj7Vaue2228rLv/xL8kd/lJx99pxG2jmwM5f9y2UZGB1Io9HoeoB6PmqpdVxfrgD12PPNJUS9Y3BHbt15a4oszi+fzTeEDQAAAAAAAAAATO2qbVflpZ9/aYZbw9PuV6lUsrq+Ovsb+xd0vuP6jsvu4d0LWuOfXvRPAtQAAAAAAAAAAAAsChFqAACg0969h6PIK8noaFKvJ41G8pOfdHua0g03lHPt2FFGpx94INm/vwyAtxXj4sSVShmjbl/asfCxx9x3X/L2tyfnn5+89rWzHuf9339/BkbL+HW9Xs+Ttjwp39v+vQXcwaSn2pPR1uiC1pitbgeox553NiHoxQ5Qz/X8AAAAAAAAAADAzK796bV52T++LMPN6QPUbb213iSZd4j6uL7jDn2cb4j6n170T7nwMRfO61gAAAAAAAAAAAAYT4QaAADo9OCDSU9Pt6foVKmU8em2/fP75Z5Ft2NH8t3vJq1WcuBA+XE2ms3Dn1erSV9feWlrB6mvuir5939PPv7x5LjjZlz2tp23dVxfU1+TX970y/nBAz+Y3Vzj1Cv1FEWReqWeRtGY+YApVFOdVUx6bMy5OPinW2YKQS9VgHq25wcAAAAAAAAAAGZ24/Ybc/E/XJyhxtCcjptviLodoB57fa4hagFqAAAAAAAAAAAAFlu12wMAAAArTF9fUnQv/julVasOf96YfxB50bVaZRR7tgHqyY4/cCDZsycZHU3q494r6J57kpe9LLnrrhmX2juyt+P6T3b/JHfuuzNra2vnPFa9Up/2+mzVUksllVntWzn4J8mixJ2rlYW95C1S5J6Be1KM+/uw1AHqsee/deet2TG4Y0nPAwAAAAAAAAAAR6Mbt9+Y537iuXMOSbf11nqzur561vuPD1DPtH0yAtQAAAAAAAAAAAAsBRFqAACg06ZNZYh6JanVJsaZV4r9+xcn2l0UyeBgsmvXxKD1ffclL3pRsnfv5MfOoF6vzylEPVVweq4h6lpqc9q/rZJKqovwcnVdfd2C1lnbuzaP3/z4VCqHI9rLFaBuE6IGAAAAAAAAAIC527Z9W57398/LvpF9C1pntiHq6ULT/fX+XPPya7JlzZZp1xCgBgAAAAAAAAAAYKmIUAMAAJ3Wr09OPbXbU3RauzaprtCXL4sRoB6r2Ux27kxGR8vrtYMh55/+NPnTP533srMNUc8Ump5tiHp8gHqmIPX42xcjRF2r1ea9ztretTlj8xmpVw/f3+UOULcJUQMAAAAAAAAAwOxtH9ieCz55QfYM71mU9WYKUU8XoO6r9eWjz/toznnEObn3TfdOGaIWoAYAAAAAAAAAAGAprdCKGwAA0DX9/cnDH97tKTqtWrVyI9RLZc+eMkg99n5/+tPJl7407yVnClHPNjA9034zBadnayEh6rEzzHWdlRSgbhOiBgAAAAAAAACAmW0f2J5zPnBOdg/tXtR1pwpRTxugrvblYxd9LOeffv6hbZOFqAWoAQAAAAAAAAAAWGqzK4wBAADHjnq9vPT0JKOj3Z6mtHp1sm7dyplnuezenWzenNTGRJ3/n/8nOe+88uszR2t61uSUh5ySfUP78u87//3w9vqanPHQMzIyOpJm0ZzVWj2Vnvxo148y2Bg8tO0XN/5iVtVWZSQjMx7fGG2k3jO7l6TNVjN37r0zQ82hzjVajamPSTO7hnallda0a7eKVkaah+etpJJ9w/vyrZ9/69C2oijSaDUWHKCezfFjZ5nMzTtuTv3BeiqVyoJmWWrNTPw+GrvtgQMP5Jq7rlnYOZrNSc8z1g8f/GG27dq2oPNA20gx/d/PPSN7cs3PFvZ9faQaLUanfY5rFs1cc+ex+dgArEhFkc6n7Ul+Zh6cuOmINjr964KMJmmMeeOaRpHUkqzwn7unM/610OhoI609rWzqPz4b+tZ3aSoAAAAAAFhaOwd25mkffFp2Hti5JOv31nqTJPsb+5NMH6Duqfbk/b/9/o4Addu9b7o3J15+YrYPbhegBgAAAAAAAAAAYFmIUAMAAJ0ajaTZXFmxraIoQ8zN2QWSjxpFkezcWYao2+68M/niF5PnPGfOy/XUerKmd03W9K7Jqt5V+d7272Vd77qcddJZSZI1vWvmtN5T1jwl199zffaN7MuTtjwpG/o3zHmm2dq0ZlNu3nFzBkYGZn3MTAHqyVRSSas18bhKKguOUC+GqeY70hQp0lzg3+fZfH2LFGm2jrHnDbpqtiH/o81snh/9XQRYScY/b8/359zu/3y8qBrNzrs09j1v5v4eQCtOI63saQxkz8BANo9uzKM2nt7tkQAAAAAAYFENDAzkqR96ah7c/+CSnqe31pueas+0byJfr9Tz3me/N8993HOn3OfeN92bnQM7s3HtxqUYEwAAAAAAAAAAADpUuz0AAACwwgwNlSHqkZFuT3JYq3XsBajbGo1kcLBz24c/vOBlN/RvyNNPefqhAPV8nXXSWXn6KU9f0gB1ktSr9Zyx+Yys7V27ZOeopppKJv/lsEoqqXb5JfR08wEAwPI6ygLUyfR3aXTZplgWO4Z35v6BHd0eAwAAAAAAFs3AwEDO/vDZuX/w/mU530wBkd/j1AABAABJREFU6r/8jb/M753xezOuI0ANAAAAAAAAAADAchGhBgAAOrVaya23dnuKTgMDSXEURs5ma2Cg8/o11yT33LPgZev1+oLXWMx1ZjzPEoaoZxN47maIWoAaAABYTHfv+3m3RwAAAAAAgEUxMDCQcz5yTn6+Av6371qllnc+8515+RNf3u1RAAAAAAAAAAAAoMPylMIAAIAjx4EDyR13dHuKTrt3J5VjOMDbaiVDQ0l//+Ft11+f/M7vdG+mLmmHqG/ZcUsePPDgoqzZjjsXmV3ovJLKrPddDHOd70ix0Psz2+OPtscNjlT+LgKsJJ6Tj0WttDquH2gOd2kSAAAAAABYXM/4+DNy5947uz1GqqnmbU9/W15z1mu6PQoAAAAAAAAAAABMIEINAAB0+ulPy+jxSlIUyeBgZ4T5WDP+/v/gB8dkhDopQ9S//NBfzld+9pVFWa+a6pz2b0eox0fclkI11UMR6qPNctyvWmpLfg5gdo7W5zKAI1Mlix+iFrZe6ca/7lnTs6pLkwAAAAAAwOJ5yt8+Jbfvur3bY6Saat549htz6VMv7fYoAAAAAAAAAAAAMKm5lbYAAICj3/BwUl+B71czOtrtCbprdLQzDn7LLd2bZQWoVBYnZjrfSHEllTnHq+fqaA5QL0YcWmAaVo6j9bkKgKNIT7cHWFkqqeSRGx7R7TEAAAAAAGBBzv3Aubn1wVu7PUaS5PVnvT5vPe+t3R4DAAAAAAAAAAAApiRCDQAAdDrppKS6wl4qVCrJ2rXdnqL7RkYOf/7AA92bY4WoZ+ZY+lKGiucSoq4d/DNbR3qAWiCao9FM39fH8vf9TM+Fx/JjA7ByHbk/a7IwlUolp6w6Iev613V7FAAAAAAAmLfzPnRebt5xc7fHSJJc8iuX5B2//o5ujwEAAAAAAAAAAADTmrnYBQAAHFse+cjkuOO6PUWntWuTvr7OCPOxqNE4/PnoaPfmWEFqqaWZ5pS3r+5ZnSQZGR1JK60kZTy6r6dv0WYoiiIHmgfSU+1JmkkrrRQpDs3X09PTsf/o6GhaB/+0Q9a9Pb0ZbY1mtDWaVbVVqVSOjijgSGMkreLw415JJb09vYt/ntGRNNPseDxhqTRGG2mmmSLFoe/r8X/Pj1XNZjOtVivNNFNNNdVKNT11jw3AylUkrWIehxVJa/zP4JOts8J+pu1Jpp6zlcz4EmuFvVnTDIbH3aH+9OSEvofkIb3Hp7938V4PAQAAAADAcnvWh5+Vm+67qdtjJEleceYr8he/8RfdHgMAAAAAAAAAAABmJEINAAB0KorkMY9Jvv/9bk9y2Pr13Z5gZRgbnhY8PaSWWpIy/lwdE4Y7ru+4POHEJyzLDEVRLEo4erHWAQCAJdNsJvsHO7cNjru+anVSPYJ+rt1/IMngNDtUk4dsXK5pFsWPdv8k+5tDh64f37M+J6/d0sWJAAAAAABg4Z73iefl2/d+u9tjJEkuftzFedez3tXtMQAAAAAAAAAAAGBWqjPvAgAAHFOGh5MNG5Le3m5PUqpWy0uz2e1Juq/VOvz5pk3dm4MJFiscLUANAAAAAAAAAAATveDvX5Cv3fm1bo+RJHn+Y56f9/3O+7o9BgAAAAAAAAAAAMyaCDUAANCpHXt+2MO6O0fb6tXlx7EBZpLHP77bEwAAAAAAAAAAACy5l/7DS/Pln32522MkSX7ztN/MBy76QLfHAAAAAAAAAAAAgDmpd3sAAABghenrKz+eckryk590d5YkWbeu/FitHg5kH4sqlSRJs2hlqDGUK3JLfnDVn3Ts8oPtP8hQY+jQ9b1De9MoGqlX66lVa8s6LgAAAAAAAAAAwEK96vOvyj/f9s/dHiNJ8uu/8Ov55MWf7PYYAAAAAAAAAAAAMGci1AAAQKfe3qS/Pxkc7PYkpdHRcqZjOULdDlBXkr3De1OkyJc378vuB2/r2G1gdCAjzZFD10eL0TRajYy2RtNX7VvWkQEAAAAAAAAAABbiDf/8hnzux5/r9hhJknMedk4++/uf7fYYAAAAAAAAAAAAMC/Vbg8AAACsQMcdl+zZU4afu210NOnp6fYU3VWppEgyUmmlSJEfPeYh2X38qjktMdwazmhzdGnmAwAAAAAAAAAAWERv/Jc35qP/9tFuj5EkecqJT8mVL7my22MAAAAAAAAAAADAvK2AohwAALDiVKtJs5msmlvoeNHV60mrlVQqE7cfKw7e9yJFGrXy868+/RfmtdRIc2TRxgIAAAAAAAAAAFgKb/7im/OhGz/U7TGSJE844Qn5lz/4l26PAQAAAAAAAAAAAAtyDJXbAACAOWk2yxj1qlXJgQPLf/56vQwwF8XE29asSfbsWf6ZuqEd4C6SZr2aBx6yOjf98gl5cP+D2TW0q2PXfSP70mq1Dl1vtpodtzdajSUfFwAAAAAAAAAAYL7e+dV35n3ff1+3x0iSPG7T4/LVV3y122MAAAAAAAAAAADAgolQAwAAk6vVyo/1Lr1sqFbLAHU7wjzWsRKhrlYPfdrsqaVVreTvX/iLadar2TewL/fvv79j99HmaJrF4fB0URTJmIevyCRBbwAAAAAAAAAAgBXg8msuz7u+9a5uj5EkefRDHp3rXn1dt8cAAAAAAAAAAACARVGdeRcAAOCYtHr14c+XO0TdDmBPde7R0eWbpVvGBqgrRRp9Pbnu7FPyb790wqwOL4qJwenJts11ndFFeuwXax0AAAAAAAAAAODI955vvif/7Zr/llZa3R4lD9/w8Hz7D7/d7TEAAAAAAAAAAABg0YhQAwAAk9u8OSmKMvjcbC7vuVut8pIkq1ZNvH10NKlUlnemWWouxljVapqVMv68t7fI816UfOzsNfnU7/3irA4viiLNotnxC1mtopXBxmAarcasx9gxuCM/uP8Hh47ZuX9nvvHzb+S6u6+bw52Z6Lq7r8s3fv6N7Ny/c0HrAAAAAAAAAAAAR773X//+/NnX/2xFBKhPXX9qvvGyb3R7DAAAAAAAAAAAAFhUItQAAMBErVaybl0Znx4ZKWPUy6koynO3Wklv78TzF0W5fYXZ25c870XJ5x+7gEWq1Xz+MUWe98Iid69t5YUvKPLdkyv5j88Yyrbm/TMe3g5QFynSSiut4uAlrTRajdy84+ZZhah3DO7IrTtvzb6Rfbl5x83ZMbAjN95/Y5JkqDE07xD1dXdfl6HGUJLkxvtvFKIGAAAAAAAAAIBj2Edu+EjeevVb0yya3R4lJ649Mde+/NqsXbu226MAAAAAAAAAAADAoqp3ewAAAGAF2rMn2bChjEAvd4C6rSjKS72eHDiQ3HdfOdfgYHlptZJKpXvzjbO3L3nhC5KbtiQ3nFhuu+hHc1zkYID60t8q0qwkT7wkqSTZu7aeShq56b6bkiQnrzt5wqGre1Zn9/7dhwLUba20OvbbN1xGpc/YfEbq1clfErYD1O11dh3YlZ0HOmPR7RD11lO2zvrujQ1Qt914/40586FnZuPqjbNeBwAAAAAAAAAAOPJ95ubP5LIvXpZG0ej2KHnomofmO//hOwLUAAAAAAAAAAAAHJVEqAEAgE4jI2X0ec2aMgA9PNy9WVqtZNu27p1/lsYGqJOkVUkufXb5+axC1JVKUql0BKh3rUpGqkmqlVSKRopGkXq1fihEPV6raGW4NdwRoJ5Mo9WYNkQ9PkA92hydcs25hKgnC1C3CVEDAAAAAAAAAMCx5YofXpHXf+H1KyJA/ZDVD8nXXvE1AWoAAAAAAAAAAACOWtVuDwAAAKww7ej04GB5YVrjA9Rt7RD15x6bFJnmUqmkVUn+4TGtCQHqopoUKdIqWilSZLQ1muHmcL537/dy5+47MzI6kmazmVbRyvaB7TMGqJNyvbEh6kbr8C9xzSVA3dYOUU9nugB1243335id+3fOOD8AAAAAAAAAAHBku2rbVXnNP70mo63Rbo+Sjf0bc80rr8mWtVtm3hkAAAAAAAAAAACOUCLUAABAp+rBlwn339/dOY4Ae1dVJw1Qt7UqyRuenXz+sZPfXlSSVop8/jFF/vi3kkY12TkmQD3pmkUrjVYjDww9kN0ju7NneE927t+ZkebIrOeeLEQ9nwB123Qh6tkEqNuEqAEAAAAAAAAA4Oh27U+vzUs//9IMt4a7PUo29G3IV17+FQFqAAAAAAAAAAAAjnoi1AAAQKf+/vLjgw92d44Vbm9f8sKLq7npxMq0+7VD1J97bA4lnVuVZLRWyWi9mk//UjVveHYyWkt29ScjtakD1G3FwT/Nopnh1nBGi9E5zz82RP39e7+fHz/443kFqNsmC1HPJUDdJkQNAAAAAAAAAABHp2t/em0u/oeLM9zsfoB6Xe+6XPX7V+XUjad2exQAAAAAAAAAAABYciLUAABAp1ot2bAh+eEPuz3JirW3L3nhC5KbNjeTSqW8TKNVSf742ck//GKyd009uzb0Zu+6nnzyl6u57IJWGtVk98EAdaZfaupzFK05h6PbIeqB0YGMtkZTFMW8AtRtY0PU8wlQtwlRAwAAAAAAAADA0eXG7TfmhZ97YfY39nd7lKzpWZMrXnxFTt9yerdHAQAAAAAAAAAAgGUhQg0AAEw0MpIMDnZ7ihXpUIB6S5LiYKy5Ukmq1RRTBKSLJM1q8se/lXz+MUWKosiVpzXzJ+c1MtxTyYOrKwsKUJfnmF84un1ckaIMUc9znbahxlCuvuPqeQeo2268/8aMjo4uaA0AAAAAAAAAAKD7tm3flud+4rkZHO3+v0lbXV+dK19yZc7ccma3RwEAAAAAAAAAAIBlU+/2AAAAwAozMpL89KfdnmJFalaSlzz/YIC6bc2aZHQ0RauZZrNIUUmKSiVFkqJopZKkMqbrfNkFzfyPpxT58UOKjNQqaVXmH5BebLVKLc2i2e0xkiT99f709PR0ewwAAAAAAAAAAGABtm3flvP//vzsG9nX7VHSV+vLp3/30wLUAAAAAAAAAAAAHHNEqAEAgE67dyc33tjtKVakWpG88obkhhOTVuXgxrVrkySjzZHOX5QqktHW6KTr7FpVjNltZQSok6RVtNJT7Zly7uXSX+/P1lO2dnUGAAAAAAAAAABgYbYPbM8Fn7wge4b3dHuU9FX78rGLPpZzHnFOt0cBAAAAAAAAAACAZVft9gAAAMAK89OfJvv3d3uKFeuiHyXv+UJSXaR2dCWVmXdaJrVqLZVKJb213q7NIEANAAAAAAAAAABHvu0D23POB87J7qHd3R4lfdW+vP+335/zTz+/26MAAAAAAAAAAABAV9S7PQAAALDCPPhg0mp1e4oV7aIflR8vfXayGI9UJZUUWaSq9TzVq/VUK4ffp6i31puR5siyziBADQAAR4nGaFI9gt4Htdns9gQAAAAAAHBUGRgYyNM++LTsPLCz26Okp9qT9zz7PXnu457b7VEAAAAAAAAAAACga0SoAQCAThs3JnUvFWZyKET9h9W0itmlqOvVeiqVypS3t4pWGq3GYow3J+MD1G3LGaIWoAYAgKPI6Gi3J5gbb8QEAAAAAACLZmBgIGd96Kw8uP/Bbo+SeqWe9z77vfm9M36v26MAAAAAAAAAAABAV02sjAEAAMe2xz42Wb2621McES76UfKe33rPpAHn+ahWqqlk6kj1UqikMu38vbXeJZ9BgBoAAAAAAAAAAI58O3fuzK984FeyfXB7t0dJrVLLX/7GXwpQAwAAAAAAAAAAQESoAQCA8davT848s9tTrBjNGZrQFz3uohlD1MXBPzNpNBuz2m8xFSnSaDam3aev1peeas+SnF+AGgAAAAAAAAAAVr5mq5mBoYEpb7/nnnty8ntOzk92/ySNxvT/Hmmp1Sq1vOO8d+TlT3x5V+cAAAAAAAAAAACAlUKEGgAA6FStJo97XFKZob58DNjblzzvRcnnHzvFDgcfo4sed1He8OQ3pJKJj9nYqHRRTB2YbjQbaaW1oHnnq5XWlCHqSip59MZH59xTz01/vX9RzytADQAAR4lK9ci/ZPwFAAAAAABou2/ffXny3zw56//f9XnK3z5l0n1O/tuTM5ShtNLK/ub+SUPUw83h7B7end3Du9NoLU2ouppq3nzOm/NHT/mjJVkfAAAAAAAAAAAAjkT1bg8AAACsQH19yUknJT//ebcn6Zq9fckLX5DctCW54cRy20U/GrdTX9+hT5/+C0/Po295dG7deeuh8PTYAHWSNIpGeoqeVMYFvrsZoG5rh6jrtc6Xicf3H5/NazYnSbaesjVX33H1op1TgBoAAI5AtUnesGj1quWfYzGNNDrvV7OVjA4fvu5NmgAAAAAAOIZd//Pr8+S/e/Kh69+55zt5yt8+Jd/+w28f2lb5s87/Lb0dol6d1anXy3+PtHd4b8e/kRoYHcjanrWpVxfv11qqqeaNZ78xb3ramxZtTQAAAAAAAAAAADgaVLs9AAAAsEI9/endnqBrxgaok6RVSS59dvL5x47b8Rd/sePq5jWbc3z/8UmS0dbopGuPtkZTFIfj1CshQN3WDlGPtWtoV3YM7kiSXHf3dYt6vsVeDwAAWA7VpFbr9hDL61i7vwAAAAAAcND4AHVbO0SdTAxQt7XSykBzIKON0QkB6raB0YE0Wo1Jjp6f15/1+rz1vLcu2noAAAAAAAAAAABwtBChBgAAJnfyyd2eoCvGB6jbJg1RP+95HfvsGNyRXUO7MtocTZEiUxkboq7X6os0+eIYP0+RIrfuvDXfuPMbGWoMLeq5hhpDQtQAAHAk6u/v9gTLqJrURagBAAAAADj2TBWgbvvOPd+ZMkA91mBzcNIAddtihagv+ZVL8o5ff8eC1wEAAAAAAAAAAICj0cqqnQEAACvH+vXJaaclt9/e7UkWXbOS1CZpRE8VoG5rh6iLJL/94+R/DHwpN/zDj5IkN993c27Zccu0vzA11mhrND3VnlQqlfTWejPSHJnnvVk8vbXeSbcPN4eX7JztEPXWU7Yu2TkAAIBFVq0la9YmI0NJo5UUs3sdtGJN6GNUklSTWjWp15PKzAENAAAAAAA4mswUoF5sA6MDWduzNvXq/H7F5WW/9LL8xW/8xSJPBQAAAAAAAAAAAEcPEWoAAGCiVivZvTt5zGOOugj13r7kJc9PXnlDctGPOrdPF6Bua/3/7P15nKR1fe/9v2vpZXa2YROIrIqg4IISXKKiaIgb6g0mLifRJOoxmNzRkzsxbsTE5JwTs2gMmmg0YlwTSaI/l4hoXBBBBZRBhAEUkK1llp6enl5q+f1RUzNdvS/VXd09z+c86tFd37qu7/XpLsTppvrVheT15ydfO76Qfz/ox3n08MF5YPCB3Lzt5lkHqJuWU4h6qgD1UswkRA0AACtQsZj0ru30FO0xMpIMj/lPZtVqMiQ8DQAAAADAgWmpA9RN8w1RX3jqhXn3r7x7kaYCAAAAAAAAAACA1aHY6QEAAIBlaMeOZGgoOeaY5PDDOz1N2zRD0987Orn4/OTyh7euTxagrkyyz2BX8t7H13NfZXv++87/zvX3XZ/R6ui8ZhqtjaZeryeZOgS92DoZoG5qhqgBAAAAAAAAAIDO6FSAumlgdCCV2mSv2JrcCx/2wrz/+e9fxIkAAAAAAAAAAABgdRChBgAAWg0PNwLUSVIqJWed1Xi7wo0PTdcKyWvOT/7lkVMHqIeS9K1P+taMWSsnO3uSehoB6Z3DOzNUHUo99XnP1gxRL2X0eaxavTZhrROzCFEDAAAAAAAAAEBndDpA3TTbEPWzTnhWPnjBB5dgIgAAAAAAAAAAAFj5RKgBAIBWo6Ot9489Njn11KS4cr98GB+gTpI9SR7YkLzsBcl3jpl4zlCS7esb71dKjRB1M0CdJPVCe2ccrY3OfNAiqdQqLSHqTsWwEyFqAAAAAAAAAABYajfef+OyCFA3DYwOTPv4U3/hqfnEhZ9YomkAAAAAAAAAAABg5Vu5FTkAAGBxTBabfvzjk0MOWfpZ2mCqAPWOvYHpFJPtPY3AdNPYAHVTpZRs7228X2tzgHo5aIaoOxmgbhKiBgAAAAAAAACApbFnZE8e+b5HdnqMFoVM/QKtJx77xFz+q5cv4TQAAAAAAAAAAACw8olQAwAArXp6ksIUP8Qz1foyNWOAuqmwP0Q9WYB6rFqhcfxqVKlVOj3CPkOVoYyOjnZ6DAAAAAAAAAAAWNXW/vnaTo8wwaaeTZOuP/bIx+ZzL/3cEk8DAAAAAAAAAAAAK58INQAA0KpUSjaN+yGea65JBgcbgepicUXEqGcdoG7aG6KeLkDdPG61KhVKKSzwA+wt9+bpD316esu9C9rnzMPPTFdX14L2AAAAAAAAAAAApla4ZPm9GOqgnoMmXT/jiDNyxa9fsbTDAAAAAAAAAAAAwCohQg0AAEy0dm1y6KGN6PQ99yS3395YLxYba6VSZ+ebwZwD1E3L72eqlkQzPF2r11Iulucdou4t9+acY85JkpxzzDnzDlGfefiZOWTtIfM6FwAAAAAAAAAAmFnXJcvvF8RPFaA+9bBT87Xf+NqSzgIAAAAAAAAAAACriQg1AAAwuZ6e5KCDku9/vxGdHntLksLyLDZXC8lLXziPAPVsLM8PeUEKKaSr1JX1XevTVexKodC4P9cQ9dgAddN8QtQC1AAAAAAAAAAAsLjWXbIulVQ6PcYEg8ODE9ZOOvikXPWbV3VgGgAAAAAAAAAAAFg9RKgBAICpbd2a7NzZujY8nNRqjQj1+Fux2HrrQKi6VE9eeV1SrDfutyVAXcjqDlB3r89jjnpMHnbow/bFp+cSop4sQN00lxC1ADUAAAAAAAAAACyuTe/YlMFMjD0vByMZye7h3fvuP3TTQ3Ptq6/t4EQAAAAAAAAAAACwOpQ7PQAAALBEtm9Pvva15NZbk9tvb8SlK5WkXE42bUpOOCE5+eRk7dr951x/fese1WrjnGZculBonL9hQyNMXansP6Ze33+rVhvH1utL8qFecHPj7avOT3ZsWOBmqzA+Pdb67vU5ffPpKRfL2bxuc5Lklm23pJ56ukpdGa2Opp6pn7fpAtRN5xxzTq66+6oMVYamPEaAGgAAAAAAAAAAFtemd2xKf62/02NMazSj2T28O6duPjXfePk3Oj0OAAAAAAAAAAAArAoi1AAAsJpVq43o9PXXJz/7WdLVNfWx1123/5yjj05OOSX56U/3B6eTZHR04nnr1jWOKZUat8kMDCQjI/tD1EsQo376bcl2Aepp1VPPSGUk5eL+Lw3nEqKeTYC6aboQtQA1AAAAAAAAAAAsroP+5KD015d3gLqpkEK++pKvZv369Z0eBQAAAAAAAAAAAFaFYqcHAAAAFsnWrckHPpB89rPJXXfN7dw770y++MVkcDCpVBpr9fr+95vWrJk6PD3W2rVJce+XH4VCa9h6kWwaTU56cIGbLH4ru+MGRgdy7T3XtqxtXrc5pxxySgp7K9wHrzk4jzzskS3HzCVA3XTOMeekt9zbsiZADQAAAAAAAAAAi+vkvzo5O+s7Oz3GrN3xW3fkkEO8pggAAAAAAAAAAADaRYQaAABWm6Gh5POfTz7zmaS/f/77VKuN8PTQUOM2PkCdJD09s9urWEw2bNgfn16KEHWplFs/tC4nbfdlz0x2jeyaMkS9oXtDTt98ejav35wzDz8zyfwC1E1jQ9QC1AAAAAAAAAAAsLh+699/K1t3be30GLP2pZd9KUcffXSnxwAAAAAAAAAAAIBVpdzpAQAAgDbauTP51KeSHTsmf7xeb8SkK5VGZLqpVErK5catqVbb/37znHp9fzy6XG7EpWerVEo2bkx27Wrs3QxRj71OO5TLSVfXvkD2rR/tyckv35GtB7X5OqtMM0R91tFn7VvbvG5zDlt7WAp7n/ND1h6SJz/kyenq6lrQtc455pyMjo4ueB8AAAAAAAAAAGBqn/jBJ/KBGz7Q6TFm7d8u/Lecd+J5nR4DAAAAAAAAAAAAVh0RagAAWC22bUs+9rFkYGDiY9VqMjzcCEnPpKurEYyu11vXm/ebIepSae4zNkPUg4PJyMjcz59p797eRhi7Gcre69Z/OSQnv3SbEPUMdo3sSqVSSXlMjLww7nPZrnC0ADUAAAAAAAAAACyeD37vg/nNz/1mp8eYtbec9Za88NQXdnoMAAAAAAAAAAAAWJWKnR4AAABog4GB5MMfnhigrteToaFkz55kdHR2e42MNI6vTRNsboao56NYTNavb9yKbfySpFqd9mO89V8OyUk7Vu+XQOvK61LIPJ+TvR575GNbAtQAAAAAAAAAAMDK87yPPG9FBaiT5E/O/5NOjwAAAAAAAAAAAACr1uotsAEAwIHkfe9LHnywda1WSwYHk0plfnvW643bXB+brXK5vRHqpBHQHhiYMqC9WkPU5UI5tXotPcWeee9x5uFnZlPvpjZOBQAAAAAAAAAALLXj/+r4fPaOz3Z6jDl7wj8+odMjAAAAAAAAAAAAwKq1+uprAABwoLn66uSKK1rXarVkz56pQ9HlctLTk/T2Nt6Wy1PvP9Ueo6PzmzdJqtVk585GNLrd6vVGiHqK+Pb/uXpDSpM3qlesSr2Seuqp1qvzOr+r2JU7d92ZSm2ewXIAAAAAAAAAAKDjHvJ/H5Kf7PpJp8eYl2vuuUaIGgAAAAAAAAAAABaJCDUAAKxklUpy6aWta/X65AHqQiFZsyY56KBk48Zk3bpk7drG240bG+tr1jSOG2+yEHWl0ohJz1UzQD2fc+dikhD15ScM5+In78rhQ8UUV1mIeqg6lNH63MPgXcWuFAqFDIwMZEvfltSnio4DAAAAAAAAAADL1sGXHJx7Bu/p9BgLIkQNAAAAAAAAAAAAi0OEGgAAVrJvfzu5//7WteHhidHoUqkRm16zJilO8WVAsdh4fMOGxvGzMTg4t3lrtaS/v/F2KQwM7LvW5ScM5+Kn7E5tb2P7iCFfDjUD1ElSSCFHrz96330AAAAAAAAAAGBlKF9Szo7s6PQYbSFEDQAAAAAAAAAAAO2nugYAACvZ5z7Xer9aTSqV1rVSKentnTo+PV6x2Dh+NiHq4eHGNWdrcHBux7fDrl0TAtRJcn/vEoWwl6nxAepTDjklm9dt7vBUAAAAAAAAAADAXJQvKaeaJX5N1iK79p5rMzA00OkxAAAAAAAAAAAAYNUQoQYAgJWqry+54YbWtdHRicf19CSFwsT16RQKjRD1bAwMJPX6zMeNjCRDQ3ObYwbVWXxYl59czcVPHpgQoK4to6+GiinmKcc9JV3FriW5ngA1AAAAAAAAAACsfKsxQJ0k//7if8/63vWdHgMAAAAAAAAAAABWjXKnBwAAAOZpy5bW+/V6Uqm0rnV3J8V51paLxaSra/Kw9ViVSrJrV7JuXVIqTX5MvZ7s3j2/OabQ35O89IXJK69LLrh58mMuf3hy8flJLfWknqRQmFuAeo7t7vkoppgnHfeklIvlPPm4J+cbd34jo7UZPucLIEANAACsLPVkZDSpjCa12uJcYnQ0GR5J6rVktJLUKslwZe/XxcUkhWTPnsW59qKpJBnz+RqtJHuGkq5yUvafBwEAAAAAVoPVGqC++DEX53mnPa/TYwAAAAAAAAAAAMCq4qfMAQBgpbr11tb71Ul+oKira2HX6O6eOUKdNELUO3cma9YkPT0Tw9fDw5PPN0/9PclFL05uODK57qjG2tgQdT2NAPXrz09qzZB0vZ7719RnH6BeIs0AddNihqgLKQhQAwAAK8vgnqRamfm4hailcY3Rkcb90XpSq+69lZKe1fCf02qNj2e4mlQXKeYNAAAAAMCSWXvJ2lUZoH72Lzw7737uuzs9BgAAAAAAAAAAAKw6yyy/BgAAzNrtt7fer42LSJVKSaGQBSkWJwalk9Z96/X97+/Zk+zYkfT3J7t3J4ODjbcDAwubY4yxAeqkEZm++PxGdLqeKQLUSe5fm2UXoE6S6+67bsLak497crqKCwyIT0OAGgAAWBFGRxY/QJ0kqU/9C5hq1WR0lUU8KqPJSPt/8REAAAAAAEvj+L88Pnuyp9NjtN3J607OF379C50eAwAAAAAAAAAAAFalZZhgAwAAZmXnztb74yPUk8Wj56NcnrhWKEwfuK5UkuHhZGioEaZuk/EB6qaxIepqIfnQo9sQoF5gv3u2do3syrX3XDthfbFC1ALUAADAilFZigB1kno1jV9pNIXaNI+tVKNL9LkFAAAAAKCtzn7/2fnJ7p90eoy2O6h8UG554y2dHgMAAAAAAAAAAABWrUlqcgAAwIowPsZVHxfFmi4SPRfN4PRU+093nfHnLMBUAeqmWiF5/fmN9z/6meQle49dzgHqpmaI+qyjz2pZf/JxT8437vxGRmujbbuWADUAALBijP9lSyOjSbXa/usMDyXDY77GHv+1bH3cHKtBG79eBwAAAABgaTzpH5+U79z3nU6P0XYbixuz/Y+3d3oMAAAAAAAAAAAAWNXmmmIDAACWi/K43ykzPgbdrqBUc5/JYtOFQlIqJRs3Jt3d7bneJGYKUDc1Q9RfOT75xL8mO7vnEaDukF0ju1IZHxZPI0RdLLTngygXywLUAADAylWvJrVFuCWt91djdHq8YqnTEwAAAAAAMAdf/OEX8617vtXpMdpubdZm51t2dnoMAAAAAAAAAAAAWPVWSI4NAACYYNOm1vvFcX+9r7UpmjV2n0JhYoy6UGgEsdevTw4+ONmwIVmzphGlnixcPUezDVDvG3dviPo/T0oG59PFXvjI8/LYIx+b8viweJK+3X3pKna15RqVWiV9u/vashcAAMCqUSg2fsHSgaJQTHp7Oj0FAAAAAABz8MMdP+z0CG3Xla7sftvuTo8BAAAAAAAAAAAABwQRagAAWKlOOKH1/vgIdbWa1Ovz379eb+xRrbaud3c34lz1+v79h4cbt5GRRrS6WNx/zALMNUDdVCskf/Ss5JIr5njBDgaoN/VumrDet7svt2y7JfXUU2jTcLdsu0WIGgAAYLzu8oERoi4Uk95e/4UQAAAAAGAF+cyNn8kfXPkHnR6j7Qb+eKDTIwAAAAAAAAAAAMABo9zpAQAAgHk6+eTW+5PFskZHG9HouarXGzHp0dGJj5VKjT0rlUZ4enz8uml8vHqOqoXkpS+ce4C6qVZI/uEJyTNuTa44eebjl3OAup3qqeeWbbckSTav29zWvQEAAJZUoTC/r3nHqw013naXk1o5qdYmHrN2/cKvs5QGH0xLabpUSnrXJCX1aQAAAACAleRD3/9QXvnZV3Z6jLbb8uot6S634Xv8AAAAAAAAAAAAwKyIUAMAwEp12mmt9wuFpFxuxKGbRkYaa1OFoifTDFDXaq17Ja2h63K5cf+885If/zi5887WY2u1xl7zVKonr7wuue6oRlB6PmqFZMtRyUEDyY6pemEdik83XX/f9RPW6qmnlkmiZwtUTz0j1ZEkyQ/7fphiXzGFTn8CFqCaiaHz5lopk0TZAQCA1aVUbnxtuuB9xnz9UMwkX0MXkzW9C7/OUhouJ9UxX9MXSwLUAAAAAAArzKdu/NSqDFB/8kWfzCOOfESnxwAAAAAAAAAAAIADigg1AACsVJs3J2eckdxww/61rq6J4ejh4aR3DrGser1xGx2d+Nj4uNcv/EJy5pmNW39/8rOfJfffn9x9d7J16+yvOYULbm68vfj8+Yeok2RNkowPUS+D9vJkoeTFClBPppZailnZIeqpTBaoBgAAAAAAAACAleBTN34qF/3bRZ0eo+0++aJP5sLTL+z0GAAAAAAAAAAAAHDAEaEGOBDU68m2bcnu3cldd7XGSe++uxEsBZZWtZrs2pWMjCSFQiMQvH59430WbufOZPv21rVyOenuTtatW12f5+c8pzVCXSo1Ptax/66vVpOhoWTNmtntWas1/tmsjQshl0pJsdi69uhH7/98btrUuB19dPKjHzXWC4XG/w8tQDtD1LU9Sf/a6Y/rLnWnUq0segi60wHqptUcoq6MD7IDAAAAAAAAAMAyJ0ANAAAAAAAAAAAAtJsINcBqV6slP/1pIz6aJKOjrWHS5hqwdEZHkwcfbA387tzZWDvssImRX+Zusn/XVSqNfxfu2ZMcfnhn5loMv/iLyRFHJPffv3+tp6cRnh4bf65WG7+MoFZrPD7ZP2e1WjI83PgcjQ9HFwoTf2nBpk3JiSe2Hjs0lHzqU8nAwMI/tjHaFaIulksppJZ6Jg9jd5e6kyRdpa48ZP1DcvvO2+d/sWkslwB102oNUVfqItQAAAAAAAAAAKwc//T9f8qrPvuqTo/RdgLUAAAAAAAAAAAA0FkKhwCrXV/f/gA1sDzs2NEaoG6qVNoe7mUSo6PJrl2dnqJ9yuXkta9tXSsUkjVrGm/HqtcbgekdO5L+/kaUenCw8ba/v7E+WYA6Sbq7J+537rlJaVxM+corG/ssggtuTt7z+aQ4eT96UuN/zcJIdzFdpa5JY8vNAHUhhZxyyCl56MEPnf+w0yikkNq4P9VUOxagbho7x0r5M5uPCQAAAAAAAAAAVoK3fuWtAtQAAAAAAAAAAADAoih3egAAFtlqCq3CalCpNCLIU9mzJ9m4cenmOVDt2dPpCdrr7LOTZzwj+fzn968Vi40Q9VRR6UqlcZtJodAIUBfH/f6a005LTjyxdW3r1mTLltZz2+yCmxtvLz4/qc2w/Z4kO9YnxVpyxGDj+EqpcVJXqSuj1dHU0/jcjA9Qb163OUlSSinVVNs2fymlCWv1vX+Wi8LePyvBTM9N2Ze8AAAAAAAAAACsAG/9ylvzjm++o9NjtJ0ANQAAAAAAAAAAACwPilwAq934wOgiBEGBOZgp+lttX+yWaazGz/NrXpN85zvJz3++f61YTNauTYaHZxecHq9cbgSoC4XWkPVBByWvfnVj76ZKJfnIRxrnJI3Pcak0p+tWC0lpFi3m2YSomwHqJKkVk/vXJhuqrSHtZoi6q9SVZGKAOpk5cpwk5UI5lXpl39u5KqSQYoqppTbnc9utmOKKCVDPRndXd6dHAAAAAAAAAACAaQlQAwAAAAAAAAAAAIutOPMhAKxoPT2t9+uzqHsCnVXrfIh21evq6vQE7bd+ffIbv9F4O1ahkPT2JmvWzP7j7u5uHN/b2whZFwqNt8VisnFj8vKXJ498ZHLiiftvDzyQ7NjRCE83b3OIfff3JC94SXL5w2d3/AU3J+/5fFIc939rQ+Xk/jX7A9RNtWKys3vi/7amC1BfdfdVs56/XCi3vJ1MKaUpH2uGqBeitPfPfK22ADUAAAAAAAAAACx3n/nhZ1ZlgPpLv/YlAWoAAAAAAAAAAABYRqYupAGwOhx6aPKzn3V6CoDlZXyoebU4+ODk134t+dSnGkHosUqlRoS6XE4qlcZtbCS6VGo8Vi43QuiVysT9DzooufDCxtvxPve51vvV6uR7TKK/J7noxckNRybXHdVYu+Dmmc+74Obk3x+efPnExv2hcrK9J5muozxSHUl3qXvC+sG9B08IUA9VhmacoZBCDlt72IT1aqWa4dpwUkjKKadcnt2XXrV6Lf3D/anUp//c1ff+Uok1pTXpLfVO2H9wZDC7K7tb5pxKuVjOxu6NKRZW3u8oemDPA5OuLyTGDQAAAAAAAAAAS+Grd3w1L/rMizo9Rlv95hm/mb887y+zae2mTo8CAAAAAAAAAAAAjCFCDbDabdyYjIwkP/95sjdYCXBA27Qp6e3t9BSLZ9Om5OUvT668MtmyZeLjhUIjRt3VNbd9TzstefrTJ//c9fUlN9ywPzxdrSZDMweck9YAdZLUCsnF5zfenylEffnDk6+c0Hh/xgD1mPXJQtTbh7anb3dfNq/bPOsAddKIQD9i8yNmdexsVWqV3Nh3YwZGBqY8ppBCTjnklJZw9nh9u/tyy7ZbUs/U//+/vnt9Tt98esrFlfml4dd/+vV9Qe4kqac+bXAbAAAAAAAAAACWg6/e8dU8/SNP7/QYbfXxCz6elzzqJZ0eAwAAAAAAAAAAAJjEyiyNATA3hx3WiFEPDia7dyejo/sf6+lJ1q3r3GxwoPn5z1v/NziZE05ISqWlmWe1uu++Rgh5rFKp8e+8A+Fz29ubnH9+8rCHJV/5SrJz5/z32rQpOffc5MQTJ3+8Ukk+9amkv7/xftL4pQez+MUH4wPUTbMJUV/+8MYxtcIsAtSTGB+irqeeW7bdkpsfvDmjtRn+NzrGaHX2x85WuVjO6ZtPnzJEPZsAdZJ9j08Vol7pAWoAAAAAAAAAAFiJVmOAOkmeetxTOz0CAAAAAAAAAAAAMAW1MYADRXd343bQQa0B3GOPTdav79hYcMDZtGnmIPAppyRlf01bkLVrG9H9pkJhVlHkVeekk5KHPjTZujW5/vrk7rtnf+5xxyVnntnYo1ye/PN39dXJpZcmd9yxP0A9S1MFqJumC1HPOUA9xWPjQ9TD1eFZz980mtFsG9yWQ9YeMudzpzNViHq2AeqmqULUAtQAAAAAAAAAALD0VmuA+r3Pem+OPGiKF4MBAAAAAAAAAAAAHac4BgAAq1mplDzsYY3bunWNmPTWrclttzWC6JVKIzK9aVNy4omN6PS6dUlf39R7Dg0lf/mXyRVXNO63OUDdNFmIul0B6qZmiHqkOjLb8Se4/oHrc+bhZy56iHquAeqm8SFqAWoAAAAAAAAAAFh6Owd3rsoA9esf8/r8z7P/Z6fHAAAAAAAAAAAAAKahOgYAAAeKgw9OHvWo5KlPnf64rVunjlDv3Jl8+tPJ4OD+tXq99f2x98eZbYC6qRmibu74+jYGqJsWEqBuuv6B6/Pkhzw5XV1dC95rrGaIekvflhy9/ug5B6ibmufdM3BPTtt8mgA1AAAAAAAAAAAssU1rN+Wkg0/K1u1bOz1K21z48Avzt8/9206PAQAAAAAAAAAAAMxAeQwAAJidHTuSj388GRhIenpaH5shPp3MHKAeTTJZwrlWSH7reY33e6qNAPXOnqSYpFbP5LHpWQao26W33Nv2AHVTuVjOow5/VAqFhX1Qm9dtzmFrD1vwPgAAAAAAAAAAwOztHNyZTWs3JUluff2tOfndJ6+KEPULTnxBPnnRJzs9BgAAAAAAAAAAADALItQAAHCg+OEPk8suS3784+TBB5NKpRGOLhSScjk59NDkYQ9LnvCEZO3a1nOHhpJPf7oRoB6rXk+q1RkD1NVC8tIXTh2g3pNkx/qkWEuOGBx36b3R6aQRoR4u7X9s2hD1Eukt9+acY85Z1Gu0KxwtQA0AAAAAAAAAAEvnCz/+Qs7/xPk56eCTcuvrb02yOkLUJ685OZe/7PJOjwEAAAAAAAAAAADMkgg1AACsFH19yZYtya23Jrffnuzc2QhJl8vJpk1JV1fj7UMekmzc2Dhnz57kP/+zEZ6uVKbeu1pN7rmncfvqVxt7PvzhyXOf2whSX3llsmPHxHN27UpqtRlHL9WTV16XXHdUUhvXQW4GqJOkVkzuX7s/RD02QJ20BqibJoSol7izvNgBagAAAAAAAAAAYOX5k6/+Sd729bclSbZu35qT331yS4i6cMnK/IXy67Iut/zBLZ0eAwAAAAAAAAAAAJgDEWoAAFjOKpXkqquSz30u+cEPpj92ZCSp1xvvH3dcMjTUiFU31+Z63RtvbESvTzwxuf/+1ser1aS/v7F3oTCra1xwc+PtxefvD1GPDVA3NUPUhw8mg11znHuJfy5rbWnt0l4QAAAAAAAAAABY9p7xoWfkK3d+pWVtbIj6BR96QWcGW6C1WZuBtw10egwAAAAAAAAAAABgjkSoAQBgubr66uTSSycGoGdSrTbi0e1QrydbtzbeX7s2KZUaa7t2TR6eniFIPTZEvbswMUDdVCsmD6xNNg8mO9Yko8WpR6wlSx6fTpJSSkt/UQAAAAAAAAAAYFl76gefmv+++78nfWzr9q0pXNKBFzu1QXe6s/ttuzs9BgAAAAAAAAAAADAPItQAALDcDAwk73tfcsUVcz93ZCQZHm7/TEkyOJj09CS1WuM2XqGw/zbV40kuuLmeHx6avO0Z01+uVkz6ZghRC1ADAAAAAAAAAADLxWl/fVpu6r+p02O03bqsy8DbBjo9BgAAAAAAAAAAADBPItQAALCc3Hdf8qY3JffcM/nj9XpSqTRu1er+9VIpGR1tRKgXUzNwXRxThO7qasw1dp5CobE2Vr2eFAr56rEzB6ibpgtRTwhQL1GMWoAaAAAAAAAAAAAY7+A/OTg76js6PUbbHVw+ONv+eFunxwAAAAAAAAAAAAAWQIQaAACWi/vuS97whuTBByc+VqkkQ0NTR6ZrtcWdbbLrNUPU69Y1AtQDAzOe9tVj6nn6K+d4qUlC1BMC1EtEgBoAAAAAAAAAABiv+5LujGa002O03UPWPiR3/6+7Oz0GAAAAAAAAAAAAsEAi1AAAsBwMDCRvetPEAHW9ngwOJsPDnZlrJmvWJKVS41YstsawC4XG/Ht99djMOUDdNDZEff/aJMVxByxBkFqAGgAAYJmptCnmMbr6oiAAAAAAACyd4iXF1FOf+cAV5rj1x+Wnb/hpp8cAAAAAAAAAAAAA2kCEGgAAloP3vS+5557WtWo12bWrNew8mZkeXyy1WtLTs//+2rWNmPZYe0PUO7vmH6Ded7licv/6he2xENVUhagBAACWm3aFqAEAAAAAYB66LulalQHqUw8+NTe9/qZOjwEAAAAAAAAAAAC0iQg1AAB02tVXJ1dc0bpWrSb9/Ul9ih9QKpeTUqkRgh4eXvwZpzJ2vu7uxm1kpOWQajEpFJO1o8lg1yLMUFiEPacgRA0AAAAA89PX15drr702t912W/r7+9PV1ZVDDz00j3jEI/K4xz0uXV2L8c3D+bvvvvtyxx135K677soDDzyQ3bt3Z3R0NBs3bsymTZvy0Ic+NI9+9KOzcePGJZvpzjvvzA9/+MP85Cc/SX9/f+r1etavX5+jjz46J554Yh7xiEekZ+wvDgQAAAAWVc8lPamk0ukx2u7/PP3/5H89+X91egwAAAAAAAAAAACgjUSoAQCgkyqV5NJLW9fq9WTXrokB6kIh6e1NenqSYrGx1t+/NHNOZWAg2bBh//01a5JKJdVaJaV6If3d9Vz04uT+dcmm4WS41IhSr2RC1AAAAAAwe//6r/+av/3bv823vvWt1Kf4pXsbNmzIhRdemD/4gz/IKaecssQTJjt27Mg3v/nNfOtb38p3vvOd/PCHP8zPf/7zGc8rFAp55CMfmVe84hV5+ctfnsMPP7zts9199935h3/4h3z84x/P1q1bpz22u7s7Z555Zs4777y88IUvzKMf/ei2zwMAAAA0rLtkXUYy0ukx2u7fXvRveeHpL+z0GAAAAAAAAAAAAECbiVADAEAnffvbyf33t64NDia1WutauZysW5eUxsWPRzr8g0yjoxNm7T9oTV563q685If1fPjM5Bu/kIwWGxHqwweTB9a2MURdaNM+cyREDQAA0AGlchblC8F6ktqY/2RWryf1avuvA3CA+dnPfpaXvvSl+e///u8Zj921a1c++MEP5rLLLsub3/zmvPnNb06hsHTf/PuLv/iL/O///b/nfF69Xs8PfvCDvPGNb8zb3/72XHLJJXn961+fcnnhL8UYGhrK29/+9vzt3/5thoaGZnXOyMhIrrnmmlxzzTX59re/nSuuuGLBcwAAAAATHfxnB2cwg50eo+3+6bn/JEANAAAAAAAAAAAAq5QINQAAdNLnPtd6v1JJhodb18rlZMOGZHx0ZfxxnTIyknR3J0n6u+u56Pw9ue6w5MsnJNVCUts79s6extu2hag7FKBuqkaQDAAAYFGViq2/+KhcbtzarVBq/RqzWktGx3zNV+zwF6AAK9Att9ySpz71qbn33nvndN7IyEje+ta35kc/+lEuu+yylMb/Ur5lbGBgIG94wxvyX//1X7n88suzZs2aee91xx135LnPfW62bNnSxgkBAACAdjjifx+RHZUdnR6j7T75ok/mwtMv7PQYAAAAAAAAAAAAwCIRoQYAgE7p60tuuKF1bWho4nHr1k0MUE91bCfsjVA3AtS7c91hlWzvTUb29mEKSQr1xvtjQ9T3r9sfqJ6TZdT+GqwOdnoEAACA1avclYxWOj1FsoICqADLwYMPPphnPvOZkwaoH/vYx+b5z39+jj/++OzZsye33HJLPvaxj+Wee+5pOe7jH/94Dj/88PzN3/zNEk3dat26dXnMYx6Thz3sYTnppJOyefPmbNiwIdVqNf39/bnlllty1VVX5eqrr069Xm8590tf+lIuuOCCfOELX0hhsu/rzuDHP/5xfumXfin333//hMeOOOKInH/++Tn11FNz+OGHZ+3atdmxY0fuuuuu/OAHP8i3vvWt/PznP5/3xw0AAABM75S/OiUPDD3Q6THaToAaAAAAAAAAAAAAVj8RagAA6JQtW1rv1+uNoPNYa9ZMHbuqVhdnrrmq1dLfW8hFz54YoE6SepIUGiHqWhoh6pHiPK+1jALUTVfdfVXOOeacTo8BAACw+pS7kq5qMjoy87GLpVhKyv5zGsBc/PZv/3buvPPOlrUNGzbkox/9aJ73vOdNOP6d73xn3vnOd+btb397y/rf/u3f5lnPelZ++Zd/eTHHTZL09PTk6U9/en75l3855557bh71qEelNItfQrB169b8/u//fj772c+2rH/pS1/KP/7jP+a3f/u35zTHAw88kPPOO29CgPrkk0/Ou971rjznOc+ZNmxdq9VyzTXX5LLLLst99903p2sDAAAA03v5v708t+66tdNjtJ0ANQAAAAAAAAAAABwY/NQ8AAB0yq3jfiipUpl4TE/P1OfXau2dZxrVQlKqT/5Yf1ctF/3yQCNA3dMaoG6qJ6nvbaPUkuzubkSpi/WkNtuw9DIMUCfJUGVIiBoAAGCx9PYm5VLja+ZarfELnNqtVEwqY35bUjGN+HSx1Lg2ALP25S9/OZ/5zGda1rq7u3PllVfmcY973KTndHV15W1ve1sOOuig/N7v/V7LY69//evzox/9KOVF/oUAl1xyybzOO+mkk/If//Efed3rXpdLL7205bG/+Iu/mFOEul6v5+Uvf/mEgPeFF16Yyy67LN3d3TPuUSwWc/bZZ+fss89OfTH+PxMAAAAOUB/6/ofy0Rs/2ukx2u6Dz/2gADUAAAAAAAAAAAAcIIozHwIAACyK229vvT8+Ql0uJ8XO/5W9vyd5wUuSyx8++WMXvTh7A9T1SQPUU6kXGnHq4mxaKMs0QN00VBnK6Ohop8cAAABYncpdSe+aZO26ZN369t/Wrk3Wrtl/W9ObdHcLUAPMwzve8Y4Ja29729umDFCP9bu/+7t55jOf2bK2devWfOxjH2vbfIuhUCjkr//6r/MLv/ALLet33HFHvvvd7856n8suuyz/9V//1bJ2wQUX5GMf+9isAtSTzQUAAAAs3Kdu/FRe+dlXdnqMtnvLk96SVz5m9X1cAAAAAAAAAAAAwOQ6X7QDAIAD1c6drfer1db7pc7HrpqR6e8dnVx8fmuIel+A+shkR089leLcW9H1QlKb6aRFbKX0lnvz9Ic+Pb3l3gXtc+bhZ6arq6tNUwEAAADAyrNly5Z84xvfaFk77LDD8sY3vnHWe/z5n//5hLVLL710wbMttp6enrz4xS+esH7TTTfN6vzh4eH80R/9UcvaoYcemn/4h39IaRl8nxgAAAAOVJ+68VO56N8u6vQYbfeWJ70lf3Lun3R6DAAAAAAAAAAAAGAJiVADAECnVCrTP15YxPryLDQj0zcc2bhfK+wPUTcfu/7IZMeaZHTvVxb1eufmnavecm/OOeacJMk5x5wz7xD1mYefmUPWHtLO0QAAAABgxfnEJz4xYe03fuM30t3dPes9HvvYx+axj31sy9rVV1+dO+64Y8HzLbYTTzxxwtq99947q3M/+tGP5p577mlZe+tb35rDDjusLbMBAAAAc9fX3ydADQAAAAAAAAAAAKwaItQAANAp5fL0j3ew6Dw+QN3UDFE//RWNxwpJ1o7ufSxpLKwAYwPUTfMJUXelS4AaAAAAAJJ88YtfnLD24he/eM77THbOZHsvN0NDQxPWZhvg/sAHPjDhvJe97GVtmQsAAACYnyvuuKLTI7Tdv73w3wSoAQAAAAAAAAAA4AAlQg0AAJ2yaVPr/VKp9X61unSzjDFVgLqpVkjuODgZ3jtubyVZM5zFCVAvwp6TBaib5hqi7ip1tWssAAAAAFixdu/ene9///sta2vXrs1jHvOYOe/15Cc/ecLaN77xjXnPtlSuvfbaCWsnnnjijOfdddddufrqq1vWzjvvvBxyiF9+BwAAAJ3yuR9/Lr/277/W6TFmrf62ek46+KRpj7nyFVfmhY984RJNBAAAAAAAAAAAACw3ItQAANApJ5zQer9cbr1fqSS12tLNk5kD1E09e/vYw6VkT5Lds+82z94SB6ibZhuiLqU04zEAAAAAcCC4/vrrUxv3vczHPe5xKY//nucsnHXWWenqav3lb9/73vcWNN9iu/XWW3P55Ze3rPX29uYpT3nKjOdeccUVE9bOPvvsts0GAAAAzM2nb/x0nvuJ53Z6jFmrv62eJLn19bdOGaK+8hVX5mnHP20pxwIAAAAAAAAAAACWGRFqAADolJNPbr0/WZBleHhpZsnsA9RNPdVkNMmO9Ys6Vtt0F7tnDFA3zRSiFqAGAAAAgP1uvvnmCWsnnTR59Ggm3d3dOeaYY1rWbrvttlQqlXntt9huv/32PPe5z83Q0FDL+m/8xm/koIMOmvH8b33rWxPWzjzzzH3v1+v1fOlLX8qrXvWqnH766dmwYUO6u7tz5JFH5pGPfGRe/vKX5yMf+UgefPDBhX4oAAAAcMD7u6v/Lhf+24WdHmNOTn73/tegTRaiFqAGAAAAAAAAAAAAEhFqAADonNNOa71fKCTd3a1re/Yk1eqijzLXAHWS7Emya80iDVRYpH3nYKpgtQA1AAAAALT6yU9+MmHtF37hF+a933HHHddyv1qt5s4775z3fu02PDycq6++Or/3e7+X0047LT/+8Y9bHj/++OPz53/+57Pa64c//OGEtZP3/gLDG2+8MY973OPy7Gc/O//0T/+ULVu2ZGBgIKOjo7n//vtz44035qMf/Wj+x//4H3noQx+aN7/5zdm5c+fCP0AAAAA4AP3Vt/4qF3/p4k6PMWdbt2+dMkQtQA0AAAAAAAAAAAA0lTs9AAAAHLA2b07OOCO54Yb9a729ychI63G7dycbNjQi1YugWkhe+sK5BagHkuxavyjjLFqAeqQ2kqvuvmrKuPRkeku9GaoO7bsvQA0AAAAAE913330T1o499th57zfZuffff39OOOGEee85V1dccUXe+MY3tqxVKpXs2rUr99xzTyqVyqTnnXzyyfmv//qvbNq0aVbXuf322yesbdq0Kf/0T/+U//k//2eGh4dntc/AwED+7M/+LJ/+9Kfz2c9+Nqeccsqszlsq733ve/P3f//3i36d2267bdGvAQAAwOrz/m+/P2+44g2dHmPemiHqW19/a5JGiHrn4M5sWju7708AAAAAAAAAAAAAq58INQAAdNJzntMaoS6Xk56eZGxYpFJJdu1K1q1LSu2PIJfqySuvS647KqnNIgC9OysvQN00VBmac4i6lFKqqQpQAwAAAMAUtm3bNmFt/fr5fxNxsnMffPDBee83Hzt27MgNY793O4N169blNa95TS655JKsW7duVueMjo5O+nFdeeWV+a3f+q3UarWW9Q0bNuTII49MtVrNvffemz179kw495ZbbsnZZ5+dq666Kg9/+MNnPf9i6+vry0033dTpMQAAAGCC1/zHa/L+69/f6TEWbHyIWoAaAAAAAAAAAAAAGKvY6QEAAOCA9ou/mBxxROva2rVJcdxf1SuVZOfOZM+eZFx4pB0uuDl5z+eTYn3644aS9C9GgLqQRQ9QNw1VhjI6OjqncwSoAQAAAGBqu3fvnrC2Zs2aee832bmDg4Pz3m8xFQqF/OZv/mbuuOOO/OVf/uWsA9RJI3Rdr0/8puyrXvWqfQHqQqGQl7/85fnOd76TnTt35pZbbsltt92W/v7+XHnllXnWs5414fzt27fnRS960aTPCwAAALDfr37yV1dFgLpp6/at2Tm4s9NjAAAAAAAAAAAAAMuQCDUAAHRSuZy89rWta4VCsmFD4+14e/YkO3Yk/f1tH2WmEPVQku2LFaBeQmcefma6urqW9qIAAAAAsIpN9kvfent7573fZBHqkZGRee+3mOr1ej7wgQ/k9NNPzyWXXJJdu3bN+tzh4eFJ1/fs2ZOk8Tm8/PLL85GPfCSPf/zjUxjzPeNyuZynPe1p+eIXv5h3v/vdLY8lyU033ZR3vOMd8/iIAAAA4MDwuEsfl0/c/IlOj9F2A0MDnR4BAAAAAAAAAAAAWIbKnR4AAAAOeGefnTzjGckVV+xfK5WSjRuTXbuSWm3iOZXKooxywc2Ntxefn9TGNEtmDFA3j50iYD3l8UuskEJu6rtp1seP1KcO25RSasdILer1+oRYTCf3AQAAAID5Wsj3pyY7t16f7Tcf2+PFL37xhGsODg5mx44d+dGPfpRvfetb+fCHP5w77rgjSfLAAw/k7W9/ez784Q/nE5/4RJ7whCfMeI2ZPqb3v//9ef7znz/jPhdffHEeeOCB/Omf/mnL+qWXXpo//MM/zEEHHTTjHgAAAHAgedylj8v3Hvhep8dou//ztP+ThxzykE6PAQAAAAAAAAAAACxDxU4PAAAAJHnNa5Kjj25dK5WSTZuSnp4lHeWCm5P3fD4p7u2fzBigHqswy1uHFFNMtV6d9W061Uz/+FxVapX84IEfpG9334L26dvdlx888INUaosTKgcAAACA8bq6uias7dmzZ977TXZud3f3vPdrl7Vr1+boo4/Oueeem7e+9a257bbb8nd/93dZt27dvmN+8pOf5BnPeEauuuqqGfeb7PPW9NSnPjWveMUrZj3bW9/61hx//PEta/39/fnEJz4x6z0AAADgQLBaA9S/dtqv5X895X91egwAAAAAAAAAAABgmSp3egAAACDJ+vXJO9+ZvPGNyc9/vn+9UEjWrWuEqIeGkpGRJRnngpsbb3/r/GT7hiW55KIrpdT2Pau19oSoK7VKbuy7MQMjA7ll2y1Jks3rNs95n77dfbll2y2pp54b+27M6ZtPT7noyz4AAAAAFtfatWsnrLU7Qj029LxcFAqFvO51r8sjH/nIPPvZz94398DAQC666KL84Ac/yMEHHzzl+dN9TBdffPGcZunq6sqrX/3q/OEf/mHL+te+9rW85jWvmdNei2Hz5s15xCMesejXue222zI8PLzo1wEAAGBlevI/PnlVBqifePQT8y8v/pdOjwEAAAAAAAAAAAAsY2pkAACwXBx5ZPKXf5m86U3JPfe0PlYuN0LV9XpSqTRuu3cv6jjH7EgeFKCeVrW+8Aj12AB1ktRTn1eIemyAOkkGRgaEqAEAAABYEoceeuiEtYGBgXnvN9m5k11juXjKU56St7/97fn//r//b9/a3XffnXe961350z/90ynP27BhQ7q7uzMy7pcPFovFPOMZz5jzHOedd96ECPU3v/nNOe+zGF73utflda973aJf57TTTstNN9206NcBAABg5XnGh56Rb96zPL5ObqcnHPmEfPO3Vt/HBQAAAAAAAAAAALRXsdMDAAAAYxx5ZPLudyfPfObkjxcKSVdXsmbNoo5x7ZHJE357US+xZIoppj7PPzOZzTHTGR+gHrvvLdtuSd/uvlntMz5A3dQMUVdqlQXNCQAAAADTOeKIIyas3X333fPe76677prVNZaT3/3d382GDa2/1e8f/uEfUq9P/z3EI488csLaCSeckI0bN855hkc96lEplVp/Id9999034wwAAACw2j3jQ8/IV+78SqfHaLuT15ycq199dafHAAAAAAAAAAAAAFYAEWoAAFhu1q9P3vCG5O1vb0Spp1IoLMrlB8qNAHV9cbZfUqWUUljAn5nM5pipTBWgbpptiHqqAHWTEDUAAAAAi+3444+fsPbTn/503vvdeeedLfdLpVKOO+64ee+3FHp6evL0pz+9Za2vry833XTTtOedcMIJE9YOPfTQec1QKpWyadOmlrVqtZodO3bMaz8AAABYDX7///f7qzJAvT7rc8sf3NLpMQAAAAAAAAAAAIAVQoQaAACWq7PPTj7wgeSP/zg544yJj3d3L8pl11eSs362KFsvqeISfLkz3wj1TAHqpplC1DMFqJuEqAEAAABYTA972MMmrG3dunVee42MjOSuu+5qWTvxxBNTLpfntd9SeuhDHzph7fbbb5/2nFNPPXXCWk9Pz7xn6O3tnbA2NDQ07/0AAABgJfvTr/1p/vq7f93pMdpuXdZl19t2dXoMAAAAAAAAAAAAYAVZ/j+lCQAA7VAfF+mt1dp/jb6+ZMuWZOvW5Pbbk507k0olKZeTTZuSE05ITjopOe20ZPPm2e1ZLCZPfGJyyinJt7+dXHNNY/8dOxqPLZLvfDB5wquSa46ZxcHz6zAvqmKK8w5Ez0V3ee4h8NkGqJuaIeok2bxu/z83sw1QNzVD1KdvPj3loi8FAQAAAGifRz/60SkWi6mN+b7rd7/73VQqlTnHo7/73e9mdHS0Ze0xj3lMW+ZcbJMFoHftmj4IddZZZ+XSSy9tWdu5c+e8Z9ixY8eEtUMPPXTe+wEAAMBKdcNdN+Qt//2WTo/RduuyLgNvm93rjgAAAAAAAAAAAACalMcAAFi9hoeTXbsaIejx0ekvfrE916hWk1tvTa6/PrnrrumP/c539r9/3HHJmWc2otSl0v710dGkv7/xtlpN7r23sf/ddzcer9cb683H5zJqISnNrlecJPnDbyUXvTgZLc187HLRXezOwd0HZ7Q+mkq9suD9+kf6p3yslLl/YuYaoG4aH6Kea4C6SYgaAAAAgMWwbt26PPrRj873vve9fWu7d+/Oddddl7POOmtOe33zm9+csPaUpzxlwTMuhQceeGDC2mGHHTbtOU996lMnrP30pz9NvV5PoTC3X7TX19eXwcHBlrWNGzemu3vuv0wPAAAAVrL+4f488UNP7PQYbXdw6eBse/O2To8BAAAAAAAAAAAArECqYwAArE579iTbty/uNbZuTb7ylUY0eq7uvLNx27gxOffcRox6ZCT5+c8bj991V3LttcnA3lhxsdiITg8PN0LUc9Tfk7z0hckrr0suuHnm4y9/eHLx+clhe5K+NUllBYSoCynk7GPObmtc+aq7rspodbQte9Xr9Wzp2zLnAPW+8/eGqPsG+7J9aPucA9RNAyMD2dK3JY86/FFzjtgAAAAAwFSe/exnt0Sok+Rf//Vf5xyh/td//ddJ914Jrr766glrRx555LTnHH/88Tn11FPzox/9aN/ajh07ctNNN+W0006b0/WvuuqqCWuPfvSj57QHAAAArHT9w/05+n8fnd313Z0epa2OXXds7nzjnZ0eAwAAAAAAAAAAAFihip0eAAAA2q5WS3buXLz9h4aSz38+ufzy+QWox+rvb+zz+c8nDzzQCFF/85vJV7+6P0BdrzeuOTQ07wD1RS9Ovnd0Iyz9LzN0S5oB6trePvHmPUm5OsXBy6hhXE8919xzTafHmFKhUMjR649OYQGftHrq2Ta0bd4B6qQR6z56/dEC1AAAALNVrye1RbhVa0m1sji32iQfA8Aie8lLXjJh7UMf+lBGRkZmvcd1112Xa6+9tmXtCU94Qo4//vgFz7fYrr/++paQdJIcdNBBOfXUU2c892Uve9mEtcsuu2zOM3zkIx+ZsHbuuefOeR8AAABYqVZrgPphmx4mQA0AAAAAAAAAAAAsiAg1AACrz/BwI0S9GHbuTC67LNmyZfLH6/WkUmnEpJvh6KGhxv1KZero0403Jp/5TPKf/5ncfvv+9Vqt8fFUq/v3H3ubQTNAfcORjfuDheRlL05O/p3Jjx8foG7aMDrjpZaFocpQrrr7qk6PMaXN6zbnlENOWVCIeiEKKeSUQ07J5nWbO3J9AACAFWvPYPtuu3cnO3YkO7btfbsIt3oljRL13ltlNNk9mAyPCFIDi+b000/Pk570pJa1vr6+/PVf//Ws9/ijP/qjCWuvfe1rFzzbYqtWq3n9618/Yf1XfuVX0tXVNeP5r3rVq7JmzZqWtfe///255557Zj3D97///fzHf/xHy1qhUMiLXvSiWe8BAAAAK1n/cH8e/q6Hr7oA9ZmHnZmbf+/mTo8BAAAAAAAAAAAArHAi1AAArD6LFaDesSP52Mcab8erVhux6d27W6PTzVszSt18vBmVHjvzgw8m27btj0E1A9S12qyj02OND1APJdm+vvH+1kMnhqinClAPlZOdPUlx/OU701GekRD15ASoAQAAloF6PRkZSurVmY9t/8UbMeqh4Q5cGzhQvPnNb56w9ra3vS3f//73Zzz37/7u7/KlL32pZe2EE07Ir/3ar83q2g996ENTKBRabl/72tdmPO8973lPvvzlL8/qGpMZHh7OS1/60nzjG99oWS8UCvmd35nitwGOc8QRR+R1r3tdy9qOHTvy0pe+NHv27Jnx/AceeCAvfelLUx33fecXvehFecQjHjGrGQAAAGAl6x/uz+Pe/7jcO3pvp0dpqzMPOzPXve66To8BAAAAAAAAAAAArAIi1AAArD49Pe3fc2go+fSnk4GB1vV6vfHYnj2N2PRsVCqN44eG9selh4b279cMT4+MzDk83TRdgLppbIh6pgD1Ps1xlmmAummoMpTR0dFOjzGlpQ5RC1ADAAAsE8vha9VaNRke6fQUwCr1rGc9K89//vNb1oaHh/O0pz0tn/3sZyc9Z3R0NO94xzty8cUXT3js3e9+d7q6uhZl1qbvfe97Oe+88/KLv/iL+fu///vcf//9szpvdHQ0n/nMZ/LIRz4yn/zkJyc8/lu/9Vs5++yzZz3H2972thx33HEta1/72tdy7rnn5uabb57yvKuuuipPfvKTJxyzfv36/Omf/umsrw8AAAArVTNAfev2Wzs9Slu985feKUANAAAAAAAAAAAAtE250wMAAEDblcvJ+vUTg9ELceWVyY4drWu1WiMmPc9QdCqVpFpNisXWPZoh6kUMUDc1Q9QPf3DmAHUtacSnl3mAOknOPPzMRY/TLFQzCH3LtltSzzz/GZoFAWoAAIBlpFbr9AQNo7P8RVoA8/CP//iP+d73vpe7775731p/f3+e97zn5XGPe1ye//zn5/jjj8+ePXty66235l/+5V/ys5/9bMI+v/M7v5Nf+ZVfWbK5r7766lx99dW5+OKLc+qpp+bRj350HvGIR+SQQw7JQQcdlEKhkP7+/txzzz25/vrr8/Wvfz0PPvjgpHs97WlPy1/91V/N6frr16/Ppz/96TzlKU/J8PDwvvVvf/vbeeQjH5lnPvOZOffcc3P00UenWq3mzjvvzBe/+MV84xvfmHS/D3/4w3nYwx42pxkAAABgpVmtAerPvPgzueC0Czo9BgAAAAAAAAAAALCKiFADALA6bdjQeNuOEPXWrcmWLa1rMwWoS6VGXLpQaBxTqzWC0+PVao1bYUzZeb5R68wtQN209dBGgPqM+8act8ID1IesPaTTY8zKYoeoBagBAABmoTjufqmUrF3b/uvUM/Fr/uHhvQ8ArB6bN2/Of/3Xf+XpT3967rvvvpbHvvvd7+a73/3ujHtceOGF+Zu/+ZtFmnB6tVotW7ZsyZbx3xOepRe84AX52Mc+ljVr1sz53Mc//vH593//97zwhS/Mnj179q1XKpV84QtfyBe+8IUZ9+ju7s573/vevOhFL5rz9QEAAGAl+fE9P87z//X5qy5A/X/P/b8C1AAAAAAAAAAAAEDbiVADALA6FQrJxo3J+vVJpTIxAH3GGbPbp1JJLrssKY/5q3O9ngwOTgxHFQpJT0/S3d0IUI9XqyUjI43AVL3een69vj9YPR+FQvq763MOUDfdvrfZfMZ9yXeOEaBeSosVohagBgAAmKXiJP+5rLAYXwTXJ9m3kI5EqLv8J0JgcZ166qm55ppr8mu/9mv55je/Oevzurq68qY3vSlvfetbU5zse6yLYN26dW3Z59hjj81f//VfLzj+/OxnPzvf/va387KXvSw33njjnM49+eST86EPfShPfOITFzQDAAAALHdv/cpb845vvqPTY7Tdnz31z/LGJ72x02MAAAAAAAAAAAAAq5CfMAcAYHUrFhth6LFx50IhechDZnf+N76RbN+elEr713bv3h+NbiqXk3XrWo8br1RKurqS3t7GHqOjE0PUc7V3hmqhnpe+cH4B6qbbD0l29CaDY75KqCXJ0rReFmwlBqib2h2iFqAGAACYg2Kx8QulRkY6PcnSKJYaHy/AIjv22GPz9a9/PZ/+9Kfzt3/7t/n2t7+d+hTfA12/fn3+n//n/8kf/MEf5OEPf/iSzvne9743r3vd6/KFL3wh//3f/51rr702991336zOPeKII/K0pz0tr3jFK3LeeeelNN33h+fgjDPOyPXXX5/LLrssl156aa699topP3elUimPf/zj8+pXvzove9nL2jYDAAAALFerOUD9pl96U6fHAAAAAAAAAAAAAFYpEWoAAJjO5z7Xer9SSYaHW9fK5WTDhtYo9XRKpcbx27YtbLYx1yvVC3nl9fVcd1QyWJh7gLpp29qkXE1K9WS0mGSWH1KnreQAddPmdZvTN9iXbUML/OciycG9BwtQAwAAzEVPT5JiMjo8v18StVKUy0lX94r5eh9Y+QqFQi688MJceOGFeeCBB3LNNdfk9ttvT39/f8rlcg477LCceuqpOeuss9K9wED+T37yk3mf+4hHPCKPeMQj8oY3vCFJcu+99+a2227LT37yk2zbti27d+9OvV7Phg0bsmnTphx++OE544wzctRRRy1o5umUSqX8+q//en791389999/f7773e/u+9x1d3fnsMMOy9FHH51f/MVfzMaNGxdtDgAAAFhOVmuA+mMv+Fh+9Yxf7fQYAAAAAAAAAAAAwComQg0AAFPp60tuuKF1bWho4nHr1s0+QN1Uq81/rimudcHNhQwW63nZi+e/dZJUVthXCashQJ0kfbv7sn1oe1v22j60PX27+4SoAQAAZq2Q9HQ3brXa4oSo60lq4/at1xvrTd3lpNSGL8z7dyT14v775a7G9y8AOujwww/Pc57znE6PMStHHXVUjjrqqDzpSU/q9ChJkiOOOCK/8iu/0ukxAAAAoKNWa4D6sy/5bJ7zsJXxPRMAAAAAAAAAAABg5VpheTkAAFhCW7a03q/Xk5GR1rU1a5JSae57Vyr7Y9JzCVsVCo3bFOe89KZC3v5gPVsPnftI+9STzLGp3SmrKUB9y7ZbUk97Imf11HPLtluSRIgaAABgrorFmY+Zl1pSGrd3sZTUx/yiqnKbItTFQlIdc3+uvzwLAAAAAGAZmVWAuppkHi/j6qTHHPGY/PLJv9zpMQAAAAAAAAAAAIADwGL9FD0AAKx8t97aer9SmXhMT8/89q5WZz5mnm59byEnPbho23dUIYV0F7qTCFDPpBmi7tvd19Z9AQAAAAAAAABgqcwqQN2fpJZkdCkmap9/v+jfUyqusHI2AAAAAAAAAAAAsCKVOz0AAAAsW7ff3np/fIS6XE6K8/y9Ls29CoWkPof4cKEwq8NufW8hJ7+unq2HzmO2ZeyxRz42G3s3ZnR0NF1dXZ0eZ8EWK0Dd1AxRJ8nmdZsX5RoAAAAAAAAAALAYZhWg3plk7Zj7o0lWwMuKPvaCj+XYg4/t9BgAAAAAAAAAAADAAWKexTwAADgA7NzZer9abb1fKs1/77mEp2ehWmjdb2dXPbe+t5CTHmzrZTpqXWldbnjghgxVhvYFqOtt+jy2a5+5WOwAdVMzRN23u29RrwMAAAAAAAAAAO0yqwD19rQGqJtGF2Oi9nnLk96SXz3jVzs9BgAAAAAAAAAAAHAAEaEGAICpVCrTP14ozH/vsdHjheyTpL+7nhdclFz+8MaeXz2mnoP+KDn5dZ0NUXcVu9q2VyGF7K7uzmhtNNfec22GKkOp1Cr5wQM/WHBcuW93X37wwA9Sqc3wfLfRUgWom4SoAQAAAAAAAABYKbbet3XmAPW2JOuneXyZhqjf8qS35E/O/ZNOjwEAAAAAAAAAAAAcYMqdHgAAAJat8gx/Xa4vICA8Njy9gH36u+u56MXJDUcm1x2V/PDQet52buOxrYfuDVH/XXLy7zTuL5WuYldqtdqC9ymllFpqLbHm0dporrnnmqzvWp/BymBu2XZLkmTzus1z3n9sDPrGvhtz+ubTUy4u7pdJSx2gbmqGqJP5fa4AAAAAAAAAAGApnHTkSSmkMPXrax5MsnEWG40m6WrjYAskQA0AAAAAAAAAAAB0SrHTAwAAwLK1aVPr/VKp9X61Ov+9x0ao52lsgDpJdheyL0DdtPXQRoD61r9LDh1c8CVnpRmgrmYBn5+9xgeomyq1SnYM70itVtsXV+7b3TenvcfHoAdGBnJj342p1CoLnnu211xq8/1cAQAAAAAAAADAUqjWGq85qr2tlkImeY3VtswuQN002paxFkyAGgAAAAAAAAAAAOgkEWoAAJjKCSe03i+XW+9XKkmtNr+9m3vV5xgj3nv8+AD1niQ71k9+ytZDk6N+P+mtJuWFd6GnVUoplVqlLQHqJDPGmiv1yrxC1FPFoBczRF2v13PPwD0LClAXUsghvYdM/gN2s50je+eY6z97AAAAAAAAAACwiPqH+/OCT74gl//o8iSThKh3JNkwj407HKIWoAYAAAAAAAAAAAA6TYQaAACmcvLJrffHR6iTZHh4fnuXSvM7L3MLUDfdtyG5d12yec+8LzujcqGc+t4/S2muIeqpAtRNixWiLhQKOW3zaVnfPcOTNdX5KeSUQ07JIzY/Iqcccsq8Q9Tru9fntM2npVCYf8gaAAAAAAAAAADaqX+4Pxf960X53j3fy8VfuHhiiHpnknULuECHQtQC1AAAAAAAAAAAAMByIEINAABTOe201vuFQtLd3bq2Z09Src5973I5qdcbtzno767nohfV5xSgbqoVk3vXzm3M2SoXyqnVa6mltjgXmMFsQ9QzBaibmiHq+hyfn5mUi+Wcvvn0OYeomwHqzes2J0k2r9s8rxD1+u71OX3z6SkXJwmqAwAAAAAAAABAB/QP9+eFH39hbrjvhiRJrV5rCVG/5NjnJ+143dMSh6hf/ahXC1ADAAAAAAAAAAAAy4IINQAATGXz5uSMM1rXensnHrd795xj0inO/a/i/T3JRS/OvALU+687i2Pm1jVOko4GqJtmClHPNkDdNDAykNHa6KyPn625hqjHB6ib5hqiFqAGAAAAAAAAAGC56R/uz7kfOTdf+elXcv/u+/et14b25OKP/lqeeVEhH7/939t3wSUKUf/SMb+U913wvqW5GAAAAAAAAAAAAMAMRKgBAGA6z3lO6/1yOenpaV2rVJJdu5JqdXZ7VquN4+egLQHqRdTpAHXTVCHquQaom2p7/3QqRD1VgLpptiFqAWoAAAAAAAAAAJabZoD6u/d8N0lSq9dy/857k3vvTbZty7ZtQ7ni5EW48CKHqF/yiJfka6/62uJeBAAAAAAAAAAAAGAOFMgAAFi96vVkz55GJLo2JpJcKCQ33DC7PdauTTZsSLZta+yXNELUIyOte46OJjt3NgLV3d1JqTRxlmq1cd7ISON+fVzYuFCYuJakWkhe+sL9AerRLGKAevqW8bJXLBRTLDZ+186+EPVgX7YPbV9QSLqWWoopzhh7notmiPrGvhszMDIw4fGZAtRNzcenimwLUAMAAAAAAAAAsNyMD1A3X/ZSKyb3r016H0z2HLqIA4wm6Wr/tq981CvzwQs+2P6NAQAAAAAAAAAAABZAhQwAgNWpUkm2b2/EoSfzs5/Nfq/HPCb5whda17q7k+Hh1mh0vZ4MDTVupVLjVig0YtW1WiNCPUlkuuX8KbzyuuS6o5JaofGzT8Va4weu2K9YKE4ILddTz7ahbQvfu80B6qapQtSzDVA3TRWiFqAGAAAAAAAAAGC5mSpA3VQbTgYPXoJB2hyiFqAGAAAAAAAAAAAAlivZOgAAVqcdO6YOUM/FwECyeXNywgmt64VC0tPTeDuZajUZGWmEqkdGGlHs6QLUU+jvSV7wksb77/l8Uty7xRGDjRB1W7W/sbxkJgtQt23vRQpQNzVD1Ou71yeZe4C6afO6zTnlkFP2zSpADQAAAAAAAADAcjNTgDojaWsYekZteIlZkrz4lBcLUAMAAAAAAAAAAADLlgg1AACrz8hI49YOg4ONt49/fLJhQ+tjhUKydm1SnibyO1N4ulCYMmTd35Nc9OLke0cnF5/fWFv0EPUKtFgB6kIK6Sp2LWqAuqkZot7QvWFeAeqmZoh6Q/cGAWoAAAAAAAAAAJaVaq2a8y47b/oA9eK/VGeiBYaoH3v4Y/PpX/10e2YBAAAAAAAAAAAAWAQi1AAArD6zCVA348/T3ZKkUmm87e5OnvnMRnR6vN7eZM2a1hh1vT59gHp8fHrc+80A9Q1HNpZqhUUOUXfih7faoJjFC1CfcsgpKRVKbd97KuViOY86/FHzDlA3bV63OY86/FEC1AAAAAAAAAAALCtf/+nX852ffadxZ6oAdadexzTPEPVjD39svvva77Z3FgAAAAAAAAAAAIA2E6EGAGD16e6e+ZhmJHq6W21c3Xn9+uTZz042bJi4X6nUiFFv3NgIUhcn+av22MD1ZNfb+1h/d70lQN20aCHqFRqgTpJ66qlPF/ueh2aAeqEx6Hldu9CeJ6Nd+wAAAAAAAAAAQDt89Y6v5ukfeXrjzviX+1TS2QB10xxD1ALUAAAAAAAAAAAAwEohQg0AwOrT1ZWUy4uz9/r1ya/8SnLiiZM/Xq8nw8MtUel9t+bj00STpwpQN+0LUReS93yhsC9Efch8Q9SL+INbpZRSLCzulxz11FOpVdoWou5kgBoAAAAAAAAAAFajnYM7pw9Q19P5AHXT8OwO+93H/a4ANQAAAAAAAAAAALBiiFADALD6FArJwQcnpdLi7N/dnTzxicnTnpZs3Lh/vV5Pdu9OapPUoGeIT6dQmDFA3VQrJBf/cpLU854vFDJUT36+vvHYrEPUhSx6gLpUKqVcbH8MvFgotuzbrhC1ADUAAAAAAAAAALTfprWbctLBJ018YDkGqHtmPuxdz3hX/uZX/maxpwEAAAAAAAAAAABom/YX4QAAYDno6ko2b04GB5PR0dYwdKGQHHLIzHtUq8n27VM/ftJJyeMel9x5Z/K97yU33zx1gHoqhcZPUM02QN3UDFH/9jX1bN+wd62YFGqZ/gezluAHtpoB6v2XLKSehQWix2oGqMvFciq1SpL9IepysZxCYe4f5GoMUI+Ojqarq2vZ7AMAAAAAAAAAwIHr1tffmpPftCFbuwcaC5UktSTFTk41xlCSDTMf9q5nvCu//8TfX/RxAAAAAAAAAAAAANpJhBoAgNWrWEzWr2+EnseGoAuF5OyzZz6/Ukl27mxdG7/XEUc0YtSbNyc//WnS29s4r1JpBKkrldZzxyqXk2Ix/T3JRc8fyQ2HzxBqbp6/9/q7C8nbzm09pF5MJu09L0F8OpkYoE7S1gB1kn2x6WKhmGKhmFq9tu868w1RH9x78KoKUG8b3JbrH7g+veXenHPMOfPe56q7r8pQZShnHn5mDlk7i3A7AAAAAAAAAABM4da/ruTk30y2bsryClAPJtk082EC1AAAAAAAAAAAAMBKJUINAAALVakk//qvjUh0V1fS3d0IRe/Y0Qhhj9fT0ziuWEy1UM9Ln7s7NxyepFDcH7iuTxJurtdTKyQpJENJdq7buz6+t7xEwenxJgtQV2qVKY6ev1q9lkqt0hKg3jdDsTTnAHWSbB/anr7dfasiRN0MUCfJUGUoV9191bxC1M0AdZJc/8D1QtQAAADtVKkk1WoyMpzUxnwPYHgkGfe19bxUK2n5LVWVamPvcjkpLZeqCwAAAABwQPnYx5KhoVz5d8lxf5TlE6DeneSgmQ8ToAYAAAAAAAAAAABWMhFqAKD9+vqSLVuSW29Nbr892bmzEdYpl5NNm5ITTkhOPjk57bRk88oPvq5qnstW/f3Jz36W3Hdf43MzONgIQw0PJ/fe23i/u7vx+dmzZ2JIulxOentbwtSleiGv3NKd6zbv2RuYHhNQniREXagnewpjAtRJoynVofB002OPfGxGqiO5Zdstqe+NXFVqlQmR6Hap1WsT9i4XyykW5vfTafXUc8u2W5JkRYeoxwaom+YToh4boG4SogYAAGiToaFGgDpJqrUk4752rlTbdKEx31eoV5PKaOPW09Om/QEAAAAAZjA6mnzxi8k//3Pyuc8lSR76h1k+AepdSWZ4KcxbnvSW/OYZv5njDjtuSUYCAAAAAAAAAAAAWAwi1ABAe1QqyVVXNX5Q5Ac/mP7Y667b//4ZZyTPeU7yi7/YCPTSeZ7LVtVqI8J9/fXJXXdNfLxYbMSoK5XGbWSkEY+u1/cHpQuFxudkw4b9kakxLritO0ly8dOGGiHq5jmFQlJrDVENZVyAehl47JGPzabeTfvu37LtlozWRhctQD2ZhQSom1Z6iHqyAHXTXELUkwWom4SoAQAAFmhkdNLvDSyp4eFkdOm+ZgcAAAAADhwDQwNZ37u+cefLX07e/Ob9r7mqVFL+w6RW6tx8LfqTHDr9IW950lvyJ+f+yZKMAwAAAAAAAAAAALCYVlEdEADomKuvTi69NLn//rmfe8MNjdsRRySvfW1y9tntn4/Z81y2+s53kg98IOnvn/qYWq0Rnx6rXm99Wygk69btj1JP4oLbupNSKRc/Zff+EHXSiFzvDVHvSbJj/RQb1JNMvX3bbejekF0juyYEqDev25x7B+7Nz/f8fMlmKaSw4AB100oNUU8XoG6aTYh6ugB1kxA1AADAAoz/HkKnjAx3egIAAAAAYJW59mfX5gkfeELOOuIx+c6Pnph8+tMtj3e/sZrqcglQ74oANQAAAAAAAAAAAHBAEaEGAOZvYCB53/uSK65Y+F7335+8/e3JM56RvOY1yfqpSrssigP9uezrS7ZsSW69Nbn99uTBB5O77kp27GiEpIvFxq1Uarwdq1ptvd8MT49f27OnEaKexgW39yTJhBB1PclQpglQd8BZR5+VSqWScrn1S4qt27YuaYA6aYSjK7VKysX2fHkzNkS9EswmQN00XYh6NgHqJiFqAACAearXOj1Bw3KZAwAAAABYFZoB6nrquea+7+UJIzfkO9n/C+B7XnFvRpfLTy4MJJnhJS8C1AAAAAAAAAAAAMBqs1xeygkArDT33Ze86U3JPfdM/ni9nlQqjdvYSG+plJTLjVuhMPG8K65Ibropeec7kyOPXJzZaXWgPpeVSnLVVcnnPpf84Af712u1pL+/8TZpfPxjP+5mjLr5WK22Pzw92eehaWSkcc21ayeGrMeYLEQ9Ukh2TN+vXnKThYy3btuaO/vv7Mg8tXptUULUtWUe5ZpLgLppshD1XALUTULUAAAA81AoLo8AdKHU6QkAAAAAgFVibIA6e19Gdc0RlTzh+X35zn9szpqX35uRZfJTC8f2JXcfsW/MSQlQAwAAAAAAAAAAAKvR1PU7AICp3Hdf8oY3TB4trlSSgYFk+/Zk165kz55GfLd527Onsb59e+O4SmXiHvfck7zxjY3rsLgO1Ody69bkVa9qBLLHB6h37twfoB6vGaRufg5GR1sD1fX6/iD1WM04da2W7N499f57XXB7T97z9XUp7t2qK0lxGfSpxmqGjJs6GaBuaoao26WeekZro40fkFuG5hOgbhr7/M0nQN10/QPXZ9vgtnmdCwAAcEDq6ur0BEkKSU93p4cAAAAAAFaByQLUTdccUUnXy+7N0HL4tmiSTbuSO/8hqf15OYUUJj1GgBoAAAAAAAAAAABYrUSoAYC5GRhI3vSm5MEHW9fr9UZct7+/EeedjZGRxvG7d08M9/78543rDAy0Z24mOhCfy6Gh5POfTz7zmeT++1sfq9cbH8NkEemp4tLz0QxRz7DfBbf35D3f2rQvRL1xJBN+UKvTmiHjWq2Wewfu7fQ4SRoh6toMke8575nasgtRj46OzjtA3TRUGcqVP7ly3gHqpusfuD6jo6ML2gMAAOCA0VVOyp0srhSS3u6k7D8RAgAAAAAL86Uff2nKAHWSFAaTynL5fXhDyfpycvnDk3R1pfa22oQQtQA1AAAAAAAAAAAAsJr5CXMAYG7e977knnta16rVZOfOZHh4fnsODzfOr1Zb1++5J3n/++e3JzM70J7LnTuTyy5LtmyZ/PHduxtz1+uNUHTz1o749Pg9arVGEHsGF/ykN+/51qYU6smerr1/eV9eLeQMVYZSrVZz1tFnpavYyYhWQ7lQTrG4/8ucQgo5pPeQCT80NlfLLUTd1dWV3nJvp8dIkvSWe9PV1fnnHgAAYMXo6U561yRd3Um5lJTKrbfu3oXfkiSF/bdiKenuSdasaVwDAAAAAGAB3vnf78yzP/HsKV9PU9yd1JdLgHo4OSpJrZBcfH5y+eM3JElLiFqAGgAAAAAAAAAAAFjt/JQ5ADB7V1+dXHFF61q1mvT3Tx3qLZeTUikpFBrHVKtJpTLxuFqtsc/GjY3jm7785eSJT0zOPrt9HwcH3nO5Y0fysY8lAwMTH6tUksHBZGRk8a7f/JwWxoSQR0Yan9MZ4r0X/KQ3nzy2mK8eW8vONcloManVkwU2ldvmzMPPTFdXV7rSlbOOPivX3HNNKrVJ/rlYApMFqE855JRsXrc5fbv7csu2W+Ydki6muOCQdbudc8w5ueruqzJUmTlovlh6y70555hzOnZ9AACAFatUbNwq3Um9tn+9t6c9kegd5aQ65uvzUinp8p8FAQAAAICFe+d/vzN//LU/3r8w7uU4pYGkujx+t3oykhTXJBls3K0VkouftCv50eW54NQLUntbLVvv25qTjjypo2MCAAAAAAAAAAAALLbizIcAAKQR6r300ta1ej3ZtWtitLhQSNasSQ46qBEiXrcuWbu28Xbjxsb6mjUTrzHVfu973+SxY+bnQHsuh4aST31qYoC6Xk92724Es+cToC4UWqPSM6nXJ34+hmaOB1/+0KF8/dhaSkkO2pN01fb+JX5+LeW2OvPwM3PI2kP23S8Xy1nftb5j8xTGPB9jA9RJsnnd5pxyyClzDkkX9/5ZbgHqpnOOOSe95c781J4ANQAAAAAAAADAgaUlQF3PxAB1/zIKUI8mWZvUisn9a/cv19auycVfuDiX/+jyJBGgBgAAAAAAAAAAAA4IItQAwOx8+9vJ/fe3rg0OJrVa61q53IgTr1mTFKf4q0ax2Hh806bG8WPVao19x7rvvuTqqxc2P/sdaM/llVcmO3a0rtVqyc6dyfDwxDD0bM3nvPHn1GrJ6OiUh1/+0KFc/MSdqe3tHxezfELU4wPUlVolN/bdmMHKYEopdWSmSq2Ser0+IUDdNNcQ9fru9ekqdi3bAHVTJ0LUAtQAAAAAAAAAAAeWf77un1sD1OOU+5Pq2onrHTGaZM3+uy0h6p6e1Oq1/NP1/5RqrdqJ6QAAAAAAAAAAAACWnAg1ADA7n/tc6/1KpRHwHatcTjZsSEqzDNCWSo3jx8eLh4cb+093febvQHout25NtmxpXavVkj179ke35xuhXui5TSMjky5ffsLwvgB1YcxlmiHqcodD1JMFqAdGBlKv11NLbZozF0899VRqlZx40IkTAtRNsw1Rr+9en9M3n55CYXkHqJuWMkQtQA0AAAAAAAAAcGD51I2fyq//56837kzyeqWuHUlluQSoK2kJUDeNDVGfceQZ+ZcX/ktKxVm+Pg4AAAAAAAAAAABghROhBgBm1teX3HBD69rQ0MTj1q1L5hpsLRQa5403fv/rr2/MwcIcSM9ltZp85Suta/V6I0DdjEePjUgXCnP/mOdjfLi6UtkfxN7r8hOGc/FTdqe2d5zxUxWSbBoaF6JewlZyccyXEeMD1JVaJfVOlbGTlIql3Dd4Xyq1ypTHzBSibgaoy8XypI8vV0sRohagBgAAAAAAAAA4sHzqxk/lon+7qHFnspcFbU9G1y/pSFOrJpnm5TO1UrJzaGc++eJPZmPPxiUbCwAAAAAAAAAAAKDTRKgBgJlt2dJ6v15PRkZa19asSUql+e1fKjXOH2tkZGKsd/wczN2B9Fxu3Zr097euDQ9PnCWZOUC92IHqen3f53x8gHp8oDpJ6oXGX+SbIeqlaGePVUstfbv7ll2Aulwsp1goZmBkIFv6tqQ+2XO911Qh6pUaoG5azBC1ADUAAAAAAAAAwIFlxgD1QJINSznRNKpJemY+bLAymHq1c69xAgAAAAAAAAAAAOgEEWoAYGa33tp6v1KZeEzPLH56YzqTnT/+Olu3LuwaHFjP5fXXt96vVifOUSzOLkA92fsL1bxuodCYrVBoDVDX65MHqMe83wxRd+JHon784I/z/Xu/v2wC1En2RacLKeTo9UenMMPzNT5EvdID1E2LEaIWoAYAAAAAAAAAOLC0BKgnM5BkcX5X+tzVMnOAeu9Lia58xZXZtHbTYk8EAAAAAAAAAAAAsKyIUAMAM7v99tb740O+5XIj5rsQxWJjn+muc9ttC7sGB85zuW1bcuedrWujoxOPa0ao56IdIep6vXFrqlT2B6hTn/j42FPHXf7BNdn3A1JLabQ2moHRgVRr1WURoE6Sar2aWq2WUw45JZvXbZ7VOc0Q9YbuDasiQN3U7mC0ADUAAAAAAAAAwIGjr7+vNUA9/qVBg1leAeqZXvI2JkD9tOOfttgTAQAAAAAAAAAAACw7ItQAwMx27my9X6223i+V2nOd8fuMv874OZi7A+W5vPXW1vv1+sQQ9po1E8+bIvw8wWxD1NMdV68ntVpSq+XyE0dz8ZN3pVavzSlA3bcmqXXob/SlYuM5rtarMxy5tNZ0rclhaw+b0zmb123Oow5/1KoJUCfJVXdftaz3AwAAAAAAAABg+dq8cXMO6jlo8gcHk3Qv5TTTaAaop3vZjwA1AAAAAAAAAAAAgAg1ADAL4+O94802yDuTmfaZaQ5mdqA8lz/5Sev98RHsJOnpmXmfdnw+itP/lbtaSP7pzHpqM2xTLyRj09T7AtRtesrmqlgo7os211NPoVODjLG+a30efeSjU5jH8zafc5arq+6+KkOVobbuOVQZEqIGAAAAAAAAADiAbP/D7Y0Q9dgXLQ1lWQWoe7ZHgBoAAAAAAAAAAABgFkSoAYCZlaf7KY0k9fr0j8/WTPvMNAczO1Cey7vuar1fG5d4LpVmjEMnmf7jKBRSnalb3Dx/msBxqZ585PLkjPunvk5tqgB1h40PUXfS+q71ecxRj9k3z4FqMQLUTULUAAAAAAAAAACrV7VWnbC2/RVbclDzpSgDmT74vJTqybf+Ihl6X3LSg1McI0ANAAAAAAAAAAAAsM8ySNcBAMvepk2t90ul1vvViT98Mi/j9xl/nfFzMHcHynO5a1fr/fER6maAenwceppY9Hj93fW84CXJ5Q8f98Bke9QbiebJbp95ePKKC5L3/0fyqPvGnVYoTEg7twSoZz/uohkbou6UdgSoR0dH2zhRZyxmgLpJiBoAAAAAAAAAYPW5f9f9ed7Hn5fLf3R56wPXXJPtHzkq2Z6ktyOjTVRPvvXnyTl7X1h1699NEqIWoAYAAAAAAAAAAABoIUINAMzshBNa75fHhV4rlYmR37mq1Rr7THedE09c2DU4cJ7L8dcfrxmKHj/XLPV313PRi5PvHZ1cfP64EHWhMCFEPT4kXS80bp95ePL68xv7/OYLknf/VyGn9RVSKyS1QlLf+6dpuQWomzodoh6tjS7o+lfdfVW+8bNvZNvgtjZOtbSWIkDdJEQNAAAAAAAAALB6fO32r+Wovzoqn9/6+bzi31/RGqL+wQ/y64+6N9nQuflajAtQN936wTU5aWR94zVVAtQAAAAAAAAAAAAAE4hQAwAzO/nk1vuThXuHhxd2jcnOH3+dk05a2DU4cJ7LmeLS9frsjht77F7NAPUNRzbu1wrThKiLxVQyedT78ocnv3v+3th0IfnBEclrfyV511dKOe3nEwvTyzVA3dTJEPVwdXjeUeSx8ebrH7h+RYaolzJA3SREDQAAAAAAAACw8n34ug/naZc9LfU0XiM1MDLQEqJ+xQ3vzT8/rpMTjlFPPnHZmAB1qZT09CQf/3gyOJhb37krJx3ceF2aADUAAAAAAAAAAABAKxFqAGBmp53Wer9QSLq7W9f27Emq1fntX602zh+ru7txnbFOP31++7PfgfJcbtjQer847q+9tb1h6PER6vFzjjM+QF1pbjdFiLp/TTEvuGjcevYGqH+5cV6SjO5d33JYPf/vM6v56y+3hqh3du0NUBeyLAPUTZ0MUc8nijxZvHmlhag7EaBuEqIGAAAAAAAAAFi5Pnzdh/Mb//kbE9abIepf+vsn5bJTH+jAZJOoJ+/7aHLRnsOSo45q3A4/PHne85KXvGTfYbe+/tbs+F87BKgBAAAAAAAAAAAAxhGhBgBmtnlzcsYZrWu9vROP2707qdfntne93jhvvPH7n3lmcthhc9ubiQ6U5/LYY1vvj49QVyrJ0FDjljSi1M3bZOr1CQHqoSR965O+NXu3aIaoH9b4vPV31XLRBZV8/+jk9ecnn9kbov7Mqa0B6r41yYPrkuG9l9pyWD3/7zOqedeXCjl2dyk71hYz1JNlHZ8ea6WEqKeLN6+UEHUnA9RNQtQAAAAAAAAAACvPu7/17kkD1E0DgwP5+s++tYQTTe+kO5JXP7gu6epqfeB//I8Jx25au2mJpgIAAAAAAAAAAABYOUSoAYDZec5zWu+Xy0lPT+tapZLs2pVUq7Pbs1ptHF+ptK739DT2n+76zN+B8Fw+9KGt90ulRiS7eUsaweyhoVnFtvt7MiFAvX194/1KaVyI+pfr+ZfTao3jj9i//rvnJ298ViNUXSkk9TTOq5Qax+xYlwyWksGu5NvHJk/6rUJuPKorw8UpwtjLWLFQTLHQmS81ZhNFnk28ebmHqEdHRzseoG4aqgxldHS002MAAAAAAAAAADALr/3P1+Z3r/jdqQ+oJKklKSzVRDPYnWw9JXnCy4db1487LjnvvM7MBAAAAAAAAAAAALDCiFADALPzi7+YHHFE69ratUlx3F8nKpVk585kz56kNkU8t1ZrPL5z58RocbHY2HesI49Mzj57YfOz34HwXJ58cuv9ajUpjPupqGaQevz6ONMFqJvGhqirheRVz0u+c0zrMYNdyd88ofE2heTnzQB1Yf9t15pkV08yVE4Gi7UM1doTGS6llOLev/oXU0wppbbsO5VavZZavXPx7OlC1LMJUDdd/8D1Ga0uz7hyV1dXzjz8zAXt0VvuzdMf+vT0lnsXtM+Zh5+Zrq6uBe0BAAAAAAAAAMDie+1/vjbvu+59Ux9QzbILUGdT491rjqjkCc/v2//Yn/5p4jUrAAAAAAAAAAAAALMiQg0AzE65nLz2ta1rhUKyYcPkEd89e5IdO5L+/mT37mRwsPG2v7+xvmfPxHOm2u+1r21cn/Y4EJ7LQw5JjjuuEZkeGmrcJjNDiHo2AeqmZoh6+5pktJTs3BuTThpvd/Y03t/V3TiuMk0Hur73Tzs0g9OFFFJMMYW9PyG2WCHqWr2WSq0y84GLbLIQ9VwC1E3VvX+Wo0PWHjLvEHVvuTfnHHNOkuScY86Zd4j6zMPPzCFrD5nXuQAAAAAAAAAALJ1ZBairWTYB6sKO7AtQN+0LUV94YfKMZ3RiLAAAAAAAAAAAAIAVSYQaAJi9s8+e+IMbpVKycWNSnOKvFZVKMjzciAAPDzfuT6ZYbOxTGhfGfeYzkyc8YeGz0+pAeC5PPrkRzJ5qzqZmiHqcaiF56QtnF6BuqpSS4TGfvp09yY7e/QHqJKklqTWPmeMPbBXmeEI55RTG/GlGqJt/ymlvEHy5BKibxoao5xOgHms1hajHBqib5hOiFqAGAAAAAAAAAFgZXv+5108foK5lWQWoizuS+mGTP3bNEZU84eHfXNJ5AAAAAAAAAAAAAFa69lbnAIDV7zWvSW66Kbnnnv1rpVKyaVMj+Ds8PPc9e3qStWuTwrifYDn66OTVr17YvExtNT+XfX3J1VdPXC8UJg1OT6ZUT155XXLdUclgYeYA9f5rJLX6/t/2MjymxV3b+/hclYvlFAsT4+Cj1dHUM/HjmSwyPJ3pAs2llFJPPbXG9FNabgHqpqHKUK78yZVt2auaakopzXzgEmuGqK9/4PoZj53un41zjjln1rFuAWoAAAAAAAAAgJXh7V99e97zvfdMfUAtyWj2v+Cpw8o7ksoUAeokSSG59v7vZ2BoIOt7Z/uiLgAAAAAAAAAAAIAD2zJ5qSgAsGKsX5+8853JYeN+yqNQSNatSzZuTLq7Z7dXd3fj+HXrJkaLDzuscZ31fkhk0azW53JgIHnXu5Ldu1vnr9dnHaBuuuDm5PVXzSFA3VTIhGTzhAD1HGLUkwWok6Sr1JXCuI3mGqBOGvHh3nLvhPWVHqBut+UYoG5qhqinM5t/Nqb6Z2EsAWoAAAAAAAAAgJXhn6/751zy9UumPqCa5RWgfnDmAHUhhXznN78jQA0AAAAAAAAAAAAwB8vk5aIAwIpy5JHJX/5lcvTREx8rlxux4YMPTjZsSNasaYSAm7c1axrrBx/cOK5cnrjH0Uc39j/yyMX/WA50q/G5fN/7kgceSGq1pFhMSqU5x6ebrj0y+cPz5jnHmBD1QgLUSVKpTh14Hhuink+AumlsfHhDcYMA9TjLOUDdNF2Iei7/bEwXohagBgAAaKNqLalWW2/DI8nw8MJv1Wrrteq1pDa/748AAAAAACvTp278VH79P3996gOqSSpZPj9RMJJUjpjm8TEB6rMectaSjQUAAAAAAAAAAACwGkxSCgQAmIUjj0ze/e7k/e9PvvzliY8XCklXV+M2F898ZvLqVzeixiyN1fRcXn11csUVjfeb4elyOanMPZI8UE6e8NtJfY7B6BZjQtTN+/NRSy2VaiXl0uR/fe8udef4Dcfn6IMmiYnPwTnHnJPR0dHc9PObsnt4twD1XishQN3UDFFf/8D1+9bmEyc/55hzctXdV2WoMrRvTYAaAACgTaqVRmy6Xk9GRtLy3YPRkTZdpN66b6WS7BlMiqWkp6dN1wAAAAAAlqtP3fipXPRvF01/0GiybF4WM5RkqpeZFZpvBKgBAAAAAAAAAAAA5qvY6QEAgBVs/frkDW9I3v72Rsh4IY48srHPG94gQN0Jq+G5rFSSSy9tvN8MUO+LOU2jMHkZen0lOetnbZxvITHrZMoAdSGFnHLIKQsOUDd1dXVluDosQJ1GvLm31NvpMeasGaJO5hegbjrnmHPSW258/ALUAAAAbVKtJUPD+793sdRq1WRoqNGoBgAAAABWpb7+vpkD1ENZPgHqwQhQAwAAAAAAAAAAACyyyUt2AABzcfbZyeMel3z728nnPpfccMPszz3zzOQ5z2nsUfZXk45byc/lt7+d3H9/69roaCPqVChMjDuNjU833x93zHc+mDzhVck1xyxwtgUGqLtL3VNs2whQb163eWEXGKNvd18GK4MzHletVdt2zeWoGW++6q6rOj3KvByy9pA8+SFPTldX14L2OeeYczI6OrrgfQAAANhrpl+WtRTqe0PYAAAAAMCq9MrLXzn9AXuyfH6KYDDJxpkP+8JLviBADQAAAAAAAAAAALAAy+XlowDASlcuJ09+cuPW15ds2ZJs3Zrcdluyc2dSqTSO2bQpOfHE5KSTktNPTw47rNOTM95KfS4/97n97xcKSa2WVKuta81brTb5HoWJtejvfLA+vxD1AsPTTUsdoL5l2y2ppz7jsfXUU0hhVseuNM0A9UrXrnC0ADUAAEAbLZdf6lRdJnMAAAAAAG31qPc8Kj/c9sPWxbEv7xnK8vkJgt1JNk3z+N7XX/3ZU/8sz3rYs5ZiIgAAAAAAAAAAAIBVa7m8hBQAWE02b06e+tTGjZVtpTyXfX3JDTe0rlUqE4/r7k6KxUZoaXQ0qU8fUK4W6imlkO98sJ7H/GZy3UNmmKNN4emmTgWoZxuWFqAGAACAOSoUZvx+xNLM0ekBAAAAAIB2mxCgHv+tyD3J/5+9O4+Pqj70//8+s2QPYQsg4gKCirggQlXqBtalilpcwNa6VFtva6v+7ve291u9Vr1fq/e217bWtre7Wm2tu7baRUVwRURkU5QlgAICIUD2bZbz+f1xcpJZk0kyW5LX08c8knPmnM/5zAAyTOa8jvLlWuQtSjlAfevpt2ZjRgAAAAAAAAAAAAAAAAAAAIMaEWoAAAAMfOvWRS8b44SmI/l8ToBakrxeye/vilHHbiupocDoioula1cbDW9yAtQFISnQ3Stoo7RFnLIZoDbGaGfTThkZBcPBtI070BCgBgAAAABknNcjheLfh8g6f76UZgAAAAAAAACkw2m/Pa0rQJ3oOngtkhJ/HCn7WiUN6+Z+AtQAAAAAAAAAAAAAAAAAAABpR4QaAAAAA9+mTdHLoVD8NgUFkhVRiC4s7PretqVAwIlRh8Nq8NtaeLGtNWON3jpAqi13Ngv4UghRp0E2A9SSZFmWplVO06qdqxRQIK1jDyQEqAEAAAAAGecvlMKtzgW0csXnlQqIUAMAAAAAAACDxece/Jze2PmGs5DvAeo2SeXd3N/x8a6HLnxIVx9/dTZmBAAAAAAAAAAAAAAAAAAAMCR4cj0BAAAAoN+2bIleDoejl71eyeNxItSJbl6v5PdLRUVqGFGihQssrRkntXq6AtSugE/yxQyfTtkOULsa2hrUGGrMyNgDxdIdS3M9BQAAAADAYOexpKJiyeeTrGz+mM5yjucvlAqLsnhcAAAAAAAAAJl0+u9O1yvbXnEWEgWom5U/Aep2yTx6gIa3JbjPUmeA+vFLHidADQAAAAAAAAAAAAAAAAAAkGa+XE9gINu6davee+89bdiwQfX19aqvr1cwGOzzeJZl6fe//30aZwgAADBE1NdHL9t29LIntahTQ4HRwvOatWZ0WK0yqitJvF3IK8lWRi7pYhtbngQRqhFFIzIWoA4Gg1q9Z3VGxh5I2kJtWrpjqWZPmJ3rqQAAAAAABjOPJRUWdiwYyY4owxQVOhfL6q/6eikc6lr2+6WS4v6PCwAAAAAAACBvfOGRL+j1T193FhIFqJsk5cs16QKS+dMBkqTahw/QiKt2qa5IneFp1+OXPK4FRy/I/vwAAAAAAAAAAAAAAAAAAAAGOSLUvdTY2Khf/vKX+v3vf6+qqqq0jWuMIUINAADQV6FQ9LKJOavKijlbKYG4AHVpDztkIEAtSSE7JJ/HFxeirm2rVU1zTUZC1H6/X0W+IrWF2tI+9kBDiBoAAAAAkF2WZJmoxVTexwAAAAAAAAAwtC18fKH+suUvzkKiAHWDpJJszqgbQcmsPFM6bbQ0bZp07LGq/cxnNOIPR6muva5zMwLUAAAAAAAAAAAAAAAAAAAAmUOEuhdeeuklffWrX9Wnn34qExs27AeLmAAAAED/+GJe1sa+vurhtVuD39bCc3oRoM6wRCFqI6ON+zdKUkZC1LMnzNbSHUsJUYsQNQAAAAAAAAAAAAAAAPLXwscX6on1TyTfIJ8C1CGpbHiZnv3ZNzV/6vyou2q/W6sR/z1Cde11BKgBAAAAAAAAAAAAAAAAAAAyjAh1ip5//nldeumlCoVCMsYQjgYAAMgnFRXRyx5P9LJtJ921wW9r4bmNWjMqPwLULkLUueWGqAEAAAAAAAAAAAAAAIB88etlv44OUJuYDeoklWVxQt0JSSqWmgJNuuq5q/SwHk4Yoq5pqFHlsPR/FgoAAAAAAAAAAAAAAAAAAABdiFCnYMeOHbr88ssVDAZlWVZngNqYrk/tlpaWqqKiQn6/P1fTBAAAGLomTZJWrepa9nqj7w+HJWOkmAuJdAaoR4fVavInQO3KVYj61Y9fla3k4e6hwo1xe+XtYUsAAAAAAAAAAAAAAAAgs17Y8IK+/uLXnYXY+LQk7Zc0LJsz6kZYUnHXYnchagLUAAAAAAAAAAAAAAAAAAAAmUeEOgW33367Wltbo+LTlmVpwYIF+vKXv6zPfOYzGjNmTI5nCQAAMIRNmRK97EvwMjcYlAoKOhfDdkhXnNWsNaNCCuZhgNqVixD1iMIR2te+L+3jDlRhhQlRAwAAAAAAAAAAAAAAIGceW/uYvvjsF52FgRCgLopf3V2IGgAAAAAAAAAAAAAAAAAAAJnl6XmToS0YDOrJJ5+MClCPGjVKr7/+uh577DHNmzePADUAAECuTZsWvWxZ8SHqQECy7c5Fry1du84vj5H8suSxlbfCdljGRJ895oaoa5prMnJMosvRwgrnegoAAAAAAAAAAAAAAAAYgu557Z7uA9S1yp8Ata2EAWpXU6BJ33n5OwrbfBYHAAAAAAAAAAAAAAAAAAAgm4hQ92Dp0qVqbm6W5ASoLcvS008/rc9+9rM5nhkAAAA6VVZKxx0Xvc7vj9+uvV2KiDnP31ygn71aLI+RxramIURt9XP/hENa8nl8nRdFiUSIOrsIUQMAAAAAAAAAAAAAACCb7nntHv3Hq//hLCQKUNdLKs/mjLphS0rwka1YdW11RKgBAAAAAAAAAAAAAAAAAACyjAh1D7Zs2dL5vWVZOvPMM3XaaaflcEYAAABIaN686GWvV/L5oteFw1Jbm2R31abTHqJOMyOTMEAdeT8h6uSKfEWae+hcFfmK+j3WQH8uAAAAAAAAAAAAAAAAMHA8tvaxngPUpdmcUTdsST71eHbCMP8wrf76ahX4CrIxKwAAAAAAAAAAAAAAAAAAAHTw9bzJ0LZ3715JkjFO/O/ss8/O8YwGppqaGr377rvavHmzGhoa5Pf7NWrUKB111FGaOXOm/H5/rqeY97Zt26b3339fH3/8sRoaGmSMUVlZmcaPH6/DDjtMRx11lAoLC3M9TQBAb4XDUUFkSVJjoxNQHiyMkUIhqb9/3weDTlTasqK/d02bJo0eLdVExJgLC53n2ESchRUOS62tzvcFBZLHo/kfF0uve3Tj6S0a2ypVFxvZeXS5lkA4oAJv8hOvjIx2Nu3U6JLR3Qar+8orr8IKp33cTCvyFWn2hNmSpNkTZmvpjqVqC7X1aSwC1AAAAAAAAAAAAAAAAMiWl6te1hef/WLyDRqVfwHqHj5eU+or1bpvrdOEYROyMSsAAAAAAAAAAAAAAAAAAABEIELdAxMZLJR00EEH5WgmA9NTTz2ln/70p3rrrbfinktXeXm5FixYoH//93/X4YcfnuUZxjPGaNOmTXrvvfe0YsUKrVixQqtWrVJjY2PUdldffbUeeuihjM5lx44d+s1vfqM///nPqqqq6nbbgoICTZ8+XWeffbYuvvhiHX/88RmdGwCgn1pbpYYGJ4gc6623JE8eFZD7KhyW6uulto7or2VJ5eVSaWl0PLo7xkjNzU6Y2xjneQuFpJISZ9zaWqmpSdq7V2ppcbatq3PGtywn5l1YKLW3R4eo3bFaWyWfT2GfR/PXeaR2n278XEBjW6TqEvUuRJ3+9nOUUDgknzfxy/eygjJNq5yWkQC1pAEfoHb1JURNfBoAAAAAAAAAAAAAAADZ9MKGF3TBYxc4C4k+fl0nqSyLE+qOkROfTuEjNsuvW06AGgAAAAAAAAAAAAAAAAAAIEeIUPdgzJgxUcuhUChHMxlYPv30U11xxRV67bXXety2sbFRv//97/XII4/otttu02233ZaxgGIyzzzzjJYtW6YVK1Zo5cqVqq+vz+rxY7W1tenOO+/UT3/6U7W1pRZJDAQCWr58uZYvX663335bixYtyvAsAQB91tLihJIHM9t2wtCRkW1jnPC2bUvDhqU2zq5d0tat0r59Uk2NE5lub5cCASdG7fE4N5+vK9zt8Tj3SV1f3ftsOy6A3eAJ6oovGF27ytL8DywpaOnGzxuNbZF2l0gmlRB1Fl66dBegPrryaPk8Pb+0DwaD8vv9vTruYAlQu3oTop4+ZrrW71uvYDiY7ikCAAAAAAAAAAAAAAAAcXoMUDcpvwLUHqV0RsLjlzyuo8YdlekZAQAAAAAAAAAAAAAAAAAAIAki1D045phjJKkzirx79+5cTmdA2Lhxo8444wzt2rWrV/sFAgHdfvvt+uijj/TII4/I6/VmaIbxrr322pyHp11bt27VBRdcoHXr1uV6KgCATDBGypO/czKqqSk6QB17X0mJE45OJByWNm2SVq6Utm3rWh8MOlFpE3F2lW07XwMByeuV/H6psNAZI9F2luWs73ht11BgtPBSozVjpVXjnO3nb3Duu/HzRuN6E6LOsEA4oAJvQdS63gSo3fDy9DHTNbJkZErHHIgBaklJA9SR9/cUou58nvale3YAAAAAAAAAAAAAAABAvJQC1EXZnFE3TMcthY97P3TBQ1pw9IJMzwgAAAAAAAAAAAAAAAAAAADdIELdgxkzZmjs2LHas2ePJOn111/Xv/3bv+V4Vvlr3759OuussxIGqE844QRddNFFmjhxolpbW7Vx40Y9+uij2rlzZ9R2f/7znzVmzBjdd999WZp1/tiwYYNOP/10VVdXx903duxYnXfeeZo6darGjBmjkpIS1dXVafv27Vq7dq3eeust7d27NwezBgD0Snt7dBx5sAoEer4/UYS6qkp65RWpoaHreTLG2T5Z1NoVDjs3y5IKCpx9Ej3XliV5PGrwhbXwUmnNWGe1bTnhaSk6RD22Vaou7iZEbXU/rXSKDFH3JUAtSav3rE4pRD1QA9SS83j7E6LuTagbAAAAAAAAAAAAAAAA6K8BGaAu6HnTu8+4W1fPuDrTMwIAAAAAAAAAAAAAAAAAAEAPiFD3wLIsXX/99brrrrskSa+88oqqq6s1duzYHM8sP11//fXatm1b1Lry8nL98Y9/1IUXXhi3/T333KN77rlHd955Z9T6n/70pzrnnHP0+c9/PpPT7dGoUaN0wgknaMSIEXr88cczeqw9e/bo7LPPjgtQT5kyRT/60Y80b948WVbyyqVt21q+fLkeeeQR7d69O6NzBQD0Qzf/Lx9UYoPRlhUdhI69v61NWrxYWreua50xkm07MWnbTnycRJFpY5zxfL6uMWKe9wa/rYWXWZ0BapdtSTeeJ6msRPO3l+mJT2u05KCwxrRK1aUJjp/BX85xJeO0uyX+7/RAOKCRxSP7FKB29RSirm2v7duk80RbqK3PIWoC1AAAAAAAAAAAAAAAAMim7bXbuw9QByQVZnNG3YgNUHfz+am7z7hbt55+axYmBQAAAAAAAAAAAAAAAAAAgJ54cj2BgeDb3/62DjzwQFmWpdbWVn33u9/N9ZTy0ssvv6xnnnkmal1BQYEWL16cMEAtSX6/X3fccYfuu+++uPtuuukmhUKhTEw1oYqKCs2ZM0ff+c539MQTT2jLli3au3evXnzxRX3961/P6LGNMbryyivjAt4LFizQBx98oAsuuKDbALUkeTwenXTSSfrFL36hp556KpPTBQD0R0HB0AlRR0oUi3bV10uPPBIdoJaceHR7e/IAdU9CISd2HRPAbigwWnip0ZoxxllvWVG3sCV967Qm3Txzr16b4MSya4oTjJ/BX8bJwycnDFC7WgItfQ5Qu1bvWa39LfsT7mOrj895HmkLtSkYDPa43ewJs1XkK5JEgBoAAAAAAAAAAAAAAADZ1dDeoOv/fr08VpKP9QfkfE4pXz5yZqkrQN2NW06+hQA1AAAAAAAAAAAAAAAAAABAHiFCnYLy8nI9+uij8vv9kqSHH35Y//Vf/5XjWeWfu+66K27dHXfcoZkzZ/a4780336yzzjoral1VVZUeffTRtM2vO6tWrVJtba0WL16sH/7wh7rssss0ceLErBxbkh555BG99NJLUevmz5+vRx99VAUFKXxSO0ZPwWoAQA5ZllRRketZ5I+6OunRR52vkYxxAtTdxatT5UasjVGD33YC1GPj7zcyso0tI6Nmn/TzGSG1+J0AtR35qjnDJ3VNHj5ZVXVV3W7TFm7T0h1Lu92muwC1KzZEnco+A8X0MdM7X7/3ZPaE2Tr1wFMJUAMAAAAAAAAAAAAAACBrGtobtPCphVqze43Glo6VJxyzQb4FqG1Jvp43+9r0r+mes+/J+HQAAAAAAAAAAAAAAAAAAACQOiLUKTr11FP11FNPqbCwUMYY3XbbbVqwYIG2bt2a66nlhXXr1umNN96IWjd69Gh9+9vfTnmMRGHvX/7yl/2eWyomTpyYs3Bze3u7brnllqh1o0aN0m9+8xt5vd6czAkAkGElJdLw4ZJniL8Ua2uTnnxSamqKXm+M1NLSFY9OB2PUUGC08DJFB6g777dlOoLXbV6psdBZXV8QEaDOwgldqQSoXW2h5CHq3sSk3RD1YAtQ9zYonWqwGgAAAAAAAAAAAAAAAOivyAC1jJH279fYFsnjfmQqrPwLUBf0vNnXj/+6fnPRbzI+HQAAAAAAAAAAAAAAAAAAAPSOL9cTGAhef/11SdKwYcP0X//1X7rlllvU1tamp59+Ws8++6zmzp2r008/XVOmTNHIkSP7FbA77bTT0jXtrHrsscfi1n3lK19RQUEKnzbucMIJJ+iEE07Qe++917lu2bJl2rp1qyZOnJiWeeajP/7xj9q5c2fUuttvv12jR4/O0YwAAFlRUuLcwmHnFmn2bGmgX4jgzTelYLBr2eOJjkoffLD0j384senI1wuhkNTYmN4AtaSGQmnhpREB6siLTxgjGcl4LLX6jJoLJCPn5myb1qkk1ZsAtcsNUc+eMLtzXV9i0qv3rO7V9vmsLwFqAAAAAAAAAAAAAAAAIFvCdlgLHl+gtTVrnc+O1dZ2ftZqbIu0q7Bjw3wJUIckFSVYHzO/L039kn554S+zMSMAAAAAAAAAAAAAAAAAAAD0EhHqFJxxxhmyrOhPyVqWJWOMwuGwFi1apEWLFvX7OJZlKRQK9XucXPjnP/8Zt+7SSy/t9TiXXnppVITaHfsb3/hGn+eW7373u99FLRcUFOjLX/5yjmYDAMg6rzc+OD1smOQb4C/TSkqk1tauZctyYs+urVulN96IjkGHw+kPUFuWwjK64mJpzbiI9cY4YeyObYwxavMZNRYmHCXj/Ja/1wFqV2SIui8B6sGEADUAAAAAAAAAAAAAAADy3eufvK4Xt74orzwa0+aRwl2fl6oOSzKSPDmbXrRkAeoYZx96tv604E8Znw4AAAAAAAAAAAAAAAAAAAD6Jl8+njogGGOibpZldcao03UbiJqbm7Vy5cqodSUlJZoxY0avxzr11FPj1r3xxht9nlu+2759u5YtWxa17uyzz9bIkcQTAQCDWDgsPfFE9DpjnAB1b18PxVwoJBGvLF27SvLEDh1xrDavUZNfsnL0cixogv3avy3UpsUfLyZATYAaAAAAAAAAAAAAAAAAeWzJ1iWa+/BcSVLY2NrjD3V+jqk6LNnFyp9P+AeUPEAd8bGteZPm6cWrX8zGjAAAAAAAAAAAAAAAAAAAANBH+fIR1QHBjU67t2Tr+3IbyFavXi3btqPWzZw5Uz6fr9djzZo1S36/P2rde++916/55bNFixbFrTvppJNyMBMAALKoqkraty96XUuLZNu9i1C7r6EsK3mM2hjJsjR/g6Wf/T0mRN1xrDavUUNhx6rUjz4oFfmKNH3M9Izvk24EqAEAAAAAAAAAAAAAAJDvIgPU7geVwh5pT7HJvwB1s6SSnjebd+g8PX/l8xmfDgAAAAAAAAAAAAAAAAAAAPonXz6mmveMMRm9DWTr16+PWzd58uQ+jVVQUKAJEyZErdu8ebNCoVCfxst3b731Vty66dOnd35vjNGLL76o6667TkcffbTKy8tVUFCgcePG6ZhjjtGVV16phx9+WPtiQ54AAOSz1aujl0Mhqb29dwFqKX77PoSo2zy26gucFXbivYeMIl+RZk+YrZElI1XuKe/1PrkMURf4CnJ2bAAAAAAAAAAAAAAAAKAnUQHqGGFPngWoGyVVdHN/x8e0jhl5jJ6/mgA1AAAAAAAAAAAAAAAAAADAQODL9QQGgiVLluR6Cnnt448/jlt3yCGH9Hm8gw8+WFu3bu1cDofD2rZtmyZNmtTnMfPV+++/H7duypQpkqQPPvhAV199tVauXBm3TXV1taqrq/XBBx/oj3/8o8rKynTzzTfrO9/5jioquvvUNwAAOdbQIG3bJnm9Xeva2pxQdF8uzOHu4waoLSt+nI4ItROiliSjG8+TwpbU4nc2saXOk6NkIr4fItyYtKvAXyC1924fN0S9es/qDM0yuXd3vqtZ42eprKAs68cGAAAAAKDXjJECQSkc7nhfJOLSWG1tSs8bEyFFXXIrGJJa2yS/T/Lx40EgHWzb1ksvvaQ333xTy5Yt07Zt21RXV6f6+vo+X2DXsqxBe3FeAAAAAACGsrgAdezHpNoleZUfGiSN7Ob+iAD12hvXZmNGAAAAAAAAAAAAAAAAAAAASAPOMk/B6aefnusp5LXdu3fHrTvooIP6PF6ifaurqwdlhHrLli1x6yoqKvTAAw/ohhtuUHt7D/XHDk1NTbr77rv15JNP6vnnn9fhhx+e7qn2yy9+8Qv97//+b8aPs3nz5owfAwDQT59+Gr1sjNTe3rcAdew4MSHqsCV5Eww7f70kS7rx89LwVqmuWAp6JDtP4tM++RRS9kIzsTFpl1dehRVOul+ifQp8BWmdW6qMDCFqAAAAAMDAYJvo8LQxii/O9PN9ksQHluyw1B6WwnbPmwNIyrZt3Xfffbr//vu1ffv2zvWmv+9xAgAAAACAQSkuQB1rAAaoTx1/ql7/2uvZmBEAAAAAAAAAAAAAAAAAAADShAg1+m3//v1x68rK+h7/S7Tvvn37+jxevgoGgwkf1+LFi/W1r31Nth0dgSgvL9e4ceMUDoe1a9cutba2xu27ceNGnXTSSVq6dKmOPPLIjM29t2pqavThhx/mehoAgHwQefEK25aamvofoHa541iWGgqlKy6Wrl3lRKeNG6nuCFR/Yb0lI+mmzxsNb5Nqi6RQP0PUPo9PIbt/8ejpY6ZrZMlILd2xVG2htn6NlYpkAWpXshC1z4r/Z0RToEnv7nw3rfPrDULUAAAAAIABIRjsClCnYFRDSEd+2q5J1UEdUhPQsBZbPtso5LHUUOLRJ5UF2jLWr/UHFmrfsBR/7BcKSoHsXQALGEx27typhQsXaunSpVHRacuyZFn9u8IdEWsAAAAAAAafhAHqyLcA2pQ/n+ZvVEoB6jMPPlOLvrIoGzMCAAAAAAAAAAAAAAAAAABAGuXLx1YxgDU3N8etKy4u7vN4ifZtaWnp83j5qq6uLuHJ5Nddd11ngNqyLH35y1/Wt771Lc2aNavz5PVQKKQ33nhDP/jBD/Tiiy9G7V9bW6tLLrlEy5cvV2lpaeYfCAAAvVFT43x1A9Th+MBxfzUUGC28VFozTlp1gHPe1hfWG5mOM7gsSZYxumi9OkLUUkWbVN+PEHWBt0BSV4i6L0FqN0AtSbMnzM54iLqnALUrNkTtlTdum3A4rHd3vtv5HOeKG6I+7aDT5PXGzxMAAAAAgJwL9/x+gTds9JmqVp29uklHbW/vdttjPum6f93BhXrpuDK9O7lYCf75Hi0YTGW2ACLU19drzpw5qqqqkjGm8+d2xpjOn/lFrosVGakmOA0AAAAAwOCXMEAdKZ8C1C2SRiS5L+JzVKcdeBoBagAAAAAAAAAAAAAAAAAAgAEqXz66igEsmCBUUFRU1OfxEkWoA4FAn8fLV+3ticMRra2tkpzn8LHHHtNFF10Ut43P59OcOXM0Z84c/exnP9PNN98cdbL6hx9+qLvuukv//d//nZnJAwCGjpoaad06adMmacsWqb5eCoUkn0+qqJAmTZKmTJGmTZMqK3ser6XFCVC3tUnGOLc0aihUZ4BakmxLuuk85/uLNsRv/4X1Ushr6V/PMZ0h6qBHvUopuwFqSfJaXo0fNl7VzdXyeD0KhFN7DRMZoHZlMkSdaoDa5YaoEwWoJcnr9WpU8Sjtbd2brin22ajiUQSoAQAAAAD5q4f3Qk7Y3KqvLK5VZX3vL9w1bVu7pm1rV02FV/8516sXD+v7PADEu+aaa7Rp0yZZliXLsmSMUUlJic4991xNmTJFDz30kPbs2dMZqL799tvV2tqq/fv3a8uWLVq+fLmampokqXP/iooKfeMb31BhYWGOHx0AAAAAAEin+pb67gPUrZL8WZtO91okDUtyX0SA+qJJF+m5K5/LwoQAAAAAAAAAAAAAAAAAAACQCUSokRGWZfW8US/2NYMwhtDTY/r1r3+dMEAd68Ybb9SePXv0/e9/P2r9L3/5S333u9/V8OHD+zNNAMBQFApJS5dKL7wgrV3b/barVnV9f9xx0rx50sknJ98+GJRaW53QUT9eLyQSG6B2uSFqYznR6VgXbrT09FTp9UOcEPX+EinVzFNkgFqSRhSN0OSRk1VRWKGN+zfK7/EraMdfsCPS6OLRcQFqVyZC1L0NULuSBahdx449Vmur1+Y0RD26eLSOHXtszo4PAAAAAECPPF7Jjn/noaTN1leW1Oq0dS39PkRlfVj3PRvUc9M8umeOV41FCd6D8XABJ6A3li9frr/85S+d8WjLsnTuuefqD3/4gyo7Ls73z3/+U3v27Onc54477ogaw7Zt/e1vf9OPf/xjvfbaa7IsSw0NDXrhhRf0wgsv6OCDD87qYwIAAAAAAJlTUVKhySMmq6q2Kv7OFkkF8atzolXJA9QRFhy5QI8vfDzj0wEAAAAAAAAAAAAAAAAAAEDmeHI9AQx8fr8/bl1ra2ufx0u0b0FBvnzaOn0SPW+uM844Q1dddVXKY91+++2aOHFi1LqGhgY99thjfZ4fAGCIWrZMuu466Z57eg5Qx1qzRrr7bmf/jRsTb1Nf7wSo0yxZgNplW9LNn5eeO1KKzS49d6T05sHOnAJeKZxiGzs2QC1JtW21qmmuUWVppQ4feXhK45T4S7q9vy/B6GyOF+nYscdqdPHojI3fHQLUAAAAAIABoSD++rCV9SH99x+rkwaoLRn5w0bFQVul7bbK2p2vxUFb/rCRpcTvtVy0Lqwn/xTUgfUx91seqaiw3w8FGEruvffezu8ty9LMmTP13HPPdQaoU+HxeHTBBRdoyZIl+s1vfqOioiJJ0gcffKBTTz1Vu3btSvu8AQAAAABAdtW31Hd+v+mmTZo8YnL0Bk3KnwB1u6Tybu7v+AwVAWoAAAAAAAAAAAAAAAAAAIDBIf5Md/RJbW2tVq1apb1792r//v1qbGxUeXm5Ro4cqdGjR2vGjBkaPnx4rqeZESUl8eHEdEeoS0tL+zxevuruMd144429Gsvv9+tf/uVf9N3vfjdq/auvvqqvf/3rfZpfOlVWVuqoo47K+HE2b96s9vb2jB8HAAalpibpV7+SFi3q/1jV1dLjj0tHHSXNnSt1xFRUVSW1JI4p9UdPAWqXG6K2jDR/vbPuuSOlfzvLlm1JbV6psdA5f6qnTLYlS8YYWVZ0sdrIaON+J8BdWVqptmCbNtVtSjqOV94ejiQt3bG0x216Y+mOpRkPUa+tXqu9rXszdoxYBKgBAAAAAAOG1ycVSup4L3tMXUj/77E9GtEUjtvUZxsVBY38oe7eqXDuC/ostfkthTzR71UcXGv0x8eC+ubltlQkJ0BdWMhlaoFeMMbo5ZdflmV1vSf405/+tF8X0f3qV7+qCRMm6Atf+IKCwaC2b9+uyy67TG+++WYaZw4AAAAAALJpydYlmvvwXE0eMVmbbnI+L7Tppk2acv8UVdVWOQHqfLk2XLuk7j6a3fE246/O+ZX+5aR/ycaMAAAAAAAAAAAAAAAAAAAAkGFEqPth06ZN+sUvfqGXX35ZGzZskDHJIwCWZemII47QOeeco29+85s67LDDsjjTzBo1alTcuqampj6Pl2jfRMcY6MrLy1VQUKBAIBC13uPx6HOf+1yvxzv77LPjItT5cqL6N7/5TX3zm9/M+HGmTZumDz/8MOPHAYBBZ/du6dZbpZ07E99vjBQKObdwRBDJ65V8PucWE2OWJK1bJ336qbRggVReLr3yiuTxdI3RzWunVKUaoHbZlnTTeR15po4odWSAWuo5QO1sYxSyQ/J5fN2GqLc1bEs6RqoB6rZQWwozSl1bqG1QhagJUAMAAAAABhyfT/J4VdIa0G3P7NGI5nBn1MW59JVU0h5WQTD19078ISdWHfBbain0Rr3BMbbR6KdPN+s/byhQS4k/nY8EGBLef/991dfXd74POHXqVJ100kn9Hvfcc8/VrbfeqjvvvFOS9Pbbb+tPf/qTrrjiin6PDQAAAAAAsssNUEtSVW2Vptw/JSpE7f+2pVBRLmcYIaCUAtTPX/685h0xLxszAgAAAAAAAAAAAAAAAAAAQBZ4cj2BgWjHjh266KKLNHXqVP3sZz/TRx99JNu2ZYxJerNtWx999JF++tOf6ogjjtDFF1+sHTt25PqhpMXYsWPj1vXnsW3fvj2lYwwG48bFFzMnTZqkYcOG9XqsY489Vl5vdMxy9+7d3cbRAQDQ7t3Sv/1b4gB1KCQ1NUm1tVJjo9TaKgUCXbfWVmd9ba2zXSgUP0ZdnfToo9KaNVJDgxOudvXz76jeBqhdtiVdf6F0/QVSOCZA3RtuiDrR37VGRu/XvK92uz3hvrkKULvcEHUmHTv2WI0uHp3RYxCgBgAAAAAMWB5LX/lHtcbWhuRUXZyb10gVzb0LUEcqCBpVNIfli9n9oFpb1/xzV39nDQxJ69ev7/zesizNmTMnpf3CkRf0S+Lf//3fNWrUKFmWJWOM7r///j7PEwAAAAAA5MYrm1/pDFC73BC1JB3935MUKs/FzBIISirp5v6OAPWf5/+ZADUAAAAAAAAAAAAAAAAAAMAgQ4S6l5566ikdd9xxeuGFFzrD05ZlpXxzg9R/+ctfdNxxx+npp5/O9UPqt4kTJ8at++STT/o83rZt26KWvV6vDj744D6Pl88mTZoUt27UqFF9Gsvr9aqioiJqXTgcVl1dXZ/GAwAMAU1N0q23Svv2Ra83RmpudqLRgUBqYwUCzvbNzfFx6aYm6Z//dNZ70vPyM2xJV1zc+wC1JLX5pLqirltkgNp2m08pShaiDoS7f97C6j5Ak8kAtWugh6gJUAMAAAAABrIT1tfrtFW1Ueu8tlF5S0hWkgt3hbyW2v0etRV41O73KORN/CaGZYyGtxr57Oj1p6+s1Qnr69Myf2Aoqa11/qy67wEeddRRCbezrOg/k21tPb+/V1RUpHnz5nWOvWLFCu3Zs6c/0wUAAAAAAFn0woYX9Lk/fi7hfVW1VSr/P5bWtW11VvizOLFEQpKKk9wX8Zmpu8+4W5cfe3mWJgUAAAAAAAAAAAAAAAAAAIBsIULdC4899pguv/xy1dbWRsWnJeek455ukqJi1LW1tVq4cKEee+yxXD6sfjviiCPi1lVVVfVprEAgoO3bt0etO+yww+Tz+fo0Xr6bOnVq3LrCwsIEW6amqKgobl0qJ7gDAIaoX/1K2rkzel04LNXXS+3tfRuzvd3ZPxwRWbZtqa3Nuc/jkbze+FB1L3mNdO0qydPNMMEE69p8Un3EX7UBb8Q0+zoXjzcqMNNTgNqVLESdjQC1K1shap+V3tdyBKgBAAAAAAOZN2zrKy9EvydjGaPy1rCsmPc6jCW1FnpUV+ZTY4lPLUVetRZ61VLkVWOJT3VlPrUWeuIuqmUZaXhb/A8Cr/nbTnnDfX0XBBia3Ai1a8SIEQm3Ky4ujrpYXUtLS0rjn3DCCVHLK1as6OUMAQAAAABALryw4QVd8NgFSe8v3i81lciJP+f6LbmQpPiPGMe5+4y7devpt2Z8OgAAAAAAAAAAAAAAAAAAAMi+wVn2zYA33nhD11xzjWzbjooMGmPk9Xp16qmnatasWTrqqKM0YsQIlZaWqrm5WXV1dfrwww/17rvv6o033lAoFIqKV9u2rWuuuUYTJkzQKaeckquH1y/HH3+8PB6PbLvrE9IrVqxQKBTqdTx6xYoVCgajk5EzZsxIyzzz0axZs/TLX/4yal19fX2fx6urq4tbN2rUqD6PBwAYxJYtkxYtil4XDksNDckD0T6fE5C2LGebcFgKheK3s22ptVUqLnai026QOhRybj5f4v16af565+uN50l2TGipVVJdmeSxpbEdrZfYAHXUlKW4WFMqfB6fPFZXzinVALUrNkSdzQC1yw1Rz54wO2PHKC8oV217bc8bpsBjeQhQAwAAAAAGtFkfNaiyNvo9hJJ2Oy5AHfJaai7yyvYkf9PCWJbaCrwK+DwqbQvLF+4axGOksnapIeL9kDH7A5r5UYP2V6bloQBDgtfrjVouKChIuN2wYcOilnfu3KnKyp7/sI0ZMyZqeevWrb2cIQAAAAAAyLaeAtSl+6TmyLcKwh23XAir+wB1x9uPf57/Z11+7OXZmBEAAAAAAAAAAAAAAAAAAABygAh1Cmzb1g033KBAINAZjzbGqLi4WP/3//5fXX/99Ro3blyP4+zZs0e//vWv9YMf/ECtra2SJMuyFAgEdMMNN2jNmjVRgeuBorS0VMcff7zee++9znXNzc1atWqVZs2a1aux3nzzzbh1p512Wr/nmK/OOOOMuHWffPKJjDG9/r1QU1OjlpaWqHXDhg1LeiI8AGAIC4WkmIsgyBipsTE+QG1ZUlGRVFjoBKVj2bbU3u5Ep2PHa22VSkqcbVzt7c5YaZIoRO0GqCXJ9kjVJVJFIMUAdS9fivUnQO1qCTp/f+ciQO3KdIi6MdCYtrFsY2tt9VpC1AAAAACAAevsd/ZFLfvCRgWh6PdkQl5LjcUdFwNLge1xti9vjQ5RF4WkVr8Ujmjonr18nx4bvD96AdIuNi7d2Jj4va6Kioqo5U8++UTHHXdcj+O7F+h1fzaYbHwAAAAAAJAfEgaoI97eK90rNQ/P6pSSC0vq7qNaHW8/vnTFSzpr8lnZmBEAAAAAAAAAAAAAAAAAAAByJEFJELH+8Ic/aN26dbIsS8YYGWN09NFHa926dbr99ttTClBL0pgxY/S9731P69at0zHHHCMTEXlct26d/vCHP2TqIWTcueeeG7fuqaee6vU4ifZJNPZgMXHiRE2dOjVqXV1dnT788MNej7V06dK4dccff3yf5wYAGMTefluqro5e19ISHYuWJJ9PGjZMKi5OHKCWnPXFxVJFhbN9JGOc6HTkuMY4EezYgJLHk3JUKdb89dLP/i55THSA2mV7pNok12ToT4Ba6gpP9zVALUl7W/fq9Y9fz1mA2uWGqNNtbfVahUworWPubd2rtdVr0zomAAAAAADZMKo+oGlbmqLWFQVj3pOxpOai1APUXftZHftFry4ORi8fvblJFbUxFxQDkNSBBx4oqSsSXV9fn3C7ww8/PGp5+fLlKY1fVVUlSZ0/O/bFvs8KAAAAAADyRlyA2igqQF22J48C1LZ0QFDy2Enu73gf8fnLnydADQAAAAAAAAAAAAAAAAAAMAQQoU7BQw89FLU8depUvfbaazr00EP7NN4hhxyiV199tTM+7J6w/OCDD/Znmjl1+eWXx6178MEHFQikHmRctWqV3n333ah1J554oiZOnNjv+eWzL3/5y3HrHnnkkV6P8/DDD8etO/PMM/s0JwDAIPfCC9HLoZATi47k80nl5ZLXm9qYXq+zfWwgJRSKj1uHEgSJ3Ytz9CNEff078QHqTh7JNtGrogLU/dCfALUrpPRGmvuqLdSmYDDY84YpWlu9Vntb96ZtvEiEqAEAAAAAA9GRHzdHLVtG8oei37RoLfDI9vTtTQvbY6m1IPrHf4Uh5ziRDt28r0/jA0PRkUceGbW8adOmhNsde+yxktR5YeN//OMfKY3//PPPd/68WJJGjx7dx5kCAAAAAIBM2l67vStAHROflqTS3VLTyKxPKzFb8nRch25sS4IQdUSAet4R87I6NQAAAAAAAAAAAAAAAAAAAOQGEeoeNDY26u233+48Wdjj8eiBBx7QiBEj+jXu8OHD9cADD3QuG2O0bNkyNTY29nfKOXH00UfrlFNOiVpXU1Ojn/zkJymPccstt8St+8Y3vtHvueW76667TsXFxVHrfv3rX2vnzp0pj7Fy5Ur95S9/iVpnWZYuueSStMwRADCI1NRIa9ZEr2tri9+utLT3QWjLcvaLZUzi5WTj9yFEveQg6Y7P9bBRTIjaIzkng1lKS4y6Pwo8Bf3av8hXpLmHzlWRr6hf40wfM11+v79fY7gyGaB2EaIGAAAAAAw0k3a2Ri37Yq+aJand378f38Xub0nyh6OPc+D2un4dAxhKJk2apNKI9z0/+uijhNvNnj1bHk/Xn7/Vq1frlVde6Xbsp59+WitXroxaN23atH7MFgAAAAAAZEJDe4Ou//v18sgTF5+WpJJqqTlfrivVEaAe6+1aFRWiJkANAAAAAAAAAAAAAAAAAAAwJBGh7sGyZcsUCoUkOVHfk046SSeeeGJaxj7xxBM1e/ZsmY4QYygU0rJly9Iydi7cdtttcevuuOOOuBOnE/n5z3+uF198MWrdpEmT9KUvfSmlYx966KGyLCvq9uqrr6a0b66NHTtW3/zmN6PW1dXV6YorrlBra2uSvbrs2bNHV1xxhcLhcNT6Sy65REcddVRa5woAGATWrYteNkYKBKLXFRdLXq/6xOt19o89RjKWlTg6nWC9SXJbfJA099oU5xcTos6HV8Ney6tTDj5F08dM79P+Rb4izZ4wW5I0e8LsPoeop4+ZrpElI/u0b6xsBKhdhKgBAAAAAAPJIbtiItQxceiQ15LpwwW6IhnLUjDmrR2fHb18wI6Gfh0DGEo8Ho8++9nPyhgjY4zefffduJ/LSdL48eN1+umnyxjTeYHjL3/5y3rvvfcSjvvPf/5TX/nKV2RF/JkfPny4Zs6cmbHHAgAAAAAAeq+hvUELn1qoNZ+u1NhWT1fMuYO3SWoZlZu5xemY29jYj35Zlsa2eeSxnA9LEaAGAAAAAAAAAAAAAAAAAAAYevIgu5ffqquro5bPO++8tI4fO97u3bvTOn42nXPOObroooui1rW3t2vOnDl6/vnnE+4TDAZ111136cYbb4y77/7775ff78/IXPPNHXfcoYMPPjhq3auvvqozzzxT69evT7rf0qVLdeqpp8ZtU1ZWpu9///sZmSsAYIDbtCl6ueNiG1EKC/t3jET7x4aoI5e9XsmT+GVp2OOEpht9iQ+15CDpzFQD1K6OELWdJ6+EDyw/UJI0smRkr0PUkQFqV19C1AM1QO0iRA0AAAAAGCiGNUe/F+Oxo98zCafp/YpQzDjemOOUNban50DAEDFnzpzO75uamrR06dKE233jG9/o/N6yLFVXV+vkk0/WhRdeqP/5n//R73//e/3gBz/QmWeeqfPPP19NTU2S1Bmuvv7666Oi1AAAAAAAILfCdlhXPHOF1uxaLe3fL4VCGtuirhB1kxTu2/Xi08/IOTOgQNpTIsmynM9keTzO98XFOnvy2dp20zYC1AAAAAAAAAAAAAAAAAAAAENQkpwfXHv27JHUdeLvQQcdlNbxY8erqalJ6/jZ9tvf/lbvvfeeduzY0bmuoaFBF154oWbOnKmLLrpIEydOVGtrqzZt2qQ//elP+vTTT+PG+da3vqXzzz8/a/NesWKFvvrVrya93z0BPNJf//pXTZ8+Pek+M2fO1O9+97uUjl9WVqYnn3xSp512mtrbu8IPb7/9to455hidddZZOvPMMzV+/HiFw2Ft27ZN//znP/XGG28kHO+hhx7SEUcckdKxAQBDzJYt0cuxEWqfL2kQOmUejxOWDocT329ZToTajanYtlRRIbW2SoFA52YNBUZXzJdO+Vi65Sxp5qfSO7/vGqZPAWqXt4/7pZk3ZiJuiHr1ntU97psoQO2aPWG2lu5YqrZQW4/jDPQAtcsNUR879ticHB8AAAAAgFT4YmLQsalZk6b4rN3DMN6w3f0GAKJcfPHFuuWWWzoD0U8//bROPfXUuO0uvfRSzZkzR0uWLJFlWbIsS6FQSH/729/0t7/9LWpb9+fPrgMOOEDf/va3M/tAAAAAAABAr3g9Xl07/VqtWveK7IjPWY1tkXbZkkpyN7coRs6bjR1nBoQ90p5iozFtHe89eL06btLJevzSxzWscFiuZgkAAAAAAAAAAAAAAAAAAIAcIkLdg3BMPNHnS+9T5vU64UH3BOPY4w00lZWVeumllzR37lzt3r076r4VK1ZoxYoVPY6xYMEC3XfffRmaYWJNTU1as2ZNr/apra1VbW1t0vuHDx/eq/E+85nP6LnnntPFF1+s1tbWzvWhUEj/+Mc/9I9//KPHMQoKCvSLX/xCl1xySa+ODQAYQurro5djX3t401Rn7i5CnUggIJWVOV9bWtTgC2vhpUbvjJVeONzZ5N0J0onXSct+LzX4+xGgTk/Lqd9iA9SuVELU3QWoXamEqAdLgNpFiBoAAAAAkO9Cnug3JkzM/ZaJXdM3nh6GCXv7eREyYIiZMmWKpk+frtWrV0uSHnnkEf3gBz9QYWFh3LZ//OMfddppp2nz5s2dIWqT4M+2+/NhY4xKSkr0xBNPaNSoURl9HAAAAAAAoPfmr2qVnmnVjZ/vuvhbe5Ok0TmdVhcjKSypKHp12CPtKbI1JujXcYd9Vo9f/jQBagAAAAAAAAAAAAAAAAAAgCGMM8x7MGbMGEldJwF/+umnaR3fHc898biysjKt4+fC1KlTtXz5cp1yyim92s/v9+uOO+7Qn//8584491Bz7rnn6u2339bRRx/d632nTJmixYsX66tf/WoGZgYAGDRCoe7vt9JUaE4yTtgyie9vbXWi1QUFaqgcpoULPXpnrFRbFr3ZuxOkk74qlYalyfv6Mq8+7JMByQLULjdEnUgqAWrX7AmzVeQrSnhfOgPU4XBY+1r78guSfvta9w34C7sAAAAAAAavhtLoi53aMVFqr52e4/hixgnHHKepPD6cC6B7ixYt0tatW7V161atXLky6c8zDzjgAL322ms688wzZYyRMaYzRh15c+877LDD9Oabb2r27NTe8wMAAAAAAJlV31LftRAMSl/7muZ/JP3s787F31papf15HqB2hT1SfalXj1/5FwLUAAAAAAAAAAAAAAAAAAAAQxwR6h64EWrXokWL0jr+4sWLuz3eQHXQQQfp9ddf1+OPP67Zs2d3RrwTKSsr01e+8hWtXbtWd955pzyeof3b8rjjjtPq1av14IMP6jOf+Uy3z53X69XJJ5+shx56SB999JE++9nPZnGmAIAByefr/v6OC2OklWVJlqWGAqMvLJSePdJIif6+b25Wgy+shec26p0x4bgAtevdA6XK70hvPSBN6k33OE8C1KlKFKLuTYDalShEnc4AteS8Jpk1fpasHD/JlizNGj9ryF7QBAAAAACQ/z45oDhqOeSN/re0L2xk9fP9GcsY+WOuzxSKeStm1wSCM0BvjRw5UoccckjnzdfNe63jx4/Xyy+/rBdeeEFXXHGFKisrO6PTxhgVFxfr7LPP1u9+9zt99NFHmj59evYeCAAAAAAASGrJ1iUa/j/DNeX+Kc6Kr35VammRJM1fL13+jlQ/PHfzi2Ik2UoaoJYkWVJLuE0mnIHPhAEAAAAAAAAAAAAAAAAAAGBA6aFCiJkzZ3ZGgI0xWrJkiTZv3qzDDjus32Nv3rxZr7zyiizLkjFGlmVp1qxZ/R43X1iWpQULFmjBggXas2ePli9fri1btqihoUE+n0+jR4/W1KlTNWvWLBUUFPTrWB9//HG/9j/jjDNkMhHd7COv16trrrlG11xzjaqrq7VixYrO566goECjR4/W+PHjdfLJJ2vYMEIRAIBeqKiIXo6N9YZjCkV9FTNOQ5lfCy8MaM04adUBknyW5m8ulNraurbxBLXwrDq9M9qotqT74euLpMk3SVX3S5+9VqoalZ5pZ5pXXoWV+nPshqhX71ndpwC1a/aE2Vq6Y6naQm1pD1C7ygrKNGv8LL27810ZZf91lRugLitIUi8HAAAAACAPbBkfE6H2xF/QqTBoq62g7xdYKgzaUctGUtBrRV2Z9tODhvd5fACpO++883TeeedJkgKBgPbt26fS0lJ+vgcAAAAAQB5asnWJ5j48V5JUVVulKT+drE1/+rjz/pfHSj85XcrxNdq7hCQVJ7kvYo6Lr1qsipKKJBsCAAAAAAAAAAAAAAAAAABgqCBC3YPKykrNmDFD7733nizLUjAY1HXXXadFixbJ5+v70xcOh3X99dcrGAx2Rq6nT5+uysrKdE09r4wZM0bz5s3L9TQGpLFjx+r888/P9TQAAIPFpEnSqlVdy7GvZ0IhybYlj0d9ZttREeqGAqOFF4e1ZrQUlOS3pBvPDktvFWj+e0EpHHa2udTonTHqMUDtaiyUptwofXyfdNQ3pd3lfZ9yNnjVt3jUyJKROvXAU+X3+/t1/NkTZisYDPZ7nO7kKkRNgBoAAAAAMFCsP7Q0atlYUtBnyR/q+nd0ccBWwOeRnSBQ3ROPbVQciI5Qt/uc40TaetgAuaIXMIgUFBTogAMOyPU0AAAAAABAApEBaldV7WZN+Ya06edOgPrc6yQ7XwLUQSUOUMfMb/FVizVn4pxszAgAAAAAAAAAAAAAAAAAAAB5rh91waFjwYIFUctvvPGGLrnkErW2tvZpvLa2Nl122WVasmSJLMuSMUaWZemLX/xiOqYLAADQpaZGevVV6be/lW65RVq8WKqrk+rrpYYGKRCQjHFurvb2/h2zvb1zvIYCo4WXSWsqbbVa0t4yqbrEOSHrxlMa9OzxxWoospwA9ViptpcN4YYiacL/cc6fsuxuNsyDE8DCCve8URLpCkdnMkDtckPUVpaedALUAAAAAICBZF9FgdZNiv43bJs/5sd1RiptC0e/X5MKYzr2i17dGvN2wAeHlalhRKJCDQAAAAAAADD0JApQu6pGSeVfl87O1wC1FXOLQIAaAAAAAAAAAAAAAAAAAAAAkYhQp+DGG2/UgQceKEmd0egXXnhBRx11lJ555hnZdnfFwy7GGD377LOaNm2a/vKXv0TdN378eH3rW99K+9wBAMAQFApJr78u/fu/S1deKf33f0tPPy2tWiXt2yfZthQOO9u5wWhjnPXGSC0tzv19EQ5LHRfqaCgwWniptGas1CqjulJnE9sjVRcb2Zb0rdObdMY16lOA2tVSIO0qU/LQdL6cAKb+hagHkmyFqAlQAwAAAAAGopdOHBW1HPJaCvii/w3tCxuVt4blsVMLUXtsZ3tfOHr7Np8UjPlp4EufiT4+AAAAAAAAMFQlDFAbdV3oLSQ1jVTuP3/kd24Vfp9UooTR6UgEqAEAAAAAAAAAAAAAAAAAABDLl+sJDARFRUW699579cUvflGWZXWGqD/55BNddtllGjdunL7whS9o5syZmjp1qoYPH67S0lI1Nzerrq5OH330kVasWKHnnntOu3fvljHOJ5PdcSzL0o9+9CMVFhbm+JECAIABb9ky6Ze/lKqrE9/v8Ug+nxOgdlmWE5+Wur42NkoVFc59qTJGam6WFBGgHie1WuoMULtsj1RdZMtvpJ3F6v+JWlbXuV/ID26I+t2d78r041fHK2/CeDcBagAAAADAQPXu1GGqGVGgytpA57qWQo/84bCsiH9C+8JGFS0htRZ41O73yCR4n8YyRoVBW8UBO+7NEduSmmJ+9LRnZIFWTB2mSel8QMAQcO2113Z+f/DBB+vOO+9M29h33nmntm3bJsn5+fHvf//7tI0NAAAAAACSiwtQx368xX37LuYibzkRlv7tmH/RvZf9SlPun6Kq2qqkmxKgBgAAAAAAAAAAAAAAAAAAQCJEqFO0cOFCbdy4UXfccUdniFqSjDHatWuXfvWrX/U4RmR8OtKdd96pBQsWpH/SAABg6Ghqkn71K2nRop63LSpytndFRqhdoZBUWysNG+ZEq3sSDjsB6lDICVBf0hGgVnyA2mV7pIDtnKdl93yEvulv3DpDwgrLK2+up5Fxboh6+c7lUes98sjuxa96bIiaADUAAAAAYCALez16cN54/fsjH3euM5alxmKvylujQ9QyUnG7reJ2WyGvpbDHkrEky0he28gXTnzhJ2NJdUXx77k8eP6BCnvzoZoDDCwPPfRQ5894jzvuuLRGqP/yl79o7dq1nRcvJkINAAAAAEDm9RigbpXkVX4EqCVVGr/uvcz5rPqmmzYlDVEToAYAAAAAAAAAAAAAAAAAAEAyefLR2IHhe9/7nv7zP/9THk/X0+YGqY0xPd5i49Uej0f/7//9P33ve9/L1UMCAACDwe7d0k03JQ9QGyMFg1JrqxOfbm931kXerAS1ZtuW6uqcuLSdJBhs28649fVdAepLTVeAOlEj2FJnHNp4nMN7EveS+idPA9SuyKjyYFZWUKZhvmGdy32Nb3vlVZG3iAA1AAAAAGBQeO/ICr1+/IiodWGPpcYSn0yi92kk+cJGhUFbRQFbhUG7mwC1pbpiS6GYnwK+NmOEVh45LOE+AFJjYi/ml+fjAgAAAACAeD0GqOuUVwHq0r1SjS+oKfdP6Vy36aZNmjxictR2BKgBAAAAAAAAAAAAAAAAAADQHV+uJzDQfO9739PcuXN13XXXaePGjZIUFZfuiXsC8ZFHHqnf//73OvnkkzM2VwAAkMeCQamx0fkaG3h+6SXJk+JZTHV10p/+5MSlY4XDzvihUPx9vYmatLY6N59P8nqdYLUxzrwjxg5bRlfMl9aM7SFAHfm9cULUsp3ztux0hKPzPD4daaiEqL1erxTqe4DaNaZkjCYOn+iMBwAAAADAAPfg+Qfq8I8bNW5/sHNd2CPVl3pV0m6rIJjkomDdCPg9ain0KKRwVDxn+wivHjrvwHRMG0AGuBc9BgAAAAAAmVXfUt99gFqSSpQ3Aeqy/VLTOOf7qtoqTbl/ijbdtEmSE6Kecv8UVdVWEaAGAAAAAAAAAAAAAAAAAABAj/LkI7IDy2c/+1mtX79ef/3rX3XOOeeosLBQxpgeb4WFhfr85z+vF154QR9++CEBagAAhqr2dqmmRmprc0LRxkTfbDu1W0uL9Pjj8QFqY5yxW1sTB6glJyTdW6GQFAg48w8E4sb2GkvXrpbaTJIAdcJ5dEzZ40zb09/OygAKULs+bfw011PIiv4GqDvHIUANAAAAABgkWoq9+v6XDtL+YRHXjDWSsaTmIo8aS7wK+FJ7syPgs9RY4lVzkUcmZpfqcks3L6xQSzH/pgYAAAAAAMDQ9ot3f+F8Y5Q4QN2uvPl0fWmd1DQmep0bonZtummT6r5TR4AaAAAAAAAAAAAAAAAAAAAAPfL1vAmSmTdvnubNm6dgMKiVK1dq5cqV2rt3r2pra9XY2Kjy8nKNGDFClZWVmjFjhmbMmCGfj6ccAIAhzRipri49Yy1eHD+WbTvxaZNCzdmyUtuuF4a3e1Rbbic5XrJ5OF+MR5LtnMdl9zYmPQDj066wCWvpjqWaPWF2rqcCAAAAAACyrGa4X7dfOUG3/flTjdsfdFZ2vF0T8lgKFXnVYox8tuQLG3lsI6tjE9tjKeS1FPJIxr3gWMxbPdtGeHTdpX61DPdqYrYeFIBeCUVc7M/v9+dwJgAAAAAADG73vHaP/uPV/0gcn5bkbZfCeXIdt9IGqXl0x0LM56LcEPWmmzZJkipKKrI7OQAAAAAAAAAAAAAAAAAAAAxIFJHTwO/368QTT9SJJ56Y66kAAIB8FwxK4XD/x6mqktati17XU4Da65U8nq74tG07c+lNiNoYZ/9IliX5fKov82julW2J90slEm1JxtvLLvYAjk9Hagu1KRgMEpkBAAAAAGAIqhnu1y1fOUjXvFyj09c2xt1vLEtBrxT09u6NkOemefVfc/xqLLI0Il2TBZB2+/fv7/y+rKwshzMBAAAAAGDw6ilA7W+TgnnyqfrSRql5ZPfbVNVWqb6lngA1AAAAAAAAAAAAAAAAAAAAUpYnH5cFAAAYIlIJUFtWfOg5dozFi6PXGZM8QF1QIPn9icc0RgoEnFuyuURu2xGclsfjRK19PudmWaqQNLk2oKoRdswYyR9K4mP2cvscKvIVafaE2Vq6Y6naQkkC3CmYPmY6AWoAAAAAAIawliKv/veCcXrnyDJd81KNxtSF+jzWnuE+/b85hXpxkt3zxgByqqamRrt27ZLV8T7syJE9FKYAAAAAAECvff/V7+t7r30vaYC6sEVqL8junJIpbpGaU7ii3OKrFhOgBgAAAAAAAAAAAAAAAAAAQK8QoQYAAMimghTOWDImcUzatWmTVF8fva69PX4fr1cqLHSC0clYlrONz5c4Yu2Gp91t3cdQVJQwar3p0ZGacsV+VQ3viBwNoKB0X8yeMLvza19D1KOLR2tkCXEZAAAAAACGJK9XkW+gvDe1QqsPH6ZZGxp19oo6Tfu4JeWhPji0RC/NHKEVR5RpXWCnZNq77uzugmcAcuYnP/lJ5/eWZWnq1Kk5nA0AAAAAAIPPgysf7DZAXdwktRZld07JFLdIrcN63m7xVYs1Z+KczE8IAAAAAAAAAAAAAAAAAAAAgwoRagAAgGzyeqWyMqmpqe9jrF4dvRwOS6FQ/HGShKKTzqu0VGppkWy7+20DAWfsJDa9cpSmLKhWlV2T2rEHsKU7lvY7RF3iL8nE1AAAAAAAQN7xSJZHMhHvvRTGX7AsLGnZ8cVadvwYjaoP6IhPmjVpZ6sO3dWqYU0h+WyjkMdSQ5lPHx9QrC3ji7X+kFLtr4gYK+yV7IgLk3li3iPy8iNCINLrr7+e8rZNTU292j5SOBxWU1OTtmzZor///e9atGiRLMuSMUaWZWnmzJl9GhcAAAAAAMR74oMndO3z1yYNUJc1SE158rGdgtYkAeqYt/UWfXkRAWoAAAAAAAAAAAAAAAAAAAD0CWeYAwAAZFt5ufO1LyHqhgZp27bodcFg/HaFhakHqF2WJRUXOyFqE3H2lTHRY4VCTqja643ef/p0ad486aSTtMnn05TF81XVsr13cxhg2kJt/QpRe+XteSMAAAAAADB4+H3OBb5StK+iQEuPLdDSY0ekdx4FyS8wBgxFZ5xxhqwe3k81He+Zbt68WXPmpCf25ManXZdffnlaxgUAAAAAYKh74oMntPDphUkD1MNrpbry7M4pmYJ2KZDCXJ6//HmdediZmZ8QAAAAAAAAAAAAAAAAAAAABiUi1AAAANlmWdKwYVJpqRMdMjFnO02bJnk8ifd95x3JF/ESzhgpHI7epqhIKijo+/xsW2qLiSgXFTnHsW1neexY6cgjndtRR0kzZkjjxkXtsunaVZryyGdUVb+l73MZANpCbQoGg/L7/ZJSD1EToAYAAAAAYAgqLHDeY4l9PyebCgolH+9LAImY2Pdq+7hNqtwAtWVZ+tKXvqQpU6akbWwAAAAAAIaqzgB1EiP3S/uHZXFC3Shql0YYqdqW7CQfF5OcAPW8I+Zlb2IAAAAAAAAAAAAAAAAAAAAYdIhQAwAA5IrXKxUXx68/6KDo0HSkl15y9nMFg87XjliJJGfMZBHrVBQXx0eo/X4nmu269FLprrt6HGrT/7dZU+6foqraqr7PJ0MsWZpz6JyUgtHdmT5memeA2tVTiJoANQAAAAAAQ5VHKimRAkEpFJKMnaHjWDHLXuf9HZ8/+ftOADqj0LEiw9PJtukLd9wzzzxTv/jFL9I2LgAAAAAAQ9XH+z7uClAnuI7UuD3S7pHZnVMyhQEnQC1JY1uk6pKYEHXHWxAEqAEAAAAAAAAAAAAAAAAAAJAOQ/Ys80mTJuV6CnEsy9LmzZtzPQ0AAJDPtmyJXg6Fopd9vv4FqCVnf58veuxwOHqbjz5KebhNN23KyxC1kdG7O9/V7AmzteTjJTKJzjzrwfQx0zWyJPGZabMnzNZb295Su93e36kCAFJgjElLCCxd4wAAAADJWVJBgXPLlFZ/18XLJKnQLxUluBgagE6Roel0bNeTiooKnXzyybr22mt1ySWX8G9RAAAAAAD6qba1Vt/45zdkyUr47/cDd0ufjs7BxBIY1iKVW5Id8XZAVIiaADUAAAAAAAAAAAAAAAAAAADSbMhGqD/++GNZVuIPGecKJxYDAIAe1ddHL8fGob3e9BwnNmQde5x9+3o13A/P+qEue/IyhU24542zqDHQqHd3vqtyf7kagg292re7AHXkNu/sfqdz2Suvwsqv5wAABoOQHdK6mnUaXzZelaWVfR6nprlGO5t2alrlNPk8Q/YtEwAAAAAYcpYsWZL0PmOM5s6d2/mz5cmTJ+u3v/1tn47j8/lUXl6uESNG6KCDDurrdAEAAAAAQIwdDTs049czFLJDGqcy7bYbZSI+/jRxu7T1gNzNL9KIZmn/fdKzR0o3npckRO0lQA0AAAAAAAAAAAAAAAAAAID0GvJFpXwJP+dTDBsAAOSxUKj7+xO9tgmHnf3a26VAoOdjWJYToTYm8XiSFAz2PE6HZz96Vjf+40aNKR2jXU27Ut4vWxoDjfLI06tAdCoBapc7rldpCoQDAKKE7JA+qPlATYEmbdy/UZL6FKKuaa7Rxv0bZWT0Qc0HOrryaELUAAAAADBEnH766SltZ1mWysrKUt4eAAAAAABk3o6GHTr+18drf+t+Z0WrrXEhaXeJZDzSCZuk9ybmdo6u4jYnQC1J89c7X6NC1Jalsw85Xb+5+GEdNIILWAEAAAAAAAAAAAAAAAAAACB9hnRNifAzAAAYcHw9vHxzX98Y4wSnW1qcCHVvGNO1T+R4kfz+lIZyA9S2sVXdXN27eWSRLVuSUgpR9yZA7SJADQCZERmgliQj06cQdWSAWpKaAk2EqAEAAAAAUfjZMgAAAAAA+ae2tVYzfj3DCVAbI9lG9YXOfeNapIN3SO9Mzu0cO4Wllh9Fr4oNUR936Il6/Mt/0bDCYdmfHwAAAAAAAAAAAAAAAAAAAAa1IVtSuvrqq3M9BQAAgN6rqIhe9sbEjcPhrvh0KJS+47a3S4WFUkGBszxqVI+7xAaobWOnbz4ZEla42xB1XwLUAIDMiA1Qu3oboo4NULsIUQMAAAAAXHfccUfn9+PGjcvhTAAAAAAAgKuhvUFfeuZLCoWDkm2cCHWH+kJpWpX05pE5nGCksKRCacq3pE0/j75r/gZLKi7UA189QX+67u8EqAEAAAAAAAAAAAAAAAAAAJARQ7ai9OCDD+Z6CgAAAL03aZK0alXXsi/i5ZwxToA6EMjMsRsanAh1WZk0dWq3mw7EALUrrLA88shW9JwJUANA/kgWoHalGqJOFqB2EaIGAAAAAEjREWoAAAAAAJB7De0NWvjUQq35dKWK6pslSfUFXffPe1f664wcTS6WLclyvq0aFRGitjpWHnec5v/1eV04/gB5Pd5czRIAAAAAAAAAAAAAAAAAAACDnCfXEwAAAEAvTJkSvexGqI1xbpkWCEh1ddK4cUk3GcgBaknyyhv1VZIsWQSoASBP9BSgdrkh6prmmoT39xSgdrkh6pAd6vOcAQAAAAAAAAAAAADpERmgVu1+KRxWUdhSRbtz/7x3pL/NkPIi52xLCkuKCGS7IWqVlEj33COtWiVNmECAGgAAAAAAAAAAAAAAAAAAABnly/UEAABZEgpJra1Sfb0UDHatDwal0tLczWuoaWtznnOfTyoslDw5vh5EKOTMybKc+fh8Tsi4rk7at89ZN3KkVFbW+8Bxph5rMCi1tztzLiqSvN2cfGPbzu9723bmUFCQeDvLcu4rKnK+b211YsuJHnMo5NwXDkt+v7Nfbx5bTY3U1H00U1u2OHN2H6f7ayM5f17D4a65GeM8B5F/rjPNtqUf/Ui68ELpoIOi7ooKUDdVy9bAClBLUljhuHWWLK3dvbbXY9m2nXC8yHXVDdVqCbT0euxMqm+vTzhvl2V693w0tDd0O153op6rxuw/V4FwoNvfx62hVq3d1fvfG0iPkEkcBfbmx6mkyIBUA9QuN0QtSZWllZ3rUw1Qu9wQ9dGVR8vn4a0UAAAAAAAAAAAAAMiFzgD1rtVSba0U7vpMR1FImvGR9PcTurb3Sn38xEoa2JLaJA2Lv6tqlDTl7nHadPN3sz0rAAAAAAAAAAAAAAAAAAAADFGUkwBgKKitlaqrnVjtvn1ORNe1f3/u5jWUhELOr0NkKNjrlYYPdwLDudDQEB9DLiiQdu1yfp/YthOStm1pwgTpqKOSR5wjhUJOxDoQ6FqXjsdqjDPn5ubo9eXlzi1WS4szj0jFxVJFRfJotN1xUlLk/bbtxNtbW50xjXEeWyjkPJ6KCifUnepja2tzHkcyti0tX+5s57Is5zGWlTnL48ZJn3zifG9M9J/pDApbktdtdW7dKs2fLy1eLA1zzpQK22E9sPoB2cbW7qbdKYc9BwJbtmrbanu9XyrPQbvaFWrLzq9hqnoKRhuZXj0ffQ1Qx2pXu0Lt2X2uegqp27JV29773xvIrHT9nkN+6W2A2hUbou5tgNpFiBoAAAAAkMz27du1atUq7d27V/v27VNra6sk6fbbb8/xzAAAAAAAGDw6A9S710iNjVI4+rMBx6yXFh8nGSt6v5yEqI2kFknDE9zXMb+qus2qb6lXRUlF9uYFAAAAAAAAAAAAAAAAAACAIYtqEgAMdk1N0u7duZ7F0GaME/uODQWHw06YurLSiTRnU3NzfIDaGGnDBuc+v98JLrtR5u3bnQD1kUcmDzi7YyR7rPv3S2PG9P2xNjXFB6gl54Qir1cqKela194eH6CWnJC0ZTlB7Fi2Le3Z4zyGsWO7HmdDg7Nfa6tzrMZG51h+v3OchgZnzHT9Ora0OF8jn2c3wO31Or8OEyd2Ragjw+YZ1FAoXXGxdO0qaf76jpVr1ki33y7dd58kyevx6k8X/0mjfjhqUAWoAQC5Z4zRupp1vQ5Qd+7fEaKuaalRbVttn/+eago0aV3NOh075lhZltXzDgAAAACAQWvnzp368Y9/rGeffVYff/xxwm26i1A/+uij2h3x85tTTz1Vs2bNSvc0AQAAAAAYFPY37dfVz1/tBKjb253PckUo3W7rpenO94k+wZXVELWR1KzEAeoIi69aTIAaAAAAAAAAAAAAAAAAAAAAWUOEGgAGu717cz0DtLXFR5ldtu2ElYcNy+6cGhvj17W2OlFsY5yoshuglpx1O3dKBx8slZUlH7e7x2pM3x+rMfHR7EhuGDpyOZmWFqm8PD4YHRndbm52tgmHu6LQLS1O8Nm2ncfp9zvr29qk4uL0/DratvPrEPlYIjU1SUVF0oEHOr8O9fXOHE1mg88NhdLCS6U146RVBzjr5q+X82v9wAPS+edLZ50lSTrh1ycoZCf5PZCnvPIqnL3TzABkUSAYyPUUkCaWZWl82Xht3L+xzwFpI6P9bfv7Nw858yBADQAAAABDVzgc1q233qr7779fgUBAJsn7sz392/HTTz/Vd7/73c7luXPn6uWXX07rXAEAAAAAGAxe2vSSznn0HI0rHSevxys75rNh3k9sVU3pWg4rhyHqngLUHW8XLL5qseZMnJPp2QAAAAAAAAAAAAAAAAAAAACdPLmeAAAgw9raopcti1u2b8Fg979GoVB252Pb0YFpV2urs96YrpC0xyP5fM7XYNAJMXc3drIAdX8fa0+h5XDYmXtf5+HzOVHqwkLn5vU6kWl3HGOcdZbVNYbH0xWyDoed5yfVx9Pd45CSbxMKOcfxeqUTTnC+z2KAWpJsS7rxPOnZIzs2aGyUbr1VCgZV31KvqtqqjM4n3TzypBwzNX34L1V9GTuT/6V7zkCuEJgfXCpLK3X4yMNlqZu/SzPIkqXDRx6uytLKnBwfAAAAAJB7e/fu1Zw5c3Tvvfeqvb1dxhhZlhV3S8XXv/51Deu4sKExRkuWLNH27dszOX0AAAAAAAacJz54Quc8eo4kaXfzboVbW+QJdX0WoHC9rR1T4vdL9mmBRHHqtDGS71MlD1B3IEANAAAAAAAAAAAAAAAAAACAXCBCDQCDnc8XvWwMt1zcuuOGn7N1Cyc5xaa1Nfr3ifv7p6REKihw1rW0dD92orh1JDcmna45x0p1HrHPeUmJNGpU9K2kpGscr1caPlwqLXWWS0qcWHVRUddx29tTeyyebl5+2bZzf7JIiTHRUfPuxkqD2AC1e+S4EPX69dJLL6mipEL3fu7ejM4pnbzyyur4LxVWH//L5NiZ+i/dcwZyhd9/g0+uQtSWCFADAAAAwFAXCAR04YUX6s0331RkfNoYE3VLVXl5uRYsWNC5jzFGzz33XIZmDwAAAADAwPPI6ke08OmFUet2B2sVlpHHSL4PbX18bPL9sxqiNtLRK6TQod1sYxGgBgAAAAAAAAAAAAAAAAAAQO4QoQaAwa6sLNczABDJ74+Pw0cqLExtnA0bnLF6KZxiszM2QN0qaW+ZVF3SNU5niLqlRfrDHyRJxx9wvKaPmd7reQ1l3syc2jYo8Vyht7wWv2cGo2yHqAlQAwAAAAAk6eabb9ayZcui4tOjRo3SXXfdpZUrV2r//v067rjjejXmggULJElWx4UJFy1alPZ5AwAAAAAwEP34rR/rqr9clfC+3aVGoQ9tbU/hn+FZCVEbacbb0gcnd7NNx4+3Z4ydkc4jAwAAAAAAAAAAAAAAAAAAACnrpoA4uE2aNClunWVZ2rx5c0rbZkKy4wNAv1RWSs3NUiCQ65kAcA0fLu3dG7/e50stLN3cLO3eLYWTnSaVWEOhdMXF0rWrpPnru98uNkBd19Gztz3S7hKpwEjDW50QtWRr/pIl0s6dkqSRJSN7Na984JVX4aSnnfUvfmzJkpHp8/650NPzkevxsimTvzeQef4+xPoxMLhB6I37N2b0/7EEqAEAAAAAkrRhwwb97ne/64xPW5als846S08++aSGDRvW53HPOOMMDRs2TI2NjTLG6LXXXkvjrAEAAAAAGJh+/NaP9W+L/i16ZeSPhddJ1dOlVK9bHFbi6LRXySPVvfGZtdLy07rZoGOei69arIqSijQcEQAAAAAAAAAAAAAAAAAAAOi9IRuh/vjjjztPEnZZVuJPIyfaNhOSHR8A+sXrlSZOlPbtc8K1Xq8U+/8zLwHNjPJ6JY+na9myon8NPB6poCB787Ht6PlEzsv9u8iynG08nq7v3a/u75dEv296eqxeb98eayiUeM6RIp/H2G0TzSNy/j6fc3/kY3NvkY/ZfY4SPT/udqn8eSookIqLpYYGJxBvWVJRkTPG/v3J593c7MSrN2yQ2tt7FaGODEuvOsBZlyhE3V2A2mU8UrukuuKIEPXiRs1/913pmPKU55RLvgQvg33yKaRQStv2hlde2R3/xY1t5e/LcZ98Cpn450Pq27y7Gy+l/XP4XPnkU9iEo0K3lix5Lf7+zLlu/olGIHzwy3SImgA1AAAAAMD1X//1XwqHw7IsS5Zl6YQTTtDf/vY3+Xz9fO/Q69Xxxx/fGZ9ubGzUtm3bdPDBB6dj2gAAAAAADDhxAerYHwWvk3S4Ug5QuzIVop61Vlp+QjcbRASo50yc048jAQAAAAAAAAAAAAAAAAAAAP2Tv9W7LHHDz6kEpjMZic504BrAEOfxSJWVzi0UkoLBrvsOOkgqK0u+L/rv/fel7du7lj0eJwTtqqiQPvvZ7M2noUF688349c3Nzk1yoszhsBNLLilxgsfBoDR2rHTwwU5A+dBD48dYt0765JOu5XQ91r17peXLu99m7lwn5CxJf/979H2xMedx45zH4Boxwnl8TU3OcmmpM5bP5zwHXq/zfPh8TjR6xAhp+HDn8RUVOd+XlkpHHikdckjvH59r925p5crodeGwtGmTtHq18/vIsqS2tujntQexYWnb6ghHKzpEnUqAOlK7NyJEPbddrzz7L1q6a7w27NuQ8txieS2vjDGyOs7ACvfrNK94liyV+Et04oEnpnVcALnx+ievR/1byqjr/x8YGjIVoiZADQAAAACI9Le//a3zosWWZel3v/tdvwPUrhNOOKEzQi1J69evJ0INAAAAABiSogLUiX78u0d9ClC70h2i/uwK6a2TutmAADUAAAAAAAAAAAAAAAAAAADyyJCOUPcm/EwkGgAAZF1VlfTKK044PFI/AtSdQ8SEqMOWdMXFqQeoXZEh6sfH1ShcH1BrqDXl+cWyjS0jI488hGQBAClJd4iaADUAAAAAINKqVau0b98+WZYly7J0yimn6Nhjj03b+LHB6U8//TRtYwMAAAAAMFDc/erduu212xLHpyUnQD1CfQ5Qu9IVov7sqtQC1M9d9hwBagAAAAAAAAAAAAAAAAAAAOSFIRuhvvrqqzOyLQAAQL+1tUmLF0vr1iW+P8WLYyQLULtiQ9TXrpJWHSA1W6kFqF1uiLo0aKsx0Jj6jkkQoAYA9FZlaaVqWmq0v21/v8caUTSCADUAAAAAoNOmTZuils8888y0jj98+PCo5YbYixICAAAAADDI3f1aCgHq4ep3gNrV3xD1yWukt2Z1s0HHPO8+425ddNRFvZ4fAAAAAAAAAAAAAAAAAAAAkAlDNkL94IMPZmRbAACAfqmvl554QqqrS3y/MV23bvQUoHbFhqjfHyXd8bneT7vd64xlUgxkJ+OVVybpGWUAACRW01yj2rbatIxV21armuYaQtQAAAAAAElSTU2NJOe9T8uydOihh6Z1/NLSUkmSZTmFqubm5rSODwAAAABAPvvtu7/Vba+mEKD2pPe43YWo3fsTmf2BtPSEnse/+4y7devpt/ZtcgAAAAAAAAAAAAAAAAAAAEAGDNkINQAAQN7Zs0d69FGpqSn+vnBYCgalUChtAWqXG6J+f7R0x5l9mHeHoEeSSXYKVmpCCklyYtQAAKSiprlGG/dvTNtFDIyMNu7fKEmEqAEAAAAAamhoiFouKytL6/j19fWSuiLX6R4fAAAAAIB89dCqh3T936/PeoDalSxErY71sZ+CmvO+tOT4Hga1CFADAAAAAAAAAAAAAAAAAAAgPxGhBgAAyAdNTdIPfxgdoLZtJz4dCDjfp6C3AeqgJL+kgNW/AHW6hRUmRA0A6FG6A9QuQtQAAAAAANeIESOilt1odLrs2bMnannUqFFpHR8AAAAAgHz0jw3/0Ff++pXuNxqujAWoXamGqE/7sIcAteV8uev0uwhQAwAAAAAAAAAAAAAAAAAAIC8RoQYAAMgHv/qVtGePZIwTng4Gna8m9ahm2JKuuDj1AHWrpLoyyWNLY1ucr3aGT9xKFQFqAEBPMhWgdhGiBgAAAABIUmWl829Cy3JqUtu3b0/r+O+8807U8ujRo9M6PgAAAAAA+WbJ1iU677HznIVkP+5tV/I6dJr1FKKe84G0brJk2ZJJ9NmqjgD1Axc8oK/M6CGsDQAAAAAAAAAAAAAAAAAAAOQIEWoAAIBsqamR1q2TNm2StmyR6uulUEhqbpa2bnW2CQa7tu9FgFqSvEa6dpW06gDJtrrf1g1QS054urrECVFXl+Q2RG3Jkkd5UsIGAOStTAeoXYSoAQAAAACHHHJI1HJsNLo/2tvb9dprr8myLJmO94NnzJiRtvEBAAAAAMg3S7Yu0dyH53a/URYD1K5kIepz1kr/PF6qaJfGtUi7S2JC1B2f0Xr8kse14OgFWZgpAAAAAAAAAAAAAAAAAAAA0DdEqAEAADIpFJKWLpVeeEFauzb+fmO6YtRpMH+98/XG85KHqCMD1K58CVGXF5SrOdCcm4MDAAaEbAWoXYSoAQAAAGBomzFjhoYPH676+noZY7R48WLt27dPo0aN6vfYDzzwgOrq6mRZzpu5U6dOVWUl//YEAAAAAAxOcQHqRD/ybVPOPt0eG6KevcEJUEtSfaHzNSpETYAaAAAAAAAAAAAAAAAAAAAAA0iO8oJDU1tbm6qrqxUOh3M9FQAAkA3LlknXXSfdc0/iALUktbenLUDtmr9e+tnfJU+CE7USBahdkSFqj92HAyeJXqeq2FPcvwEAAINetgPULjdEXdNck9XjAgAAAAByz+Px6HOf+5yMcf4tGggEdO+99/Z73F27duk///M/ZVmWjDGyLEvnnHNOv8cFAAAAACAfpRSgblXOAtSucMdt5hbpraOi76svlNp80jhveecFpQhQAwAAAAAAAAAAAAAAAAAAYKAgQp1htbW1uuWWW3T44YertLRU48ePV2FhoY455hj98Ic/VFtbW66nCAAA0q2pSbr3XunOO6Xq6uTb2bazbQYkClF3F6DunFJ/Q9QAAGRIrgLULkLUAAAAADB0XX/99ZLUGYz+8Y9/rNdff73P49XV1eniiy/Wnj17Otd5vV7ddNNN/Z4rAAAAAAD5pr6lPrUAtT9bM+reATXStvFSRXv8ffUlHrUV+XTO5HO09VtbCVADAAAAAAAAAAAAAAAAAABgwCBCnYJ9+/bpS1/6UuftyiuvTCkevWrVKh199NH64Q9/qKqqKhljZIyRbdtat26dbrnlFh1//PFav359Fh4FAADIit27pZtukhYtSny/MVIwKLW0SPv3Z3QqkSHqVALULkLUAIB8Y4zRzqad/QpQW7I0smikLFl9n4c65mFyE8IGAAAAAOTG5z73Oc2ZM0fGGFmWpWAwqHnz5umZZ57p9VivvvqqZs6cqeXLl3dGrS3L0he/+EUdcsghGZg9AAAAAAC59fT6p7sWEv2otUV5E6D2tUkqd74vCsWEqD3Oz5p9Hp8evfhRHTrq0GxPDwAAAAAAAAAAAAAAAAAAAOgzX64nMBA8++yzeuyxx2RZzoeHzz//fBUVFXW7z969e3X++edr9+7dktS5byRjjDZs2KBzzz1Xb7/9tg444ID0Tx4AAGRPTY30k59I+/bF3xcKSW1tUiDgLNvZqTvPXy+9P0q643O92y8yRL27RDI9Xbqk7z1PAAB6ZFmWplVO0wc1H6gp0NT7/WXp8JGHq7K0UjXNNdq4f2OfgtZlBWWaVjkt4b/xAQAAAACD23333afZs2erpaVFlmWpqalJl112mc444wx97Wtf0+zZs+P2CQaD2rdvnz755BO9/vrreuaZZ7R8+fLOixtZliXLsjRu3Dj98Ic/zPZDAgAAAAAg45744Ald9/x1zkKiH9E2SyrM5oy60S5VSpKn64NSRbakgFF9oSTL0sjikVr5Lys1onhEjiYJAAAAAAAAAAAAAAAAAAAA9A0R6hT89a9/leREoy3L0le/+tUe97nlllu0e/fuqDCVezKx1HVCsTFG27dv1w033KBnn302/ZMHAADZ0daWOEBtjNTSIrW3R6/LkiUH9T5A7bI9ToDashKfA9aJDicAIAt8Hp+Orjy61yHqyAC1pM6vvQ1RlxWU6ejKo+Xz8FYKAAAAAAxFxxxzjB599FHNnz+/8+fGxhi9+uqrevXVVzu3c38mbIxJeGFjd1/3e7/fr8cff1xjx47NyuMAAAAAACBbnvjgCS18emHS+wubpPb4fzrnRkA6QJbkif8gVJF8UlGpfF6/Vv7LSk0YNiEHEwQAAAAAAAAAAAAAAAAAAAD6x5PrCQwEy5Yt6zwRuLCwUGeddVa32+/YsUMPP/xw1MnDHo9HX/jCF/Td735XV199tcrLy6NOTv7rX/+qN998M+OPBQAAZMgrr0h79kSvC4el+vroALWUvgi11X39ud4vzb22f4cwHskmMg0AyBNuiLqsoCyl7WMD1K7K0kodPvJwWSleSYEANQAAAABAki644AI9/PDDKi4ulqSonwe7t0iR691b5D7l5eV6+umndcopp2T3gQAAAAAAkGFxAeqYj0uVNuRbgNqT+LNYXq80YoROPOgkbfjWBgLUAAAAAAAAAAAAAAAAAAAAGLCIUPfgk08+0d69eyU5JxGfeOKJnScVJ/Poo48qGAxKck4eLi4u1pIlS/TMM8/onnvu0YMPPqj3339fkydPjtrvwQcfzMyDAAAAmbV1q7RuXfS6cFhqaJBsO3p9ugLU7liWlTRGXRGUJu9L3+ESIlANAMiyVEPUyQLUrlRD1ASoAQAAAACRvvSlL+mdd97RUUcd1Rmdtiwr5Zvk/Az5yCOP1NKlSzVv3rxcPhwAAAAAANKupqGmK0BtFBegHr1Hai7J+rQSC0oHmiQfp+8IUB934Aw9funjGlE8IrtzAwAAAAAAAAAAAAAAAAAAANKICHUPtmzZErV89NFH97jPk08+KcuyZIyRZVn613/9V51yyilR2xx00EF66KGHOrcxxujZZ59N69wBAOi19nappkbavFl6/31p+XLptdekZcukNWukN96QVqyQ9u/P9UzzRzgsvf569DpjpMbG+OC0ZUkeT9fXdEoSot708wyGqNMcoA6bcHoHBAAMWj2FqHsKULt6ClEToAYAAAAAJDJt2jStXbtWjz/+uGbMmCFjTNxNUsL1kydP1kMPPaQPPvhA06ZNy/EjAQAAAAAg/SqHVWq4f1hcfFqSxu2W9o7M/pwSCkkqlsIy8sTOtbhYGjWqM0A9rHBYLmYIAAAAAAAAAAAAAAAAAAAApA0VpR5s27ZNkjpj0Ycffni329fV1WnVqlWdyx6PRzfccEPCbWfPnq0ZM2Z0bl9fX6+qqipNnjw5TbMHACAF4bC0aZP01lvSrl3OOstyAsqW1fW9JK1cKa1d66ybMUOaN086+WTJN4RfUuzY4QSnIyPQLS2SbUdv5/NJJSVSQ0PSYHSfuL9OUvSvVYRNP5cO+D/S7vL0HTbdAWpJCpiAvLY3/QMDAAYlN0T9Qc0Hago0da5PNUDtcrfbuH+jTMRZ0ASoAQAAAADdsSxLl112mS677DJ98skneu211/TWW29px44d2rdvn2pra1VcXKzRo0dr7NixOvHEE3XWWWdp6tSpuZ46AAAAAACZtW2bah+o1IhLGlRX3LX6yI+l9RNyNqtoIUlFzre7S43GNUteY8n2eaXycqmwUMeNO44ANQAAAAAAAAAAAAAAAAAAAAYNSko9qKuri1oePnx4t9u/8cYbsm1blmXJsizNmjVL48ePT7r9nDlztHLlys7l999/nwg1ACB7qqqkV15xwsihUO/2XbPGuY0dK33jG9JJJ2Vmjvluw4bo5VBIam+PXufzOScnBYOZn0+CEPWzR0peSR5bsj39Hb+f+/egLdQmq+M/AAB6Ehui7m2A2hUboiZADQAAAADojUMOOURXXXWVrrrqqlxPBQAAAACA3NqxQzrxRGnPHtXe69GIb9uqK5ambZbWHZLryXUIqzNA7dpdajTOP1ze4hLZxiZADQAAAAAAAAAAAAAAAAAAgEGnvxnCQa+1tTVquaysrNvt33nnHUmS6Yg/nnvuud1uf/jhh0ct79mzp7dTBACg99rapL//XXr2WSdA3R/V1dKdd0r33ivF/L056DU2Srt3R69ra4vfrrTUiUP3NvSdBs8eKd14nmRb0tgWJ0TdJ5YyHqB22bJlZHreEAAAdYWoywvK+xSgdlWWVurwkYervKCcADUAAAAAAAAAAAAA9Nb27dKsWVLEZ6Fr/8fSpC15FqAujFnX8bmo3aFahe2wThh/AgFqAAAAAAAAAAAAAAAAAAAADDoUlXrgxqRd7e3t3W7vRqhdp5xySrfbDx8+XJJkWU7VsaG/IVAAAHqyZ4/0yCNSXV3ybWzbucXyeCSv1wkqx1q0SFqxQrroIqmiIm3TzWuxAWpjpEAgel1xsfOcSWmJUIctyZtinzkyQO0a2yJVl0h2qpciyVJ42uWxPDLGyMr2gQEAA5rP49OxY47t/Ld1X1WWVmp0yeh+jwMAAAAAAAAAAAAAQ8q2bdKZZ0YFqCXphMuMthycoznFsiXVSxqTfJPdzbv1hwv+QIAaAAAAAAAAAAAAAAAAAAAAgw4R6h4MGxb9IeJ9+/Yl3TYUCuntt9+WZVkyxsjr9eqkk07q1fGCwWCf5gkAQEp275Zuuy1xgNq2nUhyovi0q63NuRUUOHFlX8xLib17pUcflb70pcEVom5ocE6U2rJF+vRT5znyeKTGRqm93YlMezxSOBy/b2Fh1/cmxXp0smkUSldcLF27Spq/PuIOY6LD4JalZ48wcQFqV0VAqi2Q5Iao86izaRtbHqVayAYAoEu6wtEEqAEAAAAAAAAAAACgFxoapIULpU8+iVp90edtrZySoznFsiXVKT5AHfPjYa/lVXFBcXbmBAAAAAAAAAAAAAAAAAAAAGQREeoejBw5UlJXhGr9+vVJt33zzTfV0tLSue3RRx+tkpKSbsev64iAGmNkWZZKS0vTMGsAABJoapJuvVWqrY1eb4wTUu7NhRACAWf7wkKppCQ6gNzUJD3xhHTllc59A1UoJC1dKi1ZIlVXO+HpyEC3ZTnLxnStdyPT7vPh9ztx6jRoKJQWXiqtGSetOsBZNz/Jy5JnjzS68fOJA9RtPqm+0OlP27aUb71nI6OwwvLKm+upAAAAAAAAAAAAAAAAAOjJ974nbdwohcOdq750pq2/Ts/dlKIkC1AnsOzaZUSoAQAAAAAAAAAAAAAAAAAAMCgRoe7B0Ucf3fm9MUaLFi1Kuu1TTz3VuZ1lWTr11FN7HL+mpiZqefjw4X2bKAAAPfnVr6SdO6PX2bbU2toVT+4tN15dXi55I6LBdXXS4sXSvHl9nm7OhELSQw9JL70ktbWltk/s89fX5zOJyAC15MSlbzzP+T42RJ1KgNrlsZxzrPIRIWoAAAAAAAAAAAAAAAAgz738svTkk1JLS+eqr51i68+fyeGcIhklD1DHfL7qz/P/rJkTZmZ+TgAAAAAAAAAAAAAAAAAAAEAOEKHuwdSpU1VcXKy2jgjlxo0b9fe//13nnXde1Ha1tbX605/+JMuyZDrCk3Pnzu1x/Pfffz9q+dBDD03PxAEAiLRsmRR7IYWeAtSW1XUzJvl2ti01NEjDhkWvX7dOOvJIadKk/s8/G0Ih6YknpH/8w/k+HYJBqalJKimRPB7nuYzkPrfdiA1QuxKFqMMyemB6agFqd4zYk6nyBQFqAAAAAAAAAANJS0uL6uvrFQwG+zXOwQcfnKYZAQAAAACQYcGgdNttzufHAgFJToD6d6fmeF4uI6lWiQPUMR688EFdfuzlmZ4RAAAAAAAAAAAAAAAAAAAAkDNEqHvg8/l0wQUX6IknnugMTF977bV66qmndMopp0iSGhsbdcUVV6i+vl5WR1yyvLxc5557bo/jr169Oipcfdhhh2XuwQAAhqZQSPrlL6PXGZM8QO3xRAeT3a/GSF6v8zU2omGM1NgolZZGr1+0SLruOme/fLZsmXT//U5MO52McU6wCoWk8nLJ5+tV4DpZgNoVHaI28kr60zPx+yQMUEt5GaAutooVMIFcTwMAAAAAAAAAkmpvb9fTTz+tF198Ue+99542btyocDjc73Ety1IoXRdJBAAAAAAg0158Udq+vTNA/e0ZAyhAHfG5qfvPul/XHH9N5ucEAAAAAAAAAAAAAAAAAAAA5BAR6hR8/etf1xNPPCHJOfF3z549Ov300zVlyhSNGjVK77//vpqbmztj0pZl6corr1RhYWG3427fvl0bNmzoDFePHj1aEyZMyPjjAQAMMW+/LVVXR69rb48PUMfGpxOxLMnvlwoKnDEiYxi2LbW1Ofe56uulqirpiCP6/zgyobVVevhh6a23Ege508EY57lpaJCKi1PeracAdUjOC7noELU0rF16/KmufQdSgNonn/x+vwIBItQAAAAAAAAA8o8xRj/5yU909913q66urnMdAAAAAABD0h/+4HwNhfT9qbZ+dE5up9PJSNok6aieN7155s26cfaNmZ4RAAAAAAAAAAAAAAAAAAAAkHOeXE9gIDjjjDP0hS98ofMEYjc2vXHjRi1btkxNTU1RJxeXlpbq1ltv7XHcZ599tvN7y7J00kknpX/yAAC88EL0cigUHY+WJK/XiUcnClAbEx9otiypvFzyxVzPIhCQwuHodatX92naGbdvn/S970lvvpm5ALXU9fwZ40S6I4+VJPjdU4C6TVJNmVTT0bR2Q9TPHuksuyHqcY3dBKjzMELt9/hzPQUAAAAAAAAASKilpUVz587Vd77zHdXW1soY03mB4nTcAAAAAADIV/Ut9fErd+6U3npLkvS/Ixv1vS9kd05JGUkb1X2AuuOf4TfPvFn3nX9f5ucEAAAAAAAAAAAAAAAAAAAA5AEi1Cl64IEHdMwxx0SFqN2Tgd3v3ZOMf/Ob3+iAAw7occw///nPnftJTuwaAIC0qqmR1qyJXtfWFr9dYWHSIHJSliWVlsavDwajl7dtkxoaejd2pn36qXTbbVJ1dXaOZ4xk20782/0+UdxbqQWoa8uc70Pe5CHqVyZKu8skv921bz4HqAEAAAAAAAAgn1188cV67bXX4sLTboy6vzcAAAAAAPLRkq1LNPx/hmvK/VOi71i+XJL0vwW79M0rcjCxJEo2SJrWzQYdn5u68YQbCVADAAAAAAAAAAAAAAAAAABgSPHlegIDxfDhw/Xaa6/pX//1X/Xwww8nPBH4gAMO0M9//nPNnz+/x/GWL1+ud955pzNkLUnnnXdeWucMAIDWrYteNiY+El1QIHk8Thi5t7xeqbhYam3tWueGliOj1p9+Kg0b1vvxM2HXLul3v4t/HrItwWuJsCVdcXFqAWqXG6KubO0KUT93pPTKJEmWNLxVqiuW2j0iPg0AAAAAAAAAffDoo4/qpZdeivrZrvvz4hkzZugzn/mMDjvsMFVUVMjv9+dqmgAAAAAApNWSrUs09+G5kqSq2ipNuX+KNt20yblz7Vo9ZToC1HnymaRRa6V9M7rZoGOeXznmK7p/3v1ZmRMAAAAAAAAAAAAAAAAAAACQL4hQ98Lw4cP14IMP6q677tJf//pXbdmyRY2NjRo1apROPPFEnXPOOSoqKkpprH/84x867rjjOpfHjRunI444IlNTBwAMVZs2RS+7gehI/Q1iFBZGR6glKRyWfBEvM6qrpalT+3ecdFizRnr22b4Ft7PAa6RrV0mrDnCC0pESBahdsSHqlw/rus8jKWip62SvPDnpCwAAAAAAAAAGinvuuafzezc+fc455+jHP/6xpubDe98AAAAAAKRZZIDaFRmiXv3E/Vp4rfLms0gHbZK2JwtQR8xx4ZEL9cDFD2RlTgAAAAAAAAAAAAAAAAAAAEA+IULdBxMmTNANN9zQrzHuuOMO3XHHHWmaEQAASWzZEr0cCkUve72S1c8zgTweJzgdOXZs5HnPnv4do7/a2qQXX5Teey8+wp1n5q93vt54XleIursAtSsyRB2pukSyPWmfJgAAAAAAAAAMCdu2bdOHH34oy7JkjJFlWbrqqqv04IMP5npqAAAAAABkRKIAtauqtkonXWXp3Yu6PtuUaxM3SVuTXSMqYo43z7pZ9513XzamBAAAAAAAAAAAAAAAAAAAAOQdkoQAAAxm9fXRy+Fw9LInTS8FvN7o5dgIdUtLeo7TF/X10sMPS6tX532A2jV/vfSzv0sek1qA2uWGqF0BxQSo8+TEL9o4kRQAAQAASURBVAAAAAAAAAAYKN55552o5bFjx+oXv/hFjmYDAAAAAEBmdReglqRRH0jvHpQ/AepJW7oJUEf4j1P+gwA1AAAAAAAAAAAAAAAAAAAAhjQi1AAADGahUPf3W2k6G6incWLj19lSVyc9+qi0d2/Pz0Wemb9eumlp6gFqlxuiti3JZ0kVzf2fi1fenjcCAAAAAAAAgEFoz549nd9blqVLLrlEJSUlOZwRAAAAAACZkTRAbTpuH0h1U/InQH34VmnL4d1s0DHP/zPz/+j7Z34/K3MCAAAAAAAAAAAAAAAAAAAA8hURagAABjOfr/v7jUnPcXoax5uDiHFbm/Tkk1JDg/P9APPuOOm7Z/dt35BX2lfkfN/c8VX9PPmLEDUAAAAAAACAoai+vl6SZDreBz/++ONzOR0AAAAAADIiYYDajU9L0jrJP1kK58knz6dtkDZO6WaDjs9K3TDjBv3o/B9lZU4AAAAAAAAAAAAAAAAAAABAPuuhTAkAAAa0ioro5dgYtG2n5zjhcPSyJ+Zso5KS9BwnVeGw9NRT0q5dUiiU3WOnQZNPOvF6yfQjHB3yStWlHQv9DFCHFc5KhLrVblVroDWjxzAyag42y7ZthUIhhcNheb1e+Xw+eWJ/3w4SxhhZVj9/E6RxnHQIBoPy+/15Mw4AAAAAAAAGr7Kysqjlitj33QEAAID/n707D4+yvvf//7rvWTLZQyQQEBEQRQUFt6octYjaqnWji9h6WreennoqXcT2nNr+XKpVv622tbZHq1V7qrVirWil2lZArBZwJwqyCKLIEgiE7JnMct+/P+5MMmsySSYzk+T58JoruT/3PZ/7HexVIsw8AwBDXEKA2o67YLdkTJWCefIz7I95X3p7eg8XdL685XsnfU//79P/LyszAQAAAAAAAAAAAAAAAAAAAPmOCHUG7NixQ6tXr9abb76pPXv2qKGhQc3NzSotLVVFRYXGjBmj4447TieddJIOPPDAXI8LABhJpkyR3n67+9gd91t/OCzZtjSQsKxlJYae42O+Y8b0f/++Wr1a+tWvpPr67N0zw0pC0gk7pNcmZGCzATaDfS6fplZMlSSt37deYYV7ecbQsGLbiphjU6ZOmnCSfG5fbgYaJCErpHV16zS+ZLyqiqv6vU9da512tuzU9Krpcpu5/U+I+rZ6rdmzRj63T7MnzO73Piu3r5Q/5NesMbNUWVSZwQkBAAAAAAAwnEyZMiXmuH4I/9kzAAAAAADxGtsauwPU8fHpiFGSnSc/233mFuntI3q4gAA1AAAAAAAAAAAAAAAAAAAAkBQR6n5qbm7WI488ovvuu0/r1q1L+3nTp0/X1VdfrX//939XaWnpIE4IAICkQw+NPXa7neC0HfWOoWBQ8nr7f4+OjsQ1lyv2eOzY/u+frtZWJz79wgvS/v2Df79B9uqD0olXDSBEPcD4tCSVekt1wvgTuo437d+ksDU8ItTxLFlatX2VTp5w8rAJUYeskNbWrVVLoEWb6jdJUr9C1HWtddpUv0m2bK2tW6sZVTNyFqKOBKglyR/ya+X2lf0KUUcC1JK0Zs8aQtQAAAAAAABI6aSTTpJpmrI7/1x9w4YNOZ4IAAAAAIDMMVyGitxFagu2JT3v7pBCrqSnsm7iTqlmWoqTUa+V+sG//UC3nnlrVmYCAAAAAAAAAAAAAAAAAAAAhgoz1wMMRY888ogmT56sBQsWaO3atbJtO+3H2rVrdc0112jy5Ml69NFHc/2lAACGu+nTY48NQ/J4YtcCAcmy+rd/OCy1t8euRULX0Sb0t6ScpsZGaeFCaelSJ6odiWxHx7aHoFcflD6xvY9PMjQoAeq61joFrMDAN85jtmyt2r6qK048lEUHqCXna9tUv0l1rXV92ic6QC1JLYEWra1bq5AVyvjMvYkOUEdEQtR9ER2gjlizZ43q2+oHOiIAAAAAAACGodGjR2vu3Lldf9/7/PPP53okAAAAAAAyoqmjSfOfnK/yhnaZSV4+VtiWRwHqWumjh6WK9iQno14r9eD5DxKgBgAAAAAAAAAAAAAAAAAAAJIgQt0HHR0dmjdvni6//HLV19fL7gxbGoaR9kOSbNtWfX29LrvsMn32s59VR0dHLr8sAMBwVlUlzZwZu+bzJV7X0dH3YLNtS62tievxkeuJE6XS0r7t3RcNDdJjj0m7djnH/iEWEI4LdoeN2HP/+IP0iZ297aGMxael5AHqjfs2ZmbzPDccQtTxAeqIvoao4wPUEbkIUScLUEf0JUSdLEAdQYgaAAAAAAAAqVx//fWSnL8X3rhxo55++uncDgQAAAAAwABFAtQ1770o2bbGtikmRF3cIrV7czdftCm10kcPOp/v/6mRPEQtadHnFunKY6/M3mAAAAAAAAAAAAAAAAAAAADAEEKEOk1+v18XXHCB/vKXv8i27ZiwtG3baT/in/fMM8/oggsuIEQNABg8550Xe+x2O49o4bAUCKQforYsqblZCsVFaL1eyeWKXZs1q0/jpq2pSaqpkX77W6muzjnev7/76+hrVDuXOkPUTQXSRZdIiw93ll+cLFX8t1RfZGpqQ+e3bUaSRwalClAHrWBmb5THhnKIOlWAOiLdEHWqAHVENkPUPQWoI9IJUfcUoI4gRA0AAAAAAIBk5syZo6uuuqrrhxR/4xvf0Pbt23M8FQAAAAAA/fPhvg+dAHVtjRT1+uVIiLqsUWr15XDAKAfVSVselGSazsMwtP9OsztE3fnaqUWfW6SLZ1ycqzEBAAAAAAAAAAAAAAAAAACAvEeEOk0LFizQCy+8IEkyOkORkbD0ySefrJ/+9KdatmyZduzYoZaWFlmWpZaWFu3YsUPLly/XT3/6U5188sldz4nsY9u2li5dqgULFuTsawMADHMnnyyNHRu7VlDQFT7uYllOVDocTh1wtm0n8tzWlhigNk3JF/fuo/JyaerUgc0fLRyWNmyQHn9c+s1vpL/8xYlhh8POPJaVuXtlg2E4v24ul5pKPJp/saE3x0sLzpV+dIo098vOv4fNFZa2lllyhwd3nJ4C1KlixMPVUAxR9xagjugtRN1bgDoiGyHqdALUET2FqNMJUEcQogYAAAAAAEAyv/71rzVnzhzZtq1du3Zp7ty5WrNmTa7HAgAAAACgT/6y/i+a/KvJ+vvmv0u7diWcL2uSmopzMFgS1fulbffLeX1VnP1PTVWFt0wSAWoAAAAAAAAAAAAAAAAAAAAgHUSo0/DPf/5TDz30UFd8WnIC1HPmzNG7776rf/3rX1q4cKFOP/10jRs3TkVFRZKkoqIijRs3TnPmzNHChQv1r3/9S++++65OP/30hBD1gw8+qJdffjknXx8AYJhzu6Wrr45dMwypsDAxRC11x6gjQerIIxSSOjqcCHV8pNowpNLSxP3OPFNyuTLzdWzeLP32t9Kzz0off9w9Y7RU8ex8ZBhSUZFUWqqmqjLN/4JU09kKbzWkG8+IvTxsSpYhuQfp2zeP6SFAHWcohajTDVBHpApRpxugjhjMEHVfAtQRyULUfQlQRxCiBgAAAAAAQDyv16vnn39eX/ziFyVJmzdv1kknnaSrrrpKq1atUjg8yD9FEAAAAACAAVqycYkufOJCSc7roGuLYs8HA1JDSQ4GS+KAJmnX/yppgFpjx0rLl2v/9Y3a8509BKgBAAAAAAAAAAAAAAAAAACANLhzPcBQcMcdd8i27a5gtGEY+p//+R/ddtttfd5r+vTpWrZsmX74wx/qtttuiwlb33HHHTr11FMzOToAAI6TTnKC0EuXdq+ZphOibm9PHm+27eTr8aFp03QC1C5XbBR6+nRp6lQnaj0QLS3SvfdKy5fHztbRMbB9cynya+hyqclra/7ZzaoZHZZkqN22U76ZyzIlhS25Pe6MR3+DVlCb6zdrauVUAtRRIiHqkyecLJ/bl+txkuprgDoiEqKWpKriqj4HqCMiIeoZVTPkNjPznxf9CVBHRELUsyfM7leAOmLNnjWaNWaWKosq+/V8AAAAAAAA5Le5c+f2+7k+n08dHR0KBAL63e9+p9/97ncqLCzUwQcfrMrKSnk8nn7taxiGli1b1u+5AAAAAABIZcnGJTr/8fOdg86XhtimVFskVbdJdru0d1Tu5otW0SLt/ZUhmUbiybFjpddekyZMkCRVlVVleToAAAAAAAAAAAAAAAAAAABgaCJC3Yv9+/dr2bJlMQHqK6+8sl8B6mi33nqrdu/erQcffLBr76VLl2r//v0aNSpPXsUNABhevv516b33pB07utdMUyoqcoLOwWDf9ywocJ4fH6auqJAGEPDoUlsrXX+9tH177Ho43B3IThbKHgrcbjX5DM0/t1U1o51Qd7uslAHqCMuUZA8w7J3CtqZtaupoUluwjQB1FFu2Xt3+qk6deKpM08z1ODFs29a6unV9DlB3Pb8zRF3XVqf9/v39/nfeEmjRurp1OnrM0TE/ZKU/gsFgvwPUEf6QX8s/XN77hb1Ys2eNTj3w1H5HgwAAAAAAAJC/VqxYMeA/y4r8Pa8ktbW1af369f3eM/J30QAAAAAAZFqyAHWEbUpqk2rz5Gd0l7RL++8xpfj/RHa5pIMPlpYv7wpQAwAAAAAAAAAAAAAAAAAAAEhfflX08tCqVasUjIpylpWV6Wc/+1lG9r7rrrtUXl7edRwKhbRq1aqM7A0AQIKSEum226TKuHcMGYbk8zlB6XQDux6PVFYmFRcnBqhLSqSLL3b2HIjaWmnhQmnnzsRzgYATn87jAHW4l1ZIU4mnM0AdltQZoC5Kb29rkCLUktTQ0SBLllyma9DuMRQdWHZg3gWoJSdyM75kvIyEd96lz5aten/9gKLjhjrnyEAkx+PxyOce4P9/ZIjP7SNADQAAAAAAgBh23J9LG4YR8wAAAAAAIJ/0FKCWpIN3SbvyJEDt65CafxH3+hyvV6qokI4/3glQH3RQTmYDAAAAAAAAAAAAAAAAAAAAhrr8K+nlmR07dnR9bhiGLrzwQpWWlmZk77KyMl144YUxb1SOvh8AABlXXS3dcovzxpx4pim5XJLb7TxMM/bhcjmh6uJiJzDtdifuMXq09KUvSVE/ZKFfWlqk66+X9u2LXbdtye+XwuGB7T/Imgqkiy6RFh+e5KRhqMlnaP4FgX4FqLMhZIUkSW4zyb/jEWhi2URNrZya6zFSqiqu0mGVhw0oRD0QhgwdVnmYqoqrMrbn7Amzcx6i9rl9mj1hdk5nAAAAAAAAwOCzbbtPj/48J919AQAAAADIpN4C1Idslz7K3Ms9BqQgKLX/0utEp4uLndefVVVJo0ZJX/6y9Le/EaAGAAAAAAAAAAAAAAAAAAAABoCyYC/q6uokOW8kNgxDxx9/fEb3P+GEE/T73/++63jv3r0Z3R8AgARjxjhvzFm+XFq3LvG80Rmydblij23biVEbKUK3Z50lffKT0p49A5/xvvuknTtj1yxLam93PuaxpgJp/uelmmrp7XHO2rwNUee9tuZ/wVRNVSRAbedVgDoibIXlNt1ym+6uKPVIlO8B6ohIAHpT/SbZyd41OEgGI0AdMXvCbK3cvlL+kD/je/eGADUAAAAAAMDwd9ppp8lI9efdAAAAAAAMcTEB6iQO3Sa9Pz6LA/WgsF1q++M46YC4ExMnSrfc4rwuDQAAAAAAAAAAAAAAAAAAAMCAEKHuRWFhYczx2LFjM7r/mDFjJKnrDc4+ny+j+wMAkJTPJ517rnTYYU6MurHRWTcMJzbdm+gwR3W19PWvSyedlDxq3VerV0tLl8auhcNOgDqd2XIoOkAtSZYhLTjX+XzeBilsSJd+VqoZ44S0g7LVUJyjYXtgyJDbdMswjK7PR2KIeqgEqCOyHaIezAB1RC5C1ASoAQAAAAAARoYVK1bkegQAAAAAAAZFQoA67mUk0z6UNk7I6kgpFXdILX8cF7t4yinSZZdJn/qU5PHkZjAAAAAAAAAAAAAAAAAAAABgmCFC3YuDDjoo5rihoSGj+0f2s21bhmFowoQ8eVU3AGBkmDpVmjxZ2rxZeuUVadeu9J5nmtKsWdJ55znxaXeGvqUIhaR7741ds22ppWXIBahtSYYSQ9RXvi29Pc6WZUgew5Bp2bLMXE2dnC276wdkSJJpmCMuRD3UAtQR2QpRZyNAHZHNEDUBagAAAAAAAAAAAAAAMJTVt9THBqjjzNgsrZ2UvXl64gtILW+fIZ02Wpo+XTr6aOkTn5DGjev9yQAAAAAAAAAAAAAAAAAAAAD6hAh1L4477jhJ6goxrl+/PqP7b9iwIen9AADIGpdLmjbNCUlv3iw1NkrNzVJTk2RZkmE4AWi3WzrkEOnEE503/BxzTOZnWbVK2r07dq2tzZkjmchsORYfoLYkNRRKRUHJF4oNUV+wSZIhLThHsmRrbLuh3YV9CFEbvV+SCYFwQF6Xt+vYNPKslD2IhmqAOmKwQ9TZDFBHZCNETYAaAAAAAAAAAAAAAAAMdS7TperiatW21joLUS8dOWqj9O4huZkrnjcs+YukQy/4SO9/c2muxwEAAAAAAAAAAAAAAAAAAACGvZFTE+ynyZMn66ijjpIk2batp556SnaGYpe2bevPf/6zDMOQYRg64ogjNGXKlIzsDQBAvxQUSGPGOFHqY45xgtOf/KQ0e7Z03HHSWWdJn/iENGrU4Nx/yZLY41BI6uhIfq2RpRpzL1IFqIOm1Fgg+Tt/5IdlSNecK514lXN8z/OSaUuynRC1kaKznUuBcKDr82A4mMNJsmeoB6gjqoqrdFjlYTIyXC3PRYA6YvaE2fK5fYOyNwFqAAAAAAAAAAAAAAAw1L249UVV/LRCJd4SVRdXx5ybuT5/AtSesBTY7Hy+ef9mHfrLQ3M7EAAAAAAAAAAAAAAAAAAAADACEKFOw7e//W3Zti3DMPTxxx/r7rvvzsi+d999t7Zt29YVtf7Od76TkX0BAMgIw5BcLsntdj4OdvS5rk6qqYld8/sTrzPNIRGgjoiEqG1J+4qkt8dJXz3fORcJUftddr58SQkC4YCC4aBsZeaHcOSz4RKgjsh0iDqXAeqIwQhRE6AGAAAAAABAb370ox91Pe6///6M7n3//ffH7A8AAAAAQF+FrbBe3Pqi5v5+riQn7FziLVG1WS5JmvGeVJMnnWdPWApuljS9e40QNQAAAAAAAAAAAAAAAAAAADD43LkeYCi44oor9PDDD+uVV16RJF1//fWaNm2azjnnnH7v+be//U3XX3+9jM7i5OzZs3XVVVdlZF4AAIakdetij21bCgRi17xeKRx2HjmWToA6orFAMr2S1dkCbvA5IerfPitdWiPd+W/Ouml3X5NUjkLVIyFA7XP7hlWAOqKquEp1bXWq99cPeK9RvlE5DVBHzJ4wW8s/XJ7R/QAAAAAAAICe3HTTTV1/rztz5kx97Wtfy9je9957r955552u4xtuuCFjewMAAAAAhr+mjiad9X9n6bVdr8Wsb67frKn10qH7pLWH5Wi4eJYUbFBMgDoiEqJ+/5vvZ3sqAAAAAAAAAAAAAAAAAAAAYERIkklEMn/+8581bdo0SZLf79dFF12kW2+9VYH4OGYvgsGgfvzjH+uiiy6S3++Xbds67LDD9NRTTw3G2AAA5Ke6OmnFCumBB6Tvf1/6r/+S7rpLamyUmpqktjapvd0JUUfzeCQz99++hA3p0s+mF6CWnLB0yFRMyrnBJ106T/rtcVJ5h7M2/FPP+csf8mtz/eZcj5Fxda112u/fn5G99vv3q661LiN7DcTK7Svzej8AAAAAAAAMX3b8n1lncN/B2hsAAAAAMHx9uO9DnfLgKbEBaltdL0Ly7pHen5yT0RLZkvZLGpv6ks37N6uxrTFbEwEAAAAAAAAAAAAAAAAAAAAjijvXAwwVVVVVWrVqlb785S/rr3/9q4LBoG688Ubdf//9+spXvqILL7xQM2fOlNfrTXhuMBhUTU2Nnn76aT3yyCPavn27bNuWYRg699xz9cgjj6iioiL7XxQAANkUDktr10rPPCO9807i+aYm5xpJCoWcAHXkYRhOfNowJJdLCga7n2cYibHqQeaypSvflt4eJ4WM3gPUEbYhyZYiSx1u51HeIRUGpdbEbyO6GT2cQ0Zsa9omSZpaOTXHk2RGXWudNtVvkp2hvLktW5vqN0mSqoqrMrJnX63cvlL+kD+je/pDfq3cvlKzJ8zO6L4AAAAAAABAugzDIEINAAAAAOiTJ9Y+ofl/nt+9EPefldPWS+8dmt2ZUjFtyeolQC1Jy7+yXOVF5VmZCQAAAAAAAAAAAAAAAAAAABhpiFCnYe7cuTHHPp9PHR0dsm1b27dv1+23367bb79dbrdbEydOVHl5uYqLi9Xa2qrGxkZt27ZNoVBIkrrePGwYhnw+n1pbW/XZz362T/MYhqFly5Zl5osDACAbNm+Wli2TmpulJD+wQVJiSDr62LadQHUo5MSo88C8DVKbW7rqovQC1BHxIWpJaiiQZDhrZEZya7iEqDMdoI7IZYh6MALUEYSoAQAAAAAAAAAAAADAUNFbgPqQ9dLGfAtQj0lyMuoFVMu/slynTz49W2MBAAAAAAAAAAAAAAAAAAAAIw4R6jSsWLFChpFYkYysRcLSwWBQW7Zs6Tpnx8c0o54jSX6/Xy+99FKfZrFtO+ksAADkJb9fWrpUWrfOOe7p97Akv28m3c/tllwuJ0odYRjpPT+DmgqkR2dKRUGpsSDxfLIAdUR0iNqOHCs2TB2D3/qzaqiHqAcrQB2RixD1YAaoIwhRAwAAAAAAIBfCUX/W7Xbz1/cAAAAAgJ71FqCe8pa05ejszpSSLVVukvZO7/kyAtQAAAAAAAAAAAAAAAAAAADA4DNzPcBQkyosHf/oab23/QAAGBYaG6X/+7/uAHU825aCQam9XWppkSzLedh2z0HpUMi5LofChnTpZ6WaaskXkso7Ys/3FKCOsA3nOjvq2qRfNQHqnNjWtE2b6zfneow+G+wAdUQkRF3XWjeo95GyE6COiISoAQAAAAAAgGxpbGzs+rykpCSHkwAAAAAA8l1vAepJa6QP8ihAffjGHgLUna+JIkANAAAAAAAAAAAAAAAAAAAAZAcR6j6IBKNt287Yo6/7AQAwJDQ0SI895nyMFwo50en9+6XmZidCHQh0h6V7i1CnuibJD3sYLC5burLGlNk5QnSIOp0AddoIUOfUUAtRZytAHZGNEHU2A9QRhKgBAAAAAACQLU1NTdq+fXvXcUVFRe6GAQAAAADktd4C1JU10oepgs85MOtNadORPV9z4oEn6rSDT8vOQAAAAAAAAAAAAAAAAAAAAMAI5871AEPBaaedJiOLYUsAAIY0v1/605+c0HQ025Y6OpwIdTKGkV58Ovr35PjjdPbIBI9H87a6paVhLTgrKMuQfCHnvg0Fkp2Jbxv41iMvbGvaJkmaWjk1x5P0LNsB6ohIiFqSqoqrMrp3LgLUEZEQ9ewJs3NyfwAAAAAAAIwMDz30kGzblmEYMgxD06ZNy/VIAAAAAIA81FuAesIb0vaZypvXGx37jrRrhjS2TdpdJFlm3AWGdPz44/WPL/9DLtOVkxkBAAAAAAAAAAAAAAAAAACAkYYIdRpWrFiR6xEAABg6li+XGhpi1yxLam9PjEYPRCQ4Hb1n5ONghqg9HsnlvPlp3vsuyZAWnBmUZRjyhaWKDjtzIWrkhXwPUecqQB0xGCHqXAaoIwhRAwAAAAAAjBzbtm1L+9pAIKCPP/5Ydj/+HDocDqulpUUffPCBnnvuOT388MMyDKMrRH3MMcf0eU8AAAAAwPD2zPpnYgPU8T7MrwD1CZuk7Yd1HycLUR8//ngt+8oylRWUZX9AAAAAAAAAAAAAAAAAAAAAYIQiQg0AADJn7Vpp3brYtegAdTJutxN1tm3Jn0Z0Nj46nc0QtWk6j6h7z3vfLRmmFpzRIcuQfGFDFQGpoSBXSWAMhh1NOzSlYopM0+z94iyybVs7W3YOKEBtyNAo3yjt9+/v9z62nDlGF42WMcDQfDAYzHmAOsIf8isYDMrj8eR6FAAAAAAAAAyiSZMm9frnWpHo9Pr16zVp0qSM3DcSn474whe+kJF9AQAAAADDw5KNS3TRExd1L8S/rONDSQcqbwLUszZK2w9OXI8OUR9/IAFqAAAAAAAAAAAAAAAAAAAAIBeIUAMAgPQ1N0tvvCHV1kr19VJjoxQKOSHp0lLprbekYNCJSpumE4JOFqA2DMnnkwoKuqPOkhOsDoW6r08Vkk4Woo7X3xh1dGgk2dxJQiTzNrsl09SC09udEHVI8rkkvzvxvV8YegwZOnHCiXkXoJYkwzA0vWq61tatVUugpe/Pl6HDKg9TVXGV6lrrtKl+U79C1CXeEk2vmj7gALUkeTwezRozS2v2rOn3Hj63T7MnzNbK7SsHFLSeNWYWAWoAAAAAAIARwk7zz5LTvS4dkT9PMwxDZ511lmbNmpWxvQEAAAAAQ1t9S73Of/x85yDZf4q2Kq8C1MdukN6aIRmWVN2WeH5su6Ejp8/VU198igA1AAAAAAAAAAAAAAAAAAAAkANEqAEAgKOtTdq504lLt7ZKgUB37Nm2nceyZU5wuqBAig+zBgJOpDrC5XKeY1mx4Wa3Wyouds7H8/mklpaeQ9DR69Eh6kj0uj8GGs51uTTvA7dkSAvmtKvNI3W4JMOWZBCiHsoMGTp5wsnyuX25HiUlt+nWjKoZfQ5RRweoJXV97GuIusRbohlVM+Q2M/efFpVFlf0OUUcC1JIGFKKeNWaWKosq+/w8AAAAAAAADE09/YC16PB0Jn4QW/ze06dP18MPP5zRfQEAAAAAQ9vKHSudT1IFqD3KnwD1RidALUm2KdUWxYWoCwo088jTtejziwhQAwAAAAAAAAAAAAAAAAAAADli5noAAACQQ+Gw9N570q9/LT35pLRhg7RnjxOhDgalUKj7YzjsfPT7pcZGqaFB6ujoDj/7/Yl7h8PO55FrXC6ptDR5gFpywtZm1LcnhtFzIDoSx47sXVCQ/Fwykb3jQ9bR4o8j4evoh9vdtce8LV5dusGjRm9UkMTOm/d7oY+GQoA6IhKiLvGWpHV9fIA6oqq4SodVHiYjzf/VDkaAOiISou6L6AB1xOwJs/v875AANQAAAAAAwMhj23bKR7rX9fUxbdo0/eQnP9Frr72mcePG5egrBwAAAADkmyUbl+j8x89PHqDeISdAnSevAD9mo/TW9Ni1SIhakjRuHAFqAAAAAAAAAAAAAAAAAAAAIA9kvhY3goXDYdXX16u9vV2SNHHixBxPBABADzZskBYvljp/3+qzUEhqbnZCzcXFznG0+AC0bTuR6J6i0oYhFRVJLS2xa8n2i987EJAKC50odCDQ8+zJZvB6nWi2ZTnnvV7nY3RcOzKDaSrsNuWyY8PViw8J6A+HB1XeITVG9bANW5KR/H1hyE9DKUAdEQlRr61bq5ZAS8rrUgWoIyLrm+o3ye7hf7WDGaCOiISo1+xZ0+u1yQLUEbMnzNbK7SvlD/mTno9GgBoAAAAAAGDkefjhh1Oes21bV155pQzDkG3bmjhxom6++eZ+3cftdqu0tFSjRo3SjBkzNGrUqP6ODAAAAAAYpnoNUFcpbwLUs96X3p6e/JxtSrWlhj5dPZMANQAAAAAAAAAAAAAAAAAAAJAHiFAPwLvvvqunn35aK1as0Ntvv63Gxsauc4ZhKBQf44zS2NiocDjcdVxSUiKv1zuo8wIAIElqbZXuu0/auTMz+1mWE6OO6Cky7fc7cWeXK/U1Xq/z6C0knWp/w3AeqaLVyeZzu51HebnU0ODMF9knnmWpqditS89t15VrPZr3gVObXnxIQAvmtMsyJF/YkD9sqyPqyxzMELXX5VUg3I9fLyQ1FAPUEb2FqHsLUEf0FqLORoA6Ip0QdU8B6oh0QtQEqAEAAAAAAEamyy67rMfzV155pSTn74ArKyt7vR4AAAAAgP7oMUAtSaOVNwHqo7ZKa47o4QJDsmXr3rPvJUANAAAAAAAAAAAAAAAAAAAA5AEi1P2wZs0a/fCHP9Tzzz/ftWanCl2m8M1vflOPPvpo1/F//Md/6L777svYjAAAJFVTI/3nf0o9/KCEAesp/mxZUlOTVFbWc4i6qMiZ0bJin9+X32+jA9K2LZmm84jewzCk4mLprLOkyZOl/fulxx6LPe92x/x6NalD8z8TUk2VpbdPD3d9HQs+6VdkWr8rNkDdtZ0t2T00ursvTO9L9JgemYYpWzYh6gwZygHqiFQh6nQD1BGpQtTZDFBH9BSiTidAHdFTiJoANQAAAAAAAHrS178PBgAAAACgL/74zh/1pcVfSh2g7pDUw8utsmn6NundQ3u4oPO1T89c/IwmHTApGyMBAAAAAAAAAAAAAAAAAAAA6AUR6j76zW9+o29/+9sKBAJdbzQ2DENGVOgynTcgf/e739Wjjz7ade0TTzyhu+++WwUFBYMzOAAAv/mN9MADuZ7CiUA3NzshatNMfo1pSqWlTrC6L2EP246NT0tORNrjSR69LimRvvQlqby8+3jCBGn79u5rPJ6uCHWT19b8z0s1o8OSDFmG9NW5rZKkAsuQZMjvstXoTTFemnHpdB1+wOGSuiPBhKgHZjgEqCPiQ9R9DVBHxIeocxGgjkgWou5LgDoiWYiaADUAAAAAAAB6ctlll3V9PnHixBxOAgAAAAAYjm576Tb9YMUPUgeo/cqbV3xP2y6tm9LDBZ2vj3r2kmd13rTzsjITAAAAAAAAAAAAAAAAAAAAgN7lyUuSh4Zbb71VN954Y0x8WoqNThvx4csUZsyYoTPOOENLly6VJDU2Nuq5557TvHnzMjw1AGDEa2mRbrpJWrEi15N0syyprc2JPqficjmh6uZmKRxOb1/TlLxeJ0Ztms4eqX5vrqiQLr64O0AtOdeecIK0c6fz/MgeoZCajIAToK7uvNa25XdLjZ0/P6K8s/3c6E3+bjDbSP0+sf5av2+9jjjgCB1WeVhXJBj9Y8rUSRNOGhYB6ohIiHpd3TqNLxnf5wB1ROR5O1t2anrV9JwEqCOiQ9T9CVBHRIeoCVADAAAAAACgNw8//HCuRwAAAAAADFPPvPeME6BOwfRLVp682ruqTto4qYcLCFADAAAAAAAAAAAAAAAAAAAAeStPXpac//785z93Baij49OHHnqozjnnHE2ePFk/+9nPtH379rT3nD9/vpYuXdq139///nci1ACAzKqtla67TtqwIdeTJAoEnIfXm/qaSIi6tdW5NpnoyLTL5YStOzp6vvdRR0lz5ki+JMHhqVOdMHVzc9dSU1mB5p8dUM3Y7suiA9SS1OC1JUMyknSg+xSgTu/nWUiSQlYoJkT9bt276T95hJszcY5CoZDC4bBcLpfcbrdM08z1WBnnNt06eszRaf+glFSqiqs0umj0gPfJhMqiSp164KnyeDwD2mf2hNkKBoMD3gcAAAAAAAAAAAAAAKA/Xtz6oi7600XOQZIXFxW0SR09vLQqm6r2SXXjUpyMejkJAWoAAAAAAAAAAAAAAAAAAAAgPw2/0t4gaGtr0zXXXNMVoLZtW6WlpXr00Ue1ceNG/eIXv9C3vvUtVVZW9mnfefPmyeVySXKC1suWLRuM8QEAI1VtrbRwobRpU64ncdhJ3inV1pZ8PZppSsXFTjB6oAHc8nJp3jzpM59JHqCWnJD13Lldh01eW/M/066a6u5725Laorq1trpD03bciH0KUPdD2Apr476N2rAvD0PjfVRoFqrMWyZX1D+ZZshQsadYpmnK6/WqsLBQXq93WAaoIzIVjs6HAHVEpsLRBKgBAAAAAAAAAAAAAEAuLNuyTHN/3/kapSQvLipqyZ8A9egGqdwtVTfHnTBEgBoAAAAAAAAAAAAAAAAAAAAYIty5HmAo+NWvfqXdu3fHBKj/+c9/6uijjx7QvpWVlTriiCO0bt06SdIHH3ygpqYmlZWVZWJsAMBI1tIiXX+9tG2bZFm5nqabbceGpC1LCgYlbxrvmHK7nSB1OJz6mlSR3ClTpE98Qjr8cCcy7XLF7hMMSu3t3cdTp0rHHKOm9Ws0/9xW1YwOd+9v2zIkVbRLDYVSwIwNT9uSZEiG3Y8AdR8bv4YMuU23Alagb08EAAAAAAAAAAAAAAAAkBNLNi7R+Y+f7xwkeXFRcZPUWpTdmVKpbJL2jpb2Spq6T6pukWpLE68jQA0AAAAAAAAAAAAAAAAAAADkNyLUaXjkkUe6AtSGYejnP//5gAPUEccdd5zWrl3bdbx+/XqdeOKJGdkbADCC3XeftH17bFg5X8SHqP3+9CLUtu1EqyPPte3u50XWDzhAOuggZ8/Ro6WxY6UJE6Rp06SCgu694iPUjY2xv1Yej5rOPUPzp72umrK46HVniNqU5AtKHb4ko0pSXwPU/WAapoJWcJDvkj3tVrs88uR6DAAAAAAAAAAAAAAAAGBQ9BagrqqT6kZld6ZUCjqk+sru480HSFP3G6ourFJt+56udQLUAAAAAAAAAAAAAAAAAAAAQP4jQt2L2tparVu3TkZn8HLixIm6/PLLM7b/kUceGXO8ZcsWItQAgIFZvVpaujQ/A9RSYoQ6FHKC0C5Xz88LxsWWDcOJUEf28nqlhQulOXOcX4P6+rRHCtuWuu5uGAoX+nRp20OqOdAttZpO5Dr6voYhv2mpuUAybMk2Evfsc4A6yR69zx3u/aIhpjnQLFNmrscAAAAAAAAAAAAAAAAAMqq3APXBtdJHo7M7UyqegNRRnLi+eZStqb4yVZumaltrCVADAAAAAAAAAAAAAAAAAAAAQwSFv168/vrrXZ8bhqFzzjlHppm5X7ZRo0bFHDc0NGRsbwDACBQKSffe63zu9+d2lp7Yce+iCoV6vt6ypEAgds3tjo1ZS9KMGc7HsjKpqCitUZqsdl3UdL8W2+85+1VWylXg05UFJ8k0XVJxsRT3e78tW20e571gyQLUfZaJPYYJW7bCGn5xbQAAAAAAAAAAAAAAAIxcvQWoD9uePwFqV1AKpnrplSFt3r9ZJd4S7Vu4jwA1AAAAAAAAAAAAAAAAAAAAMES4cz1AvtuzZ48kybZtGYahY445JqP7V1RUSHIC15LU3Nyc0f0BACPMqlXS7t1SMJgYes5n4R6iw7YttbYmrns8scdHHy2N7nwnlmFIY8dKbW1Se7tUUiIVFHRf63ZLoZCawm2a/9G9qrG26219LFVUal7ZJKm5WfMKZkrFxVqw9/eyioudqHcw6GwvQ74OWx3pda57RoA6qbDCcsmV6zEAAAAAAAAAAAAAAACAAfl4/8c9BqiP2CatH5/dmVIxQlK4sPfrNu/fLJfJa3sAAAAAAAAAAAAAAAAAAACAoYIIdS/27t0bc1xZWZnR/Ts6OmKOTdPM6P4AgBFmyRLnY9zvL3nHtp1QdEQolPy6cNgJUMefd7slV9ybmM45J/H5RUXOY8IEyefrXvd41NS2X/Pf+qlqAh9LpilLlhY0/FFyezRP0yRJ80qOlyQnRO3zSV6v5Per3QqpcaABauLTPSJADQAAAAAAAAAAAAAAgKGuqaNJX3vuazLDkpXkJcLTPpLWH5j9uZIKSbavh/NRr3da/pXlKi8qH/SRAAAAAAAAAAAAAAAAAAAAAGQGxeNeFBQUxBz7/f6M7l9fXy9Jsm1bknTAAQdkdH8AwAhSVyfV1Difh8O5nSUdtu08Ip9HsyypvV1qbEwMUBuGFPf7s8rLpU98Iu1bNwVbNP+t61XTtCn2trK1YO/vtbhjTdfavJLjdU/FF2XKkDwetRcXqaE47VslR4A6pUKjkAA1AAAAAAAAAAAAAAAAhrymjibNf3K+amr+obFtkmnFnp/+gbQxXwLUYUk9BaijLP/Kcp0++fRBHQcAAAAAAAAAAAAAAAAAAABAZrlzPUC+q6qqijneu3dvRvdft25dzDERagBAv0X/njJUItTRH9vanM/D4cTwdIRhSIWFzsdoZ5whudP7tqYp2KL5a36QEKCOsGRrQfMTUpGlefqkJGle4bGSr01Xtf9ZDWrunCXydaRxU6LTaXHLLY/Ho0AgkOtRAAAAAAAAAAAAAAAAgH6LDlDLcurTY9uk3UWSZUoHb5PWTczxkBFhSQW9XNP5+qe/XvJXAtQAAAAAAAAAAAAAAAAAAADAEGTmeoB8N3bsWEmS0Rm7fPvttzO6/4oVK7r2lqRDDjkko/sDAEaQ99/v/txOp4ycRyxL8vuljo7eA9Rm3Lcv06dLaf7+2RRs0fy3rldNY/IAddc4srWg7Uktbnmja61ChdofCVDHzJXGYwjxuX2aO2mu3Dn4WSUe05P1ewIAAAAAAAAAAAAAAACZFLbCuvSpS1Wz4aWuAHXE2DZp8lbpo/E5Gi6epbQD1A9f8LDOnXbuYE8EAAAAAAAAAAAAAAAAAAAAYBAQoe7FCSecIJfLJUmybVvLli2TnaGw5yuvvKJNm7ojmJWVlZoxY0ZG9gYAjEAffND9+VCLUPemoEAqKkoMUFdUSHPnprVFV4C6qecAdYRlW1qw9/da3PKGXgxv0dz2e/s49NDjc/s0e8JsSdJpk07LSYgaAAAAAAAAAAAAAAAAGMpcpktXzrpSZlt7wrmyWmnrQTkYKhlLUrCXa6IC1Jcfc/kgDwQAAAAAAAAAAAAAAAAAAABgsBCh7kV5ebk+8YlPdIWnd+7cqcWLF2dk7xtuuEGSE7c2DENz5szJyL4AgBGqsbH7c8PI3Rz9kWper1cqK3MC1PHXlJRIF18s+Xy9bt8Uau1TgDpyL0u2vlb3kObuuj295w1h0QHqiP6EqKsLq+WSK5OjAQAAAAAAAAAAAAAAAEPKvCM/q3uek0y7e63qY2njpJyNFCsSoC7u4RoC1AAAAAAAAAAAAAAAAAAAAMCwQYQ6DZ/73OckSYZhyLZtfec731Fzc/OA9rzpppu0YsUKGVFBzSuuuGJAewIARrhQqPvzfI9QG0bsw+12gtNer1RYKJWWSqNGOaFpd5IIckWF9KUvSeXlvd4qbFu6dO3N6QeoI0xTtmzttQb2e/5QkCxAHdGXELVLLhV5ijI5GgAAAAAAAAAAAAAAAJD36lvquw+eeUaSNG+DukLUE7dK7xyao+HiWZLqRIAaAAAAAAAAAAAAAAAAAAAAGEGIUKfhv/7rvzRu3Liu4+3bt+vcc89VU1NTn/eyLEvf+c53dMstt3RFrQ3D0MyZM3XuuedmcmwAwEgTHWt2uXI3RzriI9SlpU5wuqTEiVB7PKlD2tOnS1/+cloBaklyGaauHP8ZmUYfv+0xTYVNQ6byPOg9QD0FqCPSDVF7XJ5MjQUAAAAAAAAAAAAAAAAMCUs2LtEBdx2gcXd2vtb4oou6zs3bIH3qNenVI3IzWwJbToD6wBTnDRGgBgAAAAAAAAAAAAAAAAAAAIYhItRp8Pl8uvnmm7uC0bZta+XKlZo+fboeffRRBQKBXveoq6vTb37zG02bNk2//OUvZdt21znDMHTHHXcM5pcAABgJoqPM+Ryhjo9Lu92Smca3JOXl0rx50rnnSj5fn245b8wndc/076YOURuGM0PUIyxLtiFVestlDtFvmVyd/6TiNb29BqgjTpt0Wq/3AgAAAAAAAAAAAAAAAEaSJRuX6PzHz5ck1bbWdoeoO915lPTwJ3MxWRK2pN1KHaDu5DJcevWKVwlQAwAAAAAAAAAAAAAAAAAAAMOIO9cDDBVf/epXtXr1aj300ENdIeodO3bosssu0zXXXKNjjz1W27Zti4lLf+lLX1J9fb0++ugjbdq0SZK6zkf2MAxD119/vT71qU/l5OsCAAwjU6ZIb7/tfF5QIPn9uZ0nWiQ87XI5kedQqPtcb0HpWbOkU0+VLGtAce15406XJC1Y91NZhu28qSp6vqg4ti1bYcu5xrIteU2P/FZHv++dK2GFu0LUYYUTzh9VdVSf9it0Fao93J6wToAaAAAAAAAAAAAAAAAAI010gDqitqVW466Vdv1M+s1U6bsX5Gi4eLY0dq20+5gerjGcAPW7V7+rI6qOyNpoAAAAAAAAAAAAAAAAAAAAAAYfEeo+uO+++7Rr1y49//zzMjpDlbZtq6mpSS+99FLMtbZta9GiRV2fRxhRgUtJuuSSS/SjH/1okCcHAIwIhx7a/bnH40SVbTv19dlmGFJhoRPItiwnRO3zSUcdJTU3O8dut1ReLh1yiDR1qjRjhjR6tLR3r/TaawMeoStEveFnsqxg0mtaQ+3qsAOyOn/twrYlW3n069hHkRC1KVOWrK71/oaj44PWBKgBAAAAAAAAAAAAAAAw0iQLUEfUlkqfOF964+gsD5WKLVWvlWp7CVBL0suXvUyAGgAAAAAAAAAAAAAAAAAAABiGiFD3gdvt1pIlS3TTTTfpxz/+sSzLiolK23Ghz8hxfHjatm0ZhqGbbrpJN9xww+APDgAYGaZPjz32+aT29tzMEi8SoI78nmiaktcr3XijdOKJWR1l3rjTpeqxWrDiv2WFYkPUjaEWhayw1BmdduLTQzdAHRFWWKbMroD0QMPRkX1MmRmaEAAAAAAAAAAAAAAAABgaegpQS9Jh70lvzsiTVx3Z0hFvSutP6uGazpd0PfG5J3TywSdnZSwAAAAAAAAAAAAAAAAAAAAA2UU5sI8Mw9DNN9+sl19+Weecc45s2+56GIaR9CEp5ro5c+bo5ZdfJkANAMisqipp5szu48LC3M0SzTSdWcy4bzvOOivrAeqIeYecp3s+82uZHq8zl2HIbwUUssNdb6qKcDLUefGWsAGxZEnSgAPUEZnaBwAAAAAAAAAAAAAAABgqegtQF6+XNh0qWXnyCu0j3kgvQP3sJc/qCzO+kJWZAAAAAAAAAAAAAAAAAAAAAGSfO9cDDFUnn3yy/vrXv2rdunV68skn9dJLL2n16tXy+/0J1xqGoVmzZumss87ShRdeqNmzZ+dgYgDAkFZXJ61bJ73/vvTBB1JjoxQKSW63VF4uTZkiHXqodOqpUk2N8xzTlIqKpLa23M3t8UgFBZIRV3YeP176z//MzUyd5h0xT5K04PkFsmxLwXB71JyGJFuWbQ2LAHVEWGHi0QAAAAAAAAAAAAAAAEA/pAxQd768yLtBap2qrrBzrh39jvTOyT1cEBWgPm/aeVmZCQAAAAAAAAAAAAAAAAAAAEBuEKEeoOnTp2v69OmSJMuytG/fPu3bt0/79+9XYWGhRo8eraqqKhUUFOR4UgDAkBMKSStXSkuWSO+80/O1b7/tfLRtKRh0Pvd6nQh1R4cUDg/urMkUFjqR7HijR0u33SaVlGR/pjjxIepoISs0rALUEYSoAQAAAAAAAAAAAAAAgL5JGqCOfmnRXilwiPImQH3yOmnVsT1cQIAaAAAAAAAAAAAAAAAAAAAAGFGIUGeQaZqqqqpSVVVVrkcBAAx1q1dL994r7d7dt+cZne8OammRTNOJUJeVSfv3Z37GnhQXO/ePd8AB0p13StXVmb9nY6MT3O6jeUfM09Mbn9aT657sWrM7/xmuCFEDAAAAAAAAAAAAAAAA6alvqY8NUMe/rGivpHLlTYD6lBrpleN6uIAANQAAAAAAAAAAAAAAAAAAADDiEKEGACCftLRI990nLV3a/z28XucRCDj7eb1OiLqpKXNz9iRVgHr6dGnevMEJUEtSXZ3k6ntYefH6xVr2wbKYNUOGTMOUZVuZmi7vhBXO9QgAAAAAAAAAAAAAAABA3vvB8h90H8QHqOskVShvAtT/9i4BagAAAAAAAAAAAAAAAAAAAACJiFADAJAvamul66+Xdu5Mft62pVDIeYSjAsIul+R2Ow+j811CRUXOdZblxKhDIam0VGpuHrz5PR7nvlZcuLm8XJo7V5o6VfL5Bu/+/bB4/WIteH7BsI5N9yQYDEqFuZ4CAAAAAAAAAAAAAAAAyE+X//ly/d/a/3MOkgWoy5U3AerZa6V/HdPDBZ1zPjbvMQLUAAAAAAAAAAAAAAAAAAAAwAhDhBoAgHxQWystXCjt25d4LhSS/H4nJt0br9cJPbvdTnS6qcmJV1uW1N4uVVQ4IeroiHUmlJQ49w2FutcmTpSOPVaaMsUJZeeZoRqg9rl9mj1htlZuXyl/yD+gvTweT4amAgAAAAAAAAAAAAAAAIaXs//vbP39w787B6kC1GaWh0ph1vvSylk9XNAZoP7xnB/ri0d/MRsjAQAAAAAAAAAAAAAAAAAAAMgjRKgBAMg1v1+6/vrEALVtS21tUkdH+nsFAs6joEAqKpLKypzotGU5j5YWqbzc+ZhO1Lo3FRXS5MmSx+PsW1rq3HvCBOdz03TuOxi83sRjd4pvbczYd3st3rJEC/75/SEboJY04BC1S/kXBgcAAAAAAAAAAAAAAADyQY8B6rDyKkB95AfSmiN6uKAzQP30F57WhUdemJWZAAAAAAAAAAAAAAAAAAAAAOQXItQAAOTaX/8q7dwZuxYOd8ej+6OjQwoGnRB0WZkTsw4EnP3a2pxQtMfjXBMMOsHrvjjwQOnBB6XRo2PX162TPvqofzP3JD44bZrODNGmTEkdoY6yeNeLWrDx57IS3h2W36ID1BH9DVEToAYAAAAAAAAAAAAAAACSm/vQXL348YupLwhJ+fLym4N3Su8d1sMFnQHq5V9ZrtMnn56VmQAAAAAAAAAAAAAAAAAAAADkHyLUAADk0ubN0po1sZHlcFhqakodhna7JZdLMgznmnBYCoUSr7MsZ5+yMqmkxIlQt7U5gWrDcPYpKHAeoZATow6Hk9/XMJxHWZl0wQXSccclBqgHk9vt/BoFAgPaZvGuF7Vg3U9luWPfBWb3NcKdZckC1BF9DVEToAYAAAAAAAAAAAAAAACSm/2b2VpVu6p7If5lRR3KmwD1QbXSRxN7uKAzQL3035cSoAYAAAAAAAAAAAAAAAAAAABGOCLUAADkSjgsLVsWu2bbUnNzYgjaMCSfzwlGm2biXpblxKXb25PvV17uRJw9HifkHAo554zOdxq53d33SaakRBozRjr5ZGnKlL5/rZkwerS0a1fqOHcvugLUrthfP8u21OBvcELUKb78fJduiJoANQAAAAAAAAAAAAAAAJDcWb87qztAnewlSn7lzSuvJ+yWQhWSaUlWkpeTRV4H9ewlz+qMQ87I5mgAAAAAAAAAAAAAAAAAAAAA8lCevBQaAIARaPNmqakpNvzc1uYEpaO53VJxseTqISBsmlJhoROabm11ItMRluXsW1zs3MvrddbPPNMJW+/eLe3ZI+3bJ7W0OOe8Xid4XVjoPM/rdeZIFsDOloIC6cADpf37nZB2fDDbMFJGtBfvfkkL3rvTCVBHXRMJUAetoGzblst0yTScr9HuZ+x6MPhDfq3cvlKzJ8xOeU1vIWpTOfx3BwAAAAAAAAAAAAAAAOSx+Yvma+lHS52DPA9QH7pDajnA+Xxsm7S7KC5EHRWgPm/aeVmfDwAAAAAAAAAAAAAAAAAAAED+yZOXQwMAMAKtWRN7HApJHR2xa263VFqaMq6cwOVyrm9ujg1Rd3Q4EWd31G/9mzZJ8+dLRxzhHG/ZIm3c6DzP7Y59fl9ZluT3S+Gw84hoa5Peeaf350di2SUlztfU3u6sezzSmDFODHvatNjnHH20cz5O2ArroUU3OgHq6BGjAtQRISskt+mWoTR/vbPIH/IrGAzKk+RrjEgVonbJJTvpu+MAAAAAAAAAAAAAAACAke27f/uuntjwhHOQ7CU27ZJSv2Qnqw7Z3R2gjogJUROgBgAAAAAAAAAAAAAAAAAAAJAEEWoAAHKhqUnati12ze9PvK64OP0AdYRhOM9rbEzcv6Sk+3jbNmeOsrK+7d+bQEDav9+JTxuGZEe9MysYlLZvT38v03Si04WF/R7HZbr0h8/+QfOfnK81u9bIMIykAeqIkBWSy3D1+37JeF1ehayQLNvq9x6zxszqMUAdER+idimzXwsAAAAAAAAAAP1RV1en119/XVu2bFFTU5M8Ho8OOOAAHXnkkTr++OPT+jPwbKqtrdXWrVv18ccfa8+ePWptbVUwGFRZWZnKy8s1adIkHXPMMSrL9N+zAAAAAMiq7/3te7rz1Tudg2QB6jZJ3mxOlNqhu6W2FP8J0hWidhGgBgAAAAAAAAAAAAAAAAAAAJCICDUAALmwY0fssW078eZohYWSq58BYZfLeX57e/daIBAbhI7Mkck4gmV1B6gztd+ePdKBB0ru/n/bUlZQph/N+ZFO/O2J8pgeGYaRNEAdEba75zdkyE76DrP0mDJV4i3RjKoZennby/3aa9aYWaosqkz7+tkTZmtj7UbV+mv7fC8AAAAAAAAAADLpySef1N13361//etfsuP/nqJTaWmpLr74Yn3ve9/TYYcdluUJpYaGBr3yyiv617/+pVdffVXvvvuu9u7d2+vzDMPQUUcdpa985Sv68pe/rDFjxmRhWumhhx7SVVddlfTc1q1bNWnSpKzMAQAAAAx1317ybd395t3OQbL/XGmVVJDNiVI7tE7a9Ftp8eHSgnMly4i7wDT1qWmf0v3n3q+DRh2UkxkBAAAAAAAAAAAAAAAAAAAA5C8z1wMAADAi1cbFgUOhxGsKBvgOpmTPj7/P7t0Du0e8trbMBagjLEtqbR3QFuvr1uvfHvo32bIVsALqCHd0nbNt23mkiEPbsmUO5FsmQzr8gMPlNt0qLyjv89P7GqCO8Hg8fX4OAAAAAAAAAACZsmPHDs2ZM0df+MIX9Morr6QMUEtSc3OzHnzwQR111FG65ZZberx2MNxxxx06//zzdccdd+jFF19MK0AtOX/H8M477+i6667TIYccop/97GcKJfs7nwzavn27rr322kG9BwAAADASfPnJL3cHqJPJowD1xHpp0/3O5/M2SPc8J5nR/9lkmpo581Na9PlFBKgBAAAAAAAAAAAAAAAAAAAAJEWEGgCAXKiriz2ODxK43ZI5wN+mTdPZp6f77NkzsHvECwRij21bMozYh2n2/igokMrKuh+FhdKoUd2Pioq0R1pft14z75upoBWMWbdsqys+nSpA3XWtrLTvF8+QoQ37NihkOb/2LrnSfm5/A9QAAAAAAAAAAOTSpk2bdMIJJ+ill17q0/MCgYBuuOEGXXrppQpn+odeDrKWlhYtXLhQ5513ntrb2wftPldddZUaGxsHbX8AAABgJPjyk1/Wo+se7V6If+lQs/InQL1H+uje2LWYEHVhYVeAuqygLCczAgAAAAAAAAAAAAAAAAAAAMh/7t4vAQAAGdfWFnscH1JwpR8q7pHLFRuejr9P/BwD5fEkrtl27OdWGkHnoqLY0HRpqVRdnfp6tzvpvVMFqLvGSRGfNmT0GqZOV9gOq769Xv/c9s8+P/fdPe/2+76WrF6/hjd3v9mnKHZYPQc/wuGwPmj6IO394rVb7WoPDF6YQ3L+nbcF2/TSh30LnwDITz39/1Jf/v8NAAAAAAAAmbNv3z6dddZZ2rVrV8K54447ThdeeKEmT56s9vZ2bdq0SY899ph27twZc90f//hHjRkzRr/4xS+yNHWs4uJiHXvssZo2bZqmTp2qqqoqlZaWKhwOq6mpSZs2bdLKlSu1evVq2Xbsn8X//e9/17x58/T888/LMIyMznX//ffrH//4R0b3BAAAAEaa7//j+90B6mQvrWmSVJTNiVIrbpO2jZfGXSvt+lnsuXkbJD31lB5a85D+8Nk/EKAGAAAAAAAAAAAAAAAAAAAA0CMi1AAA5EJ8DDpepqIEve3T2xx9VVTk3NPOTMA5bZWVCUu9BahTMTr/yVSEur+IpwLAwPQWzgcAAAAAAMDg+NrXvqZt27bFrJWWlurRRx/VBRdckHD9bbfdpttuu0033XRTzPrdd9+tT3/60zrnnHMGc1xJUkFBgebOnatzzjlHZ5xxho4++mi50viBoZs3b9a1116rZ599Nmb973//ux544AF97Wtfy9iMH330ka677rqu4/LyclVXV2vjxo0ZuwcAAAAw3N2w7AbdseoO5yDPA9RGSGrt7ErXlsaFqJ9+WrrwQs2TdMG0C+QyeZ0RAAAAAAAAAAAAAAAAAAAAgJ6ZuR4AAIARqbdwQaYizr3tk0ZAoU9cLqmiIrN79qa4WDrwwJil/gaoJcmWLUtWpqbrFwLUAJAZoVAo1yMAAAAAAACMKC+88IKeeuqpmDWv16vly5cnDVBLksfj0Y033qhf/OIXCee++c1vZuXPeG6++WYtW7ZM1113nY455pi0AtSSNHXqVD3zzDO6+uqrE87dcccdGZvPtm1dddVVam5u7lq76667VF1dnbF7AAAAAMPdDctu0C2v3OIcJHtJ1X7lTYBaIcn2xS7VlkrjflrtvB7swgu71glQAwAAAAAAAAAAAAAAAAAAAEgHEWoAAHKhKO4dS/Exg3A4M/eJ3yf+PvFzZEJhoTRmjFRSIvl8ksfT/SgokMrLnes++khatUpavFj6/e+lhx92Pj75pPTCC9K770rt7c5+xcXOftGPykrp4IOladMks/tbmoEEqAeTmea3XQSoASBzQjYRagAAAAAAgGy65ZZbEtZuvPFGHX/88b0+91vf+pbOOuusmLXNmzfrsccey9h8g8EwDP385z/XwQcfHLO+detWvfHGGxm5x7333qtly5Z1HZ955pm66qqrMrI3AAAAMBIs/NvCngPU9ZJKszlRD8KSogPURvejtrVW4+4cl5u5AAAAAAAAAAAAAAAAAAAAAAxp7lwPAADAiFRV5USYI9xxvyWHQpJlxcSV+8yynH2ixd9nzJj+798Tt1sqK5MMQ7I737kVDks7d0pvvSW9807s9eFw93WStH27tHKl8/nMmdIll0if/KQTsu5BvgaoJclO+g62RJasIXm/ocTu/AfA8GfZI+//4wAAAAAAAHJl3bp1evnll2PWRo8ereuuuy7tPW6//Xa98MILMWv33nuvvvKVr2RkxsFSUFCgz3/+87rrrrti1t977720Atw92bp1q773ve91HRcXF+uBBx4Y0J4AAADASDJ/0Xw9seEJ5yDZy0X2SqrI4kA9CUsq6PmS2tZa1bfUq7KkMisjAQAAAAAAAAAAAAAAAAAAABgeiFADAJAL1dWxx/FxaEnq6JAKC/t/j46OxLX4+4wd2//9+2LzZmnZMqm5WfJ6+/bcmhrp3XelBx6Qbr1VOuuspJe1B9o16zez8jJALUmGjLTCx6YGEB6PEla412tccmV8z6HA6PwHwPDnMXr+4QUAAAAAAADInMcffzxh7YorrpC3D38vcNxxx+m4447Tm2++2bW2evVqbd26VZMnT87InIPlkEMOSVjbtWvXgPa0bVtXXHGFWltbu9Zuv/12TZo0aUD7AgAAACPFN5d8s8cAtWePFMyXlrOlXgPUkvTsJc8SoAYAAAAAAAAAAAAAAAAAAADQZ5mpHAIAgL458MDYY8NIjDO3t0vhfkZ/w2Hn+dG8Xuc+0SZM6N/+6fL7peeekxYvlpqaBrRVy66t0mWXSd/6VtK9Cr2FOnfquQO6x2CyZGUsMJ2Ovgam8+G+rs5/Bls2/z0AyC2Phwg1AAAAAABAtvztb39LWPv85z/f532SPSfZ3vnG7/cnrPUlwJ3MPffco5deeqnr+JRTTtE111wzoD0BAACAkeK3r/9W97x5j3OQJEDtrs2zAHVj75c9e8mzOm/aeYM+DgAAAAAAAAAAAAAAAAAAAIDhhwIfAAC5UFYmTZwYu+bzJV7X2irZSd4F1RPbdp4XL37/iROl0tK+7d0XjY3S738vrVuX/LxtS8GgE8tua+t+dHQ461Ff9+sHBFR2ZZ1OvLBO+tOfpHPOkT7+OGHLxZcs1kXTLhqkL2jgLFk9ns9mOLo/9+rtObkKX/eFIaP3iwAAAAAAAAAAfdLa2qq33norZq2oqEjHHntsn/c69dRTE9Zefvnlfs+WLa+//nrC2iGHHNLv/bZs2aLvf//7Xcc+n08PPvigjPgfOAoAAAAgwRNrn9B/PPcfzkGSl14V7JBCo7M7U0qRAHVVknNR3/4ToAYAAAAAAAAAAAAAAAAAAAAwEO5cDwAAwIg1a5a0bVv3sdstFRQ4EeaIUEhqbpaKiyVXGoHfcNgJUIdCsesFBc7+8fcfLA0N0h//KLW0JJ4LhSS/XwoEuteiQ9vBoPPRMCSvV68f5NaJF7fIlvTa2JBOvLBOrz4j6aKLpKeflg46KGb7xZcs1nmPnae/vv/XzH5NfWB0/hOv1FuqAleBJCkQCihsh+WSS4YMeTyeQZsnFAopoIBM25RLLnm8A79XIBBQSCG5DbdMmXLH/+9LUjAY1P7Q/h738cijUYWjkp4LBoMKKSTTMGUFLTWrOeGaSk+lbNtWc6hZIcX+794tt2zZ8sorr+mVL1noHcCQtrttd9L1oRDFBwAAAAAAGE7WrFkjy4r9QYzHH3980j877s0JJ5wgj8ejYOTvCyS9+eabA55xML3//vtavHhxzJrP59Npp53Wr/0sy9IVV1yhtra2rrWbb75Zhx122IDmBAAAAEaCJ9Y+ofl/nu8cJAlQl2yTWsZnd6aUegpQRyFADQAAAAAAAAAAAAAAAAAAAGCgiFADAJArU6dKZWVOZDqiqMiJMEeHGkIhqbFRKix0YtKmmbiXZTnx6vb2xHOm6ewbrbzcuf9g8PulP/0pMUBt286M8YHsHrw+yq8Tvxj7frCYEPUll0jPP+/8OnZq6mhS2A6rwFWgjnBHwp6DzW26ZRqx/44MGTqs8jBVFffyjjEAQJ/s+2if7KgfZGDJkqkkv08CAAAAAABgUG3YsCFhbWo//x7C6/VqwoQJ2rp1a9fali1bFAqF+hW1HmwffPCBzj//fPn9/pj1K664QhUVFf3a8+6779bLL7/cdXz88cdr4cKFAxkTAAAAGBH+sv4vPQaoPR/nUYDaVs8BasP5QIAaAAAAAAAAAAAAAAAAAAAAQCZQ5wIAIFdcLumMM2LXDEMqLXU+xmtvlxoapKYmqbVVamtzPjY1OevJAtSp9jvjDOf+g2H5cmeeaJblzBsMpr3N62Mtnfgfkp3klyISotbWrdINN3StN3U0af6T81VTW6PKwkq5jezHKMJWOOaYADUAAAAAAAAAYLj78MMPE9YOPvjgfu83ceLEmONwOKxt27b1e79M6+jo0OrVq/Xtb39b06dP18aNG2POT548Wbfffnu/9t60aZN+8IMfdB17PB499NBDcg3W3+sAAAAAw8SSjUt04RMXOgdJAtTuWik4LrszpWRLalDqAHUnt+nWGZPP6PkiAAAAAAAAAAAAAAAAAAAAAEhD9suMAACg29Sp0qxZ0nvvda+5XFJZmdTc7MSb44VCzqM3pukEqOOjBJ/8pHTIIQMaO6W1a6V162LXLMsJZNtJ3t0lSW63M6vkXGNZen10MGWAOiISon71iSekz3xG4TPm6tKnLlVNbY0kqcHfoJCdxq9ThtmyFQwH5XF5CFADAAAAAAAAAEaE2trahLWDDjqo3/sle+7u3bs1ZcqUfu/ZV0uXLtV1110XsxYKhdTc3KydO3cqlOLvag499FD94x//UHl5eZ/vaVmWLr/8crVH/eDRH/zgBzrqqKP6vFe++fWvf63//d//HfT7bNmyZdDvAQAAgPyzZOMSnf/4+SnPm7VSaHQWB+qJLel9SUf2cE3na6Zeu+o1FXoLszAUAAAAAAAAAAAAAAAAAAAAgOGOCDUAALn2mc9IDQ3Szp3day6XVF4utbVJHR1937OgQCoqkoy4ivP48dIVV0hvvz2gkZMKhaQ//zl2zbaTB6gNQ/L5nDlNUwqHu655vSqkE78UVIpkdYzXxoZ0/AW1euKaS/WT28+XP+hXY0ejguGgglYwM19XPxiGQYAaAAAAAAAAADBi1NfXJ6yVlJT0e79kz923b1+/9+uPhoYG1dTUpH19cXGxvv71r+vmm29WcXFxv+551113adWqVV3HRx11lK6//vp+7ZVv6urq9F70D2UFAAAAMqS+pT42QB3/oqM9kpVPAeqw0gpQL/rcIh0z/pgsDAUAAAAAAAAAAAAAAAAAAABgJDBzPQAAACOezyfddps0Ou7dToYhFRdLZWWS15veXl6vc31xcWKAevRo5z7phg9sOzEe3ZNVq6T4yERHR+IebrczY2GhE6CO4gSoW9IKUEe8WW3rC6fv1cRXN6i8oFxHjzk6pwFqSbJsS2OLxxKgBgAAAAAAAACMCK2trQlrhYWF/d4v2XPb2tr6vd9gMgxDX/3qV7V161bdeeed/Q5Qr1+/XjfccEPXscvl0kMPPSSPx5OpUQEAAIBhqbKkUtVFY53Ac/yLjhokjcr+TEnZkoKSfD1c0/lyr1s+eYsunnFxFoYCAAAAAAAAAAAAAAAAAAAAMFK4cz0AAACQVF0t3XmndP310s6dsefcbqmkxIk5h0LOIxzuPu9yOde43Ynh6Yjx450AdXW11NTU8yzhsOT3S4GA83ko5Ozr80l79khFRdL+/VIwLvT8+98710ai05F5o7lcUmlp0jn7E6COeKvalr/hdR2hC7Rx38Z+7JBZbtOt3a27VV5QTogaAAAAAAAAADDsBeP/zkCSz9dTWa1nySLUgUCg3/sNJtu29dvf/lZ/+ctf9F//9V+69tprVVpa2qc9wuGwLr/8cvn9/q616667Tscff3ymxwUAAACGlfqWelXub9WuxVM0bvZu1ZZEnWyQVKyusHPOtUsq6+F855xfP+br+uGcH2ZjIgAAAAAAAAAAAAAAAAAAAAAjiJnrAQAAQKfqaumXv5TOOiv5ecOQPB6psNCJUkcehYXOeqoA9VlnOftWVyc/Hw47QenIx+Zmqa1Nam93PgYCUkeH1NrqBKybmpy4dFtb96O2Vtq61QlPRx7JYhA+X9I5W9whnfjF/gWoI96rCOqpDU9pv3//AHYZOLfplmmYsmVrU/0m1bXW5XQeAAAAAAAAAABywUj19xb9fK5tD+RvEfru85//vGzbjnm0trZqx44dWrp0qW6++WZNnjy56/o9e/bopptu0tFHH61XX321T/f6yU9+otdee63reNq0abrpppsy9aUAAAAAw9KSjUt0wF0HaNyvp0gbN2rXz01VN3eebFB+BahblTpAbahrzstmXKZ7L7g3S0MBAAAAAAAAAAAAAAAAAAAAGEmIUAMAkE9KSqSFC6WbbkodjU5XdbWzz8KFzr7xOjqkPXuk3bulujqpoUFqbHSi0h0dToQ6EqeWnLB0KOTEqIPB2L127Ig9tu3u50V4vZIZ+61H2HCCESUht06oHfi3JdkOUCRjGt1fByFqAAAAAAAAAMBI4PF4Etba29v7vV+y53q93n7vlylFRUUaP368zjjjDN1www3asmWLfvWrX6m4uLjrmg8//FBnnnmmVq5cmdae69atiwlOG4ahBx98UD6fL9PjAwAAAMPGko1LdP7j50u2VOsLadzl9ZJta9fPJGOv8itA3SypPMW5qBk/PenT+t3nfpeFgQAAAAAAAAAAAAAAAAAAAACMRO5cDwAAQFbU1Unr1knvvy998IETWw6FJLdbKi+XpkyRDj1Umj5dqqrK9bTSSSdJxx8vrVolLVki1dSk/9xZs6TzznP2cKf4rb6jQ9q3L3YtEpm2becRYVnOR5erOyzt98c+t7Y29jjynGhxAYomj6VLP9WsK9f7NO99t159okwnXtyk18Ylee4QErbCsmxLLtOlsBWWx+XRpvpNkqSq4jz43xYAAAAAAAAAABlWVFSUsJbpCHV06DlfGIahb3zjGzrqqKN09tlnd83d0tKi+fPn65133tGoUaNSPj8UCumyyy5TIBDoWrvmmmv0b//2b4M+e7ZVVVXpyCOPHPT7bNmyRR0dHYN+HwAAAOROdIA6orZUGvcdW8//XLLLlT8B6jpJ43q/7NOTPq2/Xfa3QR8HAAAAAAAAAAAAAAAAAAAAwMhFhBoAMHyFQtLKlU7E+Z13er727be7P58504k4n3xy6ohzNrjd0qmnOo9IRHvzZmnLlsSI9iGHSFOnSjNmSKNH9753Y2PiWmFhbHzaMLqPLcsJUJumcxyJUUfU1XU/xzCc2aK5XN372baaPJbmn92imgNCeruqVQr7NG+LV68+UabjL2nSm2OHbog6bDu/NiHL+TUIhoOEqAEAAAAAAAAAw9oBBxyQsNbS0tLv/ZI9N9k98sVpp52mm266Sf/93//dtbZ9+3bddddduvXWW1M+74477tCbb77ZdTxp0iTdfvvtgzprrnzjG9/QN77xjUG/z/Tp0/Xee+8N+n0AAACQG10B6iRqC6Rj/0f5E6CulTShh/Odc55+0OkEqAEAAAAAAAAAAAAAAAAAAAAMOiLUAIDhafVq6d57pd27+/7cmhrnMXasdPXV0kknZX6+vqqqkubMcR4DFQ4nRqIlqaDAiUVHREeoI7xe52P0dZLU1tbz8yLxasNQkyuk+We3quYAJ9ZsydaCOe2SpDM+9qjKb8odthSKu8VQZcvuClHvbNmp0UWjZRj58m43AAAAAAAAAAAGbuzYsQlr27dv7/d+H3/8cVr3yCff+ta3dOutt6q5ublr7f7779ctt9yS9O8Ftm/frltuuSVm7YEHHlBxcfGgzwoAAAAMRTEB6riXJukVSZ+QbDPbU6WwW2kFqE+uPlnLr1yejYkAAAAAAAAAAAAAAAAAAAAAjHBEqAEAw0tLi3TffdLSpQPfa/du6aabpDPPlL7+damkZOB75rPCQqm8XPL7nWi0bUuW1X2+qEjyeJzPfb7Y54bDPe/dGVdo8hmaf26rakbHXm8Z0jfmtKm63VRtka0qv6E6nz2sQtS2bWvaAdMIUAMAAAAAAAAAhp3JkycnrH300Uf93m/btm0xxy6XSxMnTuz3ftlQUFCguXPn6plnnulaq6ur03vvvafp06cnXL93714FAoGuY6/Xq+uuu65P99y8eXPC2rnnnitv5IeKdvrRj36kCy64oE97AwAAAPkkJkAdrzNArXwJUO+VdGAP5ztfOnTmwWfqhctfyMZEAAAAAAAAAAAAAAAAAAAAAECEGgAwjNTWStdfL+3cmfy8bUuhkPOIjia7XJLb7TySBYKXLpXee0+67TapunpwZs+myNcbCsWuG4ZUVSUFAlJzs3NN5NfJ55MqKqSODqm+Xtq+XXrlFamtzblmzx4pGHTi1ZGAdTTbThmglpxI8/5CaXexpfKAIV9IquowVVdgDZsQtSRt2LdBM6pmyG3yLRgAAAAAAAAAYPiYNm1awlqyQHI6AoGAPv7445i1Qw45RG53/v/Z+qRJkxLWPvjgg6QR6niBQEA1NTUDnmH9+vUJa/X19QPeFwAAAMiVhAB13MuS8ipAXS+pp5eXdb407eLDL9ai+YuyMREAAAAAAAAAAAAAAAAAAAAASCJCDQAYLmprpYULpX37Es+FQpLf78SVe+P1OsHl+JDBzp3SdddJd945PELUFRXS3r2xa62t0o4dUl2d1NLiRKUtq/v8zp1OXDoS7PZ6nWPbdq4Nh7uj1XER6iaPpfmfaUsaoJYkQ4aKgrYaC6RGry3JkC88vELUISuklkCL1tatJUQNAAAAAAAAABhWjjnmGJmmKSvq7xXeeOMNhUKhPsej33jjDQWDwZi1Y489NiNzDjafz5ew1tzcnINJAAAAgOEhIUAdr0NSvryuqEHSmBTnjO5PrzvxOv307J9mYSAAAAAAAAAAAAAAAAAAAAAA6GbmegAAAAaspUW6/vrEALVtO2Hlpqb0AtSSc11Tk/O8uJCy9u517tPSkpm5c8nrlUaPlgxD+uADafFiadEiad06ac8eqa0tNiwdeViW82vU1ub8OoTDzh7xAQmj+51TTQXS/ItCToDaMBIfkmxJBWGprMN5TqPXVrvLkm1bGu2X3Mnb1UOKLVvBcLArRB2yQrkeCQAAAAAAAACAjCguLtYxxxwTs9ba2qq33367z3u98sorCWunnXZav2fLpj179iSsjR49OgeTAAAAAENffUv9kAlQu5okpfrWPypA/d0Tv0uAGgAAAAAAAAAAAAAAAAAAAEBOEKEGAAx9990n7dwZuxYOS42NUkdH//bs6HCeH46rH+/cKf3mN/3bM99s2yb96U/S0qVOeNqy+vb8UMgJUTc3p7ykqUCa/3mpplpO1Dsu7G3btizZnf84IerSzn9lTV7J73YC1SXDpNdMiBoAAAAAAAAAMFydffbZCWtPPvlkn/dJ9pxke+ej1atXJ6xVV1cnvXbWrFmybXtAj09+8pMJ+27dujXhussvvzzTXyoAAAAw6CpLKlVdnPz7afmVPwHqZilc2ft13zruW/rJ2T8Z/IEAAAAAAAAAAAAAAAAAAAAAIAki1ACAoW31aieiHC0clpqaUkeV3W6poEDy+ZyPbnfy6yzL2Sc+RP3CC859h6rWVukvf5H++Edp376EMHSfWZbk9ydEpsOGdOlnOwPUEdHX2LacxHQsX1yIurFAavCmOYvRr68gq6JD1Ovq1ske6K8/AAAAAAAAAAB54JJLLklYe/jhhxUIBNLe4+2339brr78es3biiSdq8uTJA55vsK1Zs0br16+PWauoqNARRxyRo4kAAACAoW/XdbtiQ9S2nAB1ipd7ZZu7TQqP6uGCztcy/fv0f9cvzvtFNkYCAAAAAAAAAAAAAAAAAAAAgKSIUAMAhq5QSLr33tg125aamxPDyoYhFRZKFRVSWZlUXCwVFTkfy8qc9cLCxHuk2u+++5z7DzW1tdK110pvveXMH4lCxwWkB6RzL5cMXfm2ZMZv23k+eYLaER2i9rs0JOLSfeEyXTJkaHzJeBnGMPviAAAAAAAAAAAj0owZM3TKKafErNXV1ennP/952nt8//vfT1i7+uqrBzzbYAuHw/rmN7+ZsP6Zz3xGHo8nBxMBAAAAw0dMiLpdeROg9rVJobIeLogKUD/y+UeyMhMAAAAAAAAAAAAAAAAAAAAApEKEGgAwdK1aJe3eHbvW1iZZVuya2+2EpgsLJTPFb32m6ZwvL3euj2ZZzr7Ramul1asHNn+21dZK3/ymtGWL8zVlKjqdim1r3gbpnudShKh74QvLqVQPs0az23TLZbh0WOVhqiquyvU4AAAAAAAAAABkzA9/+MOEtRtvvFFvvfVWr8/91a9+pb///e8xa1OmTNGXvvSltO49adIkGYYR81ixYkWvz7vnnnv0wgsvpHWPZDo6OnTppZfq5Zdfjlk3DEPXXHNNv/cFAAAA0G3XdbukVkl58jNejHbJn0aA+n9O/h8C1AAAAAAAAAAAAAAAAAAAAADyAhFqAMDQtWRJ7HEoJHV0xK653VJpqeRypbeny+VcHx+i7uhw9u/p/vmspUX6xjekDz5IjHQPslQhasO2e+xL7/NJVl++UxkCsWpDhkyZBKgBAAAAAAAAAMPSpz/9aV144YUxax0dHTr99NP17LPPJn1OMBjULbfcogULFiSc++UvfymPZ3Arc2+++aY+9alP6eSTT9b//u//anf8D0BNIRgM6qmnntJRRx2lRYsWJZz/j//4D5100kmZHhcAAAAYkczvGpI311M4PB2SXdrDBZ2vYfr/Tvn/dPunbs/KTAAAAAAAAAAAAAAAAAAAAADQG3fvlwAAkIfq6qSamtg1vz/xuuJiyehjndgwnOc1NibuX1LSfbxmjTNHVZ7HhFtapK99Tfroo5yNMG+D83HBuZIV9a/DsJ33XcX1qbW3UAql2Q0fSmzZ8rq8GlU4KtejAAAAAAAAAAAwKB544AG9+eab2r59e9daU1OTLrjgAh1//PG68MILNXnyZLW3t+v999/XH/7wB+3YsSNhn2uuuUaf+cxnsjb36tWrtXr1ai1YsEBHHHGEjjnmGB155JGqrKxURUWFDMNQU1OTdu7cqTVr1uif//yn9u3bl3Sv008/XT/72c+yNjsAAAAwlDW2Naq8qDzledd3DdkFWRyoB54OKVjcwwVRAeofnfGjrMwEAAAAAAAAAAAAAAAAAAAAAOkgQg0AGJrWrYs9tm0pEIhdKyyUXP0sGbtczvPb27vXAgHnPtFR63XrpDlz+nePbKitlRYskD78MNeTpAxRS13vv5Ik1fUnQN3HzniuuE23AlZAa+vWakbVDLlNvhUDAAAAAAAAAAwvVVVV+sc//qG5c+eqtrY25twbb7yhN954o9c9Lr74Yv3iF78YpAl7ZlmW1q1bp3XxfxeVposuukiPPfaYCgsLMzwZAAAAMPy8uPVFzf39XE0dNVXvf/P9hPMFCw1ZefKttSuQXoD62hOvJUANAAAAAAAAAAAAAAAAAAAAIO+YuR4AAIB+eT/uTUehUOI1BQUDu0ey58ffZ/Pmgd1jMNXWStdeK338sRPPzgPzNkj3PCeZKcbpV4B6CAlbYUlSS6BF6+rWyc6Tfy8AAAAAAAAAAGTSEUccoddee02nnHJKn57n8Xh044036o9//KNc/f1Bo31UXNxTRS59Bx10kJ588kktXryYADUAAACQhkiAWpI279+sQ395aMz5omsNBfLkW2szKIWLerigM0B98eEX666z78rKTAAAAAAAAAAAAAAAAAAAAADQF0SoAQBD0wcfxB7Hx6Hdbskc4G9zpuns09N9tmwZ2D0GS0uLdP31Tog6HM71NDHmbTR0z/OJIep+B6iNjIyVFS7T+QINGRpfMl6GMYSGBwAAAAAAAACgDw466CD985//1KJFizR79uwe/0y8pKREV1xxhd555x3ddNNNMgf6dzx98Otf/1rr1q3TnXfeqfPPP1/V1dVpP3fs2LG65JJL9Nxzz2nr1q363Oc+N4iTAgAAAMNHdIA6IjpEXfZtQ+09RZ+zyAhJVk8x7M7/1Flw3AItmr8oKzMBAAAAAAAAAAAAAAAAAAAAQF+5e78EAIA81NgYexwfWnb1p2achMsVG56Ov0/8HPnivvuknTslv1+y7d6vz7J5G01ZsvStcyTLkIIa/gFqt+mWaZgyZOiwysNUVVyV65EAAAAAAAAAABhUhmHo4osv1sUXX6w9e/botdde0wcffKCmpia53W6NHj1aRxxxhE444QR5vd4B3evDDz/s93OPPPJIHXnkkVq4cKEkadeuXdqyZYs+/PBD1dfXq7W1VbZtq7S0VOXl5RozZoxmzpypcePGDWjmgVqxYkVO7w8AAAD0R7IAdcTm/ZtVscBQc3mWh0olJNm+Hs53vnbpgXMf0FdP+GpWRgIAAAAAAAAAAAAAAAAAAACA/iBCDQAYmqLD0MkYGaoT97ZPb3NEC4el9nbno2V1r7e1SW+91b/5onm9UnGx9N570t//7twjGBz4vplm25JhaN5GQ89Ms7X0EMltSBWtUkNxH/ZJ8q/GY3oUtPLva3bJRYAaAAAAAAAAADCijRkzRuedd16ux0jLuHHjNG7cOJ1yyim5HgUAAAAYVpZtWaYzHz0z5flRu6X9lVkcqCdhST0FqDst+twiXTzj4kEfBwAAAAAAAAAAAAAAAAAAAAAGggg1AGBocvfyW5htZ+Y+ve3T2xwRHR3S/v1OGNowYvcNh6Xa2v7PGM2ypN/9ztk/XwLUkZB39Nds21p8uK3lUyLHUkG6IeoUXXCP6ZHLdMmyLYXt8ECnzqiwwjJtU9MOmEaAGgAAAAAAAAAAAAAAACPOko1LdP7j56c8P3qntDdPXlZTEJT8P5HGXSvVlqa4yCBADQAAAAAAAAAAAAAAAAAAAGDoMHM9AAAA/VJeHnvscsUehzMUIY7fJ/4+8XOk2iMSoB5s778v7dvnBJ8tK3Mx7oEyTefRGaRefLitb50jWZ1B6UhX2iNJqX6ZDKUMUEtS0AoqGA7mXYA6wrItlRakelcaAAAAAAAAAAAAAAAAMDz1FqCe8GH+BKhlSR6/8+mun0nVzUmuMaRnLn6GADUAAAAAAAAAAAAAAAAAAACAIYMINQBgaJoyJfbY7Y49DoUGHn22LGefnu5zyCG979Penp0AtSStWeN8tO3MhbgHyra74tMyDC0+wtCCc6WwaSiSyLYNKWhK9YWK/e7EUK/x6Wj5GqCWnNle3/m6rGz9bwEAAAAAAAAAAAAAAADIsd4C1CetkbYfmL15emRJek1qGSWNu1aSYWjXL8zYELUhPXvJs7rgiAtyNCQAAAAAAAAAAAAAAAAAAAAA9B0RagDA0HToobHH8XFoSeroGNg9kj0//j5Tp/a+TzAYe2zbsceGMfBHQYGz18cfd6/F3yeXOmdZPM3WgnNsWYYhGU582jKkkMtQfZEUdqnP4emhpLygXKbJt18AAAAAAAAAAAAAAAAY/j7e/3GPAepT35RWT8/iQD3pDFDrFOewtlQa9x3nNU+77vGoOlzYFaA+b9p5ORsTAAAAAAAAAAAAAAAAAAAAAPojSbETAIAhYHrcu48MQ/J6pUCge6293Vlzufq+fzjsPD+a1+vcJ9qMGb3v5fEkzhodiLasgQejvV5p504pEjiOnzPXbDsqQJ3rYXLDkKHmQLPqWutUVVyV63EAAAAAAAAAAAAAAACAQdPU0aSvPfc1mYYpy7acxaiXSJ3+qvTicbmZLYGtmAB1hBOitrTrmN9r16WXqr6lXpUllbmYEAAAAAAAAAAAAAAAAAAAAAAGxMz1AAAA9EtVlTRzZuyaz5d4XWtr3wPPtu08L178/rNmSaNH975fYWF2otAffxx7PNCwdQYtnmb1GKC2DUNuY3j/bAxbtsJ2WJvqN6mutS7X4wAAAAAAAAAAAAAAAACDoqmjSfOfnK+a2hqNdVfIDCsmQD37tfwKUHtfVUKAOqK2VBq36zpJIkANAAAAAAAAAAAAAAAAAAAAYMgiQg0AGLrOOy/22O2WCgpi10IhqblZCofT2zMcdq4PhWLXCwqc/Xu6fyoulzRq1OCHqHfsGNz9+2nx4dKCc5QyQC1JYZepkB1KfcEwEbJChKgBAAAAAAAAAAAAAAAwbHUFqHetkZqapIYGjfWbMi3n/GkrpZXH5nTEbrZU/JoUSBGgVufrnWpba1XfUp+1sQAAAAAAAAAAAAAAAAAAAAAg09y9XwIAQJ46+WRp7Fhp9+7utaIiKRiULKt7LRSSGhulwkInJm0m+RkMliV1dEjt7YnnTNPZN1p1tXTSSenP6vNJY8ZIbW1O6Dp6Pq9XqqpKfy9Jam2NPS4udmaPhK4NY/Cj12lYfLi04NwkAWrDkGR3Hfpdwz9AHRGyQpIpbarfJEmqKu7jv3sAAAAAAAAAAAAAAAAgD3UFqHe8Je3f77xOqtNYv6lpb1haMTuHA0azpaP+Kr17UZJzca91evaSZ1VZUpmNqQAAAAAAAAAAAAAAAAAAAABgUBChBgAMXW63dPXV0k03da8ZhlRaKjU1SbYde317u/NwuyWXy7nWtp03O4VSRJAj+8UHna++2tmnL1wuZy/TjI1Ql5dLJ5zQt71qa503akVUVHR/XZG5k8W2syhsSA8dkypAHct0F0hWR3YGywNhKyzTZWpny06NLhotIw+C4QAAAAAAAAAAAAAAAEB/ha2wLn3q0s4Adb0UtmLOH5pvAernkgSok7yE59lLntV5087LxlQAAAAAAAAAAAAAAAAAAAAAMGhyW6cEAGCgTjpJOvPM2DWXSyorSx1hDoWkjg7J73c+pgpQm6azTyTsHHHWWdKJJw589kyLj2LnOELtsqU/PCXNrI07ERdcDrlNWaYhj+nJ3nA5ZMiQx+VRibdE06umE6AGAAAAAAAAAAAAAADAkOcyXbpy2iUy9zckDVD/8+TczJXAlo5ZJb17oZzodPQjDgFqAAAAAAAAAAAAAAAAAAAAAMMFEWoAwND39a9L48fHrrlcUnm5VFDQvz0LCpznxweox4+X/vM/+7fnYCsvjz32evu8RThDPeTIPmUd0qInpZm7O08kCS4HvN2/xqYx/L81iQSoZ1TNkNt09/4EAAAAAAAAAAAAAAAAII/Vt9RLkub932u656VimXb3ual/7wxQ58nPaT/2LentT6rXeQhQAwAAAAAAAAAAAAAAAAAAABhOhn/pEQAw/JWUSLfdJo0eHbtuGFJxsVRWln6Q2et1ri8uTgwmjx7t3KekJDNzZ9qUKbHHbnfS6HMqTQXSRZdIiw8f2BiLD3f2aersf5cFDC160tDMPUbCPJZpKOiJDX2bhikjX951Ngi8Li8BagAAAAAAAAAAAAAAAAwLSzYu0QF3HaBxP66U/vQnzfvQp3v+VS7Tlg79m6WXz1PeBKiveKdcbz5vq7q4usfrCFADAAAAAAAAAAAAAAAAAAAAGG6IUAMAhofqaunOO6Xx4xPPud1OOHrUKKm0VCosdGLTkUdhobM+apRznTtJHHj8eGf/6p7fgJRThx4ae+z1ph2hbiqQ5n9eenO8tODc/oeoFx/uPP/N8c5+XSHqkEuLllVq5j5PzPXthZ6EN5mVF5SruqRabmP4RZoNGQqEA9rfvj/XowAAAAAAAAAAAAAAAAADsmTjEp3/+PmSpNrgfo27tFaSNO9Dn+bfZemf5ytvAtTz3jf10F8aJEm7rtuVMkRNgBoAAAAAAAAAAAAAAAAAAADAcESEGgAwfFRXS7/8pXTWWcnPG4bk8TjR6ZKS7kdhobOeKth81lnOvvkcoJak6dNjjw1D8vl6DVFHAtQ1nV+eZfQvRB0JUFudt6up7gxRF7mkUaNUZnu1aGlFV4g67PUo5On+VsSQofKCcvncPknShNIJKvYU922IPOcyXJKkTfWbVNdal+NpAAAAAAAAAAAAAAAAgP6JDlBH1BbbGndprf5Wu0s/+77yJkA9d7P01KJwzFqyEDUBagAAAAAAAAAAAAAAAAAAAADDFRFqAMDwUlIiLVwo3XTTwKPR1dXOPgsXOvvmu6oqaebM2LWioh4j1PEB6oi+hqjjA9QRNeMMzZ9vqqnQ+ZajLGg6Ier2MgWKfV3XGTI0qWJSV4A64uxDzlaBqyC9IYaAsO28mc2WrZ0tO2Xbdo4nAgAAAAAAAAAAAAAAAPomIUAd9RKY2ndtnfM/ypsA9UkfSMseT/4anegQNQFqAAAAAAAAAAAAAAAAAAAAAMOZO9cDAAAwKE46STr+eGnVKmnJEqmmJv3nzpolnXees4d7iP1Wed55sV+rxyMVFkptbVJc8DhVgDoiEqKWpHkbUt8yVYBahiEZhmoOCGn+mQ1atLRCZUFTZaMP1KJvP6KT//YFfdDwgQwZmjnWiWc3B5pjttjRvEOmMTx+ZoYhQx6XR5JU4i3R9KrpMnoIhAMAAAAAAAAAAAAAAAD55vF3HtcXF38x+clVko6TlCcv9zn6I2nVYz3/kPhd1+1SfUu9KksqszQVAAAAAAAAAAAAAAAAAAAAAGTfECtrAgDQB263dOqpzqOuTlq3Ttq8WdqyRWpslEIh55rycumQQ6SpU6UZM6TRo3M9ef+dfLI0dqy0Z0/3WmmpFAg4X29niLq3AHVEbyHqlAFqM/adZDUHBJ0Q9fszVfaHJ1V20EG6YtYVumvVXZpUMUkHlh6oHc07Yp7TGmxVze4a2bLlNt0KWaF0fgXyUnyAekbVDLlNvg0DAAAAAAAAAAAAAADA0HHbS7fpByt+0L0Q3XfOswD1wR9JNY/0HKCOIEANAAAAAAAAAAAAAAAAAAAAYLijfggAGBmqqqQ5c5zHcOZ2S1dfLd18c/eaYUgVFdL+/VI4rCavnVaAOiJViDrdAHVEzQS35p9WpkVjylUmqdBdqNkTZssw4jeQ/CG/mjqausLNQzlALanrayRADQAAAAAAAAAAAAAAgKEoJkCdrO2cRwHqcTulj6ZKh/7yUL3/zfdzPQ4AAAAAAAAAAAAAAAAAAAAA5FyevNwbAABkzEknSWefHbvmdkujRqmpyKWLv5B+gDoiEqJefLhz3KcAtcvlRLDLylSzd53mPzlfTR1NkpQyQN3Y0RhzPNRZtiVTJgFqAAAAAAAAAAAAAAAADDm9Bqg7lDevSB5dJ+062Pl88/7NOvSXh+Z2IAAAAAAAAAAAAAAAAAAAAADIA3nykm8AAJBR3/qWNHlyzFLY49L8+aZWTJL8aXaQg1GfR0LUl10kffUCaW9R93vKbMOQbRqyo/4Je1wKlBYqOKpcwag4dU1tjS596lJZtpVwv+EYoI7wh/36sOHDXI8BAAAAAAAAAAAAAAAApO2pdU/1HqB2ZXOi1CZul/aOj10jRA0AAAAAAAAAAAAAAAAAAAAARKgBABieSkqkxx+Xxo3rWmp129pdaCloSo0FvYeo2yXtLZF2F3WvWYb07DSpwScFTWl/oRR0GQq5nI/tXlMthS41lLjVUGio2Qhqb/te7e3Yq9aOVkmSaZi6ctaVMo3Yb0Pq2+tjAtRhOzzgX4Z8s6tllywrMb4NAAAAAAAAAAAAAAAA5JsXt76ozz35OecgWYDar7wJUE+qlbZNTn6OEDUAAAAAAAAAAAAAAAAAAACAkY4INQAAw9VBB0lPPy1Nnqwmj6X5ZzaotshSecCQ1Bmi9hiS0fmI0i6pocT53DK7Q9R+t/O8iA63tK9IairxqLnYrXafSwGPKct09guEA13XNgWb1B5s1z3n3KN5R8yLuZ9t29rTtqfr2LKHX6jZY3p0wvgTZJp8+wUAAAAAAAAAAAAAAID89uLWFzX393Odg1QBanc2J0rtwDrpwwk9X7N5/2Y1tjVmZyAAAAAAAAAAAAAAAAAAAAAAyDNUEAEAGM4OOkhNTy/S/C/7VHNAUJLkCxvdIWqvLb9bToTaNCXTVLvZHaCOsEyptqg7QG0bzpok2bIVDAcTbh0doI5o6GhQha8iYd0wDE0dNVUe0zOsA9Q+ty/XowAAAAAAAAAAAAAAAAA96gpQ20oeoG5X3gSox+2Tdozr/brlX1mu8qLywR8IAAAAAAAAAADg/2fvz8Msres7//91llq6em9odhAQMAoKCkjEJYoas6AGNUBkNIkmmclEzPyuZGLG0ZiMEzMmzjcmTmJijMbEqLgb0CQuYESRTVkEF2gFoWkaGnqpru6u5Zxz//44fbrr1F7Vtffj0de5qu7PfZ/PeVfR2I3XfZ4FAAAAALAIiVADwDLWO9Cby77467lj/WCybl1SqSRJKvWiPURdab5bbF8a2dkz9l5FOWmkGaAuSiPO7Q9RN4pGiqIYM0DdctE/XpTr7rtu1Hq1XB0zZr3UCVADAAAAAAAAALBUtAWox1Dem6RjXkca14r+5OGj9x+Uxr/u2tdemxec8oJ5mQkAAAAAAAAAAAAAYDGqLvQAAMAUbNuW3H13cu+9yY9+lDz6aNLfn1SryapVyROfmDzjGcmZZyYbNybZH6D+5GW5Y+sdzT26upKuruzr68vOYnfKjWaIeldnkV2dRYYGi/R1TTJHedz3l6VIkVqjNqUv56J/vChXnndl29ptW29LI40pPX+pKKWUpx/zdAFqAAAAAAAAAAAWvV17d00YoO7akwxMdn/RPOkaSPatmvw6AWoAAAAAAAAAAAAAABFqAFi8arXkhhuSa65J7ryz/Vyj0Xy03Htv8sUvNj8/++z0vuLnc9nqf88dj7Y/b9/QvuzM7qSUNCrJrkqyNt3ZUfSPH6Auzd6XNNx7bn1PnnPCc3L0qqMzNDSUgfrA3LzQAipS5N7t9+apRz011fLy+2tXURQplQ79N8hs7QMAAAAAAAAAwMytrZVyWl9XNq0cfR9Pz+5k74oFGGoM1cFkYOXk1wlQAwAAAAAAAAAAAAA0lRd6AABgDDfemLz+9ck73jE6QD2J3u/elstufVPu+O61ycDBN4TtG9qXnQM7265tpMiO9DdD0+M95tDXN389j/Q9ko6OjvzE+p845P0qqczCVLNrZ//OfOfR76TWqC30KLOq1qjlzkfvzLY92w5pn217tuXOR+9cdt8fAAAAAAAAAIAl561vzb3/vCGn7Wy/vXjVzsUToK4MJhtTTrkx8XVf/k9fFqAGAAAAAAAAAAAAANhPhBoAFpO+vuRd70r+8A+TRx6Z9tPrpSJX/PTu3HFkPanXk507k97e7BscHaBeLFoh6nU967Kua90h7VVPfXaGmkVFimUXoq41arlr213ZPbg792y/Z8Yh6m17tuWe7fdk9+Du3LXtrmXz/QEAAAAAAAAAWHK+9KXkE59Iktz70SNz2o7m8trtSd+qBZxrmNJQclRRSpIc3T8sRF1qv+7qy6/OC5/4wvkdDgAAAAAAAAAAAABgEROhBoDFYuvW5I1vTL785bHPF0UyNJTs25fs2ZPs3dt8DAw014silaKU132vO+Xi4NP27duzaAPULV/f/PUMDQ1lRceKGYeoSymlsv/XYrOcQtStAHXfYF+S5tc2kxB1K0BdpPmbtW+wT4gaAAAAAAAAAGCe9fX3Ne89evObk/7+ZMeO5LHHcu97SjnqkWTXmoWecL9ackw9SelgcbotRL3f1ZdfnYufdPH8zgYAAAAAAAAAAAAAsMiJUAPAYrB1a/I7v5Ns2TL6XK2W9PU13+C1e3czQj042Hzz19BQ881frfN9fbnknkre87VVKRfJvjSys2f/PsXorReLrnJXdg/uzlDt0ELUi9lyCFGPDFC3TDdEPTJA3SJEDQAAAAAAAAAwf2556JaseeeaXPCOU5I77kh27Wrel5TkxF8r8ugRCzxgSy05tpakPPq256O7N6Rcaq4LUAMAAAAAAAAAAAAAjE2EGgAWWn9/8uY3J48/3r5eFMmePUlv74E3d01qcDDp7c0l3xnKb3xnxcEA9YE9Z2XiWVVOOau7VufhPQ9n1+CubN+3PZVUctSKoxZ6tFm3lEPU4wWoW6Yaoh4vQN0iRA0AAAAAAAAAMLfqjXpueeiWXPD+C1IURW4uHsoFvzx04Pypv9LI5sVy6049OX4oYwaos2JF0tWVn37iT+eBNz4gQA0AAAAAAAAAAAAAMA4RagBYaJ//fLJlS/tavZ7s2pUMDMxoy+s27svbfnLP2CcXUYi6nHI2rNjQttYoGtk9tDvVUjXPOeE54z63NOLXUd1H5aS1J+WktSfN9diHZCmGqCcLULdMFqKeLEDdIkQNAAAAAAAAADA3egd681P/8FN55vufmaI4eA/HzccnF7yukSe9ppH7jl3AAYerJ8WflvOeG9alPPJ2k0olWb06Zx9zdq561VU5cf2JCzIiAAAAAAAAAAAAAMBSIEINAAtp06bk9tvb1+r1pLc3aTTGfk61mnR1NR+dnc3jUunA6V0djVz0q3M38myplqqjAtQtRYrsru3O0auOHjNEXU01lVKl7XHcmuNyyvpTcsr6U1LZ/6u8SP+q0wpR373t7rY38y1GUw1Qt4wXop5qgLpFiBoAAAAAAAAAYHb1DvTmJR9+Sb7x4DfG/EH2e3cl95ww/3ONqZHka0mq1Vzy4xV5zzfWHgxRVyrJ+vU5+9hzctWrrsqarjULOCgAAAAAAAAAAAAAwOK3OMuMAHA4qNeTr3ylfa0okt27mx+HK5WSFSuSdeuSNWuSnp6ku7u5tnJlc23FiiTJ2qFyTnt8ktde4O5xZ7kzx606LrVa7cCjMSK6Xa/XkyRHrzo6J685+cB6R7ljSq9RpEgj44S8F4FKuZLjVh2X0rCA+GIz3QB1y8gQ9XQD1C1C1AAAAAAAAAAAs6MVoL5x841j3jv0gluTu86Y/7nG1EjyrSQvTo69cjBJcsn93c0QdaXaDFAf/wwBagAAAAAAAAAAAACAKRKhBoCFsmlT0tvbvrZ3bzIixpxq9WBkujzOH93lcvP82rVJtZp7/3oKIeoFUkopPR09eXTvo+mr9R14DNQH2q4bHixe3bk6yTIKUJcqefIRT87GlRsXepRxFUWRu7fdPe0A9YHn7w9Rf3fbd2cUoG7pG+zL3dvuTjEyzA4AAAAAAAAAwJRMFqD+6W8m150z72ONrRWgflbzcOuq5NgrtiZJLnnma/OeX/xAzj3xmQLUAAAAAAAAAAAAAADTIEINAAvl9tvbj2u1ZKA9xJxqNVm9OqlUprZnpdK8fioh6gVq+q6orpjR86YaoK41aos6QJ00vwfrV6xf6DEmVCqVctyq41JKacZ7FCmyvX/7jAPUSTNaftyq41IqzXwOAAAAAAAAAIDDVVuAegw/+7Xki+fP81DjKdIWoG7ZurLIsb/Vn7z73bnkGVfks5d9VoAaAAAAAAAAAAAAAGAaRKgBYCH09iYPPNC+1t8/+rqVK5PpxndLpWTVqqRUmjxEvQD21fZlsD447ecVxeQh41qjlru23TWTseZVf60/d227K7VGbaFHmdDGlRtzxoYzDilEfShKKeWMDWdk48qNC/L6AAAAAAAAAABL2agA9Yjbb372a8m/Xjj/c42pSDbemlEB6pSaj621HTn2XccmSSrlynxPBwAAAAAAAAAAAACwpIlQA8BCeOih9uOiSAZHhJlXrEgqM3zDVKXSDFgnE4eoJ+86z4nBxuCUotIt9UY99aKeRtEY95qiKHL3trvTN9g3GyPOqVpRy+6B3bl7293T+j4shIUKUQtQAwAAAAAAAADM3P2P359XfuyVBwPUI7zsK4svQL1tZIB6hK17tmZ73/b5mQkAAAAAAAAAAAAAYBkRoQaAhbB1a/txrTb6mq6uQ3uNFSuSUjMcfO9fl3PM7kPbbras61qX8485Pz0dPVO6fqg+lAd2P5AixYQh6lKplONWHTfvseSZKKeccqncnLe0+Oed7xC1ADUAAAAAAAAAwMx9/K6P55T/d0qu/fG1qZarzcVhPyf9F/4t+ZefWpjZRimSZ31hnAD1iFtVrr786mxYtWFexgIAAAAAAAAAAAAAWE5EqAFgIWzb1n48MkJdrSblQ/xjulxu7pPkM08qUklSHrvfPK+eevRTs6JzxZSuHaoP5aYtN6W/3n9grV7U08jYX0grlryYlVNOR6VjyUWW5ytELUANAAAAAAAAADBzn/ve53LZpy5LkjSKRhpFI9VS9cD5n/1a8tkXLdR0I+wPUH/z5ZNfevXlV+fiJ1089zMBAAAAAAAAAAAAACxDItQAsBD27m0/rtfbjyuV2Xmdjo585klFrvzZIo1ScvS+0oKHqG/ecvOUriuKIjdtuSm7BnaNOtdI8w1yY9m4cmPKi/SvOEs1QN0y1yFqAWoAAAAAAAAAgJm75gfX5Bc+/gtta80QdT3VejNA/a/PWpjZxvKT35wgQD3s9hQBagAAAAAAAAAAAACAQ7M4C40AsNyNjE6PVJqdyO9nTq8dCFC3HN2/sH/899f6c8PmGya8piiKDDYGxwxQt0wUoi6ltOhC1Es9QN0yVyFqAWoAAAAAAAAAgJm75gfX5KUfe+noE0XSKIo891/2B6jn5mePT9uLvpbc+LzJrxOgBgAAAAAAAAAAAAA4dNWFHgAADkuVysTni+KQX+IzJ/fnygsHMjLT/Ej32OHm+dRf689AbSCV0ujvQ1EUqRf1FJn8e9BIIymScmlxBadHWi4B6pbW13DP9num9M9pMgLUAAAAAAAAAAAzN2aAetgtHc//bHLdxVk0AeoXfjP58kUTXLB/zo9e8lEBagAAAAAAAAAAAACAWbC4i40AsFz19LQfj4xS1+uHtP1nThnIlc/elcaIQPAjK4o0Fsmf/kWK1Ipa+9o0AtQtjTTSKNrD2kWKZqB6kSiXy8susrxx5cas714/K3ut716/rL43AAAAAAAAAADzZVSAukhbgPqkbyRf/fksmgD1Rd9MvvLcCS7YP+cfP/+Pc/nTLp+XmQAAAAAAAAAAAAAAlrtFkqEEgMPMxhHB3Wq1/bhWSxoziyh/5tSBXPm8vjRGvHHskZ4smgD1cK0QdZHpB6hbGmlk58DOJMmWnVsWVYA6yahI9nKwbc+27OjfMSt77ejfkW17ts3KXgAAAAAAAAAAh4sxA9TDnPSN5IFnZtEEqJ97S3LtFAPUb/6pN8/LTAAAAAAAAAAAAAAAh4Pq5JcAALPumGMOfl4UByPUxbB3gg0MJN3dYz+/GDvUXC8V+cCT+5sB6mHXLNYAdUutqKWU0owC1C2bd2/Ojn07snNw5+wNNksaRSPfe/x7SZKNKzdOcvXit23Pttyz/Z5D+uc1XJEi92y/J8ny+P4AAAAAAAAAAMy1yQLU+UbywPlZNAHqn7w9uf5ZE1wgQA0AAAAAAAAAAAAAMGcWcY4SAJax449vP240DoaoW/btS4aGknp99GOcCHWlKOWfv7g6Z2+rHLhmwgD1InmTWZJDDhoPNYYWZYC6pdao5XuPfy/b9mxb6FEOyWwHqFtaIeql/v0BAAAAAAAAAJhr2/u2TxqgzvlZNHcJn3t3cuN545ws5cA9TJ961acEqAEAAAAAAAAAAAAA5sAiub0cAA4za9YkJ53UvtbV1X5cFMneveMGp4frq9YObj1YylWfTM5+ZJIA9SJTTTWVUmWhx5hTSz1EPVcB6hYhagAAAAAAAACAyW1YtSHHrDymebDIA9Tn35Pc+tnktMfHOFk6+Om1r702rzjzFfM1FgAAAAAAAAAAAADAYWWR3GIOAIehc85pP65Uks7O9rV6PdmzJ2k0xt3mlo21rPnN3lzwqh3N63fvzpq99dyzfgkFqEvVJEm5VBaiXqTmOkDdIkQNAAAAAAAAADC5hy+7OcfsHeM+m0UUoH7qfcnNn2h+fu9flXLajmEnRwSoX3DKC+Z1NgAAAAAAAAAAAACAw8kiuc0cAA4jpVJSrSY/8RPJ2rXN49ajuzspj/jjuV5P+vqSgYGkKNquv+Woei54dV+KJDcfXc8Fr9yR1Go5/b828qMNk80xV1/g9LQC1C1C1IvPfAWoW4SoAQAAAAAAAAAm8MADyctelof/vJxjdg9bH8iiuTP4jM3JnR8rN++FKpeTUin3fuyonLa3S4AaAAAAAAAAAAAAAGCeLZJbzQFgGau2R5azcmVy4onJyScnr351UqkcfHR0JGvWHHjj1YFH0oxQ796d7NmT9PfnlrV7csEv7W7LAt98fHLe6xrZdMR8fXEzt6q8atxz5VI5HaWOlBZLKXsO1Bv1bOnbkqKYn7DzTM13gLpFiBoAAAAAAAAA4KBtvfvvoejtTS6/PPnxj5N6PQ+/e3+IeiDJIvm576c8lKzrGLHY2Zn80i/l3rc8mtPWn5ZEgBoAAAAAAAAAAAAAYL5UJ78EgGVhcDDZuzfZvj2p1Q6u793bjCIvN/v2Nb/mSiXp7h4dgp4NpVIzGt3T03yd8QwMjH/uqU9NnvWs5OabD65VKs0Q9e7dSaMx+jm1Wm45YjAXvDZjZoG/dXzypEeTHxw10ewTnJsH5xx1Tn74+A+TJLWilmqp/Z9Po2ikKIqcvfHs3L3t7oUYcU6VUsq67nU5c+OZKZUWb2h7oQLULa0QdZJsXLlxQWYAAAAAAAAAAFhoH7/r47nsU5dlXde67Hj4tcn99zfvj9pva0cWTYD61IeTHz0huS/JBa9r5KYPlJv3Q/3P/5m85S1JknvfeG927d2VtT1rF3ZYAAAAAAAAAAAAAIDDhAg1wOHgsceaj6JIdu5sj1AvN/V6smNHM0A93Lp1zVj0XKhUko0bkxUrxj7f1dWMSvf2jn3+8suTzZuTLVva91y7thkJHxGxvuXoRi749aSYoF38g6OSJ20v5wcbxohYL4IAdaVcye767gNrtaKW6v6/ljSKRupFPUnyYO+DOXPjmbn9kdsXYtQ509PRk6ce9dRUy4v3r2JFUWRL35ZDClCXUsr67vXZ0b9jxvsUac5xZM+RizrYDQAAAAAAAAAwF1oB6iTZObAz61f8ZXYMHXngnqKu/14smruBT3w0+dGJB49vPj654NdLuem2pydvelPbtQLUAAAAAAAAAAAAAADzp7zQAwAwx3btSrZtawaoDwc7d44OUE+0Phvq9eTRRyeOex9xRPPR0TH6XE9P8o53JEce2b5eKiUrVzYD1p2dSaYWoG75wYZGznh8xOICN3xLKaVSruRbW7816lwttbYAdZLsGtiVB3sfzDE9x8znmHNuqDGUHft2LPQYEyqVSjlz45lZ1blqZs9PKWdsOCNP2fiUnLHhjJRm+JtvVeeqnLnxTAFqAAAAAAAAAOCwMzxAnSQpkp3dyfrXPZYURbr/e5HBMW5HWgjHPJ48eNzo9ZuPqeeCS3eNfd8UAAAAAAAAAAAAAADzQoQaYLnbvn2hJ5g/g4PJwMD45/v65u61G43J91+zJjnhhOSJT0zOOOPg48lPTn7mZ5J//dfk9NObb7ga/lixIlm/Prf8xJpc8BtTC1C33HNEctpj+w8WQcO3lNKYAeqW4QHqll0Du7JzYOccTjX/avVa7tl+T7bt2bbQo0yoWq7mrI1nTTtE3QpQb1y5MUmyceXGGYWoV3Wuylkbz0q1XJ3W8wAAAAAAAAAAlrqxAtQtO1ckPb+TDCySrvORu5KtR49//ua+H+SCv7tg/gYCAAAAAAAAAAAAAKCNCDXAcjcyylwqLd9HrTbx96JWm93X6+hIenoOPqrVZPXqyR8rViSVysFHtdr8ePLJyb/9W3LppaNGv+WI/lzwizuHv5dsyjYdmayqrpzBM0er5tBiwI00ZvS8fbV9h/S6i00jjTSKRrb0bUlRzOSf6vyZboh6ZIC6ZbohagFqAAAAAAAAAOBw1RagLpKRNw117kn2dc/7WGNavzt57IgJLth/q8gtW25JX3/fvMwEAAAAAAAAAAAAAEA7VT+A5a5aTYaGDh4XRfOxHDUmCRzX67P7ta9YkRwx7B1UK1cmJ5ww/X26h70jbM2a5N3vTn7+55O3vjV54IH0VWu54JU7ZhSgTpKUkr76npk+u00ttXSWOjNYDI7xMs13jBUzn3RM9UY99aI+q3sutGqpmtVdq3PmxjNTKk0tyryQWiHqu7bdlb7B8d8MOF6AuqW1fs/2eyb8fSJADQAAAAAAAAAcrkYFqEfo7kv6F0mAetXeZMf6CS4otT6UctOv3ZRV3VP7IegAAAAAAAAAAAAAAMyu8kIPAMAcW716oSdgMuvWjV578YuT669P3ve+rLrgp3L+IzOI8ZZy4I1cs2V15+o85wnPSXel/Z1spZTSUemY3RdLM0A91Bia/MIlpFqqZk33miUXWW6FqFd1jv1mwMkC1C0bV27MGRvOOBAtH0mAGgAAAAAAAAA4XE0WoF7Zu3gC1CsGkr41E1wwIkB9/vHnz8tcAAAAAAAAAAAAAACMJkINsNxt3JisWLHQUzCeo49O1ozzbqyOjuTii5NPfCI3vfXHeWbP6ZNHpUuZk/h00gxQn3/c+ak1aunp7Bn2knMToE4iQL3IjBeinmqAumW8ELUANQAAAAAAAABwuJosQL1me7KnZ/T6QugeTPatnOACAWoAAAAAAAAAAAAAgEVF4Q9guSuXkyc8IdmxI9mzJ+nsbK4N19m5MLPNtsHBpDrBH23lcrJq1fjnp7L/cF1dzUdLd/fUgt+lUvPaDRsyuHJFhn/3+/r7sqp7jBmPOy43/d49ueDvLsjNW26e0fiHohWgLooid2+7O32DfemsdGaoPtQWoC7GegccSZZ+gLqlFaK+a9td6Rvsm3aAuqV1/T3b70mRQoAaAAAAAAAAADhsbevdNmGAesO2ZPv6+Z1pPB21pNY1zsnS8E8FqAEAAAAAAAAAAAAAFguVP4DDQamUbNjQfAwMJENDB8+deOKhhZkXkx/+MPnBDw4el0pJMexdWR0dyfOeN/P9H3442bnz4PGGDcnRRx88XrMmOf30KW+3uXdzzn33GfmVs38l73zxO3PLQ7fkgvdfkPOPOz83/fpNYz7nS6/9Uk76/07KrsFdM/wipq9SquTpxzw9SVIqlXLcquMOhIOHB6gbRWPeZlpqlkuAuqUVor572905btVx0w5Qt7Set6VvS87ceOay+N4AAAAAAAAAAExXV1dXqqVqakVt1LmjtiaPHrkAQ42hWkuGupNykVTrSa2y/0Sp/ToBagAAAAAAAAAAAACAxaW80AMAwOFoc+/mPP1vn57H9j6Wd33zXXntp1+bC95/QYoUuXnLzbng7y4Y9Zzegd5c9snL0tPZM6+x3kq5kru23ZVao/kmt40rN+aMDWekNOzdY42iceA87ZZbgLqlWq7maUc9bcYB6paNKzfmaUc9bVl9bwAAAAAAAAAApqp1T9DG3lpSbz930gOLJ0BdqSe17ubnjVLSKCfVUlmAGgAAAAAAAAAAAABgCRChBoB51gpQb9+3PUlSFEX+6Tv/lCLFgWtGhqhbbza7Y+sdSZKNPRvbItBzqVE00jfYN26IWoB6fMs1QN1SKs3O78HZ2gcAAAAAAAAAYCk5cE/Qbf+WJDl2b5JG89wTf5g8cNzCzTZcqZHUu9rXGqXmqMPviRGgBgAAAAAAAAAAAABYnESoAWAejRWgHh6fHq4Voq436rni01ccCFAnzTegjfe82VZr1A6EqO/edneKovm6G1duzNErjxagHmZtx9ocueLIlFLKaetPy9rutcs2QA0AAAAAAAAAwMyNDFC3HLs3efL3kx8+YYEGG6mRFLeMd6qRRtHI2s61AtQAAAAAAAAAAAAAAIuYIiIAzJPpBKhbbt5yc87667PyS2f9Um7cfGOKosieoT3pr/XPx8gH1Bq1VMvVHLfquJRKpSTJtj3b8sieR1ItV4Wo9+vq6MpZR52Ver2eUqmUE9eceOD7BQAAAAAAAAAAyfgB6iQ57QfJ9WcvwFBjaSS5Jcmzxzi3/5aYRtHI7b9xe45ceWRWda+ax+EAAAAAAAAAAAAAAJiq8kIPAACHg5kEqFu+//j3865vvivHrjw2O/p3zHuAeizb9mzLPdvvSZEi5VI51bKfa9GRjtRqzRj3fbvuyzc2fyMD9YEFngoAAAAAAAAAgMXkQIB66x2jzv3Ed5ZIgHqYq155VU4+4mQBagAAAAAAAAAAAACARUyEGgDm2KEEqFt2D+7O9x//fhpFYy5GnFS1XE25VM492+/Jd7d990CAuuVwD1GXUspQhrJ9cHvuevSuPND7QIYaQ7llyy2LIhoOAAAAAAAAAMDCqzfqueLTVzQD1A8/3Hbuqbcl152/QIONVCTH3JzxA9Sl5ofPXvrZXHrWpfM1FQAAAAAAAAAAAAAAMyRCDQBzaDYC1C1DjaHZHG3KWgHqJClSZHv/9jG/htY1U91zORn+/Xh076MHPheiBgAAAAAAAAAgSXbt3ZVKuZLXnfO6lB/f3nbuGTclX3zWAg02UpEcc1Oy9TkTX3b15Vfn5U9++fzMBAAAAAAAAAAAAADAIRGhBoA5MlgbzLnvO/dAgDpFZhygXijDA9RTUUppyntO5drlQIgaAAAAAAAAAODwdt1912Xdn63L6X95ei558iV5z2cGUt5/G9Ezbko+/1MLO98BUwlQl5oB6oufdPG8jQUAAAAAAAAAAAAAwKERoQaAOdJZ7cyvnP0rBxeWYHO51qhN6/qpRLZbUeulFuQ+FELUAAAAAAAAAACHp+vuuy4X/eNFSZJNOzY1Q9TfT97zheT8ry+uAPWH/znJ2RNcI0ANAAAAAAAAAAAAALAkiVADwBx654vfmd991u8eOG4FmJeSwfrglK5rFI1Z33M5EaIGAIDlY2hoaFHtAwAAAADA4jQ8QN2yafumnP6GZHN/8i8vWqDBRiqSv/xIcsWPk4ffXc4xu8e4RoAaAAAAAAAAAAAAAGDJWnolTABYYg6HEHWjaKTWqM3KXsuZEDUAACx92/duz/UPXZ8bNt9wSPvcsPmGXP/Q9dm+d/ssTQYAAAAAwGIyVoC65ZS7kze+ep4HmsBffiS58v6Dx6NC1ALUAAAAAAAAAAAAAABL2tKrYALAErScQ9TTCVAjRA0AAEvZ9r3bc/ujtydJ+mv9Mw5R37D5hgP/TXD7o7cLUQMAAAAALDMTBaif99nkS89KUprXkcb1si8PC1CXDg718Hs6csy+igA1AAAAAAAAAAAAAMAyUF3oAQBg0dm2Lbn77uTee5Mf/SjZtSup1ZJ6PenuTo4/PjnxxOTcc5Ojj57ytu988TuTJO/65ruSNEPUjaIxJ1/CXBmsD6az0nngWIB6Zloh6mef8OyUy0svSA4AAIej4QHqllaI+sITLpzyPsMD1C23P3p7zjnqnGzo2TAbowIAAAAAsIC+8sOv5EUfftGY5067Pvnaz2fRBKifd1PyLz+TrP+pZMef7l/s7ExWrEhOPjkPv+Fz2b5+ZTas8v9fAwAAAAAAAAAAAAAsZSLUAJA0I9M33JBcc01y551jX9NoNB8/+EHz+J/+KXn60zP4cz+TPOuCdGbNpC+zHELUtXot1UpVgPoQHbvqWAFqAABYIsYKULdMJ0Q9VoC6RYgaAAAAAGDpu+YH1+SlH3vpmOdOuz750QVZPAHqW5KvPbv5+c4VyfrfS3Z84IikoyM55ZTkYx9LTjwx/l9rAAAAAAAAAAAAAIClT/kQAG68MXn965N3vGP8APU4Nt/77Rz/6O9l/ed/Km+65ren9Jx3vvid+d1n/e6B49I8vbOsu9p9yK9VTlmAehactOaknLbhtIUeAwAAmIKJAtQtrRD1RCYKULfc/ujt2b53+3RHBAAAAABgERgzQF00H6fuD1A3FkmA+lnfSr72rPa1nSuS9a9/LLn00uRf/zU58cSFGQ4AAAAAAAAAAAAAgFknQg3A4auvL3nXu5I//MPkkUem/fTNKxs5+5d25rHuInurRf5017/mTb9/XtLbO+lzh4eoixTTfu3p6qp0NT9Wu2a8hwD17BCgBgCApWMqAeqWiULUUwlQtwhRAwAAAAAsPQ/ueLA9QL0/Pp0k+Xry42cungD1ud9JvnnB2Od2rkjWH/OhZM2a+R0KAAAAAAAAAAAAAIA5JUINwOFp69bkjW9Mvvzlsc8XRTI0lOzb14xV9/Ule/YkAwNJrZbNPfWc/eqd2d7dHpD+0+5v5U1vfHLy4IOTjvDOF78zqztXz8ZXM6FKqdL2WFFdMe09WgHqoihSb9TnYMrDgwA1AAAsHdMJULeMFaKeToC6RYgaAAAAAGDp6B3ozW984TdSTrk9Pp0kX086zk/qi+Ru3ad9P/nW08c5uT+SvXNgZ7b1bpu3mQAAAAAAAAAAAAAAmHuL5LZ2AJhHW7cmv/M7yZYto8/Vas3g9I4dye7dzQj14ODBR39/Npf6cvZ/2p3t3WNv/6cnb8mb/sf5yYMPptFoZGvv1nzzwW/mps03ZXPv5tQatSTJBX93QXYN7JrDLzTprnano9KRVV2rsqZrTdZ0rcmqzlXprHROa59yuflXhlKplGq5OhejLnsC1AAAsHTMJEDdMjxEPZMAdYsQNQAAAADA4tc70JvLPnlZ7njo2zm6v5JyY9jJ65sB6qHKgo3X5ic2JXeeNc7J0sFPr3rlVdm4ZuO8zAQAAAAAAAAAAAAAwPxQkQTg8NLXl7z5zcnjj7evF0Wyd28yMDDh0zevKnL2bybbV0z8Mn962iNp/M9n5tRf/m/5Tv+PUxRFkqRSquTUDafmQ7d/KHc+euehfCVTMlAbSFe1a8xznZXODNYHp7RPrVFLtVxNuVQ+ENFm6gSoAQBg6RgaGppxgLqlv9afa++/9pBnuf3R2/Pc45+bjo6OQ94LAAAAAIDZNTxAnccfT+r1HD2UPNKTNMpJdREFqJ/4QPL9n5j8uqteeVUuPevSuR8IAAAAAAAAAAAAAIB5VV7oAQBgXv3N3yRbtiT1ejM4vXdvsmtXsn17sm9f0mg0H0Vx8LHfVAPULe86dWu+9sl3HQhQJ0m9qOf/fP3/zEuAOkmKFBmojR3WbhSNae1Va9QyWB9MkWLyizlAgBoAAJaWjo6OdFe7F3qMJEl3tVuAGgAAAABgEToQoN7y7eSxx5r3Iu139N6kMpDUqgs44DDHPpL88NQJLig1PwhQAwAAAAAAAAAAAAAsXyLUABw+fvCD5POfT3p7m+HpPXua4emhobbYdJJREerN6yvTClC3fOzox3LPt77Y3KN3c/7h9n/Itr3bZuOrmbIiRbbv254XP/HFKZeaf/Q3ikZqjdq09yq13nXGlAhQAwDA0nThCRcueIi6u9qdC0+4cEFnAAAAAABgtAMB6oe+nWx7rPkD74d5rJrUKws03AgnbUkePn6CCwSoAQAAAAAAAAAAAAAOCyLUABwe7rkn+ed/boana/vjy8Mi06OUSs1HuZzNqxo5+/VD0w5Qt1xb/ChXf+9z+bdN/5b+ev/MNjlEtUYt39/2/bznZ9+TwfrgjAPU1XI1nZXOOZhw+emudgtQAwDAEraQIWoBagAAAACAxaneqOeKT1/RDFA//vioAPXj1WSoukDDjXDSI8nQhiSNcS4QoAYAAAAAAAAAAAAAOGwsklvdAWAM27Yld9+d3Htv8qMfJbt2NQPS1Wqydm1y6qnJ6acnZ56ZbNw49h79/cm11yZ33NF8bql08NxkAeokg+VGzv2NzDhA3fLQnocPvHFrody85eb81ud/K0P1oWk/txWgLu3/vnRWOjNYH5ztEZeV/lp/Nm3fJEQNAABL2IUnXJgbNt+Q/tr8/UAhAWoAAAAAgMWrUq7kdU+6PLfd+e9p1Ott53aUk8FFclfuMY8nQ2ubnx+7N3m4J0l59HUC1AAAAAAAAAAAAAAAh4dFcrs7AOxXqyU33JBcc01y550TX3vbbQc/P/vs5NxzkxUrkkqlubZrV3LVVcnOncnQiPDyeAHqEec7G+X8yu2N/Nmzk0mesSQ8vOfhaT9neIC6lFLWd6/Pjv4dQtRT8EDvA0kiRA0AAEvYfIaoBagBAAAAABa/Sz7wzeQb5Vx5UdLY/0PpdxVJf+fCztVyxM6ktLJ9bVSIupScc/Q5eeVTXjnP0wEAAAAAAAAAAAAAsBBEqAFYPG68MXnve5NHHpn+c++4I/n2t5OenuSFL0yOPDL56EeTvr6k0Ujq9YPXFsXEEerh54oi7/xKKUlx6CHqIknpUDZYGEWKAwHqMzackY0rN2bbnm25Z/s9QtRTIEQNAABL33yEqAWoAQAAAAAWp117d2Vtz9rmwf/5P8n73pdLhoaS/uTKn2sGqPf2LOyMLet2J53dY587EKKuJE876mn5j1/9j1TKlXmdDwAAAAAAAAAAAACAhSFCDcDC6+tL/uZvki9/+dD36u1NPv3pg8elUjNC3TL886kqirxz/2iHHKJeogbrg3nqxqdm48qNSXLg43e2fWdeXr9aqqZW1OblteaCEDUAACx9cxmiFqAGAAAAAFicrrvvulz0jxfltLWn5t57XpK8731JvZ4kueT7yet/OulbvcBD7rdyb7KiY+Jrjt2b/MRTXpDPXvHZrOlaMz+DAQAAAAAAAAAAAACw4MoLPQAAh7mtW5M3vnH8AHVRJENDyb59zVh167FvX3O9GCMJPTCQ7NnTvKbROPDGrzGvnYZ3fjn5799ISoe0y9J17457JzyeK93V7nl5nbn2QO8D2bR900KPAQAAHIILT7hw1v8bRYAaAAAAAGBxagWok2TTzh/l9Mp7D96HlOSoNyQ7FkmAekV/smYKdwSf/fSfEaAGAAAAAAAAAAAAADgMiVADsHC2bk1+53eSLVtGn6vVmrHpHTuS3bubQenBwYOPffua6zt2NK+r1Q4+r/V5o9G8rl6fWoC6NHle+nAOUffX+nPD5huSJDdsviH9tf45f81W3K1W1Ob8teaDEDUAACx9sx2MFqAGAAAAAFh8hgeos/+2o01HJKe/ofn5Sf852bZ2YWYbqWso+efPJ+VJbo86++k/k6tedZUANQAAAAAAAAAAAADAYUiEGoCF0deXvPnNyeOPt68XRbJnT9Lb24xNT8XgYPP6PXuSgYHR+9Xrk+9RLjcj1OXywc/HiVIvVIi6tAjS1/21/lx7/7XzEqAe/prLiRA1AAAsba0fzrNY9wMAAAAA4NCMFaBu2XREctKvJw8eOf9zjaVjKDlxb3LJ95P3fGH8ELUANQAAAAAAAAAAAADA4U2EGoCF8Td/k2zZ0r5Wrye7do0OSU/V4GDSaLSvFeO8s2qkomh/TGK+Q9Sdlc50VDoOKUS9qrJqUYSsp2O5BahbhKgBAGBpumHzDbP+3yn9tX4hagAAAACARWKiAHWSnPpg8uBR8zvTeDr3JUMrmmHs098wToj62GMFqAEAAAAAAAAAAAAAEKEGYAHceGPy5S+3r9XrSW/v6Ih0S7WadHUl3d3Nj9Xq+PtPIyY9qdL40eZ3fqU0LyHqzkpnkmSoPpRirHe3TUE11VSr1ayorpjN0TgED/c9nMZ4v98BAIBFZy4C1C1C1AAAAAAAC2+yAPWq7cmPjp3fmcazYjAZXH3weFSIurOrGaA+5mwBagAAAAAAAAAAAAAARKgBmGe1WvLe97avFUWye/foaHSplKxYkaxbl6xZk6xcmfT0ND+uWdNcX7Hi4B5zZbwQdVHkndeWc8qOuXvp2QhQJ0nKzb1qRS3V0gQBb+ZFR7kj5x93fsplfxUDAIClYC4D1C1C1AAAAAAAC2eyAPW6x5K+RdJx7h5M9vWMXt90RHL6X5yWS75X5D2v+WjOPe5cAWoAAAAAAAAAAAAAAJKIUAMw3775zeSRR9rX9u5NGo32tWq1GZpesSIZL9RbLjfPr12bVCpzM2/LOCHqN13UyH3r5+YlWwHqJKmUD/3r2zmw85D34NC1AtTd1e6FHgUAAJiC+QhQtwhRAwAAAADMv7YA9RiOfDjZuW7+5plIZz3pHx6gLrU/Nu3YlNP/8vRc8uRL8tnLPitADQAAAAAAAAAAAABAEhFqAObbNde0H9dqycBA+1q1mqxePfWwdKWSdHRMfYaxgtJFMfXn7/emFyZ/9uxk+s+cXLlUHnVcLVfn4JWYTwLUAACwtMxngLpFiBoAAAAAYP488NgD7QHqETcCHfNA8tjG+Z1pPB31ZPCWYQtj3AKVNEPUu/bumpUfeg8AAAAAAAAAAAAAwPIgQg3A/Nm2Lbnjjva1/jFiXitXjh2Knki9Pv3nTNew/d/0wuTPnjM3AeokaRSN1Bq1tjUh6qVNgBoAAJaWhQhQtwhRAwAAAADMvevuuy5P+KsnpFoa+36ck36YbD1unocaR7WRDN2S5DmTX3vta6/N2p61cz4TAAAAAAAAAAAAAABLhwg1APPn7rvbj4siGRxsX1uxIqlUpr93MY0cdFGMHaye4h4zDlBPs5EtRD19nZXOhR5hTALUAACwtCxkgLpFiBoAAAAAYO5cd991uegfL0qS1IpaM0Q97GagM76XPPCEBRpupEZSuylTDlC/4JQXzPlIAAAAAAAAAAAAAAAsLSLUAMyfe+9tP67VRl/T1TWzvVsB6bHi0jPZZ/hSkkaKNFLk92YaoJ4hIeqpa31PFluIWoAaAACWlqGhoQUPULf01/ozNDS00GMAAAAAACwrwwPULbWilmq9+flP3pzcc/oCDDaWIjn5piTPnfxSAWoAAAAAAAAAAAAAAMYjQg3A/PnRj9qPR0aoq9WkPMM/mmYSnx7vOUVxIEbdClAXSX7/hcm75jFA3SJEvXQJUAMAwNLT0dGRc44655D26K5256KTLzrk/xY456hz0tHRcUh7AAAAAABw0FgB6pZaJfmpryY3PmN+ZxpXkZx6Q3L/WAHqEbc9CVADAAAAAAAAAAAAADAREWoA5s+uXe3H9Xr7caUy871nEqGe7Hn7Y9SlIvkfFyXvevYhBKhnOF7LeCHqpaqz0rnQI8ypo3qOEqAGAIAlbEPPhhmHqLur3bnwhAuTJBeecOGM/5vgnKPOyYaeDTN6LgAAAAAAo00UoE6SF/5b8h/PmceBJlIkL/lcsu/cpNyY+FIBagAAAAAAAAAAAAAAJrN065UALD212sTnZxqSTpJqdebPHed1W8Hp//HC5F3PWbgAdcvIEPVgfXB2Np5nrQB1aba+MRMoz9NfdYZ/Lecec27OOuqsPPuEZwtQAwDAEjaTEPXwAHXLTELUAtQAAAAAALNr0gD1vyZfedE8DjSR/QHqO3+meXj03hEh6mG33Hz5P31ZgBoAAAAAAAAAAAAAgEmJUAMwfyYLRRczzjwnlcrUriuVxo5OjxOiHiwn//D0QwhQz7JG0Uij0ViyAer5VE45pZRSycS/NyY7P1Ud6ciGzg1Z2722+fplf80CAIClbjoh6rEC1C3TCVELUAMAAAAAzK7JAtQv+ELylRfO40ATKZKXf/VggLplVIg6ydWXX50XPnGxDA4AAAAAAAAAAAAAwGKmjgjA/Fm7tv14ZDi6Xp/53pMFrofr6Gi+ditI3XqUy6Ni1J2N5Na/TTbsm+FcY7etZ6xaqqZW1GZ303lSSSXVUjWl2f6mjFBK6UCAuqU8zl95WgHq8c5PV3U6vw8BAIAlYSoh6okC1C1TCVELUAMAAAAAzK7JAtTP/0Ry3Ysy6/f4zNTLv5rc/Kyxzx091JFyqXmPy9WXX52Ln3Tx/A0GAAAAAAAAAAAAAMCSJkINwPw59dT245HB3lotaTRmtnelMrUQdVE0r12zphmdHml4jLpUSpHkhN3J7e+dQYhagLpNPfWUS+WcseGMOQtRl1Iad/9WcHq8YwAAgPFMFKKeSoC6ZaIQtQA1AAAAAMDs2rV316QB6q++PIsmQP2qfx8/QJ1KJVm/Pj992k/ngTc+IEANAAAAAAAAAAAAAMC0iFADMH9OP739eKxo9MDAzPfv6mpGpiczNNS8bu3a5nPGUmq+u6y127RD1PvfnFaepT9qDzVA3ShmGPeeZYONwWxcuTFnbDhjWs+bSrS6FaDeuHLjuNe0wtMC1AAAwHSNFaKeToC6ZawQtQA1AAAAAMDsu/7B68c99+RPLa4A9a/+W/LN541zslxOjjgiZx//jFz1qqty4voT53U2AAAAAAAAAAAAAACWPhFqAObPmWe2H5dKSWdn+9q+fUm9PrP9K1MMCzcaSW9vM0a9enUzRj3yuUWRpEgx7I1mq/unEKIu5cCb0zZ0b0hHOqbxBYztyBVHHlKAOmlGqIv9ge5D3etQ3bD5hmxcuTErqiumdH21VE25NPlfWY5fdfyEAeoWAWoAAGCmhoeoZxKgbhkeohagBgAAAACYfV/54Vfy0o+99OBCcfDx5E8l33tpFk2A+j9/LfnAt5L3fCEpFyNOlsvJxiMPBKjXdK1ZkBkBAAAAAAAAAAAAAFjaqgs9AACHkY0bk7PPTu644+Bad3cyONh+3Z49zTh0aRrv9CqKZO/e0eutPYpi9PV9fc3XqlaTrq5m/Hpw8EAEu7cr+U+vSH71tmTdnuSFr0tOezz59nuTp/9msmNkQ3nYuCetOSlPWP2EXP/Q9VP/Gsbx2L7HDnmPJKk1aiky8p1q86+/1p8bNt+Q7nJ39mXfhDNVS9WUy+XUGxOHyUspZV3XulmeFAAAYLQNPRvy3OOfm46OQ/uhQxeecGGGhoYOeR8AAAAAANpdd991edGHX9Q8GHlbyqcXV4D6P92U/M3+24su+X7z45U/lzRKSSqV5IgjcvZxAtQAAAAAAAAAAAAAABya8kIPAMBh5uKL249bAejharVk9+4DMehJ1evN62u10eHqUungo3U8XFEkQ0PNgPXAQPO4XE5vV3L5q5JvHZf82s81A9RJsumI5KJfTr72wWRd//DXOfjpSWtOymkbTktHR0c6yosnJrYYAtQt/bX+7BucOECdJOXy1P6qUqTIzoGdszAZAADA5GYrHC1ADQAAAAAwu66777pc9I8XNePTYwSoc3EWTYD6p29J/unL7WuXfD95z7XdKXd0NgPUxwtQAwAAAAAAAAAAAABw6ESoAZhfz3pWcvTR7Ws9PcnI2HCtluzalezblzQaY+/VaDTP79rVvH6k4cHpUqkZvO7pmXTE3s4il/1icscxyb4kO1a3n//REcnLfin5yoeSNQMZM0CdJNv2bEu5tPz+qL3o5IvSXe0+pD1OXntyBjM4SxM1PdT3ULbt2TarewIAAAAAAAAAsDRcd991uehDF42OTycHA9SL5Faei+5Ivvis5PQ3jDjR0ZFLnvNrec8vfiDnnvhMAWoAAAAAAAAAAAAAAGbFIrmdHoDDRrWa/OZvtq+VSsnq1e3R6JZ9+5KdO5Pe3mTPnmTv3ubH3t7m+r59o59TLicrV7aFreulorm2Zk2yYUPS3T3m6/V2FrnsVUXuOLoZoN65auwv4771ySWXJ89a+7R0lDtSTnlUgPqe7fekGPNdbUvXUzc+NUly4QkXzjhEffLak/Nw38OzOVaSpEiRe7bfI0QNAAAAAAAAAHCYORCgHstnsqgC1EduS649t/n5piOGhagrleTtb0/e855c8owr8tnLPitADQAAAAAAAAAAAADArFgkt9QDcFj5yZ9MXvSi9rVKpRmILo/zR1OtlgwMJP39zY+12qhL6qXiYIC6oyNZtSopl7Ojq5Ff+KVSPvOk/UHojo5k7dpk48Zk/frmdd3d6V3TlcsuLeX2Y5J9pfED1C0PrE3+o3ZPnn3Cs/O8k543ZoB6sD443e/OotVZ6cyWvi0piub3caYh6of7Hp6zOHcrRL3c4t8AAAAAAAAAAIzt03d9evwAdZLSz2XR3C27bmfy2LHtawdC1P/5PydvetOB9Uq5Mq+zAQAAAAAAAAAAAACwfC2S2+oBOOz8l/+SHHdc+1ql0oxDd3VNe7veziK/8OpyPnN2V3OfJCmXs/nYVXnSlaV84/hGrnxeXz5zcv/BJ5VKSWdnsnJleo9cncte0chNxxV5tDvZuXIKL1pK+uv9uXHLjSnvj2cv5wD1qs5VOXPjmSmVSgfWZxKinutAdJEijTSEqAEAAAAAAAAAlrkPfOsDeeUnXznu+fJAUiySlvOq3mTnkWOf23REcvrp/za/AwEAAAAAAAAAAAAAcNgQoQZgYaxalbzjHcmRI95ZVSolK1cma9Y0A9FT0LuqI5ddXsm3jily5Qv25TNPbMafN69s5OlX7M7jPcmuFaXs7UiufPau9hB1kt6ORi570c7cdNRgdnQWaUz2xrPS/sd+/bX+3LD5hmUfoD5r41mplqujzs8kRD0fhKgBAAAAAAAAAJavj9/18bz+mtePe77an8nvA5onPbuTvg0TXFBKNu36UXbt3TVvMwEAAAAAAAAAAAAAcPgYXZIEYHlqNJKBgaSvLxkaOri+eXMz+rxQfud3kv/7f5NHHmkeF/ujwaVSsmJF0t2d1OtJrdb8GlrK5aRaTW9PJZf93J7ccUQ9SdIoJVc+f18e627kzc8dyvbuRlrF6F1dSXp6cuVF/cm1ySX3d48KUA+PS48ywbn+Wn++s+076ax0HlYB6pYLT7gwN2y+If21/nGvWQiNNFL2MzcAAAAAAAAAAJaVj9/18Vz2qcsy3s8n7+hPhhbJHbJdfcne9RNcsP+epGtfe23W9qydl5kAAAAAAAAAAAAAADi8LJJb7AGYU729ydatzZjzo482g84t27bN/ms99FDz9bZtS/bubb5upZL09CQbNybHHJMcf3yyZk3zOZdckvz7vyff/377XuVyM0bdaDTj1EVx8PMkvRnIZS8ucseGIsML0YOlIv/5Rf1JqZRSSilSJClSSjm7GnuT1Wtz5Su60tj4mvzD/Z/NTbXt2VEZ8Y60iWLUEzgcA9QtF55wYa67/7r93+/Fo5FGSvt/AQAAAAAAAACwtH3gWx/I6695/bjnu/YlAx3zONAEKnuTgXUTXDAsQP2CU14wHyMBAAAAAAAAAAAAAHAYEqEGWO727m1GoedSvZ7ce29y++3Jgw9OfO2Pf3zw85NOSs45pxmmfuYzk2OPTW65Jenra4amBwebezcao7bp7Sxy2SuS24/e/16s/WHqWil5bGVSNBfbgshFGimnnF0Du5Kutfntx/85Tz7lydl5372H+A1YfiqlyrQC1C2rO1and6h31uYopZT13euzbe+hxdKL/b+EqAEAAAAAAAAAlq4/+Mof5O1ff3vzYIyfk756Z7J71byONK7OfcngmgkuEKAGAAAAAAAAAAAAAGCeiFADLHePPjq3+2/alHzlK0nvDMLDDzzQjFL39CTnn5+ceGJy3HHNmPWddyZDQ2M+rbezyGWvSm47Jtm5IukZSrprSS3JYz3731/WepPZiOZwo2ikXGqGqPtr/fnyfV8WJh5DV6Vr2gHqlkoqqaeeSipppNEWAp+uMzackY0rN+buR+/OI3sfmfE+pf2/AAAAAAAAAABYmiYLUB+zLdm6fn5nGk+lPxlcPcEFAtQAAAAAAAAAAAAAAMwjEWqA5awokv7+9rVSqfk4VP39zfj03Xcf+l59fcl11yVPeEJztvvvTyqVpLs7aTSaX8f+j72dRS57ZZHbjm4GqIfKya6upJGktyspRn5pRcYMUZdSyr7avv2XzDySvFwdu+rYGQWoWyqpJDkYf26kMe09yiln48qNSZKVHStTTnnG+wAAAAAAAAAAsHRNFqA+8dHkwQ3zO9N4SgNJfVVSrSe1ysiTBz8VoAYAAAAAAAAAAAAAYL6IUAMsZ6VSM+Zcqx1cK4rm41Ds2pV8/OPJzp1jny+KpF5vhqMbw6LB5XLzUamMDmE3GskPftD8vKvrYCy7Umk+iiK9lVoue9lAbjvqYIC6tfuu7gnmHSNELTw9sR/v+nGesO4Js7JXKaVpB6TLKadcao9Hz3SfUkr+eQMAAAAAAAAALFGTBaiPfGzxBKgzmBQrm5/WKsNC1CPuXRKgBgAAAAAAAAAAAABgPpUnvwSAJW3lytndb+fO5CMfGTtAXa8n/f3Jnj3Nj4ODzQB26zE42H6+Xm8+r9FIBgYOBrJbn7fO9fenvrcvV/xcf247qmgPUJcy6k1aY9IgnpZaUcsNm2+Ytf1aAenSFP5hTXRda5+pmOrrAQAAAAAAAACwOH3qrk9NGKA+9pHksXXzOtL4hpL07P98/z1NtWpSLVfbLhOgBgAAAAAAAAAAAABgvolQAyx3Rx2VVKuTXzcV/f3JJz6R9PW1rxdF89y+fc3Y9FTUas3rW7HqkfsNDDTXBwaSWi2VopTL78roAPV0CFFPS3+tf9ZD1NVSNas6V417zVTC0aX9v8azqnOVADUAAAAAAAAAwBJ33X3X5VWfelXzYIz7fo5/OHn4iPmdaVy1NAPU++PTbaeKWqql5v1bAtQAAAAAAAAAAAAAACwEEWqA5a5aTU45JVm3LunoOLS9rr022bmzfa3RSPbunXp8eqRarblHMeydYkXRXBu2Z29nkQ8/LekZmmGA+sDeM3zeYWrWQ9SlUs7aeNaYIerJ4tIjry2P8deYVZ2rctbGswSoAQAAAAAAAACWsOvuuy4X/eNF454/ZXPy0MZ5HGgitSQrJrmkqOXHv/VjAWoAAAAAAAAAAAAAABZEdaEHAGAeVKvJsccePB4aOvj5iScmq0YHgUe58cZk06akq+vgWr2e9PY2Py+NEf2tVpNKpXmuKJrXD49VF1MoQhdFertLuexVyR1Hp/mmre7Jnzbxnpl5xPow1ApRX3jChbOyX7VczVkbz8oND96QWtH8/TBWUHoyrRB1o5klz4rKipy18axUy/56AwAAAAAAAACwVI0KUI+4xejJP0q+d9L8zjSueiYNUCfJta+9NicduViGBgAAAAAAAAAAAADgcDP94iMAh59aLXnve9vXiiLZvXt0SLpUSlasSNatS9asSVauTHp6mh/XrGmur1jRfN7I546x1tuVXPaqInccU0p/KdkxhV42s68Vop4t1XI1K6srkzQD1KUZVsFbIeokOXnNyQLUAAAAAAAAAABL2K69uyYMUJ9z7yILUHdNftkFx1+Q5z3heXM+DgAAAAAAAAAAAAAAjEeEGoDJffObySOPtK/t3Zs0Gu1r1WozNL1iRVIe54+Ycrl5vqdn0petl5IrXpH9AeoiO1bOcP6xFJNfQrvZDlGXSqVDClAf2Gd/iLpSrszSZAAAAAAAAAAALIR6o57T1p/WPBhxf88zv5vcfsr8zzSmRqYUoD7vuPPyxdd80X0tAAAAAAAAAAAAAAAsKBFqACZ3zTXtx7VaMjDQvlatJqtXJ5UpvmFqaCgpTRwfrhTJ625LBhtFdkzerF6Wuqvdee7xz13oMQ7or/VnaGho1vY71AD1bO8DAAAAAAAAAMDCuOYH1+SI/3tE+h7bktN2tN/e+tw7kpvPWKDBRmokuWbSq3LeceflK6/9StZ0rZnzkQAAAAAAAAAAAAAAYCLVhR6Aw8O2bdtyyy235Ic//GF6e3vT0dGRI444Ik95ylNy3nnnpaOjY6FHBMazbVtyxx3ta/39o69buXLSqPQB9XozZN26vijGvfSEncnjq6e27bQVyWJuF3dXu3PhCRcmSc456pzc/ujtM96ro9yR55703Nyw+Yb018b45zdF5xx1jv/NBgAAAAAAAABgVl3zg2vy0o+9NCmSreW9OaaanPZ4sumI5EW3Jl8+Z6En3K8VoH7FxJcJUAMAAAAAAAAAAAAAsJiIUDOnPvnJT+Yv/uIv8o1vfCPFOJHZ1atX59JLL83v/d7v5YwzzpjnCUcriiL33ntvvvWtb+XWW2/Nrbfemttuuy27d+9uu+6Xf/mX8w//8A+H/Hpf/epX84IXvOCQ92l5+OGHc8wxx8zafpC7724/LopkcLB9bcWKpFKZ+p612pQu6+tILviNqW+7nAwPUCfJhp4NhxSi/okjfyJJcuEJF+b6B67PUGNo2nucc9Q52dCzYUavDwAAAAAAAAAAYxkeoG7Zuio5pkheekNy9TMXbrY2jSSfjwA1AAAAAAAAAAAAAABLjgg1c+Khhx7KFVdckf/4j/+Y9Nrdu3fn7//+7/NP//RPectb3pK3vOUtKZVK8zDlQZ/+9Kdz44035tZbb823v/3t7Nq1a15fHxa1e+9tPx4rIN3VNb096/UpXbaqVsr5W4rcfPz0tl/qRgaoW2Yaoq6kPRB++vrT893HvzutPQSoAQAAAAAAAACYbWMFqFuee2vyiefO/0xjKpJzP59865IR6yNudRSgBgAAAAAAAAAAAABgMRKhZtbdc889ef7zn5+HH354Ws8bHBzMH/zBH+R73/te/umf/imVSmXyJ82S173udcLTMJ4f/aj9eGSEulpNyuXp7TlWyHocN/19KRe8/vAJUY8XoG6Zboh6ZIB6+Ho9U4uBC1ADAAAAAAAAADDbJgpQv/zzySdeMv8zjalIzrs6ufUVk1/66Vd9WoAaAAAAAAAAAAAAAIBFR4SaWfX444/nxS9+8ZgB6nPPPTcvf/nLc8opp2Tfvn2555578pGPfCRbtmxpu+6jH/1ojjrqqLz73e+ep6kXnyc+8YlZtWrVjJ7b0dExy9Nw2BsZaK+PCBfPJBhfjPHOsQkcbiHqyUw1RD1egHr4+clC1ALUAAAAAAAAAADMtokC1C/9t+RziyhA/fOfSz7/qjHOldoPr7786py4/sR5GQsAAAAAAAAAAAAAAKZDhJpZ9Ru/8Rt54IEH2tZWr16dD3/4w3nZy1426vp3vOMdecc73pE//MM/bFv/i7/4i7zkJS/Jz/7sz87luJM64ogjcu6552b9+vW56qqr5u113//+9+f5z3/+vL0eTKhWm/h8qTTx+bFMM0KdJDd9sNIMUR/bmP7rLSH9tf7csPmGXHjChRNeN1mIerIA9fDrxgtRC1ADAAAAAAAAADCbNm3dlO/v+v64Aepf+pfkoz83/3ONaaIA9QhXX351Ln7SxXM/EwAAAAAAAAAAAAAAzIAINbPmS1/6Uj796U+3rXV2dubaa6/NeeedN+ZzOjo68ra3vS3r1q3Lf/tv/63t3Bvf+MZ873vfS7U6P79N165dm2c84xk577zzcv755+e8887LKaeckiT56le/Oq8RalhUJvt3cAZB6RmFq0ul3PTx1bng0t7DIkQ9NDSUjo6OCa8bL0RdTnlarzdWiPr4VccLUAMAAAAAAAAAMGv+4Ct/kLd//e3NgzFuOfrVjyQf/MX5nWlcRXLZ55KrxgtQD7v96cv/6ct54RNfOC9jAQAAAAAAAAAAAADATIhQM2ve/va3j1p729veNm6Aerjf/u3fzuc///l86UtfOrC2adOmfOQjH8lrX/vaWZ1zLLfddltOPvnklGYSxoXlbu3a9uNKpf243h4vnpKZ/LtWLieVSm761Ppc8KqdufmYGbzuPOisdGawPnhIe5xz1DmTBqhbNvRsyDE9x2Tr3q1JmkHpYqx36U3Tyo6Vh7wHAAAAAAAAAAAkkweoX/nJ/QHqRXIL33/9ZPLXvzT5dde+9tq84JQXzP1AAAAAAAAAAAAAAABwCMoLPQDLw913353rr7++be3II4/M7/7u7055jz/5kz8Ztfbe9773kGebilNOOUWAGsZz6qntx9URP7+gVksajentOXKPyZRKzeeUSkmplN+/rScdi7BBfdKak1JKKZ2Vzhnvcc5R52RDz4ZpPaenoydJM0B9KFrPP9R9AAAAAAAAAACg5Y3XvHHCAPULP5l86uVZNAHqX//EJAHq/XMKUAMAAAAAAAAAAAAAsFSIUDMrPvaxj41a+9Vf/dV0dk49xHruuefm3HPPbVu78cYbc9999x3yfMAhOP309uOxAtIDA9PbszKDyPH+1/3MqQO58nl7sqpWGvNNaQulWq7mkT2P5OiVR884RD2TAHXLbIWjBagBAAAAAAAAAJgtP/Ohn8l7vvWecc8/9+3JVxZRgPo/X538nQA1AAAAAAAAAAAAAADLjAg1s+Lf/u3fRq296lWvmvY+Yz1nrL2BeXTmme3HpVIyMjC/b19Sr099z7FC1mMphlWmq9UDAeq91SK7OotF9YdYrVFLvahnz9CenL7+9GmHqA8lQA0AAAAAAAAAAIvNz3zoZ/Lv9//7wYURP3D+tPcn1/9+Fk2A+pXXJ397yQQXCFADAAAAAAAAAAAAALBELaZ+J0vUnj178u1vf7ttraenJ894xjOmvddzn/vcUWvXX3/9jGcDZsHGjcnZZ7evdXePvm7PnvZo9EQqlWaIuigmf05RJB0dqXdW84GnDBwIUCdJY2qvNr5ZfgNbKaU85cin5KhVR+WMDWdMOURdTlmAGgAAAAAAAACAZWOyAHXen2x6bRZNgPqlNyefGq8rXcqBOT/1yk8JUAMAAAAAAAAAAAAAsOSIUHPIbr/99jQa7SnY8847L9Vqddp7nX/++eno6Ghb+9a3vnVI8wGz4OKL24+r1aSrq32tVkt2707q9ant2dEx9Wj1ihWplCq5/Icrsrc6LEC9SN6EljQD1Ocfd346Ks3/Ddu4cuOBEHVpkkE7yh0TngcAAAAAAAAAgKWiLUBdZMwAdV6bRXMH64tuT66+cJyTw277+fuL/z6vOOsV8zESAAAAAAAAAAAAAADMqkVyCz9L2fe///1Ra6eddtqM9urs7MwJJ5zQtvbDH/4wtVptRvstVZ/73Ofyute9Lk972tNy1FFHpbOzMxs2bMjpp5+e5z3vefn93//9fP7zn09/f/9Cj8rh4lnPSo4+un2tpycpj/hjpFZLdu1K9u1LRsTpD2g0muf37p366+/enc8cuzNvumB31g+W0yiyqALUSVKkyD2P39O21gpRT6SSylyOBQAAAAAAAAAA82ZUgHqkRRagfu7dyZfPG+fksPuTrnrlVXndua+bl5kAAAAAAAAAAAAAAGC2LZLb+FnK7r///lFrT3jCE2a830knndR2XK/X88ADD8x4v6Xo3e9+dz74wQ/mO9/5TrZt25ahoaHs2LEjmzZtyvXXX593vvOdufjii3PyySfnj//4j7Nr166FHpnlrlpNfvM329dKpWT16ubHkfbtS3buTHp7kz17msHpPXuaxzt3Ns+XSqOfO87aZ85o5Mrn70ujaOSxzsbs/Ok1BxHrx/Y9ljsfubNtbePKjemqdiVJyiMGF6AGAAAAAAAAAGC5+MMv/+HEAepkUQWon3lPcv3Zk1931SuvyqVnXTr3AwEAAAAAAAAAAAAAwBypLvQALH1bt24dtXbiiSfOeL+xnvvII4/k1FNPnfGey9UjjzySt7zlLXnf+96Xq666Kj/5kz+50CON6a/+6q/y13/913P+Oj/84Q/n/DWWrFot2batGYL+0Y+axy333Tf580ulpKMjOeus5Pbbk6JIGo3mo1JJhoaaayMNDrbvMdlrDPu8KIoUST7zE0V++2eTRinZtiKpzUa3eQ4C1C2P7Xss195/bVtgup56kqSRRtu1rfV6o57/uP8/ZvyarX0m8p1Hv3NgpiLFqFlG7nPPjnvywx3T/3dqslmGf62Tzl3kwLWNNFKM++7Eptu33Z7KtsrU9p5l431PAQAAAAAAAAAOB++9+b35o2/8UfNgvFs8BpLF8jPbz7kvufkpE1yw//6iv7/47wWoAQAAAAAAAAAAAABY8kSoOWTbt28ftbZq1aoZ7zfWcx9//PEZ77dUrVixIkceeWTWrFmTPXv25PHHH8/u3bvHvPaBBx7I8573vPzjP/5jLr/88nmedHLbtm3Ld7/73YUe4/BVqzVD08PD09NVFM2g9IUXJvfem2zf3gxP1+sHz09lj5bhwenOzuY+jYMB30aSWjnpryYfPGeWA9TzoLJY3i3HvJrv8DUAAAAAAAAAwGLw3pvfm//6r/+1ebAEAtRPfiC5/fQJLth/a9Nbn/PWvO7c183LTAAAAAAAAAAAAAAAMJfKCz0AS9+ePXtGra1YsWLG+4313L179854v6XiiCOOyGte85p89KMfzb333pu+vr488MADueuuu3Lfffelt7c399xzT/76r/86T37yk0c9f2hoKL/yK7+S66+/fgGmZ1F79NFDC1AP993vJr29SX9/c8+imFqAeiwdHcmqVUlPT7JyZVJu/pFUJKmXiuxYkfR1Jn/5r8me6iwGqEuTX3IoBKgPb/sG9i30CAAAAAAAAAAA8+ah7Q8dDFCPpz+LJkB92kPJ906d4IJhAer/9cL/NS8zAQAAAAAAAAAAAADAXKsu9AAsfUNDQ6PWuru7Z7zfWBHqwcHBGe+32B133HH58Ic/nFe96lXp6uqa8NrTTz89p59+ev7Lf/kv+au/+qv87u/+bgYGBg6cHxgYyKWXXppNmzZl5cqVcz06S8UYofhpqdeb8emvfCXZsePQ5ykNq0DvD0+nXG6GqPfsSSNFdnaXUi81kiSvujTpnfn/pIx47VnaZxwC1AwVo/9MBAAAAAAAAABYrv72tr89eDDWz7Lvz6K5U/X4bcmmJ0xwgQA1AAAAAAAAAAAAAADLVHmhB2B5KpVmXnod67lFMda7U5aHM844I1dcccWkAerhSqVS3vCGN+Saa65JR0dH27mtW7fmz//8z2d7TJayer39eDr/fm7alPzt3yaf/vToAPV0/z0vldqfMzR0MJBdqSQdHclLX5rvPP8pqZWbAeq+anL7MdN7mfFff5b2GXf7Uhrj/JqK8Z47lV9TNR8zTWff6VxbjPkuxUPbey40ioV7bQAAAAAAAACA+fQHX/mDvP3rbx//gn1ZNAHqYx9PHjp2nJOlCFADAAAAAAAAAAAAALCsiVBzyEZGkJNk3759M95vrOd2dnbOeL/l7EUvelHe+c53jlr/8z//89RHhoc5fHV3tx9PJere35984QvJpz6VPPpo0piFsG5RNB+tGHWp1Nx39+7kiCOSP/qj5C1vybW//uL8+i905IG1yapacs2HD7EfPexNYnOlkkrKE/yaiomeP9mvSirTmnG610/n13S+1tm+dvjMC+VQfggDAAAAAAAAAMBScfv9t7cHqEfekrQ3yehbCxfExh1J0ZOc9vgYJ4fd6vHJV35SgBoAAAAAAAAAAAAAgGWputADsPT19PSMWpvtCPXKlStnvN9y94Y3vCF/+Zd/mfvvv//A2vbt23PzzTfnWc961sINNszGjRvzlKc8Zc5f54c//GEGBgbm/HWWnKOOSn7846lfv2tX8vGPJzt2JPv2jR2tnkrIejyNRlLeHwmuVpuR7K6u5KyzDlxy7RPL+feTk5dsSn75juSaf0oufs3o96pNah56wFMNOtdzeIThJ/tahweip/N9OZy+hwAAAAAAAAAAi9ktD92SCz50QfNgrBt69iTpms+Jxlfel2zb2Pz8mN3NEPWmI/afHHZv0bWvvTYvOOUF8z4fAAAAAAAAAAAAAADMBxFqDtkRRxwxaq2vr2/G+4313LFeg6aOjo784i/+Yv7sz/6sbf0rX/nKoolQ/9Zv/VZ+67d+a85f58wzz8x3v/vdOX+dJaenJznhhOThh5P6JBHfnTuTj3406etLBgZGx6YPJT49XFdXsmLFwRj1ww8nf/u3ye/8zoFLapXk809qPo7tTZ59X/L1U6aw9zyEp1umEqCer30mijSPtf90r58Npf2/pmrkHNOZebJo9VxErefq+wYAAAAAAAAAsFjc8tAtueD9F6RI0QxQN5JhP5N8UQWoSwNJY/XB462r94eod5SzaUPjwLoANQAAAAAAAAAAAAAAy50INYfs6KOPHrW2efPmGe/34IMPTuk1OOj5z3/+qAj1Aw88sEDTsCitXp2sXNkMSw8MJLXawXNr1jTP7d2b/OEfJv39SaPRfs0U49P1UlKZyqX79qXe051KtZrvrN2Vk/b2pO/GL+SY+y9JjlifopzmG9T2e3hN87FYHNF9RDornTN6bq1Wy0AxkI6iI52dM9tjIkO1odSK5j+7aqmajmrHhNc3Go0M1AdS3v9rNmcaHBzMUIZSLVXTWZ1436HaUAYbg6mWqimnnI6O8eeu1WoZLAZTTjmVVNLROf61Q4NDqaeeRhrpKnWlUh0dih4aGspgBtORjnR2NOccHBrMUDGUzlJnSqVShjKU1JOdtZ2jnl9OeVpxbQAAAAAAAACApehAgHr4vUSt+3zKSXYnWbEws41UGUzqK0evb12dHNPozmnrj8umHZsEqAEAAAAAAAAAAAAAOCyIUHPITjnllFFrP/7xj2e838h4cqVSyUknnTTj/Q4Hxx577Ki1bdu2LcAkLGrlcrJiRbJqVTI0dHC9szO5997kH/4hue++ZnB6+Pkp6u1KrnhF8rrbkku+P4VrX7IjA+VSvvTEIsm+JEnpjkvzglOen/7GwLRff66de8y5WdO1Jo1GI5XK6JAxh4ebNt+U/lr/Qo8BAAAAAAAAADCvxgxQt5ST9Cbpme+pxlYeSuoTzLK1sjfHDPZl53/fmbU9a+dvMAAAAAAAAAAAAAAAWCAi1ByyJz3pSaPWNm3aNKO9BgcH8+CDD7atPfGJT0y16rfqRFauXDlqbd++fQswCUtGrZbceWfy9a8nP/pRMzrd19c8N9YbxSbR25Vc9qrkjmOS2/Y30ccLUbeuvfaYZHBV+2sV5eTaB7467defbaWUUuTgbOcec27WdjffcCZADQAAAAAAAADA4eSWh27JM9//zGS824oWUYA6taSxYoLzpeaHrXu2pt6oz8tIAAAAAAAAAAAAAACw0JR9OWRPf/rTUy6X02g0DqzdeuutqdVq045H33rrrRkaGmpbe8YznjErcy5n27ZtG7V25JFHLsAkLAl33pl87GPJ9u3N43I52bv34PmpRqhLzXdk9XYWBwLUSdIoJVf+XPPzkSHq9gD1OPsWOfBmr4VSpEg55TTSaAtQAwAAAAAAAADA4WSyAHXPjmTv6vmdaVy1JN1Tu/Tqy6/OhlUb5nQcAAAAAAAAAAAAAABYLMoLPQBL38qVK/P0pz+9bW3Pnj257bbbpr3X17/+9VFrz3ve82Y82+Hie9/73qi1jRs3LsAkLGp9fcm73pW8970HA9RJMjSUtCLyUw1Q7792ZIC6pRWi/sxPHFybUoD6wN5TH2OuNNLI2s61Wdm5cqFHAQAAAAAAAACAeXcgQD2OYx9aRAHqeiYPUJeaH66+/Opc/KSL53oiAAAAAAAAAAAAAABYNESomRU/8zM/M2rtk5/85LT3Ges5Y+1Nuy984Quj1s4+++wFmIRFa+vW5I1vTL785dHnBgaa8enWY4paUemRAeqW4SHqaQWoF5Fdg7ty5yN3ptaoLfQoAAAAAAAAAAAwb9oC1GPcUnTCg8nDR8/vTOOqJ+ma5BoBagAAAAAAAAAAAAAADmMi1MyKyy+/fNTaBz/4wQwODk55j9tuuy233HJL29oFF1yQU0455ZDnW86+973v5V/+5V/a1kqlkng3B23dmvzO7yRbtow+NzSUDA7OeoC6pVFK3vBzyfN/eekFqFt2DuwUogYAAAAAAAAA4LDR19+XC95/QfNgjFuKTr4v2Xzs/M40rkaSz0xyjQA1AAAAAAAAAAAAAACHORFqZsVZZ52V5zznOW1r27Zty5//+Z9PeY//8T/+x6i13/zN3zzk2ZazgYGB/Pqv/3rq9Xrb+rOf/ewcc8wkdWAOD729yZvfnDz+ePt6UST79iV79kx/yykGqJPme9Ae70luW6IB6hYhagAAAAAAAAAADhdf2PSFFGPVp5Octim5/8R5Hmg8jST/mOTyCa4RoAYAAAAAAAAAAAAAABFqZs9b3vKWUWtve9vb8u1vf3vS5/6///f/8u///u9ta6eeempe/epXT+m1Tz755JRKpbbHV7/61Sk9dyH9xV/8RX784x/P6Lm7d+/OZZddlm984xujzv3xH//xoY7GcvEHf5Bs2dK+Vq8nfX3J4OC0txsZoB77rWYHz+1YkQyUc+DNXEuZEDUAAAAAAAAAAMvdx+/6eC771GVjnrvgW8mmk+d3nnG1AtS/NsE1AtQAAAAAAAAAAAAAAJBEhJpZ9JKXvCQvf/nL29YGBgbyghe8IFdfffWYzxkaGsrb3/72XHnllaPO/eVf/mU6OjrmZNbF4oMf/GBOO+20vPrVr86//Mu/pL+/f9Ln1Ov1fOITn8gznvGMfO5znxt1/vLLL8/znve8uRiXpeZLX0o++cn2tVaAutGY9nb1UnLFKw4GqBtpRqb7q2Nfv5wC1C07B3bmrkfvSlFMlN8GAAAAAAAAAIClZ1SAetgtMhfdnNx09vzPNKYiAtQAAAAAAAAAAAAAADAN46RDYWb+7u/+Lt/61reyefPmA2u9vb152ctelvPOOy8vf/nLc8opp2Tfvn25995788///M956KGHRu3zhje8IT//8z8/b3Pfeuut+bVfG/8dKX19faPW/uVf/iXnnHPOuM8577zz8v73v3/S167VavnoRz+aj370o1m5cmWe/vSn5+yzz84Tn/jErFu3LqtXr87evXvz+OOP59vf/nauu+66Mb9nSfKc5zwnH/zgByd9TQ4DQ0PJW97SvlYUye7dzY8jlUoHr5nA625Lbjs2qZWSnSuSoXKyq6t5rrs27OWT9AwlQ11Jo8iyCVGXS+Ucv/r4lErL5AsCAAAAAAAAAIAk23q3tQeoh3nhjclXzpvngcZTJMd+KHlYgBoAAAAAAAAAAAAAAKZMhJpZtXHjxnzxi1/MRRddlK1bt7adu/XWW3PrrbdOusell16ad7/73XM04dj6+vpyxx13TOs5O3bsyI4dO8Y9v27dumnPsWfPnnz961/P17/+9Wk/92Uve1k+9KEPpbu7e9rPZRn6939PHnywfW3v3qTRGH1tqTRphLq3K7niFc0I9Tu/mLz+F5oB6pbhIep9SXauSsqNpGcg6VsmvyXLpXLOPPLMbFy5caFHAQAAAAAAAACAWbVxzcas61qXnQM729af9J3FFaA+ZgoB6rc+5635bxf8t2xYtWHeRgMAAAAAAAAAAAAAgMWsPPklMD1PfvKTc/PNN+c5z3nOtJ7X0dGRt73tbfnoRz+aSqUyR9MtP0cffXTe97735XOf+9yMwtcsUx/6UPtxrZYMDLSvVSrNxyR6u5LLXpV867jkt34u+b8XJj1DzXPDk9a7upLd1WaAOkkaZQFqAAAAAAAAAABYKnb8/o6s61p34PjMbyc/ePLCzdOmSE77XLJ1vAB1af8jyZXnXylADQAAAAAAAAAAAAAAw4hQMydOPPHEfO1rX8tVV12VCy+8MKVSadxrV61alV/91V/NnXfemT/8wz9MuXz4/Lb89Kc/nfe973254oor8qQnPWnKX/vq1avz4he/OB/+8IfzwAMP5Nd//dfneFKWlC1bkm98o32tv7/9uFRKenqSSX7PtQLUdxzTDE5v72l+niQ9A0lKB0PUjSyf6PRwAtQAAAAAAAAAABwuWiHqp/5HcvfTFnqa/YrkiZ9LNr1qnPPDbk+86pVXZeMa9/kAAAAAAAAAAAAAAMBw1YUegOWrVCrl0ksvzaWXXppHH300N998c370ox+lt7c31Wo1Rx55ZJ785Cfn/PPPT2dn5yG91v33339Iz3/+85+foigOaY+ZOPXUU3PqqaceiEjv3bs399xzTx588MFs2bIlu3fvTn9/f7q6urJ+/fqsX78+Z5xxRs4888zDKtbNNN18c/txUSSDg+1rXV3NAHWlktRqB9dLpeb1GR2g3rkiGdr/225HVw6+eauUNIq0vZlruRCgBgAAAAAAAADgcPOa+zfmPc/audBjNBXJKd9MfjjFAPWlZ106L2MBAAAAAAAAAAAAAMBSIkLNvDjqqKNy8cUXL/QYi15PT0/OOeecnHPOOQs9CkvZnXe2Hw+PTCfN0HRHR/PzcWLmYwWoB8pJOc3jUcHp2Q5QL4KgtQA1AAAAAAAAAADLUV9/X1Z1rxrz3J/80XPzniPuXRT37yTJ8d9J7nveOCeHzfjui94tQA0AAAAAAAAAAAAAAOMYuz4KwNJ1993txyMj1JXKwfh0dcTPIiiVxg1Qp5Q0Slk0bzCbSwLUAAAAAAAAAAAsRzc+eGPWvHNNLvi7C0ad+5M/em7ePPj1RXN/0DF3Jg89Y5yTw2a85PRL8tvP/e15mQkAAAAAAAAAAAAAAJYiEWqA5ebxx9uP6/X240rl4OflctLRceCwt7M4EKAu0h6gPlwIUAMAAAAAAAAAsBxdd991edYHnpUiRW7ecnNbiPrDf/SriypAvfbeZOsUA9SffvWn52UmAAAAAAAAAAAAAABYqqoLPQAAs2xoaOLzpRHvFOvqSmq1/QHqInccvf+yJNWhZKB7TqacYL55fr0Rjuo5SoAaAAAAAAAAAIBl5br7rstF/3hR21orRH3llqfkNYP/sOD37bSs+nGy68ljnBgxnwA1AAAAAAAAAAAAAABMTXmhBwBglnV0THy+KEZdX6+UcsUrDgaok2Rfkj2HWYA6SR7d+2i27dm20GMAAAAAAAAAAMCsGCtA3XLz52/Oawb+YVHct5Mk3VuSvieOcUKAGgAAAAAAAAAAAAAAZkyEGmC5OeKI9uNKpf24Xm8/LpVSWbEyr7utlPL+PvW+JDtXzdmEi1qjaOTux+4WogYAAAAAAAAAYMn73Hc/N26AOrcleUoWzZ2k6x9J+k9K0hhxQoAaAAAAAAAAAAAAAAAOySJ56wAAs+bMM9uPq9X243o9aYx4p1ZnZy65ryvv+ddS+osFClCXJr9kvghRAwAAAAAAAACw1L3ly2/JL3ziFw4uFMMe386iClAff3+y4/j9B+WMDlHv9/975v9PgBoAAAAAAAAAAAAAAKZpkbx9AIBZ87SntR+PjFAXRTI0NPp5PT1Zt6/IjtVzN9q4FlGAukWIGgAAAAAAAACAper1n3l9/vgbf9w8aIWnhzszi+YO0pMfTB46bcTiGCHqtz7nrfn/fvb/m6+xAAAAAAAAAAAAAABg2VgkbyEAYNY885ntx6VS0tnZvjYwkDT2v0ur0UiKItcdO5SLfnl+RmyzCAPULULUAAAAAAAAAAAsNa//zOvzgTs/MHZ8OkkGsmjuHj3h4eT+U8Y5Wc6Be4ve+py35n+98H/N11gAAAAAAAAAAAAAALCsLJK3EQAwa447Lnn2s9vXurvbj4si2bu3+bEosqvcn4tetXv+ZkyabxBbxAHqFiFqAAAAAAAAAACWijd98U35wB0fGDs+nTQD1JX5nGh8xz6SbD5xggtKSSml3PbLtwlQAwAAAAAAAAAAAADAIRChBliOfvmX24+r1aSrq32tXk/27Ekajawd6shpO+axCL0E4tPDCVEDAAAAAAAAALDY/e//+N/50xv+dPwL+rNoAtQbH0sePn7ia0op5aZfuynnnHzOvMwEAAAAAAAAAAAAAADLlQg1wHL0kpckJ57YvtbTk5RH/M9+vZ709SUDA7n3H1bPbYi6NOyxBAlRAwAAAAAAAACwWL35S2/OW6976/gX9Cepzts4Ezprc7LtmImvKZWaAerzjz9/foYCAAAAAAAAAAAAAIBlTIQaYDnq6Ej+9/9uXyuVktWrmx+HK4qkvz/p68u9763mtO1zMM8SDU+P1CgaeWj3QymKYqFHAQAAAAAAAACAJMlrPvma/Mk3/mT8C/Zl0QSof2JLctfJk1xUigA1AAAAAAAAAAAAAADMIhFqgOXqxS9OfvEX26PTlUqydm3zY6nU/kiSej33/lU5pz0+C69fGvZYJtZ1rctZR52V0siQNwAAAAAAAAAALIDXfPI1+fDdHx7/gr1JOuZtnAmteyT5/kmTXLT/tpyTV5881+MAAAAAAAAAAAAAAMBhQ4QaYDl7+9uTk0a8c6sVou7qGvdp9/71IYSol1l4umVd17o87einpVquLvQoAAAAAAAAAACQ//ml/9kMUBdjn6/sSdI5ryONbyDZefwE54fdc3TVK6/KxjUb52MqAAAAAAAAAAAAAAA4LIhQAyxna9Ykn/hEsnHEm7JKpWTlyub5zrHfaTajEPUyjE8nAtQAAAAAAAAAACwuH7vjY3nHDe8Y93znnqQ+/s+on1+DSVZOcH7YPUdXvfKqXHrWpXM9EQAAAAAAAAAAAAAAHFZEqAGWu1NOSb7wheQJT2jGp4erVpNVq5L165PVq5MVK5pR6v2PP/16VyqNKb6OADUAAAAAAAAAAMy5a35wTX7ps7/UPChGn1+xOxlcTAHqnjHWS8Me+wlQAwAAAAAAAAAAAADA3BChBjgcnHxycu21yatfnXR0jH50diY9PcmaNc0g9fr1+czTV+TKFw3lqP5ySpOFqAWoAQAAAAAAAABgzl3zg2vy0o+9dNzzK3uTfSvmcaCJDCXrNqxrD06PCE+3CFADAAAAAAAAAAAAAMDcEaEGOFysWZO8+93Jhz6UnHTShJd+5uT+XPnsXWmUkv5KkdJ4kelx3hS2HAhQAwAAAAAAAACwmIwKUBft59dsT/b0zO9M46olxTuL7Pj9HVnXtW7CSwWoAQAAAAAAAAAAAABgbolQAxxm6i+8KLn++uz6q/+b+559TpJkV8dQdnUMpa9ayydP3tcWoN7VWaQxMjS9jOPTiQA1AAAAAAAAAACLy0du/0h7gHqEtY8nvWvmcaCJ1JLi/xwsZE8UohagBgAAAAAAAAAAAACAuaeuCXAY6R3ozRWfviLnH3t+3nbn25KzkvJZpTSy/01fRVIqknX1aroapeztqKdRLibedBkppZR1Xevy1KOfKkANAAAAAAAAAMCi8JHbP5IrPnfFuOfXP5rs2DCPA02k3h6gbtnx+zuy/v+sz86BnQfWBKgBAAAAAAAAAAAAAGB+KGwCHCZ6B3rzio++It/a+q1cc881B9YPBKiTpJQUpWRHuZZVHasyMNS3AJPOj2r+/+zdeZjdZX3//9eZLZN9Y0ICAUEWZZOAUDUqCopLFRGl4K8urWitVqGtVVtbN9xAWxW1tbV2datYKq3ydWuFKpgqSw0IWMOOgYQMTMJkkkwyM+f8/picZPZ9zjkzeTy45po59+c+9+cN3+syvb75nOc0pLHQmKOWHZVlc5elUCj0+wIAAAAAAAAAgGq75pfXDA5Q93ncZ/XGZOPKys40rJ6kdNnwv/C+b4hagBoAAAAAAAAAAAAAACpHhBrgANC+uz3P++LzcvPDN4/5PR2zOECdJMUUkySFQiENDf44BAAAAAAAAACgtlzzy2tyztfO2b8woO982APJrw6t7EzDKibNj4++beufbE1re2taFrVM/0wAAAAAAAAAAAAAAECSpK7aAwAwvSYSoD4QFFNMd6m72mMAAAAAAAAAAMAgowWoj7y3tgLUuTPpPDh52heeNup2AWoAAAAAAAAAAAAAAKgsEWqAWUyAemQ96cmePXuqPQYAAAAAAAAAAOwzWoD6iHuT+w6v7EzDKia5I8kpvS9vfPjGMYWoAQAAAAAAAAAAAACAyhGhBpilBKjHprPUWe0RAAAAAAAAAAAgyYAAdSmDAtRPvCe5v1YC1KX0C1CXCVEDAAAAAAAAAAAAAEBtEaEGmIUEqMeuJz3VHgEAAAAAAAAAAAYHqAc48p7k3idUdqZhlZLm2zMoQF0mRA0AAAAAAAAAAAAAALVDhBpglhGgBgAAAAAAAACAmWW0APUTf5HcV2MB6s5hAtRlNz18Uzo6OyozEwAAAAAAAAAAAAAAMCwRaoBZpKfYkxd86QUC1GNQ2PsPAAAAAAAAAABUU1tH24gB6iN+ltx7TGVnGlYpOfm60QPUSbLuonVZ0Lxg+mcCAAAAAAAAAAAAAABGJEINMIv86IEf5acP/bTaY9S8Qgqp80cgAAAAAAAAAAA1YNmCZVnZtHzIAPXh/5fcf1LlZxrS3gD1rS8YsD7E74G/9nXX5umHPb0iYwEAAAAAAAAAAAAAACNrqPYAAEyNx3c+nrO+eFa1x5i0QgpprG/Mnp49+14vnbs0J7acmIa68f2xtaNrR25+6OZ+a8UUBagBAAAAAAAAAKgd7e3Z9OFdWfXmZPPC/cuH/1/y4FHVG6ufUnLq/yT/OzBAPYRrX3dtzjzyzOmfCQAAAAAAAAAAAAAAGBMVToBZYvG8xTl66dHVHmNSygHqJGmqb9r3umNPR25vvT3dxe5xnVef+ukYEwAAAAAAAAAAps6LX5zs3JlNn0xWbu9dmlcOUBeqOtk+a25L/veMIS4MmE+AGgAAAAAAAAAAAAAAao8INcAsctcld83YEHXfAHVZ39cTDVEDAAAAAAAAAEDN+ta3kv/5n30vN30yOfpnyc4aClAfdFey/qmj7/v33/h3AWoAAAAAAAAAAAAAAKhBItQAs8xMClEXUkhTfdOQAeqhCFEDAAAAAAAAADBrdHUlb35zUirtW7qhkNx9YmomQL36ruTR44a52GfGP3vmn+Xc48+tyEwAAAAAAAAAAAAAAMD4iFADzEK1FqJuqGsYtNY3PD2WAHVZx56O3NF6R0p9PnwHAAAAAAAAAAAzzve+l2zevO/l+kLy7HenZgLUhz6QbBwuQN3HRU+5KB9+/oenfyAAAAAAAAAAAAAAAGBCRKgBZqlaCVE31DWkrlCXpvqmfWt9A9TjVUghhyw4JIVCjXzaDgAAAAAAAAAAJuKKK5JiMUmyOcnpf5KaCVCvejh56KgRNuyd86KnXJS/P+/vKzITAAAAAAAAAAAAAAAwMSLUALNYtUPU5QB1WVN906QD1McuOzYt81umakQAAAAAAAAAAKi8hx9OfvrTJL0B6sPenXTXyBOdKx9JNh0+woa9Aep3PeNdAtQAAAAAAAAAAAAAADAD1MhHFgCYLtUKUdcV6voFqMsEqAEAAAAAAAAAOJD0FHsGL954Y7JnTzYnecKf1E6AesUjyeZDR9iwN0D9oed+KB97wccqMhMAAAAAAAAAAAAAADA5NfKxBQCmUzVC1MVSMcVScUrOEqAGAAAAAAAAAGAmat/dnpdf+fJc/Yur+1+47bakuztP+JNkT311ZhuoZUuyZbgAdSH7AtTvXvvuvOc576nUWAAAAAAAAAAAAAAAwCQ1VHsAACrj42d/PK/4+isqes/uYnca6hpSV5j47zwQoAYAAAAAAAAAYCZq392eC6+6MLduvjU/2/SzJMl5i5+W3Hhj8vWvZ94fFWsmQL16c7Jx9RAXCv1fvuaE1+SjZ3+0IjMBAAAAAAAAAAAAAABTQ4Qa4ABw9S+uzm/8629U5d6TCVELUAMAAAAAAAAAMBP1DVAnSbFzVy7+yquTa5tz3v3Nmf+aTdnVVOUh91q1ZYgAdWHwvtec8Jp86fwvVWQmAAAAAAAAAAAAAABg6oy/CArAjFIOUPeUeqo2Q3exO8VScVzvEaAGAAAAAAAAAGAm6heg3r07efTRZNu2FPfszsXPfDzzX7MpO2skQL3isWTTIaPv+9O1fypADQAAAAAAAAAAAAAAM1RDtQcAYPrUQoC6rLvYnYa6htQVRv/9BwLUAAAAAAAAAADMRPsC1JvWJ9u3J7t29bveWlfMnsbqzDbQ8q3JloNH3/cvL/+XvOrkV03/QAAAAAAAAAAAAAAAwLQQoQaYpWopQF021hD10ualAtQAAAAAAAAAAMwo+wLUD/1vsnVr0tP/uZ1NpWLSVKXhBlj6ePLYcI/nFPb/+K1XfSsvfdJLKzITAAAAAAAAAAAAAAAwPUaugAIwI9VigLqsu9idYqk44p6tnVvTuqO1QhMBAAAAAAAAAMDk9A9Qtw0OUKeYzKnScAMs7Ei2Lh99nwA1AAAAAAAAAAAAAADMDiLUALNMLQeoy0YLUZdSyoa2DULUAAAAAAAAAADUvH0B6k3rk61bk57+z8VsKhWTpurMNtD8ncn2JSNsKPR+E6AGAAAAAAAAAAAAAIDZQ4QaYBbpKfbkNd94TU0HqMu6i90plUrDXheiBgAAAAAAAACg1vUUe/Lqb7w6t26+Ndm+Penp/9zOpmIxmVOl4QaY25nsWDT6vq+c+xUBagAAAAAAAAAAAAAAmEVEqAFmkSf/5ZOzs3tntccYk8a6xhQKhRH3jBSi7urqmq7RAAAAAAAAAABgVI/vfDz1dfW5aM1FqdvTleza1e/6pp5i0lyl4QZo3pPsWjDKpkJvgPo31/xmRWYCAAAAAAAAAAAAAAAqo6HaAwAwNR7f+Xju3np3tccYs9EC1GXlEHWStMxvSZKs27gund2dWbNiTZbNWzZtMwIAAAAAAAAAwFCuu++6nPXFs3L00qNz11vuTP5nSS5+UluKKSVJNveUknlVHnKvxq6kc7RZCsm3XvWtvPRJL63ITAAAAAAAAAAAAAAAQOXUVXsAAKbG4nmLc+3rrq32GGO2p2fPmPeWQ9StO1r3BaiTZP2W9Wnb2TZdIwIAAAAAAAAAwCDlAHWS3L317hzzoYNz3n9uzGf/Xyl1xVK2dJVSqpEAdX130jV3lE0C1AAAAAAAAAAAAAAAMKuJUAPMImceeeasDlH/vPXn+wLUZULUAAAAAAAAAABUSt8AdZKklNxdtzXHvLEz5/2ykF27k54F1Zuvr0J30tM82iYBagAAAAAAAAAAAAAAmO1EqAFmmdkaoh5pnxA1AAAAAAAAAADTrV+AurT3a6+7lycNby2mbUk1JhusricpfixZuX2YDYUIUAMAAAAAAAAAAAAAwAFChBpgFpqqEHVDGqZgmtGNFqIeS6haiBoAAAAAAAAAgOkyKEA90KNJz6KKjjSshq6k5/Lenzd9cogQdaH3mwA1AAAAAAAAAAAAAAAcGESoAWappx7y1Jy68tQJvbeQQk5qOSlnHHFGTmo5aYonG9pwoemxBKjLhKgBAAAAAAAAAJhqowaoNydZUsGBRtDUk/zq4/3X+oWoBagBAAAAAAAAAAAAAOCAI0INMAu1727PhVddmIc7Hk6h/MmxMaov1OfElhPTMr8lrTtas6FtQ+oL9dM0aX8Dg9PjCVCXCVEDAAAAAAAAADBVRg1QP5LkoEpONLzGnuSBy5OVQ1zb9Pn5WTlneRIBagAAAAAAAAAAAAAAONA0VHsAAKZWOUB96+ZbkySN9Y3p6ulKachPwSUNdQ3pKfYkSepSl+OWH9cvQD3c+6bLnp49aapvmlCAumz9lvVZs2JN5jXOm8LJAAAAAAAAAAA4kIwaoH40yfJKTjS8hmLy4FAB6kIhecYzku98J5sWLUpbR1uWLVhWjREBAAAAAAAAAAAAAIAqqav2AABMnZ5iT179jVfvC1CXNdY3ppDCvteFPv+UrzfWN6a+vj53bb0rd7beWZUAddlkAtRl67esT1dX1xRMAwAAAAAAAADAgebxnY/vD1AP5dEkSyo1zcjqSsmtAwPUdXXJoYcm//EfyY9/nCxalCQC1AAAAAAAAAAAAAAAcAASoQaYRerr6nPRmotSVxj8P+/lEHXfGPVQSimlrbOtagHqqdLc0JzGxsZqjwEAAAAAAAAAwAz0Vzf91f4XAx+jeTw1FaC+5bLk+FKSpqZkwYLk7LOTb34zue++5Jxzqj0iAAAAAAAAAAAAAABQZQ3VHgCAqXXececlSS7+zsXpKfX0u9ZY35iunq5qjFVRzQ3NWbt6bTq7Oqs9CgAAAAAAAAAAM8xHf/jR/Nl//9nQFx9PMr+i4wyrHKBeM6c5Ofro5MMfTn7t15JVq6o9GgAAAAAAAAAAAAAAUENEqAFmoXKI+m3feduga6WUUkhhyu9ZSCGllNJQ15Djlh+Xu7belc7uykegywFqAAAAAAAAAAAYr0EB6lKfi9uSLKjwQMMpJX/6/WTNyr3B6QsuSM49t7ozAQAAAAAAAAAAAAAANamu2gMAMD3OO+68/PnZf94vON3V05WkN0Q91eoL9VnQtCDHLT8uLfNbsnb12jQ3NE/5fUYiQA0AAAAAAAAAwET1C1CX0j9A3ZGaClAvfjz5x+fW5eoj9v6S+Kc8pbozAQAAAAAAAAAAAAAANUuEGmAWe9mTXpZjlx2bQgrp6unqF5+e6hD1yvkrc/qq09Myv2XfWiVD1ALUAAAAAAAAAABM1FfWf6V/gLqvnUnmVHqi4TVuS+bNq0uxkFz8zMd7Q9S/9mvVHgsAAAAAAAAAAAAAAKhRItQAs1zL/Jasmr9qyOj0VIaoF81ZlEKhMGi9EiFqAWoAAAAAAAAAACbq67d/Pa/5j9f0vhgqQN2YZPBjMVUx75HkoPn7H/0sFpKLz+rM1dt+UsWpAAAAAAAAAAAAAACAWiZCDTDLte1sy/3t9w97vbvYPSX36djTMey16QxRC1ADAAAAAAAAADBRX7/967nw3y7sfTEwQN2VmgtQL14yeJjivLm5+DsX5+pfXF2FqQAAAAAAAAAAAAAAgFonQg0wi/3o/h9l/Zb1o+7b07NnxOs9pZ5Rz3hw+4Np29k27PXpCFELUAMAAAAAAAAAMFH3P3b/yAHqpLYC1IuTFAYMVF+fzJmTYqmYf1j/D+kpjv6cDwAAAAAAAAAAAAAAcGARoQaYpa6777q85F9eMub9w4WoRwtU97V+y/pRQ9RTSYAaAAAAAAAAAICJaN/dnrd89y0pDFWZrrEA9dxNewPUdUM88rlwYZLk5JUn5yuv+Erq6+orOxwAAAAAAAAAAAAAAFDzRKgBZqHr7rsuZ33xrHG/b2BwejwB6rKRQtTrNq4b93kjmerzAAAAAAAAAACY/dp3t+fCqy7MrZtvzcoFK1Po6XNxT5JSaiZA3fxwsmRphg5Qz52bzJmTk1eenCvPvzKL5iyq+HwAAAAAAAAAAAAAAEDtE6EGmGUmGqAuK4enJxKgLhsqRL1u47p0dndO+MyhdHZ3ClEDAAAAAAAAADBmfQPUSZLt27NyZ1IopjdAndTMk5XNjyRLlw1zsb4+WbhQgBoAAAAAAAAAAAAAABhVjXxUAoCp8PjOxycVoC6bTIC6bP2W9enq6koyPQHqMiFqAAAAAAAAAADGol+Aevfu5NFHk46OJElp295NNfJU5TG/SpaXu9KFQv+L9fXJ0qU5edUaAWoAAAAAAAAAAAAAAGBUNfJxCQCmwuJ5i3P00qOrPUaSpLmhOY2NjdMaoC4TogYAAAAAAAAAYCT7AtSb1ift7cm2bUlPz/4NC1IzT1Q2tyUbvlyXz36nkLrSgIvlAPWhpwpQAwAAAAAAAAAAAAAAY1IjH5kAYKrcdcldVQ9RNzc0Z+3qtRUJUJcJUQMAAAAAAAAAMJSeYk9e/Y1X59aH/jd57LFk167eC6XewvOmxtTO05TtSeeK5JjfK+a8XxZ6Q9Qp9F6bOzdZvlyAGgAAAAAAAAAAAAAAGJda+dgEAFPorkvuysr5K6ty78a6xooHqMuEqAEAAAAAAAAAGKi+rj4XrT4ndW1bk+7upFjs/SqVegPU9dWecK/tSZb1/nj38r0h6vvm5LMbjkrd0mXJokU5edUaAWoAAAAAAAAAAAAAAGBcRKgBZqGrf3F16uvqU1eo/P/M1xXqcv2D11c8QF0mRA0AAAAAAAAAQJK0dbT1/tDenvN+94p89v8VU1cs7bu+qSG1E6DuSLK0/9Ldy5Nj/nhuzrvqjnz25X+bpx7yVAFqAAAAAAAAAAAAAABg3ESoAWaZq39xdS7+zsUplopZMX9FRe/dVN+U3T2701Xsquh9BxKiBgAAAAAAAAA4sF3zy2uy/BPLs+rPVyZnnJH88pc5785SPvudQupKyeb6JA3VnnKvnUmWDH3p7sLWHPPXx+e8487Lv1/47wLUAAAAAAAAAAAAAADAuIlQA8wiPcWe/MP6f0ixVNy31lTfVJF7NxQa0t3TXZF7jUVnd2e6uqobwwYAAAAAAAAAoPKu+eU1Oedr5yRJNu94JKued+u+a+f9spDWhqTUWK3pBtiVZLiudKH3291b787jOx9PfV19paYCAAAAAAAAAAAAAABmERFqgFmkvq4+X3nFV3LyypP7rVcsRF3fkLpJ/tHS3NCcs444K80NzZM6Z82KNWlsrJVPCwIAAAAAAAAAUAl9A9Qp9X7bvDBZ9Qe9v9R94R8Us6dWHinpTLJw9G3Xvu7aLJ63eNrHAQAAAAAAAAAAAAAAZicRaoBZZtGcRbny/CurFqJeMndJTjropAm9t7mhOWtXr02SrF29dsIh6jUr1mTZvGUTei8AAAAAAAAAADPTUAHqss0Lk8a3F9Mxt/JzDWl3kgUjXC/0frv2ddfmzCPPrMREAAAAAAAAAAAAAADALCVCDTALlUPUJ63oH4Oe7hD1gqYFObHlxLQsaMmaFWvG9d6+AeqyiYSoBagBAAAAAAAAAA48IwWok6S+I+meU9mZhrUnyfwRrgtQAwAAAAAAAAAAAAAAU0iEGmCWWjRnUf7p5f+UBU0L9q3t6dkzbfeb0zAnJ7acmIa6hiTJsnnLxhyiHipAXTaeELUANQAAAAAAAADAgadfgHoo7UnP+H4P+vTpSjJvhOsC1AAAAAAAAAAAAAAAwBQToQaYxRbNWZQTW07MgqYF0xqgTpLVC1bvC1CXjSVEPVKAumwsIWoBagAAAAAAAACAA8+gAHWp//Xm9owcfa6kriRzR7he2P/jqQefOt3TAAAAAAAAAAAAAAAAB4iG0bcAMJM11DVk556d036f+rr6IdfLIer1W9YPujaWAHXZ2tVrs27junR2dw66JkANAAAAAABQ21pbW3PTTTflnnvuSXt7exobG7N8+fIcf/zxOe2009LY2FjtEfvZvHlz7rvvvvzqV7/Kli1bsmPHjnR1dWXRokVZvHhxjjjiiJxyyilZtGjRtNx/+/btueOOO3LXXXdl69at2b59e+bPn5+lS5fm0EMPzemnn57FixdPy70BYCb5xh3fyCuveuWw1xu3JZ0LKjfPiLozfIC60P/lta+7Novn+bMeAAAAAAAAAAAAAACYGiLUALPcuo3r0tkzONw81e7aeldWLlw55LWhQtTjCVCXDRWiFqAGAAAAAACoXVdddVU+/elP58c//nFKpdKQexYuXJgLLrgg73rXu3LsscdWeMJk27ZtueGGG/LjH/84P/3pT/Pzn/88jz766KjvKxQKOemkk/K6170ur33ta7NixYoJz/D444/nu9/9bq677rpcd9112bBhw6j3PvHEE/O6170uF110UZYt8/dlABx4fnrfTwcHqPv8nxuFrUnXwsrONKyeJM3DXBsiQH3mkWdO90QAAAAAAAAAAAAAAMABpK7aAwAwfU7+m5P7BZunU1exK+s2rhv2ejlEnUwsQF22dvXaNDf0fipvpgaohwssVOscAAAAAACAqfbQQw/luc99bn7jN34jN9xww4h/r7F9+/b8/d//fU466aR86EMfqvjfgVx++eU555xzcvnll+e6664bU4A66f27mttuuy3veMc7ctRRR+WTn/xkuru7x3Xvb37zmznnnHOyYsWKvOpVr8rnP//5UQPU5Xv//Oc/zzvf+c4cdthhueKKK1IsFsd1bwCYyb68/st5+hefPvyGR5NSLQWo54xt69XnXy1ADQAAAAAAAAAAAAAATDkRaoBZ6pjPHJN7t95b0Xt2dneOGqJ+9qHPnnCAumzt6rV59qHPnpEB6u5id27bcltad7RO6pzWHa25bctt6S6OL2QAAAAAAAAw3TZs2JDTTz89P/zhD8f1vj179uR973tfXv3qV6enp2eappseHR0d+aM/+qO89KUvza5du8b8vk9+8pO55pprsmfPngnfe+fOnfnDP/zDvOAFL8iOHTsmfA4AzBQXf+vivPY/Xjv8hi1JllRqmlEUM3KAurD/x4889yN5+Qkvn+aBAAAAAAAAAAAAAACAA1FDtQcAYOod85ljcvfWu6ty73KIerjQdGNj45TcZ6rOqaTuYndub709HXs6sqFtQ5KkZX7LuM9p3dGaDW0bUkopt7fenhNbTkxDnT/SAQAAAACA6nvsscdy9tlnZ9OmTYOuPfWpT825556bI488Mrt27cqGDRvy1a9+NQ8//HC/ff/yL/+SFStW5IorrqjQ1P3Nnz8/p556ap70pCfl6KOPTktLSxYuXJienp60t7dnw4YNWbduXX7yk5+kVCr1e+/3vve9nHfeefnOd76TQqEwzB1Gt2TJkjzzmc/MaaedlhUrVuSggw7Kzp07c9999+Xaa6/NDTfcMOg9P/jBD/Kyl70s3/72tzNnzki1SwCYuc778nn593v+ffgNm5McVKlpRlEc+9aPPPcj+dPn/On0zQIAAAAAAAAAAAAAABzQFCsBZplqBqjLRgtRH4j6BqiTpJTShELUfQPUSdKxp0OIGgAAAAAAqBlvetOb8uCDD/ZbW7hwYb785S/nZS972aD9H/3oR/PRj340H/jAB/qtf/rTn84LX/jCvPjFL57OcZMkc+bMyVlnnZUXv/jFed7znpenPOUpqa+vH/V9d999d97+9rfnW9/6Vr/1733ve/nCF76QN73pTeOaY/Hixbnwwgvz27/923na056Wurq6IfddeumlWb9+fd74xjfmlltu6Xft2muvzWWXXTbovycAzAbP/ttn54ZNg38Rwz4bkxxcsXFGVg5QN42wZ+/vqxCgBgAAAAAAAAAAAAAAptvQn1gEYEZ6fOfjVQ9Ql3V2d6arq6vaY9SEgQHqsnKIunVH65jOGRigLiuHqLuL3VM2MwAAAAAAwHj953/+Z77xjW/0W2tqasq11147ZIA6SRobG/P+978/V1xxxaBrl1xySbq7p//vPy699NL84Ac/yDve8Y6ccsopYwpQJ8nRRx+d//iP/8hb3vKWQdcuv/zyMd//kEMOyac//els2rQpn//85/OMZzxj2AB12Zo1a7Ju3bq86EUvGnTtYx/7WDZu3Djm+wPATHDEJ44YOUD9QGorQF2MADUAAAAAAAAAAAAAAFAzRKgBZpHF8xbn2tddO6kzmhuac9YRZ6W5oXlS56xZsSaNjY2TOmM2GC5+Z4AGAAEAAElEQVRAXTbWEPVwAeoyIWoAAAAAAKDaPvShDw1ae//735/TTjtt1Pf+/u//fs4+++x+a3fffXe++tWvTtl806FQKORTn/pUnvCEJ/Rbv++++3LzzTeP+v53v/vdueeee3LJJZdk7ty547p3U1NTvv71r2fVqlX91js7O/Ov//qv4zoLAGrZ8suW54GOBwZfKO39ejDJIRUeajilJB3Jqu6kUBxmjwA1AAAAAAAAAAAAAABQYSLUALPMmUeeOeEQdXNDc9auXpskWbt67YRD1GtWrMmyecsm9N7ZZLQAddloIerRAtRlQtQAAAAAAEC13HHHHbn++uv7rR100EF5xzveMeYzLrvsskFrf/3Xfz3p2abbnDlzcv755w9av/POO0d97wtf+MI0N0/8l8MuXLhwyP/G11xzzYTPBIBasvyy5Wnb09Z/sRyfTpLNSValNpSSwvZkVVPvy5U7hwhR7w1Qf/ncLwtQAwAAAAAAAAAAAAAAFSNCDTALTSRE3TdAXTaRELUAda+xBqjLhgtRjzVAXSZEDQAAAAAAVMPXvva1QWuvf/3r09TUNOYznvrUp+apT31qv7Wf/OQnue+++yY933Q76qijBq1t2rSpIvf+9V//9UFr9957b0XuDQDT6aCPHtQ/QN03Pp30BqgPqvBQw9kboF454P/02ReiLmRfgPrKV16ZV695daUnBAAAAAAAAAAAAAAADmAi1ACz1JlHnpn/9//9vzHtHSpAXbZ29do01DWM6RwB6l7jDVCXDQxRjzdAXSZEDQAAAAAAVNp3v/vdQWvnn3/+uM8Z6j1DnV1rOjs7B62NJ8A9GYcffvigtc2bN1fk3gAwXQ7980PzWNdj+xcGPjpRYwHqOY8NDlAnSRYsyMrFq1LYW6C+8pVX5oITL6jsfAAAAAAAAAAAAAAAwAFPhBpgFjvjiDOyZsWaEfc01jUOG6Aue+KSJ456r8MXHi5AnaRUKuWO1jvGHaDe9/69Ieo7W++cUIC6rGNPR+5ovSOl0sTeDwAAAAAAMFY7duzI//7v//ZbmzdvXk499dRxn/XsZz970Nr1118/4dkq5aabbhq0dtRRR1Xk3jt37hy0Nnfu3IrcGwCmw1GfOCoP73x4/8LARx/akiyv5EQjKCULH0uWLeizVigkdXVJY2OycGGS5IVHvzD3ve0+AWoAAAAAAAAAAAAAAKAqRKgBZrll85YNG6IupJAnL3vymM6pT/2I1xc0LRjx+oGiUCjkkAWHpJDChM8opZS2zrYJB6iT3v+3PWTBISkUJj4HAAAAAADAWKxfvz7FYrHf2mmnnZaGhoZxn3X66aensbGx39ott9wyqfmm21133ZWrr76631pzc3POOOOMitz/7rvvHrS2atWqitwbAKbaMZ88Jvd23Lt/YagA9cJkEo9lTKk3rUsWzR+wWH5WY2+A+uSVJ+fK86/MEcuPqOhsAAAAAAAAAAAAAAAAZSLUAAeAoULUhRSyeM7icZ0zXIh6tED1gaZlfkuOXXbspELUk1FIIccuOzYt81uqcn8AAAAAAODA8n//93+D1o4++ugJndXU1JTVq1f3W7vnnnvS3d09ofOm27333ptzzjknnZ2d/dZf//rXZ8mSJRWZ4aqrrhq0dvrpp1fk3gAwlVZ+eGXu3t7nlyvUeID6Q/+efP6/k89+p5C6gbPOnZvMmbMvQL1ozqIqTAgAAAAAAAAAAAAAANBLhBrgANE3RD2RAHXZwOC0APXQqhWiFqAGAAAAAAAq7f777x+09oQnPGHC5x1++OH9Xvf09OTBBx+c8HlTbffu3fnJT36SP/iDP8gJJ5yQX/7yl/2uH3nkkbnssssqMsuuXbvypS99adD6ueeeW5H7A8BUWf7h5Xmk55HhN+xMTQWolz6UvOeOJHV1Oe+Xhf0h6kIhqa9PFi4UoAYAAAAAAAAAAAAAAGpGQ7UHAKByls1blkUNi1JXP7nfQVCXuhRTFKAeRTkEvaFtQ0opTfv9BKgBAAAAAIBq2Lx586C1ww47bMLnDfXeRx55JE984hMnfOZ4/dd//Vfe8Y539Fvr7u7O9u3b8/DDD6e7u3vI9x1zzDH5/ve/n8WLJ/YLYcfr8ssvz5YtW/qtHXLIIfn1X//1itx/rP7qr/4qn/vc56b9Pvfcc8+03wOAqXf0p45OW09b/8W+j1nsTNKYmglQ121Ntj4hWfX2ZNMVvWvn/bKQ1Nfl4pfUpbh0aU5etUaAGgAAAAAAAAAAAAAAqBki1AAHmMbGxvQUeyZ9jgD12FQqRC1ADQAAAAAAVEtbW9ugtQULFkz4vKHe+9hjj034vInYtm1bbr311jHvnz9/ft785jfn0ksvzfz586dxsv1uvvnmXHbZZYPWP/jBD2bOnDkVmWGsWltbc+edd1Z7DABq0JGfPDL3b7+//2Lfxyu6UlMB6qZHkz0re3/evDBZ9QfFbLqi95fBn1d8UvKSP8g/bPxmvvKKrwhQAwAAAAAAAAAAAAAANUOEGgCm2XSHqAWoAQAAAACAatqxY8egtblz5074vKHeu3PnzgmfN50KhULe8IY35KMf/WhaWir3dzWPPfZYfuM3fiNdXV391p/znOfkoosuqtgcADAZR33qqP4B6oGPVHTtXaur3Ewjmbc52bm6/9q+EPW1a5If/jDnLVqUlxUvSn2dX+4OAAAAAAAAAAAAAADUjhr5eAYAzG4t81ty7LJjU0hhSs8VoAZGMzBAUu1zAAAAAIDZZ6j//8Pm5uYJnzdUhHrPnj0TPm86lUql/N3f/V1OPPHEXHrppdm+ffu033PPnj15xStekfvvv7/f+rJly/LFL34xhcLU/n0UAEyHoz51VO5tv3f/Qo0HqOsfGRygLtu8MFn1m5uSRYt69wpQAwAAAAAAAAAAAAAANaZGPqIBALPfVIeoBaiB0bTtbMv1D12fdRvXTeqcdRvX5fqHrk/bzrYpmgwAAAAAmO0mE0Ie6r2l0sAy5fQ6//zzUyqV+n3t2LEjDz30UP7rv/4rl156aY488sh9+7ds2ZIPfOADecpTnpKf/vSn0zZXsVjM6173uvzoRz/qt15fX5+vfOUrOfzww6ft3gAwVfoFqEup+QB12pKeQ0e4Xkg273wkbR3+PhUAAAAAAAAAAAAAAKhNtfIxDQA4ILTMb8nS5qVTctbS5qUC1MCw2na2Zf2W9UmSzu7OCYeo121cl87uziTJ+i3rhagBAAAAgEEaGxsHre3atWvC5w313qampgmfN1XmzZuXQw45JM973vPyvve9L/fcc0/+8i//MvPnz9+35/7778/zn//8rFs3uV8OOJzf+73fy5VXXtlvrVAo5POf/3xe9KIXTcs9AWAqrfnsmv4B6qEUUztPNm5LsmKE63t/d8a3XvWtLFuwrAIDAQAAAAAAAAAAAAAAjF9DtQcAoLJKxVK/D/F1F7uzu2v3iO/p6ekZfM6ATwIWi8Xs3jPyOZXW3dM9aM5qa93Rmq2dW6fkrK2dW9O6o1WIGhikb4C6rByiXrt67ZjP6RugLlu/ZX3WrFiTZfN8gBoAAAAA6DVv3rxBa1Mdoe4beq4VhUIhb33rW3PSSSflRS960b65Ozo6cuGFF+a2227L0qVT88tJk+Ttb397Pv/5zw9av+KKK/KGN7xhyu4zHVpaWnL88cdP+33uueee7N5dW39nCcB+Z//T2bm17dbeF8M9zrE7SX2lJhpFe5KDRrjeJ0D90ie9tBITAQAAAAAAAAAAAAAATIgINcABYHf37jyw7YHs6t6V9t3t/cLM29u2j/r+Yoqjxpz/b+v/pX5rrXwKcL9iioPWetIb1a6v8KcWW3e0ZkPbhikLY5dSyoa2DUkiRA3sM1SAumw8IeqhAtRlQtQAAAAAQF/Lly8ftNbR0THh84Z671D3qBVnnHFGPvCBD+SP//iP961t3Lgxn/jEJ/LhD394Su7x7ne/O5/61KcGrV9++eW55JJLpuQe0+mtb31r3vrWt077fU444YTceeed034fAMbv0+s+nf964L96Xwz32ERnaueJxu1Jhvvr0ML+HwWoAQAAAAAAAAAAAACAmaCu2gMAML12de3K/z36f+no6khPqafa49SUcoy6EqY6QF1WDlG37mid0nOBmWmkAHVZOUQ9kpEC1GXrt6xP28628Y4IAAAAAMxCBx988KC1jRs3Tvi8X/3qV2O6Ry35/d///SxcuLDf2t/+7d+mVJr83w194AMfyOWXXz5o/YMf/GC/8DUA1KprfnlN/uA//6D3xUwIUHckWTrEeiEC1AAAAAAAAAAAAAAAwIwkQg0wy/3q8V+JT4+gp3v6/9tMV4C6TIgaSMYWoC4bKUQ9lgB1mRA1AAAAAJAkRx555KC1Bx54YMLnPfjgg/1e19fX5/DDD5/weZUwZ86cnHXWWf3WWltbc+edd07q3A9/+MO59NJLB62/973vzXvf+95JnQ0AlfCrrb/KOV87Z+RNu1I7AeqdSZbs/bkw4KsPAWoAAAAAAAAAAAAAAGAmEaEGmOV2de+q9gg1bboD3dMdoC4TooYD23gC1GVDhajHE6AuE6IGAAAAAJ70pCcNWrv77rsndNaePXvyq1/9qt/aUUcdlYaGWilTDu+II44YtHbvvfdO+LyPfexjQ4am/+RP/iQf/OAHJ3wuAFRK++72PPeLz92/MNSjEzuTNFZooNHsSrJo9G0C1AAAAAAAAAAAAAAAwEwjQg0wyw2MLBdTTM84/xlrQLlYY//0ZPTAdLFUnNB/17GoVIC6TIgaDkwTCVCX9Q1RTyRAXSZEDQAAAAAHtlNOOSV1df0fP7j55pvT3d097rNuvvnmdHV19Vs79dRTJzVfpTQ3Nw9a2759+4TO+vM///P8yZ/8yaD1d77znbnssssmdCYAVFL77vac8jen5N5tI/xChp1Jmio20sg6kyzs87ow9DYBagAAAAAAAAAAAAAAYCYSoQaY5Zrq+39ar5BC6ifwz2jqU5+6GvxnNA2Fhgn/tx1JpQPUZULUcGDp6uqacIC6rLO7M9fef+2EA9Rl67esHxSGAQAAAAAODPPnz88pp5zSb23Hjh352c9+Nu6zbrjhhkFrZ5xxxoRnq6QtW7YMWjvooIPGfc6nPvWpvOtd7xq0/od/+If5+Mc/PqHZAKCS2ne35/grju8foB74+MSO1E6AeneSBaNv+7fz/02AGgAAAAAAAAAAAAAAmJFEqAFmuVXzV1V7hJrW2Ng45WdWK0BdJkQNB47GxsY0NzRXe4wkSXND87T8byoAAAAAMDO86EUvGrR21VVXjfucod4z1Nm16Cc/+cmgtZUrV47rjM985jN5+9vfPmj9kksuySc/+ckJzwYAldK+uz2rLl+VhzofGn5TR5I5FRtpZHuSzB9925I5SwSoAQAAAAAAAAAAAACAGUuEGmCWWz5/eVYtWJW6wuT+J78+9RO6dqAplUp5uOPhSQWoCylkWfOyFFKY+BzZO0epOiFsoHLWrl5b9RB1c0Nz1q5eW9UZAAAAAIDqetWrXjVo7R//8R+zZ8+eMZ/xs5/9LDfddFO/tac97Wk58sgjJz3fdFu/fn1+8Ytf9FtbsmRJjjvuuDGf8bnPfS6///u/P2j9rW99az796U9PekYAmG7tu9uz+PLF2ZmdI2xKUhu/ZzfpSjJvbFtvedMtaWpomtZxAAAAAAAAAAAAAAAApktDtQcAYPqtWrgqBzUflI7ujtz12F3p6enZd62xsTHzG+eP+ayenp7sKe5JXerSkIY0NNXuHyXdPd3ZsmvLkNemK5xdKBRyQssJub319nTs6Rj/+1PIscuOTcv8lrTuaM2Gtg0TClovaFqQE1pOSKEw8ZA1MHOsXb026zauS2d3Z8XvLUANAAAAACTJiSeemGc961m54YYb9q21trbmU5/6VP74j/94TGe8+93vHrT2lre8ZcpmnC49PT255JJLBq2/5CUvSWNj45jO+MIXvpC3ve1tg9bf/OY35y//8i8nPSMATLeeYk8WX7545E3tGXP0edp1J5k7zLUBj1rc+MYb88RlT5zuiQAAAAAAAAAAAAAAAKZN7ZZDAZhSjY2NWdq4NHMa56Snfn+E+rCFh6VlQUsVJ5s+u/bsymO7Huu3Vkwxdamb1vs21DXkxJYTxx2i7hugTrLv+3hD1AuaFuTElhPTUOePeTiQVCNELUANAAAAAPT1nve8Jy960Yv6rb3//e/P2WefnVNPPXXE9/7lX/5lvve97/Vbe+ITn5jf/M3fHNO9jzjiiDzwwAP91q677ro897nPHfF9n/3sZ/PkJz85Z5999pjuM9Du3bvzW7/1W7n++uv7rRcKhSGj0kP553/+5/zu7/5uSqX+fx/0pje9KZ/73OcmNBcAVFrDh0Z4RqGUZFuSBRUaZjTdSZrHtvXGN96Y0w89fVrHAQAAAAAAAAAAAAAAmG7TW+EEgANUOUS9oGlsn6AcGKAua5nfkmOXHZtCCmM6R4AaDmxrV69Nc8MYPy09SQLUAAAAAMBAL3zhC3Puuef2W9u9e3fOPPPMfOtb3xryPV1dXfnQhz6Uiy++eNC1z3zmM2lsbJyWWctuueWWvOAFL8gznvGMfO5zn8sjjzwypvd1dXXlG9/4Rk466aRceeWVg67/zu/8Tp7+9KePes7Xvva1XHTRRYMC1G94wxvyN3/zNykUxvZ3RABQTYVLR/nzqi21E6DuycgB6j7/Kt///74vQA0AAAAAAAAAAAAAAMwKCpUAME3KIerbW29Px56OYfcNF6AuK69vaNuQUkpD7kkEqIFea1evzbqN69LZ3Tlt9xCgBgAAAACG84UvfCG33HJLNm7cuG+tvb09L3vZy3Laaafl3HPPzZFHHpldu3blrrvuyle+8pU89NBDg85529velpe85CUVm/snP/lJfvKTn+Tiiy/Occcdl1NOOSXHH398li1bliVLlqRQKKS9vT0PP/xw1q9fnx/96Ed57LHHhjzrzDPPzCc/+ckx3fe1r31tisXioPWbbropp5xyyqT+nb797W/nkEMOmdQZADCaUQPUrUmWVGKSMehJMmdsWz/x/E/k7GPPntZxAAAAAAAAAAAAAAAAKkWlEgCm0Wgh6tEC1GWjhagFqIG+pjNELUANAAAAAIykpaUl3//+93PWWWdl8+bN/a7dfPPNufnmm0c944ILLsgVV1wxTROOrFgs5o477sgdd9wxofe//OUvz1e/+tXMnTt3TPu7u7uHXL/tttsmdP++9uzZM+kzAGAkowaoH0myrCKjjK6Y0QPUe/91PvH8T+Ttz3z7dE8EAAAAAAAAAAAAAABQMXXVHgAAZrtyiHpB04J+62MNUJe1zG/JscuOTSH9P8QpQA0MZe3qtWluaJ7SMwWoAQAAAICxOO6443LjjTfmWc961rje19jYmPe///35l3/5l9TX10/TdP3Nnz9/Ss457LDDctVVV+Xqq68ec4AaAGayUQPUramtAPUo4wpQAwAAAAAAAAAAAAAAs5kINQBUwMAQ9XgD1GUDQ9QC1MBIpjoYLUANAAAAAIzVYYcdlh/96Ee58sors3bt2hQKw5cfFyxYkNe//vW57bbb8oEPfCB1dZV7lOGv/uqvcscdd+Qv/uIvcs4552TlypVjfu/BBx+cV73qVfn2t7+d++67L6985SuncVIAqB2jBqgfS7KkEpOMQTlA3TjCnr3/Oh989gcFqAEAAAAAAAAAAAAAgFlJsRIAKqQcor6j9Y4csuCQcQeoy8rve7jj4ZzQcoIANTCsdRvXTfl5QtQAAAAAwFgVCoVccMEFueCCC7Jly5bceOONuffee9Pe3p6GhoYcdNBBOe6443L66aenqalpUve6//77J/ze448/Pscff3z+6I/+KEmyadOm3HPPPbn//vvT1taWHTt2pFQqZeHChVm8eHFWrFiRk08+OatWrZrUzElSKpUmfQYAVNKoAeqtSRZVZJTRjSNA/danvjXvPeu9FRgKAAAAAAAAAAAAAACg8lQrAaCCGuoa8pQVT0mhMMqHMkfRMr8lB807aNLnALPXuo3r0tndOaVndnZ3ClEDAAAAABOyYsWKvPSlL632GGOyatWqrFq1Ks961rOqPQoA1JRRA9TbkiyoxCRjUMrIAeo+/yrvesa78rEXfKwCQwEAAAAAAAAAAAAAAFRHXbUHAIADzVSFowWogeFMR4C6rByiBgAAAAAAAA4cjZcOV3Pea3uS+RUZZXSlvd/HEKD+rRN/S4AaAAAAAAAAAAAAAACY9USoAQBgFpnOAHWZEDUAAAAAAAAcOBZduijd6R5+Q0eS5oqNM7JSkq6MKUC9dtXa/NMr/2n6ZwIAAAAAAAAAAAAAAKgyEWoAAJglKhGgLhOiBgAAAAAAgNnvOZ97TrZn+/AbOpLMqdg4IysHqOeNvvVZhzwrP37Tj6d7IgAAAAAAAAAAAAAAgJogQg0AALNAJQPUZULUAAAAAAAAMHtdcs0l+VHrj4bfsCtJU8XGGdlYAtSF3m/PWf2cXP8711dgKAAAAAAAAAAAAAAAgNogQg0AADNcNQLUZULUAAAAAAAAMPu857/ek8/e8tnhN3Qmqc++sHPVjSNA/d9v+O/pnwcAAAAAAAAAAAAAAKCGiFADAMAMVs0AdZkQNQAAAAAAAMweH/7vD+cjP/7I8Bs60/vkYa0EqHdEgBoAAAAAAAAAAAAAAGAEItQAADBDdXV1VT1AXdbZ3Zmurq5qjwEAAAAAAABMwkd/+NG894fvHX5DV2ovQL14hOt75zz/2PMFqAEAAAAAAAAAAAAAgAOWCDUAAMxQjY2NWbNizaTOaG5ozllHnJXmhuZJnbNmxZo0NjZO6gwAAAAAAACgej76w4/mz/77z4a+WEpvgLqU2glQb8vwAepC9s35mhNek3/9//61MjMBAAAAAAAAAAAAAADUIBFqAACYwZbNWzbhEHVzQ3PWrl6bJFm7eu2EQ9RrVqzJsnnLJvReAAAAAAAAoPru23Lf4AB1qc9Xd2orQN2R5KBhrvWZ8Y1r3pgvnf+lSkwEAAAAAAAAAAAAAABQs0SoAQBghptIiLpvgLpsIiFqAWoAAAAAAACY+Y5ccWTq+j5OWOpzsTtJMbUToH48yZIh1gvpN+Nnnv+ZfOHcL1RmJgAAAAAAAAAAAAAAgBomQg0AALPAeELUQwWoy8YTohagBgAAAAAAgJnv8Z2PJ0l63vBA6nrSP0Ddld4Ada08abgtyfIBawPi00ny2bM/m4ufeXFlZgIAAAAAAAAAAAAAAKhxtfLREAAAYJLGEqIeKUBdNpYQtQA1AAAAAAAAzHzX3Xddlvz5khzz54clxx2Xno/Upa7YZ0MptfOUYVuSg7I/Oj1EfDpJPvScD+Vta99W0dEAAAAAAAAAAAAAAABqWa18PAQAAJgCI4WoxxKgLhspRC1ADQAAAAAAADPfdfddl7O+eFaS5O4dG3PMb3ckyf4Q9e7UzhOG25IcnCGj03195LkfyXue+54KDAQAAAAAAAAAAAAAADBz1MpHRAAAgCkyVIh6PAHqsqFC1ALUAAAAAAAAMPP1DVCn1Pvt7uXJMb9XTJIUupLUV2e2QdqTtIy+7SPP/Uj+9Dl/Ou3jAAAAAAAAAAAAAAAAzDQi1AAAMAv1DVFPJEBd1jdELUANAAAAAAAAM99QAeqyu5cnhXcW01MrAertSZaPvk2AGgAAAAAAAAAAAAAAYHgN1R4AAACYHsvmLcuzD312GhsbJ3XO2tVr09XVNelzAAAAAAAAgOr6xu3fyCv/7ZXDb+hM7TxVuDPJGH5H7juf8U4BagAAAAAAAAAAAAAAgBHUVXsAAABg+kxVOFqAGgAAAAAAAGa29/3gff0D1KUBG3altgLUi0ffVkghHz7rw9M+DgAAAAAAAAAAAAAAwEwmQg0AAAAAAAAAAACz2Pt+8L586IYP7V8YGKDemaRWfi/trowpQJ0kd198d5oamqZ1HAAAAAAAAAAAAAAAgJlOhBoAAAAAAAAAAABmqUEB6gEKO5LUSsd5d5JFY9t64xtvzBOXPXFaxwEAAAAAAAAAAAAAAJgNRKgBAAAAAAAAAABgFvrH//3HEQPUDTuS0pwKDjSS3UkWjG3rjW+8Macfevq0jgMAAAAAAAAAAAAAADBbiFADAAAAAAAAAADALPP127+ei751Uf/F0t6vJHO3J921EqDekzEHqL95/jcFqAEAAAAAAAAAAAAAAMZBhBoAAAAAAAAAAABmka/f/vVc+G8X7l/oE59Okvntya65FR9raF1J5o9t67ue/q6cc8I50zoOAAAAAAAAAAAAAADAbCNCDQAAAAAAAAAAALNEvwD1gPh0krQ8nOyYV/GxhtadZIyzvOvp78rHXvixaR0HAAAAAAAAAAAAAABgNhKhBgAAAAAAAAAAgFlgUIB6gKN+lbStqOxMw+pOMndsWwWoAQAAAAAAAAAAAAAAJk6EGgAAAAAAAAAAAGa41vbWkQPUDyb3r+q9VPUHB3uSNI9tqwA1AAAAAAAAAAAAAADA5FT9syQAAAAAAAAAAADA5LQsasmSzB0yQL3iweT+Q/pfqtrDgz1J5oxt66VnXCpADQAAAAAAAAAAAAAAMEki1AAAAAAAAAAAADDTffWr2fqBXVmyq//ygi3JlkN6288DVfwBwmLGHKD+9As+nfed+b5pHQcAAAAAAAAAAAAAAOBAIEINAAAAAAAAAAAAM9lNNyWvfnWSZOvHsy9EvXBz0rFs/7biEG+t2EOExbHf7HMv/lwuecYl0zoOAAAAAAAAAAAAAADAgUKEGgAAAAAAAAAAAGaqX/0qefrT+y1t/Xiy9KFk+0GDt1clRF1MUkjSMPrWz734c3nLr71luicCAAAAAAAAAAAAAAA4YIzhIx0AAAAAAAAAAABArejo7MiC5gXJgw8mJ5+cFPunpV/y68nWg4d/fzGDw9N1GTpQPWnlmw18WrHQ/+UZLWfkq6/6ag5dduh0TAEAAAAAAAAAAAAAAHDAEqEGAAAAAAAAAACAGeKmh27K0/7uaTn94FPz079Lsm1bv+sXPC/59imjn1OREHUpQweoB7j4qRfnMy/9zFTeGQAAAAAAAAAAAAAAgL0GfoYEAAAAAAAAAAAAqEHlAHUppdy4+ZY87ZRb+l3/nWck//r0sZ83VHB6yh4qLCXXX5bUjXLgnz3zzwSoAQAAAAAAAAAAAAAAppEINQAAAAAAAAAAANS4vgHqshsPTZ72ht6f37km+buzxn/utISoS8miLcmzSknPR+pSN/Amhd5vH3rOh/Lh5394sncDAAAAAAAAAAAAAABgBCLUAAAAAAAAAAAAUMMGBaj3d6hz4+rkmHOSv3jJxM+f0hB1KUlP0n5ocszbepf6haj3Bqg/8tyP5D3Pfc9E7wIAAAAAAAAAAAAAAMAYiVADAAAAAAAAAABAjRoUoB6gYUty90mTv8+UhKj3BqjT3Pvy7uXJMb/Xe3LfEPVHnvuR/Olz/nRigwIAAAAAAAAAAAAAADAuDdUeAAAAAAAAAAAAABjsB3f/IGd/5ez+Aeq+LeotSffSJIWpuV8xg8PTdRk6UD2k3UkW9F8qh6jv+ueF6XnTnbmvqStHrjhysqMCAAAAAAAAAAAAAAAwRgM/LwIAAAAAAAAAAABU2V/f+Nd5/lee3z9A3dfmJFMYoC4bKjg9pgcNt2dQgLrs7uXJMe9dnKxeLUANAAAAAAAAAAAAAABQYSLUAAAAAAAAAAAAUEP++sa/zu995/eG37AjyfJMeYC6bLwh6jmPpTeIPZxCcvfOjXl85+OTGwwAAAAAAAAAAAAAAIBxE6EGAAAAAAAAAACAGnHN/10zdIC6tPerM0lTpi1AXTbWEPWSB5LdB49w0N45r33dtVk8b/EUTAYAAAAAAAAAAAAAAMB4iFADAAAAAAAAAABADbjuvutyzpXn9F8sx6eTZHd6n/qb5gB12Wgh6uUPJ9uOGubNhfQLUJ955JlTOxwAAAAAAAAAAAAAAABjIkINAAAAAAAAAAAAVXbdfdflrC+etX+hb3w66Q1QF1Lxp/6GClHXJ3ni5uSxw4d5U59ItgA1AAAAAAAAAAAAAABAdYlQAwAAAAAAAAAAQBUNGaDuq0oB6rK+IepCkiMeSu5dPWBToc/XXgLUAAAAAAAAAAAAAAAA1SdCDQAAAAAAAAAAAFUyaoA6qWqAuqy49+vIh5J7njD6/n975b8JUAMAAAAAAAAAAAAAANQAEWoAAAAAAAAAAACogjEFqHenZp70W/JocvcYAtTvfdZ784oTXzH9AwEAAAAAAAAAAAAAADCqGvloCgAAAAAAAAAAABw4Ht/5+KgB6obdSeorNtKI5rUn21YOc7Gw/8f3Puu9+eDzPliRmQAAAAAAAAAAAAAAABidCDUAAAAAAAAAAABU2PW/un7/iyEC1I2dSXeNBKjnbk92Lht9nwA1AAAAAAAAAAAAAABA7Wmo9gAAAAAAAAAAAABwILnml9fknK+d0/tiiAD1nF3J7sbKzjSc5p3JrqUjbCj0fvuHc/4hrz/19RWZCQAAAAAAAAAAAAAAgLGrq/YAAAAAAAAAAAAAcKAYLUDdvLN2AtRL25Ndn0qW7Bp535WvvFKAGgAAAAAAAAAAAAAAoEaJUAMAAAAAAAAAAEAFfPMX3xwxQD13R9LZVNmZhrOwI2n7bO/PWz8+TIi60BugvuDECyo6GwAAAAAAAAAAAAAAAGMnQg0AAAAAAAAAAADT7P7H7s+5Xz+398UQAer525Ndcyo703Dm7k7aP91/bVCIWoAaAAAAAAAAAAAAAABgRhChBgAAAAAAAAAAgGnUvrs9b/nuW1JIYcjr89uTHXMrPNQwmncnO/9i6GtbP54s6YwANQAAAAAAAAAAAAAAwAzSUO0BAAAAAAAAAAAAYLZq392eC6+6MLduvjUrF6zM5sc3pVS3//qStmTbourN11f9nmTXMAHqJMnixdn6ttvTumhOWha1VGwuAAAAAAAAAAAAAAAAJq5u9C0AAAAAAAAAAADAePUNUCdJdu/Oys66FIq9L1e2Ju01EqBu6Ep65iVPe8MwGw49NPn5z5PVqwWoAQAAAAAAAAAAAAAAZhARagAAAAAAAAAAAJhigwLUSbJzZ5JkZWddDn842bK0d7naD/LVdyfdc3t/vnH1ECHqU09N/ud/ksMOq/hsAAAAAAAAAAAAAAAATE61P7sCAAAAAAAAAAAAs8qjOx4dHKDu6kp2705KpXR1FPPgiqTY5z3Vepivrjvpae6/ti9EXVeXXHRRct11AtQAAAAAAAAAAAAAAAAzVEO1BwAAAAAAAAAAAIDZ4hetv8iav1mTxvrGLJqzqDc8vXPnvgD17s6kbdn+/cXsD1DXpX+Yetr1JMXmoS/duDp52mVH5afv+vtKTgQAAAAAAAAAAAAAAMAUE6EGAAAAAAAAAACAKfCL1l/k5L85OV3Fruwp7kl27sqiPfuv7+lM2pYMfl9VQtQ9SeYMc63Q++2mXXeno7MjC5oXVGIiAAAAAAAAAAAAAAAApkHd6FsAAAAAAAAAAACAkTyw7YF9AeqUkpSSHQ3FtDf2JqW7d5Ty2JLh3983PD3tD/YNV7kuZF+AOkl++safClADAAAAAAAAAAAAAADMcCLUAAAAAAAAAAAAMAkb2zfmtC+clu5id2+Auo8djcme9mJal41+TkVC1MX0zjinz9qA+HSSPPOwZ+bUVadO1xQAAAAAAAAAAAAAAABUiAg1AAAAAAAAAAAATNDG9o055fOnpG1nWwql0sCWc5Y8lDx20NjPm9YQ9VAB6iE8ffXT8+1Xfzv1dfVTPQEAAAAAAAAAAAAAAAAVJkINAAAAAAAAAAAAE7CxfWPW/M2atO1qS0rFpJQUStkXol7yYLLt4PGfOy0h6lLGHKD+3mu+l0VzFk3VnQEAAAAAAAAAAAAAAKiihmoPAAAAAAAAAAAAADPNxvaNOfFzJ+bx3Y8npaSutP9aoZQs2phsO2Ti5xezP0Bdl/5h6nEr7T1gqAB1Yf+PAtQAAAAAAAAAAAAAAACzT93oWwAAAAAAAAAAAICyB7Y9sD9AvVexT8x50ebk8VWTv0/f8PSEH/Yr7f0aKkDdx1MPfqoANQAAAAAAAAAAAAAAwCzUUO0BAAAAAAAAAAAAYKZ4dMejOfqzR6e72N27UNp/rVhImjcl21qm7n7F7A9Q16V/mHpUpSS7kgzXld4bzn7ysifn2tdfK0ANAAAAAAAAAAAAAAAwC9WNvgUAAAAAAAAAAABo392eF3/1xUMGqJOkYVuyZwoD1GV9w9NjfuhvtAD1Xk9e9uT89E0/FaAGAAAAAAAAAAAAAACYpUSoAQAAAAAAAAAAYBTtu9vzvC8+Lzc/fHPvwhAB6tL8/sHoqTSuEPVYAtSF5JQVpwhQAwAAAAAAAAAAAAAAzHIi1AAAAAAAAAAAADCC0QLU2dYboO4pTO8cYw1RN27LqAHqpx36tPz3Rf8tQA0AAAAAAAAAAAAAADDLiVADMGVKpYGfsKzuOQytq6urps4BAAAAAAAAgFo2KEA90LakvgIB6rLRQtSNW5OulhEO2Dvnty74lgA1AAAAAAAAAAAAAADAAUCEGoAp0V3szm1bbkvrjtZJndO6ozW3bbkt3cXuKZqMvtp2tuX6h67Puo3rJnXOuo3rcv1D16dtZ9sUTQYAAAAAAAAAtWdQgLq096usM2moYIC6bLgQ9YKxBqhf9a20LBppIwAAAAAAAAAAAAAAALOFCDUAk9Zd7M7trbdn+57t2dC2YcIh6tYdrdnQtiHb92zP7a23C1FPsbadbVm/ZX2SpLO7c8Ih6nUb16WzuzNJsn7LeiFqAAAAAAAAAGal9t3tecW/vKI3QD0wPp30Bqjrku4KB6jL+oao65O0bEk6xhigfumTXjqNkwEAAAAAAAAAAAAAAFBLRKgBmJRygLpjT0eSpJTShELU5QB1ae8nNjv2dAhRT6G+AeqyiYSo+waoy4SoAQAAAAAAAJht2ne358KrLsydW36eup4hNnTtDVBX+Qm8Ynrb0gc/nLQeMsJGAWoAAAAAAAAAAAAAAIADlgg1ABM2MEBdNt4Q9cAAdZkQ9dQYKkBdNp4Q9VAB6jIhagAAAAAAAABmi55iT37z334ztz70v8ljj+XgnUldsc+GPUlK1Q9Qlx30SPLw4SNsEKAGAAAAAAAAAAAAAAA4oNXIx2AAmGmGC1CXjTVEPVyAukyIenJGClCXjSVEPVKAukyIGgAAAAAAAICZrqOzI1t3bc0jW3+V3W2tSU9PkuwPUe/Zu7FGnrxb8WhStzgpFIfZIEANAAAAAAAAAAAAAABwwKuRj8IAMJOMFqAuGy1EPVqAukyIemLGEqAuGylEPZYAdZkQNQAAAAAAAAAz1U0P3ZRFH1uUlr9oyS8evi0plbK7fv/1g3fu/aFGnrpraUvqF/T+vLKzbnCIWoAaAAAAAAAAAAAAAACA1MzHYQCYKcYaoC4bLkQ91gB1mRD1+IwnQF02VIh6PAHqMiFqAAAAAAAAAGaamx66Kb/2d7/W+xxDKdnRmH0B6vL3TY2pmSfulm9LGubtfVHorU3vC1EXIkANAAAAAAAAAAAAAADAPjXykRgAZoLxBqjLBoaoxxugLhOiHpuJBKjL+oaoJxKgLhOiBgAAAAAAAGCmKAeok6Tvoww7mgYEqOsrPtqQlm1LmpoHLDY1JUuWZOXiVSnsLVD/xwX/IUANAAAAAAAAAAAAAACACDUAY1MqlXJH6x3jDlDve//eEPWdrXdOKEBd1rGnI3e03pFSaWLvn+26uromHKAu6+zuzLX3XzvhAHXZ+i3r09XVNakzAAAAAAAAAGA6DRegLtvRlLQVUjMB6sXtyZxygLpQ6P1avjxZujSZMydJ8sKjX5j73nZfXnbcy6o3KAAAAAAAAAAAAAAAADVDhBqAMSkUCjlkwSEppDDhM0oppa2zbcIB6iQpZO8chYnPMZs1NjamuaF59I0V0NzQnMbGxmqPAQAAAAAAAABD6hegHs6uJA0VGWdUC3Ymjy9L2puS1NX1BqjnzEn6/N38yStPzpXnX5kjlh9RtTkBAAAAAAAAAAAAAACoLSLUAIxZy/yWHLvs2EmFqCejkEKOXXZsWua3VOX+M8Xa1WurHqJubmjO2tVrqzoDAAAAAAAAAAxnUIB6qN+nvStJjfzu5QU7k45FvT/vaEraG4u9L+bN27enHKBeNGdRFSYEAAAAAAAAAAAAAACgVolQAzAu1QpRC1CPTzVD1ALUAAAAAAAAANSyMQWod6ZmAtTzOvcHqMt2NCbtTUnmzEkiQA0AAAAAAAAAAAAAAMDwRKgBGLdKh6gFqCemGiFqAWoAAAAAAAAAatmYAtQ7kjRVaqKRze1MOudnyCc0djQW0767XYAaAAAAAAAAAAAAAACAEYlQAzAhlQpRC1BPTiVD1ALUAAAAAAAAANSyjs6O0QPUHUnmVGqikS3pSHbP7/25UBo6RN3V05UvvfxLAtQAAAAAAAAAAAAAAAAMS4QagAmb7hC1APXUqESIWoAaAAAAAAAAgFr3wi++cP+LoQLU25NU5vc8j2rJjmTbkv5r/ULUhaSxrjHr37w+B80/qMLTAQAAAAAAAAAAAAAAMJOIUAMwKdMVohagnlrTGaIWoAYAAAAAAACg1h35ySOzbtO63hdDBajbk8yt5ETDW7gz2ba49+figMcxCqWkUCiksa4xt7751hzXclzlBwQAAAAAAAAAAAAAAGBGEaEGYNKmOkQtQD09piNELUANAAAAAAAAQK179uefnfu339/7YqgA9bYk8yo3z0gWdCbbF/Vf6xeirqvL8nnLc9fFdwlQAwAAAAAAAAAAAAAAMCYi1ABMiZb5LVnavHRKzlravFSAeppMdTBagBoAAAAAAACAWvaif35Rbth8Q++LoQLUW5MsqOREw5u3O+kYZpZiIUldIcvmLcvPfvdnecKSJ1R0NgAAAAAAAAAAAAAAAGYuEWoApkTrjtZs7dw6JWdt7dya1h2tU3IW/a3buK6mzwMAAAAAAACAqfKif35Rvnf/93pfDBWgbkuysJITDW/u7mTn/FE2FQr52e/+LKsXra7ITAAAAAAAAAAAAAAAAMwOItQATFrrjtZsaNuQ0pCf2By/UkrZ0LZBiHqKrdu4Lp3dnVN6Zmd3pxA1AAAAAAAAADXn9f/2+pED1I8mWVTJiYbX3JXsGjVAnRRLxSxsqJFqNgAAAAAAAAAAAAAAADOGCDUAkzLVAeoyIeqpNR0B6jIhagAAAAAAAABqyVu++Zb80+3/1PtiqMcZNidZUrl5RlRMOguj7Nl7/drXXZvF8xZP+0gAAAAAAAAAAAAAAADMLiLUAEzYdAWoy4Sop8Z0BqjLhKgBAAAAAAAAqAUXfeOi/M3P/qb3xVCPMzyU5KBKTjSC4t7vzSPs6ROgPvPIM6d7IgAAAAAAAAAAAAAAAGYhEWoAJmS6A9RlQtSTU4kAdZkQNQAAAAAAAADVdM6Xzsk//vwfe18M9TjDxiQHV3KiEZQD1E0j7BGgBgAAAAAAAAAAAAAAYAqIUAMwbpUKUJcJUU9MJQPUZULUAAAAAAAAAFTD3/70b3PNvdcMv+HhJCsrNs7ISkl6MnyAuhABagAAAAAAAAAAAAAAAKaMCDUA41LpAHWZEPX4VCNAXSZEDQAAAAAAAEAlXXffdfnd7/7u/oWBjzQ8kmRFJScaQSnJ48mqnqSuOOBan/h0IkANAAAAAAAAAAAAAADA1BChBmDMqhWgLhOiHptqBqjLhKgBAAAAAAAAqITr7rsuZ33xrN4XpQwOUD+WZHmFhxpOKUlHsqq59+XBO4cIUe8lQA0AAAAAAAAAAAAAAMBUEaEGYExKpVIe7nh4UgHqQgpZ1rwshRQmPkf2zlGqTgi71nV1dVU9QF3W2d2Zrq6uao8BAAAAAAAAwCw1KEA9UFuSxZWcaASlJI8ly5qT3fX7l/eFqPs8SiFADQAAAAAAAAAAAAAAwFQSoQZgTAqFQk5oOSELmhZM7P0p5Nhlx+b4luNz7LJjJxyiXtC0ICe0nJBCYeIh69mssbExa1asmdQZzQ3NOeuIs9Lc0Dypc9asWJPGxsZJnQEAAAAAAAAAQxk1QN2RZFElJxpBKcn2JCv3B6j3hajr63PwghWZ1zAviQA1AAAAAAAAAAAAAAAAU0+EGoAxa6hryIktJ447RF0OULfMb0mStMxvmVCIekHTgpzYcmIa6hrG9b4DzbJ5yyYcom5uaM7a1WuTJGtXr51wiHrNijVZNm/ZhN4LAAAAAAAAACMZU4B6TiUnGsX2JHv/Cn1HU58QdUMhWb48Jx96aja9Y1O2vXObADUAAAAAAAAAAAAAAABTToQagHEZb4h6YIC6bLwhagHq8ZlIiLpvgLpsIiFqAWoAAAAAAAAApsuYA9Tj+73Y0+eR7AtQl+1oSnY3JFmyOIcsOSxXnn9lFs1ZlMXzFldjQgAAAAAAAAAAAAAAAGY5EWoAxm2sIerhAtRlYw1RC1BPzHhC1EMFqMvGE6IWoAYAAAAAAABgujy+8/H9Aeqh7EltBagfTnLo0Jd2NCW7i11ZuWBl5jfOr+hYAAAAAAAAAAAAAAAAHFhEqAGYkNFC1KMFqMtGC1ELUE/OWELUIwWoy8YSohagBgAAAAAAAGC63HLvLVk8b3GOXnp070JpwIau9ManaylAffgw1/bOuLtrd/7p3H9KfV19paYCAAAAAAAAAAAAAADgACRCDcCEDReiHmuAumy4ELUA9dQYKUQ9lgB12UghagFqAAAAAAAAAKbLa696bU770mkpXFrIXZfclaObVvXf0LX3e60EqB/I8AHqPn725p/loPkHTfs4AAAAAAAAAAAAAAAAHNhEqAGYlIEh6vEGqMsGhqgFqKfWUCHq8QSoy4YKUQtQAwAAAAAAADBdXnvVa/PlO76873Xh0kLu+qu6HP3Y3oWuJKXUToD64SRHjXB975w//K0f5sSDT6zERAAAAAAAAAAAAAAAABzgRKgBmLRyiHph08IJBajLyiHqhU0LBainQd8Q9UQC1GV9Q9QC1AAAAAAAAABMl4EB6pR6vwoXPZS7PleXbN67VitPwT2S5PARru8NUH/6+Z/OGUecUYmJAAAAAAAAAAAAAAAAIOqeAEyJhrqGPGXFU1IoFCZ1Tsv8lhw076BJn8PQls1blmcf+uw0NjZO6py1q9emq6tr0ucAAAAAAAAAwFD6BahLAy7WJYU/Lu77uSY8muTQEa7vfQzigidfkEueeUklJgIAAAAAAAAAAAAAAIAktfMRHABmgakKRwtQT6+pCkcLUAMAAAAAAAAwHUYMUPdVK0+/tSVZOcL1PgHqKy+8shITAQAAAAAAAAAAAAAAwD618jEcAAAAAAAAAAAADnBjClDvTu08+bYtyYoRru8NUL/8qJcLUAMAAAAAAAAAAAAAAFAVtfJRHAAAAAAAAAAAAA5gYw5Q11dqolFsT3LQCNf3Bqifecgzc/Vrrq7ERAAAAAAAAAAAAAAAADCICDUAAAAAAAAAAABVNaYAdWdqJ0DdkWTpCNf3BqjPWH1GbvidGyoxEQAAAAAAAAAAAAAAAAxJhBoAAAAAAAAAAICqueXeW/YHqIezK0lDRcYZ3c4kS0a4vjdAffYTzs4P3/DDCgwEAAAAAAAAAAAAAAAAwxOhBgAAAAAAAAAAoGqe+sSn7n9RGmLDriSNlZpmFLuSLBrh+t4A9dpVa/P93/5+JSYCAAAAAAAAAAAAAACAEYlQAwAAAAAAAAAAUFWl9w9Vn06yM7UToO5MsnCE63sD1EcsPCI/ftOPKzERAAAAAAAAAAAAAAAAjEqEGgAAAAAAAAAAgIpr62jr97p0+/lJsc/CjiRNFR1peLuTLBjh+t4A9bNWPiv3vf2+SkwEAAAAAAAAAAAAAAAAYyJCDQAAAAAAAAAAQEVd88trsvwTy7PqL1b1Ljz8cPLjH6f0d6t6Q9QdSeZUc8I+9iSZP8L1vQHqFx7xwlz/u9dXYiIAAAAAAAAAAAAAAAAYMxFqAAAAAAAAAAAAKuaaX16Tc752TpJk847NvSHqG2/cd/2QtiTNVRpuoK4k80a43idA/d3f+m4lJgIAAAAAAAAAAAAAAIBxEaEGAAAAAAAAAACgIvoGqMs279icVbe+Nkly5Ms25eElVRhsKF1J5o5wfW+A+rdP/G0BagAAAAAAAAAAAAAAAGpWQ7UHAAAAAAAAAAAAYPYbKkBdtrnUkXkXdGTXggoPNZzuDB+gLuz/cfWC1fm78/6uEhMBAAAAAAAAAAAAAADAhNRVewAAAAAAAAAAAABmt5EC1EnSuDW1E6DuSdI8zLU+AeqDmw/OHW+7I/V19ZWYCgAAAAAAAAAAAAAAACZEhBoAAAAAAAAAAIBpM1qAOq1J18LKzTOiniRzRt+2dM7SbPiDDVk0Z9G0jwQAAAAAAAAAAAAAAACTIUINAAAAAAAAAADAtBgxQF1K8kiSJRUcaCTFjBygLvR+e9KCJ+X+P7xfgBoAAAAAAAAAAAAAAIAZQYQaAAAAAAAAAACAKTdkgLrU52tzkmWVn2tIxeyLTA9p77XTDjktN77tRgFqAAAAAAAAAAAAAAAAZgwRagAAAAAAAAAAAKZUW0fb0AHqskeSHFTJiUZQDlA3DnO9T4D6B6/7gQA1AAAAAAAAAAAAAAAAM4oINQAAAAAAAAAAAFNq2YJlWTl/Ze+LUvoHqB9NsrwKQw2lmDx4WXJ0+zDXBagBAAAAAAAAAAAAAACY4USoAQAAAAAAAAAAmBJtHW37ft707H/Pyu0DNjyaZEklJxpBKUldcvh7k7s+V5ejH+tzrRABagAAAAAAAAAAAP5/9u48PK+6zv//687WvYUCpRWKLYsIgoKAKFRkUdGvLPKFqYwry7gNKKMwOooKiAIqKIjCKALzFVnKuIPOoCOLyCItsswPkaW0QqEF2gLd2yz37480bdLc2ZP7TtLH47pyJedzzvmcdyNwecHJMwAAAMOCCDUAAAAAAAAAAAB9dvNjN2eri7bKlAunJPfckxxySBZ+p2pDiLpqRQZXgDpJapJUJYUzm/LEL7fPziOmbIhPJ8n+2+0vQA0AAAAAAAAAAAAAAMCQJkINAAAAAAAAAABAn9z82M058oYjkySLVi7KlJ8dkKxdmyRZeHFVXrUwycgKDthacf1Hbau1qqTwTwvyxBeey85b7pwkufXDt+auk+4SoAYAAAAAAAAAAAAAAGBIq6n0AAAAAAAAAAAAAAxdrQPUSZJismhsMuVfmrLw4qr8bGpTlkxs7j4Xmk9XTjFJfZLRpU8XzimkeFYxr6x6JRNGTyjnZAAAAAAAAAAAAAAAADAgRKgBAAAAAAAAAADolXYB6lYWjUu2+kRTVo5PGqqTqiRNqWCIurMAdWHjl/c/dX/22XGfMg0FAAAAAAAAAAAAAAAAA0uEGgAAAAAAAAAAgB4rGaBuXZdek7yyRdJUaA5QJxUOUXcUoG7lg6/7oAA1AAAAAAAAAAAAAAAAw0pV15cAAAAAAAAAAADARl0GqFclqW4OUCfN4ekWLS+tFQZuvPZWpuMA9fpBPvi6D+aa464p10QAAAAAAAAAAAAAAABQFiLUAPSb+vr6QbUPAAAAAAAAAND/2gWoi2kboK5PUpuk0Ha5oxD1gMeoVyeZ0ME5AWoAAAAAAAAAAAAAAACGuZpKDwDA8LB01dI8+MKDGVkzMgdsf0Cv97l7wd1Z07Ame03aKxNHT+zHCQEAAAAAAACAvioZoG6t5fdOF9pe0nLYlOYAdVPaKpTYql+sSLJFB+cEqAEAAAAAAAAAAAAAANgMVFV6AACGvpYAdZKsaViTuxfc3at9WgLUSfLgCw9m6aql/TUiAAAAAAAAANBHS1cs7XGAutSlmwaoW5S4rU8+/uck4zt/mAA1AAAAAAAAAAAAAAAAw50INQB90jpA3aI3IerWAeoWQtQAAAAAAAAAMHhMHDsxk8dMbj7YNEC9bv1aJyXpTW8ppb9C1B98IPn3R6ak+KMpbavXhQhQAwAAAAAAAAAAAAAAsFkRoQag10oFqFv0JERdKkDdQogaAAAAAAAAAAaPhWcszOTG0W0X163/3I230coRoh7/fHLNA1M2PvNv/9AmPp0IUAMAAAAAAAAAAAAAALD5EKEGoFc6C1C36E6IurMAdQshagAAAAAAAAAYJH7/+yz80YRMXrm+6NyDAHWLAQ1RL06WbZdM+fjy5PLLk/vvT268McWzNj5VgBoAAAAAAAAAAAAAAIDNiQg1AD3WnQB1i85C1N0JULcQogYAAAAAAACA8npl1SttF+rrky99KUmy8NrJzSHqYnr1FtqAhKhfTjK5+cZFWZEpT3wimTJl4zPPKmbOh+YIUAMAAAAAAAAAAAAAALBZEaEGoEd6EqBuUSpE3ZMAdQshagAAAAAAAAAoj9vm3ZYtvrVFdvnuLhsXv//95JFHkiVLkuefzyuFYlLd+2f0a4h6WZKt2y4tWrkoUy6c0mZtnx336e6OAAAAAAAAAAAAAAAAMCyIUAPQbb0JULdoHaLuTYC6hRA1AAAAAAAAAAys2+bdlkN/fGiS5MmXnswuX5mYbL998pnPJCtXJuvWZdxnm7K6ru/P6pcQ9fIkE0ufKhWiBgAAAAAAAAAAAAAAgM2JCDUA3VJfX9/rAHWLNQ1rcuv8W3sdoG7x4AsPpr6+vk97AAAAAAAAAADttQ5QJ0mKyZNVL2WXY57dsLTFZ5IVI/rvmX0KUa9IsmXn9y5auShLV/iF1wAAAAAAAAAAAAAAAGyeaio9AABDQ21tbUbWjOxzQLo/jKwZmdra2kqPAQAAAAAAAADDSpsA9SZl6Ce3SnY5NVlSk7wyuv+fXUzp0HRVkqb1Xxc2HWtVki263vum42/KxLET+zQfAAAAAAAAAAAAAAAADFVVlR4AgKHjgO0PyMiakRWdYWTNyByw/QEVnQEAAAAAAAAAhpvOAtQtnhmVvDRm4GbY9LFVm3xOWoWqVycZX2KTTUrWNx1/U47Y9Yh+mA4AAAAAAAAAAAAAAACGJhFqAHqkkiFqAWoAAAAAAAAA6H/dCVCPWJWsrRv4WVo/vqnV161fdBuzJsm4rvcSoAYAAAAAAAAAAAAAAAARagB6oRIhagFqAAAAAAAAAOh/3QlQj1xZngB1i85C1ONWJivHdr2HADUAAAAAAAAAAAAAAAA0E6EGoFfKGaIWoAYAAAAAAACA/tedAPWIFcmaEeWbqUUxG0dqCVG/bmHyysXJ5OUd3FRo/iRADQAAAAAAAAAAAAAAABuJUAPQa+UIUQtQAwAAAAAAAED/e2XVKxsD1B0YtSxZW57fT92hlhD1qNXJQ1c1f73wO4X2IWoBagAAAAAAAAAAAAAAAChJhBqAPhnIELUANQAAAAAAAAAMjFueumXjQbH9+bGvJKtHl2+ezlStS1aMS6Z8dv1CoZCFF1e1C1ELUAMAAAAAAAAAAAAAAEB7ItQA9NlAhKgFqAEAAAAAAABgYFx1/1V538/e13xQIkA9aWGyYkx5Z+pQQ9K4Poa9qHWIOmkOUa9IUhCgBgAAAAAAAAAAAAAAgI6IUAPQL/o7GC1ADQAAAAAAAAD97/Tfnp6Tbz65+aBEgHr7Z5MXtinvTB1qTLLJ78ReNC6Z8i9NzQcjRmThP9ybJacvEaAGAAAAAAAAAAAAAACADohQA9Av7l5w96DeDwAAAAAAAAA2d++b9b58e/a3mw9KBagXJAu2Le9MHWpMMqL0qUXjkimfaUpuuy3Zf/9MHDuxrKMBAAAAAAAAAAAAAADAUCJCDUCf3b3g7qxpWNOve65pWCNEDQAAAAAAAAD95Au/+0Ju/NuNzQclAtRTn0kWTC7vTB1qSocB6haLxiVLX7dLWcYBAAAAAAAAAAAAAACAoUyEGoA+GYgAdQshagAAAAAAAADou/PuOC8X3HNBc3y6gwD1M1PKPlZpTV2cLzR/3HT8TZk4dmI5JgIAAAAAAAAAAAAAAIAhTYQagF4byAB1CyFqAAAAAAAAAOi98+44L2fefmaH57cZjAHqug7OF5o/3XT8TTli1yPKMREAAAAAAAAAAAAAAAAMeSLUAPRKOQLULYSoAQAAAAAAAKDn2gSoi+3Pb/V08qIANQAAAAAAAAAAAAAAAAxrItQA9Fg5A9QthKgBAAAAAAAAoPu6ClBvPTdZ8qryztShlvk6ClCvJ0ANAAAAAAAAAAAAAAAAPSdCDUCPVCJA3UKIGgAAAAAAAAC61lWAeuKjyeJXl3emjlQVkwfOTyav6+SiggA1AAAAAAAAAAAAAAAA9JYINQDdVskAdQshagAAAAAAAADo2PUPX78xQF3CxCeSpbuUcaBOFIrJb65K9ipUZeF1UzJ5ZaHERQLUAAAAAAAAAAAAAAAA0Bci1AB0S319fcUD1C3WNKxJfX19pccAAAAAAAAAgEFl6Yqlef8v3r9xodj2/MQnkqXTyztTRwrF5LdXJe9alKSmJkmy8NrJbUPUAtQAAAAAAAAAAAAAAADQZyLUAHRLbW1t9pq0V5/2GFkzModOOzQja0b2aZ+9Ju2V2traPu0BAAAAAAAAAMPNxLETM3nM5OaDTQLUIxYkS6eVfaTSisl1V68PUCdJq3cAFl47OZObRgtQAwAAAAAAAAAAAAAAQD8RoQag2yaOntjrEPXImpE5YPsDkiQHbH9Ar0PUe03aKxNHT+zVvQAAAAAAAAAwXM17YV6SZOEZCzM5Y9ueXJCs3TZJofxzlbQ2+fKxrY5Hrn+HYIcdkv/3/7Lwqyuz5PQlAtQAAAAAAAAAAAAAAADQD0SoAeiR3oSoWweoW/QmRC1ADQAAAAAAAADtnXfHednx8h1TfU51smpVFn6rmMnL159ckGQwBaiXJRmbPLlVssupSaqqkkMPTa64IrnzzuQd70iSTBzr/QAAAAAAAAAAAAAAAADoDyLUAPRYT0LUpQLULXoSohagBgAAAAAAAID2zrvjvJx5+5lJkqY0pfqCMcnq1Vn47aT62QyuAPVLSVr9p/8nt0p2OXNccuONyXvek9TWVmw0AAAAAAAAAAAAAAAAGK5EqAHole6EqDsLULfoTohagBoAAAAAAAAA2msdoG7RVJVUn9mUuwtJ46QMmgD1+AVJtmm//mT1K9nlu7uUfR4AAAAAAAAAAAAAAADYXIhQA9BrnYWouxOgbtFZiFqAGgAAAAAAAADaKxWgbtG0KjnwCxk0AeoJzyXLppU4sX6+J196Mq+seqWcIwEAAAAAAAAAAAAAAMBmQ4QagD4pFaLuSYC6RakQtQA1AAAAAAAAALTXYYC6mGRdkroMmgD1pOeTV3bo/JpbP3xrJoyeUJ6BAAAAAAAAAAAAAAAAYDMjQg1An7UOUfcmQN2idYhagBoAAAAAAAAA2uswQJ0k9es/D5K3wqYuSl7YroOT6yPZt3741hwy/ZCyzQQAAAAAAAAAAAAAAACbm5pKDwDA8DBx9MS8dbu3pra2tk/7HLD9Aamvr+/zPgAAAAAAAAAw3HQaoG5MUszgCVAvTJ6Z2sFJAWoAAAAAAAAAAAAAAAAom0HyI0cADAf9FY4WoAYAAAAAAACAtjoNUCdJfQbN22DbLxKgBgAAAAAAAAAAAAAAgMFikPzYEQAAAAAAAAAAAKXMe2Fe5wHqNUmqyzZOp7Z/PlmwfQcnCxu/3GOrPcoyDwAAAAAAAAAAAAAAAGzuRKgBAAAAAAAAAAAGsemTpqeqo1e9VmfQBKhf9UKyYLsSJwppE6CedeysbDN+m3KNBQAAAAAAAAAAAAAAAJs1EWoAAAAAAAAAAIBBrvGsxvYh6tVJaioyTjvjlifPvarr62YdOysz95g58AMBAAAAAAAAAAAAAAAASUSoAQAAAAAAAAAAhoQ2IepVGTQB6pGrkuVbdnCysPFLAWoAAAAAAAAAAAAAAAAoPxFqAAAAAAAAAACAwe4vf0m+8IU03vG2ZGWS2koP1GzE6mTN+K6vE6AGAAAAAAAAAAAAAACAyqip9AAAAAAAAAAAAAA0W7FmRcaOHNt8sGpVcv75ydVXJwsXJkkmntqU1FVwwFZq1iZrx3VyQaH5kwA1AAAAAAAAAAAAAAAAVI4INQAAAAAAAAAAwCAw+9nZ2f9H+2e/V+2XPy85Jvna15LVqzec3+rUprzUWfS5jGrWJg1jOrlgfYD6yiOuFKAGAAAAAAAAAAAAAACAChKhBgAAAAAAAAAAqLCWAHUxxdz37H3Z/9n78ufVVRvOT/l4U5YOkgB1YV0XAer1PrvfZ3PSPicN/EAAAAAAAAAAAAAAAABAh6q6vgQAAAAAAAAAAICB0jpAnWLz2n3bJfuf1JQk2eGjTVk0sYIDtlafFEd3cU0hmfnambno/1xUlpEAAAAAAAAAAAAAAACAjolQAwAAAAAAAAAAVEipAHWL+7ZLRp/WlGe2rsxs7TQkGdXFNYXk397yb5n1vlnlmAgAAAAAAAAAAAAAAADoQk2lBwAAAAAAAAAAANgczX52dt70ozc1HxTbn696KVk9rrwzdaghycgurikkXz/46/ni275YjokAAAAAAAAAAAAAAACAbqiq9AAAAAAAAAAAAACbmy4D1EuTpsESoG6MADUAAAAAAAAAAAAAAAAMUSLUAAAAAAAAAAAAZdQmQF1C1eKkaXwZB+pEVWNSvCCZvLyTiwSoAQAAAAAAAAAAAAAAYNASoQYAAAAAAAAAACiTe5+5t22Autj2fNULSdMWZR2pY01Japu/XPjtDkLUAtQAAAAAAAAAAAAAAAAwqNVUegA2Dy+++GJmz56duXPnZtmyZamtrc1WW22V3XffPfvuu29qa2srPSIAAAAAAAAAAAyo5155Lm+56i0bFzYJUBcWJ00TyztTh5qSFJOmqqT6y0nj1wpZ+J1kymeKWTRu/TUC1AAAAAAAAAAAAAAAADDoiVAzoH7605/mkksuyV133ZVisVjymnHjxmXmzJn53Oc+l9e85jVlnrC9YrGYJ554Ivfff3/mzJmTOXPm5IEHHsjy5cvbXPeRj3wk//Ef/1H2+a666qqcfPLJJc/Nmzcv06ZNK+9AAAAAAAAAAAB0adnaZXnnT97Z4fmxS5IVW5Rvnk41JSkkqVt/WJVUf6mYxq9XZeEPRmfKvxayKCty3THX5R9f/4+VnBQAAAAAAAAAAAAAAADoggg1A+LZZ5/NBz7wgdxxxx1dXrt8+fJceeWVueaaa/KlL30pX/rSl1IoFMow5UY///nPc++992bOnDn5y1/+kldeeaWsz++uBQsW5LOf/WylxwAAAAAAAAAAoAeWrV2WA350QB5Z/EjJ86NfTlZOKO9MHWoJUNduslyVVH+5KY2feyELR4/O0hVLM3HsxEpMCAAAAAAAAAAAAAAAAPSACDX97vHHH8/BBx+chQsX9ui+devW5Stf+UoeffTRXHPNNamurh6gCds76aSTBm14urWTTz55SMwJAAAAAAAAAECzDgPUxeZPdS8nq8c2f11oe6r8iikZoG4ZrClJ9bfGpfGsRgFqAAAAAAAAAAAAAAAAGCJEqOlXS5YsyTve8Y6SAep99tknRx99dKZPn57Vq1fn8ccfz3XXXZfnnnuuzXXXX399Jk2alIsvvrhMUw8NP/zhD/O73/2u0mMAAAAAAAAAANBNHQao16takTSMbb9eSAVC1MX1HyM6v6wpTZn3wrxMnzS9HFMBAAAAAAAAAAAAAAAAfSRCTb/62Mc+lqeffrrN2rhx4/KTn/wkRx11VLvrzzvvvJx33nk5++yz26xfcsklOfzww/Pud797IMft0lZbbZV99tknW265ZWbNmlWxOf7+97/njDPO2HA8YcKETJ48OY899ljFZgIAAAAAAAAAoGPL1i7L0T85usMAdVYkGdlxbLqsIepiknVJSgSxN/X1g78uQA0AAAAAAAAAAAAAAABDSFWlB2D4+P3vf5+f//znbdbq6upy6623lgxQJ0ltbW3OOuusXHzxxe3OffrTn05DQ8NAjFrShAkTcsghh+Rf//Vfc+ONN+app57K4sWLc8stt+QTn/hE2ebYVLFYzMknn5zly5dvWLvooosyefLkis0EAAAAAAAAAEDHlq1dlvf99H157OUOfsH4yqSqkwB1i0K/T1ZCMUlDuh2g/uLbvjjQEwEAAAAAAAAAAAAAAAD9qKbSAzB8nHvuue3WzjrrrOy7775d3nvaaaflN7/5TX7/+99vWHvyySdz3XXX5cMf/nC/zlnKAw88kGnTpqVQKMuP7vXI5Zdfnj/84Q8bjt/+9rfn5JNPzjXXXFPBqQAAAAAAAAAAKKUlQP3QooeSJFPGTsnCFQs3XrA6qa5Nmrq5XyFdx6p7rZikMcnori8VoAYAAAAAAAAAAAAAAIChqarSAzA8PPLII7nzzjvbrG299dY544wzur3H+eef327t8ssv7/Ns3TF9+vRBGaCeN29ePve5z204HjNmTK644ooKTgQAAAAAAAAAQEcamxrzgZ9/YEOAusWUsVOav1iVpDpp6uFrKgP2VsvqJCO7vkyAGgAAAAAAAAAAAAAAAIYuEWr6xQ033NBu7cQTT0xdXV2399hnn32yzz77tFm79957M2/evD7PNxQVi8WceOKJWbly5Ya1888/P9OmTavcUAAAAAAAAAAAdKi6qjon7XVSqgrtX8sakyQ1SQpJsRd793eI+rxfJMVLqlLV1Pl1AtQAAAAAAAAAAAAAAAAwtIlQ0y/++7//u93acccd1+N9St1Tau/NwaWXXpo77rhjw/GMGTNy6qmnVnAiAAAAAAAAAABKWdewbsPXx+x2TC5996VtQtQvrliYlevSpiRdyRD15/47+cLfmudrvOvQVHXwGpkANQAAAAAAAAAAAAAAAAx9ItT02cqVK/OXv/ylzdro0aPzxje+scd7vfWtb223duedd/Z6tqFq7ty5+cIXvrDheOTIkbnyyitTKPTXjxICAAAAAAAAANAf/v7y3zP14qn5/O8/v2GtdYj6+RUL07BJgLpFJULUH/9j8o0HWr02tv/+aTyrsV2IWoAaAAAAAAAAAAAAAAAAhgcRavrswQcfTFNTU5u1fffdNzU1NT3ea7/99kttbW2btfvvv79P8w01TU1NOfHEE7Nq1aoNa+ecc05e85rXVHAqAAAAAAAAAAA29eiLj2aXS3fJiytfzIX3XNguRP351342TWvTaTm6nCHqD/45+fe7NnllbObMJGkTohagBgAAAAAAAAAAAAAAgOGj55Vg2MTf/va3dms777xzr/aqq6vL9ttvn3nz5m1Ymzt3bhoaGnoVtR6KLrnkktx5550bjvfdd9+cfvrpFZwIAAAAAAAAAIBNPfrio3nDv78h9U31zQvF5MJ7LkySfOMd38iCefPy6T+dnlR1skk23NrjsHQhPQtYb/18cs0fCm0f9KpXJXvtteGw8azGzHthXqZPmt7DaQAAAAAAAAAAAAAAAIDBqhs/4gSdmz9/fru1V7/61b3eb4cddmhz3NjYmKeffrrX+w0ljz/+eM4888wNx7W1tbnqqqtSXV1dwakAAAAAAAAAAGitXYA6STHFFIvFXHjPhfnAD2dmhyt37NHbWT0JSrfobri68HKyeLtk/5M3ecrJJ7e7VoAaAAAAAAAAAAAAAAAAhhcRavps0aJF7damTp3a6/1K3fv888/3er+hoqmpKSeccEJWr169Ye3MM8/MnnvuWcGpAAAAAAAAAABorVSAukVLiPq6+f/Zq6j0QISoq5Ymxa2bv75vu2T/k5qaD0aNSj73uV48EQAAAAAAAAAAAAAAABhKaio9AEPf0qVL262NHTu21/uVunfJkiW93m+ouOiii3LPPfdsON5zzz3zxS9+sYIT9Z/vf//7ueyyywb8OXPnzh3wZwAAAAAAAAAAm6/OAtQtimuKSXXvn1FM12HpTRVSOmBd9XLSNKntWkuI+s+7fCUZPbpXMwIAAAAAAAAAAAAAAABDhwg1fbZy5cp2a6NGjer1fqXuXbVqVa/3GwoeffTRfOUrX9lwXF1dnauuuiq1tbUVnKr/vPjii/nrX/9a6TEAAAAAAAAAAHrt0Rcfzesvf30aig0dX7QmfQpQt+iPEHXVsqRp69LX3rddsv+WP8uf87neDQgAAAAAAAAAAAAAAAAMGVWVHoChr76+vt3ayJEje71fqQj1unXrer3fYNfY2JgTTjgha9as2bB2xhlnZN99963gVAAAAAAAAAAAtHj0xUezx2V7dBqgrl6dfglQtyh2fUk7LeHqquVJ08TOL5z93OysWLOiF08BAAAAAAAAAAAAAAAAhhIRagZEoVDo+qIe3Fss9ubH6oaGb37zm7nvvvs2HO+66645++yzKzcQAAAAAAAAAAAbLF65OHtevmea0tThNXWrk8aa/n92b96YGbsqadqykwsKSSGF/Pmf/pyxI8f2djQAAAAAAAAAAAAAAABgiBChps9qa2vbra1evbrX+5W6t66urtf7DWaPPPJIm+B0oVDIlVdemZEjR1ZuKAAAAAAAAAAAkiSNTY1593XvTmOxscNrRqxK1g1AgLpFT0LUY1YlK8Z3ckGrAPV+2+3X19EAAAAAAAAAAAAAAACAIUCEmj4bPXp0u7X+jlCPGTOm1/sNVg0NDfnIRz6SdevWbVg79dRTc+CBB1ZwKgAAAAAAAAAAWvxh7h8y57k5HZ4fuTJZ2/73t/e77oSox6wWoAYAAAAAAAAAAAAAAADaq6n0AAx9W221Vbu1FStW9Hq/UveWesZQd8EFF+T+++/fcDxt2rScf/75FZxo4GyzzTbZfffdB/w5c+fOzdq1awf8OQAAAAAAAADA8HfzYzfnyBuO7PD8qBXJ6hHlm6eYpNDBudFrkhXjOjjZ6iYBagAAAAAAAAAAAAAAANj8iFDTZ9tuu227tQULFvR6v2eeeaZbzxjKFixYkHPPPbfN2hVXXJExY8ZUaKKBdcopp+SUU04Z8Oe87nWvy1//+tcBfw4AAAAAAAAAMLx1FaAevSxZNaqMA61XXP+5dYx69Jpk5dgObtikWj11zNQBmAoAAAAAAAAAAAAAAAAYzESo6bPp06e3W/v73//e6/2efvrpNsfV1dXZYYcder3fYLR48eKsW7duw3FdXV3OOOOMHu3x5JNPtlv7P//n/6Surq7N2le/+tUcddRRvRsUAAAAAAAAAGAz01WAeuwryYrRZRyohGKa+9Kj1pYIUBdK3JDk6qOuzuQtJg/wZAAAAAAAAAAAAAAAAMBgI0JNn+26667t1koFkrtj3bp1eeaZZ9qs7bTTTqmpGd5/qa5bty4PPfRQn/d59NFH260tXbq0z/sCAAAAAAAAAGwOugpQj3slWV7hAHWLmrXJqk0D1B24+qirc8LeJwzoPAAAAAAAAAAAAAAAAMDgVFXpARj69t5771RVtf1Lac6cOWloaOjxXnPmzEl9fX2btTe+8Y19mg8AAAAAAAAAALryzEvPdBqgHv/SIApQNyT1AtQAAAAAAAAAAAAAAABAN4hQ02djxozJ3nvv3WZt5cqVeeCBB3q815/+9Kd2awcddFCvZwMAAAAAAAAAgK4sW7ssH/vtx1JVKP061YSlycqxSaHMc5VS1ZA0jOretQLUAAAAAAAAAAAAAAAAgAg1/eJd73pXu7Wf/vSnPd6n1D2l9h7q9tprrxSLxT59vO1tb2u377x589pdd8IJJ5T/DwgAAAAAAAAAMEQsW7ss7/vp+/LQooey7Zht24WoJyxJVoxr/roqFQ5RNybbbjMlU8ZO6fJSAWoAAAAAAAAAAAAAAAAgEaGmnxx//PHt1q6++uqsW7eu23s88MADmT17dpu1/fffP9OnT+/zfAAAAAAAAAAAsKnWAeoW247ZNlXrX6ua+GKyclzbeyoWom5Mpmy9MT7dWYhagBoAAAAAAAAAAAAAAABoIUJNv9hjjz0yY8aMNmsvvvhivvOd73R7jy984Qvt1j75yU/2eTYAAAAAAAAAANhUY1NjPvDzD7QJUGft2uSll7LtymTy88mqsUmh2PzRWrlD1IWmpHZk+/VSIWoBagAAAAAAAAAAAAAAAKA1EWr6zZe+9KV2a2eddVb+8pe/dHnv9773vdxyyy1t1nbccce8//3v79azp02blkKh0Obj9ttv79a9AAAAAAAAAABsfqqrqnPSXielqlDVHJ9evDh5+eVk3bqMWdaUFeObQ9PVTZUNUReSPP3RpzJr5s+bZ93ElLFTUrX+NTABagAAAAAAAAAAAAAAAGBTItT0m8MPPzxHH310m7W1a9fmkEMOyU033VTynvr6+px77rn51Kc+1e7cd7/73dTW1g7IrAAAAAAAAAAAcMx2h+XS5/ZK1UsvJ42NSZLRLzXl+QlJU5oD0BUNUTclT5/8VLafPj3H7HZMLn33pe1C1G+Y/Ia89G8vZeFpCwWoAQAAAAAAAAAAAAAAgHZqKj0Aw8sVV1yR+++/PwsWLNiwtmzZshx11FHZd999c/TRR2f69OlZvXp1nnjiiVx77bV59tln2+1z6qmn5j3veU/Z5p4zZ07+6Z/+qcPzK1asaLf261//OnvttVeH9+y777750Y9+1B/jAQAAAAAAAADQ3555Jnnf+3LM/PnJtAn51IGvpHZJU17YJmlsVZZu+bK6KWlc338utjpfleZg9SZ96r4rJqlOLn3y3/ON6d9Ikhyz2zFJkk/916fSVGzKGya/IbOOm5XxI8Zn/Ijx/T0BAAAAAAAAAAAAAAAAMAyIUNOvttlmm/zud7/LoYcemkWLFrU5N2fOnMyZM6fLPWbOnJmLL754gCYsbcWKFXnooYd6dM9LL72Ul156qcPzW2yxRR+nAgAAAAAAAABgQDz9dPLe9ybr3285Zv7I3DHmpfzgjUlVof3lZQ9Rr9+oUFPIhfdcmCT5xjvahqivevCqXPt/rxWfBgAAAAAAAAAAAAAAADpVVekBGH5222233HfffZkxY0aP7qutrc1ZZ52V66+/PtXV1QM0HQAAAAAAAAAAm6MVa1Y0f7FsWXL88RsC1Elyw7Yv5of7JA01SWOJCHWLQppD1IVi80drVemnl7Fa9q1LiimmWCzmwnsuzOd///kNlxyz2zH55ft+KUANAAAAAAAAAAAAAAAAdEmEmgExderU/PGPf8ysWbNywAEHpFDo+Kfzxo4dmxNPPDEPP/xwzj777FRV+csSAAAAAAAAAID+sa5hXWY/OzvjvzE++1+xf/LlLydz5yZr1iTLl+dnIxfmxMMb0lDVHJZurEoaNnnVpXVvuiVEXVUiRF1IH1/IKiZpSFLXeql0iLq6yi95BwAAAAAAAAAAAAAAALpWU+kBGL4KhUJmzpyZmTNn5oUXXsh9992Xp556KsuWLUtNTU223nrr7Lbbbtlvv/1SV1fX9YadmD9/fp/uP/jgg1MsFru+cBC5/fbbKz0CAAAAAAAAAMCgtmDZgrz+8tfnpTUvJUnue+6+7L96dv68uLky/Z+TmvK+9ze3n6ubmgPShWLSVJXUNyW1HbxOUkhS1ZSkKmlKUixsci7N6z3SEqAeXepUMSkm//HQf+TcQ85NXU3f3rUBAAAAAAAAAAAAAAAANh8i1JTFpEmTcsQRR1R6DAAAAAAAAAAANhMLli3IHpftkVfWvtK8sD4ofd+ritn/pGLOuDk5/qQNy2lcX45uCVEX14eoazoJUVf3V4i6mKQ+yZiOL6kqVOW+f7pPgBoAAAAAAAAAAAAAAADokapKDwAAAAAAAAAAANCf2gSoi9lYml7vvi2TmSclTYW2641VG8PRhWLSVJ3Ud/GGVXVTUlVsvr61lhB1t6xOpwHqJHnrDm/N9uO37+6OAAAAAAAAAAAAAAAAAElEqAEAAAAAAAAAgGHksRceaxug3tSqJLVprkSX0BKiblr/ZlWxqpsh6qZehqhXJZnQ+SUzdpiRX/3jr1JdVd3VbgAAAAAAAAAAAAAAAABtiFADAAAAAAAAAADDws2P3ZzXXv7ajgPU9ek0QN2iJUTdoiVE3dThHUl1sech6pHL0q0A9W/e/5uMHzG+8wsBAAAAAAAAAAAAAAAAShChBgAAAAAAAAAAhrybH7s5R95wZPNBRwHqpMsAdYti2oeoN41Tb6q6mFR3M0Q9fmmyZqvOZxCgBgAAAAAAAAAAAAAAAPpKhBoAAAAAAAAAABjSuhWgLqbbAeoWvQlRV3UjRD1+cbJs286fLUANAAAAAAAAAAAAAAAA9AcRagAAAAAAAAAAYMhqE6AupSVA3cs3pfo7RD1+WbJsStfPve691wlQAwAAAAAAAAAAAAAAAH0mQg0AAAAAAAAAAAxJd/39rrYB6k2iz30NULfedtMQdUN1z0PUY15Olm3V9fNuOv6mTN1yau+GBQAAAAAAAAAAAAAAAGhFhBoAAAAAAAAAABhyZj87OzP+Y8bGhU0D1C1r/fSG1KYh6hRKh6gL6z+StiHqsUuTZVt3/Zybjr8pR+x6RH+MDAAAAAAAAAAAAAAAACBCDQAAAAAAAAAADC2zn52dN/3oTRsXSgWo16bf347qKkRdaHsqSXOIevwrySuTut5fgBoAAAAAAAAAAAAAAADobyLUAAAAAAAAAADAkNHtAHX1wDy/qxB1a1VJJi5Llm7d9b63vP8WAWoAAAAAAAAAAAAAAACg34lQAwAAAAAAAAAAQ8KKNSvaBqhLWZMBC1C3aAlRNyUprP9oqE4aN7nuVUuTprFVqWopVBdK73fT8Tflnbu8c4CmBQAAAAAAAAAAAAAAADZnItQAAAAAAAAAAMCQcPR1R7ddKG5ywZokNeWZpZjmpnSxKSkU24eopyxNVmzR/HrWtmtahag3cdPxN+WIXY8ow8QAAAAAAAAAAAAAAADA5qhMP3IFAAAAAAAAAADQe3t/b+88uOTBji9YnaS2XNM0a0pSKCQpJlXrq9QN1cmUxcmqCYU21267pirPj0masrFGLUANAAAAAAAAAAAAAAAADLSqSg8AAAAAAAAAAADQmWkXTWsfoC62+npVyh6g3jBGIWkqrA9SF5O9n0nqx2Z9nbqVurpsO3bbVBWaX9kSoAYAAAAAAAAAAAAAAADKQYQaAAAAAAAAAAAYtHa4cIf8fcXfO75gZZK6so1TUkuI+sD5yexrq3LprSNSVdzkotGjkyTv3OmdefrTTwtQAwAAAAAAAAAAAAAAAGUhQg0AAAAAAAAAAAxKO31npzyz8pmOL1iRZETZxunUDi8lt12fpLo6xyzaMpfeNWFjiLq6OhkxIm+Y/IbMOm5Wpm45tZKjAgAAAAAAAAAAAAAAAJsREWoAAAAAAAAAAGDQefMP3pynlj3V8QXLk4ws2zidmvxKMv/yJIVCssUWSaGQY+aP3BiiHjduQ4B6/IjxFZ4WAAAAAAAAAAAAAAAA2JzUVHoAAAAAAAAAAACA1g6+8uD8edGfO77glSSjyzZOp7ZakSz83vqDUaOSmo2vZB0zf2Ry4AG5anoh1/7fawWoAQAAAAAAAAAAAAAAgLIToQYAAAAAAAAAAAaNt135tvxxwR87vuClJGPLNk6nahuSnVYkKRSaP0aMaHvB9Ok55svX5aixY1JdVV2RGQEAAAAAAAAAAAAAAIDNW1WlBwAAAAAAAAAAAEiSt1/99s4D1EszaALUNQ1J/cjkvu2T/U8uNi/W1m68YMqU5IYbkvHjBagBAAAAAAAAAAAAAACAihGhBgAAAAAAAAAAKu64647LH57+Q9vFYquPJUnGlX+uUqobk4aRG4/v2259iLp6fWx6+vTkl79Mpk6tyHwAAAAAAAAAAAAAAAAALUSoAQAAAAAAAACAivrkrz+Znz3xs40LLeHpFouTjC/zUB1pTBpHtF++71XF7H/0i8nMmcl//ZcANQAAAAAAAAAAAAAAADAoiFADAAAAAAAAAAAV84lffiL//sC/Nx9sGp9OkkVJtijvTB1qSqdvXN03uSH7v+6eZPxgKWYDAAAAAAAAAAAAAAAAm7uaSg8AAAAAAAAAAABsno74jyPym7//pvlg0/h0kjybZNtyTtSJpiSFJLUlzhU2fjn7udlZsWZFxo4cW6bBAAAAAAAAAAAAAAAAADomQg0AAAAAAAAADKgXX3wxs2fPzty5c7Ns2bLU1tZmq622yu6775599903tbWliq6Vs2jRosybNy/PPPNMXnjhhaxcuTL19fUZP358JkyYkGnTpmXvvffO+PHjB3SO+vr6zJ49O48++miWLFmyYYaddtop++23X7bZZpsBfT4MtNdf+vr879L/bT4oFaBekGRyOSfqRGcB6k38+Z/+LEANAAAAAAAAAAAAAAAADBoi1AAAAAAAAADAgPjpT3+aSy65JHfddVeKxVKF2WTcuHGZOXNmPve5z+U1r3lNmSdMXn755fzpT3/KXXfdlT//+c/53//93yxevLjL+wqFQvbcc898+MMfzoc+9KFMmjSp32Z67LHH8s1vfjP/+Z//meXLl3f4/BkzZuS0007Lscce22/PhnLpMkD9XAZPgLqYzgPUhY1f3vdP92W/7fYrw1AAAAAAAAAAAAAAAAAA3VNV6QEAAAAAAAAAgOHl2WefzcEHH5x/+Id/yJ/+9KcOA9RJsnz58lx55ZXZc889c+6553Z67UC44IILcuSRR+aCCy7Ibbfd1q0AdZIUi8U8/PDDOeOMM7LTTjvl29/+dhoaGvo0S1NTU84555zsueeeueqqqzoMULc8/84778xxxx2XQw45JAsXLuzTs6Gc3nbl2zoPUL+YpP+67n1TXP8hQA0AAAAAAAAAAAAAAAAMUSLUAAAAAAAAAEC/efzxx7Pffvvljjvu6NF969aty1e+8pV84AMfSGNj4wBNNzBWrFiR008/PUcccURWr17dqz0aGxvzj//4jzn77LNTX1/fo3tvv/327LfffnnyySd79Wwop7df/fb8ccEfO77glSRblm2czrUEqOs6OC9ADQAAAAAAAAAAAAAAAAwBNZUeAAAAAAAAAAAYHpYsWZJ3vOMdWbhwYbtz++yzT44++uhMnz49q1evzuOPP57rrrsuzz33XJvrrr/++kyaNCkXX3xxmaZua8yYMXnjG9+YXXfdNTvvvHO22WabjBs3Lo2NjVm2bFkef/zx3H333bn33ntTLBbb3HvLLbfkmGOOyX/913+lUCh08ITSPv3pT+fGG29stz5x4sR88IMfzG677Zbx48dn/vz5+d3vftcu8v3ss8/mne98Z+6///5sueVgKfhCW2+/+u35w9N/2LhQ3OSCpUnGl3OiThSTrE0ytoPzAtQAAAAAAAAAAAAAAADAECFCDQAAAAAAAAD0i4997GN5+umn26yNGzcuP/nJT3LUUUe1u/68887Leeedl7PPPrvN+iWXXJLDDz887373uwdy3CTJiBEjcuihh+bd7353DjvssLz+9a9PdXV1l/c9+eST+exnP5ubbrqpzfott9ySK664Ih/72Me6PcOvf/3rXHbZZe3WP/GJT+Siiy7K6NGj26x/8YtfzF133ZVjjz02zz///Ib1efPm5ROf+ERmzZrV7WdDubznmve0DVBvakWGToC6FQFqAAAAAAAAAAAAAAAAYLCrqvQAAAAAAAAAAMDQ9/vf/z4///nP26zV1dXl1ltvLRmgTpLa2tqcddZZufjii9ud+/SnP52GhoaBGLWNc845J3/4wx9yxhlnZO+99+5WgDpJdt555/zqV7/KJz/5yXbnLrjggm4/v76+Pqeddlq79c985jO5/PLL2wWoWxx44IG55557MnHixDbrN954Y26//fZuPx/K4aSfn5TfPvXbtovFVl+vSDKinBN1ojsB6kLzp3tOukeAGgAAAAAAAAAAAAAAABj0RKgBAAAAAAAAgD4799xz262dddZZ2Xfffbu897TTTss73vGONmtPPvlkrrvuun6bbyAUCoV85zvfyatf/eo26/PmzcucOXO6tcc111yT+fPnt1nbY489uhWynj59er773e+2W//qV7/arWdDOXz99q/n6v+9uuMLWgLUhXJN1IXl6VaA+tYP35o3T31zOSYCAAAAAAAAAAAAAAAA6BMRagAAAAAAAACgTx555JHceeedbda23nrrnHHGGd3e4/zzz2+3dvnll/d5toE2YsSIHHfcce3W//rXv3br/lJ/xnPOOSd1dXXduv8DH/hA9thjjzZrt912Wx577LFu3Q8D6enFT+dLd3yp/Yni+s8rM7gC1MuSTOzkfCGpqarJvFPn5ZDph5RrKgAAAAAAAAAAAAAAAIA+EaEGAAAAAAAAAPrkhhtuaLd24okndjuknCT77LNP9tlnnzZr9957b+bNm9fn+QbaTjvt1G5t4cKFXd735JNPZs6cOW3WpkyZkqOOOqpHz//4xz/ebu3666/v0R4wEH7yyE86PrkuSV2GVIA6Se47+b5M22paGQYCAAAAAAAAAAAAAAAA6B8i1AAAAAAAAABAn/z3f/93u7Xjjjuux/uUuqfU3oPNmjVr2q11J8B9yy23tFt773vfm5qamh49v9T37b/+6796tAf0p1dWvZIL/3Rhzrz9zNIXrEtz1HmwBKhfSMcB6lZz/vjIH2fvV+1dpqEAAAAAAAAAAAAAAAAA+ocINQAAAAAAAADQaytXrsxf/vKXNmujR4/OG9/4xh7v9da3vrXd2p133tnr2cpl9uzZ7dZ22mmnLu8r9WebMWNGj58/efLk7Lzzzm3W7r///qxatarHe0Ff3TbvtmzxrS3yr3/419IXrFv/ebAEqBcleVWJ9U0i2afsc0o+9MYPlWkoAAAAAAAAAAAAAAAAgP4jQg0AAAAAAAAA9NqDDz6YpqamNmv77rtvampqerzXfvvtl9ra2jZr999/f5/mG2hPPPFEfvGLX7RZGzlyZA466KAu7y31Z3vLW97SqzkOOOCANseNjY156KGHerUX9NZt827LoT8+tOML1iUpZvC8sfR8ku3Xf13Y5KOV9+/+/nzviO+VdTQAAAAAAAAAAAAAAACA/jJYfqQLAAAAAAAAABiC/va3v7Vb23nnnXu1V11dXbbffvs2a3Pnzk1DQ0Ov9htoTz31VI488sisWbOmzfqJJ56YLbbYotN76+vr89RTT7VZq62tzatf/epezbLTTju1W3vsscd6tRf0xpALUC9Osl1KRqdbO3za4bn2H64t01AAAAAAAAAAAAAAAAAA/W+w/FgXAAAAAAAAADAEzZ8/v91ab0PKSbLDDju0OW5sbMzTTz/d6/3629q1a3PvvffmX/7lX/K6172uXeh5+vTpOf/887vc5+mnn05TU1Obte233z5VVb17lWPT71uSdpFrGChdBqiTwRWgXppkcteXHTr10Pz3R/57wMcBAAAAAAAAAAAAAAAAGEg1lR4AAAAAAAAAABi6Fi1a1G5t6tSpvd6v1L3PP/98dtxxx17v2VP/8z//kzPOOKPNWkNDQ5YvX57nnnsuDQ0NJe/bZZdd8rvf/S4TJkzo8hnl+r7BQOtWgHpNkuqyjNO1l5NMWv91oePL9tpqr/zhpD+UYSAAAAAAAAAAAAAAAACAgSVCDQAAAAAAAAD02tKlS9utjR07ttf7lbp3yZIlvd6vN15++eU89NBD3b5+zJgx+cQnPpFzzjknY8aM6dY9w/H71pHvf//7ueyyywb8OXPnzh3wZ9DWkAtQL0+yddeXvXrsq/PAqQ8M+DgAAAAAAAAAAAAAAAAA5SBCDQAAAAAAAAD02sqVK9utjRo1qtf7lbp31apVvd5vIBUKhZx88sk577zzss022/To3s3p+/biiy/mr3/9a6XHoJ91GKAutvp6TQbP20krkmzZ9WVTx0zN/NPnD/Q0AAAAAAAAAAAAAAAAAGVTVekBAAAAAAAAAIChq76+vt3ayJEje71fqZjyunXrer3fQCoWi/nRj36UPfbYI+ecc06WL1/e7Xs35+8bQ1/JAHUxbQPUqzN4AtSrkmzR9WU7jt8xT5/x9EBPAwAAAAAAAAAAAAAAAFBWItQAAAAAAAAAQL8qFAr9em+xWCxx5cA57rjjUiwW23ysXLkyzz77bP7nf/4n55xzTqZPn77h+hdeeCFnn312Xv/61+fPf/5zr5871L9vbB5eWfVK2wD1pvHppDlAXVvGoTqzOsn4Euub/C2z/+T9M/czc8sxEQAAAAAAAAAAAAAAAEBZiVADAAAAAAAAAL1WW9u+NLt69epe71fq3rq6ul7v119Gjx6dV73qVTnssMPyla98JXPnzs33vve9jBkzZsM18+fPz9vf/vbcfffdXe63uXzfGH7Ouu2sjQelOuerMngC1GuSjOv6srdt/7bc+/F7B3wcAAAAAAAAAAAAAAAAgEoQoQYAAAAAAAAAem306NHt1vo7ptw69DxYFAqFnHLKKfntb3+bUaNGbVhfsWJF3ve+9+Wll17q9P7N9fvG0PYvv/mXXDLnkuaDUgHqlUkGS/t8bZKxHZwrbPzyoO0Pyu0n3z7w8wAAAAAAAAAAAAAAAABUSE2lBwAAAAAAAAAAhq6tttqq3dqKFSt6vV+pe0s9Y7A46KCDcvbZZ+fzn//8hrUFCxbkoosuyte+9rUO79ucvm/bbLNNdt999wF/zty5c7N27doBf87m6rK7Lus8QL0iychyTtSJdUm60WA/bIfD8j8n/s+AjwMAAAAAAAAAAAAAAABQSSLUAAAAAAAAAECvbbvttu3WFixY0Ov9nnnmmW49YzA57bTT8rWvfS3Lly/fsPbDH/4w5557bgqFQsl7Nqfv2ymnnJJTTjllwJ/zute9Ln/9618H/Dmbo6/84Ss590/nNh+UClAvTzKqnBN1oj7J6E7Or/9b8thdjs1P3//TckwEAAAAAAAAAAAAAAAAUFFVlR4AAAAAAAAAABi6pk+f3m7t73//e6/3e/rpp9scV1dXZ4cdduj1fuUwYsSIHHrooW3WXnzxxU6DyDvssEOqqtq+tvHMM8+kqampVzNs+n1LSv9vAz3VVYB6xLIMrgB1N2e55rhrBnQUAAAAAAAAAAAAAAAAgMFChBoAAAAAAAAA6LVdd9213dqTTz7Zq73WrVuXZ555ps3aTjvtlJqaml7tV07Tpk1rt/bUU091eH1dXV27SHR9fX3JmHR3zJ07t93aa1/72l7tBS2ue/C6TgPUI19O1o4u60gda0jXAepC86e//vNfM6pusJSzAQAAAAAAAAAAAAAAAAaWCDUAAAAAAAAA0Gt77713qqravn4wZ86cNDQ09HivOXPmpL6+vs3aG9/4xj7NVy4jR45st7Z8+fJO79lnn33ard1zzz29ev7dd9/d5ri6ujpveMMberUXJMnNj92cD/zqA80HJQLUo15K1owt70wdakzS/m/BttYHqO858Z7sts1uAz0RAAAAAAAAAAAAAAAAwKAhQg0AAAAAAAAA9NqYMWOy9957t1lbuXJlHnjggR7v9ac//and2kEHHdTr2crphRdeaLe29dZbd3rPW9/61nZrpb4HXXn++efzxBNPtFnbZ599Mnr06B7vBUlzgPrIG45sPigRoK5bnKweV96ZOtSYZEQX16wPUF991NV58w5vHuiJAAAAAAAAAAAAAAAAAAYVEWoAAAAAAAAAoE/e9a53tVv76U9/2uN9St1Tau/B6N577223Nnny5E7vOfzww9ut/epXv0pDQ0OPnv2zn/2s3dpQ+b4x+Pzq0V91GqCueiFZt0VZR+pYU7odoL7yiCtzwt4nDPBAAAAAAAAAAAAAAAAAAIOPCDUAAAAAAAAA0CfHH398u7Wrr74669at6/YeDzzwQGbPnt1mbf/998/06dP7PN9Ae/DBB/Poo4+2Wdtiiy2y2267dXrfLrvskn322afN2rPPPpubb765R8//wQ9+0G7tH//xH3u0ByTJjx/4cd5743ubD0oEqLMoaZpYzok60dTF+UI2BKgve/dlOWmfkwZ6IgAAAAAAAAAAAAAAAIBBSYQaAAAAAAAAAOiTPfbYIzNmzGiz9uKLL+Y73/lOt/f4whe+0G7tk5/8ZJ9nG2iNjY359Kc/3W79Pe95T2pra7u8v9Sf8ayzzkp9fX23nn/DDTfk4YcfbrN28MEH57WvfW237ocW5/3xvHzk1x9pPigVoH42ydblnKgTLQHquhLnWsWnk+TCwy7MJ980+P9ZAgAAAAAAAAAAAAAAADBQRKgBAAAAAAAAgD770pe+1G7trLPOyl/+8pcu7/3e976XW265pc3ajjvumPe///3deva0adNSKBTafNx+++1d3nfppZfm97//fbeeUcratWvzgQ98IHfeeWeb9UKhkFNPPbVbe3zoQx/Kq1/96jZrDz/8cL74xS92ee/8+fNLPufLX/5yt54NLb55xzdz5m1nNh+UClAvSLJtOSfqxKYB6sImH618fK+P5/QZp5dtNAAAAAAAAAAAAAAAAIDBSIQaAAAAAAAAAOizww8/PEcffXSbtbVr1+aQQw7JTTfdVPKe+vr6nHvuufnUpz7V7tx3v/vd1NbWDsisLe6///68853vzFve8pZcdtllef7557t1X319fX7+859nzz33zKxZs9qd/+hHP5o3v/nN3dqrrq4uF198cbv1Cy+8MKecckpWr15d8r677747b3nLW7JkyZI268cdd1wOPfTQbj0bkuTzt3w+n7/9880HpQLUzySZXM6JOtEy34iUjE63dswux+Tfj/73MgwFAAAAAAAAAAAAAAAAMLjVVHoAAAAAAAAAAGB4uOKKK3L//fdnwYIFG9aWLVuWo446Kvvuu2+OPvroTJ8+PatXr84TTzyRa6+9Ns8++2y7fU499dS85z3vKdvc9957b+6999586lOfym677Za99947u+++eyZOnJgtttgihUIhy5Yty3PPPZcHH3wwf/zjH9vFn1sccsgh+fa3v92j57/3ve/Nxz/+8fzgBz9os37ZZZdl1qxZ+eAHP5jddtst48aNy9NPP51bbrklt99+e7t9Xv3qV7fbAzrzz7/+51z+wOXNB6UC1IuSTCnnRJ0orv8Y0fWlH9rzQ/nx//3xQE8EAAAAAAAAAAAAAAAAMCSIUAMAAAAAAAAA/WKbbbbJ7373uxx66KFZtGhRm3Nz5szJnDlzutxj5syZufjiiwdows41NTXlkUceySOPPNKr+9/73vfmuuuuy6hRo3p87/e+970sXrw4P/vZz9qsL1myJJdcckmX90+ZMiW/+93vMnHixB4/m83Tu/7fu3LL/Fs6vmBRkq3LNk7nWgLUdV1fetLrT8qVx1w50BMBAAAAAAAAAAAAAAAADBlVlR4AAAAAAAAAABg+dtttt9x3332ZMWNGj+6rra3NWWedleuvvz7V1dUDNF1bY8aM6Zd9pk6dmp/+9Kf5xS9+0asAdZLU1NTkxhtvzJe//OXU1PTsd4ofdNBBmT17dl7zmtf06tlsfmZcMaNtgLq4yQWDLUC9Nt0KUJ8540wBagAAAAAAAAAAAAAAAIBNiFADAAAAAAAAAP1q6tSp+eMf/5hZs2blgAMOSKFQ6PDasWPH5sQTT8zDDz+cs88+O1VV5XuV4fvf/34eeeSRXHjhhTnyyCMzefLkbt+77bbb5vjjj89vf/vbzJs3L8cee2yf56mqqspXv/rV/O///m9OOOGEjB07tsNrC4VCDjzwwNx444254447st122/X5+WweZlwxI3c9d1fHF7ycwRWgXp2k5W+Fjv9Rkq8f/PV87bCvlWEoAAAAAAAAAAAAAAAAgKGlptIDAAAAAAAAAADDT6FQyMyZMzNz5sy88MILue+++/LUU09l2bJlqampydZbb53ddtst++23X+rq6vr0rPnz5/f63t133z277757Tj/99CTJwoULM3fu3MyfPz9Lly7NypUrUywWM27cuEyYMCGTJk3KG97whkyZMqVPM3fmta99ba6++ur84Ac/yOzZs/Poo49m8eLFaWhoyPjx47PjjjvmTW96UyZNmjRgMzA8HfDDA3LPwnvaLhZbff1ykjFlHKgrq5OM7/qybx32rZwx44wBHwcAAAAAAAAAAAAAAABgKBKhBgAAAAAAAAAG1KRJk3LEEUdUeoxumTJlSqZMmZIZM2ZUepTU1dXlwAMPzIEHHljpURgG9v33fXP/8/d3fMHLaQ5QF8o0UFdeSrJN15dd9PaL8tkDPzvg4wAAAAAAAAAAAAAAAAAMVSLUAAAAAAAAAAAwjB129WHtA9TFVl+vyZAMUP/yuF/m6NcdPeDjAAAAAAAAAAAAAAAAAAxlItQAAAAAAAAAADBMffA/P5hbn75140JxkwvWJKnO4AlQL00yqcT6JvP97aN/y66v2rUcEwEAAAAAAAAAAAAAAAAMaVWVHgAAAAAAAAAAAOh/J//i5Fz712s3LmwaoF6bwRWgXpLSAepNXH3U1QLUAAAAAAAAAAAAAAAAAN0kQg0AAAAAAAAAAMPMN+74Rq56+KqNC6UC1IUMmgD1qEVJtu3gZKsZrz7q6pyw9wllmAgAAAAAAAAAAAAAAABgeBChBgAAAAAAAACAYeTmv92cf7v93zYudBSgHiRvDo1+Plm9fdfXXfquSwWoAQAAAAAAAAAAAAAAAHpokPwoGQAAAAAAAAAA0Fe3zbstR846cuPCpgHqdRlcAerFyartOrmg0PzptH1Py6n7n1qWmQAAAAAAAAAAAAAAAACGk0Hy42QAAAAAAAAAAEBf3Dbvthz640M7v6iYQfPGUO3SZNXkTi5oFaC++D0Xl2MkAAAAAAAAAAAAAAAAgGFnkPxIGQAAAAAAAAAA0FuvrHqlfYC6uMlFa5NUl2uiLixL6id1cl6AGgAAAAAAAAAAAAAAAKBfiFADAAAAAAAAAMAQN2H0hOy85c4dX7AmgydAvTzJxE7OC1ADAAAAAAAAAAAAAAAA9BsRagAAAAAAAAAAGAae+PQTG0PUxVYn1iSpqcREJaxIsmUn5wWoAQAAAAAAAAAAAAAAAPqVCDUAAAAAAAAAAAwTT3z6iew8fvrGhdUZPAHqVUm26OT8+gD199/+fQFqAAAAAAAAAAAAAAAAgH4iQg0AAAAAAAAAAMPIE9O/nZ1frmqOPtdWepr1VicZ38n59QHqL8/4cv75wH8ux0QAAAAAAAAAAAAAAAAAmwURagAAAAAAAAAAGE4efjgLq5qSukoPst6aJOM6Od8qQP3Vw75ajokAAAAAAAAAAAAAAAAANhs1lR4AAAAAAAAAAADoPzsuOScrO4s+l9PaJGM7Ob8+QH3t0dfm/Xu9vxwTAQAAAAAAAAAAAAAAAGxWRKgBAAAAAAAAAGCY2P+caZk3rqnSYzRbl2RMJ+fXB6hvOv6mHLHrEeWYCAAAAAAAAAAAAAAAAGCzU1XpAQAAAAAAAAAAgL47/II9c3/93ys9RrP6JKM7OS9ADQAAAAAAAAAAAAAAAFAWItQAAAAAAAAAADDEvecbe+UPK/6/JEl1hWdJQ5JRnZxfH6D+5cxfClADAAAAAAAAAAAAAAAADDARagAAAAAAAAAAGMKOufBNuWX5Q23WKhaibkgyspPz6wPUb5j0BgFqAAAAAAAAAAAAAAAAgDIQoQYAAAAAAAAAgCHqk997T256eXbJc2UPUTemWwHqUdWjctsJt6W6qmKpbAAAAAAAAAAAAAAAAIDNhgg1AAAAAAAAAAAMQRde/bHc+NwtqS52fE3ZXg5qTDKig3OFbAxQV43K459+PFuO2rJMgwEAAAAAAAAAAAAAAABs3kSoAQAAAAAAAABgiLn0mtNy/hNXpSnJ6GJ1yRB1y9KAvyDUlNIB6lbx6SQZWTUyj5/2eLYfv/1ATwQAAAAAAAAAAAAAAADAejWVHgCAynpm+TN5ftXzlR5jQDQ1NXV5zeKVi7O2cW0ZpmE4qG+q7/R8Y7Ex/98L/1+ZpgGgmBJFlVZWrl3pn8sAAMBmaV3jukqPAAAMsB/e8Pmc8+hlaf1fREcXq7Oq2JjG9cXpTf8NalWSrv8Lai80lXhYBx455REBagAAAAAAAAAAAAAAAIAyE6EGYNgGSYrF7v2k83D981MZ/noCGFz8cxkAAAAAGG5+/LOzc+bD305jifLz6FRndVNj6qtK39vvIeqWAPWIEucKbQ//+JE/ZseJO/bn0wEAAAAAAAAAAAAAAADohg5+5AwAAAAAAAAAABhM/vPmb+X0+7+ehhIB6ha1TUlVY8d79NvLQi0161IB6k3MOnZW3jrtrf31ZAAAAAAAAAAAAAAAAAB6QIQaAAAAAAAAAAAGuV/f8r2cctcXOw1QNzQ116dHFpPqgQxRt4xQ18H5wsYvZx07KzP3mNnXJwIAAAAAAAAAAAAAAADQSzWVHgCAgVOXuhRSSLHVDyFPGjMpDY0NFZyqfIrFYtY2rG23Vqja+BPPW4zYImNHjC33aAxRi1ctzur61RsXimnzE/q1VbXZZvQ2ZZ8LYHO1tnFtisVWsZWmtPnn8ti6sdly5JZlnwsAAGCwGVM7ps3xiOoRFZoEAOiLXz10Q+oLHQeoN21TjygmaxuSxg7eDqpK879W7bHi+o+OAtSt/PDdPxSgBgAAAAAAAAAAAAAAAKgwEWqAYayuri5bjtoyS1cv3bA2ZeyUCk5Ufi+vfTkNTR1Ht6dvMT0j60aWcSKGskKhkBdWvtDh+S1GbpGpE6aWcSKAzduK+hVtfznAJrYbt122Gr1VGScCAAAYGqZu4d9hAcBQdOXn/pR8c0Z+/vK9pS8oJNWpSmNxY1p6RPo5RF1MsjZJZ7/nd/3vBD7jzWfko2/6aE92BwAAAAAAAAAAAAAAAGAAVFV6AAAG1jt3fGelR6ioiaMmdnhudM1oAWp6ZNLoSakqdPx/n7YZs00ZpwFg0uhJHZ6rra7N+NrxZZwGAABgaKirqsvM186s9BgAQC9d+bk/ZebEGR2eLxQKqd7kv2eNSFLd8e/t7f7LQz0IUJ8548x86/BvdXdnAAAAAAAAAAAAAAAAAAaQCDXAMPfRfT+aA3c4sNJjVMz247fPhBET2q2PrBmZaROmlX8ghrS6mrrsMGGHVBeq26wXUsirxr4q4+rGVWgygM3TVqO3yjaj2/8CgJrqmkybMC21tbUVmAoAAGDwGlE9Iqe86ZTsMHGHSo8CAPTBD864PSduc3iH53sbou70JaIeBKi/POPL+dphX+tsNwAAAAAAAAAAAAAAAADKqKbSAwAw8L56yFdzzzP35N4F92bxqsWVHqfs3rz9m7PglQV5btlzWdu0NpPHTM4uW+9S6bEYwlatW5UnljyRl9a+lPF14zN9i+nZcvSWlR4LYLP05u3fnMXLF2fesnlZVb8qW4/aOrtsuUvq6uoqPRoAAMCgUV1VnR0n7Jh3veZdmTx2cqXHAQD6wbc/85vUXXpMfrDwppLnC4VCqlOVxmLThrURSdY2JI0dvC1USFKdpLHUyR4EqL962Fe7nB8AAAAAAAAAAAAAAACA8hGhBthMvGXqW/KWqW+p9BgAAAAAAAAA9IMLPvWL1F3+vnz/mZ+lqcT5noSoC62+3jRE/d2bk+8eXJUnSz2l1Y3fOOwb+dyMz/X8DwIAAAAAAAAAAAAAAADAgKqq9AAAAAAAAAAAAEDPffWTs/LZ6e/v8AWgQqGQ6kLbsyOSVDe0uqbEfdVJqorJt36ffOqFKXnixm2z88tVbW9qdeOPj/6xADUAAAAAAAAAAAAAAADAICVCDQAAAAAAAAAAQ9SZH/1xvrDLSakumZPuPERd+o7mF4ouuX9Kzhh3WHLQQcknP5knDvl5dp4wvd1Ns46dlQ/t9aE+/zkAAAAAAAAAAAAAAAAAGBg1lR4AAAAAAAAAAADovTNO/GHG37Blvvjwt9OYYrvzhUIh1alKY7Fpw9qYquqsa2rM2k1+hX0hydf3OC2nfu3idvs8kaOzy3d3yZMvPZmkOUA9c4+Z/flHAQAAAAAAAAAAAAAAAKCfiVADAAAAAAAAAMAQ97Hjv5GRtaNy+v1fT0MHIeqaVK8/aP5Ul+qkVYi6kOQru3ws/3r8xR0+54lPP5FXVr2SdQ3rss34bfr3DwEAAAAAAAAAAAAAAABAvxOhBgAAAAAAAACAYeDDx56dUSPG5JS7vpj6QvsQdUt8urWWEHV9VXL6tA/myx/5QZfPmTB6Qj9MCwAAAAAAAAAAAAAAAEA5VFV6AAAAAAAAAAAAoH/8wxH/mh8d/J2MKHb/taBRqclFu3465//TNQM4GQAAAAAAAAAAAAAAAACVIEINAAAAAAAAAADDyFGHn5ofHvztboWoq5L82y4n5lMfumTgBwMAAAAAAAAAAAAAAACg7ESoAQAAAAAAAABgmDnq8FPzk3f/sNMQdVWSz05/f8448YflGwwAAAAAAAAAAAAAAACAshKhBgAAAAAAAACAYejtB52Qnx1zfUYXa0qeP2XqsTnzoz8u81QAAAAAAAAAAAAAAAAAlJMINQAAAAAAAAAADFMHvunY/OZ9v86YYm2b9Y9POTJf/eSsCk0FAAAAAAAAAAAAAAAAQLmIUAMAAAAAAAAAwDC2117vzM3v+1XGrQ9Rf2jrw3LBp35R4akAAAAAAAAAAAAAAAAAKAcRagAAAAAAAAAAGOb22uudufVDd+TjU47Mdz97S6XHAQAAAAAAAAAAAAAAAKBMaio9AAAAAAAAAAAAMPB23v1NuWD3X1R6DAAAAAAAAAAAAAAAAADKqKrSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAADQ/0SoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAIYhEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACAYUiEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAGAYEqEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAGIZEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAACGIRFqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGFIhBoAAAAAAAAAAAAAAAAAAAAAAAAAAABgGBKhBgAAAAAAAAAAAAAAAAAAAAAAAAAAABiGRKgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAhiERagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBhSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBgSoQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAYhkSoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAIYhEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACAYUiEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAGAYEqEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAGIZEqAEAAAAAAAAAAAAAAAAAAAAAAAAAAACGIRFqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGFIhBoAAAAAAAAAAAAAAAAAAAAAAAAAAABgGBKhBgAAAAAAAAAAAAAAAAAAAAAAAAAAABiGRKgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAhiERagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBhSIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBgSoQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAYhkSoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAIYhEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACAYUiEGgAAAAAAAAAAAPj/2bvvKKnrc3/gzwK79CI2xIggFrDT7ApIVGJswVzNjRKxJGo0enOvJcQbKZqfLYlYrrkkRlETNdYYvahEBRtBKbagEaUIiIiigCDsLsv8/uAITmaBnbK7s999vc7hnMyz8/18Pjs5vPnuPDuPAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAJalUKlXfhwAohLZt28bKlSsz6s2bN4/u3bvXw4kAAAAAAIBiM3v27CgvL8+ot2nTJr744ot6OBEAhaJnDAAAAAAAbImeMQAAAAAAAACNkSHUQGK0aNGi2l8AAgAAAAAA2JLmzZvHmjVr6vsYAORBzxgAAAAAAMiVnjEAAAAAAAAASdakvg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOEZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACdSsvg8AUCgdOnSIZcuWZdRLS0ujS5cudX8gcjJ79uwoLy/PqDdv3jy6d+9eDycCGiJZAuRLjgD5kiNAvuQIkC85smnz58+PysrKjHqHDh3q/jAAFJSecXK4lwHyJUeAfMkRIF9yBMiXHAHyJUc2Tc8YAAAAAAAAgMbIEGogMRYvXlzfR6AA9tprr3j77bcz6t27d4+ZM2fWw4mAhkiWAPmSI0C+5AiQLzkC5EuOANAY6Rknh3sZIF9yBMiXHAHyJUeAfMkRIF9yBAAAAAAAAAD4uib1fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACs8QagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASyBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQyhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggQyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASyBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQyhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggQyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEigZvV9AAD4uh//+MfxySefZNS33XbbejgN0FDJEiBfcgTIlxwB8iVHgHzJEQCgIXMvA+RLjgD5kiNAvuQIkC85AuRLjgAAAAAAAAAAX1eSSqVS9X0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqrSX0fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDCM4QaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASyBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQyhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggQyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASyBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQyhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggQyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABKoWX0fAIC69cknn8TUqVNj9uzZsWLFiigtLY2tt9469txzz+jbt2+UlpbW9xHTLF68OObOnRsLFiyIJUuWxKpVq6KysjLatWsX7du3j65du0avXr2iXbt2tXqOysrKmDp1arzzzjuxdOnSDWfo3r179OvXL7bddtta3R+KiRzJzhdffBEzZ86M9957Lz7//PP44osvonXr1rHVVlvFjjvuGP369Yv27dvXyt5QrOQIkC85kr/58+fHW2+9FfPmzYsVK1ZEKpWKNm3aROfOnaN79+6x5557RvPmzevsPFAfZEluPvroo5gxY0Z89NFHsWzZsigvL4/27dtHhw4dokePHrHvvvtGWVlZrZ4BikVDy5Fi4b1WACgODe1eplh+JnIvAxvJkezoG0MmOQLkS47kT9+Yxk6O5EbPGDZqaDlSLLzPCgAAAAAAAAD1wxBqgEbioYceiptuuilefvnlSKVS1T6nbdu2ccopp8Rll10Wu+++ex2fMGLZsmXx0ksvxcsvvxyvvPJKvPXWW/Hpp59u8bqSkpLYZ5994gc/+EEMHTo0tttuu4Kd6d13343rr78+Hnzwwfjiiy82uf9hhx0WF198cZx88skF2xuKjRypmeXLl8dTTz0VEydOjIkTJ8asWbO2uPfee+8dP/jBD+Kss86Kjh075rw3FDs5Unh33HFHnH322dV+be7cudG1a9c6OQfUFTmSn4ULF8bvfve7uO++++L999/f7HPLyspi//33j6OPPjqGDBkSvXr1Kvh5oL7IkuzNnTs3br/99vjTn/4UH3zwwWafW1ZWFgMHDoxzzjknTjrppGjWTBuC5GkIOZKtd955J3r16hXl5eUZX7vzzjtj2LBhee/hvVYAKA4N4V6m2H4minAvA18nR2pG3xg2TY4Unr4xjY0cyY++MciRXOgZQ7qGkCPZ0jMGAAAAAAAAgEYgBUCiLVy4MNW/f/9URNT4T1lZWWr06NGpdevW1elZL7/88qzOWd2fNm3apH7961+nKisr8zpLVVVVauTIkanS0tKs9h8wYEBq0aJFBXpFoDjIkZp57LHHUscdd1yqrKws571btWqVuvHGG1NVVVW19ApB/ZAjtWPBggWp9u3bb/Icc+fOrdX9oS7JkfysXr06dfnll6datGiR03kGDRpUkHNAfZMl2SsvL09deeWVOf+cs99++6WmTp1awFcG6ldDypFsrF27NtWvX79Nfg933nlnXut7rxUAikNDupcplp+JUin3MvB1cqRm9I1h0+RI7dA3pjGRI/nRNwY5kgs9Y0jXkHIkG3rGAAAAAAAAANA4NAkAEmvWrFnRr1+/eP7557O6rqKiIq688so47bTToqqqqpZOVztWrlwZ//Vf/xXHHXdcrF69Oqc1qqqq4t///d9j5MiRUVlZmdW1kyZNin79+sX777+f095QbORIzXPkN7/5TTzxxBNRUVGR895ffvll/PSnP42jjz46Vq1alfM6UEzkSG73IzVx9tlnx/Lly2ttfSgWciS/HJk7d2707ds3rrvuulizZk2BTggNjyzJPku+/PLLGDx4cIwePTrnn3PeeOONOOSQQ+LRRx/N6XooJknOkeuuuy6mTp1aK2t7rxUAikOS72U2Rd8YCkuO6BtDvuSIvjHkS47oG0O+5IieMeQryTmiZwwAAAAAAAAAjUOz+j4AALVj6dKlcdRRR8VHH32U8bU+ffrEiSeeGN26dYvVq1fHrFmz4t57741FixalPe++++6L7bbbLsaMGVNHp07XunXr6N27d+yxxx6x6667xrbbbhtt27aNqqqqWLFiRcyaNSsmT54cU6ZMiVQqlXbt008/Hd/5znfiySefjJKSkqz2veiii+KBBx7IqHfs2DFOP/306NmzZ7Rr1y7mzZsXEyZMyPglwg8//DCOPvromD59emy11VbZf+NQJORI7jnydR06dIhDDz00+vbtG9ttt11ss8028eWXX8bcuXPjueeei5deeinjmmeffTZOOOGEGD9+fDRv3jznvaG+yZHC5Eh1fve738WECRMKuiYUIzmSX468++670b9///j4448zvrb99tvHscceGz179oztttsuWrVqFcuWLYsFCxbEm2++GS+//HJ8+umnOX/fUExkSW5Zcsopp8TEiRMz6qWlpfGtb30rDjnkkNhxxx2jefPm8fnnn8ebb74Z//d//xfz5s1Le35lZWWceuqpMXHixDj00ENz+v6hviUhRzblH//4R4waNarW1vdeKwDUvyTcy+gbQ/2SI/rGkC85om8M+ZIj+saQLzmiZwz5SkKObIqeMQAAAAAAAAA0IikAEmnIkCGpiEj707Zt29Rjjz1W7fMrKipSI0eOzLgmIlLjx4+vkzNfeeWVqSOPPDJ1ww03pGbMmJFau3Ztja577733Uscff3y1Zx87dmxWZ3jssceqXee8885LrVq1qtprXnrppdT222+fcc0pp5yS1d5QbORIdjnSv3//Dde0b98+9aMf/Sg1efLkVFVV1Wave+2111J9+vSpdu8RI0bUaG8oVnIkt/uRLZk3b16qbdu2aZmzxx57ZOw7d+7cgu4L9UGO5J4jH3/8capLly4Za+22226pv/71r6l169Zt9vqqqqrU3//+99SPf/zj1JAhQ7LeH4qJLMk+S+6///5q1zjuuONSH3744Savq6qqSv3hD39Iu1f56s9ee+2VqqioqPEZoJg0xBypicrKylTv3r3TznfggQdmnPnOO+/MaX3vtQJAcWiI9zL1/TNRKuVeBr5OjugbQ77kiL4x5EuO6BtDvuSInjHkqyHmSE3oGQMAAAAAAABA42IINUACTZgwIeMXrsrKylJTp07d4rVjxozJuHbXXXdNVVZW1sHJc7du3brU+eefn3H2bt261XiNioqKVNeuXTPW+OlPf7rFa+fMmZPq2LFjxrUTJ07M47uC+iNHss+R/v37pzp37py66aabUl9++WVWe5eXl6cGDx6csXeLFi1SCxYsyOXbgXonR3K7H6nJHoMGDUpb//bbb08baODDxCSFHMk9R9atW5c6+uijq/0gTnl5eU7ngoZKluSWJQcccEDG9SeddNIWhyV95YUXXkiVlpZmrPHEE0/k+m1BvUlyjowaNSrtbKeffnpqxIgRBflAsfdaAaA4JPleZlP0jaGw5Ii+MeRLjugbQ77kiL4x5EuO6BlDvpKcI3rGAAAAAAAAANC4NAkAEueqq67KqI0YMSL69u27xWsvvvjiOOqoo9Jq77//ftx7770FO19tKCkpiRtvvDF23nnntPrcuXNj2rRpNVrjnnvuiXnz5qXV9t5777j22mu3eG23bt3i5ptvzqiPHj26RntDsZEjG9U0R4YPHx6zZ8+Oiy66KFq2bJnV3mVlZfHAAw/EDjvskFZfs2ZNPPjgg1mtBcVCjmyUzf3Ilvz2t7+NZ599dsPjb37zm3H22WcXZG0oNnJko2xz5J577okJEyak1b7zne/EvffeG2VlZTmdCxoqWbJRTbPkww8/jKlTp6bVWrRoEb/97W+jSZOatRQOP/zwOPfcczPqjz32WI2uh2KS1Bx544034uqrr97wePvtt48xY8YUbH3vtQJAcUjqvczm6BtDYcmRjfSNITdyZCN9Y8iNHNlI3xhyI0c20jOG3CQ1R/SMAQAAAAAAAKDxMYQaIGFmzpwZL774Ylptm222iUsuuaTGa1xzzTUZtd/+9rd5n622NW/ePL773e9m1N9+++0aXV/d9zhq1Kga/7L9aaedFnvvvXdabeLEifHuu+/W6HooFnIktxw55phjokWLFjnv3bZt22pf4yeeeCLnNaG+yJHc70c2Z+7cuXHZZZdteNy6dev4/e9/n/e6UIzkSO45Ul5eHsOHD0+rbb311vG73/0umjZtWpAzQkMhS3LLknfffTdSqVRabeDAgdGpU6esznDaaadVuzY0JEnNkcrKyjjjjDOisrJyQ+3WW2+NrbfeumB7eK8VAOpfUu9lakLfGApDjugbQ77kiL4x5EuO6BtDvuSInjHkK6k5omcMAAAAAAAAAI2TIdQACXP//fdn1M4888wa/6JWRESfPn2iT58+abUpU6bE3Llz8z5fbevevXtG7aOPPtride+//35MmzYtrbbDDjvECSeckNX+5557bkbtvvvuy2oNqG9yJLccKYRjjz02ozZnzpw62RsKSY4UPkdSqVSceeaZsWrVqg21a665Jrp27ZrXulCs5EjuOfLHP/4xFi1alFa78sorY5tttinI2aAhkSW5ZcmSJUsyaj179sx6/+qu+fjjj7NeB+pTUnPkqquuijfeeGPD4yFDhlQ7hCBX3msFgOKQ1HuZmtI3hvzJEX1jyJcc0TeGfMkRfWPIlxzRM4Z8JTVH9IwBAAAAAAAAoHEyhBogYZ566qmMWi6/DFbdNdWtXWzWrFmTUavJL/g9/fTTGbWTTjopmjVrltX+1b1uTz75ZFZrQH2TI7nlSCF06dIlo7Z48eI62RsKSY4UPkduueWWeP755zc8Puyww+LCCy/Ma00oZnIk9xy5/fbbM647/fTTC3IuaGhkSW5ZUt1zcrmXad68eUatRYsWWa8D9SmJOTJjxoy45pprNjzu2LFj3HbbbQXdw3utAFAckngvkw19Y8ifHNE3hnzJEX1jyJcc0TeGfMkRPWPIVxJzRM8YAAAAAAAAABovQ6gBEmTVqlUxY8aMtFqrVq2id+/eWa91+OGHZ9RefPHFnM9WV6ZOnZpR6969+xavq+57O+yww7Lev1OnTrHrrrum1aZPnx5ffvll1mtBfZAjuedIIVSXFS1btqyTvaFQ5Ejhc2T27NkxfPjwDY9btGgRf/jDH6KkpCTnNaGYyZHcc2TBggUxZcqUtNrRRx8dHTt2LNjZoKGQJblnSbdu3TJqCxYsyHr/6q6pq5+toBCSmCMVFRUxbNiwWLt27YbamDFjYvvtty/oPt5rBYD6l8R7mWzpG0N+5Ii+MeRLjugbQ77kiL4x5EuO6BlDvpKYI3rGAAAAAAAAANC4GUINkCCvv/56rFu3Lq3Wt2/faNasWdZr9evXL0pLS9Nq06dPz+t8te29996LRx99NK3WokWLOOKII7Z4bXXf28EHH5zTOQ455JC0x1VVVfHGG2/ktBbUNTmSe44Uwvvvv59R22GHHepkbygUOVLYHFm3bl2ceeaZab8wP2rUqNh9993zOicUMzmSe44888wzGbWDDjqoYGeDhkSW5J4l++67b2y99dZptWeffTYqKyuzOsP48eMzaoMGDcpqDahPScyRUaNGxVtvvbXh8bHHHhtDhw4t+D7eawWA+pfEe5ls6BtD/uSIvjHkS47oG0O+5Ii+MeRLjugZQ76SmCN6xgAAAAAAAADQuBlCDZAg//znPzNqu+66a05rlZWVxTe+8Y202uzZs2Pt2rU5rVfb5syZE8cff3ysWbMmrX7mmWdGhw4dNnttZWVlzJkzJ61WWloaO++8c05n6d69e0bt3XffzWktqGtyJLccKZSHHnooo9avX7862RsKRY4UNkduuummePHFFzc87tu3b/zXf/1XPseEoidHcs+Rl19+OaO2//77b/jfqVQqnn766Tj77LNj7733jrZt20ZZWVl06tQp9tlnnxg6dGjcfffdsXTp0ny/Fah3siT3LGnatGmce+65abXFixfHzTffXOMzfPbZZ3Hdddel1Tp06FArH1yE2pK0HJk2bVpcf/31Gx63a9cuxo4dW/B9vNcKAMUhafcy2dA3hsKQI/rGkC85om8M+ZIj+saQLzmiZwz5SlqO6BkDAAAAAAAAAIZQAyTIvHnzMmq5/qJWRESXLl3SHldVVcX8+fNzXq/QysvLY8qUKfEf//Efsddee2X8Ilm3bt3immuu2eI68+fPj3Xr1qXVvvGNb0STJrn9M/mvr1tEZPwSHRQrOZJbjhTC6tWr45577smon3jiiXWyPxSKHClcjsyaNSuuuOKKDY9LS0vjjjvuiKZNm+Z1Zih2ciT3HHnrrbcyarvttltERPzjH/+Ivn37xuDBg+OOO+6ImTNnxsqVK6OysjI+/vjj+Mc//hF//OMf44wzzoiuXbvGf//3f8fy5cvz/wahnsiS/O5Jhg8fHrvsskta7fLLL4877rhji9cuXLgwvvWtb8VHH32UVr/55pujbdu2NT4D1Lck5Uh5eXmcccYZaR9gvv766zM+5FwI3msFgOKQpHuZmtA3hsKTI/rGkC85om8M+ZIj+saQLzmiZwz5SlKO6BkDAAAAAAAAABERzer7AAAUzuLFizNqO+20U87rVXftxx9/nPELpbXpmWeeiUsuuSSttnbt2vjiiy9i0aJFab8E93W77bZbTJgwIdq3b7/FPerqdYOGQI5slE2OFMK1114bS5YsSat17tw5jj322DrZHwpFjmyUT46sW7cuhg0bFqtXr95Qu+KKK2KfffbJei1oaOTIRtnmSHUfrmnfvn3ccccd8eMf/zjKy8trtM7KlSvjl7/8ZTz44IPx+OOPx+67716j66CYyJKNcrknadOmTTz55JMxcODAWLRoUUSs//Dj2WefHePGjYuzzjorDj300OjcuXM0b948Pv/883jrrbfi8ccfjzvuuCNWrFiRtt7VV18dQ4cOzfI7hvqVpBy58sor4+23397weODAgfGjH/2oVvbyXisAFIck3ct8Rd8Y6pYc2UjfGHIjRzbSN4bcyJGN9I0hN3JkIz1jyE2SckTPGAAAAAAAAACIMIQaIFE+++yzjFqbNm1yXq+6a5cuXZrzerlYtmxZvPHGGzV+fuvWreO8886LUaNGRevWrWt0TRJfN8hVEv8+1EWO5GvatGlxzTXXZNRHjx4dzZs3r5MzQKHIkcLkyK9//ev4+9//vuHxPvvsEz//+c9zWgsaGjmSW45UVlZW+30999xz8cMf/jDWrVuXVm/btm106tQpqqqq4qOPPkobXvCVWbNmxUEHHRSTJ0+OHj161Pj8UAxkSf73JLvvvnvMmDEjzjvvvPjLX/6yof7iiy/Giy++WKM1unXrFjfffHMcd9xxWe8P9S0pOfLKK6/Er3/96w2PW7VqFbfffnuUlJTUyn5Jed0AoKFL4r/J+sZQt5L490HfGOqWHNE3hnzJEX1jyJcc0TOGfCUlR/SMAQAAAAAAAICvNKnvAwBQOKtWrcqotWzZMuf1qrv2yy+/zHm92lRSUhLnnHNOzJ07N371q19l9Yuyjfl1g3/VmP8+5JMj+Vi6dGn827/9W1RWVqbV+/fvH2eddVadnAEKSY7knyPvvPNOXHnllRseN23aNO64444oLS0t1FGhqMmR3HJk2bJlkUqlMupnn332hg8Sl5SUxNChQ+OVV16J5cuXx6xZs2L27NmxYsWKeO655+KYY47JuP7zzz+Pk08+udr/X6CYyZLC/Gyz/fbbx6OPPhrTp0+PCy+8sMavYZ8+feKBBx6IWbNm+TAxDVYScmTNmjVxxhlnRFVV1YbaL3/5y9hll11qbc8kvG4AkASN+d9kfWMojMb890HfGApDjugbQ77kiL4x5EuO6BlDvpKQI3rGAAAAAAAAAMDXGUINkCD/+kG0iIgWLVrkvF51v6xVUVGR83q1KZVKxe233x577713jBo1Kr744osaX9uYXzf4V43570M+OZKrioqKGDJkSMybNy+t3rFjx7j77rujpKSk1s8AhSZH8suRqqqqGDZsWKxZs2ZD7ZJLLom+ffsW8qhQ1ORIbjlSXl5ebX316tURsf41fPTRR+Puu++OAw44IO0+o1mzZjFw4MB46qmn4uabb864B3n77bfjqquuyuE7gvojSwr3s83s2bPjD3/4QzzwwAMbMmVLpk+fHj//+c9jzJgxsXLlyrz2h/qShBy54oor4t13393w+OCDD46LLrqoVvdMwusGAEnQmP9N1jeGwmjMfx/0jaEw5Ii+MeRLjugbQ77kiJ4x5CsJOaJnDAAAAAAAAAB8nSHUAAmXzwfRqrs2lUrlc5ysffe7341UKpX2Z9WqVfHhhx/GM888E6NGjYpu3bpteP6SJUti5MiRse+++8Yrr7yS874N/XWDQmrofx/qK0e2ZN26dfGDH/wgXnjhhbR606ZN409/+lN06dKl1vaGuiZHau7666+PV199dcPjPfbYI0aOHFmobwUaLDmyZVv6nsaOHRsnnnjiFtf5yU9+EldccUVG/be//W0sW7asRmeBYiVLslNZWRm/+MUvYo899ojbbrstlixZkvb1Vq1aRdeuXWPPPfeMzp07R5Mm6e2G999/Py699NLo2bNnPPfcc7l901BkGlKOvPzyyzFmzJgNj5s3bx533HFHxt/VutCQXjcASLKG/m+yvjHUv4b+90HfGOqfHKk5fWOonhzZMn1j2Dw5kh09Y8jUkHJEzxgAAAAAAAAA+FeGUAMkSGlpaUZt9erVOa9X3bVlZWU5r1corVq1is6dO8egQYPiyiuvjNmzZ8ett94arVu33vCcefPmxTe/+c2YPHnyFtdrLK8b1ERj+ftQ6BzJxY9//OP485//nFYrKSmJsWPHxuDBg2tlT6gLciT3HJk5c2baB4dLSkriD3/4Q7Ro0aLQx4eiJkcK93PNVwYMGBA/+MEPany2K6+8Mu1DiRERK1asiPvvv7/Ga0B9kyX5/WxTUVERQ4YMiauvvjqqqqo21Fu2bBkXXnhhTJs2LVasWBFz586NmTNnxocffhifffZZPPLII3HEEUekrbVw4cI45phj4uGHH87/G4Y61JBz5Msvv4wzzzwz1q1bt6E2YsSI6NGjR63s93UN+XUDgCRpLP8m6xtD7Wksfx/0jaH2yBF9Y8iXHNE3hnzJET1jyFdDzhE9YwAAAAAAAACgOoZQAyRIq1atMmqF/mWtr/9CarEoKSmJCy64IMaPHx8tW7bcUF+5cmWceuqp8fnnn2/2+sb6ukF1Guvfh3xzJFv/+Z//GWPHjs2ojxkzJs4+++yC7gV1TY7kliNr166NM844IyoqKjbULrzwwjj00ENr7cxQrORIbjmyue/pJz/5SVZnKS0tjXPPPTejPmnSpKzWgfokS/L72ebiiy+OJ554Iq226667xtSpU+OWW26JPn36RNOmTdO+3r59+/jOd74Tzz//fNx2223RpMnG9sPatWvjtNNOi5kzZ+bx3UHdasg5Mnz48Hjvvfc2PO7du3dceumltbLXv2rIrxsAJElj/TdZ3xgKp7H+fdA3hsKRI/rGkC85om8M+ZIjesaQr4acI3rGAAAAAAAAAEB1DKEGSJCtt946o7Zy5cqc16vu2ur2KBZHHHFEjBw5Mq22cOHC+PWvf73Z6xr76wZf19j/PuSaI9kYPnx43HjjjRn1a6+9Ni666KKC7QP1RY7kliPXXnttTJ8+fcPjrl27xjXXXFMbR4SiJ0dyy5G2bdtGWVlZRr1JkybxzW9+M+tzHH300Rm1l156Ket1oL7Iktx/tpk8eXL87//+b1qtY8eOMWHChNhrr71qtP/555+fsVd5eXmcf/75NboeikFDzZEXXnghbrnllg2PmzVrFnfccUc0a9as4HtVp6G+bgCQNI3932R9Y8hfY//7oG8M+ZMj+saQLzmibwz5kiN6xpCvhpojesYAAAAAAAAAwKYYQg2QINtvv31GbeHChTmvt2DBghrtUUwuvvjiaNu2bVrtd7/7XaRSqU1e43WDjfx9yC1HamrkyJFx7bXXZtRHjx4dl19+ed7rQzGQI9nnyMKFC+Oqq65Kq/3+97+P1q1b19oZoZjJkdzvRzp16pRR22WXXaJdu3ZZn2HfffeNpk2bptUWL15ckHsiqAuyJPcsqe5Dx1dccUV069Ytq/0vuuii2HfffdNqL774YsyYMSOrdaC+NNQcOe+889L+nv/sZz+L/fbbr+D7bEpDfd0AIGn8m6xvDPny90HfGPIlR/SNIV9yRN8Y8iVH9IwhXw01R/SMAQAAAAAAAIBNqZv/hDUAdaK6X+z84IMPcl5v/vz5aY+bNm0aXbp0yXm9utC8efM48sgj47HHHttQ++STT+Ltt9+Ovfbaq9prunTpEk2aNIl169ZtqC1YsCDWrVsXTZpk/99r+NfXLaL6/2+gGMmR3HKkJq6++uoYNWpURv0Xv/hF/OIXv8h5XSg2ciT7HPn000+joqJiw+OysrK45JJLstrz/fffz6gde+yxUVZWllYbPXp0nHDCCVmtDXVNjuR+P7LLLrtkfL9bb711Tmdo2rRptG/fPj777LMNtaqqqli2bFlstdVWOa0JdUmW5JYla9eujQkTJqTVSkpKYujQoVnv36RJkxg6dGhceumlafWnn346evfunfV6UNcaao4sWrQo7fEjjzwSjz/+eI2vX7x4cUbtyiuvjDFjxqTVTjjhhBg9enTGc73XCgDFoaHeyxSSvjHkR47oG0O+5Ii+MeRLjugbQ77kiJ4x5Kuh5oieMQAAAAAAAACwKYZQAyTIHnvskVGr7oMlNVFRURELFixIq3Xv3j2aNSv+fzq6du2aUZszZ84mf1m2rKwsunXrFrNnz95Qq6ysjPnz51e71pZ8fZ2v9OjRI+t1oD7IkfWyzZEtue6666r9wPDPfvazan/5FhoyObJePjlSUVERb7zxRt5neOeddzJqX/9QIBQrObJeLjnSs2fPmDRpUlqtefPmOZ+hRYsWGbU1a9bkvB7UJVmyXrZZMmfOnFi5cmVarXv37rHtttvmtP9BBx2UUXvzzTdzWgvqWlJy5O233857jQULFmScf//996/2ud5rBYDikJR7mXzpG0Pu5Mh6+saQOzmynr4x5E6OrKdvDLmTI+vpGUPukpIjesYAAAAAAAAAwFey/89HA1C0evXqFU2apEf7tGnTYu3atVmvNW3atKisrEyr9e7dO6/z1ZXqfuH9iy++2Ow1ffr0yaj9/e9/z2n/yZMnpz1u2rRp7LfffjmtBXVNjqyXS45syg033BA/+9nPMuqXXnppXHPNNTmtCcVMjqxXyByBxkaOrJdLjvTr1y+jtnz58pzPsGzZsoza1ltvnfN6UJdkyXrZZsnSpUszarl+mHhT1xpuQkMhR3LnvVYAqH/uZdbTN4bcyZH19I0hd3JkPX1jyJ0cWU/fGHInR9bTM4bcyZHceZ8VAAAAAAAAAIqTIdQACdK6devo1atXWm3VqlXx2muvZb3WSy+9lFE74ogjcj5bXVqyZElGbZttttnsNYcffnhGrbrXYEs+/vjjeO+999Jqffr0iVatWmW9FtQHObJeLjlSnRtvvDEuu+yyjPpPf/rTuP7663M6GxQ7ObJeoXIEGiM5sl4uOTJgwICM2gcffBCpVCrr/T/55JP48ssv02rt2rWLsrKyrNeC+iBL1ss2S6r7APLq1atz3v9fcyQivEdCgyFHcue9VgCof+5l1tM3htzJkfX0jSF3cmQ9fWPInRxZT98YcidH1tMzhtzJkdx5nxUAAAAAAAAAipMh1AAJM3jw4IzaQw89lPU61V1T3drFaMqUKRm1Tp06bfaaY445JqP22GOPxdq1a7Pa++GHH86oNZTXDb4iR3LLkX918803x3/+539m1C+66KL4zW9+k/PZoCGQI9nlyP777x+pVCqvP/37989Yd+7cuRnPGzZsWKG/VagVciS3+5Fu3bpFz54902rLli2Lt99+O+v9J0+enFH71w9VQbGTJdlnybbbbptR++CDD2LdunU57T9nzpwa7QHFqiHmyLJly/L62WLEiBEZa955550Zzxs3btwmz+C9VgAoDg3xXqbQ9I0hP3JE3xjyJUf0jSFfckTfGPIlR/SMIV8NMUf0jAEAAAAAAACATTGEGiBhvve972XU7rzzzqioqKjxGq+99lpMnTo1rXbggQdGt27d8j5fbXv99dfjnXfeSat16NAh4xfq/9Vuu+0Wffr0Sat9+OGH8cQTT2S1/9ixYzNq//7v/57VGlDf5EhuOfJ1t912W1x88cUZ9QsuuCBuuummvM8IxU6O5J8j0NjJkdxz5PTTT8+o3XPPPVmf4e67786oDRo0KOt1oD7JkuyzpFOnTtGmTZu02ueff17tB5NrYvz48Rm13XffPae1oD409hzJlfdaAaA4NPZ7GX1jyJ8c0TeGfMkRfWPIlxzRN4Z8yRE9Y8hXY8+RXHmfFQAAAAAAAACKkyHUAAmz9957x2GHHZZW++STT+LGG2+s8RrDhw/PqJ1//vl5n622VVVVxUUXXZRR//a3vx2lpaVbvL6673HEiBFRWVlZo/3vv//+ePPNN9NqAwYMiB49etToeigWciT3HImI+P3vfx8XXnhhRv28886LW2+9Ne8zQkMgR/LLEUCO5JMjZ599drRs2TKtNnbs2Fi0aFGNzzBjxox47LHH0molJSVx8skn13gNKAayJPssadasWbWDA375y19mfYa5c+fGH//4x4z6Mccck/VaUF8ac47ky3utAFD/GvO9jL4xFIYc0TeGfMkRfWPIlxzRN4Z8yRE9Y8hXY86RfHmfFQAAAAAAAACKjyHUAAn03//93xm1ESNGxIwZM7Z47a233hpPP/10Wm2XXXaJ73//+zXau2vXrlFSUpL2Z9KkSVu87pZbbom//e1vNdqjOuXl5XHaaafFiy++mFYvKSmp9kN91Rk6dGjsvPPOabU333wzfv7zn2/x2nnz5lW7zy9+8Ysa7Q3FRo5slE2O3HXXXXHuuedGKpVKq//oRz+K2267LeezQUMkRzbKJkeAjeTIRtnkyPbbbx8XXHBBWm3ZsmVx2mmnxerVq7d4/ZIlS+K0006LqqqqtPrJJ58ce+65Z43OAMVElmxU0yw59dRTM2rjx4+Pa6+9tsZnWL58eXznO9+JioqKtPqee+4Z++yzT43XgWLQEHOkGHivFQCKQ0O8l6nvn4ki3MvA18mRjfSNITdyZCN9Y8iNHNlI3xhyI0c20jOG3DTEHCkG3mcFAAAAAAAAgOJjCDVAAh1zzDFx4oknptXKy8tj4MCB8fjjj1d7TWVlZVx11VXxk5/8JONrN998c5SWltbKWb8yffr0OProo+Pggw+O2267LT7++OMaXVdZWRmPPPJI7LPPPvHnP/854+s//OEP46CDDqrRWmVlZTFmzJiM+q9+9au44IILNvmL95MnT46DDz44li5dmlb/7ne/G0ceeWSN9oZiI0c2qmmO3H///XHWWWdlfJD47LPPjv/93/+NkpKSmn0jkBByZKNs7keAjeTIRtnmyIgRI6JLly5ptUmTJsWgQYPin//85yavmzx5chx++OEZz2nTpk1cffXVNd4fioks2aimWXLqqafG/vvvn1EfPnx4nHXWWVs8z3PPPRd9+vSJN954I+Nr2XwoGYpFQ8yRYuC9VgAoDg3xXqa+fyaKcC8DXydHNtI3htzIkY30jSE3cmQjfWPIjRzZSM8YctMQc6QYeJ8VAAAAAAAAAIpPSepfP+0AQCJ88skn0bt371i4cGHG1/r27RsnnnhidOvWLVavXh3vvfde/OlPf4oPP/ww47kXXnhh3HLLLTXet2vXrvHBBx+k1SZOnBgDBgzY7HXDhg2Lu+66a8PjJk2aRM+ePaNXr16x5557RseOHaNDhw5RUlISK1asiEWLFsXrr78eL7zwQsYvl33lq1/qa926dY3PHxFx3nnnxdixYzPqW2+9dZx++unRs2fPaNu2bcyfPz+efvrpmDRpUsZzd95555gxY0Z07Ngxq72hmMiR7HKktLQ01q5dm1Hfd9998/4g8fjx46Nz5855rQH1QY7kfj+SrQEDBsTzzz+fVps7d2507dq1VveF2iZHcs+RV199NY444ogoLy9Pqzdr1iyOOuqoGDRoUHTu3Dmqqqpi/vz58dRTT8WLL75Y7VoPPfRQnHzyyVntD8VElmSfJdOnT48BAwbEypUrM77WvHnzOOaYY+KQQw6Jzp07R8uWLWPZsmXxzjvvxN/+9rd46623ql3zjDPOiHHjxtVofyg2DS1H8jFy5MgYNWpUWu3OO++MYcOG5bSe91oBoP41tHuZYviZ6CvuZWA9OaJvDPmSI/rGkC85om8M+ZIjesaQr4aWI/nQMwYAAAAAAACA5GpW3wcAoHZsu+22MWHChDjyyCNj8eLFaV+bNm1aTJs2bYtrnHLKKTFmzJhaOuHmrVu3LmbOnBkzZ87M6fqTTjop7r333mjZsmXW1956663x6aefxsMPP5xWX7p0adx0001bvH6HHXaICRMm+AU3Gjw5kl2OVPdB4oiIN998M6f9v66ioiLvNaA+yJHc70eA9eRI7jlywAEHxF/+8pcYMmRIrF69ekN97dq18eSTT8aTTz65xTXKysrif/7nf3yQmAZPlmSfJX369Im//OUvcdJJJ2V8qLi8vDz++te/xl//+tcarzdkyJC4/fbba/x8KDYNPUfqk/daAaD+NfR7GX1jqH9yRN8Y8iVH9I0hX3JE3xjyJUf0jCFfDT1H6pP3WQEAAAAAAACgeDSp7wMAUHt69uwZr776ahx22GFZXVdaWhojRoyI++67L5o2bVpLp0vXunXrgqyz0047xUMPPRSPPvpozh/cadasWTzwwAPxi1/8Ipo1y+6/13DEEUfE1KlTY/fdd89pbyg2csQHACFfckSOQL7kSO45Mnjw4Pj73/8ee++9d9bX7rbbbvHcc8/FOeeck/P+UExkSfZZMmjQoHjjjTeif//+OZ+hTZs2cdttt8XDDz+c9XssUGwaUo4UE++1AkBxaEj3MsXyM1GEexn4Ojmi3wP5kiNyBPIlR/SNIV9yRM8Y8tWQcqSYeJ8VAAAAAAAAAIqHIdQACbfTTjvFCy+8EH/+85/jkEMOiZKSkk0+t02bNnHmmWfGm2++GSNHjowmTerun4n/+Z//iZkzZ8avfvWrOP7446NTp041vnb77beP733vezF+/PiYO3dunHzyyXmfp0mTJjF69Oh46623YtiwYdGmTZtNPrekpCQOPfTQeOCBB+L555+PHXfcMe/9oZjIESBfcgTIlxzJ3X777Revv/563HnnnXHAAQds9rVr2rRpHHzwwTFu3Lh455134tBDDy3IGaBYyJLs7bLLLjFp0qR44YUX4rTTTouOHTtu8ZqmTZtGr169YsyYMbFgwYI4//zz8zoDFJOGkiPFxnutAFAcGsq9TDH9TBThXga+To4A+ZIjQL7kSO70jWE9OZI9PWNI11BypNh4nxUAAAAAAAAAikNJKpVK1fchAKg7S5YsiVdffTXmzJkTK1asiGbNmsU222wTPXv2jH79+kVZWVl9H3GDjz76KGbPnh3z5s2Lzz77LFatWhWpVCratm0b7du3j+222y7222+/2GGHHWr9LBUVFTF16tR455134tNPP421a9dGu3btYpdddokDDjggtttuu1o/AxQLOQLkS44A+ZIjufv4449j2rRpG167srKy2GabbaJz585x8MEHR7t27erkHFAMZElu3n///XjzzTdj6dKlsWzZsqioqIh27dpFhw4domvXrtG7d+9o3bp1rZ8DikFDypFi4r1WACgODelepph+JnIvAxvJESBfcgTIlxzJnb4xrCdHcqNnDBs1pBwpJt5nBQAAAAAAAID6YQg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAI1qe8DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB4hlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAJCzAQMGRElJyYY/AwYMqO8jAQAAAAAAAFBH9IwBAAAAAAAAAAAAoPgZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAADQyIwbNy5KSkrS/sybN6++j9WgTJo0KeM1nDRpUn0fCwAAAAAAAGCL9Izzp2cMAAAAAAAAAAAAQENiCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQM3q+wAAAABA8n3yyScxZcqUmDNnTqxcuTLat28f2223XRx44IGx884718qeVVVVMWPGjPjggw/ik08+ic8//zzatWsX2267bey2227Rq1evKCkpqZW9C6GqqirmzJkT//znP+PDDz+MFStWRFVVVWy11Vax1VZbRY8ePWKfffaJJk38N8YAAAAAAACA4qZnnD09YwAAAAAAAAAAAAAKxRBqAAAAaASGDRsWd9111ya/3q1bty2uMWLEiBg5cmRW+06aNCn+3//7f/Hss8/GunXrqn3OnnvuGT//+c/j+9//fkE+4PvMM8/E2LFj45lnnolly5Zt8nlbb711fPvb347hw4dHjx49trjuyJEjY9SoUZv8+sCBA7e4xhlnnBHjxo3b5NdnzZoVjzzySEycODFefvnlWLVq1WbXa9++fRx11FFxySWXxIEHHrjF/QEAAAAAAIDGSc84k54xAAAAAAAAAAAAAI1Fk/o+AAAAAJA85eXl8cMf/jAGDhwYf/vb3zb5YeKIiLfffjtOP/30GDx48BY/QLs5b731VgwaNCiOOuqoeOihhzb7YeKIiKVLl8bdd98de++9d5x33nlRXl6e8975Wrp0afTu3Tv22GOPGD58eEyYMKFGr8Xy5cvjoYceioMOOihOOumkLX7PAAAAAAAAAHVBzzg7esYAAAAAAAAAAAAA1CZDqAEAAICCWrNmTXzrW9+K22+/PavrJkyYEMcee2xUVVVlvefjjz8eBx98cDz33HNZX1tVVRVjx46NAQMGxJIlS7K+vhC++OKLeO211/Ja47HHHosDDjggFi5cWKBTAQAAAAAAAGRPzzh7esYAAAAAAAAAAAAA1KZm9X0AAAAAoPZ16dIl9ttvv4iI+Oyzz2LBggVpX+/Zs2eUlZVtdo1OnTrVaK+zzjorJk6cuOHxHnvsEd/61reiR48e0bFjx1i+fHm89tpr8fDDD8fHH3+cdu0LL7wQN954Y1xyySU12isi4t57742hQ4fGunXr0uplZWVx5JFHxoEHHhg77bRTtG/fPlauXBnz5s2LZ599Nl566aW050+ZMiWGDBkSEydOjNLS0ox9OnXqtOE1XLlyZcyePTvt6927d482bdps9qxdunSp0ffUpk2b6NevX/Ts2TN22223aN++fbRt2zYqKiri888/j7fffjsmTpwY77zzTtp17733Xpx66qnx/PPPR7Nm3vYBAAAAAAAA1tMz1jMGAAAAAAAAAAAAoPEqSaVSqfo+BAAAAFB3xo0bF2eeeWZabe7cudG1a9es1xowYEA8//zzGx63aNEi1qxZExHrP4B76623xsknn1zttStXrowLLrgg7r777rR6hw4dYtGiRdGyZcst7j9z5sw44IAD4ssvv9xQa9asWfz0pz+NSy+9NLbddttNXvv666/HOeecE9OnT0+rX3LJJXHDDTdsdt9JkybFwIED02oTJ06MAQMGbPHM1Zk3b1706tUrTj/99Pjud78bhxxySLUfav5XkydPjosvvjimTZuWVr/hhhuy+lA2AAAAAAAA0HjoGa+nZwwAAAAAAAAAAABAY9Gkvg8AAAAAJMdXHybeZZddYsqUKZv8MHFERJs2bWLcuHFxzDHHpNWXLVsWDz/88Bb3WrduXXzve99L+zBx69atY8KECXH99ddv9sPEERH7779/TJ48OY466qi0+s033xwLFy7c4v6F1Llz51i0aFHccsst0b9//xp9mDgi4pBDDokXX3wxBg8enFa/+eabY+3atbVxVAAAAAAAAIBN0jPOjZ4xAAAAAAAAAAAAALXJEGoAAACgoEpLS+OBBx6InXfeeYvPLSkpid/85jcZ9aeffnqL1z788MPxj3/8I6125513xsCBA2t81rKysnjwwQdjm2222VCrqKio9ky1qaysLFq2bJnTtS1atIi77rorWrVqtaG2YMGCmDBhQqGOBwAAAAAAAFBjesbZ0zMGAAAAAAAAAAAAoDYZQg0AAAAU1Pe///3o06dPjZ+/5557Ru/evdNq06dP3+J11113XdrjAQMGxL/927/VeN+vtG/fPi6++OK02qOPPpr1OvVpu+22i8GDB6fVXnrppXo6DQAAAAAAANCY6RnXPT1jAAAAAAAAAAAAADbHEGoAAACgoH74wx9mfc0BBxyQ9njWrFmbff68efMyPnR8zjnnZL3vV7797W9nrP/BBx/kvF592G233dIeT5kypZ5OAgAAAAAAADRmesb1Q88YAAAAAAAAAAAAgE1pVt8HAAAAAJKjZcuWGR8Oronu3bunPa6qqoqVK1dGmzZtqn3+888/n1E79NBDs973K926dcuovfbaa7HzzjvnvGa+Pvzww5g8eXK8+eabMWvWrFi+fHmsWLEiVq9eHalUKuP5ixcvTns8f/78ujoqAAAAAAAAQEToGReSnjEAAAAAAAAAAAAAhWIINQAAAFAwO++8c5SWlmZ9Xfv27TNqy5cv3+QHil9++eWM2kknnZT1vpvz6aefFnS9mnrooYfitttui+effz7WrVuX8zrLli0r3KEAAAAAAAAAakDPOH96xgAAAAAAAAAAAAAUmiHUAAAAQMF07Ngxp+uq+xByZWXlJp+/cOHCjNobb7yR096bsnTp0oKutyWLFi2KoUOHxnPPPVeQ9ZYvX16QdQAAAAAAAABqSs84d3rGAAAAAAAAAAAAANQWQ6gBAACAgqnug8G1oS4+7Lt69epa3+MrH374YQwYMCDef//9gq25du3agq0FAAAAAAAAUBN6xrnRMwYAAAAAAAAAAACgNjWp7wMAAAAAZOvzzz+v7yMU1LBhw6r9MPH+++8fw4cPj0cffTRmzJgRixcvjhUrVkRFRUWkUqm0PyNGjKiHkwMAAAAAAADUPT1jPWMAAAAAAAAAAAAAaq5ZfR8AAAAAIFstW7bMqK1evTpatGhRD6fJz//93//FM888k1bbbrvt4p577omjjz66xuusXr260EcDAAAAAAAAKEp6xpn0jAEAAAAAAAAAAADYlCb1fQAAAACAbG2zzTYZtc8++6weTpK/++67L+1x06ZN4/HHH8/qw8QRDff7BwAAAAAAAMiWnnGmhvr9AwAAAAAAAAAAAFD7DKEGAAAAGpztt98+o/bBBx/Uw0ny97e//S3t8eDBg+OAAw7Iep05c+YU6kgAAAAAAAAARU3POJOeMQAAAAAAAAAAAACbYgg1AAAA0OAceOCBGbUXXnihHk6Sn/Ly8liyZEla7fDDD896naqqqnj11VcLdSwAAAAAAACAoqZnnE7PGAAAAAAAAAAAAIDNMYQaAAAAGplmzZpl1KqqqurhJLk76qijMmqPPPJIne1fqNdw6dKlGbWOHTtmvc748eNj5cqVWV8HAAAAAAAAND56xvnTMwYAAAAAAAAAAACgITGEGgAAABqZtm3bZtQa2odR99xzz9htt93Saq+++mo899xzdbJ/oV7D1q1bZ9Q+/fTTrNf5zW9+k/U1AAAAAAAAQOOkZ5w/PWMAAAAAAAAAAAAAGhJDqAEAAKCR2WqrrTJqc+bMqYeT5OeKK67IqJ1zzjnx2Wef1frehXoN27dvH61atUqrTZgwIas1br/99pg0aVLWewMAAAAAAACNk55x/vSMAQAAAAAAAAAAAGhIDKEGAACARmbvvffOqI0fP74eTpKf008/PXr06JFWmzt3bhx77LGxaNGinNZcsWJFXH/99fHHP/5xs8/baaedon379mm1XF/Dww47LO3xpEmTarzWU089FRdddFFO+wIAAAAAAACNk57xpukZAwAAAAAAAAAAAJBEhlADAABAI9OxY8eMD+LeeeedceONN8by5cvr6VTZa9q0aTz44IPRtm3btPorr7wSvXr1ittuuy3WrFmzxXXWrl0bzzzzTPzoRz+KLl26xOWXXx6LFy/e7DUlJSVx8MEHp9WeeeaZGD58eCxZsiSr7+OUU07JqJ166qnx0EMPbfKa1atXx+jRo+PEE0+M1atXR0REu3btstoXAAAAAAAAaJz0jNPpGQMAAAAAAAAAAACQdCWpVCpV34cAAAAA6tYNN9wQl112WUa9pKQkvvGNb0T79u2jadOmaV8777zz4rzzzkurDRgwIJ5//vkNj/v37x+TJk3K+jzjxo2LM888M602d+7c6Nq16xavffzxx2PIkCGxdu3ajK916NAh+vfvHwceeGBst9120b59+1i1alUsW7Ys5s+fH9OnT4/XXnstVqxYkXbdDTfcEJdccslm933wwQer/TBwRMQOO+wQHTt2jGbNmqXVTzjhhBg9enRarbKyMnr27BmzZ8/OWKd3795x/PHHx6677hqlpaWxZMmSmD59ejzxxBOxdOnSDc/ba6+94rjjjovrrrsu7Xpv+wAAAAAAAADV0TPWMwYAAAAAAAAAAACg8Wi25acAAAAASXPBBRfEXXfdFTNnzkyrp1KpWLBgQSxYsCDjmsWLF9fV8bJy/PHHx7PPPhunnnpqxhmXLVsWjz32WDz22GMF3/fkk0+OQYMGxbPPPpvxtY8++ig++uijjPr++++fUSstLY0HH3wwDjvssPjyyy/TvjZjxoyYMWPGZs+x4447xhNPPBHjxo3L6vwAAAAAAABA46VnnD89YwAAAAAAAAAAAAAaiib1fQAAAACg7rVq1SqefvrpOOqoo+r7KAVxxBFHxIwZM+L000+Ppk2b5rxOSUlJDBw4MA4//PAtPrdJkybx0EMPxfe///2c9/tKr1694umnn44ddtghq+sOOuigmDJlSnTt2jXvMwAAAAAAAACNh55x9fSMAQAAAAAAAAAAAEgiQ6gBAACgkdpxxx1jwoQJMX369PjZz34WxxxzTHTt2jU6dOgQzZo1q+/jZW2HHXaIe+65J9577734j//4j+jZs2eNrmvbtm0cd9xxMWbMmJg7d24899xzceCBB9bo2g4dOsSf/vSn+Oc//xkjR46M4447Lrp37x5bbbVVlJaWZnX+ww47LN5444247LLLokOHDpt9bt++feOuu+6Kl19+Ob7xjW9ktQ8AAAAAAABAhJ7xV/SMAQAAAAAAAAAAAEi6klQqlarvQwAAAADUho8//jhmzJgRn376aSxdujRWrlwZrVu3jnbt2sWOO+4YPXr0iJ133jlKSkrq+6hpqqqqYtq0aTFz5sz49NNPY+3atdG2bdvo1q1b9O3bNzp16lTfRwQAAAAAAAAoenrGAAAAAAAAAAAAAGAINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAiNanvAwAAAAAAAAAAAAAAAAAAAAAAAAAAAABQeIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAPx/9u48TK6qzh//u7o7nX2BSFiUJYBOAopsygiioKOgIhJQQJAviI7guM2GC4OCIqiMOICOyG9UQGV1QWUEiaOACMoWBGRT9jUhhISQtZeq3x9FJ+l0J+mluqq6+vV6nnpCnXvvOZ/kHLpu1637LgAAAAAakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKABCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKABCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKABCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKABCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKABCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKABCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKABCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABpQS60LAKiUzTbbLIsWLerRPmrUqGy11VbVLwgAAAAAAKg7jz/+eNrb23u0T5kyJXPnzq1BRQBUimvGAAAAAADAhrhmDNDYXDcGAAAAAADWZyRfMy6USqVSrYsAqIQxY8Zk5cqVtS4DAAAAAAAYhkaPHp0VK1bUugwABsE1YwAAAAAAYKBcMwZoDK4bAwAAAAAAAzESrhk31boAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACpPCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAxJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCAhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANKCWWhcAUCmjRo3KypUre7SPHj062223XQ0qAgAAAAAA6s1DDz3U6/WEUaNG1aAaACrJNWMAAAAAAGBDXDMGaGyuGwMAAAAAAOszkq8ZC6EGGsZWW22Ve++9t0f7dtttl3vuuacGFQEAAAAAAPVmxx137PV6wlZbbVWDagCoJNeMAQAAAACADXHNGKCxuW4MAAAAAACsz0i+ZtxU6wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqDwh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQgIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQgIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEADEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ICEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAxJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCAhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQgIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQgIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEADEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ICEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAxJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCAWmpdAAAAAAAAAAAAAAAAAAAAAMBIVCqV0tnZmWKxmFKpVOtyAKiAQqGQpqamNDc3p1Ao1LocAAAAABBCDQAAAAAAAAAAAAAAAAAAADDUSqVS2trasnTp0ixZsiTLly9PsVisdVkADKGmpqaMHTs2EyZMyPjx49Pa2iqYGgAAAICqE0INAAAAAAAAAAAAAAAAAAAAMEQ6OjqyYMGCvPjii2lvb691OQBUUbFYzNKlS7N06dIkyahRozJx4sRMnTo1LS2ifwAAAACoDu9EAQAAAAAAAAAAAAAAAAAAAFRYqVTKokWLMn/+/HR2dta6HADqQHt7e55//vm88MIL2WSTTTJlypQUCoValwUAAABAgxNCDQAAAAAAAAAAAAAAAAAAAFBBxWIxTzzxRJYtW1brUgCoQ52dnZk7d24WL16cLbfcMk1NTbUuCQAAAIAG5t0nAAAAAAAAAAAAAAAAAAAAgAoRQA1AXy1btixPPPFEisVirUsBAAAAoIEJoQYAAAAAAAAAAAAAAAAAAACogFKpJIAagH7pCqIulUq1LgUAAACABiWEGgAAAAAAAAAAAAAAAAAAAKACFi1aJIAagH5btmxZFi1aVOsyAAAAAGhQQqgBAAAAAAAAAAAAAAAAAAAABqmjoyPz58+vdRkADFPz589PR0dHrcsAAAAAoAG11LoAAAAAAAAAAAAAAAAAAAAAgOFuwYIF6ezs7NO+zc3NGT9+fMaPH5+WlpY0NzenqalpiCsEoBqKxWI6OzvT0dGRpUuXZunSpX16fejs7MyCBQuy6aabVqFKAAAAAEYSIdQAAAAAAAAAAAAAAAAAAAAAg1AqlfLiiy9ucL+WlpZsuummmThxYgqFQhUqA6CWpkyZsuo1Yt68eeno6Fjv/i+++GKmTZvmNQIAAACAivI1mAAAAAAAAAAAAAAAAAAAAACD0NbWlvb29vXu09LSkq233jqTJk0SLgowghQKhUyaNClbb711Wlpa1rtve3t72traqlQZAAAAACOFEGoAAAAAAAAAAAAAAAAAAACAQVi6dOkG99l0003T2tpahWoAqEetra3ZdNNNN7hfX15TAAAAAKA/hFADAAAAAAAAAAAAAAAAAAAADMKSJUvWu725uTkTJ06sUjUA1KuJEyemubl5vfts6DUFAAAAAPpLCDUAAAAAAAAAAAAAAAAAAADAICxfvny928ePH59CoVClagCoV4VCIePHj1/vPht6TQEAAACA/hJCDQAAAAAAAAAAAAAAAAAAADBApVIpxWJxvftsKHAUgJFjQ68JxWIxpVKpStUAAAAAMBIIoQYAAAAAAAAAAAAAAAAAAAAYoM7Ozg3u09LSUoVKABgO+vKa0JfXFgAAAADoKyHUAAAAAAAAAAAAAAAAAAAAAANULBY3uE9zc3MVKgFgOOjLa0JfXlsAAAAAoK+EUAMAAAAAAAAAAAAAAAAAAAAMUKlU2uA+TU3iHQAo68trQl9eWwAAAACgr1ylAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABtRS6wIYGebPn59bb701Dz30UBYvXpxRo0Zl6tSp2WGHHbL77rtn1KhRtS6xLj3zzDOZM2dOnnnmmSxatCgrV67M5MmTM2XKlMyYMSM77bRTWltba10mAAAAAAAAwHq5Zjww7e3tufXWW3PfffdlwYIFaW9vz6RJk7Lddtvlda97XTbZZJNalwgAAAAAAAAAAAAAAABAvSoUklKp1lVQB4RQM6R+8pOf5Oyzz86NN96Y0jp+6EycODGHHnpoPv3pT+dVr3pVlSvsqVQq5W9/+1tuv/323Hbbbbnttttyxx135MUXX+y239FHH50LLrig4uM/8sgj+e53v5uLLroojz322Hr3bW1tzb777psPf/jDOeigg9LS4n9pAAAAAAAAoH4Mx2vGG3Lfffdll112ycqVK3tsO//883PMMccMeowHHnggZ5xxRn784x/3uFbdpVAo5I1vfGM+9alP5ZBDDhn0mAAAAAAAAAAAAAAAAAA0kEJh9Z+CqEc8ibUMiaeeeipHHnlkrr/++g3u++KLL+Z73/tefvjDH+akk07KSSedlELXD6oq+dnPfpY//elPue222zJnzpy88MILVR0/Sdra2nLaaaflq1/9atra2vp8zDXXXJNrrrkmr33ta/Pd7343u++++xBXCgAAAAAAALB+w+2acV91dnbm6KOP7jWAuhKKxWJOPfXUnHbaaWlvb1/vvqVSKTfccENuuOGG7LPPPrn44ouz+eabD0ldAAAAAAAAAAAAAAAAAAwja9+jJ4h6xBNCTcX99a9/zT777JNnnnmmX8e1tbXlC1/4Qu6777788Ic/THNz8xBV2NOxxx5bk+DpLsuWLcsBBxyQa6+9dsB93Hnnndlzzz1z2WWXZdasWRWsjmFtzpzkxz9Obr45efDBZMmSpFhMmpqSCROS7bdP9tgjed/7kl13rXW1AAAAAAAANIDheM24r772ta/l1ltvHZK+Ozs7c8QRR+Tyyy/v97HXXXddXve61+W6667L9ttvPwTVAQAAAAAAAAAAAAAAADAsrB1AvWa7IOoRSwg1FbVgwYK87W1v6/Vm4t122y3vec97Mn369Cxfvjx//etfc/HFF+fpp5/utt8ll1ySadOm5ayzzqpS1bV36KGH9hpAPWrUqLzjHe/InnvumZe//OUZPXp0Fi5cmLvuuiu/+tWv8uijj3bbv729PYcddliuvfba7LXXXlWqnrqzbFnyla8k55+fPPPM6hf5tV/sFy5Mnnwyue665Iwzks03T449NvnsZ5Nx46peNgAAAAAAAMNfI18z/stf/pIvfvGLQ9b/Jz/5yV4DqDfeeON84AMfyMyZMzNp0qQ8+uijmT17dq6//vpu+z311FN5+9vfnttvvz0bbbTRkNUJAAAAAAAAAAAAAAAAQJ1aVwD1mtsFUY9IQqipqI985CN5/PHHu7VNnDgxP/rRj3LggQf22P/000/P6aefnlNOOaVb+9lnn5399tsv73jHO4ay3A2aOnVqdtttt2y00Ua57LLLhmSMyy67LL/61a96tB9wwAE577zzssUWW/R63DnnnJMLLrgg//zP/5wXX3xxVXt7e3uOO+643HHHHRk1atSQ1Ewd++pXky9/uRxE3ZcX9jUDqp96qnzsN76RnHRSOYwaAAAAAAAA+qHRrhl36ejoyNFHH522trZVbXvssUduvvnmivT/y1/+Mt/+9rd7tB9//PE588wzM26tL5E98cQTc+ONN+aQQw7JvHnzVrU/8sgjOf7444fs+jYAAAAAAAAAAAAAAAAAdWpDAdRr7ieIesRpqnUBNI7f/OY3+dnPftatrbW1Nb/73e96vZk4SUaNGpWTTz45Z511Vo9tn/zkJ9PR0TEUpfZq8uTJ2XfffXPCCSfk8ssvz8MPP5znnnsu11xzTY4//vghG/cb3/hGj7aDDjoov/jFL9YZQJ0kTU1NOfbYY/OrX/2qR9j0Pffck9mzZ1e8VurYk08mO++cnHhisnTpwF/QS6Xy8SeeWO7vyScrWSUAAAAAAAANbLhfM16f008/PXPmzFn1/AMf+ED233//ivTd3t6eT33qUz3a/+Vf/iXnnntujwDqLnvttVf++Mc/ZuONN+7Wfvnll+e6666rSG0AAAAAAAAAAAAAAAAADAN9DaAe6P4Me0KoqZhTTz21R9vJJ5+c3XfffYPHfupTn8rb3va2bm0PPvhgLr744orVtz533HFHFi5cmN/97nc544wz8r73vS/Tp08f8nGfeuqp3Hrrrd3axowZk3PPPTdNTX3733PvvffOcccd16P9F7/4RUVqZBi4+eZk5szkrrsq920SpVK5v5kzy/0DAAAAAADABgzna8brc+edd+bLX/7yquebbrppr6HZA/XDH/4wjz76aLe2V7/61fnqV7+6wWOnT5+ec845p0f7l770pUqVBwAAAAAAAAAAAAAAAEA9G2igtCDqEUUINRVxzz335IYbbujW9rKXvSz//u//3uc+vvKVr/RoO/fccwddW19Mnz49hRr88HvggQdSWis0eN99981mm23Wr36OPPLIXvtmBPjjH5N99kmWLKlcAHWXUqnc7z77CKIGAAAAAABgvYb7NeN1aW9vz9FHH5329vZVbd/61rcyderUio3R29/xi1/8YlpbW/t0/JFHHplXv/rV3dquvfZa14wBAAAAAAAAAAAAAAAAGt1gs1QFUY8YQqipiEsvvbRH2wc/+ME+3xSbJLvttlt22223bm1/+tOf8sgjjwy6vnr17LPP9mibOXNmv/vp7Zh58+YNqCaGkSefTN72tmTFiqEdZ8WK5K1vLY8HAAAAAAAAvWjUa8annnpq7rzzzlXPDz744Lz3ve+tWP8PPvhgbrvttm5tm2++eQ488MB+9XPcccf1aLvkkksGVRsAAAAAAAAAAAAAAAAAdaxSAdKCqEcEIdRUxK9//esebQO58ba3Y3rru1H0dsN1f27C7jJ69OgebWPGjBlQTQwj73hHsnRpdcZaujR55zurMxYAAAAAAADDTiNeM54zZ06+8pWvrHq+8cYb59vf/nZFx7jmmmt6tB100EFpaWnpVz+9/btdffXVA64LAAAAAAAAAACGk7POOiunnHJKj8eiRYtqXRoAAAAADI1KB0cLom54/btrEXqxdOnSzJkzp1vbuHHjsuuuu/a7r7333rtH2w033JCPfvSjA66vnk2fPr1H2xNPPNHvfno7ZrvtthtQTQwTX/1qcs891R3zL38pj/vZz1Z3XAAAAAAAAOpaI14zbmtryzHHHJOOjo5VbWeddVY23XTTio5zww039Gh74xvf2O9+Nttss2y//fZ58MEHV7XdfvvtWbZsWcaNGzeoGgEAAAAAAAAAoN6dddZZeeyxx3q0H3PMMZkyZUr1CwIAAACAoTRUgdGFQlIqDU3f1FxTrQtg+Pvzn/+cYrHYrW333XdPS0v/M85f97rXZdSoUd3a1CeXZAABAABJREFUbr/99kHVV8922mmnTJ06tVvbb3/727S3t/ern6uuuqpH21vf+tZB1UYdW7Ys+eIXq//iXCqVx122rLrjAgAAAAAAUNca8ZrxF7/4xdx9992rnr/zne/MUUcdVfFxevu7veENbxhQX3vuuWe3552dnbnzzjsH1BcAAAAAAAAAAAAAAAAAdWioAqir1T81I4SaQbv//vt7tG2//fYD6qu1tTWveMUrurU99NBD6ejoGFB/9a65uTnHHXdct7a5c+fmnHPO6XMfzz//fL72ta91a5syZcqQ3ABNnTjttGTFitqMvWJF8pWv1GZsAAAAAAAA6lKjXTO+7bbbcsYZZ6x6PmnSpJx33nkVH6e9vT0PP/xwt7ZRo0Zl6623HlB/2223XY+2Bx54YEB9AQAAAAAAAAAAAAAAAFBnqhUQLYi6IbXUugCGv0cffbRH20Bvik2SrbbaKo888siq552dnXn88cez7bbbDrjPeva5z30ul156abebiz/zmc9ko402yrHHHrveY5988skccsgheeaZZ7q1n3POOZk4ceKQ1Esd+M53ajv+N76RjBlT2xoAAID+aWtLlixJSqVaVwIAQC2MGZMcemiy8861rgRoUI10zXjlypU5+uiju4Ven3HGGT2CsSvh8ccfT7FY7Nb2ile8Ik1NA/s+8a222qpH29oh1wAAAIxQy5cnN92UPP10rSsBAKBWZsxIXve6WlcBAAAAAAAAwEBVOxi6UJBV02CEUDNoc+fO7dG25ZZbDri/3o6dN29ew4ZQT5gwIVdffXX23XffPP3SB7s7OzvzoQ99KBdccEGOPfbY7LXXXtliiy0yevToLFy4MHfffXeuvPLKfP/738/ixYu79fflL385Rx11VC3+Kuv03//93/n2t7895OM89NBDQz5Gzc2Zkzz/fG1rWLYs+fKXk+bm2tYBAABsWLFYfnR21roSAABq7T//M5k6Nbn00mSffWpdDdBgGuma8Re+8IXce++9q57vu++++chHPjIkY1Xr360euGYMAABQZU8/ndxyS3LXXcnllyePPFK+blwoJE1NSWtrMmpUMnp00uKWAgCAEWPy5OTf/i2ps3vPAAAAAAAAANiAagdQrz2uMOqG4BOjDNrzvQTiTpgwYcD99XbsggULBtzfcPCqV70qc+bMyfHHH5+f//znq9pvuOGG3HDDDX3qY/r06TnnnHNywAEHDFGVAzd//vxuN2ozCN//fq0rKGtrK998AAAA1LeODm/iAQBQVigkzz2XvPvdyRNPJFOm1LoioIE0yjXjm2++OWeeeeaq5+PGjct3v/vdFIboAzqN8u/WF64ZAwAAVEF7e/LrXycXXpjcdFO5bcmSZNmynvuuXLn6v0ePTiZMSMaOrd1NKgAAVMcLLyQnn1z+AuN3vrPW1QAAAAAAAADQF/Xw2b5CQYZNAxBCzaAtXbq0R9vYsWMH3F9vxy7r7cPPDWbTTTfNFVdckTlz5uT888/P9773vSxfvnyDx+222275zGc+k1mzZqWlxf/SDe+3v13v5vO3TT748OCH2WA/xWL5QV25ZKv2vP/xwYeDV6ofqu/uye15zQuDn7tK9UN13TupPTssHvy8Vaofqu/51vZs3Db4uatUP1SfNUAPpZI37wAAWK3r3HDZsuTQQ5PZs2tbD9BQGuGa8YoVK3L00Uens7NzVdtpp52WbbfddsjGbIR/NwAAAOrEb36TnHRS+Qvo1tSX3wtXriw/mpuTjTYqh1EDANC4SqXka18TQg0AdaZYKmZlx8oN7whVNrpldJoKTbUuAwAAAABGrnoIoO4iiHrYk1jLoLW3t/doGzNmzID76+3G2La2tgH3N5w89NBD+d73vpef/OQnfQqgTpLbb789J554Yh577LEcf/zxmTBhwhBXSU098sg6N2394eTxlyfHFpPSqavb+/IyveapReHzSZqSU55KHvvueg7q5f99amfGMckDWydHFNu7zf8/FZIb91n3cZs+m8y+Z/Xzrvn/4mPtuf+CoamVofHRf0i+s1eStdbA53dMnlnPPUGvvz35yBo/KLrWwPE3tufc/xuqaqm0f943OftN6TH/f0ny/des/9hv3L36v7vm/1O/b89Z1w5BoQyZ/902efdRyWYvtueZb6xu/9XmyaL1vIcw85lk1zV+Bmz+r8ncicmVP2zPARX4Yguqp7c18GySP2y6/uPeOC+ZtsZzawAAABpcoVB+3HtvrSsBGkwjXDP+j//4jzzwwAOrnr/hDW/IJz/5ySEdsxH+3Rge2jraUsy6v2S4KU1pbWmtYkVUU7FYTFtx/T8LWpta09TkpuFG1VHsSEexY53b/QxofCs6Vqx3e0tTS1qafJS0UW3oZ0CSjGkZ+Dko9W9D54J+BjSAxYuTz38++fGPe27r7XfC9d380dGRzJ9fDqGeNClxjggA0DgKhaRljXP/efNqVwsA0KuVHStz73yf66L+7LDJDhk7yhfXAQAAAEBN1FMANQ3Bp4YZEoVB/LDq7dhSg6fdt7e350tf+lK+8pWvpLOzs8f2cePGZdq0aRk3blwWLVqUuXPnplhcfVPAgw8+mBNOOCFnn312LrzwwrzlLW+pZvlU08rev8W4K4A6SdJUDhEtndq3AOo1dYWPJuX+tv7wBoKoqQtdAdRJus1/kpz770k2dK/oSyHUa87/A1uX+xVEPTysCqBOeqyBLx+0/mO/95bkI2eU/3vNNdDVnyDq+rcqgDrpMf9//6lk6Qa+n+L1f0kOL3Wf/67+BFEPD13hw0k5PHjzf82qEOJ3fzAprefUfFQxaftK+b+7woeTcn9X/jBCiIeJda2B83ZLvrD/+o899k/J935b/m9rAAAARoBSqfx48cVaVwKMAMPpmvGNN96Ys846a9Xz0aNH5/vf/35NAlmH078bw8cNj9+QZ158Zp3bt5q8Vd60zZvWuZ3hbVnHsvz8vp+vd5+3b/f2TJswbb37MHzd8cwdeeC5B9a5fcqYKTng7w6oYkVU2xX3XZHOYs/PpHXZ4xV75JVTX1nFiqimRxY+kpufvHmd25ubmvP+17y/ihVRbbMfmp1FKxatc/uMTWZk9y12r15BVNYTTySHHZY8+mjv2zs6Vr8n2KUvvycuXVp+NDW5gQUAoFEUCskrXrH6+cqVyfLl5S8gAQAAAAAAAKD+1OPn99yrNuwJoWbQRo0a1aNt+fLlA+6vt2NbWzeUoDp8tbW15ZBDDsn//u//dmsfO3ZsPvShD+WYY47JzjvvnObm5lXbXnjhhfzud7/LWWedld///ver2p988snst99+ufTSS3PIIYdU7e9AbXULoO7yUghp8dS+97Nm+GgXQdT1r1sAdZe1Qmj7orf5F0Q9PHQLoO5SoTUgiLr+dQug7lKh+RdEPTysGT7cZe0g6r5YM3y4ixDi4WF9a+Cfru97P9YAAACMML18ISbAYAzna8bLli3LBz/4wW5fAnzyySdnxowZQzLemobzvxsAAAA19vjjyUEHJXPn9tzW3p4sW5asWJGs8ftuvxWLgqgBAAAAgLq0dOnSPPLII93a2tvbe933r3/9a5YsWdLnvqdNm5Zp0yrzRc7PP/98rrnmmvzud7/Lvffem0ceeSSLFy/OypUrM2XKlGy33Xb5whe+kHe+850VGa9edXZ25g9/+EOuv/763HbbbXnooYcyd+7cLF26NMViMePHj8/mm2+eV77ylXnDG96Q/fffPzvvvHOtywYAAAConXr83J4A6oYghJpBGzduXI+2St8YO378+AH3V+8+9alP9Qig3n777fPzn/88O+64Y6/HTJ48ObNmzcqsWbNy7rnn5uMf//iqm6I7Ojpy5JFHZsaMGes8vto22WST7LDDDkM+zkMPPZSVK1cO+Tj1pNcA6i5NSVMfg6h7Cx/tIoi6fvUaQN3lpRDarNhwP+ubf0HU9a3XAOouXWugD/cQrW8NCKKuX70GUHd5af7HL95wP+8/Keucf0HU9a238OEuXSHEfdFb+HAXIcT1bUNr4Ix/6Fs/1gAAAIxAgwmeAejFcL5m/LnPfS5/+9vfVj3fddddc8IJJwzJWGsbzv9u/eWaMQAAQAUtXpwcfnjPAOpSKXnxxaTr98NK3PAhiBoAAAAAqEO33npr9t133z7tu99++/Wr75NPPjmnnHJKr9u22WabPPbYYz3aH3nkkWyzzTarnj/22GP50pe+lIsvvjgrVvR+s/dzzz2X5557Ln/96197DaHu61gDdcEFF+SDH/xgj/ajjz46F1xwwaD7T5K5c+fmv/7rv3LhhRdm3rx569xv0aJFWbRoUe6777788pe/zOc+97nssMMO+fSnP50PfOADaW5urkg9AAAAAMNCPX5eTwB1wxBCzaBNnTq1R1t/vgmyL8f2NkYjuOmmm/Kd73ynW9vGG2+c2bNnZ/r06X3q46Mf/WhWrlyZf/mXf1nVtnLlynz0ox/N73//+4rWO1Af+9jH8rGPfWzIx9lxxx1z7733Dvk49WK9AdRd+hBE3bSe8Nkugqjrz3oDqLs0JRmT9YcQN2WD8y+Iuj6tN4C6S9fcrm8NjM4G14Ag6vqz3gDqLk3J0kkZ9M8AQdT1aX3hw13mTkx5/tezBtpbkrmt6+9HCHF96ssaWNJ1HrCeNXDx65MV1gAAAIw8QqiBChuu14x///vf55vf/Oaq5y0tLfn+97+flpbqfJRiuP67DYRrxgAAABX0+c8njz7ava2jI1m0KOnsrPx4pVJ93tQCAAAAAFCHvvWtb+Uzn/lMli1bVutSaqatrS1nnHFGTj/99Czv+uLEfrr33ntzzDHH5Jxzzsn555+fnXbaqcJVAgAAANShevysngDqhiKEmkHbdNNNe7Q9+eSTA+7viSee6NMYjeDMM8/s0fYf//EffQ6g7vLJT34y559/fu66665VbTfccEPmzJmTXXfdddB1Un/6FEDdZT1B1H0JoO4iiLp+9CmAusv6Qoj7ED7bRRB1felTAHWXCq0BQdT1o08B1F0qNP+CqOtLX8KHV6nQGhBCXF8quQZW9PFdAWsAAAAAWJ/hes34+OOPT2mND8F89rOfzWtf+9qKj7Muw/XfDQAAgBr6zW+SH/+4e1tHR7Jw4fq/fK7rxpS+3AzS1MsHSiZPTkaP7nudAADU1osvJgMMegMAAAbuYx/7WL797W/XuoyaeuKJJ3LwwQfntttuq0h/c+bMyRve8IZceOGFee9731uRPgEAAADoIwHUDUcINYPWW2DyY489NuD+Hn/88W7Pm5ubs9VWWw24v3rV0dGR2bNnd2srFAo56qi+psmt1tTUlKOOOionnHBCt/ZrrrlGCHUD6lcAdZdegqj7E0DdRRB17fUrgLpLb+GT/Qge7SKIuj70K4C6S4XWgCDq2utXAHWXCs2/IOr60K/w4S4VWgNCiOuDNQAAAFREa2utKwAazHC9Zvz00093e/6zn/0sV155ZZ+Pnzt3bo+2L3zhCznrrLO6tR144IH50pe+1GPfrbbaKk1NTSmuERL2xBNPpFgspqm3wK8NWPvfLel9bgAAABim2tuTk07q3lYqJYsW9QygLhTKodErV3YPoO7LDSHFYtLc3L1tyZJk4sTVfQEAUN+WLq11BQAAMOKcdNJJIz6A+v77789b3vKWPPPMMxXtd9myZTn88MPzox/9KIcffnhF+wYAAACoG/X2+TwB1A1JCDWD9nd/93c92h588MEB9dXW1pYnnniiW9t2222XlpbGW6oPP/xwlixZ0q1tu+22yyabbDKg/v7+7/++R9tdd901oL6oXwMKoO6yRhD1QAKouwiirp0BBVB3WTN8cgChk10EUdfWgAKou1RoDQiirp0BBVB3qdD8C6KurQGFD3ep0BoQQlxb1gAAAFAxAwg2BVifRrlmfO+99w66jyeeeKJH/TvvvHOv+7a2tmb69Ol56KGHVrW1t7fn8ccfzzbbbNPvsdfsp8uMGTP63Q8AAAB16pprkrV+58yLLyadnd3bRo1KJk8uh1a3ta2/z0Kh9xtFisXu7yN2dibLlyfjxg2sdgAAAACABjZ79uycdtppPdo322yzvOtd78qb3vSmbLbZZtlkk01WfT7qlltuyY9//OMaVDs0Hn/88ey7776ZO3fuOveZNGlS9t133+yzzz7ZbrvtMnXq1IwePTrPPvtsHnroofz617/Ob3/726xYsaLHsZ2dnTn66KMzffr07LHHHkP5VwEAAACoPgHUVEnjJftSdbvsskuamppSLBZXtd12223p6Ojo943At912W9rb27u17brrrhWps94sWLCgR9tAA6jXdezzzz8/4P6oP+fffP7AA6i7NCVNJw++lsdfnpy/bfJB4YNVc8lWgwig7jKIwMk1PbB1uZ73Pz74vui7uycPIoC6S4XWwHf2Sv7p1uQ1Lwy+L/rm3kmDCKDuUqH5P/tNyUduT3ZYPPi+6LvnWwcRPtylQmvg3UclC76SbLyBexSpLGsAAACoqI6OWlcANBjXjAdut9126xEe/cc//nFAIdQ33XRTt+fNzc157WtfO5jyAAAAqCcXXtj9eXt7ORh6TaNGJRttVL4hZa3fr3tVKJQfa/xOn6R8A0mp1P3GliVLhFADAAAAAHVhn332SWmtIJxtttkmjz32WI99H3nkkQF9Fqc/TjjhhG7Pp06dmtNOOy3/+I//mKamnjd07bHHHnnve9+b008/Pc8+++yQ1lYNK1asyEEHHbTOAOqXvexl+fSnP53jjz8+EydOXGc/H//4x/Pkk0/mxBNPzA9/+MMe29va2nLYYYflnnvuyfjx4ytWPwAAAEBNCaCmiioQP8VIN378+Oyyyy7d2pYuXZo77rij33394Q9/6NH2pjcNNnGxPo0ZM6ZH2/K1PwjeD8uWLevRNs4HvRvKB/f4YFLc8H5VURRAXW3vfzx1Nf8CqKvvNS+krtaAAOrq2mFx6mr+BVBX38ZtyWYv1rqKss1eFD5cC9YAAABQUWsHygAMkmvGA7f33nv3aOvt32BD5s2bl7/97W/d2nbbbTfXjAEAABrF008nN97YvW3tzw4XCsnkyf2/IaVQSHoJQelxI8nKlb7gDgAAAACgF4sXr77pcscdd8xf/vKXHHfccb0GUK+ppaUlW2yxxVCXN+ROPvnkdX5WbK+99sqf//znnHDCCesNoO7yile8Ij/4wQ9y3nnnpbm5ucf2xx57LKeccspgSwYAAACoDwKoqTIh1FTE/vvv36PtJz/5Sb/76e2Y3vpuBJtsskmPtsceeyzFAQY/PPxwz0Tg3sZg+OosduaAB1P7ENJicsCDSWednbOMBKVTUxfzXzq1xjWMYNbAyGb+eeYbyaZLalvDpkvKdVAb1gAAAFAxgmKAITAcrxkvWrQopVJpwI+TTz65R5/nn39+j/0uuOCCddaw33779Wj7xS9+kY5+/qz+6U9/2qOtUa+1AwAAjEi33NL9ealUDoVe0/jxSS+BHH1SKPS8maVU6nlDSZtvrQYAAAAAWJftt98+1157bTbbbLNal1I19913X77xjd5vONt7773z29/+Ni9/+cv73e9HPvKRnHPOOb1u++///u/Mmzev330CAAAA1BUB1NSAEGoq4vDDD+/Rdv7556etHx80vuOOO3Lrrbd2a9tjjz0yffr0QddXjzbbbLNMmDChW9vChQvzpz/9aUD9XXXVVT3aXvWqVw2oL+pTc1Nzjr0jefnS1C6EtFge/9g7kmbnCVW3eHSy/8Op6fzv/3C5DmrDGhjZzD+LRye7zE0KNVoDhWJ5fGugdqwBAACgYurtwjTQEFwzHphXvvKV2W233bq1PfXUU/nf//3ffvVz3nnn9Wh7//vfP6jaAAAAqCN33dX9eVtb9xs+CoVk7NjBjdGX9w2FUAMAAAAArNP//M//ZJNNNql1GVX1xS9+MR0dHT3at9pqq1xxxRUZPXrgN6P90z/9Uw466KAe7cuXL+/181IAAAAAw0a93ecrgHrEEEJNRbz61a/OG9/4xm5t8+fPz3/913/1uY/Pfe5zPdo++tGPDrq2etXS0pK3vvWtPdpPO+20fvf1yCOP5Ec/+lGP9v32229AtVG/Zt2ffPOqGgVRvxRA/c2rynVQXZ2F5MiDkzs2S0aXklT7XK1UHveOzcp1dNbZuetIYA2MbOafNddAa43WQKs1UFPWAAAAUFH1dnEaaAiuGQ9cb3/Hk08+Oe3t7X06/tJLL81da4WR7bPPPpkxY0ZF6gMAAKAO3HNP9+drB3q0tCRNg7w1oLf3Dde+sUQINQAAAABArw4//PDss88+tS6jqp566qn85Cc/6XXbV7/61UydOnXQY5x++ukp9PL+9YUXXjjovgEAAABqot7u8RVAPaIIoaZiTjrppB5tJ598cubMmbPBY7/1rW/lmmuu6da27bbb5ogjjujT2Ntss00KhUK3x3XXXdenY2vpsMMO69F21VVX5atf/Wqf+3jhhRcya9astK31oe4ddtghr3nNawZdI/WnJkHUAqhrrrmUHH53smhs0t700gt4tc7ZSuXx2pvK4x9+d7keqssaGNnMP9YA1gAAAFBRzc21rgBoUK4ZD8xRRx2VrbfeulvbXXfdlRNPPHGDxz766KP5+Mc/3qP985//fMXqAwAAoA4sWND9+doh1KNGVWacDd3cUqzWB1cBAAAAAIaX4447rtYlVN0PfvCDdHZ29mjfcccdc/jhh1dkjJkzZ+btb397j/aHH344998v+AAAAAAYZgRQU2NCqKmY/fbbL+95z3u6ta1cuTL77rtvrrzyyl6PaW9vz6mnnppPfOITPbadc845GVWpD0TXqcMOOyw777xzj/bPfe5zOfbYYzNv3rz1Hv+73/0uu+22W+68884e2/oTZM3wU9UgagHUdaGzkFz6mmRc++q2qoRPlrqfLIxrL9fRWWfnsCOBNTCymX+sAawBAACgoppcIgSGhmvGA9Pa2pqzzjqrR/vXv/71fOxjH8vy5ct7Pe6mm27KG97whixYK4jsve99b97ylrcMRakAAADUSnv7+rdX68YUN5wAAAAAAPSw9dZb581vfnOty6i6X/ziF722H3744SlU8H3rt73tbb22X3vttRUbAwAAAGDICaCmDrTUugAay//8z//k9ttvz5NPPrmqbfHixTnwwAOz++675z3veU+mT5+e5cuX529/+1suuuiiPPXUUz36+fjHP553vetdVav7tttuy4c//OF1bl+yZEmPtl/+8pe9Bkh32X333fPd7353veM2NTXlu9/9bvbZZ58eY5x//vm5+OKLs99++2XPPffMFltskbFjx2bRokW577778pvf/CZ33313r/0effTRefe7373esRn+ugKhP/HO5KnxGZqvFRBAXTeaS8mxdyR3bF5+/sLo8p9NSYqlJENxXrlW6OTkleXgyWPvKNdDdVkDI5v5xxrAGgAAACpKCDUwhIbrNeNaO+igg3LcccflvPPO69b+7W9/O5dddlk+8IEPZObMmZk4cWIef/zxXHPNNbnuuut69LP11lv36AMAAIAGsKEvaarWzSD1dhMMAAAAAEAd2GuvvSoaujwcLFq0KLfeemuv22bNmlXRsd74xjf22n7HHXdUdBwAAACAIVNv7x0JoB6xhFBTUZtssklmz56dt7zlLZk7d263bbfddltuu+22DfZx6KGH5qyzzhqiCnu3ZMmS3Hnnnf06ZuHChVm4cOE6t0+ZMqVP/ey22275+c9/noMOOqhHEPXKlSvzy1/+Mr/85S/7XNfBBx+8wfBrhrGWlqSjY9XTIQ2i3lAAdb2dzIwAsx5IUijlE+8oPx/S8Ml1hE5+8+pk1gOFoQm6ZIOsgZHN/GMNYA3Qb97wAwCgN4WC93eBITVcrxnXg29961t57rnn8tOf/rRb+4IFC3L22Wdv8PjNN988s2fPzsYbbzxUJQIAAFArU6d2f96y1m0A7e2VGWdD15l9wR0AAAAAQA+77rprrUuoujlz5qRYLPZoHz16dGbMmFHRsV7+8pf32n7//b2FIAAAAADUmXq7p1cezYjmU6BU3MyZM3PLLbes89sE12XUqFE5+eSTc8kll6S5uXmIqqtPb33rW3PnnXfmzW9+84D7mDBhQr797W/npz/9aVrW/mA5jWP06B5Ns+4vB0W/fGllh1pvADU1M+v+Qr55dTkEcvLK1e2VfkFfZ+jk/XV2IjsCWQMjm/nHGsAaAAAABqWpSUgMUBWuGQ9MS0tLLr/88nz+85/v9zXfN73pTbn11lvzqle9aoiqAwAAoKZ23LH787V/b+zoSHoJ++iX3m4sWfvml9bWwY0BAAAAANCAdthhh1qXUHV33313r+3bb799xT/7NXXtL2p8yVNPPVXRcQAAAAAqTgA1dUZSLUNiyy23zO9///v8+Mc/ztlnn50//vGPKa3jB86ECRPyvve9L5/+9Kcr/o2Gw8m2226b6667LjfccEPOO++8XH311Xn++efXe0xzc3N22mmnHH300Tn66KMzZcqU6hRL7bS2Jkt7pk3Puj85+H2VHeqp8RsIoBZUUjOz/pqkUMon9i/fMPLC6GSQt470UEw5fHJV6OSvmzLrrwVfX1EnrIGRzfxjDWAN0GednbWuAACAetL1nm6p5P1doCpcMx6YpqamfOlLX8oRRxyRr33ta/nJT36SJUuW9LpvoVDInnvumU996lN53/sqfLEQAACA+rLTTt2ft7aWb07p+l27VEqWL0/Gjx/4GH25uUQINQAAAABADyMx5+Gxxx7rtf2ee+5JoUrhSgsWLKjKOAAAAAADIoCaOiSEmiFTKBRy6KGH5tBDD82zzz6bW265JQ8//HAWL16clpaWvOxlL8vMmTPzute9Lq2D/EDyo48+Oqjj99lnn3Xe8Fxte++9d/bee+8kyYMPPpi77rorCxYsyKJFi9LW1pZJkyZlypQp2WabbbLrrrtm/GA+LM7w09L7j+3C51P5QMCmcr+lUyvcLxUx64FCkqZ8Yv9iFram8vNfSIrFNUInH6izE1msgRHO/GMNYA0AAACDUqz0V9kA9G44XTMeiFNOOSWnnHLKkPQ9Y8aMnH/++TnvvPNy66235r777stzzz2Xjo6OTJo0Kdtuu21e//rXZ9q0aUMyPgAAAHXm9a/v/rxQSEaPTlasWN22dGkyZkzS3Nz//kulnjeYFAo9b4IRQg0AAAAA0MOkSZNqXULVPf3007UuIcuXL691CQAAAAC9E0BNnRJCTVVMmzYtBxxwQK3LGHa23377bL/99rUug3qybFmPpiEJoO6yviBqJxM1N+v+5OBDMqTz/9T48jiJ+a5H1sDIZv6ZdX9y7AEZ0jWwtMUaqGfWAAAA0C9d7+k2DdUvEQDr55rxwLS2tmavvfbKXnvtVetSAAAAqKUttkj22iu58cbVbePGdQ+hLpWSF15INtqofzewlEq9f3Hd2n2MHp20uP0AAAAAAGBt48ePr3UJVffiiy/WuoS0tbXVugQAAACAnuotgBrW4FOgAMPJWt/GOaQB1F3WFUTd2w0HVFXV5v8/ir0HkVNz1sDIZv7Z/F+TRWOHdoxFY5PN/7mYZ74xtOMwMNYAAADQL10h1L5gEAAAAACGp6OP7h5CPWpUMnZs98+WtrcnCxcmkyf3rc9Sqff3DAuFnjfCTJjQ/5oBAAAAAGhIK1eurHUJAAAAAPWnHgOo3VfMGoY6tg6ASloj+Lkq4aNdXgqipn6Yf6yBkc38s/m/JnMnVmesuRPL41FfrAEAAGDAfMEgAAAAAAxP++2XbLll97aJE5Pm5u5t7e3JggXJihUbvnlkXdub1vpwUnNzOfAaAAAAAACSNK39PjIAAADASCeAmmGgpdYFANB/VQ0f7fJSCGnp1CqPSw/mH2tgZDP/VDN8uEtXCPEz36juuPTOGgAAAAatvb3WFQAAAAAA/TVqVPLlLydHH726rVBIpkxJFi7s/gV0pVL3EOr+3NzSW3DIRhvV5w0yAAAAAADUxLhx43pt32mnnXLRRRdVuRoAAACAGqvHz9cJoKYXQqgBhpmahI92EUJac+Yfa2BkM//UIny4ixDi+mANAAAAFdHRUesKAAAAAICBeNvbkve9L/nxj1e3tbSUQ6IXLUo6O3s/rq83kxQK5X3X3L+lJVm6tPwAAGB4cE0YAADYgJUrVw7q+KlTp66z31e/+tWD6hsAAABgWBFAzTBSqwg7AAagpuGjXV4KIaX6zD/WwMhm/qll+HCXrhBiasMaAAAAKsbFYwAAAAAYvk49NZk+vXtbS0sydWoyduzA++3tRphCIWltHXifAAAAAAAMSHNzc6/tnev6MsJ+ev755wd1/FZbbTUk/QIAAAAMKwKoGWZqHWMHQB+df/P59fNTuyk5f9taFzGyXLJV6mr+L+n9uiBD6O7Jqas1cPfkWhcxstw7KXU1//dOqnURI8/zrbUPH+4yd2K5HqrLGgAAACpqHTcmAAAAAADDwKRJyaWXJptv3r29UChv23jjZMyY/t3csq4A6v72AwAAAABARUyYMKHX9iVLllSk/wULFgzq+JkzZ/ba/txzz2XhwoWD6hsAAABgWKjHz9YJoGYD6iXKDoAN+H+v+39paR98P2M7Bt9HS3vy/x4ZfD/03fsfT/7usVpXUfZ3j5Xrobpe80Jy/I21rqLs+BvL9VA9OyxOPvX7WldR9qnfl+uhujZuS678Ya2rKLvyh+V6qC5rAAAAqCgh1AAAAAAwvG25ZfLznyfTp/fcNmpUMnlyMnFi0tRUvtGl67G29bWPGVM+HgAAAACAqps8eXKv7YsXV+YGzzlz5gzq+Ne//vW9tpdKpdxwww2D6hsAAACg7gmgZphqqXUBAPRNZ7Ez4zuTF0YNrp+2CmSLjO9MOgtJs3ONqrr/gmSL45JnNqtdDZvPLddBbZz7f8lDU5Lf7Fi7Gt52T7kOqu+sa5O/bZRc9Zra1fDOu8t1UBsHPJx87trkK/vWrobPXVuug9qwBgAAgIoRHAMAAAAAw9+WWyZXX5184QvJ5Zf33L5mAHWXzs7u+/R2I8zYscmkSd5HBAAYzpYvT5YuXf187XO7pqakxa2lAAA0lubm3m+ib2trq3IllTFp0qRe2x988MHsvffeg+q7o6Mjt9xyy6D62GabbbLtttvm4Yd73mz2f//3fznwwAMH1T8AAABA3RJAzTDmkwIAw0RrS2v+c3Zy3LuT0gDPPQpJSmv8OaA+Ssl/zk5aiwPsgAG7YkaS8UmKSWpxb0exPP4VM5JZ99dgfHLFjOQvW6Wma+AvW1kDtXLFjOTObZLmFUnnmOqP37yiPL75r50rZiQ/2D0ZvyJZWoM1MH5FefzXPWsN1Io1AAAAVMzaQTMAAAAAwPA0aVJy1lnJu96VfP7zyeOPr962jsCVHrpuiGluTjbaqBxCDQDA8Nbe3j14eu1zwzE1+CAqAAAMsTHrOM9dvnx5lSupjG222abX9rvuumvQfV955ZVZuuYX1wzQrFmzcuaZZ/Zov/DCC/OlL30pU6ZMGfQYAAAAAHVFADXDXC3iCwEYgM5iZ345I5m8cuB9lJIUCwMPoE7K4/9yRtJZh+dAjayzkJy3WzJ/fGr36t1UHv+83cx/LVgDI1tnIfn+LsmyUUlxdG1qKI4uj//9Xcx/Lay5BpbVaA0sswZqas01sHx0BndCNxCl8rjWAAAANIiibxkEAAAAgIbytrclN9yQ/H//X7LXXqvbm/rwYbPRo5OpU5PNNxdADQAwUmy+ea0rAACAitt44417bX/qqaeqXEll7LLLLr22X3PNNYPu++yzzx50H0nyoQ99qNf2xYsX55xzzqnIGAAAAAB1QwA1DUAINcAw0dzUnGPvSMa3J1NW1KaGKSvK4x97R9LsnKPqnp2QdNT4lbujqVwHtWENjFzNpeTwvyRLW5JSjX4PLRXK4x/+F68BtWAN0LUGlrWUnzcllQui3lA/pdVvHiyzBgAAAAAAAACgPo0alRxwQPLjHye33ZZ85jPJK1+ZTJ5c3tbSUg6lbm4u/3dra7Lppsm0acm4cfV5gwwAAJXV3JxsuWUyZUqtKwEAgIp7xSte0Wv7fffdV+VKKmPXXXfttf2+++7LnDlzBtzv5Zdfnuuvv37Ax69p5syZ2X///Xvddtppp+Wmm26qyDgAAAAANVePn68TQM0AtNS6AAD6btb95T8/8c5yVuALY6o39uSXAqi/edXqOqiuejnXq5c6RqJ6+bevlzpGks5C8sOdkgz299DSIPt4qQ4BtNVnDdBZSC59dbLRimTh2KS9qRwMXVzXnJbK7131mKZe9t9QP10B1KOK5fEvfbU1AAAAw16T76kFAAAAgIa2xRbJm9+c/OlPycyZyYoVyaJFyb33dt/v5S9PxlTxw6gAAFTHc88l7e2rn48alWy3XTJhQvkLSQAAoAHNnDmz1/Yrr7wy//Zv/1blagbvNa95TTbZZJPMnz+/x7bPfvazmT17dr/7fOihh3LcccdVorxVvvrVr2b27NkpFovd2tva2nLIIYfk+uuvz6te9aqKjjl//vz85S9/yb777lvRfgEAAAB6JYCaBuITAwDDSVNTZt1fzLJRyYcOTAqlpFSF85JCKVnRkvy3AOqa2mxp0lJMOmqYD9NSLNdBbVgDI1vhpUdTKSnW4HfSptLqGqgNa2Bkay4lF/0sOey9yZ8320AQ9UvB0T3eKurM6hDq5nJT12Hr6yd5KYB6ebLz3HIdAqgBAGCYq8cL3gAAAADA0BkzJtloo56B0y97WTJ+fG1qAgBg6HR0JC+8sPp5a2syZUrNygEANmx0y+jssMkOtS4DehjdMrrWJfTZnnvu2Wv79ddfnwsuuCDHHHNMdQsapJaWlnzgAx/If/3Xf/XY9pvf/CZnnnlmv8K1//znP+cd73hHFi1aVMEqk9e+9rX513/913z961/vsW3u3Ll53etel+9///s55JBDBj3WQw89lDPPPDMXXHBBjjjiCCHUAAAAwNCrx/txBVAzCEKoAYaT1tYsLq3Ij3ZKxnUk7c1JhjiIuvBS4OS4juRHOyXv/msyaeXQjUfvmkvJR25P7to0eXZ8bUKIW4rJtKXlOgRPVp81MLKtOf8LxpWDZwcUQjzA14umUjmAduoy818r1gBJ+Rzssp9sIIh6jeDorBEq3dRRnseu9mIpKbYkozuStpcCqdfVz5oB1Jf9xLkgAAA0hKYafssZAAAAAAAAAAAA3TQVmjJ21NhalwHD2pve9KZMmTKl15DlD37wg7nwwgtz4IEHZscdd8xGG22UsWN7/39u2rRpmTZt2hBX2zfHHntsryHUSfLv//7vmT9/fr7whS9k3Lhx6+xjyZIl+c///M98/etfz7Jly1a1b7HFFnn66acrUudpp52W3//+97nlllt6bFu8eHHe+9735u1vf3s+85nP5C1veUu/+n744Yfz05/+ND/96U9zyy23pCRkCQAAAKgWAdQ0ICHUAMPI4sljctg/rMidmyVjOsptL4zOkAVRdwVQT15ZHu/Ozcqhh8IHa2PW/eU/P/7O6ocQd4UPf+uq1XVQfdbAyLbm/PclhPilDNkN2tB+a4YPm//asgZINhxEveZLw9j2ZFnrWgHUL2kqJelIRnUmYzteOqdMz34EUAMAQAMqFFxkBgAAAAAAAAAAABpKa2trPvzhD+frX/96r9uvu+66XHfddRvs5+STT84pp5xS2eIG6NWvfnWOOeaYXHDBBb1u/9rXvpYf/OAHOeSQQ7LPPvtk8803z+jRozN//vw88cQT+c1vfpPZs2fnhRde6HbczJkz8/GPfzwf+9jHKlJna2trrrzyyuy111558MEHe91n9uzZmT17drbccsu86U1vyl577ZWXv/zl2XjjjTNx4sS8+OKLWbRoURYtWpS//e1vmTNnTu6444489dRTFakRAAAAoF8EUNOghFADDBOdxc4cud/S3LnJ6rahDKJeO4C6y52bJUcenPz80qTZuUjV1SKEWPhwfbEGRrY15/+5cUlb83p2filEdn0hxV37ZT37tAgfriv9XQPrm9u+7mcN1J/1BVF3mbyy/L7Ril4CqLs0lZK335f8abvy8zWDqBMB1AAA0HDWvOBdLNauDgAAAAAAAAAAAIAhcOKJJ+biiy/O008/XetSKubMM8/M1VdfnXnz5vW6/Zlnnsm3vvWtfOtb3+pTf5tsskl+8Ytf5MYbb6xkmZk2bVquv/767L///rn77rvXud8TTzyRiy66KBdddFFFxwcAAABoaAKoqZAqxBYCUAnNTc059s5CjxDBMR3lkMGhsHYAdVIOKzz2jqQ5hXJoiUfVH7MeKOSM31QvBLy5lJzxm2TWA7X/u3tYAx6r579QnelPIea/3h7WgEcKhUxqK+Syn5QDojdaXg6M7jJ5ZTKuPTlszroDqLvMeDb55tXl/dc8p+wRQN1W+7+zxwAeAAAAAAAAAAAAAAAAMEJstNFG+dWvfpVNN9201qVUzMYbb5xf/OIXmTJlyqD7mjZtWn7961/nla985eAL68UWW2yRP/zhDzniiCOGpH8AAACAqqi3zBYB1FSQEGqAYWTWvaV886p1hAlW+nyll/6aSsk3r0pm3V/hseiXxa2l/GincljkhoIlB6upVB7nRzuVx6U+WAMjW1/mv/DSo9jH14Z17Wb+61N/1kBfrG9fa6C+9RZE3RVA/c2rk12e6ls/s+4vdAui7jWAGgAAAAAAAAAAAAAAAKDO7bzzzrnrrrvykY98JKNHj651ORWxxx575Nprr80WW2wx4D5e//rX5+abb86uu+5awcp6mjRpUi666KJcccUV2W677Sre/9SpU/Pxj388//qv/1rxvgEAAAAEUNPohFADDCfFYmbdn25B1CtakkVjkkqfIpRS7ndFS/l5jwDqQsGjBo/Fo5PD3pfcuVkypqMcFDlUIcRNpXL/YzrK4x32vmTxaHNf64c1MLIffZn/QpJCP9dEoZQeIcTmvz4f1oDH2o9J7U257KeF7Dwv2Xh5VwB1IbMeaOo5qetcAOX9v3l1IePay/3sPC+57Kfl/mv9d/QYxAMAAAAAAAAAAAAAAABGmGnTpuW8887LvHnzcskll+RjH/tY9tlnn0yfPj2TJk1KS0tLrUvst5133jkPPPBATjzxxIwdO7bPx73iFa/IOeeck5tuuinbbLPN0BW4loMOOij3339/Lrnkkrz5zW9OU9PA42222mqrfOhDH8rPfvazPP300/nmN7+ZHXbYoYLVAgAAAKT+sloEUDMEht87owCsCoL+8IFDE0DdpSuIeqPlyXd/uUYAdVJ/J0ojwOLWUg47pJQ7N13dNqaj/OcLo5NiBadkzeDRLndumhz23lI5kLLN/NeCNTCy9WX+C0m/w4e7FEpJCuWf/ea/PlkDrMuk9kIu+2kpR84q5tg/N2XWX7sWQx8OLmTVeV35uFK+v3MxF13RlEnthb4HWVOfCgVvKAIA0LtBfJAfAAAAAAAAAAAAYDiYPHlyDj/88Bx++OEV6e/RRx+tSD8DNWHChJx22mk54YQTMnv27Fx11VW5++67M3/+/MyfPz+lUimTJ0/O9ttvn1122SXvete78g//8A8ZNWpUj76OOeaYHHPMMUNab0tLy6p//3nz5uX//u//cvPNN+eee+7JY489lueeey7Lli1LqVTKxIkTM3HixEyZMiXbbbddZs6cmZkzZ+b1r399XvWqVw1pnQAAAAB1l6soL4YhIoQaYBhrax66AOoupZfGobY6C+VgyTWDR7uM6UjampKlrZUbb2x79+DRLndumhw5q5ifX96U5lKdnTA3OGtgZNvQ/CfJwtGDz4otlMo/99cOH+5i/munL2tgUYXWQGINDEeT2go59Zpk50WDm5dZDxQyfV4EjQMAAAAAAAAAAAAAAADUoSlTpuTQQw/NoYceWutS+mzTTTfNkUcemSOPPLLWpQAAAAB0J4CaEUQINcBw0tycdHbmihnJhw9Mlo0qh00O5alCIeVxPnxg+fms+7s21NkJU4NrTiHH3pncsVkxxbX+6Ve0VDZ8OCn311rsGUDaVEqOvbMpzWkafNIp/WINjGzrm/8kWdicpJAUU56jgerqe2FzsnkvAcTmv3Y2tAaWNSelQvmcoBJrYFlz7yHU1kD9+ui+HfnOnkmKnSl9pZ+/6q9xXlf4XEfSlBx/U2fOvdZbBsPe2ufsvb3J6LweAKAxre8Cs3NAAAAAAAAAAAAAAAAAAABGunq751YANUNMohTAcNLUtCqAetGY1WGTQ6mUJIXyeN2CqIvFIR6Ztc26L0mxkE+8o7QqJHRFS7JwzNCMt3BMstGK1SGkTaXkm1cXMuuBpBx1S7VZAyNbb/OfJM+0Jhm1+nmxMLAQ4m7BxqOSZ0rJ5m2rm8x/7a1rDTzfmqys8BpYOSp5vpRsbA0MCx99S7EcQJ0kTeUg6dJpTX07USxl1Xld4T+KSVO5+Tt7Jil15NzfNQ1BxVRNX87ZvfkIADBylEr1dzEcAAAAAAAAAAAAAAAAAACqrd7uuZUBQxVIkwIYRq54VWdVA6i7lFIeryuI+ooZVRqYHmY9UMg3ry6kqTS04cNdFo4pj7M6eLTOTphHIGtgZFtz/pOXAqhbe+5X7Oc09bp/60v9x/zXk7XXwPOtycohWgMrW8v9J9ZAPfvoW4r5zl5rNTa9FCjdD2sGUHf5zl7l/gEAgAZSKvmCQQAAAAAAAAAAAAAAAAAARi4B1IxQLbUuAIC+6Sx25vQ3dFQ9gLpLKUleCqI+fe/kwL8W01yqsxOoEWLW/cmfXp6csXbg5BBZOCb5x9vL41Z/5dEba2BkK89DcvBB6TWAuktfQ4jX+6O8NXkmyc9+bv7rSdcaOOKg3gOou/R1Daxvv5WtycIkF//cGqhHH31rqWcAdZem5PhDkpbODffTWwB1l3L/xZz7W+d9AAAAAAAAAAAAAAAAAAAAAAAMYwKoGcGEUAMMI1OXldJUSjpqdO5SStJcSqYue+mJk5aauGJGcsYbqjvmGW9I/v7J0qrgU2rrihnJmVVeA2daA3XlpNdnvQHUFdVaHm/WfX7m15NLt0tWVGkNrGgtj2cN1JeP/kPWHUDdpSnpyPqDqE/7h6wzgLpLeZxSzv2/fpUIAADUs2Kx1hUAAAAAAAAAAAAAAAAAAED1CKBmhNtA1BQA9aK5qTlH3d2UpkGcKxRKSVOp/OdANZWSo+4sh1FTfVfMSA5+X6r/Ct5UHveKGVUelx6umJG8731JZ5XXQGdTeVxroPZ2PDq5d5vqjnnvNuVxqQ+HHZBcvlt1x7x8t/K41Ic+BVB3aUo6mnvf1NGcPp9TfGev8rgAAECDcFEaAAAAAAAAAAAAAAAAAICRQgA1CKEGGC46i5259NVJW3HgfRSSjO4s/zlQbcXk0tcknXV2HjUS1CyAuosg6pqrVQB1F0HUtVeLAOougqjrQy0CqLsIoq4P/Qqg7tJLEHV/Aqi7CKIGAAAAAAAAAAAAAAAAAAAAAGBYEUANSZKWWhcAQN80NzXnfzcuJqMG3kexkExZkTwzYRCFjEr+d5OkOYXBpVnTL52FUg5+T2r/9RFNycHvSTr+mjSXLIBq6iyUcsR7ahdAvaqOpuSI9yRLrIGq2/H/lWoWQN2lK4j6nh+Y+1o47F2lmgVQd+ka/7JfWQO18NG3lvofQN2lKelI0tI5sADqLl3jn/tba2BY8IYjAADrUm8XywEAAAAAAAAAAAAAAAAAoNLq7Z5aeTDUkBBqgGHi/Re/P9lo8P0MKoC6y0bJ+3co5ZJ7KtAXffLZHZKMqXUVLxmTfHZm8p/3OImtpgu2TVbUyRpYMSa5YHryoYesgWq5bMvUPIC6y73bJJe9opTDnqh1JSPLLRun5gHUXS7fLfm3m0p5/fO1rmRkuXtyBh5A3aUp6ajAlxl8Z6/kn24t5TUvDL4vAACgRppq/W13AAAAAAAAAAAAAAAAAAAwhARQQzdCqAGGiUuOuCSXfuHSpB6yQYrJJfcWkjo7r2pkp91fytdrXcQaTrs/9Xdi3eCOerSUD9e6iDUc9WisgSp671P19Yvje5+K+a+y3RbV1xrYbVGsgSp7zeIkxVLdnAu+ZrFzwWHBG48AAPTG73MAAAAAMLIUi8nSpcmLLyYrV3bf9vDDyahRtakLAIChs/a5X2dnsmBBMmZMMn587eoCAAAAAAAAqBb300IPQqgBhpEXFv5jJk/9n1qXkRfOiBOrKmstFfKjK4r5wKxaV5L86IqktdQkeLLKrIGRrTmFvPC1UiZ/pvZhoi98rZDmCJ+tNmuAJCmdVkjhP4q1DaIuJqXTvAYMG0KoAQBYU9d7uoVC0txc21oAAAAAgOro6EiefTZpby//d7HYffuKFUlbW21qAwBg6LS3dz/36+xMliwpP5YuTV72strVBgAAAAAAADDU6jEnUQ4MdaCW0VUA9ENnsTP7bPTzWpeRJNnn6KSz4ESm2t7910J2mlfbGnaaV66D2rAG+IeHR/b41H4Oaj0+LwVAFze835DoCqAGAACGp0Jh9QMAAAAAGBmef74cQAgAAF2WL09efLHWVQAAAAAAAAAMjXq8j1YANXVCehTAMNFZ7MzDWVjrMpIkD28khLraOgulHHlwKfPHJ1NW1KaGKSuS+eOTIw8umf8asAZGtq75v2dastmS2tSw2ZLknmnmv1asAdZUkyBqAdQAANAY6vHCOQAAAAAwNDo6ygGDAACwtqVLa10BAAAAAAAAQOXV4320AqipIxKkAIaJ1pbW/PeNG6Wls7Z1tHQm/31V0lr0ElJNzaVCjr2jkKZSMrYjGddW3fHHtZXHbSolx95RSHOpDk+yG5w1MLKtOf+FVD+IfMqK8rjmv3asAdZW1SBqAdQAANA4SiUXqwEAAABgpFi2rPvz3t4brMcbbgAAqLy1z/s6OpImnw0FAAAAAAAAGkg9fh7OPb3UmZZaFwBA3x35+4VZtjA57t1JLbIfC6Xk279Kjrw7qV7qIV1m3ZeklHz4wGTFqPJ8VGMdFErl8cZ0Jt/9ZTLr/lK5EKrOGhjZ1pz/xaPLYcDFKsx/U2n1eOa/tqwB1lY6NSl8PkP79VLF8jjO/QAAoAEUXzqvb2py0RoAAAAARoLx47s/7+0Gm1KpPm+8AQBgaLW0lK8hNzfXuhIAAAAAAACAwavHz8G5l5c65OuqAYaRxc0d+dkOyeSVtRl/8srkZzuUgyipvWoFkdci8Jy+sQZGtmqED1dzHPrPGiB5KSB6qPKhVwVQAwAADaXoS2YAAAAAYERobk4mTKh1FQAA1CPniQAAAAAAAECjEEANfSaEGmCY6Cx25siDkzs3S8Z2JFNWVHf8KSvK4965WXLkwUlnHZ5vNborZiSfeGfS2pk0VfncsqlUHvcT7yzXQW1YAyOb+ccaYF2GJIhaADUAADS2jo5aVwAAAAAAVMOUKcno0bWuAgCAejJhQjJpUq2rAAAAAAAAABg8AdTQLy21LgCAvmluas6xdyR3bJ4UC+VA6KxIFo0Z+rG7AqiTcgjlsXckzc5vqqqzkHx/l/KfC8eW10ChlJSqcO5bKJXHWzg22Wh5uY4DH7AGqs0aGNnMP9bA/8/encfJUdf5H39XVR9zZWZyhyQECQghJISAIHIoiorLSmAASSAqAqKAxp8Hirt4sbq7IrqLi8i6aBDWCBFIkMsjG8BEIMoREggk4UwCIfccmbO7q76/P2o6maMzZ3dVH6/n49GPONXd9f0w34/T367uehf60/gjqeab2d0fAAAAgCLGB9gAAAAAAABAaXAcacIEqaVFamzsfcJNNCrFYuHUBgAAgNxJpbqv/SxLqqz0b+Xl4dUFAAAAAAAAAAAAANlCADUwaHbYBQAABq5uvXTzI34QtOQHQ9e053bMmh4B1Dc/4teBYDlGuvUhKWVLyc5Xb0t+MGguWcYfR/LHTdl+HQSPBo8eKG3MP+gB9KUpLtV8I7v7rPmGv18AAAAARcp1w64AAAAAAAAAQFCam6U9e6S2Nv8El643m9MJAAAAipJl9V77tbRIDQ1SR0fY1QEAAAAAAAAAAADA8BBADQwJ3xoFgALTNYjaSGqP5na89qg/DgHU4XIt6aqPS44nRb3923O9BO66/6jnj3/Vx/16ECx6oLQx/6AHcCD7Aqiz/e7eJogaAAAAKGr5+OE6AAAAAAAAgOxrbpZ275Y8r//HAgAAoPglEtL27QRRAwAAAAAAAAAAAChc+XiOLAHUKBCEUANAAapbL92wTKovkzqc3I7V4fjj3LCMAOowOUa6bLUUMVJt2/4AUi/H6+D0/qOeP26ksw6HtW7g6IHSxvyDHkAmOQugTiOIGgAAAChecRb6AAAAAAAAQEmorw+7AgAAAOQbY6SGhrCrAAAAAAAAAAAAAIDBI4AaGJZI2AUAAAavKS795hipI6C/4h0Rf7yzN0rVHcGMid7SIeALzpJq2qQdVcGM61n+eBEj3fwIYeRhogdKG/MPegBd5TyAOq0ziLrxR6wDAQAAgKJCCDUAAAAAAABQ/JqbJc/rvi3TyS6cAAMAAFCcuq7zeq75EolgawEAAAAAAAAAAACA4SKAGhg2QqgBoJDYtpqinuZeIP3x8GCH/uPh0twLpMX3EkAYprr1UmtU+uR5wY67o0r6zRKCR/MBPVDamH/QA5ACDKBOI4gaAAAAKC7RqOQ4YVcBAAAAAAAAINd6ntxijOS63be1t3O8EAAAoBglEt3Xfj1PxjaGk6EBAAAAAAAAAAAAFA4CqIGsIIQaAApI0yETNPfkrYEHUKd1C6I2sXCKKHFNMaNPnpsMZexPniud/UZU1Yk8XIiXEHqgtDH/oAfQFDOq+UoyuADqtHQQ9X/SAwXF87ofsOx50ohl5edBVgAAAAxfzyAZSYpEJNtmHQgAAAAAAACUivQxQc8LuxIAAADkGy5EAgAAAAAAAAAAAKBQ5OM5sQRQo0ARQg0ABcL1XM2fX6Y/hvw9rz8eLs0/39L9v3fkmDxclBWxpphRzYK24EMn02yp5itJNd5cTvhkSOiB0sb8gx4APYBB87zuJxP3DKWWOJEEAACgWGUKoWbtBwAAAAAAAJSesjKptTXsKgAAAJBPLMtfJwIAAAAAAAAAAABAviOAGsgqQqgBoEA4tqOHIq9LebDueOgwI8dypDxclxUr1zKqWdAaXuhkmi3VLGhT6qZKQsgDRg+UNuYf9ADoAQyJMd0PpmY6sJqPB1sBAAAAAAAAAAAAANkRiUgVFVJ7e9iVAAAAIB9EIn4AtR32F1IBAAAAAAAAAAAAoAARQI0CRwg1ABSIi357Udgl7GdLFx3SrLs2VYVdScn45pSW8EMn02y/nhuZ/0D9Os964NdTWnQ5PRCYeyfn1/zfO7lFc7cw/0F6dmR+9cCzI1t04h56IEgvVedXD7xU3aKZjfQAAAAAAAAAAAAAAAB5LxKRqqqkaNT/312NHStVVoZTFwAAAHJn+3apo2P/z5GINGKEZFnh1QQAAAAAAAAAAAAAg5Fvn28SQI0iQAg1ABSIuy6+S3dff3fYZfjqRQB1wH64uVI/7miR4mFXIqnDrwfB+szmSn2xo0XtedADZR1+PQjO3C1V+pfNzXppStiVSNM3iwDqEJy4p0oXrmnW72aFXYl04RoRQB2CmY1VuvLpZv33CWFXIl35tAigBgAAAAAAAAAAAACg0GQ6ISca9W8AAAAoLo7Te1u+naANAAAAAAAAAAAAAAeSb59vEkCNImGHXQAAYOCWvPYeKew1iJGWLAu5hhLkGEuN/1MpJUMuJCk1/k+lHJNni/MS4BhL2/+nUpGQeyCSlLbTA6FYd0+VJu8Mt4bJO/06EI7F/1elk98Mt4aT3/TrQDhuWFWpgxvDreHgRr8OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyigBqIGciYRcAABgY13P1b5XPyZbkhViHLenfTpXm/LqNENqALT/E00Ht0jsRSWH86o10ULu0/KA21W3gOhZhWH6Ip7Eh98BYeiA0S4/0ZMrkh9FHQyggKZkyaekhrcx/SJYe6WnTaKksKbWH0ANlSWnTaHogLK5lNH+Op5QjVSSl1hB6oCIppRxp/sdadf89NmvBQmBM9wOZPX+WJC/MdxcAAAAIVCrlf/DuOGFXAgAAAAAAAAAAAAAAAAAAAAAAAAAAAHRHADWQU4RQA0ABGb3XU3SMlLQlL4Q1km2kqCeNbpUfVkfwYGBcy2jhLCNZ0vgWaXulgg0hNv64sqSFszzNWW8IngwYPVDa0vPvWdJBHdI7UrBB1El/XI/5D03XHhjZIdUr2CDqsqQ/Lj0QHkfSZaul1ROkmg5JRmqNBTd+RUKqSfjrwctWS45r/CKQ3wYSME0INQAAQOnwPP/Ddz7wBgAAAAAAAAAAAAAAAAAAAAAAAAAAQD4hgBrIOUKoAaBAOLaj390rnX+h9Pi7hhZCbfn5tTIaWn60baTTNkm/u5fgwaA5khbdJ829QFozIeAQ4s7wYVvSrG1+Hcx/8OiB0tZz/gMNou4MoJaY/zD17IEgg6jTAdQSPRC2upclGWnBWX4gtDT8IOr02rAvXQOob35EqlvP/AMAAAAFqeuH3alUeHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaQRQA4Gwwy4AADBw1R3SZ1b7AYCDlQ6glvx/rSHswzb++NUdg38uhq+6Q1p8rx8AakuqDWgeajv2hw8vvpf5DxM9UNq6zr8kjXSV+wxY0zmOmP980LMHygPqgXJ6IK/UrfeDoG3jB0NXJA782IEeWutrbdk7gHpQ5QIAAADIN8ZInid18OYOAAAAAAAAAAAAAAAAAAAAAAAAAAAAISOAGggMIdQAUECWTpOu/ahU26ZBh072XF4Nerll/HGv/ahfB8KRDiCdsFdqig8tTHwwLOOPM2EvwaP5gh4obV3nvzHeuZjPVQ8Yf/+NzH9eoQcgDSyIerAXLcn0eAKoAQAAgCKWSoVdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEoZAdRAoAihBoAC4XquFs6WXEtqLB98iLTpfELc7f7zQFnyx3Ut7asD4Vh+qLStSop6nX2Qw/BRS/4426r8cZEf6IHS1nX+pRyFEJv9bxSY//xDD0DqO4h6sAHUmZ5HADUAAABQ5Dwv7AoAAAAAAAAAAAAAAAAAAAAAAAAAAABQqgigBgJHCDUAFAjHdnTrQ1LKlpK2HwxrDWKtYiSVJ6Xadv/fwSxzrM4g2qTtj3/rQ5LDOikUS6dJC86SZEm1bVLE0wETyQfaHwd8nOXvv7bN/98LzvLHR7jogdLWc/7TIcSZemDArxGZHte5vyjzn3dy0QMZH0cPFISuQdRxz5/LoQZQp9nG30/cI4AaAAAAKGrRaNgVAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBQRQA2EIhJ2AQCAgXE9V1d9XHI8PxAyHUQ90CWLZaS2qOTZUofj/2wGuP5KPyzq+eNf9XHp/rsJog5aOnjUC2nd7HUGkEqEUYaFHihtPefflh8OvKtCvQKI0xcPGMifaUv+A3u+JljG33/6qjXMf/joAWRSt15aNUn68SkHvCbBoFmSGuPSFc8w1wAAAEDRisfDrgAAAAAAAABAPkgmpUQi7CoAAACQbalU2BUAAAAAAAAAAAAAQGYEUAOhIYQaAAqEYzu6bK2t1Qd5qm2TGsqlhDOw56aDKCU/gFo6cOBkJsaSYq4fRBkx0mWrCaAOmmtJC2fvDx715PdAso8eGGjIeF+PSzr+OOkQUq+zjjkb6IGg0QOlref8p3VEJNfO/Jxhj2n7+y/v8v1j5j889AAOZOk0adEsqabDD47OlpoOf78nvU0QNQAAAFB0bNu/AQAAAAAAAEAyKbW3h10FAAAAss3zwq4AAAAAAAAAAAAAAHojgBoIFWeYA0ABqWs4SDc/4gdBlyelgSxbugZQ97qv8/7+GPnjRYx08yMEEYbBMdKiJdKsbfvDhxPOwHpgOIz8cRrK/XFnbfPrIHg0ePRAaes6/2ltEamhLPPjjTXw3jA6cBB5Q5k/ThrzHx56AJksnSYtOMsPBy9LSXE3O/uNu/7+PMvf/9Jp2dkvAAAAgJDZtuQ4/g0AAAAAAAAAAAAAAAAAAAAAAAAAAAAICgHUQOgi/T8EAJA3DjpIdc+8rVWTpB+f4gdIHyg0Uuo7gHrfYyRpAPtpikufe6ZLAHWEl5CgVbvSbQ97mn2FF0j4cFo6hNi1pdsetlXt2qwgQkIPlLZqV1q81GjueZ5WTTIHDB9O6+vvejf9PK6hTFK7dNLblhYvtVXtWsx/SHLVA/09jh7IT0uP9LTgTE9e5/y1R6SOLOXIdTj+/roGUcuxVbeB61gVHGO6H/Ds+bPkBxECAACg+Hhe721dw6dZBwIAAAAAAAAAAAAAAAAAAAAAAAAAACAIBFADeYHoMAAoJGVlWjpNWjRLqumQGuLBDV3T4Y970tudQdT5tpgrAU0xoyvONkoGGD6cZiQlHemKs40WL5GqE8x/GOgBVCctnbfe05+mBjtuY1w6b71UnbT7v7oBcooegNQZQP3R7gHUjVleF6b3ty+I+kxPsiyCqIsR63oAAIDSYln7bwAAAAAAAADgOFKEUwoAAACKTs8LE/MZMQAAAAAAAAAAAICw8HklkDf4xigAFJCl4/ZowYl+EGAsJTkxKdXHuspYkkzfWZEm/bg+OMYfz7OkBWdJsqS61wkgDJJrGc0/19WqSSbrIZMD1RiXVk0ymn+up/vvi8jpr3GQVfQAJGnR9JQWfMyo8897YCxJCz5mVOF6mv8SbyHCRA9g6RGuFnzEzWkAdVqvIOqPun4Q9UYnNwMi+1y39zYOzAIAAJQuwqcBAAAAAACA0hKN9t7WM3C6vNy/AQAAoLg0N3df+zk9vvtp23x+DAAAAAAAAAAAACD38vFzSRNkchOQX0gPA4AC4XquFk7aIc+SPEn15VJqADnQPYOo467U0fndsYEEUEv+OPXl0sg2SZa0cLY0Z5NFAG2AHEmH1bt66PBw62iIS4fVW3Isp+90c2QdPYBFR6V0+Vmukrb2hc8GxbOkpC1d/o+uZNma/zJvI8JAD2Dpu10t+EhKXufPuQygTusdRJ2SLFt1rxBEXTA8b///Nqb3gVCbi8sAAAAUJS5IAgAAAAAAACAS8W+pVNiVAAAAIN9kumAJAAAAAAAAAAAAAGRTPp7XSgA1ShzJYQBQIBzb0aKdp+n86FKtOERKDCL3Lx1EXdvhBwi2R/wg2cFkSCccP4j6/ZukRfc7cmxeQoKUsD3ddbQrywxu3rLNMtJdR7v60V8txTwCC4NED5S2hO3pq2ckQwkfTkuHEH/1jKQ+8WqU+Q8YPQDXMlo4KyGv8+Bau2NyHkCdti+I2rXkSVo4y9WcN6JckKQQdQ2kTiOEGgAAAAAAAAAAAACKV0WFtHcvJ84AAABgP8eRysvDrgIAAAAAAAAAAABAMSOAGshLJIgCQCGZPFmpnX4A5KD1XIsNYW2WtKVUemzXHUIRGKqYK/3gLxFd+bGUwlzCWvLriCWNJHogSPRAaes6/2Fj/sNBD8CRtOiBqOaek9DfDvICC6BOa4xL6jB67zu2Fj0QlZPKEGaM/ON5vdftXYOoLYt1PQAAQCkxJj8/tAcAAAAAAACQO44jVVdL7e2ZPx+2bS5eDAAAUIx6fjZsWVIk4t/KyvjsGAAAAAAAAAAAAEDu5OPnkQRQA5IIoQaAguF6ruYmf6snD5bMENZWRlJDmVSWktojGlKIrbGkJw+W5ta5eug+V85QCsGQuJbRA+/2VN3hz2NYqjukB97t6bK1zH/Q6IHSxvyDHoAkVbdLn3zB1mNTwgmAbo3641e3Gw1tNYnA9TyBuOcBUUIIAQAASosx/o1AGQAAAAAAAKC02LZUUeEHUkej3e8bMUKqrAynLgAAAOROc3P3tV8s5q/9AAAAgBL1t7/9TcuXL9fTTz+tl19+WQ0NDWpsbFR7e3uvx55zzjm6//77gy9yGD7zmc/ojjvu6LX99ttv12c+85ngCwIAAAAAAKUrH3NMCKAG9iGEGgAKyPZEvRLO0J9vJLUN8y9/wpG2c75B4Bxj6bK1tlaP90MnwwggrW2XKpPSZWttgkdDQA+UNuYf9AAkaekRrq79YEoj26X6MikZYG5c1JNGtkvXfjClipRUt3EYi1IAAAAA4fI8/wYAAAAAAAAAAAAAAAAAAFDEfv/73+tf/uVf9Nxzz4VdCgAAAAAAQPEjgBrIe4RQA0ABsVOeLCOFmftoGck2kpLJcAspQXXrJKUsLfgHf0EbZABpOnj05j9YqtvgSSKkJgz0QGlj/kEPlDbXMlo408iz/PXYyDapvnwIQdRGUpclXCwlJfvJk456/niWJM+SFs5Mac5LLmHkhcCY/g+GEj4IAABQOjzP/wDfsvjQHAAAAAAAAAAAAAAAAAAAFC3XdbVgwQLdeuutYZcCAAAAAABQGgigBgrCYOOqAAAhcWxH162URrb7wYNhsIw//nUrRehgSOo2WLr5D5Yqk34gaBC6B48y72GjB0rbYOZ/oDPV3+OY//xCD5Qux1hatMTSrO3+z5b8YOhoH/nBZckeG9wut/R+Pamm48D76BpALUmztkuLllisBQsFB0MBAADQlTF+ELXnsVYEAAAAAAAAAAAAAAAAAABF69prryWAGgAAAAAAICgEUAMFIxJ2AQCAgatb7//72TlSfZkUZPZfOoD6lw901sFlDEKTDgBd8A/+ArehLHdjETyan+iB0jaQ+bfk/90e0OuE8d/DZ3rLzPznp2z3gGX8J9AD+a86YWnxvdLcC4zWjN8fRF1fLiV7rM1qOqSUJEU7N7hdLmRiJONKcvwfy1L+v43x7vvIFEC9+F5L1Ql6AQAAAChoxkiu2//jAAAAAAAAABQHY6REQmpt7X1scPduqaUlnLoAAACQO42N3dd+qZS/HoxEpFgsvLoAAACAADz++OP6yU9+EnYZAAAAAAAApYEAaqCgEEINAAUmHUR9cZ3UHuD3vuLJLgHUCF0QIcQEj+Y3eqC09TX/6fDhwcgUQsz85zd6oHQNJIi6psMPlm5Ov+N3e/eE1RlEnd7eM4iaAGoAAACgyBFCDQAAAAAAAJQG1/VDpl3XD6L2vO73JxKccAMAAFCMXLf72s/zpI4O/5ZMShUV4dUGAAAA5NgNN9xwwPtOPvlkXXjhhZoxY4ZGjhypWIaLtFRXV+eyPAAAAAAAgOJBADVQcAihBoAC9MKYYAOoJX+8F8ZIdekNPU9EQODqXpZkpAVnSQlbas1iT1QkOoNHH5Hq1ht1jyVFvqAHSlvX+Zf8EOKhhA+ndQ0h3hc+zPznNXqgdFW3S4vvkeZeIK2Z0D2IuiK5P1DaljIGUKdZRnr/K9LaQyTP2v+81miPAOpt0uJ7peoOegEAAAAAAAAAAAAAgILS3s5F6QAAANBdIiE5TthVAAAAADmxdetW/fGPf8x43w9/+ENde+21AVcEAAAAAABQpAigBgqSHXYBAIDB+ZdTpe+eEc7Y3z3DHx/5o269NH+N1B7N7n7bo/5+69Znd7/IPnqgtNWt90OCK5NSeWro4cNplvH3sz98ODt1InfogdJV3eEHQ8/a5v9sSRrV1iWA2kjnrOm/Jw7b5c+13fm4spS/n94B1Ln4rwAAAAAQinz8YB8AAAAAAABA9nmeHzAIAAAA9NTBF0MBAABQnJ544omM24877jgCqAEAAAAAALIlH89TJYAaGJBI2AUAAAYuzADqtPT433mS6xjkg6VHGi2aZVSelFpi2dtveVJaNEs6aaulug15uNjHPvQA6jZKqyZ7+vHJ2dlfhyPNXyvVbbS5ZE2BoAdKV3VSWnyf0dwLjNaM37/dNtLNf7D0anxgB8fqNtqSZbTgH4y8Ln/yZ22XFt9nqTpp0QuFyvPCrgAAAAD5pOuH+o4TXh0AAAAAAAAAgpFMhl0BAAAA8pXn5eeJ4QAAAMAwPf300xm319XVBVwJAAAAAABAkcrHzxkJoAYGjBgpACgQe5r3hB5AnfbdM6Q9MQLtwrb0SD8ssjUqtUWzu++2qNQalRb8g9HSI1lc5yt6AFJnEPkxUtzNzv7irrToGDHvBYQeKG3VCUuL77U0a7v/czqAerAXEKjbYOnmP1iyO6d91nZp8b2WqhN5eOAPAAAAwPDk4wf8AAAAAAAAALIvOoAvlXHyDQAAQGnoue5zHNaCAAAAKErbtm3LuP2oo44KuBIAAAAAAIAilI/np/K5JzAokbALAAAMzKiqUZra6Oj1miwlTA7D1N3SqFSESxmEaOmRnhac6YcPN8Ylk+V1ubH8/Up+CLFsS3UbmPB8Qg9A6t4HHU529tnh7A8gZ97zHz0ASapOSYuXGM0/19NlayzVvWL76zRrABcNsSTZ/hzXvSLJ9rRwltGi+21VpyzWe4XOsrofLDWm98FTm0kGAAAoSl6G9wP5+OE+AAAAAAAAgNyxbSkWkxKJsCsBAABAvonHw64AAAAAyIn6+vqM22tra4MtBAAAAAAAoNjk4zmqBFADg0YINQAUkNciX9Fhu3+s10eHV8PU3dJrtzpSJEtJlxi0pUe4WvARr1v4cLaXwUaSuoYQn+lJtq26jcx7PqAHIGXoA/lZssNlxLwXip49kE30QOGpdqX7lxg5xpLS02Wn+n+iLcnZP791rzqa81qP/aBwuW73g7iEUAMAAJSOTCHUAAAAAAAAAEpPRYV/vDA1gO8QAAAAoDTEYoRQAwCQjzxP6ugIuwqgt3i8oM49aW5uzrjdcThRCgAAAAAAoKgQQA0MCSHUAFBITjlFD332x5r+xfBKeOgu5efVSEqEHziaymn4cFqvEOKP+CehEEQaLnoAUoY+kN8LMsMLou66H+Y9v/XsgVygBwqPY7KzRsvWfgAAAAAAAAAAAAAAQMgsSxoxQkok/P/d8/uf8bhUXh5ObQAAAMid1tbuaz/blsrKpGhUinBKKQAAeamjQ3rppbCrAHqbPr2gjiEawocAAAAAAACyL99yBzkGBAwZ3xgAgALycv1Gzboq3BpmXSWt+UVKRzURRBm0IMOH0wghzi/0AKQ+Aqg1vCDqTPth3vPTgQKojYYXQp5pP/QAAAAAAAAAAAAAAABAEYjF/BNvegYOjh4tVVaGUxMAAAByJ5GQ6uv3/xyNFlRwIAAAANCfHTt2aMeOHb22t7S0ZHz8G2+8oTFjxvS73yOPPFLRaHTY9QEAAAAAABQNAqiBokIINQAUiLZEm45985+UDDn7MelIx35eavgPV+UuQZRBcS2jhcd4gYYPp/UMIV54jKc5r9hyTJ69MShy9ACkvgOo04YSRN3Xfgghzi99BVAPJ4S8r/3QA4XDtUxW/jZnaz8AAAAAAAAAAAAAAAAAAAAAAAAAkG0///nPdf311w/48ZdddtmAHvfGG2/oXe9614Ae+9Zbb2nlypVat26dXn75ZW3cuFH19fVqampSa2urYrGYRowYoUmTJunwww/Xe97zHn34wx/W7NmzZeVbeFMfjDFauXKlVq1apdWrV+ull17a99/Z3NysWCymiooKVVZWauLEiTrkkEN06KGH6rjjjtP73vc+TZ48OWe1NTc3a9myZVq5cqXWrl2rN954Q7t371ZLS4scx9GIESM0ZcoUHXXUUTr11FP18Y9/PKf1AAAAAABQdPLtGAYB1MCwEUINAAWiPFauU9+O6NHJibBL0alvigDqgDnG0ryXLC07NNjw4bR0CHFrVJr3kkUwZQjoAQwkgDotHSI8EOm57Ws/hBDnh34DqDW8IOq+9kMP5L+mmNH8OSldttYe1vwsPcLVwmM8LXogouoEf+sBAAAAAAAAAAAAAAAAAAAAAAAAwHVdPfroo7rvvvv06KOP6pVXXunz8W1tbWpra9OOHTu0evVq3XPPPZKkQw89VFdffbWuvvpqVVRUBFH6kNTX1+s//uM/dOedd2rz5s0HfFz6v3P37t3avHmzVq1a1e3+KVOm6LzzztO8efP03ve+Nyu1rVmzRjfeeKOWLl2q1tbWjI9JpVLq6OjQrl279Nxzz2nRokW6+uqr9eEPf1jXXXedPvCBD2SlFgAAAAAAihYB1EBRssMuAAAwMG2JNv31oPADqCXpr++S2hw37DJKimsZ3T3dqDwZfPhwmpFUnpTunm7kWizGg0YPlDbXMlp4jDegAOq0AeeED2A/Rv64rVFp4TEe8x+Cnj2QlqkXhhJUP5D90AP5qylmNPfcpJ6d4GnBR1JaesTQ1mnpoPNnJ3iae25STTHmGQAAAAAAAAAAAAAAAAAAAAAAAEBp++pXv6qJEyfqox/9qH7xi1/0G0DdlzfeeENf//rXdcQRR+ihhx7KYpXZs2jRIk2bNk0/+MEP+gygHojNmzfrpptu0kknnaQ1a9YMa187duzQpz71KR177LFatGjRAQOoD8QYo2XLlun000/XvHnztHv37mHVAwAAAABA0SKAGihahFADQIGIRWIqS4Zdha8sKcU8XkKC5BhL816y1BoNt47WqDTvJUvOgNNtkS3pHmiLKtQU6jZ6IBRd/wYMJIA629JhxPwNCE+m14G+emEwQdSD2Q89kH/SAdRrxvkz5VkaUhB1OoDa65zaNeMMQdQAAAAAAAAAAAAAAAAAAAAAAAAASt7//M//aMeOHVnd59tvv605c+boBz/4QVb3O1zf+c539MlPfjLr/72SHwI9VCtWrNDMmTP1m9/8Jiu1LF68WCeccILWrVuXlf0BAAAAAFA0CKAGilok7AIAAAOTSCXUHAu7Cl9zTEoopXLPCbuUkuFaRv87wx1+9rCRNIz1vZH0vzNczVtHAGnQXMvo7umeqtukXZXDyKEeRg9YkqrbpLune5q3zqUHAtRz/odsmH8DmP/wpHugtk1qKJcSdv9h5Bnvz9ADA9qPkWKeVEsP5BU/gNrdF0Cdlg6iPmP9AHZipKXvTmnBR9x9AdRp6SDqxUscVSeY74LV9WCqMd1/tiwOtgIAAAAAAAAAAABAKXNd/wYAAIDiwncDAQAAgIJgjNG3v/1tRSIRffOb3wy7HN144436/ve/H3YZvdx77726+OKLlUwms7rfN954Qx/84Af1+OOPa/r06VndNwAAAAAABYkAaqDoEUINAAUiFolpZJu0ezjho1kysk2KeXbYZZQc15LckH/tru3XgeA5xtKtj9iafYWrzjzYwfM6b3bnbZAsScaRbn3EJnw2YMw/HGNp0f2O5p7n6tlxZmhh5K72h1AP4ToS1W3S7B1+HfRA+JpiRnPP6x1AneZZ0u9n+iHiVh9/NF4bLS2d3TuAOm3NOH8cgqgBAAAAAAAAAAAAAChCra2EUAMAABSjjo6wKwAAAABy6nvf+56+973v9dp++umn6y9/+Uuv7Y899phOP/30rNZg27amTZumE044Qccff7wmTpyokSNHauTIkero6FB9fb3efPNNPfXUU1q2bJm2bdt2wH1dd911OvHEE/WhD30oqzUOxmuvvabvfOc7B7w/Go3q1FNP1Qc+8AEdccQRmjhxoiorK+U4jpqamtTY2Ki33npLa9as0dq1a/Xss89mJTT6kUce0UUXXaRUKnXAx0yePFlnnHGGTjvtNE2cOFFjxoyR67ravn27XnjhBT388MNatWpVxufu3LlTH//4x/XMM89o1KhRw64XAAAAAICCRQA1UBIIoQaAApFIJdRUFnYVvqYyKWF7KneHkGCJIavPxvxnYY2flTowaK5ldNVZnmxviAHEkh88bGnIfWAk2Z501Vme7r/HIoQ2QMw/JKk6Yem2h2wde4WrQf/6Pe1vHqP9geQDZCzJc6TbHrIJIs4D/QVQp3mdgeMmHUDekyWteLdUneh7PIKoAQAAAAAAAAAAAAAAAAAAAAAAAJQ627Z12mmnad68ebrgggs0ZsyYfp9z1VVXKZlM6p577tE//dM/afPmzb0e43mePve5z+nll19WNBrNRen9+u53v6v29vaM91155ZX69re/rYkTJw54f01NTfrDH/6g+++/X0uWLFEi0c9JbBm88soruvjiiw8YQH300Ufr29/+tj7xiU/ItjOfMHnOOefoW9/6llatWqWvfOUrGcOo33jjDX3uc5/TvffeO+gaAQAAAAAoCgRQAyVjELFjAIAwlcfKdfVLlWGXIUm6+u9SuRfxF43cArk5svWVvzuyQ14X20b6yt8dObJD/52U2s2RrXnrbDWWafDhs10N47nGkhrLpHnrbHqA+Q/9d1KKt6a4dOkcT3tjQ5jAdAh5ug+G8E5wb8wfvymu0H8XpXxrimtAAdTdOF3mP83ytw90L+kgaua/wG4AAAAAAAAAAAAAAAAAAAAAAAAAhiUSieiTn/ykXnrpJT3++OO68sorBxRAnRaNRnXxxRdr7dq1mjNnTsbHvPbaa7rzzjuzVfKgJBIJPfjggxnvu/nmm3XrrbcOKoBakqqrqzV37lzddddd2rRpk771rW+psnLgWQme5+mSSy5RY2Njxvs/97nP6dlnn9XcuXMPGEDd1UknnaSVK1fqM5/5TMb777vvPj3yyCMDrg8AAAAAgKKRb/kkBFADORUJuwAAwMDdtHWm1LxKP31feDX8v6ekm/4sKZ5ni8Yi51pGv5npDTgoMleMpN/M9DRvvSNnWEm4GKx0D6RC/rWnLHogDOn5d0P+lbvMf2hcy2huXUorDjZKOEPciSP/D/kQpy7hSCsO9ut46J4oPRCCppjR3HNTgwugTnMkudrfA0PoozXj/PlffH9U1Qnmv2D0d7A33w4GAwAAAAAAAAAAAAAAAAAAAAAAAHlk9erVOvTQQ4e9n5qaGt1zzz0688wz9fjjj/e6/5ZbbtHll18+7HEG68knn1RTU1Ov7aeffrq++MUvDnv/EyZM0Pe///1BPedXv/qVnnrqqYz3feMb39ANN9ww6DoikYhuv/12tba26ne/+12v+7/97W/rrLPOGvR+AQAAAAAoWPmWOUIANZBzhFADQCF597t10/+ukqRQgqj3BVAP4GqgyL63q4zckH/1ru3XgXDQA6VtW6VRKuT5T9l+HQjHtsphBFCnDfO4T8KhB8LiWkbz5/QdQN1vxvgAg8j7esiacX4d998XIYi8EHle7wOuHIAFAAAoTfn2xQAAAAAAAAAA2ReNdv/ZsqR4vPu2mhqpvDy4mgAAABCMZFJqaNj/cyzW/X7L4nNjAAAAYBCyEUCdFovFdMcdd+iII45QR0dHt/tWr16tDRs26Mgjj8zaeAOxadOmjNvnzZsXaB1piURCP/jBDzLed/bZZ+uHP/zhsPZ/22236W9/+1uv/+7nnntOK1as0Pvf//5h7R8AAAAAgIKQb58Xkn8CBIIQagAoJJ0fJD14RDjDP3hEZwg1AudaRptrwq7Ct7nGr4fgyWDRA4gYS5YxCvPXbhm/DoSDHihtjrF02Vpbq8d78jJMgSepoVyqSEplKX9bxkNrPZ7bczrbI1JrVKptkzLl3ttGumytzWtAoXFd/99MB1w5CAsAAFA60utC2+ZCgwAAAAAAAEApiEb9Y4GeF3YlAAAAyDc9Q6kBAAAABGrKlCn67Gc/q1tuuaXXfcuWLQs8hHr79u0Zt7/rXe8KtI60JUuWaPPmzb22x+Nx/dd//ZesYYZkVVdX65vf/KauuuqqXvfdcccdhFADAAAAAIofAdRAyeIMcwAoJFu36rAvSq+PDmf410dLh31RnJAQgphn6/OrbVkhr5MtI31+ta2YxxIiaPRAaXOMpX9+0tHIdoXWA5aRRrZL//ykQ/hsCOgBSFLdRkc3L4vI7tED6QDqpC01xv0g6aFoj/jPT9r+/nqu+Gwj3bwsorqNztAGQPAsa3/QIAAAACDl3xcDAAAAAAAAAORWVVXYFQAAACDfWJZUWRl2FQAAAEDJO+ecczJuX7VqVcCV6IChznv37g24Et/tt9+ecfvll1+etWDsSy65RLW1tb22P/LII1nZPwAAAAAAeSvfzjMlgBoI1BCjqQAAYTjsvav0esjnA7w+WjpsgfTaLwmgDdoNK+KSldSN700pjCWzJenrf4/ohhVRLmMREnqgtNW9akt/tPXZf0ioPi4FmQFsGWlkh/TLP8ZU96rD/IeEHoDU2QeWrQUfSchT9wDqtMb44PebDqBOSwdR17b5021Luvn/mP+C47q9D/72PPiabweHAQAAkB2ZPnRPr/2MkZLJYOsBAAAAAAAAEI54XKqpkZqbw64EAAAA+SAa9S9U4jhhVwIAAACUvFNOOSXj9hdffDHgSqTRo0dn3P7www/rggsuCLSWvXv36rHHHst430UXXZS1ccrLy3XqqafqoYce6rZ927Ztevnll3XUUUdlbSwAAAAAAPIGGSNAySOEGgAKxJ7mPXq9KhV2GZKk10dJe2IJjUrEwi6l5Nzwl6gkBR5CbEn6+t8i+8ZHeOiB0lb3iiMpFmgI8b7w4T/EOsdHmOgBSPv74AsfSfQKoE5rjEuxAS4dewZQp6WDqEe1STcvY/4BAACAouK6YVcAAAAAAAAAICixmDRqlNTW5odSd1VbK1VUhFIWAAAAcqjn2i8el8aM4aRyAAAAII9UVFSoqqpKzT0uIvjmm28GXsuMGTMybr/zzjs1b948nXnmmYHV8thjjymZTPbaPm7cuAMGdw9VphBqSVq9ejUh1AAAAACA4pOPnxWaIFPUAEiEUANAwaipqNG76229MtILuxS9e5dUkySINiw3/CWqDtvopycEFxTzpacdwofzCD1Q2upecdQaierSf0wqGcD7+oiR/mtZlPDZPEIPQJLO2GRrQoul7ZUHPpjWMYA/266VOYA6LWlLE1osnbEpQ9I1Ck+mg68ckAUAAChNrAMBAAAAAACA0mPb/q0rx5EinFIAAABQdByn+9rPtvPzpHIAwIC8+uqrev7557Vlyxa1tLSovLxcEydO1DHHHKOjjz467PIAAMMwatSoXiHUjY2Nam9vV1lZWWB1HH/88aqtrVVDQ0O37Z7n6eyzz9ZXv/pVfe1rX9PYsWNzXsszzzyTcfvMmTNlZfl9zaRJkzJuX79+fVbHAQAAAAAgdPn4WSHnuQKh4BujAFAgHNvRDWvG6pKTtmtvcJ8Z9TKiXbphueS4RhILuDA0xYw2jPZUmZBaYrkfrzIhbRjtqSniqjqRh28kShA9UNqaYka/OTqlqoTUUJbbv8SWpKqE9JujUzr7FYv5zxP0AJpiRnPnJLWt0qimY3+ItGf5c2YNoikSEcnu8nhj+T2V3lbTIW2rNJo7p0OL74/SA4XG8zjoCgAAAAAAAAAAAAAAAAAAAABDsGfPHj3zzDP7bs8++6w2b97c63EmB9/Zbmtr06233qr//u//1iuvvHLAx02ePFmXX365vvzlL6u2tjbrdQAA+vbSSy/p6aef1gsvvKAXXnhBb7/9tvbu3aumpibt3btXrusOab979+4NNITacRx9/vOf1w033NDrvmQyqRtuuEH/+Z//qY9//OOqq6vTmWeembNA6hdeeCHj9mnTpmV9rNGjR2fc/vbbb2d9LAAAAAAAQkMANYAuCKEGgAJSt3O0frh7u/6e+aKagThql1S3XlJkaB96YXiaYkZzz/G0ZpxRdcLflssQ4sqEVJ2Q1owzmntOUouX2IRPhoweKG1d578sJdW2S/U5/B5BbbtUlmL+80mmHshVELUleiAfde0ByZ8fI78PpM5esAYXRJ2WDqCW/EDr9PxL9EDBMoYDrwAAANgvvTa0LMm2w60FAAAAAAAAAAAAAAAAyDMvvviiHn74YT377LN65pln9MYbb4RSxxNPPKH58+dr06ZN/T72rbfe0vXXX6+f//zn+uUvf6k5c+YEUCEAlLZ33nlHt99+u377299q3bp1ORmjvb09J/vtyzXXXKM777xT77zzTsb7E4mElixZoiVLlsiyLE2fPl2nnXaaTj75ZJ166qk69NBDs1LHgV7/brnlFt1yyy1ZGaM/u3fvDmQcAAAAAAByjgBqAD1whjkAFJC6D2wLNYBakv4+Waq7MNwaSlVTzGjueZ7WjN+/gLa93I7Zdf9rxvvjN8VYwIclUw9UJnM7Ztf90wPhyjT/0RxfD6Dr/pn/8GXqgbgrOTl6LXA8f/9p9ED4MvWAsaTWaPfHmc7tA5F+WNcA6rTWaPf90AMAAABAkeADegAAAAAAAAAAAAAAAKCXX/7yl/rmN7+pe+65J7QA6iVLluiDH/zggAKou9q5c6fOPfdc/fznP89RZQCAZDKpH/3oRzriiCN03XXX5SyAWpJcN8cnj2YwZswYLVmyRJWVlf0+1hijdevW6b//+7/16U9/WlOnTtXUqVP12c9+Vvfdd586OjqGXMfWrVuH/NxsaWtrC7sEAAAAAACGjwBqABkQQg0ABaIt0aZHxjaEXYYk6ZEjpDYn+A+vSplrGc0/t3voZHNE2luW23H3lvnjpK0Z79fhWizkg5apB1xL2lGR23F3VPjjpNED4WD+kakHjCXtKZNSOXpXl7L9/fcMIaYHwtFXDySc3o8fzAxlCqCW/P3SAwAAAECRsSz/5uX46nYAAAAAAAAAAAAAAAAABuXJJ5/UvHnzlEwmu223bVtz5szRj370I9111136r//6L11++eWqqOh+YpExRl/84he1dOnSIMsGgJLw1ltv6YQTTtC1116r5ubmsMvJmZNOOklPPfWUDj/88EE/94033tCvfvUrXXDBBZowYYI+97nPaePGjYPez969ewf9nGxLJBJhlwAAAAAAwPAQQA3gAAihBoACEYvENMKOhV2GJGlEhxTzeAkJkmMsXbbGkt25hg4igDqtaxC1baTL1lhyTB6+wShyPXtgXwBxrqfC6h5ETA+Eg/lHzx7oK3w4m3qGENMD4RlKDwz00Ftfj6MHAAAAgCKSj18aAAAAAAAAAAAAAAAAAPJcLBbTcccdp8997nOqra3NyRgtLS266KKLegVQH3nkkXrxxRf1+9//Xl//+tc1b948LViwQL/85S+1ZcsWzZkzp9vjjTG69NJLtW3btpzUCQClaPv27frABz6gNWvWhF1KIGbOnKkXX3xRP/7xjzVmzJgh7aOhoUG33Xabpk+frssvv1z19fUDfm5HR8eQxswmQygWAAAAAKCQ5eO5pLzXBvJGJOwCAAADk0glVK/wPzSRpPpyKWF7KndznHyJbuo2+MHfl37cCyyAOm1vmWS3S7c/ZO+rA8FL/+6v/pgXTABxWmcQ8YQW6eY/0QNhYf6R/t1/8WOedgcQQJ2WDiEe00YPhC0XPTCQQ3T0AAAAAAAAAAAAAAAAAAAAAACgFEQiEU2fPl3vec979t1mzZqlWCwmSfrTn/6khoaGrI/7b//2b9q8eXO3bYcffriefPJJjRo1KuNzRo0apSVLlmju3Lm677779m1vbGzUN7/5Tf3617/Oep0AUGqMMfrUpz6l119/vc/HTZo0SSeeeKKOPvpoHXLIIRo/fryqq6tVVVWlSCQix8l8ItiZZ56prVu35qL0YYnH4/ra176mBQsW6IEHHtCiRYv06KOPqqmpaVD7cV1XCxcu1PLly7VkyRIdd9xx/T7Htm25rjvU0gEAAAAAKG0EUAPoByHUAFAgYpGYJlVM0JaWd8IuRZMapZhx8nOxWeTeGmHUGHAAdVpjmT8+8x6uE7ZaaihTcAHEaZbUUOaPTw+Eh/nHGW/aGtPiaWtVsOMmHGlMiz8+PRAuegCD0nOuMh2YZT4BAACKU38fyh/gZAYAAAAAAAAARay1VWpr677trbekspC+lAgAAIDc2bWr+9rP8/yfy8vDqwkACsC1116rf//3f1d5wH8vGxoa9LOf/azbNtu2dfvttx8wgDrNcRz94he/0F//+ldt37593/bf/OY3+s53vqOpU6fmpGYAKBVLlizRsmXLMt5n27Yuv/xyXX311Tr22GOHtP8DhVPni1gspgsuuEAXXHCBXNfV008/rccee0wrV67Uk08+qcbGxgHtZ9OmTTrzzDP1t7/9rd/XpoqKioz7vfzyy/XlL395KP8Zg1ZZWRnIOAAAAAAAZFU+5ocQQA3kHUKoAaBAuJ6rNiXDLkOS1BaVXHlyjB12KSXl5uNT+tKZ4dbwpTONZJJa8CxLiDC8VeXpqCs9tYf062+PSEdd6erlW40mN/P//6Ax/2iKGZ1/nqv1Y8IZf/0Y6fzzUrrvPkfViTw86FQC6AEMmjH9H5DlgC0AAEDpsbjIFAAAAAAAAFBStmyRXnlFam+X9uzpft+uXeHUBAAAgGA5jvSXv0iVldJRR0ljQvoyKgDkuYMOOiiUcRctWqSmpqZu2/7xH/9Rp5566oCeP3r0aH3961/XNddcs2+b67q67bbb9O///u9ZrRUASs1PfvKTjNtHjBihe+65R2eeObwTv+vr64f1/CA5jqOTTjpJJ510kv7pn/5Jnufp+eef14oVK/TQQw9pxYoVSiYPnIWwa9cuzZ8/X0899VSf44wePTpjCHUkEtGMGTOG/d8BAAAAAEBRysdzRskzAfIS6XEAUCBikZguOOoCKQ/WeRe8LMU8XkKC1BxJ6f99LOwqfP/vY349CFbC9nT0lZ6aY+HW0RyTjr7SU8L2wi2kxDD/cC2jC89zteIQKRHSxc0TjrTiEOnC81y5Fgd5gkYPAAAAAMiKdAC1zfFdAAAAAAAAoCRs2iStWyclEmFXAgAAgHzQ0iI9+6zU0BB2JQCALu6+++5e26688spB7eOSSy5RPB7vtu2uu+4aVl0AUOq2bNlywMDkn/3sZ8MOoE4mk2pubh7WPsJk27aOO+44ffnLX9b//d//aceOHfrpT3+qqVOnHvA5q1at0sMPP9znfqdMmZJx+56eF1kEAAAAAAA+AqgBDEIk7AIAAAOTSCW0ZP2SsMuQjLRkuvTTx2yCqAMUs21FUgkl8+CVO5KSYnZMijD/gbI9Je38OBEoaUuKRCT+BgSH+YdltKPKU8IJ9wBLwpF2VFl+D5g8PABVzOgBDJXnZf7faYQPAgAAFKdMa790ADUAAAAAAACA0vHqq2FXAAAAgHxjjLR+fdhVAAA6NTY29go4HTFixKCDTceMGaPTTz9df/rTn/Zt27Rpk15++WUdddRRWakVAErNX//614zbDzvsMH36058e9v5ff/31Ye8jn9TW1upLX/qSPv/5z+urX/2qfv7zn2d83N13361//Md/POB+jjrqKD3++OO9tr/yyivZKhUAAAAAgOKRj+eMEkAN5LU8iLIEAAxELBLTs597VrN/MVu7WndJYayxjDSmXXr213HFjC3l4dqzWDmyNWmv9ObIsCuRJu3168nLNx9FzJGt8c350QPjm+mBoDH/kCU1xvLjAEtjzHTOPz0QKEuyjf9bD7MTLPl10AMFYiAhg/w9BwAAKB2s/QAAAAAAAIDS8s47UjIZdhUAAADIR3v3hl0BAKDTU089Jdd1u2076aST5DjOoPd12mmndQuhlqSVK1cSQg0AQ7Rhw4aM288+++ys7H/lypVZ2U++icfjuuWWW/Taa6/1el2SpEcffbTP55944om69dZbe21fu3atGhoaVFtbm61SAQAAAAAobPl4zigB1EDeI4QaAArI5OrJWn3Z0zr2Pw7X7qjb/xOybHS7tPr2uCa3OGQOBs2SHCvs2Emfsy/MkCYIFD1Q2ph/WJKVJz1g0QOhcGTpjE2OnhufCvdXb6QzNjmdYfQh1oGhsSwO2AIAAAAAAAAAAABAqcgUQO0G/91TAAAA5IGe3x3k+4QAkDeeffbZXtve9773DWlfJ5988oD2DwAYmB07dmTcfsghh2Rl//2FMRe6a665JmMI9datW5VMJhWNRjM+70Mf+lDG7Z7n6dFHH9V5552X1ToBAAAAAChIBFADGCJCqAGgwFT/9e+aucPWXya5gcZQWpJmbpOqOyTZdoAjQ5JkGblWfiywXcv4PWDy8E1IMaMHSptlNCIRdhG+EQkx/2GgB0qeaxm9NNaoJiE1xMOroyYhvTTWyHUsOfRA/rPt/g/S5uOBZQAAAAAAAAAAAADA8I0ZI0WjmcOoAQAAUNrKysKuAADQaf369b22HX744UPa12GHHdZr24YNG4a0LwCAlEhkPqGvvLx82Pvevn27lixZMuz95LP3vOc9B7xv9+7dmjBhQsb7pkyZouOPPz7jhRR++tOfEkINAAAAAEA+IoAaKBikiAJAAWnqaNLclV/SmjGpwNdbxkhrDpLmzkmoKcZiL2iuZdQcC7sKX3NMeROGXEroAYxpsxT2r90yfh0IBz1Q2hxj6dZlcUU8/+IgYbAkRTzp1mVxAqgBAACAQsfFSAAAAAAAAIDSMGlS2BUAAAAg39i2NHly2FUAADq9+eabvbYdcsghQ9rXpEmT5DhOt22vv/76kPYFAJBGjRqVcfvWrVuHve+bbrpJHR0dw95PPovFDnxSdGVlZZ/PvfzyyzNuX7FihVasWDGsugAAAAAAKHj5dn4oAdRAQYmEXQAAYGBcz9X8356vv0V3qCFmgk8ftKSGuPS3SUbzz2rT/UtihA8GyPGMZm2THn2XFOav3TLSrG2Sk/JY+AeMHihxlpHjGkU9KeH0//BciXqS4xrJdcNtxFJED5Q81zK66sMJOa4Uc/0+CPKvsCV/XMeVrvpwO2vBQuEN4PWa13MAAIDSZHOdWgAAAAAAAKAkjB7t/7t1q9TeHm4tAAAACF95uXTIIVI/gW8AgOBs27at17aDDz54SPtyHEcHHXSQ3nrrrX3btm/fPuTasu2WW27Rz3/+85yP89prr+V8DAClYezYsRm3L1++XNdff/2Q9/v3v/9dP/7xj4f8/EKxcePGjNurqqo0YsSIPp/76U9/Wt/5zne0a9euXvddcsklevrppzVmzJis1AkAAAAAQEEhgBrAMBFCDQAFwrEdTW8boYdjJrTMR9MZRD19mycnkQqniBLlSPrCs7ZeHONpR1U4uZ+WkcY1+3Uw/8GjB0qbI+nzz1laO9Zod0U4IcQxVxrd6tfB/AePHoAj6bLV0uozpdo2qaE8uCDqdAB1bZsUMX4d9ECBcN3+D9i6bjC1AAAAIHyu64dPE0ANAAAAAAAAlJbRo/3b3r29g6inTJHi8XDqAgAAQO7s3i3t2bP/52hUOvZYyQnhS8gAgD7t6fr3ulNVVdWQ99fzuYlEQs3NzcPaZ7bs3LlTL730UthlAMCAzZ49O+P2J554Qk888YROOeWUQe9z69atuvjii5VK5de5WXfccYfOOOMMTZ48OWv7XLhwYcbtM2bM6Pe5lZWV+s53vqMvfelLve578803df755+uhhx7qN8x6sNatWydjzIBqBAAAAAAgcARQA8gCQqgBoEC4nqvlO1f5KYBhsqTlUyV3heSElYZdouo2OpJl6aqPuoGHEKfDh2/9s6O6jXb4fVii6IHSlp7/L3zUDTyEOB0+fAvzHyp6AOkeWPBRV7Vt0u4KKRVAdpzj7Q+gvpkeKDxdDyJnOoCbbweZAQAAkB0HWvsZI3le8PUAAAAAAAAACF8s1jt0cMwYqbIynHoAAACQO64rNTbu/zkSIYAaAPJUS0tLr23l5eVD3l+m57a2tuZFCDX6EY9L06eHXQXQWwlfxO60005TRUWFWltbe9336U9/WitXrtTEiRMHvL8NGzbozDPP1KZNm7JZZlbcfvvtuuKKK3TxxRfra1/7mmbOnDms/d1///265ZZbMt534YUXDmgfV199tX77299q1apVve5bsWKF3vOe9+i+++7LSmD0ypUr9aMf/UgPP/yw7rzzTkKoAQAAAAD5J9+yQQigBgoWIdQAUEDGNhvFyvzQyTCWX5b8EMqxLZKSqXCKKHF1L0pKSZfNkRqG/l2SQatpl259RKpb70pygxsYvdADpS09/5fPkRIBzn9lQrqF+c8L9ADSPfDZOZIX0PFBz5KSjnTrA/RAUeLALgAAQOnwPMm2/TVgIhF2NQAAAAAAAAAAAAAAAEDJSyaTvbaVlZUNeX+ZQqgTfFeoMNi2NIwAcgDZF4/HdcEFF+jOO+/sdd/rr7+uk046Sb/85S/10Y9+tM/9tLS06Ec/+pF+/OMfdwu0rq6ulmVZaux6AZkQJZNJ3XHHHbrjjjt0zDHH6MILL9SFF16od7/73QPex+7du3XDDTfoJz/5iTzP63V/ZWWlLrroogHty3EcLVq0SCeccIL27NnT6/6NGzfq+OOP16c+9Sl9/etf15FHHjngOo0xevrpp3Xvvffqvvvu0+uvvz7g5wIAAAAAEDgCqAFkESHUAFAgHNvR4rVH6vwpe7RyQmJIQdSW8YOkjSQzyDVlOoD6tE3S4nslhzVgqGzJn8gg3huYzvGQV+iB0mbJ/5s+2L/lQxrLBNNmGBx6AGm2yW0Ytc2aDwAAACgu6S/0u1xcBgAAAAAAAAAAAAAAAMhH1jACRTI91xAIAgBD9t3vfld33XVXxosGbNmyRWeeeaZmz56tc889V8cff7zGjh0r27a1Y8cObdmyRX/+85+1bNky7d27t9fzb7rpJl1//fV5E0Ld1dq1a7V27Vp961vf0oQJE3TCCSfoPe95jw477DCNGjVKo0aNUllZmVpaWrRz506tX79eK1eu1PLly9Xe3n7A/d5www2aMGHCgOuYOnWqHnjgAX3kIx9RW1tbr/sTiYR+9atfaeHChZoxY4be//7364QTTtDYsWM1atQoxeNxNTY2qqGhQbt379a6deu0evVqPf/882poaBjKrwYAAAAAgGARQA0gywihBoACUt1udN+fR+q0Obu1dnRqUM/tGiBpSdIggyuNpCN3Sff9TqruGNTQyKKl06QFZ0lxVxrZIdXHldtkUOOPE3f9cSWpbn0Ox0O/6IHS1nX+azukhnhuQ4gt44/D/OcPegBde6CmQ2qM77/ISLalW6uGHgAAAAAAAAAAAAAAAAAAAAAAIOui0ag6OrqfsNnW1qaqqqoh7S9TQGcsFhvSvgAAfgjy9773PV133XUHfMzq1au1evXqQe33qquu0qWXXqrrr79+uCXm3LZt2/Tggw/qwQcfHNZ+LrjgAl199dWDft4pp5yiP//5zzr77LMPGBxtjNELL7ygF154YVg1AgAAAACQVwigBpADhFADQCGJRrV8UkI7y1KKuVLCGdjTugZQ79smDSqIOuZKOyuk5YcSPBiWdOik1zlnZSkpEpVSA+yDoYh4/jiSPy7hk+HK1APxiNSRwxVd3KUH8kWm+Y/leP5jzH9eydQDFbbUksPvAlYk6YF8kqkHEjnsASN6AAAAAChaqcFd5BAAAAAAAAAAAAAAAABA9lVUVOQ8hLqysnJI+8q2sWPHavr06Tkf57XXXuv1OwWA4fjnf/5nbdy4UXfccUdW9veZz3xGP/vZz7Kyr0Jx6aWX6rbbbpM1xPCsU089VX//+981b948Pffcc1muDgAAAACAPEQANYAcIYQaAArI0ne1acHIRslII9uk+vL+g6gzBVDvu08aUBB1zPXHE8GDoXEtaeHs/aGTkrSnLLcB1JK//z1l0qh2/2evs445GySH9wSBytQDTbHcBhBL/v6bYlJ1wv+ZHggH849MPdAekVqjuR23NSrFelyQgB4IBz0AAAAAIKs8L+wKAAAAAAAAAAAAAAAAgJI3evRo1dfXd9vW3NyssWPHDml/zc3N3X6OxWJDDrTOti984Qv6whe+kPNxjj76aL300ks5HwdAaVm4cKHe9a536fvf/768IX4Hs6ysTD/4wQ/0ta99LcvVDd/MmTP15JNPKplMZnW/Bx10kG688UbNnz9/2Pt697vfraeeeko33XST/vVf/1VNTU1ZqLD7/i+55BJ97GMfy+p+AQAAAAAYNAKoAeSQHXYBAICBcT1XCw/eJU/+YmzAS8QeD4y7fd/f327SwYNunq1Ri51jpEVLpFnb/J/3lOU+fDatI+KPJ/njL1pC6GQYevZAU0xqiQUzdkvMH0+iB8LC/KNnD7RHpIZ4/xeSGC5j+eO0d77m0APhoQcAAAAAZBUf+gMAAAAAAAAAAAAAAAChGz9+fK9tb7311pD25bqu3nnnnX73DwDF7AMf+IDOP//8Xrehhvun2bat733ve1qxYoU+8pGPDOq5sVhMn/70p/Xiiy/mZQC1JN18883atWuXfve73+mSSy7Ru971rmHtb+bMmbrxxhu1YcOGrARQp8ViMX3jG9/Qpk2bdOONN+qoo44a8r4sy9KsWbN0zTXX6K9//as2btyo6667TmPGjMlavQAAAAAADBoB1AByLKD4SgDAcDm2o0Uzvqu5S+fr+QlSfbmUsiXL9B0+aCTJ8h9X0yGVpfwQwcbO0ML+lneW8cepL5dGtknHEjwYmuoOafG90ru/GFwAdVpHRHLlj1/dEezY2C/dA8d+Xnon4AvQt8SkcS30QJiYf6R74PRLpOcn5D58OC0dQnxsPT0QNnoAAAAAQNbYXKcWAAAAAAAAAAAAAAAACNuhhx6qJ554otu2TZs26bTTThv0vrZu3apUKtVr/wBQSq6//vqc7v+UU07Rn//8Z7344ov6wx/+oL/85S965ZVXtHv3bjU0NCgej2vEiBE69NBDNX36dH3wgx/Uxz72sQMGG2/YsEEmQ5hTPB4fVF2//vWv9etf/3oo/0n7VFdX6xOf+IQ+8YlPSJK2bdumJ598UmvXrtWrr76q1157Te+884727t2rvXv3yrIsVVdXq7q6WuPGjdMxxxyj2bNn65RTTtHMmTOHVUt/amtrdc011+iaa67R+vXr9eijj+rpp5/Wxo0btXnzZjU0NKitrU2RSEQjRoxQdXW1Ro8erSOPPFLTpk3T9OnTdeqppw47nBwAAAAAgKwigBpAAAihBoACUn3oNN32gDT7SinZmRFiSdIAgqgrkn4AteT/m7D9UNG+WKZz//LHS9nSbQ8QPBimS86RdgQcPpu2o8off+nvwhkfvn89VXqzNpyx36z1x79heTjjg/mHtPxQfy6CCh9OM5Y/7vJDpbr1wY6N7ugBAAAAAFnhOGFXAAAAAAAAAAAAAAAAAJS8I488ste2V199dUj7eu2113ptmzZt2pD2BQDo24wZMzRjxgx9/etfH9Z+Bhs2HaQJEybovPPO03nnnRd2KX2aNm0ar3cAAAAAgMJHADWAgNhhFwAAGLimN9brijmS40lRr8sd/awdLSO1RaX2zksPtEf8n63+1nhd9hv1/HGvmCM15e/nWUWt7kLp/qPCreH+o/w6EI5rz5BuPCX44NE0Y/njX3tGOOOXOuYfS6dJn50jNZSHM35DuT/+Ur6PERp6AAAAAAAAAAAAAAAAAAAAAACA4nH88cf32vbUU08NaV9PPvlkr23HHXfckPYFAAAAAAAAAAgIAdQAAkQINQAUCNdzNf+xL2rNBP+Pd22bHwxtLKmv5Zpl9mdJN8alhjL/X8nf3lcQtZG//6jnj2dLWjNBmn+e5ObZmrXYtTnSQ70vah6Kh47060GwErb0i/eEF0CcZiy/jgSryEAx/3At6V9Pk+rL+37dzyUjf/x/PY11QBjoAQAAAABZY1mSzZt7AAAAAAAAAAAAAAAAIGzve9/75DjdT9Z76qmn5LruoPf117/+tde297///UOuDQAAAAAAAACQYwRQAwgYZ5gDQIFwbEeXPd4ou3N9ZksqTw48gDqto0d48ECCqMuT+18wbCNdtlpyWCcGKuZJR+4MuwrfkTv9ehAsx0iHNIRdhe+QBv4GBI35hyR5/Vx4Igimsw6Egx4AAAAAkBWEUAMAAAAAAAAAAAAAAAB5oba2VieddFK3bXv37tWf//znQe1nz549euyxx7ptmzJlio466qhh1wgAAAAAAAAAyAECqAGEgDPMAaCA1K3zdPMjfhB0e0Rqih84QDpTAPWB9BVEbRl/nPaIP+7Nj0h164dSPYZr8l4pMvgLmGdVxPXrQDgOapaiIfdA1PXrQPCYf4xrkWIh90DM9etAOOgBAAAAAFnhcYU5AAAAAAAAAAAAAAAAIF/Mmzev17Zf/OIXg9rHHXfcofb29m7bLrroomHVBQAAAAAAAADIkXwLoAZQMgihBoACU7demr9Gaoz7P1uS1DNAehAB1Gn97acx7o9LAHU4HCP97l7p9E2SHVJGjO354//uXr8eBCvdAx/YJDkh9YDj+ePTA8HLyvybzgsODHHumP9wpXvg/ZukSEg9EPH88emBcGSjByzjX1TkQBcf6Q89AAAAABQRN+Qr3AAAAAAAAAAAAAAAAACQJH3yk5/UiBEjum178MEH9eSTTw7o+Xv27NGNN97YbZvjOLriiiuyViMAAAAAAAAAIEvyMYDaECQDlApCqAGgwCydJi2aJdV0+D8bqXfitDX4fMn+9lPT4Y+7dNogd4ysqe6QPrNaioS0Vo8Yf/zqjnDGx/4eCCv406EHQjWs+e9yUYGMFx0YAOY/fOkesEPqAZseCN1wesDq0QNDCaKmBwAAAIAikkyGXQEAAAAAAAAAAAAAAAAASbW1tfrCF77QbZvnebr00ktVX1/f53M9z9OVV16pd955p9v2iy++WIcddljWawUAAAAAAAAADAMB1ABCRgg1ABSQpdOkBWdJniWVpfwAQHOA9aQZRBC1Ud/7qe7wx/Msf3yCqMOxdJr0jY9KXkjje/LHZ/7DQw+UtvT8D+kte4aLDAyWEfMftuH0QM/jT0M5HkUPhC/dA2GiBwAAAIAi4YV1hAkAAAAAAAAAAAAAAABAT9ddd50mT57cbdvGjRt18skna/369RmfU19fr/POO0/33HNPt+3V1dX64Q9/mLNaAQAAAAAAAABDQAA1gDwQCbsAAMDAuJ6rhbP9IGjJD4Nti/o5ogdawpnOO7suO+Ou1OF0eYwOHEAt+c9ti0rxlH/lAs+SFs6W5myQHNaOgXEt6X+Ol3ZWSCmn/8cfiO1J3hAvQZFy/PH/53jmPwzZ6gHHldwhPp8eCE96/ndVSMkhzp+xpIg79P5JOv74zH84htsDRv5xqEhKSkWGFmRND4Qr3QO7K6TkEF7L0+vCWEpKRPpe/x1I0vbHpwcAAACAIpCPX1YAAAAAAAAAAAAAAAAAQnbWWWdp69atB7w/033HHntsn/t85JFHNHHixD4fU1VVpd/+9rf60Ic+pFQqtW/7+vXrdfTRR+vss8/WaaedpkmTJmnXrl1as2aN7rrrLrW0tPTa169+9at+xwMAAAAAAAAABCgfz+kkgBooSYRQA0CBcGxHi5ZIcy+QVk+QGsr9IMD+lnBdg6hrOqSylNQekRrj/QdQy3+qkrY/Xm2bNHubtGgJoYNhaHOGHj6bLUnHrwPhoAdKW9IeWvDsPqbLv0M8JjHsGjAsw/39p4/7GHqgYBkNbP2Ws/Gt/TUAAAAAKHD5+IUFAAAAAAAAAAAAAAAAIGQvvfSSNm3aNKjnrFmzps/7E4nEgPZz2mmn6be//a0uvvjibkHUnufp97//vX7/+9/3+XzLsnTTTTfpggsuGNB4AAAAAAAAAIAA5OP5nARQAyWL+DAAKCDVHdJtD0huZwCkN8B1pbGk8qQfQC35/5YnBx5g6Fn+eK7tj1/dMbT6MXSuJa3OwsXHvSy88q+e6NeDYGWrB9wsBEjTA+HYUz7M4FlLSjkacviw5I+/p3wYNWBYstEDyYjogQLlGOlTa4Y1fZI6e2AYLPl1cEESAAAAoMBFuE4tAAAAAAAAAAAAAAAAkG8+8YlPaPny5Tr44IMH9bzRo0frvvvu05e+9KUcVQYAAAAAAAAAGDQCqAHkGUKoAaCANMWlK+ZI9iDXb5aktqjU3pkr0h7xfx7s0tQ2/vhN8UE+EcPmGGlMS9hV+Ma0EDwZBnoAthl++OxwWRr8axCyhx4oba4l3T3Tv5DIUBnLv7jIcMLMy5N+HVyMAAAAAChw+fjFBQAAAAAAAAAAAAAAAAB6//vfr/Xr1+vGG2/U4Ycf3udjJ02apG9/+9t65ZVXVFdXF1CFAAAAAAAAAIB+5eN5nARQAyUvEnYBAICBcT1X8y909Pw4V41lg3uukSRLaoz7AdQdjh8+ONilYGOZ9PwEaf550v13E0IbJMdI//K49OlzJS/ES0jYnl8Hcx88eqC0OUb6yirpM+dIKSfEOly/DuY/ePQAHCPNe1FaNtUPAw9jCixJbRG/DnoAAAAAKFDpLy3YXKcWAAAAAAAAAAAAAAAA6OnNN98MuwRJUkVFha655hpdc8012rhxo55//nlt2bJFra2tKisr08SJE3XMMcdo5syZYZcKAAAAAAAAAOiJAGoAeYoQagAoEI7taN62sVo2ZZuSnfkgtpG8Aa4z00HUQwmgtjsfnLSl+jKCB8PgWtLdM6SahFQfl58CGTTjj3/3DHogDPRAaUvP/4ik1GD7f8eDZhl/fOY/HPQA0j1QkZKSjqQhXFBkOCz5PVCRogcAAACAgpX+0oJlEUINAAAAAAAAAAAAAAAAFIgjjjhCRxxxRNhlAAAAAAAAAAAGggBqAHmMEGoAKBCu5+rugxtVkZIanf3bLQ08gNBo8KGVPR++L3jwJUtOGAmYJcqRdNnzRqsP8mc78BBiI43skCqS0mXPW3IsK5wQ5BJGD5S2nvPfEA82hNgyUi3zHyp6AD17oLHzdSCIQ3zpAOoaeqDweF7YFQAAACCfWFZ+fnkBAAAAAAAAQG4ZIyUSUlub5Lrd73vnHSkaDacuAAAA5E5DQ/e1Xyoltbb6az/WfwAAAAAAAAAAAEBu5OM5nARQA+iCEGoAKBCO7eiy54xWf8j/ubEzfDLXSzsjSVaP4MHVkhOJ5Xhk9FT3uqRlrhZ8JCUpwBDiLuHDNy+LqO51R+I7h6GgB0pbz/kPKoS4a/gw8x8uegA9e6AxwB6ooQcKk+t2PxhsTO9gascRAAAAilDPIBkpP7+8AAAAAAAAACC3PE9qafFDBxOJ3p8Zt7X52wEAAFBcUqnuaz/Pkzo6/FssJlVWhlcbAAAAAAAAAAAAUIzy8RxOAqgB9EAINQAUkLq1CaldWnCWlLClloByoI380MGKpHTzI1LdeknxYMZGd3Ub/ZDAL3wkpUhMSgXwniNipLJ06ORGQgrDRg+Utq7z7wQ0/w7zn1foAXTtgb0xyQugB2x6AAAAAAAAAAAAAACAwtTW5gcQAgAAAGmJhBThtFIAAAAAAAAAAAAgawigBlAg+LYAABQSz1PdemnVJOnHp0iWkUwA607LSG1R6Qt/7wyg7qwF4TjjdWlCq7S9Kvc9YBk/3HJCqz8u854f6IHSxvyDHgA9gEHpelA40/xx0BgAAKA0OVxgBgAAAAAAACh6nucHDAIAAAA9dXSEXQEAAAAAAAAAAABQHAigBlBACKEGgAKzdJq0aJZU0yE1xIMbt6bDH/ekt7sEUSNwTTGjuee52lYZXA/UdEjbKqW557lavMRRdSIP3/CUEHqgtDH/oAdAD2BQOCgMAACATPLxCw0AAAAAAAAAsi+V6r2t5wXqYjEuWgcAAFCMksnu6zzb7n6/6/beBgAAAAAAAAAAAGBw8vF8TbJGAPSBEGoAKCBLp0kLzpI8S4qlJCcmpQJYfzrGH8+z/PElqe4NvmwWtKaY0dxzU1ozzl/gB9ED6bmXpDXj/NDLxfdHCZ8MCT1Q2ph/0AOgBzBoPQ8MW1bmbQAAACgNrP0AAAAAAACA0lJV1f1ny+odNBiJ+DcAAAAUl2i0+9qv54VHolFOPgcAAAAAAAAAAACKDZ8BAugHCaIAUCBcz9XC2X4QtCepodz/37mODbHkj9NQ7o/rWdLC2ZJrsdAMkmsZzZ+zP3Syaw/kUte5l/zwyflzUsx/COiB0sb8gx4APYCsIHQQAAAAAAAAAAAAAEpHJNI7iBoAAACQpJqasCsAAAAAAAAAAAAAClu+ZXgQQA1gACJhFwAAGBjHdrRoiXT+hdLKQ6Rk52UEBrPksyRZRjLWwJ9nOp+XtP0AwtM2SYuWSI5l5z4BG/s4snTZC45Wj/eU6gyDTNrBBE+m5762TYoY6bIXHDli/oNGD5Q25h/0AOgBAAAAAAAAAAAAAAAwaOPGScmk1NERdiUAAADIF1VV0qhRYVcBAAAAAAAAAAAAFC4CqAEUKEKoAaCADTp00HT5dxDP9SzJ7rm+zLcFcAmoeyWi1oh0+VnJQEIn07qGT/7qkajqXokQOhkSeqC0Mf+gB0APYNBsW/K8/T8b03sdz7oeAAAAAAAAAAAAAIpXJCIdfLC0d6/U1CRFo93vr6yUYrFwagMAAEDupFLd137RqFRT46//qqrCqwsAAAAAAAAAAAAodPmW00EANYBBIIQaAAqE67maf560bpxU0y7tqhj8Poy1P4d6KGra/fHnnyfd/3sjx+TZQrjINcWMfjPDVXlK6ogHO7ZnSeUp6TczXJ39mqPqBHMfBnqgtDH/oAdADwAAAADImnz7kgMAAAAAAACA3LFtP3CwrMwPHexq6tTe2wAAAFD43n5b6ujY/3M8Lo0fH149AAAAAAAAAAAAQDHIt3MzCaAGMEiEUANAgXBsR5e9ENFzB6XUWB5ODY1l0uhW6bLVkuNJw4u0xmC4ltH8s5N6fpyn5mg4NTRHpefHeZp/dkL33xclhDxg9EBpY/5BD4AewJB4Xu8Dxv39DAAAgNJg22FXAAAAAAAAAAAAAAAAAAAAAAAAAAAAUBgIoAZQBAihBoACckbLOI1v3qptVeGMn7Sl8c3SGW9IBFAHyzHSvHW2/nSop1RI+TApW9pd7tdBCHnw6IHSxvyDHgA9AAAAACAr8u1LDgAAAAAAAAAAAAAAAAAAAAAAAAAAAPks387NJIAawBARQg0ABcL1XM0/x9U2R6rukBrKgh3fs6TadmnbCGn++dL991tyTJ4tiouYaxnddKKrZMi/8qQl3XSiq3kbIsx/wOiB0sb8gx5AugdSIf/aU/RAYTFG8rzuP/c8sJ1vB7oBAACQO6z9AAAAAAAAAAAAAAAAACBnrAF8R8vr+h1/AEBJG8hrwkBeWwAAAAAAOZZv780IoAYwDIRQA0CBcGxHl9V+UM813a3mWDg1NMekiqR02fO2HNdIYiEaGMtoS5WRwn4vYsmvw/MkgieDRQ+UNstoTzw/5n9PnPkPBT0Ay+TNMUBjRA8UCs/rfvDYmN4Hk/OlsQAAAAAAAAAAAAAAAAAAAAAAKGC2bff7GNd1A6gEAFAIBvKaMJDXFgAAAABADhFADaDIEEINAAXkjBlnK/7XxUrZ4SwCU7YUT0lnvG6kVCqUGkqVa3tqi4Zdha8tKrluUo7Hh1ZBogdKnGVU0xF2Eb6aDvmvAYTPBoseKHmOpK+ski49R0qG+KuPGL8OJ8mXHgtCzxDqTPgCKwAAQOlwXf8LD3wZHQAAAAAAAAAAAAAAAACyznGcfh+T4txcAECngbwmDOS1BQAAAACQIwRQAyhCnGUOAAXC9Vx9aNsN2lRtFNay1JK0qVb60KeNXIvFaJAcY+mEtxXa3KdZkk54268HwaIHMK5Finjh1hDx/DoQDnqgtLmW0d0zjCoT4dZRmZDunsFaEAAAAChYxvgXK8m3Lz8AAAAAAAAAAAAAAAAAQIGzLEu23Xd8Q0sLJ+YAAHz9vSbYti2L7/wCAAAAQDjy7f0YAdQAsoQQagAoIFY0JmNJYS0FTectz5bGJcExli5dYynihltHxJUuXWMRQBwCeqC0OcbSp9ZaskM+FmAb6VNrmf8w0ANwjKV5L1pqiyq0PrCN1BaV5r1IDxQMDiIDAAAgE2MkN+SDTAAAAAAAAAAAAAAAAABQhMrLy/u8v6WlRYbv+gNAyTPG9BtC3d9rCgAAAAAgRwigBlDECKEGgALh2I6+fNKXFQk58C9ipC8/JTme/IUpt0BurjzdPcNoVJsUDSkfJupKo9qku2f49YT9Oym1Gz1Q2rf0/I9sk2IhzX/MlUYy//QAPRB6D9S2SVEv+CBq2/jj1tIDhXUDAAAAMrEsyfPCrgIAAAAAAAAAAAAAAAAAik5VVVWf97uuq7179wZUDQAgX+3du1eu2/fJov29pgAAAAAAcoAAagBFLhJ2AQCAgXE9V3c/+2uNapN2l0mpEC4jEPGkUa3S3cdYmvdKRE7IgdilxJG06EGjuecmtXqc0e5yKeUEN36kM3x49g5Lix6Myokw90GjB0pbz/nfUy4lA5z/aGf4MPMfHnoAPXugoVxK2pIXwFR0DaCmBwpMIsEBZQAAAHSX/gIE60QAAAAAAAAAAAAAAAAAyLrKysp+H7N9+3aVlZUpFosFUBEAIN8kEglt376938cN5DUFAAAAAJBFBFADKAGEUANAgXBsR4uqL9XcnY9r9eiUdlcEG0Qd8aTRrdLsbdKiB2NyItHgBockqdpIix+O6vw5bVox2Qt0bFvSzN22Fj9crmpjSUx/KOiB0hbm/Fti/vMBPYB0D8w9u12rx7raXR5cCHVtuzR7l6PFD5fRA4XE8yTX7f4zAAAASlfXL0DE4+HVAQAAAAAAAAAAAAAAAABFKhaLKRqNKplMHvAxqVRKmzZt0vjx4zVixAhZ+RZuAwDICWOM9u7dq+3btyuVSvX52Gg0ysUKAAAAACBI+XaMjgBqADlCCDUAFJDqda9q8RJHc+ektHq8Agui7hpAvfheqdoYic8sQmTJDfj9ij9enr1JKmn0QGlj/kEPlLLqhKXFD5bp9Llt2lERTKCwa0kTW2wtfrBM1Qn6AAAAACh4liWNGhV2FQAAAAAAAAAAAAAAAABQdCzL0ogRI7Rnz54+H5dKpfT222/LcRxVVlaqsrJSkUhEjuPItgM4cRgAkHOe58l1XaVSKbW0tKilpUWu6w7ouVykAAAAAAACxPsvACWEEGoAKCTPPKPq5qQW32tp7gVGq8dLOyskL4efJ9s9A6g75KdSR3gJCVpTzGjuWS16ZoIrN+DvELi29MwEV3PndGjxI5UEUIaEHihtzD/oAaQtPzSh7ZVGUU9KOLkfL+pJ2yuNlh9qVPdaNPcDIntSKf9frzOw3LK42iEAAECps22pvFyKx8OuBAAAAAAAAAAAAAAAAACK0ujRo9XY2DigoFHXddXU1KSmpqYAKgMAFALHcTR69OiwywAAAACA0pCPAdTkggDIIRJEAaCQbNokSapOWFp8r3TaZ4y2V+V2SM+Wxrd0CaCW/EXzyJG5HRjduJbR/A9u16pxrhpi4dTQEJdWHeRq/tkJ3f/YeDkmD988FTF6oLQx/6AHkLZ0SosWnLhXrmVJVkAHDS3JtS0t+FCHVFWlus2VwYyL4Wtqktrb9/+cSEg9v8TKxWUAAACKUyLRe1t5ueQ4UjTqh1EDAAAAAAAAAAAAAAAAALIuEolo7Nix2rZtW9ilAAAK0NixYxXhnC8AAAAAyD0CqAGUII46AUAhaWzc9z8fPMJow5hght0wRnrwCGn+C50bLEvi6pmBciQdlmjRQ7G2UOtoiBkdlqiSMyqg5sM+9EBpY/5BD0CSlk6o14Kj65WyLDVEPSUDyoxL2lJD3Kg2aWvBSfXSiBGq28YFSQqC53U/6G3b3cMIbVuqJFQcAACgKNXXd78ASTQqlZX5/9uy/J8BAAAAAAAAAAAAAAAAADlRW1urpqYmtba2hl0KAKCAVFRUqLa2NuwyAAAAAKD4EUANoEQFFFkFAMiKNj94ctEMT5fP8QMBc72MteSPc/kcadHMzo2el+NR0VNCnu6aXJ/z+e6PJemuyfVKiB4IGj1Q2ph/0ANwZbTw4F1KWUYNUVcJ2yioQ4dGUsL2x01Zfh1uYKMDAAAAyCrbliJcoxYAAAAAAAAAAAAAAAAAcsmyLB188MGqqKgIuxQAQIGoqKjQwQcfLCsfg9AAAAAAoJjk4/suAqgBBISzzAGgwHQNoDaWch7/ZyTJkpKOH0QtSfPXW1JZWY5HRlcxST949RBdOf21UCMfrc46YmV88SFo9EBpY/5BD8CRdOuGd2v2Sc8HGkCdlg6idm2/Doe1YGGIRrsHDKZSfuhgmmURQAgAAFBKotGwKwAAAAAAAAAAAAAAAACAkmHbtg4++GBt2bJFra2tYZcDAMhj6QBqu+u5XwAAAACA7COAGkCJI2kIAArIoqNdXX5KcAHUab2CqKNG82OxgEaHJLkyemBCg8pcW62OF1odZa6tByY06LLdU+QoD99MFTF6oLQx/6AH4MroqqNfVirANWBPRlLKkq46+g3dv+4YeqAQRCLdD4D3/BKSZeXnAXIAAABkR19rQQAAAAAAAAAAAAAAAABAztm2rSlTpqihoUE7d+6U67phlwQAyCOO42js2LGqra2VxXleAAAAAJBb+fi+iwBqAAHjjHMAKBCJVEJffW9D4AHUaUb+uElH+uoZKSUUXgBmKXJkaXpLpdpDDB6VpHbH0/SWSkInQ0APlDbmH/QA0j3QFEmF9tu3JDVFUvQAAAAAAAAAAAAAAAAAAAAAAADAAFmWpZEjR2rq1KkaNWqUotFo2CUBAEIWjUY1atQoTZ06VSNHjiSAGgAAAAByLR/fdxFADSAEkbALAAAMTCwS039sPUaXHrJayZDWskZSxEj/8VhMsaat4RRRolzL6KXDdqs8ZaklEt4bh/KUpZec3XLfjssxefimqojRA6WN+Qc9gHzoASOpgh4oLA0NUkfH/p8TCSmV2v+zZUmtrYGXBQAAgAAY0/0LCJ4nua5k2/n5ZQkAAAAAAAAAAAAAAAAAKHKRSETjx4/XuHHjlEgk1NLSoubmZrW1tcnzvLDLAwDkkG3bKi8vV1VVlSorKxWLxQieBgAAAICg5OP7LwKoAYSEEGoAKCAVU49UZetqNZSHV0Nlh1RhIn6AHQLjSJr3apmWjW+RJT8EMmiWpJRlNO/VMjkdyRAqKG30QGlj/kEPgB7AkKRSftBgWs8gQqn7/QAAACgemb6A4Hn+zbaDrwcAAAAAAAAAAAAAAAAAIEmyLEvxeFzxeFyjRo2SJBlj5LquPM+TIYAGAIqCZVmybVuO4xA4DQAAAABhycf3Yxz/AxAiQqgBoEC4nqtfjNig1lS4dbTGpF8ck9Scx40ck4eL6yLlWkZ3T21VbcJWfdxTIoScmKgn1SZs3T21VfPerGL+A0YPlDbmH/QAuvZAQ2cPBHlI0ZIUowcAAACA4pAOowYAAAAAAAAAAAAAAAAA5AXLshSJEP0AAAAAAAAAZA0B1ADQC59EAEABcUdUKdkUbg1JR3IjISRfljjHWFq0YqzOP32HVkxoD62OmfUxLVoxltDJENADpY35Bz2AdA/M/cBOrR7VMaQg6q6zNtjnxTyptsPW7D1xegAAAAAoBq4bdgUAAAAAAAAAgpZK+beumpqkZDKcegAAAJA7LS3d136O41+s2OZ8IAAAAAAAAAAAAJQAAqgBICNCqAGggLze9vagAgNzwUh6fYQrRaMS4YPBiriSHfLv3LakSESSE24dpYoeKG3MP+iBklctafETB2nuadv03Mh27SzzBvzcnp1jaXBB1DUJW7MbyrT4iQmqliNFB/FkhMdx+j5hxLI4oQQAAKBY2XbfQdN8WQEAAAAAAAAoHc3N0s6dUmur/7+7WrMmnJoAAACQW57X/WIjHR3Sq69KZWXSuHH+vwAAAAAAAAAAAEAxIoAaAA6IEGoAKCCjykbpDev1UNeSlpFGpSJ+ACUh1IFxLaP5p7yjF2oTodbxQm1C80/dofufmCyH+Q8UPVDamH/QA0irVkS3PX2QZp/5ZqDjepal254+SNWKcSShkPQMobas3gfLCaEGAAAoXn19USLCwh4AAAAAAAAoCXv3Su+8E3YVAAAAyBft7dKWLdIhh4RdCQAAAAAAAAAAAJB9BFADQJ9IGgKAAuHYjpZfslzHjj9WYS1xLSMd2xDX8semEDwZMMdYmrd5hBpinhIhvXonbKkh5mne5hHMfwjogdLG/IMeQFpTxNUVJ26TY6SYZw17Xdjf8y354zhGuuLEbWqKuMMcEQAAAEDoLEsqLw+7CgAAAAAAAABB2Lkz7AoAAACQb4yRdu0KuwoAAAAAAAAAAAAguwigBoB+RcIuAAAwcNXxaj1+6V90+s3H6fm9rynI/EfLSMfujujxP49XdTIR3MCQJLmW0W8OrpercN9QuPLrmLcxRgBpwOiB0sb8gx6AJDVFPc09ZafW1CRkG6m2w1JD3ChhKeO60JL2dYxR98Bpc4DHdXu+kWKd49iS1tS0a+57t2jxX8aqOsk1rQpCIiGlUvt/Nqb3Aequ9wMAAKB4eF7vtZ8xkm1L8bj/LwAAAAAAAIDi1trKZ8IAAADIrK0t7AoAAAAAAAAAAACA7CGAGgAGhBBqACgw1fFqPb7gOZ3+L1P1fGR3IEHUlpGO3Wnr8cenqNrYvHqEwTLaWebJsw4cFJnzEiR5lrSzzJMikcxpl8gdeqC0Mf+gB0qeaxnN/8AOrRm1/2IgtizVdthqiHvqkLqlTGeanQP1jdWZUG16PNgPoLZld9nbmlEJzf/ALt3/l4MIIi8EjtP3gXLLys8D6QAAABg+2/aDqLtyHP8W4QAvAAAAAAAAUBJ6fh6cvkhdV2VlwdUDAACA4Hhe94sT9/ycmO8PAgAAAAAAAAAAALlDADWAPMVZ5gBQgKrj1Xq8/hydbhbq+XG5zYC0jHTsdunxB0eqeuKo3A2EPjmSrntT+uyIN1Ufc0Orozbp6Lo3D5ZTMzK0GkoVPVDamH/QA3AkXbZNWj16s7wuaz9bUpkrdUT3h8tZGmRYubU/tNp02VaWsmXbTreH2ka6bNtB9EChSCZ7H5ju+nOmE4wBAABQHNrbu6/90gHUkpRIZH4OAAAAAAAAgOIyerQfNphK9f04wgcBAABKz4gRYVcAAAAAAAAAAAAAZEe+ff+JAGoAeczu/yEAgLyzbJmq7/+DHn9wjI7doUEkDA5SOoD6fx1V72ySGhtzNBAGom7bSH12y5hQa/jsljGq20boZFjogdLG/IMeQN22kbp53RTZXdZ+7banvVFv35v7dAD1UHR9ri1pb9RTu70/3No20s3rptADAAAAQKEzxr9gCQAAAAAAAIDid/jhYVcAAACAfGNZ0mGHhV0FAAAAAAAAAAAAMHwEUAPAoBBCDQCFJpmUvvUtSVK1F9XXXhihaI7WnFEjfW2Vrepk58vF1q2S5/X9JOTM0gn1WjRpjypS4bx8V6RsLZq0R0sn1IcyPuiBUsf8gx6A1D2Iut321Bh1991na+gB1GmWuh8oaIy6arc9AqgBAACAYuO6/T8GAAAAAAAAQOGbMEGaNk2KxcKuBAAAAPmgslI69lipqirsSgAAAAAAAAAAAIDhIYAaAAYtEnYBAIBB+tOfpC1bJElL39Wua9/XotFt0q5yKZuZlBFPGt0qXXuGpwrXUt0GW0okpKYmqbY2ewNhQFwZLTx4l1odT20RT5akIN9uWJLaIp5ixtLCg3dpzrZaOcOOucRg0AOljfkHPYCu6raN1KraZv34sO2BjNcYdXXF5jEEUAMAAADFxOY6tQAAAAAAAEDJmDDBvzU1+d8D7WraNKmsLJy6AAAAkDu7dklvvbX/53hcOvlkLk4CAAAAAAAAAACA4kAANQAMCSHUAFBo7rhDkh9AveCURnmWZHlSVUJqyOJ5AFUJP3DSs6QFH3UlyQ+i3r2bEOoQOLI07+1RWjamSUbBBo+qy3itjqd5b48ieDQE9EBpY/5BD6CrpRPqtWjSHtUkHTVG3ZyPV5N0tGjSHp3UUEUQNQAAAFAsInxECAAAAAAAAJScsjKpvLz7tgkTem8DAABA4TPGP/8nrayMAGoAAAAAAAAAAAAUBwKoAWDIOMMcAArJ1q3SE090C6CWMWqPSI1ZDKCW/P1Z7VJZqmcQdbOUSPDls4C5Mrp70h6Vu7Y67NyHTWZiJJW7tu6etEfzthJAGjR6oLQx/6AHkLZ0Qr0WHL1ZniWVebaUVE6DqGuSjso8218PHr1ZkgiiLibGSJ4XdhUAAADIhb6+tBCNSrYdXC0AAAAAAAAAAAAAAAAAAAAAAAAAAADDRQA1AAwLIdQAUEj+/vfuAdSS2h2jhjI/GDKbjKSGMqk2UxB1e7tUUZHlEdEXR9K8d8Zo2Zgm2ZLCiAq0JbU5nua9M0ZOJBpCBaWNHihtzD/oAUjS0nF7tGD6lm7zn8sg6nQAdZpnSQtmbJFsR3U7RmV9POSAbXcPF7Ss7gfULYsD2gAAAKXEcfxbvn3JAgAAAAAAAAAAAAAAAAAAAAAAAAAAoC/5dm4keR0AChAh1ABQQJauWdw9gNr2chJAnXbAIOoXWlVXPTNHoyITV0Z3H/Kmar2YGqykkpYXaACpLSlqbNV6Ud09tUXznFlylGdvyIocPVDamH/QA3BltPCQN+U5dq/7yuRIrq1GJ5m18WrcqMosx09A78KTtPDwJs2JzqAHCkFHR/eD1pYleV3+ejiOVFYWfF0AAADIvZaW7mtBx5EifCwIAAAAAAAAAAAAAAAAAAAAAAAAAAAKDAHUAJAVvdOrAAB5yfVcLdz7l/0B1I7JaQB1WjqIur0zn8SzpIUH75Kb85HRlSNLi7acqNnttap1o4oaO7AX8X3Bo25Us9trtWjLiYROhoAeKG3MP+gBpHtgVntNxvvLjKO4cTLe19VAZi5uHJUdYF+z2mvoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5RwA1AGRNJOwCAAAD49iOFr1whOZO3qO/jUuoIW4GHQNtSbKMZKzBhVeng6hr26X3brW1aHmlnPfl2aK8BFR7US3e/F7NnfI3rS5r0G4nIc/K/ZsR21j7gkcXb36vqr1ozsdEZvRAaWP+QQ+gaw+sKWvsdl+75arDcvt8vtXl3746p8Ny1W7ZvYKoZ7XX0AOFrueBdcuSbK5PBgAAUJT6+1JFvn3pAgAAAAAAAAAAAAAAAAAAAAAAAAAAoKt8OxeSAGoABY4QagAoINXtRp98pUzLJ3UMOYBa6X+HEETdHJM+uc5WdSLPFuUlJB0+efrUv2hHpCOQMV3LaGKqjNDJPEEPlDbmH/QAMgVRt1uuGp1kn8/ruXrrL4i60UlKrvYFURNAXaB6BkxblhTpcijIcaQocwoAAFCULKv7lyt6ftGCi5EAAAAAAAAAAAAAAAAAAAAAAAAAAIB8RQA1AGQdZ5gDQAFZOqFeXzqlSe4g18VdA6j3bTO9wwj741rSlz6c0tKpiUE+E9m0vGqHtkc65Jhg3iA5xtL2SIeWV+0IZDz0jx4obcw/6AGkg6hntdcMKYC66/Yy78CHBRqdpNotlwDqQuY4YVcAAACAfBXhOrUAAAAAAAAAAAAAAAAAAAAAAAAAACAPEUANADlBCDUAFAjXc/Vvh76lhpi/ELUHuB7tGUAdd7vcN4gg6vR4DWXSv53QJlcsiMOwtPptLZi4Rm2WK7dnsniOuJZRm+VqwcQ1Wlr9diBj4sDogdLG/IMeQFq1F9Un6w9Wq+0e8DEVntPvWi9qbNW4Bw6XbrVdfbL+YAKoC5VtS1HmDgAAAD1EIoRQAwAAAAAAAAAAAAAAAAAAAAAAAACA/EMANQDkDGeYA0ABGV0+StFUvZKdlxCwjeT1sVbuGUBd2y59fKP00BF+mLTS91vqM1K6a+B11JNGp2JD/C/AcKSDR1utlBqcZGAx4EZSg5OUXGnBxDWSpLqmSQGNjq7ogdLG/IMeQFdLq9/WtQetU60bVYOTVNLyut2fDpZu1YFDqtPKjCO5UqOT7LY9amzVulFde9A6VZgI816oIhH/ALvrZj7Qnm8H3wEAAJAbluVfpMRxCKAGAAAAAAAAAAAAAAAAAAAAAAAAAAD5J98yMAigBlBkOMscAAqEYzv63aSv6PwVX9TKQ9RvEHWmAOrbHpDq1ktLp0lXzBlYEHXPAOrTNkm/WzFCTuX6LP2XYSBcy2jhKVvU6nWoIeYFFjyati+ANOFqYfRFzVnfKMfk2Zu1IkcPlDbmH/QAulo6qUkLDtsmLyXZkmpTlhpilpKdC7eahK0yz6jd9iSnn515nuSmVCZJrq3GmB9mHfUs1SYs2XLlydWCsc9Ib72lurerc/mfhmxrapLa2/f/nExKicT+n207/w7AAwAAIDuSye5fbkgm/fV/PB5eTQAAAAAAAAAAAAAAAAAAAAAAAAAAAJmQfwEAOUcINQAUkOrGdt33O+n8C9UtiFqdIdJdHSiAWtr/b88g6l5ZkhkCqO/7nVSd3CFF9mTpvwoD4UiaF3X1p7ODDx5NM5KaI57m/b1NziuvhVRF6aIHShvzD3oAaUuP8LRgZkqeu3+bH0QtNZRLFUmpLOVJGkAAteSH0KX84Oky+U9rjUq1bUa29g/iSVow8y3pnYjqNtoZd4U85Lrdgwc9r/dj2tqCqwcAAADB6bn2a2+X3npLikal8ePDqQkAgP/P3p3HyVHX+R9/V1V3z5VMJoQcJAETApJwhZDgAeICERHEyHCNu1lAAyqIQX/qLuvqT3RVwHNF1mX5ybVKkLhIAkoQEFEDGiUQBjYkJCThSMhFkskkc/RV9fujpma6Z7p7unu6u/p4PR+Pdqa/XfX9fsP3Y01VH+8GAAAAAAAAAAAAAAAAAAAAAAAABivHAGrHr5QfACgeQqgBoJKsXKnmsJKCqMOmhgRQS25QoKmhAdSewUHUKeLoJEOyHakuMYA63Nd7PJ5qDxRJ3HD0o3fZivt8nRQ3pB+9K66P/a8ja0hqOYqJGqhtrD+oAUjSsmMcLf6gLTvFf3pTUkuP+zPJcM9nDnq8PiaFYin6kWQb0uIPxiTbVOsrrH9FsO3hn9ROFUwNAACA6uQ4UiQibd8uHXOM37MBAAAAAAAAAAAAAAAAAAAAAAAAAAC1jgBqACgZQqgBoJKsXClJ/UHU866QNh6WZlvDzZNLFUDt8dovukSpkwb7+jliV2IAdR9OkEvM0bhuKWhLUVMpwyez7CZlaHk2TMcdf1y33PWnBEqMGqhtrD8KUwOGI+WbHU0N+CtuOLrrJCft2tuSOhqkxqgbJJ2OZUvxdOd9knoDUncwTaC13Nq76yRbC14xCCKvBJyzAwAAIJF3fhiLSZs2+TsXAAAAAAAAAAAAAAAAAAAAAAAAAABQ2wigBoCSIoQaACpJR0f/r0tmZgig9pjS318k9X47/SZ/f5HSB1D32XiYO9417QmNtj3M4CgkS9Iv/0e66FJp5TuksKncg2TjGgigtXLcty949PTX3XlYcUekj5ZWoWqgP4CWGqgog9c/nxBiM+aGCNuGZOd4FWCy/r4rRA1YMcm0JduU4tRAxbEkLfmV1Hax1D4p+TEvgDpiStE6t60+5h7zEzWGpVBMigSk7r7tEsuoNyDtr3NXtqMhdRD17B3uPKgBAAAAoAJ5z+kaRtJzzQAAAAAAAAAAAAAAAAAAAAAAAAAAACVFADUAlBwh1ABQSfpCQm6bLX3mgux2iQSk+q+kDqKu/4r7eDa88ZKCqFFSzWHpV7+UPvwx6elp2e9n2tK7tkpTDgy0bRst/W2qG0SaFUM65U13/OZwLrNGIVEDtc1b/2xDiA25AbR1Memj66Vjdw889vJ46aGZUm/QvZ/pqY/E8GHW31/51IAk1UepgWrRHJaWPpAcRJ0YQO0Ykhw3SFpyA6dHRd1jwXkbhtbAindKdXH3fmIAtWO4/Q0Oop69wx2fGgAAAAAqnONI0ajfswAAAAAAAAAAAAAAAAAAAAAAAAAAALWIAGoA8EW2sYMAgDKRSwC1xwuiTpRLALXnMxe448M/nSFp3cTc9rFNaW9DctvehhzCh/usm+iOD39RA7XNCyE+/XU3XDwTx5FGh4eGD0vu/Y+ud8OJh3vuwyR8uKwk1kBgmBqQIzVGMtdAU0SZE6jljkMNlA8viHr2jhQB1HJ/OnIDpXsDqQOoJff+eRvckPHBAdReP14QtS0CqAEAAICqYw93UQkAAAAAAAAAAAAAAAAAAAAAAAAAAFBgBFADgG8IoQaACpJPALUnMYg6nwBqD0HU/tk6WppztbSv3g2MzMWG8dJLE9zfX5rg3s+F6bjjzrnanQf8QQ1AcgNgb3xCilvDbGhIR+wfGjzrOXa3dEi3u10mccsdj+DZ8tEclu5eLo2ODL/t+1/LXAPzNw/fx+iIOx41UD6aw9JPH5biZnIAtccLoj5QJ524I3MNXLBuaAB1Yj8R0x3npw9TAwAAAEBV4Q0RAAAAAAAAAAAAAAAAAAAAAAAAAACglAigBgBfEUINABVi295teQdQeyIBybwh/wBqz2cukLY1jKwP5CZiSnM/Le3t++9u53EdtWG89Nujcw8fThxvb4M7jwhnECVHDcCzbpx02lVuYOxwXpoo3XdC6sfuO0HaNmb4Phy5460bl8ssUUydddInF0hWXDIyFEJjVFp1hPRymv/PvzxeWvkOd7t0DMcd55ML3HFRHrwaMO302ziGVB+VXpyUuQaWz5IaokMDqBOZNjUAAAAAVB07wwUFAAAAAAAAAAAAAAAAAAAAAAAAAABAIRFADQC+Iz4QACrElEOmKBTzexauUEya0uP3LGpLyJY+vsb9PZ/wYU9XKP99vXE/vsadD0qLGoDkBkHPvkaKWtnvs3780CDq+05w27MVtdxxCaL2X2ed1HaxtGaStL9BSnc4MCT1BKWwKa1459AQ4pfHu+1hy90uUz/7G9zx2i4mhLgc5FIDvUEpYmWugZ4ANQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgSAigBoCyQAg1AFSIuB3XBzdL8jv41ZY+uFmKl+H5fLX7+AuS/L5mcfrmAV9QA7UtnwBqT2IQda4B1B6CqP2XGD7c0SBFzfSh9I4kx5B6QkNDiL3w4YgldYfc7dIdWmzDHaeDEOKykE8NhAOZa+BAHTUAAAAA1CQrjycYAAAAAAAAAAAAAAAAAAAAAAAAAAAAckEANQCUDUKoAaBCWKalRWukKV3yL4jadsdftEayOH8uqR5LOukayfb5L7dtuvPoIaOm5KiB2uatfz4B1J7146VvnpFfALUnarH+fokb0sILswsf9nh/qhNDiB88diB8OBxI3i6dwSHECy/kyyj8kG8NOMpcA5kCqD3UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICcEEANAGUl4PcEAADZa13v/vzMh6Udo0o//qRu6dYVA/NA6TTEpbNflR45xu+ZuPNoiPs9i9pDDdS2Qq1/tAAh5qy/PyxH+thL0hMzsgsf9iQGUTuSNo6TYoYUCQwfPJwoMYT4Yy/xZRR+yLcGpIEgamoAAAAAQD/eJAEAAAAAAADUlp4eqavL/Zno5ZelUMifOQEAAKB49u1LPvezbamzU6qrc28AAAAAAAAAAABAsRFADQBlhxBqAKgwp2yTuoL+jN0VdMdH6cUN93oqFHNDI/0SirnziBuET5YaNVDbWH/EDen+E6SGqBSuz31/R27txGzJNnMLH/bYhjv+/SdIH1tLDZQaNQAAAACgoGzb7xkAAAAAAAAAKAXblvbulSIRKRp1b4n275fMAnyzPQAAAMqLd/7nMU3p4EH31tgotbT4NjUAAAAAAAAAAADUAAKoAaAs8Y5RAKggW0dLc66WukKSUeJzWcNxx51ztTsPlJblSB/7X8nvyypD7jwInSw9aqC2sf7waqAnkH8dOJLieYYPS+64PQFqwC/UAAAAAICCKsc3cAAAAAAAAAAovM5ON4AQAAAA8HR3S11dfs8CAAAAAAAAAAAA1aocP79IADUASCKEGgAqRiQW0dxPS3sb3PuGShdEbTgDYYd7G6S5n5Yi/AUpqbgh3X+81BiTTJ+uZUzHHf/+4935oLSogdrG+iOxBhL/LpeKd95BDfiHGgAAAABQUOX4Jg4AAAAAAAAAhWXbbsAgAAAAMBjniQAAAAAAAAAAACiGcvzsIgHUANAv4PcEAADZCQVC+vga6funDbQZ6ju3LeY5d4qQw4+vkUJ2EcfEEJYjLVojrTnMvb+/TrJLeK1lOtKYsNQYdedhcU1VctRAbWP9kaoGZEilWAovfJga8Bc1AAAAAKCgLMvvGQAAAAAAAAAotmg0+b5hSHV1yW319eX5wS8AAACMjGUlf5g+GEx+PBaTTLO0cwIAAAAAAAAAAABKjQBqAEhCCDUAVJDvPOn+9IKoHam4AdR9/TsJQdRfemZgHiit1vXuz8XnuT9LFUKbGD5764qBeaD0qIHaxvojVQ0UO4R4cPgwNeAvagAAAAAAAAAAAAAAAGStuXloW6oQar60DgAAoPqEw1I8PnB/cAh1fX3fh4X4QhIAAAAAAAAAAAAUSLm99kQANQAMQQg1AFQYLwD6e6dJTonOtx1DkiP9EwHUvit1CC3hs+WHGqhtrD9KGUJM+HB5ogYAAAAAjJhhSLbt9ywAAAAAAAAAFFsgII0dK+3b5/dMAAAAUG7Gj/d7BgAAAAAAAAAAAKgmBFADQEUw/Z4AACB3X3lamtZR2jGndbjjwn+t690QyMaoGwpZlNRJuf0SOlmeqIHaNnj9zSKtPwHU5WtwDRiOGxZcSIQPlzdqAAAAAMCIWZbfMwAAAAAAAABQCjNmSI2Nfs8CAAAA5WTsWGnKFL9nAQAAAAAAAAAAgGpBADUAVIyA3xMAAOSms05qu1jqDUpNEakrVPwxmyLueG0XS0sfkJrDxR8TmXkhkJe3qvCpkx5DipqETpYraqC2eeux+Dz35/46yS5gHRBAXf5S1YBTwBogfLj8UQMAAAAA8mYYhFADAAAAAAAAtaKuTpo9W9q5U9q7V9qxI/nxlhZ3GwAAAFSXzs7k+6GQNGGCG0B96KH+zAkAAAAAAAAAAADVhwBqAKgohFADQAXxAqjbJ7n3u0p0FO8KSM0Rd1yCqMvHqilSV7C4Y3QF3XEInixP1EBtSwygPRCU7AJmR5k2wbOVILEGImZhv5iiIUoNVAJqAAAAAEBebJsQagAAAAAAAKCWmKZ02GFu2GBHR/Jjc+dK9fW+TAsAAABFtGuXtHHjwP36eunoo/2bDwAAAAAAAAAAAKoPAdQAUHEIoQaAChG341p44UAA9fZGSWaJBjfd8Q7rdsdfeKG0fKlkOWV2AVBDrp/v6PunSoakYl72GJK+f5r7y3eeZL3LCTUASWp9Rbr5fY62jS5svzFLmtIptb5iuEWAstX6irRqqns8KKSeoHTts9RAJaAGkBFPkAMAACAdzhUBAAAAAAAAAAAAAAAAAAAAAAAAAEA+CKAGgIpECDUAVAjLtLRojbTmMGlbk0oXQO3pC6Ke0iUtWiNZtlTc6Fukc/189QdN2kW+DrMNyXT6xnMcfefJ4o6H7FAD8LReKv1tSnH6/tsUqfUSR8t+WZz+URjLZkpLTpQaolJXqHD9NkTdft+z1VHr+sL1i8KjBgAAAADkzDSleNzvWQAAAAAAAAAAAAAAAAAAAAAAAAAAgEpDADUAVKxSR5gCAEagdb20s1H+Hb1Nd3yCCP1z/Xzp+6e5vxc7fNjjjfP909zx4S9qAJ7WS6Xls4o7xvJZ7jgoT8tmSovPk7qDUk+wsH33BN1+F5/njoPyRA0AAAAAyIttl9+bPAAAAAAAAAAAAAAAAAAAAAAAAAAAQHkrt88mEkANADkhhBoAKkjdV6SY5e8cYpY7D5SeH+HDHkKIywM1AE8pAqg9BFGXp8Tw4f11klPgY4JjuP0SQly+qAEAAAAAI2L5/EQzAAAAAAAAAAAAAAAAAAAAAAAAAACoHARQA0DFI4QaACrEtr3bFAn4PQtXJCBta/B7FrUlYkr3zHF/L3X4sMcb95457nxQWtQAPKUMoPYQRF1eUoUPF/opMUeEEJczagAAAADAiMXjfs8AAAAAAAAAAAAAAAAAAAAAAAAAAABUAgKoAaAqEB8IABViyiFT9Mm/+j0L1yf/Kk3p8XsWtSVkS8/dLgVsf+cR6JtHyOd51CJqAJI/AdQegqjLQynChz2EEJcnagAAAADAiBmGZPPkDgAAAAAAAAAAAAAAAAAAAAAAAAAAGAYB1ABQNQJ+TwAAkJ24Hdf2sdKoLulgk3/zGNUlbR8rxYOWLKfMLgyq3OLzYopY/s4hYvUFUP6KUwg/UAO1rfWimJb7HP66fJbU2sb6+2XZMbYWn2OXJHzY40hSXwix5P7/X5ap1lf4PiM/UAPImW27T57zBDoAAACkgTd6mKZ7AwAAAAAAAAAAAAAAAAAAAAAAAAAASIcAagCoKqTHAUCFsExLt/1GmnO1dNCR5Md5uSPVG9Jtv5Esu68BJdFjxbXiaL9n4VpxtNRjxtQQ9zkNucZQA7WN9UfccHTX7NKGD3sGhxDfNdvWglfEl1GUGDWAEfGe1E/1ZHq5PeEPAACAwkh17pcYPN3QULq5AAAAAAAAAAAAAAAAAAAAAAAAAACAylJueRQEUAPAiBFCDQAVIm7Hdc35bvizJSnuwxwsueNfc760fGmc4MESarANfe8xR587b2T9GBp5YOX3HpMaooYke4Q9IRfUQG1j/WFJ+thL0hPTRxY+nG8NeCHE3QF3HlbcybMn5IsaQF6yeQKdJ9kBAABqh+O4b/qwLKmx0e/ZAAAAoEjidlyWOfIvEy1UPygt1h/UQG1j/UENAAAAAAAAAAAAAAAAAAAKggBqAKhKpt8TAABkxzItLXrRVFdIivt0bh43pK6QtGiNZMl0LxK4leQWN6Unjpaae/NfP0OSabs/89Xc684jbsr3/ya1dqMGavvG+nOLm9L9J0gNsZGFD4+kBhy5499/AjVADVADFXUDAAAAEpmmFAxyrggAAFClOsOdumDpBVq2btmI+lm2bpkuWHqBOsOdBZoZSoH1BzVQ21h/UAMAAAAAAAAAAAAAAAAAgILg84cAULUCfk8AAJC9VSccoq7g277OoSsorZoitb4W8nUetcaS9LH1MT1xZF/yZI7XaIakYEwKOFLMlqKBPAIsHSkclD62PiAryClEqVEDtY31R2INmI5k+1ADpiP1UAO+oQaQF9t2bx7HSf52R4KqAQAAqlcsNrQtFHLP/wafJwIAAKAqdIY71fZAm9p3tGvN9jWSpNZZrTn3s2zdMi1+dLFsx1bbA21aevFSNdc1F3q6KDDWH9RAbWP9QQ0AAAAAAAAAAAAAAAAAAAqiHDMonJyTkgAAaZh+TwAAkJ1ILKJ7ju6SIcnw6XzYcNwAw3vmSBHLGQit41b0W9yU7j/WVkuPVGcrp9RIL3Qy6EhTDxgKOu79nC71HHfclh53HnFTvv83qbUbNVDbN9afW2INBG03DLiUNWA67rjUQPXVQLZ1QA1U6G1IMWS74gAAAKhKieeDkYh/8wAAAEDBJQZPSpLt2Fr86GItW7csp34SgyclqX1Hu9oeaFNnuLPgc0bhsP6gBmob6w9qAAAAAAAAAAAAAAAAAABQEOWYSUEANQAUVMDvCQAAshMKhPRcz+WaY9yuvQ2SHMnJ8XzdkGT07ZfrabUXQH1Ij/TcTw2FYpJk59gL8mVJWvJQQG0XRLVmgqOOBilsatjkyMTQyfe9aWh6h6EtLdLThztSTIoGsqiFhPDZObsMLXkoICvuKPcqwkhQA7Ut3/U3HSkQZ/2rQaoaiJqSnaEGvIeGOwZImVczMXyYGvBPsWogZrkbUgNVynGSn1AffB8AAAAAAABAxRscPOnxAii/e/Z3s+pncPCkxwugXHrxUjXXNRds3iiM4dZfkqY2Tx22H9a/cmVTA9mgBipTNut//ITjh+2H9a9c2dRA0AwO2w81AAAAAAAAAAAAAAAAAAA1jgBqAKgJhFADQAWZ+qc1WrNOmnO1tLeh7/w4y/N2L4Ba3s9cgqgTAqjX/Jc09UBfqilKqrlHWvorU20X2lozcfgQWtORGqLu4+97XZre4YZFTt8ryZaefodkxKSolSHAMjF8dqehpQ+aao4QPu6XfGogGJcCTvoaCEakniA1UAnyWf+miGSb6dffC6Bl/StDqhpIF0Ls/d0PxSUrwzHAikrhgNKeFySFD1MDvsunBvqD6NPUQH1EOhgSNVCtBodO2/bQx02ztHMCAACAf6JRybLcN4OU4xtCAAAAkLN0wZMe27H1T0/8ky6ZdYnmTZ6Xtp8VG1foq099dUjwpIcAyvKUzfovfnSxrnv3dZo8anLafv6y9S/67/b/Zv0rULY1cOmxl+rkw05O28/jmx7XTU/fRA1UmGzX/8vv+7LG1I1J28+z257VL1/+JetfgbKtgStmX6FZh85K289TW57SLX+9hRoAAAAAAAAAAAAAAAAAgFpVjp83JIAaAIqCEGoAqCQvvaSpfUHQx14rHajLbrfEAOr+tlyCqA2pKewFUPe1xQmh9kNzj7T0fxy1XSytmSTta5Ai1tDtDEljwu46n7JNmt6R/Lh3/5kjpMaY1FGfuhZCXujkDmnpAw6hk2Ug1xqImtJpb6SvgWenuOtMDVSGXNc/EJdO3p5+/Z9+h9QYlvaz/hUj2xqQ3BqIG9J730xfA3+dKtXH3WNAKgFqoOzkUgOjw27QvBtAnfyYd/+FSW5QOTVQpbJ5Un1wMDUAAACqVzzunv9ZlhQK+T0bAAAAjNBwwZMe27H1sxd/Jkkpg6hXv7Vav3z5l8OORwBlecll/X/w5x/o74//+7Trf+9L9ypkZb5GYP3LTy414IWMp6uB+9feL9PI/KWV1EB5yWX9v/mnb+pjx30s7fr//MWfqy6Q+U1orH/5yaUGbn/udv3jCf+YtgZ+sfYXsow0Lzr3oQYAAAAAAAAAAAAAAAAAoEoRQA0ANSXzJwcAAOWlt1eSGxrbFJXMLM6TUwVQ9z/muI8Px3Tc8Z6dktDoONx8ujWHpaUPSCfsyrBojru+V62Wpu9z7w++Td8nzd/UVx8ZaumEXe54zWHWvVxuudTA/E2Za2DRc9RApd1yWf8v/Dnz+r/vdda/Em+51MCCdZlr4JK11EAl3rKuAfUFUGeoga/+kRqo6hsAAACQyDtPtG0pEvF7NgAAABiBbIMnPY4c/ezFn2n1W6uT2le/tVo/e/Fnsp3svqzOC6DsDHfmPGcUTq7rb8vOuP5Ols8ns/7lgxqobTn/DXCG+Rsg/gZUmoLXAOcBAAAAAAAAAAAAAAAAAFCbCKAGgJpDCDUAVBLH0bKZ0uLz3FDBQ7szB1FnCqDu38bJHERtOu44htxxl830djS4+XnLsMZJa2pkccumH9a8/G6FqoFs+6EGyutWwPU3sumH9S+/G8cAbjmtHTVQszcAAAAgkXee6Dj9X3gIAACAypNr8KRncBB1f/hspm8pTIEASn+x/qAGahvrD2oAAAAAAAAAAAAAAAAAAFAQ5ZhJQQA1ABQdIdQAUEG8AGq779zdctIHUacKEkwnXRC1F0Bt9fVjG4OCqOGLzpCjtoultROksT1SyB5Ya28tx4Slurh0x1xpS0vqfra0SE8e6W43JpxcM4bj9ju2xx2n7WJ3XJSHXGrgySMz18Bdc6mBSpPL+v/wvZnX/+l3SCHWv+LkUgMPz8xcA/9zHMeASpRtDYTi7v/PM9XAt/6OGgAAAABqRuKbQgihBgAAqEhxO66FDy7MOXjS4wVQ3v7c7XkFT3rad7Rr4YMLFbfjee2P/LD+oAZqG+sPagAAAAAAAAAAAAAAAAAAUBAEUANAzSKEGgAqRNyO6645AwHUHi+IOjFwOlMAdV2az34MDqI2BgVQe2xDumuOFJfjnrRzK+nNC51snzSw1onhk17oZH3MfdxRQvikM3Dzwme95a2PJYdPeqGTXk20T0oInyyD/w61fCt4DRjUQCXdcl5/g2NAtd0KfQywOQZU3I0a4JbTDQAAAEjHtv2eAQAAAPJgmZYWnbRIppH/W74cOfrf3f+bd/CkJJmGqUUnLZJlWnn3gdyx/qAGahvrD2oAAAAAAAAAAAAAAAAAADBiBFADQE0jhBoAKoRlWlryoDR7x9DHotZAQGCmAOoxYaml1/2ZSmIQtdHX72Czd0hLHhwaTo3i66xTUuikJzF8MjF00tMfPjnWvb9lbHL4rMcLnxwcOunpD5+sK9y/CbmhBmob6w9qANQAAAAAgIKxCAkCAACoVK2zWnXrubeOKIByJEzD1K3n3qrWWa2+jF/rWH9QA7WN9Qc1AAAAAAAAAAAAAAAAAADIGwHUAFDzAn5PAACQveawtPSB5PDB3oC0vy4hRDBDALUXSOj93J8qQNCRZLg/vMe97WfvcMdvDqs8LyaqWNxwtPDCoaGTHkPSIT3p908Mn9zWnLZMVB8bGlyZqH2StPBCaflSyXKogVKiBmob6w9qANQA8sKT7QAAAEjFMKQALxECAABUMi/4cfGji2U7dsnGJXiyPLD+oAZqG+sPagAAAAAAAAAAAAAAAAAAkLNyzIwjEwMASo5PmANAhUkMov7r1IEAai8D0DEkOW4QoScxgNqTKog6VT/e4+/emhBALZXnBUUVs2Ro0QuO1hzmyM7lP33Cto6krc3pH8+G6UiLXjBkych5X4xM0WogR9SAP/Je/wSsf2XjGACOA8gbT7oDAADA4z2naxhSXapvKAQAAEAlKXUAJcGT5YX1BzVQ21h/UAPIm21L8XhyW3f30DYAAABUvp6e5PO8eNx9PyGfBQIAAAAAAAAAAKg95fgaEVkYAOALQqgBoAI1h6V/fFF6alpycLQnMYg6VQC1JzGIOlM/3QF3vP4AakkyzQL8S5CL1o2STFuLz7HzDp8cCdORbn3MVOtGU2L5fUEN1DbWH9QAilIDfed72aAGKpDjJD/xPvi+xHk9AABAtbLThA9ZlnsOWI5vGgEAAEDOShVASfBkeWL9QQ3UNtYf1ABy0tsr7dnjBhHu3Zv82J/+5M+cAAAAUFqhkPT661JDg3TIIVIw6PeMAAAAAAAAAAAAUArl+FlCAqgBwDeEUANABVo2U7r+bGlMr7S7KfU2jiE1RtIHUHvqY1LElLpC6bcZ0+uO1xiVWtf3NQb4E+KH1k2SfhfX4g9ESxpAajrSrb8LqnWTxdmDz6iB2pbz+heoRlj/8sExADnVQAFrhBqoULY9NHxw8H1CqAEAAKpTqhDqQMB9w0g5vmkEAAAAeSt2ACXBk+WN9Qc1UNtYf1ADyEp3t7Rzp/s7H94CAACobY7jnh/29kpTpvg9GwAAAAAAAAAAABRbOX6WkPcwAYCviI4CgEpiGFp2jKPF50kxQ9rf4GYLpjqlNiT1BKWQnTmIujfgbpepn/0NUkuPtPg8t611vTiR91HrK6bkBLT47FhJAkhNR7r1iYBaN5hKXSUoNWqgtrH+oAaQdQ0UaLmogQo2+Jx98P1yfMEAAAAAxcXzugAAAFWpWAGUBE9WBtYf1EBtY/1BDWBYe/b4PQMAAACUG9uW9u71exYAAAAAAAAAAAAopnLMk+DzjQDgO9PvCQAAsrfshGB/AHVHgxTtO4qbg7PkJBl9bfvr3KDpVHoD7uPq237wJYPXb9R0x4sZbhD1spmF+NdgJFo3WLr1icCQtS+0gdBJq7gDIWfUQG1j/UENgBoAAAAAkDfHcT9UDAAAgKrSOqtVt557q0yjMG8HI3iysrD+oAZqG+sPagBpRSJSLOb3LAAAAFCOenv9ngEAAAAAAAAAAABqCQHUAFAW0sSSAgDKTdyO665TrCEB1B7TkWwjOYDa4wVNN0al+ZulJ4+UuoMD7R7DkWRIjoYGW3tB1C090l1zpAWvObKcMvymmxrihUEuPjsmuwhLQehk+aMGahvrD2oA1AAAAACAvPGGDQAAgKrUOqtVy19Zric2PTHivuYfOZ/gyQrD+oMaqG2sP6gBpGQNer3fNKVx4/yZCwAAAPwVGPQxUtOUDD4TBAAAAAAAAAAAUJXK7XUgPs8IAGWDEGoAqBCWaem2vadpziG/GxJA7RkcHJ1of530ydXSzU9K/zJf+v5pqbczHDfIOpWoKcVN6bbfiADqMlGs8ElCJysHNVDbWH9QA6AGAAAAAOSFN20AAABUpWXrlunJzU8WpK8nNz+pZeuWEUBZQVh/UAO1jfUHNYCUmpulUEiKRAbazDRvQAUAAEB1G3weOGaMP/MAAAAAAAAAAABAcRFADQDIgBBqAKgQcTuua2a/ocABKWgrbRB1OmPC0pLZ0o7R0pNHuvf31+XWR9CWArZ0zUcMLV9GEHW5aN0YkAxDiz8QLUj4pOlIt/4uqNaNVvpEcpQVaqC2sf6gBpC2BvJcP2qgihgGT8gDAAAgtXJ7IwkAAABGbNm6ZVr86GLZjl2Q/mzH1uJHF0sSAZQVgPUHNVDbWH9QA8ho1iypvd3vWQAAAKCcGIY0c6bfswAAAAAAAAAAAEChldvnBsm7AICyQwg1AFQIy7S0aFqr1rz4HY3tkfY1ZB9EPSYs1cck25CemOG21cfcn9kGUQdtaWyPZDnSohctWTIJJSwjrRsDWn60rSemxUfc1/zXrb4wywJMDCVDDdQ21h/UAKgBpDXciwTl9iICAAAASiMY9HsGAAAAKKBCB096CKCsDKw/qIHaxvqDGsCwpkxxf778shQO+zsXAAAA+G/UKOn446XmZr9nAgAAAAAAAAAAgEIqt+wIAqgBoCwRQg0AFaT1hEulm7+jxecp6yBqL4A6lWyDqBMDqG9dIbVusaQsA7BRGsuOjuvJAoROStKT0+JadnRcrRutgvSH0qAGahvrD2oA1AAAAACArJmmewMAAEBVKFbwpIcAyvLG+oMaqG2sP6gBZG3KFPfW2SmtXZv82GGHSRbvDwAAAKg6Bw9KHR0D90Mh6bjjpPp636YEAAAAAAAAAACAIiGAGgCQJUKoAaCSvPGGWjeYkuysgqgzBVB7hguiHhJAvV5SvcGHDsrIsqNiWjw/KjvlhaAjZbo+dDTkAtKWtPjsqGSaan2VU4VKMKIakKiBCjfy9e//H0msfyXiGID0NZDF+kvUQDVznOQn5+PxoS8eED4IAABQO7xzP8sqvzeVAAAAIC/FDp70EEBZnlh/UAO1jfUHNYC8NDVJLS3JbVOmSMGgL9MBAABAEXV2Jt8PhQigBgAAAAAAAAAAqEbl9llBAqgBoKyRJgUAleSZZyTHcYOgpYxB1NkEUHvSBVGnDKCW3PA6PnRQFpYdFdXis8KyC3wdaBvS4vlhyZBaX2Wty9mIayDNftRAZeAYAI4B4DiAjFIFTtt28uPl9oICAAAAiocvFgQAAKgqpQqe9BBAWV5Yf1ADtY31BzUAAAAAAAAAAAAAAAAAACi7vAgCqAGg7BFCDQCV5C9/cU/6hwmiziWA2jM4iDptALXkBtcRWOK7ZTMiWnxG5tBJx5AyXpZl2Nc2pMVnhSXTVOumUL7TRBFlVQPKXAOZHqMGylt2xwBDTuajgNIdCFj/8leQvwMZUAPlb/gayOIYYKQvEmqgCjiO+wUynsGh04RQAwAAAAAAABWp1MGTHgIoywPrD2qgtrH+oAYAAAAAAAAAAAAAAAAAAGWXFUEANQBUBEKoAaCSbN/u/swQRN0YzT2A2uPt1x3MEEAtcbJfBtzQyZ6MwaNSXwBxpm2GWUrbkBaf0SNJhE+WmaxrwMhcA8P9v5kaKE8FOwYMg/UvX4WqgeHqgxooX7n8Hcj4+DDjUAMAAAAAAAAAUF78Cp70EEDpL9Yf1EBtY/1BDQAAAAAAAAAAAAAAAAAACKAGAOSLEGoAqCQHDrg/vQuAQUHUh/SMfIj6mHsz0wVQ941bdhchNWTZjIgW/93woZOF0h8+aRiET5YJaqC2sf6gBkANICeJ5+2GMfQ8nvN6AACA2sR5IAAAQEWK23Hd9cJdIwqeNGTouPHHae3utXKG/arC1GzH1l0v3KUFxyyQZVp5zwW5Yf1BDdQ21h/UAAAAAAAAAAAAAAAAAACg7D4bSAA1AFQUQqgBoJLEYgO/G0b/yXdiEHUhwggzBlB7LD5A4odlR4a1+P09snO6EBzmIi2LvvrDJ01TrZvrchgbhZZ7DWSx/tRAxSj4+kuS0f8/abH+5aM4NcAxoJLkVANGlk/UUgPVyx70AfTBXyZjGJJplnZOAAAA8Mfg837OAwEAACqSZVpacuEStT3QpvYd7Tnvb8jQ5SdernmT52n1W6v1sxd/llcA5exJs7XkwiUET5YY6w9qoLax/qAGAAAAAAAAAAAAAAAAAKDGEUANABghQqgBoJIE0h+2W9dLy2dKT8wY+TDzNw8TQO040oEDIx8IOVn2zrgWvy8m21FWmaKSJCuLbQeHE6bbTNLi9x2QenrUuoEPEfkhrxrQMNs6jtwOh0cN+Cuv9Tey2DbLDll//xXnGCD+DlSQnGvAzGI7/g5UN9tOftJ+8H3DSP6iGwAAAFQvx5Hi8YEvIim3N5sAAAAga811zVp68dKcAygTgycl9f/82Ys/y2n82ZNma+nFS9Vc15zTfigM1h/UQG0rxvrnEkLM+vuPYwAAAAAAAAAAAAAAAAAA1Khy+0wgAdQAUJEIoQaASjJqlLRnT8qHls2UnjyyMMM8eaTbX8YgasLqSipuOLrrBFt2rteBiRmDksZ3SbubcssuTWQb0l0nxLRgnS3LKbOL0iqXdw0koAYqF+sPagB51cCghaYGatDgkPnBT+I7Dk/sAwAA1BLvOd1QyA2iBgAAQMXKNYBycPCkx7v/y5d/mdW4BE+Wh1zX35SphScuTLv+9750b1bjsv7lI58auOzEy9LWwP1r789qXGqgPOT8N8DI/Dfg5y/+PKtxWf/ykU8NXHZC+mPAL9b+IqtxqQEAAAAAAAAAAAAAAAAA8AkB1ACAAiGEGgAqyeTJ0uuvD2leNlNafJ5GFEyZyDbc/qQMQdRcBJSU5UhLHjTUdrGj9om5729Imr1dmnJA2jZaaj8sv/DJ2TvdeVi2lH98JfJBDdQ21h/UAKgB5CWbc3bO6wEAAGqLYUjxOF8yCMAXu3fv1rPPPqtNmzaps7NTwWBQ48aN07HHHqt58+YpGAz6PcUkO3bs0JYtW/Tmm29q165d6urqUjQaVXNzs8aMGaNp06Zpzpw5am4ubgDb9u3b9fzzz2v79u3q6OhQOBzWmDFj1NLSopkzZ+rEE09UKBQq6hwAlKdsAyhNw0wZPuqZN3meTpp0kr761FdlO3bKbSSCJ8tNLuv/+VM/r8mjJqd8fN7keWoKNem/2/+b9a8wudTAFbOv0MmHnZzy8XmT5+nocUfrpqdvogYqSC7r/5XTv6IxdWNSPj5v8jyZhqlfvvxL1r/C5FIDn577ac06dFbKx+dNnqcpzVN0y19voQYAAAAAAAAAAAAAAAAAoBwRQA0AKCBCqAGgkrznPdJf/uL+brsf+ih0ALUnqyBqlFRzxNDSB5Rz+GRi6KQ08LP9sNzGn71TWvqAoeZImV2U1hBqoLYVY/1zeUqH9fcfxwBQAwAAAABGzHHcWzjs90wA1JAHHnhAt9xyi5555hk5ad5oNnr0aF166aX653/+Z73zne8s8Qyljo4OPf3003rmmWf017/+VS+99JLefvvtYfczDEMnnHCCLr/8cl122WWaMGFCQeazZcsW3XHHHVqyZIleT/EFtYlCoZDOPPNMXXXVVbrgggsUCPA2EKCWDBdAaRqmvnv2d2Xb6UMlJem8o8/TmPoxWvzo4pQBlARPlqds1v/Wc2/V1OapeuXtV9L2896p79W8yfNY/wqUbQ30xnoVt+Np+/ngjA9q8ujJ1ECFyXb9j59wvP669a9p+zllyik6/R2ns/4VKNsaCJpBdfR2pO3nzOln6qhDjqIGAAAAAAAAAAAAAAAAAKDclFsANQCg4pl+TwAAkIP3vU8KhfrvFiuA2uMFUS+bmeJBL6yEW0lvzWFp6f9Is3dkt4amkkMnPVMOuO1Glgm0s3e44zaHWXu/b7nWgOFQA9V0y/kYMNz6Z9cN619GN44B3HKuAWWuAZMaqO4bAAAAkIptS/H04WMAUCjbtm3TGWecoUsuuURPP/200gVQS9KBAwd055136oQTTtA3v/nNjNsWw80336yPfOQjuvnmm/XUU09lFUAtSY7j6MUXX9SXvvQlzZgxQz/84Q8Vi8XynkckEtENN9ygmTNn6sYbbxw2gNrb57HHHtMll1yiefPmafXq1XmPD6AyeQGUsyfNTmr3gicXHLMgq35aZ7Xq1nNvlWkkv52M4MnyNtz6t85qzaof1r9yUQO1jfUHNQAAAAAAAAAAAAAAAAAAVaocA6jJsQCAihfwewIAgBy8611SQ4PU21v0AGqPF0QtSa3r+xpNszwvUGpEc0xa+qCjtotstU9Mv53pSP/worRjVOrHpxyQ6mPSxkMz19HsndLSB001xwy+vqJM5FID79oqjetJ/fiUA9KcHdLDM6mBSpLL+n/mb9LaCakf9wJp32iRHNa/ouRSA2dtloJ26senHJCmdUgrp3EMqDTZ1kC6AGrPlAPSJS9LPzyVGqha9qADQKon9DmvBwAAqE7DvZmD80AARbZhwwadccYZ2r59e077RSIRfe1rX9O6dev085//XJZlFWmGhXfw4EF98Ytf1OOPP65ly5apoaEhp/27u7t1/vnn66mnnsp7Du3t7Tr11FO1dOlStbZmFzYHoDp4AZRtD7SpfUd7UvDkwcjBrPvxgioXP7pYtmMTPFkhMq1/Llj/ykUN1DbWH9QAAAAAAAAAAAAAAAAAAFSZcvz8HwHUAFAVCKEGgEoyebJ02mla9upvUgZQO3LDBkdqcD9DgqjL8QKlxjRHDC39lZk2fNJ0pFt/a2pfyNaKo9P384790nWrTS3+kJ0yfHL2Tmnpr0w1R1jzcpNtDTx0tK2DofT9zNkunf0aNVBpsl3/UT122hBqyQ2g/dwq6UsfSh1Ay/qXr2xr4Jkptl5rSd/PrLelS9dzDKhE2dTA//2j9OT0zP2ctUWa3kkNAAAAADWnrs7vGQCoYnv27NHZZ5+dMoB67ty5+uhHP6rp06erp6dHGzZs0H333ae33norabtf/OIXmjBhgn70ox+VaNbJmpqadPLJJ+uYY47RUUcdpfHjx2v06NGKx+Pq7OzUhg0b9Oc//1mrVq2SM+hNdI899phaW1v16KOPysjhNbVLL700ZQB1MBjUueeeq1NPPVVTpkxRXV2d9u3bpxdffFGPPPKIXnvttaTto9Go2tra9NRTT+m0007L698PoDJ5AZQLH1yoRSctyjl40uPtd9cLd2nJhUsInqwQrD+ogdrG+oMaAAAAAAAAAAAAAAAAAIAqUY75bgRQA0DVIIQaACrMstCmlAHUtqSOBqkxKtXH8u+/NyB1B6WWHslM7D8xiHpj/v2jcBLDJ1+YKO1tkJqibg3c+ltTra8YuuuE4ftpfcWQ5IZPdgelrqB0SI90EqGTZS+bGngoQwi5hxqoTNms/xNHDN/PglekOta/ImVTA89MGb4fjgGVa7gaOHGHPWwItUQNAAAAADUnEJAaGvyeBYAq9qlPfUpvvPFGUtvo0aN17733asGCBUO2v/HGG3XjjTfq61//elL7LbfconPOOUfnnntuMacrSaqrq9NZZ52lc889V/Pnz9eJJ54oy7KG3e/VV1/VF77wBf36179Oan/sscf005/+VJ/61KeyGn/p0qV65JFHhrSff/75uv322zV58uSU+/34xz/WPffco89//vM6cOBAf3s0GtWnP/1prVmzRsFgMKs5AKgOzXXNWt62XJY5/DEsk9ZZrVpwzIIR94PSYv1BDdQ21h/UAAAAAAAAAAAAAAAAAABUOAKoAQBFRgg1AFSQZeuWafG0dWkDqKOmtL/ObcsniLo3MLB/R0OGIOrHHLW+YqbqAiXWHDX0099Isz9pK2K5NfDJ5w21bjAlQ+5tOIah1g2GVk1x9L33OnIMKWJKP/2NqeaomV0f8M2wNTAcQ9RABSvMMUBq3WCy/hWKYwAy1cCmMfbwHVAD1c00k5/QT/Xkfjm+CAEAAICRS3XuZ1luAHUg4P4OAEXwxBNP6MEHH0xqC4VC+v3vf6958+al3CcYDOqGG25QS0uLPv/5zyc9dt1112ndunUKBIr71oZvfOMbee131FFH6aGHHtK1116r2267Lemxm2++OesQ6h/+8IdD2i644AL96le/kmmmf03ONE0tWrRIRx99tObPn69oNNr/2Nq1a/X444/rwx/+cJb/GgDVolCBkQRPVibWH9RAbWP9QQ0AAAAAAAAAAAAAAAAAQIUqx+wHAqgBoOoQQg0AFSJux3XX49/JGEDtSRdEbTrS/M3Sk0dqSD+JAdSS21+6IOq7Tja0YNcYWU4ZXrTUmM6grU+c26mDdX0hk4Z0x8nSe/Y3qHVzndTQLYWiGXowpJZmLTsyrDtOPtgfMnmwTvrEhaZ+9WizGz6JsjVsDYQ6pVCGi/nGoNTSSA1UqGHXf1RYCvVm7qSlUcuOtFn/CjVsDdQfkEIZgojrLallFMeACpapBk7cYUqh7swdjG6UYkFqoFpFo1I8PnA/HpfshGOCYbgBhAAAAKg+XV3Jb/CwLKm+fuD3cnxDCoCq8M1vfnNI2w033JA2gDrR5z73OT3yyCN64okn+tteffVV3Xfffbr88ssLOs9CMgxD//7v/64VK1bo9ddf72/fsmWLVq9ePey/fdu2bXr22WeT2urr63XbbbdlDKBOdPrpp+vTn/60/uM//iOp/aGHHiKEGgAAAAAAAAAAAAAAAAAAAAAAoJyV4+f9CKAGgKpE0hAAVAjLtLTk6Qlqq5PaJ7ltqQKoPYODqE1H+vEKqXW9tGymdN15A0HUgwOoPamCqGfvkJY8ZMpq4k+I3zqDti4654BWHhZTzHTXWJI66hxddeZByTTdmzJcYBqGlh0V1VV/d1AddY4Mx906ZkorJ8d00XkH9KvHWgifLFNZ1cBwTzCYJjVQobJZ/1G9wxwDJD18VFzX/l0X61+Bsv87kOFJPYNjQCUbrga+tapJwx0DZFrUQDWLx4c+sZ943zD6jhMAAACoCYbhBlADQJGsXbtWK1euTGo79NBD9aUvfSnrPm666aakEGpJuu2228o6hFqS6urqdPHFF+sHP/hBUvvLL788bAj1K6+8ImfQ9fuZZ56pSZMm5TSHhQsXDgmhfuWVV3LqAwAAAAAAAAAAAAAAAAAAAAAAACVEADUAoIRIEAWACtK8+iUt3S61XSytmZQ+gNrjBUs3RgcCqKWBn9edJ3UHUwdQexKDqOfskJY+IDXHHenQhsL8o5CXzqCti87YpZWTooqmuIbsqHN01RkHdMmWBoVD6Ytk5yhbVx15QB2hoRd9UVNaOTmqi849oF/9YQLhk2Um2xo4dl9ALZH0a/fsZFu/mtZNDVSYbNf/mpdHZTwGbG+I6zNndGk/619xsq2Bd+8MyVL6tXtxoq1bTuLvQCXKpga+fGqXjtof0GE96UPmnjgyrptnUwNVyzSlaHTgfjye/LhhSKFQaecEAAAAfxBADaAE7r///iFtn/jEJxTK4dpz7ty5mjt3rp577rn+tlWrVmnLli2aPn16QeZZLDNmzBjStn379mH327Vr15C2WbNm5Tx+qn127tyZcz8AAAAAAAAAAAAAAAAAAAAAAAAoAQKoAQAlRoIUAFSSnTvVHJZ++rAUNzMHUHv210kL2weCpz2t6932TAHUnqjpjvfTh6XmsIaG16GkBkIne1OGTno6QrZ+flSXXh8VU3fAGXJ7fVRMf50QUUfITttH1JBWTurVRWfsUmcw/XYorVxq4K8TIhlrYMmMbmqgwuSy/rccfyDj+rePi6YMoPaw/uUplxp4ckpvxhp45PBejgEVKNsaOBBy1D4umrEGvnVSJzUAAAAAAAAK4re//e2QtosvvjjnflLtk6rvctPb2zukLZsA7lTb5BLc7amrG/qiX319fc79AAAAAAAAAAAAAAAAAAAAAAAAoMgIoAYA+CDg9wQAADmIRNRZJ31ygRSwpaA9fBD1mLC0ZLb07m3JQdTLZrrtY8LDB1EHbXe8Ty6Qlj4gNYcdKRwe+b8HOesM2rro/fu0cmIkY+ikpycgrWuJSfscje8ZKJbdDbbWtcQVMyVzmOu+qCGtnNiri96/Q796Yqyas0k/R9HkWgNRM3MNxE3JoAYqRq7r3xV0OAZUmVxrIGJxDKg2OdWAI8WG+Ttgm+52mVADFSwalWKxgfuxWPIXyhhG8uMAAACoXo7j3srxjSkAqkJXV5eef/75pLbGxkadfPLJOfd1+umnD2lbuXKlrrnmmrznVwrPPvvskLYZM2YMu9/06dOHtL355ps5j59qn2zGBwAAAAAAAAAAAAAAAAAAAAAAQAmV4+f8CKAGgJpACDUAVJDOoK22i6T2SZIhaWyPtK8hfRD1mLBUH5NsQ7ruPLetdb0bQH3deW57fV/mXLog6qDtjmPIHbft4r4g6p6eQv/zMIzOkKOLPnRQKw+Lp1xzR+46DRYzpXVj45LtaHy3od2NjtaNtRVLUzep+oma0srDIrpo/tv61SOj1Bwpw4vYGlCMGki1PTVQnjgGgGMAilEDqYLoqYEqMjh02rbdm8cweCEAAACgWg0+z7Nt94sFTVMKBv2ZE4Cq9sILL8hOvOaUNG/ePAUCub8l4ZRTTlEwGFQ0Gu1ve+6550Y8x2LauHGjli1bltRWX1+v97///cPue+KJJ2rcuHHas2dPf9uTTz6paDSqYA7H7BUrVgxpmz9/ftb7AwAAAAAAAAAAAAAAAAAAAAAAoMgIoAYA+IgQagCoEHE7roUXOmqfNNCWKYjaC6D2eEHUD82UnjzSve9JF0SdGEDtaZ8kLbxQWr68R5ZThhczVSpuOLr0IxGtnOKkDZ10DPeXtOGT42ztbpDeblTG8Nl0/URNaeWUuC49p1OPPBBi/UuMGqhtrD/yrYG+JmqgChTrODA4cJoaqDKDQ6dTPfE/KCAMAAAAVc62pUjE71kAqELr168f0nbUUUfl1VcoFNLUqVO1ZcuW/rZNmzYpFovlFWpdbJs3b9ZHPvIR9fb2JrV/4hOfUEtLy7D7W5alT3/607rxxhv723bs2KEf//jH+uIXv5jVHPbu3avvfOc7SW0tLS267LLLstofAAAAAAAAAAAAAAAAAAAAAAAARUYANQDAZ+X3CU0AQEqWaWnRC6bWTLKTAqQTg6jDpmRqaAC1xzakJ2ak7j8xiNqWVJcigFqSTEdatEaybMmNKURpONrTODRs3H2kLyxSw4dP7mpKDiDPtZ+oKe1plHvhyPKXGDVQ21h/5FcDictEDVS64hwHUgZQZ+iHGqgwqZ7sH9xWji9SAAAAoLgcRxoUlAoAI/Xaa68NaXvHO96Rd39HHHFEUgh1PB7XG2+8oSOPPDLvPgspHA5rzZo1uv/++3X77bcPCaCePn26brrppqz7+/KXv6z7779fmzdv7m+7/vrrNXbsWC1atCjjvlu3btVFF12k7du3J7X/+Mc/1ujRo7OeAwAAAACgRu3YIQWDfs8CAAAAhdbZ6fcMAAAAAAAAAAAAkKgcsx0IoAaAmkMINQBUkNbNIWlFrxafNzQ8sKlHCo+SzHjqAOps1MekA0HJttz+UgVQ37pCal0vKcTFQylZjvSvz1i66ryYOuoH2hPDIvvbMoRPZhM8mqmfll53HoSQlx41UNtYf1ADoAaQF8dJftJ/8H2vDQAAALXHtv2eAYAqs2PHjiFthx9+eN79pdp3586dJQ2h/t3vfqcvfelLSW2xWEwHDhzQW2+9pVgs9QtyRx99tB5//HGNGTMm67FGjRqlRx99VGeeeabeeustSW7w9pVXXql77rlHixYt0mmnnabJkyerrq5O+/bt00svvaRf//rXuuuuu9Q5KEjiW9/6li677LIc/8XF9ZOf/ET/+Z//WfRxNm3aVPQxAAAAAKCqHDzo9wwAAAAAAAAAAAAAAACA6kYANQCgTBBCDQCVpKlJret7JSkpiDoiae8o9/eYJe2tlw7pzb37vfXu/urrb9xBKdT3WFIAtURIiQ9a10tyTF31YVsd9anDIj1eaGQ2sunHkBs6eccjplpfkSTW3w/UQG3La/0dpU6hTdw2i35Y//LAMQDUAHLmnbN7T/6nehEgHi/dfAAAAOAfx3HPD01z4D4AFNDevXuHtI0aNSrv/lLtu2fPnrz7y0dHR4fa29uz3r6pqUlXX321vvGNb6ipqSnn8d75znfq+eef19VXX63ly5f3t69cuVIrV67Mqo/p06frxz/+sc4///ycxy+23bt36+WXX/Z7GgAAAAAAAAAAAAAAAAAAAAAAALWNzxcCQM0ihBoAKsnUqdKePf1B0IvPk3oNac+gz+GHA7kHUe+td/dLtKcviLp+cAC1NBBWgpJq3WhKK2xdeV5M+xoyb5suTDLX7RxDaumR7lgRcMdn6X1V6BpwpOFDiqmBssExABwDUIwa4DhQ5QY/+T/4fjl+YyYAAABGLtWbQBzH/RIS05QCvEQIoLC6urqGtDU0DPPkRQap9u3u7s67v2IyDENXXnmlbrzxRo0fP35EfU2cOFHLli3T888/r7vvvlt33nmnenp6ht1v7ty5uv7669Xa2qoAx3gAAAAAAAAAAAAAAAAAAAAAAIDyUG6ZDgRQA0BN49OHAFBJjjlGam+X5AZCvzlK+tyHU2+aSxB1qgBqz55R0i2PDAqgtiz3Bl/Mf9PUtM64OhocleJyzpA0rdPQ/DcDklVmF7Q1ihqobaw/qAEUsgayCaqmBiqcbQ+8KOE4hFADAADUing8+X7ilwo6jhQMlnY+AKpeNBod0lZfX593f6lCqCORSN79FZPjOLrjjjv08MMP6zOf+Yy+8IUvaPTo0Xn3t2nTJt1555164IEHsgqglqTnnntO//qv/6rXX39dV199tUaNGjX8TgAAAACA6jf49WDDkMaO9WcuAAAA8FeqL7Hk/YMAAAAAAAAAAADFVW6vxxBADQA1jxBqAKgkxx3nvvErFtO6cdKXPpR582yCqDMFUHu+9CHp7C3SrD19DaZZfhc3NaIz5KhtQUQ7RkktvVJHvYoaQGrIHWfHKKntoxEtfbhOzRHW3k/UQG1j/UENgBpATjhnBwAAQCLDGHhut7HR79kAqAHGCK5LU+3rlPiNbhdffPGQMbu7u9XR0aF169bpmWee0T333KMtW7ZIknbt2qWvf/3ruueee3T//ffr3e9+d07jRaNR/du//ZtuuukmxQd/mYCkxsZGTZgwQY2Njero6NCOHTtk23b/46+++qr+6Z/+Sbfccov++7//W2eddVYe/2oAAAAAQFUZ/AVRpilNmuTPXAAAAFBeUnwhKAAAAAAAAAAAAAqo3PIeCKAGAIgQagCoLCeeKBmG1o2TZl8jRa3hd8kURJ1NALXkjjP7Gqn9tr4g6lBICgZznj5GpjPkqO28LrUf6l7M1ccNtYSljjqnKOGThqSWsKH6vpyD9gmO2i6IaumKJsInfUIN1DbWH9QAqAHkLBpNvu84UkI4lST3Q8YAAACoPinCSyW5b1ypr5esLJ5cBoAcBFO8btTT05N3f6n2DYVCefdXKI2NjWpsbNTkyZM1f/58/d//+3/1n//5n7r++uvV1dUlSXrttdf0gQ98QI899phOPfXUrPqNRCK66KKL9Jvf/CapvaGhQVdeeaU+/vGP66STTpKVcPzev3+/fv/73+tHP/qR/vSnP/W3b926Veecc47uv/9+XXTRRQX4VwMAAAAAKpZpSi0tUkeH3zMBAABAuTnkEL9nAAAAAAAAAAAAUL0IoAYAlClCqAGgkhxxhNaNiWr21dkFUHtSBVFnG0DtSQqijpjld5FT5eKGo4Uf6lb7ocnhMfUxqVnS/rrCj9kcdvtP1H5oXAs/1K3lv2mS5VADpUQN1LZM6z9GUkcR1n8M619WqAFQA8iLYSSft/PCAAAAQG0zzYFzxLoiXEQAqGmNjY1D2godQt3U1JR3f8ViGIauvfZanXDCCfrQhz7UP++DBw+qra1NL774osaOHTtsP5/73OeGBFAfddRRWr58uY477riU+4wZM0atra1qbW3Vbbfdps9+9rOy+758KhaLaeHChZo5c2ba/Utt/PjxOvbYY4s+zqZNmxQOh4s+DgAAAABUjCOOkHp73RsAAAAgSWPGSBMn+j0LAAAAAAAAAACA6lRu2WzkTAAAEhBCDQAVZN0rz2j2NVLUzH3fxCDqXAOoPf1B1EsMzeqtz70D5M2StGijoTUT9stOuMaMyVZnqDhjdoakUNxRQAMFZzrSoo2jZNWx/qVGDdS2dOtvy1FPQDIkFfLpHkNST0Cqi0umBgZk/f1DDYAaQF4GvzgRjw9tM/O4uAAAAED5M83kN4dYlhToe1I4Hh/4HQAKZNy4cUPaDh48mHd/qfZNNUa5eP/736+vf/3ruv766/vbtm7dqh/84Af61re+lXHfP//5z/qv//qvpLZDDjlEjz/+uKZPn57V+Ndcc43C4bD+z//5P/1t4XBY11xzjf70pz/l8C8pnmuvvVbXXntt0cc57rjj9PLLLxd9HAAAAACoGMGgNGuW9PbbUleXFI36PSMAAAD4pa5Oam6WsvgCTQAAAAAAAAAAAOSBAGoAQJnjE+YAUCF6Ij06acP/ySuA2hMOSDtGjSygMGpJJy3sVMc99WqIWyPoCblqfc0Ne1x8mhs+GZOttxskp0jXnY4hvd0gHdpjKyBTpiPd+syY/nmg9KiB2jZ4/W056qhzRvR3IZOoKXXUOWoJuwG0rL//qAFQA8iZYbhhg/G43zMBAABAOTAMN5w6GJTCYb9nA6DKTJw4cUjb1q1b8+7vzTffzGqMcvK5z31O3/rWt3TgwIH+tv/3//6fvvnNb8rI8CbCH/zgB0PavvKVr2QdQO257rrrdPfdd+vFF1/sb1u5cqWef/55nXzyyTn1BQAAAACoMqYpTZjg9ywAAAAAAAAAAAAAAACA6kUANQCgAhBCDQAVoiHUoLM7J+iR0dtH1E8hLgvO3myooTsmKVaA3pCL1lcMKdqoa844qLcbixc+7PFCiCd02/rJH0apdbMhiYAaP1EDtc1b/2vPOKiOejcg1jEKc2xP5EiSMRBAe0ivo1tZ/7JADYAaQE5iMTeA2nHcm227NwAAANSGxDeJOM5ACLVhSNGof/MCUJVSBSa//vrreff3xhtvJN23LEtHHHFE3v2VQl1dnc466yw99NBD/W27d+/Wyy+/rOOOOy7lPrFYTI8//nhSm2EYuuyyy3Ie3zRNXXbZZfqnf/qnpPbHHnuMEGoAAAAAAAAAAAAAAAAAAAAAAIBiIYAaAFAhCKEGgAoRt+MyolHVxaSwj0fvuphkSIo7cVnFTr9FSqdsN9UdLH74sMcxpO6gOy6hheWBGqht89+wNKnb1M5GuyjBs57EANpJ3abmv2Gx/mWCGgA1gKwNDp0e/MKFF0IIAACA6mMYyed/3rmf47hfVMJ5IIACO+aYY4a0vfrqq3n1FYlE9Oabbya1zZgxQ4FA+b+9Ydq0aUPaNm/enDaEevPmzTp48GBS24wZMzR+/Pi8xn/Pe94zpO3FF1/Mqy8AAAAAAAAAAAAAAAAAAAAAAAAMgwBqAEAFKf9PaQIAJEmWaWnRtglaE3xbbzf4E0RdF5MO7ZEWvWDIihFA6IetTbbmLOxSV9ANAy/F5Z4hqSsozTwbCqEAAQAASURBVFnYqTU/a9LULgJq/EQN1LbOkKO2c3u0o9FRQ8xdl2JyJDXGpB2NjtrOPailv2lQc6TMnviqMdQAqAHkJB5PfoFg8H2JFxAAAACqVabzPL5cBkARzJkzR6Zpyk44xqxevVqxWCzn8OjVq1crGo0mtZ188skFmWex1dfXD2k7cOBA2u337NkzpC3fAOp0++7duzfv/gAAAAAAAAAAAAAAAAAAAAAAAJAGAdQAgApDCDUAVJDWXYdI6wwtPtfRzkYpZpVu7EDcDaC+dYXUukFSIxcbpbZ1lK05l3drb73kGKUJH5b6xjGkvfXSnMu7tOZnjZp6kBBiP1ADta0z5Kjt/F61j7fVE3CKHjzr6QpKQdtR+3hbbef3aOmv6wmg9Qk1AGoAOXOczC8SDPc4AAAAqlMgQBA1gIJramrSnDlz9Nxzz/W3dXV1ac2aNTrllFNy6uvpp58e0vb+979/xHMshV27dg1pO/TQQ9Nunyq0uqenJ+/xu7u7h7Q1Njbm3R8AAAAAAAAAAAAAAAAAAAAAAABSIIAaAFCBCKEGgEriOGp9xdCqKY6+d2pph46b0sJ2qXW9JMtwg0pQMhHT1tzLukoePuxJDCGee1mP3rxztEI2IcSlRA3UtrjhaOH5Xf3Bsx11pR3fHc8NoF14fljLf90kyymzJ8KqHDUAagB5i8cHfjeMofdN/p4DAADUBMOQLIvzPwBF9aEPfSgphFqSHnjggZxDqB944IGUfVeCVatWDWmbNGlS2u3Hjx8/pO3111+Xbdsy8zhmb968OasxAAAAAAAAAAAAAAAAAAAAAAAAkCcCqAEAFYoEUQCoJKGQlh3j6OcnSpYjxUp4HWI50s9nS+/ZJrVutqSGhtINDoUkfXxDXN87qavk4cMeL4T44xsaFapr8mkWtYsaqG2WpEUbTT0zuaPkwbOejjrJkLRo42hZ9fX+TKKGUQOgBpCXSCQ5dDoWS34xwzCkUKj08wIAAEDxRSLJ900zOYCaMGoARfCxj31M3/72t5Pa7r77bn3zm99UKMvrzzVr1ujZZ59Nanv3u9+t6dOnF2yexfLCCy9o3bp1SW0tLS2aNWtW2n0mTZqkUaNG6eDBg/1t+/bt06pVq3Tqqbl/I+2KFSuGtL3zne/MuR8AAAAAAAAAAAAAAAAAAAAAAACkQAA1AKCCEUINABVk2ZjtunaOo72Nkm24IYClOP035I63t1G69jxJj9tq7bBKMDISnbgvJNldkp/5MHbfPCzW3w/UQG3rDkr7g/4+6bM/6Kg7KNbfJ9QAqAHkzDQl205/3zDK7wUOAAAAFIZhpH/ziGVJwWBp5wOgJhx//PF63/vep6effrq/bffu3fr3f/93XX/99Vn18eUvf3lI2zXXXFOwORZLPB7XddddN6T9wx/+sIIZjrmBQEDz58/XQw89lNT+7W9/W4888khOc9iyZYvuvffeIe3nnHNOTv0AAAAAAAAAAAAAAAAAAAAAAAAghXLLZyCAGgCQI0KoAaBCxO24bp+6Q3sbpWhfAK3hSDKKG0RteOPIHXdvo3T7nJgW/D4uyymzC6IqFjFtXXtahxw/w4clOaZ07WkdumRznUK2z5OpMdRAbfPW3+//5Dbr7xtqANQA8uI4yS8a2PbQFxF4UQEAAKB6pXpDi2VJgYB7A4Ai+OpXv6oPfehDSW033HCDzj77bJ188skZ9/2P//gPPfbYY0ltRx55pP7hH/4hq7GnTZum119/Pantqaee0hlnnJFxv1tvvVUzZ87U2WefndU4g4XDYV1xxRVauXJlUrthGPrsZz877P5tbW1DQqhXrFihm2++Wf/yL/+S1Rz279+v1tZWRSKRpPZjjz1WJ5xwQlZ9AAAAAAAAAAAAAAAAAAAAAAAAIA0CqAEAVYBPmANABTFSXIQUM4g6MYA6eR6mNGqURAh1yViGoyO79mpNKDL8xkV2ZFdQVtNo1r/EqIHaxvqDGgA1gLz09EjR6MD9WCz5vmFI9fWlnxcAAACKr7vb/RISj2VJdXUD94PB0s8JQE0455xz9NGPfjQpVDkcDuvMM8/Uvffeq4985CND9olGo7r55pv1ta99bchjP/7xjxUs8jHrueee03XXXaf3vOc9uuyyy3TRRRdp4sSJw+4XjUb161//Wv/yL/+ijRs3Dnn8k5/8pN7znvcM209bW5u++93v6oUXXkhq//KXv6wNGzbopptuyjif3//+9/rUpz6lTZs2DXns5ptvHnZ8AAAAAAAAAAAAAAAAAAAAAAAAZFBuAdQAAOSJEGoAqBCWaelTr43Ti0fv055GKWoOPGY4xckAHBxAHbSlcd3Sp16wZJn8CSklS9IfnpqmU896TWtb/AufPK4jpD88NU2Wafk2h1pFDdQ21h/UALwaOP2s1/ViS9i3eZzYUac/PPUOaqBSWJYbPJ1o8IsbvNgBAABQnUwzOYQ68bwvFHIfB4Ai+elPf6rnnntOW7du7W/r7OzUggULNG/ePH30ox/V9OnT1dPTo40bN2rJkiXatm3bkH4++9nP6sMf/nDJ5r1q1SqtWrVKixcv1qxZszRnzhwde+yxOuSQQ9TS0iLDMNTZ2am33npLL7zwgv70pz9pz549Kfs688wz9cMf/jCrcU3T1B133KEzzjhDBw8eTHrs7rvv1n333adzzjlHp556qiZPnqyGhgZ1dHRo3bp1euKJJ/TSSy+l7PeKK65IGfoNAAAAAAAAAAAAAAAAAAAAAACALJVjJoPjDL8NAAApkCAKABWkdWNA2ih99jwlBVHbRbpGsQ3J7LvW8AKo/2OF1LrZkN5J8GDJWdJhkaBecSKK+XBdGnDc8WVZksP6+4IaqG2sP6iBmtfsWFr5xyN1+hmb9eKY0gdRn7i/Tiv/eKSaHctNxUb5M033/7Me25bi8fSPAwAAoHoZhhQIuLdyfNMLgKoyfvx4Pf744zrrrLO0Y8eOpMdWr16t1atXD9vHpZdeqh/96EdFmmFmtm1r7dq1Wrt2bV77X3DBBbrvvvvU0NCQ9T5z587V8uXLdcEFFwwJog6Hw3r44Yf18MMPZ93fhRdeqDvuuCPr7QEAAAAAAAAAAAAAAAAAAAAAADBIOX4WjwBqAMAIEEINAJWkt1etr7m/ekHU4SJnxtmGVBdPCKBeL6nOkA45pLgDI0lcjhaeuFZrR0d1aDSo3aGo4sPvVjCWpEOjQa1tiWrh+3Zq+YvHyVIZXiBXMWqgtrH+oAbgaZa0sn2sTnzXc3q9vnRB1O/ordPK9rlqbuZphIoSCEg9PQP3w+HkFzlMU2pqKv28AAAAUHz797tfQuIJBKRgcOB+Ob75BUBVmTVrlv72t7/pH/7hH/T0009nvV8wGNS//uu/6mtf+5pM0yziDAc0Feja+PDDD9e///u/66KLLspr//nz56u9vV2LFi3SH//4x7z6GDVqlL773e/qmmuuyWt/AAAAAAAAAAAAAAAAAAAAAAAAqDw/g0cANQBghEiPAoBKcuCApL4gaEl/n99n2HPnJARQS1I87oaWoGQsSYt2TtGa0RvUbdoq9aWgIylsOmq0TS3aOUVWIDjsPigsaqC2sf6gBpDoyXH7FDUdBRxDMaP41RBwDEVNR08eekCte8YXfTwUkGW5QdOJ9weHUJco0AsAAAA+SDz3G/yGlyDXdQCK7/DDD9ef/vQn/c///I9uueUW/eUvf5GT5s1uo0aN0iWXXKJ//ud/1syZM0s6z5/85Ce69tpr9eijj+qPf/yjnn32We3YsSOrfSdOnKgzzzxTl19+uT74wQ/Kskb27bFHHnmk/vCHP2jlypW6/fbb9eijj2rv3r0Z97EsSyeeeKKuuOIKXXHFFWppaRnRHAAAAAAAAAAAAAAAAAAAAAAAAGoaAdQAgCpFgigAVJJYrP/Xn50ohUt0FA8H3PH6Q6i5GPFF657xWjV6v75/+BuSJFOSXYJxvVjC/YGYPvnmZMInfUQN1DbWH9QAJGnZuN1afNQGOZIOjQX1diBa1CDqgGPo0FhQjqTFR22QJGoAAAAAqHSmKYVCfs8CQI0wDEOXXnqpLr30Uu3atUt/+9vftHnzZnV2dioQCOjQQw/VrFmzdMoppyg0wmPTa6+9lve+xx57rI499lh98YtflCRt375dmzZt0muvvaa9e/eqq6tLjuNo9OjRGjNmjCZMmKDZs2frsMMOG9Gc0zn99NN1+umnS5JeffVVvfjii9qzZ486OjoUiUTU3NyslpYWTZs2TSeffLKampqKMg8AAAAAAAAAAAAAAAAAAAAAAICaQgA1AKCKEUINABWo9VJp+azSjrl8ljvusl+WdlwMWDZut5ZM3KkxsYD2B9xA8mIHkJoJv4+JBbRk4k6958AYwid9Qg3UNtYf1AC8AGpb7pPDhlPcIGovgNrr2pZDEDUAAABQ6SzLDaAuxzfCAKh6EyZM0Pnnn+/3NLJy2GGH6bDDDtP73vc+v6eio446SkcddZTf0wAAAAAAAAAAAAAAAAAAAAAAAKhu5fi5OwKoAQAFRAg1AFQS01Rrm7R8pj/D9wdRLzOlhgZ/JlGj4nJ015Sdsg2p3rGkmPoDSEthTCygeseSbUh3TdmpBd2Hy1IZXjBXMWqgtmVaf0NSMZ4qSlxd1t9/1AASayBxdQxJo+KWOorwN2FU3JIhI6kYbFEDFaW3V4rHB+47jhQMDty3LKmurvTzAgAAQPFZVvIbXkxTqq932wEAAAAAAAAAAAAAAAAAAAAAAAAAwAACqAEANcD0ewIAgOy1LujxLYDas3yW1HpxfPgNUVCWDC3ZdJJmdzdLcgNIx8QCsos8rq2B4FFJmt3drCWbTiJ00gfUQG1Lt/6OihM+rL5+HbH+5YIawOAa8PQacXUGYgW/uDcldQZi6jWSz/uoAQAAAKCCGMbAzbIIoAYAAAAAAAAAAAAAAAAAAAAAAAAAYDACqAEANSLg9wQAANnpifRoxTvCfk9DkrRihq2ePx9UgwgtKaVmSUvXzlLbrP9Ve9NBRcxixw+7IoatetvU7K5RWrpulprjMUmxkoyNZNRAbRu8/iXNf3Uc1r8MUAMYXAO9pq39AXctCv3UsSO3xPYHYlJM/B2oVOGwe/NEo+7NY9vJjwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQKAqgBADXE9HsCAIDsNIQa9L3YWSPuxyzAtcX3/tZCALVPmuMBLV13vOptU11WaQKIuyw3gHjpuuPVHOf7K/xGDdQ2b/0nRULaH4gVPYPYC6CdFAmx/mWCGsDgGpDcwOhihFB7fVIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqCoEUAMAagwh1ABQIeJ2XE8cHtG4g/n3YTpSXXxkQdTjDkpPzHAUL3jUIbL17cNf0+v1vSUd8/X6Xn378NdKOibSowZq25Mt+7QzFFHQMYp+JHYkBR1DO0MRPdmyr8ijIVvUAAbXwEjqINPT4V7f1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqBgHUAIAaFPB7AgCA7FimpSWf+I3arp2gZxXWnlG57W860piwVB+TegPS/jrJzvEaaNxB6ZRdhpbsmScryJ8QP1x/xCv6/uQ3JLmhkaW4ZPTK5PuHvyFZpr7zxjElGBXpUAO1bdkhO7V42gY5hqEG21LYihV1PEdSg23JMQwtPmqDFLDUundiUcdEZtQAcqmBbP9OZNqOGqhwwaBkWQP3TTP5vmUl3wcAAED1MIzkN8EMfkNMOb5BBgAAAAAAAAAAAAAAAAAAAAAAAACAYivHz9cRQA0AKAESRAGggjTXNWvp5M+pbct39ayUdRB1YgC1NPAzlyDqcQelU3ZIS9uPUvMxLblOHQVw/cSX9P3xr0lyAyFLdcnojWNI+v7k16RgSN/ZeUKJRkciaqC2LWvepsWTX5EtQ71GXJ1WTKYku4hjmpI6rZgMGap3LC0+8hWpvl6tnVOKOCrSoQaQSw0Yyi2EWmm2pQYqXDgsxQYFlUejA78Hg1J9fWnnBAAAgNKwLPdLSDyD3xTDl5EAAAAAAAAAAAAAAAAAAAAAAAAAAGoNAdQAgBpmDr8JAKCcNP/LDVr6SKOOOKisUgUHB1B76mNuu5nNtYcjHXFAWvqgqeYZx+YzbYxQRLbuGfu6pNKGD3sSx7xn7OuKFDXyFKlQA7UtLkd3jX1Nthz1GnHttwYCRIv1tFZiv/utqHqNuOy+ecRLXoGgBpCpBgZf2HsB1Klkah/8WGK/1AAAAABQZUIhv2cAAAAAAAAAAAAAAAAAAAAAAAAAAEDpEEANAKhxhFADQKVpbNSTX7xQO5ukOlsZk2jTBVB7sgqidtxxdo6Snjx9qhQIjGT2yFNIpp579Sw12QHfIh8dSU12QM+9epZCnEKUHDVQ2ywZWvLmuzQpVpcUPFvMQPLBfe+3opoUq9OSN98lq2ixx0iHGkC6GvB4R+VMAdSmI1mOkfbcL3HfVEd5agAAAACoEnV1UjDo9ywAAAAAAAAAAAAAAAAAAAAAAAAAAKhdBFADAEqMJFEAqDDL1i3T4oan5AQDGtsT074GKWxqSNrgcAHUHu/x/XWSPThLsC+AemyP5BjS4hO3Sn8+oNbXGgr1z0EOnp3Wo8bDYzrY6K5HqRmO1NgT07NvrtJUasAX1EBte3Jaj3a8o1PBuBQ1+wKCi1wHTt//GJKCtrQj3qknt63k74BPqAEMroHBhjQl1Idpe4877k9Hsr0dnORd0pUVNVCBIhEplnBBEI8n3zcMaffu0s8LAAAAxdfdLdn2wP143D3/O+QQqbnZv3kBAAAAAAAAAAAAAAAAAAAAAAAAAFBqhg+BTZkQQA0A8AEh1ABQQZatW6bFjy6W7djSuENk7NqtsT3OkCDqbAOoPSmDqBMCqA1JMk3Zkhaful9ypNbX6gv6b0NmccPRXcd0yzRMHdpj6+3GpLzIojMkHdojmYapu47p1oLX6mT5kYJcw6iB2uatvwxDLWFpT72jWIoA2uEYyr1uHEOybKklbEiGwfr7hBrA4BroqHNSBlGnMhBALTVFDXUF+4KobcnJso8gNVCZBr/owIsQAAAAtctx3C8p2bFD6u2Vjj7a7xkBAAAAAAAAAAAAAAAAAAAAAAAAAFB8BFADACBpIIcKAFDm4nZcd71wlxtALUmmJY0bJ0NuUHSor9nIEEBtOtLZm9yfg9XH3P2MvsdCiQHUCRdQtiHdNbNbcYOLmFKyHENLnmzR7D1BxSwjr/Rhw3HXPq+lc6SYZWj2nqCWPNlC6KQPqIHalrj+ESvhCwNyYDoDt1zZhhSxxPr7iBpAYg2YMtQSNhS0k7exDTc0PFFiAPXELlOTD5qa2OW2mJKaosnbO8bQ+vICqE3xdwAAAACoCh0d0q5dfs8CAAAAAAAAAAAAAAAAAAAAAAAAAIDiIoAaAIB+hFADQIWwTEtLLlyi2ZNmDzSapmRZWe1vOtKPV0j3LHd/5hRAmXARRfCgf5qjpv5xY726A44M5RYkbDh9geJS3vt2Bxz948Z6NUc5ffALNVDbEtdfGv44bmhgzc1B65+473BHc29b1t9/+dSAhxqoDs1RU0t/lzqI2guOdjQQRN0USQ6gbo64DzRHjP4g6pBtaExfu5PwHQdef4MDqJf+roUaAAAAAKrBzp1+zwAAAAAAAAAAAAAAAAAAAAAAAAAAgOIhgBoAgCQBvycAAMhec12zll68VG0PtKl9+wvS3r1y4nHta5Bi5kBI5P4692d9zP3pBVC3rnfvez+vO28gYLA34O7nhdPGTGlfgzS2RzJsWzIMzd5taulvgmqOdJfqn4wEy46K6vp3hTW219C+ekdRU5IzEDQ5mNn3mGmnDiq1DSneVzd2mj688OGgLY3tNXT9uzrVeDCs1leDhfpnIQf51IBtSFaGGrBNd52pgfKXav3T/f/XO5Y7kgJO+vWP9a2/EoJnE3n7sf7lIZ8a0DDHgDg1UHGaJS19KKi282NqH+9oTK+0uzF5G0dSY8w9F4xY0jvfliZ02UnbTJZ0SLe0Y7SjgGMoYkpdwaH9jOl1g6xn7zY4D6xEsVjyixC27d48hpF8HwAAANVj8LmgOejLZHp7SzsfAAAAAAAAAAAAAAAAAAAAAAAAAABKhQBqAACGIIQaACpMfxD1DcfqhVhM+xrkBtEO4gVRN0aTA6g9iUHU3cGB7RNFE4KoT9rhaOmvg2qOxAv7D0JW4oaju46LyJYjw5HG9kp7691gyXQcQ2qIDoSTGpLGd0m7m9xQSctxb9Fh+gjG3fEMx5Et6a7jIlrwimSlSz5GUeRbA6H4QIhsqhow41JPhixZaqA85Lr+jiQZUlPEDZruu5u0/mZfwHjMTB0+LLnHjxDrXxbyrYFQvC9kWqlrIGBL4QA1UGmaY9LS5UFddEFEKw8funqGI/UE3PDwOTsMTTmQeq1aItLH/1f69mm2egJ94fWDNt1fL53+pqGlyzkPrEiDQ6cdJ/mFCV6kAAAAqF6c+wEAAAAAAAAAAAAAAAAAAAAAAAAAahEB1AAApJQithQAUO6a//RX/fT27YqZqQOoPfvrpIXtQwOoPa3r3cdTBVB7oqYbUPrTh6TmHjv9higqyzG05Nchzd6d359uQ9LsnYZO2W5q9k5D+V4iz95tasmvQwSP+oAaqG2sP6gBpOY+yWwoIWy8L2Beyv056HT9pI8pBwAAAFCxghm+lQwAAAAAAAAAAAAAAAAAAAAAAAAAgEpEADUAAGkRQo2S2L17t1asWKFbb71V3/72t/Xd735Xd955p/7yl78oGo36PT2gskSj6vz0x/XJD9uybCmYIRd6TFhaMltaNjP148tmuo+PCafvI2hLli19coHUaUS4oPFRc8TQ0odCOu5tU/vq3XBwM81yeCGSPUHJNtzg0SkH3IvjKQcMzd5pyDakqDU4ZDKZ6bjj7KuXjnvb1NKHQmqOlNlFdg3JpwaiVuYa6AlSA5Uin/XvHu4YYLL+lSSfGogMcwwIB6iBStQZctT20YjWHuqopcc9X/PW3FudMWGpzpbaJzraNjp1oWwb7eg777VVFxs4H0zsJ2hLLT3S2kPd8TpDnAcCAAAAFc8wCKAGAAAAAAAAAAAAAAAAAAAAAAAAAFQfAqgBAMgo4PcEUN0eeOAB3XLLLXrmmWfkpDkRGj16tC699FL98z//s975zneWeIZDOY6jjRs36rnnntPq1au1evVqrVmzRgcOHEja7oorrtA999wzorG+/vWv6xvf+MaI+sgk3X9zVLbOB3+htlPfUvsk95sEWnqkjgY3SDTRmLBUH3ODJ687z21rXT/w+LKZbrttuNtJ0v665D684EFTUvskqe1iaemjlprNhmL98zCcoC1ZMUkD6eOm466jxwuPTGKaUiChSExbUlxO4vaGlLjbkGBTy5QaG6Ug32HhqxxroH8Z09RA/z7UQGXIdf29dta/ehT470D/PtRAxegM2mr70AG1HypJpns+GHbUUef0nw+OiRiqtw3FDUeO4ah9oiOZpqZ0DazdtiZb7eNtNUUNWaaheltSxNH+kDMQQB02ZJpucbVPlNoujGvpb0erefCJJ8pXLObePPG4ZCd8i41hSAGeGgIAAKhKieeBnkCg/N5EAwAAAAAAAAAAAAAAAAAAAAAAAADASJXbZ+fIAAQAlCGShlAU27Zt08KFC/XHP/5x2G0PHDigO++8Uz//+c/11a9+VV/96ldllPhE7sEHH9SqVau0evVqPf/889q/f39Jxwey1RnuVNtTn1H7pIG2VEHUXgC1Z3AQdWIAtWdwEHViALWnfZLU9uFuLX1hippjVqH/eRhGZyCutlO3aW2L1BK11BGyFe1LCDXlxpEafTf1rW1DzJBtSO0TbGlfUFN6AtrWEFP72JhMGQrZjmJ9i+yVg9PXn9cQtA21RE2tHS+1LQhr6Z9Zf7/kUwMhWzJlpK2BhpjUG3D7oAbKWz7r3xQzFMtwDAjajuIcAypGXseAuGRkOAbUxR1F+paTGih/Xg20t/SvktT3W0vUUUfIVmPMUL1juo2GI8mWk+Y44MhwA8r7EuvrHUlRW90BRy1Rsz+A2tM+waEGKk1PjxQOD9yPRpPDCA1Dqq8v/bwAAABQfD09yV9AYprl9yYaAAAAAAAAAAAAAAAAAAAAAAAAAABGqtw+O0cANQCgTJnDbwLkZsOGDTrllFOyCqBOFIlE9LWvfU0LFy5UPB4v0uxSW7Rokb73ve/pqaeeqpoA6ve+971+TwEFFrfjWnjfRWof1TXkMS+I2rSHBlB7vCDqj18wNIDaUx9z9zdTBFB72ic4WvjurYobXOSUUtxwtPA9b6m9xQ0RNGWoJWIqmLCQpgYCRCVpTMRUsC9U0pHUPjasZw/pVfvYsLzVsxxDYyIDK20oed2DtjuO2ddze0tYC9/zFuvvg3xrwBqmBoLUQEXId/1D9vDHgGbWvyLkWwMBjgFVY3ANDGbK0NiIqXo79WV+uhoYrN42NTZhzQejBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAWCKAGACBrAb8ngOqyZ88enX322dq+ffuQx+bOnauPfvSjmj59unp6erRhwwbdd999euutt5K2+8UvfqEJEyboRz/6UYlm7Z9JkyZp9uzZI+6nvb19SNtVV1014n5RXizT0qJdU7TGSR0gHZMUs6RuJ3UIteTu98SMzON0B9x+YpJCKR43HWnRi4H+YFuUhuUYWrRljNaM7e1ffy+AtCNkK2omX3iO6Quh7Lbs/jZH0q76oSH/9bYpRaT9ITupfXDwqNS3/lvGsP4+yLcGeq2BNacGKle+6x82szkGGDIiJutf5vKtgYjJMaBapKqBwYw0wdGedDWQSz/UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxHADUAADkhhBoF9alPfUpvvPFGUtvo0aN17733asGCBUO2v/HGG3XjjTfq61//elL7LbfconPOOUfnnntuMac7rHHjxmnu3LkaO3asli5dWvD+r776al199dUj6mPVqlV673vfm9Q2evRotbW1jahflKfW32yS3pYWn5ccRB2RtGeU+3s4IO2tlw7pzb3/vfXu/urrb9zB5CBq05FuXSG1vh6VpuX5j0DeWrc1S5IWn7wzYwCpFzyai8EBpOmCR299fmL/PFB61EBtY/1BDSBVDZQSNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfEUANAEDOCKFGwTzxxBN68MEHk9pCoZB+//vfa968eSn3CQaDuuGGG9TS0qLPf/7zSY9dd911WrdunQKB0pTpmDFjdPLJJ2vevHk65ZRTNG/ePE2fPl2S9Ic//KEoIdSFcMcddwxpa2trU1NTkw+zQdG98opad7u/ekHUiQHUnnyCqBMDqD2JQdT9AdTrJVmREfwjMBLDBZA2xoycg0c9XgBpd8AheLSMUQO1jfUHNQC/gqipAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPiOAGoAAPJCCDUK5pvf/OaQthtuuCFtAHWiz33uc3rkkUf0xBNP9Le9+uqruu+++3T55ZcXdJ6prFmzRtOmTZNRbieVwzh48GDKcOyrrrrKh9mgJPbvl9QXBC3p0+dJe0an3jSXIOpUAdSePaOk8Qek21cMjCvbzm3eKKh0AaRjI6YMjew4Vm+bqos4Sf0QOll+qIHaxvqDGkCpg6ipAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPiuwrICAQAoJ6bfE0B1WLt2rVauXJnUduihh+pLX/pS1n3cdNNNQ9puu+22Ec8tG9OnT6+4AGpJ+uUvf6mDBw8mtR1//PF697vf7dOMUHSxWP+vM3dLe5syb+4FUWeSKYC6f5smd7x+fOuO71q3NevW5yfKTFiKkQaPpuqH0MnyRQ3UNtYf1ABS1UAxUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwXTlmBZLHBgCoIIRQoyDuv//+IW2f+MQnFAqFsu5j7ty5mjt3blLbqlWrtGXLlhHPr1rdcccdQ9quvPJKH2aCkum72Fg3Tpp9jRTP4iieKYg6mwBqyR1n9jXuuCgfxQ6fJHSy/FEDtY31BzUAagAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVjwBqAABGjBBqFMRvf/vbIW0XX3xxzv2k2idV35DWrVunv/zlL0ltdXV1uuyyy3yaEUrCcfoDqKNW9rulCqLONoDaE7UIoi5HieGTtuyC9GnLJnSyglADtS1x/R0V5kkpRw7rX0GoARQriJoaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO8IoAYAoCByiB8FUuvq6tLzzz+f1NbY2KiTTz45575OP/30IW0rV67UNddck/f8qtWdd945pO2CCy7QuHEkBFezfAKoPV4Q9SG9uQdQe7wg6vbbpFkHDuTeAYqidb2ht+OjdPXpHWqI2WqODnzHhGM5so30F6uGI8keCC7uDNrqCUj/tbJZrRsNSaxzJchUA7YcORmeQ7ElaqDCta431B0Zravev08NMUP18YQFNxxpuGBie2CbXstRT8DRHX8aq9bNrH+lyFgDkjLVgOMYSccAaqAyta43pJ4xWnxqh+zE9TakYY8BjtN3HBhgytCtf25R6+vUQMULh6VYbOB+PJ58HwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFwRQA0AQMEQQo0Re+GFF2QnBNdJ0rx58xQI5F5ep5xyioLBoKLRaH/bc889N+I5VptoNKqf//znQ9qvvPJKH2aDUumJ9OikPAOoPeGAtGPUsFGEGUUt6aRrpI57ImqIj2AyKJitjTH967v2yzakrqAkDYQQDxs/m3B93Rm0+/aX/vVd+3XuG0FN7eZUoRJkrAEjcw04cuQVAjVQmTqDtu49qluGpP0hR4qoP4TYkWQP+zyaWwO9lqP9IUd1tnTvUd36yGuhpEBzlK9MNWDLyVgDjjFwDKAGKlvr5pAePCKoJ6dGRtzXmVuDat0ckhQf+cTgL9tOfvFi8H3D4MUNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQfgigBgCgoEgUw4itX79+SNtRRx2VV1+hUEhTp05Natu0aZNisVhe/VWrhx9+WLt27UpqmzZtmj7wgQ/4NCOUQkOoQWduGXk/hbh8OXOLCKAuE1sbY5pz8dvaUz+wsl1BN5A0F4nhw5K0p97RnIvf1tZGjr/ljhqobZ1BW20f6NCqiRH1WG7o+P6Qo14rt6O9Fz7sGFKPJa2aGFHbBzpyriOUHjUAz5IZPXpgRm/Oaz9Yr+XogRm9WjKjp0AzAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHJAADUAAAUX8HsCqHyvvfbakLZ3vOMdefd3xBFHaMuWgaTdeDyuN954Q0ceeWTefVabO++8c0jbJz7xCRnleMKMgonEInp+st+zcD1/mBSJhxWy+S4DP21tjGvOxR3aU+8MCRd3w4Tt4b9twhkaPtzX3B9CvOYXLZraTeh4OcqmBuRIGubPAzVQmTqDttrmH9CqCTF1hNwKcCSpL4RYkb4Nh3nuqtdy1Blyw4u9TTtCjlZNiKht/l4t/e1oNUc53pejgtSAkxxATQ1UpiXv7NWVZxxU1JQifWtfHzeU1dePOAN/KLxakKQrz+iQ7JgWbqgv2rxRAvG4lPilTrbt3hLxpU8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBclGOeHgHUAIAqQAg1RmzHjh1D2g4//PC8+0u1786dOwmh7rN161Y99thjSW2maWrRokU+zWh4P/nJT/Sf//mfRR9n06ZNRR/DT5ZpqTliaHej/xcizWHJqmtwE0vhi62NMc1p3ZMyfNjTFZSC8czxk3FDigRTP9YfQvz3HVqzbKKmdnPaUE6yrQHTVsYw8l5LiqXZgBooX51BW21n7UkKH/YkhhDXxzIfqm1pSAC1p6PO0apJMbWd16Wlvx9HCHGZybYGrGFOG6Km1BNwqIEKtuTILl35fjeA2uOFkAdsQ/ZwQdSGkRRG7oma0pVnHZQCQS3c3FSk2aPowuHkF1diseQXNgxDCqY5GQQAAEBlC4eHnvslKsc34QAAAAAAAAAAAAAAAAAAAAAAAAAAals5fvaNAGoAQJUgSRAjtnfv3iFto0aNyru/VPvu2bMn7/6qzd133y3btpPazjnnHE2dOtWnGQ1v9+7devnll/2eRsWzTEvf+FuTrvjAQcV9zIC0bOkbf5Qsi7A6v2xtiGnOR3dpT1368GFP1JIMR7JSPBbX8Dni/SHEF+7Smocma2oPpw7lIJcasE33OQxqoHp0Bm21/d0erRofGRI+7PFCiHsyBJHbkuKmZCh9WH1HyNGqCRG1zd+npX8cTwhxmcilBqKG+7c7bQ1Y1EAlWzL9gK48bZ9SLcv+kKNRUbkLnIkh9Qak/cGhVRA1pSvfv0+yTC3cMrogc0aJDQ6ddpyhQYRWqrMEAAAAVDzDSH6zzeA33oRCpZ0PAAAAAAAAAAAAAAAAAAAAAAAAAACZEEANAEBRkSKIEevq6hrS1tDQkHd/qfbt7u7Ou79q4jiO7r777iHtV155pQ+zQanF7bjunRUZNkew2AxJ954ofez3vbKGS69FwW1tjGnOgrezCh/2OIYUt5NDiOOSnCxzRB1Je+pszVmwTWseOFRTuzl98BM1UNs6g7baTu/IGD7sceQes+OmpEEhxF4AtbddJh0hR6vG96rt9J1a+rsWQoh9lmsNSNRAtVoyo0dXntaRFEBtG+7/742+RT0YdGQ6qUPIPWHDVlfCd4s4hlsTZl8fUVO68rQ9UjSuhZvyv86DT6JRKR4fuB+LJd83DLcNAAAA1SfTG1ssS2psLN1cAAAAAAAAAAAAAAAAAAAAAAAAAADIhABqAACKjgRBjFg0Gh3SVl9fn3d/qUKoI5FI3v1Vk9///vfasmVLUtuECRO0YMECn2aEUtvd4Mj2+TrJNqTdjZLq6tyUQpTM1oaY5nx0Z07hwx7HlOKOG0IcV+5L50jaU+9oziV7tOahyZrawymEH6iB2tYZtNX2d7uzCh/2pAohTgwfzlZHyNGqiRG1fbBTS/84nhBin+RTAx5qoLosmX4gZQC11Pf/e6MviNqQYoYUsFMHUduSukLqP1h4AdRef0lB1Gd0SEFLC7eMLvw/CMXjOO4LLbbt3hwn+UUOx5G43gYAAKhO3vlf4v1oVAoGpfp6KRTyb24AAAAAAAAAAAAAAAAAAAAAAAAAAHgIoAYAoCRID0RRGCM4mUu1r8OJmCTpjjvuGNJ2+eWXKxgM+jAblJplWvpKe7MuO32PGxbok4ao9JVnTFl1QwPjUTwR09bcj7ypPXV2zuHDHseQYiOYgyNpT52tuQu2681fz1DIJoC0lKiB2hY3HC1831atGh9WRzC/Coibku3k//0BHSFHqyaEtfCMPVr+9FRZfBFBSVED8Cw5Yr+ufPfe5ADqQdv0B1H33Y+ZQ4Oo7b52s29bRxry98U2BvaJWtKV79srBUNa+MaYAv1rUHSO44YNxvrOAAxj6IsvXG8DAABUJ8NIPtczDMnsO8N3HMmy/JkXAAAAAAAAAAAAAAAAAAAAAAAAAAAeAqgBACgZQqgxYqkCkHt6evLuL9W+oZCPibtlYu/evVq2bNmQ9iuvvNKH2cAv3SFTEZ+P3JGA1B00pIZR/k6kxoQknbJ/lB6p3+/rPJy+eYQam32dRy2iBmqbJWlGb5N+E+waUT8jzQzuCNqa0dskq2n0yDpCzqgBSNKSyXt05ewdipoDT1YPDqD2DH46eyCI2pAtRzEzedt0T3/bSgiiNh1d+e4dUn29Fr41Lq9/A0rMcaTubinA0z8AAAA1Jx5Pvm9ZA8HTvb3l+cYcAAAAAAAAAAAAAAAAAAAAAAAAAEDtKMfPuRFADQCoYqQQYcQaGxuHtBU6hLqpqSnv/qrFkiVLFA6Hk9pOO+00zZw506cZZW/8+PE69thjiz7Opk2bhvw3qiaRWERfeNdexQ3JUPqgwGIyJMUN6Qtnx3XJSlMhmcPug8KIyNazY0cWPFooz47tUiTA+pcaNVDbIrL1i6l7fTv+ewxJv5i6V9/dOI31LzFqABHZ+sJxb2YVQO1JFURdb0uRLAOoE8dJDKL+wnFv6pJd46mBShCPuy+6eC+8mGZ5vggDAACA0rEs90tKenv9ngkAAAAAAAAAAAAAAAAAAAAAAAAAoFaVY/YBAdQAgCpHCDVGbNy4cUPaDh48mHd/qfZNNUatufPOO4e0XXXVVT7MJHfXXnutrr322qKPc9xxx+nll18u+jh+CQVC+uHGGbpy1gY3ONCP6ydHCsalHz4VUigW8WECtSsk6YcvTdaiOW8kBUeWfB62O49QL+tfal4NXDnnTYVN/56sqLMNasAH5bL+IdbfN4k1EDEd376MghrwT2INRE1n2ADqVAKOGygdcKRY37lktrXkBVEHqYHKEg67QdSeeFyy86keAAAAVB3OCwEAAAAAAAAAAAAAAAAAAAAAAAAAfiCAGgAAXxBCjRGbOHHikLatW7fm3d+bb76Z1Ri1ZPXq1Wpvb09qGz16tC655BKfZgS/LLROUvfjm/TpD8WH37hIbl0hLXytSZrBn5BS+8jb4zSja5fWje71bQ4zuur1kbfHSQHLtznUsoU7JmjPWkefO2Ho38pS+e7aqVq4YwJnkT5g/bFwxwR1v2To6tmv+xZCfetLR2jhjvHUgE8SayBXpiOZjtH3uyFTjuw8npOnBipMMJj84othlOeLMQAAACi8wed+3u/el5Q0NpZ+TgAAAAAAAAAAAAAAAAAAAAAAAAAAlBsCqAEANcL0ewKofNOnTx/S9vrruYeied54442k+5Zl6Ygjjsi7v2pw5513Dmn7+7//ezU1NfkwG/ip89gZevBYU2PC/ow/Jiw9eJzU2VznzwRqWFyOLpr7qtb7GEAtSetH9+qiua8q7kv8KbbWRfRvM9/ydQ7/NvMtba2L+DqHWsX6ozMQ1y+n7JVp+zO+aUu/nLJXnQH/vgyj1o2kBmxDihuOHMNR3MgvgJoaqECDQ6gBAAAAy3LPE0Mhv2cCAAAAAAAAAAAAAAAAAAAAAAAAAKg15ZaBQAA1AKCGBPyeACrfMcccM6Tt1VdfzauvSCSiN998M6ltxowZCgRqt1R7enr0i1/8Ykj7VVdd5cNs4Ke4HdfC5ifUPj6uhpikXqmjvnTjt/RKDTGpfaK08AP7tfz5SbJUZhdzVSwuW39r6fI9+tmR9LeWLsXjMVl8l0VJRWTr5Pev1Z6gv8Gfe4Jxnfz+tdr62+MVogZKhvVHXI7aTtmklYccVNyn//RxU1p5yEG1zXlVv1k1g/OAEitEDcQNyZbyPp+gBiqQ47gBg2GfvsUGAAAA/jEMyUy4eAgEpLq+LxdsanLDqAEAAAAAAAAAAID/z96/h0l613XC//uuqj7MIZPjkBBAThGCBJIIrIjIRsJBQQOtyLAGZY1ciBeMz67721/W/e3us896Pbq66LoED1khChLNKDrRXQOERVhkNUg0TDQkBAinkAM5TXdmpk9Vdf/+qKmZPndXT3dXVdfrdV1NT91Vdd/f5vNOdR263gUAAAAAAACwVRRQA0BXDW6zLxvm0ksvTaVSSbPZPLHt1ltvTb1e77g8+tZbb83s7Oy8bd/5nd+5IevsV3/8x3+c8fHxedue97zn5UUvelGXVkS3VCvVXPVP3p7bbnxbmkWRydrWPniZrLVKqCtlctU3n5Bq1a+QrVRNJefM1DJRm+n2UnLOTO34/HvsAf02V00lp9WreWi4uyXESXJavSoDW8z8Sco8NNLITKXs2gcSlElmKq11tMrKZGBrbUwGTvW6MtBnKpVkeLhVRD0z0/qa89g9ifJBAIDtqtlMGnOeR6hUkp07W0XU7gMCAAAAAAAAAAAAAAAAsJUUUANA12kQ5ZTt2rUrl156af7u7/7uxLajR4/mtttu67go+dOf/vSibS972ctOeY397H3ve9+ibW9961u7sBJ6wdj3/FTyvvflx87/m0xv8S34dC15bDT5g4/uylj2bu3BSTVF/tMXnpS3XPKVNLr4WLpaJv/pC09KVenklpOBwWb+VFPkX95zbn7ykq9ktov/99fK5F/ec64MdIEMcEqKolU2WKnMf2GmXUQIAMD2Mz6ezP3Qz5GR+ff9hoe3fk0AAAAAAAAAAAAAAAAADB4F1ADQEyrdXgDbw/d///cv2vahD32o4/0sdZ2l9j0ovvjFL+ZTn/rUvG0jIyN585vf3KUV0Qs+8Lxmprr0EQJTteQDz/PgqRsaKXPDkx7Nnnq1q+vYU6/mhic9mkbkYKvJwGAzf9oZ2F3vXvVvkWS3DHSNDAAAABtmaEgJNQAAAAAAAAAAAAAAAACbTwE1APSMLtWYst286U1vyv/7//6/87b97u/+bn7hF34hw2ssMrjtttvy2c9+dt627/qu78rTn/70DVtnv7nuuusWbRsbG8tZZ53VhdXQC8ZuGMuNE5/p6hpu/LZjGdvxlRz8/PO6uo5BU01y1UNPzm1nfDGpF3msVt/yNZxZr2VnWclVDz051d2nbfnxB50MDDbzZ2EGDtfqW1oBXCQ5Qwa6SgZYl0Zj/umiSJrNk6er1WR0dGvXBADA1jhyZP4fw1SrSaXSKp8eHm6dBgAAAAAAAAAAAAAAAIDNooAaAHqKEmo2xEUXXZSXvvSl+fSnP31i20MPPZT/+l//a66++uo17ePnf/7nF237mZ/5mQ1bY7+p1+t5//vfv2j7W9/61i6shl4wOTOZm750U7a0bXAZN+19LJMXPiM7sraSeTbGWC5Mjj05+/d8OimreayY3rJjn1mOZGellmuOvDRj5zw9OWfLDs0cMjDYzJ+FGThcTG/J3YIiyRky0BNkgI49+GAyPn7y9LFj808PDSXnGCYAwLY0OZkcPXry9Ohosnv3ydNDQ1u/JgAAAAAAAAAAAAAAAAAGgwJqAOg5lW4vgO3j3/27f7do2//9f//f+fu///tVr/ue97wnH/3oR+dte8YznpEf+7EfW9Oxn/a0p6Uoinlfn/zkJ9d03V5100035f7775+37elPf3pe/vKXd2lFdNuO4R358Wf8cLeXkST58fGnKaDukrHpp+eaiZdmZ1nLmeXIlhzzzHIkO8tarpl4acamn74lx2R5MjDYzJ+5GThjizJwhgz0lIUZ2Oyn3E8UUMsAAABsH5VKq5QaAAAAAAAAAAAAAAAAADaaAmoA6ElKqNkwr371q/O6171u3rbp6el83/d9X/7H//gfS15ndnY2v/ALv5D9+/cvOu/d7353hoaGNmWt/eB973vfom1XXXVVil67Y82WmanP5ENf/vNuLyNJ8qHdX89M6t1exsBql0/Olo0tOd5s2VA62WNkYLC151+U2ZLy2aKM+fcYGWBuEfXp5eZ+MMjp5bACagAA2E5qtWT37t77Ix4AAAAAAAAAAAAAAAAA+l+vvXdNATUAnFDr9gLYXn7nd34nf/d3f5d77733xLaJiYlcccUVeeELX5jXve51efrTn57Jycl88YtfzPXXX59vfvObi/bzzne+M6997Wu3bN233npr3vrWty57/pEjRxZt+/M///Nccskly17nhS98Yd773veuaz33339/brrppnnbqtVqfvInf3Jd+2N7qFaqeVHzvHw896SbD2mKJC+a2J3qWefEZxl0zy2Vz+VoZWuKwI9W6rnltPGM7TprS47H2sjAgCseSlkpNv33QZmkrBStcirz7y0yMPDGclaONUfyk7X/uanHOVrU857G92ds10XJrk09FJthaiqpz7m/UJatbW1DQ8kugwUA2JaGhlqF022jo8mePUm12r01AQAAAAAAAAAAAAAAALB9KaAGgJ6mhJoNtXfv3tx88815+ctfngceeGDeebfeemtuvfXWVffxxje+Mb/+67++SStc2pEjR3Lo0KGOrvPYY4/lscceW/b8M844Y93ref/73596fX6x6Pd///fnSU960rr3Sf+rVqr55/eek0888Z40utj9XGkm//zunam+QFlJt1xd+XjeVfnMlpWRl0neVf1MUiS/3Lx8i47KSmRgsB0s7so7qx/N45nZkuM9npm8s/bRpJGMlRduyTFZmQyQJBOZzq9WP5N6mpt6nHqa+dXqZ/JDjWdlT0Y29VhsgqJY/CLN3NNLnQ8AwPax8L6fAmoAAAAAAAAAAAAAAAAANkOvdRcooAaARZRQs+Ge85zn5G//9m/zYz/2Y/n0pz+95usNDQ3l3/7bf5v/8B/+QyqVLjbs9oDrrrtu0baf+qmf6sJK6CWNZiO/ftodaXb5cVazSH796Q/mTXfdmWp67EHfALj63H/Iu/bevcl1k4s1U+ZdlVuSRx7NLz/4vC0+OnPJwGA7uOebeef5n8u3Mp36FtWQ19PMt3I07yz/Irnvmxmb8KEY3SQDJMlEZTaXPeN/51Bt/MS9sc1IQ3H861DxYC6r/04+ec8/zZ7m0CYciU3zyCPJkSMnT09NzT89NJQ0t/peBQAAW2JyMpmdnX/68OFkeDgZHe3asgAAAAAAAAAAAAAAAADYZhRQA0BfGOymXzbNU57ylHzqU5/KgQMH8pKXvCTFCncOd+/enZ/8yZ/M7bffnv/4H//jwBdQf+pTn8oXv/jFedvOPffc/NAP/VCXVkQvOfux6Qx3uSNuuJmcfaTR3UUMqG6VD7c1k7xr7925+tx/6NIKkIHBdqJ8uLZ15cNt9ZT5Vm067zz/czm455tbemxOkgGSOQXUo+NbetxDo+O57Bn/OxOV2dUvDAAA9KayTKank6NHu70SAAAAAAAAAAAAAAAAALYDBdQA0Ddq3V4A21dRFHnjG9+YN77xjfnWt76Vv/3bv80999yTiYmJ1Gq1nHPOOXnOc56TF73oRRkeHj6lY331q189petfdtllKXvkTuPLXvaynlkLvaVaqeaP/rCe7/3nye3nrW8fRZKiTMoi666ufPZDyR/9UVJ92h3r3APrMVNp5ne//ctdKx9uayb53T1fyi98osxwc7A/NGCrycBgaxRl/vvL7s23qlOpd2kN9ZT5VnUq/33o9lxxx6Oplj32BOA2JwMkyUStkcsu/0YOjUyfuDN3KvfrVtPeb3H8H4dGxnPZEz+aT378KdlTr27SUdlQk5PJ7Jzi8NnZZGbm5OlKJTlyZOvXBQDA5nv88aS+4BHk6acnu3a1/j09vfVrAgAAAAAAAAAAAAAAAGD7UEANAH1FCTVb4glPeEJ+8Ad/sNvLgL738acnD+9KhhvJTIe9f+0C6rS/r6OwcLjROv7Hn56MffVrHV6bU1Etypw33sxDT+j2SpLzxpupfvXrrdZLtowMDLiizAOV6dS7/H95vUgeqBxLvvY1899qMjDwGkWZl//ETA6dcfIe3GYWUJ84RpIUc4qoz5jOy1/65XzmA8OKyPtBs9n6aivL+S+aFIUSagCA7arRmH/fb3a2VUy9a1dywQVKqAEAAAAAAAAAAAAAAABYv14roAYAVqWEGqBPNJqNXHdpq2zwrMnk4Z1JvbK2684toB5pJNPVzouoa83Wccsiue7S5IqvNhUPbqkyI82iVRzTzf/by5xchw992mIyMNjK1MoiRVl2tfe3KJNaaf7dIQOU827+t6KA+uSRM6+IukhkoF/MLaAGAGCwlWXr/uHjjyd33JE8//ndXhEAAAAAAAAAAAAAAAAA/agXC6hLJRgAsJo11pcC0G3VSjXX/2ly8QPJdC1prvEx2NwC6tOnkzOmWt9zfPtaH8o1i9ZxL34guf5Po4B6i1XLIh//g6E8fby763j6ePLxPxgy/y5oZ+DSb21h6+hCZXLptwoZ6IL2/C/p8vwvMf+ukQHaGbj4W0XKbH0M2se8WAYAAKD/zcwkn/tct1cBAAAAAAAAAAAAAAAAQL9RQA0AfUsJNUAf2TOdvPn25FitdbqyyuOehQXUo/XWv0frnRVRt49zrNY6/p7p9ayeU/XxpzXz0K7uruGhXa110B17Zoq87OvF2tvjN1qRvOzrRfbM9OATQQPA/NkzU+RffaaSapeOX03yrz5TkYEuamegWw/kK5EBAADYFooieeSRbq8CAAAAAAAAAAAAAAAAgH6igBoA+lqt2wsAYO0OXphc/crkzKnksR3JbKVVEN1c4nHZcgXUbe3T4yPHL1ckSz2UahdQDzVbx736lcnO2WTsCzMb9FOxFo2izL/+vuTIUHfXcWQo+dffV88Vd9RTLXvwCYFt7urLy7z7hd1dw7tf2MzIzHR++ePmv9XMn4MXlvnZVybd+iiAZpKffWUjO6caGbtLBrpBBuiYF0sAAGhrHn8kUam0vtxXBAAAAAAAAAAAAAAAAGCtFFADQN9TQg3QJxrNRq67tFU4XSQ5c3L5IurlCqgrZXL5PcnHn9G6/GpF1PMKqCdb+20WyXWXJld8MUqIt1CjUuahHd1eRctDO5JGJaku1X7OppmpNHPtC5Ju/2dXFsm1L0h+4ZNlhpuV7i5mgJg/jaLML740OTza3XUcHk1+8aXJFXe7H7DVZIB18YIJAAALtcuo9+7t7joAAAAAAAAAAAAAAAAA6A8KqAFgW9AcB9AnqpVqrv/T5OIHWqfbRdRDxztD2oXRKxVQv/um5PdubH1vX3603rpcjl+v/VBvqQLqpHX86/9U6eBWq5ZFXnRft1fR8qL7zL8bqmWRF9538r/FbimSvFAGtpz5kyRnT7Z+P3fr//6yaB3/7MnuHB8ZAAAANtBTn9rtFQAAAAAAAAAAAAAAAADQ6xRQA8C2oYQaoI/smU4OfGjlIuqVCqjH7mqdHrtr5SLqlQqoD3yotQ62VrUs8pOHkuFGd9cx3Eh+8pAC2m5oZ2CoyxkYkoGuMH+qZZEfvz2pdvk50GqZ4+uQga0mA6xLL76YAwBA9xRFUqslp5+ePPJIt1cDAAAAAAAAAAAAAAAAQC/rxc4CBdQAsG61bi8AgA4MDWXP9GwOfCjZ94bk0Hkni6gf25HMHv9ogZUKqNvap3/2NUmzOHn58ZHjh1qtgHp4eJN+SJbSKMrc8PzZnDXVzCOjyWx1ffspymS9nZFDjeSsqeSG51fypi8OKZ/cYjIw2MyfdgbOnGrm0dFkpgsZGG4kZ8pA12xUBipl677feshAH2o0kmbz5Olmc/ELKhWfTwYAsC3NvR+YJNVqq3x65PgTwNM+aRAAAAAAAAAAAAAAAACAZSigBoBtRwk1QD+54ILkzjuzZzrLFlHvnF29gLptuSLqY0OrFFAnyejoJvyALKea5PqbR7PvNUfzub2NPDJSdlxCW20mlSTNMml02DU41EjOni5yycPVXH/zrlRHevAJgm1OBgab+bMwA4+OlB2XEJ9KBoYbyVky0FUbkYFa82QJdV0GBkO93iqiLsuTX0uVEQIAsP3U6/P/oKZabX0ASaPR+l7zEiEAAAAAAAAAAAAAAAAAS1BADQDbUoe1UwB01Vlnnfhnu4j64gdap4skZ02uvYC6beyu5JqbWpdPWtc/a7UCakV1XbFnpsiBm3blkoeqOXu6yFBj7ddtF48mre/V5kqXnu9E+exD1Ry4aVf2zPTgEwQDQgYG23rm356U+W8PczNw1nSR4S26DThRPiwDXXcqGWgXUCet77XjGVjLNGWgzzWbXkwBAOCk9v3D3bu7vRIAAAAAAAAAAAAAAAAAeo0CagDYtpRQA/STBQ/OFhZRt1XKVrH0agXUbQuLqNuWLKCmqzopoS2Of80tHm2bW0C60kN+5bO9p9MMJCtnoIgM9JONnv/cyy3F/HtPJyXEG5EB5cO9Zz0ZmFtA3dYuoi5KGdjWvJACAMBClUoyMpLU691eCQAAAAAAAAAAAAAAAAC9RAE1AGxrtW4vAIAOVCpJrTavIKRdRP0jb0z+6qnJrpnkvX/eKpbu5KFTu7D6rVckR4eT7/3aCgXUQ0PJmWee0o/C+u1JcuCvz8i+l30rt+ydzuF2i+gcRVqlksONpLHMR05UkhTNpHm8hXipvOxqVHLJYyM58NdPyJ5dlWTXxv0crF8nGaiuUC5aSTJUT2aqkYE+0sn8RxvJ7Aq3AWkmpduAvrMwAzMrZKC2wp2BdhF1fYUM7JSBnrTmDGROCfkSvwwqSXbUixytlTKwXR09mszMnDzdaMwvGyyKZHh469cFAMDmO3Jk/ulaLRkdbX1PlFADAAAAAAAAAAAAAAAAcJICagDY9pRQA/SToaHktNOSxx7r3hpqtWTHjuTpT+/eGsieJG9+fFc+cf6dqSSZWz3ZLp08vVFLvSjTKBYXU7ZVkpzWqGa81iqdKRecNzlU5s2PPz17nnzeRv8InKK1ZuBotbFiIX2tqGRHo5CBPrPW+ZdJZovGsvuppFU0PVFrXcb8+8daMzBZaaZRLH8rUC2L7GpU3Ab0obVkYHe9mqklCqrnGkk1tUZkYLt66KHk8cdPnp6eTiYnT54uitZ9ewAAtp9jx1ofQtJWFCcLqJOkufJjBQAAAAAAAAAAAAAAAAAGhAJqABgISqgB+snZZycjI60y6tnZJMnESLLvDck/PKFVGlgWyf7XtC7++rvWvuuDF7auVxat/fzDE1r7PfChZM/08QsVRetraGgjfyrW4eDZD+XqZ3w5e2areXi4Pu+8MsnORiWjzUqOVJcvn20bbVYy06jk6IKSyjLJntlqrn7Gl7OzWc3YI3s38CfgVK01A0dlYFta6/wnK6sXSo02K5ltlObfZzY6A24D+s9aMjBSVjIVGWAVXngBAAAAAAAAAAAAAAAAAACAwaSAGgAGRqXbCwCgA899busB22mnJTlZQH3becnhHUm9koyPJMeGWoXSBy9c227bBdTHhlrXr1da+7vtvNb+J0aOX7BabR1/167N+flYk4NnP5T9F9ydepqZGFpcMFwkmaw2M7WG4tEkmao0M1ltZqmnAiaGGqmnmf0X3J2DZz90agtnw8jAYDN/ZIC1ZmC6kAEAAAAAAAAAAAAAAAAAAAAAlqCAGgAGihJqgH7y/Oef+OfCAurZObfo7SLqn11DEfXCAuq22eWKqJNk9+6N+Xno2NzSycND9cwWZYrkRGnk3H+P11rnr6SZMuO1+qLrtv89W5Q5PFRXPtlDOs1AMytnoF7IQD/pdP4zqxTQNlNmotZYdF3z712dZqCxym1Aw++BvtNJBo7UGqv+HpgumjIAAAAAAAAAAAAAAAAAAAAAQHcpoAaATVXr9gIA6MA/+SdJWWZieiL7fjS57dzFBdRt7ULpn31N6/vYXYsvc/DC1vkLC6jbFhZRH/hQPXuaQ8mePRv3M7FmS5VOthULvrdNV5qplEll0Tmt8tlGMf8TKZbaT7t88ozZWvZfcHeSZOyRvaf647AO68lAvUiqZblsBuqVct45MtC71jP/yarbgO1kPRmYrZSprpSBigz0k/X+Hqit8HvgaG3+E/AyMICGhrq9AgAAAAAAAAAAAAAAAAAAAGArFYt7KLpKATUAbDol1AD95PzzM/Ht35Z9T31gxQLqtpWKqFcroG5bVER9847sGVnhCmyKRspcd959S5ZOti33kL5RJDlePrmnXs1ErXGifHYpS22eWz553Xn35YpHzkl12SOyGTYrA0tdRwZ6j9sAZIBTyUC7iLqaImfO1vLYUD2NlKkvKKJfaT8ysE0VRVJZ4QEFAAAAAAAAAAAAAAAAAAAAsL0ooAaAgaRpCKCPTExPZN/Fd6+pgLptfKRVNP2zr2kVTydrL6Bum1dE/ZpjmajWT+0HoWPVFPmtLz47jSJLlk6uplEkZ83U8vTJ0Zw1U1u2eHQls0WrsPS3vvhspZNdIAODzfyRAU41A/UiOXd6KN9xdFfOnR5KXQYAAAAAAAAAAAAAAAAAAAAABosCagAYWEqoAfpEo9nIlX/wI7ltx/iaC6jb5hZR//PXd1ZA3XaiiPqceq581j+kEQ/ctlIjZX7m27+QWooMlZ0/iK+WyaPD9Xxlx1QeHa6nuo7xDZVFainyM9/+BfPvAhkYbOaPDHCqGaiVRR4cmc3ndx3NgyOzqa1jHzIAAAAAAAAAAAAAAAAAAAAA0KcUUAPAQFNCDdAnqpVq3pSLcnik7KiAuq1dRP2xZ3ZeQN3WLqJ+01d2pZoeezC5zVVT5KoHzk+1LHJmfaij8slqmVSOz2ui1kjSOt1JAenQ8eNWy+PrMP8tJwODzfzZrAysdS8y0H2nkoFaWaSSpEzy6FA9ZVpPBnRSRC0DAAAAAAAAAAAAAAAAAAAAAH1KATUADLxatxcAwNo0mo3c8PWbsrNeZHx4fQ+exkeSqVoyXV3/OnbOJjc88ZG86Sul8sEtNvbI3iTJ/gvuzpn1oTxWm81ssXIWRpqVNJa5TCVFirJMc5Uxzi2dvOZLzzqxDrbeejJQK5Nimf9WKyky1CwyU2muuA8Z6A3rmf/ORiUzleVvA1KWWa2D1vx7x3oysFJRcbuIur6GfchAb1jf74Fi2U+fqiTZ0ajmaLWx4j5kAAAAAAAAAAAAAAAAuqPRaOTzn/987rjjjjz66KMZHx9PtVrNGWeckb179+bSSy/N0572tG4vEwAAAIBepoAaAIgSaoC+Ua1Uc9U3zsltZ34xKVuF0utxKgXUp0+3Sqiv+sfhVHf12IPKAdFJ+eTp9VrqRblsCXXSKiA9rV7NeK2+5PlKJ3tPpxk4Wm1kpadcamWRHfWaDPSJTudfJpnJ8uWylRTZVa9mwvz7RqcZmKw0V/w9UC2L7Gr4PdBPOsnA7kY1U6t80MBIs0it9HsAAAAAAAAAAAAAAAB6yc0335z3vve9+Yu/+IscO3Zsxcvu3bs3+/bty9ve9rY873nP26IVAgAAANAXFFADAMdVur0AANZu7Ks7cs3NteycbRVCb6V2AfU1Hy4ydrdfH9009sjeXPOlZ6V6vBRyqFz8IP/0ei2jzbXNabRZyen1xZ9LoXSyd8nAYNv4+Rfm32fcBrDWDIzIAAAAAAAAAAAAAAAA9JUvfelLefnLX55Xv/rV+eM//uNVC6iT5KGHHsp73vOeXHzxxXn729+e8fHxLVgpAAAAAD1PATUAMIcWUYB+cvRoxv6xkWs+XGxpEfWJAuqbkrE7y6TR2JoDs6yVyic7KR5tW1g+qXSy98nAYDN/ZAAZAAAAAAAAAAAAAACA7eWWW27JC17wgnziE59Y1/XLssy1116bl7zkJfnWt761wasDAAAAoK8ooAYAFqitfhEAesbxT6we+0Lrwd3+H2g9qBof2bxDziugvuv4RiXUPaFdBrn/grtzZn0oj9Vms7NR7bh0sm20WUnqtRyrNpRO9gkZGGzmjwwgAwAAAAAAAAAAAAAAsD3cc889efWrX52JiYlF5z3xiU/MFVdckYsvvjhnn312Zmdn88ADD+SWW27J//yf/zNTU1PzLv/5z38+r3rVq/LZz342Q0NDW/UjAAAAANArFFADAEtQQg3QT+aUP499oUjKMvtf0zq9GUXUSxZQ01Pmlk+eNXvqfwwy2qxktFlJJUon+4UMDDbzRwaQAQAAAAAAAAAAAAAA6H/veMc7FhVQj4yM5D//5/+cd7zjHcuWST/yyCP5F//iX+SDH/zgvO2HDh3Ku971rvz8z//8pq0ZAAAAgB6kgBoAWEal2wsAYP3G7moVRO+cbRVGbyQF1P1j7JG9ueZLz8pGPfQvEqWTfUYGBpv5IwO0M1DZoBQooAYAAAAAAAAAAAAAgK1z55135iMf+cii7X/wB3+Qf/Ev/sWyBdRJcvbZZ+f3f//38/a3v33Ref/tv/23NJvNDV0rAAAAAD1MATUAsIJatxcAQAeq1UWb2gXR+1+TTNWS6cUX6dhIY5UC6mYzefzxUz8QG+byyaFUnlHmaLWZ0eacz5goyyQrPBAvi3kP1KcqzexqVHL5vUNJ3Yz7yfIZSFKslIFSBraBdd8GnLhMi/n3r2UzkNV+D0QGtomxx0dz4+m787FzJuZsLVe9CViYgSS5/OHTMvbV0SQy0PcmJ5OZmZOnZ2eTev3k6Wp1/vkAAAAAAAAAAAAAAGy5gwcPLtr2+te/Pj/8wz+85n28613vysGDB/Pggw+e2Pbggw/mlltuyUte8pINWScAAAAAPUwBNQCwCiXUAP1kx46T/57zAGvsruSWJyXv+p6NOcx0Nbny0DIF1EnrwaYHeD1jotbIZS++K/eNzrY2zOZEAWmzWKV7sphfPDo+1Mj4UCOXvfjOfPJvLsye+ga0mrPpVspAWZQrZqCc89yRDPSnFeeflec/l/n3r5UzsPLvAbcB28fB8x7Lx8+eWP2Ci5RJ5r+Q8PGzJ3Lw3Ecz9sCZG7I2umjBh00sug+/8HwAAAAAAAAAAAAAALbcXXctfjPnP/tn/6yjfezatSuvf/3rc+21187b/oUvfEEJNQAAAMB2p4AaAFiDSrcXAEAHdu9OhocXlcUdvDC5/uJkuLExhxlutPZ38MIlziyKpKqQsldM1Bq57LvvyqE9kye2jQ81MlVpdrSfdvFo26E9k7nsu+/KRG2DQsWmkYHBZv7IAEmrgHr/c7+e5ga9JtAskv3P/XoOnvfYxuwQAAAAAAAAAAAAAABY1re+9a1F257znOd0vJ+lrvPggw+ua00AAAAA9IleK6AGAHqWEmqAfnL22cno6KIC6v2vSY4OJVO15FQ//6dMaz9Hh1r7XVREXRRJrXaKR2EjLFU82tZJAenC4tE2BaS9TwYGm/kjAyQbX0DdpogaAAAAAAAAAAAAAAC2xvDw8Jq2rWZkZGTRttHR0XWtCQAAAIA+0IsF1OWptqABAJtFiyhAP3nuc5Obbz5xcm4B9eHjfwdQFknKZD0PDcv29XNyf/tf0/o+dtfxCxVFcvrpya5d6zgCG2WiWs9llx7Kod2Li0fbxocaGVqlkbJ5/HLLObRnMpd9zxfzydsuzp6Guw29ZK0ZKFa5PagXZSaHli+qlYHetNb5jzZW/syZZpIJ8+9La83Aaj3UjZR+D/Sxg+c8nP3f/o00l3tRYC13CIti2Qs2i2T/Rd9IRkYz9vA5614nXTQ5mTTm/DdelvNPF0WyxB8ZAwCwDVQqSXPOg8KFjxsqPqcWAAAAAAAAAAB6xdOf/vRF277xjW/k2c9+dkf7+cY3vrFo2zOf+cx1rwsAAACAHqaAGgDokBYxgH7y/OcnU1NJUeTgs8tFBdRt6yminltA3bZkEXVZJqedllSr6/sZOGUT1Xoue/6hHNp9ZN72MotnPlMpU5TJUpUyzbTKJReet3A/h3YfyWWXHsonb/9OBaQ9opMMNIqkskIGGpVy0XVkoLd1Mv/JatNtwDbUSQbqlZVvA5oVGehXB89+KPsv+FLm9oyXKVMsTME6XjOYu59mkex/1peSSiVjj+xd/4LpjoXFggtfROrFF5UAANgant8FAAAAAAAAAICe8fKXvzzvfve75237yEc+kle84hUd7efDH/7wvNPDw8N56UtfesrrAwAAAKDH9GJXgAJqAOh5GsQA+sm3fVsyM5ODFyb7f2DpAuq2ToqolyqgbltcRN1MhoeTZnPpK7CpWsWjn1uyeLT9EHzhKJtLZKFsb19guf0c2n0klz3/7/PJz12igLTLNjoDSxVQy0DvchuADJAkB895KPsv+OK8Aupmyhyu1bOzWc1os1U8PHeey1l4/lSlmWOVRs6o11JpF1GnzP4LvpCUzYw9rIi6ryy8z+5FGwAAklYB9fBwt1cBAAAAAAAAAAAc99rXvjZPfepT87Wvfe3Ett/+7d/O/v3789SnPnVN+7jhhhty2223zdv24z/+4znzzDM3dK0AAAAAdJkCagBgnbSHAfSTr389By+qZv8rZlcsoG5bSxH1SgXUbfOKqItk7PDh3nwgus1N1Bq57LvvyqHdk/O2zy2YXKmAtHI8C2spHl2+gPTv8sm/uTB76tV1/xysnwwMNvNHBkiSg+c9lv3P/Hqac55/b6bM4aFGZitlxiv1ZLZdRN3MqjXUZXniyfypSjPjtUaS5HCtnjNmq3OKqJP9z7w7mZrK2AP+ALVvTE0l09MnT8/OJvX6ydOVyvzzAQDY/qrVZGio26sAAAAAAAAAAADmqNVq+c3f/M289rWvPbHt6NGjefWrX50///M/z7Oe9awVr3/jjTfmqquumrft3HPPzS/90i9tynoBAAAA6JJe7P1SQA0AfUMJNUAfOXjoQPa/qp6j1dULqNtWKqJeSwF124ki6h9I8tmJjOX8tV2RDdFImctf9LkcOm354tG525KlC0iLJS7fyX4O7ZnM5S/5Ym757CWprlhvzkaTgcFm/sgASXJw78PZ/6xvpDnnRYETBdTFyQmODzWSepFqs8jKH0eS4y8wFPMKqJNktlLm8HAjZ8zWThZRF8n+i76RDA9n7KFzNvJHY7McO9Yqnm6XjS98QaksW+cDALD9NJuLtw0NJTUvDQIAAAAAAAAAQC96zWtek3e/+935v/6v/yvl8eKeL3zhC7nkkkvyEz/xExkbG8sll1ySs846K7Ozs3nggQfymc98Ju9///vz0Y9+dN6+zjnnnHz0ox/N3r17u/GjLOk3fuM38pu/+Zubfpwvf/nLm34MAAAAgK5QQA0AnCLvNAfoE41mI9c9/r9zdKjM4ZHOrju3iHqkkUxXOyugbmsXUV/3zPFc8fWa8sktVS6a11KFoXPPW/ueV9/P3EOXRVqFNea/xWRgsJk/MjDoGilz3ZO+leac/9tbBdT1eQXUbeO1enbVq4u276lXMzGnbDpFMlU0M16rL7rsbNHa/8Ii6uue9K1ccfg89wX7QbWaVCqtoumlSgjLMqkvnj0AANvAUn9QNDubNBrHH9MBAAAAAAAAAAC9Zv/+/XnWs56Vt7/97fnqV7+aJJmcnMy1116ba6+9dk37uOKKK/Jbv/VbOf/88zdxpZ176KGH8vnPf77bywAAAADoTwqoAYANUOn2AgBYm2qlmivuPz3jw+u7flkkO2aTM6Za3zstoG4bH0mu+GJV6eAWq6bIX97+nbn4yO4kKxeGti28TCVJpVz8y7+T/Vx8ZHf+8vbvNP8uWG8G5loqA51mSQa6w20Am3UbsNTlltqPDHRfNUWuv+u5ufhoKwMrFVC3Ha010pwz4W+bHMnTJ0fzbZMnP9FkepkC6rZ2EXV7Pxcf3Z3r73quDPSLsly+gBoAgMHUbCYzM91eBQAAAAAAAAAAsIxXv/rVufvuu/PBD34wL3/5y9d0nUqlkre97W353Oc+lz/7sz/ruQJqAAAAAE6BAmoAYIPUur0AANZmpj6Tf/e0L6fI6mWRSymSTA4l5x5NHtyVU9rPv/ueqbzl7t0Z9lkGW2pPkk9+5Z/mey/4q9y+Y6Kj61bSml2K1vdKkk6qCMskz5vck09+5XuzZ9dQR8dm48jAYDN/ZIA9SQ7c+935kad9Jn+1+9EVC6jbGkWSsszTpnfmzHI4qSZnlrVkupKvjhzLserq+2gVUTfyvUfOyoF7v0sG+sn4eDI0Z15lmdQWPBW08DQAANtDpTL/w0jm/qFR+8NKAAAAAAAAAACAnlOWZT7ykY/kAx/4QP7qr/5qTddpNpu57rrr8tWvfjU/93M/l1e/+tWbvEoAAAAAtoQCagBgA2kaAugTw7Xh/No9z8pPXXBHpqvr2EGZnD7dKqI+fTo5PJLjbZSdGWomv/bpXRl+ovLBrqg084TGaGp5PPV11YivTy1FntAYTarVpFhPANkwMjDYzB8ZoNJMig4/CGS5FxWKDj+WpKjIQL9Z+OJNUczPw8LTAABsHwvv5612GgAAAAAAAAAA6Lp77rknb3nLW/LpT396yfPPOeecnHPOOanX63n44Ydz+PDhE+fV6/XcfPPNufnmm/O6170u733ve3POOeds0coBAAAA2HC9+B4wBdQA0NeUUAP0kR/Ks/Lsw1/I7WfXu7aGZz+c/NA9Q0nj3q6tYVBN1OrZd8mXcsfQsZwzU8vDQ/XUi7U9KG8mqZSt3vEySbOD5xdqZZFzZmu5Y+ix7HvC/86Bz12QPXV3IbpBBgab+SMDzM3AmbPVPFYrM1tZOQPVMqkk+frIZHKsnjNna3lsqJ6vj8ymUiajjUqO1por7mOoWeTMelUG+tH4eHLs2MnTs7NJfc5jiaLwIg8AwHbVaMy/r9dstu4L1mqtD5fZubN7awMAAAAAAAAAABa5/fbbc/nll+fhhx+et/2CCy7Iz/3cz+WKK67Ik570pHnnfelLX8qf/Mmf5L/9t/+W+++//8T2P/uzP8vdd9+dv/zLv8x55523JesHAAAAYAMpoAYANoHWKIA+0Wg2cuWFd+Sho82cMVPk8PDaH5AVx7/GR5KpWjJdbZ1OWkWUa3XGVPLQruTKV4znxpu/nGrZgw9Ut6lGUebKH5jIoZ31pNGa3zn15OHRpF5Z+joLZ9wsTpaPLrzccjmoNZNzppIijSTJoZ2P58oL/iE3fniP+W+x9WZg7myXysBqtwUy0BvcBrBZtwFLXW4uGegdS2XgzHry2Egyu0wGds8mk7WkPeGv75jJ4cpsJkbKE0Mfrie1RpHxZe5bDjWTM6dloG9NT7e+2sqyVT44Vy+++AQAwKlrNuf/Uc/UVHL4cDI0lJx9dnLaaV1bGgAAAAAAAAAAMN+jjz6a17zmNYsKqK+66qr8xm/8RkZHR5e83gUXXJCrr746b3vb2/LmN785N91004nz7rzzzuzbty+f+MQnUqks88aDLbR37958x3d8x6Yf58tf/nKm5/4dPQAAAEC/6cUOAAXUALAtKKEG6BPVSjVXPW0st/3jf8mOeutB4lqKqIskxZyLTVfnnFe2LrCWh3dnTCU76kmlTK66czTVil8hW6ma5Kov7MxteyfSPP4cQZEi50wVeXi0uaiAtD33hd2QS816uRy0ikcrmbuLStlah/lvPRkYbOaPDLBcBs6cLvLYSDOzldYM2/M6faZItZlM1uZPdmJkcQpGG0UykxNF1O39tAqoZaCv1Wqt8sFGq0Q8zebiF5x64I+JAQDYBAvv+1UqrfuHZZkcPZpUq8tfFwAAAAAAAAAA2FL/5t/8m3zzm9+ct+2Hf/iH8973vjfFGkqHzjzzzPzJn/xJLrvssnzmM585sf1Tn/pUfu/3fi9XXXXVhq+5U+94xzvyjne8Y9OP89znPjef//znN/04AAAAAJtCATUAsIm0RgH0kbFX/mxy7X/P/u8ZX1MR9cIC6iUvs4Yi6rkF1Nd8uMjYI7uTag8+WN3mxr62IymK7P+e8Tnlk8k505U8NNJMo3Jy22pzX2hhDqrN1n4Xlk5e839Oz9jXRhPj7woZGGzmjwywXAbOnKnk0eFmZqpJyuSMmSKjjSKzHQShXUR9eLhMWSRDjdZ+ZaDPFUWraLBSaZUQLvXiTi++CAUAwKlr3wece7pSOVk+ff/93VkXAAAAAAAAAAAwz8MPP5wPfOAD87aNjo7m3e9+95oKqOde5z3veU9e9KIXzdv+67/+6z1RQg0AAADAKnrxvf8KqAFgW1FCDdBPzj8/Y0+6PPk/Hz9RRF2WZcZHlr74WnsHizIpl3n8efrCAup7hpPTkzQa6/oRODVjXx5Kmqdl//c+fqJ8sizLVMvkxETW+7j9eAFpklTL1n6L4xsqZXLNX52Wsa8MZc6R6AIZGGzmjwywXAZOONXXFOZcXwa2gUbj5P32ojhZONjWLqkGAGD7aTbn/9FRtZqMzHki+ciRrV8TAAAAAAAAAACwyP/6X/8r09PT87a94hWvyJOe9KSO9/XCF74wz33uc3PHHXec2PYP//APuf/++/PEJz7xlNcKAAAAwCZRQA0AbAFNQwD95i1vydjb/k+S5B3fczhTtVZX4FIP1+Z0Sa5ouYd6RZKpoWTnbHLNh5Oxu5LsqCYL/qCBrTV2V5LZ0ez/vsnUizKHR5PZOX2C5fFAdPK0Qpn5ReSz1eTwSJkzpsrUyiLXfGJHxr6cJGbfC2RgsJk/MsBSGahXWkXRSTI+XCbTrXLyVZVlUiZT1TLjw60PJynS2p8MbAP1eqt8sK3ZnH+6F1+IAgBgYyz8EMGFp+feLwQAAAAAAAAAALrm9ttvX7TtxS9+8br39+IXv3heCXX7GEqoAQAAAFgzBdQAsC0poQboN69+dfKUp+Tyb34t501W8+DOeorjbdMLH7atpYRyYelkW5FWCeFsJTnvSHL5PUkqlWRoSFldDxi7ZzjHhsr81CsnM1NdfvZrsVQGyiQz1eTwaPK+j41m7J7hztpM2XQyMNjMHxlgbgZmK4vPHx9Jds2uYUfF8QLqkcVnzVZkoO8tvN/ufjwAwOAoipX/0Gd4eOvWAgAAAAAAAAAALOuRRx5ZtG3v3r3r3t9S13300UfXvT8AAAAANlmv9QAooAaAbWuJqioAetrQUCb+489n3yseywOj9Zw+3dpcLPO4rVyinPrEeVm6gHru/k6fTh44Ldn3hmRiz0jvPWAdUBPDZT74nNnUmivMd4XZL7zcktuT1JrJB58zm4lhTwz0mrVmYDUr3Q7IQO9yG8BG3QasdDkZ6G3tDOysLz/oo0NJc5X9TFeyZAF12856IQMAALDdVKvJrl3dXgUAAAAAAAAAAJBkdHR00bbJycl17+/YsWOLtu3cuXPd+wMAAABgE/Van5cCagDY1pRQA/SZiemJ7Hv02hza26oUHK23iqJXeui2VBHpSsWz7fNPn27tP0kOnZfse92MAsIeMDFcZt9rjuaW8+o5OrS5xzo6lNxyXj37XnPU7HuIDAw280cGaGfg0DmN1n3BmeXv1DUqSSPH7/st+GokOTa8/HFOnykyWk8OndOQAQAA2A4qlWR4WAE1AAAAAAAAAAD0kL179y7a9pWvfGXd+7vnnnvWdAwAAAAAukwBNQCwxWrdXgAAazcxPZF9H9qXQ1/726TZ7Oi6ZZGkTI5/W7GAejmHzk32vbHIgUPPyp6GXyHdMFGtZ9/Fd+eW08sc3qIRHB5JbnlSafY9QgYGm/kjA7QzcGh3kfZD+tEkaTQzXmsseZ1mJUk5/1OomkmaReu+4VKvS5xer2Y0lRPPGhw6z/3AvvT448nk5MnTMzPJ1NTJ09WqAkIAgO3qvvta9//ahoZa9/0qld774yQAAAAAAAAAABhg3/7t375o24c//OH8+q//esf7OnbsWD75yU/O21YURS644IJ1rg4AAACATdFr7/FSQA0AA0FzFECfaDQbufJPr8yhBw61yuSSpFLJVKWZ8ZGT5dIrKYvVL9NWJBkfaf17tN5eRCOHTjuWKy/5cm684/mppsceyG5zE9V69j3nrtxy2pEcXqZkcrMcrjVyy+lHsu/SL+XAnRcpn+wSGRhs5o8M0M7AoV3HkgX3w0ab1Uw2m5mpLH1vr3n8zmIlJwuolzPcLDLarC48RA6ddkwG+s30dFKvnzxdlsns7MnT1WqrjBAAgO2nKOb/IVK12voCAAAAAAAAAAB6yite8YpUKpU0m80T2+6+++788R//cX70R3+0o3391//6X3PkyJF52y699NI84QlP2JC1AgAAALABFFADAF1S6fYCAFibaqWaqy65KpXpmaTRKp6cqpYniqLLDX5c2d7f+Egy1e4YLMtUmmWueuB8BdRbrJEyV154R245bSKHa/XVr7AJDtfqueW0iVx54R1prLnOnI0iA4PN/JEB2hk4tOvIkudPVhqZqpQrTqZZJI1i5QLqMslUpcxkZemi80O7jsgAAAAAAAAAAAAAAABskLPPPjuveMUrFm1/+9vfnjvvvHPN+/nYxz6W/+f/+X8WbX/Tm950SusDAAAAYAMpoAYAukgJNUAfGXvOWK750rNSKY8XUA+3HsCVRTa8BrDM4iLqSplc88mdGXtk7wYfjdVUU+SZkzu6VjzadrhWzzMndygh7wIZGGzmjwxQTZGrHjg/lSX+v5+sNHK41iqNLrPy/cLVzmuff7jWWLKIunJ8HTIAAAAAAAAAAAAAAAAb4xd/8RdTLCggevTRR/PiF784v/d7v5d6ffn3kxw7diy/9Eu/lNe+9rWZnZ2dd96Tn/zkvPOd79yUNQMAAADQIQXUAECXKaEG6Cf33Zexj3w1V35xx6YWULctLKK+8h8rGbttMpme3qQjspyZNPOHT3iw63WPRZI/fMKDmUmzyysZPDIw2MwfGSBJxh7Z2/pAkjlJmFtA3bZaEfVSlrrOwiLqSopc86Vn+UASAAAAAAAAAAAAAADYQC94wQty9dVXL9o+MTGRn/zJn8wznvGMvO1tb8tv/uZv5sCBA/nDP/zDvPvd786b3/zmPOUpT8m//bf/dlEB9dDQUN73vvdlx44dW/VjAAAAALAcBdQAQA+odXsBAHTgb/82B582leu//VhOn04Oj25eAXVbmSRFcsZUcv1Fzbz4vmbGJiaSvcoHt9JwKvm1L397furZd2amKDd97kspkgyXRX7ty9+eYZ9jseVkYLCZPzJAW7sAev8Fd+dopb6ogLqtk4ysVFp9uNZI6smuZk0BNQAAAAAAAAAAAAAAbJJf+qVfyvj4eH7rt35r0Xnf+MY38ju/8ztr3tfw8HDe//7351WvetVGLhEAAACA9VBADQD0CM1hAH3k4KED2f8942kefxC3VY/l2sdpFsn+V9Vz8KwHt+bAzHPlQ+flfV94TobL7jypMFwWed8XnpMrHzqvK8dHBgad+SMDtI09sjdv+NbeZQuo29ZyV3GlAuq2w7VG3vCtvQqoAQAAAAAAAAAAAABgE/3mb/5mbrjhhpxzzjnr3scll1ySz372s3nTm960gSsDAAAAYF0UUAMAPUQJNUCfaDQbue7x/51mykzVksMjSbbq8WXROt5UrVVEfd3TD6explpDNtqVD52Xn7z/iV059k/e/0TFoz1ABgab+SMDJMn1ex/Ibz/pm1t5VzC//aRv5vq9D2zREQEAAAAAAAAAAAAAYDDt27cvX/3qV/M7v/M7eclLXpKhoaFVr3PaaadlbGwsH/7wh/P3f//3ef7zn78FKwUAAABgRQqoAYAeU+v2AgBYm2qlmuv/4Vm57BkP5HNPSMp1PL4skhRl67qdPhwsjxdRX3I4uf7DO1N9bo89wB0Q1+99IL/7xPtTpPMZnooiye8+8f68dOIMBaRdJgODzfyRAa7f+0B+6tl3ZrYoT5RQb2YWiuNfs0WZn3r2nUkiAwAAAAAAAAAAAAAAsIl27dqVt771rXnrW9+a6enp3Hbbbfnyl7+cw4cPZ3x8PNVqNWeccUbOPPPMXHTRRbnwwgtTqVS6vWwAAAAA2hRQAwA9SAk1QB/5+Oj9uW/n+h/MFeXJ7+spsU6S+3YlH3/SdMbWvQrWa6tLJ9uUT/YOGRhs5o8MMDcDbZuZhfbs22QAAAAAAHpfo9lItVLtmf2w9WRgsJk/MjDYzB8ZAAAAANieRkZG8uIXvzgvfvGLu70UAAAAANZCATUA0KN8pClAn2g0G7n2/PtyeOf8MsBOlElGGusvKSySHN6ZXPvc6TS2pPaStpk083PP/OKi0snNfrphqfLJn3vmFzOT5iYfmYVkYLCZPzLAUhlo24wsLLdPGQAAAACA3jUxPZHXH3h9Dt558JT2c/DOg3n9gddnYnpig1bGVpGBwWb+yMBgM39kAAAAAAAAAAAAeoACagCgh9W6vQAA1q6Y84CuUibNTh9vFgu+d6Ay57FkUSQ5cmR9O2JdhpP82uefkp963lcyW5lfQJqsv1h8JUuVTw41i/za55+S4SPHNuGIrEQGBpv5IwMsl4G2Ihubg+Xu5clAn5mcTKanT56emUnq9ZOnm8355wMAsH344yAAGDgT0xPZ96F9OfTAodx2/21JkrHnjHW8n4N3Hsz+D+9Ps2xm34f25cAbDmTPyJ6NXi6bQAYGm/kjA4PN/JEBAAAAAAAAAADoAb1WQA0AsIASaoA+Ua1U87a7duf2XUfzyM5kttJZEXWRpCiT6Wrre4q1FxW2ew6HmsnZx5K33VZJdaTM5lRespwr7z0raZb5qYu/umT55GYbahZ536Gn5cr7zkrS3PLjIwODzvyRAVbKwEYn4vjdxXlkoA81m62vtrKcX0ZYlvPPBwAAAKAvzS0dTJJm2cz+D+9P0ln54NzSwSQ59MAh5YN9YqUMvPKZr1zzfmSgP7kNQAYGm/kjAwAAAAAAAAAA0AN6sYC61A8GAMxX6fYCAFi7sc83856bWkXQQ8e74tby0LNdQD1vW7n26yYnC6jfc1Mydufa18zGuvK+s/O+Q0/L0PH28c2sAp+775Olk2dv0tFYKxkYbOaPDLAwA8nm5GDhPmUAAAAAAHrTwtLBtnb54ME7D65pPwtLB9va5YMT0xMbtmY21moZ+PMv/Pma9iMD/cltADIw2MwfGQAAAAAAAAAAgB6ggBoA6BNKqAH6ydRUxu7KiSLqSrl64eBSBdQnzltDEXWZ1nFOFFDflaTZXOVabKZ2+WStuXnFo21lklozSid7jAwMNvNHBphbRH2qBdQr3Rds71sBNQAAAAD0puVKB9va5YOf/vqnV9zPp772qSVLB9uUD/autWTgX3/sX+fW+25dcT83ffEmGehDa70N+MRXP7Hifv7m3r8x/z611gx89pufXXE/N3/5ZhnoQ2ud/81fvnnF/Xz2m581/z611gz8zb1/s+J+PvGVT8gAAAAAAAAAAACslwJqAKCP1Lq9AAA6MDOTpFUEfcuTknd9z8oXX6mA+sRlytYFV7pYs0jefOh4AXXSepC5c+caF81m+KHHh/PEmfvytdHpTT/WE2dG8kOPPzHZ6W5DL5GBwWb+yABXHt6Zz947nf/2bfcte5kiayuoXulyZZK33/vEXHn4KYm7f/2nXl/8AlGjcfLflUoyMrK1awIAYGtUq637g20L/5ipF/+4CQDoyGqlg23Nspn3fPY9ufKiK/PC81+46Pxb77s1f/CPf5BaZeXngNvlgwfecCB7Rvac0trZGJ1k4AO3fyBJls3AH33+j1Y9ngz0lk7m/6t//av5Zxf9s2Xn/8F/+GCGq8Mr7sf8e08nGXj/ofenWTaXzcANd9yQSlFZcT8y0Fs6mf8vfOoX8qbnvmnZ+f/+7b+fkdrKrxeZf+/pJAPX/t21efPz3rxsBv7wjj9MtaiuuB8ZAAAAAAAAAACAJfTie7QUUAMAK9AiBtBPms0kycELk+svTk6fTsZHWiXRC62lgPrEZVcooq6UreNcf3Hy4m/OKaKu+RXSLRPVei57/u35xuj0mssl16tI8o3R6Vz2nbfnk7d/Z/Y0zL0XyMBgM39kgCQ5ePZD+aPzHk6tLFJf5k7fRmSjVhb5o/Mezj89cnbGHtm7AXtkS1WrraLpuafnvpBVqcw/HwCA7WXufb+Ff9A0NLS1awEANtRaSwfbyrJcsoT41vtuzQdu/8CqxaNtygd7R8cZyMoZGK4OrykHMtAbOp1/M0sXkbfnX2Rtb4Aw/96x0RkYqgxlLTGQgd6w0fcDyjW+qmj+vWOjM1CtVFctoU5kAAAAAAAAAAAA5lFADQD0IU1DAP2kUsnBC5P9r2kVT4/WWwXRlQWP/TopoD5xnXLx+8naBdSj9dbx9r+mVYBN97SKR/8+h3YfSZnNLR7N8f2XSQ7tPpLLnv/3majWN/mIrEYGBpv5IwMkrQLqd1zwhTw6NJtmUa6xGmJpK+WoSNIsyjw6NJt3XPCFHDz7oVM4EgAA0DMqlWR4uNurAADWqdPSwbZ2CfGt992apPPiybZ2+eDE9ERH12PjyMBgM39kYLCZPzIAAAAAAAAAAAA9QAE1ANCnat1eAABrd/A5yf6Xtwqh20aPd0GOj7S2r6eAuq0okxStIsK5BdRt7SLqFMnYkSPrOwjrNlFr5LLvujOHdh/bkuLRtvZxDu0+kssuujWf/Mxzsqde3aKjM5cMDDbzRwZIkoPnPpp3POOrebTWyOzxO31FNicP7bucs0WZR2uzeccz7kymJjP24FmbcDQ2xeRkMj198vTMTFKfewe/Of98AAC2v2o1GRnpzT90AgBW1Wg2cuWfXtlx6WBbu3zw7+7/u9zx0B0dlw62HXrgUK780ytz474bU614vngrycBgM39kYLCZPzIAAAAAAAAAAAA9oBffl6WAGgBYIyXUAH2i0WzkukvnF1C3zS2iXs1II5le4b0fRdkqHFxYQN3WLJLrvjO54mtDqaYHHxBvU42UufxFd+TQnq0tHm07UUC651gu/667cstnLzH/LSYDg838kQGS5ODeh/OOZ38tjw6fLKBOkuYmHa+ZpHL837OVMo+ONPKO534tqdUy9tA5m3RUNtTQ0OLS6bmnK5Wk5qkhAIBta+4fNFUqyY4dre8AQN+qVqq56pKrctv9t6VZru+ZwTJl/vGhfzyldVSKSq665Cqlg10gA4PN/JGBwWb+yAAAAAAAAAAAAHSZAmoAoM9pGgLoE9VKNdd/459k38xf5dB5i88frSdTtZULptvF0lO1lQurRxpLF1AnycUPJNd/bE+qF62h8ZoNVKasFF0pHj25guPfK0UyPJwoH91iMjDYzB8ZGHSNlLn2KQ/m0eH6KRVQF+ksQ/OKqIsyjw7Xc+1THswV409URN4ParWkOucBQrW6uIiw6s3hAADbUrU6/wNIqlUF1ACwTYw9ZyxJsv/D+9ddPngqKkUl1/zANSfWwdaTgcFm/sjAYDN/ZAAAAAAAAAAAALpEATUAsA14tzlAH9nzwu/JgQ+1iqAXWmsBddL6fvr08pedrrb2t9DFDyQHPpTs2XFGR+vm1FVT5F/e+22pdvlxf7VMax1KJ7ecDAw280cGSJJiwf/vW/WW4oXHWbgOAAAAAGBrjT1nLNf8wDWpFFv7Zz9KB3uHDAw280cGBpv5IwMAAAAAAAAAALDFFFADANvEEhWjAPSsH/3R7PnlX86BD5XZ94bk0HmtzVO1ZHxk+avNLaBua59e7nrt7e3LnSignk7y5Ccno6Pr/jHoXCNlbjjv4ZxdH84jtZnUu/C8RK1Mzq4P54bzHs6bHn+qAtItJgODzfyRAapJ3vbI03L77qN5uDaTmWJ9Lwis92WEZpLhssjZ9eG87ZGnpTq6Y517YktNTib1OQ8Ems2kNuepoGo1GR7e+nUBALD5KpXW/b25pxeeDwD0tXb53/4P70+z3PyPrFM62HtkYLCZPzIw2MwfGQAAAAAAAAAAgC2igBoA2EaUUAP0k+/8zuT887Pnm9/MgQ8l+96QfObJnRdQt621iPq77p1TQD0y0vqamlr3j0Hnqkmu//yF2fecf8xtux7PI0OzW1pAWiuTs2eHcunR3bn+zgtTbUxv3cFJIgODzvyRAZJk7P4zcqz+zPzUs+/syvGLJL/y5Wdm7KEzkrgv2BdmZlpfbfX6/FLqspx/PgAAg6PmJUIA2A62qnxQ6WDvkoHBZv7IwGAzf2QAAAAAAAAAAAA2mQJqAGCbqXR7AQB06C1vSdIqhH7z7cmxFbpCViqgbhutty63nGO11nH2tC9z3nmdrZcNs6dRy4E7L8qlR0/LrkZ1S4+9q1HNpUdPy4E7L8qehoKabpGBwWb+yAAT1Xo+eO4D2dmoZqtfqiiS7GxU88FzH8hEdZU7mAAAQG+rVJLR0W6vAgDYIGPPGcs1P3BNKsXm/AmQ0sHeJwODzfyRgcFm/sgAAAAAAAAAAABsEgXUAMA2pIQaoN98x3ckSQ5emFz9yuTMqWSoufhiaymgbluuiHqo2dr/1a9sHS9JsnPn+tbNhtjTqOXND56XqWpzy36JV5JMVZt584PnKR7tATIw2MwfGRhcjZS58sI7cmjXka6u49CuI7nywjvSiBcnAACgL1UqyY4dvflHUADAum1W+aDSwf4hA4PN/JGBwWb+yAAAAAAAAAAAAGywXnzvlQJqAGADaBAD6De/8As5eGGy/zVJs0iKJGdOJo/tSGaPv4+kkwLqtvblx0da34earf0WaR1n/2ta28e+/vXkmc/ciJ+EdTh4xv25+tvuyZn14TxWm81s0cwSHeQbppJkqKzkzPpQrn7mPdk5tCNjh5+4iUdkNTIw2MwfGRhc1SRXPfa0/PXpt2e8Wk/7JYuteJmgOP41XqunaAzlqseelurOXVtwZE7Z9HTSaJw8XZbJ0NDJ09VqMjKy9esCAGDzVautr7ahodYHDFarvflHUADAKWuXA+7/8P40y1N/5ljpYP+RgcFm/sjAYDN/ZAAAAAAAAAAAADZIL773SgE1ALBBlFAD9JP77svB4gsnCqjb5hZR75ztvIC6rX29Y0MnC6jbThRR33Q0Y+3CErbUwV3fyP69n0+zKFKkyJnN4TxWmVm2gLTI2oopl7vcieLR5nCKSpFmkv1P/Xyyc1fGjj7lFH4S1ksGBtt65p+sngHz7x9uA8jOicy9h7YVRdTtAup5W3buSsrTN/GobJh6PWk2F29rq9WSHTu2dk0AAGyN4eH59wVrtaRSOflHUHMLqgGAbWPsOWO58Qs35mNf/tgp7+vyZ1yudLAPycBgM39kYLCZPzIAAAAAAAAAAADbkAJqAGADKaEG6CMHf//fLiqgbiuSnDV56scYrS9fYn2iiPqv/zJjR5RPbqVGylz3kq+nWZ89sa1IcmYqeWy4zGylnFdA2i6MXGv5aBZctpJkqFnkzJlKipwMRDPJdbktVxx6JNX04Kd2bWMyMNjMHxmgnYGR2WZOb1QyPtya+GYWUS8soD59ppKRZlMG+smxY8n09MnT9XoyM3PydFEkjz++9esCAGDzPf74/A8gKYrkvvuS3buTPXuSkZHurQ0A2DQH7zyYj9/z8Q3Z18fv+XgO3nlQ+WCfkYHBZv7IwGAzf2QAAAAAAAAAAABOUdFjHQoKqAGADaaEGqBPNJqNXPfVg2nuWv8+KmVy+T3Jx5+xdJH1WjSL5LpnTOSKv3os1bLHHjRvY9Uk13/stOx7+UwOnbWggHS6yMMjZZqVk9uKcs4FMn97WSwoqiyPX2zO9kqztd+inFtpmlz86FCu/8vTUp0d37gfjjWRgcFm/sgA8zPQTMoi48OtiZ0oot7Au2ZFmQUF1EVGG8nFj1ZloJ9MTyezJ28z0mzOLyKsVFrbAADYfmZm5t/Xm5pKJiaSycmk0VBCDQDb0ME7D2b/h/enWW7M8z3Nspn9H96fJMoH+4QMDDbzRwYGm/kjAwAAAAAAAAAAcIoUUAMAA0AJNUCfqFaquf4PprPvh5JD53V+/UqZvPumZOyu5OCFyc++Zn1F1Bc/kFz/J2WqO452fmVOyZ4kB/7HaPa9ppFD5zRObJ+ulCdmOa94dI6524sy84pGT1xmzvZmkUwXzYzOCcnFD1dz4KbR7Jk5tmE/E52RgcFm/sgAizJQJuPHe+OKLJ7pqZhXQD2dVgH1wxUZ6DeNRutr7umFLzYpoQYA2J7q9fn39YriZDH1448njzzSvbUBABtuo0sH25QP9g8ZGGzmjwwMNvNHBgAAAAAAAAAA4BQpoAYABoQSaoA+sufxmRz4ULLvDZ0VUc8toE5Ofu+0iPriB5IDH0r2TCcZbqx6eTbensnj5ZM/OJlDe5uZqpYnyicryzx3sFQh6UoFpO1IjI8kmS4z2ihy8UOVHPifo9kzo6Sw22RgsJk/MsDCDGS6lYGNfgnheESOF1DLQN9qNOYXD5bl4iJCJdQAAIOh2WyVUNfrrdMPPNDd9QAAG2azSgfblA/2PhkYbOaPDAw280cGAAAAAAAAAADgFCmgBgAGiBJqgH5SltkznY6KqBcWULd1WkQ9r4A6SWZnO1o6G2fPbHLgYC2X/dhMDj1h5csONZJGZenzFhaSLmV8JHnat1rH2zNT73yxbIpOMjC3UHap82rN5TOSyEAv6mT+I/Vkprr0ee0S4pWYf2/qJAPLFVMnrQxUyqRcIQcy0JvaGdj3utkcekKZmUpydHh9+yqydIF1WSQ7Z5LRenLxt4oc+DMZ6EvN5uIS6oUvOnkRCgBge1p4X7AoTn5IyeRk8uij3VsbALBhNrt0sE35YO+SgcFm/sjAYDN/ZAAAAAAAAAAAAE6RAmoAYMAooQboQ2stol6ugLptrUXUiwqok/kFJmy5j39bMw/uKjPUTGaXKRA+fTqZrCWNFfZTHL/c+MjS5w81kwd3lfn4tzUydvcKTcVsubVmYLnZtlXLZLcM9J21zn+2snwJddIqId4znUyYf99ZawYeH175d3ylTHbPuA3oR3umkgMHq7nszc08uGvpMunlCqYXWu66k0PJsx5rHWfPTLnGvdFTms3VS6e9EAUAsD0t9/xtWSb1enLkyNauBwDYcFtVOtimfLD3yMBgM39kYLCZPzIAAAAAAAAAAACnSAE1ADCAlFAD9KnViqhXK6BuG7urVTK4f5ki6iULqBMl1F108NnN7H9VM2WSM6eSx0YXF5CePp2M1lsl1KsZrbe+LywgHWq29l8m2f+qelJWMvYFBaS9oJMMrFZCnchAv+lk/rPDq+9vpJ6cHvPvJ51k4PE1ZMBtQP/6+FNbBdTtMvJyzn25ImkNbw2vexTHL1cu2NYqIU8+/tSG2ferhffZl7oP78UoAIDB0Gi07g8WReurXu/2igCAU7DVpYNtygd7hwwMNvNHBgab+SMDAAAAAAAAAABwihRQAwADSgk1QB9broi6UibX3JS8fpUC6rZ2UfXCIuplC6gTJSVdcvDCZP+rT86pKJMzJ5PHdpwsIG0Xj3ZiYQHpULO133YcmkWy/9XNpNFctdiczSUDg63j+a/xOUbz7x9uA2hrZ6FMa1YP75yTi7SysaabgOMXWlhEXTmerTJmv+35cBkAgMExPd36A6kdO1pfAEBf6lbpYJvywe6TgcFm/sjAYDN/ZAAAAAAAAAAAAE6RAmoAYIBVur0AAE5Nu4j64gdap9sF1J2WBI7d1bpe5fhj0hULqOmKgxcuLgpPWkWTZ062CkPXUzzaNlpvXX9h8Whbs2gd/+CF69s/p04GBpv5IwO0LczCdG1xAfV6FOX84vHp2sl/mz0AAGwTZZkcO5aMjnZ7JQDAOjSajVz3uetOqXSwSJGL9l6UYtGzwGvXLJu57nPXpdFsrHsfrI8MDDbzRwYGm/kjAwAAAAAAAAAAcIoUUAMAA04JNcA20C6ifsF96yugbmsXUb/gPgXUvaZRJNddurh4tK1Ictbk6sWjQ6ucP1pv7We5p0uax9fR6LHnUwaBDAw280cGaFtYQD1VS8ZHWv+ulOsvoG4rypMfSjI+0tp/oogaAAC2nQcf7PYKAIB1qFaquf6Hr8/F5128rusXKfITz/+J/PQLfjo/8fyfWHf54MXnXZzrf/j6VCvVdV2f9ZOBwWb+yMBgM39kAAAAAAAAAAAAToECagAAJdQA28We6eTGG9ZfQN02dldrPwqoe0u1TK7/0+TiB9a/j11TyWlTre/rdfEDrXVUPYex5WRgsJk/MkCycgH1ZlFEDQAA29RDD3V7BQDAOu0Z2ZMDbzjQcflgu3Twhee/MEnywvNfuK7ywYvPuzgH3nAge0b2dHQ9No4MDDbzRwYGm/kjAwAAAAAAAAAAsA4KqAEAkiihBthWNqoQUrFkb9oznRz4UGcFpJUyKZKceTQ5YyrZUW99P/Noa3vRwawvfqB1fAXl3bOeDBQysG2sa/5Zef6dMP/u25TbgA6OLwPd1SiS6y499QLqTm732xYWUV93aWs9AABAH5uZ6fYKAIBT0Gn5YFHMLx1sa5cPVoq1/fmQ0sHe0XEGIgPbSafzr6Sy4vyLNb6xwvx7hwwMtg2/H7DGPyM2/97hviAAAAAAAAAAAHRAATUAwAlKqAGgj3RaQFqUyVlHktOmk2rz5Ndp063ta32KRPFo7+g4A1k5A5U1Pi8lA72h0/lXVrsNMP++s9G3ATLQP6plcv2ftmax3gLqSrN1u1Bpdn7ddhH1xQ+01uFDSwAAAACgu9ZaPlgpKnnni965qHSw7YXnvzA/+09+dtXyQaWDvaeTDCxVPNn2wvNfmF98+S/KQJ/pZP7/6iX/asX5//QLftr8+1AnGXjLxW9ZMQP//mX/Xgb6TCfz//cv+/crzv8tF7/F/PtQJxn46Rf89IoZ+P989/9HBgAAAAAAAAAA2J4UUAMAzKOEGgD6zFoLSCtl8r1fSXbNLH3+rpnkvPHVS4gVj/aeTjJw3vjKGXjJV2Wg33Qy/x/5h5Xnf9ZR8+9HnWTgGQ+vnIHveFAG+sme6eTNh5JjQ51ft9I8+eETRdZXRH1sqHV8WQAAgG2g1/6ACgBYl9XKBytFJdf8wDV56be9dMX9vOypL8s1P3DNsuWDSgd711oy8F9e+V+WLZ5se823v0YG+tBabwO+72nft+J+vvvJ323+fWqtGXjRk1604n5e9cxXyUAfWuv8X/XMV624nxc96UXm36fWmoHvfvJ3r7if73v698kAAAAAAAAAAADbT6+9f0oBNQDQA5RQA0AfWq2AtFIm19yUPOPR1fdzzU3LF5AqHu1da83AarN7+mMy0I/WOv/nr1JSvGsm+c8fNv9+tNYMnH105f2c97jbgH5y8MLk6lclZ0wmQx2USM8toG7rtIh6qNk67tWvaq0DAADocxUvEQLAdrFc+WC7dHDsOWNr2s/Yc8aWLB9UOtj7VsvAFc++Yk37kYH+5DYAGRhs5o8MAAAAAAAAAADAEnqtgBoAoEd4hzkA9KnlCkjbxaNjd61tP2N3LV1Aqni098nAYNuo+f+g+fcttwGDpVEk112aNIvWA/m1FFG3i6bnvjwyOjv//J2zWVW7gLqS1vGvu7S1HgAAoI/5QyoA2FYWlg92WjrYtrB8UOlg/5CBwWb+yMBgM39kAAAAAAAAAAAA5ujF902V5eqXAQDYAkqoAaCPLSwg7bR4tG1hAani0f4hA4PN/JGBwVEtk+v/dM6ss3oR9c6Z+QXUZx1N9h5pfW8bbiSnrzDnuQXUSev41/9paz0AAEAf84dLALDttMsHX3D+C9ZVOtjWLh98wfkvUDrYZ2RgsJk/MjDYzB8ZAAAAAAAAAACAKKAGAFhFrdsLAABOTbuA9MofTq66rfPi0bb29a67tFUuqXi0f8jAYDN/ZGBwtGe97w3JofNOFlEf3pHMLviIqdOnk0ozmRxqnT7raLJrpvXv9vdHd7W+j9Zb38dH5u9jqQJq5eQAALBNNBrdXgEAsAn2jOzJjftuTLVSPaX9jD1nLFc8+4pT3g9bTwYGm/kjA4PN/JEBAAAAAAAAAAAGmgJqAIBVKaEGgG1gz3Ry4w1J9RSfdxi7K7niC6e+H7aeDAw280cGBsdaiqhPn24VS88cPz23gLqtfbpx/H3DC4uoFVADAMA25w+YAGDb2qiyQKWD/UsGBpv5IwODzfyRAQAAAAAAAAAABpICagCANVFCDQDbxFKFoXuPJmdPLn+dnTOLtyke7V9Lze4JR5PHR5a/zjnH1rYfet9ScztrauXbgCRZeDXz719Lze7co8nU8PLXecKRte2H3rJSEfXO2ZOF0tUyeepjyZnL3A6cPZm85gvJdf8kaRYnr3dsSAE1AABse81mt1cAAAAAAAAAAAAAAAAAcGoUUAMArJkSagDYxt5wd3LBxPLn75jdurXQHe+8NZkcWv785z+4dWth6/3Te5Pib1e+zOlbsxS65O23JQ/uXv78p41v3VrYWEsVUZ85mbRfHqmUyX/5aFKu8nrJ938pufThZP9rThZRj9RP7kcBNQAAAAAAAAAAAAAAAAAAANBzFFADAHSk0u0FAAAAAJ1rF1Ff/EDr9NwC6mtuSn7o7rXtZ+yu1uUr5fz9KKAGAIBtzB8zAQAAAAAAAAAAAAAAAP1KATUAQMeUUAMAAECfWlhE3S6gHrurs/0sLKJWQA0AANtcrdbtFQAAAAAAAAAAAAAAAAB0TgE1AMC6eIc5AAAA9LF2EfWVP5xcdVvnBdRt7etdd2ly/Z8qoAYAgG1taKjbKwAAAAAAAAAAAAAAAADojAJqAIB1U0INAAAAfW7PdHLjDUn1FF+bGLsrueILp74fAACgx/XiH1sBAAAAAAAAAAAAAAAALKcX3xOlgBoA6COVbi8AAAAAOHUbVRytgBoAAAbA7Gy3VwAAAAAAAAAAAAAAAACwNgqoAQBOmRJqAAAAAAAAGCTNZrdXAAAAAAAAAAAAAAAAALA6BdQAABtCCTUAAAAAAAAMkmq12ysAAAAAAAAAAAAAAAAAWJkCagCADaOEGgAAAAAAAAbJyEi3VwAAAAAAAAAAAAAAAACwPAXUAAAbSgk1AAAAAAAADIqiSGq1bq8CAAAAAAAAAAAAAAAAoH8ooAYA+pwSaoB+0oufzAQAAAAAQH+oVJJqtdurAAAAAAAAAAAAAAAAAFher3VtKaAGALaBWrcXAEAHRkeTyclur6Kl5ldIP6gPNTKzwqiqSVJTOrOdzaySgXotMrCNNWorzz9JUi3is2m2r9VuA2bdBmxvtebq/3lXk9TcBmxbzebKp5NWCSEAANvPUvf9arWTf3yliBoAAAAAAAAAAAAAAADoRQqoAQA2hQZRgH5y5pm9U0Ldaw/UWdLhHUW+uWf583fNxCy3uft3Fzk6vPz5T5uIDGxjR4dXvg1IkmaRJDKwXT20u8g3T1v+/NNm4zZgOyuK1f/zLiID21mlMv8FraVmbf4AAIOjKE5+AQAAAAAAAAAAAAAAAPSaXnvvkwJqAGAbUUIN0E+q1RXPnqkkw81TP8ya9lOpnPqB2FCNoky1XPAkSlEmlRWeyKhk0SyX3A99YcnZVZqtOS+nUsjANrH0/Fe5DUhaGZgTEvPvX0v/HnAbMEgWza6Std0GyMD21Vxwp35hKXXSey/CAQCweebe9x8a6t46AAAAAAAAAAAAAAAAABbqtfe+K6AGALYZDaIA/WSFYpB7T0ue/HPJ1Zef2iGuvry1n3tPO7X9sLUmhsu8/kfqOfisxint5+CzGnn9j9QzMewJkH4jA4PN/JEBZAAAAFizajWp+ZxaAAAAAAAAAAAAAAAAoEcooAYA2HTeYQ7QT0ZHl9x872nJxW9PHt2Z/JfvaW375Y93vvurL29dvyxa+zv028mTH1/igkXRew/aB9jEcJl9r6vn0BOaue3cZlIUGbu7evzcIskKT2gUOTHLg89qZP8r6mkWyb7X13Pgz4ayZ8ac+8GKGVhthHP+e5aB/rTy/Fe5DThxmcL8+5jfAyybgbXeBsgAAAAMjkql9eX5XQAAAAAAAAAAAAAAAKAX9Np7nRRQAwDblBJqgH5y1lmtB8xzHqTOLaBOWgXS7SLq/9xBEfXcAuqktb9li6iLIqn5FdILJobL7PuhqRzaWyYp0iyS/a+sJ5Vqxr5US6pJKivsoJKkVsvBC+rZf3k9zeNPyBw6t8y+sXoO/I9R5ZM9btUMVBqrZKAqA31s9duAIqnUV95JrZaDF5Tm36dWz0Azqazw5HalcBvQ5+ZmoEzSLIoTGbj867Wk2lh5B7VqUqvMy0CZUga2k7kvcJVl0mzOP79aDQAA21B9iecDKsefJGo2e+8PswAAAAAAAAAAAAAAAIDB02vvc1JADQBsYxpEAfrJ+efPO7mwgLqt0yLqhQXUbcsWURfF4vI6ttzEcJl9Pzh9vHj0pGaR7L98OimbOfNYsfITG2Vy8Jkz2X/5bJoL5n9obzP7fnAyB/58RPlkj1pLBlKWyYrPbZUy0KfWMv9vf2SV24Akf/bM2fzLyxvm34fWfhvg98B2NTcDzZQ5PJrsnC0z2iiy//Lp/PIna1k02IWazRx8Zv1EBqaqZY4NJWdMlTKwXcy9DWg2558uVv89AQAAAAAAAAAAAAAAAAAAABtOATUAwJZSQg3QT57ylBMPVJcroG5baxH1v1mmgLptySLqskwajfX9DGyIieEy+35otlU8usRzF80k+y+fyU/fVll+uEn+4ewyv/aieprJkvs5tLfMvh+ayoEbh5RP9pi1ZuCV91TyjPHlZ/fpJ87mv1/alIE+s9b5/+tbVr4N+PzZZa69xPz70VozMPaFSp5wbPnZ/e15zfzhd8hAP5qbgWaZHN6RzFaS8ZEk02VG68n/97LZ/Oidlbzwgcqy+/mLpzXy/7uskWaSqerx6yc5PJqcMVnKQL9bWDq9sJjei2AAAIOl2UwqldaX+4IAAAAAAAAAAAAAAABAtyigBgDYckqoAfrJ0FCS1Quo21Yrol6tgLptURF1u6iErpgYLrPvdceLR1fQLJJ3v6iZV3ylku94ZPG8Pn92Mx9+ZjM7Z1c+3qEnlNk3Vs+BPxtWPtkjOsnAwQub+YEvL5+B//X0ZoZW6ZSXgd7Syfx/8SXNvPxry8//pgua2TWz8vHMv/d0koHrL2rm1fcsn4Gbn9HMSH3l48lA75mbgWZOFlC3tYukRxrJB57XTIpiySLqW89r5o8ubP0SmKqdvF7S2t/hHckZkzLQ95rN5c8rit57cQ4AgM3Tfk630fBHUQAAAAAAAAAAAAAAAEB39Np73L3XCgAYEBpEAfrJ4cNrLqBuaxdR/5vL529fawF1W7uI+t7T4kFzF7VKJ2dyaO8KZYJzlEluuqCZz589//Lt8tm1zv/Q3mb2vW4mE8Nm320dZ6BYJQNrPK4M9AbzRwaYm4GlCqjbxkeSqWorAx+4qJFbz5ufgVvPa+YDFzXSLBYXULe1i6ibkQEAANh2VvqwEgAAAAAAAAAAAAAAAIDNoIAaAKBrat1eAABrd+9f3thRAXVbu4g6Sf7zxzsvoG5rF1Ef+u1GnjyjpGSrTQyX2XfFbA7t7eyJi3YRdcrkOx4p8vmzyxPFo51E4NDeZvZdMZ0DNw5lz0yPPZkzIDYjA52Qge4yf2SAuRlYqYD6xOVHktF6MtxsFVGnLPPCByrHC6hbH0YxVU0eX6KAuq1dRH3GpAz0pWZz/oteZbn4dMXnkwEADIxms/VHWkXhfiAAAAAAAAAAAAAAAACwtRRQAwB0lRJqgD4xU5/JpVc80HEBdVu7iPpDz02+ckbnBdRtj+5MLv3p5Ju/Np1hPdRbplEkV/5wcugJ67t+u4D0rrOTe87MyeLRDp8HOfSEMlf+4ExuvCGpeg5lS607A8fbxpfNQIdkoDs27TagQ+bfPW4DmJuBtRRQt00OJZlJhsvkAxc183fnNnPH3lYGZopkanj1fcwropaB7afpTj0AwMCo11t/qDU01Ht/sAUAAAAAAAAAAAAAAABsX732fiYF1ADAAFpDZRUAvaBaqeb06VPbR1kcL548xcfjp08rHdxq1TK56rakssL/70ud1UyrtLJRJPVKcvfZre/tbc0lsrDSaCvH12H+W2/dGShWycAa99MmA92x3vmXWXn+jWLx9cy/N23abYDfA32jnYGUay+gbpscTqZqSb2aHDqv9X2q1tq+Vu0i6sgAAAD0r0ajVUQ9O9vtlQAAAAAAAAAAAAAAAACDQgE1AEBPUEIN0CeqlWr+y8eS3TPdXcfumeS/fEzxYDeM3ZVcc9PSBaTNJI/taBVKdmLhrqZqrf0sVUxcKVvHH7urs2OwcdaTgVX/U13wHJ0M9K7NuA1YyPx722bcBvg90F8u/0py3pHOCqjbpmsnrzdbaZ3u1GyldfzLv9L5dQEAgB5SryczXX6iGQAAAAAAAAAAAAAAANj+FFADAPQMJdQAfWTsruQDB7tXRL17pnV85ZPds1QBaTPJ4R2tYsjxkfWX0E7VWtefrbT2N7eAVPFo75CBwWb+yMDgahTJlT+cPHBacvr0+vYxXUsma+sroE5ax33gtNY6Gj32Og8AANChw4e7vQIAAAAAAAAAAAAAAABgO+u1AmoAgAGnhBqgz3SriFoBde+YW0A6t3i0bT0FpO3i0ba5BaSKR3uPDAw280cGBlO1TK66rTWP0fr6i6gb63wW4PTp1nErx9dR9eGeAADQ3yYnu70CAAAAAAAAAAAAAAAAYLvqxQLqUlECADDYlFAD9KGtLqJWQN17xu5KfvnmxcWjbZ0UkC4sHm1rF5D+8s1m34tkYLCZPzIwmOYWkJ9KEXWn5hZQKyQHAAAAAAAAAAAAAAAAAAAAlqWAGgCgJymhBuhTW1VErYC6N02MJB+8ONk5u/xlxkeSmerK+6lXli4ebds52zrOxAqXoTvWmoH6Kvf2ZmSgL611/tOr3QYUK8/W/HvXWjOwVEH1XLNuA/rOVhdRK6AGAIBtqhf/kAsAAAAAAAAAAAAAAADob734viUF1AAASZRQA/S1zS6iVkDdmyZGkn1vSA6dN798cqmnOo4NtUpml1Ivkpna4u3t/bRLJw+d1zqeAtLe0UkGZmorZ+DY8OLtMtDbOpn/0eGV5z/rNqAvdZKB6VV+D0wNLd4uA71vq4qoFVADAMA2tnt3t1cAAGySmfrGvHi8Ufth6zWajZ7aDwAAAAAAAAAAAAADQgE1AEBPU0IN0OfaRdS7Nvg9wLsUUPekucWjbaP1ZM90UhZLF5DOLlFCvFL5bFm09jdaP7ldAWnvkIHBZv7IAG0Li6j3TCfNojW/U1EWrf3sUUANAADbV7WanHZat1cBAGyCeyfuzfm/en6u/tjVp7Sfqz92dc7/1fNz78S9G7QytsrE9ER+8PofzME7D57Sfg7eeTA/eP0PZmJ6YoNWxlZRQo4MAAAAAAAAAAAA0BUKqAEAep4SaoBt4PKvJM96ZGP3+axHWvuldyxVPJokzSSTQ61/r6WAdLXi0RzfX3PB+QpIu08GBpv5IwMs1C6iLso5Gcj6i6jn5mdyqLVfBdQAALCNVCpJrZYMD7f+DQBsK/dO3JuLfuOiPDL1SH7lr39l3UXUV3/s6vzKX/9KHpl6JBf9xkWKqPvIxPREXv3BV+cj93wk+z60b91F1AfvPJh9H9qXj9zzkbz6g69WRN1HJqYn8robXrchJeSvu+F1Zt+HZAAAAAAAAAAAAICuUEANANAXlqgeA6CftAsp7z57Y/d799mt/R74ULJneokLjI5u7AFZUaMoc+WPzObQufMrQZtJDu9IZqont5VFkjIpkuP/0zJbSxrNpLlEv8zCwsqZamu/Z0zO/8SKQ+clV/5oJTf+yVCq6224ZF3WnYE5ZKB/mT8ywHIuv6/Mucdmcv9pJ18AKZOkaJVIr9XCAvOZanLusSKX3zecjJp132o2W19zzX2xrBdfzAMAYGPU64u3jRz/VKFqtVVGDQBsG+0C6vGZ8RPbfuWvfyVJ8suv/OU176ddQN02PjOei37jovzjO/4xT97z5I1bMBuuXUB9y723JElmm7PZ96F9OfCGA3nlM1+55v20C6hnm7NJklvuvSWv/uCr89E3fzR7RvZsytrZGBPTE/mRP/qR/NXX/ip/842/SZKMPWes4/0cvPNg3vrnb83R2aP5kT/6kfzJG//E7PuEDJAkjWYj1Up19Qtu0X7YejIAAAAAAAAAAMCW68X3rCugBgBYkneYA/SxdgH1X31bcnR4Y/d9dLi132WLqIc3+ICsqJrkqs9Xctu5U2kef96lmTKHR1slkQuf9mgXkC60luLR9rYTBaRTSeV4lWmlTK76/EiqQ0On9gPRMRkYbOud/8Knac2/f7kNYCkTw2X2vfZYvnpG2RranDm2i6jXYmEBdXsHXz2jzL6xeg78xc7smenBF35YXbM5v3ywLBeXUPfii3oAAJy6pUqoK5WT9/8qSzxABAD60lIF1G3tQulXPfNVq+5nYQF1myLq3rewgLqtXUT9e6//vTXtZ2EBdZsi6t7XLh/+1Nc+lZnGTGYaM3nrn781SWclxO3y4cemHkuZMp/62qeUEPcJGSBp5eDKP70yV11y1boKyNsO3nkw133uulz/w9ebe5+RAQAAAAAAAAAAtlwvvlddATUAwLKUUAP0qc0soG5bsYhaCfWWG/v6cPJXtex/2dHUizKHR5YuHm1rF4qu9FTNSgWVJwpIR5MzppNaWeSav9qVsa+PJMbfFTIw2NY7/5WYf39xG8BcE0PN7Pv+x/OZc5sZH26NcVEZ+fHvK2ZgqQLq49cZH04+88Rm9v3QVA585LTsmVVS13cajaRabZVRtwuom835l6lWu7M2AAC2VvsDSIpifhk1ANDXViqgbvuVv/6VfG38a/nBb//BZS/z27f+dv7wjj9c9nxF1L1ruQLqttnmbN5y41vyjhe+Iy88/4XL7uemL96Ut/3Pty0qoG5TRN27FpYPJ0mZMo9NPXaihHgt/90uLB9OkpnGjBLiPrCWDKyFDPS3iemJ7PvQvnzu/s/ltvtvS9JZAXnbwTsPZv+H96fRbGTfh/blwBsOmHufkAEAAAAAAAAAALZcL74/SQE1AMCKlFAD9KGtKKBuW7aIempqcw/MksY+nxxrDuWnvn96xeLRucosXT651uvOVJPDI2Xe95HhjN1VJjH7bpKBwdbp/FcqoDX//uQ2gCSZGC6z71VT+cwTGhk/fl9wpXmuJwPt64wPl/nME2az71XjOfA/RrNnpgdfCGJ57fLp5OT3uSXUReGFNACAQdG+39cuogYA+t5aCqjbDtxxIEemj+RNF71p0Xk3/OMN+Ysv/cWq+1BE3XtWK6Buqzfrec9n35N3vuidSxZR33rfrfmNW38j9WZ9xf0oou49S5UPt80tIb76pVfn/N3nL7ufv7n3b/Lbt/72vPLhNiXEvW2tGXjLxW/Jdz7xO5fdz81fvjn/4RP/QQb6VLt8+Lb7b8vhqcPZObQz+z+8P0lnJcTt8uFjs8dybPZYbrv/NiXEfUIGAAAAAAAAAADYcr34/iTvmwcAWJUSaoA+s5UF1G1LFlHPzm7NwZlnYrjMB58zm1ozma6u/XoLyyc7ecqkTFJrJh98zkx+6Aul8skuk4HBZv7IABPDZfa9djafOa/M+EhrW5mkXGUsnWagLFoXKpKMjySfOa+Rfa89lgM3DslAPynL+S+WLfXCWS++wAcAwOZofyCJP6gCgL7XSQF1W7toem4R9VoLqNsUUfeOtRZQtzXKxpJF1Lfed2ve89n3pFE21rQfRdS9Y6Xy4bZ2CfEvfuoX888v+efLlpC/73Pvy9GZo4vKh9uUEPemTjLwO3//O/mpS39q2Qz83qHfy8T0hAz0oYXlw7PN2YxPt+4ftEuIL3rCRavuZ275cPv6h6cOKyHuA2vJwFBlaNX9yAAAAAAAAAAAAGvWi+9P934pAIA1qXR7AQCs3cRoseUF1G1zi6gnRrb22LRMDJfZ9/rZfOb8MpO1+UWSa1Eu+L5WRZLJWvKZ81vHnxj2pEu3yMBgM39kgLkZ6KSAuq3TDJTFycuOj8gAAAD0vbJMGo1WGXVjbSWDAEDvWU8BddtffOkvcsM/3pCk8wLqtnYR9b0T93Z8XTZGpwXUbe0i6lvvuzVJ5wXUbe0i6onpiY6ux8ZZS/lwW5kyEzMTee9t7z0x+7Zb77s1773tvSsWULfNLSE2++7rNANHZ4+umIGVCqjbZKD3LFU+3CybKcsy49PjOTZ7LPs/vD83f/nmFffz2W9+dl75cFmWaZbNzDZn55UQm3vvWWsG/ubev1lxP5/4yidkAAAAAAAAAACAtVFADQDQ15RQA/SJRrORK99Y7UoBdVu7iPrKH04ahQffW6lRlLnyivq80smiXH8B6VoVx4+TnCyfvPKKuvl3gQwMNvNHBlgqA50UULd1OrmliqhlAAAA+pwSagDoWzP1mTzvN5+3rgLqtr/40l/kX938r9ZVQN02PjOe5/3m8zJTX7n4lI3XaDby2utf23EB9YnrHy+ivvbvrl1XAXXbLffektde/9o0mu5XbrVOyofbypQ5NntsXglxu3z42OyxVcuH25QQ9wYZIFm+fDhpzXtuCfEvfOoXFhWQt9163615/6H3zysfbudBCXFv6yQD1/7dtStm4F1/8y4ZAAAAAAAAAABgdQqoAQD6nhJqgD5RrVRTO2tv1wqo244OJ7VGUu208ZBTUi2LfMfDOVE62bbZ/Y8L9z8+knzHw+bfDTIw2MwfGWBhBtZTQL1eC4uoZQAAALYBJdQA0Jdm6jM5PH34lPfzrWPfOuV9HJ4+rIS6CyZnJvN/vvF/TmkfjbKRT3/j0+suoG77P9/4P5mcmTylfdCZRrORN/7xGzsqH26bW0J87d9d23H5cFu7hPiNf/xGJeRdIAMkK5cPt80tIZ6ancoHbv/AohLiW++7NR+4/QOZakwtKh9uU0LcmzrNwHR9esUMTM5OygAAAAAAAAAAACtTQA0AsC0ooQboEzP1mXzirPFuLyNJ8omnJzOV5uoXZMM0ijKfPyc5fXr+9s2ewsL9nz6dfP6c1nrYWjIw2MwfGWBuBraygLqtXUQtAwAAAADQPcO14VR65E99KqlkuNblT1AeQDuGd+S0odO6vYwkyWlDp2XH8I5uL2PgfOvotzouH25rlxB/5pufWVf5cNtMYybfOnrqZfasjwwMtrWUD7e1S4gfn3080435JcTt8uHpxnQmZyeXLB9uU0LcW9aTgaOzR1fMwNHZozIAAAAAAAAAAEB/UUANALAuvfHONABWVa1U86LzXpBT6fsrkuyot76vex9l8qIHilS3uvlwwFXLItf/eS3fdV9xooC0mZzaMNeiOFlAevp08l33tdZh/ltPBgab+SMDtDPwtPGc0txPaXJF8rTxyAAAAPS7okiGFUYCQL+qFbVuLyFJ76xj0DSajTTKRreXkSRplI00mr2xlkEyPTu9+oVWUKbMbHN23eXDG7UO1q/eqJ/S9TcqA6e6DjrXaDZy5Z9euaby4bZ2CfHk7OSJEuJr/+7aeQXU7cutZGEJ8ZV/eqXfAV2w3gwkWTEDKxVQt8kAAAAAAAAAAMAAK3qsW0ABNQDAuimhBugT1Uo1v7vvD3Jmc2jd+9g5k5wx1fq+XmdOJb/7PxUPdsOemSIHbhzKd91X5LTpbH7xaFuRnHa8ePTAjUPZM2P23SIDg838kQE+/rRmHtyVDK/zvbzFgu+dGm4kD+5qrQMAAOhTRZFUKq0vAKDvHJk6kpnyFF7s3UAz5UyOTB3p9jIGzkx9JkfrR7u9jCTJ0frRzNR7I4+DYqY+k7sfu7vby0iS3P3Y3ebfBY1mI1+b+Fq3l5Ek+drE1xTQbrFqpZo3PfdNay4fbltYQvyPD/1jRwXUbXNLiN/03DelWqmu7wdh3WQAAAAAAAAAAIAtp4AaAGBbqXV7AQCsTaPZyM/8xc9keHRXhqcOZ6bD93AUSSaHkmYlma62Tnf6kHq4kQw3k5/5gUZuPKiIuhv2NJJf+8siF181vaXHPTac/NpfDmdPo5p4/1BXycBgM39kYHA1ijLXXTybsihy+lSZh3YmndwVa1+02kwalc7vCxZlcvpUUhZFrru4mSvuGXJfsB+U5fwX0haeTpQPAgBsV7Ozi7dVqye/99ofgAEAa3LW7rNy7q5z8+DRB7u9lJy769yctfusbi9j4OwY3pHTR07P+PR4t5eS00dOz47hHd1exkAZrg3n7B1n98RtwNk7zs5wbbjbyxg41Uo15+w8JxPTE91eSs7ZeY4C2i3WaDZywx03ZMfQjkxPdfZ6cZkyRYpMzk5mtjGberN+YnsnmmUzO4Z25IY7bsibLlJCvNVkAAAAAAAAAACALdVr7z9SQA0AcMqUUAP0iWqlmqsuuSq33fPXOWsyeXRH1lxEXaRVHJi0CqjTPl2svXxwuJGcNdnqnbzqztFUh7yZsBvu3dXMy66cTGOLn6NpFMnLrpzJbdeflicfVVTYTTIw2MwfGRhc1STX3zycH3ntkfzVkxodl0iXSUbryVCZzDaTqQ6fDSiSjI8m3/vNSq6/eXeqQz32ghFLazQWl1A3m/MvU/XGcACAgVAUyqcBYBtoNBt50ZNelL+4+y86LgzcSEWKvOhJL0qj2VA8uMWqlWp+4zW/kTcffHO3l5LfeM1vmP8Wq1aq+dVX/Wp+/OCPd/024Fdf9avm3wXVSjX/6bL/lJ+48SfSLJurX2GTVIpK/tNl/0kGtli1Us2bnvumfOzLH1vX9dslxOstH26bnJ3Mm56rfLgbZAAAAAAAAAAAgC3Ta+9BUkANALAhlFAD9JGx54wlt/589j/j0TUXUc8toF503hqLqE8UUJfJNR+tZOzBnX6DdMG9Oxu59J89nkdHWhPrtHxyvdpPCT06WubSNz+e2/7wjDz5mDcRdYMMDDbzRwZItZkUlSSNJEmlTJpb8NpNZW7QikqruK6mjLwvFMX8F9SazcUv+NXcsQcAGAhF0Xt//AUAdKxdPHjT3Td1vYBW8WB3NJqN/P7tv9/tZSRJfv/238+bLpKDrdRoNnLDHTfktKHTMjE70bV1nDZ0Wm644wbz74J2BnbXdnc1A7tru2WgC9rz31HbkenG9Lr2sRH3H3bUdph/l8gAAAAAAAAAAABbotfeg6SAGgBgw2iNAugn992XsY98Ldd8uEi1bBVDDzeWv/hKBdQnLlOeLJdcyrwC6puSsTuaSWOFg7IpZirNvOBNh08Uj5ZrKA/fKOXx4yXJoyNlXvCmw5mpNLfo6LTJwGAzf2SARlHmylc9njvObuTM6SJDx0dQWWMQiiTTteT/z96dx8lV1/n+f3/PqaquXlLd2QMEhj0kLAmb4IxiFFnEMd4WhvZOEDCKy9Xo/By3uXpdHi4jirgwDIM4EYWoGdGG0QFRcBiCENakQQhrwhIge3dXurvWc87vj+pKqnqtqu6uc6rr9Xw8Dt11qs45n+7vh+qTc+q8T8LOfS31tE9+/WFXmpkyenK2o5Xn7pMz3k4mAAAAAAAAgEnnuI6+v+H7cuXvMVpXrr6/4ftyXM4b++G5Pc/5XYKk4NRRT2zL1jlHnONr+LAkxTNxnXPEOQSP+oAeqG/5m1H0p/t9raM/3c/NKHyS74GBzICvdQxkBugBAAAAAAAAAAAAAACA6YoAagAAgGmNEGoAqCW//72UTqv9GTNuEHUpAdT7XztKEPWwAOqnB59Ipyv8AVCpiGvp8s0NkqobPJpXGEB6+eYGRVx2IaqNHqhvjD/oAdie0arNUVmeZGTKCqIu3M9zrOL5Y50CGhpAbWRkedKqzVHZXsBOHgEAAAAAAAB1oHegV4+8/ojfZUiSHnn9EfUO9PpdRt3pHejVlp4tfpchSdrSs4UeqLJEOqFP3fkpv8uQJH3qzk8pkU74XUbdSaQT+vQfP+13GZKkT//x0/RAlTmuo59s+omyXtbXOrJeVj/Z9BNuRuEDx3V00+M3BeKGJDc9fhM9AAAAAAAAAAAAAAAAMN0QQA0AADDtkRwGALXkj3/c/20uiFr7g6hDBdeWlBNAvX+ZIUHUIXeUAGpJymQqqR4TdOUDLVqxNVz14NE8T9KKrWFd+UCLTxWAHqhvjD/oAbRvadA19zaPGEQ9kvFCpqXRb0aSNzSA+pp7m9W+paGC6gEAAAAAAABMVDobrJsFB62eehAJRfwuoUjQ6pnuHNeRo2AEfjpyCB/1gW3ZMuOe/akOIyPbsv0uo644rqNHXntEnm9njHM8eXrktUd4D/DJnoE9cj2fQ6g9V3sG9vhaAwAAAAAAAAAAAAAAACYZAdQAAAB1gRBqAKglTzxR9LD9aaNrbpfStuQO/ju+kgDqvMIQQtfk1jssgFqSHC4i8kPnkSk9PN9Rs08Z4M0Z6eH5jjqPTPlTAOiBOsf4gx6ANDyIujVt5I1wPqecfcLRgqg9I7WmCaAGAAAAAAAAgmJubK6sgHzUx5KlubG5fpdRd1qiLTr1oFP9LkOSdOpBp6olyo0rq4nxRyQU0UdP/6jfZUiSPnr6Rwmir7JIKKLLl13udxmSpMuXXc74+8C2bP3Dmf8g2/gbAG+bwToIogcAAAAAAAAAAAAAAJgeCKAGAACoG8G4Mg0AUJpdu4ofD/kHs+VVHkCdZ7zcesbkuhPbCMrmGE9rFiflGimWsaoeQNqcyW3XNdKaxUk5E200lI0eqG+MP+gBFMoHURvP094GTyONhieNGE49Es9o1HXsbfBkPI8AagAAAAAAACAAbMvWLRff4ncZkqRbLr6F4EEfOK6jg2YcpJAV8rWOkBXSQTMOkuNyA+tqYvzhuI5e6H5BzeFmX+toDjfrhe4X6IEqY/zhuI5++eQv1RJpkRnxNsNTz8ioJdKiXz75S3oAAAAAAAAAAAAAAABgOiCAGgAAoK74e0UKAKA86XTRw87jpNUXSA2O1JqSeicxF7A1lVvv6gtyj9ufLnjS86SBgcnbGMZlS1p7W0gdKxx1zfMUSxtljadUFf6SN2SlWNpI8rR0p9Ha/wzJTiemfsMoQg/UN8Yf9ACGOvtZTw1v9JQd4xrz/OmVsU77jBZAnZe1pIaMp7OfzUppLiKuOc6QMfO84nnGSDZBQQAAAHXBdXOTxf1pAQCode2L23Vz+826pPMS32q4uf1mtS9u92379cy2bK1atkobX9+oHf07lHWzVa8hZIU0v3m+Vi1bRRB5lTH+KOwBSerP9Fe9huZws9qibfSADxh/DO2BnmSPRr5l8dQwMmqLtqkp3EQPAAAAAAAAAAAAAAAATAcEUAMAANQdQqgBoEZ1LnK1+h2SO/hv+WhWSoak1CRc29Hg5NYn5dY/YhB1MjnxDaEssaS07j88dVzk6cFDpIytXGrkVB7P8XLbSdqeznhVWneLFEunpnCDGAs9UN8Yf9ADyItHPC3v8PRSq2S8XJD0WEZrk1JOwRhPeqlVWt6R0D0/NYOB5KgZQ0+0jXTibWhQNQAAAKavVCoXQh3i9CAAALUsnorr5idu1szoTHUnu6u+/ZnRmbr5iZv1rkXvUqwhVvXtQ/sDwD9+x8f12r7Xqr79ec3zdM07riGI3CeMPwp7IJFNyPXcqm3bMpZao630gI8YfxT2wL70vqrekMC2bDWGG+kBAAAAAAAAAAAAAACA6YAAagAAgLrEVeYAUEsiEUnDA6ilyQuglnLrSYbGCaLmH+6+iKWkS7qk//6r3GNLkjtVAaRebv2SNBDKbTeWGnwCvqEH6hvjD3oA8Yin5ZdJXfNzj40kVRBEXWoAdX6ZrvnS8ss83XOjRxB1LSlln539egAAgPriulImk/sKAABqjuM6Wvmblera3qW0k/alhrSTVtf2Lq38zUrd2nGrbGuSTlKjLGcfebYa7AZftt1gN+jsI8/2ZdvIOfvIszW/eb5e3/e6vCqetzEymt88n/EPgMIeqCbP8+iBAMiP//a+7VXfNuMfDIU9YGSq8rfAyMj1XHoAAAAAAAAAAAAAAABgOiCAGgAAoG5Z478EABAYc+eqc5E3YgB17yRfX9rbkFtvXj6IuvO4wRmex+TD1LnI0+fOkWYmpfBgTowlTX4eaEHwaNjNbe9z50idi/z/HdT7RA/U98T4M9ED9T0NDaDOM8oFRpcwrEVfx1IYQJ2XC6LOBWH7/btgKnECAAAARuJ5UirldxUAAKACtmVr1bJV2pfap/5Mvy819Gf6tS+1T6uWrSKA2ifxVFzLb1yurT1bfdn+1p6tWn7jcsVTcV+2X+/iqbg6bunQiz0vVjWAWpI8eXqx50V13NLB+PuIHqhv+fHf3rddrQ2tMlNyt+LhjIxaG1q1vW874++zoT1QTfQAAAAAAAAAAAAAAADANEAANQAAQF0jhBoAakjnG2dq9Tu8KQ+gzhs3iBpV1Xlc7vfvmlwo5MzEkADSSVQUPJrIbY/x9x89UN8Yf9AD9c0x0tmXSl0LRn6+1FM9pZ6CGW19XQtydTgBO7cEAAAAoASue+CDWdmsv7UAAICKbdi2QX2ZPl9r6Mv0acO2Db7WUK8c19Hbfvo2bdy+0dc6Nm7fqLf99G1yXMfXOuqN4zpa+ZuVenDbg+pJ9vhSQ0+yRw9ue1Arf7OS8fcBPVDf8uPftb1r/7xqBZEXbqdrexfj7xN6AAAAAAAAAAAAAAAAABMStABqAAAAVB0h1ABQIxzX0Zqj9004gLqhzGs/RgqiXnMywYPV5gz+3gvHvzCA1J3k7bkqDh7dP5/x9w09UN8Yf9ADkMYOkJ7sS4uruS0AAAAAVeR5uTBqi1OEAADUonQ2rasfuNrvMiRJVz9wtdLZtN9l1KXNuzb7XYKk4NRRT2zL1pI5S9ST7Kla6OhQnjz1JHu0ZM4S2ZbtSw31jB6ob7Zla9WyVbKMpWQ2qe5kd1W3353sVjKblGUsrVq2ivH3AT0AAAAAAAAAAAAAAACAigUxgNojuQAAAKDaQuO/BAAQBLZla+3yH6rjmreoa0FlAdStKSmaLX/Z/GujWWnpdmntbyTbWMWplJhStqS1nZ46LvLUNf/AfCPJdgZfMJlMbr1Dh3jpDmltp5FtDONfZfRAfWP8QQ/AlvSnmzwtv6y4B6RcKLQ3yePhmdyKR+qBP91ED9SMoSfeRjoRF8QThgAAAJi48T6E1dhYnToAAMCkSmfTynpZv8uQJGW9rNLZtCKhiN+l1JVEOqFENuF3GZKkRDahRDqhlmiL36XUDcd1dPfWu30LH87z5OnurXfLcR0CSKuMHkD74nZt2LZB377/275svzvZrStOuULti9t92T7oAQAAAAAAAAAAAAAAAFQgiNeTE0ANAADgC8vvAgAApYu9vlfrfm20YN/IIdKuGT2AMB9ALeW+tqZGfp1ncusZqrdBWrBPWneLFEsH8MBCHYiljdbdYrR0x4F58Yg0MEXXdQ9EcuvPW7pDWneLYfx9RA/UN8Yf9ABiaaN7flrcA1MRQL1/3UZFEQZLd0j3/JQeqEmeN/qJuPxzTExMTExMTExM02saa98vHJZaCAoEAKAWBS3wOWj11IPGSKPaGtr8LkOS1NbQpsYINzeptoyT8bsEScGpox4F5XcflDrqTefmTv2066e+1vDTrp+qc3OnrzXUM3oAAAAAAAAAAAAAAAAAZSGAGgAAAAUIoQaAWvL447r7KKMdLVLYLX4qHxztScOCCAsDqPNGCqIuDBocGkQddqUdLdLdRwzOMIbJhymWsbTu15aW7sgFg/ZP8XXd/YMBpEt3SOt+bSmWsXz/HdT7RA/U98T4M9EDTLGMpXt+luuBkfb7Jlt+/3DpDumen9EDNTlxEg4AAACFbDsXQt0wwl0OAQBA4O2K7/K7hCJBq6ce7O3bq+5Ut99lSJK6U93a27fX7zLqiuM6emr3U36XIUl6avdTclzH7zLqjuM6embPM36XIUl6Zs8z9ECVOa6jax++Vjv6d4z/4im0o3+Hrn34WsbfB/ke2Nm/09c6dvbvpAcAAAAAAAAAAAAAAABqgZniMIJKcO07AACAr0J+FwAAKF3ny3dq9XmuPCPNTEjdjVLGGh4Y7UmSkYw3cgB1Xn5+b0NxAHWeayTLywVQz0zkXrP6Akm2UfsrzZP7w6FkMUmLehP6/VGZqmyvPyIt6g0rFm6UwlXZJMZBD9S3csbfaPh7e7kY/+DhPQAxSf+4Ma33n5dUZoLnfUp5nwh50j9ujCoWjtADtcZxpEzBe4Xrjv5aAAAATC/ZIQeFjckFT1tWMD9ABgAAShIJTfGdCcsUtHqA6a4v2aesO8oHQKos62bVl+zTrJZZfpdSVxLphFJOavwXVkHKSSmRTvC3oIoc19FDrz7kdxmSpIdefUiO68i2bL9LqSuO6+jh1x6WN+FPgkyMJ08Pv/YwPQAAAAAAAAAAAAAAABBkQbx+iABqAAAA3xFCDQA1wnEdrQn9ZX/gtJHUmpR2N438ek9SU6Y4gNrypLO3SHcfeSC4OpqV0lYuYHI0rcnc9qTccmuWulqxJyrbC+DBhjrwuTP26ZplGVne8ADyQvmnxjv8Ml74pOVJ15ycUYMJ68oHZ5RXLKZEOT1QyvhrnNfRA8FS7nvAeHgPqD28B6DziKQ+96a0Zict7Y66ylojv66kHvByLxztdSFXmp209Lmz0mqyGtS+NVp54ai+1JAgCtfl5BwAAEC9cN3im5DYthQevKuMMcU3KwEAAEDNCFrYa9Dqme4aI41+l1AkaPXUg0goIiPjewCtJBkZ3gN8EKQgelSfbdmaHZ2teCrudymaHZ1NADUAAAAAAAAAAAAAAEBQEUANAACAURBCDQA1wrZsrb3NVsfZUteCXFBg7xgZgEZSIixF3FzQtOVJP7xdan9a6jxO+sQFueDKZCj3urFCCnuj0sxE7jVLt0trfy3Zc8KT/jNifJ87vVdXnTSw//FoAaRGuVDJUnLCxwqftApmXrVsQLIsXflwa7llYxLRA/WN8Qc9gM7DE1r9xn1yTW6c56Qs7W4YHkRdcg+Y0Xsg5ObWb5Trs9Vv2ifZttpfJFSiZqTTxScJLUtyHP/qAQAAQPWM9MEsY3L7hMZIWcKiAACoRbNaZilkQsp6/v8tD5mQZrXM8ruMutMSbVFjqFGJbMLvUtQYalRLtMXvMupKJBTR3Ma52pXY5Xcpmts4lwBiH0RCEc1pnBOIHpjTOIceqDLbsjWvaZ5eir/kdyma1zSPAGKfzIgE48bRQakDAAAAAAAAAAAAAAAAQxBADQAAgDEQQg0ANSTWk9C6W6QLL5bW/5WUGQwbHBpAmQ8dlKTehtz3N/xnLoBaOvD1ihW556WRwwfzwZMZS+pulN78krTuFimWNlIsNkU/JUbzuZN26KpFfbkBLmBJcgsem8Fp6OtGZQ68tGj8R1jHVSf1SQ0RXfn4/FLLxiSiB+ob4w96AJ2HxLX6lLhccyBx2kiakzba3eAoaw7Mm2gPhDxpTtqWMQeedCWt/pu41Nio9lfZF6wJti0NHAiuVzYbzBOHAAAAmHzpdPEHtIzJ7R/mWdbwZQAAQE1ospoUd+J+l6Emq8nvEuqS4zqBCKCWpEQ2Icd1CCGtIsd1FE/4//+/JMUTccbfB47rqD/V73cZkqT+VD89UGWO62jPwB6/y5Ak7RnYw/j7wHEdbe3Z6ncZkqStPVvpAQAAAAAAAAAAAAAAgKAJ4nXkBFADAAAECleYA0AtyWRGfSofGF0YQF0u4x0IILTGWgf/uK+6tOXqxsN7Rw2TzP9B3x86OYqoM/qzhcuOuoNgpBsP71Xackd7BaYIPVDfGH/QA3CMpzVH9BbdeCTPyGhOypbljd8DY+3j5Ze1PGlOypYZYU2ukdYc0Sun0h1OVFcQTxQCAAAgGGwCggAAqEWPbnk0EAHUkhR34np0y6N+l1F3tu4MRvBkXtDqme729u1VSim/y5AkpZTS3r69fpdRdxLphAbcgfFfWAUD7oAS6WCE4tcLx3U04ARk/J0BOa7jdxl1Ketl/S5BUnDqAAAAAAAAAAAAAAAAwKAgXldORhUAAEDghPwuAABQunjIUcdF0pPzpLaE1NMoZQpSIkcKFWxNSQ2O9IkLco/bn5Y6j8s9bnByz/c2HHh9YRB1XtjNbe/JeVLHRdK6W6TYvn2T/vNhdBFJj3bO1cntO7S3YeQDLCMGhhYM5mH7LB3dG9LzrVm9PKMgPNQrfvlYh5RmpYwe7ZyryEB/6cVjUtAD9Y3xBz0AW9Lau2LqeFtGXbOG35gkFcoN5LBs6IIBDbuS7UmOKd6HHNoDkpSyXEWzw7th6d6w1v4pJjvTV9HPgSpLpaRsVnIGQwBc98D3AAAAmN6Gfkgrvy9o21IoJFncpxYAgFp09IKj/S6hSNDqqQdzY3P9LqFI0OqZ7lqbWv0uoUjQ6qkHkVDE7xKKBK2e6S4SiihqRzWQ9T+IOmpHGX8f2JatWENMiaz/AfCxhphsi5ucAQAAAAAAAAAAAAAABAIB1AAAACgRIdQAUCMc19HK90hdC3KPLY0cRF2oNSVFs7nvXZMLnr7tOOnuI3OPpQPPFwZRF8oHUOc30bVAWvke6da7ErK9AB6AmMYWJqWNv2jTyf+7Z9QA0tEcFjc6uteS5OroHkvyPL0cK28ds1JGG3/RpoUDWUnZspbF5KAH6hvjD3oAsaS07vZmdZy/T11zDgQJJ21PveGxxzMfQC0NfnUH9yFHWaw37EmeFHUO7O8t3W1r3e+bFcukJ/iToGoymeIA6pFCqIN4UhEAAAATN9IHtbLZ3HwCqAEAqFnpbLCOzQWtnnoQtMDPoNUz3TmuIyMjb7SD+1VkZOS43PSw2mzL1syGmepOdftdimY2zCSAtsoc11FTuCkQIdRN4SY5rkMP+ODEeSdqx9YdfpehE+ed6HcJAAAAAAAAAAAAAAAAkIJ5rTgB1AAAAIFFCDUA1AjbsrVqk7TxoAMB0mMFURcGUOe5RvrjUcPXPVoQ9dAAakmyPGnVRsl2PI2aWogps7DPaOPPW3Xy/+7V3mhpv//DevPBowdenwsgdfVya2nrmJU02viLVi3sN5LcCirHZJnsHniFHqgp5Y6/kXQo7wHTymT3AO8BtSeWktbd0aKO8/vUNSerZEjqjZQeQJ2XD6J2xjin1BvxpHRuX3Hp7pDW/b5FsbRED9QQ1z1wki5/ArHwRKIxUohDQwAAANNSeoRASNs+8JzLfj0AALVobmyuTpx7op7Y9YTfpejEuSdqbmyu32XUncZIoxbNXKRnup/xuxQtmrlIjZFGv8uoK42RRh0789hAjP+xM49l/H1gW7YWxhaqe5f/IdQLYwsJIK4y27J1UMtB2p3Y7XcpOqjlIMbfJ7sH/B9/KTh1AAAAAAAAAAAAAAAA1DUCqAEAAFAmkoYAoIa0P2tLnqPVF4wdRD1SAPV4hgZRjxZAfc3tUvvTkhoTE/hJMBELE9LGn0R08vtT2hsd+7XLXzTKtcrwUJmju6WII22ZOfY6ZiVz21vYl6q0ZEyycnrg6L3SYXFptB44stvo3r8a+wAePRAs5Yz/u5826o1Ko42/JG2Ljb0Oxj94yumBE3ZKcwek0Xpgbn/uBhdjoQeCJ5aQ1nXaWv6/s+qaN04AtTM8gDrP9qSoI/VHRl++N+Lp8B6jdZ22YunkBKqGL1y3OFzQ84afuCN8EAAAoD4lOL4LAEAtsi1b933gPv31j/9aT+5+0rc6jp9zvO77wH2ET/pkRnSG3yVICk4d9SYov/eg1FGPGkIN47+oCoJSR70Jyu89KHXUo5AVkpGRJ/8u1jMyCll8/BwAAAAAAAAAAAAAAMBXBFADAACgAnwKGABqSTis9qcdSRo1iLopU34AdV5+uYHwOAHUkpStcCOYFAt7pI032Dr5CmfUANJPb7C0YJ+r3x09+nqW7JTe84ylq84cOXxwVjK3nYV9rkYKMIV/Su2Bp2e66ouMfpDunc9Lb3idHqg1pY7/G192dc3po6/n6D3Se56SfnjmyM8z/sFVag/sjrp6sXX094A3vyyd/RLvAbXo7qNcbW/yFHYP3IhkqBlpKTVOBkyDI4VSB25EMlTYlbY3ebr70IzanxllQwiuoQHTBE4DAADUL8+THEeyB/+R4Dj+1gMAACoWa4jpn978T7qk8xLfavinN/+TYg3j3OUSU8K2bN192d1afuNybdy+0bc6Tl5wsu6+7G6CyKuM8Qc9UN8YfxT2wKbtm3wJojYyWrZgGT0AAAAAAAAAAAAAAADgJwKoAQAAUCFCqAGgljQ3S8nk/iDooUHUMxPSRA8RRLNSQ7Z4PcMCqCUC7AJgYVzaeL3RyR/ytLex+LlPP2B05Z+Mvnfa+Ou58m4jeUZXvbH4YM6shLTxR0YL+ySCR4OplB5490XjrMSjB2pVKeN/61Hjr+drd0sRxr8mldIDH7hgnJXwHlCTOhd5Wn2uK5kDNyIZGkTdmpLCzvgh1NKBG5EMDaIOu7n1y0irz3Uk11P7MwE8IYXRDd1nH+nkHfv1AAAA9cF1czcWdBwpFJIsbjIDAECt6tzcqc/d9TnNb56vHf07qr79+c3z9bm7PqemcJPaF7dXffvIBZHfc/k9WvZvy7S1Z2vVt39E2xG65/J7CCL3CeMPeqC+Mf7wuwcObzucHgAAAAAAAAAAAAAAAPATAdQAAACYAEKoAaCWLFwo7dkjSSMGUU/WIYJxA6gl/vEfEAv3GW283tPJH9b+ANJP3y9d+ScjydPsfumgfaMv35KS5HmDAaServrr3PxZCWnj9dLCvtx6EFzj9cAhcSneMPryc/tFD9Sw8ca/NTn2e4Ak2ftDiBn/WjReDxwcHzuE+KC4eA+oMZ2LPK0+3yu6EcnQIOrWVC5Y2jG5fbmxmMHnhwZR5wOo87F0rpFWn+9KniGIutaMt9/Ofj0AAEB98TwpkwnmB84AAMC4HNfRmk1r5HquLGNpTtMc7R7YXbXtz2maI8tYcj1Xazat0YpFK2RbJdwJD5Pu7i13K5lNKmSFlHWzVdtuyAopmU3q7i13E0LuI8Yf9EB9Y/xBDwAAAAAAAAAAAAAAACAwuFYdAACgphBCDQC1ZNEiqatr/8ORgqgn06gB1MZIljXiMqi+hQOW7v2po2Uf8nTBc9KV94T2J0YeNuBpUffoyzantX8sr7zH0rOzs7r9GOnenxotHLAPJE8i0MbqgaN7PPVHRl/20H7RAzVurPGfmxr7PUCSbEuSLMa/ho3VA0fFPY3xFqAj+sR7QA3pXORq9XnesP0+S1JrUtrdJDVmDgRKG+WC5sdSuKpoVkpbUiKcW9/Q4XeNtPodnmQZtT9Dc9QE1y1+PNJJPMIHAQAApqeh+36F+322LTlOdesBAACTwrZsrX3PWnXc0qHHXn9MexN7q7r9vYm9mtM0R6ccdIrWvmctAdQ+6dzcqdV3rJYnT1aVD+RbsuTJ0+o7VksSAZQ+YPxBD9Q3xh/0AAAAAAAAAAAAAAAAQB0L2nXhBFADAADUHEKoAaCWHH+81NAgpVL7Z01VEPWoAdRSLqySEOrAiEc8feo8aWZCevgQqfM4qf3ZwfGxPMmMccDGaP9Ydh7r6uFDcuv51HnSuk6jWDpgB58wojF7wLjFCaNDWYYeqHETeg+Qcj0gi/GvYRP7O8B7QK1wjKc1y4YHUEuSZ6TeqOQpFyAdcQ8EURcyko7slrbMzL12qGQot7yn3PpmJoe3j2ukNcs8rXjeyPboj8DzvOKTiZ43/GQe+/UAAADT09CQaWOKby5oExgJAECtijXEdPW5V2vpvy2V67njLzCJXM9Vd6JbV597tWINsapuGzmO62jNpjVyPEfdiW6l3XRVt5920+pOdGtm40yt2bRGKxatIIy8ioaOf8bNVHX7GTfD+PuMHqhvQ8c/641wQnAKZb0s4+8zegAAAAAAAAAAAAAAAKCOEUANAACASUAINQDUkpNOkqLRohBqKRcUPRCWPrhCasyOHDpYqmRISoSkH//nKAHUUi6ghJCSQIhHPHW8O62uuZ4s5YIhV5+XlayI2p+zB0Omx7j43JJk2+o8xtHqc7JyB2d1zfPU8R5H626LEEAacOP2gOXmBnU0tkUP1LDxx19jvwdIkm2p8xgx/jVq/L8D7mDQ+Cgsw3tAjbAlrf2dPTjeB/6/9ozUHZUy1oF7DvQ25L5GCjLnjKQLnre0ZI+lp2a7uv1oNxdEbSR5uX3A/HJGufV1jxBEvXSXpbW/i8geq68QHMZIbsHfAUKoAQAA6ofrjr7vZ1lSS0v1awIAAJNiW3ybzrrxrKoHj+Zl3IzOuvEsbfzwRi2MLfSlhnpmW7aue+d1Ovn6k5VyUuMvMAVSTkpZN6vr3nkdwZNVVjj+aSctb8RbTk4dT57STprx9xE9UN8Kxz/jZny5GUXGzTD+PqIHAAAAAAAAAAAAAAAA6hQB1AAAAJgkhFADQC15wxuGBVBLUrxBuvmkXGBgPjywkiDqfPhgg5Nb37uelWIjXbdq28E7OFGH4hFPHSvS6prn6UDspORKWn1ORjLSzIFxxslIncc6Wv32jNwhY9o1Lxdsuu4/GwggDahSekDjDZ0x9ECNKmX8j9kz/rjddqyr/+/tDuNfg0p7DxhMGB4NfwdqSixjtO4/G9SxIqWueZ48efsDqIfqbZBi6dz3hQHUkvZ/vf3o3EXJhQHUhYqCqGW0dGdu+7GMGf/vC4LBmOL99pFO6LFfDwAAUB/y+32hkNTQkJsAAEDNSWfTOvVHp2r3wG5f69g9sFun/uhUvfIPrygSivhaS71xXEcf/a+Pau/AXl/r2DuwVx/9r4/q1o5bCaCsovz4Z5xM1cOH8zx5yjgZxt8n9EB9y4+/bfz9ndvGZvx9Qg8AAAAAAAAAAAAAAADUoaBdC04ANQAAQE0jhBoAapFlSW4uNDDeIHVcJD24UEoNXtNRSRB1Yfhgys6tr+Miad0tIwRRR6O5IGr4Jh521XH+PnXNkUZKgXSNtPqcrD78RIOkEZIpBz0xx9HVZ2SHBY/mdc2XOtqzWvf7GYqNlHAJ35TaA+e8HNKRvaP//3rf4dKPTkjRAzWm1PH/zKNRKTz6uD01y9H1pwwPH85j/IOr1B5ofz6seYnRx+6hQz39YlGaHqghMUnr/tioC9+xT+sPzowYQJ0Xj+RuLvLuLREtidtS+MBzS+KSXnT0+7/KKB4Z/URPPoj6za+FtO6PMxQLWRxJqCWZjOQ4Bx5ns8NP7IXDAgAAwDTkOMX7gqGQ1Nyc++BZOMx+IAAANSoSiqgn0eN3GZKknkQPAdQ+sC1bj7z6iFy5vtbhytUjrz5C8GSV2ZatJXOW6HfP/s7XOnpTvVoyZwnj7wN6oL7Zlq1Vy1bpnq33yPX8+Tvgeq760/1atWwV4+8DegAAAAAAAAAAAAAAAKDOEEANAACASUZ0FADUkocekhobpXRaUnEAdT5AOq+cIOrCAOrC5UcMorasXAB1U9PEfhZULB521fHW3eqa5Wqk4NE810g/XJbS21+NaknP8FCZp9oyuuPQjJqcsUNFu+a66njngNb99xwCSAOinB7oPCqjd7wSGrUH7jokqbA39kFHeiBYyhn/b56e1NteG/094PbDMmrOmjHXw/gHTzk9sHZxWue90jhqD/xhYUoNLu8BNSfsSnb/WMNfzA6NHDBnZySTGX95I8m2cvt/9EBtSaVywdN5tl0cRGiMFCEoCAAAYFpKDbmzoGXl/l1g2weCqAEAQM3ZFd+ltJv2uwxJUtpNa1d8l+bG5vpdSl3pHejV9v7tfpchSdrev129A71qbWr1u5S64biOftr1U7/LkCT9tOun+ubZ3ySAtMroAWzYtkF9mT5fa+jL9GnDtg1qX9zuax31asO2DerP9PtaQ3+mnx4AAAAAAAAAAAAAAACYagRQAwAAYAoQQg0AteTxx6WGBsm2FY946rjQGzGAOq+UIOqRAqgLly8Kok6bXFhJJCLNmzexnwUViYccdZzygrpijqTxQyA9y9Xtf5WUog1a0hfdP/+plqRun5+UZCRv/PV0zXHUcV5c6x47SrEsFxD6qfwe8MbsgbBnJJceqBVlj78Ze/w9Db6vj5Nky/gHR/nvARqzB2zPlLQeeiA48j3wZMxVWyaknrCjjDXyCZsZGUuuGbsHoo6t1qyn3rAz4jrCrlFbxtaTs116oBb19UnJ5IHHmUxxGKFlcXMZAACA6aq/v/jDXbYthQZPC0Yig8cDAABArZnVMktGRp78/xC3kdGslll+l1F3IqFg3VQuaPVMd+lsWrv6d/ldhiRpV/8upbNpNUYa/S6lrtAD9S2dTev6R6/3uwxJ0vWPXq+vvfVr/B2osnQ2rRu7bvS7DEnSjV030gMAAAAAAAAAAAAAAABThQBqAAAATBFCqAGgljz5pGSM4rNb1PH2bj14yOgB0nljBVGPFUBduPz+IOrfGMWyJhdkZxM+WG3xUFYdy7aoa0aijKVMLoR2flwylpb0NeqploRunxeXZyTjlX7QqSuWUMepW7Ru09GKZdmF8MNU9EA5GQX0gL8qG3/JMxp9/CWNF0Cdx/j7b+p6oDT0gP+G9oClXED0SEHUrRlbEc9owHLlaYweMFLUtaSMhgVR5wOorcH3CXqgBllW8X57NlscNjj0eQAAAExfxuRCqG2bAGoAAGrY3r69gQigliRPnvb27dXc2Fy/S6krjjvyDQX9ErR6pjvbstUYblR/pt/vUtQYbpRtcXy52uiB+mZbthbGFqp3V6/fpWhhbCHj74NIKKIvvOkL+uSdn/S1Dk+evvCmLxBADQAAAAAAAAAAAAAAMBUIoAYAAMAUIjUKAGrJnj2Kh111vH1AD84dP0A6b6Qg6lICqAuXzwVRe1rXKcVcV4pwEUk1OfK08qTn1BVLqNTA2BxPuRBi6fb5PXp6RlJbmpKDl6ab3KrKOPjUFUto5bKtuvXxJbLLqgMTVXEPmNx/Ru0BGXqgBlQ+/uO8B+z/UnoQNePvj8r/Dki8B0wPo/WAJaO2rFFPOKuMyY1sazakqGfJHdwPkDRuD0Q9W8oa9YZyO4xhz6gtG5I1pD/ogRoTieSCp/NCoeLHhFADAABMX5ZV/O8925bCYf/qAQAAk2JubK4+dcandPWDV/tdij51xqcIoPZBJBRRs92sfsf/ANpmu5nwSR9YCsZNZYJSRz0Kyu8+KHXUE8d19ErvK36XIUl6pfcVOa5DEHWVpbNpfemeL/ldhiTpS/d8SR857SPsCwAAAAAAAAAAAAAAAEwmAqgBAAAwxQihBoAaEncT6nh7jx6cl1ZvmddvFAZRlxNAXbj8gwd76mjPat1/ZRRLJMpbASbElrTqpZnaePw+ueUcLzLe/gM6nqQXGhPS0OM7ZRzwsbxcHXYiWUYRmAwV90DB+NIDtavi8Zd4D5gmpqwHPNEDNWKsHrAktaVt9YQdNTmWoq7R4OCO/3eg4PmoYyTP1oDtqi1jD0YHFPcHPVBjkkkpnT7wOJMZHkJd+DwAAAAAAAACzXGdQARQS9LVD16tb5/7bcInq8y27EAEUEtSv9PP+FeZbdnqy/T5XYYkqS/Tx/j7wLZspZyU32VIklJOih6oMtuyZQJyk1gjw/j7wLZsNdhlfuhvijTYDfQAAAAAAAAAAAAAAADAZCKAGgAAAFVg+V0AAKA0juto5QnPDgZQV/aP9N4GqSdafgB14fIPHuxp5TuTcoalmGKqtW+fqWuePEzWCL96T572hrNKWu6EtpG0XO0NZ+WNML6WJ13z5GFq3z5zQttA5eiB+sb4gx7AWD2Qi52enP0zT96Il6/TAwAAAAAAAIC/Nr24ye8SigStnnqwdedWv0soErR6prtd8V2Tdi5gojx52hXf5XcZdacv2ae0G4ybS6bdtPqSwQhFrxfpbFqJbMLvMiRJiWxC6WwwerGeOK4TqL8Djuv4XQYAAAAAAAAAAAAAAMD0QAA1AAAAqoQQagCoEbZla4k3u+IA6ryUPbE6ehukJd0h2SNGE2KqjRQ+6clTd9hRxvLUG3YqDiBNWq56B9fTHS6+aInQyeCgB+ob4w96AGP1QNbSpPRA1hI9AAAAAAAAAATQqUeeqkuOv2TC6zGTcK73kuMv0alHnjrh9aA8Ry84Wv/vTf/P7zIkSf/vTf9PRy842u8y6sqCtgX6yYqf+F2GJOknK36iBW0L/C6j7rQ2tepPl/7J7zIkSX+69E9qbWr1u4y60hhp1KaPbJJtJvjhrwmyja1NH9mkxkijr3XUo0goosc+/JhmRGb4WseMyAw99uHHFAlFfK0DAAAAAAAAAAAAAABgWiCAGgAAAFUU8rsAAEBpHNfRU3M8tSbNhIKoG5yJBVG3pqSn5ho5Ow1B1D5p3zlbMkarl7wkx2h/8Gheb9iRMlLUteRJ8sYapsHF8qGTefkA0pmZkGxPuuapv1L7zlncviIgJrMHPHqg5kzqe4AkyTD+NWZS3wMGv9IDtaXUHoi4Zvz3ACPJowemLcvKTXnGFJ+INKb4eQAAAEwfQfsAGgAAmDQ3XXSTJOnmJ2+uaPl8ALWRKboRXTkuOf6S/XWg+k4++GQ1mSYNeAO+1dBkmnTywSf7tv161hptVSwcUzwT962GWDim1ijhw37pSfZoZnSmupPdvtUwMzpTPcke37Zfz57e/bRmNc7SroFdvtUwq3GWnt79tBbPXexbDfXs4VcfVlO4SX3pvor35SbCyKgp3KSHX31YC2MLq759AAAAAAAAAAAAAACAaSVo1/8QQA0AADDtEUINADXCtmytPeHL6rh9lR6cl64oiLo1JUWzUjIk9TaUX0NrSjrjNaO1fzlS9swZ5a8Ak6a9v0UDL0b0gUWblTHDe6E37EhZI8nIHeH5PCMpaXvqDTnDnstYnrojWf37M4vV3r9AapnEHwATVmoPuGacAFpj6IEaVOr4216uB8bC+Nemct4DxuoBV/RArSqlB2Zk7XHfAzxjlLTogWnLcYpP9hmTm5dn21JDBf8wAAAAQPCNdEOSQvYE7lQIAAB8V2kQtRlyk+FKgqgJoPaX4zpas2mNWptb5fV5SihR9Roa1ajW5lat2bRGKxatkG2xb1kt+fFvbmiW53nal91X9RpmhGaouaGZ8fdJvgeioajaGtrUk+qpeg1tDW2KhqL0gA/y4x+yQprdOFt7EnuqXsPsxtkKWSHG3yf5HrCMpTlNc7R7YHdVg6iNjOY0zZFlLHoAAAAAAAAAAAAAAABgogigBgAAgA+s8V8CAAiK2BuXa90fW3XGq7lA6HLkA6il3NdKlj9jm7TuN7ZiTTPLWxiTLm5ndfP87WpyRr+QpzeUVXqMAGpJyhpPvaHsqM83ObZunr9dcXv018AfpfZAdpweSBuXHqhBpY5/ynLHXI/De0DNmqz3AP4O1K5SemBfyJEzTg+kLP4OAAAAAHUpHPa7AgAAMEE3XXSTLj7u4pJfPzSAerz5I7n4uIsJoPaZbdla+561Wrpgqdpa2hRVtKL1lDPuhaKKqq2lTUsXLNXa96wleLLKCse/JdqiGaHKbh5e6fjPCM1QS7SF8fdRYQ80hhvV1tBW0Xoq7YG2hjY1hhvpAZ8Ujn/Ejmh24+yK1lPp+M9unK2IHWH8fVTYAyErpDlNcyoaz0qXmdM0RyErRA8AAAAAAAAAAAAAAABMVNACqAEAAFA3CKEGgFpy8MGKHXq01v1KZQVRFwZQ55UTRL0/gPoWKRZqlhoayqsbkypuZ9Wx+C/qau5T1LXUmg2N+toBe/TwScd4SlujB1O2ZkOKupa6mvvUsfgvhE8GSDk9kLa8MXtgwB49pJgeCKZyxr9/vPeAMcJpGf/gKqcHkpY7Zg8kxggqpweCq6y/A2bsvwN9tjPqsvQAAAAAME2FQoRQAwAwDcRTcT3X81zJr/c08nHC0eaP5Lme5xRPxUt+PaZGrCGmdRet0/Hzjlda6bKXzwdPVhJAmVZax887XusuWqdYQ6zs5TFx+fFfumCpopHyQ8gnMv7RSFRLFyxl/H1W2ANhO1z2WFbaA0ZGYTtMD/iscPwjdkQzozPLWr7S8Z8Znbk/gJrx91dhD4SskGY1zipr+Up7YFbjrP0B1PQAAAAAAAAAAAAAAADABAQxgNor/fPEAAAAqG2EUANArTFGsbTJBVFvGz9IeqQA6rxSgqiLAqhLDK3G1CkMncyrJHyy1PDZPMIng4MeqG+MP+gB0AMAAAAAKmKMZNu5Gwxyk0EAAGpePBXX8huXa+P2jWUtNzRwupwAaknauH2jlt+4nCDqgNgzsEeuRr/Z5FRw5WrPwJ6qbhPDxRpiuvrcq9WT7ClruaGBo+UGkPYke3T1uVcTPBoAhT1Qznv5RHrAk0cPBEThzQjK+Zs8kfGPp+LchCBACnugnL8FE+mBnmQPPQAAAAAAAAAAAAAAADBRBFADAADAZ6OnVAEAgue116QtWyTbVizlat0tUsdF0oMLpd4RckPGCqDOyz8/2vJFAdTGSKmUFI1KjY0T/nFQnriVUcdhD6orOqCh95GIylLSc5UyI19knDaeIjKyPTNu6GSDZymq0LBbVXTNGFDHSc9o3ctnKOaGJ/rjoAL0QH1j/EEPgB5A2Vy3+GSkbUuOU/w4Gq1+XQAAAJh6ti1ZBTv14TD7fgAATBOVBlDnefJkZMoOoM7LB1Hfc/k9BBD6JJ6K6+yfne1rD5z9s7N196V30wM+2Rbfpjf/5M3KuJmylsuPfeHjcmTcjN78kzdr00c2aWFsYVnLYnLRA5Ck1/e9Lsdzxn/hJHA8R6/ve70q20Lp6AEAAAAAAAAAAAAAAIAaQgA1AAAAAoAQagCoJQ89lPsajUqZjGIpFQVR9zRo/6VipQRQ5w0NovYktQ0NoJZywSWS1N1NCHWVOfK08tCH1BXtHfH5pHFGDZ3MSxtXljFyx7mIMGVcJY2jqGcPe64r2quVhz6kW1/6a9kK4MGtaYweqG+MP+gB0AOYMsmk3xUAAAAAAACgRI7r6OyfVh4+nFdp+HDexu0bdfZPz9aGD26QbQ0/joip47iOzrvpPD3y2iMTWs9Ee+CR1x7ReTedp/tW3UcPVNm2+DYt+7dl2pPYU9HyEw0h35PYo2X/towQYh/RA4in4nrzmjfryV1PlrXcREPIn9z1pN685s1av2o9NyHwGT0AAAAAAAAAAAAAAABQYwigBgAAQEAQQg0AteTxx3P/gO/r2z8rH0R94cXSn444ECBdagB1Xv71+SDrU18bEkAtSdlsLoi6t1c6+OCJ/jQogy2jVd2Ha2Nj17DgyKRx1GtnSlrPeKGTeb12RnI0LHzSGqyD0MnqowfqG+MPegD0AAAAAAAAqHW7du3Sww8/rBdeeEHxeFzhcFizZ8/WkiVLdNpppykcDvtdYpHt27dr69ateuWVV7Rz50719/crk8koFouptbVVhx9+uE4++WTFYtULX3v55Zf1xBNP6MUXX1Q8HpfneWppadHBBx+so446SkuWLFFDQ0PV6kH19Q706pHXJxY+PFkeef0R9Q70albLLL9LqSt9yT5teHWD32VIkja8ukF9yT61NrX6XUrdSGfTOuX6UyoOH86baAj5nsQenXL9Kdr2/21TJBSZ0LpQHnoA+fDhx3c+XtHyEw0hf3zn44QQ+4weAAAAAAAAAAAAAAAAqDEEUAMAACBACKEGgFry5JNSIjHiP+R3Nkuu0cTjAI3kDq5vRJlMLoQ6W2bKNSasfe98yTlBqxc+IdfkeiAXOjk1Y5ELn/T2h09antE1205Qe+98SYy/H+iB+sb4gx4APYCyuW5uynOc4c9zkhAAAAAAMMVuueUW/eAHP9Cf//xneaP8O3TGjBm6+OKL9dnPflbHHntslSuUenp6dN999+nPf/6zHnzwQT3xxBPavXv3uMsZY3TiiSfq0ksv1fve9z7Nmzdv0mvbtm2bfvSjH+kXv/iFnn/++TFfG4lEtGzZMp177rl6z3veo5NPPnnS64G/WqItfpdQJGj11IPGSKPfJRQJWj3TnW3ZyjrBOD6fdbKyLXv8F2JS2ZYtx3XGf2EVOK5DD1SZ4zpa/pPlFYcP5000hPzxnY9r+U+W6+EPPUwPVBk9AAAAAAAAAAAAAAAAUGMIoAYAAEDAEEINALVkzx5p376iWfEGafll0hP5a9o9qbch9220jGsPk6HB5TxJJre+5ZdJ9/xUiqUKXui6Ul9frhZUXfueBmnf4Vq9aIsGbHfKQifzeu2slJWaHEvXPHOE2nc1SGLs/UQP1DfGH/QA6AGUZd++3E1s8tJpKZk88NiY4cHUAAAAmB64iSCAAHj11Ve1cuVK/c///M+4r923b5/+/d//XTfddJO++MUv6otf/KJMFT9w+61vfUtXXnll2ct5nqfHH39cn/70p/WVr3xFX/3qV/WJT3xCodDEP4qRTCb1la98RT/4wQ+ULPz3/BjS6bQeeughPfTQQ3rggQd01113TbgOBMvevr1+l1Bkb99eLWhb4HcZdaV3oNfvEor0DvRqbmyu32XUjb5kn7pT3X6XIUnqTnWrL9mn1qZWv0upK4l0Qt3JgPRAsluJdIIbElSR4zra0rPF7zIkSVt6thBE7gN6AAAAAAAAAAAAAAAAoIYQQA0AAIAAIoQaAGpJX18uBHpQPoB60wLJGzzu4BmVHUSdD6D2VLyeTQtGCaLOZKSBgcn4iVCB9peatKFppq46ekdVttcbyuqKF+er/aUmSYx7ENAD9Y3xBz0AegAlS6VywdN5Q4MIjZEsq7o1AQAAoDqGhp8O3e+zCQgCMLWeffZZLV++XK+//npZy6XTaX3pS1/S5s2bddNNN8muofervr4+/eM//qP+8Ic/qLOzU42NjRWva+vWrXrXu96lJ598chIrxHQwNzZXESuitJse/8VTLGJFCB/2wdzYXM1tmqtdA7v8LkVzm+bSA1XW2tSqZfOXadOOTX6XomXzlxFA7YOWaIvOPepc3fnCnX6XonOPOpcA6iqLhCL6zrnf0Yd++yG/S9F3zv2OIqGI32XUHXoAAAAAAAAAAAAAAACgRhBADQAAgIAihBoAasmOA0GDIwVQ55UTRD1SAHXhekYMok6lpH37JvrToEKdC/u09pA9ak1b6g27Y7+4lGNS4xwjas1YWnvIHp35mqX2bVxAGAT0QH1j/EEPoOQeKPXcFD0wfaVSUjJ54LHrFt3URsYMD6YGAADA9JBOF+/7pVJSf78UDkuRSO4rAEyRPXv26JxzzhkxgPrUU0/Vu9/9bh1xxBFKJBJ69tln9fOf/1yvvfZa0et+8YtfaN68efr+979fpaqLNTc365RTTtGiRYt09NFHa+7cuZoxY4Ycx1E8Htezzz6r+++/Xxs2bJA35MO4d955p9rb23XHHXfIVPDh4WeeeUZvectbtGPH8BuQzZ8/XxdccIEWL16sefPmqampST09PXrllVf0+OOP689//rN2795d8c+N4LMtW5eddJlu2HSD36XospMuk23VTlD8dOG4jhY0LwhECPWC5gVyXIc+qCLHddQaDUbwc2u0lfH3geM6SmaT47+wCpLZJD1QZY7r6NdP/Vq2seV4jm912MbWr5/6tVYtW8X4Vxk9AAAAAAAAAAAAAAAAUAMIoAYAAECAEUINALVkV+5C0rECqPNKCaIeK4C6cD3DgqgdhxBqn3QentTqU+NyvcEx9Yx6I7kDPZ5Kz5ocS+F6WtNGUUdy5Wr1qTukRELtL0YnYSuoFD1Q3xh/0AMoqwdKaYoRzhfRA9OI40iZzIETg647/CShzYXhAAAA05LjFIdQp9NSPC6FQlIsJjU0+FcbgGnvQx/6kF5++eWieTNmzNDNN9+sFStWDHv9N7/5TX3zm9/UV77ylaL5P/jBD3TeeefpHe94x1SWK0lqaGjQ2972Nr3jHe/Q2WefrZNOOkl2Cf9mfv755/WpT31Kv/3tb4vm33nnnbrhhhv0oQ99qKw6du7cqXPPPXdYAPUxxxyj7373u/rbv/3bMYOtXdfVQw89pJtuuknbt28va9uoDa/ufTUQAdSSdMOmG/TlN39Zh8w6xO9S6squ+C49sesJv8uQJD2x6wntiu/SgrYFfpdSN9LZtNa/tN7vMiRJ619ar3Q2rcZIo9+l1BV6ADv7dvoaPixJjudoZ99OX2uoZ/QAAAAAAAAAAAAAAABAgBFADQAAgIAjhBoAakkyWVIAdd5YQdSlBFAXrmdYEDVhdVXXeXhCq98Yl1swXlHHSBmpJ+ztH++hwznWoaCRXptfT1vG5NY/yDXS6jfFJdtS+4tcROgHeqC+VTL+nsYef2mE1zP+gcV7ACp9HxiLMcUvogemIc/LTfkAQqfgonRjgnkyEwAAABNnWcUh1JKUSuX2BxOJ3M1KAGAK/PGPf9RvfvObonmRSER/+tOfdNppp424TDgc1pe//GW1tbXpH/7hH4qe+8QnPqHNmzcrFJrajzZ89atfrWi5o48+Wrfddps+9rGP6brrrit67lvf+lZZIdSe5+l973vfsADviy++WDfddJMikci467AsS2eeeabOPPNMeXxYeFqyrWCdow1aPfUgEhr/vaCaglZPPfDGPfJfHUGpox4F5XcflDrqTU+qx+8SJAWnjnoUlN99UOoAAAAAAAAAAAAAAAAIjCBes81nygEAADAEIdQAUEPiIafkAOq8kYKoywmgLlxPURB1EA98TGOO8bRm0UBR6GReJCtZYcmRRg0gzbM8Fa3D04HXFvaDNbjeoVwjrVk0oBUvN8outXkwKSrtgaGHA4f2QCF6ILim6j2gEOMfbOP1gB2Wspq8HrBFDwQNPYCKGJMLH5RyN5Fx3eITmMZIUxziBQAAAJ+k0wf2BaXcvp9t574mk9LAgH+1AZjWvva1rw2b9+Uvf3nUAOpCn/zkJ/Vf//Vf+uMf/7h/3vPPP6+f//znuvTSSye1zslkjNH3vvc93X777XrppZf2z9+6daseeeSRkn52Sbrpppv0hz/8oWhee3u7fv7zn8uu4OawhnN509KCtgVqCjVpIOv/3/KmUJMWtC3wu4y60xJtkZEJRPirkVFLtMXvMuqKbdkKW2Gl3bTfpShshQmi9wE9UN8c19HexF6/y5Ak7U3sleM69ECV0QMAAAAAAAAAAAAAAAABFcTPbhNADQAAgBGQNAQANcJxHZ19aXkB1HmFQdTJkJSyywugLlzPpgXS2ZdKG37ZTfBgFdmS1t5qq+NdRl1z3f3zXXnqjkpOYbD0KOGTIfdA8GTWKn5uaD84Rupu8DQz6ckqWNPSXZbW/taWne6drB8NJaIH6hvjj7F6oCcquQWvHa0Hwo5ke7nxzQy5DnRoD7iSeho8tdEDgTFlPeAd+EIPTEOOM/68CkKsAAAAUAMymdxNSPI8LxdKbdtSQ0MuiBoAJtmTTz6p9evXF82bM2eOPv3pT5e8jn/+538uCqGWpOuuuy7QIdSS1NDQoIsuukjf/e53i+Y/9dRTJYVQp1Ip/dM//VPRvNmzZ+tHP/pRRQHUmN76v9Cvpm80KZFN+FZDY6hR/V/o92379SwSiuim9pt0Seclfpeim9pvUiQU8buMuhIJRbTm3Wv0vs73+RpEbmS05t1rGH8f0AP1LRKK6NoLrtXlt12urDvC3WSrJGSFdO0F1zL+PqAHAAAAAAAAAAAAAAAAAogAagAAANQQQqgBoIZkTfnB0Xn5MEKpsgDqwvVkjXLhdYRQV1UsIa27NayOd6fVNdeVK6m7UUqPkD1QON6SZLu5IErP5L7aruQMhtCO1g9pW+qOSjMTnizlQifX3RZWLO0OfzGqgh6ob4w/RuqBnkYpYw0fw6E9EHIla3C+Nfg4O0YPeCa33p6o1EYPBAY9gLJ5XnHwYH5eoZGCqgEAAFD7PK943891pXQ6F0IdDvtXF4Bp7Ze//OWwee9///sViZQeTHbqqafq1FNP1aOPPrp/3oYNG7R161YdccQRk1LnVDnqqKOGzXv99ddLWvbmm2/Wa6+9VjTvS1/6kubMmTMptWF62RbfpuZIs68h1M2RZm2Lb9PC2ELfaqhnbzn8LWqJtKgv3edbDS2RFr3l8Lf4tv169pbD36LmSLOv498caWb8fUQP1Le3HP4WRUNRX8c/Gooy/j6iBwAAAAAAAAAAAAAAAAKEAGoAAADUGMvvAgAApZuTyIWHVswM+VrhKub4dz1z3YuljdbdFtHxu82o4bN5nsmFStru8D/41uD8/OtGk7ZzIbfH785tN5YO4MGvOlNuD0hj98B4ofT0QLDwHoDCHigMHx7pNEB+fsiVLG/w//fByfJy80d7D8jPz1i5kGN6IDjK7QGJHqh7xhyYxnueiYmJiYmJiYlp+kwj7Qvmv0+npWy2OvujAOrK73//+2HzLrroorLXM9IyI607aJLJ5LB5pQZw//jHPx623CWXXDIpdWF6SWfTOvVHp2pvYq8s489HfixjaW9ir0790alKZ9O+1FDP8j0wkBmQmdinBypmZDSQGaAHfMD4gx6ob4w/6AEAAAAAAAAAAAAAAIAAMf58fmNMBFADAABgHCG/CwAAlK47Khlv7MDQsXiSEhN85zderg7ZduWFYGJsT1nLKGNV58BPxpKylsmNuc2YBwI9UN8Yf9ieZCxJzqjhw5PBk3TgBhYWPRAkk9kDYwwpPTANuG7xyULPG37y0OL+ZAAAANPS0A+yWVZuyu8TEkINYJL19/frscceK5rX1NSkU045pex1vfnNbx42b/369froRz9acX3V8PDDDw+bd9RRR4273CuvvKINGzYUzTv33HM1a9asSasN00ckFNHlSy/XVQ9cJSkXCO16btW2Xxh8ffnSyxUJlRa0jslT2APGGHk+XCxgBvc16YHqY/xBD9Q3xh/0AAAAAAAAAAAAAAAAAEZFADUAAABKQAg1ANQI27L1hfXSB1dIPVHJ9SH/z/KktqT0hfWSTQC1L+IRTxeuSOiBQ9wxQyMLOZYkVyqMF3Tz80thpAcOcXXhioR+/Z+NiqUZez/RA/WN8Uc84qnjXUk9OcdVNCul7NFfa5QLEc5aUsjN/R3Pc01ufn40Rzud4EmKZqUn57jqeFdS634bpQd8Vk4P5I3VA5YnaYwga3pgGhh6wrDwcT6EEAAAANPT0BuSSFIoJIXDhFADmHSbNm2S6xYH4Z522mkKhcr/SMLpp5+ucDisTCazf96jjz464Rqn0nPPPafOzs6iedFoVGeddda4y951113D5p155pmTVhumnyvPuVKSdNUDV1U9eNDzPBlj9Ok3fnp/Hai+/O/+O/d/x5fte56nz/z1Z+gBnzD+oAfqG+MPegAAAAAAAAAAAAAAACAATMCut+d6cQAAAJSIEGoAqCHtT0sDIenydv9CqH94e64OzYpUv4A6F494uvAd+7T+EFdpe/SwyJEUhtCWFT6r3HbStrR+oasL353Sr++YQfikT+iB+sb4Ix7x1HF+n7rmuEqEpN6GsV9f2COFIcT58OGhrxlNb0MurLprrquOFWmt+30LPeCTcnug0Kg9MEYAdR49UMNcNzfled7wk4hWGX8UAAAAUDuGBMEqFJKiUcm2c/uAEY7vAphcTz/99LB5Rx99dEXrikQiWrhwobZu3bp/3gsvvKBsNltRqPVU27Jli971rncpmUwWzX//+9+vtra2cZf/85//PGzesmXL9n/veZ7+8Ic/6D/+4z/04IMP6qWXXlIqldKsWbM0d+5cLVu2TOecc47e+c53avbs2RP9cVAjrjznSqWyKf3goR9UdbuePH3i9E8QOhgAXzjrC/rVU7/S1p6t4794kh3edri+cNYXqr5dHMD4gx6ob4w/6AEAAAAAAAAAAAAAAAAfEUANAACAGha8KzQBAKOKN0g3L5VmpKWehlxoYLUYL7fdm5dK73pOigXwIv/pzDGeLn5Hj9Yfki07fHb/OizJ9Srrm/0htIdkdfE7+vRft7fJrmYDgh6oc4w/HONp5fm96prrKBGSeiLld0HWOhBAXK6eBk8yRl1zHa08v1+33tFKD1TZVPVAqWuhB2qU4xQ/9rzieZZFCDUAAMB0ZVnFQdT5fT/LksJhac4c/2oDMC29+OKLw+b91V/9VcXrO+yww4pCqB3H0csvv6wjjzyy4nVOplQqpY0bN+qXv/ylrr/++mEB1EcccYT++Z//uaR1PfHEE8PmHXPMMZKkv/zlL7rsssv02GOPDXvNjh07tGPHDv3lL3/RzTffrJaWFn3yk5/UZz7zGbW2tlbwU6GWxFNx3fvyvb5s+96X71U8FVesIebL9pEb/45bOtST7PFl+z3JHnXc0qF1F62jD3yQH/9kNqmQFVLWzVZt2yErpGQ2yfj7jB6ob4Xj3xxuVn+mv2rbbg43M/4BQA8AAAAAAAAAAAAAAAD4iABqAAAA1DgSRAGgRjiuo5UXSl0LpGhWalP1gqiNJ7WlctvtWiCtfI906588ggerbE+jV3H4bN5EhiwfQrunkQNQfqEH6hvjX99sz2jV5kb9eUG8ovDhvEoCqPN6Ip6MJ63a3Mg+gA/oAVRs6MnM8R4DAABg+ijc1yv8vrU1NwHAJNq+ffuweYceemjF6xtp2R07dlQ1hPquu+7Spz/96aJ52WxW+/bt02uvvaZsduTAx2OOOUZ/+MMfSg6C3rJly7B5ra2tWrNmjf7P//k/SqVSJa2nr69P3/jGN/SrX/1Kv/3tb3XssceWtFy1XHvttfrXf/3XKd/OCy+8MOXb8Fs8FdfyG5dr4/aNvmx/4/aNWn7jct1z+T0ED/rAcR2t/M1KPbjtQXUnu32poTvZrQe3PaiVv1mpWztulW3ZvtRRj/Lj37W9S/FUvKrhw5KUdbOKp+Lq2t7F+PuEHqhvheMvSRE7UtUA4ogdkSTG30f0AAAAAAAAAAAAAAAAgI+Cdk02AdQAAACoACHUAFAjbMvWqo3SxgW58MBqBVEXBlBLkuVJqzZKdtaduo1iGFvS37xq65G51b2AcChvsA7Gv/rogfrG+EOSBqys9oX9PRGwL+xpwMpKDv+U9AM9gLI5TvEJRNfNTYWCdsITAAAAk8Pzivf9PE+KRqUZM6TGRikc9q82ANPS3r17h81raWmpeH0jLbtnz56K11eJnp4edXV1lfz65uZmfeQjH9FXv/pVNTc3l7RMJpMZ8ef605/+pCuuuELukH/Hz5gxQwsWLJDjOHr99deVSCSGLfvss8/qzDPP1P3336/jjjuu5Pqn2q5du/TUU0/5XUbNc1xHb/vp23wLoM7buH2j3vbTt+nBDz5I8GCV2ZatJXOW6HfP/s7XOrqT3VoyZwnjX2W2ZWvVslW6Z+s9VQ0dLdSf6ZeR0aplqxh/H9AD9S0//htf36iBzIB6kj1V3X5Pskdt0TY1hZsYf5/QAwAAAAAAAAAAAAAAAD4J2vXYBFADAACgQqRGAUANad8syZNWX1CdIOqRAqivuV1qf1rSTAJIqyltufrFsWkZb2pDx8djPOkXx6b17fuyiriWf4XUIXqgvjH+SFuuPvWmAblGvvWB8XL7H59604D+7tkQPVBl9AAqMlLwYOFJRWOGh1IDAABgevC84g+4ua7U15ebP2OGlE77VxuAaam/f3gIYmNjY8XrG2nZgYGBitc3lYwx+sAHPqBvfvObmjt3blnL9vT0yBvhA8Af+MAH9gdQG2N0ySWX6OMf/7hOP/10mcH392w2q/Xr1+vKK6/UnXfeWbR8d3e3LrzwQj300EMlB2KjdnRtLz0cfSoFpY5647iO/uWhf/G7DEnSvzz0L/rm2d8kgLLKNmzb4Fv4cF5/pl8btm1Q++J2X+uoV/RAfWtf3K4N2zboO/d/R56qeyGZJ089yR5dccoVjL2P6AEAAAAAAAAAAAAAAIAqI4AaAAAA0wiJUQBQY9qfzgVBW4PHA6LZXFD0pF9TMlYAtZQ7QMJUtSni2bp6fZMibi4A0g/GkyKucnV4tu+/k3qb6IH6nhh/pnwPhF3JqPp9YLzcdsP0AD1AD9T2JPlfAxMTExMTExMTU/WmoSxLSiSkV1+VUqmq/psCwPSXyWSGzYtGoxWvb6QQ6nRAA/Q9z9OPf/xjnXDCCfrqV7+qffv2lbxsapT340QiISn3O+zs7NTPfvYzveENb5ApeH8PhUJ661vfqt///vf64Q9/WPScJD311FP62te+VsFPhCDrHehV1sv6XYYkKetl1TvQ63cZdacv2aeBbDBC+QeyA+pL9vldRl1JZ9O6/tHrqx46OpQnT9c/er3S2WD+bZ7O6AF0bu7Ujx/7sa81/PixH6tzc6evNdQzegAAAAAAAAAAAAAAAKCKRro+x08EUAMAAGCCQn4XAAAoXz4IevUFkjt4rMKYyc2hLjwGMiyAWsoFlqCqVj7fKBmjD5zdp7QleVU8TpUPn/33u1u08vkot7HwCT1Q3xh/FPZAxho8P1CNPigIH6YH/DW0B+RV573A0AO1y/OG77e7bvFj9usBAACmp6FB1IXfJxLSa69VvyYAdWdoKPJEl/Wq/IHZiy66aNg2BwYG1NPTo82bN+vPf/6zbrzxRm3dulWStHPnTn3lK1/RjTfeqF/+8pc644wzxt3GeD/T9ddfr3e/+93jrmf16tXauXOnvv71rxfNv+666/T5z39ebW1t464DtaEl2uJ3CUWCVk89aIwMD+n3U9Dqme5sy5brueO/sApcz5Vt2X6XUXdsy1bYCvtdhiQpbIXpgSpzXEffWP8N9aR6fK2jJ9Wjb6z/hlYsWkEPVBk9AAAAAAAAAAAAAAAAUEUEUAMAAGAaImkIAGpU+9O5YOiULfU2aHITqJVbX29Dbv3DAqjhm5XPRfXvd7coXOXrSveHTj4Xre6GMQw9UN8Yf+R7IOSqOgHUym0nRA8ERuH7gFEuIHoqDQugpgcAAACA2uB5xdNQ+/ZVvyYA01o4PDwMMZFIVLy+kZaNRCIVr2+yNDU16eCDD9bZZ5+tL33pS3rhhRf0L//yL2pubt7/mhdffFFvf/vbdf/994+7vpF+b3nLly/XpZdeWnJtX/rSl3TEEUcUzYvH4/rlL39Z8joQfH3JPr9LKBK0eupB0H7nQatnukukE+pLB+N33pfuUyJd+d96VCadTSueivtdhiQpnoornU37XUbdmds0V5ax5E36B8VK48mTZSzNbZrry/ZBDwAAAAAAAAAAAAAAAFQFAdQAAACYpkJ+FwAAmDhPkjfJxy48o7GDrTk44Zt3bQ3ruG5bj89xqrbN47ptvWtrmHEPCHqgvjH+oAew8tkGyfP0gbf3K2NJ8irfFxxrl68ogPquZq18birufIIpV/j/7dAAQmP4/xoAAKBeFO73hUKSxX1qAUyupqamYfMmO4S6MOg5KIwx+tjHPqYTTzxR559//v66+/r61NHRoccff1wzZ84cdfmxfqbVq1eXVUs4HNaHP/xhff7zny+af8899+gjH/lIWeuaCnPnztWSJUumfDsvvPCCUqnUlG/HL5GQ/2HshYJWTz1obWrVkW1HakvPFr9L0ZFtR6q1qdXvMupKS7RFX3nLV/Tl//my36XoK2/5ilqiLX6XUXcaI436zjnf0Sfv/KTfpeg753xHjZFGv8uoK7Zl65KTLtFdW+/yuxRdctIlsi3b7zLqDj0AAAAAAAAAAAAAAABQBQRQAwAAYBojhBoAalTncdLqCwYDB6fq2IXJrX/1BbmH7U8XPGdzEYkf4mFXHef2a1eTp7a0UU9k6g8UtaWNdjV56nhHv9b9IaZYhoAaP9ED9Y3xBz2AvJVbmqX/tvSBt+4bNYh6vHuK5F+jEV5XFED93zO0ckujxO5f7Rl6knPoY8sifBAAAGC6sqziD5nZdi582pjcNGeOf7UBmJZmz549bF5fX1/F6xtp2ZG2ERRnnXWWvvKVr+hzn/vc/nnbtm3Td7/7XX39618fdbkZM2YoEokonU4XzbcsS29/+9vLruPcc88dFkJ93333lb2eqfCxj31MH/vYx6Z8O8cff7yeeuqpKd+OX4IW9Be0euqB4zqBCKCWpC09W+S4Dn1QRelsWl+/d/S/K9X09Xu/rs+/6fOE0VeZ4zr6+vqA9MD6r+tjb/gY7wFV5LiOvrfhe8q6WV/ryLpZfW/D9/TeE97L+FdZvgcct3o3rB6rDnoAAAAAAAAAAAAAAABMOwRQAwAAYJojhBoAaokxkuftD6AeCEs90fHDBSvlKbd+aYQgakKoqy4edtXx9n3qmp27mKwxmztwNZUBpG1ps387XXOy6jhvn9bd1UYAqU/ogfrG+IMewFArt7RIlqUPvKVXGat4n9AoFyQ9NJh6JMbLLTB0+bAr/fv/tGrlliYCqKcL1x0+j/16AACA6avwg2/58GljpKYm6fDDfSsLwPQ0f/78YfO2bdtW8fpeeeWVkrYRJJ/85Ce7NUU5AAEAAElEQVT19a9/Xfv27ds/70c/+pG+9rWvyYzxYeQFCxbo5ZdfLpp35JFHKhaLlV3DSSedJNu25TgHQum2b98uz/PGrAG1Y3vPdr9LKLK9Z7uOmHeE32XUlSD2wGFzDvO7jLqRSCeU8TJ+lyFJyngZJdIJQqirLJFOaNfALr/LkCTtGtilRDqhlmiL36XUlUw2IO8BAamjHrmuK2/KPi1YGk+e3JHOOwIAAAAAAAAAAAAAANSyoH3emgBqAAAATAFCqAGglkSj6vyrRFUCqPNGDKJ+xkgh/oRUk2M8rXx7t7pmF1/ENZUBpIXBo3ldszNa+fZe3XrXHNmlpFpi0tAD9Y3xBz2A0ax8MSZZti4/a6/cwSHJB1CXY2gQteVJ/75+lla+2MyRg1o3NHhw6HOEUAMAAExPtl38YTPblsJhqaUlF0DN8V0Ak+yII4aH0L700ksVr29oKLNt2zrssGCHnDY0NOhtb3ubbrvttv3zdu3apaeeekrHH3/8qMsdeeSRw37e2bNnV1SDbdtqbW3V3r17989zHEc9PT2aOXNmResEECy2FazjeUGrZ7pzXGf8F1VR0OoBpjvHdfRi/EW/y5AkvRh/UY7r8HfAD0E5TR+UOgAAAAAAAAAAAAAAACYDAdQAAACoE1xhDgA1pPOtB2n1cVuqFkCdNyyIurFB7bMXVWnrkCRb0qr+ndo4/xm5Q0beWK6k7KRv01i2FLKK5lkyWtV/rOxj50369jA2eqC+Mf4YrweMspO6X2BED9SSptk7NcONq9vK5sZOKu+iX1P0RZ6kGW5ITQsWSmHGuqalUlI6feBxJlP82Bipqan6dQEAAGDqvfaalEweeNzWJh1zjBSN5vYDw2HfSgMwPS1aNPy80fPPP1/RutLptF555ZWieUcddZRCNRCgf/jhhw+bt2XLljFDqBcvXqx77rmnaF5DQ0PFNUSj0WHzkoV/E1DTjph3hE6ae5Ie3/W436XopLkn6Yh5wwPoMbUWtC1Qa7hVvZlev0tRa7hVC9oW+F1GXWltatXs6GztSe7xuxTNjs5Wa1Or32XUncZIo5bMXqKn9jzldylaMnuJGiONfpdRV2zL1pFtR2rTjk1+l6Ij244kgNon85rnKWyFlXEz4794ioStsOY1cx4ZAAAAAAAAAAAAAABMEwRQAwAAoI4E/ypNAIAkyXEdrXlrqwZ2VzeAOq8wiHrNm5q1InOkbFljLoPJ1a6jpYGDtDp23/4A0qSy6rEmP3xWknpCWbW5EUUHdxcsGV0Tf5PaZx4hzZySTWIc9EB9Y/wxWg/0Wo6MjLxJ3DswMuoNOZJr0QMB19mwVatjLyiqiBrlKSW34NlSe8IUfReVpagV0epjX5DiB6k9RZBMzerrkxKJA49TKWlg4MBj25ZiserXBQAAgKk3MCDt23fgcWur1FgQDjaBcFMAGMnJJ58sy7LkugeOTTzyyCPKZrNlh0c/8sgjymSKA9VOOeWUSalzqo0UAL2v8P14BKeffrquu+66onm9vZWHy/b09AybN3v27IrXh2BxXEcHxQ4KRAj1QbGD5LgOAZRVZlu2HrjiAS351yV+l6IHrniA8a8y27K1ftX6QIz/+lXrGX8f2JatWzpuCUQP3NJxCz1QZbZl6+cX/lzH/+vxk3puuFxGRj+/8OeMvw9sy9aPV/xYx1xzjK8h1Pk66AEAAAAAAAAAAAAAAFDzghZADQAAAEwxQqgBoEbYlq33nvuPuvOWS3y7jMiT1BeR3vtMm+zt/l/YXI/aJWneIVq95EUNWI56ws6U9YMnqcdKqy3jqMm1dc1Th6t9Z6+kTVO0RZSCHqhvjD+G9kBv2JE0+Ten8OTJSOq10hI9EFid8/Zq9ZIX5WY8JS1XKcupcE3FHZSSo6STUtS1tLrxv6WtW9W+c9bEC0b1pVJSYWhXNlv82LIIHwQAAJiu9u6V0ukDj42RotFcGHVra+57AJhEzc3NOvnkk/Xoo4/un9ff36+NGzfq9NNPL2td991337B5Z5111oRrrIadO3cOmzdnzpwxl1m+fPmweS+99JI8z5Mp80PNu3bt0kDhDagkxWIxRSKRstaDYNu0fZPfJUgKTh31Jp1N67QbTvO7DEnSaTecpu7PdisS4j2mWhh/0AP1LT/+fgZQS7lzyYy/PxzX0fIblyuZTfpaRzKb1PIbl+uZjz9DEDUAAAAAAAAAAAAAAKhdQQyg9vz9bBAAAACmP0KoAaBGOK6j7z7wXWUsf+vIWNJ3D9um9z4blu0F8GBKHWjvtbWhsUXfWbR3yi8r8yT1hBxd8Uyr2p+zJfVO8RZRCnqgvjH+yPfAVYv2SsqN0+SHUOcYSb30QCB1HhLX6uN2yPWkpOWqN+RO6vp7Q46U8XJB1MdtkQb61f5qbFK3gSrIZHLB03mOU/zYmOJQagAAAEwf6XTxvl8qJXV3S319EkGkAKbI+eefXxRCLUm33HJL2SHUt9xyy4jrrgUbNmwYNm/BggVjLnPEEUdo8eLF2rx58/55PT09euqpp3T88ceXtf37779/2LyTTz65rHUg2BzX8T10MC+ZTcpxHYIH/RCU6wuCUke9CcrvPSh11KOg/O6DUke9CcrvPSh11BnHdbR7YLffZUiSdg/sZl8QAAAAAAAAAAAAAADULgKoAQAAUKcIoQaAGuG4jl6Jv5JLg5zAMQPbk5wJHgd5pSkrp7FRtnxOxK5TnQu69eMje3O9UA1G+vGRvTqzr03t22dWaaMYCz1Q3xh/dC7o1trD96k1a6sn7EzZ9b359bZlba09fB89ECCdC7q1+oSdco3JBVCHJzeAWpJkpN6IK2VMLoj61J1SQwM9UGvS6eKQaccpfmyM1NBQ/boAAAAw9VKp4g+fRSJSY2Pu+23bpH37/KkLwLT23ve+V9/4xjeK5v3kJz/R1772NUVKDMDfuHGjHn744aJ5Z5xxho444ohJq3OqbNq0qShIWpLa2tq0ePHicZe95JJL9IUvfKFo3k033aRvfetbZdXws5/9bNi8s88+u6x1INgioYg6Ozr1tp+9ze9S1NnRqUiIm1tUWyQU0e/+/neB6IHf/f3v6IEqY/xBD9Q3xh+RUEQPfOABnXjdiXI8p+L1GBl5E/ikgW1sPfCBB+gBAAAAAAAAAAAAAABQmwigBgAAQB0jhBoAakQkFNH3z/u+Vt22SmknXdE68vnVE8mxjrjS9586TBFjV7gGTETngm598MSX1BOp/EKiSvREHH3wpJckYwif9Bk9UN8Yf3Qu6Nbq41+RW+XzGq6RVp/wCj0QAIU9kAugntr3g96wI2WUC6KmB2qPMbnJdQ8EUBeGUEvDHwMAAGB6yGRy+4CFj1MpKRSSbFt6/XX/agMwbZ1wwgl605vepPvuu2//vF27dul73/uePve5z5W0jn/6p38aNu+jH/3opNU4VRzH0Sc+8Ylh89/5zncqHA6Pu/wHPvABff3rX1cikdg/7/rrr9cnPvEJHXzwwSXV8Nhjj+m2224rmmeM0YUXXljS8qgNiXRC56893+8yJEnnrz1fPZ/tUWOk0e9S6go9UN8Yf9AD9Y3xh+M6+uxdn9Xsptna2b+z4vVMJIBakmY3zdZn7/qsbu24VbbFZwgBAAAAAAAAAAAAAEANIYAaAAAAdY4QagCoIStPWqmHX3tYP3jwB2WnSBtJZnAZM5hEXckhiI8+P1Mrn2+UNFDB0piIzkPi+uCJr6kn4spT5UHi5cpvpyfi6IMnbpVSKbW/GqvS1lGIHqhvjD86D4lr9ZLtcjUYPhxylT/FMRX9YAan3pAjZT1FHUurl7xED/hopB6oBnqghuWDBrPZ3GPXPfA9AAAAprehIdTZ7IEpEpEGOL4LYGp88Ytf1PnnFwfjffnLX9Y555yjU045Zcxl/+Vf/kV33nln0bwjjzxSf//3f1/Stg8//HC99NJLRfP++7//W8uXLx9zuWuuuUbHHXeczjnnnJK2M1QqldJll12m9evXF803xujjH/94SeuYP3++Pvaxj+mqq67aP6+np0crV67U7bffrsbGscP9du7cqZUrV8pxim9YduGFF2rJkiUl/iSoBY2RRl1w9AW69Zlb/S5FFxx9AcGTPqAH6hvjD3qgvjH+sC1bq5at0v2v3C/LWHK96pwvLmQZS1k3q1XLVhFADQAAAAAAAAAAAAAAagsB1AAAAAAh1ABQSzo3d+qWp25RW7RNPcmekhMnCwOo98+rIIi6LW10y8K43vJqSO0vN5exJCbKMZ6+sWinesLVDZ/N2x9CG3b1jUU7teJ5W7YXwINr0xg9UN8YfzjG05rD9siVp6TlHQgfzg/OVAxHQaP1hlzJk6KO0ZrD9tADPhi3B0YywhBZnuQOnV/Cmwo9UKPyIdR5rpubAAAAMP05TnEIdeH36XTxYwCYROedd57e/e5367bbbts/L5VK6a1vfatuvvlmvetd7xq2TCaT0be+9S196UtfGvbcD3/4Q4XD4Smt+dFHH9UnPvEJnXnmmXrf+96nCy+8UPPnzx93uUwmo9/+9rf6/Oc/r+eee27Y81dccYXOPPPMkuv48pe/rP/4j//Qyy+/vH/ePffco7PPPltr1qzRcccdN+Jy999/v97//vfr2WefLZrf0tKir3/96yVvH7Wj872dOuOGM/TQaw/5VsMbDn6DOt/b6dv2692lSy/V75//vZJO0rcaonZUly691Lft1zPGH/RAfWP8Ian6HxoJ2vYBAAAAAAAAAAAAAADKRQA1AAAAIIkQagCoGY7raM2mNXI9Vw12g0KOlLVKXLjgmEODI6XsgvklHiMJuVKDY+Qaac0xfVrxShPBg1U2N2nJkpT1afueJHuwDviDHqhvjH99sz2jtffO1fLzX1fXzMz++Z6kqfpz7JncBvKr7w27OrwvrLX3zmUfwAej9UA5wq5ke5JjpEwF/yvTAzWIwGkAAAAAgA9uuOEGPfroo9q2bdv+efF4XCtWrNBpp52md7/73TriiCOUSCT03HPPae3atXr11VeHrefjH/+43vnOd1at7g0bNmjDhg1avXq1Fi9erJNPPllLlizRrFmz1NbWJmOM4vG4XnvtNW3atEn33nuv9uzZM+K63vrWt+rqq68ua/stLS361a9+pbPOOkupgptKPfDAAzrxxBN1zjnn6Oyzz9bBBx8sx3H08ssv6/e//73Wr18/4vpuvPFGLVq0qKwaUBs6N3fqpd6XfK3hpd6X1Lm5U+2L232tox7lPzcwo2GGkgP+BZDOaJihNZvWaMWiFbIte/wFMCkYf9AD9Y3xR74HwnZYlrHketU/F2gZS2E7TA8AAAAAAAAAAAAAAIDaQQA1AAAAsB8h1ABQI2zL1tr3rNWF/3Gh1j//J7kmFwpZyiGFfIhkW0qKZqVkSOppKD200khyjdQTcfXmHVGCB31ge0aXvNCs/16QVNbHa3dsV7rkhWbG3wf0QH1j/CFJdx+U0Paoo7AnZczUBlDnFQZRhz1pe9TR3Qcl1P5y89RuGCMa2gPlyAdQS4Nf3fKDqOmBGjT0BCQnJAEAAOrHWPt+DQ3B/AAdgGlj7ty5+sMf/qC3ve1t2r59e9FzjzzyiB555JFx13HxxRfr+9///hRVODbXdfXkk0/qySefrGj5//W//pd+/vOfq7Gxsexl3/CGN+jWW2/Ve97zHiUSif3zs9ms7rjjDt1xxx3jriMSiejaa6/VhRdeWPb2EXyO6+jah6/Vzv6dvtaxs3+nrn34WoIHfWBbtr799m9r6b8t9bWOnmSPvv32bzP+Vcb4gx6ob4w/bMvWde+8Tidff7Jcz5WRkVfSpweLTWQ513PleI6ue+d19AAAAAAAAAAAAAAAAAi+IF4/w/XeAAAA8BEh1ABQazJZyXUlSzKeJFNaELWGHhMpI4DaFG7AtqWWFvmaglqHHHn65bF71Jax1W0cpcsMjcwrNbh8JBFXasvY+uWxab13d4vsUpsIk4IeqG+MPxx5WrN4j2RZaksbdUcq6wNLklvmMp7JBRi3pW3JMlqzOKkV3fPpgSob2gM9EVcZq7T/o8OuZMvISJqbsrWrwZEtSa4nx1JJ+4Vh16gtbdEDtSYclgoCq+S6UjbrXz0AAAConmy2+INyliVFIlIolJsf4hQhgKm1ePFiPfTQQ/r7v/973XfffSUvFw6H9X//7//Vl770JVlWhQdCy9TcPDk32zr00EP1ve99b8Lhz+eff74eeOABXXLJJfrLX/5S1rLHHHOMfvKTn+hv/uZvJlQDgstxHT2+4/GKQgMnkydPj+94XI7rED5YZelsWst/ulyO5/hah+M5Wv7T5XrlH15RJBTxtZZ6wviDHqhvjD8c19FH/+ujClkhha2wMm5G8lT2vmGlAdTGGIWtsEJWSB/9r4/q1o5b2RcEAAAAAAAAAAAAAADBRQA1AAAAMAxXmANAjXBcRyt/s1JPbtmgmUmpu1HKlBhEnQ+S7m2QkiEpZZe3nJQLL5yZkJ6ckdDKt+7VrS/9NcGDVWRLWrv3SHW0PKhHQ93abaXLvhzIlpHlSa7JBVmWw0hqdSM6OTtTa/eeIfvYcJlbx0TRA/WN8UdhD2yM9kjGVbmR4iHPyJKRK09ZU2YHDQaULU220QM+KeyBrmiv2lxPPSajjBk7VjzsGdkmF0C9NNGqQzJRveol1dXUK1tGUcdSvz12KHHYs9TmhmWFjJYmW+mBWtLfL3V3S85gGEE2K6VS/tYEAACA6nCc4n2/UCh3kxIp92+8hgZ/6gJQVw499FDde++9+tWvfqUf/OAHeuCBB+SN8qHZlpYW/d3f/Z0++9nP6rjjjqtqnddee60+9rGP6Y477tD//M//6OGHH9b27dtLWnb+/Pl661vfqksvvVTnnnuubHtyAtiWLl2qTZs26aabbtJ1112nhx9+eNTfnW3besMb3qAPf/jDuuSSSyatBgRTJBTR+5e9X1c9cJVcr9xbDk4ey1h6/7L3Ezzpg0goosuXXq6rHrhKRsaXQHIz+DmBy5deTg9UWeH4W8by5X3AMrmbRDD+/qAH6hvjD9uytWrZKm18faNmNs5Ud6K74iDqchQGUM9snCnb5OoggBoAAAAAAAAAAAAAAAQWAdQAAADAiAihBoAasf8ikkd+J9fkAqFLCaIuDJKWcgHU+58rcbl8ALWRZDmuVnUfTgC1D2JuWDdsO0UnH3N32ctakqzB8bQ8yTNSuZeieUa6YdspirmETvqFHqhvjD8KeyBrPBmVHkNteZI1+LfbkpHleXJL/FNuJGWNJ8d49IDPYm5Y614+Qx2HDQZRO2H12KMHUc9wQkpZbi6AeiAXQC0p93VA6mrqVYNnKeSE1WtnRlxH2LPU5oRlKRdAve7lM+iBWmKM1NgoJRIHgqgBAABQ3yxLikZzXwGgCowxuvjii3XxxRdr586deuihh7RlyxbF43GFQiHNmTNHixcv1umnn65IZGIhdi+++GLFyy5ZskRLlizRP/7jP0qSXn/9db3wwgt68cUXtXfvXvX398vzPM2YMUOtra2aN2+eli5dqoMOOmhCNY/Ftm1dfvnluvzyy7Vjxw498sgj+393kUhEc+bM0cEHH6w3vvGNisViU1YHgufKc67Ubzb/Rs93P+9bDUe2Hakrz7nSt+3XuyvPuVLP7nlWtz5zqy/b9+Tp3ce+mx7wSf73/p37v+PL9j3P02f++jOMv4/yv3s/wujzIfSffuOn6QGfFI5/tYOo8wHUjL+/2he3S5JW37G6KIh6tJvWTIahAdTXvOOa/XUAAAAAAAAAAAAAAAAEDgHUAAAAwKgIoQaAGtL+cpN0u7T6Ao0YRO0NOQYyNIB6JKMFUY8YQO1J19wutc+2pQWT8zOhdHEroysWPqaQZ2TLKFvGhYSuJCNPloxceWWHz9oyCnlGVyx8jPBJH9ED9Y3xR2EPWOX2gJFcr6AHyjhv4okeCJJSg6hbnbDCnlFablEAdV4+iHpLw4DCniU5GhZETQD1NGFZUlOTlM1KqdTwk5RhxhQAAGBasqziD83Zdu4GJaFQMD9MB6AuzJs3T3/7t3/rdxklOeigg3TQQQfpTW96k9+lSJLmz5+vd77znX6XgYBo/2W7rwHUkvR89/Nq/2W7Ot/b6Wsd9apzc6fuffleX2u49+V71bm5kwBKn5y58EyFrJAy7sg3mJxKISukMxeeWfXtophfYfSE0AeDX2H0hNAHx9Ag6j0De6Y0kNw2NgHUAAAAAAAAAAAAAACgNgTxmhkCqAEAABAghFADQC350Y/U/nTu26FB1Gm7+KWlBFDvf+0IQdSekSLOCAHUT0s6eKu0gBTqanLkaeWhD6kr2quUceWWETy6fx1GcuVVsGRuuZRx1RXt1cpDH9KtL/21bAXwwNs0Rg/Ut0rH3+jAezvjX9sm4z0gazxZFYSQS/RA0IwXRN3qhBX1bLnyRgygzjskE9Xf9SzU1fOfV9Szi4KoCaCeZozJhU17nuQWvAvYttTc7F9dAAAAmDrhsJQpCKQLhbgBCQAA00AindBtz9zmdxmSpNueuU2JdEKNkUa/S6krjuvom+u/qe5Et691dCe69c3139SKRStkW/b4C2DSdG7u1KW3XupLALUkZdyMLr31Uv1MPyOE1Ef5MHojU+EZ4MoYGULoA+LMhWeqOdKsvnRf1bbZHGkmhD5A8v8P/p/b/4+ybnZKt5VfPwHUAAAAAAAAAAAAAAAg0AigBgAAAMZl+V0AAKAMjz0mKRcEfc3tuWBoI6kxUxwgXU4A9f5lBteV5w2ud1gAtST19FT4A6BStoxWdR+ulHH3h0OO90fcSMPiQUdqi/EOoeW302tnlDKuVnUfTvCoDyrtgaGG9sBIfTIUPeC/qRr/0V5XiPEPhsnqgaEB1LwH1K58EPXSZKssGbU5YYU9a38AtSWjL+84TodkGnVgpIdPy/vm6JrXlsqSUdSz1Tq4HgKoAQAAAAAAgGAyAfmAfFDqqEd7EnuqGjo7Ek+e9iT2+FpDPXJcR5/542eqGjo7kr50nz7zx8/IcR1f66hXnZs79cHfflA9yZ6qvxcbY9ST7NEHf/tBdW7urOq2cUDn5k6tvmO1msJNVd1uU7hJq+9YzdgHyOmHnK7eZO+U7xd48tSb7NXph5w+pdsBAAAAAAAAAAAAAACoWBA/10oANQAAAAKIEGoAqCU7duz/Nh9EnbKleEMuKFqqLIA6rzCI2vJy603ZQwKoJSmVqmwDmHSj/SEvJVS0lNeyoxB89EB9Y/wx0R7wxnktPRBsQ4OoZxYEUF/z2lKd2zdPuVEefbJk1B4/pCiIeiYB1AAAAAAAAEAg2ZYtywvGkVvLs2Rbtt9l1B3HdfRq/FW/y5AkvRp/lRDiKnNcR6/0vuJ3GZKkV3pfYfx94LiOvrn+m+pJ9kiSXG/oLWinVn57PckefXP9N+kBH+QDqDNuRjv7d1Z12zv7dyrjZgiiDoht8W1acu0SJbKJqmwvkU1oybVLtC2+rSrbAwAAAAAAAAAAAAAAKBkB1AAAAEDJgnFlGgCgNJnMmE9bXuUB1HnGOxBoPSq3uhexQXLkac3MF9XgWWp1ioMgh/4xHytMdKz5Q58but5WJ6wGz9KamS/KEQe7qo0eqG+MP+gBjKYwiFrS/gDq9vghkufJ8zTmlFcYRC2JAGoAAAAAAAAggBzXkbGC8UF5YxnCR33guI68gByj9+TRA1XG+EOSZjfNVsgKVT2AOs/1XIWskGY3zfZl+/XMcR2t2bTGlwDqvHwQ9ZpNa3gP8FE+gHpfel9Vt7svvY8gagAAAAAAAAAAAAAAgPEQQA0AAIAAI4QaAGpJwUGGzuOk1RdIDY7UmsrNc43kTfCaY8/k1iPl1tvg5LbTedzIdaA6bBmtfeUNWppsVdSziwJISx0Nq2AqReF6W52wop6tpclWrX3lDbJHjTHFVKEH6ttY4y8dGNOxwoctSbZnRh3/wmVHCh9m/P1FD2AsMTesG7adIlfSyu5DcwHUkmSMjNGYU6H2+CFa2X2oXEk3bDuFAGoAAAAAAAAgYBojjfriWV/0uwxJ0hfP+qIaI41+l1F3GiONuvOSO/0uQ5J05yV30gNVxvjDtmx977zvKeOMfRP7qZZxMvreed+Tbdm+1lFvbMvWt9/+be3u3+1rHbv7d+vbb/824+8TvwKo8wiiBgAAAAAAAAAAAAAAgTL0gnm/kckEAACAgAv5XQAAoAyDBz7yAdT5sOhQVnIbct97kmQkU8ExCc8cCJ11B9cr5baz+oLc9+1PD9axz58LWepZTNK6p45Xx7Fd6mruk7yQekLZYQHE+ceFh8ksHegJI8kyuTEuXGa09bRlQ4p6lpb2N2vds8cr5iQlJSfhJ0K56IH6NtL49w6+UefHcqSxlwbDxwfvUmB5uT8S7pDXFPaAqwMhxK2Mf2DQAxhN3M7qimO7ZHue1ra+pDP3Nqp973wpnJBmO2MvnOiXErlDA52zdmht60uyPU9XLHhI655dqpjDYYOalkxK6fSBx5mMlEodeGzbwTu5CgAAgMnhDv1XHwAAmA4S6YS+du/X/C5DkvS1e7+mz7zxM4TQVlk6m9bf/vxv/S5DkvS3P/9bdX+uW5FQxO9S6gbjj3Q2rdN+dJq8km9VPTU8eTrtR6fRA1WWH3932Jne6nLlMv4+SWfTOuFfT/AtgDpvX3qfTvjXE7Tz0zvpAQAAAAAAAAAAAAAA4J+gXSNNADUAAABqAGlSAFBLwmF1Hp0tCqDOStrdrKK0yUqCqAsDqDW4/O5maU5/7o9FURD1s0bKZifwg6BSsexgAOniv2hj8z7ZnpQd4ZhY4VgWhg/nGe9ACPFI4cN5tidFXJMLHt18vGKOlOs6+GWyeyA//vRAbSgc/67mPrlZW72h4oDZoSHEufDhwmcGH5vi4OKhPeBKas3airoW4x8g9ACGittZdRzzF3U19Ume5MrT6iOelhxXJ8WbJW+ci9CdrJTNqnP2Lq0+4lm58iRP6mrap45jNmnd5hMIoq5l2Wzxfrvj5KY8z2O/HgAAAAAAoIZEQhEdGjtUW3u2+l2KDo0dSuigX4JyzURQ6qg3Qfm9B6WOehSU331Q6qg3Qfm9B6WOOmNbtuY0zVFvqtfvUjSnaY5sy/a7DAAAAAAAAAAAAAAAUK8IoAYAAAAqYvldAACgdJ2nt4wYQO2NEkA70vyRDAugLpi/u/lA1GQ+iLrzBC4g8VPMCemGZ49T1ngjhg/neZJsd/QwcuPlprEOY2WNlDWebnj2OAIoA6ScHsiP80iMl+sReqC2xJyQ1m0+Qcf3NytpuyNe25kPFG50rcHw4eEsLzeNFkJuJCVtV8f3NxNCGzDl9EDIM2P2QNgz9EANi9vZ/YHkhVx5Wn30s7pj1h4NGGfMKW3cXAD10YMB1AW6mvvUsfgvituEFAMAAAAAAABBYFu2Nn1kkxpDjb7W0Rhq1KaPbCJ40AeRUETPfPwZWcbfj3xZxtIzH3+GIPIqY/xBD9Q3xh+2ZeuxDz+meU3zfK1jXtM8Pfbhx9gXBAAAAAAAAAAAAAAA/iCAGgAAAKgYIdQAUCMc19Ga0+ySAqjzRgqibnCGvGaUAOrC54cGUa852cgZcylMpbid1fsXbda+kDPua7PW6ONbalD5vpCj9y/aTABlgJTTA2P9P+4p1yPjoQcCyhz4UvEh8lEWLFpnwI6/o8Bk9MAYq6YHgm20AOo8V56+fviL2hZNKWV7o05/ausZMYA6jyBqAAAAAAAAIFgu67xMiWzC1xoS2YQu67zM1xrq2erbV8v1XF9rcD1Xq29f7WsN9YrxBz1Q3xh/3L3lbtmW7VsYuWUs2Zatu7fc7cv2AQAAAAAAAAAAAABAnSOAGgAAAJiQkN8FAABKY1u21r7tWnX84kI9umD8AOo8T5KMZDypNSVFs1IyJPU2jB9AvX8dg0HUc/qlU7dLa7eeKHtm0wR/IlQibmV04dFdWj+jV1njyZI03qVlrpEsrzhD1BucPx5LUtZ4Wt/aqwtPeFK/fv5UxdxwxfVj4ugBxK2MOo56Qk82DWhmNqLuUEYZUxwfmw8QTliujCRrhD8YrvHk6sBdaYYuH/YszcyG9WTzgDqO36x1L5zM2AdEOT2Qf58YvQc8eqAG5Xugq6lfY6WEu0Z6tjkpDViam2kY9vyucEpXH/qqQuNEmXe19NMDtcwquAA9kxn+XDRa3XoAAABQHbZdvC9oDQkmCtqH7gAAQEkS6YRuf/52v8uQJN3+/O1KpBNqjDT6XUpdoQfqG+MPeqC+Mf5wXEdrNq2RJM1tmqtdA7uqGkpuGUtzm+ZKktZsWqMVi1bItuyqbR8AAAAAAAAAAAAAANS5oF0LQwA1AAAAahAh1ABQQ2LvfI+uviKspR/IlBRAnedJanByAdRS7msilAujLnkdRupplK7+gxQ76/ByysYkiVsZXXjYw1rf3K2MOXABUckhxMrFS3olvD6/3ryMcbV+RrcuPHaTfv3ymQRQ+oQeQNzKqOOwR9QV3SfJyEia6YS1207LNbkD1EOjZF1JMl5RCHE+gDov/0z+ELflGc10wjKDB+G7mvep49gurXv5DMbeZ/QAhvbAmIwnT9KzTQNS0mhu9kAQ9a5QSs9GBzTDDZV0ZxN6oEa5I/zFd5wD39u2FIlUrx4AAABUTyhUHDw99IN2IU4RAgBQixojjdr04U1a+m9LlXEz4y+QV8pn3Ms4/xy2wtr04U0ET/qg4h6YZPSAPxh/0AP1jfGHbdla+5616rilQ13buxSLxNST6qna9mORmCxjaemCpVr7nrUEUAMAAAAAAAAAAAAAgOohgBoAAACYFNb4LwEABMW2+Dad9QEjp4J372RIig/my8Uj5QVQ5zmWdNYqo22hgfIXxoQ48tRx2INa37y7KHxYKu2acSkXQpqfSjF0vRnjan3zbnUc9qCckreKyUIPIBc8+6C6or1F81PGHTV8OM+V9r9maPhwXuGyrvGUGtJnXdFedRz2oOKWfxez1jt6AKP1wHg8Sc9G+7UrlJKUD6DuL/udnB4AAAAApgljpEaCogAAqFWL5y5W10e6ZJlxThp7BVMpSny9ZSx1faRLi+cuLnHFmGwl98AUoQf8xfiDHqhvjD9iDTGtu2idFrQsUDwdH7x19dQzMoqn41rQskDrLlqnWEOsKtsFAAAAAAAAAAAAAAAggBoAAACYPBVEkAIA/JDOpnXqj07V3nBWnlPZOvojUjIsORUeW/Ek7Y16OvXIu/TK+tMV4V4GVeRp12F9I4YPl3NoqpLXFrZLxrja5fZJO3Zo5JhTTB16oJ458rRy6VPqivQXpYgnLVe9dlbS+HeXcSV5xhuzBwpDiHvtjJT1FHUPrLkr0q2V89br1q4lshn/qqIHMFoPjM2VBsPHPUnPNvRpl5VUdzh74NyW65b1x4EeqDGplJQpCA3PZqV0+sBjy8q9BgAAANPPwEBu/y8vnc7tG0YiUlOTZNv+1QYAACbsxk03yvVGOVA4GZ9rH+kk0SDXc3Xjpht15TlXTsKGUKkxe2CK0QP+Y/xBD9Q3xh93b7lb2/u2K2yFlXEzkieN/UmAiTEyMsYobIW1vW+77t5yt9oXt0/Z9gAAAAAAAAAAAAAAAPYjgBoAAACYVIRQA0CNiIQiunzp5frO/d+RN4HjI5UGUEvKbdeTLt/coMiLL1e+IpTNlvQFL6oPvjmhnkjuQjLPTM415GPZf3354DdtaUtfeCgq+6WXpnjLGIoeqG+2pFWepY1/7cgdHJWk7anX9sZugiHv+SO+dIzle+2s5BhFB/94WDJatcli/H1AD2CkHhiXJRUOsCdpbzhT/BrHzQVRl4geqDHZbPH4uq7kFNzRxhgpxKEhAACAaSmZLN73GxjI3VSsuTkXQg0AAGrW5/74OV31wFWyjDU8gHKyTxx5Gnac2TKWrnrgKkkigNInY/ZAFdAD/mL8QQ/UN8YfnZs7tfqO1ZKktmibupPdSjvpcZaaGE+ewlZYbdE2Sdq/fYKoAQAAAAAAAAAAAADAlCKAGgAAAJh0JA0BQA05c+GZao40qy/dN/XJs6NozhqdubeRsDoftL86Q7rf0gf/eo+6G0qOn5wwT5KMNDNl6cf3z1b7q83sQfiEHqhv7a/OkB60tPqMvRoIeeoNV6cDeiOelDFqyhpd8+Asxt9H9AAKe8At6ZxZCT1iVPIJOMsTPVCLhoZOFzJGsu3q1gMAAIDqsO3iD7dZVm5eMim9/LK0eLF/tQEAgIqls2nd2HWjJE19AHXhegsOK7meK8tYurHrRn3trV9TJBSZog1jJIU9IKnqIaSWsfZ/Tw9UH+MPeqC+Mf5wXEdrNq3ZP+7GVOHu9Xne4PaU2x9cs2mNVixaIdviXCMAAAAAAAAAAAAAAJgCBFADAAAAU4LYKACoEfmLSGZEZsjzPPVn+qseRN2cNZqRtbTmmD6teKVJthewAzZ1oP3lZm2Yk9J3TogXXew95Tzpg8+2qP3l5ipuFCOhB+pbfvyvOiFe1e32hl1d8UyM8Q8AegD5MSg9iHpy7A+gpgcAAACA2pdOS9u3+10FAACoQCQU0T2X3aOl/7a0OHSyzPPGlqfyji/m1z+4jO0Z3RP6oCL/9qPyNowJi0h6NPxxnawrtdcbUKW3rTWq7OMGrufKktEs06RHwx+nB6qM8Qc9UN8Yf9iS1rpnqSP1gjZlt6nbSygrp+wxreT1WTej7r7dmmkatSy0UGt3nSX7X68rp3wAAAAAQRCLSYcfLv3N3+RuYgwAAAAAAAAAQUQANQAAADBlCKEGgBphW7bWvmetOm7pUNf2LkkqO4jaeAcuIik3P7o5axTLWFq6N6K1984lgNonnYf1a+1R/WrLWOoJu2WPYyWMJ7VlLK09ql9n7m4gfNJn9EB9y49/a8ZSb9gdf4FJ0sr4BwY9AGlyg6hL2ZUkgBoAAACYhuLVvbkRAACYHI7r6LN3fVZt0TbtHtgtT15FKZIVH1f0cp/rb1NUn+29Rbeav5dtrApXhkotlHSv934t1b9WFEBqCr5WclmELaN7vfdrYVySuitYAyaC8Qc9UN8Yf8Qk3eBeoJN1nTJyJElGJrdfWIJKesAMLpWRo6zn6IbMBYr1JiUlyykdAAAAQBB0d0svvSQ984y0ahVB1AAAAAAAAACChwBqAAAAYEoRQg0ANSTWENO6i9ap45YObXx9o5LZpBw5JV0Rkg+glga/eqUHUdue1JKWlu4Jad1dMcUymQp/AkxE5+FJrX5Dr1xJ0azU5hn1RLwpDSE2ntSWNoo6kitPq9+wR8pk1f5idOo2ilHRA/Vt6PjLM+qNTP0B61bGPzDoARRqfy4kZWJa/Te9owbGeKVcauyNHVJjedI1f25V+4shSakKq4VvHEdyCwLrXbf4scTJTwAAgOnKcXJT3tD9wKB9KA8AAJTEtmytWrZKG1/fqDlNc7S7b1dVbliaZzxpjmlWRLZWmVMIoPZJ3EvqU/q92tSo3eovO0TUU+Xho0ZSmxr1Kf1e67yLFTOcL6g2xh/0QH1j/BH3krpCt8mWpbAsZeSWFUheSQ+48mTJKCxLtixdodvoAQAAAKDWbd8u3XWXdN55flcCAAAAAAAAAAcE7VoXrsEGAADANMTVYABQY2INMd3wrhuUdbNyPGf8BSSpIIA6Lx9EXQrHSFlbuuF/Yopl+NPhB8d4WnPcQFHIZNQxaksbmSk6ZnUgfPjARl0jrTlu4P9n787j5Kjr/I+/v1V9zJHM5E4IARLkkCBguBdRwSyIFxhBghsPDlGRjftb1xVvVNQVFnURkcMlohggggYQ0OUUOeQKIQjhDAlJyJ25z+6u+v7+6OmZ7pmeme6ema7u6deTx5BUddW3vsP3Q09PVX3fJW+sDopBUQOVbbDxr4/ldxI932GrZ/xLBjWAbBZtqNKVj9XLGaPh6AugZvIwAAAAMO7U1ATdAwAAUKBFBy3SlR+4UpGWdk1rL+6xp7VLkc6YrjQf1CIzv7gHhyTJs76W2Nu0RtsVkqNpqi2onUJPK09TrUJytEbbtcTeJs/6w++EUcP4gxqobIw/0mvAkdEkVRfUTqE1MEnVcmSoAQAAAGC8ePXVoHsAAAAAAAAAAH1KLYAaAAAAGKdCQXcAAJCflu4WnXPHOWqNtSZX5DIrxCQfrpV+usX2rM9Va9jqnBOb9Yd7JxNEHQDXGi1/YJIW/3OT1kyN965PhhBLTRErO4rn07KFD0vSYbvDWv7AJLmjeTDkhBqobEONv2JSc8TKN8m39cGygR0/+QQa30r+IG/j1iR/Pjh2YPiwxPgHiRrAYFIB0f96fLN2R33VJAaOWz66XKuOkNXUbocAagAAAGC8ikalCROC7gUAABiBRbPfJ/2hU5/+aHGP2xmRrl0Z16L926XImuIeHJIkV9K5dVO0evYm+bLqcOLJk/9F0uF3qc4Py5HRuVumyG35R/EODsYf1ECFY/zRvwbanLj8sXpicT++rNr8TmoAAAAAKGfRqPT2t/ctNzVJnie5bmBdAgAAAAAAAABJpRlAbYtzTwYAAABQbIRQA0AZaelu0em/P12PvPmIEn5CjpX8HPe1RlJPELVNLefIsVLCSI/Miun0kxsJog5IXdzRivsHBpBGfSPXWiVG8Zyaa5Ptpjtsd1gr7p/E2AeIGqhsQ42/Y5MBxKkHDPQPIU6FD0s9f/oDQ4hT4cNS8n2f8S891AAGs/CtiGZ2ONpW7as5YqWYCgqi7nJtcn9JMzscLXwrMtpdBQAAABAk15Wqq6Xa2qB7AgAARurzn9cTs63aw8U9bHtYemJPadGTT0rveEdxD45eixprpLb99OkDX1S7k+sdA6Oj3fFkrNVvXzlYi3bXSGos6vHB+IMaqHSMP6gBAAAAAAWrqgq6BwAAAAAAAAAwEAHUAAAAQFERQg0AZcLzPS2+dbEeefMRxf245FvJJoMk/RzPp6SHS+bKSdsh7kqPzE5o8em+7nr9KLkqwRM541ydpBW741pcv0prqltkjdToxlVAzuSQPEdqrJIme2EZKx3WWacVu49Q3WFFnsmOAaiByjbY+Kf/HOgNIe5Zdqzk9Dvx7khST2ixen42pP988Bn/kkUNoL8WJ67F+67StmpXUeur2/HVHLWSF5JrjWTiQzcQCknWUZfjq9lNbhv1HW2rd7X4dF8r3ligOp9xL1udnVJ3d99yPC51dfUtu65UU1P8fgEAAGDsvfZa5me/CROkGTOC6w8AABhVFzXfpsvf1XceuBi3uvecTtbl75JkdujS4mYeop8nJjar3Q1mENpdX09MbNai3dMDOT4Yf1ADlY7xBzUAAAAAAAAAAAAAAADGBQKoAQAAgKIjhBoAysjOjp3JAGprM05aODb3IOp8OFnOi8SNr53huBSJSIRQB6JOEa3Y/E86fe8n9EjtLsWMP+oTy62kmPHV6Mb17vZpWrH5WNWFCKAsFdRAZes//vEs459arvYdxUz26nBkJGuzPqDAKvl+z/iXpnxqIGQH/1ntyMi1UsJYaqBMtThxLd57tdZUtarTeOp0/N4gmGY3rgl+Dr/yG6Mu0xdAbSV1Or6i1tOamlYt3m+1Vmw8hiDqcpVISH7PBHTPG/B7hBIJKRYLpm8AAAAYW77f91kwtex5kuOU5k16AAAgZxddd6YuP9rrXTZWvQ8bHCsmdZwelx8n6bV/6NLth4zhUTGYi+a+rsv32ljUEPKU3jDyvTZKki7dsF8Rjw6J8Qc1UOkYf1ADAAAAAAAAAAAAAABgXCjFuS0EUAMAAKACEEINAGXCdVx9893f1Gfv/KyaOhsyXhsiX3JErMmcTCwrTfLC+ubOt8slgLoEWHkaGBw6eq1LnqyKO10J+aEGKpvt/ffgI2SGfHWwt3I7xBJKSS41MJKWsy+hNCQDqJ/UmqpmdZqEmtyEpL7RMpLanISMTNYHi6TEjK92p2/f1KZNbkLypDVVzVq895MEUZcz35e6upKB09lCpwmhBgAAGJ88LzOEOpGQ2tsl15WqqoLrFwAAGJFYIqYbNt4puZnr8w2idq3k5Xi5t38AdcoNe+/WJaGZinDrUVHFlNANsx/vXS40gHKYK0iD7pNeNjfM3qFL4u+iBoqI8Qc1UNkYf1ADAAAAAPKye3fy3kEAAAAAAAAAKDUEUAMAAACB4e5fACgjiw5aJD3zjD774n+pKdoTPJnHZOJ8WUlKC6Ke1CX976v7apG75xgdEblIhU6uqm6Sl23G9yjyjNWq6ibCJ0sMNVDZUuP/YlWrqnyjbjf7dkZSp+PJSHKyPK3AN1a+JEfZf45YSVW+0YtVrYx/icmnBhLGyhE1MN4MFkCdkh5E7clKJnsQtW+kdjMwgDqFIOpxwFqpszMZQAgAAABIyc+GnZ3cHAcAQJmKhCJa9cfpWvDhzWqoznwt1yDq2phUF5NaIlJ7ZOhtBwugntIprbppgiKfPyiP3mM0RCSt8mdrga5WgzolpQIhc39wbViOqhRSlxKKyx9+B6WCJ/uuNUxRtVaFLlBk//o8eo+RYvxBDVQ2xh/UAAAAAIC81NZKr74adC8AAAAAAAAAIBMB1AAAAECgnKA7AADIz6I7X9X//m2SJnWbMQ2gTrFKBl1P6pL+9y9hLXq6bYyPiKGkQiefrG5Qkxsvyvg3uXE9Wd2gxXs/qRYnPsZHxHCogcrWP3i22R08VDRVG76SYcPpUuHD6dtl0+x66jSJ3gBaxj941ACGC6BOSQ+V9mTl97se55vkeqvsAdQpTW6CGihniQQB1AAAABjI96WurqB7AQAACjRnw26tviYZBN3fcM8uTQVQS8k/a2NDbz9YAPXqa6Q5O7J0AEUxx6nXal2gKepLIjcZ0ZCDSwVPSlKVQgrncOtYtuDJ1bpAcxyCJ4PA+IMaqGyMP6gBAAAAAAAAAAAAAABQtgigBgAAAAJHCDUAlJMtW6THHtOiDVV6z9bImIfPplhJ79nkaNGrrrR7t9TJhOIgFDt8OIUQ4tJBDVS2XINnU9LrIz2EOD18uP922RBAWzqoAYykBtKDqFMB1Nm2y4YaKGMEUAMAAFSu4W6CSwz9+wQAAChh8bjmtCprELUd4t789ADqlOGCqPu31xtA3SrOPQUsWwDlcNKDJ1NyDaBMIXiyNDD+oAYqG+OPQoKoC6kBAqgBAAAAAAAAAAAAAMCoIYAaAAAAKAmEUANAOXnqKUnSRUe36M653UNOHBlNRtKd+/u66ISewMHGxiIdGSmerJbs9VTRw4dT0kOIl+z1VEZwJYqDGqhsqfHPNXg2pX8IsdcvfDhX6QG0jH8wCq2BdNRAeRuNGvBklTA2rwDqFGqgTDmc9gEAAKhYw92cx2dFAADKV88N7/2DqK0Z/HxftgDqlKGCqK36gqgzAqjT+oHgpAdQWtkhz9pmC55MqVJINYO8JvXUgSzBkyUmn/GvUmjI8Y8McQsh41+6RvM9YLDXJGqgVI3me8BQIcSMf+kaLIg6m0iB7wEEUAMAAAAAAAAAAAAAgFFBADUAAABQMphhDgDl5PnnddHRLbr8sHZJkrEa8yBq03McSbr8aC8ZRN3cPMZHRX+ujOZ31QUSPpySCiGe31Unt2gR6EihBiqbK6NzG+eqy3gFBc+mjKR2mtyEuoyncxvnMv4BoAZADaAgocFDIwAAAFDhIpGgewAAAAqVdiN+Koi6NlZYAHXKcEHUtbF+AdT9+oHgzHHq9Tedq9AQt4BF5A4ZMCtJExRVVO6gr4fk6G86l+DJEpPL+EflqkbhIdupVpjxL1O51sDw7wERaqAM5Tr+EzT0OYAqhRj/MtU/iDpbHHmtwqoe5udAjcKqzbJNqj0CqAEAAAAAAAAAAAAAQMFK8X5TAqgBAABQwQihBoAyctHOm3oDqFPGMog6PYA65fKjPV10wMYxOiIG48nqvonbAwsfTrGS7pu4XV7gPak81AA6jKe2EQTPjoY2N6EO4wXah0pGDYAaQN4cR6qqCroXAAAAKDWRiBQeOnwIAACUsH4/x5/eU6qJDbyuK+UWQJ0yWBC1scn2n96z3wvu4GGVKJ4W26Uv6y+arOqs9w0YSQn5issfsp1uJRSXP2gbk1WtL+svarFdo9BrjJZcxj8uXzENfV4/Lo/xL1O51gDvAeNTruPfraGvL6ZqhPEvT6kg6lpFBtzJU6uw6pTbtcI6VQ0IoraSahUhgBoAAAAAAAAAAAAAABSGAGoAAACg5ISC7gAAIDexREw31L2R9bWxOr1hlT3g+oYD2nXJOl8RnmVQNJ6sNoU6g+6GJGlTqFOerNwxiz9HNtRAZYvJ15f3eF6erIzG7n1/KEbJOvzyHs/r481z+BlQZNQAqAEULBJJhlHHYpLnDbxgW4oXcAEAADD6jJFCoWRoJQHUAACUt5kzpQ0bJEkr3y4t/aDkGGlau7SzVr0XePMJoE5Jbd8e6Vlhk+06JnkcSVr0cs9rtbUj+CYwGlpslxbb32uNtisuT0ZGNu3ssZFkegoiGUAaUjjLed30kGLTcwY6/Ry0kVFcntZouxbb32uFzlSd4eF3Qctn/NsVU3SI8e9WQqbnH8a/fPAeUNnyew+IKyKX94Bx7GnzlmpsWG3q7h2/fAKoU1LbtysuKVlHNQrrafOW5ogQagAAAAAAAAAAAAAAkIdSnL9MADUAAABACDUAlItIKKJVTy3QgiOeVkO076SGn8c5FyPJWMma3IMLfSM5aRtP6ZJW3TJJkaMIHSymiBz9z9ZDde6cVYqZ4E5qRazR/2w9lNDJAFADlS0iRz/deojOm/Os4saXVNwAWtPzFbbJfjD+xUcNgBrAiIRCfV+u27fedQkLAgAAGK8aG5MPIUmJRKSamuD6AwAARs/hh0sbNvQGUKeuF6fO4Y3mecNUm1LyOBlB1FOnSrt3j+LRkI8WdWvxhD9rjbtLXUqo2QyfON6thGQzQ0jj8tVtvJ5xHvzmg2Z1S9ZqjbZqsbdcK9o+oDpFR/6NoCCjPf7DYfxLD+8BlS3/8be8B4xjK8Ova2nNwzLyFTJG8Z5PgxHrSPJ7trIa+lOi37ttRI7ae94OQjIy1tdS3SV1tGpRfL8x+i4AAAAAjInmZsn3+5Y9L7nscP8nAAAAAAAAgDFGADUAAABQsgihBoAyMsdO1Opbp2rB6bvUUF1YALVSfxYQRD2lU1p9fUhzZKS2tjx7j5Fa0jZV6n6Hzn3bPxQL4HxbxErL1r1DS3ZNlcT4B4EaqGzJ8T9Y573tBcV73tCLcZq7L3jW6Pp1BzP+AaIGQA0gb11dUnd333IikVyX4rqleSEXAAAAI5c+mRgAAIwvn/ucVq79Y0YAtSdpZ23yYcQp7ZHkn3XD55L2aon07Scl29tZK01vl1z1C6JOGOmxx0bynaBALSFPiw9fpzVep7qsr+ZwMkC0/yfA1Fnk9DOA3caTPF9haxQ3Vt2uzdgjW0SlLytHUrPpluIJrfG3aHH8Jq149m2qS7hCcTH+oAYqG+OPdCtnNWrpwRvlxawaw568nmvI6WNW5TuS62vIK8vWl3xfXU6yplLx1Z6sGm2nJsddLXXvlV5+WYu2TS7CdwYAAABgTMTj0rZtUjgs1dcnH2QMAAAAAAAAAKOtFOctE0ANAAAA9CKEGgDKydSpmvNYm/62TDrsAsnPYy6PsQOXbR7nbVxf+tsyaU6TL00LJW9AQ9Et2TpdSszXuQeuLWoIccRKy16ZryU7p0ti7INEDVS25PgfpPMOfKkoAbQZwbOvHMT4lwBqANQA8hKPJ4OnUxIJyfP6lq3NfB0AAAAAAAAlb+XeHcMGUKfkE0TdP4A6ZdAg6letFm0r8JtAwTxZLVnwhtbUdfYGRUoDw0dTsp0/7natEtbKMwO3Hex8s6+eQMuwJ8WlNXWdWrLgDd3+9H5yVYITRsYpxh/UQGUrdPwzgqgZ/3GjN4DaJAOo405fAHVKasxykV5T6e3EnWT7k+Oulh68UZIIogYAAADKXTwu7dolzZgRdE8AAAAAAAAAYOwRQA0AAABkcIbfBABQMg4+WC22S18+RZrYld+u/Scd5xNALSWP9+VTpJawL9XW5rczRtWSnbO07JX5ihTpPFdf+PCs4hwQw6IGKtuSnbN0/SsHKWxNbzjsWBgYPMv4lwpqANQAAAAAAAAAUJk839OyJ36ZUwB1SnskGTCd4ljppHXJP1MGC6BOSQVRp2IJfSMt23OHvDF9RB6ycWV07qZp6s4hfDQlW7BoPuGjKanjNIc9dTu+zt00jfDRIit0/PvrP/6DbZeO8S8NvAdUNsYfKYMFUGfTHPZ6H248mJhjMwKo+0sFUXvGaunBG7VyVmPBfQcAAABQQlpagu4BAAAAAAAAgPHGlNj9JARQAwAAAAMQQg0AZaTF69DiM6RnZ0kNNfnta9U3+dia4ScP9ddQkzzu4jOkFjeR594YbbmEEOcaSjnUNoQPl65ca2A4w9UJNVCacgmgHcl7AMGzpS/XGsgFNVCeRqsGhnsPoQYAAAAAAACA0uE6rpbXnaPDGiM5BVCnpIKoHSv9/B7phtuTfzp2+ADqlPQg6sO2S8sfJnwyUD3XCIcLH82yS9b1ud4/0Hs85mUEK8/xH2qMGf8yxXtAZRvl94BcMf6lIZ8A6pRO1x90u7hj1e4OX00EUQMAAADjUHd30D0AAAAAAAAAMJ4QQA0AAACUhVDQHQAA5MbzPS1pXqZnZ0k7apV7smSa9CDqvJnkcZ+dJS1513bdvvMdTCoO2JLWudL6sM6d97xiJvPkVyo4MpdTYqlR7L9txBotW3+olrTuKVWNuLsYA9RAZUuN/3nz/qG48TPGb6TjnwyedXT9+kMY/xJGDYAawLCszbxo6ziZF00dR4pGi98vAAAAjD3XHfhZMF2p3dwHAAByVvfi6/rp4xN12Md353Xttz0inbROWvRycnnRy9KNh0q3H5R7G9ZIjdXSTx8Iq25ytbTPPvl1HiPmyWrZPpsVcUJyrC/f5DdJwip5/teRkS9bUI6oY40iTkjLDmjXqdHDuG+giBh/UAOVjfFHqga8kKNGN654HjXQ7SSvG0aso327a/VGtF0x46s7jzbijlVjxNdkL0wNAAAAAOXIdTOXw+GB15EBAAAAAAAAoBClNkeFAGoAAABgUIRQA0CZcB1Xp77o6a7jVFAA9ajoCaI+9VErd05NQJ1AuiUd+0mbwzp7zjNK9NRFKnQyH/3DJ0NWWrb5CC3p2EeqHp2+YmxQA5UtNf7nzFnVO8F0NMbftUbXbz6c8S8D1ACoAQypfwi1MZLv9y27LiHUAAAA41UolDmJuP8NfSEuEQIAUK42v/K03nNag7w8TwIaSXe+XfraQunHDyT/vPPtuT/MLsVzpPd8Kq7VtzdoTn5dwChwZXT1Wwu0YP8H5Bub9/hJyfO/EesoZnwl8gwwNZJ8Y5UwVle/tYDgySJj/EENVDbGH+k1EDf+8Dv00218Hdk+SSe3zdS9E7brsQkNebcR76kdagAAAAAYB6ZPD7oHAAAAAAAAAMYDAqgBAACAssIMcwAoE7FETP95ZENwAdQpRvrPE+L6zOu+InIC7gwkqcaGNNEPq9GNFxQ6mZIePjnRD6vG8jGhXFADla3GhjTBD43q+E/wQ4x/GaEGQA0AAAAAyIsxUjVPmwEAoBzFEjEdMff/1BBK3iDvWMnP4YSgkZTKmbz8XdJtB0sbJvW8ZpMb5HLLvdOzUUOVdMRHt2vTOq4ZF5snqwv2XC3XGoWt0xtAmVeQuLHqNr78PKNLU+efw9aRa40u2HO1bn/zOAIoi4jxBzVQ2Rh/DFYDuYr6jp6vaVGb6+mNaLuivqNuJ782qAEAAABgnHAc6Zhjgu4FgBIRj8f11FNP6YknntCqVau0Y8cONTU1qbW1VRMnTtSkSZM0Y8YMHXHEETr22GN19NFHKxwOB91tAAAAAABQCgigBgAAAMoOiVIAUCZcx1VVXGqOBt0TqSohJpCUiJV1b2np7DWqsq6qrKdYnpOL+jOSotZRlXW1dPYaSdKilj1HoacYK9RAZWP8QQ2AGgAAAACQl1QAtesG3RMAAFCASCiis7fM1OV7b+5dN1wQdXoAdUoqgLp3mxyCqJ1+L569NqqI60sa2TlJ5MeVdO6uvbR6TpMmeSE1uXHFewY4l6kTqVJJhY+aPPZLho8aTfJCClmjc3ftJTfh5f09oHCMP6iBysb4Y6gaGE7UdxSWIytpXbRdkhSWI/nKOYiaGgAAAADKnLWS70vTpknveY80ZUrQPQIQsPXr1+vqq6/Wr3/9azU0NGS8ZtMCm0xPmNSKFSskSVOmTNG5556rL3zhC5o3b17xOgwAAAAAAEoLAdQAAABAWSKEGgDKyCE7pO0Tgu5Fsh+KRiQ5QXeloq2csElLp6+Rb6Qu4484dDIlZnx1OX5f+GQ4rEVte41K2xhd1EBlY/xBDYAawLA8L/OiqbXJdSmuK0Uixe8XAAAAxp7jJL9SQqFk+HQ4TAA1AABl7tJNB0rbturyo/vO8wwWRJ0tgHowQwVR9w+g/srfjS59ZYa0+IBcu41RtEgHSP5sLY08oEkKqUndisuXZIcMEx1sukdq/WD7JsNHjcJyNElRhVxHV8YWatHMA6SZhX4XKFQh4z/UVJ/hQmgZ/9LDe0Bl4z0Ag9fA4KrlynWyV0JYrkJy1aHEkG1QAwAAAMA4EApJ++0n1ddLE0pgYhKAwHiepx/96Ef64Q9/qHg8nhE4nWLSQqT6v757925dfvnluuKKK/Stb31LX//61+VyLwoAAAAAAJWFAGoAAACgbBFCDQBlxLVSxJNiAd6XEfEk15dUVydCqIOzMrpeS+uelS+jLuOp2cSVfdpYLifKBu7X7MQla5LhkzOflaprtKibp9OXEmqgso3u+GvAvox/6eM9ALnVQGHvARI1MG44TmbAYCiUeWHXdaXa2uL3CwAAAGMvEpG6uvqWo1Gpqiq4/gAAgNFTU6NL77ZSQrr8uL7V/YOo8wmg7t0nSxD1gADqx6VLH5B0QLU0cWJ+B8CoWaQjJFutpfYeTZKjJnUOGkKay1QP0xNDmm3fvvDRaoWMoyvNB7WoZv5ofBso0OiPfxLjXz5GuwZS21ED5YH3AAxeAwPVKypfVv4Q144jchWWq2Z1Z32dGgAAAADGiXA4eR25s1PasEHad9+gewQgAI2NjXr/+9+vVatW9YZLm2FCo7K9bq1VLBbTxRdfrD/96U/6y1/+osmTJ49JnwEAAAAAQIkhgBoAAAAoa6SHAkCZcB1Xn3/W0dSOZBB0ECKeNLVD+vyzksuPkMAkQycflS/bEzoZ63lltE6MJdtpNjF1GU++rJbWPaqV0fWj1D5GihqobIw/qAFQAwAAAAAAAEAF63mo2KUPOvrK45kvpQKjCwmgTjG2L4wyewB1z6uRSGEHwKhZZObrSvNBhXqCIcNyesKk+6QCRHNhsmyZET6qnuBJQ/BkKWD8QQ1UNsYf2Wqgv3pFVaVwTu1VKax6RQespwYAAACAccpaaceOoHsBoMh2796t973vfXrmmWdkrZUxpjdg2lrb+xUOhzV16lTtvffemjp1qsLhcMbrknr3tdbq6aef1sKFC9XQ0BDktwcAAAAAAIqBAGoAAACg7JEgCgBlZNEbEV11jwIJok4FUF91j7ToVbe4B0evoUInfUl2hOGTtqcdwidLFzVQ2Rh/UAOgBgAAAAAAAACk9A+i9nv+HOk99an9/bR1X3ksLYAaJaN/AGX6COUTPtq3jxnQBsGTpav/+Dtpozca4+/IMP4ljhqobIw/hgqizieAOqV/EDUB1AAAAMA419ERdA8AFNlnP/tZrVmzZkD4dFVVlT7xiU/o1ltv1bp169TV1aUdO3Zo/fr12rFjh7q6uvTGG2/o1ltv1Sc+8QlVV1dnhFFL0po1a/TZz342sO8NAAAAAAAUAQHUAAAAwLhACDUAlJMJE7ToZRU9iDojgPplSeH8JqhgdAwXOpn8W+HhkzZtT8InSxM1UNkYf1ADoAYAAAAAAAAAqL09Y/HSB4y+8ljPOb3U/f0mM0A6H9naSQZQ99swFhNKQyqAMqaEvBE+qLA/T1YxJQieLGGp8Y/Lk5f2f36+4bPZ9vPkKy6P8S9x6TXg97wHFBJAnJIeROzLUgMljvFHtiDqQgKoU1JB1ARQAwAAAAAwvtx+++264447ekOjpWQA9dlnn60NGzZo+fLlOv300zVv3rys+8+dO1enn366li9frg0bNuicc87JCKK21uqOO+7QHXfcUZTvBwAAAAAAFBkB1AAAAMC4EQq6AwCAPMyZI+3alQyClnTBB6XtE6QC5w3lxkqT0wOoJam6esDkZowtT76WTXxBvvV7QifjSgVD9p9Abnv+na0sTO/rmXvYLOt9SU5a+KRsWFXW1bLICzq1YZpcnmVRVNRAZRvb8c8Mnk1h/EsL7wGgBlCQjg6pq6tvORaTurv7ll1X6uwsfr8AAAAw9hKJoHsAAADGSkeHFIlkhEAvfUr6+bFSV/pdQEbybX5Pp88IoO5R5SXbz+C6UjyeX78xpjpsXK3KDAbvO1ec+w0F2a4ZtSqmDhsf2/sSMGL9x87mOfbp+/X9vfAHXyIYoz1ejH/5GUkAdV8bg91ZgFKVCoheau/RZFWPuAaqFFZUIbkEUAMAAADjW01N0D0AUEQ/+9nPev9urZXruvrFL36hz3/+83m3NW3aNF1//fU69thjdcEFF/SGUVtr9dOf/lSnnXbaqPUbAAAAAACUAAKoAQAAgHGFEGoAKCcHHCA995wkaeF6aXabtHPCwODB0eQoeZyF69NW1tYmJzejaFxJyzccoRP2fVhrqpp71w829tlOmTlWcmTky8o3mdsOdootGT6Z3KrZiWluV72WbzhCrt81yB4YK9RAZWP8QQ1gNGrATasBjxqoDJ2dmaHT2UKoQ5waAgAAAAAAKCvxePKhwT0h1JsnWB12Qb8A6pQ8gqizBVBLyXYPu0Bac7U0p61nZTgseV5h/ceoW+6v0Xm6XYksZ4xt2r+Hky2AWpIS8nWebpd8aYlz2Ah6irGw0q7VhfZutSszGH60QsjbFdeF9m5JIoS0RK20a7XU3qOwXLkySvSOY+FB5Kk6cGUUlqul9h5J1EApSo1/VCHVKaImdavQsU9J1UC9IooqxPiXifQgan8UQsQJoAYAAADGOWOkGTOC7gWAItm6dasee+wxGWNkrZUxRl/96lcLCqBOd/7552vDhg36r//6r962H3vsMW3dulV77LHHKPUeAAAAAAAEigBqAAAAYNzJZZ4ZAKBUHHywVFWllqi0+Axp20Sprnv43Uairjt5nMVnSC1RSY4j1dWN7UGR1QMTdmhbqFthm/zxPVz4eHqgZCp4VEr+6djM7YaSOk7YOtoW6tYDE3bk2XOMlkJqIGWwGhgqeDSFGigNYzH+/bfLhvEvHdQARlIDbr8acKkBAAAAAAAAoDyFw1I0KrmuNk/wddgFUkP1ENub4c8lDhZAndJQnQyi3jzBJicUuG7yC4FLBVB3a/BQ8FyuBw4WQJ3SLU/n6XYt99cU0k2MkVQA9W51KJalBpJjP7IQ8pg87VaHLrR3a6VdO7IOY9SlAogT8tWoTiXSRjGf8e/bJ3OPhGxPu76W2nuogRKTGn9fVr6sOpWQVNjYp6TXQHLkk20z/uVhkZmvEzVvVNo6UfMIoAYAAADGq+pqad48KRIJuicAiuTpp5+W7/ddLZo+fbouvvjiUWn74osv1oy0UHtrrZ566qlRaRsAAAAAAASMAGoAAABgXAoF3QEAQB4OPVQt0+u0+D1dWjMrOWmobYzv+2qLSFUJac2sZBD1ijtDqquvH9uDYgBPVssmb5Ak1Xkh7QrFct7XpIVO1vqu2h1PjpJPmLc5nvOzPceVpGWTN+jUltlyh5qJjlFHDVS2QsffivEfL3gPwEhqID2EvM4LqcVN9NaATw0AAAAAAAAA5WXqVMkYbZ5Vq8M+0TR0AHWKkXyb/Un1wwVQp6SCqNf8tlpz4lFpn32k44/Pr+8YVcu336fzXr1T3XbwAOp0VtmHOtdpGd3ydJ65U9r/AC2ZeVKu3cQYWbnrEV342r3anehUbIgaSI3vUP+bD1cDMXnabTp1Yeheaf+DtGjau/PtLsbAyl2PaOnr9ythXTUmOrLWgU3799DMkEHkjaZLk0MTtdTcL+1HDZSC1Pj7Csu3vpoSbRk/D1Jjb2SUfAcYvg7610C3PDWZbk0KTZCMo6Vi/Evd8u336bZX16rajarKifa94Pka8rEkJiQ5fTchdvndus1bq1P2/yA/8wEAAIBy1tYm7dzZtxyJSAceKDnZzhQDGM+2bNnS+3djjD72sY8pMkpB9JFIRB/72Md0zTXX9K7bunXrqLQNAAAAAAACRAA1AAAAMG4RQg0AZaTlnQdp8UnNWjM5OTVoV42UGOP7vxJO8jjTOnqCqBcltKJtiupG6WYT5MaVtHz78Tp9j0f0SM3OYbdPZ43ky2qPWJXq/LBanLi2Rrpynkyc0uIm9O6O6Vq+/Xi5kXCee2OkqIHKxviDGsBIasA3krFWc+O1muxF1OjHtCHcnnMAdQo1UIYSCclPm1BubXJdiutKYcYSAABgXHLd5FdKqd0ACAAACnfwwdq86iEd9vFmNUSH37xXliDqXAOoUxqqpcPO7tCamyKac+CBUl1dHh3AaFq++c8679XL1W3jee2XDKI2acv5XS3otnGd9+rlUnWNlsz5QF77YvSs3PqQLlx3pXYnWhWzieF30MCx71ufWw3EbEK7E626cN2VUnWNFu1xYj5dxihbufUhLX3jKiXkqzHRNmQd9AWRDx1FPlQlxGxCjYk2TQ5P1NI3rqIGApYaf99IvrU9AdQDfx6kh9DbYX7gW2WPqe62cTUl2jQpPFEyhvEvYcs3/1nnvfYTxa2nWKJDChlVuT0fFo3RkE+oNqb33FGX163mRIck6bzXfsLPfAAAAKDcNTf3/T0SIYAaqFANDQ2SJGutjDE65JBDRrX9Qw89VFIy4Dr9eAAAAAAAoEwx/wQAAAAY1wihBoAy4fmelvz9K1qzh5GNO9oV9cc8gDqlN4i6U1ozy2iJ84Jub3q/XHEDWlGZmBQO5TURPG3nnhsGXcnxlJpilm8TCoeSk8ktIeSBoAYqG+MPagBpNWB6xnCoUcwYZWMk40iOm/zTZE43H64dkzwoNVBuXFcKpZ366e7OvPjrutKECcXvFwAAAMZeNCrFYn3LoX6XBHkYCQAAZWvz22frsI/vUkM030cNKiOIOt8A6pSGqNVh/9KkNVOmaU7+u2MULN/8Z5235vt5B1CnWFkZmbwDqFO6bVznrfm+JBFKGYCVWx/ShS9cqt2xZsXyDiG3Iwohj9m4dseadeELl0oSIbQBWbn1IS198b+V8BNqjLfmXAf9xz99fS5iNq7GeGsyiPrF/5ZEDQQhNf6+9eVbX03x1iF/HtiMKOrhtsmu28bVFG9NBlFLjH8JWr75zzrv+UsU9xO9/683J9olqS+IOgfJAOrkflZWcT+h856/RBI/8wEAAAAAKGe1tbUZy9OmTRvV9qdOnTrk8QAAAAAAQBkpxQBqW9i9jgAAAACyIz0UAMqE67g6953nytTUFDWAOiXhSLuqJRMK6dzOtxNAXWSefC2pf0AvhhpV7+cX+miU/IG/PdSpLaF2bQ91ylH+c8rr/YheDDVqSf0D8pLT0lFE1EBlY/xBDSC9Bib7UYVlev7JzqhvjF0ZOTLaGG7X+nCrNobb5cjI7dl/+HaMwjKa7EepAQAAAGC8qKoKugcAAKAAsURMC964qLAA6hQj+eknEAvQELVaEPu5Yn5s+I0xqmJ+TP/+4k8LDqAeLd02rn9/8afUQJF51tO1b/6xoADqFCsr1zgFh5CngqivffOP8qxXUBsonGc9Ldt0Z94B1CmpcXeNk7Gcq1QQdcJPaNmmO6mBIkuNf64B1ClWmWOdGn8p9xpIBVGnjs34l47+AdSpfySpOdGuLq87p3b6B1Cn/kkFUS/f/Ocx+x4AAAAAAMDYmjdvXsbyrl27RrX93bt3S5JsTyDU3LlzR7V9AAAAAABQJARQAwAAABUhFHQHAAC5W7jvQkVr6pSINQRy/IQjRWNGC19LSN76QPpQqVxJ506ZrFVzt6o5HJeRcp4KaCX51sqRUbtJSFbyZWXzOP9nJDWbbk2Jh3Xum5PlNryZ9/eAkaEGKluh45/ajvEvf7wHIFUDq+duk2+kyV5IjaGE4iZZCen1kBFAbVNPn0pu0WJivRs7kqp8V+2u17t9tnbC1mhyIiQjX44VNVBOurqk7rSJ5YlEcl2K60qtrcXvFwAAAMZeW5sUTwui6uyU2tulSESqq5Oi0eD6BgAARqTD6xp+oyLoIHw4EK5xtUfVVO2MN46onUIDiNPtUTVVrnFH3A7y48lT3CYC7UPcJuSJ8NkguMbV1Yd8Te/8278UHEQeMq6qnIi6/FhBtRSzcSWsp6sP+RrvAUXmGlfLF1yi05/5qh5pWJ33AwmsrKqciMImpLhNqCvPn+WpIOp3T1mg5QsuYfxLQLYAaqnv57yRUXOiXVVOJCN8vL+YH1dHT1h1tnZSQdSStGTOB8bs+wEAAAAAAGPjqKOOkiSZniCp559/flTb799e6ngAAAAAAKCMEEANAAAAVAxCqAGgTHi+p/f95n16s2Wj8kqeHGVvVnXpfQc9pSfXHC1XJXgSaRxb2DBJs/aManskOQnMkeQPsX16mKRvJFnbu49vMrcbqpxSU5DixmpWPKqFDZMkjwmlQSikBlJjO1gNZAsd7Y8aKA2FvgdIvAeMF2PxHtB/u2yogdKxaOc0yT9QS/d9Rb6kyYmQGkNxxUz2EZzguep0hqoSKWKNQomQmkPZQwZ6A6h7wqyvfONALdo9TSJcojx4nuT7mcvpF119P/N1AAAAjB/9bwC0tu+zYCneHAgAAHISCUV0/hHn64onrwjserEkyUjn771IEScSYCcq11AhksVUKv2oNLtjTSMOEU/YkZ3jt7LaHWsaURsojGc9nf/8D9TqdRTcRtwmZH07ojpo9Tp0/vM/0F1H/w9BxEEwI///uFAJ64nbxUrDYAHUKelB1J1+t6JOWGEz8JbxuE2o24/LyAzZDkHUAAAAAACUrz322EP/9E//pCeeeELWWv3xj3/UFVdcoUhk5Nd5YrGY/vCHP/QGXB911FGaPXv2iNsFAAAAAABFVIpzTAigBgAAAMYMIdQAUEaMjHwbbEicL8m4rlRfL2YVFY8nqyX7PK5t0bjqvbCa3bikoYND+7/mm+Ry/+2HayOl3gtrWzSuJQe/rNvfPI4Q8iKjBiob4w9qACmLEvXSthotnb1GvqzqvbB2hmIZ21hJNb6riFx1DhlVLsk4qrKOYr5VuzNwsnq9F5YxjhxjdOWWw7QosadUP4rfEMZWOCx1d0vxuBSLJS+6podO+77U2hpc/wAAADB2EomBDxxJPYSkoyP5OREAAJQdz/e0rnGdQiakhM3+YLliCMnRuo7N8qxH+GgAnBL5b14q/ag0pfLfvVT6UYl2xpoU90f2M2CkAcZxP6GdBJEXnWc9LVn9bT3duFbecNcAB9Htx5UwnrwC7z/z5OvpxrVasvrbuv2oy/kcEJDhAqhT0td3+3HJUUYQdSqAOrXtcO0QRA0AAAAAQPn6z//8T33sYx+TMUa7du3S9773Pf3whz8ccbvf//73tXPnTkmSMUZf/epXR9wmAAAAAAAoIgKoAQAAgIpDCDUAlAnXcfWuvd+lZ7Y+E3RX9K72qQRPFpkro3Mb52p19RpVWVfypCY3PmhoqNQTGN5vXbbth5pWltp+khdWlXXl9PSD8S++QmugP2qgPPEeAN4DkG5Ry56SpAtnPzdoHXQ4nhw/t3HqMp46sgRQWyXrbKoXTQZQ9xwXZaa7m4BBAAAAJG/C87xkAHUiIXV1Bd0jAABQANdxFUvEkgHUQz1hcIwl5CvW2iT31deD6UAFcyUdZWdrlV4Kuis6ys6mBoqM8Uep1ICVpQYC4Eqa0xVRs9dWcBtWVp71RvQRotlr05yuCOMfkOUtj+q8Hb9S3HpDxEb3SW1hJHX7MUlWYeMqbj11KxVAPTzb88jruB/XeWu+J23doiV1x4/gOwEAAAAw5trbM+8dDIel5mappib5dwAV5aMf/agWLVqklStXyhijyy67THPnztX5559fcJvXX3+9fvzjH8v0hFWddtpp+tjHPjZaXQYAAAAAAGONAGoAAACgIhFCDQBlIpaI6eYXbpZjHPn+UHGRY8uRdPOkzbps26GKyAmsH5UoFfy4dPYahW1uJ/NG6/Ra2Bo5MgRQBqyQGhhOrjVCDQSP9wCMxXtArqiB0rOwbYamJyLaGsoeHGcltTkJOVZyhggN7za+2p3EoO8XMWM1PRHRwrYZI+80is/zpFgs6F4AAACg1MRiUmdn0L0AAAAFaOtq031v3BdsJ3pON97X+Q+1vfaiJjhVwfanwnT6MS3TX4PuhiRpWctf9dOWf1K1Ewm6KxWD8Qc1UNlGa/xH4z4Cxj8YMT+hL+u3iiu3AOp0Vj1B1Iqr2rpqyyOAOr0NySpuPX15+2/18e3TFXG4DR0AAAAoG+GwtGVLMlhmxgxpypSgewSgyH73u9/p/e9/vx599FF5nqcvfOELevLJJ/XjH/9Y06ZNy7md3bt362tf+5qWLVsm2xMMdfzxx+t3v/vdWHUdAAAAAACMNgKoAQAAgIpFeigAlIlIKKJVn1ulWhMNtB+1nqtVr7+PAOqALGrZUxdvO0g7Q7FRC5cdjpW0MxTTxdsOIni0BFADlY3xBzUASWpx4jp97yf0SrRtiHjp5Nh5RvIHqRZfdsgAaik5EfmVaJtO3/sJtTjxEfQagUgkuOgKAACA7Dwv6B4AAIACTKiaoC8c8YW+FQHOAfiCjiKAOgDVTkQX6KiguyFJukBHET5aZIw/qIHKxvgj4oT0U52ikExB9wtYSVGFlJCvqEIFtxGS0U91CgHUAAAAQLmyVtq+XWprC7onAIqsurpa999/vy688EIZY2St1a9//WvNnTtXS5Ys0a233qo33ngj677r16/Xbbfdpk9+8pPaZ599egOoHcfRhRdeqAceeEA1NTVF/o4AAAAAAEBBCKAGAAAAKhp3AANAGXn6radV1e2pNcB376ouT0/XNGpOCzeGBGFzqENf3+OFogWPplhJX9/jBX2gbabmJBj7IFEDlY3xBzWAVAD1I7W7FDeDxUtn8owka+WkJdL4ssn1w7CS4sbXI7W7dPreT+gPG49VnR8utPsotmwXXUvx4jAAAABGn7WDf/YzRooG+7BDAABQuB+f9GPd9dpd2tSyKbnCSEU7adzz8WIv1evH5qQiHRT9fd+8T7fbl/SmmgPrwz6q1/fN+wI7fiVj/EENVDbGHx8xB+rtdrqe1/bA+vB2TddHzIGBHR8AAADAKNm1K+geACiifffdN2M5EokoFovJWquOjg7dcsstuuWWWyRJoVBIEydOVG1trdrb29Xa2qpEItG7r+25P9kYo0gkorvvvlt33313Xv0xxmjdunUj/K4AAAAAAEDeSnGOMQHUAAAAQFERQg0AZcLzPV37+M/VYmJyrOQHcF7HsVJLlXRt3es6tWW2XJXgyaVxbHOoQ+/c/wHtdmOBHH+3G9M7939Az722kADSgFADlY3xBzWA/gHUfh77pgdR5xpAneKLIOqyFcpy2oeLsQAAAJXBmOyf/RxHqq2VqqqK3ycAADBinu9pyR+XKOEnVB2qVmeiM/lCMYKoe84pViukhHwtsX/Q7eZf5BpnjA+MdJ5N/rePyVe1QupUYvidRlm1QopRA4Fg/EENVDbGH6ka2KkO1SuqZnXntb+R1K2EEnLkyS/oI2S9otqpDmoAAAAAKEf9w2W6uoLpB4BAbNiwQcYYWWtlet4P+v89JR6Pq6GhQQ0NDVnbSt+nu7tbb775Zsb+uTClGHhVRjzP0/PPP6+XX35Z27ZtU3t7u6LRqOrq6jR37lwdcMABmjdvXtDdBAAAAACUmlL8fZw5zwAAAEDREUINAGXENDf3/r3YQdRO2nkbYyTNmC6JSSTFElNCh0+7W7udYIJHU3a7MR1+wEPavOtTivAxoqiogcrG+IMagCdfiyfdo0ciuxSXzSuAurcNI/myBWXRJIOorR6ZsEuL91utu5o+KJfPgqWvpiYZMpjoCSGIxaQwAeIAAAAVIdbv98doVJowQXLd5GfCGh4uBABAOXIdV+e+81yt2rJKvi3kLOHI+T1nGM81C5IPLWYCQFG5MjrXLNAz9i11BRA+KkldSsjKUgMBYPxBDVQ2xh+pGnjWblGXEnmHSFslg6i9nqvN+Y6eUbIGahWhBgAAAIBy1P/zO/cSAhUpPfx5sL+PtK3h5BtYjT4PPfSQrrvuOt1zzz1qaWkZcttp06bpuOOO0wc/+EGdccYZmjp1apF6CQAAAAAoKVu2SE89JS1aFHRPBuIcAQAAABAIUsMAoEy4jqvPtR6o57vXaHfUV9wpXhB1KoA67EtTu4w+99Yecg/Zc+wPjF6u9TXRVmunuoLuiia61XJn7SkZgieLiRqobIw/qAHI+tppEz0B1IVfVBvJ5ThfVnFJO6MJadYe1EA5aG6WqqqktrZkCGF3NxNHAAAAKkVbm+R5fcuhUPKzYDicDKN2+DwPAEC5WrjvQs2aMEvb27fLMU4yjLoY9+FbyTFGcfmapQlaqH2LcFBkc5TdU+2KFWXYs7GS2hXTUXbPZBoliorxBzVQ2Rh/LNS+mqlabVObjEzejyBOBVEXUkNGyc+CM1XLZ0EAAABgPJg4MegeACgywp/L10svvaQLLrhADz/8cM777Nq1S3feeafuvPNO1dbW6pOf/OQY9hAAAAAAUFLicekvf5F+8xvp8celrVuD7tFAnKcAAAAAAkMI9QisX79eq1at0iuvvKLm5mY1NzcrHo8X3J4xRtdff/0o9hDAeLNorS9tqte/Ht/cG0RdLKkA6l88ENWiuJUOKd6xIbnG0fft+/Rp/XFEwZMj5cjo+3qfXEIni44aqGyMP6gBuMbRv9vjdLZWBl4D/67jqIFy4rpSfb2USCSDCPtjIgkAAMD41NCQGUJdXS1NnpwMowYAAGXL8z0t+eMSbWvbpvpovZq6mooTQN3DWqtJpkrb1KYl9jbdrn/hXGGRxfyEjtA1ale84ADJkTKS2hXXEbpGm/z/UMThM2axMP6gBiob4w/P+lpib9M2tateUTUW+BDrQmvHl9VkVWmb2vksCAAAAJS76mpp2rSgewGgiD7zmc8E3QUU6Le//a2+8IUvqLOzM+iuAAAAAADKwX33Sd/6lrRpU3KZAGoAAAAA/XAHeJ5aW1t19dVX6/rrr9frr78+au1aawmhBjC83bu1aEOVJOmLxzdre41flMNaI01OBVC/HpamdxTluOjjWV+36B8jmkA0GuoV1S36h86yhzCJqMiogcrG+IMaQKoGJiqiJnUFNql8oiLUQLkKhaRoNPkE4/R19fXB9QkAAABjp7pa6u7uWw6HCaAGAGAccB1X577zXK3eulphNxzIjfhhheQYR+dGjpUbqi368StdRNLZ3Ufp8sTDQXdFZ4eOUiTKQ+6KifEHNVDZGH+4ks5NHKvVsTsUsqGih5EbSSE+CwIAAADlI/1eQSl5vbi2Nvk1ZYpkTDD9AhCIX//610F3AQX42c9+pi9/+csD1htjtGDBAp100knac889NWPGDCUSCTU2Nurll1/Wc889pyeffFKJRCKAXgMAAAAAAtHSIn3729Ktt/atI4AaAAAAQBbMNs/Dvffeq89+9rN66623ZEfxFxrDTRsActVzE9jCtyKqThRvEomVVJ2QFm7s+bHheUU6MlJc4+hcHa7VdpusrJrUPfxOo2ySoqpRROeawwmdDAA1UNkYf1ADKIUaqKcGAAAAAAAAgMAtOmiRdnXs0ufv+nzRH1ZnJe1Uu659xze0aJ9FRT46Ui7ViWp5/se6ZuNtgRzfSvr83qfr0kO/FsjxKx3jD2qgsjH+WKQTtevNvfT5f/wokM+Cu/gsCAAAAJSPlhbprbf6liMRae+9g+sPACAvN998s/7jP/5jwPozzzxTP/7xjzVv3rwh929padE999yj//3f/5XjcO8/AAAAAIxrmzZJixdLGzYE3ZOhEUANAAAAlASuHOXoT3/6kz7ykY/0BlAbY0btCwByFg6rJezrhI/s1psTfZkinV8xVnqzzuqEMzvUErGS6xbnwMiwyMzXpTpJnUqo2D89jKROJXSpTtIiM7/IR0cKNVDZGH9QA6AGAAAAAAAAAGxu2axvPPCN4G7Gt1bfePkX2ty5PZjjQ5s7t+u2rfcX/TxxipF029b7qYGAMP6gBiob44/Nndv1jZevCrQP33j5KmoAAAAAAABgDL366qv63Oc+J5t2PTAcDuv3v/+9VqxYMWwAtSTV1dXprLPO0v33369PfOITY9ldAAAAAECQNm6UTjttYAD11q2BdGdQBFADAAAAJSMUdAfKwebNm3XWWWcpHo9nBEenX8Crra1VfX29wuFwUN0EUAFaptfphLfv1pqpieSKYs0oMpKstGa6rxPO7NBf/x5VXZEOjT4ttku/0xqF5KpbXlGPbSWF5Op3WqOP2ANVZ6qKenwkUQOVjfEHNQBqAAAAAAAAAKhssURMR1x3hBo6dyfvxw8ggdJaqSHWoiMe/hdtOug6RZxI8TtRwWJ+TEe89Dk1JFoC7UdDvJkaCED6+BsZWRV/Yo6RYfwD1L8GVOQqMKIGgsT4I7MGJBX5Z4HpqTxqAAAAACgTbW3S9rQHyITDUm2tNGFC8gsAULIuuOACtbW1Zay7+eabdfrppxfUXmpOPAAAAABgnGlpkc46S9q2LXM9AdQAAAAAhkAIdQ6+853vqLOzMyN82hijM888U5/85Cd19NFHa8aMGQH3EsB45/meFr79Sa3xkwHU1qhoU0isJBnJ9ARRLzxxo55obZYrp0g9gCdfS6K360l3szoVT+WCF42R1Km4ntQmLUms0O3dH2X8i4waqGyMP6gBUAMoSHt78iulq0vq7OxbDoWkCBPDAQAAxqV4POgeAACAMRAJRXT2YWfrsscuCySAWpJkJF9WZ9cer0hHTFIsoI5Upoiks2uP13833x1A/HCS7fk3NVB8qfG/vPmeQAKopWTkrZFh/AOSXgNSca8VpY6X+vFDDRQf44+BNVDcKkj9DJCoAQAAAKAstLdLHR19y+Gw1NiY/Kqrk2bPDq5vAIBB3XXXXXrwwQcz1n36058uOIAaAAAAADCOffvb0oYNmesIoAYAAAAwDEKohxGPx3XrrbdmBFBPnTpVt99+u971rncF3DsAlcZWV0vtxQ2g7j221BtEbR1Xam2VCB4sGlfSfDtR99QGO3GnWTHN75oot619+I0xqqiBysb4gxpA/xowPTHUxfhMaHqPRw2Unba2zNDp7u5kEHWK6yYnlgAAAAAAAKB8tLUF3YOk7q7ht8GYOLZqP0Wbw+pScA8eiSqsY6v2C+z4lezSaWfpxdhburvzuUCObyV9sPowXTrtrECOj2QNdNuErmj5v0CO78vq3+reTw0EhPEHNQAAAABgVLS0SNXVQfcCAJDFpZdemrEcjUZ1+eWXB9QbAAAAAEDJuu8+6dZbM9cRQA0AAAAgB6SHDuPxxx9Xe3syXMtaK2OM/vCHPxBADaDoXMfVg2ferX1anaIHUKdYSfs0Sw/u/IBcfoQUlSdfa0ONqvfDskUKnExnlYy5rPfDWhtqlCe/yD0ANVDZGH9QA0ivgRTTGw09dtIDqCVRAwAAAAAAAECAYomYfvGP64PuhiTpF50PK+Yngu5GxfGsr0sabw80gFqSuhTXJY23y7OcKy625a2P697OfwTah3s7/6HlrY8H2odK1uJ36m9dLwfah791vawWv3P4DTHqWvxOvRLfqqhCgRw/qpBeiW9l/AOUqoFaEw3k+LUmSg0AAAAA40VTU9A9AFBiWlpa9MYbb+jpp5/W3/72N/3tb38LuksV55VXXtGjjz6ase7DH/6wpk+fHlCPAAAAAAAlKR6XvvWtzHUEUAMAAADIUTB3opeRN954o/fvxhgtXLhQ73nPewLsEYBK9kDnWnXVRBTyu5QIIAM65EtdEUcPTG7Sou7Jxe9ABXPlaHnzQp0w5Q495+wOrB9z/Yla3ryQEPIAUAOVjfEHNYBUDSyedJ+eDG1Xs5MMGEkGRI9NMHm2AOpjEjOpAQAAAAAAACBAUWvUEXQnJEUTVmpokBxuPSomz09oXWxb0N2QJK2LbZO3e5dcaqBoYn5CFzb/WnF5gfYjLk8X7vi1Pt69nyKMf1F51tf7Wn+q57xNgfbjudibet/GS/TkxC/LNVwzKhbP+lrS/r96Mv5GYO8DcXl6svM1Ldl8hW6v/SzjX2SpGliT2KQ6RZWQp24V76EgUYVUp6jWdG2gBgAAAIBy0NEhtbT0LUcima/HYsXtD4CSdNddd2nlypX661//qg0bNmS8ZoxRIjH4uYe1a9eqq6urd3nvvffWtGnTxqqrFeHWW28dsO4Tn/hEAD0BAAAAAJS0//s/aVPa/UMEUAMAAADIA7NAhrFr1y5JkrVWxhidfPLJAfeoPO3cuVNPP/201q1bp5aWFoXDYU2dOlXz58/XkUceqXA4HHQXS97GjRv1j3/8Qxs2bFBLS4ustZowYYJmz56tt73tbZo/f76i0WjQ3cQY8nxPy55bJtXUaGpTt3ZX2aIGUYd8aWqnpGhYyyKv6lRzIOGDRfZAeLO2u12KyFVM3piETQ7GSIrI1Xa3Sw9M2KFF8f2KeHSkUAOVjfEHNYA6VWlF54e1uPYePWm2qdkUbwJAvY3oGH+WVnR+UHX83lE+4nHJSwshsDa5LiUUGjixBAAAAONDOCy5bt+yw7lcAADGA9dxNaczqsaqruE3HmNzWl25kVaJ4MGicq2vqapWi7qD7oqmqlpuCzVQTK71NUVValbw7wFTVMX4B8H6arJtRb1OmLUbkpq8Nqm5mRooIlfSfH+y7lGX/ICqwJdVs7o0Pz45+R6AonIlnWsP0Wq7SR2KFT2MPC5PXTamGkV0buIQagAAAAAodZ2dUltb33JVVebr1ia/jCluvwCUhHvuuUdf+9rX9OKLL0pKzp/O1zXXXKOrrrqqd/kTn/iEfve7341aHyvRfffdN2DdscceG0BPAAAAAAAl7Te/6fs7AdQAAAAA8kQI9TD6Xzzda6+9AupJebrtttt0xRVX6LHHHhv0QvTEiRN15pln6qtf/aoOOOCAIvdwIGutXnvtNa1atUrPPPOMnnnmGa1evVqtrZk3zH/mM5/RDTfcMKZ92bx5s6677jrdfPPNev3114fcNhKJ6J3vfKdOPvlkfexjH9OCBQvGtG8oPtdxtfxjy7X492dqTeuDmtqVyDuI2kgyVrJGeU1FCvnS1A7JMUaHNUS1/Nl6uYnH8v0WMAKerJYdtU7WjWmyjBrDRjHHFmVKmZEU8Y0mx42sYlrW+ohOfXqLXHGzYTFRA5WN8Qc1gJQ6SStCk7X4iEY9OSmhpvDYBZLbnn9Pirs6pimqFasmqy7x1BgdDWMiFssMnfa8zGVjJELFAQAAxqe2NimR6Fvu7JS6uqSZM6Xp05Mh1QAAoCxFE37QXZAkRUujGxXpAE3VejUF3Q0doKlBd6EiMf7YT1P0hppUnCuF2RkZ7acpgR2/UnnW11rtUFiuupUYfocxEpartdohz/pyCSEvukVmvp6wm3W5grl3r1ndOl9HapGZH8jxAQAAAADAyFhr9Y1vfEOXXXZZ77IkmX6B9LmEUn/5y1/W1VdfLc9LPijr9ttvV2trqyZOnDjKva4MnufpySefzFg3bdo07bnnnr3Lzc3N+t3vfqd77rlHzz//vHbs2KFwOKxp06Zpjz320Hve8x6dfPLJOvHEE+XwwHoAAAAAGJ+2bJEe67lngABqAAAAAAUghHoYM2bMyFhOJIK7eb+cvPXWW1qyZIkefvjhYbdtbW3V9ddfrxtvvFHf+ta39K1vfWvAReux9sc//lFPPPGEnnnmGT377LNqbm4u6vH76+rq0ne/+11dccUV6urqymmfWCymp556Sk899ZT+/ve/6/777x/jXiIIddE6rTjz91p8zUKteetZ1catmnPMjEsFUCv1Zx5B1LUxyZF0WFNUK56cpbpEd/6dx4i4kpY/NlOLj3tLayZ1a3LM0Y6oJ1uEt0tjpckxR0bSYU0RLX98ptxE59gfGBmogcrG+IMaQLo6SSsemaUTTnxTqyd7Y3osK2luW0grHuEzYFmKxzODBz0vc9kYLuoCAACMV4lE5me/7m5p9+7k1557SkccEVzfAABAwVzH1bsaJuqZCa3DbzzG3rUtIncGk9eLzTWO3m6n6/+0Luiu6O2aTvhokTH+KJUasLLUQABc4+htdoru0quB9qNbCb1NUxj/gKy0a7Vcz2uiompWbveWjhZfVvWq0nI9r2PtHIKoAQAAAAAoQxdccIF+9atfyVorY4yMMbLWZoRO5zq3d+7cufrwhz+sO+64Q5LU2dmpO++8U0uWLBmTvo93r776qrq7M+/X33///Xv/ft111+krX/mKWlszrxPGYjG1t7frzTff1BNPPKHLLrtMBx98sL7//e/rYx/7WFH6DgAAAAAooqeeSv5JADUAAACAAhFCPYxDDjlEUt+F023btgXZnbLw6quv6oQTTtDWPH9ZjcVi+s53vqOXXnpJN954o1zXHaMeDnTuuecGHjydsn79en3kIx/Riy++GHRXUKLqonVa8YUHdMIl+2mNu1OOlfxh7u1ID6DuXZdjELVjpdaotG+roxVP7q26RPH+30SmuoSrFY/vqcXHvaVHpnUMO+6jxTdSa8jXu3fVaMXje1IDAaIGKhvjD2oA6R6Y2a4NtfGiHGtDbVwPzGzXorfqinI8AAAAAGNs506poSHoXgAAgALEEjHdvEdu14jHkmOlm9/Wocv8hCIOtx4VU8xP6Gb9Q46M/JwfOz36HBndrH/oMv9kaqCIGH9QA5WN8YdnfS2zzyohX+2KBdKHdsVUpZCW2Wd1qt5OGDkAAAAAAGXkl7/8pa677rqM8GlJWrhwoT70oQ9p3rx5+spXvqI33ngj5zbPPPNM3XHHHb3zr++77z5CqAuU7b97fX29uru7dcYZZ+iuu+7Kua0XX3xRp59+us4//3xdddVVCofDo9nVEbnqqqv0y1/+csyPs25d8A/0BAAAAIAx8fzzBFADAAAAGBHuAB/G4YcfrpkzZ2rHjh2SpL/97W/6j//4j4B7Vbp2796tk046KWsA9RFHHKHTTjtN8+bNU2dnp1599VXddNNN2rJlS8Z2N998s2bMmKH/+Z//KVKvS8crr7yi9773vdq+ffuA12bOnKkPfvCDOuiggzRjxgzV1NSoqalJmzZt0vPPP6/HHntMu3btCqDXCMIDbzyg7ZNchVuM4sYOOck4WwB172vDBFE7PS+EfWn7BEcPzOrUoi2EDwapznd0YEtUf5nVXtTjtoesDmyJqs4PS8wdChQ1UNkYf1ADkKSVs1v02SO3qTnsy2j4h4qMhJHUHPb12aO2Scbhs2C5cZzkV4q1mcvGZC4DAABgfDFpJ40dR3JdKRxO/rl+fXD9AgAABYuEIlq14f2av89dao0E14/amLTqgf0UOZXbjoot4oT0V/8cHaKrAu2HkfRXnUP4aJEx/qAGKhvjD9c4utp+RPN1pRLyA+lDQr46FNPV+ggB1AAAAAAAlJHGxkZ94xvf6A2LttZqzpw5uuWWW3Tcccf1bvfd7343r3Y/8pGPKBKJKB6Py1qrBx54YDS7XVGyzcmeMGGCPvWpTw0IoDbGaMaMGZoyZYqampq0fft2+f7A80W/+tWvtGXLFt15551ySuSe8Z07d2rt2rVBdwMAAAAAytfFFwfdg0wEUAMAAABlh7vAh2GM0ec+9zldcsklkqQHHnhA27dv18yZMwPuWWn63Oc+p40bN2asmzhxon73u9/p1FNPHbD9j370I/3oRz8acHH6iiuu0Pvf/3594AMfGMvuDmvq1Kk64ogjNHnyZK1YsWJMj7Vjxw6dfPLJAwKo999/f/3kJz/Rhz/84d6L/Nn4vq+nnnpKN954o7Zt2zamfUWwVr60Ukv/vFTWGE2eME0NbbsUc7KflBkqgLp3myGCqH0jRTxpcsyRldXSd26RYt1atLF2pN8GCnTR4Q36+QHNgRz75wc0KBrzdOmzUwI5PpKogcrG+IMawMq92/XZI3apKezLDvEwkdFiJclITWFPnz3iLT4LlptEQvK8vmXfT65LMSa5DgAAAONPPJ75WTAalaqq+pZbW4vfJwAAMCqe3stVbbfUFpbs4LcQjBljkyHUT+/laI7rFr8DFc6zvj7l/1H+mJ8dHpovq0/pj3rSuYAAyiJi/EENVDbGH5719VH/ZrUrHmg/2hXXR3UzNQAAAACUOtdNPqw4pUTCRwEE4/LLL1dLS4uMMbLWaubMmfr73/+uPffcc0TtTpgwQYcccoieffZZSdKWLVu0a9cuTZs2bTS6XVEaGxsHrLv77rvV2dnZuzx16lR985vf1OLFizV79uze9bt27dLKlSv1ve99T2+99daANr773e/q+9///th1HgAAAABQHEPkTgWCAGoAAACgLBFCnYOvfOUrWrZsmbZs2aLOzk597Wtf069//eugu1Vy7rvvPv3xj3/MWBeJRPTggw/qyCOPzLpPOBzWxRdfrEmTJun//b//l/Hal770Jb300ksKhYpTpvX19Tr88MN15JFH6qijjtKRRx6pefPmSZL++te/jmkItbVWn/rUpwYEeJ955pm68cYbFYlEhm3DcRwde+yxOvbYY2X5JX3cSgVQ+7bIQXE2+S9f0tKjdkmxuBZtqBpmJ4y2i45u0X+/oz2wqWRW0n+/o1lKJHTpU3UB9aKyUQOVjfEHNYCVc7v02X9qUlPEFiWAOqU3iDri67P/tJPPguXE8zJDpn1/YOg0vz8CAACMT/F45me/9EBqKTnhGAAAlB3P97Qs8oJMQprYLbUEcJpuYndyHsOyfRp16l5zCB4sNuvLbI7KxIxsgCGkRkYmEpXm7C1RA8XD+IMaqGyMP3pqQLHkOARRB0bJCa3UAAAAAFAG2tul9Plo4XDm66FQ6YXWABgzv//973sDqI0xuuaaa0YcQJ1yxBFHaNWqVb3LL7/8so4//vhRabuSdHd3D1iXHkD9zne+U3/5y180c+bMAdtNmzZN559/vs466yyddtppeuihhzJe/8EPfqCzzjpL8+fPH/2OAwAAAACKo9TO5b3nPUH3AAAAAECBuPs3BxMnTtRNN92kcM/NFr/97W/1X//1XwH3qvRccsklA9ZdfPHFgwZQp/u3f/s3nXTSSRnrXn/9dd10002j1r+hrF69Wo2NjXrwwQd12WWX6eMf/3hvAHUx3Hjjjbr33nsz1i1atEg33XRTTgHU/ZlSO3GAUeH5npY9t6w3gNr6nhrbdilhrAYbcSvJ9nsx2i9rZKgAQyMp4UiNUb93G99Iy97eIc8QVldMMcfXtfM7ApxClmQlXTu/QzGnyEHooAYqHOMPagCesfrRgraiB1CnpD5XNkWS/eCzIAAAAFDGjJGqeLAMAADlyHVcLe/4gKa3BxNALSWPO71dWv76oQRQB8A1jh7Y8+ua5kwMtB/TnIl6YM+vUwNFxviDGqhsjD9SNbBPaFpgQeRWVvuEplEDAAAAwHhQWxt0DwAUyYYNG7Ru3bre5QMPPFCnnXbaqLV/wAEHZCyvX79+1NquJNYOfr5nxowZuvfee7MGUKebOHGi7rrrrgFjYq3Vj3/841HpJwAAAAAgAKWWI7XHHgMfegcAAACgbHAHcI7e/e5367bbblM0GpW1Vt/61rd05plnckG0x4svvqhHHnkkY920adP0la98Jec2sgV7X3311SPuWy7mzZsXWHBzd3e3vv71r2esmzp1qq677jq5rhtIn1CaXMfV8o8t12GzDpOVVWP7bsXN8CGE6UHU9d3SpK7kn9LQAdTp+8ZTQdRGOmx3WMsfmCS3f7o1xpRrjY7cERo0cLxYjKQjd4QY/wBQA5WN8Qc1AEma2mXk2OIHUKdYSY5N9gMAAABAmXIcqaam9G5CBAAAOftT89N6ZVqwfXhlmvSn0LrhN8SY+GHDHdrltwbah11+q37YcEegfahUjD+ogcrG+OOBjhfV5ccVCuj275AcdflxPdDxYiDHBwAAADBKXFeaMSPoXgAokueee67378YYnXLKKaPa/qRJkzKWW1paRrX9ShEeIrzrsssu0/Tp03Nqp6amRr/85S8HrL/55pvV2hrsuUUAAAAAQAFKde7HtIBvZAUAAABQsFDQHSgHf/vb3yRJdXV1+q//+i99/etfV1dXl/7whz9o5cqVet/73qf3vve92n///TVlypQhL/YN5z3vec9odbuobrnllgHrzjnnHEUikZzbOOKII3TEEUdo1apVveueeOIJrV+/XvPmzRuVfpai3/3ud9qyZUvGuu985zuaxi/byKIuWqdffeRXWnDlwYpbb9gQ6RQrqSYuVSWSy1UJKeZI7Tn8L2olqSeIOuFIv3phnuom5f7/NkaHK+mcbWH9bfYmxQN8hETIl87ZNkvutMnBdaJCUQOVjfEHNQBX0qe2h/XQnpsC7Ycj6VPbZ1ID5SIWkxKJvmXPk+LxvmXHkfL4vR0AAABlZPduyaadPQ6FpKqq5J8Oz6gFAKBcxRIxfXnGs4o7yQfG+QHMLXBs8trxlw/coI+/8boiDrceFVPMT+gG+1dJkiMjP4DHFjo9j8y8ofmvuqTlSGqgiBh/UAOVjfGHZ30t8/8iydNU1WiH2opaBUbSVNVIvqdl2/+iU3dOkWs4zwQAAACUrM5OqbGxbzl1rXjqVOmgg5LLACrCzp07JUnWWhljdPDBB49q+/X19ZKSAdeSCDouUG1tbdb106ZN0yc+8Ym82lq4cKEOOuggvfTSS73rEomEHnvssVEPIc/X9OnTNX/+/DE/zrp169Td3T3mxwEAAACAMVWKAdR77JH8c5TPLwAAAAAoHu4WyMEJJ5zQewE0xRgja608z9P999+v+++/f8THMcYokR4OVUb+8pe/DFh3xhln5N3OGWeckRFCnWr7ggsuKLhvpe5///d/M5YjkYg++clPBtQblLqW7hadf8dn5bZ1yAlLiRzPFxkrdYaliJ8MoO4KJZeNlWwObVhJrpXchK/zj2/Uik3HqM4vPHAf+fNkdcs+j2uSH9FOJxZYPyb5Ed1yYFxnVe0nVyV4wnIcowYqG+OP0aoBo9weYDEYaiA4qRqoD7gG6qmB8tLRIaXfPBuLSV1dfcuuKw1ywzIAAADKXEdH8islFOIBJAAAjAORUEQ/fXVfnff2V9TtBtMH30hRT/rp6hmK/Mv4faB4qYpIWpW4RAu2fEe7/LZA+uDLapozQatmf1+R0JRA+lCpGH9QA5WN8Ycrabn//7R45y/1SNcrGc8fKwYrqc3E9O6qA7V8+hflOtXF7QAAAACA/LS3Z14jDoel2bOTf9+0SZrH+V2gUuzevTtjedKkSaPafkf6/SmSwmHmHBZi6tSpWde/973vVaSAe35OOumkjBBqSXr00UcDD6G+8MILdeGFF475cQ4++GCtXbt2zI8DAAAAAGOmlAOoJenQQ4PrBwAAAIARIYQ6D7bfHdupYOr+6ytNe3u7nn322Yx1NTU1Ovzww/Nu693vfveAdY888si4DaHetGmTnnjiiYx1J598sqZMYYIGBvJ8T0v+uERrNj2tmE3IyyOAOrVpczQZQJ2akGwkKccgas9IMVdaE2rQkr2e0u1vHkfwYBG5Mrr6rQVasP8DBbdh1Bc8WehPLmukq99awNgHgBqobIw/RqsGHEm+qIFyNFo14Fojz1hqAAAAAAAAAChTS7ZN183hV3T3AcH14Z/XSUs21CUfcoaim+NO18drj9HVrYWfLx6pj9ceoznR6YEdv5Ix/qAGKhvjjzp3gg6MzNZfOv8RyPHbbUwHRmarLjwhkOMDAAAAyIPrSo7Tt5z+93hc2rmz+H0CEIja2tqM5f6h0SOVCrm21soYM2iYMoa2R3qQV5oFCxYU1F62/bZs2VJQWwAAAACAIiv1AGpJOvroYPoBAAAAYMSc4TdBijEm42uw9YV8lbPnnntOvu9nrDvyyCMVCuWfcX7UUUcNeNLxqlWrRtS/Unb//fcPWHfssccG0BOUA9dxde47z1V3R6uaoz1hosOkB6YHUKd095sHnE87zVGp2yZ0buNcggeLzJPVBXuuVkL+8BsPwmpkwaOSlJCvC/ZcLW9EraAQ1EBlY/xBDWC0amAkAdQSNQAAAAAAAAAE7aK3rdef9x94HbhYjKQ/7y9ddCgBJUG5aNcturb1QTkBVYEjo2tbH9RFu24J5PiVjvEHNVDZGH9ctOsWXdl8b6A1cGXzvdQAAAAAMB60tQXdAwBFMn168oFiqXnMO3bsGNX216xZk7FMCHVh9t1336zrC/3vmW2/VGA4AAAAAKCElWIO2bRpmcvHHz8wlBoAAABA2cg/JbhCWUvA1mBefvnlAev222+/gtqKRCKaM2eO1q9f37tu3bp1SiQSBYVal7rHHntswLp3vvOdvX+31uree+/V73//ez355JN688031d3drSlTpmj69Ol65zvfqZNOOkkf+tCHuDhfKRoapERC6gmSNpJkJZvlHFK2AOrB5NWOtVIslkenMRpcGc3vqtM9E7fJkUYQP1k4R1KLm9D8rjpCyANADVQ2xh+jVQMj+a2GGggWNQAAAAAAAAAglojphj2TwQDGSjIjO+eXr/QHHN/wtmZdsnmjIs74u5ejlMX8hG7ofrh32aj4NZByQ/PDuqTrOGqgiBh/UAOVjfEHNQAAAAAgL52dUnrYaDQqzZnTtxyPJ+cHlWKoDYBRNWvWrIzlVatWjWr7Dz30kIwxvXOwDzrooFFtv1LstddemjBhgtr6PSQgGo0W1F5VVdWAdV1dXQW1BQAAAAAoklI8V1dbK4XDmes+85lg+gIAAABgVHD3bw4eeuihoLtQ0jZs2DBg3T777FNwe3vvvXdGCLXnedq4ceOgT/ItZ//4xz8GrNt///0lSS+88II+85nP6Nlnnx2wzfbt27V9+3a98MIL+t3vfqcJEybo3/7t3/Sf//mfqq+vH/N+Ixie72nZU9comrCql9Tcc/9AtgDpoQKoo57U7Q5cn0s79d3J/ZfVr9epXXMJHywiT1Zrq1pU74XV5MYD6YOVNMkLa21VizxZxr/IqIHKxvgjvQaa3XjBIcSFTkJ1ev6spwYCM1Y1kGtNUANlztrkw2y6u5Nf6RKJYPoEAACAsRWPS37abw2JRPLhgqGQ5DiD7wcgZ77v695779Wjjz6qJ554Qhs3blRTU5Oam5uVKPB3LWNMwfsCqAyRUESr/n6oFhy5Sg3VhbfjWMkfwem9KZ3Sqj/NUuRfPEle4Q0hbxFJq/R5LdDV2q2OgoMnC71eYHv+PVU1WqXPKxKnBoqJ8Qc1UNkYf1ADAAAAAPLS3Z28bpziZplIBKAiHHPMMYpEIorH47LW6r777lMsFlMkEhlx23fffbc2btwo0xOSNXv2bO23334jbrcSOY6jww8/XH/7298y1jc3NxfUXlNT04B1U6dOLagtAAAAAEARlGIAdTgsTZyYuW7vvaWTTw6mPwAAAABGBSHUOXjve98bdBdK2rZt2was22uvvQpuL9u+27dvH5ch1G+88caAdfX19Vq2bJm++MUvqrt/ONgg2tra9MMf/lC33nqr/vSnP+mAAw4Y7a6OyFVXXaVf/vKXY36cdevWjfkxguQ6rpZv+Sct3v6M1sxMrssWRD1UAHV9t1SVkLpCffumG6qd1L6HbZOWPztZ7vwSPIE1jrkyWr7paJ2+99/119pdSpj8pwIZ9U0iKmQikWuNjuicpOWbjiZ0MgDUQGVj/JGqgcV7P6knqxtyCiHuP3HUSVvnD7Fdf+nhw8d0TqEGAjIqNWAlR0a+bEbADDUwznme1NmZDCBMJAaGThNuBgAAMD75fmYItedJXV3JGxOrR5BYCUC+7+t//ud/9POf/1ybNm3qXW9tofFfAJCfOfFqrb5Gmv+vUmsB2QCO7fsz3yBqK2lCXFp9jTRngpV27Mi/AxixOZJ+FD1Gn5/wUEH7m7Q/C/3p9aO2YzSnu1sSNVBsjD+ogcrG+IMaAAAAAJCz7m4pPbg0GpW2b5eqqqS6utIMtQEwJqqrq3X88cfrwQcflCQ1NDToxhtv1HnnnTeidmOxmL797W9LSl4vN8boxBNPHHF/K9kJJ5wwIIR6/fr1BbW1YcOGAeumT59eUFsAAAAAgDFWiufqQiFp0qSBffvBD5Lh1AAAAADKFiHUGLGGhoYB6yZMmFBwe9n23b17d8Htlap4PJ71+3rwwQd1/vnny/cz4+QmTpyoWbNmyfM8bd26VZ2dnQP2ffXVV3Xsscfq8ccf19vf/vYx63u+du7cqbVr1wbdjXGh7u/PasUqo8Vn2EGDqIcLoJb6/hwqiHqwAOoVt0l1E5ql+SP9blAYI1dGnmzBE4EKO6p6wiZL8ORlxaEGKhvjX8nq/LBWbDwmpxDi9NBxqS+AOvVa+n6p9dlqqn/48IqNx6jO58JQUEZUAz0B1FLPn7YviJoaGMes7QugBgAAAKS+z4ieF3RPgLK0ZcsWLV68WI8//nhG6LQxRmaEN/8SYg0gZ46jh+dJ3W7+u/Z/pyokfLDblR6eKy3ZJR5wFpCV0fX6bs2TCskoXtQrRkkhGX235klNS0S0qHte0Y9f6Rh/UAOVjfHHyuh6fa/mKU33q7TT6cqrCkb6WdBImu5X6Xs1T1EDAAAAQDmIxzOvCycSUkdH39esWcH1DUDRnXXWWXrwwQdljJG1Vl/72tf0wQ9+UHvssUfBbf7rv/6rnnvuud42JekLX/jCaHW5In3oQx/S97///Yx1jz/+eEFtZdtvwYIFBbUFAAAAABhDpRhAHQ4nA6hD/aLpzjxT+ud/DqRLAAAAAEaPM/wmwNDa29sHrKuuri64vWz7dnR0FNxeqWpqaso6mfy8887rDaA2xuhTn/qUnnzySTU3N+vVV1/VunXr1NLSogcffFDvf//7B+zf2Nio008/Peu4YBzYulV1MaMVtxkdtj0ZDF3f3feyNcmv/tIDqFP67ztYGwMCqLsldXWNyreD3HmyWrLXU3qxqkWTvbAi1sk7CtYqGVKZ7xQ0IyliHU32wnqxqkVL9npKXgAT2SodNVDZGH+kpEKIj+mconovGQTc/5e6/nHhjrJPJnX6LfffhvDh0lRQDaQFUPeuk5FjB98nvV1qoEx1dkpbtkibN0vr1kmvvCK99pr05pvJdTt3Sq2tyYkmAAAAqCzWSt1ZTg4DGFJzc7NOPPHE3gDq9OBpa23Gdb/UcvpXuuFeB4ChLJ++Ted9REo4ksnz7cOq71qwNQVcM7DJ4553qrT8bePvPo5y4MnXdTVrtdvpkqfCHh9qlXz4aCE/fYwkT9Jup0vX1ayVl/UxiRgrjD+ogcrG+MOTr2XVL8uXlStH0/2qnOsgfTs3bSmf/af7VXLlyJfVsuqXqQEAAACgnHV1SU1NQfcCQBGdc8452m+//SQl56zu3r1bCxcu1MaNG/Nuq6WlRaeffrquv/763gBqY4yOP/54HXfccaPd9Ypy9NFHa//9989Y98wzz+ill17Kq51du3bpz3/+84D1CxcuHFH/AAAAAACjrBQDqGtrpalTBwZQz5sn9XtwEgAAAIDyFBp+E2Bo8SyBVVVVVQW3ly2EOhaLFdxeqeoeJOChs7NTUvK/4S233KLTTjttwDahUEgnnniiTjzxRF155ZX6t3/7t4zJ6WvXrtUll1yiH//4x2PTeQSntVWSeoKopcWnW62ZlZwg1NTzv52VJNM34ThbAHVKan1ztGfftInGvpEmdWUJoJakWKy3LygOV9K5W2Zq9bxG+UaanAipMRRXzNgxjYJNhs8aTU6EkoGl1urcLTPltraN4VGRDTVQ2Rh/pKuTtGLtwVp8wBo9OaFZzaGEHCVDxvsHCbtDFIiRFLKS7/QtS8nPAr3hw4mQjmmr04pXD1ad1yWJB1GUgnxqIFsAde9rMqryjDrcnofg9KynBsqY70u7diXDp5ubk8v9g8xSy+kPe6qqkiZOlGpqSvOiNQAAAPLnDxMC5HnF6Qcwjpx99tl67bXXesOnrbWqqanRKaecov3331833HCDduzY0TvB9jvf+Y46OzvV0NCgN954Q0899ZTa2pLn1VL719fX64ILLlA0Gg34uwNQLmKJmL58wHrF3eSykSSb/UHFg0md/8s3MtDYvnOIcVf68nGt+nhLQhFuPSq69FN+RkZje7Uok0k738wzFILB+IMaqGyMf2Vz5Wh580ItnnSf1oR2y5WjOhtWsxn6obPpHxWj1lVYjuLy1W283teHG9I6G5bbcxX5sMRULW9e2LsMAAAAoEy1twfdAwBF5LquLrvsMn3sYx/rveb98ssv6x3veIe++tWv6rzzztMee+wx6P6+72vVqlX64x//qGuuuUYtLS2918YlKRKJ6Cc/+Umxvp1xbenSpfrSl76Use7iiy/W73//+5zb+OEPfzhg/vLRRx+tvfbaa1T6CAAAAAAYBaU4l3faNCkcHrh+jz2kW26R6uqK3ycAAAAAo46ZYBgTZgS/6Gbb147DWQvDfU/XXntt1gDq/pYuXaodO3boBz/4Qcb6q6++Wl/72tc0adKkkXQTpSbRlyadDKK2Ov1M6ZF9MieDpIKoUyHSQ0m93lSVOZnESOoMS0du6RdALSVnEiWGaRijbtGOqZJ3gJbu96p8SZMT4SFDaHOZIDTUdn3hs2EZm5yMfuXrB2jR7qmSGP8gUAOVrZDxl4avAca/PNUlekKID3pBT05s6Q0hTlefCKnN9eQPUQWujCYmXDWHkmOaHmBcnwjpmNY6rXjpYNV5EuNeWnKpgdqEq07X01DvBBHrKpxwqIHxoKFBeuMNqWuIoPDBfg/t6kp+ua40ebKU5eFQAAAAGGdcN+geAGXlqaee0h133NEbHm2M0SmnnKLf/OY3mj59uiTpL3/5i3bs2NG7z8UXX5zRhu/7uvvuu/XTn/5UDz/8sIwxamlp0V133aW77rpLe++9d1G/JwDlKRKK6Kfr9tN5B7ykePoDBvMIojY2ecbQ5LlP+qZhX/rpE/WKzOe2o2Jz5ejznfP1fHi3GpwuxfKOE0+OpSeb87XEdFZWETma4lfp853zCZ8sMsYf1EBlY/whSXU2ohVNJ2nxpPv0ZHiHWk1iyPF00sLKUwHUkpJ/WvUGUTsyg95bYCS1moQcOTomPkMrmk5SnY2M8ncGAAAAYMz1n6/HnCCg4nz0ox/Vt7/9bV1yySW9QdRtbW26+OKLdfHFF2ufffbRrl27Mua9HnfccWpoaNBbb72ljo4OSX3zYtOvn//0pz/VkUceGcj3Nd6cf/75+u///m9t2rSpd92tt96qq6++WhdccMGw+99xxx264oorBqz/zne+M6r9BAAAAACMQCkGUA/2cKp585IB1DzYCAAAABg3uAscIxbO8gSjzs7OgtvLtm8kMv5uWM/23y3lhBNO0Kc//emc2/rOd76jefPmZaxraWnRLbfcUnD/UKJCg0/iNf3ngOQ/U2jo9jJeLMETWhVi0e7puvL1A+TIyNhkCG3EGvUfkfQAyeFk23Zg+KzpCZ+dPtJvASNEDVQ2xh/p6ryQVrz0Dh3TWqf6ROZnhPpESFV+br/uVflO1v2T4cPvUJ1HiEipGq4GopYaqAiJhPTqq9LatUMHUOfC86Rdu6TduyU//+ACAAAAlJFoNOgeAGXl8ssv7/27MUZHHnmkbr/99t4A6lw4jqOPfOQjeuihh3TdddepqqpKkvTCCy/o3e9+t7Zu3Trq/QYwPi15a4quvyMZBJ2S8zWBtDBpo2GuCafvl/b3sC9df4e05FU+TwRlUfc8XdXybtXYUN63BWS7JpQPK6nGhnRVy7u1qHvesNtj9DH+oAYqG+MPKRlE/cmOA9RhUg8aHnjfiJS81yMlPYA6JSxHUetm3T7F9LQvSR0moU92HEAANQAAAFCubL/fJMfhXD0Aw/ve976nz33ucwOCpK212rBhg9rb23u3tdbqySef1Kuvvqr29vbe7VIB1ikXXXRRTuHIyE1VVZV+8YtfDFj/xS9+Ud/85jcHnbsdj8f1k5/8RGeccUZGkLgknXzyyfrQhz40Jv0FAAAAAOSpFPN6BgugPvNM6c9/JoAaAAAAGGdIkholjY2NWr16tXbt2qWGhga1trZq4sSJmjJliqZNm6bDDz9ckyZNCrqbY6KmpmbAutEOoa6trS24vVI11Pe0dOnSvNoKh8P6/Oc/r6997WsZ6//617/qC1/4QkH9G03Tp0/X/Pnzx/w469atU3d395gfJ1ATJiQD4SS1hH0tPkN6cYY0qVPaXSP5PeeaUpOHm3vm/VYlBm+yK5TczkiSlWxPG45NtvviDGnxGdKK26S61H9e1x2kNRRDKgR26X6vyrdWkxNhNYTiivXMEs8nfDYltX3qFpMw4bMljRqobIw/0qVCiE+f/w89OKlRVtKkfgHUQ00+Tr1W5TtSIqSmUEJG0hFtEwkfLhND1UDM+MNOPqcGylxXl/TCC0OHT1vb95UudaE62wXrjg4pFpOmTx/yQTgAAAAoU1VVnOMF8mCt1X333dc7+dYYoyuuuGJED9H97Gc/qzlz5uijH/2o4vG4Nm3apI9//ON69NFHR7HnAMYtY7TkRUeSr/NOk+JO3zXeIXezg4RP2uH3tya5f28A9QtGmllY9zF6jDUyJvfnUw82zP2vEw3Xhsml4DDmRnP882mD8S8dvAdUtnzGf6gR4z2gPK2MrtdFdU9okh9Rk9OtuGxPULTtHc/0QOlqG5I7SCWE5ShkjTqM17tf6ipzegB1WEaT/IguqntCNS0hgsgBAACA8aC+PugeAAjINddco2OOOUZLly5VR0dHRqC01BdMLan3Gnl/1lpFo1Fde+21+vSnP12UfleSU089Vf/+7/+un/3sZxnrf/SjH+n666/XaaedpsMPP1xTpkxRU1OTXnjhBd1+++3auHHjgLbmzp2rm266qVhdBwAAAAAMpVwCqPfeW7rkEumkk4rfHwAAAABjjiShEXjttdd01VVX6b777tMrr7wy4Omw6YwxOvDAA/X+979fF154od72trcVsadja+rUqQPWtbW1Fdxetn2zHaPcTZw4UZFIRLFYLGO94zj653/+57zbO/nkkweEUJfKRPULL7xQF1544Zgf5+CDD9batWvH/DiBmj1bevPN3gDqNbOSq2MhyesXQJ0yVBB1KoA6JX2SsWeS7VYlksfJCKKurk4GlSAwi9r3kjaGtXSftfLkyx/l9lPtOcbRlW/O16L2WRJDXlKogcrG+CODE9eOSEK+0j4DpF+EGu56VL8LVr6kHZGEFI1Kfnj0+omxM1gN5HoxkhooT52dyQDq7u6BY+37yS/PG3z/1DkMYyTHGdiG50m7dklz5khh6gAAAKDstLUlPxOmuK4UiSQ/27luad68CJSof/zjH2pubu6dWHvQQQfp2GOPHXG7p5xyir7xjW/ou9/9riTp73//u5YvX64lS5aMuG0A45zjSJGIlrwYk+TrnI9K8WF+tGcLoO59TRo2iNpKCtm0AOps55NQNCuj67W07lFF5faET8aGDBDNZaRyCaE1kib5EUXlamndo1KLCKAMAOMPaqCyFTL+wwVNM/7lJVUDvqwcGU3yoz1B1JkPKLY9wdT1fli+kYZ6fHFErsK+o2YnnhZjnawJI6uwHE3yo70B1dQAAAAAUOaMkSZNkmprg+4JgACdc845et/73qfLLrtMN9xwgzo7OyWp97r4YMHTkuS6rj71qU/pO9/5jubOnVu0Pleayy+/XM3NzVq2bFnG+u3bt+u6667LqY0DDzxQf/rTn8bl/GwAAAAAKDuleM9l/wDq44+XPvMZ6eSTmVcMAAAAjGOEUBdg8+bNuvDCC3X33XfLWjtk+HSKtVYvvfSSXn75Zf385z/Xqaeeqp///OeaM2dOEXo8tmbOnDlg3ebNmwtub9OmTTkdYzyYNWvWgKcL77vvvqqrq8u7rUMPPVSu68pLCxnbtm3boE+bRpk69li1rHpci0/vC6BOBUmnJgdnG+1sQdT9A6hT0ttJ3y8jiHrCBKmra7S+KxRo0dZJ6kjsq3MOfEkJkzkBSMptImH6Puk/zRLGancorl+/cpAW7ZwkifEuRdRAZWP8IUktbkInHPqsXqhp651A3BxKSAmpyndya8RadTm+mkOJ3rp5oaZVJxz4d/31+cNV5/FrYykbqgac4X9VTaIGyk8iIT33XPbP5IlEZtjgcKxNBk47zsDwIM+Ttm6VDjggGVQIAACA8tHSkrkcjWY+WJAbAoGcvfzyy71/N8boxBNPzGk/z/PkDvO71Fe/+lVdeeWVamhokLVWP//5zwmhBjC8cFiqqZFiMdUkjCZ0WzVWD775UAHUvdtIwwZRT+iWalLXmyOR5IOL99wzv75jxDzra5n/kHwlrwFUydUkOWpS16DRkkYmI1BSklw58jIec2p6Qkqzt2IkTVKVqtzk50hf0rLJG3Sqc5xck+P1CIzY2I1/9u36XmP8SwXvAZWt0PFP6tuC94Dy1b8GJMmRVCdHu9Sesa2VVKOQqtyoOhTrXW9ktK8m6w01po25oyqFFJNVu+ID2qlTtRy375jUAAAAAFAmGhqS9xOmVFVJ06Yl/+R6MQBJ++yzj6666ip973vf0913362HH35Yjz32mDZv3twbSi1JoVBI06dP1zHHHKOTTjpJH/rQh7T33nsH2PPK4DiOrr/+eh122GH6xje+ofb29uF36mGM0Zlnnqlrr71W9fX1Y9hLAAAAAEBOSjH3aeHC5PnCgw+WDj1UOvrogaHUAAAAAMYlkqTydNttt+nzn/+8mpqaesOn8wn4TYVW33HHHXr44Yd13XXX6fTTTx+r7hbFvHnzBqx78803C26vfyiz67rj9qL0vvvuO+D7LfSpwq7rqr6+Xg0NDb3rPM9TU1OTJk+ePKJ+onS0/NPhWrxDWjMjudw/SHqod6P0QOnBAqiztZM1iHrtROUflY7R1uIm9JM5GzPCZ1NyzZxMbZtt+4Sx+smcjfpIwzTCJ0sUNVDZGH+kwofXTGiT1O/ndyghJXIbt1T4cEqqnTUT2nTCoc8SQlzChquBmkRuE36pgTL0xhsDA6itTU4YyeFBWVn5fnJf1828oB2LSW+9JY3T38sBAAAqkjHJ0EgAOWlsbJSk3ge/zp8/P+t2/a8Zd3V1qba2dsi2q6qq9OEPf1i/+c1vJEnPPPOMduzYoRkzZoxCzwGMW1OnStGoVs43WnqyrypPmtQlNVUN3DSXAOrebaVBg6gndUlVnrT0A5KM0aItUWn6dGnu3IK/DRTGlbTc/w8t3vYLrYkl7zeJWEeuH1NC2R9O1/+MYdSEFZaruDx12/ig22Ue11HEifaeOzwssreWz/pXuQ6fK4up8PE3vX9j/Msb7wGVrdDxT//RzviXt2w14FurFr9zwLZGUqcSijieXIVkZGVk9OmJx+vI6Dw9071ev219VFZWjlx1yVOnn0j7idGnRd2a5NTKoQYAAACA8lJTI6WFyKqqSpo4Mbj+AChZ06ZN02c+8xl95jOf6V3X1dWlxsZGVVdXa9KkScF1DvrSl76kM844Qz/72c904403avv27YNuO3nyZJ1yyim66KKLdNhhhxWxlwAAAACAslLoPGQAAAAA40JuiVSQJN1yyy0666yz1NjY2DvJODWZOBUuPdSXpN59rLVqbGzU4sWLdcsttwT5bY3YgQceOGDd66+/XlBbsVhMmzZtylj3tre9TaHQ+Aw8O+iggwasi0aHSAYeRlXVwFmlXf2DyVC2PN/TkpZfa82M5PvJcEHS2TRHk5OPC9mvq+d/wzWzpCXHbZWXV8QpRlt66KRR9snjuY5Qtu1SbabCJ1vcRJatECRqoLLlOv651ADjX576hw9LA8eyOZSQP0wV+LIZ4cP926EGSlcuNdARGq4CpJjxqYFy09Ag7diRuW64AGpjJMdJfhkz+FOTB2unsVFqbh553wEAABA8Y6Ta2uRnQwA5SYVQpwz28Nfq6urea8KS1NHRkVP7RxxxRMbyM888k2cPAVScgw/WyrldWnqKL7/nNE91QqrLcmtA7o9UH3z7uq5k+5LkG2npB6xWvi0mzZmTZ+sYLXVOtVbM+lcdFtlbvrVq8tvlyw463la297xvKnxUksJyFTXhtG2yn180Sl5PaPLb5VurwyJ7a8Wsf1UdwZOBKGT8+wdQS5nj37fdQIx/6eE9oLIVNv5DvwdY8R5QTrLVQFyejExvHSTv+UguNfuditlERgC1JB0ZnadPTzxeRkbdNq7mniDrbO3E5VEDAAAAAABUmKqqKu2xxx4EUJeI2bNn67//+7+1detWPf/881q+fLkuv/xyXXLJJfr5z3+um266SU8//bR27dqlm266iQBqAAAAACglg83nDQoB1AAAAEDFG5/JvmPgkUce0dlnny3f93uDp6Vk+LTrunr3u9+to446SvPnz9fkyZNVW1ur9vZ2NTU1ae3atXr66af1yCOPKJFIZIRX+76vs88+W3PmzNHxxx8f1Lc3IgsWLJDjOPJ9v3fdM888o0QikXd49DPPPKN4PJ6x7vDDDx+Vfpaio446SldffXXGuuYRBHs1NTUNWDd16tSC20NpcR1X5x5wlla/cL86wvkHSad0u4XtlzpeTVw6d/uecqMDQ89RHC1uXCcctFpratqG33gUrJnQphPeuVp/fekY1Xnh4XfAmKMGKhvjj2w1kB46nn4pyjMaMqg8YTKfTJStHWqg9ORaA1aSNZJjB6+BDtfPeI0aKHG+L61fn3nRebDg6FTwdP/Q6dR21ia/0n6X7+V5Uv/f57dulaZOJawQAACgXIRCUvr1lnBYqqlJ/slnOiAvrpt5YSUSiWTdrq6uLmN5y5Ytmj59+rDtz5gxI2N5/fr1efYQQKVZuU+Hlr6rWX7qnI+18iV1h5U8uZd+KshIJo/5Arb/iUSbbLc60Xcu2TfS0hM6Jadbiwr+LjBSdU61fjXjPC3Y9C3F5UlKhU0OFiOaDBxNhY+mr/PlK9bTRn/pIZZxefLk61czziN4MmD5jr+VFGH8xxXeAyob7wHIVgNSXx2YfleHO2xMH6g+qDeAOuXI6Dy9Ht+uP3esyVifrR1qAAAAAAAAIHjGGB1yyCE65JBDgu4KAAAAACAXBFADAAAAKEGEUOfA93198YtfVCwW6w2PttaqurpaF110kT73uc9p1qxZw7azY8cOXXvttbr00kvV2dkpKXnRLxaL6Ytf/KLWrFmTEXBdLmpra7VgwQKtWrWqd117e7tWr16to446Kq+2Hn300QHr3vOe94y4j6XqhBNOGLDuzTfflLU271rYuXOnOjo6MtbV1dUNOhEe5WnRzql64tWoLj+8O5DjN0el859ztMjOlubuFUgfKl2LiemEqX/SmnCbUjPI7RCTCAvVFz6ZPMaamjadcOhq/XX3R1RneV8JEjVQ2Rh/DFcD/ccufaLxYEHDubRDDZSO/GogueT3hI2nTxK2SgbTmJ6th26HGigZb76ZDBJMD0CLxZJ/pv8O6TjJcEFjMi8Kp4Kn0xmTbDM9jDoVTh1OCx1PJJLbzpw5et8PAAAAxk5ra+ZnxNpaKZr2ZEO3wKcVAhWof7h0a2tr1u3q6+szlt98800ddthhw7afekBv6trgYO0DgCR5vqdl/ir5qR/zxsi3Vk3VUtxJngdMf+SYlaQsQdRRb+DDi63RgOsNjpLtNlVLkzolJ/XAdSMtc9bo1GfmyRUPuAhCi7p1/oQ/K+R6ChtH8Z6RNzKDXjmKy5NjpbDtG7O48RWXl3ZGOVP6eeWwHIUSns5//ada0fYB1anAJ2djxPIdfyPGf7zhPaCyjfZ7wGAY/9I1WA1ImeOWUqOQHm97SfvttjrS67vW94y7XY9HX1atwmo38Yx9+rdDDQAAAABlqLFR8tJ+74vFpKYmqbo689oxAAAAAAAAgNFXahliBFADAAAA6EEIdQ5+85vf6MUXX5QxRrbnF6p3vOMduvPOOzV37tyc25kxY4a+/e1v69Of/rROO+00Pf/8872TiV988UX95je/0dlnnz0G38HYO+WUUzJCqCXptttuyzuE+rbbbsva9ng1b948HXTQQXrppZd61zU1NWnt2rU6+OCD82rr8ccfH7BuwYIFI+4jSsvKNSu0/MCY6ruTgdDFVt8tLT/Y17GvvqFFzr7F70CFazExnTDlLq0JNfSuG4vw2b62k//uDZ8MN+iEaXfprw2nEj4ZEGqgsjH+yLUG+o9d3zr1TiAfuM/w7VADwcu3BtL5kpye8UwFUGfuQw2Uhddey1z2/cxJIlIygDoSGRhAPRhjkmHT/YOoPS8ZTOikhQht3CjNnl14/wEAAFA6eIAlkLM999xTUl9IdHNzc9btDjjggIzlp556Sqeeeuqw7b/++uuS1PuQ2lCIS/gABuc6rpb/yx+0+JsHaI2zU776Aqil7AGi/YOo67ulqoTUFeq75pwtgDq1r1F6ELWVI+mwpqiWtyyQ628Z5e8QuWhx4lq895Nao2YZT5qskBrduOLGHyREtk+3PElWYesobnx19waXJmW7fmCUDC2d7IVk5GuNtmtxaKVWbDxGdX5YKK6xGP/Udox/eeA9oLIVMv6p/78Z//FhqBrIpt4Ly0jy5eu34bVSW5uO7JysZ6ob9dvJG2V9KSqjkEJqduNZ26AGAAAAgHHC95PB1I2NUl2dNHVq0D0CUET77ts3D/Dggw/Wn/70p1Fr+0Mf+lDv/FhjjNatWzdqbQMAAAAAUJYIoAYAAABQwpjBmoMbbrghY/mggw7Sww8/rMmTJxfU3j777KO//vWvete73qWXX365d8Lyr3/967INoT7rrLP0wx/+MGPdr3/9a11yySWK5BhksHr1aj399NMZ64455hjNmzdv1PpZij75yU/qm9/8Zsa6G2+8UT/+8Y/zaue3v/3tgHULFy4cUd9QWjzf07LWh+XLqiqRXFdIEHXUk7rd/PdLTUb2jbRsxmad2rhbrpzhd8So8ORr4dz7tSbU2LsuW4joaOsLn0xaE9qlhXUr9cSGf2b8i4waqGyMP/KtgWwhxINtP1SYOTVQOgqrgUy+1BNB3X9baqAsdHZKW/qF+sTjmRd/jZFCoeS69K90/ZdTwdOumxlCLUmJRLK9lJ07pR07pKqqkX0vAAAAGHuJxOCvhUJSTU3x+gKUube//e0Zy6/1f0BQj0MPPVSSeh9s/Oc//1k/+MEPhm3/T3/6U8bDkKdNmzbCHgMY7+qidVrx7p/r9D99So/sEcsIoLaDzFtInRGa1HPNV+r7syk6xHnGntTK9CDqd280WrH+MNXNIHQwCJ6sluz1lNZU9T0UwchoshfWLjemhMkczfTw0ZRu4yshKy/Ltuq3rZXk2mT76Q+/XFPVrCV7PaXb3zxOrkpswsw4xviDGqhshY5/Osa/vA1VA9mCqOu9sKqsq26TfKitlfTbyRu1qrpJL1a1ZIx3lXUlTwOCqJMB1NQAAAAAMO60tPDgYqDCbNiwofe69KRJk0a17S1btmjDhg2S+h7uDAAAAABAxSq1340JoAYAAADQDyHUw2htbdXf//733gusjuNo2bJlBQdQp0yaNEnLli3TcccdJ0my1uqJJ55Qa2urJk6cOBpdL6p3vOMdOv744/Xoo4/2rtu5c6d+9rOf6aKLLsqpja9//esD1l1wwQWj1sdSdd555+kHP/iBOjs7e9dde+21+tKXvqTZs2fn1Mazzz6rO+64I2OdMUann376qPYVwXIdV8uf2UeL99qqNTNVUBB1Kki6K1TYfpJ02DZp+QPVct/lKxlliOKwvQEUyaWxD59NP5aUNuHMWinhifEvNmqgsjH+yL8Gcq2RXNuhBoI2Nu8DubRBDZSIHTsyl60dGBrtuoVfoDYmub/n9a3r374kNTVJ06cXdgwAAAAELxKRJk4svRsbgRK27777qra2Vh0dHZKkl156Ket2xx13nBzH6f39/bnnntMDDzww5ENj//CHP+jZZ5/NmIh78MEHj2LvAYxbCxdK91dJikkaOoB6pNKDqCVJIVeaMWNsDoZhuTI6t3GuVlevkZ92hrfb+PJzCB9N6R8+mr6PlHnu2DdW3cZPhlP2cHr6QfBkcTH+oAYqG+OPwWogWxB1KoC6PyvphaqWrO33D6LOFkAtUQMAAADAuNGS/XcDAChE+oOXAQAAAACoWKU2T4Pf1QEAAABkQQj1MJ544gklEgkZY2SM0bHHHqtjjjlmVNo+5phjdNxxx+mxxx6TJCUSCT3xxBM66aSTRqX9YvvWt76lU045JWPdxRdfrJNOOkmHH374kPv+4he/0P/93/9lrNt33331L//yLzkde+7cuXrzzTcz1j300EM64YQTcto/SDNnztSFF16oyy+/vHddU1OTlixZonvuuUfV1dVD7r9jxw4tWbJEXnpQmKTTTz9d8+fPH5M+Izh1O1u04kmjxWfYvIOo04OkC93vsG3SitukumorjfJTzzE0V9KDDR/RCdPv0XOR3UULn01JHe+dsal6sOGDcidFitwDUAOVjfHHaNRAaqJxIeHF1EDwRqMGHCUnIFvZvOOjqYESsH695Dh9y6nfAdMvSofDmcvZQqT7S9++fwi1lLzInH7ceDwZWggAAIDS1tSUecNgba00dWrmZzsAOXEcR+9617t07733SpKefvppeZ4n180M85o9e7be+9736qGHHuqdYPvJT35Sd911l4444ogB7f7lL3/ROeeckxFAPWnSJB155JFj+w0BKHst3S1afMcn9eIeIU1udrQr6isxzI/41Pnh1PXh9AcXZwuc7M8ayfWlyV3SizMdLZ76rFZsO151lvOEQVgU30/aFdHS6c/Il1WX8dTsJMMiHSUfHzhU+Ohw0msiVVrNblzyjaqsK0dGV+48Uovie0tD39KCMcD4gxqobIw/+tdAipHRZD+iRiemGhtSldzeAfXN0I8Xtj0tSFKVQpJv1GESmuxHMn5nlfT/2bvz+LjKuv//7+vMJJOkaZrupex7AbEUiuxQqNwsIhC2KmXRFhGVet/61Z+KC+K+4oLceosUbqBKtdDKjYCWyirIZimLtOwUSneapGmSycyc6/fHmTOZmcxkZpLJzCTzevoIyZk5c11Xen2cJOec632oAQAAAGA4q6lJ3Y5EOH8MAAAAAAAAFAsB1AAAAACGCUKoc9i4cWPK9umnn17U9k8//fRECLUkbdiwoajtl9Ipp5yis846S3/+858Tj4XDYZ144om67bbb9OEPf7jPayKRiH7wgx/oG9/4Rp/nfvnLX6om/QKXEerqq6/WH//4R61duzbx2IMPPqjZs2dr4cKFmjZtWsbXPfbYY/r4xz+ul19+OeXxxsZGfec73xnSMaNMurvV1GO0eIkKCqJODpL2Ffq6RAB1j5FCbt8L0DDkmlSju9pO074T/qBuE8v9giIL2YDuajtNTcFRJe8bHmqgujH/8GvgwAmLtd1ECn69Sfo8kNNGjbaGGiizwdSAt9jcxL/2o6gLQw2UWVtb6nZ6wLTj9D1Jnb6d6aRx8j7GeO0kt21t6j4dHVKQw0kAAAAVL/33w0CABcTAIJx44omJEOqOjg499thjOu644/rs96lPfUoPPPCAJMkYo40bN+qoo47SqaeequOOO07jxo3Tli1b9Le//U0PPvigrLWJwGpjjC6//PI+AV8AkCzmxjT3zrlatWGVFAopHArKNT39vsZIMkmHhdpCXgB1OClL31hvx/6OGbpGCtc4qgsGtSrYqrk7P6FlracoIH7HKIcWHShtr9dlTQ/Gw0d7f370nZF8jwablK/SfyK1OREZ1+h37bPUYvaUGgseNoqksPmX8qsB5n84oQaqG/MPvwYWND3aJ4h6nK3zNxKs6f/ssE2b9ToFVWeDfQrBkdF17cdSAwAAAMBwlX7d36hRfa8PBAAAAAAAAFC4SjvGRgA1AAAAgH6QGpTDpk2bJCmx8HfXXXctavvp7W3evLmo7ZfaDTfcoGeeeUbvvPNO4rH29nadeeaZmjlzps466yztueee6urq0iuvvKJFixZp3bp1fdq58sor9aEPfahk43766ad12WWXZX2+o6Ojz2N33XWXDjnkkKyvmTlzpn73u9/l1X9jY6P+9Kc/6fjjj1c4HE48/vjjj+vggw/WySefrNmzZ2vq1KmKxWJau3at7rvvPj3yyCMZ27v55pu1//7759U3hpmIFzaYCKI+12rVlN6g6NZQ30VAmQKofdmCqK2k5mwB1L7m5sF8JxiAdoV1Zs1S9Rg3985DoMe4OnP8cj0YuVBN6ie9HEOGGqhuzD/aFdYnav6mUaZWXYopqsJqwcsQGUj0sBSUo1GmVp8Y/5gWR86iBspkMDVgJVnZRA0UWgXUQAWIRvsPDXScvs+nB1WnM6bvye30EGp/P18sJo0enXu8AAAAKK+6Ou93SF/6TQUr7SJHoMKdc845+spXvpIIiL7jjjsyhlCfd955OvHEE/XAAw/IGCNjjKLRqP7yl7/oL3/5S8q+/vln30477aQvfOELQ/uNABj2Ak5A8w6Zp5XrV6oz0ukFT1rJsV5IdLr0AGpfcgB1Yt9+gqid+INtta7kRtWgGs3rmkYAdSUo9a91/BpZWZh/UAPVjfmvai3hPaV29QmiHiqJAOrwnkPeFwAAAIASmTKl3CMAMEIkr4etq6sr40gAAAAAACiDSlubQQA1AAAAgBwIoc4hFoulbAfT7/o9SIGAt7LPX2Cc3t9wM3HiRP3tb3/TSSedpA0bNqQ89/TTT+vpp5/O2cYFF1ygn//850M0wsw6Ojq0atWqgl6zbds2bdu2LevzzQUG9H7gAx/QsmXLdM4556irqyvxeDQa1b333qt77703Zxu1tbW6/vrrde655xbUN4aRpPcgL4jaas550qopUm1UMiE/YNLTXwC1Lz2I2n99bX8B1IGA1NBQhG8I+YpZVyfZ/9UqeTdHcGRKsoDI58SralVgk04K3K4nzCcVMCwqLyVqoLox/4hZV3PtnVqlzTJyNEEN2qLOAYUQFyoY78/IaFVgs+YG/qJl5kJqoMSKUQOu1CeG3ChzqEwyaqCC9Hcy2nH6Pp/PyetMr8nVDheIAwAAVL6ampTjyQqkJU3W1pZ2PMAwt+++++qQQw7Rs88+K0m69dZb9cMf/lChUN+bNN122206/vjj9dprryWCqG2Gi3n988PWWjU0NOiPf/yjxo8fP6TfB4CRoeWAFv3znX/qJ4/9JGWxQHoQdbYA6v5kCqJ2kjes1Ob06BM7DiSAsMyWht7QgqZHFbIBjVGt2kzPkPc5xtYqZANa0PSo1C5qoIyYf1AD1Y35h69UQdQEUAMAAAAj0IQJ0j77lHsUAEaIjRs3Jr5ubGws40gAAAAAACgxAqgBAAAADEOEUOcwadIkSb2LgNetW1fU9v32rLUyxmjixIlFbb8cDjjgAD355JO68MIL9eijj+b9upqaGl111VX6xje+IcepzjCzU089VY8//rguuugivfDCCwW9dt9999VNN92kY445ZohGh4pQX5+y2RT2AqLPvUB6cI+kRcVWas4jgNrn79cakmx8UfHWBmnWm/EA6rB6k62l1PASlIxR6gHIUoXQOmn9po8DpUMNVDfmv7oFjKN5OlQr7T1yZWVkcoYQ5xMunGu/5PBhyauHeeZQwofLoFg1kGmuqYFhIj00MF2xTg7naqdK/14HAAAYUYyRRo8u9yiAYef+++/X9u3bE9uBLH+n7bTTTnrooYd06aWXasWKFZJ6zzUn84Op9957b/3pT3/SIYccUvxBAxiRlr60VIueX6QxPUZtaadt/SDqgQRQ+5KDqJ0MbYzpMVo06jUdWb+vWjRtYJ1gUJZqtRY4j8n1Zlp1ciQZtSmc5RX5nDHo//zPGIVUZ4KS8W54uKD5McltogbKoPD5Hzzmv7JQA9WN+Ue6Fk2U1KQFzn39XEOS6zoPI2U5/+vI6Dr3VLU0Md8AAADAsNPdnbpdUyPtvLMXQL3zzuUZE4ARZ/Xq1dq2bVvinPiUKVPKPCIAAAAAAEqEAGoAAAAAwxQpojn4IdS++++/X1/4wheK1v7f//73fvsbrnbddVc9/PDD+tOf/qRf/OIXevzxxxMLqdM1Njbq/PPP1//3//1/mjaNC9WnT5+uZ599Vrfeeqt+/etf66mnnsr6bxcIBPSBD3xAn/zkJ3XRRRdlXeyOEWTcuNRt4y0W3TRKiiavAxnosaqk10UdadOoLPulhWFj6AWMoxX6mGbZm7RKGxKPD3UIbXr47HRN0QrzMYIny4AaqG7MPySpxRwoSVqQFEI8TvXarB1ZgoWNbB71kW0/I2mc6lPCh68zpyfGgdLLVAPZgqgL+XXQxANI0qsgUwA1NVBGDQ2p2+lh0G7mMPKCpf/9mX4ivK6uOP0AAACgPBxHGjs2901OAPQxbtw4jUs/T5PF1KlTtXz5ct1zzz36wx/+oOXLl2vTpk2J5xsaGnTsscfqggsu0CWXXKIgN/8EkKeYG9PCZxfK7e5SXY8rxaS2UOo+xuY+PhiKSeF+fh3IFmA9JizVxSS3zmjh5A068/AvKGD4vaKUYjamhU89KDdt4uskya1VW6RDNn78uFc8WTxJwDiK2fRjiqn7+O2MqWlUnVOb8pwraeEYaqDUBjb/fTH/wxc1UN2Yf2TTorOk9R/Qghd/LLfP3EqKScr0uM8JSmnzLEmOcXTdQV9Uy04nFm+wAAAAAEqnvV1at653u7ZW2nvv8o0HwIjT1dWlL37xi5K8mzAbY3TQQQeVeVQAAAAAAJQAAdQAAAAAhjFWs+Ywc+bMxF14rbV64IEH9Nprr2nvIlx08dprr2nFihUyxiROsh5++OGDbrdSGGN0wQUX6IILLtCmTZv05JNP6vXXX1d7e7uCwaAmTJigAw44QIcffrhqa/tewF6IN998c1CvnzVrVtag53IIBAL62Mc+po997GPauHGjnn766cS/XW1trSZMmKCpU6fqqKOOUlNTU7mHi1KaOtW78KunR5LUXms161Lp+fT8etu72LgumrvZ7mB8/7S1p89PkmZdKj34v1JTT/zBQEAaP14aM2aQ3wwK1aQxetD+l2Zt/6VWxd6VpCENn/Xb90Nopwem6sHRn1WTIXiwXKiB6sb8Q5JadJTU06AFnXcoal21qTtriHQ+AdT97Wdk1KZuNatBQePouoZz1VI7fVDjx+Al10BvEPUobbE7EkHURn64uKQ86yA9iDooRxPMqNQAamqgvHbdVVq7tnc7PTQwFvM+J5+8dpzc4dTJ+1vbd/9AIHWfKVOkxsb8xw0AAIDyqK+XwuHe7YYGL3w6FOp7QxMAQ+b000/X6aefLknq6enR1q1bNWrUKM7vARiwgBPQonMWac5V+2mVsYlzwf65YSvJeof6ssZPjgl755AT54gzyNSO/zrJavrWoBb9x7cJniyDgAlo0Yxva86/rtKq9pdTnqtzamWDo9Qa3S5JWUNIQ06NakxQERtV2I1k3MfG/zcm2Dd8VJKmN+2nRTOogVJj/kENVDfmH/3xg6KzBlEXiABqAAAAAACGl29961t577thw4aC9k8Wi8XU0dGh119/XQ899JDa2toS66Ml6bjjjhtQuwAAAAAADBsEUAMAAAAY5gihzmHixIk69NBD9cwzz8gYo0gkovnz5+v+++9XMDjwf75YLKbLL79ckUgkEXJ9yCGHaOLEicUaekWZNGmSzjjjjHIPY1iaPHmyPvShD5V7GKgUBx0kLV8u9fQkAqifnRxfAJzEXxCcTxC1v7g4sZA4rZ1np0izPiY9eLNVU4/xQkr22ksaN66I3xjy1STpwbFX67h3vq3nIm+XpE9XVu+v2VUP7vJ1NTn1JekT2VED1Y35hyS16ER1ttdq/ubfKRIPHXZk+oSS53vKKNN+fvh4RK5a1aUbJ1ymlqZjBjFqFFOLTpQ6RmvBllviQdTSBI3Wxlibsi8pz8YkfeV/bTUhMDo1gHrCJWppnFmcbwADs99+0uOP927X1EhdXan7RKPe7+s+100NGEwPmTYm9fmeHvURDKaeFN9tN4mwNAAAgMpXXy91d6du1/N3PVBOtbW12mmnnco9DAAjQNPWDi2+uUNzTpNWTek9F9wa6j3fmy2IujdIWn0CrH3J5439dpqTXjd9g7T47k41Hb9FmlDc7w35aZK0eP+vas6/r9GqjtcSj7vWVVfM+x3Qu+WgTTnuK0khp1Y1JiDJep8dKez2SPEbFfqv9c8ddMW6FTJBOab3OOL0xr21eP+vqiksKdwxhN8pMhnY/HuPMv8jAzVQ3Zh/9Kdl9OFaNmaGlm97OvUJ69VEVtb2WZQ6u3mGWkYfLnUwzwAAAMCw1dEhdXb2bkej3jnkUKjygnIADNo3v/nNxDrlbPyg6I0bN+qaa64ZdJ9+e36/tbW1mjNnzqDbBQAAAACgYlXacTUCqAEAAAAMACHUebjgggv0zDPPJLYfeeQRnXvuubr99ttVP4AF+93d3brwwgv1wAMPJO7ya4zRRz/60WIOG8BI9P73S6GQ2usdzboomjGA2pdPEHV/AdTJ7Tw7OR5EfYtRUzAo7bprEb4ZDMakQJOCkYCiig15X0EFNClA0GCloQaqG/Nf3drdLt3W8ZganJDaXO/i8PQA6sFyZRNB1A1OSLd1PKYPNx5KEHkF8QOh/SDqbjciK8nE/ztw3sLybjeieqeWAOpKsvfeqdvGeEHUkUjvY+Gw91hysHS+XLdvCHV6ALUk7bJL4W0DAAAAAACgeJ58Uk2tXVq8RJpznhdEXRuVArVSNOlQTnoQdXIAtS89iDrTeeOA9dqX4gHUS6SmnrD06KPSYYcV+ZtDvpokLR5zmeZ0/UqretbKtVat7g71JJ078uNE/RDSkGpUY52UhSc1ciTVqEfR+N425YxDj42qNbJdzc4oOcZoeu1uWjzmMjWtf0/Se0P8XSKbYs9/WBF5ZxiY/+Gi8BqwvAeMILwHIJulHU9rxZYn1Sdw2rr9Lzw1rmRTrz9ZseVJLX1pKeeJAQAAgOFsxw5p06be7Zoa75rAmhppyhSpsbF8YwMwZGwe4VP57JOP5NBrY4yuvvpqjRs3rihtAwAAAABQcSotgBoAAAAABogQ6jwsWLBAv/zlL/Xuu+8mQqPvvvtuHXjggfrpT3+qs88+W04eAU/WWi1btkxf+MIX9Oabb6Y8N3XqVF155ZVD9B0AGDE+8AG111rNutTq2QnZg6N9/QVR5xNAndyOF0Rt9eAdUlN6AB5Kpt3t0pwNv9KLkXUa7zRqq9sxpCG0QQU03mnUi5F1mrPhV1o85UoCSMuMGqhuzD/8GljVs1Z1pkZyGrTN3TEkfbmyGuuMUp2p0aqetdRABfIX/M7f9Du1Wi+QPH1BeSGSF5a32k4Z1+jGSZexsLhSjB0r7buv9MorvY+FQqkh1NZKnZ3SqFGFndC21guwTldTk7q9227S6NGFjRsAAAAAAADFdd99kuuqKewFQp97gfTI7pJrFI8Z7eWfL27OEEDt8x9vDfU9b2zktdtaLx33VjyAOiyv0X/8Q5owodjfHQrQJGmxPVPnxn6vR/SWehTrc8tK/5hxSEHVyHghlGlqZBRSrdoVzvB6qx5F1ep26DjtrsU9Z6rp7U192kDpFTL/o1TrnTXIMv+OgupSlPkfZor5HlCjGnWohxoYRgqZ/0bVxh/IPP9SUGHeA4a9pe6/tcC9O8sNrF31CaZOZo2Udu2JK2nBxpukzZvV4hxYxJECAAAAKJmuLum9pJsIBYPedYX19VJPj7TXXuUbG4AhY7JcP5wcPJ1tn0L5bQaDQX3ta1/Tl7/85aK0CwAAAABAxanEAOoi3WQKAAAAQPUhhDoPdXV1+slPfqKPfvSjMsYkgqjfeustnX/++ZoyZYrOPvtszZw5UwcccICam5s1atQo7dixQ62trXrppZf09NNPa9myZdqwYUPi5KrfjjFGP/3pTxUKhcr8nQKodO3jGzXro2E9G4rlDI72ZQqiLiSAOrmdZydazZob0YNNITUN5BvAoCQHj0qSY4xGqVZt6hqyPkepVk78gCgBpOVHDVQ35h/pNSClXgw6FKy18rOMqYHK1OmG1WG7Ux6zif/mf1IzOYDa12G71elmCCZG+Rx3XGoIdSAg1dZ6C0J8sZi0Y4fU0JBfm67rBVDH0m5qEAx67Sc75JABDRsAAAAAhrt58+Ylvt5tt930zW9+s2htf/Ob39Tatd7xHmOMbrzxxqK1DWCEeuih7M9lOiyY72HCTPv1dwj6jTe8Y0sor3igaCzDMd6idRFvX5I354Z5rxjMP6iB6sb8I26p/bcW2HuyBFAPnCurBe7dknXVYgiiBgAAAIYd100NorHWu9awp0fq7PTCqAGMKPmuLRjMGoRAIKDRo0dr7NixOvjgg3X00Ufrkksu0ZQpUwbcJgAAAAAAFY0AagAAAAAjDCHUeZozZ45efvllXX311Ykgask74bp+/Xr95je/ydlGcvh0sm9+85u64IILij9oACNKzI1p9v/O1rP1rQUfD0oOou4OSuFAYQHUye0829Sp2eu+r3/u8k0FjFNYAxiwmHU1d+N/pwSPdrk9Qxo+K0lt6pJxjeqdWkleAOncjf+tZVM+x/yXGDVQ3Zh/ZKuBVts5pP222k7JFTVQoRa1/0PzN/9OMbkyMinLy23Sf3PJFEBtZBSTq/mbfydJmtt0TFHGjEE6+GBp3Djpvfd6H6urk6LR1MCfWEzq6PACqoPBzCe5rfVeF4n0fc4YKf1GWWPGSPvsU5zvAwAAAACGmZtvvjlxjnf69OlFDaH+85//rOeeey5x82JCqAHktHGjJKk9JM05T3pxkjS2S3qvXupJu6eYkWTSbliczr+BsYkHWCcfK7RGqol57b84yetv8RKpKSzv+FP6jc1QUu0Ka46W6Bm9mzV00sg73htWVFJQNep7bD8iVz2Kyci7sCBTS66sntG7mmP/qMU6T00KZdgLpVTI/O9Qj0L9zH9YUeZ/GOI9oLoV9h4QUa0CvAeMUEv1khbo3iIEUGd+vSurBfYvkly16IBB9gEAAACgpGIx7xpBX/J1hJGItH596ccEYMi4OW4c6jiOjDGy1uqQQw7Rv/71rxKNDAAAAACAYYwAagAAAAAjECHUBfj6178uSfrWt76VOCmbHEadS3L4tLVWgUBAV199tb72ta8NwWgBjERRNzrg5SJ+ELU0sADq5HailsXEpRYwjuaNPkErw2/JlS1J8KgvOYDUkdG80ScQPFoG1EB1Y/5BDSCdH0Adkfd7WdKvegXJvJTca0+SIooRRF1JgkHpvPOk3/629zFjpIYGaceO1JPH1krhsPcRCEhO/P+3rus9l+1ic2Ok+vq+J8dnz/baAQAAAIAqls854UpqF8AI1dmZCKBeNcV7yEpyM53/TXp7yRRE7QdQp+yf1o5reh9eNSUpiLqnJxGIjdJrNz2a07xcT9RsUpvpyXqs1+M9F1ZUsqkhpBG5CptYfNqzX0RgZdWmsJ6wb2tOZJEWt56sJltblO8FhSts/j39zX8uzH/lKXYN8B4wvBQ+/5b3gBFqaegNLWh6NHcAtbHq/2yy2+/FhK6kBfqL1N6mlvCeAxkqAAAAgHLo7pa2b+/drq2Vdtqpd7ujw7uWsBKDdAAMGcP/5wEAAAAAyE8l/g3NNecAAAAAioAQ6gJ9/etf10knnaT58+fr5ZdfluSdeM335Ku/gHjatGm68cYbddRRRw3ZWAGMPFMapyi4OaioGx1YyqBJ+zwAQetoSrhGenmNJAIoS6lFoyUzW/Odu9Wq7pL23Wo7ZVxXN7pnqGXdaElrSto/PNRAdWP+QQ3At8g8r/nO3YqoN0Q4n3CBQlhZmfgvjRHFNH/TDdKG9ZprDy5qPxiA2lpp332ll15Kfbyuzls0kukkcizmfWR6Lv14Rm2tt18sKXRgzz29AOy33hr8+AEAAFAa27ZJXV292zt2eIuI6+u5uQhQgYwxBFEDyFt7IKo5Lb0B1K6krQ1SNMOpW/9Gxf4RoOQg6vQA6mw3Mo46XvvjO72zw71B1K6aivZdoRCZwkez/RRJfzxsYpKVauT0CR/N3Y5Vm+nREzWbNKd5OSGkZVL4/Pc+y/yPDNRAdRvI/Ps/3pn/kSXvAOoicWW1oOlRqV0EUQMAAAAjRSz3jYkAjCyckwYAAAAAIE8EUAMAAAAYwQihHoBjjjlGq1ev1t13363rr79eDz30kLq7c4fA1dXV6cQTT9RnPvMZnX766SUYKYCRJOAEdPlhl+u5Tc9p045NisaiBb3eSDJWCge8zzKF51gHZTTJrdPl7fsoEH6vwFejGDpD29TRHC5L3x0Kq7N9mxTeUpb+4aEGqhvzD2oAi0KvaH7zg30CqIt96rB3UbofRO1qvnO31NqhueF9i9wbCnbwwdLatdL27amPh0JSJNK7OCSfk8r+PoGAFzQtSW5vfamhQdpjD2nr1kEPGwAAACUUDnu/G/q6u6X2du93yObmsg0LAAAMTsyNaW6Lm1cAtS9TEHV30DtvnNjH3y+LTEHUc8+VlslVgBsXl1RMruaOWZFX+KjPfz45hDQqV7GkV1rlvn4gPYR07pgVWtZ6CjVQQkM5/7kw/5WB94DqNpj59/EeMDKUOoDaRxA1AAAAMMKEQrn3ATBiPPDAA4mvGxsbyzgSAAAAAAAqHAHUAAAAAEY4QqgH4YwzztAZZ5yhSCSif/3rX/rXv/6lLVu2aNu2bdq+fbtGjx6tsWPHauLEiTr00EN16KGHKhjknxzAwLUc0CJJuvLeK7WpY5Oibn5B1H4AdcpjBQZRewHU9fpV+3EsIikTP3QyJm9OS3mY0EiKSZrf/KDUKsIny4QaqG7MP6gBlCqAurdt778pQdTUQGWorZVOPlm67z6ps7P3cWO851xXika9MOpcJ5cdxwugNsbbN3n/UEiaNk3q6vI+AAAAMHz4NyZJZ63U2poaUA2grKLR3nM9NTU1ZRwJgOEg4AQ07/mgVk6OKGpyB1D70oOoCwmg9iUHUQetNO9ZR4HjCZ4stYAcHRgdq3tCaws+Phy/RECSCg4fTd3XCyE9MDqW8NESY/5BDVS3gc5/ehA58z+89RdAbWW1zelRgw2qzvb+whdInPHNzEn7ZbDbxNRpohrr1vZ5JUHUAAAAwAjCzYuBqnLCCSeUewgAAAAAAFQ+AqgBAAAAVAESkYugpqZGRxxxhI444ohyDwVAFUgEUd9+sTbZaM5FxZkCqBPP5RlEHXSlST0B/aqbAOpy6VFUn296LBE6aeLxo6U4XGgS/Xnhk59vekznb95TtfwaUVLUQHVj/kENIL0GpKENoO7tw/svNVCBGhulU0+Vli+Xtm9Pfc5xesOo/Q//RLO13olwY7z9sqmvlw46SKqrG7rvAQAAAOVhrbRjR7lHASDuvffeS3zd2NhYxpEAGC5a1jWp829b9fGW/AKofelB1FL+AdS+qCO91yDdtFRqeTUoTW/L/8Uoiphc/btxk5rcoFqdwm8s4ofQ1lhHEZMpvjK/Nsa4Qf1bmxRr20YIaQkx/6AGqhvzj5hcLdz5ebnW7fOcH0Adkas2E5NsbVIQtZV/5tfI6KBwk14Mtfeebba9z3ebmNpMjyRpmwlnDaJeWPO8ztzUTA0AAAAAlSwSkTo6erdra6X2du/awJ128j4DAAAAAAAA8BBADQAAAKBKkBgFAMNQyzuN0vJaXXlslzbVuVkXF/cXQJ3YJ0cQddCVJnVKv7rfUcsuQWnXQQwcA1aroK7dfpTmj3lIEbklCZ30JYdP1sjRtduPInSyDKiB6sb8gxoANYCMGhulD31Ieuop6bXX+j7vB037YdPW5nfSedIkaa+9pCDzDAAAMKz1dxFkpPCwKgDFt3nzZq1fv14m/v/XcePGlXlEAIaD9gP31k8P2KroANY7JAdRFxpA7Ysa6adHSx9+b7SaamsLbwCDEpD0661Ha8Yu/5eYx0LVWkf1NqguRRU2fUMsczGSgnL0661HK1DLTexKifkHNVDdmH8EJC3acoLmTHpYq2p7b2hkJS+AOmlO25yI5CopiNqLkr5k+16a2TNBT/ds0S2jX/fqKF5Q3SbmvS4uYlxtc3o01g2lxFBP7xmnRVuOV4DfBQEAAIDKZq1UU9O7HQx6QdSBgNTTU75xAQAAAAAAAJWGAGoAAAAAVYQ0IQAYbiIR6WtfU8vb3kKeK49tyxhEnU8AdWLfLEHUvQHUtWp5JSitf0qaOtW76AwlN7d7P0nSx8c8qEjJYic9VlJQRje2nZAYB0qPGqhuzD+oAVADyKi2VjrmGGm33bww6o6OgbdVV+eFTxN6BgAAMDL0d9EhNxwBKsLPfvazxNfGGB1wwAFlHA2A4SDmxjT7xLVaJSWCAAs9Umj7uUFxLib+sWqKNPv8Tv0zHFJAWe6YjCERk6tPNT+ooBzVylGP3ILm00jqMa5cE1VUbsEhpkZSrRwF5ehTk5/SstZTqIESYv5BDVQ35h+S1KR6Ld5+iuY0L9eq4FZZWW1zwvHzx6mLYtuciGSNjB9A3bmfZtqJUo00006Vump0S8PLkjXqdly1GT+AurediLHaFgjHg6iNpkfHa/H2k9VURwA1AAAAUPGMSb05cW2td42gJLW3e9sAkKe//vWvuuOOO/Tcc8+pra1NEydO1PTp03XRRRfpiCOOKPfwAAAAAAAYOAKoAQAAAFQZVpgDwHDz179Kb78tSWp5Mx5EfXSrNjXYRBB1IQHUvvQg6j4B1JIXaPfOO9Luuw/628DANNgaNbpBbXN6St53oxtUg60peb9IRQ1UN+Yf1ACoAWS1667eDWPeeUdas0basKHvPsZkPiE+frz3O/7kyZJDWAAAAMCIUFOTuqC4vj71+ebmkg4HqHQPP/xw3vt2dHQUtH+yWCymjo4Ovf7667rnnnt0//33yxgja62MMZo5c+aA2gVQXWzjaKnDO/ZjrBcqXSrJ56BtTa0ULl3f8ATkaF7XNK2s2aKxbkjvOWH1yM3rtcmlEk16TSEhpDVyNNYNJcZB+GhpMf+gBqob8w9fk63V4taTdW7zX/VI7fp+b2DcZno0ygY1r3OaZkYmpjw3MzJR6pRublit7SaatY1IPOj6uJ6dtLj1ZDVZguoAAACAEaG9vdwjAFBC4XBY//u//5vy2CWXXKI6P5w+i/b2dl1wwQVavny5JMnGQ7Befvll/eMf/9B///d/66KLLtL111+vxsbGoRk8AAAAAABDhQBqAAAAAFWIEGoAGG7SLvhoeSUgtUpXniZtaPQWGRcaQO3zg6iNlSbtkH51r9TyhqOUNUNr1hBCXSZLQ29oQdOjqlNQza7UWsLwyWa3VnUKakHTo1K71BLes2R9oxc1UN2Yf1ADGIoayHdhOTUwTAQC3u/qu+8u7dghrV8vvfuut1gkHPZOPhsjhUJSU5M0Zow0dmzfQEIAAACMbM3N3u+DABJmzZolk+MiYn8x7WuvvaYTTzyxKP364dO+j3zkI0VpF8DIFXAC+vte39Ssv83VqimSO4D1D/4Nja3JP3TS5xrJsdL0DdLf35mpwG6ET5ZDS3hPqV26sumRsvTvyOi69mM5TlwmzD+ogerG/GMgbK7f+uLXDAIAAAAYYXIF6EQilRmyA2BI3HfffbriiisS56dnzJihyy+/vN/XxGIxnXLKKXryyScT58slJW607Lvtttu0bt063XvvvaqpqRmabwAAAAAAgGKrxGNjBFADAAAAKAFCqAFgOHn3Xekf/0h9rLNTLWuM/rmz1U+OHngAtc9//UXPSS2rjRSMScGkHxebNnnhdqNHD64jFCQmVwtrXpXrGElG9aqVZNSq8JD33ayQ6h3vIiBX0sKmV3VmZLoCYlF5KVED1Y35BzWAgdRAvgHTufajBoap5mZp552l1lapu7vcowEAAECphdP+VqitlRobvRuQjB7N8V0gC5vHhbv57JMvf4GvMUYXXnih9t1336K1DWDkanrxVd21rE4HzuvW9lBhr/UDqKXeGxQX+q42qke663apaf92abcCX4yimd2zsya79drgdMmRd+w2F3+uTYbH8uFIispqsluv2T07F/BKFBvzD2qgujH/aDc9mtO8XC8Gt6nZDanVCSuSZUbHuDUyxuiWhpelTmlmZGLiuadrNuuWhpdVYwMa4xq1OZGMbdTIqNkN6cXgNs1pXq7FrSerydYOyfcGAAAAoIhyndOqqfH2qcSwHQBFd+edd0rqvVHyFVdckfM1P/7xj/XEE0/IGJNyc+X0my1ba/XAAw/oq1/9qn70ox8Vf/AAAAAAABRbJR4TI4AaAAAAQIkQQg0Aw8mTT6ZuWyuFw1q6v9Wi90uhmBQODL6bUExa9H7pyHVWLWtiXuh08kG0mhrpoIMG3xHyFpC0yN1Hczb8Sqt61kqS6hWUbECtbueQ9dvsNKje9C4aml67mxZNuVIBp37I+kRm1EB1Y/5BDaDQGjCJJeQ25TE/cNomLTXv3bPvCUpqYASwVmpr8z7cfGIIAAAAMGJs39779Zgx3kdjozRuXPnGBFQ4k+WC4uTg6Wz7DITf7uzZs3X99dcXrV0AI1v7S8/qE//RrYaI1FUjRQu4V5yVJOMFUNsBBFAHXakhIn3iw9LiZ7aoqcDXozj84MkNTpfGuDVqcyJyZPMKIZW8ec/3JoY+r8yMxrg12uB0EUBZRsw/qIHqxvzDr4FVwa2SJCceEJ0piHqMW6M6BRVWTFY2JYjaD6C28aqoU1By1SeI2g+gduJnlVcFt1IDAAAAwEjR2FjuEQAooUcffVTGmESA9Jlnntnv/h0dHfrJT37SJ2x6/Pjx2nfffbV+/Xq99dZbiYBqa61++ctf6lOf+pT23HPPof52AAAAAAAYOAKoAQAAAFS5qg2h3muvvco9hD6MMXrttdfKPQwAley551K3e3q0dD9XC06z6qwpTgC15LXTWSMtOE2SXLW8HZOCST8y3n5bOuyw4nSGvDU59Vo85cqU8EmjwheH5ctv2ze9djctnnKlmgidLBtqoLox/6AGkKkG6k2t5CgliDo5bDr9Me9r7782JaC672OZAqipgWHIGKm52fuIRgmiBgAAqBbbt6ce0508Wdp998q8YBKoEDbPi3fz3S+XMWPG6KijjtK8efN07rnnFjXcGsDIFXNjmjvxEa3yDgtqXKe0aZRSD+bmYOUFUBfMev05klZNkeYetV7L5CqgAlKwMWgxuZo7ZkUieDI5MLLQENJ8JYeP1sUvNVsV3Kq5Y1ZoWesp1EAJMf+gBqob84/0GvBlCqJOnjOfH0T9TGSzXqzZ1ucmxelB1OkB1D5qAAAAABgBRo2SmrjNIFAttmzZojfeeCNxTnr69OmaNGlSv69ZsmSJ3nvvvZTg6u9+97v60pe+JMfxjgf8+c9/1sUXX6wdO3ZIkiKRiG644QZ973vfG9pvCAAAAACAgarE67UJoAYAAABQYlUbQv3mm28mToBWChYWA8jpxRdTNpfu0aUFs7wA6raQ5Jp4YOQg3tqs8RYbtYW87QWnSbq/Ry1rk35kvPPOwDvAoCSHTz4RflVtblciZrKYP9G84FGjNrdLcqQjQvsQOlkhqIHqxvyDGkCuIOrksGlf5sd6/5v+mJUlgHqkClbtYSAAAIDqEwym/v4XDFbmBZNAhXjggQeyPmet1UknnZQ4t7zPPvvohhtuGFA/wWBQo0eP1tixY7XrrrsOdLgAqljACWjea6O1ctoWxYzUVj90NypMZ+T1N7ZLClhp3rNSYNJbJegZyQKS5o0bq5V7bJAb//WuTkZyA2oLRoteD/5vkGOiAdVZIykmSXKsNO+tsQq8Rw2UEvMPaqC6Mf/IVAM+R1JzLKjWYFQNMSdlzmRiiQm1kl4IbFFKarm1iUWtfk11Blw1R4NyMsSbUwMAAADAMBGJpG7X1Eitrd4NjHOEzwIYWV555ZXE18YYTZ8+Pedrbr/9dklKBFB/5CMf0Ve+8pWUfc466yz98pe/1Lx58xLn02+//XZCqAEAAAAAyFcF5Z4BAAAAqB5Vnz5UKcHPlRSGDaCCbd2a+HLpHt1acHS3OoO9AdRSfDGRGVgQtR9ALXntJYKoP9gjPRRUy2vxIMKOjoF+ByiCJqdeF40+Rg90vZR4zMQDI4slOaqy043ootHHEDpZQaiB6sb8gxpAtiDqsIkobKOJ/fxQ6Wx/9Zr467psT8pjdaaGAGoAAAAAQFU54YQT8trPGKPGxsa89weAodDy9/XqfFuaf6YUceLHAa13rneoGOv1E3GkbXXSjXdJLc93SydFcr4WxdeycZwU3U8L9nlZbvzcQJ111BNztCPQNyhyMKzkBVm6jvyrCRwZXffqfmrZOk4SNVBqzD+ogerG/CNTDfgcSWMjgcSNrBNyJZRbpSxsrbOOQq5/njm9D2oAAAAAGNY6O6U33vDWBO23X7lHA6BE3nor9UZSBx54YL/79/T06OGHH04ES0vSF7/4xYz7XnrppfrmN7+pt99+O9HX+vXrtdNOOxVh5AAAAAAAFFGFZIwlkDUGAAAAoEyqOoSa4GcAw07EW7ixdI9uLTimTZ0BmxJA7RtIEHVyALUvJYh6VpckeUHU0ahQPks7ntaXtt6usYEGbYvtUESxjMGj+QaSZtrPysrIqEYBjQ006Etbb1eDqVVL48yifR8YOGqguhUy/8qjAjKtNWT+KxvvAZD6BlF3256UAGpJGmVC2mHD/bZTYwKqNQ1qczsTj4VtVN22R3WmlgBqAAAAAADiOLcMoFK0227d9n6pISq1BUrff0NUuu390odflpoef7z0A4AkqUWS9rVacHKPXEndQamrxrtGoJiB5MZKXY6r2kiP6qJeuOV1y2vV8sqrkl4tXkcoCPMPaqC6Mf9Ir4FkGUsgmO2JOFdSLHc71AAAAAAwzBkj/fvf0oQJ0owZ0qhR5R4RgBLZsmWLJO+ctzFG48eP73f/J554Qt3d3TLxcK59991XhxxySMZ9jTE69dRT9dvf/jbx2PPPP08INQAAAACgshBADQAAAAAJVRtCfemll5Z7CABQuJqa3gDqoFVbbd8Aal8hQdSZAqh9vUHUtjeIurtqf3yU3dKOp7Vgyy1y4+GgYwOjtCW2XdG0GTSJ+NncTPy/yQGkVlIg3r6RkSurBVtukSQCSMuMGqhuQzP/XgUw/8MD7wFI5gdRz1r3Xa3qWZvy3BinQY5MzhBqSaozNZKTGkTd5nZpj9qJBFADAAAAACDp6quvTnw9ZcqUMo4EQLWLuTHNPUdaNUWqi9+TrjVU3MDJTGz8gHNz2Ot31RRp7jnSsiU9Cgx158iq5d+SYo4u+5CbuLl0vucG8uXPblvIu/bgd39x1LLGlfpEXqLUmH9QA9WN+YdfAwtOcbNeP5iQqzDyKBzHStf9lRoAAAAAhr3Nm6UtW6T166W6unKPBkCJdHZ2pmw3NTX1u/9jjz2W+NoYo9NOO63f/Q866KCU7bVr12bZEwAAAACAMiCAGgAAAABSVG2K6E033VTuIQBAwZbu0aUFY/0AaptzAUk+QdT9BVD7+gRRv9KjloJGjmJIDh71hW0kZVvqDR4tRKYAUldWYRtRnalNbBNAWl7UQHVj/kENIJMVnS9qY6xNNQooopgkL4C6ztSox0bzbic9iLpGAW2MtWlF54vMNwAAAACg6iWHUANAOQWcgOatlFbu5J3DtRr6AGpf8nllx0rzVooA6gpU7OUpVir4nAPKh/kHNVDdmP/q07LGkaScQdSuUb/P5/qVrjeA2hnAKAEAAABUFGu9j9ZW6e9/lxx+zweqQSQSSdmOxWL97v/UU09Jkqy1Msbo+OOP73f/SZMmSfICqyVp+/btAx0qAAAAAADFRQA1AAAAAPTBlQIAMEzE3JgW7rol7wBqX/rC41DSdSL5BFD7/CDqzqDVwn22K2bdfIeOIohZVwu3P5QSNNpte9TmdkmSnER8aOHBoz4Tf31ye21ul7ptT2IfV1YLtz/E/JcBNVDdmH9QA8jEDya3ksYGRqnGBBIB1ANRZ2o0xmlQjQlobGCUrKQFW27R0o6nizpuAAAAAAAAAAPXslq67h6pOyC11pW279Y6r9/r7vHGgfJaur+rBae4CsWkMeGhCSX3rykYE/auNVhwiqul+3OOoBIw/6AGqhvzD1/LGkfX/dWR089FgNbk+OinfQKoAQAAgBHKWmn9esnl7zygGjQ2NqZst7e397v/o48+mgiUlqRjjz223/1ralKvXe/s7CxwhAAAAAAADAECqAEAAAAgo2C5BwAAyE/ACegju52u5a//PO8Aap9/KKo5LNVFpe6g1BrKP4Da5xqps0b6yOvNCmxaXuCrMRgBSYvMfpozZZNWhbap28TU5vSk7OMt9el/Vk3GPWzK8ybtsbZYp+RGVWcDmh4eq0Ub9lPgOea/1KiB6sb8oxg1kPzrQ+pe1MBwtHTUWi2Y+HQimNxIGqcaSa6kcHyvmBTI8RtfJJJy4rJOUp1qJHn15UpasO4GafNKtezYrbjfBAAAAICh8+67UvKivi1bpD32KNtwAABAcXXWSB2h8vTdEfL6lyTFYv3ui6GzdJrVglOUeu3AUK2ZSWrXNV4IqVxXLasrbJFOFWH+QQ1UN+Yf6Vr+LcmVFpymgq8r7I9jpevulVpWW0n83gcAAACMCIFA79exmORwwxmgGjQ3N0tSIlj6tddey7rvCy+8oE2bNiX23XPPPTVx4sR+229ra5MkWWtljFF9fX0RRg0AAAAAwCAQQA0AAAAAWRFCDQDDRMyN6Tb3WdlBHOsyVjr5Nenu/QbehpV0W+1qfWTR6pyZhiiuJkmLQ9KsS6VVU5RfinhSvRjb+5DNnkSaUZvp0R4bpcX/26Wm8B/zHjOKixqobsw/BlMDRqn7G5O0SQ0MO0unSQtOl9yuHDs6knJdwxuOSLFIv7u4khaMelh6SGpZXcBAAQAAAFSWJUukujrpu9+Vpk4t92iAEeXtt9/WypUrtWXLFm3dulVdXd4f7d/4xjfKPDIAI9Gig6X5Z0oxk+3mk0PHyOt3/pne9tznOWFcDkunpYZMdgeltlD8XJApbk0Yee22xUPP66LxENLTJFnLMeMyYP5BDVQ35h/ZtLwkycbPIxdhLa1jpevu8c8P8zsfAAAAMGKEw97n+nrv3LHrEkQNVIH99ktdSPjoo49m3Xfp0qWJr40xOuaYY3K2v23btpTtpqamAkcIAAAAAEAREUANAAAAAP0ihBoAhhEbCskYR451C1osYpSSQ5p4TCpsiYhjS7+QGalW7CltbJRqXClSwLV+xvbdLiTQvMb1+l2xJ+GT5UYNVDfmHwOpgfQAasW3TQGLkKmBypEIoC7xOVDXeP1K1AAAAAAwrHV3S1/8orR8eblHAgx77777rq699lotXbpUb775ZsZ9+guh/v3vf68NGzYkto877jgdfvjhxR4mgBGmJ9qjz58iRQLxB+KBkyUTP6gcCUifP0U6/0Wp1i1h/1DMSAtn9A0f9RV6DiiX5HNM6SGkC2dIZ64RN68uIeYf1EB1Y/6RS8tqadk0afneg29r9uucFwYAAABGtK4u6X3vK/coAJTIwQcfLMdxZK2VtVaPP/64Vq9erWnTpqXsF4vFdNNNN8kYI2utjDE68cQTc7a/enXqQYRddtmlqOMHAAAAACBvBFADAAAAQE7cqhoAhomAE9AnD/ukxtWOUY3rBULnw8hbFDQmLIVi3iKTUMzbNjb/NcmO9QIox3VKn3yGRUTl4IdOWiON7fLmI5eg2zd81pfv/Ne4Xn82Hj65dFru12BoDKQG/PeAjM9Zr0ZyoQYqw0Dmvzba//zng/mvHAOpAccqe9K0lQK8Bwwr5Qqg9rnUAAAAADAyuK50xRXlHgUwbMViMX3pS1/S3nvvrZ/97Gd64403Eot1kz9yWbdunb74xS8mPq666qoSjB7AcFcbrNW193nHba2KGzSZDxu/uWGNK117HwHU5RCw0qI7pekb+oaPSvnXRL6lk95eW8jrd/oGbxxcN1BazD+ogerG/COXpdOkFXsVp60Ve3FeGAAAABjxXn+93CMAUCKNjY064YQTEsHSruvqkksuUWtra8p+V199dcoNmIPBoM4444yc7a9cuVImKeRr772LcIcsAAAAAAAKRQA1AAAAAOSFEGoAGEZaDmjR9Udco3GdyiuIOjmAui6a+lxdNP8g6uQA6uvvkVpW53gBii5mpIUzekMnjXIHkI4J9w0X7RM2Gq+PbPzgUb9G3Pg4YhV2/LUaDLQG0sNn02vAoQaGhYHOf3rIePr8GyuNZv6HhYHWQHrYeDCWum3Ee8BwkV4DAxWKDO711AAAAAAwQqxdW+4RAMPSli1bdOKJJ+onP/mJwuFwYpFu+kc+rrjiCjU1NUmSrLV64IEH9Pbbbw/l8AGMEHNfkK54svQB1D5rvP7nvlCe/iE1haWLnpM6g6mP+yHhuZi0z/3JFHbeGfT6b+rn/AKGDvMPaqC6Mf/Iptg3NOYGxQAAAEAV2Lat3CMAUEKXXHJJ4mtjjJ555hntv//+uuKKK/TVr35VJ5xwgr7//e/LGJM4D37aaadpwoQJ/bbb3t6u5557LrHd0NBACDUAAAAAoPQIoAYAAACAvBFCDQDDTMtHv6Xr7/ECodPDRTPJFEDt84OocwkSQF12ASstulOavqH3sf4CSP15DwfiC82MZF0par3PicdM9jpIDx6VvP4X3emNB6U10BpInutMNdDjUAPDwUDnvzuP94Ag8z8sDLQG3KS5NjHJtd5n/zGXnwPDRqYayCUWn2P/w4l6NeBEex+LFXhUgBoAAAAARoholoPGALLq6enRmWeeqUcffTQlfNpam/KRr9GjR+uCCy5IvMZaq2XLlg3R6AGMJEvfX6Ml75Oau8vTf3O3tOR9BBKW09Jp0pdOlsZ2954jKDR8NNt2JskhpDWu1++XTqYGyoX5BzVQ3Zh/ZJIrgNrYHB9Z2iWIGgAAABjhXFdyWFoKVIuLL75YBx98cGLbWqvNmzfrhhtu0A9+8IPEefBkX//613O2e/fddysSiUjywq1nzpwph/cWAAAAAEApEUANAAAAAAXhbB4ADDdbtqhltfTjv+Wxb77HpvLY78d/I4C63JrC0uIluQNIMwaPx9Q7zza+nSQ9gDRb8OjiJd44UB7UQHUb0Pz7E8j8jwiDeQ9wopITXzzqxEOIk1EDw0OmGshXMCIF4nUScL3tQlEDAAAAwAhSaRdaAsPAf/7nf+qf//xnSvj0+PHj9e1vf1v/+te/9N5772n69OkFtXnBBRdI8hbjStL9999f9HEDGFlibkwLj2uUa6T6aOmDqJu7vX5dIy2c4d0ID6UVi//bu6b3HIFjc5/yN0o95h+MZX8uEyuvH//cATVQHsw/qIHqxvwjk1wB1FL8GoF+Pkw/RUQQNQAAADDCbdlS7hEAKBHHcXTrrbdqzJgxktTnpsv+Y77Pf/7zOuyww3K2u2TJEklKtHHssccWe+gAAAAAAGRXaesiCKAGAAAAMAwEyz2Actlrr736PGaM0WuvvZbXvkMhW/8AkPClL0mS2kPSbdOlUREp4kg2w3ExEw+abAt5230CaSV1B73njSTZ7O2Minj9ffgVQgfLzQ+fnHOetGqK95iRNKZb2tIg1UdyhA/7/BDaQO9DdVGpx5G6arz2CB6tTEWvgaRbklADla/g+ffnmfeAEWMg7wF+AHXKY1ZSVNTAMJSpBiTv/9bb6qWGDDWQHEDtC7iSIn0XFHcHpc4aQsgBAACAEa/SLrYEKtyaNWv0u9/9LrEI1xijk08+WX/605/U1NQ04HZnzZqlpqYmbd++XdZaPfTQQ0UcNYCRKOAEtGjjsZoT+r+U44OlNn2DtOhOKcB6iZILWO/f3j9GHA5K0QJ/tavvkWpdqScmddV6j5ks1wskixqvv7ooNVAuA53/5PnNNP+yyplCy/xXhkw10F/wrNR3arO9B8j0H2bsUgNlN9D5z/keEN+P+R9+MgVQ5/GWnpfkdvwgaklqWV2ExgEAAAAAQFm8//3v1/Lly3XRRRdpzZo1icf98+D+1//5n/+pH/3oRznbe/vtt/V///d/Ka8/7bTThmbwAAAAAACkq7Q1EQRQAwAAABgmqjaE+s0330w5uSml3qk3175DIVv/AJBwww1qD/UuJqqLSs2SWkOpC0L9AGpfpiBqP4A68RqpTxC1sVJz2Hvdqilev4QPll96+KSV1FbnPddV4y0Wq/MDR3uUEjCaIh5C61hvsVB30Hu94u354ZOETlaegmogUwCxz0pOhBoYbgqZ/3Gt0uYxWRpKeg8Q8z+sFFIDdWEpkuXngGOlUV28BwxHmWpgW713c5Lk3/uMMgdQ+wKudOaL0gP79daA//pt9dQAAAAAAAC+73//+4rFYjLGyBijww47TH/5y18UDA7udHsgENCMGTMS4dPbt2/X2rVrtdtuuxVj2ABGqKbxU7X4Zum4j0nPlTiIurVO2o3jhWXnHyOedam0corySpr0gyT98FEp/rnHCyHNchg5lZG2haQZ26iBchrI/Lvqf/7zuiKO+a8YyTXgnyfqV1KSbLYaSN8vWzNtIWkPaqCs0udf6j3fm84PoPb1N//9BZH7Nzxm/itLpgBqV1JrlhsXF8K/cXFzV++97QmiBgAAAEYg1jECVemwww7TqlWr9Mc//lF33XWXXn/9dW3fvl3jx4/XEUccoY997GOaPn16Xm1dd911isViie3x48frqKOOGqqhAwAAAADQq9KObRFADQAAAGAYcXLvMrL5C4UL2XcoPgAgH+1drYmwQV9dVBqTx8KetpC3QETqG0CdzZhw6oIUP4i6PY/XYmj5i8oO2tQbOulrC0nhgHTdPfICiPtjvf3CgdSaiDheuwdtYvFYpcq7BnIcr3Zi1MBwlO/8j+rO0ZCVPnsv8z8c5VsDNTl+DoQivAcMV/nUwMVPZQ+g9h20kRoAAAAAACCXv/zlLyk3Lf7d73436ABq32GHHZayvXo1aV4Acti2Tf+3n/TCxPJ0/8JE6f/2LU/f6LViT+mdRuUVQOwLxHrDR321rvd43u0Yr98Ve+bfL4qv4Pk3zP9Is2JPaUOjFHRTbzafiY0HCycHEPtqXe9xq/zaCbpev9RAefnzX5M0nybDtSHZAqh9/vzn20YN818x+gug9m9c3D3AP1n96wojjtdectn4QdRLpw1m9AAAAAAqAmsZgapWW1uriy66SH/84x/19NNPa82aNXrsscf0s5/9LO8Aakm6+uqrtW3btsTHG2+8wVppAAAAAMDQ429PAAAAABiU4qyMHaZsAXcRKmRfABgKMTemuS02JYBa8hZ6dNV4awL9dyob30g/dOYvMAkH+rafvqDMxNsNRVPvWLBqijT3HGnZ7VKAt0YAAAAAAAAAADCCrVy5Ulu3bk3cXPjYY4/V+9///qK1v9tuu6Vsr1u3rmhtAxiZFjkv6NKzJDfDOd9ScAPSpWd7X899kcUc5bB0mtWnTpO2NBb2umhA6rRSQ9KNqDuD3uOF2NIofep0SUZqWU0NlBrzj6XTrBaclho+m0vOXQtoyw+hpQbKw59/Gam5ywsJ7nEyh4hbbzeNDmef4lpXUo/UXZP5Huf+NWi1rtefmP+yy/QekBxA7fNvQFwXVd78AGqfH0Td3NV7/SDvAQAAAMAwkmktJAE9AIpo1KhR5R4CAAAAAKDaVOLxLTLJAAAAAAwzVRtCfemllw7JvgAwVAJOQPNWSit36l1EkryAxNjUBUXZgqjzCaCWvPYyLSRxrDRvJQHU5dYekuacJ704qXdRmb+QaExYCsXiC35yLRiNLwwKxbzX+QuJauKLx16c5PWzeInUFB7K7wiFyrsGkhPqM3AD1MBwlO/89/TkaMhIvzyN+R+O8q2BSI6fA+Ea3gOGq3xq4NbDpZgjBdzs7bw4WfrVcdQAAAAAAADZvPLKKynbs2fPLmr7zc3NKdvt7e1FbR/AyNIT7dGVe72kWJkCqH2xgHTladL5L1nVFpKCikGLGavrZ0qbGjMHjubSE/ROHx7+rvTUVG+7UNZ4/V8/UzpzjVVgIAPBgDD/iBmrhYdIUdM3cLY/VlJXraQeKeRKB23yzgGFnfjjflpxDsnXES08hBooNX/+/R+9jqSmLmlLlqwfa6SGHu88YE/8dwej3vn3LyWpdSUTkXbUZu+7KS2EmPkvj/QakPoGUCf/39k/92uSrhvKVANS3wBqv51sQdTUAAAAAAAAAAAAAACgpAigBgAAAICiqNoQ6ptuumlI9gWAodSy2vu84PS+C8oyrefIFkSdsk8/r00Pog5a6bp7eseB8vBDJ1dN8bYd9YZPNkSkuqj3uGsk1cpbbZTp2KWRFOhdmOS/rrMmdeHQqimET1aagmogICmmrDXg1khuPKiYGhgeCpn/95rjL+I9YEQppAa6Q5KJeTeRSOcaaXu91LDD26YGho98a8BKitZIimQOoo450l0HSaPi+1MDAAAAAAD0tXnzZkmStVbGGO2xxx5FbX/UKC8xzsQvjN6xY0dR2wcwsnT1dKm1pjIWLbQ2SF0BL7gSpRMz3jHbweQ9hoPSy+O9zwNl4+OIGW5gXUrMPwLW6Nd3W824QupxCqsFP4j6xJelj7wo3X6QdM9+8VPJebZjjddvzJF+fbcIny2xgDVadKdNnCd0JbXXZ783uZHUVSMFXe9rI+mSVdLMd6Wnp0q3TPde1+NI3TX9t9OeFEI8fYO06E7mvxwy1UB6ALU13mf/GoG2kHcO2a+DTDUQDqSGkCdCrm3mIGpqAAAAAAAAAAAAAABQUgRQAwAAAEDRVG0INQAMVy2rpc6gNP/s1ADqbIen+guizhZA7T+ntCDqG5cRQF1u6aGTPkfS2K4s6wIzhRD74cRp6qJSKNq3HcInK0fRayDtzYMaqGwFz7+JP8l7wIgxkPcANygp5v1M91kjuYG+4dTUQOUbSA1EayRFJScpDMZ1pGhQsmkBMdQAAAAAAACp2tvbU7YbGxuL2n5bW5uk3pDrYrcPYGRprGtUveuoyyl/8nN9j9QYEQspSizgSk3d0paGwbWzadTgx9LUHb8BIjVQMsw/Ykb61Bmp53wKURuVHttVaquTXpzobQ8kkNxxvXEsu90SRF5iTWHvfN25F0iP7N577Zixfa8B888Pbw9J9RHpsn954cOSNHOdJCv97lAvnNzY/tvwrx077q3k84VMfjlkq4H06wBd03s9wI4aL4g6aw3UpL7Ol3zdITUAAAAAAAAAAAAAACgLAqgBAAAAoKiccg8AAFCY9pB023RvYYjUfwC1L9M+/QVQZ9qnIeL12x4qfMwojmyhk3kJqDdNMkv4bC5++CQ1UD7UQHVj/jGYGnADvT/T/QBqqbAlodRA+RVaA8nzGw1KMcd7LBYPoC4UNQAAAAAAqEZjx45N2fZDo4tl06ZNKdvjx48vavsARp6pgTHlHoIkaWpHuUdQnQJW+tYDAw+gLRbH9cZB+GxpMf8IWOkjz0tt9bmv+cmkJyiFA9ILk7zPPQM4X2SN1/9HnqcGKkW2a8CSw4SzlYvxG0jbP9F2HtelofwGXQMZ9k+0TQ0AAAAAI4u1BOQA6CMSieiRRx7RL3/5S33jG9/QZz7zGc2bN0/z588v99AAAAAAANWOAGoAAAAAKDpCqAFgGGmvM4ngwbqoVB/Jf5FH8oKQfAKoE6+T109dlODBcooZae452UMnXUnb6qXu/hYIBpI+sugOeu1kW7O6aoo3jlgFHqsd6aiB6sb8oxg14AZ6P7KhBipXMWogFoyHUfezDzUAAAAAAECqiRMnSpJM/CLmt99+u6jtP/HEEynbEyZMKGr7AEae0XXN5R6CJGl0uNwjqE4x4908utwXfDnyxsGx4tJi/uHXwED/7a2krlppR433eaBL4gY7Dgycf9PaFydJY7ukgNv/NWCupMYeKehKt0yXnp7qPf70VG876EoN0eznBiWv/YDr9ffiJK4dK7eB1MCoSP81MKqHGgAAAACqDkE5ACQ9/fTTOu+889Tc3KxZs2bpc5/7nL773e/qN7/5jW6++WbdfPPN/b7+Zz/7mT772c8mPv7617+WZuAAAAAAgOpAADUAAAAADIn+YuoAABUk5sY094KgVk2MSPICArtqJKOBBVHny8jrp9btDaKee4607HYpwPGxkglYad5KaeVOkpt2rNSV1FovRRypLb7Apy6apaF+jrN2B3tf31ovNXf1XbzqxMfB3JceNVDdmH8Uqwb6W3xKDVS2otVAP8kU1AAAAAAAAH3tvvvuKdvpodGDEQ6H9dBDD8kYIxu/KPnQQw8tWvsARqYpE3ZX8K03FC1jCm3QlabsKF//1W5zg3ecuJBrBYrJyOt/c0MZOgfzj0HXgJUU6eemtblQA+WTftNaV8r9+4DxziGGYt654lumS89MlV6c2HvuOGrU77UEivfjyrvnNdeOlc9AayDqeL+/ZauBiCNqAAAAAKhGBOYAVaujo0Pz58/XkiVLJClxrrpQo0aN0q9+9avEDZ2feuopnXLKKUUbJwAAAACgihFADQAAAABDpoxL0gAAhQg4Ac3b+UNybGpAoLE514AMmIm3L3n9dQcJHiynltXSdfd4c+BLDp30+XNViOSakrz2Wuu99n2O9fpvWT2Q0aMYqIHqxvyDGgA1AAAAAABA6R166KFqbm6W5C2+/fvf/66tW7cWpe2FCxeqtbU1sX3AAQdo4sSJRWkbwMgUcAK6/OjPakLPINJDi2DCDunyZzhnXA4BK331Eam5u/dcfqkZ6/X/1UeogVJj/kENVDf/prWOlWKSNo/q/ybEvq4aqSt+7tAa6YVJva/rCkrhPM4rWuP1FxPXjpXTQGugO9h/DXTX5G6DGgAAAAAAYGR47bXXNHPmTC1ZskTWWllrZYzp85GPSy+9VJMnT5bknUt/8skntWbNmqEcPgAAAACgGhBADQAAAABDihDqEuru7tbGjRsVi8XKPRQAw1TL95Zq7qrUgEBpaIKokwOofW0hae4qggfLKTl8MlPopK+Q8Mn00ElfcvgkoZOVgxqobkMx/2Hmf1jhPQCF1EAkzxwaagAAAAAAgOwcx9EHP/hB2fjFwz09PfrJT34y6HbXr1+va665RsaYxMLeU045ZdDtAhj5Zu81W/Vd5b3upD4qzX6jrEOoai2rpR8sT72JYCm58vrneHF5MP+gBqpby2rp6gfyDx/2hZNCiH35BlD7/BDiqx9g/suJGgAAcoZDmAABAABJREFUAAAAAAPV1tamM844Qy+//HJK+LQfRt3U1KRgMP+DBaFQSB/96EcT59Il6c9//vNQDB0AAAAAUC0IoAYAAACAIUcI9RDbtm2bvvKVr2i//fbTqFGjNHXqVIVCIR188MH60Y9+pO7u7nIPEcAwsvSlpVp0iNGYcN/n0gOjBytTe2PC0qLp0tJpxe0LhWlZLf3wb9lDJ32ZwiQL3c8Pn/zh31g8VEmogepWyPzn86Ohk/kfdopZA1a8BwxH+dZAV03utiIONQAAAAAAQC6XX365JCUW4F577bV6+OGHB9xea2urzjnnHG3atCnxWCAQ0Gc/+9lBjxXAyBZzY5r9v7P1VnPxb1KcLyPprWZp9iVSrALXe1SDd0ZLV32wfOttjPH6f2d0efqvdsw/qIHq5s//QH4RSA4hLjR8OIH5LztqAAAAAAAADNT8+fO1Zs2alPDpadOm6dZbb9XWrVu1bds2HXjggQW1ef7550vyzqVL0v3331/0cQMAAAAAqgQB1AAAAABQEoRQ52Hr1q268MILEx8XX3xxXuHRK1eu1Pve9z796Ec/0quvvpq4I7DrunrxxRf1la98RTNmzNDq1SR5Acgt5sa08NmFckO1qouqTxC1LfLxtPT2xoSluqjkGmnhDBYUl1N7SLptutQQyWPnIsxTQ8Trrz3PQGMMvYJqIJc8aoQaqCyFzL+bx2/7uU59MP+Vp6g/B3gPGJaK+XMgnEdQNTUAAAAAAKh2H/zgB3XiiSfKWitjjCKRiM444wzdeeedBbf14IMPaubMmXryyScTC3uNMfroRz+q3XfffQhGD2CksaueleTdVLjUp2yNem9mzNKK8uhxpMM+Kb1XX94aeK/eG0cPV56VFPMPaqC6FWP+w0HvBrUDCR9m/suPGgAAAABQVJUY6gNgyDz11FO68847E+eoJenjH/+4Vq1apblz52rs2LEDaveoo47S+PHjJUnWWj322GOJ9gEAAAAAyFslHqvi71sAAAAAIxSXAOdh6dKluv3227V48WItXrxYbW1tqqur6/c1W7Zs0Yc+9CGtX78+sXA4/cNaqzVr1ujUU0/V+vXrS/TdABiuAk5Ai476iaZv8LaTg6ityW+Rr5Hk5LkAxao3iNoPoJak6RukRXdKAY6XlUV7SJpznrRqijKGkRebP/erpnj9Ej5ZftRAdWP+QQ2AGgAAAABQFA6nCIFC/fznP9eoUaMkScYYdXR06Pzzz9fs2bN1++23a+3atX1eE4lEtGHDBj3xxBP68Y9/rKOOOkqzZ8/W66+/nlh4a4zRlClT9KMf/aik3w+A4SngBPT3G6OJc8alPmXr9zd9g/T3WzhnXA61rvSxlb3b5aoByRtHrVviAVQ55h/UQHUr1vzbAa7bZP7LjxoAAAAAUDSVGOoDYEj98Ic/THxtjNEpp5yiG2+8UcHgAO5Uleawww5LnP/u6urS66+/Pug2AQAAAABVpBKPVRFADQAAAGAEY4V5Hu666y5JSpwIveyyy3K+5itf+Yo2bNiQCJz2X+9/SEo8/vbbb+vTn/70UAwdwAjT9OxLWnx/s6ZvrZHkBQLWR/IPoDbxHU0BQdT1kdQA6sVLpKYhDjtEZsmhk76hDJ9MDh+XCJ+sBNRAdWP+QQ2AGgAAAABQNDU15R4BMOwcfPDB+v3vf584x+vfdPjBBx/U3Llzteeee+q5555LnAu21qqurk4777yzjj76aH35y1/Wk08+mXIDY2utgsGgFi9erMmTJ5fz2wMwjDSFpUV39J77LTVjvf45Z1w+P1whLXhCcsu09sY1Xv8/XFGe/qsd8w9qoLox/6AGAAAAAABAoWKxmJYvX544Rx0IBHT99dcXrf1DDz00ZXvNmjVFaxsAAAAAMMIRQA0AAAAAJUcIdR7++c9/JhYTh0IhnXzyyf3u/8477+iWW25JCZ92HEdnn322vvzlL+vSSy/V6NGjEwuMrbW666679Oijjw759wJgmHvuOTVFHC3+k9X0DVJ3UOqqyb3AODmAOvFYHkHUxnrtdwcJoC63mJHmnpMaOukbivDJ9NBJ36op3jhiFXgsd6SjBqob8w9qANQAAAAAgKKqry/3CIBh6cMf/rBuueUW1cf/P5TtZsS+5Mf9j+TXjB49WnfccYeOPfbY0n4jAIa1d0ZLx8+TbJmO0Vnj9f/O6PL0D+9GgWsmSKN6ytP/qB6vf25YWB7MP6iB6sb8gxoAAAAAUBQE6QBV5amnntL27dsleee4Z8+erT333LNo7U+dOjVle/369UVrGwAAAAAwghFADQAAAABlQQh1Dm+99Za2bNkiyTvBesQRRyQWFWfz+9//XpFIRJK3eLi+vl4PPPCA7rzzTn3ve9/TTTfdpOeff1777LNPyutuuummofkmAIwcL74ohcNq6ozpouekzqD3cKaQaV+/z/UTRJ38XGdQuug5AqjLKWCleSslJ8tc1kWlUKw4fYVimUMnJa//eSu98aC0qIHqxvyDGsCAamCA51+pAQAAAGCEq6kp9wiAYe3CCy/UE088oQMPPDAROm2MyftD8s4hT5s2TY899pjOOOOMcn47AIaZnmiPDvuk9F78spVsxwuHit/fe/XSYZ+UerjqqOSSb1jY1FP6AMpRPV6/3LCwPJh/UAPVjfkHNQAAAACgqAjUAarGm2++mbJ9wgknFLX95ubmlG0/8BoAAAAAgKwIoAYAAACAsgmWewCV7vXXX0/Zft/73pfzNX/6059kjJG1VsYYfe5zn9Oxxx6bss+uu+6qm2++Wccee2xi36VLl+rGG28s6vgBjDBbt0qdnVq6v9WXTpbGdkvb6qWI42UMph/S6i+AOrGP9XbM9FpJqnG9fr50stQQkVpWyzugF+RHSKm1vCbpb64W/EdMbtox1e6gFA4Up59wwGsvPXzSsdJ1fwuo5TVHIqemLKiB6sb8gxoANQAAAAAgb/GbpaYgfBoomoMOOkjPPfeclixZoh/96Ed65pln+uzjnwNOt+++++qrX/2qLrroIjkO6a0AClMbrNXHVko/OcbbLvWSh/ipZUnSx1ZKtW6JB4DEDQtX7iS5xguCDAekaJGOD/cnGPP6k7hhYbkw/8hUA5K0o3bo+/bDZyVqoFyYf1ADAAAAAABgIDZv3ixJifXOu+yyS1Hbr6/37p7q35S5s7OzqO0DAAAAADDkCKAGAAAAUEVIEM1h7dq1knpPsO6333797t/a2qqVK1cmth3H0ac//emM+x599NE69NBDE/u3tbXp1Vdf1T777FOk0QMYcXbs0NI9u7XgNG8hiZE0tssLou5JyynIJ4A6sW+GIGorb9Hw2C6vLddIC073nmtZzQG0cmlZ4010cvhkd1BqCxW3H789P3wyETq5hkCMcqMGqhvzD2oA1AAAAAAAAJXBGKPzzz9f559/vt566y099NBD+sc//qF33nlHW7du1bZt21RfX68JEyZo8uTJOuKII3TyySfrgAMOKPfQAQxzP1zhff7xMZI1/e9bbDZ+Z+Qv/qN3HCi9ltXe5wWnS62h0gQQS14/7bVSc1i67p7ecaC0mH8k14BrvGt7OjW0NyYw6r3xgGOpgXJKn/9ShBCnhw8z/+VFDQAAAAAoKsJ1gKqwY8eOlG0/NLpYtm3bJql3DXZTU1NR2wcAAAAAjDCmxBc+5sIxMgAAAABVhhDqHFpbW1O2m5ub+93/kUcekeu6MsbIGKPDDz9cU6dOzbr/iSeeqH/961+J7eeff54QagBZLW1erwVHKxE4KHkLveojUrgu9bF8A6gTr0kLorbGazf58F1KEPVrBQ8fRZIcPtlZU/zQSZ/fbkOE0MlKQw1UN+Yf1ACoAQAAAAAAKsvuu++uSy65RJdcckm5hwKgShy5Tt6J3XKsxbDx/lFWLaulW94vLSvxvQ121Eonv0bwZLkx//Dn4LIz4+dzhvpngvX6MVb63V3UQLllCiGOOlJ4CK4GDkUJH65E1AAAAAAAACjE+PHjU7bT10wP1vr16/vtDwAAAACABAKoAQAAAKDsSJDKoaurK2W7sbGx3/2feOIJSd5deyXp1FNP7Xf//fbbL2V706ZNhQ4RQJWIuTEt3HVLSgC1JHUHpfaQt8hDyh1AHYplf87Y3jVpjvXa7U5bnOIaaeEMKVZoyjWKqmWNo7kvOEMWOulrC0lzX3AInaxA1EB1Y/5BDYAaAAAAAAAAAKrT0mnS+edLtkyH7Kzj9b90Wnn6h+dLs6U/l2kO/jzN6x/lw/wjmZV3o/kh7SPppvaoDC2rvTBgx3rXdkUCQ9NPJOC1T/hw5aEGAAAAAABAviZOnChJMvGgrzfeeKOo7T/22GMp25MmTSpq+wAAAACAEYIAagAAAACoCKRI5WDT/mAMh8P97u+HUPuOPfbYfvdvbm6W1HsCt729vcARAqgWASegRSuaNX1D72PdQaUEDzq2/wDqMWGpudv7nI2xvYHWktd+chD19A3SojulwFCvYEO/lu7vatH73H7nshjGhKVF73O1dH93aDtCwaiB6sb8gxoANQAAAAAAAABUn5gb00UtUqzMV/vEHHnj4JRxWXxptvTjY4Y+dDYba7z+CSIuD+YfkncjgAWnx+ugVLVgvP4WnM6NCCpFy2pp7qrea8ecIq+N9NtrC3n9ED5ceagBAAAAAACQj7333jtlOz00ejDa29v16KOPJtZHO46jmTNnFq19AAAAAMAIQQA1AAAAAFQMQqhzaGpqStneunVr1n2j0agef/zxxAnTQCCgI488sqD+IpFI4YMEUDWaOiJavMQLgk4PoM5lTFiqi3pf10X7D6JO5wdRT98gLV4iNQ1x2CH6t3R/Vwv+IybXFD6XhfBrxjXSgv+IET5ZQaiB6sb8gxoANQAAAAAAAABUp47uDnXWlnsUns5aqSOYez8UV48j/c/M8gUQ+6zxxtHDlWclxfxD6g2g7qyRWuukUi2Js/L666whiLpSLJ0mLZree67QLfJ7g9/emLDXD3NeeagBAAAAAACQj4MPPliTJ0+WJFlr9cgjj+idd94pStv//d//rR07diS2p0+frjFjxhSlbQAAAADACEEANQAAAABUFJaC5DBu3DhJSgRLr169Ouu+jz76qDo7OxPb73vf+9TQ0NBv+62trZK8k7eSNGrUqMEMF8BIF42qKSxd9JzUmWFBr2syLzZMDqD2ZQsstCbzgpTOoNcvAdTllRw66RuK8Mn0miF8snJQA9WN+Qc1AGoAAAAAAAAAqF6NdY3aZ3sBdyoeQvtslhqjufdDcQWsNPNdqdzLcoy8cQRYj1NSzD9iRlo4o/QB1L7kIOqFM7zxoDz8MHL/prU1saHppyaWdNNawscrCjUAAAAAAAAKcfLJJyfWMLuuq2uuuWbQba5evVrf+973ZIyRtVbGGH3oQx8adLsAAAAAgBGEAGoAAAAAqDgZIkyR7H3ve1/ia2ut7r///qz7LlmyJLGfMUbHHXdczvY3b96cst3c3DywgQKoDtZq6TTpSydLY7ulbfVSJH47AT+I0EqSkUz82FemAGqf/3hbfJ2yNb0L1FwjOfGNGtfr70snSw0RqWW1JJcAwlJbur/Vgv9wM4aE10Wl7qAUDgy+n1Asc8344ZNyrVrWVNjB3ipBDVQ35h/UAKgBAAAAAAAAAPtER+lVN1ze28670j5tZey/igWs9PFnpQf3kGJlrAHH9cZBCHFpMf8IWOkjL0h/3af0AdQ+K6mj1hsHNVAeyeHDktReK4WH6ErgcNBrv6mnN4RYil87hrKhBgAAAAAAQKH+8z//U7fddlsiMHrhwoX64Ac/qDlz5gyovTfffFNnnXWWOjo6ZOKBYnV1dbryyiuLOWwAAAAAwHBGADUAAAAAVKRyLkkbFg444ADV19cntl9++WXdc889ffbbtm2bFi1alDhhKkknnXRSzvaff/75lO099thj4IMFMOIt3TeWWEBiJI3tkoKu+gQR2vhHfwHUvrqot5//mmSu8dof2+X15y8kWTqtWN8R8hUzVgsPyRw6KRUvdFLy2unOsjDJNdLCQ1zFDAdYS40aqG7MP6gBUAMAAAAABs1aLpwEhlBnZ6fWr1+vtWvXDuoDAPoTcAK6qHV3hcr8Iz1kpYtWET5aDjEj/fxI7wbT5WTj44hV2DqhkY75R6xC/u0rZRzVKFP48I7aoe1zR63Xj8S1Y5WAGgAAAAAAAANx2GGHqaWlRdbaRBD1xRdfrGuvvVa2gGtJYrGYbr75Zs2cOVOvvvpqoi1jjC677DJNnDhxCL8LAAAAAMCwQQA1AAAAAFQsQqhzCAaD+vCHP5xycnXevHl69NFHE/ts375dc+fOVVtbW+Kx0aNH69RTT83Z/rPPPpsSXL333nsX9xsAMGLE3JgWHhzNGjyYD8dKJ7/mfR4o10gLZ4jgwRILWKNFSx1N39j3ue6g1BYqbn9toczhk9M3SouWOgqUe1VrFaIGqhvzD2oA1AAAAACAoiGMGhi0cDis3//+97r00kv1vve9T7W1tRo9erR22WUX7bnnngP+2Guvvcr9rQGocDE3ptsnbVRz/GbF5RB0peYu6faDCR8tl/GdUo07uPP+g+FYr//xneXpv9ox/6AGqlcsfs1WKcOHfekhxN61Y6XpG72oAQAAAAAAMBg/+9nPNGnSJEmSMUbRaFRf/OIXNW3aNP3gBz/Qww8/rJ6enpTXvPLKK/rnP/+pxYsX6zOf+Yz22msvzZ8/X++9915iH2OM9ttvP333u98t6fcDAAAAAKhQBFADAAAAQEUjhDoPV1xxReJrY4w2bdqkE044QdOmTdMxxxyjnXfeWX/9619T7tp78cUXKxTqPwXs7bff1po1axLbEyZM0C677DJk3weA4S3gBLTolYM1fYO3bSVtq5eiTt+FZSb+kRwe6Fjpl/dINy/zPvuv8UML/dckc6zX/rZ6rz9Jmr5BWnSnCB4sg6Yeo8V3pIZPDkXopC89fHL6RmnxHY6aepj7cqEGqhvzD2oA1AAAAACAonHLlFoJDHPWWl177bWaOnWqLr74Yt12223697//rWg0KmttUT4AoD8BJ6BF7x6lqdvLF/oXM9LU7f454/KMoZoFrPTHJdJxb/U9v18qRl7/f1xCDZQa8w9qoLoFrPfzd/qG0oYP+/wQ4t5rx0rbP6gBAAAAAAAwOLvttpuWLVuWWPfsr4d+5ZVX9NWvflUnnniiVq9enThvba1NrKG+8MIL9Zvf/EZvv/12Yg21v8+oUaN0xx13qLGxsWzfGwAAAACgQhBADQAAAAAVL5h7F8yaNUtnn322li1bJmNM4uTqyy+/nPhaUuLE6ahRo3TVVVflbHfp0qWJr40xOvLII4fmGwAwYjR94Dgtvu4JnXuB9MjuUiTpVgKOlVwTD5NOOg7WFvK2b7hLalntPeZ//sSZqaGFxkoyXuB0crB1JB5Efdxb0uIlUlNYfZOvURJNYWnxEqM551k9sXPq/GWa/0LZtPn32z9inddvU4/UG0mOcqAGqhvzD2oA/dXAUKAGAAAAAADwdHZ26kMf+pAefvjhlLBoU6SLpQmgBpCvFbFXtbFRqnWlHsc7rlsqxnr9bmyUVuzZe94ZpdUUlg7aKN2/V3n6jxmv/6Zwefqvdsw/qIHq1hSW9t8s3bdPefrfUev1z/yXDzUAAAAAAAAG48gjj9Q999yjj370o9q4cWNKmHQm6Y8nnx+31mrq1Kn685//rAMPPHDoBg0AAAAAGB4IoAYAAACAYcHJvQskaeHChTr44INTAqf9E6bJwdTGGP32t7/VTjvtlLPNP/zhDykh1rNmzRqy8QMYIQ44oN+nHTu44EnJez350pWtqcfoouekzprex9z48VirgS8094NHk9uTvH4ues7rF5WBGqhuhcx/Pj8T/N2Z/+GjmO8BybtSA8NHphrIKI/3gFA09z7UAAAAAAAA0jnnnKOHHnoocU44+RxxMT4AIB8xN6aFza/LGmlslxcIXUq1rtevNdLCGV4QKUrvS7Ol644s33l9x3r9f2l2efqvdsw/qIHqxvyDGgAAAABQVJyjAqrSrFmz9Oyzz+rUU09NnK9OPgfe34ekxGtOPvlkPfXUUzrssMPK/B0BAAAAAMqOAGoAAAAAGDaC5R7AcNHc3KyHHnpIn/vc53TLLbdkXAi800476Ve/+pVaWlpytvfkk0/qiSeeSLnz7+mnn17UMQMYedrdLs05T3pxktTcJbXWS5EctxMYE5ZCMemz8beYltXS0mnedijmPd8W6r+NGtfr78VJ0pzzpMVLpKZIcb4nFG7p/lZf+qC3wPu9eqknkPq8/xOqOSxtCyk1YTSDMWGpNdQ3p9I1Um3M6+dLH5QaIlYtayrs4G+VKqgG6nI0ZqmB4aaQ+W+rzR1IPCosdTD/w0pRfw7wHjAsJdfAtn5+H6yP5g6qDsa8/bL9PljjUgMAAADAiORwn1qgEL///e/1t7/9LeXcrn+++NBDD9UHPvAB7b333hozZoxqanLdNQoABi7gBLRoRbPmHLFdq6ZIQVcKB3K/Lpmx3mHjgdzYNOh6r52+QVp0pxRgnUbJ9TjSzTN6t/25LJSxA7uxbfJLbp4hffuB0oehVzPmH9RAdWP+QQ0AAAAAAIBimTx5su655x499dRT+uEPf6i//OUvCofDOV8XDAY1a9Ysfe1rX9Pxxx9fgpECAAAAACoeAdQAAAAAMKwQQl2A5uZm3XTTTfr2t7+tu+66S6+//rq2b9+u8ePH64gjjtApp5yiurpcSY+ee++9V9OnT09sT5kyRfvvv/9QDR3ACBBzY5q77pdaNcXbdpQ7iHpMWKqLel+7xgue/vM0acVe3rbU+3x/wYPNXV5/krRqijT3HGnZH60CA1mNgkFZur/VgtNsYv5KxTXSgtO8g62ET5YXNVDdmH9QA0iuAaPsQdRjwpIrSXnkXmX7fdAPoDaiBgAAAIARp9Iu9AQq3Pe+973E13749CmnnKJrr71WBxxwQLmGBaBKNbWHtfgOo0Mut1rfWNhr/QBqKf65wADCHTXSpI74TYtz5xBgCNS60jP/I824QtraMLDgydqoVBeTugNST4FXjllJMtL4Tm8cBE+WFvMPaqC6Mf+gBgAAAAAAQLEdfvjhWrJkicLhsJ544gn94x//0DvvvKOtW7dq27Ztqq+v14QJEzR58mQdccQROvHEEzV69OhyDxsAAAAAUCkqbV0CAdQAAAAAkBMh1AOwyy676NOf/vSg2rj66qt19dVXF2lEAKpBwAlo3tsTtLL5FbnxJST9BVEnB1D7XCMt37tv2/0FDyYHUEuSY6V5z0oBOb0rlFESS/e3WnCqFzpp5QVORh1vTpLDSE38oy2kvOaoLdS7W/IhVcd67W+r9wIoE+GTxhA+WSYDqoFcDDUwXAxk/vM5TbKD+R82huTnAO8Bw0pyDfgyBVH7vwd2FvAXf/rvg8kB1D5qAAAAABgB/Is8K+1iT6CCrV27Vv/+979ljJG1VsYYXXLJJbrpppvKPTQAVey7x1q92VzYa5IDqBOPSQUHUb/ZLH33WOmHKwrrH8Wzy3bpe8ulT56pgs/Z10alhvjxYP9zoQGUsl7/u2wv8HUoCuYf1EB1Y/5BDQAAAAAAgKEQCoV0/PHH6/jjjy/3UAAAAAAAwwVrEgAAAABgWCKEGgCGkZY366WNjhb8RywRPpgpiDpTAHUumYIHMwVQX3ePvNDBoNOnDQydmLFaOMP1gkeNtK0uNXjcDyA18haQZ2WVdQGSiT9n4+35In4AabfkSlo4w+rMVx0FClmNjkGjBqrbQOe/zxRlmH//Iea/sg3Ve0DyJjVQ2ZJrIJ2RNz/b6qSGSP+/BxpXssm/xiW157+us8ZrL9MMu4YaAAAAAIaFWKzvY1zkCQzIE088kbI9efJkXX/99WUaDQBIXzq2Wz95X2EB0pkCqBPPDaCdnxzjbRNEXR5Lp0nXnCRN2CFtGZV/iHhy8KSv0ABKY71+rzlJmtAttazOf9woDuYf1EB1Y/5BDQAAAAAAAAAAAAAAyq4S1ybY/hbYAwAAAAB8hFADwHDS0aGWF2JSVFpwujIGUecKHuxPcvBg1gDq1ZK3CpkDcKUUsNKipY7OPS+mR3ZLDR71ObmmJKbetNFA5l2yLUCPOF6w5XFrvXEEXMUbQ6lQA9WN+UcxasDEvDm2RrLUwLDj18Ccc1ytmtz3395YaVxX/2040XhguSu5/tGAtKbqov3/Ljl9o6EGAAAAgOHOGCmQ5Q9DAH1s2rQp8bUxRueee64aGhrKOCIA1awn2qOb99uR2M4nQDrTcd89WqU3m5P2GUA7N8+Qvv2AVOvmOXgURcxIC2d41woEJY3bIW1tzP26YKw3aNJY6aDN0osTvTkvJIBy3A6vXzc+jjPXeMevURoDnf+aaP/zb40UyeNPBOa//HgPqG4Dnf/aHO8BrpGivAcMCwP+OZDjPcBKivAeAAAAAAAAAAAAAADIBwHUAAAAADCsEUINAMNJe7skPwi6bxD12K7MwZGFqItKoWhqO6kB1HEchCs9a8uf9WgrZBzVqhL+7amB8qmEf3fmv7wq4d+eGiirprC0+A6jOedarZpc2Gv9AGop/jmaFESdp+kbvf6beiSKAAAAABiGrPUu+KzEiz6BCtbW1iZJstbKGKMZM2aUeUQAqlltsFbPrDlRM/a5X+/Ve4/1FyCdKYD6C/+QfrBC+vJs6SfHJO1bQDvjuqRn/ocA6nIIWGnRndKc86SVU6SO+t4bUPYnFpB6YlIoJl2ySpr5rvT0VOmW6VI4kF/4qLFef81d0owN3jgIniytQc2/28/8Z7j5aTrmvzLwHlDdBjr/0RzvATHmf9gYcA04Uo9DDQAAAAAAAAAAAAAABqkS1yKQfQMAAAAABcljCQkAoGJ0dCS+bFntBUM7ScfDNhSpm+R2MgZQo+Rixmpui6sXJ3mLeWoyLOjOucY7kPTRj0zt1Lhevy9Okua2uIoZDsSWGjVQ3Zh/FKMGbEByA97n/lADla2px2jxHY6mb+z7XGeW1yQHUCces97jmU73ZmrHC6B21NRTgSeIAQAAAOTHv+DTJS0SKERjY2PK9pgxY8o0EgDw7HLIcVp5U63GdRX+Wj+AWvI+f+Efhbcxrkta+Rtpl+2FvxbF0RSWbrhLijlSxPGO8/Z32N4/PtxVIx39thc8KXmfj37bezx5v0z8IPKI4/V7w13eOFB6zD+ogerG/IMaAAAAAAAAAAAAAACUBQHUAAAAADAiEEJdBOvWrdMdd9yhq666SpdddpnOO+88nXLKKTrvvPN02WWX6aqrrtIdd9yhdevWlXuoAIa7ztRIwOQg6vVBSY3S+sbML83X+sZ4O0ECqCtJwBrNe9bxAiPVN4DUlSQjuenHbdOPmeY4ruuaeDtJj/nBo468mpj3rKOArcADxCPcgGsgXY4aoQYq00Dn36RnSvEeMGzxHoBkmYKo2wJSW6O0flTvY8ZmDqD2OVb6j9Wpz68f5bXTlhRWTgA1AAAAMEJY2/sRi5V7NMCwsddee6Vsv/fee2UaCQDEvf/92sVt1Mr/8QKhraRsh2yt6T0MnBxA7UsOos6nHQKoK0N7SPrEmVLQ7T1XkC2AMnH810oNUemxXaWnp3oPPT3V226IZtg/iR88KXn9BV2v//ZQkb4hFGRA8y/mfyThPaC6Dcl7gO27v4/5rzz8HAAAAABQVBMmlHsEAAAAAAAAGA4IoAYAAACAESNY7gEMV9u3b9ett96q3/zmN3rxxRfzft1BBx2kT33qU7rooos0evToIRwhgBGpq6vPQy2rpXP+Q1LSW8r6RmmnjsKbTwmwrpPWdRFAXUla1hhJjhac6krGCwRtrZfCjlJCRV3jLQoaE5a25bHgZ0xYagulBZcaybVSKC149Lr7nPg4UA4DqoG63O1SA8PDQOa/rbZvFn26UWGpk/kfFobiPcCI94Dhyg+innOuq4enSp318SeMFyS9c4c0Z6V04+H9tzNtkzT3Za+u1jUqUUud9ZK6pOPfJYAaAAAAGJG44BLI25FHHinHcWTj/79ZvZoTJwDK7AMfkEIh7bK9Rg/fFNH0K6RIIPvu1khnvdQ3gNr3gxXSy+OlZQf0323QlR5eSAB1ucWMNPccadUU73Du2C5pW70UceKHd21vmHh68GRNzHvulunSM1OlFyd62zUx78MPk3Rs7zmD9ODJsV3e9qop3jiW3S4F+NWyZAY6/6N6vHnKNv+jrNRZ0/s65r9yDdV7QMCVOmp7X0cNVKaBzn9jj7edbf4bJHUFe1/H/FeuAf8ciHi/y2WrAceVdvAeAAAAAABAVXv33XfV2tqqtrY2RSKRQbV1/PHHF2lUAAAAAICKQAA1AAAAAIwohFAPwK233qrPfe5z2rZtW2Kxcb5eeOEFXXnllfr617+un//857rooouGaJQARqRotM9D5rOSxvbdtdAg6pQAat9Yr337y/zbwdBKDyAN90iq77ufK6kuKimPEOq6aJaw6nj7BI9WloJrIA/UwPBR6Py31eZuszYqdTD/w0Z6DWiI3wNEDVS0ph6jPTZK9+2d9oSR1o2SZrybXzsta4zOOVcpYeaSF0S9x0YRQA0AAAAAqGoTJkzQSSedpPvvv1+SdO+99+qnP/1pmUcFoKpNnSodc4zaH12hz39wm8Z2S1sa0m40mGRUj/TULtLSaZlvQLx0mvf8qJ7e8MF0jpXGdkufP1VavERqChfv20FhAlaat1JauZM359kCKJPLoSksxRzvw7dqSmq79ZHem1ZK8bBSZQ6e9J+ft5LgyVIbyPyPCXshoslh9enzH7DM/3Ax0BqImv7fA0JRamA4GOj8B1wpnHSlcPr8Oy7zP1wMtAbcHO8BNTFqAAAAAKha770nTZhQ7lEAKIN3331Xt9xyi+69916tWrVK27cX5y6kxhhFM6x/BAAAAAAMUwRQAwAAAMCIQwh1AcLhsD7ykY/orrvuSgmfNgX8wWytlbVW7733ni699FLdeeed+sMf/qBQKI+UUACIxVI2swVQ+/INos4YQO3LFkTNgbmyaVktyRqdc4bNGDwqSTLS+lH5tbd+lPqETibUS+s7pTvvNmpZI3lLjFBu1EB1K2T+nTym6z3mf9jxa+DCM6zCQ/weEK6XtnVKv6cGKtJ/neDqN0dnedKRrjhHCsayPO+zkrkq5qWNZ/Cbo6VQNKafP5RlBwAAAADDE8d3gYJcddVVuv/++2WM0Zo1a7Rs2TKdffbZ5R4WgCrWftH5mtP0f1o11gv/m9CZOYh6VI/U1OM9/tnTvceSg6iXTvMed423n9Q3iNqJtx+wXmDhnPMIoi43fw4XnN5PAGXcmLB3Q9LOPG5c6t/c0g+g7C948rp7MoeaY+gVOv91USkcyNRSKuZ/+BhIDXTwHjBiDGT+I7lO8xmpLuJ9yfxXvoHUQGdN7nZ5DwAAAAAAoDps375dX/nKV/Q///M/cl1XklLWSgMAAAAAkEAANQAAAACMSIRQ56m7u1tnnXWW7r//fllrU4KnCznJmv66P//5zzrzzDN11113EUQNILfkAPwcAdS+XEHU/QZQ+zIFUXNwrqzOPdlKDTl2yveYbq79Grz+XBYPVZTPH12kGshnnwavPxaQVY6vHJHf/KeHTWTbr18NXn/Mf2W5ezer7iK8B9g89ulu8PqjBirLf82y+sXxOXZypKj6D6L+7geVNYDa5/Xj6ucPVuAJYwAAAAD584/pGlOZF4QCFWzWrFmaP3++brzxRhlj9JnPfEYzZ87ULrvsUu6hAahC7eF2zWlfqFWTXCkeGJkpiNoPoPalB1EnB1D70oOokwOofQRRV4ZcAZRSb/CkW0C76QGUBE9WpkLmvxDM//BBDVQ35h/UAAAAAICi4JwxUHXeeecdnXjiiXr99ddT1kSbIr0fEGYNAAAAACNIJR474u9OAAAAACiKHFFT8C1YsEDLly+X1HtS1Vora62OOuoo/fjHP9aKFSu0bt06dXR0yHVddXR0aN26dfr73/+uH//4xzrqqKMSr/Hbsdbq/vvv14IFC8r2vQEYfvINoPZlC5rOK4DaFw+iRvk5C6xsAfNfDHas1y8qw57zrN4scbbJm7t4/aL8pl1qtWb30va5ZnevX1SG+f9htfDI0va58EivX1SGvAKofY4UDWR+KhpQ3kcFfnG81y8AAACAYc6/GJQLMIGCXX/99Zo1a5astVq/fr1OOukkPfvss+UeFoAqE3NjmnvnXK3a9JwUiaQ85wdRG9s3gNrnB1F/7Oy+AdS+ph7v9SZDALVv1RRp7jlSrALXmVSTltVeEKTj32tEXlBk0B1Y8KSvLuq9PkjwZEVj/kENVDfmH9QAAAAAAAAoRFdXl0466SS99tprstbKGJP48Nc8D/YDAAAAADBCEEANAAAAACNasNwDGA4efvhhLVy4MOWOvtZazZo1S9ddd50OOuigjK9raGhQQ0ODdtppJ82aNUv/7//9P7344ov67Gc/qwceeCDlJO2NN96oiy++WMcdd1ypvi0Aw5G1BQdQ+9Y3Sjt1pG4XLB5EbX8pyeE+BuXgfCZW8gBqnx9E7V6fJckSJbHnx2N6c+fy9P3mLtKe863euIkaKJdpl8S0Zrfy9L1md2nax6xW38L8l9P8k2NaeER5+l54pCRjdeNyaqCc/uuEmH5R6J+NjhSVFIz1PlRIALXvF8dLMlY/f4gaAAAAACpeLNb3seSLQV23dGMBRoja2lrde++9mjdvnv7whz/o1Vdf1ZFHHqm5c+fqsssu0wc+8AEFAvzNDGBoBZyA5h0yTytf+4cy/TQ3Vqp1vY9sXCMt37v/fmpdKep67WXiWGneyswB1SgtPwhyQTxU3Ko3LHKwjHrbI3iyMjH/oAaqG/MPagAAAAAAAOTrO9/5jl599dU+a6Sbm5t1xhlnaMaMGdpjjz00evRo1dTUlHGkAAAAAICyIoAaAAAAAEY8Qqjz8IMf/CBxd1//85e//GV973vfK7itgw46SCtWrNDXvvY1fe9730s5afuDH/yAEGoA/TIL7IACqH1+EPWAAqh9fhD1rzhQV2rOlW7ZAqh9dqwXhO3+ihDyctjz427ZAqh9b+4s7fmxmN64iRootWmXuGULoPat2U2adnFMq29h/sth/slu2QKofQuPkGRjunE5NVAO/3WCW3gAtS8piHogAdS+Xxwnycb084eoAQAAAADA8HbSSScN+LV1dXUKh8Pq6enRzTffrJtvvln19fXafffdNW7cuAEvyjXGaMWKFQMeF4Dq0HJAi7TonETYoM+V1FovRRypLeQ9VhctvP3uYO/rW+ul5q7Uw4mEEFYefy4+c7rU2lD8GhjXyZxXMuYf1EB1Y/5BDQAAAAAYMMJ7gKoRi8X061//OrGW2VqrQCCga665Rv/v//0/hUKhMo8QAAAAAFARCKAGAAAAgKpACHUO27Zt04oVK1ICqOfNmzegAOpk3/nOd7Rx40bdeOONibbvv/9+bdu2TWPHljlhFEBF+vgfPz6oAGrfoAKofWOljx/g6qZ/V+BBxBHqcwfasgdQ++xY6XMHuPoZ819S/7un1Zu7lHsUnjd3kf53D1eXvkENlMofdrNas3u5R+FZs7v0h11dfXQt819KzzZbLTyy3KPwLDxSWvCkq0NaqYFS+neT1S+OH2QjjhQtQnb0L46XLv+XqwPbqQEAAAAAwPD14IMPptwweCD887yS1NnZqZdeemnAbfrnogEgH34IoB9EnRxA7RtI+GBy6KDktZccRE0AdeWa/YY0pUPamHQ9gD+XtYOsgSkdXvuoXP3N/2DfA5j/4YEaqG7MP6gBAAAAAADQn0cffVStra0pa6R/97vf6dJLLy330AAAAAAAlaISr2EmgBoAAAAAhgQh1Dk8/vjjikQiiQW/TU1Nuvbaa4vS9k9/+lMtWbJE7e3tkqRoNKrHH39cp59+elHaBzCy3HTBTbr5Gzd7q3vLzZVuesmRKvA44kj1s5eMfu66FTP/P2P+S+7SN40+VkE1cOmb1EApffRtowsraP4/+jbzX2qHtBmpgmrgkDZqoNQO3F5ZNXDgdmoAAAAAqGhccAkMmfSwaIKjAZTczjtL6g2C/szpUmtDagC1r5DwwfTQQZ8fRD2ukwDqStUekuacJ20YLY0Jp85jW0ganWc7mWpgTNhrd8550uIlUlO4aMNGkeSaf0kyefx5wPwPX/nUQD6ogeEpn/kPuLnbYf6HL94DAAAAAAwK55WBqvDaa68lvjbG6IgjjiCAGgAAAADQqxKvhea4FQAAAAAMmUqIr6po69atS3xtjNFZZ52l0aPzXZ7Vv6amJp111lmySX/4JvcHAOnsD2ulPBYGDSlXst8u8xiqlP2uUxnz/11+fSgXaqC6Mf+gBkANAAAAAABQfNbagj4G8pp82wWAvLz7buLL2W9IUzoyB1D72kJeqGB/sgVQ+yKO18/sNwocK4acHzy5aoq3XReVQrHUfbaH+q8RSQoH+tZAKNYbYL5qitdPewFhlhh6+cx/W0jqCfTfTsRh/oerfGuA94CRKd/5D/MeMGIV6z2gh/cAAAAAAABGtE2bNklS4rz0WWedVc7hAAAAAADQP66rBgAAAIAhlWOZGTZv3izJO8FqjNHMmTOL2v7hhx+uW265JbG9ZcuWorYPYGRZdLAUcqVwGXP/Qq43jrkvlm8M1aq91urUN6T79lR5biPhSqe+4Y2jqacC72ZYBaiB6sb8gxoANQAAAAAAQPEcf/zxMoa/bwEMX37o4IbR0phw/yHS/nN+kGCyXAHUktf+htFef4uXSE3hgY8bxZMePCl585kpbDQclBSVajLc6DDiSD01GV4T8NpLD6CkBipDIfO/o8YLE802/+GgZNLWbjH/la+o7wGZXkMNVLSC3gNqpVreA0acQmqgq0YK9fMeEA5I6X8dUwMAAAAAAIwctbW1Kdt77LFHeQYCAAAAAKg8lXYtNQHUAAAAADDkCKHOob6+PmV78uTJRW1/0qRJkpRY4FxXV1fU9gGMHD3RHn1+dkSRgORYyS3DsTzHSpGA9PlTpPPXSLVuGdOwq0zMWM09x2rVZGmnTml9g0obPul6/a6aLM09R1r2J6OArbADyiMcNVDdmH9QA6AGAAAAABTEzZAqBCDFgw8+WO4hAMCApYcO+uGAhQZR5xtATfhg5ckWPNnffGYKoc0WPupLrxtqoDIUe/6zYf4rF+8B1Y33ABS9BngPAAAAAABgRNtpp51StqPRDHctBQAAAABUHwKoAQAAAKAqEUKdw6677pqy3draWtT2/fastTLGaJdddilq+wBGjtpgra59olnzj9umiFP6IGonfryuxpWuvU+qjUoSQSalEpA0b6W0coo372N7pG0lvG/B2B7vs2O9cQRiVllXIGFIUAPVjfkHNYD0GihpEHU8gFqiBgAAAIBhzb8o0xjJ4QaDAAAMV5lCB6XCg6gLDaD2ET5YfgMJnvQlB1DmCh/1EUBZWZh/UAPVjfkHNQAAAAAAAAo1Y8YMSZKJh4u9++675RwOAAAAAKASEEANAAAAAFWLFeY5HHbYYZJ6T7C+9NJLRW1/9erVGfsDgEzmbpqiG5d5C0EkyZToOJpJCqC+cZk094XS9ItULWuMrrvXKBzwFvg4JZp/x3r9hQPSdfcataypsAPKVYQaqG7MP6gB+DXgz/1OnRr6e4KkBVBTAwAAAMAIUWkXjQIAgLzE3JjmntM3gNpXF5VCsf7baAtJrXW5gwpDsb4B1L5VU6S550gxfqUouZhRnxrIN3jSFw5KXcH8gid9bSGvHx81UB7MP6iB6sb8gxoAAAAAAAADMW3aNO2zzz6J7b///e9lHA0AAAAAoOwqbS0BAdQAAAAAUFKEUOew55576uCDD5YkWWt15513yhbpj1drre644w4ZY2SM0QEHHKC99tqrKG0DGKGamjT3BS8IOuhKtkTH9qzx+iOAuvIMdQBpqQJOMXDUQHVj/kENVJ+SBlETQA0AAACMPP4Fo7Ec6ZQAAKAiBZyA5q3Mfuy2O+jdUDCXfPfpzhJO6Fhp3kopwDHkkgvE/+39GsgUPOma3NcSxHJcMWaN106y5ABKaqA8mH9QA9WN+Qc1AAAAAAAABurKK6+UtVbWWj3wwAN6/fXXyz0kAAAAAMAQ2OWaXfrfIc8A6kgRxpIXAqgBAAAAoOSyLBdDsv/6r//S/PnzZYzR22+/rV/84hf6r//6r0G3+4tf/EJr166VJBlj9LnPfW7QbQIY4RobJWP04Vespm2Rnptcuq6nbZE+/ErSA5V2d7sqsHR/qwWnWoVi0phw7yIiY4cmkNwkHa8dE5ZCMWnBaVYyBFCWS7YacGzfxV/F4FADFYX5BzUAX8vLRjJWC0515RppSqe0YZSkYk6L9dqV4gHU9znxfovYBwAAAIDS4pguMGDf+ta3El9PmTJFl19+edHa/u1vf6sNGzYktr/xjW8UrW0AI1PLau/zgtNTjw1nCiEcLL+9umjvY46VrrundxwoPf/f/rIzMwdPSpKVJJN6zjdf1sRfH28v+XxBW8hr83d3UQPlwvyDGqhuzD+oAQAAAAAAMBBXXHGFbrjhBv373/9WJBLRpz/9ad1zzz1ynBx3qwIAAAAADBvmGpP4bK/OcMK4wADqiKSa4gwtMwKoAQAAAKAsOEOYh49//OM69thjE3f6veqqq3TvvfcOqs377rtPV111lYwxMsbo6KOP1vz584s0YgAjVkOD2mut5pwnbR4lNXeXptvmbq+/OedJ7UVeuIz8xIzVwkPcxGKhuqgXCGo1NAHUUu+iojHh3oXlrpEWHuIqNpBVShiUbDUgDU34bHK71ED5Mf+gBpCuZY3Rdfc5MpK21Rf/j3sn3q5RPICa4HEAAAAAQBX75je/qWuuuUbXXHONfvOb3xS17V//+teJtq+55pqitg1g5GpZ7QVB+6GAyQHUbpH68NtpC3ntSwRQV7r08wUDOZecHDyZrV1UJuYf1EB1Y/5BDQAAAAAAgP7U1tbqj3/8o8aNGydJWr58uS699FJ1d5docSIAAAAAYEj5AdTZtgsNoM62XTQEUAMAAABA2RBCnac77rhD+++/vySpu7tbZ599tr7zne+op6enoHYikYi++93v6uyzz1Z3d7estdpvv/105513DsWwAYww7aNrNec8adUUb7suKgWLtYo4i6DbGzy5agpB1OUSsEaLljqavrH3sZqovGTIoWTi/cRN3ygtWuooMFTJ18gqUw2Eor3hAkPFsV4/PmqgPJh/UAPIZPYb0uQOKeIUf/Gva7x2J3d4/QAAAAAAAMkO0QXP/s2QAaAQfhB1OJAWQG0GH0Sd3k5byOuHAOrKsHSatOB0KRTLfcPKQgIoMwVP+pJvXBmKef0vnVbIqFEszD+ogerG/IMaAAAAAFBUnJ8CqsoBBxyg5cuXa6eddpK1Vr///e916KGHavHixYrFYuUeHgAAAABggPoETqc/PsAA6lyPDxjHpAAAAACgrILlHsBwMXHiRD3++OO6+OKL9Ze//EWRSERXX321fvvb3+qSSy7RWWedpenTp6u2trbPayORiFatWqVly5bp1ltv1TvvvCNrrYwxOv3003Xrrbequbm59N8UgGEl5sY0d+rjWhU/nmYlbasvfuBgOtd4/Yzt8vKOV02R5p4jLfuTJYCyxJp6jBbf4WjOua7+NVnaPCr74p9isfL6mbhDOnSjtPgOR009zHu5JNfAs5NL/x5wCDVQVsw/qAEka6+1mnOuqw2Nkms1JDemcK20oVGac67L3AMAAAAjTSBQ7hEASGKMIYQaQP6CQSka7fOwHxyt+GfXDuzO9MVqB0MjZqSFM3rPD4SiklPb//kC/ydM8i4BV4olTWx/wZO+5BtXuvFxnLlGCvAjrGQGOv/p68jS59/frz/Mf2XgPaC6DXj+c7wH5DOFzH9lGPDPgbTH+vwc4D0AAAAAAICqccghh+iZZ57RJz7xCd19991avXq1LrzwQn3yk5/UkUceqX322Udjx45VTU3NgPv4xje+UcQRAwAAAAD6ky2A2tdujJryaCdX0HRE0sD/UkzC9dIAAAAAUHaEUOfhpJNOStmuq6tTOByWtVbvvPOOvv/97+v73/++gsGgdtttN40ZM0ajRo3Sjh071NbWprVr1yoaXwDoLx42xqiurk47duzQOeecU9B4jDFasWJFcb45AMNGwAlo3sapWjnxXcXigZARpzThkxGnN4AyYKV5K0UAdZk09Rhd+1dp+ie9RYClYOP1du1fRfhkBWjqMbrh/4xmXG5L+h4QdaQb/s9QA2XG/IMagNQbQL1qsrS+QUOXAOPE259MEDUAAAAwoqQn0AEAgOHl6KOlhx/W0mnSgtOlUEwaHZba6tL2G0CAdEoAdVI7o7u9fhac7j3UsnrAo8cgBay06E5pznnSs1OSbliZx80K/V1CUanG9Y7/h4N53vjYpt24coM3DoInS2ug858cQsz8D2/ZasDY3NeQDOY9wFADFWGg8z/Y9wDmv3JQAwAAAAAAoBgmTZqkCy+8UE8++aQ2b94sa63a29u1fPlyLV++fNDtE0INAAAAAKWRK4C69ZtSvXIHSOcKoE7eb1BB1ARQAwAAAEBFIIQ6Dw8++KBMhgX5/mN+sHQkEtFrr72WeM5m+OM3uZ3u7m499NBDBY3FWptxLACqQ8u7Y9T5vKP5H3JLEjzpSwRR10k33iW1rDFSgPeicnin0dXxH5NiQxU2mUXMkY7/mLTyBqtdOkrcOVK011p94sNSwC3te0DAlT7xYWnxnYSRlxPzD2oA7bVWc86xQx9A7UsJorZafCdh5AAAAMCwxfkloCLFYrHE18Egp+8B5KGmJhFA7RopKqk9lGXfAoKoMwZQx7WHpNqoFDQEUVeCprB0w13SjCu88/hWyhlA7auJecGTkvfZjUk9gTxeaLw1QIkbV97ljQOlx/wjvQYkrwRsHmH0A6oB29ssNVB+zD+oAQAAAAAAMBjPPfecLr30Uj333HOJx9LXSQ8Ga58BAAAAoDTyCaBuSNrOFiCdbwB1rnZyIoAawP/P3p3H2VHX+f5/f6vO1p2klywkYQ2Lhj0EUFQUA4gCDnEakHDNjEgQRwfjOOrVOzpXQB31zk+d4TKjzjAGZyQjmcvYqCMuGEFwQYQJDYawhyVA9l6SXs5S9f39UV3dp0+f7j6n+/Spc7pfz3n0JKe6zre+8fPhpFNV33cBAACgZpAiWaaxgqULv8bbPtF4ADCWHr9ft51i1ZirXvBkyDdSY0667dQg/BDVt2Our5XX+trfEE399zdIK6/1tWOuX92DY0gQPOqrY7HVrsaJ96+kXY1Sx+Lg+HwGRIP6gx5Afg9UJYA6NBhETQ8AAAAAAFB53d3dQ7+fO3duhDMBUC/al/WPCKDeO0ey4107NIMB0+MYL4BaCsbfOyc4nj8YRN1+fLkzR6X0JKVrVwcPkIz5E9S/QNYdDqzMOsHrUlkTHM/1g+OPGX6OaUX9kd8DYZhsqWHkk+oBMzi+guPRA9Gi/qAHAAAAAADAZN1zzz06++yz9eijj8paO2ptc7H10OV8AQAAAACqY6IA6n03jAygDhUGTpcbQD3p95GtBQAAAAA1JRb1BOpJeFG10sHRBFEDKIXne1p74jZ1pKw6E9HMoTMhdSyR1l4q3fn/fLnlrGbElGQcX2e830YSQB0Kg6jPeL+vl26ySvg8y6KaPGO19o99dSxWdYNHQ4MBpFpstfaPPd35Hw6fAVVE/UEPgB4AAAAAAGDm6enp0Y4dO4Zet7S0RDcZAHXB8z1tOGKv/F5HOd+fOIA6ZCTfDp9WTHpSejB0cKIA6lAYRL2wV4oZacNKafWTksstL1XlmeB6fceSyY+Rjkk5X/KmcJ556L6B2+mBaqL+yO8BR1JLv9TZIGVKCJINP+oLeyDcPl4prZHiXnA8R/RAVCZb//y/5ovVf6ISUv/aMV09IPEZAAAAAADATPfyyy/r0ksvVW9v74jQaNY2AwAAAEB9mSiAeu8N0rxxvp+VFNfkA6gLx5kQ/+4EAAAAgJpDCHUJzjnnHJ7ECyByruNq3cuL9V+ndFY/dDA0GD64bosIHayyhO/ofR2+/vZN0Z5k9Y30vg5DAHUEXGu07hFH/3WsH/1nwCMEj1Yb9Qc9AHoAAAAAAICZZ8OGDbLWDi3yXb58edRTAlDjXMfVxpOv17t+8j798lC/tADq0GAQdWtaSuWkgZjUmVRJAdShMIj6rc9LG79H6GAUXBtcr394qdTVKOXKPF9sFZQ8DJ4st4Q5R+pqkOb3hfcNlDkApoT6I+yBLUun9gDzUSHkYXOUyLH0QBQmXf+C+k4lhF6i/lGabA8U/ide2AOWzwAAAAAAAGa8T3/60+ru7h4RPm2M0cUXX6zLLrtMK1eu1FFHHaV58+YpFmPZOQAAAADUosNvPHzc7+++QWoqYZypBlDnjzNuEDUB1AAAAABQk7gaWIJ777036ikAgCTp0lOeiC50MORIl75bsl+MeB6z0N++oTZOsv7tG6z+zy+insXsdOllEQaPhpxgHvaLbsQTmX2oP+gB0AMAAAAAAEyPF198seR9M5mMXnrpJdlJ3BjteZ4OHjyo5557TnfddZduvfVWGWOGFviuXLmy7DEBzD49pyzXYw/lygugDhkp40gpBb+WEzYYskZ6bInUk5Ca0pOYA6bs/O3SkoPSrrmTC6ENcyYnc/XZN1LWCY5//vZJDIApo/5oeyL49bqLh8PIHTtxP4yVMWs1xjfyOHZkCPnNdw3PA9U1mfqHPzOMWf8JUP/awmcAAAAAAAAoV1dXl/7jP/5jRAD14sWL9b3vfU9vfOMbI54dAAAAAKBUO67fIXNj8Qu8O2+QWqo6GwKoAQAAAKBeEUINAHXi6v+4OvrQwZAjXX28p1ufIHywWv7ieK+m6v8Xx3u6ifpX1a3H1FYP3HqMp6ufoweqZeNRtVX/jUd5WvsC9a+mh1trqwcebvV0Ric9UE2PNddWDzzW7OmUbnoAAAAAADAzLFu2bGjB7VjC0Olt27Zp2bJlFTluGD4deve7312RcQHMXJlcRmf84GJ1Jie/QKM3IQ3EJW8yIdaDOlPSGX8mvfQ1KeFPfhyUzzPS2kulV+eVFjg5lqks8XFscPy1l0p33i65rBeqGuqPUH4YuaSSH0xQGEJbavmskYwlhLxWUH/QAwAAAAAAoBy/+c1vlE6nhx6Q7Lqu7rrrLh6SDAAAAAB1yF5vRwVRv3KDNL/K8xg3gBoAAAAAUNMIoQaAOnHrFbfq23/xbak16plI6pRufTI2clUKptVNT8b0fztzNVP/m6h/1V29Pab/uTenfQujnom0YG8wH3qgeta+GNP/3JXTq4ujnom0dFcwH+pfXWd0xXTukzndszzqmUjnPhnMhx6orlN6Yrp4a053nRT1TKSLtwbzoQcAAACAOubyUBmgUBgyXan9ShEGUBtjdMEFF+i0006r2NgAZqZELKH/cfL/0E0P3DSlcaYSQC0Fwbf/4zECqKPgWunKP0h3HxPUwWhqgcLlMgqO25kK5kEAcXVRf0hST1Jac7m0c57UnJa6kuX1QRhCW+57JKklHRx3zeXSpjukpnQZg6AiqD/oAQAAAAAAUK5nnnlm6PfGGF1yySUEUAMAAABAHcsPon7pBqna8RMTBlBX8F5rAAAAAEDlEUINAHXEPnKOzGn3RRtE3CnZ/ytWE0bA/qMrc50Xff3/0VV1l7IitPebruZd5+lghD0wtzOYBz1Qfa/c4qrlOk/dEda/uTOYB/WPxi/+n6uT3+tp65HRzeGkF4N50APR+FG7q9PneNqyLLo5rHw+mAc9AAAAANQ5x4l6BkDNCQOhi8kPnh5vv8mw1uqkk07SrbfeWtFxAcxMnu/p2Ve3ak5G6k1EN485GenZ+UGYNZeNq8sz0u0nS405qTvC54o05oJ5EERcXdQfnpHWXip1LJnaOFMtW8eSYB533k4PVBP1Bz0AAAAAoOIWVjuiCEAUDhw4ICm4Nm2M0XnnnRfxjAAAAAAAU2Wvt3rBGC2u8nEJoAYAAACA+scKcwCoI+1LOnVY3Eh9EU2gTzosJrUfH9HxZ7n25VaHxSSlI5pAerD+yznxG5X25VbNEfdAMz0QmfblVnMjrv9c6h+p9uVWXa2SiagHTFrqaqUHotS+3Gr3AsmNqAfctLR7AT0AAAAA1DVjggBqQqiBUay1Y36Vul+5X8uXL9ff/u3f6sEHH9TSpUsj+pMDqCeu42pd73K1pKVkLpo5JHNSS1pat4XQwSi4NvjfvjErNWSr/7hAq+C4jVl6IArUH2EPOFYaiEndSamyj0gZm1FwvIFYcHx6oPqoP+gBAAAAABWViPBJhwCqas6cOSNeL1kyxSdcAQAAAACiZ4yOqvIhCaAGAAAAgJkhFvUEZhLP87R//3719/dLko488siIZwRgJvF8TxuO2CtfVkt96dU+SY1VnECftNSXfCNtWCmtfs7ItdVaxgLPWG1Y6cs30tKs9KokJas4gXRw3KD+Vqufcah/ldEDsxv1R34PLMlKOyXZKvaASQfHpQeik98Dh2Sl3ZK8KvaAmw6OSw8AAAAAdcLzRm8Lg6cJoQZGufXWW8f8nrVW69atkzFG1lodeeSRuvHGGyd1nFgspnnz5qm1tVUnn3yyWltbJztlALNY26/36YG90lfepCARtpqn6ayUdaW1HVLbE1U8LkZoe0J64DDpK2dLxkrVPFVrrNQfl657kB6ICvVHfg9IwbWbavBNEDzbnZSufYgeiAr1Bz0AAAAAoGL+7M+ingGAKjnqqJGxZAcPHoxoJgAAAACAijDDF4rjkrJVOCQB1AAAAAAwcxBCPQWPPfaY7rzzTt17773asmWLuru7h75njFEulxvzvd3d3fLyAgDmzp2rBE8QBzAO13G10VyuNTtvVsdiTSqI2mh4EWJZp/AGA6glacVOaWM7AdTV5lqjjXe6WnOpp45DbHVDaAfDZyVpxe5gHtS/+uiB2Y36o7AHqhlEHQZQS/RAlAp7oJpB1GEAtUQPAAAAAHUvDJ82/EwP5LvqqqvG/f66deskBdeA58+fP+H+ADCd2vf9WhtPlZrSUleqygc3UtOAtHGF9IaXCR+MSvvxQQ2i6AFrpGZ6IFLUH1H2gG+kFnogUtQf9AAAAACAKUskggDq178+6pkAqJIzzzxTUnC9W5K2b98e5XQAAAAAAFNRZB3AdAdRE0ANAAAAADMLIdST8Mgjj+iv//qv9eMf/3homy3zH8Qf+chHdNtttw29vvbaa/XNb36zYnMEMDM1xeZo0x1Gay636lgstTpSp1WQLj2BMIBa4a+lBlHb4DjygwDqTXdITVkjxQgpqbamrNGmdqM1bbnqhdAWhM9uao8F9af8kaAHZjfqj8IeqEYQdWEANT0QrcIeqEYQdWEANT0AAAAA1DnfD4KoXTfqmQB1p9zrwQAwHTzf04bDdskzUn98+AHE1WJscNxUTtrwOler3/9lucap3gQgz/ra0H+rPP8l9dt+GeXKewD1FBlJ/Q0xpRobtGHtEVrdcDU9UEXUH/TA7Eb9QQ8AAAAAKMuePdLTTw+/TqWkCy+Mbj4AInPEEUfozDPP1MMPPyxJ+vGPf6wbb7wx4lkBAAAAAMpWJIA6NF1B1ARQAwAAAMDMQwh1mf7pn/5JH/3oR5XJZIYWGhtjhp4CLJW2APl//s//qdtuu21o3//4j//QTTfdpGRyOlMEAdS9bFZNGaNNd0irrgqCqB1J/gRB1PkB1EPbSgmitsH43UlpWedgAHVawcZxTlBi+jRljTbdGdeaP85OfwhtYfjsnXFCJ2sAPTC7UX8U9sB0BlGPCqCmB2pCYQ9MZxD1qABqegAAAACYOTi/C5TlqquuGvr9kUceGeFMAMx2ruPqG3entPI9GWWdwVN1VQqiNjY4XtaRco70jZ/G5b59yfQfGCO4kr6R+zOtfOmvlbWejIwkW5UASiPJyCgrTzkjfePwP5Mbm1+FIyNE/VGpHjAyZb+LHoge9Qc9AAAAAKBsXV3Dv0+lIpsGgOh94hOf0JVXXilJevjhh3XPPffo3HPPjXhWAAAAAICSlXD/f6WDqAmgBgAAAICZiRDqMnzhC1/Q9ddfPyJ8WhoZOm1KXLR/8skn6/zzz9fPf/5zSVJ3d7fuuusutbW1VXjWAGaUl16SEgltPjqtXXOkuB8s8i03gHroexMFUQfrVBT3pV1zpc1HS21PDH6PE4KRaUpLm9pjWtOWU8chVo1G6puG4zQO9tWK3Uab2mNqykgTxJajSgp7oMVKXdNwnJbBctMDtYX6o7AHmqepB5rpgZpV2APzpqkH5tEDAAAAwMziOMO/5/wuUJZbb7016ikAgCTJ8z196Pw+uf7wteJqBFGHAdRScFzXlz709ozu7O+Ta5xx34vK8qyvD+3/llxrFJerrKoTRBwGT0pSXK5ca/ShXd/SnfOvoweqiPqjUj0w2fBZiR6IEvUHPQAAAACgLJmM5HnDrz0vuE7MA4uBWemKK67Qv/3bv+muu+6SJF177bX67W9/q0WLFkU8MwAAAADAhEo8n1PJAOpwvDGDqFmPAAAAAAB1ixDqEv3nf/7nUAB1fvj0a17zGl100UU6+uij9bWvfU07duwoecw1a9bo5z//+dB4P/3pTwmhBjC+ffvUfrKr9edYWSM1D0h75oy9+3gB1EP7TBBEHR7HGmn9xcG2tic5IRi1pkwQBnnq+7PqS0zPMfoS0qJ+DYZOcqNhrQl74C1/mtWjhxTfx5QYODDWfl0p6cjd9EAtqmT9Nfj3QCHqX9v4DEApPVCK8QJq6AEAAABghnIcFhYDAFCnXMfVum0pbVl4UC39UlfD4EOLqyTuSy39UsxK6x515c7dUr2DQ5LkSlqXXKotTc+qRXF1Ob6y0xxALA1fTorLqMWPKyZP6/Yvlfs8PVBN1B/0wOxG/TFWD1QLPQAAAADUmYEB6cCB4deJhPTCC1JDgzR/vhQfM0IIwAz13e9+V6tWrdKWLVu0fft2nXfeedq0aZNOPPHEqKcGAAAAABhLRAHU+eOOOotEADUAAAAA1DVCqEvQ19enD3/4w0MB1NZaNTU16etf/7re8573DO337W9/u6wQ6ra2Nn3wgx+U7/uy1mrz5s3TMX0AM0h786tav7Jfvg0W+OxvGDs8Whr8nhk/iNqOE0AdjrG/QVrYJ/lhELWxanuGE4NR++xbcnqheXqP8UJzcJy//zk/MtSiHx7n6YkF4+xQapbQOPs9sSA4ztqtbjlTQxVUqv5mnL8HqH9t4zMAE/ZAqegBAAAAYHYwJgiglrjxEwCAOta2s1W666DWXxwEQnc2SJlpPn1njRT3hgOob75LanspIb1peo+L4trSR0s90vqmX6nFT2qv01+V4xpZtfgpxeTo5p43B/NA1VF/0AOzG/VHYQ/scwaUm+ZjWgUB2C1+kh4AAAAA6p21Ul9fEFB92GFRzwZAlc2bN0+//OUv9d73vld33nmntm7dqjPPPFPvfe97tW7dOp155plynCo+/RQAAAAAML6IA6jzxx8KomYdAgAAAADUPRIlS/AP//AP2rVr11AA9bx583Tffffp1FNPndK48+fP1wknnKCtW7dKkp577jn19PSoqampEtMGMMN4vqcNh+2WLysraW+jlCvhvo7CIOqkJ6UHFyFPFEAdyjnB8cIg6g2nSau3G7m21HRLVNpHz8/qptdV5wTtTa+3kvH095tHPaMQEdp4oqdr3umP+zlQaoeMt1/Oka75I18yjtY+TgBpraD+oAdQSg+UYqI+oQcAAACAGYSFggAAzAy+r7Yngt9ed3F1D+2EAdRPSGrwpdx0Rx5iLG25IyTvjbqm9T55VTqmJykjT9/oPFttA0dI0x55ibFQf9ADsxv1R9gD72+9X17JdwZMjSerrHx6AAAAAKgnudzIc7j514t9X9q/v/pzAhCZ8847b8TrZDKpTCajgYEB3XLLLbrlllvU2Nioo446Sq2trYrHJ7eGzBijzZs3V2LKAAAAADC71UgAdegZSccRQA0AAAAAMwIh1CX4zne+MxRAbYzR3/3d3005gDp0xhln6A9/+MPQ623btumss86qyNgAZhbXcbVxz1t0WaJd9x5VWgB1KAyibhmQUjlpICZ1pUoPp5SGg6hXPS9tvNORa1yJDOpIfPTcjG56nV/VYwbHy+nv70lU9bgobuMJOV1zcU5ZJwiTn07WSFlHuuadOckYrd3Gj49Ro/6gB0APAAAAAChb4U2oBFIDAFC/9u2TJJ2/XVpyUNo1V8GF3+k8V2iD68VLDgbHlST190u///00HhQT6Tu8UwfnZ6p6zIMmo77tT0k79lT1uBiN+oMemN2oP7S0W1qZkxm8lWs6l/qawS/lctIzz0iv0gMAAABAXchmg69QLCb19koLF0pHHCG5bnRzA1B19957r0yRALNw3bQk9fb26vHHHy+6XynC9dcAAAAAgCmqsQDqVyS95gZJNxrZ6wmiBgAAAIB6R3rUBHbu3KmtW7cOXfw88sgj9b73va9i45944okjXj/77LOEUAMY22GHaffB8gKohxSey5vEQuScI+1u1OBJS24KicJHz83opjO9SI590+s8yWQJoo7YxhNyuuai7FDw6HSfpg9D7LOOdM3FWQJII0b9QQ+AHgAAAABQESz6AwCgfqXT6klKay6Xds6T4p6Unu5TdkaK54Ljrblc2nSH1JSW9OKL03xgjGXj8rSuWdmnal859iRds/JFad9erX0yWeWjI0T9kd8DRtN/vUiDx6EHagP1R/uxGa0/qU/JrNTsS93J4eu6FWeDYZvTUtLztf6kF6S9jWp7lvvHAAAAgJpnreTlnUFyHKmzU0ompde8RnrTm6KbG4BIFYZFExwNAAAAADWkxgKod0ladsPwa0MQNQAAAADUPZKjJvD73/9+6PfGGF100UVynMmkvxbX2to64nVXV1fFxgYws3i+p/Pn3KE/zJGMDUIHS2UGF4N0J6WBmJR2B9ecTGKcPyyWzv8TTw9818gt582Yso+uGtBNZ+QincNNZ+YkI/39valI5zFbbTw+q2suzFQteDQ0IoD0okwQQPpEvEpHR4j6gx4APQAAAACgIoyRXDfqWQAAgEnqSVituVzqWCL1JKoQQD0oHQuO17EkL4jaspgkChuXp3XN2/qDc8VVPrbV4Lnit/VJ1hJCGgHqj/wekIJ7eTTN141MeBzRA1Gj/mg/NqP1b+2XP3jbXsozymSteqcrE9pIDZngOJLkG2n9W4MeIIgaAAAAqHHWBl8h35dyueDrscekBQuimxuAyNjBzwXLNR4AAAAAqD01FkC9V9IRN4zeThA1AAAAANQ3QqgnsHv3bknDT/dduXJlRcdvaWmRNPy04AMHDlR0fAAzi+3rlxrLC5AOA6iLfm+S43CfSfX1u56+cVq0AdShb5yW05fu99TgEVRTTRnH18fOTVc9eDSUH0D6sXPTevdTrhJ+5R7MgfFRf9ADoAcAAAAAVITrlnxzKgAAqD2e72ntpcMB1NMWNjiG8HgdS6S1l0p3/sTy4OIqyzi+PnbOwFAAcbX/57dGkh08V3zOgN79dJxzxVVE/ZHfA6FqXDcKrxPlBxHTA9VH/eEZqw0nZYYCqCVpwLXqjwf39U1HLxhJ/XEp4dsRQdQbTspo9XNxfhYEAAAA6pXnSVu3Rj0LAFV0zjnnDK1hBgAAAADUr2oFUO+XdOgNY3+fIGoAAAAAqF+EUE9g7969I17Pnz+/ouOn0+kRrx2Hm/IBFOc6rn5xm6NVq4NFvaUESBcGUDenpVROGohJ3cnBfcocZ8VO6Rf/JrlxbjyppgbP1T/8PKE/e0em6qGT+Yykf/h5ggDqCCR8R1+7J6mrL0orG9F/flZSzEpfuyfJQsIqo/6gB0APAAAAAJgSY6QYlwUBAKh3ruNq3Rbp3mXVD6AO9SaCa4brtkhu1otmErNYQtLX7knofRellYvoNK01kusH80hkfEl+NBOZhag/wh645sLqP7g0P4g4Tg9EgvrDlbTxv5Jac8mAOhb5GnDt8D2AVlKJPVFqYLXRcPh4d1JSOgiiXrHH0cb/SvKzIAAAAFAPcrnh37uDa0DCa8c9PZIlKAiYLe69996opwAAAAAAGE8JDw6qVgB1l6QlN0y83+E3Hq4d1++Y5tkAAAAAACqN1eYTSCaTI14PDAxUdPz9+/dLkqy1MsZowYIFFR0fwMzStPeA7v1XadVVQRB1OcIAamn41+7k2PsXs2KndO+/Sk1pSfHy3oupWzjgqHlA6kpFN4fmgWAeiEZjzmhuRuqMsAfmZoJ5oPqoP+gB0AMAAAAAAAAAHjhM6o34Wm1vPJhH26s8uDYKjb6veRGfK56XkRp9dzi4BlVD/bH2aVdyHF39jv6qP7g0fGDpt37WoLVPJ4JEXFQV9UeTJ226a45WXX5QHYtGhsUZG4STj8fk/TpR1Jwp2KE7KS3bY7Tprjlq8gw9AAAAANQ6a0c/qDied3K5hGAjAAAAAAAAVEGJ52niqkwQ9Xjj9Eg65IbSxiGAGgAAAADqEyHUE1i0aNGI13v37q3o+Fu3bh3xmhBqAOPK5dSUC4Kg3/I+6dEJgqjt4GqRlrwA6lD4uis58eITa6RT8gOoUXWesdpwSlYNnpEdsOqOYEFp84DU4BltOCWr1c+6cidqHFRU2AMpz6hlwEYSRt4yIKXogUhQf9ADoAcAAAAAAAAAZHIZfXulhtMDo2Kkb6+UPn9PtxJ+xHOZZTwjbVge/L6UoMnpEAZSbljep9VbJHeiBEtUDPVHqLFHmpuWOhuqf+y5aamxp1/q7q/+wSGJ+kPafLy0q0GK+1LWGd5eagB1/uvxPsatGRlEHfelXQ2+Ni/oUdsTZU4aAAAAQG04eFByHKm5WVq6NOrZAAAAAAAAoMwHhU01iDqe92vhOAckLbyhtHHs9dw0BAAAAAD1ypl4l9lt8eLFkiQz+I/2LVu2VHT8e++9d2hsSTr22GMrOj6AmeuQPilWyoLeic45lnBOMuYHx0N0XGu08UcprdjjKOVJbpUXc7u+lPKkFXscbfxRitDJCOT3QNIr8b//Cor5UpIeiAz1Bz0AegAAAAAAAABAIpbQZ345flhgNVhJn/mlCKCOgGulKx+T+uLBpf5qn6kNj9kXD+ZBAHF1UX9IUvvx0vqLg3s4Wgaqe+zggaXB8duPr+6xEaD+CHvAGqm1PwiGloLXY30sj/d3xnjfsxoOto77wfGsoQcAAACAuuf7Umen9JrXRD0TAAAAAACA2a3MAOpQfOJdSnpf/us+SQtuKG0cAqgBAAAAoL7Fop5ArXvd614n13Xl+76stdq8ebOstSOCoyfrV7/6lZ566qmhsebPn6+TTz55yuMCmNl6ktKay6Wth0gL+6S9jVJujEcKGEnGSt3J4HUqN/y9gViw3dhgx7FO88X84DhbDwmOu+kOqSmtSZ/QxOQ1ZY1u+WlKK9/bq2rnPlojeY50y09Taso61V/NCkkje8A3QRmqcYreSPLpgchRf9ADoAcAAAAATBrncwEAmBEyuYz+5q0KTgxG+de7lf7mrdIHHyaIuto8I91+itTSL3U1SFlH417vr6Tw/oO4Hxz/9lOkK7cSRFxN1B+ekTasDK7bSFJDTtKA1JWa/mO3DAweT8HxN6yUVj9JD1QT9UdhDxgFwdB7G6XcGD8bFtvs+sG13yE2OHVUrJxWQZ1b+4fHogcAAACAGeLuu6OeAQAAAAAAwOw1xfv745KyZe4/1vZuSS03lDYOAdQAAAAAUP/GiC1FqLm5Wa9//etlbfCP4FdeeUXt7e0VGfuzn/2sJA2FWq9ataoi4wKYucIA6o4lwWujICA6VmRhb7gAMNSdDIKnpeEA6qF9bfEFJ2EAdfi9jiXB8XuSkqzlq8pfPXFf175jQDHfKO5LTpXOzzqDC0ljvtG17xhQT9yP/H+L2fpV2ANj/bdbSfmLiekB6k/96QF6gB6gB/jiiy+++OKLL7744qtOvibiutP8rwkAADAdErGEvna3UdKXqpI6W4yVkr70tZ8QQB0F10obvyet3BkEAccnWYPJnlsOA4hX7gzmQfBkdVF/hD2wYufwtsL7g0pRbg8UXpNaQQ9EgvqjWA+kY8Oh1IWK9UcyFwSKJ3MF+9qxe8M3wXFC9AAAAAAwAxgj9fREPQsAAAAAAIDZaYoB1KGxgqXL3a+5lPUHEgHUAAAAADBDEEJdgssuu0ySZIyRtVZ/+Zd/qQMHDkxpzBtuuEH33nuvTN6JgauvvnpKYwKY2Tzf09pLhwOoQ8WCqMdaYNSdlLpSIwOoh95TsJCkMIA61LFEWnup5JW7gglT4hmrte8cUMciX0ZS60B1gqjDAOrWASMjqWORr7XvHKD+ERirB6YzgDQ/eJQeiBb1Bz0AegAAAABARTlcIgQAoF6t3b1E37ozCIKOQtKXvnWntPYP0RwfUlNa2nRHEATckC0/j9wU/Foqq+B4K3cGx29KlzkAKoL6I+yBFTuHH0JfThBxuT0QXovqTgbHW0EPRIr6o1gPSKPvISvWFw1ZKekF+ya94PWI9xS59hyOSw8AAAAAM4QxwyFHvk8QNQAAAAAAQLVVKIA6NFHA9IRB1YMB1BMFTBNADQAAAAAzByvMS/Dnf/7nWrp06dDrHTt26OKLL1bPJG608H1ff/mXf6nPf/7zQ6HWxhitWLFCF198cSWnDWCGcR1X6zqcoqHDYRC1YydeWJR2x/5euJDEscUDqDX4vXVbJNdOV9whinGt0brH4kP1LyWIuuQFY2NsLwygDreteyxO/SMwXg+MFUA6lR4oFjwq0QNRof6gBzCZHiiFET0AAAAAzDquSwg1AAD1rLlZa/8gffDBaA7/wQcJoK4FTWnpTzqk/njpwaPS6PPB5ZzpNTY43p90EDwZNeqPsAf68lYKlhJEXG4PFF6D6qMHagL1R7EekDTiWvKIfrBSQ0ZKeIN1HfxKeMH2/Drn173wnjR6AAAAAAAAAAAAAACmoMIB1KGxgqZLDaAeejlG0DQB1AAAAAAws8SinkA9SKVSuvHGG/WBD3xgKDj6N7/5jU466SR96Utf0hVXXKFEIjHuGHv27NH3vvc9feUrX9Fzzz03FD4tScYYffnLX67GHwVAnWvbMVe6q0frL5b8gvOL6cFP9HIWGBYTvj8dk1K5kd9zrHTzXVLbE5KaCCmptrbnEpJjtP7cAflmMHwybdSZtMo6I3siXExUSj6kscEb8ltnKIA6PTJ08uZ7Ump7Ls5jLCIyUQ/YCvaAoQdqznTVXza4ZkX9ax+fASi3B6SRdR0LPQAAAADMQMaMvCnUmCB42phpu3kVAABUSVOT2o+X7jhZahmQulLVO3TLQHDct744eM0YkWk/XvrU26WWfqmrQco4E18TGOvbpZxPNlZK+MHxPvV2qTFHD0Sp3PqP1xrUvz4V9kB28LqN0di1nMxnQP574vRAzSi3/hN9BpTSM9S/tozVA2OZk5VifvHvJXzJzUi9498CTQ8AAAAAAAAAAAAAwFRM8z38cUnZgtfjssXvFrDXW5kbzYjXAAAAAICZhRDqEr3//e/XAw88oA0bNgwFUb/88su66qqr9OEPf1inn366XnzxRdm8f2S/5z3v0f79+/XCCy/oqaeekqSh74djGGP06U9/Wm9/+9sj+XMBqDPHH6+2Bx+UpBFB1AMxqTtZ2UOF44VB1CMCqB1HmiB8H9Oj7cWEdH9M68/pzQuflPam7FA/hMGj5SgMn3RsGDoZHMSx0s33z1Hbi0mJ0keKHpjdqD/oAZTTAyUF0Q+iBwAAAIAZxnEkzxt+HYZQ578GAAB1qf3wg1q/LLhW3JCTVKUg6paB4Hi+Ca5VS4QPRqX9+OH7BRxNHERcyk9+xR5WmP+9MIDYET0QtUnV32rCRhgzvJb615yxeqDw4eWhqXwG+Gb4Ieb0QG2YTP0num44VhA59a9NpfSAlSQT1L45HfxarD9CSU+KpYP7BW3eZwE9AAAAAMxA1g4/uLjwwcYA6o7ruqO2GWOUy+VK2nc6jHV8AAAAAJjVqnTvfhhEPdkA6qFvX291+I2Ha8f1Oyo0MwAAAABALXEm3gWhb37zm7rooouGwqPDIOmenh798pe/VFdX19C+1lpt2rRJd999t5588klZa0e8L3TllVfqc5/7XAR/GgB16Z3vlBQs4Lj5rmCRx3QEUIe6k8H4IwKoJSlVhVXMGFPbc0ndfN8cOYPndtOuphQ8GjJ2eGGZb4JxpcH63zdHbc9NU6OhbPTA7Eb9QQ+AHgAAAAAwZVVaXAgAACrL8z1taHhiRIhgQ05qHpje4zYPBlCHfCNtWCl5PNei6rzB/+3ze8CR1NQ/RoCwip8zdv0i++adI85nB8fPv8mMHogG9cd4PVCkrBXpAV/0QK2g/ijn7wErqSErpQoyn4yVTt49ujdSuWD/YuPQAwAAAMAMEoZPA5gRwjXLhV/l7DsdXwAAAACAPFU+FzPVAOoQAdQAAAAAMHPFop5APYnFYvqv//ov3XDDDfqbv/kb+b4/IlC68AJp+NoUnBAIw6hvuOEGffazn53+iQOYOU49VYrFpFxObU9IDxwmfeXs6T1kd1K69qG8AGqJgJIaEIZAvv/cg+pOBH/fOBW4Tyd/UVl3wsqkpX+5Zy6hkzWIHpjdqD/oAdADAAAAACbNcYLzzAAAoO64jquNd/hac7nUsSTY5kvqTZQ+RhhIaU3x0NpiehNBMGEYPrhip7Txe5IrUzyxEtPGlbTxe3ZUD3Q2qmgtrEZvb8hKcV/KOlJ/3qqjMXvCBOMv6KMHojbp+ucVlvrXNz4DZrfJ1t/wGTBjjNUDPQ2j9zU2qHHCH+4BI+m9j0pnviI9dKj0byuG6z4QC/YPf07M19MgtfTTAwAAAEDdKRYoRAA1MOOMt755vH2nAwHUAAAAAFCg1s7F8O82AAAAAICG7wlGiYwxuvHGG3X//ffroosuGvGEXmNM0S9p5JOCV61apfvvv58AagDle/3rpdZWSVL78dLGFVJzenoP2ZwOjtN+fN7G+ITPvwMAAAAAAAAA1BrH4SGDAADUuaa0tOmOIPzPl7SvUcqVePdPGEAtjXwg3URyTnAcX8FxN90RzAPRaMqYsnogf+lQY1ZKeEH9E17wWpo4lLxoD2RqbJHULDGp+g+Waqz6D+03BupfW/gMmN0mU3/LZ8CMUtgDXQ1BqPhYP+d1J6WMOxhA3REEUEvBr+/tCLan3WA/qfg4WSc4Dj0AAAAAzDCEDgEzQv665XL2nY4vAAAAAEAeAqgBAAAAADUqFvUE6tUb3/hG/ehHP9LWrVt1xx136Je//KUeeOABDQwMjNrXGKPTTjtNF1xwgd71rnfpTW96UwQzBjAjHHqo9Na3qv2JO7X+7Tn5Rkrlgm+FC0EqqTkdjO8baf3Fwba251NSchoOhrK0LxvQ+rN7lfSNmjNSd6LyJ32bM0ZJ32j9Ob2SGwtqj5pBD8xu1B/0AOgBAAAAAGUxhocLAgAwgzSlpVt+IJ143eQCqIe22eAbpZxdzDlSXzw4LgHU0WvKGN3yA1tyD1hJSU+KeyO3xz0p4QThkxMZ0QMET0aK+oMemN2oP8IeWPnBICA6ZCSpyING+uLSRU8PB1CHznxFeqZV+vFrRm4vNk7WkTyHHgAAAABmnFoLQwJQluuvv35a9gUAAAAATFGtnXMhgBoAAAAAkIcQ6ik66aSTdNJJJ0mSfN/Xvn37tG/fPnV2dqqhoUELFy7UokWLlCSwFUCFtK9+rdYv8+XnneebjiDqMIA6NBREfZ+rtpcrdxyULwid7JY/eO455RmpwuGTzRkTjKvB2p/dLUmET9YIemB2o/6gB0APAAAAAChJ/s2rtXYjKwAAmJKepLT6f0i9idLfYyXJjAyitiUGUId6E8Fx7/1Xgqij1pOwZfWAkZRxpZg/MoQ06wbbjUrrheEesARQRoj6gx6Y3ag/ehJW164erKlfJIi6QGNW+s2R0nGdI4OoHzo02D4nM7qfCseJ+8Hxrl0tbbqDHgAAAABmDAKIgLpGCDUAAAAA1CDu2wcAAAAA1Dhn4l1QKsdxtGjRIh1//PF64xvfqNNOO02HH344AdQAKqZ9W7vW7/lX+TF31MnHVE5KemO8sUxJb2QAdcg30vpV/WpfNlCZA6FshaGToZRnKlt/b+QBwvBJah89emB2o/6gB0APAAAAAAAAALNbT1JadZXUsSR47ZSREWIVBE9L5QdQh8fpWBIcv4dbYSLTk7Bl9UD+2d6+eBA6KgW/9sUH97HFQyvzjeqBCj4YEaWbTP3D8Pmx6i/qX1f4DJjdpuUzQNS/nvQkrNZcHtTCSGrtDwKix9KclhJe8HPfv60Igqel4Nd/WxFsT3rBfmOJ+8FxjILjrrmcHgAAAABmBAKRAAAAAAAAKqsWz7fwEDIAAAAAQIFY1BMAAJTG8z1teGSDfOtL8+ZJXV3BNwZP+g3EpLQ78ThJb+L90m4w3qggamPkG2nDaw9q9TOOXFuDJ0FnsPZj0lp/du+o0ElJGnBtSfUvRdoNxhsrfFJeTm3Psao8CvTA7Eb9QQ+AHgAAAAAAAABmN8/3dN57h4MnJWmczMGi8oOoy+Fr+En3HUuk894r/e5blmvGVeYZO6oHJlwmZDUiXbQvLsWd4SDSsfYbbxh6IBrF6i8FAbNjlcEUNMhY9S9nDOofnbF6wLEqev0oDCC2JXwGmMH/yIt9phQGHdMD0Zhs/fNR//rmGau1l47sgTCIurNByjoj929OB/f/hdeRwyDqh5dKWw8ZWe/wPsHugsvA+QHUoY4l0tpLpTs30QMAAAAAAAAAAAAAIIkAagAAAABA3SCEGgDqhOu42njpRq25Y406dnZIDQ1Sf7+kICSwcAFIMeHCkoHY6AUjhcLvjwiiNkYr9rra+LN5LCCpMs9YbThhYMzQye5EZU8AdyeslFHR8MkNJwxo9fYEPVBl9MDsRv1BD4AeAAAAAAAAACCNDAD0CzdM84F9OxxEbaTBhTOcJ6wqI5m8yMhSQsXD7+fvVnhGueRx7PA49EAECuovTVy7Ytnixa4ojHeVobD2EvWPTJEekMap3xjfGHf/IiUttpkeiMAY9ZeKB8kXBlCHxqp/OWNQ/2i4Mlr3iNWWpXbEdeNiQdThfYKFrKQ/HFJ8/MIg6mIB1FIQTL7uESM3aEoAAAAAtapYyFAthiEBAAAAAADUu1o850IANQAAAABgDIRQA0AdaUo2adPlm4IgavuIlMlowGbLCqCWRi8YGcuIIOrBAOpNP5mnpnC1CqrGtUYbfzZPay48oI6F3tD26QidDBULnySEPDr0wOxG/UEPgB4AAAAAAAAA4DquNv+btOoqacsSTSr0zwwGyZYSOjz6zUEQ9cqd0uZ/k1w5BA9WmSujzbdZrXqvr0cWl1fDMES2ISMlfCnjSf2JwTDSEscJw4hP2yVtvs0hfLLK8uvfsbi88PBQYf2l0nogP4h6BfWPTGEPSOP3QWH9peI9UOo44bfpgWgUq780du2KhYePVf9w/1FjFAmhp/7RanvKSMZq/YV+0SDq/Q3SnGzxAOpShO/rjY8dQH3zT5zBeUzuGAAAAAAAoPo+97nPDf1+yZIl+sAHPlCxsf/5n/9ZO3fuHHr92c9+tmJjAwAAAEDNI4AaAAAAAFBnCKEGgDozFER9+2X6Xec96i7hkzw/gDpUbhD1Wbti2vRTAqij1JR1tOknw+GT0xk6GcoPnySEPHr0wOxG/UEPgB4AAAAAAAAA0JSWNv6ndPJ1kl/um/NCJI0G15qUuQbGUXD8prQkeRPsjenQ1C/94N+lE6+TDpTwwOp88VwQPioFv+ZyUqbMu8fmZoLjN/WX3YGogKZ+6d5vS295n/ToktLeE4bTNmZG1l8ZqS+hskLIT9kZHL8pTf2jEvbAqqukR5aUGESukSH00nAPhGH0pQaan7ZTuvdf6YGo5Ne/Y0l54eFj1V8qfZwV1L8mtD0uyZfWX6wRQdST+NFuTGGGff54jpVuvktqe4L6AwAAAABQb2644QaZwWC0FStWVDSE+hvf+IYeffTRodeEUAMAAACYNQigBgAAAADUIUKoAaAONSWb9CePObqnYeJFvcUCqEOlBlH3xaU/ecyoSUkpXuZkUVFNkjZtjmvVJfvUsWCMwlZYd8Jq2T5XmzbPV5MceiBi9MDsRv1BD4AeAAAAAFASxxl5A2nhDa61eMMrAAAoyY5TlumsP3p+ROBgyYzk2yBI2h98XS7fSGd9QHr8H6TDD0xiDpiynqR09R9L6Unc9ZWNSRk/CB/NOMHrcqVjwfH/8z/CMHJEYf7AcEBotZjB4yJ6TWnpB98tL4w+P4Q+VG4Y/dxMcFz+249WUzoIgi4ljD4MkM4PoA6VE0Y/FEL/r9S/VrQ9EfwaBlH7kroaBv9+H/xcGOuewfEMxIJ7Ce3geC39wc+OwwHUFfoDAAAAAIiGP/iPQ8eJdh4AImOnKYwsHNdwPwoAAACA2aIW//1DADUAAAAAoATcMQAAdaj99uv1KfNztWYcxf2x9xsvgDqUygX7jSXuS6390qfemlH7YawirgWbD8toV6M/bu0rKe5Luxp9bT4sU50DYkL0wOxWTv1NBa4VUf/aw2cAKtkDiYmfaUIPAAAAADOR60Y9AwAAMAmZXEYnvWe/DiSmMIgJggonE0AdOpCQTrouCDlEdXlGWnO5dN9RUmYSP9JZSf0JqTce/DqZS0kZNzj+msuD+aC6epLSZVdIvzmi/Pr1J4b/u804wetyWAXHveyKYB6IzmTC6LOx0Z/b5YbRhyH01L82HNInxUq5XjjBZ3UpH+UxPzgeakvbE0EwtOxwALU1wed1dzIIlC5HfgC1NcF4XQ3B+ARQAwAAADOMX6WbkAHMGoRPAwAAAJhVavHfQARQAwAAAABKxHIwAKgz7X/4f1r/yJfkmyBcdKwg6lICqENjBVGHAdRGwULk9eccVPtR/VOaP6amfdmA1p/dLavRtS88LdycMSWtOm3OjDzJnf+WuB8cx0paf3a32pcNTHLmqJTxeqBQYW2LsuPvRw/UlnLrX8olrDnjZMpS/9pT8c+ACfajB2pPOT1Qys+Crk8PAAAAALOO40jxeNSzAAAAk5T1slFPQZKUrcF1NLPFrjmTC6AOWUlZd3IB1KGMG8wD1UUIOaThIPL7j5JyjuSUWMiw/oVB5KX2gWOD491/FEHkUetJBv8Nbj1Emt8/foi0UXB/WX7tQ/lh9BONMb8/ON6ay6l9rTl/u7Tk4HAAtTS5IOrCAOpwnIwTjH/+9umYPQAAAIBIEUwEAAAAAABQPgKoAQAAAAB1jhBqAKgj7dvatf4HH5Lve0PbjJVaB8yIAMJyAqhDhUHU+QHUId8QPhilMHTSHyxKfgh5uAAoPD3cnDFKlbjiM+WZofDJ/HHC0EkzOCj1j954PVBosj2Qjx6oLdNV/4RXPICW+tcePgNQbg/ExgmozkcPAAAAALOI6xJADQBAHXMdV6+Z/5qopyFJek2n5LJ2Bag6QshntzCI/P6jpOzgnZ9+GWsbpxJEHh4nOxhETRB5NMIA6o4lgyHDKQ1dyysmP1C4WAh5/n5jMTY4jlVwXIKoa0fYD6/MG/1zWX4Q9UR/b6Td0QHUIdcG41N3AAAAYAYinAhAhXje8DrHWKzEJ2IBAAAAQD0igBoAAAAAMANwRQ8A6oTne9rwyAb5fb2jvmesVWu/1NkgNWYHA6gdR9b6snY4SNq10qrt0r1HDy8Esxp+IkEYXN0XHx1AHfJlteH4fq1+qUFu4aoTTBvPBP+7Fy4eNDYImdzTEJwctkZqzGns4FGrooVNeUYZz6o3/MnABOMWLlTzjah/RMbrgdaMo86kr+zg95qz44TPjtMDykrd8aDocTsyeDRED0SD+oMewGR64GCsyMVjegAAAACYvZIkBQEAMBPE/eC8YJSn54yV4t7E+2F6OLY2esBh/VIkqD/2NE4ugDoUBpFPhm+C2medYB6oLs9Iay8dDqDubAhqMVEf5F8e7E9IWU/KuSO/Px7fBMfpbAjuJ+tYEszjztt5IEWUwgDqLUukroagTkYj62kHN/TGpYaslCjyEOOMIw3EiwdQGwXjdjUEx1lzubTpDqkpPW1/LAAAAADV1twc9QwAzADd3d1Dv587d26EMwEAAACAaUQANQAAAABghiCEGgDqhOu42vjGr2jNz1eoY0HeNwZPDBpJ8/sHtzlhrLSRjA0WE1npxl9IFz0j/fg46a/Pz1s4knduMZUbDqMuZsUuaePdKblepiJ/LpTGlbTxJ41ac6GnjoXDK7p9WXUn7NAiUyOp35USrh0dQOppeGVZwYLCAdeq3x1ejGSs1J2waklLTl5S5Yq9rjb+pFFulvpX21g9IA0GkA4YdSatGnPjhM+O0wOSlMoZyUp9MavWtCkaRE8PRIP6gx7ApHqg8PqxlxdMQQ8AAAAAM1uxG0rTacl1pRiXBwFEY8+ePfr973+vZ599Vj09PYrH41qwYIFOPPFEnXnmmYrH41FPcYSdO3dq+/bteumll7R792719vYqm82qqalJzc3NWrZsmVauXKmmpqaop4pZxHVcfWbuRbpmx2PqTEa3gKRlQPrM/QRPRsG1wf/216wOwkCjQg9Eg/qjFnrAN0EQMT1Qfa6V1m2R/nuptL+xtADqUH4QdTkB1KH8IOoFfcE8qH90CgOow2D6Yg8pCIOo+xOSMiODqDPO4PYxHm4QPrA46xBEDQAAAMxINXZdBkB96unp0Y4dO4Zet7S0RDcZAAAAAJguBFADAAAAAGYQVpkDQB1pemSbNv28RWve1qWOBdlgY+HJwSInMI2VvrA5CKCWhn8dEURdghW7pE13GDXFPSnJXyHV1pR1tOkn87TmwgPqWOjJl1VX0g4tJHLyWqE7YaX8bMgweFSDv3oaCp8ccIMgaynolbAlso7UlRwOol6x19Wmn8xTU3hAVF1hD+QzMmpNWxWPDNW4PZAv5RklveLj0APRov6YqAfmp4PfFVVGD6S84uPQA9Gbag+Ei4SNlSw9AAAAAMxOnjfxPgBQYXfccYduuukm/frXv5Yd46b3efPm6YorrtAnP/lJvfa1r63yDKWuri796le/0q9//Wv97ne/02OPPaa9e/dO+D5jjE455RS9973v1Z/+6Z/qkEMOqcJspQ0bNuiaa64p+r3t27dr2bJlVZkHonH+846WHXDVlciVda23UoyVlnVJ52+v/rEROH97UIOuVHnX+yuFHogW9Qc9MLudv11afFDaObf0AOpQfhB1+LocYRD14oPUP0pjBVBL43wmBM8iHhFEHQZQ28HvF2MNQdQAAADAjHb++VHPAMAMsGHDBllrZYyRMUbLly+PekoAAAAAUFkEUAMAAAAAZhiSowCgnjz6aBA++PMWrdgXL35ysOAkZmEAdeiiZ4LtpsTzi0MB1BlDUEmEwvDJk/Y5IwKopWCxV/5iojBYekTwaCgMIM3fT8H78xephUHUJ+1zCJ2sEWEPrNg7MjnUl1VnMggVH2WCHsg34Abj+AVvIHi0NpRd/7DO1H/GGKsHAiUEUIfG6IGxxqEHasdke6DwZz5ji28faxx6AAAAAJhBPE/KZqOeBYBZ4OWXX9aqVav07ne/W7/61a/GDKCWpAMHDuhb3/qWTjnlFH3+858fd9/p8OUvf1mXXHKJvvzlL+uee+4pKYBakqy1evTRR/WJT3xCxx57rL72ta8pl8tN61x37Nihj33sY9N6DNQuz/e09sC39Uqjp2KXhKrBtdIr86S1l0peDa6vmek8E/xv/8o80QOzEPUHPTC75dffmWT9bd7XZDjUP1JhD4wVQD1RXcMg6t54XgD1BPvbwvvIBoOo6QEAAACgjrmudPbZ0hvfGPVMAFTQiy++OO5Xvkwmo5deemnC9xT72r59ux577DF9//vf15/92Z/pk5/8pIwxQ9d3V65cGcUfHwAAAACmBwHUAAAAAIAZKBb1BAAAZdi6VZKGgqjXnLtXHQuDBEkrqbNBasxZpQZXeDhW+lyRAOpQuP3684aDhwdiUl9cau0fjh9csVPa9J+DAdSSNM2L51GKkSesw/rZwW8NBUqWcV47fzGSbwoXrNXgCfJZLAwgXXPhAXUs9OTLDoWSdyeslJFSnglqWCx8NmQlZYNa+yYIIA5DybuSVi1pyZEheLTGlFP/OX3SgdQYA+UH0FL/ulLYA2NxrOTkJH+sHayUyAx/BoyFHqg9JfeANE7QdLD9nOelRw+jBwAAAIBZxx/zX4sAUBFPPfWUVq1apVdffbWs92UyGX32s5/Vtm3b9J3vfEeuW+xBXLXp4MGD+vjHP66f/exnam9vV0NDw7Qc55prrlF3d/e0jI3a5zqurny5VXcf96r8wWuCtoqX8czg+eSuBunKZ1NyX3dq9Q4OSZIr6cq+vbq7cbt8x8po8kGik2Ek+Y7U1Wh0Zd/Rcl+3sIpHB/UHPTC7UX/k90A278aucoLFraScW97+MsN3jmVdegAAAACoG729UlfX8OtYTDr3XOmYYyKbEoDps2zZMpkJwtHCoOht27Zp2bJlFTmutXbEcd/97ndXZFwAAAAAiBwB1AAAAACAGYoQagCoJ/v2Df22Keto0/cTWvNH/XpkcRBAnR9A2pgz+j/3JnTuM+lxh7zoaWl+2mj9RVZ9cak7GWzvbAiCqE/bKW26Q2rK5p0k5eRkZHrivtZceEBbF3hqTRvtT1plCvIXwsU/LWmjzoQNViAVBhEbBdslNWeMupJ21OIi30gJT2pNG21d4GnNhQcIoKwhYQDpZRf16P5Dc8ovS3fCyqSlf7lnri694MD4A3nSzffN0fvPPTgUQCwFnyddSau3vELwaC0qtf4fOOvA2CHUkmSlD94nfeNcS/3rzEQhxI4N/tu+4m0Hxg0Xdv1gv/Xn9Bbdj/Dh2lVKD7zrCek7J40/zrGd0rXP0gMAAAAAAKBy9u3bpwsuuKBoAPUZZ5yhd73rXTr66KPV39+vp556Sv/+7/+uV155ZcR+3/3ud3XIIYfo7//+76s065HmzJmj008/XcuXL9dxxx2nRYsWad68efI8Tz09PXrqqaf0m9/8Rg888MDQYu3QT3/6U7W1tenHP/7xhAu9y/XP//zP+tnPflbRMVFfPN/T7Qt3qjFngusBqn74pCQ1ZqXbTza68qiL5RrOHVaTZ33dbv9djUqqW+nBHqheF5jBLmh0k7p9ZUxXnk4PVBP1Bz0wu1F/FPaAFPRAuV0w2f3pAQAAAKDOvPKK9NRTw69TKQKogRmu8LrlVPcrRXg91BijCy64QKeddlrFxgYAAACAyBBADQAAAACYwQihBoB6ks2OeNmUMbrlB9LKP9OoANJrtzXqkmelgxo/hFqS2p40euAwq6+8Ke9QjpRzpFt+IDWlJeWvF+EEZSTCAOpiQZMTyg+izgugLkfHQoKoa9N0X8SowYskyEP9Z7OxQojDAOq255KSJgiilwb306gQYsKHa99EPfBM7IA0QQi1RA8AAAAAs1KMS4QAps8HPvABvfjiiyO2zZs3T7fddptWr149av8vfvGL+uIXv6gbbrhhxPabbrpJ73jHO3TRRRdN53QlSclkUuedd54uuuginX/++Tr11FPluhNfTHnmmWf0sY99TD/84Q9HbP/pT3+qW265RR/4wAcqNscXXnhBn/jEJ4ZeNzc3a8mSJXryyScrdgzUPtdxtW73YdqS2C9ZqStZ3eNbSS3pIIR63bNNcpdx7rDaXONonU7XFrtTktSlgaoe38qqRSk1KqF15nSCJ6uM+oMemN2oP4r1QLXu4rOD/58eAAAAAACgdo33gNz84OlKP0jXWquTTjpJt956a0XHBQAAAAAMIt8FAAAAAFBBrDAHgHoSj4942ZOwuvaPJNeX4v5wEHVzxmjja/p16o64zi1h3Xn7cquNp0rNaal7cKFy3A/GvXa1tOkOqSk//7oWn9w3w3nGau3bhwMmraw6k1Y5JwiazA+MNJKMDcLIR+THuhoOoc7TnbAyg9vzTz87Nggi70xataYlI6OOhZ7Wvv2A7ryrSa6lD6IUhpJvXeCpNW3UmbQjPgOSvtH6c3qDeo93XcENQkeTvlFzZrBvFHwGtKaNti4gfLwWlVr/gYmuKRnpm+eI+texwhDikQHUpSsMISZ8uH6M1wP/32snDiEP0QMAAADALOK6wRcATIO7775b3/ve90ZsSyQS+sUvfqEzzzyz6Hvi8biuv/56tbS06KMf/eiI733kIx/Rtm3bFJvm8Pwbb7xxUu877rjj9P3vf1/XXXedvvGNb4z43pe//OWKhVBba3XNNdfowIHh8z1f/epX9Z3vfIcQ6lmorX+Z9OM/6P2XRLOwxFjp5ruktm5HWtgRyRxmuzZJajpR1xz2sGyVf6yzkuR5uvnlE9XWk5VED1Qb9Qc9MLtRf9ADAAAAAErW2yv19Ay/Tqel3bulZFKaN09yuD8UmGlsiaFkpe5XiuOPP17r1q3Tddddp4aGhoqNCwAAAACRqbUsFQKoAQAAAAAVRgg1ANSTBQuGftsT97Xm7Rl1LJQcSc390t45UkNOSnlGvpE+uSqtL2WlP34iCBR1rIZCiH0ThFbfuVz69AVWvpFSOSnjSP3xYDxHUscSac3l0qb/tGrKDJ4wrbUTp7OAa43WbUtpy6JeecaOCJyVhoOowwDqMY1TuvwgaidvjGxeEHU4DwKooxUGEIeh5EZGremgTo05o5QX1Mc3CsLHPRUPojaS4pKfC16mPCNlpL6YVWvayAw2TMdCgohrSTn1722U5Gvs+rtS+J8z9a9fYQjx2rcf0LptqbIDqEPh+zacMKCNP6Pe9YQeAAAAAFASY4KFxNMc5Apgdvv85z8/atv1118/ZgB1vr/4i7/Qj370I919991D25555hn9+7//u9773vdWdJ6VZIzR3/3d3+muu+7SCy+8MLR9+/bteuihh0r6s0/kG9/4hjZv3jz0+m1ve5uuueYafec735ny2KhDc+ZICk79V/uSnc1/qC0/U0Sqz+R0wMlOvOM0OOBk1WdykRwbAeoPemB2o/7oM17EPeBFcmwAAAAAZSoWUJTLBV8DA9KiRdWfE4Bpc+utt475PWut1q1bJ2OMrLU68sgjJ/2Q3lgspnnz5qm1tVUnn3yyWltbJztlAAAAAKg9tZajQgA1AAAAAGAasCIMAOrJSSdJ998fBJC+rUsd833JBgt9uxuCX/tjUsK3SmWtrKRPv02aMxhEPWTwXONdr5E+fcFgUK2kgVgQQB2O19ofZJQGQdRWm/7TBEHUjY3S3LnV/JNDUtvuuep7OKlrzt6rYpmQTgXOIRtbPKc6DKL+1q8XqG33XInyR6Yn7mvNW/cE//3nVcvIaH5m6MUwqyCIOqcgjDjkBNuD8PHhN6R8o1RGoxqhY5GvNe/s16ZfLiKUNELl1j/mS9lx6i9Jrhl+E/WvX02S7rxvXvCQgLzP6KUH9mp/49jvO7JbI/5Ob9s9V6v3WLlJI00uxxgRKdYDx3r9asr0jvu+Y3sb6QEAAABgJurpGXnTqeNIiUR08wEwK2zdulX333//iG0LFy7UJz7xiZLH+NKXvjQihFoKAphrOYRakpLJpC6//HJ99atfHbH98ccfn3II9fbt2/XJT35y6PWcOXN0yy23TGlM1Lf2uTt03UVWfYngOk81g6iNlfoS0nUXS3qwT23VOzTybGx+QesOf1i5iNY85Yy07vCHJUlru4+KZhKzGPUHPTC7UX9sbH5R6w5/KOIeeEiStLb7yGgmAQAAAGDqPC+4pgxgxrjqqqvG/f66deskBQ/YnT9//oT7AwAAAMCsQwA1AAAAAGCWIIQaAOrJqacOB1AvyEoKnkDe2RCEBIenNbsTQTJ1KhcETP/FRcH2/CDqO48PtucHUHcPBg0aDYYO5wdRL5bWXOZr0386aiKsJBI9cV+3HdurRs9Rt+NP/AYFtQtPL7s2CKr2jeRN4hx4o+fotmN7dcmORkJoIzIcQJyZeOdBDb6RlZUx0oquhA7rc/Vyo6eOBRlZT0qW0Qwd8zNa89Y9BBFHZDL1n5dz1Cd/zPpLkqvSakn9a59bJGnkc48v0EtzvDHfc3z36H8SFhsH9aGwdm/pnK+PPxkf9z2X7h2dUk4PAAAAADNQrd0UC2BGuv3220dtu/rqq5Uo47rSGWecoTPOOEMPP/zw0LYHHnhA27dv19FHH12ReU6XY489dtS2V199dUpjWmt19dVXq7d3+EFjX/rSl7Rs2bIpjYv65fme/mnuk9rfOHx92FoVf8pspdnh68j7G6V/eu0Bre62cqtycIQy8vXRpY8qY6JdZJQxVh9d+qje3X2EEiVea8LUUX/QA7Mb9UfQAx010gMdenf34fQAAAAAUM/S6ahnAKDKLAFmAAAAAFBcrd1rz7/fAAAAAADTiBBqAKgjPaedkBdALVmjoQDqQmGgdLEg6vECqPONGUT965iaOG9ZVZ6xWntOED6b8owkR93x0oKoh8cIaj6Z0jVnHaU8o475Ga09Z4/u/MUhBFRWWX4PTIaV1LEgo1caXe1p8CbVB5LogYhQf5TCM7YidanUOAAAAAAAAJhdfvKTn4zadvnll5c9zuWXXz4ihDoc+0Mf+tCk51YNAwMDo7aVE8BdzM0336xf/vKXQ6/f/OY368Mf/vCUxkT9M/7wgwd9qToB1IPH8a2GYgaNtSx2iYAr6Yhsg/bGJnfNqJKOyDbItdLkrkBjMqg/6IHZjfqDHgAAAABQlsLwpMLzuX5561EA1Lerrrpq6PdHHnlkhDMBAAAAgBpDADUAAAAAYJYhhBoA6oTne1r720+oY6mRMoMB1Am/aAB1qFgQ9Q+WS5uPmTiAOjQqiHqJ0drzOgkgrTLXGq17eq62zN8v36hoELVvghqZcc4rT3TK2Q6GVDt5O4YB1Brcvu7pudQ+AoU9UMhK6kx6aswN16vYPrsbvKLfCw24Vn0xX61pt2hmAT0QDeqPifTEfa09Z4/WPT1XbS/OmfQ47Uf2asNrDmrjfYvUNN4PGQAAAAAAAECe3t5e/fd///eIbY2NjTr99NPLHustb3nLqG33339/zYdQ//73vx+17dhjj530eM8++6z+6q/+auh1KpXSt771LZlaW/CAqnIdVx/YsUSPHtOpnQ15idDVYiT50oJ+6QNbU3KP4Dxytbky+t97TtA1hz2sTjcb2Txavbj+954T5Bp6oJqoP+iB2Y36gx4AAAAAUJbCwKLC6wvxePXmAiByt956a9RTAAAAAIDaU2v3YxJADQAAAACoAu4ABoA64Tqu1p22Tk7jnJICqEPdySBoWgpCiu8+tvQA6lAYRG0lOTIEkEak7cU5uvl384cColOeUfNgE4Q1tQqCpCcjDKDOH68wgPrm382fUrgppqawB0JhAHHWSN1xXwPu5C4wDLhW3XFfWROMVzgKPRAt6o+x9MR9rXnrHj28IKP1Z+1X+5G9kxqn/cherT9rvx5ekNGat+5RT96DDgAAAAAAAIDxPPLII/L9keeTzjzzTMVi5T8X+3Wve53iBcEHDz/88JTmN92efvpptbe3j9iWSqV0zjnnTGo83/d19dVXq6+vb2jbjTfeqNe+9rVTmidmhrbupVq5y5Uf0R0/viOtfEVq256KZgJQW89hunb/0UUfKFoNRtK1+49WW89hEc1gdmvrOUzfevkMzfHdSI4/x3f1rZfPoP4RCnug1YsmKKrVi9MDEaL+oAcAAAAAVMy8eVHPAAAAAAAAIDoEUAMAAAAAZqnyV3wCACLTdkKb+gYO6Jr29ylbxjnNMGg6lRveVmoAdSgMov7Wr1sJII1Q+L/9+rP2yzdS0jNyYsOh0dJgkLSRTBnnmfMDqEOODcYPf0/4bG0o7IH8AOJQd9yXNBwgXoowgDgUBhG3pl0Z0QO1gvqjUBhA3TE/Iyn4+2D9Wfslqax6hQHU4d8nHfODIOpNv1ykplKeegEAAAAAAIBZ7Yknnhi17bjjjpvUWIlEQocffri2b98+tO3ZZ59VLpebVKj1dHvuued0ySWXaGBgYMT2q6++Wi0tLZMa86abbtL9998/9PrMM8/Uxz/+8alMEzPIR094UT9akJt4x2n0o9dKHx3o1d8fOBDpPGar9vm79C+t2yfecRr9S+t2vWF/g9r2L450HrNWvD/SEHL190v89x+ptgNN+mV8qW5a+mLVj/3e3UvV9nKTJHogKm0HmtSXXq73HveHEfcLTTfHSjc/t1xte6l/1MIeeN9xW5Ur5waxKYpZQw8AAAAA9aSvT8q/duH7wTmdZFJavDj4FQAAAAAAYDYigBoAAAAAMIvV3gpNAMCYetI9uu3x76oxMUfd2YNlvTc/iLrcAOpQY87otmP7dMmOOQRSRigMFf3wG/Zrf9KTPxg4bYsEUZeiWAC1sUGQaWfS04K0S/hsjSnsgWKh9GEQcSkKA4hDWXqgJpVT/1LWGg64Vj3x0TtS/9pXGEAdyg+iLkVhAHWIIGoAAAAAAACU6vnnnx+17aijjpr0eEceeeSIEGrP8/Tiiy/qmGOOmfSYlZROp7Vlyxbdfvvt+qd/+qdRAdRHH320vvSlL01q7Keeekqf+cxnhl7H43Ft2LBBrutOac6YGfoz/frHBc9EPQ1J0j+e0qcvPTVPDYpHPZVZxZOvLx71e3XGsqOu8VaLldQZy+qLR72o1Vout8RrkqiM9rk7dM3SbTroeJEc/6Dj6ZrXbJNenae2g4dHMgdIG5ue19eXvhTJsb++9CW9Todqbc+ySI4PqcfJ6qtHvDziPqFqsEb66hEv6xItV5PP3/9R6nGyuu3QfZpn4+oymar8TGAkzbNx3XboPnoAAAAAqCcH89YdxWJB8HQsFjxkLJWKbl4AAAAAAABRIYAaAAAAADDLEUINAHXC8z2t/d5adezsUMpJSOnyg6S7k0EAdXoSa9Sb01LKN+qYn9Hac/bozl8cIrfaq5kw5PxXG7S4z9XOVLCw1Gh0kHSpp5uL7RdWNmukxX2uzn+1YXITxbQp7IFiuuO+YlZyxmmGrCMNuKMDqIe+Tw/UpFLr35gb/3PaMyoaQB2i/rVrrADqUBhE3fZCgw4ZGPuffQ8uTOu7x/SNCqAOEUQNAAAAAACAUuzcuXPUtiOOOGLS4xV7765du6oaQv3zn/9cn/jEJ0Zsy+VyOnDggF555RXlcrmi73vNa16jn/3sZ2pubi77mL7v633ve5/6+/uHtn3mM5/RKaecUvZYteYf//Ef9fWvf33aj/Pss89O+zGilIgltNRr1Etub9RT0dI+V4mWBSr1oaioFF+ZWOnXgqeLlZSJSWppET1QPZ58fX7BNnU6xa8PVUunk9HnF2/T6tiJhJBHYGPqKV3d/KCiiqLPyurqpQ9KjY1aO/DaSOYwm/WYjFbN/746Yl0yg3cLVSuA2MioI9WlVUffq3v3v0tNNlGFI6NQj8loTcvd6oh1K6WYGq2vXlP83yaV1GhjSimmjoZurTnqQW3quoAeAAAAAGpdNivt3z/8Oh6XEoM/xw8MSL3Rn2cGAAAAAACoKgKoAQAAAAAghBoA6oXruFp32jpteXWL/AMHlPIdKe2XHUQ96QDqnCT5chxX656eSwB1hMLg0Z2NnpqzjrrjfsUXlFkFC8ias452NnoEkNaYYj0wlqwjxXzJLdIknpHSrpUZp4HogdpTTv374lbuOPXPOuOHlFP/2jRRAHXIN9LGY/v0jh0pndg9evHn480Z/eywASXHSqAeRBA1AAAAAAAAJrI/P8Rg0Ny5cyc9XrH37tu3b9LjTUZXV5c6OjpK3n/OnDn64Ac/qBtvvFFz5syZ1DG/+tWv6re//e3Q61NOOUWf/vSnJzVWrdmzZ48ef/zxqKdR9zzfU7f6J96xCrrjnjz5BNBWmSdfz7sHo56GJOl59yA9UGWefD3r9kQ9DUnSs24P9Y9ARjld1/QrZTX2NeJqyMrXdU2/0rsHjlGCW1CrxpOv81p/qI5Y8LO3rVIAdXCs4P8bGXXE9uu81h/qd/vb+AyoMk++1jZvVkcs+LfRgPHUb7zBOPLpYyT1G08JeUpZVx2xfVrbvFl3dr2DHgAAAADqWV9f1DMAAAAAAACoHgKoAQAAAACQRAg1ANSVthPapIce0vpXvyzfaNJB1OUYDqAOgkpvvm+u2nZNbuE8pq4weDTlGWUco95YZU8yWyM15oxSXnAynQDS2lGsB6Sxg4itgqBhFQQRhwHE410uac469ECNqXT9x0P9a1OpAdQhK6u7jggCSfKDqB9vzuiuI/pLfqgEPQAAAAAAAIDx9Pb2jtrW0NAw6fGKvbevRsMQjDG65ppr9MUvflGLFi2a9Djbtm3TZz/72aHXrutqw4YNisfjlZgmZgjXcXVsl6MtC6INH5WkYzsl9+WdGv9qEyrNldWx8xq0pTEb9VR0bH8DPVBl1B+urI6Zl9KWxtKuFU6nY/pT9EDVWZl5GSkehE9XeznqcBC1ZLIZ6eVXRP2ry5W0rneRthyxS32Op24nW5VeCGvfbdKSH1ej72rdy4vkdr06zUcGAAAAMCVdXVJP3gPNEongdTwuNTRIuVxkUwMAAAAAAKgqAqgBAAAAABhCCDUA1Jm2Hzwlvdys9Wd3B0HUnpHSVt1JyTfB0h4zhXOO1gQLRxxbJID6x1LbUwelZPQLGmejnoTVmtVpdbRYaXBd+YBr1e8Gda/kqWYjqd+1SuS84RDalgGteeMObfpBUk2ZGjvRPksU6wFJSvmSfI0bSB8GETs2+KyYMIA4LaW8kUvV6IFoUX+M1QPjsY6Vb6QfHd6nTGZAy/c7enK+r7sP9wf/vh9sihLQA/XHb8ipv3/8ZvH290kHODUAAAAAzDi53MibU7NZKZ0OFhbX2k20AGaEbHb0taNUKjXp8YqFUGcy0YctFmOt1b/8y7/oBz/4gf78z/9cH/vYxzRv3ryyxvA8T+973/s0MDAwtO0Tn/iEzjzzzEpPF3XOdVzduzGhU/80pxdao5vHUZ3Svd82ck/ZFd0kZilX0r17j9Opb35ML0QYRHxUX1z3/uo4uTl6oJqoP+iB2c2VtHnvsTrtzX/Q9oiCyK2kZX0Jbf7VsdQ/Im07jR6wLfrKsTurGkYeHqfbzera5xeo7UkjaWeVjg4AAABgUnp7pYMHh1/H49KePVIsJs2bJ7W2EngEAAAAAABmvlq7d57zMQAAAACAiJE0BQD15JVXpF//Wm0KFu2vP7tbvqRkTnISQYaklSQzuSDqMIBaCoJKk/kB1HdJbU9IkheEldTaydYZzjNWa//YV8ciO1Skgdhw6KyxQf0qJeyf7qSktB0KI+9YZLX24gHd+f8cuZU8ICZUrAfypXJBT6TdscfIOsMhxONJemEA/egD0QPRmHT9rYJUeVH/ejdRD4zFN4N51Ub66bG+/rDI18tNw0P4UlkXLOmB+pJN5NSZGH+fjCcpU2KqOQAAAID6Ye3If+/5vtTfLw0MSI2N0c0LwKxipnAtqdh7bZVvvL/88stHHbOvr09dXV3atm2bfv3rX+vb3/62tm/fLknavXu3brjhBn3729/W7bffrrPOOqvkY/3t3/6tHnzwwaHXy5cv1w033FCRPwdmns2HDigTK+2c/3RwrJSJSZuXWbWxICYSmxd0K+PYaHvAsdq8oFttOyNMQ5+lqD/ogdlt84JuDTi+XCt5EdTftdKA41P/CLUv6dTGw/apIeeoN1bd67xWUmPO0cbD9ukNXXPoAQAAAKDWFV4zliTPC76y2eABxgAAAAAAADNZrWWicL8dAAAAAKAGEEINAPUkb/F52/MpyVp9+Owu7W8YubBsMkHU+QHUUjBeZ4O0oC8/gDr8pl97J1xnOFfSui3SliVBbfIDqKXKBlCH440IolYQSuvYYB6uZ1VWCiqmrLAHCk0UQB0qZRFq2g3GC8PH89ED0aD+mKgHxpJfKSvppaapzYMeqDOlrDn2FfxsBwAAAGBmKbxB1dpgMbHjSH19Uq7IP/wBYAri8fiobf39/ZMer9h7EzUQhtDY2KjGxkYdeuihOv/88/W///f/1te//nV96lOfUm9vryTp+eef19ve9jb99Kc/1Zve9KYJx9y6deuIwGljjL71rW8plUpN1x8DdczzPW1Y4WsgHt0ZWitpIC5tWCmtfj4mV1w3riZPVhuO3K8B11b8GnGprJEG3GAeq/ctogeqiPqDHpjd8usfRQC5NHjPEvWPTNgDfa6v/pgvo+r+TGgk9cd8JayhBwAAAIB6EItJbt4N5vlrgHxf6upiXRAAAAAAAJi5OO8BAAAAAEBRhFADQD159NERL89/3mjxCmnnnNEZg+UEURcGUEvBeFlHWnxQOn/75KeMyml7MjjR/f5L7KgA6kovKCrsn+5k8Pt/+aEZmgeqL/zffv1FIxcUFoaSV0J++HjIsdLNP6YHojKp+k+yVNS/No3VA+OxZvwHFZSzOJ0eAAAAAIA6FwZRWysdPBj1bADMMI2NjaO2VTqEes6cOZMeb7oYY3TdddfplFNO0YUXXjg074MHD2rNmjV69NFH1draOub7c7mcrrrqKmUymaFtH/7wh3X22WdP+9yrbdGiRTrxxBOn/TjPPvus0un0tB8nKq7j6so/SHcfPXgJwFb+YbXjMTY4bl9MuvIPkjuX88XV5sroylcX6O4FXUOXgaodPmkk9bm+rnx1AcGTVUb9QQ/MbtQf+T0gqap9ENZfogcAAACAulUYvJR3bQIAAAAAAGBGqcUAalvNK/wAAAAAAIyNEGoAqCdbtw79tifua825Pdo5V4rnpHR89O6lBFGPGWBspHhG2jlPWnO5tOkOqSlcr21tbZ54nYWmI4B6aGyp5CBzVE9hCO10BFCH8oOICZ+tDdQfkwmirgR6AAAAAABmEN+XBgaingWAGWbBggWjth2cQuB9sfcWO0atOOecc3TDDTfoU5/61NC2HTt26Ktf/aq+8IUvjPm+L3/5y3r44YeHXi9btkxf+tKXpnWuUbnuuut03XXXTftxTjrpJD3++OPTfpyoeL6n20+WWgekzobgocLVCqIOA6jjfnD820+Wrnw6Q/hglXmyun3JHrVmXXXGPWUdW/UA0rhv1Jp1dfuSPbrypWZ6oIqoP+iB2Y36o1gPVBs9AAAAANQRzwuuDee/zhePE34EAAAAAABmnlrMQeEcDAAAAACghhBCDQD1ZN8+SYMB1G/rUsd8Xz2x4gHUofGChCcKME4npB5f6lhSJIi6Fk++znDty63WX2iV9KTmtNSVnL4A6lA4fktaSnpB6KkMIaRRa3sq+I/6/X/kT1sAcag7GXx+/Mt/OYPHnd7jYWLUH2EPrL/Qr0oQtWOlm39CD9SlUuplxM91AAAAwEzkOCNvVi38uT8+zkllAJiExYsXj9q2Y8eOSY/30ksvlXSMWvIXf/EX+sIXvqADBw4Mbfvnf/5nff7zn5cpcv5lx44d+vznPz9i2y233KI5c+ZM+1xRv1zH1cYfxLXmXVk9skTa3yBl3Ooc2xop7kmt/dJpO6WN35Pc16QnfiMqypW08beHas0bXtIjzQPam8xV/aGVrRlXp3WntPGBQ+Xm6IFqov6gB2Y36o9iPZCrUg9YSS49AAAAANSXdFrKZodfWxs8rDgWk1Ipae7c6OYGAAAAAAAwHWpxrSwB1AAAAACAGkMINQDUk2x2OIB6QVY9rlVvCQGkxYKoJwqgDvWmJA2MEUSNqvGM1YbTqhM2Oh7fSBtO87X6KUeurcGT8AAwSwQPA3CmPYh6KICahw8AAAAAwMyyYEHUMwAwwxx99NGjtr3wwguTHu/FF18c8dp1XR155JGTHq8aksmkzjvvPH3/+98f2rZnzx49/vjjOumkk0btv3fvXmUymaHXiURCn/jEJ8o65jPPPDNq28UXX6xEIjFi2+c+9zmtXr26rLFRu5qU1KY7srrsCuneZdU9tm+kk3cPXjPOOtU9OIY05VxteuAIvWXVc9qZylX12DkjHZIOjt+Uq1ICOkag/qAHZjfqD3oAAAAAwJRYK/l+8FBjHooJAAAAAABmEgKoAQAAAAAoCSHUAFBHelJmOIA65qs3MfF7QvlB1KUGUIeKBlFXdw3LrOdao43tjtZc5ut3h0ndSSk8DT6dp57N4Ff3YNj5WS9LG9sJoI5a+3Kr9Rf6SnpSc3q4PtOhOS0lPWn9hb4kgmhrAfVHaLqDqAmgBgAAAIAZat48qbU16lkAmGGWL18+aluxgORSZDIZvfTSSyO2HXvssYrFav/2hmXLlo3a9txzzxUNoS6UyWTU0dEx5Tls27Zt1Lb9+/dPeVzUkFRKyh7U7kYpV+Uc6Jwj7W4cfGGMVAf/Xc5UPzy8R1vnRfP06K3z0vrh4b1au2N+JMcH9Qc9MNtRf/zw8B493hRNDzzeRA8AAAAAdcN1g7Dp/Nfx+PCvnhfd3AAAAAAAACqJAGoAAAAAAErGajAAqBOe72ntKU+pwyk/gDpkFQRQT0Z+EPXaS6U7/9MQRFxlTTnpT/4g3bPMH9pmrKQyQ8VLZcLxB/XFpT/5g6OmnCtVeUE7hrUv97X+7cOBs6nBQPjpCCJuTg+P75vBIGLHVduTNEBUqD8KtT0tyTFa/3avokHUjpVu/pmrtqcdPvPrmeOXsI9GLjIAAAAAMDMULhh2HKmxUWpokObMkZLT+FQrALPSypUr5TiOfH/4fMRDDz2kXC5Xdnj0Qw89pGw2O2Lb6aefXpF5TrdUKjVq24EDByKYCWaynpTRqkulPywefgBxtRgbHHfVVdK937FqYqFMJDYe3qn3rXxRXkSndj1Het/KFyUrrd3Bw02qjfqDHpjdqD82Ht6pq09/UbmIbtvLGenq0+kBAAAAoC4Unr8NXxsT/L6/v/pzAgAAAAAAqDQCqAEAAAAAKAsh1ABQJ1zH1bp5b9W96dsnFUBdCb0pyQxI655qlHvoIdFMYhZrP7JXnzprv1oyjrqSvrKD58OnI4i6MIA6bqWWjKNPXWDU2NSithfnVPBoKFX7kb1af9Z++cYdsT1lJWWtuuMlhI2WqDnrKGWNlHcoX9L6iyTNpweiQP0xlraDkh4K+6Pgm8Yf+YFeyBjJHblC2bHSzb+br7aDc6TDKj5dVFMqJ83tGn+fxXOlOaPDkQAAAADUuX37pFxu+PWcOdKCBUEYdTIpue7Y7wWASZgzZ45Wrlyphx9+eGhbb2+vtmzZote97nVljfWrX/1q1LZzzjlnynOsht27d4/atnDhwghmgpnK8z2dt7pTHYNtZTQ9D6sdS3gKumOJdN6f+vrdf8fkqgYX8cxgGfm67rQdykX8bMGcI1132g69e9dCJXiaZdVQf9ADsxv1R9gD2Yh//MoaegAAAACoC/H4yOvCsVjwJUl9fcG141oMaQIAAAAAAChVLZ7bIIAaAAAAAFDjCKEGgDry2CHSwV3RzuFgSnpssaO2voZoJzLLeMZqw/K98h0jR0YtGaOuhK+sE5yELnWBeTn7hevF475RS8aRY4x8I21Y3q/VexfItTV4Un4Gy++BYlK+0YBvlXbHr7Cx0qjSFbxOekYp3xm1XRI9EBHqj4m07WnQnbszuntJb5HvjlMro1EXWc/fNUdtexZK/FVf/1Lp4QUDY2lokDxCqAEAAIAZx3UlP++BVbHYcPi0MRP/WwEAJuHCCy8cEUItSXfccUfZIdR33HFH0bHrwQMPPDBq25IlS4rue9ppp8lOcbHBqlWr9Mtf/nLEtu3bt2vZsmVTGhe1Lf+5g9U+VW/N8PG5ShANV0bH9CW1pak/6qnomL4kIeRVRv1BD8xu1B+ujI7pTWpLcw30QC89AAAAANQ8a8cPPcpmCUUCAAAAAAD1iwBqAAAAAAAmhRXmAFAn9h/cr+t33x71NCRJ17/uoD68O675SkQ9lVnDlbTxsddozenPqqOpPwiizhp1xT1lHVs0WDo8bR5+z7HDIdS+Gblf4fvt4Pa4b9SSdeUMnoRf0dOgjY8dK7fRrdifDaUp7IFCA44/YQCxayVHkm8lb5zrKmnXasC3QRBxAXogGtQfE2lf0qnNS/pGXzQ1ZmQiSSFrRr1n85I+tR+bUdvO1mmYKaoq4UqxnvH3STZKlsRxAAAAYMaJxaRcbvh1fvC04wSB1ABQYVdeeaX+5m/+ZsS2W2+9VZ///OeVSJR2TWnLli36/e9/P2LbWWedpaOPPrpi85wujzzyiLZt2zZiW0tLi0444YSIZoSZyHVcbb6zSasu2a9HlpT28NlKCo932k5p83ccuSfV4EKeGc6V0b2/PV5veeMTenSSIaT5VZtsD53a06B7f3s84ZNVRv1BD8xu1B+ujO594Hi95Y3b9GjTwKTGqEwPpHTvA/QAAAAAUPNMwT3ChSFILveDAwAAAACAOkUANQAAAAAAkzY6WQ4AUJPmz52vY1qOiXoakqRjDhJAHYWmnKtN/32sVvQEQZFBELUrx45eFGQ0ctGQMxg+axT86tix95WC8RyrYHwNB1Bv+u9j1ZTjZsOoFPZAaMDx1R33xn1vGEAsBb9OkFes7rinAccfsY0eiBb1x1jal3Rq/UkvjnjAwFT4Rlp/0otqX9JZmQEBAAAAALUjFpMaG2vzxlsAde/kk0/Wm9/85hHb9uzZo7/7u78reYy/+qu/GrXtQx/60JTnNt08z9NHPvKRUdvf+c53Kh6PRzAjzGRNXkwf/40Ui2jNSsxKH/+N1JTllqOoNOVc3f/b43VqT/kPGCz8KXAyPxWe2tOg+397PNeMIkL9QQ/MbtQfQQ+coFN7UmW/tzI9kNL9vz2BHgAAAADqgbUjv/KvEScSwXVjAAAAAACAelOL98ETQA0AAAAAqCOxqCcAACjds3/xrBZ/do52O32RzeGQPqNnH3yDVP5aJlRAk6RNj5+kNSc/oY55vco4Vl7BefKxAqjzOZJkNRRYGu6ff3rbM1LGlVK+0YoDc7Tp8ePVFI9JZCVEqrAHBhxf3bFSAohHNkrQA3bc0NruuCfljFK+Qw/UiErXv/DzIx/1rw/ti/Zq/Wtfkj/GRVOr0Q8qGPF9o6IXXH0jrT/5JSmRUNuehRWZKyIQM0HA3HgaEpLhBzsAAABgxonFJDcvDCiRkObOlRzCIgFMr7/+67/WhRdeOGLb9ddfrwsuuECnn376uO/9h3/4B/30pz8dse2YY47Re97znpKOvWzZMr3wwgsjtt1zzz1atWrVuO+7+eabdfzxx+uCCy4o6TiF0um0rrrqKt1///0jthtj9OEPf3hSYwLjaV9u9anXSY0Zqbv87MEpa8xIn3q71CipjZD1yDQprk8+f5iuPuVZZU1pi5jGuixkNP61hHxxa/TJ5w9Tk0lxzShC1B/0wOxG/RH0wOER9cDh9AAAAABQLwqvGTuOlExK8XjwlUhENzcAAAAAAIDJIIAaAAAAAIApI4QaAOpI+7Z2xT0/WPwRQVaI8YPFJO1LutS2b1H1JwBJwUKiTU+eolWn/rc65h4cESBdGECd8I28MRYbOZKMHQwglYqO0x3LadnBudr05ClqcmKj06wRicIeGE/MSmaMpWSOjOK+Ucbxx3w/PVB7yql/g+co64z1GWAka4c+A4qh/rWtfcEerT/uOY39X3DwGT9ejce7tukbaf3y5yQ3xt/79SrmSc4EF9XjccljhTAAAAAw4zjOyJtsHYcAagBV8Y53vEPvete79P3vf39oWzqd1rnnnqvbbrtNl1xyyaj3ZLNZffnLX9ZnP/vZUd/7v//3/yo+zSG3Dz/8sD7ykY/oDW94g/70T/9Ul112mRYvXjzh+7LZrH74wx/qf/2v/6Wnn3561PevvfZaveENb5iOKWMW83xPG04cUF9cOpAMHkY73gNHK82xg8eVtOE0q9WvpOSOGWmI6dS+YI8+ddxLWpCLa28sq9wEAZQTVamUAMqYNVqQi+tTx7+kxlgD1w4iRP1BD8xu1B/0AAAAAICSZLNBEHUoHpcaG4Pfu+7w7wEAAAAAAOoBAdQAAAAAAFQEIdQAUCc839OGB76uXDatuCNlIphD3Eo562vDITu0et9CFhRHaHNLp3YmMopbo6yxQ4uB8ivSnIspY/wxQ6ilIIR2bs5VdywnSaPGiVujnYmMNrd0snioxhT2gFS8B3pdb9yFYjFr1JCLDfVA4Tj0QG0qVv9CzbmYrKSsvDHHcWQ0J+eoJ1Z8H+pfu4IA6qfkT7gUdGp8Wa0/7ilJogcAAAAAAABQkltuuUUPP/ywduzYMbStp6dHq1ev1plnnql3vetdOvroo9Xf36+nn35aGzdu1MsvvzxqnA9/+MN65zvfWbV5P/DAA3rggQe0fv16nXDCCVq5cqVOPPFEzZ8/Xy0tLTLGqKenR6+88ooeeeQR3Xfffdq3b1/Rsc4991x97Wtfq9rcMXu4jqsr+4/T3Yu2DG0rN4jaaPhBteWcYc5/5mVfTLry2Qa5c9wyRkCltC/YrfXHBNcIjJUWThBAWUp75D+wuJiYNVqYi8vYvGsHjlHbvkMm80fAFEym/qWEi463D/WvLXwGzG58BoDPAAAAAAAlM2Z0OFMsFoRRz5lTm8FNAAAAAAAAxdTieQwCqAEAAAAAdYoQagCoE67j6htz1ug0Z7MyEa3lzbhSzpW+8eAhcufV4InaWSIMHpWklmxMXfGcMgUhxM25mFK+o4zrTzheynekwRDi8FS3lZSwRi3Z4EcFAkhry1g9ENYvvwd63bEDiEOFPRCOQw/UpmL1LwyiDuvf75T2GWByZkQQuRQEUFP/2jRWALWVlanAAyIKxyGIGgAAAAAAAOVYtGiRfvazn+m8887Tzp07R3zvoYce0kMPPTThGFdccYX+/u//fppmOD7f97V161Zt3bp1Uu//4z/+Y/37v/+7GhoaKjwzIHhw8e3H9Kr1oNSZkrJOsL3UIOowgDrpSWk32FDKUpj8AOq4L7UOSLef5upKe4xcOZP4k2CyPPna0PK0/NjwTQNG0kLraq8ZUK6gomOFj8bkKCe/YN9gz9H7Gi20KRk3/9qBtOHobq1ufQM9UEWTq//oDqD+9WuyPVBYWXqgPvEZAD4DAAAAAJTl5ZelgweHXyeTUmtrdPMBAAAAAACYDAKoAQAAAACoKO7+BYA64fmert32f3QgHu0JyQMJ6drTXpRX0nJkVFph8Kgjo6bs8MIiK6nBc4JQ4TKkfEcNnjOiqk1ZV85gCGkYQNq+YM9U/wiYInpgditW/5ZsTDFr5CuofxhAXY6U76g5F5NVsFgwNhhATf1rz1gB1L6sOmM5DZQQPD6eAcdXZyxXdHx6AAAAAAAAAKU64YQT9OCDD+rNb35zWe+Lx+O6/vrr9d3vfleuW52nss6ZM6ci4xxxxBG644471N7eTgA1po3ruNp48vU6bW9Mrf1BIHTImeDybRhA3ZyWWgaCX43VhI82HBVA3S+dttto4wtnEjoYAVeONnafrxW5BSO2Gxkt9FOK5VV0OHx0pAYb0xwbU4ONjfqeKXhHbHDcwnFW5BZoY/f59ECVUX/QA7Mb9Qc9AAAAAAAAAAAAAGBWIYAaAAAAAICK4w5gAKgje/r3KRfxJ3fOkfbEs9FOYpYqFjzqy6o7PjISvM/1h0JISz2tPuD46nOHV6lbSd1xb9SxCCCN1mR6oFT0QO0bK3w4UOkLVqPHo/7RGy+AuiueU9ax6i4Ioi7n8uqA46s7FozTFSeIGgAAAAAAAFNzxBFH6L777tOmTZv0pje9SWacxQBz587V1VdfrUcffVQ33HCDHKd6F8T+8R//UVu3btVXvvIVXXLJJVqyZEnJ7128eLGuvPJK3XXXXdq+fbsuu+yyaZwpEGh64ypt2jxfp+02JQdR5wdQp3LBtlRu4iDqogHUu6RNP0iqacGhlfjjYBKabEKbui4YFUApaegBo2NpsDElBm8XS8gpGkA50Xgrcgu0qesCNdlEGbNGpVB/0AOzG/UHPQAAAAAAAAAAAAAAESGAGgAAAAAwA4x/BzEAoGa4jqu/fGaR3ndCp3w3unk4vvSXD8Xlzq3BpwbOYJ6sNix5ZVQgcGc8p4wZebLaSuqK5dSSi8kM/l+oKeeqJ+YNvTYKQke7YrlRkbMZE4zfmo0NLSryB+exet9CuWVFm2KqJt0DVkPJAUZSazamzvhwvR3RA/WgWP2l4fDhnBkMkJDUHctJuZhSvjO0TSpe//A7YfhwuG/OSF3xnFryah8ej/pHY6IeyOZ9DozoATu8MNRIWpSJa08im/cZEHwv7IFQ1lh6oA55shWpS6XGAQAAAAAAMMboiiuu0BVXXKHdu3frwQcf1HPPPaeenh7FYjEtXLhQJ5xwgl73utcpkZhaiNnzzz8/6feeeOKJOvHEE/Xxj39ckvTqq6/q2Wef1fPPP6/9+/ert7dX1lrNmzdPzc3NOuSQQ7RixQotXbp0SnOeqnvvvTfS4yMihx6qprPO0aa7N2vN2zr1yGKps0HKOpItclqvWAB1KHzdnQx2LLxWZE3w3qEA6p3SpjukpvSA9J3vTMMfDqVqkrQpKa25XOpYEtSus0HKf5y0Hfz/4fXChoyU8Ec2QUKSHGkgHuxrC/ogK1+dtl+t/UEvrdgpbbqjT03pDdP3h8OEyq6/pIbs2PXvp/51h8+A2a3inwEJSZb615NK9wCfAQAAAMAs8sgjwa8f/GCk0wAAAAAAAJiQqbE1rgRQAwAAAABmCEKoAaBOeL6n21te0rys1DXGAuLpZqw0Lyvd/poBXflcH+GEVeRK2rjlGK1Z8bQ65vUOhg97o8KHQ2EIcdIbrtGRffGhANoXG4NlR761RcOHQxlj1RnLqTXrypHRigNztLHjGLneQGX/gJjQZHvA9SXHBlHkrz2YHAqgfWpuWlbBgrEDMUsP1LjC+kth+LA3FD4c1nAoiDrrBhutxqy/JA0YbyicfnB3GQ2GEMdyahmsvSTqH6FSesBXQRh5NnxqhQ0WhHY36rB0Qi8nM+po7hvRA90FPeCIHqg3PW5Oa099RuteXqS23QuCjbEByfPGf2N/WhoYfsJJ+yH7tOGwPdr46HFq8jhlAAAAANStXG7kja6+H3w5TnRzAjDrHXLIIfqjP/qjqKdRkqVLl2rp0qV685vfHPVUgOKuukpNv/61Nv1Xg9b8Ub8eWSztbQweMplvvADq0HhB1FaSawsDqCv/x8HkNKWDmlx2hXT/UVLGLRIkLuWFzxYfJ+FL8bTUkyr+/owbBFu+5QV6oJaUU/+56eC/5WISvuRkpd4E9a83fAbMbuXUv2lAY97hlfAlZYIgaupfX8rpgTkZKTbOZ4CbkQ4m6QEAAABgVvnmNwmiBgAAAAAAtYsAagAAAAAApg2JUgBQJ1zH1botRltWDYbLpqo/h+a01JiV1v235Kq7+hOY5ZokbbrvEF129g7dt6hPmQnyYqykAdfK9aVlB2NqzRhJnlpzRvJcPT83J6+EzJmMY9UZz+mcPY3a9OtD1JQ7WIE/DSZjMj2Qc6SYb3VCd0KL0kZSTotyRvLi2tacUcYdfwyJHqgVYf3XvOllbWkZUFfCV9YZDh+WCoKo454ackZGVq8tUv+nmjPyJPXER4YPh+M5krJOEHLcknG0siulTb+h/lGaTA/EvSCIfkVnUof1G0lZHZY1kpdUR2taWfnqjQ+/lx6oTz0xT2ve9LI65qW1ZfkBqbdXbS83Sam0lM6M/+aDPdLBYJ/2w3q0fvku+UZac9Lj2vSbw9SUK+EvCgAAAAC1J5cb+VCaTEY6eFCKxaRUBCeXAQBAZb3jHdIRR6jpBV+b2rNa9Sc57Z4zcpdSAqhD4wVR+0ZaeoDQwVrnmdHBkUNKXQMVPqm0yGavxtZ1YSTqD3pgdqP+oAcAAAAATMo3vyndfHPUswAAAAAAABiJAGoAAAAAAKZVCdGTAIBa0bbV0/+5W+qP6BEC/THp/9wttT0RzfERyBmrXBl/g9sxzrOPtb3oMZ3guKgN9MDs1ZRzdcuDS+QZjQofDuUHCffHrBb3xbQoPTJEdlHa1eK+2FAf5b8nFI6bdaw8I93y4BLCaGtAuT2QcaUjemM6rOCHh8P6YzqiN6awNeiB+jUUQN0SpL/4Rlp/+i61H9ZT1jjth/Vo/elBALUkdbSkteZNL6sn5o3/RgAAAAD1JZeT+vq4GRYAgHoXj0tf+ILkONp88hztnCPFCk8Wq7QA6lAqF+xfKOZLO+dKm4+e2pRReT1Jac3l0sOHjh0OaWyQJ9mf0JgPuM040oHkcHB5MZ4JjrPm8uC4iF459e+doP69cepfj/gMmN3Kqf+B5Pj1709Q/3pU1t8DcSk7xqX+rBv8PUEPAAAAAAAAAAAAAIgcAdQAAAAAAEw7QqgBoI70OFnddmrxBcTVEPOl206VehKcLI1CT8zTZWfv0G8XDpT1Pt9Iz8/LqTPhSbLqTHh6fl5uKGSyVL9dOKDLzt5BGGWEJtsDnpG2tWS0O5mTldXuZE7bWjJjLkIbCz0QvZ6Yp2tfv1MxK8V8Myp8OBQGCjfmjHY15rQnObJme5KedjXmFLPFw4dDvoLjxKx07et3UvsaUG4PJHyjl+bk9HLDyJSRlxtyemlOTknP0AN1rDCAOhQGUf94aW9J4xQGUIcIogYAAABmKN+X0kUSJgEAQH254AK1v+d0rX/LAflukYs+k72kW+R9vpHWXyy1Hz/JMVFxYfDk7w6XuscIjw2DJ0P9ieDB01ln+Ks/Fmwfes8443Qng+MRQBm9cutvNUH9B3ek/vWj0p8B4VvpgfpQ8c+A8D3jjEP9a0vZnwFG6osX74G+OJ8BAAAAwKwWi0U9AwAAAAAAgAAB1AAAAAAAVAV3CgBAnfB8T2vbfP3ucKk/HizwsFU8j2pscNzfHS6tvVS688EBudWcwCznGas1b96p+xf1K2sUrP4p439+z0jb5+W0J2t0MG7LDqCWlbLG6v5FfVrzhpf0X79YQv2rbKo9kDPStpasXknn1J20ZQdQ0wPR64n7WvOGXepozgyuAJz44lUYLvxkc0Z+V0yLBhztSfl6ujk30VtHjmKljuYBrXnDS9p032I1ZXmWTRQm0wOyVlbSI60Dsn5ch/a5eqXRU0drtowj0wO1aHQ/jORL+uzJe7Vif1xHHxz7n/53L+jSl0/pCQLNi4xD3QEAAIA6NdFNr7lyzg0AAIBa1L6tXeuXblFur6OuWE45Z/gacn5YoCSlSvirfyA2HGKovHFyjtTVILX0B0HUktT2xDT9oVCSwuDJUGHt8q/khT8dpmOS70muDa4hZ92895YwTn4A5aY7pCaebVJ1k6m/TNAD1H9m4DNgdpvUZ4DG/wwYev8E41D/2jAdPWDC+5AmGIceAAAAAGagBx+UXv/6qGcBAAAAAABmOwKoAQAAAACoGkKoAaBOuI6rE3dLdx0XvK529mu4sKQ7KZ24W3K9MNoUVWGs9iS9IHxYKj9EevA9BxJ2UlXzjeRYKWukPUlP8v3qN+FsV4Ee8IzUmaIH6pFnrNa+ebc6WjOykjqTnnKDNSnWC0bBZ3ZfzMqxwX5PteS0M2PUkwg6wDdBTziDgebF+sKxQYB5Z9JTa9pVR2tGa9+8S3f+4hBCyKtssj2QcYMFpI6VHlmY1QtpT51JX1bDPWDogbrTE/e15i171NGaGXc/31j9anGw8vfoA6P/+b99Xk7tR/bJmeCpBh2tGa15yy5t+uUigqgBAAAAAACAGtC+rV3rf7xeOeupq9FR1pNkh0MDC8MCpfGDqMMA6lDhOFmCqGuGZ4KHRhcGT4aK9UChrCt5Y1xfKGWcMIBy7aXSnbcH1yFQHdQf9MDsRv1RqR7wB0Oox0IPAAAAAAAAAAAAAKgaAqgBAAAAAKgq0qMAoE54vqfHD5Ga05MLn60E3wTHf/yQIAwT1eNao8882qzmrDOl+k+lar6RmrOOPvNoM8GjEaAHZjfXGq17eq6MgjDgbN7//E5BUcPw4ZBnhv/eKAygHnpPkcWD+eNmB0OIjaR1T8+l/hGYbA9YBSHS/mDI9P68AOocPVCXeuK+1rx1jzrmjx9AHbKSfrU4re3zRibMbJ+X068Wp0v+O6VjfkZr3rpHPXG/zBkDAAAAqEmJRNQzAAAAkzQUQO3n1DXQpazNScYZOsk7VljgwBiPqS8MoA4VjhMGUedMEETdfvxU/hSYLNcGD40uVrNQKad9Szk3PN4uQw+v5raBqqL+oAdmN+qPSvXAeAHUpYxDDwAAAAAAAAAAAACoCAKoAQAAAACoOkKoAaBOuI6rjXe6Skf8yZ12pI3fE+GTETj/1QYtOxBTVPnfxkrLDsR0/qsN0UwA9MAsd/6rDVrc544IHw6FYcGFAdQhLy+EuDCAOpQfQlwYaiwFIcSL+1zqH6Gp9EBusO5Wwa85eqAulRtALQ3/N3/fkrQea82oM+HrsdaM7luSLmlxcT6CqAEAAIAZIhYjhBoAgDrl+Z42PLJhOIDazwbfMJIcZ9y0wDCI2rHSBc8Gv44VQD2W/CDqDStLCzBEZXlGQw+vnoqphkYOP7x6auOgPNQf9MDsRv1RqR4odj9AOegBAAAAAAAAAAAAAFNGADUAAAAAAJGIRT0BAEDpzni/p76Is0H6EtIZ10pP313GamRMmWes1r7lZe1s9NSSddQV91XNHHBjpZaso52Nntau2qc77z+MIPIqowdmt/z6N2cddRcJgJ1okaBngutx4+2WH0JcqJn6R6pSPeAX9IDVyJrTA7Ur7IGO1tIDqIOL8EHFraT/XpjVS3N97Ul5Q31gh3cpScf8DD0AAAAA1APXlXx/5GvHCcKn4/Hg9wAAoO64jqtvvPMbWvlPK4cDqKXgHJ/1JzzX152Urn1I+vJm6X+dL33l7PLnkHUkz5G+8V9TD7FE+VwbPDR6zeXS7w4vL0Q8FPeCcRwjZd3y39+cls7aET68uvz3Y/KoP+iB2Y36o5I94NEDAAAAAAAAAAAAAKJCADUAAAAAAJEhhBoA6kR3X7eeaY16FoFnFkjdSxeqWfGopzJruJLWdca1ZeHTSklq8Xx1xXLlZEZOmpHU4sWUkiPHldZ1LpO7ZFEVjox89MDsVlh/eb66Y7myxynaLyVcp2vOUf+o0QPI74HREeRjMDb4GmQl7W7wNaLojiOZ0sPnHNEDAAAAQF0YGJB6e4dfp1LS3LnDr2NcIgQAoB55vqcP/ehDijkxxZ14EERdYgC1FIQGblwh7ZwnbT4meF1ueGHcl2K+9KE/ku68nfDBKDSlpU13TC6AMgyelAZ/9coLoAyDJzfdEcwD1Uf9QQ/MbtQf9AAAAAAAAAAAAACAukYANQAAAAAAkWKFOQDUiebGZv3iN6/VeW96Kuqp6Be3p9R8WJmrkTFlbfsXS884Wn/cU0r5jlpysWkPITaSWnIxpXxHjoxufua1atu/KEigRNXRA7NbYf2Vi00qhLhczdS/ZtADyO8Bv2Kf/qVfsKcHAAAAgBnCcaTGxqhnAQAAJsF1XK07bZ22vLpFrQ2t6uzfr2wuU3IAdSon+Ua6+9hgW2rwFHOp4YVxX2rtD0IL120hgDpKkwmgzA+eDIUBlF4J53wJnqwdla5/roQAUupfWyreA3wG1JVK17+UEGLqX1v4ewAAAAAAAAAAAABAXSKAGgAAAACAyBEbBQB15NzW0/SLDdHO4RcbpHM7m6KdxCzWtm+Rbn7mtXJkhkKIp+tUe9Hw4X2LpuloKBU9MLsV1r85N73PlBkVPkz9I0cPIL8HqokeAAAAAGYIx5Hmzq29G3gBAEDJ2k5o080X3SzXuGrNxhT3Rn6/2LKYMIC6mFQu+H6hwnHyA6hvvktqe2Iys0clhQGUZ+0YWcNiPVAseDLkWmlOZvT2/N0Jnqw95dQ/lR2//glv9HbqX/sq+RnQmB29nR6obeXUv3GCz4DCnyUKx6H+tWmsHigmnhu/B1JFPgPy0QMAAAAAAAAAAAAApqzW7l8ngBoAAAAAMEsRQg0A9eSkk3Tu/jm6cXM0h79xs3Tuy440Z040E4Ck6oQQEz5c2+iB2a1aIcSED9cuegDVDqKmBwAAAIA6ZIwUiw1/JRLSvHlSU5PkulHPDgAATFHbCW26+dBr5PYNqDXjKO4H260ka0YHR+YHUNu8r1BhEHXhOARQ167CAMpiPTAvPXbwZCjpjd0DBE/WrlLq35zW0GfEWFyf+terUntgos+ABJ8BdanU+hcLms/nWupfr4oFUfsmqF+oOS3FJvgMiBf+PWCCccL30wMAAAAAAAAAAAAApoQAagAAAAAAasb0pJUBAKbHqaeq/ZSYbnqT5NjhxR7V4FjppjdJp+yX2jKudOBA9Q6OUdoOpKT+I7T+pBeUskYt1lVnfIJVY2VoybpK+UaOtbp565Fq25WSRM1rCT0wuxXWX9ZVdwXr30z9ax49gPweGPtnwsIomWK72HF3cazoAQAAAKBe5d+sG48HYdQAAGBmyGbV9nc/kdxmrT+7W60ZR/sTvjKDz5qwRpKVWgYDqMNTgIWnAq009Ki7MKi6KzkcXGiNFPcIoK51YQDlZVdI9y6TcmZkD8Q9KV3Cj4LFesC10hmvEDxZyyaqfyon9cYnHof6169SeqCfz4AZq5T6D5TwLCrqX78Ke8APg8iN1DIQ1DZdTg+khn9mdOgBAAAAYOYjcAkAAAAAAEy3WgugBgAAAABglmO1OQDUkfZF+/T+VT3qSgwv+KkWa4JFJu//I196NKu2PX51J4BR2l5tluwRWn/yS9MyvmOlm/9whNp2Nkui3rWIHpjd8uuf8h0N+L7SztRvBE76Rinfof51gB5Afg9Mx8NJ6AEAAAAAAACgRv30p9JLL6lNKUnSdWd3jd4nPGfoOJLvj/ksuvwg6hHvy99EAHXdcK2UC19M9rxx3vtcMmjqCvUHPTC7UX+M6IHJ1i/vh0N6AAAAAAAAAAAAAMCU1GIANQ/lAgAAAADMcoRQA0Cd8HxPX9z6TXUlrawmv05ksqwkDQZRf/G1u7T6xQa51U7CxihtzyX1wNx5+v+O31/Rcbvinq59tlltzyUl9VV0bFQWPTC7tT2XlNKH6P2ve7Ui4cOSlHas0sbTvzy0VG0vU/9aRw8g7IH1p+8qEkRtJ/6h0Rbfx7HSzf+9mB4AAAAA6pXPg2QAAJjR/vVfh357/ssJLelztKvRk2Ml3wS5gcZK3UlJGaukP7ityFDh6cGBWLC/GQwetArOE+YcaclB6fzt0/2HwmT1JKU1l0tbD5EaslLaHdkD89KljVOsBxqywbhrLpc23SE1lTgWquf/Z+/O4+Q463vff5+qXmc0i2RZlm2xmM3GBsvCJiYQBx8cToJJnAwxke8RASPssIqcQ0g4SQiYAzgvc7kciNhywbqEeBKLOB7iEww5HAg7GC/ymMgIgwHvsixZM6PZeql67h/VNdPT0/t0d3VPf955TUbdXf08j/T7Ud2u7vpWrfrXi/r3Lnqgv9VV/zo+Rqb+vatsD9igD5raB0jBx8yGHgAAAAAAAAAAAACwBgRQAwAAAADQlQihBoAectLASXKMq7z1IpnfSnIlnZSNSW5M5U9TRidNnDatzz5jui1jf/YZ03rR1AaNPTrSlvHRGvQA5LpaOgu0Fbvl8KoDrivF+M+FnkAP9L2xxzdJk672bH90dRB1Ez3hWGnv5Gkae3yEowYAAABAr3Kcwn8vFpR+ibcbv9QLAADq8+ij0ne/K0maifva+RtTOjzgayQTBAeWXq9wOmE1YqVUvvxwRsuhg0v32eVDiyMZ6fAQ4YPdKgyenNwa1HGmTA+cSEquL7lVzqHKuNJcYvl22AMzhTDKya30QDeqp/7TSSlZ4X//obyRFsvsA6h/96u3B2rtA7KutBBfvk0P9IZ665/OVR/HM+XfB1D/7leuB4rfx0lBbWOe5FQZJ+dIs0WfC4dB1PQAAAAAAAAAAAAAgKZ043fVCaAGAAAAAEAScVIA0DNcx9UfnvuH+vdf/LvkNRdCHZ5kYiXZJo/bOlb6w6Ony924qbkB0DITm4/qqrMe1VTcW6prqxhJUwlPV53/qDS4QWNHN7dwdLQKPYCJzUe15zmHlZSrpLXKGH/NYyato6Rc7dlxmNr3AHoAobGFjfri9KK+ummq6F4rqUZPOEayK085vuTJUY0tPF3a2OJFAgAAAOisbHb5z+n0yscSCQEAgB71wx9KWg6gnjwpJ/l2KWS6OEQyFN5XLoi6NIC62Ehm+TmED3af0uDJsI6+CT7rM0UfHuZcSV75EFrPSNmSt4e2cO1Lxy6PSw90l0bqvxgPAkgr1T/vrtye+veGVu4DMvGVobX0QPdrpP7zcSlWIYjcM0F/OOwDek6lHgi/E7hiHxCr8ToQK/86YOgBAAAAAAAAAAAAAI0igBoAAAAAgK5GCDUA9AjP93TjwRs1mh7VkbkjTaXNGklJT8q4zYfVjnpx3XjqUV3x5Gly1YUHgPvExElP6Krn3KepWHDWd6sPe1sVQojjeV313Puk+1yNHTu5xbNgLegBTJz0hPY86375khYdXxln7eHDkpRxfC06vlK+oz1n3i+51L5b0QMoNnHSE/rapumVd5ql/1fF6se/tmlaE6ccp+4AAABAL3NdySm64Iyz8uIzGhnp7HoAAEDr3HPPygDqohNkUvkghDDjrn5auSDqagHUSW91aDXhg92jWvioVPjs0NQOoa0WPhqORwhp92l1/cuFD4fjUf/u1PIeYB/QU1pd/2LUvzfwOgAAAAAAAAAAAACgKxFADQAAAABA1yOEGgB6hOu4+tQrP6Udf7uj6THSOWk4K80kpLlEc2P4jtGnHjtf7vBA0+vA2kyMPKqrnnJIU+5y+HA7AoilQghxLK+rzjwkPZTW2PRpLZ4JzaAHMDHyqPac/lP5xmjR+Jp287Wf1IDpWF7y4kpZR3ue/VNpgNp3G3oAxYr7YeUpwn4dGdRGMivD6HyJugMAAAC9LpMJgqhDiaIDwsPD0pYtnV8TAABoiZkf370cQF2iUgB1qDiIuloAtRSMsxgjiLob1QqeDNUKoKwVPhoigLK7UH/QA/2N+oMeAAAAAAAAAAAAANCVCKAGAAAAAKAnEEINAD3C8z29+UtvVt4rnOVr1FDqrLHSQlzyneCEYWODE0calTe+3vy0/9AXH36JXDm1n4CWmhh6WFdtvVtTbnBSeTvCh0MrQojdnK56yt1SPK6xE9vaNCPqQQ9gYuhh7TnlR/IlLTqepp3VIROtMO3mJF9K+a72bPsRte8i9ACKFfeDlZUpTp2u50P7Mu8prax8Y6g7AAAA0MvicSmfX3k7lZI2bAgCqAe4yCAAAL3I8z3tOvnbmkwVHRcunChTK1Q6NJ2sHVZdvK1UPoh616ukL94YhBiiczwT/NvXCp4MhQGUxXKu5NkyYZVlgidD5QIo6YHOo/6gB/pb0/UvCSGm/r2LfQAAAAAAAAAAAACArkQANQAAAAAAPYMQagDoEa7j6uzNZ+vWn94qIyMrW3cQtbHL55OEJxMbBc9tJIjaSJpxPJ2d2ib3aWc0tH6s3YR7n65K3Kkp5aRCD7T70PdyCLEJQohPv1PKnqwx7zltnhnl0AOYcO/TnvikfDlaNJ6mlVe4h/dlZaSVAbR1dcjy9mFPOYX7pp285LhKWUd7TpuUctQ+avQAihX3gy+rKZPRgI0ptfSf+lYy+apjyHGloguLLCqveZPXqE1KMtQdAAAA6GWzs8t/3rxZ2rZNSiSkZFIaHo5uXQAAoGmu42r3I1t04BlPrggOrDeAOlRPAHWoXBC1Y6XdBwgdjIJb+Lf/3lNqB0+GypWpkeDJ4ueEAZSGHohE2+pfx9zUvzu0qwfEPqAnNFv/0nN9yz2H+vcGXgcAAAAAAAAAAAAAdB0CqAEAAAAA6CmEUANAj/B8T/cevVcjyRFNZ6aDAOk6gqiLA6glKek1EURttBRqOaKk7o1PyUsMyDVOjSeiVTzr61r7Q00pI0kdCR8O2cL/NzKaUkbXJn+oy8x51L/D6AFM2Hu1x35dvowWldd0oRekIHxYWlmrRhX3lC+7HEKsjGSSSimuPcmvSyalMXP22v4yaAo9gGLF/eBLmtKicvI1bbKSjFKKS/KlWr1gjMIQ6kXlNK2sJGnKZDSqtCRD3QEAAIBelE5L+fzK28lk8Hvz5u78si8AAKjL2PSp0ncf056XTMuXbTiAuhnFQdSOlfbeKo0dau+cqE+t4Ml61fu5YxhAie7Qqvo3Mh/17y7sA/pbvfVvVcmof/fhdQAAAAAAAAAAAABApLrxO+kEUAMAAAAAUBUh1ADQI1zH1firxrXzpp267eHb6gqiLg2gHspIKU9adKUThROFqwZRm+VfRkYjJq0LE2dofPRquU66lX891GJ9nfTkqOLZI8rK61j48NL0hd8JuTopMSptOkUigLiz6IG+5llf+44flJ8zWrR5TdvV4cOh8Fal3Xq53rFl7l8dQuwoZeLaFz+oyza+lBDyDqMHUGxi8YD2TH9FvjHyrTRlF5STv/R4WK+4cVV0d3mOI8nRos2t6KucfE1pUaNmQDJGe/QVaWRUY6kd7flLAQAAAGit48dXfqn3pJOkpzxFivHRIAAAPe+kkzR2b0rK5XTVy2bbHkAdmk4Gnz9/9hYCqKPkGWnfDinhBSGQzYZPujYYqxmODebft0O67CfBWOgM6g96oL9Rf9ADAAAAAAAAAAAAALoGAdQAAAAAAPQkzjQHgB4ynBzW/sv3rwiituGB0PAYbfFx0aKkyTCAWir8ziwHUVdMqVz6o9GIk9aFyWdp/9a3aZgA6o5zJX0h/V910cPv1z25h5oaIwwTt0F0ecOsrM6Mn6ovnP5fCSGPAD3Q31xJ4+k9uviRD2oy++DS/aXhw6Ggwit37o7MUv2Ln1etH1aEENsFPT1+ssZP20P9I9CqHnBk5K/qAVXsAnqg+0zM3qE9M/vlGxUCqOeVk7dqu2m7oA1K1rW/X1RO03Zh1f05eZqy8xo1g5KR9szslxJJjW24oAV/EwAAAABtlUpJyeTK2wRQAwCwPpxzjvStb0mLq4/pYf1zrfSpf5V2vCkInjSVLjhdbQxfivuSHMlr8HqTphB4mXeCdRA82VnUH/RAf6P+oAcAAAAAAAAAAAAAdAUCqAEAAAAA6FkNfoUYABC1MIj6/NPOl2PK7MaNljInrYITTYYzUjovOXb5J50P7rdmZW518fNDjozOT55BAHXEvjZ/UE94J5SQ2/QYzUUPBxJy9YR3Ql+bP9j0GFibtfRAGECtwu9mPtqhB6L1tfmDOpyfVrxQ/0rhw6HicGlTdF/x7eC+6sJ54nJ1OD9N/SPUTA+ElkPIg32AU9QFtV4b6IHuMTF7h/Yc/XwQJG6tpvy5FQHUfkk1Z21GeflLwePlfhZtXtP+cliN1creysnTlD8n3wbb7zn6eU3M3tGBvy0AAAAAAACAss49VxPbTmjPf/aU9KSRTGemHclISU/ac6k0cVZn5sRqnpHe/NvLAZJGQSBkQ2M4Us5tLnjSKJjX9YN1eF14Ptl6Rv1BD/Q36g96AAAAAAAAAAAAAEDkCKAGAAAAAKCnEUINAD3MNW7tKNlax0trPG4kuXJqj4O28qyvfSe+KRlpxAw2/PywS2KF4NJmDu2PmEHJSPtOfFOe9ZsYAWux9h4Iqh5f6oHGu4AeiE5x/YfNQMO75LDeScVW3K6XVTAv9Y/OWnqgOIQ+ZeKF+xrrAnogemEPVAugllYG0EuSVwihDg07qRXPmbfLCTVWy6Hk1YKo6QEAAAAAAAAgOhMnH9OeX5+TXzjIm8q3P4h6JBPMI0m+IYg6Sq6Vdh+QYlYaXVhDAGWDHxUWB0+OLgTz7z4QrAedQ/1BD/Q36g96AAAAAAAAAAAAAECkCKAGAAAAAKDnEUINAD1mJjOjnTft1MEjBzWaGlXcia/cwGopMNoUfmaS0kIsOCE4/FmIBfeH25R7vhQE1o46gzqYe0Q7D39cM/5CG/92qMQ1jsZPeYvOiZ+uGTvfcHywlZRWQoNKKK1EEwG20oyd1znx0zV+ylvkGt5CdNrae8BqUEkNmZQGlSyJKK2NHohWaf0bvTKAldWISWvUGdSISTdcf8lS/4itpQfCYOFNzqBOdoa0yRlcFVRczyj0QLSKe6BSAHWoUhD1U2ObdEbsZD01tkm+rLyiZxYHUJcbNwyipgcAAAAAAACA6Hi+p3333bgUQB1qNIg66dXeJlQcQB3yjbRvR+MBhmiNsUPS3lvXHkBZrFopywVP7r01WAc6rx31r4b6dx/2Af2tmfqv5eWa+ncfXgcAAAAAAAAAAAAARIIAagAAAAAA1gVSowCgh4QB1JOHJ5fuWwoLLAmPXrqv4ERSWnSDPy+6we1y25XeV/zQZPZBgqijZsJfpqGTxEq3bfS5ZnliRK3JHljrlPRAl2iw/qbMn8rfrj4G9e8i7ANQUoPSAOqQbSBqvFwAdcXx6QEAAAAAAAAgMq7janz49dp+LL7qsXqDqEcy0uhi/duWBlBL0vbD0vjNkss5PJFpJICyrs+UbPntCJ7sTo3Wv1YPVNqG+nevVu8DxD6gpzRc/zper6l/b+F1AAAAAAAAAAAAAEBHEUANAAAAAMC6QQg1APQIz/e06+ZdSwHUvvV1fPG4cn6u4slC1qx86ERSmkmuDKC2he3KDyDl5Om4Pye/cBB2Mvugdj3+SXnWX/PfCfXzrK9dj39SB7OPaKM7qJjcOmMll08SWlBWc8pqQdkV99diJcXkaqM7qIPZR6h/RNbaA0ZGc8rohF3UnDINBdjSA9FbW/2DWk/bBU35c5q2CytDhWug/t1hLT3gFLrgSX9OT/gn9KQ/JyMjhx7oKeV6oFIAdSh81JUjR0YP5p/UL/JP6MH8k3Jk5MqR6gir9mXpAQAAAAAAAKBLDB/8mfZ/fZO2P776sVReSnqVn1scKl0rtDrpVQ6g3n+TNFxHiDXaq1IAZbFKgZTllAuiJniye1F/0AP9jfqDHgAAAAAAAAAAAADQtwigBgAAAACgaYRQA0CPcB1Xu8/bLcc4SwHUWS9bMYA6VBpEnXGLHlOVAOqijbLKLwVROzLaPfRSuYaXkE5yjaPdQy+tOzC0kryqnHVeB+ofnVb1QI4e6EnN1r/0JSKjMmkRDaD+0WnVPmDR5tb0fHogOq3qgRl/cU3PpwcAAAAAAACAiB08qOGco/3/7Gj74ZUPLcZWfh5crDiAOlQtiDrjBuMVI4C6+5QGUBYHTTYSPLn0nJIASmMJnuxm1B/0QH+j/ijtAafFPeDQAwAAAAAAAAAAAADM2s5pbTkCqAEAAAAAWJNY7U0AAN1i7Lljms/N6w23vKGuAOqQNZJKThKpK4C6aOOsyWvKn9P1J1+lsQ0XNLZwtMTYhgs0b7N6w5HPKi9Pjoz8Kk1gZGRlZaWycZW2ZLtKHBnl5em4N6/rt1D/KK2lByQrU9QJtqjq9EBvaKb+KtoLrHoNKDy38BJREfXvHs3uA3xZOdKqfYC/1APsA3pF4z0Q/O/bky/JWRFg7cvKky9TtLeohB4AAAAAAAAAusixY1Imo+FMEAi983JpcmsQGD2dVNnPBssFUIfC+6eTK++3Rfel8gRQd7MwEPINl0le8fUDmz3fqqiJPEfKutKnbiF4sltRf9AD/Y36I6zNVZdJfqF2zQRQh0yhB6yC8XL0AAAAALC+EdoEAAAAAACqIYAaAAAAAIB1x6m9CQCgW8xkZvS5yc/Js17DJwtZs/yUhgKolwYIAgw/N/ttzfgLDT4ZrTDjL+iGE9/VgBNfuq9aGUsDZ1Xhdr1jDDhx3XDiu9Q/QuV6wKlQQVMldNiWRI0alUYULysenx6I1trqb1e+BhR1gFm19TLq313W0gP+ikh6uyK4mH1A72i8B5Yf8+Qv1T0MoF7elh4AAAAAAAAAekYuJ83PS5KGc4723yRtPbEcQF38ubBUPYA6lMoH24WKx5lOBuMTQN3d5mPSbGmQuGk8g7Tcdwlmk8H46F7UH/RAf6P+KObY5gOoQ8YG4wAAAAAAAAAAAADoYwRQAwAAAACwLhFCDQA9wvM97fynnfrWA99S3q9xlnAF1ki+aSKAuiBvfX1r4Sfaefjj8qxf+wloGc/62vX4JzWZfVApk9CIk14VJFyq9FFb9FNtu9XPsRpx0kqZhCazD2rX45+k/hEo1wOSVgTJFitXV6swiLa+7YvHpwei1Zr62xVBxLW2Lx6f+kevUg9U3oevvj8MHi7fN9V7iR6IXit6wJOvvLwVAdTVti8enx4AAAAAAAAAuoTvS9ns0s2vnSE9vkGK+cufA4fBk/UEUIfCIOriAEprgnEf3xDMg+40/jzpDb8neWb1BYgbCSEtFz5qFIz7ht8L5kH3of6gB/ob9cfEWdKeS6Wkt/KiIq0wkgnG3XNpMA8AAAAAAAAAAACAPkEANQAAAAAA6xYh1ADQQx498aiyXrb+M4TaIKu8HvWOR7eAPuUaR7uHXiqncMpYQnG5NV7GGzmRrOrccpRQXJLkyGj30EvlGt5CdFppD6RMQkNKVn1OpYDiRrcbUlIpk5BED0SF+qNcDwybVNX44eqXKijetnqM8bBJ0QNdoFU9UOlCBPQAAAAAAAAA0COKTqiZONNqz6VBQOQqzZ4HVOZ5niF8sFuF4aO5wiFbU+Zgbz0XqS4XPlo8Xs4hhLQb1Vv/Wp8YUf/exT6gv7VqHxBuV4r6d78wgNov1C+VD0KjWyHpLV/MxOe9IAAAALB+dVugFAAAAAAAiF63HS8ggBoAAAAAgJYiNQoAeoTne3pg+oGolyFZ6YHcUXnWj3olfWdswwXau/m1kpWe9GeVV2dqkJevJ/1ZyUp7N79WYxsu6Mi8WC3sAUdGed/XjDIdmXdGGeV9X44MPRChZurfio/VqH/3KO4B31ot2JxMlRSRVlyMwMhowebkW0sPdIF29EC1AGqJHgAAAAAAAAC6TiK4YNzEmVZ7XmGVN9JUWso7klM42GcUBEdOJ6XFWH3DLsaC7Y1dzqF2bDDuVFrKEz7YdUrDR6XaYbOmzE+15xXfTwhpd2ll/Suh/t2tpT3APqDnNFR/s/yLfcD6URpALQXv5zJu+e3L1b9aH2Tcle8jCaIGAAAA1ilCnAAAAAAAQDECqAEAAAAAWPcIoQaAHpGIJfTG89/YmkTRNXrj8MuUcOo8WxktdcnAOdrkDionr6Pz5uRpkzuoSwbO6ei8WG1swwV67+iYjtoTNWJDW8fK6qg9ofeOjhE8GjHqj7ENF+i6TTs15c8pJ69wUmh7PtQ1hZFz8jTlz+m6TTvpgS5ADwAAAAAAAAB9LptdFUBdHEDp2CBIOlRPEHUYQB0ydjnQWgrGJ4i6u1QKH6316VHp4/VsTwhp96H+oAf6G/VHpQDq4vdzrVD6PpIgagAAAAAAAAAAAGAdI4AaAAAAAIC+QAg1APSQcxNPketHuwbXl87Nb4p2EX1qxl/Q7z72P/Xj3KORzP/j3KP63cf+p2b8hUjmR+Dh/JP6i+P/FMncf3H8n/Rw/slI5kaA+mPGX9ANs9/TgLN89mg7QohNyYgDTlI3zH6P14AuQA8AAAAAAAAA/W1iy7GKAdSVVAuirjewkCDq7tFs+OjStiW/69meENLuQf1BD/Q36o9OBVCHCKIGAAAAAAAAAAAA+gAB1AAAAAAA9A1CqAGgR2TzWb3jO+9ecWJPFKyR3nHiJmX9fLQL6TOe9fX7hz+mby0ekl/3qWCt5cvqW4uH9PuHPybPRpyG3qcezj+pHQ+9W0/6s20JHK0kDCJ90p/VjofeTRBxRKg/ZvwF7Tz8cU1mH1TKxDXiDCw91upuKB5vxBlQysQ1mX1QOw9/nBDiCNEDAAAAAAAAQH/zfE/7Tj/SUAB1KAwQdKz08vuD340GFhYHUe/bIXlddu5RP8g60jt+q/nw0eUnNb55aQjpO34rWA86h/qDHuhv1B9e4T3YWgOonQa/9lUuiJr3ggAAAAAAAAAAAMA6QQA1AAAAAAB9ha+BA0CPSMQS+kj+NxT3gxOCo+BYKe5LH3n4HCWcWO0noGU86+v2xZ9HFkAd8mV1++LPCaGOQNbP6/yH/kpP+rNL93UiiNiUzPCkP6vzH/orgug7jPrDs752Pf5JTWYfXLqvOIS41a8O4Xhh+HBoMvugdj3+SV4HIkAPAAAAAAAAAHAdV5+6/7ny3MYCqEPTSWnXpPS5Lwa/Gw0slIJ5PUf61L9KLuf7dFzClz7yb1LcC243FT4qNXVlw+IQ0rgXrCPBoeKOov6gB/ob9YdrpfGbpe2Hg9vNBFDH81LSC343ojiIevvhYB28FwQAAAAAAAAAAAB6HAHUAAAAAAD0HUKoAaCH7LrX1fXfGI0kiDoMoL7+q2ntOuh2dnIo4cT0xuGXtTlutjYj6Y3DLyOEPAIJJ6Yrhy5adb9RU+cH1qXS2FcOXUQPdBj1h2sc7R56qZySqqRMXGmTkG1xBLGVVdokVoQPS5Ijo91DL5Vr+E/JTqMHAAAAAAAAAHi+pzef+TPFvOCz23J8sxwSWWokI41vl678veD3SKb8dtYE45QT96WYL735tyUv6g8v+9SuH0nX3xIEPzZzZNiU/G6EVTDv9bcE60DnUX/QA/2N+mM4I+2/Sdp6onwAdbX3gvG8FCs0TsxWDqKu9F5wOhnMu/+mYB0AAAAAAAAAAAAAehgB1AAAAAAA9CVSowCglxw7pl33pzseRL0igPonSWl2tjMTY4XrNl+hPx15ZWRB1EbSn468UtdtviKiFeC6zVfonSOXrrjPqrkTC+tRbux3jlxKD0SE+mNswwXau/m1K0KIF21OCzYr0+JXByOjBZvVos0t3efIaO/m12pswwUtnQv1owcAAAAAAACA/uY6rnbPPluulTYurA6iDsMCrVaHD45kpFQ+2Oarzwx+p/Krg6itWf58oDR8MO4H87pW2n0g+I1oDOSkDU2EP5YeSW7myPKGTDA/okP9QQ/0N+qPr50hHd7Q2HvB4gDqULkg6lrvBQ9vCOYHAAAAAAAAAAAA0MMIoAYAAAAAoG8RQg0AvSQXnMUTBlF3MoR6KYBakvL56k9A20QVRE0AdfcoDiIOQoLbuyOwRTMQQBw96o/iEOJFm9O0Py+puROEqwnHm/bntWhzhA93EXoAAAAAAAAA6G9js9u098tmVRB1aUhgcfhgGEBdTnEQdXHoYCgctziAeu+t0tihVvxt0IyJs6Q9l0opTxpZbOy5tsyPVP8x5pHFYN49lwbrQOe1o/71ov7dgX1Af2um/mF92QesD2EPyEijdb4XTJYJoA7FrJTOFp5T473g6EIwLz0AAAAAAAAAAAAA9DACqAEAAAAA6GuEUANAL4nHl/9s2h09uiyYp+hgcizWoZlRznWbr9DvDpzf0Tl/d+B8wme7yHWbr9BlAy9oewBxyMrqsoEX0ANdgvpjbMMF2rXhxUvhw1LjJwjXUjzetD+vXRteTPhwF6EHAAAAAAAAgD42N6exn5ilIOpqAZRWUjpXOYA6lMoH21U7zjiySAB1N/CMtG/HciDkQL52CGm508bckmIbWzuEdmQxmE8K5t+3I1gPOqfZ+peWaVX9y2xTivp3h3btA8Q+oCc0Xf+Seq+qv6h/ryjtAUfSyELl93Dhe8GYv3yfkbRtZmXNE37194K2ME/4hXN6AAAAAAAAAAAAAOhe5n1VPshrIIA614K11EQANQAAAAAAHUcINQD0kpNOkiSNP2teb3jptKxR6xMHS1nJGukNL5/X+JnZ4L4NG9o8KaqZmL1Dt2d+rkGT6Mh8gyah2zM/18TsHR2ZD7XRA/2N+mNi9g6Nz35PI05aUvBWoNWh5LZoxBEnrfHZ79EDXYQeAAAAAAAAAPrY/LyUSGjsJ0bX/R9pOll5UyNpIS4t1rjG8GIs2K7aKUbTSem6rxJAHTXXSuM3S9sPB7etpMW4qn5voPShuLf8s7SNqfHVAxvME26z/XCwjnJBpmifZutf/HDZ+lcfgvp3kXbtA8Q+oCc0Xf+iF/iy9a8+BPXvIuV6YDpdeXtjg/d4+cI3xY2kX3tAetnPg99ha+TcwnvBKjWdTtMDAAAAAAAA3cZaq4svvljGmFU/F198cdTLAwAAQATCAOqyQdRNBFB3JIgaAAAAAAB0FCHUANBLzjlnKYA6V3RySDstnWziFAVRb9vW5llRycTsHdpz9PPyZTXsDCipGmeMr1FSMQ07A/Jltefo5wmf7AL0QH+j/ijugZRJKG0SLQ8fDllZpU1CKZOgB7oIPQAAAAAAAAD0uVxOGhjQTMLqhnOlgXxwt1NymNBoOUhwOlk5iHoxthxkbezqz5/DcQfy0g3nSjNVQq/RGcMZaf9N0jlHpOPp4LN8R6rrAtZxbzkw0rXLIaS1wkcdBfMcTwfz7r8pWAc6rx31r4r6dx32Af2tmfqHD7EPWB/K9UDx+75Q8fu6TEzyTBA8fcbx4L4zjge3PSPNF94nVhuHHgAAAAAAAOg+e/fu1Te/+c2olwEAAIAuURo8veJ2EwHUlW63jOWqtwAAAAAARIEQagDoIeNPOb4igNpKsm1OobZm+WSkpSDqZ8y2d1KUVRw6KUmLNqec6jkjrHk5eVq0wUcDhE9Gjx7ob9Qf5XpgwWbbdkEKI2nBZumBLkIPAAAAAAAAAFA8rpkNce18tTR5ipTKSyOFEMAwMLpcgGC5IOriAOpQcWBhON5IJphncqu083KCqLtVvSG0DbF8uaxXUH/QA/2N+qP4/V+5C4vUfHIrxgEAAAAAAEDH/OxnP9Of//mfR70MAAAAdInSAOoV968hgLrW/U0jgBoAAAAAgMjEam8CAOgG2XxW7zhyQ0cDqEPWBBMaBUHU7xj4tl798xcp4fAy0ime9bXP/4p85SVJi8prWouSJEdmKYyylZzCaUTT/ryklFKKyZe07/Gv6LInNsk1nGrWSfRAf6P+qNYDRka2DT1g6IGuQg8AAAAAaMjCQtQrAAAAbTJz8rB2Pm1Kk5u0FDaZCg4bajq5HBxdThg4ncqXD6AOFQcOhgHUoTCIev9N0nBmLX8TNGsmGdTg4BZpdEGaSmvpewSOJL/Kc3OuJE9yreSZwm0F9S7XOsVHgeN+MN/BLfRAlNpR/0qof3diH9Dfmql/WF/2AetDtR4w0tJ3/Iol88F7xO88Lbh9xnHpFxuD266V0llpMb68fblx6AEAAAAAAIDu4fu+Xv/612t+fj7qpQAAAKALVAqglqSfXhMESMcrbrGsVtB0vePURAA1AAAAAACRIj0UAHpEIpbQR17xUb3hn1+rrPyOBVCHwiDqhDX6iPMKJYzLAd4OcmU0bn5fO+0XdJse1rSWz+JpR/hsOO5SCK0WJSV1obZp3Py+XBnq32H0QH+j/qAHQA8AAAAAAAAA8HxPu846qMm5nFRyjK44iLqa6WQQQJ2pETwprQ6gDk1ulXa9SvrijUFwITrHM8G//eTW4LajlQGU5cpRGi6bcyW/EEC6tI0NNix9fuHupeDJMJCUHohGs/WXlh8rW/+SbVR0m/p3l3btA2Qlwz6g6zW9DwgLqQr1V/kgcurffWr1gLQ6gHokEzzmF/43/p2nBQHUjwwv1zzhS8nMyveR5QKo6QEAAAAAAIDu8NGPflTf+c53lm5feOGFuu222yJcEQAAAKJSLYD64DVS4Tq1NQOkawVQF2+3piBqzkkFAAAAACByTu1NAADdYte5u/SmU3674wHUIWukN00/R7uc7dEsoM8Nm5Reo+2aLzqM367QyXLjzyun12i7hk2qrXOiMnqgv1F/0AOgBwAAAAAAAID+5jqudj99TI5V2RNyUnkp6dUep54A6qRXPoBakhwr7T5A6GAU3MK/vVP0bx8GUDpWq75LYFQImC5RGj6qwnald1sTjFscPCnRA1Gh/qAH+hv1R7UeiPurty93QREr6eHh1aHjqXywfanSAGqJHgAAAAAAAIjSfffdp3e/+91Lt0866ST9zd/8TYQrAgAAQFSqBVDfcY307JL7KgVN1xtA3ez2SwigBgAAAACgKxBCDQA9ZOLHE/r72e/U3rCN/n7jg5qw90a6hn41Ye/Vu/RVjSqtmJy2h06GfFnF5GhUab1LX6X+EaIH+hv1Bz0AegAAAAAAAADA2Mvfrr3fGZbjrz4+uBirL2C6Hhk3GK+UY6W9t0pjh1ozDxo3diioQXEAZTYm+XWGj1ZTLoTUN8H4IXogWtQf9EB/o/4o1wPlgqjLBVDXUhpEXSmAmh4AAAAAAACIhu/7uvLKK7WwsLB030c/+lFt2bIlwlUBAAAgCrUCqM+t8FhpgHSzgdINP48AagAAAAAAukaZ08UAAN3I8z1d++1rdXzheHDGT0THWY+bBV0b+74u2/IyuYZrGXSKZ33tO3aT/KyRrBNN/Y0j3xjtS9yry06i/p1GD/Q36g96AK3qgTW9jaQHAAAAgN4Ri0nz88u3BwdXPu62KJ0SAAB03mmnacw5W/ry97XnFXYpdHIxJk0nWztVOF4YYEjoYPcIa7DnUmk+vlwrxwaBoc2Ej4aMlWSCY8lhwGU4/kCOHugG1B/0QH+j/ijugfC9YBhE/WRa2pBrPIA6FD5vNk4ANQAAAAAAQLf58Ic/rO9///tLt1/5ylfqNa95jX75y19GtygAAAB0XLUA6m9cIz2/xvNzkuJqPoC6dJyaCKAGAAAAAKCrEEINAD3k2MIx2ajSp6Wlk4yO5WekuTmJ4MGOcSWNp3bp93PX69v+/crJ6+j8OXmasnO6yHmmxlO75M4v1H4SWqq0B/LyOzp/Xj49ECHqj1b0gJFkZGSbeDdBD0SvFT3gyCz1gN9gF9ADAAAAQI9ZWJDyRWlD2azk+5JTOKabTkezLgAA0BrGaOwnwSXn9rxiZQDlWsMnJckWhU8SPNm9xg5JPzhd+vBLOjPfdFK6+g56oFtQf9AD/Y36o1wQtS/Jc6SsI6XWMHbWCcbxtRxCTQA1AAAAAABAtH784x/rPe95z9Lt4eFhffrTn45wRQAAAIhCtQDqL1wj/aqC747VstYA6uJxqgZRE0ANAAAAAEDXIYQaAHqE53s6kT2xfEdwTnFnFeY7kZuT9+1vyRUh1B3l5KSnTskb9GXrOfrfQlaSZ33pxJR0z3clv67rUqLVCj2gQSt/LckBTfBlgw966IHoUH+0pAeaex490CWKesA21QNWxqqp51p6AAAAAOht6bT0wAPSli3Ss58tbdwY9YoAAECzHn1U+vnPgyDqH0s/OG05gDIMILSSZJoLog4DqMPxwiBqgie7z8RZ0vh2aSSzMoRcWt0DjXy8XK4HpGCe8e3Six6hF7pBI/Uv3KwL9e8d7AP6G/sASCuDqLNGOjoY1HAuEdw/nG18zJnE8vOPDkqb56QEAdQAAAAAAACR8jxPr3vd65TJZJbu+/CHP6xt27ZFuCoAAABEwb7Xlg2i/sI10u+qse8HtAIB1AAAAAAA9B7SQwGgRyRiCR144wFtiG9YvrOJo8DOGo/VbvBdHfjZJUrwEtJRnqx2PeWHujN9XF6Hw2eX1mCs7kwf166n/FBexxPQEfbAwdSM3Ij++V0rHUzN0AMRoP4o7oGU39xrsJXkq/lrWKR8hx6IUHEPpH2nqQr4Cl7P/SaeayWl6QEAAACgt1krPfmkdPiw5HB8FwCAnvXDHy79MQygHM4sB0+GrNTwhW2LgydDvgnGH98ezIfuMHFWEDjpGymV70wPpPLBn/dcSi9EjfqDHuhv1B/Fxg5J7/36cgB1aC4RBEo3ojiAWgrGOzoYjE8ANQAAAAAAQHQ+9KEP6fbbb1+6fckll+jqq6+OcEUAAACIkn3vyk92r7mGAGoAAAAAAFC/WNQLAADU7/ZHbteG5AbN5maX7zSqO00yDKB27OqTj+q1wcZ1+6YFbZvf0twAaIor6Wz/JH3JPRxZ5KOVNOXmdLZ/ktwNQxGton+5knYvnKV/H/yO5p1m4kPXbt7xZZTX7oWz6IEOo/4Ie+C7g9/TtJOPZA3Tbl6O79ADEQl74HuD39OMk5cjNR0mXazet5KOpBl6AAAAAOhdQ0PS6KgUj0vz89IDD0jPfGbUqwIAAM245x4pk9HEc3zteYXkGWkhXv5Yn5UkI9VzjdtywZOFp2shHoRP7rk0uI8QwmgVh49KQd1q9UA96ukBo+UQUoleiAL1Bz3Q35qqf4veB1D/7vTwkPQXL1fZ/62HgdL17AZKA6iXmGD8V9wvbTuxhoUCAAAAAACgKQcPHtQ111yzdHtwcFCf+cxnolsQAAAAuoJ9r5V5n9E110h/LgKoAQAAAABA/QihBoAe4fme9t29T0ZGWwa36MjckeUH6zhhKAygTnhS1m0uiHqLn5IxjvaN/EKX2efIldPYAGiaJ1//tOHByAKoQ1bSP214UNcuvoT6R+CbG45pLqLw2dCck9c3NxzTmD0r0nX0I+qP+aSj2Yh7YNbJaz7pSDYd6Tr6ViIpGaPwKwGObNUg6noDpmtt5yxtpWD+RJIeAAAAAHpNKiUlipKEnnwyurUAAIC1OXhQE9tOaM9vWHlGOp6Wck4haLpMgGQ9QdTVgieNDcY/npY2LhA8GTXPSPt2rAwfrasHtPJkM8eX/KKPexvpgTCEdN8O6bKfSG7UH2L3kWbrX/rVkFX1rzAf9e8+7doHlHte+Bx6oHs0vQ8o2QmwD1g/Hh6SdrxJejJduQfmElLck+JVPliej0nZMt8mD3vgyXQwz4FPE0QNAAAAAADQSfl8Xq973euUzWaX7rv22mt1xhlnRLgqAAAAdAt7jZQVAdQAAAAAAKAxhFADQI9wHVfjrxrXzpt2avLwpDYPbNbR+aPLG4RHh8sclw0DqIcyUsqTFl3pRLKxIOrN+bhcSdsXhzT+4Ha5/rG1/HXQoKw8PbxlNuplSJIedmaVfeKI0nKjXkpfWZCnT205GPUyJEmfSh/UX//8mfRAB1F/ZOXrHWd9V578uoOFW80ouCjCOwa/q1c/NKIEFyPoKE9W+542qaRnNGJimnZzkoKA6HLnC4dR1aW9Uuk+lbk/HD98dMSLK2mN9rmTuuyJQbkd/3oCAAAAgDUZHl7+cz7aixwBAIDmTeTu0Z7fyK0IoA4ZG4QJl6oWRF0pfDgcL0QQdXdwrTR+s7TzcunurfX3gLQcRhzPSzEr5X0pF6v+mUOlHjjvcLAOwkc7q9n6F4cQU//exj6gv7EPQLHiAOpQpR7IuUGtE2U+WM46Ur7C1z+Ke4AgagAAAGCdIhgKALraX//1X+vOO+9cuv3iF79Yb3vb2yJcEQAAALpG4WrECUm5Dk5LADUAAAAAAL2PEGoA6CHDyWHtv3y/fv8Lv69vP/BtGRnZ0tOByqQIWknDhQBqqfA7I80k65vXSDrherpoblT7H7xQw37Vw8Nog7RcfeKR8/RH2w5EvRR94pHzCJ+NQFquPv7Idr1x24FIwmdDRtLHH9lOD3QY9UdCjj7y2PP1hm13KWf8yEKo4zZYBwHUnefKaPyhX9HOp96mydS05KliEHUYQF3KsZIjI1921YVIygVRF1d5xIsrZV1tXxzR+EO/QgA1AAAA0OvS6drbAACAruP5nvad/HDZAGqpcvCotDKIOulJGbd6AHU4XqUAyn07pMt+QgBlFIYz0mduCYIgG+kBSXK9IHxUCn77XuXgyXC80h7IO8H8w5nm1o+1of6gB/ob9YdUPoBaqt4DYa2Lg6irBVCH4xFEDQAAAAAAEI177rlH73//+5dup1Ip7du3T47T2+dyfOITn9AnP/nJts9z//33t30OAACAyJiVHwzG1ZkgagKoAQAAAABYHwihBoAeZoyRrXRAtihJ0JrgJKB80aZ5p/bJR6VDlY8zRKdcPfUMLRhff3z6ZGRr+Ngj23X11DMim7/fdUMPfJQeiAz1x67pp2ne+Hrjtrsimd9K2vvIedo1/bRI5oc07Me1/8ELqwZR1wqgDrY1kq0eRF0pgJoLkgAAAADrQColDQ1FvQoAANAE13H1qe9u0o5LZ8sGT9Y6lcdKGshJw1lpJiHNJWpvrwoBlJ/6VwKoozKTlK6+THJ9Ke4vh5DW0wOeG3xvIGalvAluV1PaA3E/mPfqy6T9NxFCGgXqD3qgv1F/VAugrtUDxUHUtQKopfLvBQmiBgAAAAAAaL9cLqfXve51yuWWowTf+9736swzz4xwVa3xxBNP6N577416GQAAAL3LlM/7aHcQNQHUAAAAAACsH719yVMA6DMzmRntvGmnDh45qI3pjTL1hEIXkgjnktKxAelYOvipdUJx6RAbvbgOpma086m3acbpxLUQUWrGyenLI4c1UusssDYZ8Vx9eeQw9Y8QPdDfqD9mnJxuHn1EI1401xIa8WK6efQReiBiYRD19sURpayrEW/54/t6AqiX7pORU+az/dIxCKAGAAAA1hFjpOFh6ZRTol4JAABokud7evOFR5aCJ0P1hA5KQYDgQlyaSgW/TR1Pslp5ceMwgPLNvy15XMO44zwj7XqVNLk1+NLX6EJQk3p6ICxXLiZl3OB3eH+1Xgh7IO4H8zkK5t/1Knqg09pV/2qof3dpWw+wD+gJTdffsg9YL7KOdP4bmwugDuVdaSFWO4B6aWytfC8oBfOf/8ZgPQAAAAAAAGi9D3zgA7r77ruXbp9//vn60z/90+gWBAAAgJ7QrjM/CaAGAAAAAGB9iSa9DADQMM/3tOvmXZo8PClJWswtyrPe2geu44QgT9Ji3FHaxDWZWNCu836uLw5dLddwJkmneNbXrhOf0WR+QQMalGxG08p0bP4RJTUQT2oyTv2jQg/0N+qP4h5Ia0CyWU1psWPzjyqldDxBD3SJYUn7/V/Tztn/T5P5RyTFNWXnl04sLr5QiSPJqXB1a0dGKcU0X3SNayu7NM6oGVDKiWl77HTt3/J6DT89XXYcAAAAAF3ovvukhYXl21u2SE97WhBEDQAAepbruNp9/7AOnL+o0QVpKi1l3foDqMN3AplC6GAYPFoaLFjKFjZOeEEAZcxKuw9ILucQdZxb+Lc/cKrkm+AYcDq3XNNyjNWq7wX4JYf4a/WCLcwTPs2hByJB/UEP9Lem61+C+veuhC9deUD68EuW72skgLr4OQ1tL0lmZT9deSBYDwAAAAAAAFrrwIEDuvbaa5dux+Nx7du3T65b51XFAAAAsH7V8T3wuFR0tujaEUANAAAAAMD6Qwg1APQI13G1+7zdOvDYAc1l5zSVmero/FNakGQ06CS1e9Mlcjds6uj8/c6VtDt+iQ4c/bx8WQ0oLXlG0x0IIB1RSgNuSlIQVkn9o0EP9Dfqj9IeSCsl+UZTdqHmc9dq1KSVdpKS6IFuMqxR7R/9b9p5+OM6kHlArnWVl1c4wdjKyGjQJLVgs1XHSThxxRXTtL+wIoDalauEiWt78mnav/VtGnYIoAYAAAB6yoYNUq7oK8TxOAHUAACsE2NPbJa+/IT2vMLWDJ4MFQdQr3pMqjuIOp0LAqj33iqNHWps3Wid8N9+z6XSfFyaSQY1LlfDsPZ1BZVLFXvB2MI8kgZy9ECUqD/ogf5G/XHd14LfH35JcwHUzSoOon7nd5fXAQAAAAAAgNbJZrN63etep3w+v3Tfn//5n+vcc8+NcFUAAADoCnV+D7yVAdTheGWDqAmgBgAAAACgZzlRLwAAUL+x547p8ude3vEA6tCUndflgy/U2IYLIpm/341tuEB7N79WTuEU8QE3pWEl2zrnsJIrwmf3bn4t9Y8QPdDfqD9KeyDtJDWiVFvnHFFqRQA1PdBdhp20PrPlDfLky5e/dL+VlDZxJU19151KmYTSJr7iBGVfvjz5+syWNxBADQAAAAAAAHSTTZs0dkjaNRkEQtal1jlIdV6rYiYZzEvwZPTCHpgu9IBREApZrFr4eCW1xpmmB7oC9Qc90N+oP677mnTZoc4FUIesgnkJoAYAAAAAAGiP973vffrRj360dPt5z3ue/vIv/zLCFQEAAKArRBRAXXFcAqgBAAAAAOhp9SVSAQC6wvg94/r0nZ+WkZHt+GkkkpHRp2e+rhcmn6Fdwy/p+PzQUvDnnqOfV976yshr63wZeUpbq5hxCB7tEvRAf6P+KO2BReXbOt+i8krRA11rxl/Q1UeuV8w4cuTIL+wTjIwWbE5OndedWrRZLdjciveYjhzFjKOrj1yv/VvfRhA1AAAAAAAA0C1OO00TZ0k3bJccK/l1nGNkJcmsDpaUJGvqDzB0bDDvix4hgDJqE2dJ49ulkczKEFLZoKbNhI+Gqo0zkgnmpQeiRf1BD/Q36o+Js6Tbt0mDWWku0bl5B7PBvBNn0QMAAAAAAACtdscdd+hDH/rQ0m3XdbVv3z4lEh08ANQBJ598ss4+++y2z3P//fcrk8m0fR4AAIC2iziAunj8uEQANQAAAAAA6wAh1ADQI7L5rN7xv9+hnJ+LJIBakqyscvL0jmP/oFdvuFAJh5eRKIxtuEDzfkZveOKzyslrWyi5kVFOnqb8OV1/8lUEj3YReqC/UX/QA5CCAOqdhz+uyeyDyti8fPmSgrqFXyuYs8GXJp0qp5lnbV7zNlt4bvD/rax8+crYvCazD2rn4Y8TRA0AAAAAAAB0iYkzMnrbNqtjA0EAtSkERdZSLoi6kQBqUwi8PjYgve3S4D7CB6MxcZa059KgHqnCtSpLQ0ibDR8NlRtnJBPM55tgfokeiAL1Bz3Q36g/intgOPiYtyNB1IPZYD56AAAAAAAAoPUymYyuvPJK5fP5pfve8Y536IUvfGGEq2qPt771rXrrW9/a9nnOOecc3XvvvW2fBwAAoK26JIBakhYkJa6p/7tmAAAAAACgezlRLwAAUJ9ELKEPvOwDUS9DkvSBky4ngDpCM/6Cbpj9ngacpKzUtlByWxh5wEnqhtnvacZfaMs8aBw90N+oP+gBFAdQL9qcpv15SUHYdOnXCnxZ+RV6xJfVXCGAOmS0HFo97c9r0eaWgqjpAQAAAAAAACBanu/p/03co2MDUq7wjR+jlcHS1djCT9Jb/nM9TFEQZc4Jgqj/3/Mlb60pl2iYZ6R9O4IAyFAqH4SDhuopi+PX3qZc+GjIL6yDHugs6g96oL9Rf5TrgeFsEBDdTmEAdYgeAAAAAAAAaK2PfexjOnjw4NLtZz/72Xrf+94X4YoAAAAQuS4KoF6UNHJN8GfzPj4kBAAAAACg1xFCDQA9wvM93fKTW7QhviHSdWxQSrfM3SXP1nFGElquOHSykwif7B70QH+j/qAHUCmAuppyQdTVwqmLEUQNAAAAAAAAdBdrVx/XaySIulHFAdQr1tGe6VCDa6Xxm6Xth1feXxpCWk3CC4LIE15925eGj0rB/OM3B+tB51B/0AP9jfqjUg+0M4i6NIBaogcAAAAAAABa7dFHH11x+8SJE/rVX/1VnXfeeXX9XHrppavGvOOOO8puCwAAgB7QRQHUGUnD16y8jyBqAAAAAAB6GyHUANAjXMfVFedcoYyXkSl7mm/7GRlllHkip5QAAQAASURBVNMVgy+Sa3gJ6bRyoZPt7gQjwie7CT3Q36g/6AHUCqD2ZSsGvxSHTlcLoLaFx4vRAwAAAAAAAEB3cB1Xb3zsNG2al+Il1wyuJ4jaFH4y7vKfq25fJoA67kub5qU33knwYFSGM9L+myqHkFYrS8KT3ELvuH71EFKryuGj+28K1oHOo/6gB/ob9UelHmhHEHWlAGp6AAAAAAAAoL0OHz6sycnJun9+/OMfrxpjbm6u7LYAAADocl0UQJ2VNHRN+ccIogYAAAAAoHeRIAoAPcLzPd148EYNxAdkjOl4EHU444CT1I1zP5Bn/ZrPQet41teuxz+5KnSyUoBkq4TjF4dP7nr8k9Q/AvRAf6P+oAdQqQdCYa1sjSBqT37VAGpbFFRdjB4AAAAAAAAAusPYL9P6xK2qGERdSbmQ6nIh09XGCwOoP3GrNHao/jWj9SoFUCbyQd3KHQUuDh8NVQohtQrGSRA+2pWoP1rdA6X7e3qguzVafyP2AetNpR7Y0OIQ6tLx6AEAAAAAAAAAAACgjboogDonacM11bchiBoAAAAAgN5ECDUA9AjXcbX7vN0aiA9oJDnS0SDqcKYRZ0ADJqHdQy+Va3gJ6STXONo99FJlbL5jwaOh4gDSjM1T/4jQA/2N+oMeQLkeCJX2QhhEXa5DKnVNcQB1pXHpAQAAAAAAAKAL5HIaO6SyQdSVjv+VC6BeeqxKEHXxUwig7j6lAZS+pGMDkm8ka1bWr1z4aMj1V4ZMWgXP901hvML9BE92l0bqn85Vr3+yKGiW+veOVu4DBorOUKUHekMj9R+osQ8oDqKm/r2jXA88MdDaOZ6gBwAAAAAAAAAAAIDO6KIA6rykwWvq25YgagAAAAAAeg+pUQDQQ8aeO6a9r9jb0SDq0gDqvZtfq7ENF7R1TlQTnCbWqeDR0PJ8nZ0X5dAD/Y36gx5A9aDo5a0qxVCXH7E0gLry+PQAAAAAAAAAEKlvfUuSVgVRh6GRpaoFUC9tUyGIOgyxJIC6e4UBlOccCcJC80XfBAvrN5SpHD4aSualkczqPso7wbjnHCF4shvVU/+RzMqA2XJiPvXvVfX2QK19QMKjB3pRq/YBLvuAnlXcA08MSH6Zb4QbVb7gSK1tfCcYlx4AAAAAAABor49+9KOy1jb984tf/GLVmC996UvLbgsAAIAuVGcAtSTFWzRlpXHykgauqX8c+17eYwIAAAAA0GsIoQaAHtPJIOrwBBMCqKPnWV/7TnxTSRNXUm4ka0jKVdLEte/EN+XZGmcoouXogf5WXP+UYpGsIaUY9Y8QPYDiHhhx0pJqh5HXG0FdKYA6FM4z4qTpAQAAAAAAAKCLhEHUA9nmA6iXtq0SRD2QJYC62x0ZXBk+uqTRrxKU2T7vBOOje1F/0AP9jfrjp5vKB1C3gu8E4wMAAAAAAAAAAABogwYCqENrDaKOl/wOeSKAGgAAAACAfkAINQD0oOIg6nQsXTM4sFlWUtokCKDuAq5xNH7KW7TJDGpB+UjWsKC8NplBjZ/yFrmGtxCdRg/0t7D+JztDmlcukjXMK6eTnSHqHxF6AGEPbE88VUkTl9PERUiMjBytvIBJve8iHRklTVzbE0+lBwAAAAAAAIAuYyQ5dvV99QZQLz2nTBC1UyGcGt1hJild/DrpP7ZU7oETSSlfo4gZV5pOVu6B/9gSzDOTbOXqsVb11H86KWVrHNLPO9S/V9XbA7X2AVn2AT2p7n1Ajeuc5w3171UzSem8N0oPjFbexqr2Z8K1tnlgNJiHHgAAAAAAAAAAAABaqIkA6lCzQdSlzwtve5LS19Q/DgHUAAAAAAD0LlKjAKBHjT13TLuev0sL+YUVQYKr2JKfco9XYGS0YLPateHFBFB3gf0zP9C9+UcjXcO9+Ue1f+YHka6hn9ED/e1/zd6lQ7nHIl3Dodxj+l+zd0W6hn5GD2DYSeszW96gvPXlN3gREqPlk8aL/1wvX1Z56+szW96gYSfd4LMBAAAAAAAAtMPEWdKeS6WkJ41klgMomwmgDhUHUDo2GDfpBfNMnNWKVaNVwvDRya3L91XqgVyscght3kizRaGSpT0QmtxKCGk3aaT+C4nq9c/Elm9T/97Ryn3AXNFZpvRAb2ik/nPx6vXPsQ/oSWEA9S82dma+X2wkiBoAAAAAAAAAAABomTUEUIcaDaKutH1cBFADAAAAANBPCKEGgB418eMJjf9oXCPJERljVgdRVwqdLqdMSHUYTjjipDU++z1NzN7RimWjSQteVm879neyDQZOtpqV1duO/Z0WvGyk6+hH9EB/y/p5/bdj48oqH+06VFiHH+06+hE9AEma8Rd09ZHr5cg0/GpQ/FavkbeJxc93ZHT1kes14y80+GwAAAAAAAAArRYGUPuFj4lTeWk4U3hwrR8nFZ4/nAnGlYJ5CKLuHuXCR0OOLR9CXi6EtjR8NGTsyvDRECGk3YH6gx7ob9QfawmgNkU/jSKIGgAAAAAAAAAAAGiBFgRQh+oNoq61Xb3B0gRQAwAAAADQ+wihBoAeNPHjCe358h751lcqllI6ll4Opm0mVbBY4flWUtrElTIJ+bLac/TzBFFHKOHEdFqsiTOH2uC02EYlnDJnoaGt6IH+5hpHp3dJ/U+PbZRr+M+ITqMH4Flfux7/pO7OPqBpf17NvOGzsvJlm7yggdW0P6+7sw9o1+OflGf9JsYAAAAAAAAA0AqlAdSS5EtaKJwtZE3zHxnbwvNVGK/4SCBB1N2hWvhoLcUhpJXCR2shhDRa1B/0QH+j/lhLALW08sLFzSCIGgAAAAAAAAAAAFiDFgZQh2oFTNcMqrbBp4e1AqYJoAYAAAAAYH0gOQwAekxxALUkLeYXNZebW3v4dCkrzdmsFm1WkgiijphrHH1g06vV+o8VGmMkfWDTqwkfjQA90N9c4+ido6+UE3EHODJ65+grqX8E6AG4xtEVG35Vx7155eRFsoacPB335nXFhl+lBwAAAAAAAICIVAqgnkpLWXf5vmaCqIsDqKVgvKk0QdTdxDPSJa9tLnw0lItJGbe58NHQ5NZgHV7UH172GeoPeqC/UX94RtrxR80HUIfW+hXDX2wM1kEPAAAAAAAAAAAAAA1oQwB1qFLQdL0B1Es3KwRNE0ANAAAAAMD6QWoUAPSQcgHUxxePtzZ8upiVjvvzBFF3Ac/6+p9TX456GZKk/zn1ZXnWr70hWooe6G9h/W3bdvj1sbLUPyL0ADzr68bZ72vAictG0AnB9U6sBpy4bpz9Pj0AAAAAAAAARMDzPe3bUTmAuvS4YaUg6mSZ69yVBlCH91UKot63g+DBqHTLKV3dso5+0y3/7t2yjn7ULf/23bKOftMt/+7dso5+4xnp2MDaxzEtKOCxAd4LAgAAAAAAAAAAAHVrYwB1qDRwutEA6qW731tfMDUAAAAAAOhNhFADQI/wfE/77t7XuQDqUJkg6n0nvknwYASMuuPMnW5ZRz/qln/7bllHv+mWf/duWUc/6pZ/+25ZR79xjaPdQy9VsvZH/22VVFy7h14q13A4AQAAAAAAAOg013E1frO0/XBwu1oAdag0iHokI40uBr+XttHqAOrix0qDqLcflsZvllzOL+o410pf//xyDzQj4QVB5IkyYeT12n44WAc90FnUH/RAf6P+SPjSf3xSGsrU3raSmCel88HvZg1lgnUk+PogAAAAAAAAAAAAUFsHAqhD8ZLfFVUIoF56uBA8TQA1AAAAAADrD6lRANAjXMfV+KvGtX3r9s4FUIeKgqi3J56q8VPeQvBgh7nG0edPeZOciF+6HQXroP6dRw/0N+oPegCS9MLUMzRnMx17C1jKSpqzGb0w9YyIVgAAAAAAAABgOCPtv0k650jtAOpQGEQ9kpFS+eC+VD64XS2Aeun5Wg6iPudIMP/wGsIPsTbDGekbf9dcCGnCk9xCYKTrNxdCuv1wMD89EA3qD3qgv1F/bDsh3fuJ5oKoY95ycHTCby6IeigTzL/tROPPBQAAAAAAQHs8/elPl7V2xc83vvGNqJcFAAAAqaMB1KG1BlAvbUYANQAAAAAA6xLJYQDQQ4aTw3rN81+j2cxs5wKoQ1aa9TN6zdBLNOykOzw5sn5eFz/yQdnIYicDVlYXP/JBZf18pOvoR/RAf6P+oAeQ9fM6/6G/0pzNyKjzXzyQJCOjOZvR+Q/9FT0AAAAAAAAAdAHPNPCxcaXDinUebrSF+dAdmgkhLQ4fDTUaQkr4aHeg/mh1D9S7e6cHukOj9TdiH7DeNBNEXRxAHWo0iJoAagAAAAAAAAAAAKABEQRQ11RnADUAAAAAAFi/CKEGgB4y8eMJ/cn//hPlbS6S+fPW05888Q+amL0jkvn7WcKJ6cqhi+RHHD7qy+rKoYuUcGKRrqMfhT0gSU5E4aPhvPRA51F/0AMo7gEjdTyI2hTNSA8AAAAAAAAA0ZlZnNbOy6U7T5P8Og8TGknGStNJabFwaG8xFtw2tv7wUd8E8+68XJpJNrN6tFIjIaTlwkdDri9tyNYeg/DR7tJI/dO56vVP1nHdSerffVq5Dxio42tI9EB3aaT+AzX2AfUEUVP/7tNIEHW8TAB1KOFLiTpeBwigBgAAAAAAAAAAABpAADUAAAAAAOhShFADQI/wfE+fuP0TOjJ3JLLju1bSETutT0x/VZ6tcGYK2mbP6H9W2sQjXUPaxLVn9D9HuoZ+dt3mK/TOkUsl1R8G0CrhfO8cuVTXbb6iw7NDov6gB7CyB9TxC1ME89EDAAAAAAAAQHQ839Oum3fptm1BgLQkOTUOFYYB1KHppDSVWn6+VF8QdTjPdFK6bZu061WS14XnSvWbekJIhzKVw0dDybw0UiXEkvDR7lRP/UcytQNmYz7171X19kCtfUDCowd6Uav2AS77gJ5VTxD1YFZK1uiBgXywXSUEUAMAAAAAAAAAAAANIIAaAAAAAAB0MUKoAaBHeL6n2x+9XbbjgYMrWSvdnvkFIdQdlvXzOv+hv1LG5iNdR8YG68j60a6jn123+QpdNvCCSKJHLxt4AcGjEaP+oAdADwAAAAAAAAD9y3Vcnb35bE2nVt5fKYi6NIA6lHHLbFsliLp0/OmkdPYRyeXcpK5QLYR0JCOl6vxoN1UhiJrw0e5G/UEP9Dfqj2pB1INZabhKuHSx4Wz5IGoCqAEAAAAAAAAAAIAGEEANAAAAAAC6HCHUANAjXMfV5oHNijiDWpK02d0g1/AS0kkJJ6Yrhy6KvPxW0pVDFynhxCJeSf+amL1Dt2d+rkGT7Oi8gyap2zM/18TsHR2dFytRf9ADoAcAAAAAAACA/uX5nu49eq9GYhtWPVYaFF0pgFqSkl75+8sFUZcLuB7JSPdukbwuPGeqX5ULIW0kfDRUGkJK+GhvoP6gB/ob9Ue5IOpGAqhDpUHUBFADAAAAAAAAAAAADSCAGgAAAAAA9AASRAGgR7iOq/+x/b/J8aNdh+NL/yP5W4RQR+BFqWdp0CQiXcOgSehFqWdFuoZ+NjF7h/Yc/bx8WQ05KbkdeivnytGQk5Ivqz1HP08AaUSoP+gB0AMAAAAAAABAf3MdV+OvGteFU4MrQiJDYWB0tQDqkYw0uqiyz5dWBlFXCqC+8GFp/GbJ5RylrhKGkJ56ornw0VAYQnrqCcJHewn1Bz3Q36g/wiDqVL65AOpQGESdyhNADQAAAAAAAAAAANSNAGoAAAAAANAjSBAFgB7h+Z5uvOvvtDkT4a7bSpsXjW6c+o48G3Eadp/xrK99J76pISetgYiCqAdMQkNOWvtOfJP6RyDsAV9WVlbHvTlZdebDn+L5fFl6IALUH/QAKvVAu7+aYEQPAAAAAAAAAN1k+Nis9v+TdOGjZlWQtF31h5WKQynDkMmybPlhwgDq/TcRStmt/tezpWMDrRnr2EAwHnoH9Qc90N+oP24/Xdq40HwAdWg4G4xz++mtWRcAAAAAAAAAAACwrhFADQAAAAAAeggh1ADQI1zH1admfl2+sXKaPOZrJDlWTYcVOpJ8I33qZ2fJNbyEdJJrHI2f8hadkzg9stBHz/o6J3G6xk95C/WPQHEPHPfmlJMnv0MBtL6scvJ03JujByJSrv6dDCCm/tGjB1CuBwKdiKEWPQAAAAAAAAB0ix/+UMOzuSCI+pHlIGkryRYOF1pTPkA6DKAOlQuirjQOAdTdb/x50ht+T8q60nRSWow1N85iLHh+1g3GG39eK1eJdqH+oAf6G/XHxFnSnkvVuo+PTTDexFktGg8AAAAAAAAAAABYjwigBgAAAAAAPYbUKADoEZ7v6c0n/lGuL8V9NRVEbRWESDdz2Nixwbyub/Xmk74fWRBy34v6mH/U82OpBp0KoA4tzUcPRGupDJ2KHy6ETVD/7kEPwK78Y7s7YVWv0QMAAAAAAABAtO65R5qf13DWaP9NRhc+HIRC25LzmUoDpEsDqEPFQdTFAdTF4wwTQN31wvDRXNE3wZoJIQ3DR0M5hxDSXkD9QQ/0N+qPMIDab/H57T5B1AAAAAAAAAAAAEBlBFADAAAAAIAeRAg1APQI13G1+6HNilmjkUzn8/+spJFFKWaNdv90SK7hJaSTPOtr1+Of1MHcI3Ijevl25ehg7hHtevyThJBHgB7ob8X1T5lEJK8BKZOg/hGiB1DcA6POoByZjkWRW1k5Mhp1BukBAAAAAAAAIGp33CFls5Kk4azRZ26RYr5U7pQma6R0rnIAdSiVD7YrDaCWgnFjvvSZWwig7lblwkdDjYSQloaPhggh7W7UH/RAf6P+aFcAdYggagAAAAAAAAAAAKBHEEANAAAAAADqUOdXzAEA3WDs8EbNPzqkN1w8Hcn80ynp+n9LauxYXDpyJJI19CtX0m7/PH3Du1fzykayhnll5XjBOtwnjkayhn5GD/S3sP7f8+7TjOYjWcOMnZdL/SNDDyDsgQP+L7Ros/LU2RBoT76yflYDJkEPAAAAAL3g+HEpU5QSubAg5XJSPB7dmgAAQGs88MDSH2fivq6+LAiJTnhS1l15MWMjaSEuJfzqQdSLsWA7o9XPT3jB+FdfJu2/iSDqblMtfDR0IinFPClW5TyzjCvNlgkfDYUhpJK06z+aWSnaoZ76TyelVK76OHlHmq/ynwrUv3vV2wO19gFZlx7oRfXWf6DWPsBIi7wG9KR2B1CHwiBqSRo71N65AAAAAAAAAAAAgJ5g2vwhXaMIoAYAAAAAAHUihBoAeshMyuiG0+Y0kJNySUlWsh04Pm1scILxQE664ayMfufbCxr+6U/bPzFW+MGGuzU3GE34cGhOWf3g6N0am01Fuo5+RQ/0ueRjyo7kOrLfL8dKytqc9NhjUob6R4Ie6HtjSukHG87QhwcnI5l/Wou6evZMjT2WksR7QQAAAKCrTU9L2aLjSMmk9PDDUiolnXxydOsCAABrNx1csHgm7mvn5dLk1uCz3I0L0vF0ECYsBfeZwrlF04VgyXJB1Iux5ceNDZ4YnpKU8IJxjYJ5dl5OEHU3qSd8NJSLScqXD6GtFT66NAYhpF2lkfovJKR4lfrnYsv7i0qof/dp5T4gFwv29VXHoAe6SiP1n4tL8QpB5OwDelenAqhDBFEDAAAA6xQBVQAAAAAANI4AagAAAAAA0MPq+Ao6AKAbeL6nXc+/T5Mn5ZXKSyOZlScOt0sYQD2SCU5Kntxites3puXJb+/EWCGrvP524F5F/RGAlfS3A/cqqzJnqKOt6IH+5snXtYN3ad7ka5782y5G0rzJ69rBu3gNiAA9AEmaSP5C4+mfKm3djr8eWElp62o8/VNNJH/R4dkBAAAAtMzionT4sOTz33UAAPSshQXNJOxSAHXISErnlv9c+jnydDIInC5WHEC9NI5dDiJN51aGkoZB1DN1BBajvRoJHw3lYkHYaLEwfLTuMQohpOPPq/85aD3qD3qgv1F/dDqAOhQGUU+c1dl5AQAAAAAAAAAAgK5BADUAAAAAAOhxhFADQI9wHVe7Yy+UUzgO3Ikg6tIAaklyrLT74S1yeQnpKFeOLsieHFnwaMhIuiB7MvWPAD2Ak/yUHCmyIHKr4D8eTvJTEa0A9EB/8+RrX/qQ5k1eC8br+OuBkbRgPM2bvPalDxFEDgAAAPSyXE46cSLqVQAAgCbNxH3t/H27IoBaCgKlZ5LB57mVPj8uDqIuF0AdMjYYZ6ZMcDVB1NFrJnw0VBxC2mj46NIYhJBGivqDHuhv1B9RBVCHCKIGAAAAAAAAAABA3yKAGgAAAAAArAOkBwJADxkzZ2vvrVoVRN2uw8NWqwOo994qjT2+sU0zohJXjl6/cJZiEUcQx2T0+oWzCCCOAD3Q31w5+sOF58iJuP6OjP5w4TnUPwL0AFw5umLhWZo3wRuzTn89IJxv3uR1xcKz6AEAAACg1y0uRr0CAADQBM/3tOs358oGUFcKlC41nZSmUo1tXy6IeterJK/LzqvqB1lHesdvVQ8frXX8OBeTYn7t8NFq4+QK68hyqLijqD/ogf5G/eEZad+O6gHUtXrASNo2o5rfPKg2jl9YB+8FAQAAAAAAAAAA0DcIoAYAAAAAAOsEXwMHgF5y/LjGDmlFEHXWUe2zQppllk8YWgqgPiQpk2nThKjEk68b0z/TJj8V6To2+SndmP6ZPPmRrqMf0QP9Laz/Rj8ZWQSxkbTRT1L/iNADCHtg1E+o8xHUIatRP0EPAAAAAOuBw0eEAAD0ItdxtfvBTUufFUuNBVCHMm5j25cGUTtW2n1AcjmXqeMSvvSRf5PiXvnHrSRrqh9FTnhS3gl+V1JrnLgXrCPBoeKOov6gB/ob9YdrpfGbpe2Hyz/uSzqeXn0BkZCR9GsPSC/7efC70ncPFmPBOJVKvP1wsA7eCwIAAAAAAAAAAKAvEEANAAAAAADWEc4wB4Be8h//IUlLQdQnEtJcor1TziWCeZYCqCXpySfbOylWceVofPoSDdgKZwl1yICNaXz6Erm8heg4eqC/Fdc/uuhZ6h8legBhD6SsG1n8sy8pZV16AAAAAFgPBgaiXgEAAGjS2NSpSxctLhdA3apjyKXjhEHUKy5ejEjs+pF0/S2rQ0jD0FCpcnhowpPcwkFm1y8fQlprnLgXzL/rR83/HdA86g96oL9RfwxnpP03rQ6i9iVNpaWcs/oCItJyAPUZx4PbZxwvH0Qdvr/MOcF4pZ9Nbz8czD+cad3fCQAAAAAAAAAAAOhaBFADAAAAAIB1htQoAOgljz22dKD6B6dLc/HOTDsXD+ZbMj/fmYmxwgcH79ID7myka3jAndUHB++KdA39jB7ob9Qf9ADeM3h7V/TAewZvj3QNAAAAANZowwZpcDDqVQAAgGYlEho7JO2aLB9AXSl4shGVxplOBvMSQB290hDS4tDQUGkNi8NHQ6UhpLXGIXy0OzRcf0v915tW7wPCp9IDvaHR+huxD1hvSoOoiwOoQ8VB1MZKF/1SeuaTwQVFwp9nPhncbwpFLr3ASWkQNQHUAAAAAAAAAAAA6CsEUAMAAAAAgHWIEGoA6CUnTkjG6F2XSB9+SXCSULsPXYdzfPgl0rsuKdyZzbZ5VpTKKq/PpX8S9TIkSZ9L/0RZ5aNeRt8p7oGo3sCF89IDnUf9QQ9gQVl9avBg1MuQJH1q8KAWxPtBAAAAoKcYIyUS0qZN0sknR70aAACwFk8+qYmzpPHt0khRAGBxcORagqirjTOSCeadOKvJwdFSYQhpzFsdGhoKa1gufDTk+tKGbPnw0eJxYoSPdpVG6p/OV69/Mk/9e1Er9wEDOXqg1zRS/4Fc9fonPOrfi8Ig6nOOrA6gDk0npYwr/V8/kl78kLR1dvXPix+S3vLDYLvSC5xIy0HU5xwhgBoAAAAAAAAAAAB9hABqAAAAAACwTsWiXgAAoAH5vN71Ml8ffvHyXcZKWsNJxNWYcPyCD78kuPO67xrptNPaMCMqSUi603+Lnq2PaTHC4M+EXN3pvkWJ00YiW0O/Cntghz6lJ7UgR5Lflv/ll+cUIu83Ka073TfTAx3WqvobNfd6Qf2jRw8gLenj/m/rjbqlg3v/1Yykj+u3lT7t6RGuAgAAAEBNqZS0uLh8+7TTpNNPj249AACgZSZOPqo9L5R8I6UKHxtOJVcHR9rCAeFGTocqF0AZjjOaCebzjbTn0uCxsUPN/R3QOr9zn3TWMemeU6psZOo4D63wvYNqzjoWzIfuUW/966kv9e9NLdsHFLarhh7oPnXvA2qwvAYAAAAAAAAAAAAAwDICqAEAAAAAwDrmRL0AAED93vVriysCqKXgpN92HTYud5Lxh18sveuluTbNiGr26jZl5UW6hqw87dVtka6hn21zRnRAb9YmpSUth8K2W3H47AG9WdscwmejsNb6m5Lf9aL+3YMewNXOBfpbXdahvf9qRtLf6jJd7VwQ0QoAAAAAAACA/ub5nvY9Y0Z+0UHCRF5yK3xgXOmz5GSZjxzLfTYccm0wT8g30r4dktdl51v1m5mktPNy6YlBaXSx/DbhhadzMSlfoV55I80mg+0qlXR0MZhn5+XBvIheI/VfSFSvfyZG/XtRK/cBc3F6oNc0Uv+5ePX659gH9KSwBw5ukTYuSHF/9TYjmeB93xeeJ917cvlx7j1Z+vQLg+1GMqsfj/vB+Ae30AMAAAAAAAAAAADoAwRQAwAAAACAdS4W9QIAAPXJ5rP63Nkrz/RoZwD10hySZIKTjUKfO9fT+4c3KOHwMtIpWT+vz03fLdkgDNRve+VXC0NIP2fu1vuHX0X9I7JNozrgv0s7pj+kJ+18x+bdZAZ0YOTPtM3Z2LE5sVqz9S/9yNOosdcP6t896AFcrd+QFtN64/wXZDv4fsDI6G8H/kBXp17SsTkBAAAArEE+L8WKjt8lSxKCHK5TCwBAL3IdV+NfGdDO38hqcqvkS5pKB6HQlY772sID4XHikYyUykuLMWm68BahWgC1UTD+VFoaXQiudr/9sDR+c+Xwa7RfGDw5uTW4nc5LWpSmUsvbhOGjoVxMUl6KFd1XHD6qcPuS7yGMLhbGVzDfzsul/TdJw2WCKtEZra7/0nOof89oeQ+wD+gp7ANQ2gNGQVD08bSUKxzyCd/zScH7vFufE/z57CeWx7n35OD+WCHAOtw+fI8YBlCHbxPpAQAAAAAAAAAAAKxrBFADAAAAAIA+QHokAPSIRCyhO3+4QzsuuFNPppsMoLbBScG+tDqNsvrTloKoNy1Id37laUr82cmNzo41SEi6c+SD2vHQu/WkP9vxIOowgHqTs0F3PuUDSsQ2dWxurLZNG/Wtoffo+Q/9udYaRV9PEK2R0be2vUfbEqetaS60RiP1D/cVa+kS6t99Gt0HVHrJrzeImh7oPlfrt7UwFdcfH7uhY3N+9KRdunr0Nzs2HwAAAIA1ymZXhlCnUisfL70NAAB6xrAf1/5/Nvr9V1t9+2nLQYPlgiNDYRD1aFEYYfh7Klk9gDoMsMw5QRD1RQ8QPBi10uDJUHEIaWn4aKg4hLQ0fDRU3EvF4aMhAiijRf1BD/Q36o9KPVAcRD2QW36vFyoNog4DqEvfB4bPm4+vDKAO0QMAAAAAAAAAAABYlwigBgAAAAAAfcKJegEAgPpte8HFOvC30mC2+QBqqfC7wQGsgnkPfFra9pSzG50dLbAttkkHnvIBbXQGOxpALUm+rDY6gzrwlA9oGwHUkZvxF3TF4Y/LCyLl16SeTvLk64rDH9eMv7Dm+bB2jdS/FfsK6t99Gt0HVOqCeruDHug+M/6Crp/5ZkfnvH7mm/QAAAAAsF4YIw0PR70KAADQrA0bKj5ULnBy+cEG7681HiLhGWnXq1YHT4ZSecmpUbdcTMq45cNHizl2dYBlaHJrsA6vy86/W++oP+iB/kb9UasHagmDqG8+u3wAdb3oAQAAAAAAAAAAAKwrBFADAAAAAIA+Qgg1APSSX/s13f70uAayDZ7wa1fv8BsNojZWGshKtz/NlZ7znAYmRysNO2mdbIYimftkM6RhJx3J3Fg24y/oooffr3tyD3V03ntyD+mih99PAGnEqD+a7YHSl/xGP4KmB7oH+wEAAAAAa2KMdOqpUjIZ9UoAAECTZp6yRTsvtzq4Rdq4IMWLrldYKUjQKPi8dzopLRZCJxdjwW1jK+dQF48X94P5Dm6Rdl4uzfB2IhKulXYfKB8yaiUdHZB8E/y5WrCkX+UbY7bwfN8E45X7TMEprMPlnLeOov6gB/ob9UetHjielnLOyvd8q7Yz0v2bKvdI+B4x5wTj0QMAAAAAAAAAAABY1wigBgAAAAAAfabC14wBAN1o4uRj2vPyvBxJm+ekoxvqCJEsE0AdciT5VpXPKi4whfkcI+35TV86I6exoWiCkPvZjDevi356rQ55j0Uy/yHvMV302LX69rOv1bA7EMka+l3YA50OHg3dk3uIHogQ9cdaeyB8yW/2I2h6IHrsBwAAAADUbXZ25e2hIenkk6XhYSmRiGZNAABgzTzf065ff0KThWvFGQXB0MfTUtYtf/w3DKAOhaGEGbdom8IB5LIXNDRSwgvmCT9Wntwq7XqV9MUbCR+Mwtih4PeeS4OQUGk5fDRf9OWAsH6NXODalvRB3gnG3Ty/XH/HSntvXV4HOov6gx7ob9QflXogDKAOTRcuGJLK1z92GEAdCoOoi98H0gMAAAAAAAAAAABYN7otgBoAAAAAAKADCKEGgB7h+Z72PfhF+amktLiofKxwIcNqx7bLBFAnvZUnFNcTRG2tlI9JsbzkJ+La59yjy05/rVzjVn4SWsqzni7+9mt1z+IvI13HPYu/1MUPvE+3X/R56t9h9EB/o/5oVQ+sNQuEHogO+wEAAAAADTtxYvnPmzcHPwAAoKe5jqvdz3q1Dtxz3VLooJGUzq38DDhUGkAdKrttlSDqdG7lx8mOlXYfIIA6SsUBlJ5ZHT4aCkNI61EaPhoqDiF1CZ7sCtQf9EB/a7j+dbxeU//eUtoDpQHUoeJA6VpKA6hDxUHU9AAAAAAAAAAAAADWjW4MoLZ8GQsAAAAAALRfma8dAwC6keu4Gn/VuLafdLYW40bTycJOvNKx5DIB1CMZaXQx+F2snnGmk9JiXNo++AyN73g/oYMd5llPP59/JOplSJJ+Pv+IPOtFvYy+Qw/0N+oPegD0AAAAAAAAAABJGnv527X3W4NyCp/vLsakmaSWbocqBVBXY+zqrFLHBuMvxpZvEz7YHcYOSdd9VTpWIXw0ZFU7f7RS+Ggo7wTzXPdVat8tGql/LbV6hPp3p1buA8pdhKAYPdB9GtoH1Dh3mn1Abwp74HiqfAB1aDpZ/XFJyrrVA6tzTjAPPQAAAAAAAAAAAIB1gQBqAAAAAADQxwihBoAeMpwc1msufrvm48v3VTrEXXr/SEZK5YM/p/Krg6jrGWc+bvSas6/QcHxD/YtGSySchD7xvHcpZmKRriNmYvrE896lhJOIdB39iB7ob9Qf9ADoAQAAAAAAAACSpNNO09hTf1N7/7erTElgYBhE3UwAdag4iLo42Ho6KWVcAqi7yUxS+n9+VcrXeV5cletS1xVUnDfBfDNVQirROY3Uv1qN691VUP/uwz6gv7EPwExSuuFcaSBfe9uFeOUg6pwjzcXLP1ZsIB/MRw8AAAAAAAAAAACgpxFADQAAAAAA+hwh1ADQQyZ+PKF3/ftfajQ5qrhfOEmownFua5ZPFCoOoA4VB1HXM07cl0ZjQ3rXfZ/UxGP/vva/DBq2a9sr9Lnt740sfDJmYvrc9vdq17ZXRDI/6IF+R/1BD4AeAAAAAAAAACBJev3rpVS67EOObT6AOmTsygBqdJ+ZpHTx66TJrY2FjpduVm+Zw3Dyya3BvARQRov6gx7ob9QfM0lp5+VBTYq/A1hNJhYEToeh5FbB7UwdHz2H3z2c3BrMSw8AAAAAAAAAAACgJxFADQAAAAAAQAg1APQKz/e07+598q0vJ5XSsFP+pOJi1kjp3HIAtWOll9+/fMJwKh88XimAutiwknISCfnW176HbpFnvTX8bdCsMHzSldvReV25hE52CXqgv1F/0AOgBwAAAAAAAABMPH1Bey7JKOmbukIHW2EkIyU9ac+l0sRZnZkT5RWHj4YaDSENf+oRho+GCCGNFvUHPdDfqD+KA6hD9QRRW0mLMSnjSnkn+L0YK/RCle8OhgHUIYKoAQAAgHXmyJGoVwAAAAAAQGcQQA0AAAAAACCJEGoA6Bmu42r8VePavnW7fOtrJu7VPNZtJC3EgxNGHCv9za3S574Y/HZscP9CvOp5JME4RpqJ+/Ktr+3Dz9H4jvfLNZ0NPsSy3znlIp0z9IyOznnO0DP0O6dc1NE5URk90N+oP+gB0AMAAAAAAABA/5r48YT2/O//Jn94SDKmrtDBtSoOH/QNQdRR8oz0steuDJ4MNRJCWq/S8NHQ5NZgHV4Xnp+3nlF/0AP9jfrDM9KuV5XvgXrfE+bc5Z9aSgOoQ5Nbg3XQAwAAAAAAAAAAAOgJBFADAAAAAAAsIYQaAHrIcHJYn/mdz8iznnJ+XjJO1QDp8OSi6aS0a1IaOxTcHjsU3J5Ortyu7BiSZIxy1pNnfX3m3L/UcHxDC/42aMZMblY77/oLPZE9rtHYUEfmHI0N6Ynsce286y80k5vtyJyojB7ob9Qf9ADCHnho8XGZmpcSaQ0jo4cWH6cHAAAAAAAAgIh5vqd9d++Tb30pmVy6vzh00DeSrXHoMOlVf9yaYBypfPigb6R9OwgejErV7wj08FyoD/UHPdDfqH9/c620+4DkVPiuX7Lwnq3We8Fa7+HC5yfLBFBLwfy7DwTrAQAAAAAAAAAAALoaAdQAAAAAAAArxKJeAACgfjOZGV39v65WzIkp7sSV9bLBSR8VjjNbBSf9jGSk8e3SrzwSBFBPnBXcHskEQdTVDlOHJ5UkHFcx4+rqyQ9o/3kfIIg6AjO5We28+92aPPFTSVLaDU4sn8qfaNuco7GhpXkmZ+7Tzjv/nPpHiB7ob9Qf9ADCHrht6j80nZ9bCqG2Vd/NrY0p/N90bla3Hf8RPQAAAAD0Ct8PfgAAwLriOq7GXzWunTft1OThyRWv93Fv+XNfK0mm/MWIw1DpxdjyRYuLWbNynHiZwOrth6XxmwkejIJrpa99Xrr4ddLk1tWP+y0+b8435YMutx8O1kEPdBb1Bz3Q36g/pOC7f5K059KVNbeSjg4U3VfhvWAt4XtBa4LxNs+vDB13rLT31uV1AAAAAAAAAAAAAF2LAGoAAAAAAIBVCKEGgB7h+Z523bxLk4cnZWQ0khrRkbkjwYMVgqitkQaywUnEvpH++FLplrOkrz0juJ3KS1lHmktUmdgGwYYjOVcmt6DJhUnt+tfd+uLUb8qV046/Ksrw5GvX6L9pMv7EivvTkmQSmjLZls85ahNKZzxJ80v3Tc5T/6jQA/2N+oMeQNgDtyUOa7qo3uHXINrx1QOzNH4w+nRuVrcduYseAAAAAHrR8LC0dat0+unSM58Z9WoAAMAaDCeHtf/y/dr5hpGlAEqvEBJoS4IIS8MHwwBqafl3cRB1cQB1eDsMHwyDJrcflvbfJA1nWvwXQ92GM9I3/m51CGmrw0eLxy0OId1+OJifHogG9Qc90N+oP6TVQdRhAHW+6OPbahclqaT0vWDeWRlETQA1AAAAAAAAAAAAegYB1AAAAAAAAGWRGAUAPcJ1XO0+b7cc48i3vqYWplZusJwSuMJ8XFosXHLAN9JXn7l84tFiLHi8HlNORr6sHBntXjiL0MEOc+Vo98JZcsoUOW1jGrF1FrJOIzautF19rQrqHx16oL9Rf9TqgVFb7YoSjRu1CXqgy7hydHZ+44oA6pCRKfc2cE1MYdxS0yars/Mb6QEAAACg1/i+NDsr/eQn0oEDUa8GAACs0fD1N2j/TUEQZBhAXS580mo5mLo4gDqUygf3S6tDB0N+YXzPEEDdTcIQ0u2Hg9vtCh8NheMTPtodqD/ogf5G/SEFQdB7bw1CpksDqEPF7wVrqfReMAyiNgRQAwAAAAAAAAAAoFcQQA0AAAAAAFARqVEA0EPGnjum637jOh1fOK6svzqAsBxrpKnkchB1aDEW3F/viSZZWR13Mrpu5kUay5zR4MrRCmOZM7R35tdWBZD6spo1uZbONWty8ktOLXJktHfm16h/hKr1wJzJV3hWc+ZMnh7oMtQflXpAam0IcaXwYXogWp583Rs7rhG/taHzjRrx47o3dlye/EjXAQAAAGANHnss+AEAAL3rrW/VcEb6yFek46nq4ZNWUsJbHUAdSuWDx6ud5uSbYJ6PfIXgyW4ynJFu+UcpUefHRKbKTz0S+WA+eqA7UH/QA/2N+kOSLvmFlMyXD6AO2cJPrR6o9l4w7wTzXPKLVqwaAAAAAAAAAAAAaCMCqAEAAAAAAKoihBoAeshMZkafm/yc/HKhf+EZI2WUBlE3GkAd8mX1uYFDmjH1BWCj9UoDSH1ZHXUW5LV4Hk/SUWdhKYSW4NHuUa4HjjmLylc9Haxx+cK49EB3of4oF0S9aDxNmUzLusBKmjIZLZrlVxd6IHquHI1PX6IL86esCqK2si3eC4RvLVeOOuLHdWH+FI1PXyKXwwkAAABAbztyJOoVAACANXp4SPr13dVDB0OLMWkmUf6xmcTqCxqXk3eC+R4eamydaJ+ZpHTZ/yVl66ifVDlcst7jy9lYMN9Mss4noK2oP+iB/kb9MZOULn6d9MBofWHi1XqgVh8YBfNc/Dp6AAAAAFh3CMECAAAAAKwnBFADAAAAAADUVOdX0AEAUfN8T3/wT3+gbz3wLeX9/MoH6zj2HAZRp2LSott4ALUUhJJ+K/6Y/mDgS/rSQxcRPhiRMY1Is9v11q136WhsseUB1KEwiHpLPqW9h1+gsRMjkp5s02xoRHEPHItlWh5AHAqDiE/OJ+mBLkL9EfbAnq0HNO/kNWVybQkgnjIZjdq4BvyY9h4+jx7oAsOS9h+/QDu3fV+3pY5p2s3VdVJws2zh/xtJI15cFy5u0v6HL9CwP9umGQEAAAC0jTHS8PDy7UwmurUAAIC1GR3Vw0PSjjdJT6brf9pcIYR6uOh6wzOJ5fvr8WQ6mPfAp6VtJ+p/HlovDJ6c3NrY86xWBlU2enx5cmsw7zf+ThrmLWVkqD/ogf5G/VHaA/XWstkeCJ9HDwAAAAAAAAAAAKBrEUANAAAAAABQF0KoAaCHHJk7oqyXXXlnA8eerZEW1rjnzxpfR2KLkuc3Njla6pKZzUpsMW0LoA55khK+0SUzmyW/3bOhEZfMbFZqi9O2AOJQXlYp36EHugz1x9jUqfpB8qj+75Pva2sA8ZST09XHztDY1KlS2191UI9hz9H+B35FO596m749cFRzTnvrYiUN+K4uXNik/Q/+ioZ9R/QCAAAA0INKv8ScSkWzDgAAsGYP+9NLAdRWjV18uDiIutEAamskWYKou0Fp8KTf4Dl0YZBko58v+EZyLAGUUaP+oAf6G/UHPQAAAAAAAAAAAACUIIAaAAAAAACgbk7UCwAA1M8xjoyKDoJHcOzZSHIaOZMZLTfj5HTRM76hBxILHZnvgcSCLnrGNzTj5DoyH2qbcXK6+Bnf1C8T8x2Z75eJeV38jG/SA12C+kOSJoYf0Wc3/bLtbwWspM9u+qUmhh9p80xoxLAf12uOP0VZ43dkvqzx9ZrjT9GwH+/IfAAAAADaLB6XhoejXgUAAGhCNp/V+W9sLoA6NJeQjgw2FkAdsiaY98m0dP4bpSzfOuo4z0gve23zwZOhZj9fCOeb3Bqsw+OrAx1F/UEP9DfqD3oAAAAAAAAAAAAA6AEEUAMAAAAAgC7G6WAA0CNcx9VfXvSX2pjaGARRRxRAvdFL6C+fOEuuOIskCmEA9T2pmY7Oe09qhiDqLhEGEN+dmu7YbsBKujs1TRBxF6D+kIIA6qtOv0vH3WxH5jvuZnXV6XcRRN1FJoYf0dtPu0d505k9Qd5Yvf20e+gBAAAAYD1IpaStWyXD8V0AAHpRIpbQlQeaD6AOrSUwMAyivvKAlOjMdfJQIixfs8GTaxXOyzvKaFB/0AP9jfqDHgAAAAAAAAAAAACKdNt3ogmgBgAAAAAAXS4W9QIAAPUbe+6Y5nPzunLitcpHkELtWulvkr+nsWef1/G5Ic3YRV2U+1vdo84GUIfuSc/oonNu07fjb9SwSUWyhn43Yxd1cf4zutt2LoA4ZCXdnZ7Wxc+7Xd+IXU0PRID6Q5Im/IO6Kj+p48p2NIj8eCyrq542KcWeqTHnnA7NjHLCHphSLrgwiWxbe8FIMjKaiuXoAQAAAKCX/Oxnkl+UCnnSSdJTniLF+GgQAIBe96JHpMGcNJuIbg2DuWAd6DzXShM3Sme/VTqRbH6c4Ohy8wazwTpczpvrKOoPeqC/UX/QAwAAAAAAAAAAAEARAqgBAAAAAAAaxpnmANBDZjIzuuHuv9PQgq+ppGQ7eFzcWGkoI92Qvle/c9pvaNhJd25yyLO+Ln7oPbpHj0e6jnv0uC7W3+n2bf9DrnEiXUu/8ayvSx6+RnfbwxFE0AespLvtYV1i/l4/2HYNPdBB1B+SNDF7h6564l90XAuRBJEf14Ku8v9FOmmzxjZc0OEVQFrugSktLt3XziDqMIA6NKVFegAAAADoFSdOSMePL99OpQigBgBgHfB8T/t2SEPZ4LjtXARB1IPZYP59O6TLfkL4YKd5Rnrzb0sDOWkhLuWb/LhmLWWL+cH8b/5t6YsEUHYU9Qc90N+oP+gBAAAAAAAAAAAAoIAAagAAAAAAgKaQHAcAPcLzPe26eZcmf/59pfLSaCYIhu4EY4P5UnlpcvZn2vX4J+VZvzOTQ1IQQPuT/GNRL0OS9JP8Y9Q/Isf9uTbFjNbPyuq4PxfpGvoV9e9vnvV17fFbdNyfjTSI/Lg/q2uP38LrQATCHpgq87/B4qDoVio37pQ/Rw8AAAAAAAAAEXEdV+M3S9sPS8PZIBC6UcZKjm3us+bBbDDv9sPS+M2EDkbBtdLuA1LMSifNB0GQnRTzC/MW1kEPdBb1Bz3Q36g/6AEAAAAAAAAAAABABFADAAAAAACsASHUANAjXMfV7vN2y5mbl6SOBVEXB1BLkpPJaPfQS+UaXkI6yTWOnhnbEvUyJEnPjG2h/hF5emxz1EuQ1D3r6Dfd8u/eLevoRyNOOuIY8iCIesRJR7yK/nWSu0Fxuavub1dAfblx43J1kruhLfMBAAAAAAAAqG04I+2/qbkgamO1dOk5o8Y+ay4OoN5/U7AORGPskLT31iAAckMTQeRrsSEbzLv31mAd6DzqD3qgv1F/0AMAAAAAAAAAAADoawRQAwAAAAAArAkJkuiIJ554Qrfeeqv27t2rD37wg/rQhz6k66+/Xt///veVy+WiXh7QM8YWnqa9X7JyCseiU3lpoM3/ExrIFQVQW2nvl6zGjhJAGoVT3JGolyCpe9bRj0zh//p9Df2qG/7tu2EN/awb/v27YQ39yjWOvrB1jy5KnbkiiNo2EEFtin7qYbUyiDouVxelztQXtu7hghQAAAAAAABAhJoJoi4OoF66T/UFURNA3X3GDkm7JqWZZPsvXB0yNphv1yTBk1Gj/qAH+hv1Bz0AAAAAAAAAAACAvkQANQAAAAAAwJqRGoW2uummm3TRRRfplFNO0Stf+Uq9/e1v17vf/W69613v0lVXXaUXv/jFOumkk3TVVVfpvvvui3q5kiRrre677z794z/+o/7kT/5EL33pSzU8PCxjzIqfK6+8siXzfeMb31g19lp+Dh8+3JJ1oUv90z9p7CdGe79s5FhpMSYtxOsPEmyUUTD+YqwQQP1laeyQkX74wzbNiGqm/Hk5EQd/OjKa8ucjXUM/m/LnI49+NYV1oPOoP+gBDDtp/fOpf7wURN1oAHW125WEQdRhAPU/n/rHGnbS9S8aAAAAAAAAQFsUB1EPZSW3ysHCcgHUS4+peniha4PxCaDuLhNnSePbpZFM/WHiaxH20EgmmHfirPbOh+qoP+iB/kb9QQ8AAAAAAAAAAACg7xBADQAAAAAA0BKEUKMtHnnkEV188cV69atfre985zuyVQ6gnThxQtdff72e//zn6/3vf3/Vbdvl5ptv1p/92Z/pZS97mTZu3KgzzzxT/+W//Bd95CMf0be+9S2dOHGi42sCyrrtNknS2E+Mdt0jTSeDu9t1Ikk47nRS2nVPIYBaku6/vz0ToiLXOPqLjZdp1BmMLIjakdGoM6i/2HiZXMNbiE6jB/ob9Qc9gFAYRH1m/NSmA6iL76+nm6ykM+OnEkANAAAAAAAAdINEYumPwxnpM7dIeSc4jlftWGA11Z5nFYz/mVsIoO4WE2dJey6VfCOl8kFdbJs/OrAmmCeVD+bdcykBlFGh/qAH+hv1Bz0AAAAAAAAAAACAvkMANQAAAAAAQMvEol4A1p/77rtPF198sR577LGGnpfNZvWe97xHP/7xj/X3f//3cl23TStcbffu3Zqenu7YfEDTfvYzSdLEmVbj50ojmSAgul2HqcMTlUcy0vi50osesUEQ9WOPSVNTbZoVlYzpWdLAFXrt7N9rVp0/w3tACX124AqN5Z9F/SNCD/Q36g96AKGvZSZ1ND+jhFxl5VXcrp6vVqQV14LyslXeUSbk6mh+Rl974ocaS25vYsUAAAAAOm5hIeoVAACAdvm935O+8AVJ0kxSuvoyyfWluC/lnPIhhNZUv7BxpeBCY4NxXT+YZ/9NBFFHzTPSvh1BAKQUfKa/EF8ODG8XU5gnlQ/+7BfWcdlPJJfz6jqG+oMe6G/UH/QAAAAAgJYjNAsAAAAA0O0IoAYAAAAAAGgpQqjRUseOHdPLX/7ysgHU559/vn73d39XZ5xxhhYWFnTffffpH/7hH/Too4+u2O4f//EftWXLFn30ox/t0Kq7zzOf+Uxt2LChqefG4/EWrwZdZXZWE2da7XmFlW+CEzuyjjSXaM901kgD2WAe30h7XiFJVmO/XJSOH2/PpKjOziohp+0nD5UykhJypLlZaZ7aR4oe6G/UH/RA35uw92qPvVVWVpuU1pNaKBtEbSQNKqE5ZauOF5ejpJKa0mLZnkrI1SalZa2vPbNfkOZmNWbObs1fBgAAAAAAAEDjjh2TFARQ77xcmtwqOZJGF6Sjg+WfYiWpQhC1NZWPN5vCuI6CeXZeThB11Fwrjd8c1OLurdLxdBA+bgpXmK73s4NGPmcwCsbPOcF8Gxek8w4H6yB4srOoP+iB/kb9QQ8AAAAAAAAAAACgrxBADQAAAAAA0HKEUKOl/uiP/kgPPvjgivuGhoZ0ww036LLLLlu1/bXXXqtrr71W11xzzYr7P/axj+k3f/M39YpXvKKdy63ppJNO0vnnn6+NGzdq//79HZv3s5/9rC6++OKOzYfeMXFGRnsuDgKoJWkxJs23OXd8Pi4l/JIg6q/mNNbeaVFGGDqZVEyjSlUMi2w1I2lUKSUV0x57qyQRPhkReqC/UX/QAwh7wC9U3siUDaIOa1avlOIalVb1VBhAbRS8+fRl6QEAAAAAAAAgarmcZgZc7RzzNLl1+e7ZhORVOe+qXBB1tQBqKRhvNiENF651RxB1dxjOSJ+5RdrxpiAQslGm6HejnzPkHCnvBPPTA9Gg/qAH+hv1Bz0AAAAAAAAAAACAvkAANQAAAAAAQFs08RVkoLyvfvWruvnmm1fcl0gk9PWvf71sALUkxeNxvfe979VHP/rRVY+9/e1vVz6fb8dSyxoZGdF/+k//SX/6p3+qL3zhC/r5z3+uo0eP6t/+7d/0pje9qWPrACrxfE/7npdbEUA9lQxODG4na4J5FguXLfCNtG+7L8/67Z0YK3jW1z5711LoZBAWmVK7Pz4JQyxTCtLOfVnts3dR/wjQA/2N+oMeQGkPhMIg6oTcwu2VNSsVq3AYoLSnSgOoQ/QAAAAAAAAAEK2ZlNHOP3BWBFDPJKS5RO3nWi1/vlwrgDo0lwjGD4VB1DPJRlaNVppJSldfJrm+FC8cqq23ntLydo1sH/ZN3A/mvfoyeiAq1B/0QH+j/qAHAAAAAAAAAAAAsO4RQA0AAAAAANA2sagXgPXj/e9//6r73vve9+qCCy6o+dw//uM/1pe+9CV99atfXbrvZz/7mf7hH/5Br33ta1u6znIOHDigpz/96TLddjASKOI6rsa/s0U7X/yIbju9MwHUoTCIelTShQ9L418dknvehs5MDkmSK2ncvlY7F/9ek/5jkqSUEhq1RlNaqPvEoEYEIZZppcxyiOV251SNp/5Qrkm1YUZUQw/0N+oPegDleiAUBFEP6Lhd0IDiyzUrebOYVlwJucrK04JyS88Ov5QR9tS8ctpoVgdQS/QAAAAA0DPm51fejpdcqIbPQwAA6Eme72nX8+/T5NLxvfoDqEPFQYL1Cscfzga/J7dKu14lffFGyeUcq47yTPBvP7lVciSNLkjHBqR8gzVttGxWQa1HF4J56YFoUH/QA/2N+oMeAAAAAAAAAAAAwLrXbd9xJoAaAAAAAACsM4RQoyUOHjyob3/72yvu27x5s975znfWPcZf//VfrwihlqRPfepTHQmhPuOMM9o+B9AKw097jl5zzyP6P2d0LoA6ZI10Ii695h5pePPp0imndHYB0LCk/f6faOfhj2sy+6AkKaWkBnxPczbb8vkGTEIpJ7l0e3viqdq/9W0adtItnwv1oQf6G/VHpR4YtUZT/oJsC6OojYxGnbRSZjm5hB6IXrkeCBlJm1RykRDrSH7wx7QSSsiVJCUUk2S0oGzwpQzHWXpKSkmllFQ59AAAAADQY4qDqAcGVj6WLP++HwAAdDfXcbU79is6kPsX+abxAOq1KA6idqy0+wChg1FwC//2B06VfCNlY0EgZSd4hflSeXogKtQf9EB/o/6gBwAAAAAAAAAAALCuEUANAAAAAADQdk7tTYDabrzxxlX3vf71r1ciUf/Zjueff77OP//8Fff94Ac/0C9+8Ys1rw9YLyZ+dVRv/y3Ji2jv7bnS218hTZw/UHtjtMWwk9b+rW/T9sRTJUmLNqv5NoTPStK8zWqxMDahk92jXA8s2JyMWvvBmpHRgs3RA12G+qO0ByQpZRIabXFtCKDuXuV6oJbiAOpQQq7SStS9/6AHAAAAgHVmaCjqFQAAgCaNmedq763SiQ4GUIfmEsG8e2+Vxg51dm4sGzsU1CDjStNJtfhTosqMgvkyLj0QJeoPeqC/UX/QAwAAAAAAAAAAAFiXui2AGgAAAAAAYJ0ihBot8ZWvfGXVfZdffnnD45R7TrmxgX7k+Z4+ePIhHU9LUV0z0Uo6npY++MxH5Vk/olUgDJ/c6o5oyp9vWz9YSVP+vLa6I4ROdpniHpj2F9o617S/QA90GeqPZkKI14Lw4e5Tbw84MmUDqEMJubpi8EI5NU5NpgcAAACAdWbzZmmACw0CANCzcjn94HRpLh7N9HNx6QenRzM3yvM7dA5ep+ZBY6g/6IH+Rv1BDwAAAABYk1NPjXoFAAAAAAB0ZwC1jSrRAwAAAAAAoL1iUS8AvW9ubk533XXXivsGBgb0ghe8oOGxLrroolX3ffvb39ab3/zmptcHrCd+OiU7Fe0arCQ/mZDicclwLYOofO3EAf0yf7TtgeRW0i/zR/W17CGNDf1Km2dDI7524oAe92cUN66y1pNtcTcE4xkljKvH/Rl6oMtQfwwrrv3b/qt2Pvox3bbwM03586u2MTJ19Ua57ab8eY06Rhemn6X9p/2xhl3CybpNcQ9MZh5c9bgjo6uHX6ZPT3216jg7UmfoP4/s0J7HPye/TL9sTz6VHgAAAAB6UTwuxYo+BkwkpKEhaXRU2rAhsmUBAIC1e1fmX/Xhl0hG0Vy82Ej68EuCP1/3tQgWAE2cJe25VEp6UjInLSQ6N3cyF8y759Lg9tihzs2NAPUHPdDfqD/oAQAAAAAtRaAWAAAAACBqBFADAAAAAAB0FCHUWLO7775bvu+vuO+CCy5QLNZ4e73whS9UPB5XLpdbuu/OO+9c8xqB9WLL4BYl5Corr6nnGyulPGnRlWyTx+MTcrRl6FTpWc+UjNvcIFiTicf+XVfdf72m/YW6A0abZWQ07S/oqiPXS1tP1dip/6ltc6F+E4/9u/b88gZZ11VaaWXyJ9oyj5VV2k3Luq72HLuBHugS1B+hYUmvGbxc/2fyfateCUzh/+oNoZa0Ylsr6YTN6DXPvlzD285t3aLRUsOS9j/jY9p5119ocua+pfsd42jvOX8q1zr69D1frz7IKVs1dsarpMdO1Z6D/7d8u/zfdtuHn6P9L7hWw3EC6gAAAICek0pJJ4qOGWzeLJ18cnTrAQAALZHNZ/W5ofslSX6NbatxreQ1+XmxL8mR9Lkd0vv/XUqsZSFomGekfTsk30jzsc4GT0rBfAlfGsgH67jsJ0E/oTOoP+iB/kb9QQ8AAAAAAAAAAABgXSGAGgAAAAAAoOOcqBeA3nfo0KFV9z3rWc9qaqxEIqFt27atuO/+++9XPp9varxe9S//8i/avXu3zj33XG3ZskWJREKbNm3Ss5/9bP36r/+6/vt//+/60pe+pMX/n707j5Osru/9//6eU1svU90zwywwsso2bM0qJC4hEoMSxTSiQ2xjzCiJ25jEGLlJjOLPayIJVyWTeyVBR2OcyOhIKxgUdcAFFVmEFmFYBpBlmB6Gmd67azvn/P6oPt3V3VXVVdVVdaq6Xk8fbVOnzvl+v8Pnw+meqjrvk0gEvVTUkW3Z+tqbv6ZXHfMqhSq4kNd4UndS6k5kv5sKXv8OudKrVp2lr53zT7IJoA5E/7479K5f/W8Np8fkTf+vlvw5htNjetev/rf6991R0/mwuP59d8yEhCbclEYy4zWdbyQzroSbkuu52vLQv9ADAaP+yNW/7w594KFr54QGS7MB1OXId4zrufrAQ9dS9wYXD3dqx9n/qJ74iZJmA6jLDY3vPfx3tfXUv5Flsi8TEEANAAAAAAAANJ5IKKL7/rNNXVNSmS8Dz+hISWsnst8rYqSuKem+fyeAOgi2J22/SVo1IY3EKh9nKZfwjcSy82+/ieDJeqP+oAdaG/UHPQAAAAAAAAAAAIBlgwBqAAAAAACAQBBCjSX7zW9+s2Db0UcfXfF4Rx111JzHjuPomWeeqXi8ZvTZz35WX/ziF/Xggw/qwIEDSqfTGhoa0p49e/STn/xE11xzjV7/+tfrmGOO0Sc/+UmNjIwEvWTUSTwa1zvOfqcsu7wAaD+AOjad5x7LVBZEbVmW3nH0HxJGGJB6B1D7CKJuHPMDiP1eqCW/9gQRB4/6I1fuzwRJsqYvE60kgNqXe6w/Huf+5uAHUZ/TtbGiAGqfH0R9TtdGAqgBAAAAAACARjU2Fvg1WEHP3+p2bJQeXhvsGh5em10H6o/6gx5obdQf9AAAAAAAAAAAAACaXiN++IgAagAAAAAA0CJCQS8AzW9wcHDBtiOPPLLi8fIdu3//fh133HEVj7lc7d+/Xx/5yEf0H//xH9qxY4cuuOCCoJeEGuvf3a+rfnCVVnWu0aGRQaVKuJXA/ABqXywjdUsajkpeCa/TRxxplRXTVb+8Ru0/vVu9meMr+SOgQo5cfbLjqxq2R+sYPz0rO6On4dSoPvmLf9GlE8/J5l4WdeXI1bb2m+XaE0ooo2GTrFsfeNO17/aiiimkbXf9P106SQ/UE/VHrv7QHr2r7fsaNsk5262Z8Olyu2N2fyPlhFhntw+nRvWue/5BmnoNP/8bWFzSN3W27Mefl7R9euvjUnuq+IE/+7n0s6mZh72SLtXZsh//Vo1WCgAAAKAuEom5j7u6pKOOko4/Xlq1Kpg1AQCAJUtlUjrnz6VDscrHmIhIibDkLOFarkMx6Zw/l579tBRxKx8H5Zuypfe/vrT3+ItZ6vtMnsmu420PSm3OEgdDyag/6IHWRv1BDwAAAAAAAAAAAKDpEUANAAAAAAAQKEKosWSHDh1asK2zs7Pi8fIde/DgwYrHa1ZtbW067LDDFI/HNTExoYMHD2psbCzvvs8884xe9apX6ctf/rKuuOKKOq90cf/3//5f/b//9/9qPs8TTzxR8zmC5LiOtj2wTa7nyshkg6jHDihlFz5mfgC15UkXPSntOk5yTelB1BFHWuVGZDxXrlxtc+7Rpc+EZasBX+RftjytOcbI6pQyi+9coxVItqQ1U0Z65lmJ+teVLWm7dbouPO5HeiA2EUAQuTRskjozEdP2J0+X7T5X5xW0NuoPX398r9614ZcaNosEC5dl8Y4aNgm9K3qb9OIB9Y5uqOLcqKYFvxa2HZCOWiQB5tAhafyZ4uMAAAAAaH5jY9LwsPTrX0sXXCD99m8HvSIAAFCBSCiiyx6Srn/Z0sZZSgC1JMlIlz1EAHUQ2hzpbQ9I284JeiXZdRA8WV/UH22OtPmX0vXnBb2S7Drogfpqc6T33CNdd0HQK8mug/rXHz0AAAAAAAAAAACApkYANQAAAAAAQOAIocaSTUxMLNjW1tZW8Xj5jp2cnKx4vGaxevVqXXLJJbrkkkt07rnn6rjjjpNlWXP2efzxx/WDH/xAW7du1e7du+c8l06n9Y53vEMbNmzQK1/5ynoufVEHDhzQww8/HPQymp5t2dp+2XZt2rlJA4MDMnZIq9pX69DkwbxB1PkCqP/1Vqn3Ean/ZOkDl5QWRB1xpFVORGa6H3sSXdr+7MsIoK4zW0ZvGzpSP+h4IdjsZ09629CR1D8guzpf0G/Ck3UPIPZ5kn4TntSuzhcIoQ0A9cdMALVdzQDq0g3bKb1rwy8liR4AAAAAgGblutJdd0knnSS99KVBrwYAAJQplUlp52lBryJr52nSdbcRRF1vKUu6eWPQq8i6eaOUupUeqCfqD8dIe1YHvYqsPauz67G5Hreu/r8fSt88WXq6O7g1HD2cXQeC8dnbst+DDKL+i7tm1wEAAACgyRG0BQAAAACoFwKoAQAAAAAAGoK1+C5Acel0esG2WCxW8Xj5QqhTqWCC9urhiCOO0Fe+8hXt3btXX/7yl3XFFVfo+OOPXxBALUknnHCC3vOe9+ihhx7S1q1bFY1G5zyfTCb1lre8JW8wOJaHeDSuHZfvUM/6HkmSiUS0qn21Is7c/YoFUEvZ7/96a3a7NB1EncwelytfAPWOZ85X3A3X6o+IAhx5+sxhe+TML1K912Gm1xFYDG7rcuTpk2se0YidDiwC3EgasdP65JpH6IE6o/7weyCoAGrfsJ2iBwAAAACg2bmu9NhjQa8CAABUaLJBbjffKOtoRY3y775R1tFqGuXfe6Oso9U4RrrniKBXkXXPEdn1oH4cI/VdJk0F/LGtqXB2HdQ/OB/62eznAustlsnODwAAAAAAAAAAAJSMAGoAAAAAAICGweUgqAmzhBcB8x3rLeMX8E488USdeOKJZR1jjNH73/9+nXzyybrkkkvmBIEPDg7qM5/5jD7ykY9Ue6loEH4Q9aadmzQwOCBj21qVCemQMkrZiwdQ+/zHH7hEcs10ELWk4ajkmekA6oSRCXmS66pnolM7dp+kuDNezz8uZnhak7AUiRmljFd59Kcjya7sUCMp4hmtSVjS0ND0FtRPtgfCMaP0dBh5RX1QYQ+Y6a8wPRCQ6tQ/5EgZ6t+kFvZAuYyksCOl7QrPH6IHms1LRtI6Yk3xv/ZvOJSRJobqtCIAAAAAgersnP3nIf4eAABAM4qEIvqTAelz5wW9EulPBqSIG/QqWk/EFT3Qwqg/Iq701gcbowfe+iA9UG+2J136iHTrCcGu48X27Drs5fuRzob23ArprHdLqQo//7VUKTs7//3XSy8ZC2YNAAAAAAAAAAAAaCIEUAMAAAAAADQUQqixZOFweMG2qampisfLd2wkEql4vOXs937v93TNNdfogx/84Jztn/nMZ/S3f/u3su2ArjRAzc0EUf/XpRp44qcyjqtVGelQTOpILx5A7SsURD0RllZNSUaelMmoZ7xTOx44WvHMZD3+eMjDlrTj7qP1pnPS+smqcaWs8oOoLSfbE64juWWeHoykiGv0ykOd2nHf0bIzXEVUb/N7IG0tHkRs5j1v5/SAYxfeL984RlKYHghMpfX397E86fCpkOIZW6MhR/vaMnLN7H7Uv/EV6oFSFeuBUtEDzWdtJKVXHeosus/xQ5ISo/VZEAAAAIDgxGJzHzfiB7oBAMCiUpmUvnGKsi/sB/nj3JO+cYr02e8SQFpvKUv0QAuj/qAHWlvKkj5yUeU3HK4WT9l1EEZffylLOufPpUNt2ceWp7Lf918K/2MKh9qy63j20/QAAAAAAAAAAAAAimjEzysTQA0AAAAAAFqcFfQC0Pza29sXbKt2CHVHR0fF4y1373//+3XMMcfM2Xbo0CHdfffdwSwIdRNPSjv+c1I9+y3JdWU8afVU6QHUvt5HpK23zl4kEstkx/Ff0u8ZlHbscBRP1uyPghLFM7a+cd/xeuWhTkVcs+j1hLnP+wHUUva75eTfr9A4fgD1N+47XvEMAfdBye2B8HQPFKrf/OfseT1gO4X3zTdOmB4IXKX1zw0f9sc5fCo00w/Uv3nM74FSLdYDpaAHAAAAAGCZyfPeDgAAaHyRUETvuH/6wz5BXQ/lZed/x/2EDgYh4ooeaGHUH/RAa/PrbySZgOpvvOz81D8Yfg/4vDpfs587Hz0AAAAAAAAAAACAogigBgAAAAAAaEihoBeA5rd69eoF28bHxyseL9+x+eZAVjgc1pvf/Gb9y7/8y5ztu3bt0m/91m8FtKq51qxZo1NOOaXm8zzxxBNKJlsoKfkf/kHxx57Wjl862nSZNLBu9inLywZL/+EiAdQ+P6h6yyVSbqZlz6C0Y6enuJOS9u6VjjqqeutHRfwA0jeds0c/WTWulOXlva7QD461PMlztSBo1PIkOZJrz4bPFhqHAOrGMr8H0tPFza1fsQBqn98DsrIXieXrAwKIG0+59W93LHUnrQV1i2dsaUra15aRqH9TKdQDhYQ9aW1OAHXuOJqSDsQcZRYbgx4AAAAAgOVl5UopEgl6FQAAoELX3GFJcvUvLw8mf9RI+tBPpWt2BTA5JM3+u6cHWhP1Bz3Q2nLrHxTqH6wgzwH+fH9DDwAAAADLx8sD/AsmAAAAAGD5IoAaAAAAAACgYRFCjSVbt27dgm3PPfdcxeM9++yzJc2BWRdeeOGCEOpnnnkmoNUs9L73vU/ve9/7aj7Pqaeeqocffrjm8zSE739f2rFDGhpS3PG0Y6fRpss9fXedtGE6gLr3kfIuNMkNot5rpNcOSjt2SvGkJONIw8PSkUdKhx1Wgz8QyhGX9I2nVulN4Qf0k/iQUsbNGxzbnQkrnjR6LprKO47lSZYjxb2whkNpSQsDaCOepVeOrdQ3njpT8S5+bWgU83sgbVxJ2frlBhB3Z8IaN+mC74tZnrRhMqLRqKfhUHpOEPFMADE90HDKqf+mF9bqh11DUp7c4LhnS0lLkyFXI6EM9W8ihXrAlWTl7NedCevIREQp4xXsgaPGwnq0Y3Lm58D8ceiB5uLIk517G4JQQooNFz9oVbeU7Cw+DgAAAIDmMzIy93EkIq1YIbW1SSH+fgcAQFNbu1YX7B1UR1oaD+C+Eh1p6YK99Z8Xc12wV/RAC6P+oAdaG/UHPQAAAACgan7zG+mYY4JeBQAAAABgOSGAGgAAAAAAoKFxlTmW7Nhjj12w7emnn654vPnhybZt66ijjqp4vFZw+OGHL9h24MCBAFaCukinpY98RBobkxxHkhRPGT0W8aROaa87Gyhdrt5HpMveLMmSHotmx51NJfWk/ful179esvMkWaKu4pK+4Z2vN3k36id6Wkk5M88ZGXUrps9H3qiPh2/Xcyp8PrBl6fPmTXqX9y0NKyEvJ4Y6IluvNEfrGyuvUPyCWC3/OKhAoR7IBgjP9kCft1MZuQXH6Q5369Pm1Qt6wBM90MhKrf+LGyb0Q/286Dif0iv1F/ou9W8yhXogGyA92wPXh+/RsxopOM4GrdHfmJ6Zc4B/WwNXUpQeaCqjXkJ93k5tNmer15yS3egOS5oofuDhZ0vWmpmH/d7D2ub9UtvN5Yob6g4AAAA0rYEBaWho9vGKFdkvAADQ9Pp/q1tbjh3UilT29fyJOoYPdqSkFansjY2lyt+XxtL0n5ytAT3Qmqg/6IHWRv1BDwAAAAAAAAAAAKBhEUANAAAAAADQ8KygF4Dmd9JJJy3YtmfPnorGSqVSevbZZ+dse+lLX6pQiLz0Yjo6OhZsm5qaCmAlqIvbbpP27JESiZlNJ/yJqyePnH5gSeYfKhva/INmfjI8eaR0wjtyXlTPZKSDB7NzoyHETUzfMFdotdrmbHfl6fPmjbMBlIvoNafo8+aNM8GjvtVq0zfMFQRQNjC/B9aofc72avXAGrXTAw3Mr/8pWjPvmfLq/3qdpM+bN0rz6n+K1lD/BletHvDPAfRA8xr1EtrkfU33aZ+2eLeq33u4onH6vYe1xbtV92mfNnlf06iXWPwgAAAAAAAAAHXjuI62Hfmi3OnrteKpbBhgPXSksvNJkmukbWdJTgNeN7bcOdP/7v0e6ExJdp2ulbO97HwSPRAU6g96oLVRf8zvAX4XBAAAALBkBHEBAAAAAJYz/t4LAAAAAACwACHUWLKzzjpLljW3le69915lMpmyx7r33nuVTqfnbDv77LOXtL5WcODAgQXbDjvssABWgrr44helsbGZhyf8ias9R83bp4Ig6twAat+eo+YFUSeT0v33lzcwauqj3g/0vMYXbL/Mu7GscfLt/7zG9VHvBxWvDfXxSe+Hek5jC7ZXowee05g+6f2w0qWhDu7zntf9GpyzzZX0Ye97ZY3zYe97cudtu1+Dus97fmkLRM3RA/ADqAe0X1L2RgSVBFH7AdT+DQkGtJ8gagAAAAAAAKDB2Jat7Y+cqp6cl4XrET6YGzooST2D0vab6hd8iVm2l/133zOYfT9guC17i8laZ0AaZecZbsvOSw8Eg/qDHmht1B+5PeDjd0EAAAAAAAAAAAA0BNNgdzAlgBoAAAAAACAvQqixZB0dHTrrrLPmbJuYmND9FQTV3nnnnQu2vepVr6p4ba1i9+7dC7atWbMmgJWg5p5/XrrjDslxJBUIoPZZklViEHW+AGrfnCBqz5OeekoaHS1r2aiNv3S/ret0d8HnjfvRksYptt91ult/6X677LWhPq5yv6t/1s8KPl+NHvhn/UxXud8te22ovTvcJ/VqfSnvc3t0SCe4ny1pnHP079qjQ3mfe7W+pDvcJytcIWqtWj1wgvtZeqBJzQ+g9vlB1N/R4yWNMz+A2kcQNQAAAAAAANB44glPO25tnxM+OP8mg9WWO37PoLRjpxRP1nhSFBRPSjfcLDmWlJ5+n7/Wl83546et7Lw33EwPBIX6gx5obdQf8WT2d7Hc3wXr1QMSvwsCAAAAAAAAAAAgDwKoAQAAAAAAmgYh1KiK1772tQu27dy5s+xx8h2Tb2zMdeutty7Y1tPTE8BKUHN33y1NTUlaJIDaV0IQtVUkgNo3J4g6nZb27i1puaidxQKofQN6oejzSTmLjkEQdWNaLIDaN6VM0ecfWKRHJIKoG1Gx8GHfHh3S32vXovs8qaGi+xBC3JhK7YGf6Omi+3xHewoGUPvogcZUKIDa58rTR3WHnlrkv/Hv64m8AdQ+gqgBAAAAAACABhMOKx5ZMRM+OByRpiK1nXIqkp2H0MHGMBqVrrxUCrlS2JXcOl3H55rsfCE3O/9otD7zYi7qD3qgtVF/SHODqEci0mSNfxecjGTn4XdBAAAAAAAAAAAALEAANQAAAAAAQFMhhBpVccUVVyzY9sUvflGpVKrkMe6//37dc889c7adf/75OvbYY5e8vuVs9+7duvnmm+dsM8YQ3r1c3XmnlEqVFkDtKxJEXUoAtW8miNpxpGeeKXFy1EKpAdS+TIFQyULb8yGIurGUGkDtS8sta3s+BFE3jlLCh30HNFkwYHiPDpXcA4QQN5ZyemBKmaI9MKF0SePQA41lsQBqnytPd+qZgkHUT2lI/1s/KhhA7SOIGgAAAAAAAGggq1dL+/crnpSOGKl9ALVvKpKdj9DBYDlG6rtMGlgvGUl26W/3VYXtZucdWJ9dh9Ng1xEud9Qf9EBro/7IFU9Kxw7VPoDaNxnJzsfvggAAAAAAAAAAAJhBADUAAAAAAEDTIYQaVXHaaafpFa94xZxtBw4c0Gc+85mSx/jbv/3bBdve8573LHlty1kymdSVV14px3HmbH/5y1+u9evXB7Qq1NRdd5UXQO3LE0RdTgC1byaI+tlny1wAqqXcAGrf/MDpcgKofQRRN4ZyA6h988OGywmg9hFEHbxywod9abkLQojLCaD2EULcGOgBFAug9vL8fPekvEHUT2lId+qZvF2QbxyCqAEAAAAAAIAGceqpkqT3XiJtO6e+U287JzsvgmN70ub7JcuTRiLSZLi+80+Gs/Na0+uwuXavrqg/6IHWRv2R6y8vlj53Xn3n/Nx52XkBAAAAAAAAAAAAAqgBAAAAAACaEyHUqJqPfOQjC7Z97GMf0y9/+ctFj/23f/s33XbbbXO2HXfccXrrW99a0tzHHHOMjDFzvn74wx+WdGyQrrvuOj399NMVHTs2NqZNmzbppz/96YLnPvnJTy51aWhQJ5z20/IDqH05QdSVBFD79hwlnfD7z1S4CCxFpQHUPj94upIAah9B1MGqNIDa5wfOVhJA7SOIOjiVhA/7ckOIKwkf9hFCHCx6AMUCqF15GtKUEkoveG5+ELUfQJ3vN4KE0hrSlFyCqAEAAAAAAIDGdMYZeu8l9Q8d9H3uPIKog9b7iHTmPmkyEsz8k5Hs/L2PBDN/q6P+oAdaG/WHlA2Cvu6CYOa+7gKCqAEAAAAAAAAAAFoeAdQAAAAAAABNixBqVM3FF1+sN77xjXO2JZNJ/e7v/q5uueWWvMek02l94hOf0JYtWxY896//+q8Kh8M1WWuj+OIXv6jjjz9eb33rW3XzzTcrkVg8zM1xHH3961/X2WefrW9961sLnr/iiiv0qle9qhbLRcC237tde9YvcRBLsj6mJZ/992yQtruVhyGjfA+7zy0pgNq3lABq33W6Ww+7zy15HJTnUff5JQVQ+5YSQO37Z/1Mj7rPL3kclG7Enaw4fNiXlqvdenHJPfBqfUkj7uSSxkD56AE4nqs+b2fBAOphTSktVyNKzgmiduXJlSdHnn6sp/UdPa4f62k509uV87tBQmmNKKm0XA0XCaLu83bK8Zb+8wQAAAAAAABA+d57Q29gAdQ+gqiD9ZcXS/9zYrBr+J8TCaAMCvUHPdDaqD+CDKD2EUQNAAAALCONFhoGAAAAAGh8jfZ3SQKoAQAAAAAAyhIKegFYXm644Qbdd999eu652XDS0dFRXXrppTr33HP1xje+Uccee6ympqb0+OOPa/v27dq7d++Ccd7//vfrD/7gD+q27nvvvVfvete7Cj4/Pj6+YNvNN9+sM888s+Ax5557rj7/+c8vOncmk9FXv/pVffWrX1VHR4fOOuss9fT06KUvfam6u7u1YsUKTU5O6uDBg/rlL3+pO+64I++/M0l6xSteoS9+8YuLzonm1Hdun95289sa4/YBrtQXflnQq2gpp1gvURWyg6vmFOslQS+h5ZxkHdFQPXCSdUTQS2gpXVa7jndXaY8OBb0UHa9V6rLag15Gy6EHYBtLm3W27vdunRMOnRtA7cmTkdGIkpKksOw5Y3iS9mtiwTZpNoA6u82bCaLuVpsszX4wxJLRZnO2bNMIv5QCAAAAAAAArWU8Ma7rzw16FVnXnyv98/ekzkzQK2ktU7YCDyH3fe486Z9+ILU5Qa+kdVB/0AOtjfqDHgAAAAAAAAAAAECgCKAGAAAAAABoeoRQo6rWrFmj733ve3r1q1+twcHBOc/de++9uvfeexcd4y1veYs++9nP1miF+Y2Pj2tgYKCsY4aGhjQ0NFTw+e7u7rLXMTExoTvvvFN33nln2cdeeuml+s///E/FYrGyj0Xz8K5fI/PuA8EGUbuSd22b9J7hABfRmjx9UKbj08HXf+KDkoYDXETrogda2+N6h07o+IL2WCOBreF4t0uPT7xD1D8Y9AB6dYQU+h1tid0hV142gNokZwKosx+ZmA2iXuGFJbPIByk8TwmlNGJS00fPjjMTRO1FZcnIktHWxIXqzRwhegAAAABocKlU0CsAAAA10BnrVM+g9MDhQa9E6hkkgDoIbY70u09Kt50Q9Eqy6yB4sr6oP9oc6Z33SZ9rgPvGv/M+eqDe2hzp374t/dmlkoK8ttvLroP615/fA39+qeQF2AOGHgAAAAAAAAAAAGg9BFADAAAAAAAsC4RQo+o2btyou+++W29961vLClMOh8P6u7/7O330ox+VZQWZrtlc1q1bp0984hO68sorg14K6mHFCnmfOCDzDwomhNaVvE9IioelyckAFgBv8t0ya64Prv4H3i2J2geJHmhtj0/+kU5Y/d/aExqt+9zHZ+J6/OAfifoHix5ArzZIyZfrffGfaNhKKD0dG+1/ZCI3iHrMpGR7luwiV6EnvYwmrMz0UQvHScvVsElolRvT1tFXqDe5QfQAAAAAAAAAEIxUJqXHDgt6FVmPHSalLCniBr2S1pKypJ8cE/Qqsn5yDD1Qb9QfjpG+d3zQq8j63vHZ9dhc11tXhyWk7qQ0HAtuDd3J7DoQjCsfyH7/szcGt4Z/v3l2HQAAAAAAAAAAAGgBBFADAAAAAAAsG4RQoyaOPPJI/fjHP9bXv/51XXfddfr5z38ur8ALeZ2dnXrzm9+sD3/4wzr55JPrvNJg3XTTTdq1a5d+9KMf6d5779Xjjz8u11386qwVK1boggsu0J/8yZ/ozW9+syKRSB1Wi4awerX05JPyPqH6B1H7AdSSFIlIyWQdJ0eukb196tqwve71H9nbJ3nUvRHQA63tvn1v0OEbbtSk5dRtznbX1n373kD9GwQ9gItSh2l9e0z7I1NzgqN9s0HUUtq4UoEgakeeUlZ65phC46Qlrc/EdNHYYfQAAAAA0CxSqaBXAAAAaqQtJU2Gg15Fdh0IBj3Q2qh/a3OMNBoNehVZo1FCqOvNMdK2s6R0EDctz5G2suu49FHqH5Q9q5V9MzeIa/296fkBAAAALA+EdgEAAAAAFkMANQAAAAAAwLJCCDVqxhijt7zlLXrLW96iF154QXfffbeefPJJjY6OKhQK6bDDDtPGjRt13nnnLTlE+Te/+c2Sjr/wwgsLhmTX0nHHHafjjjtOV155pSRpcnJSjz32mJ599lk9//zzGhsbUyKRUDQa1cqVK7Vy5UqdeOKJOvXUU2VZAV9NgmAccYSk7IVcr31S+u5xqk8IrZudbzQqxZPKhlCPjtZhYsw3aqW16ahf6HA3pn1K1K3+h7sxbVr5A+145nzF3Qa4orWF0QOtza9/lxtWQo7cOtTfcqUuN0z9GwQ9AL8HBq1JxR1bw3Ym7365f7vJBlGbOUHUjjyljSdL+QOoc8fpcmwNWpP0AAAAAAAAABCwSCiiNz8kXf+yoFcivfkhKbL4PbZRZRFX9EALo/6IuNKbGqQH3kQP1J3tSS89KH37xGDXMRHJroMA6mBcdZF07cuzHxcK4j9BS9n5JemaXQEsAAAAAAAAAAAAAPVDADUAAAAAAMCyQwg16mLt2rV6/etfH/QyGl57e7vOPPNMnXnmmUEvBY2qrU2jUWnT5dLAemn9pDTYIamWr9972XkG1mfn3bFTiofDUltbDSdFPqMmpU3rf66B6KhcSVFjKVmHy4mixpJrpIG2UW065l7tGHyF4t7Sbh6AytADrW1+/cN1qn+Y+jcMegDze2DKcmVUPEDalzae5Em2zEwAtb9PsY9emOl5oi49AAAAADSVTEbKvZllmJvJAACwHKQyKd10qrIv6gV5jZcn3XSqdN1tBJDWW8oSPdDCqD/ogdaWsqSvniEZT/ICrL/xsuv45x9Q/3pLWdKXzpp9bHmSW0EvVNpDVs4by186S/rEHfQAAAAAAAAAAADAskUANQAAAAAAwLJECDUANJHRqeGZAGpP0lCbZEk1jZ+0pudZOZUTRP0LV/HOzhrOivkcuerr/okGwsNyJQ1bKaXlFQ2erAajbGjlsJ1StxvVQGxYfRt+oW8OXyxb1qLHo3rogdZG/UEPoFAPlCNtPDny5vzuWMoI9AAAAADQhBxHCuW8DRiZdyOZaLS+6wEAAFURCUV0379LZ71berFNFQWQGs0GD1b0+rInHTYl3ffvhA4GIeJqyT2g6cMqfn+BHggM9Qc90Npy63+wrfIg6qXU33jSauofmNweONSW3VZuEHXYkWKOlLCltF36cbkB1KvoAQAAAAAAAAAAgOWNAGoAAAAAAIBlixBqAGgSjuuo76h7NRCZDaBOT+f+lXsxSan8i0fS1twg6r5XHdA3bUPwYB3ZsrU5eYruC/9Iw1ZSaXnT/6stb/r/05KGraRWuTFtTp4i2w7XeGbMRw+0NuoPegDV6oFyrwOmBwAAAIAmZduSlfP6be6HwY2RVqyo/5oAAEBVvGRMuv/6ygJI/QBq+d/LDaKeDh69//rsOhCMpfSAcnavKISUHggc9Qc90Npy619JEPVS6u8HUFP/YOX2QLlB1H4AtTT7vZQg6vkB1PQAAAAAAAAAAADAMtZoAdQAAAAAAACoKkKoAaBJ2JatzXvX6pfHHdShmDcTQO2rdhC1Ne9KIz+IevWUtPnxFbJfc3j1JkNJLvK6tN57QPs1VZfgUV9u+OR6u0sXdZ8lmVidZkcueqC1UX/QA6AHAAAAAJQsHJYSidnHHR3Z78ZIq1dLnZ3BrAsAAFRFJQGkuQHUM9vKCaImeLShVBpCO3+3skJI6YGGQf1BD7S2SoOol1J/AqgbSyVB1LkB1L5SgqgJoAYAAAAAAAAAAGghjRhA7dXrKkoAAAAAAIDWQAg1ADSRi8bXaN3UYxpszyx4rpoB1P54+YKo101auujFFVKM4MF6cjxXfcmvalDjintRDSux+EFV5EnqUlSDZlx9pl/fjP6JbGMtehyqhx5obdQf9ADoAQAAAABliUYl15193NYmxePZ8OlolBBqAACaWSgkZTJlBZDmC6Ceea6UIGqCRxuS3wMb3yeNRxffv1CLlBpC2pmiBxoJ9Qc90NrqXf8O6t9wygmijmSkqLtwu5QNorY9KZHn0+QEUAMAAAAAAAAAALQQAqgBAAAAAABaAiHUANAkHNdR3+mPadBy1ZWURnIuIKp2AHXuuLkXk3QlpcEOT32/e0jfXL+O4ME6siVtHv993XfgPzXlTcnIyCvpMrDqMDKaUkZtJqbNa35fdueGus2NLHqgtVF/0AOgBwAAAACUxbKkycnZx93d0sqV2X+Ox6UVKwJZFgAAqIJ0euair5eMST/eJvW8R0rbhQ8pFECd+7xX5D3nsJudh9DBxvOjo6VUFT79tVgPSNl5fnS01Pfrpc+H6qhW/UtB/RtT1Xpg+oYExdADjafk+pdQ38VQ/8Y0P4g638/yjpQUKhBO7WtPS7YrTUTmbvdM9ncEAqgBAAAAAAAAAACWOQKoAQAAAAAAWgbpoQDQJGzL1uYVvyPLk2Kupa5kdnutAqh9/vhdSSnmGFmetHnqZAKoA3BR+6laH+pSWk5dQyclyZOntBytD3XpovZT6zo3ZtEDrY36gx4APQAAAABgSSIRae1a6Ygjgl4JAACoktGo9MHXSisTxfdb7NXExZ5fmcjOMxpdZEfU1fbTpHf+oZSx5t5cupBCu3haPIDa8rLzvPMPs/MieNWs/2Kof2Oqag9wDmg6ZdXfcA5Yzvwg6o7Uwnp2pKR4qrRx4qns/rm86TEIoAYAAAAAAAAAAFjGCKAGAAAAAABoKaGgFwAAKF1vzybpn2/TlpePKOZaGvLcRS8EqwbXmw6gltHWn3So981vkk46qfYTY4bjOeq772+0T+OyjCXXc+q+BstY2qdx9U18Wd88519kG7vua2hl9EBro/6gB0APAAAAAChLR4c0lpMOtGZNNoAaAAAsD//wDxr9509o0+XSwHppIlx8d89I8vK/tVxKAPFEODvPpsulHTuleLLCdaNq/PDR9PS9oxeroc/T3D4o9ZI9z0jGy873zj/Mbuv7dYkHo+qoP+iB1kb9Md89G6S2lDSWc8OQaKb0AGpfPJUNHE/mfLK8LZUd/yWPVGetAAAAAAAAAAAAaCAEUAMAAAAAALQcK+gFAADK8LKXqfc3MW39aZf2xdz6ncUtaV+bp60/7lDvk1Hp1FPrNDF8trF1xeGv0VBmTG5Ab564nqehzJiuOPw1hE4GgB5obdQf9ADm90C9P95hRA8AAAAATcUYybJmvxrxQ+IAAKBio3//oZkA6tGINBFZ/BjPLAybLCWAWsqOPxqZDaIejS5+DGonX/hoOe8cePO+l3qM3yt+COn208oYAFVD/UEPtDbqj/n6T5bef4k00q45BU7bUiJU7MiFEqHscbnjjLRnx+8/uXprBgAAAAAAAAAAQANoxM8WE0ANAAAAAABQc2V+xBgAEKgjjpBe/nJdtnFn/W8jYEmXXTwm77aN0sGD2S/UjeO5unGwX+0KaUipQNbgylW7Qrrx8X5dMXaMbMO9LOqJHmht1B/0AHJ7YFjpsi4MrwZv+v/pAQAAAAAAACBYo8lRbdq5SQNnHa7Rg/tKCqD2eUaSl73pXKkB1D5/Hj+IesdOKZ4sY+GoipQlffC1lYePzvCkcu926Cl7jPGy83/wtdKbH5YibiULQCWoP+iB1kb9MZ8fQH2wPdsfM3U12evzR8q4cUgilN3fr7U/TsrKjv/+S7Kbeh+p2vIBAAAAAAAAAAAQFAKoAQAAAAAAWhaJUQDQZMxpAQRQ+yzJXHx3QJO3NttY2rzidzTkTga6jiF3UptX/A6hkwGgB1qbX/9RdyrQdYy6U9Q/IPQA/B4wM/EwQfBkZOgBAAAAAAAAICCO66jvpj4NDA5oNDlaVgC1zzOSa8oLoPZNRKTRSDaIuu8yyWnA69GWu4grffo2KewsIXxUKjt81OeHl4ed7DoIH60v6g96oLVRf+SaH0A9/3c7v0dGorPB5YWk7NkA6nzj5AZR959czT8FAAAAAAAAAAAA6o4AagAAAAAAgJZGahQANBHz8QZ4Ud+WzBN/HPQqWtJl+68LegmSGmcdrahR/t03yjpazYcP3ignsODZLEeePnzwxkDX0MroAWSZ6f/Ve1ZNz9oAv48CAAAAAAAALcq2bG0+c7PGUmOaSE8E8nLdREQai0ib75dsrv8KRN+D0rvvqTx81Mz7Xi5P2fn7HqxwACwJ9Qc90NqoP6TFA6h9fhD1VLhwEHXakibC+QOoc8chiBoAAAAAAAAAAKA5FM2jKCOAOl2FtZSEAGoAAAAAAIC6IoQaAJrE9nu3zz5ogOy/7U//OOgltJSHR58LeglzNNp6WsGjY88HvYQ5Gm09y91IelJ7MvuDXoYkaU9mv0bSk0Evo+XQA3A8V9vGfqSoCanLaq9rELUfQN1ltStqQto29iM5nlun2QEAAAAAAADkuuu5uzSRmgh0DRNh6a4NgS6hpfWfLH39NCkU0Mu0ITc7PwGUwaD+oAdaG/VHqQHUPj+IOhlaGESdtrLbiwVQ545DEDUAAAAAAAAAAEBj8wOo8wZRVxBAXfMgagKoAQAAAAAA6i4U9AIAAKXpO7dPV995tfaM7FnSOJYnuZUmFk4fd3zkJeq78E+XtA6U5xS9VH/x8Jt13XNfD3op+ouXvFmnnPI7QS+j5Zykl+rDj7xV//zMfwe9FH34qLfqpJNfGfQyWkqXpNvXbNWr79sS9FJ0+zlb1bX69KCX0XLoAdiSth/zL9o08A8aGN8jOZZGMhPyVPsrzI0sdYU6FLOj6uk8Xtt7PiE71FHzeQEAAABUkW3PfRziLUIAAJpRKpPSFx/4ojxNX4BV4XVYtic5S7jLnWekL54lfeIOKcL96urKMdJ/nJMNgKy0hp6yIaIZa9FdC67hYHt2HZc+mu0n1Af1Bz3Q2qg/cnuglADqXH4QtUlLJx2UHl09G0Bd6t2Pc4Oo6QEAAAAAAAAAAIDGMj942nzcyPvY9Js5FQRQ5z4OL21p+RFADQAAAAAAEAiuMAeAJvL4Xz6uEz57QjaI2qjsi4otb/Z72UHUfgB19CV6/DXfLPNgVMNnz7xKsmxd98yNga3hL466Qp8940OBzd/qrjnjg5IV0j//5suBreHDx7xd15z2gcDmb2W/e/hv6fbzr9erf/HuwNZw+/nX63fXnBvY/K2OHkA8EtGOcz+lTb/8Ow2MPqaUl9GEM1XzedvsaDaAOn6idpz9j4qHO2s+JwAAAIAa6+DGMgAANCPbsnXGujN0+1O3zwZRl8lIijhSIlRxhrWMJ52xn9DBoHj+1xKCxJc0v5ldA+qP+oMeaG3UH0vpAf84P8C6kjrSAwAAAAAAAAAAAI1nfgB17nbv6tLHmR9Anbu9qkHUBFADAAAAAAAExgp6AQCA8jz+l4/r+K7jsw/KuJjE8oo/LooA6obx2TM+pL846opA5iaAujFcc9oH9OFj3h7I3ARQB+9315yr28+/PpC5CR9uDPQA4uFO7Tj7H7U+ulpTTlKmnF8IK2BkNOUktT66mgBqAAAAYLloa5NWrw56FQAAoAK2Zet9571PazvWyrjlH2+UDZBO2tnvlby6aDxp7bj0vnsIoQ6C7Ul/PFBZ7XJllviJMaPsOuiB+qL+oAdaG/VHNXrAMdKTq7LfK0UPAAAAAMtId3fQKwAAAAAALFGhAGpJ0tVSssRxCgVQl/p8yQigBgAAAAAACBQh1ADQhB7/y8e1rm1d9kEJF4QUCpwuKYh6evx1ZiUB1A3id9acozZF6jpnmyL6nTXn1HVOFHbB6tPVrmhd52xXVBesPr2ucyK/4cyYVtlddZ1zld2l4cxYXedEYfQAdr14j/YnDyps2XWZL2zZ2p88qF0v3lOX+QAAAADUUDwunXCCZGp7QxsAAFA7vRt79bn179TacUllXJPlB1DP2VZuEPV0APXnbpV6HynnQFSLY6QbT5fa02XeeLqKLC87/42nLy3AEuWj/qAHWhv1RzV6IG1LKTv7vRL0AAAAAAAAAAAAQONYLIA6oWyoULUCppccRE0ANQAAAAAAQOBCQS8AAFC+/t39CoVyTuFGBS8wXuyCE8uT3ELvL+RsD3W0qV+71Xv8G8pZKqqsf88t2vLoZ9TdsUqpiRfkyK35nLYsdXes0pZHPyMdvp4eCJjfA10dK5WaOKCMnJrPGZKtro6V9EAD8OsfjbWpcyqjcXei5nN2Wh2Kxtqof4OgB+D3gBcKqc1rVzI1UtP5PHlqC7XLC4XoAQAAAKCZGSO1tUnhcNArAQAAVdD7x/+oydOkzX+YDRGsl4gr/Z/vEUAdJNuTNt8v3X949iMCw7H6ryGezIZPbr4/ux7UD/UHPdDaqD+q1QMFPytYAnoAAAAAAAAAAACgMZQaQO1LS8r3KeJyg6ULjbMoAqgBAAAAAAAaAiHUANBk+nf3a8t3tsj1XK2MrdRQYij7hP8+Qc7r74sFUOfuN+fiknnvOayMrZQrT1t+9L+k9g71buytdPlYgv7d/dryo/8lV54STlJekfDxavKMlHCSioVi9EDA5veAa7y69IBrPHqgAcyv/6Q3VZd5J70phZ0I9W8A9ADm98BoekyWseR6tbsphWUsjabHZCyLHgAAAAAAAAAaxGhU+kqP1JGWMlZpQYKeJBnJ5Ly35JnS32qyvOx8X+mR3vB4NoAQweh9RJoMS++8tOj9qmvCSJoKSf92K2HkQaH+oAdaG/UHPQAAAACgakJcVgoAAAAAzapoALWkKc0NoPbND5AuN4C60DiLIoAaAAAAAACgYfBpAQBoIrkB1IlMQiPJkYXBg9PvGZQaQO2zlP/iZMtYGkmOSFI2ePA7WySJ4ME6c1xH2x7YNqf2kmRk5NXwciIz3VC5PbDtgW269KRLZVt2zebFQvRAa6P+oAdQqAe8Gn8Aw/M8GWPoAQAAAAAAAKBBjPacrE2XSwPrpVgmu20kWn4QdbkB1F3J7HwD66VNl0s7dkpxh48dBWE04ukrPa7aM57StqQyarkURtneac9IX+kxesMTluKpEhoPVUX9QQ+0NuoPegAAAABAyTKZhdsIngYAAACAprdoAPXVUrGr/vwA6UoDqOePsygCqAEAAAAAABpKvpuXAQAaUKHgQSkbFJ3LMpZkWfIsI9dMX0A8fcFJ2M1+97e5RpKd3T/vONNGkiNKZBJyPVfbHtgmx3Vq+KfFfLZla/tl27W+c/2c0MlaBo9KkidvJtxyJDmi9Z3rtf2y7YROBoAeaG3UH/QA6AEAAAAAAAAAjuuo79RHNbB+dlsskw2ILvUmxZ6y7xFXEkDtG1gv9V0mOYaLxOrNMZ76/tDVwDpvpvbGm7lXdc34wZMzYeTrsuugB+qL+oMeaG3UH/QAAAAAAAAAAABAa1ssgHry6uIB1L6lBlCXPA4B1AAAAAAAAA2HEGoAaBL5ggd9rucWfpwbQm1JyVD2u78t9yqUouOI4MGg7Xpyl/ZP7FfYCtcldNLnh0+GrbD2T+zXrid31WVeLEQPtDbqD3oA9AAAAAAAAADQ2mzL1ub7FwZOxzJSW7WuDpunLT03gFrKzr/5fsn2ah15iPlsz2jzgJnpAT+AsuYvF88LI7c8afOAoQfqjPqDHmht1B+FeqCWQdTzA6glegAAAAAAAAAAACAo3scKvzk4ebUUqt9SJEnhYk8SQA0AAAAAANCQCKEGgCay68ldGhwfVNiafUl+flD0YtsLKWWcsBXW4PggwYMBcFxH2x7YJs/z1BZuq1vopM/T9Lyep20PbJPjOnWdH/RAq6P+oAdADwAAAAAAAACQpN5HpK23zg2iToSkqaJXdVVuKpwd32d52fl7H6nNfFhc76OWtt5mzQ0jr3UGZM74lidtvc1S76N87CwI1B/0QGuj/pjfA7lB1LWQL4CaHgAAAAAAAAAAAAhOviDqiasJoAYAAAAAAEBp+BQwADQJP3hQkrpj3Qpb4UWDpksNJ1xsHNdzFbbC6o51SxLBgwGwLVvbL9uu9Z3rNZoclan5FWRzGRmNJke1vnO9tl+2XbZl13V+0AOtjvqDHgA9AAAAAAAAAMCXG0SdCEkjUcmt0UuGrsmOnwgRQN1I/ADKpJ2tT62CJ33Gy86TtAmebATUH/RAa6P+mB9EHXXm3qCkmiwvO77/z/QAAAAAAAAAAABA8HKDqMevXiQQugYIoAYAAAAAAGhefBIYAJqEHzzYs75HlrHkOsWDo6vNdVxZxlLP+h6CBwOy68ld2j+xX5axSg4YrxZPnixjaf/Efu16cldd58YseqC1UX/QA6AHAAAAAAAAAPh6H5H6BmobQO3zg6j7BgigblT16AE0LuoPeqC1Uf/W5AdRG0lDsdrekGQoJhkRQA0AAAAAAAAAANBIvI95Gr9aitR5XgKoAQAAAAAAmhufBgaAJhKPxrXj8h0yMkorXde500rLyGjH5TsUj8brOjckx3W07YFtmkpPKeNmAllDxs1oKj2lbQ9sk+M6gayhldEDrY36gx5Abg+4XuU3IzGq/Opj13PpAQAAAAAAAKBB9J8sfaVHsup07ZblZefrP7k+86G4/pNcbbnYVcStbw9EXGnLxa76T6rvTbMxF/UHPdDaqD98Fz1ltG5cSluSV6MQas9kx183np0PAAAAAAAAAAAADcIYddR5SgKoAQAAAAAAmh8h1ADQZK667So9P/58IHM/P/68rrrtqkDmbnW2ZeuKU6/QUGJoSeMsJXhSkoYSQ7ri1CtkW/aSxkH5/B4YTgwvaZyl9sBwYpgeCIBf//HkeOVjGFthKyzbVF678eQ49Q8IPQC/BybTk5Iky5T/1/mwFVY0FFXYmv24R6k/F/z5JtOT9AAAAAAAAAAQsP6TpfdfIh1sl1yjJb77szij7DwH27PzEkQdLD981LGkoVh9e2AoJjkWIaRBov6gB1ob9YdvNOJp02WuBjultrRUq0v6PWXHH+yUNl3majRCeAAAAAAAAAAAAEDgzOy7hEWDoauIAGoAAAAAAIDlgRBqAGgi77n5Pbr+/uuXNIatpQUGXn//9XrPze9Z0hgon+M6uvZn1y55nIgdWfIY1/7sWjmus+RxUB7HdfSZuz4jb4mXjcVCsSUd78nTZ+76DD1QZ47r6IsPfFEZL1PxGJ48rW5bvaQeyngZffGBL1L/ANADcFxHNz50o7pj3QpbYXllfDDDyChiRxSxIzoqftTMP5dzYwLP8xS2wuqOdevGh26kBwAAAAAAAICA5AZQpy3JM7ULHfR5ys6TtgiiDppjPG3r8WbCR4PoAT+EdFuPJ8dwEWE9UX/QA62N+sPnB1APrPOUCElTYdU0hXoqLCVC0sA6jyBqAAAAAAAAAACAoJmF1wTWOoiaAGoAAAAAAIDlgxBqAGgSDz7z4JIDqCXJ0dIDA6+//3o9+MyDSx4HpTs0fkgP7H9gyeMkneSSx3hg/wM6NH5oyeOgPCOTI7pv331LHmcqM7XkMe7bd59GJkeWPA5K57iOfrX/V0sKD3Y9V8PJYbmeW/EYnjz9av+vCJ8NAD0A27K1/bLtOuvwsxSPxss+NmyF9YojX6FXH/tqveLIVyhshWVbdlk9FY/GddbhZ2n7ZdtlW0u7sQkAAAAAAACA8jmuo/84p74B1L75QdT/cY4InwyA7Rl97lajjAm2BzJG+tytRrZX+s0OsXTUH/RAa6P+kBYGUI9Ep/ugVuWY7rORKEHUAAAAAAAAAAAAgcsTQO2rVRA1AdQAAAAAAADLSyjoBQAASnP6UacHvYQ5Gm09y92a+Bp1R7s1nBwOeinqjnZrTXxN0MtoOas6V2l9x3oNTgwGvRSt71ivVZ2rgl5GS4mEIvrTM/9U1/782iUFCCcyiSWtwzKW/vTMP1UkFFnSOCgfPQApGwJ9wxtu0Fn/fpaMMfJK/JCG4zo6Yc0JOnblsZKkY1ceq/0T+zWwf0BGpqQgamOy+93whhvKDsEGAAAAAAAAUD1eZ4ekiboGT87MLc0EHHqSlHHqv4gW5xjpPa+TbFeyvGwQaD15kmwvO/97Xufqmze6sumBuqH+oAdaG/WHY6S+N0oD6zQngLrWeeCekeRl55OyQdR9b3T0zRtFDwAAAADNxvOKBpYBAAAAABpYCX+fC0tKV3FKAqgBAAAAAACWHyvoBQAASud9rDFejG+UdbSap//qaYVMsPePCJmQnv6rpwNdQyt7dMujiljBBr9GrIge3fJooGtoVX//qr/X0V1HB7qGo7uO1t+/6u8DXUMrowcwmhzVlbdcqZAVUtgKyzLF/0pvpv8XsSN6/NDjemroKUnSU0NP6fFDjytiR2RMdp9iLGMpbIUVskK68pYrNZocrdqfCQAAAAAAAEDpbMvWn//Ff6k9FVz2syepPSX9+X2EDgbB9qTN90tpOxtEGQTHZOfffD89UG/UH/RAa6P+8HsgadcvgNrn3wBlJJqdnx4AAAAAmpTnSa5LUBgAAAAANJsSbyhUzQDqouPx90oAAAAAAICmRQg1ADSZoAOgg56/VTmuo76b+rSmY02g61jTsUZ9N/XJcZ1A19GK/B5Y3b560bDQWjEyWt2+mh4IgF//RCahjnBHIGvoCHcokUlQ/4DQA/B7YGBwQEZGK9tWFg2iNjIyJhtAbVu2PHm689k7dftTt+vOZ++UJ0+2Zasz0lk0iNoPoF7ZtlJGRgODA/QAAAAAAAAAEKRDh2QkmYDetjWeAnqnCgAAAL56BlDPzGmCuxEKAAAAgCrzPALDAAAAAKBZBBRAXXBc/j4JAAAAAADQ1AihBoAmM5oc1WuPf20gc7/2+NdqNDkayNytzrZsbT5zsyxj6fDOwwNZw+Gdh8syljafuVm2ZQeyhlaW2wPrO9fXPYjayGh953p6ICC59Y9H43UPIe4IdygejVP/ANEDyO0BSUWDqP0A6hWRFTLGyPVcuZ4rx3P0zOgzcjxnZlvUjqor2pU3iHp+ALW/jR4AAAAAAAAAguG4jrbdfb2ijtSdrH8QtfGy80YdadtZkkMadd05Jvvv3jMKLg3cZOenB+qP+oMeaG3UH/QAAAAAgKoiNAwAAAAAGl/AAdQLxufvkgAAAAAAAE2PEGoAaCKjyVFt2rlJA4MDdQ8iPrzzcA0MDmjTzk0EUQekd2Ovtr5uayBB1H4A9dbXbVXvxt66zo1ZuT1QzyDq3ABqeiA4ufWvZwhxbvgw9Q8WPYDcHpDyB1H7AdRd0S5F7eiiY3ryFAvFFgRRFwqgpgcAAAAAAACA4NiWre2jr1HPi7ZimWwgtMq8tstIsrwKcgunA6hjGalnUNp+k2RzXVnd2Z50xa+lyVA2FLze2Y9G2XknQ9l10AP1Rf1BD7Q26g96AAAAAAAAAAAAoIU0SAC1JLkK7h6pAAAAAAAAqC5CqAGgSTiuo76b+jQwODCzrV5BxLnzDAwOqO+mPjmuU5e5MVcQQdQEUDeWegdRE0DdWOodQkz4cOOhB7BYELUfQB0LxcoaNzeImgBqAAAAAAAAoHHFH35CO3a46hnMPi7xerPsvsoGB0rlBxf68/QMSjt2SvFkGQejahwj3XiatDIhhd1g1hB2s/PfeFp2Pagf6g96oLVRf9ADAAAAAKrKsqR4POhVAAAAAADyabAA6pgkXS2Zj/MGEQAAAAAAQLMjhBoAmoRt2dp85uaZwEFfrYOI549vGUubz9ws27JrOi8Kq2cQNQHUjaleQdQEUDemeoUQEz7cuOgBFAuiriSA2ucHURNADQAAAAAAADSw3/xG8YSnt/1KmgyVHiadG0A9s63MYydD0tt+RQB1kGxP2n6TdOag1JaWvMUPqSpP2XnPHMyuw673Aloc9Qc90NqoP+gBAAAAAEvmedkvSerqCnYtAAAAAID8GjSA2kcQNQAAAAAAQHMjhBoAmsj8wEFfrYKI8wVQE0DYGOoRRE0AdWOrdRA1AdSNrdYhxIQPNz56APmCqFe1rao4gNoXC8W0qm0VAdQAAAAAAABAo9q3T/0nS1e9RlqZkMLu4mHS+QKoZ54r8diwm53vqtdI/SdXvnwsXTwpvW1AmgpLVgXhjybnq1yWl533bQOEkQeF+oMeaG3UH/QAAAAAgKqwbeltbwt6FQAAAACA+RoogNqT9ClpTgC1jyBqAAAAAACA5hUKegEAgPL4AYBbvrNFrufObD+883DtG99XtXkIoG58ub1Qi/pT88aX2wPrO9dXtQcIoG58ufWPR+NKZBJyPGfJ49rGJny4SdADKPR7YbXQAwAAAAAAAEDj6V9zUFsulFyTDQ9cOSUNtUlpS5LJXgCWq1gA9cw+XvFjw252HqPsvFsuyT7f+ygXlAWh/2RPV/2+1D0lDU/X3i2xFPN3M1pY90Ks6V7onpKu+n2p3ZF6H6EH6o36gx5obdQf9AAAAACAsng5v/UbI4XDUjwu/d7vlRxsBgAAAACokwYLoP4nSVdfXXgf83Ej72MV3DUVAAAAAAAAgSKEGgCaUL7AwWqGz/rj+UHUBBA2Lr8mb/ram6o67uD4oL7xlm9Q8ybg1+jyr11e1XH3j+/XzrfspAcanF+ft/e/vSrhw5LkeI7GkmP6cu+XqX8ToAdQqyBqfv8DAAAAAAAAGo/jOtq2cWpO0OD8IGpv3nP5AqijjpS0527LF0Q9P4Da5xpp29nSpaf2yl4QZ4hacuRp29E/k9s2LEtSt+dpWGml5WqxV4hzK2V5Ru50c/jbi10WaEkKy1K3F5YVM3IlbXtdty495bfpgTqqVf0XuySU+jcOeqC1UX/QAwAAAADKMj4uHTw4+zgalU4/ffZxKlX/NQEAAAAA8muwAOpvqXgAtY8gagAAAAAAgOZDCDUANKncwMG9Y3trMse+8X3asGIDAYQNbvO3Nstb9HKg8njytPlbm6l7k3jv/7y3hMvJyuPK1Xv/5730QBO467m7NJGeqOqYE+kJ3fXcXdS/SdADqHYQNQHUAAAAAAAAQGOyLVvb+y1t6nU0sH52ux9E/WK7ZgKqCwVQdyWlWEZKhKSR6Nzn5gdRW97CAGpJ6hmUtn9Dsv9AWjy2ENVkS9r+zHnadNTdGmgbkSWjbiesYTuttMn/juH8+oVdSyEZZTxPacuds0++alqSwp6lbicsa3rPnqkubX/mPNleoaNQC9Qf9EBro/6gBwAAAAAAAAAAAJahEgOoJSms6gRRFxrHD6B+y9WljUMANQAAAAAAQPMhhBoAmljvxl5d9rXLajrH3rG9BBA2sJWfWqnh5HBNxh5ODmvlp1Zq6H8N1WR8VMfh1x6uwYnBmow9ODGow689XPs+tK8m42Pprvr+Vbr259fKGCPPq96btcYYXfvzayVJ17zmmqqNi+qjB+Dr3dirbz76TX3/ie8veayLjruI3/8AAAAAAACABhVPSjt2Spsu15wg6kRIyljFj/UDqKXZ7/ODqHNlrOy4bZnZbT2D2fnjSZV1ERyqJ+5FtOPZ87XpqF9oIDYbQHnQTsmdlzxupr/8rX7wpKTsd9daNIDS8szc4MlEl3Y8e77iXnhhsiVqjvqDHmht1B/0AAAAAICqiUSCXgEAAAAAoILP3iw1iDpcYBxP0s9FADUAAAAAAMByt8jlZwCARmY+Xp8rOeo1D8pTywBqnx9EjcZUywBqnx9Ejcbjhw9Lqmr4cO541/78Wl31/auqOjaqhx5Arv7d/dr15K6qjLXryV3q391flbEAAAAAAAAAVJ8fRN0z/TbRVEgajs3dx5Pk5bzNmxtA7YtlsttnjjELgweHY9nxpXkB1AhU3A1rxzPnqyfRJUlKGVdOgeBJX27wpC8ko7BrFTxGkhzjKWWyAZU9iS7teOZ8xd2wEBzqD3qgtVF/0AMAAAAAlswYacWKoFcBAAAAAK1tCTd/r/TdmvnH5T7+uaQLry5tHAKoAQAAAAAAmhch1ADQpOodDE0QdWOpRwC1jyDqxlSPAGofQdSNZ374sLcgEmJpPHmEEDc4egC5+nf3a8t3tsj13KqM53qutnxnC0HUAAAAAAAAQCMKZROh/SDqNRMLA6h9fhB1vgBqnx9EnS+A2jccy84zJ4Da4iNHQfMDKNdnohqx03OCI0sJnvSFZNTphGYe5xtnxE5rfSZK8GQDKaf+bYvUP1oggJT6N7ZqngM6XHvmMT3QHMqpf4drF61/oRBi6t/YyumB6CLngDbOAQAAAEBrCYWk1aulML/fAwAAAEBglhBA7Sv3b3WF9g9L+pUIoAYAAAAAAGgVocV3AQA0mqACoc3HDW8MNIB6BlD7/CDqof81VNd5kV89A6h9fhD1vg/tq+u8WKjW4cM+T57kScaYmfmuec01NZkL5aEHkKvaAdQ+P4hakno39lZ1bAAAAAAAAABL0N4uJbNJ0LecKD2yepH9S30J2ZMKZBNKys5zy4lS34PTG8Jh6aUvLXFw1Mou+zENhjMKy1Za7nQJPZmcYq7wwkpbxV9Djnph2Z6tEZOSpAXjhGVpMJrRruMt9TrUvVGUUv8uLyLPklJyCo4TkqU2L0z9m1CpPZC0CtdfkiJeSGEvRA80mVLrb4xRwhS4G4Wmg8g5BzSlUnsgbblyi/xSGJGtKOcAAAAAYPkZHJQSidnH0ai0bp1k24WPAQAAAADUXhUCqH1hSekS9yvmHM+TSsivIGcCAAAAAACg+RFCDQBNJqgA6tz5eYMgOEEEUPsIom4MQQRQ+wiiDl69wod9hBA3HnoAuWoVQO0jiBoAAAAAAABoQOvWSUND2n669M5LpYwtGU/y8ryNbLxsiOBINPs4lid/MhHKPm8kqcg4GTs7nzQdRL1ihdTZWZ0/EyrS7z2sLd7tkix1q03DmpoOoMwJnlRUEROSo1TRsYyxFFNIktGIsiHnucGT3WqTjNGW6O2SianXnFKrPxZKVGr9YyashNKyZBUcy5JRzERE/ZtLOT2QUbLou4rGWIrKFj3QPMqpf0pO0XOAkTgHNKFyeiD7e0Dhs4CRpZjh9wAAAABg2Wlvnxs4HQoRQA0AAAAAQatiALVvsSDqxQKo5WXfR/I+5hXNsSBfAgAAAAAAYHko/MlyAEDDCTqA2tco62g1QQZQ+/wgagQjyABqnx9Ejfqrd/iwz5Mnb/pN5Gt/fq2u+v5VdZkXC9EDyFXrAGqfH0Tdv7u/pvMAAAAAAAAAKNHv/M5MAHV6Oi/EKBsUncsPoPaNRLOB07n8AOqZYxYZJz0dRL39dEnHHrvkPwoqlw2evFXu9HsFloy61aZwzkfBuhRVbPpSQrPIly+msLo02xR+8KQ1vZcrT1u8W9XvPVzDPx0WU379TUk9QP2bR7k9IJV2HqAHmgM/A1DtHuAcAAAAAAAAAAAAUAc1CKD2FQqaLjWAeuZhgaBpAqgBAAAAAACWj9DiuwAAGsGDzzwY9BLmePCZB3X6UacHvYyWcWD0QOAB1L7h5LAOjB7QmviaoJfSUg6NHwo8gNo3ODGoQ+OHtKpzVdBLaRmpTEpfGviSpPqGD/s8eZInGWP0pYEv6RO/+wlFQpG6rqHV0QPIVa8Aap8fRC1JvRt76zInAAAAAAAAgPy2n9+md66R0vNuO28kyZM8szCA2ucHTscyCwOoSx3HD6LWb5Lq27dviX8aVKI/+qS2rLhzJnjSZ0nqVkTDVlLtbkgxWZIcZV/gX+R9Bc/N7idNHxfWpJVRtxuRpbmvRbuStugWaWxIvcnjqvSnQqnKr78kM1vfgrzsvtS/8VXWA6WcA7LogcZWUf3lltADnAOaReXngGI94NIDAAAAwHJ08KCUSs3dNjUlRSKSbQezJgAAAABoVTUMoPaFJaXnPS7KKxw4bT5u5jwGAAAAAADA8kEINQA0idOPOl3vPuvduv7+64Neit591rsJoK6zNfE12vGmHdr0jU1LGsfILDm4dMebdhBAHYBVnat0yxW36A03vmFJ41iy5GppoaW3XHELAdR1FglFdN+f3adT/u8pGkuNVTSGJUu2ZctxnYp6wJOnznCn7vuz+wgfDgA9AF+9A6h9BFEDAAAAAAAAwUtlUvrgC19ZEEDt8wOki122NhKVVk5J+zsK77PYOGlb+uDRj+jNj75UERVYDGrCkadtRw/IdZ28z1uSVrphGRlp5r0AT7Jm3yM2ko5LdujJ6MTsO8euq9yKx2Qp6oZllD+00pW0zRrQpS90yC7acaimyuqvbAj1dABt3vrLm+6BLOrfuCrugcXOAZ47p9T0QGNa0jlAxc4B4hzQJCo/B8z+c+FzAL8HAAAAAMvO+LiUSMw+9jxpaCj7z11dUkeRF4kBAAAAANVThwBqnx9EXWkA9czT00HUBFADAAAAAAAsP1wJBgBN5HOXfk7vPuvdFR9vcv5XqXef9W597tLPVXw8Khe2w+qKdFV8vG1sWcaSbeyKx+iKdClsL/rWE2ok7abVHe2u+PiQCckylkKm8vuQdEe7lXbTi++Iqrtn7z1qD7dXdA63jKWQHZIxRiE72wflMjJqD7frnr33lH0sqoMeQFAB1D4/iLp/d38g8wMAAAAAAACtLhKK6NOv+6zCS/i4T1dSmgpnv1cq7EqfHjyDAOoA2DLa/uzL1JOo7H1jI+mSkXW6bOQIXTKyruJPDvQkurT92ZcRPFln1B/0QGuj/iilB4p9nqCcHig2Dj0AAAAALAMjI3MDqgEAAAAAtVHHAGrfUgOoZ3YjgBoAAAAAAGBZ4mowAGgyn7v0c3rNMa8p+7hYKKZoKDrzFQvFyh7jNce8hgDqgDiuo20PbFN7pF3xcLzs42OhmCJ2RBtWbFDEjlRU/3g4rvZIu7Y9sE2O65R9PJbG74G2cFtFYeSxUExhO6wjVhyhsB2uqAe6Il1qC7fRAwHw628ZS4e1H1ZWCLFtbEXsiGxja33H+jmPS2VkdFj7YbKMRf0DQg/A74FCAdSePB2aOqREpvBFAUZGa9vXFu2fRCahQ1OH5Cn/h0Rcz6UHAAAAAAAAgAD1ndGnL3iXKpznpUJPkmdU4NW9bPB0LJP951imcBB1sXHCrvSFuw9X38jR5S8eVRF3w9rxzPl5AyhdeRqy00qYha/h+sGTpySz7zefkowXDKBMGEdDdlpuni7oSXRpxzPnK+5y8+IgUH/QA62N+qNYDxRTTg8UQw8AAAAAy8j4eNArAAAAAADUW4kB1AAAAAAAAFi+QkEvAABQnv7d/Xr44MOKKKKUUiUdUyhsNhaKFQ0qzBVRRA8ffFj9u/vVu7G35PWiOmzL1vbLtmvTzk0aGByQJI2mR0s6NhaKycioZ12PNqzYoL1jezWwf6Cs+sfDcXVEO9SzvkfbL9su2yo9uBTVka8HRlIjJR1bjR7oinSpPdJODwRkfv0Paz9ML06+WDAk1uef//PVP2yHJUdyvOJBsn74cMgKUf8AVdoDISukkBUq2AOWayntpouOQQ80hnw/B3yePA1NDSntpjWSzP5smP/7X74emN8/iUxi5vihqSGtbFu5ILCaHgAAAAAAAACC1/eQJT1p6Z2vd5Wevv28Hxwt/7unOa/u5QZQ+/zHI9HZbcXGCbvSF74l9b0o6bziry2jtuKSdjxxtjYde58G2rKv67ryNBxKK208jdiulPEU82zJTAdPDq/VKYlOSbMJ5qdMdUqepx/GD85caJgwjkbsbHMM2yl1Z8KyprugZ6pLO546W3FXkuiBoJRVf/nBo4Xr/92uF6h/kym7B7ziPbAr/iI90ESqfQ64lXNA08nXA8UYT3pdkR74fvxASYED9AAAAADQZDKZ7JfPtrOPbVsyRkqVdj0SAAAAAKBCptzbgdYYAdQAAAAAAAAQIdQA0FT6d/dry3e2yPVcre5crYPjBxcNoi4UQO1b1bZKh6YOFd0noohWd66W67na8p0tkkQQdQDi0bh2XL6jrCDqrmiXUk5qJnRS0sz3gf0Dagu1aSozVXzenADqHZfvUDwar8KfBpXI1wPFgqiNzMw5oFAPdEW7NJocLRpkmxtATQ8EZ379Fwsh7gh3KBqKaio9VbD+YTusqIlqMj2Zd4z54cPUP1iV9IAkuZ5bsAdioZgiXkQT6Ym8Y9ADjSXfz4HcAGqfHyQdtsKS5gZQS3N7wJcbQC1JaTe9IIiaHgAAAAAAAAAawPPPSz//ufqS3dK3Dumdb5RS1mxwtC83QDpfALUvN4g6N4B6/jgRV/rCN6W+R0KSdVA6eFCKRoXgxCXt+PXJ2rTx17q/Y0zD4YzSZvY9g5FQRspIMdfSJYdW6pTJiKTkgnFOSUX0Oy8erf99zNOatJzscdPSJhtq2p0O6ayJFdqx+2TFnWTecVBfpda/3bX15/sOV8y1VKj+8eQa/c/qQ9S/yZTTA294cZVOmip8Djhr+CX615fspQeaSDn1/9CzL1HSclWo/nZ6lX64coT6N5ncHhjoGC+4nyWjt7ywRi9JFj4HvHTsCH3p8EG5RT471DPRSQ8AAAAAzWZyUkrm/P7uedLQkGRZ0ooVUltbcGsDAAAAgOWOAGoAAAAAAAA0KCvoBQAASuO4jrY9sE2u585sW9mxsugx3bHuOY+NjNa2r50JEpwZJ1Z8nNx5XM/Vtge2yXGdEleOavLDJ3vW96g92l5035WxlbKMNSd00rdhxQb1rOuRMWbR+rdHCR9uJLk90BZpW/Dfc67uWLeMMYv2wPxzRS4jo7ZIGz3QIHLrb1u2QqbwPWUidmTxc4CMInak4BghE5Jt2dS/gZTbA4ueA+iBppPbA/kCqH0jyRElneSCAGqf3wOWsRYEUPv8IGpPHj0AAAAAAAAANIq7785+j0bV92SHtv5P4V09I7WlCwdQ+2KZ7H7zA6hzbf221PewlQ0okaTR4jfLRX3EnZBueOxkOUYz4aO5lw2OhDK6/MAanTLZUXSci4dWq2//ujnho/44aePJMdINj52suFP4fQnUXyn179u/Tr812lV0nDPHV1D/JlVqD5y6yDngwpGV9EATKrX+F44U/1zQqZMd1L9JxZ2Qduw+TT0TnTPbcm9ibclo654Tdeb4iqLj/PZol7buOVFWzmeQcsfJBlCfRg8AAAAAy4XrSiMjkm0HvRIAAAAAWJ4IoAYAAAAAAEADI4QaAJqEbdnaftl29azvkZQNgx5ODMsy+U/llrE0mhydCYv2AwjPO+K8mdBJSUo5KY0kR4qOM5wYngm/7lnfo+2XbZdt8YGzoMSjcd3whhuUcTNF6zaSHNEFGy5YEDrp27Big47tPnbR+mfcjG54ww2ETjaQ3B4wBd6M9Hvg2O5ji/bA+RvOL9oDxhh6oMHk1t9R/hsC+PV/9TGvLlr/I+NHajQ5WrD+jhzq34DK6YGNqzcW7YEz1p1R9BxADzSm3B7IF0DtG0uN6cj4kUV74JLjL8kbQO1Lu2l6AAAAAAAAAGgkv/rVzD+OrurQTadKXcn8uxpJU2EpsUheYCKU3a/QJXBdSemmU6XR9pz3iMfHy1o2amPUzujKEx9RSEZhz8iTZr4kqSsT0s41B/Rw+0TRcW5beVDb1+1XVybbLLnjhD2jkIyuPPERjdqLJJqjrkqp//Z1+/XzeOH3ASTpgc4x6t+kSu2BhxY5B/ywa4geaEKl1v+HXUNFx3mofYL6N7HcIGpXnoZCGSUsdyaAuvfgmpLG6T24ZiaIOmG5Ggpl5MojgBoAAABYrkIhQsgAAAAAoBYIoAYAAAAAAECD41PBANBE4tG4dly+Q2/62pv0k6d/MhM6aBlrJiTaf+xLu2kZGZ19+NkzAYT+91/u+6UmMhMzIbaFxkm7aQ0nhvXKo1+pHZfvIIAwYKPJUV15y5Wyja2wFVbaTeetW1e0S3ftvUsnrT4pb/jk3rG9emr4KXVFu2YCSOePE7bCso2tK2+5kto3kHJ64Knhp7QisqJgDzxy8BF6oMmUU//bf3O7jl95fMH6Pzv6rOLR+EwQNfVvDuX0wO6Du2VbdsEeePjAw5wDmlC+HshnRXiFnh19VqvaVhXsgSeffXKmB/KhBwAAAAAAAIAG89BDkqTRsKtNvzesgZVSW0ZSQhqOze5mJJnp68hGotnvsTzZkYnQ7PPGyx6Ye/lZdyI7/sB6aVNvRjv6Q4qnjDQ5KVn5b3CI+hi1M9p00kMa6BiX8bJhowfC2deLPUntjqWYa8k10q2rD0mydMpkx4JxHm6f0A83PC/jSTHXUsqxNGHPvl/QlQnJeNJAx7g2bXxIOx49nSDKBlBy/eXp34/Yp9ccWlWw/t9ddVBtrkX9m0w5PXDLYQflHDQFe2DXykMKeYYeaCLl1P/aI5/VRUOFzwG3rj6oDsem/k0s7kV0w55TdNaZv1Da8jRiZXTl3g3qHVonWZoOOyjye5tlJMtS79A63XVgVNdueFqS5Bjphj2nKO5Fih4OAAAAoEl4nhQOZ7/a26UMNxsCAAAAgKoigBoAAAAAAABNgE+DA8Ay4QdH5gZQl8LMe0Oj0nFQH6PJUW3auUkDgwOyjKXuWLeGE8MzAaS5waOxUEyT6UkN7B+QpDnhk3vH9s5sj4WyV6PnBpD6waPdsW5ZxtLA4IA27dxE+GQDKLcHEplE0R6I2BG1hdsk0QPNoNz6J51k0fp78hQLxWRkqH+TKLcHUslU0R4IWSF+DjSZYj2QqyvapbAVVjJV/DzQEemY0wO56AEAAAAAAACgAR08OBtAvSo9kxidG0SdG0DtyxdEnRtA7csNovYDqH0Daz1t6nW041thxV1X6uqq7p8NJRu10tp01C80EJuQlA0ZHbEzMsrWzkiasl1F5CniWfKM0a2HHZRGQjolOfsa78PRUd3adVAx15ZtjBLG0ZTtzhlnJOSo2wnLktHAigltOm23djxzvuJuOIg/OlRe/WOeLc84Res/fdty6t9Eyu8Bt2gPRDxL8uiBZlHt+nvKBhBT/+Y1aqV15VEPKmQshT1L7a6t7ete0AXO4eod3SC1Hyh+8xCvU/K61B/fq+3rXlCXE9ak5ShkLF258XFqDgAAADQr15VGcj4XallSd/fsY88jkAwAAAAAqoUAagAAAAAAADQJEkYBoIn4oYMPvfCQVratVNiae3FHvuDosBWWZVka2D+gvWN7Jc2GDlqWpfZw+4Jj5o8TtsJa2bZSD73wkDbt3KTR5GgV/1QoVW7opM8Pnwxb4QXBoz5PXt76e5p9AykWiqkr2jUzZm7opM8Pn6T+waEHWhv1Bz2AxXrAt9QekEQPAAAAAAAAAA1q1J2aDqBOLbhgLJqRLE9SgevIRqLZ4GkpfwD1DC87TjSz8KmBta42vTGt0ZBT8Z8BSzMbPpoNkHHladhOK23cBfuO2GklTLZWnqRbu/br4Wj2Nd5s+Oj+mXZJGEcjdnrBGGnjathOy53ecyA2ok1H/UKj1sJ9UXvUH/RAa6P+mG9+T/hcedpyxID643tLGqc/vldbjhiYqbWPmgMAAAAAAAAAACyCAGoAAAAAAAA0EUKoAaBJOK6jvpv6ZkIHjUzeIOpc8WhctmVLmg0fvOf5e+aEDkbsyJzAwfn8AGqj7BsgA4MD6rupT47LRcX1NL/+uXLDJ+eHTvoK1T+XHz6ZL3TSR/2DQw+0NuoPegD0AAAAAAAAAADHddR32mMaWJ1ecMGYK+lgu+QayTMFc6g1EpWGY4UDqD1lj3fN9Hh59hlY66rv98flFJwFteLIU9+RdxcMH/XrlZtFPmZnlJ5+xg8hvanr+Tnho8mc8NHcY/3x8oWQ9h15Nz1QZ5XUf8ROK2WK1z8tl/o3iUp7YPFzAD3QDCqtf5JzwLKVG0DtydPQdD/4AeR+EPUD8wKq5/tZ+8GZAGo/kDxtXA3Z6ez7zARRAwAAAAAAAAAA5EcANQAAAAAAAJoMIdQA0CRsy9bmMzfPCQMsFkSdL4DQk6cXJl9YEDroBw7ONz+AWsqGHG4+c/NMuDXqI1/9c1nG0srYyryhk75C9c8VC8W0Mray6DzUPxj0QGuj/qAHQA8AAAAAAAAAsC1bmydPlFUggDqT87JesSDqZIGX9/wAal/Gyh9EbXnS5j0rZKvBLqRrAbaMNg8dI0umYPioLzdINGm5c0Jon4hOzAkfHbMzC47x5QshtabXQQ/UV6X1n7CcovWfstwFx/iof2Op1TlgwuIc0AwqPwdkitY/yTmgKRUKoPblBlF/rXuvHo6O5h3n4eiorj/syTkB1D6CqAEAAAAAAAAAAIoggBoAAAAAAABNiBBqAGgivRt7tfV1WxcNos4XQL2Y+UHUhQKot75uq3o39i7hT4FK5at/PVH/4NEDrY36gx4APQAAAAAAAACg96iLtfV7IVnT143lC6D2FQuiXrCv5gZQ++YHUVuetPU7Rr1D68pfPKqid3SDrtl3atHwUV+hEFrfYuGjvvkhpNfsO1W9oxuW8KdApag/6IHWRv0hLR5A7fODqD15urVr/4Ig6oejo7q1a7+8PAHUPoKoAQAAAAAAAAAA8iCAGgAAAAAAAE2KEGoAaDKLBVFXEkDt84OoCaBuXIXCJ13P1VBiSIlMYknjJzIJDSWG5HpzL0yi/o2DHmht1B/0AOgBAAAAAAAAoMW95CXq/bWjrd/JJkwXCqD2lRJEXSiA2ucHUcuTtt4q9e72pLa2ChaPahi10vrKymfV7tqSCoeP+gqFkJYaPurz52l3bX1l5bMEUAakkvr7CtV//n75UP/GwTmgtVF/lBpA7Rux00obT540J4h6NoBaShkvbwC1jyBqAAAAAAAAAACAHARQAwAAAAAAoImFgl4AAKB8fvjflu9smQkINDJa1bZqyWPHQrEFIdaEDjaW+fV3PVfDiWGl3bRGkiOSVFEQeSKTmDl+ODGs7li3LGNR/wZED7Q26g96APQAAAAAAAAAgIuekmKZ4gHUPs9I8qR8l8AtFkDty1jZ+S56anqDMY13UV0LcOSp78h7NBAbUdSzZMnIXTQ6NMtTtgeSlquM58kx3sz2UlkyinqWBmIj6jvyHn3zmd+WnbezUAuV1t/fg/o3P84BrY1zAHJ7oJQAat+UcRSVpZBn6X+69mt3alxPRibkScoYV0njLlpJP4h6pROmBwAAAIBmYVnZLx+v5wIAAADA0jXa360IoAYAAAAAAECZCKEGgCaVL4i6FggdbEx+Pd536/tmQid9lYRP5oZOSlLaTWs4MaxVbauof4OiB1ob9Qc9gFJ6IGyFSx6PHgAAAAAAAACaxHPPabQzrAv/KKmnu7OBkqVcTpYviLrUAGope9zT3dKF75B++GVLcWOkww4ra+lYOlvSZucM/dL6iQ5ZCbkqvQeUs1/GlH8RopHkShoKpbXajWmzc4bsw9aUPQ4qR/1BD7Q26o/5PZCeiZdfjKekceUZyfYsPR6dkCQ5xlVK/ucOFx8nbTx6AAAAAGgmnicND88+jkbnPm9ZjReeBgAAAACNrNH+DkUANQAAAAAAACpgLb4LAKBR9W7s1dbXbZVlanM6J4C6sV103EVa37l+TuikbyQ5okQmUdI480MnfWk3rfWd63XRcRctea2oDXqgtVF/0ANYrAeSmWRJ49ADAAAAAAAAQPMY3f2ALnxbRgPrso+NV1r0oJQNnPYvPys3gNrPqxxYJ134J55Gx14sfdGoqotSG7TObZsOnpSMTMk9UCkzPY8kpeVpndumi1Ibajwr8qH+oAdaG/XH/B4oR0quHJMNnZ4bQF06egAAAABYRuaHUgMAAAAACiOAGgAAAAAAAMsEIdQA0ORqFURNAHVjG02OatPOTRocH1RXtCvvPiPJEaWdhaGUuRzXyRs6KUld0S4Njg9q085NGk2OLnnNqK5Se8BxnaLjpJ00PdCESq1/ykkVHcdxnYK1pf6NrdQeyLiZouOkXc4BzaqUHhhLjy36cyCZSdIDAAAAAAAAQJNwXEcXbfiBBg6b+7qfKeO6Ms9Irik9gDrf+ANrPV100XNyKgguxNI4ctXXtUuD1pS63PDM9lqGkOaGj0pSlxvWoDWlvq5d9ECdUX/QA62N+qNQD5QjJVdJ41QUQC3RAwAAAMCyYVlSPB70KgAAAACgOTRaADUAAAAAAACwBIRQA8AyUO0gagKoG5sfOjkwOCBJioViBcMnpzJTBcMnHddRys0fUNsV7VIsFJMkDQwOED7ZYMrpgZSbKtoDU5mpvM/RA42rnPpPpCaK1j/t5g+qp/6NraxzgFP8HJDMJPM+Rw80tnJ6IO2mi/bARHoi73P0AAAAAAAAANCYPG9h4rRb42vd8o2fbx2oPVuWNk+dLEtGMYVqHkKaL3w0ppAsGW2eOlk2Hz2rK+oPeqC1UX8U64FyuKrs9zh6AAAAAFgGjJFiMWnNGsm2g14NAAAAADS+Rgyg5jM7AAAAAAAAWIJQ0AsAAFRH78ZeffPRb+r7T3x/yWNddNxFBFA3qPmhk75YKKZEJqGkszBM1A+Zta3ZDwkWC5+N2tGZ0EmfHz654/IdikfjS/1jYAmq3QP5LkOkBxoX5wBwDkC1eyDfTUzoAQAAAAAAAKAx2Zat2399ji484acaWJ2RVH4AtZFkPMkzKit+0DWSNX1AzwtGt9+2VvYllQUfYml6M8dL45a2dP5YMYUkVxqxsq8DGxl5FQZL5lMofHTr+KvUmzlOIqem7qg/6IHWRv1RrAdqiR4AAAAAmpBlZb9yH0ej2S+Lm8oAAAAAwKIIoAYAAAAAAMAyRAg1ACwT/bv7tevJXVUZa9eTu9S/u58g6gZTKHRSUsHQSV9u+GSx8FlJSjpJJTIJwicbED3Q2qg/6AHQAwAAAAAAAADi3ev0w52demXvsH61rrxj/QBq+d8rCKI+Y7/0w+1hxde2SY5T3gJQNb1TR0vuK7QlfuecAMpqho9KkidPRmZu8OToK9SbPFoS9Q8K9Qc90NqoPwr1QK3QAwAAAECTct3sV+7jRCL7NTUlrV4d3NoAAAAAoNERQA0AAAAAAIBlittWA8Ay0L+7X1u+s0Wu5y6+cwlcz9WW72xR/+7+qoyHpXNcR3039RUMnRxJjiw6RtpNK+WkioZO+kaSI0pkEgu2DwwOqO+mPjkuFxLVGz3Q2qg/6AHQAwAAAAAAAAAkSaeeKk1Nae2EFKrO28MlC7nS2glJmYy0alV9J8cCvcljtXX0FbJkFFNIba5d5fjRbEh5m2vPC548tsqzoBLUH/RAa6P+mN8DXW64JvMsDKCmBwAAAIBlIZWSxsaCXgUAAAAANCYCqAEAAAAAALCMEUINAE2u2gHUPoKoG4tt2dp85mZZZu6P7lJDJ33l9Em+8EnLWNp85mbZll3yOKgOeqC1UX/QA6AHAAAAAAAAAEjS6BGrtenSpB5aKx02WV4QtSfJm75OzjMqK6wy5Gbne2ittOkyV6MrIuUsGzXiB1Am5WjKclTtyyCNpCnLUVIOwZMNiPqDHmht1B+1DqImgBoAAABY5hKJxfcBAAAAgFZDADUAAAAAAACWuVDQCwAAVK5WAdQ+P4hakno39tZkDpTOr4Ff83JDJyvhjx8LxWQZS1tft5VeCBA90NqoP+gB0AMAAAAAAABAa3NcR30Hb9DAuuxjI6kzJQ3HSh8jN4i6HJ0pzYRbDqyX+roe0jeHj5Qtq+hxqIPOSSnuSfJkVF64+GKyNc+OralJaXy0iqOjKqg/6IHWRv1bXq9WS1Nna8uaexUzthKeo6RxKhhpbvdEPVsxz5bledp64Bz1jq+WRA8AAAAATWViQkomCz+fydRvLQAAAADQDAigBgAAAAAAQAsghBoAmlStA6h9BFE3Fr8G77rlXTUPnfSNJEdkjNHn3/B5eqAB0AOtjfqDHgA9AAAAAAAAALQu27K1ObFR93sDco2UCEmjUcnyJLeG18FZXnYeIymWyT7e/Hin7Hi6dpOiJP3xvdqyZkBR11KXF9awXd2aeJK6nbCinqUta+6V0mn1jm6o6hyoHPUHPdDaqD98vcm1UrpH79rwywoDqBdKGkdJOfr882erd3StpCLBdQAAAAAaUyo1N2jathfuQ5gZAAAAAGQRQA0AAAAAAIAWYQW9AABA+eoVQO3zg6j7d/fXZT6UoN7vG/E+VeOhB1ob9Qc9AHoAAAAAAAAAaEm9D7va+uNOJW1pJDq73arRa3i5445EpaQtbf2erd7dtZkPpeuP79WWIwbk1ukFXFeethwxoP743rrMh+KoP+iB1kb9AQAAAAAAAAAAgCohgBoAAAAAAAAthBBqAGgy9Q6g9hFE3Rj8+kdDUXVFu+oyZ1e0S9FQlPo3CHqgtVF/0AOgBwAAAAAAAIAWd/CgFA7nfaraQdQFx7MsKZms7mQoy/zw0YRxNGKnVe3LIo2kETuthHEkEULaKKg/6IHWRv0xn98TUc9S1KvOx8L9sag5AAAAAAAAAABY1gigBgAAAAAAQIsJBb0AAEDpggqg9vlB1JLUu7E3kDW0svn1j4VikqSR5EjN5uyKds3MQ/2DRw+0NuoPegD0AAAAAAAAAID+rn3actaIoq5RV9LTSHT2uWpfguZJcwItu5JS1JG2/F5a+vGkesfGqjwjStG/ar+2rH9E7nTBs+GjGUm164EROy1lPMU8OxtCuv5+aWpKvYfWVXlGLIb6gx5obdQf8+X2xJTlaMq4MtKSQsk9SVPGVdRk1Oba1BwAAABoVhMTc28m6HnS6KgUiUixWHDrAgAAAIBGQQA1AAAAAAAAWhAh1ADQJBzX0bYHti0pgNrIaE37Gh2YPCCvwkuPXM/Vtge26dKTLpVt2RWvBeUpVP9ywydtY8vxnJL2zQ2d9FH/4NADrY36gx4APQAAAAAAAADAcR1t2/CCXCPJ9RTLZk5qJJoNC/SqfG2cZyR52RDDrqRm5nONtO2UlC59Li17SRGHKJcjT9vWPCdXnuRJCcvVSGg2fLQWAaTSdAhpKCNlpJhryZW0bc1zuvSFVfRAHVF/0AOtjfpjvv7VB7Tl2MfkytOUcTU8L5C8kurk9tKwnZE8qc2ztOXYRyTHVe/BNVVYOQAAAIC6cBzJzfnMqetmQ6n9r3g8uLUBAAAAQNAIoAYAAAAAAECLsoJeAACgNLZla/tl29Wzvqei442Metb16LwjzlPPuh6ZCi8C6lnfo+2XbSd0sM6K1T8Wiqkr2rXoGGErrLAdVtgKL7pvvtBJifoHiR5obdQf9ADoAQAAAAAAAAC2ZWv7gVeq58Dsx31iGSmWLj2A2kiyvNJDCT2THd8PoJaknv1G23d1ETwZAFtG2x85VT0TnUsKHy2ncrljj4QySliueiY6tf2RU+mBOqP+oAdaG/VHrv7VB7Tl+OkAasvVcCgz5/lKgsnzHTMcymjKcuXK05bjH1P/6gNLWDUAAACAhpFKSVNTQa8CAAAAAIJBADUAAAAAAABaGCHUANBE4tG4dly+o+wgaj+AesOKDZKkDSs2VBRE3bO+Rzsu36F4NF7WcaiOYvWPhWKK2tGCx4at8ExYpG3ZRcMno3a0YOgk9Q8WPdDaqD/oAdADAAAAAAAAAOIbz9SOm2z17M8+ngpJk5HSjjWSzPQ1a6aMIOrJSHYeSeoZlHbslOKRFeUsG1UUd0J62/71mrQdSZWHj1YaQjppO3rb/vWKO6EyRkC1UH/QA62N+kNaPIDaV05/FNuXIGoAAABgmUokgl4BAAAAANQfAdQAAAAAAABocYRQA0CTKTeIen4Atc8PorZMaT8KCB1sDIXqn8gklHSSeY/JDZ30+eGT+YLIk05SiczcDxRS/8ZRbg8YmaI9kA890LjKrr+h/stNtX8O5EMPNDZ6AAAAAAAAAGhxL3mJ4uNp7fi6tGZCGl54P7m8cgOoZ7aVEUQ9HMvOt2OnFE94UrTwTfFQW/2rD+iq457QykxYlmcqCh8t9LgYT5LlGa3MhHXVcU8QQBkQ6g96oLVRf5QaQO0rNYh6sX0IogYAAACakDFzv+ZznMYMXwMAAACAWmnEvwMRQA0AAAAAAIA6I4QaAJpQqUHUlrHyBlD7NqzYoPee+95Fg6gJHWws8+ufyCQ0khzJu29buG1B6KTPtmyF7fzhkyPJkZnwSerfeMrpgbC9MHjUZ1u22sJteZ+jBxpXOfVvD7cXPwcUCKCl/o2tnB6I2JGiPRAN5Q8JoQcaW1k/B/IEUPtsy1ZnuDPvc/QAAAAAAAAA0MA8T7ecKD16WH2nffQw6ZYT6zsn5nLkadv65+XKU8K4ysxPFi+R7VV2YWXGZOd1p9fhlBV/iqWi/qAHWhv1R24PlBJAnSu3Wrk9UGpItTQ3iJoeAAAAAJqA5839mh+2FgoRdgYAAAAAQeLvZAAAAAAAAAhAKOgFAAAq44cPbtq5SQODAwuet4yla3//Wu18aGfRcV5x1Ct05vozteU7W+R67oLnCR1sTH79L/zShRrYv7D+ktQV7ZLruUo6yYLj2MZWR7Qjb3DlSHJEx3QfQ/0bVKk9kMgk5BW56CtshRWNRumBJlNq/Y0xyriFLzq0LVsdoQ6NJkcXPEf9G1upPZByUnI8p+A4YSustlAb54AmVEoPrIisKPp7gCRFQhF1WV30AAAAAAAAqLkDBw7onnvu0RNPPKHR0VGFw2GtXr1ap5xyis4991yFw/lvmheUwcFBPfXUU3r22Wf1wgsvaGJiQul0WvF4XF1dXTrmmGN01llnKR6vzesmY2Njeuihh/T4449raGhIY2Nj6ujo0MqVK7Vhwwadd9556urqqsncaHDPPaftPUbv/ANPaUuyPMktIUvSkyQj5eZVeqb00EHLk9KW9M5Ls4/7hiekqakyF4+lsiVtv/84vfJlv9avVqTKPt6TFHONwp5R2kgJq/wLGodDGR011qbt9x8n20mUfTwqR/1BD7Q26g96AAAAAEBZkkkpk/M5csvKvqYbDmcDqNvaglsbAAAAANTb/BvzBI0AagAAAAAAAASEEGoAaGKFgqgtY2nr67bq4uMvXjSEWpJ6N/ZK0oIgagKoG9uuJ3dp/8R+ha2w0m56znNd0S7FQjFNpicXHScWiknSgvDJsBXW/on92vXkrpkeQWMppQcSmcUv+KIHmlMp9V8sfFbK1t/IUP8mVEoPpJzFLzzlHNC8FuuBsBUu+Twg0QMAAAAAAKA2du7cqeuuu04//elP5RW4eGbFihV6y1veog9/+MM68cQT67xCaXh4WHfeead++tOf6he/+IUefPBBvfjii4seZ4zR6aefrre//e364z/+Y61du7biNYyMjOi73/2u7rjjDt1xxx167LHHFp37tNNO09vf/nZt3rxZq1atqnhuNJftz96qd77eVdqa3VZJEHW5AdS+tD0dRL3roPrS60pfOKrmljUH9UjHEgLAPZVe/AIe6ZjSLateVN/zq5c2EMpG/UEPtDbqD3oAAAAAQMkyGclxZh87jpRIZL+6uqRYLLi1AQAAAEA9EUANAAAAAAAAzCCEGgCa3Pwgaj+Aundjb0kBxL75QdQEUDe2/t392vKdLfI8TyvbVmpoamgmfNIPHi3H/PDJsBXWyraV8jxPW76zRZIIn2ww9EBro/6gB1BKDzius8gos+gBAAAAAABQbXv37lVfX59+9KMfLbrv2NiYvvCFL+i//uu/9JGPfEQf+chHZOp48c+nPvUpXXPNNWUf53mefvWrX+lDH/qQrr76an384x/XBz7wAYVCpX8U4+abb9YNN9yg733ve0qlFr+pXO7cDz74oP7mb/5GH/vYx/TJT35SH/jAB2RZ1uIHo2mlMil9cM0v5wRQS9lA6VJ5kixJ7mI7zhvfzAui/uArp/Tme9oVET1XTym5+uBpA8pYklH5GZJGUtL21JaxNW5nKh4jY0kfPO05vXn0SHqgjqg/6IHWRv1BDwAAAAAoSzot2fbsY9uW2tqkUEiyLGlqCTe4AQAAAIBmQQA1AAAAAAAAMAch1ACwDMSjcd3whht0zn+coz8+448rDgjs3diru567S18a+JJueMMNBFA3KD900vWyl4YbmZnwyfZwe9nBoz7/uMn0pFa2rZRR9o0113MJn2ww9EBro/6gB0APAAAAAACARvfYY4/pwgsv1L59+8o6LpVK6aMf/ah2796t//qv/5KdG47Q4MbHx/XXf/3X+t73vqf+/n61tbWVdNynP/3pkoK6i5mcnNRf/dVf6dvf/ra+9a1vqaOjY0njoXFFQhF9+v41eue5z88EUXumvPBA42X3N17p4dWeJOUEUYdd6dM/jChy1JoyZkY1RCR9evBMvfMl9yltsq8Rl1p/v9xRz1LGyn5PGndmeynjmOmvsGfp04NnKrKaHqinWtW/nDGof7A4B7S2Suuf++Oec0Bz4+cAAAAAgLI4jjQyMvs4FJJiOZ8vTSTqvyYAAAAAqCcCqAEAAAAAAIAFCKEGgGVgNDmqK2+5UpYsbX9wuy54yQUVBQT27+7X9ge3y5KlK2+5Ujsu30EQdYOZHzrpMzJa1bZqyePHQrG8wZWETzYOeqC1UX/QA6AHAAAAAABAozt48KBe85rX5A2gPuecc/TGN75Rxx57rKampvTYY4/pv//7v/X888/P2e+rX/2q1q5dq89+9rN1WvVcHR0dOvvss3XSSSfp+OOP15o1a7RixQo5jqPR0VE99thj+tnPfqa77rpL3ryLg2677Tb19vbqO9/5jswSLmTq7u7Wy1/+cp177rlau3atDjvsME1OTuqpp57S7bffrjvvvHPBMbt27dKll16qW2+9VdFotOK50dj6Ho1Ke6V3vlFK2eUHUPtdaSSpgiDqiCN94ZtS3xOWtJaQkiD0JdZK6dP1zmMfLCmAck74qGspPB03GfaM5FlKWqWF0OYGT37hqdPVd2itJHqg3qg/6IHWVkn9/ZBh6r88cA4AAAAAULJ0OhtE7cv9Z0nKZOq7HgAAAACoJwKoAQAAAAAAgLwIoQaAJjeaHNWmnZs0MDggY8ycgMCLj7+45HFyAw2NMRoYHNCmnZsIom4ghUIn64XwyeDRA62N+oMeAD0AAAAAAACawZ/92Z/pmWeembNtxYoV+spXvqJLL710wf7/+I//qH/8x3/U1VdfPWf7ddddp4svvlive93rarlcSVI0GtWrX/1qve51r9NFF12kM844Q7ZtL3rcnj179MEPflC33HLLnO233XabbrjhBv3Zn/1ZWevo6urSpk2b9I53vEPnn3++LMvKu9/HP/5xPfDAA3rXu96l++67b85zt99+u/7pn/5pwb9PLCOZjPoesnTPEa6uu6D0w3IDqGe2SWUHUb/7bqnv15KirjQ1VfoCUFV9e1dLqZP1zpN2K2mKX6joKVvrqGtlAydzhGUk11LKchcNNPckRTyjLzx6svoOrJZE/YOSW//UIvX3Fat/0irtfYcw9W8Y1e6BFD3QVHLrn56uf74u8EODpcXPAcVCiGfDh6l/oyi3B2ZCyOkBAAAAoLUkEnODpvO950AIGgAAAIDliABqAAAAAAAAoKD8VywCAJpCbgB1Lj8g8OZHby5pnEKBhn4Q9WhytGprRmUc19G2B7YtKXTSyGht+1qZBZeXl871XG17YJsc16l4DFSGHmht1B/0AOgBAAAAAADQDL7//e/rpptumrMtEono9ttvzxtALUnhcFgf+9jH9NnPfnbBcx/4wAeUyQ1IqJGPf/zj2rVrlz70oQ/prLPOKimAWpKOP/54fetb39J73vOeBc996lOfKnn+I444Qtddd5327dunf//3f9dv/dZvFQyg9p155pn62c9+pte+9rULnrvmmmv03HPPlTw/mkw4rP6TPO08VVqRKPGYPAHUPj+IuhQrEtLO06T+k9V4F+y1oL4D6/X/PXVsSfsaVwuCJ31hz6jE/Fn9f08dq74D60tdImqo78B6bX38xEX3KxQ86gt7RmHXlHQa2Pr4idS/gZTTA2HXFO2BiGvRA02m78B6feHRjQp7hd/587d3OHbR+sdca87++cbJhg9vpP4NpJweaFvk50CHY8/ZP9849AAAAAAAAAAAAGgKjfZ5FgKoAQAAAAAA0GAIoQaAJlUogNrneq7++nt/rb1je4uOc+czd+YNoPYRRN0YbMvW9su2q2d9T0XHGxn1rOvReUecp551PRWHT/as79H2y7bLtkoLX0D10AOtjfqDHgA9AAAAAAAAmsEnPvGJBds+9rGP6dxzz1302L/4i7/Qa17zmjnb9uzZo//+7/+u2vpqwRijz3zmMzr66KPnbH/qqad07733Lnr83/7t3+qJJ57QBz7wAbW1tZU1dyQS0de+9jUdfvjhc7YnEgl9/etfL2ssNI/+l6a05XWeEkYai5V4kJEKZQy708+XYiwmJYy05RKp/2Qukgva7rZx/d2xT5a0r2tJkyb/zQUnjaNMiZ8g+7tjn9TutvFSl4gaGrUzumnNAcUzi79en7RcpU3+/2bTxlPaWvy/53jG1k1rDmjUrv3NIVCacnogbXlFeyBVQhI9PdB4/BDiUIH/hD1JXZmQom7xk3zIM+rKhAoGkYc8ET7coErtgUIB1L4IPQAAAAAAAAAAAJYDAqgBAAAAAACARYWCXgAAoHyLBVD7XM/VwP7sPhtWbFjw/N6xvfrRMz9S2AoXHccPot5x+Q7Fo/HKF44liUfj2nH5jpJqn8sPnfR7wP/u90apetb30AMBowdaWy3q7xW8hHAh6h88zgGgBwAAAAAAQCN76KGH9JOf/GTOtsMOO0wf+tCHSh7jn/7pn/T9739/zrbPfe5zevvb316VNdZKNBrV5Zdfrv/zf/7PnO0PP/zwogHcF1988ZLmXrFihT70oQ/pr//6r+ds//a3v62/+qu/WtLYaDyO62jbiRNKGOlgZ5kHG8n1snerjzpS0i4vgNp3sFNaPS5tO8PRpYO27ApveIel2R0b1+ln3i2njH/9jiVNuo7avdnA2knjyCkxgFqSHCOdfs7devCB39bGRLlNiGoZtTPadOJDur9jXFP24uHBnrJB1HKtOUGkaeMpabklvWM4Zbu6v3Ncm055SDse61Hc4WOHQap2D5SCHmhMbxhdr5OnntGv2ovcIGCJP6pPnurUG0bXSyFq3ohK6gEZqYzPh8xHDwAAAAAAAAAAgIZHADUAAAAAAABQEj4RDABNptQAap8nL28Q9d6xvRrYP6C2cFtJ4xBE3RjKDZ+0jDUndNLnP/7VC78qaV5CJxtHuT1gjNEZa88o2AOPHHykpHnpgcZQ7XNAqQG01L9xVHIO6FlbuAcePvBwSfPSA42j7B6YF0Dt8x8/OfxkSfPSAwAAAAAAYDE33njjgm1/+qd/qkgkUvIY55xzjs455xzdd999M9vuuusuPfXUUzr22GOrss5aeelLX7pg2759++oy9yWXXLIghPrJJ0t73QfNxbZsfXT0bL3ssF2VDWAky5G6E9KBNsm1Fz8kn4Md0ke/3y37BF4vDMLuyIhOP+FnZQVQ+2aCqBXSpDJlBVDPjGGk08/8mR58/Pe0MdVV/gBYklErrU1H/UL3x8Y1ZKeVMqVduDonhFiW0nJLDqCWpJTxNBRKz4YQP3O+4m7xG56jNugB+PxeGIyk8kYMe5JGQhl1uCEVS6JOy9WE7eTtBSNpMJKi5g3K74H9kbRCnlEmz/lgJJRRzLVkq/AP/ZTxNGk5eZ8LeUb7I2l6AAAAAGhGo6NBrwAAAAAA6oMAagAAAAAAAKBkFVxKBAAISrkB1D4/iHrv2F5JswHUXsmXkmX5QdSjST6MFiQ/fLJnfU/R/Sxj6a2nvXVB6KRvw4oNetkRL5Nliv86QOhk4ymnB152xMuK9sAfnfZH9ECTKaf+7z33vUXr37Ouh/o3oXJ64NXHvLpoD1xywiX0QBMqtQeMyR9A7duwYoOu+u2r6AEAAAAAAFAV3/3udxdsu/zyy8seJ98x+cZuNIlEYsG2cgK4l+Koo/5/9u49Tq66vv/4+3vOzOw1s7u5bsgFEgiQRAgRES8gYNSKSnCBGtqtrQS1Kq79/bRW/dUqXtqiVbSN2lr9Re3PVPL7IRtpgYLADwH5cU8WDeGSC5AENte9ZK8zc875/TF7svfdmdnZOWd2Xs/HYwhz5pzv+Ww+n0w2O3Pes3TUttbW1oKcG4XVm+jVm0/PMYB6QMqWWqvTv+bMSG++8qh6NXZYIaZPrxydu+LenAKofY4lnbByC6A+uYaRzl1xLzNQYI48NS55XNvL29VmJzIOH/b5IcS9xskqfNiXMJ7a7IS2l7erccnjGjuyFtOJGYDPDx9+urxNRyKJcTvhSuq2UkrKHfNxP4x87EfTM3MkktDT5W3asPQxdVrJPFSPfBgMpG9Xu52Ua7xRUePewK3XciecgW7LObnvUEaSazy120ltL29nBgAAAAAAAAAAQPgQQA0AAAAAAABkhRBqACgSjuuo8bbGrAOofX4Q9ROvPpFTALWvpbVFjbc1ynG5mDRIk4VPWsbSpss36fULXz/hOqfWnKpNl28aN3yS0MnwynQGTq05dcJ11i5cywwUoUz7f9HSiyZcZ9GsRfr2u75N/4tQpjOwYvaKCddZOXclzwFFKpMZ+PLbvjxuALXv7cvezgwAAAAAAIAp6+7u1tNPPz1sW2VlpV7/+olfpxjLxRdfPGrbQw89lHNthfLEE0+M2nb66acX5Nw9PT2jtlVUVBTk3Cgsx3XyEvmbj8vdHEuEjwbAlpE1KmIyGJaM7JDUUipsGV3bvljtdjLr8GGfJ8kxub5jJB1C3G4ndW37YvofAGYAUuYB1D5X6fDxkSHEfgD1ZMcTRB0+IwOokybd27F66YdLTzYD4x0rSUnjEkQNAAAAAAAAAADChwBqAAAAAAAAIGuEUANAkbAtWxvP2zhuQGAmPHk63HM45wBqKR1ouPG8jbItO+c1kB/jhU/6waMNKxsyWqdhZcOY4ZOEToYfM1Da8tX/9Wetp/9FiucATDYD71r+rozWYQYAAAAAAMBU7dixQ647PNDsDW94gyKRSNZrXXDBBYpGo8O2PfXUU1Oqb7q9+OKLam5uHratvLxcb3vb2wpy/t27d4/atnDhwoKcG4VVXV6t8+ecG3QZkqTzu+KqVvZ/xjE1towWJcMRMr8oWUEAbYE58vTzuv0nw0ZzNdXLXpPG1c/r9hNEHwBmANkGUPtGhhBnGkA99HiCqMNhvADqyZ4Vcp0Bf12CqAEAAAAAAAAAQKgQQA0AAAAAAADkhKvBAKCI+GGSTXc1yfWmdkFZLrINtcT088MnN9y6QS2tLTn3aORsETpZPJiB0kb/wQxgohnYc3RPxuswAwAAAAAAYCqee+65UdvOOOOMnNaKxWJavHix9u3bd3Lbnj17lEqlcgq1nm579+7VFVdcob6+vmHbr7vuOtXW1hakhltvvXXUtgsuuKAg50ZhOa6j8spZQZchSSpv75Lz0G9keyG7qG+mM55ip/RIs4MuRIp19UgPPSgxA4VjPB2sPy63OtgyXEkH+47Q/yAwAyXNMZ4aL+/U01ZCR+zsw8T9EOKU68qxcjv+iJ3Q09YhNVb+l7bdFef7gALzZ2C7lVS78ZSUJE9yM2xDrjPgSrK8dHB1u+nXduswMwAAAAAUg1Rq9P1Dh6TycmnWLMmygqkLAAAAAKaKAGoAAAAAAAAgZ+G7QhMAMKGggqgJoA4vP3yy8bZGbTxvY8498o/bvGOztly1hdDJIsIMlDb6D2YAzAAAAAAAAAjaSy+9NGrbqaeemvN6S5cuHRZC7TiOXnnlFS1fvjznNfOpv79f27dv1y233KIf/vCHowKoly1bpr//+78vSC29vb36X//rf43afuWVVxbk/Cis3kSvfrv/t5JR9smRefbbxa563T5Vp3jrUSH1RlJ6PgQB1JL0/GwxAwXmWK72xQv/geVj2Rd35aQSsl3CigrJsVy9FJIZeIkZKDhb0vrdtu44Nffsb0/KKYD65PFGOlKRrsNOpCY/AHllS7r2OVu/XpJQcuCPXqYB1L5cZ8A1A0HUltRe5una55gBAAAAoOh4ntTXl7719EgLFgRdEQAAAABkjwBqAAAAAAAAYEq4CggAilChg6gJoA6/eFlc2zZsk23ZU1qnYWWD1p+1fsrroPCYgdJG/8EMgBkAAAAAAABBam1tHbVtyZIlOa831rGHDh0qaAj1vffeq7/8y78cti2VSunEiRN69dVXlUqNHbi2YsUK3XPPPaqpqSlEmbrpppt0+PDhYdtOOeUUvec97ynI+VFYtmXLyMgLOoFakvEkO9cETAA5cYynnmjQVaT1RNP1oPCckDz1hqWOUpKwXH3xLX3pD6OYgin/yTXSF9/Spz/bFVWMEPKCcoynW85KqjJl1BHzsg6g9uU6A34QdWXK6Jazkrr2hRjfDwIAAADFKpGQOjqCrgIAAAAAshO2AGoAAAAAAACgCBFCDQBFqlBB1ARQF498hUUSOlm8mIHSRv/BDIAZAAAAAAAAQTl+/PiobdXV1TmvN9axx44dy3m9XLS3t6ulpSXj/auqqvSxj31MX/nKV1RVVTWNlQ168skn9fd///ejtn/1q19VWVlZQWrI1Pe//3394Ac/mPbz7NmzZ9rPEaSKWIWuPOtKbXt+W9Cl6Mo9EVU4/Cyx0KpTEb3xNUuPL5z+D6uezBtfs1Sd4q1nhVTh2Fq/J6JtZ4z9QQiFtJ7ngEDEXEufbInpm+cnphxEPCWe9MmWGAHEBRZzLX3o2ai+dX5CQeb+Gk/60LMEUAfB9ow27ozp6fm9OhFVziHUU2F5UkVK2riTAGoAAACg6PX0BF0BAAAAAGQujAHUHh/cDAAAAAAAgOLDlUAAUMSmO4iaAGoAAAAAAAAAAABMpru7e9S2ioqKnNcb69iekIYhGGN0/fXX6+/+7u80b968gp332LFj+sM//EMlk8lh2y+55BJt3LixYHVk6siRI3r22WeDLmNG2PSeTbrj2V8paQV3IVvUkTY9Nluq5G1HQfj13eVa+ket6ggwa76mX/r13fOlSgJIC+1nD5drxSmHdLgyuOeA+T1GP3t4Lv0PyF//vlz/58zD2hcPLox+2QlLf/372cxAAMLQ/1Ppf6DWHS3Xgt6EXqsK5gMJHEta0Gtr3dE4MwAAAAAUG2vE9/CuK9l8yBgAAACAIkAANQAAAAAAAJA3XA0GAEVuuoKoCaAuPo7ryLam/ibAfK2DwmMGShv9BzMAZgAAAAAAAARlZBCyJJWXl+e83lgh1IlEIuf1ppPnefrxj3+s22+/XZ/4xCf06U9/WrNmzZrWcyYSCV111VV66aWXhm2fPXu2/u3f/k0mjBdeIS8SqYTO/+e1gQZQS1LSls6/6qj2b12omEv4YCE5xlPjuuOBX19pjNS4rl3b7p0r2+M5p1D8/icjkjxJQfzWe1IyQv+D4s9Ae7kX6Ay0l3vMQADoP/wZeCnuBDoDL8UdZgAAAAAoRrYtOU46jNoYaZpfywAAAACAvAj6DRJjIYAaAAAAAAAARYwQagCYAfIdRE0AdfHp7O9U422N2njexin1rXlXszbv2KwtV21RvCyexwox3ZiB0kb/wQyAGQAAAAAAAGEzlSDksY71CnzxzjXXXDPqnD09PWpvb9euXbv029/+Vj/96U+1b98+SdLhw4d144036qc//aluueUWXXjhhdNSl+u6+tM//VM9+OCDw7bbtq0tW7Zo6dKl03JehEMsEtMF0VN1R+/RoEvRBa8ZxRKupPx9UDImZ0s6vc3Sfy4Jto72WLoOO+kEW0iJsSWtOmbrPxd7wQSPSpKR2qKeVh2z6X8AmIHS5vf/zsXBXtTeQf8DM3QGgpoCT8wAAAAAULQ8T+rrSwe4xWLS2rVBVwQAAAAAEyOAGgAAAAAAAMg7K+gCAAD50bCyQeuWr8vLWuuWryOAuoh09ndqw60b9NSrT6npriY172rOaZ3mXc1quqtJT736lDbcukGd/Z15rhTThRkobfQfzACYAQAAAAAAELRoNDpqW29vb87rjXVsLBbLeb18qays1CmnnKJ169bpS1/6kvbs2aPvfe97qqqqOrnPSy+9pHe84x165JFHpqWGT3ziE9q6deuwbcYY/fCHP9S73/3uaTknwiORSujhE88EXYYk6eGFjhIWAdSFlrBc/ezMnqDLkCT97MweZqDAHOPpqbmJwK+zNUZ6am5CjuHi2kJjBkqbYzw9OzulWQkFGkI+KyE9OztF/wPADAAAAADImyVLpDPPDLoKAAAAABhf0C+KjoUAagAAAAAAAMwAkaALAADkR/OuZt239768rHXf3vvUvKuZIOoi4IdOtrS2SJJcz1XTXU2SlFX//NBJ10tfJNzS2qINt27Q1mu2Kl4Wz3/hyBtmoLTRfzADmGgGzp13bsbrMAMAAAAAAGAqKisrR23Ldwj10KDnsDDG6IYbbtA555yjd7/73Sfr7urq0oYNG/TMM8+orq4ub+f79Kc/rR/+8Iejtn/3u9/V9ddfn7fzILy6+rrU4SWDLkOS1FEhdS07VbMVfEB8KelVUu3lh4IuQ5LUXi71LjtNMY3+IAJMD0eudiw4qqAva/Uk7VjgyVm+XLasgKspLcxAabMlffNAt85dsj3QOrpj0jcPrJK9PHzfn890/gysWbJDCvCZoCdmmAEAAACgGHR3S44zeN+2pTPOkE45RZozR2pvD6w0AAAAAJgQAdQAAAAAAADAtCGEGgBmgJGhgVOVa4AlCmtk6KRvaP8yMd78ED4ZfsxAacuk/9Wx6knXuf352/WX9/wl/S9CPAdgshn464v+OqN1mAEAAAAAADBVc+bMGbWtq6sr5/XGOnasc4TF2972Nt1444363Oc+d3LbgQMH9O1vf1tf//rX83KOL3zhC/rOd74zavtNN92kT33qU3k5x3SaN2+eVq1aNe3n2bNnj/r7+6f9PEGxLTvoEoaxL71I0ugQekyfCqVk9FjgAbSSZCRVXHqZePtZIaV0wn406CIkSSeirnTp20T/Cy2lLvuxoIuQJHVFPWagwBJK6W32PykVcB0pI73tLc/roPMpxeh/QSWU0qX2JjmT7zqtHCNd+pYXtN9pYgYAAACAMGtrkw4cGLwfi0nnnDN4fwb/LB0AAABAESOAGgAAAAAAAJhWvPsXAIpcvgOofQRRh9t4oZM+v3/vP+v9E67zcsfLE84P4ZPhlekMrJi9QnMqxg/m2P7adt3+/O3MQJHJtP/Xr71+wnUOnjioz9zzGXnjvAhO/8Mr0xk4f+H5ilrRcdfZdXSX/vXpf+U5oAhlMgNfefArWla7TItmLRp3nfv33a+bH72ZGQAAAAAAAFOyYMGCUdsODA02yNL+/fszOkeY/MVf/IW+/vWv68SJEye3/eu//qu+9rWvyUzx4qgbb7xRN91006jtX/3qV4cFX4fZDTfcoBtuuGHaz7N69Wo9++yz036eoMQisaBLGORJsaPtknqCrqSkOErILDDyQhBDbWTkHD0sKURzOcM5Sii1IPjeS1JKHv0PREr2fJNOgQ+Y7Rnp6FHxFtTCseWqZm5ER0PwmRQ1TkT20eOSrKBLKSkxSR+qXqFvVY39GnEhfah7hWJd7UGXAQAAAGAiHR3SkNcsVF4+/HHPI0gNAAAAQLgQQA0AAAAAAABMO94BDgBFbLoCqH1+gGXzruZpWR+5mSx00ud6rv799/+ugycOjvn4wRMH9firj086P374ZGd/Z841I7+ymYHHX318whn4xe9/wQwUmWz6/4MnfzBh/1sOtdD/IpTNDNz/0v0TzsCdL97JDBShTGfA8zy1HGqZcAa+8cg3mAEAAAAAADBly5YtG7Xt5Zdfznm9V155Zdh927a1dOnSnNcrhLKyMr397W8ftu3IkSNTDkT++te/rq985Sujtv/N3/yN/uZv/mZKa6P4VMQq9P5jc4MuQ5L0/pfLVUH4bMFVKKbL+5cEXYYk6fL+JcxAgdF/xBTRR3pXBl2GJOkjvSsVI4C6oGxZ+krXG2QHnEJuywzUwduPg/DX3a/XqU5VoDWc6lTpr7tfH2gNAAAAAAAAAABghiGAGgAAAAAAACgIrgIAgCI13QHUPj+IWpIaVjZM67kwuUxDJ32u56rlUHrfRbMWndzuh89myg+f3HrNVsXL4tkVjbzKdgb8AFJp7BmI2ZldGMwMhEO+nwM8ZfYiOP0Pj3w/B0SszP5JyAyER9YzoIlnoCpWJdvYk67DDAAAAAAAgImcddZZo7bt3r07p7USiYT2798/bNvpp5+uSCT8b2847bTTRm3bu3evVq9endN63/jGN8YMmv785z+vr371qzmtieLXfPjtajh2q7adOb2vE0/k/c9JzY/VS5f2BVZDqXLkyriuylxL/VZwM1DmWjKuK6evhxDSAqL/cORqT7xNVW5E3VYqsDqq3Ij2mDZmoMAcubol/oLiblTtViLDV/vzy0iKu1HdEntB17Yvpv8F5shV4/z71ScnsOeBKjeiPjlqnHWPth1+OzMAAAAAhFkymb75LEtKJKRoNJzhbgAAAABKVxj/jUIANQAAAAAAAGao8F+lCQAYJZsAaqOJX3iZ7HGJIOqwyDZ0UpLMwAtvzxx+RmWRMi2tWapXOl7RM4efGfZ4JgifDF6uM+B5HjMwA+TUf03yHJDB3wE++h+8nP8e8JiBmSLrGTA8DwAAAAAAgMJYu3atLMuS6w6+dvXkk08qlUplHR795JNPKjk0FEHS61//+rzUOd3Ky8tHbTtx4kROa/3DP/yDPv/5z4/a/tnPflZ///d/n9OamCGWLpX2Bxc+K0nylA4qyXG+kTtb0kazWPcufjXQOoykjUcWyz7RHWgdpcbv/yOLDqtficDqqPIi9D8gQ2cgyN/9Ms9iBgLg93/7KcckL6p2O1nQIGojqdaJqtKz6X9Ahs5A3IvIk6ueAn4oQaVrKe5GZInvAwAAAICi0NUl9fYO3ndd6ejRdBh1ba00xmsaAAAAAFBwBFADAAAAAAAABWUFXQAAIDvZBFBL6fDJCW8ZBg/6QdTNu5qnUj5y5LiOGm9rzCp4VEoHS/ohw0+++qQeO/CYnnz1yfRjWfTf19LaosbbGuW4TlbHYeqYgdI2bf3P8gV6+h+c6ZqBLJ8CmIEA5TwDZpIZyBIzAAAAAAAAxlJVVaW1a9cO29bd3a3t27dnvdbDDz88atvb3va2nGsrpMOHD4/aNnfu3KzX+c53vqO/+qu/GrX9v//3/65vfvObOdWGmaOh/FfadnawNWxbKTW8LdgQ5FL2bzUvq6+AgZNj6bNc/VvNy4HWUOqCugw3hJf/lixmoDQ1dC7SplfXqNyzZQp87bvxpHLP1qZX16ihc1FhT46T/BmQpIQp7PcD/vmYAQAAAKDIua50/LiUCO5DzgAAAABAEgHUAAAAAAAAQAAiQRcAAMhctgHU+eYHUUtSw8qGQGooVbZla+N5G7X9te0599+TpwMnDkypDstY2njeRtmWPaV1kD1moLTRfzADYAYAAAAAAEDYvfvd79ZTTz01bNutt96qCy64IKt1br311jHXLgaPPvroqG319fVZrfFP//RP+vSnPz1q+6c+9SndfPPNOdeGmaE30att9otBlyFJ2raoW71H+1UhflZYSL1ydHv8taDLkCTdHn9NvSlmoJAcedpcu0+uXAV12asnyZWrzbX7tP74fNlEEhcUMwBJWtc+W7F6I7fA7/51jRRzjda1z5bcVGFPjmH8GUgVeAZSzAAAAABQXBwnHTg99L7jSPbAz/NOnAimLgAAAACQCKAGAAAAAAAAAkIINQAUCcd1tHnH5ikFUBsZLZq1SAdPHJSX4+Vorudq847NWn/WesIHC8wP/g4qiNwyljZdvokA8gAxA6WN/oMZADMAAAAAAADC7Nprr9Xf/u3fDtv2k5/8RF/72tcUi8UyWmP79u164oknhm278MILtWzZsrzVOV127NihXbt2DdtWW1urlStXZrzGD37wA/3FX/zFqO033HCD/vEf/3HKNaL4Oa4jIwUWPDqUMZJzolO89aiwbLmqdC112cF8cPVQla4l+0SXJCvoUkqGLWl9a63uOPNQoHV02Cmtb60d6D8KiRlAp53SxWue0sux3kDO/3KsVxef/hs91HK+4g7fAwSBGQAAAACQsZ4eqa9v8H4qJR0/LkUiUnV1OAPfAAAAAJSGMP57hABqAAAAAAAAlAiuAgKAImFbtrZctUVr6tfkdLyR0UVLLtLbl71dFy25SEa5vUCzpn6Ntly1hQDqgDSsbNCmyzfJMoX9K5zQyfBgBkob/QczAGYAAAAAAACE1ete9zpddNFFw7YdOXJE3/nOdzJe4wtf+MKobR//+MenXNt0cxxHn/rUp0Ztf+9736toNJrRGj/60Y/0yU9+ctT2j33sY/re97435RoxM1TEKnRGezjC/s44JlWI14yDEZYLH8NSR+lIyNVfnr478N95T9Jfnr5bCQUfhl5qmIHS5sjTpec+rWequgOt45mqbl167tNyAp/E0sMMAAAAAMia5w3e/JC3VErq6JBc/l0PAAAAAJIIoAYAAAAAAEBJIYQaAIpIvCyurddszTqI2g+gXla3TJK0rG5ZTkHUa+rXaOs1WxUvi2d1HPKr0OGThE6GDzNQ2ug/mAEwAwAAAAAAIKy++MUvjtr25S9/WU8//fSkx37ve9/T3XffPWzb8uXL9cd//McZnfu0006TMWbY7YEHHpj0uE2bNunXv/51RucYS39/vxobG/XQQw8N226MGTNUeiw/+9nP9Od//ufyRlzQ9NGPflQ/+MEPcq4NM4/jOtoTTwVdhiRpT50IHgxIjwnH73tY6ig1fcYJugRJ4amjFIXl9z4sdZQSR572VvQGXYYkaW9FL98HBIAZAAAAAJA3niclk0FXAQAAAKAUmeyyDaYdAdQAAAAAAAAoMZGgCwAAZMcPot5w6wa1tLZMuv/IAGqff//p1skv+pcIoA4bPwSy6a4muZ47bechdDK8mIHSRv/BDIAZAAAAAAAAYfQHf/AHuvLKK/WrX/3q5Lb+/n5ddtll+vnPf64rrrhi1DHJZFI33XSTvvSlL4167J/+6Z8UjUanteannnpKn/rUp/SmN71JH/zgB3X11VdrwYIFkx6XTCb1H//xH/r85z+vF198cdTjH/nIR/SmN71p0nVuueUWbdy4cVQA9fXXX69/+Zd/kQnbhVcIVCKVkBuSj5t3LSnhOYpl+cHHmJqEHGagpHmavlcEsuNKAxfjckFuYXmSjMLx+26YgQKLyeiitlrdMfdY0KXoorZaxbywzGLpiMnoQ6/V6x8XHwy6FH3otXpmAAAAACg2Q1+HsCwpFguuFgAAAAClKWzvgyKAGgAAAAAAACWIEGoAKEKZBlFbxhozgNq3rG6ZLj3tUn3vie9NGF5IAHU4TXf4JKGT4ccMlDb6D2YAzAAAAAAAAAijH/3oR3rqqad04MCBk9s6Ozu1fv16veENb9CVV16pZcuWqbe3Vy+++KK2bNmigwdHh6h98pOf1Hvf+96C1f3oo4/q0UcfVVNTk1auXKm1a9dq1apVmj17tmpra2WMUWdnp1599VXt2LFDDz74oI4dGzsA8LLLLtPNN9+c0Xk/+MEPynVH/2zniSee0Nq1a6f0Nd1555065ZRTprQGwsW2bEVdKRmCEOKoI9nGkgggLrCQ/X4bo9DVNIM5Cs81ucZIjpHof6EZVTuWjltO0IWo2rF4DiiwhFw9UdMZeAy5kfRETacSxlNMIfimpIQ48rSnsk+1qYjaI6nA6qhNRbSnsk+OkWyeAwAAAIDiYcxg+HRVVfr/AQAAAKBQwvJit48AagAAAAAAAJQoQqgBoEhNFkRtGUvffte39cBLD0y4ziWnXaKz5p41bnghAdThNl3hk4ROFg9moLTRfzADYAYAAAAAAEDYzJs3T/fcc4/e/va3q7W1ddhjTz75pJ588slJ1/jABz6g7373u9NU4cRc19XOnTu1c+fOnI5///vfr3//939XRUVFRvunUmOHxz3zzDM5nX+oRCIx5TUQLhWxCrVsW6hVDa8Fm/npSS0/KVPFhXMCLKI0VUt6/MVL9cYVDwRdih5/8VJV184OuoySUiGp5YV36Jyz7lWQEcT2QB0VtbyPpNBiklp2v1Nnn3WPuq38f0BppqpcSy2736lYbWVgNZSimKSndq/TqrPu1QkruADiajeip3avo/8BsCVtee0turTiQe2IdAQSRm4kLUtWactrb5FdGw2gAgAAAAAZi0SkZHLwflmZNGfIz3RjscLXBAAAAKA0EUANAAAAAAAAhAYh1ABQxMYLovZDAy9fcfmkIdTS+OGFBFAXh3yHTxI6WXyYgdJG/8EMgBkAAAAAAABhs3LlSj3++OP64z/+Yz388MMZHxeNRvU//sf/0Je+9CVZljWNFQ6qqqrKyzpLlizRd77zHV199dV5WQ8Yzz+d1xdsALUkGemfznf0z2G7SLBE7KjoCLoESek6LugniLzQnqvoUjwVUVskuADaeCqi5yq6tDJZE1gNpeyJqnaVu3agIdTlrq0nqtq1uDM/30chc09UtavStQMNoa6k/4G6b9YRtUb7FfWMEqbwAQlRz6g12q/7Zh1RQ+eigp8fAAAAQBaMGR70NvL/a/jZDgAAAIACCNt7SwigBgAAAAAAQIkrzFWbAIBp4wdRr6lfIyn30MCGlQ3adPkmWSb9VwMB1MWlYWWD1i1fl5e11i1fR+hkEWIGShv9BzMAZgAAAAAAAITNkiVL9OCDD2rr1q16y1veIjPBBUXV1dW67rrr9Mwzz+jGG28sWAC1JH3/+9/Xzp079a1vfUtXXHGF6uvrMz52wYIFuvbaa3XnnXdq3759BFBj2nX1delflrcFXYYk6V/WptSl4AIwS1WvHH180fagy5AkfXzRdvXKCbqMkuLI0/frdgcaQC1JbZGUvl+3W464OLfQ/Bk4FkkGWsexSJIZCIAjT5vrXpIkRQL6rffPu7nuJfofAH8GXHnyAvr99+TJHaiDGQAAAACKVCwmzZ0r2XbQlQAAAACY6QigBgAAAAAAAEInEnQBAICp84OoG29r1MbzNuYcGugft3nHZm25agsB1EWkeVez7tt7X17Wum/vfWre1Uz4ZJFhBkob/QczAGYAAAAAAACEkTFGH/jAB/SBD3xAhw8f1uOPP669e/eqs7NTkUhEc+fO1cqVK3XBBRcoFotN6VwvvfRSzseuWrVKq1at0mc+8xlJ0muvvaY9e/bopZde0vHjx9Xd3S3P8zRr1izV1NRo/vz5WrNmjRYuXDilmiXJ4+ImZCGRSkhGCkveX+KsUyVVB11GSXHUJyck12g6RnLOWi6pPOhSSoajlJ6K/mfQZUiSnprVKeesM2Tz9sOCcpTS09E7gi5DkvT0rBPMQIHZkv5Zp2hN5MeBfQxEykjJiNE/l18j+yzeV1ZoQ2cgqCj6JDMAAAAAFI/WVqm/f/B+WZlUXy8V8INAAQAAAJQwAqgBAAAAAACAUOIKAACYIeJlcW3bsE22ZU9pnYaVDVp/1vopr4PCad7VrKa7muR6bl7Wcz1XTXc1SRLhk0WCGSht9B/MAJgBAAAAAABQDObPn6/3ve99QZeRkYULF2rhwoW66KKLgi4FGCaRSgRdwjCJWESyCCAupC63L+gShumKSdXMQMEk3D61KxzPA+1KKBGLKEb/C8pxE2pX/+Q7FkC7+uXEYpI1tQ8SQeYcz9WHvbsCn4F29evDsbt0h/mgbENwWSExAwAAAACyEosND5y2bQKoAQAAABQGAdQAAAAAAABAaPHOAQCYQfIVHE0AdfHId+ikzw+fbN7VnNd1kX/MQGmj/2AGwAwAAAAAAAAApSNsr+PavO2o4GKKBF3CMGGrZ6YL25+5sNVTKsJyeXRY6ig129UqN+DffVeetqs10BpKGTMAAAAAAAAAAABCjQBqAAAAAAAAINS4EgQAgCI1XaGTPsInw48ZKG30H8wAmAEAAAAAAACgtMQisaBLGGQIIA5ChUI0AwpfPQAwkyW8lA6rO+gyJEmH1a2Elwq6jJKT8FI6GpIZOMoMAAAAAAAAAACAkQigBgAAAAAAAEKPEGoAAIrQdIdO+gifDC9moLTRfzADYAYAAAAAAACA0rPv8L70/4Tkmr19Ohx0CSVnt1qDLmGYsNUz0x1XV9AlDBO2ekpBh3qCLmGYsNUz0zma3tcFsxW2ekqBLUuVIfkAiErFZPMWdAAAAAAAAAAA4COAGgAAAAAAACgKvAMYAIAiU6jQSR/hk+HDDJQ2+g9mAMwAAAAAAAAAUJrOWXpO0CUMc45ZGnQJJWeVWRx0CcOErZ6Zrt7UhubNfpbS9aCw5pm47JB8EoEto3kmHnQZJaXCxBQPSQBxXDFVmHDUUkpsY6lK0aDLkCRVKSrbhOVvJQAAAAAAAAAAECgCqAEAAAAAAICiwTuAAQAoIoUOnfQRPhkezEBpo/9gBsAMAAAAAAAAAKXLtmz96xX/mr4T5PV7RvpXrSd4MCDna2HQJUgKTx2lZm1Ift/DUkcpOk/1QZcgKTx1lJoVmhN0CZLCU0cpWqxwhL+HpQ4AAAAAAAAAABAwAqgBAAAAAACAosLVYAAAFImgQid9hE8GjxkobfQfzACYAQAAAAAAAKC0JVIJffH+L8oEmUBt0vnXX9R9Srip4OooUbaxdL+5TmsDDn9dq3rdb64jiLzA6D+YgdJG/8EMAAAAAAAAAACAUCGAGgAAAAAAACg6vAMYAIAi4LiONu/YPKXQSSOjxbMWT+midNdztXnHZjmuk/MayA0zUNroP5gBMAMAAAAAAAAAYpGYPrTmQzL+RXwBXctnZPQhrVXMigRTQImLm3I9YDZqieKBnH+J4nrAbFTclAdy/lJH/8EMlDb6D2YAAAAAAAAAAACEQtgCqAEAAAAAAABkhKvBAAAoArZla8tVW7Th1g1qaW3J+ngjo4uWXKRldcu0r22fHt7/sDxl/4mua+rXaMtVW2RbdtbHYmqYgdJG/8EMgBkAAAAAAAAAIEnfeOc3tPPwTt2x+470BiPl8KO+3HnS5c4yfSPxFkldBTwxhtpqt+hArDOQcx9Qp7b2P6WPOGsCOT/oP5iBUkf/wQwAAAAAyEhvr+Q4g/dTqfR9m/d/AgAAAJiiMAZQe4V88wwAAAAAAABQvAihBgCgSMTL4tp6zdaswyeHhk5KOvnrw/sfzur8a+rXaOs1WxUvi2d1HPKHGSht09H/bAJo6X/weA4AMwAAAAAAAABgyzNbdM/ee4ZvLHAQ9T32Pm05+n/V2LG0cCfFST+q26s/X7S9oNnjQ3mS/jx2t3TwsD7StjygKkoX/QczUNroP5gBAAAAABnr6pK6uwfvp1LSoUNSJCLV1kqxWGClAQAAAChiBFADAAAAAAAARc0KugAAAJA5P3xyTf2ajPY3ZnjopG9Z3TJdtOQimQxf7CN0MjyYgdKW9/6L/hebfM+AleE/CZmB8Mh6BjTJDBhmAAAAAAAAACgWiVRCN9x5g5JucvSDBbzGLylPNyzaroTcwp0UkqReOfrEoh2BBU/6PEmfWLRDvXICrqS00H8wA6WN/oMZAAAAAJAXqZR09KiUHOPnzAAAAAAwEQKoAQAAAAAAgKJHCDUAAEUm0/BJy1j68NoPjwqd9C2rW6Z1p62bNHyS0MnwyWYG1p22bsIZ2Lh2IzNQZLLp/6ff9OkJ+59JAC39D59sZmD9mesnnIE/XPWHzEARymYGxgqg9i2rW6Yvvu2LzAAAAAAAAABQJGzL1rLasX/eV2jL+qtkFzL5GpKkmCwtTpQHXYYkaXGiXDHeelZQ9B/MQGmj/2AGAAAAAOTViRNBVwAAAACgmBBADQAAAAAAAMwIvAMYAIAiNFn4pGUsbbp8ky5cdOGE66yYs0KbLt80bvgkoZPhlekMrJizYsJ1Llx0ITNQhDLt/yWnXTLhOsvqlunmd91M/4tQpjOwet7qCddZU7+G54AilckMfPWSr44bQO175/J3MgMAAAAAAABAkbAtW7+57jc6d/65ox8s4HV15/bG9Zu9b5PtKX1BH7eC3WxPannxHTo1UVG4ho/h1ESFWl58BzNA/wP/PSm1GzNQ2jf6z40Z4MaNGzdu3Lhx48aNW1a3kQFxnjf8fn9/wf4dAQAAAKDIEUANAAAAAAAAzBiEUAMAUKTGC5/0g0cbVjZktE7DyoYxwycJnQw/ZqC05av/V559Jf0vUjwHYLIZuPyMyzNahxkAAAAAAAAAike8LK6HNj6keZXzBjcW8Lq6eamYHtp3qeJeLH2RIbeC3+JeTM/sfqfiTqRwjR8i7kTS52cGAu1/UAGkpyYq6D8zwAzQf/rPDDAD3Lhx48aNGzdu3LgVw21kIJsxE98HAAAAgLGE8d8OBFADAAAAAAAAOSOEGgCAIjYyfDLb4FHfyPBJQieLBzNQ2ug/mAEwAwAAAAAAAEDp+dsH/1ZHeo6k7xT4urojkYT+dt5zhT0pRvnbec+p004Fcu5OO8UMBCzuRvX+zkWBnPv9nYsUd6OBnBuDmIHSFnejemb3OzUvFSvoeeelBj4Egf4HjhkAAAAAkBdlZUFXAAAAACDsCKAGAAAAAAAAZpxI0AUAAICp8cMnG29r1MbzNmYdOunzj9u8Y7O2XLWF0MkiwgyUNvoPZgDMAAAAAAAAAFA6Pvfrz+mbj3wzfSeg6+q+Oe8FSdI3Dp0TTAEl7nMLfneyB0FhBoL1uQW/0z/O3R3Iuf9x7m6VeRa9DxgzgPuqDytlCvuNQMp4uq/6sBoCCkDHcMwAAAAAgCkxRpo1K+gqAAAAAIQZAdQAAAAAAADAjEQINQAAM0C8LK5tG7bJtuwprdOwskHrz1o/5XVQeMxAaaP/YAbADAAAAAAAAAAzXyKV0D888g9BlyFJ+oe5L+hrh1YrJivoUkpKQq5unvNi0GVIkm6e8yIzEABCyMEMoDl+UB9e9LTa7WRBz9tuJ/XhRU9LEiHEAWMGAAAAAOTMGCkWk2pqpAiXlQIAAAAYBwHUAAAAAAAAwIzFuwUAAJgh8hUWSehk8WIGShv9BzMAZgAAAAAAAACY2br6uuRp4KK6gK+t84zUdfZSzVZ1sIWUmIT6lLLCcWFlyvKUOHu5YioPupSSkVBKN0duC7oMSdLN817U1+oaFOPthwWVUErfjTQHXYYk6bvzdjMDAWg2z+nD9g61KVHwbwU8SW12Qh9eukNyFqnBO7vAFUBiBgAAAABkobVV6u8fvF9eLtXXhzNMDgAAAEB4hPHfDARQAwAAAAAAAHnDFQAAAAAAAAAAAAAAAABAyDmuk/6fMFxbZyQnGpWssqArKSm9bv/kOxVQb9SomhkomITrKRWKJwApJU+JqK0Y/S8oxzVyQjIDjryBvwdiQZdSMhzP1d96j6hNfYFNgSepTX3628gjWm/OkW2sgCopTcwAAAAAgKxEo5I15Ht2ywpnmBwAAACA8AjjvxkIoAYAAAAAAADyinf/AgAAAAAAAAAAAAAAACE3u3q2zltwXtBlSJLO0wLNNtVBl1FyZptqLVU86DIkSUsVZwYKrMLEtEJ1QZchSVqhOlUYwocLLWYiWqHZQZchSVqh2YqZSNBllJyk3MBjyL2BOhAMZgAAAAAAAAAAAEwLAqgBAAAAAACAkkAINQAAAAAAAAAAAAAAABBytmVrx6EdQZchSdrhHJJteNtRoTmeq1fUGXQZkqRX1CnHI4CykBzP1W61BV2GJGm32uh/ABzP1fM6FnQZkqTndYwZKDDHc7VLR4IuQ5K0S0fofwAcz9ULIXkOeIHnAAAAAAAAAAAAZg4CqAEAAAAAAICSwdVgAAAAAAAAAAAAAAAAQMg9/+rzUliusbOk591Xg66i5Lyio0GXMEzY6pnputQXmqcAT+l6UFjMQGlz5MoJyQQ48uSIAOIghCUCIix1AAAAAAAAAACAKSKAGgAAAAAAACgphFADAAAAAAAAAAAAAAAAIXdG/Rk6rS0adBmSpNPapDNMfdBllJxlZr6WqyboMiRJy1WjZWZ+0GWUlBpTqfO1MOgyJEnna6FqTGXQZZQcZqC0xUxEF2tp0GVIki7WUsVMJOgySo5tLL1FSwIPgDaS3qIlsg1vQQcAAAAAAAAAoKgRQA0AAAAAAACUHN4BDAAAAAAAAAAAAAAAAIScbdm68mAs6DIkSVfujRI8GADbWNpubtBSxQOtY6ni2m5uYAYKzDaW7jfX6VwFG/59rubrfnMd/Q8AM1DabGPpdtOoN2lxoHW8SYt1u2mk/wGwjaXbzB/prQGHkb9VS3Wb+SNmAAAAAAAAAAAA5BcB1AAAAAAAAMC04x3AAAAAAAAAAAAAAAAAQMglUgltWd495XXsPFyzt2VlUgk3NfWFkJMzNbekz1/q5qtaJqBzm4HzI1jMQGmrVkyRgM4dGTg/glWuiKIBPQtEZVQe2AQCAAAAAAAAAIC8MUG94jgOAqgBAAAAAACAguCdwAAAAAAAAAAAAAAAAEDI2Zat1x2z9UClM6V1Yo7UO8V3DL3uiGSbHknW1BZCVhy5aixr1k5zSJWKqMcUPgi80otopw6p0duqbf0NspmBghna/4qA+l9B/wPFDJS2of2PKaJUAP2P0f9ADZ2BqGwlA5iBqGczAwAAAECx6O2VEonB+8ZIfX1SNCrZdnB1AQAAAJhW5itG3pcnCXTOIIA6KSman5ImRwA1AAAAAAAAUDCEUAMAAAAAAAAAAAAAAABF4ERMMpKmcvndVAOojaQTMSN1dooQ6sKyJW0sO0MPxF9Wj1X44ElJ6jEpWa60sfMM2f1dgdRQqug/mIHSRv/BDAAAAADISldXOnTa53nS8ePpsLl4XKqqCq42AEBW9u/fr507d+rAgQNqb29XIpFQXV2d6urqdPbZZ+ucc86RzQcMAACUDqD2fx03iDrDAGr/12kPoiaAGgAAAAAAACgoQqgBAAAAAAAAAAAAAACAkLMtW+sOVejp+V3pJOigeNK6/RHZpxJAHYRHo4fUHVDwpK/bSunR6CE19C8LtI5SRP/BDJQ2+g9mAAAAAMCUeZ7U0SFFuKwUAMLqueee09133637779fDz74oNrb2yfcv6qqSpdeeqk+9rGP6T3veY8si9fwAKAU+QHUQ++PCqLOIoB66P1pC6ImgBoAAAAAAAAoOF5JAgAAAAAAAAAAAAAAAELOcR09u7hMtf2SCeg6PONJtf3Ss/W2HLnBFFHCEkrppxXPy8gElkNuJBkZ/bTieSUUbAhmqaH/YAZKG/0HMwAAAAAgr06cCLoCAMAQvb29+trXvqZzzjlHK1eu1H/7b/9Nt99++6QB1JLU3d2tO+64Q1dccYXOPfdcPfnkk9NfMAAgVEYGUI+5PYcA6sm2TwkB1AAAAAAAAEAg+MhqAAAAAAAAAAAAAAAAIORsy9aWqj/Vhv3f0WOLpfYyycsygdAoHSTtGSnby/n8AOoLD0hbdp0u+zyCBwstJump167Q2oW/0nGrX1L2fZTSc5DrcUbSbDemp167QjHXlZTIYSXkgv6DGSht9B/MAAAAAICsJJOS4wzeH/r//uMAgNA4dOiQvvSlL015nZ07d+rNb36zvvOd7+iTn/xkHioDAITdeAHUQx/3bpx8ncn+hZCUFM20qMkQQA0AAAAAAAAEhhBqAAAAAAAAAAAAAAAAoAjE//BPtPUt39GGa5R1ELUfQC3/1yyCqIcGUG+9VYq/dYHU0ZHDV4CpWixp+4m3a+2K+3TcTgc/ZnN5phnya7bHGUmznZi2v/h2LU45kpiBQqP/YAZKG/0HMwAAAAAgY11dUl/f4P2RIW+eR/AbABSJM844Q5dccolWrFih+fPnq6qqSsePH9eOHTt05513av/+/cP2T6VSampqUiwW00c/+tGAqgYAFMJkAdSSdOLGyQOkM/2ImrwEUfPvEAAAAAAAACBQhFADAAAAAAAAAAAAAAAAxeD1r1c8aWnrrW5WQdRDA6hPbsswiHpUAHW/pLq63L8GTNniVKW2v7gu6wDKkWOSaQDl8ODJdVqcqsyqXuQX/QczUNroP5gBAAAAAACAmW/VqlX60Ic+pD/+4z/WokWLxt0vlUrpJz/5iT796U+rq6tr2GNNTU269NJLdeaZZ053uQCAAGQSQN15o1Q28P/jBUhnGkA9dP+cg6gJoAYAAAAAAAACZwVdAAAAAAAAAAAAAAAAAIAMvPqq5LqK96cDoS88kA6IHhkwPdRYAdQnH/NGBxKOfHxUALUk9fbm+AUgX/wAytlOLKP9x+uzmeCxoQieDJd89j8T9D98mIHSRv/BDAAAAAAAAMxMl112mX7zm99o586d+uxnPzthALUkRSIRfeQjH9Fvf/tb1dbWDnsskUjoM5/5zDRWCwAISiYB1B03SuUjto0MnM42gHpKxxFADQAAAAAAAIRCJOgCAAAAAAAAAAAAAAAAAGTgF784+b9+EPWGa6THFkttZRqVJDhRAPXJfbz0jqN2Gy+AWpJeflk6/fScvwzkx+JkVH934Gx97NRnRvdvQCbhkv4+E63xdwfO1uLeqHK/DBX5Rv+RrxmwlO4/M1BcMu2/0fi99ffRBPvQ//Di7wEAAAAAE0omJccZvJ9KpbdFIpLJ9CNpAACFUlNTowceeECXXHJJTscIXjtWAAEAAElEQVSfe+65+vGPf6xrrrlm2Pa77rpLR48e1dy5c/NRJgAgBDIJoG6/UaoY57GkpHz8xN9fJyMEUAMAAAAAAAChQQg1AAAAAAAAAAAAAAAAUAx+8pNhd/0g6qs/ID1wmpQacq1hJgHUJ/cdI4g64knnvzpGALUk7dkj1dRkXz/yqnn+MX2lfp/mJCI6EkuNuc9k4aOZ7DcnEdFX6p/T3PZ+NRyek2O1yDf6D2agtGXa/0zQ/+Lkz8DcRFRHY0m5Ix7PJIR86L4aY19L0txElBkAAAAAilFHh9TePng/EpH27pUqKqT586Xy8sBKAwCMVldXl3MAte/qq6/Wueeeq2eeeebkNsdxdNddd+mDH/zgVEsEAIRAJgHUx2+UKifZJ18fOZlREDUB1AAAAAAAAECoEEINAAAAAAAAAAAAAAAAFIMXXwy6grS+PunVV4OuoqQ1L+1W04rjclyps8yRJY0Kn5QyC56caD9LUmckpbp+W00rdkvHj6vhlaqcakb+0H8wA6Utm/5nEkRN/4uPPwOuK9mS5vZZOlLunuzlsA8jyXAIzMC+Qw+b22fJ9ly5EjMAAAAAFJveXqmnZ/C+ZUmtrVIsJnV1SWecEVxtAIBpc/nllw8LoZakvXv3BlQNACDfvC97EwZRH7tRqi5cOQRQAwAAAAAAAEWIEGoAAAAAAAAAAAAAAACgGCQSw+52lkkbrpGeOkVyrOG7epJkhgQQTsAzowMoHSu97oZrpK23SvH+ETsMDTBBQTUv61fTG0/IkdQWc5Uco3++TAJIPU18fNJIbTFHdf2Wmt54TOpPqGFfWY7VY6ry3X9/v/G20//w4TmgtGXb/0zQ/+Liz4ArnWxe0vJkvPT3dMMCqDMw9DnCDDxpeAP/nzSe7IGEc1diBgAAAIBikkhIqdTgfWOktrb0rz09UhUfMAMAM9HSpUtHbWttbQ2gEgDAdBkviProjdKsAtZBADUAAAAAAABQnAihBgAAAAAAAAAAAAAAAIqMH0D92GKpvXzsAMlMgqjHCqD2j20vT68/ZhC140ylfOSoeXm/mi7ukWM8tZV5Slrj99A3WQjtZMfKSElLaitzVddv1HTxCcl11LCXAMpCo/9gBkob/Yc/A668k83ri0gdsfQdKw95DsYbnJmOmCclpPKB3DpXYgYAAACAYuG6o0Pf/FDqjg7p4MHC1wQAmHY9Y3yIbEVFRQCVAACm08gg6tYbpXgBz08ANQAAAAAAAFC8CKEGAAAAAAAAAAAAAAAAikgmAdS+iYKoMwmuHDeImhDqgnOMp80r+7IKH/UNDSGNuFLKGtyeybGDIaSe6vqlzSv7tH63LdubKNoU+UT/wQyUNvoPfwbcIZ0bGkAtSa5J93qiDyAZOgOSRg2CP1d+oHV6fTMkiNpjBgAAAIBi4Lrpm8+Y4Y8dP174mgAA02737t2jti1cuDCASgAA080Pon71Rml2Ac87aQA1AAAAAAAAgFAjhBoAAAAAAAAAAAAAAAAoEtkEUPvGCqLOJrhyzCBqL5OjkU+2J/3zvRVa+yddWYWP+jxJsZRU6Ug9tpTI4p1jQ0NIUyZdh+2efAQFQP/BDJQ2+g/bk7bcVakN7+lRyzxnzABqaeIPIKlISjFXSlhS7xgpEUPnyjVjB1GvOWJry12VzAAAAAAQdp43/Ge4ZsSHyKRSha0HADDtUqmUfvWrX43afsEFFwRQDQCgELwbpWQBz5dRADXvJQEAAAAAAABCjRBqAAAAAAAAAAAAAAAAoAjkEkDtGxpImEtw5agg6pGhJZh2jvH08Xf0ynY9WV46CDRbyYjUbUkpK/tjPaUDMG03Xce2/6iS7TEHhUL/wQyUNvoPSYonjbbeVaVLrzmhlrnuye3uiFaMFUTtB1BLA78mhwdRj/X94cgg6tM6LW29q0rxpJFoPwAAABBuxgwPnh7589yyssLWAwCYdrfffrtaW1uHbZs9e7YuuuiigCoa7fvf/75+8IMfTPt59uzZM+3nAIDADXyPH1VhgqgJoAYAAAAAAABmBkKoAQAAAAAAAAAAAAAAgJBzXEeNV+UWQO3zlA4YzMXQIOrGq6Rt/+URPllgtme0cWdMjyx05JjsJ8Dvlh8+apT9HDlGStrpOuh/YdF/MAOljf7Dd9+SpForXEVdKWmNDqD2+UHU0vAAap8fRN0XmfgDSvwg6qgrtVa4um9JUg17Yvn5YgAAAAAEIxqV6uoIiAOAGaSvr09f+MIXRm2/7rrrFImEJ0rgyJEjevbZZ4MuAwCK34gPmZnuIGoCqAEAAAAAAICZIzyvHAEAAAAAAAAAAAAAAAAYk23ZWnVYumNFbgHU+eBJai+TVh2WbGMPJlqicIwlyUv/1nuZh4qPt1s2IaTG89fx0nVYVoZHIm/oP5iB0kb/S17z8oSaLu2VZBTv83S0cuL9PUnlKSk2TlJ1zJVcx1PfJO8m9yTF+yQZo6bLeiVjqWEvQdQAAABAqBkzPJjOGCkWS/97rqpKqq8PrjYAQN594Qtf0AsvvDBsW11dnT73uc8FVBEAYNqYsX/mP11B1ARQAwAAAAAAADMLIdQAAAAAAAAAAAAAAABAyDmuo/tPD7qKtPuXS84LFbIzTb9EXjjG0+Zze1TmWpqVcNVRlts6UVdK5pAd6hkp3i+VuZY2n5vS+kM1zEAB0X8wA6WN/sOfAdcYufLUmcEMGE/qj0iWPMVcI+NJq9ui2lmXlGekhOUpEUnvN1k7O8ul2n5JMswAAAAAUAz6+iTHGbxvWVJNjVRRIc2ZI1VO8qk2AICi8ctf/lLf/e53R23/1re+pXnz5hW+IADA9BkngNqX7yBqAqgBAAAAAACAmYcQagAAAAAAAAAAAAAAAKAIzHHKFHP7lbClXC7jM55U7kh99uRBg2MeLynmSnP6JJ2yaGALCsWWtOX5el299kU9VHdCRl7Gc+Ap3a1Kx1LUM0p6nnpsN6s5MpL6okYXdFVry/MrZJ/CW88Kif6DGSht9B8jZyBpDX4nNl4vjUk/1huRTMrowwfm6Q0d1Xqyr0s/XnxEvRFPZsh+Y64x8HjSltrLpYvbmAEAAACgKHR0SEePDt6PxaRTT5Wi0fT/AwBmhKeeekp/+qd/Omr71VdfrY0bNwZQEQBg2kwSQC3lN4DaX2/CIGoCqAEAAAAAAICiwzuAAQAAAAAAAAAAAAAAgJCzLVv/u/d9uvrlX+qhU5V1ELXxpNp+qTwl9UWk9rLsgqiNpJgjXfyy9L8frJd9zvxsvwTkg5WUoi9LxsgMTEA2IaSOSV+b6mRxnDQQQCmlD47GpDlzJXfCy00xHeg/mIHSRv8xZAaUwQwMfcyzjE5URXXMKtOJin55lpn0eP/xk98yMgMAAABA8TBG6u4evB+LSVVVo/cBABStvXv36n3ve596enqGbT/77LP1k5/8JKCqAADTIoAA6qHrjvmKAAHUAAAAAAAAQFEihBoAAAAAAAAAAAAAAAAoAvF179EvP/FLXf0B6cGBIOpMDA2gltK/1iq7IOroQAD1L/+3FH/dIqmsLJcvAVPgyFPjqU9qZ0WX6pyojttJJYyb8fFGUr/lKikjV54G4ysn50mKepbqnKh2Vnap8YwWbXv5LbJFUE2h0H8wA6WN/iOXGfADpMs8S7aMbp3Tqqf7T2hvWbdsGZV5lvqNO+ksuJJizAAAAABQXKJRyR7yA2R7xA+TI1xWCgDF7ODBg3rHO96h1tbWYduXLFmi//qv/9KsWbMCqmxi8+bN06pVq6b9PHv27FF/f/+0nwcACiLAAOqh6w8LoiaAGgAAAAAAAChavFsAAAAAAAAAAAAAAAAAKAbvfrfiTkQ/2ZbSmo9JxyszO6wyORhA7StPSZWW1B3LbI3qfukn26R4v6QFC7KpGnliy2hj22naXtEiJ+Po0NEmj5qcmDVQB8GThUX/wQyUNvqPfMyAJ2lPWfeU6mAGAAAAgBmioiLoCgAAOTp8+LDe8Y53aN++fcO219fX695779Wpp54aUGWTu+GGG3TDDTdM+3lWr16tZ599dtrPAwDTLgQB1EPPE5UIoAYAAAAAAACKnBV0AQAAAAAAAAAAAAAAAAAycMop6jx7mT6yXoq5UsyZ/BAjqTcq9Y34qPq+SHp7JvGBMSd9vo+slzrnVBNQEqCGzkX6xmuvU5udVMq4Wb35a+SloNlcGmpJShlXbXZS33jtdWroXJTF0cgX+g9moLTRf2Q7A/73ef3GVdK4wx5LGlf9A9sm+36QGQAAAABmmMpKqbw86CoAADk4duyY1q1bp+eee27Y9rlz5+ree+/VmWeeGVBlAIC8C1EAtSS9KMncWMATAgAAAAAAAJgWkcl3AQAAAAAAAAAAAAAAABC0zv5ObbjkiFrK02GBs3ul4xVSwh57fyPJDKRMdpSlfy1PpQOo/fvGS+84XhhlzEmfx0hqqZc2rO/X1pStuBfL29eFzHWahH4+56AqvYg6TEJSOhjSnfiwkwbanXX4qK/Si+jncw7qiuQyZiAA9B/MQGmj/8hmBoyG9zsdOG0U9YySxjsZQO3vK409G8wAAAAAUKTKyqTIkEtHIxGpulqKRodvBwAUjba2Nr3zne/U73//+2HbZ8+erXvvvVerV68OqDIAQN6FMIB69Y3p/zdfMfK+nM2rTQAAAAAAAADChHcMAAAAAAAAAAAAAAAAACHnuI4a//1qtVR2nkwanCiIemgAta+jLB1A3T9y33GCqIcGUPta5qTUaH6rbSfeK3tYLCGmmyNXjbUPqSXarnJFJFfqsNKXllrysgohzVS6w+kJqHGjKldELeXtalz0mLa1/wEzUED0H8xAaaP/yGYG0gHUo6Ol+42jlDFyRk2Cv7c37BFmAAAAAChiFRXpwGlfLJbeBgAoSh0dHXrnO9+p7du3D9teW1ure+65R2vWrAmoMgBA3oUsgPplDQZQ+wiiBgAAAAAAAIoXIdQAAAAAAAAAAAAAAABAyNmWrY3W+dru3S/XGMlLX9BnJNX2SYcrdTIteqwAat/IAGrfqCBqL73uyMsbLc/Txr01ssu7pvLlIAe2pI3uUm2fd1iukcplDwRQJrIKFc1Geiw81bgxlXu2JE+WJ208vlR2FzNQSPQfzEBpo/+YaAakdGC0Kz+AWhovcnx0APXgvkNjq60hjzEDAAAAQBHq6ZESieHburrSYdSxWDA1AQBy0tnZqXe961166qmnhm2Px+O6++67df755wdUGQAg70IWQP2qpBU3jv0YQdQAAAAAAABAcSKEGgAAAAAAAAAAAAAAACgCDS9XSr+tUdOb2+QOXHvoSTpeoWFp0Z7S98cLoh6LZ0ZEFZr0unN7Bpe2PGnTPRE19PRJyw5N4StBrhoOxaT2M9R0+gty5alcUsK21G2703I+T1KlY6nckSRHlow27TlTDcdikpiBQqP/YAZKG/3HWDMgK6KOSErS0ODo3A2GWKfVpCIqdyVmAAAAACgyx49Lvb2D95NJqbVVikal2lqppiaw0gAAmTtx4oT+4A/+QI8//viw7bNmzdLdd9+tN77xjQFVBgDIu5AFUB+SdNqNE+9DEDUAAAAAAABQfAihBgAAAAAAAAAAAAAAAIrBzp1qeN5I7UZNl3tyjHS0UkqNkTiYTRD1qADqASkrvf7cHsn2pE13Sg27Jc3ukjwuJAxKw9F5kic1nfGCeixHvbYro7F7OFVGUq/tKua5qnRtbdp9phqOzZumsyET9B/MQGmj/xg6A648lbuWlBoMos6ndAB1+htNS4YZAAAAAIqJ543+Ga7rSv390pEjUoTLSgEg7Lq6uvTud79bjz766LDt1dXVuuuuu/SmN70poMoAAHmXQQC1JEWVnyDqydY5KmnJjZOvQwA1AAAAAAAAUHzGuAQNAAAAAAAAAAAAAAAAQOgcOyb19KjheaNv3CsdrRg7gNrnKR0wPZHxAqh9KSt9nm/8Wmp4TumgkmQ+LmvEVDQcm6fGQwtOBk6agVs+DV2zI5JS46EFA8GTCBr9BzNQ2ug/Go7N06bdZ8oa6FK5a6kmld8AufEDqAEAAAAUPdeV2tqCrgIAMIHu7m695z3v0SOPPDJse1VVle6880699a1vDagyAEDQonk6frx1jks65cbJ1yGAGgAAAAAAAChOfGQ1AAAAAAAAAAAAAAAAUAy6u6VEQp0xT99+s+TYkx/iSZKRzBjX/00WQO1zbOnbb5aueEGK97tSKiUlElkWj3xqnndUW+a3qiYVGRZCms/LPIcGmtakItoyv1VvaqtUw5G5eTwLckH/wQyUNvoPSWp4rUZKLVPTWXvlmnQQdZ9rqd9yp7x2mWsNBlB70qbnl6nhSI0kvv8DAAAAikYqJTnO4H17xA+T+/oKWw8AIGM9PT163/vep4ceemjY9srKSt1xxx26+OKLA6oMADAtTPYfNRqVlMtHh48Mnh65Truk+hsnX4cAagAAAAAAAKB4EUINAAAAAAAAAAAAAAAAFIOeHnXGPF36Z55aFgwES2cQJD1WEHWmAdRG6eNa6qVL/0x64GdSPJUipCRAzfVtajrzFbmSyh0jebY6ok5ew0el9HwYSTVJW+WukStPTWfukZJJNbTW5flsyBT9BzNQ2ug/hmrYXy0ll6hp9Svqsd28BFBLUr/lqs84qnQsbdq5VA2t1ZL43g8AAAAoKsmk5A75N0IqNfxxz0vfAACh0tfXpyuvvFIPPPDAsO0VFRX6z//8T11yySXBFAYAmB45BFD7sg2iHhlAPXKdE5Lm3zj5OgRQAwAAAAAAAMXNCroAAAAAAAAAAAAAAAAAAJPrNImTAdQ+46VDIifjKR08LWUfQO3zg6g7o/kJOET2muvb1LT6FblDml7uWqpwrGkJIK1wLJW7g28xc43UtPoVNde35flsyAT9BzNQ2ug/xtLQWqfGg7PVEXXyum5H1FHjwdmEjgMAAADFarKAadsuTB0AgIwlEgldddVVuvfee4dtr6io0H/8x3/osssuC6gyAMC0mEIAtW+8YOls94tKmnPj5OsQQA0AAAAAAAAUP0KoAQAAAAAAAAAAAAAAgJBzXEdvv+SlYQHUJ2V4nZ+ndIBkxpcFjrFjS7309j9KyMl73CUm48jT5iVHh4WPSlKf5arHnp5g8B7bVZ81fG3XSJuXHGUGCmyi/vfabkZh9Nkwknrpf6gwA6WN/mM8zfVt2rLouGqS+Q2Qq0na2rLoOKHjAAAAwExVURF0BQCAIVKplD7wgQ/orrvuGra9vLxc27Zt07p16wKqDAAwLfIQQO3LJGB6Up43acA0AdQAAAAAAADAzBAJugAAAAAAAAAAAAAAAAAAkzNjXIjoSfLynTzpr23SJxi5/DSdDpOwZbRl+3JteP0etcR7JaXDR9uj2UWBDrQ1I56k9qij2qRU7lqSpDWdFdqyfblsJqGgxut/R9SRlHlfs9lPUnp9+h8KzEBpo/8YS3N9m5pWvyLXpHvU57rqt6YeAlHmGpW7llwjNa1+RZLU0Fo35XUBAAAAhIAxUmWlFOGyUgAIk61bt+pXv/rVqO3l5eX6q7/6K/3VX/1Vzmu/4Q1v0I9//OOplAcAyKc8BlD7opKS42yflDf4uoL3ZU/mK2O8L4UAagAAAAAAAGDG4N0CAAAAAAAAAAAAAAAAQMjZlq37nlylS1/3lFoWpLdlG0BtvMHwyUyPGxlEvaZVuu+2atlrajM/MfImLmnr7rg2nP17PTarQ+2R7AOo/V+zDqJOGV14okZbd79O8SredhaEkf3viDgnH8smVDaT/nsaEUJL/0OBGSht9B9DNc85rKbTD8gd6FSflZ8Aaknqtzz12d5gEPU5B6TKSjUcm5+X9QEAAAAUQH+/ZFmD921bqq5Oh09PQ+gdAGBqksmxokOl9vZ2tbe3T2nt2traKR0PAMijafxefGQQdbYB1Cc3jQiiJoAaAAAAAAAAmFl4JzgAAAAAAAAAAAAAAABQBOLltXrgF2W69I/6tWNBbgHU0sCvXvZB1Oe1Sg/8TIrHJHV0ZFU78icu6U9eiuv+NcdyCqAeej+bIOpuK6U/eSmu+PHuLM6KfPP7/3/XHD+5zdPkvcy2/96Q/SSpx3Lof0gwA6WN/kOSmuvb1LTsFbkDjeqzXHUMfDBFPuIrPEkdkZSUtNNB1PLUtOw5qadHDa11eTgDAAAAgGnX3y+57uB9x5G6u9Mh1BUV6VBqAAAAAIVTgA+D8YOocw2gPvnQQBA1AdQAAAAAAADAzGNNvgsAAAAAAAAAAAAAAACAwM2Zo7hdqdt/IVUnsjjOGzt8MpsE4+qEdPsvpHjKTgeVIDDN9W367Mr9yk/MZDaMPrtyv5rr2wp8XgzVXN+mz608oNqkrahrcgqfnWy7z1876hrVJm19buUB+h8C+Z6BieaAGQifbPs/UY95DihOzfVtalr9ityBBvZZrjqizsl+TTUOYug6HVFHfVY6tM41UtPqV5gBAAAAoJh5npRMSidODA+oBgAAADC9ChBA7ZtqAPXJXQigBgAAAAAAAGYkQqgBAAAAAAAAAAAAAACAYrB6tTqro/rIlUZVScnO9Jo/MzqQ0BvYngnbk6qS0kfWS51lkioqMi4Z+dVc36YbVr+s4zFHKcvLKoZ6zBnIkJGUsjwdjzm6YfXLBFAGZGjwqCWjCsfkHD6b6T6epArHyJIhgDQEmIHSRv8xWQC1NLUg6rHWIYgaAAAAmIE8T+rtDboKAMAQH/rQh+R53rTcHnjggaC/PAAobQUMoM5IBgHUAAAAAAAAAGYuQqgBAAAAAAAAAAAAAACAItC5+gxteGeHWhZI/ZHsAgY9MyJUMIvrHD2lz9dSL2242lVnvCyLMyNfHHn64dIjOh5zlLS8nEImPaVDxXM5zpOUHAii/uHSI3JyjrhELhx52rzk6LDg0c6oO+ExY/0xHyu8frKng86oOyyAdPOSo/Q/AMxAaaP/GGsGRgZQ+yb6HmG8DzGZaJ2RQdTMAAAAADADpFJBVwAAAADMfARQAwAAAAAAAAgZQqgBAAAAAAAAAAAAAACAkHNcR42dP1HLnKT6bE8dAznQVhbXCHomHRyYTQC1v35HmdQXkVrme2q8hODBoPityyWA2j/eyEwaODqWoecM2aWyJcGW0Zbty7Wms2JY8OhERj5e4ViqcmxVONaE+421jh9AuqazQlu2L5fNFBQcM1Da6D/Gm4Hx+jfWYxPNwGTrMAMAAADADEP4HAAAADC9CKAGAAAAAAAAEEKEUAMAAAAAAAAAAAAAAAAhZ1u2Nr7pE+qPWicDqAuto0zqj0gbD84neDAAtow++so8VTpWzgHUkpQy3rD72fAkVTqWPvrKPGYgAPGUrT85MEc9tptREPnQxyscSzEvHUAe88zJANJM1/Ek9diu/uTAHMVTdo5fAaYqlxnw92EGih/9x3TMgMQMAAAAACUpEgm6AgAAAGDmIoAaAAAAAAAAQEgRQg0AAAAAAAAAAAAAAAAUKXear12c7vWRPeMF96Yva+D8CEZzfZs+t/KA4snMJ8CTFHWNYt7wP8wxzyia5R/weNLS51YeUHN9W1bHIX9ymQFp4hnI5o80MxAsngPAcwAAAACAvKmoCLoCAAAAYGYigBoAAAAAAABAiPGR1QAwgziuI9uyQ7MOCov+gxkobfQfzACYAQAAAAAAAGBmc1xHmx/9gcqSrmocqaOscAHRrpEsT6rpl8pS0ubZL2v9/zsu2wvZxZMznGM8bV7dpWjSkRWR3ByTqKOulGV25UmWK0WTjjbPeYUZKDC//yknqc7ydBh4Jr/9RlLS8pRwHJW5RquP2do5x1G/5SlppR/P5LJj40mdEUe1ffQ/KMxAaaP/YAYAAAAAZMV1pVRq8H4kIh09KpWVSfX1ks37RAEAAIC8I4AaAAAAAAAAQMgRQg0AM0Rnf6cab2vUxvM2qmFlQ87rNO9q1uYdm7Xlqi2Kl8XzWCGmE/0HM1Da6D+YATADAAAAAAAAwMxnW7a2xK/ThmMPantdQlYs+xBqo8HAwmwvNbQ8KZaS1rRKW+6plB2JZbkCpsqW9M8PxrX2A8flGi/j8EmfJ6nMkSoco17bU3+WOTPGS8+cYxv984Nx2RHeelZIQ/uftNJ/gi1v4ucBo8Fw0d6odNlLUV27u1y3nNGnO09LDNtvoueEgdMpadH/IOU6A77xZsB46R2ZgXDL+Tlg4O8KngOK37Q9Bww8zgwAAAAAM0wqNTxwzralaDS97ciRdBA1AAAAgPwJWwA1AAAAAAAAAIyBdwADwAzQ2d+pDbduUEtri7a/tl2ScgofbN7VrKa7muR6rjbcukFbr9lK+GARoP9gBkob/QczAGYAAAAAAAAAKB3xnbv1o3sqtPaPEnKNsgoh9oMopcwCR4cd64cPW9KPbpfinivNsnL4CjAVjvH08Uu7FPGMoq6npCUpyxlI2JJn0sdOFjo67FgvvX/UlSKe0ccv7dK2u+tkZ5OCjSkZs/8aP4D05J/5gccqU0aPLEyqo9zTzrqUKlNGPZH0BEz0nGAN2Uj/g5XrDHjMwIyQ83PAAPpf/HgOAAAAAJAV25YcZ/C+MYOheKmU1N4eSFkAAADAjBTGAGov03cDAAAAAAAAACglXA0GAEVuaOigJLmeq6a7mtS8qzmrdYaGDkpSS2uLNty6QZ39nXmvGflD/8EMlDb6D2YAzAAAAAAAAABQWjp37dBHLjuhiJsOAVQW1zF6Ggwh9LIIoJbS54m6UsSVPrJe6rSS2RyNPLE9o43PVcp2pbqEpag7OmR0PENHJWmNvX3cY4cEUNclLNmu0nUQPFlQY/XfZ42YgbHCZ6Nu+s/+72en5A38ma5MDfbQ7/NQI4NH6X+wmIHSRv8xbTMw5ENKmAEAAACghPT1BV0BAAAAMDMQQA0AAAAAAACgiESCLgAAkLuRoYM+P3zw2863M1pnZOigzw8f3HrNVsXL4nmrG/kxWf8zRf+LFzNQ2jLpf311/aTr/Oq5X+kz93yG/hchngMw2Qx8+W1fzmgdZgAAAAAAAAAoDo7rqHHOA2opd2UkVSSlfju7NYYGUWd7XEUyHUzYUi81XpHQtodswgcD0HCgWnrUUtOb21WXsNRW5ippJHnj93ayLg0cPvZjfgC1NxA86RlterRWDQcqeedZAMbtv9JBoa4ZHTxalTSyx2lw1JWqUkY9AzsYT9JAHumw4FH6Hxq5zIAfPjuWqJsOtu2KMAPFIJf+V6fMqIBinx9C3MtzQNHI6e+BlFFkgucAyzPq5jkAAAAAmHk8T7KGfhrdiJ8SOk44w/IAAACAYhLG76kJoAYAAAAAAAAwAeN5/BQRwMywevVqPfvss6O2r1q1Sjt37gygouk1XujgUMYYnTPvHC2rWzbuPqfWnKrvPfG9UaGDQ62pX0P4YMhk0n/LWGo8p1Gd/Z3j7vPaidf05GtP0v8ilOkMvGHhG7Rw1sJx96kuq9YvfvcLZqDIZNr/T17wSb3c8fK4++xr26ffHfmdJvonAf0Pp0xn4LLTLlN1rHrcfRzX0Z277+Q5oAhlMgOePK2Zv2bC7wVXz1+tmx6+iRkAAAAAUFJK7fUEACglpfAc3/yuJWo654B6olJHWXqbW4BrGv0Qwpp+qTIpbbrbUkP30uk/McbVvLRbTRcel2OktjJHSTN2yHgm42EGAqxHvmI0LIC635btSZsem62GV6ry80UgZ2P1fyw1SUu2J6UmGARL6d53jJNSTP/DKZsZkMYPmpfSIbQpixkoJtn0P+JKSWvsx6XBvyfof3HJZgaMpPFfDZYinuQYZgAAAACYcVIpqa9v8L5tS0uWDN6vrJTuu0+KlOYnzJTC6wkAUMp4ngdQEARQAwAAAAAAAEWrlF9LmOCt5QCAsMokdFCSXM/Vw/sf1r62fWM+vq9tn25+9OYJQwclqaW1RRtu3TBhmDEKJ5v+/3j7jyfs/30v3Uf/i1A2M3DfS/dNOAObt29mBopMNv2/+dGbJ+z/w/sfpv9FKJsZuP2F2yecgf/z7P9hBopQPr8X/PqDX2cGAAAAAAAAgCLSsDuqxmcGA6ilwYDo6TJ0/Y4yqbFFanietxwFreGVKm16bLbsgWDI6BhzYJQOkp6UGQycHongyXAar/9D212TtFTuZHbhc7ljToYVD12H/odXJs8B/gxM9jRgNHoGfMxAOGXT/8meBTzR/2KUzQxkghkAAAAASlB9fdAVAAAAAMWLAGoAAAAAAAAARYorwgCgyGQaOujz5I0ZPuiHj3oZvqhE+GA4ZN1/j/7PNMxAact7/ye93DiN/odHvmfA1cThwz5mIDzy/b3gZAHUPmYAAAAAAAAACIfmRZ3acq5U0z/igem6lnDEujX90pY1UvOZmf1sEdNraABlTb8lb8h1rhkHUEsn+zwyiNoz6XUJngynkQGkES/dM0/ZBY/6/ABST+l1IgSPht5YIbT+H/upzICUXofw2XCbKIR4qv2X6H8xYAYAAAAA5MQY6ZRTpNmzg64EAAAAKE4EUAMAAAAAAAAoYpGgCwAAZC7b0EGfHz4oScvqlmUdPurzwwe3XrNV8bJ4Vsdi6qaj/0aZv9hJ/4PHc0Bpo/9gBsAMAAAAAAAAAKXNcR1tPqtXrpHKU+ltHWVKf9zgdF3jaCTXS3/KfU1/+ryukTa/Xlq/f6nsaTsxMtUgqeelQ/rQ2c8N2+5JkslwNMzgMSN/cny8zNVPnztbDWaBdOpUq0W+NUjS3qO6YcULknElDSSJW5bSf3KV3j7pIAzsa7kD60gyRsaytOnFM9Vg5tL/kPJnoGnFi6pJGR2NpVThWCpXRLIHdrIm+eAAY+Sn2JdLSrgp9dquapIR2ZalTS+uYAZCamj/61KW2iIpVbq2ymUN9t94GXwqQfo5oFySHFc9lqO6VES2Zeh/yGU0A5M9B3jmZGAGMwAAAADMIB0d0vHjg/ejUenUU6VZs6Ty8uDqAgAAAIoZAdQAAAAAAAAAihwh1ABQJBzXUeNtjVmHDvr88MF97ft08MTBrEMHfS2tLWq8rVHbNmyTbdmTH4C8oP9gBkob/QczAGYAAAAAAAAAgG3Z2vLEEm0453m11A8EQkvqyCIvxCidQ+mZ0WHDEx00q28w+HpNq7Tl3rjshlXZfQGYFp0moW/O/p1S1ujHsvlJ8FgB1JKUsqRvnnlYV8x9i+JeLMcqMZ3WmYTm2a16zRyTlO5jeySlWjeWDiLWkGDpMRnJstWnlNqt1Mk5SBhP8+y41s2/UJpH78OsQVJPb72ur31AktRre4oZDfRfkklNvIA3GFrep5R6rfQUdMQ8/c/2i9Uwb4U0b3pqx9Q1SFLvYjXFH1adIjKWOZkrnzbZc4Aka/CtxOWSyuTJjlja1HmRGuYto/8hN3QGZiua7v/QGTCOJvyuwBt+QPnAzYoYZgAAAAAoZgcPSv39g/fLyqR5fHMPAAAA5IwAagAAAAAAAAAzACHUAFAkbMvWxvM2avtr2+V6k1wYNA5Png6cODClOixjaeN5GwkdLDD6D2agtNF/MANgBgAAAAAAAABIUjw+T1tvfV4brpGeqs8tgFr+r1kEUXeUS7Eu6fxWaeutUrwmJvX2Zlk98q3TJHTxwv/SM5G2cfcZaPWExgug9j0TOa6La5v10GvvJog6ZDpNQlfPf0DP28NnwJPUbiVU60r2pH/YvYEA6sSo3Z6323T1rLv0y8OX0vsQ6zQJ/Tz+nCpcW/2WIyNPHVZCcqVyL8PXdDxPfcZRx8AceJIqXFs/L3tOV3TMp/8h19Bbr57kWn147iOq8CLD+240+V/4QwIK+oyjXpPSj4++RQ3d9ZL4+74YNPTWS4kL1DTncbmjGj7pAIwKqbBktOnYBWroYQYAAACAotXfL6WGfDCVbUuJhBSJSNYYn2gHAAAAYHwEUAMAAAAAAACYIQihBoAi0rCyQZLUdFdTzuGDU2EZS5su33SyDhQW/QczUNroP5gBMAMAAAAAAAAAdMopiict3fxfrl53Q3aHGm/0fS+L6ySPVUk3/5cU75cUi0ldXdkVgLzqtJK6ePlv9EysY9J9JwuizuTS1Gdibbp4wZ16aO8lirvRTMvENOq0krp66aN6qPyoEmb06wZ+EHW1G5E9wR/2hHHVbTljzkHCuHqo/JCunnOffvnKm+h9CHVaSW1Y+ph2RNvVa9LBUn4vO6yE5EQz+EPuqU+OOqzksFD6XpPSjuhRbZhzv7a+ciH9D7FOK6mfz31RRoN9HwyinuyjBnQypCAdRJ5UmWfp5xUv6oojs+l7EWnomqPbYnN0X/WREY9k8Df9iKCKy7rmquHwHEl8vwcAAAAUrd5eKZkcvG+M1NGR/rW6WirP4hMOAQAAgFJGADUAAAAAAACAGYSPrQaAItOwskGbLt8kyxT2KZzQwXCg/2AGShv9BzMAZgAAAAAAAAAocUuW6ECVqzd+VHKzvM5x5P65HP/Gj0oHZkmqqMjuYOTVyQDq8skDqH3jXYKazaWpz5R36OLlv1GnlZx8Z0yrkwHUVekA6on622WlxgypliYOoPaPTxhXD1Ud1dVLH6X3IXMygLq8XW12clif/djhjhHbx9JvHHXYyVFRxQnjqs1Oakd5uzYsfYz+h5Q/B49WHFfvwPNBh51Un3GyWqdvyBz0GlePVhyn70VmS83LurXmYNa9H6nPOLq15qC21Lycp8oAAAAAhIrnSSdOSIlE0JUAAAAA4UcANQAAAAAAAIAZhhBqAChChQ4fJHQwXOg/mIHSRv/BDIAZAAAAAAAAAErXgWivVn5S6orldrwfPJ1tALWvKyat/KR0oHJq4YbIXS4B1L6Rl6LmcmkqQdTByzSA2udJ6rWcUUHECeOqd4IA6qHHE0QdPmMFUI/1Z3y8/vsSxtUJKzUqgNo/niDqcBsaQN1up3szNIA80zDivjGCyNvtJEHURWRLzcu6fvHTShg3pxBynz8LCePq+sVPE0QNAAAAzGQ9PUFXAAAAAIQbAdQAAAAAAAAAZqBI0AUAAHLjhwA23dUk1xv7QrF8IHQwnOg/mIHSRv/BDIAZAAAAAAAAAEpPIpXQqrIfqWuK6+QaQO3rikmr3rtXR3euVkyF+bA8pDnydOmZuQVQ+/JxSeoz5R269LTf6IkXLpGtEF54O4N1WkldfeoTeqjqWEYB1D4/iFiuFPOsjAOohx5/Moh6yf/TL/ddoLgbze2LwJR1WkltOPVJ7SjvGDeA2udJMhref58/B/5+4x0/LIh6yaPauu8N9D8E/Dl4tKLtZAC1z+9nh53ULCciM8FzdcK46ht4Phg5ByeDqOl7qG2p3a/rF+9QckjYfIedlBxP5Z49+QJe+j/pAOrUyc3JgSBqOa4a25fkv3AAAAAA08txhgfUuSPea5pKCQAAAMA4CKAGAAAAAAAAMEMRQg0ARWy6wwcJHQw3+g9moLTRfzADYAYAAAAAAACA0uK4jrqVnHzHAuiOSM6JTkkZBBsibxy52lM21Rjy/NhT1iXnRKdsgsgLxpGnDa9r0UPVbUoYL+tAcT+IOum5SuV4fMK4eqj6qDYseVT/+fs1hJAHoNNOacPK32tHeddAAPXkvRwWRO14Q4LI3ZOPT3Z8Oog6MRhEvet1iju8/TQo/hw8WtGpdnvs0DC/ryfslModa1gAuS+TORgWRE3fQ2fLvFZdf+ouJc3oDnbYKSkljfHQcJ7UZ9xhAdS+pHF1/anbpb4+NR6pz1PVAAAAAAqip0dKJMZ/3PMIsQMAAADGQgA1AAAAAAAAgBmMq4AAoMg1rGzQpss3yTL5fUondLA40H8wA6WN/oMZADMAAAAAAAAAlI5YJKalXeEIflzaIcV421HB2TJa3lsedBmSpOW95QQQB+BINJFTALXPk5Sc4vEJ4+lIdIIAI0wbR54az96pHdVdaotkFkDt8/frtV1124567cwCqIcenzCe2iJJ7ajuUuPZO+XkPEmYipMB1LM61R4ZO4Da5w3cem1XCTP8Q20Txs14DtojKT06q1MbVv5eneOEXqPwtsxr1fVnjR1A7euIpEb1fqR+46pjgllKGk/Xn7VLW+a15lwrAAAAAAAAAABFgQBqAAAAAAAAADMcV4MBwAyQ7/BBQgeLC/0HM1Da6D+YATADAAAAAAAAQGmwLVsf31UVdBmSpI8/bQggDoAto+taFwZdhiTputaFzECB2TL681cXBV2GJOnPX11E/wNgy+jawwuyDqD2+funBgJrczneD6K+9vACZiAA2QRQ+/w+99muUsaVLSllXPVlGUROEHW4jBdA7Wp0T3uG9H7kLWVcdUecYft7A+sMRRA1AAAAAAAAAAABIIAaAAAAAAAAQJ5Fgi4AAJAfDSsbtO35bfr1nl9Pea11y9cROlhk6D+YgdJG/8EMgBkAAAAAAAAAZr6uvi59/oKOoMuQJH3+Mk+f+OV+Vbu89aiQei1Hn33r7qDLkCR9dvlufWSHpQrXDrqUkpGwXH3xgnD0/4tLd+vPnpFibn4+IBOZcYynW04/INuRvByffqd6mbonyXakW+Kv6NrfubI9gqgLxTGeGt96QI9W96g9MjIieGJ+33tsV0nXU9JKh5hnOw/tkZQerW5X42lPa9tvF9P/gGxZ2q7rz2wdM4BaGuzr0O702K5MUipzB7f2W556RszS0LlwJQ19lk8aT9efuUtqb1PjK7VT/joAAAAATLNEIugKAAAAgOJiQva6BwHUAAAAAAAAAKYBV4IBwAzRvKtZ9+29Ly9r3bf3PjXvaiZ8sIjQfzADpY3+gxkAMwAAAAAAAADMfNXl1Xr9IUtPLcgueHI6vP41qbo7KSkZdCklpULSOceiempe8L/v5xyLqqKbIJtCikm64HBUdyx1Aq3DG6gj1t0faB2lyJZ0epv0n6cEe8F5T8TT6W2S3dMXaB2lZrD/uX0f4E9NrgHUvvaoS/8DtGXZCV1/wTEljYY10R2Ri3EyiNrTyTTq7qgrJY3KXKN+y1N31Bt2gGdGz4UryRqyMWk8XX/Ba1IiocZ9s/LyNQEAAACYJqmUlBzyc0TPkzo7pUhEqqgIX8AeAAAAEKSwfX9MADUAAAAAAACAaUIINQDMAM27mtV0V5NcLz8XG7ueq6a7miSJ8MEiQP/BDJQ2+g9mAMwAAAAAAAAAUBoc19HCbiPLlVwruDosV1rYJTlOUrYXsgsxZ7iE5Wr/LCedEBnkb70n7Z/lKOEmFAtyGEtMwnL1xPxEKPr/xPwE/Q9AwnL1i9N7ZAbCYoNiPOkXp/fom48zA4WUj/570pTnh/4HJ2G5+vQb25Qc8ds+MoDa50mSGf5XRnfUU7zb6HjV5AHUQ9cfFkRtSZ9+Y5v+cE8ZMwAAAACEWSolOUM+zMwYqbc3HUKdTErxeHC1AQAAAGFCADUAAAAAAACAEkIINQAUuXyHDvoIHywO9B/MQGmj/2AGwAwAAAAAAAAApcO2bK06YnTnMgUXQjtw3lWHJTvpTLo78ism6ebfztL1l3ao31JgM1DmpuuIJVxJ+f35NMZH/zF0BhJWMEHUxpNizEAg8tF/M/Afo/EDhyc8nv4HaugM+EHU4wVQ+/w+m4E71SmjfttTddKoK+JJZuIAat/QIOooMwAAAAAUB8eRXHf4/b6+9P+XlUnRaDB1AQAAAGFCADUAAAAAAACAEkMINQAUsekKHfQRPhhu9B/MQGmj/2AGwAwAAAAAAAAApcVxHT0711VNv9RWFlwdNf3Ss/Ml55Uq2UEkoJa4xtZq6dFyXffmQ0oG8Nsf9aT/+egCNbbOkqoLf/5SR/8R9AxEmIFA+f3f+OZDSmTZf6PB7Hr/12xjDHgOCJ4/A9e/+VD6Awky4Pd5Vsoo5qZTyGOuVJ2STkS9jOfANekPImAGAAAAgCKRTA4P1LNtqadHsqx0OHUslt4GAAAAlCoCqAEAAAAAAACUoAzfggwACJvpDh30+eGDzbuap/U8yA79BzNQ2ug/mAEwAwAAAAAAAEDpsS1bW34V0epWDaZHFpqRVrdKW24TAdQBev2xMrkB/fa7Jn1+BIf+gxkobZccqlCZk/0AjIwtyCXGoMwxuuRQRQ5HIp+uOFilszpigZz7rI6YrjhYFci5AQAAAGRpZICd56VvjiP19RFwBwAAgNJGADUAAAAAAACAEhUJugAAQPYKFTro88MHJalhZUNBzonx0X8wA6WN/oMZADMAAAAAAAAAlK6DlSk9tjTYGh5bKh2sluKJRLCFlKhd8YTWvK9VOeSP5oVjpDXve0UtzfVa2RlMAGYpo/9gBkrbgcqU1r63Vd0RT0bZB0m7kqyBX7NlJHVHPK197yvavq1ei3t4+3EQOqOuNrz1qI6UO6pNGLXHJp8CM3DrinqqTkox1yhheeqKeic/1ySTWapNGB0pd7Thra9q6/+dq3jSmsJXAgAAAGDaJZPpwGmf60r9/ZJlSZGIVFsbWGkAAABAoAigBgAAAAAAAFDCeBc4ABSZQocO+ggfDAf6D2agtNF/MANgBgAAAAAAAIDS1Zvo1XkfcRV03l/Sks77uNT+0z5VOHawxZSYXtvReQ2HwzEDDa1q/8l8ZqCA6D+YgdKWsFydv/6IjsfSrxMaT5LJLYg6W8Y/n6TjMVfnr2/V/i3zFHMJIS4kx3hqXNemlrqk5EkVqXRIxkRB1H4Ata8r4inqesOeRzKZpdqEGTifp5a6hBrfdkTb7q6T7YUsqAMAAADAIMcZHkJtTDqI2hippkaqribsDgAAAKWHAGoAAAAAAAAAJY4QagAoIkGFDvoIHwwW/QczUNroP5gBMAMAAAAAAABAaauIVeg9L0rbzg66Euk9L0gVs+YEXUbJqZD0ntd6tG1RV9Cl6D2vVTMDBUb/wQyUtpikD72c1LfOOn4yVTgdCTz9zMn/pE/4oZdrFYvPLsCZMZQtaeN+W9vnHZI70I8y11PEdZTKNA/cSMmR2fGT5G1EXKnMtSQrvaPlSRv3z5VdE8+mfAAAAACFlkhIPT2D921bqq+XysulaDQdSA0AAACUEgKoAQAAAAAAAIAQagAoFo7raPOOzVMKHTQyWjRrkQ6eOCgvx0uQXM/V5h2btf6s9bKtkVekYLrQfzADpY3+gxkAMwAAAAAAAABAkpp/GVHDVSltWxlcDe/fJTX/b0nnRoMrooQ1P75cDRe+pG2ndAZWw/tfjav58dMkRqDg6D+YgdL2jV2LJcvWt848IkkqVFyYK8nPOP7LF+fpG7sW0v+ANByeIz0TUdOaV5WSq/aYK9caP5Dc3zZRrIY3zrH+ca4ltcdc1SYsRWRp0zOnqOFwDTMAAAAAhJ3npYOnfZGIFItJZWVSVZVkZfppNgAAAMAMQAA1AAAAAAAAAEgihBoAioZt2dpy1RZtuHWDWlpbsj7eyOiiJRdpWd0y7Wvbp4f3P5xT+OCa+jXactUWQgcLjP6DGSht9B/MAJgBAAAAAAAAAJIk29bPfpXSiiXS4erCn35+l/SzXw3cicUKXwAkSc3bz9T77Bd1x4KOgp/7vYdq1Lx9hUT7A0P/wQyUtm+8eKr6I0b/uPxwQc/rSvqLvfP1jReX0v+ANRydp55dlq5f85KSVvo1Xz86Y6Ig6vFMFEDtr5u0PLXHXP3PlqVqODqHGQAAAACKgeelg6d9kUj6lkxKfX3S3LnB1QYAAAAUEgHUAAAAAAAAAHASH1kNAEUkXhbX1mu2ak39mqyOGxo6KEnL6pbpoiUXySi7F87W1K/R1mu2Kl4Wz+o45Af9BzNQ2ug/mAEwAwAAAAAAAAA6qyLacI3UHVDwX3dM2nCN1Fkesos0S0xnxNGr5YlAzv1qeUKdESeQcyOtM+LIsTxF3MKeN+JKjuXR/xDwZ6DMKexzcZljmIEQ6Iw4en5Wn6pShX37b1XK0vOz+uh/CHRGHP188TFVOsNnYKJnhPHiLCaKuRi5XqVj6eeLjzEDAAAAQLEYGWznB+/ZthSNFr4eAAAAIAgEUAMAAAAAAADAMJHJdwEAhIkfPrjh1g1qaW2ZdP+RoYM+//7TrU9ndF5CB8Mh6/6bifv/2wO/zei89D88cpmBty5+67gz8MRrT2R0XmYgHPL9HPDw/oczOi/9D4+cZmDx+DPw2MHHMjovMxAe+f5ecMehHRmdlxkAAAAAAAAAgue4jhqvSOihU4INoX5oqdR4lbTtYKXsLD/sDlPXaad06dod2lHdG8j5d9T06tK3vqAHtp+nuMNbzwqt005pw+pn9Vi8R05h82flWNJjdT3acMFL2rpzFf0PiD8DLdV9qvRs9StVsHNXerZaavqYgQAN7X/cjUhOSt329CfSVzmW4m6E/ofA0Bko92wpZdQRST8PTBZb4Wl4sHQ2+9ekIir3LGYAAAAAKCaWJSWTg/ejUammJr3dfxwAAACYyQigBgAAAAAAAIBReAcwABShTMMHLWONGTroW1a3TJeedqm+98T35HrjX5BE6GC4ZNP/D6/9sDr7O8d8fFndMpVHyvXka0/S/yKTzQysO22dFs5aOObjy+qW6Zz6c/SL3/2CGSgi2fT/02/6tF7ueHnMx/2/G3535HfyJngDA/0Pn2xmYP2Z61Udqx7z8WV1y7S0Zqnu3H0nzwFFJp/fC77vrPfppodvYgYAAAAAAACAImBbtiKy1R1LTr7zNOqOSRFPsm3edlRojjy9fW2LdlR3TxocOV08STuqu/X2tS16bPsFBJEXkCNPjauf02PxE2qPpAo+A56k9khKj8VPqHH1c9q281z6X2D+DLRUd6vPctURSclo8iDZfDBSOug2FVFLdTczEICh/ffFPEvdmv4Q6pg3GExG/4Mz1gyUu5aUimT890I2zxf+vrWpSPo8A5gBAAAAoEjY9vCgaf++ZUnVA+8tDlsoHwAAAJAvYftelwBqAAAAAAAAACHB1WAAUKQmCx+0jKVvv+vbeuClByZc55LTLtFZc89S011NY4YPEjoYTpn0f9Plm+R5nn6999fjrrNizgr92Xl/Rv+LUKYz8Mj+R9SV6Bp3nQsXXai3LH4LM1BkMu1/fXW9/q3l38ZdZ1ndMl239jp95p7P0P8ik+kMPH/0+XGDyKV0jy9fcTnPAUUokxn48tu+rKdbn55wnXcuf6cWzVrEDAAAAAAAAABFIJFK6J7F/UGXIUm6Z5mnxBEpJmvynZFHntojTmAB1INVSO0RZyDEJmQX785gtqRVvdW6Y/axQEPI2yMpreqtlm3ZAVVRumxJGw8v0iPxZ9UxEDhbqFnwz9MRScmkItp4eBEzUGB+/7dXPy9XXsGCyIcGkJe7liwZ+h+QkTMQFGYAAAAAKBJ+4LTPGKmiQiork6JRKRIhCA8AAAAzU9gCqAEAAAAAAAAgRAihBoAiNl74oB88efmKyycNoZakhpUNkjQqfJDQwXCbrP8NKxt027O3TboO/S9emczAI/sfmXQdZqA4ZdL//7f//026zpVnX6mYHaP/RSiTGbjpoZsmXYfngOI12QxcsPCCSUOoJWYAAAAAAAAAKCa2N91Rk5nWIckd/cF2mG6e4qlwBD7GU/bADHABb6E48nR/zfGgy5Ak3V9zXI7ryKb/heem/w4oZAC1b9j5XI+/BwLQcGSu5Hr68Jm7ChZEPjKA/McvrFTDsbmS6H8Q/BloOuOFUWHkUn7nwWjsEPJNu89kBgAAAIBi4DjD/+3ueVJvb/pWWSnV1wdXGwAAADBdwhhAzYe/AAAAAAAAAAgRa/JdAABh5ocPrqlfI2l48GQ2GlY2aNPlm2SZ9F8NhA4WB/oPZqC00X8wA2AGAAAAAAAAgNJhW7be2FkddBmSpDe+ahE+G5D5yWjwOeTeQB0ouDnJiEzA/Tdeug4UniNPm+tfDcNTgDbXvyon8EpKWyGDyIMIPcf4Go7N06bdZ6p/IIDal+/vzIau1xFJqd9yBwKo5+X5TAAAAAAKLpmU7HB82B0AAACQNwRQAwAAAAAAAMCkuBoEAGYAP3yw8bZGbTxvY9ahgz7/uM07NmvLVVsIHSwS9B/MQGmj/2AGwAwAAAAAAAAApcG2bLVHnKDLkCS1V0h2hBDiQrMlRWTnP2UyWyZdBzNQWLaks/tm6W7TFmgdrknXQf8Lz5Z07bGF+nXd8UDr6LEdXXtsITMQgObZh9S07IXAAqE9SU1nvCDZlhqOLwioCkiSbEsjvyFw83wKV5I1bItJnzfCW88BAACAohCJDA+atiyprEyKxaTycqm7O7jaAAAAgHwjgBoAAAAAAAAAMsI7gQFghoiXxbVtwzbZlj35zhNoWNmg9Wetn/I6KCz6D2agtNF/MANgBgAAAAAAAICZr6uvS0/XhCMY5OkFrrqOVKiatx4VVK8c/bo22PBZ369rj6t3VqUqxM+TCyUhV7+Yd0hGCiyAVkpHnv5i3iF989j5io2IJ8X0cuTplvqjqnBt9dupQGrwJFW4tm6pP6pr+8+UHXgqfulw5GnzKc+ox3bVYadO/s4X4vnADNw6IinJMdp8yiGtT55O/wPSHD+oplNeUJls1ThSh53MewC1zw+irnGiKpOtptNfkCoq1NC5aJrOCAAAACBvLEvq6xu8X1YmxeOD95PJwtcEAAAATAcCqAEAAAAAAAAgY1wFAgAzSL7CAgkdLE70H8xAaaP/YAbADAAAAAAAAAAzW3V5tW7asyzoMiRJNz1cSQB1ACpk6x9efV3QZUiS/uHV1xFAXWAxWfp666qgy5Akfb11FQHUAbBldG37YvVabmDRv0ZSr+Xq2vbFBBAXmN//Hss5ua1QHRh6nh7Lof8BSgdQt8gdiB+Peta0BVD73IHzpP/fU9MpLWqOH5zmswIAAACYsslC7yL8fBcAAAAzAAHUAAAAAAAAAJAVrgQBAAAAAAAAAAAAAAAAQs5xHT1U0666rmDrqOuSHlqclCMunCw0R55+HT+sOalooHXMSUX16/hhZqDAHHm6veY1zU3FAg0gnpuK6faa1+h/ABx5uqX2gGqdqGKeVfA5MJJinqVaJ6pbag8wAwU2tP+DgcCF4Z8nSv8D5cjT5rqXTgZQO/J0JNJfkHMfifSf7Lk7UAczAAAAABS58vKgKwAAAACmhgBqAAAAAAAAAMgaIdQAAAAAAAAAAAAAAABAyNmWrS2/P0sXHpJquoOpoaZburBV2nJ3tezAYnBLly2jLfvfqAv6Zqs2ZQdSQ23K1gV9s7Vl/xuZgQLz+39+X51qU5FAaqhNRXR+Xx39D4g/A2v7alXl2AWPf/UkVTm21vbVMgMBGNn/QgVQ+1zR/6D5M7Cmr+ZkAHUuzwO5dM7TYBD1mr4aZgAAAAAodtGoVF0ddBUAAABA7gigBgAAAAAAAID/z96fh8l1lnfC//dU9aattXhfsYAYjCECbMckQGK2JGQSkx4W86IMEwxZmMRJhmHgnUmuAOFNAiFhIJ6ByRAcfgkGTAgiyRsI8EIAsxhsYwswNsZGxruRbUmtrbtrOb8/WiV1t3qrVndXt/rzua5yq06d8zxP675VKrfq+dacdGY3CgAAAAAAAAAA0Jb+sid/9KWu/MSr6h2Zf8+a5I/+Lelvdie9vR1Zw0rXn9780cNb8hPnfKYj8+/uauSPHt6S/m4hNZ3Q6frv6qqrf4d1ugce7arpgQ5Sf/rTm3fuvDBP2fzJYwqgLpK2ry+TPNI1knfuvFAPAADAcnDwYFId80F2lcroz3R7e5M1a5ZmaB8AAMzGUnwtK4AaAAAAAFgmhFADAAAAAAAAAMAycGv/cC7+1c4EULdc/Jrklo/Ucp5NlB1xa/eeXNyh8NGWi8/5TG7Z8Qs5r7a+o+tYidQfPbCy3dq9J8/ocP2fcc5n8h3175h7uw7k4sd8Oo05RVCPBknPJYC6pZEyFz/m0/nuXf8uZ9ZXz3EUAABg0fgZLgAAxxsB1AAAAAAAx0QINQAAAAAAAAAALHEHRw7m/Au+PufQwPlSFsn5l+3K/u8ezKpUO7yaleVgGjn/3E92vgeSnL/5k9n/nV/WA4tI/dEDK9vBNPLkcz+ZZofX0Uzy5M2fzD71X3QjaebJj/+X7K0c2weSHOtzyN5KPU8+51/yo+/+UnpSOcbRAACABdNoJM0x/xfZbCbDw6O3gweTE07o3NoAAGAuBFADAAAAABwz7/4FAAAAAAAAAIDlYKnsqfSOIwBYVNUU6SqXxguBrrJIdcm8KFk5qilyYr2n08tIkpxY79EDAACwnNVqyb59nV4FAADMngBqAAAAAIB5YUsYAAAAAAAAAAAscat6VuWWc/8yRYf3MRZlcsu1W7Iq1c4uZAValWpuuf35HY98LJLccvvz9cAiU3/0wMrWk0ru/N7Pp6fDQdQ9ZTG6Dm8/XnTVFPnmHc/P5pHVHV3H5pHV+eYdzxdCDQAAy93QUKdXAAAAsyOAGgAAAABg3ngXOAAAAAAAAAAALAPn/cyLc8v7ujsW+VckueU9yXl9Z3RoBZw3sr6jIbSt8NnzRtZ3aAUrm/qjB1a2M+urOxpE3QqgPrPe2RDklay/2Z2bOxhEvXlkdW6+4/npb3Z3ZH4AAKANMwX11euLsw4AADgWAqgBAAAAAOaVEGoAAAAAAAAAAFgmbjspOWlvZ+Y+aW9y20lLcJPnCnPeyPq8674tHZn7XfdtET7bYeqPHljZzqyvzv+872kdmft/3vc0AdRLQH+zO2996PxUF3neapK3PnS+AGoAAFguZgrG6/baHgCAJU4ANQAAAADAvBNCDQAAAAAAAAAAy8C2z/5lrvjZeqpFcuK+xZ37xH1JtUiueGGZbd13LO7kjLOt/7782Sm358T64gbFnFjvzp+dcnu29d+3qPMynvqjB1a2bf335S2n3pqT6z2LOu/J9Z685dRb1X8J2NZ/X9542ndyUr130d4EXklyUr03bzztO3oAAACOF2vXdnoFAACwvAigBgAAAACOA0KoAQAAAAAAAABgiWs0G7nqrm1pFkWSpDvJpv2LM/em/aPzJUmzSK465f40YoNlJ2zrvy9XnL49zZTpTjWbFimEdlO9O92pppkyV5y+XQBlh6g/emBlG1v/aio5cZGCqE+s96SaivovAWN7oEixqD1QpNADAABwvOjvT1at6vQqAABgaofeF7FkCKAGAAAAAI4TXZ1eAAAAAAAAAAAAML1qpZqrbzs/l63+YbZvGklZltnfl6RMspD7L8tkf1/Sc3B0mi07K7n6GyelesnJCzgpk2mkmas23JBmpUhSpEyZ/ZXGosy9v6uRnmbXoQDK5KpTHsilvT+eaiqLMj/qjx5Y6Sar/95KPUWyoB8LUSTZ21XPxmav+nfYxB5opsyeSj2VJM0FnLeSZE9XPRuavanoAQAAWF727Tvy697eZMOG0a/VaseWBAAAMxJADQAAAACwYIRQAwAAAAAAAADAMtC/czDXfH9DXvyzu3LtqSOpVUaDAZsLFURdjo5fqyS7ViXPvq+aa/5lVfrXF8nppy/AhEynmuTqcmsuKz+am/NgduVgaikPBUIu3MbXSorUUmZXdSQbsypPzam5uutlqa7uW7A5OZr6owdWtqnqXxyKoV6IDhiNOlb/pWJsD9yUB7P7UA8kxaEg6tl1QTvB5ZVDLzBrKbO7OpINWZWn6QEAAFg+du068uu+vmT16s6tBQAAZkMANQAAAADAgqp0egEAAAAAAAAAAMAs1GqjXyfsc6xMcuyYlZO8sai1wbLRmOfJmK3+oi/vy4tSTzO1NA8fryxICvn4cWtppp5m3pcXpb8QPNkJ6o8eWNmmqn9xKIp6PrUCqFvUf2lo9UBjQg8ks3seKCZ8nc7E8WpppqEHAAAAAABYKAKoAQAAAAAWXFenFwAAAAAAAAAAAMxssK/IZc/fnVs21bNhuMju3jK1VlL0QqRPHtpT2d1MNgwlt5xY5rJ/dzDXfLWZ/n375nlCZmMww/m13n9KtUi6i8pRAZQLqTuVVMvk18qP55oDl6Y/vYs2N6PUHz2wsk1X/wX4LIpxLy3Uf2lo9UBXUUzSAzN3Qauus+mXMuW4IPLuVNJVFnoAAACWi4MHx3+YYL0+er9a7dyaAABgKgKoAQAAAAAWhRBqAAAAAAAAAABY4hrNRrY+5fZsr9SSJJUU2TBUZndfMrxAuSHNIultJBsOJqNZ12W2n9TI1p/emU/ceUeq8558zXQaKbP1MV/N9u7dqSTZkK7srtZSK5oLFkPbTJlKku6ykg2NrlTSzPY8kK31a/KJH/6UHlhE6o8eWNnUn7E9UCTZmK7sOtQDZWYfRN7eeWWKjPbAxkZXijT0AAAALBf79iX79x+5X68nDz2UdHUlGzYkPT0dWxoAAIwjgBoAAAAAYNFUOr0AAAAAAAAAAABgetVKNZev+5lUxux3rKRY8P2PZTn+DUaVMrn8nhOFDnZANUUu33VOKod+7yspsqHRvSg9sKHRPW7ey3edowcWmfqjB1Y29WdiDxQpsrHRnSLFrIOl21VOmCfRAwAAsOzV68nDDye1WqdXAgAAAqgBAAAAABaZEGoAAAAAAAAAAFgGBrZcliu/sv5wEPWjvWVGuhZ2zpGu5NG+0V9XyuTK/687A/vOWthJmdLA4Bm58v4thwMod1dqKRd4X25ZjM6TjAZPXnn/lgwMnrGwkzIp9UcPrGzqz8Qe2Fupp7FgEdSjGimzt1JPogcAAOC4sndvp1cAAMBKJ4AaAAAAAGDRLfA2NAAAAAAAAAAAYF78xE9k4K7RROhXPHdXhhfpnT/DXcmuvuRD/9ydgduryXM22IDZQQN7Tk/KMq846/oMV5qLMudwpZldGcmH7rkoA4OnJwsceMnU1B89sLKpP60eeOVZN2Z/pbEoc+6vNFKkyN/ec4EeAACA5WJioN/En+cODy/eWgAAYCIB1AAAAAAAHSGEGgAAAAAAAAAAloPTT0+e+cz87ep/ztAiv+tnqCv52/MbGXjk5GT16sWdnKP87Ya7M7RI4aMtQ5Vm/nbD3RnYe+aizsvR1B89sLKpP9et3pX9lfqizrm/Us91q3fpAQAAWC4mhuhNDPlbaqF/AACsHEvttagAagAAAABgBal0egEAAAAAAAAAAMDsDDzz3nxi83BH5v7Euc0MXHqgI3NzxMBZX80n1j/Qkbk/sf6BDJz11Y7MzSj1Rw+sbOrPG0/5dv78pNtTJFmsmI7WXH9+0u154ynfXqRZAQCABdXb2+kVAACwEgmgBgAAAADoKCHUAAAAAAAAAACwDAx8ZCCf2HNdR9fwiZN3CaDsoE6Gj7YIIe0c9UcPrGzqTyuAumUxQ6hbBFEDAMBxoCiSdes6vQoAAFYaAdQAAAAAAB0nhBoAAAAAAAAAAJa4gyMH88k7PnnM48zHts5P9j+Ug2nMw0i042Aa+WT/Q51eRhI90Anqjx5Y2dSfkTTzgY0/HHdsLvEYc3nj+MR5PrDxhxlJcw4jAQAAHVUUSW9vctJJSVdXp1cDAMBKIoAaAAAAAGBJ8G4BAAAAAAAAAABY4lb1rMrNv3FztvyvJ6c2x9C/3nqyaSh5tC8ZnuO7hrrLIjfveUVWnXnC3AZgzlYluXnPK7Jlw4fm3ANdKbK27Mm+YiT1OUVXJt2p6IEOUH/0wMqm/vQkuXHf1jxt/YfyaDGcMmXbVexNNavKrhws6hluI0i8NU+RIpvK3ty47xXpOXNdm7MDAACLaufOZHDwyP3u7qS/fzSEWgA1AACLSQA1AAAAAMCS4R0DAAAAAAAAAACwDJx30nnZ/tETsuXFO1OrtndtK4A6mXsQdXcj2f6B3pz3i2uTDLd3MfPivKzN9odfki0n/n1qbUZPdpVF1qY7SZm1ZXf2pZZ60d4Y3Smy/eGX5LyGHugE9UcPrGzqz5npyU2HeuDRor0ajAZQV5OUo1+LtB1EvbEcnf/MZk/0AAAALHHDw0mtduR+pZLs2TP66/7+ZO3azqwLAICVRQA1AAAAAMCSUun0AgCA+dFozn5T0GKMw+LTAyub+qMH0AMAAAAAsAJ885s5Y8fDufje9i9dXZ/+/mxcfG9yxs6hZOfO9i9m3pzRXJuLR05p+7qeVKe9PxsXj5ySM5oCajpJ/dEDK5v601/25MdrJ7T9BvBqWUx7fyaVJD9eOyH9ZU+bMwMAAEvO4GBy8GCnVwEAwPFuqQVQAwAAAAAghBoAjgeDw4P55Wt+Odtu3XZM42y7dVt++ZpfzuDw4DytjMWiB1Y29UcPoAcAAAAAYGUY/PsP5rKXlLnzhOTE/bO/rlIme3qToa7R+0Ndo/cr5ezHOHF/cucJyWUvSQbv/n57C2feDBYjuWzDZ3Nn12BObPbN+roiycGinpE0kyQjaeZgUU87235PbPblzq7BXLbhsxksRtpbOPNC/dEDK5v60+qB73XtzonNVbN+E/ix9kAlyYnNVfle1249AAAAx4t9+zq9AgAAjmdLMYC6bOMNEgAAAAAAx6muTi8AADg2g8ODuexjl2X7g9tz0wM3JUkGzhtoe5xtt27LFZ+6Is2ymcs+dlmueck16e/tn+/lsgD0wMqm/ugB9AAAAAAArAyNZiNb9/9ttp8yer+7HA2GfnjN9NeNDZpuBVEPV8c/3pxh/+eJ+0fnS5LtpyZbe76XTww9NdVZRx8yHxppZuvJn8/26iNJmXSnyImN3jxcHZ72urHlPVjUUysrqRfNw8cqSZpHXTXeiY3edKdIUmZ79eFsXfeZfOJHz9UDi2iu9a8kaT0NTFb/YszjU1H/pcFzwMrmOYCJPVBNcmKjLzurQ1PWcOJLvKmeA8pM3QfFoXlGXz7qAQAAWDZGRpJ6/cj9anX842MfAwCA+SSAGgAAAABgyRJCDQDL2NjQySRpls1c8akrkrQXPjk2dDJJtj+4XfjkMqEHVjb1Rw8wXQ9cdNpFsx5HDwAAAADA0letVHP5TclNP3EkNLpRTYoyKafYw1mZZB/lcHXy86YKoi7K0Xm660fOvfzGMtUf29/+N8ExqSa5vDgzN53+SJqHoiIbRXPaANHKJI+NDZ4ce95UIbRFRoMvuw81WiVFLt95Zqp79cBimmv9J1L/5ctzwMrmOYDJeqBWNKbsgSKTh4xP1gOtl4FTjVNLI9Vy9EWkHgAAgGVi//5keJoPLipLQXwAAMw/AdQAAAAAAEvaZO8xBwCWgYmhky2t8Mltt26b1TgTQydbWuGTg8OD87Zm5pceWNnmq/7/eNs/qv8y5TmAmXrgU3d8albj6AEAAAAAWD4Gbmnmyk8VqZTJUFeyp/dQwOAkeyYnC6CezmTnF+Xo+Ht6R+erlMmVn0wGbrVJs1MGBs/IlfdvSSVFhopG9lRrh0MmJ2r3jWGTnd8ae0+1lqGikUqKXHn/lgwMntHu0pkH6o8eWNnUn8l6IDm6flP1xXQmu6Y1rh4AAAAAAGBGAqgBAAAAAJY8IdQAsAxNFTrZ0gqf/Pp9X592nO8/8v1JQydbhE8uXbPtge8/8v1px/n6fV/XA8vQbOv/xbu+OO04O3btyOs+8zr1X4Zm2wO37Lxl2nG2P7jdc8AyNZse+MMv/mF27Nox7Tif/cFn9QAAAAAALCfNZga+V2Tr9tFg6JaJQdTtBlBPdl0rgLplT2+ydXsycFts1OywgcEzsnXXWYeDJ5OjgyPn+qawsddNHHNPtZatu84SPNlh6o8eWNnUn8l6IDlSv7kEULeMvXZiH+kBAAAAAACmJIAaAAAAAGBZ6Or0AgCA9swUOtnSLJv565v+OheddlE2b9x81OM7du3IV+79Stb1rJt2nFb45DUvuSb9vf3HtHbmRzs98Lm7PpdnnvnMKXvg+geuT2+1d5Krj9ADS0s79X/nde/M0099+pT1//I9X8663nUpptl+qP5LTzs98E+3/1N+8oyfnLIHvn7f17Oqe9W04+iBpaedHvjyPV9Okil7YNtt21Ippt+GrgcAAAAAYAmpVLLtCc1cvSVZP3x0EHXKuYcOHp6iTMocPc764eTqLckz7ksG7iySavUYZ2Kutq27N1dvvCfrG91HhZCWmXv4aEslSTOT9ECjO1dvvCfPGD4xA3vPPMZZmCv1Rw+sbOrPVD2QHFsA9dgxJqMHAAAAAACYlABqAAAAAIBlQwg1ACwjsw2dbCnLctLwyVb47GwJn1w65rsHeqo9sxpHDywN813/MrN7M4X6Lx3z3QPVyuwCQvTA0tF2D2T6HljdvXrGEOpEDwAAAADAUrHt/Equ+ImkWSR99dFjRwVRz4PJAqj76qPzXvELST5fzcCmTfM0G+3Y1rsjV/RvTzNF+tKdNIvsqYwGULb+7Wc0RLxVxdlurj1S9cnGWd/sTl/RNdoDp29PBtdlYPjoD0BkYbVf/9aRmaj/cqEHVjb1Z6YeaFX7WHtg4jh6AAAAlqGDBzu9AgAAVgIB1AAAAAAAy8rMSVMAwJLQbuhkSyt8cseuHUnaD59taYVPDg4PtnUd80cPrGzqjx5ADwAAAADAytZoNnLVlmaaY/Zw9tVHA6Lb0dto7/xWAHVLs0iuemqZRprtDcQxa6SZq1bdluaYn+/2pSvrm93jAiPLZNqfAXdP85axycZZ3+xOX7oOn9NMmatW3aYHFpn6owdWNvVHDwAAAAAAsKQIoAYAAAAAWHaEUAPAMtBoNrL141vbDp1saYVPfn7H5+cUOtmy/cHt2frxrWk029yZzjHTAyub+qMH0AMAAAAAQLVSzdUPPStbHhx/vJ0g6vXDyYah9s4fG0CdJFseTK7+6qmpetvRoqumkqv3PC9b6ieMO96TaqoZv8F3qgDK1WXX4dtE5SRXVFOkJ9Vxx7bUT8jVe56nBxaZ+qMHVjb1Rw8AAAAAALBkCKAGAAAAAFiWvAMYAJaBaqWay596eSrF3P/qLlPm3r33zjl0MkkqRSWXP/XyVCvVmU9mXumBlU390QPoAQAAAAAgSfpPOD3XfCxTBlFP99O/sYHSMwVXl5k6gPqajyX9XWvmsnzmQX/Zk2t2v+BwAGUzZXZXhtNMMnGbb5nxPbG67Er3obeLdacyLoBysuDJIkkzOTT+6KNb6ifkmt0vSH/ZM4/fFbPVfv2PVFX9jw96YGVTf/QAAAAAAAAdJ4AaAAAAAGDZEkINAMvEwHkDufKFVx5T+OSxqBSVXPnCKzNw3kBH5kcPrHTqjx5ADwAAAAAA2bUr/bXKpEHU3fWkLJLmJPs9JwuUniqIulmMjtM9VQD1SJEMT5NgzYJrBVCeX9+Y3ZXh1A4FQ0621bcVRD02eLKlFUA5May6pTVe7VDA5fn1jYInlwD1Rw+sbOqPHgAAAAAAoGMEUAMAAAAALGtdnV4AADB7rdDHKz51RZplc9HmFTq5dOiBlU390QPoAQAAAABY4R55JFm1Kv379+eajyWXvSTZfmrSSLJz7ZHTmkVSObTPcrIA6pbW8T29R65r2bk2OWlfUs2YAOrhJF3VZP/+ZN++ef7maEsxkqxrjKZGFqPFnuqnxkWSspw8YrJMOXlq5aHxKq1ryiJpNEbrLnyy89qofzJ9/Yti8vBR9V/iPAesbJ4D8BwAAADMZGhofBhfWSbNZlKpTH0NAABMRwA1AAAAAMCyJ4QaAJaZxQ6fFDq59OiBlU390QPoAQAAAABYwWq1ZO3a5MCB9A+XueZjyYsuS764+ehYwWaSjdMEULe0Ht/VO/54mdEg6p/ZMSaAOhndxLlvX3Lbbcf+/TAng12NXPb0O3NL5WA2jlTyaHeZkcrkm2tb24APVhpJo0xPeWRj8EhR5mC1eficqUJIe5pFNtYquaXySC5b96+55puPS3+9Op/fEm1ot/5Fpq9/6zz1Xz48B6xsngPwHAAAAMzK0NDoraUsRz/ksLt79GfMXbaVAgDQBgHUAAAAAADHBR9dDQDL0MB5A7nyhVemUizsX+VCJ5cuPbCyqT96AD0AAAAAACtUd3dSqYyGhCQZ7EluPGPy0MAUycgsf4Q4UsmRlMIxyoyOP9hz6EClMnpbihtMV4hW8OT2/oOHjzWL2W2uPVhtZuTQuWPDR2cydvzt/Qdz2dPvzGBXo41VM1/UHz2wsqk/egAAADhmtVqye3dSn+HTCwEAoGUpvj9AADUAAAAAwJwIoQaAZWqhwyeFTi59emBlU3/0AHoAAAAAAFagE044/Mt71yVP+q1kb8/Up+/vGRMgPYXBntHzprK3Z3See9eNOdjVNbv1Mq8aKbP1aT84HDxZpszDPfXUp9nzO3Hr7cFqM/urzXHBk+Uk541VL5KHe+opD521vf9gtj7tB2lMexXzba71H1ulyeqfqP9y4TlgZfMcgOcAAABg3pRlsn9/p1cBAABzI4AaAAAAAGDO7AgDgGWsFQp5xaeuSLNsznD27AmdXD70wMqm/ugB9AAAAAAArDDnn5988Yu5N3tHA6h7Z76kFTDdP3L0YzMFULfs7R0Nov7u/2rmzP1J+vqSRqOtpXPsqkku/+Gm3PSUA2kUMwdPtpRJxp5WL8qjHp9JK4DyxJGuVMsil/9wU6qN+fu5NDNTf/TAyqb+6AEAAKAtjUbSbI6/32gk1ero/VqtM+sCAGB5KWbxg+jFJIAaAAAAAOCYCKEGgGVuvsMnhU4uP3pgZVN/9AB6AAAAAABWkB//8dybwVkHULdMFkQ92wDqlsNB1O9p5szVq5NKZfYXM28GHtqUA11lXvXUu2YVPNnS2opbTHJstupF8khPPX9z8zkZeGhTogUWnfqjB1Y29UcPAAAAs1atHv0z3MHB0WOrVye9vUsvUBAAgKVlqb1eFEANAAAAAHDMhFADwHFg4LyBfOJ7n8hn7/zsMY/1vMc+T+jkMqQHVjb1Rw+gBwAAAABgZbj3SWflSa862FYAdcvYIOp2A6hb9vYmT/pPyXc/350zm0tsw+kKMdjVyF889qG2gifHKjMaQDnX7bn1IvmLxz6UX/rRxvTXq3MchblSf/TAyqb+6AEAAGDOWgGCzWayb1/S39/Z9QAAsLQJoAYAAAAAOC5VZj4FAFjqtt26LZ/7wefmZazP/eBz2XbrtnkZi8WjB1Y29UcPoAcAAAAA4Pg3Uh/Jk//+kjkFULfs70l+tGZuAdQte3uTJz//9oykOfdBmJNGyjz3Gd/L9vUHU2Q0RHIu5ro9tzXn9vUH89xnfC+NOY/EXKg/emBlU3/0AAAAMG+KIlm7ttOrAABgqRJADQAAAABw3Orq9AIAgGOz7dZtueJTV6RZzs8m72bZzBWfuiJJMnDewLyMycLSAyub+qMH0AMAAAAAsDJUK9WcONKVPce437MxD/tFTzyQVMtk7jGGzE05LnCyOHx04U0MuywSm30XnfqjB1Y29UcPAAAAbZj4mr11v6cnOfXUpRcsCADA0rDUXif6WTQAAAAAwLwSQg0Ay9h8h062CJ9cPvTAyqb+6AH0AAAAAACsHNVKNd/86lPy1Cddmx0b5zZGkaQok7KYe2Dh5l3JNz+6PtWnnjzHEZirapLPfX9TLjnv69m+Zm+SudWxmMN1ZY6ET27Zvy6f+/7FqZ7krWeLSf3RAyub+qMHAACAtgwOJrXakfs9PcljH5t0HXotX5YC/QAAGE8ANQAAAADAcc87gAFgmVqo0MkW4ZNLnx5Y2dQfPYAeAAAAAICVp/97d+XmLxd56q+XbQdRtwKo0/o6hyDqzbuSm/8q6a8MJWvWtHk186E/yRd++Jw8+7FfyLf6Btu+vhjztd36N5P8+FB/vvDDS9Lf19323Bw79UcPrGzqjx4AAABmbWQkqVaP3O/qOhJADQAAEwmgBgAAAABYESqdXgAA0L6FDp1saYVPbrt124LOQ/v0wMqm/ugB9AAAAAAArFD79qV/pMiX/ibpq83+srEB1IePlUeCCGejr5Z86W+S/uEk9XobV7IQNtV72qrffCgOzUvnqT96YGVTf/QAAAAAAADzRgA1AAAAAMCKIYQaAJaZxQqdbBE+ufTogZVN/dED6AEAAAAAWMGazQx2N/Nrlybrh5PKLH9MWCYpJ+wbLYvR47NRaY7O92uXJoO9semzgwYrtbz47OvytTWPzun6csLXdn1tzaN58dnXZbDSRgo680b90QMrm/qjBwAAAAAAmFcCqAEAAAAAVpSuTi8AAJi9xQ6dbGmFTybJwHkDizo34+mBlU390QPoAQAAAABY2Qb7ilz2i8n2U0c/ef6kA8nO1UlzFh9DXyZJkRRl+wHUJx0YnW/7qcllL0mu+adK+k84Yc7fB3PTSDOXbfrXXNv7cGopU6RIUrYdJDmXbbtFkiJFakWZa9c+nMse9838v4/+fKqZRfMxL9QfPbCyqT96AAAAaMvwcKdXAADAUieAGgAAAABgxRFCDQDLRKdCJ1uET3aeHljZ1B89gB4AAAAAgJWt0Wxk678byvaNR47NJYi6bGMf6dgA6pbtpyZbf7mRT1QieLADdlaGUxsTHznXAMp2tIInW2ops7MynFQqiR5YVOqPHljZ1B89AAAAzNpSCxQEAGBpWWqvFwVQAwAAAAAsCiHUALAMNJqNXHXzVccUOlmkyBnrzsh9e++b89ajZtnMVTdflUufcGmqleqc10L79MDKpv7oAfQAAAAAAFCtVHP5/afkpg0/THPMftB2g6hna7IA6iSplMnlNxepVr8xf5MxK9Ukv3/amrzmqY9md09jkWc/8nPlDSPV/P7Na1J9QA8sJvVHD6xs6o8eAAAA2rJ3b3LgwJH73d3Jjh1Jf39ywgmdWxcAAAuueEuR8k3T7BuaZQB1LUn3/CxpegKoAQAAAAAWjRBqAFgGqpVqrv73V+eyj12W7Q9ub/v6IkWeddazsnnj5uzYtSNfvufLcwqf3HLqllz9768WOtkBemBlU3/0AHoAAAAAAEiSge+WyV3JFb+QSYOoH1o7f3NNFUB95SeTgdubydm7528yZm1gd5L9m/Kan3oku3uaKZOUs9sjPGflof8USTaMVPLXX92UgbuTZPfCTsxR1B89sLKpP3oAAACYtXo9qdWO3C/L5JFHRm+PPpr82I91bm0AACyY4i3F4a+TBlG3EUDd+rqgQdQCqAEAAAAAFpUQagBYJvp7+3PNS65pO3xybOhkksNfv3zPl9uaf8upW3LNS65Jf29/W9cxf/TAyrYQ9W8ngFb9O89zAHoAAAAAAMiPfpSBodFfTgyiHuyZ36kGe5INI0fuHw6gvi1JmsnQ0PxOyKwN3F5NRvrzyufszr55rvtUyiJZM5L89Rf6M3BXNYn6d4r6owdWNvVHDwAAALPSaCQjI+PvDw0lXV3Jnj3J/fd3bm0AACyIVgD12PvjgqjbDKAee39BgqgFUAMAAAAALDoh1ACwjLQbPlkU40MnW1r3v3LvV2Y1r9DJpWMuPfDMM585ZQ9c/8D1s5pXDywN8/0cMNsAWvVfOubUA2dO3QNfv+/rs5pXDywdbfdApn8euPmhm2c1rx4AAAAAgCXiUPDzaBD0kSDq3T3JwXkOIWyNt2FkYgD1IXv2zO+EtOdAIz3NpEja+NjRuSuS9DSTHDiQ7BlehBmZlvqjB1Y29UcPAAAAMynL0eDplkplNHi6uzvZuDF55JHOrQ0AgHk3MYB67PHyTeWcA6jHHl+QIGoAAAAAABaVEGoAWGZmGz5ZKSp5zdNek8HhwUkf37xxc/q6+nLDAzekWTanHEfo5NLTTg8875zn5bR1p036+OaNm/OUU5+SD3/7w3pgGWmn/q97xuvywz0/nPTxVgDtt3d+O+U0nxqu/ktPOz1w6bmXZm3P2kkf37xxc85ef3Y+eccnPQcsM+30wGQB1C2bN27OLz7hF/O2L79NDwAAAADAMtQKhP6VgfkPoG452DMaOvjBbRMCqJPxASYsqm3nNnPF8+vprScbhpJdfQs/54ahpLeeXPH8kaTZlYHbKws/KZNSf/TAyqb+TOyB3X0LG0RdRA8AAMCyVJZJszn+/sjI6K1WS6rV0WBqAACWvakCqFseKIpMvsN0vKkCqMc+Pm9B1NPsZwQAAAAAYOF4pwAALEOt8Mktp26Z9PFKUcmVL7wyF59x8bTj/NgJP5YrX3hlKsXkLwmETi5ds+2BHzvhx6Yd5+IzLtYDy9Bs6/8z5/zMtONs3rg57/zZd6r/MjTbHjj/pPOnHWfLqVs8ByxTs+mBP/qZP5oygLrlBY99gR4AAAAAgGXsM5uTAwsUQN1yoGd0nqOUpVsHbtvObeSKn62neWgf8dQfMTi/WvM0i+SKn61n27mNjv9erMSb+rvpgZV9U3+3iT1QHrotpLFz6AE3Nzc3Nzc3Nze3ZXYb9+J+zP2RkWTXLh80CABwHJgpgPqeNycnZnYB07Mx2/OmNfG1KgAAAAAAi0YINQAsU1OFT7aCRwfOG5jVOAPnDUwaPil0cunTAyvbfNX/RU98kfovU54DmKkHXvj4F85qHD0AAAAAAMvTa1+Y/O+fWJy5/vdPjM43TlG4LfKtUUmu2tI8HDx5oCvZ07c4PbCnb3S+ZDSA8qotzTQq+kD9O//7spJuemBl39TfbWIPHOxKdi9SD+zuG51PD7i5ubm5ubm5ubkto9tMhocX9P8jAABYeDMFUN/15uSUMfenCpBuN1j6mIKoBVADAAAAAHRUV6cXAADMXSt88rKPXZbtD25vO3i0pXX+FZ+6Is2yKXRyGdEDK5v6oweYrgfu3X3vrMfRAwAAAACwvCxmAHVLa773furQgUplynNZGNUkV/9zJZe9qJavndHMnt7FnX9PX5Lh5Cfvq+Tqf+5OtSiSWeTZMD/UHz2wsqk/Y3vgujOa2b3IPbD7UA88Qw8AAMDy0Wgc+fXYn+d2dSXd3Um1uvhrAgBgXswUQP39NyenT3K8lqR7wv25mDjOrAigBgAAAADoOCHUALDMtcInt358ay5/6uVtB4+2tK676uarcvW/v1ro5DKiB1Y29UcPoAcAAAAAYGXpRAB1y7gg6kLqYCf014q88M4i//rYzsy/pzd54Z1F+msVwZMdoP7ogZVN/emvFfn336vk05ubHZl/T0/y779X0QMAALAcFMX44OmiGA2fLorR8Om1a5Nm04cNAgAsQzMFUN/y5uQx0zzeCpCeawD1xHFmRQA1AAAAAMCSIIQaAI4D/b39+cRln0i1Uj2mcQbOG8ilT7j0mMdh8emBlU390QPoAQAAAABYGToZQN1yOIj6Cx1dxor1vqfU8nvPb3R0Db/3/EZW1Wv5tW/Peksx80T90QMrm/pz9Xn1XPGz9Y6u4YqfrWd1vcjWW70FHQAAlrRKZXzQX1EcCabu6kqe9KTOrQ0AgDmbKYD6hjcnPzaLcY41gHrsODP+i4EAagAAAACAJcM7gAHgODFfYZFCJ5cvPbCyqT96AD0AAAAAAMe3fUP78lcXdXoVo/7qouQdX21mbd1bjxbTwWojv/2z9ZTT7ytecGWR/PbP1vMrt3VlVcPPlBeL+qMHVjb1Z6TSzOueV0utkhRJUmZR+6EoR+etVZLXPa+Wl36/Kz3NyuItAAAAaE+zefSxajXp7U0e85jk1FMXf00AAByz8k3llEHUX3hz8uOLuxwB1AAAAAAAy4ydYAAAAAAAAAAAsMSt7Vub3/xm8t4LOr2S5DdvSNauP6XTy1hxViV57W2P5t3n7+v0UvLa29Zm1YZNnV7GiqL+6IGVTf3pSfLO6/fn1c965HAQ9WJGd7QiTbqbyTuvPyE9G9cs4uwAAEDbarVkePjI/a6u5AlPSFavTtasSQ4e7NzaAAA4JpMFUX/hzclPLvI6BFADAAAAACw/QqgBAAAAAAAAAGAZeM/1pyTNh/Leizq3htden7zn09XkaSd3bhEr2LvuOjlZdXfe/dgfdWwNv/uDk/Ouu85OtMCiU3/0wMqm/mzdl+Rb/Xn1lrsyUlnc8I6ySHqaRd7/rXOydd8JegAAAJa6oaFk35gPMurtTU4e80J+bEA1AADLztgg6o++eTSAupj2ivklgBoAAAAAYHkSQg0AAAAAAAAAAMvBk56U93zyoSTpSBD1a69P3vPJJOvXJn19i78AkiTv2nFu7lhXy7+ctGvR5/53OzfmXTvOTZS/Y9QfPbCyqT9bHz0j1987lHef/cCizlsm+c17T83WR8/QAwAAsFyMjBz5dfeEmMBGI6lUFnc9AADMq/JNZf6+KPKiCKAGAAAAAGB2hFADAAAAAAAAAMBycPHFyb/9W17wg+T/tyU50LN4U68eSV7wg0N3NmxIehZxcsbZdsLOfG3j3o7M/bWNe7PttD0ZeOSkjsyP+qMHVjr1Z9sJO/N3p+9MkdFg6MVSJPm703fmZ/adqAcAAGA5qNeTavXI/bG/TkY/ZFA4IADA8lYUeWmS2iJOKYAaAAAAAGB583HVAAAAAAAAAACwHLz0pdn2xOSKX0jWj4wGQy+G1SOj813xC8m2JyY5+eTFmZijbDthZ15z7q3Z3VVf9Dd+VZLs7qrnNefemm0n7Fzk2UnUHz2w0qk/Y3ugyGgw9GJozaUHAADgOHKSD5cBAFjWiiM/IZ4xGHqeCKAGAAAAAFj+hFADAAAAAAAAAMAysG3VD3PFL1bSPLSfdDGCqFsB1EnSLA4FUZ8ztLCTMqlGyvzJ2Xdld1f98LHFevPX2Hl2d9XzJ2fflUZsIl5M6o8eWNnUn8l6YDGCqCfOoQcAAOA4cPLJyaZNnV4FAABzVRz9k+GFDqIWQA0AAAAAcHzo6vQCAAAAAAAAAACA6TWajVx181Vprlmd7Nt3+HgrIPpAz/zPOTaAuqXZ3ZWrznk0l/Y+JdVFi79kVDMnVNamu9yfWtE8fLSSpDn1RcdsYpW7y0pOqKxNTj9tkkdZOOqPHljZ1J/Je6AVNTKbeI8iSXcqqaU56/MnRpnoAQAAWCYeeSSpH/kQm/T2Jqefnqxdm6xa1bl1AQBwbCYJoG7pTlJbgCkFUAMAAAAAHD+EUAMAAAAAAAAAwBJXrVRz9b+/Opdd85Js//b/N24j52yDqIskRZmUxcxBhZMFUCfJlt7H5OrqZame29fW+jl21SQfLc/Ji8uP5Nr8MLWMDaAsZxUmOXru7IIqW+eOjZ/sTiXPLh6Tj659uR5YZOqPHljZ1J/peyDJDH1QJFmd7nSnmloaOZDajOcXEyKo9QAAACwj99+fDA8fud/Xl5x0UufWAwDAsZsmgLplvoOoBVADAAAAABxfKp1eAAAAAAAAAAAAMLP+3v5cc9nHsmXdjx312PqRpDLN/s5WAHUOfZ1ue2qlnCKAun5Crqlelv5C6GCn9Bd9+Yfi5Xl2HpPuQ2/9KtsMHx37dSZljkRadqeSZ+cx+Yfi5XqgQ9QfPbCyqT+T9UDLxMDo8Y8dCaBOku5Uszrd0/bCpAHUegAAAAAAYEmbzwDqGccTQA0AAAAAsOwIoQYAAAAAAAAAgGWiv7c/17zx+mzZv27c8cGepDlFkuDYAOrDx6YJom4Wo+ONtWVXT67Z9BtCB5eAsQGUXSnaDh+d6v5UyiRdKQRPLhHqjx5Y2dSfqYKop4ojnxhA3TJTEPXY8QRQAwAAAAB0WDHzT/bnO4B62nEFUAMAAAAALEtCqAEAAAAAAAAAYBnp7+3PNf/hH7PlwdH7gz3J/p7Jz50sgPrwY9MEUe/vORJEveXB5JruVwgdXEL6i778TQayLr2zOn+qOs82hHRdevM3GdADS4T6owdWNvVnYhB1OUUEdZFkTXqOCqBu6U41a9M7aS+UGQ2iFkANAAAAANBhHQygnnR8AdQAAAAAAMuWEGoAAAAAAAAAAFhm+v/Tf841H0v6anMLoD58zgxB1H215JqPJf3/+K/Hslzm2WA5lF/LP6Y71VRnESM6VRvMZntwNUW6U82v5R8zWA61tU4WhvqjB1Y29Sc5EkT9hJw4ZQD1hvSlZ4oA6pbeVLMhfVMGUT8hJwqgBgAAAADolCUQQN2yKxFADQAAAACwzAmhBgAAAAAAAACA5eRtb0u+/e388bOTuzZMfdpMAdSzOe+uDckfPzvJQw8lX/pSG4tkoQyWQ7ms/Gi256HszUgas4oRPTpsdLbbgxspszcj2Z6Hcln5USGkHab+6IGVTf0Z63P5QR7Mvkkf60k1feme1Th96Z4yrPrB7Mvn8oM5rxEAAAAAgDlaQgHUB5JsenNSvGXmNQEAAAAAsHQJoQYAAAAAAAAAgOXiwIHk//l/8sbnNvOOn0rKafZ4Nme5/3O688oiecdPJW98XjkaQj0y0t56mVdjw0cHM5z9aa8e5YSvs7U/IxnMsBDSDlN/9MDKpv6Mta38bl5b/r/Zmf2TPj6cRgYzu1oNZijDaUz62M7sz2vL/zfbyu/Oea0AAAAAALRpiQVQb3jzkfuCqAEAAAAAlq+uTi+AlWHnzp25/vrrc+edd2ZwcDDd3d054YQT8qQnPSkXXnhhuru7O71EAAAAAAAAAICl721vyxt/cv+MAdQtzSKpTJM2OZug6lYQdTKSt//rvyYXXzzb1TKPGmlma/+nsr3rRxksRrK/qM9pnHbDR1v2ZyQpm9le3p+t9Q/lE4MvTDWVOY5Gu9QfPbCyqT9jbev5QV679gv5UeXgtDXdn1oaZSN907xdfF9qGSomD6BORnvmR9mX1zb+Mdm3JwMjj537wgEAgMXz6KPJvn1H7tdqycMPJ729ydq1swo1BACgQ5ZQAPVQxgdQtxRvKVK+aa7/6gAAAAAAQKcIoWZBfexjH8u73/3ufOUrX0lZTv4PCevWrcvLXvayvOENb8i55567yCs8WlmW+f73v58bb7wxN9xwQ2644YbcdNNN2bt377jz/uN//I/5wAc+sOjru+qqq/LqV7960sd27NiRc845Z3EXBAAAAAAAAAAsmjd++3/MOoC6Zaog6tkEULccDqK+/ua8vXHh7C9k3lSTXH7gCfnC+vvmHD56rPYX9RQpcvmBJ6TaKJNMHVrJ/FJ/9MDKpv60bOvdkdeu/dKMAdQtQ0UzzbKe1ZO8ZfxA6hkpmjOOUSb5UeVgXrv2C8lgMwPDm9teNwAAsMgajaQ55vV+s5mMjIzehoaSE07o3NoAAJjaEgqgHk7S/+apHxdEDQAAAACw/FQ6vQCOT/fdd18uueSSvPSlL82Xv/zlKQOok2Tv3r15//vfn6c85Sl561vfOu25C+XjH/943vCGN+S5z31uNm7cmCc84Ql5xStekXe+85350pe+dFQAdafce++9ed3rXtfpZQAAAAAAAAAAHfDGD/7HvOPH97UVQN0yMXC6nQDqlrJI3nFRPW+sfL79i5kX13U/lP3FYm0rntz+opbruh/q6BpWKvVHD6xs6s+23h15bf/sA6hbRopmDmR8ePlsA6hbDgdR938p23p3tDE7AACw5NRqyb59nV4FAAATLaEA6pEk694883nFW+bwxgMAAAAAADpGCDXz7vbbb89FF12UL37xi21dNzIykj/8wz/M1q1b02g0Fmh1k7v88svzjne8I//2b/+WPXv2LOrc7Xj1q1+9pNcHAAAAAAAAACyMkfpI3n/HR+cUQN3STHLO7tGvc1UWyfvX35GRCUGGLLyR1PM3q25rK3RyMse6DbhM8jerbtMDi0z90QMrm/rTSDP/a9V32g6gbhkpmjmYep5c25SDbQZQt7SCqP/Xqu+kcUyvKAEAgI4bGur0CgAAGGsWAdRJ0j1P0003zkiStW+e3Tjlm471Xy4AAAAAAFhMXZ1eAMeXRx55JC94wQvywAMPHPXYBRdckBe96EXZvHlzDh48mNtvvz0f+tCHcv/9948778Mf/nBOPvnkvOtd71qkVS8P/+f//J985jOf6fQyAAAAAAAAAIAOKWqNY9pV2tq3WhQ5phDLolkmu3fHW48WVzXNbFnbn8+tGTqm+lVTpH4MIxRJthzsT3X3YJLKMayEdqg/emBlU38aqedbJz58TPUfKZq5vbprTgHULWWSb3U9nMbuR1P1WhAAAJauffumD5qu15NSYCAAwJIwywDqlu4ktWOYrnvM14nj1CKAGgAAAADgeObdv8yrX//1X8/dd9897ti6devywQ9+MJdeeulR5//Jn/xJ/uRP/iRvfvObxx1/97vfnZ/7uZ/LC1/4woVc7oxOOOGEXHDBBdm4cWOuueaajq3jhz/8YV7/+tcfvr9+/fqceuqp+d73vtexNQEAAAAAAAAAi6enqyeX39qbP39KLc329qAeVpTJXRtGv5ZzHKNSJpdvr6ZnTZlj29pKu6pJ/tMjj813evfkoa7hOYVQFkkaKVNkbkHkRZJT6r35T488NtVaI0ljDqMwF+qPHljZ1J+eJK969DH585Nuz1wipFsv/XZWhw/fn0sfVA6to6fmtSAAACxptVrSGPP/bfV659YCAMDU2gygbplrEPXEz7weO049yZo3z24cAdQAAAAAAMtTpdML4Pjx2c9+Nh//+MfHHevp6cnnP//5SQOok6S7uztvetOb8q53veuox37nd34n9UV8g8v69evznOc8J//1v/7XfPSjH80PfvCDPPzww/n0pz+d3/zN31y0dUxUlmVe/epXZ+/evYeP/cVf/EVOPfXUjq0JAAAAAAAAAFh8v//Vrjxm99yvbwVPzzWAOkkeszv5/Wvnfj3HZmDwjLzn/qfllHpv2i3jxPPncv0p9d685/6nZWDwjDavZj6oP3pgZVN/3v7QU/L6nee2/ebvqerdbh9Ukrx+57l5+0NPafNKAAAAAACOMscA6paJgdJzPb87owHUq988u3EEUAMAAAAALF9CqJk3b33rW4869qY3vSkXXnjhjNf+7u/+bl7wgheMO3bHHXfkQx/60Lytbzo33XRTdu3alc9//vP5sz/7s7z0pS/N5s2bF2Xumbz3ve/N5z73ucP3n//85+fVr351B1cEAAAAAAAAACy2RrORrT+3L0PdyZqRuY1RJmkWo1/nYs1IMtSdbH1RI405j8KxmksI6XThk7MZQ/jo0jHf9Z/t9eq/dOiBlU39aTeIeqY6z7YPBFADAAAAAMyjYwygbpltEPVM560qZ/fv/wKoAQAAAACWt65OL4Djwy233JJrr7123LETTzwxr3/962c9xp/+6Z/ms5/97Lhj733ve/PKV75yXtY4naUSOD3Rjh078oY3vOHw/TVr1uR973tfB1cEAAAAAAAAAHRCtVLN5d/tzU0/XU//oRDq/T2LN/+akaR/JKmUyeXfqqb69LWLNzlHGWicmzzSl/904nV5qDo0ZST4bAOmk6nDyYskpzT68p5HnpGBxtnJmraXyzxTf+azByoZrb8eWD7aqX+R6T98wnPA8vT2fc9Iurvz5xtuSXOa8+bj74HkUAD17vPz9n0X6AEAAFguBgc7vQIAAKYyTwHULd1JajM8Pq1DAdTlm8oUb5l6bQKoAQAAAACWPyHUzIuPfOQjRx171atelZ6e2e92vOCCC3LBBRfkxhtvPHzsuuuuy44dO5ZsSPRCKssyr3rVq7J///7Dx/70T/8055xzTucWBQAAAAAAAAB0zMBDm5JPHcgVLywXNYh6bAD1lZ9KBu7pS561euEnZloDeWKytzf/qf9Leahy8KjwyNmEjx45d/TMycY4pbkq79n70xnI5kTZl4zZ1b+YpKpHU//lSQ+sbLOt/2z+FlD/5entw89O9nfnz9dsT3OSOs/2OaDM1D2QJJUUef3+LXn78DP0AAAALCd9fZ1eAQAAk5nnAOqWqYKoZwygnmCqIGoB1AAAAAAAx4dKpxfA8eFf//Vfjzr2kpe8pO1xJrtmsrFXgiuvvDJf/OIXD99/1rOeld/+7d/u4IoAAAAAAAAAgI56/OMz8L0iV36qSKUcDYZeM7KwUx4VQH1bkaxfv7CTMmsDw5vznsGfzinNVeOOHwkfnb1ikitOaa7KewZ/OgPDK+8D5JcD9UcPrGzqz9v3PSOv378llQnVm68eOBxAve8Zx7ZQAAAAAAAWLIC6ZWLg9KwCqMujw6UnBk4LoAYAAAAAOH4IoeaY7d+/P9/85jfHHVu9enWe/vSntz3Ws5/97KOOXXvttXNe23J155135r/9t/92+H5fX1/e//73p1jgf1wCAAAAAAAAAJawiy9OkkULop40gDpJTj55YSZkTgaGN+eVB58wLjiy3eDJya4rkrzy4BOEjy5xrfq33gg4l+DRlrEBpJWo/3KhB1Y29WdiEPX89YAAagAAAACAebNIGQHdE75Oa5IA6sMPHQqeFkANAAAAAHB8EULNMbv55pvTbDbHHbvwwgvT1dXV9lgXXXRRurvH/7PGjTfeeEzrW26azWZe9apX5cCBA4ePveUtb8m5557bwVUBAAAAAAAAAB330pce/uXYIOq1h4Ki59PYcccFUCfJYx87v5NxTLb17sjfrbp93BvBysytIcZeV0nyd6tuz7beHce2QBbUtt4duXrV97O+7E1lXHzo3BQpUkmR9WVvrl71ffVfBvTAyqb+JOODqOerBwRQAwAAAADMk0UKoG451gDqw6cIoAYAAAAAOO4IoeaY3XbbbUcde/zjHz+nsXp6enLmmWeOO3bnnXemXq/Pabzl6N3vfneuvfbaw/cvvPDC/Jf/8l86uCIAAAAAAAAAYEl4+tOT0047fHfge0Xe/tlk16qkOc/7VpvF6Lhv/8yEAOrVq5OTTprfyZizbb078lv91+aRysE0xhwv034QdTnhikaSRyoH81v91wohXaK29e7IFf1fTjNl+spqeufp7YC9qaSvrKaZMlf0f1n9lzA9sLKpP2O9fd8zck5j3byMdU5jnQBqAAAAAID5sMgB1LMyiwBqAAAAAACOT0KoOWZ33XXXUcce85jHzHm8s88+e9z9RqORu+++e87jLSe33357fv/3f//w/e7u7lx11VWpVqsdXBUAAAAAAAAAsGRcfvnhXw72lPnAU+c/gLqlWSQfeNroPIc98YkLMxltGxtAPTJJ4HR56DYbEwOoW0ZSCqJeosaGzybJUNHIcJrzMvZwmhkqRmPNhdAuXXpgZVN/Jnrj2utyV3XvvIx1V3Vv3rj2unkZCwAAAABgxRJADQAAAADAEtPV6QWw/D344INHHTvrrLPmPN5k1z700EN57GMfO+cxl4Nms5lf/dVfzcGDBw8f+/3f//085SlP6eCq5sf/+l//K+95z3sWfJ4777xzwecAAAAAAAAAgI76v//v5J3vzGDjQF780jLXPiZpLNDH0DcqybWPSV78suQfPlqmv9GVPPWpCzMZbZkpgLql9ch025tnCqseG0SdwWRgePMcVsx8mix8dk8xMq9zjI7Xk76yejiEVv2XDj2wsqk/E71x7XX58zXb53XM1nhv3/eMeR0XAAAAAGBFEEANAAAAAMASJISaY/boo48edWzt2rVzHm+yax955JE5j7dc/MVf/EW+9rWvHb7/lKc8Jf/9v//3Dq5o/uzcuTPf/e53O70MAAAAAAAAAFj+Vq/O4O+/Pi++9S259jHJSHX6AOFjUWZ0/MNB1D/Ykv7u7gWajdmabQD1WGUmD6Kebe8Iol46FiN8tkUI7dKkB1Y29WeihQigbhFEDQAAAAAwBwKoAQAAAABYoiqdXgDL3/79+486tmrVqjmPN9m1Bw4cmPN4y8Gtt96aP/zDPzx8v1qt5qqrrkq3jZsAAAAAAAAAwBiDw4N58ZlfybXnFAsaQN0yLoj6px/M4AIFXTI7cwmgbpl4dru9MzaIelvvjjavZj7MFD5bztMzwthx9hQjGSoaSXI4hFb9O0cPrGzqz0QTA6gXogf+fM32vHHtdfMyLgAAAADAcU8ANQAAAAAAS5gQao5ZrVY76lhfX9+cx5sshHpk5PjdwNhoNPKrv/qrGRoaOnzs9a9/fS688MIOrgoAAAAAAAAAWGoGhwfz4o++ONf+8NpFCaBuORxE3fNAXrzh04KoO6SRZv5q1XfnFEDdUibpSmXOvdMKov6rVd9NI805jsJcNNLMVatumzZ8tszRAaQTt7l3zfCWwcnGmRhCe9Wq29S/A+baAxPpgeVJ/ZlosgDq2fTARBP/nphsHEHUAAAAAACzIIAaAAAAAIAlTgg1C6I4hn8kmeza8jj+B44/+7M/yze+8Y3D95/whCfkzW9+c+cWBAAAAAAAAAAsOY1mIy/7+5eNBlA3RkaDARdxD2uZZCTNXNvzQF62/rPCJzukUTRTW7T48cnVUqZRqP9iq6aSq/c8L1vqJ0wZPjv666kDSFeVXVlTdmVV2TXp49ON0wqh3VI/IVfveV6q3nq46PTAyqb+jDVVAPXor9sPop7NOIKoAQAAAACmIYAaAAAAAIBlwLvAOWbd3d1HHTt48OCcx5vs2p6enjmPt5Tdcsst4wKni6LI+9///vT19XVuUQAAAAAAAADAkvTIgUeOBFC3dCCI+pHK0OJNyji7x4SOzlVtHgLE52MdtK+/7MmvHDg3B4r64WPlJFGjkwWQriq70nPo7YI9qRwVQjubcQ4U9fzKgXPTXx6f7+VaDvTAyqb+JNMHUB851n4Q9WzGEUQNAAAAADAJAdQAAAAAACwTXTOfAtNbvXr1UcfmO4R6zZo1cx5vqarX6/mP//E/ZmTkyKa83/7t384zn/nMDq5qYZx00kl50pOetODz3HnnnRkeHl7weQAAAAAAAABgsVUr1ZzZf2ZueOCGox8skjZzBuesTHLmcG+q+w4szoQcVk3y3J6TcuPGnZ1eSp677yQ90AHb1tydN667IRsa3dldGclI0Zzyj3556L9FklXNanomPFH0pEjKag5WGpMGj04cp6esZEOzO29c97WsHqplYP/Z8/Z9MXtz6YFk+h4Y0gPLhucA3rjpm/nzNbdm7J/w2TwHzGQ2PdCKUPnzNduTkZG8/dGnz2psAACgQ4aGxgcPlmXSbCaVSufWBABwPBJADQAAAADAMiKEmmN2wgknHHVs3759cx5vsmsnm2O5e9vb3pYbb7zx8P1zzjknf/qnf9rBFS2c3/qt38pv/dZvLfg8559/fr773e8u+DwAAAAAAAAAsNhG6iP56r1fTZFi8pjA1t7WBd5PWiT5as+DGbntu+mJwJLF1EiZ7150XzbUqtnd3Vis3PFxiiQbatV8t3ZfGretSjVLcFP1caqRMldddEea9VoqSfpT5OHe6a8pk/Q2ivSUSdJMUSbn7+3LLeuGUhZJT5JmWWSoOnM39Y8UqaSRZhq5qrI9l962X/0X2Vx7oGeGHkhZ5IAeWPLmWv9VM9S/XhYZUf9lYSTNfOAFt2c2AdQtrcfHVuqk4a7s7K2PO6e9ccp8YM3teetX+7wWBACApWxoaPTWUpbJI48k3d3J2rVJl22lAADHTAA1AAAAAADLjHf/csxOOeWUo47de++9cx7vnnvumdUcy9m9996bt771reOOve9978uaNWs6tCIAAAAAAAAAYCnr6erJjb9+Y9b2rJ3+xAXe57q2XsmNX3qS0MEOqKbI1Tc9NhfvXpP+2tx+/4sxt7nor1Vy8e41ufqmxwofXWSt+m8ZXJVmygx2N2esQJFkpFpmpChTlMkr792U37j7pLzy3k0pymSkKDNcLWc1zmB3M82U2TK4Sv07ZK49UJuhB4b0wLIw1/oPzVD/mvovGz0ZfQ22aaQ6q+DosVrn/sJD/fmLW8/MLzzUf/j4bMdpnbtppOq1IAAALGe1WrJ7d1Kvz3gqAADTEEANAAAAAMAy5COrOWabN28+6tgPf/jDOY939913j7tfrVZz9tlnz3m8pejhhx/OyMjI4fs9PT15/etf39YYd9xxx1HHfuEXfiE9PT3jjv3RH/1RLr300rktFAAAAAAAAABYMq6/7/qs7l6dfSP7Uk4XGTh2v+s87jMtkqyuF7l+4/6c+WDPjOcz//rr1bxv+zl52k/fkiLzWt4ZFUm6yyLv235O+uvVRZyZlrH1r1VGq19J0pzk3LFh4werzTzn4f5cuGdNkuTCPWtyx+rhfPKUwcPnJpP3UytitFYp0yhK9e+wufRAmel7YGyv6IGlzXMAZw735EtfeWK2XHJLam3mmzx996q8/IFNSZKXP7ApD/bWcuOGg22N0VUmX/rKE3PmsNeBAACwrJVlsn9/p1cBALB8CaAGAAAAAGCZEkLNMXvCE55w1LHJApJnY2RkJPfcc8+4Y4973OPS1XV8t+rIyEi2b99+zOPceuutRx179NFHj3lcAAAAAAAAAKCzGs1Grrr5qlSKSk5cfWJ2Hti56Gs4cbiaSlHJVWc9nEsf3JBqluDm2uPcYFcjv7blrnSVRXqaRUYq08aRz5siSU+zSFdZ5Ne23JVrvvk4IaQdMLb+3c1iyhDaseGzSbK6UclXN+3P4w/05sI9a3LD+v356qb9Wd2o5EC1efiaZHwIbWXMr7vVf0lYiB44qAeWDc8BDHY18ron35ONta483FOfNIB8Mr3NIj9YM5Ib1u8/3AM/WDOS3maR4crsXklUkmysdeV1T75HDwAAwPGgVuv0CgAAmC8CqAEAAAAAmKXjO9mXRfG0pz0tlUolzeaRt7PfcMMNqdfrbYdH33DDDalNeBPL05/+9HlZJwAAAAAAAADAclWtVHP1v786l33sstz0wE3prnSn1mwvKGRsIGW721C7yyKVopIt+9bl6tuflOpabztabI2U2frk72T7uqEUqWRjvZJd3bWMFLMPop7L9uMiSU9ZZGO9O0WRbF8/lK0X3p1PfOfJgsgX0VT1rxXjQ2gnhs+uaVRTLYuURfK3Z+3KjZuGc8uaAylTpLsssqaRSUNox4XPqv+SMNceWN2opLusTNkD1UaRfdVGEj2wlM21/msb1VSmeQ5Y3cikQeTqv/SM7YFqKjmx1p2Hu2szBlH3NYv0NauT9sCqZjWVNHOwMv0olSQn1rpTTaEHAABguejqSur1I/e7u8c/XhSjNwAA2rPUXkMJoAYAAAAAoA12g3HM1qxZk6c97Wm58cYbDx/bv39/brrpplx00UVtjfXlL3/5qGM//dM/fcxrBAAAAAAAAABY7vp7+/O+X3pfnvZXT0ujbKRSVNIsZ4geLDK35OExKkkaRZlGkbzv+09Mf9kzPp2SRVFNcvlDp+emdbenmTJFko317uzqai+Iuh3jAqgPHaukyOUPnZ5qpboAMzKV6eo/NoR2rPX1rlTLIvVDj5dJvrPmwLhzespKuuuV7OkaDSWaGGDbrf5Lxlx7YOxzw2Q90NespFoWemCJm2v9u8siI9M8B3SXlfR4DlgWJvZAtSxmDKJe06imtywOPz5ZD6w5FFS+/1AY/USHA6jL4tB9PQAAAMvG2IDEyoT/a1yzZnHXAgBwPBBADQAAAADAMmc7GPPi53/+54869rGPfaztcSa7ZrKxl7unPvWpKcvymG4/8zM/c9S4O3bsOOq8X/3VX138bxAAAAAAAAAAmHeDw4P5tX/+tXRVutJd6U6SVIoZ3v4zYd9p0eY+1Nbo3WWRrhT5tXNvy2C13t4gzJuBR07KlXecm8qhONCiHA0h7SmLzPeW53EB1If6ppIiV95xbgYeOWmeZ2M2pqp/d3l09dfXu9LXnN3bA/ualayvdx11vFv9lxw9sLKpPxN7oBVEPVml1zSq6W/MLii6v1HNmknOnSyAWg8AAMBxoCiS00/v9CoAAJYXAdQAAAAAABwHhFAzL17+8pcfdexv/uZvMjIyMusxbrrpplx//fXjjl188cXZvHnzMa8PAAAAAAAAAGA5azQb2frxrdn+4PYUKbJx1cbpg6jLHBVAXSZpFkcdntLYAOpWCOX2Nfuy9Ym3pDHrUZhvU4WQVue5JNVD4wofXVpmE0LbTvhsy8QQWuGzS5ceWNnUn9kEUbcTQN0yMYhaADUAAByn+vqSxz9+9CsAALMjgBoAAAAAgONE18ynwMye/OQn51nPela+/OUvHz62c+fO/I//8T/yxje+cVZj/Lf/9t+OOvba17523tYIAAAAAAAAALBcVSvVXP7Uy3PTAzelWTYPB1HvOrgrI40xHxI+j/tNyyQ9qWZjelN0HQkgvHz1M1N92o/N30S0bSBJmptzRe/n00yZ4dTTmOe9z40iGe4q0peu0eDJ4edm4OwfS86e33lo38T6F0k2piu7MpzV6UpftSs5nCPaTIrm1IOVRVIdPXk0eqiaA6kf9ede/ZeWtnqgqE8/WFlJ62MH9MDyMK/PAUlSjr6VWP2Xj4k9UE1yYtmdh4uDWZWu9Fd6jnyaSBo5nCY+mTHPAf3pTjKSg6nnxHJVqnoAAACWr4ceSn74wyP3e3uT889PumwnBQBoiwBqAAAAAACOI941wLz5gz/4g/z8z//8uGNvetOb8oIXvCBPf/rTp732f/7P/5lPf/rT44499rGPzSte8YpZzX3OOefkh2PfGJPk3/7t33LJJZfM6noAAAAAAAAAgKVu4LyBJMkVn7ricBD1qu5VGW4Mz2v4dEuZZFXRnaIYTbKspMiVxS9kYM2T5n8y2jaQC5NydV5T/mN2Z3jeW6BMsrsYzsZU8tfFi9R9iWnV/4ryk4dDaDdlVZIiGbcXvsyEA+MVRcYklaYvPelL9+EN9f7cL12z74EZwhGKIwG0iR5YLmZf/2TGFwmF+i9HE3ugmuSUrMnRPTBDCPmEvwf605f+lHoAAACWu/37k+7uI/d7egRQAwC0SwA1AAAAAADHmcrMp8Ds/NzP/Vxe9KIXjTs2PDyc5zznOfnnf/7nSa+p1Wp561vfmiuuuOKox/7yL/8y3WPf7AIAAAAAAAAAsMINnDeQK194ZSpFJUP1oewZ2rMgAdQte8qhDKV2JICwEEC41IyksWAtUB4an6VpoHhSrix+IZXDaaPztRF+QvCoP/dLlh5Y2dQfPQAAAAAAsEAEUAMAAAAAcBzy8dXMq/e973258cYbc++99x4+Njg4mEsvvTQXXnhhXvSiF2Xz5s05ePBgvv/97+fqq6/Offfdd9Q4v/3bv51/9+/+3aKt+4YbbshrXvOaKR/ft2/fUcf+6Z/+KU996lOnvObCCy/MX//1X8/H8gAAAAAAAAAADhs4byDX3Xtd3vHVd6Rc4M2mZZLd5VB+rbhQAOESs638bl5T/mMOpJYiC5NFXiQ5kFpeU/5jkuiBJahVkyvKT6Y5j10geHT50AMrm/qjBwAAAAAA5pkAagAAAAAAjlNCqJlXJ510Uj7zmc/kuc99bh588MFxj91www254YYbZhzjZS97Wd71rnct0Aont2/fvmzfvr2ta3bt2pVdu3ZN+fiGDRuOcVUAAAAAAAAAAEfbduu2/PU337eom03/urwhzyjPFES4RLQCqHdnKElSHIqhns+OKA6Pm+zOkCDqJaxVk98u/2VeeqBIBI8uM3pgZZvvEGLhw8uPHgAAAAAAmCcCqAEAAAAAOI5VOr0Ajj/nnXdevvGNb+RZz3pWW9d1d3fnTW96Uz784Q+nWq0u0OoAAAAAAAAAAJavbbduy2v+6TXZfXB3ijJZ6C2wRZKiPBJCvK387gLPyEwmBlC3FPPcDRPH0wNL2/Py2FRSZCi1YxpnKLVUUuR5eew8rYzFogdWtoHiSfNWs+flscKHlyE9AAAAAABwjARQAwAAAABwnOvq9AI4Pp111ln50pe+lL//+7/Pu9/97nzta19LOcU/dKxduzYvfelL84Y3vCFPfOITF3mlAAAAAAAAAADLw+EA6qFdhzecFmWSIlmI7aetAOokSZnszsG8pvmJ5OD+DNQfvwAzMpNtXXfkNas+m93F8FGPNee5C5opU5ksiFoPLDmDGc4la/4+91f3jh4oy/QdfmtgmemfIcokzSTJUOrZU4xkT4ZzSf19+cL+l6Y/vQu4cubLzD0wnebhX+mB5Wtb1x353Ko7cnS9m5Mcm6g57t7ncke27b/e8/wyM30PTKc86hw9AAAAx4HBweTgwSP3m83RY729ozcAAMYTQA0AAAAAwAoghJoFUxRFXvayl+VlL3tZfvSjH+Ub3/hGfvCDH2RwcDBdXV058cQTc9555+Wiiy5KT0/PMc111113HdP1l1xyyZQh2UvVF77whU4vAQAAAAAAAABYJI1mI3987R9n9/DuozacLtQ7Hg7lW487sLsYzh93X5dL956WaioLNDOTaaSZP9503SQB1OWM8ZJzNRpEnYztBD2wtAwWI7lk0z9le/WRw8f2FCNJsxVCXI5Jk59MkZTlaPhwpXb46Pbqw7lk9UfzhUcvTX95bO/tYmHN2APT1j+H/k7RA8vZtt4duaLvy2lO+h7ImZ4DctTrimbKXNH3+WRwJAPDm+dvoSyYaXugSKZ9tVge/WEFegAAAI4Dw8NJ7cj/56dSSfbtG72tXp1s2NCxpQEALDkCqAEAAAAAWCGEULMoTj755PziL/5ip5cBAAAAAAAAALBsnbT6pHSnmlp5JHK42cZ+2CJJXz0Z6pp9cHWzSCpjTu4ui5xU9s1+UubVSWVfulOkdriC7QVQF0m6Ukk9zdn3QJLKmEjy7uiBpeJw+HDXI0c9tqdSS5qZVVD4xPDhlu1dj+SSTf8khHgJm00PzIYeWL629e7IFf1fbuNZfXaaKXNF/5eTwQghXuL0AAAA0LYDB5Lu7k6vAgBgaRBADQAAAADACjLzDhMAAAAAAAAAAKCjqpVqrnnpNXn23o3pPhQq2m4A9YahI7d2ttK25uluJs9+sDfX7H7BrIJtmV/VVHLN7hfk2SOnpTtF5hJAvarsypqyK6vKrvZ6IElSpjtFnj1ymh5YAqYLH27ZU6llOI1pxxlJY9Lw4ZZWCPFgMTLntbIwZtsDIzM8UwzrgWVrocKHW1ohxNt6dyzI+Bw7PQAAAMzZgQOdXgEAQOcJoAYAAAAAYIXp6vQCAAAAAAAAAACAmfU/si//8NEiL/q57nzp9KkDQydqBVD31Ufv99VH7+/uS1uRhT95X5F/+HiZ/ufvSVavbmvtzI/+JP+w/1l50alfyBdXPdTWtaua1fQcCq/uSZGU1RyoTB9QPFaZ5CcPnpR/ePBZ6S9rSWbfg8yvwWIkl5zxmWzv2p2Z/hTvr9TS16ymZ5LQ8JE0c7DSmDGQfHvXI7lkw7Z84b6fTX/ZM+d1M3/a6YGDRT2ZpgeGZvE8oAeWnm1r7s4V665Pc0wgRZkyxVF/ostM3yPFUaEWY8dppswV665NhocysP/s+Vk882KyHpjcTD1QThtsogcAAGCZGhpKamN+fleZ8HOBmp/tAQAr3FILoAYAAAAAgEUghBoAAAAAAAAAAJaDb3wjSdLVLFJtJM3qLK+bKlewTGZMnz2k2ky6GhkNKbz//uT002c5OfOuUsujxcG2AsQPG3tRm/uqyySPFgeTgweTZn0uszMPBiu1XPLYL2Z7z56jHmtmtKwTS3uw0kiaSU95JGxopBgNoJ6oFVVamXB0e8+uXHLav+YLP/iZ9De7j/n7YO7muwemiizWA0vXtv77csUJ28eFDzdTZne1ltXNavrKMS8QRj97YBrjA4iHikYOVBrZ0OhOZWwQ9QnfSIaHMzB4xvx+M8zJZD0wtVmEVM8wjh4AAIBl6ODBZGTkyP3JQhZn9f8UAADHoaUYQO21GQAAAAAAi6Ay8ykAAAAAAAAAAECnDW7/Ri57/u58e1Ot3fzg7OlNhg59XP1Q1+j9dhRJvn1SmcteVMvg/kfbnJ350gqf/XbfYNvXHqw0MlI0k0wdQDyTb/cN5pLHfjGDlVrb13LsDocP900ePpwcCRCeaDb1H3tt86hHk+19e9S/w/QA2/rvyxWnb08zRwdQ14pm9lRrGSraf35PRgOo9xwaZ3e1dtQcV5y+Pdv67zvm74FjM1kPLAY9AAAAAAAcFwRQAwAAAACwgnV1egEAAAAAAAAAAMD0Gs1Gtu79QG46YSS7e8vUqrO/tiySlEeCqIerh4JG29hfW6smu1clN53czNYL7sondj4+1bajsDkWjZR53nlfzs19e+YUO1lmNIS2VjZTL8o5j3Fz354875wv5rpbn6UHFlGr/tOFD7e0ajuxOmPrP9FkwcXNJJUJx7arf8foAbZteCBXnHZLmuWEAOquWmpjarqnWkvqZfrKapIymaTe45TloQDq+uFDo0HUI9lQ707lUJ2bKXPFaTcntVoGdp82n98aszRZD8yoSCaPpj+kzKwDTvQAAAAsIyMjSf3I/+elWh091tWVVCb+3z4AwAohgBoAAAAAgBVOCDUAAAAAAAAAACxx1Uo1L79vYz77+AcyUp02SnBSrSDquQRQZ/TSjBwKon75rV2prq/PeA3zrUy92ZxTePRYxxoxUyapN5tJrZajI25ZOGXK5tHVnxg+fOTsUWMrVGS0/sWExycLHx47/sSeKZul+nfE3HpgrMl6oHWuHljaGilz1aa7M/ZvgckCqFv2dNWTetJTVg6HhRdJnr6vP99cOziu3kNFY/T8CWrF6PgTg6iv2nR3Lt15ghDyRTZZD8xGpUyKaXqg0uaLQj0AAADLxNDQof93P6Qokj17Rr+uXZv09XVubQAAnSCAGgAAAAAAhFADAAAAAAAAAMBS12g28pETH0xXczRIei7Kov3w6nHXJ+lqJh95wkhevm+N4MFFV+bUrE5X9qV+TJWcGD/bnq4UOTWrR8Nq9MCiqSb5/N2X5JLHfjHb+/YkmTp8uGViEPXaZld6ykpGimb2VeqHz5mpG8aGEG8ZWp/P3/0zqa7tbvdb4BjNtQeK6IHjQTXJ1Q/8ZC47++vZ3rdnNIC6Wh8XQN2qd8uernrWNbrSnUoqZZH/uvPcPGf/Sfm3gzvzjpNuT7MoM1w0s78yPoB67DijQdT1bGiMBlFvGVqfqx+4WP07YGIPzFZxKFhlqh4oxj1LzEwPAADAMnHgwOTHyzLZuzepzvGHzAAAy5EAagAAAAAASHJkXwAAAAAAAAAAALBEVSvVPOng2hzs6lzsb5HkYFfypEe7BFB3QDVFfv3RzTm53puuOfz+tyIma0WzzbjJI7pS5OR6b3790c16oAP6m935wg9+Jk8e6p8xfLilFTDcCh9Okp6ykrXNrlmFD7c0kzx5qD9f+MHPpL8peLRT9MDK1t/szjV3X5zzh9Zld7WWWnGkC8pMHii+t1pPLc3D4cNJ8pz9J+W/7jw3tUweQD1xnFrRzO5qLecPrcs1d1+s/h3U6oEtQ+vbum5sAHVypAcqZXt/l28ZWq8HAADgeLF/f6dXAACwOARQAwAAAADAYV2dXgAAAAAAAAAAADC9RrOR764bzvrhZE9v0mZm4LwoymT9cPLdE5pp7KoJIe6AgUdPyYHmk/Lqx9ycerH4m5OrZZE/u/dJGdh9SpL6jOezACr1nFzrTVdv0X4PjD29zT++XWWRk2u9Sb2eNP3Z7yg9sLJV6kclTY8NjW59PapCzWbSaIy/P8GM45RR/yWgP0Wu+cEFuWzzDdm+as+M51fKIq9/6PF5zr5NSY70wHMGNyXNx+cvTrkjs4mj33Jwfa7ZcUH6m0W8BgAAgGWg0Rgfbjjx/wPrXtcDACuAAGoAAAAAABhHCDUAAAAAAAAAACxx1Uo1V//oWXlx9R/yhXPmlv9YZDRIuixmEzV4tEqZXHB/cvXn16X6hH1zGIFjNVit54OPuSurG5XUupo5OkJ0amMDRccGjc5WJcnqRiUfXH9Xfun+telveOvZYhus1nPZed/JLb37cmK9Ozu7RtKY4bmgOHTbV6lnbVlNT7OSkUoz+yqNw+GyM/VCtUxOrHfnlt49ueys63LNrU9W/w6Z2AMPd42kvgg90KUHloSx9d9Y78qurlpGivKo+o19vu+vd6WrLPKOk29PhofynD0b82/rd+UdJ9+d7maRtalmX7Ux6d8Lrfs9ZZGN9S71X0L6k1zz7SfmsvO+k+1rpn5NVkmR/3b32fmpvauS7D/q8eccWJUN+zfnzefsSHOaZ4It+9fmmlufmP7GUJKhY/8GAACAhXfgQDIyMvXjZSkAEQA4vgmgBgAAAACAo1Q6vQAAAAAAAAAAAGD2Kh3am9qpeRnVSJmtT7wl29fsS1+zknX1attjlEmamVsI+bp6NX3NSrav2ZetT7wljTmNwlyNrX+SlGWZatrbPL+v2sjernr2VRttXVdNkfLQpnj175yJPVCUyaZ697TXtAKoWybrgYnnTGZTvTvFoZLrgc6YrP7r61MHQZdJVjUq6S1H3ybcTPKOs+7Omx6zI+846+7DH2LQ06xkVaMybTXX17vUfwnqb3TlmlufnC371076eCVFrrzj3Dx/96Zpx3nhrhNy5R3npjLFM8FoALXgcQAAAABgGRFADQAAAAAAkxJCDQAAAAAAAAAAS1yj2cjWk7+cb588twDh5FAAcXFs13/75GTr8/cIn+yAaopc/uDpqaRIM2UOVpszXzSPDlabaaZM5dA62g1A5thMrP+u7npGipn/HJYZ/2e+NuaaiY9NZaQYnU/9O2tsDyRJM2X2dNWnfRPoZDWuTeibmfqgkmRP12j9R+/rgU6Yqv5TVaHI6PP2UHHk74pmkq+vG8zYvz2Gi2YOVpvTjqP+S9dUQdStAOqBR06a1TgDj5w0aRC1AGoAAAAAYNkRQA0AAAAAAFPyrmAAAAAAAAAAAFjiqpVqXv7gCfnM4x9KrdqZNdSqya5Vycu/153qmuliT1koA4+enAM7Gnn1ubfOKoB4Po0UZXZ31/P+28/LwKMnR/7o4ptr/Vshw8WEY+1Q/6Vh4NGTkzuT33rc97K7u55aUc5Yy/l4vHao/ptq3bnyznP1QIfMpf57u+pZ06imtzz67+3hopn91ca016v/0tff7M41tz0llz3xO9m+Zu9oAPXYOhXF9KErh85p9dcVj7s9zZTZsn9drrntyelvdqk3AAAAALA8CKAGAAAAAIBpCaEGAAAAAAAAAIAlrtFs5AMn3puRDgVQt4xUkw+cN5KXD65PVSLhohus1PKBMx5OfZEDqFvqRZkPnPFwfqnx+PQ3uzuyhpXsWOvfCqKea/eo/9LwvHJNTm3enYeKkcMB4zOZGEI+9vhsrk1Gg4hPba7K88rNyQb175TZ1r91vEhGg6abxbgg6uGimf2VxuFzZxpH/Ze2/iTXPPDMbD3rG7l81zkZaJyRbDj0YG8lKaYJG6/3JfVVSZKBxobkwTW5auNdufqBn0j/OrUGAIBla//+Tq8AAGBxCaAGAAAAAIAZVWY+BQAAAAAAAAAA6KRGs5Hr+gc7vYwkyXWn1tOYc4wtc9VImcvO/nq+tGZnpomSXOA1JF9aszOXnf11PbDI5qv+x1I19e+8wUotl5399TzYNZz+RldbVZh4brvX9je68mDXcC47++sZrNTauJr50m79x4ZL76/UM1w0k7QCqOtHnTPdOOq/9PU3u/OJH/5UBgbPOKZxBgbPyCd++FM+bAAAAAAAWD4EUAMAAAAAwKwIoQYAAAAAAAAAgCWu0WzkQFenVzHqQHcE0HbIg9WhjBSd/b0fKco8WB3q6BpWKvVf2Rops/Wsb2R73540U+ZgpZl2IxXKzC50eKIiycFKM82U2d63J1vP+oa/BxbZXOtfJmke+rqvUs9gpZZ9lfq44zNR/+Wj2vazwsKOAwAAAACw4ARQAwAAAADArAmhBgAAAAAAAACAJa6nqycnDlc7vYwkyYkHkx5vO+qIrhQdj4UsDq2Dxaf+K1s1RS7fdU6SZHe1llrRfgj1XBVJakUzu6u1JMnlu84RUrvIjrX+rbiL2qEg+3biL9R/+ZivcHAh4wAAAADAsiCAGgAAAAAA2mI3GAAAAAAAAAAALANnHezu9BKSJGft9ZajTqimyO89/GMdDwDuOrQOAaSLS/1JkuftOzmn1ntTK5pJkuYizduap1Y0c2q9N8/bd/IizcxYE+vfboxFOeFru9ep/9I2WKnllx/z1Wzrv++YxtnWf19++TFfzWClNk8rAwAAAABYIQRQAwAAAACwxNkRBgAAAAAAAAAAS1y1Us1v3Htqp5eRJPmNb/cJoO2ARsp8ZMM9WdXo7O/9qkaRj2y4J422Y0w5Fq36r2509i1/qxsV9e+QRspsPesbebBrOOsb3YsWQN3STLK+0Z0Hu4az9axv6IFFNrH+ZdoPk84xXFNG/ZeywUotl5399dy4aneuOH37nIOot/XflytO354bV+3OZWd/XRA1AAAAALB0FUvs36sFUAMAAAAAsAwIoQYAAAAAAAAAgCVupD6SN553T6eXkSR547MOZGTR40+ppsgLBk/OYLWzv/eD1WZeMHiyIPJFVk2RS/eclsFqo6PrGKw2cume09S/A6opcvmuc1JJkWaHAoCbKVM5tA49sLjG1r+nrKRaLu7vf7UcnVf9l55WAPX2vj1JRv+cziWIuhVA3Xp+2d63RxA1AAAAALA0CaAGAAAAAIA5EUINAAAAAAAAAABL3Eh9JLu6Ohs+27KrL0KoO+BgGvmvp3+n08tIkvzX07+Tg1ka/bhSjKSZPzj1u51eRpLkD079rueADhkYPCMv2X169lTrHZl/T7Wel+w+PQODZ3Rk/pVuYPCMvP2B87O7WkuzKBctBrpI0izK7K7W8vYHzlf/JWRiAHVLu0HUEwOoWwRRAwAAAABLjgBqAAAAAACYs65OLwAAAAAAAAAAAJjeqp5VWV105UDZmeDRsVbXk1X1Mknn17KSrErylIPrcuPqPTOeu9CecnCdHlhkPUku2r8h/7L+oY6uozy0jp56MxFEveiu3nBP/vcJO1Ik6USkQZHkf5+wIxftW5+tu8/qwApWtsFKLR/ccHdWN6vZU50YF7xwyozWfnWzmg9uuDu/tOvk9De7F2l2pjJYqeWyx9xwVAB1SzNlrjjt5vzOjzbnwgMbpxznutU786enff+oAOqW7X27c9lZ1+WaHReqOwAALCfCEAGA45EAagAAAAAAOCZCqAEAAAAAAAAAYBl40qrH5Ib9d44mQXZKmTxpd3fy/duTcolt8j3OjVSaueeJ+zq9jCTJPZV9GbnjtvQ0K51eyooxUmnm+ic+3OllJEmu731Y/TtgpNLM637xjtSKZkdDqGtFM687dXteesN+PbCIGkWZrc+8N9u7h9JbK1OpJM1F/Gu4Uia9tWa2dz+arSd+KZ/4ypmpeh3QMYNdjVz2U/dle/fwtJ8H0UzyZyfdnl+5qz8XPtp31OM3bBrKh08ZTLUxfS23dz+ay07+Yq756hnpr1ePcfUAAMCiOHgwqdXGH9u9O+nuTvr6kqrX9gDAMiOAGgAAAAAAjpkdAAAAAAAAAAAAsMRVK9X83sW/l+4O72XtLpPf+94mwZMd0NOs5P+6u7/Ty0iS/F939wufXWQ9zUreefPJ6V3M1NlJ9DaLvPPmk9W/A1o90N0s0uzQGppJuvVAR1TLIpfvWJ+iTHb1NNMsFu8zKYqMBl7v6mmmKJPLd6z3OqCDDgdQbxie1fllyvztOXtyw6ahccdv2DSUvz1nz6yfT7ZvGM5lP3VfBrsaba4YAABYMsoyGRlJ9u5NGl7bAwDLiABqAAAAAACYF12dXgAAAAAAAAAAcHzbuXNnrr/++tx5550ZHBxMd3d3TjjhhDzpSU/KhRdemO7u7k4vcZwHH3wwO3bsyD333JMf/ehH2b9/f2q1Wvr7+7N+/fqcc845edrTnpb+/oUNg63Varn++utz66235pFHHjm8hsc97nG56KKLctJJJy3o/CwtjWYjH7znX1IUlaRj8aNJUSYffNy+vPz+jQIoF1mjKPO9/pF0lUm9g7/1XWXyvf6RNIpSDyyyX7p/XZ6w55F8a+NIx9bwhD3d+aX713Vs/pVOD6xsz3toTU4ZqubBVfWUSRYr4qI1T61S5pShap730JpFmpmJ2g2gbimL5G/P2ZMkufDRvsMB1GWRthqpFUR9zVfPSH+92tYaAACAJaQsk6Ghmc8DAFgKBFADAAAAAMC8EUINAAAAAAAAACyIj33sY3n3u9+dr3zlKymn2Ii3bt26vOxlL8sb3vCGnHvuuYu8wmT37t358pe/nK985Sv5+te/nm9/+9t5+OGHZ7yuKIo85SlPyStf+cr8h//wH3LyySfP25q+973v5c/+7M/y93//99m7d++U8z/rWc/K7/7u7+bFL37xvM3N0lamTFGtptJoptmBvbaVMiliX20nlWVSLYs0inLRwkfHKjI6vx5YfI2izNZn3J+dq5pZXU8OdOCdf6vryc5VzWx9xv35xFfOFEK+yPTAytaq/4OrGllVL7K/a3GfiMskq+tFHlzVUP8OafVAuwHULa0g6hs3DuWW9cOZa/m2bxjWAwAAcDyo1zu9AgCAmQmgBgAAAACAeSWEGgAAAAAAAACYV/fdd1+2bt2aL37xizOeu3fv3rz//e/P3/3d3+UP/uAP8gd/8AcpFnEj4dve9ra8/e1vb/u6sizzrW99K69//evz5je/OW95y1vyO7/zO+nqmvtbMZrNZt761rfmj//4j1Or1Wac/9prr821116bSy65JB/60Idy2mmnzXlulr5qpZrfuOA38q2HvpUHBh/oyBqaZbKp1pXfuPeUVPtWd2QNK1k1yW/ce0q+ccJdGe7pzAbnVgipHlh81SSX33dyvnriD3OwQ+/6O9iV9DXLXH7fyerfAWN7YKhDPTCkBzpm/HNAZ/4OONhVplf9O6bVAzdtumfKDyMpU6bIhAfH/L9VWSTf2TCSjD2nyPj7U41zSKWMHgAAgOWgLJOhoSP3J/u3i6UW6ggAMNZSe60igBoAAAAAgOOAEGoAAAAAAAAAYN7cfvvtueSSS/LAA+2F5I6MjOQP//APc+utt+bv/u7vUq1WF2iF82/fvn35L//lv+Qzn/lMtm3bllWrVrU9RqPRyCte8Yp89KMfbfvaL3zhC7nooovyhS98IY9//OPbvp7lY+C8gXzkWx/JR29tv0/mRSV59o/WZOBHm5JKZ5aw4lWKiTmRi684tI6KJlh0lSJlUaZTW9zLJGVRqn8nHXoO6GQPeA7oIPVf8QZ+tCm5pcgV5999VBB1M2V2dzeyulFJX3NCfaZ77VCOf3Co0syBajMbatVUJlxYKZMrbzk7Az/a6LUgAAAsdUUxPrhxYohjb+/irgcAoB0CqAEAAAAAYEEIoQYAAAAAAAAA5sUjjzySF7zgBZMGUF9wwQV50YtelM2bN+fgwYO5/fbb86EPfSj333//uPM+/OEP5+STT8673vWuRVr1eGvWrMnTn/70POEJT8jjH//4nHTSSVm3bl0ajUYGBwdz++2356tf/Wquu+66lBM2Gn7605/OwMBAPvWpT6Voc1Pk7/zO70waQL1p06b8yq/8Ss4777z09/fnrrvuymc+85l88YtfHHfefffdl5/92Z/NjTfemI0bN7b/jbMs/NEX/igfva1DAdSHfPTsPTl//335wx+c0dF1rESNlPmrs3dmX7XZ0XXsqzbzV2fvzKUPbki144nYK4f600iZq856ON3NItUyqXfgt79aJt3NIled9bAeWGTqT8vAg6Ov9ccGUTdTZld3IyOVMiOVRjbUcnQQ9SwMVZrZ3d1ImWRXdyMbxwRRHw6gftD/awAAwHHhxBM7vQIAgMkJoAYAAAAAgAUjhBoAAAAAAAAAmBe//uu/nrvvvnvcsXXr1uWDH/xgLr300qPO/5M/+ZP8yZ/8Sd785jePO/7ud787P/dzP5cXvvCFC7ncJElvb2+e+9zn5oUvfGGe97zn5cd//MdTrVZnvO6OO+7I6173uvzzP//zuOOf/vSn8773vS+//uu/Pus1/NM//VPe8573HHX8N3/zN/MXf/EXWb169bjj//2///d85StfyYtf/OI89NBDh4/v2LEjv/mbv5lrrrlm1nOzfDy679G86YtvSpbAHtc3nfdAfvsHJ2VTejq9lBVnuNJMrf1MyXlVq4yug8Wn/itbNUXe+63H5Gk/fUsaHcpfaBRJoyjz3m89RgDxIlN/xhobRF0vjgRQJ6MvFXd3tx9EPTaAOklGKuXhIOqushBADQAAx4uuruTkk5NVqzq9EgCAowmgBgAAAACABSWEGgAAAAAAAAA4Zp/97Gfz8Y9/fNyxnp6efP7zn8+FF1446TXd3d1505velA0bNuT3fu/3xj32O7/zO7n11lvT1bWwb214y1veMqfrHv/4x+cf//Ef81u/9Vt573vfO+6xt73tbbMOoa7Vavnd3/3do47/5//8n/POd75zyuue+cxn5mtf+1ouvPDCPProo4ePf/SjH81rX/vaXHLJJbP7Rlg21vat7fQSjmgmazednKTDabgrTCPN3Lhhf6eXkSS5ccP+NDZtTFUPLBr1p5Eyr33iTakUlSSNjq2jUlTy2gvuzydue5og4kWk/kw0MLIpB+5ZlVc//paMFOODUA4HUdeLFCkybakqRYZSZndX46jPOhmplNnd08j77zg/AyOnJ5vm+7sAAAAW1L59R37d1ZVs2JCsWZNM+OBLAIAlQQA1AAAAAAAsOCHUAAAAAAAAAMAxe+tb33rUsTe96U1TBlCP9bu/+7v5l3/5l3z2s589fOyOO+7Ihz70obzyla+c13XOp6Io8j/+x//IJz/5yfzwhz88fHzHjh254YYbZvW9/93f/V3uuuuuccee/OQn521ve9uM127evDl/+Zd/mV/5lV8Zd/yP/uiPhFAfh/Yc2NPpJRxRSfas68tJ6e30SlaYZoaXSObvcCXJunURRL6Y1H+lqyZ5+b5z8ukNNx4VFLtYyiS7uup5+b5zUl3X36FVrEzqz0SDlVo+cNqP0pgil6VMsrurnjXNarrKqZ+vhytl9lXqU/ZVo0g+cNqP8ku1x6a/2X3M6wYAABbJwYNJtXrkflfXaLDjgQNJrZasX9+5tQEATCSAGgAAAAAAFoVdIAAAAAAAAADAMbnlllty7bXXjjt24okn5vWvf/2sx/jTP/3To469973vPea1LbTe3t685CUvOer4d7/73VldP9n3+Ja3vCU9PT2zun7r1q158pOfPO7Yv/3bv+V73/verK5n+VjbtzYdS52cqEzWpqvTq1iZllAP0AFL5fd9qaxjhWmkzLtOvCP1orMFqBej62hohEWl/ow1WKnlxWdfl2vXPJxmykwVz1Im2V9pZKhopFGUR92Gisa0AdRFkmbKXLvm4bz47OsyWKktzDcEAAAsrlptNIwaAGApWGoB1AAAAAAAcBwTQg0AAAAAAAAAHJOPfOQjRx171ateNesg5SS54IILcsEFF4w7dt1112XHjh3HvL6F9rjHPe6oYw888MCM191xxx254YYbxh077bTTcumll7Y1/2/8xm8cdezDH/5wW2Ow9DWajU4v4Ygiwic7oJoip9dXdXoZSZLT66tSnTLykoWg/iSjgbKd/p0vIoe8U9SfZHwAda1oJhmty3RB1EOVZmppjjteSzNDlea0AdStMWtFUxA1AAAcb4aHO70CAIClGUBd+ik4AAAAAADHr65OLwAAAAAAAP7/7N15mJxlmS/+b1V1d/YQyAIRAkT2REW2QRlAUBHHBWRAUFEZ1GFkgNGf4+g4LsDBQXE4I3jc5aBnFEEHhnEX1HEBBCRhUwhbICQsgRAI2dPd1fX7Iyak052ku7q7qrvq87muvpJ6ut7nvdPPc71dqbvqWwAAjGw///nPe4yddNJJ/Z7npJNOyty5c3vMfeaZZ1ZdWy2sXbu2x1hfArivu+66HmNvectb0tLSv5dznHTSSTnnnHO6jf3sZz/Leeed1695GN7GtI3JjJXFLBrfte07D7EZy5Ixq9am/lGYzaaSPdeMyYK21fUuJHuuGZOsWhV7oJasf7MrJfnveS/PXi//XdYW6/e7oK2rmP+e9/KUOuq/F5uJ9SdJlpc6c+Jed+SGcc9tDKDeYFsB4WuLXUlX0loppKNQ2eY+2vwKvzGIeuebcs2DB2Ri2UvQAQBgWFu7NunsfOH25gGP5bKARQCgvgRQAwAAAABAzXkFMAAAAAAAAABQtVWrVuX222/vNjZ27NgceOCB/Z7riCOO6DF2ww03DPsQ6ttuu63H2B577LHN42644YYeY4cffni/z7/TTjtlzz33zEMPPbRxbO7cuVm9enXGjh3b7/kYvmYtLWXR2K6kWMciupJZzyZpb48A2lqr5OlSz9D7eni6tNYeqDnr3+zKqeS42XPqGkCcrA+yPW7vObntjkNSsgdqxvpTTiWnvOSu3DDxuXQUegah9GVnrC12pbNSSGcvx/c23+YPOTsKXblh4rM5ZY/b8+M/7W8PAADAcNbRsT5oeoNSqX61AABsTgA1AAAAAADURT3fkgYAAAAAAAAAjHB33nlnurq6R54dfPDBaWnp/+diH3LIIWltbe02Nnfu3AHVN9QefPDBXHvttd3GRo8enSOPPHKbx/b2b3vlK19ZVR2HHXZYt9vlcjl33XVXVXMxPJWKpez7bKH+r/YpJvsuKQgdrINyKnl0zPAIIX50zNqU443YtWT9KaeSh8esqXcZSZKHx6yxB2rM+pMkS1rbqw6g3qAvAdRbm7ejUMmS1vZ+nBEAAAAAYBMCqAEAAAAAoG7q/bY0AAAAAAAAAGAEu++++3qM7bnnnlXN1dbWll122aXb2Pz589PZ2VnVfEPt4Ycfzpvf/OasXds9FPT000/PpEmTtnpsR0dHHn744W5jra2t2W233aqqZY899ugxdv/991c1F8NTe2d7vrT/8Aj8+9IhlbT3K+6QwdCWYvZcPabeZSRJ9lw9Jm1eelZTbSnm8GWT6l1GkuTwZZOsfx20pZgvPbhPWiv1DWdorRTypQf3sQdqzPpTSiEfXzgzkzq7f9jPUD8i23z+SZ0t+fjCmT6QBAAAAADoPwHUAAAAAABQVy3bvgsAAAAAAAAAQO8WLFjQY6zaIOUk2XXXXfPII49svF0ul7Nw4cK8+MUvrnrOwbRu3brccccdueqqq/K1r32tRwD1zJkz85nPfGab8yxcuDBdXd0j3XbZZZcUi9UF+u266649xjYPuWZka+9sT+cwyXvsLCbto9vS5qVHNbUm5fxx/Kp6l5Ek+eP4VVkzujVjUqp3KU2jPV25beKKFJLU863whSS3TVzx52vAMLkoNZFTV+ye255enUt3XFC3Gv7+6d1y6ordk9F1K6FpWX9OWDUjWdCa9+3+xyxr6ajZR4J0JSkmmdTZmssWvDQnrNrJHgAAgOGuyl4DAMCQEUANAAAAAAB1551gAAAAAAAAAEDVFi9e3GNsxowZVc/X27FPPfVUTUOof/nLX+bDH/5wt7HOzs6sWLEiTzzxRDo7O3s9bq+99sr111+f7bbbbpvnqNXPbTj40pe+lC9/+ctDfp758+cP+TnqaUzbmPzlcxNy0/Yr6l1K/vKxQsaMGZ/1cbTUypgk//bES/OBne+udyn5tyde+uc9QK20Jfn0U7Pzd7vcUe9S8umnZqdtzLh6l9GUrp34eK6e/FQmlVuzrNRR8/NPKrfm6slP5VXrdsoJy3eu+fmbnfUnSU5YOzN5oi3v2uW2rCqWa3beMV2lXPbEQTlh7c7rH5QAAADDW1tbvSsAAHiBAGoAAAAAABgWhFADAAAAAAAAAFV79tlne4yNH199MGlvxy5durTq+aqxbNmy3HXXXX2+/7hx4/L+978/559/fsaN61soZyP+3LZkyZIluffee+tdxohXKpby09bTcuyjX8wtu9Wvjlc8mvz01pkpzRqGbxRucOVU8ouJT2dyZ2uWttQ+fHSDyZ2t+cXEp3PWc3umJIi8Zsqp5IfbPZkpnW15pqU99XhbfCHJlM62/HC7J/OeZTOtf42VU8nl2y9IV11W/wVdf67juOUvsgdqyPqzqdWFzrQXump6zvZCV1YXev8wHgAAAACALRJADQAAAAAAw4YQagAAAAAAAACgaqtWreoxNmbMmKrn6+3Y1atXVz3fUCoUCnnve9+bCy+8MFOnTu3Xsc38c6N6Ew9/Tc6+4Ku5bZfOlEu1P3+pnJw9N5nYOj5Ztqz2BTS5UpIrVuyTI142p64h1Duva8sVf9onpfLzdauhGW26/kta2utSQyXJ9HWt1r9ONt0Dd49bW5calpU6susq14B6sP5scMXUJ/PeXealXKhtSEq5UMl7d5mbrF6dU5dMr+m5AQCAKqxenXRt8uE15XKybl3S0pKU6vDkMgDQnARQAwAAAADAsCKEGgAAAAAAAACoWkdHzyDU0aNHVz1fb2HK7e31Cdvclkqlkssuuyw//OEP8/d///f50Ic+lAkTJvTp2Gb+uVG9a6cuzUePLme7tcmz42p//u3WJh89Jhl77/M54Zm22hdAfvSipblvTM8Q+1q6b8yq/Gj0wpz6xOS61tGMrD/2QHOz/lzxoqV5714L0lGopGvbdx9UXUk6CpW8d695yeo19gAAAAx3a9euD57eoFBYH0xdKCRjxiSjRtWvNgCgOQigBgAAAACAYadY7wIAAAAAAAAAgMZSGMCbCXs7tlLjNwKedNJJqVQq3b5WrVqVxx9/PL/85S9z/vnnZ+bMmRvv//TTT+e8887Ly172stx6661Vn3ek/9wYWuWuci5f+N9ZN7q1LgHUyfrg63Wl5PKZy1KO/VVr7enKh2YvSmedX/HVWUw+NHtR2msef9ncrD/2QHOz/mzYAx3F2gdQb9CVpKNYsQcAAGAkq1TWh1H7EEsAYCgJoAYAAAAAgGFJCDUAAAAAAAAAULXW1tYeY2vWrKl6vt6ObWtrq3q+wTJ27Ni86EUvymte85p86lOfyvz58/PFL34x48a9kAa8YMGCvPa1r83vf//7bc7XLD83Bk+pWMqnjvxUlrbWNxxk6djkU/dNTynD8I3DDa4txXx63s71LiNJ8ul5O6fNS89qyvpjDzQ36489AAAADKp16+pdAQDQqARQAwAAAADAsNVS7wIAAAAAAAAAgJFr7NixPcYGO0x506Dn4aJQKOSss87KS1/60rz+9a/fWPfKlStzyimn5O67787222+/xeOb6ec2derUzJo1a8jPM3/+/Kxr4OCMNe1rcvg3D0+93x5bSXL44fdn2c9enjEp1bma5lJOJT+cviyjOwtZ3VK/nTC6s5AfTl+W9zw2RRh5DVl/NuyBCR3FPN/aVbc6JnQU7YE6sP7YAwAAwKAql+tdAQDQiARQAwAAAADAsCaEGgAAAAAAAACo2uTJk3uMrVy5sur5eju2t3MMF0ceeWTOO++8fPSjH9049thjj+V//+//nU9/+tNbPK6Zfm5nnXVWzjrrrCE/z+zZs3PvvfcO+XnqZUzbmLQUWtKe9qSQ1DONuqUrAqjroJRCZq0YnR9Pe76udaxuqWTWitGCJ2vM+lNKIe9ZNCW/n7Sybr8GCklKlfV12AO1Zf3ZsAfumLg6lVSyvLX2u2BiRyHjyyV7AAAAGkGxWO8KAIBGI4AaAAAAAACGPa8WAAAAAAAAAACqtuOOO/YYe+yxx6qeb9GiRX06x3DygQ98IBMmTOg29vWvfz2Vrbyh0c+N/np+9fNZ3bm63mUkWR9C+3w66l1G0ymnkmumP1fvMpIk10x/LuV6JqE3IevPBpVC/T6HoPLn81M/1r+5nbB4+1w0b5esK6XmEdCFJOtKyUXzdskJi7ev8dkBAIBB19pa7woAgEYigBoAAAAAAEYEIdQAAAAAAAAAQNVmzpzZY+zRRx+ter6FCxd2u10qlbLrrrtWPV8tjBo1Kq9+9au7jS1ZsiT33nvvFo/ZddddUyx2f9nGokWL0tXVVVUNm//ckt7XhpFrTNuYF27U+/2yXcmYlOpcRPMpp5LHRw2P8O/HR3UIIa4x6085lXx91yVZUSrXtY4VpXK+vusSe6DGrD9JsrylnO/ssjRjy8UUUrsg6g3nGlsu5ju7LM3ylvruQwAAYIBKpWT06HpXAQAwdARQAwAAAABAr1rqXQAAAAAAAAAAMHLts88+PcYeeuihquZqb2/PokWLuo3tscceaWkZ/i9v2H333XuMPfzww5k9e3av929ra8vMmTMzf/78jWMdHR1ZuHBhr3Nty6bzbLDvvvv2ex6Gr+dXP1/vEl5QTJ5vqWSqlx7VVDnldBSHxxumO4qVlFtKiTDymrH+JJUsHtWZzuK27zmUOovJ4lGdSUtLaheBi/WnnEpOPfCh3DVxTUZ3FdNermRVqboPsOmvStYHUI/uKuauiWty6oGP5L9v3yclewAAAIavQqHn7ZaWpLU1GTWq5/cBAKo13B5XCKAGAAAAAIAt8k4wAAAAAAAAAKBqBxxwQIrFYrq6XghAmzNnTjo7O/sdHj1nzpx0dHR0GzvwwAMHpc6hNnr06B5jK1as2OoxBx10UI/w6JtvvrmqEOrf//733W6XSqXsv//+/Z6H4WuH8Ttkx3E75qmVT9W7lOzY3poddp4Z4ZO11ZZKZq+9P3ePWV7vUjJ77cS07Twj9kDtWH+SSlpa708xq1Ob2NneFZO0tLYlO+8ce6CWrH+zKyV5z5pC7tj+rqwudGZ1jQKoN1hd6kpbShlbacl71uyb0s471/T8AABAFZZv8jxSW1syYUL9agEAGpMAagAAAAAAGFGK9S4AAAAAAAAAABi5xo0blwMOOKDb2KpVq3LHHXf0e64bb7yxx9iRRx5ZdW219PTTT/cYmzJlylaPOeKII3qM9fYz2JannnoqDz74YLexgw46KGPHju33XAxvL99+v9Q1eTJJupKXr96uzkU0p1IKueGRozKjvWfofS3NaB+dGx45KiXhozVl/SmlkF89cmR2a6/v7/fd2sfmV48caQ/UmPUnSU5YvnNOfW5GlpU6UusolUqSZaWOnPrcjJywXAA1AAAAADQ9AdQAAAAAADDiCKEGAAAAAAAAAAbk9a9/fY+xq6++ut/z9HZMb3MPR7fcckuPsZ122mmrxxx77LE9xn7wgx+ks7OzX+e+5ppreoyNlJ8bfVcqlvL9SX+boxa31rWOoxYl3587U/hknfxq/NNZUerfNWKwrSh15lfjewbvM/SsP78a/3SeK7XXtYbnSu32QJ1Yf66d+Hi+scMjNQ+g3qCS5Bs7PJJrJz5epwoAAAAAgGFBADUAAAAAAIxIQqgBAAAAAAAAgAF529ve1mPsm9/8Ztrb+x6Sd8cdd+S2227rNnbooYdm5syZA65vqN15552ZN29et7FJkyZlv/322+pxe+21Vw466KBuY48//nh+/OMf9+v8X/va13qMvf3tb+/XHIwQf/pTWroKaSvX5/Rt5aSlq5AsX16fAppcOZVcMG1eltU5hHhZqTMXTJuXct0iMJuT9cceaG7Wnw174LlSR13reK7UYQ8AAAAAQDMTQA0AAAAAACOWEGoAAAAAAAAAYEBe8pKX5PDDD+82tmTJknz+85/v8xwf+9jHeoydeeaZA65tqJXL5fzDP/xDj/E3vvGNaW1t3ebxvf0bzz333HR09C1c7qqrrsrdd9/dbeyoo47Kvvvu26fjGTnKXeWcuuJbuWeHzmy/JjUPom4rJ9uvSe6ZWsmpBz8qeLAOyqlkUcuaepeRJFnUssYeqDHrjz3Q3Kw/9gAAAAAAUHcCqAEAAAAAYERrqXcBAAAAAAAAAMDI94lPfCKvf/3ru42de+65OeaYY3LggQdu9dgvfvGLue6667qNvfjFL8473vGOPp179913z6OPPtpt7Ne//nWOOuqorR73f/7P/8m+++6bY445pk/n2dy6dety2mmn5YYbbug2XigUcvbZZ/dpjne961254IILutV/991351/+5V/yb//2b1s9dsGCBb2e55Of/GSfzs3IUiqW8p5FU3LHjMVJ1gdCPzsm6SgN/blb/xxAXUxSrCTv+VNrStNrnIJN2pJc8thL8p7d7kh7oX5vqG6rFHLJYy9JW2dXkq661dFsrD/2QHOz/tgDAABAv5TL3UMZu7rWfxWL9asJABjZBFADAAAAAMCIJ4QaAAAAAAAAABiwY489Nscff3x+8IMfbBxbt25djj766HznO9/Jm9/85h7HdHR05LOf/Ww+9alP9fjeF77whbS2tg5pzXPnzs0//MM/5BWveEXe9a535cQTT8yOO+64zeM6Ojryox/9KP/8z/+cBx98sMf3//Zv/zaveMUr+lRDW1tbLrnkkpxwwgndxi+++OKsXr06F198ccaMGdPjuN///vc58cQTs3Tp0m7jJ510Ul796lf36dyMPCcs3j65ryXnvLYjXYWkVm+r3XCeYiX5Pz8r5IQnS8n4FTU6O5s6dcWkZO1+ec8+96a9Du/zbqskl9+/X05dMimJPVBr1h97oLlZf+wBAACgz9asSTo7u489/3xSKiVjxyYt3lYKAPSDAGoAAAAAAGgIXi0AAAAAAAAAAAyKb3zjG5k7d24ee+yxjWPLly/Pcccdl4MPPjjHH398Zs6cmTVr1uTBBx/MFVdckccff7zHPGeffXbe+MY31qzuW265JbfcckvOOeec7LfffjnggAMya9as7LDDDpk0aVIKhUKWL1+eJ554InfeeWd+97vf9Qh/3uDoo4/Ov//7v/fr/G95y1vyd3/3d/na177WbfzLX/5yvve97+Wd73xn9ttvv0yYMCELFy7Mddddl9/85jc95tltt916zEGD6erKCX8qZ3Ulec/xSWepNqftLCXPjUku/+/khHmVZDtv6q2nU5fslCQ5bZ97U67h+71LleTy+2dtPD/1Yf3ZsAZ/s8+96azhHmixB4YF6489AAAADEi5nKxcmUyYUO9KAICRQgA1AAAAAAA0DCHUAAAAAAAAAMCgmDp1aq6//vq8+tWvzuLFi7t9b86cOZkzZ8425zj55JNzySWXDFGFW9fV1ZV77rkn99xzT1XHv+Utb8l3v/vdjBkzpt/HfvGLX8wzzzyTa665ptv40qVLc+mll27z+OnTp+f666/PDjvs0O9zM4JUKlne2pXLDkjaaxRAvUF7KbnswOTNDyYTa3tqtqCQQpLavcl6/fkYLqx/cxvbVcqEckuea+ms2TknlFsytqvGv3zolfXHHgAAAAakUknWrKl3FQDASCCAGgAAAAAAGooQagAAAAAAAABg0Oy33375wx/+kHe84x258cYb+3xca2tr/uVf/iWf+tSnUiwWh7DCF4wbN25Q5pkxY0Y+//nP58QTT6x6jpaWlnz/+9/Peeedl8985jPp7Ox7oNyRRx6Z7373u9l5552rPj8jw/IxxRx/SvKb3etz/t/snhx/SvKDnycTvcG3bq6Yujjv3ee+dBZquwadhUreu8+8pFLJqUt2qum5eYH159rJS3LOng/W5dzn7PlAUqnkhKVT63J+rD/d90CtPo5gQ8yMPQAAACPM1p7D7UcPAgBoUgKoAQAAAACg4QihBgAAAAAAAAAG1YwZM/K73/0u//mf/5lLL700N998cypbeEPg+PHj89a3vjUf+chHsu+++9a0zi996Us566yz8rOf/Sy//e1vc9ttt2Xx4sV9OnbHHXfM0UcfnXe/+9153etel1KpNOB6isVi/tf/+l95xzvekYsuuihXX311Vq5c2et9C4VCDjvssHzgAx/IW9/61gGfm+Gv3FXOifvdnd9snxeSAGutsD6I+sQ3rMjP/7Q8pboV0ryueNHSvHefBVlX4wDiDdYVKnnvPvcla9fm1Ccm16WGZmb9uXan53LOHguzutCVZS3lmp57WUtn0lHJOXvcn6xdkxMWb1/T82P96b4Hnm8pb3wkNpS/FQp//nreHgAAgJFlzZqkvMn/HTcPkaxUBDkCAFsmgBoAAAAAABqSEGoAAAAAAAAAYNAVCoWcfPLJOfnkk/P000/nD3/4Qx5++OEsX748LS0tmTJlSvbbb78ccsghaWtrG9C5FixYUPWxs2bNyqxZs/KP//iPSZInn3wy8+fPz4IFC/Lss89m1apVqVQqmTBhQrbbbrtMmzYt+++/f6ZPnz6gmrdm3333zTe/+c187Wtfy2233ZZ58+blmWeeSWdnZyZOnJgXv/jF+Yu/+ItMmzZtyGpg+Cl3lXPLxOfrF0C9QSG5ZaeulG9fl1KKdS6mubSnKx+atTDrivV9k/W6YiUfmrUwb10wLm32QM1Yf8qp5PKdn87qUleWtZaHNHS2N5Uky1rXh1ddvvPTOW7hWB9GUEPWn033wPOttQ0h3+B5ewAAAEaOzs6kq+uF211dSUdHUiolRc/pAABbIYAaAAAAAAAalhBqAAAAAAAAAGBITZs2LW9605vqXUafTJ8+PdOnT8/hhx9e71LS1taWv/zLv8xf/uVf1rsUhoFyVzkrh8krfVaOSsrl9qSrVO9Smkpbkr9eNCFf3XNZvUvJXy+akLaOcpL6hGA2I+tPKcnbFozP9dNW1DyAeINKklWlct62YHxKHZ11qqI5WX827IFfTFu5cazy56+htGH+DbEzq0td9gAAAIwE5XLPEOo1a9aHSo4alQzww0EBgAYlgBoAAAAAABqaj60GAAAAAAAAAIARoNC17fvUwnCpo9m0F7tyzYwV9S4jSXLNjBVpL9oItWT9KRcq+fZuy+tdRpLk27stT7kg+KGWrD/lQiVX7boik9qLae0q1CSAeoMN52rtKmRSezFX7brCHgAAgJGqUknWrk06OupdCQAw3Ay3AGoAAAAAAGDQtdS7AAAAAAAAAAAAYOvaWtpy0DOlzJlWrncpOeiJpK1ldBJvRK6lUiqZvqYlS0bVfw9MX9OSUsuo2AO1Y/1JKikUiymkkNpFz/ZUSCGFYjFpbYs9UEvWv9mVklxx++455ZBHc/P2q7Kurbp9UO0OqiQZ3VnIAc+PzRW375ZSa6mq8wMAADXS0tI9SHLzUMn2dkGTAMALhuPjgooPwgMAAAAAgMEmhBoAAAAAAAAAAIa59s723D61/uGzSXL7i5L2QiVjUqx3KdRToRABpLVVGiY/71IK1r8OSinkjEcn55YdVmVdsX7BC2PK6+soFfwOqCXrT5JMLLfknY9tn19PXZlikq5+Hl/Y5M/+7qJikrUtlbzzse0zsdziVwAAAIwEwzFMEgAYfobjYwYB1AAAAAAAMCSEUAMAAAAAAAAAwDBX7iqna5i8/7ermJQ71iZdXnpUS+ViVx6c0F7vMpIkD05oT7ljbUpdQkhrplDJstbhEUS/rLWctK9LKsPkotREVnety6qW/sbODq5VLV1Z3bUuWbeurnU0I+vPtTsvz0dnPZXtOopZMqp/vxM2v2L3N4i6kmS7jmI+OuuJjF1bzgmPT+zX+QEAgBrr7Ey6Nvk/5Obhkq2twh0BAAHUAAAAAADQZLwTDAAAAAAAAAAAhrkxbWOyXUcxz7fWN3wySbZbm4wpjkqKw/BNyQ2tK4Vh8p7rQiVJsSUpCqGulXK68mzb8AihfratnHKplFKsfy21pysfOuDplOt86S0Xkg8d8HTe+sQOabMHasb6U04ll++xPOXi+g8D6O9DgkrWB0+3VJLOQv8CqDccv6y1nB06WnL5Hstz3FPbp9Qj2hoAABg2isXuoZKb/r2lZX0INQDQ3ARQAwAAAABA0xFCDQAAAAAAAAAAw1ypWMrNC4/JrJnXpa6Zj13Jzf+5XUrTxtexiObUluSSebvnjJc+Uu9Scsm83dM2bkK9y2gqbUn+7b7dhsX6/9t9u1n/OmhL8ukHds3f1XkPVP5chz1QW9afUpKvzNsz+x9+d9qrfCzY1lXImK5i1hS7sq7Y/zCX9mLSXqzkK/P2TGncqOqKAAAAamPduqRUeuF2S0vS1rb+z5aW9d8bjsGTAEBtDMfHAQKoAQAAAABgyAmhBgAAAAAAAACAYa69sz1H7Xljil1JVx3rKBaSo966IotubklbXdOwm085lVyz87K0VJLOOr4vvKWSXLPzsrznmV1SyjB8g3qDsv5s2AOlOu+Bkj1QF9afcip53/73Z2VL9Y8E1xUrqRS60l6oPsxlZUtX3rf/gvzkrpfYAwAAMJyVSkmx2P12W9sLY62t9akLgKotWbIkt912W+bPn5/ly5entbU1kydPzqxZs3LwwQen1bWdPyucX0jl3K08B9jHAOqOJDXbVQKoAQAAAACgJoRQAwAAAAAAAADAMNfW0pa/mfq6/NvT19a1jkqSv5k/IW2r19a1juZUydLSupTrnPdYLiRLS+uS1asT4ZM1ZP2xB5qb9Wf9HugYQIB0kgEFUCdJR6FiDwAAwEjQ3p50bfIhNp2dycqV60Oox41LRo+uX20A9MvVV1+dSy+9NDfddFMqWwjqnTBhQk4++eR85CMfyd57713jChlOCucXNv65MYi6j6HTm+rY5M8hD6IWQA0AAAAAADUjhBoAAAAAAAAAAEaAV+z/xoz7ybVZ2Va/GsZ1JK9YvUNSKtWviCZVSvLqpdtl7nar611KXr10u5RKXnpWS9Yfe6C5WX/sAQAAoF82D5ssFJKWlvVfSfeAagCGpccffzynnnpqfvvb327zvitWrMj//b//N9/+9rfziU98Ip/4xCdSqCJ4mJFtQwB1kqSSFD5VSOWC/s/T0cvtIQuiFkANAAAAAAA15RXAAAAAAAAAAAAwzJW7yrn8gasyoT2pJFlVhyDqce3JhPbk8pnLctza3VOKN6/XUjmV3DupPZM6W7KspTP1eEt2IcmkzpbcO6k95XFj7YEasv7YA83N+mMPAAAA/bJq1QuB08n6v48d+8Lt1fX/gBsAtuyBBx7IUUcdlSeffLJfx7W3t+dTn/pU5s2bl29/+9sp+VDZprF5AHWSpJgUPpl+BVFvHkC96figB1ELoAYAAAAAgJoTQg0AAAAAAAAAAMNcqVjKFRNPzylLf5O7JncmqW0Q9bj2ZGJ7sv9ThVzxp51SmlRJ6hJ/2LxKSa64d7+cMuve3Dpxec0DKDcETx66fGKuuHe/lLrsgVqy/tgDzc36Mxh7YNPI6GqOtQcAAGAEqVS2HuxYLteuFgD6ZenSpTnmmGN6DaA+6KCDcvzxx2fmzJlZs2ZNHnjggXz3u9/NE0880e1+V155ZaZNm5ZLLrmkRlVTTxsDqHv71V9Mzk9ybh/m2VIA9abfH7QgagHUAAAAAABQF0KoAQAAAAAAAABgBJh4z0P53q92yClHLcmtL6pkVQ3P3daV7L84+d61xUyc9HzSMq6GZ2eDiUm+d9tuOeXA+bl10qo811q7sJhJHaUcumxsvnf7bpnYubZm5+UF1p/N98Cy1nJNImALsQeGA+vPQPZAoZfb/TnWHgAAgBFm7druQdOFzf5XsK2QagDq5owzzsjChQu7jU2YMCHf+c53ctxxx/W4/4UXXpgLL7ww5513XrfxSy+9NMcee2z+6q/+aijLpc62GkCd5Lzzk49l2wHS2wqg3vR+Aw6i9hgEAAAAAADqpljvAgAAAAAAAAAAgD64555M7CzlnQ+OzfK22p56eVvyzj8WMrGjmKxZU9uT083EzlK+d/se2X11W49AyaFSSLL76rZ87/Y9MrGzVKOz0hvrz4Y9cOiycZnUURryffBC+Ow4e2AYsP5Uswe2dJ++HmsPAAAAANTGL37xi/zXf/1Xt7G2trb8z//8T68B1EnS2tqac889N5dcckmP7/3DP/xDOjs7h6JUhoFtBVDn/OSf88LzgFsKmu5rAHW19+9GADUAAAAAANSVEGoAAAAAAAAAABgJli7NtbuvzftfvSrlGr/qp1xM3v/GSq7dpyvxZvW6+9WU5XlqdGdKXbU5X6kreWp0Z341ZXltTshWWX82DaEd2zm0vxDGdhaFzw4z1p/+BFFvK2h6W8cKoAYAAAConQsuuKDH2LnnnpuDDz54m8d+4AMfyDHHHNNt7KGHHsp3v/vdQauP4aMvAdRr0zNIYvMA6WoDpas6TgA1AAAAAADUnRBqAAAAAAAAAAAYAa7d7sm8++jnsrK1Pudf2Za8+83lXLtHtW9HZjBcu9NzOWf2wqwpdtUsjLxcTNYUu3LO7IW5dqfnanNSemX92WBiZynvfGxyOouVbYbMVquQpLNYyTsfmyx8dpix/vQliLqve2NLxwqgBgAAAKide+65JzfccEO3sSlTpuTDH/5wn+f4zGc+02PsK1/5yoBrY3jZGEC9JVsIoN6gY7M/q9Wv4wVQAwAAAADAsNBS7wIAAAAAAAAAAICtK3eV8097PVy3AOoNVrYl/3RUe467a3x6jztkKF07eUnO2euxrC5WsqylnFq9XbuSZFlrOSkUcs5LH0tGj8kJS6fW6OxsYP3Z1LWTl+Sjez2R7Ttb80xrezqH4JJcqiTbd7bmo7OfyNi2cdZ9GLH+JMnEJN97YP+cMuue3DpheZ5r6dz4vcKfv/ryu2LD9tn0vpM6W3Loyon53gOzM3GMl5sDAMCIs3JlvSsAoJ+uuuqqHmOnn3562tra+jzHQQcdlIMOOihz587dOHbLLbfkkUceycyZMwelTuqrWwD1Fp7821oA9QaD9ZHDHUm22b4WQA0AAAAAAMOGVwUDAAAAAAAAAMAwV+4qZ1HbunqXkSRZNL4r5UKEUNdYOZVcPv3JrC6Ws6yls2YBxBtUkixr6Uw6k8unP5njnp1qD9SQ9WdT105eknP2fDBdqWRdsStdQ7QUXYVkXbEro7uKOWevB5NCQRDxMGD92dTErtZ8b95LctTLbs9z49eHzG0IoO6PzYOod187Ot+b95JM7Grp/2QAAED9FTyQBxhpfv7zn/cYO+mkk/o9z0knndQthHrD3GeeeWbVtTF8VM6trA+i3kKjaM352w6gHkwCqAEAAAAAYGSpZR8BAAAAAAAAAACoQrmrnEppeASHVArrA3GprVIKedvTO2ZlqX4//UqSlaVy3vb0jgKIa8z6s8H6AOIH0pVK1ha78vwQhpJXkjzf0pm1xa50pZJz9nwg105eMkRnoy+sP7351aTnsmD02iTVBVBvsOmxC0avza8mPTcI1QEAAACwLatWrcrtt9/ebWzs2LE58MAD+z3XEUcc0WPshhtuqLo2hp/KuZWkq+f4mvOTUg3rEEANAAAAAAAjjxBqAAAAAAAAAAAY5sa0jcnFLzq93mUkSS6+a6eMqelbmEnWB39fssuidBbq+4btzsL6OgSR15b1J9lyAPFQhhALIh4+rD+9uXbykrxv73l5vqUzxVQfQL1BIetfXP58S2fet/c86w0AAABQA3feeWe6urqnCh988MFpaWnp91yHHHJIWlu7xwPPnTt3QPUx/FQuSLcg6tUCqAEAAAAAgD4QQg0AAAAAAAAAAMNcuaucC5/9Yb3LSJJcOOsZAbR10pmuuv/kK3+ug9qz/s2tnEou3+mJmgUQb9BbEPHlOz3h90CNWX96syGAellLZ9VzbC20epkgagAAAICauO+++3qM7bnnnlXN1dbWll122aXb2Pz589PZWf1zSAwzhfXP6m0Iol59ftL/uPLqCaAGAAAAAICRq5Y9BQAAAAAAAAAAoArtne15au3wCAB8alRn2h9fkDHlUr1LaS6FSp4/YF29q0iSPJ91yaKFSWVr0ZUMqkIlhdkd9a4iSVJo77D+dVBKcsWT2+Wo167IXdvXJoB4gw3neb7Umd2Xt+WKX26XUseiGp2dxPrT07UzVuZ9ezydZaWurW+Gvlyqt3L8slJn3rfHPckz03LCovH9LRMAAKiXFSvqXQEA/bBgwYIeY7vttlvV8+2666555JFHNt4ul8tZuHBhXvziF1c9J8NT5YKklt0jAdQAAAAAADCyCaEGAAAAAAAAAIBhrtxVTiGFVAqV2qVObkEhSXnpkqTTS49qqVzsytK2znqXkSRZ2taZ8tIlKXUV611K8yhUkvLwWP+UO5NnnhFCXQe/2qM9T43qSLGSdNb4x19JUqokT43qyK/GLs4J89tqWwDWn42u3aM97/uL1Vk2GMvQh8eVy9q68r6/WJwsH2vtAQAAAIbA4sWLe4zNmDGj6vl6O/app56qewj1l770pXz5y18e8vPMnz9/yM8xnLSmNkHUAqgBAAAAAGDk804wAAAAAAAAAAAY5saPHp9b33dr/uKyv6h+kkpSTNKVrE+SrtKt3x2f8QKoa65UKeSQJ4v5n9266ppDXkhyyJPFlAQQ19y0VYW0TE4665j93dK1vg5qr1yo5PLZ7VnTkpTrtAfKxWRNS3L57PYc93Cr60ANWX82uHaP9rzvtauzbFRtz7tsVPK+165OEkHUAAAAAIPs2Wef7TE2fvz4qufr7dilS5dWPd9gWbJkSe699956l9GQhjqIWgA1AAAAAAA0hjq+HQUAAAAAAAAAAOirq++9ev1fqsl8rLzwQqHin29XpZJcvXd7lQczEKVKIafPG5Vi18DmGWhkaLErOX3eKOGjNVaqFPKu+wYe+jkYq/au+9qsfx2UKoW87f7WrGytDCiIfiArV0mysrWSt90vgLjWrD9J/QKoN9gQRH3tHh4LAgAAAAymVatW9RgbM2ZM1fP1duzq1aurno+RYZtB0UM1rwBqAAAAAAAYMVrqXQAAQ6clLdll4i5bvc+41nE1qoZ6mDJ2ylb3wLg269/odp24a5a3L9/i93cYvUMNq6HWJo6auM3fAzS2F018UcqV8ha/v+P4HWtYDbU2umX0Nq8Bo1rq9O5kAAAAAKDf2jvb8627vpVioZiuSj9TiDcJoN59WbJg0vrbXZX0L43yz/N8a3ZnLrijLW1dxW0ewuApFyr5/EEr0zWA3M9ikpaupLOYVJtl3VVIPn9QR962cKIQ0hrasP7lOq9/2frXzYY90FnnPdBpD9SF9adcqORfD105oADqQl7YA9XGwiwblfzroe057okJ9gAAAIwkLd5GCjCcdXR09BgbPXp01fP1FkLd3u6DxRpCYevPybUm6bmbqieAGgAAAAAAGotXDwA0sJaWlnz8yI/Xuwzq6Mjdj8yRux9Z7zKoo3NecU69S6COZk+bndnTZte7DOro3fu/u94lUEdTxk/xWBAAAAAAGkhbS1vmnjE3B3ztgDy75tl0patv6YGbBFB/+Kbkol8lH31NcvFf9j+IulhIduhozdy7D0nbvtW/8Z1qVTK15a605bm0p9Kv8MjCn78mdbbkTc9OyY93eCbLWjpTSf9CKAtJ2lLI1JaJyX6z0r8UcwbG+mMPNDfrz/o90Jrn0lHo+8ptukqb74Eed+iD1oo9AAAADWHixKStrd5VALAVhW2EDff32Iqw4MZQqWw1iHowA6g3zLfNIGoAAAAAAGDEKG77LgAAAAAAAAAAQL3tMnGX3PF3d2SHMTukWChuO/evlwDqZP2fH75p/d+Lf77fthSzPoD6jtsPyS7tAqjroZRCvjfvJTni+UlpqxT6HPu4afjoZQ/sl/93/6xc9sB+mdTZsvF7fZ2nrVLIEc9PyvfmvSQlwZM1Zf2xB5qb9WfTPdBa6f/Pv7c90F+t9gAAADSOWbPqXQEAm2ht7Rnzu2bNmqrn6+3YNh8+0PAGO4B6qOcFAAAAAABqr/+vIAYAAAAAAAAAAOpiQxD1AV87IM+ueTZd6eo9RHrTAOo/tOSi31SS4gt3vOg3haTYlYtfWUkxSVclW0yiFEA9fEwst+Sae1+aE2f9MTdstyzthcpWM8Q3Dx89YenUJFn/5wPJ+/ael2UtnUm2nkW+afjoNfe+NBPLXnZWD9Yfe6C5WX823wMdhT58kkj6tge2pdUeAACAxrHDDsnHPlbvKgDYxNixY3uMDXYI9bhx46qeb7BMnTo1s2rwQQjz58/PunXrhvw8w8lQB0V3JOkZlQ4AAAAAAIw0XgUMAAAAAAAAAAAjyDaDqDcNoL5rXC66a2IycW2ydm3S1bXxbhf9LkmxIxcf2rXFIOpikh06W3PHn/4yuxTGJKOG9J9GH0zMqFwz/6CcuNcduWHCc2kvdPUaHvpC+GhrLnvkJTlh5U7d1u+Elbskj7TkfTP/lGUt69+avqV52irFHLFi+1wz/4BMbGn1qrM6sv7YA83N+rP5HugodG31/v3ZA1vSag8AAEBj2H77ZNas5AMfSMaPr3c1AGxi8uTJPcZWrlxZ9Xy9HdvbOWrtrLPOyllnnTXk55k9e3buvffeIT/PcDHUAdQbrE3i44oBAAAAAGBk8zJgAAAAAAAAAAAYYXoNok56BlD/YeL6G6NHr//azEV3Jxm9PBfvv2p9EHWyMYi6WChmhzE75I6/uyO7TNxlaP9B9MvEJNesW54Tv39ibnj0hrSX21PZJD60kEIKhUImjZ6Uy958WU7Y74Re5zkhSeZdm/f96H1ZtnZZUqn0mKet1JYjdjsi15x8TSaOmjik/y76xvpjDzQ368/me6Cjq/eYmX7vgV60FlvtAQAAAIAhtuOOO/YYe+yxx6qeb9GiRX06ByNf4ZPJ0guSCUN8nnKSMecm6UoqFwzxyQAAAAAAgCFT3PZdAAAAAAAAAACA4WZDEPUOY3ZIsbD+ZUDFYjEpFvPhZ/Z+IYB6Gy76w8R8eOk+SbG4/vgIoB4JJo6amGtOviZH7HZE2kptKfw5Pbyv4aMbnLDfCbnszZdl0uhJKRQK3eYRPjp8WX/sgeZm/dl0D7QWW3t8v5o9sDkB1AAAAAC1MXPmzB5jjz76aNXzLVy4sNvtUqmUXXfdter5GGYq6z9MsPDJJMVk8rnJ8iE8XVf+HECd9ecrfLJ7HQAAAAAAwMghhBoAAAAAAAAAAEao3oKoP3zYh3PRl+5P5sxJvvKV5MwzkyOPTGbNSvbaa/2fRx65fvwrX0nmzs1FX7wvHz7sw0kEUI8kvYWQ9id8dIPeQkiFjw5/1h97oLlZf7YURD2QPbCBAGoAAACA2tlnn316jD300ENVzdXe3p5FixZ1G9tjjz3S0tJS1XwMTxsCqDeYcm6ybAjO05Vk9OaDmwZRAwAAAAAAI4oQagAAAAAAAAAAGME2BFFPGTslH37lh3PRMRet/8aLXpQcf3zyyU8mV12V/PKXyW9/u/7Pq65aP3788cn06UmSi465KB9+5YczZewUAdQjyOYhpP0Nntxg0wBK4aMjh/XHHmhu1p/Ng6gHYw8IoAYAAACorQMOOCDFYve3/M+ZMyednZ39nmvOnDnp6OjoNnbggQcOqD6Gl8L5hV4TIqadmzw7iOfZGEB9bi/fLP65DgAAAAAAYETxsaUAAAAAAAAAADDC7TJxlyz64KK0tbQNaJ6LjrkoFxx9wYDnobY2BFC+45p35L0HvLffwZMbbDju/97xf/PdE78reHKEsP7YA83N+mMPAAAAAIxs48aNywEHHJC5c+duHFu1alXuuOOOHHLIIf2a68Ybb+wxduSRRw64RoaHjcHPhSSVnt/f6dzkifOTKQM8TyVbCaDecP4/11M5t5dCAAAAAACAYUkINQAAAAAAAAAANIDBCo4WQD0yTRw1MT942w9SKpYGNM8J+52Q4/Y5bsDzUFvWH3uguVl/7AEAAACAke31r399txDqJLn66qv7HUJ99dVX9zo3jaFybmWbQdQvOjdZdH6y41bmaU3SsaVzJPlMss0A6g31AAAAAAAAI0ex3gUAAAAAAAAAAAAwcIMVGCl4cmSy/tgDzc36Yw8AAAAAjFxve9vbeox985vfTHt7e5/nuOOOO3Lbbbd1Gzv00EMzc+bMAdfH8NGX4OcZ5yZPbOF7rZv92W3urA+gPm9LAdT9rAMAAAAAABhehFADAAAAAAAAAAAAAAAAAABAHbzkJS/J4Ycf3m1syZIl+fznP9/nOT72sY/1GDvzzDMHXBvDz8YA6MKW77P7ucmjm41tHjy96e1Kkh9kGwHUhc3ODwAAAAAAjChCqAEAAAAAAAAAAAAAAAAAAKBOPvGJT/QYO/fcc3P77bdv89gvfvGLue6667qNvfjFL8473vGOQauP4aUvQdR7nZs8+Oe/bx5AnU3GNwRQnyyAGgAAAAAAGpoQagAAAAAAAAAAAAAAAAAAAKiTY489Nscff3y3sXXr1uXoo4/Oj370o16P6ejoyAUXXJBzzjmnx/e+8IUvpLV1S9HDNIK+BFHP/uSWA6g3aEty8ie3cgcB1AAAAAAA0BBa6l0AAAAAAAAAAAAAAAAAAAAANLNvfOMbmTt3bh577LGNY8uXL89xxx2Xgw8+OMcff3xmzpyZNWvW5MEHH8wVV1yRxx9/vMc8Z599dt74xjfWsnTqpHJuJYXzCy8EUW+aE92VVC7o4zwXJIVPJiluMrhJuLUAagAAAAAAGPmEUAMAAAAAAAAAAAAAAAAAAEAdTZ06Nddff31e/epXZ/Hixd2+N2fOnMyZM2ebc5x88sm55JJLhqhChqONQdTJ+uDoSvoVQL1xnk2DqAVQAwAAAABAwylu+y4AAAAAAAAAAAAAAAAAAADAUNpvv/3yhz/8IYcffni/jmttbc25556bK6+8MqVSaYiqY7jqFhRdSCr/q5JU+hkeXamsP04ANQAAAAAANCQh1AAAAAAAAAAAAAAAAAAAADAMzJgxI7/73e/yve99L4cddlgKhcIW7zt+/Picfvrpufvuu3PeeeelWBQf0Kw2BEZ3C46uVPr+tbV5AAAAAACAEa+l3gUAAAAAAAAAAAAAAAAAAAAA6xUKhZx88sk5+eST8/TTT+cPf/hDHn744SxfvjwtLS2ZMmVK9ttvvxxyyCFpa2urd7kME4MVHC2AGgAAAAAAGo8QagAAAAAAAAAAAAAAAAAAABiGpk2blje96U31LgMAAAAAAIARrFjvAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYfEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKABCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKABCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKABCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKABCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQIVKpVKpdxEAg2HChAlZuXJlj/FRo0Zljz32qENFAAAAAADAcDN//vysW7eux/j48eOzYsWKOlQEwGDRMwYAAAAAALZFzxigsekbAwAAAAAAW9PMPWMh1EDDGD16dK8XcwAAAAAAgG0ZNWpU1q5dW+8yABgAPWMAAAAAAKBaesYAjUHfGAAAAAAAqEYz9IyL9S4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMEnhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlBLvQsAGCyTJk3KsmXLeoy3trZm1113rX1Bw8j8+fOzbt26HuOjRo3KHnvsUYeKgFpyDYDm5hoAzc01AJqbawA0N9cA2LKFCxemo6Ojx/ikSZNqXwwAg0rPeMs8PoTm5hoAzc01AJqbawDgOgDNzTUAeqdnDNDY9I1757EhNDfXAMB1AJqbawA0N9cAaG6uAdC7Zu4ZC6EGGsbixYvrXcKwNXv27Nx77709xvfYY4/cc889dagIqCXXAGhurgHQ3FwDoLm5BkBzcw0AAJqRnvGWeXwIzc01AJqbawA0N9cAwHUAmptrAADQjPSNe+exITQ31wDAdQCam2sANDfXAGhurgHA5or1LgAAAAAAAAAAAAAAAAAAAAAAAAAAAACAwSeEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKABCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKABCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAYkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgAQmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGpAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABoQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABpQS70LAGDo/f3f/32WLFnSY3zq1Kl1qAaoNdcAaG6uAdDcXAOgubkGQHNzDQAAYFMeH0Jzcw2A5uYaAM3NNQBwHYDm5hoAAMAGHhtCc3MNAFwHoLm5BkBzcw2A5uYaAGyuUKlUKvUuAgAAAAAAAAAAAAAAAAAAAAAAAAAAAIDBVax3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMPiHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAxJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCAhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQgIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQgIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEADEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ICEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAxJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCAhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQgIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQgIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEADEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ICEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAxJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCAhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANKCWehcAwNBasmRJbrvttsyfPz/Lly9Pa2trJk+enFmzZuXggw9Oa2trvUsEhsiiRYtyzz335LHHHsuyZcvS3t6e7bffPttvv3323XffvPSlL02pVKp3mQBADZTL5dx999257777snjx4qxatSqjRo3KxIkTs/vuu2fvvffOzJkz610mMIjK5XLuvffe3HPPPXn22Wfz/PPPp1QqZdKkSZk6dWoOOOCA7L777vUuEximHnroodx5551ZtGhRVq1alTFjxuRFL3pRXvayl2X27Nn1Lg8AgH7SM4bmpWcMAGygZwzNR88YGAg9YwCAxqNvDM1JzxgA2EDPGJqPnjEwUPrG0JiEUAM0qKuvvjqXXnppbrrpplQqlV7vM2HChJx88sn5yEc+kr333rvGFQKD7b777st1112X//mf/8nvfve7LFu2bKv3HzduXI466qi8//3vzxve8IYUi8XaFArUVaVSydFHH53f/va3Pb73qle9Kr/5zW9qXxQwZH7961/n61//en76059m+fLlW73vlClTcthhh+UNb3hDTjrppEyePLlGVQKD6frrr89ll12Wn/zkJ1m9evVW7zt16tSccsopOeOMM/LSl760RhUCW/Pss89mzpw5G7/mzp2bhQsX9rjflp7vG4g1a9bkK1/5Sr761a/mwQcf3OL9dtlll7z3ve/NBz/4wUyaNGnQ6wAAYPDoGUPz0TMG+kLPGJqLnjE0Hz1jGNn0jAEAGGz6xtBc9IyBvtAzqutGlAAASBFJREFUhuaiZwzNR88YRj59Y2AoFSpDcfUAoG4ef/zxnHrqqb0+4bslbW1t+cQnPpFPfOITKRQKQ1gdMNjWrFmTiy++ON///vfzpz/9qep5Zs+enW9961s5+OCDB7E6YDj6whe+kA984AO9fk9zGBrHvHnzcuaZZ/br/wWb+va3v513vvOdg1wVMJQeeuihnHHGGfn1r3/d72MLhULOOOOMXHTRRdluu+2GoDpgS/70pz/lJz/5SebOnZs5c+bkkUce6dNxg93auemmm3Lqqafm0Ucf7fMxU6dOzWWXXZbjjjtuUGsBAGDg9IyhuegZA/2lZwzNQc8Ymo+eMYxMesYAAAwVfWNoHnrGQH/pGUNz0DOG5qNnDCOXvjFQS0KoARrIAw88kKOOOipPPvlkVce//e1vz7e//e2USqVBrgwYKgsWLMjMmTMHZa6WlpZ8/vOfz9lnnz0o8wHDz0MPPZT9999/i59WqDkMjeE//uM/8v73vz9r1qypeg7NYRhZbrnllhx77LHb/CTybZk1a1Z+/etfZ9q0aYNUGbAtH/zgB3PppZf2+7jBbO3813/9V972trelo6Oj38cWCoV88YtfzN///d8PWj0AAAyMnjE0Hz1joD/0jKE56BlD89EzhpFLzxgAgKGgbwzNRc8Y6A89Y2gOesbQfPSMYWTTNwZqqaXeBQAwOJYuXZpjjjmm16bwQQcdlOOPPz4zZ87MmjVr8sADD+S73/1unnjiiW73u/LKKzNt2rRccsklNaoaGEp77rlnXvWqV2WvvfbKtGnTMm7cuDz77LO5884789Of/jSLFi3qdv/Ozs6cc845aWtryxlnnFGnqoGh0tXVldNPP32LjWGgMXz+85/Phz70oR7jhUIhBxxwQI455pjsvPPOmTZtWjo7O/Pcc8/lvvvuy5133plbb701nZ2ddagaGIiHH354i43h6dOn57jjjsv++++fyZMnp6OjI4sXL84tt9ySH//4x1m7dm23+99777153etel9tuuy2tra21+icAdfT73/++16ZwsVjMm970phx++OGZMWNGlixZkrvuuitXXnllt/9TVCqVnH322Zk+fXpOOOGEWpcPAMBm9IyBzekZA5vSM4bmoGcMzUfPGBgIPWMAgMajbwxsSs8Y2JSeMTQHPWNoPnrGwEDpG0NzEUIN0CDOOOOMLFy4sNvYhAkT8p3vfCfHHXdcj/tfeOGFufDCC3Peeed1G7/00ktz7LHH5q/+6q+GslxgiMyaNSt/8zd/k3e84x3Zeeedt3i/zs7OfPOb38yHPvShrFy5stv3zjnnnBx11FHZe++9h7pcoIYuueSS3HjjjRtvH3roobn11lvrWBEw2K688sr84z/+Y4/xk08+OZ/97Gczc+bMrR6/fPny/PSnP81ll12WYrE4VGUCg+yss87q0RgeNWpUPvvZz+ass87aYpN36dKl+eAHP5jvfOc73cbvuuuuXHzxxfnYxz42ZDUD29bW1paXvOQlOfjgg/P9738/y5YtG/RzrFq1Km9/+9t7NIX32WefXHvttdlvv/16HPO5z30up59+en74wx9uHKtUKjn99NPzyle+MjvttNOg1wkAQN/pGQOJnjGwZXrG0Pj0jKE56RlDY9IzBgCgWvrGgJ4xsCV6xtD49IyhOekZQ+PSNwaGQqFSqVTqXQQAA/OLX/wir3vd67qNtbW15aabbsrBBx+81WMvvfTSfPCDH+w2tueee2bevHlpafFZBTDcLViwIDNnzszRRx+d8847L0ceeWS/jr/77rvzqle9qsd/MN/0pjflRz/60SBWCtTTAw88kJe//OVZs2ZNkmTy5Mn56U9/mkMPPbTb/V71qlflN7/5TR0qBAbqgQceyEEHHdTtRV+tra254oor8ta3vrXf81UqlRQKhcEsERgC8+bNy6xZs3qMX3PNNfnrv/7rPs1x5pln5qtf/Wq3sR133DFPPPGEF4pADXzwgx/Ml770pcyaNSsHH3zwxq/9998/bW1tSZLdd989jz76aLfjBqO18/GPfzwXXnhht7E999wzt956a3bYYYctHlcul3PKKafkmmuu6TZ+2mmn5Vvf+taA6wIAoDp6xtC89IyBvtAzhsanZwzNSc8YRj49YwAABpO+MTQnPWOgL/SMofHpGUNz0jOGxqBvDNSSEGqABnDkkUfmhhtu6Db2r//6r/mXf/mXPh3/ute9Lr/4xS+6jf2///f/8u53v3vQagSGxnPPPbexwVuta665JieddFK3sVKplMWLF2fKlCkDLRGos66urhx++OG5+eabN459+9vfzuGHH97j00o1h2Hkes1rXpP/+Z//6TZ29dVX58QTT6xTRUAtXHjhhfn4xz/ebewtb3lLrr322j7PsWrVquyxxx556qmnuo3fdNNNOeywwwalTmDLnnzyyUyaNCljxozZ4n2GojG8bNmy7Lbbbt0+4bxYLOa3v/1tDj/88G0ev3Tp0syePbvbtaNUKuWBBx7Ii1/84gHVBgBAdfSMoXnpGQPbomcMzUHPGJqTnjGMfHrGAAAMJn1jaE56xsC26BlDc9AzhuakZwyNQd8YqCUfMQEwwt1zzz09msJTpkzJhz/84T7P8ZnPfKbH2Fe+8pUB1wYMve23335AjeEkOfHEE/Oyl72s21i5XM7PfvazAc0LDA8XX3xxt8bwG9/4xrzzne+sY0XAYPvxj3/cozH87ne/W2MYmsB9993XY+ztb397v+YYN25c3vKWt/QYv//++6stC+iH6dOnb7UpPFSuuOKKbk3hZP3/FfrSFE6SyZMn55/+6Z+6jZXL5XzjG98YtBoBAOg7PWNobnrGwLboGUPj0zOG5qVnDCOfnjEAAINF3xial54xsC16xtD49IyheekZQ2PQNwZqSQg1wAh31VVX9Rg7/fTT09bW1uc5DjrooBx00EHdxm655ZY88sgjA64PGBn+6q/+qsfYww8/XIdKgME0b968fOpTn9p4e+LEifnqV79ax4qAoXDRRRd1uz1q1KhcfPHFdaoGqKWnn366x9h+++3X73l6O2bzTywGGktvzym+//3v79ccp512WkaNGtVt7MorrxxQXQAAVEfPGBgMesbQmPSMoTnoGUPz0jMGqqVnDADQePSNgYHSM4bGpGcMzUHPGJqXnjEwEPrG0JyEUAOMcD//+c97jJ100kn9nqe3Y3qbG2hMu+66a4+xxYsX16ESYLCUy+WcdtppWbdu3caxiy++OLvssksdqwIG2/33358bb7yx29ib3vSmTJ06tU4VAbXU24vC+/NC8Q02b+wkyejRo6uqCRj+nn/++dx8883dxiZMmJBjjz22X/NMmTIlRx11VLexRx99NPPmzRtoiQAA9JOeMTAY9Iyh8egZQ3PQM4bmpmcMVEPPGACgMekbAwOlZwyNR88YmoOeMTQ3PWOgWvrG0LyEUAOMYKtWrcrtt9/ebWzs2LE58MAD+z3XEUcc0WPshhtuqLo2YGRZvXp1j7ExY8bUoRJgsHzuc5/LbbfdtvH2a17zmvzt3/5tHSsChsJ//ud/9hh7+9vfXodKgHqYOXNmj7FFixb1e57ejtljjz2qqgkY/m6++eaUy+VuY694xStSKpX6PZfnFAEA6k/PGBgsesbQePSMoTnoGUNz0zMGqqFnDADQePSNgcGgZwyNR88YmoOeMTQ3PWOgWvrG0LyEUAOMYHfeeWe6urq6jR188MFpaWnp91yHHHJIWltbu43NnTt3QPUBI8dDDz3UY2z69Ol1qAQYDPfcc0/OO++8jbfHjRuXb3zjG/UrCBgyv/jFL3qMveIVr6hDJUA9vPrVr+4x9vOf/7zf8/zsZz/rdrutrS2HH3541XUBw1tvz/m98pWvrGquww47rE/zAwAwdPSMgcGiZwyNRc8YmoeeMTQ3PWOgGnrGAACNR98YGAx6xtBY9IyheegZQ3PTMwaqpW8MzUsINcAIdt999/UY23PPPauaq62tLbvssku3sfnz56ezs7Oq+YCRo7OzMz/4wQ96jB9yyCF1qAYYqM7Ozpx22mlpb2/fOHbhhRf2+gmGwMhWLpdz6623dhubMmVKdt555423n3/++XzpS1/KG9/4xsyYMSOjRo3K+PHjs/vuu+eVr3xlPvrRj+ZXv/pVjxecAiPDG9/4xuy2227dxr761a/m0Ucf7fMcV111Ve64445uY+9617uy/fbbD0qNwPAzmM8p9vZp5vfff39VcwEAUB09Y2Aw6BlDY9EzhuahZwzoGQPV0DMGAGg8+sbAQOkZQ2PRM4bmoWcM6BkD1dI3huYlhBpgBFuwYEGPsc3/U9gfu+66a7fb5XI5CxcurHo+YGT44Q9/mMWLF3cb22GHHXwiGYxQn/nMZ7p9Gthhhx2Ws88+u44VAUPlgQceyLp167qN7bXXXhv//vWvfz0zZszI2WefnZ/+9Kd57LHH0t7enlWrVuXRRx/NLbfcks997nN57Wtfm5e97GX5r//6r1r/E4ABamlpyZe//OVuY6tWrcqxxx6bBx54YJvH//d//3fe8573dBvbcccd85nPfGZQ6wSGl8F8TnHnnXdOqVTqNvbwww9XNRcAANXRMwYGg54xNBY9Y2geesaAnjFQDT1jAIDGo28MDJSeMTQWPWNoHnrGgJ4xUC19Y2heQqgBRrDNmzlJMmPGjKrn6+3Yp556qur5gOFv7dq1+djHPtZj/PTTT09LS0sdKgIG4u67784FF1yw8fbo0aNz+eWXp1j0Xz9oRL096brddttl3bp1efOb35y/+7u/y4oVK/o01z333JMTTzwxZ5xxRjo6Oga7VGAIveENb8gXvvCFFAqFjWP3339/Xv7yl+f9739/rrvuujz11FPp6OjI6tWr8/DDD+fKK6/M61//+pxwwglZs2bNxuOmTJmS6667LlOnTq3HPwWokcF8TrFUKmX69OndxjyfCABQW3rGwEDpGUNj0TOG5qJnDCR6xkD/6RkDADQefWNgIPSMobHoGUNz0TMGEj1joDr6xtC8POMHMII9++yzPcbGjx9f9Xy9Hbt06dKq5wOGv4997GM9Prls++23z0c/+tE6VQRUq6OjI6eddlq3ps65556bffbZp45VAUPpySef7DE2fvz4vOtd78qPf/zjbuOFQiHTpk3LDjvskGXLluWpp55KV1dXj+O/8Y1v5IknnsgPf/hDLyyBEeScc87J3nvvnfe///0bP3V0zZo1+drXvpavfe1rfZrjuOOOy1e+8pW86EUvGsJKgeFgqJ9TbG9vz8qVKwc0JwAAfadnDAyUnjE0Dj1jaD56xsAGesZAf+gZAwA0Hn1jYCD0jKFx6BlD89EzBjbQMwb6S98YmpdH+QAj2KpVq3qMjRkzpur5ejt29erVVc8HDG/XXHNNLrnkkh7jF198sU8kgxHo05/+dO68886Ntw866KD80z/9U/0KAobcc88912PsJz/5Sf7zP/9z4+3Jkyfn3//93/PYY49l8eLFuffee/PEE0/kqaeeyte//vXsvPPOvc5x3nnnDWXpwBA49thj88ADD+Q73/lOXv3qV/fpmGKxmDPOOCN33nlnfvCDH2gMQ5PwnCIAQGPx+A4YCD1jaCx6xtB89IyBTekZA33lOUUAgMbjMR5QLT1jaCx6xtB89IyBTekZA/3hOUVoXkKoAUawTT+BcIPRo0dXPV9vD+La29urng8YvubOnZt3v/vdPcZPPPHEvOc976lDRcBA3HHHHbnwwgs33m5tbc3ll1+eUqlUx6qAobZu3boeY2vWrNn495e//OW555578v/9f/9fj4bPlClT8rd/+7eZN29ejj766B7zfPrTn8699947+EUDQ6ZSqeTnP/95/uM//iM33HBDn47p6urK5Zdfno985CO57rrrhrhCYLjwnCIAQGPx+A6olp4xNBY9Y2hOesbApvSMgb7ynCIAQOPxGA+ohp4xNBY9Y2hOesbApvSMgf7wnCI0LyHUAA2mUCgM6rGVSmUg5QDD0MMPP5w3velNPT4paN999803v/nNOlUFVKu9vT2nnXZaOjs7N4597GMfy8te9rI6VgXUwtYeq0+bNi3XX399dtxxx63OMWHChPz4xz/O3nvv3WPuz372s4NSJzD0Hn744Rx55JE57rjjcv311/do+kyZMiX77rtv9txzz0yaNKnb9zo7O3P99dfn9a9/fd7ylrfkmWeeqWHlwHDhOUUAgMbi8R2wLXrG0Fj0jKF56RkDG+gZAwPlOUUAgMbjMR6wNXrG0Fj0jKF56RkDG+gZA4PBc4rQHIRQA4xgra2tPcY2/USy/urt2La2tqrnA4afxx9/PK997WuzePHibuMzZszIz3/+80yYMKFOlQHVOv/88/PHP/5x4+2XvOQl+fjHP17HioBa6e3/Axt87nOfy9SpU/s0z9ixY/PlL3+5x/iVV16ZFStWVF0fUBt33313Dj300Nx4443dxvfcc898+ctfzmOPPZYlS5Zk3rx5efDBB/Pcc8/lwQcfzGc/+9lMnz692zE/+MEPcuSRR/b4/wLQWDynCADQWDy+A/pLzxgaj54xNC89YyDRMwb6z3OKAACNx2M8oD/0jKHx6BlD89IzBhI9Y6A6nlOE5iWEGmAEGzt2bI+xwX4QN27cuKrnA4aXp59+Oq997WvzyCOPdBvfaaed8stf/jK77bZbnSoDqjVnzpx87nOf23i7VCrl8ssv9yQMNIktPVafMmVK3v72t/drrte85jXZb7/9uo11dnbmpptuqro+YOg9++yzecMb3tDjU4Xf85735I9//GPOPPPM7Lzzzj2O23PPPfPRj34099xzT97whjd0+968efNyyimnpKura0hrB+rHc4oAAI3F4zugP/SMofHoGUNz0zMG9IyBanhOEQCg8XiMB/SVnjE0Hj1jaG56xoCeMVAtzylC8xJCDTCCTZ48ucfYypUrq56vt2N7Owcw8ixdujSvec1rct9993UbnzJlSn75y19m7733rlNlQLXWrVuXv/mbv0lnZ+fGsQ996EM55JBD6lgVUEtbeqz+qle9qqoXiRxzzDE9xjb/xFNgePnnf/7nPP74493G/vqv/zqXXXZZRo8evc3jt99++1xzzTU59NBDu43/7ne/y7e+9a3BLBUYRob6OcW2traMHz++6vkAAOgfPWOgr/SMofHoGQN6xoCeMVANPWMAgMajbwz0hZ4xNB49Y0DPGNAzBqqlbwzNSwg1wAi244479hh77LHHqp5v0aJFfToHMLI899xzOeaYY/KnP/2p2/gOO+yQX/7yl5k9e3adKgMG4tJLL80999yz8fZee+2V888/v44VAbU2ffr0XscPOOCAqubr7bgnnniiqrmAoffMM8/kP/7jP7qNjR49Ol/4whdSKBT6PM/o0aPzxS9+scf4JZdcMtASgWFqMJ9TLJfLefLJJ7c5PwAAQ0fPGOgLPWNoTHrGgJ4xNDc9Y6BaesYAAI1H3xjYFj1jaEx6xoCeMTQ3PWNgIPSNoXm11LsAAKo3c+bMHmOPPvpo1fMtXLiw2+1SqZRdd9216vmA+nv++edzzDHH5I477ug2PmnSpFx//fXZf//961QZMFCbN2xWrFiRV77ylX0+vr29vcfYnDlz8vKXv7zH+J133tnf8oAaePGLX9zr+JY+uXhbejtu6dKlVc0FDL1f/vKXWbduXbex1772tdl55537PdfBBx+c2bNnd3vh2R//+Mc8+eSTW3whCjByzZw5MzfddFO3sUcffTRHHHFEv+d64okn0tnZ2WN+AABqR88Y2BY9Y2hcesaAnjE0Nz1joFp6xgAAjUffGNgaPWNoXHrGgJ4xNDc9Y2Ag9I2heQmhBhjB9tlnnx5jDz30UFVztbe39/h04j322CMtLX5VwEi1fPnyvO51r8vcuXO7jU+cODHXXXddDjrooDpVBgyFxYsXZ/HixQOaY9WqVbnrrrsGqSJgqM2YMSPjx4/PypUru42PGjWqqvlGjx7dY2zt2rVVzQUMvbvvvrvH2Cte8Yqq53vFK17RrTm84Ryaw9B4BvM5xfnz5/cY23fffauaCwCA6ugZA1ujZwzNRc8Ymo+eMTQ3PWOgWnrGAACNR98Y2BI9Y2guesbQfPSMobnpGQMDoW8MzatY7wIAqN4BBxyQYrH7pXzOnDk9PhGkL+bMmZOOjo5uYwceeOCA6gPqZ8WKFTn22GPzhz/8odv4hAkTct111+Uv/uIv6lQZADBYisVir4/Zn3/++armW7ZsWY+xaj/tGBh6vX2C+NSpU6uer7djn3322arnA4av3l4sfvPNN1c11+9///seY55TBACoLT1jYEv0jAGg8ekZQ3PTMwaqpWcMANB49I2B3ugZA0Dj0zOG5qZnDAyEvjE0LyHUACPYuHHjcsABB3QbW7VqVe64445+z3XjjTf2GDvyyCOrrg2on5UrV+b1r399brnllm7j48ePz89+9rMBfWoZADC8HHXUUT3GHnnkkarmWrBgQY+xgTSagKHV26eKr1mzpur5Vq9e3WNs7NixVc8HDF//f3t3Hl11feYP/AkhrIJhERRlExjlDKKCgCKKuNQFHQSsW13AGS0udaZqqwIVPHMUHUetexkdhDIuHZWBAQV1VCzWhU3BhRZlUxRlDWvY8/vDX6nXm0BuFgLf+3qdk3P8Pvf7+Xye3ASVvHOe7wknnBC5ubkptffeey927NiR8V5+pggAUPVkxkBxZMYAkD1kxpC9ZMZAWcmMAQCSR24M/JjMGACyh8wYspfMGCgPuTFkL0OoAfZzZ511VlrtxRdfzHif4tYUtzewb9u4cWOcc845aU8Hqlu3brzyyitx4oknVlFnQEX77W9/G0VFRWX+KC486tmzZ7H3Avuu3r17p9WKe0pgaRS37se/iArsO4r75Y2y/nJIRMTChQtLdQaw/8vPz0/7xfH169fHa6+9ltE+q1evjrfeeiul1qJFi2jfvn25ewQAIDMyY+CHZMaQPWTGQITMGLKZzBgoK5kxAEAyyY2Bv5IZQ/aQGQMRMmPIZjJjoDzkxpC9DKEG2M9dfPHFabWnn346tm7dWuo9Pvzww5gxY0ZKrVu3btG6dety9wfsPZs2bYpzzz03pk2bllKvU6dOvPzyy3HSSSdVUWcAQGXp2rVrtGvXLqU2c+bMmDdvXkb7rFy5MiZPnpxWP+2008rVH1B5fvxnPyKK/XNcGps2bYqpU6em1HJycqJt27Zl2g/Y9xX3M8WRI0dmtMeYMWNi8+bNKbVLLrmkXH0BAFA2MmPgr2TGAJB9ZMaQvWTGQHnIjAEAkkduDETIjAEgG8mMIXvJjIHykhtDdjKEGmA/16FDh+jRo0dKbcWKFfHggw+Weo/bb789rXbttdeWuzdg79m8eXP06dMn7Qc6tWvXjkmTJkXPnj2rpjEAoNL94he/SKsNGzYsoz3uuuuu2LJlS0qta9eu0bx583L1BlSe008/PapVS/3x7vz58+OFF17IeK8HH3wwNmzYkFI79thjo0mTJuXqEdh3XXbZZVGvXr2U2sSJE+Pdd98t1frVq1fHfffdl1LLzc2Nq6++usJ6BACg9GTGQITMGACymcwYspPMGCgPmTEAQPLIjQGZMQBkL5kxZCeZMVBecmPIToZQAyTA0KFD02rDhg2L2bNn73Hto48+Gq+++mpK7fDDD49LL720wvoDKtfWrVujX79+8X//938p9dq1a8fEiROjV69eVdQZALA3XH311Wkh7gsvvBBPPPFEqdZPmDAhHnroobT6HXfcUSH9AZWjUaNGcfrpp6fVBw0alNFTyl9//fW488470+rFPbkUSI78/Py4/vrrU2o7d+6MgQMHxpo1a3a7dufOnTFo0KBYtmxZSv3SSy+NNm3aVHivAACUjswYspvMGACym8wYspPMGCgPmTEAQDLJjSF7yYwBILvJjCE7yYyB8pIbQ3YyhBogAc4888zo06dPSm3Lli3Rq1evmDhxYrFrtm3bFv/6r/9a7NPMHn744cjLy6uUXoGKtX379rjwwgtj8uTJKfVatWrF+PHj47TTTquizgCAvaVWrVrx6KOPptWvu+66GDJkSBQWFha7btu2bXH//ffHBRdcEEVFRSmv/eQnP4nevXtXSr9Axbn77rsjJycnpbZ69eo4/vjjY/To0bF9+/YS127atClGjBgRvXv3jm3btqW8dthhh8UNN9xQKT0D+44hQ4bEYYcdllKbP39+dO/ePf785z8Xu2bNmjXRr1+/tKeh169fP+65555K6xUAgD2TGUP2khkDADJjyF4yY6A8ZMYAAMkjN4bsJDMGAGTGkL1kxkB5yY0h++QU/fj//gHYL61YsSI6deoUS5cuTXvtuOOOiz59+kTr1q2jsLAwPv/883jmmWfi66+/Trv3hhtuiEceeWRvtAxUgGeeeSYuu+yytHp+fn60bNmyXHsfd9xx8dRTT5VrD2DftXjx4mjdunVKrWfPnjF16tSqaQgot5tuuikefPDBtHrTpk2jT58+0alTp2jYsGEUFBTEJ598EuPHj48vv/wy7f5WrVrFzJkzo1GjRnujbaCcbr/99hLDmObNm8dZZ50VxxxzTDRq1Ch27twZK1asiOnTp8fkyZNj9erVaWvy8vJi0qRJ8ZOf/KSyWwf+v3POOSe++eabEl//7LPP0n6J4+ijj97tnq+88ko0a9Zsj2dPmzYtTj311LRfJqlWrVqcd955cdJJJ8Whhx4aK1eujDlz5sRzzz0XGzduTNvnhRdeiAsuuGCP5wEAULlkxpCdZMZAWcmMIXlkxpCdZMaw/5MZAwBQkeTGkH1kxkBZyYwheWTGkJ1kxpAMcmNgbzGEGiBB5s2bF6eeemp8++23ZVp/4YUXxrPPPhu5ubkV3BlQWUaPHh0DBw6slL2FRJBswmFInp07d8bVV18do0aNKvMeRxxxREycODHatWtXgZ0Ble26666LJ554otz71KhRI8aMGRMXX3xxBXQFlFarVq1iyZIlFbrnokWLolWrVqW694UXXohLL710t081L0lOTk789re/jRtvvDHjtQAAVA6ZMWQfmTFQVjJjSB6ZMWQvmTHs32TGAABUNLkxZBeZMVBWMmNIHpkxZC+ZMez/5MbA3lKtqhsAoOK0b98+pk+fHj169MhoXV5eXgwbNiyee+45oTAAAOynqlWrFv/5n/8ZDz30UNStWzejtTk5OXHRRRfFBx98IBiG/dDjjz8ezz//fDRu3LjMexxzzDExY8YMwTBkoZ/+9KfxxhtvRPPmzTNa16hRo3jppZeEwgAA+xiZMQAAZC+ZMWQvmTFQHjJjAIDkkRsDAEB2khlD9pIZA+UlN4bsYQg1QMI0b948/vjHP8Yf/vCH6N69e+Tk5JR47wEHHBADBw6MuXPnxvDhw6NaNf9ZAACA/d2NN94Y8+fPj1tuuSWaNm2623sbNGgQl1xySXz44Yfx/PPPx4EHHriXugQq2kUXXRSLFy+OJ598Mrp37x55eXl7XFOvXr3o27dvTJ48OWbPnh0dO3bcC50C+6KTTz45/vznP8d9990Xbdu23e29hx56aPzmN7+Jzz//PPr27buXOgQAIBMyYwAAyG4yY8hOMmOgPGTGAADJIzcGAIDsJTOG7CQzBspLbgzZIaeoqKioqpsAoPIsX748pk+fHgsXLox169ZF9erVo3HjxtG+ffvo0qVL1KhRo6pbBAAAKklRUVF88skn8fHHH8eyZcuisLAwDjzwwGjcuHG0a9cuOnXq5BdEIaG2bNkSH374YSxYsCAKCgpi7dq1kZubG/n5+dGgQYPo0KFDHHnkkf4dABRr/vz58dFHH8VXX30VmzZtilq1akWzZs2iY8eOcdRRR1V1ewAAZEhmDAAA2UtmDNlLZgyUh8wYACB55MYAAJCdZMaQvWTGQHnJjSGZDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCCPnwAAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASyBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQyhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggQyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASyBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQyhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggQyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASyBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQyhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggQyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAGAfMXz48MjJyUn5AAAAAAAAACB7yI0BAAAAAAAAspfMGAAAgMpiCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAABAOYwePTpycnJSPhYvXlzVbbEP+vH3yfDhw6u6JQAAAAAAAKACyI0pLbkxAAAAAAAAJI/MmNKSGQMAAFXJEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAACAfcTw4cOjqKgo5QMAAAAAAACA7CE3BgAAAAAAAMheMmMAAAAqiyHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBA1au6AQAAAGDv+PLLL2PmzJmxZMmS2LhxY9SrVy/atm0b3bt3jwYNGpR6n3nz5sWHH34Yy5Yti61bt0aTJk2iTZs20aNHj6heveJ/1FBUVBQff/xxLFiwIFasWBGrVq2KunXrxkEHHRStWrWKLl26VOi569evj48//jjmz58fBQUFsWHDhsjLy4s6depE48aNo2XLltGuXbs46KCDKuzMirZp06b44IMP4ttvv40VK1bExo0bo1GjRnHQQQfFMcccE61bt670Hr755puYMWNGLFq0KDZu3BgNGzaMZs2aRZcuXaJZs2aVfj4AAAAAAACQTm5cOnLjiiE3BgAAAAAAgH2LzLh0ZMYVQ2YMAAD7lpyioqKiqm4CAAAA9icDBgyIMWPGlGuPYcOGxfDhw1Nqw4cPjzvvvDOlVpq/tp9yyinx9ttv77ru2bNnTJ06ddf1f//3f8d9990XM2fOLHZ9zZo148ILL4y77747DjvssGLv2bJlS4wcOTIeeeSR+OKLL4q9Jz8/P6699toYOnRo1KlTZ49978nMmTPj4Ycfjtdeey2+++67Eu+rV69enHHGGXHrrbdG165dy3TWjh074r/+679izJgx8fbbb8fOnTv3uKZ169bRo0eP6NevX5x11llRq1atlNenTp0avXr1KlM/f9WyZctYvHhxqe7dvn17jB49Op577rl45513YuvWrSXe26ZNm7jwwgvjlltuiYYNG2bU04+//3/c4/jx4+Pf/u3f4r333it2fbVq1eLEE0+MX/7yl9G3b9+MzgYAAAAAAIB9hdxYbhwhNy6pR7kxAAAAAAAASSczlhlHyIxL6lFmDAAA+6ZqVd0AAAAAUDnWrVsX5557blx00UUlhsIR34e+Y8eOjQ4dOsSbb76Z9vq8efPiuOOOi3/+538uMRSOiCgoKIgRI0bE0UcfHV999VWZ+16yZEn0798/unTpEmPHjt1tKBzx/dOEx40bF926dYv+/ftHQUFBRufNnTs3OnXqFAMGDIi33nqrVKFwRMSiRYti7Nix0bdv3xg9enRGZ1a08ePHR/v27ePqq6+ON998c7ehcETEggULYsSIEdG6det47LHHKqSHTZs2Rf/+/aNv374lhsIRETt37oxp06ZFv3794vzzz4+VK1dWyPkAAAAAAABAOrlx6ciN5cYAAAAAAACQRDLj0pEZy4wBACAbGEINAAAACbR+/fro1atXvPzyy6Ves3bt2jjvvPPio48+2lX76KOP4qSTTopPPvmk1Pt88cUXccopp8TatWszaTkiIt5///3o2rVrjBs3LuO1ERHjxo2L448/frcB9g/NmjUrevbsGXPnzi3TeVWtqKgohg0bFn379i315/xD69atixtuuCF+/vOfx44dO8rcx5YtW+Kss87K+Os2YcKEOO2002LVqlVlPhsAAAAAAAAontxYblwacmMAAAAAAABIJpmxzLg0ZMYAAJA9qld1AwAAALC/adGiRRx99NEREbF69eq0J/G2b98+atSosds9Dj744ErrLyLiiiuuiNmzZ++67ty5c5x99tnRunXrOOCAA+Lbb7+NN998MyZOnJjyNN5NmzbFlVdeGbNnz46VK1fGueeeuyu0y8vLi169esWpp54azZo1i+rVq8fixYtjwoQJ8cEHH6Scv3Dhwrj99tvj8ccfL3XPU6dOjbPPPjs2b96cUq9WrVqcdNJJ0b1792jdunXk5+dHYWFhLF26NN5+++144403UkLNv/zlL3HOOefEzJkzo379+iWet2XLlrjsssvSnmack5MTJ5xwQvTo0SPatGkT9evXj9zc3Fi3bl2sWrUqPvvss5gzZ07MmTMnioqKStz/gAMO2PV9EhExZ86clNebNm26x++DZs2a7fb1a6+9NkaOHJlWb9iwYZxxxhnRuXPnaNKkSdSpUycKCgri008/jSlTpsRf/vKXlPv/4z/+I/Lz8+Pee+/d7Xklufnmm2PatGm7rhs3bhz9+vWLjh07RuPGjWPlypXx8ccfx7hx42LFihUpa+fOnRtnnnlmvPfee5GXl1em8wEAAAAAAGBvkxvLjeXGqeTGAAAAAAAAZBOZscxYZpxKZgwAAPuBIgAAAKDMnn766aKISPlYtGhRmfYaNmxY2l6l0bNnz5Q1NWvW3PXPrVu3Lnr99ddLXDtz5syipk2bpp377LPPFp133nm7rk8//fSi+fPnl7jPqFGjinJzc1P2qFatWtFXX31Vqs9h2bJlxfYxcODAoiVLlux27RdffFF05plnpq294IILdrtu7NixaWs6depU9Mknn5S655EjRxYde+yxRU888cQe7//xWcOGDSvVOSUZNWpU2p4NGzYsGjlyZFFhYWGJ63bu3Fk0bty4oiZNmqStnzhx4h7PvfLKK9O+33JycnZ9zW+99dYSzy8sLCy67bbbiqpVq5Z29vDhw8v8XgAAAAAAAEBVkht/T24sN5YbAwAAAAAAkI1kxt+TGcuMZcYAALBvqxYAAABAomzZsiUivn9K8rvvvhunn356ifd27tw5xo0bFzk5OSn1f/mXf4mJEydGRMQll1wSkydPjnbt2pW4z8CBA+POO+9Mqe3cuTN+//vfl6rnq666Kr777rtd17m5ufHMM8/EqFGjokWLFrtd26ZNm5g8eXIMHDgwpf7iiy/G9OnTS1w3YcKElOvGjRvHa6+9Fn//939fqp4PPvjguOaaa2L27NlxxRVXlGpNRVm8eHHccMMNKbW/+7u/izlz5sQ111wTtWrVKnFtTk5O9O3bN2bOnBmHHXZYymu33Xbbbp+4XJwtW7bsWvPYY4/FPffcU+L5tWrVihEjRsRjjz2W9tpdd90VCxYsyOhsAAAAAAAAoHhy4+/JjYsnNwYAAAAAAIBkkxl/T2ZcPJkxAABkJ0OoAQAAIIFq1qwZf/jDH+Lggw/e473du3ePs88+O6W2fPnyiIg44ogj4qmnnorq1avvcZ+bb7458vPzU2qTJ0/e47oZM2ak3TdixIi49NJL97j2r3JycmLkyJHRvn37lPo999xT4pqFCxemXPft2zcaNWpU6jN/qE6dOmVaV1b33XdfbNq0add13bp1Y8qUKWlB7+40b948nn/++ZTap59+uusXAjI1YMCAGDRoUKnuHTRoUAwYMCCltm3btnjiiSfKdDYAAAAAAACQTm78PblxyeTGAAAAAAAAkFwy4+/JjEsmMwYAgOxiCDUAAAAk0OWXXx5HHXVUqe/v379/sfU77rij1KFnrVq14txzz02pzZkzZ49Pu7333ntTrtu2bRs33XRTqc78oby8vBg8eHBKbfLkybue1vxj69evT7kuayi8t61YsSKefvrplNqvfvWraN26dcZ7nXjiiXHaaael1P7nf/4n431q166d9nXck3vvvTdq166dUnv66adL/HoBAAAAAAAAmZEbf09uvHtyYwAAAAAAAEgmmfH3ZMa7JzMGAIDsYQg1AAAAJNA//uM/ZnT/sccem1arV69e/PSnPy3XPuvXr4+vv/66xPs3b94ckyZNSqkNGDAgcnNzMzr3r84555y0/d9///1i7/1xEPzOO++U6cy97eWXX47CwsKU2j/90z+Veb/evXunXE+dOjXjPfr06RNNmjTJaE2TJk3i/PPPT6mtXr06pk+fnvH5AAAAAAAAQDq58d/2lxvvntwYAAAAAAAAkkdm/Lf9Zca7JzMGAIDsYAg1AAAAJEydOnXiuOOOy2hNy5Yt02rHH3985OXlZbRPq1at0moFBQUl3v/BBx+kPY32xBNPzOjMH2rYsGEceOCBKbUPP/yw2Hu7deuWcv3OO+/EkCFDYvv27WU+f294++23U65btmwZhx56aJn3+/FTjRcvXrzbr1lxfhzwlla/fv3SaiUF+QAAAAAAAEDpyY3lxpmQGwMAAAAAAECyyIxlxpmQGQMAQHaoXtUNAAAAABWrZcuWUb16Zn/lr1evXlqtbdu2GZ9d3D5r164t8f4//elPabXrrrsuatSokfHZf7Vp06aU65UrVxZ734ABA+Lhhx+OoqKiXbW77747nn322Rg4cGD07ds3jjrqqDL3UVl+/J6tXLkyjjnmmDLvt2HDhrTaypUrIz8/v9R7dO7cuUxnd+rUKa02a9asMu0FAAAAAAAA/I3cWG6cCbkxAAAAAAAAJIvMWGacCZkxAABkB0OoAQAAIGEaNGiQ8ZrinkJcUfts27atxPuXLl2aVps3b17G5+7OqlWriq0fc8wxceONN8ZDDz2UUl+8eHEMGzYshg0bFk2aNIkePXpEly5donv37tGtW7eoWbNmhfaXqR+/Zxs3bow5c+ZU6BmrVq0q9S8GVK9ePdq0aVOmcw4//PCoUaNGbN26dVdt+fLlZdoLAAAAAAAA+Bu5cSq5cebkxgAAAAAAALD/khmnkhlnTmYMAADJYwg1AAAAJExx4WxV7rM7JYW2FamwsLDE1+6///7Izc2NBx54oNjXly9fHuPGjYtx48ZFREStWrXi5JNPjosvvjguuOCCYp/GXJkKCwt3+/lU5DmlVa9evcjJySnzWfXr1095gnRBQUGZ9wIAAAAAAAC+JzdOJTcu2zmlJTcGAAAAAACAfYvMOJXMuGznlJbMGAAA9g/VqroBAAAAIHutWbOmSs/Pzc2N+++/P6ZPnx7nnXdeVK++++d1bd68OV577bW46qqrolWrVjFixIjYvn37Xuq26t+v4tStW7dC169fv75c+wEAAAAAAAD7l6rOQeXG5Sc3BgAAAAAAAMqqqjNQmXH5yYwBAGD/sPu/7QAAAABUotq1a6fV5s2bF0ceeeRe7aNLly7xv//7v7F8+fKYNGlSvPXWW/GnP/0pFi1aVOKa1atXx+DBg2PChAkxZcqUyM/Pr/Q+i3u/unXrFu+//36ln12SjRs3Vuj6vf3EZwAAAAAAAKBqyY0zIzcGAAAAAAAAkkRmnBmZMQAAUFbVqroBAAAAIHs1btw4rbZ69eoq6OR7TZo0iauuuirGjh0bCxcujG+//TZefPHFuPHGG6Ndu3bFrvnggw/iwgsv3Cv95efnpz1BuSrfr4jvnyZcVFRU5vXr1q1Lud4bATsAAAAAAACw75AbZ0ZuDAAAAAAAACSJzDgzMmMAAKCsDKEGAAAAqkzTpk3TakuWLKmCTorXtGnT6N+/fzz00EMxf/78mDVrVlx88cVp973++usxefLkSu8nJycnDjrooJTa119/Hdu3b6/0s0uyffv2WLhwYZnWLlq0KLZu3ZpSa9KkSUW0BQAAAAAAAOwn5MaZkRsDAAAAAAAASSIzzozMGAAAKCtDqAEAAIAq061bt7TaH//4xyropHQ6deoUzz33XNx1111pr7300kt7pYcfv2ebNm2KWbNm7ZWzS1LW84tb17lz5/K2AwAAAAAAAOxH5MaZkxsDAAAAAAAASSEzzpzMGAAAKAtDqAEAAKAcqlevnlbbsWNHFXSyf+rVq1faezhp0qTYtm1bFXVUOrfeems0atQopTZ37tzdrsnNzU25Luv3yRlnnJFWGzduXJn2qijjx48v07ri+j7++OPL2Q0AAAAAAADsXXLj8pEbZ05uDAAAAAAAAPsOmXH5yIwzJzMGAADKwhBqAAAAKId69eql1TZs2FAFneyf6tevH6ecckpKbenSpTF27NiqaaiUcnNzo127dim1tWvX7nbNj79Xyvp90rt377SQ+Xe/+10UFBSUab+KMH78+FixYkVGa1asWBETJkxIqTVs2DC6du1aka0BAAAAAABApZMbl4/cOHNyYwAAAAAAANh3yIzLR2acOZkxAABQFoZQAwAAQDk0aNAgrbZw4cIq6GT/NXTo0LTaLbfcss+/j8uWLUu5Puigg3Z7/4+/V8r6+bVs2TIuv/zylNq6deti4MCBUVRUVKY9y6uwsDBuu+22jNbcdtttsWnTppTawIEDo2bNmhXZGgAAAAAAAFQ6uXH5yY0zIzcGAAAAAACAfYfMuPxkxpmRGQMAAGVhCDUAAACUQ4cOHdJqr7zyShV0sv/q2bNnnHHGGSm1NWvWxFlnnRXz5s0r056bN2+OkSNHxgMPPFDs6xs2bIhf/epX8eWXX5Zp/wkTJsSSJUtSakcfffRu1xx11FEp12+//XZs3LixTOffcccdaQHq+PHj45prroktW7aUac/FixfHL37xi/jkk0/KtH7UqFHx1FNPlereJ598MkaNGpVSy8vLi2uvvbZMZwMAAAAAAEBVkhuXn9w4c3JjAAAAAAAA2DfIjMtPZpw5mTEAAJApQ6gBAACgHBo2bBhHHnlkSu3pp5+OBx98MNauXVtFXe1/Ro8eHc2aNUupff7559G1a9cYMWJEqd7LoqKiePfdd+OXv/xltGrVKgYNGlTiE4C3b98e//7v/x6HH3549O3bN5555plSnbFz584YPXp0XHbZZWmvFVf7oe7du6dcr127Ni666KIyhd+tW7eOkSNHptWfeuqpOP7442PSpEmlelLx+vXr49lnn43zzz8/2rZtG48++mhs3rw5o15q1qwZOTk5ERHx85//PIYMGVJiOL1ly5YYMmRIDBo0KO21IUOGRJs2bTI6GwAAAAAAAPYFcuOKITfOjNwYAAAAAAAA9g0y44ohM86MzBgAAMhU9apuAAAAAPZ3V111Vfz617/edb1jx4646aab4uabb47DDjssDjzwwMjNzU1ZM2jQoGLDsWzVrFmzmDBhQpxyyikpT+zdsGFDDB48OO66667o0aNHdO/ePQ455JBo0KBBFBYWRkFBQXzzzTcxe/bsmDVrVqxatSqjc3fs2BHjx4+P8ePHR15eXnTs2DGOPfbYOPLII6NBgwZx4IEHxrZt22L58uXx6aefxpQpU4p9ovHPfvazOOGEE3Z71hVXXBFDhw6N7du376q9/PLL8fLLL0eDBg2iadOmaU8cbtasWYlPu77yyitj3rx5ce+996bUP/roozjvvPOiRYsW0atXrzj66KOjUaNGUadOnVi7dm0UFBTE/PnzY9asWfHxxx/H1q1bS/t2Fevggw+O3r17x+OPPx47d+6Mu+++O5588sno379/dOzYMRo1ahSrVq2KuXPnxrhx42L58uVpe3Tu3DkGDx5crj4AAAAAAACgKsmNy09uLDeWGwMAAAAAALC/khmXn8xYZiwzBgCAymUINQAAAJTT9ddfH2PGjIlPP/00pV5UVBRfffVVfPXVV2lrvv32273V3n7juOOOi/fffz/69+8f8+fPT3lt48aN8eqrr8arr75aaedv27YtZs2aFbNmzcpo3SmnnBKPP/74Hu875JBDYujQoTF8+PC019asWRNr1qxJqxcUFOx2z3vuuSeaN28eN910U1rA++WXX8aYMWP22FdFeOCBB2Lu3LnxzjvvRETEihUr4ne/+12p1nbs2DFeffXVyMvLq8wWAQAAAAAAoFLJjSuG3FhuDAAAAAAAAPsjmXHFkBnLjAEAgMpTraobAAAAgP1dnTp14tVXX40zzjijqlvZ73Xo0CFmzJgRN9xwQ9SqVatce3Xp0iV69+5d7GvVq1ePRo0alWv/vLy8uOmmm2LKlClRv379Uq35zW9+E3fddVfUqFGjXGf/0PXXXx/Tpk2LHj16lGuf2rVrx8UXXxwtWrTIeG3NmjVjypQp0adPn4zW/cM//EO88cYb5f5aAAAAAAAAQFWTG1ccuXHm5MYAAAAAAABQtWTGFUdmnDmZMQAAUBqGUAMAAEAFOPTQQ+O1116LWbNmxW233RZnnnlmtGrVKvLz86N69epV3d5+pX79+vHII4/E4sWLY+jQoXHsscdGtWp7/hFG7dq147TTTosRI0bEZ599FtOnT4+zzz672HsPOOCA+O6772LatGkxePDgOPnkk6NOnTql6q9ly5bx61//OubNmxf3339/1KxZs9SfW7Vq1WLw4MHx9ddfx6OPPhoXXXRRdOjQIRo3blyuILxr164xbdq0mDZtWvzsZz+LZs2alWpds2bN4vLLL4/f//73sWzZsnjuueeiSZMmZeqhbt26MX78+HjhhReiS5cuJd6Xk5MTPXr0iJdeeikmTJgQjRs3LtN5AAAAAAAAsK+RG1ccuXHm5MYAAAAAAABQtWTGFUdmnDmZMQAAsCc5RUVFRVXdBAAAAMDurFmzJmbOnBnLly+PVatWxbp166JOnTpRr169OOSQQ+KII46Iww8/PHJzc8t8xvbt22PBggWxYMGCWLp0aaxbty4KCwt3ndOiRYs46qij4tBDD63Az6zyzJ8/P+bNmxerVq2KVatWxbZt26JevXpRv379aN26dRx55JFlCoEHDBgQY8aM2XXdsmXLWLx4cdp9S5cujRkzZsTixYtj48aN0bBhwzjkkEOia9eu+817CAAAAAAAAOw75MaZkxsDAAAAAAAASSEzzpzMGAAA+CFDqAEAAAAotdIGwwAAAAAAAAAkk9wYAAAAAAAAIHvJjAEAYP9UraobAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDiGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJlFNUVFRU1U0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAULGqVXUDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFQ8Q6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASyBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQyhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggQyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASyBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQyhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggQyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASyBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQyhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggQyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASyBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQyhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggQyhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggQ6gBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsgQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEMoQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIEMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABDKEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBDKEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCBDqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASyBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAT6f9Zc+3jwK5+iAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "# Step 3: Constrain peak infected\n", + "# Step 3: Synthesize parameters\n", "\n", - "# {\n", - "# \"name\": \"infected_maximum1\",\n", - "# \"variable\": \"Infected\",\n", - "# \"interval\": { \"lb\": 1e-5, \"ub\": 0.4},\n", - "# \"timepoints\": {\"lb\": 75, \"ub\": 125}\n", - " \n", - "# },\n", "\n", - "# Tighten epsilon <= 0.18, theta <= 0.4\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", "\n", - "SAVED_RESULT_TO_USE = os.path.join(SAVED_RESULTS_DIR, \n", - " # \"1a6108d5-58c8-44ed-b41e-93d95dd4ddab.json\"\n", - " \"51b0da9c-c2f1-4070-9722-6c78655e70eb.json\"\n", - " )\n", + " epsilon = funman_request.parameter(\"epsilon\")\n", + " theta = funman_request.parameter(\"theta\")\n", + " epsilon.label = \"all\"\n", + " theta.label = \"all\"\n", "\n", - "with open(SAVED_RESULT_TO_USE, \"r\") as f:\n", - " results: FunmanResults = FunmanResults.model_validate(json.load(f))\n", + " # for p in [epsilon]:\n", + " # p.interval = b.bounds[p.name]\n", "\n", - "# Plot the trajectories\n", - "results.plot(variables=[\"Infected\"], label_marker={\"true\":\",\", \"false\": \",\"}, xlabel=\"Time\", ylabel=\"Infected\")\n", "\n", - "# Plot the parameter space\n", - "ParameterSpacePlotter(\n", - " results.parameter_space, plot_points=True, parameters=[\"epsilon\", \"theta\", \"timestep\"]\n", - " ).plot(show=True)" + " # adjustment_factor = 0.49\n", + " # epsilon_adjustment = float(epsilon.width())*adjustment_factor\n", + " # epsilon.interval = Interval(lb=epsilon.interval.lb+ epsilon_adjustment, ub=epsilon.interval.ub-epsilon_adjustment)\n", + "\n", + " # theta_adjustment = float(theta.width())*adjustment_factor\n", + " # theta.interval = Interval(lb=theta.interval.lb+ theta_adjustment, ub=theta.interval.ub-theta_adjustment)\n", + "\n", + " # funman_request.config = FUNMANConfig(verbosity=5)\n", + "\n", + " funman_request.constraints = [\n", + " StateVariableConstraint(name=\"peak_infected1\", variable=\"Infected\", interval=ramp_up_infections, timepoints=Interval(ub=peak_time.lb)),\n", + " StateVariableConstraint(name=\"peak_infected2\", variable=\"Infected\", interval=peak_infections, timepoints=peak_time),\n", + " StateVariableConstraint(name=\"peak_infected3\", variable=\"Infected\", interval=ramp_down_infections, timepoints=Interval(lb=peak_time.ub)),\n", + " LinearConstraint(name=\"2_eps_le_theta\", variables=[epsilon.name, theta.name], additive_bounds=Interval(lb=0), weights=[-2, 1])\n", + " ]\n", + "\n", + " results_synthesis = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIDARTHE demo\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " # dump_results=False\n", + " )\n", + " summary = summarize_results([\"Infected\"], results_synthesis, ylabel=\"Infected\")\n", + " print(summary)" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArAAAAITCAYAAAD/zC/2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAACe00lEQVR4nOzdd1QU5/oH8O82dqlLUxBBwQYWBBW72GKLRk00JtbEFKOmaGJurmk3N8lNYorpMT2anlhii71E7L1gAUUUBUGU3tvuzu+P/e2ww84qIFW/n3M8Z2fmnZl3ub/fOU/efd7nUQiCIICIiIiIqJFQ1vcEiIiIiIiqggEsERERETUqDGCJiIiIqFFhAEtEREREjQoDWCIiIiJqVBjAEhEREVGjwgCWiIiIiBoVBrBERERE1KgwgCUiIiKiRoUBLBHd0QIDAxEcHIzw8HB06NABixYtuuk9I0eOxLlz5246bvXq1Thw4IDstccffxzh4eEIDw+Hg4ODOIfw8HDk5eVVau4pKSmIjIys1Fh7Xn/9dRQXF1fr3iNHjuDBBx+8pfcTEVWHgq1kiehOFhgYiNWrVyM8PByXL19G586dsXv3bnTu3PmWnz19+nSEh4fj2WefrfQcrBkMBqjV6luex40oFApkZWXB3d29SvfVxdyIiOzhCiwR0f9r2bIlgoODERcXh+vXr2PcuHEIDQ1Fp06d8M0334jjAgMDceLECQDAwIED8a9//QuRkZFo3bo1Zs2aBQDYsGED1q5diw8++ADh4eH4/vvvKzWH6dOn49FHH0X//v3RqVMnAMCUKVMQERGBzp07Y9SoUUhNTQUAXLp0SRJ4Hj58GIMHD0ZERAS6dOmC5cuXi9fWr1+P7t27IywsDOHh4Th48KA418jISISHh+P69es3/d7z589Hjx498PDDDyMqKkoSdG/evBn9+vVDt27d0KNHD+zYsQMAcP78efTt2xdhYWEIDQ3Fq6++Wsn/RYiI7BCIiO5gLVu2FI4fPy4IgiCcPHlScHV1FeLi4oQHHnhAePHFFwVBEIRr164J/v7+wv79+23uGTBggHDvvfcKZWVlQmFhoRAYGCjs27dPEARBePjhh4WPP/64SnN4+OGHhc6dOwu5ubni9evXr4ufFyxYIMycOVMQBEFISEgQ9Hq9IAiCkJWVJYSHhwspKSmCIAhCWlqaEBAQIFy5ckU4d+6c0KRJEyE2NlYQBEEoLS0VsrOzBUEQBABCVlaW+Pybfe/HHntMMJlMgiAIwo4dO4SwsDBBEAThwoULQq9evYScnBxBEATh/Pnzgq+vr1BcXCzMmTNHeOedd8R3ZGRk3PRvQkR0I/z9h4jueA8++CAcHR3h5OSExYsXo23btti2bRuOHj0KAGjatCnGjRuHbdu2oVevXrL3q9VqqNVqhIeH48KFC+jdu3e15zNhwgS4urqKx7///jt++eUXFBcXo7i4GN7e3jb37Nu3DxcvXsTdd98tOX/u3DnExsZixIgRCAkJAQBoNBro9XrZd9/se0+fPh0KhcLmvk2bNiE+Ph79+/cXzymVSiQmJqJ///544YUXkJ+fjwEDBmDIkCFV/IsQEUkxgCWiO97SpUtt8k8rkgvaLHQ6nfhZpVLBYDDc0nxcXFzEz3v27MFnn32G/fv3o2nTpli7di1ee+01m3sEQUDHjh2xb98+m2uxsbHVnkvF7209t4rvHzp0KH7//Xeba23btkWfPn2wdetWfPHFF/jkk0+wYcOGas+JiIg5sEREMoYMGYLvvvsOAJCWloaVK1di6NChVXqGm5sbcnJybmkeWVlZcHV1hZeXF0pLSyU5qdb69OmDhIQEbNu2TTx34sQJlJaWYvjw4di8eTPOnj0LACgrKxPn5erqKpljdb/38OHDsW3bNpw8eVI8d+jQIQDmHFgfHx889NBDeP/99+1WZiAiqiwGsEREMj777DPExsYiNDQUgwYNwiuvvIKePXtW6RnTpk3DsmXL0KVLl0pv4qpoxIgRCA4ORnBwsLjZypplhdTDwwPr16/HO++8g7CwMHTo0AEvvvgiTCYT2rRpgyVLlmDq1KkICwtDz549xTJgzz//PIYOHSpu4qru927Tpg1+//13zJw5E2FhYWjfvj0++eQTAMCKFSsQGhqKLl264MEHH8TXX39drb8FEZEFy2gRETVShw4dwpQpU3D+/Pn6ngoRUZ3iCiwRUSO0Zs0aTJo0iSWpiOiOxBVYIiIiImpUuAJLRERERI0KA1giIiIialQYwBIRERFRo8IAloiIiIgalTuiE5fJZEJKSgpcXV1v2E2HiIiIiOqHIAjIy8uDn58flMobr7HeEQFsSkoKAgIC6nsaRERERHQTSUlJ8Pf3v+GYOyKAdXV1BWD+g7i5udXzbIiIiIiootzcXAQEBIhx243cEQGsJW3Azc2NASwRERFRA1aZdE9u4iIiIiKiRoUBLBERERE1KgxgiYiIiKhRYQBLRERERI0KA1giIiIialQYwBIRERFRo8IAloiIiIgaFQawRERERNSoMIAlIiIiokaFASwRERERNSoMYImIiIioUWEAS0RERESNCgNYIiIiImpUGMASERERUaPCAJaIiIiIGhUGsERERETUqDCAJSIiIiIJQRDwyYFPEJMWU99TkaWu7wkQERERUcNy6vopPLf5OQBA/kv5cHZwrucZSXEFloiIiIgkVsauBACMDR7b4IJXgAEsEREREVXwV+xfAIBx7cfV80zkMYAlIiIiIlFcRhxOXz8NAHh49cMoKC2o5xnZYgBLRERERKJVsavEz2E+YUwhICIiIqKGbeXZleLn8e3H1+NM7GMAS0REREQAgKScJBxKPiQej+/AAJaIiIiIGrBVZ8vTB0K8Q9ChSYd6nI19DGCJiIiICEB5+SwAGBfSMCsQAAxgiYiIiAjA9YLr2HV5l3jcUNMHAAawRERERARg7bm1ECAAAALdA9HFt0s9z8g+BrBEREREJEkfGN9+PBQKRT3O5sbqLICdP38+IiMjMW3aNJSVlYnn4+LiEB4eDp1Oh/z8fABAQkICBg4ciIEDB6Jz58647777AADTp09H9+7dMXDgQHzwwQd1NXUiIiKi21p2cTa2XtgqHo9vPx5/nv4T1wuu1+Os7FPXxUuio6ORnJyM3bt34+2338aKFSswadIkAIC/vz927tyJsWPHiuODgoIQFRUFAHj99dcRFBQkXluyZAk6depUF9MmIiIiuiOsj1sPg2AAAPi5+sFd544+i/sAAPJeyoOLg0t9Ts9GnazA7tu3D8OGDQMAjBgxAnv37hWvOTk5Qa/X27137dq1uPfeewEACoUCM2bMwNChQxEdHW33npKSEuTm5kr+EREREZE86+YF40LG4a/YvwAAw1sPb3DBK1BHAWxWVhbc3NwAAHq9HpmZmZW6LyYmBs2bNxcD3IULF2L//v34/PPP8cQTT9i9b8GCBdDr9eK/gICAW/8SRERERLehwrJCbIjbIB6Paz8Oy2OWAwAmdJhQX9O6oToJYN3d3cVV0JycHHh6elbqvuXLl2PChPI/nJeXFwAgJCQECoUCRqNR9r6XXnoJOTk54r+kpKRb/AZEREREt6fN8ZtRbCwGAHg7ecPHxQcnr50EADz+9+PIL82vz+nJqpMAtk+fPti2bRsAYPPmzejbt2+l7lu7dq0kN9YSBF+/fh2lpaVQqVSy92m1Wri5uUn+EREREZEt6/SBe4PvxeqzqyXXBUGo4xndXJ0EsOHh4fDx8UFkZCTOnDmD8ePHY+bMmQDM6QVDhgxBdHQ0Ro8ejY0bNwIAYmNjJekDADB16lT069cPY8eOxcKFC+ti6kRERES3rVJjKdaeXSsej+8wXkwfAAAPnUeDzIFVCA0xrK5hubm50Ov1yMnJ4WosERER0f/bFL8Jd/92NwBAr9Vj32P70PHLjuL1x7o8hu/HfF8nc6lKvMZGBkRERER3KOvmBWOCx2DN2TWS6z8c/+HOzYElIiIioobFaDJiVewq8di6+oBFmE9Yg0whYABLREREdAfam7QX6UXp4nFbz7Y4nnpcMib6WjSyi7PreGY3xwCWiIiI6A70V8xf4ucJHSZgXdw62XFlxrK6mlKlMYAlIiIiusMIgiB22wKA8e3H26QPWDhqHOtqWpXGAJaIiIjoDnMk5QiS85IBAFqVFu2btMfRq0dtxnk5ejEHloiIiIjqn3X1geFthmNT/CbZcRlFGUgrSKuraVUaA1giIiKiO0hV0gcAQKPS1MW0qoQBLBEREdEdJCYtBuczzwMA1Eo1OjftjCMpR2THuji4wF3nXoezqxwGsERERER3EOvV18FBg7EtYZvdsRPaT6iLKVUZA1giIiKiO4h1/uvN0gde6f9KXUypyhjAEhEREd0hLmReQPS1aACAUqFEt2bdcCj5kOxYd507Wnu2rsvpVRoDWCIiIqI7xKqz5a1jI1tEIupSlN2xU0On1sGMqocBLBEREdEdoirpA//q/a+6mFK1MIAlIiIiugOk5KVg/5X94nGP5j1wMPmg7FgvRy/0WtwLijcUyC/Nr6spVhoDWCIiIqI7wKrY8vSBns17Yl/SPrtj+wb0RWp+Klp7tIazxrkuplclDGCJiIiI7gArz1Y+faCorAgAMDl0MhQKRa3PraoYwBIRERHd5tIL0xGVECUe9w7oLUknsObj7IMdl3cAACZ1mlQX06syBrBEREREt7m/z/0NE0wAgHDfcLudtwBzeoHBZEC4bzjaN2lfV1OsEgawRERERLe5qqQPZBRlAAAmd5pc6/OqLgawRERERLexvJI8bI7fLB73DehrdwNXc9fm4rUHOz1YJ/OrDgawRERERLex9efXo8xUBgAI8Q7Bqeun7I7t1qwbBAiIbBGJFvoWdTXFKmMAS0RERHQbq0rzgsScRAANd/OWBQNYIiIiottUUVkR1setF4/7t+yPvYl7Zce21LfEiWsnoFaqMaHjBFwvuF5X06wyBrBEREREt6mtF7ei0FAIAAhyD8LZtLMQIMiODW0aCgAY1noYFFAg4OMAKN5QIK8kr87mW1kMYImIiIhuUxXTB1bErrA79mzGWQDm9IE/T/+JUmMpAEClVNXuJKuBASwRERHRbajMWIY1Z9eIxwNaDsCexD2yY1t5tEJ8Zjwc1Y4YGzwWiw4vAgC4OLjAQeVQJ/OtCgawRERERLehqEtRyC7JBmAuj5WQnWA3fSDEKwQAMDp4NNIL0xGbHgsAmNhxItRKdZ3MtyoYwBIRERHdhqzTB+4LuQ9/xf4lO06pUOJE6gkA5uYFi48vFq892LFh1oJlAEtERER0mzGajJIAdlDQIOy6vEt2bBvPNkjJT4G7zh3DWw/HD8d/EK8N/XUoN3ERERERUe07cOUArheay2A1cWqClLwUu+kDge6BAMybvM6kncHV/KvitVFtR8FV61rr860qBrBEREREtxnr1dd7Q+61mz6gUqhw6MohAMDk0Mn46shXkuvrz69Hfml+7U20mhjAEhEREd1GBEHAipjyclmDgwbbTR8I9goWN3r1DeiLpWeW2owxmAy1Ms9bwQCWiIiI6DZyPPU4EnPNLWHdde5IL0yHSTDJjvV18QUAzO05F1GXomRXW4sNxbU32WpiAEtERER0G7FOHxgTPAarzq6SHadRarD/yn4A5vSBzw99LjuOdWCJiIiIqFb9FVOe7zo4aDCiLkXJjgvxDkGRoQitPVqjvXd7bL6w2WaMTq2Di4NLbU212hjAEhEREd0mYtNixZawzhpn5Bbn2k0fsFQXmNRpElafXS2b61psKEZRWVHtTbiaGl5rBSIiIiKqFut0gVHtRmHNuTWy47QqLQ5eOQjAnD7w8OqH7T6z1Fhas5OsAVyBJSIiIrpNWFcfGBo0FDsu7ZAdF+IdAqNgRJhPGDwdPXEk5YjsuOauzdHEuUmtzPVWMIAlIiIiug1cyr6E46nHAZhzV4sMRXbTBzRKDQDz6uvP0T/bbXLwQp8Xameyt4gpBERERES3gVWx5ekDw1sPx99xf8uOc1Q74ujVowCAiZ0mYtBPg+w+003rhhJDCbRqbc1O9hZxBZaIiIjoNrDybHn5rKGthuKfhH9kx7X3bg8BAvq16IeisiJczLpo95mPrn3U7upsfWIAS0RERNTIpeanYk/iHgCAWqmGwWSAUTDKji0xlgAAJneajG+OfnPD5z4Z8SR0al3NTrYGMIWAiIiIqJFbc7a82sBdQXdhQ/wG2XHOGmecSTsDlUKF8e3Ho/2X7W/43Onh02tymjWGK7BEREREjdxfseXNC4a3Ho7tF7fLjgv2CgYADGs9DOczzyOzKNPuMzs06YAIv4ianWgNYQBLRERE1IhlFmWK+a5KhRJKhdJu+kBWcRYAc/OCLw59ccPnTg+bDoVCUbOTrSEMYImIiIgasXVx68SAtX/L/th0YZPsODetGxKyE6BT6zCy7Ui7TQ4AQKVQYWrnqbUy35rAAJaIiIioEVsZW159YESbEdh2cZvsuDYebQAAY4LHYE/iHhQZ7LeIHdFmBJq5NqvZidYgBrBEREREjVR+aT42xZevuGoUGhhMBtmxyXnJAMzpA58d/OyGz22om7csGMASERERNVKb4jeJZbF6+/fGtgT51Vd3rTuuFVyDXqtHH/8+2Hl5p91neug8cE/be/Denvdw+vrpWpn3raqzAHb+/PmIjIzEtGnTUFZWJp6Pi4tDeHg4dDod8vPzxfOurq4YOHAgBg4ciFOnTgEA9uzZgz59+qBfv37iOSIiIqI7lXX1gbvb3G03fSDIIwgAML79eKw+t9ruJi/A3F72TNoZvLj9RYR+FYrcktyanXQNqJMANjo6GsnJydi9ezdCQkKwYsUK8Zq/vz927tyJXr16Se4JDg5GVFQUoqKiEBoaCgB45ZVXsH79evz++++YP39+XUydiIiIqEEqNhTj73Pl7WId1Y4oM5XJjrV025oUWonqA+HT8d2x78RjlUJVA7OtWXUSwO7btw/Dhg0DAIwYMQJ79+4Vrzk5OUGv19vcc+HCBfTv3x+zZ89GcXExioqKoFKp4OHhgRYtWiAz037dspKSEuTm5kr+EREREd1Otl/cjoKyAgBAF98uiLocJTvOy9ELOSU58HXxRRuPNjh13f6v2B2bdEQH7w745eQvAABPnSe0am2Nz/1W1UkAm5WVBTc3NwCAXq+/YfBpER8fj127dqFZs2ZYtGiR5BkAoFarUVpaKnvvggULoNfrxX8BAQE180WIiIiIGgjr6gMj247ElgtbZMf5u/kDAB7s+CB+OvnTDZ/5SPgjWHV2FQrLCgEAT3R7Amplw2vcWicBrLu7u7gKmpOTA09Pz5ve4+XlBQC4//77ER0dLXkGABgMBjg4OMje+9JLLyEnJ0f8l5SUVAPfgoiIiKhhMJgMWHV2lXjs4uBiN30gLiMOgDm39buj38mOAcypAlM6T8GXR74Uz727913kleTV0KxrTp0EsH369MG2beak4s2bN6Nv3743HF9QUACj0ZxcvHv3brRp0wZOTk4wGAzIzs5GUlLSDYNgrVYLNzc3yT8iIiKi28Wuy7vErlodvDtgb9Je2XFNnJqgyFCE1h6toVVpxVJacu5uezcKywqxL2mfeC7QPRDODs41O/kaUCcBbHh4OHx8fBAZGYkzZ85g/PjxmDlzJgBzesGQIUMQHR2N0aNHY+PGjTh//jy6d++O/v37Y8OGDZg7dy4A4K233sLIkSMxceJELFiwoC6mTkRERNTgWKcPjGo3ym76gI+zDwBz7devjnx1w2dOD5uOxccXS8491uUxKBUNr+qqQhAEob4nUdtyc3Oh1+uRk5PD1VgiIiJq1EyCCc0/ao7U/FQAwFuD38Kr/7xqM04BBZQKJYyCESdnnUS/Jf1uWBKr4KUCBH4aiLTCNPH+xOcSxRza2laVeK3hhdREREREZNeh5ENi8NrKoxUOXjkoO66pc1MYBSPCfMJwveD6DYPXp7s/jV2Ju8TgFTBvDKur4LWqGMASERERNSLW6QP3tLvHbvqAh84DQOVbx351WJpi8HjXx29xprWHASwRERFRIyEIAlbElDeE8tR5iq1krSmgwNmMswCAe0PuxaYLm+w+M7RpKALcArD+/HrxXFOnphgSNKQGZ16zGMASERERNRInr51EQnaCeHzs6jHZcb4uvgCAfi364djVYyg1ytfOB8yrr7+d+k3SXnZK5ylo9VkrKN5Q3LmtZImIiIjo1lmnD8zqNgubL2yWHeeodgRw8/QBlUKFyZ0mY9HhRZLz3o7eSCtMQxvPNnB1cK2BmdcsBrBEREREjcRfsX+Jn5s4N5FNH1AqlLiYfREqhQqDgwbjYLL8Ji/AvFErMTcRF7IuiOcGtByANXFrAABPdH0CCoWiBr9BzWAAS0RERNQIxGXE4UzaGQDmBgWnrp2SHWdJHxjaeig2nt8IAfYrpk4Pn45vj34rOTe01VAcSj4EBRTwcPRAmVG+w1d9YgBLRERE1Aisii1vHTs6eLTdjVkKmFdMJ3eafMPmBV6OXhgcNBi/n/pdPOfm4IbEnEQAgAABM/6egcKywpqYfo1iAEtERETUCFhXH/Bx9kGxodhmjEqhQnJeMnRqHTr7dMb5zPN2nzcldArWnluLIkOReG5ip4n488yfknHW1xsKBrBEREREDVxiTiKOXD0CAHDXuSM2PVZ2XDOXZgCA0e1GS1ZW5UwPn45Fh6Sbt5q5NpNUHXBUO8LbyftWpl4rGMASERERNXCrz64WP49sOxKb4uXTB4qN5lXZSZ0mYcmJJXaf19mnM1wcXHAo5ZB4rluzbjbPfSjsIaiV6luYee1gAEtERETUwP0VU159wN/VXzZ9QK1UI70wHXqtHk2cmkjawlY0PWw6fjj+g+TciDYjbCoWvBL5yi3OvHYwgCUiIiJqwK4XXMfuxN0AAGeNs928Vkv6wPj24/HN0W/sPk+tVOPBTg/iu6PfSc5fy78mOfbQeeBIyhEYTIZbmX6tYABLRERE1ICtObtGLIV1d5u77aYP5JTkAAAe6PgAVp5dKTsGAEa1HYXjV48jszhTPDc5dDKWxSyTjMsqzsK4ZeNkV3vrGwNYIiIiogbMunlBC30L2aoADkoH5JbkwtfFFyWGkhuWvpoePt2m81ZLfUvJ5i2VQgUAeKr7U3BxcLnVr1DjGMASERERNVDZxdnYfnE7AECr0iIhO0F2nI+LDwDgwY4P4vPDn9t9nreTN7o16yZpQRvsFYwdCTsk40yCCQAwO2L2Lc2/tjCAJSIiImqg1seth0Ew56AOaz3MbvqAZcPWmOAxNsGotSmhU7D0zFIxQAXMKQUHkg9IxgkQENkiEh2bdrzVr1ArGl5dBCIiIiICAEkua6B7oGz6gFalRbGhGK08WiEhKwFGwWj3eQ91fgjjlo0Tj1UKlZg7a6FRalBmKmuwq68AV2CJiIiIGqTCskKsj1sPwFw5ICk3SXZcE6cmAMytYz8/ZD99IMwnDCXGElzOuSyeG91utCTHFgDKTGVo4tQE49qPq/iIBoMBLBEREVEDtCl+E0qMJQCAwYGDsTl+s+y41PxUAMCQVkMQfS3a7vMeCX8EXx/5WnKutWdrZBdni8eWzVuPdXkMWrX2VqZfqxjAEhERETVAK2PL0wdae7aWTR9wVDvCIBgQ5hOGPYl77D5LrVRjTMgYLD2zVDzn7+qP/Un7JeOMghEKKDAzYmYNfIPawwCWiIiIqIEpNZZizbk1AAClQimuslbkofMAYK7j+u2xb+0+75529yAqIUpc0QWA0cGjse/KPpuxd7e9G4Hugbcw+9rHAJaIiIiogfkn4R/kl+YDMJe0si57ZS0lPwUA0LVZVyTmJNp93vSw6fjs0GeSc0Vl0hVdS/pAQ968ZcEAloiIiKiB+SumfGPVjC4zZBsTOGmcAAD9WvTDqthVdp/VxKkJWnu0xonUE+K5Ia2GYPW51ZJxRsGIlvqWuLvN3TCajLj7t7uheEPBTlxEREREdGNGk1FSGeB64XXZca4OrgCAiZ0m4vfTv9t93pTQKfgx+kfJuRCvEMnmLYsnuj0BlVKFv+P+xqb4TfBy9IIgCFX/ErWMdWCJiIiIGpA9iXuQVZwFAOjZvCe2XdwmO+5awTWoFCoEuAbIBqMWUzpPwZCfh4jHXo5eOJZ6zGacWqnGY10eAwB8cegLAMC9IffCUeNY3a9Sa7gCS0RERNSAWFcfaN+kPQrKCmzGOGucAZi7c1VcXbXWxbcLUvJSJM0KRrcbjX1Jtpu3xrUfBx8XH8SkxWB7grl97Q/Hf0BWUVZ1v0qtYQBLRERE1EAIgoDlMcvF48yiTNlxOrUOAHB/h/ux4fwGu8+bHj7dprmBdRtZAFD+fzho2by16NAi8dq0ztPg4ehRhW9QNxjAEhERETUQh1MO42r+VQBAuG84/kn4R3ZcRlEGAHPbV+vSWNY0Sg0GBw3G9ovbxXN9Avrg77i/JeNMMAe0A1oOQE5xDpacWCJee6bHM9X/MrWIASwRERFRA2GdPtCpSSexlJY1y+atCR0m4OujX9tct7in3T1YF7cOAso3YXVs0lHMrwXKS2d9OuJTKBQK/HjiR7FhQq/mvdC9efdb+0K1hAEsERERUQMgCAKWnVkmHlvnrVpTKBQAgDHBY3DgygG7z3s47GFxMxZgDnzPXD8jGWMUjHDSOOGhsIdgEkyS8c/0bJirrwADWCIiIqIG4UzaGSRkJwAwl7mKuhQlOy63JBd6rR5pBWk2+awWTZyaQK/TIzkvWTw3su1I2c5bkzpNgrvOHVsubEF8VjwAwMfZB/d3uP8Wv1HtYQBLRERE1ABYNy8I9w1HXmmezRhL+sD49uPx7VH7rWOndp6Kb45+IzlnSRewUMC8kmvZvGW9+jo7YjYcVA5V/AZ1hwEsERERUQNgXX1ALvcVAEwm84rrXa3uwtmMs3afNaHDBKyMKc+nDfMJw8b4jZIxAgR09+uObn7dcCHzAtafXw/AvPlrZsTMan+PusAAloiIiKiexWfG40yaOT81yD3IbvpAgaEAvi6+OHntpN1ndW3WFaevn0apqVQ8F+4bLtm8pVRIS2d9efhL8doDHR+Ar4sv0grSqv19ahsDWCIiIqJ6tip2lfi5a7OuyC+zXYF107oBMAeYP5740e6zpodNx2cHPxOPtSotzmecl4wxCSa469zxYKcHUVBagO+Pfy9ee6bHM8gqykLQp0FQvKFgIwMiIiIisrUidoX42VLGqqLismIAQHe/7rhWcE12jEapMa/App0Wzw1vPVx289b0sOlw0jjh15O/IrckFwDQw68Hevr3xPfHvkdBWQE6+3SGu869ul+r1jCAJSIiIqpHV3Kv4FDyIQCAn4sfdl/ebTNGAQVKTaVo7dEaWy9stfus0cGjJaW4AECr1sqOnRUxC4IgSDp1PdPzGRhMBvHcsz2fFct2NSQMYImIiIjq0eqzq8XP3Zt3l68+oDVXH3iw44OSZgcVTe08VdJJq5V7K0knLovBQYMR7B2MnZd3irm3TZ2bYkKHCfgr5i8k5SahqXNTTAqdVN2vVasYwBIRERHVoxUx5ekDpcZS2TEFpQUAgED3QNn8WMBcu9VgNEgC4B7NeyCzOFM8VkK6ecu6dNasbrOgVWvx8YGPAQD9W/RHUZl8OkN9YwBLREREVE/SC9Ox6/IuAIC3ozf2JO6RHWcUjAjzCcNfsX/JXgfMq6+LDi8Sj5VQ4nLOZckYE0xo5tIMY4PHIiknSbJ5bGbETBy4cgAHkw9Co9RgRewKeL7vyU1cRERERFRu7bm1ECAAAHr497hx84IO4/FPwj92nzWizQgxGAaAwa0GY/+V/eKxpXHB410fh0alwddHvoYJ5rqykzpNgp+rn7j6GuQRBAAYGzwWHo4et/IVawUDWCIiIqJ6Yp0+YDQZZcdYglpnjTPKTGWyY7o164b9SfvFYBgoD3wtBAhQKpSY0XUGig3F+Pro1+K1Z3o8g8ScRLEb2KXsSwCA53s/X/UvVQcYwBIRERHVg5ziHGy9aK4o4KZ1w4ErB2zGWBoO9GvRD7+d+s3us6aHT8eXR8qbEfi5+ElWYy1GtxuNAH0Alp5eiswic25st2bd0Mu/Fz4/+DmMghFB7kEoNZYiwi8C/Vr0u6XvWFsYwBIRERHVgw3nN8BgMgAAejbviZySHJsxzhpnAMA9be/B8avHZZ/joHJAC7cWSM1PFc/19O+JjKIM8diSPjA7YjYEQZA0OpjTcw4Kygrw3bHvAEAMbJ/v/XyDLKEFMIAlIiIiqhc32pBlkVeaB5VChfzSfEl6gLUxwWPw88mfJeesg1nAnD7Q2qM1hrYeioPJB3Es9RgA88axBzs+iB9P/Iickhz4OPsgpyQHAW4BGN9+fDW/We1jAEtERERUx4rKirAubh0AwEnjJDYysKZSqACYKxD8eupXu8+a0GEC1p5bKx73Cegju3lrZreZUCqU0tJZEbOgUWnw6cFPzWP/f8V1bs+50Kg01f16tY4BLBEREVEd23JhC0qMJQDM7Vvl0gd0ah0A4L0h74mbqirydfHF9YLrks1dXo5ekjECBGhVWjzS5RGk5qdi6emlAMwB8qyIWVgXtw7xmfFwcXBBan4qXB1c8XjXx2via9YaBrBEREREdcy6+oBKqZIdU1BWAJ1ah4SsBLvPmdZ5GhYdKq/96qHzwP6k/TbjJnScAG8nb3x79FsYBHPe7fgO49HcrblYOssS+D7e9XHodfqqf6k6xACWiIiIqA6VGkux+txqAIBWpcWxq8dsxqgVagDmqgHLziyz+6ze/r1xNuOs5Di9KN1m3OyI2SgzluHLw+WVCub0mIMTqScQdSkKAHA55zKUCiXm9JxTna9Vp+osgJ0/fz4iIyMxbdo0lJWVL3PHxcUhPDwcOp0O+fnm1mgJCQmIjIzEgAEDMGrUKOTkmJfVBw4ciMjISAwcOBC//PJLXU2diIiIqMZEXYpCfqk55unm1w1Zxbadriz5p12bdZW0grUW4RchluGykBvb2aczevv3xsrYlbhWcA0AEO4bjj4BffDJgU8AmFvUAsD9He4XPzdkdRLARkdHIzk5Gbt370ZISAhWrChfNvf398fOnTvRq1cv8Zy7uzv+/vtv7Ny5E2PGjMF3330nXtu4cSOioqIwbdq0upg6ERERUY1aGbtS/KxVaWXHFBmKoNfqZTd3WUwLnYafo8urD4T5hElqyVqXzlIoFPj80OfitTk95uBawTX8cfoPAEBSThIAYF6vedX4RnWvTgLYffv2YdiwYQCAESNGYO/eveI1Jycn6PXSPAsPDw+4u7sDABwcHKBUmqepVCoxcuRIjBkzBpcvS3v7WispKUFubq7kHxEREVF9M5qMYv6rWqnGidQTNmM0SvPq630h92Fj/EbZ5zioHOCqdUVBWYF4zs/VTzJGgAAXBxdMCZ2CE6knsDfJHH95OnpiUugkfHn4S5QaS9HctTmMghF9A/qip3/Pmviata5OAtisrCy4ubkBAPR6PTIz5ZfCK8rOzsZXX32F6dOnAwCWL1+OXbt24fnnn8czzzxj974FCxZAr9eL/wICAm75OxARERHdqv1X9osNBrr4dpFNH7CUsgp0D0SxoVj2OfeG3Ivvj30vHjtrnHE45bDNuKmhU+GqdcXnB8tXX2d2mwkA+OrIVwAgVkCY17t89dUkmHDf0vugeEOBMqN8+9r6VCcBrLu7u7gKmpOTA09Pz5veU1ZWhilTpuCjjz4Sx3t5mXfHDRgwACkpKXbvfemll5CTkyP+S0pKqoFvQURERHRr/oopb17gpHGSHVNqLIWPsw+2Xdxm9zmj2ozCviv7xONe/r2QXiizeav7bGQUZoh1ZFUKFWZHzMZvJ39DemE6PHWeYj7u2OCx4n1rzq7B6rOr4aZ1Q5GhqGpfsg7USQDbp08fbNtm/h9h8+bN6Nu3703veeKJJ/DAAw+gX7/yHryWIDgmJgYeHh5279VqtXBzc5P8IyIiIqpPgiBg6RlzDValQomT107ajLFOH7BuRmCtmUsznM88LzmXV5JnM65PQB909umMH47/gFJjqfhcfzd/sXSWUmEOBT8b8ZlYzksQBLy24zUAQG5JrtjutiGpkwA2PDwcPj4+iIyMxJkzZzB+/HjMnGlevs7KysKQIUMQHR2N0aNHY+PGjdi9ezeWLVuGJUuWYODAgfj0U3N3iMGDByMyMhIzZ87Ehx9+WBdTJyIiIqoRx64ew9X8qwCA0KahsukDgmBuF+uqdYVRMMo+Z2rnqfjm6DficVvPtjiUUr7Zy3rzltFklGzeeqbnM9iesB1n0s5Ap9YhvSgd7jp3PNLlEXFM1KUonE47DQAY134cPB1v/st5XVPX1Ys++OADyfE335j/8B4eHuLqrLWCggKbc0eOHKmdyRERERHVMuvqA25a+V+HDYIBrTxaYd25dXaf0967PdIK08TjlvqWkhVZAQK8HL1wf4f7sS5uHa7kXgFgDpojW0Tinj/uAWDezJWSl4KZ3WbCxcFFvP+1qNfEz/8d8N8qfsu6wUYGRERERHXAkj6ggAJn0s7YXHdQOgAA7ml7D2IzYmWf0bN5T7EJAmBOOZCrZPBol0ehU+vw2cHPxHNzes7BuYxz2HB+AxRQICUvBWqlGs/0KN8Yf+zqMexJ3AMA8Hb0RtjXYXfuJi4iIiKiO1lMWgwuZF0AYF5BzSyyrchkafFqr/IAADzQ4QGsj1svHvdo3kO289bMbjMRmxaLfy79AwBw17ljcuhkMaC1lNya2Gkimrs1F+97Pep18XN6UTr0Wv2du4mLiIiI6E5mnT7g4Si/Ed0kmNDZpzP+jvtb9rpWpYVBMEhyY0sMJTbjhrcejtaerfHFoS/Ec090fQLFhmL8FP0TAOBqnjkX17pxwfmM81gXZ05dcFQ7AgCe6fGM3XSH+sQAloiIiKiWLT29VPwcm2abHmBJHxgcOFjc6FXRvSH34ruj5d1J/V39ceSq7f6g2RGzkVOcgyUnlgAwVxp4svuT+PbotygsK0RTp6YwwYRBgYPQpVkX8b63d78NAeZNZEWGIjhpnDC319xqfNvaxwCWiIiIqBYlZCWIu/pbe7RGZrFt+kCpyVzmKjkv2e5zIltEIj4rXjxu7dnaZoy/mz9GtRuFn6J/En/6Hxs8Fn6ufuKKbG6puSzp872fF++7mncVv54014rVqXQAzGkI3k7elf+idYgBLBEREVEtWnV2lfi5iVMTu+P6BvTFpvhNstf8XP0kq60KKBBzPcZm3BNdn4BSocSnBz4Vzz3T4xmsiFmB5LxkuDq4othQjGCvYNzd9m5xzAf7PhBTE4qNxdAoNVApVDh17VTlv2gdYgBLREREVIuWnVkmfo7LjLO5bkkf6NqsK/JKbRsSAMDk0MmSNIRuft2QVpQmGaNWqvF418ex5cIWXMy+CADo0KQDBrQcIDYusDQrmNd7ntjEIKc4R2wra5nLiDYjsHD/QnT+ujMyCjOq/qVrGQNYIiIiolpyNe8qDiYfBAC00LeQrT5QaiqFSqFCTJrtiqqFj7OPpBqAyWSyGXNvyL1o5toMnx8sb1wwt+dc7L+yH4dTDkOj1CC7OBveTt6Y1nmaOOaLQ1+IlQ9KTaVQKpRik4UZXWfAy8mrit+69jGAJSIiIqolq8+uFj/7OvvaHXdX0F3YdXmX3evWq7hejl44lnrMZszsiNm4kHkBG+I3ADA3S5gSOkVcfXXXuQMAnox4Eo4ac5WBorIifLDP3GxKrTD3txrSagj2JO6BSqHCi/1erMS3rHsMYImIiIhqybKY8sDTegOWhUapAQC08miFMpN8w4C3Br2FwymHxeNg72CbMcFewRgUOAhfHv5SPPdE1yeQVpgm5uCmFaZBq9Liye5PimOWnFiCnJIcAOV1aC2luaZ0noJWHq0q90XrGANYIiIiolqQWZSJnZd2AgB8XXxl0wfKTGXQqXU4lHxI9hlalRYZRdIc1PMZ523GzY6YjcKyQnx3zFxmSwEFnuz+JD4/+DlMgglNnZsCAKZ2ngofFx8AgMFkwJs735Q8Z0DLAdh5eScUUOClfi9V8RvXHQawRERERLXg73N/i3VV/V397Y4b3no4jqcel712b8i9YvMBAOjYpCPSCqWbtxzVjng4/GH8evJXcRPYPe3ugbeTN74//j0A4HrBdQDAc72eE+9bfmY5rhVckzxLrTSnETzQ8QGxW1dDxACWiIiIqBYsj1kufr6YddHmuiVY1Ov0YqBbUZhPmGTl1nKPtUmdJkGv1ePTg+Wls+b2nIslJ5YgtyRXzH0d0WYEOjbtCAAQBAH/2fEfAObVWgDo2bwn/kkwt559tuezaPNZGyjeUCC7OLuyX7nOMIAlIiIiqmF5JXnYfGEzAPOmK7nmBQaTAXqt3u7mreauzSXXXBxcEH0t2mbc7O6zsfPyTsSmmzt8hXiFYEDLAWJAW1haCEDaNnbzhc24kHUBQHkA6+rgCgEC7g25Fzsu7UBaYRqCvYLh6uBa5e9f2xjAEhEREdWwjfEbYTCZN0W10LewO25o66G4lH1J9tqEDhOw9eJW8bi9d3ubMRF+EYjwi5CUzprTcw7WnV+Hi1kX4ah2RKmpFKFNQzGk1RBxzKv/vCp+NsFcksuy+vpcr+fw4f4PAQD/6f8fsXZsQ8IAloiIiKiGLT9Tnj6QmJNoc12lMAeFJsG2nquFTqMTu2MBwKWsSzZjZkfMRlJOkliuy9XBFdPCpsk2LlAozCut+5P24+jVo5J5DAkaAhNMGNFmBPYn7UdGUQbctG5w0jhBEOTTG+oTA1giIiKiGlRsKMa68+sAAHqt3qaKAAAYBSN8nH2wM2Gn7DN6+/fGn6f/FI9be7S26bwFABM7TcTXR74WV1Ef7/o44jLisOvyLqgUKuSX5sPXxReTOk0S77Hkvlrm0c6rHaIuRQEAnu/9vFgXNrckF+OWjZOtnlDfGMASERER1aBtF7eJna1a6lvaXLfknA4MHIiMYvk2rYMCB0lSC5w0TjZj5vacC6VCKbaBVUCBp7o/hU8OfALA3MgAAJ7u/jS0ai0AICYtBtsTtgMANApzDdoW+hYwCAYMChyEY1ePIaMoA1qVefyLfV9kJy4iIiKi292KmBXi5+TcZJvrlgA2vTBd9n6dWidusLI4df2UzbhZEbOw9PRSse3ryLYj4aRxEldus4qz4Kh2xKyIWeI9r0e9Ln4uE8rQQt8Cuy6ZN4r9q/e/xNXXEqO5mcG7e9/lCiwRERHR7azMWIaVsSsBAM4aZ9kVVhNMaOXRCnsT98o+Y2zwWKw5t0Y8DvMJsxkzKHAQgr2CxdVWwLx5a9HhRSgzlcFD5wEAeCT8EXEFNSknCX/F/gWgvBxXO892KDWVAgBOp51GemE6HFQO4jNDm4aKZbgaEgawRERERDVk1+VdYjOBQPdAm+uW1dcIvwgUG4tln9HSvaWYggDIr+LOjpiNg8kHceLaCQBAW8+26BfQD18f+RqAefVVAQWe7fWseM87u98RN40ZTAb4OPtgb5I5iF75wEos3LcQAFBqLBXveWPgG1AqGl642PBmRERERNRI/RXzl/j5av5Vu+MSMhNkz/u7+WNz/Gbx2M/VD+lF0lQDXxdf3Btyr6R01tyec/Hbqd+QUZQBFwcXAMCY4DFo69UWAJBRmIEfjv8AoHz1tVOTTigyFKFbs26Iz4xHWmGaZPW1i28X3Btyb2W+dp1jAEtERERUA0yCCctilonHcrmjAgR0atoJx1KPyT5jdLvRkmYFcj/fP97lcWQUZWDpmaUAzKkK0zpPwycHPwEAcfV2Xu/yxgUfH/gYZaYyAObVV3edOw4mHwQAvNDnBSzcL7/6aim91dAwgCUiIiKqAQevHBRLZoV4hdhct6QPtPNqJ6nvas06dUClUCEmLUZyXalQYka3Gfju6HfiMx7v+jj2X9mPmLQYOKgcYDAZEOEXgcgWkQCAgtKC8rqw/1/3Ndw3HPll+QhtGooruVdwveA6NEqN+J7uft1xJOUIolNtO381BAxgiYiIiGqAdfrA9YLrNtcFmBsCnL5+Wvb+3v69sersKvG4nVc7mzGj2o5CM5dm+OLwF+K5p7o/Ja6+WgLUeb3KGxd8c/QbFJaZ28kaBSOcNc44fvU4AHPlgff3vQ8A4gotANzf4X68uetNhH8TbrdaQn1iAEtERER0iwRBwB+n/wAAaJQaZBbLl57q4dcDcRlxste6+3VHdnG2eCwXBM+OmI1VZ1eJ14a3Hg6DyYBN8ZuggAJFhiIEuAXg/g73AzCnBLy9+20A5cFtt2bdkFOSg2CvYKQVptm8p1fzXpJg3JIz25AwgCUiIiK6RdHXopGSnwLAXEWgIuX/h1zeTt6y9zuqHSW5r16OXjYdvILcgzC8zXBJ6axnez0rHls2b83pOQcalTkd4LdTv4m5uEbBCK1Ki9Np5hVg665b1u4JvgeHUg4BMFdSsDy3IWEAS0RERHSLrFcs5TZvmWCCSqHC8dTjsvePbDsSuxN3i8dyge7MbjNx8tpJ7L+yH4A5oO3arCt+PvkzACCvNA8uDi6Y0XWG+Z2CCa/teA0AxFJY3fy6IbMoE0HuQcgtycW1gmuS3NfIFpFYenqpeHwp+xKyirIq90eoQwxgiYiIiG6RJX1ApVDZ7VzVJ6CP3dJaHjoPsUYrAJs0AweVAx7t8qikdNazvZ7F98e+R7GhGK4OrgDMFQr0Oj0AYO25tbiSewWAOZhVKVSIz4wHYK5QYKk8YJ37elfQXTZdvyyruQ0JA1giIiKiW3Au/ZzY+rWFvoXNdcvqp72GAAFuAdh4fqN43Majjbjhy+L+DvdDqVDil5O/ADCnHEwOnYwvDpk3c+WV5kGpUGJur7kAzDm5L29/WfKMCL8IXC+4Dn83f5QYSpCanyrJbx0UOAi/nvxVck8LtxZw1jjf/I9QxxjAEhEREd0CS+tYAJJNWBYmwQSdWifu/K9oSKshSM4v77aVVWz7k/3siNlYfHyxuFr6aJdHsSl+E67mX4Wj2hEAML79eLH7167LuxCbHit5RmJOIgDg2Z7P4sP9HwIw14S16BPQB/FZ8ZJ73h/6PldgiYiIiG43v5/+HYC5zqtc8AmYS2TllubKXrueX14FwNXB1WbzFmCuDPDpwU/F46e7Py3Wdi0xlgAwb8qyePkf6eprV9+uuJp/FT7OPgDMXcKsV1+HthqKn078JLmnvXd7TOg4QXbO9Y0BLBEREVE1JeYkinVd/d38ba5bmhfklsgHr739e2Nrwlbx2MfFx2bMopGLsCF+A5LzzKu0Q1oNQVphGo5dPQa1Ug2TYEKfgD7o6d8TAHAi9QT2Je2TPON6oTlIntNjjuzqaxffLriSd0Vyz0fDP7Kb9lDfGuasiIiIiBqBVbHljQfyS/NtrgsQoNfqcfLaSdn7g72CJe1bL2RekFx31jhjauep4morYE4BqNhZy3r19dV/XpU8o1PTTriSewVejl5wUDvYrL4Obz0cS04skdzTs3lPDG89XP5LNwAMYImIiIiqyZI+AMjnrgJAl2ZdJDv9LXRqHQ5eOSget3BrYbN5a2rnqUjOTUbUpSgAQEt9SwR7B2P12dUAzOkDrTxaYWzwWABAfGY8NpzfAKB89TevJA+ANO3AevW1vXd7pBWmSd770fCPxE5eDREDWCIiIqJquJZ/DYeSzQX//Vz9bK5bAsjUvFTZ+4e1HobYjPKNVnIruLMjZouVBgBz6awvDn0BAQKcNE7mcz2fhUppXol9Y+cbYhAsQECwVzAu51yGXquHs4MzUvJSxFVbwFx/tuLq6/DWw9EnoA+MJuPN/wj1hAEsERERUTWsObdG/FxUVmRzXYCAps5NcS7jnOz9KpQHkjq1zqb9bG//3gjyCMLiE4vFMePbj8fi4+bjwrJCuOvc8UiXRwAAqfmp+OOUuR6tJXguM5pXfmdHzBY3gRmF8sA0yD0IOSU5kvd+MPQDlBhKEP5NOBRvKFBYVnizP0WdYwBLREREVA2WYBGwnz4Q7BVskxYAmDd8bb1YvnmrmUszmzGzI2bjpxM/odhQDACYHj4dK2JWIK80T1x9ndltptjq9b0974nBqQABge6BuJh9Ec4aZ3joPJCclyxZfR0TPAY/nvhR8s6JnSYi1CcUXx35Cqevn5ZdWW4IGMASERERVVF2cTZ2Je4CADR1ampz3bICein7kuz9ffz7IL+sPGXgcvZlyXUvRy+M7zBesnnryYgn8dmhzwBAXBV9usfTAICc4hx8deQrAIDy/8M7tcK8UeuJbk/g88PmDl7Wq69NHJugoKxAPFYqlHh78NvILs7G/3b9DwDw5sA3xWC5IWEAS0RERFRF6+LWia1f5TZoCRDQQt8CSblJsvcnZCWIn32cfWCCSXL9kfBHsCdxDxKyzeMGBQ5CXEYcLmVfgoPKAQAwJXSKWLrrs0OfifVgTTDBz9UP8Vnx0Kl18HH2wZXcK5LV13tD7sWvp6Rdt57o+gRaebTCu3veRWZRJjo26YiHwx+u0t+lrjCAJSIiIqqiP0//KX62lz7g5yL/83uv5r1w5OoR8diSp2ptZsRMfHLgE/H4uV7P4ZODn0jGW0pnFRuK8cHeDwCUr/y6aMxpBY+GP4ovDps3gVlWXxVQwEXjIga8Fv8d+F8k5iSK731vyHuSclsNCQNYIiIioiooKC3AlgtbAACejp52x8Vlxsme93X1FfNi1Uq1zeatYa2HQalQYmP8RvFcU+em2JO4B0qFEgIEDAochC7NugAAFh9bjLxSc6ksAQKaODVBXGYcNEoN/N38bVZf7wu5D3+e+VPyzvl958PXxRev7XgNJcYSDGg5ACPbjqzsn6TOMYAlIiIiqoJN8ZvEtAGTySQ7pq1nW2QWZdqc16l12J+0Xzy2t3lr0aFF4vHCoQvF3FdLIDqv9zwA5nqur+98HUD56qslqH6o80NiXqxl9VUJJVRKlaQOrLPGGS/2exHRqdH4OfpnAMD7Q99nHVgiIiKi28XSM0vFz9kl2bJjnDXOsucHthyIawXXxOPk3GTJdX83fwwKHIRvjn4DANCqtBjRZgSWnVkGwJxvG+wVLK6OLo9ZLjYhECDAXeeOcxnnoFKoEOQRhKTcJEk72Pva34cVMSsk73w18lW469wxf9t8CBDwYMcH0aN5j8r8KeoNA1giIiKiSioxlGBd3DoAgJvWze44e7VfrZsVeOg8bDZvzeg6A8vOLBOrAzwc9jB+PfkrDCYDtCotAHM+rFKhhCAIeGX7KwDKV199nH0AAJM6TcK3x74FAHGzmUqhQrGhWFLWy1PniTm95mDbxW3YfGEzNEoN3h78NgAgKUd+A1pDwACWiIiIqJK2J2xHkcHctMASNFbUoUkHcYy1ALcAHLhywO6zlVDisS6P4cP9H4rnHu/6uLgaW2IsgZejFx4KewgAsDl+s1ilQIAAZ40zzmWcgwIKtPNqh8ScROnqa8h9WH9+veSdb9/1NnRqHf699d8AgCe7P4nWnq2RUZiBzl93huINBTIKM276d6lrDGCJiIiIKsnyUz4Amw5WFvZasHb26QyDYM49VUBhU73gvvb34ULWBXH1tn+L/jh69SiyirPE1dcnuz8JR40jAOClf16S3B/gFgAAuL/D/fjh+A8AyldfNUqNzfuauzbHY10ewx+n/sDx1ONw07rh1f6vAgBej3od2cXZCPMJg7vO/QZ/kfrBAJaIiIioEgwmA1bGrgRQXqaqIpVChfjMeNlrMWkx4md7m7esS2fN7TVXPC4xlsBB5YCnuj8FADhw5QBOpJ4Qx2pVWpzNOAvAvAJ8OeeyZPV1bPBYbE/YLnnfB0M/gFEw4pV/zGkIL/V7Cd5O3ohJixE3f308/GOolCo0NAxgiYiIiCphT+IesVyVvaCufZP2km5XFhF+EeLP/QBwNf+q5Ho7r3Zo69kWq8+uBmCuIatRaiS5tFNDp8LHxZzj+tJ26eproHsgAHOg+lP0TwDKV18dlA6y73uw04NYdGgRLueYu4DN7TkXAPCvLf+CUTBibPBYDAoaZOevUb8YwBIRERFVwvIzy8XP9tIHcorlz1uv2Lo4uEg2UgHArG6z8M3Rb8Tzz/Z6Fp8f+lwyxlI6KzYtFlGXosTzaqUacRnmmrOhTUNxKfuSZPV1TPAY7E3aK3nWx8M/RnZxNt7a/RYAYPGYxXDUOGJz/GZsjN8ItUKNrOIsKN5QiIFwQ1JnAez8+fMRGRmJadOmoaysvONEXFwcwsPDodPpkJ9fvjPv008/Rd++fTFmzBjk5uYCAPbs2YM+ffqgX79+OHXqVF1NnYiIiO5wJsEkls9yVDvKjtGpdbKtYx3VjjiUfEg8Viuk3a20Kq15NfSwufarg8oBfQL6YOvFreJGseGth6Nj044AgP/s+I/k/iD3IAgQMKLNCPx26jdxvgCgVWpxIeuCZHyEXwTubnM3FuxegOzibHRq2gkPhT0Eg8mAeVvMQfLAoIHYdXkX9Fq9bD3b+lYnAWx0dDSSk5Oxe/duhISEYMWK8vpj/v7+2LlzJ3r16iWeS09Px9q1a7Fnzx48+OCDWLTI/D/oK6+8gvXr1+P333/H/Pnz62LqRERERDicfBgZRebd+BqVRnZMG482sud7+fdCoaFQPK5YO3ZS6CRsv7hdXNWd1nkalpxYAgDiSqqlbWxSThJWnV0l3quAAhezLgIAuvp2RUJ2ApRW4d097e7B8dTjkvd9PPxjXM65LDZHeH/I+1ApVfju6HeISYuBh85DzK/974D/wtvJ285fpf7USQC7b98+DBs2DAAwYsQI7N1bvozt5OQEvV4vGX/48GEMGDAACoVCHF9UVASVSgUPDw+0aNECmZn2/2ugpKQEubm5kn9ERERE1WVd/D+3RD6usG5QIDmfX36+qVNTm+uzI2Zj4f6F4vHUzlPx68lfAZR30BrSaggA4H+7/if5Sb+VRysYBSMGBQ4S28Naass6qhwRk16+cQwA7gq6C/1a9MN/dvwHpcZSDA4ajBFtRiC7OFtc2e3arCvSC9Ph7eh9Z+fAZmVlwc3NXOxXr9ffMPi0N976HACo1WqUlpbK3r9gwQLo9XrxX0BAQA19EyIiIrrTCIKA30//DsD8874cVwdXsSOWNX9Xf0kQmV6YLrnetVlXmEwmnLx2EgDQJ6APdl/ejRJjCTRK80rv4jGLoVCY67H+eOJHyf2JOYkAgB7Ne+Bi1kVJbdoRbUcgNj1WMv7DYR/i+NXj+O2kOdXg/SHmlrFv7XoLGUUZaOXRCrsu7zLPtSgdXb7pgusF12/8B6oHdRLAuru7i6ugOTk58PT0rPJ463MAYDAY4OAg/39EL730EnJycsR/SUkNt5MEERERNWynrp9CSl4KAECn0smO8XP1kz3f2rO1+Fmn1tl03podMVv8KR8A5vSYI+bClpnK4Ovii8mhkwEAC/ctRJmpfB9RoD4QZaYy9A3oK64QWzaBOaudJWW2AHN92DDfMLFl7OTQyejm1w3xmfH47KB5Dt6O3igzlcHFoXzTWROnJnb+MvWnTgLYPn36YNu2bQCAzZs3o2/fvjcc3717d+zatUsy3snJCQaDAdnZ2UhKSrphEKzVauHm5ib5R0RERFQdf8X8JX7OLZVPH0jOTZY9f+pa+aZzrVIruabX6jE4aLDYHMHH2QcFpQW4VnBNXH19uvvT0Kq1KCgtEINMi5R8c1Ddy78XLmRdkKy+Dmk9RFK2S6lQ4t273sWWC1uw9eJWOKgc8NYgcwWCf2/9N8pMZejarCsOpRyCUqGUtLw9k3bGzl+m/tRJABseHg4fHx9ERkbizJkzGD9+PGbOnAnAnC4wZMgQREdHY/To0di4cSOaNGmCUaNGoW/fvvj999/x5JNPAgDeeustjBw5EhMnTsSCBQvqYupERER0h/v1lDkfVa1Uy173dPREflm+zflw33BkFpenTeaUSktsPRT2EH47+ZuY5/psr2fF1dgyUxkc1Y6YFTELAPDl4S8lG8EC3AJQaixFt2bdsObcGgDlq6+uGlccTjksedcjYY8g0D1QbBn7dPenEeQRhKhLUeKmsKyiLNnv6ePsI/+HqUcKQRCEmw9r3HJzc6HX65GTk8PVWCIiIqq08xnn0e6LdgDM9VutVyYtWrm3wsXsizbnw3zCEH0tGgDgqfOUBLMAcGLmCdz1813IKMqARqnB8gnLce/Se6FSqGAUjJgdMRtfjvoSZcYyNF3YFNnF2eK9jmpHFBmKMLfnXHx68FMooBAD2NHtRuPvuL/FsRqlBpeevYRtF7fh4dUPQ6/V48KcC3DXuaP7d91xPPU4+gb0xd6kvdCqtCgxlkjmWfRKEXRq+dSJmlSVeI2NDIiIiIjssE4fkAteAeBK7hXZ86evnxY/WwefADCg5QCcyzgnluaaEjoFi08sBmCuPKCAAs/2ehYA8MvJXyT3+7r4oshQhNCmodhwfgOA8tVXvYMe+6/sl7xrTs858NB54NV/XgUAvBz5MrycvPBz9M84nnocrg6u4lwrBq8eOg8UlhWioWEAS0RERGSHJX1ApZBvHevj7INSk21VpJ7Ne4qpAWqF2mbz1qyIWfhw34fi8bj24/D3ufJV09HBo9HOqx1MgsmmcUFeibmd7YCWA3A+87wk97Vfy36SSgeOake8EvkKPj/0OZJykxDgFoBnejyD/NJ8vPzPywCATk07IackR7ZBQ1ZxFty0De/XawawRERERDKScpLEDUz2fkK3lxeblFNeAaliYNjUuSnaeLbBoRRzd66ezXti68WtECCIjQvm9TJ3xFp7bq1YAQEwVwQoKCtAsFcwtlzYAqB89dVT54ndibsl73ol8hWYBBPe2f0OAOB/g/4HR40j3tvzHlLzU+Hv5o+DyQcBAEWGIpvv4aHzsNsetz7J/9VldO/eHQqFAiaTCVlZWXBxcUF+fj48PDxw5MiR2pwjERERUZ1bFVve8aqgrEB2jHVwaeHn6ic5n1eWJ7n+WJfHsOjQIvF4dsRsPLXhKQDmFrDdmnVD/5b9IQgC5m+Tdh61BJmDggbh6yNfS3Jfu/t1x+aLm8Wxeq0ez/Z6Fq/teA05JTkI8wnD1M5TkZiTKDZOcNe540ruFTioHFBqtF1JzirOgsFkkP3u9anSK7CHDx/GoUOH0K1bN6xfvx7R0dHYsGEDevfuXZvzIyIiIqoXv5z6BUB5O9eK/Fz9xODRmvWufbmf3x/o+AB+O2VuJNDUqSlS81NRUFYgpinM6z0PCoUCuy7vQlxGnHifh84D+aX5CHIPwo6EHQDKV1+9HL2wJ2mP5D1vD34b1wuu44vDXwAA3h9qbhn70vaXUGwoRscmHXH6+mmoFCrZ4BUAJrSfAB+XhleFoMopBKdPn0ZISAgAIDg4GEePHq3xSRERERHVp7SCNBxNMcc49tIH7AV9sWnl3a/yS6Qbv0a1HYUt8VvEhgRP93gaXx75EoB585a/mz8mdJgAAPj3tn9L7jWazDm1dwXdhXMZ5yTXuvh2kawS+zr7Yka3GXh1x6soNZZiaKuhGNZ6GA5eOYjfT5m7ilk2hlm3pq1oeezyBtmJq9IpBBajR4/GoEGD0LlzZ5w6dQqjR4+ujXkRERER1Zs159aIq5v2duFXbAsLAB2bdBTzZhVQ2GzeeqLrE5i53lwLX61Uw8/VD4k5iWLprDk95kCj0iA6NRqHkg+J97k6uCK3NBf+rv42ea5NnJrYnHt/6Ps4de2UGKy+N+Q9CIKA5zY/BwDo1qwbjl49ajd1wCKyRWSD7MRV5QD2xRdfxKOPPoqEhAQEBgbCx6fhLSsTERER3Ypfos3pA9Y5ptaauzZHcp5t962C0vJVUGeNs6TBQUt9S5gEE1LzUwEAEztNxA/HfwBgXn11cXDBjG4zAMAm91WlNKcXDGk1BD9G/yiZV4cmHbDz8k5xbGuP1pjUaRKG/ToMADC181R0adYFf57+E/uv7Iej2hGx6eZV4hsFrwCwO3E30grT0NS56Q3H1bUqpxCkpKTgf//7HxYtWgRvb28sWbKkNuZFREREVC9yinPEfFJ76QO5JbYtZXVqHS7lXBKPK3bnmhUxCx8d+Eg8HhI0BPuv7BfLYD3W5TG469xxMesiNl/YLLk3uzgbPs4+OHDlAIDy3FdfZ1/sTdwrGfvx8I+x9eJW7Li0Q2wZW1RWJAbFId4hKCwrtKmgYF2Oy2Jg4EB4O3nL/g3qU5UD2OnTp2PatGlISkqCSqXCb7/9VhvzIiIiIqoX68+vF/NC5UpLqRQq5JXm2Zxv59nO7jPVCjX6tegn/tTfrVk3bIzfCABi+ay5PecCgNhwwMJD5wEAGNpqKM5mnJVca+XRCgahvEpAmE8Y7m5zt5g/O6fHHLR0b4mP9n+ExJxENHVuiuOpxwHAprpAxZVmnVKHH8b8YHcTW32q8oyMRiN69OgBhcIcpZtM9hN/iYiIiBqbX0/+esPr9n5OT8hOED8rK4RYEzpOwG8nyxf9Hgl/BCtiVojH49qPQ5BHEK7lX8OyM8vE8w4qB2QVZ8FT54kjV6VlS5u5NMOB5AOSc5/d/Rl+PfUrTl8/DQ+dB16OfBlX865iwZ4FAMy5tID8amtFJpjQ+rPWKDYU33RsXatyANuxY0e8/vrrSE9Px9tvv42wsLDamBcRERFRnSssK8S2i9sAAFqVVnZMZlGmzTkfZx/JqmzFzVsPdX4IS06Y0y69HL2QkJUgtowFgOd7Pw8AeHv322IHLwBw0bgAAIa1Hoaz6dLV1+auzSUVBPq37I/uft3FFdxXIl+Bh6O5hWxBWQFae7TGhawLUCqUktVWuWDWTesmdhizVGNoSKq8ieuzzz7D+vXr4ezsjJCQEFYhICIiotvG5vjNYomrEmOJzXUHlYPseRcHF1wruAYAcFI7odBQXrmgY5OOiMuME++bFTELiw6bGxkIENDbvzd6+fdCbkkuvj36rXifWqFGZrE5WI6+Fi15X3PX5jYrsp+O+BSfHvwUyXnJaKlviad6PIXjV4+LgXNOibmjVsWyWRVTBzQKjSTHN8gjyOb71rdq5cCOGjUKL7zwAkaPHo3nnnuuNuZFREREVOcsDQbscde5y55PyCpPH7AOXgFgZreZWLjP3PlKrVTDWeOM7OJsMbfUsvr68f6PJcGxm87cBGF8+/Fi1QCLiqWtxgaPhb+bv5gq8Pbgt6FVaTFvyzwIENChSQekF6bb5LPKphJYnRoSNATNXJrJfuf6VOkV2Pj4eJw7dw7Hjx/Hhg0bAAAGgwHHjh2rtckRERER1ZVSYynWn18PwJw+ILfSmlGYYXOurWdbnM88D8C8elkmlInXnNRO8Nf7Iyk3CQBwf/v7xRVRk2BCkHsQ7g25F8WGYrG9K2AOLDOLMuGscUZMWozkfQFuAThx7YTk3MJhC/HWrreQW5KLcN9wTAqdhDXn1iDqUhQcVA6Iz4wX32mt4uprE8cmSCtKAwA4KB3w2/jfxH1PDUmlV2CTk5Nx5MgR5Obm4siRIzh8+DBOnz6N9957rzbnR0RERFQndiTsEDcsyQWvjmpHSX6qhXVOrHVFAMBcg/XLw1+Kx92bd8f5zPPiSuizvZ6FSqnC98e+R35pedktD0dz5YEhrYbYrL66OLhIjh8OexgKKMT3fDD0AxhMBryw9QUA5koFN6v3CgAaaMTgFQD83Pzgs9CnUvfWtUqvwA4YMAADBgzA+PHj0bFjRygUCgiCgJiYmJvfTERERNTAWbpW2eOocbQpq6VT65BRVL4qW3FFc3TwaIz+w7xfKNwnXFzhNQkm6LV6PBL+CIwmI97Y+YbkvsyiTOhUOsRlxEnOt9S3lAS0KoUK79z1DuZtnocyUxmGtx6OIa2G4KP9HyE+Mx6ejp42m78AQKlQ2qzGajQalJWZV4/berTF+SzzqnJeSR68nLxu+Lepa1XOgZ0zZ464lKxQKDBnzpwanxQRERFRXTKajFh1dhUAQKPUyI6Rqz7Q3LW5+NlR5Si51su/F7Zf3C4eP9DxAfyT8I94PLPbTLhqXbHszDJJW1pPR08A8quvFZsPPNPjGSTnJmPpmaVQQIH3hryH9MJ0vLnzTQDmbmByKgavfi5+YstcrUqLC9kXAJg3rVWsF9sQVDmALS6W1gIrLJTvD0xERETUWOxN2iuWwbJUIbBW8Wd7C0tuKwAUGaWrs4+GP4pvj5mrCnjoPCQroWqlGs/0fAaCIOCl7S9J7sssyoRGqcGFrAuS84H6QJtzr/Z/VUwVeCjsIYT5huG/O/6LnJIc+Lv5S+ZnUXEjlwoqpOSniMd+rn5igFtqLJVtpVvfqhzA3nPPPbjvvvvw0UcfYdy4cbjnnntqY15EREREdeaPU3/c8Lrcbn1vJ28xP7Ri4wLAHAhbVjUfDX8Uf575U7z2YMcH4e/mjy0XtuByzmXxvKXr1uDAwTarrxXzb98Y+AYOXDmAnZd3QqvS4n+D/oeYtBh8c/QbAJDk1Fp/j4qrry7a8uA8tEmopCHDy/1ehq+Lr81z6luV68C+/PLLOHnyJM6ePYs33ngDoaGhtTEvIiIiojohCAKWxZi7X6mVatmfzOVax6oV5WFUxVXKeb3m4aP9HwEw56lCAclmqHm95wGAuHpqkVWcBZVChcTcRMn5IH0QEnLKA0s3BzfM7TkXfRb3AWDeDBagD8Ddv90No2AUmxbYfNcK8/R39ceVvCsAzPm81q1q/V398VI/6epwQ1HlFdj8/Hxs3boVJ06cQIcOHbBx48bamBcRERFRnTh69aiY3yoXvLpp3WTvSy1IFT9XDAy7NesmBpBjg8fi5+ifxWsDAweia7OuOHjlIE5dPyWe12v1AIABLQfYrL5WbOf6v0H/w4qYFYhJi4Gnoyde7PciNsVvwqb4TVAr1JJVXQuVQiU5VkCB5Lxk8biNRxtJ+kRGUQZc33XF9YLrst+/PlU5gJ06dSoCAgKwe/duqFQqfPjhh7UxLyIiIqI6sfT00htelysjFeAWIH52UDpIrg1tNRR/nClPSWjfpD3SCtNs2sZWXH3NKcmBAgpczb9q876rBeXnmjo1xbSwaXgt6jUAwKuRr8LFwQXPbzE/N0AfIBuIV0xB8HT0FAPvrr5dcTrttHjN380fRYYi9G/ZH95O3jbPqm/VWoF94IEHoNGYd+gJQsNL7CUiIiKqDEEQxO5bFVcoLSqufgLShgalJmmAO6HDBKyPM5fL6tikI9aeW2t+FwS082qHkW1H4mz6WexO3C3e4+rgCgCIbBlps/rq7SgNIBcOW4gvD3+JlLwUBLoH4snuT+Lbo98iJi0Grg6ukhxWi4o5vM2cm4nlv3RqneSd7jp3XMm9AieNExaPWWyz6ashqPKMmjVrhh9//BEFBQX47bff4O/vXxvzIiIiIqp1MWkx4oqnXJMCufQBB5WDTbtYCz8XP8Rnxosrm6Pbjcap66fEAHJer3lQKpSYv3W+5D5Ljm1aQZrkfJB7ENKLyktstdS3xNBWQ/HeXnMjqXcGv4MiQxFe22FejXXSONnMSQmlJMVBCaUk/aGLbxdJfVtLwP7uXe+itWdr2e9Z36ocwH7//fcoKChAREQEsrKy8O2339bGvIiIiIhq3bIzy2543VJFwJqXY3lR/4orm490eQRfHfkKgDmnNfpaNADz6quXoxemhU3Dldwr+Dvub/EeS63WXv69bFZfK9ae/XTEp3hnzzvIK81Dt2bd8GCnB/HWrreQUZQBH2cfXCu4ZjNfE6RVB7ydvcWANqJZBPZf2S9e83P1Q7GhGP1b9sdTPZ6y81epf5WuQjBs2DBs2bIFzz//PL744ovanBMRERFRnfjl5C8AzOkDciuwcrmkqfnym7cUUKCJUxNxNXVS6CR8feRr8fqT3Z+Ek8YJT294WnKfJUjOLs6WvCfIPUiSDtCpSSd0aNIB9y+/H4C5ZezFrIv47OBnAOTLZlX8Xp46T3FTloPSAfFZ8eI1N60bUvJSGnTqgEWlA9iysjI899xz+Pvvv+HkJF2efv/992t8YkRERES16WLWRTFAlAteXR1cbcpnuevcxUBTBRWMKL/vvvb3iY0LAKCotPxneQeVA57s/iQyizLFoBkAHNXm9rQRzSJw5OoRybsq7v7/YuQXeOWfV2AwGTCy7UgMChqE+5behzJTGQLcAmSbFlT8XtZB8oCWA7A1Yat4bNms1pBTBywqHcBu2LABJ06cwL59+zBq1KjanBMRERFRrVtxZsUNr8utaJpM5T/HWwevADAocBBWxq4EAIxsOxLLY5eL16aGToWviy9e2PKCZFW3xFhifleZ9F2t3FvhYvZF8bhvQF/o1Dosj1kOpUKJ94a8hx0JO7D67GoooZSUw7JQQCFZ6fV28hZb1nbx7SIJXi3pBw09dcCi0gGso6MjevfujYMHDyIvLw/Z2dmsQEBERESN1o/RPwIwt1at2J1K7hwA5Jbmyj6rjUcbRF2KEo8D9YGS/Nnnej+HgtICfHG4PA1Tq9KixFiCMJ8wMVfWIiUvRXL82YjP8OzmZwEA08Omo713e0xbNQ0A4OviK2kFKzd/F7WLGLxqlBrJ8500TrhWcK1RpA5YVLkT15w5c3DkyBH4+/tDEAQoFAosW3bjBGgiIiKihiQlL0XcMCUXqDqqHVFQViA518SpCdIK02zGAsDUzlPxv13/AwCEeIdgzbk14rXhrYejU9NOeHfPu5KSXJaV2Ipluiquvo5sOxJX8q5gd+JuOKod8cagN/BT9E84kXoCTmonm+BV7jsVGsuD6WGth2H9+fU2YxtD6oBFlQPY6Oho7Nu3rzbmQkRERFQnLD/121MxeAVsKwJYaBQaFBmKxHzTgYED8fWRr8Wf8Of1nocyYxne3fOueI9aoYZBMKBDkw6ISYuRPK9iLusHQz/A+GXjAQDP9XoO7jp3vPLPK+Z3qzRAhX1mFTduuWvdkV2SDQBo79VeErxagvIBLQc0itQBiyqvEUdERGDv3r0oKChAYWEhCgvl66ARERERNVQ/nvgRgG0ZLEC+oYFGqRGDQmWF8OnB0Afx7VHz5i1XB1ccSTFvxhIgoFPTThjaaih+iv4JOSU5Ns+tWOUg0D1Q0s51cqfJ2JO4B2fTz8LbyRv/7vtvvLvnXaTmp8JD5yH7TOvgVavUisGrSqGS1HvVqXVIK0yDk8YJP4z5oVGkDlhUeQX22LFjOH78uOTcP//8U2MTIiIiIqpNGYUZOHb1GABpGSwLjVIDo1G6QctZ4ywGghXrqoZ4h+DXk78CAMYGj8Wvp34Vr83rNQ8CBPxnx3/Ec0ooYRAMaOvZFnEZcZJnJeUkSca9NuA1DPxpIADgtf6vIackBx/u/xCA/Cazihu3rLuEjWw7UlJ/1rKXqTGlDlhUOoCdMGECFAoFvL0bXj9cIiIiospac3aNbOBqUWy0bR1rCV4rCvMJw18xfwEwB49ZxVniNR9nH0wOnYzVZ1dLascqlUqYTCab1d8Wbi2QmJsoHs+OmI2lZ5YiNT8VrT1aY2bETExfPR3FhmLZfNyKG7ec1c4oMJhTIQL1gZLUAU9HT2QWZTa61AGLSgewCxcurM15EBEREdWJJdFLANiuVgLm1Vfrn/AB+XqwFqODR+OtXW8BAAYHDcbG+I3itad7PA0HlYNN21iDyYAg9yDEZVZYfbXKfXVQOuCpHk+h+3fdAQAL7lqAoylH8cfpPwBAdjOZdfCqgEIMXhVQwEnjJF7XKDTILMpslKkDFpUOYFu2bFmb8yAiIiKqdXklediXZN6MLrcKK3fOUqu1Ime1M85nnBePvZ28JUHkrIhZ2HV5l6TblSVAViulIZi/qz+u5F0Rj//d99/4/NDn4mayce3Hoe/ivgCkm7Is7JX9AoARrUdg44XywFqpVALGG6cOGE1G3L/8fqw+uxrCfxte2dTGF3ITERERVdP6uPV2Az1AvnWspUNVxZ/8J4ZOxF+x5vSB1h6tseH8BvHarG6z4O3kjee3PC+5x9I163zmecl56+DVWeOM+0LuEzeGRT0chaVnluJg8kE4KB1k0xmsv5NGqRED8aZOTbEtYZt4Ta/Vo8RYctPUgff3vo/VZ1fDWeOMq3lX7Y6rLwxgiYiI6I5hSR+Q46BysDnnpnUTP1dcnXXTuokBb4/mPSRpBs/1fg7RqdE4evWozfO1aq3kOc1cmkmO3xz0Jt7a/RaMghGj241G9+bd8eK2F80XbYsm2LBOgfB38xePVVAhpyTH3LBgrP2GBQeuHBA3nX0x8gs0c20mO64+MYAlIiKiO0KxoRg7EnbYvW4w2q6+5pbId97qF9BPrDzgrHHGgSsHxGuj241GO692NquvpcZS+Lr4Ij4zXnL+an75CqenzhNdfLtg1dlVUCqUeHfIu/ho/0dIyk2Cs8ZZXA22kCsDZtG/ZX8cSz0mHqtU5vJg7w15D608Wsnek1Ocg0l/TYJRMGJSp0l4OOxhu8+vTwxgiYiI6I6w5cIWmw1a1iqWx6qYp2qtp39PcSPV0FZDkZCdIF57vvfzuJh1EdsTtovnLKuvzhpnyXOaOjeVHL8/9H28uuNVAMBjXR6Du85dbIBg3ZrWwl41BReNCw4nHxaPXR1cUWosxYCWA/Bk9ydl7xEEATPXzcSl7EsIcg/CopGLoFBUYsm3HjCAJSIiojvCkhNVSx+wF8B6O3pjT+IeAOYVUOsV1K7NuqJ/y/7lP/n/v1JjKZo4NcGFrAviOQUUuF5wXTz2d/OHXqvHvqR9cNI44fWBr+PVf15FQVkBnDRONsFqxYYK1jo27Sg2LVBAgbzSvJumDvx44kcsPbMUaqUaP9/3M8b+ORaKNxRivdiGhAEsERER3fbKjGXYFL/J7vWKP80D5pQDOfeF3IeDyQcBAL39e4ufAfPqa1phmri5CygPjl21rpLneDl6SY4/GvYRXtlhbhE7r9c8pOanih3D5FZfK64YW4T5hEnmZAnEb5Q6cC79HJ7e+DQA4H+D/odVsauwO3E33HXuuFZwTfae+lTlTlxEREREjc3OyzvtBqRyHNWOkrar1nJLy/NiXbQu4md/N39M6DABczbOkVQFKDWWwkPngYtZF8VzSiiRXpQuHgd7BSOtIA1xGXFo4tQE/+rzL4z5cwwECFAr1bLVEeRolBokZJWnMzhrnFFQVnDD1IESQwkm/jURhWWFuCvoLoR4h+Cl7S8BAH4c+yN8XXwr9e66xBVYIiIiuu39dOInu9c0So3NOXu1X4e2GopVZ1cBAFroW+Cfi/+I1+b0mIMiQxEWn1gsnrOsvnroPCTP0ev0kuOFQxfijV1vAAD+O+C/2J6wHbsu74JSoax08AoA3fy6SQJsS/rBjRoWvLjtRZxIPQFvJ2+8M/gdPLrmUQDAc72ew9iQsZV+d11iAEtERES3NZNgwppza+xel9vYZa9WbKB7oJhu0KlpJxgEc3Dp4uCCGd1m4IO9H0jSEUqNpXDTuuFidvnqa8WWs939uuNwymFcL7iOtp5t8XDYw3hh6ws3nIecIPcgSTUES2D+3pD37DYs2HB+Az45+AkA4PvR32Pu5rnIKs5Cj+Y98O6Qdyv97rrGAJaIiIhua/uT9tttBSvHUe0oe97f1R/rz68HADhpnHDwSnme6WNdHoOj2hEfH/hYPGcJID0dPSXPcXFwkRy/OfBNLNy/EIC5ZezXR7/GxayLUClUNnOwVzZLqVBKvqOj2hFlpjIMDBxoN3Xgat5VPLzaXCZrTo852JO4BweuHIC7zh1/jv/zhiW66hsDWCIiIrqt/Rz9s91rcpUG7OW+Dm09FCl5KQCAPv59kFGUAcAcVM7tORdfHflKbP0KmFd2nTXOuJR9STynhDTQHNJqCFafW43CskL08u+FyBaR+N+u/wEAjILRZg72ymaF+4YjvbA8p7bIUARnjbPd1AGTYMK0VdOQXpiOcN9wDAwcKAbRS8YuQTPXZui3pB8UbyiqtApcVxjAEhER0W1LEASsiF1h93rF/FK5VU/A3MXqXPo5AOaA9XLOZfHa+A7j0ULfAm/tesvmPm8nb8mxo0a6uvtsz2fx/bHvAQDvD3kfr+98HbkluVVa/fR29Mbxq8fFY+vUAXtVBz7Y+wG2J2yHk8YJHw37CI///TgA80rsvSH3Ys7GOTiUfAieOk9Jqa+GggEsERER3bZOpJ5AZlFmpcfbCxxHtB2BfVf2ATCvdp7PPC9em9drHv44/Ye4ImvhqHaUBLoqqCQrtBM6TMB3x76DUTBibPBYeDh64Juj3wCwv9Iqx0HlII7XqrRi6sDs7rNlxx+8clBslvDJ8E/w6o5XkVmUiQi/CLw/9H0sOb4E3x37DgCQWZyJUoNtibH6VmcB7Pz58xEZGYlp06ahrKw8WdpoNOLRRx9FZGQknn32WQBAQkICBg4ciIEDB6Jz58647777AADTp09H9+7dMXDgQHzwwQd1NXUiIiJqpCztXuXI/bRu2ZRVkXWjA+uqBb39e6OXfy+8vP1l8ZxlFbeJcxPJMzSq8vsUUOCBjg9gzbk1UClUWHDXAjy/5fkq/1zf3rs9UvJTxOMSY8kNUwcsrWINJgMe7Pggzmecx74kc2C+9P6liEmLwax1syT32FuVrk91EsBGR0cjOTkZu3fvRkhICFasKF/KX7duHfz8/LB7924UFBRg//79CAoKQlRUFKKiojBu3Djce++94vglS5YgKioKL7zwQl1MnYiIiBqxP07/YfdaxWDRQWnbjQsw12i1NEHwc/HDoZRD4rV5vedhU/wmJOUmiecsuauJOYniObVCjWJjeR3ax7s+joX7FoqfE7ITsOXClsp+LQDmFd6z6WfL33GThgWCIGD2+tlIyE5AoHsgxrUfhw/2mxcEV0xYAQ+dB8YtHYdSk3TFNbO48ivYdaVOAth9+/Zh2LBhAIARI0Zg7969lboGAGvXrhUDWIVCgRkzZmDo0KGIjo62+76SkhLk5uZK/hEREdGd5Wz6WUmbV2tyqQIVAzeLMJ8wcWOXdTmqIPcg3BdyH/615V/iOUt71wC3AOn7FOXvUyvU6OXfCweTD8JZ44xXIl/B81uer+S3Kuft5C2mDmiUGhhMhhumDvwc/TP+OP0HVAoVPhn+CZ5cb65O8HT3p3Ff+/swbdU0XMq5ZHNfxZXkhqBOAtisrCy4ubkBAPR6PTIzMyt1LSYmBs2bN4deby72u3DhQuzfvx+ff/45nnjiCbvvW7BgAfR6vfgvICDA7lgiIiK6Pf1+6ne71yqbY+qgdBBrq+rUOhxOPixem9tzLo6kHEFMeox4zgQT1Eq1ZEVWrVBLas3O7TUXC/YsAAD8q8+/sObcGslKamW0dGspeYel4sHiMYtlUwfiMuLw1IanAJgbJXyw7wNkFGWga7OuWDhsIRbsXiCWCKvoap78fwTUpzoJYN3d3cVV0JycHHh6elbq2vLlyzFhwgTx2MvL3DM4JCQECoUCRqNteQkAeOmll5CTkyP+S0pKkh1HREREt69fTv5S6bFy5bQAYFjrYUjMNacChPuGi2kAbg5ueLTLo3h287PiWMuqro+zj933OKod4evii/jMePg4++DR8Efx2o7XKj1Py1yT85Jt5v7+0PcR5BFkM77EUIKJKyaioKwAAwMHIr80H3uT9sJN64Zl9y/Drsu7xE1dcuTKedW3Oglg+/Tpg23btgEANm/ejL59+1bq2tq1azF2bHkLM0uge/36dZSWlkKlkk8q1mq1cHNzk/wjIiKiO8fl7MuS+qs3Y69dq3VlgYtZ5d20ZkbMRHJusqTzlQABKoVKGlwq1JKNYfP7zsf7e98HYF4J/eTgJ5KuXJXh5+onPlOlUImpA7MiZsmOf3n7yzieehyejp54rMtjeH+f+f3fj/4eDioHPLj8QbvvCnIPQlffrlWaX12okwA2PDwcPj4+iIyMxJkzZzB+/HjMnDkTAHDPPfcgMTERkZGR0Ol06N27NwAgNjZWkj4AAFOnTkW/fv0wduxYLFy4sC6mTkRERI3Qn6f/rPRYuZ/cAXPuqyVAbe/dXqyHqlKo8EyPZzBvyzybeyquvlqnKui1ehQbipFWmIZ2Xu0woOUAfH7w80rPEzDnvVpvDjMKxhumDmw8vxEfHfgIALBw6EI8t/k5AMCTEU9iTPAYjF82Hlkl8gG0o9oRx2ceh1LZ8KquKgRBqHyhsUYqNzcXer0eOTk5XI0lIiK6A3RY1AGx6bG39IwRrUdg0wVz9YF2Xu0QlxEHAJgcOhnvD3kfAR8HSAJUBRSSY41CgzKhPPf1vbvew+s7X0eRoQgrH1iJn6J/wppzayo9HwUUcFA5oMRYAsAcSBsFIxaNXCTbLjY1PxWdv+qMtMI0PNn9SZy6dgq7E3cj3Dcc+x/bj3mb5+GrI1/ZfdfhGYfRza9bped3q6oSrzW8kJqIiIjoFqTmp9oNXivb4cpV44o9iXsAAE2cmojBK2BuXPDithdtNoL5uvhKjq1TB3ydfXEu4xyKDEXoE9AHeq2+SsErADR3bS4Gr0ooYRSMGBQ4SDZ1wCSY8NCqh5BWmIbQpqFw0bhgd+JuuDq4Ytn9y7D8zHK7wSsAfH3P13UavFYVA1giIiK6raw4Y791bMWg016R/j4BfZBflg/AnHNqMaDlALTyaIU/z9imKFQs2WX9rn/1+Rd+jP4RAPDuXe9KNn9VhrPGGVfyrojHJphr2NprWPDhvg+x9eJWOKod8XSPp/HBPnO91+9Gf4ciQxFmrJ1h910PdX4IT3SzX+2pIWAAS0RERLeVxScWV3qsvR325zLPATC3Zj157aR4fl7veXhz55s2m75uVHmglXsr7Li0AybBhPtC7kNcRhxOXT9V6TkC0mDYEnQvGrlIturA4eTDePkfc2ewNwa+gVf/eRUCBMzqNgvD2wzHuKXjUGIqkX1PB+8O+Om+n6o0t/rAAJaIiIhuG1lFWTiRekL2WmXTB7o16yZWMGjn1U4MHtt6tsXgoMH4+ujXNvdcK7gmfq7Y0Wt299lYf349VAoVXu3/KuZvm1+peVj4OPugsKxQ/A43Sh3IK8kTW8WObz8e6+LWIa0wDWE+Yfhw+IeYvno6LmRdkH2Ps8YZh2Yckr3W0DCAJSIiotvG6rOr7TYpqHjeXkBr3TXLunTWc72ewycHPkGxoVgyvomTtFOVdUevLj5dsOzMMgDAE92ewPIzyyWluW5Go9RIgmMBApw1znZTB57a8BQuZF1AC30LBOoDsStxF1wcXLBswjJ8dvCzG+bdHnr8EJwdnCs9t/rEAJaIiIhuG98d+67SY+UCXU9HTxy7egyAuQZqQVkBAMBD54HJoZPxwd4PbO5JK0wTP2uUGsm18R3G43DKYThrnPFo+KNYuK9qZUB1ap342RKw2mtY8Ev0L/jl5C9QKpR4rudzYvmsb+/5Fldyr+Cl7S/Zfc+v9/2KDk07VGlu9YkBLBEREd0W8kvzcSi5cj+B21t97dCkA0yCeYOU5Wd7AHiy+5P44/QfyC3NlYz3dvKWHFu3jI1sESnm4/6777/x5q43JZUJbsZD54G80jzx2CSY7KYOxGfG48kN5lJaz/d+Hu/seQcCBDzR9QlEtozEhGUTbO6xeCriKUzpPKXS82oIGMASERHRbWH9+fWVbntqL80gOjUagDl4tPx0r1Fq8GTEk/hv1H9txqcXpoufK66+9mvRDxezLsLXxRe9/Xvj77i/KzU3wBxgV+zQZS91oNRYikl/TUJ+aT4iW0TiUPIhpBWmobNPZ7w/9H3cv+x+ZBZnyr6nm283fDHqi0rPq6FgAEtERES3he+OVj59QE43327iiqeHzkM8P6XzFOy/sl/sxGXh6egpObZefR3ZZiS+PfotAHPLWMvqaGW5OLiIny0B6wdDP5BNHXj1n1dxJOUIPB090a1ZN+y8vBPOGmcsu38Z/rPjPziYfFD2He5ad+x9bG+V5tVQMIAlIiKiRq/EUIJdl3fd0jMsm6s0Sg0uZpdv3prXax7+vfXfNuMzi8pXNa1XXxVQINA9EBlFGQjxDoFgEhCfGX/T91vSGpw0TrKpAzMjZtrcs+XCFrHG69wec/HpwU8BAN/c8w2OXT2Gzw/Jt6pVKpQ4NvMYtGrtTefVEDGAJSIiokZv64WtkhXQqvJ19sWlnEsAgBb6FuL5oa2GIr0wXRLQAoC7zl1ybP3u+zvcL+a+vjnwTbyw7YVKzcGS1lBUVmRzTS514Fr+NTy06iEAwPSw6fjyyJcQIODxLo8j3Dccj6x5xO67Vj2wSnY1t7FgAEtERESN3rfHvr2l+5u6NBU/W2rAAuYNUc9tfs5mfHZxtvjZupuXSqGCWqlGsaEYkS0iseH8BrGSQWW4OLiIgaxlRfbLkV/aBJsmwYTpa6bjWsE1dGrSCQnZCbhWcA2hTUPx1uC3MPbPsWLb2Yrm95mPMSFjKj2nhogBLBERETVqBpMBWy9urfb9Kqhw5voZAEBz1+biRrCOTTrCx9kH0deiJePdtG6SY+uNY5NDJ2PpmaUAgLk95+Kn6Jt3tbKsrGqUGuSX5ovnBQgYHDRYNnXgkwOfYFP8JujUOvRv2V/Me116/1I8ueFJu80K+gX0w7tD373pnBo6BrBERETUqO28tNOmuUBVdGzaUQxCc0pyxPPzes/Ds5uftRmfW1JeSst69VWr0iI1PxUmwYTx7cfjzV1v2q12YM1StstoklZQcNY44/vR39ukDhxNOYoXt70IAJgVMQtfHfkKAPD1PV9jw/kNWBm7UvY93k7eiJoeddP5NAYMYImIiKhRq0rzAjmXcy4DAFwdXMUV0KZOTdHXvy92Xt4pGWtdHQCwXX3denEr1Eo1IltE4uS1kzd9t/XGLRNMkmtyVQfySvIw8a+JKDOVYVTbUfjj1B8QIOCxLo+hhb4FXtgqn2+rVqoRPSsaKqVK9npjwwCWiIiIGi2TYML68+urfb+/q7+46uqodhTPP93jabz0j23nKuuf+JVWYZSrgytOpJ4AADzR9Qn8Z8d/bvpuJZQQIECpUEqaJgCwmzrwzMZnEJ8ZjwC3AOSX5ptzYJt2wkv9XsL4pePtrvhumrIJfq5+N51TY8EAloiIiBqtQ8mHJEFlVSkU5hVQtVKN64XmOq9alRYTOk7AmnNrJGOdNc6SY+sV03Htx+F46nG4OrgiuzhbUgbLHsv9ygrhmL2GBb+d/A0/Rf8EpUKJoa2GYuflnXDSOOG3+37Dw6sfRnpROuS8Negt3NXqrpvOpzFhAEtERESN1vfHvq/2vRqlBkm5SQCAJk5NxPPTw6dj4b6FYm6qhXU1Aeug09vRG1GXogAAM7rOwB+n/7jpuy25szqVzqa97AdDP0Cge6Dk3MWsi5i9fjYA4KHOD+HH6B8BAF+N+go/Rv+IvUnyDQmGtx6OV/q/ctP5NDYMYImIiKhREgTB7oalyghyL88vvZp/Vfw8o+sM/Bz9s2SsdXoBIF19HdF6BC7nXIafqx/Wn19/041bSoVSzJ0tNko3n8mlDpQZyzDpr0nIK81DL/9e2BS/yVxGK3w6HNWO+PjAx7Lv8XP1w4bJG244l8aKASwRERE1SievnURWcVa177c0J/B28hbP3dPuHiyPWW7TFKHIUN5cwLLxCjDn0K47vw6AuenBuYxzN32vZWVXrVRLzrs4uMimDry24zUcSj4ED50H1Eo1UgtS0aFJBzzd/Wk8vPph2Xc4KB1wctZJKJW3Z6h3e34rIiIiuu0tPr642vcGuAXAYDL/dJ9TXF4665kez9i0X9WpdZJj6xXWXv69kF2SjRDvECw9vfSm77W0nFUr1eL7LeRSB7Zd3Ib39r4HABjRZgT2JO6Bo9oRP479EZP/miwJrK1FTY+Cl5PXTefTWDGAJSIiokZpWcyyat9rqTzgpHESV1vDfcJx8tpJm4oA9mrMtvVoi7Xn1gIAPHWeNukAFSmgEN9VMXgdHDQYM7tJUwfSCtIwbdU0CBAwJniM2CBh0chFWLhvIeIy42Tf8+nwT9E7oPcN59LYMYAlIiKiRicuIw6p+anVvt/SjMD65/p5vefhnd3vSMY5qBzsPqO1Z2uUmkoR7hOOfVf2VfrdaoV86oClIgJgzu+dvma6+B0PJx+GSTDhobCHkFuSazd4Hx8yHnN6zan0XBorBrBERETU6Px44sdq39vMpRkAcyUASwkuPxc/lBpLbXJqS42lss8IbRqKTRc2AQCS85Jv+k6tSivWfK1M1YHPDn6GDec3QKfWoY9/H1zNv4oQ7xBM7TwV8zbPk31HkHsQlj+w/KZzuR0wgCUiIqJG57dTv1X7XkvFATetm3huTs85+G/UfyXjLPmqciwdudp7t0daYdpN31liLAEAm9JcdwXdZZM6cPzqcfx7278BAMNaDcO+K/vgqHbEV6O+wpQVU2w6dgHmclwnZp2QrOLezhjAEhERUaOSmJOIxJzEat1rWX0FIK62OqmdEOQeZLOSWrESgUVEswjsv7IfaqUaZ9PP3vSdlpqvcqkD34/5XhJ05pfmY+JfE1FqLEVki0isizNXOPhk+Cd4bcdrSCuyDZYVUGD/4/slAfntjgEsERERNSq/nvy12vemF5q7Vem1evHc410fx2tRr0nGVSxxZc3S0MDT0fOmNV81So1Y87Vi6sDCoQttUgfmbpyLuIw4+Ln6IT4zHiaYMCV0Cs5nnsfuxN2y7/hu9HcI9w2/4TxuNwxgiYiIqFH56cRP1brPWe0srqpaqhAooED/lv1t6rdWrBJg0du/N2LTY6FT63C94PpN32lvFfeuoLvwRLcnJOf+PP0nFp9YDKVCCX83f1zNv4pgr2Dc3fZuLNy/UPY5D4c9jMe6PnbTedxuGMASERFRo3G94Lrd8lE3I1fUf1z7cWKdVQvLT/4290Mppi4YTcabvs+SQ1uxMYFc1YGLWRcxc505F3ZQ4CAcSj4EnVqH94e+jxlrZ8g+P8QrBD/e++NN53E7YgBLREREjcYfp/6o9r15pXkApJuz7m9/Pw6nHJaMs/zkX1Ev/15IzkuGTq2zu7JqzTKm4sathUMXoqV7y/JxxjJM/msycktyEdo0FDsSdgAAPhjyAeZvnS/brMBZ44xjM4/ddA63KwawRERE1GgsPlG97lteOnNXKqVCKQaWPZv3tHme0k5opFFqcCbtDAD7jQ3kWLedBeRTB/4b9V8cTD4IN60b0grTYIIJkzpNwv4r+3E2w3aTmAIKHH3iKBw1jpWex+2GASwRERE1CtnF2Th17VS17s0ozgBgLjdl8Uj4I9h2cZtknFyJKgDo2qwrckpy7KYXWLOs8CqgkGzykksd2H5xO97d8y4AoI1HG6Tmp6KdVzt0a9YNv5/+Xfb5v4/7HcHewTedx+2MASwRERE1Cn/F/HXTXf9ynDXO4udCg7lNbAt9C2xP2C55XsXVUgudWodjV80/19tLL7BmWeGtONeKqQPWrWJ7Nu+JY6nHoFVp8Wrkq/j31n/LPvup7k9hYujEm87hdscAloiIiBqFb49+W637LN20nNRO4rlZ3WZhZexKyTh7wXEH7w6VynkFyoPgm6UOCIKAR9Y8gqv5VxHoHogjKUcAAG8Negv/2vov2ZXgrr5d8cXILyo1j9sdA1giIiJq8ApKC3D06tEq36eAQgw+LauvAHAx+2KlVlNdHVxxLLVym6WUUIpB8M1SB7449AXWn18PrUqLYkMxjIIRD3R8AOvi1smW59I76LH/8f2VmsedgAEsERERNXh/x/1dqYCzIieNedXVuvLA3B5z8Uv0L5W6P8AtoNLvspc/WzF1IDo1Gv/a+i8AQFvPtkjNT0Ubzzbwd/XHzsSdss84MfsEHFQOlZ7L7Y4BLBERETV4Xx/5ulr3WbpmWRoTWDZhlRhLbnqvh84DMekxlXpPxVqvFkNaDZGkDhSUFoitYjs06YDTaaehVWnxVMRT+OjAR7LPWDdpnU3HrjsdA1giIiJq0EqNpdiXtK/K9zmqzWWmrKsBTOg4AT+c+KFS97s5uFX6XRVrvQLm1IHvR38vSR14dtOzOJt+Ft5O3jiXbu7+9XK/l/HKP6/IPvfFfi9iVLtRlZ7HnYIBLBERETVoWy5sqfQmKmuWeq0qZXnpqwDXAOSX5t/03qZOTXE593KV32mtYurAsjPL8P3x76GAAiqFCkbBiHHtx+GPM39I8nMt+vr3xYK7FtzSHG5XDGCJiIioQVt0aFGV77HeUGVJH4gMiMSS6CWVut9yT2XeI6di6sCl7Et44m/zcRvPNrhWcA2t3FtBo9DgbLptswIvRy/sfEQ+H5YYwBIREVEDZjQZEXU5qsr3WXJSrTdv9fTvifTC9Jve6+fih8zizEq9R27jVsXUAYPJgMl/TUZOSQ5a6lvifOZ5OKgcMLHTRCyNWWpzv0qhwunZpyUrxyTFAJaIiIgarJ2XdlapdauFQTCvoFpSD1p7tMaymGWVujejKKPK77NWMXXgjag3sP/KfjhrnJGcmwzAXAnh3b3vyt6/ddpW+Lr63tIcbncMYImIiKjBWnS46ukDWqUWACRtX0e2GYnEnMSb3uvn4lepCgX2VEwdiLoUhbd3vw3AXNLLIBgwut1o/Bj9o+zGr7cHvY1BQYOq/f47BQNYIiIiapAEQcCWi1uqfF+JyRyAWurG6rV6bEvYVql7U/JTqvw+C1cHV0nqQHphOqasnAIBAlrqWyKtMA1B7kHILMpEWmGazf3DWg3Dy/1frvb77yQMYImIiKhBOph8sFIVA6xZNlVZt3K9v/39iE2Pvem93o7elXpHxTaxFguHlacOCIKAx9Y+hpS8FDR1borLOZfhoHLA4MDB2Ju01+ZeX2dfbJyysVLvJwawRERE1EB9efjLKt9TcVOVWqlG9LXom96ngALpRTff4AVI28RaDGk1BDO6zhCPvzz8JdaeWwuNUoPMQvOGsEfCHpGtQatWqhHzVAyUSoZllcW/FBERETU4giDg77i/q3///weZY9qNwZGrR2463tL0oDoqpg6cvHYSz2953nxN6wqDYMDw1sPx88mfZe/f88geeDh6VPv9dyIGsERERNTgnL5+GtnF2VW6x5I+YN3W9Xrh9UrdJ9dIoLKsUwcKywoxccVElBhL4Ovii8yiTLTUt8TFzIsoMhTZ3Pvp8E/R079ntd99p2IAS0RERA3OraQPWHb39wvoh72JtvmmFVm3eq2qoa2GSlIHntv0HGLTY+GmdUNqfio0Sg06eHfA+azzNveOCxmHOb3mVPvddzIGsERERNTgrDy7skrj5VZfHdQOsvmqFe+zVCuoKlcHV3w/pjx1YEXMCnx77FsooEBhmXlFd1z7cdh4wXZzVkt9S6x4YEW13kt1GMDOnz8fkZGRmDZtGsrKyvsZG41GPProo4iMjMSzzz4rnnd1dcXAgQMxcOBAnDp1CgCwZ88e9OnTB/369RPPERER0e3lQuYFXC+4+U//1iquvrb1bItdl3dV+r7q+HDYh2ihbwEASMxJxIy/zSuxep0eBpMBAwMHYvmZ5Tb3aVVanJp96pZWfu90dRLARkdHIzk5Gbt370ZISAhWrCj/L45169bBz88Pu3fvRkFBAfbv3w8ACA4ORlRUFKKiohAaGgoAeOWVV7B+/Xr8/vvvmD9/fl1MnYiIiOrYV0e+uuVnBLoHwmAy3HCMvXJYlTG01VA83vVxAOZWsVNWTkF2cTY8HT2RXZwNf1d/nL5+WjZAPjzjMFy1rtV+N9VRALtv3z4MGzYMADBixAjs3bv3ptcuXLiA/v37Y/bs2SguLkZRURFUKhU8PDzQokULZGba71FcUlKC3NxcyT8iIiJqHJadqVzLV3s8dB7Ynbj7puMs6QVVDWQrpg68test7EncA51ah8yiTKgVajR1bor0QtuyXItHL0aoT2iV3ke26iSAzcrKgpubGwBAr9dLgk971+Lj47Fr1y40a9YMixYtkowDALVajdLSUtn3LViwAHq9XvwXEBBQW1+NiIiIalBybjKScpNu6RldfLug2FBc6fE3y5OtyDp1YNflXfjfrv8BAMqM5hTJwUGDcSz1mM19D3V+CI90faRK7yJ5dRLAuru7i6ugOTk58PT0vOk1Ly8vAMD999+P6OhoyTgAMBgMcHBwkH3fSy+9hJycHPFfUtKt/T8CERER1Y3vj31frfssq6hqhRqHUw5X+j61Ql2l91inDmQWZWLKyikwCSa4OrjCKBjRy7+XbPvbdp7t8NN9P1XpXWRfnQSwffr0wbZt5h7EmzdvRt++fW94raCgAEajeUfg7t270aZNGzg5OcFgMCA7OxtJSUmSILgirVYLNzc3yT8iIiJq+H499Wu17rOsovby74W80rxK32cQbpwna806dUAQBDy+9nFcyb0CVwdX5JXmwc/VDydST9jc56h2RPTsm3cDo8qrkwA2PDwcPj4+iIyMxJkzZzB+/HjMnDkTAHDPPfcgMTERkZGR0Ol06N27N86fP4/u3bujf//+2LBhA+bOnQsAeOuttzBy5EhMnDgRCxYsqIupExERUR1JL0xHfGZ8le+zzmGNTY+t9H3KKoZB1qkD3xz9BqvOroJaqUZeaR5UChXUSrVs6kL0rGjo1LoqvYtuTCEIQtUSPxqh3Nxc6PV65OTkcDWWiIiogVq4byFe2PpCte/v4tMFx68dr9RYjVKDMlPZzQf+v6GthmLz1M1QKBQ4ff00un/XHcWGYqgUKhgFIyJ8I3Ak1bZl7dL7l+KBjg9U+j13sqrEa2xkQERERA3Cjyd+vKX7UwtSKz22KsGri4OLmDpQVFaEiSsmothQDCeNE4yCEWFNw2SD1ycjnmTwWksYwBIREVG9yy3JRUxaTLXvD3QPxNX8q5Uaq1Vpq/Tsj4Z9JKYOPL/leZxJOwOdWofCskL4OPvg1HXb5kqdfTpj0ahFVXoPVR4DWCIiIqp3f57+s8rlrKyZTJXrqKWAAiXGkko/17rqwKrYVWKTBUv6QLGh2KZZgYuDC47MsF2RpZrDAJaIiIjq3bdHv632vR5aDyTmJlZqbFXat1qnDiTlJOGxtY8BAFQKFQCgpb4lckpypM+HAjFPxkCj0lT6PVR1DGCJiIioXhWVFcmWn6osd0f3So1TKVQwCZVbqQXKUweMJiOmrJyCrOIsaFVaGAUj2ni0wcXsizb3/D3xbwTo2UCptjGAJSIionq1MnYljIKxWvdqFBokZCdUamxV3jGs1TAxdeCtXW9hd+JuqJVqlBhL4O3kjfgs23JfL/R+AaOCR1X6HVR9DGCJiIioXlnySqujsqudSkXlQx4XBxd8N+Y7KBQK7L68G2/uehMAYDAZoIQSucW5Nvf0bN4T7w97v9LvoFvDAJaIiIjqTZmxDAeTD1b7/ks5lyo1rjqpA9atYi0BsKejJ0pNpZLxeq0eex7ZU+nn061jAEtERET1ZuP5jTCYKt/O1VoLtxZVCkwrw5I6IAgCZvw9A0m5SdAoNTAJJjR3bY70onTJeCWUOPf0OahV6hqdB90YA1giIiKqN58f+rza96bkp9TgTABnjbOYOvDdse+wMnYlFFCgzFQGvVaP5Lxkm3u2PbQNPi4+NToPujkGsERERFQvjCYjdifurta9TZ2aVnvl1p5PRnyCFvoWOHP9DOZumgsAECBAAQVyS2zzXt8Y8AYGBQ2q0TlQ5TCAJSIionoRdSmqSk0FrGWXZNfoXIa2GorHujyGorIiTPprEooNxWLeq06ts2myMLDlQLw28LUanQNVHgNYIiIiqhefHfysWve5alxRaiy9+cBKctY4iw0LXtj6Ak5dPyXWjPXQeaDIUCQZ7+3ojX8e/qfG3k9VxwCWiIiI6pwgCNiesL1a9xqE2kkdWHN2DRYdXgTAXDPWWe2MrOIsyViVQoW4Z+Kq1NGLah4DWCIiIqpzh5IPoaCsoMr3aZQamxXRWzGs9TA81uUxXMm9gkfXPiq5VmCwnd/eR/fCw9Gjxt5P1cMAloiIiOrcJwc+qdZ9DiqHGpuDs8YZ34/+HibBhKkrpyKzKBMKmFdWVQqVzfiPhn6Env49a+z9VH0MYImIiKjObYzfWK37qrNqa88nIz5BgD4AC/YswM7LO6GAAgIEOKocbdrOjmw7Es/1ea7G3k23hgEsERER1anT104jpySnyve5aFxqbA6WqgN7E/fi9ajXAZhLZulUOhQZpSkKzVyaYd2kdTX2brp1DGCJiIioTlU3fSC/LL/G5vDDmB+QU5KDySsnS1Zbi43FknFqpRpxT3PTVkPDAJaIiIjq1Nq4tVW+x0ntVGPv/270d/B388cTfz+BxJxEMe9VzrEnjsFFW3Mrv1QzGMASERFRnbmYdRFphWlVvq/QUFgj7x/Sagge6/IYfjj+A5bHLAdgTh2Q27T1zahvEOoTWiPvpZrFAJaIiIjqzKcHPq3yPTVVecBR5YjFYxbjbPpZzNk4RzyvVqhtNm1N6DABT0Q8USPvpZqnru8JEBER0Z1jReyKKt9TU123Phv5GZo4N8E9f9wjqSVbsTFCC7cWWHr/0hp5J9UOBrBERERUJ1JyU5CSl1Kle5RQwgTTLb97SJA5dWDuprk4ee2k3XEOSgd22moEmEJAREREdcLSprUqBAi3/F5HtSMWj12MdXHr8Pmhz8Xzcpu3Yp6MgVatveV3Uu1iAEtERER14o/Tf1T5npoIYD+/+3MoFUo8suYR8ZylaYG13+77Da29Wt/y+6j2MYWAiIiIal1mUSYSshOqdI9ckFlVdwXdhYfDHsawX4choyhDPF/xuY+EPYLJnSff0ruo7nAFloiIiGrdN0e+qfI9txq86lQ6LBm7BB/s+wA7Lu2wO66tZ1ssvnfxLb2L6hYDWCIiIqp1P0f/XKXxSsWthyhfjPwCyXnJ+M+O/9gdo1PpcHr26Vt+F9UtphAQERFRrcovzce5jHNVusck3FrlgUGBgzC+/Xh0+baLTY1Xa3HPxMFBXTN1ZqnucAWWiIiIatWS40uqlA5wo9aulaFVafHj2B8xa/0sXMq+ZHfcmgfXIEAfcEvvovrBAJaIiIhq1Q/Hf6jS+FvNff1i5BfYnrAdS8/Yb0bwVPenMCZkzC29h+oPUwiIiIio1hQbim/YOKCmDWg5AP0C+qHbd93sjunUtBO+GPlFnc2Jah4DWCIiIqo1f57+s0ZquVaGg9IB34/5HhOWT0BhWaHsGCe1E07MPFEn86HawxQCIiIiqjVfH/m6zt61aNQiLDq0CCdST8heV0CBhLkJUClVdTYnqh1cgSUiIqJaUWYsw5GUI3XyrsgWkfB19sWMgzPsjtkybQuaujStk/lQ7WIAS0RERLVizdk1NyxhVVMclA746P/au/voKOpDjePPbkISVPLCS5FIqOK1RSygFVQSVoJULhC0pSjC5VK1t4HWN1CPAofaVMVDD0c5pEKxVQFFQQjqVaA0GBXzCgpCkBchIIQQIICbN8jrZuf+4SVKEyCQmZ3d7Pdzzp6zmVl+v2fzC/owmZ35z7ka8faIc75mWvw0/aLnLyzPAt/gFAIAAGCJ+V/45oNSL498WdMzputk1clm9/fv1l9/ufMvPskC36DAAgAA03kNr3KLci2fJyEuQe4qtz4+8HGz+zuEddCm5E2W54BvcQoBAAAw3fr961Xvrbd0jnbOdno6/mmNSRvT7H6HHCqcUmjKbWnhX1hRAABgutSNqZbP8eKdL2pK+hR5vJ5m92c/mK2Yy2IszwHfo8ACAABTGYahDQc3WDrHrVfdqo3FG895q9jnE59XfI94SzPAPhRYAABgqtyiXNU01Fg2fogjRGNvGKvlO5Y3u39Q3CD9cfAfLZsf9qPAAgAAU83Nm2vp+CmDU/TMp880uy86IlqZD2ZaOj/sR4EFAACmSt+fbtnYP7/y53p397vN3irWIYeKphbJ4XBYNj/8AwUWAACYZtuxbTpdf9qSsZ0Op27udrPyS/Kb3b8leYuuCL/CkrnhXyiwAADANC/lvmTZ2A/3f1ivbn212X1z75yrm2Jvsmxu+BcKLAAAMM3qvastGbd3l956+6u3m9135zV36vH4xy2ZF/6JAgsAAEyxz71P5bXlpo/rdDgVExEjd427yb5O7TspfaJ159zCP1FgAQCAKV7MedGScX/5k18qpyinyXannDr8+GE+tBWEfFZgp02bJpfLpYkTJ6q+/vtbyzU0NOi3v/2tXC6Xpk6dKkk6cOCAXC6XBg8erKSkJJWXf/evucTERLlcLiUmJmrp0qW+ig4AAFogbXea6WNeG3OtPtjzQbP7djy0QxHtIkyfE/7PJwU2Pz9fxcXFysrKUq9evbRq1arGfWvWrFFsbKyysrJ0+vRp5eXlKTo6WqtXr9Znn32mu+++W6+++v0J2+vWrdOGDRs0ceJEX0QHAAAtUFxRLHd101/xt1aNp0ZeeZtsf2XkK7q+y/Wmz4fA4JMCm5ubq2HDhkmShg8frpycnPPui4mJUXR0tCQpLCxMTud3MZ1Op0aOHKm7775bhYWF55yvtrZWFRUVZz0AAIB1rLh5wc1db1ZxZXGT7Xf95C5NHjDZ9PkQOHxSYEtLSxUZGSlJioqKktvtbtG+srIyLVy4UA888IAkKS0tTZmZmXryySf16KOPnnO+2bNnKyoqqvERFxdnwbsCAABnnOsKAZeq2xXdtKVkS5PtXS/rqg/Hf2jqXAg8Pimw0dHRjUdBy8vL1bFjxwvuq6+v14QJEzR37tzGbZ06dZIkDR48WEeOHDnnfDNmzFB5eXnjo6ioyJL3BQAAJHe1WyWnS0wds7S6tMk2p8Opoif4fzp8VGDj4+OVkZEhSUpPT1dCQsIF902aNEljx47VoEGDGl97puju2rVLMTEx55wvPDxckZGRZz0AAIA15m2cZ+p43S7vppqGmibb9z26T+1C2pk6FwKTTwrsjTfeqK5du8rlcmnnzp0aM2aMJk/+7tyVUaNG6dChQ3K5XIqIiNDAgQOVlZWllStXavHixUpMTFRqaqok6Y477pDL5dLkyZP10kvW3ekDAAC03OKti00bKzI8UkdPH22yfekvl+qamGtMmweBzWEYhmF3CKtVVFQoKipK5eXlHI0FAMBEp2pPqcNfOlg6x73X36uVY1daOgfsdzF9jRsZAACAS7Zw80LTxgp3hjfZFtshlvKKJiiwAADgkplVYMNCwlTrrT1rW4gjRIemHjJlfLQtFFgAAHBJauprdKDsgClj1TXUNdl2aOohhThDTBkfbQsFFgAAXJIl25ZYNnbaPWmKjYy1bHwENgosAAC4JPM2zWv1GA45mmz7Td/f6J4b7mn12Gi7KLAAAOCiebwe7fl2T6vHMXT2xZDiIuP0xug3Wj0u2jYKLAAAuGgrdqwwfcwQR4gOTj1o+rhoeyiwAADgos3JmWP6mMeePCang2qCC+OnBAAAXBSv4dX249tNHXPN+DXqfHlnU8dE20WBBQAAF2Xt3rWmjve7n/9OST9JMnVMtG0UWAAAcFGe++w508a6JuoavXrXq6aNh+BAgQUAAC1mGIY2H91sylihjlDtn7LflLEQXCiwAACgxTYc3GDaWCeeOiGHo+l1YIELocACAIAWe+bTZ0wZJ2NihqLbR5syFoIPBRYAALRYTlFOq8d4uP/DGtpzqAlpEKwosAAAoEU2H2n9ua89o3tqftJ8E9IgmFFgAQBAizz4vw+26s+HOkK177F9JqVBMKPAAgCAC6qqr9KOEztaNUbp06V8aAumoMACAIALGv3O6Fb9+ewHs3VFxBUmpUGwC7U7AAAA8E87j+/U61tf13u731NheeElj/PYgMeU0CPBxGQIdhRYAAAgScorytPrX76utQVrVXK6RIaMVo/ZM7qnUkemmpAO+B4FFgCAIOT1evXRNx/ptS9f08cHPlZpTanpc4Q4QrjTFixBgQUAIAjUeer0/tfv67UvX9PGwxt1qv6U5XNWTq+0fA4EJwosAABt0Km6U3p7+9tatHWRth/frhpPjU/n3/g/G9U+rL1P50TwoMACANAGnKw6qUVbF+mNbW+owF2gem+9bVmm3DJFt3a/1bb50fZRYAEACECFZYV6ZcsrWrFjhQ6VH1KD0WB3JEnSNVHXaN6IeXbHQBtHgbWI41mHjJTWf3oTAADpu0tazf98vj7Y84FKTpXIK6/dkZpwyqlvpn5jdwwEAQqsRSivAIDWyDmUo5c3vayPDnyk0upSUy5pZbXqmdV2R0CQoMACAGAzr9erfxX8S6lfpCqvKE+VdYH36f0vk79UWGiY3TEQJCiwAAD4WJ2nTmm70zR/03zll+Sr2hPYRy4fu+Ux3RR7k90xEEQosAAAWOxU3Skt2bpEf9/yd+39dq/qvHV2RzLNVR2uUuoI7rQF36LAAgBgspNVJzX/8/l6M/9NHSg7YHccSx1+4rDdERCEKLAAALRSYVmhXsx9Ue/uflclp0vkNfzvCgFWqJ1Za3cEBCkKLAAAF2lHyQ69kPWCPvrmI7mr3QFxhQCzbXpgEx/agm0osAAAXED2wWzNypql3MO5AXmFALON/o/RuuXHt9gdA0GMAgsAwA94vV59uOdDzcmdo23HtgX8FQLM5pBD7014z+4YCHIUWABAUKvz1GnxtsWa/8V87T3Ztq4QYAVvSnCc3wv/RoEFAASVU3WnNC9vnpbkL9H+0v12xwkYP77ix1r666V2xwAkUWABAG3c8VPHNStzllbtXqWjp47aHccvOeVU0rVJmjNsjnr9qJfdcYALosACANqUA+4DmvnpTKXvS5e7xm13HL/QKbyTUganaFL/SQpvF253HKDVKLAAgIC2uXiz/vTpn/TZwc9U1VBldxxbJHZP1MJRC9WrK0dPERwosACAgLJu7zo9n/m8Pi/+XA1qsDuO5S4LuUzPJT6nR259hKOnwP+jwAIA/JbX69XibYs1N2+udp3cZXccS/Tr3E/v3PMOR0+Bi0CBBQD4jTpPnebkztGCTQt0rOqY3XFazSmnZt42U8/c8YzatWtndxygzaDAAgBsU1ZVppkbZmrJ5iWqMgLv/NXul3fX2v9aq76xfe2OAgQVCiwAwGcOlx3WI+se0Qd7P7A7SotM6jNJ8++az9FT4P95vV45nU67Y1BgAQDWyT+Wr/vfu1/5J/LtjtJEe7XXJ//9iW679ja7o8AP+UtR8zf+8j2hwAIATLNu7zrdu/xendZpu6NoyFVDlH5/OkdPL4Ci1jy+J/6NAgsAuCRer1cvfPqC/pT9J1vmf//X7+tXfX7V4td7vd7G506ns/Hrf38OwP9RYAEgADQ0NKi6oVruareOnz6ub09/q5LTJTp26piOlB3RwfKD2l+8XyeqT6hUpapTnd2RW+VHjh/p0LRDateu3XnL5sU8P/P1hZ4Hm2B+7whcPiuw06ZNU25urq6++motWrSo8Vc6DQ0NSk5OVkFBgW6++WbNmzdPkpSamqqVK1eqU6dOeuuttxQZGans7Gw9/fTTcjqdWrhwofr06eOr+AD8RF1dndzVbn19/Gutylulfxz4h+pVb3csXKSnej2lOffNafHrW1I8KadA8PBJgc3Pz1dxcbGysrL0wgsvaNWqVRo/frwkac2aNYqNjdWiRYuUnJysvLw8XXfddfrwww+VnZ2tZcuWacGCBZoxY4ZmzpyptWvXqrKyUr///e/1z3/+0xfxL5rjWYfdEQDAVu7H3IqJibE7BoA2yicFNjc3V8OGDZMkDR8+XIsXL24ssLm5uUpKSmrcl5OTo7KyMg0ePFgOh0PDhw/X/fffr+rqaoWEhCgmJkYxMTFyu93nnK+2tla1tbWNX1dUVFj47gAgeBkpht0RAAQhnxTY0tJSdevWTZIUFRV1VvksLS1VZGTkWfsutE2SQkNDVVdXp7CwsCbzzZ49W88+++wl562pqWmcIzT0wt+iH74egP8LV7hiQ2I18MqBGtFnhBKuTtCVkVeqffv2dkcDALSATxpXdHR041HQ8vJydezY8bz7oqOjtW/fvibbfngk1ePxNFteJWnGjBl64oknGr+uqKhQXFxci/NGRES0/M0183qOSAAAAFjHJ2e2x8fHKyMjQ5KUnp6uhISE8+4bMGCAMjMzz9p22WWXyePxqKysTEVFRWeV4H8XHh6uyMjIsx4AAABoG3xSYG+88UZ17dpVLpdLO3fu1JgxYzR58mRJ0qhRo3To0CG5XC5FRERo4MCB6tKli5KSkpSQkKBly5bpoYcekiTNmjVLI0eO1Lhx4zR79mxfRAcAAICfcRiG0eZ/311RUaGoqCiVl5dzNBYAAMAPXUxf4+J4AAAACCgUWAAAAAQUCiwAAAACCgUWAAAAAYUCCwAAgIBCgQUAAEBAocACAAAgoFBgAQAAEFAosAAAAAgoFFgAAAAEFAosAAAAAgoFFgAAAAGFAgsAAICAQoEFAABAQKHAAgAAIKCE2h3AFwzDkCRVVFTYnAQAAADNOdPTzvS28wmKAltZWSlJiouLszkJAAAAzqeyslJRUVHnfY3DaEnNDXBer1dHjhxRhw4d5HA4LJ+voqJCcXFxKioqUmRkpOXzwX6seXBi3YMPax58WHPfMQxDlZWVio2NldN5/rNcg+IIrNPpVPfu3X0+b2RkJD/sQYY1D06se/BhzYMPa+4bFzryegYf4gIAAEBAocACAAAgoFBgLRAeHq6UlBSFh4fbHQU+wpoHJ9Y9+LDmwYc1909B8SEuAAAAtB0cgQUAAEBAocACAAAgoFBgAQAAEFAosBaYNm2aXC6XJk6cqPr6ervjwCKff/65Bg4cqNtvv13jx49XfX290tLSFB8fr6FDh+rw4cN2R4RFli9fri5dukgSax4ENmzYoKFDh2rIkCF6//33lZ2drfj4eA0aNEhfffWV3fFgAa/XqwceeEAul0uDBg3S119/zbr7GwOm2rZtmzFhwgTDMAxj1qxZxrJly2xOBKscOXLEqKqqMgzDMKZPn26kpaUZt912m1FbW2tkZ2cbkyZNsjkhrODxeIzRo0cbN910k1FfX8+at3FVVVXGqFGjjNra2sZtt99+u+F2u43CwkJjxIgRNqaDVbZs2WKMGzfOMAzDyMzMNJKTk1l3P8MRWJPl5uZq2LBhkqThw4crJyfH5kSwSrdu3dS+fXtJUlhYmPbs2aPrr79eYWFhSkhI0Pbt221OCCssX75c9957r5xOpwoKCljzNi4vL0/t27fXXXfdpdGjR+vo0aMKCQlRTEyMevToIbfbbXdEWKB79+4yDEOGYai0tFSXX3456+5nKLAmKy0tbbzVXFRUFD/kQaCwsFDr16/XoEGDzrrNYENDg42pYIWGhgatXLlS9913n6Sz/76f2Y+2paSkRPv27dPq1auVnJyslJSUs9Y8NDRUdXV1NiaEFTp37qx27dqpV69eevTRR/X444+z7n6GAmuy6OhoVVRUSJLKy8vVsWNHmxPBShUVFZo4caKWLFmiLl26NK69JIWEhNiYDFZ46623NHbsWDmd3/2n84d/3yXWvC2Kjo5WQkKCwsLCNHToUG3duvWsNfd4PAoLC7MxIaywfv16hYaGas+ePXr33Xf15JNPsu5+hgJrsvj4eGVkZEiS0tPTlZCQYHMiWMXj8WjcuHFKSUnRT3/6U1133XXavXu36urqlJubq759+9odESbbtWuX3nzzTQ0fPlwFBQV6+eWXWfM2bsCAAdq9e7cMw9C2bdvUu3dveTwelZWVqaioiIMUbZRhGOrUqZOk747GVlZWsu5+hjtxWeCpp57Sxo0b1aNHDy1evJh/pbVRS5cu1dSpU9WnTx9J0h/+8AdJUmpqqiIiIvTGG28oLi7OzoiwUP/+/bV582atWLGCNW/jFixYoBUrVsjhcGjRokUqLi7W9OnT5XA49Le//U39+vWzOyJM5vF4NGHCBB07dky1tbWaO3euPB4P6+5HKLAAAAAIKJxCAAAAgIBCgQUAAEBAocACAAAgoFBgAQAAEFAosAAAAAgoFFgAAAAEFAosAAAAAgoFFgD8THV1tRITE5WYmKgOHTooMTFRV199tXJycuyOBgB+gRsZAIAfO3PHLwDA9zgCCwAB4M9//rPWrFmjgwcPKj4+Xvfdd59uuOEGrVixQqNGjVK/fv1UUFAgSVqyZIlcLpfi4+P1ySef2JwcAMwXancAAMDFKS0tVVZWlj7++GPNmDFDX3zxhVavXq2lS5dqypQpeuedd5SZmamqqiolJSXpjjvusDsyAJiKAgsAAaZ3794KCQlRbGysfvazn8npdOqqq65SRkaG9u/fr507d2rIkCGSpBMnTticFgDMR4EFgADjcDiafW4Yhnr27Km+fftqzZo1cjgcqq+vtyMiAFiKAgsAbUjnzp01btw4DR48WCEhIerTp4/++te/2h0LAEzFVQgAAAAQULgKAQAAAAIKBRYAAAABhQILAACAgEKBBQAAQEChwAIAACCgUGABAAAQUCiwAAAACCgUWAAAAAQUCiwAAAACCgUWAAAAAeX/AA8mC38Pl+PYAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAFqEAABb5CAYAAAANwfJQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdd5TU9dk/7nuXtuxSBGnSFEURUBEQKRZAEWxgJAp+LVFU1KiJmMSuCTHWaCyxdyWWILFgQSMoqCAGFRRROtKkKh12qfv7I7/4pAgzuzszuyzXdQ7nOWFfn/d9zzLz2TnnWV+TVVhYWBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlCvZpb0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKmnhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAgBTq1q1bZGVl7fDPmDFjUjJrzJgxCWd169YtJbPKoqeffjrh4z/nnHNKe02AInFvAwAAAAAAAAAAAFJJCTUAAAAAAAAAAAAAAAAAAAAAAAAAAABAOaSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKAcqljaCwAAAAAAAAAAAACpMXfu3GjWrFlpr5FQ165dY8yYMaW9BgA7ib322ivmzZuX8nOzsrKiSpUqUaVKlahatWrUq1cv6tWrF40bN44WLVpEy5Yto0OHDtGwYcOUzwYAAAAAAAAAAACATFFCDQAAAAAAAAAAAADALqewsDAKCgqioKAgVq9eHUuWLPnRXLNmzeLoo4+OU089NY466qioWNGv4QMAAAAAAAAAAACw88gu7QUAAAAAAAAAAAAAAKCs+uabb+Lxxx+PXr16RaNGjWLw4MGxbNmy0l4LAAAAAAAAAAAAAJKihBoAAAAAAAAAAAAAAJKwbNmy+P3vfx9777133HLLLbFx48bSXgkAAAAAAAAAAAAAdkgJNQAAAAAAAAAAAAAAFMH69evjuuuui/bt28fXX39d2usAAAAAAAAAAAAAwHYpoQYAAAAAAAAAAAAAgGL46quvokOHDjFixIjSXgUAAAAAAAAAAAAAfpQSagAAAAAAAAAAAAAAKKYNGzbEySefHG+++WZprwIAAAAAAAAAAAAA/6NiaS8AAAAAAAAAAAAAAAAldfbZZxcpv3Xr1li1alWsWrUqVq5cGTNmzIjNmzcXa/amTZvi//2//xcff/xxtGrVqlhnAAAAAAAAAAAAAEA6KKEGAAAAAAAAAACAXUzXrl1jzJgxpb0GlFteX1A6nn766RJdX1BQEBMnToxx48bFk08+GdOmTSvS9WvXro1TTz01Pv/886hUqVKJdmHXds4558Q555xT2msAAAAAAAAAAAAA5UR2aS8AAAAAAAAAAAAAAAClLScnJ7p06RJXXHFFTJ06Nd55551o3759kc74+uuv409/+lOaNgQAAAAAAAAAAACAolNCDQAAAAAAAAAAAAAA/+WYY46J8ePHx29+85vIyspK+rrbbrst1q5dm8bNAAAAAAAAAAAAACB5SqgBAAAAAAAAAAAAAOBHVKpUKe644464/fbbk75m9erV8dhjj6VxKwAAAAAAAAAAAABInhJqAAAAAAAAAAAAAADYgSuuuCLOPffcpPNDhgxJ4zYAAAAAAAAAAAAAkDwl1AAAAAAAAAAAAAAAkMDdd98dtWrVSir7xRdfxOzZs9O8EQAAAAAAAAAAAAAkpoQaAAAAAAAAAAAAAAASqFGjRlx++eVJ50ePHp3GbQAAAAAAAAAAAAAgOUqoAQAAAAAAAAAAAAAgCRdddFFkZWUllf3444/TvA0AAAAAAAAAAAAAJFaxtBcAAAAAAAAAAAAASJd58+bFzJkz45tvvomFCxfG+vXrY/369bF58+bIzc2NvLy8qF+/fjRr1iyaN28eLVu2jOzs7NJeu0jWrVsX06ZNixkzZsR3330Xa9eujTVr1sSaNWti8+bNUbVq1cjJyYnatWtH48aNo3HjxnHAAQdE3bp1S3v1ItuyZUvMmTMnpk+fHgsWLIhly5bFqlWrYuPGjbFp06aoXLly5Obm/vCnevXq0aRJk9hzzz1jzz33jFq1apX2Q4Bd4r5UntWtWzcOOOCA+PLLLxNmk8lkynfffRfTp0+POXPmxLx582LNmjWxYcOGyM/Pj5ycnMjLy4vatWtHs2bNolmzZnHQQQdFTk5Oaa/NTmD9+vXx1VdfxZw5c+Kbb76JVatWxfr16//juVWzZs1o1qxZ7L333tGqVauoUaNGaa9NktasWRPTp0+PWbNmxeLFi2PZsmWxfv362LhxY2zbti2qVq0aubm5P/zfOnXq/PC+q0mTJlGlSpXSfggAAAAAAAAAAACEEmoAAAAAAAAAAACgHFm2bFm89NJLMWrUqBg3blwsXbq0SNfXrFkzOnfuHCeeeGKccsopUb9+/TRtWjwbNmyIcePGxZgxY2LChAkxderU+Pbbb4t1VuPGjaNLly5x3HHHxfHHHx/16tVL8bapMWnSpHj11VdjzJgx8cknn0R+fn6xz6pevXoccMAB0blz5+jUqVN06tQpmjRpksJtd36rVq2Kv//97zFx4sT46quvYtasWbF69epYs2ZNbNq0KapVqxY1atSIvffeO1q2bBkdO3aMXr16RYMGDUp79TKrvN+XdkXdunVLqmB63rx5Gdjmx+Xn58ebb74ZI0aMiHHjxsWMGTOKdH3lypWjffv20bNnz+jfv3+0bNkyTZumzrRp02LkyJExceLEmD59esyfPz/Wrl0b69evj6pVq0b16tWjVq1a0aJFi2jdunV06NAhevToEbm5uaW9+k5nwoQJMWzYsHj//fdj0qRJsWXLlqSvzc7OjoMOOii6du0ap5xyShx22GGRlZWVxm0zY9myZfHWW2/FpEmTYsqUKfHNN9/E6tWrY+3atRERkZubG7Vr14699tor9ttvv+jSpUt07do1mjZtWsqb/6f8/Pz4+9//Hm+88UaMGzcupk+fHoWFhcU6KysrKxo2bBiHHHLID++7OnToEHl5eSneGgAAAAAAAAAAgESyCov722AAAAAAAAAAAABAmTJ37txo1qxZwlzXrl1jzJgx6V8og0aMGBH33HNPvPfee7F169aUnFmhQoU48cQT45prromOHTum5Mzi+OKLL+Kll16K9957LyZMmBCbN29O+YyKFSvGSSedFJdeeml069Yt5ecXVX5+fjzxxBPxwAMPxLRp09I6q3nz5tGvX7/o379/HHTQQSk5s1u3bvH+++/vMDN69OiUfK/HjBkT3bt332Em0Wt+69at8fLLL8fDDz8cH3zwQZHKRCP+WTLZuXPnuPjii+PUU0+NypUrF+n6knj66adjwIABO8ycffbZ8fTTT2dmoX9Tnu9LmbbXXnslVeicqV+Nv/fee2PQoEEJc1lZWbFx48aoVKlS+pf6/3355Zdx5513xssvvxzr1q1L2bnt27ePq666Kn76059GdnZ2ys4tqaVLl8ZTTz0Vjz/+eMyePbvI11etWjWOOeaYuPTSS+OYY47ZYfbiiy+OZcuW7TDz0EMPRd26dYu8x38ri/e2/Pz8eOyxx+K+++6LWbNmpezcpk2bxsUXXxwXX3xxVK9ePWXnJpKKn9WbN2+OF154IR599NEYP358bNu2rch7dOrUKc4777z42c9+ltGfn/9txowZ8ec//zmGDBnyQ3F2OlSsWDG6desW/fv3j5NPPjl23333tM0CAAAAAAAAAADg/5Sd3/4EAAAAAAAAAAAAKKI333wzDj744DjhhBNi5MiRKSt6jfhnMe/w4cOjU6dO0bt375g7d27Kzk5k+vTp8fvf/z5atmwZBx98cPzhD3+IcePGpaWAOiJiy5Yt8dJLL0X37t3jmGOOic8//zwtc5Lx9NNPR/PmzeMXv/hF2guoIyJmzZoVt9xyS7Rp0yb233//2LBhQ9pnliV/+9vfokWLFtGvX7947733ilxAHfHP4t+PPvoozjzzzNh3333jhRdeSMOmO4/yel/i/yRbmlpYWBjr169P8zb/NHXq1Ojdu3e0adMmhgwZktIC6oiIzz77LPr16xcHHnhgwuLeTFi7dm1cf/310axZs7jmmmuKVUAd8c9i5ddeey169uwZ7dq1i9GjR283O2LEiHjppZd2+CdT/96ZVFhYGI888kg0a9YsLrvsspQWUEdEzJ8/P66++urYa6+94q677krpPTOdnnrqqdhnn33i7LPPjnHjxhWrgDoi4uOPP46BAwfGPvvsEy+++GKKt0xs5cqVcdFFF0Xr1q3jgQceSGsBdcQ/33OOGjUqBg4cGA0aNIhrrrkmrfMAAAAAAAAAAAD4JyXUAAAAAAAAAAAAwE7n22+/jZ/+9Kdx4oknxhdffJH2eW+88Ua0atUqHnjggbTP+vOf/xz7779/DB48OCMlzP9t1KhR0aFDh7jllluKXahYHCtWrIgTTjghBgwYEIsWLcrY3H83ffr02LRpU6nMzrTly5fHT3/60zj11FOLXd76Y+bPnx+nn356HHPMMbFkyZKUnbszKM/3Jf5TsiXUEZH2YvuCgoK49tpro02bNvHGG29EYWFhWud9/fXX0a1bt7jwwgujoKAgrbO2Z/To0dGqVau4+eabIz8/P2XnTpo0KY4++uj4+c9/Xi7LpItj1qxZceSRR8ZFF10US5cuTeusFStWxK9//evo2LFjTJkyJa2zSmLu3Llx9NFHx7nnnhsLFixI2bkLFy6M/v37x6mnnpqx5997770XBxxwQDzyyCPF+hCKktqyZUtMnTo143MBAAAAAAAAAAB2RUqoAQAAAAAAAAAAgJ3Ke++9F23bto2XX345o3Pz8/Pj0ksvjbPPPjs2btyYtjlr1qxJ29nJ2rJlS1x33XVx0kknpbTgc3vmzp0bnTt3jhEjRqR9Fv8sFe3cuXNaX0OjRo2KNm3axIcffpi2GWVJeb8v8Z+KUvScnZ2+X9mfO3duHHbYYXHrrbfG5s2b0zbnxzz66KNx+OGHx8KFCzM696abbooePXqkbW5hYWE8/PDD0a1bt1i2bFlaZuws3nnnnejQoUOMHTs2o3M/++yz6NSpU8bvp8n44IMP4pBDDon33nsvbTP+9re/xWGHHRbfffdd2mZERAwZMiSOPfbYUvvgDwAAAAAAAAAAADJLCTUAAAAAAAAAAACw07j//vujZ8+esXz58lLbYciQIfGTn/wkCgoKSm2HTHnjjTeiV69eaS2iXr58efTs2TNmzJiRthn8n6+//jq6dOkSs2fPTvusZcuWRa9evcp9ubj70q7n+++/Tzq72267pWWHsWPHxiGHHBITJ05My/nJ+Oyzz+KII46IuXPnpn3Wtm3b4uKLL44bbrghtm3blvZ5n376aXTu3HmXLeh95pln4vjjj49Vq1aVyvz169fHKaecEvfee2+pzP8xw4YNi2OOOaZIr//i+uKLL6JXr15p+2CSl156KQYMGJDx8noAAAAAAAAAAABKjxJqAAAAAAAAAAAAYKdw5513xi9+8YvYunVraa8Sb7/9dpx88smxZcuW0l4l7T788MM4++yzo7CwMOVnFxYWxhlnnBEzZ85M+dn8r2XLlsUJJ5yQ0bLk/Pz8+MlPfhLvvvtuxmZmkvvSrinZEtoqVapETk5Oyue///77ceyxx2akDDeRuXPnRteuXdNe1nz55ZfHQw89lNYZ/23OnDnRu3fv2LBhQ0bnlrbnn38+zj333FK/rxUWFsagQYPiwQcfLNU9IiL+/ve/xxlnnBGbNm3K2MyJEyfGBRdckPJzZ8yYEWeffXZGytwBAAAAAAAAAAAoOyqW9gIAAAAAAAAAAAAAidx3331xxRVXFOmarKysOOSQQ+Loo4+O9u3bR/PmzaNx48ZRrVq1qFy5cmzYsCGWLVsWM2fOjI8//jjeeuut+Mc//pH0+W+//Xb8+te/jnvvvbeoD6fEsrOzo1WrVnHooYfG/vvvH/vvv380bNgw6tevHzVq1IicnJzIysqKVatWxapVq2LlypUxZcqUmDBhQkyYMCEmTZpUpHnDhg2LTp06xa9+9auUPo4nn3wyRo4cWaRrGjVqFD179oy2bdtG8+bNY5999okaNWpEXl5e5ObmRn5+fqxZsyZWr14dq1evjgULFsTkyZPjyy+/jMmTJ8fcuXPTUqhd1m3dujX69u0bc+fOTZitUKFC7LPPPj98b7Ozs2Pt2rXxzTffxMyZM4tcwrl58+b46U9/GmPHjo0DDjigmI+g7HFf2nVNnz49qVz9+vVTPvsf//hHHH/88UUuRt57772jV69e0aFDh2jVqlU0adIkatasGVWrVo2CgoJYtWpVzJkzJz799NMYNWpUjBw5MunX+vz58+Pkk0+ODz74IKpUqVKch7VDd911V/z5z38u1rU1atSI/fbbLxo1ahTVqlWLzZs3x+rVq2POnDkxZ86chEXLEydOjAEDBsTQoUOLNX9n868PnihqQXGLFi2id+/eceSRR0bLli2jXr16kZeXF/n5+fHdd9/FtGnTYuzYsfH666/H5MmTi3T2pZdeGk2aNInevXsX6bpUmTRpUvTt2zc2b96cMLv77rvHPvvsEw0bNvzh8S9btiyWLl0as2bNKvL7j6FDh8aJJ54YZ555ZnHX/x/nn39+rF+/Pul8dnZ2tGvXLnr06BH7779/NG/ePJo0aRK5ubmRl5cXlStX/uF915o1a2LlypUxffr0H957ffnll7Fy5cqU7Q8AAAAAAAAAAEDxKKEGAAAAAAAAAAAAyrSRI0fG5ZdfnnS+du3acemll8bAgQOjcePG281Vq1YtqlWr9kMx5+9+97uYPn163HrrrfGXv/wlqQLGP//5z9GlS5fo379/0vsVV8OGDaN3795x/PHHR/fu3aN69eoJr6lbt27UrVs3IiIOPfTQOPfccyPinwWqjzzySDzzzDOxYsWKpObfcMMNcdJJJ8U+++xT/AfxbzZt2hSDBw9OKpudnR19+/aNK6+8Mjp06LDD7L/+XRs2bBgREZ06dYpTTz31h68vXbo03njjjXj99ddj5MiRRS5y3VndfffdMW7cuO1+PTs7O0488cQ455xzokePHtt9fhUUFMSYMWPi2WefjWHDhiVdUrt69ero27dvTJo0KfLy8or1GMoS96Vd2+jRo5PKtW3bNqVzv/322zj55JOTvm9VqlQpzjrrrLjkkkuiXbt2283l5uZGbm5uNGzYMA4//PAYNGhQfP/993HffffFXXfdFWvXrk04a8KECXH55ZfHgw8+mPTjScb48ePjqquuKtI1jRo1inPPPTd+8pOfRNu2bSMrK+tHc2vXro3Ro0fHs88+G8OHD9/u/ezFF1/8j58j5dXixYujX79+sWXLlqSvOeyww+IPf/hDdO/e/Ue//q972l577RXHHnts3HTTTfHxxx/HDTfcEKNGjUpqRmFhYfzsZz+LTz/9NGXvQZK1du3auOCCC3b4mjvssMPi9NNPj549e0bz5s23m1u8eHG8+eab8eSTT8b48eOT3uGqq66Kk08+OSU/O0eMGBEffvhhUtndd989fvnLX8bPf/7zH95Lbk+tWrWiVq1aP/zvrl27/sfXP/vss3j99dfj9ddfj4kTJxZ9cQAAAAAAAAAAAEosu7QXAAAAAAAAAAAAANiehQsXRv/+/WPr1q0Js9nZ2TFo0KCYM2dO/P73v99h0ev2tGjRIp5++un46KOPki46/MUvfhHfffddkWclo1KlSnH66afHO++8EwsWLIiHH344+vTpk1QB9Y60aNEi7rrrrpg5c2acfvrpSV2zYcOGuPLKK0s099+9+uqrsXDhwoS5PfbYIz744IMYNmxYwgLqZNSvXz/OO++8ePXVV+P777+PoUOHRqdOnUp8blk2f/78+O1vf7vdrx999NExZcqUGD58eJx88sk7fH7l5OTEscceG88++2zMmjWrSMWsM2fOjMsuu6xIu5dFu/p9aVe3aNGimD59elLZ9u3bp2zu1q1b45RTTonFixcnle/Vq1dMnTo1nnjiiR0WUG/P7rvvHoMHD46pU6dGr169krrm4YcfjjFjxhR51vasXbs2Tj/99KRLkWvUqBF33313zJkzJ2688cZo167ddguoIyKqV68effr0iRdffDGmT5++w/vZpZdeGuvWrSvyY9iZDBw4MJYsWZJUNicnJx555JEYO3bsdguot6dTp04xcuTIePbZZ6NatWpJXbNq1ao466yzorCwsEizSuo3v/lNzJw580e/dvjhh8fHH38cY8eOjYsvvniHBdQR/3w/c/7558dHH30Uzz77bNSvXz+pHRYtWhQPPPBAkXf/Mffff39Sud69e8fs2bPjt7/9bcIC6mS0b98+Bg8eHJ999lksWLAgfve730W9evVKfC4AAAAAAAAAAADJU0INAAAAAAAAAAAAlFkXXHBBrFy5MmFu9913j1GjRsXdd98dNWvWLPHcjh07xqeffhpHHnlkwuzy5cvj6quvLvHMf1etWrW45pprYt68efHcc8/FMcccE9nZqf+1z9q1a8dzzz0XL730UlStWjVh/pVXXokpU6akZPYLL7yQMFOnTp34xz/+EYcddlhKZv63nJyc6NevX4wfPz7Gjx8f/fr1S8v3ubR98803kZ+f/z9/n52dHbfddluMHDkyWrZsWeRzmzRpEi+++GI8+eSTUaVKlaSueeKJJ1JaUlsadtX7Ev903333JZ094ogjUjb3zjvvjI8//jhhrkKFCnH33XfH22+/nXRp+Y40atQoRowYkVSBfGFhYVx00UVJFbQn46abboq5c+cmlT344INj4sSJMWjQoKhcuXKRZ+21117x4osvxl/+8pfIycn5n68vXbo0vv/++yKfu7N46aWX4s0330wqu/vuu8eHH34YF1xwQYlmnnHGGTF+/Piky5jHjx8fjz32WIlmFtWMGTP+5+8qVaoU99xzT3zwwQfRsWPHYp17xhlnxNixY6NRo0ZJ5e+///6ky9i3Z8WKFfH3v/89Ye60006L4cOHp+Tn1o9p3LhxDB48OObPnx9PPPFEtG7dOi1zAAAAAAAAAAAA+E/l77fkAQAAAAAAAAAAgHLhueeei7feeithrk6dOjFu3Ljo3r17Sufvtttu8dZbb8UhhxySMPvMM8/ErFmzUjL3+OOPj2+++SZuueWW2GOPPVJyZiJ9+/aN119/PSpVqrTDXGFhYdx7770lnrdt27Z4//33E+YeffTRaNKkSYnnJaNTp04xdOjQqFGjRkbmlbYKFSrE008/HVdddVVkZWWV6KwBAwbEa6+99qPFrT/m8ssvj23btpVoZmnZVe9L/NOKFSvigQceSCrbpEmTpArDkzFr1qwYPHhwwlx2dna88MILMWjQoJTM/fdz77nnnrj44osTZqdPnx5/+ctfSjxz9uzZcc899ySV7dKlS7z//vspKd0+88wz46233oq8vLwSn7Wz2Lx5c/z6179OKlu9evV49913k7oHJeOAAw6IMWPGRK1atZLKX3PNNbF27dqUzC6OqlWr/lDKXtKfnc2bN48xY8YkVfa8YMGCGDVqVInmffDBBwl/9jZu3DgeffTREj+2ZFSpUiXOPffcuPnmm9M+CwAAAAAAAAAAACXUAAAAAAAAAAAAQBm0adOmuO666xLmcnJy4rXXXosWLVqkZY/c3Nx48cUXExYEbtmyJW655ZaUzGzXrl3UqVMnJWcVxdFHHx133HFHwtyLL74Y+fn5JZo1b968WLly5Q4zzZo1i5/85CclmsP2/fGPf4yzzjorZef17NkznnrqqaSyn3/+ebzwwgspm50pu/J9iX+W8P/85z9PugD3rLPOiuzs1Py6/g033BAFBQUJc3feeWeceuqpKZn5Y+6+++6kyodvuummKCwsLNGsW2+9NTZt2pQwt++++8brr7+e0g8Q6NatWzz77LMp+/cr64YMGRLz5s1LKvvss89GmzZtUjp///33j6FDhyb1/V6xYkU8+OCDKZ2frAoVKsQrr7wSPXr0SNmZzZs3jz/84Q9JZYcNG1aiWZMmTUqYOe+886J69eolmgMAAAAAAAAAAEDZtGv8ViQAAAAAAAAAAADwg/fffz+ysrIy+uecc84p0o6PPfZYUoWITzzxRHTu3LmY34nkNGvWLB5//PGEuaFDh8bq1avTuku6/eIXv4j27dvvMLNmzZoYMWJEiebMnj07YaZ3796RlZVVojn8uJNPPjl+9atfpfzc0047LS699NKksnfeeWfK56eb+9Ku7cYbb4wXX3wxqWxeXl5cfPHFKZk7ZcqUpOaef/75cfnll6dk5vZUrlw5XnzxxahWrdoOc7Nnz45Ro0YVe87ixYvj2WefTZirVKlSDB06NGrXrl3sWdvzk5/8JAYNGpTyc8uawsLCuP3225PKDhw4MPr06ZOWPY455pikf37cddddSRWUp9pNN90UvXr1Svm5F198cRx00EEJc2+99VaJ5iTz3uukk04q0QwAAAAAAAAAAADKLiXUAAAAAAAAAAAAQJlSWFgYd911V8Jct27d4vTTT8/ARhGnnHJKHHLIITvMbNiwIV544YWM7JMu2dnZccMNNyTMlaRcNCJi5cqVCTNNmzYt0Qx+XM2aNePBBx9M2/m33nprUv92n3/+eYwePTpte6Sa+9Kuq6CgIC655JIYPHhw0tdcc8010ahRo5TM/9Of/hTbtm3bYaZWrVpJFwmXVLNmzeKiiy5KmHviiSeKPeOJJ56IjRs3Jsz95je/ibZt2xZ7TiI333xz7LXXXmk7vyz48MMPY+bMmQlztWvXjjvuuCOtu9xyyy3RoEGDhLlly5bF66+/ntZd/lv79u3jiiuuSMvZFSpUiAsvvDBhbvHixUkVSW+P914AAAAAAAAAAAC7NiXUAAAAAAAAAAAAQJny7rvvxpw5c3aYycrKij/96U8Z2uifrrrqqoSZV155JQObpNcJJ5wQderU2WHm3XffLdGMZMpF8/LySjSDH3fFFVckVfJZXNWqVYvf//73SWWHDBmStj1SzX1p11NYWBgjRoyIjh07Fqm4vVWrVvHrX/86JTusWbMmXnzxxYS53/72t1G7du2UzEzGoEGDonLlyjvMvPnmm7F58+Zinf/8888nzNSuXTup539J5OTkxI033pjWGaUt2fvwlVdeGTVr1kzrLnl5eUl9EEZE5n9+/PGPf4wKFSqk7fx+/fpFxYoVE+YmTJhQ7BneewEAAAAAAAAAAOzalFADAAAAAAAAAAAAZcpTTz2VMNOnT59o165dBrb5P3379o3GjRvvMPPBBx9Efn5+hjZKj4oVK0b37t13mJk5c2asWbOm2DOSKbL89ttvi30+P65GjRpx2WWXpX3OWWedFXvvvXfC3CuvvJJUKWZZ4L60aygoKIiPPvoobr/99mjRokWccMIJMXny5KSvr1u3brzxxhuRk5OTkn2GDh0aGzZs2GGmTp06cckll6RkXrIaNWoUp5xyyg4z69ati7Fjxxb57C+//DKmTp2aMHfRRRelvRQ5IuL0009P+BrbWW3bti2pkvq8vLy46KKLMrBRxIABA5IqVH/rrbdi/fr1Gdgo4tBDD42jjjoqrTPq1KkTRx55ZMJcMq+N7fHeCwAAAAAAAAAAYNdWsbQXAAAAAAAAAAAAAPiXLVu2xIgRIxLm+vfvn4Ft/lN2dnYcddRRMWTIkO1m/lVgevTRR2dws9Q75JBDYtiwYTvMTJkyJbp06VKs8+vUqZMw8/bbb8cf/vCHYp3PjzvrrLOiWrVqaZ9ToUKFGDhwYFxzzTU7zK1evTpGjx4dxx57bNp3Kgn3pZ3HOeecU6T81q1bY/Xq1bFq1apYsWJFzJgxIzZv3lys2TVr1oxXX301mjVrVqzrf8zw4cMTZvr27RuVKlVK2cxk9ejRI55//vkdZt57772EH2rw3/7+978nzGRlZcWFF15YpHOLq0KFCnH++efH4MGDMzIvkyZOnBgrVqxImOvfv39GCr8jIqpWrRo/+9nP4p577tlhbvPmzfH+++/H8ccfn/adzj333LTPiIg4+OCD47333tthZtq0acU+P9n3XpkutQcAAAAAAAAAACAzlFADAAAAAAAAAAAAZcb48eNj1apVO8xUrVo1evfunZmF/suRRx65w7LXiIhJkybt9GWvyZSoTp06tdgl1HvssUfCzKeffhpvv/12mS8o3pmcddZZGZ117bXXRmFh4Q5zO0MJtfvSzuOZZ54plbn77bdfvPbaa9GiRYuUnblx48YYPXp0wly/fv1SNrMojjzyyISZSZMmFfncRCW8EREdOnSIpk2bFvns4jr11FPLZQn1qFGjksr99Kc/TfMm/+nUU09NWEIdEfHuu++mvYQ6KysrTjrppLTO+JcDDzwwYWbRokXFPj+Z91533XVXDBgwIHJzc4s9BwAAAAAAAAAAgLIpu7QXAAAAAAAAAAAAAPiXZAoRjzrqqKhWrVoGtvlfhx12WMJMcUo3y5oaNWokzJSkCHGvvfaKRo0aJcwNGDAgvvrqq2LP4f80aNAgDj300IzNa9SoUbRv3z5hLpmS3dLmvsT2VKhQIS644IKYMGFCSguoIyI++uij2LBhww4zNWrUiG7duqV0brL22WefqF+//g4zxXnejR8/PmHmxBNPLPK5JdGqVaukPpxhZzNhwoSEmapVq2a8wL5z585Rt27dhLl//OMfad+ldevW0aBBg7TP+desRJYuXVrs8w8//PCEmTlz5sTPfvaz2Lx5c7HnAAAAAAAAAAAAUDYpoQYAAAAAAAAAAADKjE8//TRh5sADD8zAJj9ujz32SJiZNWtWBjZJrypVqiTMLFmypEQzjjrqqKRmHHHEEfHkk0/Gtm3bSjRvV9e9e/fIysrK6MxkiksnT54cW7ZsycA2xee+xH+rUKFC9OnTJ7744ot45JFHombNmimfkczzrlWrVlGhQoWUz05WoufeokWLIj8/P+nzFixYEKtWrUqYS6ZMN9WSKXvf2UyePDlhpkOHDkm9J0ilrKyspL7fX375Zdp3adu2bdpn/EutWrUSZlasWFHs8w877LCk/i1feuml6NatW1LPDwAAAAAAAAAAAHYeSqgBAAAAAAAAAABgF9O1a9coLCzM6J+nn346qd0mTZqUMNOyZcsSfgeKr2bNmlGxYsUdZhYuXJihbSJWrVoVI0eOjHvvvTd+8YtfxIknnhiHHnpoNGvWLGrXrh15eXlRqVKlyMrKKtKf7t27J5z93XfflWj3/v37J5VbuXJlnHfeebH//vvHPffcE8uWLSvR3F1V586dy+TMjRs3xsyZMzOwTfG5L/EvNWrUiDvvvDMWLlwYw4cPj9atW6dtVll/3kVE7L777gkzRXnuffXVVwkzWVlZ0aFDh6TPTJVDDz004zPTacOGDTFnzpyEuY4dO2Zgm//VqVOnhJk1a9bEvHnz0rpHJl9jNWrUSJjZuHFjsc+vWrVq9O7dO6nsRx99FAcffHD06dMn3njjjTL/YREAAAAAAAAAAAAkpoQaAAAAAAAAAAAAKBNWrFgRixcvTphr1apVBrbZvtq1a+/w60uXLo1t27alZfa2bdtizJgx8etf/zpatWoVtWvXjp49e8agQYPi/vvvjzfffDM++eSTmDt3bqxcuTI2bNiQtuLA/Pz8El1/wgknRLt27ZLOz5w5My6//PJo2LBh9OjRI+65556YOnVqiXbYlbRp0ybjMw866KCkcskUz5YW9yX+3Zo1a+Lxxx+P999/P+2zpkyZkjBT2s+7ZEqoFy1alPR5s2fPTphp1KhRVKtWLekzU2X//ffP+Mx0mjdvXhQWFibMldbjTrb8ee7cuWndo3Hjxmk9/99Vr149YaagoKBEM66//vrIyspKKltYWBivv/569O7dOxo0aBADBgyIYcOGxYoVK0q0AwAAAAAAAAAAAKWjYmkvAAAAAAAAAAAAABARsWDBgqRyHTp0SPMmJbN169bYsGFDSksyV65cGQ888EA8/vjjMW/evJSdWxIlLUKMiLjlllviuOOOS6oI81+2bt0a7777brz77rsREdGgQYM44ogj4rDDDovOnTtH27Zto1KlSiXerbzZb7/9Mj5zzz33jJycnITPlYULF2Zoo6JzX+K/TZs2LU477bR47rnnYsiQIbHbbrulZU4yz70rrrgirrjiirTMT5W1a9cmnU2m8L158+YlWafYSmtuuiRbDr7vvvumeZMfl+zPrKKUnBdHooL/VKpatWrCzNatW0s0o02bNnHaaafFCy+8UKTrvv/++3j66afj6aefjuzs7DjwwAPj8MMPjy5dukSXLl1ir732KtFeAAAAAAAAAAAApF92aS8AAAAAAAAAAAAAEFG2i2iLKj8/PyXnbN68OW699dZo1qxZ3HDDDWWmgDrin7uVVK9eveK6664r0RlLliyJYcOGxaBBg6Jjx45Ro0aNOPLII+Paa6+Nt956K9avX1/iPXd2VapUiQYNGmR8bnZ2djRp0iRhLpni2dLivsT2vP7669GlS5eYO3duys9ev359rFq1KuXnloaiPO+SuRfUr1+/JOsUW2nNTZdk77t77LFHmjcp2dx0//zIyclJ6/ml4ZFHHolWrVoV+/pt27bFF198EQ888ECcccYZ0axZs2jYsGGccsopce+998akSZOK9OEiAAAAAAAAAAAAZIYSagAAAAAAAAAAAKBMWLJkSWmvkDKpKHv98ssv45BDDolrr702Vq9enYKtUitVBYM33nhj9O/fPyVnRUQUFBTEhx9+GLfeemscf/zxUbt27TjqqKPiz3/+c3z77bcpm7MzqVu3bpmeXZZf+2V5t6LaFUqoCwsLk/6zbt26+Pbbb2PKlCnx17/+Na699tpo3759keZNnTo1jjrqqFi0aFFKH8eu+rxLpni7Tp06Jdim+HJzcyM3N7dUZqdDsu8r6tWrl+ZNflzNmjWjSpUqCXPpfn9UoUKFtJ5fGqpXrx7Dhw+Phg0bpuzMxYsXx0svvRSDBg2Kdu3aRYMGDeLss8+O1157LTZu3JiyOQAAAAAAAAAAABSfEmoAAAAAAAAAAACgTFi/fn1pr5Ay27ZtK9H1I0aMiC5dusTkyZNTtFHZlZWVFc8//3xcddVVkZWVlfLzN23aFKNHj47LLrssmjRpEj179oxhw4bF1q1bUz6rrNp9991LbXYyhbHr1q3LwCbF475UfuXl5UXDhg2jdevW0b9//7j55pvj008/jRkzZsTFF1+cdPnsN998Ez179oy1a9embLdd9XlXUFCQMJOXl1eSdUqkPJVQJ/O9joioVq1amjcp2exdoVw/HZo3bx7jx4+PDh06pOX8ZcuWxZAhQ+Kkk06KBg0axCWXXBJTpkxJyywAAAAAAAAAAACSo4QaAAAAAAAAAAAAKBOSLUQs795+++046aSTynQxb6plZ2fHbbfdFqNHj45WrVqlbU5hYWGMHDky+vXrF/vtt188/fTTu0Qxb05OTpmeXZZf+2V5N9Jj3333jQceeCAmT54cbdu2Teqar776KgYMGJCyHXbV593GjRsTZipXrpyBTX5clSpVSm12qiXzHKtQoUJkZ5fef3KSzPd7V32tpELTpk1j3LhxcfPNN6e1YH3VqlXx4IMPxkEHHRS9e/feJT5gBQAAAAAAAAAAoCyqWNoLAAAAAAAAAAAAAEQkVz5Z3n311VdxyimnxJYtW0p0TuXKlaNu3bpRv379qFGjRlSrVi1yc3OjYsWKUbFixcjKytrh9UuWLIm///3vJdqhOLp27RqTJ0+O559/Pv74xz/GlClT0jZrzpw5MWDAgLjvvvviqaeeioMOOihts0pbWS9tLcslou5Lu65WrVrF2LFjo0+fPvHuu+8mzL/00kvx5z//OX75y1+WeLbn3fYl+vlVXmenWjIfwFCaBdQR/yzBTmRX+CCJdKpUqVJce+21ce6558af/vSneOyxx2L16tVpmVVYWBhvvPFGjBgxIn7+85/H7bffHnl5eWmZBQAAAAAAAAAAwP9SQg0AAAAAAAAAAACUCZUqVSrtFUrV5s2b48wzz4z169cX6bp69erFUUcdFR07doyDDz44mjdvHo0aNSpRWeaYMWNKpYQ64p+lk2eddVacddZZMXbs2PjLX/4Sr7zySixfvjwt8yZOnBgdOnSIhx56KM4999y0zChtpVnSuXXr1oSZZIpGS8uufl/a1eXm5sbw4cOjW7du8emnnybMX3PNNXHcccfFvvvuW6K5u+rzLpnS+tIs6C7LhflFlcz3evPmzVFYWFhq5dvJ/Fvn5ORkYJPyr0GDBnHHHXfE73//+xg6dGj89a9/jffee6/EH4ryY7Zt2xYPPPBAvPvuu/H6669H8+bNUz4DAAAAAAAAAACA/6WEGgAAAAAAAAAAACgTqlatmlRu5syZ5bKw7tFHH43PP/88qWx2dnaceuqpcdFFF0XXrl1LrSAy3Q4//PA4/PDD46GHHopPPvkkRo4cGWPHjo3x48fHmjVrUjZn06ZNcd5558XWrVtj4MCBKTu3rNi0aVOpzd7ZS0R39fsSEXl5efHKK69E27Zt47vvvtthdsOGDXHuuefGBx98UKL7crLPu8ceeyzOP//8Ys8pa5K5F2zYsCEDm5S92amW7H1348aNpXaPTqb0uyz//NgZ5ebmxoABA2LAgAGxZs2aGDVqVIwePTrGjRsXkydPTuqDJZI1bdq0OOKII+If//hHNG3aNGXnAgAAAAAAAAAA8OOUUAMAAAAAAAAAAABlQm5ublK5ZEoJdzabN2+Om2++Oalsy5Yt4y9/+Uu0b98+bfvk5+en7eziyM7Ojo4dO0bHjh0jImLbtm3x+eefxwcffBBjx46NcePGxZIlS0o85+KLL45mzZpFjx49SnxWWbJ+/foyPbssl4juyvcl/k/jxo3j8ccfj5/85CcJs2PHjo1nn302zjrrrGLP21WfdzVr1kyYWb58eQY2+V8bNmwoVyXUeXl5SeW+++67aNy4cZq3+V8bN25M6sMmkn0cFF2NGjWib9++0bdv34iIWLNmTYwbN+6H916ffvppie9BS5YsiRNPPDHGjRsX1atXT8XaAAAAAAAAAAAAbEd2aS8AAAAAAAAAAAAAEBFRv379pHLJlBLubF5//fVYvHhxwlz79u3jo48+SmsBdUSU+aLN7OzsaNeuXQwaNCj+9re/xeLFi2PWrFnx2GOPxWmnnRa1a9cu1rlbtmyJM844o1RLm9Nh2bJlZXp2cf+9MmFXvi/xn0466aQ47bTTkspeffXVsW7dumLP2lWfd3vssUfCzNKlSzOwSdmZmy4NGjRIKldaPz+SnZvs46DkatSoEccdd1zceuut8eGHH8bq1atj7Nix8Yc//CGOOOKIqFixYrHO/fLLL+Pqq69O8bYAAAAAAAAAAAD8NyXUAAAAAAAAAAAAQJnQtGnTpHLffvttmjfJvL/+9a8JMzVq1IhXX301dtttt7Tvs2TJkrTPSLV99tknzj///HjhhRdi+fLlMWbMmLjkkkuKXHC8bNmyuPfee9O0ZelYsWJFbN68uVRmJ1PcmkzxbGnZle9L/K+77747atSokTC3aNGiuOOOO4o9p0aNGlGzZs2EufL2vEvmXjBr1qwMbFJ25qZLsvfduXPnpneR7fjmm2+SypXlnx/lXeXKleOwww6L66+/Pj744INYvnx5DBkyJHr16hXZ2UX7T5Uef/zxUnuuAQAAAAAAAAAA7CqUUAMAAAAAAAAAAABlwp577plUbt68eWneJPPGjBmTMHP11VdH48aN079MRCxcuDAjc9IlOzs7unbtGvfff398++238eijj0aTJk2Svv6OO+6IgoKCNG6YWdu2bUu60DOVNmzYEIsWLUqYK8slorvyfYn/1aBBg7jmmmuSyt59993x/fffF3tWMs+98va822effRJmvv3221i/fn0GtvlP06ZNy/jMdEr2Z+L06dPTvEnJ5mbqfRGJ7bbbbnHWWWfF22+/HbNnz45LLrkkKlWqlNS1mzZtittvvz3NGwIAAAAAAAAAAOzalFADAAAAAAAAAAAAZUKtWrWiUaNGCXNffPFFBrbJnNmzZ8fy5ct3mKlQoUIMHDgwQxtFfPnllxmblW45OTkxcODAmDp1avTv3z+pa1atWhXjxo1L82aZVRpFojNnzozCwsKEub333jsD2xTPrnpfYvsGDRqU1HNi7dq1cdtttxV7zoEHHpgwU96ed61bt06YKSwsjE8++SQD2/ynCRMmZHxmOtWtWzfq1KmTMDdp0qQMbPO/Jk6cmDBTqVKl2G+//TKwDUW11157xf333x+ffPJJUvfLiIg33ngjzVsBAAAAAAAAAADs2pRQAwAAAAAAAAAAAGXGoYcemjBT3oogZ8yYkTDTtm3bpMoiU+Wzzz7L2KxMycvLi+eeey569+6dVH7kyJFp3iizynJp6wEHHJDmTUpmV7wvsX05OTlx7bXXJpV94IEHYunSpcWak8zzbuHChbF48eJinV8WNW3aNGrWrJkw9+GHH2Zgm//00UcfZXxmuh100EEJM6X1gQzJfL9btGgRlStXzsA2FFebNm1i9OjRSb2uFy5cGNOmTcvAVgAAAAAAAAAAALsmJdQAAAAAAAAAAABAmdGxY8eEmRkzZsScOXMysE1mzJ8/P2HmwAMPzMAm//Tll1/GkiVLMjYvkypUqBAPPfRQ5ObmJsyOHz8+AxtlTmkUiSbzPaxTp040aNAgA9sU3654X2LHzj///GjSpEnCXH5+ftx+++3FmpHM8y4i4q233irW+WVV586dE2befPPNDGzyf77++uty+fpu27ZtwsyiRYvi66+/zsA2/znzyy+/TJhLZn9K37777huDBw9OKlve3nsBAAAAAAAAAACUJUqoAQAAAAAAAAAAgDLjuOOOSyr38ssvp3mTzFm7dm3CTL169TKwyT8NHz48Y7NKQ6NGjeKEE05ImFu2bFkGtsmcsWPHJvVcS5XCwsKkynG7dOmSgW1KZle8L7FjlStXjquvvjqp7MMPP1ysYv9DDjkk6tSpkzBX3p53Rx11VMLMhAkTkvoAh1QZNmxYxmZlUvfu3ZPKZfp9wfDhw6OwsDBhLpnnCmXDgAEDolKlSglz5e29FwAAAAAAAAAAQFmihBoAAAAAAAAAAAAoMw466KDYe++9E+Yef/zxDGyTGfn5+Qkz2dmZ+ZXPwsLCePrppzMyqzQdffTRCTPLly/PwCaZs2nTphgxYkTG5o0fPz6p4t2doUR0V7wvkdh5550XjRo1SpjLz8+P22+/vcjnV6hQIXr37p0w9/bbb8eCBQuKfH5Z1atXr4SZwsLCePTRRzOwTcTWrVvL7Wu7a9euSRUDDxkyJAPb/J8nn3wyqVyPHj3SvAmpUrNmzWjfvn3CXHl77wUAAAAAAAAAAFCWKKEGAAAAAAAAAAAAypR+/folzEyfPj1eeeWVDGyTfskUQGaqlO/ll1+O2bNnZ2RWaWrYsGHCzOrVqzOwSWY98cQTGZuVbGnrzlIiuqvdl0isSpUqcfXVVyeVfeSRR5IqZf9v/fv3T5jZunVr3HnnnUU+u6w66KCDYv/990+Ye/jhhzNyn37++edj4cKFaZ9TGqpVqxbdu3dPmJs2bVqMGjUqAxtF/OMf/4hPP/00Ya5NmzbRuHHjDGxEquyq770AAAAAAAAAAADKCiXUAAAAAAAAAAAAQJly0UUXRYUKFRLmrrnmmti0aVMGNkqv6tWrJ8zMnz8/7Xts2bIlBg8enPY5O4vc3NzSXiHlRo0aFV999VXa5yxdujT++te/Jsy1bNkyWrdunfZ9UmFXuy+RnPPPPz/22GOPhLn8/Py47bbbinx+z549Y999902Ye/jhh2PmzJlFPr+s+n//7/8lzHz//fdx++23p3WPgoKC+O1vf5vWGaXtzDPPTCr3u9/9Ls2b/NMNN9yQVO5nP/tZmjehNJTH914AAAAAAAAAAABlhRJqAAAAAAAAAAAAoEzZc889o0+fPglz06dPj+uvvz4DG6VXkyZNEmY+/PDDyM/PT+sed955Z0yZMiWtM8qKBQsWJMzsvvvuGdgkswoLCzNSJHrrrbcm9XxNpmi2rNjV7kskJycnJ6666qqkso888kgsXry4SOdnZWXFpZdemjC3adOmOPvss2Pr1q1FOr+sOv/886Ny5coJc3feeWdMmjQpbXtcd911MXfu3LSdXxb07ds3qlWrljD30UcfxYsvvpjWXd54440YOXJkwlzFihXj9NNPT+supN6u+t4LAAAAAAAAAACgrFBCDQAAAAAAAAAAAJQ5gwcPjuzsxL/m+Kc//Sn+9re/ZWCj9Nl3330TZvLz82P48OFp22H8+PEZKScuK955552Emf333z8Dm2TeSy+9lFTJZ3FNnjw5HnzwwYS5ihUrxjnnnJO2PdJhV7ovkbwLLrggGjRokDBXUFAQt912W5HPHzhwYFIfVjB+/Pi4/PLLi3x+WdSwYcOkSoY3b94c/fv3j5UrV6Z8h+HDh8c999yT8nPLmry8vLjwwguTyl566aWxbNmytOyxcuXKuOiii5LKnnHGGUm95ig7li9fHp9//nnCXHl97wUAAAAAAAAAAFAWKKEGAAAAAAAAAAAAypyDDjooBgwYkDC3bdu2OPPMM2PEiBEZ2Gr7li9fHldeeWVs2rSpyNfuv//+UbNmzYS566+/vljnJzJr1qzo27dvWs7enjvuuCO++OKLjM37d3Pnzo0333wzYa5jx44Z2KZ0DBw4MFasWJHycwsKCuLss8+OzZs3J8z2798/qWLdsmRXui+RvKpVq8aVV16ZVPbRRx+NxYsXF/n8W265JansfffdFzfccEORzk+1TZs2xYMPPhiffPJJic659tpro1KlSglzM2fOjN69e8eaNWtKNO/fvf/++3HGGWfEtm3bUnZmWfab3/wmcnJyEuaWL18ep5xySlL3+KLYunVr9O/fP7799tuE2ezs7Lj22mtTOn9XsGTJkrjppptS+jopikceeSSp5015fu8FAAAAAAAAAABQ2pRQAwAAAAAAAAAAAGXSLbfcEvXq1UuY27hxY5x00knxwAMPZGCr/zR//vy44oorolmzZnHHHXcUq7AyKysrjjrqqIS52bNnx69+9avirLldX3/9dXTv3j2WLFmS0nMTefPNN6Nt27bxk5/8JD744IOMzd28eXP8v//3/2LLli0Js8cff3wGNiod8+bNi379+qW0nLiwsDDOO++8+PzzzxNms7Oz46qrrkrZ7EzaVe5LFM1FF12U1POioKAgbr311iKff8YZZyT1cyIi4qabbopzzz038vPzizynJNauXRt//vOfo3nz5nHJJZfE999/X6Lz9t133/jlL3+ZVHbcuHHRrVu3+Oabb0o0MyLiueeei2OPPTbWr19f4rN2Fg0aNIhBgwYllf3www/jtNNOS1kR9datW+NnP/tZjBw5Mqn8ueeeG/vtt19KZu9KCgoK4oYbbog999wzbrjhhli0aFHGZn/22Wfxhz/8IWGuVatWseeee2ZgIwAAAAAAAAAAgF2TEmoAAAAAAAAAAACgTKpXr1489dRTSWW3bNkSl156aZx44okxb968tO61bdu2eOedd6Jfv36x9957x5133lnissr+/fsnlXvggQfi6quvjsLCwhLNi4gYOnRodOrUKRYuXFjis4qjsLAwhg8fHl27do02bdrEQw89FCtXrkzbvBUrVsSJJ54YH3/8ccLsAQccEB06dEjbLmXBu+++Gz/96U+joKCgxGdt27YtBg4cGM8//3xS+XPPPTcOPPDAEs8tDbvSfYnkVa1aNa644oqkso899liRC2CzsrLimWeeidq1ayeVf+qpp6Jdu3YxduzYIs0pji+++CIuv/zyaNy4cVx22WWxYMGClJ3929/+Npo2bZpUdtKkSXHwwQfHvffeW6yC5Llz50b//v3jzDPP/NH7Yv369WP33Xcv8rk7ixtuuCH22muvpLIvv/xyHHfccbFs2bISzVyxYkX07t076Z8ddevWjdtvv71EM3d1q1atiptuuin23HPPOO2002LkyJFp/aCCMWPGxLHHHpvUh16ce+65adsDAAAAAAAAAAAAJdQAAAAAAAAAAABAGXb88cfHVVddlXT+zTffjBYtWsQvf/nLmDFjRsr22Lx5c7z33ntx+eWXR5MmTaJXr14xbNiw2Lp1a0rOP/nkk2OPPfZIKnv77bfHUUcdFXPmzCnWrMmTJ0efPn3itNNOi7Vr1/5opl27dsU6u7gmT54cF198cTRo0CD69u0bQ4YMie+++y4lZ2/ZsiWefvrpaNu2bbzzzjtJXXPllVemZHZZ98Ybb8Rhhx0Ws2fPLvYZS5cujZ49e8YTTzyRVH633XaLm266qdjzyoJd5b5E0fz85z+PunXrJswVFBTErbfeWuTzGzduHM8880xUqFAhqfy0adPiiCOOiJNOOinef//9Is/bkS+++CJuvvnmaNOmTRx88MFxzz33xJo1a1I6IyKiRo0a8dxzzyX9mNesWRODBg2KZs2axe9+97v4/PPPd/ihDevWrYs33ngjTjvttGjRokW8+OKL283ed999Ua1atSI/hp1Fbm5uPPbYY5Gdndx/YvLuu+9GmzZt4plnninWB2MMHTo02rRpE2+99VbS19x///1JF7GzY1u2bImhQ4dGz549o0mTJvGrX/0qRo8eHVu2bEnJ+YsXL47LLrssjjnmmKTez9WuXTvOO++8lMwGAAAAAAAAAADgx1Us7QUAAAAAAAAAAAAAduTWW2+NhQsXxnPPPZdUfuPGjXHffffF/fffH507d44+ffpE165do02bNlG1atWE1xcWFsa8efNi6tSp8emnn8a4ceNi/PjxaSnY/JfKlSvH1VdfHZdddllS+TFjxsR+++0XJ510Upx33nlx2GGHRc2aNbebnz9/fowaNSqee+65GD169A4LI1u2bBk33XRTHH/88UV+HCW1adOmeOWVV+KVV16J7OzsaNu2bRx++OHRuXPnOOCAA2K//faLSpUqJTxn9erV8emnn8Ybb7wRr7zySsybNy/pHTp27BhnnnlmSR5GmdOpU6dYs2ZNfP311//ztYkTJ8YBBxwQv/rVr+Kyyy6LevXqJXXmmjVr4uGHH46bb765SK+Nhx9+OOrXr590vqzaFe5LFE1eXl78+te/jquvvjph9rHHHourr746GjVqVKQZJ554Yjz44INx4YUXJn3Na6+9Fq+99lrsu+++cdJJJ0XPnj2jffv2SZf5Llu2LKZOnRqff/55fPTRRzF27NhYtGhRkfYuicMPPzxuueWWIhW/f/vtt3HjjTfGjTfeGDVr1owWLVpEw4YNo1q1arF58+ZYs2ZNzJkzJ2bPnp1U6e6pp54ap556alxxxRUleShlXo8ePWLw4MHx29/+Nqn8kiVL4pxzzombbropLrzwwujdu3e0aNFiu/lvvvkmXn/99XjkkUd+9OfRjlx22WXRr1+/Il1DchYtWhR333133H333VGjRo047LDD4vDDD48OHTpEq1atkrpPFRYWxoIFC2L06NHx+uuvx4gRIyI/Pz/pHW666abYbbfdSvAoAAAAAAAAAAAASEQJNQAAAAAAAAAAAFCmZWVlxVNPPRXr16+PV199NenrCgsL46OPPoqPPvooIiIqVKgQTZs2jSZNmsTuu+8eVatWjQoVKsTGjRujoKAgvv/++1i8eHEsWrQoCgoK0vRotu/iiy+Oxx9/PL788suk8lu3bo2XX345Xn755cjKyor9998/GjZsGLVq1YqcnJzYsGFDLFu2LGbOnBlLly5N6szc3Nx4/vnnY9WqVSV4JKmxbdu2+Oyzz+Kzzz6Le++9NyIiKlasGI0aNYqGDRtG3bp1IycnJ6pUqRIFBQWxfv36WLNmTcyaNSuWLFlSrJk1a9aM5557LrKyslL5UEpdlSpV4sknn4wuXbrEtm3b/ufrBQUFccstt8Sf/vSnOO6446JXr17Rtm3b2HvvvaNmzZqRlZUVa9eujblz58bkyZPjnXfeiddffz3WrVtXpD3OPvvs6N+/f6oeVqnaVe5LFM0ll1wSd9xxR3z//fc7zG3cuDFuvfXWuP/++4s844ILLojVq1fHlVdeWaTrZs6cGXfeeWfceeedERGxxx57RNOmTaN+/fpRtWrVqFy5cmzevDkKCgpi9erVsXjx4li8eHGsXr26yDum2pVXXhnz5s2LBx98sMjXrl69OiZMmFDs2e3atYunnnoq6Xx2dnaxZ5UF119/fUyZMiVefPHFpK+ZNWtWXHHFFXHFFVdEnTp1omXLllG3bt3Izc394T42derUYv9s7tmzZ9xxxx3FupaiWbNmTbz11lvx1ltv/fB31atX/+G9V82aNaNq1aqRnZ0d69evj/Xr18fy5ctjxowZsX79+mLN7N27d1x00UWpeggAAAAAAAAAAABshxJqAAAAAAAAAAAAoMyrVKlS/O1vf4tLLrkkHnnkkWKdsXXr1vjmm2/im2++SfF2qVGxYsV44YUX4tBDD40NGzYU6drCwsKYOnVqTJ06tUTzX3zxxTj44INjzJgxxT4nnbZs2RLz5s2LefPmpfzsnJyc+Nvf/hb77LNPys8uCzp27Bi///3v44YbbthuZuPGjfHqq68WqVQ5WYcffnixX7tl1a5wX6JoqlWrFr/+9a/j2muvTZh9/PHH45prrolGjRoVec4VV1wRdevWjYEDB8aWLVuKs+oPJdM7i/vuuy82b94cjz32WMZm7r333vHaa69FXl5e0tdUqVIljRulX1ZWVjz77LNRUFAQr732WpGv/+677+LDDz9M2T7du3ePV199NSpVqpSyMymatWvXxrRp02LatGkpP7t9+/bxl7/8pdx9+AcAAAAAAAAAAEBZlF3aCwAAAAAAAAAAAAAko0KFCvHwww/HfffdFzk5OaW9Tlq0bt06XnjhhahYsWJG51asWDGefPLJOOGEEzI6t6yoUaNGvPrqq9GjR4/SXiWtrr/++jjrrLMyPrd169YxfPjwnb6c9cfsCvcliubSSy+N2rVrJ8xt3LgxbrnllmLPOeecc+Kdd94pVon1zig7OzseffTRGDx4cEYKa9u1axcfffTRf3x/N23alPC68nAfqFSpUgwbNizOOeecUt3jpz/9abzxxhtRtWrVUt2D9OjcuXO88847UbNmzdJeBQAAAAAAAAAAYJeghBoAAAAAAAAAAADYqVx66aXxySefxMEHH1zaq/yHatWqRXZ2yX81s0+fPjF06NCMlS7WqlUr3nrrrVIpJy4LWrduHePHj49evXqV9ioZ8fjjj8cpp5ySsXmHHnpofPDBB0mV8u7Myvt9ieRVr149Lr/88qSyTzzxRCxcuLDYs7p37x6TJ0+Ofv36FfuMdKhQoULk5eWl5ezf/e538c4778Qee+yRlvMjIs4777x4//33o379+v/x9wUFBQmvLQ8l1BERlStXjqeeeiruvvvuqFy5ckZnV6hQIX7/+9/HsGHDIjc3N6OzyYwLL7wwRo8eXe7fGwAAAAAAAAAAAJQlfqMYAAAAAAAAAAAA2OkccMAB8dlnn8Vjjz0WDRo0KLU9srOzo0ePHjFkyJBYsmRJyooa+/btG++//37ss88+KTlve7p37x4TJkyIHj16pHXOfzvmmGOiYcOGGZ3536pWrRo33HBDTJw4MVq1alWqu2RS5cqVY+jQoXHZZZelfdaZZ54Z77333i5TMlne70sk75e//GXUqlUrYW7jxo1xyy23lGhW7dq1Y+jQoTF69Oho27Ztic4qqQMPPDDuuOOOWLBgQRxxxBFpm9OjR4+YOnVqXHXVVSn9wIYDDzwwRo4cGY8//nhUq1btP762bdu2WLt27Q6vz8vLiypVqqRsn7Jg0KBBMWnSpOjSpUtG5rVt2zYmTJgQv/3tbyMrKysjM3cFNWvWjGOPPbbUS9L322+/+Pvf/x4PP/xwuXutAAAAAAAAAAAAlHVKqAEAAAAAAAAAAICdUnZ2dpx//vkxe/bseOSRR+LAAw/MyNyKFStGly5d4rbbbot58+bFyJEj46yzzoq8vLyUzunQoUN88cUXceWVV6a8NHDvvfeOIUOGxHvvvRfNmzdP6dnJuO666+Lbb7+NiRMnxo033hgdO3aM7OzM/FprzZo147LLLovZs2fHjTfeuEsW9GZnZ8c999wTw4cPT0sZeN26deOZZ56Jv/zlLyl/XZR15f2+RHJq1KgRgwYNSir7xBNPxIIFC0o8s1u3bvHZZ5/Fm2++Gb169cpYgW/Lli3jV7/6VUycODEmT54cv/nNb2KPPfZI+9yaNWvGbbfdFnPmzImbbropmjVrVqxzqlSpEscff3y8+eabMXny5O1+KMPy5ctjy5YtOzyrfv36xdqhrGvVqlWMHTs2XnrppWjXrl1aZrRu3Tqee+65+OSTT9I2Y1dWq1ateOutt+L777+P4cOHxwUXXBCNGzfO2PwDDjggnnjiifj666+jZ8+eGZsLAAAAAAAAAADA/6lY2gsAAAAAAAAAAAAAlERubm5ccMEFccEFF8Qnn3wSr7zySgwfPjy+/vrrlJyfnZ0drVu3jqOPPjqOPvro6Nq1a1SvXj0lZyeSl5cXt99+e1x22WXxyCOPxNNPPx3z588v1lm5ublx9NFHx8CBA+OEE07YYelz48aN47LLLtvheakor27btm20bds2brjhhli5cmV8/PHHMX78+Bg/fnxMmDAh1qxZU+IZERHVq1ePY445Jk4++eTo27dv5ObmpuTcnV2fPn2ia9eucdddd8UDDzwQ33//fYnOq1mzZlx44YVx7bXXRs2aNVO05c6pPN+XSM5ll10Wd999d6xatWqHuU2bNsUtt9wSDz30UIlnZmVlxfHHHx/HH398zJ07N15++eV49dVX46OPPoqtW7eW+PyIiCZNmsRRRx0VRx99dPTo0SMjhdM70qBBg7juuuviuuuui6+++ipGjRoVEydOjOnTp8f8+fNj7dq1kZ+fHzk5OVG9evXYbbfdokWLFtG6devo0KFDHHPMMUmVtc+dOzepXcqrrKys6Nu3b/Tt2zfGjRsXzz33XPztb3+L5cuXF/vMWrVqxcknnxxnnHFGdO/ePWPF6buy3Nzc6NOnT/Tp0yciImbMmPHD+67x48fHlClTYtu2bSmZtc8++0Tv3r3j1FNPjS5duqTkTAAAAAAAAAAAAIovq7CwsLC0lwAAAAAAAAAAAABIte+++y4++eST+Oyzz2LWrFkxb968WLBgQaxZsyY2bNgQBQUFERFRpUqVqFq1atSuXTvq1KkTjRo1imbNmkXz5s3jgAMOiDZt2iRVUJkpn3/+eYwZMyY+++yzmDFjRixcuDBWr14dBQUFUbFixcjLy4tq1arFHnvsES1atIgWLVpEp06d4vDDD4/KlSuX9vpJ27ZtW8ycOTNmzJgRs2bNilmzZsXs2bNj6dKlsXbt2li3bt0P5aKVKlWKKlWqRI0aNaJ+/frRsGHDaN68eey///5x6KGHxkEHHRQVKlQo7YdUpm3YsCGGDRsWr732Wrzzzjuxbt26pK6rWrVqHHnkkdG3b98444wzytRrpSwqr/clyrYNGzbExIkT45NPPolp06bF/PnzY/78+fH9999Hfn5+bNiwIbZt2xaVK1eOnJyc2G233aJOnTrRoEGDaNasWey9997RqlWraNu2bdStW7e0H06pePzxx2PgwIE7zJx11lkxZMiQDG1U+goLC+Orr76KsWPHxueffx5z5syJuXPnxsqVK3+4n1WpUiVyc3Njt912i7322iv23nvvOOigg+Lwww+Pgw46aIcfiEHmrVu3Lr7++usf3nfNmjUrvvnmm1i5cuUP77vWrVsXW7ZsicqVK0fVqlVj9913j3r16kXTpk1/KHjv0qVLNGrUqLQfDgAAAAAAAAAAAP9GCTUAAAAAAAAAAAAA8IMtW7bEjBkz4quvvoqZM2fG6tWrY+3atbFp06bIy8uLGjVq/FBK26ZNm8jJySntlQHS6sILL4xHH310h5lbb701rr766gxtBAAAAAAAAAAAAJC8iqW9AAAAAAAAAAAAAABQdlSsWDFatWoVrVq1Ku1VAMqEd999N2GmdevWGdgEAAAAAAAAAAAAoOiyS3sBAAAAAAAAAAAAAACAsmjy5Mkxe/bshLmOHTtmYBsAAAAAAAAAAACAolNCDQAAAAAAAAAAAAAA8COeeuqphJmWLVtGvXr1MrANAAAAAAAAAAAAQNEpoQYAAAAAAAAAAAAAAPgv3333XTz22GMJc0cffXQGtgEAAAAAAAAAAAAoHiXUAAAAAAAAAAAAAAAA/+V3v/tdrF+/PmGuX79+GdgGAAAAAAAAAAAAoHiyCgsLC0t7CQAAAAAAAAAAAAAAgLJi9OjRcfTRR0ei/+SiSZMmMW/evMjKysrQZgAAAAAAAAAAAABFk13aCwAAAAAAAAAAAAAAAJQVs2bNilNPPTVhAXVExAUXXKCAGgAAAAAAAAAAACjTlFADAAAAAAAAAAAAAABl0pw5c+Lmm2+OdevWZWTel19+GUceeWR8//33CbPVq1ePSy65JANbAQAAAAAAAAAAABSfEmoAAAAAAAAAAAAAAKBM2rBhQ1x//fWx1157xe9+97tYunRpWuYUFhbGI488Ep06dYrFixcndc2gQYOiVq1aadkHAAAAAAAAAAAAIFWyCgsLC0t7CQAAAAAAAAAAAAAAgP82ZcqUOPDAA3/435UrV47evXvH2WefHT179owqVaqU6Pxt27bFm2++GYMHD46JEycmfd3ee+8dX331VeTk5JRoPgAAAAAAAAAAAEC6KaEGAAAAAAAAAAAAAADKpP8uof53eXl5ccwxx8SRRx4ZnTt3jgMOOCCqVauW8MzvvvsuPv3003j77bfj5ZdfjgULFhRppwoVKsTIkSOje/fuRboOAAAAAAAAAAAAoDQooQYAAAAAAAAAAAAAAMqkHZVQ/5hGjRpF48aNo169epGbmxuVK1eOTZs2RX5+fixevDgWLFgQS5YsKdFOf/zjH+OKK64o0RkAAAAAAAAAAAAAmVKxtBcAAAAAAAAAAAAAAABIhW+//Ta+/fbbtJ1/6aWXKqAGAAAAAAAAAAAAdirZpb0AAAAAAAAAAAAAAABAWXfllVfGfffdV9prAAAAAAAAAAAAABRJxdJeAAAAAAAAAAAAAAAAoKyqXr16PProo3HaaaeV9ioAAAAAAAAAAAAARZZd2gsAAAAAAAAAAAAAAACURX379o0vvvhCATUAAAAAAAAAAACw01JCDQAAAAAAAAAAAAAAlEktW7aMd955Jy644IKoV69eRmZmZ2dHnz594sMPP4yXXnopmjVrlpG5AAAAAAAAAAAAAOmQVVhYWFjaSwAAAAAAAAAAAAAAAOzI1q1b48MPP4z33nsvxo8fHxMmTIg1a9ak5Ozs7Ozo1KlT9OnTJ0477bTYc889U3IuAAAAAAAAAAAAQGlTQg2UGw0aNIhVq1b9z99XqlQpmjZtmvmFAAAAAACAMmf+/PmxefPm//n73XbbLZYsWVIKGwEAAAAAxbVt27b4+uuv48svv4y5c+fGvHnzYu7cubFo0aJYt25dbNiwITZs2BD5+fkREVG1atXIycmJ3XffPRo3bhxNmjSJli1bRvv27aNdu3ax2267le4DAgAAAAAAAAAAAEgDJdRAuZGTkxMbN24s7TUAAAAAAICdUJUqVaKgoKC01wAAAAAAAAAAAAAAAAAAAEip7NJeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDUU0INAAAAAAAAAAAAAAAAAAAAAAAAAAAAUA4poQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAoh5RQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJRDFUt7AYBUqVSpUmzcuPF//r5KlSqxzz77lMJGAAAAAABAWTN79uwf/f8nVKpUqRS2AQAAAAAAAAAAAAAAAAAASC8l1EC50bRp0/j666//5+/32Wef+Oqrr0phIwAAAAAAoKxp3br1j/7/E5o2bVoK2wAAAAAAAAAAAAAAAAAAAKRXdmkvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDqKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIBySAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQDmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgHFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAOKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIeUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAACUQ0qoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMohJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ZASagAAAAAAAAAAAAAAAPj/2LvzKDvrwv7jnzuZyUZIAgQimxoIS1hlUShubBZpwxJsCQJu1B9LxbVVS4tSa916jopUQRQFK1tS2dEKSFBRQQiBgBAghAAJhLBkmYSEySRzf39MQjKZe+8kk8y9d2Zer3M4M8/3ee4zH3rqX3N4DwAAAAAAAAAAAPRBItQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfZAINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAfJEINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0AeJUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAD0QSLUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH2QCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAHyRCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANAHiVADAAAAAAAAAAAAAAAAAAAAAAAAAAAA9EEi1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9kAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQB8kQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQB4lQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAPRBItQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfZAINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEAfJEINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0AeJUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAD0QSLUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH2QCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAHyRCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANAHiVADAAAAAAAAAAAAAAAAAAAAAAAAAAAA9EGNtR5A//Dyyy/n/vvvz6xZs9Lc3JympqZss8022WuvvXLwwQenqamp1hPr0rx58zJt2rTMmzcvixYtSktLS0aMGJGRI0dmzz33zH777ZeBAwfWeiYAAAAAAFCHtv5KQxa2FJMkxa8Xa7wGAAAAAAAAAAAAAAAAAACAWhChpkf94he/yPe+97388Y9/TLFYOm6w5ZZb5uSTT84XvvCF7L777lVe2FmxWMzMmTPzwAMPZOrUqZk6dWoefPDBLFmypMNzH/nIR3LFFVds9p8/e/bsXHbZZbnqqqvy7LPPVnx24MCBOeKII/Lxj388J554Yhob/U8aAAAAAABYJ0Dd0H5d+Fwhxe8IUQMAAAAAAAAAAAAAAAAAAPQ3irX0iOeffz6nnXZafve733X57JIlS/KTn/wkP//5z3P++efn/PPPT6FQqMLKta6//vrce++9mTp1aqZNm5bFixdX9ecnyYoVK/K1r30t3/zmN7NixYoN/sxtt92W2267Lfvvv38uu+yyHHzwwT28FAAAAAAAqHfrBqiTJEOTwqcKKV4kRA0AAAAAAAAAAAAAAAAAANCfiFCz2T355JM5/PDDM2/evI363IoVK/LlL385M2bMyM9//vMMGDCghxZ2dsYZZ9QkPL3GsmXLMn78+Nx1113dfsf06dNz2GGHZdKkSZkwYcJmXAcAAAAAANS1F15I7rsvefjh5NFHU9hlclLq1yzDk8JnCileKEQNAAAAAAAAAAAAAAAAAADQX4hQs1m9+uqred/73lcyQH3QQQflhBNOyJgxY7J8+fI8+eSTufrqq/PCCy90eO6aa67JdtttlwsvvLBKq2vv5JNPLhmgbmpqyrHHHpvDDjssO+64YwYNGpSFCxfm4Ycfzi9/+cs888wzHZ5vbW3NxIkTc9ddd+Wd73xnldYDAAAAAABV19qa/PrXyc9+lvzpT28cFz4yr3SAeo1hSeFzhRS/tSJpaur5nQAAAAAAAAAAAAAAAAAAANSUCDWb1Zlnnpnnnnuuw9mWW26ZK6+8Mscff3yn57/+9a/n61//ev793/+9w/n3vve9HHPMMTn22GN7cm6Xttlmmxx00EHZaqutMmnSpB75GZMmTcovf/nLTufjx4/PpZdemh122KHk5y666KJcccUV+cxnPpMlS5a8cd7a2pqzzjorDz74YJrEIwAAAAAAoO+5447k/POTOXOSVavag9StrSl8YmnlAPUaQ5PCFwemeOztyfve1+NzAQAAAAAAAAAAAAAAAAAAqJ2GWg+g77jjjjty/fXXdzgbOHBgpkyZUjJAnSRNTU254IILcuGFF3a696lPfSorV67siakljRgxIkcccUQ+//nPZ/LkyXn66afzyiuv5LbbbsvZZ5/dYz/3O9/5TqezE088MTfddFPZAHWSNDQ05Iwzzsgvf/nLTrHpRx99NLfffvtm3woAAAAAANRQc3Py6U8nH/5wMnNmsnBh8soryeLFKfzj0o3787NDk8Jtf93+vubmHpsMAAAAAAAAAAAAAAAAAABAbYlQs9l89atf7XR2wQUX5OCDD+7ys5/+9Kfzvve9r8PZU089lauvvnqz7avkwQcfzMKFCzNlypT813/9V/7+7/8+Y8aM6fGf+/zzz+f+++/vcDZ48OBccsklaWjYsP95vvvd785ZZ53V6fymm27aLBsBAAAAAIA6MGdO8v73J1dembz6arJ4cdLSkhSLKfxzW9LU9Ss6GZwUBl6UHHts+/sBAAAAAAAAAAAAAAAAAADoc0So2SweffTR3H333R3ORo0alX/+53/e4Hd84xvf6HR2ySWXbPK2DTFmzJgUCoWq/Kx1PfHEEykWix3OjjjiiLzpTW/aqPecdtppJd8NAAAAAAD0Ac89l4wfn0yfnixcmLS2Jm1tqwPUxe4FqNcYlBTe+afkxBOFqAEAAAAAAAAAAAAAAAAAAPogEWo2i2uvvbbT2cc+9rEMHDhwg99x0EEH5aCDDupwdu+992b27NmbvK9evfTSS53Oxo0bt9HvKfWZ+fPnd2sTAAAAAABQR5qbkwkTksceS5YtS9b545aFf06y4b+KKW9gUjhqWnLKKe0/DwAAAAAAAAAAAAAAAAAAgD5DhJrN4te//nWns7/7u7/b6PeU+kypd/cVpSLdGxPuXmPQoEGdzgYPHtytTQAAAAAAQB35x39MHnwwWbmyw3Hhn5J0/vVA9w1MCu/6U/LlL2/GlwIAAAAAAAAAAAAAAAAAAFBrItRsstdeey3Tpk3rcDZ06NAceOCBG/2ud7/73Z3O7r777m5vq3djxozpdDZnzpyNfk+pz+y6667d2gQAAAAAANSJ//7v5KqrkmKxw3Hhc0l64m9RNiWFwd9L7rijB14OAAAAAAAAAAAAAAAAAABALYhQs8keeuihtLW1dTg7+OCD09jYuNHvevvb356mpqYOZw888MAm7atn++23X7bZZpsOZ3feeWdaW1s36j2/+tWvOp0dddRRm7QNAAAAAACooT/8IfnUpzodFz6bZEgP/tzGpHDnXycb+bsKAAAAAAAAAAAAAAAAAAAA6pMINZvs8ccf73Q2duzYbr1r4MCB2WmnnTqczZo1KytXruzW++rdgAEDctZZZ3U4e/HFF3PRRRdt8DsWLFiQb33rWx3ORo4cmQ996EObZSMAAAAAAFBlf/5z8u53dzoufDrJ0Cr8/Mak8OWBVfhBAAAAAAAAAAAAAAAAAAAA9DQRajbZM8880+nsLW95S7ff9+Y3v7nD9apVq/Lcc891+3317rzzzssuu+zS4eyLX/xifvrTn3b52blz5+bYY4/NvHnzOpxfdNFF2XLLLTfrTgAAAAAAoAqmTEkOPbTTceFTSYZVcceApHBeIVt/xa8TAQAAAAAAAAAAAAAAAAAAerPGWg+g93vxxRc7ne28887dfl+pz86fP79TqLmvGDZsWP7v//4vRxxxRF544YUk7eHtf/iHf8gVV1yRM844I+985zuzww47ZNCgQVm4cGEeeeSR3HLLLfnpT3+a5ubmDu/7z//8z3zoQx+qxb9KWT/4wQ9y8cUX9/jPmTVrVo//DAAAAAAA6DHXXJOcemqn48Ink9Tib08OSBa2FLP1Vxqy4IK2GgwAAAAAAAAAAAAAAAAAAABgU4lQs8kWLFjQ6WzYsGHdfl+pz7766qvdfl9vsPvuu2fatGk5++yzc+ONN75xfvfdd+fuu+/eoHeMGTMmF110UcaPH99DK7vv5ZdfzmOPPVbrGQAAAAAAUHdO+tlJuf4j1yeXXZb8v//X6X7hnCTDq7/rDQ1C1AAAAAAAAAAAAAAAAAAAAL1ZQ60H0Pu99tprnc6GDBnS7feV+uyyZcu6/b7eYvTo0bnhhhvywAMP5Nxzz93g/xsedNBBmTx5cp588sm6DFADAAAAAAClFb5SyA3P3JDCVwqlA9RnJdm6+rs6aUgWvlas9QoAAAAAAAAAAAAAAAAAAAC6QYSaTdba2trpbPDgwd1+X6n48ooVK7r9vt5k1qxZ+clPfpLJkydn+fLlG/SZBx54IP/6r/+aCy+8MEuXLu3hhQAAAAAAwOZQ+Eph7UUxKXxpvfsfTzKqqpPKa0u22qLQ9XMAAAAAAAAAAAAAAAAAAADUHRFqekSh0P0QQanPFovFTZlT91pbW/OlL30pe+yxRy6++OK89NJLHe4PHTo0b33rW7PXXntlhx12SENDx//pPvXUU/n85z+fcePGZcqUKdWcDgAAAAAAbKT1A9RJkoa1IerCx5KMrvaqMtqSrQYVsuCCtlovAQAAAAAAAAAAAAAAAAAAoBtEqNlkTU1Nnc6WL1/e7feV+uzAgQO7/b56t2LFipx00kn5z//8z6xateqN8yFDhuTcc8/N1KlT09zcnNmzZ+fRRx/N888/nwULFuT666/Pe97zng7vmjt3bo455phcd9111f7XAAAAAAAANkDJAPUaDUnh9CQ7VHNRBcUkgyJADQAAAAAAAAAAAAAAAAAA0Is11noAvd/QoUM7nW3uCPUWW2zR7ffVu09/+tO59dZbO5yNHTs2N954Y/bee++SnxkxYkQmTJiQCRMm5JJLLsm5556btrb2AMTKlStz2mmnZc899yz7+Wrbdttts9dee/X4z5k1a1ZaWlp6/OcAAAAAAEB3VAxQJ8msJG+p1pouFJP8Oik+UGooAAAAAAAAAAAAAAAAAAAAvYUINZtsm2226XS2dOnSbr+v1GdL/Yy+4E9/+lN++MMfdjjbeuutc/vtt2fMmDEb9I5zzjknLS0t+exnP/vGWUtLS84555z8/ve/36x7u+sTn/hEPvGJT/T4z9l7773z2GOP9fjPAQAAAACAjdVlgHpGkt2qtaYLxSTfSIonT6z1EgAAAAAAAAAAAAAAAAAAADZRQ60H0PuNHj2609ncuXO7/b45c+Zs0M/oC7797W93Ovu3f/u3DQ5Qr/GpT30q++23X4ezu+++O9OmTdukfQAAAAAAwKbrMkA9LfUVoL4pKTYNTPbeu9ZrAAAAAAAAAAAAAAAAAAAA2EQi1GyyUsHkZ599ttvve+655zpcDxgwIG9+85u7/b56tXLlytx+++0dzgqFQj70oQ9t9LsaGhpKfu62227r9j4AAAAAAGDTdRmg/lOS/Uqc10IxyT1JcUZD0tCQ7FcvwwAAAAAAAAAAAAAAAAAAAOguEWo22R577NHp7KmnnurWu1asWJE5c+Z0ONt1113T2NjYrffVs6effjpLly7tcLbrrrtm22237db7Dj300E5nDz/8cLfeBQAAAAAAbLrDvnXY2otSAeo/JHl7tdZsgHuS4l2rv29sTN7xjprOAQAAAAAAAAAAAAAAAAAAYNOJULPJDjjggDQ0dPx/palTp2blypUb/a6pU6emtbW1w9mBBx64Sfvq1auvvtrprLsB6nKfXbBgQbffBwAAAAAAdN+tT9yae16/p/2iVIB6WpJDkhSqOKqSh9cJUCfJfvsl229fszkAAAAAAAAAAAAAAAAAAABsHiLUbLItttgiBxxwQIez1157LQ8++OBGv+sPf/hDp7P3vOc93d5WzwYPHtzpbPny5d1+37JlyzqdDR06tNvvAwAAAAAAuufOWXfmuGuPa78oFaCem2Tf1E+AemZSvGX194XVo84+u2ZzAAAAAAAAAAAAAAAAAAAA2HxEqNks3v/+93c6+8UvfrHR7yn1mVLv7gu23XbbTmfPPvts2trauvW+p59+eoN+BgAAAAAA0HPumn1Xjr7y6PaLUgHq55OMTn0FqCevdzZyZHLKKbVYAwAAAAAAAAAAAAAAAAAAwGYmQs1mcUqJEMHll1+eFStWbPA7Hnzwwdx///0dzg455JCMGTNmk/fVoze96U0ZNmxYh7OFCxfm3nvv7db7fvWrX3U623333bv1LgAAAAAAYOPdNfuuHPk/R7ZflApQv5Bku9RPgPrZEgHqQiH53OeSpqaaTAIAAAAAAAAAAAAAAAAAAGDzEqFms9hnn33yrne9q8PZyy+/nO9+97sb/I7zzjuv09k555yzydvqVWNjY4466qhO51/72tc2+l2zZ8/OlVde2en8mGOO6dY2AAAAAABg43QZoJ6bZFTqJ0D9QlLs/KuFZLvtki98oepzAAAAAAAAAAAAAAAAAAAA6Bki1Gw2559/fqezCy64INOmTevys9///vdz2223dTjbZZddcuqpp27Qz37rW9+aQqHQ4Z/f/va3G/TZWpo4cWKns1/96lf55je/ucHvWLx4cSZMmJAVK1Z0ON9rr72y7777bvJGAAAAAACgssXLFncdoN4u9fObuflJ8fIS542NyQ9/mDQ1VX0SAAAAAAAAAAAAAAAAAAAAPaNe/lN3+oBjjjkmJ5xwQoezlpaWHHHEEbnllltKfqa1tTVf/epX88lPfrLTvYsuuihNfTxyMHHixLztbW/rdH7eeefljDPOyPz58yt+fsqUKTnooIMyffr0Tvc2JmQNAAAAAAB034ihIzJ2xC69I0D9SlK8rMy9009P1vtdDwAAAAAAAAAAAAAAAAAAAL1bY60H0Lf8+Mc/zgMPPJC5c+e+cdbc3Jzjjz8+Bx98cE444YSMGTMmy5cvz8yZM3PVVVfl+eef7/Sec889N3/7t39btd1Tp07Nxz/+8bL3ly5d2uns5ptvLhmQXuPggw/OZZeVqzi0a2hoyGWXXZbDDz+808+4/PLLc/XVV+eYY47JYYcdlh122CFDhgzJokWLMmPGjNxxxx155JFHSr73Ix/5SI477riKPxsAAAAAANhMmpsz8ysLstvpyVPbrHdv29RPgHpBUry0zL3ddku+972qzgEAAAAAAAAAAAAAAAAAAKDniVCzWW277ba5/fbbc+SRR+bFF1/scG/q1KmZOnVql+84+eSTc+GFF/bQwtKWLl2a6dOnb9RnFi5cmIULF5a9P3LkyA16z0EHHZQbb7wxJ554YqcQdUtLS26++ebcfPPNG7zrpJNO6jJ+DQAAAAAAbCZz5iSHH54sWpSZ3092O3edEHVLkgE13Lau5qR4SZl7I0Ykd96ZDB9e1UkAAAAAAAAAAAAAAAAAAAD0vIZaD6DvGTduXO677768613v2qjPNTU15YILLsg111yTAQPqpchQHUcddVSmT5+e9773vd1+x7Bhw3LxxRfnuuuuS2OjvjwAAAAAAPS4555Ljj46efrpN45mfj8Z+2rqK0C9JCn+d5l7TU3Jn/6U7LxzVScBAAAAAAAAAAAAAAAAAABQHSLU9Iidd945v//97zNp0qQcdthhKRQKZZ8dNmxYPvaxj+Xhhx/Ov//7v6ehoX/+v+Uuu+yS3/72t/n973+f0047LVtvvXWXnxkwYEAOOOCAXHjhhZkzZ07OOeecKiwFAAAAAID+bVXbqqS5OXnve5Mnn+x0/6ktUj8B6qVJ8aIy9xoakj/8Idlrr6pOAgAAAAAAAAAAAAAAAAAAoHoKxWKxWOsR9H0vvfRS7rvvvjz99NNpbm5OY2NjRo0alXHjxuXtb397Bg4cWOuJdempp57Kww8/nFdffTWLFi3KihUrMnz48IwcOTJvfetbc+CBB2aLLbao9cy6sffee+exxx7rdL7XXnvl0UcfrcEiAAAAAAD6muaW5pw2aWLO+Nn0TJgyr9P9wheSNFV/V0nLkuJ3K9y/997kkEOqNqde+H0CAAAAAAAAAAAAAAAAAADQnzTWegD9w3bbbZfx48fXekavM3bs2IwdO7bWMwAAAAAAgCQLly/MqVedlOkz786Db1uVvJBMeHzt/boKUC/vIkD95z8n73hH1eYAAAAAAAAAAAAAAAAAAABQGw21HgAAAAAAAAD17tlFz2aPi3bLn2ffnaxalbZC8sm/SW7Ys/1+4fOpnwD160m2TApfKnP/zjsFqAEAAAAAAAAAAAAAAAAAAPoJEWoAAAAAAACoYMbLM7Lbf++WV5a/msWNq/J6Y/v5mhB14Z+TDKzpxLVakgxb/X1DiRD1NdckRx5Z5VEAAAAAAAAAAAAAAAAAAADUigg1AAAAAAAAlDHthWnZ/4f7p3VVa4pJikkWD8obIernC0kG1XDgulYk2WK9s3VD1D/5SXLKKVUeBQAAAAAAAAAAAAAAAAAAQC2JUAMAAAAAAEAJtz5xaw768UFpbWt946xYWBuinteWZHDN5nXUmmRomXsNSeHfk5xxRvX2AAAAAAAAAAAAAAAAAAAAUBdEqAEAAAAAAGA9tz5xa4679rj2i2LHe8VC0rYk5aPP1daaZEiF+4X2Lyf97KRqrAEAAAAAAAAAAAAAAAAAAKCOiFADAAAAAADAOm6ecXPZAHWSZFHqJ0C9MhsUoE6S6z9yfU+vAQAAAAAAAAAAAAAAAAAAoM6IUAMAAAAAAMBqN8+4OSdMPqH9olSAemGSYdVcVMGqJIMr3F8nQF28oNS/DAAAAAAAAAAAAAAAAAAAAH2dCDUAAAAAAAAkufWJWysHqF9JsmU1F1WwKsmgCvcFqAEAAAAAAAAAAAAAAAAAAIgINQAAAAAAAOTOWXfmuGuPa78o1Wx+KcnIKg6qpC0C1AAAAAAAAAAAAAAAAAAAAGwQEWoAAAAAAAD6tXvn3Jujrzy6/aJUs/nFJFtXc1EFbWkPYpezToB60ecX9fAYAAAAAAAAAAAAAAAAAAAA6p0INQAAAAAAAP3W/c/fn8N+elj5B55PMqpqcypbE6Deqcz9dQLUUz48JSOGjqjCKAAAAAAAAAAAAAAAAAAAAOqZCDUAAAAAAAD90vwl83PIZYekmGL7QXG9B55LMrraq8rYyAD1EWOOqMIoAAAAAAAAAAAAAAAAAAAA6p0INQAAAAAAAP1Oc0tzTrn+lPIB6llJdqj2qjKKSV6OADUAAAAAAAAAAAAAAAAAAAAbTYQaAAAAAACAfqW5pTknXHtCfvfM79oP1g9Qz0jylmqvKqOYZH6SHcvcF6AGAAAAAAAAAAAAAAAAAACgAhFqAAAAAAAA+o1Vbaty0qST8rtnfpdiiqUD1LvVYlkJxSSPJtmpzH0BagAAAAAAAAAAAAAAAAAAALogQg0AAAAAAEC/MW/pvNz3/H3tAer1PZj6ClDflIzduetHBagBAAAAAAAAAAAAAAAAAAAoR4QaAAAAAACAfmFu89wccOkBea31tRRSSIcO9ZNJ9qnVsvUUk9yTFB9NZn4/GftqiWcK7V8EqAEAAAAAAAAAAAAAAAAAAKhEhBoAAAAAAIA+b02AesHyBUnaG86FNTefTDJm3YMauycp3rX2slOIWoAaAAAAAAAAAAAAAAAAAACADSRCDQAAAAAAQJ+2foA6xWLSVkyhmOTx1FeA+uGOAeo1Zn4/Gbu4MSm0x6cXfX6RADUAAAAAAAAAAAAAAAAAAABdaqz1AAAAAAAAAOgpHQLUxeLqf9rvtb2SZNfUT4B6ZlK8pcy9rbbKzM9Nz+JthmfE0BFVnQUAAAAAAAAAAAAAAAAAAEDvJUINAAAAAABAn1T4SiHbbbFde4C6bXWAerW2F5OMSv0EqJ9NdtwpuWHPZMLj690bMiR5+OFkp50iPw0AAAAAAAAAAAAAAAAAAMDGEKEGAAAAAACgzyl8pb0u/dJrL6WhmGRtfzpt85Jsm/oJUL+QbD86aUvyyb9pP3ojRD1oUDJ1arLTTrVaBwAAAAAAAAAAAAAAAAAAQC/WUOsBAAAAAAAAsDmtCVAnSYpJW9vay7YXkoxK/QSo5ycNOyevr/7TsW2F9hD1DXsmGTo0+d3vkr32qulEAAAAAAAAAAAAAAAAAAAAeq/GWg8AAAAAAACAzWHFyhUZ9LVBaw+Kq782rA5Rz0uybernz7TOT7JjUiwmi1fPHrxydYh6fEPy19/IhEMOqelEAAAAAAAAAAAAAAAAAAAAerd6+U/sAQAAAAAAoNvmNs9dG6AuZm2Aeo0XU18B6gVJdmz/tlhon7t4UPJ6Y5JBg9I2erv89JU7sqptVQ1HAgAAAAAAAAAAAAAAAAAA0Ns11noAAAAAAAAAbIq5zXOz83d3br9YPz69xjapnwD1oiTbdTwqFpIUk8VDCsngoTlk+7flqpOuyoCGATUYCAAAAAAAAAAAAAAAAAAAQF8hQg0AAAAAAECvtUEB6pYk9dJybk4yqvSt4upIdmNDY64+6eoMHzS8arMAAAAAAAAAAAAAAAAAAADomxpqPQAAAAAAAAC6Y4MC1K+nfgLUS5JsXfmRxobG3P//7s9WQ7aqyiQAAAAAAAAAAAAAAAAAAAD6NhFqAAAAAAAAep0NDlA3VmtRF5YmqdSVLiRNDU2Zfvb0vGXkW6q1CgAAAAAAAAAAAAAAAAAAgD5OhBoAAAAAAIBeZYMC1MtTPwHqZUlGVrhfaP9y7z/cm3HbjqvCIAAAAAAAAAAAAAAAAAAAAPoLEWoAAAAAAAB6jbnNc7Pvxfu2X5QLUC9L0lStRV1YnmR4hfurA9S3nHJLDtzhwGosAgAAAAAAAAAAAAAAAAAAoB9prPUAAAAAAAAA2BBzm+dmn4v3yeKWxZUD1AOruaqC15NsWeH+OgHq8XuMr8YiAAAAAAAAAAAAAAAAAAAA+pmGWg8AAAAAAACArqxYuSL7XbJfe4C6nNdSPwHqliTDKtxfHaC+6eSbBKgBAAAAAAAAAAAAAAAAAADoMSLUAAAAAAAA1L0nX30yC19f2H5RLPHA0iSDqrmoghVJtqhwf50A9fHjjq/GIgAAAAAAAAAAAAAAAAAAAPqpxloPAAAAAAAAgEpmvDwjB/7owPIPNCcZWrU5lbVmg7bccsotGb/H+B6fAwAAAAAAAAAAAAAAAAAAQP8mQg0AAAAAAEDd+sv8v+TAHx2Y1rbW9oPieg/UU4B6ZZIhXTxTSH5z+m9y1K5HVWMRAAAAAAAAAAAAAAAAAAAA/ZwINQAAAAAAAHXpnmfuyTt/9s4U15Sn1w9QL0oyrMqjylmZZHDlRwqFQv50xp9y6M6HVmUSAAAAAAAAAAAAAAAAAAAANNR6AAAAAAAAAKzvigevyGE/O6x8gHpB6idAvSppGJQUKj1TSP788T8LUAMAAAAAAAAAAAAAAAAAAFBVItQAAAAAAADUlSsevCIfu/lj7RfFdA5Qv5JkeJVHlbMqaRjY/m2hWCZEXUi2GbxN9h+9fzWXAQAAAAAAAAAAAAAAAAAAgAg1AAAAAAAA9eP6R6/vGKBe30tJRlZxUCVtawPUa3QIURfa/9lmyDZ56JyHMrBxvYcBAAAAAAAAAAAAAAAAAACgh4lQAwAAAAAAUBdumnFTPvCLD7RflApQv5hk62ouqqAtyculbxUKhRQK7SnqbYZsk4fOfig7Dd+petsAAAAAAAAAAAAAAAAAAABgNRFqAAAAAAAAam7yXybnxMkntl+UClA/n2RUFQdVsjpA3bBDiXsNhWR1hHrUkFEC1AAAAAAAAAAAAAAAAAAAANSUCDUAAAAAAAA1NfkvkzPxuontF6UC1M8lGV3NRRW0JXmpTIC6kKRQSJJsPWTrPHj2gwLUAAAAAAAAAAAAAAAAAAAA1JQINQAAAAAAADXTZYB6VpJSwedaKCZ5NclOSVupresGqM8SoAYAAAAAAAAAAAAAAAAAAKD2RKgBAAAAAACoiZtm3FQ5QD0jyVuquaiCYpJXkmy/+rphvRB1oZAUCgLUAAAAAAAAAAAAAAAAAAAA1BURagAAAAAAAKpuzsI5OXHyie0XpQLU05LsVsVBlRTTHsTefr3zNSHqQpIGAWoAAAAAAAAAAAAAAAAAAADqjwg1AAAAAAAAVdXc0pwzf3VmBhQGlH5gWpL9qjqpvGKSx1N+T0PSVkhGDR0lQA0AAAAAAAAAAAAAAAAAAEDdEaEGAAAAAACgahYuX5iJv5iY6fMeynYrB2XAqvUe+EuSfWuxrIRikkdTeU+h/ctLr70kQA0AAAAAAAAAAAAAAAAAAEDdaaz1AAAAAAAAAPqHuc1zc+ClB2blyhUZ3LwsWbky2xWTl4YmqxrSHnzeI2+EnWvu0SRvq3B/nZ3FC4o9PAYAAAAAAAAAAAAAAAAAAAA2ngg1AAAAAAAAPW7h8oU58NID8+qyV5NiW5JCBhfbw83bLUvmPZP6ClA/nOTACvcFqAEAAAAAAAAAAAAAAAAAAOgFGmo9AAAAAAAAgL6tuaU5p15/alauam0PUBeTxQOLeX31n0udNz/1FaCeGQFqAAAAAAAAAAAAAAAAAAAA+gQRagAAAAAAAHpMc0tzJv5iYqa/OD2Dl7dmRMvagvPiQcm8V5O8OfUToH42ybgK9wWoAQAAAAAAAAAAAAAAAAAA6EVEqAEAAAAAAOgR6wao09KSLF+ewasKGbGiveTcNj/JDqmfAPULSXatcF+AGgAAAAAAAAAAAAAAAAAAgF5GhBoAAAAAAIDNrrmlOSf/78ntAeokWbIkKRaTtrYMbi2m7dkkW6d+AtTzk7y5wn0BagAAAAAAAAAAAAAAAAAAAHqhxloPAAAAAAAAoG9pbmnOidecmD/N/VOGNg3N4GUrktbWN+7PeynJTqmfP5f6SpIdK9wXoAYAAAAAAAAAAAAAAAAAAKCXEqEGAAAAAABgs2luac4xVx6Te+femyRpbW1JWpLBq++vSOorQL0gyZvK3Ct0vBSgBgAAAAAAAAAAAAAAAAAAoLepl/+8HwAAAAAAgF5uVduqvP/K978RoE4xaSskiwclr6/+06ivNqV+fkO1KMl2Jc4LeSNA3dTQlESAGgAAAAAAAAAAAAAAAAAAgN6psdYDAAAAAAAA6Bt++cQvc8/ce5L1es1rQtQLC0kG1GRaZ81JRq13Vuj82GPnPJaxo8ZWYxEAAAAAAAAAAAAAAAAAAABsdg21HgAAAAAAAEDvN/kvk3PC5BM6BajXaGtJ/QSolyTZuuvH7vv4fQLUAAAAAAAAAAAAAAAAAAAA9Goi1AAAAAAAAGySax++NhOvm1g2QJ3XkzRWc1EFy5Js1fVj9338vrx9x7f3+BwAAAAAAAAAAAAAAAAAAADoSSLUAAAAAAAAdNsVD16RD97wwfIB6uWprwD18DL3Cu1fmhqa8sjZjwhQAwAAAAAAAAAAAAAAAAAA0CfUy3/yDwAAAAAAQC9zxYNX5GM3f6x8gHpZkoHVXFTB8pQPUK/W1NCU6WdPz7htx1VlEgAAAAAAAAAAAAAAAAAAAPS0hloPAAAAAAAAoPe55uFr2gPU5byW+glQtyTZssL9QlJIIdPOnCZADQAAAAAAAAAAAAAAAAAAQJ8iQg0AAAAAAMBG+f3s3+fUG05tvyiWeOC1JIOquaiCliRbdP3YHz/yx+wzep8enwMAAAAAAAAAAAAAAAAAAADVJEINAAAAAADABrv/+ftz+P8cXv6BJamfAPWKdB2gLiSXH395/uqtf1WNRQAAAAAAAAAAAAAAAAAAAFBVItQAAAAAAABskIeefyiHXHZIiim2HxTXe6A5yZBqryqjNcnQLp5ZHaD+6AEfrcIgAAAAAAAAAAAAAAAAAAAAqD4RagAAAAAAALp004ybcsBlB6wNUK+vOV1Hn6tlZbqOYReS6/7uOgFqAAAAAAAAAAAAAAAAAAAA+rTGWg8AAAAAAACgvt36xK05cfKJaw/W71AvTLJlFQdVsjLJ4C6eKSQ3nnxjThh3QjUWAQAAAAAAAAAAAAAAAAAAQM001HoAAAAAAAAA9evOWXfmuGuPa78opnOAekHqJ0C9Ktl+ZTKgrcIzhWTSByYJUAMAAAAAAAAAAAAAAAAAANAviFADAAAAAABQ0l2z78rRVx7dfrF+fDpJXkkyvJqLKliVbN/a/u12y8qEqFcHqE/e5+SqTgMAAAAAAAAAAAAAAAAAAIBaEaEGAAAAAACgk7tm35Uj/+fI9otSAeqXkoys4qBK2pKGgcnrjWuPOoSoCxGgBgAAAAAAAAAAAAAAAAAAoF8SoQYAAAAAAKCDLgPULybZupqLKmhL8nL7t4sHrROiLhSyXYZmQMOAJMmNJ98oQA0AAAAAAAAAAAAAAAAAAEC/09j1IwAAAAAAAPQXXQaon08yupqLKmhLMifZasdk8eqjxYOSFAoZnMZk+PC8b/u35Ud/86PsvNXONRwKAAAAAAAAAAAAAAAAAAAAtSFCDQAAAAAAQJLkzll35ugrj26/KBWgfi7JDtVcVEExyQvJ9qOTrGw/WjxozddiMmhoDtn+bZn0d5MyfNDwWq0EAAAAAAAAAAAAAAAAAACAmmqo9QAAAAAAAABq75lXn6kcoJ6V+gpQP59sP2rt0eCVyYgVhaSQpNCQxsaBufqkqwWoAQAAAAAAAAAAAAAAAAAA6Ncaaz0AAAAAAACA2prbPDcH/PiA8g/MSLJb1eZUVkzyUscA9RqDBw5NBjelcUBTpp01LVsN2arq8wAAAAAAAAAAAAAAAAAAAKCeNNR6AAAAAAAAALUzt3luxv33uCxqWdR+UFzvgemprwD17KRhh+T19f/U6pZbJsOH55CdD80T5z6RnYbvVIuFAAAAAAAAAAAAAAAAAAAAUFfW/8/zAQAAAAAA6CfWBKiXrlzaOT6dJE8m2bvaq8pYHaDO7klbksWD2o8Hr0xSKCTDhmX/N+2fSX83KcMHDa/dTgAAAAAAAAAAAAAAAAAAAKgjItQAAAAAAAD90Nzmudntwt3yevH18gHqMdVeVcY6Aeo12grrhKi3HClADQAAAAAAAAAAAAAAAAAAACU01HoAAAAAAAAA1bXBAepClYeV81g6BKjXWBOiftOotwpQAwAAAAAAAAAAAAAAAAAAQAki1AAAAAAAAP3IzFdmZpfv7lI+QP146itA/WiS/Svcb2jI6C1GZ4umLaq1CAAAAAAAAAAAAAAAAAAAAHoNEWoAAAAAAIB+4q7Zd2X3H+ye1rSWDlC/kmTX1E+AemYqB6gLSTHFXHHCFRnQMKBaqwAAAAAAAAAAAAAAAAAAAKDXEKEGAAAAAADoB+6dc2+O/J8jyz/wSpIRqZ8A9bNJxlW4X0gKKeTPH/9zRm85ulqrAAAAAAAAAAAAAAAAAAAAoFcRoQYAAAAAAOjj/jL/L/mrn/7V2oPieg+8kmR46idA/UKSXSvcX73zDx/7Q96+49ursQgAAAAAAAAAAAAAAAAAAAB6JRFqAAAAAACAPmzGyzOy7w/3XXtQLkBdL781mp/kzRXurw5Q33TyTTnszYdVYxEAAAAAAAAAAAAAAAAAAAD0WvWSEwAAAAAAAGAzm/HyjOx18V5rD+o9QP1Kkh0r3F8doJ70gUk5ftzx1VgEAAAAAAAAAAAAAAAAAAAAvVq9JAUAAAAAAADYjLoMUCf1FaBekORNFe6vDlBfM+GanLzPydVYBAAAAAAAAAAAAAAAAAAAAL1evWQFAAAAAAAA2ExmvDwje1+8d+WHWlI/vylalGS7CvdXB6gvP/7ynLLfKVUYBAAAAAAAAAAAAAAAAAAAAH1DY60HAAAAAAAAsPmsCVAXU1x7WFzvoZYkA6q5qoLmJKPK3Cus/fby4y/PRw/4aBUGAQAAAAAAAAAAAAAAAAAAQN8hQg0AAAAAANBHLH19afa5eJ+OAer1vZ76+Q3RkiRblzgvdLy8esLV+eB+H6zGIgAAAAAAAAAAAAAAAAAAAOhT6iUxAAAAAAAAwCZobmnOUf9zVNrS1vHGuj3qegpQL0uyVeVHCinktx/+bd4z5j1VmQQAAAAAAAAAAAAAAAAAAAB9Tb1kBgAAAAAAAOim5pbmHH7F4XnwxQfLP7Q8SVPVJlW2LMnwMvcKa74U8ueP/zlv3/Ht1VoFAAAAAAAAAAAAAAAAAAAAfY4INQAAAAAAQC/W3NKcI392ZOUA9bIkA6s2qbLlKR+gXse0j0/L23Z8W0+vAQAAAAAAAAAAAAAAAAAAgD5NhBoAAAAAAKCXam5pznt/8t489PJD5R96Lcmgai3qQkuSLSvcL7R/ufHkGwWoAQAAAAAAAAAAAAAAAAAAYDMQoQYAAAAAAOiFmluac9AlB+WpxU+Vf2hp6idAvSLJFhXurw5Q33LKLRm/x/hqLAIAAAAAAAAAAAAAAAAAAIA+T4QaAAAAAACgl2luac6+F++b55qfq/BQkiFVm1TZiiRDK9xfHaD+zem/yVG7HlWNRQAAAAAAAAAAAAAAAAAAANAviFADAAAAAAD0Is0tzdn7v/fO3Nfmln9ocSpHn6upNRsUoJ7y4Sk5YswR1VgEAAAAAAAAAAAAAAAAAAAA/YYINQAAAAAAQC/R3NKcPS/aM/OWzet4o7jO94uSDKviqEpWJhlS4b4ANQAAAAAAAAAAAAAAAAAAAPSohloPAAAAAAAAoGur2lZl3x/s2zFAXUzHAPXC1FeAenCF+6sD1I0NjTl0x0OrsQgAAAAAAAAAAAAAAAAAAAD6ncZaDwAAAAAAAKBrn/3VZ/PckufaL4olHliQZHg1F1WwKuUD1IW13w4oDMjDZz+cIQOHVGMVAAAAAAAAAAAAAAAAAAAA9Dsi1AAAAAAAAHXujOvPyOWPXN5+USpA/UqSkVUcVMmqJIPK3Ct0vHzorIcybttxPb0IAAAAAAAAAAAAAAAAAAAA+i0RagAAAAAAgDp23M+Py61P39p+USpA/VKSrau5qIK2JEtSPkK9jnvOuCf7jN6npxcBAAAAAAAAAAAAAAAAAABAv9ZQ6wEAAAAAAACU9tEbPlo5QP1i6itA3ZxkVJn7hbXfTvnwlBy686FVGAUAAAAAAAAAAAAAAAAAAAD9mwg1AAAAAABAHfrylC/nZw//rP2iVID6+ZQPPlfbRgSobzv1thwx5ogqjAIAAAAAAAAAAAAAAAAAAABEqAEAAAAAAOrM13/39Xz17q+Wf+C5JKOrNqeyYjY4QH3VhKvy17v9dRVGAQAAAAAAAAAAAAAAAAAAAIkINQAAAAAAQF259uFr82+//be1B8X1HpiVZIdqLqpgIwLU333fd3PqfqdWYRQAAAAAAAAAAAAAAAAAAACwhgg1AAAAAABAnbj1iVvzwRs+WP6BGUneUrU5la0JUG/T9aNfeteX8pnDPtPDgwAAAAAAAAAAAAAAAAAAAID1iVADAAAAAADUgVufuDXHXXtcx8PiOt9PS7JbNRdVUEwyO5UD1IX2L19971fzH0f9RxVGAQAAAAAAAAAAAAAAAAAAAOsToQYAAAAAAKixO2fdWTlA/Yck+1VzUQVrAtS7V3hmdYD67APOzvmHn1+FUQAAAAAAAAAAAAAAAAAAAEApItQAAAAAAAA1tHjZ4hx95dFrD4rpHKA+pMqjytmIAPUnD/5kLjn+kiqMAgAAAAAAAAAAAAAAAAAAAMoRoQYAAAAAAKihEUNHZOxWYzvHp5PkvrQHqAvV31XSY9mgAPXn3vG5XPS3F1VjEQAAAAAAAAAAAAAAAAAAAFCBCDUAAAAAAEANrGpb1f7N/fdn5udmZ+yr6z1wX5IDUj8B6hlJ9i9zr5A3dn764E/n28d+u0qjAAAAAAAAAAAAAAAAAAAAgEpEqAEAAAAAAKqsuaU5J046MTd88yPJO96RrFqVmd/P2hD17NRXgHpmkn1LnK8Tn06Sf/mrf8mFf3thdTYBAAAAAAAAAAAAAAAAAAAAXWqs9QAAAAAAAID+pLmlORN/MTHTZ/4hDy5ZmuyZTHi8/d7M7yeF8Un2S/0EqJ9NMm719xU2feW9X8mXD/9yNRYBAAAAAAAAAAAAAAAAAAAAG0iEGgAAAAAAoEreCFA/fU+ydGnaCskn/6b93oTHk8lJsm/qJ0D9QpJd0+WeS//m0pz59jOrsQgAAAAAAAAAAAAAAAAAAADYCA21HgAAAAAAANAfvBGgfmFasnjxG+drQtQfHpJMPC/189ub+Une3PVjFx97sQA1AAAAAAAAAAAAAAAAAAAA1KnGWg8AAAAAAADo694IUL84PZn/Uqf7z7+Q/PwzqZ8A9StJdlz9faH8Yz8/4ec5/W2nV2MRAAAAAAAAAAAAAAAAAAAA0A0i1AAAAAAAAD3ojQD1vIeSV18t/dCY1E+AekGSN3X92C2n3JLxe4zv8TkAAAAAAAAAAAAAAAAAAABA94lQAwAAAAAA9JDmluacdM1JeeylR5KFC5PW1k7PzGtK/QSoFyXZruvHBKgBAAAAAAAAAAAAAAAAAACgdxChBgAAAAAA6AHNLc058mdH5oF5D6RhVTJ6ZaHTM/Oakgyo/raSliQZ1fVjvzn9Nzlq16N6fA4AAAAAAAAAAAAAAAAAAACw6RpqPQAAAAAAAKCvWdW2Ku+69F15YN4DSTFpa0jmDyl2eGZeY+onQL00yVYlztfrZt/49zcKUAMAAAAAAAAAAAAAAAAAAEAvIkINAAAAAACwmX32V5/NIwsfSdbpTrc1JPOHtn8/b0CSxppM62xZkpFdP7bFgC1y7O7H9vQaAAAAAAAAAAAAAAAAAAAAYDOql7wBAAAAAABAn3DG9Wfk8kcuL3mvrWF1gLqpupvKWpZkeJl7hbXfDi4MzuOfejwDGwdWYxUAAAAAAAAAAAAAAAAAAACwmYhQAwAAAAAAbCbH/fy43Pr0re0XxRIPLEtSLx3n11M+QL2OgYWBmfmZmdlp+E49PgkAAAAAAAAAAAAAAAAAAADYvESoAQAAAAAANoP3/+z9ue2Z29ovSgWoX0syqJqLKmhJMqzC/UL7l4EZmFmfmSVADQAAAAAAAAAAAAAAAAAAAL1UQ60HAAAAAAAA9HZdBqiXpn4C1CuSbFHh/uoA9aCGQZn1WQFqAAAAAAAAAAAAAAAAAAAA6M1EqAEAAAAAADZBlwHqJUkGV3NRBSuSDK1wf50A9VOffkqAGgAAAAAAAAAAAAAAAAAAAHo5EWoAAAAAAIBuOv1/T68coG5OMqSaiypozQYFqAcWBgpQAwAAAAAAAAAAAAAAAAAAQB8hQg0AAAAAANANZ990dq567Kr2i1IB6kWpHH2uppUpH8Mu5I0AdWMaM+szswSoAQAAAAAAAAAAAAAAAAAAoI8QoQYAAAAAANhI37n7O7n0oUvbL0oFqBcmGVbNRRWsTDK4xPk68ekkGdgwMLM/O1uAGgAAAAAAAAAAAAAAAAAAAPoQEWoAAAAAAICN8NXffjX/NOWf2i9KBagXJNmymosqWJXSAer1fOndX8qS85YIUAMAAAAAAAAAAAAAAAAAAEAf01jrAQAAAAAAAL3FNdOvyZd/9+X2i1IB6leSjKzioEpWJRlU5l5h7bdfO/xr+df3/ms1FgEAAAAAAAAAAAAAAAAAAABV1lDrAQAAAAAAAL3BnbPuzKk3ntp+USpA/WLqJ0Ddlkz6ZjL21cqPXTPhGgFqAAAAAAAAAAAAAAAAAAAA6MNEqAEAAAAAALpw06M35egrj26/KBWgfj7JqGouqqAtuf4byclJZn6/RIi60P7lllNuySn7nVLtdQAAAAAAAAAAAAAAAAAAAEAViVADAAAAAABU8J0/ficn/uLE8g88l2R0tdZ0oS3J00n2XHtUKkR9yym3ZPwe46u5DAAAAAAAAAAAAAAAAAAAAKgBEWoAAAAAAIAyvvPH7+SffvNPaw+K6z0wK8kO1VxUQTHJ7GT7nZJP/k1yw/oh6iVNSSH5zem/EaAGAAAAAAAAAAAAAAAAAACAfqKx1gMAAAAAAADqUacA9fpmJXlL1eZUtiZAvWP7ZVuhPUSdJBMeTzJyZGZ+5uEs3mZ4RgwdUauVAAAAAAAAAAAAAAAAAAAAQJWJUAMAAAAAAKynZIC6uM73M5LsVs1FFRSTPJNsv0PH4zdC1I2NmTDpj8nOO0d+GgAAAAAAAAAAAAAAAAAAAPqXhloPAAAAAAAAqCe3zLilc4B6XY+kvgLU05Ptty99u62Q/PST78yqPfeo6iwAAAAAAAAAAAAAAAAAAACgPjTWegAAAAAAAEC9uGv2XTl+8vEdD4vrfP90knHVXFRBMcnUZPt9y9xvaMj+u78nV33opgxoGFDNZQAAAAAAAAAAAAAAAAAAAECdEKEGAAAAAABIe4D6yP85cu1Bcb0Hnk6yczUXdWF6hQD1kCHZf+w7M+mU6zJ80PCqzgIAAAAAAAAAAAAAAAAAAADqR0OtBwAAAAAAANRahwB1MeUD1IXq7irr4SQHJ/OHlri39dbZf8/3ClADAAAAAAAAAAAAAAAAAAAAItQAAAAAAED/tnjZ4o4B6vUtSH0FqGcmObD927aGdULUAwYko0dn/7e8I5P+bpIANQAAAAAAAAAAAAAAAAAAACBCDQAAAAAA9G+3PX1b+zelAtQLk2yZ+gpQj+t49EaIepttsv8OBwhQAwAAAAAAAAAAAAAAAAAAAG8QoQYAAAAAAPqtyX+ZnInXTSwfoB6W+glQP5tOAeo12gYki1uXClADAAAAAAAAAAAAAAAAAAAAHYhQAwAAAAAA/dKT85+sHKDeIvUToH4hya5l7q3euGzlshRXlfqXAQAAAAAAAAAAAAAAAAAAAPorEWoAAAAAAKDfmfHyjOz7o31L31wToK6X36LMT/Lmrh+74/Q7MmLoiB6fAwAAAAAAAAAAAAAAAAAAAPQe9ZJPAAAAAAAAqIoZL8/I/j/cPyvaViTFJG3r3Ky3APUrSXascL/Q/uXy8Zfn6F2PrsYiAAAAAAAAAAAAAAAAAAAAoBepl4QCAAAAAABAj5v5yszs/8P909rW2h6gTtp/W7ImRF1PAeoFSd5U4f7qAPUnD/pkPnrQR6swCAAAAAAAAAAAAAAAAAAAAOht6iWjAAAAAAAA0KPufOrO7PGDPdoD1OtrSNKS+vnNSXOS7SrcXx2g/ti+H8tF4y+qxiIAAAAAAAAAAAAAAAAAAACgF6qXlAIAAAAAAECPueS+S3L0VUenmGL7QXG9B1qSDKj2qjKWJNm6wv3VAerxu4zPT0/6aTUWAQAAAAAAAAAAAAAAAAAAAL2UCDUAAAAAANCn/eDeH+Qf/+8fyz/weuonQL00yVYV7q8OUB/z1mNyy4duqcYiAAAAAAAAAAAAAAAAAAAAoBcToQYAAAAAAPqs7/zxOzn3tnM7HhbX+X55ksZqLqpgWZKRFe6vE6D+9Ud+XYVBAAAAAAAAAAAAAAAAAAAAQG8nQg0AAAAAAPRJ3/njd/JPv/mn8g8sT9JUtTmVLU8yvMJ9AWoAAAAAAAAAAAAAAAAAAACgG0SoAQAAAACAPudH9/2ocoB6WeonQP16ki0r3F8doD5tr9MEqAEAAAAAAAAAAAAAAAAAAICNIkINAAAAAAD0KT+49wc56//OKv/Aa0kGVm1OZS1JhlW4vzpAfdbbzsqVf39lNRYBAAAAAAAAAAAAAAAAAAAAfYgINQAAAAAA0Gf8193/lXNvO7f8A0uSDKranMpWJNmiwv3VAepvH/nt/PCEH1ZjEQAAAAAAAAAAAAAAAAAAANDHiFADAAAAAAB9wn/94b/yxSlfLP9Ac5LBVZtTWWuSoRXurw5Q/8d7/yOfe/fnqrEIAAAAAAAAAAAAAAAAAAAA6IMaaz0AAAAAAABgU/3vX/43X7yzQoB6cSpHn6upNcmQMvcKa7+9+sSr88H9P1iNRQAAAAAAAAAAAAAAAAAAAEAfJUINAAAAAAD0apP/MjkTr5tY/oGFSYZVbU5lK1M6QF3oePmb03+To3Y9qhqLAAAAAAAAAAAAAAAAAAAAgD6sodYDAAAAAAAAuuvmGTdXDlAvSP0EqFclGbzeWSGdAtQHbXdQDh9zeFUmAQAAAAAAAAAAAAAAAAAAAH2bCDUAAAAAANAr3frErTlh8gnlH3g5yZZVm1PZqiSDun5st612y5QzpmRAw4AenwQAAAAAAAAAAAAAAAAAAAD0fSLUAAAAAABAr3PrE7fmuGuPK//A/CQjq7WmC20pHaAudLzcbavdMvWsqRk+aHg1VgEAAAAAAAAAAAAAAAAAAAD9gAg1AAAAAADQq9w5687KAep5Sbau2pzK2pK8tmGP3n7a7QLUAAAAAAAAAAAAAAAAAAAAwGYlQg0AAAAAAPQa9865N0dfeXTnG8XV/8xNMqrKo8pZE6DeqsS9QsfLSR+YlLdu89ae3wQAAAAAAAAAAAAAAAAAAAD0KyLUAAAAAABArzB7wewc9tPDOh6uiU8nyXNJRld5VDmVAtTrmfSBSTl5n5N7ehEAAAAAAAAAAAAAAAAAAADQD4lQAwAAAAAAdW9u89wc8KMDUlxTnF43Pp0kzyTZofq7SiqmcoC6sPbbayZcI0ANAAAAAAAAAAAAAAAAAAAA9BgRagAAAAAAoK6tWLki+16ybxa3LG4/KK73wPNJdqr2qjKKSZqzQQHqy4+/PKfsd0oVRgEAAAAAAAAAAAAAAAAAAAD9lQg1AAAAAABQ1/44549Z9Pqi9otSAerRVR5UTjHJ8iTbJGmr/Ojlx1+ejx7w0Z7fBAAAAAAAAAAAAAAAAAAAAPRrjbUeAAAAAAAAUM7iZYtz5P8c2X5R7wHqhUm2W33dkPYQ9bp/DrTQ/uWaCdfklP1OqeY6AAAAAAAAAAAAAAAAAAAAoJ9q6PoRAAAAAACA2hgxdETGbjW2c4D66dRvgHqNNSHq5I0A9aQPTBKgBgAAAAAAAAAAAAAAAAAAAKpGhBoAAAAAAKhrM8ddnLGL1vmVxuwkO9dsTmeL0jlAvUZDOgSoT97n5OpsAgAAAAAAAAAAAAAAAAAAAEjSWOsBAAAAAAAAZbW2Juefn5lzRme3k+fnqQVt7QHqQq2HrfZ8krdUuF9IBjYMzCNnPpLdR+9erVUAAAAAAAAAAAAAAAAAAAAASZKGWg8AAAAAAAAo6+qrk5kzkyVLst9FdRagnpPyAepC+z9NDU156OyHBKgBAAAAAAAAAAAAAAAAAACAmmis9QAAAAAAAIAOWluTX/86ufDC5He/S1atygcKyfXnpX4C1M8m2bXE+Tr7mhqaMv3s6Rm37bhqrQIAAAAAAAAAAAAAAAAAAADoQIQaAAAAAACoH7fckpx1VjJ/ftLWliT579RZgPqFrA1Ql9lUSCGPnvNodhu1W7VWAQAAAAAAAAAAAAAAAAAAAHQiQg0AAAAAANRec3Ny7LHJPfckxeIbxxcm+Wy9Bajf0vVjd5x2hwA1AAAAAAAAAAAAAAAAAAAAUHMi1AAAAAAAQG3dd19yxBHJsmUdjr+Z5LzzkjTUZFVn87NBAeqLj704R409qsfnAAAAAAAAAAAAAAAAAAAAAHSlXrINAAAAAABAf3TTTclf/VX9B6gXJNmp68e+f8z3c847zunxOQAAAAAAAAAAAAAAAAAAAAAborHWAwAAAAAAgH7qN79JJkxIisVOt877l9RPgHpRktFdP/bto7+dTxz6iZ5eAwAAAAAAAAAAAAAAAAAAALDB6iXfAAAAAAAA9Cdz5ybvf3/JAHXhX5IMqP6kkpqTjOr6sW8f/e187p2f6/E5AAAAAAAAAAAAAAAAAAAAABujsdYDAAAAAACAfmi//ZJVqzodF76Y+glQL0myddePXXrspTnzHWf2+BwAAAAAAAAAAAAAAAAAAACAjdVQ6wEAAAAAAED/8HLzy0lzc7LvvsnChZ3uF76Y+vnzmUuTbNX1Y98/5vsC1AAAAAAAAAAAAAAAAAAAAEDdqpeUAwAAAAAA0IdN/svkTLxuYka2NGThX9o63S98IfXzW4tlSUauc10o/di3jvxWPnHoJ6owCAAAAAAAAAAAAAAAAAAAAKB7Gmo9AAAAAAAA6NuuffjaTLxuYlJMFg1sy1Zf6Hi/8PkkTTWZ1tnyJMO7fuxbR30rX3j3F7p+EAAAAAAAAAAAAAAAAAAAAKCGRKgBAAAAAIAe8+OpP84Hb/hgUlx7tmhI3ghRFz6fZGBNpnX2epItu35s8gcm5wvvEqAGAAAAAAAAAAAAAAAAAAAA6p8INQAAAAAA0CO+8btv5MxfntkhQL3GoiFJ4Z9TPwHqliTDun5s0gcm5e/3+fsenwMAAAAAAAAAAAAAAAAAAACwOTTWegAAAAAAAND3nHPTOfnhQz8s/8DSJIOrNqeyFUm2KHOv0PHymF2O6ek1AAAAAAAAAAAAAAAAAAAAAJuNCDUAAAAAALBZTZw0MZMfn9x+Uex8f2hzsmxodTeV1ZpkA7dM+fCUjBg6okfnAAAAAAAAAAAAAAAAAAAAAGxOItQAAAAAAMBmc+LPT8xNT9/UflEiQD1sUbJ0WFUnlbcyyZAK9wtrv53y4Sk5YswRPb0IAAAAAAAAAAAAAAAAAAAAYLMSoQYAAAAAADaLQy89NH9+8c/tFyUC1MMXJM3Dq7uprJVJBm/YowLUAAAAAAAAAAAAAAAAAAAAQG/VUOsBAAAAAABA73f8lcdXDFBvPb+OAtSrkrGvdfFMof2LADUAAAAAAAAAAAAAAAAAAADQm4lQAwAAAAAAm2TipIm5ZdYt7RclAtSjXkgWbFPdTWWtSorfTGb+aGDGLirzaxIBagAAAAAAAAAAAAAAAAAAAKCPEKEGAAAAAAC67fRfnJ7Jj09uvygRoN5+TvLKdtXdVFZbe4A6STJwYGZOHt05RC1ADQAAAAAAAAAAAAAAAAAAAPQhItQAAAAAAEC3nHnTmbnq0avaL0oEqN80O5m3fXU3ldWWfPcb61w3NSVJxxC1ADUAAAAAAAAAAAAAAAAAAADQx4hQAwAAAAAAG+2CKRfkxw/9uP2iRIB69JzkxZ2ru6mstuQb30g+s+7Z6gh13vzmzPzbX2fs1mOTCFADAAAAAAAAAAAAAAAAAAAAfUtjrQcAAAAAAAC9yxXTrsh/3P0f7RclAtTbP5vM27G6m8paHaD+l3XPBgxI3vve5CMf+f/s3Xl03XWB///XvUm6tywF2iJbWUQQrUIBFdwAwYXFitMyoCLL+MNRRsfx6zKD4zaj43ydrzo6LjOsKrKoIIuAA+KuqGVVQWgrSwstW0vT0jZNk/v746bLbW7S0jb3c5M8Huf05N73+5Ob1/HwVzznmeTYY5O2tsx53ZwsXbE0243ZrqilAAAAAAAAAAAAAAAAAAAAANucCDUAAAAAALDZLr7z4pxx3RnVN3UC1M+blzy6Z2M39amSHPdvGwWok+QLX0jOPbfX4wLUAAAAAAAAAAAAAAAAAAAAwFBTLnoAAAAAAAAwOMx7cl7OuLbvAPVu9zVXgPqozyY3bbxz1KjknHMKmQQAAAAAAAAAAAAAAAAAAADQaCLUAAAAAADAJrV3tOe9//velJK6Aeq97kgW7NfoVX2oJHtck/y4zs586ENJW1vDJwEAAAAAAAAAAAAAAAAAAAAUQYQaAAAAAADoV3tHe2Z9b1buXnB7Ji9LSt2193vckTz04mK29dIToH74T3Xuxo1Lzjuv4ZMAAAAAAAAAAAAAAAAAAAAAiiJCDQAAAAAA9GldgHrhXcmTTyZJJq9YH6Le9bbkkRcVt69GJRn5mz4C1Eny7W8nbW0NnQQAAAAAAAAAAAAAAAAAAABQpNaiBwAAAAAAAM1pXYB60d3JkiU1d5NXJM/MTR47JEmpmH0bG/mbZNVP+rg8+eTkpJMaugcAAAAAAAAAAAAAAAAAAACgaOWiBwAAAAAAAM2nJkDd0VH9t4ERf05WvjBNE6DOPf0EqHfaKbnwwobOAQAAAAAAAAAAAAAAAAAAAGgGrUUPAAAAAAAAmsuSlUty6lWnVgPUlUryzDO1948mq6aleQLUc5LKdX3cjRiR3HFHMmFCQycBAAAAAAAAAAAAAAAAAAAANAMRagAAAAAAYJ0lK5fkBf/1gnR2dWZUVylZujTp7l5//2iyau80T4D64SQHJDt8KFny7xvdlUrJL36R7L57EcsAAAAAAAAAAAAAAAAAAAAAClcuegAAAAAAANAc2jvac+pVp6ZzzeosXflMVi1bknR1rbtf2GQB6j0fSrJP9fUzo6sh6nVKpeTmm5PDDitgGQAAAAAAAAAAAAAAAAAAAEBzEKEGAAAAAADS3tGeWd+blbsfvSOjlj6b7TqSpSMqWdVavV+4KMnUNE+A+uHk4X1rz2pC1L/5TXL00Q3fBQAAAAAAAAAAAAAAAAAAANBMWoseAAAAAAAAFGvDAHUWL066ujKqUkkqydKRyZJFSfZI0/xpy93mJw/vU//umdHJDp8elyWHH97YUQAAAAAAAAAAAAAAAAAAAABNqElyEQAAAAAAQBHWBagX3pU8/XSyZk1SqSRJRq1JRi9Lsmua5v9RmLQwWTC1nwdKyTNdy/Nk+5MN2wQAAAAAAAAAAAAAAAAAAADQrJokGQEAAAAAADRaTYD6ySeTrq5ezzw7Mk3z/ybs/ETy+O79PFCqfrni5Cuy84SdG7IJAAAAAAAAAAAAAAAAAAAAoJm1Fj0AAAAAAABovHUB6kfvqAaoK5VezyxsS9LS+G31THwqeXLXfh7oCVBfNuOyzDxoZkM2AQAAAAAAAAAAAAAAAAAAADQ7EWoAAAAAABhm1gWoF9yePPVU/QB1S5omQD1mWfL05H4e6AlQ//eb/junvPiUhmwCAAAAAAAAAAAAAAAAAAAAGAxEqAEAAAAAYBjp6u7KaVedVg1QP/lk3WeWVZK0NXZXX0YtT1bs0M8DPQHqMa1jcvpLTm/IJgAAAAAAAAAAAAAAAAAAAIDBolz0AAAAAAAAoHFayi05c7cTUn7yqbr3y7uT5aMbPKoPrSuSVdv380BPgHpEaUTuP/f+jGgd0YhZAAAAAAAAAAAAAAAAAAAAAIOGCDUAAAAAAAwn7e2Z8fbP5Ms/rKRcqb3q6EyWjSlm1sbKK5M1E/p5oCdA3VZqy7z3z8tuE3ZryC4AAAAAAAAAAAAAAAAAAACAwaS16AEAAAAAAEADnXNO8vDDmdHz9tw3Jt2lpKsjWbxdocvW60i6x/dz3xOgbk1r/vL+vwhQAwAAAAAAAAAAAAAAAAAAAPShXPQAAAAAAABgYC1dsbT64tJLk8suW3c+48/Jl29IulclTzRRgDpj+7nvCVCXU86Df/+gADUAAAAAAAAAAAAAAAAAAABAP1qLHgAAAAAAAAycnzz4kxz1zaOy77i9Muejj/a6/8iRyePbN35XXauzWQHq1rQKUAMAAAAAAAAAAAAAAAAAAABshnLRAwAAAAAAgIGxNkCdJHOXPZT9/r/OmvsXnZE8MKmIZXV0JhnTz31PgLqt1CZADQAAAAAAAAAAAAAAAAAAALCZRKgBAAAAAGAI2jBAnUr1y9yJyX7vrb4+8PTkj7sWs62XNUlG93O/QYD6L+//iwA1AAAAAAAAAAAAAAAAAAAAwGYSoQYAAAAAgCGmJkC9kbkTkynvSu5rlo7zmmTKmqTU3f9jI8sjBagBAAAAAAAAAAAAAAAAAAAAniMRagAAAAAAGEJ6BagrtfeTFiaLdm7spj51VQPUSTJ5RR8h6lLyz6/857R/tF2AGgAAAAAAAAAAAAAAAAAAAOA5ai16AAAAAAAAsG30ClBvZNLC5PFmClB31h5NXpEsGpNU1v4JzVJy0QkX5Z0Hv7PR6wAAAAAAAAAAAAAAAAAAAACGhPKmHwEAAAAAAJrdj+f9uHeAurL+5c6LmihA3d07QL3W5BVJqTvVAPWJAtQAAAAAAAAAAAAAAAAAAAAAW6O16AEAAAAAAMDWuf7+63PC5Sf0eb/LouSJnRo4qD/dSR5JMrmP+9Gjc9w+R+Qrb/x69tl5nwYOAwAAAAAAAAAAAAAAAAAAABh6RKgBAAAAAGAQm79kfu8AdWX9y8mPJosmNXZTn3oC1FPqBahLpWT77TNtr8NzxVuvyISRExq9DgAAAAAAAAAAAAAAAAAAAGDIEaEGAAAAAIBBqr2jPe+64V0pl8rprnTXxKeTZPIjyaJdi9nWS3eSp5MddkuyZqO78eOSceMzbfI0AWoAAAAAAAAAAAAAAAAAAACAbahc9AAAAAAAAOC5a+9oz6zvzcrdC+/KpM6RKXfV3u86r4kC1JWkPD/ZYYdk6chk1do/kdnSkkyeLEANAAAAAAAAAAAAAAAAAAAAMEBaN/0IAAAAAADQTNYFqB+9I1myJOnszKQkj49JusvJ8+5LHt2v6JU9KkkeSyZNSrKmerR0ZPXrqAnbJaWSADUAAAAAAAAAAAAAAAAAAADAABGhBgAAAACAQaQmQL14cbJmzbq7SSuS8kPJoy8obt+GSpXk+fcl7XuvPxu1NkQ9KklLJYcLUAMAAAAAAAAAAAAAAAAAAAAMmHLRAwAAAAAAgM2zLkC98K5kyZKkq6vmfuwDzROgTp0A9Vqj1iTbjdo+bS1t+c5bviNADQAAAAAAAAAAAAAAAAAAADBARKgBAAAAAGAQWBegXnR3smxZsmZNUqmsux/7UDL3RcXtq1FJXnx3/QB1kmS77XL47i/Ln9/z5+wweoeGTgMAAAAAAAAAAAAAAAAAAAAYTlqLHgAAAAAAAPSvq7srp111WjVA3dGRrFxZE6DOI8nc/ZOUCptYY9ofkide0MdlW2um7f3yXPHWKzJh5ISG7gIAAAAAAAAAAAAAAAAAAAAYbspFDwAAAAAAAPrXUm7JmS85M+VSOVm2rFeAeuF+aZ4A9T3JE8/v5/4FrxGgBgAAAAAAAAAAAAAAAAAAAGgQEWoAAAAAABgEZhwwI1/e+fSU13Sti1A/ubS5AtQvnrOJAPXUl+eKU74vQA0AAAAAAAAAAAAAAAAAAADQICLUAAAAAAAwSMy49oF8+RfjU65UA9RrdknTBKj/8ZbkE/ck5Ur9+2k7H5Qrzr5JgBoAAAAAAAAAAAAAAAAAAACggVqLHgAAAAAAAGyGxx5LfvWrzFhVztz5yYdOT9MEqN/3s+Rff7v+/blvTLo32DZtxwNzxft/JUANAAAAAAAAAAAAAAAAAAAA0GDlogcAAAAAAACb4Xe/S5LMXbKkGqBukt/wn3RH8sVfrn8/48/Jl29IypXq+2k7H5Qr/uE3AtQAAAAAAAAAAAAAAAAAAAAABWgtegAAAAAAANCPxx5Lbrop+cIXcu/ChXnhR9M0Aeq9H0l+cGPv8xl/rn698F2H5tK/vUWAGgAAAAAAAAAAAAAAAAAAAKAgItQAAAAAANBsOjuT669PPv/55I47ktWrk+7upgpQT1mU/GXvZL/3JnO+0vt+xsW35cRDp6el3NL4cQAAAAAAAAAAAAAAAAAAAAAkaZpUBQAAAAAAkCS5+ebkRS9KZs1KbrutGqBOUvpImua3+rs8lSzcrfp67sRqiHqdMWOSe+9NDj9cgBoAAAAAAAAAAAAAAAAAAACgYE2SqwAAAAAAgGGuvT1597uTGTOSOXOSrq51V6UPdSdN0nPecXHyxOTas3Uh6l13Tf785+SAAwrZBgAAAAAAAAAAAAAAAAAAAECt1qIHAAAAAADAsDd/fjU+fc896+PTlUqSpPShStMEqHdYkizepf7d3InJfv8wInN2372xowAAAAAAAAAAAAAAAAAAAADoU7noAQAAAAAAMKw98kjyhjckd9+drFmTdHdX/1Uq1QB1k/w5yQnLkiU79/NAKZm77KEsXbG0YZsAAAAAAAAAAAAAAAAAAAAA6F+TpCsAAAAAAGAYam9P/uqvkvvvrwaoN1D6UJrmt/jjlyftO/RxWVr/8tZ33JrtxmzXkE0AAAAAAAAAAAAAAAAAAAAAbFqT5CsAAAAAAGAY+vCHkzvu6B2g/j9J2oqZtLHxy5Nl29e5KNW+vfUdt+a1U1/biEkAAAAAAAAAAAAAAAAAAAAAbKZy0QMAAAAAAGBYuvTS5PzzewWoyx9MMqKYSRsbs7KPAPVGBKgBAAAAAAAAAAAAAAAAAAAAmpMINQAAAAAANMji5YurL+bNS971rl4B6tIHk8rIAobVMWZlsmJ8H5el9S8FqAEAAAAAAAAAAAAAAAAAAACaV2vRAwAAAAAAYDi47J7LcurVp2bymElZeOEOycqVNfelDyRpkgD1yNXJdqVkVXfS3c+fsxSgBgAAAAAAAAAAAAAAAAAAAGhu/aQjAAAAAACAbeEzP/tMTr361CTJomcfz5Q3/TmpVNbdl/8+yeiCxm2krTPZsbv6etKKpNy90QOl6hcBagAAAAAAAAAAAAAAAAAAAIDmJ0INAAAAAAAD6DM/+0z+6af/VHO2aFwy5QPV1yPel1TGFDCsjtY1yU5dtWf1QtS3vO0WAWoAAAAAAAAAAAAAAAAAAACAQUCEGgAAAAAABkivAHVl/ctF45PS3yWd4xq/q57ymmTnNfXvJq0sVUPUpeS6U67L0fsc3dBtAAAAAAAAAAAAAAAAAAAAAGyZ1qIHAAAAAADAUNQrQL2xxUkmNGxO/7qSSX0EqJMkLS05do8j898nfzO777B7w2YBAAAAAAAAAAAAAAAAAAAAsHVEqAEAAAAAYBurG6CubPD6qSTbN3BQf7qSKZ393Le1Zdo+R+SKt1+TCSObpZoNAAAAAAAAAAAAAAAAAAAAwOYoFz0AAAAAAACGkl4B6kpqA9RPpHkC1N2pBrH7Mnp0pr3g1QLUAAAAAAAAAAAAAAAAAAAAAIOUCDUAAAAAAGwjNQHqjePTSbIoyY4NHtWX7mTOZ5OrflVKeeOd5XKyww7VAPUp3xegBgAAAAAAAAAAAAAAAAAAABikWoseAAAAAAAAQ8E1915TG6DeyIhHk9WTGrupT93Jnz6b7Jtk3/tLSZJz31BJd7mUjBuXjBuXaZOn5Yq3XiFADQAAAAAAAAAAAAAAAAAAADCIiVADAAAAAMBWWrx8cd783TdX39QJUI98JOnYtaGT+lapBqgPTJJyORkzJjN2eHGy3/Scu+L76a50C1ADAAAAAAAAAAAAAAAAAAAADBEi1AAAAAAAsBXaO9rzpsvfVH1TJ0A9al6yas/GbupTJfnu2gD1iBHJyScn//EfyZQpmZEk970mF951YS59y6UC1AAAAAAAAAAAAAAAAAAAAABDgAg1AAAAAABsofaO9rz2ktfmjoV31A1Qt92XrNqv8bvq6glQv7VUTkpJxo5NZs1KpkxZ98iMA2bkxP1PTEu5pbidAAAAAAAAAAAAAAAAAAAAAGwz5aIHAAAAAADAYNTe0Z7XXtwToK6jNC/pbKIA9f/7QfLWDUPZbW3JYYf1elSAGgAAAAAAAAAAAAAAAAAAAGDoaC16AAAAAAAADDbtHe159UWvzl2P31U9qGz0wGNJZc9Gr+pDT4D67+/d4GzEiOTVr06mTClqFQAAAAAAAAAAAAAAAAAAAAANUC56AAAAAAAADCZLVi7ZZIA6Ozd4VF8qyf+5ZoMAdalU/Tp6dHL66YXNAgAAAAAAAAAAAAAAAAAAAKAxWoseAAAAAAAAg8WC9gU54CsHZHnn8urBxgHqJ1INUJcaPKwPZ/w4+fc/bXTY0pLsu29y7LGFbAIAAAAAAAAAAAAAAAAAAACgcUSoAQAAAABgMyxoX5Dn/+fzs7JrZfWgXoB6hzRPgPqW5MLfbnRYKiXjxyef+UzS1lbILgAAAAAAAAAAAAAAAAAAAAAap1z0AAAAAAAAaHb3Lro3B3zlgL4D1M+mqQLUJ/y6ToA6SUaNSt7+9uSYYxq+CQAAAAAAAAAAAAAAAAAAAIDGE6EGAAAAAIB+XHXvVXnhN16Y5Z3Lqwf1AtQj0jQB6oPvS679SZ2L1tbkoIOST32q4ZsAAAAAAAAAAAAAAAAAAAAAKIYINQAAAAAA9OHKP16Zk797cvVNJb0D1CuStKVpAtQv+Ety+1V9XO6/f/K97yUTJjR0EwAAAAAAAAAAAAAAAAAAAADFEaEGAAAAAIA6rvzjlZn1/VnVNxvHp5NqgLo1TfOb9j0WJPdd1sflfvslN96Y7L57QzcBAAAAAAAAAAAAAAAAAAAAUKzWogcAAAAAAECzGWwB6hFPJQ9f0sfli16U/PKXyYQJDd0EAAAAAAAAAAAAAAAAAAAAQPGaJI8BAAAAAADNYZMB6qSpAtTlxcnqycmUD2x00dKSHHigADUAAAAAAAAAAAAAAAAAAADAMNYkiQwAAAAAACjeNfdds+kAdUea57frzyTdu1RfLhrfE6Jua0u23z558YuTm24SoAYAAAAAAAAAAAAAAAAAAAAYxpolkwEAAAAAAIW6/v7r8+Yr39z/Qx1JWhqxZjO0J9mp9mjR+GTK+9YkBx6YXHNNsvvuhUwDAAAAAAAAAAAAAAAAAAAAoDmIUAMAAAAAMOxdf//1OeHyE9YfVOo8tCrNE6BenmTH+leLxlYy5c3zBKgBAAAAAAAAAAAAAAAAAAAAEKEGAAAAAGB4m79k/uYFqFsbtWgTViTZvo+7UvXfohWPZ/HyxY3bBAAAAAAAAAAAAAAAAAAAAEBTEqEGAAAAAGDY6uruytuveXv/D61McwWoJ9Q574lPr/WdGd/JjuN2bNAoAAAAAAAAAAAAAAAAAAAAAJqVCDUAAAAAAMPWA08/kF8+8su+H1iRpK1hc/q3Kn0HqDfwr6/51/z1i/+6EYsAAAAAAAAAAAAAAAAAAAAAaHIi1AAAAAAADEv3PXlfpn19WroqXesPKxs88GySEY1e1YeOJOM2/di/vuZf84+v/scBnwMAAAAAAAAAAAAAAAAAAADA4CBCDQAAAADAsLM2QN3Z3Vn/geVJRjZ0Ut9WJxnbx11p/UsBagAAAAAAAAAAAAAAAAAAAAA2JkINAAAAAMCwsnL1yrzkGy/pO0C9LMmohk7q2+okYzb9mAA1AAAAAAAAAAAAAAAAAAAAAPWIUAMAAAAAMKyMHjE6b9z3jfUv25OMbuicvnWm/wB1qfpFgBoAAAAAAAAAAAAAAAAAAACAvohQAwAAAAAw7Fx9ytV58/5vrj1ckv6jz420Jv3HsAWoAQAAAAAAAAAAAAAAAAAAANgMItQAAAAAAAxLNSHqxUnGFblmA2uSjOrnXoAaAAAAAAAAAAAAAAAAAAAAgM0kQg0AAAAAwLB19SlXJ08nGV/0kh5d2awAdZK859D3DPQaAAAAAAAAAAAAAAAAAAAAAAY5EWoAAAAAAIattk+WkglFr+jRlWRkP/cbBKhvfcet2W7MdgO9CAAAAAAAAAAAAAAAAAAAAIBBToQaAAAAAIBhacIny1nTWfSKHt2pRqj7skGA+pa33ZLXTn3tQC8CAAAAAAAAAAAAAAAAAAAAYAgQoQYAAAAAYNjZ6ZOjsqyzUvSMqu4ka5KM2fSj151yXY7e5+iBXgQAAAAAAAAAAAAAAAAAAADAECFCDQAAAADAsLLrJyfk6c6OomdUbU6AulT9cs3Ma3L8/sc3YBQAAAAAAAAAAAAAAAAAAAAAQ4UINQAAAAAAw8ben5yUhZ3Lip5RVclmB6ivOPmKnHjAiQ0YBQAAAAAAAAAAAAAAAAAAAMBQIkINAAAAAMCwsPcnJ+XBzieKnlH1HAPUMw+a2YBRAAAAAAAAAAAAAAAAAAAAAAw1ItQAAAAAAAxdjz2W/OAHefE7RzZfgHp0P8/0BKgvOOECAWoAAAAAAAAAAAAAAAAAAAAAtpgINQAAAAAAQ0tnZ3LddcnRRyfPf35ecf6M/GG31UWvqqokWZ6+A9SlrAtQf+zIj+XMg89szC4AAAAAAAAAAAAAAAAAAAAAhqTWogcAAAAAAMA2c911yTnnJIsWJd3dOfa1yW9eUvSoHpUkzybZoY/70vqX57/p/Jw1/awGjAIAAAAAAAAAAAAAAAAAAABgKBOhBgAAAABg0Fq8fHF2HLdj0t6evOENyW9+k1QqSZJjX5vc/PKCB27o2STb93G3QYD6ipOvyMyDZjZgEAAAAAAAAAAAAAAAAAAAAABDnQg1AAAAAACD0vX3X58TLj8hk0dMzMJ/WZmsWLHu7vQX9gSoS31/f0M9lWRyH3cbbLxm5jU58YATG7EIAAAAAAAAAAAAAAAAAAAAgGGgXPQAAAAAAAB4rtYGqJNkUcfTmXLO+gD1tyYk3zwpzROgnpfNClBfd8p1AtQAAAAAAAAAAAAAAAAAAAAAbFMi1AAAAAAADCobBqhTqX5ZND6Z8oHkqlLyjvemeQLUDyXZv855KTUbb3nbLTl+/+MbswkAAAAAAAAAAAAAAAAAAACAYUOEGgAAAACAQaNegHqtRS3JyR9N8wSoH06yb53zjfbdcMoNOXqfoxuxCAAAAAAAAAAAAAAAAAAAAIBhprXoAQwPTz75ZH7/+99n3rx5aW9vT1tbWyZOnJgDDzww06dPT1tbW9ETAQAAAIAm11+AOitS/Y13swSoH0uyzwbv+9h10YkX5Q37v6ERiwAAAAAAAAAAAAAAAAAAAAAYhkSoGVDf+9738qUvfSm/+tWvUqlsXIWpGj9+fGbOnJkPfehDef7zn9/ghb1VKpXMmTMnt99+e2bPnp3Zs2fnzjvvzLJly2qeO/3003PxxRdv1c/6xCc+kU9+8pNb9Rn96et/cwAAAAAYbDYrQF1u8Ki+PJ5kz/4faSm15Nfv/HUO2+OwhkwCAAAAAAAAAAAAAAAAAAAAYHgSoWZAPProoznttNPys5/9bJPPLlu2LBdccEG+9a1v5bzzzst5552XUqnUgJXrXXXVVbntttsye/bs3HHHHVm6dGlDfz4AAAAA0LdBFaB+Kslu/T/SUmrJH979hxyw8wENmQQAAAAAAAAAAAAAAAAAAADA8CVCzTb3wAMP5DWveU0WLlz4nL5v9erV+ed//ufcd999+da3vpWWlpYBWtjbmWeeOeTC0y9/+cuLngAAAAAAW+2qP12Vk793cvXNxgHqpLkC1IuTTOn/kbZyW+4+524BagAAAAAAAAAAAAAAAAAAAAAaQoSaberpp5/O6173uroB6kMOOSQnnXRSpk6dmpUrV+aBBx7Id77znTz22GM1z1122WXZZZdd8sUvfrFBq4szefLkTJs2bas/5+677+51dvbZZ2/15wIAAABAkf6w8A/9B6g7kjTub9n1q7Ut6fxqJTMun5Ef3P+Dus8IUAMAAAAAAAAAAAAAAAAAAADQaCLUbFPvete78sgjj9ScjR8/Pt/+9rdz4okn9nr+M5/5TD7zmc/kE5/4RM35l770pRx33HF5wxveMJBzN2nixIk55JBDssMOO+SKK67Y5p9/zjnn5Jxzztmqz7jtttvy8pe/vOZs/PjxmTVr1lZ9LgAAAAAU6eFnHs5R3z6q+qbJA9QpJ50fr468+pSr64aoBagBAAAAAAAAAAAAAAAAAAAAKIIINdvMzTffnKuuuqrmbMSIEbn11lszffr0ut/T1taWj3/849l+++3z/ve/v+bu7/7u73LfffeltbUx/5lut912OfjggzN9+vQceuihmT59eqZOnZok+elPfzogEept4fzzz+91NmvWrIwdO7aANQAAAACwdbq6u3Lfk/fl4P8+OGu616RcSbo3fmhVmue322uSyr/VVrI3DlELUAMAAAAAAAAAAAAAAAAAAABQlGbJdDAEfPrTn+519vGPf7zPAPWG3ve+9+WHP/xhbr755nVnc+fOzXe+85284x3v2KY767nzzjuz1157pVQqDfjP2paWL19eN4599tlnF7AGAAAAALZOe0d73nTpm/LL+b+sHvS0ncuVpHvtr+5WJmkrYl0ddQLUa60NUd8w94bc9f/dJUANAAAAAAAAAAAAAAAAAAAAQCHKRQ9gaPjTn/6UX/ziFzVnO+20Uz74wQ9u9md89rOf7XX2ta99bau3bY6pU6cOugB1klx55ZVZvnx5zdlBBx2Uww8/vKBFAAAAALBl2jvac+y3ju0VoK4kqZSqIeqmClCv7DtAvdbVp1ydZz70jAA1AAAAAAAAAAAAAAAAAAAAAIURoWabuPzyy3udnXHGGRkxYsRmf8YhhxySQw45pObstttuy4MPPrjV+4aq888/v9fZWWedVcASAAAAANhy7R3tOeqSo/LbR39bPdio7VxJ0t1MAepVSWX2qzbr0dEjRg/wGAAAAAAAAAAAAAAAAAAAAADomwg128RNN93U6+ytb33rc/6cet9T77NJ7rvvvvzmN7+pORs5cmTe/va3F7QIAAAAAJ679o72vPL8V+b2hbdXDyp1Hno2yeb/vbuB1ZFU/l8paWuWIjYAAAAAAAAAAAAAAAAAAAAA9E2Emq327LPP5o477qg5GzNmTA4++ODn/FmvfOUre5394he/2OJtQ9kFF1zQ6+zNb35zJk6cWMAaAAAAAHju2jvac+g3Ds09T91TPagXoF6eZGQjV/VjdVL5fM/rnXYqdAoAAAAAAAAAAAAAAAAAAAAAbA4RarbaXXfdle7u7pqz6dOnp7W19Tl/1qGHHpq2traas9tvv32r9g1FnZ2d+da3vtXr/KyzzipgDQAAAAA8d+0d7Tns64flgSUP9P3QsiSjGjapf51J5f/2vC6Vkhe+sNA5AAAAAAAAAAAAAAAAAAAAALA5RKjZan/+8597ne27775b9FkjRozIbrvtVnM2b968rFmzZos+b6i69tpr88QTT9Sc7bXXXjnmmGMKWgQAAAAAm6+9oz3Tvjot9z9z//rDysYPJRndyFX96Ewq/77B+9bW5MUvLmwOAAAAAAAAAAAAAAAAAAAAAGwuEWq22kMPPdTrbM8999ziz9tjjz1q3nd1deWRRx7Z4s8bii644IJeZ2eccUZKpVIBawAAAABg860NUD/U/lDfDz2TZEyDBm3Kmo0C1EnS1pYcdlghcwAAAAAAAAAAAAAAAAAAAADguWgtegCD36JFi3qd7b777lv8efW+9/HHH8/ee++9xZ85lCxYsCA/+tGPas7K5XLOPPPMghZt2n/913/lq1/96oD/nHnz5g34zwAAAABgy3V1d+WQrx/SO0Bd2eD1kiTjGziqP11J5XN1zl/ximTKlIbPAQAAAAAAAAAAAAAAAAAAAIDnSoSarbZ48eJeZ+PGjdviz6v3vU8//fQWf95Qc9FFF6W7u7vm7Ljjjstuu+1W0KJNe/LJJ3PvvfcWPQMAAACAgn3sxx/L3Gfm9v3AU0m2b9SaTehKKv9W57xcTt73vobPAQAAAAAAAAAAAAAAAAAAAIAtIULNVnv22Wd7nY0ePXqLP6/e965YsWKLP28oqVQqueiii3qdn3XWWQWsAQAAAIDNd+ZVZ+aiP/T+3dY6TyTZsWFz+tedTF7dx92UKcmxxzZ0DgAAAAAAAAAAAAAAAAAAAABsqXLRAxj8Ojs7e52NGjVqiz+vXoR69eq+ii/Dy6233poHH3yw5myXXXbJiSeeWNAiAAAAANi0c645p/8A9aI0VYA6a5JF45MpH9jorlRKvv71pK2tiGUAAAAAAAAAAAAAAAAAAAAA8JyJUDMgSqXSNv3eSqWyNXOGjPPPP7/X2Tve8Y60id4AAAAA0KT+8eZ/zDfu+kbfDyxIslPD5vSvJ0CdMdW3vULUr3hFcvzxBQwDAAAAAAAAAAAAAAAAAAAAgC0jQs1WqxdAXrly5RZ/Xr3vHTFixBZ/3lCxePHiXH311b3OzzrrrALWAAAAAMCmffhHH85nf/3Z2sPKBv8eTjKp8bvq2ihAvda6EPWYMckNNxQwDAAAAAAAAAAAAAAAAAAAAAC2XGvRAxj8xowZ0+tsW0eox44du8WfN1Rceuml6ejoqDk74ogj8oIXvKCgRZtv5513zoEHHjjgP2fevHm9/jcCAAAAoBhf+NUX8u+3/fv6g8pGD8xLsmcjF/WjkroB6rUWjU+mnDc6CydMaOQqAAAAAAAAAAAAAAAAAAAAANhqItRstYkTJ/Y6W758+RZ/Xr3vrfczhpsLLrig19nZZ59dwJLn7j3veU/e8573DPjPeeELX5h77713wH8OAAAAAP278PYL84FbPlB9s3F8OkkeS3MFqDuSjOvnmVKyaPXTWbx8cXYct2ODhgEAAAAAAAAAAAAAAAAAAADA1isXPYDBb9KkSb3OFixYsMWfN3/+/M36GcPJ7Nmzc/fdd9ecjR8/Pn/1V39V0CIAAAAAqO/iOy/OWdefVX1TL0D9aJJdGrmoH5sZoE6S6065ToAaAAAAAAAAAAAAAAAAAAAAgEFHhJqtNnXq1F5nDz/88BZ/3iOPPFLzvqWlJXvssccWf95QcMEFF/Q6++u//uuMHTu2gDUAAAAAUN/Fd16cM649o/qmXoD6viTN8vfmKkmezmYHqI/f//gGjAIAAAAAAAAAAAAAAAAAAACAbUuEmq22//779zqbO3fuFn3W6tWrM3/+/JqzffbZJ62trVv0eUPBypUrc9lll/U6P/vsswtYAwAAAAD1/eGxP/QfoH4oyX4NHNSftQHqyf08I0ANAAAAAAAAAAAAAAAAAAAAwBAgQs1We+lLX5pyufY/pdmzZ2fNmjXP+bNmz56dzs7OmrODDz54q/YNdt/97nezdOnSmrMXvehFOfTQQwtaBAAAAAC1FrQvyJGXHFl9Uy9A/UiS5zVy0SY8GQFqAAAAAAAAAAAAAAAAAAAAAIYFEWq22tixY/PSl7605uzZZ5/NnXfe+Zw/65e//GWvs1e96lVbvG0ouOCCC3qdnX322QUsAQAAAIDeFrQvyLSvTUv76vb6DzySZErWhZ0L93BSntLPvQA1AAAAAAAAAAAAAAAAAAAAAEOICDXbxOtf//peZ9/73vee8+fU+556nz1czJkzJz//+c9rzkaOHJm3ve1tBS0CAAAAgPVWr1mdQ/77kDzT8Uz1oLLRA0+nuQLU85Lsk1RKSXnjrYkANQAAAAAAAAAAAAAAAAAAAABDjgg128Qpp5zS6+yiiy7K6tWrN/sz7rzzzvz+97+vOTv88MMzderUrd43WF144YW9zmbMmJEdd9yxgDUAAAAAsN7SFUszonVE3jntnUl3d8rdGz2wOMmENE+A+uEk+1dfVlInRC1ADQAAAAAAAAAAAAAAAAAAAMAQJELNNnHQQQflyCOPrDl78skn84UvfGGzP+OjH/1or7N3v/vdW71tsFqzZk0uueSSXudnn312AWsAAAAAYL2fPPiTbP9/t89+X9wnn/vbq/LBX1bP10WdFycZn+YKUO9Te7QuRJ2s2/n9t35fgBoAAAAAAAAAAAAAAAAAAACAIUWEmm3mvPPO63X28Y9/PHfccccmv/crX/lKfvSjH9Wc7b333jn11FM362fvtddeKZVKNf9++tOfbtb3NqsbbrghCxcurDmbOnVqjjrqqIIWAQAAAEA1QH3UN6u/o5r7zF+y3+vn5nM/Tj74q54Hnk4yLs0ToH4svQLUa1VD1KXsNGan3POue/KWF76lkcsAAAAAAAAAAAAAAAAAAAAAYMCJULPNHHfccTnppJNqzjo6OvLa17421113Xd3v6ezszKc//emce+65ve7+8z//M21tbQOydTC44IILep2deeaZKZWapd4DAAAAwHCzYYA6leqXuROT/d6bfO7HyUuuSzI+zfOb58eT7NHPfSlpLbdm9t/MzoumvKhRqwAAAAAAAAAAAAAAAAAAAACgYVqLHsDQ8j//8z+5/fbbs2DBgnVn7e3tOfHEEzN9+vScdNJJmTp1alauXJk5c+bk0ksvzaOPPtrrc9773vfmTW96U8N2z549O2effXaf98uXL+91du211+YlL3lJn98zffr0nH/++Vu0Z+HChbnhhhtqzlpaWnLGGWds0ecBAAAAwNaqF6Bea+7EpHRqkj3TPAHqp5I8r5/7UlJKKXe8647suf2ejVoFAAAAAAAAAAAAAAAAAAAAAA0lQs02tfPOO+d///d/c9RRR2XRokU1d7Nnz87s2bM3+RkzZ87MF7/4xQFaWN/y5ctz9913P6fvWbJkSZYsWdLn/fbbb7/Fey655JKsWbOm5uz1r399nve8/qo5AAAAADAw+gtQr7NHmidA/UySyf3c9wSof3v2b3PQpIMaNAoAAAAAAAAAAAAAAAAAAAAAGq9ZkiAMIQcccEB+97vf5cgjj3xO39fW1paPf/zjueyyy9LS0jJA6waHCy+8sNfZWWedVcASAAAAAIa7mgB1XzqSNMuv9NqT7NTPfan65ddn/jqHPu/QRiwCAAAAAAAAAAAAAAAAAAAAgMKIUDMgdt999/z85z/PFVdckVe84hUplUp9Pjtu3LicccYZueeee/KJT3wi5fLw/s/y5z//eebMmVNzNmnSpJxwwgkFLQIAAABguKoJUFd6/m1sVZonQL0syY593JWyLkB9y9tuyct2f1mDRgEAAAAAAAAAAAAAAAAAAABAcVqLHsDQVSqVMnPmzMycOTNPPPFEfve73+Uvf/lL2tvb09ramp122ikHHHBADj300IwYMWKrftZDDz20Vd//mte8JpVKvYJO473qVa9qmi0AAAAADF+9AtT1rErz/JZ5eZId6pxv9PfxLj/58hy9z9GNWAQAAAAAAAAAAAAAAAAAAAAAhWuWPAhD3C677JLjjz++6BkAAAAAwGZYumLppgPUK5O0NWrRJqxIsn3P61Lfj/3HMf+RWQfNasAgAAAAAAAAAAAAAAAAAAAAAGgO5aIHAAAAAADQXLYbs1323W7vvgPUK9I8AeqVSSb0vO4nQP2lY76UDxzxgUYsAgAAAAAAAAAAAAAAAAAAAICmIUINAAAAAEAvcx48Pvs+U+dXyCuSjGj4nPpWJRm/6cf+6Yh/yt8d8XcDPgcAAAAAAAAAAAAAAAAAAAAAmo0INQAAAAAAtW6+OfnudzPnykm1Iepn0zwB6o4k4zb92D8d8U/5l2P+ZcDnAAAAAAAAAAAAAAAAAAAAAEAzEqEGAAAAAGC9zs7kvPPWvZ1z5aTsuzjJ8iQjC1tVa3WSsZt+7NOv+bQANQAAAAAAAAAAAAAAAAAAAADDmgg1AAAAAADr/ehHyfz5NUdzW5OMKmZOL51JxtQ5L9W+/egrPprzXn1enQcBAAAAAAAAAAAAAAAAAAAAYPgQoQYAAAAAYL1LLql5WzplYf3ocxHWJBm96cd2HbtrPn30pwd8DgAAAAAAAAAAAAAAAAAAAAA0OxFqAAAAAACqHnss+dWv1r0tvbXJAtSj+rgr1b697azb0lJuGehFAAAAAAAAAAAAAAAAAAAAAND0WoseAAAAAABAk7jppmTVqqSzM7ueujyZUPSgHl3pO0C9ketOuS6777D7gM4BAAAAAAAAAAAAAAAAAAAAgMFChBoAAAAAYDjr7KzGpy+5JPnf/02efTZ7ntGdhTsXPaxHV5KR/dyX1r+87pTrcvz+xw/0IgAAAAAAAAAAAAAAAAAAAAAYNESoAQAAAACGq5tvTs47L5k/v/q+szPPf1t3Hplc7Kx1uiNADQAAAAAAAAAAAAAAAAAAAABboVz0AAAAAAAAGmPx8sXVF+3tyfvel5x++voAdZIXzViVObsXNG5j3UmW93MvQA0AAAAAAAAAAAAAAAAAAAAAm9Ra9AAAAAAAAAbe9fdfnxMuPyGTR+2chdfsmzz0UM39tKMW5o97FTKtt+4ky5LyjtWXvQhQAwAAAAAAAAAAAAAAAAAAAMBmKRc9AAAAAACAgXXtfdfmhMtPSJIsWvlkphxxW839y1+5MPfsVcCwerqTmz+bfOi+6ttype9HBagBAAAAAAAAAAAAAAAAAAAAoH8i1AAAAAAAQ9iVf7wyJ115UvVNT9B50dhKppy2KFm1KkcfvDC37VfcvhqVJMuTd783+dyPkw/+qnpcE6IuVb8IUAMAAAAAAAAAAAAAAAAAAADAprUWPQAAAAAAgIFx5R+vzKzvz6q+qdTeLRpbyZg3LMnKqY3fVVclybIkOyZzk+z33mTOV6pXnz+iJ0RdLqU7ldzytlty9D5HF7cVAAAAAAAAAAAAAAAAAAAAAAYJEWoAAAAAgCGoJkBdz6I0V4D6kST7rD+aO7E2RH3xy0fm9n+Ym/Gt47PdmO2KWAkAAAAAAAAAAAAAAAAAAAAAg0656AEAAAAAAGxbvQLUlY0eWJRkp0Yu6kclycOpCVCvtTZE/bld/jrzP96e3SbsJkANAAAAAAAAAAAAAAAAAAAAAM+BCDUAAAAAwBCyyQD1M0kmNnBQf9YGqPft+5G5OyVLz/9aRrSOaNQqAAAAAAAAAAAAAAAAAAAAABgyRKgBAAAAAIaIzQpQj01Satymfs1PvwHqlJJb33FrthuzXaMWAQAAAAAAAAAAAAAAAAAAAMCQIkINAAAAADAEPPT0Q4MrQH1/kr37uCtlXYD6tVNf28BRAAAAAAAAAAAAAAAAAAAAADC0iFADAAAAAAxy7R3tefdN705pbWF64wD1qjRXgHpOkhf2cdezUYAaAAAAAAAAAAAAAAAAAAAAALaeCDUAAAAAwCDW1d2V0646LXcvujuTx01eH6Jea1WSljRPgPrhJAf0cSdADQAAAAAAAAAAAAAAAAAAAADblAg1AAAAAMAg1lJuyZkvOTPlUvXXvZNXtabU3XO5Mk0VoN7hsWTfHfq4FKAGAAAAAAAAAAAAAAAAAAAAgG2utegBAAAAAABsnRkHzEi61uTc752V7s7OTO5MFpaStKVpAtTbPZ4svmlKkmS/mY9n7vbd6y8FqAEAAAAAAAAAAAAAAAAAAABgQJSLHgAAAAAAwFa6+ebMOOvz+fLVq1KuJAtXphqgbpLfAE+/P3nmh1PWvZ9z5aTs+0zPOAFqAAAAAAAAAAAAAAAAAAAAABgwTZIgAQAAAADgOWtvT973vuT005OHH86MP3blrKuTbJem+e3vfvOT3187otf5nJybfbffO4kANQAAAAAAAAAAAAAAAAAAAAAMlNaiBwAAAAAAsAXmz09mzUoeeqj6fvXqJMmnZqVpAtR7LEoe+HY5GbHBoD32SD796eR1r8ucfDFLVyzNdmO2K24kAAAAAAAAAAAAAAAAAAAAAAxhItQAAAAAAIPNI48kb35zsmjR+rM1a1L6UHfSUtiqGlOeTB6+qCc+3dqaHHlkcvrpybHHJm1t654ToAYAAAAAAAAAAAAAAAAAAACAgSNCDQAAAAAwCKxeszojWkck7e3JKafUBqiTlP52WdMEqHdanDz2zVHJ2LZqgPo//iM544yiZwEAAAAAAAAAAAAAAAAAAADAsCNCDQAAAADQ5Ba0L8gh/31I3jntnfnc9auShx6quS+9Y2HT/LZ3/PLkyR9MSXbY4PD1ry9sDwAAAAAAAAAAAAAAAAAAAAAMZ02SJQEAAAAAoJ6Hn3k40/9nehavXJzP//rzycOj87lMWHdfenvzBKhHr0ja/6s12XmDwyOPTKZMKWwTAAAAAAAAAAAAAAAAAAAAAAxnTZImAQAAAABgY/c9eV+mfX1a1nSvSalUSird+fy0Z5Mkn/vdhJTetjBpK3hkjxErkxVfLCVt5dqL008vZhAAAAAAAAAAAAAAAAAAAAAAkPKmHwEAAAAAoNHWBqg7uztTSSWVSiWpVO8+P+3ZlE5bmIwoduM6q5KO/5ekVErKG/zaeY89kmOPLWwWAAAAAAAAAAAAAAAAAAAAAAx3ItQAAAAAAE1mwwD1WpVKJZVS9XX3iiQji9nWS0eSccmUD/S8b2tbf/cv/1L7HgAAAAAAAAAAAAAAAAAAAABoKBFqAAAAAIAm8uuHft0rQL1WJUn38jRPgHp1krHVl4vGJ1Pe3520tlYPZs5MjjmmsGkAAAAAAAAAAAAAAAAAAAAAgAg1AAAAAEDT+NrvvpYjLjmiboA6SdKeZHRDJ/WtM8mY2qNF45MpZz2TTJ2afOpTRawCAAAAAAAAAAAAAAAAAAAAADYgQg0AAAAA0AS+9ruv5W9v/Nu+H2hPr+hzYdakzxj2orGVTDlxTjJhQkMnAQAAAAAAAAAAAAAAAAAAAAC9iVADAAAAABTs0rsv7T9AvTjNFaAe1c99KVm06sksXr64UYsAAAAAAAAAAAAAAAAAAAAAgD6IUAMAAAAAFOjKP16Zt/3gbX0/8HSS8Q2b07+ubDJAnSTXnXJddhy3YyMWAQAAAAAAAAAAAAAAAAAAAAD9EKEGAAAAACjItfddm1nfn9X3A08mmdCwOf3rSjKyn/ueAPU1M6/J8fsf34hFAAAAAAAAAAAAAAAAAAAAAMAmiFADAAAAABTg+vuvz0lXntT3A48n2b5RazahO/0HqHtccfIVOfGAEwd8DgAAAAAAAAAAAAAAAAAAAACweUSoAQAAAAAa7Pr7r88Jl5/Q9wMLk+zYsDn9607StYlnStUA9cyDZjZiEQAAAAAAAAAAAAAAAAAAAACwmUSoAQAAAAAa6Nr7ru0/QL0gyU4Nm9O/7iRLk9LIfp4RoAYAAAAAAAAAAAAAAAAAAACApiVCDQAAAADQIHfPvzsnXXlS7WFlg38PJ5nU+F11dSd5JpkyOpm8Iil113lGgBoAAAAAAAAAAAAAAAAAAAAAmpoINQAAAABAA1x///V5yYUvWX+wNjy91rwkuzZ2U58qyUX/llz101LKPRt7hagFqAEAAAAAAAAAAAAAAAAAAACg6bUWPQAAAAAAYKi7+r6r85Yr31J9U0nSndo/EfhIkj0bv6uuSnLRZ5N3lsrJ/dWjc99QSXcpmdzZlkWj1qSSigA1AAAAAAAAAAAAAAAAAAAAAAwCItQAAAAAAAPo4jsvzhnXnlF9U+k5LGd9iHpRkl0LmdZbJfnUNck7U1p3NOP+UtLWmnNnjEr3+HE5bvK0fO31X8teE/cqbicAAAAAAAAAAAAAAAAAAAAAsFlEqAEAAAAABkjdAPVa5SSPJdmlwaP60hOg/ti9pWTkyKStLWltTUaMyIzReyVv/Ydc+Idv5tK3XJoJIycUvRYAAAAAAAAAAAAAAAAAAAAA2Awi1AAAAAAAA6DfAHWSPJNk5wYO6k8lefeNycfub0122qEan97Qv/xLZhx0TE488C1pKbcUsxEAAAAAAAAAAAAAAAAAAAAAeM5EqAEAAAAAtrHNClCPTVJq3Kb+/M2NyVf/2JbssH3vAPXMmckxxySJADUAAAAAAAAAAAAAAAAAAAAADDIi1AAAAAAA29BgC1Dvc0/y3w+MTSaOT0objZo6NfnUp4oZBgAAAAAAAAAAAAAAAAAAAABstXLRAwAAAAAAhorzZ5/ff4B6VZoqQJ0Hkwdfmnz4mPQOUE+Zklx+eTJhQiHTAAAAAAAAAAAAAAAAAAAAAICtJ0INAAAAALANXDj7wvzND/+m+qavAHVLmidA/XBS3rf68vPTns2HD2tffzd1avKDHyS7717INAAAAAAAAAAAAAAAAAAAAABg22gtegAAAAAAwGB35R+vzFk/PKv6pq8AdTnNE6B+LMk+1amlnr2fn/ZskuRze52dfOpTyYQJhc0DAAAAAAAAAAAAAAAAAAAAALYNEWoAAAAAgK1w89ybM+v7s6pv+gtQlxs4qj+PJ9mj+rKSJKWeEHUp+fxLVyavGJnPCVADAAAAAAAAAAAAAAAAAAAAwJDQLNkTAAAAAIBB5ycP/iTHXnps9c1gCFA/leR5tUeVJJVyKSmXk1Jy8d0XZ/Wa1UWsAwAAAAAAAAAAAAAAAAAAAAC2sdaiBwAAAAAADEY/efAnOeqbR1Xf1AtQJ80VoF6cZHLP61LtVSWVpJJMHDMxt7/r9oxoHdHodQAAAAAAAAAAAAAAAAAAAADAABChBgAAAAB4jjYrQN2RpKVRizbhmSST+n+ktdya2X8zO7tN2K0RiwAAAAAAAAAAAAAAAAAAAACABigXPQAAAAAAYDCpCVD3pZkC1O1Jdu7/kbZyW+4+5+7suf2eDZkEAAAAAAAAAAAAAAAAAAAAADSGCDUAAAAAwGbqFaCu1HloVZonQL0sycT+H1kboD5g5wMaMgkAAAAAAAAAAAAAAAAAAAAAaBwRagAAAACAzbB0xdLNC1C3NmrRJqxIskP/jwhQAwAAAAAAAAAAAAAAAAAAAMDQJkINAAAAALAZHnv2sf4fWJnmClBP2PRjP337TwWoAQAAAAAAAAAAAAAAAAAAAGAIE6EGAAAAANiEuU/NzbSvT+v7gRVJ2ho2p38rsz5AXer7sa++4at5xV6vaMQiAAAAAAAAAAAAAAAAAAAAAKAgItQAAAAAAP34/aO/z/P/6/np7O5cf1jZ4IFnk4xo9Ko+dCQZv+nHvvqGr+bdh717wOcAAAAAAAAAAAAAAAAAAAAAAMVqLXoAAAAAAECz+v2jv8/h5x+eSk11egPPJhnZ0El960gydtOPffvN385p004b8DkAAAAAAAAAAAAAAAAAAAAAQPFEqAEAAAAA6thkgHpZktENndS31dmsAPUVJ1+RmQfNHPA5AAAAAAAAAAAAAAAAAAAAAEBzEKEGAAAAANjIJgPU7UnGNHRS3zpT3dKdpLzBean2sWtmXpMTDzixcbsAAAAAAAAAAAAAAAAAAAAAgMKJUAMAAAAAbGCTAeqlaZ4A9Zoko3tel9M7RN3julOuy/H7H9+4XQAAAAAAAAAAAAAAAAAAAABAU6iTIwEAAAAAGJ7qBqgrG/xbnOYKUI/a6GxtiLq0/kiAGgAAAAAAAAAAAAAAAAAAAACGLxFqAAAAAIAkDy5+sDZAvTY8vdbiJOMLGFZPV3oHqNfa4Le+18y8RoAaAAAAAAAAAAAAAAAAAAAAAIax1qIHAAAAAAAUbUH7ghx6/qHVAHWlzgNPJdm+waP60pVkZD/3peqXu868K9N2n9aIRQAAAAAAAAAAAAAAAAAAAABAkyoXPQAAAAAAoEir16zOwd84OE+vfLp+gPqJNE+Aujv9/1a3J0B93SnXCVADAAAAAAAAAAAAAAAAAAAAACLUAAAAAMDwtqprVcataakfoF6UZMdGL+pDd8+/tj7uewLUV828Ksfvf3yDRgEAAAAAAAAAAAAAAAAAAAAAzUyEGgAAAAAYtto72jPr68dk1dOLMnb1RpePJtmpiFV1rA1Qj+rjvidAfdGJF2XGATMaNAoAAAAAAAAAAAAAAAAAAAAAaHYi1AAAAADAsNTe0Z5Z5x+Xu+f/PkkyYXXWh6gfSTKpsGm1KtnsAPU7X/rOxmwCAAAAAAAAAAAAAAAAAAAAAAYFEWoAAAAAYNhp72jPrG8ck7sfvK3mfMLqpDwvya7F7OqlkqQrAtQAAAAAAAAAAAAAAAAAAAAAwBYRoQYAAAAAhpWu7q6c9tWjc/cjv+91t3h+0r1nAaPqEaAGAAAAAAAAAAAAAAAAAAAAALaSCDUAAAAAMKy03PqTnPk/s1Ou1J4vfSDp2K+YTb1UkjwbAWoAAAAAAAAAAAAAAAAAAAAAYKu0Fj0AAAAAAKBhFixIjjsuM7qTVJJz35h0l5Jn7khWvqLocT3WBqi37+O+J0D9P2/6HwFqAAAAAAAAAAAAAAAAAAAAAKBfItQAAAAAwPCwYEGyzz5Jd3eSZMafq8enTklWvbzAXRvazAD1BW+6IGdOP7MxmwAAAAAAAAAAAAAAAAAAAACAQatc9AAAAAAAgAH3298me++drF5dc3xpS0+AulTMrF6eziYD1C+d9NKcfvDpDRoEAAAAAAAAAAAAAAAAAAAAAAxmItQAAAAAwND2m98kr3510tlZc/zWFybfPynNE6B+KsnkPu56Nh4y+ZD89IyfpqXc0qhVAAAAAAAAAAAAAAAAAAAAAMAgJkINAAAAAAxdCxYkRx+ddHTUHH+k1GQB6sdSP0BdyrqN03ednlvfeWsmjJzQwGEAAAAAAAAAAAAAAAAAAAAAwGAmQg0AAAAADF2vfnWycmXN0UdKyec+muYJUD+cZI865xvsm77r9Pz4HT8WoAYAAAAAAAAAAAAAAAAAAAAAnpPWogcAAAAAAAyIww9P/vKXmqObknzuI2meAPVjSfbZ4H2dXQLUAAAAAAAAAAAAAAAAAAAAAMCWEqEGAAAAAIaWBQuSww5LFi6sOb4pyRs+mqRcyKreHk+yR/oNYgtQAwAAAAAAAAAAAAAAAAAAAABbo1lyKwAAAAAAW+/HP0723LP5A9RPJXle/48IUAMAAAAAAAAAAAAAAAAAAAAAW6tZkisAAAAAAFvnO99Jjjkm6e7uddVUAerFSSb3vC7Vf6S11JobT71RgBoAAAAAAAAAAAAAAAAAAAAA2CrNkl0BAAAAANhy116bnHZa3avSR9I8vwl9Jsku/T/SVm7LPe++JzuN3akRiwAAAAAAAAAAAAAAAAAAAACAIay16AEAAAAAAFvlt79NTjqp7lXpI0laGjunT+1JNtGVLqWUe999b/bdad+GTAIAAAAAAAAAAAAAAAAAAAAAhrZy0QMAAAAAALbY736XvOxlda9KH07zBKiXJ9mx/0dKKeW3Z/9WgBoAAAAAAAAAAAAAAAAAAAAA2GZEqAEAAACAwemWW5LDD697VfpwktbGzunTiiTb1zkvbfiyGqA+9HmHNmgUAAAAAAAAAAAAAAAAAAAAADAciFADAAAAAIPPLbckr3td3avSh9JcAeoJ/T8iQA0AAAAAAAAAAAAAAAAAAAAADBQRagAAAABgcPnTn5Ljjqt7Vfo/SdoaO6dPq9J3gLq0/qUANQAAAAAAAAAAAAAAAAAAAAAwUESoAQAAAIDBo709OeKIpLu711Xpg0lGNH5SXR3JlCRjV/f/2JG7H5mDpxzckEkAAAAAAAAAAAAAAAAAAAAAwPAjQg0AAAAADB6nnJIsXdrruPQPSUY2fk5dq5MplerLCavrhKhL1S8v2+1l+eFpP0xLuaWh8wAAAAAAAAAAAAAAAAAAAACA4UOEGgAAAAAYHC65JLnxxl7HpQ8kGdX4OXWtTqZ01x7VhKhLSSmlvGqPV+VHb/tRJoyc0PCJAAAAAAAAAAAAAAAAAAAAAMDwIUINAAAAADS/efOSd72r13Hp75OMbvycujp7B6jXmrA6GdsyKuWU8+q9Xp3rTr1OgBoAAAAAAAAAAAAAAAAAAAAAGHAi1AAAAABAc2tvT974xmT16prjs45LMqqYSb2sSa66NilX+rifODETxuyQY/Y+Jtecco0ANQAAAAAAAAAAAAAAAAAAAADQEK1FDwAAAAAA6NfppycPPFBz9O5jkktfmoysJB3dKfbP7a1JKp9b//bcNybdpQ3ud9opaWvLtMnTcsVbrxCgBgAAAAAAAAAAAAAAAAAAAAAapsg0CwAAAABA39rbkxkzkmuuqTl+/2uSi6evfz+ykqS7ocvW66oNUM/4c/LlG5Jypedg4kQBagAAAAAAAAAAAAAAAAAAAACgMK1FDwAAAAAA6GX+/GTmzOT222uOP/LK5BsvSyobPT6yknR0p7F/dq8rqfxb7+MZf05SSs5928R0jxghQA0AAAAAAAAAAAAAAAAAAAAAFEaEGgAAAABoLo88krz5zcnDDyddXeuO/+3Q5D+P6B2gXquhIeru5MY6AeokSbmcGV/+32TX9lx414W59C2XClADAAAAAAAAAAAAAAAAAAAAAIUQoQYAAAAAmkd7e3LKKcmiRcmKFdWzSiV/f0Ty5Vdu+heaIytJR1eSlgHc2J3c+Nnk9X3dz5uX7LVXZiQ5cf8T01IeyDEAAAAAAAAAAAAAAAAAAAAAAH0rFz0AAAAAAGCdj30seeihpLMz6ehIKpWcd1jypdckXS1JZ2nTHzEySboGaN+mAtTf/Gay117r3gpQAwAAAAAAAAAAAAAAAAAAAABFai16AAAAAABAkuTGG5NvfStZuXJdgPqzL00+87qk0vNIdznp7E7aKv1+UkYm6ehKsi0b0JVNBKhf/erk7W/fhj8QAAAAAAAAAAAAAAAAAAAAAGDriFADAAAAAMW78cbkr/4qWbGi+r5SyWdemnzsjesD1GsVEqKuJB/uL0A9cWJy7bXb4AcBAAAAAAAAAAAAAAAAAAAAAGw75aIHAAAAAADDWHt78t73JjNnJs8+m1QqSaWSLx6UnPfGpLuPb+suJ52lTX/8yCTp2sqNleQ/Ppv8W1/R65Ejk5//PJkwYSt/EAAAAAAAAAAAAAAAAAAAAADAttVa9AAAAAAAYJiaPz859thkzpyka30p+oJ9kg+clPTVfF6ru5x0didtm3hwZJKOriQtW7Cxkrz/muQDff2MlpbkZz9LDjxwCz4cAAAAAAAAAAAAAAAAAAAAAGBgiVADAAAAAI33pz8lL395smxZzfFVk5J3nbLpAPVaAxqi7glQf+FPfdyXSsmvf50cdthz+FAAAAAAAAAAAAAAAAAAAAAAgMYpFz0AAAAAABhmfve7/P/s/XeY3XWB9/+/zpmWOimEBCKg0UU2FClS7AUEy4qIuAGxix25d7/3uu56rav+Lu91b7ZjQdEVkCYgUoS9sVBUpEgVBCJNSgIphEwyKTOZzJzP74/JJJlMSZ1zziSPx3XNNee8P5/5zAsu/+F4Xc/JK14xaIB6zmlJZSsfVykna0ubv68lSUvPFj60SE68ZZgAdZLccYcANQAAAAAAAAAAAAAAAAAAAABQ10SoAQAAAIAR93z7870vfvrT5Kijkkr/1PRN03sD1D1bEJMeTKWcdG3hp51bEqJ+/X3JlbcMc8ONNwpQAwAAAAAAAAAAAAAAAAAAAAB1r7HWAwAAAACAndulD1ya9131vkwujUvbV1YPuH7T9OS4j297gLpPUeoNUTdXNn9vS0+ypmHwa6/+ffKb64f4wVIp+eUvk6OP3taZAAAAAAAAAAAAAAAAAAAAAABVU671AAAAAABg53X+fefnfVe9L0myrLI6U77Q//qDpeStp21/gLpPUUrWlJPuLbi3pWfg2UFzk9v+Z6gfaEkefDA55pjtmQgAAAAAAAAAAAAAAAAAAAAAUDUi1AAAAADAiDj/vvPz0Z9+tPdN0ftt2disD1E/WEoO/fuke0d/SllKerYhRD3r6eSBK4e4ceLEZPHiZP/9d8RCAAAAAAAAAAAAAAAAAAAAAICqaKz1AAAAAABg5zNYgLrPsrFJ6YNJ84tGIEDdZ12IOpXNfwg6rjt582+T624d4oampmT+/KS1dQePBAAAAAAAAAAAAAAAAAAAAAAYWSOVeAEAAAAAdlHDBaiTJAuS5plJV8MID1kXou4e5paGIvmnnw0ToC6Vkt/+VoAaAAAAAAAAAAAAAAAAAAAAABiVRKgBAAAAgB1mswHqhcmYyUlXY5UGlZKehsFD1OUk/3hT8tf3D/WzpeTqq5Mjjxy5fQAAAAAAAAAAAAAAAAAAAAAAI6haqRcAAAAAYCe32QB1kpZJSWdT9Tb16WlI0rPhA9FSki/8Ovn7u4b4gYaG5Oc/T445pjoDAQAAAAAAAAAAAAAAAAAAAABGgAg1AAAAALDdtihA3ZGsqUGAuk9fiLopyV/dmnz19iFunDgxefjhZK+9qrgOAAAAAAAAAAAAAAAAAAAAAGDHK9d6AAAAAAAwuj3x/BN1H6Du09OQnHZn8n9vGeKGvfdO5s8XoAYAAAAAAAAAAAAAAAAAAAAAdgoi1AAAAADANuup9OT0n5/e+2aIAPW4VfURoE6SNz+afOumQS60tCSHHJLcemvS2lrtWQAAAAAAAAAAAAAAAAAAAAAAI0KEGgAAAADYZm0dbVm8anHKlcGvT2xPVrdUd9NQXvun5KYfD3KhqSk59NDkpz9N9t676rsAAAAAAAAAAAAAAAAAAAAAAEZKY60HAAAAAACj09PLns7Lv/XyNHX1ZFJXsrwlqZQ2XJ+0PFk+vnb7Nvaqp5Lf/mjdm/Imf5vvne9Mzj8/aW2t8ioAAAAAAAAAAAAAAAAAAAAAgJElQg0AAAAAbLX57fNz+PcPz9qetekqF0k5mbRmQ4h6aluydGKtV/baf0Fy+8Xr3pQ2qmQ3NPQGqK+8sia7AAAAAAAAAAAAAAAAAAAAAABGmgg1AAAAALBV5rfPz6HnHJqlHUtTqhRJklXNSbp6Q9Sl1cnS1tpu7PNnzycPnbvJYXNzMm5cst9+yfnn12IWAAAAAAAAAAAAAAAAAAAAAEBViFADAAAAAFts4wB1it4AdSlJit4Q9dgXkiWTajpxvRe3JY99b6ODUinZbbekqSnZc8/kssuS1jqpZQMAAAAAAAAAAAAAAAAAAAAAjIByrQcAAAAAAKPDH577w4YAdZJUivXXSkkmLa2fAPXM5clTZ290UColLS29AepZs5Krr0723rtW8wAAAAAAAAAAAAAAAAAAAAAAqkKEGgAAAADYrPPvOz+v+P4rsmT1kt6Douh3fWJbsry1BsMGMX1F8uy3BrkwdmwyZ05y/fUC1AAAAAAAAAAAAAAAAAAAAADALqGx1gMAAAAAgPp2/n3n56M//ej695WikvJGDerWpcmySTUYNogpq5JF3xjkwrhxycUXJ29/e9U3AQAAAAAAAAAAAAAAAAAAAADUSrnWAwAAAACA+rVpgLpPZd33yUvqJ0A9uSNZ+l+DXBgzJrniCgFqAAAAAAAAAAAAAAAAAAAAAGCXI0INAAAAAAzqqrlXDRqg7jPl+WTplCoOGsbEzqTtP4a4+PGPJ297W1X3AAAAAAAAAAAAAAAAAAAAAADUAxFqAAAAAGCAa+Zek/dc/p7BLxbJ7guTF6ZWd9NQxncl7f8+xMWJE5N/+qeq7gEAAAAAAAAAAAAAAAAAAAAAqBci1AAAAABAP5c/eHneffm7+x8WG76mL0yen1aDYYMYszb5078Oc8NttyWtrVXbAwAAAAAAAAAAAAAAAAAAAABQT0SoAQAAAID1Ln/w8pz8k5M3HPTFp9eZ8WyyuE4C1C1rk85lyX5fGOKG449PDjywmpMAAAAAAAAAAAAAAAAAAAAAAOqKCDUAAAAAkCS5+P6LNwSoN4lPJ8mMZ5JFM6o+a1BNPcma5Un2TJaNTaZsGqJuakp++tNaTAMAAAAAAAAAAAAAAAAAAAAAqBsi1AAAAABAbn/q9nzg6g/0vikGXp/5RLJoZnU3DaVUJGvbkuyx4WxAiPr++6s9CwAAAAAAAAAAAAAAAAAAAACg7jTWegAAAAAAUFtzn5+b1/3wdb1vBglQT38iee7F1d00lFKRFEuS7DnwWl+Ium2fbyWzZ1d9GwAAAAAAAAAAAAAAAAAAAABAvSnXegAAAAAAUDtzn5+bA88+MJVUBg1QT3skWTwKAtR9lo1Nnv/gnKptAgAAAAAAAAAAAAAAAAAAAACoZyLUAAAAALCL2lyAevpjyZKXVX/XoIpkj7kZNkCdUvKj9/wou7fuXq1VAAAAAAAAAAAAAAAAAAAAAAB1TYQaAAAAAHZBmwtQT5ifLJ5V/V2DKpL9H0wWvGKYe0rJee86L6e84pSqzQIAAAAAAAAAAAAAAAAAAAAAqHci1AAAAACwi3l62dMbAtSDGD8/WTmjyqOGMfuh5OFDh7mhlBw84+B88OAPVm0TAAAAAAAAAAAAAAAAAAAAAMBoIEINAAAAALuQ+e3zc8h3D9kQoC42ueGZZNWMJKVqLxvcnz+QzD1kmBtKyUHTD8pvPvqbNJQbqjULAAAAAAAAAAAAAAAAAAAAAGBUEKEGAAAAgF3E/Pb5Oejsg7JszbLBb1ieZM/UTYB638eSPx42zA3rAtS//dhv09rSWrVdAAAAAAAAAAAAAAAAAAAAAACjhQg1AAAAAOwCurq7ctC3NwlQFxvdsDzJuNRNgPqljyVLZiXlYogbBKgBAAAAAAAAAAAAAAAAAAAAADZLhBoAAAAAdgFPL3s6y7qWDX6xzgLUM59O/jQ76Sonk9YMEqIWoAYAAAAAAAAAAAAAAAAAAAAA2CIi1AAAAACwk5vfPj+vOe81Gw6KdV9Jb4B6bOonQP1csvClSalIVjUPEqIWoAYAAAAAAAAAAAAAAAAAAAAA2GIi1AAAAACwE5vfPj+HnnNolnYsTbkobYhPJxsC1HXyKeEei5KFe/e+LmWTEPXacloamvOGfd4gQA0AAAAAAAAAAAAAAAAAAAAAsIUaaz0AAAAAABgZ6wPUq5cmlUqS3t50pZS6C1DPWJIsntn/rJQk60LUaRqTN7349bn8Ly8XoAYAAAAAAAAAAAAAAAAAAAAA2EIi1AAAAACwE9oQoH4hqRT9rpWLpDImdROg3n1J8vyMwa+VSqWklKwtunPRiRcJUAMAAAAAAAAAAAAAAAAAAAAAbIU6ycwAAAAAADvK/Pb5OfS7h2TpqoEB6iSpdCVpqP6uwezWljy/R1IpbXKhlKRcSsql7DZutzz6uUczbfy0WkwEAAAAAAAAAAAAAAAAAAAAABi1Gms9AAAAAADYcea3z8+hZx+cpZ1Lk4H96VTWpG4+FZzSlryw+4b3ldK6v5pXKvV+JZk6dmru+9R92at1r5psBAAAAAAAAAAAAAAAAAAAAAAYzeokNwMAAAAAbK/eAPUrsrSzre4D1JOXJ20bBajT25xOJUlZgBoAAAAAAAAAAAAAAAAAAAAAYIco13oAAAAAALD9urq78srvHjZ0gLozdROgntSeLNtto4NS/+uVV8hdqgABAABJREFUoiJADQAAAAAAAAAAAAAAAAAAAACwA4hQAwAAAMBOoLmxOR9ZPHPwAHVHkqaqTxrUhNXJ8qmbv++m998kQA0AAAAAAAAAAAAAAAAAAAAAsJ1EqAEAAABgFOup9PS+uPrqnHnWQ/n8rf2vVzqSNFd91qDGdSYrWzd/33nvOi8HzTxo5AcBAAAAAAAAAAAAAAAAAAAAAOzkRKgBAAAAYJRqX9Oed1/27lz1q+8k73tf0t2dM2/M+hB1ZXXqJkA9Zk2yesIgF0r93573rvPykUM/Uo1JAAAAAAAAAAAAAAAAAAAAAAA7PRFqAAAAABiF2te05+QrTs498+7MGf/vjFz1ks711868MSlWJWmp3b6NtXQlneM3f58ANQAAAAAAAAAAAAAAAAAAAADAjtVY6wEAAAAAwNbpC1Dfv+D3SVtbKpWenPGO3msn/jEZ9/8lxZiaTlyvaW2yZtwQF0sbXl4558qcOPvEqmwCAAAAAAAAAAAAAAAAAAAAANhVlGs9AAAAAADYcusD1AvvT1asSHp6kiSVUnLGO5Kx/1/SMVT0ucoa1yZrx27+vqvnXC1ADQAAAAAAAAAAAAAAAAAAAAAwAhprPQAAAAAA2DL9AtRr1iQdHUlRrL++qCfpnlDDgRtp6E66hwtQl3q/XXbSZTlh9glV2QQAAAAAAAAAAAAAAAAAAAAAsKsp13oAAAAAALB5/QLUSbJiRe/3dRHqF7rqJ0CdnqRnzDDXNwpQzzlwTlUmAQAAAAAAAAAAAAAAAAAAAADsikSoAQAAAKDODQhQr1mT9PSsv97WmXS11mjcpnqStAxzfV2A+qJ3XyRADQAAAAAAAAAAAAAAAAAAAAAwwkSoAQAAAKCODQhQJ8nq1b3fiyKrViedk2sybaBKtihA3VRuyntmv6caiwAAAAAAAAAAAAAAAAAAAAAAdmki1AAAAABQp3oqPXn/le/vH6Du6Eg6O5NKJStWFGmfWrt9/VSSdAxzfV2AurHcmPs/fX/GNo+txioAAAAAAAAAAAAAAAAAAAAAgF2aCDUAAAAA1KmGckM+dsjHUi6VkzVrkiVLkuXLkyTty5OV02o8sE9fgHrSINdK6RegfuDTD2T27rOrtw0AAAAAAAAAAAAAAAAAAAAAYBcmQg0AAAAAdezEFx2Tbz53SMpty5KeniTJyqXJqhm13bXeUAHqjeLTiQA1AAAAAAAAAAAAAAAAAAAAAEAtiFADAAAAQL2aNy9529ty4iX35pu3Tkq5SFYuLLJiZq2HrVMkWZWBAepNCFADAAAAAAAAAAAAAAAAAAAAANSGCDUAAAAA1KNnnklOOCF56qkkyYlPjcmeT1ey4sW1nbVekWRFUp48yLXShpcC1AAAAAAAAAAAAAAAAAAAAAAAtSNCDQAAAAB1YPnq5RvetLcnp5ySLFy4/ujruy3I3S+vwbDBFEkWJeUpvW/LxeC3NZWbBKgBAAAAAAAAAAAAAAAAAAAAAGpIhBoAAAAAauzmJ2/O5H+dnH2/sW/vwT/+Y/LUU+uvnz1tQf7hhNpsG6BI8kxSflH/4/Uh6lLvt6ZyU+7/9P0C1AAAAAAAAAAAAAAAAAAAAAAANdRY6wEAAAAAsCu78Ykb85aL3pIkebzt8ez7f1+Ux35crL9+6aQF+dzxtVq3iSIZ90zS+dLBL5dTSiW92+/+xN0C1AAAAAAAAAAAAAAAAAAAAAAANVau9QAAAAAA2FVd98h16wPUfR7vfC77zlmUJPnZ5AU59T1JUarFuoGanhs6QJ1SknIp08ZNy6OnP5pX7PGKak4DAAAAAAAAAAAAAAAAAAAAAGAQjbUeAAAAAAC7ouseuS7HX3r8oNcen1zJi966IAtm1k+AesKTyeo/G+JiKUmpnKljp+a+T92XvVr3quY0AAAAAAAAAAAAAAAAAAAAAACGUK71AAAAAADY1QwZoC7WfV+TPFdHAerxj21BgHqcADUAAAAAAAAAAAAAAAAAAAAAQL0RoQYAAACAKhoyQN1nTXo/tauTAPXLnko6/nyIi6UkZQFqAAAAAAAAAAAAAAAAAAAAAIB6JUINAAAAAFUyZIC6WPdVZwHqVz+UPH5x8vlbh7ihXM7UsQLUAAAAAAAAAAAAAAAAAAAAAAD1qrHWAwAAAABgVzBogLrY6PWa9Man6yRAvd+fktuu7n195o293//ttesulpKUBKgBAAAAAAAAAAAAAAAAAAAAAOpdudYDAAAAAGBnN69tXv8AdZHBA9R18mndxEXJyj2Tq/58w9mZNyafv23dm1I5U8cJUAMAAAAAAAAAAAAAAAAAAAAA1Ls6ydoAAAAAwM5pXtu8fPL/fTLl0rqP4opNbqizAPXYpcmESUmllJzxjo1C1KVSzlxySD5/5F9l2vhpAtQAAAAAAAAAAAAAAAAAAAAAAKNAY60HAAAAAMDO6sYnbsxbLnpLyqVyZoyZlkUrF6cyWGy6TgLUE5YlE8dteN8Xok5jQ06s7Jf8+tc5s7U1X3vrv6S5sblWMwEAAAAAAAAAAAAAAAAAAAAA2EJ1krcBAAAAgJ3LzU/enLdc9JYkSaWoZNHKxZnRWU65stFNa5I01GTeAOPak4ljBp5XyqWc8RflXPXdv05aW5NEgBoAAAAAAAAAAAAAAAAAAAAAYJQQoQYAAACAHezmJ2/O0RccveGgSCrlZNGYSmZ0lHpD1J2pmwB1w4pk0sZd6VIpKZd7vxobU5k6JefO/2l6Kj012wgAAAAAAAAAAAAAAAAAAAAAwNZrrPUAAAAAANiZDAhQb6RSThaNLVLpSt18MldemUxv2uigVOr9SpKxY5OJE3Pwnofk4vdcnIZynVSzAQAAAAAAAAAAAAAAAAAAAADYInWSugEAAACA0W/QAHXR/21lTZKm1IfVyYzBPiFsaEgmTkxaWnLwHgfnsvdeltaW1qrPAwAAAAAAAAAAAAAAAAAAAABg+4hQAwAAAMAOMCBAXQxy0+okzdVatBkdyZ7lQc4nTUrGjk0SAWoAAAAAAAAAAAAAAAAAAAAAgFFOhBoAAAAAttOWBKhLq5KipXqbhtWZvChJJUlKpd6zUilpbhagBgAAAAAAAAAAAAAAAAAAAADYiZRrPQAAAAAARrMtCVCX6yhA/aK2pPjPcr55U0vKpXJvfLovRD1uXBIBagAAAAAAAAAAAAAAAAAAAACAnYUINQAAAABso+Wrl282QN24IqnUSYB6+vJk/nfLSUNDTlw4Jd+8dVLKfZsbGpKWFgFqAAAAAAAAAAAAAAAAAAAAAICdiAg1AAAAAGyjUkMp45rG9b4ZJEDd3J50j63upqHstjJZdHY5KZeTyZOTUiknPjVmQ4h64kQBagAAAAAAAAAAAAAAAAAAAACAnUxjrQcAAAAAwGjU1tGWU688NZMaxmdN5+r0bPLn3lrakzXjarNtU5NWJ0u+WU4aGnoD1I0bPhY88akxyWtfk3NnlXLxey4WoAYAAAAAAAAAAAAAAAAAAAAA2ImIUAMAAADAVnp62dM54vtHpLu7K2NeWJ7pSRaPy/oQ9Zi2pHNiTSeu17w2WXZWORk7Npk4MSmV+t8wa1ZO/MdL8q4J49NQbqjNSAAAAAAAAAAAAAAAAAAAAAAARkS51gMAAAAAYDSZ+/zc7PvNfbNk9ZIs71yeznV/5m366qShkoxbWj8B6saepGtssu8ZSVpbBwao99wzufTSpLVVgBoAAAAAAAAAAAAAAAAAAAAAYCckQg0AAAAAW2ju83Nz8HcPztrK2hRFkaKULG/J+hD1+KXJ6tbabuzT0JN0t/S+fnxyJfvOWdT/hlmzkquvTvbeu+rbAAAAAAAAAAAAAAAAAAAAAACoDhFqAAAAANgC9z537/oAdYresyJZH6JeuTppn1zLhRupJD0t/Y/6hajnzEmuv16AGgAAAAAAAAAAAAAAAAAAAABgJydCDQAAAACbcd0j1+WV339lvwB1nyJJ06JkxdSaTBuokgEb+zw+uZJ9/1cp+a//Slpbq7kKAAAAAAAAAAAAAAAAAAAAAIAaEKEGAAAAgGFc98h1Of7S43vfDBJ3bnk2WTOtupuG1BegbhnkWqn36/E1z2X56uXV3QUAAAAAAAAAAAAAAAAAAAAAQE2IUAMAAADAEG584sbhA9TPJGtmVHfTkIYKUK+LT/e56UM3ZdK4SdXbBQAAAAAAAAAAAAAAAAAAAABAzYhQAwAAAMAgbn7y5rzlorf0vhksQP1EsmZmdTcNqcjgAepN3PCBG/LmWW+uxiIAAAAAAAAAAAAAAAAAAAAAAOqACDUAAAAAbOKOeXfk6AuO7n0zSIC66fFkzYuru2lIRZKeDB6gLm14ee0p1+aYlx1TpVEAAAAAAAAAAAAAAAAAAAAAANQDEWoAAAAA2MiDix7Mq899de+bQQLUeTpZ+5JqLhpGkWRlkjHD33btKdfmnfu9sxqLAAAAAAAAAAAAAAAAAAAAAACoIyLUAAAAALDO3Ofn5uDvHtz7ZrAA9bwkL6rmomEUSfOipDxpiOul3m8C1AAAAAAAAAAAAAAAAAAAAAAAuy4RagAAAABIb4D6wLMPTCWVwW94LskeVZ00tCLJiqR7ZjJjdVIeYrIANQAAAAAAAAAAAAAAAAAAAADArk2EGgAAAIBdXkdXRw46+6ANAepikxsWJtk9SanKw4ayLMnUpFJOFo1LZnSU+oeoSwLUAAAAAAAAAAAAAAAAAAAAAACIUAMAAACwi+vq7sqNT96YnvQMfsPCJLulbgLUTQvSG8Rep1JOFo0tMqOz3BuiFqAGAAAAAAAAAAAAAAAAAAAAAGCdxloPAAAAAIBamd8+Pwd9+6As61o2+A0rU1cB6nHPJav3GXheKSeLxlRy3D5vyvdOuiB7T9m7+uMAAAAAAAAAAAAAAAAAAAAAAKg75VoPAAAAAIBamN8+P684+xUDA9TFuu8rk7SkbgLU458ePEDdp9IQAWoAAAAAAAAAAAAAAAAAAAAAAPoRoQYAAABglzO/fX4OPefQLO9aPvgNq5I0p24C1K3PJateNsTFUu/XDR+4QYAaAAAAAAAAAAAAAAAAAAAAAIB+Gms9AAAAAACqqS9AvbRjaZKkXCqnUlQ23LAqSVPq5s+3tS5K2vcZ4uK6SPZNH7opb5715qptAgAAAAAAAAAAAAAAAAAAAABgdKiTlA4AAAAAjLz57fNz6Hc3BKj7lEvrPiZbnboKUE9YkrS/aPh7BKgBAAAAAAAAAAAAAAAAAAAAABhKneR0AAAAAGBkzW+fn0O+e0iWdCxJURQDrpdL5aQhdfOJ2cSlyco9hrmhJEANAAAAAAAAAAAAAAAAAAAAAMDw6iSpAwAAAAAjpy9A/ULHC0mSIsWAEHWlo1I3n5a1LktWTxvmBgFqAAAAAAAAAAAAAAAAAAAAAAC2QJ1kdQAAAABgZGwaoO6zcYi60lFJGmqxbqDm9mT8mGT66qShMsgNAtQAAAAAAAAAAAAAAAAAAAAAAGwhEWoAAAAAdlpd3V057JzDBgSo+xQpUlldPwHq8oqke0rS2dj7fkCIWoAaAAAAAAAAAAAAAAAAAAAAAICtIEINAAAAwE6rs6czE5onDH1DR5LGqs0Z3uqkMiUpSsnylkFC1ALUAAAAAAAAAAAAAAAAAAAAAABspXpJ7AAAAADADtW+pj0nX3FyOrs7M75pfFatXdX/htVJmmoybaDVSVp7XxZJsi5EnSRjekqZPn5aXvGiw/KGF7+hRgMBAAAAAAAAAAAAAAAAAAAAABiNRKgBAAAA2Om0dbTl1CtPzf0L70+StLa0Jj09WdXT2XvD6iTNtdvXT0fWB6j79AtRj2nNUXu9Mpe997I0lBuqvw8AAAAAAAAAAAAAAAAAAAAAgFFLhBoAAACAncr89vk57JzD0l3pzpiGlmTZsqSzs7fz3JysWpukpbYb11uTZOLgl4okKZfS2NicS95zSW9IGwAAAAAAAAAAAAAAAAAAAAAAtoIINQAAAAA7jbaOthx2zmF5oeOFpFJJOpMx3Ruu112Aevww10tJY7kxd33irkwZO6VaqwAAAAAAAAAAAAAAAAAAAAAA2ImUaz0AAAAAAHaEJauW5NQrT0332jVJTyUpkuUtSee6P8O2oEj9BKi7stkAdVO5Kfd/+v68ePKLq7UKAAAAAAAAAAAAAAAAAAAAAICdTGOtBwAAAADA9pr7/Nwc8t1D0lSU0tq+JmnsDVAnvd/bupKMq+nEDdZm+C0bBahn7z67WqsAAAAAAAAAAAAAAAAAAAAAANgJiVADAAAAMKrNfX5uDv7uwVlbWZuuIklz0trVe215S1JZkfoJUHcnGTvM9VLvtztOu0OAGgAAAAAAAAAAAAAAAAAAAACA7SZCDQAAAMCotXGAOkXv2arm3u+tXUlbR5KJNZvXX3eSMcNcXxegvvaUa3PYzMOqsQgAAAAAAAAAAAAAAAAAAAAAgJ2cCDUAAAAAo9JgAeo+q5qTVSuTtNZk2kA92aIA9aSWSTnuZcdVYxEAAAAAAAAAAAAAAAAAAAAAALuAcq0HAAAAAMDWGi5AnSRZkvoKULcMc7204eXvPva7NDc2j/QiAAAAAAAAAAAAAAAAAAAAAAB2ESLUAAAAAIwqTy97ekOAejCLk0yu5qJhVLLFAeprT7k2+03fb6QXAQAAAAAAAAAAAAAAAAAAAACwCxGhBgAAAGDUmN8+P4d///B0V7p7D4pNbliYZGq1Vw2hkmSITnZKGRCgfud+76zCKAAAAAAAAAAAAAAAAAAAAAAAdiUi1AAAAACMCvPb5+fQcw7N0o6lKZVKKW1ccU6SZ5NMq8m0gSpJupOM3+islAHx6USAGgAAAAAAAAAAAAAAAAAAAACAkSNCDQAAAEDd6+ruyiu/98os7Vi6/qxfz/mZJDNqMGwwxbqv8RkyPN1HgBoAAAAAAAAAAAAAAAAAAAAAgJEkQg0AAABA3WtubM5HDv5I/8OiSKlIMi/JzBqMGkyRpJKUx27+YzcBagAAAAAAAAAAAAAAAAAAAAAARpoINQAAAACjwpnHnpnPv/rzGw6KpLIwyZ41m9TfJgHqcmnoj94EqAEAAAAAAAAAAAAAAAAAAAAAqAYRagAAAADq0vLVywecbRyirixMsnuVRw2lSLJ6Q4C6z2AhagFqAAAAAAAAAAAAAAAAAAAAAACqRYQaAAAAgLpz85M3Z/K/Ts6+39h3wLUzjz0zBxb71FeAujPJ5KQoigGXy6VyGkuNKaWU337ktwLUAAAAAAAAAAAAAAAAAAAAAABUTWOtBwAAAADAxm5+8uYcfcHRSZLH2x7Pvt/YN4/9r8fWX//kuXPyQNdTSalGAzdWJOlIMqnvbZEUSam0YdzUsVNz36fuy+TmyZkwZkJNZgIAAAAAAAAAAAAAAAAAAAAAsGsq13oAAAAAAPTZOEDdpy9EnSRf+clf5ftP/Lg+AtRJsixJa/+jIkWKokiyIUC9V+teAtQAAAAAAAAAAAAAAAAAAAAAAFRdY60HAAAAAEAyeIC6z+Ntj6f5/1fK2q7UT4C6Lcnug18qUmRC04T1AWoAAAAAAAAAAAAAAAAAAAAAAKiFcq0HAAAAAMBwAeokSUfqK0A9Lxk/aejLpZRy5IuOzJ4T9qzeJgAAAAAAAAAAAAAAAAAAAAAA2ERjrQcAAAAAsGvbbIC6M0lD6idA/XSy54wkXb1vVzX3v1xKKW98yRtz5clXpqHcUPV5AAAAAAAAAAAAAAAAAAAAAADQp1zrAQAAAADsujYboF6T3vh0vQSon1sXoF6ntSsZ3zBm/fu+APU1p1yT1pbWGgwEAAAAAAAAAAAAAAAAAAAAAIANRKgBAAAAqIktClAn9fMJ1qKkvHfS2dj/uHXclIxvGp9yygLUAAAAAAAAAAAAAAAAAAAAAADUlcbN3wIAAAAAO9by1ctHV4B6SVKe2ftyeUvv9zHdScaOTZK0trTmtXu/Nj+e82MBagAAAAAAAAAAAAAAAAAAAAAA6ka9ZHwAAAAA2IVUSpWUS5v5aKpePrlamuw5IZm0ZsPR8pakszHJpElJkoP3OFiAGgAAAAAAAAAAAAAAAAAAAACAulMvKR8AAAAAdhFtHW059cpTM6ll0uA3dKZ+PrValmR60t6cjOneJEQ9ppTOnjU5eI+Dc9l7LxOgBgAAAAAAAAAAAAAAAAAAAACg7jTWegAAAAAAu4757fNz2DmHpbvSnTGNYzKlYULaulduuGFNkoaazeuvPcm03permnu/t3b1fl/ekqRcSmO5MZe85xIBagAAAAAAAAAAAAAAAAAAAAAA6pIINQAAAABVMb99fg4959As7ViaFEm62jNmbZEpDaW0tRRJZ+rn06oVSab2P+oXom5tTWNTS+791L2ZMnZKtdcBAAAAAAAAAAAAAAAAAAAAAMAWKdd6AAAAAAA7v34B6kqRVCpZ3tiTzoYiY3pK9RWgXp1kiK70quakvbUlR734NXnkc49kr9a9qjoNAAAAAAAAAAAAAAAAAAAAAAC2hgg1AAAAACPq4YUP9waoVy9NKpWkKNZfW95cZEGpUl8B6tZhrpeStaUiF777wkwZO0SpGgAAAAAAAAAAAAAAAAAAAAAA6oQINQAAAAAj5vIHL88B5xyQJauXJEUlKfpfr3QkaarJtIE6stkAdVO5Kb//9O8zbfy0aq0CAAAAAAAAAAAAAAAAAAAAAIBtJkINAAAAwIi4/MHLc/JPTu59UySVTa5XVidprvaqIaxJyhOS0lDX1wWo7//0/Zm9++xqLgMAAAAAAAAAAAAAAAAAAAAAgG0mQg0AAADADnfJ7y/pF6DuU1lXea6sTtJS9VmD60rK43pflopNQtSlCFADAAAAAAAAAAAAAAAAAAAAADBqiVADAAAAsEN9/ddfz/uvef+Q1ysrU18B6rEbvS8lpVIppVJpfY1agBoAAAAAAAAAAAAAAAAAAAAAgNFKhBoAAACAHeZff/uv+Ydf/cOGg2KTG9qTjE19WJsU/1Lk86/7QtJQ7v0ql5N1EepSSgLUAAAAAAAAAAAAAAAAAAAAAACMao21HgAAAADAzuE/bv2PfOHGL2w42DRAvSzJhCoOGk53UpzZO/DMY89Mkvzb7f/W75bdxu2Wuz9xd148+cVVnwcAAAAAAAAAAAAAAAAAAAAAADuCCDUAAAAA2+0/bv2P/M0Nf7PhYNMAdVuSidVcNIzupPi//QduGqKeOnZq7vvUfdmrda+qzwMAAAAAAAAAAAAAAAAAAAAAgB2lXOsBAAAAAIxu/QLURQYGqJemfgLUPUnGJvt+Y98Bl8489sx8/tWfz7Rx0wSoAQAAAAAAAAAAAAAAAAAAAADYKYhQAwAAALDNrn7o6v4B6k0tSdJazUXD6Ekypvfl422PDxminvfX8wSoAQAAAAAAAAAAAAAAAAAAAADYKYhQAwAAALBNbn7y5px4xYm9bwYLUC9OMrmKg4ZTSVLqfzRUiLq5sbk6mwAAAAAAAAAAAAAAAAAAAAAAYISJUAMAAACw1W544oYcfcHRvW8GC1AvSjK1mouGUVn3vWXgpaFC1AAAAAAAAAAAAAAAAAAAAAAAsDMQoQYAAABgq8xrm5djLzq2981gAeolSXar5qJhDBOg7vN42+NZvnp5VeYAAAAAAAAAAAAAAAAAAAAAAEA1iVADAAAAsMXa17TnQz/9UO+boQLUk6s4aDjFuq9hAtRJctSLjsqEMROqsQgAAAAAAAAAAAAAAAAAAAAAAKpKhBoAAACALdLW0ZYTLj0hv3nq16MjQF3JZgPUh888PL/44C/SUG6oxioAAAAAAAAAAAAAAAAAAAAAAKiqxloPAAAAAKD+zW+fn0O+e0iWdixNUQxSoF6eURmgvvFDN6a1pbUaqwAAAAAAAAAAAAAAAAAAAAAAoOrKtR4AAAAAQH2b3z4/B3/34LzQ8cLQAerxVZ81uCJJRzYEqEuD3yZADQAAAAAAAAAAAAAAAAAAAADArkCEGgAAAIAh9QWol3YsHfyG1amvAPXKJJvpSgtQAwAAAAAAAAAAAAAAAAAAAACwqxChBgAAAGBQAwLUxSY3dCZpqvaqIRRJViR7tpQzZU1pyNsEqAEAAAAAAAAAAAAAAAAAAAAA2JWIUAMAAAAwwPz2+Tnku4dsCFBvqjNJQ5Khe8/VtSopT0k6G4qM6SkNGqIWoAYAAAAAAAAAAAAAAAAAAAAAYFcjQg0AAABAP20dbTn0nEPzQscLGw6LjW5YnfoKUK9MypN6Xy5vLjaEqBsnrL9FgBoAAAAAAAAAAAAAAAAAAAAAgF1RY60HAAAAAFA/2te0530/eV+WdS4b/Ia1SZpSlwHqPsubi6S7nDFjJ2ZKd1MaSg35xQd+IUANAAAAAAAAAAAAAAAAAAAAAMAup1zrAQAAAADUh/Y17Tn5ipPzwKIHMrF5YkqblqbXrvteLwHqZQMD1H2WNxfp7O7MUXsdlUfPeDRTxk6p6jQAAAAAAAAAAAAAAAAAAAAAAKgHItQAAAAApKfSk/df+f7cv/D+JMmYxjGZPGbyhhD12iRF6ipAnWlJZbA9pVJSShrLjbnkPZcIUAMAAAAAAAAAAAAAAAAAAAAAsMsSoQYAAAAgSfKxQz6WcmnDx0V9Iep0pTdAXS+fJL2QZNqGt/1C1KUk5VKmjp2aez91rwA1AAAAAAAAAAAAAAAAAAAAAAC7tHpJBwEAAABQI/Pa5uXdl707SfLNt3+zX4i6rbOtvgLUS5LMGHhcKaU3QF0qZ+rYqbnvU/dlr9a9qjwOAAAAAAAAAAAAAAAAAAAAAADqS73kgwAAAACogeseuS77fGOfXP/Y9Tnj+jOSbBKiXpP6+QRpaZI9hr5cKSVTxwlQAwAAAAAAAAAAAAAAAAAAAABAn3pJCAEAAABQZT+d+9Mcf+nxSZKeoicLVy7sF6JesGRB/Xx6tCzJ9GGul3q//fqDvxagBgAAAAAAAAAAAAAAAAAAAACAdRprPQAAAACA6rvkgUvy/qve3+9s4xD1s88/mzTUaNymViSZNsS10oaXl510WfbfY/9qLAIAAAAAAAAAAAAAAAAAAAAAgFGhXOsBAAAAAFTXd+78zoAAdZ+eoifPLq6jAPXKJFOGuLZJgHrOgXOqsQgAAAAAAAAAAAAAAAAAAAAAAEaNxloPAAAAAKB6vnPnd/LZ6z/b/7DY6HVHkqZqLhrG6iSTh7i2UYD64hMuFqAGAAAAAAAAAAAAAAAAAAAAAIBBiFADAAAA7CIGBKiLTW6otwB16xDXNgpQ/9Ob/imnHnJqNRYBAAAAAAAAAAAAAAAAAAAAAMCoI0INAAAAsAvoF6DeND6d9Eafm6u5aBidGTpAvZF/OeZf8rev+9sRnwMAAAAAAAAAAAAAAAAAAAAAAKOVCDUAAADATu7bd3w7n/v553rfDBagXpWkpZqLhrEmyYRhrpd6v/37W/49//u1/7saiwAAAAAAAAAAAAAAAAAAAAAAYNQq13oAAAAAACPnrN+eNXyAemXqJ0DdlWT8MNcFqAEAAAAAAAAAAAAAAAAAAAAAYKs01noAAAAAACPjr//nr3PW3Wf1vhksQL0iydhqLhpGV5Jxw1wXoAYAAAAAAAAAAAAAAAAAAAAAgK0mQg0AAACwEzrjujPyrXu+1ftmsAB1e4aPPlfT2mxRgPqq916Vdx/w7ioMAgAAAAAAAAAAAAAAAAAAAACAnYMINQAAAMBO5iNXfiQ//MMPh75hWZIJ1VqzGd1Jxg5zfV2A+lV7vSrHzz6+GosAAAAAAAAAAAAAAAAAAAAAAGCnUa71AAAAAAB2nNOuOq1/gLrY5Ia21FeAesww19cFqI/Y84j8/AM/T0O5oRqrAAAAAAAAAAAAAAAAAAAAAABgpyFCDQAAALCTOO2q03LuA+cOfcPSJBOrNmd4PdmiAPXUMVPz8w/+PK0trdVYBQAAAAAAAAAAAAAAAAAAAAAAOxURagAAAICdwKAB6mKj10uS1EvHuSdJyzDX+wLUY6fm/s/cnyljp1RjFQAAAAAAAAAAAAAAAAAAAAAA7HREqAEAAABGuUED1BtbmGRytdZsRiVDfyJVyoYA9Zipuf/T92ev1r2qNAwAAAAAAAAAAAAAAAAAAAAAAHY+ItQAAAAAo9jf/ezvhg9QP5tkWtXmDK+S3sh00ybnG8Wnk2TKmCm5/zMC1AAAAAAAAAAAAAAAAAAAAAAAsL1EqAEAAABGqR//4cf5l9/9y9A3zE8yo2pzhldJ0pOUmrIhOr1JfDrpDVA/8JkHBKgBAAAAAAAAAAAAAAAAAAAAAGAHaKz1gNHsySefzD333JNHHnkky5cvz/Lly7N27dptfl6pVMoPfvCDHbgQAAAA2Fnd/OTNmXPlnKFveDbJHlWbM7wiSUuy54Q909ndmWWdy1KkGHCbADUAAAAAAAAAAAAAAAAAAAAAAOxYItRbacWKFfnOd76TH/zgB3n88cd32HOLohChBgAAALbI8tXLc/QFRw99w3NJpldtzvCKJM29AeokGdM4JpPHTO4Xoi6llCljp+T+T98vQA0AAAAAAAAAAAAAAAAAAAAAADtQudYDRpNf/OIXOeCAA/LFL34xjz32WIqi2CFfAAAAAFvj0bZHh764OMnuVZsyvCL58B+SK+dcmXJpw8dQfSHqUkopp5w3vuSNefyMxwWoAQAAAAAAAAAAAAAAAAAAAABgBxOh3kLXXnttjj/++Dz77LMpiiKlUmmHfQEAAABsqbuevStH/fdRg198PsmUqs4ZWpGkK7nhwJYkyTff/s0BIepD9jgkx7702FxzyjWZMrZehgMAAAAAAAAAAAAAAAAAAAAAwM6jsdYDRoP58+fnlFNOydq1a/uFo4uiWH/P+PHjM2nSpDQ1NdVqJgAAALCT6wtQFykGXlyeZHK1Fw2hSLI2yfhkYbpyxvVn5Jtv/2a++fZv5ozrz0ilqOTgPQ7OZe+9LOObxqeh3FDrxQAAAAAAAAAAAAAAAAAAAAAAsFMSod4CX/7yl9PR0dEvPl0qlTJnzpx84AMfyJFHHpnp06fXeCUAAACwM9tsgHps1ScNrTvJuN6XPaUiC1cu7BeiPvf35+bi91yc1pbWms4EAAAAAAAAAAAAAAAAAAAAAICdnQj1ZqxduzY//vGP+wWod9ttt1x99dV57WtfW+N1AAAAwK5gZefKoQPU7ekNUJeqvWoInUkm9D/qKXr6haivPvnqNJQbajIPAAAAAAAAAAAAAAAAAAAAAAB2JeVaD6h3t912W1atWpWkN0BdKpXyk5/8RIAaAAAAqJoJYybkiJlHDLzQmWRM6jpA3acvRH3u78+t6iQAAAAAAAAAAAAAAAAAAAAAANiViVBvxp/+9Kf1r0ulUo455pi84Q1vqOEiAAAAYFf0u0/8LkfOPHLDQWd6P9kZBQHqPj1FT85+29lpKDdUZRIAAAAAAAAAAAAAAAAAAAAAAOzqGms9oN4tWbIkSVIURUqlUo477rgaLxqdnn/++dx111154okn0t7enqampuy2227Zf//9c/jhh6epqanWE+veM888kz/84Q956qmn0t7enqIoMmHChMycOTMve9nLsv/++6elpaXWMwEAABhBv/vE73LU94/KnU/eWV8B6pVJJg9yvsm+a0+5NntP2bsKgwAAAAAAAAAAAAAAAAAAAAAAgESEerOKouj3fu+9hZK2xhVXXJGzzjort95664B/l30mTpyYOXPm5Atf+EJe/vKXV3nhQEVR5LHHHss999yTu+++O3fffXfuu+++rFixot99H/7wh3P++eeP6Jb58+fne9/7Xn70ox/l8ccfH/be5ubmHHLIITnuuOPynve8J4ceeuiIbgMAAKCKnnsuufPO5IEHctZ9z+TVs1P/AepNXDPnmrxzv3eO9BoAAAAAAAAAAAAAAAAAAAAAAGAjItSbMX369H7vu7u7a7RkdHn22Wfz/ve/P7/+9a83e++KFSvygx/8IBdeeGG+9KUv5Utf+lJKpeqWtK688srccccdufvuu3Pvvfdm+fLlVf39m+rs7MxXv/rVnHXWWens7Nyin+nq6sqdd96ZO++8M7fffntuuOGGEV4JAADASOip9KSh3JCsXZv87GfJD3+Y3HZbkuSOrgV59SeTlGu7cb3lSXYb4tpG/2l/8YkX512z31WNRQAAAAAAAAAAAAAAAAAAAAAAwEZEqDfjoIMOSpL1UeSFCxfWcs6o8Oijj+ZNb3pTFixYsFU/19XVlS9/+cuZO3duLrzwwjQ0NIzQwoE+9rGP1Tw83efJJ5/M8ccfn4ceeqjWUwAAAKiyeW3z8tmffTYfKx2WE//zZ8m8eUmlknR15Ter2/LG/536CVCvytAB6o2c/fazc+orTh3xOQAAAAAAAAAAAAAAAAAAAAAAwEAi1Jtx2GGHZcaMGVm8eHGS5De/+U3+5m/+psar6tcLL7yQY489dtAA9Stf+cqccMIJmTVrVjo6OvLoo4/mkksuyXPPPdfvvh/96EeZPn16/uu//qtKq+vHI488kje+8Y1ZtGjRgGszZszIO97xjsyePTvTp0/PuHHjsmzZssybNy8PPPBAbr311ixZsqQGqwEAANgRrnvkuhx/6fEpF6Xct+r/JZVxObGtO+nqSpK88e9SPwHqFUmmDHO992955ey3n53PHPmZaiwCAAAAAAAAAAAAAAAAAAAAAAAGIUK9GaVSKZ/85Cfzta99LUly4403ZtGiRZkxY0aNl9WnT37yk3nmmWf6nU2cODEXXXRR3vWudw24/+tf/3q+/vWv56tf/Wq/87POOitvfetb8/a3v30k527Wbrvtlle+8pWZMmVKLrvsshH9XYsXL85xxx03IEC977775t///d/zzne+M6VSacifr1QqufPOO3PhhRdm4cKFI7oVAACAHasvQJ0iqaTIgrFFznjDymRVKSc+UkrpC5X6CVC3J5k6zHUBagAAAAAAAAAAAAAAAAAAAAAAqBuloiiKWo+odytWrMj++++f5557LknyoQ99KOedd16NV9WfX/7ylznuuOP6nTU3N+fWW2/N4YcfPuzPnnXWWfnrv/7rfmd/9md/lrlz56axceRb6ZMnT06SHHbYYTn88MNzxBFH5PDDD8+sWbOSJL/61a/y5je/ud/PfPjDH87555+/Q35/URR529vell/84hf9zufMmZMLL7wwzc3NW/284YLVO6sDDjggDz/88IDz/fffPw899FANFgEAAGzexgHqjZUryZ6rkmebkzTUZNpAK5JMGea6ADUAAKOA/z8BAAAAAAAAAAAAAAAAAADYlYx83XcnMHHixFxyySU59thjs3bt2lxwwQV5+ctfni9+8Yu1nlZXvva1rw04+8pXvrLZAHWS/NVf/VX+53/+J7/85S/Xnz3++OO55JJL8qEPfWiH7hzMfffdl5e85CU1CzdfeOGFAwLUJ554Yi655JI0NGx9aWxXDFADAACMRkMFqJOkUk6ebUr9BKhXZosC1N9667cEqAEAAAAAAAAAAAAAAAAAAAAAoE6Uaz1gtHj961+fK664Ii0tLSmKIl/60pcyZ86cPPnkk7WeVhceeuih3HLLLf3Opk2bls9//vNb/Ix//ud/HnD2ne98Z7u3bYlZs2bVLNy8Zs2aAUHz3XbbLd/73ve2KUANAADA6DBcgDpJ0pH6+fNhq5NMHuJaKesD1LMnz86nj/x0dTYBAAAAAAAAAAAAAAAAAAAAAACbVS8po7r2m9/8JknS2tqaf/7nf84Xv/jFdHZ25ic/+UmuuuqqHH300XnjG9+YfffdN1OnTk1TU9M2/643vOENO2p2VV166aUDzj760Y+mubl5i5/xyle+Mq985Stzzz33rD+744478uSTT2bWrFk7ZGc9uuiii/Lcc8/1O/vyl7+cadOm1WgRAAAAI+2audfk3Ze/e+gbOpJs+8cLO1ZHktZBzjf5W077tO6TOz59RxrK/qASAAAAAAAAAAAAAAAAAAAAAADUCxHqLfCmN70ppVL/slKpVEpRFOnp6ckNN9yQG264Ybt/T6lUSnd393Y/pxZ+9rOfDTh773vfu9XPee9739svQt337M985jPbvK3e/fd//3e/983NzfnABz5QozUAAACMtMsfvDwn/+Tk3jfFIDesTrLlf9NpZHUmmbjudWno2/aeuHf+8Nk/pLVlsFo1AAAAAAAAAAAAAAAAAAAAAABQK+VaDxhNiqLo91UqldbHqHfU12i0atWq3Hvvvf3Oxo0bl8MOO2yrn/X6179+wNktt9yyzdvq3bx583LHHXf0OzvuuOMyderUGi0CAABgJP107k83BKgHsyr1E6Bek94AdSnDBqhnTpiZB09/UIAaAAAAAAAAAAAAAAAAAAAAAADqUGOtB4wmpdLgxaWhzrfGaA1QJ8nvf//7VCqVfmeHH354Ghu3/n9eRxxxRJqamrJ27dr1Z/fcc892b6xXN9xww4CzV73qVTVYAgAAwEib1zYvJ1x+woaDTT8KWJlkTDUXDaMryYTN3zZz4szMPX2uADUAAAAAAAAAAAAAAAAAAAAAANSpcq0HjBZFUYzo12j2xz/+ccDZn/3Zn23Ts5qbm7PXXnv1O3viiSfS3d29Tc+rd7feeuuAs0MOOWT966Io8vOf/zynnXZaDjzwwEycODHNzc3ZY489ctBBB+WDH/xgLrjggrzwwgtVXA0AAMDWal/Tnk/+v0+modQwxA2pnwD12iTjN3+bADUAAAAAAAAAAAAAAAAAAAAAANS/xloPGA1uvvnmWk+oa0899dSAsxe/+MXb/Lx99tknTz755Pr3PT09eeaZZ/LSl750m59Zr/7whz8MONt3332TJA8++GA+/OEP59577x1wz6JFi7Jo0aI8+OCDueiiizJhwoT81V/9Vf72b/82kyZNGvHdAAAAbLn2Ne05+YqTc//C+zN9/PQsXrU4PZWejW5IMq5m8/pbmy3aIkANAAAAAAAAAAAAAAAAAAAAAACjgwj1FnjjG99Y6wl1beHChQPO9t57721+3mA/u2jRop0yQv2nP/1pwNmkSZNy7rnn5rOf/WzWrFmzRc9ZuXJl/umf/ik//vGPc+211+blL3/5jp4KAADANtg4QJ0kWbMm09c0ZnFDT3rKSZYlmVDDgRvrzhbHsO867S4BagAAAAAAAAAAAAAAAAAAAAAAGAVEqNluS5cuHXA2YcK2F7QG+9kXXnhhm59Xr9auXTvoP9dNN92UT3ziE6lUKv3OJ06cmD322CM9PT1ZsGBBOjo6Bvzso48+mle96lW57bbb8ud//ucjtn1rffvb387ZZ5894r/niSeeGPHfAQAAsKXaOtpy6pWn9gao16xJVqxIenqSosj0IlmwNsnEWq9cpyfJ2C279aYP3ZSZk2aO6BwAAAAAAAAAAAAAAAAAAAAAAGDHEKFmu61atWrA2dixW1iuGsRgP7t69eptfl69WrZsWYqiGHB+2mmnrQ9Ql0qlfOADH8jnPve5HHHEESmVSkmS7u7u3HLLLTnzzDPz85//vN/Pt7W15aSTTsqdd96Z8ePHj/w/yBZ4/vnn8/DDD9d6BgAAQNXMb5+fw845LN09azOmY22yyR8SWtCZZHJNpg3Uk2TMlt16+8duz6v2ftWIzgEAAAAAAAAAAAAAAAAAAAAAAHaccq0HMPqtXbt2wNmYMVtYrxrEYBHqrq6ubX5evVqzZs2g5x3rwmRjxozJVVddlQsuuCBHHnnk+gB1kjQ2NubNb35zfvazn+Ub3/hGv2tJ8vDDD+drX/vayI0HAABgSG0dbTnsnMPywuoXsrxzWTq7+v9hpQWrivoJUFeyxQHqOz9+pwA1AAAAAAAAAAAAAAAAAAAAAACMMiLUjIhNo8jb+7NFUWzPnLq0uX+mc845JyeccMJmn3PGGWfkH/7hHwacf+c738myZcu2dR4AAADboH1Ne0698tR0d3clRSUpkuXNRTobiqQosqC9kkyt9cp1KklWbP62Ukq58+N35ogXHTHikwAAAAAAAAAAAAAAAAAAAAAAgB1LhJrt1tTUNOCso6Njm5832M82Nzdv8/Pq1WD/3vq86U1vyoc+9KEtftaXv/zlzJo1q99Ze3t7Lr300m3eBwAAwNaZ1zYvJ19xcu5f8PuMaV+dSWs2/JGl5c1FFiwrkmk1HLixSnL7PyfF8yfnyJlHDnlbKaX87uO/E6AGAAAAAAAAAAAAAAAAAAAAAIBRqrHWA3YWbW1tue+++7JkyZIsXbo0K1asyMSJEzN16tRMmzYthx12WCZPnlzrmSNi3LhxA852dIR6/Pjx2/y8ejXcP9MZZ5yxVc9qamrKpz71qfz93/99v/Nf/epX+fSnP71N+wAAANhy1z1yXY6/9PiUS+XM6BmbdHdnTFEkRbK8JaksSTKj1ivXqSS//ufkVc3NyQEH5HefuDRHff+o3Pncnf1uE6AGAAAAAAAAAAAAAAAAAAAAAIDRT4R6Ozz22GP59re/nV/+8pd55JFHUhTFkPeWSqXst99+eetb35rTTz89L3vZy6q4dGTttttuA85Wrly5zc8b7GcH+x2j3cSJE9Pc3Jyurq5+5+VyOW95y1u2+nnHHXfcgAj1b3/72+3auKPsvvvu2X///Uf89zzxxBNZs2bNiP8eAACAjfUFqJOkUlSyqFiVGes+IhjTnbQtT1Iv/1lbJF/7v8kbyuWkXE5e8Yokye8+8bt+IWoBagAAAAAAAAAAAAAAAAAAAAAA2DmIUG+D+fPn5/TTT8///M//pCiKYePTfYqiyNy5c/PHP/4x3/jGN/Kud70r3/jGN7LXXntVYfHImjFjxoCz+fPnb/Pz5s2bt0W/Y2ewxx575Jlnnul39tKXvjStra1b/axXvOIVaWhoSE9Pz/qzhQsXpiiKlEql7d66PU4//fScfvrpI/57DjjggDz88MMj/nsAAAD6bBygTpIUSaWcLBqXzFidLFiZZFrN5vVXJF/75+RLpXLv+6am5Mgj11/uC1Hf9dxdAtQAAAAAAAAAAAAAAAAAAAAAALCTKNd6wGhzxRVX5OCDD851112XSqWyPvC7pV9FUaRSqeSaa67JwQcfnJ/85Ce1/kfabrNmzRpw9vTTT2/z8zaNMjc0NGSfffbZ5ufVs5e+9KUDznbbbbdtelZDQ0MmTZrU76ynpyfLli3bpucBAAAwvMEC1H0q5WRBJXUVoD7pmo0C1Ely0EHJnnv2u+13n/hd2v+uXYAaAAAAAAAAAAAAAAAAAAAAAAB2EiLUW+HSSy/NKaeckra2tn7x6SQpimKzX0n6xajb2tpy8skn59JLL63lP9Z222+//QacPf7449v0rK6ursybN6/f2cte9rI0NjZu0/Pq3ezZswectbS0bPPzxowZM+Css7Nzm58HAADA4G584sYhA9RJkpVJxlVz0TCKJGuSO96aXLXfRkM//elBb58wZkJ1dgEAAAAAAAAAAAAAAAAAAAAAACNu5yz7joBbbrklH/nIR1KpVNaHp5Pe+HRDQ0Ne//rX54gjjsj++++fKVOmZPz48Vm1alWWLVuWhx9+OHfddVduueWWdHd394tXVyqVfOQjH8lee+2V173udbX6x9suhx56aMrlciqVyvqzu+++O93d3Vsdj7777ruzdu3afmeHHXbYDtlZj4444oh85zvf6Xe2fPnybX7esmXLBpzttttu2/w8AAAABrr5yZvzlovesuFg0wB1Z5Jt//tCO1aRZG2SCcmCSnLG23vHnrhoSnLKKTWdBgAAAAAAAAAAAAAAAAAAAAAAjDwR6i1QqVTy2c9+Nl1dXevj0UVRZOzYsfm7v/u7fPKTn8wee+yx2ecsXrw455xzTs4888x0dHQkSUqlUrq6uvLZz342999/f7/A9Wgxfvz4HHroobnnnnvWn61atSr33XdfjjjiiK161m9/+9sBZ294wxu2e2O9etOb3jTg7Omnn05RFFv9v4Xnn38+q1ev7nfW2tqa5ubm7ZkIAADARm5+8uYcfcHRQ9/QlaQhSb385/3aJON6X1bKyYLx60LUk9+WE5uaajoNAAAAAAAAAAAAAAAAAAAAAAAYeeVaDxgNfvjDH+ahhx5KqVRKURQpiiIHHnhgHnrooXz5y1/eogB1kkyfPj3/+I//mIceeigHHXRQiqJYf+2hhx7KD3/4w5H6Rxhxb3vb2wacXXHFFVv9nMF+ZrBn7yxmzZqV2bNn9ztbtmxZHn744a1+1m233Tbg7NBDD93mbQAAAPQ3aIC62Oh1V3rj0/USoF6V9QHqPutD1ON/navmXlWTWQAAAAAAAAAAAAAAAAAAAAAAQPWIUG+B888/v9/72bNn59e//nVe8pKXbNPzXvziF+dXv/rV+vhwqdRbpzrvvPO2Z2ZNnXLKKQPOzjvvvHR1dW3xM+67777cdddd/c6OOuqozJo1a7v31bMPfOADA84uvPDCrX7OBRdcMODsmGOO2aZNAAAA9Ld89fKBAeqN9aT+AtSTBr9UaUgWrFyQc39/bnoqPVWdBQAAAAAAAAAAAAAAAAAAAAAAVJcI9WasWLEit99+e0qlUoqiSLlczrnnnpspU6Zs13MnT56cc889d/37oihyxx13ZMWKFds7uSYOPPDAvO51r+t39vzzz+c///M/t/gZX/ziFwecfeYzn9nubfXutNNOy9ixY/udnXPOOXnuuee2+Bn33ntvrrnmmn5npVIpJ5100g7ZCAAAsKu7d9G9Aw+Ldd+7k1RSPwHqZRkyQN2nUlRy9tvOTkO5oRqLAAAAAAAAAAAAAAAAAAAAAACAGhGh3ow77rgj3d3dSXqjvq961aty1FFH7ZBnH3XUUXnNa16TouitVnV3d+eOO+7YIc+uhS996UsDzr7yla/k3nsHCXVt4lvf+lZ+/vOf9zt76UtfmlNPPXWLfvdLXvKSlEqlfl+/+tWvtuhna23GjBk5/fTT+50tW7Ys73//+9PR0bHZn1+8eHHe//73p6enp9/5SSedlP3333+HbgUAANgV3fzkzTn6gqMHv9id3hh1PQWopw1zfd3Oa0+5NntP2bsKgwAAAAAAAAAAAAAAAAAAAAAAgFoSod6MRYsW9Xv/jne8Y4c+f9PnLVy4cIc+v5re+ta35oQTTuh3tmbNmrz5zW/OtddeO+jPrF27Nl/72tdyxhlnDLj2jW98I01NTSOytd585StfyT777NPv7Fe/+lWOOeaY/PGPfxzy52677ba8/vWvH3DPhAkT8n/+z/8Zka0AAAC7ks0GqCsZlQHqd+73zioMAgAAAAAAAAAAAAAAAAAAAAAAaq2x1gPq3eLFi5MkRVGkVCpl77333qHP3/R5zz///A59frV9//vfzz333JP58+evP2tvb8+73vWuHH744TnhhBMya9asdHR05LHHHsvFF1+cZ599dsBzPve5z+Uv/uIvqrb77rvvzsc//vEhr69cuXLA2U9/+tMccsghQ/7M4Ycfnv/+7//eot8/YcKE/PjHP84b3vCGrFmzZv357bffnoMOOijHHntsjjnmmMycOTM9PT155pln8rOf/Sy33HLLoM87//zzs99++23R7wYAAGBw1z96fd7xoyH+GFVPegPU9fLnvV5IMmOY6wLUAAAAAAAAAAAAAAAAAAAAAACwSxKh3oyenp5+7xsbd+y/soaGhiRJqVQa9PeNNrvvvnt+8Ytf5Oijj87ChQv7Xbv77rtz9913b/YZc+bMyX/913+N0MLBrVy5Mvfff/9W/UxbW1va2tqGvD558uStet6RRx6Zq6++Ou95z3vS0dGx/ry7uzvXX399rr/++s0+o7m5Od/+9rdz0kknbdXvBgAAoL/z7zs/H/3pRwe/2JOkO/UToF4aAWoAAAAAAAAAAAAAAAAAAAAAAGBQ9ZJLqlvTp09PsiES/eyzz+7Q5/c9ryiKJL0R59Fu9uzZufPOO/O6171uq36uqakpX/nKV/KjH/1ofZx7V/O2t70tt99+ew488MCt/tl99903N910Uz7+8Y+PwDIAAIBdx++e+d3QAeokWZv6+URlWbLnuKShMsi1UgSoAQAAAAAAAAAAAAAAAAAAAABgF1cvyaS61Reh7nPDDTfs0OffdNNNw/6+0WrvvffOb37zm1x22WV5zWtesz7iPZgJEybkox/9aB544IF89atfTbm8a//P8uCDD87vf//7nHfeeTnyyCOH/XfX0NCQV7/61Tn//PMzd+7cvPa1r63iUgAAgJ3Pg4sezOt/+Pqhb+hMUi9/N6k92XNM78vpqzcKUW8Un06Sq+dcLUANAAAAAAAAAAAAAAAAAAAAAAC7qFJRFEWtR9Sz559/PnvssUeSpCiKNDU15eGHH87LXvay7X72E088kf333z/d3d0piiLlcjkLFizI7rvvvt3PrjeLFy/OnXfemT/96U9pb29PY2Njpk2bltmzZ+eII45Ic3NzrSfWrUWLFuXuu+9e/++uubk506ZNy8yZM/PqV786ra2ttZ5YNw444IA8/PDDA87333//PPTQQzVYBAAAjCZ3PXtXjvrvo1JkiI9KOpI0VnXS0FYkezate933x4uam7O4pTs9Rc/62y476bLMOXBO9fcBAEAd8/8nAAAAAAAAAAAAAAAAAAAAu5J6SSfVrd133z2HHXZY7rnnnpRKpaxduzannXZabrjhhjQ2bvu/vp6ennzyk5/M2rVrU1oXizrkkEN2ygB1kkyfPj3vfOc7az1jVJoxY0b+4i/+otYzAAAAdmq/efI3edMFbxodAeqVGwWokw0R6vHjM72lJYtXLU5P0ZNr5lyTd81+V00mAgAAAAAAAAAAAAAAAAAAAAAA9aFc6wGjwZw5c/q9v+WWW3LSSSelo6Njm57X2dmZv/zLv8zNN9+cUqmUoihSKpXyvve9b0fMBQAAALbC5Q9enjde8MahA9SrUz8B6tVJeVLS2benL0Dd0JC0tCRJjn3ZsXnmfz0jQA0AAAAAAAAAAAAAAAAAAAAAAIhQb4kzzjgjL3rRi5JkfTT6uuuuy/77758rr7wylUpli55TFEWuuuqqHHDAAbnmmmv6XZs5c2Y+97nP7fDtAAAAwNAuf/DynPyTk4e+YVWSpqrNGV5HUp7Y+3J5y0Yh6iSZ2Hvh4D0OzmXvvSx7T9m7+vsAAAAAAAAAAAAAAAAAAAAAAIC607j5WxgzZkz+7d/+Le973/tSKpXWh6iffvrp/OVf/mX22GOPvPvd787hhx+e2bNnZ/Lk/z979x5mV13Y+/+z9kzu5E4gUUBB5BYURCFiUa5aQO4qQdqKVY+1HKG15/RY/al4O9X2qNWe9qi0BS+oBIFIoFLLVbFyUwERYkRErpNAyGVCLpPJ7PX7YzKTTGbPTMCZvfckr9fzzDN7rfXN4jP2rwlP30zLpEmTsnbt2qxatSqLFy/OT3/603zve9/L0qVLU5Zlki1B66Io8vnPfz7jxo1r8E8KAAAAO4+aAepyq8/rkoyt56JBbEjmFMmGju4AdbL5+8Zk/NgJybhxvQHqKeOmNHQqAAAAAAAAAAAAAAAAAAAAAADQPESot9P8+fPz61//OhdddFFviDpJyrJMW1tbvvKVrwz5jq3j01v7+Mc/nrPPPnv4RwMAAAA13fa72/oGqMttDqxN0iz/raiOZM7mj+M3dX/fEqIuk/FjMk+AGgAAAAAAAAAAAAAAAAAAAAAAqEGE+nn46Ec/miT55Cc/mWq1miR9YtRD2To+XZZlWlpactFFF+UjH/nICKwFAAAAarn7ybtz9NeP7r6o9ev8c0nG13PRIDYmmZQsqya7r+u+1SdEXVTS2jIm3z7r2wLUAAAAAAAAAAAAAAAAAAAAAABAP5VGDxhtPvrRj+bWW2/Ny1/+8pRl2RufLopiyK8kvX/mgAMOyI9+9CMBagAAAKiju5+8O/P+dV7KlLUD1O1pngB1Z5KJ3R+rlWTZxC2PxncVmTp+amZOnJmf/9nPM33C9IZMBAAAAAAAAAAAAAAAAAAAAAAAmpsI9QvwB3/wB/nVr36VRYsW5Q//8A8zbty43rj0YF/jxo3LSSedlOuuuy4PPvhgjjzyyEb/KAAAALDT+OWyXw4doJ5Y434jbEoyoe+t3hB1USTTpmXeXkdmyfuXZI8pezRiIQAAAAAAAAAAAAAAAAAAAAAAMAq0NnrAaHbKKafklFNOSWdnZ37+85/n5z//eZYvX56VK1dmzZo1mTx5cqZPn55Zs2blsMMOy2GHHZbWVv+TAwAAQL0tfmZxDrv4sIED1KuS7FLnUQPZlGR87UfdIeoyb3rpvCx464JMGTelrtMAAAAAAAAAAAAAAAAAAAAAAIDRRRF5GIwZMybz5s3LvHnzGj0FAAAA2Mb6jetz6FcPTWe1s3aAekWSZmk5d2XAAHWPaiW5+OSLBagBAAAAAAAAAAAAAAAAAAAAAIAhVRo9AAAAAGAkTRg7ISfve3Lth8vTXAHqcUOcKZJrz7k2e07fsx6LAAAAAAAAAAAAAAAAAAAAAACAUU6EGgAAANjhLXzLFTlj6bS+N59OMq3G4UaoZrsD1Kfsf0o9FgEAAAAAAAAAAAAAAAAAAAAAADsAEWoAAABgx/eDH2ThNRNyxiObS89Lk8xo6KItqhn6b2gEqAEAAAAAAAAAAAAAAAAAAAAAgBdAhBoAAADY8X3960mShTfMSJ5Msmtj5/SqJmlJ0jrA8yIC1AAAAAAAAAAAAAAAAAAAAAAAwAs2UOIIAAAAYMfw1FPJf/1XkqQ4sS3ZvcF7evQEqFtqPCu2fLzxj2/M8S87vk6jAAAAAAAAAAAAAAAAAAAAAACAHYkINQAAALBju+uuJElxfFvyogZv6VGmb4C6GPjoa+a8pg6DAAAAAAAAAAAAAAAAAAAAAACAHdFOG6HeZ599Gj2hn6Io8vDDDzd6BgAAAOxYfvGLFK9vS17S6CGblUkq2a6/lbn5HTdn6sSpI70IAAAAAAAAAAAAAAAAAAAAAADYQe20Eerf/e53KYoiZVk2ekqvoigaPQEAAABGpa5qV1oqLTWfFT+9KHllnQcNpOevIbYzQH3s3seO6BwAAAAAAAAAAAAAAAAAAAAAAGDHVmn0gEYriqIpvgAAAIAXpr2jPWcsOCMLFy/s96z4RNF8AeqxQx8VoAYAAAAAAAAAAAAAAAAAAAAAAIZDa6MHNFJZlkMfAgAAAJpWe0d75l85P/ctvS/3tN2TJDnzsYnJxRenWHl1cmSSZvhvP5Wbv8YNfVSAGgAAAAAAAAAAAAAAAAAAAAAAGC47bYT6vPPOa/QEAAAA4PewdYA6ZZnqymdzwb+elXw/OaslyelpjgB10h2gHjv0MQFqAAAAAAAAAAAAAAAAAAAAAABgOO20EepLL7200RMAAACAF6hPgHrVqmT9+iRJtUjOOiDJQWmeAHVnkglDHxOgBgAAAAAAAAAAAAAAAAAAAAAAhttOG6EGAAAARqfeAPUTP0uefTapVnuftT2b5g1QD7Lp+2//vgA1AAAAAAAAAAAAAAAAAAAAAAAw7ESoAQAAgFGjN0D9uzuTlSv7PGt7NsmL0jwB6g1Jdhn62KWnXZqT9jtpxOcAAAAAAAAAAAAAAAAAAAAAAAA7HxFqAAAAYFTY0QLUYypjctt5t2XeXvPqMgkAAAAAAAAAAAAAAAAAAAAAANj5iFADAAAATW/l+pU59+pzc98TP6sdoJ6T5glQr00ydfAjRYr8/L0/z8G7H1yXSQAAAAAAAAAAAAAAAAAAAAAAwM5JhBoAAABoaivXr8wB/3xAOrs6M/7Z1X2e9QaoKw2Z1t9AAepi649F7nzPnQLUAAAAAAAAAAAAAAAAAAAAAADAiGuWRBMAAABAP+0d7Tn36nPT2dWZ1etXZUOl2vusbWWaK0C9JrUD1Nu49R235vAXHz7icwAAAAAAAAAAAAAAAAAAAAAAAFobPQAAAACglvaO9sy/cn7uW3pfxreMSzaUWT2u+9n4TUl2S/MEqFcl2XWAZ8WWjwvesiBv2PsNdRgEAAAAAAAAAAAAAAAAAAAAAAAgQg0AAAA0ocdXPp73fv+9uW/pfd03Vq3qDk8nWT0uWVkkaWnYvL7aM3CAeisL3rIgZx989ojPAQAAAAAAAAAAAAAAAAAAAAAA6LHTRqj32WeffveKosjDDz+8XWdHwkD/fAAAANiZLFq8KKdfcXoqRSW7T9q9++aGDUmS8ZuSlUnz/I3GmiQzBnledH8ToAYAAAAAAAAAAAAAAAAAAAAAABqhWZJNdfe73/0uRVGkLMvee0VRbPfZkTDQPx8AAAB2Flf88orMv2p+kqRaVrNs7bLs3jqt93lba5rnbzPWJZk+yPMiKVLkh+f9MK9/6evrtQoAAAAAAAAAAAAAAAAAAAAAAKBXpdEDGq0oiu2OP/ecHYkvAAAA2NltHaDuUS2rWbZhRZKkrSVNFaAuL5+TMx4ZV/v55gD1ne+5U4AaAAAAAAAAAAAAAAAAAAAAAABomJ06Ql2WZe/X8zk7El8AAACwM6sVoE7Z/VWtJG2VJGMasayG9d0B6iRZeMOM/iHqrQLUh7/48AYMBAAAAAAAAAAAAAAAAAAAAAAA6Nba6AGNct55543IWQAAAOD5WbR4Ud8A9bb/raa1SbbpPDdMR1J+Z06fWwtvmJEzT9+Q781emSQZUxmTn7/35zl494MbsRAAAAAAAAAAAAAAAAAAAAAAAKDXThuhvvTSS0fkLAAAALD9rltyXU6/4vTui23j00nzBai/1TdAnaOOSs47Lwvf9KacedXZ+f5vvp97/+zeHDjrwMZsBAAAAAAAAAAAAAAAAAAAAAAA2MpOG6EGAAAAGuu6Jdfl1MtP7b6oFaBek2RCPRcNYmNSfi7J/Dckc+cmr3xlcsQRyZwtUeqF5yzM+o3rM2Fss4wGAAAAAAAAAAAAAAAAAAAAAAB2diLUAAAAQN1dcf8VmX/1/O6LWgHq9iQT67loEJ1J+X+StLYml18+6FEBagAAAAAAAAAAAAAAAAAAAAAAoJlUGj0AAAAA2LksWrxo9ASoNyXl32/+PGZMQ6cAAAAAAAAAAAAAAAAAAAAAAAA8XyLUAAAAQN3c8fgdOf2K07svagWoV6apAtRXX7PV9ezZDZsCAAAAAAAAAAAAAAAAAAAAAADwQohQAwAAAHVx95N353WXvK77olaAekWSyfVcNIiuZM6m5IKTk4UHbL532GENnQQAAAAAAAAAAAAAAAAAAAAAAPB8tTZ6wM5kw4YNWb16dXbddde0tLQ0eg4AAADUzd1P3p15/zovZcraAerlSabVedRAupI5nd0fq0V3iDpJzvyzP2vcJgAAAAAAAAAAAAAAAAAAAAAAgBeg0ugBO7qVK1fmQx/6UPbbb79MmjQpL3rRizJu3Li84hWvyN///d9nw4YNjZ4IAAAAI2rIAPXTaZ4AdXVLgLr3VpFc8OZk4R7PNWYTAAAAAAAAAAAAAAAAAAAAAADAC9Ta6AGjwbPPPpsLLrig97qlpSX/8i//kvHjxw/65+65556ccsopWbp0acpyS2WrLMs88MAD+dCHPpRLL700CxcuzAEHHDBi+wEAAKBRhgxQL02ya71XDaCapC3JzBqPJkzIBdd3/93AmQeeWddZAAAAAAAAAAAAAAAAAAAAAAAAL1Sl0QNGg4ULF+byyy/PggULsmDBgqxevXrIAPXy5cvz5je/OW1tbSnLMkVR9PsqyzJLlizJiSeemLa2tjr9NAAAAFAfQwaon0zTBajn1AhQJ0mmTk21rOaSey9JV7WrnssAAAAAAAAAAAAAAAAAAAAAAABeMBHq7bBo0aIkSVl2F7Pe8573DPlnPvShD2Xp0qW9wemeP9/zlaT3/uOPP57zzz9/JKYDAABAQwwZoH4sye71XjWAoQLUEycmRZFDZh+Sb531rbRUWuq5DgAAAAAAAAAAAAAAAAAAAAAA4AVrbfSA0eCOO+5IURQpyzLjxo3LG9/4xkHPP/HEE/nGN77RJz7d0tKSU089NQcccEDa2tqycOHCtLe397530aJF+fGPf5yjjjqqHj8SAAAAjJjnNjw3eID64SQvqfeqAZRJlg0SoK5UkqlTc8jsQ7LgrQsyZdyUeq4DAAAAAAAAAAAAAAAAAAAAAAD4vVQaPaDZPfroo1m+fHmSpCiKzJs3LxMmTBj0z3z7299OZ2dnku4A9YQJE3LLLbfk6quvzt/+7d/m0ksvzf3335999923z5+79NJLR+aHAAAAgDraZfwuOfxFh9d+uDjNFaBensyZPsiZmTMFqAEAAAAAAAAAAAAAAAAAAAAAgFFLhHoIv/3tb/tcH3zwwUP+me9+97spiiJlWaYoinzgAx/IUUcd1efMnnvuma997Wu9Z8qyzMKFC4d1OwAAADTKne/8cY5YObHvzSVJXt6QOf2VSR5KKrOTDa0DnJk+PYfs8WoBagAAAAAAAAAAAAAAAAAAAAAAYNQSoR7CY489liQpyzJJst9++w16ftWqVbnnnnt6ryuVSs4///yaZ1/3utflsMMO671evXp1fvOb3/y+kwEAAKDxfvCD3Hn55Bzx5ObrJUle1shBWymTLEnm7JVM7UhWj6sRop4+PYe8dJ4ANQAAAAAAAAAAAAAAAAAAAAAAMKqJUA9h1apVfa6nTZs26Pnbbrst1Wo1SVIURQ4//PC86EUvGvD8scce2xu4TpL777//BW8FAACAptDZmXzmM8mKFbnzX5P8JMk+jR61WZlkcTLnpd2X4zdtE6KuVJJZswSoAQAAAAAAAAAAAAAAAAAAAACAHYII9RDWr1/f53qXXXYZ9Pydd96ZJL1h6RNPPHHQ8/vtt1+f66effvr5TgQAAIDmccMNybx5yR13JJs2ZebcJIcnKRo9bLMlyZxtgti9IerxRTbMnJpD9ni1ADUAAAAAAAAAAAAAAAAAAAAAALBDaG30gGbXE5Pu0dHRMej5ngh1j6OOOmrQ89OmTUuSFEV3jau9vf15LgQAAIAm0N6efPSjyXe/m2zYkCSZeVCZFaenqQLUOThZVk12X7fV/QkTMn7q1KSrI2NaxuTbZ31bgBoAAAAAAAAAAAAAAAAAAAAAANghiFAPYcqUvtGpZ599dsCzmzZtyu23356iKFKWZVpaWvLa1772ef3zOjs7X9BOAAAAqLeualdaKi3J448n8+cnv/td94NNmzKvrDZXgPqhJHO7P1YrybKJye7jZyTjxvUembfHvHz7rG9n+oTpjdkIAAAAAAAAAAAAAAAAAAAAAAAwzCqNHtDsZsyYkSQpiu5q1q9+9asBz/74xz/OunXreq8PPvjgTJw4cdD3r1q1KklSlmWSZNKkSb/PXAAAAKiL9o72nLHgjCy87eLk9NO3BKiTzHtuTe76UJonQP1okgP73qq2JMs2req9PmT2IVnw1gUC1AAAAAAAAAAAAAAAAAAAAAAAwA6ltdEDmt3BBx/c+7ksy9x4440Dnr3yyit7zxVFkde//vVDvv+ZZ57pcz1t2rQXNhQAAADqpL2jPfOvnJ/72u7NPb/4z2T8pJxZHZts3JgPrlzZXAHqp5K8rPajalnNsrXL8qaXvSkL3rogU8ZNqes0AAAAAAAAAAAAAAAAAAAAAACAkVZp9IBmd+CBB2bChAm917/+9a/z/e9/v9+5lStX5lvf+laKYktl67jjjhvy/ffff3+f65e+9KUvfCwAAACMsN4A9dL7kvb2VDd15oIjV2bhjGX54MqV+fsPpXn+tmFZkr1q3N8qkF0tq7n45IsFqAEAAAAAAAAAAAAAAAAAAAAAgB1Ss2ShmlZra2tOPfXUlGWZoihSlmXe9a535cc//nHvmTVr1uSP/uiPsnr16t57kydPzoknnjjk+++9994+4eqXvexlw/sDAAAAwDDpE6B+7rlk3bqkLFMtkrNem+YKUC9P8uKhj11z9jXZc/qeIz4HAAAAAAAAAAAAAAAAAAAAAACgEVobPWA0eN/73pcrrrgiSVIURZ5++ukcffTRefnLX56ZM2fm/vvvz9q1a3sj1UVR5E/+5E8ybty4Qd/7+OOPZ8mSJb0R6l133TV77LHHiP88AAAA8Hxs3LQxG7o2dAeo2+5NVq5MOjr6Hpqd5glQr0j3nlq2/HegsuAtC3LagafVYxEAAAAAAAAAAAAAAAAAAAAAAEBDiFBvh2OOOSZnnHFGvve976Uoit7Y9K9//evez0l6Y9KTJk3Khz/84SHfu3Dhwt7PRVHkta997cj8AAAAAPACPdH+RA776mHZZewu2bDhueTZZ5Nqtc+ZtjFpngD1qiS7DX1swVsW5OyDzx7pNQAAAAAAAAAAAAAAAAAAAAAAAA3VLImopnfJJZfkFa94RZ/gdE90euswdVEUufjiizNnzpwh3/md73ynT8T6mGOOGbH9AAAA8Hw90f5EDv3KoXlm3TN5ZNUjaV/9TO0AdUtj9vXTnmTXQZ53/xovQA0AAAAAAAAAAAAAAAAAAAAAAOw0RKi307Rp0/LDH/4w5513XpKkLMt+X3PmzMmVV16Zc845Z8j33XXXXbnzzjv73Dv55JNHZDsAAAA8Xz0B6mfXP9t9o0zWjk3ax24509aa5glQr0kyY5DnmwPU15x9jQA1AAAAAAAAAAAAAAAAAAAAAACw02ht9IDRZNq0abn00kvzqU99KosWLcpvf/vbrFmzJjNnzsy8efPyh3/4hxk/fvx2vev666/PIYcc0ns9e/bs7L///iM1HQAAALbbE+1P5FVfeVWfAHWPtZsj1GuraZ6/VViXZPogzzcHqK8959qcsv8p9VgEAAAAAAAAAAAAAAAAAAAAAADQFIqyLMuhjwE0v7lz5+bBBx/sd/+ggw7KAw880IBFAAAw+jzR/kRe9dVXZcX6FSnLMjX/2mB9kjF1n1bbuiRTBnkuQA0AAGzDv08AAAAAAAAAAAAAAAAAAAB2JpVGDwAAAACaw9YB6pRJUS17Gs5brEvzBKjXZ7sC1AvOWiBADQAAAAAAAAAAAAAAAAAAAAAA7JRaGz0AAAAAaLxtA9SpVpMkRZmk6L6VtUnGNW5jHx1JJg/yfHOA+pqzr8lpB55Wj0UAAAAAAAAAAAAAAAAAAAAAAABNR4QaAAAAdnIDBah7FGVSrktzBagnDfK8SIoU+cm7fpLX7vnaeq0CAAAAAAAAAAAAAAAAAAAAAABoOiLUAAAAsBPbuGljXn3xq7sD1Em/AHWSVJ9LMqG+uwa0MdsVoL7zPXfm8BcfXq9VAAAAAAAAAAAAAAAAAAAAAAAATUmEehg8+eSTueOOO/Kzn/0sTz/9dFatWpU1a9Zk8uTJmTZtWnbbbbe8+tWvzmtf+9q8+MUvbvRcAAAA6DW2dWyeXvt0KkWldoB6TZKJ9d9VU2cG3yJADQAAAAAAAAAAAAAAAAAAAAAA0IcI9Qu0Zs2afPOb38xXvvKVPPDAA9v95+bOnZs///M/zx//8R9n8uTJI7gQAAAAhlZ8okiSVDdVUyn6PquuTrJL/TfVtCkp/z6Z9+7krj1qPBegBgAAAAAAAAAAAAAAAAAAAAAA6KfS6AGj0Te/+c3svffeueCCC/LLX/4yZVlu99cvf/nLvP/978/ee++dyy67rNE/CgAAADuxngB1yiSVpFpueVZdleYKUP9d98c7/y054oltngtQAwAAAAAAAAAAAAAAAAAAAAAA1CRC/Tx0dHTkzDPPzDvf+c6sWLEiZdld5yqKYru/kqQsy6xYsSLnnXdezjrrrHR0dDTyxwIAAGAns+K5FX0D1D02h6irK5NMbsSyGrq2BKhTFElR5M5LKzli5cSkiAA1AAAAAAAAAAAAAAAAAAAAAADAIESot9OGDRty2mmnZdGiRSnLsk9YuizL7f7a9s9dc801Oe2004SoAQAAqIvrllyXmZ+f2X1R1jiwIsmUei4aRFdSfjZJpdL9VRTJuHHJ616XOz+3Kke86AgBagAAAAAAAAAAAAAAAAAAAAAAgEG0NnrAaHHBBRfkhhtu6A1IJ0lZdte6jjzyyJx11lk57LDDcsABB2Tq1KmZOHFi1q1bl9WrV2fJkiX52c9+lquvvjq33357kvQJUd9444254IILcvHFFzfs5wMAAGDHd92S63Lq5ad2X9QKUD+dZEY9Fw2imvyvz6Y7PD1pUtLamowd2x2j/pu/ScaMyZ3/7c48t+G57DJ+l0avBQAAAAAAAAAAAAAAAAAAAAAAaEpF2VNSZkA/+tGPcuyxx/a5V5ZljjnmmPzf//t/M3fu3O1+1wMPPJALL7wwt9xyS5+YdVEUufXWW/P6179+WLfDzmTu3Ll58MEH+90/6KCD8sADDzRgEQAANI8+Aeqkf4R6aZJd67loENXkf30m+bskGT8+mT59y7O99kpuuy0ZM6ZR6wAAgFHOv08AAAAAAAAAAAAAAAAAAAB2JpVGDxgNPvvZz6an1d3z/W/+5m9y8803P68AddL9/9R+00035cMf/nC27X9/9rOfHZ7BAAAAsJUhA9RPpqkC1C+/ZHOAOukfm/70pwWoAQAAAAAAAAAAAAAAAAAAAAAAtpMI9RBWrlyZm266KUVRpCzLFEWRd73rXfnbv/3b3+u9n/70p/Pud7+7951lWebGG2/MypUrh2k5AAAAbBOgLtM/QP1Ykt3rPGogZZKlybo/ShYekKQoktbWLc/PPjs54YRGrQMAAAAAAAAAAAAAAAAAAAAAABh1RKiHcPvtt6ezs7P3esqUKfnCF74wLO/+/Oc/n6lTp/Zeb9q0KbfffvuwvBsAAAD6Bai39XCSF9Vz0SA2B6jnzEiqRXLBycnCA8pk7Nju53vvnXzykw2dCAAAAAAAAAAAAAAAAAAAAAAAMNqIUA/hySef7P1cFEVOP/30TJ48eVjePWXKlJx++ukpyy0lsK3/eQAAAPBCDRmgXpzkJfVcNIieAPX0LbeqRXLBScnCfTYmc+Ykl1+eTJnSsIkAAAAAAAAAAAAAAAAAAAAAAACjkQj1EJ555pkk6Q1Fv+Y1rxnW9x9++OF9rpcvXz6s7wcAAGDnM2SAekmSl9dz0SDKJEv6Bqh7VCtFLjh6bRZ+8X3JnnvWfRoAAAAAAAAAAAAAAAAAAAAAAMBoJ0I9hAkTJvS53n333Yf1/bvttluSpCiKJMn48eOH9f0AAADsXFY8t2LwAPVjSV5Wz0WD6AlQv3SA5xMnpjpzRi55YlG6ql11HAYAAAAAAAAAAAAAAAAAAAAAALBjEKEewp577tnnetWqVcP6/p73lWV3GWyPPfYY1vcDAACwc5mxy4zMnjS79sPHksyp65yBlUmeTCbtN8DzyZOTKVNyyJxD862zvpWWSks91wEAAAAAAAAAAAAAAAAAAAAAAOwQRKiH8OpXvzpJUhRFkmTx4sXD+v5f/epXNf95AAAA8Hx0Vbu6P7S3p+3Rt2Z2+zYHegLURZ2HDeQ3SV6arB2btI/d5tn4cckuu+SQ2YdkwVsXZMq4KQ0YCAAAAAAAAAAAAAAAAAAAAAAAMPqJUA9h7733zite8YokSVmWufrqq1OW5bC8uyzLXHXVVSmKIkVR5MADD8w+++wzLO8GAABg59He0Z43X/bmLLztX5ITT0y+/e20fbGS2Ws2H2i2APVDSQ7cctknRF2pJNOmC1ADAAAAAAAAAAAAAAAAAAAAAAAMAxHq7fCXf/mXKcsyRVHk8ccfz5e+9KVhee+XvvSlPPbYY71R6w984APD8l4AAAB2Hu0d7Tn+G8fnB4/8IG+74b1ZmF8l69YlSdq+WEmeSFMHqHv0hqhnzswhcw4VoAYAAAAAAAAAAAAAAAAAAAAAABgGItTb4U//9E9z1FFHpSzLlGWZD3/4w7n++ut/r3f+x3/8Rz784Q+nKIoURZHXve51efe73z1MiwEAANgZ9ASof/rUT5My6aokbzthZRbu3ZEkObKsJruneQLUjyaVAwaes35ckVe86FUC1AAAAAAAAAAAAAAAAAAAAAAAAMNEhHo7XXXVVdl///2TJBs2bMgZZ5yRT3/609m4cePzek9nZ2f+9//+3znjjDOyYcOGlGWZ/fbbL1dfffVIzAYAAGAH1d7RnqP/7ejeAHWPrkrytreWOWB2NXf8TZonQP1UUtmn+2NR9p9VFEXe8NKj892zvytADQAAAAAAAAAAAAAAAAAAAAAAMExEqLfTrFmzcvvtt+fNb35zku6Y9EUXXZR99903H/nIR3L33XcPGKTu7OzMT3/603zkIx/Jvvvum4997GPZuHFjiqLIm9/85tx+++2ZNWtWPX8cAAAARrH2jva85quvyb3P3FvzedeaZMl5aZ7f+pcllT373to6RF0URY5+6dG55pxrBKgBAAAAAAAAAAAAAAAAAAAAAACGUWujB4wGxx13XJ/r8ePHp6OjI2VZ5oknnshnPvOZfOYzn0lra2v22muvTJ06NZMmTcratWuzevXqPPbYY9m0aVOSpCzLJN2BrfHjx2ft2rU566yznteeoihy0003Dc8PBwAAwKjSE6B+aOVD3TfKbQ6sTjIhzROgXp5UXlT7UVEmu4ydlCP2fG2unn+1ADUAAAAAAAAAAAAAAAAAAAAAAMAwE6HeDrfeemuKouh3v+deT1i6s7MzDz/8cO+znvu1/kySbNiwIT/84Q+f15ayLGtuAQAAYMfXL0BdSzMFqFckld0Hfjxj3LTc8/77M2eXOWmptNRvFwAAAAAAAAAAAAAAAAAAAAAAwE5ChPp5qhWBHigKvT2xaFFpAAAAtke/AHX//+5R0pGkWVrOq5LsOvDjGeOm5p733589puxRr0UAAAAAAAAAAAAAAAAAAAAAAAA7HRHq56Esyz7fh/u9AAAAUEtXtSvzvjpv9ASo29MboK5Wk8o2/+2lGeOn557//gsBagAAAAAAAAAAAAAAAAAAAAAAgBEmQr0d3vCGN6QoiqEPAgAAwAi4bvF1+dXKX3Vf1ApQb0jz/Ib/XJIZW11XtgpRF8mMiTNzz/vuFaAGAAAAAAAAAAAAAAAAAAAAAACog2ZJVDW1W2+9tdETAAAA2End8sgtOePKM7ovmj1AvS7JtBr3N4eod5u8W3723p8JUAMAAAAAAAAAAAAAAAAAAAAAANRJpdEDAAAAgNpueeSWHPeN47ovagWo16e5AtRTBnnekjy99mkBagAAAAAAAAAAAAAAAAAAAAAAgDoSoQYAAIAmtHrd6i0B6lrWJRlTtzmD25DBA9TFlo+v+sSrRnoNAAAAAAAAAAAAAAAAAAAAAAAAm4lQAwAAQBOaOnFq9p2+b/dFuc3DtUnG1nvRADqS7DLI86Lv5T0X3TOSawAAAAAAAAAAAAAAAAAAAAAAANiKCDUAAAA0qYf+/MHs2zW9783nkoxryJz+NiaZNMjzbQLU5UXb1rQBAAAAAAAAAAAAAAAAAAAAAAAYSSLUw6irqyvPPPNMHnvssTz22GONngMAAMBotnBhsvvueehTK7Pvs5vvrUkyvpGjtrIxycQBnhURoAYAAAAAAAAAAAAAAAAAAAAAAGgCrY0eMJrdf//9+d73vpdbb70199xzT1avXt37rCiKbNq0acA/u3r16nR1dfVe77LLLhk7duyI7gUAAKB5dVW70lJpSdrbkyOPTB58sPfZQ/+UFB/IwNHneuvM4AHqbQhQAwAAAAAAAAAAAAAAAAAAAAAANEal0QNGo3vvvTennHJKDj300Hz84x/PrbfemlWrVqUsyz5fg7nwwgsza9as3q8LL7ywTusBAABoNu0d7TljwRlZeMUnk5kz+wSok6T4izRPgHpTkgnbf1yAGgAAAAAAAAAAAAAAAAAAAAAAoHFEqJ+nr371qznyyCNz/fXX94lNF0XR+7U9/vqv/zpJet9xxRVXpKOjY8R2AwAA0JweX/l45l85Pz/7zW254M6LsnDfTX2eFxcm2aUx2/rZlGT8IM+3+ZVYgBoAAAAAAAAAAAAAAAAAAAAAAKCxRKifh09/+tM5//zz09HRkbIse6PTPSHpniD19jj44INz/PHH916vXr063//+90diNgAAAE3quiXXZa9/3Cv/+ZsfJKtXp1okF5ycLDyg+3lxQZLJDZ24RVcEqAEAAAAAAAAAAAAAAAAAAAAAAEYZEertdNVVV+Wiiy7qF5/ed999c+GFF+Yf/uEfsueeez6vd86fPz9JUhTdpa4f/OAHw74bAACA5nTdkuty6uWnJkmqZZllE7vv94Soi/+eZErj9vXRlZR/V2T2mgGeC1ADAAAAAAAAAAAAAAAAAAAAAAA0JRHq7bBu3bq8//3v7w1Ql2WZyZMn57LLLsuSJUvyxS9+MX/xF3+RGTNmPK/3nnnmmWlpaUmSlGWZm266aSTmAwAA0GS2DlBnc6+5WklviPrJtUmmNWJZDdXkbz6bpCjS9sVK/xD15gD1tedcm0NzqAA1AAAAAAAAAAAAAAAAAAAAAABAExGh3g7/9E//lGXLlvUJUP/oRz/Kueee+3u9d8aMGTnwwAN7r3/729+mvb39950LAABAE6sVoO5RrSRtq5PsWvdZtVWTrE2OOGDLrd4QdZE+AepT9j8l91x0TwNGAgAAAAAAAAAAAAAAAAAAAAAAMBAR6u3wzW9+szdAXRRF/uEf/iGvfOUrh+Xdr371q1OWW6pjixcvHpb3AgAA0HwGC1AnSR5Lsns9Fw2immR9kunJ296WLNy/TMaOTaZNS1vnBZk9aXaSLQFqAAAAAAAAAAAAAAAAAAAAAAAAmk9rowc0u6VLl+aBBx5IURRJkr322ivvfOc7h+39Bx10UJ/rhx9+OPPmzRu29wMAANAcLv/F5Xn7wrd3X9QKUD+c5CX1XDSIMt0B6qndl12V5G1vLfPdGyfkzOKA5NOfTtuUf8yK51Zkxi4zGrkUAAAAAAAAAAAAAAAAAAAAAACAQVQaPaDZ3X333b2fi6LISSedlEpl+P5nmz59ep/rVatWDdu7AQAAaA6f+/HntgSoa2m2APW69Aaoe3RVkredsDILP/vOZMqUJBGgBgAAAAAAAAAAAAAAAAAAAAAAaHIi1EN4+umnkyRlWSZJXvWqVw3r+6dNm5akO3CdJGvWrBnW9wMAANBYX/ivL+Svb/rrLTfKbQ48kqYPUPfoakn++Ed/ma5qVz1XAQAAAAAAAAAAAAAAAAAAAAAA8AKJUA9h+fLlfa5nzJgxrO/v6Ojoc12p+D8JAADAjuLaxdfmf9z4PwY+8GiSPes2Z3BlkrYMGKBO9387Kes2rctzG56r0ygAAAAAAAAAAAAAAAAAAAAAAAB+H4rHQxg3blyf6w0bNgzr+1esWJEkKcsySTJz5sxhfT8AAACNccsjt+S0K07re7Pc6vPTSV5cz0WD6AlQ71XjWZHeAHWS3PyOmzN14kClagAAAAAAAAAAAAAAAAAAAAAAAJqJCPUQZs2a1ed6+fLlw/r+Bx54oM+1CDUAAMDod8sjt+S4bxw38IGnk0yv25yhDRSg3sbN77g5x+597IjPAQAAAAAAAAAAAAAAAAAAAAAAYHiIUA9h9913T5IURZEkueeee4b1/bfeemvvu5PkZS972bC+HwAAgPra7gB1MfCRunokAweot9q46OxFAtQAAAAAAAAAAAAAAAAAAAAAAACjjAj1EA4//PC0tLQkScqyzE033ZSyLIfl3T/+8Y/z61//uvd6xowZOfjgg4fl3QAAANTfkAHqNWmuAPVDSV4+9LHPn/D5nHrgqSM+BwAAAAAAAAAAAAAAAAAAAAAAgOElQj2EqVOn5ogjjugNTz/11FNZuHDhsLz7Yx/7WJLuuHVRFDnmmGOG5b0AAADU35AB6rVJxqe5AtQHDvJ8887Pn/D5/NUf/FU9FgEAAAAAAAAAAAAAAAAAAAAAADDMRKi3w1ve8pYkSVEUKcsyH/jAB7JmzZrf650f//jHc+utt6YottTH/vRP//T3eicAAACNsXrd6qED1GPSPAHqRyNADQAAAAAAAAAAAAAAAAAAAAAAsBMQod4O559/fubMmdN7/cQTT+Tkk09Oe3v7835XtVrNBz7wgXzqU5/qjVoXRZFDDjkkJ5988nDOBgAAoE6mTpyafafvW/vhuiStaZ4A9VNJXjbIcwFqAAAAAAAAAAAAAAAAAAAAAACAHYYI9XYYP358PvGJT/QGo8uyzE9+8pPMnTs3l112WTZu3DjkO5555pl89atfzf77759//Md/TFmWvc+KoshnP/vZkfwRAAAAGGEPXfhQ/xD1uiQtaZ7fvpcl5aXJvs8O8FyAGgAAAAAAAAAAAAAAAAAAAAAAYIfSLBmspvee97wn73rXu/qEqJ988smcd9552W233XLcccflscce6xOXPvfcc3PiiSfmwAMPzOzZs3P++efn4Ycf7vOOoijy4Q9/OG9605sa+NMBAAAwHPqEqNenuQLUy5PyX7s/PvRP24Soi/QGqL/31u8JUAMAAAAAAAAAAAAAAAAAAAAAAOwginLrajKD2rRpU04//fRcf/31KYruOlfP/3zbXg91r+f+29/+9nzrW98a8e2wM5g7d24efPDBfvcPOuigPPDAAw1YBADAzurl//jy/Gbpb5onQL0iKb/c//bLL5qe3xQre69vfsfNOXbvY+s4DAAAoP78+wQAAAAAAAAAAAAAAAAAAGBn0iw5rFGhtbU11113XT760Y+mKIqUZZmiKGrGpnuutz6z7bmPf/zjAtQAAAA7oN+0NVGAelXtAHVmzMhD/9+y7Dt93yQC1AAAAAAAAAAAAAAAAAAAAAAAADuiZklijRpFUeQTn/hEbrvttpx00km9oeltY9O1wtM9X8ccc0xuu+22fOxjH2vwTwMAAMBwKz5UJC2NXrHZmuTF45KFB9R49m//lowZk4cufCir/nqVADUAAAAAAAAAAAAAAAAAAAAAAMAOqLXRA0arI488Mv/+7/+eBx54IFdeeWV++MMf5o477siGDRv6nS2KIoceemje+MY35vTTT8/rXve6BiwGAABgRDz1VHLXXckvfpFi3UXN85v2c8mcMUk1yQUnd98681ebn82dm5xxRu/RqROn1nsdAAAAAAAAAAAAAAAAAAAAAAAAddAsaaxRa+7cuZk7d26SpFqt5tlnn82zzz6blStXZsKECdl1110za9asjBs3rsFLAQAAGDadncl//Efy9a8nP/lJkqT4k7ZkTIN39ViXZFqyrJrsvi6pFluFqH/T2rsZAAAAAAAAAAAAAAAAAAAAAACAHZsI9TCqVCqZNWtWZs2a1egpAAAAjJQbbkg+8pHk8cd7bzVVgHp9kindH6uVZNnEbULU8z6aM6dMaeRCAAAAAAAAAAAAAAAAAAAAAAAA6qTS6AEAAAAwKrS3J3/xF8l55/UNUP9xEwWoNySZ3PdWT4g6SarTpuaSrrvTVe2q+zQAAAAAAAAAAAAAAAAAAAAAAADqr7XRAwAAAKDpPf54Mn9+8rvf9bld/FFbMrYxk/rpSLJL7UfVSrJscpE37XNkvnXWt9JSaanrNAAAAAAAAAAAAAAAAAAAAAAAABpDhBoAAAAG89hjyRlnJEuX9rldnNuWjGvMpH42Jpk0yPMiqabMxSdfnCnjptRrFQAAAAAAAAAAAAAAAAAAAAAAAA1WafQAAAAAaFrt7ck55/QPUL+9LRnfoE3b6kwycZDnRfe3a8+5NntO37MeiwAAAAAAAAAAAAAAAAAAAAAAAGgSItQAAAAwkI9+NPnd7/rcKs5pSyY0Zk4/nRl8y1YB6lP2P6UeiwAAAAAAAAAAAAAAAAAAAAAAAGgiItQAAABQyw03JN/9bp9bxdltycQG7dnWpghQAwAAAAAAAAAAAAAAAAAAAAAAMKjWRg8AAACAptPZmXzkI31uFW9rS3Zp0J5tdSUZP8CzYstHAWoAAAAAAAAAAAAAAAAAAAAAAICdmwg1AAAAbOsHP0gef7z3sjirLZncwD1b60oyrsb9ou+lADUAAAAAAAAAAAAAAAAAAAAAAAAi1AAAALCtr3+992NxRlsyrXFT+qhmS4C6GPjYd878jgA1AAAAAAAAAAAAAAAAAAAAAAAAItQAAADQx1NPJf/1X0mS4rS2ZEaD9/SoJunKoPHpJPk/x/+fnPPKc+qxCAAAAAAAAAAAAAAAAAAAAAAAgCZXafQAAAAAaISNmzbWfnDXXUmS4s1tya51HDSYngD1xMGPff6Ez+d/HvU/67EIAAAAAAAAAAAAAAAAAAAAAACAUUCEGgAAgJ3Oo6sezZ5f3DMfvOGD/R/+4hcpTmxLdq//rpqqm7+GCFAvOntR/uoP/qoeiwAAAAAAAAAAAAAAAAAAAAAAABglWhs9AAAAAOpp8TOLc8hXDsmm6qZ87vbPJUn+7o1/1/u8eOii5CWNWreNMklXhgxQ3/yOm3Ps3sfWYxEAAAAAAAAAAAAAAAAAAAAAAACjSKXRAwAAAKBeegLUndXOlClTlmU+d/vn8sEbPpgkKT5RNFWA+pVj982+L9530GMC1AAAAAAAAAAAAAAAAAAAAAAAAAxEhBoAAICdwtYB6h5bh6iLTxRJ5yAvqKcyeeV/Jvdd9FAeuvCh7Du9dohagBoAAAAAAAAAAAAAAAAAAAAAAIDBiFADAACww6sVoO5Rpkz1t9WmClCPuya5b+rxvbdqhagFqAEAAAAAAAAAAAAAAAAAAAAAABiKCDUAAAA7tMEC1EmStiR71HXSwMoktycbVsxJdt21z6OtQ9QC1AAAAAAAAAAAAAAAAAAAAAAAAGyP1kYPAAAAgJFSM0BdbnVgaZKZ9V41iNuT8ldzuj/Pndvv8UMXPpTV61Zn6sSpdR4GAAAAAAAAAAAAAAAAAAAAAADAaCRCDQAAwA6pX4C63OZAT4C6qPOwgfxiqwB1krzylTWPCVADAAAAAAAAAAAAAAAAAAAAAACwvUSoAQAA2OEsX7t8S4B62/h0kjyX5gpQP5SUP53T994RRzRmCwAAAAAAAAAAAAAAAAAAAAAAADuMSqMHAAAAwHDqqnblj67+o3RVuwYOUI9L8wSoH03Km3fte++oo5I5c2qfBwAAAAAAAAAAAAAAAAAAAAAAgO0kQg0AAMAO5dfP/jo3P3JTyrLa/2EzBqgXTkrGjOl7/7zzGrMHAAAAAAAAAAAAAAAAAAAAAACAHYoINQAAADuMxc8sziFfOSSbql0ps01r+rkkY7e92UBPJeWCMcnkyX3v77VX8qY3NWYTAAAAAAAAAAAAAAAAAAAAAAAAOxQRagAAAHYIPQHqzq7O3nu9IeqeAHWz/Ba8LCm/2ZpMm5YU21SxP/3pZMyYhswCAAAAAAAAAAAAAAAAAAAAAABgx9La6AEAAADw++oNUFc7+z0rmy1AvTwpvz4mmT4tad3m1/Kzz05OOKEhswAAAAAAAAAAAAAAAAAAAAAAANjxiFADAAAwqj266tEtAeqyxoExaZ4A9YqkvGxSMnNyUhR9n+29d/LJTzZmFwAAAAAAAAAAAAAAAAAAAAAAADskEWoAAABGrUdXPZrX/Mtrsqm6qfaBjiQtdZ00sPak/O6uyZQx/Z/NmZNcfnkyZUr9dwEAAAAAAAAAAAAAAAAAAAAAALDDEqEGAABgVFr8zOIc8pVDsqm6KUVRJNUy5dYHNqR5futdk5RXzklq9Kez997dAeo996z7LAAAAAAAAAAAAAAAAAAAAAAAAHZslUYPAAAAgOerJ0DdWe1MmTJlWaYok6LnQDMFqJ9Lyu/Oqf3s7LOT668XoAYAAAAAAAAAAAAAAAAAAAAAAGBENEuSCwAAALbL8rXLc+hXDk1ntbP3XpnuAnVRJuWGJGMat6+PdUl5RY0A9V57JZ/6VPLGN9Z/EwAAAAAAAAAAAAAAAAAAAAAAADsNEWoAAABGjcdXPp73fv+9GdMyJhurG/s8K5OU65OMbci0/tYn5eXbBKiPOio577zkTW9KxjRLKRsAAAAAAAAAAAAAAAAAAAAAAIAdlQg1AAAAo8J1S67LqZefmpaiJbtN2i1JsrZzbffDMsm6NE+AekNS3nd88oZdk7lzk1e+MjniiGTOnKH/LAAAAAAAAAAAAAAAAAAAAAAAAAwTEWoAAACaXk+AOkm6yq48/dyy7NY5NimTtWOSrE0yrqETt+hIys+VjV4BAAAAAAAAAAAAAAAAAAAAAAAAqTR6AAAAAAxm6wB1kqRMuspqnq5syJTOSvJcmidAvTGpTK7kgzd8sNFLAAAAAAAAAAAAAAAAAAAAAAAAQIQaAACA5tUnQF1u/tqsq5K0baom4xsyrb/OJBOTsizzuds/J0QNAAAAAAAAAAAAAAAAAAAAAABAw7U2egAAAADUctPDN/UNUG+rPcnEei4aRGeSCd0fy5RJmXzu9s8lSf7ujX/XuF0AAAAAAAAAAAAAAAAAAAAAAADs1CqNHgAAAADbuunhm3LCZSd0X9QKUK9K8wSoN6U3QJ2i+1uZMmVZ5nO3fy4fvOGDjVoGAAAAAAAAAAAAAAAAAAAAAADATk6EGgAAgKZy3ZLrBg9Qr0iySz0XDaIryfjaj3pC1F+772vZuGljXWcBAAAAAAAAAAAAAAAAAAAAAABAIkINAABAE1m0eFFOvfzU7otaAerlSabUc9EgupKMG/xIa6U1d73nroxtHVuXSQAAAAAAAAAAAAAAAAAAAAAAALA1EWoAAACawoNLH8zpV5zefVErQP10kml1HDSYaoYMUI+pjMl977svL5n2krpMAgAAAAAAAAAAAAAAAAAAAAAAgG2JUAMAANBwT7Q/kaO/eXT3Ra0A9dIkM+q5aBDVJBtr3C+2fOwJUB8468B6rQIAAAAAAAAAAAAAAAAAAAAAAIB+RKgBAABoqCfan8irvvqqrFi3IpVqjQNPJtm13qsG0BOg3mXgIwLUAAAAAAAAAAAAAAAAAAAAAAAANAsRagAAABrmtyt+2xugTrW7QF0ptzrwRJLdGzKtv8EC1EX3t5aiRYAaAAAAAAAAAAAAAAAAAAAAAACAptHa6AEAAADsnH70yI9yzDeOSZkylWrfZ5UyqbYlmd2Qaf2V6Q1QF5svazlqr6Oy38z96rcLAAAAAAAAAAAAAAAAAAAAAAAABlFp9AAAAAB2Plf88ooc/Y2jU6ZMyqRa9H1efSbJbg2Z1l+ZpCPJLlsu+8zdfHHUXkdl0dsXpaXSUtd5AAAAAAAAAAAAAAAAAAAAAAAAMBARagAAAOpq0eJFmX/V/O6Lcsv9nhB19ZkkM+o+q7YyybPpDVBvfbtI+gSo//3cf8+UcVPqOg8AAAAAAAAAAAAAAAAAAAAAAAAGI0INAABA3Vy35LqcfsXp3Rdl/+fV5Wm+APXsAR4XSUvRkuNeepwANQAAAAAAAAAAAAAAAAAAAAAAAE1JhBoAAIC6uOnhm3Lq5acOfKA9ybR6rRnCEAHqFN3fKqlkwVsXCFADAAAAAAAAAAAAAAAAAAAAAADQlFobPQAAAIAd3y2P3JITLjthy41ymwPtSSakN+7ccM8mld27Z/aZutW+MZUxue9992XXSbvWeRwAAAAAAAAAAAAAAAAAAAAAAABsn0qjBwAAALBju+WRW3LcN44b+ECzBaiXJZmdlEVSlJtnFakZoD5w1oGN2QgAAAAAAAAAAAAAAAAAAAAAAADbQYQaAACAEVMzQF1u9bkjTRWgblme5MXdn8siKStFikolxVYDBagBAAAAAAAAAAAAAAAAAAAAAAAYLUSoAQAAGBH3Lb2vf4B6ax3p/q20SQLUrU8mXbM3X2zeVKZMWZYpiiJFCgFqAAAAAAAAAAAAAAAAAAAAAAAARhURagAAAIbd+o3r85qLXzPwgY1pqgB1nkpmzUwmdfZ/1BOinjlxZh664CEBagAAAAAAAAAAAAAAAAAAAAAAAEYNEWoAAACG3R1P3pFN5abaDzdu/t4sAeplSfZKnp6YTOms1AxRt1Za89P/9tO8ZNpL6j4PAAAAAAAAAAAAAAAAAAAAAAAAXigRagAAAIbVLY/ckuO+cVzthx2bvzfLb6PLk7y4+2NXJXl6fDVTivGZNGZS75ExlTG57333CVADAAAAAAAAAAAAAAAAAAAAAAAw6rQ2egAAAAA7jkED1Js2f2+WAPWKJLP73uqqJE+3bMxu43ZPknR2debe992bA2cdWP99AAAAAAAAAAAAAAAAAAAAAAAA8HtqlvQXAAAAo9zqdasHDlAn3RHqZvktdFWS3Wo/6ko1T699Oq9/yevz5F89KUANAAAAAAAAAAAAAAAAAAAAAADAqNUs+S8AAABGuakTp2bf6fvWfrghSUtd5wysPcmuAzwrur91lV25+OSLs+ukgQ4CAAAAAAAAAAAAAAAAAAAAAABA8xOhBgAA4AXrqnb1uX7owof6h6jXp3kC1GuSzBj62LXnXJs9p+854nMAAAAAAAAAAAAAAAAAAAAAAABgJIlQAwAA8IK0d7TnjAVnZOHihX3u9wlRr0/SWv9tNT2XZPogz4vub9eec21O2f+UeiwCAAAAAAAAAAAAAAAAAAAAAACAEdUsKTAAAABGkfaO9sy/cn7uW3pf7mm7J0ly5oFn9j5/6MKHUnywSMY0auE21iWZNshzAWoAAAAAAAAAAAAAAAAAAAAAAAB2QJVGDwAAAGB02TpAnSTVspoLrr8gCxcv7D1TfKKJAtTrk0wZ5LkANQAAAAAAAAAAAAAAAAAAAAAAADuo1kYPAAAAYPTYNkDdoydEnSRnXXFW0tmIdTV0JJVdkupAzzcHqG/84xtz/MuOr9cqAAAAAAAAAAAAAAAAAAAAAAAAqItKowcAAAAwOgwUoO5RLas565ImC1BP7P5YKWs8F6AGAAAAAAAAAAAAAAAAAAAAAABgBydCDQAAwJCGClAnSdtTbcm4Oo4azMYtAeoefULUmwPU155zrQA1AAAAAAAAAAAAAAAAAAAAAAAAOywRagAAAAa1XQHqJ9uSCXUcNZjOJBOTatH/UaVMb4D6mrOvySn7n1LPZQAAAAAAAAAAAAAAAAAAAAAAAFBXrY0eAAAAQPPargD1irZkYh1HDWZT+sSwq8Xm8HSPSiW7TpyRH/7JD3PQ7IPqvQ4AAAAAAAAAAAAAAAAAAAAAAADqSoQaAACAmrqqXTn3qnMHD1CvakuKOo4azKYk4/vf7g1RVyqZMXFG7vmze7LHlD3qvQ4AAAAAAAAAAAAAAAAAAAAAAADqrtLoAQAAADSntZ1r8/jKx9PR1VHzedvqtqSs86iBdKVmgLpHtRIBagAAAAAAAAAAAAAAAAAAAAAAAHY6ItQAAAD0097RnuO/cXx+sfwXWbV+Vb8QdVt7W1Jt0LhtdSUZN8jzIilS5M533ylADQAAAAAAAAAAAAAAAAAAAAAAwE5FhBoAAIA+Vq5fmeO/cXx++tRPkyTVVPuEqNvWtHWHn5tBNUMGqJPk1nfcmn1m7FOPRQAAAAAAAAAAAAAAAAAAAAAAANA0Whs9AAAAgObx4NIH87qvvS6rO1b3ud8Toq52VbvDz81gsB3Flo8L3rIgb9j7DSM+BwAAAAAAAAAAAAAAAAAAAAAAAJpNpdEDAAAAaA7f+cV3Mverc/sFqHtU1zZhgHrsNveL9AlQX3P2NTn74LPrNAoAAAAAAAAAAAAAAAAAAAAAAACaiwg1AAAA+Zef/kvOXXhu35vlVl/r0z/43CjVdIemx2ZLdHqb+HSSXHvOtTntwNPqvQ4AAAAAAAAAAAAAAAAAAAAAAACahgg1AADATu4L//WFvPff37vlRk94useGJK11HjWQMn0D1IN4/Z6vr8MgAAAAAAAAAAAAAAAAAAAAAAAAaF7NkhEDAACgAb7wX1/I/7jxf3RflDUObEzz/ObYs2/s0EdvfsfNmTpx6ojOAQAAAAAAAAAAAAAAAAAAAAAAgGZXafQAAAAAGuOf7/jnoQPUzfJbY5lkU7Y7QH3s3seO9CIAAAAAAAAAAAAAAAAAAAAAAABoes2SEwMAAKCOvnzXl/P+H7y/+2K0BKgnDn1UgBoAAAAAAAAAAAAAAAAAAAAAAAC2aG30AAAAAOrry3d9Oedff373Ra0A9aYkRT0XDaJMMnbz1xAEqAEAAAAAAAAAAAAAAAAAAAAAAKCvSqMHAAAAUD+X/PySoQPUZZomQn3YtFemvKjMvtP3HfScADUAAAAAAAAAAAAAAAAAAAAAAAD0J0INAACwk7jrsbvy7mvfPfCBJgtQzx2/X3721/clSR668KEBQ9QC1AAAAAAAAAAAAAAAAAAAAAAAAFCbCDUAAMBO4NFVj2bepfO23Ci3OVBNUwWoUySfestn+9yqFaIWoAYAAAAAAAAAAAAAAAAAAAAAAICBiVADAADs4DZu2phX/PMrBj5QTdKV5glQj0nmTJuTC66/IAsXL+zzaOsQtQA1AAAAAAAAAAAAAAAAAAAAAAAADK610QMAAAAYWd/71feyZtOaLTfKrR5Wk2xK8/wniirJnF3mJEmqZTUXXH9BkuTMA8/sPfLQhQ9l9brVmTpxakMmAgAAAAAAAAAAAAAAAAAAAAAAwGghQg0AALADu+KXV2T+VfNrP2y2APWYLQHqHgOFqAWoAQAAAAAAAAAAAAAAAAAAAAAAYGjNkhoDAABgmF3+i8tHdYC6R7Ws5pJ7L0lXtavOowAAAAAAAAAAAAAAAAAAAAAAAGB0a5bcGAAAAMPo+iXX5+0L3z7wgWYKULcOHKBOkkNmH5JvnfWttFRa6jgKAAAAAAAAAAAAAAAAAAAAAAAARr9mSY4BAAAwTJ5a/VROvvzk2g/LJB1pnt8GW5I5kwcPUC9464JMGTeljqMAAAAAAAAAAAAAAAAAAAAAAABgx9As2TEAAACGQXtHe9593bvTWmmtfaAjSUtdJw2sksyZIkANAAAAAAAAAAAAAAAAAAAAAAAAI0WEGgAAYAfR3tGe+VfOz31L78usibP6h6jXp3kC1GuSOVMFqAEAAAAAAAAAAAAAAAAAAAAAAGAkiVADAADsALYOUPfoE6Jen6S19p+tu3VJZWrS0dVR87EANQAAAAAAAAAAAAAAAAAAAAAAAAwPEWoAAIBRrlaAusesibOSdWmqAHWmJNVKsmr9qn4hagFqAAAAAAAAAAAAAAAAAAAAAAAAGD4i1AAAAKPY4ysfHzBAnSRty9qSMXUeNZD1SXra0kVSTbVPiFqAGgAAAAAAAAAAAAAAAAAAAAAAAIaXCDUAAMAodd2S67LXP+6V/3z4P2s+b1valoyt86iBdCSZ3P92T4j6xZNfLEANAAAAAAAAAAAAAAAAAAAAAAAAw0yEGgAAYBS66eGbcurlpyZJqmU1y9Yu6/O8bWlbMq4Ry2roSDJp4MfVVPPgMw9m0phBDgEAAAAAAAAAAAAAAAAAAAAAAADPmwg1AADAKHPLI7fkhMtO6HNv6xB121NNFKDemEED1D3WbVqX5zY8N+JzAAAAAAAAAAAAAAAAAAAAAAAAYGciQg0AADCKXPer63LcN46r+axaVtP2ZFsyoc6jBtKZZGKN+0X/Wze/4+ZMnTh1pBcBAAAAAAAAAAAAAAAAAAAAAADATkWEGgAAYJT48l1fzqkLTh34wOrUjj43wqZsdwz75nfcnGP3PnZE5wAAAAAAAAAAAAAAAAAAAAAAAMDOSIQaAABgFPjyXV/O+defP/CBFWmuAPX4AZ4VfS8FqAEAAAAAAAAAAAAAAAAAAAAAAGDkiFADAAA0uS/95EuDB6ifTTK5bnMG15WBA9TbEKAGAAAAAAAAAAAAAAAAAAAAAACAkSVCDQAA0MQ+dtPH8pc3/OXAB55NMqVea4bQlWTcIM+LLR8FqAEAAAAAAAAAAAAAAAAAAAAAAGDkiVADAAA0qUt+dkk+9eNPDXxgRZonQF1NMnaQ5wLUAAAAAAAAAAAAAAAAAAAAAAAAUHci1AAAAE3oil9ekXdf9+6BD6xKMrlea4ZQTdKaPqHpPgSoAQAAAAAAAAAAAAAAAAAAAAAAoCFEqAEAAJrM5b+4PPOvmj/wgdVJJtVtzuB6AtQD/XYpQA0AAAAAAAAAAAAAAAAAAAAAAAAN09roAQAAAGzxtXu+lj9d9KcDH1ifZGLd5gyuTHd8ulaAeqv4dCWVPPkXT2b2tNl1GgYAAAAAAAAAAAAAAAAAAAAAAAAkItQAAABN45aHbxk8QL0hzfNbXJnu0PS2e4r+R+98950C1AAAAAAAAAAAAAAAAAAAAAAAANAAzZIvAwAA2Knd/eTdOf6y4wc+0JGkpW5zBrd1gLpGdHprC96yIK/Z4zV1GAUAAAAAAAAAAAAAAAAAAAAAAABsq9LoAQAAADu7Wx6+JfP+dV7KlLUPbEzz/PZWJqkmGZPtClCfffDZdRgFAAAAAAAAAAAAAAAAAAAAAAAA1NIsGTMAAICd0n/8+j9y3GXHDRyg7syQsee66QlQjx/6qAA1AAAAAAAAAAAAAAAAAAAAAAAANJ4INQAAQIPc8sgtOek7Jw18oDMZqE1dd+XmLwFqAAAAAAAAAAAAAAAAAAAAAAAAGDVEqAEAABrglkduyXHfOG7gA5vSHX0u6rVoCGOTOTPnpLXSOugxAWoAAAAAAAAAAAAAAAAAAAAAAABoHiLUAAAAdbZdAepqmidAPSaZs8ucJMmsibMGDFELUAMAAAAAAAAAAAAAAAAAAAAAAEBzEaEGAACoozsev2PwAHVXmitAXWwJUPeoFaL+zpnfEaAGAAAAAAAAAAAAAAAAAAAAAACAJiNCDQAAUCc/euRHOfKSIwc+0LX5q5kC1NPm1Hy0dYj6++d8P+e88px6LgMAAAAAAAAAAAAAAAAAAAAAAAC2gwg1AABAHVzxyyty9DeOHvhANcmmNE+Aeu3AAeoeJ+xzQp78yydz0v4n1WkUAAAAAAAAAAAAAAAAAAAAAAAA8HyIUAMAAIywK355ReZfNX/gA9UknWme39Dak0xLlq1dNuCRQ2YfkgVvXZAXTX1R3WYBAAAAAAAAAAAAAAAAAAAAAAAAz0+zJM4AAAB2SD974mejK0C9NsnM7o/VslozRN0ToJ4ybkp9twEAAAAAAAAAAAAAAAAAAAAAAADPS7NkzgAAAHY4i59ZnMP/7fDBDzVTgHpNkml9b20bohagBgAAAAAAAAAAAAAAAAAAAAAAgNGjWVJnAAAAO5TFzyzO3P83N2XKgQ9tSPP8VtaeZEbtRz0hagFqAAAAAAAAAAAAAAAAAAAAAAAAGF2aJXcGAACww9juAHVL3SYNrj3JzMGPVMtqLj75YgFqAAAAAAAAAAAAAAAAAAAAAAAAGEVaGz0AAABgR7L4mcU56P/9/+zdeZTddWH//9edzCRkTwhLgAYMmw2oBBJwAfmyKbI3iBBBQaiolEWrnH4rxkaqoFapIBp/KAgKBlAaZFGoQkIFq98QBFRATBAJAqORxOxkm/n9kQxkMmuSufdz587jcU5OZt6f97331R7+mDme88w+nV9amer5bWxZugxQJ8ldk+/KmJFjyj4HAAAAAAAAAAAAAAAAAAAAAAAA6DnVkj0DAADo9XpdgHpFkpFdX7vvffflyD2OLPscAAAAAAAAAAAAAAAAAAAAAAAAoGdVS/oMAACgV1u5emXXAeoVSRoqMqdrK5IM7/razDNn5vCxh5d9DgAAAAAAAAAAAAAAAAAAAAAAANDzRKgBAAB6wFm3n9X2sHmjr1ck6V+pNV14Jd0KUN912l0C1AAAAAAAAAAAAAAAAAAAAAAAANCL1RU9AAAAoLd7/23vzw9+94PXDprTOkC9PNUToF6VZGjX16YdMy3H//3xZZ8DAAAAAAAAAAAAAAAAAAAAAAAAlE990QMAAAB6s4vvvTg3PXHT+m+a27mwPMmASi7qxOokQ7q+Nu2YaTnvoPPKPgcAAAAAAAAAAAAAAAAAAAAAAAAor7qiBwAAAPRW/3b/v+WK/3fF+m/aC1AvTXUFqAd3fe3Kd1wpQA0AAAAAAAAAAAAAAAAAAAAAAAA1or7oAQAAAL3Rp+77VC7/+eXrv2kvQL0kyaBKLurEmnQrQP3pQz6dj77to2WfAwAAAAAAAAAAAAAAAAAAAAAAAFSGCDUAAMBmuuJ/rug8QP23JEMqOKgza9OtGPZ1x1+XcyacU/Y5AAAAAAAAAAAAAAAAAAAAAAAAQOWIUAMAAGyGr/3ya7n4gYvXf9NegHpRkqGVXNSJtUkGdn3t1nffmlPfcGrZ5wAAAAAAAAAAAAAAAAAAAAAAAACVVVf0AAAAgN7ihkdvyIX/fWHHFxamegLU69KtAPXNk24WoAYAAAAAAAAAAAAAAAAAAAAAAIAaJUINAADQDTOemJGz7zz7tYPmTS4sTDKskos6sS7JNl1fu/7E6zP5TZPLPgcAAAAAAAAAAAAAAAAAAAAAAAAoRn3RAwAAAKrd3U/fnXff9u7132wan06SxameAHVTkv5dX5v5vpk5fI/Dyz4HAAAAAAAAAAAAAAAAAAAAAAAAKE5d0QMAAACq2d1P350Tbjlh/TcdBagHV3JRJ5qSNKTL3/QOHnNwDh17aCUWAQAAAAAAAAAAAAAAAAAAAAAAAAUSoQYAAOhAlwHqZel1AeqJoyfmx2f8OP3q+lViFQAAAAAAAAAAAAAAAAAAAAAAAFAgEWoAAIB2dCtAvU0lF3WiOd0KUB+w4wG5/wP3Z9iAYZVYBQAAAAAAAAAAAAAAAAAAAAAAABRMhBoAAGAT9z9zf+8KUPdLl7/dTdx5YmadPUuAGgAAAAAAAAAAAAAAAAAAAAAAAPoQEWoAAICNNP6tMUfddFTHF1am+gLU/Tq/NnHnibn/zPsFqAEAAAAAAAAAAAAAAAAAAAAAAKCPEaEGAADY4KkFT2W3q3dLXcuvSs2bXFiZpKHSqzrQnPW/0QlQAwAAAAAAAAAAAAAAAAAAAAAAAB0QoQYAAMj6APV+/99+Wd20Ok1pSpo2ubA61RWgLiWp7/zam3d5swA1AAAAAAAAAAAAAAAAAAAAAAAA9GEi1AAAQJ/XEqBe07TmtcNSXgtRr97wfTXoZoB6eP/hueeMewSoAQAAAAAAAAAAAAAAAAAAAAAAoA8ToQYAAPq0dgPUzRv+rkvyStZHn6spQt1FgDpJ/vfs/83IgSPLPgcAAAAAAAAAAAAAAAAAAAAAAACoXiLUAABAn9VugHpja5L0S/UEqJuS9N/wdSeb7jj1juwzep9KLAIAAAAAAAAAAAAAAAAAAAAAAACqmAg1AADQJ3UYoG7e8HfThr+rJUC9Jq8FqDtxy6RbcuK4E8s+BwAAAAAAAAAAAAAAAAAAAAAAAKh+ItQAAECf02GAukVTknWpngD1K0kGdn3tssMuy2lvOq3scwAAAAAAAAAAAAAAAAAAAAAAAIDeQYQaAADoU2bPn911gHptqitAPaTra5cddlku+T+XlH0OAAAAAAAAAAAAAAAAAAAAAAAA0HuIUAMAAH3GPU/fkzdf/+auA9TV8pvS8rQfoN4kkD3l4CkC1AAAAAAAAAAAAAAAAAAAAAAAAEAb1ZJWAwAAKKtZz87Ksbcc2/GFpiRrUj2/JS1PMrzra+/d97357FGfLfscAAAAAAAAAAAAAAAAAAAAAAAAoPeplrwaAABA2cx6dlaO+O4RnV+qpgD10nQcoC699uXRrzs600+ZXolFAAAAAAAAAAAAAAAAAAAAAAAAQC9ULYk1AACAsuhWgPqVVM9vR0uSjOz62rte967ce9a9ZZ8DAAAAAAAAAAAAAAAAAAAAAAAA9F7VklkDAADocd0OUPeryJyuLU2ybSfPS+v/es/fvyf3nHVPJRYBAAAAAAAAAAAAAAAAAAAAAAAAvZgINQAAUJO6FaBemeoJUC9LMrKT5xsC1O/b9335/mnfr8QiAAAAAAAAAAAAAAAAAAAAAAAAoJcToQYAAGpOtwLUK5LUV2RO11YkGdHJ8w0B6k+8+RO58ZQbKzAIAAAAAAAAAAAAAAAAAAAAAAAAqAUi1AAAQE3pdoC6oSJzurYyybBOnm8IUH/6kE/ny+/6ciUWAQAAAAAAAAAAAAAAAAAAAAAAADVChBoAAKgZi1cs7jpAvTzVE6B+JcnQDp6V8mqA+pKDL8m/H/nvFRoFAAAAAAAAAAAAAAAAAAAAAAAA1Ir6ogcAAAD0lOseva7zC8uSDKjIlK6tSjKkg2el17788mFfzif+zycqsQgAAAAAAAAAAAAAAAAAAAAAAACoMSLUAABATbjrqbvyifs6iTUvTbJNxeZ0bnWSwV1fu/roq3PBWy4o+xwAAAAAAAAAAAAAAAAAAAAAAACgNolQAwAAvd79z9yfE79/YscXliQZWLE5nVuTZFAnz0vr/7r+xOvzgf0/UIFBAAAAAAAAAAAAAAAAAAAAAAAAQK0SoQYAAHq1u5++OyfcckLHFxan8+hzJa1J5zHsDQHq/zrlv3LyvidXYhEAAAAAAAAAAAAAAAAAAAAAAABQw+qKHgAAALClbn/i9s4D1ItSPQHqtek8QL3BxJ0m5qRxJ5V9DgAAAAAAAAAAAAAAAAAAAAAAAFD7RKgBAIBe6YZHb8jJt53c8YWFSYZUbE7n1iXZJklTJ3dKyf6j98/9Z92ffnX9KjQMAAAAAAAAAAAAAAAAAAAAAAAAqGUi1AAAQK9zw6M35Ow7z+74wstJhlZsTufWJRmw4eu6tB+i3hCgfuADD2TYgGGV2wYAAAAAAAAAAAAAAAAAAAAAAADUNBFqAACgV3noDw91HqBemKRaOs5NeS1A3WLTELUANQAAAAAAAAAAAAAAAAAAAAAAAFAmItQAAECvcf8z9+ftN769/YfNSf6WZGgFB3WmKUl9B89afhMrJRN2miBADQAAAAAAAAAAAAAAAAAAAAAAAJSFCDUAANAr3P303TnqpqNaHzZv9GdxksGV39WulgB1R79xldb/OWzMYZl51kwBagAAAAAAAAAAAAAAAAAAAAAAAKAsRKgBAICqd9sTt+WEW05ofdi80dfL0jsC1Bvi00lyyK6H5I4z7hCgBgAAAAAAAAAAAAAAAAAAAAAAAMpGhBoAAKhq337k23nPbe957aA5rQPUryTZpsKjOtKc9b9ltfymVdrkzwaH7HpIfnT6jwSoAQAAAAAAAAAAAAAAAAAAAAAAgLKqL3oAAABAR2549Ib8493/+NpB8yYXVqd6fqtpCVB3sqdfqV8O2fWQ3PneOwWoAQAAAAAAAAAAAAAAAAAAAAAAgLKrllwbAABAK7c/eXvOvvPs1w7aC1DXVXJRJ7oRoG6oa8jjH3k8e4/aO/3q+lVqGQAAAAAAAAAAAAAAAAAAAAAAANCHiVADAABV5+6n787JPzj5tYNqD1An3QpQj9t+XEUmAQAAAAAAAAAAAAAAAAAAAAAAACTVk20DAABIsj5AfcItJ7x2sGmAem2q5zeZ5g1/+nd8RYAaAAAAAAAAAAAAAAAAAAAAAAAAKEq1pNsAAADy8+d+3jpAvam1aRulLlJzkgEdPxagBgAAAAAAAAAAAAAAAAAAAAAAAIokQg0AAFSF3/75tznkhkNaH24cnG4JUJcqOKoza9NpgDpJHjrrIQFqAAAAAAAAAAAAAAAAAAAAAAAAoDAi1AAAQOGeWvBUxl8zvvXhxgHqplRXgHpNkoGdX/nx5B/noF0PqsgcAAAAAAAAAAAAAAAAAAAAAAAAgPaIUAMAAIVauXpl3vSNN2Vd87r2LzQlWZfqClAP6vra28a8rexTAAAAAAAAAAAAAAAAAAAAAAAAADpTX/QA+oYFCxbk4YcfzjPPPJMlS5akoaEho0aNyj777JOJEyemoaGh6IkAABTkj4v/2HGAes2Gv6slQL0qyZCur808c2aGDxpe9jkAAAAAAAAAAAAAAAAAAAAAAAAAnRGhpqxuu+22XHXVVfn5z3+e5ubmdu8MHTo0p556av7lX/4le++9d4UXttXc3Jy5c+fmkUceyZw5czJnzpw8+uijWbp0aat7Z511Vm644Yat/rwHHngghx9++Fa/T4uXXnopo0eP7rH3AwAop5WrV2b8NePTnE1+VmzO+gB1c5K6Aoa155UkQ7u+NvPMmTl8bM/9fAcAAAAAAAAAAAAAAAAAAAAAAACwpUSoKYsXXnghZ5xxRv7nf/6ny7tLly7NddddlxtvvDFTpkzJlClTUiqVKrDyNTNmzMgvf/nLzJkzJ7/61a+yePHiin4+AEBfNbD/wBy757H54dM/bP2g2gLUK5IM7/qaADUAAAAAAAAAAAAAAAAAAAAAAABQTUSo6XG///3vc9hhh+Wll17arNetXr06//Zv/5annnoqN954Y/r161emhW2dc845wtMAAAW5ffLtmXTLpNdC1NUWoF6eZETX1wSoAQAAAAAAAAAAAAAAAAAAAAAAgGojQk2Pevnll/OOd7yj3QD1hAkTctJJJ2Xs2LFZuXJlfv/732f69Ol58cUXW927+eabs8MOO+TKK6+s0Orqs8cee2TIkCFb9NqGhoYeXgMAUH6tQtTrklTu3yPp3NIk23Z9TYAaAAAAAAAAAAAAAAAAAAAAAAAAqEYi1PSoD33oQ5k/f36rs6FDh+amm27KiSee2Ob+5Zdfnssvvzyf+cxnWp1fddVVOfroo3PMMceUc26XRo0alQkTJmTkyJG59dZbK/a51157bQ477LCKfR4AQDW4ffLtKX2yVD0B6iXpVoD6h6f8UIAaAAAAAAAAAAAAAAAAAAAAAAAAqEoi1PSYn/70p5kxY0ars/79+2fmzJmZOHFiu69paGjI1KlTM2LEiHzsYx9r9eyiiy7KU089lfr6yvxnOnz48BxwwAGZOHFiDjzwwEycODFjx45NkjzwwAMVjVADAPRFpUurKEC9NN0KUF9x1BU5ad+Tyj4HAAAAAAAAAAAAAAAAAAAAAAAAYEuIUNNjPvvZz7Y5mzp1aocB6o199KMfzY9+9KP89Kc/ffVs3rx5mT59es4888we3dmeRx99NK973etSKpXK/lkAALRVurSUrCl6xQbLkozs+toVR12Rjx/88bLPAQAAAAAAAAAAAAAAAAAAAAAAANhSdUUPoDY88cQTefDBB1udbbfddrn44ou7/R6f//zn25x94xvf2Opt3TF27FgBagCAglRVgHpFkhFdX7vz1DsFqAEAAAAAAAAAAAAAAAAAAAAAAICqJ0JNj7jlllvanJ199tnp379/t99jwoQJmTBhQquzX/7yl3n22We3eh8AANWpqgLUK5MM6/rafe+7LyeMO6HscwAAAAAAAAAAAAAAAAAAAAAAAAC2lgg1PeLee+9tc3bKKads9vu095r23hsAgN6vqgLUryQZ2s55qfW3d02+K0fucWQlFgEAAAAAAAAAAAAAAAAAAAAAAABsNRFqttry5cvzq1/9qtXZoEGDcsABB2z2e7397W9vc/bggw9u8TYAAKpTVQWoVyUZ0vW1GafMyPGvP77scwAAAAAAAAAAAAAAAAAAAAAAAAB6igg1W+2xxx5LU1NTq7OJEyemvr5+s9/rwAMPTENDQ6uzRx55ZKv2AQBQXaoqQL06yeCur11/4vWZtO+kss8BAAAAAAAAAAAAAAAAAAAAAAAA6EmbXwmGTfzud79rc7bnnntu0Xv1798/f/d3f5dnn3321bNnnnkma9eu3aKodW91xx135Lvf/W7mzJmTxsbG/O1vf8uQIUMyatSo7LTTTnnb296Wt7/97TnyyCOzzTbbFD0XAKDbqipAvSbJoE6el9b/df2J1+cD+3+gAoMAAAAAAAAAAAAAAAAAAAAAAAAAelbfqfpSNn/84x/bnO22225b/H677rprqwj1unXrMn/+/Oy+++5b/J69zZVXXtnmbNGiRVm0aFHmzZuXBx98MF/84hez44475sILL8wFF1yQ4cOHV34oAEBXXnwxmT07+fWvU/rb1M6jz5W0JsnATp5vCFA/+P4Hc8juh1RiEQAAAAAAAAAAAAAAAAAAAAAAAECPE6FmqzU2NrY5GzNmzBa/X3uv/fOf/9ynItTd9ec//zlTpkzJN7/5zdx66615y1veUvSkdn3961/PtGnTyv45zzzzTNk/AwDohjVrknvvTb7zneR//zdJUjr1pWRIwbtarE3nAeoN7nvffQLUAAAAAAAAAAAAAAAAAAAAAAAAQK8mQs1WW7hwYZuzIUO2vDDY3mtffvnlLX6/3mrgwIHZbrvtMmzYsCxfvjwvv/xyli5d2u7d+fPn59BDD813v/vdTJ48ucJLu7ZgwYI8+eSTRc8AACrhpz9NpkxJ/vjH9THqNWtSOntZ9QSo1yXZpos7peSuyXflyD2OrMQiAAAAAAAAAAAAAAAAAAAAAAAAgLIRoWarLV++vM3ZwIEDt/j92nvtihUrtvj9eotRo0bl2GOPzbHHHpuJEydm9913T11dXas7c+fOzX333Zerr746Tz31VKtna9asyQc+8IHssssuefvb317J6QAAyZIlySWXJNOnJytXJqtXJ0lK5zUlwwre1mJdkgFd3CklPzjlBzn+9cdXYhEAAAAAAAAAAAAAAAAAAAAAAABAWYlQs9XWrFnT5mybbbbZ4vdrL0K9ekPEsBbtvPPOuemmm3LKKadkwIDOq4h77bVX9tprr3zkIx/J17/+9Vx88cVZtWrVq89XrVqVU089NfPmzcvgwYPLPR0AYL3nn0+OPjqZNy9Zt+7V49KHm5IRxc1qpSndClBfd/x1OWXfUyqxCAAAAAAAAAAAAAAAAAAAAAAAAKDs6ooeQG0qlUo9+trm5uatmVPV9t5775xxxhldBqg3ViqVcsEFF+Tuu+9OQ0NDq2eNjY35yle+0tMzAQDa98QTyYQJydNPtwpQDzm3Kdm2wF0ba0rS1Y+npaRfqV/e+8b3VmIRAAAAAAAAAAAAAAAAAAAAAAAAQEWIULPVNo0gJ8nKlSu3+P3ae23//v23+P1q2VFHHZUvfvGLbc6/8pWvZN1GEUgAgLJ48snkLW9JXn651fHQc5qyfLuCNm2qJUDd9kfW9Up5NUD9m/N+k4H9B1ZuGwAAAAAAAAAAAAAAAAAAAAAAAECZ1Rc9gN5v0KBBbc56OkI9ePDgLX6/WnfBBRfkq1/9av74xz++erZw4cLMnj07b33rW4sbtpHtt98+++yzT9k/55lnnsmqVavK/jkAQJL585PDDktWrGh1POqspizbsZhJbXQnQJ3XAtTjth9XoWEAAAAAAAAAAAAAAAAAAAAAAAAAlSFCzVYbNWpUm7Nly5Zt8fu199r2PoP1Ghoa8p73vCdf+tKXWp3ff//9VROhPv/883P++eeX/XP23XffPPnkk2X/HADo85YsSY45Jnn55VbHu5zelIU7F7RpU81pP0Bdav2tADUAAAAAAAAAAAAAAAAAAAAAAABQy+qKHkDvt+OOO7Y5+9Of/rTF7/f888936zN4zWGHHdbmbP78+ZUfAgDUtKt+dtX6Lz71qWTu3FbP9jqlKS/uVsCo9jQn6b/hT2mTPxsRoAYAAAAAAAAAAAAAAAAAAAAAAABqnQg1W23s2LFtzp577rktfr9N48n9+vXLrrvuusXv1xfstNNObc4WLFhQwBIAoFZte/m2+disj6V0aSmZPj1Zt279g+bmHHBcU+btVey+VzUkO/YfleapzfmH1/9Dh9fqS/UC1AAAAAAAAAAAAAAAAAAAAAAAAEDNE6Fmq73+9a9vczZv3rwteq/Vq1fn+eefb3W2xx57pL6+fover68YPHhwm7OVK1cWsAQAqEXbXr5tFq1ZtP6b5qR0/sKkqSlpasobj2/Oo28qdt+r6pJtMyyNU/+aJLl98u3thqjr6+rz6/N+LUANAAAAAAAAAAAAAAAAAAAAAAAA1DwRarba/vvvn7q61v8pzZkzJ2vXrt3s95ozZ07WrFnT6uyAAw7Yqn19wYIFC9qcbbfddgUsAQBqTasAdYu6pPTp5O2HJ799YzG72mhO0i95eeriVsebhqgb6hry648IUAMAAAAAAAAAAAAAAAAAAAAAAAB9gwg1W23w4MHZf//9W50tX748jz766Ga/10MPPdTm7NBDD93ibX3FU0891eZs++23L2AJAFBLWgWomzf8abE2eeitSUoFDGtP/6R5anO7j1pC1P379c/jH3lcgBoAAAAAAAAAAAAAAAAAAAAAAADoM0So6RHvete72pzddtttm/0+7b2mvfemtR//+Mdtzvbbb78ClgAAtaJNgHpjq7M+Pl0tAeqGjgPULW6ffHv+9i9/E6AGAAAAAAAAAAAAAAAAAAAAAAAA+hQRanrE5MmT25xdf/31Wb16dbff49FHH83DDz/c6uzNb35zxo4du9X7atlTTz2VO++8s9VZqVQS7wYAttiIz43oOEC9Lr0uQN1iYP+BZR4DAAAAAAAAAAAAAAAAAAAAAAAAUF1EqOkRb3jDG3LIIYe0OluwYEG+8pWvdPs9PvnJT7Y5O++887Z6Wy1btWpVzj333Kxbt67V+cEHH5zRo0cXtAoA6M2G/fuwLF63eP037QWom9IrA9QAAAAAAAAAAAAAAAAAAAAAAAAAfZEINT1mypQpbc6mTp2aX/3qV12+9mtf+1r++7//u9XZ7rvvntNPP71bn/26170upVKp1Z8HHnigW68t0lVXXZXnnntui167dOnSnHbaafn5z3/e5tlll122tdMAgD5o2L8Py9Lmpeu/qfYA9YsC1AAAAAAAAAAAAAAAAAAAAAAAAABdEaGmxxx99NE56aSTWp2tWrUqhx9+eO666652X7NmzZp89rOfzYUXXtjm2Ve/+tU0NDSUZWu1uP7667Pnnnvm9NNPz5133plXXnmly9esW7cuP/jBD3LAAQfkjjvuaPN88uTJOfTQQ8sxFwCoUcteWZbzfnjeawHqTa3b8KeaAtTzjyx6BQAAAAAAAAAAAAAAAAAAAAAAAEDVqy96ALXlW9/6Vh555JH86U9/evVsyZIlOfHEEzNx4sScdNJJGTt2bFauXJm5c+fme9/7Xl544YU273PBBRfkuOOOq9juOXPm5IMf/GCHz5ctW9bm7M4778z48eM7fM3EiRNz7bXXdvnZa9euzc0335ybb745gwcPzv7775/99tsve+yxR0aMGJGhQ4dmxYoVefnll/OrX/0qs2bNavf/Z0lyyCGH5Prrr+/yMwEAWjz8wsN587VvTnOaXzvc6MtXA9TV8s/X/Dlpvnen5NDtil4CAAAAAAAAAAAAAAAAAAAAAAAAUPVEqOlR22+/fX7yk5/kiCOOSGNjY6tnc+bMyZw5c7p8j1NPPTVXXnllmRa2b9myZXn88cc36zWLFi3KokWLOnw+YsSIzd6xfPnyPPTQQ3nooYc2+7UnnnhivvOd72SbbbbZ7NcCAH3Twy88nIOuPajjC9UWoF6YNH+3fzIqyb77Fr0GAAAAAAAAAAAAAAAAAAAAAAAAoOpVS06OGjJu3LjMnj07hxxyyGa9rqGhIVOnTs3NN9+cfv36lWld7dlxxx3zzW9+M3fccccWha8BgL6pwwB180Zfr031/Mbwt6T5mrqkbsOgN72p0DkAAAAAAAAAAAAAAAAAAAAAAAAAvUG1JOWoMWPGjMnPfvaz3HrrrXnb296WUqnU4d0hQ4bk7LPPzq9//et85jOfSV1d3/nPcsaMGfnmN7+ZM844I69//eu7/X/70KFD8453vCM33XRT5s+fn3PPPbfMSwGAWtJhgHpjq5JUy78LsiRp/saGn5Pq69f/fVAX+wEAAAAAAAAAAAAAAAAAAAAAAABIqbm5ubnoEdS+v/zlL5k9e3b+8Ic/ZMmSJamvr892222XcePG5cADD0z//v2LnlgVVqxYkd///vd5/vnn8+KLL2bp0qV55ZVXMmDAgIwcOTIjR47M3nvvnX333bdPxbq7a999982TTz7Z5nyfffbJE088UcAiAKg+XQaom5O8kqS+Uou6sDRp/tpGP/cMH54cdVTy/e8XtwkAAADo1fzvCQAAAAAAAAAAAAAAAAAAQF9SLWk5atwOO+yQ448/vugZVW/QoEEZP358xo8fX/QUAKAGdRmgTqorQL0sab66lJQ2OmtoSM46q7BJAAAAAAAAAAAAAAAAAAAAAAAAAL1JXdEDAACA8utWgHpFqidAvSJpvipJaaMCdf/+ydixyTvfWdgsAAAAAAAAAAAAAAAAAAAAAAAAgN5EhBoAAGpctwLUy5M0VGRO11YmzV9JUrfJrysDByaf+1zSUC1DAQAAAAAAAAAAAAAAAAAAAAAAAKqbCDUAANSwZa8s616Aun9F5nTtlaT5P5OUSq3P+/VLzjgjOeqoQmYBAAAAAAAAAAAAAAAAAAAAAAAA9EYi1AAAUMO+89h3Or9QTQHqVUnzFRu+3jRCvddeyWWXVXwSAAAAAAAAAAAAAAAAAAAAAAAAQG8mQg0AADXqG7O/kQv++4KOL6xI9QSoVyfNX+7g2ahRyb33JsOGVXQSAAAAAAAAAAAAAAAAAAAAAAAAQG8nQg0AADXo7qfuzj/d808dX1iZpKFiczq3Jmn+0kbfl0qvfT14cPLAA8mYMZVeBQAAAAAAAAAAAAAAAAAAAAAAANDriVADAECNmfXsrJzw/RM6vrAySX3F5nRubZIBHTzbbrvkl79M9tmnkosAAAAAAAAAAAAAAAAAAAAAAAAAaoYINQAA1JBZz87KEd89ouMLr6S6AtTbJKlLSp/e6Ly+Pvn7v0/mzBGgBgAAAAAAAAAAAAAAAAAAAAAAANgKItQAAFAjFq9Y3HmAelWSfhWb07l1WR+gbtESou7fP/nIR5Jf/CIZM6agcQAAAAAAAAAAAAAAAAAAAAAAAAC1QYQaAABqxPBBw7PnyD3bf7gq1fPT/7okA9o5r0tKl6xOvvrVZNiwSq8CAAAAAAAAAAAAAAAAAAAAAAAAqDnVkqEDAAB6wNyL5rYNUa9O9fzk35T2A9QbKV1aqsgUAAAAAAAAAAAAAAAAAAAAAAAAgFpXLSk6AACgh7QJUVdL07kpSb9Onm+086qfXVXuNQAAAAAAAAAAAAAAAAAAAAAAAAA1T4QaAABq0NyL5r72TUNxO17VEqDuLEK9wciGkfnooR8t9yIAAAAAAAAAAAAAAAAAAAAAAACAmidCDQAANah0aan1QZEh6u4EqDfMHdkwMgsvWViBUQAAAAAAAAAAAAAAAAAAAAAAAAC1T4QaAABqTJsAdYsiQtTNEaAGAAAAAAAAAAAAAAAAAAAAAAAAKIgINQAA1JAOA9QtKhmibs763zgEqAEAAAAAAAAAAAAAAAAAAAAAAAAKIUINAAA1YvClg7t3sRIh6uasD0wLUAMAAAAAAAAAAAAAAAAAAAAAAAAURoQaAAB6gdnzZnf6fPClg7MiK7r/huUMUbcEqOs7eF7KqwHq4f2GC1ADAAAAAAAAAAAAAAAAAAAAAAAAlIkINQAAVLnTbj0tb/7em1O6tNTu810u3WXzAtQtyhGi7ixAvVF8OkmGlobmb1P+VoYRAAAAAAAAAAAAAAAAAAAAAAAAACQi1AAAUNVOu/W0fP9333/1+01D1AdcekBezItb/gE9HaLul9cC1KVN/mxkaGlolvzbkh7+cAAAAAAAAAAAAAAAAAAAAAAAAAA2JkINAABVatMAdYuWEPUBlx6QR/Po1n9QT4Wo67I+Qt1OdHpjH9nvIwLUAAAAAAAAAAAAAAAAAAAAAAAAABVQX/QAAACgrY4C1C1aQtQ9piHJmq14fSnrA9RduO999+XIPY7cig8CAAAAAAAAAAAAAAAAAAAAAAAAoLvqih4AAAC01lWAumwatvB1pXTrn7e5a/JdAtQAAAAAAAAAAAAAAAAAAAAAAAAAFSRCDQAAVaSwAHWLLQlRdyNAfevJt+b41x+/BW8OAAAAAAAAAAAAAAAAAAAAAAAAwJYSoQYAgCpReIC6xeaEqLtx94qjrsipbzx1i+cAAAAAAAAAAAAAAAAAAAAAAAAAsGVEqAEAoApUTYC6RVdx6eZu3Mn6APXHD/54TywCAAAAAAAAAAAAAAAAAAAAAAAAYDPVFz0AAAD6utnzZldXgLpFQ5I17Zw3J+nf9cuvO+66nDPxnB4eBQAAAAAAAAAAAAAAAAAAAAAAAEB31RU9AAAA+rrl/ZYXPaFjDZt835RuBagvO+wyAWoAAAAAAAAAAAAAAAAAAAAAAACAgtUXPQAAAPqyWc/OyhHfPaLoGZ1rSLIm6wPUA7q+/qUjv5SLD7m4zKMAAAAAAAAAAAAAAAAAAAAAAAAA6IoINQAAFOTFxS9Wf4C6RUP3rl1x1BX5+MEfL+8WAAAAAAAAAAAAAAAAAAAAAAAAALpFhBoAAAqwZNWS/OPd/5j6uvqsbVpb9Jwe8bWjv5bz33J+0TMAAAAAAAAAAAAAAAAAAAAAAAAA2KCu6AEAANDXLFm1JKfddloeb3w82w/aPvV11f1vwzRPbc6eI/fs9M60Y6YJUAMAAAAAAAAAAAAAAAAAAAAAAABUGRFqAACooI0D1C2qOUTdPLU5STL3orkdhqjvOvWunHfQeZWcBQAAAAAAAAAAAAAAAAAAAAAAAEA3iFADAECFrGtalzNmnNEqQN1i+0HbF7Cocy0B6hbthahnnjkzx487vpKzAAAAAAAAAAAAAAAAAAAAAAAAAOgmEWoAAKiQfnX9cs74c1JXavtj+EvLXipgUcc2DVC32DhEPfPMmTl87OGVnAUAAAAAAAAAAAAAAAAAAAAAAADAZqgvegAAAPQlk8ZNSpJceM+FaWpuStJ7AtQt5l40N4tXLM7wQcMrtAgAAAAAAAAAAAAAAAAAAAAAAACALVFX9AAAAOhrJo2blKuPuTp1pbpeF6BuIUANAAAAAAAAAAAAAAAAAAAAAAAAUP1EqAEAoACTxk3KC0tfKHpGK90NUAMAAAAAAAAAAAAAAAAAAAAAAADQO4hQAwBAAQZcOqDoCa0IUAMAAAAAAAAAAAAAAAAAAAAAAADUHhFqAACosEGXDsrqrC56xqsEqAEAAAAAAAAAAAAAAAAAAAAAAABqkwg1AABU0NBLh2ZlVhY9o5XSpaWiJwAAAAAAAAAAAAAAAAAAAAAAAABQBiLUAABQIdt+dtssy7KiZ7RLiBoAAAAAAAAAAAAAAAAAAAAAAACg9ohQAwBABexw+Q5Z1LSo6BmdEqIGAAAAAAAAAAAAAAAAAAAAAAAAqC0i1AAAUGZ/9x9/lwVrFhQ9o1uEqAEAAAAAAAAAAAAAAAAAAAAAAABqhwg1AACU0V7/uVdeWPlC0TM2y+x5s4ueAAAAAAAAAAAAAAAAAAAAAAAAAEAPEKEGAIAy2e/q/TJv6byiZ2yWU//+1By050FFzwAAAAAAAAAAAAAAAAAAAAAAAACgB4hQAwDAFli4bGGnz8+84cz8euGvK7SmZ5z696fm1tNuLXoGAAAAAAAAAAAAAAAAAAAAAAAAAD1EhBoAADbT3U/fnVFXjMpOX96p3eef++nncuNzN1Z41da77qTrip4AAAAAAAAAAAAAAAAAAAAAAAAAQA8SoQYAgM1w99N354RbTkiSNC5vbBOinvbQtHz6fz9dxLStMvuDszNkmyFFzwAAAAAAAAAAAAAAAAAAAAAAAACgB4lQAwBAN20coG6xcYh62kPTcv795xcxbavM/uDsHLjLgUXPAAAAAAAAAAAAAAAAAAAAAAAAAKCH1Rc9AAAAeoP2AtQtGpc3pnRpqcKLeoYANQAAAAAAAAAAAAAAAAAAAAAAAEDtqit6AAAAVLvOAtS92S/O+YUANQAAAAAAAAAAAAAAAAAAAAAAAEANE6EGAIBO9MYA9U5Ddkp9XX2nd2aeOTNvGfOWCi0CAAAAAAAAAAAAAAAAAAAAAAAAoAgi1AAA0IHeGqBOku0Hbd9hiHrmmTNz+NjDKzkLAAAAAAAAAAAAAAAAAAAAAAAAgAKIUAMAQDt6c4C6RXshagFqAAAAAAAAAAAAAAAAAAAAAAAAgL5DhBoAADaxcNnCXhWgHpmR2WXoLu0+2zhELUANAAAAAAAAAAAAAAAAAAAAAAAA0LeIUAMAwCa2HbJtRg8eXfSMbtm+YfssnLowVx9zdepK7f94f9TuR+WFj70gQA0AAAAAAAAAAAAAAAAAAAAAAADQx4hQAwDARhavWJwkeenil6o+RD2ybmT+cslfkiSTxk1qN0S93+j9cuspt2bn4TsXMREAAAAAAAAAAAAAAAAAAAAAAACAAolQAwDABrOenZURXxqRvb66V5LqDlEPyZAs/PTCVmebhqhbAtTDBgwrYiIAAAAAAAAAAAAAAAAAAAAAAAAABROhBgCArA9QH/HdI5Ik8xbNq+oQ9cAMzNKpS9t91hKinrDzBAFqAAAAAAAAAAAAAAAAAAAAAAAAgD5OhBoAgD5v4wB1i41D1C8vf7mIWe3qn/5ZMXVFp3cmjZuUH572QwFqAAAAAAAAAAAAAAAAAAAAAAAAgD6uvugBAABQpPYC1C3mLZqX0qWlCi/q3Kqpq7p1r19dvzIvAQAAAAAAAAAAAAAAAAAAAAAAAKDa1RU9AAAAitJZgLoaNU9tLnoCAAAAAAAAAAAAAAAAAAAAAAAAAL2ICDUAAH2SADUAAAAAAAAAAAAAAAAAAAAAAAAAtU6EGgCAPqc3BahH9B8hQA0AAAAAAAAAAAAAAAAAAAAAAADAFhGhBgCgT+lNAephDcOy6JOLip4BAAAAAAAAAAAAAAAAAAAAAAAAQC8lQg0AQJ+xeMXiXhOgHtRvUBZfsrjoGQAAAAAAAAAAAAAAAAAAAAAAAAD0YiLUAAD0GcMHDc+eI/csekaXBmRAlk9ZXvQMAAAAAAAAAAAAAAAAAAAAAAAAAHo5EWoAAPqUuRfNrfoQ9StTXyl6AgAAAAAAAAAAAAAAAAAAAAAAAAA1QIQaAIA+p9pD1Dt9eaeiJwAAAAAAAAAAAAAAAAAAAAAAAABQA0SoAQDok+ZeNLfoCR1qXN4oRA0AAAAAAAAAAAAAAAAAAAAAAADAVhOhBgCgTzrwGwcWPaFTQtQAAAAAAAAAAAAAAAAAAAAAAAAAbC0RagAA+pwjvn1E5vxlTtEzuiREDQAAAAAAAAAAAAAAAAAAAAAAAMDWEKEGAKBPOenGkzLr+VlFz+i2xuWNWbhsYdEzAAAAAAAAAAAAAAAAAAAAAAAAAOiFRKgBAOgzTr/19Nz5hzuLnrFZ7pp8V7Ydsm3RMwAAAAAAAAAAAAAAAAAAAAAAAADohUSoAQDoEz5w2wdy8+9uLnrGZrlr8l05/vXHFz0DAAAAAAAAAAAAAAAAAAAAAAAAgF5KhBoAgJp37oxz850nvlP0jM0iQA0AAAAAAAAAAAAAAAAAAAAAAADA1hKhBgCgpl3844tz7W+uLXrGZhGgBgAAAAAAAAAAAAAAAAAAAAAAAKAniFADAFCzPvfTz+WKh68oesarph8/PaMHj+70jgA1AAAAAAAAAAAAAAAAAAAAAAAAAD1FhBoAgJo07aFp+fT/frroGa/qn/5574T35qWLX+owRC1ADQAAAAAAAAAAAAAAAAAAAAAAAEBPEqEGAKDXWde0rtPn0x6alvPvP79Ca7pndVZnr6/ulSTthqgFqAEAAAAAAAAAAAAAAAAAAAAAAADoaSLUAAD0KktWLck/3PoPuf2p29t9fvMjN1ddgLrFvEXz2g1RC1ADAAAAAAAAAAAAAAAAAAAAAAAAUA71RQ8AAIDuWrJqSU677bQ83vh4Hn3p0STJpHGTXn1+8yM35/S7Ty9qXre0hKjnXjQ3L138UhYuW5hth2xb9CwAAAAAAAAAAAAAAAAAAAAAAAAAalBd0QMAAKA7Ng5QJ0lTc1MuvOfC3P7U7UmSh+Y/VPUB6hYtIeokAtQAAAAAAAAAAAAAAAAAAAAAAAAAlE190QMAAKArmwaoW7SEqGfPn50v/PILBa3bMvMWzcviFYszfNDwoqcAAAAAAAAAAAAAAAAAAAAAAAAAUKPqih4AAACd6ShA3eKFpS/0ugB1ksw8c6YANQAAAAAAAAAAAAAAAAAAAAAAAABlJUINAEDV6ipA/dKylyq8qGfMPHNmDh97eNEzAAAAAAAAAAAAAAAAAAAAAAAAAKhxItQAAFQlAWoAAAAAAAAAAAAAAAAAAAAAAAAA2Doi1AAAVJ2uAtS9lQA1AAAAAAAAAAAAAAAAAAAAAAAAAJUkQg0AQFVZ17QuZ8w4o9MA9UvLXqrgos5N3GFimqc2Z8+Re3Z6T4AaAAAAAAAAAAAAAAAAAAAAAAAAgEoToQYAoKr0q+uXc8afk7pS+z+qVlOA+k3bvikPn/dwkmTuRXM7DFELUAMAAAAAAAAAAAAAAAAAAAAAAABQBBFqAACqzqRxk3L1MVe3CVFXU4B692G75/ELH2911l6IWoAaAAAAAAAAAAAAAAAAAAAAAAAAgKKIUAMAUJU2DVFXU4B6zJAxeeafn2n32cYhagFqAAAAAAAAAAAAAAAAAAAAAAAAAIpUX/QAAADoyKRxk5IkJ3//5IKXvGaXwbtk/ifmd3pn7kVzs3jF4gwfNLxCqwAAAAAAAAAAAAAAAAAAAAAAAACgrbqiBwAAQGdO+/5pRU941agBo/Kni//UrbsC1AAAAAAAAAAAAAAAAAAAAAAAAAAUTYQaAICqtc2l22RN1hQ9I0kyov+I/PVf/1r0DAAAAAAAAAAAAAAAAAAAAAAAAADoNhFqAAAKsXjF4k6fD/73wVmVVRVa07kh/YZk0ScXFT0DAAAAAAAAAAAAAAAAAAAAAAAAADaLCDUAABU369lZGfGlEdnrq3u1+3zo54ZmRfOKCq9q36B+g7J0ytKiZwAAAAAAAAAAAAAAAAAAAAAAAADAZhOhBgCgomY9OytHfPeIJMm8RfPahKi3/fy2WbZuWRHT2hiQAVk+ZXnRMwAAAAAAAAAAAAAAAAAAAAAAAABgi4hQAwBQMRsHqFtsHKLe8Ys7ZtHqRUVMa6MhDXll6itFzwAAAAAAAAAAAAAAAAAAAAAAAACALVZf9AAAAPqG9gLULeYtmpfSpaUKL+pYfeqzeurqomcAAAAAAAAAAAAAAAAAAAAAAAAAwFapK3oAAAC1r7MAdbWpS13WTF1T9AwAAAAAAAAAAAAAAAAAAAAAAAAA2Goi1AAAlFVvClAnybqp64qeAAAAAAAAAAAAAAAAAAAAAAAAAAA9QoQaAICy6W0B6iS5/anbi54AAAAAAAAAAAAAAAAAAAAAAAAAAD1ChBoAgLLojQHqnYbslAvvuVCIGgAAAAAAAAAAAAAAAAAAAAAAAICaIEINAECPW7xica8MUCdJU3OTEDUAAAAAAAAAAAAAAAAAAAAAAAAANUGEGgCAHjd80PDsOXLPomd0W0uAuoUQNQAAAAAAAAAAAAAAAAAAAAAAAAC1QIQaAICymHvR3F4Rot40QN2iqbkp337s21nXtK7CiwAAAAAAAAAAAAAAAAAAAAAAAACgZ4hQAwBQNtUeou4oQJ0k+43eL987+XvpV9evgosAAAAAAAAAAAAAAAAAAAAAAAAAoOeIUAMAUFZzL5qbIRlS9Iw2ugpQ33rKrRk2YFgFFwEAAAAAAAAAAAAAAAAAAAAAAABAzxKhBgCgrG557JYsy7KiZ7QiQA0AAAAAAAAAAAAAAAAAAAAAAABAXyBCDQBA2dzy2C05/Y7Ti57RigA1AAAAAAAAAAAAAAAAAAAAAAAAAH2FCDUAAGVx72/uzel3nJ7mNBc9JUnyz+P/OTNOnZG6Uvs/AgtQAwAAAAAAAAAAAAAAAAAAAAAAAFBr6oseAABA7Xms8bEcN+O4qglQnz3u7PznSf/56vcX3nNhmpqbXv1egBoAAAAAAAAAAAAAAAAAAAAAAACAWlRX9AAAAGrLY42PZcI1E9KUpq4vV8DZ487Ot0/99qvfTxo3KVcfc3XqSut/FBagBgAAAAAAAAAAAAAAAAAAAAAAAKBW1Rc9AACA2lFtAeqTdz+5VYC6xaRxk5Ik337s2/neyd8ToAYAAAAAAAAAAAAAAAAAAAAAAACgJolQAwDQIxobG3PgNQdWTYD66DFH57/e/18dPp80blJOfP2J6VfXr4KrAAAAAAAAAAAAAAAAAAAAAAAAAKBy6ooeAABA79fY2Jhdr9k1a7O26ClJkkN2OiT3nnNvl/cEqAEAAAAAAAAAAAAAAAAAAAAAAACoZSLUAABslcbGxuz2zd2yJmuKnvKqBz/0YNETAAAAAAAAAAAAAAAAAAAAAAAAAKBwItQAAGyV133rdVndvLroGa3s9dW9ip4AAAAAAAAAAAAAAAAAAAAAAAAAAIUToQYAYIsN+tygrGpaVfSMNuYtmidEDQAAAAAAAAAAAAAAAAAAAAAAAECfJ0INAMAWGXrZ0Kxct7LoGR0SogYAAAAAAAAAAAAAAAAAAAAAAACgrxOhBgBgsw27fFiWrV1W9IwuCVEDAAAAAAAAAAAAAAAAAAAAAAAA0JeJUAMAsFm2/fy2WbpmadEzum3eonlZvGJx0TMAAAAAAAAAAAAAAAAAAAAAAAAAoOJEqAEA6LYd/mOHLFq9qOgZm2XmmTMzfNDwomcAAAAAAAAAAAAAAAAAAAAAAAAAQMWJUAMA0C07/8fOWbByQdEzNsvMM2fm8LGHFz0DAAAAAAAAAAAAAAAAAAAAAAAAAAohQg0AQJd2u2K3vLTypaJnbBYBagAAAAAAAAAAAAAAAAAAAAAAAAD6OhFqAAA6tcdX9sj8ZfOLnrFZBKgBAAAAAAAAAAAAAAAAAAAAAAAAQIQaAIBOvPFrb8wflvyh6BlJklHbjErz1ObsOXLPTu8JUAMAAAAAAAAAAAAAAAAAAAAAAADAeiLUAAC0a/y08fnty78tekaSZGT/kfnr//1rkmTuRXM7DFELUAMAAAAAAAAAAAAAAAAAAAAAAADAa0SoAQBo46BrDsrjCx4vekaSZGjD0Cz85MJWZ+2FqAWoAQAAAAAAAAAAAAAAAAAAAAAAAKA1EWoAAFo58ttH5uHGh4uekSQZVD8oSy5Z0u6zjUPUAtQAAAAAAAAAAAAAAAAAAAAAAAAA0FZ90QMAAKgex954bGY+P7PoGUmSgf0GZvmnlnd6Z+5Fc7N4xeIMHzS8QqsAAAAAAAAAAAAAAAAAAAAAAAAAoPeoK3oAAADV4d3T3517/nBP0TOSJP1L/bNiyopu3RWgBgAAAAAAAAAAAAAAAAAAAAAAAID2iVADAJAzfnBGZsydUfSMJOsD1M996LmiZwAAAAAAAAAAAAAAAAAAAAAAAABArydCDQDQx517+7mZ/uT0omckSRrSkOc+9FxGjx5d9BQAAAAAAAAAAAAAAAAAAAAAAAAA6PVEqAEA+rCP/ehjufbX1xY9I0lSn/rM//B8AWoAAAAAAAAAAAAAAAAAAAAAAAAA6CEi1AAAfdSnfvKpXDXnqqJnJEnqUpeHP/ywADUAAAAAAAAAAAAAAAAAAAAAAAAA9CARagCAPugLP/tCLv/F5UXPSLI+QP3Ihx/J+NHji54CAAAAAAAAAAAAAAAAAAAAAAAAADVFhBoAoI+54sEr8slZnyx6RhIBagAAAAAAAAAAAAAAAAAAAAAAAAAoJxFqAIA+ZNovpuXimRcXPSNJUkopPzr5RwLUAAAAAAAAAAAAAAAAAAAAAAAAAFAmItQAAH3ELY/dkgt+ckHRM5KsD1BPP2l63vXGdxU9BQAAAAAAAAAAAAAAAAAAAAAAAABqlgg1AEAfcO9v7s3pd5ye5jQXPSVJMv2k6Zk8fnLRMwAAAAAAAAAAAAAAAAAAAAAAAACgpolQAwDUuHt/c2+OnXFs1QSov/7OrwtQAwAAAAAAAAAAAAAAAAAAAAAAAEAFiFADANSwxxofy3EzjquaAPXnD/98/umt/1T0DAAAAAAAAAAAAAAAAAAAAAAAAADoE0SoAQBq1GONj2XCNRPSlKaipyRJprxtSv710H8tegYAAAAAAAAAAAAAAAAAAAAAAAAA9Bki1AAANaixsbGqAtSXvPWSfPYdny16BgAAAAAAAAAAAAAAAAAAAAAAAAD0KSLUAAA1prGxMWOuGVM1AeqPTvxoLnvnZUXPAAAAAAAAAAAAAAAAAAAAAAAAAIA+R4QaAKCGNDY2Ztdrds3arC16SpLkg2/6YK487sqiZwAAAAAAAAAAAAAAAAAAAAAAAABAnyRCDQBQIxobG7PbN3fLmqwpekqS5PR9Ts+3Jn2r6BkAAAAAAAAAAAAAAAAAAAAAAAAA0GeJUAMA1IjXfet1Wd28uugZSZITdj8h33vP94qeAQAAAAAAAAAAAAAAAAAAAAAAAAB9mgg1AEANGPS5QVnVtKroGUmSI8YckTvff2fRMwAAAAAAAAAAAAAAAAAAAAAAAACgzxOhBgDo5YZeNjQr160sekaS5OCdD87959xf9AwAAAAAAAAAAAAAAAAAAAAAAAAAICLUAAC92ojLR2TZ2mVFz0iSHDj6wDx07kNFzwAAAAAAAAAAAAAAAAAAAAAAAAAANhChBgDopbb9/LZZvGZx0TOSJG8Y9YbM/vDsomcAAAAAAAAAAAAAAAAAAAAAAAAAABsRoQYA6IV2+I8dsmj1oqJnJEn2HrF3fnPBb4qeAQAAAAAAAAAAAAAAAAAAAAAAAABsQoQaAKCX2flLO2fBygVFz0iS7D5s9zz90aeLngEAAAAAAAAAAAAAAAAAAAAAAAAAtEOEGgCgF9ntit3y0oqXip6RJNll8C555p+fKXoGAAAAAAAAAAAAAAAAAAAAAAAAANABEWoAgF5ir6/slfnL5hc9I0my08Cd8qeL/1T0DAAAAAAAAAAAAAAAAAAAAAAAAACgEyLUAAC9wBu/9sbMWzKv6BlJklEDRuXFf3mx6BkAAAAAAAAAAAAAAAAAAAAAAAAAQBdEqAEAqtz4aePz25d/W/SMJMmIhhH567/+tegZAAAAAAAAAAAAAAAAAAAAAAAAAEA3iFADAFSxg645KI8veLzoGUmSoQ1Ds+iSRUXPAAAAAAAAAAAAAAAAAAAAAAAAAAC6SYQaAKBKHfntI/Nw48NFz0iSDOo3KEsuWVL0DAAAAAAAAAAAAAAAAAAAAAAAAABgM4hQAwBUoWNvPDYzn59Z9IwkycB+A7N8yvKiZwAAAAAAAAAAAAAAAAAAAAAAAAAAm0mEGgCgyrx7+rtzzx/uKXpGkqR/qX9WTFlR9AwAAAAAAAAAAAAAAAAAAAAAAAAAYAuIUAMAVJEzfnBGZsydUfSMJOsD1M996LmiZwAAAAAAAAAAAAAAAAAAAAAAAAAAW0iEGgCgSpx7+7mZ/uT0omckSepTn+c+9FxGjx5d9BQAAAAAAAAAAAAAAAAAAAAAAAAAYAuJUAMAVIGP/ehjufbX1xY9I8n6APXzH35egBoAAAAAAAAAAAAAAAAAAAAAAAAAejkRagCAgn3qJ5/KVXOuKnpGkqQudXn4ww8LUAMAAAAAAAAAAAAAAAAAAAAAAABADRChBgAo0Bd+9oVc/ovLi56RZH2A+pEPP5Lxo8cXPQUAAAAAAAAAAAAAAAAAAAAAAAAA6AEi1AAABZn2i2n55KxPFj0jSVJKKT86+UcC1AAAAAAAAAAAAAAAAAAAAAAAAABQQ0SoAQAKMO0X03L+T84vekaS9QHqH5/847zrje8qegoAAAAAAAAAAAAAAAAAAAAAAAAA0INEqAEAKuyWx27JBT+5oOgZSdYHqKefNF2AGgAAAAAAAAAAAAAAAAAAAAAAAABqkAg1AEAF3fube3P6HaenOc1FT0mSTD9peiaPn1z0DAAAAAAAAAAAAAAAAAAAAAAAAACgDESoAQAq5N7f3JtjZxxbNQHqr7/z6wLUAAAAAAAAAAAAAAAAAAAAAAAAAFDDRKgBACrgscbHctyM46omQP35wz+ff3rrPxU9AwAAAAAAAAAAAAAAAAAAAAAAAAAoIxFqAIAye6zxsUy4ZkKa0lT0lCTJJW+9JP966L8WPQMAAAAAAAAAAAAAAAAAAAAAAAAAKDMRagCAMmpsbMyB1xxYNQHqj078aC5752VFzwAAAAAAAAAAAAAAAAAAAAAAAAAAKkCEGgCgTBobGzPmmjFZm7VFT0mSfPBNH8yVx11Z9AwAAAAAAAAAAAAAAAAAAAAAAAAAoEJEqAEAyqCxsTG7XrNr1QSo37fv+/KtSd8qegYAAAAAAAAAAAAAAAAAAAAAAAAAUEEi1AAAZbDbN3fLmqwpekaS5OS9Ts6Np9xY9AwAAAAAAAAAAAAAAAAAAAAAAAAAoMJEqAEAetg2n90mq5tXFz0jSXLM7sfkv07/r6JnAAAAAAAAAAAAAAAAAAAAAAAAAAAFEKEGAOhBgz83OKuaVhU9I0lyxJgj8uP3/7joGQAAAAAAAAAAAAAAAAAAAAAAAABAQUSoAQB6yNDLhmbFuhVFz0iSHLzzwbn/nPuLngEAAAAAAAAAAAAAAAAAAAAAAAAAFEiEGgCgGxYuW9jp8xGXj8iytcsqtKZzB44+MA+d+1DRMwAAAAAAAAAAAAAAAAAAAAAAAACAgolQAwB04e6n786oK0Zlpy/v1O7z7f5/9u49yOr6sP//a2F3lZuoiF0vgJJEJ1YiCZCO1abVtEah3zghjeOskybGCy3YYBrqCNiY1giMTSbQKhnE2H5/VkLaSMfmCxIyamJ0zAjENSSmXlC5qKcqeOEWAdnfHyRUuqhcdvd9ztnHY4Y/zvucz/vzZIbxz5ezjsnrO17v5qp9O33Q6XlkwiOlMwAAAAAAAAAAAAAAAAAAAAAAAACAKmCEGgDgXfy/J/5f/s/C/5MkqWypdBiiPvamY7PhzQ0l0jo45chTsuqqVaUzAAAAAAAAAAAAAAAAAAAAAAAAAIAqYYQaAOAdvH2A+rfePkR94tdPzMvbXi6R1sFJA07KE5OfKJ0BAAAAAAAAAAAAAAAAAAAAAAAAAFSRxtIBAADVaF8D1L9V2VJJw981dHPROzuh3wl59q+fLZ0BAAAAAAAAAAAAAAAAAAAAAAAAAFSZXqUDAACqzbsNUFebwX0GZ/2U9aUzAAAAAAAAAAAAAAAAAAAAAAAAAIAqZIQaAOBtammAetBhg/LSNS+VzgAAAAAAAAAAAAAAAAAAAAAAAAAAqpQRagCA36ilAeqBTQPzyrWvlM4AAAAAAAAAAAAAAAAAAAAAAAAAAKqYEWoAgNTWAHX/xv55bdprpTMAAAAAAAAAAAAAAAAAAAAAAAAAgCpnhBoA6PE2bt5YMwPUfXv3zabpm0pnAAAAAAAAAAAAAAAAAAAAAAAAAAA1wAg1ANDjHd3/6LT0aymd8Z4O63VYtly3pXQGAAAAAAAAAAAAAAAAAAAAAAAAAFAjjFADACR5ccqLVT1E3dzQnF//7a9LZwAAAAAAAAAAAAAAAAAAAAAAAAAANcQINQDAb1TrEHVTmrLmyjWlMwAAAAAAAAAAAAAAAAAAAAAAAACAGmOEGgDgbV6c8mLphL00pjFrJ6xNS0v1jWMDAAAAAAAAAAAAAAAAAAAAAAAAANXNCDUAwNtcvfjq0gl7NKYx6yasM0ANAAAAAAAAAAAAAAAAAAAAAAAAABwUI9QAAL8xfdn0zFkxp3RGkqRXemX5hOUGqAEAAAAAAAAAAAAAAAAAAAAAAACAg2aEGgAgyawHZmXGwzNKZyTZPUC9csLKjGwZWToFAAAAAAAAAAAAAAAAAAAAAAAAAKhhRqgBgB5v7sNzM/X+qaUzkiQNacji8YsNUAMAAAAAAAAAAAAAAAAAAAAAAAAAh8wINQDQoy1sW5hJyyaVzkiye4B6yfglOX/E+aVTAAAAAAAAAAAAAAAAAAAAAAAAAIA6YIQaAOixFrYtTOvdraUzkuweoF5w4QID1AAAAAAAAAAAAAAAAAAAAAAAAABApzFCDQD0SEtXLU3r3a1pT3vplCTJzefdnItHXlw6AwAAAAAAAAAAAAAAAAAAAAAAAACoI0aoAYAeZ+mqpRm7aGzVDFDfct4tmXjmxNIZAAAAAAAAAAAAAAAAAAAAAAAAAECdMUINAPQobZW2jFs0rmoGqJMYoAYAAAAAAAAAAAAAAAAAAAAAAAAAuoQRagCgx2irtGXUvFHZlV2lU/Zy3NePK50AAAAAAAAAAAAAAAAAAAAAAAAAANQhI9QAQI9QqVQyZt6YqhugTpLKloohagAAAAAAAAAAAAAAAAAAAAAAAACg0xmhBgDqXqVSyZB5Q7IzO0unvCND1AAAAAAAAAAAAAAAAAAAAAAAAABAZzNCDQDUtUqlkqHzhlb1APVvGaIGAAAAAAAAAAAAAAAAAAAAAAAAADqTEWoAoK4Nu3VYdmRH6Yz9VtlSycbNG0tnAAAAAAAAAAAAAAAAAAAAAAAAAAB1wAg1AFC3Dr/h8Gxv314644B8/+Lv5+j+R5fOAAAAAAAAAAAAAAAAAAAAAAAAAADqgBFqAKAu9ftav7y5683SGQfk+xd/P3966p+WzgAAAAAAAAAAAAAAAAAAAAAAAAAA6oQRagCg7gyYMSBb39paOuOAGKAGAAAAAAAAAAAAAAAAAAAAAAAAADqbEWoAoK4cOePIbN6xuXTGATFADQAAAAAAAAAAAAAAAAAAAAAAAAB0BSPUAEDdOGbWMXl9x+ulM5Ikpw86Pe3Xt6elX8u7/s4ANQAAAAAAAAAAAAAAAAAAAAAAAADQVYxQAwB14Xdu+p1seHND6YwkySlHnpJVV61Kkrw45cV3HKI2QA0AAAAAAAAAAAAAAAAAAAAAAAAAdCUj1ABAzTvx6yfmpW0vlc5IkgztPzRPTH5ir7N9DVEboAYAAAAAAAAAAAAAAAAAAAAAAAAAupoRagCgpg37xrA8v+X50hlJkhP6nZA1X16zz+/ePkRtgBoAAAAAAAAAAAAAAAAAAAAAAAAA6A6NpQMAAA7WqXNOzdrNa0tnJEkG9xmc9VPWv+tvXpzyYjZu3pij+x/dTVUAAAAAAAAAAAAAAAAAAAAAAAAAQE/Wq3QAAMDBGHHziDz52pOlM5IkRzUflZeueWm/fmuAGgAAAAAAAAAAAAAAAAAAAAAAAADoLkaoAYCa89F5H80vNvyidEaSZGDTwGycurF0BgAAAAAAAAAAAAAAAAAAAAAAAABAB0aoAYCacvb8s7O8srx0RpKkf2P/vDbttdIZAAAAAAAAAAAAAAAAAAAAAAAAAAD7ZIQaAKgZH7/943nohYdKZyRJ+vbum03TN5XOAAAAAAAAAAAAAAAAAAAAAAAAAAB4R0aoAYCaMPaOsblv3X2lM5Ikh/U6LFuu21I6AwAAAAAAAAAAAAAAAAAAAAAAAADgXRmhBgCq3qcXfDr3PHNP6YwkSXNDc16Y9ELpDAAAAAAAAAAAAAAAAAAAAAAAAACA92SEGgCoap+/6/NZ9NSi0hlJkqY0Zc2Va3L00UeXTgEAAAAAAAAAAAAAAAAAAAAAAAAAeE9GqAGAqjXx7on5v7/4v6UzkiSNaczaCWvT0tJSOgUAAAAAAAAAAAAAAAAAAAAAAAAAYL8YoQYAqtLVi6/Ot9q+VTojSdIrvbJuwjoD1AAAAAAAAAAAAAAAAAAAAAAAAABATTFCDQBUnenLpmfOijmlM5LsHqBeOWGlAWoAAAAAAAAAAAAAAAAAAAAAAAAAoOYYoQYAqsqsB2ZlxsMzSmck+Z8B6pEtI0unAAAAAAAAAAAAAAAAAAAAAAAAAAAcMCPUAEDVmPvw3Ey9f2rpjCRJQxqyePxiA9QAAAAAAAAAAAAAAAAAAAAAAAAAQM0yQg0AVIWFbQszadmk0hlJdg9QLxm/JOePOL90CgAAAAAAAAAAAAAAAAAAAAAAAADAQTNCDQAUt7BtYVrvbi2dkWT3APWCCxcYoAYAAAAAAAAAAAAAAAAAAAAAAAAAap4RagCgqKWrlqb17ta0p710SpLk5vNuzsUjLy6dAQAAAAAAAAAAAAAAAAAAAAAAAABwyIxQAwDFLF21NGMXja2aAepbzrslE8+cWDoDAAAAAAAAAAAAAAAAAAAAAAAAAKBTGKEGAIpoq7Rl3KJxVTNAPfOcmQaoAQAAAAAAAAAAAAAAAAAAAAAAAIC6YoQaAOh2bZW2jJo3Kruyq3RKkmTamdNy7ceuLZ0BAAAAAAAAAAAAAAAAAAAAAAAAANCpjFADAN2qUqlkzLwxVTNAPXn05Nx43o2lMwAAAAAAAAAAAAAAAAAAAAAAAAAAOp0RagCg21QqlQyZNyQ7s7N0SpLk8g9dntnjZpfOAAAAAAAAAAAAAAAAAAAAAAAAAADoEkaoAYBuUalUMuzWYVUzQN16Wmvmf2p+6QwAAAAAAAAAAAAAAAAAAAAAAAAAgC5jhBoA6BbDbh2W7e3bS2ckScZ/YHzu/MydpTMAAAAAAAAAAAAAAAAAAAAAAAAAALqUEWoAoMv1/VrfqhmgvmD4Bbmr9a7SGQAAAAAAAAAAAAAAAAAAAAAAAAAAXc4INQDQpfp9rV+2vbWtdEaS5Nwh52bJZ5eUzgAAAAAAAAAAAAAAAAAAAAAAAAAA6BZGqAGALnPEjCOy9a2tpTOSJGOOH5N7v3Bv6QwAAAAAAAAAAAAAAAAAAAAAAAAAgG5jhBoA6BJHzzw6m3ZsKp2RJDlj8Bl55IpHSmcAAAAAAAAAAAAAAAAAAAAAAAAAAHQrI9QAwAF7fevr7/r9MbOOyavbX+2mmnd3+qDT0zaxrXQGAAAAAAAAAAAAAAAAAAAAAAAAAEC3M0INAByQ+5+9P0f+w5H5wD9+YJ/fH3/T8dnw5oZurtq34UcMz6qrVpXOAAAAAAAAAAAAAAAAAAAAAAAAAAAowgg1ALDf7n/2/pz7/52bJHn61ac7DFGf+PUT8+K2F0ukdTC0/9Cs/tLq0hkAAAAAAAAAAAAAAAAAAAAAAAAAAMUYoQYA9svbB6h/6+1D1O/75vvy/JbnS6R1cFyf47Lmy2tKZwAAAAAAAAAAAAAAAAAAAAAAAAAAFNVYOgAAqH77GqD+radffToNf9fQzUXvbHCfwXnhmhdKZwAAAAAAAAAAAAAAAAAAAAAAAAAAFNerdAAAUN3ebYC62hzVfFReuual0hkAAAAAAAAAAAAAAAAAAAAAAAAAAFXBCDUA8I5qaYB6YNPAbJy6sXQGAAAAAAAAAAAAAAAAAAAAAAAAAEDVMEINAOxTLQ1Q92/sn9emvVY6AwAAAAAAAAAAAAAAAAAAAAAAAACgqhihBgA6qKUB6j69+2TT9E2lMwAAAAAAAAAAAAAAAAAAAAAAAAAAqo4RagBgL69vfb1mBqgP63VYtl63tXQGAAAAAAAAAAAAAAAAAAAAAAAAAEBVMkINAOxlYN+Bef9R7y+d8Z6aG5rz3BXPlc4AAAAAAAAAAAAAAAAAAAAAAAAAAKhaRqgBgA6e+uJTVT1E3ZSmrLlyTVpaWkqnAAAAAAAAAAAAAAAAAAAAAAAAAABULSPUAMA+VesQdWMas3bCWgPUAAAAAAAAAAAAAAAAAAAAAAAAAADvwQg1APCOnvriU+mf/qUz9uiVXlk3YZ0BagAAAAAAAAAAAAAAAAAAAAAAAACA/WCEGgB4R9OXTc/mbC6dkWT3APXKCSsNUAMAAAAAAAAAAAAAAAAAAAAAAAAA7Ccj1ADAPs16YFZmPDyjdEaS/xmgHtkysnQKAAAAAAAAAAAAAAAAAAAAAAAAAEDNMEINAHQw9+G5mXr/1NIZSZKGNGTx+MUGqAEAAAAAAAAAAAAAAAAAAAAAAAAADpARagBgLwvbFmbSskmlM5LsHqBeMn5Jzh9xfukUAAAAAAAAAAAAAAAAAAAAAAAAAICaY4QaANhjYdvCtN7dWjojye4B6gUXLjBADQAAAAAAAAAAAAAAAAAAAAAAAABwkIxQAwBJkqWrlqb17ta0p710SpLk5vNuzsUjLy6dAQAAAAAAAAAAAAAAAAAAAAAAAABQs4xQAwBpq7Rl3KJxVTNA/Q/n/kMmnjmxdAYAAAAAAAAAAAAAAAAAAAAAAAAAQE0zQg0APVxbpS2j5o3KruwqnZIkmXnOzEz5gymlMwAAAAAAAAAAAAAAAAAAAAAAAAAAap4RagDowaptgLp/+ufaj11bOgMAAAAAAAAAAAAAAAAAAAAAAAAAoC4YoQaAHqpSqWTMvDFVM0CdJJuzOR/4xw+UzgAAAAAAAAAAAAAAAAAAAAAAAAAAqAtGqAGgB6pUKhk6b2h2ZmfplA6efvVpQ9QAAAAAAAAAAAAAAAAAAAAAAAAAAJ3ACDUA9DCVSiXDbh2WHdlROuUdGaIGAAAAAAAAAAAAAAAAAAAAAAAAADh0RqgBoIcZduuwbG/fXjrjPRmiBgAAAAAAAAAAAAAAAAAAAAAAAAA4NEaoAaAH6fu1vjUxQP1bT7/6dF7f+nrpDAAAAAAAAAAAAAAAAAAAAAAAAACAmmSEGgB6iP5f659tb20rnXFA7vvz+zKw78DSGQAAAAAAAAAAAAAAAAAAAAAAAAAANckINQD0AEfMOCJb3tpSOuOA3Pfn9+Wck88pnQEAAAAAAAAAAAAAAAAAAAAAAAAAULOMUANAnTt65tHZtGNT6YwDYoAaAAAAAAAAAAAAAAAAAAAAAAAAAODQGaEGgDp2zKxj8ur2V0tnHBAD1AAAAAAAAAAAAAAAAAAAAAAAAAAAncMINQDUqeNvOj4b3txQOiNJMvyI4Wm/vj3vP+r97/o7A9QAAAAAAAAAAAAAAAAAAAAAAAAAAJ3HCDUA1KFh3xiWF7e9WDojSTK0/9Cs/tLqJMlTX3zqHYeoDVADAAAAAAAAAAAAAAAAAAAAAAAAAHQuI9QAUGfe9833Ze3mtaUzkiTH9Tkua768Zq+zfQ1RG6AGAAAAAAAAAAAAAAAAAAAAAAAAAOh8RqgBoI787j/9bp5545nSGUmSwX0G54VrXtjnd28fojZADQAAAAAAAAAAAAAAAAAAAAAAAADQNRpLBwAAnWPk3JF5fOPjpTOSJEc1H5WXrnnpXX/z1BefyutbX8/AvgO7qQoAAAAAAAAAAAAAAAAAAAAAAAAAoGfpVToAADh0H5330Tz28mOlM5IkA5oGZOPUjfv1WwPUAAAAAAAAAAAAAAAAAAAAAAAAAABdxwg1ANS4s+efneWV5aUzkiT9G/vnjWlvlM4AAAAAAAAAAAAAAAAAAAAAAAAAACBGqAGgpo29Y2weeuGh0hlJkj69+2TT9E2lMwAAAAAAAAAAAAAAAAAAAAAAAAAA+A0j1ABQoz694NO555l7SmckSQ5rOCxbr9taOgMAAAAAAAAAAAAAAAAAAAAAAAAAgLcxQg0ANeiSf78ki55aVDojSdLc0JznrnyudAYAAAAAAAAAAAAAAAAAAAAAAAAAAP+LEWoAqDFX/McVWfD4gtIZSZKmNGXNlWvS0tJSOgUAAAAAAAAAAAAAAAAAAAAAAAAAgP/FCDUA1JCrF1+d235+W+mMJEljGrN2wloD1AAAAAAAAAAAAAAAAAAAAAAAAAAAVcoINQDUiOnLpmfOijmlM5IkvdIryycsN0ANAAAAAAAAAAAAAAAAAAAAAAAAAFDFjFADQA2Y9cCszHh4RumMJLsHqFdOWJmRLSNLpwAAAAAAAAAAAAAAAAAAAAAAAAAA8C6MUANAlZv1wKxMvX9q6YwkBqgBAAAAAAAAAAAAAAAAAAAAAAAAAGqJEWoAqGJzH55bNQPUDWnI4vGLDVADAAAAAAAAAAAAAAAAAAAAAAAAANQII9QAUKUWti3MpGWTSmck2T1AveDCBTl/xPmlUwAAAAAAAAAAAAAAAAAAAAAAAAAA2E9GqAGgCi1dtTStd7eWzthjwYULcvHIi0tnAAAAAAAAAAAAAAAAAAAAAAAAAABwAIxQA0CVWbpqacYuGpv2tJdOSZLcct4tBqgBAAAAAAAAAAAAAAAAAAAAAAAAAGqQEWoAqCJtlbaMWzSuagaoZ54zMxPPnFg6AwAAAAAAAAAAAAAAAAAAAAAAAACAg9BYOoCe4eWXX87y5cuzevXqvPHGG2lqasqgQYNy2mmnZfTo0WlqaiqdCFBcW6Uto+aNyq7sKp2SZPcA9bUfu7Z0BgAAAAAAAAAAAAAAAAAAAAAAAAAAB8kINV3qe9/7XubMmZOHHnoo7e3t+/zNgAEDctFFF+Waa67JKaec0s2FHbW3t+epp57KypUrs2LFiqxYsSKPPvpoNm3atNfvPve5z+Vf/uVfur3v9ttvz2WXXbbP75599tmcdNJJ3RsEdIpKpVJVA9TTzpxmgBoAAAAAAAAAAAAAAAAAAAAAAAAAoMYZoaZLPP/887nkkkvy4x//+D1/u2nTpnz729/OHXfckeuuuy7XXXddGhoauqHyfyxatCg//elPs2LFivzsZz/L66+/3q3v31/r16/PX//1X5fOADpZpVLJkHlDqmaAevLoybnxvBtLZwAAAAAAAAAAAAAAAAAAAAAAAAAAcIiMUNPpnnzyyfzRH/1RXnzxxQN6bvv27fnKV76SX/3qV7njjjvSu3fvLirs6Atf+ELVDk+/3WWXXVYTncD+q1QqGTpvaHZmZ+mUJMnlH7o8s8fNLp0BAAAAAAAAAAAAAAAAAAAAAAAAAEAnMEJNp9qwYUP+5E/+ZJ8D1KNGjcqFF16Yk08+Odu2bcuTTz6ZBQsW5IUXXtjrd9/5zndy7LHHZvbs2d1UXRtuvfXWLFu2rHQG0IkqlUqG3TosO7KjdEqSpPW01sz/1PzSGQAAAAAAAAAAAAAAAAAAAAAAAAAAdBIj1HSqK6+8MmvXrt3rbMCAAfnXf/3XfPKTn+zw+xkzZmTGjBn56le/utf5nDlz8olPfCIXXHBBV+a+p0GDBmXUqFE56qij8t3vfrdYx5o1azJlypQ9nwcOHJiWlpY88cQTxZqAQ3fS/JOyvX176YwkyfgPjM+dn7mzdAYAAAAAAAAAAAAAAAAAAAAAAAAAAJ2oV+kA6scPf/jDLFq0aK+z5ubm3HffffscoE6SpqamXH/99Zk9e3aH7774xS9m586dXZG6TwMHDsw555yTv/mbv8m//du/5Zlnnskrr7ySH/zgB/mLv/iLbuv439rb23PZZZdl06ZNe86+8Y1vpKWlpVgTcOj6fq1v3tz1ZumMJMm5Q87NXa13lc4AAAAAAAAAAAAAAAAAAAAAAAAAAKCTNZYOoH7ccMMNHc6uv/76jB49+j2fnTx5chYvXpwf/vCHe86efvrpLFiwIH/+53/eqZ378uijj+akk05KQ0NDl7/rQH3rW9/Kvffeu+fzH//xH+eyyy7LHXfcUbAKOBQDbhyQbW9tK52RJDnr+LNy7xfufe8fAgAAAAAAAAAAAAAAAAAAAAAAAABQc3qVDqA+/PKXv8xPfvKTvc6OOeaYTJkyZb/vmDlzZoezb33rW4fctj9OPvnkqhygfvbZZ3PNNdfs+dyvX7/Mnz+/YBFwqI6ccWQ279xcOiNJMqZlTB684sHSGQAAAAAAAAAAAAAAAAAAAAAAAAAAdBEj1HSKhQsXdji79NJL09zcvN93jBo1KqNGjdrr7Kc//WmeffbZQ+6rRe3t7bn00kuzZcuWPWczZ87MSSedVC4KOCRHzzw6r+94vXRGkuSMwWfkkQmPlM4AAAAAAAAAAAAAAAAAAAAAAAAAAKALGaGmUyxdurTD2Z/92Z8d8D37emZfd/cE//RP/5Qf//jHez6fffbZueqqqwoWAYfi2JuOzavbXy2dkSQ55chT0jaxrXQGAAAAAAAAAAAAAAAAAAAAAAAAAABdzAg1h2zLli352c9+ttdZ375985GPfOSA7/qDP/iDDmc/+clPDrqtVq1evTpTp07d8/nwww/Pt7/97TQ0NBSsAg7W8Tcdn5e3vVw6I0ky/IjheWLyE6UzAAAAAAAAAAAAAAAAAAAAAAAAAADoBkaoOWRtbW3ZtWvXXmejR49OY2PjAd81ZsyYNDU17XW2cuXKQ+qrNbt27cqll16arVu37jn7u7/7u5xyyikFq4CDNewbw/LithdLZyRJTuh3QlZ/aXXpDAAAAAAAAAAAAAAAAAAAAAAAAAAAuokRag7Zf/3Xf3U4e//7339QdzU3N+fEE0/c62z16tXZuXPnQd1Xi+bMmZOf/OQnez6PHj06X/7ylwsWAQfrfd98X9ZuXls6I0lyXJ/jsn7K+tIZAAAAAAAAAAAAAAAAAAAAAAAAAAB0IyPUHLLnnnuuw9mwYcMO+r6hQ4fu9fmtt97K2rXVMeLa1Z588slMnz59z+empqbcfvvt6d27d8Eq4GCMuHlEnnnjmdIZSZJBhw3KC9e8UDoDAAAAAAAAAAAAAAAAAAAAAAAAAIBu1lg6gNpXqVQ6nA0ZMuSg79vXs//93/+d4cOHH/SdtWDXrl35/Oc/n23btu05mz59ekaMGFGwqnPccsstmTt3bpe/Z/Xq1V3+DtgfI+eOzC82/KJ0RpLkqOaj8sq1r5TOAAAAAAAAAAAAAAAAAAAAAAAAAACgACPUHLKNGzd2OOvfv/9B37evZzds2HDQ99WKb3zjG3n44Yf3fB4xYkSmTZtWsKjzvPzyy3n88cdLZ0C3+Oi8j+axlx8rnZEkGdA0IBundvxvNAAAAAAAAAAAAAAAAAAAAAAAAAAAPUOv0gHUvi1btnQ469Onz0Hft69nt27detD31YJf/epX+cpXvrLnc+/evXP77benqampYBVwoD5++8ezvLK8dEaSpG/vvnlj2hulMwAAAAAAAAAAAAAAAAAAAAAAAAAAKMgINYdsx44dHc4OP/zwg75vXyPU27dvP+j7qt1bb72Vz3/+8/n1r3+952zKlCkZPXp0wSrgQI29Y2zuW3df6YwkSZ/efbLluo7/gwAAAAAAAAAAAAAAAAAAAAAAAAAAAHoWI9R0iYaGhk59tr29/VByqtpNN92URx55ZM/nU089NV/96lfLBQEH7NMLPp17nrmndEaSpLmhOVuv21o6AwAAAAAAAAAAAAAAAAAAAAAAAACAKmCEmkPW1NTU4Wzbtm0Hfd++nm1ubj7o+6rZL3/5y70GpxsaGvLtb387hx9+eLko4IBc8u+XZNFTi0pnJNk9QL3myjWlMwAAAAAAAAAAAAAAAAAAAAAAAAAAqBKNpQOofX379u1w1tkj1P369Tvo+6rVzp0787nPfS7bt2/fc3bVVVflrLPOKljVNQYPHpzTTjuty9+zevXqvPnmm13+HvitK/7jiix4fEHpjCRJYxqz5so1aWlpKZ0CAAAAAAAAAAAAAAAAAAAAAAAAAECVMELNIRs0aFCHs82bNx/0fft6dl/vqHWzZs3KypUr93w+6aSTMnPmzIJFXWfSpEmZNGlSl7/nd3/3d/P44493+XsgSa5efHVu+/ltpTOS7B6gXjdhnQFqAAAAAAAAAAAAAAAAAAAAAAAAAAD20qt0ALXvd37ndzqcrV+//qDvW7du3X69o5atX78+N9xww15n8+fPT79+/QoVAQdi+rLpmbNiTumMJEmv9MryCcsNUAMAAAAAAAAAAAAAAAAAAAAAAAAA0EFj6QBq38knn9zhbM2aNQd939q1a/f63Lt37wwdOvSg76tGr7zySrZv377nc3Nzc6ZMmXJAdzz99NMdzsaOHZvm5ua9zv7+7/8+n/zkJw8uFOhg1gOzMuPhGaUzkuweoF45YWVGtowsnQIAAAAAAAAAAAAAAAAAAAAAAAAAQBUyQs0hO/XUUzuc7WsgeX9s374969at2+vsfe97Xxob6/uf6vbt2/PYY48d8j2/+tWvOpxt3LjxkO8Fdpv78NxMvX9q6YwkSUMasnj8YgPUAAAAAAAAAAAAAAAAAAAAAAAAAAC8o16lA6h9H/7wh9Or197/lFasWJGdO3ce8F0rVqzIjh079jr7yEc+ckh9AJ1h7sNzM2nZpNIZSXYPUC8ZvyTnjzi/dAoAAAAAAAAAAAAAAAAAAAAAAAAAAFXMCDWHrF+/fvnwhz+819mWLVvy6KOPHvBdDz74YIezj33sYwfdBtAZFrYtzFXLriqdkWT3APWCCxcYoAYAAAAAAAAAAAAAAAAAAAAAAAAA4D0ZoaZTnH9+xzHU733vewd8z76e2dfdtW7kyJFpb28/pD9/+Id/2OHeZ599tsPvPv/5z3f/XxDqyNJVS9N6d2va0146JUmy4MIFuXjkxaUzAAAAAAAAAAAAAAAAAAAAAAAAAACoAUao6RQXX9xxEPWf//mfs3379v2+49FHH83y5cv3Ovu93/u9nHzyyYfcB3Awlq5amrGLxlbNAPUt591igBoAAAAAAAAAAAAAAAAAAAAAAAAAgP1mhJpOcfrpp+fss8/e6+zll1/ON7/5zf2+Y+rUqR3O/vIv//KQ2wAORlulLeMWjauaAeqZ58zMxDMnls4AAAAAAAAAAAAAAAAAAAAAAAAAAKCGGKGm01x33XUdzq6//vr87Gc/e89nb7755vzgBz/Y62z48OFpbW3dr3efdNJJaWho2OvPj370o/16FuB/a6u0ZdS8UdmVXaVTkiTTzpyWaz92bekMAAAAAAAAAAAAAAAAAAAAAAAAAABqjBFqOs0nPvGJXHjhhXudvfnmmznnnHPy/e9/f5/P7NixIzfccEP+6q/+qsN3//iP/5impqYuaQV4J5VKpaoGqCePnpwbz7uxdAYAAAAAAAAAAAAAAAAAAAAAAAAAADWosXQA9WX+/PlZuXJl1q9fv+fsjTfeyCc/+cmMHj06F154YU4++eRs27YtTz31VO688848//zzHe656qqrMm7cuG7rXrFiRS6//PJ3/H7z5s0dzv7zP/8zI0eOfMdnRo8endtuu60z8oBuUqlUMmTekKoaoJ49bnbpDAAAAAAAAAAAAAAAAAAAAAAAAAAAapQRajrV4MGDs2zZspx77rmpVCp7fbdixYqsWLHiPe+46KKLMnv27C4q3LfNmzfnscceO6BnXn311bz66qvv+P2RRx55iFVAd6pUKhk6b2h2ZmfplCTJ5R+63AA1AAAAAAAAAAAAAAAAAAAAAAAAAACHpFfpAOrPBz/4wTzyyCM5++yzD+i5pqamXH/99fnOd76T3r17d1EdwL4Nu3VYdmRH6YwkyfgPjM/8T80vnQEAAAAAAAAAAAAAAAAAAAAAAAAAQI0zQk2XGDJkSB544IF897vfze///u+noaHhHX/bv3//XHrppfn5z3+er371q+nVyz9LoHsdfsPh2d6+vXRGkuSC4Rfkrta7SmcAAAAAAAAAAAAAAAAAAAAAAAAAAFAHGksHUL8aGhpy0UUX5aKLLspLL72URx55JM8880zeeOONNDY25phjjskHP/jBjBkzJs3NzYf0rueee+6Qnv+jP/qjtLe3H9Id3e1HP/pR6QSoC/2+1i9v7nqzdEaS5Nwh52bJZ5eUzgAAAAAAAAAAAAAAAAAAAAAAAAAAoE4YoaZbHHvssfnTP/3T0hkAexlw44BsfWtr6YwkyVnHn5V7v3Bv6QwAAAAAAAAAAAAAAAAAAAAAAAAAAOpIr9IBAFDCkTOOzOadm0tnJEnGtIzJg1c8WDoDAAAAAAAAAAAAAAAAAAAAAAAAAIA6Y4QagB7n6JlH5/Udr5fOSJKcPuj0PDLhkdIZAAAAAAAAAAAAAAAAAAAAAAAAAADUISPUAPQox950bF7d/mrpjCTJKUeeklVXrSqdAQAAAAAAAAAAAAAAAAAAAAAAAABAnTJCDUCPceLXT8zL214unZEkGX7E8Dwx+YnSGQAAAAAAAAAAAAAAAAAAAAAAAAAA1DEj1AD0CMO+MSzPb3m+dEaS5IR+J2T1l1aXzgAAAAAAAAAAAAAAAAAAAAAAAAAAoM4ZoQag7p0659Ss3by2dEaSZHCfwVk/ZX3pDAAAAAAAAAAAAAAAAAAAAAAAAAAAegAj1ADUtRE3j8iTrz1ZOiNJMuiwQXnpmpdKZwAAAAAAAAAAAAAAAAAAAAAAAAAA0EMYoQagbo2cOzK/2PCL0hlJkoFNA/PKta+UzgAAAAAAAAAAAAAAAAAAAAAAAAAAoAcxQg1AXTp7/tl57OXHSmckSQY0Dchr014rnQEAAAAAAAAAAAAAAAAAAAAAAAAAQA9jhBqAuvPx2z+eh154qHRGkqRv7755Y9obpTMAAAAAAAAAAAAAAAAAAAAAAAAAAOiBjFADUFfG3jE29627r3RGkuSwXodly3VbSmcAAAAAAAAAAAAAAAAAAAAAAAAAANBDGaEGoG58esGnc88z95TOSJI0NzTn13/769IZAAAAAAAAAAAAAAAAAAAAAAAAAAD0YEaoAagLl/z7JVn01KLSGUl2D1CvuXJN6QwAAAAAAAAAAAAAAAAAAAAAAAAAAHo4I9QA1Lwr/uOKLHh8QemMJEljGrPmyjVpaWkpnQIAAAAAAAAAAAAAAAAAAAAAAAAAQA9nhBqAmnb14qtz289vK52RZPcA9boJ6wxQAwAAAAAAAAAAAAAAAAAAAAAAAABQFYxQA1Czpi+bnjkr5pTOSJL0Sq8sn7DcADUAAAAAAAAAAAAAAAAAAAAAAAAAAFXDCDUANWnWA7My4+EZpTOS7B6gXjlhZUa2jCydAgAAAAAAAAAAAAAAAAAAAAAAAAAAexihBqDmzH14bqbeP7V0RpKkIQ1ZPH6xAWoAAAAAAAAAAAAAAAAAAAAAAAAAAKqOEWoAasrch+dm0rJJpTOS7B6gXjJ+Sc4fcX7pFAAAAAAAAAAAAAAAAAAAAAAAAAAA6MAINQA1Y2Hbwly17KrSGUl2D1AvuHCBAWoAAAAAAAAAAAAAAAAAAAAAAAAAAKqWEWoAasLSVUvTendr2tNeOiVJsuDCBbl45MWlMwAAAAAAAAAAAAAAAAAAAAAAAAAA4B0ZoQag6i1dtTRjF42tmgHqW867xQA1AAAAAAAAAAAAAAAAAAAAAAAAAABVzwg1AFWtrdKWcYvGVc0A9cxzZmbimRNLZwAAAAAAAAAAAAAAAAAAAAAAAAAAwHsyQg1A1WqrtGXUvFHZlV2lU5Ik086clms/dm3pDAAAAAAAAAAAAAAAAAAAAAAAAAAA2C9GqAGoSpVKJWPmjamaAerJoyfnxvNuLJ0BAAAAAAAAAAAAAAAAAAAAAAAAAAD7zQg1AFWnUqlkyLwh2ZmdpVOSJJd/6PLMHje7dAYAAAAAAAAAAAAAAAAAAAAAAAAAABwQI9QAVJVKpZKh84ZWzQB162mtmf+p+aUzAAAAAAAAAAAAAAAAAAAAAAAAAADggBmhBqCqDLt1WHZkR+mMJMn4D4zPnZ+5s3QGAAAAAAAAAAAAAAAAAAAAAAAAAAAcFCPUAFSNw284PNvbt5fOSJJcMPyC3NV6V+kMAAAAAAAAAAAAAAAAAAAAAAAAAAA4aEaoAagK/b7WL2/uerN0RpLk3CHnZslnl5TOAAAAAAAAAAAAAAAAAAAAAAAAAACAQ2KEGoDiBtw4IFvf2lo6I0ly1vFn5d4v3Fs6AwAAAAAAAAAAAAAAAAAAAAAAAAAADpkRagCKOnLGkdm8c3PpjCTJGYPPyINXPFg6AwAAAAAAAAAAAAAAAAAAAAAAAAAAOoURagCKOWbWMXl9x+ulM5Ikpw86PW0T20pnAAAAAAAAAAAAAAAAAO2BWQIAAQAASURBVAAAAAAAAABApzFCDUARx950bDa8uaF0RpLklCNPyaqrVpXOAAAAAAAAAAAAAAAAAAAAAAAAAACATmWEGoBud+LXT8zL214unZEkGdp/aJ6Y/ETpDAAAAAAAAAAAAAAAAAAAAAAAAAAA6HRGqAHoVsO+MSzPb3m+dEaS5IR+J2TNl9eUzgAAAAAAAAAAAAAAAAAAAAAAAAAAgC5hhBqAbnPqnFOzdvPa0hlJksF9Bmf9lPWlMwAAAAAAAAAAAAAAAAAAAAAAAAAAoMsYoQagW4y4eUSefO3J0hlJkkGHDcpL17xUOgMAAAAAAAAAAAAAAAAAAAAAAAAAALqUEWoAutxH5300v9jwi9IZSZKBTQPzyrWvlM4AAAAAAAAAAAAAAAAAAAAAAAAAAIAuZ4QagC519vyzs7yyvHRGkqR/Y/+8Nu210hkAAAAAAAAAAAAAAAAAAAAAAAAAANAtjFAD0GU+fvvH89ALD5XOSJL07d03m6ZvKp0BAAAAAAAAAAAAAAAAAAAAAAAAAADdxgg1AF1i7B1jc9+6+0pnJEkO63VYtly3pXQGAAAAAAAAAAAAAAAAAAAAAAAAAAB0KyPUAHS6Ty/4dO555p7SGUmS5obm/Ppvf106AwAAAAAAAAAAAAAAAAAAAAAAAAAAup0RagA61SX/fkkWPbWodEaSpClNWXPlmtIZAAAAAAAAAAAAAAAAAAAAAAAAAABQhBFqADrNFf9xRRY8vqB0RpKkMY1ZO2FtWlpaSqcAAAAAAAAAAAAAAAAAAAAAAAAAAEARRqgB6BRXL746t/38ttIZSXYPUK+bsM4ANQAAAAAAAAAAAAAAAAAAAAAAAAAAPZoRagAO2fRl0zNnxZzSGUmSXumV5ROWG6AGAAAAAAAAAAAAAAAAAAAAAAAAAKDHM0INwCGZ9cCszHh4RumMJLsHqFdOWJmRLSNLpwAAAAAAAAAAAAAAAAAAAAAAAAAAQHFGqAE4aHMfnpup908tnZEkaUhDFo9fbIAaAAAAAAAAAAAAAAAAAAAAAAAAAAB+wwg1AAdlYdvCTFo2qXRGkt0D1EvGL8n5I84vnQIAAAAAAAAAAAAAAAAAAAAAAAAAAFXDCDUAB2xh28K03t1aOiPJ7gHqBRcuMEANAAAAAAAAAAAAAAAAAAAAAAAAAAD/ixFqAA7I0lVL03p3a9rTXjolSXLzeTfn4pEXl84AAAAAAAAAAAAAAAAAAAAAAAAAAICqY4QagP22dNXSjF00tmoGqG8575ZMPHNi6QwAAAAAAAAAAAAAAAAAAAAAAAAAAKhKRqgB2C9tlbaMWzSuagaoZ54z0wA1AAAAAAAAAAAAAAAAAAAAAAAAAAC8CyPUALyntkpbRs0blV3ZVTolSTLtzGm59mPXls4AAAAAAAAAAAAAAAAAAAAAAAAAAICqZoQagHdVqVQyZt6Yqhmgnjx6cm4878bSGQAAAAAAAAAAAAAAAAAAAAAAAAAAUPWMUAPwjiqVSobMG5Kd2Vk6JUly+Ycuz+xxs0tnAAAAAAAAAAAAAAAAAAAAAAAAAABATTBCDcA+VSqVDLt1WNUMULee1pr5n5pfOgMAAAAAAAAAAAAAAAAAAAAAAAAAAGqGEWoA9mnYrcOyvX176YwkyfgPjM+dn7mzdAYAAAAAAAAAAAAAAAAAAAAAAAAAANQUI9QAdND3a32rZoD6guEX5K7Wu0pnAAAAAAAAAAAAAAAAAAAAAAAAAABAzTFCDcBe+n2tX7a9ta10RpLk3CHnZslnl5TOAAAAAAAAAAAAAAAAAAAAAAAAAACAmmSEGoA9jphxRLa+tbV0RpLkrOPPyr1fuLd0BgAAAAAAAAAAAAAAAAAAAAAAAAAA1Cwj1AAkSY6eeXQ27dhUOiNJcsbgM/LgFQ+WzgAAAAAAAAAAAAAAAAAAAAAAAAAAgJpmhBqAHDPrmLy6/dXSGUmS0wednraJbaUzAAAAAAAAAAAAAAAAAAAAAAAAAACg5hmhBujhjr/p+Gx4c0PpjCTJKUeeklVXrSqdAQAAAAAAAAAAAAAAAAAAAAAAAAAAdcEINUAPduLXT8yL214snZEkGdp/aJ6Y/ETpDAAAAAAAAAAAAAAAAAAAAAAAAAAAqBtGqAF6qPd98315fsvzpTOSJCf0OyFrvrymdAYAAAAAAAAAAAAAAAAAAAAAAAAAANQVI9QAPdCpc07NM288UzojSTK4z+Csn7K+dAYAAAAAAAAAAAAAAAAAAAAAAAAAANQdI9QAPcyIm0fkydeeLJ2RJDmq+ai8dM1LpTMAAAAAAAAAAAAAAAAAAAAAAAAAAKAuGaEG6EE+Ou+j+cWGX5TOSJIMbBqYjVM3ls4AAAAAAAAAAAAAAAAAAAAAAAAAAIC6ZYQaoIc4e/7ZWV5ZXjojSdK/sX9em/Za6QwAAAAAAAAAAAAAAAAAAAAAAAAAAKhrRqgBeoCP3/7xPPTCQ6UzkiR9evfJpumbSmcAAAAAAAAAAAAAAAAAAAAAAAAAAEDdM0INUOfG3jE29627r3RGkuSwXodl63VbS2cAAAAAAAAAAAAAAAAAAAAAAAAAAECPYIQaoI5d8u+X5J5n7imdkSRpbmjOc1c8VzoDAAAAAAAAAAAAAAAAAAAAAAAAAAB6DCPUAHXqiv+4IgseX1A6I0nSlKasuXJNWlpaSqcAAAAAAAAAAAAAAAAAAAAAAAAAAECPYYQaoA5dvfjq3Pbz20pnJEka05i1E9YaoAYAAAAAAAAAAAAAAAAAAAAAAAAAgG5mhBqgzkxfNj1zVswpnZEk6ZVeWTdhnQFqAAAAAAAAAAAAAAAAAAAAAAAAAAAowAg1QB2Zvmx6Zjw8o3RGkt0D1CsnrDRADQAAAAAAAAAAAAAAAAAAAAAAAAAAhRihBqgTsx6YVXUD1CNbRpZOAQAAAAAAAAAAAAAAAAAAAAAAAACAHssINUAdmPvw3Ey9f2rpjCRJQxqyePxiA9QAAAAAAAAAAAAAAAAAAAAAAAAAAFCYEWqAGrewbWEmLZtUOiPJ7gHqJeOX5PwR55dOAQAAAAAAAAAAAAAAAAAAAAAAAACAHs8INUANW9i2MK13t5bOSLJ7gHrBhQsMUAMAAAAAAAAAAAAAAAAAAAAAAAAAQJUwQg1Qo5auWprWu1vTnvbSKUmSm8+7ORePvLh0BgAAAAAAAAAAAAAAAAAAAAAAAAAA8BtGqAFq0NJVSzN20diqGaC+5bxbMvHMiaUzAAAAAAAAAAAAAAAAAAAAAAAAAACAtzFCDVBj2iptGbdoXNUMUM88Z6YBagAAAAAAAAAAAAAAAAAAAAAAAAAAqEJGqAFqSFulLaPmjcqu7CqdkiSZdua0XPuxa0tnAAAAAAAAAAAAAAAAAAAAAAAAAAAA+2CEGqBGVCqVjJk3pmoGqCePnpwbz7uxdAYAAAAAAAAAAAAAAAAAAAAAAAAAAPAOjFAD1Iih84ZmZ3aWzkiSXP6hyzN73OzSGQAAAAAAAAAAAAAAAAAAAAAAAAAAwLswQg1QI47rf1zphCRJ62mtmf+p+aUzAAAAAAAAAAAAAAAAAAAAAAAAAACA92CEGqBGrPnymgw/YnjRhvEfGJ87P3Nn0QYAAAAAAAAAAAAAAAAAAAAAAAAAAGD/GKEGqCGrv7Q6pw86vci7Lxh+Qe5qvavIuwEAAAAAAAAAAAAAAAAAAAAAAAAAgANnhBqgxqy6alXOGHxGt77z3CHnZslnl3TrOwEAAAAAAAAAAAAAAAAAAAAAAAAAgENjhBqgBrVNbMuYljHd8q4xLWNy7xfu7ZZ3AQAAAAAAAAAAAAAAAAAAAAAAAAAAnccINUCNemTCIznr+LO69B1nDD4jj0x4pEvfAQAAAAAAAAAAAAAAAAAAAAAAAAAAdA0j1AA17MErHswFwy/okrtPH3R62ia2dcndAAAAAAAAAAAAAAAAAAAAAAAAAABA1zNCDVDjlnx2ScZ/YHyn3jn8iOFZddWqTr0TAAAAAAAAAAAAAAAAAAAAAAAAAADoXkaoAerAXa13pfW01k65a2j/oVn9pdWdchcAAAAAAAAAAAAAAAAAAAAAAAAAAFCOEWqAOnHnZ+7M5R+6/JDuOK7PcVnz5TWdVAQAAAAAAAAAAAAAAAAAAAAAAAAAAJRkhBqgjsz/1PxMHj35oJ4d3GdwXrjmhU4uAgAAAAAAAAAAAAAAAAAAAAAAAAAASjFCDVBnZo+bnWlnTjugZ45qPiovXfNSFxUBAAAAAAAAAAAAAAAAAAAAAAAAAAAlGKEGqEM3nndjZp4zc79+O6BpQDZO3djFRQAAAAAAAAAAAAAAAAAAAAAAAAAAQHczQg1Qp6792LW55bxb3vU3/Rv7541pb3RTEQAAAAAAAAAAAAAAAAAAAAAAAAAA0J2MUAPUsYlnTswt592ShjR0+K5P7z7ZNH1TgSoAAAAAAAAAAAAAAAAAAAAAAAAAAKA7GKEGqHMTz5yYBRcu2GuI+rBeh2XrdVsLVgEAAAAAAAAAAAAAAAAAAAAAAAAAAF3NCDVAD3DxyIuzZPySNKQhzQ3Nee6K50onAQAAAAAAAAAAAAAAAAAAAAAAAAAAXayxdAAA3eP8EednSZZk5OCRaWlpKZ0DAAAAAAAAAAAAAAAAAAAAAAAAAAB0MSPUAD3I+SPOL50AAAAAAAAAAAAAAAAAAAAAAAAAAAB0k16lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAADofEaoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAOqQEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACAOmSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKAOGaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAqENGqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADqkBFqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDpkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgDhmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAKhDRqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAA6pARagAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6ZIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA4ZoQYAAAAAAAAAAAAAAAAAAAAAAAAAAACoQ0aoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAOqQEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACAOmSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKAOGaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAqENGqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADqkBFqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDpkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgDhmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAKhDRqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAA6pARagAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6ZIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA4ZoQYAAAAAAAAAAAAAAAAAAAAAAAAAAACoQ0aoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAOqQEWoAAAAAAAAAAAAAAAAAAAAAAAAAAACAOmSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKAOGaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAqENGqAEAAAAAAAAAAAAAAAAAAAAAAAAAAADqkBFqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDpkhBoA+P/Zu/Noq+tyf+DP4QyAgBwBAUG5IKLihCIqKDKIU+UE5vCTyAG8XW9UNtzSm1csh9SV1zG9GiCKZZYTZIiagOKATKaCBILIYEwBh3k4wP790Qrb7oOcvc+w4evrtRZrtZ/9/TyfZx9bD5Cr9wYAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBABalUKpXvIQCqQ6NGjWL9+vUZ9bp160b79u3zMBEAAAAAALCnmTdvXmzZsiWj3rBhw1i3bl0eJgIAAAAAAAAAAAAAAAAAAKg5QqiBxKhXr16FoREAAAAAAAC7U7du3di8eXO+xwAAAAAAAAAAAAAAAAAAAKhWdfI9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVTwg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlUlO8BAKpLaWlplJWVZdSLi4ujTZs2tT8QVNK8efNiy5YtGfW6detG+/bt8zARwJ7BfgTIZDcCVMx+BMhkN+7awoULo7y8PKNeWlpa+8MAAAAAAAAAAAAAAAAAAADUMCHUQGIsXbo03yNATo488sj48MMPM+rt27ePmTNn5mEigD2D/QiQyW4EqJj9CJDJbgQAAAAAAAAAAAAAAAAAACAiok6+BwAAAAAAAAAAAAAAAAAAAAAAAAAAAACg+gmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABKoKN8DAMCX3X/+53/GihUrMur7779/HqYB2HPYjwCZ7EaAitmPAJnsRgAAAAAAAAAAAAAAAAAAACIiClKpVCrfQwAAAAAAAAAAAAAAAAAAAAAAAAAAAABQverkewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqp8QagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASqCjfAwBATVuxYkVMmTIl5s2bF2vXro3i4uJo2rRpHHHEEdGlS5coLi7O94gAtc5uBKiY/Vh1CxcujA8++CA++eSTWLt2baRSqWjYsGG0atUq2rdvH0cccUTUrVs332MCWbAbASpmP+ZmyZIlMX369FiyZEmUlZXFli1bonHjxlFaWhqHH354HHPMMVFSUpLvMQEAAAAAAAAAAAAAAAAAABJDCDUAifX000/HvffeG2+++WakUqkKn2nUqFFcfPHF8eMf/zgOPfTQWp4wUyqVio8++iimTZsWU6dOjalTp8a7774b69atS3vu8ssvjxEjRtT6fMOHD4+BAwdW+N78+fOjbdu2tTsQkDW7cfcmTJgQvXv3rnKff1qyZEm0bNmy2voBNcN+rJrFixfHI488Ek8++WTMnTv3C58tKSmJY489Ns4888zo169fHHfccTU6G5A7u/GL3XTTTfGzn/2sSj2+yK5+5kD+2Y/Zmz9/fgwdOjR+85vfxIIFC77w2ZKSkujdu3cMGjQoLrjggigq8q8zAQAAAAAAAAAAAAAAAAAAqsL/axuAxPn000+jf//+8dprr+322XXr1sWwYcNi5MiRccMNN8QNN9wQBQUFtTDlZ5599tmYNGlSTJ06NaZPnx5r1qyp1fsra/HixfGDH/wg32MAObIbASpmP1bN5s2b46abbop77703Nm/eXKkzW7dujcmTJ8fkyZPj7bffjj//+c81PCWQLbsRoGL2Y/a2bt0at956a9x+++2xdevWSp956aWX4qWXXopOnTrF0KFDo0uXLjU8KQAAAAAAAAAAAAAAAAAAQHIJoQYgUebMmRO9evWKJUuWZHVu69atceONN8asWbNi5MiRUVhYWEMTZrrqqqv2ioCsgQMH7hVzApnsRoCK2Y9VM3/+/Dj33HNj5syZ+R4FqEZ2456hW7du+R4B+Bz7MXsbN26Mc845J8aPH59zj/feey9OPvnkeOqpp6Jv377VOB0AAAAAAAAAAAAAAAAAAMCXhxBqABJj5cqVccYZZ1QYBHP88cfH+eefH+3atYtNmzbFnDlz4re//W387W9/S3vuySefjObNm8c999xTS1PvHR555JF4+eWX8z0GkAO7sXq0b98+GjZsmNPZ4uLiap4GqA72Y9XMnj07evbsGcuWLct4r0WLFvHVr341OnbsGM2bN4999tknysrKYtGiRfH+++/Hm2++GX//+9/zMDWwO3Zjdlq2bBmdOnWqcp/33nsvozZo0KAq9wWqj/2Ym4svvrjCAOri4uL4yle+EieffHK0bt066tatG6tXr473338//vSnP8Unn3yS9nx5eXlccsklMX78+DjllFNqaXoAAAAAAAAAAAAAAAAAAIDkKEilUql8DwEA1eHCCy+MZ599Nq3WqFGjeOKJJ+K8887LeL68vDxuu+22uOmmmzLeGzNmTHzlK1+pqVHTlJaWxpo1azLqTZs2jeOPPz7222+/eOqpp9Leu/zyy2PEiBG1Mt+CBQvi6KOPjnXr1kVEROPGjaNly5Yxe/bstOfmz58fbdu2rZWZgMqzG7M3YcKE6N27d1pt/Pjx0atXryr3BvYc9mPuli9fHieccEIsXLgwrd6hQ4e466674pxzzomCgoJdnt+xY0dMnjw5Ro4cGUuXLo1nnnmm2mYDqsZurH2TJk2Kbt26pdUaNWoUS5YsiQYNGuRpKuDz7MfsPfXUU3HppZdm1M8555x4+OGHo1WrVhWe27FjR4wYMSKuvfbanf975D8deeSR8e677/qyJwAAAAAAAAAAAAAAAAAAgCwV5XsAAKgOr7zySkYQTElJSYwbNy66dOlS4Zni4uIYMmRIlJaWxrXXXpv23ne/+92YNWtWFBXVzm+VjRs3js6dO0eXLl3ihBNOiC5dukS7du0i4h9hqJ8Pg6ktqVQqBg4cmBb4ctddd8XIkSMzQqiBPY/dCFAx+zF3qVQqBgwYkBFAffHFF8fIkSOjpKRktz3q1KkTXbt2ja5du4bvRoM9h92YH0OHDs2oXXLJJQKoYQ9iP+bmf//3fzNqF1xwQTzzzDNRp06dXZ6rU6dOXHXVVdGhQ4fo06dPlJeX73xv5syZ8fLLL8fXvva1GpkZAAAAAAAAAAAAAAAAAAAgqYRQA5AIN998c0ZtyJAhuwyC+Vff+9734k9/+lO88sorO2tz586N3/72t/HNb36zWuesyLvvvhtt27aNgoKCGr8rWw899FC8+uqrO1+ffvrpMXDgwBg5cmQepwIqy24EqJj9mLuRI0fGyy+/nFbr27dv/Pa3v43CwsKs+9nzsOewG2vf+vXrKwx/HTRoUB6mAXbFfszep59+GlOmTEmr1atXLx566KEvDKD+V6eeemp861vfigceeCCtPmrUKCHUAAAAAAAAAAAAAAAAAAAAWarc/9MbAPZgM2fOjIkTJ6bVmjVrFj/60Y8q3eMXv/hFRu2hhx6q8myV0a5duz0yKGv+/Pnx4x//eOfrBg0axK9//es8TgRkw24EqJj9mLstW7bE9ddfn1Zr2rRpPPLIIzkFUAN7DrsxP37/+9/H+vXr02pHHXVUnHTSSXmaCPg8+zE3s2fPjlQqlVbr3bt3tGzZMqs+/fv3r7A3AAAAAAAAAAAAAAAAAAAA2RFCDcBe73e/+11G7corr4ySkpJK9zj++OPj+OOPT6tNmjQp5s+fX+X59kapVCquvPLK2LBhw87aL37xi2jbtm3+hgKyYjcCVMx+zN0TTzwRf/vb39JqN954YzRr1ixPEwHVxW7Mj6FDh2bUBg4cmIdJgF2xH3OzfPnyjFrHjh2z7lPRmWXLluU0EwAAAAAAAAAAAAAAAAAAwJeZEGoA9npjx47NqH3961/Puk9FZyrq/WVw//33x2uvvbbzdffu3WPw4MF5nAjIlt0IUDH7MXefD0stKSmJb3zjG3maBqhOdmPtmzVrVrz99ttptbp168aAAQPyNBFQEfsxNxWFdGcT3P1PdevWzajVq1cvp5kAAAAAAAAAAAAAAAAAAAC+zIRQA7BX27BhQ0yfPj2tts8++0Tnzp2z7nXqqadm1CZOnJjzbHurefPmxfXXX7/zdb169WLYsGFRUFCQx6mAbNiNABWzH3O3aNGimDRpUlrtzDPPjCZNmuRpIqC62I35MWzYsIzaBRdcEE2bNs3DNEBF7MfctWvXLqO2aNGirPtUdKZ9+/Y5zQQAAAAAAAAAAAAAAAAAAPBlJoQagL3aX/7yl9ixY0darUuXLlFUVJR1rxNOOCGKi4vTatOmTavSfHubHTt2xJVXXhkbN27cWfvZz34Whx56aB6nArJlNwJUzH7M3Z///OeMWteuXfMwCVDd7MbaV15eHiNHjsyoDxw4MA/TALtiP+bumGOOyQjVf/XVV6O8vDyrPmPGjMmo9enTp0qzAQAAAAAAAAAAAAAAAAAAfBkJoQZgr/bXv/41o3bIIYfk1KukpCQOPPDAtNq8efNi27ZtOfXbG917770xceLEna+7dOkSP/zhD/M4EZALu7H6jRo1Kq666qo45phjonnz5lFSUhJNmjSJDh06RI8ePeK6666LP/3pT7F58+Z8jwp8Afsxd2+++WZG7dhjj935n1OpVLz00ksxcODAOOqoo6JRo0ZRUlISLVu2jKOPPjoGDBgQjz/+eKxcubIWpwYqw26sfaNHj47ly5en1dq2bRunn356niYCKmI/5q6wsDC+9a1vpdWWLl0a9913X6V7rFq1Ku644460WmlpaQwYMKBaZgQAAAAAAAAAAAAAAAAAAPgyEUINwF7tk08+yaj927/9W8792rRpk/Z6+/btsXDhwpz77U3mzJkTP/3pT3e+Li4ujuHDh0dhYWEepwJyYTdWv3vuuSceffTR+OCDD2LFihVRXl4eq1evjrlz58bEiRPjjjvuiHPOOSfatm0bt956a6xZsybfIwMVsB9z98EHH2TUOnToEBERM2bMiC5dusTZZ58dw4cPj5kzZ8b69eujvLw8li1bFjNmzIgnnngiLr/88mjbtm3ccMMN9iTsQezG2jds2LCM2pVXXhkFBQV5mAbYFfuxaq6//vo4+OCD02o/+clPYvjw4bs9u3jx4vjKV74SS5YsSavfd9990ahRo2qdEwAAAAAAAAAAAAAAAAAA4MtACDUAe7WlS5dm1A466KCc+1V0dtmyZTn321vs2LEjrrjiiti0adPO2k9/+tM4+uij8zgVkCu7MX+WLVsWN9xwQxxzzDExadKkfI8DfI79mLuPP/44o9a4ceMYPnx4dOnSJaZPn16pPuvXr49bb701TjzxxJgzZ051jwnkwG6sXYsXL46XXnoprVanTp246qqr8jQRsCv2Y9U0bNgwXnzxxWjVqtXO2vbt22PgwIHRo0ePGDFiRHz00UexYcOG2LZtW6xYsSLGjRsX3//+9+PII4+MyZMnp/W75ZZbYsCAAbX9MQAAAAAAAAAAAAAAAAAAABKhKN8DAEBVrFq1KqPWsGHDnPtVdHblypU599tb3HXXXfH222/vfH300UfHf//3f+dxIqAq7MaaUb9+/WjWrFnsu+++sWHDhli5cmWsW7euwmcXLlwYPXr0iMcffzwuvfTSWp4U2BX7MTfl5eUVfq5x48bF1VdfHTt27EirN2rUKFq2bBnbt2+PJUuWpH3RyT/NmTMnunbtGm+99VYcfvjhNTY7sHt2Y+169NFHM/bmWWedFQceeGCeJgJ2xX6sukMPPTSmT58e//Ef/xHPP//8zvrEiRNj4sSJlerRrl27uO++++Kcc86poSkBAAAAAAAAAAAAAAAAAACSr06+BwCAqtiwYUNGrX79+jn3q+jsxo0bc+63N5g1a1bceOONO18XFhbG8OHDo7i4OI9TAVVhN1aPpk2bxoABA+LJJ5+Mjz76KNavXx8LFy6MGTNmxPz582Pt2rUxZ86cePDBB6Njx44Z58vLy+OKK66odLAWUPPsx9yUlZVFKpXKqA8cOHBnkGpBQUEMGDAg3nnnnVizZk3MmTMn5s2bF2vXro1x48bFWWedlXF+9erVceGFF1b4zwWoPXZj7UmlUvHoo49m1AcOHJiHaYDdsR+rR4sWLeK5556LadOmxeDBgyv9Mzz++OPj97//fcyZM0cANQAAAAAAAAAAAAAAAAAAQBUJoQZgr1ZeXp5Rq1evXs79KgpB2bp1a8799nTbt2+PK664IjZv3ryz9qMf/Si6dOmSx6mAqrIbq6ZVq1bxxBNPxKeffhqPP/54XHrppXHIIYdEnTqZf33q0KFDXHPNNTFz5sy4//77o27dumnvb9myJS6++GIBq7CHsB9zs2XLlgrrmzZtioh//Ayfe+65ePzxx+PEE0+MgoKCnc8UFRVF7969Y+zYsXHfffelvRcR8eGHH8bNN99cc8MDu2U31p5x48bF/Pnz02rNmzeP8847L08TAV/Efqw+8+bNi2HDhsXvf//7nX+G3J1p06bFf//3f8c999wT69evr+EJAQAAAAAAAAAAAAAAAAAAkk0INQCJ8/lgu6qeTaVSVRlnj3bnnXfG5MmTd74+7LDD4qabbsrfQECNsRsr79BDD43+/ftnBEp/kYKCghg8eHC88MILUVxcnPbe0qVL4+67767uMYFqYj/u3u4+08MPPxznn3/+bvt85zvfiZ/+9KcZ9YceeijKyspyHQ+oAXZjzRg6dGhG7Zvf/GbGnx+BPZf9mJ3y8vL4n//5nzjssMPiwQcfjOXLl6e9v88++0Tbtm3jiCOOiFatWmV8+dPcuXPjv/7rv6Jjx44xbty42hwdAAAAAAAAAAAAAAAAAAAgUYRQA7BXqyioadOmTTn3q+hsSUlJzv32ZDNnzkwLnC4oKIhhw4ZFvXr18jcUUC3sxvw5/fTT44477sio33333bF9+/Y8TAT8K/sxN18UjtqrV6/45je/WeleN954Y7Rr1y6ttnbt2vjd736X83xA1diNtWPVqlXx3HPPZdQHDhyYh2mAyrAfq2br1q3Rr1+/uOWWW9L+Ply/fv0YPHhwTJ06NdauXRvz58+PmTNnxqeffhqrVq2KZ599Nnr06JHWa/HixXHWWWfFM888U9sfAwAAAAAAAAAAAAAAAAAAIBGEUAOwV9tnn30yatUdBtOgQYOc++2ptm3bFpdffnls3bp1Z23w4MFxyimn5HEqoLrYjfk1ePDgaNu2bVpt1apVMXny5PwMBOxkP+bmiz7Td77znax6FRcXx7e+9a2M+oQJE7IdC6gmdmPt+M1vfhNbtmxJq51yyilx+OGH52kiYHfsx6r53ve+Fy+88EJa7ZBDDokpU6bE/fffH8cff3wUFhamvd+4cePo27dvvPbaa/Hggw9GnTqf/WvMbdu2Rf/+/WPmzJm1Mj8AAAAAAAAAAAAAAAAAAECSCKEGYK/WtGnTjNr69etz7lfR2Yru2NvdfvvtMW3atJ2v27ZtG7/4xS/yOBFQnezG/CouLo6LLrooo/7qq6/mYRrgX9mPuWnUqFGUlJRk1OvUqROnn3561v3OPPPMjNobb7yR02xA1dmNtWPYsGEZtUGDBuVhEqCy7MfcvfXWW/F///d/abUmTZrEyy+/HEceeWSlelxzzTVx1113pdW2bNkS11xzTbXNCQAAAAAAAAAAAAAAAAAA8GUhhBqAvVqLFi0yaosXL86536JFiyp1x95s8eLFcfPNN6fVfv3rX0eDBg3yNBFQ3ezG/OvVq1dGbeHChbU/CJDGfsxdy5YtM2oHH3xw7Lvvvln3OuaYY6KwsDCttnTp0kilUjnPB+TObqx5U6dOjffeey+t1qhRowq/uATYc9iPuft8eHRExE9/+tNo165dVn2++93vxjHHHJNWmzhxYkyfPr1K8wEAAAAAAAAAAAAAAAAAAHzZFOV7AACoioqCSxYsWJBzv88HhBYWFkabNm1y7rcn+vvf/x5bt27d+bqkpCR+9KMfZdVj7ty5GbWvfvWrUVJSklb7+c9/Huedd15ugwI5sxvz74ADDsiorVixIg+TAP/KfszdwQcfnPF5mzZtmlOvwsLCaNy4caxatWpnbfv27VFWVhb77bdfleYEsmc31rxhw4Zl1P7f//t/vgwK9nD2Y262bdsWL7/8clqtoKAgBgwYkHWvOnXqxIABA+K//uu/0uovvfRSdO7cuUpzAgAAAAAAAAAAAAAAAAAAfJkIoQZgr3bYYYdl1CoKSK6MrVu3xqJFi9Jq7du3j6KiZP92uXXr1njvvfeq3GfWrFkZtX8NFgRqj92YfxUFCm7atCkPkwD/yn7MXceOHWPChAlptbp16+bcr169ehm1zZs359wPyJ3dWLM2bdoUTz75ZEZ90KBBeZgGyIb9mJuPP/441q9fn1Zr37597L///jn169q1a0bt/fffz6kXAAAAAAAAAAAAAAAAAADAl1WdfA8AAFVx3HHHRZ066b+dTZ06NbZt25Z1r6lTp0Z5eXlarXPnzlWaDyAf7Mb8W7FiRUatWbNmeZgE+Ff2Y+5OOOGEjNqaNWty7ldWVpZRa9q0ac79gNzZjTXrD3/4Q8a+PProoyvcq8CexX7MzcqVKzNquQZQ7+qsL74DAAAAAAAAAAAAAAAAAADIjhBqAPZqDRo0iOOOOy6ttmHDhnj33Xez7vXGG29k1Hr06JHzbAD5Yjfm36xZszJqVQndAqqH/Zi7Xr16ZdQWLFgQqVQq614rVqyIjRs3ptX23XffKCkpyXU8oArsxpo1bNiwjNqgQYPyMAmQLfsxN/Xq1cuobdq0Ked+n/9zY0TEPvvsk3M/AAAAAAAAAAAAAAAAAACALyMh1ADs9c4+++yM2tNPP511n4rOVNR7b3fsscdGKpWq0q+ePXtm9J0/f37Gc1dccUXtf0AgIuzGfBszZkxGrVOnTnmYBPg8+zE37dq1i44dO6bVysrK4sMPP8y611tvvZVR+3zAI1C77Maa8dFHH8Xrr7+eVqtbt2584xvfyNNEQLbsx+xV9AVMCxYsiB07duTU7+OPP67UHQAAAAAAAAAAAAAAAAAAAOyaEGoA9nqXXnppRu3RRx+NrVu3VrrHu+++G1OmTEmrnXTSSdGuXbsqzweQD3Zj/syaNStGjx6dVisoKEhswBjsbezH3FUUmjpy5Mis+zz++OMZtT59+uQ0E1A97MaaMXz48Ixa3759o0mTJnmYBsiF/Zi9li1bRsOGDdNqq1evjkmTJuXUr6IveTr00ENz6gUAAAAAAAAAAAAAAAAAAPBlJYQagL3eUUcdFd27d0+rrVixIu6+++5K97j++uszatdcc02VZwPIF7sxP7Zs2RJXX311bN++Pa1+yimnRMuWLfM0FfCv7MfcDRw4MOrXr59We/jhh+Nvf/tbpXtMnz49Ro0alVYrKCiICy+8sFpmBHJjN1a/bdu2xWOPPZZRHzRoUB6mAXJlP2avqKiowi8YufXWW7PuNX/+/HjiiScy6meddVZOswEAAAAAAAAAAAAAAAAAAHxZCaEGIBFuuOGGjNqQIUNi+vTpuz37wAMPxEsvvZRWO/jgg+Oyyy6r1N1t27aNgoKCtF8TJkyo1FmAmmQ3Zu/ee++NBQsW5HR23bp1cckll8Sbb76Z8V4uYVtAzbEfc9OiRYv49re/nVYrKyuL/v37x6ZNm3Z7fvny5dG/f/+MoP4LL7wwjjjiiGqdFcie3Vi9xowZE0uWLEmrtWvXLk477bQ8TQTkyn7M3iWXXJJRGzNmTNx+++2V7rFmzZro27dvbN26Na1+xBFHxNFHH13lGQEAAAAAAAAAAAAAAAAAAL5MhFADkAhnnXVWnH/++Wm1LVu2RO/eveOPf/xjhWfKy8vj5ptvju985zsZ7913331RXFxcI7MC1Ba7MXuPPvpoHHLIIXHZZZfF6NGjY/Pmzbs9s3379vjDH/4QnTt3jlGjRmW8f+mll0aPHj1qYlwgR/Zj7oYMGRJt2rRJq02YMCH69OkTf/3rX3d57q233opTTz0145mGDRvGLbfcUiOzAtmxG6vXsGHDMmpXXXVVFBQU5GEaoCrsx+xdcsklceyxx2bUr7/++rjqqqti2bJlX3h+3Lhxcfzxx8d7772X8V42QdYAAAAAAAAAAAAAAAAAAAD8Q0EqlUrlewgAqA4rVqyIzp07x+LFizPe69KlS5x//vnRrl272LRpU3z00Ufxm9/8Jj799NOMZwcPHhz3339/pe9t27ZtLFiwIK02fvz46NWrV6XOT506NQYNGrTL99evXx/z5s1Lq+23334Z4X//qkuXLjF06NBK3Z+LXr16xWuvvZZWmz9/frRt27bG7gRyYzd+pjK78dhjj00LuWrQoEEcd9xx0alTp2jfvn2UlpZGo0aNYuPGjbFy5cqYPn16jB8/vsKfWURE9+7d45VXXol69ep94b1A7bMfP5Ptnx0nT54cPXr0iC1btqTVi4qK4owzzog+ffpEq1atYvv27bFw4cIYO3ZsTJw4scJeTz/9dFx44YWVvhuoWXbjZ6ry9+olS5ZEmzZtYtu2bTtrhYWFsWDBgmjdunVOPYH8sh8/U9n9OG3atOjVq1esX78+4726devGWWedFSeffHK0atUq6tevH2VlZTFr1qx45ZVX4oMPPqiw5+WXXx4jRozY7d0AAAAAAAAAAAAAAAAAAACkK8r3AABQXfbff/94+eWX47TTToulS5emvTd16tSYOnXqbntcfPHFcc8999TQhBVbv359WuBpZaxevTpWr169y/dLS0urOBWQFHbjZ3LZjRs2bIg33ngj3njjjazPnnfeefHYY48JoIY9lP34mWz344knnhjPP/989OvXLzZt2rSzvm3btnjxxRfjxRdf3G2PkpKS+NWvfiWAGvYwduNnqvL36sceeywtgDoi4uyzzxZADXsx+/Ezld2Pxx9/fDz//PNxwQUXZARRb9myJUaPHh2jR4+u9Fz9+vWr0S/dAwAAAAAAAAAAAAAAAAAASLI6+R4AAKpTx44dY/LkydG9e/eszhUXF8eQIUPiySefjMLCwhqaDiA/7Mba1aJFi3jkkUdi1KhRvhQA9nD2Y+7OPvvsePvtt+Ooo47K+myHDh1i3LhxMWjQoBqYDKgqu7Hqhg8fnlEbOHBgHiYBqpP9mL0+ffrEe++9Fz179sy5R8OGDePBBx+MZ555JoqKfLcuAAAAAAAAAAAAAAAAAABALoRQA5A4Bx10ULz++uvx1FNPxcknnxwFBQW7fLZhw4Zx5ZVXxvvvvx833XRT1Knjt0YgmezGynn22WfjkUceif79+8dhhx1W6c/eqFGjOOOMM+KJJ56IhQsXxtVXX13DkwLVxX7MXadOneIvf/lLPProo3HiiSd+4c+usLAwunXrFiNGjIhZs2bFKaecUouTAtmyG3P3+uuvx0cffZRWa9GiRZx77rl5mgioTvZj9g4++OCYMGFCvP7669G/f/9o0qTJbs8UFhbGcccdF/fcc08sWrQorrnmmlqYFAAAAAAAAAAAAAAAAAAAILkKUqlUKt9DAEBNWr58eUyePDk+/vjjWLt2bRQVFUWzZs2iY8eOccIJJ0RJSUm+RwSodXZj5WzcuDHmzJkTixYtir/97W+xbt262Lx5c9StWzf222+/2G+//eLQQw+NI4888ksbKAZJYz/mbtmyZTF16tSdP7uSkpJo1qxZtGrVKrp16xb77rtvvkcEcmQ3AlTMfszN3Llz4/3334+VK1dGWVlZbN26Nfbdd98oLS2Ntm3bRufOnaNBgwb5HhMAAAAAAAAAAAAAAAAAACAxhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJFCdfA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPUTQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAACAL50rrrgiCgoKdv5q27ZtjZ4DAAAAAAAAAAAAAAAAAAAAAADIByHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAACAL50RI0ZEKpXa+euTTz7J90gAAAAAAAAAAAAAAAAAAAAAAADVTgg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlUlO8BAAAAgOyVlZXFlClTYtmyZbFixYrYsmVLNGvWLJo3bx4nnHBCHHDAATV6/8cffxzTpk2LRYsWxaZNm2L//feP1q1bR7du3aJJkybVdk95eXnMmjUrZsyYEatWrYq1a9dGQUFB1K9fP0pLS6NNmzZx8MEHR9u2bavtztq2fPnymDp1aixfvjyWL18ehYWF0bx582jRokV07do19t133xqfYceOHTF9+vT44IMPYvny5VFQUBDNmjWLgw8+OE4++eQoKSmp8RkAAAAAAAAAAAAAAAAAAAAAAIDqJ4QaAAAA9hKbNm2Khx56KJ5++umYPHlybN++fZfPHnnkkTFgwIAYPHhwNGjQoNJ39OrVK1577bWdr3v27BkTJkyIiIhUKhUjRoyIu+++Oz744IMKzxcXF0efPn3iuuuui549e1b63s8bP358PPzwwzF69OjYtGnTbp9v1qxZdO3aNc4777zo27dvNGvW7Aufv+KKK+Kxxx7b+frf/u3f4pNPPsl53mxt2rQpHnjggXjqqadi+vTpkUqlKnyuqKgounXrFldccUVcfvnlUVhYmNU9EyZMiN69e6fVxo8fH7169YqIiLVr18Zdd90VDz/8cCxbtqzCHg0aNIiLLroofv7zn8dBBx2U1f0AAAAAAAAAAAAAAAAAAAAAAEB+1cn3AAAAAMDuDR06NNq3bx8//OEP4+233/7CAOqIiJkzZ8Z1110X7du3j6effrrK969YsSJ69uwZV1111S4DqCMiysvLY+zYsdG7d+8YNGhQpQKk/9Xq1aujX79+cdppp8VTTz1V6fN///vf44UXXoh///d/j8GDB2d1Z2176qmnokOHDvHjH/84pk2btssA6oiIbdu2xcSJE2PgwIHRqVOneP3116ttjokTJ8YRRxwRP//5z3cZQB0RsWHDhhgxYkQcdthhMXr06Gq7HwAAAAAAAAAAAAAAAAAAAAAAqHlCqAEAAGAPVl5eHoMGDYqrr746lixZkvX5ZcuWxcUXXxw333xzzjOsXr06evToERMnTqz0mVQqFcOGDYvzzjuv0kHSq1evjl69esVzzz2X66h7vJtvvjkuvfTS+PTTT7M+O3PmzDjjjDPiySefrPIcL7zwQpx++ulZzbFp06a48MILY+zYsVW+HwAAAAAAAAAAAAAAAAAAAAAAqB1F+R4AAAAAqNiOHTviggsuiDFjxmS816pVq+jTp08cd9xx0axZs6hXr16sWrUq3n333XjxxRdj4cKFO59NpVJx4403RrNmzeKaa67Jeo4BAwbEX//6152vDzrooOjXr1907NgxSktLY9myZTF16tQYNWpUrF27Nu3sn//857j00ktj1KhRu73nBz/4Qbz//vsZ9UMPPTROP/30OPzww6Np06ZRt27dWL9+fZSVlcWcOXNixowZ8c4778SWLVuy/my16eabb44bb7wxo15UVBS9e/eO008/PVq3bh3btm2LRYsWxZgxY2LSpEmRSqV2Prt169bo379/FBYWxsUXX5zTHH/5y1/i+uuvj61bt0ZERP369aNPnz7Ro0ePaNmyZRQVFcWiRYvi5ZdfjldffTXt7LZt22LQoEExc+bMaNy4cU73AwAAAAAAAAAAAAAAAAAAAAAAtUcINQAAAOyhfvazn2UEUB944IHxv//7v9GvX78oLCys8Ny2bdtixIgR8f3vfz/Wr1+/s37ttdfGSSedFJ07d670DO+8805s3rw5IiLq1q0bt956a1x77bUV3r1mzZr4wQ9+EMOHD0+rjx49Oh577LG4/PLLd3nPokWL4rHHHkur7b///jFs2LA499xzdzvnhg0b4pVXXomhQ4fu8ueST2+++Wb87Gc/y6h37949hg0bFoceemjGezfccEO8/fbbcdVVV6WFgKdSqfjWt74VXbt2jTZt2mQ9y/XXX7/zn+mAAQPijjvuiAMOOCDjuR//+McxYcKEuPDCC2PVqlU7659++mk89NBDcd1112V9NwAAAAAAAAAAAAAAAAAAAAAAULvq5HsAAAAAINPbb78dt9xyS1qtW7duMWPGjLjooou+MGi5qKgoBg0aFG+88Ubsu+++O+tbt26NG264Ias5/hlWXFRUFE8//XT88Ic/3OXdjRs3jmHDhsVPfvKTjPe+//3vx5o1a3Z5z+jRoyOVSqXV/vCHP1QqgDoiokGDBnHBBRfECy+8EL/+9a8rdaa2pFKpGDhwYGzfvj2t/rWvfS1effXVCgOo/6lbt27x5ptvxlFHHZVWLysri29/+9s5zfPPf6Y333xzPP744xUGUP9Tr169YtSoUVFQUJBWHzZsWE53AwAAAAAAAAAAAAAAAAAAAAAAtUsINQAAAOyBbrnlltixY8fO161atYoxY8ZE48aNK92jU6dO8eCDD6bVXnzxxXjvvfeynueGG26Ic845p1LP3n777dGrV6+02urVq2PkyJG7PPPxxx+nve7QoUP07Nkz6zkjIvbZZ5+cztWUP/3pTzF79uy0Wps2beKpp56KkpKS3Z5v0qRJjB49OurXr7/bvpXVr1+/SgeSd+/ePS666KK02ty5c2PevHk53Q0AAAAAAAAAAAAAAAAAAAAAANQeIdQAAACwh5kxY0aMGTMmrXbbbbdFaWlp1r0uu+yy6NChQ1rt+eefz6pH69at4yc/+UlWZ+6///6M2v/93//t8vl169alvW7atGlW9+3JHnjggYzaL3/5y2jQoEGle7Rr1y7jn0EqlYpf/epXWc9Tp06duPPOO7M6841vfCOjNm3atKzvBgAAAAAAAAAAAAAAAAAAAAAAapcQagAAANjDPP3002mvGzVqFJdccklOvQoKCuIrX/lKWm3ChAlZ9RgwYEDUq1cvqzNHHXVUdOvWLa02c+bMWLRoUYXPfz50+oMPPog1a9ZkdeeeaOvWrfHaa6+l1Vq2bBl9+/bNute///u/R2FhYVrtlVdeybrPaaedFu3bt8/qzIknnphRmz17dtZ3AwAAAAAAAAAAAAAAAAAAAAAAtUsINQAAAOxhPh9a3Llz56xDoP9Vu3bt0l6/++67WZ2/4IILcrq3X79+GbVJkyZV+OxJJ52U9nrDhg1x6aWXxqpVq3K6e08xffr02Lx5c1rtggsuiKKioqx7HXDAAXHqqaem1WbPnh0rV67Mqk/Pnj2zvrtFixbRoEGDtFoSQsIBAAAAAAAAAAAAAAAAAAAAACDpsk88AgAAAGrM9u3bM4Ka33///Tj22GNz7vn5IOc1a9ZEeXl5FBcX7/ZsUVFRdOrUKad7O3funFGbNm1aXHTRRRn1s846Kw444IBYsmTJztrYsWPj4IMPjv79+8fXv/716N69e6Vm3pNMnz49o9alS5ec+51wwgkxYcKEna9TqVS8++67cfrpp1e6R4cOHXK6u3HjxrFhw4adr4VQAwAAAAAAAAAAAAAAAAAAAADAnk8INQAAAOxBVq5cGZs3b06rrV69OlavXl2t96xatSpatGix2+fatGkT9erVy+mOww8/PKO2fPnyCp+tX79+PPDAA/H1r389UqnUzvqaNWviwQcfjAcffDD22Wef6NatW5x00klx0kknxamnnhr77bdfTrPVlr///e8ZtY4dO+bc74gjjqjUHV+kSZMmOd39+QDw8vLynPoAAAAAAAAAAAAAAAAAAAAAAAC1p06+BwAAAAA+s3Llylq5Z9OmTZV6rnHjxjnfUdHZsrKyXT7fr1+/eOKJJ6JBgwYVvr9x48Z49dVX47bbbovzzz8/mjVrFl26dIk77rgjFi1alPOcNami8PDS0tKc+1UUur1q1aqsenw+TBoAAAAAAAAAAAAAAAAAAAAAAEguIdQAAACwB6kotDifdhUIXRn77LNPRm3dunVfeOayyy6L2bNnx3/+539Go0aNvvDZHTt2xLRp0+K6666L9u3bx6BBg2LFihU5z1sTKvq8VfmZVnR2dz9TAAAAAAAAAAAAAAAAAAAAAADgy0sINQAAAOxB6tevn1G75JJLIpVKVeuvtm3bVmqeDRs25PxZNm7cmFHbXbB0RETr1q3jV7/6VSxbtiyeffbZGDx4cHTq1CkKCwt3eaa8vDyGDRsWxxxzTEyfPj3nmatbRZ+3Kj/Tis5W5mcKAAAAAAAAAAAAAAAAAAAAAAB8ORXlewAAAADgM82aNcuorVq1Kg+T/MOaNWuq9WxpaWmlz9evXz/69u0bffv2jYiI9evXx6RJk+KNN96IsWPHxpQpU2LHjh1pZ5YuXRpf+9rXYsaMGdG0adOcZ68u++23X0atrKws534VnW3SpEnO/QAAAAAAAAAAAAAAAAAAAAAAgGSrk+8BAAAAgM/sv//+UVBQkFZbsGBBnqaJWLhwYWzZsiWns7Nnz86oNW/ePOdZGjZsGKeffnrcdNNNMWnSpFiwYEFcf/31Ua9evbTnli5dGnfeeWfO91Sn/fffP6M2a9asnPt9+OGHGbWKgssBAAAAAAAAAAAAAAAAAAAAAAAihFADAADAHqVevXrRqVOntNqcOXNi2bJleZln27Zt8d577+V0dtq0aRm1448/vqoj7XTggQfGbbfdFi+//HIUFhamvffMM89U2z1V0blz54za1KlTc+43ZcqUtNcFBQUV3gEAAAAAAAAAAAAAAAAAAAAAABAhhBoAAAD2OGeccUZG7dlnn83DJP/w/PPP53Suopm7du1axWkynXrqqXHuueem1ebNmxcbN26s9ruy1blz56hXr15a7fnnn4/t27dn3WvZsmUxceLEtNphhx0WTZo0qdKMAAAAAAAAAAAAAAAAAAAAAABAcgmhBgAAgD3M+eefn1H75S9/Gdu2bcvDNBEjR46MLVu2ZHVm5syZ8fbbb6fVjjzyyDjooIOqc7SdDj/88IzamjVrauSubBQXF0fv3r3TakuXLs0p2PuRRx7J+O/AmWeeWZXxAAAAAAAAAAAAAAAAAAAAAACAhBNCDQAAAHuYU045JXr16pVW+/jjj+OHP/xhXuZZvHhx3HnnnVmd+e53v5tR+4//+I/qGinDkiVL0l4XFBREs2bNauy+bHz729/OqP3oRz+KjRs3VrrHggUL4vbbb0+rFRQUxODBg6s8HwAAAAAAAAAAAAAAAAAAAAAAkFxCqAEAAGAPdMstt0RBQUFa7b777oshQ4ZEKpXKqeeMGTPim9/8ZqxevTrrszfffHO8+OKLlXr2hhtuiHHjxqXV9ttvvxgwYMAuz9x0003xzjvvZD1XRMSiRYviueeeS6t17NgxiouLc+pX3b761a/G4Ycfnlb75JNP4rLLLott27bt9vzq1avj/PPPzwitPvfcc6NDhw7VOisAAAAAAAAAAAAAAAAAAAAAAJAsQqgBAABgD3TKKafEkCFDMuo///nP47TTTouJEydWqs/KlStj6NChccYZZ8QxxxwTI0eOjO3bt1d6jnr16kVERHl5efTr1y/uvvvu2LFjR4XPrlmzJq6++uq49dZbM967++67o3Hjxru85/nnn4+uXbtG165d4957742FCxdWar633norTjvttFi7dm1a/Rvf+EalzteGgoKCGDZsWBQWFqbVR40aFWeeeWbMnTt3l2ffeeed6N69e7z33ntp9dLS0rj//vtrZF4AAAAAAAAAAAAAAAAAAAAAACA5ivI9AAAAAFCxG2+8Mf7617/G7373u7T6hAkTokePHnHooYdGr1694sgjj4wmTZpE3bp1o6ysLFavXh0ffvhhTJs2LWbNmpVV6PTnnXTSSdGgQYMYM2ZMbN68OX7wgx/EPffcExdeeGEcfvjhUVpaGsuXL48pU6bEqFGjYs2aNRk9zjvvvLj88ssrdd8777wT77zzTlx77bVx2GGHxbHHHhtHH3107L///lFaWhoREWVlZTFnzpwYP358TJ8+PaNHhw4d4nvf+17On7kmnHzyyTFkyJC48cYb0+rjx4+PI444Ivr06ROnnXZatG7dOrZv3x6LFi2KMWPGxFtvvRWpVCrtTEFBQTz88MPRpk2b2vwIAAAAAAAAAAAAAAAAAAAAAADAXkgINQAAAOyhCgoK4je/+U20b98+brvttoww4jlz5sScOXNqfI6RI0fGySefHLNnz46IiIULF8bdd99dqbN9+vTJCNGurNmzZ8fs2bPjqaeeqvSZAw88MJ577rnYZ599crqzJv3P//xPpFKpGDJkSFq9vLw8xo4dG2PHjt1tj+Li4nj00Ufj4osvrqkxAQAAAAAAAAAAAAAAAAAAAACABKmT7wEAAACAXatTp07ccsstMWbMmOjUqVOVejVu3DgGDRoUDRs2zOpckyZN4vXXX4+TTz45q3NXXXVV/PGPf4z69evv9tmWLVtm1bsi5557bkyaNCmOPPLIKveqKTfeeGM8+eST0apVq6zPHnHEEfHKK69E//79a2AyAAAAAAAAAAAAAAAAAAAAAAAgiYRQAwAAwF7g7LPPjr/85S/xxz/+Mfr16xdNmjSp1LmDDz44rr766nj66adjyZIl8etf/zrq1auX9f3NmzePiRMnxiOPPBIdO3bc5XNFRUVx1llnxfjx42PYsGGVCqCOiBg7dmx8+OGH8ctf/jLOOeecaNasWaXONW7cOC6//PJ47bXXYvTo0dG6detKncunSy+9NObOnRt33nlnHHfccVFQULDLZ4uKiqJ79+4xdOjQeP/996Nnz561OCkAAAAAAAAAAAAAAAAAAAAAALC3K0ilUql8DwEAAABkJ5VKxQcffBDz5s2LlStXxsqVK2PHjh3RqFGjKC0tjfbt20fHjh2jtLQ0q769evWK1157befrnj17xoQJEzKemzt3bkybNi0WL14cmzdvjmbNmkXr1q2jW7du0bRp0yp+un9YuHBhzJs3Lz755JMoKyuLDRs2RHFxcey7777RvHnzOProo+OQQw6JOnX27u/YWrZsWUyZMiWWL18eK1asiMLCwth///2jZcuW0bVr12jcuHG+RwQAAAAAAAAAAAAAAAAAAAAAAPZSQqgBAACAnSobQg0AAAAAAAAAAAAAAAAAAAAAAMCer06+BwAAAAAAAAAAAAAAAAAAAAAAAAAAAACg+gmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASqCCVSqXyPQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1atOvgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPoJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAA/H/27jzOrrq+H//r3lmzEgJhU9GwCeISFqtlqbgVtVahKljRYrE/oK0F22pbtYpo3ZcvUDe+xWKrdcHlq7gVcEcQZccFIewQCJBkkskks9y5c39/HCfJnZlss92Zy/OZx33MnM895/N537PNZM49rwsAAAAAAABNSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQBMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQhIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAATUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEATEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAExJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCEhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANCEh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABNSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQBMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQhIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAATUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEATEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAExJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCEhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANCEh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABNSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQBMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQhIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAATUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEATEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAExJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCEhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANCEh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABNSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQBMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQhIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAATUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEATEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAExJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCEhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANCEh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABNSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQBMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQhIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAATUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEATEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAExJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCEhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANCEh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABNSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQBMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQhIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAATUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEATEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAExJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCEhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANCEh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABNSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQBMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQhIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAATUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEATEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAExJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCEhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANCEh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABNqLXRBQBMlr322itr164d1d7W1pZ99913+gsCAAAAAABmnPvuuy+VSmVU+6JFi7Jy5coGVATAZHHNGAAAAAAA2B7XjAEAAAAAAAB4LCrVarVao4sAmAydnZ3p7+9vdBkAAAAAAMAs1NHRkb6+vkaXAcAEuGYMAAAAAACMl2vGAAAAAAAAADSzcqMLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDyCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEJCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAACakBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCbU2ugCACZLW1tb+vv7R7V3dHRk//33b0BFAAAAAADATHPnnXeOeT2hra2tAdUAMJlcMwYAAAAAALbHNWMAAAAAAAAAHouEUANNY999981vf/vbUe37779/fvOb3zSgIgAAAAAAYKY59NBDx7yesO+++zagGgAmk2vGAAAAAADA9rhmDAAAAAAAAMBjUbnRBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw+YRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAATUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEATEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAExJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCEhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANCEh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABNSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQBMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQhIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAATUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEATEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAExJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCEhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANCEh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABNSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQBMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQhIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAATUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEATEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAExJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCEhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANCEh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABNSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQBMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQhIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADQhIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAATUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEATEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ISHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAExJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAANCEhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAANCEh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAABNSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQBMSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAADQhIRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAADSh1kYXwGPDo48+mmuvvTZ33nlnuru709bWlt122y1PecpTcuSRR6atra3RJc5IDz30UG644YY89NBDWbt2bfr7+7PLLrtk0aJFOfjgg/P0pz897e3tjS4TAAAAAAAAYJtcMx6fSqWSa6+9NrfeemtWr16dSqWShQsXZv/9988zn/nMLFmypNElAgAAAAAAM9ilP7ww9z6yPH/36o80uhQAAAAAAAAAoIGEUDOlvvrVr+b888/PVVddlVqtNuY8CxYsyEknnZR/+qd/ykEHHTTNFY5Wq9WyfPnyXH/99bnuuuty3XXX5cYbb8z69evr5jv11FPz2c9+dtLHv/vuu3PRRRflf/7nf3Lvvfduc9729vY897nPzV/91V/lhBNOSGurQxoAAAAAAACYOWbjNePtufXWW3PYYYelv79/1HMXX3xxXv/61094jNtuuy0f+tCH8pWvfGXUtephpVIpxxxzTM4+++y84hWvmPCYAAAAAABAc/n+1Z/P6T84O4OlofT/T1/efMrHG10SAAAAAAAAANAgEmuZEitWrMgpp5ySn/zkJ9udd/369fnMZz6Tz33uc/nXf/3X/Ou//mtKpdI0VLnZ17/+9VxzzTW57rrrcsMNN2TdunXTOn6SDAwM5L3vfW8+8IEPZGBgYIeXueyyy3LZZZflGc94Ri666KIceeSRU1wpAAAAAAAAwLbNtmvGO6parebUU08dM4B6MgwNDeU973lP3vve96ZSqWxz3lqtliuvvDJXXnlljjvuuHzhC1/I3nvvPSV1AQAAAAAAs8v3r/58Xvvdv0p/qkktef+tF6b/s315++svanRpAAAAAAAAAEADCKFm0t1+++057rjj8tBDD+3UcgMDA3nnO9+ZW2+9NZ/73OfS0tIyRRWOdtpppzUkeHrYxo0b89KXvjQ/+tGPxt3HzTffnKOOOipf/vKXc+KJJ05idQAAAAAAAAA7bjZeM95RH/zgB3PttddOSd/VajWvec1rcskll+z0sj/+8Y/zzGc+Mz/+8Y9zwAEHTEF1AAAAAADAbHHVjd/Mqd89Pf216qa2oVrysTv+K/2f6c+73/C5BlYHAAAAAAAAADSCEGom1erVq/PCF75wzJuJjzjiiLz85S/P0qVL09vbm9tvvz1f+MIX8uCDD9bN98UvfjF77LFHzjvvvGmquvFOOumkMQOo29ra8uIXvzhHHXVUHve4x6WjoyNdXV255ZZb8p3vfCf33HNP3fyVSiUnn3xyfvSjH+Xoo4+epuoBAJgyDz6Y/PKXyS23JL/5TbJ6dVKpJG1tyW67JYcemjz96ckf/EGyzz6NrhYAAAAAmvqa8a9//euce+65U9b/WWedNWYA9eLFi/Pa1742hxxySBYuXJh77rknl19+eX7yk5/UzbdixYr88R//ca6//vrsuuuuU1YnAAAAAAAwc9306x/k5K++JhtTGfXcUC3597u+lJ5Prs/H/uYb018cAAAAAAAAANAwQqiZVKeffnruu+++urYFCxbk85//fF72speNmv9973tf3ve+9+Vd73pXXfv555+f448/Pi9+8Yunstzt2m233XLEEUdk1113zZe//OUpGePLX/5yvvOd74xqf+lLX5oLL7ww+2wlTPCCCy7IZz/72bzpTW/K+vXrN7VXKpWcccYZufHGG9PW1jYlNQMAMIUqleR//zf5r/9KrryymK5UksHBZGho83zlcvLd7xaB1G1tyR/9UXLqqcnxxxfTAAAAANAAzXbNeNjg4GBOPfXUDAwMbGp71rOelV/84heT0v+ll16aT37yk6PazzzzzHz0ox/N3Llz69rf9ra35aqrrsorXvGKPPzww5va77777px55plTdn0bAAAAAACYue647fq87Isvy4YMbHO+i1d8J4Mff2kueOO3p6kyAAAAAAAAAKDRyo0ugOZxxRVX5Otf/3pdW3t7e374wx+OeTNxkrS1teWcc87JeeedN+q5s846K4ODg1NR6ph22WWXPPe5z81b3vKWXHLJJbnrrruyatWqXHbZZTnzzDOnbNyPfexjo9pOOOGEfPOb39xqAHWSlMvlnHbaafnOd74zKmz6N7/5TS6//PJJrxUAgCl2xRXJUUcVYdLf+U6yalWybl2ycWMyMFAEUQ8/BgaK9nXrivm+/e3kL/6iWP6KKxr9SgAAAAB4DJrt14y35X3ve19uuOGGTdOvfe1r86IXvWhS+q5UKjn77LNHtf/93/99PvWpT40KoB529NFH5+c//3kWL15c137JJZfkxz/+8aTUBgAAAAAAzA533HZ9XvDfz8n67QRQD/vcQ5fljPNeOMVVAQAAAAAAAAAzhRBqJs173vOeUW3nnHNOjjzyyO0ue/bZZ+eFL6x/08odd9yRL3zhC5NW37bceOON6erqyg9/+MN86EMfyqte9aosXbp0ysddsWJFrr322rq2zs7OfOpTn0q5vGOH57HHHpszzjhjVPs3v/nNSakRAIBp0N2dnH128upXJzffXARLD+zYG8A3GRgolrv55qKfs88u+gUAAACAaTKbrxlvy80335x/+7d/2zS95557jhmaPV6f+9zncs8999S1PfWpT80HPvCB7S67dOnSXHDBBaPa3/3ud09WeQAAAAAAwAy38pG78sL/Pi7r0r9Ty13y6I/z2o8cPUVVAQAAAAAAAAAziRBqJsVvfvObXHnllXVtu+++e9785jfvcB/vf//7R7V96lOfmnBtO2Lp0qUplUrTMtaWbrvtttRqtbq25z73udlrr712qp9TTjllzL4BAJgF7r8/ecELkosuStauTarV+udrtWRoaOuPEb9Pplot+rnoouSFLyz6BwAAAIApNtuvGW9NpVLJqaeemkqlsqnt4x//eHbbbbdJG2Os13juueemvb19h5Y/5ZRT8tSnPrWu7Uc/+pFrxgAAAAAA8Biw8pG7cvT5y7I2feNa/jtdv8yrP/zsSa4KAAAAAAAAAJhphFAzKb70pS+NavvLv/zLHb4pNkmOOOKIHHHEEXVt11xzTe6+++4J1zdTPfLII6PaDjnkkJ3uZ6xlHn744XHVBADANLrvvuTFL05uuinp2+KN31sGT48MmR5pa/P29SU33pi85CWCqJn9Hnww+cY3kne/Ozn55CK4/TnPKb6efHLR/o1vFPMBAAAADdGs14zf85735Oabb940/Wd/9md55StfOWn933HHHbnuuuvq2vbee++87GUv26l+zjjjjFFtX/ziFydUGwAAAAAAMLP1dHXlmPMPy5r0Tqify9ZenxPev2xyigIAAAAAAAAAZiQh1EyK//3f/x3VNp4bb8daZqy+m8VYN1zvzE3Ywzo6Oka1dXZ2jqsmAACmSXd3cuKJyW23JdVq0TYcKL294OmtGbl8tZr87nfFON3dk1M3TJdKJfnWt5JXvjI58sjkb/4m+fSnkyuvTH7722T58uLrlVcW7X/zN8V8r3pV8u1vF8sDAAAA06YZrxnfcMMNef/7379pevHixfnkJz85qWNcdtllo9pOOOGEtLa27lQ/Y623733ve+OuCwAAAAAAmNl6urpyxIf3z+psnJT+ftLzm7z0fU+dlL4AAAAAAAAAgJlHCDUTtmHDhtxwww11bXPnzs3hhx++030de+yxo9quvPLKcdc20y1dunRU2/3337/T/Yy1zP777z+umgAAmCb/9E/Jr35VhEYnRXD0eMOnR9qyr6Gh5JZbkn/+58npG6bDFVckxxyTnHFGcvXVO7fsVVclp59eLH/FFVNTHwAAAFCnGa8ZDwwM5PWvf30GBwc3tZ133nnZc889J3WcsV7bMcccs9P97LXXXjnggAPq2q6//vps3Dg5wRMAAAAAAMDM0dPVlWd/9MA8Ulo/qf1eteG2vOA9B01qnwAAAAAAAADAzCCEmgm76aabMjQcnPd7Rx55ZFpbW3e6r2c+85lpa2ura7v++usnVN9M9vSnPz277bZbXdsPfvCDVCqVnernu9/97qi25z//+ROqDQCAKXTFFcnnPpdUq8X00NDkBVAPq9U2B1xXq8l//7dAXma+7u7k7LOTU09NtvywnWo16etL1q9PurqS1as3P7q6iva+vs3HVFIsf+qpRX/d3dP/WgAAAOAxpBmvGZ977rn51a9+tWn6JS95SV73utdN+jhjvbY//MM/HFdfRx11VN10tVrNzTffPK6+AAAAAACAmamnqytHn//krKitm5L+r++7O8eeu3RK+gYAAAAAAAAAGkcINRP2u9/9blTbAQccMK6+2tvb8/jHP76u7c4778zg4OC4+pvpWlpacsYZZ9S1rVy5MhdccMEO97FmzZp88IMfrGtbtGjRlNwADQDAJKhUkr/7uyIwN9kcFD1Vhvvv60vOOqsYH2ai++9PXvSi5CtfKaZrtWK/7epKVq1K1q1LNmxI+vuL/Xj40d9ftK9bV8zX1VUsNxzs/pWvJC9+cX2oNQAAADCpmu2a8XXXXZcPfehDm6YXLlyYCy+8cNLHqVQqueuuu+ra2tra8sQnPnFc/e2///6j2m677bZx9QUAAAAAAMxMz7ngKbmv0jWlY/x64IEcde6+UzoGAAAAAAAAADC9WhtdALPfPffcM6ptvDfFJsm+++6bu+++e9N0tVrNfffdl/3222/cfc5kb33rW/OlL32p7ubif/7nf86uu+6a0047bZvLPvDAA3nFK16Rhx56qK79ggsuyIIFC6akXmaxjRuT9euTgYFGVwIwfWq1pLs76e1NWlqSBQuSzs5GV8WOam1N5s1LFi5sdCWT6zvfSYZ/95vqAOphQ0NJuZzceWfy3e8mL3/59Iw7Xfr7iwDi/v5GV8LW9PUlPT3J4GAyZ05xXJdKm59fsSL5//6/5JFHiumBgWL+oaHiXD4cKL0tw/P09xfLl8vJ/PlJe3tyxx3JS16SXHRRss8+m5epVDb/jtzRUZxzHnggWb68GH/33ZP99y9+foyseTJtb/3MBLVacZz19RXn5/nzx/czta2tWJ/z5m1uGxpK1q4tfl5P9LzY0VGsvxn0835Nz5pcevul+f7y7+ebt30zPbWeJEk55bSmNdVUU0opC0oLcug+h+YPHvcH6WyfWP0PrHsgD6x7IINDg9lz/p45cPcD87VffS23rRs7eGxxy+Ic86Rj8tS9n1rXvnzV8jy68dGs2bAm96y+J73pTSWVLCwtzLLHLUtLWvLb1b9Nb6U3raXWzG+bn9a21izuXJyn7/X07Dl/z5Rm2r4Ms83AQPGzbUd+Fk6moaGkrz+pVov/S7W3Fed/msvI7dzRXnylKbWUW/KEXfbNny47KXstevz2FwDYSc10zbi/vz+nnnpqXej1hz70oVHB2JPhvvvuy9CI/ws//vGPT7k8vs8T33ff0WEQI0OuAQAAAACA2etZ5z4+dw2smpaxbh14KEecu3euP+eh7c8MAAAAAAAAAMx4UiOYsJUrV45qe8ITnjDu/sZa9uGHH27aEOr58+fne9/7Xp773OfmwQcfTFLcRP2GN7whn/3sZ3Paaafl6KOPzj777JOOjo50dXXlV7/6Vb71rW/lP//zP9Pd3V3X37/927/lda97XSNeylZ94hOfyCc/+ckpH+fOO++c8jFmrQceSB5+uNFVAEyvwcHi/NfbW9++++7JkiWNqYnxWbgw2W+/5glD+/CHi5C36Q4SrNWKcT/ykeYKoX7kkeJYn+71yY5bvTp59NH6bdTZmTz+8UUgcU9PctZZycqVRRDixo1F4OaOhk+PNLzc8AcRtLcnc+cW/Z9+enLBBUWAck9P8uCDxXGRFOHKN96YPPRQEfbZ11cEQS9ZkhxzTLLXXsnjHlfUPJlWrSoeW1s/M8HAQHGcbRn0PrxudtttfH0uWZI84QnFer7rruLrZCmVirDxvfaavD7H6af3/DQfvfqjufreq7NqxI0/QxnKQDZ/SFBXrSs/W/GzXLfiujxlj6dk0dxF4xrzjtV3pHtgi78VPJp85Xdf2eYya6prcumdl+Yn9/4kT9vzaamlljvX3pm+wb6s7V87av7uWnd++sBPR/dTWZMkuWvdXbnl4VvyuIWPyxN3fWLKpfGFp8FjW604N1Yq0z90dSjp7xvxc7iUdLYnLS4pNI1qdXTAean0+yBq27lp3X9V/t+tX8/fPPusvPSwkxpdDdBkmuma8Tvf+c789re/3TT93Oc+N6effvqUjDVd620mcM0YAAAAAAAm5thzl+b2gen9u/9dA6ty2Ll75sqzfpf5u+46rWMDAAAAAAAAAJNLkgATtmbNmlFt8+fPH3d/Yy27evXqcfc3Gxx00EG54YYbcuaZZ+Yb3/jGpvYrr7wyV1555Q71sXTp0lxwwQV56UtfOkVVjt+jjz5ad6M202zVKgHUwGPTQw+NDqBOivNiR0cRbMzMNDhYH7jX1VUEye67b2PrmgwrVybXXz/+cN2JGB7v2muTX/1qRoSzTlhPT7JlqEypVIT3dnY2ribq9fQUQeEj9fUlK1YkT3pS8ulPbw6DXr++CKKejGNkePmBgeK8smBBMc6FFxah1ytWFGMlxdi33Zbcfntx7imVknK56OORR5Jf/jJ5/vOLny2TeS7q6SkCukfacv00Wq1WrLctA6iH2x95pPiZOp6/ATz6aLHs6tWTG0A9XNuKFcmcOckuu0xu3yNUh6ppKRcfkrBu47rcdM9NWbrH0szvnJ+evp6ce/m5uWfVPVlVWbWdnjbrS19ueOSGHLbosMybOy/lcjl9fX0pl8tpa2tL2zbCye9fd399AHUyZoj01qwbXJe71tyVltaW9A32ZUP/hh1edqSBDGRlz8p0tnVm7wV7j7sfeMzqrzQmgHqoNkYAdVKEYvcnc1qScmn662JyDdVGB1AnxXTfgO3c5Pqr/fnEz8/P0/c5IvvuuX+jywGaSLNcM/7FL36Rj370o5um586dm4suuiil0tT8bGyW9bYjXDMGAAAAAIDxe8F7DsqvBx5oyNj3DKzJsz96YK75x+WCqAEAAAAAAABgFhNCzYRt2DA6kGjOnDnj7m+sZTdu3Dju/maLPffcM//v//2/3HDDDbn44ovzmc98Jr1jBWeOcMQRR+Sf//mfc+KJJ6a11SHNGMYK/QNodgMDRbDn1qxZI4R6purqKj48YWQY2sqVRUhsS0tj6pos3/xmESY43QHUw2q1YvyvfCV5+csbU8NkeuCBIrR4pAULipBtvx83XlfX1p/r7U2uvDL5/veL47u7e3MA9WQZDrOu1Yr+Fy5MrrgiedrTkic8YfN8Gzcm999fjN/fX+w77e2bn3/00SIsuVwunu/omJz6xgia2qS3twhnbnSoel/f2B/qMGzt2vGFUCdFiPxkrcuxPPLIlIZQd/d355Svn5LTlp2WRZ2L8rz/ft6k9n/j2huTtaPbl+2xLIvnLh5zma6+bRxzO+jR3kczt31uSqVSKplYAO7A0EDW9a3LHvP22BTWDeygSv/255kKQ9Vt/ywerNT/jGR2GtzWdq4VH+DRvvUPPWD2GxgayCU3/lfe/KJ3N7oUoIk0wzXjvr6+nHrqqalWq5va3vve92a//fabsjGbYb0BAAAAAABT60X/9pRc33d3Q2tYUVuXZ3/0wPz631Y1tA4AAAAAAAAAYPwkcjFhlcroQKLOCYRkjXVj7MDAwLj7m03uvPPOfOYzn8lXv/rVHQqgTpLrr78+b3vb23LvvffmzDPPzPzxhn/RnGq1IjRuS+vWFeF6AM1s/foibHRYrZaUSpune3qmNJSScerpSR58sPg5NTBQBK+Wy5uff/TRZAIBLDPCz37WuADqYbVactVVyXHHNbaOybBqVRGqPayvr9hnuruL33n22adxtVF49NH6bbSlajX5xCeKr+vXT34A9ZZqtaL/9euLkPKLLkre9KbNwfZdXUXI9MBAsR+NDDAfGkruvbcITF65cvI+yOCRR4rXvzUPP9z4D01Yt67+Z2qpVL+dNm5M5s3bsb5KpWTRos3T69cX63p4OwwMJGOEb+2w1tZi+w7bwf9X74jqULUuRLm7vzsnf/Xk3Lzy5lx131WTEv68o2565KbsM3+fzGurX++D1cH0DIz4EI5x/Nevkko2DGxIa8vE/2xYTTWrN6xOe0t72lqEmcJOGfn3nNo2fl5MpspQUh3cxvMtxYPZzXZ+TJrXMjeLOxdtmr5/7X2NKwZoSs1wzfjtb397brvttk3Tf/iHf5izzjprSsdshvUGAAAAAABMnRPevyy/6F3e6DKSJEfvflijSwAAAAAAAAAAJkAINVOitGXI4yQsW2t0UN8Uq1Qqefe73533v//9qY4RQDZ37tzssccemTt3btauXZuVK1dmaIsQ4TvuuCNvectbcv755+e//uu/8rznPW86y2cmq9VGB/ltKwgQoFn09BRhosNGBmaWSokPbph5VqxI1q4tHpVKsttum4NJk6S/vwimns1+97uZEUL9u98ly2fGG9In5IEH6gN8164tpufNK4LmBweT9vaGlUeKkOWtfQDKbbcVv5v29hbbbaqPjVqtGGfDhuLrL36RPPnJxXPr1hXtlUpxrhkaKgKNB38fztjamtx3X3FeKpWK4OXJsGrV9j8gZrLGGq9165I1azZPj/yZ2tKSzJ27Y321tNSHUI/8/0pfXxHyPV5z5tSHUE/Sh+9093fnlK+fktOWnZYTDzmxLoC6t9Kbtf1rJ2WcnfFgz4OZV56XtrbNwc6D1cFUqvX/16tlfMfVYAZTq07OMdmf/qzqXZXWsj9Dwk4ZGRA8OE0h1Kn9/rEV1VLxYJaznR+LBtuqdSHU/UP9jSsGeMyYTdeMr7rqqpx33nmbpjs6OvKf//mfKW/5IXnTZDatNwAAAAAAYOq88oNH5ic9v2l0GUmSP9vtmFz4pisaXQYAAAAAAAAAMAHSX5iwLQOPhvX29o67v7GWbW/i4LiBgYG84hWvyLe//e269jlz5uQNb3hDXv/612fZsmVp2SKAcd26dfnhD3+Y8847Lz/96U83tT/wwAM5/vjj86UvfSmveMUrpu01AABMWK2WrF9fhI/29GwOi90y5KVSSTo6GlfjZFi7ttEVFLq6kvvvb3QVE/fww/Uhsxs2FKHBGzcW7XvsIYR6JrvppuK4rlSmL5y9VivGa20txh8OoYat2DJw+saHbszGysZ8/lefb2gA9bANQxsyrzJvzL/LAAAATLfZfM1448aN+cu//Mu6DwE+55xzcvDBB0/JeFuazesNAAAAAACYOq/9yNH5QffNjS4jSXL8oiPymX/4UaPLAAAAAAAAAAAmSAg1EzZ37txRbZN9Y+y8efPG3d9Md/bZZ48KoD7ggAPyjW98I4ceeuiYy+yyyy458cQTc+KJJ+ZTn/pU3vjGN266KXpwcDCnnHJKDj744K0uP92WLFmSpzzlKVM+zp133pn+/v4pHwcAmAK1WrJ6dRFEPWzL75OkVEpme9BmpdLoCgqVSrG+Z7t16+pDqIf19iarViVPfGKyYMH018X2dXcn996b9PdPXwD1sFqtGPfee4s6Fi6c3vGZNbYMoE6Saq2aN1z6hsxtm5tardbQAOphgqgBAICZYjZfM37rW9+a5cuXb5o+/PDD85a3vGVKxhppNq+3neWaMQAAAAAA7Jg3fOy5+U7XLxtdRpLkOfMPzZfeck2jywAAAAAAAAAAJoEQaiZst912G9XW09Mz7v7GWnasMZrB1VdfnU9/+tN1bYsXL87ll1+epUuX7lAff/3Xf53+/v78/d///aa2/v7+/PVf/3V++tOfTmq94/W3f/u3+du//dspH+fQQw/Nb3/72ykfpynNmdPoCgAm1478LuLcN7NUq8natcX3Q0PF9Lx5SUvL5nnmzEk6OxtS3qSZ7rDdranVkvnzG13FxPX2FvvKsA0bitfW0pL09RVBw471mWnFimLbjRUiPh2GzzMrVowvhHo696tG78Pr1m1/nq3VOIHQrO32PVn9b8XIAOpaaunq7UplqJKuvq4pG3c8NgxtyC5Du6St1JbeTN06maj2lvZGlwCzy1CpfrpUHj1PaXTTxMetJtnW76ylpNyyjeeZFWznx4SBoRnyIUjAY8ZsvWb805/+NP/+7/++abq1tTX/+Z//mdbW6XkrxWxdb+PhmjEAAAAAAGzfWR9/ab6++meNLiNJcvS8J+cbb72p0WUAAAAAAAAAAJNECDUTtueee45qe+CBB8bd3/33379DYzSDj370o6Pa3v72t+9wAPWws846KxdffHFuueWWTW1XXnllbrjhhhx++OETrpMm94QnNEcIJcCWWlqSRx/d9jxPetK0lMIO6u9PSqXia29vESTc01Mf2tzdnbS1Na7GybBlYHIjVavJ3Xc3uoqJW7du9DotlZL29iK4dtddHeuNtnz52EHTK1cmAwONC2av1ZJKJXn44eSQQ3Zu2T33TJ74xMmpY2vrZ9geezR+H65WkzVrtv58S8vWa9ywIbnvvvGP3d6+7de/dm3y0EPj738rthZA3V/tn/SxJsu6yroctOigdK/tbnQpY2ort+Wpezy10WXA7DE0lGwYER64YWPqQoM75yQtYwRTT9T6nmSgb+vPt7Ynu4zjAxyYWbp7kort3Ox+t/bObKxuYzsDTLLZes34zDPPTG2Lv0/8y7/8S57xjGdM+jhbM1vXGwAAAAAAMPn+4ZMn5HMPXdboMpIkR3Quzbff9utGlwEAAAAAAAAATCIh1EzYWIHJ995777j7u29EQFVLS0v23Xffcfc3Uw0ODubyyy+vayuVSnnd6163032Vy+W87nWvy1ve8pa69ssuu0wINQAwOwwHB2/cWIRQDw4WAbFb6u8vwk6ZHI880ugKJm7jxvoQ6paWpLW1aOvsLPYpZoaBgaSvb/P2uvfexoeyDw4m99yTdHUl69c3NhSbGWM2BlAPu33t7UmSlvhZCQAATL/Zes34wQcfrJv++te/nm9961s7vPzKlStHtb3zne/MeeedV9f2spe9LO9+97tHzbvvvvumXC5naIsPqbr//vszNDSUcnnnP3Rk5HpLxt42AAAAAADAzPIvF56ci1d8p9FlJEme0b5vvv+O2xtdBgAAAAAAAAAwyYRQM2FPfvKTR7Xdcccd4+prYGAg999/f13b/vvvn9bW5ttV77rrrvT09NS17b///lmyZMm4+nv2s589qu2WW24ZV18AAA1RrRYhsOvXbz2ctgl/L2yY3t5GVzBxvb2jQ4PL5WRoKFmwoAg3p/G6u5MR//fJ2rUNKWWUtWuL/aivrzj/VKvFo62t0ZXRACMDqJPMmgDqLVVTFUQNAABMu2a5Zvzb3/52wn3cf//9o+pftmzZmPO2t7dn6dKlufPOOze1VSqV3HfffXnSk56002Nv2c+wgw8+eKf7AQAAAAAAps97P/tX+Y/7v97oMpIkh7TvnR+fM/p6AwAAAAAAAAAw+0lwY8IOO+ywlMvlDA0NbWq77rrrMjg4uNM3Al933XWpVCp1bYcffvik1DnTrF69elTbeAOot7bsmjVrxt0fAMC0qtWKINj+/qSzc3PblubMEUI9mebPb3QFk2PkflIqbd6fBgYaUxOb9fZuDqAeGioeSRH6PBP09SWDg8WjViselUrS0dHoyphmYwVQJ0lb2tKf2RVCLYAaAABoBNeMx++II44YFR7985//fFwh1FdffXXddEtLS57xjGdMpDwAAAAAAGAKfeR/3piP3fFfGaptf96ptl/77rn6nPsaXQYAAAAAAAAAMEUkuDFh8+bNy2GHHZbrr79+U9uGDRty44035pnPfOZO9fWzn/1sVNsf/dEfTbjGmahzOFxxC729vePub+PGjaPa5s6dO+7+AACmValUBNXOm1d8rVSSanX0PEKoJ89MCQGeiJGvoVxOWlqK/Wg4iJrG2rChCHgePq6HzZSA8IGBpKsr2bhx8/5Uq40+/9DUqkPVnPL1U0YFUPdWetNT7WlQVTuvvdye6pB9FwAAaAzXjMfv2GOPzSWXXFLX9rOf/Sx//ud/vlP9PPzww1m+fHld2xFHHOGaMQAAAAAAzFD//qU35/23XjgjAqif1L4415/zUKPLAAAAAAAAAACmkAQ3JsWLXvSiuhuKk+SrX/3qTt9Q/NWvfnXMvpvRkiVLRrXde++9GRoaSrlc3un+7rrrrh0aAwBgRqrVipDp4RDYtrZk5Id2zJ1btDM5Fi5sdAWTo7bFO++Hg4P7+4vA8qGhxtTEZgMDydq1m7fT8LFemwF3TCT1dSVFYPbgoH3nMaal3JLTlp2WGx+6MUO1Ytv3Vnqztn9tYwvbCZ2tnXna7k/LDStvaHQpAADAY9hsvGa8du3aCS3/rne9K+eee25d28UXX5zXv/71O9zH8ccfP6rtm9/8Zs4///y07sSH8n3ta18b1das19oBAAAAAGC2+79f/9ec++sLZkQA9eNaF+XKs37X6DIAAAAAAAAAgCm280m3MIZXv/rVo9ouvvjiDAwM7HAfN954Y6699tq6tmc961lZunTphOubifbaa6/Mnz+/rq2rqyvXXHPNuPr77ne/O6rtoIMOGldfAADTrlRK2ts3hwgnxfdbPobDYWfzYyZp9LqYjMfIfWRYrVY85s1r3Pql0Ne3OeB5aGj0tpoJqtXRYeZCqB9zTjzkxPz7i/895VJ5VgZQH/X4oxpdBgAAgGvG43TggQfmiCOOqGtbsWJFvv3tb+9UPxdeeOGotj//8z+fUG0AAAAAAMDk++9vvTdvv/7DqdYan0C9V21hrnnT7Zm/666NLgUAAAAAAAAAmGJCqJkUT33qU3PMMcfUtT366KP5P//n/+xwH29961tHtf31X//1hGubqVpbW/P85z9/VPt73/vene7r7rvvzuc///lR7ccff/y4agMAaIh584pHW1tSHuO/KqXS9Nc02WbKa5gpdUzUyNdRKiWtrcncucWjra0xdbFZa2sR6rx+fbJuXREePtMCnoeGkt7eIjB7OCx+rHMQTe/EQ07M6YefLoAaAABgnFwzHr+xXuM555yTSqWyQ8t/6Utfyi233FLXdtxxx+Xggw+elPoAAAAAAIDJ8ZX/PS//eM27M5jGv5dyj9r8XPuWOwRQAwAAAAAAAMBjRGujC6B5/Ou//mte9KIX1bWdc845eeELX5jDDz98m8t+/OMfz2WXXVbXtt9+++U1r3nNDo39pCc9Kffee29d249+9KMcd9xxO7R8o5x88sn55je/Wdf23e9+Nx/4wAfyL//yLzvUx7p163LiiSdmYGCgrv0pT3lKnva0p01arQAAU6pWSxYuLIJg168vpkdasKAItJ3NWlo2h9w2uo5meMN4uTx2oHFHR7LXXkX4MY01Z07S3795v+/tLb7OlCD0Uinp6UmGA52G9ych1I9JP7r7RznnJ+c0uowdJoAaAACYiVwzHp/Xve51ec973lNX/y233JK3ve1t+fCHP7zNZe+555688Y1vHNX+jne8Y9LrBAAAAAAAxu/SH16Yv/3ZP8+IAOrdMjc/edP1AqgBAAAAAAAA4DFklie4MZMcf/zxefnLX14Xqtzf35/nPve5+fznP58//dM/HbVMpVLJBz7wgbzzne8c9dwFF1yQtra2Ka250U4++eR86EMfyk033VTX/ta3vjW333573v/+92fPPffc6vI//OEPc/rpp+fOO+8c9dwHPvCByS4XAGDqlEpFwPRee20Oox4Oqx02Z04RLjybtbXNjBDqtrZk/vxGVzFxAwP1geVtbUlnZ/HaWlqS9vbG1cZmc+cW26ZSKYLBh4/3mXAstLYWtQ0NbQ65HxiYOSHZTJt1G9flef/9vEaXscMEUAMAADOVa8bj097envPOOy8nnnhiXftHPvKRbNy4MR/5yEcyZ86cUctdffXVecUrXpHVq1fXtb/yla/M8543e/6fCwAAAAAAze77V38+p//g7FRmQAD1onTmZ2ffmL322K/RpQAAAAAAAAAA00gINZPqP/7jP3L99dfngQce2NTW3d2dl73sZTnyyCPz8pe/PEuXLk1vb2+WL1+e//mf/8mKFStG9fPGN74xf/InfzJtdV933XX5q7/6q60+39PTM6rt0ksvzbJly7a6zJFHHpmLLrpom+OWy+VcdNFFOe6440aNcfHFF+cLX/hCjj/++Bx11FHZZ599MmfOnKxduza33nprrrjiivzqV78as99TTz11zBu4AQBmtHnzku7uIrB27tzRzy9eXAQMz2bz5o0O125UHfvv3+gqJm7evCI8eCxtbbM/tLwZDA0VwfLr1xfbZFjrDPlzxHAge7lc1DQ0tDmUmseUXebukgN2PSB3dN3R6FK2SwA1AAAw083Wa8aNdsIJJ+SMM87IhRdeWNf+yU9+Ml/+8pfz2te+NoccckgWLFiQ++67L5dddll+/OMfj+rniU984qg+AAAAAACAxrnqxm/mtd/9q/Sn2uhSsks6csVf/FgANQAAAAAAAAA8Bs2Q1CeaxZIlS3L55Zfnec97XlauXFn33HXXXZfrrrtuu32cdNJJOe+886aowrH19PTk5ptv3qllurq60tXVtdXnFy1atEP9HHHEEfnGN76RE044YVQQdX9/fy699NJceumlO1zXn/3Zn203/BoAYEaaPz8ZHCyCqCuVpDrijdZtbcnAQGNqmyxbhvA2UltbsZ5nuw0b6veTlpbiMWdOsmhRUio1rDS20NFR7HODg5u315w5yRgf9jPtOjuLc0+pVNRZrSZ9fUmt1ujKaIDlZy3PgRccOOODqAVQAwAAM91svWY8E3z84x/PqlWr8rWvfa2uffXq1Tn//PO3u/zee++dyy+/PIsXL56qEgEAAAAAgJ1w1Y3fzElf+/P01xofQL0g7fn+X/wkBzz5iEaXAgAAAAAAAAA0QLnRBdB8DjnkkPzyl7/MMcccs1PLtbW15ZxzzskXv/jFtLS0TFF1M9Pzn//83HzzzXnOc54z7j7mz5+fT37yk/na176W1lb58gDALFUuF+GvQ0PF1y0fQ0Oz/zGTQqgbvS4m67HlPlKtFm3lsgDqmaKjo/haLift7UX49Jw5RVj4TDAcWt7ZWb/fzJT6Hsu6upJrr03+4z+St741+Zu/SU4/vfj61rcW7VddVcw3iZaftTwH7HrApPY52a5+4OpGlwAAALBdrhmPT2tray655JK84x3v2Olrvn/0R3+Ua6+9NgcddNAUVQcAAAAAAOyMm379g5z81ddkY63S6FIyL+259M8vFUANAAAAAAAAAI9hkmqZEk94whPy05/+NF/5yldy/vnn5+c//3lqtdqY886fPz+vetWr8k//9E85+OCDp7nSmWO//fbLj3/841x55ZW58MIL873vfS9r1qzZ5jItLS15+tOfnlNPPTWnnnpqFi1aND3FAgBMhY0bk56eIiB5rLDmXXYpgmJnszlzGl1BYc6cpBl+d+zrK0KnR6pUkrVrp70cxrBgQbJ+/djbaaZqaRFC3SiDg8kNNyQ/+1myfHkRCr61bXHjjZvD5w88MDn22OQP/mBCw1eHqmkpt2T5Wctz4AUH5o6uOybU31TpG+zL1Q9cnaMef1SjSwEAANgm14zHp1wu593vfnde85rX5IMf/GC++tWvpqenZ8x5S6VSjjrqqJx99tl51ateNc2VAgAAAAAAW3PHbdfnZV98WTZkoNGlZG6pLV9+xRey7KnPb3QpAAAAAAAAAEADCaFmypRKpZx00kk56aST8sgjj+SXv/xl7rrrrnR3d6e1tTW77757DjnkkDzzmc9Me3v7hMa65557JrT8cccdt9Ubnqfbsccem2OPPTZJcscdd+SWW27J6tWrs3bt2gwMDGThwoVZtGhRnvSkJ+Xwww/PvHnzGlwxAMAkGRmkMvL3s1ptdgXZjmWG/M6ZZPavy6RYnyPXaalUfB0YKEKqaayWlmT33ZN165L+/s3tpVLxaOQxUS5v3l+Ga2prm1nH6WPJNdckH/94snLlzi+7fHnxuPTS5E1vSp797J3uoru/O6d8/ZSctuy0nHjIiYKoAQAAJslsumY8Hu9617vyrne9a0r6Pvjgg3PxxRfnwgsvzLXXXptbb701q1atyuDgYBYuXJj99tsvf/AHf5A99thjSsYHAAAAAADG547brs8L/vs5WT8DAqg7Si255BVfzNGHvbzRpQAAAAAAAAAADSaEmmmxxx575KUvfWmjy5h1DjjggBxwwAGNLgMAYOoNDSWDg0m1mmzYUITVjgxJ7u9PJhhE03CrVjW6gsKjjyYPPtjoKiZu9er6/WQ4RHju3KSjowiipvFaW5PddksqleI4rtWK7dTSUhz3jVIuF3UsWFB8P3duUU+l0riaHos2bEj+4z+S739/4gHgq1cn73pX8oIXJGeemeyyyw4t1t3fnZO/enJuXnlzbnzoxiTZFES990f2zsoN4wjGngaCqAEAgNnGNePxaW9vz9FHH52jjz660aUAAAAAAADbsfKRu/LC/z4u69Lf6FLSkZZ8/iUXCaAGAAAAAAAAAJIIoQYAAGaCcrkIH33kkSJEdOPGIpB6S3PmFKG1s9natY2uoLBuXfKb3zS6ionbsKE+tLZUKoLKd9st2WOPIvyYxhsYKPb9LQOn29pGB81Pt6Ghoo7165Oens3700SDkNlxjz6afPjDyUMPjf380FD9hxQMa2kpju9yeezlvv/95Le/TT74we2W0NXbldd8/TW5eeXNxZC1ofzd9/4ut626LSvWr0hPpWdnX9W0EkQNAAAAAAAAAAAwM6x85K4cff6yrE1fo0tJW6mc//u88/OCo17b6FIAAAAAAAAAgBlCIhcAADAz9PYm996b9PeP/XypNPtDhRsdujusWt36ep5NBgZGBwb3928OMZ/t+0szGBwsguVHbqd58xp/PAwNJfPn17dVq0mlUoRTM7VWrkzOPbcIxR9p+By1ZXD51rS2Jh0doz+k4MEHk3/4h+TQQ5MnPGHMRR/ofiCHX3h4BocG09namVqtllKplO7+7rzrJ+/aNF97S3sGqgM78eKm13AQ9dN2f1qjSwEAAAAAAAAAAHhM6unqyjHnH5Y16W10KWkrlfOJYz6Ylz3vjEaXAgAAAAAAAADMIBK5AACAmeHhh4vwV5ioajXp6kp6ehpdCevXjw6gTpJyefprGctYdVSrjQ/IbkZdXcnddyc/+Uly++3JtdcmfX3FBwwMf8hAuVyEy2/5s6BU2nqftVoxb6WStLcnc+bUP//oo8mrX51873vJwoV1Tz3Q/UAOu/CwrNq4KuVSObVaLb2DvWkpt6Q6VN0UOt1SHhFuPUP1Dfbl5kdubnQZAAAAAAAAAAAAjzk9XV155ocPyOrSxkaXktaU85FnvTOvetGbGl0KAAAAAAAAADDDCKEGAAAar1ZL1q0rAkQHB4vHcPuwlpbiweRohnVZLtfvI8Nhtu3tRfuqVY2rjcLAwNjtYwVTN8Jw2PTIeqrV6a+lGQ0OJjfckPzsZ8ny5UVba2sRED8wUKz34ZDpSmXs/WJbIdRbGhgoxlu4sP78dvfdyTvfmZx33qamLQOok2SoNpS1/WtTSim1alFDKcW4g0ODO/WSG2lg6PfB2WmC8zsAAAAAAAAAAMAs0NPVlWd/9MCsLHU3upS0lEp57+FvyV/86dsbXQoAAAAAAAAAMAMJoQYAABpvOAg2KQJKW1uL4NEtA0nnz2+O4OSZYv78RlcwObYVFrzlfkVjDB/HGzYUIcHD2+Shhxpb17CHHirCyjduTPr7N7fvaPAxW3fNNcknPjF6Ww8MjA4nr9W2HkxeqyVtbcX5f3h/qlY3f1jBloaGku7u0UHUl1yS/MmfJC984agA6rqhUqv7fjiIerappiqIGgAAAAAAAAAAYBoce8HBWVFb1+gy0lIq5ZynnpXT/+zfGl0KAAAAAAAAADBDCaEGAAAar6UlWbSoCIMdNjKQtFpNyuVpLaupbS3wdTbZVsh0W1uy++7TVwtja29PHnywCHju60sqlWK7rV3b6MoKa9cmq1cXdQ3XVq0KvJ+Inp7k059Ovv/9sc8zGzfWT28rgHpYuZzMmVP/M2BoqNivenvrl6/VkvXrk112SbWczVHM73hHHjj8wBz2n88cM4B6LFuGUs8mAqgBAAAAAAAAAACm3hHn7p17BtY0uoyUS8m/HHJ6/u7VH2l0KQAAAAAAAADADCaEGgAAmBme+MQinLS3twgXHRqqDxatVhtXWzOqVBpdwcQNBwYPK5eTUinp6Ej22CNZvLhxtbFZd3fS1ZUMDm5u2/L7RhocLAKL+/uTDRuKtlZ/Khm3lSuTt72tCB4fy8DA5mN2e8HTpdLmrwMDxbZasGBzQHi5nHR2FtMbN9afC4aG0j24IaecUM1pt8/Pifd0pmvl3Tn808uyanDdxF7jDHbQooNy59o7G10GAAAAAAAAAABA0zvq3H1z18CqRpeRcin5hwNOzZtP+XijSwEAAAAAAAAAZjjJSgAAwMyw995FGOzddxeBoyMDSrcXWDoblMtFcHKjDYe4znZj7ROlUrJoUXLQQcX6prHWrSsCnkul4jG8zWbCcZDU1zG8vwwOzpyQ7Nlk5crkH/8xWb169HPVarEfDAzsWF/DAdRbGhoqAs0XLqw/h5XLybx5RYj474Oou9trOflP+3LzklJuXLIuG1tq+fxBvenrqzTtX8KW7bEsbeW2RpcBAAAAAAAAAADQ9I49d2luHXio0WUkSf526avz9tdf1OgyAAAAAAAAAIBZoEmjdwAAgFlncDBZsCDZf/+kt7cIpN4yZHjBgqRtlgds7rJL0tXV6CqKENd99ml0FRPX1VW/j8yZk8ydW+wrQoRnhkcfLb7OmVN8HRoaO2C4kYbPLV1dRYjx0NCOhyVT6OlJ3va20QHUtVpxPt/Z9Tl8XI/cV2q14mfDwoX1IfOlUnHs9/QUAdSvrOXmPYv5B8vJG45bm47BZH2T5O+PtGyPZVk8d3HW961vdCkAAAAAAAAAAABN7QXvOSi/Hnig0WUkSf7ycX+Sd7/hc40uAwAAAAAAAACYJYRQAwAAM0N3dxEkOn9+8ViypP75xYuTzs7G1DZZurqSyy9vdBXJs56VHHpoo6uYuJUri8DgsWzcmFQq01sPo1Wr9dOtrfXhwTNBW9vokOQtw83Zvk9/Onnwwfq2arU4r2/tGN0RY4VRDw0Vx/f8+fXzlsvpXtCek/+0rwigTlJLsrajlv5y0t8x/jJmsuEAagAAAAAAAAAAAKbWi977lFzfd3ejy0iSvG7v4/Oxv/lGo8sAAAAAAAAAAGaRGZb8BAAAPCbVaqNDYEfaMoR0tnr60xtdQeFpT2t0BdOjv7/RFbBgQf300FAyONiYWrZmcLA+dLpcTlpaGlfPbLN8efL979e3jRVAPd5g71pt9LIDA6N+ZnS313LyCYObAqiTpJSko/L7b5qQAGoAAAAAAAAAAIDpccL7l+UXG5c3uowkyUlLjssFb/x2o8sAAAAAAAAAAGYZIdQAAEDjlUrbD5keb4DpTLJwYdLe3tga2ttHBwM3q2YILp/tlixJ5s8fvS1myrYZWUdLS9La2vjjdLaoVpPLL69vq9WS9eu3fc7e2e0/VhD1xo2b2rrbazn5JRty85Jq3SyVJN2dI/vauaFnKgHUAAAAAAAAAAAA0+PVH352ftLzm0aXkST5k13/IBe+6YpGlwEAAAAAAAAAzEKtjS4AAAAgSdLRkfT1NbqKqdXd3fjw3VKpqGPhwsbWMdVKpWKforEWL052370Idq5UikeStLUlAwONrW24jvb2ZGio+FoqFcHGrf5cskPuuCNZu7b+WNu4sVifW2ppKdq292ECw+t/LLVa/flzaCipVNI9p1wEUO9eH0A9mGTNvKQ8lAw12UewCaAGAAAAAAAAAACYHq/9yNG5bO31jS4jSXL8oiPy+Tdf1egyAAAAAAAAAIBZSqoSAAAwMyxcmPT3bz+kdDZbsaIIve3vb1wNbW1FHc0eQr1ggSDhmaClJdlrryJwuru7mE6SefNmRgj1vHlFTeVyEXBsn9k5N91UPz04OPr81tKSdHYmvb07dn7fiSDq7lpfTn5JrT6AulTKYK2WVfOSWilJaXYHUS9bvCwL5y5MX19fyuVy2tra0tbW1uiyAAAAAAAAAAAAmt4Z570w3+n6ZaPLSJI8Z/6h+dJbrml0GQAAAAAAAADALDZLI3gAAICm09qaLFlShJVuETLaVFauLF7bnDmNGX/OnGL8hx9uzPhTbThEeNddk/nzG10NSVKtJl1dxfbYe+9kn32Kx4EHNrqywkEHFfXsuWcyd24RRj042OiqZofu7uS+++rb+vrqp0ulpKNj58/pW5t/i3DqaqmWU/60Uh9AndQHUP/eULkIop6N2tvb09ramvnz52fu3LkCqAEAAAAAAAAAAKbBWR9/aS559MeNLiNJcvS8J+cbb72p0WUAAAAAAAAAALNca6MLAAAA2KS1NVm8uPh+aERi6LJlyR57THtJk+onPykCWTs6inDegYHpG7u9PZk3r/i+VEpe8ILpG3uq/PCH9YHBZZ+zNON0d28ODi6VkpaW4vsnPzn55S8bV9dwPQcdVNS05b5TrQqi3hErVtRP12qjz2mdnZvX7XiCqLcIna4bp1RKS62U026q5cZ9kqHfdz2Y0QHUw4aDqIdm0WmiJS2NLgEAAAAAAAAAAOAx5x8+eUI+99BljS4jSXJE59J8+22/bnQZAAAAAAAAAEATEEINAADMTCMDhdvaiiDl2Wz9+s3fz5+frFkzfWPPn19fx2xfl0kRWr5lWPnWQmtpnJGhxMPbZ+7cZNGiZO3a6a5os112Ker4fahxnZEh+Iy2cmX99FjB3e3tRah3UpzTh7+fJCf+rpS0tebvXjiYgVItq+aOHUA9bFMQ9TRmO7elLZVUdno5AdQAAAAAAAAAAADT752fOjkXP/Dt0e8rbICntj8+33/H7Y0uAwAAAAAAAABoEuXtzwIAAMCk2DKktVxOOjqmZ9yOjvpQ77HCYmE6lEqbH0uXNraWpUs318LOe/TR+umR55XW1vrzTsuIUOWx1vvIEPkd2DYn3pqcc03HdgOohw21JKVMzzbfd+G+OfZJx+Z5T3peOls7d2iZlt//AwAAAAAAAAAAYHq99z/+Ip+4/2vFxMj3s02zQ9r3zpXn3N3QGgAAAAAAAACA5iKEGgAAYLq0ttZPT0cA7lhjjKwDpsq2gtbXrp22MnZ6/JGByYy2cWP9dLVaPz1yHZYn6U9QI27seWBeNW87uj87kytdy9TfHNRabs3DGx7OoxuKsO6jHn/UqCDqJXOW1IVOl/2ZDgAAAAAAAAAAoCE+cvHp+djdX8jQlo0NCqLer333XH3OfQ0ZGwAAAAAAAABoXtJtAAAApssuu9RPt7RMbRD1cN8jw2BH1gFTZeHCscOHN2xIHn446ewc/dx06Owsxt+wYfRzra2TF5jczEaGTo808rxWLu9YuPfIm3a2cX58YH4th/1/Q1nTWUuptlM51FOqXCqnXCqnllpuX3P7mEHUy/ZYlrltczctMxxEDQAAAAAAAAAAwPT698+dnQ8sv7g+gHrYNAdRP6l9ca5/54PTOiYAAAAAAAAA8NggVQkAAGC67Ldf/XRr6/SMO3Kc/fefnnGhXE6WLClCn7cME37kkeJra+uOBRNPppaWzWMO15EUtba3J21t01vPbLW97TbWjTcj1+3WAqa3XHYrN/AMlIdyxBnJmjlbdLe9IOppSqkeqg1lqFbcjjRWEPWxjzs2i+curlumls2vs5r6gO/adm5iqlQqdctu+W9o7NuidsjIOiZicHAwGzduzMDAQAYHB1OpVLb7ugAAAAAAAAAAAKba//3SP+fcWz+ZarbxfqZpeq/T40q75Mqzfrf199YBAAAAAAAAAEzANCWeAQAAkAMPrJ9ubS3emD7yzeml0vjesD5yueHvR4ZQH3DAzvcN49XSkixeXOyP1d+H2t56axH63NqaLFyYrF07PTdplErFeNVqMjSU9Pcne+yRzJmTzJ2bVCrJwMDU19EM5s6tnx4ZSl0dI8C4pWX0eWpr57ut7Q+/n7+9Wsrrb6zlI0ePeLqWpJRt3Q40LQaHBtNabk25VN4URJ0kS+YtSduIMO5aahnKUEopbQqNrqaalrSkOlTNLY/ckn3m75Ml85aMGmfNxjW56ZGb0tnamb7Bvql/YeO0vro+1zxyTV3bwraFWbb3srSW/XkSAAAAAAAAAACYfv/9tXfl7bd8bNsB1MNqtSkNh96rtjDXvHl55u+665SNAQAAAAAAAAA8tpUbXQAAAMBjxqGH1k8PDY0933jDeLe23MhxnvrU8fUPE1EqFaHTra3J6tXFdKlUBBN3dk5PDZ2dm4OQS6Vk1aqinrI/j+y0JSMCkUeG3Q8Ojj73lEpJR8fovnbmxpzh4P5aLR/8QfLmq8borpaM6nHq7v3ZqsGhwQzVinUwHET96IZH6+YZDqAe/n5L1VRzx9o7sn5g/ZjLDgdQJ5nRAdRb013pzo0P3pjBocFGlwIAAAAAAAAAADzGfOXbH86br3tvBnckgHrYeN/fux27ZW6ufcsdAqgBAAAAAAAAgCklZQkAAGC6LFmSPOMZxfdDQ8n69dMz7vr1m8Ngly1Ldt99esaFrdm4sX66Vtu5IOLxKJVG3wAysg523F571U+PDKFOkoGB0W3DQeQjjXP7f/AHyZuvHqO7qbnXZ6dtK4h6Y2XjpgDqrVk3sG7MZbcMoJ7N1g+uF0QNAAAAAAAAAABMq0sv+3j+9qq3pTKeN5pNchD14szJz86+UQA1AAAAAAAAADDlxkj9AQAAaKD+/iK4tFqtb//Nb5KVKxtT02Q69NDkuuuS3t7Rr3GqVKtJT08yZ07ylKckN988PeNOtVWrNodrJ0m5XITbdnYW3zNzjbXvD4cQT/INGpv6HivkeLqOwWb0uMfVT5dKSXt7ffB0X19x3hl5PHZ0FOt+5LYeKyh8B3zwB6XUyqV89Nmbzwe1LTf3FOebb8/g0GBay60pl8qppZYHex5MrVbLmr41O7T8QHUg7S3tm4Ko1/evzz3d90xt0dNoOIj6sH0OS2vZnyoBAAAAAAAAAICp8/0fXpTTf/wP4wugHlarjf2exJ20KJ256uybstce+024LwAAAAAAAACA7ZHsAgAAzBxr1yYbN279ub6+6axmauy6axGUXKkU01MRuLul4Te6VyrJwoXF+CtWTO2Y02XjxvoQ6mGtrcXrZOZqaRm7fTgsurU1GRwce/vuqOFQ8sHBna+D7Vu4MNl33+S++za3dXbWh1DXasUHC3R21t9wUyoV4dS9vRMOoq51dKS/rZR3/KKUSmslFxw5mFop2dRDgwOohw0HUS/sWJg95+6Z5V3Ld2r54SDqgepAUwVQDxNEDQAAAAAAAAAATLWrrvpyXnv5X6e/NJTUShN7f9kEg6h3SUeu+IsfC6AGAAAAAAAAAKZNudEFAAAAJEl6erYeQN1sht90PtUB1MOma5yZYnCwCC1/rL3u2WTu3PrpscKgd921CDpub9+5vtvbNweujzRynJF1sHOWLaufbm1NOjrq26rV4gMERgaKl8ujw6mTHTtuh8PKFyxI79z2VFrLSamUd1/dnpfcWZ5xAdTDqkPVzG2ZmzvX3plaaqnWqju1/EB1ILU073ltOIh6cGgbwfEAAAAAAAAAAADj8MvrvpWTvvW6IoA6SVLLhN+ONc73qS5Ie77/Fz/JAU8+YoIFAAAAAAAAAADsOCHUAADAzLBhQ6MrmB533JH0948dujuVWlqKce+4Y3rHbZRKpXi9zExLltRPt7bWTw8OFjdnbBkovWBBERrd3p60tRXLtLUV03PnFs8vXrw5uLpWK/rZ1jh77DH5r+2x5IADkkWL6tvmzi0CprdUrRYfMjAwUH/TTblczN/aWrRv64acUqmYv1wETqelJdW21rog52/tP5gb9qqls1qacQHUSdJSaskDPQ+kWqumUq00upwZSRA1AAAAAAAAAAAw2W667nv5s6+8MhtL1RHPTH8Q9by059I/v1QANQAAAAAAAAAw7YRQAwAAjVerFSGl21KagYmi43HTTcXX7b3eyTY83vD4zWB7+0RFyOuMtdde9dMjw6GT+hDxlpako6MILF64MNlllyL8eJddium5c4vntww/HiuEfOQ4e+457pdAiu3yx39c31YqFYHgYx2fAwPFBw709hbbp1IpHrXato/nUmn083PnplrafPPOt/YfzD8+bzA989pS7uhIa2mMfarBBmtFsPLg0GBqE75zqXkJogYAAAAAAAAAACbLHb/+eV72lROyoby19yNNXxD13FJbvvzKL2TZU58/wQEBAAAAAAAAAHaeEGoAAKDxSqUizHRbdvAN2jNad3dy333J4OD0v55arRj3vvuKOprB9tbhWMHGzAyPe1z9dKmUtLfXt/X2jj+svVotlt9Se/voIOPHP358/bPZgQcmL3hBfVtLSxEOXt7Kn52q1SJ8emCgeAxv57HCpsdq6+goHr9//uLnLMzfvbSc9Qs70tday2BtKOWtjc2ssH5wfW556JbUmuFnPwAAAAAAAAAA0BB3/PrnecHnnpv1Ww2gHjb1QdQdpZZc8oov5ujDXj7BgQAAAAAAAAAAxkciFwAAMDPMmZP09DS6iqm1YkXxJvOR4bjTpbc3mT+/qGPhwsbUMF1aWpLOzkZXwdYsXJjsu2/y4IOb2zo7i0DiLW3YkCxYMDqEeFtqtWK5kUbuD/vuW/TNxJ15ZvLb39Zvz+Eg6p6eIgB/Rw2HTre3J21tRVulkgwNFd/PmZM8//nJsmW5ba+WfKz1l/n6yh+llrakNpQMFfvK4NBOjDmNSimlNuG7lR4bnrDoCSntzLEPAAAAAAAAAADweysfvD0v/Nzzsq5c2cElakmtlEzkLUu12pjvd+xISz7/kosEUAMAAAAAAAAADSWEGgAAmBkWLCiCRvv7G13J1Fm5svGvr78/efjh5JBDGlvHVCqVkl133bngYqbfsmX1ocWtrUlHR/0xMjiYrF+fzJtXhBpvT7VaBFCPDD3u6Cj6Hzk+k2P+/OR970ve/OZk1arN7aVSEf5drRbn9+2FUQ+HT3d2FturVKrfbnvvnXzjG8kTnpAHuh/IH3784FSqlXS0dtR1Mzg0mKHa0OS9vknUUm5JuVTOQHVg+zM/hj1tydOyZN6SRpcBAAAAAAAAAADMQisfvD1Hn78sa8s7+z6tyQ+ibiuV83+fd35ecNRrJ9ApAAAAAAAAAMDECaEGAABmhlIp2W23ZOPGIoS2Uql/vq0tmTOnMbVNljVrRr+u6VapJKtXz/51mRThtENbBM2Wy0XY8Lx5xffMbAccUBzza9dubps7t9hHt9yug4PJunXFPtvRMfa2HRoqzhu9vaOfK5eLfre0667F+EyevfZKPvKR5G1vqw8XT4oA8ZaW4uaaarXYXsPbuFTa/Hxr6+iw8GFLlyZf+tKmAOrDPn1YNlQ2JElqg7V0tnYmmdkB1ElS+v3dSe0t7YKot0IANeygykBS3YEPaNhZ1e18YAAAAAAAAAAAwAzWs3p1nnP+4VlT7h9nD5MXRN2acj5xzAfzsuedMYHOAAAAAAAAAAAmhxBqAABg5qhUihDqgTGCOSuVsQNmZ5OurkZXUOjqmv3rMinCiYdGhM1Wq0Xo8Lx5jamJHdfSkrz61cmnP725rVRKFixIuruLmzC21NtbPFpbi2VLpc2hxoNbCcwc7q804m6Ql72s6IPJtddeyQUXJBdemFxxxejnS6XRIdNbboeR22nYSScl7353snBhEUB94WFZ07cmpZRSSy2VoUoymNRSm9EB1EkRkt1abk2pVEpLqSXVWrXRJc0oAqhhJ1SrxQMAAAAAAAAAgCRFAPUzP/SkPFKe6HtkJx5E3VpLPvqsf82rXvSmCdYCAAAAAAAAADA5yo0uAAAAIEkRMr1q1dgB1M1izZpGV1CYKXVMhWo1WbcuWb++0ZWwI57xjOQFL6hva2lJFi4swsTHMjiY9PcnfX3F160FUJfLRT8jw6Zf+MLk4IMnXjtjmz8/+cd/TN71rmTJBMOE9947+a//Ss47rz6Aurc4h5V+/y9JKkOVDA5tZV+YQVrKLSltLWz7MU4ANQAAAAAAAAAAMF49XV159nlPzsqWiQZQD6sltfEt2ZJS3vv0f8hfvPwdk1QLAAAAAAAAAMDEtTa6AAAAgCRJd3cRRL1iRREivHFj/fOdnaPDZGebnp5GV1Do6Ukuu6zRVUzchv+fvT+Pk7Ou8/3v97VUVe+drZMmIGpIWCZBoqgEEEWWMy4ZVETA9TfqjIAMOkdwGZwj4hlxGcbHiMOw3OM4RzwuuOBhojMOAWGUEGAYEiAgJEEMSejsvXct13L/8U2l9t5quaq7X08eZfd11VXX91PdVU2IVa8eKdyOxUwA9+ijzXalODEab2zMRKOLvyeZjPTqV0sPPywdOFB4XWuriUxnMlNfLxaTEgkTJff93P6FC6XVq6UXXjAzZQ0Pz+4AfhTWrJFe/nLphz+UNm2SduyY/G1Xr5bWrpXe9CbzuVQSoJ6JXNuVbfH74MohQA0AAAAAAAAAAAAAAACgGmfddKJ2BQOSZZkd4TQL0gUOh6iz55wER5auO+nj+tilX6vB+gAAAAAAAAAAAAAAALVDhBoAAABAcxgZkZ54QhoakoKg9MXfvj/zI9TNpDjgPBONjRU+TizLPH7275eOP95EjxG9gwcrfy/SaROavvBC6fvfLw21JxKS65oQ9WSi4q5rAtTZnxX5j4+ODrNOKmXWzY9bp9Pm4nnmZ407A/+6ZN8+acsWaetW6fnnTczf88x96e6Wli2TVqyQVq6UeuoY+82f45lnpJ07zdd0/nxzfTYOLkm2LbW3S/PmSccea563r3udtGhR7lhVDlCHh/+ZCQhQV0aAGpgkt0E/Q/yiP4cHoaSgMWsDAAAAAAAAAAAAAABMw6nXH6UX0nmvL6tpiPrweSYRorYlfW7Fh3XVB79Zm3UBAAAAAAAAAAAAAABqaAZWlQAAAADMOmEobdsm9febMGylF30Toa6dVCrqCaqXTpdGqMPQhHe3bp0d93GmGxmZXAy8u1t63/ukO+80PwfyOY6JFluWCdRXYtvmUu7nxLx50sUXm3UmkslI8fjExzUDz5M2bJDWrTMR//E8/nju81NOkdaulU4/vTbB7UpzhKF5nubL//6sWCFdcon0hjeUn6O1tWKAWhIB6lmAADVQgW3n/lyTlWhp0OKW5OX9zPJ8ycv7WT6JN1QCAAAAAAAAAAAAAAA0yhnXH6vn0/tLr2hwiNqW9KlXvk/XfPj22qwHAAAAAAAAAAAAAABQY0SoAQAAAETPsqQDB0pjpcBUZN8o4Hkmfry/zJsK0Fijo5M/trtb+uAHpfvuk7ZsMd/HVGr88HS+IDDHp1Im3plImLDxypXSOedILZOMd4ahiV43u40bpVtukfbsmfptN282lyVLpCuukNasmf4cW7dKd9xReY7iiGrxbb/61Ypz7Iwn9erbzioboA7CST4uIkaAurLe9l4C1MB4XNf8YoRmwy+FAQAAAAAAAAAAAAAATeKs61+pZ9IvVT6ggSHqK1/2bn3+z79bm3UAAAAAAAAAAAAAAADqgAg1AAAAgOj5vgnOjme8kCmmbjZ8Lce7D5YlDQ01bhaUN1HM2bJMMDqrrU1au1basUPavXv66waBNDYmLV1qzjdVzfz8GB6Wbr1VWr+++nPt2SN98YvSeedJl18udXRM/rbJZC4YnkhUPs62J34cFM/R2an0kh6d+v3XzuoAtR/OgNh5HfWN9KmnrYcQNVBJIiF5vtRMP/Mct/Df2wAAAAAAAAAAAAAAABE5738fr6fSOyc+sAEh6g/3/LG+dMWPanN+AAAAAAAAAAAAAACAOqEYAQAAACB6ti21tJjY3nhhO8ua2ZdmEvXXohaXco8Vy5JiMXOZSlAX9eFO8LuvwtAEo7OXHTtMjLiaAHW+3bvN+XbsKFxnIs32fM3q65M+8YnKAeowlDIZE+AeHs5dxsbM/kpvolm/3py3r29ycwwMSHfcYQLUE80xOiqlUuaSyeSC1MXPZds2UetrrpE6OxU/+mX601P+tOTUsyVAnfbTDZymeT2570ntG9kX9RhAc7JsqaNNisdN/NmyG3RxirYl2Y4Ui5s/XwEAAAAAAAAAAAAAAERs7Q2r9Fjy95O/Qa1fx5v3WrwPLjpX3/ifv6jduQEAAAAAAAAAAAAAAOpkghoUAAAAADSAZUlHHSX9/vcmRF0ulBqPTxy0xeS1tkY9QfXKPU6ybxJob5eOPrqx86BUR4c0MjK5Y//rv6S77679DJ4n3X67dMEF0mtfO/Hxti05Tu3nqFZfn3T11dKBA6XXeZ6UTErpSYSN43ET/S/+ebp7twlA33ij1Ntb+fb9/dL3v2/i1hPNUe45mr2u0hy7dkmXXir9/Of62vlfkyTd+NCNkmZOgHoiBKgLPbnvSZ2sk9XT3hP1KEATsqVES2OXdMekTN7P5nRMyqQaOwMAAAAAAAAAAAAAAEAF7/zqq/XgyLNTv2H29aXlXtc2HWGody94g2761K9qcz4AAAAAAAAAAAAAAIA6s6MeAAAAAAAkSStWSD095kXe5S62PfMvzSTqr0WtLsWPE0lqa5OOP958RLRaWqSuromPe/TR+gSo8919twldj8e2TRw5+1hqFsPD0rXXlgaow9BEvgcHJxeglsxxg4PmdsVvptm/36xTLjAtmcD0nXeWXl/NHIODpXO89JIJUQ8O6mvnf01Xvf6qGReg9gKv7MwEqMt7ct+T2jeyL+oxAAAAAAAAAAAAAAAAADSxS79xph4Yemr6J8h/rWmV3t7yKv3Tpx+oybkAAAAAAAAAAAAAAAAawY16AAAAAACQJM2bJ61caSKoAwPSwYNSkBfwbG2V3Bn+nzC2XXifopyjvT3qKWoj/+vZ1SV1dpqY+eLFkuNENxdyOjpMjDqVkjyv8LquLhMj/td/bcwsd98tvfrVZqb8x4fvmxmDQBodbcwsU3HrrdLu3YX7fF8aGpr+z5RUSspkzHMm/2uxe7d0223S1VeX3ua++6T+/sJ9QWB+Zk93jrEx8xiYN6/wZ/zvfy994Qsa/NqX9OyBZ9Uea9dIZmR6a0TECzy5tivbMr+EgAD1+J7c96RO1snqae+JehQAAAAAAAAAAAAAAAAATeYDN71Zvzr4qIlIh+H0T5SNUFdxjnNbTtT3rnt8+jMAAAAAAAAAAAAAAABEYIYX3AAAAADMGo5jwsGtrdKSJaWx2oULTSR2Jtu2Tdq1K+oppKOOks47L+opqvfSS4XhW9uWYjETGE4kopsLpVy3fET++OOl97+/sbN85SvS3/+9Cd7nc10TZW42GzdK69cX7vN9aXCw8ptgXNf8TM2+2cb3S3+mSub5MzhoYuD5Iep77pHOPFNasya3b9s2acuW0tuPjVWePRYzM2TnCAIzS5HQ9xUePKhkZ6sCxz6yf/BH/6y39/xUz9uDcixHMSumTNiE36NxZEPUXlDm648ShKgBAAAAAAAAAAAAAAAAFLvslrfrF3sfzO2oSYjaksJgwkOLvalluX5y3ZaJDwQAAAAAAAAAAAAAAGgyRKgBAAAANA/HkebNK3/dqaeaOPVMtnOndNttUU8h/cmfSG99a9RTVG/9eimdzm1X+6YCNN7f/E3h97AR0mnpW9+S3vvexq47HZ4n3XJL4b4wlIaGSh/rlmVC/YmECbIXCwIplSqNRmfP1919+I01h916q/Ta15rPfV+6997S242NmY/5t8ufw7JKo9O2XTBHKCkMA4WhFB8a0UBHTKEl+VaoD/8PT7sGh5XsiClUKC+cmSFnAtRTQ4gaAAAAAAAAAAAAAAAAQNYnbr9Qd+66p/SKqkPUkizbvLZukk6zjtXPr3t2+msCAAAAAAAAAAAAAABEqEyVCAAAAABQFytWSG7EvwvIdaXly6OdAZCk4WFp8+Zo1n7mGbN+s9u8Wdqzp3Df6Gjpm15cV+rqklpbyweoJbO/tdXEpot/DgWBOW++vj5p40bz+bZt0uBg4fWpVOkbeKY4R+i6JkB9+CorCNWWNMFmJ7T0vi2OXD9UzPPlBZ5CEZmfK57c96T2jeyLegwAAAAAAAAAAAAAAAAAEfrcdz6oO3asq3yAZVW/SKXXuhU5NTxa/37D76tfDwAAAAAAAAAAAAAAICJEqAEAAACgUVaulDo6op2ho0NatSraGQBJ+uEPo13/Rz+Kdv3JuP/+wm3PM/HnfK4rdXZKjjO5czqOOb44RJ1KmfPnW3f4zTubNhXu9/3SY6cxR6o9oYxT+CageDqQ65nY9Nu32/rCbx2lQ58A9Rz0Yv+LCotD5wAAAAAAAAAAAAAAAADmhC9896O6bfskXufXgBD1qnCx1n91R/XrAAAAAAAAAAAAAAAARIgINQAAAAA0Sk+PdOqpUiwWzfqxmPTa10qLFkWzPpDvxRejXX9Hk78hZHBQevbZwn3JZOlx7e1TfxONZZnbFSs+/6ZN0vPPl36tMhlJkm/lBYKnMYenQCNtrvyiv52Kpz0FQaAB19ePTwzUnpnSaTELdLqdetVRr5JVizeIAQAAAAAAAAAAAAAAAJhRvvz9j+vm5743+RvUMUR9vBboN199qfrzAwAAAAAAAAAAAAAARIwINQAAAAA00tq1Und3NGt3d5v1gaht3iyF4cTH1VMYmjma1a5dhdthKKXThftaWyXHmd75HcfcPl86Xfp92bixdA7P02A81Dsvke46MZz2HGEY6l9XhHrHe6XBeG5/PBPKCz1d/lZfW3pCJTwp7k/59JihOt1OvXrpq+XabtSjAAAAAAAAAAAAAAAAAGiwG3/0KX3j6W8r0BRfY1iHEPWycJ4e/sq+6s8LAAAAAAAAAAAAAADQBKi5AAAAAEAjnX66tGSJlMlIAwONW7e7W+rtldasadyaQNbevdKBA1J/v9nesCHScY5Yv14aHZV838wWj094k4bp6yvc9rzSYxKJ6tZIJKSxsdJ1YrHc9rZthdf7vgbjoS65SNrcKz1+lKT/tPSuF6a+/L8e5+mvzvYUWNJ7L5J+8BOpKy1Zklp8S+99KtSWxVJgSQlPyjiWwqm+sQgzCgFqAAAAAAAAAAAAAAAAYO761s+u1Vef/MepB6izLEsKq3yNmW1LQaBjg0498JnnqjsXAAAAAAAAAAAAAABAE6HoAgAAAKC5BIGJoHqeeTF4Vl9f+QjrTHTxxdLf/73U2loagK2H1lbzovj3vEfas6f+6zXK8LCJB2fZtonn2nZ0M6HU009LO3ea528QmH3Dw9HOlDU8bOLY6bR06JD5mdPSInV0RD2ZtG9f4Xbxzz/Xrf6xbtvmPPnnLo5QF8WwB11fl1xgAtSSCURfdfaIdL/0rueLIt7jvJnnrmUpffqsjILDP+af6C0MUbt+qLdusySF+utzJDeY/t2cLeJOXBk/M2tD3ASoAQAAAAAAAAAAAAAAgLnr9ru/pOv/+xvyVeWLxSzzurNqXmZ1tDVfD37mWXUsXFjdLAAAAAAAAAAAAAAAAE2EqgsAAACA5jE2JvX3lw+Xbt8u7drV8JHqwrKkE06QtmyR4nETwK2XeNxEZk84way7eXP91mq0gwdzUeN8bW1SV1fj50GpF1+UXnihNKCcHw+Pku+bx1D+JZ02IerJ2rfPPJe3bpWef14aGDD313Wl7m5p2TJpxQpp5Uqpp2fy5x0dLZ01n+NM/lzjcZzC70/xOsnkkdj1YDzUJW/LaPPiwkMCSVe9aUQKA71re1GIuoy7lqV01RtHCt4qFKowRB0/fOXbDoeoP3ueZm18eTLiTvzIx6Paj9ILgy9EO1CNEaAGAAAAAAAAAAAAAAAA5q7v/tvf6vOPfKX6APURlmRNL0TdG3Zp46e3qmP+/BrNAgAAAAAAAAAAAAAA0BwouwAAAABoDqmUdOhQ1FM0zjnnmKh2f7+JwI6N1X6N1lYTwp03z6w3V4yOlg+Zo/GKA9TN+H0JQ2lkRBoclDIZE2E+cCB3vWWZ52h3tznuqKOko4+WNmyQ1q2Tnnhi/PM//nju81NOkdaulU4/3Tw3xzNRqNuyxr9+siY6z+Hv2WA81CVrx7R5UfnvYWBJV51tfo6NF6I+EqA2bekS2RD1v/xcsmTJdVxd8HvpewcD/brdK73BHJANUFuydPyC49XT3qN5LfO0ae+maAerEQLUAAAAAAAAAAAAAAAAwNz143tv1jUPfkGeJnjN3JRNPUS9UG169NPbCFADAAAAAAAAAAAAAIBZiboLAAAAgOYwOBj1BI3V0iJdfLH0/e9Lw8NSZ6cJ3AZB9ee2bam93Xze0WHWaWmp/rwzydiYCQojWiMjJmKcTpuochDULp5cK48/Pv7zLgxNSPvAAek//sNc4nFzSSSmdn82bzaXJUukK64Y/1jHGf/6WgW9JzqPZeUC1D3BuG/ImShEfddxaV31xqQJUI/jiV7pQxdKN/8y1Hxf+tKZnh44ugY/G2eg7ni3xvyxggC1JC1oW6DVi1fP+BA1AWoAAAAAAAAAAAAAAABg7rr7N/+sK3/9aWVqHqDOmnyIeoFa9dtPPk6AGgAAAAAAAAAAAAAAzFp21AMAAAAAgMJw4mBws4Vra6G7W3rf+6R588x2e7vU2moi0tNh2+b22QD1vHnm/N3dtZh25kmlop4AsZiUTJqIcxg25/N4OuH3dNrE4w8eNJ9P1Z490he/KP3rv5qvTzltbYXbxVFqv0Zvuik+T9E6g53xXIB6EgJLuurNY7pruWd+Jh2+3LXc01VvHqsYoC7e/eRi6bK1of76jZ5uPjVQ2IQPnXpz5Gj5vOXqjHcWBKizsiFqSWpxZ94vGuiKdRGgBgAAAAAAAAAAAAAAAOao9Y/8UB/71V8oI6/OK1mlL1ArMk8tevCTm9S7eFmdZwEAAAAAAAAAAAAAAIgOlRcAAAAA0bMscwnDyseMd91M1t0tffCD0n33SVu2mABsImGi3N4UXljvuib4mw3IrlwpnXOO1DLzwqQ104zB47lm/nxp166op6ifMJQGB6V43DzXfL8w6uw45rnpuuUfj08+Kb34onTxxaWx+J6ewq+dW/RXOJ5nAtrTjdZL5vbFP2fy1hmMBbrkHRlt7sgLUFf6WX34/gUKJNm66uxRybb0rucTumtZSle9cVTBFJ6TviU9vFT69SsC2bP0x/94HJmf5Y7t6FWLXyWrwtduQdsCnXX0WYrFYhpKDunRvkcbOeakdTqdWrlwpVzXlW3bCsNQrutWvF8AAAAAAAAAAAAAAAAAZq8HH/9/+sDdf6qUgokPrglLskKpzGvRupXQPR+6nwA1AAAAAAAAAAAAAACY9YhQAwAAAGgOiYSUTEY9RTRaWqS3vU3q6JAeeCAXhZ1KnDMbv3Vd6U1vkt74xvrMOlNY1twOcDeLJUuk3bulgwejnqS+0mlzyQb1y8mGqotj0v390ve/L73vfYUh6t7ewuOKbydJqZTU2jr9uVOp0n2H1/GtUO//H0PavNCRyhxWjqdAB1qlVi9QV8bWVW8c0c+XpXXvMRkF4/w4s4re2DMYl0Zjuff7BJY0l1PFE4WaY7HYkc+z8eqsUOHhMPjUOXLky5/4wElwXVdtbW01ORcAAAAAAAAAAAAAAACAmWvTU/fq4p++V6nw8GuTGvaL7EtD1J2Ka/2HHtDyE05t0AwAAAAAAAAAAAAAAADRsaMeAAAAAAAkmfiqPUf/EyWZlH75S+nhh02Mu6VFcpyJb5fPccztEglznl/+cu5GvSWpq2vqX0PUnutKK1ZIr3iFtHCheXzG4w1800iDhaG5lJNOS4OD0shI6THDw9KddxY+Z48+uvAYyzJfu3xjYyY+Px2+b26fL+9744SWPvJMi+zEJGLuYSgvDLS/1QSjR2LSYCxQYEn3vGz8ALVUGJgejEsjcSnMhqdD8zGM+CFjNTiDXav4MwAAAAAAAAAAAAAAAAA0i01P3au1P7hAo2Emt7PSa+7qwjrygrV2xXX3e+8mQA0AAAAAAAAAAAAAAOaMOVp4AwAAANB0HEfq6ZFaW+dWPHhgQLrjDmnLFrNtWSbc29oqtbWZaK/jlEZ7LcvsTyTMca2t5nbZ47ZsMecdGGjs/YlSNtK7YIHU3h71NJDM96OlRXrZy0yM+lWvkk45xTxuZ6vxQtSSlEqZ52VxPLq/X7rvvtx2V5d0wgmFx7SUCUKXi1pPZsaRkdL9Red/V9dp+taKT8h23MLjin4eeZL2txWGorMh6onYeaNnA9RHxrSkdk/qyJTerpEsWQrVyDc6GYSoAQAAAAAAAAAAAAAAAMwW2559TBf84AKNKF16ZYND1G1WTD+66PtavercBq4LAAAAAAAAAAAAAAAQLXfiQwAAAACgQRxHmj+//HWnniotWdLYeeqtr0+6+mppbKw0yut5UiYjpfNebF8cog4Cc308LsViJkKdb2xM+sUvpBtvlHp763MforR+fenXp6FvRMCEOjuloSHJtgsf421tUjIZ3Vz15jjmOen75rlcLAikwUETfbbzfj/Yli3S8cdLy5eb7bPPlrZty13vuubrmErl9nme+Rq3t08u4O/7JkBdPFciUfozZO1avWvhH0nhW3RVuE5B9kdQ3nPNk7S/vTBAnTUSk8IwUFemzJWSrLzna3GAWpIsSWOu5MiSIohAZ0URoM7atHeT3nDsGyJbHwAAAAAAAAAAAAAAAACqte3Zx3Ted9+koXIB6qwwLH2dbB0k5OrOi3+sM1/19rqvBQAAAAAAAAAAAAAA0EzsiQ8BAAAAANTc8LB07bXSgQOF+8PQBGIHBwsDy+NJp83xIyOlEeb9+806w8O1mRuYCteVFi0yQebi/bOZ55n73NUlzZsntbaWHhOGJhRf/Jy97z4TipakU04pje+3tRWGq7PrDQyY8wVB+ZmCwFw/MFAaoLZtc958vb3SmjWSpHeddKG+9V+LZeePalnjBqizRuPSYKw44hxOKkBthebcGXvuxuXTQVobdm6IegwAAAAAAAAAAAAAAAAAmJa+vc/r/O+erQGlJj64+PV0NZaQq+9d8M8EqAEAAAAAAAAAAAAAwJxEhBoAAAAAonDrrdLu3YX7fN8EYlOTeKF9OamUuX02YJu1e7d0223TOydQrVhM6ukxMeWFC82lOHg8Gw0PmzfE2LaJUHd3l8a3w7D0+T4wIG3bZj53XemKKwqvtyyps9N8LDY2JvX356L0o6O5qH1/v7m+WKXzXXFFbl7X1btO+//0rftbj4SoPSucMECdNRqXhmImPG0uuesmClDP3fx0TtJLEqIGAAAAAAAAAAAAAAAAMOP07X1eb/jmq9Wv5ORvVKcQdUyObv/jf9B5r7+0LucHAAAAAAAAAAAAAABodkSoAQAAAKDRNm6U1q8v3Of7JhQbBOVv47pSIiG1tJiPxTHbrCAw5ykOUd9zj1kXiIrjmMduIiF1dJgw82wWBFImk9t2HBN7Ln7uel7p83XTptzna9ZI551XeL3jSF1dJnBdjueZuHUyaT56XvnjbNucx3EK959/vnTaaYX7Tj5Z71r4Bn3rgTYFYaD9rZMLUGeNxE1wOt94AWrpcIB6CmvMZkkvqUz+4wkAAAAAAAAAAAAAAAAAmtjwoUN609+fqgManfqNaxyiduXo5jffqAvO+khNzwsAAAAAAAAAAAAAADCTEKEGAAAAgEbyPOmWWwr3haE0NFT6onnLMqHeefNMKLa9XWprMx+7usz+ciHfSue79dbKMVqgkXp6TPi4OH482ySThduWZZ6/xYrjwjt2mJh81uWXS0uXFh7jOFJ3t4l6T0ciYW5f/D1YulS67LLyt7noIr0us0SjsakFqLPyQ9QTBahRaPXi1YrFYlGPAQAAAAAAAAAAAAAAAAATGj50SK/72+Xaaw1P/yQ1ClG7cvR3Z16v95x7ZU3OBwAAAAAAAAAAAAAAMFMRoQYAAACARnroIWnPnsJ9o6NSEBTuc10Tmm5tlewK/+lm2+b67m5zfL4gMOfN19cnbdxY3fzAVAWBCSrv3Su99JK5JBJm/2yP6qbTku8X7nOc0ni855W+YWbXrtznHR3SDTdIixYVHpONWnd1SfGionMl8Xguam8VlaQXLTLrdHSUvzuJmE599z6NxE0wejpG4tLe9okD1IGl6S/ShFzblW1N76/hVi9erQVtC2o8EQAAAAAAAAAAAAAAAADU3vChQzrzmyeozxqs/mRVhqgd2fry6/9KH3rrZ6qfBQAAAAAAAAAAAAAAYIYjQg0AAAAAjbRuXeG250mpVOE+15U6O02sdjIcxxxfHKJOpcz5x1sfqKcwlPbvl4aHc6HlMJR6esz1rjv7Q9TFz0HJRLiLFceqi2P1vb3SjTdKS5eW3tZ1TTh6/nzzs6C11cSms5fWVhOdbm838frRUWlgQOrvNx8HB83PkXe/e9yfO3Hb1Z8uOFey7Kr60H6ZG8+FAPV0QtQnzDuBADUAAAAAAAAAAAAAAACAGeOsm07Ujsyh2p1wmiFqW5aue/Wn9LELvlC7WQAAAAAAAAAAAAAAAGYwd+JDAAAAAAA1sW+ftHlz4b5ksvS49nbJmmKB1bLM7QYGSs/f0ZHb3rTJzJGNAGP22bdP2rJF2rpVev5585jwPBMq7u6Wli2TVqyQVq6s/+NgaKh8hLm93USV9+41QWbfl4KgvrNEpTguLZkQtOtKmUxuXxAUvlmmr8987w4ezO2Lx6Xrr5e++13pgQfKr+c4uSB9GJo1UqnCtYolElI6Ld16q7mcfLL0lrdIp51W8jPqa0d9UOrq0t8+f8e039xTTnj4R14ozaoAtWM5R8LTliytXLRSWw9tVdIr87O/jO6W7nqOBwAAAAAAAAAAAAAAAAA1c9r1x+iF9MGJD5yqMDz8urLJvbjMlqW/OvlKXfXuG2o/CwAAAAAAAAAAAAAAwAxFhBoAAAAAGmXLlsLtMDTh13ytrSYiOx2OY24/Npbbl04ffvF93gvvt2yRzj57emugOXmetGGDtG6d9MQT4x/7+OO5z085RVq7Vjr99Fy4uJbKRdazTjjBRKgtK/e4nY0h6nIRbsk8X/PD0L5f+NwfGDAh8d27C2+XSklHH22+Z48+Kg0Pm6h1cbje88zzf7yvqWWZALXr5ua0LBOr37RJWrBAuugiE6XOs2b+yWp3WjXsj5odNWhRz7b4dFYQBrJDW7Zl6/gFx6unvUc97T3asHPDhCFqR9P8dwEAAAAAAAAAAAAAAAAANNgZ1x+r59J76rdAKMkKNZkXmn3ixD/VNZd8o36zAAAAAAAAAAAAAAAAzEBEqAEAAACgUbZuLdwuF6dNJKpbI5EojFBn14nFctvbthGhnk02bpRuuUXaM403b2zebC5LlkhXXCGtWVPb2cYLIB9zjNTZmYsoz9YQdVih0FwcjS5W7uuQTksHDpjPX/YyaelSaedO6dlnc0HvMDSh6krxa8nErmMx87F4jjA0a9u2dPCgdPvt0utfb2LUra26a+BhXbX3X9TptikMA40Eydx7eqYbo55kfNqxHDm2o4yfUVhhMUtWxeuiECqUF3g6aeFJ6mnvObL/jGPO0H/+4T/lheW/TwSoAQAAAAAAAAAAAAAAAMwUZ19/nJ5Jv1T/hSYRor7suEt03Qduq/8sAAAAAAAAAAAAAAAAMwwRagAAAABolOefL9wujsS6rgm/VsO2zXnyz10cod6+vbo10ByGh6Vbb5XWr6/+XHv2SF/8onTeedLll0sdHdWfU5LicRNELsdxpLPOkv7t38x2NkQ9Olo53DwTVbovE93Hcj8LBgYKtx1HevnLzWVsTDp0SLr/fnPu/NtbltnO7gtD83Mh+3Mie102Sh2G5pINVD/yiPT73+uuPz9LV6V/rsAx5+mKdUiepRH/cPg+/3094929SUan87U4LQpkwtwxJ1YxRN1MAep8L428pEXti+Taub+KO7rzaP1h8A8lxxKgBgAAAAAAAAAAAAAAADBTvOVv/kib0zsat+A4IeoPv+Kd+uqH72jcLAAAAAAAAAAAAAAAADNIlXUzAAAAAMCkFQdkfb9w26lReLT4PMXrFM+BmaevT/rEJyoHqMNQymRMmHh4OHcZGzP7KwWQ16835+3rq82cnZ3jX//KV0orV5rPg8DMN9tYFYrLxc/L4uNaWnIx6DA0X590unBf/iWTMbHoMDQx77Y2c0kkTAw8DE0QPJWS0mn5fuZIiNrPpOSnxqSRESmZLJ1N0l1du3TVvv+jICi8rtNtV3usvcz9HucyRbZla9m8ZeqI5+LoMScmazoni0CoUP3Jfj2590l5QeEvHygOThOgBgAAAAAAAAAAAAAAADBTrL1hlR4e29r4hcMj/3PEB49dq2/82Z2NnwUAAAAAAAAAAAAAAGCGIEINAAAAAI3ieeNfXylWO1UTnWeiOdDc+vqkq6+Wdu8uvc7zTGz60CFpaMhEndPp3GVszOw/dMgcV+6xsHu3dM01tQlRx2LSggWSPc5fP5xzjolVj43l4ti1ei40g3L3JQhKv/bFX6MFC8xts5fsucrty2Ske+8131PJhOgdx5wzGyPPW28wHuqdl0h3nRhqMB7q7e+V1nzUbMvzzPGplDmH6+qu431d9eakAoUmVH34+5T0UzqUGVRHvENxO16Lr1YJ27Ll2q62929Xb1tvQYjatuxZFaK2+Ws6AAAAAAAAAAAAAAAAADPERV97rR4ceTa6AfJC1Bf2vlk3fexn0c0CAAAAAAAAAAAAAAAwA7hRDwAAAAAAc4Y7wX+CZQO81ZroPBPNgeY1PCxde6104EDh/jCURkdNOHiysmHqREJqayuMJe/fb9a56Sapo6PyOSajpUVavNjEkIvDy7290qJF5hjLKnzsFm/PVOWeb+W+T+Ui1JP1yCMmLp5/Dt83j4kgKDh0MB7qkoukzb3SY0dJPaPSs4ukjC392Z9IUqh3/c4yM3qe7lqd0FVvHFOQfXgEgTQ6qmSLqwFvRLKkA2MH5Af+5OedAtsy9ylUqO3923XcvOPUpz4Np4cnffsgDCY+sAHyQ9QnLz654DpHjkLNgsc7AAAAAAAAAAAAAAAAgFnv0r9do3sHN0c9hhRKb1+4Rt/+i19FPQkAAAAAAAAAAAAAAEDTozwGAAAAAI3S3V247TiF236NIq7F5ylep3gOzBy33irt3l24z/dNgDiYZmg3lTKB6M7OwsfK7t3SbbdJV189/XmzbNvErhOJwv3HHCP99KfS4KDU1ZW7H2E4OwLUUvnn+dhY6TH5EXDJhLsrGRmR9u41MfJdu6Q9e8x+yzIX2zbf0zAsOG9+gDqQdKhNeqlTsiSFkg61FIao71rh66o3jiiQJXOUkfSSGvAkyVIYhvLCorh4DXmBJ9d2ZVt2SYi6P9k/Ybg5bLLHUX6IuiNWZeAdAAAAAAAAAAAAAAAAABrso994s37V/1jUY0iSzu06Rd/71H9GPQYAAAAAAAAAAAAAAMCMQIQaAAAAABpl2TLp8cdz227Rf5J5ngnw2vb01wgCc558xescd9z0z4/obNworV9fuM/3TcC5UmjXdXOB4zA0xxc/PiTzuMmGoPOjyffcI515prRmTe3uR77Nm3P3yXHM+iMjJow9kex9anaxWO7zMDT3b7xjJKm3V2pvL9zn+9ILL0jPPSf19eX2J5O5r0P2Y/73+PC+wYR0ySW2Ni8OFSjUoRYpffhbnf0qhlYuRB0o1L+8WgqsvPNalpJOqIF4KIXm+Iki0LXgB74s25JlWUdC1N2JbgXhxOH1Rsw3VdkQ9VhmTKFCWbImvhEAAAAAAAAAAAAAAAAAROyyvz9fPzvw26jHkCS9qWOlfvLZ/4p6DAAAAAAAAAAAAAAAgBmjirIZAAAAAGBKVqwo3C6OQ0uTi++Op9zti9dZvry6NdB4nifdckvhvjCUhoZKQ8yWJbW2SvPmmahze7vU1mY+dnWZ/a2tpWtUOt+tt5YPV1fL96Uf/rB0dt83H4tZlrnYtrkUf96MYrFcVN73zde3XCQ+GwvP3p/TTpOWLJFWrpTOPtt87+68U/rtb6W9e3PHhWHp96tMmHswIV3yHpUNUBfLhqg/9ifSpU9Jp+zJXXckQH14mUYFnl3blZX3PQ4Vqj/VL3sSf63VrIFnx3bUGe9s2vkAAAAAAAAAAAAAAAAAIN+n/vGdunPf/VGPIUk6rXWFfv5Xm6IeAwAAAAAAAAAAAAAAYEYhQg0AAAAAjbJyZeG2ZUnxeOG+sTETq50O3ze3zxePlwZ6V62a3vkRnYcekvbsKdw3OioFQeE+1zWh6dbWXPy4mG2b67u7SwPlQWDOm6+vT9q4sbr5y9m2TTpwoHBf9j5lg9PlLuWMd12UWlvN/RkbkwYGSgPUliUlEoXb8+ZJxx9votRhKP3jP0pf+Yq0f3/p1yKTmXCEwYR0yUXS5iVSEI4foM7Khqg/8RbpA0+YEHVBgPrwMQ1qUMsPy/9MtCxrwohzo0LZU+Hark5aeJLaYm1RjwIAAAAAAAAAAAAAAAAAE/rcbZfoO7t+EfUYkqRT4sfq3//66ajHAAAAAAAAAAAAAAAAmHGIUAMAAABAo/T0SKecUrivpaX0uJERE5+dijA0tytWfP7Vq6VFi6Z2bkRv3brCbc+TUqnCfa4rdXaaePFkOI45vjhEnUqVxpKL16+FTZsKt4vvk2VJsZi0YIEJM7e3m8ez65rZbdt8dF2zv729+WLUY2NSf39pHF4yc7a2ls577rnmfg0MSF/+srR+fflz+775moVh4SXPkQB1r+RL2tM+cYA6Kz9EfcJ+afTwwySwDgeoGygIA3mBV/H6iULUzSQboO5p74l6FAAAAAAAAAAAAAAAAACY0Be+/UHdtuNnUY8hSVoVP0b3X7c96jEAAAAAAAAAAAAAAABmJHfiQwAAAAAANbN2rbR5c27bdaVEojC+63nS0JCJ6k4mKOz7JkBdHA5OJEoDw2vXTn92RGPfvsLHjCQlk6XHZSPMU2FZ5nYDA6Xn7+jIbW/aZOboqVE4d3BQ2rGj8PE53n1ynMk9F9LpXJi5Gfh++f22bQLgxc/ZVauk444z4eof/EAaHZWCIBec9v2KwelixQHqve3SVFvNoSUdapVuer3UnZIy9tTPUSvZELVrl/+rrGyIOlSTfO8r6G3vJUANAAAAAAAAAAAAAAAAYEb48r/8mW7+/Q+jHkOSdHx8iX5z3e+jHgMAAAAAAAAAAAAAAGDGsqMeAAAAAADmlNNPl5YsKdzX1maitPk8z4SBx8ZMhLacIDDXDwyUxmxt25w3X2+vtGZNdfOj8bZsKdwOQxNbztfaOrlIczmOY26fL50ujRwXz1GNXbsKt2t1n1pazMfi51MUKs2QSEjd3aX3bd486ZxzTFD+u9810e/BQbOdTEqZjIlQB8GEAWrfkt5/oQlQB5L2TSNAnRXKxKj7W6Qg4i9rNkRdiWVZFSPVzWLPyB5l/EzUYwAAAAAAAAAAAAAAAADAuG78v3+hb2z7PwrGf7laQyyLL9LD1+2MegwAAAAAAAAAAAAAAIAZrQmqTAAAAAAwh7iudMUVhfssS+rsNB+LjY1J/f25GO3oqPk4OGj2j42V3qbS+a64wqyPmWXr1sLt4uC4ZMLG1Sh3++J1tm2rbo18fX3jr1VpponE47n4c7nnU6OUWzsel7q6pPb20us7OqSLL5Z27pT+4R+kAwdMcDorDCcMT+dzQukjj0tWKPW3Tnx8VRr8BqOJQtRhM7zjqQLrcAl8y/4t494HAAAAAAAAAAAAAAAAAIjS7T/7a331mdubIkB9bGy+HvjE01GPAQAAAAAAAAAAAAAAMOMRoQYAAACARluzRjrvvMJ9jmMCtXaF/0zzPCmVkpJJ87FctFcyt+/qMufLd/750mmnVT87Gu/55wu3i7/3rlv5cTNZtl0aKC9eZ/v26tbIt2/f+GtVc5/a2szHqCLU8bgJaMfjUmurCcLPn29C0+Ui8PPmSe9+t/Tgg9Kdd5rQfL4pBqizzv29tGRYythSGGGPux7GC1E7jiNHTtnrohYqlGVZGk4Pa8u+LQqn8X0FAAAAAAAAAAAAAAAAgHr67r9+Wdf+99flN8Hrm462uvXgJ59Vx/z5UY8CAAAAAAAAAAAAAAAw45WpHwEAAAAA6u7yy6Wnn5Z2787tcxypu9tEaFOpqZ8zkTAB3uL47tKl0mWXVTcvojMwULjt+4XbxcHx6XKcwhh08TrFc1SjOLRcy/sUj5tLOj39c0xXd7cUi03++JNPll7zGun//T/p0KHyz/tpvJFnMCFdcpH0UqcUhJKaLEJtyVKo6t6gFITBkXMVcxxH8iVffsl1UUv7aSWchJZ2LNVgajDqcQAAAAAAAAAAAAAAAADgiB//+9/r6o1fkl/l67tqYXHYoY3XbCVADQAAAAAAAAAAAAAAUCN21AMAAAAAwJzU0SHdcIO0aFHhfsuS2tulri4T0p2MeNwc395eGqBetMis09FRm7nRePlh6HKKv+fTNdF5JppjKoqj01OdZSLt7ZJt1+5rMxlTCVD39kpf/KJ01lnST38q9febr0lxcLqKAPXmXikpNd3f/MTtuLoT3Yrbk/z5VoEjEyqvGLNusvB2liVLK+avUE97T9SjAAAAAAAAAAAAAAAAAMARd993m6787WflKYh6FC1Umx749BMEqAEAAAAAAAAAAAAAAGrIjXoAAAAAAJizenulG2+Urr1W2r278DrXNeHoMDTxX88rDPc6jjnGdSuHdpcuNQHq3t763QfUnzvBf7pPI1Q8rfNMNMdUOE51s0zEskyY/dCh6s4zGa5r1rInUXtevVpau1Zas0ZKJqWvf10aHjbXZTK546Z5/wcT0sUXSU/0SmOS+puwPW+FllJeSo7lyJJVOSI9DkeOgrw3OoUKZeVVp/3Alx9OEDqPgCVLJy08SYs7Fkc9CgAAAAAAAAAAAAAAAAAccfd9t+lj935SmSYIUC9Qq377ycfVO/9lUY8CAAAAAAAAAAAAAAAwqxChBgAAAIAo9fZKN90k3XabdM89pddblhSLmctUnH++dNllJmSNma27u3C7OODs1yi2W3ye4nWK56hGW9v4a9XiPtm2CUTnx52zwfZahLsdR/pf/0s67TRpyxZp2zZp+3ZpYMBE413XfM2OO05avlxatUpatCh3+1tvzUWygyB3n6c5m2+ZAPX9r5TcjDTSUuX9qwPbsiVbRwLS04lQZwPUxbfLhqiDIGjqAHVvJ78UAAAAAAAAAAAAAAAAAEDzWL/he/rYfZ9UStG/7mqeWvTgJzepd/GyqEcBAAAAAAAAAAAAAACYdYhQAwAAAEDUOjqkq6+WzjzThGn7+qZ/rt5e6fLLpTVrajcforVsmfT447ltt+g/5T3PRIxte/prBIE5T77idY47bvrnL9bTI/3hD5XXqtV98n0Tns4POxdvT5XjSGecIV13nTRvntl39tnmMlkbN0rr1xfOKlU110hc2tsupWwp1YQBaklyrer+GqpSgDorDEPZji3Ln3rcut6O7jiaADUAAAAAAAAAAAAAAACApvLgPf9HH7jvY0rZQdSjqFNx3fOh+wlQAwAAAAAAAAAAAAAA1AkRagAAAABoFmvWSK99rfTQQ9K6ddLmzZO/7erV0tq15hzFQV/MbCtWFG6X+/6mUlJr6/TXSKVK9xWvs3z59M9frLcoxlvP+2RZufC045jgs2WZ6xIJsy+TMZdKEWjLMkHsxYulP/9z6YILpj+X50m33FK4z/cnDlBnZ853+DaDCemSi6QXOiWVOaxZZIKMYnZMVrn7MoGJAtSSFCpUxs80XYBakvpG+zR/ZL562nuiHgUAAAAAAAAAAAAAAAAAtGnjOl18z0eVsn0pdMq/Rq1B2hXX3e//Vy0/4dTIZgAAAAAAAAAAAAAAAJjtKJMBAAAAQDNxXemss8xl3z5pyxZp2zZp+3ZpYMAEbF1X6u6WjjvOhIFXrZIWLYp6ctTLypWF25YlxeNSOp3bNzZm9jnO1M/v++b2+eLx0jeUrFo19XNXcvTRhduNuE+JhNTRYdYYHTXHOI6JS8diJk4t5WLQ+fe/rU16+culCy+UXvWqqc+T76GHpD17CvdlMtM+XTZA/VivdKijutGmZYrvOwoVqt1pl2VZ6vf7J3WbyQSo88/fjLzA0zMHnpEkQtQAZrbAN38eresakkLPfGy0MDB/JrBtybIjGKBBMkkpU/QFtm1pGn/sAgAAAAAAAAAAAADMPJs2rtPan12oUfvw/3cc+JIdTYi6zYpp3aV3a/UfndPwtQEAAAAAAAAAAAAAAOYSItQAAAAA0Kx6eqSzzzYXzF09PdIpp0ibN+f2tbQUBpslaWRE6uyc2ptAwtDcrlhLS+H26tW1DZ13dUnHHivt3l24ZiPuUzawvWSJdOqpJgi9a5e0c6e5bRCY0HtLS+Fl4cLpBbGLrVtXuO37ufD1FB1KSO+7SNrcK9U5B1oTru3qxIUnHokwb9y5UaPe6Li3mUqAutkRogYwa6RS9Tu350teeuLjai2UlPbMm2qzbMf8mWA2hpnTnvkzSLHsfeb/OQIAAAAAAAAAAACAWWvbk7/VBT+7UCN29lVnlqQwkhB1i+Xoznf/QKtXnduwNQEAAAAAAAAAAAAAAOYqUgIAAAAAADS7tWsLI9SuKyUShRFIz5OGhqT29snFkn3fxJq9onxxImHOX7x+ra1eXRihbvR9et3rpBNOkE46SRoYkP7jP8ztxsYOxxfd2r+ZZt++wu+jJGUyE9+uzBw7O0K95jLJcyR50qGO2oxYL7bsggD1vpF9GvPGJrzdbAlQZ+WHqAEARfyIAtSSlMpIYVC4L/ClTCg5sWhmikL2PifiUU8CAAAAAAAAAAAAAKiDvp2/0/nfPVdDTtFr7CIIUScsR3e87Z905qvfUfe1AAAAAAAAAAAAAAAAINlRDwAAAAAAACZw+unSkiWF+9raJLvoP+s9zwSVx8akoCikmBUE5vqBgdJYs22b8+br7ZXWrKlu/nKWL5cWLizc16j7NH++Wb/Rtmwp3A7D0nnLCQsjzDs7Qr36culAm3QoEWGAepLvM7Jla2XPyoIA9XMHn5vUbWdTgDorG6IezYxGPQoANJfMJP6dWJd1g9IAdVYYmOvnkjAwQXAAAAAAAAAAAAAAwKzSt/N3OvObq9XvZCoccfgFYYFf8pq1WkvI0ffe9k8674wP1HUdAAAAAAAAAAAAAAAA5LhRDwAAAAAAACbgutIVV0hf/GJun2VJnZ3S4GDpGz7GxszFdSXHMceGoQkKVooeZ89nFZWFr7jCnKfWHEe69FLp1ltLZ6j3fbrgAnOORtu6tXC7UlR7HNkA9cFWKZAmHYKuuUmua8kqCFCHYajdw7urjkvblq2gUjB0BvACT/vG9k143CN9j8jR5B6rvmobDK31+QDMULYkq5G/yzJ/rUb9nJ9gnTDQnPt9niH/DgAAAAAAAAAAAACA2aRv5+/0hptW66CTnuBIS1JoQtSWI9m1f4FazLJ1+znfJEANAAAAAAAAAAAAAADQYESoAQAAAACYCdaskc47T1q/PrfPcaSuLmloqHzQ2PMqB5rz2baJNReHmc8/XzrttOrmHs8pp0Rzn048Udq/v7rZp+P55wu3/TKBx2xcu4xDiVCvuawJAtRTYBUFwC3LRKmf2veUDo0dmvD2ru3KC7ySfbZlK+Nnqo5ZAwCKFAenXbc+v4yiWBAejj3nSY7Vf11JE/6rZE7+q2YG/CEDAAAAAAAAAAAAADApw/v3603ffI0OTBigzjocog59KahtiNqVrZvf8DVdcM5lNTsnAAAAAAAAAAAAAAAAJocINQAAAIDmEQQmPJtKlcZZN2yQWlujmQvN6aWXCiPFtm0iiZ2dUjwe3Vz1dPnl0tNPS7t35/Y5jtTdLY2OmufOVCUSUlubiR/nW7pUuqwBb/SI4j49/XR1M0/XwEDhdrnItlQ2RD0YD/W+d0ue0wQB6imsHYSBnjnwjCSpp71HkolIr+pZpQ0vbpAXjh8Uty27IESdDVCbMawZG6G2ZStQhe//LJTKTON5DCAariulec7OebY98TEAAAAAAAAAAAAAgKY3vH+/1nz1FdrrJqd4y/wQtV2T/x/Zla2/W/MFvectf1n1uQAAAAAAAAAAAAAAADB1RKgBAAAANAffl/bvL41PZ4Vh5WAr5qYwLAz1+r65pFLSvHmRjVVXHR3SDTdI11xjni9ZliW1t5v4cjIppdMTnysel1paTGyy2KJFZp2OjtrNXslsvE+VeBWCy2Wi0/kGE9IlF0mbeyV5klrqMt3kTCN+7QVe2RB1m9umwczghLfPhqizn890tmxZkVbEGy8TZKIeAcBkOY759+lk/r2L2clxJNuJegoAAAAAAAAAAAAAQJWG9+/XmV9bpl3u6DTPkA1RB1KgqkLUjmXpy6/5tD70J5+f9jkAAAAAAAAAAAAAAABQHSLUAAAAAJrD4GDlAPVcNTgo7dol9fVJ+/ZJo6Pma+Q4Ulub1NMj9fZKRx8tdXVFPW1zGRiYvY+n3l7pxhula6+Vdu8uvM51TWQ5DE3w2PMKvw6OY45xXRM+LmfpUhNr7u2t330oNhvvUznl4tiVHA5T5weoPUmHImxoV9NNLheitixLtmwFGv8XDFiydNLCkyRJzx18TqEqB7tngvDwP5M10ddnJpjp3zNgzkm0SI4tpT0p8Mf9RQn1dfjNrCX76rBMwXbRL4ew6rRulMrdZ8s2bxiOzfxf+AAAAAAAAAAAAAAAkM762jLtcIarPEv1IWrbkq5b9Ql97MK/qXIWAAAAAAAAAAAAAAAAVIMINQAAAIDmkEpFPUFz8H1p61Zp0ybpxRfHP/YPf8h9fuyx0urV0vLlJso714Xh7H5M9fZKN90k3XabdM89pddblhSLmctUnH++dNllJvrcaLPxPhXr7i7cnuANOfkBasn8JY7lS2Gjn+I16m76ga/dw7u1qG2RrMPBcEvjh6gtWTp+wfFHwtXSzA9RW4f/8TVxKN/R1L7ZkzlnFKzZFm8F5gI3bi6NEgTmXafjaWk1cexaGxyWMsnK17txqXuW/cKXie4zAAAAAAAAAAAAAGBGO+3TC/RC1QHqrOmHqG1L+tTxH9ZVl95Yo1kAAAAAAAAAAAAAAAAwXUSoAQAAAEQvDE14bjy2bSK0s9m2bdK990oDA1O/7Y4d5tLdLZ17rolRz3YTPR4mekzNdB0d0tVXS2eeKd16q9TXN/1z9fZKl18urVlTu/mmYzbep3zLlkmPP57bzg/GW5b5WRiGkmXJt0K9/8JcgFqSxjRzA9RZS9qWHAlQ56sUoi4OUGc/f+7gc7UdrIECBbJly5HTtNHoWiv3PQcAAAAAAAAAAAAAAABQe2d8pkfPOf01Puv0QtRXvvJSff5Dt9d4FgAAAAAAAAAAAAAAAEwHEWoAAAAA0bMsyXUlz6t8TBCYOOtslExK990nbdlS/bkGBqSf/UxauVI65xyppaX6czariR4P8Xhj5ojamjXSa18rPfSQtG6dtHnz5G+7erW0dq05h9tEf0UwG++TJK1YUbg9zhtxnNDSRzaFevwoKbBMgLq/o77jHVGHXrAlS67tas/oHi3pyIWoQ4VH4tOWLIXKPa8dOQUB6qzsvi37avAzMyLZEPV4HE29OF6LsHWlIHg15wMAAAAAAAAAAAAAAABQf2d/tlfP2AfqdPaphagvO/ZCfemjd9RpFgAAAAAAAAAAAAAAAExVk9WYAAAAAMxZXV3SwYNRT9F4AwPSnXdK/f3lrw9DyfdNhDvIi4Latrk4jol4F9uyRdq1S7r4Yqm7uy6jN7WWlrkToZZMbPmss8xl3z7z/d+2Tdq+3TzGPM8c090tHXectHy5tGqVtGhR1JNXNhvv08qVhdvFAX7LMs/5MJQsS+/6nXluf/Stofo76zhXHaLTxUKF6ox3amXPyiMB6kyQKYgdhwqPBJBt2bKtym9S6mnvUfxgXEk/WffZay1uxzUvMa/g/nm+p0yQkS1bju3Idar7Kzsv48k//E/cjst1Xe0f2S9P5X/ZQ0wxdbgdSiQSBfsz6Yx8+fJ8T2PB2JHAtStXMcWUcBIa8ocqhq+nE9IGAAAAAAAAAAAAAAAAMHVv+ezLtNnaW+dVJhei/vDRb9dXL/tRnWcBAAAAAAAAAAAAAADAVBChBgAAANAcWlqkefNMXDYMo56mMfr7pR/8QBoeLr3O96VMJhenHY/rSrGYCVIXn//735fe9765FaLOPpbmqp4e6eyzzWW2mC33qadHOuUUafPm3L5YrPB5XhSinjcc6lA9A9QN1BZrk2ubv4raN7JPY95YyTHZALU1QRl738g+pf10XeasJ0uWVveuVke8o/GL99Tv1I/uelSjmdH6LQAAAAAAAAAAAAAAAACgorWffbketnY1aLXDr+2qEKK+uOdsfePjP2/QLAAAAAAAAAAAAAAAAJgsItQAAAAAmkdbmwkIZzImwpzv5S+XFi2KZq56GB2V/uZvpGTSRKSzwlAaG5PSU4irep65xONSa6uJ2GYlk9K6ddJf/7X5+s4myaQUBLlt2zZfS5f/1EUTW7u2MELtOOYxWyZEPeCGOucjdZ5n/NZzTe0Z2aPl85frwNgBPXfwOYUq/wsHAgVy5JS9TjIB6ucOPlevMesqVKjH+x7XmcecKbvozVcAAAAAAAAAAAAAAAAAMFUXXXuCHrRejGBly4So/dC8Dk7ShQvfoNv+8p4IZgEAAAAAAAAAAAAAAMBEKHMBAAAAaC62LSUSpfuPOUZasqTx89TLjTdKBw4ceeG9JBPeHh42YWVrGmXYbLy7s7PwvAcOSL/8pXT11dXP3Uy2bi2MdR8O9wJN7fTTzc+yPXty+xIJ89zNf/xalrozoZYfkLYtrNMsDQxQO5aj1y193ZEAddofP7Tvy5et0khzNkAdKlSgoMwtm99RHUcRoAYAAAAAAAAAAAAAAABQtQ9cf7LuDbZGOIElKZR8X3+88PX69qd+HeEsAAAAAAAAAAAAAAAAGA/FGwAAAABotI0bpfXrC/f5vjQ4aALU5biuCdW2tJiPboXfKRQE5jy+X7j/nnvMugCi5brSFVcU7rMsqbW1ND5vWdr6D9LyA3WYo4EBakmyLVs7B3ceCVCHmjgYnwkzBdv5AeqMn6lwq+Z2bNexWr5gedRjAAAAAAAAAAAAAAAAAJjhPvp3Z+sXY1uiHkOSpXODV+qHn+Y1qgAAAAAAAAAAAAAAAM2MCDUAAAAANJLnSbfcUrgvDKWhIfMxXzZMO2+e1NUltbdLbW3mY1eX2d/aWrpGpfPdeqtZH0C01qyRzjuvcJ9tm+d3uRD1zVbtQtSWGh6glqRQoXYM7lDKT00qQJ214cUNkgoD1NnzzTQEqAEAAAAAAAAAAAAAAADUwmW3XqCfHdogOU7Uo+jM8GX6yde3Rz0GAAAAAAAAAAAAAAAAJkCEGgAAAAAa6aGHpD17CveNjkpBULjPdaWODhOmTSalwUFpYEDq7zcfBwfNftuWOjvN8fmCwJw3X1+ftHFjze8SgGm4/HJp4cLCfY5jns/xeG6fZZkQ9T/a1YeoI4hPZ3nB9AL4ST+p3+z4TUGAOu2nazlaQxCgBgAAAAAAAAAAAAAAAFALn/qni3Xnzn83G5YVaYj6tPBorfvaHyJbHwAAAAAAAAAAAAAAAJNHhBoAAAAAGmndusJtz5NSqdx2GJqwtCQNDUkjIyY27XmS75u4tO+b7WTSXD80ZI63bXP7rFTKHDfe+gCi0dEhXXml+ZjPsqTWVrM/P0YtVReijjBAXa1MkFHKNz8nCVADAAAAAAAAAAAAAAAAmKs+950P6jsv/LxwZ0Qh6lPCxfr3r73Y8HUBAAAAAAAAAAAAAAAwPW7UAwAAAADAnLFvn7R5c+G+ZDL3eRiaSzY2HQSTP7fn5W4vmTcVZM+fH7ndtMnM0dMzrbsAzCm+n3tepVLS4KC0fbs0Nma2k0nzXGtpMUH47dulF1+Uduwwx/q+CUnPmyctWya98pXSCSdICxea8/f2mhD17bdLhw4Vru04Unu7Ob/nHQnRb/0nacWfJ7VtwRTuxwwOUOcjQA0AAAAAAAAAAAAAAABgrvrCHX+m27b/qPyVliW5juT5DZnlpGCB7v96X0PWAgAAAAAAAAAAAAAAQG0QoQYAAACARtmypXA7DKV0ujAend2fvz0Z+cHq7O0tK3d+K69Cu2WLdPbZUx4fmDN830Sfs4LAPJeGh81z6aWXTIja9010+rnnpD17JNs2xxY/fy1LevJJE5aWpBUrpLPOkk4+WXr5y6XPfU768Y9NJD7/ueo45pxu4V/fXPgHW1+fPzq5uPQsCVDPRASoAQAAAAAAAAAAAAAAANTCjT/6lG5+9o4JjmpMiPp4f542/O3+uq4BAAAAAAAAAAAAAACA2iNCDQAAAACNsnVr4bbnTS84PVnZ83qeFIvl9m/bRoQaGE8mUxJ+PmJ42Dy3XnxRevRRs53lV3jzThjmQvGOY34WbN0qLVggXXSRiVF/5CPS3r3Sd74j9fWZY23bXPJ89vWDuvGUUdmSglCVI9NNFJ+O2TFZlqW0n456lIYhQA0AAAAAAAAAAAAAAACgFr7102v1lSdvVqDJvNa0viHqV/gdevhvD9bl3AAAAAAAAAAAAAAAAKgvItQAAAAA0CjPP1+4nU7XL0CdFYZmnfwI9fbt9V0TmMnGxkyE2rJMANp1zfMnCMzzaWBAevLJ0uezZI4pikYfkX2uh6E5tyQdPCjdfrv0+tebGPXrXiedeab00EPSunXSU08VnOInrxjTTSePmKWk8qHpJopPS7kAtSTFnficCFG3uC0EqAEAAAAAAAAAAAAAAABU7fa7v6TrH//GJAPUWfUJUR/rd+g3ny3zujkAAAAAAAAAAAAAAADMCESoAQAAAKBRBgZynweBlEw2Zt1kUmptzcVx8+cAkNPfLw0O5gLUkolQh6F5Hu3bJ/3mN9LISPnbh6Hk+7lgdZZt5y6WlYtQZz36qLRjh3TDDdKxx0pnnWUuiYSJxj/xhO7a8Sv9Zc9/qduPaY+dMbHpJgtOF8sPUGfNhRB10ktq28FthKgBAAAAAAAAAAAAAAAATNt3/+3r+vwjX5GvYBq3rm2Iutdv1YOffV4dixbV5HwAAAAAAAAAAAAAAABoPDvqAQAAAABgzvC83Oejo4WR2noKQ7NeuTkAmOfE8LA0Nlb+ulTKXO691xxXLAikdDp38TwTo85eMhlz+5ERs0YYSo5TeNm/X7r2WqmvL3feV7xCesc7dNdFq3TVSS8oWLhAB1pD87c5MzBAnRV34g2epvF2DO7QtoPboh4DAAAAAAAAAAAAAAAAwAz043tv1tUPXidP1USkD4eoq3yx2WK/RY9+9g8EqAEAAAAAAAAAAAAAAGY4ItQAAAAA0Ciuaz6m01Iy2di1k0mzbv4cwFwWBFJ/v/TSS+YyMJALtAeBiUcHgdnOZKRdu0qft2FonleplDl+MmH5dFoaHDRB6uLjsyHq4WEpHpfa2nQg5vvBAAEAAElEQVTXM3fpqn+7SkEYyPM8eUHzR+THC1BnEaIGAAAAAAAAAAAAAAAAgFJ3/+afdeWvr6kyQJ11OEQ9weu5KlkYxPXAJ/+bADUAAAAAAAAAAAAAAMAsQHkMAAAAQPPwfRNnTaVy8desZFJqaYlmrloZHTX3Y3Q0mvWHh6W2NrP+L38ZzQy11NdX+DixLCkWkzo6Zv5jBfUVhtLBg7kweyZT+ljKBqKDIHd9fsA9CMztJxOeLieVMuft7JQcJ7d/927pttuk227TXc/+P131b1cp5aWUCTIKNc21Gsi13AkD1FmWrBlxn6qxY3CHJGn5guURTwIAAAAAAAAAAAAAAACg2a1/5If62K/+QpmaBKjzOI55je4UXu+2wI/rt5/cpN5jTqztLAAAAAAAAAAAAAAAAIgEEWoAAAAAzcH3pX37SuPTs0lPj7R9e3T3MQjM13nx4mjWr7cwNFHggwel7u6op0EzGxnJBaizXFfyPPO5ZZk33QSB2ed5km2b/ZJ5rKVSlc+fPTb/eL/Mm4KCwIT3u7tzIWrLku6/X/5DD+pbL31LB8cOyg/NbdN+uvQcTcYPfVmhNekQ9VxAiBoAAAAAAAAAAAAAAADARNY/8iN94O6PKCWvPgtMIUTdHbj69RWPEKAGAAAAAAAAAAAAAACYReyoBwAAAAAASdLAwOwOUEtSb680NhbtDGNj0pIl0c7QCIOD5aO/gFQakI7FpEQiF43OsqxcmNq2zZtwbLtygDoWk9razKW1VWppMZ93dEidneZzu+ivYsJQGhoy53bdIzFq639dp8WxBWqNtUqaGQFqSQoVygs8hZN4o9JcsmNwh7Yd3Bb1GAAAAAAAAAAAAAAAAACa0INP/EL/390frV+AOstxSl8nV6QzcLX+g/fp2GWvqu8sAAAAAAAAAAAAAAAAaCgi1AAAAACaQ6Wo62zS3R31BMa8eVFPUH9hKCWTUU+BZlUcSI7FpPb20hC15+Xi+L5vHlOjo2ZfGOYulmUC0kGQO2Z01ETfk0kpkzHnaGmR5s836+XzfROizpP+/TYte3SrVvWskufX+Y1FNUaIujxC1AAAAAAAAAAAAAAAAACKbXrqXl1853s0qnRjFhwnRN0euLr7wp9p+clvaMwsAAAAAAAAAAAAAAAAaBgi1AAAAACilw25jqfCC95nlIGBqCcw+vujnqAxCOCikpaW0n2JhAm0t7aanzepVC6OH4YmMO375R9XQWBC075vPs9efF9Kp02QemjIXDyvfIh6bCwXq5aUCTL6Hw/26ZHdjyhQULv73iCTCVGHmnvPUULUAAAAAAAAAAAAAAAAALK2PfuYLvjBBRoNM419zWOZEHVb6GjdhT/T6jVrGzcHAAAAAAAAAAAAAAAAGsaNegAAAAAAkGWZIGs6LSWTJsSajb9mpdMmEjuT/fa3UU9g/Pa3JrY70+3fb0K/Wa5rHketreYNEjP98YL6aW83j5W86LMk83NnaMjEo6cr+0agcuH8TEYaHJRGRswMnlf4xqHRUam7O3siveyFfUp6MzfUnA1Ru7Yrq+jrkfbTEU0VvZeGX9Kyectk2/xuOAAAAAAAAAAAAAAAAGCu2vbsYzrvu2/SkPJeSxWG5V97Vg+OY14rF4ZKhLbufOu/EKAGAAAAAAAAAAAAAACYxYhQAwAAAGgOnZ3SM89I27dLw8MmzpovFpNmerDzxRejnsB48UVp/fqop6hecajcsqSWFunoo6WTTjKPGaAcy5IWLpQGBqSxMWnvXum550ofU9UY781Avm9i1K5b+LMulSq4XXcmpvcfXKr/u+CF2s3VYI7tEKDOE7Njet3S1xGgBgAAAAAAAAAAAAAAAOawvr3P6/zvnq0BlXnNWoND1Akv1Pfe/C2defb7G7MmAAAAAAAAAAAAAAAAIkGEGgAAAEBzOHRI2rLFBKjDsPwxRDtrJ5OJeoLqeV7pYyWdNlHheFx6wxuimQszg+dJ//Vf0iOP1DY+nS/7+Kz0hqBMxhyT/dkWhmZfPH7kkHNftLTlxNXatHdTfWasI9d2ZVuFP7cJUL9OLW5L1KMAAAAAAAAAAAAAAAAAiEjf3ud15jdXq1/Jygc1KESdkKvb3/4POu+sj9R9LQAAAAAAAAAAAAAAAESLCDUAAACA5vDYYyYgnI2vBkHh9fE4EepayovczlhhWBihtqzcmy62b5cOHJBWrIhmNpRXHA0PgtLnei1YVuWYvST98pfmUo+1y6kUo87OGQS5n2+HI9S+ZW7zil0jWtD2Sh3TeYx2Du1szLw1QIC6kGu7BKgBAAAAAAAAAAAAAACAOW740CG94Zuv1kGNTXxwnUPUMTn61jk36gIC1AAAAAAAAAAAAAAAAHMCEWoAAAAA0QtD6eBB87nnmSBr8YvnLYsIdS1lMlFPUD3PKwwNh6F5jDiOuX/bt0tr1kQ3H4wgkIaGpGRS8v3C60ZHpWefrd1aw8PmnL5vHgft7eaSNTAgffvbUn9/7dacikoxaikXovY8DcYCvfd/JHXpU5ZWDZvnanu8Xe12u0aCkUktFXfi8gNffujLkqVQ40S568ALPMWdXOx+LgeoJakj1iHX5q/hAAAAAAAAAAAAAAAAgLlq+NAhnfq3x+mANTr5G9UpRO3K0c1vvlHvOefjNT83AAAAAAAAAAAAAAAAmhP1GwAAAADR830TYE2nc5HWMCwMDAdBNLPNVrPh65mNlWdZltkXBFIsZh5PiFYQSPv3m2B4vR08aELXWZ5notPptDR/vomS33FH9I/97M+2bFTfsgp+7g3GQ11yXr82LQi0+exQn96UOnLTWCym9szEIeq4E1cQBvJDE/0OFUYSok77afW296pvpK+h6zaj4fSwntr3lFb1rCJGDQAAAAAAAAAAAAAAAMwxw4cOac3frdBea2jqN65xiNqRrb8783q959wra3ZOAAAAAAAAAAAAAAAAND+qNwAAAACi57pSPC6NjeX2Fb9g3rJq+iL6OW82fC3Huw9BIB1zTONmQXlDQ40JUKdShQHqfGNj0osvSj/5Sf3nmIogMCHqvJD6YDzUJX+S1OaFlhRKgSV99dQxLRnZd+SYiULU2QC1FxR+3aMKUROgNrzQ02BykBA1AAAAAAAAAAAAAAAAMMcMHzqkM795gnaFA9M/SY1C1I5sXffaq/Wht36m6nMBAAAAAAAAAAAAAABgZrGjHgAAAAAAJEmvfKXkOFFPgdnAcaT586WenqgnQSoV/Tp79jRfgDorCI58OpiQLrlI2ry4MBLt25aeO/ichlJDR/a5bvmAcaUAdVajA9QolB+irvQ9AgAAAAAAAAAAAAAAADC7vOmmP9KOzKHqTxRW9/ovW5Y+d/LHddU7v1z9LAAAAAAAAAAAAAAAAJhxyleLAAAAAKCRwlB62cuk0VFpxw7J9wvirJIk15Vsfo9OzVSI2M4oQVD4OLEsc5k/Xzr55OjmQk7x87hevKKgr2WZnyvptHT33Y2ZoQpHAtS9h3fkvVnIcyyFCrV3dK/idlwxO6aRzIhsy1YYhkfC0hMFqPNZsghSR8QLPQ2lhrRl3xa9avGrZFlW1CMBAAAAAAAAAAAAAAAAqJPTrj9Gz6f31+6EYWheHzdFtix96o8+qmsu+UbtZgEAAAAAAAAAAAAAAMCMMguqYwAAAABmPMuSWlqkE0+Uli6VDh6UDhwwMeqs1lbJcaKbsRa2bYt6gpyjjop6guqNjhZGjru7pQULzMV1pUQiutlgxONSKtX4dbMR57vvLvw50oRKAtRSwRuFfMc6vCvUqDd6JD5tWZZiTkwZP6OYE5t0gFoSAeoI2bJlW7aWdiwlQA0AAAAAAAAAAAAAAADMYmdd/0o9l95T+xOHoWRJh/9nUq48/gP6/Pv+sfazAAAAAAAAAAAAAAAAYMYgQg0AAACgOXR2Sum0CQl3d0uvfGXh9QsWmFD1TPbf/y2NjEQ9hdTRIZ1/ftRTVK+vrzBCna+tzQSQEa2uLmloKJq1n35a2r8/mrUnqWyAuojn5N4oZMlSEAay8t48NNUANaJjy1bMien4Bcerp70n6nEAAAAAAAAAAAAAAAAA1Ml5//t4PZXeWb8FQklWqMmEqC877hJ96UPfrt8sAAAAAAAAAAAAAAAAmBHsqAcAAAAAAElSImFC0/Ys/s+UefOinsDo7o56gvpqbzfxY0TPdaVFiyTHaey6yaT0m980ds0pmjhAHcpzbQV24ZuELFkKFSoMQ0kiQD1DEKAGAAAAAAAAAAAAAAAA5oa3/M0f6bHk7+u/UHjkfyr64LFr9dUP31H/WQAAAAAAAAAAAAAAAND03KgHAAAAAIAjWlqkJUskz5N8v/C64483MduZbNEiadeuqKcwc7zmNVFPUb2HHy58nNi2iR7P5pD5TBSPS4sXm+e1VxRLPvpo6eUvr36NTZuk0dHc9k9+IoXjv7kmSr4lvf/C8QLUkhVKqXj5x7IlE6b2Ak9BGNRjxMg5cmRbthzHUdJLRj1OVQhQAwAAAAAAAAAAAAAAAHPDO7+yWg+PbW3cgqHMi80Ov6Ys38VHn6+bPvazxs0CAAAAAAAAAAAAAACApkaEGgAAAEBzsSwpFjOXfD09JlA9ky1eLLW2SmNj0c3Q2mrm6B2nfjtTtLdL6XRu27KaOjw8p1V6Xi9ZIh11VPXn37lT2rfPfL5tm7R9e/XnrCMnlD7yuPT4UVJQ+t4fSVJoSWm3clDdsizZlj0rI9SOnCOfn3HMGdqwc8OMDVEToAYAAAAAAAAAAAAAAADmhou+9jo9MLyl8QuXCVFf2Ptm3XbFLxo/CwAAAAAAAAAAAAAAAJpW5ZoRAAAAAKC2li2T2tqinaGtTTruuGhnAOrF96X/+A8paP4w87t+J33rl5JdoZvu25b80JcfmEsQBgpVeLBt2XLt2fX7xfID1FlnHHOGWtyWCKapDgFqAAAAAAAAAAAAAAAAYG74wI1n6t7BTdENEB75H/3xwtP07b/4VXSzAAAAAAAAAAAAAAAAoCkRoQYAAACARlmxQrIsqasrmvW7usz6y5dHsz5Qb9u2Sf39UU8xId8yH9/5O+mmcULU+bIB6vDwPwqlMAxnVYjaHuevqWZaiJoANQAAAAAAAAAAAAAAADA3fPQbb9YvDj0S9RhSKJ3bdYp++D9/E/UkAAAAAAAAAAAAAAAAaEJEqAEAAACgUVauNB/jcclxGru245h1JWnVqsauDTTKpk1SEEQ9xbgGE9I7L5XuOtFsv6tMiDq0LIVWbtsP/ZLzBArkBZ7CMJQflF4/G82UEDUBagAAAAAAAAAAAAAAAGBu+MTtF+pnBx+MegxJ0pntJ+gnn3k06jEAAAAAAAAAAAAAAADQpIhQAwAAAECj9PRIp5xiPu/ubuza2fVWr5YWLWrs2kAjDA5KO3Y0dYR6MCFdcpH02FLpqrcVhaj/zYSoQ8vUp7MfywWos0KFygQZhQorHjOTBJr4ezcTQtSu42p+y3wC1AAAAAAAAAAAAAAAAMAs9ql/ulh37FhnNg6/3isqp7a8UuuufSrSGQAAAAAAAAAAAAAAANDciFADAAAAQCOtXWs+2rY0f35j1pw/36yXvz4w2+zaZT6GjQ0y+5N871A2QL2512wHlvSJvBD12q2Wvnq/KysMTVzaDscNUM9Wvia+z80eovZ8T4eSh7RvZF/UowAAAAAAAAAAAAAAAACog89954P6zgs/L9wZUYj6lPixWv+/notkbQAAAAAAAAAAAAAAAMwcRKgBAAAAoJFOP11assR87jj1D1HPn2/WkaTeXmnNmvquB0Slr88EqBsYoR5MSO+8NBeSHu+4/AB1VjZE/blzpXe8z9Ybdtr6yv2u7FAasxsb024mkw1RN6tAgTJ+Rs8dfI4QNQAAAAAAAAAAAAAAADDLfPn7H9dt2+8sf2WDQ9QnxY/S/ddtb+iaAAAAAAAAAAAAAAAAmJncqAcAAAAAgDnFdaUrrpC++EWz7TjSggXSyIiUStVunURCam+X7LzfPXTFFWZ9YKbZt0/askXaulV6/nlpYEDyPPN47u42j/ennjLPowZFqPPD0o8fZfa963fjH1fOaEy68UypK+Xrz94W6P/3S1cf2ix97Q31m30m8OXLHud3p23YuaGB00xdfohaknraeyKeCAAAAAAAAAAAAAAAAEC1bvzRp/SNp78taZzXqVlWQ17Hdnx8iTZct6Pu6wAAAAAAAAAAAAAAAGB2oD4GAAAAAI22Zo103nnS+vVm27alzk4pFpOGh6s/f0eH1NJSuO/886XTTqv+3ECjeJ60YYO0bp30xBOVjwtDaWhISqcbNlpxWDqwpKveZj7PD1FPFKBOutJAInfsfy0JdeE7Mtq0tH6zzySZMFN2/4adG5T0kg2eZuoIUQMAAAAAAAAAAAAAAACzx7d+eq2+8uTNCsYLUGfVOUT9ivgCPXzdzrqdHwAAAAAAAAAAAAAAALMPEWoAAAAAiMLll0tPPy3t3p3b19IixeMmRD2doG48bgLUtl24f+lS6bLLqpsXaKSNG6VbbpH27Bn/uCCQBgcl32/MXKocls6GqEOZEPVgQrp0kgHqrIGECFAX2bBzg8445oyC7ZkQoM4iRA0AAAAAAAAAAAAAAADMfLff/SVd//g3JhegzqpTiPrY2Hz95hO/q/l5AQAAAAAAAAAAAAAAMLsRoQYAAACAKHR0SDfcIF1zjbR/f26/bUtdXZLnSWNjuRh1uTciWJb5GI9Lra2SW+Y/8RYtMut0dNT+PgC1Njws3XqrtH79xMcGgTQwUJc36VRSKUB9ZCRL+sTbpFFX+r+nTC1AHUjS4af0kY9Q0kseCVHPtAB1FiFqAAAAAAAAAAAAAAAAYOb67r99XZ9/5Cvyzau8pqbGIeresEsPfvJZdcyfX7NzAgAAAAAAAAAAAAAAYG4gQg0AAAAAUentlW68Ubr2Wmn37sLrXFfq7DRvPvA8c/H93PWOY45x3VyMutjSpSZA3VuhhAs0k76+8s+FrOLnQipl9lV6/NfYRAHqLN+S/vwdUqsntXil1ydd6VBCsvP2FQSoUSLpJfXgjgeVClJRjzJthKgBAAAAAAAAAAAAAACAmefH996sqx+8Tp78iQ+uxLIkhVKVLerFYYce/fQ2AtQAAAAAAAAAAAAAAACYFiLUAAAAABCl3l7pppuk226T7rmn9HrLkmIxc5mK88+XLrtM6uiozZxAPfX1SVdfLR04UHqd50nJpJRO5/YFQe7zsMp35kzCZAPUkmlJt3rSQMJs54eoswFqWVIQ5kLUtg6HqLMnmCVa3BadccwZ2rBzg5JectrnidvxGR2gziJEDQBTEISSHxTuS6cl2y5/fDW8jJTJXyuU+Rdy9l/KGSmVLr1dPVi25DRgnaDMb8oAAAAAAAAAAAAAABS4+zf/rCt/fU11AeojLMmafoh6odr0wF8+RoAaAAAAAAAAAAAAAAAA00aEGgAAAACi1tFhArxnnindeqsJ8k5Xb690+eXSmjW1mw+op+Fh6dprSwPUYSiNjkqpVOn+BppKgDorG57OD1HnB6glFYSow1kUns7KBqglVRWijttxpYMGhT8bIFCgIAy0e3i3FrUtkmXNwm8+AFTD90zwOQylTNGfAYq3ayXtSb5vLvm/6MK2JceRAkfSYH3WLsuS3Jjk1rFG3dg/TgEAAAAAAAAAAADAjLP+kR/qY7/6C2VqEqDOml6Iep5a9NtPPq7exctqOAsAAAAAAAAAAAAAAADmGiLUAAAAANAs1qyRXvta6aGHpHXrpM2bJ3/b1aultWvNOVz+Uw8zyK23Srt3F+7zfWloqDAEmdXACLVvSe+/cGoB6qz8EHXSlcYc5QLUWZYUFG3PBvkB6qzphqhnU4BaklzLVWeiUyt7VhKgBoBivicl6xSanojnS2HRnzuCwPy5I17HGHRZoeSlJcXrG6IGAAAAAAAAAAAAAJT14BO/0Afu/ohS8upw9qmFqLuV0D0fup8ANQAAAAAAAAAAAAAAAKpGmQwAAAAAmonrSmedZS779klbtkjbtknbt0sDA5LnmWO6u6XjjpOWL5dWrZIWLYp6cmDqNm+W1q8v3Of70uBg+dh0/j7LqnuQ2gmljzwuPX6UFEyiF5yRFMvbbvHMe4X6E5o4MD1LesTlAtRZ0w1Rzxau5aqrpUurelbJtfkrOQAokcpEs24QlAaos8JQCnxF8n+leBki1AAAAAAAAAAAAADQYA8+8QtdfOcldQpQZ00uRN2puNZ/6AEtP+HUOs4CAAAAAAAAAAAAAACAuYLiDQAAAAA0q54e6eyzzQWYbXxf+uEPC/eFoTQ0VBqXtiyppUVKp83tim9TR+/6nfl41dvGD1GPServkOxAWjJq3h8UWpLjH+5lj7fILAlQS6oYoM6/fjIhakeOfPnjHjOTEKAGgEmoFIKu+7oT/Fmizn/WKFT0h4JQkl2HPyhYZdaa6N3NAAAAAAAAAAAAADDLbdr0H7rkxxdr1GrEL1EeP0Tdrrjufu/dBKgBAAAAAAAAAAAAAABQM1RvAAAAAABA423bJh04IDlObt/oqBQUBShdV2pvNyXnsbHC6+oQhfQtySk67UQh6myAWpICW9rTJi0ak3xJB9vGSTrOovh01oadG6oOUTsyj4mYFdPKnpXatHdTrcdsKALUAIBJSyTMn3myWlolx679Oo4jeV5u2/MkL+9N1NYs/EMKAAAAAAAAAAAAAIxj29OP6IIfvUMjVkay6vD/05ZVPkTdZsW07tK7tXrVuQ2aAwAAAAAAAAAAAAAAAHNBo14VAwAAAAAAkLNpU+G250mpVOE+15U6O0tDiVJdAtSDCemdl0p3nVh63bt+J33rl5JdtGx+gDorsKW9rYcD1OUajpZmZYBakpJeUht2bpjwuDOOOUNWmS9CNkCdtaBtgVYvXj3lOZzD/0zntrVEgBoApsB2Jj6mHiZ68/BcDDLXI3wNAAAAAAAAAAAAAE1q29OP6Lw7ztaQdfiX9wZBA1e3Cl5LlrAc3fnuHxCgBgAAAAAAAAAAAAAAQM1REgAAAAAAAI01OCjt2FG4L5ksPa69PRd+LI5Ql2NZ0w5FDiakSy6SHlsqXfW2yYWoywWoj7CLAtSWZnV8Ot9kQ9Rd8a6CbbvCX1NNNUSdH7Je0LZAccUnfdtaIkANAFOUSESzrm1JdoX/q8Syo4tjR8V2zC8AAQAAAAAAAAAAAIA5oK9vm86/480asNKFV0QQok7I0ffe9k8689XvaODaAAAAAAAAAAAAAAAAmCuIUAMAAAAAgMbatatwOwyldNGbeFpbCwOIk4lQZ00xRJ0NUG/uNduBNXGIOhnmBaitSVzmmMmGqLPB6PxwdDmTDVGXO0/MiU14u1ojQA0A02BbUmtbNAFkx5EcV7l/aR8OU7tzKcZsS25MikXzyxsAAAAAAAAAAAAAoNH6+rbpzG+uVr+VKn9AEEgKGzJLTK5uP+9bOu+MDzRkPQAAAAAAAAAAAAAAAMw9VHAAAAAAAEBj9fUVbpcLTCcShdthOP72NB1qkd737lyAOisbopZMeDrfvBHpUOfhjTkYmJ6sbIj6jGPOGPe4iQLUWdkQ9aa9m8peb4/zu9YcOfLlT2qd6Wh32hVYgZJeUsfNP06Hkoe0smclAWoAmCrbklpazOfhkf8xWlokuw5R6KEhyUtXvt5xpa7u2q8bBtLYWOG+tvbC7fa2+oSwHVfKZHLbmYzkZSofDwAAAAAAAAAAAACzzPDBg3rDTat10EqOf2AQyrwsqX4vFIvJ0c1vvlEXvPnP67YGAAAAAAAAAAAAAAAAQAkHAAAAAAA01r59hdvFEWrXlezKQeFJsaySULVvSU7erp2d0msukzxHainTwS4Xov71y6Vz/jS7RnUjzgVJL6lMJqNYLFaT81UKUTtyFGr8MHm9QtTu4b9eW9K+RC/verkcx9HLul4my+IBAgBVsY78z+Ft20Sqa77OBH/mqNe6gW3+vFKwlor22YcvNWZbhfeJf2cBAAAAAAAAAAAAmEOGDx7U625cpgOaIECdVccQtStHN555vd5z7pU1PzcAAAAAAAAAAAAAAACQrw71AgAAAAAAgHGMjhZu+0VhYMep+ZKDCemdl0p3nWi2d3ZKr75cOtAmDSSk5OFf0xUU3S4bov7ZSdJ9xxKgnqrVi1fXLECdlQ1RZzma/OMle2y521g1+KY6hx+7BKgBAAAAAAAAAAAAAACA5jN88KDW3Hic+jQ8tRsGoaSwprM4svXl1/+VPvTWz9T0vAAAAAAAAAAAAAAAAEA5btQDAAAAAACAOaY4Ol2sXMC3eJ9lSeHk3tQzmJAuuUja3Cs9fpS0v0W69nzpYGvumIGE5EsaTkitGakrnbsusKSPv1Xa05lde1LLznmrF6/WgrYFdTn3grYFmu/O16A3OOXb2mV+J5sjR0FJgnx8liyFNX5jGQAAAAAAAAAAAAAAAID6SKfTesONx2uXhqZ3giCUeelRDX7ZvWxd9+pP6WMXfKHqcwEAAAAAAAAAAAAAAACTQYQaAAAAAAA0luOMf325uLTrSp435aXyA9SSlLakyy6QZElWKAXSkSTxYIv5OBI3H/ND1Kn4lJee0+oZoM6KxWLS1B8SAAAAAAAAAAAAAAAAAOag0687Rn+w+qs7SQ1C1LYsfe7kj+uqd99Q3SwAAAAAAAAAAAAAAADAFBChBgAAANB8gqA0NjswICUS0cyD5pRMFj5ObNvEja3pv7kDDdLWVrhdHKX2/dLbuJP4K4wwLPj+Fweok5L626Xw8CHZj0GokvcEZUPUnRlLSTfUYFyyQymwhQk0IkANAAAAAAAAAAAAAAAAAJN1xueX6nnrYG1OVkWI2palT/3RR3XNJd+ozSwAAAAAAAAAAAAAAADAJBGhBgAAANA80mmpv780QC1JTz0ltbQ0fCQ0sb17TbC8WGen1NHR+HkweT090h/+kNsuDkx7nvne2nblYyzLRKcrGIyHBQHqUUkDlR4WFd4LNBKXMnYozyl/PUoRoAYAAAAAAAAAAAAAAADQTM76wsv0TLi3ticNQvO6M2tqIeorj/+APv++f6ztLAAAAAAAAAAAAAAAAMAkEKEGAAAA0BzSaWn//qinwGwwNFQ+To3m0dtbuF0cmJakVEpqbc1t27Y5Lj9SXy5EHYYaTGjyAeoJpF1JoWRLCqb2fqE5hwA1AAAAAAAAAAAAAAAAgGZy3vXL9JT3Un1Onn3t2iRD1Jcdd4m+9KFv12cWAAAAAAAAAAAAAAAAYAJEqAEAAAA0h8HBqCfAbDIyImUyUU+BSo4+unDbsqR43ISns0ZGctuWlbvkv3GnTIS6lgHq3HwSWfPxEaAGAAAAAAAAAAAAAAAA0Ezecv0KPZbaUd9FJhmi/uCxa/XVD99R31kAAAAAAAAAAAAAAACAcdhRDwAAAAAACkMpnS7dl2+CF+gDJfKDxmguXV3Ssceaz8PQfK9833yevUiS55n9vm8+z2Ry1wdBYwLU+fgxdISd91dKBKgBAAAAAAAAAAAAAAAANJN3Xr9SD6d+35jF8l/zVsbFR5+vmz72s8bMAgAAAAAAAAAAAAAAAFRAhBoAAABA9CyrNDJdvD3OC/QBzECrV5uo9MCANDJiQtPlFL9BJ/9nQ95+35Lef2EuQD2mGgeocYQtW5YsOXIkiQA1AAAAAAAAAAAAAAAAgKZx6Q2n6oHUs41dtEKI+u2Lz9RtV/yisbMAAAAAAAAAAAAAAAAAZRChBgAAANAc4vGoJ8Bs09IS9QSoJJmUtm6VxsakIMjtL47PZ2XfoBOGFY9xQukjj0t2aALU/bUOUFcYba6xDv+T5cqNcBoAAAAAAAAAAAAAAAAAyPnAV16vXw1vjmbxohD1Hy88Td/7xK+jmQUAAAAAAAAAAAAAAAAoQoQaAAAAQHPo6qocoAWmqrNTconjNqWBAemOO6RnnpFaWwuvs6yJQ9T50eoi7/qd9LGH6xCghiTJll0QoAYAAAAAAAAAAAAAAACAZnHZjWfrF0P/He0Qh1/n9qbuU/TD//mbaGcBAAAAAAAAAAAAAAAA8lDkAgAAANAcYjFp0SITqE2no54GM5XjSB0dUnt71JMg38iIlExK/f3SL39ptiXJtk0sPJMx22FY1TK/fpl03XnVjVoW3WVJUqiQCDUAAAAAAAAAAAAAAACApvOJ2y/UnQd/G/UYkqQz48v0808/GvUYAAAAAAAAAAAAAAAAQAEi1AAAAACaRzZEHQTmku/kk6WenmjmQnN64AHJ93Pbtm0uaB5hKB04IKVSJi7/7/+eC1BnxWImQl1lgHogJp3zkapOUR7N5SPCw/84cqIeBQAAAAAAAAAAAAAAAAAkSZ/6Px/QHS/90rx+sPi1pw12auJYrbvu2UhnAAAAAAAAAAAAAAAAAMohQg0AAACg+ZSLCbe1SR0d0cyD5pRImLBxlmVVHTJGjY2MmAC1JD3yiDQ0VHh9EEjJZE2W6s5Iyw9I2xbW5HQGAeqyAgWyRfAdAAAAAAAAAAAAAAAAQLS+8MMr9J0XfmI2YraUsaTAj2SWVe5RWn/d85GsDQAAAAAAAAAAAAAAAEyEYhAAAAAAAKiPsTHz8cUXpeeL3lwTBOb6bDjcqr74vPUfTIi6apYIUI8jVKhAQdRjAAAAAAAAAAAAAAAAAJjDvvyTv9TNz/5L4c6YJdlOw2c5yVqs33zpxYavCwAAAAAAAAAAAAAAAEwWEWoAAAAAAFAfnif5vvToo4X7w1BKp0uPtyzJtnOfF18mYlnaerM1/RA18elJI0QNAAAAAAAAAAAAAAAAICo3/vxz+saW2xQoLL2ywSHqZeECbfjy7oatBwAAAAAAAAAAAAAAAEwHEWoAAAAAAFAf8bi0c6c0PFy4P5MxIep8jiO1tUnt7VJra/no9EQx6jA0Iep/tCcforZEfHqaQoXy5Uc9BgAAAAAAAAAAAAAAAIA55Fvrvqivbr6pfIA6q0Eh6ldonh77yt66rwMAAAAAAAAAAAAAAABUy416AAAAAAAA0KT27ZO2bJG2bpWef14aGJA8T3JdqbtbWrZMWrFCWrlS6ukpvX1Hh/Tss4X7gkDyi8LFjiO1tOQC065r9vm+CVYXH29ZpRHr/HO1tmrrD+Na8f6D2jYvIDBdR6FCbTu4TcsXLI96FAAAAAAAAAAAAAAAAACz3O3//lVd/9jX5SuY+OCYJWUcKfAnPnYajlanfnPNc3U5NwAAAAAAAAAAAAAAAFBrRKgBAAAAAIhCtYHnevE8acMGad066bHHpFTKRKB934Sfw9BEoC1Luv9+E31OJKTXvlZau1Y6/XRzHyRz2717S89fLJHIBaizLMucx3VNuDobrw6CwgB1NlCdvb3jSPG4JGnr9xdqxfsOaNv8SbzhCNP20vBLWjZvmWzbjnoUAAAAAAAAAAAAAAAAALPUd+/9e33+4f89uQB1Vp1C1L3q0MZrtqtjwYKanhcAAAAAAAAAAAAAAACoFyLUAAAAAAA0Sn7g+Yknxj/28cdzn59ySmnguR42bpRuvll64QUpmSyMPefLxqiDQMpkzLH33Wfu2yteIV15pbRmjfTiiyYOnY0Th2EuGp3V0iLFYuPPZdvmttnjLMvEpiWz9thYLkKdTueutyxtvXOJjroyqT7v0HS+InOCJUuhKnyvJ+F1S19HgBoAAAAAAAAAAAAAAABA3fz4P2/XNb/9vDxNIyYds6SMKwVeTWZZrDY9es3zBKgBAAAAAAAAAAAAAAAwoxChBgAAAACgETZulG65Rdqzx2z7volSZz9mw86WZS6ua0LKritt3mwuS5ZIV1xhAs+1NDws3XqrdPfd0ujo9M4RhiYG/cwz0mc+I11wgdTXZ67LBqKLA9SWJbW25iLV4507/7b5YeuWFhOizhcER2Ldd70iKcfzZVu2gjCY3n2b5WzZ8qfz5qzDt21xW2o8EQAAAAAAAAAAAAAAAAAYdz90h6789f9UZpqvcZIkxVSTEPWCsEUPfPK/CVADAAAAAAAAAAAAAABgxiFCDQAAAABAPWUDz+vXm5hyOi2lUiY8PZ78613XxJb7+qQvflE67zzp8suljo7q5+vrk665Rtq6tTQSPV2jo9KPfyzFYiaknQ1GB0UR6Pzrpsu2zdcn/+uVyUjxuO56RVJXnTmgIBPXkvlL9NLwS9Wt1aQcObIsS15Y3RukpsqSJVtVfv8AAAAAAAAAAAAAAAAAoIL1//1Tfew/rqguQJ1VZYh6XpjQg5/cpN7e5dXPAgAAAAAAAAAAAAAAADQYEWoAAAAAAOqlr0+69lpp924Tnx4dLQwxh2H5zy2r8HPPMzFr25ba2kzQ+umnpRtukHp7q5vv4x+XduyY/jkq8f1c1Lq93cxeLkJdC45TGKH2vFyA2pIUBOob7qvNWtNkW7Zs2VWFom39/9m78/i46nr/4+9zZiYz2ZpSmraUCrSUtSyFUi0pyH4RBQSF4r2IXsDL8kPwKrjiFdwQvaiIIosgXllURKoIKlA2C7VIoWm1LN2o0Ja0oWmzZ7Zzfn+cniazZfY5k+T17GMe6XznnO/5ZCk0afIaUwFfQFErKst23pYBM6C5U+dKkl7a/JKiVrToOd29h0OAGgAAAAAAAAAAAAAAAEA5vbDqcX38j/+psAr/nqsUu0LUcUl2tqN3abJr9OQFzxCgBgAAAAAAAAAAAAAAwIhFLQgAAAAAgHJoa5OuvlrauNEJSPf0DEaYbdv5vW0P3oYauu4eJzm/d/fauFG65hrnOoXo6ZE+85nyBKiT9famvo5SYmy7GEn7LNwvNhigltTmj8jO4weGysGyLVmyND44XgEzoL3G7aWQL5Tz+UEFFfAFJDnhab/p3xWgDvlDCvlDmjt1rgJmoKg5A2ZApjH8l4sIUAMAAAAAAAAAAAAAAAAopxdeW6QFDy1QWNHSbx6QZPpy/v61RjugRRc8q5kHv7f0swAAAAAAAAAAAAAAAAAVQjEIAAAAAIBS6+mRvvIVaetWqatLikSc9eSodK6Sz4tEnH23bHGu09OT/4w/+IG0bl3+5xWqvz91Ld+3QyZD9ll4gK0rT44OBqhDluwq+eqHZVtqqGnQ/GnzNXPCTElS0BfMel69Wa+APzEuHfQFNX/afIX8gyHr4ULUxs5fuQiYAdX56zI+ToAaAAAAAAAAAAAAAAAAQLm0rn1e5z14jvoULt9FcgxR19sBPXLeHwhQAwAAAAAAAAAAAAAAYMSjGgQAAAAAQKndfrv09ttOKNqynDXbLj66PHQPy3L2f/tt6Y478ttn6VLpsceKmyVf8bjz0n0dbFsKh6XOTmnHDudlV5fU16d4ZGDX8f2+uCKmldPeCw+wdeVpdlUGqF0buzdq/Y71CWvDhajrzXoFAqlRaUkyzdRXLl2I2pCRdzh6XM047TVur4S1QvYBAAAAAAAAAAAAAAAAgFytffMfOvP+M9SrgfJfzK9hQ9R1tl+/Ofs+zZ79b+WfBQAAAAAAAAAAAAAAACgzykEAAAAAAJTS0qXSE09I3d2DsWXLKj5A7Rq6n20713n8cee6uYjFpG98YzAKXUnRaOJ923bW4nFnrmhUXVa/zjq9Rw/tsV2v+ber6b+2q/HS7fri/L70e1qWFIspbtj6+REZAtTpf0bIM291vaW1HWsT1oK+oIykQX3yZQxQD8cNUfsNf1Hh6JkTZqrWVyuJADUAAAAAAAAAAAAAAACA8lr75j908i+PU7f6K3dRvyR/aog6aJt68Oz7Nf+9H63cLAAAAAAAAAAAAAAAAEAZ+b0eAAAAAACAokSj0sCAEzIeGnp+/XWpq6uys8Ri0ve/L/X0DEaeSxWfTubuG487Ieobb5Q++1lnPR6XAgGprk7y+RLPe+klaevW8sxUqJ2vS1dQOu+j0vIp0uPTpZgvLnvnz/Z876iIJOm7L9TtOs2SrfhAn3y2JcOW7v2d9LFzpSem24MBakmyVZUhakkJYWdTpuIajIPbstUXdeLblmXJkrXrsVg8phfffnHYa9i2LVt2wp7pDH08GndC4e197Xrx7RcVjod3zZJpn6Vv5xhAT9IXzxAWd+ey48PuPRAfSHibpPPi2y+qN96bdZZsb6N0bNkJLwEAAAAAAAAAAAAAAAAUpq3jLZ1y7/Hq1PDfU1QWppwQdcz5HsSgbeq+0+4kQA0AAAAAAAAAAAAAAIBRhQg1AAAAAGDk6u52bukEAtI771R2njfekNranDC2VL4AtcvdPxqVtmyR7r1XOuQQqaHBWTdNabfdpGBw8JyFC8s7U4G2h6T/2Bmg3lYrxXypx3zvqIhkS9/9W72idlz90X7V9Q/sSgA3RqRXJisxQC1VXYBakgwZsmUnRJQNGfLJtyuIbMlS3HJ+nxxJNmRoID4w7DUKCSsPnSeXyLOkXaHqchhu71xmy/Y2KoW44rvi3QAAAAAAAAAAAAAAAADy09bxlub/5EjtsLM/2XzZmJJqfApEpTuPvUknv/8/vZsFAAAAAAAAAAAAAAAAKAMi1AAAAABQrdrbpVWrpDVrpPXrpc5OKRaT/H6pqUmaMUPabz9p1iypudnraStvYCBzgNory5dL4Z3R3HIHqJPFYtKmTc7HQk2Nc7Msaft2Z83nk7q6nI+rKrOxUTryUinqk3oC6QPUru/NjciWrf95wa9g30BCX3ri56UdtWUft2iGDJkyM0aih4aoMTJEFFEsFvN6DAAAAAAAAAAAAAAAAGBE6ens1HE/fa867B6vR1FAPt36bz/Ume+/xOtRAAAAAAAAAAAAAAAAgJIjQg0AAAAA1SQWk5YskR59VFq5cvhjly8f/P3hh0unny4dfbQTqR4Lenu9niBRV5f05ptOfLrSAWrJueb27VJfnxPn3n13Z92ynGB3fX32jykPbGyUDr1M6qyVbCP78ZL0v3OjsqNR3bhocO2zp4ysADVGn3A87PUIAAAAAAAAAAAAAAAAwIjR09mpuT8+SFvjO7weRX75dNMx39a5BKgBAAAAAAAAAAAAAAAwSo2RMhkAAAAAjABLl0q33SZt2ZL/uStWOLfJk6XLL5fmzSv9fNUmFhv+cdOUjByrxqWwaZMUjXoToHZZlhPDnjAhcT0Wc94Wr7/uzVwZbGyUDrlM6qzL/9ybWiTDkr7ztPTlk6QfZ/qQr+CHQC4MGbKV/mPE3vkreS3XY0ut3PtXYoZKvg4xK8t/kwAAAAAAAAAAAAAAAABIcgLU834yS23xDq9HkU+mvv2+/9EnTvpvr0cBAAAAAAAAAAAAAAAAyoYINQAAAAB4radHuv12adGi4vfaskW6/nrp5JOlyy6TGhqK37Na+bN8SmtZlQ1C/+tfUjxeueulY1nSjh3Oy6Fs27m1t3syVjrFBKhd/3uM9Ox06aWpqrrYdDJDhkyZWY+zZA17f+h+RpZX2ief4ir8YzLb/pVQ7AyVfB0yva8AAAAAAAAAAAAAAAAAJDr21sO0Kfau12PIJ1PXzfmCLvnAl7weBQAAAAAAAAAAAAAAACir7PUjAAAAAED5tLVJV12VOUBt21I0KvX3O7Fq99bf76xniiwvWuTs29ZWvtm9VldEvbgcNm6sbPQ6k66uzI+Fw5WbYxilCFC7XtpTmQPU3jeUJWUOUFdD5DmbkTBjNcglMF4ou0T/XSnVPnDwfsFoEI1Gq2ofAAAAAAAAAAAAAMDYMOc707UhusXrMWTK0JcOv0pXnn6916MAAAAAAAAAAAAAAAAAZUeEGgAAAAC80tYmXX21tHlz6mOxmBOb3r5d6u52otORyOCtv99Z377dOS4WS91j82bpmmtGb4i6tlaqr/d6ikHd3V5P4BguNG1ZlZsjg+1B6ZBLSxOgHgkyBaglJ1ycKfJs7vyV756l4pNv1xy5HFfMNcr9eDEz5qpcse6YFdPKrSvV3tte1D7tve1auXWlYlaa/1cgb7xfMBp09HVo8abFWrJxSVH7LNm4RIs3LVZHX0eJJgMAAAAAAAAAAAAAjGYt3z1A6yPveD2GTBn63KxLdc1ZN3o9CgAAAAAAAAAAAAAAAFARfq8HAAAAAIAxqadH+spXpG3bEtdtW+rrGz4knMwNUweDUl2dZAyJob77rnOdW26RGhpKM3s1aWqSQiHn7ZUc4q6rkyZOrNws+bzPyikelwIB5+3iCoUq+7bIoCsoffDfpc5KtMOLaAL7Db9M25QtW5IUVTTPSxuyZavGqJFpZo9FW3FL9s5fPvlkGqYCgYAkKRaLKWbFZMmSsfOX6cs9QB2Qs08kHkmZ0ZAha+cvv/y7Qso+ny9lDytu7TrWPa7GV5PzHMOJxWMJe/vkS5khk4ACisfjsmTten+ZMuX3+VOOc69jy94V8vb7/IrGnffv0LdxXHGZMmUpe7i9XJHrmBXTP9v/qZ5Ij1Z3rJYkNdc3571Pe2+7Vnesli1b/2z/pw5pPkR+ky8JFor3C0aDjr4OtW5tlSQNxAa0ZOMStUxryXufJRuXaCA2IElq3dqq2ZNma0LdhFKOCgAAAAAAAAAAAAAYRY7934P12sC/vB5DknTFAf+pa8+52esxAAAAAAAAAAAAAAAAgIqhbAIAAAAAXrj9dmnz5sS1eFzq7pas7NHTtMJhKRqVGhuloQHXzZulO+6Qrr668HmrWTDo3AzDiXi7DjhA2nffys0x9Npesixp3DhpwpAI5J57Socf7t1McgLUp/67tHTvClysgAB1Y02j5k6dK8uy0oajh4Y2h2qua1Z7X7skKWAGNHfqXIX8oYz7YOR6/l/PK27Hd913Y9blMDR07F6rkODx0NCxJPVEeggeF4H3C0aDoQFqVyEh6nT/XyREDQAAAAAAAAAAAADI5OTvz9Y/+9Z7PYYk6cJ9ztE3Pnab12MAAAAAAAAAAAAAAAAAFUUNCQAAAAAqbelSadGixLV4XOrqyhyg9vud0HIo5Lz0Z4hUWpazTzyeuP7kk851UT7VEqGuQnFD+uDHqjdAXe+v19ypcyUpYzi6ZVqLQv5QwtrsSbN16KRDtde4vRIC1MPtA2STHDp2ucHj9t72nPZJDh273OBxzIqVbOaxgPcLRoN0AWqXG6LORaYnZpCcEHVHX0ehIwIAAAAAAAAAAAAARqHTb36fXu553esxJEkX7HWWfvDJ+7weAwAAAAAAAAAAAAAAAKg4ikgAAAAAUEmxmHTbbYlrti11d6dGjA1Dqq2Vxo+Xxo2T6uulujrn5bhxznptbeo1Mu13++3O9VEeRgH14zHilcnSC/tU4EIFvgvC8bCsTAH4IYaGqGdPmq0JdRMkSTMnzNT8afNTItVAvjKFjl25Bo8zhY5dBI/zw/sFo8FwAWpXLiHq4QLULkLUAAAAAAAAAAAAAADXWbfM1wudK7weQ5K0YM/TdMuFv/Z6DAAAAAAAAAAAAAAAAMATRKgBAAAAoJL+9jdpy5bEtb4+KTmA6/c7oenaWsnM8KmbaTqPNzU5xw9lWc6+Q7W1SUuXFjc/Msv0fqq0Koth9/il913i9RTDm9o4VeYw7z97SNC9ZVqLjt3z2F0Batdw5wO5yBY6dmULHmcLHbsIHueG9wtGg1wC1K7hQtS5BKhdhKgBAAAAAAAAAAAAAB+79SQ9t/1lr8eQJH1o8nG641MLvR4DAAAAAAAAAAAAAAAA8AyFJAAAAACopEcfTbwfi0nhcOKa3y81Nko+X257+nzO8ckh6nDY2X+466N0qiVCXGUR6oaYNHeT11Nktte4vTRzwsyMj7f3tmvl1pUJQdhAIFCJ0TCG5Bo6dmUKHucaOnYRPB4e7xeMBvkEqF3pQtT5BKhdhKgBAAAAAAAAAAAAYOz6+O2n6vF3X/B6DEnSqRPn677LHvd6DAAAAAAAAAAAAAAAAMBTVVLIAgAAAIAxoL1dWrEicW0gTcyvvj7/kLBhOOclS96/tdWZA6UXj3s9gcPOLXJaSS/eLb13o9dTpMolQL26Y7W6I90EYVE2+YaOXcnB43xDxy6Cx+nxfsFoUEiA2jU0RF1IgNpFiBoAAAAAAAAAAAAAxp5L7zpbj215zusxJEnH7TZHv77iKa/HAAAAAAAAAAAAAAAAADxHhBoAAAAAKmXVqsT7ti1FIolrtbWSz1fY/j6fc/5QkUhqlDh5DpRGrEpCoZbl9QRpVVuIOtcAtRuOJQiLcrBtW6vaV+UdOt51/s7g8avtrxYUOnb1RHq0qn2V7CqM2HuB9wtGg2g0WnCA2jUQG9DTG54uOEDtat3aqmg0WtQeAAAAAAAAAAAAAICR4ap7PqYHN/3Z6zEkSe8bd4h+f9ULXo8BAAAAAAAAAAAAAAAAVAUi1AAAAABQKWvWJN5PFy0OBou7Rrrzk6+zdm1x10B61RJ/Hi5Wanr7ZYBqCVHnG6B2EaJGqRmGoakNU2XIKHgPW7Y6BjoKDh1LkqGdcxiFzzGa8H7BaBAIBBTyh7weQ5IU8ocUCAS8HgMAAAAAAAAAAAAAUGZfeuSzunfjH70eQ5I0p+FA/eWzy7weAwAAAAAAAAAAAAAAAKgaRKgBAAAAoFLWr0+8nxyH9vuLjwSbprPPcNdZt664ayC9aolQD6cKApBeh6hD/lBBAWoXIWqUWnN9s/afsH9RweNiGDK0/4T91Vzf7Mn1qxXvF4wGLdNaPA9Rh/whtUxr8XQGAAAAAAAAAAAAAED5fe2xL+qOf9zlfA+j6fN0lkPqZmjR1a2ezgAAAAAAAAAAAAAAAABUGyLUAAAAAFApnZ2J9+PxxPu+Ev3gRfI+yddJngNjR0OD1xNI2hmi3uTNtQdiA1q5ZWXax7IFqF2EqFFqXgWPCR0Pj/cLRgMvQ9QEqAEAAAAAAAAAAABgbPj241/Tra23Dy54GKLeP/geLf78q55cGwAAAAAAAAAAAAAAAKhmfq8HAAAAAIAxI5YlWGuUKHKZbZ9sc6AwpilZltdTDG/iRGnbNq+nkCS9eLeh911s6+97Vv7a7/a/q5VbVuqwyYftWss1QO1yQ9SHNB8iv8mXV1A8Nzicz8dhMQgd54b3C0aDlmktWrJxiQZiAxW7ZlkC1LYlxbMfVtC+yYb+ddmIl+fvz5bt3JLXhv63xo5L5fjrpWVJ8SEbx+OJs9hlep1RWckfX3b5/z8GAAAAAAAAAACAseemp76tHyz7kazkf9w0TUmGZFXu3x5n1OyhF7+0pmLXAwAAAAAAAAAAAAAAAEYSKkkAAAAAUCn+LJ+ClSoKlm2fbHOgMIFAdcT6TDPzY7W1lZsjB9USos43QO0iRI1Sq1TwmNBxfni/YDSoZIi6LAFqSQqHS7+nNPgkItGYFEtTuY77nChzJRhKfUIZ3zB/tytUOCxFo87fXeMxKRp3QtSmKdXs/DtNuL/010WFxZVQMY9Fpd5eyR9wPncBAAAAAAAAAAAAivTjZ2/SjUv/NzVA7TINSQHJipZ9lr0Dk/Tc/2st+3UAAAAAAAAAAAAAAACAkaoM9QIAAAAAQFpNTYn3fb7E+/ESxe2S90m+TvIcKI2GBq8ncAwXlCtV6LxI8SFtxeM3lGhTI/shyd7tf1dLNy4tKizbE+nRqvZVsqvkbYuRr7m+WftP2F9GIR/UOSB0XBjeLxgNWqa1KOQPlfUaZQtQl1skQ4B6NItGnQC1y7adzyPCVfCkKiivWLR8UXcAAAAAAAAAAACMGXe+8BN9/YVvKa4s/9ZqSvKV90lS9/RP1PNX/EMNfG8kAAAAAAAAAAAAAAAAkBERagAAAAColBkzEu/7/Yn3YzHJsoq7hmU5+wx3nX33Le4aSK+5SsKhtbWZH+vsrNwcGXQFpbM+Ji080NYXT7L1PY87lX2xPkWtaMHnGzI0tWGqDKM8YVqMTeUKHhM6Lg7vF4wG5QxRj9gAtRUv3ZPBjBTxuPN6p2PFpWiRn5Og+llxKRzxegoAAAAAAAAAAACMUL/8+1269tn/yR6gdhkqW4h6im+Cln56FQFqAAAAAAAAAAAAAAAAIAt/9kMAAAAAACWx336J95Pj0JIUDg8fEc4mHE5dS77OzJmF74/MJk70egLHcB8/bW2VmyONrqB03jnSiinSs/tIPQGpxC3Xgli2pZgVk9/M78skhGNRTu7H1eqO1bJlF70fH6+lwfsFo0HLtBYt2bhEA7GBku05YgPUkmQX/2d5xMn2xDe2JZ7DdAyIxrIfAwAAAAAAAAAAACT57Sv365pFX1BMef57kxuijkdLNsvuZqNeuvI1AtQAAAAAAAAAAAAAAABADohQAwAAAEClzJqVeN8wpJoaKRIZXOvvd9Z8vvz3j8ed84eqqXGuM9Qhh+S/N7KrloChbUt9fdJrrznR6fZ252OjtlYaKF1sMl9DA9RdNVJvTQk3L0HIOt8QNeFYVEJzfbPa+9rVMdBR9F67hXbj47VEeL9gNGiZ1qKnNzxd0v2Kkq53XF9f3J65su3Ev0tELSk25IeeK/mEGeGkv6vZdurf5UthYEAaSPPkNbuuW/pLAgAAAAAAAAAAABj5Hln5O13xlysVtQsMSe8KUcdU7D9MTjAa9PwVLxOgBgAAAAAAAAAAAAAAAHJEhBoAAAAAKqW5WTr8cGnFisG1UCgxQi1Jvb1SY2N+wTnbds5LFgol3p89W5o4Mfd9kbtw2ImHx+PeztHRIT32mOQf8im/aUqBgGcjDQ1Q9/urL0DtsmxLlmXJNNOVMIdekgA1KqO9t13bB7aXZK/tA9vV3tvOx20J8H7BaLBk45KS71dciNr07u9RWf6/LyPL42VjlidALZVvX4wsAf6JEAAAAAAAAAAAALlb9OqfdcmjlxQeoHYZknz+okLU4416vfDpVzRlwl7FzQIAAAAAAAAAAAAAAACMIV7VEwAAAABgbDr99MT7fr8UDCauxWJSd3fuEb543Dk+FktcDwYTQ8Tpro/SicWkujqvp3Bi2P39Ul+fEzi3LE/HGRqgHvBLO4LZz/GK3/AToEbVaO9t1+qO1bIL/GG7ZLZsre5Yrfbe9pLsN1bxfsFosGTjEg3EBkq650BsoPiwdU0o+zHl4PNJpi/9Y6ZPCnj0zyjlDASbPuf1xthl+qRgKZ8ZBgAAAAAAAAAAAKPZC2uf08f/cIHCdqQ0G7ohauX/BLpNqtOTFzxLgBoAAAAAAAAAAAAAAADIExFqAAAAAKiko4+WJk9OXKurk5LDt7GY1NnpxIQzRYQty3m8szM1QG2aqUHkKVOkefOKmx+Z+f1STU3q+9Ir8bgTpO7tlbq6nN9XWHKAentQhfzcUGYl3IsANapJqUPHLoLHxeH9gtGgHAFqV9Ehar9Pqq335u9SgcDOH3DeyTCcSHOwjCHojEwpECx/JLrG77zNMfb4A1Koip8ZBgAAAAAAAAAAAFWldeMyLXjoXIWtEn//WQEh6kbVatEnntPM6YeWdhYAAAAAAAAAAAAAAABgDPCioAAAAAAAY5ffL11+uXT99YNrhiE1NjqhYDspbNnf79z8fidEZxjOMfF4ang6eT8j6YczLr/c2Qfl0dTkvM1DIamvz+tpEtm21N1d0UsODVDbkrbXqGoD1IYMAtSoGuUKHbvc4LEkPp7zwPsFo0E5A9QuN0TdMq2lsA38PsnfIMmSrPL8eUvh80mR6OD9SCTx79mGUblgryFV5LlDY3HJkhTwOzdJGvqpRcAnjWss/xwor64dkj3k48kfkOrrPRsHAAAAAAAAAAAAI0/rxmU6/f4PqS/eX54LuCHqeEzK8j0Z9QrpkfP/SIAaAAAAAAAAAAAAAAAAKBD1MQAAAACotHnzpJNPlhYtGlzz+aRx45xQsGWlnhOLZY5OD2WaToDa50tcP+UU6X3vK25uDG/GDOmVV5xw4Rg3NEAtSe/WqrQ9xVLGrOXEXy3LyhiiJkCNSil36NhF8Dg/vF8wGlQiQO0qOkQtSTIr0mJ2LmVKviEX8/klKz7kvm/0PZGLkeaNO/RVHI2v81hkGtKQD+WUJykCAAAAAAAAAADAmNbZ16mmuqaMj69961Wd+cDp6o33DbuPbRf5T1E5hKjrFNRvzvmNZs88pogLAQAAAAAAAAAAAAAAAGNbpTIOAAAAAIChLrtMmjo1cc3nk5qapGCwsD2DQef85AD11KnSpZcWtidyt99+UjQqxePZjx3F4oZ0/kcGA9QxSTHfsKfkzlDJA9SS5Df8GQPUkrRbaDeCsCi7SoWOXW7wuL23vSLXG6l4v2A0qGSA2uWGqAEAAAAAAAAAAAAA1eeZN5/R+P8dr/1u2S/t42vfelUn33u8uiNdmbrQkqSe/h51D/QoZhX5PXNuiDrNN4cFFdCD5zyo+bNOLe4aAAAAAAAAAAAAAAAAwBhHhBoAAAAAvNDQIN1wgzRxYuK6YUj19dK4cVJNTW571dQ4x9fXO+cPNXGic52GhtLMjcxmzZL6+yW7MqHSauWzpYuWS+bON4Nf0m49Jdi4DPFpKXuAWpK2D2wnCIuyqnTo2EXweHi8XzAaeBGgdhGiBgAAAAAAAAAAAIDq88ybz+jEX54oSVq7fW1KiLptx0adct8J6oz1OAFqK542RN3T3yNr5+/7wv0lDFEPfi9XUH7dd8YvCFADAAAAAAAAAAAAAAAAJUCEGgAAAAC8MmWKdNNN0tSpqY/5/U44erfdpMZGqbbWiU27t9paZ3233Zzj/P7UPaZOdfafMqX8rwsc8SJ/kGaUOPt16cd/GgxRh1RgiNoYciuDXALUEkFYlJdXoWMXH9/p8X7BaOBlgNpFiBoAAAAAAAAAAAAAqsfQALVraIi6bcdGHfPTudoR7R48wJbzfXFDvoViaIDaVboQtU+SqYB8uvPfbtPJR360uD0BAAAAAAAAAAAAAAAASCJCDQAAAADemjJFuuUW6ZRT0j9uGFIg4ESnGxoGb7W1zrqRoc57yinOvgSoK2fVKsn2JlZajQoOUZc5PO3KNUDtIgiLcrBtW5t7NhcVOjZkaEJogowi/tDY2jkH/w2TxPsFo0M0GvU8QO0aiA0oGo16PQYAAAAAAAAAAAAAjGnpAtSutdvXao9vTdZxt83Ttmhn+g12hqjTBahdpQpR+/1B3Xryj3Tm0RcUtxcAAAAAAAAAAAAAAACAXYhQAwAAAIDXGhqkq6+Wrr+++Gj0lCnOPldf7eyLymltJUKdJG2IuleJoenk2zBMw1SNr0Y1vpqi5so3QO0iRI1SMwxDs5pnqaGmsP9eGzK0/4T9dXDzwdp/wv4FB48baho0q3mWjExPbDDG8H7BaBAIBDR70uyi9gj5QzpxnxMV8oeK2mf2pNkKBAJF7QEAAAAAAAAAAAAAKNxwAWpJkiXt6NmqDb2bht2nb6An61N6Fxui9suv75/yvzp3/qcK3gMAAAAAAAAAAAAAAABAKiLUAAAAAFAt5s2T7rpLuvZa6fDD8zt39mzpq191zp83ryzjIYsXX/R6gqqUHKK260MyC/hyhGmY8pv+Xfd9hq+geQoNULsIUaPU/KZfhzQfknfw2A0dN9c3S5Ka65sLCh431DTokOZDEv58gfcLRocJdRMKDlGH/CG1TGuRJLVMayk4RD170mxNqJtQ0LkAAAAAAAAAAAAAgOLlEqAOhaWYT7JsqS/an/awvmi/LFsybGX9LohCQ9Q++fTt47+pT7yXADUAAAAAAAAAAAAAAABQalRMAAAAAKCa+P3Sscc6t/Z2adUqae1aad06qbNTisWcY5qapH33lWbOlA45RJo40evJsWmT1xNUrbNfd15e+SFDsRq/7Gg4r/OTA9SFKjZA7XJD1JJ2hWaBYrjB43+2/1M9kZ6sxyeHjl3u/dUdq2XLzroPoePh8X7BaOCGqFu3tuZ8ztAAtatlWouWbFyigdhAzvsQoAYAAAAAAAAAAAAAb2UNUGswQO1yQ9R1gdpda26A2mXYkgwN+10QfeF+1QVr5Td9wxw1yJSp6+Z/VZfM/3ROxwMAAAAAAAAAAAAAAADIDyUTAAAAAKhWzc3S8cc7N1S/gdyjjGPR2a9Luv5r+o83vptThNWVKUAdt+N5Xb9UAWoXIWqUWq7B40yhY1euwWNCx7nh/YLRIJ8QdboAtSufEDUBagAAAAAAAAAAAADwVi4B6to+KZrmWxSGhqiTA9SuUoaoTZn68rwv6Mrjrxn2OAAAAAAAAAAAAAAAAACFK119CQAAAACAscyyvJ6gui1YoPHvPU4Ddm6xbr/hd25pQqyReCTny7r7lDJA7XJD1O297SXfG2OTGzxuqGlI+3i20LGrub5Z+0/YX4aMtI8TOs4P7xeMBm6IejjDBahdLdNaFPKHhj2GADUAAAAAAAAAAAAAeKuzr7PgALXLsqWeSPoAtcuwleG7IAb1hftlD1eqlvS5oz6ja066NstOAAAAAAAAAAAAAAAAAIpBhBoAAAAAAJTXjBl65n8uyPqDTUPF7FjacHQ+AWpJitvxjAFqQ4YmhCZkDMLmwpatzT2bZWf7SSkgR5mCx7mGjl2ZgseEjgvD+wWjwXAh6lwC1K7hQtQEqAEAAAAAAAAAAADAe011TZq528yMj2cLUOcjW4jalGQMc8Clh35K1576jdIMAwAAAAAAAAAAAAAAACAjItQAAAAAAECSFC+8xZx5n5oaPXP/DTrxd2fkvU9ycDrfALXkRKKj8WjKuhuOPbj54LRB2Fw11DRoVvMsGcP9pBSQp+Tgcb6hY1dy8JjQcXF4v2A0SBeizidA7UoXoiZADQAAAAAAAAAAAADVY81Va9KGqEsZoHZlClGbkhpqG9I84rhw1gW68cwflnYYAAAAAAAAAAAAAAAAAGlRNgEAAAAAIBft7dKqVdKaNdL69VJnpxSLSX6/1NTk9XRF6wpK539Eumi5dPbrhe+z8EDp50dI9z8sjYsYeub46Trx8Y8VvF8kHlGNr6agALXLDVEHfAFJqeFY9+XqjtWyZee8L+FYlJMbPF7VvkpTG6bmHTp2uedt7tmsWc2z+HgtEu8XjAZuiLp1a2tBAWpXy7QWLdm4RAOxAQLUAAAAAAAAAAAAAFCF1ly1Rvvdsp/Wbl8rqTwBapdhSzK067uvsgWoLzjw3/WDs35anmEAAAAAAAAAAAAAAAAApKBuAgAAAABAJrGYtGSJ9Oij0sqVXk9TNl1B6bxzpBVTpOV7OGuFhKgXHihd+UHJMqTzzjN15+JxOvHoN4qer5gAtcsNUdf4ahIC1K58Q9QEqFEJftOvwyYdJsMwitqnub5ZE+smFr0PHLxfMBpMqJugY/c8VoFAoKh9Wqa1KBqNFr0PAAAAAAAAAAAAAKA83BD15o1rFSnzP+26IWpDwweoPzLjTN3y0TvLOwwAAAAAAAAAAAAAAACABJSSAAAAAABIZ+lS6bbbpC1bcjveMCQ7e7y42gwNUEtOQPrKDzq/zydEPTRALcPQisnSJSf0a0akXuuDvSWfuxCZAtSuXEPUBKhRSaUKFBM6Li3eLxgNShWOJkANAAAAAAAAAAAAANVtTt1MvVWzVsN8S1TJ+CTVBesyPv6hfU7V3f9+f/kHAQAAAAAAAAAAAAAAAJCAWhIAAAAAAEP19Ei33y4tWpTfeaYpxePlmalMkgPUrnxD1MkBau2Mqq7YPaopwQky1S9LVmmHz1PQFxw2QO3KFqImQA0AAAAAAAAAAAAAAABgpLj4F+fo8U3PqS5Qq75ov6wyhqhNQ6oL1Mq5iOV8T90QJ+15nO47/6HyDQAAAAAAAAAAAAAAAAAgI4pJAAAAAAC42tqkr3xF2rw5/eO2LcVizm1ocNrnk/z+ERWhzhSgdqUNUft8g5Fpn0+ybS2cEdaVp+0MUEu7AtSSNOCztUJtCvhqFI1HPQtR5xqgdmUKUROgBgAAAAAAAAAAAAAAADBSXHrvx/Twv/606345Q9S7AtSupBD1cVPn66H/fLT0FwYAAAAAAAAAAAAAAACQE6pJAAAAAABIToD66qulbdtSH4vFpIEBKRLJfL5dhp/MKZNsAWrXrhC1IZ39hik1Ne36oSCZphZOfFdXfiBzgLqzxpYMU1ErqoAv4EmIOt8AtSs5RE2AGgAAAAAAAAAAAAAAAMBI8ZlfX6QH1z+Ssl6OEHVKgNq1M0T9vsnv1e8v/EvpLggAAAAAAAAAAAAAAAAgb5STAAAAAADo6ZG+8pXUALVtS319UjicfQ/DGBEh6lwD1C7LkK48TZLP1NltOwPUtq2Fkzt05SnWYIBa2hWhHgxQDz7khqjD8RzeliUS8oW034T98g5Qu9zzNvds1qzmWQSoAQAAAAAAAAAAAAAAAFS9L/3hM/rlG7/O+HhdoFY9kf6SXS9tgHqnw8cdqL9c8kzJrgUAAAAAAAAAAAAAAACgMKbXAwAAAAAA4Lnbb5c2b05ci8elzs7cAtQjRL4BapdlSFeeGtfCGWEpHtfCPTp15SmxtAFqSerz2ylrkhOi9hm+AqfPn9/0a2LdxKL2aK5v1mGTDiNADQAAAAAAAAAAAAAAAKDqfe2xL+qOf/5c8mX+Pq2+aOkC1MPtd0jT/nr2My+X9FoAAAAAAAAAAAAAAAAACkNBCQAAAAAwti1dKi1alLgWj0tdXZJtpz/H73d+SMcwnGPicSkWK/+sRYgb0vkfyT9A7bIM6cpje/T7PW09NV2JAWopITi9W8TU9qCtqJF8kGTZlgwZspXhbVtCezbsKSPNDPkqxR4AAAAAAAAAAAAAAAAAUE7ffvxrurX1dueOIed73OLxhGP6ov2ySvytW5bt7FsXqN21tn/DPlr8362lvRAAAAAAAAAAAAAAAACAghGhBgAAAACMXbGYdNttiWu2LXV3pwaoDUMKhaRgUDLN1L0sS+rtlcLh8s1bBJ8tXbRcWr5HmoB0LmxblqQnZ6R5LOntYdjSbqHx2m71KWpFU2cxfTINU5F4pIBBcmPKlM/0lW1/AAAAAAAAAAAAAAAAAKgWNz11g36w7EeyZA0uJoWoyxGgdg0NUc+on6YXr361PBcCAAAAAAAAAAAAAAAAUBAi1AAAAACAsetvf5O2bElc6+tzgtJD+f1Sfb3zAzmZmKYTrjaM1IB1lTj7defllR8sMESdhm1Itp349orU+NRn9cmWLdmSJUvGzl9Bf1DWzuNrfDVlCVGbMmWoRK8gAAAAAAAAAAAAAAAAAFSxO1/4iW5c+r3EALVrZ4i6b6CnbAFql2VL8XBYz312WXkvBAAAAAAAAAAAAAAAACBvptcDAAAAAADgmUcfTbwfi0nhcOKa3y81Ng4foJakeNw536ju+PHZr0s//pNkFvkDRbackHXyNpZpqC/kcwLUkvw+vwwZsmXLNM2EEwhQAwAAAAAAAAAAAAAAAEDhfvn3u/SVZ7+quOIZj+kZ6FGsArP441J3wNIRv5hTgasBAAAAAAAAAAAAAAAAyAcRagAAAADA2NTeLq1Ykbg2MJB6XH19bmHp2JAf0zGr+9PtYkLUtiTbcG7JLNNQd70/5bGAL6CGmgaZhqmoFZXs8gSoJcmSVZZ9AQAAAAAAAAAAAAAAAKCa/PaV+3X1k58fPkDd37PrO6qsHL4NrlD+uDQQlGRKa7ev1X637Fe+iwEAAAAAAAAAAAAAAADIW3VXsQAAAAAAKJdVqxLv27YUSQoj19ZKPl9u+8WTfpAnl3C1h7KFqO3km+H8EJJtOPeTuQFqy0x8vQ0ZOmDCATpyypFqqGmQJEWs8gSoXcP9UBUAAAAAAAAAAAAAAAAAjHSPrPydrvjLlYoplvGYoQFqVzlC1D5rMEDtIkQNAAAAAAAAAAAAAAAAVBci1AAAAACAsWnNmsT7sTQ/jBMM5r5fuvOrXNoQtWHINgwnNj30Nsw+AwFDHXWGIoorZsUSbiFfSDW+GvlNvw5pPkRxuzKBaELUAAAAAAAAAAAAAAAAAEajR1b+Tpc8eomidjTjMekC1K5Shqh9lhQOKO1PqBGiBgAAAAAAAAAAAAAAAKoHEWoAAAAAwNi0fn3i/eSItN8vmXl82mzbw9+vNoYhmabOfsPQj/9sOCFqw3BuOYobUmfIUFdQsmTLthNvIV9IhmEobjlB6L9v/nuZXpn01mxfk/0gAAAAAAAAAAAAAAAAABghFr36Z13y6KUK25GMx9i2MgaoXaUIUe8KUPsyH7N2+1p19nUWfzEAAAAAAAAAAAAAAAAARSFCDQAAAAAYmzqTfrAlHk+87xvmJ2PSqfbo9FDBoDR+vHM79FCdXXOYfvx8o0zl9pNFEZ8Tn+6oNxT2pz+m1l+rGl/NrvtLNi7RQGyg+NnzELWiWrJxSUWvCQAAAAAAAAAAAAAAAADl8MLa5/TxP1ygsB0e9jjDkOqCtVn3Gy5EbRpSQ02tzAzHmJac7x3L8m12T3/iaTXVNWWdBQAAAAAAAAAAAAAAAEB5ZUhFAQAAAAAwysViwz9u5BZkLuh4wxiMVpum5PdL0WhiyHroMaXU3CydcYZ08MHSIYdIEydKks5ub9fvX/6qnoy+oVikX7IsGbZkG84PG0UNWzGfoYhv+B8+kiS/6U8IUL/67quKWJHSvy45GIgNaMnGJWqZ1uLJ9QEAAAAAAAAAAAAAAACgWK0bl2nBQ+cqbA0foHb5TZ/qgrXqC/cPe5xlSGbSt6mZhlQXcCLWdYFa9UX7ZQ05xrSkiF9Zfyrt6U88rROmn5DTvAAAAAAAAAAAAAAAAADKy/R6AAAAAAAAPOHP8hMw+QagkyPU2aLUhuHcfD5p3Dhpt92cmUzTuZU6QG0YUigkxePSsmXSgQfuClBL0sLYP/VUYKPU2Ki+hqC6GgLqbAw4L2tN9QQNDfgHA9SmYWa8xayYInEnOt0Z7vQsQO1yQ9QAAAAAAAAAAAAAAAAAMNK0blym0+//kPriwwelk7kh6mysId/qNjRA7aoL1Mp0v2/MliI+EaAGAAAAAAAAAAAAAAAARpgs3/IDAAAAAMAo1dSUeN/nS7wfj+e3n98vxWL5z+HGqk3TmamvT+rP74eFcrqGYUiRiDPj229L11wj3XSTNGWKFr7zjK589SZZvtyeq8owDPlMX8bHrbil/li/YrGYbJU4pl2ggdiAotGoAoGA16MAAAAAADAmtbe366WXXtK6devU1dWlQCCg3XffXQcffLCOOuqoqvucva2tTW+++abefvttbd26Vb29vYpGoxo3bpyampq0zz776IgjjtC4cePKOsc777yjV155Re+884527NihcDispqYmjR8/XgceeKAOO+ww1dTUlHUGAAAAAAAAAN5Zu+kNnXn/GeqN9RV0vhui7gsP/z1pliH5lBqgdtUFahWO9qtfkrJ8OZcANQAAAAAAAAAAAAAAAFB9iFADAAAAAMamGTOk5csH7/uTPkWOxSTLcuLQuUiOWOdq6HUNQ6qpKX2E2rYHY9eWJXV3O6/Xdddp4Xf/U1e+8cOcA9T5iCqqGtUookjBe4T8IbVMa9GSjUs0EBsoeJ/Zk2ZXXcwKAAAAAICx4KGHHtKPfvQjvfDCC7Lt9E9W1djYqAULFugLX/iC9t9//wpPKO3YsUPPP/+8XnjhBb344ov6xz/+oXfffTfreYZh6NBDD9UnPvEJXXDBBZo0aVJJ5nnzzTd111136f7779e//vWvYY+tqanRCSecoE996lM666yz5E/+GhcAAAAAAACAEeutdzfolPtPVHesp6h9cglRm5LqQw3O95el+Vpu0KzRbxf8Wpc/e7XWbl+bcR8C1AAAAAAAAAAAAAAAAEB1Kn1hCgAAAACAkWC//RLvpwv0hMO575d8vht9zuc8y5K6unK/Zj4sK+U6CwNrdeVfvyxL6QNQpRBVVJNqCwswuQFqSWqZ1qKQP1TQPrMnzdaEugkFnQsAAAAAAAqzadMmHX/88Tr33HP1/PPPZwxQS1J3d7fuvvtuHXroofrmN7857LHlcOONN+qMM87QjTfeqGeeeSanALUk2batlStX6pprrtG+++6rH/zgB4rFYgXPEYlEdN111+nAAw/UDTfckDVA7Z7z+OOP69xzz9VRRx2lZcuWFXx9AAAAAAAAANWjrWuzTrjnWO2Ilub7ydwQdTqmpIbaBsmQZJop3/sWNAO678O/1MmHnak1V63RzN1mpt2HADUAAAAAAAAAAAAAAABQvYhQAwAAAADGplmzEu8bhlRTk7jW3y/F47nt5/MlBqWHiyUNfWzoOd3dw59XrCEh6oUzY7pyfpes/r78YtsF2B7ern2a9snrnKEBalchIWoC1AAAAAAAVN7q1as1d+5cPffcc3mdF4lE9LWvfU3nn3++4rl+TaZK9PT06Oqrr9bpp5+u/v7+vM/v6+vTBz7wAX3jG99QJBIpaIYVK1aopaVFCxcuLOh8AAAAAAAAANWhrWuzjrlznjoiO0q6b7oQ9a4AtSspRB0w/brzg3fo5MPO3HVIuhA1AWoAAAAAAAAAAAAAAACguvmzHwIAAAAAwCjU3Cwdfri0YsXgWigkJUd+enulxsZdP1QzrFBI6ulxQtLZYtK2LQUCzg/sSE7wOhrN73UohGVp4UGGrjzNliVJtpz4dTBYtkvasvVOzzvap2kfbejckPX4dAFqV8u0Fi3ZuEQDsYGs++zVuBcBaox40WhUgUCgavYBAAAAgGy2bdumU045Re+8807KY3PmzNGHP/xhTZ8+Xf39/Vq9erUeeOABbd68OeG4X/3qV5o0aZJuvvnmCk2dqL6+XkceeaQOOOAAzZw5U83NzWpsbFQ8HldXV5dWr16tJUuWaOnSpbKTvgb0+OOP6+yzz9af//xnGbl8PWmnBQsW6JlnnklZDwQCOu2009TS0qI999xTwWBQ27dv18qVK/XYY49pw4YNCcdHo1Gdd955euaZZzR//vyCXn8AAAAAAAAA3unp7tZxP5uvbeHtZdnfDVH3hftTA9SunSFqv23o1lN+pDPnfCzlkDVXrdF+t+yntdvXEqAGAAAAAAAAAAAAAAAARgAi1AAAAACAsev00xMj1H6/E2MOhwfXYjEn0lxfL/l8w+8XCDixasvK7frusZblxK7LLG5IjxwgJ0DtNpBsW4rHndc5xxB1clwpp3N2hqibAk3qjHZmPM6UmTFA7WqZ1qK//uuvitmxYY9rqEnzA1LACNLR16HWra3Dhtlz4YbbZ0+aTZgdAAAAQNldcskleuuttxLWGhsbdd999+nMM89MOf6GG27QDTfcoOuvvz5h/Uc/+pFOPfVUnXbaaeUcV5IUDAZ14okn6rTTTtNJJ52kww47TL5sXweStHbtWn3uc5/TH//4x4T1xx9/XD/72c90ySWX5HT93/zmN3rsscdS1k8//XTdcccdmjp1atrzbrnlFv3iF7/Qf//3f6u7u3vXejQa1aWXXqrly5fzhEQAAAAAAADACNLT3a15P5ujrQPvlvU6ftOnxlCDhnsePb/h1/f/7X917nsvzHjMmqvWqLOvU011TWWYEgAAAAAAAAAAAAAAAEApmV4PAAAAAACAZ44+Wpo8OXGtrk4ykz5djsWkzk6pvz9zYNqypIGB3APUkhSNStu3Szt25DV2IbqC0rxPSZ86U4MB6p1s21Kke4c6+jvU0d+hcCysaDyqaDyqSDyiuB2XnfwrzxB1NB6VLVs9sR7tFtwt7TGGDO1et3tO+80YP2PYx33KHooCqpkboJakgdiAlmxcUtA+boBaklq3tqqjr6NUIwIAAABAiieffFIPP/xwwlpNTY2efvrptAFqSQoEArruuut08803pzx21VVXKRYb/kmoSuHrX/+6nnrqKV1zzTU64ogjcgpQS9LMmTP1hz/8QZdffnnKYzfeeGPO1//BD36QsnbWWWfpD3/4Q8YAtSSZpqmLLrpIjz32WEpsetWqVXriiSdyngEAAAAAAACAt3q6uzX/rvdqU/87FbnecAFqn3z69vHf1Cfe+6ms+xCgBgAAAAAAAAAAAAAAAEYGItQAAAAAgLHL75eSI0GGITU2pv8pm/5+Jxjd1SX19kp9fc7Lri5nvb8//XmGkfmndvKMOReiKygtOEf6x2RpR0ga8CeNZ0v+mCXDsnZFpiXteplOzIrlHKKOWTHZshWNRyVJESuiw5sPT5xBhpqC+f1AUqbQNAFqjHRDA9SuQkLUQwPULkLUAAAAAMrpm9/8Zsraddddp6OOOirruZ/5zGd0yimnJKytXbtWDzzwQMnmKwfDMPTDH/5Qe++9d8L6m2++qWXLlmU9f9OmTXrppZcS1kKhkG677TaZyU+UlsGxxx6rSy+9NGX9D3/4Q07nAwAAAAAAAPDesT9/n97q2+j1GDJl6rr5X9Ul8z/t9SgAAAAAAAAAAAAAAAAASogINQAAAABgbJs3Tzr55MQ1n08aN07KFPqJxaRwWBoYcF7GYomPDw1OD/f7CgWozztHWjlF2q1fClhSZzA1RC1J/vjgPMMFqA0ZsmXnFKIeuo8tW4ZtaErDFO1ev7tmT5q9a798A9Su5OA0AWqMdOkC1K58QtTpAtQuQtQAAAAAymHVqlVavHhxwtrEiRN1zTXX5LzHd77znZS12267rejZyi0YDOqcc85JWX/11VeznvvGG2+kfH3lhBNO0JQpU/Ka4fzzz0+7NwAAAAAAAIDq976fzNaGnre9HkOmTH153hd05fG5f10XAAAAAAAAAAAAAAAAwMiQJjkFAAAAAMAYc9ll0quvSps3D675fFJTk9TX54Sm82EYUk2NFI2mhqZNUwoGnceS49Ul5gaoV+xsFhlyQtTba50QtSSFYoOP+eK2FJAs28q6t9/0K2bFFLNi8pt+GUMD2zulC1nHFNO7Pe8q5AtJkibWTFSv1atw3Hkbh+NhvfFu9kBST6RHlqydsxu7rmXJkslzbmGEGi5A7XJD1C3TWjIeM1yA2tW6tVWzJ83WhLoJhYwKAAAAACl+/etfp6xdeOGFqqmpyXmPOXPmaM6cOXr55Zd3rS1dulRvvvmmpk+fXpI5y2XfffdNWXvnnXeynrd169aUtYMOOijv66c7Z8uWLXnvAwAAAAAAAKCyWm6do9Wd67weQ5J0xezLdM1J13o9BgAAAAAAAAAAAAAAAIAyoMoEAAAAAEBDg3TDDdLEiYnrhiHV10vjxjlR6VzU1DjHNzZKdXXOHkP3q62V/H4pEEh8rMSSA9S7RpATog5YToh6wH16KlsyY3FF4pGse9uyZRqm/KZftmzFrJjspNh2ugC1qzPaqQ0dG7Spe5N64j2KxCIJt7aetqy37ki37CG/hl43rniubyagauQSoHa5Iep0cglQu1q3tqqjryPXEQEAAABgWH/5y19S1s4555y890l3Trq9q83AQOrnYrkEuNMdk0+42xUMBlPWQqFQ3vsAAAAAAAAAqJzjbztar+1Y7fUYkqRLD/2UvvGh73o9BgAAAAAAAAAAAAAAAIAyIUINAAAAAIAkTZki3XSTNHVq6mN+vxOq3m03Jy5dW+vEpt1bba2zvttuznH+nWVn03RC1H7/YIDa3PmpeDRatlclU4DalSlEHcvcjU4rU4h6uAC1q9fqVbSMbwNC1BhJ8glQu9KFqPMJULsIUQMAAAAohd7eXr3yyisJa3V1dTryyCPz3uvYY49NWVu8eHHBs1XKSy+9lLK27777Zj1v+vTpKWtvv/123tdPd04u1wcAAAAAAADgjQ/ceYJWdPzT6zEkSRfOukA3nvlDr8cAAAAAAAAAAAAAAAAAUEZEqAEAAAAAcE2ZIt1yi3TKKekfNwwpEHBi0g0Ng7faWmfdMNKfc8QR0hlnOKFqy5JiMSlenkhytgD1rrGUGKLu8UvdtblfJxKPSEoNUbvruei1ehWNly9EDYwEhQSoXUND1IUEqF2EqAEAAAAUq7W1VZZlJawdddRR8rtP1JWHuXPnKhAIJKy9/PLLRc1XbmvWrNHChQsT1kKhkN7//vdnPfewww7T7rvvnrD21FNP5f3kXX/6059S1k466aS89gAAAAAAAABQGafffbJebF/m9RiSpH/ff4F+cNZPvR4DAAAAAAAAAAAAAAAAQJkRoQYAAAAAYKiGBunqq6Xrr3ei1MUYP1467TTpyCOlPfZwQtTvf780bpxk286thLIFqJPTRW6IWpbUE8r/eulC1PmK7/xlF/Arm2iMwDWqWzQaLThA7RqIDejpDU8XHKB2tW5tzTtwBgAAAACu119/PWVt5syZBe1VU1OjadOmJaytW7dOsVisoP3Kbf369TrjjDM0MJD4edmFF16o8ePHZz3f5/Pp0ksvTVhra2vTLbfckvMMHR0d+u53v5uwNn78eF1wwQU57wEAAAAAAACgMs75xel6oe1Fr8eQJH1kxpn66bl3ez0GAAAAAAAAAAAAAAAAgAogQg0AAAAAQDrz5kl33SVde610+OH5nTt7tvTVr0qXXCJNmDC47vNJe+8tTZ4smaX9lDxuSOd/JHOAul/Suw3SlrrE9QFJlq/w67oh6phVXAjKkiUjz185bApUtUAgoJC/gAJ8GYT8IQUCAa/HAAAAADBCbdiwIWVt7733Lni/vfbaK+F+PB7XW2+9VfB+pRYOh7V06VL993//t2bNmqU33ngj4fHp06frO9/5Ts77ffnLX9aMGTMS1r74xS/q5z//edZzN27cqNNOO03vvPNOwvott9yixsbGnGcAAAAAAAAAUH7n3/9RPbXpOa/HkCR9aJ9Tdfe/3+/1GAAAAAAAAAAAAAAAAAAqxO/1AAAAAAAAVC2/Xzr2WOfW3i6tWiWtXSutWyd1dkqxmHNMU5O0777SzJnSIYdIEyc65//+96l7dndLr78u2bZkGM7LAsR3Nph99uDLi5ZLy/eQrKQ+c7+kHQ3O7y3TCVFP7pOiQ9aL4YaoixVXXD4VUcROEqghqIvq1zKtRUs2LtFAbMCzGUL+kFqmtXh2fQAAAAAjX1tbW8rae97znoL3S3fuli1bUkLN5bRo0SJdc801CWuxWEzd3d3avHmzYrH0T8i133776YknnlBTU1PO12poaNCf//xnnXDCCdq8ebMkJ7x98cUX6xe/+IUuuugizZ8/X1OnTlUwGNT27dv1j3/8Q3/84x/185//XF1dXQn7fetb39IFF1yQ52tcXrfeeqt++tOflv0669atK/s1AAAAAAAAgEJc/Kvz9acNT3g9hiTppD2P033nP+T1GAAAAAAAAAAAAAAAAAAqiAg1AAAAAAC5aG6Wjj/eueUqGk28H4lIixY58eoC49OS1BWUFpwjbauTvrJYOvt1Z919eeUHB0PUQwPULjdE3RSRZEkyCx6lpEoZoAZGEi9D1ASoASALW5JV+N/bqpJteT0BAGAU6ujoSFlraCj8ma/Snbtt27aC9yvEjh07tGLFipyPr6+v12WXXaavf/3rqq+vz/t6+++/v1555RVddtll+v2QJzZbvHixFi9enNMe06dP1y233KLTTz897+uXW3t7u1599VWvxwAAAAAAAAA8cemD/6mH1z/i9RiSpPlT5umh/3zU6zEAAAAAAAAAAAAAAAAAVBgRagAAAAAAysWf9Gn3iy9K27dLVm7hv7gh+ZKah11B6aMLpMV7S1FT+tSZznq6EHWvkRqgdlmmtD2U4+tRAaUOUBO0xkjjRYiaADUA5MCKS/19Zdzfdp64xI6X7xrJIjEpnnQ9w5R8phTg71AAgML09vamrNXW1ha8X7pz+/rK+P/kIhiGoYsvvlg33HCDmpubi9pr8uTJWrhwoV555RXdc889uvvuu9Xf35/1vDlz5uiLX/yizj77bPmTvx4FAAAAAAAAwFOf+/3/04Nrfuf1GJKk9zUfpUcvftLrMQAAAAAAAAAAAAAAAAB4gJ8+BAAAAACgXBoapG3bnN+/8or02muSbQ9/zk5dQen8j0gXLR8MSycHqCVpRyh9iPofu0vXnZznvEaex5dA0AzqyElH5n3eO73vaEP3hoQ1wtMY6SoZoiZADQBVwLKlSOWefGBYtiXFLGcmf43X0wAARqBoNJqyFgoV/uxX6SLUkUik4P3KybZt3XXXXXrkkUf0//7f/9PnPvc5NTY2FrzfunXrdPfdd+uhhx7KKUAtSS+//LK+8pWv6F//+pcuu+wyNTRkeFYyAAAAAAAAABX1pUc+q3tW3ev1GJKkwyccor9c8ozXYwAAAAAAAAAAAAAAAADwiOn1AAAAAAAAjFrBoHNbvFhatiyvAPV550gvT5Wu/KC08MD0AWqXG6JeeKBkS3r6PQUEqD0Q8oc0f6/5qg3V5n2rCdTIN+SXyZc4MEq0TGtRyF94qC0XBKgBoEqkiXV6zoo7NwAASsAwCn+2q3Tn2jl+XaVUzjnnHNm2nXDr7e3Vpk2btGjRIn3961/X9OnTdx2/detWXX/99TrssMP04osv5n29aDSq//mf/9EBBxygn/70p9q6dWvC43V1ddpnn3108MEHa+rUqTLNxK+FrF27Vp///Od10EEH6emnny7slQYAAAAAAABQMl976mu6Y9U9Xo8hSTpo/AF69vK/eT0GAAAAAAAAAAAAAAAAAA9RaAIAAAAAoFy2b5ceflhaty7vAPWKKc59y5Cu+KB07H8mBqgtOcFplxui/uYx0kkXFTBr4V2oghDBBTIrZ4iaP3sAUCVsW7KrNPZsWV5PAAAYgQKBQMpaf39/wfulO7empqbg/Uqlrq5OU6dO1UknnaSvfe1rWrdunX7yk5+ovr5+1zEbNmzQySefrCVLluS8byQS0Uc+8hF961vfUjw++HeE2tpaffrTn9ayZcvU1dWlN998U6tWrdKmTZvU0dGhhx9+WO9///sT9tq4caNOPfVU/e53vyv+FQYAAAAAAABQkJuev0m3vnSrZBiS6fN0lv2b9tWSK5Z5OgMAAAAAAAAAAAAAAAAA7/m9HgAAAAAAgILZttTTIw0MSLFY4mO9vdKaNeW7dn+/c41oVPL7pfp6qa5u8PEdO6T/+7/BY3KQHKCWnNj09jrpnUanE23YzpqMnRFqe7AfvT0kXXdSCV63MjNlEsEFsmiZ1qIlG5doIDZQsj0JUANAGkbSM3EEfJK/Lv2xpZTuCUrCYSU+zYhXqmEGAMBIU1eX+v/PUkeoh4aeq4VhGLriiit06KGH6gMf+MCuuXt6enTeeedp5cqV2m233bLu85nPfEaPPvpowtrMmTP1+9//XrNmzUp7TlNTk84++2ydffbZuu222/TpT39a1s4nk4jFYjr//PN14IEHZjy/0pqbm3XwwQeX/Trr1q1TOBwu+3UAAAAAAACATH78tx/rO89/R5Z2PvmrG6K2Kv8ktfs0vEcvfrq14tcFAAAAAAAAAAAAAAAAUH2IUAMAAAAARibblt59N3Pg2balneGdrLq6pE2bpLY2qb1d6uuT4nHJ53PC0s3N0pQp0p57SuPGOcf39Djn9vZKW7dK27Y567GYM9PWrc7vDcPZK9sImQLUtVLEt/NVkmQndRJtQ7tC1MmP5azQ8wq0e+3ulb0gMEK1TGvR0xueLul+AIAkPjPxvmFU5u9GllID2NUSfzZ8Xk8AABiBdt899XP9HvdrJwVId266a1SL97///br++uv1xS9+cdfaxo0b9f3vf1/f+ta3hj13yZIluv322xPWJkyYoCeeeELTp0/P6fqXX365wuGwPvvZz+5aC4fDuvzyy/XXv/41j9ekfK644gpdccUVZb/OrFmz9Oqrr5b9OgAAAAAAAEA6d750p77+168PBqhdHoSo96qbpsUXvVix6wEAAAAAAAAAAAAAAACobkSoAQAAAAAjU09P5gB1LuJxac0aqbVVevvt4Y/9178Gfz9tmrTXXk7keu1aJ1w9lGlK4bAToJac47LIFKBur5WsHBqAboi6IBUOUPtE1BDI1ZKNS0q+HyFqAEjir5F80ZyeNGRMMEzniVgAAMjT5MmTU9Y2btxY8H5vp/laTbprVJPPfOYz+ta3vqXu7u5da3feeae++c1vykh58olB3//+91PWrr322pwD1K6rrrpK99xzj1auXLlrbfHixXrllVd05JFH5rUXAAAAAAAAgPz9cvkvde3T1ypuZ/i3R8OQTL9kxco+y561e+iFT/1dDY2NZb8WAAAAAAAAAAAAAAAAgJGBCDUAAACA6hKPS5FIagRuwwZpSMAFUHu7NDAweN/cGcwLBLKfu3at9NRTUldX/td9803pjTec3wcCqZG+WGwwQJ2DrqC04Bxp5ZAAta3cA9S7zikkJk2AGqhaSzYu0UBsIPuBeRiIDRCiBoB0amul8IAULf8Pe1c1n08K8M9GAIDCpAsm/2vok3rl6a233kq47/P5tNdeexW8XyUEg0GdeOKJ+sMf/rBrrb29Xa+++qpmzZqV9pxYLKYnnngiYc0wDF1wwQV5X980TV1wwQX6/Oc/n7D++OOPE6EGAAAAAAAAyuy3//ytrn7iasXsLP/maKjsIepJoYla+l8vE6AGAAAAAAAAAAAAAAAAkICaAAAAAIDq0dOTOQq8aZO0bVtl50F16+qSotHU9ZoaqbFRMgznNtTAgBOfXrUq/+vZthQOJwamI5HB8LVhOMdEIrm/CkHpowukxXtLdVEptHPrAeUXoB4p4ooTogZyUI4AtYsQNQCkYZhSqE4KWVLMlmSV/5q2LdlJT7wTT7p2oMZ5opVS6+2VIkP+Hm2Y/GsRAKBoBxxwQMra2rVrC9orEono7bffTljbd9995fdX//+w9tlnn5S19evXZ4xQr1+/Xj09PQlr++67r5qbmwu6/rx581LWVq5cWdBeAAAAAAAAAHLzyGuP6Io/XZE9QO0yJPn8Urz0Ierdg7vpuf96gQA1AAAAAAAAAAAAAAAAgBTV/1OaAAAAAMaG/v7MAWogHb8/fYQ6EpG6u6Xx4524n6uzU3rwQWnHjvT72bYUj0uW5dxcbvgvGk3cz+We4/cP/j4HcUNacI4ToI6aUmdw5xgxaUdDTlsUx8h+SDnEFc9+EDCGlTNA7SJEDQCZuDHmCjxphmU5P1g+lM9IvHZNjeQrQ4Q6HEkNYAMAUKQjjjhCpmnKGvJ1kWXLlikWi+Udj162bJmiSV/zOfLII0syZ7mFQqGUte7u7ozHb0vzpHuFBqgzndvR0VHwfgAAAAAAAACGt2jtIl3yx0sUtdJ8H1s2JQ5RT6gZr+cvWaop46aWbE8AAAAAAAAAAAAAAAAAo0cZ6gUAAAAAUIBhYixAWnV1kpGhpByJJAaqd+yQHnggfYA6HpcGBqTeXudlJCLFYoO3cNi5WZYToR4aonbvW5ZzXjz3mF9vjbS13glQu3mmHcHRHaB2betPDSwBqEyA2uWGqAEAAACgFOrr63XEEUckrPX29mr58uV57/X888+nrL3//e8veLZK2rp1a8raxIkTMx6fLlrd399f8PX7+vpS1urq6greDwAAAAAAAEBmi9Yu0scXflxhK1z4JslPXFug8TVNeuHSFwlQAwAAAAAAAAAAAAAAAMiICDUAAAAA79m2E/sdTqbYMMYuv19qbJTMDJ/auhHqgQHpt7+VenoSH7dt57H+/swff0OD08nrmR7LQVdQOu8cqa1RaghLMpwQtT1GPswtWcRvgSSVDFC7CFEDAAAAKKUPfOADKWsPPfRQ3vukOyfd3tVo6dKlKWtTpkzJeHxzc3PK2r/+9S9ZlpXm6OzWr1+f0zUAAAAAAAAAFOeFN1/QJ3//SYXjRQSoXUWGqBv9DXryP54iQA0AAAAAAAAAAAAAAABgWESoAQAAAHjPMDKHhF1FBH8xigWD0m67SU1NTpB66G3PPaVZs6TWVidA7fcP3gxj+Ph0GbkB6hVTpIikrtDOByoRoDYqdJ0cEL8FBnkRoHbxZxEAAABAqXzsYx9LWbvnnnsUiURy3mP58uV66aWXEtbe9773afr06UXPV26tra167bXXEtbGjx+vgw46KOM5U6ZMUUNDQ8La9u3b08asc/GnP/0pZW3//fcvaC8AAAAAAAAA6bW2tWrB7xaoL9ZXuk0LDFHX++v0yPl/1Mw9DyjdLAAAAAAAAAAAAAAAAABGJSLUAAAAAKpDKJT9GCAd05RqapyPIfdWWytNny698470979LPt/gTZJ6e52wuWGk3gIBZ4+ampKPmhyg3taQ9ZRRjfgt4G2A2sWfRQAAAAClcMghh+iYY45JWGtvb9cPf/jDnPf48pe/nLJ2+eWXFz1bucXjcV111VUp6x/60IcUCAQynuf3+3XSSSelrH/729/Oe4Y333xT9913X8r6qaeemvdeAAAAAAAAANJ7te1VnfnAmaUNULvyDFHX+Wr16PmPafa0o0o/CwAAAAAAAAAAAAAAAIBRhwg1AAAAgOowbpzkz++HKICMxo+X4nHpttsS121b6u52Xg5lGE64evx452Oxrs453zSdmxuozkfS8QSo0yN+i7EsGo16HqB2DcQGFI1GvR4DAAAAwAj31a9+NWXtuuuu0yuvvJL13J/85Cd6/PHHE9ZmzJih//iP/8jp2vvss48Mw0i4Pfvss1nP+/GPf6wnn3wyp2ukEw6Hdf7552vx4sUJ64Zh6NOf/nTW888777yUtT/96U+68cYbc56hs7NTZ599tiKRSML6wQcfrEMPPTTnfQAAAAAAAABktrZtrT74qw+qO9JdvovkGKIOmkE9eM5vCVADAAAAAAAAAAAAAAAAyBmFNwAAAADVwTSliROlnh4pEpFiscSIr98vhULezYfq4/MlfowYhvNx0tAg1dRIK1ZIW7YkntPXJ1lW4prfL9XXO/u5otHE4wwj9bxshoSuqyJAnWdDu5LcEHXLtBavRwEqKhAIaPak2Wrd2lrwHiF/SC3TWrRk45KigtazJ81WIBAo+HwAAAAAkKRTTz1VH/7wh/WHP/xh11o4HNYJJ5yg++67T2eccUbKOdFoVDfeeKO+9rWvpTx2yy23lP1zlZdffllXXXWV5s2bpwsuuEAf/ehHNXny5KznRaNR/fGPf9SXvvQlrVmzJuXx//qv/9K8efOy7nPeeefpe9/7nlpbWxPWv/zlL2v16tX6zne+M+w8Tz/9tC655BKtW7cu5bF8QtYAAAAAAAAAMmvradMpvz5FneHO8l/M55fisYwPB40a3ffhezV/5nHlnwUAAAAAAAAAAAAAAADAqEGEGgAAAED1ME1p3Lj0j82ZI+UQf8EYsmiREyx3GUZC+FnPPZd4fCwmhcOJa36/1NiYGLOWpIGkkOvQffMUN6TzP+JxgHoEGIgNKBqNEsHFmDOhbkLBIWo3QC2pqBD17EmzNaFuQt7nAQAAAEA6P/vZz/Tyyy9r48aNu9a6urp05pln6qijjtKHP/xhTZ8+Xf39/VqzZo3uv/9+bdq0KWWfT3/60/rQhz5UsbmXLl2qpUuX6sorr9RBBx2kI444QgcffLAmTJig8ePHyzAMdXV1afPmzWptbdVf//pXbdu2Le1eJ5xwgn7wgx/kdF3TNHXXXXfp+OOPV09PT8Jj99xzjx544AGdeuqpamlp0dSpU1VbW6sdO3botdde05NPPql//OMfaff95Cc/mTb6DQAAAAAAACA/bT1tmn/3fO0Y2FG5i/r8UjwuKfH71oJGje4842c6+eDTKjcLAAAAAAAAAAAAAAAAgFGBCDUAAAAAYPTp6pJWr5Z8vsG15LC0JNXXpwao43EnWD1UERFqny1dtFx6cQ9pW2PB21S1Gl+NIvFI9gOHMXvSbALUGLMKCVEPDVC7CglRE6AGAAAAUGrNzc164okndOKJJ6qtrS3hsWXLlmnZsmVZ91iwYIFuvvnmMk04PMuytGrVKq1ataqg88866yw98MADqq2tzfmcOXPm6Pe//73OOuuslBB1OBzWI488okceeSTn/T7ykY/orrvuyvl4AAAAAAAAAOn19PTomJ8fo47+jspf3OdLCFEHjIDuPP1OnXnoRyo/CwAAAAAAAAAAAAAAAIARz/R6AAAAAAAASm7TpsT7ti1FkiLJtbWJkWpXCQPUrgPbpY76orcpnJH9kGJE4hFNqJ2gkC9U0PlEcIHBEHUu0gWoXS3TWhTy5/ZnkT97AAAAAMrloIMO0t///ncdc8wxeZ0XCAR03XXX6Ve/+pV86b5uUwb19aX5os173vMePfTQQ1q4cGFeAWrXSSedpBUrVui4444reIaGhgb99Kc/1e9+9zv5/TwnOQAAAAAAAFCMnp4ezblnjrb1bfNuCJ9PkiG//Lr1Az/WmYd91LtZAAAAAAAAAAAAAAAAAIxoRKgBAAAAAKNPW1vi/eSwtCQFg+nPjcdzu4aRW9m53yfNvlyKj/LPwPsifWp5T+7xWxcRXGBQLiHq4QLUrlxC1PzZAwAAAFBu73nPe/TXv/5Vv/nNb9TS0iJjmK+lNDQ06MILL9TKlSt1/fXXyzQr94WUW2+9VatWrdJNN92kM844Q1OmTMn53MmTJ+tjH/uY/vSnP+nNN9/URz9aXABmxowZevbZZ/XXv/5V559/viZMyP55m8/n0xFHHKGbb75Zb7/9ti6//PKiZgAAAAAAAADgBKjn/d88be3d6vUo8vkD+v4pN+ncI8/3ehQAAAAAAAAAAAAAAAAAI5jf6wEAAAAAACi59vbE+8kRar9fyhQzShesTpZjgFqSauPSB1dLvz8o51NKK/dRizIQH9CSjUvUMq1FT294OqdziOACqdwQdevW1pTHcglQu1qmtWjJxiUaiA2kPMafPQAAAACVYhiGFixYoAULFmjr1q36+9//rvXr16urq0t+v18TJ07UQQcdpLlz56qmpqaoa23YsKHgcw8++GAdfPDBuvrqqyVJ77zzjtatW6cNGzaoo6NDvb29sm1bjY2Nampq0qRJk3T44Ydrjz32KGrmTI499lgde+yxkqS1a9dq5cqV2rZtm3bs2KFIJKJx48Zp/Pjx2meffXTkkUeqvr6+LHMAAAAAAAAAY1FPT4/m/3K+NnVv8noU+QyfbjjxBn1i7sVejwIAAAAAAAAAAAAAAABghCNCDQAAAAAYffr6Eu/H44n3fb7M59r28PcLsPBB6ewFHoaoK2Qg5oSoffIprviwxxLBBTJLF6LOJ0DtShei5s8eAAAAAK9MmjRJp59+utdj5GSPPfbQHnvsoWOOOcbrUTRz5kzNnDnT6zEAAAAAAACAMeO4+4/TW11veT2GTJm69phrdcncS7weBQAAAAAAAAAAAAAAAMAoYHo9AAAAAAAAJZccnU5mGJkfK0F0Op2FD0pnvVaWrTMb5tUsl4HYgOKKy6fMoe9x/nFEcIEs3BC1VFiA2tUyrUUhf0gSAWoAAAAAAAAAAAAAAIDhvO9n79P67eu9HkOmTH1u3uf02fmf9XoUAAAAAAAAAAAAAAAAAKOE3+sBAAAAAAAoOV/mALKk4UPTwwWqi7TwQensBdLvDyrbJQZ5EKAeyg1Rx5UaBA8Ggh5MBIw8E+om6Ng9j1UgEChqn5ZpLYpGo0XvAwAAAAAAAAAAAAAAMFode/exWr1ttddjSJKumHuFrj3+Wq/HAAAAAAAAAAAAAAAAADCKmF4PAAAAAABAydXVJd5PjlLHU8PIuyRHqIuNUiedv/BB6azXitsy+zXLvH8OfPIlvExeB5CbUoWjCVADAAAAAAAAAAAAAACkd8IvTtA/2//p9RiSpEuPvFTfOOkbXo8BAAAAAAAAAAAAAAAAYJQhQg0AAAAAGH2amxPv+/2J92MxybLSn5t8bDq2nd88lQpRG/I8QD170uyU0LSxcygC1AAAAAAAAAAAAAAAAACqyQf+7wNqbWv1egxJ0icO+4Ru/LcbvR4DAAAAAAAAAAAAAAAAwChEhBoAAAAAMPpMmZJ4P11YOhxOf64vx1ByuhC1YSQGpzP9Xk6I+r0bc7tUTjyOT0tOgHpC3YS0jxGgBgAAAAAAAAAAAAAAAFBNznrgLL34zotejyFJWnDQAv3ogz/yegwAAAAAAAAAAAAAAAAAoxQRagAAAADA6LPnnon3DUOqqUlc6++X4vHUc5OD1UYJ685D9oobUtyUlKZlPRINF6AGAAAAAAAAAAAAAAAAgGpyzq/O0XNvPef1GJKkjxzwEd3x4Tu8HgMAAAAAAAAAAAAAAADAKEaEGgAAAAAw+owbJ+2/f+JaKJR6XG+vZCdVoH2+wkLUQ48xDCkQkMzMn3Y/coD0TqMUtLJvnf3aJdgjAzOHLx0QoAYAAAAAAAAAAAAAAAAwUnz8dx/XU/96yusxJEmnzjhVd599t9djAAAAAAAAAAAAAAAAABjliFADAAAAAEan445LvO/3S8Fg4losJnV3S/F44npysDqXCHXy8bW1Tgzb5xs8f2fweuGB0pUflGwjtYGdtzIGqCXJkiVjmIsQoAYAAAAAAAAAAAAAAAAwUly88GI9tuYxr8eQJJ2090n69YJfez0GAAAAAAAAAAAAAAAAgDGACDUAAAAAYHQ6/HBp8uTEtbo6yUz6VDgWkzo7pf5+5/fhsBSNOnVoyxq8ZTO0Jm2aUk2NE6BubHTuJwWoLUPqCEkRfxGvY5kD1C5btsw0X0IgQA0AAAAAAAAAAAAAAABgpLjqsav08BsPez2GJGn+e+broX9/yOsxAAAAAAAAAAAAAAAAAIwRxaSuAAAAAADl1N4urVolrVkjrV/vhJJjMcnvl5qapBkzpP32k2bNkpqbvZ7WW24oemgIur9f+sQnpO99L/HY+nqpu3vwWPdlb2/xc7h7+f3OfvG48z6TJMPQwgPshAB1uNDPyisUn05mypQlJ8g9rXGaBmID2ty1OeU4e+evofcBAAAAAAAAAAAAAAAAwCuf+8vndO8/7vV6DEnSUXscpUfPf9TrMQAAAAAAAAAAAAAAAACMIUSoAQAAAKCaxGLSkiXSo49KK1cOf+zy5YO/P/xw6fTTpaOPdgLIY0Us5sS5w+HUx8JhqaHBCXWvWuWsuaHqQCD9OaUSiaQsLTxQuvK0kRugduPTrne638n5WEmKKy5J8slX2sEAAAAAAAAAAAAAAAAAYBhfeuJLuqf1Hq/HkCQdPvlwPfnJJ70eAwAAAAAAAAAAAAAAAMAYM4bKZAAAAABQ5ZYulW67TdqyJf9zV6xwbpMnS5dfLs2bV/r5qk08Lr37rhOWHs6JJ0qbNkkdHU6AOhaTotHyzWWaKUsLD7B15Wm2LEPaFpIi+X427lF4uhziisu27ZLsZcuWMZreOGUQjUYVCASqZh8AAAAAAAAAAAAAAACgkr797Ld1xyt3eD2GJOmgiQfp2Quf9XoMAAAAAAAAAAAAAAAAAGNQahkLAAAAAFBZPT3STTdJ119fWIB6qC1bnH1uusnZdzTr7s4eoJakUEg6+WTJMKSBASkScWLU5ZK0d9yw9fMjcghQG8PcRpnOcKfae9uL2qM70i1LlmyV8X05wnX0dWjxpsVasnFJUfss2bhEizctVkdfR4kmAwAAAAAAAAAAAAAAAMrvpudv0g+W/sDrMSRJ++++v5Z8qrjv4wEAAAAAAAAAAAAAAACAQhGhBgAAAAAvtbVJV10lLVqU/nHblqJRqb/fiUq7t/5+Zz1TTHnRImfftrbyze61SGT4x+Nx6fXXpV//2rn19eUWrS6UYTg3SaqpceLXDQ3yjZ+g+xdPUszMEqAeYexhfmUTs2Na3bG64BB1e2/7rnMJUafX0deh1q2tkqSB2EDBIeolG5doIDYgSWrd2kqIGgAAAAAAAAAAAAAAACPCj//2Y33n+e/IUhm/ZyxH+zTtoxf/60WvxwAAAAAAAAAAAAAAAAAwhmXKXwEAAAAAyq2tTbr6amnbttTHYjFpYCB7aFkaDB77kz7F27xZuuYa6aabpClTSjPzSPH229IrrzjBbsty3paZgt2l5Eao43GpqUkyned++uQJHWqvK//lS8GUmdMPXhlFlrNt2VrdsVqS1FzfnPN57b3tWt2xOiE8bcmSsfMXEgPULjdE3TKtJed9hgaoXa1bWzV70mxNqJtQilEBAAAAAAAAAAAAAACAkrvzpTv19b9+vSoC1HuN20uLL1js9RgAAAAAAAAAAAAAAAAAxjjT6wEAAAAAYEzq6ZG+8pXUALVtS729UldXbgFqyTmuq8s5Lzm0/O67znV6ekozdzUJBlPXIhHp+eelZ55x3iaWJfX1VSZAbduD14nHpe5uSVK/L64/7R1Of46x81YlTJkVDTm7Ier23vacjk8XoB66V7r1sSZdgNrlhqhzkS5A7Wrd2qqOvo5CRwQAAAAAAAAAAAAAAADK5pfLf6lrn75WcTvu9SiaUj9FL3ziBTU0NHg9CgAAAAAAAAAAAAAAAIAxzu/1ABgb2tvb9dJLL2ndunXq6upSIBDQ7rvvroMPPlhHHXWUAoGA1yMCAABUv/Z2adUqac0aaf16qbNTisUkv19qapJmzJD220+aNUtqbvZ6WmRz++3S5s2Ja2642LIK2zMclqJRqbFR8vkG1zdvlu64Q7r66sLnrUbjxjl/Dty3V0+P9OSTu+LPsm0nQF1Jti0ZOyPOAwNSKKTaYFCtv91dh5+7TVH3qaCqIDztk09xDf6g1dAAdfJj6c4txtDQtRuilqTm+sz/7RouQO2yZFU8pF1NhgtQu9wQdcu0lozHDBegdrVubdXsSbM1oW5CIaMCAAAAAAAAAAAAAAAAJffbf/5WVz9xtWJ2zOtRNKl+kl668CUC1AAAAAAAAAAAAAAAAACqAhFqlNVDDz2kH/3oR3rhhRdk2+lDYY2NjVqwYIG+8IUvaP/996/whKls29aaNWv08ssva9myZVq2bJmWL1+ubjdkt9MnP/lJ/eIXvyjqWtdff72+/vWvF7XHcDK9zQEAwAgSi0lLlkiPPiqtXDn8scuXD/7+8MOl00+Xjj7aiVSjuixdKi1alLgWj0tdXU7EOB2/3wlLG4ZzTDzufHwksyxnn3HjEkPUTz4pzZ8vzZtXutfDa4bhBNc7O51I++OPD0anbduJQHvBNJ2b65JLdNARR+jKrt/ph+vvGzaiXAn1Zr1kSJF4RJIUV9zzcHO2EHUuAWrXWA1R5xKgdg0Xos4lQO0iRA0AAAAAAAAAAAAAAIBq8chrj+iKP11RFQHq3et213MXPkeAGgAAAAAAAAAAAAAAAEDVoEaHsti0aZPOP/98Pffcc1mP7e7u1t133617771XX/3qV/XVr35VhlHZWNjDDz+spUuXatmyZXrllVfU2dlZ0esDAACktXSpdNtt0pYt+Z+7YoVzmzxZuvzy0RUeHuliMef9OpRtS93dqQFqw5BCISkYTIwauyxLCoel/v70+zU1OXu4br9dOuqo0RUm9/mkujrpr391otOm6bz+/f2Zg97lZBjObcKEwbf93LnShz6k+mde1tyBuXpp80t5h6gDZkAHTjhQktQX7dOWvi3qifbkPd7+4/dXU6hp1/1INKKIIlnnCUfCCtYEc77O69tez3u2TCHqfALULjdEPVbkE6B2pQtR5xOgdhGiBgAAAAAAAAAAAAAAgNcWrV2kS/54iaJW1OtRND40Xs9f9LymNEzxehQAAAAAAAAAAAAAAAAA2GUUlcdQLVavXq3jjz9e77zzTl7nRSIRfe1rX9Nrr72me++9Vz6fr0wTprroootGXXj66KOP9noEAABQqJ4eJxa8aFHxe23ZIl1/vXTyydJll0kNDcXvieL87W+pYfG+PicoPZTfL9XXO5HlTExTqq2Vamqk3l4ncO2yLGff+vrBtbY2J25+zDHFvx7V5OmnpR07BqPP4XDJA9RxQ/LZgy8zsm0pHndmCIWctf/7P+lDH5Ik1QfqNXdqbiHqcTXj1BXpUsgfSggFS9Leu+2tlVtW6t3+d4fdw5Ahv+FX1I6mDwWHhj29YKu3rZYlK/uBSZJD1IUEqF2WLMWteN7njTSFBKhdQ0PUhQSoXYSoAQAAAAAAAAAAAAAA4JUX3nxBH1/4cYWtsNejqCnYpCc/9iQBagAAAAAAAAAAAAAAAABVhwg1Smrbtm065ZRT0gao58yZow9/+MOaPn26+vv7tXr1aj3wwAPavHlzwnG/+tWvNGnSJN18880Vmto7U6ZM0eGHH170PitWrEhZ+9SnPlX0vgAAwANtbdJXviIl/R1pF9t2QsOxmBO6dfl8TrTY7x8M8Q61aJH06qvSDTdIU/jhBk89+mji/VjMCRYP5fdLjY3p35fp+HzO8d3diSHqcFgKBp39hl5/NEWo166VVq0avO/++SihrqB0/kekj/1D+vWh0kXLpbNfH+YE25b6+wcj1M8/L23erNfffV0rt67U5PrJago2aUd4R8YtJtZO1GGTD1M0GlUgEEh7zGGTDxs2RG3I0Nypc9VQ0zDsPqVm23ZBAepd5+8MUbf3tWv7wPaCAtSuTT2bNHXcVBm5/lkaYaLRaMEBatdAbEBPb3i66Flat7bq2D2PrdjHGQAAAAAAAAAAAAAAAPDCmy9owe8WKBz3PkDdWNOoRf++SDOnzPR6FAAAAAAAAAAAAAAAAABIQYQaJXXJJZforbfeSlhrbGzUfffdpzPPPDPl+BtuuEE33HCDrr/++oT1H/3oRzr11FN12mmnlXPcrHbffXfNmTNHu+22m37zm9+UfP/LLrtMl112WVF7LF26VEcffXTCWmNjo84777yi9gUAAB5oa5Ouvlrati31sVhMGhiQIpHs+9TUOPFbf9Jf9zdvlq65RrrpJkLUXmlvl5KfQGRgIPW4+vrcA9Quw3DO6+xM3b+hYfB+a6szR3NzfvtXo3hceuqpwfu27YS37cKjxcm6gtJ550jLp0hP7ivVRaXleziPZQxR27bzZzUedwLhkhY++WP9ZfNf1B/rV0d/hwK+gEK+kAbiqe9/N0AtKWvQN1OIemiAOpd9SskwDJkyiw5Rdwx0FD3L+OD4URuglpz3a8gf0kAszX9HKizkDxGgBgAAAAAAAAAAAAAAQMW0trXqvIfPU1+sz+tRVB+o1yP/8QgBagAAAAAAAAAAAAAAAABVy/R6AIweTz75pB5++OGEtZqaGj399NNpA9SSE8y67rrrdPPNN6c8dtVVVykWi5Vj1LSampp0wgkn6POf/7wefPBBrV+/Xu+++64ef/zxokPR5XTXXXelrJ133nmqr6/3YBoAAFCwnh7pK19JDVDbttTbK3V15Raglpzjurqc85JjvO++61ynp6c0cyM/q1Yl3ndjxUPV1u4KF+fN53POHyoSSf04SJ5jpFq92vlYd0UiklV4+NgV39ksHhqg3lErRU1pR1DqC0hXflBaeOAwm9i24jHnfbtwnwFdueGnilpRxayYbNmKxCOKWlGZSZ+WDw1Q5+qwyYdpYu3EXfeTA9ReMGSkvG6VZsrUuOA4T2eohJZpLQr5Q57OEPKH1DKtxdMZAAAAAAAAAAAAAAAAMHasbVurMx84U73RXq9HUZ2/To+e/6hmT5nt9SgAAAAAAAAAAAAAAAAAkBERapTMN7/5zZS16667TkcddVTWcz/zmc/olFNOSVhbu3atHnjggZLNN5zly5dr+/btevrpp/W9731P5557rqZPn16Raxejp6dHv/nNb1LWP/WpT3kwDQAAKMrtt0ubNyeuxeNSZ6cUDhe2ZzjsnB+PJ65v3izdcUdhe6I4a9Yk3k/3pCvBYHHXSHd+8nXWri3uGtXilVecl7YtDQzkHmofRldQOutj0v2HpAaobUm2kTlEbQ+5PXygrbM+1K37Z/bpyvmd6ov1KxxL/LMct+OyZe+KNdeYNXkHqF1uiLoaAtQuL0PUpkwZMjy5the8DFEToAYAAAAAAAAAAAAAAEAlrW1bq5N/dbK6I91ej6KgL6gHP/ogAWoAAAAAAAAAAAAAAAAAVY8INUpi1apVWrx4ccLaxIkTdc011+S8x3e+852Utdtuu63o2XIxffp0GcbIC5Q9+OCD6unpSVg75JBD9L73vc+jiQAAQEGWLpUWLUpci8elri7JstKf4/c7seFQyHnp96c/zrKcfZJD1E8+6VwXlbV+feL95Di03y+ZRX6aZpqpHw/J11m3rrhrVIP2dmnDBudjvK8vfdA7T11BJzz90lTp4rOkpdNSA9RSaoj64QOdx10LD5SuOk16YWpcFx/Xqd6ArU5fNO017Z2/TJlqDDYWNf9hkw/T+9/z/qoIULu8CFGPtQC1y4sQNQFqAAAAAAAAAAAAAAAAVFJbT5tO+fUp6gx3ej2KgmZQ9519n+ZPn+/1KAAAAAAAAAAAAAAAAACQFRFqlMSvf/3rlLULL7xQNTU1Oe8xZ84czZkzJ2Ft6dKlevPNN4ueb7S66667UtYuvvhiDyYBAAAFi8Wk5CfesG2pu9t5OZRhSLW10vjx0rhxUn29VFfnvBw3zlmvrU29Rqb9br+9JOFe5KEz6QdfkuPgPl9prpO8T/J1kucYiVatcj6m+/udl8kf33lyA9TLpzjh6Ygp7QhJEV9igNo1NER91Qed8LS0M0D9QWe9M7hznxpnNlvpZ3RD1F3hLsWs4v5M+kr1MVRClQxCj9UAtauSIWoC1AAAAAAAAAAAAAAAAKiktp42zb97vnYM7PB6FNWYNbrzjDt18syTvR4FAAAAAAAAAAAAAAAAAHJChBol8Ze//CVl7Zxzzsl7n3TnpNsb0muvvaa//e1vCWvBYFAXXHCBRxMBAICC/O1v0pYtiWt9fZJlJa75/U5ourZWMjP8Nd40ncebmpzjh7IsZ9+h2tqkpUuLmx/5yRb9NkoUz822z2iIj69aNRigLlK6ALUbnU4XoHYlh6i/dFJigHrouVb6LQb3kq2YFdM/2/+Zc4jaLsHrXimGDJll/hKEsfPXWFeJEDUBagAAAAAAAAAAAAAAAFRST0+Pjvn5Mero7/B6FAXMgH7ywZ/ozIPO9HoUAAAAAAAAAAAAAAAAAMgZEWoUrbe3V6+88krCWl1dnY488si89zr22GNT1hYvXlzwbKPZ3XffnbJ21llnaffdd/dgGgAAULBHH028H4tJ4XDimt8vNTZKPl9ue/p8zvHJIepwODU+nHx9lFfy+yRZqaLC2fbJNsdIsGhRaqy9AMMFqHPhhqh3BKWb5jsvkwPUOe8lWz2RnpxC1O297Vq5dWXOwepqUM4QtSmTAPUQ5QxRE6AGAAAAAAAAAAAAAABAJfX09GjuPXO1rW+b16PIb/h10yk36dxDzvV6FAAAAAAAAAAAAAAAAADICxFqFK21tVVWUvztqKOOkr+AsN3cuXMVCAQS1l5++eWi5huNotGo7r333pT1iy++2INpAABAwdrbpRUrEtcGBlKPq6+XjDzjqobhnJcsef/WVmcOVEZTU+L95LB4PF6a6yTvk3yd5DlGmqVLpba2ordxA9StBQaoXbYh9dZI1pCXKfvkuG8kHlFPpEer2lfJzhATb+9t1+qO1eqOdOcUrK4m5QhRE6BOrxwhagLUAAAAAAAAAAAAAAAAqKSenh7N+795aust/vvFiuUzfPreyd/TJ474hNejAAAAAAAAAAAAAAAAAEDeiFCjaK+//nrK2syZMwvaq6amRtOmTUtYW7dunWKxkRNVq4RHHnlEW7duTVjbZ599dPLJJ3s0EQAAKMiqVYn3bVuKRBLXamtTA8K58vmc84eKRJzrDDcHymfGjMT7yU/cEotJSU/wkjfLcvYZ7jr77lvcNbwUi0m33Zb6cZynrqC04BxpxRSnD10XzbkTXVaGDMmWpjZMlZEmPu8GqG05r39PpGdEhqgDvkD2A3PciwB1ZqUORhOgBgAAAAAAAAAAAAAAQKX09PRo/i/na1P3Jq9Hkc/w6br3X6cL51zo9SgAAAAAAAAAAAAAAAAAUBAi1Cjahg0bUtb23nvvgvfba6+9Eu7H43G99dZbBe83Gt19990paxdeeGHaSB0AAKhia9Yk3k/3xBvBYHHXSHd+8nXWri3uGsjdfvsl3k+OQ0tSOFzcNdKdn3ydAp80pir87W/Sli3S0L/75hmk7gpKH10gPTtdGtj5pgnGJKu4rnVJ2LJV46vRbrW7pTyWHKB2jbQQtS1b0Xi0ZHslvz0waMnGJVW9HwAAAAAAAAAAAAAAAJDJcfcfp7e6vP9ZElOmvjT/S7ry6Cu9HgUAAAAAAAAAAAAAAAAACpameAbkp62tLWXtPe95T8H7pTt3y5YtmjFjRsF7jiYbN27U448/nrBmmqYuuugijybK7tZbb9VPf/rTsl9n3bp1Zb8GAAAltX594v3kOLTfL5lFPm+MaTr7DN07FpMCgcH7/D+0cmbNSrxvGFJNjRSJDK719ztrPl/++8fjzvlD1dQkBpsl6ZBD8t+7Wjz6qPOywCdgiRvSeedIi/eWoqbUGZRsSd0BVcXTNBkyFLEiWtW+SodNOmzXE81kClC73BD1Ic2HyG9W76f6tmxZsmSW8I1d6v1GiyUbl2ggNlDSPQdiA1qycYlaprWUdF8AAAAAAAAAAAAAAABgqHk/m6f129dnP7DMTJn63LzP6ZpjrvF6FAAAAAAAAAAAAAAAAAAoSvWWqTBidHR0pKw1NDQUvF+6c7dt21bwfqPNPffcI8uyEtZOPfVUTZs2zaOJsmtvb9err77q9RgAAFSfzs7E+/F44v1CIsTp+HyJEerk6yTPgfJpbpYOP1xasWJwLRRKjFBLUm+v1NiYX2jZtp3zkoVCifdnz5YmTsx932rS3j74tvP7pWjUeb3z0Fsjbal3AtSuHaHMx5dEPu9G2YrFY9qjYY+cA9Suag9RuwHqcrBkydj5C+UJULsIUQMAAAAAAAAAAAAAAKCcjr37WL2x7Q2vx5AkXTH3Cl17/LVejwEAAAAAAAAAAAAAAAAARTOzHwIMrzdN6K62trbg/dKd29fXV/B+o4lt27rnnntS1i+++GIPpgEAAEUbGoZOJ58AcTH7ZJsDpXX66Yn3/X4pGExci8Wk7u7UYHgm8bhzfPL7Mhh09h/u+iPJqlWDv88j0h7f+UegKyidd47U1ig1hZ01qwqbxVMbp2pS/SRJuQeoXW6IOmZV15/rcgaoh14j17fTaFbOALXLDVEDAAAAAAAAAAAAAAAApXTyL07WP9v/6fUYkqRLj7xU3zjpG16P8f/Zu/c4u+r63v/vtfZtrpkwZMgkxFRCQClRgpoSElCKoCiI4gVQ0RaxIOVAz0N4nFrtT6k9WPs41PZobYWKHLygggrFaFUCIiQBBUxiE4EkRgkhmWSSyVz2XPbe6/L745uV2deZfZ01l9eTx+5krb3Wd332nskw2zKvDQAAAAAAAAAAAAAAAAB1QYQaNctkMgX7mpqaql6vWIQ6nU5Xvd5s8uijj+r3v/99zr4TTjhBl156aUgTAQCAmuTHgfP5dYqpTrbOZHOgvs4+W1q4MHdfS4tk5708cxxpYEAaHZW8EvFezzP3DwwUBqht26ybrbtbWr26tvnDtHPn+J/L/LodTEjvulL61mtMgHprt9mfcCRvKnrFVUSu+8f65XhOxQHqwHQLUU9lGNqTN6dD1FMRoA4QogYAAAAAAAAAAAAAAEA9XXTPRXq259mwx5Akfeg1H9Ln3/L5sMcAAAAAAAAAAAAAAAAAgLqhNoeGsKwqSmsTnOvXK8A4w331q18t2PfhD39YsVgshGkAAEDNOjpytyOR3G3Xrc918tfJv07+HGisaFS6/nrp1lvH91mW1N4uDQ7mRsN9XxoZMbdiP2NnH5t9f7Be/jnXXz+zo+O7d4//ORIxj2+C1wqDCROe/nW39PAyqcWRmo52mZPStH1bpmQmqV++/EvzOqjKl1bJdFLbe7frtSe8tqbXZ7Xy5ctTiYh6g3jyZMuWVe2TN0NNZYA6EISo1yxZM6XXBQBgzhgbbcy67tEfijOeeWMb38v9uTriSE7hm082hmXeQCcWLf6ap95cV3Jc85hnPUfK/lk8k5FGx8xzPZNfFwIAAAAAAAAAgFnpXfe+S7/c/8uwx5AkXX7a5frixV8MewwAAAAAAAAAAAAAAAAAqKtpmtzCTFIsgDw6Wn0co9i58Xi86vVmi76+Pj3wwAMF+6+55poQpgEAAHWxbFnudn4EynFMEKwWnmfWmeg6J59c2zVQudWrpQsuyN0XiUjz5o2Hlb2jIbjg5nmFt/z7fd+cP29eYWz8wguls86ausfYCAMDudsTROqCAPUz3dLBNikVkQYS0lhUGpKUbGvsqGa+6k91fbem8y1ZWty2eM4FqAOePPmaO29mFEaAOhCEqAEAwAyTORqa9tzCN3bxg/8zFTdP8hwplZK8Bv/8lslImbTku1P4+MK85fPN5zuVklLpap9FAAAAAAAAAACAurvyviv1iz2/CHsMSdKlr7pUd7zzjrDHAAAAAAAAAAAAAAAAAIC6i05+CDCxlpaWgn31jlC3trZWvd5s8a1vfUupVCpn39q1a/XqV786pInK19XVpT/+4z9u+HV+97vfFTxHAABMa6eckrudH4eWTByqubn6axT7d2P+dZYvr359VO9jH5N++1tp377xfa47HqGuRhChdt3cCPXixdJ119U273SQH1QvEVjODlAfCmLTlmnaHUlIamrolDWL2lHZVvXvGWXJ0qmdp6qrtauOU1UmzAB1wJOnwdSgutu7Q52j0cIMUAeCEPWaJWtCnQMAAJTJ8yTHDXuKPL6JRCca9IaUri+5zuTHzRVORkpnwp4CAAAAAAAAAABAV33/Kv1090/DHkOS9NZlb9U9l90T9hgAAAAAAAAAAAAAAAAA0BBEqFGz448/vmBfMpmser1i5xa7xlxz1113Fez76Ec/GsIklbvhhht0ww03NPw6p59+un772982/DoAANTN6afnbluWFI9L6fT4vtFRsy87KFwu1zXnZ4vHC8O9K1ZUvnYjjY2ZeLabF0XbulXq7Axnpka58krpK1+R+vvN484cjYAFn6NKYtTBOa4rDQ1JsZjU1CTNn2+u8/zz9Zw8HCMj489RCUGA+tnsAHWgeLO6Maq81qwIUPu1B6gtWTqu6TgdGTsiX1VG2SX1p/rl+76sEsHymS6TyYQeoA6MOWPKZDKKxWJhjwIAACYV7puFlOS742+sU28eAeoCGZ4TAAAAAAAAAAAQruv+8zr9aOePwh5DkvSmpW/Sdy7/TthjAAAAAAAAAAAAAAAAAEDDEKFGzRYuXFiwb+/evVWv99JLL5V1jbnkmWee0datW3P2tbe3633ve19IEwEAgLro6pLOOMPElQNNTbkRakkaHpba2ysLcfm+OS9fU1Pu9sqV0oIF5a/bSL4vHTliYszFJJOSMwsjWW99q3TPPcXjyuXEqEt9XQTrvfWt5nk7eLC2OaeDaFTysoJ5lmVuR5+fnAB1a0gzSrXFrv3qz58OAWpJsixLtuyqQ9TZj6N3uFc7+nZUHaI+se3EWRuglqRYLKaVJ6zUloNbql6jKdqkNUvWaNPeTTUFrVeesJIANQAAlSj2viNNzVNzbceVsv+17TtmX2Aqf3yK571GbWqSanhTlpIsW3Kz/l9irmNuc1klb3oEAAAAAAAAAABQZzf96Cbd99x9YY8hSVr7irV68AMPhj0GAAAAAAAAAAAAAAAAADRUA36TH3PNSSedVLDvxRdfrHq9PXv25GxHIhEtXbq06vVmg7vuuqtg3/vf/361toZZ1gMAAHVxySW529GolEjk7nMcaWhIcl2VxXXN8fnB5kTCrD/R9cOUTJYOUM9W/f3SunVSPF74uZFMFGyyMFipY6JRs+66ddLAQF3GDV1XXlzZHn9Jmx+g9sPoDluqOdjn+I48r/J483QJUAcsmRB1NedlP46u1i6d2nmqrCqeWFu2Inak4vNmms6WTq08YWVV5wYBaklas2SNmqJNk5xR3MoTVqqzpbOqcwEAmLvswthyxJ6aWzRi3qI0uOX/rNWICHQpliXZWTerUY87/zqz941KyjYHflYGAAAAAAAAAADT08d/8nF947+/EfYYkqTXd79e6z64LuwxAAAAAAAAAAAAAAAAAKDhilTOgMq86lWvKti3a9euqtZKp9N66aWXcvadfPLJihYL8s0Ro6Oj+va3v12w/6Mf/WgI0wAA1Nsrbd8u7dwp7d5twq6OY2KvHR3SsmXSKadIp59eGEsFijn7bGnhQunAgfF9LS1SJiNlh2gdx3y9NTebmLRdJArmeVIqJY2OFt5n22bdbN3d0urV9Xkc9TAyEvYEU2tsTLr/fhPftiypqcl8nsfGJg9PFxOcE6wV/AydTEr33Sd96ENm/0zW3Z27HTHRtGkToK4Tx3cU9aKyi/09L3rp6RWgDgQhak/lRbVLPY5ge0ffDvkq7++GLbuqcPVMFYSotxzcUvY52QHqwJola7Rp7yaNOeW/IQABagAAatAUl0ZDeCOeaETmPUqL/Jxm2VKM9y+d9SxbakpMfhwAAAAAAAAAAECdffqRT+vuLXeHPYYk6bUnvFbr/3x92GMAAAAAAAAAAAAAAAAAwJSYu2Vf1M2ZZ54p27blZUUSn3nmGTmOU3E8+plnnlEmk8nZ97rXva4uc85U999/vwYGBnL2veY1r9GqVatCmggA5iDHkTZtktatk37zm4mP3bx5/M9nnCFdcomJDM/hN1TAJKJR6frrpVtvHd9nWVJ7uzQ4WBgjHh01t2jUBHgtyxzjuuZrtZhgPSsvyHr99dPnazN4DBOx7eLx7Znq5z+X+vtz9/l+dQHqydbo7zfXu/ji2tYO2yteUbDLjdr64Lvd8ALUDbiebdkzPkAdKDdEPdnjqCREPdcC1IFKQtTFAtSBSkLUBKgBAKhRNC4lJKWmOkRtSYm4lM5IftbrMDsyfV4jonHsyNE3twp7EAAAAAAAAAAAMNfc9tht+vLTXw57DEnSaQtO0y8+8ouwxwAAAAAAAAAAAAAAAACAKUNNADVrbW3VmWeeqWefffbYvuHhYW3evLniUPKGDRsK9r3xjW+secaZ7K677irY99GPfjSESQBgjnrqKenf/106cKDyc7duNbeFC03sd/Xq+s+H2WH1aumCC6T168f3RSLSvHnS0JDkFYm3Ok7p6HQ22zYB6kgkd/+FF0pnnVXb3PVkWWbGiULUnlf8uZiJdu2Stm0b3/Z9aWysvM9pOYK1mprG4+PbtkmnnCItX16fa4ShrU1aulTas+fYrkgkpkufd/WjU2ZHgNqSpahd3kv16R6gDkwWhC73cZQTop6rAepAOSHqiQLUgXJC1ASoAQCok3hcikclx639DWkqEYmY1wuuJ2XS5vWDlVUljsfrf03fl/LehFJNibztJinSoDpyJOv1lmWr4Af6RjzmMI0cVk5pOhKRmpob9/wCAAAAAAAAAABM4PYNt+sLT31h0jeznwrLjlumTR/dFPYYAAAAAAAAAAAAAAAAADCliFCjLi666KKcCLUkfe9736s4Qv29732v6Npz1c6dO/X444/n7EskErrqqqtCmggA5pBkUvrKV3KjwNU6cEC69VYTGf7Yx0xEFcj3sY9Jv/2ttG/f+L5IROrokEZGpFSq8jUTCamlZTxCHFi8WLruutrmbYSWFhPdnu1cV3rkkfFtz5OGh+t/Hccx38taW02MXJIefVQ66aTCKPlUGhyUXn5Z6umRenvN17frmplaWqSuLqm7WzrxRBNiz7dyZU6EOh2V/vbNakgQuqQGXsuXL8/3ZFuTh+GOazpu2geoA9bRf/J/iazSkHZ2iLrUNea6iULU5QSoAxOFqAlQAwBQb7YUncIwcPab/0RlXjNmv24MAtX15vmSnxcViOb9v6lisca8XnHz3vAnf5ZoREo04DGHKRXNfdx2hAA1AAAAAAAAAAAIxZee/JI+v/Hz0yJA/cqOV+rZ656d/EAAAAAAAAAAAAAAAAAAmGX4bXPUxZVXXlmw7+6771Y6nS57jc2bN+vpp5/O2XfWWWfppJNOqnm+meprX/tawb7LLrtMnZ3EvgCgoXp6pJtuKh2g9n0pk5FGR03gNbiNjpr9vl/8vPXrzbo9PY2bHTNXW5v0uc9JCxbk7rcsExGeN0+Kx8tbKx43x7e2FgaoFyww15mOMfS2tsaEzqabXbtMiFlqXIA62/CwuY4kDQyY608115Wef176znekO+6Q1q2TnnlGevFFE6Lu6zMfX3zR7F+3zhz33e9KL7yQG8lbvjwnTh33bP35tqgsf2o71I3keI68/DhfEUfGjqh3uHcKJqoPS5bsrP8ZotIAdaCrtUundp6aE5y2ZROgzhKEqLNVEqAOrFmyRk3R3O/LBKgBAAAAAAAAAAAAAABQrjufvlN/9/jfyfXdyQ9usCXtS/TEh54IewwAAAAAAAAAAAAAAAAACEU07AEwO6xYsULnnHOONmzYcGxfb2+v/vmf/1l//dd/XdYaf/M3f1Ow7/rrr6/bjDON4zi65557CvZ/9KMfDWEaAJhDenqkm2+WDh8uvM9xpLExqZw3WYjHTUw3mvfj1r590i23SLffLnV312dmzB7d3eZr45OfNF8r2aJRE2n2ffO16Di5Yd5IxBwTjRaGpwOLF5sA9XT92rMsqbNz/O+Z4+Te39pq7p/pHnxQsm3zuWx0gDowPGzCzZYlPfecdM45U3NdyVzvoYekI0fMtl3BeyHt3Wtuxx0nXXqpdNppZv973iPdc8+xuPY/PpGQJN3+J45kSSXeCqA+pqhz7HquLNuSVervsyRfvnb07ZCkikPOYQlC1L78qgLUga7WLh0aPaT9yf3HAtR+Yz/zM04Qot5ycEtVAerAmiVrtGnvJo05YwSoAQAAAAAAAAAAAAAAULavb/66PvXop6ZFgLq7tVtP/tmTamtrC3sUAAAAAAAAAAAAAAAAAAgFEWrUzd/+7d/qoosuytn3mc98RhdeeKFe97rXTXjuv/7rv+qnP/1pzr5ly5bpAx/4QFnXfuUrX6kXX3wxZ9/Pf/5znXfeeWWdPx39+Mc/1v79+3P2nXTSSTr//PNDmggA5oBk0sR/8wPUvi+NjEipVPlrpdPmlkhILS25UeBDh8x1vvhFExUGsnV3m6+NO+6QHn648H7LkmIxc6vEhRdK1103M77mmprMLd/KldLChVM+Tl319kp79pjPX1/f1F47mTQR7z17pFe+UupqcLQ4mZS+8hVp/XqzXenXbP5a994rXXCB9LGPSatWSQcPSv/1X+Mh6o3NkjWm21dlGheinqIAtSRF7eiEAerATAxRezKfs51HdtY0c+9I77H1IorUZbbZprOlU+eeeK5itfz9kwlRZzKZmtcBAAAAAAAAAAAAAADA3HD/tvt188M3y/GdsEfRCa0n6OmrnyZADQAAAAAAAAAAAAAAAGBOs8MeALPHW9/6Vr3zne/M2ZdKpfSnf/qn+uEPf1j0nEwmo7//+7/XjTfeWHDfF7/4xTkduLrrrrsK9n3kIx8pK0QHAKjSV74i7duXu891pYGBygLU2VIpc77r5u7ft89EhoFi2tqkm2+Wbr3VRKlr0d1t1rn55pkRoJ7ttm83H9PpY/HkKeN55rrZczRKT490003jAep8vi9lMtLoqAlMB7fRUbPfL5GQXr/erNvTY2LUeVHyf9zUolueicvyp7QX3RB+BRntIETdO9zbwInqw9X4vw/HnDFt2rupqnU27d0kxxv/BbXsdZGrXq+r5/LrcwAAAAAAAAAAAAAAAJTvoece0g0/viHnv+8Jy/HNx+sXV/+CADUAAAAAAAAAAAAAAACAOS8a9gCYXf7jP/5Dzz77rPbu3Xts3+DgoC699FK94Q1v0Dvf+U6ddNJJGh0d1c6dO/Wtb31LL7/8csE6/+N//A9dfPHFUzb3M888o49+9KMl708mkwX7HnroIa1cubLkOW94wxv01a9+tap59u/frx//+Mc5+yKRiK6++uqq1gMAlOGppwpjqa4rDQ6WjqFGo1IkIlmWOcZ1JafIfzDveWadefPM8YGHH5bWrpVWr67f48Dssnq19IY3SE8+Ka1bJ23dWv65K1dKl1xi1ojyY/+0sXOn+X4xOBjO9QcHpeOPl3btks47rzHX6Okx0fPDhwvvcxxpbGw8hj2ReFxqair8+t23T7rlFun2202Q+vbbpb6+Y9+r/3FTi2RJt78+LVmqIOU8iSmuWrueK8u2yn4TmiBELUldrV2NHK1qxULRQYh6zZI1Za+zae8mjTljBfs9eYooUuQMAAAAAAAAAAAAAAAAAFNh/a71uvaH1yrjZcIeRfOb5mvDNRvU3dYd9igAAAAAAAAAAAAAAAAAEDpqdKirrq4u/exnP9P555+vnp6enPueeeYZPfPMM5Oucfnll+tf/uVfGjRhcclkUlsriTpKOnLkiI4cOVLy/vnz51c9zz333CMnL2J60UUX6cQTT6x6TQDABBxH+vd/z93n+9LQUGGA2rJMFDWRkGy7cC3Pk1IpaXS0+HodHWaNwFe+YiLDRIJRSjQqnXuuufX2Stu3m4Dw734nDQyYr99o1HxtnXyytHy5tGKFtGBB2JOjmN27peHhcGcYHjZfP42QTEqf/GRhgNr3pZER8/2xXOm0uSUSUktL7vfOQ4fMdf7qr6T/+T+lL3/Z/P04+sYA//jLeZKd1O1njtUnRD3FAWpJiliRsgPUgekcovYn+CxUEqIuFaAOuHIJUQMAAAAAAAAAAAAAAAAh2Pj7jbrqgauU8ir478QapCPRoYevfJgANQAAAAAAAAAAAAAAAAAcRe0QdXfaaafpV7/6lT7wgQ9ow4YNZZ8Xi8X0yU9+Up/+9KdlF4t6ziFf+9rXCvZdc801IUwCAHPEk09KBw7k7hsZMUHpbNGo1NpqIqel2LbU3CzF4yb0mv2mAp5n1m1tHd/X0yM99ZR0zjm1Pw7Mfl1d0nnnmdts5jgmPuy6uft37zbh7Zls3z5prHRAd0qMjZk5duyo/9r33CPt2ZO7z/PM98P876nlGhszXw+trbnx/z17pG98Q3rPe6S/+Avpxz+Wtm41x1iW/vHJNsmydfvKEfm1RKRDCFDbsqt+TTQdQ9Su3EmPKSdEPVmAOvt6hKgBAAAAAAAAAAAAAACAqbPx9xt1+fcvV8oNP0DdHm/X+vev1/Lu5WGPAgAAAAAAAAAAAAAAAADTBhFqNMQrXvEKPf7447r//vv1f//v/9WTTz4p3/eLHtvW1qb3ve99+l//63/p1a9+9RRPOv08/vjj2rlzZ86+hQsX6h3veEdIEwHAHLBuXe6240ipvP8IPhqV2tslq8waaSRijh8ayg1Rp1JSImHWy74+EWrASCalwcHi9+3fLx05MrXz1Ft/f9gTGP390q5d9V1z1y5p06bcfZ4njY5KJV4LKBI5Fo2W75vj8+PjwTrJpIn8Z8eZn31WWrpUWr5cOv986YwzzPfUvj4pEtE//rJdO+a7evCkKn6xKYT4dMCTJ8/3ZFszP0RdToA6MFGIutwAdfZ1CVEDAAAAAAAAAAAAAAAAjbelZ4uu+MEVGnFGwh5FrbFWPfSBhwhQAwAAAAAAAAAAAAAAAEAeItRoGMuydPnll+vyyy/XwYMH9atf/Uq7d+/W4OCgotGoFixYoNNOO02rVq1SPB6v6Vp/+MMfajr/vPPOKxnJnmpvfOMbp80sADAn9PZKW7fm7hsrErlsbS0/QB2wLHPewEDh+m1t49tbtpg5usINhQKhGx0dD1D7fmGM2HGkTGbq56qnvr6wJzD6+ur7XLqutH59bmza90sHqONxE+Mv9n3V983nOp0u3D86akLU2ec98oi0ZIkJWr/qVdLKldJ//7f05JN6wP+tnj4hI9uXvHK/hYcYn84WsSLmdUGV8/jytS+5TwtaFsiq9N9fdVJJgDpQLERdaYC6lusDAAAAAAAAAAAAAAAAKN+unl269N5LNZwZDnsUtURb9N13f1cru1eGPQoAAAAAAAAAAAAAAAAATDtEqDElTjjhBF1yySVhjwEAQKHt23O3fb8wfNrcbOKm1YhEzPmjo+P70mlznewo6Pbt0nnnVXcNYLYYGjJh5Jdflg4dkg4fzg0lx2KSbYc3Xz1kfy8I0+iodO+99VtveNjE9LN5XvEAtW2byLTjTLymZZk1svm+NDKS+3UwOirdfbeJ/p98sglSr1ypB05xdWP/Lh1KR+T5njTR+7xMk/B0oC3Wptctep2OjB7Rjr4d8iccvsQa8Tad3nX6jApQB7JD1NUGqAPJdLLqcwEAAAAAAAAAAAAAAACUtqtnly749gUaSg+FPYoSkYTue899WnvS2rBHAQAAAAAAAAAAAAAAAIBpiQg1AACY23buzN0uFkVNJGq7RiJRGJ51HBPUDezaRYQac5vvS2Nj0i9/KR08WBgflszfm5CCurPSyEj15/q+5LrjkemhocLgdLEAdfD5K3ZfMZZVfN38kP/AgPle+/vfS3v26IHex3Xj6w7okD2mlH80ZD5DvnSCAHXUjqqrtUuSKg5Rt8XbtKJrhaJ2OC/5M9nx+CqNOWN69A+P1rzOnqE9+qN5f6RY9r9zAQAAAAAAAAAAAAAAANSkJ9mjC79zoQZSA2GPooSd0Dcv+yYBagAAAAAAAAAAAAAAAACYgB32AAAAAKHavTt3Oz9CHY1Kdo0/Mtm2WWei6/zud7VdA5jpLEvavl3q6SkeoMb04fvme1gQh3ZdKT86XCpAXWlEvNQ5+eunUse+rz5w4qBufPXv1Z9JKuWlK7veNBAEqANdrV06tfNUWWVWtMMOUEuaVsHnmB2bVvMAAAAAAAAAAAAAAAAAM11Pskdr71qr/rH+sEdRzI7pznfcqQuWXxD2KAAAAAAAAAAAAAAAAAAwrRGhBgAAc9vAQO626+ZuRyL1uU7+OvnXyZ8DmGt8X3r55bCnQDnyI/r521JhJLqaAPVE5/p+4TXSaT2wZEg3vu6A+mOuhqMzM2b+h/4/FOwrN0Q9HQLUgYjq9O/PGp1y3ClhjwAAAAAAAAAAAAAAAADMGslkUm+6+03qG+0LexTF7Ji+/PYv69LTLg17FAAAAAAAAAAAAAAAAACY9sIvUwEAAISpWDw1W7XR1ErXmWwOYLbLZMzfA8sajwvnR4Y9T7J5H5268Y5Gmiv5Pud5hZ8XxyncF4IHXpHUjW9IHw1Qhz9PtfYM7pEkLe9cnrO/q7VLkrSjb4d8FT6+6RSgDkQUkSt38gMbeH0AAAAAAAAAAAAAAAAA9ZFMJrXq7lU6OHww7FEUtaK6/cLb9b4V7wt7FAAAAAAAAAAAAAAAAACYEaZPnQoAACAM0Ul+HKpXWHWydSabA5jtYjFz8zwTpC4WO84OVKN2qZT5aFlSJFJejNp1zecn+DxYVmFEv9jnqNagf6nP/dF1H3iVpxvPG1V/TDM6QB3Yn9yvZfOXyc6LrpcKUU/HAHUgrBA1AWoAAAAAAAAAAAAAAACgfpLJpFbfs1o9wz1hj6KIFdFt59+mD5/54bBHAQAAAAAAAAAAAAAAAIAZY/oVqgAAAKZSR0fudiQvWunWKZyZv07+dfLnAOYay5IWLpR27x6PIueLRmuPGWNcfvx+shC175s4eP7nptIweLWfw2IhasuSa/n62kpf/XFfw7PgFW7MjmnV4lUFAepAfoh6OgeoA1MdoiZADQAAAAAAAAAAAAAAANTXud84Vy8PvRz2GIpYEX3mjZ/RtauuDXsUAAAAAAAAAAAAAAAAAJhRiletAAAA5oply3K386OsjmOiq7XwPLPORNc5+eTargHMBq99rdTaKpWI76LB8r9P5SsV5Z8sQl2vcHj+OkevG/EtndwnDcfzj6/PZafaqsWr1BRtmvCYrtYundp5qtrj7dM+QB2wpugTQoAaAAAAAAAAAAAAAAAAqK/X3/F6/WHgD2GPIVu2PrH2E7rx7BvDHgUAAAAAAAAAAAAAAAAAZpzpX6oCAABopFNOyd3Oj0NLUiolNTdXf41UqnBf/nWWL69+fWA28H3z9+K886Rt26SBAWl4OPeYWIxAdT3FYsX3TfQce15hDNq2C/dnh6l9v3DNasLU+W8IYFmSZSlte/r26b5sX/KCZWdogLol0jJpgDrQ1dqlBS0LZNUr8j0FIorIVYmYeR3YvM8WAAAAAAAAAAAAAAAAUFdrvrpGu4/sDnsM2bL18dUf1y3n3BL2KAAAAAAAAAAAAAAAAAAwIxGhBgAAc9vpp+duW5YUj0vp9Pi+0VGzLxKpfH3XNedni8cLA6wrVlS+NjDbWJYJvq9aZYLD+dHh446TmsoL9E5bd98t7d0b9hTSwoXSxRcX7u/okFpaCven09Lhw+bj4KAJSwffx55+Wjp4cDw87eZFhi3LBMYjEXOLRquLiQ8OSo4zvt3aKrW2Ki7p2R84OvMDg+qLOfJ8r+QS01nMismu8HmZSQHqQKNC1BFF5Muf/EAAAAAAAAAAAAAAAAAAZTn3rnP13KHnwh5DknTDqhv0qfM+FfYYAAAAAAAAAAAAAAAAADBjEaEGAABzW1eXdMYZ0tat4/uamnIj1JI0PCy1txfGoyfi++a8fPkR3ZUrpQULyl8XmI2CAHwqZbZtuzBUHIuZ20y2dOn0iFB3d5sYdL5Sz7Hvj8ejh4fNtu9LPT0mDp3JlL6W7+d+T41GTWw8Fiv/e6rnmbh19vFZ5y8ZjWlz9Ead2XyP+kb7ZlyIupoA9UxW7xB1RFW8SQQAAAAAAAAAAAAAAACAki74fxdoW++2sMeQJF298mp99s2fDXsMAAAAAAAAAAAAAAAAAJjR5k7lCgAAoJRLLsndjkalRCJ3n+NIQ0MmgloO1zXHO07u/kSiMPyaf31grpo3L+wJGm9wMOwJjGSyuvNsW2ppkQ4ckB57TNq8WRobG7+/VFTa98f/7Djm+gMDhcH/UoI4ebZ4PGdzycpztfm6zeps7pRtzZyXuvkBaj/7uapQZqIYeAjrlFLPAHUj1gMAAAAAAAAAAAAAAADmsku+dYme7Xk27DEkSR96zYf0hYu+EPYYAAAAAAAAAAAAAAAAADDjzZwyFwAAQKOcfba0cGHuvpYWE1vN5jgmmjo6Knle8bU8z9w/MFAYoA7irdm6u6XVq2ubH5gtYjFpwQLzcbYaGZEikXBnsKzccHQl0mkTnv71r833Oqnwe2WpEHU+zzMx6mSy9PdUyUT9g2sFmpoKr/Mnf6Il85bUFKKO23GddtxpFZ9XDUuWWiItOQFqx3P0m4O/keM5E5xZXN9In554+Qlt2rupprk27d2kJ15+Qn0jfTWtU0qjgtGEqAEAAAAAAAAAAAAAAIDaveved2njSxvDHkOSdPlpl+uLF38x7DEAAAAAAAAAAAAAAAAAYFaIhj0AAABA6KJR6frrpVtvHd9nWVJ7uzQ4KPl+7vGjo+YWjZqYrGWZY1y3MDydv15+NPX66806AIx4XOrqMlFiNy8qu2KFuW8m+973pI4Oqa8xgd+ytLSY711dXePfvwKnniqdeGLhOf390mOPSevWmT/nh7Qdx3zO8r9fZvN9c73874PptPlcz59fuK7vS0NDxR9DtnPOkRYtkqRjIeoz7zhTfaN98vwJAtdZmqJNWrNkjVk+0aJne54t67xiEpGELMtS2knL0/j1X9nxSu0b2qeMl1F7rF2ePLme+Tp3fVeu58pLe9rWu00rulYoapf374e+kT5tObhFkjTmjGnT3k3HHkslNu3dpDHHBMq3HNyilSesVGdLZ8XrlNLoULQnTxGFHHkHAAAAAAAAAAAAAAAAZqgr77tSv9jzi7DHkCRdfMrFuuOdd4Q9BgAAAAAAAAAAAAAAAADMGhQPAQAAJGn1aumCC6T168f3RSLSvHkmgOoViZg6TunodDbbNgHq/LjqhRdKZ51V29zAbGXb5patrc38nZzJmprM45o3z0Tup1pzs7l+NCrFYoUR6lLP8f790v33S8mkOT6IhHve+K0cwbXyQ9SuKx05InV2jn+vdF1pYEDKZAofQyyWu+/P/ixnMztEfWjkUM59tmxFFFFG4+tmB6glqaOpQ6/vfr2e7XlWMTumjJc7Q8SKqD3erlFnVCk3VfAwXd9V1IpqXmKeBlOD8uRpXnSeWuOtaom1yPM82bYt7+jz5vquHM+RJfO8JNPJskPU2QHqQDUh6uwAdaCeIWpfEwTK68iVS4gaAAAAAAAAAAAAAAAAqNBV379KP93907DHkCS9ddlb9c33fDPsMQAAAAAAAAAAAAAAAABgVrEnPwQAAGCO+NjHpMWLc/dFIlJHh5RIVLdmImHOzw9QL14sXXdddWsCmLk6OszHeLwwst1oQXxaklpayj8vmZT+9/+W+vul0VFpZEQaGzNxaMcpP0AdCCLW+TzPhKgdRxoelg4fLgxQRyIm6p9t6VLpLW8pWC4IUcfs8WB1U7RJkuTIUUxmf8yOFY01dzR16I1L3qhzl56rpfOWjo9gRWTL1ogzIs8v/tgdz5HruZKkeYl5aou0KRodj0nbWZ/7IECdLwhRF7svUCxAHQhC1OUoFqAObDm4RX0jfWWtU4ort6bzp/v1AAAAAAAAAAAAAAAAgJnsuv+8Tj/a+aOwx5AkvWnpm/Sdy78T9hgAAAAAAAAAAAAAAAAAMOsQoQYAAAi0tUmf+5y0YEHufsuSWlulefNMOLYc8bg5vrXVnJ9twQJznba2+swNYOZYtmz8z/PnT+21s693wgnln3frrdLOnSY87WbFfX2/tnk8z9x8f/yWyUiHDpnwdf76tm0eQ/731P/9v6VYTMUsmbdEqxavUsyOqSnalBONDkLUyzuXlxwxCEcv71yupfOWHgtQW7aljJtRxsvIkpnHtnJfXme8jNJuOmedfI7nTBiZnihEPVGAOlBOiHqiAHWglhB1WEFoQtQAAAAAAAAAAAAAAADA5G760U2677n7wh5DkrT2FWv14AceDHsMAAAAAAAAAAAAAAAAAJiViFADAABk6+6Wbr9dWry48L5o1ISjjztOam+XmptNbDq4NTeb/ccdZ44rFh1dvNis393d+McCYPo55ZTxPwdR5akwf765XmDhwsnPSSalW26RHn88Nz4t1R6gzl8ruGVvZ4tEzPfW/O+rl18uXXDBhMtH7ahaY605AeqAI0eDqcGyxuxIdOQEqH2ZGX35smTJL/KcjDqjx0LU+dJuWik3Nel1i4WoywlQByYKUZcToA5UE6IOOwQd9vUBAAAAAAAAAAAAAACA6ewTP/uEvvHf3wh7DEnS67tfr3UfXBf2GAAAAAAAAAAAAAAAAAAwaxGhBgAAyNfdLX3xi9KFFxa/37KkWMxEp9vaxm/NzWa/ZRU/78ILzboEqIG56/TTc7ejUSmRaOw1E4nCePOSJROf09Mj3XijtGFD4X31DFCXkh2ibm6Wjj++8DGcdJL02c9OuMxgalDberdpxBkpecyB4QPqHe6dcJ3e4V7t6NtREKA+Nu7Rf4opFqJOu2mNOqMTXjNbdoi6kgB1oFiIupIAdaCSEPV0CUDvPLIz7BEAAAAAAAAAAAAAAACAaefTj3xad/z6jrDHkCSt6Fqh9X++PuwxAAAAAAAAAAAAAAAAAGBWI0INAABQTFubdPPN0q231h6N7u4269x8s1kXwNzV1SWdcUbuvubm0vH6WlmWWT/b0qVSe3vpc3p6zPerF1+UPC/3vqkIUAficamzU5o3r/D5WbRI+s53zH0lDKYGdcX3rlAynZz0Ujv6dpQMUQcBal9+0QB1ObJD1JUGqAPJdFKb922uOEAdyA5RVxOgDpQTos5kMlWt3QgZLzOt5gEAAAAAAAAAAAAAAADCdttjt+nLT3857DEkSactOE1PXPNE2GMAAAAAAAAAAAAAAAAAwKwXDXsAAACAaW31aukNb5CefFJat07aurX8c1eulC65xKwR5ccuAEddcknu95JoVGpqklIpE3muR+jZsswtkSj8/rNyZenzRkakf/xH6fBhaSwvUjwVAeogNh3MH4sVHnPSSSZA/YpXlFwmCFBv7Snve7YvXzv6dkiSulq7ju2vR4A6MJwZ1t7BvVUFqCXJcR2lla76+pIJUT/6h0drWkMyIepzTzxXsWKfH6nk/ko0RZu0ZsmamoLZkrS0fWld5gEAAAAAAAAAAAAAAABmg9s33K4vPPUFefLCHkXLjlumTR/dFPYYAAAAAAAAAAAAAAAAADAnUEMEAACYTDQqnXuuufX2Stu3S7t2Sb/7nTQwIDmOOaajQzr5ZGn5cmnFCmnBgrAnBzAdnX22tHChdODA+L6WFimTkbysX+ypJvqcHXG2bbNuto4O8z2qlHvvlfbtk1zXfG8L5piqAHUwvySl02aOSGR83+WXS5/9rDRvXsllKg1QB/JD1NkBakmK2BE5nlPRmvmGM8NVnxuNRJV2a4tQ10tTtGnSsHNEEblyq15/zZI1klRziLot3lbVeQAAAAAAAAAAAAAAAMBs86Unv6TPb/z8tAhQv7LjlXry6ifDHgMAAAAAAAAAAAAAAAAA5gwi1AAAAJXo6pLOO8/cAKAa0ah0/fXSrbeO77Msqb1dGhzM3Zcdf84ONAdK3R+sl3/OBRfkRp2z7dolbdpk7p/qAHVwrfx5Mxkzz9Kl0t//vXThhRMu4XquPviDD1YcoD42wtEQde9Ir46MHTkWoJYk27IVtaMVhah9+bJU5PNWBUuWXtP1Gu08srPqIHM9ZAeiJ1NNiLrY+tWGqCMq8bUOAAAAAAAAAAAAAAAAzDF3Pn2n/u7xv5PrV/fG8vV0YvuJeuJDTygej4c9CgAAAAAAAAAAAAAAAADMGXbYAwAAAADAnLN6tQlCZ4tEpHnzJDvrZZpljd+KKXa/bZt18mPTF14onXxy8XVcV3rkkfHtTKa8AHX29SebtRz511u8WPqP/5CeeGLSALUkReyIPrLyI7Kt6l/q+vLVN9aXE6AOBCHqctUzQH1q56nqau3SmiVr1BRtqsu6laokQB2oJAQ90fqVPm4C1AAAAAAAAAAAAAAAAIDx9c1f16ce/dS0CFB3t3brqT97Sm1tbWGPAgAAAAAAAAAAAAAAAABzChFqAAAAAAjDxz5mIsvZIhGpo0NKJKpbM5Ew5+cHqBcvlq67rvR5u3ZJAwNSOi0NDkpjY5MHqKXxUHX+sZPFqEvdH4lIra3mMXR1SStWSBdfLMVik89y1GWnXaYvve1LNYWoJ1JpiLpW2QHqQBgh6moC1IFygtDlrF/u4yZADQAAAAAAAAAAAAAAABj3b7tftzx8ixzfCXsUHd9yvJ6++mkC1AAAAAAAAAAAAAAAAAAQAiLUAAAAABCGtjbpc5+TFizI3W9ZJsQ8b54Uj5e3Vjxujm9tLYw7L1hgrjPRL+5s2CCNjJibU+UvG5WKURdTLEJt2+ZxtLVJTU1m+9ChqkaZLSHqYgHqwFSGqGsJUAcslY6SV7L+ZI+bADUAAAAAAAAAAAAAAABgPPTcQ7rhxzco42XCHkWdzZ3a8JENBKgBAAAAAAAAAAAAAAAAICREqAEAAAAgLN3d0u23S4sXF94XjZog83HHSe3tUnOziTQHt+Zms/+448xx0SJR5MWLzfrd3cWvPzYmPfigtGdPYUC6WuWEqINjSkWqA5nyfvnJdV3tGdijLfu3HLudNP8kfXz1x+X7fu5N9XmcjQ5RTxSgDkxFiLoeAepAsUB0NeuXetw2/xMHAAAAAAAAAAAAAAAAIElav2u9rv3htdMiQD2/ab42XrNR3W0l/js2AAAAAAAAAAAAAAAAAEDDNa6YBQAAAACYXHe39MUvSnfcIT38cOH9liXFYuZWiQsvlK67zgSqixkYkO67Tzp0KHd/PWLUvp8bmLas3HWD+/P35SvjMf+u73f64Y4faig1VPT++U3z1TfaN36ZoxFqS5MEsMsQhKgdz5Elq26B63IC1IE1S9Zo095NGnPG6nLtbPUMUAciisiVW/P6a5as0eN7HpfjOcfWrdfzDwAAAAAAAAAAAAAAAMxkG3+/UVc9cJVSXirsUdSR6NDDVz5MgBoAAAAAAAAAAAAAAAAAQmaHPQAAAAAAzHltbdLNN0u33mqi1LXo7jbr3Hxz6QB1f790773mo+vWdr1SJotZF7s/mvc+SQsWTLhEb7JX922/r2SAWpJa463qbO4svHydgsURK6Kl85bKsmqPWkuVBagDa5asUVO0qS7XDzQiQB2IKKL50fk1r79s/rJj6wEAAAAAAAAAAAAAAACQtvRs0eXfv1wpN/wAdXu8Xevfv17Lu5eHPQoAAAAAAAAAAAAAAAAAzHnRyQ8BAAAAAEyJ1aulN7xBevJJad06aevW8s9duVK65BKzRn7MOdvYmHT//VIyabY9b/y+ycLRlfJ9qVScOf9avi/FYrn7Tj99wuUfe/ExOZ4z6Rit8VZJUt9oX+4l5cv3fanKfnR2MPpA8oBSfu2/uNUR76goQB1Ys2SNHv3DozVfP3u9Rorlf66rRIAaAAAAAAAAAAAAAAAAMLb0bNEl37pEI85I2KOoNdaqhz7wEAFqAAAAAAAAAAAAAAAAAJgmiFADAAAAwHQSjUrnnmtuvb3S9u3Srl3S734nDQxIjmOO6eiQTj5ZWr5cWrFCWrCgvPUffVTq7x/fDmLQ9Q5QZ69fKkSdLz9M/NrXTnh4T7InZ3skMyLHzY1SO47ZTtgJzU/M1+Gxw+XNMonsAPXLAy8r5dUeoPbl6+DoQb088LJO7DixonM37d1U8/Xz12t0iBoAAAAAAAAAAAAAAABAfezq2aVL771Uw5nhsEdRS7RF3333d7Wye2XYowAAAAAAAAAAAAAAAAAAjiJCDQAAAADTVVeXdN555lYPu3aZqHU2329cgDqbZcmVL7vEpXzL0nAmmbPvDudxJR/bXHCs53uyLVsb92yU67nH9h9IHlDEiqgj0aF4LC5JSuatacuWJ6/GByMd13TcsQD1C0deqHm9bMF65YaoN+3dpDFnrK4zjDljhKgBAAAAAAAAAAAAAACAGWBXzy5d8O0LNJQeCnsUJSIJ3fee+7T2pLVhjwIAAAAAAAAAAAAAAAAAyEKEGgAAAADmAseRHnkkd5/vS17tQeZJ+b4GE9IH3y1dvVm67PnCQ1xbSrnpY9vbTpmv/0pukXIb0uod7tW+5D6d3nW6Xh56Wa4/HqFOppJyPEc9Iz06qeMktSXacs5Nu+m6BKgl6cjYET1/6HntS+6ry3r5yg1RNyJAHSBEDQAAAAAAAAAAAAAAAExvPckeXfidCzWQGgh7FCXshL552TcJUAMAAAAAAAAAAAAAAADANGSHPQAAAAAAYAo8+aQ0kPeLRqnUlFx6MCFd8V7p2cXSTW+XHnh14TGebeVs/2xtd8ExvcO92tG3Q0PpIW3r3SbPLx6UzrgZvTjwYs6+tJvWqDNa/YMoco1GBagDLxx5QS8PvFzy/kYGqANBiBoAAAAAAAAAAAAAAADA9NKT7NE5XztH/WP9YY+imB3Tne+4UxcsvyDsUQAAAAAAAAAAAAAAAAAARRChBgAAAIC5YN263G3XlRyn4ZcNAtRbjzalPaswRO1bkhsZj1Af7GzSMys6c9YJAtS+fElSMp1UT7KnZIg65abUN9wnqf4Basd15Kn4dbMFs1Z7v1Q6RD0VAeoAIWoAAAAAAAAAAAAAAABgekkmk3rT3W/S4ZHDYY+iqBXVl9/+ZV162qVhjwIAAAAAAAAAAAAAAAAAKCEa9gAAAAAAgAbr7ZW2bs3dl8kUP9ayJH/yOHI58gPUgSBELUnvekHyJWVsX55nws7/9Pb52jt2YHyd1KAODB/IXcSXHN/R/qH9ao+1y7ZsOa6T81ZLzfHmSQPUru8qokjZj6ncAPX4mL4sWUX3l+uFIy9Ikk7sOFHS1AaoA0GIes2SNVN6XQAAAAAAAAAAAAAAAAC5ksmkVt29SgeHD4Y9iqJWVP/0ln/S+1a8L+xRAAAAAAAAAAAAAAAAAAATIEINAAAAALPd9u25274vOY75c3Z02rLqFqEuFaAOBCFq35Le9byUsn25vqsHXxPTD04clIYGJalkRDqIOHuepyOpI4rZMcUjcUWzXub2jvROGKAOpN204pH4pMdVGqDOnjU7RF1JgDoQhKhfHHpxygPUAULUAAAAAAAAAAAAAAAAQLiSyaTWfn2teoZ7wh5FESui286/TR8+88NhjwIAAAAAAAAAAAAAAAAAmIQd9gAAAAAAgAbbuTN323UnPt6yJr5/EpMFqAOeJf3V26T7/1hyLWlPp61/uLD52P2TBaiztzNeRn5WPDvtpvXiwItlz5x20xPeX22AOnvG7I/VeOHIC6EFqANBiBoAAAAAAAAAAAAAAADA1Dv3G+dqz+CesMeQbdn6zBs/o2tXXRv2KAAAAAAAAAAAAAAAAACAMkTDHgAAAAAA0GC7d+due3kxZduWsgLOsqzc7QqUG6A+Noolffwi6ZYnLX3t3FYNNZkAdrkB6uz9Y+6YonZUGS+jUWdUUbuyl7xpN614JF44o+fVFKAOuN4k8e8ZYswZUyaTUSwWC3sUAAAA1MJ1JScjpdJSxsm9b6TwZ/GaFXuNYdmFx9iR+l87NSY5WT+POxnz+CMRcwMAAAAAAAAAAJgBzvqPs/SHgT+EPYZs2fqbtX+jG8++MexRAAAAAAAAAAAAAAAAAABlIkINAAAAALPdwEDudn6EOhIxAbYaQ9SVBqgDmYj01xf6aklIiUhMKSelMXdMlmUdO8b3/ZIB6oDnexrKDMnzPVmyJjy2lGIhatu2ZXu2PL+2EPVk8zdaU7RJa5as0aa9mzTmjFW9zsoTVhKgBgAAmOnSGSmTNn/2fSn/TVem6kdXz1POj+6eL1m1vwFMAd8zt2PbvuS5R29RKUqIGgAAAAAAAAAATG9rvrpGOw7vCHsMSdLHV39ct5xzS9hjAAAAAAAAAAAAAAAAAAAqYIc9AAAAAACgwRxn4vttW0okcvdZlrmVybWkD7678gB1Kir1NVvybEspN6WIFVHKTSlqR3Nu5fDlHwtFFws+lxuBdlynIGIdtaOyrXBfQi9pX6KVJ6ys6twgQC1Ja5asUVO0qap1Vp6wUp0tnVWdCwAAgGnC88YD1JBcR3LDfcMYAAAAAAAAAACAiZx393l67tBzYY8hSfrL1/+lPnXep8IeAwAAAAAAAAAAAAAAAABQISLUAAAAADDbRSeJOPu+OSYez91fQYg64ksf2SzZFbTbUlHpSLMl/+glfPnqG+sriEVn3EzZAWlLlmzZBRHpcs+XJE+ePN8rGqIOy5L2JTr1+FPV2dJZcYg6O0AdqCZETYAaAABglpjsTWrmItcNewIAAAAAAAAAAICiLvh/F2jrga1hjyFJunrl1brtwtvCHgMAAAAAAAAAAAAAAAAAUIXwCloAAAAAgKnR0ZG7bee9H5HnmY/NzSa+FmxL4xFqf/KI82XPm483vl3yJmhX+5bk2FJ/0+SB60oC1JKJTTdHm5V20zn7KpXxMorZMdmWfez87DWnUhCgDgQh6i0Ht0x6brEAdWDNkjXatHeTxpyxSdchQA0AADCLePk/H5f3xjMNkcn7GduypUgD5kmlc0PT+c9B9msgAAAAAAAAAACAaeKSb12iZ3ueDXsMSdKHXvMhfeGiL4Q9BgAAAAAAAAAAAAAAAACgSkSoAQAAAEwvY2NSKpUbCJOkLVukzlkewR0dNY/f86REQmptHY9AT8b3peFh89xZltTUJLW0SP390pEj0tCQ5DjmuOAWcBzzfEejUnu7NDhYGGErM0Y9UYjalwlQe7alwWZbvjVx6K3SALUkWbI06oyqOdqsWCSmgdRARefnXD8rRJ1yU1WvU4v8AHWgnBD1RAHqQDkhagLUAAAAs0wk701pqnjTlrrx8l73+Z7kNOA6rlt4LQAAAAAAAAAAgGnsvd9+rza+tDHsMSRJ7zntPfrixV8MewwAAAAAAAAAAAAAAAAAQA2IUAMAAACYHnzfxJLHSsRwh4cLw9SzyZEjJkKdLRqVjj9eikQmPtd1pb4+KZMZ337pJWnXLunAASmdNreJAtIjI+aYRMLEq0dGCkPUUm4U2/flWlIkb9mSIeqjAeqh1qhceTmtOz9vtmoD1IFRZ1TROrzkzXiZmteoVqkAdWCiEHU5AerARCFqAtQAAACzUCQqWbYJPk8n0VjYEwAAAAAAAAAAAEwLV953pR558ZGwx5AkXXzKxfrqO78a9hgAAAAAAAAAAAAAAAAAgBrZYQ8AAAAAAJKkZLJ0gHq2SyYLA9SS5DgmTj2ZgYHxAPVLL0n/+Z/S449L+/aZkLRd5ks/1zXx6ZERE6OOx0sfa1kabLL0rvdLD5xWePdlL1j60n9ZsrM60umYrcG2mDzbxKKDyLQf/JMVoo7Yk4S3yzDqFXlOZ4jJAtSBIESdrZIAdWDNkjVqijbl7CNADQAAMEvZlvl535pG/y+iSNTcAAAAAAAAAAAA5rhrHrhGP93907DHkCS9+Y/erG++55thjwEAAAAAAAAAAAAAAAAAqAN+ox8AAADA9DAyEvYE4ZnosafTJg4dKRFl9jwT706npV/9Stq9u/B+yzIhatedeA7fN8d6nolix2JSc7OUSpl9WQbjvq54r6+tC6XN3ZJ86bLnsw6wLF32gvnjjW/zlYnZSraMvwR1fTNLEKKWJMdzFLWjsixLtmUrakfleM7EM0/CkpVzjZmg3AB1IAhRbzm4paoAdWDNkjXatHeTxpwxAtQAAACzXcSWmpskz5VSVuH9sdgUDWKZWRodxE6nG7s+AAAAAAAAAABAHVz3n9fpBy/8IOwxJElvWvomfe/93wt7DAAAAAAAAAAAAAAAAABAnRChBgAAABA+3y8eSLayYmi2bW6zje+Ph6Kz92Vvu27pCFwmIw0PSz/7mTQ0VHx9qbwIdf61MxlzTmur+ZhOS45zNEAtbV1oDvMs6ca3S77GQ9S+78uJ2nrLSzF9/nFfH3ubeywo7fle4XVlgtS1hKh9+bJUGNCbSSHqpmhTRQHqQGdLp8498VzFaowFrlmyRplMpuZ1AAAAMANYlhSJSlF//HWDZN4Ap6kpvLkaYSxqgtsAAAAAAAAAAADT1E0/ukn3PXdf2GNIks5adJYe/MCDYY8BAAAAAAAAAAAAAAAAAKgjItQAAAAAwmdZJnSWH0nODqF5nrnNNkGEutj+gOuWfuxHjkj/9V/SyEjhfZ5nQtKVPm/ZIWrfN5HrefOk5mYNRl1d8dZBbV2Q+7nyLOmmt0u+Jb3lxagyUUuebUny9bq+JrU0RzWSPjJpDHquh6jHnDHt6tul5Z3LKz63XuFoAtQAAAAAAAAAAAAAAADA1PnEzz6hb/z3N8IeQ5L0+u7X6yd/9pOwxwAAAAAAAAAAAAAAAAAA1Jkd9gAAAAAAIElqaQl7gplnbEx64IHCALXnSamUud91TUjarzDAHJzjeWaNgQENpod0xYX9BQHqY5e1pBvfLv3gNB0NUBt3v2eZEvGWsiPQQYjaPzpzEKIue/QS1ykWp56O9gzu0a6+XWGPAQAAAAAAAAAAAAAAAKDBPv3Ip3XHr+8IewxJ0oquFVr/5+vDHgMAAAAAAAAAAAAAAAAA0ABEqAEAAABMD21tUlNT2FPMLI8+Kg0MjG+7rglPB/HpOhqMebriHSltPaF0SNq3TIj6b85z9KOTPUnSL1adoF+f3qmB0YGS5xVdq0iI2q7gJWy5wevpihA1AAAAAAAAAAAAAAAAMLvd9tht+vLTXw57DEnSqcefqieueSLsMQAAAAAAAAAAAAAAAAAADRINewAAAAAAkCRZltTZKaVS5uY4ufe3tZn7Zxvfl44cyd1nWWZ/oLVVWrAg95jf/lZ67jlzrOdJ6bT52ACDCemK90pbu4vf78sEqANBiPpga1RfP9/Wnpef0ZA7VPF1gxB11I7K9315quzxZbyMLFmTHzhN7RncI0la3rk85EkAAAAAAAAAAAAAAAAA1NPtG27XF576QsX/TVQjLDtumX75F78MewwAAAAAAAAAAAAAAAAAQAMRoQYAAAAwvSQS5pbvjDOkhQunfp5ienul7dulnTul3bulgQETzY5GpY4Oadky6ZRTpNNPl7q6Jl7L88x6EznjDGnRovHt/ful224z4elUqvz4tJUVZM6OXE9gwgC1ZUmWJd8vvH7Glj75p67c1EvyVd61ivHlK+Nlajo/CFHXMkdYCFEDAAAAAAAAAAAAAAAAs8udT9+pz2/8/LQIUC+dt1S/+OAvwh4DAAAAAAAAAAAAAAAAANBgRKgBAAAAoByOI23aJK1bJ/3mNxMfu3nz+J/POEO65BLp7LNNpLoe13/mGWloqOyQ9DHZx1vWpOe7lvTBdxcJUB+NT0tSRp4i+efZUn+zJceaHtHnmRifzkaIGgAAAAAAAAAAAAAAAJgdvr756/rko5+U67thj6IT20/Uxg9vVFtbW9ijAAAAAAAAAAAAAAAAAAAajAg1AAAAAEzmqaekf/936cCBys/dutXcFi6Urr9eWr268jU2b5a++93x64+OVh6gzuJaUqSM8yO+9JHN0uZFkmdl3eH7kmVpVJ76WyTbk7pGzV3puK3BuOTKq3o+FCJEDQAAAAAAAAAAAAAAAMxs92+7Xzf/7OZpEaDubu3WU3/2FAFqAAAAAAAAAAAAAAAAAJgjiFADAAAAQCnJpPSVr0jr19e+1oED0q23ShdcIH3sY1I5v7wzNiY9+qi0Y4dk22af40iZTNVjDCakD77bxKUve37y4y97XpIl3fi23BD1YMTTcML82bOl3map2YoqE7PludXPh9IIUQMAAAAAAAAAAAAAAAAz00PPPaQbfnyDHN8JexQd33K8nr76aQLUAAAAAAAAAAAAAAAAADCHEKEGAAAAgGJ6eqRPflLat6/4/b5vgtCOI7nu+P5IRIpGzc2yCs9bv1767W+lz31O6u4uff2BAem++6T+fikWG98/PFzVw5FMgPqK90pbu6XNi8y+nBC1ZZnHleey5yTJ0o1v8+VZ0mBUxwLUAS8iDctR1I/KV+EakGJ2TBmvtkD3/uR+LZu/THYQJQcAAAAAAAAAAAAAAAAwrT303EO69ofX1vzfDtVDZ3OnNnxkAwFqAAAAAAAAAAAAAAAAAJhjqFYBAAAAQL6eHunmm4sHqB1HSialI0ekoSFpdFRKp8dvo6Nm/5Ej5jjHKVxj3z7pllvMdYrp75fuvdd8zJZOS5nqfhEpO0AtSZ4l3fh26YFXZx3k+5JtF41nX7Yzoi/9LKqhiDTcdHSnlXU7yvGKPF6oKdKkU48/VXE7XvUaMTumVYtXEaAGAAAAAAAAAAAAAAAAZoj1u9br2h9eq5SXCnsUzW+ar43XbFR3W3fYowAAAAAAAAAAAAAAAAAAphjlKgAAAADIlkxKn/ykdPhw7n7fl4aHpcFBE4MuRzptjh8eNudnO3TIXCeZzN0/Nibdf3/hfs8zcesq5Aeojy1ZLETteUUj1Gpp0X+/IqFkc1UjzGlxO66WWIskqSXWUlWIOghQN0WbJj8YAAAAAAAAAAAAAAAAQOg2/n6jrnrgqmkRoO5IdOjhKx8mQA0AAAAAAAAAAAAAAAAAcxQRagAAAADI9pWvSPv25e5zXWlgQEpV+ctAqZQ533Vz9+/bJ915Z+6+Rx+V+vsLr9/fXxiyLkOpAHWgaIi6yHU+e+agPvMnwxVfHzoWoM7eriRETYAaAAAAAAAAAAAAAAAAmFm29GzR5d+/XCk3/AB1e7xd69+/Xsu7l4c9CgAAAAAAAAAAAAAAAAAgJESoAQAAACDw1FPS+vW5+1xXGhyUPK/4OdGolEhITU3mYzRa/DjPM+vkh6jXr5d27TJ/3rVL2r698LyhodLXn8BkAepjl8gPUfu+ZFnH7v/sOdJnzqv48jhqIDVQsK8l1qKYHZv0XALUAAAAAAAAAAAAAAAAwPTSl+yb8P4tPVt0ybcu0YgzMuFxvu/Xc6yiWmOteugDDxGgBgAAAAAAAAAAAAAAAIA5jgg1AAAAAEiS40j//u+5+3zfBKDzf9nHsqTmZmn+fGnePKm1VWppMR/nzTP7m5sLr1FqvUcfldJp6ZFHCo8fHW1YgDp71aIhah0NUL+54ssjiy9f/WP9BfsTkYRsq/TLcgLUAAAAAAAAAAAAAAAAwPSy7oV1Ov6fjtei2xcVvX9Xzy5deu+lGs4MT7hOf6pfA+kBpd10I8aUJLVEW/Tdd39XK7tXNuwaAAAAAAAAAAAAAAAAAICZgQg1AAAAAEjSk09KBw7k7hsZKQxAR6MmNN3cLNklXlLZtrm/o8Mcn83zzLrZBgakJ56QBgdz96dShcHqMpQToHYk9bZKg/Gs0fJC1N86nQB1vXjylMlkCvbH7FjREDUBagAAAAAAAAAAAAAAAGB6WffCOr3jO++QJPUM9xSEqHf17NIF375AQ+mhCdfpT/Uf+/OIM9KQEHUiktC9775Xa09aW/e1AQAAAAAAAAAAAAAAAAAzDxFqAAAAAJCkdetytx3HRKCzRaNSe7sUiZS3ZiRijs8PUadSZv1smzfnbrtu4TFlcC3pg++ePEB9qNVEp4fjxUPUf/Yu6a/fKtleiUWsikebkZoiTTr/lefXHINuj7QrFosVvS8/RE2AGgAAAAAAAAAAAAAAAJhesgPUgewQdU+yR2/97ls1kBqYcJ3sAHWg3iHqhJ3QNy/7pt607E11WxMAAAAAAAAAAAAAAAAAMLMRoQYAAACA3l5p69bcfWNjhce1tkpWhfVlyzLn5cte3/OkoSHzMZDJFF9rkutHfOkjmyXbL35/EKD2s5YpFqJ++GTzceHIBCHqWa4p0qQ1r1gjSVqzZE3VUehWu7VkgDoQs2PHbgSoAQAAAAAAAAAAAAAAgOmjWIA60DPco/a/a9c5XztHfaN9E65TLEAdqFeIOmbHdOc77tQFyy+oeS0AAAAAAAAAAAAAAAAAwOxBhBoAAAAAtm/P3fZ9KZ33Cz3NzVIkUt36kYg5P1s6ba4jSa5rPgYRat+XHCf3+DIC1IHLnpe+9OPCEHWxAHUgP0SdbS6GqLMD1IFqQtTlBKgDiUhCa5esJUANAAAAAAAAAAAAAAAATBMTBagDSSX1uyO/m/CYiQLUgVpD1FErqi+//cu69LRLq14DAAAAAAAAAAAAAAAAADA7EaEGAAAAgJ07c7fzA9CSlEjUdo1i5wfXCeLTQYw6+FhMlSHqiQLUAULURrEAdaCSEHUlAeqAbfMyHQAAAAAAAAAAAAAAAJgOyglQZysVmi4nQB2oNkQdtaL6p7f8k9634n0VnwsAAAAAAAAAAAAAAAAAmP2oWwEAAADA7t252/kR6mhUqjUObNtmnWLXCSLU+R8DllV2fDpbEKL2/MkD1IGJQtSxYKzKR5kxJgpQB8oJUUcUqThADQAAAAAAAAAAAAAAAGB6qDRAHcgPTlcSoA5UGqKOWBHddv5t+vCZH674WgAAAAAAAAAAAAAAAACAuSE6+SEAAAAAUIbeXmn7dmnnThN1HhgwkeVoVOrokJYtk045RTr9dKmrK+xpcw0M5G67bu52JFKf60QiuYHr4Dq+n/uxWIS6Sqtelkbi5QWoA8NHI9Tzsn6Pqa9JSs2BV5CvW/S6so5bs2SNNu3dpDFnrOA+W7Zi0eoC1L7vy6rh8w0AAAAAAAAAAAAAAACgNtUGqAP9qX7NT8yvKkAdGHFGJEnxSHzC42zZ+swbP6NrV11b9bUAAAAAAAAAAAAAAAAAALPfHEiIAQAAAGgYx5E2bZLWrZM2bzbbrms++r65WZa5bdxoIszRqPS610mXXCKdfbbZDlt2GLqYekWBq13HtnPD1JY1HqyewN526cyPmai0JWnyM8Zlh6jnSoBakp7a+5RWL1mtpmjTpMcWC1FbshS1o5IvuV5WzNyS0m5arj++z/M9+Uc/j5ZlyfEc/ebgb3R61+lmDQAAAAAAAAAAAAAAAABTqi/ZV1OAOlBLgDow4owoZsdKvqm9LVt/c87f6Mazb6z5WgAAAAAAAAAAAAAAAACA2Y2qFQAAAIDqPPWU9G//Jr30kpRKTR5yzr7/iSekp5+WliyR/vIvTZQ6TJOFsMsIPpel2nWqiFenben110l9zUeX8CVZlYeoR2OSl335OvW4pytPXkUh6j9Z/CfasGeDPJlIuG3Z8uXL9335Wc+2J0+u5x6LTksyxx09xvM8ub4rL+1pW+82rehaQYgaAAAAAAAAAAAAAAAAmGKdbZ3qbu1Wz3BP2KNIUskAtSTd9Cc36ZZzbpnCaQAAAAAAAAAAAAAAAAAAM5Ud9gAAAAAAZphkUrr9dumTn5R27JCGh01g2vfHb55XeMu+33HMOjt2mHX++Z+lsbHwHlNHR+52JJK77br1uU7+OsF1gl8UCj7aeS/V8uPVZUSp457055vzTvMrb0jPpQB1IAhRjzkTf006nqNtvdsUjURlHX1yXN+V53uVXc/35PjjkfZkOqltvdvkeJOE3QEAAAAAAAAAAAAAAADU3f5b9qu7tTvsMTQ/Mb/kfde97jp95vzPTN0wAAAAAAAAAAAAAAAAAIAZjQg1AAAAgPL19Eg33CA9+KCJSAdx6fzIdDH5kergYzIp/fCH0j33SAMDU/pwjlm2LHc7Gs3ddhwzay08z6xT7DpBdDr/Y/a5+WHsMkLU//iIdMvGvNNKfHqQa7IQdRCgTqaTkiQr6/Ph+q5cv7xwued7RY8lRA0AAAAAAAAAAAAAAACEJ+wQ9UQB6qtXXq3Pv+XzUzcMAAAAAAAAAAAAAAAAAGDGI0INAAAAoDw9PdJNN0kvvCCl07kx6Wpkn59OS/v3S9/4Rjgh6lNOyd3Oj1BLUipV2zWKnZ8foQ5C0/nBad8vDFOXEaGWCkPUfnmnQUdD1C8/JS8vQJ4foC7G8R1l3Ix83z92c3wnd9tzJoxVE6IGAAAAAAAAAAAAAAAAwhNWiHqiAPWHXvMhfeGiL0zdMAAAAAAAAAAAAAAAAACAWYEINQAAAIDJJZPSLbdIL74ouW5t8el82THqQ4eke++Vxsbqs3a5Tj89d9uypHg8d9/oqHns1XBdc362eHw8JB1Ep4PQtGUVhrDTabPf98dvFYaofZlbVeZqvDrvCSsnQB1IeSllvIw8efJ8T67rmj/LU8bLKONlJl2DEDUAAAAAAAAAAAAAAAAQnrUnrp3S600UoH73q96tL178xakbBgAAAAAAAAAAAAAAAAAwaxChBgAAADC5L31J2rWrvvHpfEFY+cAB6Wc/a8w1Sunqks44I3dfU1PhccPDlT9+3zfn5cte37al9vbxCLUkxWLF18pXZoh69ctS6+TN4+JCCFBbR/8Jky1bq5esln3081JJgDqQ9tJyvdx4ueu5SnvpstcgRA0AAAAAAAAAAAAAAABMvSvvu1KPvPjIhGHoeproOhefcrHuuuyuKZkDAAAAAAAAAAAAAAAAADD7EKEGAAAAMLGnnpJ+9CPJdRsXoA4EIeqtW030eipdcknudjQqJRK5+xxHGhoyz0U5XNcc7+TFgxMJs362M8/M3Y5ECo8p9fxPEqJ+4NXSjW+X2tNSa/nt41D58hWPxGWH9LI1CFA3RU0svJoAdSDtpY8FpCsNUAcIUQMAAAAAAAAAAAAAAABT55oHrtFPd//02HajQ9QTrf/mP3qzvvmebzb0+gAAAAAAAAAAAAAAAACA2Y0INQAAAIDSHEf6P/9HSqUaH6AO+L657o9/XH7suR7OPltauDB3X0uLZOe9bHIcaWBAGh2VPK/4Wp5n7h8YKAxQ27ZZN1tHh3TuudK8ebn7E4nCwHQQ6s7/fJQIUQcBau/o3fMqDVFP3LduqJSbUiwSm/IQdX6A2vd9be/dXlWAOpD20uob66sqQB1IppPa3rtd/lT9XQQAAAAAAAAAAAAAAADmoOv+8zr94IUfFOxvVIh6onXftPRN+t77v9eQ6wIAAAAAAAAAAAAAAAAA5o5o2AMAAAAAmMY2bJBefnnqAtQB35f6+qQdO6TTTqt9vd5eaft2aedOaffu8Th0NGoC0MuWSaecIr3//dK//Mv4eZYltbdLg4OFz8HoqLlFo1IkYo71fRPOzg9P56+XH4x+85uleNx8fOCB8fstywSrR0bGrx9cR5r085IfoA7MO9pBHo5PeHqoAepAyk0pEUko42bkqUT0u47yA9SSZFmWFrct1o6+HfJV/d+FtFt9gFqSLJk5rBLBcQAAAAAAAAAAAAAAAAC1+fhPPq77nruv5P3zE/PVn+qv2/UmClCftegsPfiBB+t2LQAAAAAAAAAAAAAAAADA3EWEGgAAALNbKmWCwK47vs+ypOefD2+mRnNdE0d2HCkWk5qbJduubq077sh97qaS50kbN1YfoXYcadMmad06afPm8a8DxzHxZt83XwuWZa4TiZigdFubiVTHYua+SESaN08aGjIzFbtOqeh0Nts2AepIJHf/BRdIr361lMlIy5dLp58uPffceIjats31k8nx6wch6gki1KUC1IF5aWksJrmlesbTqHM8VSHqYgHqQFdrlyTVHKKuliVLp3aeemwOAAAAAAAAAAAAAAAAAPX1iZ99QndvuXvCY+oZoA7WKxaiPmPhGfrJn/2krtcCAAAAAAAAAAAAAAAAAMxdRKgBAAAwO7mu1N9vItTF7N49peNMmVRKOnIkN5YcjUrz50vxeGVrDQ6a52mC0HHD7dtn5pg3r7LznnpK+rd/k156yTwnmcz4fcUeT/b9w8MmKm1ZUmured4iEamjQxoZKf01NZFEQmppGQ9LBxYvlq67Ttq2zXzeJOn886VDh8wtUOz6wVpFHs9kAWpJGozPjAB1IOWmtGrhKj174NmGhKgnClAHwgpRE6AGAAAAAAAAAAAAAAAAGuvTj3xad/z6jgmPqXeAOnvd7BD1iq4VeuzqxxpyLQAAAAAAAAAAAAAAAADA3GSHPQAAAADQEAMD1cWCZzLXlfr6cgPUkgkq54epy/Hcc2bNMDmO9MIL5R+fTEq33y598pPSjh1mO502oebgVkz2/cHxrisNDZk1PG88Sj1vXvlB73jcHN/aWhigXrBA+tznpLY2E5hubjb7m5pMmHr+/Nzji13fsiTbzlnbtaSvnTl5gHq42EOwVPcAtSVLy+cvl1XjwitPWKn25natXrJadp1fypYToA50tXbp1M5Ta3485SJADQAAAAAAAAAAAAAAADTW7Rtu15ef/vKExzQqQJ2//qnHn6onrnmiodcCAAAAAAAAAAAAAAAAAMw9RKgBAAAw+2Qy0thY2FNMveHh0pFl163sORkZkZ5/vj5z1eq558oLivf0SDfcID34oIlHO07p52MywXm+b563gYHxIHc0asLRxx0ntbebeHQ8Pn5rbjb7jzvOHBeNFq6/eLGJZXd3m23LMn9esMCEpk88UfrEJ6SFC8192bdYzKzf2WmC1C0tJlydSEjxuCJ2RN/6gXTGgeIPrWiAugHxabOspY5EhySpNdpa9TorT1ipzpZOSVJTtEmrl6yuy3yBcgPUgakKUROgBgAAAAAAAAAAAAAAABrrS09+Sf+w4R/kySt5TKMD1IHB1KB++Re/nJJrAQAAAAAAAAAAAAAAAADmliI1NAAAAGCGS6cnP8ZqbDw2FI4z+f3lPG7XlY4ckQ4erM9ctTpwQOrvn3j2nh7pppukPXsmfx6q4bomRN3RIUUiZl8QhI7FKlvrwgul664zgep87e3m9kd/ZKLSd9xhbj//efHHX+La81xX3304rSsuGtLWBe6x/TkB6gb/FcgOUAciisiVW+KM4rID1IG9g3trni9/veWdyys6JwhD7+jbIV9Vxs4nQIAaAAAAAAAAAAAAAAAAaKw7n75Tf/f4302LALUkefK06PZF2n/L/im7JgAAAAAAAAAAAAAAAABgbrDDHgAAAACou3KiwL4/+25e6V+EkWTuL2eddFo6fFgaHa3P56NWo6NmnlIR6mRSuuUW6cUXGxOgDnieNDg4+fNcSne3dOut0s03Fw9QF9PWZo7/t3+Tli4t/1qRiObZzfruzxfojCMJybY12GRrOCETn64gQG1VWauO2cX/HkYUKXuNYgHqXX27tGdwT1UzlbJncI929e2q+Lyu1i6d2nlq1c9RKQSoAQAAAAAAAAAAAAAAgMb6+uav61OPfkqu75Y8ZioD1IGe4R4tun3RlF8XAAAAAAAAAAAAAAAAADC7EaEGAADA7BOLSdFo2FPMXMPDUn9/Y4POlXAcE38uNc+XviTt3Cm5pX8ZqG58X2puruyclSulv/1b6atflVavru66f/qn0hNPSHfeKa1dW/Zp8zK2vjv8NjUd16Xh2OTx7FIx5Woiy2kvrZHMSNH7yglRT1WAOlBriLpeCFADAAAAAAAAAAAAAAAAjXX/tvt1889uluOX/m/kwghQBwhRAwAAAAAAAAAAAAAAAADqjTIfAAAAZh/LkubPlw4fNtFgVCadnj4B6oDjSH/4gwmM21nvpfPss9K6dVMToJYkz5MOHZI+/nEpkZB275ZefHE8kh2NSvPmSX/0R9JJJ0nLlkmRiIlk/9u/mccwMGDWiceljg7pla+U2tulk0+Wjjuu9LVjMemSS8xt3z7p6ael3/xG2r7dzJTJmGMWLJBOP11Dp5yk7cta9cU99+vF7b1lPTxfhX9fiu0rV9pLy0/7ilgRpdyUPE0ewpakRa2LNJQe0lB66Ni+QyOHNJAeqHqWcgSB6+Wdyys6r6u1S/G+uMbcsZpnOK7pOALUAAAAAAAAAAAAAAAAQIM89NxDuuHHN0zbAHUgCFHvv2V/2KMAAAAAAAAAAAAAAAAAAGYBItQAAACYneJxaeFCaWjIxHm9vPhtW1s4czVSEDcOWFZuhDseL+9xR6PS6Gj956vFb39rPpfHHSe94hXSokXmsf3rv0qp1NTOkkpJ//Ef0g03SMuXm1s2z5P6+6Vf/lL6xjeknh7zuZByPx+WZQLVv/71+L5TTpHOPVdautRErktZvFh65zvNLc+uvl36h8f/QX8YeEy7Nu46FlYOS8bPqG+sr6KY9cHhgznbnryaYtiVqCZE3Tvcq7SXrsv1j4wdUe9wLyFqAAAAAAAAAAAAAAAAoM7W71qva394rTJepuQxvj81/51SOXqGe9SX7FNnW2fYowAAAAAAAAAAAAAAAAAAZjgi1AAAAJi9bFvq6CiMMVuW9MY3hjdXozz5pHTkyPh2/uNeskR67WsnX6e52QSUp5NMxgSbx8akP/zBhJ6TSamvL5x5Dh+WduyQTjut8L6tW6WNG818Adc1H217fJ/vm/2+bx6bJO3caW4/+Yn0l38prV5d0Vh9yT7d/JOblcwk5Xme9if3V/jAClmyag5AV3J+RJGc7akMUAcqCVH3DvdqR9+Oul3bl39sPULUAAAAAAAAAAAAAAAAQH2s37VeVz1wlVJeasLjLMtSS7RFI85ITdebn5iv/lR/TWv88MofEqAGAAAAAAAAAAAAAAAAANQFEWoAAAAAucbGcuPV00UQcs5kpAMHpGefDW9O35d+8Qvz554eqbfXRKcPHZJGRkwAPPvYbJZlYtTBLYiFZ59z4IB0663SBRdIH/tY2WPd+es7lcyY+LVt21q1eJWe3ve0Ml6mqocZt+NqibVoJDOitJeuag2p/JD1dAhQB8oJUQcB6nrPSIgaAAAAAAAAAAAAAAAAqJ+Nv9+oDz34IaXciQPUgXgkLklVh6jnJ+Yf+1htiPqHV/5Ql7zqkqrOBQAAAAAAAAAAAAAAAAAgHxFqAAAAALnGxkwceTrxfcnzxoPOQ0PS/v3hzrRvn/TQQ+a58jxpdNR8LEcQ1JbM+YmEuQWCIPX69dJvfyt9W6aSzQABAABJREFU61vS/PmTLruzb2fOdlRRnXHCGdpyYIsc3ylvtqPidlxN0SZ5vqemaJPkqOoQdbkR6uxjPJX5XDbQRCHqRgWoA4SoAQAAAAAAAAAAAAAAgNpt6dmiy79/ucacsYrOqzZEHQSos7crDVEToAYAAAAAAAAAAAAAAAAA1Ns0K8sBAAAACF0iMR57nk7a2kyc2bKk3t7yg8+N5DhmjpGR6ucJAtYDA1ImI0Xz3ito3z7pQx+SXnpp0qUG04M527/r/512HdmllmiLLFllj2RbtizLUspNHbtZliXbquwlpCVLEUXKvrZ19J96hZ0recyl7E/ul5f3uW10gDoQhKh7h3sbeh0AAAAAAAAAAAAAAABgNtrSs0WX3ntpxSHpQDwSV0u0pezj8wPUk+0vhgA1AAAAAAAAAAAAAAAAAKARiFADAAAAyNXUJLW2hj1FrnjcxKcDBw6EN0u2TMYEqOsR7fZ9aXhYOnKkMGh94IB05ZXS4GDxcydh27baY+1lRZlty1bMjhW9L2bHyg5RW7JkV/mS05Zdl4B0V3NX1TNI5vGuWrxKtj2+xlQFqAOEqAEAAAAAAAAAAAAAAIDK7erZpXd9+10aSg/VtE65IeqJQtNN0SZt+PAGdbd2T7gGAWoAAAAAAAAAAAAAAAAAQKMQoQYAAACQKx6XFi3KjT6Hrbk5d54qY8x153n1CVBnc12pr88EriUpEjEff/976dOfrnrZckLUEwWoA+WEqIsFqCOKTHhO/v21hqht2YpFYorYkapC1EGAuinadGzfVAeoA4SoAQAAAAAAAAAAAAAAgPL1JHt04Xcu1EBqoC7rTRainihAnYgk9I13fUNrT1qr/bfsLxmiJkANAAAAAAAAAAAAAAAAAGgkItQAAAAAcjU1SfPmjcePw2ZZJoydPU8QaJ7NBgZMkNrOetl2333Sww9XveREIepyAtSBiULUxQLU1ao2RG3LVsQe/3qpNEQ9nQLUAULUAAAAAAAAAAAAAAAAwOR6kj1ae9da9Y/113XdUiHqCQPUdkLfvOybumD5Bcf2FQtRE6AGAAAAAAAAAAAAAAAAADRaNOwBAAAAAEwz0agJPkcikuOEPY2JULe3S/PnS2NjZp8fTgh4yvX3S11duQHu/+//k847T4qVF4zO1hpr1ZJ5S5RyUtrWu02Obz6/i1oXaWnHUjmuI7/M5zZiRbQ3uVf7h/dLkqJWVCu6VijiR5RWetLznYyjaKy8l6RpJ61d/bvk+m5Zx3vy5HmeepI9clXeOdl839cz+5/J2XY8p6YAtS9fnu9Nekzanfi529a7TdHDUVlW5XHuqVTsec/ed2j0kDa8tKG2a7jupJ/f5w4/p11HdtV0HSCQ9if++zmQHtCGF2v7up6pMn5mwu+Rru9qw565+dwAwLTk+8r9tl3k59ThqRpmimQm/llcGUlO1hvXOL4UkXk9OkN5eZ/XTMaRN+BpQdNx6kjMC2kqAAAAAAAAAAAaqy/Zp3O+do76Rvsasn48EpckjTgjkiYOUMfsmO58x505AerA/lv2a9Hti9Qz3EOAGgAAAAAAAAAAAAAAAAAwJYhQAwAAAMjlOJLrTp/Ylm1LnjcexpbmToTa96W+PhOiDuzZI/3sZ9LFF1e8XCwSU2u8Va3xVv3JiX+ip/c9rUVti7S8c3lV453WfJpikZj2J/dr1eJVaoo2VbVOOY5vPV5P73taGS9T9jnVRKMtWfJ9X67rFu6vIUItSRFF5Ki2sLslS543SUBvBvBV+BxXKj+qV/I6Xm3XASpRbix/tinn+yN/FwFgOsn/vl3tz7mz7HWZ4+Y+pOwf3St/D6Bpx5GnASepgWRSXZlOnVLl60AAAAAAAAAAAKarZDKps+8+W4dHDjf0OvFIXDE7NuGbyEetqL789i/r0tMuLXnM/lv2qy/Zp862zkaMCQAAAAAAAAAAAAAAAABADjvsAQAAAABMM2NjJkSdToc9ieG6JkJdY7B2xnIcaXg4d98999S8bFO0SWuXrK06QB1Y3rlca5esbWiAWjLzrlq8SjG7cfU3S5bsEi+TJ7qv3LWzP1bDll3T+QAAAED9zLIAtTTxQyr/vXBmhN5Unw4me8MeAwAAAAAAAACAukkmk1p9z2odHD44JdebLED9T2/5J71vxfsmXYcANQAAAAAAAAAAAAAAAABgqhChBgAAAJDL86SXXzYfpwPfNxHm6TJPGJLJ3O0NG6R9+2pe1rbr85KwXutMppEh6nIi09WGqPPD0dWEpAlQAwAAAKinvUMvhz0CAAAAAAAAAAB1kUwmtfbra/XyNPjfviNWRLedf5s+fOaHwx4FAAAAAAAAAAAAAAAAAIAc0bAHAAAAADDNOI6JUE8n/f2SbUuua7Zte25FqT1PGhuTmprG9z39tPTOd4Y3U0iCEPXT+55WxstMeKyn8r9GLFny5df9WEnHjnXlVnRe9vWy15ktan085Z4/2543YKbi7yIATCd8T56L8l8fjbqpkCYBAAAAAAAAAKC+3vStN2nP4J6wx5AtW59542d07aprwx4FAAAAAAAAAAAAAAAAAIACRKgBAAAA5OrtlfxpFiXzfRNhjkTM9lyLUEvS8HBuhPo3v5mTEWrJhKjXLlmrx/Y8Vpf1IopUdHwQoa4kcl0tW/axCPVsMxWPq9LPLYDGma3fywBgZrJU/xD1NHsNiQK27Jzt1lhzSJMAAAAAAAAAAFA/Z/3HWdp9ZHfYY8iWrY+v/rhuPPvGsEcBAAAAAAAAAAAAAAAAAKAoe/JDAAAAAMwpjiMlEmFPkcu2zVwBaw6GLDOZ3PD29u3hzTIN2HZ94szVRootWQURt3LOqcRsDlDXIw5NYBqYPmbr9yoAwCwSC3uA6cWSpZM7Tgp7DAAAAAAAAAAAanLuXedqx+EdYY8hSbph1Q361HmfCnsMAAAAAAAAAAAAAAAAAABKIkINAAAAIFdnp4k+Tye2LTU3j29nx5jnknR6/M+HDoU3xzRRToQ4akUbdv1KQtQxO6aIHSn7+JkeoCYQjdlosq/rufx1P9n3trn83ADA9DVzf9ZEbSzL0pLmhWpvag97FAAAAAAAAAAAqnbe3edpW++2sMeQJF33uuv02Td/NuwxAAAAAAAAAAAAAAAAAACYUONqXAAAAABmpoULpXnzwp4iV1ubFI9LY2Nme65GqB1n/M+ZTHhzTCMRReTKLXqfJUutsVZJUjqTluu78uXLlq14LF63GXzf16g7qpgdk+3b8uTJ931JUsyKKRaL5RyfyWTkypXnm69jW7ai0agyXkYZL6PmSLMsa3ZEAdNO+tjjtI7+U8/n/th1Mmm5co+FwRtxDSDgZBy5Mt9Pgq/r/L/nc5XruvI8T65c2bJlW7ZiUZ4bAJi+fMnzqzjNl7z8n8GLrTPNfqaNSaXn9KRJX2JNszdrmkQq7wE1KaaFieN1fPw4NcUTIU0FAAAAAAAAAEDtLrrnIm09sDXsMSRJV6+8Wp9/y+fDHgMAAAAAAAAAAAAAAAAAgEkRoQYAAACQy/elRYsk254esWfLklpbc/f5VYTSZoPs8DTB02MiikiSPHmys8Jw8xPzdcaiM6ZkBt/36xKOrtc6AAAAQMO4rjQynLtvOG+7uUWyZ9DPtSOjkoYnOMCWju+cqmnq4vn+32nEHTu2fVxsnk5s6w5xIgAAAAAAAAAAaveue9+lX+7/ZdhjSJIuP+1yfeGiL4Q9BgAAAAAAAAAAAAAAAAAAZbEnPwQAAADAnJJKmehze3vYkxjxuAlRu27Yk4QvOwq+YEF4c6BAvcLRBKgBAAAAAAAAAAAAAACAQu/99nv1iz2/CHsMSdK7X/Vu3fHOO8IeAwAAAAAAAAAAAAAAAACAshGhBgAAAJAriD2/4hXhzhGYN898JEKd6/TTw54AAAAAAAAAAAAAAAAAABruqu9fpUdefCTsMSRJb132Vt112V1hjwEAAAAAAAAAAAAAAAAAQEWiYQ8AAAAAYJpJJMzH448Pd45AS4v5GIlInhfuLGGyLEmS5/vKeBn9qmNQL/7mmzmHvNj/opLp5LHtkcyIHNdRxI7IOno+AAAAAAAAAAAAAAAAAMwU1zxwjX6080dhjyFJevMfvVnfufw7YY8BAAAAAAAAAAAAAAAAAEDFiFADAAAAyBWPS01N0vBw2JMYmYwJY9v2+D7Lknw/vJmmWhCgtiwNZ8zn5ZkllpJHfp9zWDKT1Kg7emzbcR1l/Iwc11HMjk3dvAAAAAAAAAAAAAAAAABQo5t+dJN+8MIPwh5DkrT2FWv1vfd/L+wxAAAAAAAAAAAAAAAAAACoij35IQAAAADmnPnzpYEBKToN3rcmlTIR6myRSDizhMWy5EvKREx4+6XXLFXy+PayT/flK+Nl5PpugwYEAAAAAAAAAAAAAAAAgPr5+E8+rm/89zfCHkOSdNais7Tug+vCHgMAAAAAAAAAAAAAAAAAgKoRoQYAAABQyLYl1y2MP0+1WEzyPMmycvc3NYUzTxiOPXZf3tH49ta3rqx4GV++HNep31wAAAAAAAAAAAAAAAAA0ACf+NkndPeWu8MeQ5J0xsIz9JM/+0nYYwAAAAAAAAAAAAAAAAAAUJNo2AMAAAAAmKZc18Som5ul0dGpv34sZgLMvl94X3u7lExO/UxhyApwu1FbAyd0aPeq5eob6dPh0cM5hw6nhjXmjI0fLzfnftfP3QYAAAAAAAAAAAAAAACA6eS2x27THb++I+wxJEmnLThNj139WNhjAAAAAAAAAAAAAAAAAABQMyLUAAAAAIqLRMzHaNTEqD1v6q5tWeb6npcTYT6muXnqZgmTbR/7oxeLyrdtPXbNm+VFIxpMDurloZdzDh9xRuR4zlRPCQAAAAAAAAAAAAAAAAA1u33D7frCU18IewxJ0qnHn6pNH90U9hgAAAAAAAAAAAAAAAAAANSFPfkhAAAAAOaklpbxP9tT/NIh+3qxWOH9qdTUzRKWrOfAtXy5TQn99rzT9fs3nFzW6b7vl7Wv0nUymUzFaxRTr3UAAAAAAAAAAAAAAAAAzHxfevJL+ocN/yBPXtij6JUdr9Qv/+KXYY8BAAAAAAAAAAAAAAAAAEDdEKEGAAAAUFxXl+T7UiYjue7UXtvzxq/Z2lp4fzotRaNTO1OZXKsOi9i2XMvEnwfjvt51pfSdNfP02EfOL+t03/c17AzL8ZzxuXxXA6mBnH2T6R3u1W8O/ubYOX0jfXri5Se0ae+mCh5MoU17N+mJl59Q30hfTesAAAAAAAAAAAAAAAAAmPnufPpO/d3jfzctAtRL5y3VEx96IuwxAAAAAAAAAAAAAAAAAACoKyLUAAAAAAp5ntTebkLQ6bSJUU8l35ccx8yRSBRe3/OmZYR6MCG960rpgVfXsIht64FX+XrXFb72tnm64r2+njnR0sfPHdGWkd2Tnu77voYzw3I9VxkvI9d35fquHM9RxstoW++2skLUvcO92tG3Q0PpIW3r3abeZK+2HNwiSRpzxqoOUW/au0ljzpgkacvBLYSoAQAAAAAAAAAAAAAAgDns65u/rk89+im5vhv2KFrUtkgbP7xRbW1tYY8CAAAAAAAAAAAAAAAAAEBdTb9qGwAAAIDwDQxIHR0m9jzVAeqA75tbPC4NDUmZjHT4sDQ4aG6uK1lWePPlGUxIV7xX2totbV5k9l32fIWLHA1Q3/g2X64lnXmdZEkabIsq6mf0450/liT9cdcfF5zaHm+XLdsEqLN+ISs7OO3L11DKRKVXdK1Q1C7+kjAIUPsyz+2R0SPqG82NRQch6jVL1pT98LID1IEtB7do5Qkr1dnSWfY6AAAAAAAAAAAAAAAAAGa++7fdr5t/drMc35n84AY7ofUE/erPf0WAGgAAAAAAAAAAAAAAAAAwKxGhBgAAAJArnZZGR6XWVikalVKp8GZxXek3vwnv+mXKDlBLkmdJN77d/LmsELVlSZaVE6A+0iylbUm2Jct3lM5klIgmjoWoW2ItOUtk3Iz6U/05AeogIp3N8ZwJQ9T5AeqMmym6jlRZiLpYgDpAiBoAAAAAAAAAAAAAAACYWx567iHd8OMbpkWA+viW4/WLq39BgBoAAAAAAAAAAAAAAAAAMGvZYQ8AAAAAYJoJotPDwyZGjQnlB6gDQYj6B6+WfE1wsyx5lvT9V3kFAWrfNiFpz/fky9eYM6YRZ0QPvvCgnnzpSfWP9SudScvxHD2z/5mcX8gqFY725eeEqB1v/JxKAtSBIEQ9kYkC1IEtB7eob6RvwmMAAAAAAAAAAAAAAAAAzHzrd63XtT+8VhkvE/Yo6mzq1IaPbFB3W/fkBwMAAAAAAAAAAAAAAAAAMEMRoQYAAACQyz76MuHgQcnzwp1lmhtstosGqAOeJd30dumBVxe/37ckT74eeJWvv3qb5NhSX1aAuhjHc5R20nqh7wU9f+h5Pdf3nLb0bNFAamB83UnC0cVC1NUEqAMThajLCVAHCFEDAAAAAAAAAAAAAAAAs9vG32/UVQ9cpZSXCnsUdSQ69PMP/5wANQAAAAAAAAAAAAAAAABg1iNCDQAAACBXU5P5ePhwuHNMc4MJ6YrLbW1dZE14XBCi/sGrdSzp7FlSJmIpE7V132ts3fR2KRORjjRJ6UjpAPWxNeXJ932NOqM6MnpEQ+mhY/eVG47ODlH/ev+v9cLhF6oKUAeKhagrCVAHCFEDAAAAAAAAAAAAAAAAs9PG32/U5d+/XCk3/AB1e7xd69+/Xks7l4Y9CgAAAAAAAAAAAAAAAAAADUeEGgAAAECuSETq6JB27gx7kmlrMCFd8V5pa5crWZa5TcCzpL96u/T9P5YGW6M60hHXYHtM33mtrZsv9OTYUv/RALUmXuoY/+g/njz58uV6rny/snB0EKJOZpLKeBn5vl9VgDqQHaKuJkAdIEQNAAAAAAAAAAAAAAAAzC5berboih9coRFnJOxR1Bpr1UMfeEjLu5eHPQoAAAAAAAAAAAAAAAAAAFOCCDUAAACAQum0NDQU9hTT0rEAdbekIPpsWZJtyy8RkPYlubb0V2+THniVL9/3tW6Zq785z1EqZulwi1VRgLoYx3eqikcH5/jyTYi6ygB1YMwZ06N/eLTqAHVgy8EtymQyNa0BAADw/7N35/GV1vXd/99nyTI7IMNWRHZkUUDFIi5VcUWtDlqxbnfVu63WYntXu9neLre9u9zVLlpLa616u9WiZWz1p1YRvasi4sIiIMIACsg2MEsmM5PlnHP9/jhzZnKyJ5PkJJnnk8d5JNf3XNf3+iRBnYwnrwAAAAAAAACdt+m+TfnFT/5idg7v7PQoWVldmc+/4vM564izOj0KAAAAAAAAAAAALJhqpwcAAAAWmaGh5N57k0aj05MsOvVS8ooL9wSoW1atSoaHUzTqqdeLFKWkKJVSJCmKRkpJSiO6zm9+Zj1/+/NFfvywIkOVUhql7Hf4ea5USpXUi3qnx0iS9FZ709XV1ekxAAAAAAAAAACA/bDpvk15xr88IzuGdnR6lPRUenLpiy8VoAYAAAAAAAAAAOCAI0INAAC06+9Pbr6501MsSpUiee01yTVHJo3SnsXVq5Mkw/Wh9h+UKpLhxvC4+2xdUYw4bXEEqJOkUTTSVe6acO6F0lvtzXlHn9fRGQAAAAAAAAAAgP1zX/99eeannpntg9s7PUp6yj35+IaP54nHPbHTowAAAAAAAAAAAMCCK3d6AAAAYJG5//5kx46pzztAbbg5ed8XkvIctaNLKU190gKplCsplUrprnR3bAYBagAAAAAAAAAAWPru678vT/znJ2bbwLZOj5Keck8+8IIP5BknPqPTowAAAAAAAAAAAEBHVDs9AAAAsMhs3540Gp2eYlHbcHPz7cUXJHPxmSqllCJzVLWepWq5mnJp3+8p6q50Z6g+tKAzCFADAMAyURtOykvo96DW652eAAAAAAAAlpX+/v486UNPypbdWzo9SrrKXXnfBe/LL576i50eBQAAAAAAAAAAADpGhBoAAGi3enXS1dXpKRa9vSHqXy2nUUwvRV0tV1MqlSZ8vlE0UmvU5mK8GRkdoG5ZyBC1ADUAACwjw8OdnmBm/CImAAAAAACYM/39/Tnnw+fkoV0PdXqUVEvVvP+C9+eXzvilTo8CAAAAAAAAAAAAHTW2MgYAABzYjjkmWbWq01MsCRtuTt733PeNG3CejXKpnPICf5tWTnnS+bsr3fM+gwA1AAAAAAAAAAAsfVu2bMlj/vkxuW/nfZ0eJZVSJe951nsEqAEAAAAAAAAAACAi1AAAwGirVyennNLpKRaNemny5zecumHKEHWx55+pNBqNNNKY6Yj7pZFGGo3J79lT6UlXuWte7i9ADQAAAAAAAAAAi1+9Uc9QbWjC5++///484v2PyO3bbk+tVlvAycaqlCr5X0/9X3n12a/u6BwAAAAAAAAAAACwWIhQAwAA7crl5IQTkmq105N0XF9P8qKXJRsfOcEJez5HG07dkDc9/k0pZWyxemR8uigmDlE3Go3Uis788FWtqE0Yoi6llJMPOTlPPubJ6a32zul9BagBAGCZKJWX/iOjHwAAAAAAQMuDOx/M0z/y9Bz27sPy+1/5/XHPOfofjk5/oz/11LO7vnvcEPVgfTDbBrdl2+C21Iv6vMxaTjl/8MQ/yG/8/G/My/4AAAAAAAAAAACwFKnKAQAAY/X0JI94RHLbbZ2epGP6epKLXpJcd0RyzZHNtQ03jzpp3bq97z7lEU/JyTeenFu23LI3PD0yQJ00Y89dRVdKpfZYdScD1C21opZqo5pyuT22dnDvwVm/an2S5Lyjz8sVP7lizu4pQA0AAEtQZewv38nKFQs/x1waqrV/XPVGMjy477g0zscMAAAAAAAHiB9t/lHO+Psz0kjzl9z/5ZV/mST5i2f+xd5zSu9s/7v0Voh6RVakWm3+2Er/UH/ba6R2DO3Imu41qZQqczZrOeX8zrm/k7c86S1zticAAAAAAAAAAAAsB+WpTwEAAA5Ij398pyfomJEB6iRplJKLL0g2PnLUiWec0Xa4ftX6HNx7cJJkuDE87t7DjeEUxb449WIIULfUiloajUbb2taBrdm8c3OS5Mq7r5zT+831fgAAwEIoJ5W5i0EsCQfaxwsAAAAAAHv8aPOPctrfn7Y3QJ0kRYr85ZV/md//yu8nGRugbqmnnp31nRmuDY8JULfsGNqRelGfs3nfeM4b80dP/aM52w8AAAAAAAAAAACWCxFqAABgfD/3c0lp/B8QWs5GB6hbxg1Rn39+2zmbd27O1oGtGa4Pp0iRiYwMUZfL5ZRLi+Nbs3KpnHK5fZYiRW7Zcku+cec3MlAbmNP7DdQGhKgBAGAp6u3t9AQLqJxURagBAAAAADjwtALU42mFqCcKUI88b2d957gB6pa5ClH/+mN+Pf/r/P+13/sAAAAAAAAAAADAclTt9AAAAMAitXZtcsIJyaZNnZ5kztVLSWWcRvREAeqWVoi6SPKC2yr5bPWW3PGt/5MkuWLTFbnpwZum/QNRw43hdJW7UiqVUi1XU2vU0igas/yI9l+5VE61PP63iIP1wXm7bytEfd7R583bPQAAgDlWriSrVidDA0mtkXTwe5k5MaaPUUpSTirlpFo9IH9BEwAAAAAAB7bJAtQtRcZ5AdYs7RjakTXda1Ipze4XQ77qUa/Knz/rz+dsHgAAAAAAAAAAAFhuRKgBAICxGo1k27bkpJOS225Lirn7gaFO6+tJXnFh8tprkg03t69PFqBuaZSSN12QfOPHpXy559t50cAxuX3r7fnGz74x7QB1y2IJUU8WoB6qD837/YWoAQBgCSqXk96VnZ5ibgwNJYMjvieq15MB4WkAAAAAAA5M0wlQz4fZhqhfeupL897nvXeepgIAAAAAAAAAAIDlQYQaAAAYa9u2ZGAgOfroZP365IEHOj3RnBgZmr7myObahpsnD1A3kpRHre3qSt77uFq6d/8sH772w+kf7M/Q8OxizaND1AsRfR6plFJHA9QtQtQAAAAAAAAAANBZnQpQt8w0RH3hKRfmH1/4j/M8FQAAAAAAAAAAACx9o1tqAADAgW5wsBmgTpJKJTnnnKSrq7MzzYHRoelGKfmNC5JPPGriAHUtyeZVSV/3vrWBarK9JylKzXDyvf33ZsfwjtRSm/Vsw43hFEWx4AHqJClSpFE0xqx3YpZWiBoAAAAAAAAAAFhYnQ5Qt+wY2pF6UZ/yvGcf/+z884Z/XoCJAAAAAAAAAAAAYOkToQYAANoND7cfP/zhySmnJNVqZ+aZA6MD1EkylOS+NcmrX5R85+ix19SSPLiqGave2d0MUbcC1ElSzPGMw43hqU+aJ7VGrS1E3YkAdYsQNQAAAAAAAAAALKyfbvvpoghQt+wY2jHp8099xFPzqZd+aoGmAQAAAAAAAAAAgKVPhBoAAGhXHufbhMc/PjnooAUfZS5MFKB+aHXz/UY52drTDEy3tALURWnf2s7uZFvvnmtGrC8XrRB1JwPULULUAAAAAAAAAACwMIZqQzn2b4/t9BhtusvdEz73xIc/MRt/eeMCTgMAAAAAAAAAAABLnwg1AADQrqcnKU1QWZ5ofZGaKkC9V2lfiHq8AHVLkT0B6qX1aZi2WqPW6RH2GqgNZHh4uNNjAAAAAAAAAADAsnbw/z640yOMsbJr5bjrjz3isfn8Kz6/wNMAAAAAAAAAAADA0idCDQAAtKtUknXr2teuvjrZtasZqC6Xl0SMetoB6pY9IerNEwSoR563XFVKlZT28wPsrfbm6cc+Pb3V3v3a56zDzkpXV9d+7QEAAAAAAAAAAExs9TtXZ1d2dXqMNgf1HDTu+pmHn5nLf+XyhR0GAAAAAAAAAAAAlgkRagAAYKyVK5OHPawZnb7nnuT225vr5XJzrVLp7HxTmHGAuqWUySPTyzRA3QpPN4pGquXqrEPUvdXenHf0eUmS844+b9Yh6rMOOyuHrDxkVtcCAAAAAAAAAABTO/zPDs/O7Oz0GG0mClCfeuip+fprvr6gswAAAAAAAAAAAMByIkINAACMr6cnOeig5Ac/aEanRz6SpLQ4i8z1UvKKC2cRoJ7K4vxw91sppXRVurK6a3W6yl0plZrHMw1RjwxQt8wmRC1ADQAAAAAAAAAA8+vh7354Hhh6oNNjjLF7aPeYtRMPPjFX/vcrOzANAAAAAAAAAAAALB8i1AAAwMQ2bUq2b29fGxxMGo1mhHr0o1xuf3QgVF0pktdek5SL5rEA9cT2Bqi7V+cxRz4mpzzslL3x6ZmEqMcLULfMJEQtQA0AAAAAAAAAAPPr5L85OXfvvLvTY4xrsBjMrqFde4+PXXdsvvvr3+3gRAAAAAAAAAAAALA8VDs9AAAAsEC2bk2+/vXk1luT229vxqVrtaRaTdatS44/PjnppGTlyn3XXHtt+x71evOaVly6VGpev2ZNM0xdq+07pyj2Per15rlFsSAf6oabm29//YLkoTX7udkyDVAnSalUyuru1Tlj/RmplqtZv2p9kuSWLbekSJGuSleG68MpMvHXbbIAdct5R5+XK+++MgO1gQnPEaAGAAAAAAAAAID5ddLfnJRN2zd1eoxJDRVDyVDyyEMfmW+86hudHgcAAAAAAAAAAACWBRFqAABYzur1ZnT62muTn/0s6eqa+Nxrrtl3zVFHJSefnPz0p/uC00kyPDz2ulWrmudUKs3HePr7k6GhfSHqBYhRP+fWZOuq/dxkGQeok6RRNLKyujLV8r5vDWcSop5OgLplshC1ADUAAAAAAAAAAMyvk/76pGzqW9wB6pZKUcnXXva1rF69utOjAAAAAAAAAAAAwLJQ7vQAAADAPNm0KfngB5PPfS65666ZXXvnncmXvpTs2pXUas21otj3fsuKFROHp0dauTIp7/n2o1RqD1vPkxX15Pm37Ocm89/K7ri7d9ydTVvaf7hs/ar1OfmQk1PaU+E+eMXBedShj2o7ZyYB6pbzjj4vvdXetjUBagAAAAAAAAAAmF9P+aenLJkAdSml3PH6O3LIIV5TBAAAAAAAAAAAAHNFhBoAAJabgYHkC19ILrss6eub/T71ejM8PTDQfIwOUCdJT8/09iqXkzVr9sWnFyJEXalk4+dX5UW3dc3vfZaBO/vunDBEvaZ7Tc5Yf0bWr16fsw47K8nsAtQtI0PUAtQAAAAAAAAAADC/3vzFN+cb93yj02NM25WvuzKHH354p8cAAAAAAAAAAACAZaXa6QEAAIA5tH17cumlybZt4z9fFM2YdK3WjEy3VCpJtdp8tDQa+95vXVMU++LR1WozLj1dlUqydm2yY0dz71aIeuR95kK1mnR17Q1kb/xCTzY8b0c+e/zw3N5nmbmz784kyYmHnLh3bf2q9Tl05aEp7fmaH7LykDz5556crq79C3ufd/R5GR4e3u99AAAAAAAAAACAiX3q+k/lr67+q06PMW1fffVXc+7R53Z6DAAAAAAAAAAAAFh2ZlCMAwAAFrUtW5JPfnL8AHW9nuzenWzd2oxA796dDA3te+ze3VzfujXZtat5flG079E6br2tVGY+YytE3d0982unUq0mq1YlK1Y0I9QjbPziurzo9uUdPK6UZvH1GOXe/nvTGBUFbwWoW+YqHC1ADQAAAAAAAAAA8+cT130iv7zxlzs9xrT93dP+Lk8/7umdHgMAAAAAAAAAAACWJRFqAABYDvr7k498pPl2pKJIBgaakenh4ent1YpSj4oRj9l3VJx42srlZPXq5qNcnv0+o9Vqk36MyzlE3V3uzpGrjszK6spZ79FV7so5R52Tctm3iQAAAAAAAAAAsJT9xud+I6/87Cs7Pca0nbPynLzxKW/s9BgAAAAAAAAAAACwbKmLAQDAcvAP/5A89FD7WqOR7NrVjDPPRlE0HzN9brq6u5sh6v3dZ6ShoWTnzgkD2s0Qdffc3W+RqJQr2VXbla5yV0qZXdT70Yc9Or3V3jmeDAAAAAAAAAAAWEhP/Kcn5pIfXNLpMWbke7u+l9//yu93egwAAAAAAAAAAABYtkSoAQBgqbvqquTyy9vXGo1k9+6JA8/VatLTk/T2Nt9WqxPvP9Eew8Ozm3fk9du27d8e42k0kv7+CePbr75lRXpn2eVerHbXdqdIsfftbFz/wPUZqA3M8WQAAAAAAAAAAMBCOfv9Z+fKe67s9BgzVqTIX175l0LUAAAAAAAAAAAAME9EqAEAYCmr1ZJLLmlfK4rxA9SlUrJiRXLQQcnatcmqVcnKlc23a9c211esaJ432ngh6lotqddnN/fwcLJ9++yuna5xQtQbjx/MxU/ekYOHyulZZiHqrQNbM9QYmvX1w43hfPee76bRaMzhVAAAAAAAAAAAwEJ49N88Otc+eG2nx5g1IWoAAAAAAAAAAACYPyLUAACwlH3728n997evDQ6OjUZXKs3Y9IoVSXmCbwPK5ebza9Y0z5+OXbtmPnO9Pv8B6pb+/mRPVHnj8YO5+Ck709jT2D5kqJxxctsHtCNXH5nyRP9+AAAAAAAAAAAAi9Lhf3F4frj9h50eY78JUQMAAAAAAAAAAMD8UBcDAICl7POfbz+u15NarX2tUkl6eyeOT49WLjfPn06IenCwec+Z6Oub2fn7a8eOMQHqJNnS3Ugx8VUHnGPWHpMTDzmx02MAAAAAAAAAAAAzcPhfHJ4HBh7o9BhzpkiRj1z3kQzVhjo9CgAAAAAAAAAAACwbItQAALBUbd6cXHdd+9rw8NjzenqSUmns+mRKpWaIejr6+5Nimjnn/v6ZR6snUZ/Gh7XxpHoufnL/mAD1YHXOxthv5ZTzlGOekkppGuHveSBADQAAAAAAAAAAS89yC1C3fO2VX0t3tbvTYwAAAAAAAAAAAMCysYiyawAAwIzceGP7cVEktVr7Wnd3Up7l754pl5OurvHD1iPVasmOHcmqVUllkojy8HAyMDC7WcbR15O84sLktdckG24e/5yNj0wuviBppEiKJKXSzALUM2x3z0Y55TzpmCelWq7mFx7xC/l/P/1/qRdzF+qeigA1AADAHvVGMjzU/D53cLD9ud27OzPTrNWSNPYdDteS3QNJVzWp+r8HAQAAAACWg+UaoP7w8z+c0444rdNjAAAAAAAAAAAAwLLip8wBAGCpuvXW9uP6OOHirq79u0d399QR6qQZ6Nq+PVmxIunpGRu+bjSSvr79m2WEvp7kopck1x2RXHNkc21kiLpIM0D9pguSRiskXRTZ0lNMP0C9QFoB6paFDFELUAMAAOwxMjzdKNL8znI5aSSNejJYb8a2AQAAAABY0o59z7HLMkD95se/Ob/y2F/p9BgAAAAAAAAAAACw7JSnPgUAAFiUbr+9/bgxKiJVqSSlUvZLuTw2KJ2071uMCHPt3p1s29YMTu/cmeza1Xy7bVv7efthZIA6aUamL76gGZ1uZcLGBKiTbOnNzALU+/mpm66fbPvJmLVfeMQvpFKqzOt9BagBAAD2KIpkcKjTUyyc2nAyNI1fOAUAAAAAwKL0pA88KT/t/2mnx5hzLzrhRXn3c9/d6TEAAAAAAAAAAABgWRKhBgCApWr79vbj0RHq8eLRs1Edp9xcKk0euK7VksHBZGCg+Rg92yyNDlC3jAxR10vJh8/ezwD1Arqz785s2rJpzPp8hqgFqAEAAEao19P8lUYHkOFapycAAAAAAGAWXvnpV+Zb936r02PMubMOPSsbX7mx02MAAAAAAAAAAADAsiVCDQAAS1VtVDCqGBXMmiwSPRMTBadb65PFroti7FyzNFGAuqVRSt50QfIfpyQfvyw5877m+qwC1HP0qZuuhQxRC1ADAACMdoAFqJM5+14dAAAAAICF87qNr8snbvpEp8eYc2ccfEaueeM1nR4DAAAAAAAAAAAAljURagAAWKqqo8rKo0PRcxWUau0zUYi6UknWrk26u+fmfuOYKkDd0gpRf/W45FOfSepZ/AHqlnv7702j0Riz/guP+IU5u0cpJQFqAACA0cpz+8t/loQD8WMGAAAAAFjCrv3JtfnQ9R/q9Bhz7tg1x+aHb/php8cAAAAAAAAAAACAZU+EGgAAlqp169qPy6P+eD9O0HhWRu5TKo2NUZdKzSD26tXJwQcna9YkK1Y0o9TjhatnaLoB6r3j7glRf+HEZNuK/b79gugqd+Wco85JefTXMMmmLZvm7D5FijndDwAAYFkol5PqARRlLpWT3p5OTwEAAAAAwAx8d/N3Oz3CnHv4iofnjt+5o9NjAAAAAAAAAAAAwAFBhBoAAJaq449vPx4dMK7Xk6KY/f5F0dyjXm9f7+5OKpXm8639Bwebj6GhZrS6XN53zn6EqGcaoG5plJLffXbyl19KumbS4t7/ZvaMtQLUvdXeMc9t2rIpd/bdOaf3u7PvTiFqAACA0bp6mr9gabkrlZPeXv8PIQAAAADAEnLZDZfl177wa50eY05VUskdbxGgBgAAAAAAAAAAgIVyAPw0PQAALFMnndR+XKmMPWd4uBmNnqmiaMakh4fHPlepNPes1Zrh6dHx65ZWvHqWIex6KXnFhTMPULc0Ssn/eUry3B8n/3HqNC44AALULa19TzzkxHnZHwAAYMkpl5KenqSru/m98OjvZWfzvXUn7XoobaXpSiXpXZFU1KcBAAAAAJaSD//gw3nt517b6THm3J2/fWcq5XFe7wYAAAAAAAAAAADMCxFqAABYqk4/vf24VEqq1WYcumVoqLk2USh6PK0AdaPRvlfSHrquVpvHz3pW8uMfJ3eOCiY3GrMOUCdJpUhee01yzZHNoPRsNErJdx+ePKw/eWj1BCd1ID7dUmvU8p27vzNmvZFGisz+czcdd/bdmbv67ko5SzdAVk99wrVK/JAaAAAwC+VSUq00Hy2lUrJi7C8PWtQGq0l9xPf05YoANQAAAADAEnPpDZcuywD1Fa++IketO6rTYwAAAAAAAAAAAMABRYQaAACWqvXrkzPPTK67bt9aV9fYcPTgYNI7g1hWUTQfw8Njn6uO+hbiEY9Izjqr+ejrS372s+T++5O77042bZr+PSew4ebm24svmH2IOkm6M06IuoPx6ebtS+MGoBciQN1SpEgjjSUdop7IeIFqAAAAAAAAAABYCi694dJc9G8XdXqMOXfFq6/I0457WqfHAAAAAAAAAAAAgAOOCDXAgaAoki1bkp07k7vuao+T3n13M1gKLKx6PdmxIxkaSkqlZiB49erm++y/7duTrVvb16rVpLs7WbVqeX2en//89gh1pdL8WEf+d329ngwMJCtWTG/PRqP572aj0b5eqSTlUbHis8/e9/lct675OOqo5Ec/aq63nitmH1WeyxD1QbuTbSsnPqeUUroqXWk0GqkVtXHPqaSy34HjxRCgblnOIera6CA7AAAAAAAAAAAscgLUAAAAAAAAAAAAwFwToQZY7hqN5Kc/bcZHk2R4uD1M2loDFs7wcPLQQ+2B3+3bm2uHHjo28svMjfffdbVa878Ld+9ODjusM3PNhyc8ITn88OT++/et9fQ0w9Mjw8/1evOXETQazefH+/es0UgGB5ufo9HR6FJp7C8tWLcuOeGE9nMHBpJLL036+/f/YxthrkLUqVZSScaNSLcC1ElSKVdywtoT8uOtPx53m6lC1JM9v5gC1C3LNUQ9UUgcAAAAAAAAAAAWow/94EN53ede1+kx5pwANQAAAAAAAAAAAHTW8iqMATDW5s37AtTA4rBtW3uAuqVWm/NwL+MYHk527Oj0FHOnWk3e8Ib2tVIpWbGi+XakomgGprdtS/r6mlHqXbuab/v6muvjBaiTpLt77H7nn59UKu1rV1zR3Gf0fefAhpuT930hKc9gu9G/ZmGou5xKpZJminqfkQHqUko5+ZCT83Prfm7MeUkzFt1II6VMXMOeLFA9co/WP/XUOxagbilSpJ76mNkW8z9Tmc45AAAAAAAAAACwGLztq28ToAYAAAAAAAAAAADmRbXTAwAwz5ZTaBWWg1qtGUGeyO7dydq1CzfPgWr37k5PMLfOPTd5xjOSL3xh31q53AxRTxSVrtWaj6mUSs0AdXnU7685/fTkhBPa1zZtSm68sf3aObbh5ubbiy9IGlNsvzvJttVJuZEcvqt5fq3SvKhSqST1Zix6vAD1+lXrkyTlUjn1oj0oPTIW3QpRFylSSmnKkPREUevFprxEfl/RVLHvqm95AQAAAAAAAABYAt721bflXd98V6fHmHMC1AAAAAAAAAAAALA4KHIBLHejA6PzEAQFZmCq6G998qAqc2Q5fp5f//rkO99JHnxw31q5nKxcmQwOTi84PVq12gxQl0rtIeuDDkp+/debe7fUaslHP9q8Jml+jiuVGd23Xkoqkzeck0wvRN0KUCdJo5zcvzJZU28PK7dC1JVKMww9OkCdJMPFJNH4Pbor3anX66lUKhmuD08YlW4Fq0crp5xGGlMGrKcynQj2dPZYKgHq6eju6u70CAAAAAAAAAAAMCkBagAAAAAAAAAAAGC+LZ+6GADj6+lpPy72L04JLIDG+AFb5lBXV6cnmHurVyeveU3z7UilUtLbm6xYMf2Pu7u7eX5vbzNkXSo135bLydq1yatelTzqUckJJ+x7PPBAsm1bMzzdeswg9t3Xk7zoZcnGR07v/A03J+/7QlIe9T9rA9Xk/hX7AtQtjXKyvXvsf7YmC1BfefeV056/tU9XpWvciPNUcedyyhNGqqejlFIqpUqqpdn/nqHlFqAGAAAAAAAAAIDF7rIfXrYsA9Tffu23BagBAAAAAAAAAABgEZl9oQyApeFhD0t+9rNOTwGwuIwONS8XBx+cvPzlyaWXNoPQI1UqzQh1tZrUas3HyEh0pdJ8rlpthtBrtbH7H3RQ8tKXNt+O9vnPtx/X6+PvMY6+nuSilyTXHZFcc2RzbcPNU1+34ebks49MvnJC83igmmztSSZrOQ/Vh9Jd6R6zfnDvwWMC1AO1gUnv34o2H77y8DHPDdeGM9gYTFEqUkkl5fL04s61Ri1bB7amyPR+aURvuTdrutakUq20rfcN9GVXfde09iillIN7Dk61vPS+PXxg9wPjrldSGXcdAAAAAAAAAAAWi6/d8bW8+LIXd3qMOfU7j/+dvPNp78zq3mX6Gj0AAAAAAAAAAABYopZeZQyAmVm7NhkaSh58MCmmF7QEWNbWrUt6ezs9xfxZty551auSK65Ibrxx7POlUjNG3dU1s31PPz15+tPH/9xt3pxcd92+8HS9ngxMHnBuGRmgTpJGKbn4gub7U4WoNz4y+erxzfenDFCPWB8vRL11YGs279yc9avWTytAnSRFivRUenLiw06c8tyZGKgN5Lv3fDfDjeFJzztm7TE58ZCJ771py6bc2XfnpHt0lbtyzlHnpLe6NP8z8V8//a8UI/58U6RIabIKOQAAAAAAAAAALAJfu+NrefpHn97pMebUv2z4l7zs0S/r9BgAAAAAAAAAAADAOESoAQ4Ehx7ajFHv2pXs3JkMj4ha9vQkq1Z1bjY40Dz4YPt/Bsdz/PFJpbIw8yxX993XDCGPVKk0/zvvQPjc9vYmF1yQnHJK8tWvJtu3z36vdeuS889PTjhh/OdrteTSS5O+vub7SfOXHkzjFx+MDlC3TCdEvfGRzXMapWkEqMcxOkRdpMgtW27JzQ/dPGX8eaTh+vTPna7eam/OOeqcSUPUUwWok+x9fqIQ9VIPUAMAAAAAAAAAwFK0HAPUSfLcE5/b6REAAAAAAAAAAACACYhQAxwourubj4MOag/gPvzhyerVHRsLDjjr1k0dBD755KTqj2n7ZeXKZnS/pVSaVhR52TnxxOTYY5NNm5Jrr03uvnv61x5zTHLWWc09qtXxP39XXZVccklyxx37AtTTNFGAumWyEPWMA9QTPDc6RD1YH5z2/C3DGc6WXVtyyMpDZnztZCYLUU8nQN0yUYhagBoAAAAAAAAAABbecg1Qf/6iz2fdynWdHgMAAAAAAAAAAACYgLohAAAsZ5VKcsopzceqVc2Y9KZNyW23NYPotVozMr1uXXLCCc3o9KpVyebNE+85MJC8+93J5Zc3j+c4QN0yXoh6rgLULa0Q9VB9aLrjj3HtA9fmrMPOWpAQ9UwC1C2jQ9QC1AAAAAAAAAAAsPC279q+LAPUf3X+X+V5j3xep8cAAAAAAAAAAAAAJiFCDQAAB4qDD04e/ejkqU+d/LxNmyaOUG/fnnz608muXfvWiqL9/ZHHo0w3QN3SClG3dnzTHAaoW/YnQN1y7QPX5sk/9+R0dXXt914jjQxRH7n6yBkHqFta193bf68ANQAAAAAAAAAAdMC6lety4sEnZtPWTZ0eZc783rm/l//xpP/R6TEAAAAAAAAAAACAKYhQAwAA07NtW/Iv/5L09yc9Pe3PTRGfTqYOUA8nGS/h3Cglv/qLzfd76s0A9faepJykUWT82PQ0A9RzpbfaO+cB6pF7P/HoJ6ZcLu/XPicecmKOP+j4/d4HAAAAAAAAAACYvt1Du7Oie0WS5NY33ZqT3nvSsghR/+ZjfjN/8ey/6PQYAAAAAAAAAAAAwDSojwEAAFMbGEg+/elmgHqkokjq9SkD1PVS8ooLJw5Q707y4Ork/pXj3LqabOvd99g+on9dTpLJbz3vequ9Oe/o8+b1HnMVjhagBgAAAAAAAACAhXPdvddlzZ+tyYZPbdi7duubbs2JB5/Ywan231OOekre94L3dXoMAAAAAAAAAAAAYJqqnR4AAACYps2bkxtvTG69Nbn99mT79qRWS6rVZN26pKur+fbnfi5Zu3Zu733FFcm2be1r9XqyY0fSaEx5eaVIXntNcs2RSaPU/tzuJNtWN99vlJsh6sN3NY8Hqu3R6cHK2L3LSRpFkta+pbHnzKf5DlADAAAAAAAAAABLz6eu/1R+eeMvJ0k+++PPZsOnNmTjyzYmaYaoS+9c4Bc6zZFjVh+T//er/6/TYwAAAAAAAAAAAAAzIEINAACLWa2WXHll8vnPJ9dfP/m5Q0NJUTTfP+aY5OyzkxNOSCp7ys1btyZf//rEEevjj09OOilZubJ9302bmvHrker1pK+veb9Sad99J7Hh5ubbiy/YF6IeGaBuaYWoD9uV7Oqactt2C/xzWSsrK6c+CQAAAAAAAAAAOKD89v/32/nb7/1t29rIEPUbLntDhybbP0evOjo/ffNPOz0GAAAAAAAAAAAAMEMi1AAAsFhddVVyySXJ/ffP/No772w+1qxJTjmlucdddzWfq9eb8emi2BeRLpWSb32rGawul5Ojj07OOis57rjkq19t37sokh07xg9PTxGkHhmi3lkaG6BuaZSTB1Ym63cl21Ykw+WJP9RGsuDx6SSppLLwNwUAAAAAAAAAABa11//76/OP1/7juM999sefzaHvPDQP5aEFnmr/HdpzaO56y12dHgMAAAAAAAAAAACYBRFqAABYbPr7k3/4h+Tyy/dvn1otuffe5J57mnHokcYLRQ8P73v/xz9Obr89WbEi2b07qY741mFwMGk0xl7filmXShM/n2TDzUV++LDk7c+YfPxGOdk8RYhagBoAAAAAAAAAAFgsXvDRF+Tzd3x+0nOWYoD651b8XO7+vbs7PQYAAAAAAAAAAAAwSyLUAACwmNx3X/LWtzbD0eMpimZculZL6vV965VK87nynlLz4GB7VHq86PR4e7e07rF7d/O4qyvp6WnGpWu19qh1V1fz2pHzlEpj71kUSamUrz186gB1y2Qh6jEB6gWKUQtQAwAAAAAAAAAAo5313rNy3dbrOj3GnDtx7Ym59X/c2ukxAAAAAAAAAAAAgP0gQg0AAIvFffclb35z8tBDY5+r1ZKBgWRoaOLri2J6senZGB5uzlAZJ8C8alUzQN3fP+U2Xzu6yNNfO7NbjxeiHhOgXiAC1AAAAAAAAAAAwGhH/sWRuW/gvk6PMefOOvSsXPPGazo9BgAAAAAAAAAAALCfRKgBAGAx6O9P3vrWsQHqokh27UoGB6feY74C1CP3r9Wa75f2FKBXrGiGqSuVpFxOGo1955dKbTN97eGZcYC6ZWSI+v6VScqjTliAILUANQAAAAAAAAAAMNohf3pItg5v7fQYc+6xhz0233vD9zo9BgAAAAAAAAAAADAHRqfbAACATviHf0juuad9rV5Ptm9fHAHqie7X07NvbeXKseftiVVv75p9gLqlUU7uX52OfRdTT70zNwYAAAAAAAAAABalw/78sGUZoH7msc8UoAYAAAAAAAAAAIBlpNrpAQAA4IB31VXJ5Ze3r9XrSV/fxHHpajWpVJqR56JIBgbmf86RiiLp6krKI4rQ3d3Nx9BQ26n1clIqJyuHk11d8zBLaR72nEA99VRSWbgbAgAAAMAysXnz5nz3u9/Nbbfdlr6+vnR1deVhD3tYTjvttDzucY9LV9d8/OXh7N1333254447ctddd+WBBx7Izp07Mzw8nLVr12bdunU59thjc/bZZ2ft2rULNtOdd96ZH/7wh/nJT36Svr6+FEWR1atX56ijjsoJJ5yQ0047LT0jf3EgAAAAMK8O//PDs3lwc6fHmHMfuOAD+dVzfrXTYwAAAAAAAAAAAABzSIQaAAA6qVZLLrmkfa0okh07xgaoS6Wktzfp6WmPPw8NJbt3z/+soxVF0mi0r61YkdRqqTdqqRSl9HUXueglyf2rknWDyWClGaVeyoSoAQAAAGD6PvOZz+Rv//Zv861vfSvFBL90b82aNXnpS1+a3/u938vJJ5+8wBMm27Ztyze/+c1861vfyne+85388Ic/zIMPPjjldaVSKY961KPy6le/Oq961aty2GGHzflsd999dz7wgQ/kX/7lX7Jp06ZJz+3u7s5ZZ52VZz3rWbnwwgtz9tlnz/k8AAAAQNORf3ZkHhh6oNNjzLl/e/G/5cIzLuz0GAAAAAAAAAAAAMAcW+L5NwAAWOK+/e3k/vvb13btGht3rlaTtWubkeeRAeqiSPr753/O8QwPJ/V6c9bWoyjSd9CKvOhlySfOKPLilyZfOy657ohkoJoctiupNKbeetpKc7jXDNRT78yNAQAAAGCJ+NnPfpanPvWp+aVf+qV885vfnDBAnSQ7duzIP//zP+dRj3pU3vWud0167nz48z//87zgBS/In//5n+drX/vatALUSVIURa6//vq85S1vyQknnJC/+qu/Sq1Wm5OZBgYG8gd/8Ac56aST8q53vWvKAHWSDA0N5eqrr86f/Mmf5Hd/93fnZA4AAABgrEe85xG5b+i+To8x5z70gg8JUAMAAAAAAAAAAMAyVe30AAAAcED7/Ofbj2u1ZHCwfa1aTdasSUrjFJeHhsYGqxfS8HDS3b33sK+7yEUX7M41hyZfOT6pl5LGnrG39zTfHrYreWBlUt/fX4nToQB1ixA1AAAAAIzvlltuyVOf+tTce++9M7puaGgob3vb2/KjH/0oH/vYx1KpVOZpwrnX39+fN7/5zfnyl7+cjRs3ZsWKFbPe64477sgLXvCC3HjjjXM4IQAAADAXHvm3j8yd/Xd2eow5968v/te89IyXdnoMAAAAAAAAAAAAYJ6IUAMAQKds3pxcd1372sDA2PNWrRo/QJ0ku3bN/VwzMTCwN0LdDFDvzDWH1rK1Nxna04cpJSkVzfdHhqjvX7UvUD0jHY5Pj7Sr3uHPPwAAAAAsMg899FCe+cxnjhugfuxjH5sXvvCFOe6447J79+7ccsst+eQnP5l77rmn7bx/+Zd/yWGHHZa/+Zu/WaCp261atSqPecxjcsopp+TEE0/M+vXrs2bNmtTr9fT19eWWW27JlVdemauuuipFUbRd+5//+Z/ZsGFDvvjFL6Y00d/rTuLHP/5xfuEXfiH333//mOcOP/zwXHDBBTn11FNz2GGHZeXKldm2bVvuuuuuXH/99fnWt76VBx98cNYfNwAAADC5cy85Nz/e9uNOjzHnBKgBAAAAAAAAAABg+ROhBgCATrnxxvbjokiGhtrXVqxIKpXxr6/Xm49OajSSJH29pVz0nLEB6iQpkqTUDFEXaYaoh8qzvN8iClC3XHn3lTnv6PM6PQYAAAAALAq/9mu/ljvvvLNtbc2aNfn4xz+eX/zFXxxz/p/+6Z/mT//0T/OOd7yjbf1v//Zv8+xnPzvPfe5z53PcJElPT0+e/vSn57nPfW7OP//8PPrRj05lor+XHWHTpk35nd/5nXzuc59rW//P//zP/NM//VN+7dd+bUZzPPDAA3nWs541JkB90kkn5T3veU+e//znTxq2bjQaufrqq/Oxj30s991334zuDQAAAEzu1//j1/OdB77T6THmnAA1AAAAAAAAAAAAHBhEqAEAoFNuvbX9uFYbe05Pz8TXjw5Wz6N6KakU4z/XVxrKRc8dbgaoe9oD1C1FkqK07/2d3c0odblIGtMNSy/CAHWSDNQGhKgBAAAAIMlXvvKVXHbZZW1r3d3dueKKK/K4xz1u3Gu6urry9re/PQcddFB++7d/u+25N73pTfnRj36UanV+X9rwzne+c1bXnXjiifn3f//3vPGNb8wll1zS9tyf//mfzyhCXRRFXvWqV40JeL/0pS/Nxz72sXR3d0+5R7lczrnnnptzzz03RTHBX+gCAAAAM/bhH3w4H7jmA50eY8798wv+WYAaAAAAAAAAAAAADhDlTg8AAAAHrNtvbz8eHaGuVpPyJH9kX6AIdV9P8qKXJRsfOf5zFz1v954AdTFugHoiRakZpC5Pp4WySAPULQO1gQwPD3d6DAAAAADoqHe9611j1t7+9rdPGKAe6bd+67fyzGc+s21t06ZN+eQnPzln882HUqmUv/7rv84jHvGItvU77rgj3/ve96a9z8c+9rF8+ctfblvbsGFDPvnJT04rQD3eXAAAAMD+u/SGS/Paz72202PMuf/5pP+Z1z5m+X1cAAAAAAAAAAAAwPhEqAEAoFO2b28/rtfbjytTFJ1Hnz8P+nqSi16SfP+o5OIL2kPUreeuObzItp4itfLMW9FFKWlMddE8tlJ6q715+rFPT2+1d7/2Oeuws9LV1TVHUwEAAADA0nPjjTfmG9/4RtvaoYcemre85S3T3uPP/uzPxqxdcskl+z3bfOvp6clLXvKSMes33XTTtK4fHBzMH/7hH7atPexhD8sHPvCBVKb6e2IAAABg3lx6w6W56N8u6vQYc+5/Pul/5n+d/786PQYAAAAAAAAAAACwgESoAQCgU2q1yZ8vTVFfbjTmbpZxtCLT1x2x53alfSHq1nPXHpFsW5EM7/nOoijmdaQ51VvtzXlHn5ckOe/o82Ydoj7rsLNyyMpD5nI0AAAAAFhyPvWpT41Ze81rXpPu7u5p7/HYxz42j33sY9vWrrrqqtxxxx37Pd98O+GEE8as3XvvvdO69uMf/3juueeetrW3ve1tOfTQQ+dkNgAAAGDmNvdtFqAGAAAAAAAAAAAAlg0RagAA6JRqdfLnO1h0Hh2gbmmFqJ/+6uZzpSQrh/c8lzQXloCRAeqW2YSou9IlQA0AAAAASb70pS+NWXvJS14y433Gu2a8vRebgYGBMWvTDXB/8IMfHHPdK1/5yjmZCwAAAJidy++4vNMjzLl/u/DfBKgBAAAAAAAAAADgACVCDQAAnbJuXftxpdJ+XK8v3CwjTBSgbmmUkjsOTgb3jNtbS1YOZn4C1POw53gB6paZhqi7Kl1zNRYAAAAALFk7d+7MD37wg7a1lStX5jGPecyM93ryk588Zu0b3/jGrGdbKN/97nfHrJ1wwglTXnfXXXflqquualt71rOelUMO8cvvAAAAoFM+/+PP5+WffXmnx5i24u1FTjz4xEnPueLVV+TCR124QBMBAAAAAAAAAAAAi40INQAAdMrxx7cfV6vtx7Va0mgs3DyZOkDd0rOnjz1YSQaS9E+/2zx9CxygbpluiLqSypTnAAAAAMCB4Nprr01j1N9lPu5xj0t19N95TsM555yTrq72X/72/e9/f7/mm2+33nprNm7c2LbW29ubpzzlKVNee/nll49ZO/fcc+dsNgAAAGBm/v1H/54XfOoFnR5j2oq3F0mSW99064Qh6itefUWedtzTFnIsAAAAAAAAAAAAYJERoQYAgE456aT24/GCLIODCzNLph+gbumpJ7UkW1fP61hzprvcPWWAumWqELUANQAAAADsc/PNN49ZO/HE8aNHU+nu7s7RRx/dtnbbbbelVqvNar/5dvvtt+cFL3hBBgYG2tZf85rX5KCDDpry+m9961tj1s4666y97xdFkf/8z//M6173upxxxhlZs2ZNuru7c8QRR+RRj3pUXvWqV+WjH/1oHnroof39UAAAAOCA9y/X/0tedOmLOj3GjGz41Ia9748XohagBgAAAAAAAAAAABIRagAA6JzTT28/LpWS7u72td27k3p93keZaYA6SQaS9K2Yp4FK87TvDEwUrBagBgAAAIB2P/nJT8asPeIRj5j1fsccc0zbcb1ez5133jnr/eba4OBgrrrqqvz2b/92Tj/99Pz4xz9ue/64447Ln/3Zn01rrx/+8Idj1k7a8wsMb7jhhjzucY/Lc57znHzoQx/KjTfemP7+/gwPD+f+++/PDTfckI9//OP5b//tv+XYY4/NH//xH2f79u37/wECAADAAegj13wkL9/48k6PMWOf/fFnJwxRC1ADAAAAAAAAAAAALdVODwAAAAes9euTM89Mrrtu31pvbzI01H7ezp3JmjXNSPU8qJeSV1w4swD17iTbVs/LOPMWoB5qDOXKu6+cMC49nt5KbwbqA3uPBagBAAAAYKz77rtvzNrDH/7wWe833rX3339/jj/++FnvOVOXX3553vKWt7St1Wq17NixI/fcc09qtdq415100kn58pe/nHXr1k3rPrfffvuYtXXr1uVDH/pQfuM3fiODg4PT2qe/vz//+3//73z605/O5z73uZx88snTum6hvP/978/f//3fz/t9brvttnm/BwAAAMvP5274XF7zH6/p9Biz1gpRb3zZxiTNEPX2XduzbuX0/n4CAAAAAAAAAAAAWP5EqAEAoJOe//z2CHW1mvT0JCPDIrVasmNHsmpVUpn7CHKlSF57TXLNkUljGgHogSy9AHXLQG1gxiHqSiqppy5ADQAAAAAT2LJly5i11atn/5eI41370EMPzXq/2di2bVuuG/l3t1NYtWpVXv/61+ed73xnVq1aNa1rhoeHx/24rrjiivzqr/5qGo1G2/qaNWtyxBFHpF6v5957783u3bvHXHvLLbfk3HPPzZVXXplHPvKR055/vm3evDk33XRTp8cAAACAMd79zXfnd7/6u50eY7+NDlELUAMAAAAAAAAAAAAjlTs9AAAAHNCe8ITk8MPb11auTMqj/qheqyXbtye7dyejwiNzYcPNyfu+kJSLyc+rJdk2vX7KzJQy7wHqloHaQIaHh2d0jQA1AAAAAExs586dY9ZWrFgx6/3Gu3bXrl2z3m8+lUql/Pf//t9zxx135N3vfve0A9RJM3RdFGP/UvZ1r3vd3gB1qVTKq171qnznO9/J9u3bc8stt+S2225LX19frrjiijz72c8ec/3WrVvz4he/eNyvCwAAALDP2y5/27IIULd89sefze6hsb+0CgAAAAAAAAAAAECEGgAAOqlaTd7whva1UilZs6b5drTdu5Nt25K+vjkfZaoQdS3Jg6uSYq5j0QsUn24567Cz0tXVtbA3BQAAAIBlbLxf+tbb2zvr/caLUA8NDc16v/lUFEU++MEP5owzzsg73/nO7NixY9rXDg4Ojru+e3czFtXb25uNGzfmox/9aB7/+MenNOLvjKvVap72tKflS1/6Ut773ve2PZckN910U971rnfN4iMCAACAA8OFn7ww7/rW8vveeai2OP8OBQAAAAAAAAAAAOisaqcHAACAA9655ybPeEZy+eX71iqVZO3aZMeOpNEYe02tNi+jbLi5+fbiC5LGiGbJlAHqkesTRKwnPH8BlVLKTZtvmvb5Q8XEP5RVSWUuRmpTFMWYWEwn9wEAAACA2dqfv58a79qimM5fPM6dl7zkJWPuuWvXrmzbti0/+tGP8q1vfSsf+chHcscddyRJHnjggbzjHe/IRz7ykXzqU5/Kz//8z095j6k+pn/8x3/MC1/4win3ufjii/PAAw/kT/7kT9rWL7nkkvzBH/xBDjrooCn3AAAAgAPJhZ+8MBtv3djpMebcf/zSf2TdynWdHgMAAAAAAAAAAABYhMqdHgAAAEjy+tcnRx3VvlapJOvWJT09CzrKhpuT930hKe/pn0wZoB6tNI1Hh5RTTr2oT/sxmXomf36mao1arn/g+mzeuXm/9tm8c3Ouf+D61BrzEyoHAAAAgNG6urrGrO3evXvW+413bXd396z3mysrV67MUUcdlfPPPz9ve9vbctttt+Xv/u7vsmrVqr3n/OQnP8kznvGMXHnllVPuN97nreWpT31qXv3qV097tre97W057rjj2tb6+vryqU99atp7AAAAwIFguQao3/6Ut+cFp72g02MAAAAAAAAAAAAAi1S10wMAAABJVq9O/vRPk7e8JXnwwX3rpVKyalUzRD0wkAwNLcg4G25uvn3DBcmDq2cQoF7EKqnM+Z71xtyEqGuNWm7YfEP6h/pzy5ZbkiTrV62f8T6bd27OLVtuSZEiN2y+IWesPyPVsm/7AAAAAJhfK1euHLM21xHqkaHnxaJUKuWNb3xjHvWoR+U5z3nO3rn7+/tz0UUX5frrr8/BBx884fWTfUwXX3zxjGbp6urKr//6r+cP/uAP2ta//vWv5/Wvf/2M9poP69evz2mnnTbv97ntttsyODg47/cBAABgabroUxctywD1K057Rd7xtHd0egwAAAAAAAAAAABgEVMjAwCAxeKII5J3vzt561uTe+5pf65abYaqiyKp1ZqPnTvndZxzfpbs6hagnky92P8I9cgAdZIUKWYVoh4ZoE6S/qF+IWoAAAAAFsTDHvawMWv9/f2z3m+8a8e7x2LxlKc8Je94xzvy+7//+3vX7r777rznPe/Jn/zJn0x43Zo1a9Ld3Z2hUb98sFwu5xnPeMaM53jWs541JkL9zW9+c8b7zIc3vvGNeeMb3zjv9zn99NNz0003zft9AAAAWHpe+elX5tIfX9rpMebcSx/50nz8lz7e6TEAAAAAAAAAAACARa7c6QEAAIARjjgiee97k2c+c/znS6WkqytZsaL5/jy5e01y9uuTnd3JUm9Ql1NOMct/pjKdcyYzOkA9ct9bttySzTs3T2uf0QHqllaIutao7decAAAAADCZww8/fMza3XffPev97rrrrmndYzH5rd/6raxZs6Zt7QMf+ECKYvK/QzziiCPGrB1//PFZu3btjGd49KMfnUql/Rfy3XfffVPOAAAAAMvdqz7zqnzipk90eow59+xjnp1/vehfOz0GAAAAAAAAAAAAsASIUAMAwGKzenXy5jcn73hHM0o9kfL8/HF+qJw89teTLSuax6Ul3CeppJLSfvwzlemcM5GJAtQt0w1RTxSgbhGiBgAAAGC+HXfccWPWfvrTn856vzvvvLPtuFKp5Jhjjpn1fguhp6cnT3/609vWNm/enJtuumnS644//vgxaw972MNmNUOlUsm6deva1ur1erZt2zar/QAAAGA5+NOv/2k+fuPHOz3GnDtx3Yn50mu+1OkxAAAAAAAAAAAAgCVChBoAABarc89NPvjB5I/+KDnzzLHPd3fPy227G8mvXLPvuJh9Z7mjygvw7c5sI9RTBahbpgpRTxWgbhGiBgAAAGA+nXLKKWPWNm3aNKu9hoaGctddd7WtnXDCCalWq7PabyEde+yxY9Zuv/32Sa859dRTx6z19PTMeobe3t4xawMDA7PeDwAAAJay91/1/vzR//ujTo8x545fe3xu/e1bOz0GAAAAAAAAAAAAsIQs/p/SBACAuVCMivQ2GnN/j82bkxtvTDZtSm6/Pdm+PanVkmo1WbcuOf745MQTk9NPT9avn96e5XLyxCcmJ5+cfPvbydVXN/fftm3u5x/hL77afPuXT8wUeeNklh3meVVOedaB6Jnors48BD7dAHVLK0SdJOtX7fv3ZroB6pZWiPqM9WekWvatIAAAAABz5+yzz065XE5jxN+7fu9730utVptxPPp73/tehoeH29Ye85jHzMmc8228APSOHTsmveacc87JJZdc0ra2ffv2Wc+wbZy/O37Ywx426/0AAABgqfrRvT/Kb/7nb3Z6jDl3/Nrjc9v/uK3TYwAAAAAAAAAAAABLjPIYAADL1+BgsmNHMwQ9Ojr9pS/NzT3q9eTWW5Nrr03uumvyc7/znX3vH3NMctZZzSh1pbJvfXg46etrvq3Xk3vvbe5/993N54uiud56fiajlpLK9HrFSZJzf5asGk76Z95Z7pjucncO7j44w8VwakVtv/frG+qb8LlKKhM+N5GZBqhbRoeoZxqgbhGiBgAAAGA+rFq1KmeffXa+//3v713buXNnrrnmmpxzzjkz2uub3/zmmLWnPOUp+z3jQnjggQfGrB166KGTXvPUpz51zNpPf/rTFEWRUmlmv2hv8+bN2bVrV9va2rVr0929hP6SFwAAAOZA32BfzvvIeZ0eY8496pBH5fqLr+/0GAAAAAAAAAAAAMASpDoGAMDytHt3snXr/N5j06bkq19tRqNn6s47m4+1a5Pzz2/GqIeGkgcfbD5/113Jd7+b9O+JFZfLzej04GAzRD1DfT3JKy5MXntNsuHmqc/f+Mjk4guSNUNJkWTnRI2SmTVQ5lW1XM25R587p3HlK++6MsP14TnZqyiK3Lj5xhkHqPdevydEvXnX5mwd2DrjAHVL/1B/btx8Yx592KNnHLEBAAAAgIk85znPaYtQJ8lnPvOZGUeoP/OZz4y791Jw1VVXjVk74ogjJr3muOOOy6mnnpof/ehHe9e2bduWm266KaeffvqM7n/llVeOWTv77LNntAcAAAAsdX2DfXnEXz0i24a2dXqUOXXekeflW7/2rU6PAQAAAAAAAAAAACxR5U4PAAAAc67RSLZvn7/9BwaSL3wh2bhxdgHqkfr6mvt84QvJAw80Q9Tf/Gbyta/tC1AXRfOeAwOzDlBf9JLk+0c1w9L/etrk57cC1I09feK1Q8mqoRnfdsHVGrXctPmmTo8xoVKplKNWH5XSfpS7ixTZMrBl1gHqJCllzxwC1AAAANNTFEljiT0AOuBlL3vZmLUPf/jDGRqa/l8uXnPNNfnud7/btvbzP//zOe644/Z7vvl27bXXtoWkk+Sggw7KqaeeOuW1r3zlK8esfexjH5vxDB/96EfHrJ1//vkz3gcAAACWquUaoH7GMc8QoAYAAAAAAAAAAAD2iwg1AADLz+BgM0Q9H7ZvTz72seTGG8d/viiSWq0Zk26FowcGmse12sQR6RtuSC67LPmP/0huv33feqPR/Hjq9X37j3xMoRWgvu6I5vFQKXn5S5INLx3//NEB6pbuRsamkxdhw/jB3Q/m+vuv7/QYE1q/an1OPuTk/QpR749SSjn5kJOzftX6jtwfAABgydq9a2k9hKiBDjjjjDPypCc9qW1t8+bN+eu//utp7/GHf/iHY9be8IY37Pds861er+dNb3rTmPXnPe956erqmvL6173udVmxYkXb2j/+4z/mnnvumfYMP/jBD/Lv//7vbWulUikvfvGLp70HAAAALGV9g305871nLrsA9YYTN+Qrr/lKp8cAAAAAAAAAAAAAljgRagAAlp/5ClBv25Z88pPNt6PV683Y9M6d7dHp1qMVpW4934pKj5z5oYeSLVv2xaVbAepGY9rR6ZFGB6hrSR5c1QxMf/bUsSHqiQLUA9Vke09SKhZld3oMIerxCVADAAAAMN/++I//eMza29/+9vzgBz+Y8tq/+7u/y3/+53+2rR1//PF5+ctfPq17H3vssSmVSm2Pr3/961Ne9773vS9f+crsQ06Dg4N5xStekW984xtt66VSKb/5m785rT0OP/zwvPGNb2xb27ZtW17xildk9+7dU17/wAMP5BWveEXqo/7e+cUvfnFOO+20ac0AAAAAS1nfYF/O++B5+cmun3R6lDm14aQNuewVl3V6DAAAAAAAAAAAAGAZEKEGAGD56emZ+z0HBpJPfzrp729fL4rmc7t3N2PT01GrNc8fGNgXlx4Y2LdfKzw9NDTj8HTLRAHqYkT3eGSIeqoA9cgPN8mir1E/tPuhMcGVxWShQ9QC1AAAAAAshGc/+9l54Qtf2LY2ODiYpz3tafnc5z437jXDw8N517velYsvvnjMc+9973vT1dU1L7O2fP/738+znvWsPOEJT8jf//3f5/7775/WdcPDw7nsssvyqEc9Kv/6r/865vlf/dVfzbnnnjvtOd7+9rfnmGOOaVv7+te/nvPPPz8333zzhNddeeWVefKTnzzmnNWrV+dP/uRPpn1/AAAAWKpaAeobH7yx06PMqb9/9t/nspcLUAMAAAAAAAAAAABzo9rpAQAAYM5Vq8nq1WOD0fvjiiuSbdva1xqNZkx6lqHo1GpJvZ6Uy+17tELU8xigbvnsqcmLLkrq5akD1I2kGZ9e5AHqUko556hzUqlUOj3KpFpB6Fu23JIis/x3aBoEqAEAAABYSP/0T/+U73//+7n77rv3rvX19eUXf/EX87jHPS4vfOELc9xxx2X37t259dZb84lPfCI/+9nPxuzzm7/5m3ne8563YHNfddVVueqqq3LxxRfn1FNPzdlnn53TTjsthxxySA466KCUSqX09fXlnnvuybXXXpv/+q//ykMPPTTuXk972tPyV3/1VzO6/+rVq/PpT386T3nKUzI4OLh3/dvf/nYe9ahH5ZnPfGbOP//8HHXUUanX67nzzjvzpS99Kd/4xjfG3e8jH/lITjnllBnNAAAAAEvNcg1QX/aSy7Lh9A2dHgMAAAAAAAAAAABYRkSoAQBYntasab6dixD1pk3JjaN+UGmqAHWl0oxLl0rNcxqNZnB6tEaj+SiNKDvPNmqdmQWoW/79kcnzbknOvG/fdUs9QL26e3WnR5mW+Q5RC1ADAABMQ3nUcaWSrFzZkVHmTKOa1Gv7jitjPsgFHQc4sKxfvz5f/vKX8/SnPz333Xdf23Pf+9738r3vfW/KPV760pfmb/7mb+Zpwsk1Go3ceOONuXH03wlP04te9KJ88pOfzIoVK2Z87eMf//h89rOfzYUXXpjdu3fvXa/VavniF7+YL37xi1Pu0d3dnfe///158YtfPOP7AwAAwFJyxwN35IWfeeGyC1D/5fl/KUANAAAAAAAAAAAAzDkRagAAlqdSKVm7Nlm9OqnVxgagzzxzevvUasnHPpZUR/zRuSiSXbvGxqJLpaSnJ+nubgaoR2s0kqGhZHCwee3I64tiX7B6Nkql9HUXMw5Qt/x/J+8LUX/naAHqhTRfIWoBagAAgGkqj/N/l5UW+TfB0zHZh9DdtWBjAAemU089NVdffXVe/vKX55vf/Oa0r+vq6spb3/rWvO1tb0t5vL9jnQerVq2ak30e/vCH56//+q/3O/78nOc8J9/+9rfzyle+MjfccMOMrj3ppJPy4Q9/OE984hP3awYAAABY7P7qW3+VN1/+5k6PMef+91P/d97ypLd0egwAAAAAAAAAAABgGVqYn9oEAIBOKZebYegVK/Y9Vq5Mfu7npve4885k69akUtn3aEWkS6V9j66uZN26ZNWq5vsjz289urqaz69b13x/dNBqNgHqPfevl4q84sLZBahb/r+Tk5+sS3aNaG81Sml+17DI21tLNUDdsn7V+px8yMkpzdEnWoAaAABgBsrl5i+UOlBUKknPAfTxAh3z8Ic/PP/1X/+Vf/3Xf815552X0iSB/9WrV+c1r3lNrr/++rzjHe9YsAB1krz//e/PjTfemHe/+915wQtekCOOOGLa1x5++OF52cteli984Qu544479jtA3XLmmWfm2muvzYc//OE8/vGPn/RzV6lU8oQnPCEf+chH8qMf/UiAGgAAgGVvOQeo3/oLb+30GAAAAAAAAAAAAMAyVZ36FAAAOIB9/vPtx7VaM0I9UrWarFkzNio9kUqlef6WLfs324j7VYpSXnttkWuOTIZKMw9Qt9y8Plk5nBQpZag8iyh2Byz1AHXL+lXrs3nX5mwZ2M9/L5Ic3HuwADUAAMBM9PQkKSfDg7P7JVFLRVdX0tuTRf/bpoBlo1Qq5aUvfWle+tKX5oEHHsjVV1+d22+/PX19falWqzn00ENz6qmn5pxzzkn3fv5CgJ/85Cezvva0007Laaedlje/uRmwuvfee3PbbbflJz/5SbZs2ZKdO3emKIqsWbMm69aty2GHHZYzzzwzRx555H7NPJlKpZJf+ZVfya/8yq/k/vvvz/e+9729n7vu7u4ceuihOeqoo/KEJzwha9eunbc5AAAAYDFZrgHqT77ok/nlM3+502MAAAAAAAAAAAAAy5gINQAATGTz5uS669rXBgbGnrdq1fQD1C2NxuznmuBeG25uhqNf/uLZBahbdnUvnRTVcglQJ8nmnZuzdWDrnOy1dWBrNu/cLEQNAAAwbaWkp7v5aDSWfoh6oDsZru077upp/kKsJfMdP7AcHXbYYXn+85/f6TGm5cgjj8yRRx6ZJz3pSZ0eJUly+OGH53nPe16nxwAAAICOWq4B6s+97HN5/ilL4+9MAAAAAAAAAAAAgKVLhBoAACZy443tx0WRDA21r61YkVQqM9+7VtsXk55J2KpUaj4muOaim0r51BlFPvvImY80UpHFH9tabgHqW7bcMmef9yJFbtlyS5IIUQMAAMxUudzpCfZfKe296fLoBQAAAACApWNaAeoiS+6vQT/70s8KUAMAAAAAAAAAAAALYhn8FD0AAMyTW29tP67Vxp7T0zO7vev12V03DRsvLeVFN+/HBou4P33IikNySO8hAtTT0ApRb965eU73BQAAAAAAAACAhTKtAPWuJLU9jyVibffaPPek53Z6DAAAAAAAAAAAAOAAUe30AAAAsGjdfnv78egIdbWalGf5e11ae5VKSTGD+HCpNK3TNl5ayoaXFvnsI2cx2yLVW+7NGevPSLVcTb1eT6VS6fRI+22+AtQtrRB1kqxftX5e7gEAAAAAAAAAAPNhWgHq3Um69rxfJBkecbyIXf26q9Nd7e70GAAAAAAAAAAAAMABYpbFPAAAOABs395+XK+3H+9PBHkm4elpqJfa9+uvFtl4aSkv+tGc3qZjSinl8FWHp1pu/h6dVoC6mKPP41ztMxPzHaBuaYWoN+/cPK/3AQAAAAAAAACAuTKtAPVAkuo468PzMdHc+dzLPpdTDjul02MAAAAAAAAAAAAABxARagAAmEitNvnzpdLs9x4ZPd6ffZL0dRd50UXJxkc29/zu4UXW/mHy868rsvHTnQlRV1PNQT0Hpbvcvd97lVJKpVRJadTnqdao5foHrt/vuPLmnZtz/QPXp9aY4us9hxYqQN0iRA0AAAAAAAAAwFJx54N3Ti9AXZnk+UUaov7cyz6X55/y/E6PAQAAAAAAAAAAABxgRKgBAGAi1erkzxf7ERAeGVTej336uotc9JLk+0clFz83+T/nFvn5X0uKUnL1zyU//9oiGy/Ngoaou8vdWd2zOkmysmtlyvvxbUe1VE2lNPanxWqNWm7YfEN2DO3Yr7hyKwa9Y2hHbth8w4KEqBc6QN0iRA0AAAAAAAAAwFJwzKHHpFqa5LVbg5k8QN2yyELUAtQAAAAAAAAAAABAp4hQAwDARNataz+ujPrJpXp99nuPjFDPUitAfd0RzeNdpeT3n9UMULdcfXTy869LNl6anP7Aft9ySt3l7qzsWtm21lXumtN7tALU/UP9SWYfVx4dg+4f6p/3EHWnAtQtQtQAAAAAAAAAACxm9UbzNVnDbxseP0Q9lJn9FMQiCVELUAMAAAAAAAAAAACdJEINAAATOf749uPqqB9qqtWSRmN2e7f2KmYYI95z/ugA9UCSravHv+Tqo5OTfjPZtiJZNTS7caejkkrKKWdgeKDtMdyYu5/kGh2gbplpXHmiGPR8hqiLosg9/ffsV4C6lFIO6T0kpcw+Yl5kzxwz/XcPAAAAAAAAAADmUd9gX170ry/Kxh9tTDJOiHoomdXLZjocohagBgAAAAAAAAAAADpNhBoAACZy0kntx6Mj1EkyODi7vSuV2V2XmQWoWzY9LLl/ZbJ2KKnMQ3u4XCqnWqmmKBVjHnOlUTTGDVC3TDdEPVGAumW+QtSlUimnrz89q7un+GJNdH1KOfmQk3Pa+tNy8iEnzzpEvbp7dU5ff3pKpdmHrAEAAAAAAAAAYC71Dfblos9clO/f8/1c/MWLx4aohzO7AHVLh0LUAtQAAAAAAAAAAADAYiBCDQAAEzn99PbjUinp7m5f2707qddnvne1mhRF8zEDfd1FLnpxMaMAdUutkty3MqlP9cNYM/xhrXKpnK5y18wumqGiKLJ51+YJA9R7z5siRD1VgLqlFaIuZvj1mUq1XM0Z68+YcYi6FaBev2p9kmT9qvWzClGv7l6dM9afkWp5nKA6AAAAAAAAAAB0QN9gXy78lwtz3X3XJWn+svqRIepXnPKyubnRAoeo//6Zfy9ADQAAAAAAAAAAACwKItQAADCR9euTM89sX+vtHXvezp0zjkmnPPM/ivf1JBe9JLMKULcU8/AdwFyHmsfbv5FGhhpD0zt/ghD1dAPULf1D/RluDE/7/OmaaYh6dIC6ZaYhagFqAAAAAAAAAAAWm77Bvpz/0fPz1Z9+NffvvH/veqNey8UbfzXP/p+PyP/94cfn7oYLFKL+5dN+OW847w0LczMAAAAAAAAAAACAKaiPAQDAZJ7//OS66/YdV6tJT08yOLhvrVZLduxIVq1KKpWp96zXm+HqGZiLAPV8KVKkUqrkyFVHjvv8z/p/lqH6voB0I43p770nQD3TEHQrRJ00Y80zDVCPnrWc8rRjz9PRClHfsPmG9A/1T3jeRAHqltb6VB+bADUAAAAAAAAAAItNK0D9vXu+lyRpFI3c339/Dh/uToaGcl+tkZ+tfGjubzycpGvut235rXN+K39zwd/M3w0AAAAAAAAAAAAAZkiBDACA5asokt27m5HoxojwcanUHpaezMqVyZo1yZYtzf2SZoh6aKh9z+HhZPv2ZqC6u3tsjLoomvHpoaHmoyj27TdyrtFrSeql5BUX7gtQ1zKPAepZdpZ31XZl+9D2PPrwR495bsvAlgzVh/ZGnMspTztEPTpAXRRFSqXpDdkKUW/etTlbB7bOOEA9eo6FDlFPFaBumSpELUANAAAAAAAAAMBiMzpAnSQpmq/Tub88kNSTxsp5HGCeQtS/d+7v5S+e/RdzvzEAAAAAAAAAAADAflAhAwBgearVkq1bm3Ho8fzsZ9Pf6zGPSb74xfa17u5kcLA9Gl0UycBA81GpNB+lUjNW3Wg0I9TjRKbbrp/Aa69JrjkyaZSaf4iv1pNaZcLTO+LB3Q/m+vuvHxOiLopi1hHnUkp7w8pFUaRW1FItV2cUot4ysGVG9xzPXAeoWyYKUU83QN0yUYhagBoAAAAAAAAAgMVmTIB61MumGkWSFQswyByHqAWoAQAAAAAAAAAAgMWq3OkBAABgXmzbNnGAeib6+5P165Pjj29fL5WSnp7m2/HU68nQUDNUPTTUjGJPFqCeQF9P8qKXNd9/3xeS8p4t1u9uhqjn1Bw0llsh6pZao5b+4WZcuZFGWyB5Osqlcsp7vm1pXV9r1FLM4nM5W/MVoG5phahXd69OMvMAdcv6Vetz8iEn751VgBoAAAAAAAAAgMVmqgB1GuOszac5eIlZkrz+rNcLUAMAAAAAAAAAAACLlgg1AADLz9BQ8zEXdu1qvn3845M1a9qfK5WSlSuT6iSR36liyaXShCHrvp7kopck3z8qufiC5tq8hajnsLH84O4Hs2nLptQatdyw+YbUi31DziZEPdpChahLKaWr3DWvAeqWVoh6TfeaWQWoW1oh6jXdawSoAQAAAAAAAABYVOqNep71sWdNHqCeq9dDzcR+hqiffeyzc8kLL5mbWQAAAAAAAAAAAADmgQg1AADLz3QC1K3482SPJKnVmm+7u5NnPrMZnR6ttzdZsaI9Rl0UkweoR8enR73fClBfd0RzqVFagBD1HLqz785c/bOr0z/UP+a5mUSoG0UjjTSSJOUR377Md4i6lFJOPuTkVEqVedl/PNVyNY8+7NGzDlC3rF+1Po8+7NEC1AAAAAAAAAAALCr/9dP/ynd+9p3mwUQB6vn/ffHjm2WI+tnHPjtf+m9fmttZAAAAAAAAAAAAAOaYCDUAAMtPd/fU57Qi0ZM9Go32a1avTp7znGTNmrH7VSrNGPXatc0gdXmcP2qPDFyPd789z/V1F20B6pZ5C1HP0w9uDdQH9jsS3QpQJ0mpVGoLK89XiLoVoN7fGPSs7l2amy/GXO0DAAAAAAAAAABz4Wt3fC1P/+jTmweLLUDdMsMQtQA1AAAAAAAAAAAAsFSIUAMAsPx0dSXV6tTnzcbq1cnznpeccML4zxdFMjjYFpXe+2g9P0k0eaIAdcveEHUped8XS3tD1AfNNkQ9jz+41VXumvMYcrlUntcQdScD1AAAAAAAAAAAsBxt37V9X4B6tMUSoG6Z5muw/uQX/kSAGgAAAAAAAAAAAFgyRKgBAFh+SqXk4IOTSmV+9u/uTp74xORpT0vWrt23XhTJzp1JozH2mini0ymVpgxQtzRKycXPTZIi7/tiKQNF8uDq5vq0Q9SlLLkAdct8hagFqAEAAAAAAAAAYO6tW7kuJx58YvNg5Et8FluAupRkGi85+/Avfjh/9NQ/mvdxAAAAAAAAAAAAAOZKdepTAABgCerqStavT3btSoaH28PQpVJyyCFT71GvJ1u3Tvz8iScmj3tccuedyfe/n9x888QB6onsCTVPN0Dd0gpR/9rVRbau2bNWTopGmj+oNdEPZi3AD2zNZ4C6pRWirjVqSfaFqKvl6qzuvRwD1MPDw+nq6lo0+wAAAAAAAAAAcOC69U235qQ/OyqbBu9tLjSS1JKUOznVKNP46YoP/+KH8ytn/8q8jwIAAAAAAAAAAAAwl0SoAQBYvsrlZPXqZuh5ZAi6VErOPXfq62u1ZPv29rXRex1+eDNGvX598tOfJr29zetqtWaQulZrv3akajUpl9PXk1z0wqFcd9gkseqR1++5/85S8vbz208pymlGqMdcO/nWk942pRTjbjrWQgSoW8qlcsqlchpFM/y9PyHqg3sPXlYB6i27tuTaB65Nb7U35x193qz3ufLuKzNQG8hZh52VQ1ZOI9wOAAAAAAAAAAATuPUHT8xJP3dZNq1tLL4A9TR+R7sANQAAAAAAAAAAALBULaaXbQIAwNJUqyWf+UwzEt3dnaxcmaxZ04xFl8v7HqVS89Hb23x+1arUV/bmFS+q57rD037OeIoijRRplJJdpWTb6j3rpVGP8jhr+2E6AepKqbKgAeokaRSNvQHqvXOUK7OaYevA1mzeuXmuRuuoVoA6SQZqA7ny7itntU8rQJ0k1z5wbbbs2jJXIwIAAAAAAAAAcKD5wQ+Sr341X/+nRRagLiJADQAAAAAAAAAAACx71U4PAAAsQ5s3JzfemNx6a3L77cn27c1Ib7WarFuXHH98ctJJyemnJ+vXd3paJuNr2a6vL/nZz5L77mt+bnbtSiqVZHAwuffe5vvd3c3Pz+7dzQj1SNVqM0Bd3vcTVJWilNfe2J1r1u9Oo5T2APXo65OUimR3Kdm+asRikf0OTe+PrnJXzjnqnOwY3JFbttwyrWj1/moUjdQatba1armacml2P51WpMgtW25JkqxftXT/XR4ZoG5phajPO/q8ae8zMkDdcu0D1+asw87KISsPmYtRAQAAAAAAAABY7oaHky99Kfm//ze54opk+/Yc+3tZXAHq7slPec8z3pOXn/7yHHHQEQsyEgAAAAAAAAAAAMB8EKEGAOZGrZZceWXy+c8n118/+bnXXLPv/TPPTJ7//OQJT2gGeuk8X8t29Xozwn3ttcldd419vlxuxqhrteZjaKgZjy6KfUHpUqn5OVmzprnfKBtua/4k08VPG2iGqFvXlEpJo9F27kBGBag7rBWg7q32prfamyTzHqKe6wB1y1IPUY8XoG6ZSYh6vAB1ixA1AAAAAAAAAAATGaoNpbu6p+r8la8kf/zH+15zVaul+/caqVU6N1+bRpKeyU95zzPek9954u8syDgAAAAAAAAAAAAA82kZ1QEBgI656qrkkkuS+++f+bXXXdd8HH548oY3JOeeO/fzMX2+lu2+853kgx9M+vomPqfRaManRyqK9relUrJq1b4o9Tg23NadVCq5+Ck794Wok2bkek+IeneSbasn2KBIMvH2c+6Ytcfk3v579waoW1rx5vkKUc9XgLplqYaoJwtQt0wnRD1ZgLpFiBoAAAAAAAAAgNHu7rs7j/3AY/Mrp/5y/uLLRfLpT7c93/sbOzK8WALU9SS9k58iQA0AAAAAAAAAAAAsJyLUAMDs9fcn//APyeWX7/9e99+fvOMdyTOekbz+9cnqiUq7zIsD/Wu5eXNy443Jrbcmt9+ePPRQctddybZtzZB0udx8VCrNtyPV6+3HxTjh5aJIdu9uhqgnseH2niQZE6IukgxkkgB1B5x4yIk5/qDjUx79+cj8haiLoki9aP98z2WAeu99RoSol4LpBKhbJgtRTydA3SJEDQAAAAAAAABAy919d+fsfzw7W3Ztybu/+7fJT1flL7J27/MrXn1vBhfLTy7UkqyY/BQBagAAAAAAAAAAAGC5WSwv5QQAlpr77kve+tbknnvGf74oklqt+RgZ6a1Ukmq1+SiVxl53+eXJTTclf/qnyRFHzM/stDtQv5a1WnLllcnnP59cf/2+9UYj6etrvk2aH//Ij7sVo24912jsC0+P93loGRpq3nPlyrEh6xHGC1EPlZJtk/erF9x37/luzjnqnAmfHxminiuNNNqO5yNA3dIKUTeKxtQnd9BMAtQt44WoZxKgbhGiBgAAAAAAAABgZIA6RSMpknefuTNJ8hdXr83qV9ybgUXyUwsnPJj89LBmh3oiAtQAAAAAAAAAAADAcjQ/xTYAYHm7777kzW8eP1pcqyX9/cnWrcmOHcnu3c34buuxe3dzfevW5nm1cX6c4557kre8pXkf5teB+rXctCl53euagezRAert2/cFqEdrBalbn4Ph4fZAdVHsC1KP1IpTNxrJzp0T77/Hhtt78r7/WpXynq26kpQXWQt5x9COfPee7056zvpV63PyISfP2wylTBL9ngNFigw3hlNknK/pIjCbAHVLK0SdzC5A3XLtA9c2f4AQAAAAAAAAAIADzt4A9e59AeqWd5+5M72vvDc7ezo330iH7Ew2/ceRGb7y/FRL41exBagBAAAAAAAAAACA5UqEGgCYmf7+5K1vTR56qH29KJpx3b6+Zpx3OoaGmufv3Dk23Pvgg8379PfPzdyMdSB+LQcGki98IbnssuT++9ufK4rmxzBeRHqiuPRstELUU+y34faevO9b6/aGqNcOJYuthTxZiLrY8/GtX7U+K6or5uX+tUZt733mUyONRReiHh4ennWAumWgNpArfnLFrAPULdc+cG2Gh4f3aw8AAAAAAAAAAJaWa3927b4AdaMY89qmxu5ksLszs40xkKyolrPx2IHk0EMz/LbhMSFqAWoAAAAAAAAAAABgOROhBgBm5h/+Ibnnnva1ej3Zvj0ZHJzdnoODzevr9fb1e+5J/vEfZ7cnUzvQvpbbtycf+1hy443jP79zZ3PuomiGoluPuYgcj96j0WgGsaew4Se9ed+31qVUJLu79vzhfXG1kLNjaEdqtVrbWq1Ry/UPXJ/NOzen1qhlqD7NmPkMFSmmDFGXUsohvYeklNJ+3Wuxhai7urrSW+3t9BhJkt5qb7q6ujo9BgAAAAAAAAAAC+SSqy/J2R88Ow/uerD52qhRr99p7EqyWALUg8mR5XIapeTiJ27PxtOaryMaGaIWoAYAAAAAAAAAAACWOxFqAGD6rroqufzy9rV6Penra0Z1x1OtJj09SW9v8221Ov55jUZzn9Hx4q98pXlf5taB9rXcti355Cebb0er1ZrzDgyM+wNRc2K8fYeGkuHhKS/d8JPe/MJd5azbnXQ1Fl+I+rFHPDbVEf8u1Bq13LD5huwY2pEfP/TjfP/e76dW1CbZYf9MFqIupZSTDzk5p60/LScfcvJ+hajLKe93yHqunXf0eR0PUfdWe3Pe0ed1dAYAAAAAAAAAABbOJVdfkt/44m/sPW6MDlDvTNKzwENNZCgpr9h32CglF1e/ko0/2pikGaL+6Rt/KkANAAAAAAAAAAAALHsi1ADA9NRqySWXtK8VRbJjx9i4bqmUrFiRHHRQsnZtsmpVsnJl8+3atc31FSsyxkT7/cM/NO/P3DjQvpYDA8mllyb9/e3rRZHs3NkMUA8NzXzfUqn5mK7xQtQDA1NetvHYgfzXwxupJDlokYWoH3vEY7Oud93e41aAun+oP0VRZLgxnJ3DO+d9jvFC1K0A9fpV65Mk61etn1WIurznn8UWoG7pZIhagBoAAAAAAAAA4MDSFqAusvc1TI09L61p9Cfp7O9U32c4ycqkUU7u723sXW50VXPxFy/eG6I+5tBjOjQgAAAAAAAAAAAAwMIRoQYApufb307uv799bdeupNFoX6tWm3HiFSuS8gR/1CiXm8+vW9c8f6RGo7nvSPfdl1x11f7Nzz4H2tfyiiuSbdva1xqNZPv2ZHBwbBh6umZz3ehrGo1keHjC0zceO5CLn7h97w9plbN4QtRTBahrjVqKBRxwZIh6dIC6ZaYh6tXdq9NV7lq0AeqWToSoBagBAAAAAAAAAA4sn7juE+0B6lEaO5KsWNCRJjactln2hqi7u5NyOY2ikQ9d+6HUG/WOjQgAAAAAAAAAAACwkESoAYDp+fzn249rtWbAd6RqNVmzJqlUprdnpdI8f3S8eHCwuf9k92f2DqSv5aZNyY03tq81Gsnu3fui27ONUO/vtS1DQ+Mubzx+cG+AujTiNq0QdbXDIerFFKBuaYWoTzjohDEB6pbphqhXd6/OGevPSKm0uAPULQsZohagBgAAAAAAAAA4sFx6w6V55Wdf2TwY72VB25KsXMCBJlPLuDHsRjm5v6v5Wq0zjzgzn7jwE6mUp/n6OAAAAAAAAAAAAIAlToQaAJja5s3Jdde1rw0MjD1v1apkpsHWUql53Wij97/22uYc7J8D6WtZrydf/Wr7WlE0A9StePTIiHSpNPOPeTZGh6trtX1B7D02Hj+Yi5+yM40944yeqpRk3cCoEPUCtpLLI76NWCwB6pZKuZL7dt2XWqM24TlThahbAepquTru84vVQoSoBagBAAAAAAAAAA4sl95waS76t4uaB+O9LGh7ktULOdEk6kkmeflMI41sH9ief33Jv2Ztz9oFGwsAAAAAAAAAAACg00SoAYCp3Xhj+3FRJEND7WsrViSVyuz2r1Sa1480NDQ21jt6DmbuQPpabtqU9PW1rw0Ojp0lmTpAPd+B6qLY+zkfHaAeHahOkqLU/IN8K0S9EO3skRppZPPOzYsuQF0tV1MuldM/1J8bN9+YYryv9R4ThaiXaoC6ZT5D1ALUAAAAAAAAAAAHlikD1P1JVi3kRJOoJ+mZ5Pk9LxPaVduVot651zgBAAAAAAAAAAAAdIIINQAwtVtvbT+u1cae0zPZT29Mw3jXj77Ppk37dw8OrK/ltde2H9frY+col6cXoB7v/f3Vum+p1JytVGoPUBfF+AHqEe+3QtSd+JGoHz/04/zg3h8smgB1kr3R6VJKOWr1USlN8fUaHaJe6gHqlvkIUQtQAwAAAAAAAAAcWNoC1OPpTzI/vyt95hqZPEA9whWvviLrVq6b13EAAAAAAAAAAAAAFhsRagBgarff3n48OuRbrTZjvvujXG7uM9l9brtt/+7BgfO13LIlufPO9rXh4bHntSLUMzEXIeqiaD5aarV9AeoUY58feemo2z+0IskctrGna7gxnP7h/tQb9UURoE6SelFPo9HIyYecnPWr1k/rmlaIek33mmURoG6Z62C0ADUAAAAAAAAAwIFjc9/m9gD16JcG7criClBP9ZKfPa+vuuLVV+Rpxz1tvicCAAAAAAAAAAAAWHREqAGAqW3f3n5cr7cfVypzc5/R+4y+z+g5mLkD5Wt5663tx0UxNoS9YsXY6yYIP48x3RD1ZOcVRdJoJI1GNp4wnIufvCONojGjAPXmFUmjQ3+ir5SbX+N6UZ/izIW1omtFDl156IyuWb9qfR592KOXTYA6Sa68+8pFvR8AAAAAAAAAAIvX+rXrc1DPQeM/uStJ90JOM4lWgHqy11AJUAMAAAAAAAAAAACIUAMA0zA63jvadIO8U5lqn6nmYGoHytfyJz9pPx4dwU6Snp6p95mLz0d58j9y10vJh84q0phim6KUjExT7w1Qz9GXbKbKpfLeaHORIqVODTLC6q7VOfuIs1OaxddtNtcsVlfefWUGagNzuudAbUCIGgAAAAAAAADgALL1D7Y2Q9QjX7Q0kEUToC41khXbI0ANAAAAAAAAAAAAMA0i1ADA1KrVyZ8vismfn66p9plqDqZ2oHwt77qr/bgxKvFcqUwZh04y+cdRKqU+Vbe4df0kgeNKkXx0Y3Lm/RPfpzFRgLrDRoeoO2l11+o85sjH7J3nQDUfAeoWIWoAAAAAAAAAgAPL1lffmINaL0XpT7JYXppTJFf9ebLrH8o5ccsE5whQAwAAAAAAAAAAAOy1CNJ1AMCit25d+3Gl0n5cr8/NfUbvM/o+o+dg5g6Ur+WOHe3HoyPUrQD16Dj0JLHo0fq6i7zoZcnGR456Yrw9imaiebzHZY9MXr0h+cd/Tx5936jLSqUxaee2APX0x503I0PUnTIXAerh4eE5nKgz5jNA3SJEDQAAAAAAAACw/AzVhlJvjPPasauvztaPHpnS1iS9Cz7W+IrkO3+WPL7UfBHVrR9enRO3jfixiFIEqAEAAAAAAAAAAABGEaEGAKZ2/PHtx9VRoddabWzkd6YajeY+k93nhBP27x4cOF/L0fcfrRWKHj3XNPV1F7noJcn3j0ouvmBUiLpUGhOiHh2SLkrNx2WPTN50QXOf//6i5L1fLuX0zaU0SkmjlBR7/mlZbAHqlk6HqIcbw/t1/yvvvjLf+Nk3smXXljmcamEtRIC6RYgaAAAAAAAAAGD52PTgphz910fnlL87JRt/tLH9yeuvz28/8t4Uazoz2xijAtRJkq6u3HrPi3Niz5Ftr6kSoAYAAAAAAAAAAADYR4QaAJjaSSe1H48X7h0c3L97jHf96PuceOL+3YMD52s5VVy6KKZ33shz92gFqK87onncKE0Soi6XU8v4Ue+Nj0x+64I9selScv3hyRuel7znq5Wc/uDYwvRiDVC3dDJEPVgfnHUUeWS8+doHrl2SIeqFDFC3CFEDAAAAAAAAACx9X7vjaznp/Sdl867NuW3rbXn1Z1/dFqL+res+mL89r4MDjlQkl/3f5PFd3Ul3d7JqVbJuXXLFFcmll+bWP7wnJx7cfF2aADUAAAAAAAAAAABAOxFqAGBqp5/eflwqNX+IY6Tdu5N6fXb71+vN60fq7m7eZ6Qzzpjd/uxzoHwt16xpPy6P+mNvY08YenSEevSco4wJULe2myBE3beinBddNGo9ewLUz21elyStz/aNhxb5H8+s56+/0h6i3t61J0BdyqIMULd0MkQ9myjyePHmpRai7kSAukWIGgAAAAAAAABg6fraHV/L0z/69La1/qH+vSHqP/jcW/LeU+/q0HSjFMmHPppsGDw0edjDkoMPTlavTp7xjOSss/aeduubbs22390mQA0AAAAAAAAAAAAwigg1ADC19euTM89sX+vtHXvezp1JUcxs76JoXjfa6P3POis59NCZ7c1YB8rX8uEPbz8eHaGu1ZKBgeYjaUapW4/xFMWYAHUtyeZVSd+ehvfeEPUpzc9bX1cjF22o5QdHJW+6ILlsT4j6slPbA9Tbu5MHVzb3S/aEqJ9Rz3v+s5SH76xk28pyBnqyqOPTIy2VEPVk8ealEqLuZIC6RYgaAAAAAAAAAGDpueyGy8YEqFv6h/pz4aUX5i9+8J4Fnmpiz/p28pqtq5KurvYn/tt/G3PuupXrFmgqAAAAAAAAAAAAgKVDhBoAmJ7nP7/9uFpNenra12q1ZMeOpF6f3p71evP8Wq19vaenuf9k92f2DoSv5bHHth9XKs1IduuRNIPZAwPTim339WRMgPrBVc2Q9M7uUSHq5xb5xOmN5vmH71v/rQuStzy7GaqulZIizQD1ru6kKCVbViUDlWRXV/LthydP+tVSbjiyK4PlCcLYi1i5VE651JlvNaYTRZ5OvHmxh6iHh4c7HqBuGagNZHh4uNNjAAAAAAAAAAAwDW/76tvy4n978cQn1JIMJVksLwcZSi5/cvL75496ndcxxyTPelZnZgIAAAAAAAAAAABYYkSoAYDpecITksMPb19buTIpj/rjRK2WbN+e7N6dNCaI5zYazee3bx8bLS6Xm/uOdMQRybnn7t/87HMgfC1POqn9uF5PSqX2tVaQevT6KBMFqIsRl40MUddLyet+MfnO0e377OpK/ubnm29Tap6/6/9n787jo6oP/f+/z8xkT9gDiLigoiKoiLihVsG1igsuYIvaXrW2trV93Ht7e2u/rXp/be1ta29bu9jFVqvVuqMVbVUEV0REFgVZFQVEIED2ZDLL+fz+ODmT2TNJZgt5PX3MI3O2z3xmgjok57ym1LkvyxmvsUJqLpP8PqnNY8tvZycy7JVXns63/h555JU3K+OmYhtbtilcPDtdiDqTALVr5a6VCoaL5Wq6WCUlJZo8cnKfxij3lWvGwTNU7ivv0ziTR05WSUlJn8YAAAAAAAAAAAAAAABA7t360q36wes/SL1DWJIt55ymYhCQPBXO3Tsnt+m/T2zq2vbDH0qcswIAAAAAAAAAAAAAAAAAAJARItQAACAzPp90002x6yxLqqlJHvFtb5caGqSmJqm1VWprc742NTnr29sTj0k13k03OY+P7BgI38thw6QDD3Qi036/c0ummxB1JgFqV2up1Fgq1VdIQa/U2BmTlpyvjWXO/eZSqb6sM0Cdgun8Jxvc4LQlSx55ZHVeIZarELVtbIXsUPc75liyEHVPAtSucOc/xWhY5bBeh6jLfeWaNnaaJGna2Gm9DlFPHjlZwyqH9epYAAAAAAAAAAAAAAAA5E9GAeqwiidA3d4VoHbdeWyrE6KePVs6++zCzAsAAAAAAAAAAAAAAAAAAKAfIkINAAAyd/LJiRdueL3SoEGSJ8XbilBI6uhwIsAdHc5yMh6PM443Lox7zjnSSSf1fe6INRC+l+PHO8HsVPN0uSHqOGFLmntZZgFqV1up1BH18jWWSQ3lXQFqSbIlBdwOdw8v2LJ6eIBPPllR/7gRavcfn7IbBC+WALUrOkTdmwB1tH0pRB0doHb1JkRNgBoAAAAAAAAAAAAAAKB/6DZAbav4AtTVyTfdOblV/31OfqcDAAAAAAAAAAAAAAAAAADQ32W3OgcAAPZ9X/mK9P770vbtXeu8XmnwYCf429HR8zHLyqTKSsmKu4JlzBjpy1/u23yR2r78vayrk5YsSVxvWUmD08l4jXTdCmnFflLA6j5A3fUYkm26Pu2lI6rFbXdu7ymfxyePlRgHD4aDMkp8Pskiw+mkCzR75ZWRke3MPqViC1C7/CG/Fn60MCtjhRWWV97ud8wzN0S9ctfKbvdN92dj2thpGce6CVADAAAAAAAAAAAAAAD0Dz99/afdB6iD6jrhqdD8qQPUsiRZHt239u/6wXk/VamvNJ8zAwAAAAAAAAAAAAAAAAAA6LeK5VRRAADQX1RXS3fcIY0YEbvesqSqKmnQIKk0wws7Skud/auqEqPFI0Y4j1Od6moS9Nm++r1saZF+/nOptTV2/sZkHKB2zVon3bawBwFql6WEZHNCgDrD8TzyJA1QS1KJt0RW3EA9DVBLTny43FeesL6/B6izrRgD1C43RJ1OJn82Uv1ZiEaAGgAAAAAAAAAAAAAAoH94YOUD+u+X/jv1DmEVV4C6VVK1ZCc7t6ozQD2scpjeufEdAtQAAAAAAAAAAAAAAAAAAAA9UCyniwIAgP5k9GjpzjulMWMSt/l8Tmx46FCppkaqqHBCwO6tosJZP3Sos5/PlzjGmDHO+KNH5/65DHT74vfy97+Xdu2SbFvyeCSvt8fxade2Gum75yjjYHSMqBB1bwPUzrG2bDt1BDo6RN2bALUrOj5c46khQB2nmAPUrnQh6p782UgXoiZADQAAAAAAAAAAAAAA0D88uvpRXfv0tal3CEsKqXiuKAhIGty1GBOitizJ4wSoV3x5hcYOGpvv2QEAAAAAAAAAAAAAAAAAAPRrxXLKKAAA6G9Gj5buuks655zk2y1LKilxQsXV1V23igpnvZWiwnvOOc64BKjzZ1/6Xi5ZIi1Y4Nx3w9PJ4tgZCHik478s7a2QLNO7DrWszouhrK7l3gwUMqG0IepSb6mOHHJkrwPUrmljp+n0/U9XaUkpAeoo/SFA7UoWou5NnDxZiJoANQAAAAAAAAAAAAAAQP/w6OpHNeeJOel3Cqp4ribwS6pMXG1bkjyW5LE0rIIANQAAAAAAAAAAAAAAAAAAQG8Vy2mjAACgP6qulv7zP6Xbb+97aHj0aGec//xPZ1zk177wvQyFpLvvdu67AWpjpEAg/XEpItqltvTFFVG79TZEHRmg94d6LI88nuRv3S1ZOnzY4RozZEzvHyBKSUmJOsIdBKjlxJvLveXd71hkokPUvQlQu6JD1ASoAQAAAAAAAAAAAAAA+oe6prruA9R+qWg+l71NUqrTzCzJliFADQAAAAAAAAAAAAAAAAAA0Ee+Qk8AAADsA04+WZo6VXrzTWn+fGnVqsyPnTxZmjnTGcPHW5OC68/fyzfflHbujF0XDDohasvqClO7ouPT7v24fX7ykvP1zlM7dzOSLClupPT6VK52AtQ+T/LX0w1Q11bV9u1BotS11qkt1NbtfmE7nLXHLEZuvHnx1sWFnkqvDKscptP3P10lJSV9Gmfa2GkKBoN9HgcAAAAAAAAAAAAAAAD58fV/fj39Du0qmqsIrDbJDOp+vxc//yIBagAAAAAAAAAAAAAAAAAAgD4oktNHAQBAv+fzSaef7tzq6qQ1a6RNm6QPPpAaG6VQyNln8GDp0EOlww6TJk2SRowo9MwRr79+L+fP77pvWZJtS+Fw7Dr3ZtvJx7ASi9E/eclJTvcoRN3H8LSrEAHqDXs3yGSQ2TYysmRltG9/4wao+7tshaMJUAMAAAAAAAAAAAAAAPQPJ//hZL21463YldGn9/hVNFcQWK2SGZxuB+fL7z77O03ef3I+pgQAAAAAAAAAAAAAAAAAALDPKpJTSAEAwD6ltlY680znhv6tv3wv6+qkVati14VCifuVlkoejxOnDgYlkz6gHLaMvLL0k5eMApZ0V2eXOGWIOkvxaamwAepMw9IEqAEAAAAAAAAAAAAAAIDikBCgjj+1p11SsXwWeVvmAeqbTrwpL1MCAAAAAAAAAAAAAAAAAADYl3kKPQEAAACgz9asiV02xglNR/P5nAC1JHm9UmWlVF7u3E+iqdTo0jnSvCON1g6XfneydMjeru1WDvvL+Q5QG2O0vWW7jIyC4WDWxu1vCFADAAAAAAAAAAAAAACgP7rwrxd2BaiNEgPUbSqeAHW7pEFpthOgBgAAAAAAAAAAAAAAAAAAyLrkZTsAAACgP9m4MXY5FErcp7RUsqyu5bKyrvu2LQUCTrg6HFZTia05l9laNcrorf2kvdVS2JI2DZcO2yN9OEwyVuJDyChyEVRv5TtALUmWZWli7USt2L5CAQWyOnZ/QoAaAAAAAAAAAAAAAAAA/c1lD12m5z56zlmIj09LToC6NJ8zSsMvqSbN9s5zr/526d8099i5+ZgRAAAAAAAAAAAAAAAAAADAgOAp9AQAAACAPvvww9jlcDh22euVPB4nQp3s5vVKJSVSebmahlZqzmxLq0ZLAY9UV+MEqF2bhksjW5Jfr9VXlqy8B6hdTf4mNYeaczJ2f7F42+JCTwEAAAAAAAAAAAAAAADI2IX3X6h5G+c5C8lOaGpV0QSoSzsk89B+GuJPstFSJED9yOWPEKAGAAAAAAAAAAAAAAAAAADIsuSFO2Rk8+bNeuedd7R+/Xo1NjaqsbFRwWCw1+NZlqU///nPWZwhAADAANHYGLts27HLnsw+e6Wp1GjOBa1aNSKsgIz2VCbfb0eN5LElO8sf6WJkZBtbHitx4KHlQ3MWoA4Gg1q5a2VOxu5P/CG/Fm9brGljpxV6KgAAAAAAAAAAAAAAAEBacx6eo+c2P+csJAtQt0gqz+eMUvMFpI4H95Mk1d+/n4Ze+6kayhUJT7seufwRzZ40O/8TBAAAAAAAAAAAAAAAAAAA2McRoe6h5uZm3X333frzn/+sTZs2ZW1cYwwRagAAgN4KhWKXTdxVVVbc1UpJJASoq9Lvb3vkXLzV/dA9ErJD8nl8CSHqen+96lrrchKiLikpUbmvXP6QP+tj9zeEqAEAAAAAAAAAAAAAAFDsrnn8Gj26/lFnIVmAuklSZT5nlEZQCi4/S/rMCGniROmYY1R/4oka+tej1NDRENmNADUAAAAAAAAAAAAAAAAAAEDuEKHugRdeeEE33HCDPvnkE5n4sGEfWBlEEQEAAJCGL+5tbfz7q27euzWV2JpzXuYB6q7HyXyKPZEsRG1ktGHvBknKSYh62thpWrxtMSFqEaIGAAAAAAAAAAAAAABA8brm8Wv0tzV/S71DMQWoQ9KTX3xS+smshE3136nX0P8dqoaOBgLUAAAAAAAAAAAAAAAAAAAAOUaEOkPPPPOMrrjiCoVCIRljCEcDAAAUk8GDY5c9nthl2055aFOJrTnnN2vV8B4GqHOMEHVhuSFqAAAAAAAAAAAAAAAAoFj86a0/xQaoTdwODZKq8zihdEKSKqRrn7pW9+t+zZqQPERd11Sn2kHZPxcKAAAAAAAAAAAAAAAAAAAAXYhQZ2Dbtm266qqrFAwGZVlWJEBtTNdZu1VVVRo8eLBKSkoKNU0AAICB65BDpBUrupa93tjt4bBkjBT3QSKRAPWIsAKmeALUrkKFqF/+6GXZSh3uHijcGLdX3m72BAAAAAAAAAAAAAAAAHJr/vr5uvFfNzoL8fFpSdoraVA+Z5RGWFKFc7cl0JI2RE2AGgAAAAAAAAAAAAAAAAAAIPeIUGfg1ltvVXt7e0x82rIszZ49W1dffbVOPPFEjRw5ssCzBAAAGMDGj49d9iV5mxsMSqWlkcWwHdLcc1q1anhI4SIMULsKEaIeWjZUezr2ZH3c/iqsMCFqAAAAAAAAAAAAAAAAFMzD7z6sz837nLPQHwLU5bGrugtRAwAAAAAAAAAAAAAAAAAAILc83e8ysAWDQT322GMxAerhw4fr1Vdf1cMPP6yZM2cSoAYAACi0iRNjly0rMUQdCEi2HVn02tJ1a0rkMZJXlspCWZiHlYUxkgjbYRkTe/WYG6Kua63LyWMSXY4VVrjQUwAAAAAAAAAAAAAAAMAAdMcrd6QPUNereALUthIC1C43RD1v7by8TgkAAAAAAAAAAAAAAAAAAABEqLu1ePFitba2SnIC1JZl6YknntCpp55a4JkBAAAgorZWOvbY2HUlJYn7dXRIUTHnWR+U6tcvV8hjpGEdWQpRZ5klSz6PL/KhKNEIUecXIWoAAAAAAAAAAAAAAADk0x2v3KH/9/L/cxaSBagbJdXkc0Zp2JKSnLIVrS3QpnuW36OwzXk4AAAAAAAAAAAAAAAAAAAA+USEuhsffvhh5L5lWTrrrLP0mc98poAzAgAAQFIzZ8Yue72Szxe7LhyW/H7JtiOrij1EbclKGqB2EaJOr9xXrhkHz1C5r7zPY/X31wIAAAAAAAAAAAAAAAD9x8PvPtx9gLoqnzNKw5bkU7dXJ5x6wKn6+xV/l9fDeTgAAAAAAAAAAAAAAAAAAAD55Ot+l4Ft9+7dkiRjjCzL0rnnnlvgGfVPdXV1evvtt/XBBx+oqalJJSUlGj58uI466ihNnTpVJSUlhZ5i0duyZYvee+89ffTRR2pqapIxRtXV1RozZowOPfRQHXXUUSorKyv0NAEAPRUOxwSRJUnNzU5AeV9hjBQKSX39/30w6ESlLSv2vmviRGnECKkuKsZcVua8xibqKqxwWGpvd+6Xlkoej2Z9VCG96tHNZ7RpWIe0V0YdPX2nnLoT3Se2bIXskHye1BMyMtresl0jKkekDVb3lldehRXO+ri5Vu4r17Sx0yRJ08ZO0+Jti+UP+Xs1FgFqAAAAAAAAAAAAAAAA5MuLm17U5+Z9LvUOzSq+AHU3p9dMHTNV8+fO16CyQfmYFQAAAAAAAAAAAAAAAAAAAKIQoe6GiQ4WSjrggAMKNJP+6fHHH9evfvUrvfHGGwmvpaumpkazZ8/Wt7/9bR1++OF5nmEiY4w2btyod955R8uWLdOyZcu0YsUKNTc3x+z3hS98Qffdd19O57Jt2zb98Y9/1N///ndt2rQp7b6lpaWaPHmyzj33XF122WU67rjjcjo3AEAftbdLTU1OEDneG29IHk/+55Rt4bDU2Cj5O6O/liXV1EhVVbHx6HSMkVpbnTC3Mc7rFgpJlZXOuPX1UkuLtHu31Nbm7NvQ4IxvWU7Mu6xM6uiIDVG7Y7W3Sz6fwj6PZq3xSB0+3Xx2QMP80p5yKVAk75ZtY8u2bXlS/LmoLq3WxNqJOQlQS+r3AWpXb0LUxKcBAAAAAAAAAAAAAACQT/PXz9dFD1/kLCQ7/bpBUnUeJ5SOkROfzuAUm6dnP02AGgAAAAAAAAAAAAAAAAAAoECKJKtXvEaOHBmzHAqFCjST/uWTTz7R3Llz9corr3S7b3Nzs/785z/rgQce0Pe+9z1973vfy1lAMZUnn3xSS5Ys0bJly7R8+XI1Njbm9fHj+f1+3X777frVr34lvz+zSGIgENDSpUu1dOlSvfnmm1qwYEGOZwkA6LW2NieUvC+zbScMHR3ZNsYJb9u2NCjDi4k+/VTavFnas0eqq3Mi0x0dUiDgxKg9Hufm83WFuz0eZ5vU9dXdZtsJAewmT1BzLzW6boWlWastKWjp5s8aDe9JiDoPb13SBagn1U6Sz9P9RIPBoEpKSnr0uPtKgNrVkxD15JGTtW7POgXDwWxPEQAAAAAAAAAAAAAAAEjQbYC6RcUVoPYooysSFl67UGMGj8n1jAAAAAAAAAAAAAAAAAAAAJACEepuHH300ZIUiSLv2LGjkNPpFzZs2KAzzzxTn376aY+OCwQCuvXWW7V27Vo98MAD8nq9OZphouuuu67g4WnX5s2bddFFF2nNmjWFngoAIBeMkYrk/zk51dISG6CO31ZZ6YSjkwmHpY0bpeXLpS1butYHg05U2kRdXWXbztdAQPJ6pZISqazMGSPZfpblrO98b9dUajTnCqNVo6QVo539Z613tmUcos7TZ2cEwgGVektj1vUkQO2GlyePnKxhlcMyesz+GKC2ZKUMULsyCVFHXqc92Z4hAAAAAAAAAAAAAAAAkCijAHV5PmeUhum8ZXC693NXPafp46bnekYAAAAAAAAAAAAAAAAAAABIgwh1N6ZMmaJRo0Zp165dkqRXX31V//mf/1ngWRWvPXv26JxzzkkaoD7++ON1ySWXaNy4cWpvb9eGDRv00EMPafv27TH7/f3vf9fIkSP1y1/+Mk+zLh7r16/XGWecoZ07dyZsGzVqlC644AJNmDBBI0eOVGVlpRoaGrR161a9++67euONN7R79+4CzBoA0CMdHbFx5H1VIND99mQR6k2bpJdekpqaul4nY5z9U0WtXeGwc7MsqbTUOSbZa21ZksejJl9Yc66QVo1yVtuWE56WYkPUwzqkvUoRos5TgNoVHaLuTYBaklbuWplRiLo/Bqglycjo7e1v64QxJ6TdL12IuiehbgAAAAAAAAAAAAAAAKCv+mWAurT7Xe+9+F599ojP5npGAAAAAAAAAAAAAAAAAAAA6AYR6m5YlqUbb7xRP/jBDyRJL730knbu3KlRo0YVeGbF6cYbb9SWLVti1tXU1Ohvf/ubLr744oT977jjDt1xxx26/fbbY9b/6le/0nnnnafPfrawJx0PHz5cxx9/vIYOHapHHnkkp4+1a9cunXvuuQkB6vHjx+vnP/+5Zs6cKctKXbq0bVtLly7VAw88oB07duR0rgCAPkjz3/J9Snww2rJig9Dx2/1+aeFCac2arnXGSLbtxKRtO/njJItMG+OM5/N1jRH3ujeV2JpzpRUJULtsS7r5AknVlZq1tVqPbd+jRWNDGtYh7fDFPVYOv5UlnhKNqhylbS3bErYFwgENqxjWqwC1q7sQdX1Hfe8mXiSaA829DlEToAYAAAAAAAAAAAAAAEA+ba3fmj5AHZBUls8ZpREfoE5zDtW9F9+rLx73xdzPCQAAAAAAAAAAAAAAAAAAAN3yFHoC/cG3vvUt7b///rIsS+3t7frOd75T6CkVpRdffFFPPvlkzLrS0lItXLgwaYBakkpKSnTbbbfpl7/8ZcK2b3zjGwqFQrmYalKDBw/W9OnT9V//9V969NFH9eGHH2r37t16/vnn9ZWvfCWnj22M0TXXXJMQ8J49e7ZWr16tiy66KG2AWpI8Ho9OPvlk/fa3v9Xjjz+ey+kCAPqitHTghKijJYtFuxobpQceiA1QS048uqMjdYC6O6GQE7uOC2A3lRrNucJo1UjjrLesmFvYkr7+mRZ9c+puvbx/UEZGe8vSzD/LSjwlGj9kfNIAtast0NbrALVr5a6V2tu2N+kxtnr5mheR5kBzRu8lp42dpnJfuSQC1AAAAAAAAAAAAAAAAMivpo4m3fjcjfJYKU7rD8gJPRfLKWeWugLUadx1zl0EqAEAAAAAAAAAAAAAAAAAAIoIEeoM1NTU6KGHHlJJSYkk6f7779ePf/zjAs+q+PzgBz9IWHfbbbdp6tSp3R77zW9+U+ecc07Muk2bNumhhx7K2vzSWbFiherr67Vw4UL99Kc/1ZVXXqlx48bl5bEl6YEHHtALL7wQs27WrFl66KGHVFqawZnacboLVgMACsiypMGDCz2L4tHQID30kPM1mjFOgDpdvDpTbsTaGDWV2E6AelTidiMj29gyMmr1Sb+ZElJbiVRfJgWie885vKjLDVC/v/f9tPv5w34t3rY47T7pAtSu+BB1Jsf0F8ePPl4+X/ehbskJUZ++/+kEqAEAAAAAAAAAAAAAAJA3TR1NmvP4HK3asUqjqkbJE47bodgC1LakDE7H+dZJ39LN027O+XQAAAAAAAAAAAAAAAAAAACQOSLUGTr99NP1+OOPq6ysTMYYfe9739Ps2bO1efPmQk+tKKxZs0avvfZazLoRI0boW9/6VsZjJAt733333X2eWybGjRtXsHBzR0eHbrnllph1w4cP1x//+Ed5vd6CzAkAkGOVldKQIZJngL8V8/ulxx6TWlpi1xsjtbV1xaOzwRg1lRrNuVKxAerIdlumM3jt90rNZc7qxtKoAHWOL+jKNEDt8odSh6h7EpN2Q9T7WoB6cHnPYu/uB84AAAAAAAAAAAAAAAAAuRYdoJYx0t69GtUmedxTpsIqvgB1afe7ffvkb+tn5/8s59MBAAAAAAAAAAAAAAAAAABAz/i63wWvvvqqJGnQoEH68Y9/rFtuuUV+v19PPPGE5s2bpxkzZuiMM87Q+PHjNWzYsD4F7D7zmc9ka9p59fDDDyes+7d/+zeVlmZwtnGn448/Xscff7zeeeedyLolS5Zo8+bNGjduXFbmWYz+9re/afv27THrbr31Vo0YMaJAMwIA5EVlpXMLh51btGnTpP7+QQSvvy4Fg13LHk9sVPrAA6V//tOJTUe/XwiFpObm7AaoJTWVSXOuiApQR3/4hDGSkYzHUrvPqLVUMnJu+biIyyuvPB5PjwLULjdEPW3stMi63sSkV+5a2aP9i1lvAtQAAAAAAAAAAAAAAABAvoTtsK567Cqt2rnKOXesvj5yrtWoNunTss4diyVAHZJUnmR93Py+Ovmr+sl5P8nHjAAAAAAAAAAAAAAAAAAAANBDRKgzcOaZZ8qyYs+StSxLxhiFw2EtWLBACxYs6PPjWJalUCjU53EK4V//+lfCuiuuuKLH41xxxRUxEWp37JtuuqnXcyt299xzT8xyaWmprr766gLNBgCQd15vYnB60CDJ18/fplVWSu3tXcuW5cSeXZs3S6+9FhuDDoezH6C2LIVlNPcyadXoqPXGOGHszn2MMfL7jJrLko6SU2GFVeWt6nGA2hUdou5NgHpfQoAaAAAAAAAAAAAAAAAAxW7Dng16cfOL8smjoW22FO46X6ouLMlI8hRserFSBajjzJ4wW7+95Lc5nw4AAAAAAAAAAAAAAAAAAAB6p1hOT+0XjDExN8uyIjHqbN36o9bWVi1fvjxmXWVlpaZMmdLjsU4//fSEda+99lqv51bstm7dqiVLlsSsO/fcczVs2LACzQgAgDwIh6VHH41dZ4wToO7p+6G4DwpJxitL162QPPFDRz2W32vUUiJZBXo71hRs6tPx/pBfCz9aSICaADUAAAAAAAAAAAAAAACK2Nq6tTr298cqZIfkDwdU7w1FzmOqC0vhChXPGf4BpQ5QR522dfXEq/XI7EfyMSMAAAAAAAAAAAAAAAAAAAD0UrGcotovuNFp95ZqfW9u/dnKlStl23bMuqlTp8rn8/V4rBNOOEElJSUx6955550+za+YLViwIGHdySefXICZAACQR5s2SXv2xK5ra5Nsu2cRavc9lGWljlEbI1mWZq239Ovn4kLUnY/l9xo1lXWuyvzR90nlvnJNHjk558dkGwFqAAAAAAAAAAAAAAAAFDs3QB20g5ETlfw+qb7MqC4s2RWSKZaz+1slVXa/2+wjZ+uBKx7I+XQAAAAAAAAAAAAAAAAAAADQN8VymmrRM8bk9NafrVu3LmHdYYcd1quxSktLNXbs2Jh1H3zwgUKhUK/GK3ZvvPFGwrrJkydH7htj9Pzzz+v666/XpEmTVFNTo9LSUo0ePVpHH320rrnmGt1///3aEx/yBACgmK1cGbscCkkdHT0LUEuJ+/ciRO332GosdVbYyY8eMMp95Zo2dpqGVQ5Tjaemx8cUKkQ9qHSQqkqrCvLYAAAAAAAAAAAAAAAAQCZiAtRx/D4pVCHZxXJmf7OkdJ8H33ma1kmjT9Ijcx7Jx4wAAAAAAAAAAAAAAAAAAADQR75CT6A/WLRoUaGnUNQ++uijhHUHHXRQr8c78MADtXnz5shyOBzWli1bdMghh/R6zGL13nvvJawbP368JGn16tX6whe+oOXLlyfss3PnTu3cuVOrV6/W3/72N1VXV+ub3/ym/uu//kuDB6c76xsAgAJrapK2bJG83q51fr8Tiu7NB3O4x7gBastKHKczQu2EqCXJ6OYLpLAltZU4u9hS5OIomaj7A4Qbk3aVlpRKHT07xg1Rr9y1MkezTFTiKZE/7NfqutWaVDtJPg9/vQEAAAAAAEB+2LatF154Qa+//rqWLFmiLVu2qKGhQY2Njb3+gF3LsvbZD+cFAAAAAGAgSwhQx58m1SHJG39UgTRJGpZme1SAesmXl+RjRgAAAAAAAAAAAAAAAAAAAMgCKm0ZOOOMMwo9haK2Y8eOhHUHHHBAr8dLduzOnTv3yQj1hx9+mLBu8ODB+stf/qKvfvWr6ujopv7YqaWlRT/60Y/02GOP6ZlnntHhhx+e7an2yW9/+1v97ne/y/njfPDBBzl/DABAH33ySeyyMVJHR+8C1PHjxIWow5bkTTLsrHWSLOnmz0pD2qWGCinokewiiE9bslRilShgAnl7zPiYtMsrr8IKpzwu2TGDygeppqRGzcHmrM4xXqm3NCYW3hJoIUQNAAAAAACAvLBtW7/85S911113aevWrZH1pq8/4wQAAAAAAPukhAB1vH4YoL7g4Av07BeezceMAAAAAAAAAAAAAAAAAAAAkCUU2tBne/fuTVhXXV3d6/GSHbtnz55ej1esgsFg0ue1cOFCfelLX5Jt2zHra2pqNHr0aIXDYX366adqb29POHbDhg06+eSTtXjxYh155JE5m3tP1dXV6f333y/0NAAAxSD6wytsW2pp6XuA2uWOY1lqKpPmXiZdt8KJThs3Ut0ZqL50nSUj6RufNRril+rLpVAfQtSWLHk9XoXsUK+nb8nSCWNOUHVptRZvWyx/yN/rsTKVKkDtShWi9lmJf40I2SGtrlutDrtDPsunkHFei1JvqQLh7ES1PfLI5+187LjvEyFqAAAAAAAA5Nr27ds1Z84cLV68OCY6bVmWLKtvn3BHxBoAAAAAgH1P0gB19I8A/Cqes/mblVGAetb4WXry80/mY0YAAAAAAAAAAAAAAAAAAADIIk+hJ4D+r7W1NWFdRUVFr8dLdmxbW1uvxytWDQ0NSS8mv/766yMBasuydM011+itt95SY2OjNmzYoA8++EBNTU1auHChzjvvvITj6+vrdfnllyf9vgAAUHB1dc5X25aamqRgMP3+vdBUajTnCumdMdLNF0hPHukEXGxjyza2cx2XMbpkndGv/il5bWmwX/LZnW+Oe9h6sWSpxFsij+WJxI99Hp+sHtSsowPUkjRt7DSV+8p7NpEe6i5A7fLKm3ZZcl7fNXVr1BJokSR5PB6VWCUq9ZZKUo9ei3S6C/m0BFq0pm4NwR4AAAAAAABkXWNjo6ZPnx4JUEeHp40xMT+Tcpejb9G62w4AAAAAAPq/pAHqaMUUoG6TNDTFNkuRAPUF4y4gQA0AAAAAAAAAAAAAAAAAANBPFcupq+jHgknikeXlvY8mJotQBwKBXo9XrDo6OpKub29vl+S8hg8//LAuueSShH18Pp+mT5+u6dOn69e//rW++c1vxlyc/v777+sHP/iB/vd//zc3kwcADBx1ddKaNdLGjdKHH0qNjVIoJPl80uDB0iGHSOPHSxMnSrW13Y/X1uYEqP1+yRjnlkVNZdKcK6RVo51l25K+cYFz/5L1iftfuk4KeS39+3lGg/1SY7kU9GTeoXYD1C6v5dWYQWO0s3WnPF6PguGgTAajRQeoXdPGTtPibYvlD/kznE3mMg1Qu7zyKqxw0gC15MShx1SP0Ya9GyLP1/JkJzzdE5aceXQXqwYAAAAAAAB66otf/KI2btwYiU8bY1RZWanzzz9f48eP13333addu3ZFAtW33nqr2tvbtXfvXn344YdaunSpWlqcD3Fzjx88eLBuuukmlZWVFfjZAQAAAACAbGoPtGvyHyanDlC3SypJvinv2iQNSrEt6hSc2UfM1iNXPZKPGQEAAAAAAAAAAAAAAAAAACAHiFAjJ/oS/kt2rMlyoLIYdPec/vCHPyQNUMe7+eabtWvXLv3whz+MWX/33XfrO9/5joYMGdKXaQIABqJQSFq8WJo/X3r33fT7rljRdf/YY6WZM6VTTkm9fzAotbc78eksh4LjA9QuN0RtLCc6He/iDZaemCC9epATot5bKYUzeLz4ALUkDS0fqsOGHabBZYO1Ye8G+Ty+1BeTdRpdNTohQO3KRYi6pwFqV6oAtau2yomQR4eo88mSpcOHHR6ZBwAAAAAAAJAtS5cu1dNPPx2JR1uWpfPPP19//etfVdv54Xz/+te/tGvXrsgxt912W8wYtm3r2Wef1f/93//plVdekWVZampq0vz58zV//nwdeOCBeX1OAAAAAAAgdypKK3TBYRfoqfVPJW5sk1Sa7xml0K7UAeooV0+8Wg9c8UDOpwMAAAAAAAAAAAAAAAAAAIDc8RR6Auj/SkpKEta1t7f3erxkx5aWFsvZ1tmT7HVznXnmmbr22mszHuvWW2/VuHHjYtY1NTXp4Ycf7vX8AAAD1JIl0vXXS3fc0X2AOt6qVdKPfuQcv2FD8n0aG50AdZalClC7bEv65melp46U4tPXTx0pvX6gM6eAVwpn0MZOFqCWpHp/vepa61RbVavDhx2e0dxLvenf5/QmGJ3P8aK5z9tKeJVziwA1AAAAAAAAcunOO++M3LcsS1OnTtVTTz0VCVBnwuPx6KKLLtKiRYv0xz/+UeXl5ZKk1atX6/TTT9enn36a9XkDAAAAAID8amxrjNyfd9U8XXrEpbE7tKh4AtQdkmrSbO88/YcANQAAAAAAAAAAAAAAAAAAwL7BV+gJ7Cvq6+u1YsUK7d69W3v37lVzc7Nqamo0bNgwjRgxQlOmTNGQIUMKPc2cqKysTFiX7Qh1VVVVr8crVume080339yjsUpKSvTlL39Z3/nOd2LWv/zyy/rKV77Sq/llU21trY466qicP84HH3ygjo6OnD8OAOyTWlqk3/9eWrCg72Pt3Ck98oh01FHSjBlSZ0xFmzZJbW19Hz9OdwFqlxuitow0a52z7qkjpf88x5ZtSX6v1FzmXD+VSSbbGCPLio0tGxlt2OsEuGurauUP+rWxYWPKMbzydvs4i7ctzmA2mVu8bXHOQ9SStGHvBpmMXsm+IUANAAAAAACAXDLG6MUXX5RlWZGfCf7qV7/q04fo3nDDDRo7dqwuvfRSBYNBbd26VVdeeaVef/31LM4cAAAAAADk06LNizTj/hk6bOhh2vgN53yheVfN06yHZ+mp9U85Aeqygk6xS4ekdKdmd54S9cfz/6gvnfSlfMwIAAAAAAAAAAAAAAAAAAAAOUaEug82btyo3/72t3rxxRe1fv16GZM6smdZlo444gidd955+trXvqZDDz00jzPNreHDhyesa2lp6fV4yY5N9hj9XU1NjUpLSxUIBGLWezwenX322T0e79xzz02IUBfLhepf+9rX9LWvfS3njzNx4kS9//77OX8cANjn7Nghffe70vbtybcbI4VCzi0c7lrv9Uo+n3OLizFLktaskT75RJo9W6qpkV56SfJ4usZI894pU5kGqF22JX3jgs7IdGeUOjpALWUYoJZRyA7J5/GlDVFvadqScoxMA9T+kD+DGWXOH/LvMyFqAtQAAAAAAADItffee0+NjY2RnwNOmDBBJ598cp/HPf/88/Xd735Xt99+uyTpzTff1IMPPqi5c+f2eWwAAAAAAJBfboBakjbVb9L4u8bHhKir/sentrJwuiHyJ6CMAtTPXPWMZh4xMx8zAgAAAAAAAAAAAAAAAAAAQB54Cj2B/mjbtm265JJLNGHCBP3617/W2rVrZdu2jDEpb7Zta+3atfrVr36lI444Qpdddpm2bdtW6KeSFaNGjUpY15fntnXr1oweY18wenRiMfOQQw7RoEGDejzWMcccI683Nma5Y8eOtHF0AAC0Y4f0n/+ZPEAdCkktLVJ9vdTcLLW3S4FA16293VlfX+/sFwoljtHQID30kLRqldTU5ISrXX38f1RPA9Qu25JuvFi68SIpHBeg7gk3RJ3s/7VGRu/VvacOuyPpsYUKULvcEHUu1VbV6vBhh8tSkkB5FhCgBgAAAAAAQD6sW7cuct+yLE2fPj2j48Lh7sNS3/72tzV8+HBZliVjjO66665ezxMAAAAAABTGSx+8FAlQu9wQtSRN/emRalORBKiDkirTbO88zefvs/5OgBoAAAAAAAAAAAAAAAAAAGAfQ4S6hx5//HEde+yxmj9/fiQ8bVlWxjc3SP3000/r2GOP1RNPPFHop9Rn48aNS1j38ccf93q8LVu2xCx7vV4deOCBvR6vmB1yyCEJ64YPH96rsbxerwYPHhyzLhwOq6GhoVfjAQAGgJYW6bvflfbsiV1vjNTa6kSjA4HMxgoEnP1bWxPj0i0t0r/+5az3ZOftZ9iS5l7W8wC1JPl9UkN51y06QG1bUk+ayalC1IFw+tct3M2FZbkMULvyGaLONgLUAAAAAAAAyJf6+npJivwM8Kijjkq6n2XF/mDR7+/+53vl5eWaOXNmZOxly5Zp165dfZkuAAAAAADIo/nr5+vsv52ddNum+k0a/B+W3mlb76woyePEkglJqkixLeqcqR+d+SNddcxVeZoUAAAAAAAAAAAAAAAAAAAA8oUIdQ88/PDDuuqqq1RfXx8Tn5aci467u0mKiVHX19drzpw5evjhhwv5tPrsiCOOSFi3adOmXo0VCAS0devWmHWHHnqofD5fr8YrdhMmTEhYV1ZWlmTPzJSXlyesy+QCdwDAAPX730vbt8euC4elxkapo6N3Y3Z0OMeHoyLLti35/c42j0fyehND1T3kNdJ1KyRPmmGCSdb5fVJj1P9qA96oafZ2Lh5vTGCmuwC1K1WIOh8Bale+QtSVvsqsjUeAGgAAAAAAAPnkRqhdQ4cOTbpfRUVFzIfVtbW1ZTT+8ccfH7O8bNmyHs4QAAAAAAAUwvz183XRwxel3F61V2qqlBN/7u2JSdkSkpR4inGCH535I333jO/mfDoAAAAAAAAAAAAAAAAAAADIv32z7JsDr732mr74xS/Ktu2YyKAxRl6vV6effrpOOOEEHXXUURo6dKiqqqrU2tqqhoYGvf/++3r77bf12muvKRQKxcSrbdvWF7/4RY0dO1annXZaoZ5enxx33HHyeDyy7a4zpJctW6ZQKNTjePSyZcsUDMYmI6dMmZKVeRajE044QXfffXfMusbGxl6P19DQkLBu+PDhvR4PALAPW7JEWrAgdl04LDU1pQ5E+3xOQNqynH3CYSkUStzPtqX2dqmiwolOu0HqUMi5+XzJj+uhWeucrzdfINlW7LZ2SQ3VkseWRnW2XuID1DFTliQr+bZ0fB6fPFbX57pkGqB2xYeo8xmgdrkh6mljp+XsMUq9pWoLtcmob/FxSRpaPpQANQAAAAAAAPLG6/XGLJeWlibdb9CgQTHL27dvV21t9z/HGjlyZMzy5s2bezhDAAAAAACQb90FqGv2SM3RPyoId94KIaz0AerOc6b+PuvvuuqYq/IxIwAAAAAAAAAAAAAAAAAAABQAEeoM2Latr371qwoEApF4tDFGFRUV+u///m/deOONGj16dLfj7Nq1S3/4wx/0k5/8RO3t7ZIky7IUCAT01a9+VatWrYoJXPcXVVVVOu644/TOO+9E1rW2tmrFihU64YQTejTW66+/nrDuM5/5TJ/nWKzOPPPMhHUff/yxjDE9/rNQV1entra2mHWDBg1KeSE8AGAAC4WkuA9BkDFSc3NigNqypPJyqazMCUrHs22po8OJTseP194uVVY6+7g6OpyxsiRZiNoNUEuS7ZF2VkqDAxkGqHv4VqwvAWpXW9D5/3chAtSuXIeoA+FAVgLUklTvr1ddax0hagAAAAAAAORFfFy6ubk56X6DBw+OWf7444917LHHdju++wG97u8GU40PAAAAAACKQ9IAddRpMTW7peYheZ1SamFJ6U7V6jxX6oW5L+icw87Jx4wAAAAAAAAAAAAAAAAAAABQIElKgoj317/+VWvWrJFlWTLGyBijSZMmac2aNbr11lszClBL0siRI/X9739fa9as0dFHHy0TFXlcs2aN/vrXv+bqKeTc+eefn7Du8ccf7/E4yY5JNva+Yty4cZowYULMuoaGBr3//vs9Hmvx4sUJ64477rhezw0AsA97801p587YdW1tsbFoSfL5pEGDpIqK5AFqyVlfUSENHuzsH80YJzodPa4xTgQ7/sMWPJ7EdRmatU769XOSx8QGqF22R6pP8ZkMfQlQS13h6d4GqCVpd/tuvfrRqwULULvcEHW21bXWqS3U1v2OGTIy2rB3g+pa67I2JgAAAAAAAJDK/vvvL6krEt3Y2Jh0v8MPPzxmeenSpRmNv2nTJkmK/O7YF/9zVgAAAAAAUDQSAtRGMQHqQbuKJ0DtsaX9gs7XpDrPlXrmqmcIUAMAAAAAAAAAAAAAAAAAAAwARKgzcN9998UsT5gwQa+88ooOPvjgXo130EEH6eWXX47Eh90Llu+9996+TLOgrrrqqoR19957rwKBzIOMK1as0Ntvvx2z7qSTTtK4ceP6PL9idvXVVyese+CBB3o8zv3335+w7qyzzurVnAAA+7j582OXQyEnFh3N55NqaiSvN7MxvV5n//hASiiUGLcOhRKPdz+cow8h6hvfSgxQR3gk28SuiglQ90FfAtSukJK8JgXgD/kVDAazNl5da5027N2QtfFchKgBAAAAAACQL0ceeWTM8saNG5Pud8wxx0hS5ION//nPf2Y0/jPPPBP5fbEkjRgxopczBQAAAAAAubS1fmtXgDouPi1JNTukpmF5n1ZSHlvytDv3R7UlCVFHBahnHjEzr3MDAAAAAAAAAAAAAAAAAABAYRCh7kZzc7PefPPNyMXCHo9Hf/nLXzR06NA+jTtkyBD95S9/iSwbY7RkyRI1Nzf3dcoFMWnSJJ122mkx6+rq6vSLX/wi4zFuueWWhHU33XRTn+dW7K6//npVVFTErPvDH/6g7du3ZzzG8uXL9fTTT8essyxLl19+eVbmCADYh9TVSatWxa7z+xP3q6rqeRDaspzj4hmTfDnV+L0IUS86QLrt7G52igtReyTnYjBLWYlR90Wpp7RPx5f7yjXj4Bkq95X3aZzJIyerpKSkT2O43AC1ib/iLksIUQMAAAAAACAfDjnkEFVF/dxz7dq1SfebNm2aPJ6uX7+vXLlSL730Utqxn3jiCS1fvjxm3cSJE/swWwAAAAAAkAtNHU268bkb5ZEnIT4tSdU7peZi+VypzgB1rbdrVUyImgA1AAAAAAAAAAAAAAAAAADAgESEuhtLlixRKBSS5ER9Tz75ZJ100klZGfukk07StGnTZDpDjKFQSEuWLMnK2IXwve99L2HdbbfdlnDhdDK/+c1v9Pzzz8esO+SQQ/T5z38+o8c++OCDZVlWzO3ll1/O6NhCGzVqlL72ta/FrGtoaNDcuXPV3t7e7fG7du3S3LlzFQ6HY9ZffvnlOuqoo7I6VwDAPmDNmthlY6RAIHZdRYXk9apXvF7n+PjHSMWykkenk6w3KW4LD5BmXJfh/OJC1MXwbthreXXagadp8sjJvTq+3FeuaWOnSZKmjZ3W6xD15JGTNaxyWK+OjZfrALWLEDUAAAAAAAByzePx6NRTT5UxRsYYvf322wm/l5OkMWPG6IwzzpAxJvIBx1dffbXeeeedpOP+61//0r/927/Jivo56JAhQzR16tScPRcAAAAAANBzTR1NmvP4HK36ZLlGtXu6Ys6dvC1Sy/DCzC2B7dxq40/9siyN8nvksZyTpQhQAwAAAAAAAAAAAAAAAAAADDxFkN0rbjt37oxZvuCCC7I6fvx4O3bsyOr4+XTeeefpkksuiVnX0dGh6dOn65lnnkl6TDAY1A9+8APdfPPNCdvuuusulZSU5GSuxea2227TgQceGLPu5Zdf1llnnaV169alPG7x4sU6/fTTE/aprq7WD3/4w5zMFQDQz23cGLvc+WEbMcrK+vYYyY6PD1FHL3u9kif529KwxwlNd6R417roAOmsTAPUrs4QtV0k74T3r9lfkjSscliPQ9TRAWpXb0LU/TFA7SJEDQAAAAAAgFybPn165H5LS4sWL16cdL+bbropct+yLO3cuVOnnHKKLr74Yv3sZz/Tn//8Z/3kJz/RWWedpQsvvFAtLS2SFAlX33jjjTFRagAAAAAAUFhhO6y5T87Vqk9XSnv3SqGQRrWpK0TdIoV793nx2WfkXBlQLtWXS7Is55wsj8e5X1Ghcw87V1u+sYUANQAAAAAAAAAAAAAAAAAAwADkK/QEit2uXbskdV34e8ABB2R1/Pjx6ur6dzzvT3/6k9555x1t27Ytsq6pqUkXX3yxpk6dqksuuUTjxo1Te3u7Nm7cqAcffFCffPJJwjhf//rXdeGFF+Zt3suWLdMNN9yQcrt7AXi0f/zjH5o8eXLKY6ZOnap77rkno8evrq7WY489ps985jPq6OiIrH/zzTd19NFH65xzztFZZ52lMWPGKBwOa8uWLfrXv/6l1157Lel49913n4444oiMHhsAMMB8+GHscnyE2udLGYTOmMfjhKXD4eTbLcuJULsxFduWBg+W2tulQCCyW1Op0dzLpIvWSt8/S/rCCuknL3UN06sAtcvby+OyzBs3ETdEvXLXym6PTRagdk0bO02Lty2WP+Tvdpz+HKB2uSFqSaqtqs3rYwMAAAAAAGDfd9lll+mWW26JBKKfeOIJnX766Qn7XXHFFZo+fboWLVoky7JkWZZCoZCeffZZPfvsszH7ur9/du2333761re+ldsnAgAAAAAAesTr8eq6yddpxZqXZEedZzWqTdphS6aygJOLZiRZilwZ4PdJ9TIaGuj82YPXq2MPOUWPXPGIBpUNKtQsAQAAAAAAAAAAAAAAAAAAUEBEqLsRjosn+nzZfcm8Xic86F5gHP94/U1tba1eeOEFzZgxQzt27IjZtmzZMi1btqzbMWbPnq1f/vKXOZphci0tLVq1alWPjqmvr1d9fX3K7UOGDOnReCeeeKKeeuopXXbZZWpvb4+sD4VC+uc//6l//vOf3Y5RWlqq3/72t7r88st79NgAgAGksTF2Of69hzdLdeZ0EepkAgGputr52tamJl9Yc64wemeU9Oxhkizp56c6u/7vS1JTSS8D1Fb3u+RLfIDalUmIOl2A2pVJiHpfCFC7CFEDAAAAAAAgV8aPH6/Jkydr5cqVkqQHHnhAP/nJT1RWVpaw79/+9jd95jOf0QcffBAJURuT+DMz9/fDxhhVVlbq0Ucf1fDhw3P6PAAAAAAAQM/NWtEuPdmumz8r2Z3nHgVbJDOisPOKMJLCkspjVzshaltDwyU69tBT9chVTxCgBgAAAAAAAAAAAAAAAAAAGMA8hZ5AsRs5cqSkrouAP/nkk6yO747nXnhcW9v/g3kTJkzQ0qVLddppp/XouJKSEt122236+9//HolzDzTnn3++3nzzTU2aNKnHx44fP14LFy7UDTfckIOZAQD2GaFQ+u1WlirNKcYJWyb59vZ2J1pdWqqm2kGaM8ejd0ZJu6skYznXSpnOEPV3zpaqwtJhe7Iz1UJIFaB2uSHqZDIJULumjZ2mcl950m3ZDFAbY7S9ZXvBAtSReahzHkmiPgAAAAAAAEBfLFiwQJs3b9bmzZu1fPnylL/P3G+//fTKK6/orLPOkjFGxphIjDr65m479NBD9frrr2vatMx+5gcAAAAAAHKrPdDetRAMSl/6kmatlX79nOQxkr9d2l3kAWqX3yfZQwbrkWueJkANAAAAAAAAAAAAAAAAAAAwwBGh7oYboXYtWLAgq+MvXLgw7eP1VwcccIBeffVVPfLII5o2bVok4p1MdXW1/u3f/k3vvvuubr/9dnk8A/uP5bHHHquVK1fq3nvv1Yknnpj2tfN6vTrllFN03333ae3atTr11FPzOFMAQL/k86Xfnot4r2VJlqWmUqNL50jzjjRSsv/ft7aqyRfWnPOb9c7IcCRAHZmanOU7p0lHfl1afK+lQ/f2ZB59fSL5lSxE3ZMAtStZiDqbAWrJ+cCWibUTVV1anbUxe6O6tFoTayemff8EAAAAAAAA9MawYcN00EEHRW6+ND9rHTNmjF588UXNnz9fc+fOVW1tbSQ6bYxRRUWFzj33XN1zzz1au3atJk+enL8nAgAAAAAAUlpbt1ZDfjpEsx6e5ay44QaprU2SNGuddPWbUv2Qws0vhpFkK2WAWpJkSfXBJpVYJXmaFAAAAAAAAAAAAAAAAAAAAIpVNxVCTJ06NRKxM8Zo0aJF+uCDD3TooYf2eewPPvhAL730kizLkjFGlmXphBNO6PO4xcKyLM2ePVuzZ8/Wrl27tHTpUn344YdqamqSz+fTiBEjNGHCBJ1wwgkqLS3t02N99NFHfTr+zDPPlMlFdLOXvF6vvvjFL+qLX/yidu7cqWXLlkVeu9LSUo0YMUJjxozRKaecokGDBhV6ugCA/mTw4Nhlrzd2ORzOzuPEjdNUXaI5Fwe0arS0Yj9JPkuzPiiT/P6ufTxBzTmnQe+MMNpdERugdhlJsqQPh0pTv2S07I/StOukTcOzM+1c88qrsDJ/jd0Q9cpdK3sVoHZNGztNi7ctlj/kz3qA2uXz+DSpdpJW161WS6Al6+N3p7q0WpNqJ8nn4a84AAAAAAAAKA4XXHCBLrjgAklSIBDQnj17VFVVxe/3AAAAAAAoQmvr1urY3x+roB3UU+uf0qwHL9a8B5+LbH+lVvr5dEnF8tnoIUkVKbZ1zrHEU6KVX16pitJUOwIAAAAAAAAAAAAAAAAAAGCgoNDWjdraWk2ZMkXvvPOOLMtSMBjU9ddfrwULFsjn6/3LFw6HdeONNyoYDEYi15MnT1ZtbW22pl5URo4cqZkzZxZ6Gv3SqFGjdOGFFxZ6GgCAfcUhh0grVnQtx7+fCYUk25Y8nt4/hm3HRKibSo3mXBbWqhFy8suWdPO5YemNUs16JyiFw84+Vxi9M1IpA9TxtgyWTrxBWv4H6aivSTtq0uxcBBd/eeXtfqckhlUO0+n7n66SkpI+Pf60sdMUDAb7PE46hQpRE6AGAAAAAABAsSstLdV+++1X6GkAAAAAAIAkogPUrqc2PqNZl0vzHnUC1Gd/SQoVwTlIkqSgkgeoo+ZX4inRqq+s0oTaCfmaFQAAAAAAAAAAAAAAAAAAAIpYH+qCA8fs2bNjll977TVdfvnlam9v79V4fr9fV155pRYtWiTLsmSMkWVZ+tznPpeN6QIAAHSpq5Nefln605+kW26RFi6UGhqkxkapqUkKBCRjnJuro6Nvj9nRERmvqdRozpXSqlpbAUvaVS3tLZdsS7r5tCbNO65CTeWWE6AeJe2uyixA7fpoqHTk153rpyy7b9POtbDC3e+UQrbC0bkMULvcEHV1aXXOH0siQA0AAAAAAAAAAAAAAIDeSxagdj01QTr9MmnGDUUaoLbibp0IUAMAAAAAAAAAAAAAAAAAACAeEeoM3Hzzzdp///0lKRKNnj9/vo466ig9+eSTsu3MiofGGM2bN08TJ07U008/HbNtzJgx+vrXv571uQMAgAEoFJJefVX69rela66R/vd/pSeekFaskPbskWxbCoed/dxgtDHOemOktjZne2+Ew1LnB3U0lRrNuUJaNUoKyGhPlbNLh0/aW2ZkW9LXz2jRmV9UrwLUrl3V0s5qxVxIFaNYLgBT30LU/Uk2Q9SeNH9lIUANAAAAAAAAAAAAAACA3lpbt1aTfjcpNkBtOm+SFJJeP1KyC33GfYlzG1cyRqpUQnQ6ZlcC1AAAAAAAAAAAAAAAAAAAAEiCWlsGysvLdeedd+pzn/ucLMuKhKg//vhjXXnllRo9erQuvfRSTZ06VRMmTNCQIUNUVVWl1tZWNTQ0aO3atVq2bJmeeuop7dixQ8Y4Zya741iWpZ///OcqKysr8DMFAAD93pIl0t13Szt3Jt/u8Ug+nxOgdlmWE5+Wur42N0uDBzvbMmWM1NoqKSpAPVoKWIoEqF0dPmmvbMmSPq2QZHVdu9UbdhGFpuFwQ9Sr61arvr0+ZpslSybD77jH8khGshX7wS8EqAEAAAAAAJAv1113XeT+gQceqNtvvz1rY99+++3asmWLJOf3x3/+85+zNjYAAAAAAEjNDVBHzkmJP5Ul0Pm10AFqSVZY+u5x39QPZ/1Ssx6epafWP5V0PwLUAAAAAAAAAAAAAAAAAAAASIViW4bmzJmjDRs26LbbbouEqCXJGKNPP/1Uv//977sdIzo+He3222/X7Nmzsz9pAAAwcLS0SL//vbRgQff7lpc7+7uiI9SuUEiqr5cGDXKi1d0Jh50AdSjkBKgv7wxQKzFA7erwSb6wZElxeeEsKtI4dVhheeUt9DRyzg1RL966WCHjhM89nVfmZRqhlrpC1C4C1AAAAAAAAMin++67L/I73mOPPTarEeqnn35a7777buTDi4lQAwAAAACQe90GqP1y4tNFEKCWpJGmTD+c9UtJ0ryr5iUNUROgBgAAAAAAAAAAAAAAAAAAQDpFcmps//D9739f//M//yOPp+tlc4PUxphub/Hxao/Ho//v//v/9P3vf79QTwkAAOwLduyQvvGN1AFqY6RgUGpvd+LTHR3OuuiblaTWbNtSQ4MTl7ZTZKJt2xm3sbErQH2F6QpQVyc5xlIkDh3ySh5b8mTeI85M1GMUq7DChZ5CXvg8PlWXOH8QPPLI6uU3xmN5NKx8mGpKawhQAwAAAAAAoCBM/If5Ffm4AAAAAAAgUbcB6iYVVYC6Zre009eh8XeNj6ybd9U8XXrEpZFlAtQAAAAAAAAAAAAAAAAAAADoDuW2Hvr+97+vGTNm6Prrr9eGDRskKSYu3R33AuIjjzxSf/7zn3XKKafkbK4AAKCIBYNSc7PzNT7w/MILkifDq5gaGqQHH3Ti0vHCYWf8UChxW0+iJu3tzs3nk7xeJ1htjDPvqLHDltHcWdKqUd0EqKPvGydE7QtL8kh2NsLRRR6fjjZQQtSWZfUpQO2qKqnSuKHjMn7vDQAAAAAAAPQH7oceAwAAAACA3GoPtGvi7ybKuOXpZH8dL1fRBKgH7ZWaRjv3N9Vv0vi7xmvjNzZKckLUsx6epec2PaeVX15JgBoAAAAAAAAAAAAAAAAAAABpFckpsv3LqaeeqnXr1ukf//iHzjvvPJWVlckY0+2trKxMn/3sZzV//ny9//77BKgBABioOjqkujrJ73dC0cbE3mw7s1tbm/TII4kBamOcsdvbkweoJSck3VOhkBQIOPMPBBLG9hpL162UQiZFgDrpPJxbyCt5bMnTl85K51j9zSfNnxR6CnnR1wB1ZBwC1AAAAAAAAAAAAAAAAOiF+1belzZA7elQ0ZxdX9MgNY2MXeeGqF3zrpqnhm83EKAGAAAAAAAAAAAAAAAAAABAt3yFnkB/NnPmTM2cOVPBYFDLly/X8uXLtXv3btXX16u5uVk1NTUaOnSoamtrNWXKFE2ZMkU+Hy85AAADmjFSQ0N2xlq4MHEs23bi0yaDmrNlZbZfDxxZ79Pe6lTh63RzcULUXtu5jsvuSWe4nzeJwyasxdsWa9rYaYWeCgAAAAAAAIA8C0V92F9JSUkBZwIAAAAAwL7t7qV366v//GrS+LQklbVLHUXyV/OaJql5ROdC3LlRboh64zc2SpIqSivyOzkAAAAAAAAAAAAAAAAAAAD0SxSRs6CkpEQnnXSSTjrppEJPBQAAFLtgUAqH+z7Opk3SmjWx67oLUHu9ksfTFZ+2bWcuPQlRG+McH82yJJ9P7ZU+Tb6hTeFkUehMQtGWFPa6j5PZ/vsKf8ivYDBIZAYAAAAAAAAYYPbu3Ru5X11dXcCZAAAAAACw7+ouQF3eJvlL8zunVGqapeZh6ffZVL9JjW2NGlw5OD+TAgAAAAAAAAAAAAAAAAAAQL/nKfQEAAAABpRMAtSWlf5m29LChbHHGJM6QF1aKlVVSRUVUlmZs1xW5ixXVTnLmczFXfb5nGMqKqSaGmnIEKmmRhXeCl3wUZKIcm9i0VYGtyJQ7ivXjINnqNxX3qdxJo+cTIAaAAAAAAAAGGDq6ur06aefRpaHDeumMAUAAAAAAHrst0t+mzZAPaipeALUVW1S89Du91t47UIC1AAAAAAAAAAAAAAAAAAAAOgRItQAAAD5lC747DIm/W3jRqmxMfaYjo7EALXXK1VWOo9ppag2W5YTpK6sTL5P9Jju9tJSqbq6a2yPJxKqnvevwbr0w6iYcpHEonNl2thpka+9DVGPqBihYZXEZQAAAAAAAICB5he/+EXkvmVZmjBhQgFnAwAAAADAvueBlQ/o689/PWWAemiD1FSZ1ymlVNEmtQ7qfr+F1y7U9HHTcz8hAAAAAAAAAAAAAAAAAAAA7FN8hZ4AAADAgOL1OgHnlpbej7FyZexyOCyFQomPU16eOj6dbF5VVVJbm2Tb6fcNBJyxU5i34gjNOtKjp4LvZvbY/djibYtjQtSLty2WP+Tv0RiVJUVyJRsAAAAAAAAwQL366qsZ79vS0tKj/aOFw2G1tLToww8/1HPPPacFCxbIsiwZY2RZlqZOndqrcQEAAAAAQKJHVz+qa5++NmWAesReaXcG0ed8KG+X2pPNJe7UrwVXLyBADQAAAAAAAAAAAAAAAAAAgF4hQg0AAJBvNTXO196EqJuapC1bYtcFg4n7lZVlHqB2WZZUUeGEqE3U1VfGxI4VCjmhaq839vjJk6WZM6WTT9Y8n0+z3v6Wntr5cs/m0M/4Q/4+hai98na/EwAAAAAAAICcOvPMM2V18/NU0/kz0w8++EDTp2cn9uTGp11XXXVVVsYFAAAAAGCge3T1o5rzxJyUAerRddKOofmdUyrlHZK/pvv9nrnqGZ116Fm5nxAAAAAAAAAAAAAAAAAAAAD2SUSoAQAA8s2ypEGDpKoqKRCIDT5L0sSJkseT/Ni33pJ8UW/hjJHC4dh9ysul0tLez8+2JX9cRLm83Hkc23aWR42SjjzSuR11lDRlijR6dMwh8w5+XLOevVZPbX6u93PpB/whv4LBoEpKSiRlHqImQA0AAAAAAAAUFxP/s9pe7pMpN0BtWZY+//nPa/z48VkbGwAAAACAgSoSoE5h/13SJ8PyOKE0KjukwUbaaUt2itPFJCdAPfOImfmbGAAAAAAAAAAAAAAAAAAAAPY5RKgBAAAKxeuVKioS1x9wQGxoOtoLLzjHuYJB52tnrESSM2aqiHUmKioSI9QlJU4023XFFdIPftDtUPOufVazHp6lp9Y/1fv55IjX8uqMg87IKBidzuSRkyMBald3IWoC1AAAAAAAAEDxsaJ/zholOjydap/ecMc966yz9Nvf/jZr4wIAAAAAMFB9tOejrgB1ks+ROmi79PHI/M4plYqAE6CWpFFt0s7KuBB1548gCFADAAAAAAAAAAAAAAAAAAAgGwZshPqQQw4p9BQSWJalDz74oNDTAAAAxezDD2OXQ6HYZZ+vbwFqyTne54sdOxyO3Wft2oyHm3fVvKIMUYdNWJv2btK0sdO06KNFMsmuPOvG5JGTNaxyWNJt08ZO0xtb3lCH3dHXqQIAMmCMyUoILFvjAAAAAAD6l+jQdDb2687gwYN1yimn6LrrrtPll1/O30UBAAAAAOij+vZ63fSvm2TJSvr398O2SZtGF2BiSQxvkcq9kh3144CYEDUBagAAAAAAAAAAAAAAAAAAAGTZgI1Qf/TRR7Ks5CcZFwoXFgMAgG41NsYux8ehvd7sPE58yDr+cfbs6dFw1x57rf616V/yh/19nFh2bWnaIkmqKalRU7CpR8emC1BH7/PWjrciy155FVY4zREAgN4I2SGtqVujMdVjVFtV2+tx6lrrtL1luybWTpTPM2B/ZAIAAAAAA86iRYtSbjPGaMaMGZHfLR922GH605/+1KvH8fl8qqmp0dChQ3XAAQf0droAAAAAACDOtqZtmvKHKQrZIY1WtXbYzTJRpz8d9ZH0/tiCTS/GqGZpx13SvCOlmy9IEaL2EqAGAAAAAAAAAAAAAAAAAABAdg34olKxhJ+LKYYNAACKWCiUfnuy9zbhsHNcMOjcbFuKf+9hWc7N55NKSrqfRzCY8ZTnrZ2nm/95s4ZWDNWOlh0yKq73PVuatqjUU9qjQHQmAWqXO65XWQqEAwBihOyQVtetVkugRRv2bpCkXoWo61rrtGHvBhkZra5brUm1kwhRAwAAAMAAccYZZ2S0n2VZqq6uznh/AAAAAACQe9uatum4Pxynve17nRXttkaHpB2VkvFIJ62T3jqssHN0DW5zAtSSNGud8zUmRG1ZOvegM/THy+7XAUP5ACsAAAAAAAAAAAAAAAAAAABkz4CuKRF+BgAA/Y6vm7dv7vsbY6RAQPL7MwtGG9N1TCDQ/f6ZhKrVFaC2ja297XuLLkDtCtgBWbIyClH3JEDtIkANALkRHaCWJCPTqxB1dIBakloCLYSoAQAAAAAx+N0yAAAAAADFp769XlP+MMUJUBsj2UaNZc620W3SuC3S4sMLO0eXLyw1/CJ2XXyI+tiDT9IjVz+tQWWD8j9BAAAAAAAAAAAAAAAAAAAA7NMGbEnpC1/4QqGnAAAA0HODB8cue+PixuGwE5Fua3Pu5yqMMnx4t7vEB6g7wh25mUuWGBnZstOGqHsToAYA5EZ8gNrV0xB1fIDaRYgaAAAAAOC67bbbIvdHjx5dwJkAAAAAAABXU0eTPv/k5xUKByXbxJwn1VgmHbNBeuWoAk4wWlgKlUmzZkvzHo3dNGu9JVWU6S83HK8Hr3+OADUAAAAAAAAAAAAAAAAAAAByYsBWlO69995CTwEAAKDnDjlEWrGia9kX9XbOGCdAHQhk/3H9fmf8qirJ45EmTEi7e38LULvcELVHHtmyY7YRoAaA4pEqQO3KNESdKkDtIkQNAAAAAJBiI9QAAAAAAKDwmjqaNOfxOVr1yXKVN7ZKkhpLu7afs0J6/pgCTS6eLcly7j41ISpEbXWuPPZYzfrHM7p4zH7yeryFmiUAAAAAAAAAAAAAAAAAAAD2cZ5CTwAAAAA9MH587LIboTbGueVSR4fU2CiFw9KkSSl3K1SA2nKv1urjGJ7Ot8heeWPWE6AGgOLQXYDa5Yao61rrkm7vLkDtckPUITvU6zkDAAAAAAAAAAAAALIjOkCt+r1SOKzysKXBnaconb1cWnCMVBQ5Z7vzFhXIfmqCNGuOpMpK6Y47pBUrpLFjCVADAAAAAAAAAAAAAAAAAAAgp3yFngAAIE9CIam93QnIBoNd64NBqaqqcPMaaPx+5zX3+aSyMslT4M+DCIWcOVmWMx83aNzeLjU1OcvV1VJ5ec8Dx7l6rsGgE0O2LGde3jQX39i281xs25lDaWny/SzL2VZe7txvb5cCgdTP2X0uvQk/19VJLemjmfrwQ2fO7vOM/t5UVTkRaPdxjXFeg+h/r3MpHHb+OzJmTNLN0QHqPW17FLAD+ZmX1G1ENNMxwgonrLdk6d0d7/Z4PNu2k44XvW5n0061Bdp6PHYuNXY0Jp23yzI9ez2aOprSjpdO2HQdt6N5h1o6uvn3J8sC4YBs2Sm3t4fa9e6nPf+zgewImeRRYG9xXEqKHMg0QO1yQ9SSVFtVG1mfaYDa5YaoJ9VOks/Dj1IAAAAAAAAAAAAAoBAiAepPV0r19VK465yO8pA0ab208Jiu/b1SL89YyQJbUkBSdeKmp46UZl00Q/PmfiffswIAAAAAAAAAAAAAAAAAAMAARTkJAAaC+npp504nVrtnjxMedu3dW7h5DSShkPN9iA4Fe73SkCFOYLgQmpoSY8hVVVJzs/PnJByW2tqcGPKoUdK4cakjztFCIamhwYk4u7LxXI1x5tzaGru+psa5xWtrc+YRraJCGjw4dRDb7rwoKXq7bTvR5fZ2JwhdVeXEoYPB7sdLxu93nkcqti0tXers57Is5zlWd16RNHq09PHHzn1jYv+dzqGwJXlN52P+x39IL70kDRrUtd0O6y8r/yLb2NrVuismHtzf2bJV76/v8XGZxE071KGQPz/fw0x1F4w2Mj16PXoboHYfy+U3fgU78hRc75QuQO1ur+/o+Z8N5FZf/syhePU0QO2KD1H3NEDtIkQNAAAAAEhl69atWrFihXbv3q09e/aovb1dknTrrbcWeGYAAAAAAOw7IgHqHaucc9zCsecGHLFRen2SZKzY4woSojaS/JIGJdnWOb/nNj+v9kC7Kkor8jgxAAAAAAAAAAAAAAAAAAAADFRUkwBgX9fSIu3YUehZDGzGOLHv+FBwOOyEqWtrnUhzPrW2JgaoJWnrVmdbWZmz3Y0y79gh+XxOiDpdcDndc927Vxo5svfPtaUlMUAtORcUeb1SZWXXuo6OxAC11BWSHjIkcZttS7t2Oc9h1Kiu59nU5BznPo8tW5wYdGlp+vF6q63N+Rr9OrsBbq/Xedxx47oi1MH8BHmbyqS5l0nXrZBmrZf0/vvSrbdKv/xlZB+vx6sHL3tQY34+pl8FqC1ZPQ6RAgDyyxijNXVrehygjhzfGaKua6tTvb++1//dbwm0aE3dGh0z8hhZltX9AQAAAACAfdb27dv1f//3f5o3b54++uijpPuki1A/9NBD2hH1+5vTTz9dJ5xwQranCQAAAADAPqE90K65T851AtQdHV3nc3Wq+cTWy0c795OdnZbPELVlJNOu5AHqTiWeEq388koC1AAAAAAAAAAAAAAAAAAAAMgbItQAsK/bvbvQM4Dfnxhldtm2E1YelOaKk1xobk5c5wakjXECyG6A2t22e7cTZ66uTj1uuudqTO+fqzHJo9mu5ubYCHWy5+dqa5NqahJj2G1tXc+5tdXZJxzuikJLUiDQta60tOu46mon0t1Xtu1cIBX9XKK1tEjl5dL++zuP2djozMfkNqDcVCbNuUJaNVpasZ8ky2jWer/0wAPShRdK55wT2ffaJ65VazBJLLxIWbLkkUfhvF1mBiCfAsFAoaeALLEsS2Oqx2jD3g29DkgbGe317+3bPOTMgwA1AAAAAAxc4XBY3/3ud3XXXXcpEAjIpPj5bHd/d/zkk0/0ne98J7I8Y8YMvfjii1mdKwAAAAAA+4KPGz7WifecqGljp8ljeWTHnRtW9rGtDeO7lsMqXIi62wC15QSoV31llSbUTsjxbAAAAAAAAAAAAAAAAAAAAIAunkJPAACQY35/7LJlccv3LRhM/z0KhfI7H9uODUy7gkFnvTHOfY/Hufl8ztdw2Akkpxs7VYC6r8+1u9ByOOzMvbfz8PmcKHVZmXPzeqWSkq5xLMtZb1ldY5SVdYWne/q80j0P9/FSzTsYdOZ3/PHO/TwGqCXJtqSbPyvNO8I4se//9/8if8bbA+167oPncjqfbLNkZRwzNb34J1O9GTuX/2R7zkChEJjft9RW1erwYYfLUpr/l+aQJUuHDztctVW1BXl8AAAAAEDh7d69W9OnT9edd96pjo4OGWNkWVbCLRNf+cpXNKjzQxuNMVq0aJG2bt2ay+kDAAAAANDvrK1bq8PuOky7Wnfp6fVP6wTPAfKEus4FqFhn66PxicelOlsgWZw6WywjeXcqdYBaBKgBAAAAAAAAAAAAAAAAAABQOESoAWBf50ZyXcZwK8QtHTf8nK9bOMUlNtGxbNt2/uyUlEg1NVJ5uXNse3v6sZPFraO5MelszTlepvOIf80rK6Xhw2NvlZVd4/h8zrqaGme5urprn2Tjpbt50rz9sm1ne6pIiTGx36d0Y2VBfIDafWQnRG0077CQtGmT9MILkqSK0gr94cI/FCwO2lNeeWV1/pMJq5f/5HLsXP2T7TkDhcKfv31PoULUlghQAwAAAMBAFwgEdPHFF+v1119XdHzaGBNzy1RNTY1mz54dOcYYo6eeeipHswcAAAAAoP9Z9ekqHX330QqZkCTJyOjphiU6YVeJPEaq2GTrw2NSH5/PELVlpPGrpNDYNPtYFgFqAAAAAAAAAAAAAAAAAAAAFAwRagDY11VXF3oGAKKVlCTG4aOVlWU2zvr1zlg9FM6w2RkfoG6XtLta2lnZNc7NnzWad0CL9Ne/Ro47aMhBOmHMCT2eV74VU5jWm5NL2/ZNvFboKa/Fn5l9Ub5D1ASoAQAAAACS9M1vflNLliyJiU8PHz5cP/jBD7R8+XLt3btXxx57bI/GnD17tiQnQiVJCxYsyPq8AQAAAADojxZtXqTJf5yssIlNSRtJT4/r0Kh3bH2YQcs5LyFqI01+U9owNc0+luTz+HTw4IOz+cgAAAAAAAAAAAAAAAAAAABAxtIUEPdthxxySMI6y7L0wQcfZLRvLqR6fADok9paqbVVCgQKPRMAriFDpN27E9f7fJmFpVtbpR07JGN69LBNZdLcy6TrVkiz1qXfLz5A3dDZs7c90o5KqdRIQ9qlm88OSm+8oFnbt0tjxkiSqkt7F7/3yCNbdq+O7SuvvAqnvOysb/FjS5aMeva9KrTuXo9Cj5dPufyzgdwr6UWsH/2DG4TesHdDTv8bS4AaAAAAACBJ69ev1z333BOJT1uWpXPOOUePPfaYBg0a1OtxzzzzTA0aNEjNzc0yxuiVV17J4qwBAAAAAOifFm1epBn3z4hdGfVrYbNBWn6KlOnnFoeVPDrtVepIdU+c/J605DNpdugMUK/6yipVlFZk4REBAAAAAAAAAAAAAAAAAACAnhuwEeqPPvoocpGwy7KSn42cbN9cSPX4ANAnXq80bpy0Z48TrvV6E8O1XgKaOeX1Sh5P17JlxX4PPB6ptDR/87Ht2PlEz8P9f5HH07VsWV33PZ6uPy/J/tx091y93t4911Ao+Zzj5++OHb9vsnlEz9/nc7ZHPzf35j5n93706xC/3T22O6WlUkWF1NTkBOItSyovd8bauzf1vFtbnXj1+vVSR4fzvcxQdFh6xX7OumQh6nQBapfxSB2SGio6Q9SnNUkv/lqzvvDjjOeTTL5CzZaspOFgn3wKKZR0fV945ZXd+U/C2Fbxvh33yaeQSXw9pN7NO914GR1fwNfKJ5/CJhzzZ9SSJa/F/z8LLs1/NgiE7/tyHaImQA0AAAAAcP34xz9WOByWZVmyLEvHH3+8nn32Wfl8ffzZoder4447LhKfbm5u1pYtW3TggQdmY9oAAAAAAPQ7CQHq+F8Fb5A0ThkHqF25ClGf+K60ZEqaHToD1O9+5V1NqJ3Qh0cCAAAAAAAAAAAAAAAAAAAA+qZ4q3d54oafMwlM5zISnevANYABzuORamudWygkBYNd2w44QKquTn0s+u6996StW7uWPZ7YePDgwdKpp+ZvPk1N0uuvJ65vbpZaWpz7JSVOTNmynD8ffr8TPR41SjrwQCegfPDBiWOsWSN9/HHXcrae6+7d0tKl6feZMcMJOUvSc8/FbouPOY8e7TwH19Chzr8X7vOvqnLG8vmcYHRZmTRmjPO6+P3Ov0sHHig1Njrj1NY6r1NlpXTQQT1/fq4dO6Tly2PXhcPSxo3SypXOnyPLcuZg24lB+RTiw9K2Jd18gXM/OkSdSYA6WofXCVEPbje6fsPPdNvvnpXP49P6Peszmlc8y7LkkUfGGFmdV4qF+3SZl6PEKlHIhOSVV6W+UpV6SzVlv3RXfwHoL179+NWYv0sZdf33AwNDrkLUBKgBAAAAANGeffbZyIcWW5ale+65p88Batfxxx8fiVBL0rp164hQAwAAAAAGpJgAdbJf/+5RrwLUrmyHqE99V3qDADUAAAAAAAAAAAAAAAAAAAD6iQEdoe5J+JlINAAAyLtNm6SXXnLC4dGiw97diA9LR4aIC1GHLWnuZZkHqF0dXqmxQqoM2dqwd4MqSyrVHmrPeH7xbGPLyMgjDyFZAEBGsh2iJkANAAAAAIi2YsUK7dmzR5ZlybIsnXbaaTrmmGOyNn58cPqTTz7J2tgAAAAAAPQXz657VjMfmZk8Pi05AepB6nWA2pWtEPVpK6XXp6bZoXOer177KgFqAAAAAAAAAAAAAAAAAAAAFIUBG6H+whe+kJN9AQAA+szvlxYulNasSb49ww/HSBWgdsWHqK9bIa3YT2q1MgtQuzq8km0ZydhqDjRnfmD8fIwtSxYBagBAj9VW1aqurU57/Xv7PNbQ8qEEqAEAAAAAERs3boxZPuuss7I6/pAhQ2KWm+I/lBAAAAAAgH3cg6se1NVPXZ0+QF2jPgeoXX0NUZ/6bmYB6t999nc65aBTejw/AAAAAAAAAAAAAAAAAAAAIBcGbIT63nvvzcm+AAAAfdLYKD36qNTQkHy7MV23NLoLULviQ9TvDZduO7vn0w56JMsOyWN5en5wFK+8MimvKAMAILm61jrV++uzMla9v151rXWEqAEAAAAAkqS6ujpJkjFGlmXp4IMPzur4VVVVkiTLcgpVra2tWR0fAAAAAIBi9o+1/8gsQN23U5ISpAtRu9uTOf096bUp3Y//u8/+TjedeFPvJgcAAAAAAAAAAAAAAAAAAADkwICNUAMAABSdXbukhx6SWloSt4XDUjAohUJZC1C73BD1eyOk287qxbw7GRmFTapLsDITUkiSE6MGACATda112rB3Q9Y+xMDIaMPeDZJEiBoAAAAAoKamppjl6urqrI7f2NgoqStyne3xAQAAAAAoVvPXz9clj16S9wC1K1WIWp3r48+Cmr5aWnRcN4NaBKgBAAAAAAAAAAAAAAAAAABQnIhQAwAAFIOWFumnP40NUNu2E58OBJz7GehpgDok5w1hwOpbgDrbwgoTogYAdCvbAWoXIWoAAAAAgGvo0KExy240Olt27doVszx8+PCsjg8AAAAAQDF64+M3dNHDF6XfKYcBalemIeoz1kiLJqcZyHK+/Oa83xCgBgAAAAAAAAAAAAAAAAAAQFEiQg0AAFAMfv97adcuyRgnPB0MOl9N5lHNsCXNvSzzALVfUn215AtLte2Sx5bsHF+4lSkC1ACA7uQqQO0iRA0AAAAAkKTaWufvhJbl1KS2bt2a1fHfeuutmOURI0ZkdXwAAAAAAIrN25+8rdPuO81ZSPXr3g6lrkNnWXch6jNXS+8fJlm2ZJKdW9UZoL7/kvt1zeRrcjNJAAAAAAAAAAAAAAAAAAAAoI+IUAMAAORLXZ20Zo20caP04YdSY6MUCkmtrdLmzc4+wWDX/j0IUEuS10jXrZBW7CfZVvp93QC1JIW8Ul2FNKpN2llZ2BC1JUseFUkJGwBQtHIdoHYRogYAAAAAHHTQQTHL8dHovujo6NArr7wiy7JkOn8ePGXKlKyNDwAAAABAsXn7k7d14j0npt8pjwFqV6oQ9fQ10sJjpcEd0ug2aUdlXIi68xytRy5/RLMnzc7DTAEAAAAAAAAAAAAAAAAAAIDeIUINAACQS6GQtHixNH++9O67iduN6YpRZ8Gsdc7Xmy9IHaKODlBHplkEIWqPPKourVZroDX/Dw4A6DfyFaB2EaIGAAAAgIFtypQpGjJkiBobG2WM0cKFC7Vnzx4NHz68z2P/5S9/UUNDgyzL+WHuhAkTVFvL3z0BAAAAAPumhAB1sl/5+lWws9vjQ9QnbZQWHuPcbyxzvsaEqAlQAwAAAAAAAAAAAAAAAAAAoB8pQF5w4PL7/dq5c6fC4XChpwIAAPJhyRLp+uulO+5IHqCWpI6OrAWoXbPWSb9+TvIkuVArWYDaFR2i9tg9fNAUweueGFE5ou+DAAD2afkOULvcEHVda11eHxcAAAAAUHgej0dnn322jHH+LhoIBHTnnXf2edxPP/1U//M//yPLsmSMkWVZOu+88/o8LgAAAAAAxSijAHW7ChagdoU7b5M/kpYcGbutsUzy+6TR3prIB0oRoAYAAAAAAAAAAAAAAAAAAEB/QYQ6x+rr63XLLbfo8MMPV1VVlcaMGaOysjIdffTR+ulPfyq/31/oKQIAgGxraZHuvFO6/XZp587U+9m2s28OJAtRpwtQu/oUou4DD29LAQDdKFSA2kWIGgAAAAAGrhtvvFGSIsHo//u//9Orr77a6/EaGhp02WWXadeuXZF1Xq9X3/jGN/o8VwAAAAAAik2LvyWzAHVJvmaU3ujd0vbR0uCOxG2NlR75y30677DztPnrmwlQAwAAAAAAAAAAAAAAAAAAoN+g9peBPXv26POf/3zkds0112QUj16xYoUmTZqkn/70p9q0aZOMMTLGyLZtrVmzRrfccouOO+44rVu3Lg/PAgAA5MWOHdI3viEtWJB8uzFSMCi1tUl79+Z0KtEh6kwC1K5ChagBAEjFGKPtLdv7FKC2ZGlY+TBZsno/D3XOwxQmhA0AAAAAKIyzzz5b06dPlzFGlmUpGAxq5syZevLJJ3s81ssvv6ypU6dq6dKlkai1ZVn63Oc+p4MOOigHswcAAAAAoLAeff/RroVkv2ptU9EEqCvaJKvzHKvyUFyI2uP8rtnn8emhyx7SwcMPzvv8AAAAAAAAAAAAAAAAAAAAgN7yFXoC/cG8efP08MMPy7Kck4cvvPBClZeXpz1m9+7duvDCC7Vjxw5JihwbzRij9evX6/zzz9ebb76p/fbbL/uTBwAA+VNXJ/3iF9KePYnbQiHJ75cCAWfZzk/dedY6aeMQ6b/P69lx0SHqHZWSSffRJb1veQIAkBHLsjSxdqJW161WS6Cl58fL0uHDDldtVa3qWuu0Ye+GXgWtq0urNbF2YtK/4wMAAAAA9m2//OUvNW3aNLW1tcmyLLW0tOjKK6/UmWeeqS996UuaNm1awjHBYFB79uzRxx9/rFdffVVPPvmkli5dGvlwI8uyZFmWRo8erZ/+9Kf5fkoAAAAAAOTco6sf1fXPXO8sJPkVra9VCpXld06p+DqkIR5Jnq4TpcptSQGjxjJJlqVhFcO0/MvLNbRiaKGmCQAAAAAAAAAAAAAAAAAAAPQKEeoM/OMf/5DkRKMty9INN9zQ7TG33HKLduzYEROmci8mlrouKDbGaOvWrfrqV7+qefPmZX/yAAAgP9rbkweojZHa2qSOjth1efL2aOk75/bu2JBX2lkpWVbSa8AcNDgBAHni8/g0qXZSj0PU0QFqSZGvPQ1RV5dWa1LtJPk8/CgFAAAAAAaio48+Wg899JBmzZoV+b2xMUYvv/yyXn755ch+7u+EjTFJP9jYPda9X1JSokceeUSjRo3Ky/MAAAAAACBfHl39qOY8MSfl9spGqa0qjxNKwxuQamVJnsSTocrlk8qr5POWaPmXl2vsoLEFmCEAAAAAAAAAAAAAAAAAAADQN55CT6A/WLJkSeRC4LKyMp1zzjlp99+2bZvuv//+mIuHPR6PLr30Un3nO9/RF77wBdXU1MRcnPyPf/xDr7/+es6fCwAAyJHHH5d27YpdFw5LjY2xAWopexFqK30BusUnnXSjZPoQirY9kk1oGgBQJNwQdXVpdUb7xweoXbVVtTp82OGyMvw0BQLUAAAAAABJuuiii3T//feroqJCkmJ+H+zeokWvd2/Rx9TU1OiJJ57Qaaedlt8nAgAAAABAjiUEqONOl6qpL54AtQLSSHmSn4vl9UpDh+qkA07W+q+vJ0ANAAAAAAAAAAAAAAAAAACAfosIdTc+/vhj7d69W5JzEfFJJ50Uuag4lYceekjBYFCSc/FwRUWFFi1apCeffFJ33HGH7r33Xr333ns67LDDYo679957c/MkAABAbq1dKy1dGrsuHJaamiTbjl2frQC1O5ZlpYxRV4ekEz7J3sMlyGKc2sRfaQYAQAqZhqhTBahdmYaoCVADAAAAAKJ9/vOf11tvvaWjjjoqEp22LCvjm+T8DvnII4/U4sWLNXPmzEI+HQAAAAAAsq6uqa4rQG2UEKAetVNqrsn7tJILSvubFKfTdwaoj91/ih654hENrRia37kBAAAAAAAAAAAAAAAAAAAAWUSEuhsffvhhzPKkSZO6Peaxxx6TZVkyxsiyLP37v/+7TjvttJh9DjjgAN13332RfYwxmjdvXlbnDgBAj7W3S598Iq1eLb32mrRggfT009Lzz0tvvCG9+qq0bJm0d2+hZ1o8wmHpH/+IXWeM1NycGJy2LMnj6fqaTSlC1G/9WTpxW3Yfynm87A5nZNQR6sjuoACAfVZ3IeruAtSu7kLUBKgBAAAAAMlMnDhR7777rh555BFNmTJFxpiEm6Sk6w877DDdd999Wr16tSZOnFjgZwIAAAAAQPbVDqrVkJJBCfFpSRrzqbRzeP7nlFRIssqlE3aVyBM/14oKafjwSIB6UNmggkwRAAAAAAAAAAAAAAAAAAAAyBYqSt3YsmWLJEVi0Ycffnja/RsaGrRixYrIssfj0Ve/+tWk+06bNk1TpkyJ7N/Y2KhNmzbpsMMOy9LsAQDIQDgsbdzoxKU7/78nqStqbFldMeW9e6VVq5x1U6ZIM2dKp5wi+QbwW4pNm6T6+tgIdFubZNux+/l8UmWl1NSUMhjdK8Yk/15FeevP0vivS5uydQFXlgPUruZgs8q8ZbkZHACwz3FD1KvrVqsl0BJZn2mA2uXut2HvBpmoq6AJUAMAAAAA0rEsS1deeaWuvPJKffzxx3rllVf0xhtvaNu2bdqzZ4/q6+tVUVGhESNGaNSoUTrppJN0zjnnaMKECYWeOgAAAAAAubVli+r/UquhlzepoaJr9ZEfSevGFmxWsUKSyp1O9tPjOnTJ5jK9PTIo2+eVamqksjIdO/pYAtQAAAAAAAAAAAAAAAAAAADYZ1BS6kZDQ0PM8pAhQ9Lu/9prr8m2bVmWJcuydMIJJ2jMmDEp958+fbqWL18eWX7vvfeIUAMA8mfTJumll5wwcnw0uTurVjm3UaOkm26STj45N3MsditXxi6HQlJHR+w6n8+5OCkYzP18koSo5x0ptZdKvrAU8vZl7L5NLRP+kF9W5z8AAHQnPkTd0wC1Kz5ETYAaAAAAANATBx10kK699lpde+21hZ4KAAAAAACFtW2bdNJJ0q5dqr/To6HfstVQIU38UFpzYKEn1yksqbxrMRKiHnKy3ra3yjY2AWoAAAAAAAAAAAAAAAAAAADsc6gpdaO9vT1mubq6Ou3+b731liTJGCPLsnT++een3f/www+PWd61a1cvZgkAQA/5/dLChdKaNX0fa+dO6fbbpbPPls48s+/j9ScNDdKWLZLH07XO70/cr6rKiUOHQnmbmmvekdLNF0i2JdW2S3UVvQhR57kHbcuWRx5C1ACAjLgh6jV1azSmekyPA9Qu97jtLds1sXYiAWoAAAAAAAAAAAAA6ImtW6UTT5SizoWu/5mlQ64xxRWgLotbZ3WGqBvf0iVHXKKQCenByx4kQA0AAAAAAAAAAAAAAAAAAIB9CkWlbhhjYpY7OjrS7u9GqF2nnXZa2v2HDBkiSbIsJ7LY1NTUwxkCANBDu3ZJDzzgBJSTMabrZttOPDma15u4TpIWLJCWLZMuuUQaPDjr0y5KH38cu2yMFAjErquocF4zKSsR6rAleU33+0mxAWpXj0LU+Y5PG1tey+t8mAcBagBAD/g8Ph0z8pjI3617q7aqViMqR/R5HAAAAAAAAAAAAAAYULZskc46KyZALUknXmG0+YACzSmeLalFiRHqTkZGiz5apE//41NVlFbkc2YAAAAAAAAAAAAAAAAAAABAznkKPYFiN2jQoJjlPXv2pNw3FArpzTffjMSqvF6vTj755B49XjAY7PkkAQDI1I4d0ve+lzxAbdtSMOhElAMB53447NxCIefm90tNTVJbW/Kg8u7d0kMPSY2NOX8qRWH79tjlZK9JWdRVSybDenQKTWXSpVc5cekY8eNaVtIAtasmKOeiqsj+KW4FYBubADUAoFeyFY4mQA0AAAAAAAAAAAAAPdDUJM2ZI338cczqSz5r6+3DCzSneLakZknD49bH/Xp46n5TVeorzdOkAAAAAAAAAAAAAAAAAAAAgPzxFXoCxW7YsGGSuiJU69atS7nv66+/rra2tsi+kyZNUmVlZdrxGzojoMYYWZalqqqqLMwaAIAkWlqk735Xqq+PXW+M1NHhBJQzjSS7keqyMqmyUoqONba0SI8+Kl1zjbOtP2tokNaudeLaTU3Snj1Sa6tUXi6NHClt2eK8DiUlktfrBLuj+XySJzuf+dFUJs25Qlo1Wlqxn7NuVoq3JfOONLr5s8kD1H6f1FjmfBKJbavoPpLEyCissLzyFnoqAAAAAAAAAAAAAAAAALrz/e9LGzbEnDv1+bNs/WNy4aYUI1WAOokHL3tQXg/nLQEAAAAAAAAAAAAAAAAAAGDfQ4S6G5MmTYrcN8ZowYIFKfd9/PHHI/tZlqXTTz+92/Hr6upilocMGdK7iQIA0J3f/17avj12nW1L7e3p49PptnV0OBHmmhonwuxqaJAWLpRmzuzTlAsiFHLmvmCBtHmzc3FU/Gvg9Uo7d0p+f1fE2+dz7hvTFeX2ZueCpOgAteTEpW++wLkfH6LOJEDt8ljONVbFiBA1AAAAAAAAAAAAAAAAUORefFF67DGprS2y6kun2fr7iQWcUzSj1AHquPOr3rzuTY2qGZWHSQEAAAAAAAAAAAAAAAAAAAD5R4S6GxMmTFBFRYX8fr8kacOGDXruued0wQUXxOxXX1+vBx98UJZlyXSGKmfMmNHt+O+9917M8sEHH5ydiQMAEG3JEieqHK27ALXH48SULasrrpxsX9uWmpqkQYNi169ZIx15pHTIIdl5DrkWCknz5knPPx9zUVRStu3Et6Nfj2Awdh/3tYtfF7+cLvKtxAB1ZApJQtRhGf1lcmYBaneM+IupigUBagAAAAAAAAD9SVtbmxobGxWM/1lxDx144IFZmhEAAAAAADkWDErf+55zLlUgIMkJUN9zeoHn5TKSmpQ8QB1n4bULdfIBJ+d6RgAAAAAAAAAAAAAAAAAAAEDBEKHuhs/n00UXXaRHH300Epi+7rrr9Pjjj+u0006TJDU3N2vu3LlqbGyU1RmXrKmp0fnnn9/t+CtXrowJVx966KG5ezIAgIEpFJLuvjt2nTHJA9SW5cSnvd6uYHJ0KNnj6Qowx4/X3CxVVcWuX7BAuv56Z7xitmSJ9JvfSI2NznI3YeiEmHQ8N9ht27HrfT7n+5GhVAFqV2yI2sgr6cEnE49JGqCWijJAXWFVKGAChZ4GAAAAAAAAAKTU0dGhJ554Qs8//7zeeecdbdiwQeFwuM/jWpalUA9+hgwAAAAAQEE9/7y0dWskQP2tKf0oQB113tTTVz6t6eOm52FSAAAAAAAAAAAAAAAAAAAAQOEQoc7AV77yFT366KOSnAt/d+3apTPOOEPjx4/X8OHD9d5776m1tTUSk7YsS9dcc43KysrSjrt161atX78+Eq4eMWKExo4dm/PnAwAYYN58U9q5M3ZdR0diaNmNT0upI8uWJZWWOreOjtigsm1Lfr+zzdXYKG3aJB1xRN+fRy60t0v33y8tXpwYjE6nu0i1q6NDqqjoel19mb/16jZALcmj+BC1NKhDeuTxrmP7U4B6cMlgGcsoECBCDQAAAAAAAKD4GGP0i1/8Qj/60Y/U0NAQWQcAAAAAwID01786X0Mh/XCCrZ+fV9jpRBhJH0s6rPtdf372z3XxURfnekYAAAAAAAAAAAAAAAAAAABAwXkKPYH+4Mwzz9Sll14auYDYjU1v2LBBS5YsUUtLS8zFxVVVVfrud7/b7bjz5s2L3LcsSyeffHL2Jw8AwPz5scuhUGw8WnIiyWVlifFpY5IHly1LqqlJjCoHAlI4HLtu5cpeTTvn9uyRvv996fXXexag7gljpKamrtck/vVKEfvuLkAdklRXJTV19r7dEPW8I51lN0Q9ujlNgLoII9RlJek/wAMAAAAAAAAACqWtrU0zZszQf/3Xf6m+vl7GmMgHFGfjBgAAAABAsWpsa0xcuX279MYbkqTfDWvW9y/N75xSMpI2K32AuvOv4T8/++f6j1P/Iw+TAgAAAAAAAAAAAAAAAAAAAAqPCHWG/vKXv+joo4+OCVG7FwO7992LjP/4xz9qv/3263bMv//975HjJCd2DQBAVtXVSatWxa7z+xP3SxagdqULUVdVJa4PBmOXt2xxQszF5JNPpO99T9q5M/ePFQ5LDQ3OranJeS1tO+XrmkmAeneVE55uLU0don5pnLSjWiqJ6msXc4Daw9tSAAAAAAAAAEXssssu0yuvvJIQnnZj1H29AQAAAABQjBZtXqQhPxui8XeNj92wdKkk6Xeln+prcwswsRRqNks6PM0OnedN/eysnxGgBgAAAAAAAAAAAAAAAAAAwIDiK/QE+oshQ4bolVde0b//+7/r/vvvT3oh8H777aff/OY3mjVrVrfjLV26VG+99VYkZC1JF1xwQVbnDACA1qyJXTYmMRJdWip5PE4Yuae8XqmiQmpv71oXCjmPEx21/uQTadCgno+fC59+Kt1zT+LrkEvGOK+LxxO7Lk7YkuZe1n2A2kS9tK2dEepBga4Q9VNHSi8dIsmShrRLDRVSh0dFGZ8GAAAAAAAAgGL30EMP6YUXXoj53a77++IpU6boxBNP1KGHHqrBgwerpKSkUNMEAAAAACCrFm1epBn3z5AkbarfpPF3jdfGb2x0Nr77rh43nQHqIjknaeQaadexaXbonOf3Tv2evnXat/IyJwAAAAAAAAAAAAAAAAAAAKBYEKHugSFDhujee+/9/9m78/io6rvv/+9zZsmeABI2EQFZVFDAXS61iFLrLm0v8ap3W5fevWoVu+DVhXopVqv2vrRXrW21i9pf26vWVqWLV60V1FZF3AqoiOzKZiAQyD7rOb8/Tk4yazJJZkvyevqYR+acOed7PhN8SISZ1+j222/Xn/70J23btk3Nzc067LDDdOqpp+q8885TaWlpRms9/fTTmjWr65XOY8aM0fTp03M1OgBgqNq8OX7bDUTH6m8Qo6QkPkItSdGo5I35MWPvXumYY/p3nWxYt05avrxvwe1scOPcKQLUkuSxpWvWSGvGOkHpWKkC1K7EEPWzR3U9ZkqKSl1v9l4KirAAAQAASURBVCqSN30BAAAAAAAAwEBx5513dt5349PnnXeevve97+mYYvizbwAAAAAAsiw2QO2KDVGv/dNPtegaFc1rkSZslnakC1DHzPjvs/9dt597e15mAgAAAAAAAAAAAAAAAAAAAIoJEeo+GD9+vL74xS/2a41bb71Vt956a5YmAgAgjW3b4rcjkfhtj8eJIveHaTrB6di1EyPP+/b17xr9FQhIzzwjvflm2gB0XrjX7iZEvfA95+viC7pC1N0FqF2xIepY9WVSxNP3kQEAAAAAAABgKNuxY4feffddGYYh27ZlGIY+85nP6JFHHin0aAAAAAAA5ESqALVry8Etmv15Q2+f1/XapkKbtFnanu4zomJm/Mbcb+iuBXflZSYAAAAAAAAAAAAAAAAAAACg2BChBgBgMGtsjN+ORuO3TTM71/F4uo9Qt7Vl5zp90dgo/e530ocfFjZA7cpghtgQdcjoOUDtSgxRh5UQoC6SN34BAAAAAAAAwEDx6quvxm2PHj1aP/rRjwo0DQAAAAAAudVdgFqSKrZIb08ongD15A+kbekC1DFun3e7bv7IzbkfCAAAAAAAAAAAAAAAAAAAAChSWSpPAgCAohQbhk7FyNK7gXpaJzF+nS+HDkm/+Y20f3/P34sis/A96dbnMg9Qu1r9UqPfOcdjSMNaOx7oxy+11+BzSwAAAAAAAAAMTfv27eu8bxiGPvGJT6i8vLyAEwEAAAAAkBtpA9R2x22LFDiieALUU96Xth3VzQEdc37ztG8SoAYAAAAAAAAAAAAAAAAAAMCQR4QaAIDBzNtDPNi2s3OdntbxeLJznd4IBKTf/15qanLuDzC7qqSlC9SneHSbX2ryOfeD/v7NYXb8uEiIGgAAAAAAAMBQ1NjYKEmyO/4cfM6cOYUcBwAAAACAnEgZoHbj05K0VfKNl6JF8srzYzdLW6Z0c0DHa65uOPEG3XnenXmZCQAAAAAAAAAAAAAAAAAAAChm1AQBABjMamritxNj0JaVnetEo/HbZsK7jcrLs3OdTEWj0uOPSx9+KEUi+b12FoRM6cR/lxrKJMOWZHS9nytTbX4p4JMsQ30KWbssWZItmUZu30FmydK+tn3yy6+ooj2f0AthO9x5PxqNKhQNSZIikYjMjn9XzcR/ZwcR27ZlGP34lyDL62RDOByWz+crmnUAAAAAAAAweFVWVsZt1yT+uTsAAAAAAANcUoA68YVKDZIxXgonvPSsUGZtkdYd080BHS9v+dppX9N3z/tuXmYCAAAAAAAAAAAAAAAAAAAAih0R6izYvXu3Vq9erTfffFP79u3ToUOH1NzcrKqqKg0bNkyjRo3SiSeeqNNOO02HH354occFAAwlkydLa9Z0bXsTfuuPRiXblvoTlrWs5NBzYtB31Ki+r99bq1dLP/yh1NCQv2tmmd+Srloj3fMvznZfQ9T9DVBLUm1prcZWjpUkvbv/XUWU26h3SKGcrR1RRBHbmf/lD15W0A5KkryGV6ccfopKvaU5u3ahRKyI1tev17jKcaqtqO3zOvWt9drTskczamfIaxb2fyEa2hq0dt9alXpLNXf83D6vs2rXKgUiAc0eNVsjykdkcUIAAAAAAAAMJpMnT47bbhjAf/YMAAAAAECixrbGrgB1uhcnVUp2kXy++3HbpHVHd3MAAWoAAAAAAAAAAAAAAAAAAAAgJSLUfdTc3Kxf/epXevDBB7V+/fqMz5sxY4auu+46/Z//839UVVWVwwkBAJA0dWr8ttfrBKftmHcMhcOS39/3awSDyfs8nvjt0aP7vn6mWlud+PSzz0oHD+b+ejn23ZXO1z6HqPsZn5akCdUTNGXElM5ts8GUrP6vWwzcALUkReyIXt39qk49/NRBFaKOWBG9U/+OWkIt2tSwSZL6FKKub63XpoZNsmXrnfp3NLN2ZsFC1G6AWpICkYBW7VrVpxC1G6CWpLX71hKiBgAAAAAAQFqnnXaaTNOU3fHn6u+9916BJwIAAAAAIHsMj6Fyb7nawm0pH/cEpagn5UN5N2GP9Pa0NA/GvFbqW//yLd1x7h15mQkAAAAAAAAAAAAAAAAAAAAYKMxCDzAQ/epXv9KkSZO0ePFivfPOO7JtO+PbO++8oxtuuEGTJk3Sr3/960I/FQDAYDdjRvy2YUg+X/y+UEiy+lgWjkal9vb4fW7oOtb48X1bP1ONjdKSJdKKFU5U241s2xknm/PPMJK/Twm+u1K66eWYUzJ5OoZyEqCub61XyAr1f+EiFbWjenX3q51h4oEuNkAtSbZsbWrYpPrW+l6tExuglqSWUIveqX9HESuS9Zl7Ehugdrkh6t6IDVC71u5bq4a2hv6OCAAAAAAAgEFo5MiRmj9/fuff9z799NOFHgkAAAAAgKxoCjZp0eOLVNMUlJni5WMl7cUToD6yTvrgEWlYe4oHY14r9dDFDxGgBgAAAAAAAAAAAAAAAAAAAFIgQt0LwWBQCxcu1FVXXaWGhgbZHWFLwzAyvkmSbdtqaGjQZz/7WX384x9XMBgs5NMCAAxmtbXSrFnx+0pLk48LBnsfbLZtqbU1eX9i5HrCBKmqqndr98ahQ9JvfiN9+KGzHRhgEeGEEHXUiH9s6cvSTa86P7LZqeLSRsItC1IFqDce2JidxYvYYAlRJwaoXb0NUScGqF2FCFGnClC7ehOiThWgdhGiBgAAAAAAQDpLly6V5Py98MaNG/WHP/yhsAMBAAAAANBPboB63cZ/SNGoRrcpLkRd3iIFfenPz6fJddL7Dzn3D/6XkTpELemxTzyma064Jn+DAQAAAAAAAAAAAAAAAAAAAAMIEeoMBQIBXXLJJfrTn/4k27bjwtK2bWd8Szzvj3/8oy655BJC1ACA3Lnoovhtr9e5xYpGexeitiypuVmKJERo/X7J44nfN3t2r8bNWFOTtG6d9POfS/X1zvbBg1Io5DyP3ka1C6kjRN1UIl12hbT8aGf385OkYV+XnjxaumS730kB5yA6HStdgDpshbN/sSI00EPU6QLUrkxD1OkC1K58hqi7C1C7MglRdxegdhGiBgAAAAAAQCrz5s3Ttdde2/khxddff7127dpV4KkAAAAAAOib9w+87wSo69ZJbW2d+90QdVWT1FZawAFjHFEvbX1Ikmk6N8PQwXvMrhB1x+unHvvEY7p85uWFGhMAAAAAAAAAAAAAAAAAAAAoekSoM7R48WI9++yzkiSjIxTphqVPP/10/dd//ZdWrlyp3bt3q6WlRZZlqaWlRbt379Zzzz2n//qv/9Lpp5/eeY67jm3bWrFihRYvXlyw5wYAGOROP10aPTp+X0lJZ/i4k2VJ4bATpE4XcLZtJ/Lc1pYcoDZNqTTh3Uc1NdKUKcqaaFR67z3pt7+VfvIT6U9/cmLY0agzj2Vl71q5YhjO98rj6XpzlMejpkqfFl1u6M1x0uILpG+fIc3/tPPrsGWYpT9PDKkixx3o7gLU6WLEg9FADVH3FKB29RSi7ilA7cpHiDqTALWruxB1JgFqFyFqAAAAAAAApPKjH/1I8+bNk23b+vDDDzV//nytXbu20GMBAAAAANArf9rwJ0364SQ9s+UZ6cMPkx6vapaaywswWApjDko7firn9VUJDj45RcP81ZIIUAMAAAAAAAAAAAAAAAAAAACZIEKdgX/84x96+OGHO+PTkhOgnjdvnt5++229/PLLWrJkic4++2yNHTtW5eXOq6/Ly8s1duxYzZs3T0uWLNHLL7+st99+W2effXZSiPqhhx7Siy++WJDnBwAY5Lxe6brr4vcZhlRWlhyitm0n6BwKOUHqSKQr8BwOS4GA81hipNowpKqq5PXOPdeJLWfDli3Sz38u/fnP0s6dzkyJIex08exi4/dLlZXO96yqSk211Vr0r9K6jlZ4qyHdek78KVFTavdIFfLlZKQqfxUB6hgDLUSdaYDalS5EnWmA2pXLEHVvAtSuVCHq3gSoXYSoAQAAAAAAkMjv9+vpp5/Wv/3bv0mStmzZotNOO03XXnutXnnlFUWj0QJPCAAAAABA957a+JQu/d2lkpzXQdclxKaDYamxogCDpXBYk/Thj5UyQK3Ro6XnntPBpY3a95V9BKgBAAAAAAAAAAAAAAAAAACADHgLPcBAcPfdd8u27c5gtGEY+sY3vqE777yz12vNmDFDK1eu1M0336w777wzLmx9991368wzz8zm6AAAOE47zQlCr1jRtc80nRB1e3vqeLNlJe9LjEy761RVObHp2Cj0jBnSlCmp1+mNlhbpgQek557r2mfbUjDYv3ULwf3+xYS5m/y2Fn2sWetGRiUZardtHapMfbplSu3RsCpKK9Qabs3qaM2hZm1p2KIpI6YM+QC1yw1Rn3r4qSr1lhZ6nLR6G6B2uSFqSaqtqO11gNrlhqhn1s6U18zO/170JUDtckPUc8fP7VOA2rV231rNHjVbI8pH9Ol8AAAAAAAAFLf58+f3+dzS0lIFg0GFQiH94he/0C9+8QuVlZXpyCOP1IgRI+Tz9e3DBA3D0MqVK/s8FwAAAAAA6Ty18Sld/NuLnY2Ol4bYplRXLo1pk6IBqWFYwcaLM6xF2v9DQzJTvFZt9Gjptdek8eMlSbXVtXmeDgAAAAAAAAAAAAAAAAAAABiYiFD34ODBg1q5cmVcgPqaa67pU4A61h133KG9e/fqoYce6lx7xYoVOnjwoIYPH56l6QEAiPGFL0jvvivt3t21zzSl8nIn6BwbkM5USYlzfmKcetgwqR8Bj051ddLSpdKuXfH7o9GucHaqgHax64hQN/ltLbqgVetGOqHudllpA9Quy5TaI+3yGB5F7WhWx9rRtENNwSa1hduGfIDaFbWjem33azrjiDNkmmahx0li27bW16/vdYC68/yOEHV9W70OBg72+de8JdSi9fXrdfyo4+M+ZKUvwuFwnwPUrkAkoOfef67nA3uwdt9anXn4mX2OBgEAAAAAAKB4vfDCC/3+syz373klqa2tTRs2bOjzmu7fRQMAAAAAkG2pAtQu25Ssdmlfkbx0ubJdOni/KSX+L7LHIx15pPTcc50BagAAAAAAAAAAAAAAAAAAAACZK76SXpF55ZVXFA6HO7erq6v1ve99Lytr33vvvaqpqencjkQieuWVV7KyNgAASSorpTvvlEaMiN9vGFJpqXPLNLLr80nV1VJFRXKAurJSuvxyZ73+qKuTliyR9uxJfiwUcuLTAzFA7fNJphkToHZC0u2ydKg8syUs28p6gNp1KHhIlix5TE9O1h+IxlWNK8oAteREbsZVjpOR9M67zNmy1RBo6Fd03FDHHFmI5Ph8PpV6+/nfjywp9ZYSoAYAAAAAAEAcO+HPpQ3DiLsBAAAAAFBMugtQS9LhddLeIglQlwal5u8nvEbH75eGDZNOOskJUB9xREFmAwAAAAAAAAAAAAAAAAAAAAa64qzpFZHdu3d33jcMQ5deeqmqqqqysnZ1dbUuvfTSuDcqx14PAICsGzNGuv125405iUzTCST7/c5Xr9fZ5948HuexigonMO31Jq8xcqT0qU9JMR+y0CctLdLSpdKBA/H7bVsKBKRobgLMOWcYUklJvwLU+RCxIpIkr5ni13iImVA9QVNGTCn0GN2qrajVtBHT+hWi7g9DhqaNmKbaitqsrTl3/NyCh6hLvaWaO35uQWcAAAAAAABA7tm23atbX87JdF0AAAAAALKppwD1EXuk3SPzO1M6JWGp/Qf+rten1dRItbXS8OHSpz8t/fWvBKgBAAAAAAAAAAAAAAAAAACAfqAs2IP6+npJzhuJDcPQSSedlNX1Tz75ZP3yl7/s3N6/f39W1wcAIMmoUc4bc557Tlq/PvUxZsfnVHg8TjjZDWC426ksWCB95CPSvn39n/HBB6U9e+L3WZbU3u58HagMQ03lHi06vyUmQG0XVYDaFbWi8ppeeU1vZ5R6qBkIAWqXG4De1LBJdqp3DeZILgLUrrnj52rVrlUKRAJZX7snBKgBAAAAAAAGv7POOktGuj/vBgAAAABggIsLUKcwcZf0/pg8DtSNsnap7dGx0mEJD0yYIN1+u/O6NAAAAAAAAAAAAAAAAAAAAAD9QoS6B2VlZXHbo0ePzur6o0aNkqTONziXlpZmdX0AAFIqLZUuuECaNs2JUTc29u782DDHmDHSF74gnXZa+qh1b6xeLa1YEb8vGnUC1Hb+4rq5ELWiuvKcQ1o30vn+hWXrUEWBh0rBkCGv6ZVhGJ33h1qIeiAFqF35DlHnMkDtKkSImgA1AAAAAADA0PDCCy8UegQAAAAAAHIiKUCd8DKSyTukbePyO1M6FUGp5dGx8TvPOEP67Gelj35U8vkKMxgAAAAAAAAAAAAAAAAAAAAwyBCh7sERRxwRt33o0KGsru+uZ9u2DMPQ+PHjs7o+AADdmjJFmjRJ2rJFev11aceOzM4zTWn2bOmii5z4tDdLP1JEItIDD8Tvs22ppWXAB6glySND16yxtWaMLcuQfIYh07JlmYWeLJ4ho/MDMiTJNMwhFaIeiAFqV75C1PkIULvyGaImQA0AAAAAAAAAAAAAAAayhpaG+AB1gmnbpU1HpH04r0pDUsuac6SzRkozZkjHHy+dcoo0dmzPJwMAAAAAAAAAAAAAAAAAAADoFSLUPTjxxBMlqTPEuGHDhqyu/95776W8HgAAeePxSNOnS+PGSevXSwcOSIcOSY2NUjgsuTFir1c68kjnjT7HHy/NmZP9WV55Rdq7N35fW5tkWamPN4wBF6e+ZKPzdfH5kiVbo9sN7S3rRYja6PmQ/rJkKWJF5DW7flQ0jSIrZefIQA5Qu3Idos5ngNqVjxA1AWoAAAAAAAAAAAAAADDQeUyPxlSMUV1rnbMj5qUj07dKG48szFyJ/FEpUC5NveQDbb5xRaHHAQAAAAAAAAAAAAAAAAAAAAa9oVET7IdJkybpuOOOkyTZtq0nn3xSdpZil7Zt64knnpBhGDIMQ8ccc4wmT56clbUBAOiTsjJp/HgnMD1/vrRggXTppdLHPibNmyd99KNOhHr48Nxc/6mn4rcjESkYTH2skYcaczYZhpr8ti5b5Gze/7Rk2pJsJ0RtpulsF4plOyFqVzgaLuA0+TEYAtSu2opaTRsxTUaWq+WFCFC75o6fq1JvaU7WJkANAAAAAAAAAAAAAAAGuue3P69h/zVMlf5KjakYE/fY0VuKJ0Dti0qhXc79LQe3aOoPphZ2IAAAAAAAAAAAAAAAAAAAAGAI8BZ6gIHgy1/+sq699loZhqGdO3fqvvvu05e//OV+r3vfffdpx44dkiTDMPSVr3yl32sCAJA1hiF5vZLPJ0Wjzi2X6uuldevi9wUCyceZppSlD4TIpya/rUWflNaNkdaMdSLU9z8tLT5fsmRrdJu0t1yyiugjQtwQtW3bsjXwvue9MZgC1C43FL2pYVNWfv0KGaB2zR0/V6t2rVIgkuK/DX1EgBoAAAAAAAA9+fa3v915f8yYMfr85z+ftbV/+tOfqq6urnP7lltuydraAAAAAICh4/ntz2v+L+dLcsLOU4ZP0Zj2GtVFGzV9s/TepAIP2MEXlcK7JB3Vtc8NUW++cXPB5gIAAAAAAAAAAAAAAAAAAAAGOyLUGbj66qv1yCOP6KWXXpIkLV26VNOnT9f555/f5zX/+te/aunSpTIMQ5I0d+5cXXvttVmZFwCAAWn9+vht25ZCofh9fn9+gthZ1lSizgC1JFmGE5++/2np/r9Iiy9w9vUYojbyNnIny7byf9E8K/WWDroAtau2olb1bfVqCDT0e63hpcMLGqB2zR0/V8+9/1xW1wMAAAAAAAC6s2zZss6/1501a1ZWI9QPPPCA3nrrrc5tItQAAAAAgN56ZvMz+thvPha3b0vDFk1pkCYdlDYWSYBalhRuVVyA2kWIGgAAAAAAAAAAAAAAAAAAAMitdIlDJHjiiSc0ffp0SVIgENBll12mO+64Q6HEOGYPwuGwvvOd7+iyyy5TIBCQbduaNm2annzyyVyMDQBAcaqvl154QfrZz6RvflP64hele++VGhulpiaprU1qb3dC1LF8PskcWD++JAaoXW6IWnJC1GbHUx3dJpmDv/tcVAKRgLY0bCn0GDlR31qvg4GDWVnrYOCg6lvrs7JWf6zataqo1wMAAAAAAMDgZSf+mXUW183V2gAAAACAwauhpUG/e+d38QFqu+MmyT4obT+yIKMlsyW1SBqR/pAtB7eosa0xXxMBAAAAAAAAAAAAAAAAAAAAQ8rAqjgWUG1trV555RVdeOGFkpyY9K233qopU6bo5ptv1uuvv542SB0Oh/XGG2/o5ptv1pQpU3TLLbcoFArJMAxdeOGFeuWVV1RbW5vPpwMAQP5Fo9I770hf+5r06U9Ld98tPfGEtGaNtG2bdOCAc0wkIgUCXRFqq6PIbJqSYUgeT/y6hpH/55KhdAFql2VIiy9w7rshatuQattThKiL92kOCjuadgy6EHV9a702NWySrezEa2zZ2tSwqaAh6lW7VikQCWR1zUAkQIgaAAAAAAAABWUU8Z9zAwAAAACK01Mbn9Jh9x6mRU8scnbExKcl6agN0tYiCVCbGQSoJem5zzynmvKafIwEAAAAAAAAAAAAAAAAAAAADDneQg8wEMyfPz9uu7S0VMFgULZta9euXbrrrrt01113yev1asKECaqpqVFFRYVaW1vV2NioHTt2KBKJSJJs23mFt2EYKi0tVWtrqz7+8Y/3ah7DMLRy5crsPDkAAPJhyxZp5UqpuVny+1MfY9vpt227K1BtDozP0OgpQO1yQ9T3Py3d97R04wVStCNEXV8mWQPj6Q4KO5p2SJKmjJhS4En6L9sBapcbopak2or8fohKLgLULjdEPXf83JysDwAAAAAAAAAAAAAAkC1PbXxKF//24q4dCS8POXKDtHVqfmdKx7Alq0XS8FQPdt197jPP6exJZ+drLAAAAAAAAAAAAAAAAAAAAGDIIUKdgRdeeEGGYSTtd/e5YelwOKytW7d2PmYnxjRjzpGkQCCgv//9772axbbtlLMAAFCUAgFpxQpp/Xpnu7vfw1L8vplyPa9X8nicKLXLMDI7P5dinluT384oQO2yDGnx+U6E+uzt0orJzv7KiNTkV9wbrpBbgyFEnasAtasQIepcBqhdhKgBAAAAAABQCNGYP+v2evnrewAAAABA93oKUI9fJ30wI78zpWVLZTultsndH0aAGgAAAAAAAAAAAAAAAAAAAMg93sXaS6ki0Omi0JnEoolKAwAGrcZG6Xe/kw4dSv24bUuRiHOLRiXLcm49/b4YifR8TL648et+BKhdliF9vuP9YT5LavNJzQSoC2Igh6hzHaB25TNEnY8AtYsQNQAAAAAAAPKtsbGx835lZWUBJwEAAAAAFLueAtRjN0m7iihAffhOaXe6AHXHa6IIUAMAAAAAAAAAAAAAAAAAAAD5QYS6F2zbjvua7XUBABg0Dh2SHn1UamlJfiwSkQIBKRSK329ZztdMfl+07aT4c2cQOl98Pudmms5zCYcVNWxd+fHeB6glKeCVGkuc+15LCnlEgLqABmKIOl8Balc+QtT5DFC7CFEDAAAAAAAgX5qamrRr167O7WHDhhVuGAAAAABAUespQF3+rvTh1PzO1J0ZG6QNM7s/5tTDT9VZR56Vn4EAAAAAAAAAAAAAAAAAAACAIY4IdQbOOussGQYVSAAAMhIISL//fXKA2ralYNCJUKeSSUQ6MTxdiBC1YUh+v3OzLGe7rEzy+eQJBHTN2qjWjJWsXvzoEBuglghQF4uBFKLOd4DalcsQdSEC1C5C1AAAAAAAAMiHhx9+WLZtyzAMGYah6dOnF3okAAAAAEAR6ilAPext6dDRKprXG814S2qYJo1uk/aWS5aZcIAhnTTuJP3t03+Tx/QUZEYAAAAAAAAAAAAAAAAAAABgqCFCnYEXXnih0CMAADBwPPecdOhQ/D7Lktrbk6PR/eEGp2PXdL/mMkTt90ueFG9+8vkkn08Ld4SlvwW0+KPRjELUiQFqK3uTIgsGQoi6UAFqVy5C1IUMULsIUQMAAAAAAAwdO3bsyPjYUCiknTt3yu7Dn0NHo1G1tLRo27Zt+stf/qJHHnlEhmF0hqjnzJnT6zUBAAAAAINbUoA60YdFFqDe7ASoXalC1CeNO0krP7NS1SXV+R8QAAAAAAAAAAAAAAAAAAAAGKKIUAMAgOx55x1p/fr4fbEB6lS8XifqbNtSIIPobGJ0Op8hao+n54i2z6eFu3zSCyEtPrvdCVGnmSVlgLpI3hCGLnua92jysMkyTbPng/PMtm3tadnTrwC1IUPDS4frYOBgn9ex5cwxsnykjH6G5sPhcMED1K5AJKBwOCyfz1foUQAAAAAAAJBDEydO7PHPtdzo9IYNGzRx4sSsXNeNT7v+9V//NSvrAgAAAAAGh6QAdeLLOj6UNFJF83qjaR9IDUck748NUZ90OAFqAAAAAAAAAAAAAAAAAAAAoBCIUAMAgMw1N0tvvCHV1UkNDVJjoxSJOCHpqirpn/+UwmEn1myaTnw5VYDaMKTSUqmkxDnOZVnOeu7x6ULSqULUifoao44NjaSaO8MQ8cLtJZLXo8VntcoyjY7lbNmyZdhSkAD1gOAxPDrl8FOKMkAtSYZhaEbtDL1T/45aQi29P1+Gpo2YptqKWtW31mtTw6Y+hagr/ZWaUTuj3wFqSfL5fJo9arbW7lvb5zVKvaWaO36uVu1a1a+g9exRswlQAwAAAAAADBF2hn+WnOlxmXD/PM0wDC1YsECzZ8/O2toAAAAAgIGtoaWhK0Cd6n9F21V0AepNR0mGJY1pS358dNCjY4+Zpyf/7UkC1AAAAAAAAAAAAAAAAAAAAEABEKEGAACOlhZp+3Zp3z6pqUkKBp0otBt5dsMaXq8Tj04Ms4ZCTqTa5fE457hruLxeqaLCeTxRaakzR3ch6Nj9sSFqN3rdF/0N56Y5f+E2pzK9+KxWWTGHBLxSEwHqoucxPDr18FNV6i0t9Cjd8ppezayd2esQdWyAWlLn196GqCv9lZpZO1NeM3v/azGifESfQ9RugFpSv0LUs0fN1ojyEb0+DwAAAAAAAANTdx+wFhuezsYHsSWuPWPGDD3yyCNZXRcAAAAAMLCt2r3KuZMuQO1R0bze6Oht0nvTnPu2KdWVJ4Soy8s1a/pZeuyTjxGgBgAAAAAAAAAAAAAAAAAAAAqECDUAAENZNCpt3Cj94x9SXZ0TjO5JJCIFAk5MuqxM8vudCHMgIfIajXZFod1gtMcjVVWljz77fE5M2p3DPa67ELV7nMfj3ILB7s9xJc5gGM4t9nsQO4uU/P1x49fdiA1RRyUFPFIzAeqiN1AC1K7ehqgTA9Su3oaocxGgdvUlRB0boHb1JURNgBoAAAAAAGDosTP8kMNMj8vE0UcfrWuuuUbXX3+9ysrKsrYuAAAAAGBge2rjU7r4txenDlDvkzRMUvcvWcqbY7ZLG6bF74sLUY8dq1ljZhGgBgAAAAAAAAAAAAAAAAAAAAqMCHUWRaNRNTQ0qL29XZI0YcKEAk8EAEA3Nm2S/vhHqbm5b+dHIs65pilVVDjbsRJDHLYtlZSkD1BLzmPl5VJLS/y+VOslrh0KOVFsr9e5351UM/j9TjjbspzHU8W1bdu5maaipuSxze6fTwcnRG3o+rOa1O7r2k+AujgNtAC1K9MQdboAtSvTEHUuA9Su3oSoUwWoXb0JUROgBgAAAAAAGHoeeeSRtI/Ztq1rrrlGhmHItm1NmDBBt912W5+u4/V6VVVVpeHDh2vmzJkaPnx4X0cGAAAAAAxSAy5APTX1Y7Yp1VUZOo8ANQAAAAAAAAAAAAAAAAAAAFAUiFD3w9tvv60//OEPeuGFF7RmzRo1NjZ2PmYYhiKJMc4YjY2NikajnduVlZXy+/05nRcAAElSa6v0q19JW7Z0H3bOlGXFh6y7izIHAk7c2eNJf4zf79x6CkmnW98wnFu655ZqPq/XudXUSIcOOfO56ySyLDVVeHXlBe265h1fR2C6Zwu3l6jdLtWSswI6WCaFTac/nYVfAfk9foWiffh+IclADVC7egpR9xSgdvUUos5HgNqVSYi6uwC1K5MQNQFqAAAAAACAoemzn/1st49fc801kpy/Ax4xYkSPxwMAAAAA0BfdBqglGTVO3LkYTNuZPkAtSTIkW7Ye+NgDBKgBAAAAAAAAAAAAAAAAAACAIlAkL0UeWNauXauLLrpIs2fP1rJly/TCCy/o0KFDsm077tadG2+8UbW1tZ23G2+8MU/TAwCGtM2bpSuucL5mI0Cdim2nXtswnGB1U5MU80EMKZWXS2bCjyndxa1TcSPS7nmm6YSmTbPr5vFI1dXSpZdK110nXXxxfCDbMJxzYjQpqEUXtunNUVEtPjug5VMjzjmJt8T5JV2y2aMF26Rh7ZJpS3a6p5ThU/WZPpV4nAi238OHWfTXQA9Qu9wQdaW/Mm5/pgFqV21FraaNmCYj4V/IfAaoXW6IOpVMAtSuuePnpv31JUANAAAAAACA7mTyd8AAAAAAAPTVY28/1m2A2gxKtif1Y/l21G5p06RuDuh4qckfL/+jJh42MR8jAQAAAAAAAAAAAAAAAAAAAOgBEepe+slPfqLTTz9dTz/9dNwbjQ3D6Lxl4j/+4z8kdb1Z+Xe/+52CwWDO5gYAQI8+Kn3qU1Jra2HnsG2pudkJUqdjmlJVVe/D06kCIF6vE7WuqJDKypz77q22Vvrc56Tjj3eud8QR0vjx8ef7fJ13m/y2Fn1SWjfSiWhbhrT4I21aflQoPnodG7+O8fT4dj03SQp5nXP76+jDjo6LBBOi7rvBEqB2JYaoexugdiWGqAsRoHalClH3JkDtShWiJkANAAAAAACA7nz2s5/tvF188cWFHgcAAAAAMMh87+Xv6Yonr0gboPYEJKtIAtST90hbj+zmgI7XRP35ij/rkmMuyctMAAAAAAAAAAAAAAAAAAAAAHqW/3rcAHbHHXfo1ltvjQtPS+rcjt3Xk5kzZ+qcc87RihUrJEmNjY36y1/+ooULF2Z5agDAkNfSIn33u9LTTxd6ki6WJbW1SZWV6Y/xeKTqaidYHY1mtq5pSn6/E6M2TWeNdL83DxsmXX65VFPTtc8wpJNPlvbscc5314hE1GSEnAD1mI5jbVsyDCdEfZYT9l64rST1taJRLR/frK8ssNTmkxo7DjPtvseo/R6/NjVs0rQR0zRtxDRtatgkO9070ZCkxChR0HY+AMRreHXK4acMmgC1yw1Rr69fr3GV43odoHa55+1p2aMZtTMKEqB2uSHqtfvW9ilA7Zo7fq5W7VqlQCRAgBoAAAAAAAA9euSRRwo9AgAAAABgkFqxeYWWrFiS9nFfQAoXyau9a+ulbRO6OSAmQH3R9IvyMhMAAAAAAAAAAAAAAAAAAACAzBTJy5KL3xNPPNEZoI6NT0+dOlXnn3++Jk2apO9973vatWtXxmsuWrRIK1as6FzvmWeeIUINAMiuujrp61+X3n230JMkC4Wcm9+f/hg3RN3a6hybSmxk2uNxwtbBYPfXPu44ad48qTRFdHjKFCdM3dzcuaupukSLPhbSutEJx3Z8EIUl6YYzW9QaadcFW82u0Wxb/pClv06K6ksLFBegdiWFqDOIUvs9zvfMlh0Xon67/u2eTy5yfvkVUppf637yyiuP4ZFHHp125GmKRCIyTefXy/062HhNr44fdXzGH5SSTm1FrUaWj+z3OtkwonyEzjz8TPl8vn6tM3f8XIXD4X6vAwAAAAAAAAAAAAAA0Bev735dH/3NR52NFJ89X9oqBUqS9xfCqP3SvrFpHox5OQkBagAAAAAAAAAAAAAAAAAAAKA4Dc7aXpa1tbXphhtu6AxQ27atqqoq/frXv9bGjRv1/e9/X1/60pc0YsSIXq27cOFCeTweSU7QeuXKlbkYHwAwVNXVSUuWSJs3d8aSCyrVDG1tPc9mmlJFhROM7m8At6ZGWrhQuvDC1AFqyQlZz5/fudnkt7XownatG5Pm2rYt2bZs2fr6vIieOTKi0kBEFa1hVTeHnQD1+akD1JITsO4NN0DdefmOEPV7B97r5UrFxZSpUeWjVOovlSfmn2zwGT4ZHe9283g88neEz71er0zTHLQBale2wtHFEKB2ZSscTYAaAAAAAAAAAAAAAAAUwuqdq3Xqz0+VLTtlgLq8uXgC1LUHpWqfNKY54QFDBKgBAAAAAAAAAAAAAAAAAACAAcJb6AEGgh/+8Ifau3dvXID6H//4h44//vh+rTtixAgdc8wxWr9+vSRp27ZtampqUnV1dTbGBgAMZS0t0tKl0p49UihU6Gm62HZ8SNqypHBY8vvTn+Pyep0gdTSa/ph0kdzJk6VTTpGOPtqJTHs88euEw1J7e9f2lCnSnDlq2rBWiy5o1bqR0a71u4lm24b0H+da8oely96T/nC0eg5Qx47cQ+M3MUDtCkaD3Z84AFi9znEDAAAAAAAAAAAAAAAAA8/z25/X/F/OdzZSvBSpsklqKc/vTOkc1ijV10r1kqYckMa0SHVVyccRoAYAAAAAAAAAAAAAAAAAAACKGxHqDPzqV7/qDFAbhqH//u//7neA2nXiiSfqnXfe6dzesGGDTj311KysDQAYwh58UNq9W2ptLfQkyRJD1IFAZhFq23ai1e65tt11nrv/sMOkI45w1hw5Uho9Who/Xpo+XSqJqUAnRqgbG+Mj1D6fmi44R4umv6511QnR6x5C1JbhhKdfPVz6zfG9CFD3UShaRJHxftrftl+V/spCjwEAAAAAAAAAAAAAAADkRE8B6lH7pH0j8jtTOqVB6cBhXdtbDpOmHDQ0pqxWde37OvcToAYAAAAAAAAAAAAAAAAAAACKHxHqHtTV1Wn9+vUyOoKXEyZM0FVXXZW19Y899ti47a1btxKhBgD0z+rV0ooVUjjsxJmLTWKEOhJxgtAeT/fnhcPx24bhRKjdtfx+ackSad4853vQ0NC3+QxD0bJSXdn2sNYd7pVazfjvo2F0hahtW2FJvoQl2nzSvXOlkqgUTPG0UgaoMwhSh6Ih+T3+uO3BxJKl5lCzTJmFHgUAAAAAAAAAAAAAAADIqp4C1BPrpPdH5nemdPwhKVCRvH/LcFtTSqs1xjRV11pHgBoAAAAAAAAAAAAAAAAAAAAYICj89eD111/vvG8Yhs4//3yZZva+bcOHD4/bPnToUNbWBgAMQZGI9MADzv329sLO0h074V1UkUj3x1uWFEoILnu98TFrSZo50/laXS2Vl/d+LsOQRoyQp6RU15ScJtP0SBUVUqrf+w1D7aa0v1LaW+68L8yW1O6VGkucQ7IZoHa54enBFqB22bIVVbTQYwAAAAAAAAAAAAAAAABZ01OAetqu4glQe8NSKN1Lrwxpy8EtqvRX6sCSAwSoAQAAAAAAAAAAAAAAAAAAgAHCW+gBit2+ffskSbZtyzAMzZkzJ6vrDxs2TJITuJak5ubmrK4PABhiXnlF2rtXikZ7DjsXk2g30WHbllpbk/f7fPHbxx8vjex4J5ZhSKNHS21tToy7slIqKek61uuN//5Eo86tosI5rrlZC0tmSRUVWrz/l7IqKqRAQAqHO09pl6VDHW+2skxpX7lU2y61JYwVq78BatdgDVDHiioqj1JUvAEAAAAAAAAAAAAAAIABZE/jnm4D1EfvlN4bm9+Z0vFEpEhZz8dtObhFHpPX9gAAAAAAAAAAAAAAAAAAAAADBRHqHuzfvz9ue8SIEVldPxgMxm2bppnV9QEAQ8xTTzlfiz1AbdtOKNqVbt5o1AlQJz7u9UqehDcxnX9+8vnl5c5t/HiptLRrv88XF5RWeXnyepIWVp4kSU6IurRU8vulQEDtVqQzQO2yTKm+TBoZkA6VSJEUv6Wb6ghRS32KTw8lBKgBAAAAAAAAAAAAAAAw0DUFm3TtU9fKaxmKGMkF6ukfSO8dXoDBUjAjUrS0mwNiXu/03GeeU015Tc5nAgAAAAAAAAAAAAAAAAAAAJAdFI97UFJSErcdCASyun5DQ4MkybadF5YfdthhWV0fADCE1NdL69Y596NRJ/RczGy7a8bEWS1Lam+XGhuTA9SGISX8/qyaGumUU3Iy5sLKk3T/sH+TKUPy+dReUa5DFamPtUxpf6lUE5C8VvxjtiFZ7huxCFCnVWaUEaAGAAAAAAAAAAAAAADAgNcUbNKixxdp3dsrVNtqyxuNf/zo7dLGIglQKypZ3QWoYzz3med09qSzczsPAAAAAAAAAAAAAAAAAAAAgKzyFnqAYldbWxu3vX///qyuv379+rhtItQAgD6L/T0lMdxcjBID1G1tzv1oNP38hiGVlTlfY51zjuTN3Y81C8tOkErbdG37Ezqk5o5ZOh5M7Geb0oEyqTosNfud8LRNdDojNb4a2YatUChU6FEAAAAAAAAAAAAAAACAPosNULuvhaptl+rLpIhHmvyB9N4RBR7SFZVU0sMxHa9/+uun/kqAGgAAAAAAAAAAAAAAAAAAABiAzEIPUOxGjx4tSTI6Ypdr1qzJ6vovvPBC59qSdNRRR2V1fQDAELJ5c9d9205/XDGyLCkQkILBngPUZsKPLzNmSHn4/XOYynTQDVDHzZV8szzSoVLJMo3kYHaRK/WWav7E+fIW4LNKSnw9vZsNAAAAAAAAAAAAAAAAKG5RK6orn7xS6za9mPRaqNp2acp2advhBRougWEp4wD1Y594TOdNPS/XIwEAAAAAAAAAAAAAAAAAAADIASLUPTj55JPl8XgkSbZta+XKlbKzFPZ86aWXtGnTps7tESNGaObMmVlZGwAwBG3b1nV/oEWoe1JSIpWXJweohw2T5s/P/vU6fu93PR/dqvntD/R6GVu2TMOUoYERoi71lmru+LmSpLMmnpXXELXJj6UAAAAAAAAAAAAAAAAYBDymR9fMvkZmS2vSY8M+lLYcUYChUjAsyY72dJDz5bFPPKbLZ16e85kAAAAAAAAAAAAAAAAAAAAA5Aa1vx7U1NTolFNO6QxP79mzR8uXL8/K2rfccoskJ25tGIbmzZuXlXUBAENUY2PXfWNgRI87pZvX75eqq50AdeIxlZXS5ZdLpaXZn6ekpPPu823vav6Hd/V5qagdlc/jy8ZUORUboHb1JUQ9pmyMPPL0fCAAAAAAAAAAAAAAAAAwSC2c8Qnd/xfJtLv2jd4pbZhUuJniuAHqsm6OIUANAAAAAAAAAAAAAAAAAAAADBpEqDPwiU98QpJkGIZs29ZXvvIVNTc392vNZcuW6YUXXpARE9S8+uqr+7UmAGCIi0S67hd7hNow4m9erxOc9vulsjKpqkoaPtwJTXtTRJCHDZM+9SmppiY383k80mGHqTHc1q8AtSsUDWVhqNxJFaB29SZE7ZFH5b7ybI4GAAAAAAAAAAAAAAAAFL2WQEvXxsqVkm1r4XvqDFFP2C69NbVw88WxJB0SAWoAAAAAAAAAAAAAAAAAAABgCCFCnYEvfvGLGjt2bOf2rl27dMEFF6ipqanXa1mWpa985Su6/fbbO6PWhmFo1qxZuuCCC7I5NgBgqImNNacKNxeTxAh1VZUTnK6sdCLUPl/6kPaMGdKnP527ALVrxAjVTDhKU7yjc3udAusuQO3KNETt8/iyNRYAAAAAAAAAAAAAAAAwILy++3VVf7dap/7sVGfHued2PrbwPemS1dLrx0i2OtvOhWPLCVCPSvO4IQLUAAAAAAAAAAAAAAAAAAAAwCBEhDoDpaWluu222zqD0bZta9WqVZoxY4Z+/etfKxQK9bhGfX29fvKTn2j69On6wQ9+INu2Ox8zDEN33313Lp8CAGAoiI0yezyFm6MniXFpr1cyM/iRpKZGWrhQuuACqbQ0uzOUlDjrx95KS6Vhw7T5Y/+rKWWH9+96BeLp+Ccdv+nvMUDtOmviWT1eCwAAAAAAAAAAAAAAABhKXt/9uk79+amyZeu1Pa91hag7PHiM9NOznfazq2AhaltSg9IHqDtU+6u1/t/XE6AGAAAAAAAAAAAAAAAAAAAABhFvoQcYKD73uc9p9erVevjhhztD1Lt379ZnP/tZ3XDDDTrhhBO0Y8eOuLj0pz71KTU0NOiDDz7Qpk2bJKnzcXcNwzC0dOlSffSjHy3I8wIADCKTJ0tr1jj3vV4ntGzb3Z+TL2702eNxgtORSNdjPQWlZ8+WzjxTsqzsxbVLSqTYD5GorHRuMdrCbVK4TfXBBn3uiIX67vu/0sFQY3aunydRRTtD1FFFkx4/rva4Xq1X5ilTe7Q9aT8BagAAAAAAAAAAAAAAAAw1sQFq12u7X9Op10qvPiT9zyTpho9LVopzDcWHqXPOloZtlA7N7OYYoyNAff16ja8en7fRAAAAAAAAAAAAAAAAAAAAAOQeEepeePDBB/Xhhx/q6aefltER07RtW01NTfr73/8ed6xt23rsscc677vc81xXXHGFvv3tb+d4cgDAkDB1atd9j0fy+eJDy4VmGFJZmROAtiwnRF1aKh13nNTc7Gx7vVJNjXTUUdKUKdLMmdLIkdL+/dJrr2VvlupqqbXVmSNGOBzWL3b/Wa8cekdNkRZJ0rbW3QrYQZV6y6QBFqGWukLUpkxZMW9p62s4OjFoTYAaAAAAAAAAAAAAAAAAQ02qALXrtfHSgoulF45LHaB25S1EnWGAWpJeuuolAtQAAAAAAAAAAAAAAAAAAADAIESEuhe8Xq+eeuopLVu2TN/5zndkWVZcVDo2Nh27nRietm1bhmFo2bJluuWWW3I/OABgaJgxI367tLR4ItRugNr9PdE0Jb9fuvVW6dRT8z9PSYl0xBHSjh1SzO/ft2z5iTa37ujcDkSDCthBNVlB7Wuvl8fwKGpHU61Y1KKKypTZGZDubzjaXceUmaUJAQAAAAAAAAAAAAAAgIGhuwC1JE3cIr1wrBS11Rl3TifnIWpbmrpB2nx8D0NIeuKTT+i4scflchoAAAAAAAAAAAAAAAAAAAAABUI5sJcMw9Btt92mF198Ueeff75s2+68GYaR8iYp7rh58+bpxRdfJEANAMiu2lpp1qyubZ9P8vQvNpwVpukEqM2EHzsWLChMgNo1cqR09NHO962yUk8ffFObA7skj+ncvB4FPYaaFNbeQH3naQM1vGzJkqR+B6hd2VoHAAAAAAAAAAAAAAAAGChe3/26Tvn5KWkD1OVbpfePlCJeOXFnq+c1e+hU98vUdzMLUP/5ij/r4zM+nsNJAAAAAAAAAAAAAAAAAAAAABSSt9ADDFSnn366/vd//1fr16/X448/rr///e9avXq1AoFA0rGGYWj27NlasGCBLr30Us2dO7cAEwMABrT6emn9emnzZmnbNqmxUYpEJK9XqqmRJk+Wpk6VzjxTWrfOOccwpIoKqampcHP7fFJJiTNLrHHjpH//98LMFKu8XJowQZK0bt9yqaom7uG9B+q0t22v3PeM2R3/eAyPonY039P2W1RR4tEAAAAAAAAAAAAAAABAH7gB6iQdry3yb5PaJqgz7GwbHXctqafPvTe6lsmao9+S3juhh4vKCVBfNP2iLF8dAAAAAAAAAAAAAAAAAAAAQDEhQt1PM2bM0IwZMyRJlmXpwIEDOnDggA4ePKiysjKNHDlStbW1KikpKfCkAIABJxKRVq2SnnpKeuut7o9ds8b5attSOOzc9/udW2mplOJDEnKurMyJZCcaOVK6806psjL/M3XjYPvBuO03P3xTO5p2yLadt3eZRvw7wcq8ZWqPtOdtvmwhRA0AAAAAAAAAAAAAAAD0TsoAdWw1+qAUOkKdYefOQwxnn5HHELUhafZmaQ0BagAAAAAAAAAAAAAAAAAAAAAdiFBnkWmaqq2tVW1tbaFHAQAMdKtXSw88IO3d27vzjI53B7W0SKYplZc7t3BYikazP2c6FRXO9RMddph0zz3SmDHZv2ZjoxQMZmUp27Z1oP1Aj+/qKveVqy3clpVr5hMhagAAAAAAAAAAAAAAACAzLYGW+AB14muKDkqqVFKAOpZtSrIkI8chakPSye9Krx3fw0EiQA0AAAAAAAAAAAAAAAAAAAAMJUSoAQAoJi0t0oMPSitW9H0Nv9+5hULOen6/VFUlNTfnPkRtGE70OlWAesYMaeHC3ASoJam+XvJkJ6xsGIYmVE/QpoZNiliRtMcNxAC1K6o8RskBAAAAAAAAAAAAAACAAeqnb/60ayOxEN0gqUrdBqg7mZKd4xD1yRsIUAMAAAAAAAAAAAAAAAAAAABIRoQaAIBiUVcnLV0q7dmT+nHbliIR5xYbk/Z4JK/XuRkd7xIqL3eOsywnRh2JSJWVUmurcz8X/H6prMy5ZqyaGmn+fGnKFKm0NDfXzgGP6VGVr0qNoUZZtpX0eHukvQBTZVc4HJbKCj0FAAAAAAAAAAAAAAAAUJzueOEO/eff/9PZSBWgrlRmAWpXDkPUJ22QXjuuh0Ul/fbjvyVADQAAAAAAAAAAAAAAAAAAAAwxRKgBACgGdXXSkiXSgQPJj0UiUiDgxKR74vc7oWevV6qqkpqanHi1ZTkB6qoqqb1dCgad/dlSVSWVlMQHridMkE44QZo82QllD0CmYarUU6pgNCg75m1dUTvazVm5Veot1dzxc7Vq1yoFIoF+reXz+bI0FQAAAAAAAAAAAAAAADC4XPen6/TgmgedjXQB6h5i0inlIER93DbpjQwC1Peee68WHbcow1UBAAAAAAAAAAAAAAAAAAAADBZEqAEAKLRAQFq6NDlAbdtSW5sTjM5UKOTcSkqk8nKpulpqbnYi1Jbl3K+ulgyjK0Tdnxj16NHSuHGSzyfV1HTFqMePd+6bpnPdXPD7k7e9aX60Mfvybi+HYRiq8FUoZIWSYtT55gaoJfU7RO3RwAyDAwAAAAAAAAAAAAAAALnWbYA6qr4HqF1ZDFEfvV16e1r3ixgy9LdP/U3nTj23l4MCAAAAAAAAAAAAAAAAAAAAGAyIUAMAUGj/+7/Snj3x+6LRrnh0XwSDUjjshKCrq52YdSjkrNfW5kSjPR7nOuGw8zXTGLVpSlOnSj/6kTRsWPxj69dLH3zQt5m7kxicNk3p8MPj902enD5CnaikpFeXNwxDtRW12tG4o1fnZVNsgNrV1xA1AWoAAAAAAAAAAAAAAAAgtaufvFq/ePsX6Q+ISFl5+U0WQtSTd0vvTe3+ZEOGXv3cqzr58JP7OCgAAAAAAAAAAAAAAAAAAACAgY4INQAAhbRli7R2bXxkORqVmprSR6G9XicgbRjOMdGoFIkkH2dZzjrV1VJlpROhbmtzAtWG4azj3izLWSMScdaMvbZhdN2qq6WLLpJOPDE5QJ1LXq/zPQqF+r+WzyeVlWV8uG3bilpR7W7a3f9r91GqALWrtyFqAtQAAAAAAAAAAAAAAABAah//n49r+ZblXTsSX8IVVHYC1C43RG3IqU2nkSpEPelDaduR3azdsd6qa1YRoAYAAAAAAAAAAAAAAAAAAACGOCLUAAAUSjQqrVwZv8+2pebm5AC1YUilpVJJiWSayWtZlhOXbm9PvV5NjRNx9vmckLMbmzY63mlkmk7o2T3H3e/OMWyYNH68NHu2NHFiP550P4wcKX34Yfo4dyYMQzryyK7n1w3LthSxIrJkqS3cJjvpbVzFI9MQNQFqAAAAAAAAAAAAAAAAILVP/f5TXQHqVC8VCig3r7x2Q9RSxiHqiXVSYLjkjUqRVC8J6ljnuc88p9OOOC2r4wIAAAAAAAAAAAAAAAAAAAAYeIhQAwBQKFu2SE1N8UHktjYnKB3L65UqKiRPNwFh05TKypzQdGurE5l2WZazbkWFcy2/39l/7rlO2HrvXmnfPmeW5mbnsZISqbLSWbO62tn2+VIHsPOlpEQ6/HDp4EEnpJ0YkjaM9HFpj8d5/uPGSeXlGV0ubIUlSe2R9h6OzL1AJKBVu1Zp7vi5aY/pKURtqoC/dgAAAAAAAAAAAAAAAEARu/7P1+vRdx91NvIZoHb1IkR9zE7pYK2zXdsu1ZclhKhjAtRnTzo7N/MCAAAAAAAAAAAAAAAAAAAAGFCIUAMAUChr18ZvRyJSMBi/z+uVqqrSx5UTeTzO8c3N8SHqYNCJOHtjfuvftElatEg65hhnu7lZeustKRx2jjNNJ/bcF5YlBQJSNOrcXG1tzjV64sayKyud59TeEYL2+aRRo5zZpk+PP+f4453HsyBqRxW1ogqHw1lZLxsCkYDC4bB83TzHdCFqjzyyU747DgAAAAAAAAAAAAAAABja7vz7nfrxP3/sbKR6iU27pOy8LKl7GYSoj97TFaB2xYWoCVADAAAAAAAAAAAAAAAAAAAASIEINQAAhdDUJO3YEb8vEEg+rqIi8wC1yzCc8xobk9evrOza3rHDmaO6unfr9yQUkg4edOLThiHZMe/MCoelXbsyX8s0neh0WVl2RouE5Pf6ezwuYjkBb5/PJ2/Iq4giPZyRntfw6qwjz0oZh+6N2aNmdxugdiWGqD3y9PmaAAAAAAAAAABkS319vV5//XVt3bpVTU1N8vl8Ouyww3TsscfqpJNOyujPwPOprq5O27dv186dO7Vv3z61trYqHA6rurpaNTU1mjhxoubMmaPqbP89CwAAAIC8+s4L39HNf7/Z2UgVoG6T1PPLjbKnmxD1rJ1S/cjUp9W2S/UVhiKGTYAaAAAAAAAAAAAAAAAAAAAAQBIi1AAAFMLu3fHbtu3Em2OVlUmePgaEPR7n/Pb2rn2hUHwQ2p0jm3EEy+oKUGdrvX37pMMPl7z9+7FlV9MunfjTE3XVrKv03QXfzfg8n9cnM2IqpFDPBycwZGhizURJThz6+fefl53y3Wrdmz1qtkaUj8j4+Lnj52pj3UbVBep6fS0AAAAAAAAAALLp8ccf13333aeXX35ZduLfU3SoqqrS5Zdfrq997WuaNm1anieUDh06pJdeekkvv/yyXn31Vb399tvav39/j+cZhqHjjjtOn/nMZ/TpT39ao0aNysO00sMPP6xrr7025WPbt2/XxIkT8zIHAAAAMNB985lv6u7Vdzsbqf53pVVSST4n6pAiRD1rt7Tml9Lyo6XFF0hWQqBaXq/OnXauHrroIY2rGZfngQEAAAAAAAAAAAAAAAAAAAAUO7PQAwAAMCTVJcSBI5HkY0r6+Q6mVOcnXmfv3v5dI1FbW/YC1C7Lklpb+7XErqZdmvOTOdrftl/3vHKPvv7s1yVJOxp36Il3n9ADrz+gf+75pzYf3KzNBzdr+8Htagw0KhQNybIs+bw+VXt7F+s2ZKimpCZuX+J2JnoboHb5fL5enwMAAAAAAAAAQLbs3r1b8+bN07/+67/qpZdeShuglqTm5mY99NBDOu6443T77bd3e2wu3H333br44ot199136/nnn88oQC1Jtm3rrbfe0k033aSjjjpK3/ve9xRJ9Xc+WbRr1y599atfzek1AAAAgKHg2uXXdgWoUylUgNplSrYtyZaO3iut+YWze+F70v1/kczY/23yejXruHP12CcfI0ANAAAAAAAAAAAAAAAAAAAAICVvoQcAAGBIqq+P304MEni9ktnPz4owTWed2LUjEWefa9++/l0jUSgUv23bkmF0bRtGZs/L54uPaJeVScOHx6+TITdA3dDe0Lnvnlfu0a7mXTpm5DFqD7fr8Q2Py5Qpo2PdqBVVxI4oakcVtaMyLENRM/O4dqoAtcsjj6LKbK2+BqgBAAAAAAAAACikTZs2ad68efrwww97dV4oFNItt9yiDRs26Fe/+pU8Hk+OJsy+lpYWLVmyRH/729+0fPlylZWV5eQ61157rRobG3OyNgAAADBUXLv8Wj381sNdOxI/B6dZUm5+pO8dU5paJ737UPzuhe85XxdfIFmVFZo17Uw99snHVF1Snf8ZAQAAAAAAAAAAAAAAAAAAAAwIRKgBACiEtrb47WhClDhbUQWPJz5CnXidxDn6y+dL3mfb8fctq+d1ysulYcO6tquqpDFj0h/v9aa8dqoAtevRtx/VqYefqv3t+7W3Za+C0aBqy2tTvhkrZIVkZTJ3B0OGmoPNkqTmYLO2H9ouSRnHp11v73u7V8fHsmTJTnqHXLw3974pjzL/d62n+aPRqLY1bct4vViWLNW31fc4c1+E7bAkKaKIopGogpGg/v7+37N+HQD5191/l3rz3zcAAAAAAABkz4EDB7RgwYKUAeoTTzxRl156qSZNmqT29nZt2rRJv/nNb7Rnz5644x599FGNGjVK3//+9/M0dbyKigqdcMIJmj59uqZMmaLa2lpVVVUpGo2qqalJmzZt0qpVq7R69WrZdvyfaz/zzDNauHChnn766c4Pv8yWn/70p/rb3/6W1TUBAACAoeZbz36rK0Cd6mUqTZLK8zlReiOapU3jpVOvlV5NDFFvNKQnn9DDax/W/3z8fwhQAwAAAAAAAAAAAAAAAAAAAOgWEWoAAAohMQadKFtRgp7W6WmO3iovd65pZz8k3K0RI5J2dRegdoMQq3evls/0qdRbKtu2tbd1rySpwlfReWzUjvY6jGzJkilThvr+60g8FQD6p7fhfwAAAAAAAGTH5z//ee3YsSNuX1VVlX7961/rkksuSTr+zjvv1J133qlly5bF7b/vvvt03nnn6fzzz8/luJKkkpISzZ8/X+eff77OOeccHX/88fJk8IGhW7Zs0Ve/+lX9+c9/jtv/zDPP6Gc/+5k+//nPZ23GDz74QDfddFPndk1NjcaMGaONGzdm7RoAAADAYHfLylt056o7nY0iD1CXBKWG4c791xJD1CtWSOeco4WSLpl+iTwmrzMCAAAAAAAAAAAAAAAAAAAA0D2z0AMAADAk9RQuyFbEuad1Mggo9IrHIw0blt01e1JRIR1+eNyu7gLULjcsHbbCao+0y7ItWbalD1s+1L7WfYpGowpb4V4HqF2WrD6fS4AaALIjEokUegQAAAAAAIAh5dlnn9WTTz4Zt8/v9+u5555LGaCWJJ/Pp1tvvVXf//73kx678cYb8/JnPLfddptWrlypm266SXPmzMkoQC1JU6ZM0R//+Eddd911SY/dfffdWZvPtm1de+21am5u7tx37733asyYMVm7BgAAADDY3bLyFt3+0u3ORoqX9BgHVTQBajMiBSvi9702Xjr1p6c4rwc755zO/QSoAQAAAAAAAAAAAAAAAAAAAGSCCDUAAIVQnvCOpcSYQTSaneskrpN4ncQ5sqGsTBo1SqqslEpLJZ+v61ZSItXUOMd98IH0yivS8uXSL38pPfKI8/Xxx6Vnn5Xefltqb3fWq6hw1ou9jRghHXmkNH26ZHb9SNNdgNqyLdm2nRSHjlgRRe2o8wYzW2oMNqo10ipLVr++FX0JUROgBoDsidhEqAEAAAAAAPLp9ttvT9p366236qSTTurx3C996UtasGBB3L4tW7boN7/5TdbmywXDMPTf//3fOvLII+P2b9++XW+88UZWrvHAAw9o5cqVndvnnnuurr322qysDQAAAAwF33z2m90HqBskuyq/M6UVlazSmG2j6/bantd06s9OLdBgAAAAAAAAAAAAAAAAAAAAAAYyb6EHAABgSKqtdSLMLm/Cb8mRiGRZcXHlXrMsZ51YidcZNarv63fH65WqqyXDkOyOd25Fo9KePdI//ym99Vb88dFo13GStGuXtGqVc3/WLOmKK6SPfMQJWXejpwC1pG6j0JYsmTJly3ai1FnghqwNGb06vr8yjV9n63rZ0Ntgd1+vkY/rACgO7n/7AQAAAAAAkHvr16/Xiy++GLdv5MiRuummmzJe46677tKzzz4bt++BBx7QZz7zmazMmCslJSX65Cc/qXvvvTdu/7vvvptRgLs727dv19e+9rXO7YqKCv3sZz/r15oAAADAUHLdn67Tg2sedDZSvGTEt18KD8vrSOlFJZV0f8jre15XS6BFlaWVeRkJAAAAAAAAAAAAAAAAAAAAwOBAhBoAgEIYMyZ+OzEOLUnBoFRW1vdrBIPJ+xKvM3p039fvjS1bpJUrpeZmye/v3bnr1klvvy397GfSHXdICxakPCwUCenEn57YbYA6E7mKMhsyMoofm+pHeDxGVD1HtD3yZH3N/vDIk/NrGB3/ABgafEb3H14AAAAAAACA7Pntb3+btO/qq6+Wvxd/L3DiiSfqxBNP1Jtvvtm5b/Xq1dq+fbsmTZqUlTlz5aijjkra9+GHH/ZrTdu2dfXVV6u1tbVz31133aWJEyf2a10AAABgqLjjhTu6DVCX75PaRuR3prQs9RigNmTo1c+9SoAaAAAAAAAAAAAAAAAAAAAAQK9lp3IIAAB65/DD47cNIznO3N4uRfsY5I1GnfNj+f3OdWKNH9+39TMVCEh/+Yu0fLnU1NSvpUK7P5A++1npS19KuZbf69dVs65K2t+bAHUuWbKyFpjORG8D08Vy3ULNDWBw8vmIUAMAAAAAAOTLX//616R9n/zkJ3u9TqpzUq1dbAKBQNK+3gS4U7n//vv197//vXP7jDPO0A033NCvNQEAAICh4tlNz+o///6fzkaKAHVZXZEFqFu6P8QNUJ98+Ml5GQkAAAAAAAAAAAAAAAAAAADA4EKEGgCAQqiuliZMiN9XWpp8XGurZKd4F1R3bNs5L1Hi+hMmSFVVvVu7NxobpV/+Ulq/PvXjti2Fw04su62t6xYMOvtjnveu8oiOuLJeXz+lSfr976Xzz5d27kxa8rsLvqubTr+pc7tYAtQuS93Pk88Ac1+u1dM5/Zk/H8/dkJHXEDgAAAAAAAAADBWtra365z//GbevvLxcJ5xwQq/XOvPMM5P2vfjii32eLV9ef/31pH1HHXVUn9fbunWrvvnNb3Zul5aW6qGHHpKR+IGjAAAAAJK8vvt1nffoec5GipdeVe6W2kfmd6a03AB1qiC24X4hQA0AAAAAAAAAAAAAAAAAAACgf7yFHgAAgCFr9mxpx46uba9XKilxIsyuSERqbpYqKiRPBpHeaNQJUEci8ftLSpz1E6+fK4cOSY8+KrW0JD8WiUiBgBQKde2LDW2Hw85Xw5D8fu06zK85i5rVUGLrnllOXPu7r22XLrtM+sMfpCOOiFv+uwu+q2A0qPtevS+rTylT3UWOq/xVKvGUSJJCkZCidlQeeWTIkM/ny9lMkUhEIYVk2qY88sjn7/+1QqGQIorIa3hlypQ38d8vSeFwWC2RFoUVjttvypQtW5WqlM/nS3mue35EEZmGKUWlsBVWUEFZsuSVV+VGuUpKSxSNRhWMBmVHbdmy5Tf8Mj2mvD6v7Kgtw2PItm2ZJgFqYLDZ27Y35f58Rv0BAAAAAAAgrV27VpYV/0GMJ510Uto//+3OySefLJ/Pp3C468+W33zzzX7PmEubN2/W8uXL4/aVlpbqrLPO6tN6lmXp6quvVltbW+e+2267TdOmTevXnAAAAMBQ8Pru13Xqz0+VLTtlgHrYDunQuPzPlVJ3AeoOBKgBAAAAAAAAAAAAAAAAAAAAZAMRagAACmXKFKm62olMu8rLnQhzbKghEpEaG6WyMicmnSqka1lOvLq9Pfkx03TWjVVT41w/FwIB6fe/Tw5Q27YzY2Iguxu7/AHN+VRADSVd+7pC1JKuuEJ6+mnn+9ihKdikjQc2qsJXodZwa3+eSZ94Pck/XhkyNG3ENNVW1OZ9HgAYzA58cEB2zAcZWLK6/TAAAAAAAAAA5MZ7772XtG9KH/8ewu/3a/z48dq+fXvnvq1btyoSifQpap1r27Zt08UXX6xAIBC3/+qrr9awYcP6tOZ9992nF198sXP7pJNO0pIlS/ozJgAAADAkvLP3nW4D1OU7iyhAbav7ALXhfCFADQAAAAAAAAAAAAAAAAAAACAbqHMBAFAoHo90zjnx+wxDqqpyviZqb5cOHZKamqTWVqmtzfna1OTsTxWgTrfeOec418+F555z5ollWc684XDGy+yqtDTn36WGsuTH7pnVqq+f0iRt3y7dckvn/qZgkxY9vkjr6tapuqRaftPfxyfRd+Fo/HMkQA0AAAAAAAAAGOzef//9pH1HHnlkn9ebMGFC3HY0GtWOHTv6vF62BYNBrV69Wl/+8pc1Y8YMbdy4Me7xSZMm6a677urT2ps2bdK3vvWtzm2fz6eHH35Ynlz9vQ4AAAAwSGyo36ATfnpC2gB1WZ3UNjb/c6VkS2pW+gB1hzOOOEMnjD0hHxMBAAAAAAAAAAAAAAAAAAAAGOS8hR4AAIAhbcoUafZs6d13u/Z5PFJ1tdTc7MSbE0Uizq0npukEqBOjBB/5iHTUUf0aO6133pHWr4/fZ1lOINtO8e4uSfJ6nVkl5xjL0q6ycNoAteueWa2SpO/+7nfShRcqes58XfnklVpXt06SdChwSBE7g+9TltmyFY6G5fP4CFADAAAAAAAAAIaEurq6pH1HHHFEn9dLde7evXs1efLkPq/ZWytWrNBNN90Uty8Siai5uVl79uxRJM3f1UydOlV/+9vfVFNT0+trWpalq666Su0xHzz6rW99S8cdd1yv1yo2P/rRj/TjH/8459fZunVrzq8BAACA4rOhfoNmPThLYSuc8nF/ndQ+Ms9DpWNL+kDSlG6OMSSf6dPyRcvlMflAGgAAAAAAAAAAAAAAAAAAAAD9R4QaAIBCu/BC6dAhac+ern0ej1RTI7W1ScFg79csKZHKyyXDiN8/bpx09dXSmjX9GjmlSER64on4fbadOkBtGFJpqTOnaUrRaOcxuyoszbkyoobSNNHqGPfMalXICuvrX/m/euInX9boitFqC7cpEAkoFA3JVs9r5ILH9BCgBgAAAAAAAAAMGQ0NDUn7Kisr+7xeqnMPHDjQ5/X64tChQ1q3bl3Gx1dUVOgLX/iCbrvtNlVUVPTpmvfee69eeeWVzu3jjjtOS5cu7dNaxaa+vl7vxn4oKwAAAJAl7aF2zf7J7K4AdcLLhbz7pFAxBaij6jFALUmvXvuqRlYUy+AAAAAAAAAAAAAAAAAAAAAABjqz0AMAADDklZZKd94pjUx405BhSBUVUnW15Pdntpbf7xxfUZEcoB450rlOpuEDy3JuiQHpdF55RUqMTASDyed7vc6MZWVOgDqGE6BuThmgtgzJNpJ26wdzQvrupD0a8eIbOrLmSJ0/5fyCBqi9plcew0OAGgAAAAAAAAAwZLS2tibtKysr6/N6qc5ta2vr83q5ZBiGPve5z2n79u265557+hyg3rBhg2655ZbObY/Ho4cfflg+ny9bowIAAACDUpm/TBdMXOAEnhNfLnRIigwvwFCp2JLCkkq7OabjtVGPfeIxzRk3Jw9DAQAAAAAAAAAAAAAAAAAAABgqvIUeAAAASBozRrrnHmnpUmnPnvjHvF6pstKJOUcizi0a7Xrc43GO8XqTw9OuceOcAPWYMVJTU/ezRCJSW5vzNRCQwmEnFl1eLpWUONHsgwed/bF++UvnHDc67c4by+ORqqpSztlTgFrqeJ+YIRkJh/zghLCu2vRXTTx9unY17SpYgNqQQYAaAAAAAAAAADDkhBP/zkBSaWl3ZbXupYpQh0KhPq+XS7Zt6+c//7n+9Kc/6Ytf/KK++tWvqqqqqldrRKNRXXXVVQoEAp37brrpJp100knZHhcAAAAYVBrbGlVzoEnLf9yghRNN/WGa1fXgIUkV6gw7F1y7pOpuHu+Y895z79XlMy/Px0QAAAAAAAAAAAAAAAAAAAAAhhCz0AMAAIAOY8ZIP/iBtGBB6scNQ/L5pLIyJ0rt3srKnP3pAtQLFjjrjhmT+vFo1AlKRyJSMCgdOiQ1N0stLc4tGJTa2514dWOj89UNVbu3ujpp+3YnPO3eUsUgSktTzhkyLZ34qe4D1C5bkp3iqf7iiAO67+V79fLOl1M/zzwwDIMANQAAAAAAAAAAcv7MPJvn2nZ+P4Dyk5/8pGzbjru1trZq9+7dWrFihW677TZNmjSp8/h9+/Zp2bJlOv744/Xqq6/26lr/7//9P7322mud29OnT9eyZcuy9VQAAACAQen57c9r2H8N09T7pkgbN2r5Y9JlGzoePKTiClC3Kn2A2lDnnLd/5HZ99V++mqehAAAAAAAAAAAAAAAAAAAAAAwlRKgBACgmlZXSkiXSsmXpo9GZGjPGWWfJEmfdRMGgtG+ftHevVF8v7d8vHTjgBKjb27sC1JGIc7xlOfdbW51odazdu+O3bduJW8fy+yUz/kePqOEEI/yWqave9SWNmBig7lxeqUPUDaFG2cpvhMJlyJDf41dtRW1nCCPfQQwAAAAAAAAAAArB50v+M/729vY+r5fqXL/f3+f1sqW8vFzjxo3TOeeco1tuuUVbt27VD3/4Q1VUVHQe8/777+vcc8/VqlWrMlpz/fr1ccFpwzD00EMPqbS0NNvjAwAAAIPG89uf1/xfzpdsaUtlSFM/1SDZtpb/TjpzrYorQN0sqSbNYzEzfmHOF3TzvJvzMREAAAAAAAAAAAAAAAAAAACAIchb6AEAAMiL+npp/Xpp82Zp2zapsdEJKnu9Uk2NNHmyNHWqNGOGVFtb6Gml006TTjpJeuUV6amnpHXrMj939mzpooucNbxpfqsPBp3gdCzbduLStu3cXG5M2uPpuh8IxJ9bVxe/bVnJ10wIUDT5LF350WZds6FUCzd79d2XyyVJ95wYcpbo4Y1gttT5RixbklkEvedQNKQtDVvUGm7V6IrR2tu6VzNqZ8hr8iMXAAAAAAAAAGDwKi8vT9qX7Qh1bOi5WBiGoeuvv17HHXecPvaxj3XO3dLSokWLFumtt97S8OHD054fiUT02c9+VqFQqHPfDTfcoH/5l3/J+ez5Vltbq2OPPTbn19m6dauCwWDOrwMAAIDCiQ1Qu7YcJk293taffyS9OEPFE6CulzS258O+MOcLeuCSB3I+DgAAAAAAAAAAAAAAAAAAAIChiyIiAGDwikSkVauciPNbb3V/7Jo1XfdnzXIizqefnj7inA9er3Tmmc7NjWhv2SJt3Zoc0T7qKGnKFGnmTGnkyJ7XbmxMfT07oeRsGM4+y3IC1Kbp7Hdj1K76+q7jDcOZLZbH07WWbavJZ2nRx1q07rCI1tS2StFSLdzq13dfLlfQI903J6RMxE5rGYV9/5gtW7KlHU07ZBqmGtob5PP49E79O5pZO5MQNQAAAAAAAABg0DrssMOS9rW0tPR5vVTnprpGsTjrrLO0bNkyff3rX+/ct2vXLt17772644470p53991368033+zcnjhxou66666czloo119/va6//vqcX2fGjBl69913c34dAAAAFEZngDqFLVXS8d9Q0QSojTrJHt/dAc6Xq467igA1AAAAAAAAAAAAAAAAAAAAgJyjhggAGJxWr5YeeEDau7f3565b59xGj5auu0467bTsz9dbtbXSvHnOrb+i0eRItOSEor1eKRhMfqwjHi2fr+vYWG1tXffd2HQsN15tGGryRLToY61ad5gTsrZka/G8dknSOTt92jjCUkVIavX3/qnZPR+SU3bHBJZtSZLC0bBaQi2EqAEAAAAAAAAAg9ro0aOT9u3atavP6+3cuTOjaxSTL33pS7rjjjvU3Nzcue+nP/2pbr/9dhlGcgVv165duv322+P2/exnP1NFRUXOZwUAAAAGorgAdeKLhN6SdLQUNvM9VRp7MwtQL5yyUI98/JG8jAQAAAAAAAAAAAAAAAAAAABgaKOECAAYXFpapAcflFas6P9ae/dKy5ZJ554rfeELUmVl/9csZqYpDR/uBKVNU7Is5+YqKemKUJeWxp8bjXa/dkdcoanU0KILWrVuZPzxliFdP69NY9pN1ZXbqg4bkmGr1dffJ1VYtmxC1AAAAAAAAACAQW/SpElJ+z744IM+r7djx464bY/HowkTJvR5vXwoKSnR/Pnz9cc//rFzX319vd59913NmDEj6fj9+/crFAp1bvv9ft100029uuaWLVuS9l1wwQXy++M/6fPb3/62Lrnkkl6tDQAAABSTuAB1oo4AtYokQG3ul6zDuzmgI0D9b8f+m37zr7/Jy0wAAAAAAAAAAAAAAAAAAAAAQAURADB41NVJS5dKe/akfty2pUjEucVGkz0eyet1bh2x5DgrVkjvvivdeac0ZkxuZs8n9/lGIsmPVVZKhx0mNTU52+73ye+XqqqkYFBqaJB27ZJeeskJVkej0r59UjjsxKtN0/lex7LttAFqyYk1HyyT9lZYqgkZKo1I1WFTkkWIGgAAAAAAAACAIjd9+vSkfakCyZkIhULauXNn3L6jjjpKXm/x/9n6xIkTk/Zt27YtZYQ6USgU0rp16/o9w4YNG5L2NTQ09HtdAAAAoFCSAtQJL0sqpgC1r0EKd/fyso6Xpn3xhC/qRxf/KC8zAQAAAAAAAAAAAAAAAAAAAIBEhBoAMFjU1UlLlkgHDiQ/FolIgYAUCvW8jt8vlZY6keZYe/ZIN90k3XPP4AhRDxsm7d8fv6+1Vdq5U6qvd+6HQpJldT2+c6cTl3aD3X6/s23bToA6Gu2KVidEqJt8lhZd2JYyQC1JhgyVh201lkiNfluSodIoIWoAAAAAAAAAAAaCOXPmyDRNWTF/r/DGG28oEon0Oh79xhtvKBwOx+074YQTsjJnrpWWlibta25uLsAkAAAAwOCQFKBOFJTkyds43fIdksKj0jxodN39zrzvaOlHluZjJAAAAAAAAAAAAAAAAAAAAADoZBZ6AAAA+q2lRVq6NDlAbdtOTLmpKbMAteQc19TknJcQUtb+/c51WlqyM3ch+f3SyJGSYUjbtknLl0uPPSatXy/t2+c8/9iwtHuzLOd71NbmfB+iUWeNxICE0fXOqaYSadFlESdAbRjJN0m2pJKooeqgc06j31a7x5Jt26oKGSrP8JevmCWGqCNWpNAjAQAAAAAAAACQFRUVFZozZ07cvtbWVq1Zs6bXa7300ktJ+84666w+z5ZP+/btS9o3cuTIAkwCAAAADHyNbY0DJkBd2iSF0/3oHxOgvuMjdxCgBgAAAAAAAAAAAAAAAAAAAFAQRKgBAAPfgw9Ke/bE74tGpcZGKRjs25rBoHN+NBq/f88e6Sc/6duaxWbHDun3v5dWrHDC05bVu/MjESdE3dyc9pCmEmnRJ6V1Y+REvRPD3rat2D2lMSHqJr8U8DqP+hNOS8vo+ZBCIkQNAAAAAAAAABisPvaxjyXte/zxx3u9TqpzUq1djFavXp20b8yYMSmPnT17tmzb7tftIx/5SNK627dvTzruqquuyvZTBQAAAHKuprxGU4ZPSf1gQMUToG6WAiN6Pu4bp31D35r3rdwPBAAAAAAAAAAAAAAAAAAAAAApEKEGAAxsq1c7EeVY0ajU1JQ+quz1SiUlUmmp89XrTX2cZTnrJIaon33Wue5A1doq/elP0qOPSgcOJIehe8uypEAgKTIdNaQrP94RoHbFHRMfoHYlhqgbS2wd8vdvxGISG6JeX79edn+//wAAAAAAAAAAFIErrrgiad8jjzyiUCiU8Rpr1qzR66+/Hrfv1FNP1aRJk/o9X66tXbtWGzZsiNs3bNgwHXPMMQWaCAAAABj4Nt+4OT5EbcsJUKd5uVe+lbVJgeHdHGA4X645/hrddd5deZkJAAAAAAAAAAAAAAAAAAAAAFIhQg0AGLgiEemBB+L32bbU3JwcVjYMqaxMGjZMqq6WKiqk8nLna3W1s7+sLPka6dZ78EHn+gNNXZ301a9K//ynM78bhU4ISPdLx1oeGbpmjWQmLtt5vfRLxIao2z3qfEPWYOExPTJkaFzlOBnGIHtyAAAAAAAAAIAhaebMmTrjjDPi9tXX1+u///u/M17jm9/8ZtK+6667rt+z5Vo0GtWNN96YtP/CCy+Uz+crwEQAAADA4BEXom5X0QSoK9uk9upuDogJUD+08KG8zAQAAAAAAAAAAAAAAAAAAAAA6RChBgAMXK+8Iu3dG7+vrU2yrPh9Xq8Tmi4rk8w0v/WZpvN4TY1zfCzLctaNVVcnrV7dv/nzra5OuvFGaetW5zllKzqdjm1r4XvS/X9JE6JO0V62Y/4piUreqDIPUA+QlrPX9MpjeDRtxDTVVtQWehwAAAAAAAAAALLm5ptvTtp366236p///GeP5/7whz/UM888E7dv8uTJ+tSnPpXRtSdOnCjDMOJuL7zwQo/n3X///Xr22WczukYqwWBQV155pV588cW4/YZh6IYbbujzugAAAAC6bL5xs9QqqUg+46WkXWrJIEC9dO5SAtQAAAAAAAAAAAAAAAAAAAAAigIRagDAwPXUU/HbkYgUDMbv83qlqirJ48lsTY/HOT4xRB0MOut3d/1i1tIiXX+9tG1bcqQ7x9KGqK3uI9jNPink7faQAYcANQAAAAAAAABgMDvvvPN06aWXxu0LBoM6++yz9ec//znlOeFwWLfffrsWL16c9NgPfvAD+Xy5rcy9+eab+uhHP6rTTz9dP/7xj7U38QNQ0wiHw3ryySd13HHH6bHHHkt6/P/+3/+r0047LdvjAgAAAEOS5z8MyV/oKRxlQSlY1c0BHQHq/zzjP/WdBd/Jy0wAAAAAAAAAAAAAAAAAAAAA0JNBlnYEAAwZ9fXSunXx+wKB5OMqKiTD6N3ahuGc19iYvH5lZdf22rXOHLVFHhNuaZE+/3npgw8KNsLC95yviy+QrJhfDsPuClHbct6DZUhq8kttRfLGsWzxGgSoAQAAAAAAAACD389+9jO9+eab2rVrV+e+pqYmXXLJJTrppJN06aWXatKkSWpvb9fmzZv1P//zP9q9e3fSOjfccIMuvPDCvM29evVqrV69WosXL9YxxxyjOXPm6Nhjj9WIESM0bNgwGYahpqYm7dmzR2vXrtU//vEPHThwIOVaZ599tr73ve/lbXYAAABgIGtsa1RNeU3ax73/YcgqyeNA3SgLSu0V3RwQE6D+9jnfzstMAAAAAAAAAAAAAAAAAAAAAJAJItQAgIFp/fr4bduWQqH4fWVlksfTt/U9Huf89vaufaGQc53YqPX69dK8eX27Rj7U1UmLF0vvv1/oSdKGqF3uria/1NrbAHUvO+OFELWjmjacADUAAAAAAAAAYHCrra3V3/72N82fP191dXVxj73xxht64403elzj8ssv1/e///0cTdg9y7K0fv16rU/8u6gMXXbZZfrNb36jsrKyLE8GAAAADD7Pb39e8385X1OGT9HmGzcnPV66xFC0SH60LgllFqD+xtxvEKAGAAAAAAAAAAAAAAAAAAAAUHTMQg8AAECfbE5401EkknxMSUn/rpHq/MTrbNnSv2vkUl2d9NWvSjt3OvHsIrDwPen+v0hmmnEGa4BakjymR3tb98oukl8LAAAAAAAAAABy5ZhjjtFrr72mM844o1fn+Xw+3XrrrXr00Ufl6esHjfZSRUV3FbnMHXHEEXr88ce1fPlyAtQAAABABtwAtSRtObhFU38wNe7xiq8aChbJj9b+sBQs7+aAjtcvfWHOF3TXgrvyMhMAAAAAAAAAAAAAAAAAAAAA9AYRagDAwLRtW/x2Yhza65XMfv42Z5rOOt1dZ+vW/l0jV1papKVLnRB1NFroaeIs3Gjo/qeTQ9SDOUDtNb3yGB6NqxwnwxggQwMAAAAAAAAA0A9HHHGE/vGPf+ixxx7T3Llzu/3z8crKSl199dV66623tGzZMpn9/TueXvjRj36k9evX65577tHFF1+sMWPGZHzu6NGjdcUVV+gvf/mLtm/frk984hM5nBQAAAAYPGID1K7YEHXNlw21dRd9ziNfRAp1F8Pu+F+d2z9yux645IG8zAQAAAAAAAAAAAAAAAAAAAAAveXt+RAAAIpQY2P8dmJo2ePJznU8nvjwdOJ1EucoFg8+KO3ZIwUCkm33fHyeLdxoypalG8+XLEOyJLX7ernIAGk5ewyPPIZH00ZMU21FbaHHAQAAAAAAAAAgbwzD0OWXX67LL79c+/bt02uvvaZt27apqalJXq9XI0eO1DHHHKOTTz5Zfn9vP6ky3vvvv9/nc4899lgde+yxWrJkiSTpww8/1NatW/X++++roaFBra2tsm1bVVVVqqmp0ahRozRr1iyNHTu2XzP31wsvvFDQ6wMAAAB9kSpA7dpycIuGLTbUVJPnoToYkmJfaeWJSOHS7k8wZOiZf3tGC6YtyPF0AAAAAAAAAAAAAAAAAAAAANB3RKgBAANTbBg6FSNLheKe1ulpjljRqNTe7ny1rK79bW3SP//Zt/li+f1SRYX07rvSM8841wiH+79uttm2ZBhauNHQH6bbWnGU820e0SYdKJfsTH7pUhzjM33ymB4FIoGsj9wflm3pqGFHEaAGAAAAAAAAAAxpo0aN0kUXXVToMTIyduxYjR07VmeccUahRwEAAAAGlZVbV+rcX5+b9vHhddLBw/I4UAJbXSFqb1SKdBeglhOgfvVzr+rkw0/Ow3QAAAAAAAAAAAAAAAAAAAAA0HdEqAEAA5O3h9/CbDs71+lpnZ7mcAWD0sGDThjaMOLXjUalurq+zxjLsqRf/MJZv1gC1G7IO/Y527aWH23ruckdh9iS1zA0os1WQ08h6jSPeUyPfKZPUTOqsFUkz12SaZiqa6vTyIqR8pr86AUAAAAAAAAAAAAAAICh56mNT+ni316c9vGRe6T9RfAZ77akmnbp0PekhZdLfzgm9XGGQYAaAAAAAAAAAAAAAAAAAAAAwMBhFnoAAAD6pKYmftvjid+ORrNzncR1Eq+TOEe6NdwAda5t3iwdOOAEny0rezHu/jJN59YRpF5+tK0bz5eshKC0KSdIncSIuaURjAQViAQUsSJZGjo7onZUTcEmvVP/TtHNBgAAAAAAAAAAAAAAAORaTwHqcR8UR4BakmRJ5W3O3eW/ky7bkHyIz/TprS+8RYAaAAAAAAAAAAAAAAAAAAAAwIBBhBoAMDBNnhy/7fXGb0ci/Y8+W5azTnfXOeqontdpb89PgFqS1q51vtp29kLc/WXbnfFpGYaWH2No8QWSZXYVpW1DCnukhjLJiv3ppIfwdNxlZCtshWWrSMLbMSJWRE3BJq2vXy+7WMLgAAAAAAAAAAAAAAAAQI71FKCe8460Z1weB+qOJek96cPR0tQb5LzW6XFTl73XdYjP9Gnddes0c/TMQk0JAAAAAAAAAAAAAAAAAAAAAL1GhBoAMDBNnRq/nRiHlqRgsH/XSHV+4nWmTOl5nXA4fjsxQmwY/b+VlDhr7dzZta+YYscdsyyfbmvx+bYsw5BtSLZhyDYMRT2mGsqkqEdd4ekM49MDRcSKqMJXIcMYZE8MAAAAAAAAAAAAAAAASGHnwZ3dBqhPXiutmZ6/ebrVEaDW8c7mlsOkqdd3vObpSZ8uC06U3+PXuuvW6ZjaYwo2JgAAAAAAAAAAAAAAAAAAAAD0RYpiJwAAA8CMGfHbhiH5/VIo1LWvvd3Z5/H0fv1o1Dk/lt/vXCfWzJk9r+XzJc8aG4i2rP4Ho/1+ac8eyTS7rlFMbDsmQJ3i8SIbNxdMw9Te1r2qKalRbUVtoccBAAAAAAAAAAAAAAAAcqYp2KTP/+XzMg1Tlm05O2NeInX6m9IrswozWxJbcQFqlxOitrT51F9q+ZVXqj3UrjJ/WSEmBAAAAAAAAAAAAAAAAAAAAIB+MQs9AAAAfVJbK81KeBdSaWnyca2tvQ8827ZzXqLE9WfPlkaO7Hm9srL8RKF37ozf7m/YOouWT7fSB6glyTBV6k3x6zeIWLalqB3VpoZNqm+tL/Q4AAAAAAAAAAAAAAAAQE40BZu06PFFWle3TqO9w2RGFRegnr22yALUG5QUoHZtOUyaemCZJBGgBgAAAAAAAAAAAAAAAAAAADBgEaEGAAxcF10Uv+31SiUl8fsiEam5WYpGM1szGnWOj0Ti95eUOOt3d/10PB5p+PDch6h3787t+n20/Ghp8flKH6CWZHlMRRK/54NQxIoQogYAAAAAAAAAAAAAAMCg1Rmg/nCt1NQkHTqk0QFTpuU8PudNae3Mgo7YxZb0ntIGqNXxeqctB7eosa0xT0MBAAAAAAAAAAAAAAAAAAAAQPZ5ez4EAIAidfrp0ujR0t69XfvKy6VwWLKsrn2RiNTYKJWVOTFpM8VnMFiWFAxK7e3Jj5mms26sMWOk007LfNbSUmnUKKmtzQldx87n90u1tZmvJUmtrfHbFRXO7G7o2jByH73OwPKjpcUXpAhQG4acd3E5gl5LYQ3+CLXkhKhlSpsaNkmSait6+WsPAAAAAAAAAAAAAAAAFKHOAPXuf0oHDzqvk+owOmBq9HuW1swq4ICxbGn6i9LG+SkeS3it03OfeU415TV5GQsAAAAAAAAAAAAAAAAAAAAAcoEINQBg4PJ6peuuk5Yt69pnGFJVldTUJNl2/PHt7c7N65U8HudY23be7BRJE0B210sMOl93nbNOb3g8zlqmGR+hrqmRTj65d2vV1Tlv1HING9b1vNy5U8W28yhqSA/PSRegjmd6S9L/GgxCUSsq02NqT8sejSwfKaMIguEAAAAAAAAAAAAAAABAX0WtqK588sqOAHWDFLXiHp/whqVX5xZouES2NP2lFAHqFC/hee4zz+nsSWfnZSwAAAAAAAAAAAAAAAAAAAAAyJXC1ikBAOiv006Tzj03fp/HI1VXp48wRyJSMCgFAs7XdPFj03TWccPOrgULpFNP7f/s2ZYYxS5whNpjS//zpDSrLuGBhOBy1OeRbZoq95Xnb7gCMmTI5/Gp0l+pGbUzCFADAAAAAAAAAAAAAABgwPOYHl0z/QqZBw+lDlCfXpi5ktjS9FekjWfLiU7H3hIQoAYAAAAAAAAAAAAAAAAAAAAwWBChBgAMfF/4gjRuXPw+j0eqqZFKSvq2ZkmJc35igHrcOOnf/71va+ZaTU38tt/f6yWiWeohu+tUB6XHHpdm7e14IEVwOVzi67zv9/R+5oEkNkA9s3amvKa355MAAAAAAAAAAAAAAACAItbQ0iBJWvj/vab7/14h0+567IhXOgLURfI57bPfljZ+RD3OQ4AaAAAAAAAAAAAAAAAAAAAAwGBChBoAMPBVVkp33imNHBm/3zCkigqpujrzILPf7xxfUZEcTB450rlOZWV25s62yZPjt73elNHndJpKpMuukJYf3b8xlh/trNPU0f+uDhl67HFDs/YZSfNYHkNRf3zou8RTIp/p02BDgBoAAAAAAAAAAAAAAACDzVMbn9Jh9x6msd8ZIf3+91r4fqnuf7lGpi1NWGXptbNUNAHqa9+foDV/sjVl+JRujyNADQAAAAAAAAAAAAAAAAAAAGCwIUINABgcxoyR7rlHGjcu+TGv1wlHDx8uVVVJZWVObNq9lZU5+4cPd47zpogDjxvnrD9mTO6fS19NnRq/7fdnHKFuKpEWfVJ6c5y0+IK+h6iXH+2c/+Y4Z73OEHXEo8dWjtCsA/Fx6VB5iWLfZWbI0LQR03TmhDNV7i3v2xBFymN6CFADAAAAAAAAAAAAAABg0Hhq41O6+LcXS5Lqwgc19so6SdLC90u16KeWXv2IiiZA/YnNw/XzX38gSdp84+a0IWoC1AAAAAAAAAAAAAAAAAAAAAAGIyLUAIDBY8wY6Qc/kBYsSP24YUg+nxOdrqzsupWVOfvTBZsXLHDWLeYAtSTNmBG/bRhSaWmPIWo3QL2u4+lZRt9C1G6A2uq43LoxHSHqco80fLiqbb8eWzGsM0RtlZQo6uuKMbsB6tqKWknSvCPnaUTpiN4NUcSiVlRjyscQoAYAAAAAAAAAAAAAAMCAFxugdtVV2Bp7ZZ3+WvehvneDiiZAfe4HJXr8sYa4falC1ASoAQAAAAAAAAAAAAAAAAAAAAxWRKgBAINLZaW0ZIm0bFn/o9FjxjjrLFnirFvsamulWbPi95WXdxuhTgxQu3obok4MULvWjTW0aJGppjLnR47qsOmEqNurFako6zzOkKEzjjijM0Dt+vJpX1albwB873tgyJDX9Gpv217Ztl3ocQAAAAAAAAAAAAAAAIA+SwpQx7wcpu4DW+d/Q0UToJ67R3r2V4GUj8WGqAlQAwAAAAAAAAAAAAAAAAAAABjMiFADAAan006Tfv5z6VvfSg4z92T2bOnmm53zTzstJ+P9/+zdeZxldWHn/e+599bWOw0NzaogiwgBBImKyyhqFoMmqAFGZkxi9omaPE8y4yTjTJwnr/F5nHEmGpOYcbLHqBgVDWoWFUxQNIhCI4h0s8naUNBLdXXXdu89zx+3b3dV115dXVu/3/26r6rzO7/zu7+qbu3W1zmfOmKuuGLscUdH0tMzYYh6sgB120xD1JMFqFMUSVFky7H1XP3qXenraCZJ1h13cq77ta/ljI3PaU1Lkdee9dqcfszp49b+bu93UymW9z9X2gHqtV1rc96m81JMEQUHAAAAAAAAAICl7ON3fnxsgHq0u5OcmSVzd/JFTyRf+9Opf2D8tndsy65/v0uAGgAAAAAAAAAAAABY0WqLvQEAOGJqteRlL2u9enuTu+9O7rsvuf/+ZPfupF5vzVm/PnnOc5Izz0zOPz857rjF3vncvfjFyQknJE89dXBs7dpkeLj19Zath6qmC1C3tUPUSXLl98afnzRAXRn7JNmWY0dy9at35bptF2bdX38y6049Nb85/Jv5zS//Zi7efHGet+l5eXzP42Ou2d6/PV995KspU6a72p3BxuBMvgNLTqWoZG3X2py/6fzUKv7pBQAAAAAAAADA8vSef3pP/tNX/tPBgdF957uTnJUlE6A+7dHk9j+fOkDdtn7V+iO8GwAAAAAAAAAAAACAxaWECMDRYdOm5BWvaL1Wslot+eVfTv7rfz04VhTJhg3Jzp1Jo5G+znJGAeq2yULUMw1Qt205pZarX74u1x2/PuuSrO5YnTef/+ZUivHze/f2ZtuObemodiTJsg1QJ0mzbGbz6s0C1AAAAAAAAAAALFtjAtQTtZ2XUIB68xPJw6cnZ/3eWdn2jm2LvR0AAAAAAAAAAAAAgEW3RG73BgDmzYtelPzIj4wdq9WSY45J36pqrvrJmQeo29oh6uuf2zqeVYC6Wm1FsNety5an787Vn7w6fUN9remTBKi37tiacv/Tav3D/bPb7BJSpEhHtSP377w/vXt7F3s7AAAAAAAAAAAwa9MGqIeyZO5IPq432X5a6/P7dt6Xs37vrMXdEAAAAAAAAAAAAADAErBEbvkGAObVr/5qcvrpY4YaHdVcfXUlX3l2Mlib2TIjoz5vh6h/6ieSn3t98vSqg8+UlUWRslKkHPWr0VHN8NqejByzPiOj4tRbtm/JtZ++No1mY9z7TRSgLid8cm3paweok6RMma07tgpRAwAAAAAAAACwrHz67k9PH6CuLuSOJnfyY8nTJ40dE6IGAAAAAAAAAAAAABChBoCVac2a5OMfT0488cDQ3lqZJ3uaGakku7umD1EPJHl6TfLkqoNjzSK54ZxkV3cyUkl29iQj1SL1auvjQGcl/T3V7FpTy66eInuKkTw98HSeHno6e4f2JkkqRSVvveitqVbGPn324M4HxwSohxpDKyJA3VamzOP9j6csl+fXBAAAAAAAAADA0eWmB2/KGz/5xtbBRLe8DGbJBKhP25489uyJzwlRAwAAAAAAAAAAAABHOxFqAFipTj01+cxnktNPT19HM1e/ele2r2pm/XCRZH+IuqNIiv2vUQaS7FrT+rxZORiiHqy1rmsbqiXPrEr61nRkz+paBrqrGe6opFlprTfcGD4wt2+kLwMjA/ngj34wV5575Zj3a5bNfO+Z7x2ITo++bqVY07km5206L8Uh32sAAAAAAAAAAFhqbnrwplz+l5e3DiYLUNcWckeTO7k3efiUqefct/O+7N63e2E2BAAAAAAAAAAAAACwxIhQA8BKduqp6fvMdbn633Zny7EjSZLuRnEwRN1ZZrCWVoS6UkkqlQxUDgao25qVZPuqgwHqsmiNJUmZMiONkXFvPVFIetfQrmzo3nBw3bKZJKkUlbzq9FdlTeeaFRGgLlOmLA8+fbemc03O33R+apUl8uQdAAAAAAAAAABM4kCAuszEAeqBLJkA9eZnksdOnH7ejW+5MetXrT/yGwIAAAAAAAAAAAAAWIJEqAFgBesb6svV//jz2XLMcLJhQ1KtJkmqjXJsiLraelpsIM3sWjXxWmUlaaYVoC6LQ87tD1E3y2bKspwyJH35X16emx68KXtH9uajd3003+39bpKks9qZfcP7DuvrXSpqRS1F0fomCVADAAAAAAAAALBcjAlQT6C2L0nHgm5pUj2DyfYT9h8Uk8+78S035pWnv3JB9gQAAAAAAAAAAAAAsBSpIQLActDbm9x9d7JtW/LAA8lTTyWDg0mtlqxZkzznOcnFFyfnnZds2pRkf4D6k1dny/YtrTW6upKurgz092dXuSeVZitEvbuzzO7OMiPDZfq7ptlHZdLny1KmTL1Zn9GXc/lfXp6zN56dJ/qfyBf2fCFJ8oVtX8hgY3BG1y9ltaKWFMlIYyQbujcIUAMAAAAAAAAAsCzs3rd7ygB1T38y0L2we5pM11AysGb6eQLUAAAAAAAAAAAAAAAi1ACwdNXryS23JJ/7XHLnnWPPNZutV9u2bck//mPr8wsvTN8bfixXr/2HbHlq7HUDIwPZlT1JkTSrye5qsj7d2VkOTh6gLubvSxpt646t6an2pFat5fPbPp89w3uOzBsttCKpN+spjtQ3bgkpyzJFcfhf53ytAwAAAAAAAADA3K2vFzmzvyv3rR4ad27N7qR/9SJsagK14WRoBnsRoAYAAAAAAAAAAAAAaKks9gYAgAl84xvJz/5s8p73jA9QT6Pvu7fn6tvemS3fvTEZOvhA2MDIQHYN7Rozt5kyOzPYCk1P9jqCBhoDqTfqKcsyXdXJKtjLSztAXavUsndkb+7qvSv1Zn2xtzXv6s167nzqzvTu7T2sdXr39ubOp+5ckd8jAAAAAAAAAIBl5T//52z76405c9fY24vX71g6AerqcLIplVSaU8/70r/5kgA1AAAAAAAAAAAAAMB+ItQAsJT09yfve1/y7ncnTz4568sbRZlrf2hPthzXSBqNZNeupK8vA8PjA9RLxUBjICONkRRFkVpRW+ztzItapZaiaBW8+4f7V1yIut6s567eu7JneE+27tg65xB1797ebN2xNXuG96y47xEAAAAAAAAAwLLyxS8mf/M3SZJtHzsuZ+5sDW98Otm9bhH3NUoxkhxftu7JOWFwVIi6GDvvhmtuyKue86qF3RwAAAAAAAAAAAAAwBImQg0AS8X27ck73pF86UsTny/LZGQkGRhI9u5N9u1rvYaGWuNlmWpZ5K33dKdSHrxsYGDvkg1Qtw01h9JsNldMiHqkOTLmeCWFqNsB6v7h/iRJmXJOIep2gLpM6w/rSvoeAQAAAAAAAAAsF8P14da9R7/1W8ngYLJzZ/L009n2wSInPpHs2LDYO9yvnmxuJCkOFqfHhKj3u+GaG3LFOVcs7N4AAAAAAAAAAAAAAJY4EWoAWAq2b09+/deTxx8ff65eT/r7Ww947dnTilAP73/4a2Sk9fBX+3x/f67cWs0H/3lNKmUykGZ2rdq/Tjl+6aWk3P9rpYSohxvDY45XQmT50AB122xD1IcGqNtWwvcIAAAAAAAAAGC5eLTv0Zz6/lPzzvdcnmzZkuze3bovKcnpby3zxKZF3mBbPTmxnqQy/rbnE7o3plK0xgWoAQAAAAAAAAAAAAAmJkINAIttcDD5rd9Knnlm7HhZJnv3Jn19Bx7umtbwcNLXlyu/M5Jf+E7PwQD1gTXnZcfzrlJUUm/W02g2Um/WU6YUol5iJgtQt800RD1ZgLptOX+PAAAAAAAAAACWg0azkUf7Hs3z/+iiPN3fm/c1v5p3/quRA+fPfkszD21exA2O1khOHsmEAer09CRdXfmh5/xQHn7HwwLUAAAAAAAAAAAAAACTEKEGgMX2+c8njz8+dqzRSHbvToaG5rTkTZsG8tsv2jvxySUWoq4UB/85Uu7/1SybSZLOaufM10kl1aKaalGd9z0ejpUQop4uQN02XYh6ugB123L8HgEAAAAAAAAALAd9Q3354Y/8cJ73++dmx75nkrJ1H8f7LkveeXkz51/bzLaTF3mTbY2k/O+VfPCWDakcertJtZqsXZsLN1+Y6950XU495tRF2SIAAAAAAAAAAAAAwHIgQg0Ai+m++5I77hg71mgkfX1JsznxNbVa0tXVenV2to6L4sDp3R3NXP4zR27L82l0gHq0doi6UlTSWZlZiLpaqR54LTUThajv7r07ZbnEiuATmGmAum2yEPVMA9RtQtQAAAAAAAAAAPOrb6gvP/7xH8+ND96YPcP94+7i+LuNyd2nLcrWxmsmuSNJrZYrv9+TD35t/cEQdbWaHHNMLjzxolz3puuyrmvd4u0TAAAAAAAAAAAAAGAZEKEGgMXSaCRf/vLYsbJM9uxpfRytKJKenmTDhmTdumTVqqS7uzW2enVrrKcnSbJ+pJIzn5nmvZdA+7haVFv7aL8O0Y4VVyqV1txlbnSIukiRk9aclGJUPHwpmm2Auu3QEPVsA9RtQtQAAAAAAAAAAPOjHaD+p4f+6cAPTi+TlPtvX3n5t5PvnLV4+xujmWRbkhcmJ769dc/NlQ91t0LU1VorQH3yxQLUAAAAAAAAAAAAAAAzJEINAIvlvvuSvr6xY/v2Jc3m2LFa7WBkujLJX92VSuv8+vVJrZZtfziDEPUiKlKkUTbSHPVrokBxsf9XpVgZ/2QZbgynSJGzN56dTas3LfZ2plSWZe7uvXvWAeoD1+8PUX+397tzClC39Q/35+7euw88/AgAAAAAAAAAwOxMFKBuK5O84tbkKxcuzt7GaQeoz2sdbl+TnHjt9iTJlT/4lnzwJ/80l5z6gwLUAAAAAAAAAAAAAACzsDKKjgCwHN1xx9jjej0ZGho7Vqsla9cm1erM1qxWW/NnEqJepKZvkWLmc4ui9ZrFNUvds9c9e8kHqJPW9/6kNScd1ve+TJkdgzvmHKBOWn9eTlpzUopi5fwZAAAAAAAAAABYKGMC1BPcw/HqryU3XrIIG5tImTEB6rbtq8uc+CuDyfvfnysvvjafufozAtQAAAAAAAAAAAAAALMgQg0Ai6GvL3n44bFjg4Pj561encw2vlsUyZo1SVFMH6JeBIcTJJ6JkcbIEV3/cD2w+4EM1if4vV6CNq3elLM3nr1oEfAiRc7eePayiHYDAAAAAAAAACw14wLUh9y28+qvJV964eLsbZwy6dqacQHqFK3X9vrOnPi+E5Mk1Up1oXcHAAAAAAAAAAAAALCsiVADwGJ47LGxx2WZDA+PHevpSapzfGCqWm0FrJOpQ9RHtgc9qdmGqGcyv0yZeqO+5B8yG2mO5JuPfzPNZnOxtzIjixWiFqAGAAAAAAAAAJi7h555KD/5iZ/MPz/0zxPee/PD/7z0AtRDhwaoD7F97/bs6N+xMHsCAAAAAAAAAAAAAFhBRKgBYDFs3z72uF4fP6er6/Deo6cnKVrh4G1/WMnmPYe33Hw5puuYnH3M2anM8J8hZVmm3pzg+3OIIkVOWXdKqsXSjlAnyYlrTkylsnz+GbbQIWoBagAAAAAAAACAufvEXZ/I6b9/er704JfS09HTGhzVoX71zck/XLY4exunTC7+6iQB6kNuVbnhmhuycc3GBdkWAAAAAAAAAAAAAMBKsnzqhwCwkvT2jj0+NEJdqyWHGymuVFrrJLn+nDLVJJXm4S05H37ghB/IKetPyeqO1dPOLcsyQ42hlKOfgpvEqWtPzZkbz8zZG8+ej20eMaetOy1nbjxzsbcxawsVohagBgAAAAAAAACYu8/e89lc/amrkyTNspmB+kBW11YdOP/Sf06+9OLF2t0h9geov/3K6afecM0NueKcK478ngAAAAAAAAAAAAAAViARagBYDPv2jT1uNMYeV6vz8z4dHbn+nDJv/9EyzSI5YaBY9BD1rY/fmiTpqnZNGzQeagylLKcPUBcpsqF7Q5JWLLmyRP+Js1wD1G1HOkQtQA0AAAAAAAAAMHefu/dz+YlP/MSYsQMh6uHkJf+cfHWpBKiTXPT1KQLUo25PEaAGAAAAAAAAAAAAADg8S7PQCAAr3aHR6UMV8xP5vf6s+oEAddsJg4v71/9gfTC3PHpLKzCdyQPTZcoZBajbc3cN7jpwXKRYciHq5R6gbjtSIWoBagAAAAAAAACAufvcvZ/L6z7+uvEnyqRZlnn+zcnXXpwcoZ89Pmsv+lZyx8unnydADQAAAAAAAAAAAABw+JZWnREAjhbV6tTnZxhfnsr1zx7M2y8fGhOgTpInu5uHvfbhGqwPZs/Innld85E9j6R3b++8rjlfVkqAum2+Q9QC1AAAAAAAAAAAczdhgLrc/0rykhuTr748SyZA/ZLbkm+8cIoJ+/f5sSs/JkANAAAAAAAAAAAAADAPaou9AQA4Kq1aNfb40Ch1o3FYy19/+lDe/pL+NA+JWT/ZU6a5gn8ExdYdW5MkZco0s/ix7SQ5rue4FRWgbtu0elN69/Vmx+COw17rmO5jBKgBAAAAAAAAAOZgXIB67O1C2fid5Gsvy5IKUH/tRVNM2L/P//aK/5ZrLrhmQfYEAAAAAAAAAAAAALDSreAMJQAsYZsOCe7WDvm5EPV60pxbRPn6M4by9pf3p3nIg2NPrsqKDlA3y2bKlLnn6XuWTIC6UlSyZ3hPevf2LvZW5l3v3t7sHNw5L2vtHNy5Ir9HAAAAAAAAAABH0kwC1DuemyUToH7x7TMPUP/Wv/qtBdkTAAAAAAAAAAAAAMDRoDb9FABg3m3efPDzsjwYoS5HPQk2NJR0d098fVlOONwoyvzpuYOtAPWoOcs1QF0e+mTcFBplI81Gc1bXHEmVopJapZYyZbbu2Jok2bR60zRXLQ+9e3uzdcfWefter8TvEQAAAAAAAADAkTRdgDrfSXackyUToP7B7yRfv3SKCQLUAAAAAAAAAAAAAABHzDLMUQLACnDyyWOPm82DIeq2gYFkZCRpNMa/JolQV8sif/2Pa3Nhb/XAnCkD1EvkIbP5slQC1EkrQt3Wjiz37u1dxB3Nj/kOULetpO8RAAAAAAAAAMCRtKN/x7QB6pyTJXOX8Au+m9z6/ElOFjlwD9On3vQpAWoAAAAAAAAAAAAAgCNgidxeDgBHmXXrktNOGzvW1TX2uCyTffsmDU6P1l+rH1x6uMh1n0wufHKaADVHVL1ZT7NsHjheCZHlIxWgblsJ3yMAAAAAAAAAgCNt45qN2bx6c+tgiQeoX/K95JvXJ2c+M8HJ4uCnN77lxrzhvDcs2L4AAAAAAAAAAAAAAI4mS+QWcwA4Cl100djjajXp7Bw71mgke/cmzWYm881N9az75b688E07W/P37Mm6fY1sPUaAerGtpBD1kQ5Qty3n7xEAAAAAAAAAwEJ54upbs3lfdfyJJRSgvuT+5Kufan2+7Q+KnLlz1MlDAtSvPP2VC7o3AAAAAAAAAAAAAICjyRK5zRwAjiJFkdRqyXOfm6xf3zpuv7q7k8ohfz03Gkl/fzI0lJTlmPnfPL6RF765P2WSW09o5IVv3JnU6znr3zXzwMbp9nGkvsC5K/b/Gq1aTPCw3DKyEkLUCxWgbluO3yMAAAAAAAAAgAXz8MPJ61+fJ363ks17Ro0PZcncGXzew8ltn6i07oWqVJKiyLaPH58z93UJUAMAAAAAAAAAAAAALLAlcqs5AKxgtdrY49Wrk1NPTZ797OTNb06q1YOvjo5k3boDD14deCWtCPWePcnevcngYL65fm9e+K/3jMkC33py8oK3NnPfsQv1xR0Z7Rh1V7UrXbWu1Cq16S9awiYKUT/e/3jKcmGizodjoQPUbULUAAAAAAAAAAAH7ejf0fqkry+55prk+99PGo088f79IeqhJEvkZ70/55Hkx544ZLCzM/nX/zrb3vVUzjzmzCQC1AAAAAAAAAAAAAAAC2V5Fx0BmLnh4WTfvmTHjqRePzi+b18rirzSDAy0vuZqNenuHh+Cng9F0YpGr1rVep/JDA1Nfu4HfiB58YuTW289OFattkLUe/Ykzeb4a+r1fPPY4bzwLZkwC/ytk5NznkruPX6qvU9xbgHUiloaZWPSsHGZMtWimpee+tJ847FvpFIs/5+bUW/WU6vUUikqWdO5JudtOi9Fsci/EdNYrAB1WztEnSSbVm9alD0AAAAAAAAAACy2z937ubzu46/L5tWb88QjVyUPPdS6P2q/pzqyZALUZz2W3P/s5H3PTpJm3ntjpXU/1H/6T8m73pUk2faObdm9b3fWr1q/iDsFAAAAAAAAAAAAADh6iFADHA2efrr1Kstk166xEeqVptFIdu5sBahH27ChFYs+EqrVZNOmpKdn4vNdXa2odF/fxOevuSZ59NHk8cfHrrl+fSsSfkjE+psnNPPCn0/KKfrF9x6fnLOjkns3ThCxXgIB6qIoUpaTB6iTpFk2s3XH1rzo5Bfl5kduTpFi0WLI86XerGdj98acv+n81CpL+59hZVnm8f7HD+t7XqTIMd3HZOfgzjmvU6a1j+NWHbfko90AAAAAAAAAAPOtHaBOku17t+fEzg/miZFjD9xT1P3vyzSXyG0oZ2xP7j/t4PH7LkvS3Zn3PnVB8s53jpkrQA0AAAAAAAAAAAAAsHAqi70BAI6w3buT3t5WgPposGvX+AD1VOPzodFInnpq6rj3sce2Xh0d48+tWpW85z3JcceNHS+KZPXqVsC6szPJzALUbfdubObsZw4ZXAIN36IoMtIcmfBcO1Rc7N/ojoEd2bZzW87acNaC7e9IW9WxaskHqJPW79N5m87Lms41c7s+Rc7eeHaet+l5OXvj2Qd+T2drTeeanLfpPAFqAAAAAAAAAOCoMzpAnSQpk+2ry5z4lqeTskzPb5QZmuB2pMVwSm/ywCnj72t638WDeefPP3vi+6YAAAAAAAAAAAAAAFgQItQAK92OHYu9g4UzPJwMDU1+vr//yL13szn9+uvWJaeckjznOcnZZx98nXtu8iM/kvzd3yVnndV64Gr0q6cnOeaYfPO56/LCX5hZgLpt67HJmU/vP1gCDd9qqqk3p4h152CAukiRSlHJzoGdeXrg6VSL6pxDxkvJo3sezX077lvsbcxIrVLL+ZvOn3WIuh2g3rR6U5Jk0+pNcwpRr+lck/M3nb8sot0AAAAAAAAAAPNpogB12/a1yer/OxnsXPh9TWTzzuTRE1uflznk/qaiyPse/2Te+cV3LsbWAAAAAAAAAAAAAACICDXAyndolLkoVu6rPnXcOPX6/L5fR0eyatXBV62WrF07/aunJ6lWD75qtdbHZz87+fu/T666atzWv3nsYF74k7tGP0s2Y/cdl6yprZ7DlePVMvcYcJEijTRSTvNVTHR+x+CO1Mv6tNcuF0/0P5Fms7nY25iR2YaoDw1Qt802RC1ADQAAAAAAAAAcrcYEqMvk0FtmuvYm+3oWfFsT2rQ72T72NpGDIeoiSaV1r8ifb/nzDNeHF3p7AAAAAAAAAAAAAAAkh1GSBGB5qNWSkZGDx2XZeq1E00V9G435/dp7epJjjz14vHp1csops1+nu/vg5+vWJe9/f/JjP5b85/+cPPxw+mv1vPCNO+eeXy6S/sbeuV49Rj31dBadGS7HPxDWjgtPFoqeTUC6THlgvZHmSEaaI9NcsXx0VDpy6UmXplJZPj8LpB2ivqv3rvQP9086b7IAdVt7fOuOrVP+eRCgBgAAAAAAAACOVuMC1Ifo6U8GusePL4YN/UnvsROfK5OkaN0BtLFnY771C99KZ61zAXcHAAAAAAAAAAAAAEDb8qkfAjA3a9cu9g6YzoYN48de85rk5puTD384a174r3Lpk3OI8Rb7X/NobefavPRZL013deyTbEWKdFQ75vW9mmlmpDmSofrQvK67mNoB6u7aEnkScBbaIeo1nWsmPD9dgLpt0+pNOXvj2Qci44cSoAYAAAAAAAAAjlbTBajX7F46Aeo1A8muDVNMKFo/iH5j98bc/ou355R1pyzU1gAAAAAAAAAAAAAAOIQINcBKt2lT0tOz2LtgMieckKxbN/G5jo7kiiuSv/mb/Mt//n5+cNVZ00elixyR+HTSClBfetKlqTfrWdW5atRbzn+Aum2wPnhE1l0MyzlA3TZZiHqmAeq2yULUAtQAAAAAAAAAwNFqugD1+meS/tULu6fJrBpM+tdOMWH/LSHH9hyb239JgBoAAAAAAAAAAAAAYLEp/AGsdJVK8qxnJTt3Jnv3Jp2drbHROjsXZ2/zbXg4qU3xV1ulkqxZM/n5maw/WldX69XW3T2z4HdRtOZu3Jjh1T0Z/d0frg+nszbB78dJJ+Vf/sPWvPD/vDC3Pn7rnLZ/ONoB6rIsc3fv3ekf7k9ntTMjjZExAepyoifgDtORWHOhrYQAdVs7RH1X713pH+6fdYC6rT1/646tKVMKUAMAAAAAAAAAR60d/TumDFBvfCrZsXFh9zSZruGkmOx2s1E/j/zYnmNzxy/dIUANAAAAAAAAAAAAALAEqPwBHA2KItm4sfUaGkpGRg6eO/XUwwszLyX335/ce+/B46JIylFPZXV0JC9/+dzXf+KJZNeug8cbNyYnnHDweN265KyzZrzco32P5pL3n52fvvCn897XvLd1/OFLDhxP5Itv+WJO+1+nZffw7jl+EbNXLap5/ubnJ0mKoshJa046EA4eHaBuls0F29NyspIC1G3tEPXdvXfnpDUnzTpA3da+7vH+x3PepvMEqAEAAAAAAACAo1Kto5bOSmeGm8Pjzh3/RPLU3G7NmHed9WRoVTJSJquHk73tGHUxdp4ANQAAAAAAAAAAAADA0qL0BwCL4NG+R/P8//387BjYkfd9/X3ZM7Qnf3PP3xw4TjIuRN031JerP3l1VnWuyt763tSb9QXZa7VSzV29d+X8TeenVqkdCAe3Q9RJK0C9UPtZTlZigLqtVqnlguMvSFEU00+ewqbVm3LcquMOex0AAAAAAAAAgOWofU/QsX0j2d6TlJWD5055OHn0pMXb22gdjWR4/y0wzSIZ6EhWVzqztxwbzhagBgAAAAAAAAAAAABYeirTTwEA5tPoAHXbh771oTy97+kDx+/7+vvyzi++88Bx+2GzLdu3JEk2rdqUIgsT7W2WzfQP9+eu3rsOhKY3rd6UszeenSKFAPUkVnKAum2+wtEC1AAAAAAAAADA0ejAPUG3/31Sltm8LymarXNnPLB0AtTVZjLSNXasWSQDZT2rO1YfGBOgBgAAAAAAAAAAAABYmkSoAWABTRSgbpbNCT9vh6gbzUau/fS1BwLUSesBtDLlguy53qwfCFHf3Xt3yrL1vptWb8oJq084agPU1VTHjW3o2pDT1p12VASoAQAAAAAAAACYuzEB6lE270uee2/ywGmLtLFDNZPGvZOdamagPpDTN5yeTas2CVADAAAAAAAAAAAAACxRtcXeAAAcLaYLUI8eqxStnxPxvq+/L0/tfSqXP/vy3PrYrSnLMv3D/RmoDyzYvpNWiLpWqeWkNSelKIokSe/e3jy598nUKrWjMkRdpEgllTTT+j3sSle6al05c+OZOWPDGQe+TwAAAAAAAAAAMNqBAPUd/zDu3On3Jbecvwibmkgzyb1JfmCCc/tvjWmWzdz4b27MSetPSmetcwE3BwAAAAAAAAAAAADATFUWewMAcDSYaYB69LmyLFOWZf5iy1/kL7f8ZZ5/wvOzc3DnggeoJ9K7tzdbd2xNmTKVopJa5ej9uRbF/l+1ai2NRiNJ8szAM7nzqTuPyjg3AAAAAAAAAACTOxCg3r4lKcsx5866Z5kEqEe57o3X5dnHPluAGgAAAAAAAAAAAABgCTt6i5EAsEBmG6BuK1OmSJEk2fLklhy36rhFixrXKrVUikq27tia3n292Tm4M2UOPgTXDlEfrdHlWmoZaAxkb2NvHt79cB7peyRlytzVe1fO33T+UR3pBgAAAAAAAACgpdFs5NpPX9sKUD/xxJhz534nufHSRdrYocpk7feSPRdMcr51S1M+c9Vn8uPn/viCbQsAAAAAAAAAAAAAgLmpLPYGAGAlm2uAuq0dei5Tpndf77zvbybaAer2PnYM7hgToG5rz5npmstdPfUxnzfT+n29b+d9aTQbSZL+4f7c1XvXURvnBgAAAAAAAACgZfe+3alWqnnrRW9NZdfuMefOv32JBajvmSJAvd8N19wgQA0AAAAAAAAAAAAAsEyIUAPAETJcH84lH75kzgHqtomCzwtldIB6JooUM15zJnOXumaaKff/Gq1e1tNstn6vhagBAAAAAAAAAI5uNz14Uzb8jw056/fOypXnXpkPfnJfKvtvNzn/9uSLL17c/R0wkwB10QpQX3HOFQu2LQAAAAAAAAAAAAAADo8INQAcIZ21zvz0hT89Zmy5hZdnG06eSTC7HbVezLj2QhCiBgAAAAAAAADgpgdvyuV/eXmS5L6d97VC1N9LPviF5AeWWID6ox9JVp8+xRwBagAAAAAAAAAAAACAZUmEGgCOoPe+5r35jRf/xoHjoiiWXYh6uDE8o3nNsjnjNY+WGLMQNQAArEwjIyNLah0AAAAAAJam0QHqtvt23Jez3pY8MZD84xIKUP/BXyf/+uHkifdXsnnPBHMEqAEAAAAAAAAAAAAAli0RagA4wo6GEHWzbM44rlxv1mcVrF7uhKgBAGBl2bFvR25+7Obc8ugth7XOLY/ekpsfuzk79u2Yp50BAAAAALCUTBSgbjvu7uRXrl3gDU3hD/46+XffP3g8LkQtQA0AAAAAAAAAAAAAsKyJUAPAAljJIerZBKjb8482QtQAALAy7Ni3I3c8dUeSZLA+OOcQ9S2P3pLB+mCS5I6n7hCiBgAAAABYYaYKUL/oxuQbL06Wyq1DP/K1UQHq4uCmnvhgRzYPVAWoAQAAAAAAAAAAAABWgNpibwAAlpze3uTuu5Nt25IHHkh2707q9aTRSLq7k5NPTk49NbnkkuSEE2a87Htf894kyfu+/r4krRB1yqRMeUS+jCNhuDGczmrngePZBqiPZvWynlqzlkqlkv7h/tzde3cuOP6C1p8DAABgyRsdoG5rh6gvO+WyGa8zOkDddsdTd+Si4y/KxlUb52OrAAAAAAAsoi/f/+W8+iOvnvDc8VuSb7wsSyZAfentyd//q+TEi5Mn/tf+wc7OpKcnefaz88TbPpsdx6zOxjX+/2sAAAAAAAAAAAAAgOVMhBoAklZk+pZbks99LrnzzonnNJut1733to7/6q+S5z8/jR97bfLiF6U6g7eZKERdlssnQp0k9UY9tWpNgHoO6mU9HWVHKkUlJ605SYAaAACWiYkC1G2zCVFPFKBuE6IGAAAAAFj+Pnfv5/K6j79uwnPHb0mePjdLJ0B9R/LNS1ufb1+bnPh/J0/85bFJR0dy+unJxz+enHpq/L/WAAAAAAAAAAAAAADLX2WxNwAAi+4b30h+9meT97xn8gD1JPq+e3uu+M5/zAs/9qpc/8Xfm9E1733Ne/MbL/6NA8fFAj1Z1l3rPuz3qqQiQH0YKqmkUlRy9sazs2n1psXeDgAAMANTBajb2iHqqUwVoG6746k7smPfjtluEQAAAACAJWDCAHXZeh23P0DdXCIB6kvuTL75grFj29cmJ/70M8lVVyV/93fJqacuzuYAAAAAAAAAAAAAAJh3ItQAHL36+5P3vS9597uTJ5+c9eV9nWXe+KN7ctPJI7l9w2B+7uE/yPW/cUXS1zfttaND1GXKWb/3bHVVu1ofa11zXkOA+vBUUklHtUOAGgAAlpGZBKjbpgpRzyRA3SZEDQAAAACw/Dyy85GxAer98ekkyZ3JzucunQD1hd9NvnXxxOe2rylz4inXJevWLeymAAAAAAAAAAAAAAA4okSoATg6bd+evOMdyZe+NPH5skxGRpKBgVasur8/2bs3GRpK6vX0dTTzxtfuyc0njWRk/9+mu7rK/FztC7n+p34weeSRabfw3te8N5tWHfkYcUelI9VKNdWi9eqp9cx6jXaAuizLNJqNI7DLlU2AGgAAlp/ZBKjbJgpRzyZA3SZEDQAAAACwfPQN9eUXvvALqaQyNj6dJHcmHeckjSVyt+55W5MtF0xycn8ke/ve7dnR7/+jBgAAAAAAAAAAAABYSZbIbe0AsIC2b09+/deTxx8ff65ebwWnd+5M9uxpRaiHhw++BgfTN9KfN/5IX24+qX4gQN22q6vMz52zNdf/0iuSRx5JWZbpH+rPw7sfziO7H0nfUF+aZTNJcuXHr8yTe588ol/q2s616a51Z23n2qzrWpd1XeuypnNNOquds1qnUml9oUVRpFapHYmtrlgC1AAAsPzMJUDdNjpEPZcAdZsQNQAAAADA0tc31JerP3l1tjz27ZwwWE2lOerkllaAeqS6aNsb45wHkrufN8nJ4uCnN1xzQzau2bggewIAAAAAAAAAAAAAYGGoSAJwdOnvT37rt5Jnnhk7XpbJvn3J0NCUl/d1lnnjVcnNz8q4AHXbrq4yP/cDD6b59lfnhN/53Xy/3JmyLJO0Ys4nrjkx77vlffnCfV+Yj69oSoP1wXTXuic811ntzHBjeEbr1Jv11Cq1VIpK6s36fG5xRROgBgCA5WdkZGTOAeq2wfpgbnzoxsPeyx1P3ZGXnfyydHR0HPZaAAAAAADMr9EB6jzzTNJo5ISR5MlVSbOSdJ6TDC+RAPXpjyT3nj39vBuuuSFXnHPFkd8QAAAAAAAAAAAAAAALapJ8JgCsUH/0R8njjyeNRis4vW9fsnt3smNHMjCQNJutV1kefO03kwB1266uMr/w3G25/ff/04EAdZI0m838+3/89wsSoE6SkeZIBuuDE55rls1ZrVVv1jPcGE6ZcvrJCFADAMAy1dHRMekP81lo3bVuAWoAAAAAgCXoQID68W8nTz/duhdpvxP2JR1DyXBtETc4yolPJg+ePsWEovVBgBoAAAAAAAAAAAAAYOUSoQbg6HHvvcnnP5/09bXC03v3tsLTIyNjYtNJxkWo+1bX8sZrihkFqNt2dZX57WPuyH03fSpJcnfv3fm//uH/yre2f2s+v6ppjTRH0j/cn9c85zWpFK3NN8tm6s36rNcq2k+dMSUBagAAWN4uO+WyRQ9Rd9e6c9kply3qHgAAAAAAGO9AgPqxbye9T7d+4P0oO2rJSHWRNneI0x5Lnjh5igkC1AAAAAAAAAAAAAAARwURagCODlu3Jn/9163wdH1/fHlUZHqcomi9KpX0dZZ5408M5+ZTyxkHqNt2dyW/99Tf5k+/+X/y+7f+fp4eePrwvo452jeyL5tXb84Hf/SDGW4MzzlAXavU0lntPAI7XDkqqaRWreWY7mMEqAEAYBlbzBC1ADUAAAAAwNLUaDZy7aevbQWon3lmXIB6ZyUZqi3S5g7xrO3JyLFJ0ZxkggA1AAAAAAAAAAAAAMBRY4nc6g4AE+jtTe6+O9m2LXnggWT37lZAulZL1q9PzjgjOeus5Lzzkk2TxH4HB5Mbb0y2bGldWxQHz00XoE7SKMq8+Q1lbn5WZh2gbtvd0cxXHv3nlMX0c4+k993yvlx60qUZaYzM+tp2gLrY/33prHZmuDE831tcEWrV1j+vdg7uTO/eXiFqAABYxi475bLc8ugtGawPLth7ClADAAAAACxd1Uo1bz3nmtx+5z+k2WiMObc7yeAS+dnuJz2dDG9ofb55X7J9VVJOcO+TADUAAAAAAAAAAAAAwNFBhBqApaVeT265Jfnc55I775x67u23H/z8wguTSy5JenqSarU1tnt3ct11ya5dycgh4eXJAtSHnK+myM/ennz9lDK7umf3pRxYqkimebcjrtz/618e/5dUMrua9ugAdZEix3Qfk52DO4WoJ1Fv1FOr1lKmzNYdW5NEiBoAAJaxhQxRC1ADAAAAACx9V/7p15OvVfL2y5Pm/h9Kv7eR7Fu9uPtq27QzKdeMHRsXoi6SS068JD961o8u+P4AAAAAAAAAAAAAAFh4ItQALB3f+EbyoQ8lTz45+2u3bEm+/e1k1arkVa9Kjjsu+djHkv7+pNlMGo2Dc8ty6gj16HNlmSu/VyQp8nOvm32IeikEqA/VTHNW88uUBwLUZ288O5tWb0rv3t5s3bFViHoCzTSFqAEAYIVZiBC1ADUAAAAAwNI0MDyQns6e1sH/9/8lH/5wrhwZSQaTt7+2FaDuWzP1GgtlY19S65n43IEQdTV5/ubn58afujHVSnVhNwgAAAAAAAAAAAAAwKIQoQZg8fX3J3/0R8mXvnT4a/X1JZ/+9MHjomhFqNuaswswJ2mFqO9pffpzr8usQtTloQfF7N9+KRhuDOcHNv3AgZBy++N3er+zIO9fK2qpl/UFea/5IEQNAAArz5EMUQtQAwAAAAAsTff03pOL/vdFee2zX5Prbzkt+fCHk0YjSXLl95JffHWya/0ib3K/tXuTrs6p52weKHLu816Z6998fdZ1rVuYjQEAAAAAAAAAAAAAsOgqi70BAI5y27cn73jH5AHqskxGRpKBgVasuv0aGGiNl+X4a4aGkr17W3OazQMPfk04dxauvCf54xuSDfPfG1tQlTn+9b9t57Ypj4+U7tosqt9LSDtEneRAiLp3b+8i7woAADgcl51y2bz/bxQBagAAAACApeme3nty4R9dmOHGcD5z3+dz5Y4PHbwPKclJ/y7pXSIB6lUDyZrq9PMuvOiHBagBAAAAAAAAAAAAAI5CItQALJ7t25Nf//Xk8cfHn6vXW7HpnTuTPXtaQenh4YOvgYHW+M6drXn1+sHr2p83m615jcbMAtRFMe2U2Yaop19x4TXTnNN1g/XB3PLoLUmSWx69JYP1I1/jbsfd6mX9iL/XkSBEDQAAK898B6MFqAEAAAAAlp52gHqkOZLsv+3oM89Nrryq9fmZP588cczi7W+07uHkI19IKtPcHnXh838k173pOgFqAAAAAAAAAAAAAICjkAg1AIujvz/5rd9Knnlm7HhZJnv3Jn19rdj0TAwPt+bv3ZsMDY1fr9GYfo1KpRWhrlQOfj5JlHo2IeqinL8QdWUJ/LU9WB/MjQ/duCAB6tHvuZwJUQMAwMrS/uE8S3U9AAAAAAAOz0QB6rbPnJuc+bPJ/ccvzt4O1TmSnDKQXPm95IOThaiLQoAaAAAAAAAAAAAAAOAot/g1SwCOTn/0R8njj48dazSS3bvHh6Rnang4aTbHjpUTPVk1gbIc+5rGQoaoK0UlndXO1Kq1FIex0rqOdYd1/WJY7gHqNiFqAABYGW559JZ5/98pg/VBIWoAAAAAgCViqgB1kpzz/eT+zQu/r4l0DSTDPcl9xyZnvW2SEPWJJ+bCi35YgBoAAAAAAAAAAAAA4CgnQg3AwvvGN5IvfWnsWKOR9PWNj0i31WpJV1fS3d36WKtNvv4sYtLTKiaPNl/5vSJ/fENxREPUlaKSWqX1tY40RlJO9HTbDHSmM5VKJT21njldz+E7NET9eP/jKefjzygAALAgjkSAuk2IGgAAAABg8U0XoN7Qm9x78sLvayI9w8nQ2oPH40LUPataAerNFwpQAwAAAAAAAAAAAAAgQg3AAqvXkw99aOxYWSZ79oyPRhdF0tOTbNiQrFuXrF6drFrV+rhuXWu8p+fgGkfKZCHqssyV9xa5YlvS1Zj/t52vAHWSNCvNdFY7Uy/rqRVTBLw5oppppizLrOlck/M2nZdiisg5AACwdBzJAHWbEDUAAAAAwOKZLkB97PZk1zELv6+JdA8nA6vGj993bHLWB87MlfeU+eCbP5JLTrpEgBoAAAAAAAAAAAAAgCQi1AAstK9/PXnyybFj+/YlzebYsVqtFZru6Ukqk/x1Vam0zq9fn1SrR2a/bZPEgq8/p5nPnZUMzfPbjw5QJ0m1cvhvsGto12GvweGpFbWs7Vqb8zedP+b3FwAAWLoWIkDdJkQNAAAAALDwxgSoJ3DCI8kzxy3wpibR2UgGRweoi7Gv+3bel7N+76xcee6V+czVnxGgBgAAAAAAAAAAAAAgiQg1AAvtc58be1yvJ0NDY8dqtWTt2pmHpavVpKNj5nuYKChdljO/fr/rn5v83OuSXd2zvnRalaIy7li0eHmrFbWs614nQA0AAMvIQgao24SoAQAAAAAWzo7+Hbnof190MEB9yC1EpzyQPHniwu9rIh2NZPjeUQMT3AKVtELUu/ftnpcfeg8AAAAAAAAAAAAAwMogQg3AwuntTbZsGTs2OEHMa/XqiUPRU2k0Zn/NbI1a//rnJj/3+tkFqMtZbK/erKdZNseMCVEvXwLUAACw/CxGgLpNiBoAAAAA4Mi7p/eenPj+E7Oxe+OE58/Ymjx62gJvahK1ZjJyb5ILpp9741tuzPpV64/4ngAAAAAAAAAAAAAAWD5EqAFYOHffPfa4LJPh4bFjPT1JtTr7tctydnMnClbPcI0jHaBuE6JeGQSoAQBg+VnMAHWbEDUAAAAAwJFzT+89ufCPLsxwYzjb927P5tWbk1G3Dp1zd/LAGYu3v9EqzaR+T2YcoH7l6a884nsCAAAAAAAAAAAAAGB5EaEGYOFs2zb2uF4fP6era25rtwPSE8Wl57LO6KEkzZRppsyn5hCgbq8xF0LUy5sANQAALD8jIyOLHqBuG6wPZmRkZLG3AQAAAACworQD1CPNg///6/a927N5b+u+oxfdmtx7zmLt7hBlsvGeJBdOP1WAGgAAAAAAAAAAAACAyYhQA7BwHnhg7PGhEepaLanM8a+mucSnJ7umLA/EqMsk5f6E9PXPTX5hDgHq1nvN4Zr9hKiXJwFqAABYnjo6OnLR8Rcd1hrdte5c/uzL012by/+APOii4y9KR0fHYa0BAAAAAMBBEwWo27avLvOvbk6+cfEibGwiZXL8XcnTEwWoD7kXSYAaAAAAAAAAAAAAAICpiFADsHB27x573GiMPa5W5772XCLU0123P0ZdlMn15yS/8Lq5BaibhxGgbpssRM3SUIx6sq9IkTOPOTPru9cLUAMAwDK1cdXGOYeou2vdueyUy5Ikl51y2ZxD1Bcdf1E2rto4p2sBAAAAABhvqgB1krziK8k/vXhh9zSpMrn8i0n1rKTSnHqqADUAAAAAAAAAAAAAANNRrwRg4dTrU5+fa0g6SWqHEfqd5H3L/R+vf27yC6+fW4C6LJLMQ4Q6GR+iHm4Mz8/CHJYiRWqppbL/n1WXnnRpTlt/Wi44/gIBagAAWMbmEqIeHaBum0uIWoAaAAAAAGB+TRugvin5yksXeFOTKZPLv5Tc8/LW4Qn7DglRj7oX6Uv/5ksC1AAAAAAAAAAAAAAATEuEGoCFM10ouiynPj+VanVm84pi4uj0JCHqRpH86fOTvZ1z21Y5TwHqtnqznrIsBahnqLr/13Rz5qoy6p9SPdWeHNd9XNZ0rkmSFIcTVQcAAJaE2YSoJwpQt80mRC1ADQAAAAAwv6YLUL/0n5KvvGSBNzWZMnnt15N7XjZ2eFyIOskN19yQVz3nVQu3NwAAAAAAAAAAAAAAli0RagAWzvr1Y48PDUc3GnNfe7rA9WgdHa33bgep269KZVyMulomf/3p5GXfTzqak6w3ieaopYrMT5C4o9Ix6QNxS1011Xn7Psz0/doqk/yTpz1nsvNTqWX8n7nqTGPoAADAsjGTEPVUAeq2mYSoBagBAAAAAObXdAHqF12ffPXFyQLe0jKl1349uf3iic+dMNKRStG6x+WGa27IFedcsYA7AwAAAAAAAAAAAABgOROhBmDhnHHG2ONDw9H1etKcZem5rVqdWYi6LFtz161rRacPNTpGXRQpk6wbSj75idmFqJtFDjycVkklZcqZfiWTWs4B6iRppJGOSkeO6znuiL7PcT3HjQlQtx06NtEcAACAiUwVop5JgLptqhC1ADUAAAAAwPwaGB7IBX90wZQB6m/8WJZMgPr1/zx5gDrVanLMMfmhM38oD7/jYQFqAAAAAAAAAAAAAABmRYQagIVz1lljjyeKRg8NzX39rq5WZHo6IyOteevXt66ZSDH26bKZhqjLImlWkhRJkSLd1e40M8ew9iiHG6Buloe/h/kw3BzOBSdccMRC1Mf1HJcLTrhg0vPt8LQANQAAMFsThahnE6BumyhELUANAAAAADD/vvzgl1Nv1ic8d/xXl1aA+he/kHzr0klOVirJscfmwpMvznVvui6nHnPqgu4NAAAAAAAAAAAAAIDlT4QagIVz3nljj4si6ewcOzYwkDQac1u/OsOwcLOZ9PW1YtRr17Zi1IdeW5ZJyjRHPWhWaUwdoi6L1itJapVaztx45rzEjo9fdfxhBaiTVoS63B/orpcTP1y3UG559JZccMIFqRUTRMgPw7rOdVMGqNsEqAEAgLkaHaKeS4C6bXSIWoAaAAAAAGD+ffn+L+d1H3/dwYHy4Ov4ryZP/WCWTID6HV9J/uj25INfSCrlIScrlWTTcQcC1Ou61i3GFgEAAAAAAAAAAAAAWObmt/4IAFPZtCm58MJky5aDY93dyfDw2Hl797bi0MUsnvQqy2TfvvHj7TXKcvz8/v7We9VqSVdXK349PHwggt3XlfybNyQ/c3tyyq7kRb+QXPpY8vcfSX7yquSrz0pG9v84h9EB6s5KZy4+8eIc3318tu3YNvOvYRJP7XvqsNdIknqznjKHPqm28Abrg7nl0VuypmNNdg3vmrd1z1h/xrytBQAAMJmNqzbmZSe/LB0dHYe1zmWnXJaRkZHDXgcAAAAAgLFuevCmvPojr24dHHqrzNeWVoD6Z7+efOBrrc+v/F7r49tfmzSLJNVqcuyxufAkAWoAAAAAAAAAAAAAAA5PZbE3AMBR5oorxh63A9Cj1evJnj0HYtDTajRa8+v18eHqojj4ah+PVpbJyEgrYD001DquVNLXlVzzpuRbJyW/8Nrkhb/Yikzfekrymrckf/K3yQsfTWrNiQPUJ689OR0dHemqHvK1LaKlEKBuG6wPpm+4b17XfGD3A/O6HgAAwGTmKxwtQA0AAAAAML9uevCmXP6Xl7fi0xMEqHNplkyA+kduS/74xrFjV34v+eCN3al0dLYC1CcLUAMAAAAAAAAAAAAAcPhEqAFYWC9+cXLCCWPHVq1KKof8lVSvJ7t3JwMDSbM58VrNZuv87t2t+YcaHZwuilbwetWqabfY11nm6p9MtmxOBpM8s3bs+W+dlFx5dfLHnytySW8tRdHa++gAdZI8tuexVIqV91ft5c++PN217sNaY13nujQzye/rHPUN9+XOJ++c1zUBAAAAAAAAAFgebnrwplz+F5ePj08nBwPUS+RWnlduSf7+RcmVVx1yoqMjV7705/LBn/zTXHLqDwpQAwAAAAAAAAAAAAAwL5bI7fQAHDVqteSXf3nsWFEka9eOjUa3DQwku3YlfX3J3r3Jvn2tj319rfGBgfHXVCrJ6tVjwtaNomyNrVuXbNyYdHdP+H59nWWuflOZLSe0AtQ710z8Zdx+YvKGnyxz+rkvyabVm7Kha8O4APWWJ7eknPCptuXrBzb9QJLkslMum3OIel3nuvQN983ntg54euBpIWoAAAAAAAAAgKPMgQD1RG7JkgpQn/BEctMlrc8/c+6oEHW1mvzO7yQf/GCuvPjafObqzwhQAwAAAAAAAAAAAAAwL5bILfUAHFVe9KLk1a8eO1attgLRlUn+aqrXk6GhZHCw9bFeHzelUZQHA9QdHcmaNUmlkp1dzfzEvy5y/Tn7g9AdHcn69cmmTckxx7TmdXenb11Xrr6qyB2bk8Fi8gB1213HJ5/fd0decspLcvmzL58wQD1UH5rtd2fJ6qx25vH+x1OWre/jXEPURypA3fb0wNNppHFE3wMAAAAAAAAAgKXh03d9evIAdZLqJVkyd8se+3Ty5Kljxz5zbnLl1Ul+8ReTd77zwHi1Ul3YzQEAAAAAAAAAAAAAsGItkdvqATjq/NIvJSedNHasWm3Fobu6Zr1cX2eZn3hzJddf2NVaJ0kqlTx64pqc8/YiXzu5mbe/vD/XP3vw4EVFkXR2JqtXp++4tbn6Dc38y0lleruTnaunecOi9do9vDs3ff+mFEWRZHyAukw5669lKeqsdmZN55qct+m8A19rMvcQ9UIQogYAAAAAAAAAWNn+9Ft/mjd+8o2Tnq8NJY0l0nLesDN5ZvPE5z7z3OTKF39/YTcEAAAAAAAAAAAAAMBRQ4QagMWxZk3ynvckxx03drwoktWrk3XrWoHoGehb05Grr6nmW5vLvP2VA7n+OcNJkkdXN/P8a/fkmVXJ7p4i+zqSt79k99gQdZK+jmaufvWu/Mvxw9nZWU7/4Fkx9nDn4M7c+NCNKz5Aff6m81Or1MadF6IGAAAAAAAAAGChfeKuT+RnP/ezk57vHEzqSyRAva4v2bVpiglF8oWHvpiB4YEF2xMAAAAAAAAAAAAAAEeP8SVJAFamZjMZGkr6+5ORkYPjjz7aij4vll//9eR//s/kySdbx+X+cHNRJD09SXd30mgk9Xrra2irVJJaLX2rqrn6tXuz5dhWbLhZJG9/xUCe7m7mt142kh3dzbSr0bu7kqxalbdfPpjcmFz5UPe4APWhgekxpji3c3Bn/uWxf0lXreuoClC3XXbKZbnl0VsyWB+cdM5iaaSRip+7AQAAAAAAAACwYnzirk/k6k9dnclu0enalwx1LuyeJrO6P+nbOMWEIumodOSOX7wjPZ09C7YvAAAAAAAAAAAAAACOHiLUAEeDvr5k+/ZWzPmpp1pB57be3vl/r8cea71fb2+yb1/rfavVZNWqZNOmZPPm5OSTk3XrWtdceWXyD/+QfO97Y9eqVFox6mazFacuy4OfJ+nLUK5+TZktG8uMLkQPF2V+8dWDSVGkODDemrO7uS9Zuz5vf0NXmpv+bf78oc/kX+o7srN6yBNpU8WoJ1GmXJIR5rmaaYC67bJTLstND920JAPczTRTTXWxtwEAAAAAAAAAwGH602/9aX72cz876fmevclA1wJuaApd+5K9G6aYsD9AveWXtuTcTecu1LYAAAAAAAAAAAAAADjKiFADrHT79rWi0EdSo5Fs25bccUfyyCNTz/3+9w9+ftppyUUXtcLUP/iDyYknJt/8ZtLf3wpNDw+31m42xy3T11nm6jckd5ywvxe9P0xdL5KnVydlazBJ63wzZYqUKVLJ7qHdSdf6/Oozf53zzzg/ux7YdvjfgxWmWlRnFaBuW9uxNn0jffO6l0pRSbMc/2dgthppCFEDAAAAAAAAACxj/+XL/yW/89XfaR1M8HPS1+9Kdq9Z0C1NatW+ZN+6KSYIUAMAAAAAAAAAAAAAsEBEqAFWuqeeOrLr33df8uUvJ31zCA8//HArSr1qVXLppcmppyYnndSKWd95ZzIyMuFlfZ1lrn5TcvvmZFdPsmok6a4n9SRPr9r/fNn+h8zKojzwvFlrvExRFNk9tDtD9aH84wP/mKIoUpYTPJV2FOuqds06QN1WTfVA8LmRxmHt47ie43LBCRfkG49+I/vq+w5rLQFqAAAAAAAAAIDla7oA9ebeZPsxC7unyXQNClADAAAAAAAAAAAAALB0iFADrGRlmQwOjh0ritbrcA0OtuLTd999+Gv19yc33ZQ861mtvT30UFKtJt3dSbPZ+jr2f+zrLHP1G8vcfkIrQD1SSXZ3Jc0kfV1JeeiXViYpRh+WBx5Ca0eNBajHO3HNiXMKULe1g8+VVNJMc87rXHDCBUmSzas354HdD8x5nUoqc74WAAAAAAAAAIDFNV2A+tSnkkc2LuyeJtMxlAytSTb3J9vXHHJy/31MAtQAAAAAAAAAAAAAACwkEWqAlawoWjHnev3gWFm2Xodj9+7kE59Idu2a+HxZJo1GKxzdHBUgrlRar2p1fAi72Uzuvbf1eVfXwVh2tdp6lWX6qvVc/fqh3H78wQB1e/Xd3VPsd6IQNVP6/u7v51kbnjUva1VTTSONWV9XK8b+M2Wu61RT9XsOAAAAAAAAALBMTRegPu7ppROgrgwnI6tbn29fk2zeW2T76nLMvUsC1AAAAAAAAAAAAAAALLTKYm8AgCNs9er5XW/XruSjH504QN1oJIODyd69rY/Dw60Advs1PDz2fGN/ULjZTIaGDgay25+3zw0OprGvP9e+djC3H1+ODVAXGfOQ1qQ0iGelXtZzy6O3zNt61VTnZf58rQMAAAAAAAAAwNL3qbs+NWWA+sQnk6c3LOiWJlWMJM1V7YPWa/uaMpvXbD4wR4AaAAAAAAAAAAAAAIDFIEINsNIdf3xSq83PWoODyd/8TdLfP3a8LFvnBgZasemZqNdb89ux6kPXGxpqjQ8NJfV6qmWRa+7K+AD1bAhRz8pgfXDeQ9TVVFNM8xs3XTh6uvPt9QWoAQAAAAAAAACWr5sevClv+tSbWgcT3Pdz8hPJE8cu7J4mVU/KVTkQnx5t+97t2bx6czqrnQLUAAAAAAAAAAAAAAAsChFqgJWuVktOPz3ZsCHp6Di8tW68Mdm1a+xYs5ns2zfz+PSh6vXWGuWoJ8XKsjU2as2+zjIfuSBZNTLHAPWBted43VFq3kPUlWouPenSSUPUMw1HVyb5J0yRIpeedKkANQAAAAAAAADAMnbTgzfl8r+8fNLzpz+aPLZpATc0lXqSnqmn7BjckSd+7QkBagAAAAAAAAAAAAAAFkVtsTcAwAKo1ZITTzx4PDJy8PNTT03WrJl+jW98I7nvvqSr6+BYo5H09bU+LyaICtdqSbXaOleWrfmjY9XlDIrQZZm+7iJXvynZckJSqSfpnv4y5k87RH3ZKZfNy3prOtfk0pMuza2P3zpmfLKw9GSqqaaRxpixS0+6NGs6Z/DnGQAAAAAAAACAJWlcgPqQW4zOfSC557SF3dOkGpk2QF0tqrnjF+/IxjUbF2RLAAAAAAAAAAAAAABwqNnVHgE4OtXryYc+NHasLJM9e8aHpIsi6elJNmxI1q1LVq9OVq1qfVy3rjXe09O67tBrJxjr60quflOZLZuLDBfJM/PRF55B+5qx2iHq+bKmc03WVtceOK6mOqd1Rl93zoZzBKgBAAAAAAAAAJax3ft2TxmgvmDbEgtQd00/7aWnvTRnH3v2Ed8OAAAAAAAAAAAAAABMRoQagOl9/evJk0+OHdu3L2k2x47Vaq3QdE9PUpnkr5hKpXV+1app37ZRJNe+IfsD1GWeWT3H/U9EiHrW5jtEXa22AtJzDVAfWGf/9T0dPYe9JwAAAAAAAAAAFk+j2ciZx5zZOjjk/p5LvpvcefrC72lCzcw4QP23//pvU60c3v0xAAAAAAAAAAAAAABwOESoAZje5z439rheT4aGxo7VasnatUl1hg9MjYwkRTHllGqZvPX2pN4s88z0zeoVqbvWnZed/LLF3sYBg/XBjIyMzNt6hxugnu91AAAAAAAAAABYHJ+793M59n8em/6nH8+ZO8fe3vqSLcm3zl6kjR2qmeSb00976Wkvzeff/Pms61p3xLcEAAAAAAAAAAAAAABTqS32Bjg69Pb25pvf/Gbuv//+9PX1paOjI8cee2ye97zn5QUveEE6OjoWe4vAZHp7ky1bxo4NDo6ft3r1tFHpAxqNVsi6Pb8sJ5363N5kx+oZ7nW2yiQz3PJi6K5157JTLkuSXHT8RbnjqTvmvFZHpSMvO+1lueXRWzJYn+D3b4YuOv4i/50NAAAAAAAAAMC8+ty9n8vrPv66pEy2V/Zlc63Imc8k9x2bvPK25KaLFnuH+7UD1C+ZepoANQAAAAAAAAAAAAAAS4kINUfUJz/5yXzgAx/I1772tZSTRGbXrl2bq666Kv/hP/yHnH322Qu8w/HKssy2bdvyrW99K7fddltuu+223H777dmzZ8+YeT/1Uz+VP//zPz/s9/vKV76SV77ylYe9TtsTTzyRzZs3z9t6kLvvHntclsnw8Nixnp6kWp35mvX6jKYN1JKLfjlpVGa+9EoxOkCdJBtXbTysEPVzj3tukuSyUy7LzQ/fnJHmyKzXuOj4i7Jx1cY5vT8AAAAAAAAAAExkdIC6bfuaMpvL5EdvSf7uBxdvb2M0k9wWAWoAAAAAAAAAAAAAAJYdEWqOiMceeyzXXntt/umf/mnauXv27Mmf/Mmf5K/+6q/yrne9K+9617tSFMUC7PKgT3/60/nGN76R2267Ld/+9reze/fuBX1/WNK2bRt7PFFAuqtrdms2GjOa1tMo8tptZT7z3Nktv9wdGqBum2uIupqxgfCzjjkr333mu7NaQ4AaAAAAAAAAAID5NlGAuu0F30o+99KF39OEyuS025KHD72l55BbHQWoAQAAAAAAAAAAAABYikSomXdbt27NK17xijzxxBOzum54eDj/5b/8l9xzzz35q7/6q1Sr1ekvmidvfetbhadhMg88MPb40Ah1rZZUKrNbc6KQ9SSu/0SRK686ekLUkwWo22Yboj40QD16vJGZxcAFqAEAAAAAAAAAmG9TBah/6PPJ53544fc0oTJ51q3J918y/dSP/sRHBagBAAAAAAAAAAAAAFhyRKiZV88880xe85rXTBigvuSSS/LjP/7jOf300zMwMJCtW7fmox/9aB5//PEx8z72sY/l+OOPz/vf//4F2vXS85znPCdr1qyZ07UdHR3zvBuOeocG2huHhIvnEowvJ3hybApHU4i6ozL9f4ZnGqKeLEA9+vx0IWoBagAAAAAAAAAA5ttUAerXfj75whIKUL/y88lNPzHBuWLs4Q3X3JBTjzl1IXYFAAAAAAAAAAAAAACzIkLNvPqFX/iFPPzww2PG1q5dm4985CN5/etfP27+e97znrznPe/Ju9/97jHjH/jAB/LDP/zD+dEf/dEjud1pHXvssbnkkktyzDHH5Lrrrluw9/3jP/7jvOIVr1iw94Mp1etTny+Kqc9PZJYR6iS5/pPVXHlNkc+cOc1+lrk9w3vyzce/mUtPunTKedOFqKcLUI+eN1mIWoAaAAAAAAAAAID59NiOx3J77+2TBqivuj75xOsWfl8TmipAfYgbrrkhV5xzxRHfEgAAAAAAAAAAAAAAzIUINfPmi1/8Yj796U+PGevs7MyNN96YF7zgBRNe09HRkd/+7d/Ohg0b8mu/9mtjzr3jHe/IPffck1ptYf6Yrl+/PhdffHFe8IIX5NJLL80LXvCCnH766UmSr3zlKwsaoYYlZbr/DM4hKD2ncHVR5PrPr8mVP9Z/VISo6/X6tP/9N1mIupLKrN5vohD1yWtOFqAGAAAAAAAAAGDefOjWD+Xf/d2/ax1MFKD+WPKJNy3sniZVJj92S/L5n5jk/Kjbn770b76UVz3nVQuxKwAAAAAAAAAAAAAAmBMRaubN7/zO74wb++3f/u1JA9Sj/eqv/mo+//nP54tf/OKBsfvuuy8f/ehH85a3vGVe9zmR22+/Pc9+9rNTzCWMCyvd+vVjj6vVsceNsfHiGZnLf9YqlaRazfV/vz5X/mhfPvOckdmvcYQVKdJV68pQfSjlRE/KzdAlmy+ZcYB/46qN2bxqc7bv256kFZQ+nPduW92x+rDXAAAAAAAAAACAZPoA9Y9+cn+Aeoncwnft3yd//brp5934lhvzytNfeeQ3BAAAAAAAAAAAAAAAh6Gy2BtgZbj77rtz8803jxk77rjj8hu/8RszXuP//X//33FjH/rQhw57bzNx+umnC1DDZM44Y+zxoXHkej1pNme35gwDywcUReuaokiKIm/Z2p3u+uyWONKKFDlr41kHQtTFHJ+Iu2TzJVnfvX76iaOs6liVpBWgPhzt6w93HQAAAAAAAAAAaPufX/2fUwaoX/zJ5O9+PEsmQP3mv5smQL1/nwLUAAAAAAAAAAAAAAAsFyLUzIuPf/zj48Z+5md+Jp2dnTNe45JLLskll1wyZuwb3/hGHnzwwcPeH3AYzjpr7PFEAemhodmtWZ1D5Hj/+15/xlDe/vK96WkUEz6UtlhqlVoe6Xskp647dc4h6rkEqNvmKxwtQA0AAAAAAAAAwHz5tc//Wn7jy78x6fmzP5p8fSkFqL+UfFSAGgAAAAAAAAAAAACAFUaEmnnx93//9+PG3vSmN816nYmumWhtYAGdd97Y46JIDg3MDwwkjcbM15woZD2RclRlulY7EKDeVyuzu7NcUn+JjTRHUm/W0zfUlwuOv2DWIerDCVADAAAAAAAAAMBS82uf/7V84LYPHBw45AfOH/+FZOtPZskEqH/kluSjPzLFBAFqAAAAAAAAAAAAAACWqaXU72SZ2rt3b7797W+PGVu1alUuvvjiWa/1spe9bNzYzTffPOe9AfNg06bkwgvHjnV3j5+3d+/YaPRUqtVWiLosp7+mLJOOjjQ6a/nT5w0dCFAnSXNm7za5eX6ArSiKXHripTll3Sm58IQLD4Sop9ORDgFqAAAAAAAAAABWjOkC1PlC8tSrs2QC1K/+ZvL3L5/kZJED+/zUGz8lQA0AAAAAAAAAAAAAwLIjQs1hu+OOO9Jsjk3BvuAFL0itVpv1Wpdeemk6OjrGjH3rW986rP0B8+CKK8Ye12pJ1yFx5Xo92bMnaTRmtmZHx8yj1T09qRbVXHN/T/bVRgWol8hDaElSKSp51bNelc5aZ5Lk5LUnHwhRF9NstFad/X9fAgAAAAAAAADAUjQmQF1mwgB1Xp0lcwfrv7oj+dKLJzk56rafP7niT/KG89+wEFsCAAAAAAAAAAAAAIB5tURu4Wc5+973vjdu7Mwzz5zTWp2dnTnllFPGjN1///2p1+tzWm+5+uxnP5u3vvWtueCCC3L88cens7MzGzduzFlnnZWXv/zl+Y//8T/m85//fAYHBxd7qxwtXvzi5IQTxo6tWpVUDvlrpF5Pdu9OBgaSQ+L0BzSbrfP79s38/ffsyfUn7so7X7gnxwxXWu3qww1Qz3PAulk2c/+u+8eMjQ5RT6ZWCFADAAAAAAAAALAyjAtQH2qJBahffHfyTy+Y5OSoW36ue+N1eeslb12QPQEAAAAAAAAAAAAAwHxTvuSwPfTQQ+PGnvWsZ815vdNOOy0PPvjggeNGo5GHH344Z5xxxpzXXG7e//73jxvbuXNndu7cmfvuuy8333xz3vve9+aEE07I29/+9rztbW/L+vXrF36jHD1qteSXfzl597sPjhVFsnZt0teXVhV6lIGB1qtWS6rV1tyyTBqNVqi6fX0y9tpJxq4/u5m3v2IgzTLZ2ZGUS+QhtENt3bE1SfIDx//AgbGT156cVZ2rsnd4b6pFNfXyYFRfgBoAAAAAAAAAgJXiui3XTR2gTpZUgPqSrcnXL5x+3nVvvC5XnX/Vkd8QAAAAAAAAAAAAAAAcIeqXHLbt27ePGzv11FPnvN5E1z755JNHVYR6pp588sm8613vyoc//OFcd911edGLXrTYW5rQH/zBH+QP//APj/j73H///Uf8PZatej3p7U327k0eeOBgCDpJRkXfJ1UUSUdHcv75yR13tCLRzWbrVa0mIyPjQ9RJMjw8do3p3mPU5+X+9T793DK/+qNJs0h2dCdD8/E31zRbORxbd2zN/TvuT6Vy8Gm5RrORMuWYAHWSA8f1Rj3/9NA/zfk9G2lMO+c7T30n1VSTJGXKNNOccp2tO7fm/p2z/8/UdHtpNBsHvtZp913mwNxmmiknfTqx5Y7eO1Ltrc5s7XlQT33M55XmEnlCEgAAAAAAAABggd304E255jPXtA4mu8VjKNl/+8qiu+DB5FvPm2LC/vuL/uSKPxGgBgAAAAAAAAAAAABg2ROh5rDt2LFj3NiaNWvmvN5E1z7zzDNzXm+56unpyXHHHZd169Zl7969eeaZZ7Jnz54J5z788MN5+ctfnr/8y7/MNddcs8A7nV5vb2+++93vLvY2jl71eis0Xa9PP3cyZdkKSl92WbJtW7JjRys83WgcPD+TNdpGB6c7O1vrNA9Gkcsk9WoyUE3+7KJ5DlAfYdVUxwSoOTqUKTNSjiz2NgAAAAAAAAAAFtxND96Uy//y8tbBMghQn/twcudZU0zYf2vTf37pf85bL3nrguwJAAAAAAAAAAAAAACOJJVMDtvevXvHjfX09Mx5vYmu3bdv35zXWy6OPfbY/Nt/+2/zsY99LNu2bUt/f38efvjh3HXXXXnwwQfT19eXrVu35g//8A9z7rnnjrt+ZGQkP/3TP52bb755EXbPkvbUU4cXoB7tu99N+vqSwcHWmmU5swD1RDo6kjVrklWrktWrk/3h5jJJo5Ls6i6ytyv5vb9L6sU8BqiL6afMlQD10a2ZZgaGBhZ7GwAAAAAAAAAAC2b3vt0HA9STGcySCVCf+VhyzxlTTBgVoP5/XvX/LMieAAAAAAAAAAAAAADgSJuvpCdHsZGRkXFj3d3dc15vogj18PDwnNdb6k466aR85CMfyZve9KZ0dXVNOfess87KWWedlV/6pV/KH/zBH+Q3fuM3MjQ0dOD80NBQrrrqqtx3331ZvXr1kd46y8UEofhZaTRa8ekvfznZufPw91OMqkC3g82VSitEvXdvypTp66mkXjRSlsmvvDbpna8/zgLUHGEj5fi/EwEAAAAAAAAAVqo/+OYfHDyY6GfZD2bJ3Kl6cm9y37OmmCBADQAAAAAAAAAAAADACrVEbu1npSmKuZdeJ7q2LCd6OmVlOPvss3P22WfP6pqiKPK2t70tz33uc/Pa1752TAh8+/bt+d3f/d28613vmu+tslw1GmOPZ/Ofz/vuS/7xH5Pe3qTZHL/ObP6zeej7joy01lyzJqlWW6/XvS5b9z6cjf+yJSmTgWry5TNm/hZTv/88rTPh0q3Fm4d+j/ZrZuLx2c45XO33KCd84m/y+UdqH7OZu9h7nqlmubjvDwAAAAAAAACwUN7zT+/Jf/rKf5p8wkCSjgXbzpROfCZ57MRJTo66r0iAGgAAAAAAAAAAAACAlaiy2Btg+evoGP+UyMDAwJzXm+jazs7OOa+3kr361a/Oe9/73nHjv/u7v5vGoeFhjl7d3WOPZxKOHhxMvvCF5FOfSp56anyAei7KsvUqioOvZjPZsyc59tjkv/7X5F3vyjd++XX5zauOy6Pri/Q0ki/+RdJxOG9f5IgGqCuppFpUUxTF5K8ZbKByGL+qqU67fjXVOc+fza+Zfs+OxNzRe14Mi/W+AAAAAAAAAAAL7d7H7x0boD70lqR9WTIB6k07k3JVcuYzE5wcdVvPJ9/4SQFqAAAAAAAAAAAAAABWpNpib4Dlb9WqVePG5jtCvXr16jmvt9K97W1vy+/93u/loYceOjC2Y8eO3HrrrXnxi1+8eBsbZdOmTXne8553xN/n/vvvz9DQ0BF/n2Xn+OOT739/5vN3704+8Ylk585kYGDiaPVMQtaTaTaTyv5Yb63WimR3dSXnn39gyi1n9+Szp/TkpfcO5NotzXzxz5PX/HQyMtvG7xGMTyf7A8nF9JuqFtXUy/qR3cwSUU01jUwewR8dap5u7mzWBQAAAAAAAABgYTza92he/tGXHxw49FaivUm6FnJHk+sYSHo3tT7fvKcVor7v2P0nR91bdONbbswrT3/lgu8PAAAAAAAAAAAAAAAWggg1h+3YY48dN9bf3z/n9Sa6dqL3oKWjoyM/+ZM/mf/xP/7HmPEvf/nLSyZC/Su/8iv5lV/5lSP+Puedd16++93vHvH3WXZWrUpOOSV54omkMU3Ed9eu5GMfS/r7k6Gh8bHpw4lPj9bVlfT0HIxRP/FE8r//d/Lrv35gSr1a5AvPreaz5zRzYl/ykoeSfz49aU4Xlj7C4em2mQao24oUKcc9cddSTfWw9zNVpHmi9Wc7fz4U+3/N1KH7mM2ep4tWz3fUupLKrL42AAAAAAAAAIDl6NG+R/P8//387BjYkUozaZZJRt9Cs4QC1LWhZGTtwePta/eHqHdWct/G5oFxAWoAAAAAAAAAAAAAAFY6EWoO2wknnDBu7NFHH53zeo888siM3oODXvGKV4yLUD/88MOLtBuWpLVrk9WrW2HpoaGkXj94bt261rl9+5J3vzsZHEyazbFzZhifbhRJdSZTBwbSWNWdaq2W7d2DWVOvJTd/MWve9Kbk+ONSPtyR4X311gNqZfLEutZrsa2qrspgYzCbVm1KrTK3v0Lr9XoGy8F0lB3p6OiY5x0mI/WR1MvW712tqKWjNvV7NJvNDDWGWlHtVNLZ2TlvexkeHs5IRlIraumsTb3uSH0kw83h1IpaKqlM+b2p1+sZLodTSSXVVNPROfnckeGRNNJIM810FV2p1sYHtkdGRjKc4XSkI50dnQf2M1KOpKvoSqVSST31pJk8PfT0uOuPVLQbAAAAAAAAAGApORCg3vt02j+LvVK0bjVKJcmeJD2LuMFROoeT4dXjx7evTTY3u3PmMSflvp33CVADAAAAAAAAAAAAAHBUEKHmsJ1++unjxr7//e/Peb1D48nVajWnnXbanNc7Gpx44onjxnp7exdhJyxplUrS05OsWZOMjBwc7+xMtm1L/vzPkwcfbAWnR5+fob6u5No3JG+9PbnyezOY+8M786z+7vzB8wcPjP/gP78lL3zVW/Lgru9nOMNJc9bbOCKKFLn0pEuzpnNNms1mKpXKYm+JRfIvj/5LBuuD008EAAAAAAAAAFhBHu17NBd+6MLs2rdj3LlKkTT7kqxa+H1NpGMkGZ5iL9ur+7J5uD+7/v2urF+1fuE2BgAAAAAAAAAAAAAAi0SEmsN2zjnnjBu777775rTW8PBwHnnkkTFjz3nOc1Kr+aM6ldWrV48bGxgYWISdsGzU68mddyZf/WrywAOt6HR/f+tcWc56ub6u5Oo3JVs2J7fvb6JPFqJuz/3a5mTPmrEx31s37M1t3/7Qoren13esz+6R3UnGBqiTCFADAAAAAAAAAHBUebTv0Tzv95+XPcN7kiKpHHp70Z4smQB16slIzxTni9aH7Xu3p9FsLMiWAAAAAAAAAAAAAABgsSn7ctie//znp1KppNk8mI297bbbUq/XZx2Pvu222zIyMjJm7OKLL56Xfa5kvb2948aOO+64RdgJy8KddyYf/3iyY0fruFJJ9u07eH6mEeqi9URWX2d5IECdJM0ieftrW58fGqIeG6CeeNlmmQMPey2WSrWSY6vHZsfgjjEBagAAAAAAAAAAOJqMCVDv1xwVol63I9m1fpE2d6h6ku6ZTb3hmhuycc3GI7odAAAAAAAAAAAAAABYKiqLvQGWv9WrV+f5z3/+mLG9e/fm9ttvn/VaX/3qV8eNvfzlL5/z3o4W99xzz7ixTZs2LcJOWNL6+5P3vS/50IcOBqiTZGQkaUfkZxqg3j/30AB1WztEff1zD47NJEB9cO2Zb+NI2Dm4M800c9nJlwlQAwAAAAAAAABwVDoQoB7ZM+5cs0hOeHwJBagbmT5AXbQ+3HDNDbninCuO9I4AAAAAAAAAAAAAAGDJEKFmXvzIj/zIuLFPfvKTs15nomsmWpuxvvCFL4wbu/DCCxdhJyxZ27cn73hH8qUvjT83NNSKT7dfM9SOSh8aoG4bHaKeVYB6idg5uDPffea7qTfri70VAAAAAAAAAABYUGMC1BPcUnTKo8kTJyz8vibUSNI1zRwBagAAAAAAAAAAAAAAjmIi1MyLa665ZtzYn/3Zn2V4eHjGa9x+++355je/OWbshS98YU4//fTD3t9Kds899+Rv//Zvx4wVRSHezUHbtye//uvJ44+PPzcykgwPz3uAuq1ZJG97bfKKn1peAeq2nYM7852nviNEDQAAAAAAAADAUWO4Ppzz/uC8VoB6Aqd9P3l0mvuGFkwzydenmSNADQAAAAAAAAAAAADAUU6Emnlx/vnn56UvfemYsd7e3vzu7/7ujNf4zd/8zXFjv/zLv3zYe1vJhoaG8vM///NpNBpjxl/ykpdk8+al8pQPi6qvL/mt30qeeWbseFkmAwPJ3r2zX3KGAeokKZM8syq5fRkGqNuEqAEAAAAAAAAAOJp85nufSd9wX+vgkJ9rf/qDycMnL/yeJtRM8qUkr5hijgA1AAAAAAAAAAAAAACIUDN/3vWud40b++3f/u18+9vfnvba3//9388//MM/jBk744wz8uY3v3lG7/3sZz87RVGMeX3lK1+Z0bWL6QMf+EC+//3vz+naPXv25Oqrr87Xvva1cef+23/7b4e7NVaK//JfkscfHzvWaCT9/cnw8KyXOzRAXU4xt0yysycZquTAw1zLlRA1AAAAAAAAAABHg0/c9Ylc/amrJzx3wZ3Jg6cu8IYm0w5Qv3aKOQLUAAAAAAAAAAAAAACQRISaefTDP/zD+fEf//ExY0NDQ3nlK1+ZG264YcJrRkZG8ju/8zt5+9vfPu7c7/3e76Wjo+OI7HWp+LM/+7OceeaZefOb35y//du/zeDg4LTXNBqN/M3f/E0uvvjifPaznx13/pprrsnLX/7yI7FdlpsvfjH55CfHjrUD1M3mrJdrFMm1bzgYoG6mFZkerE08f6UEqNt2Du7MXU/dlbKcKr0NAAAAAAAAAADL07gA9ajbZF50Z/Kd5y38niZURoAaAAAAAAAAAAAAAABmYZJ0KMzN//k//yff+ta38uijjx4Y6+vry+tf//q84AUvyI//+I/n9NNPz8DAQLZt25a//uu/zmOPPTZunbe97W35sR/7sQXb92233Zaf+7mfm/R8f3//uLG//du/zUUXXTTpNS94wQvyx3/8x9O+d71ez8c+9rF87GMfy+rVq/P85z8/F154YZ7znOdkw4YNWbt2bfbt25dnnnkm3/72t3PTTTdN+D1Lkpe+9KX5sz/7s2nfk6PAyEjyrneNHSvLZM+e1sdDFcXBOVN46+3J7Scm9SLZ1ZOMVJLdXa1z3fWD8+pJVo0kI11Js8yKCFHXKrWcvPbkFMUK+GIAAAAAAAAAAGCU3r7esQHqUV60JfmX88Y0qRdPmaz9YrJHgBoAAAAAAAAAAAAAAGZMhJp5tWnTpvzjP/5jLr/88mzfvn3Mudtuuy233XbbtGtcddVVef/733+Edjix/v7+bNmyZVbX7Ny5Mzt37pz0/IYNG2a9j7179+arX/1qvvrVr8762te//vX5i7/4i3R3d8/6Wlagf/iH5JFHxo7t25c0m+PnFsW0Eeq+ruTaN7Qi1O/9x+Rnf6IVoG4bHaIeTLJzTVJrJKuHkj0r4I9krVLLuceem02rNy32VgAAAAAAAAAAYN5tWrcpG7o2ZNfQrjHjz7kn+cZ5i7OnccpkzQwC1H/4o3+Yq593dTau2bhgWwMAAAAAAAAAAAAAgKWsMv0UmJ1zzz03t956a1760pfO6rqOjo789m//dj72sY+lWq0eod2tPCeccEI+/OEP57Of/eycwtesUH/xF2OP6/VkaGjsWLXaek2jryu5+k3Jt05KfuW1yf+8LFk10jo3Omm9uyvpr7UC1ElSrwpQAwAAAAAAAADAcrHzP+7Mhq4NB47P+nZy/1mLt58xyuTszyb9kwWoi9arSJGfvuinBagBAAAAAAAAAAAAAGAUEWqOiFNPPTX//M//nOuuuy6XXXZZiqKYdO6aNWvyMz/zM7nzzjvz7ne/O5XK0fPH8tOf/nQ+/OEP59prr80555wz46997dq1ec1rXpOPfOQjefjhh/PzP//zR3inLCuPP5587WtjxwYHxx4XRbJqVTLNn7l2gHrL5lZweseq1udJsnooSXEwRN3MyohOjyZADQAAAAAAAADA0aQdoj79n5JtFyz2bvYrk7M+m2x90yTnR92eePe/uzs9nT0Lsi0AAAAAAAAAAAAAAFguaou9AVauoihy1VVX5aqrrspTTz2VW2+9NQ888ED6+vpSq9Vy3HHH5dxzz82ll16azs7Ow3qvhx566LCuf8UrXpGyLA9rjbk444wzcsYZZxyISO/bty9bt27NI488kscffzx79uzJ4OBgurq6cswxx+SYY47J2WefnfPOO++oinUzS7feOva4LJPh4bFjXV2tAHW1mtTrB8eLojU/4wPUu3qSkf1/7HZ25eDDW0XSLDPmYa6VQIAaAAAAAAAAAICj0S8OnZf3vvhri72NljI55+vJvTMIUH/333035246d0G2BQAAAAAAAAAAAAAAy4kINQvi+OOPzxVXXLHY21jyVq1alYsuuigXXXTRYm+F5ezOO8cej45MJ63QdEdH6/NJYuYTBaiHKkklreNxwen5DlAvctBagBoAAAAAAAAAgJVquD6czlrnhOc+8F/fmPcOf23R799pe853kntfPsnJUXv8h6v+QYAaAAAAAAAAAAAAAAAmMXF9FIDl6+67xx4fGqGuVg/Gp2uH/CyCopg0QJ0iaRZZMg+YHSkC1AAAAAAAAAAArFTf3/X9nPr+U/POL75z3LkP/Nc35teGP71k7g867c7k/osnOTlqj7/6gl/ND537QwuyJwAAAAAAAAAAAAAAWI5q008BYFl55pmxx43G2ONq9eDnlUrS0XEgVN3XWebqN7YC1GXGBqiPBgLUAAAAAAAAAACsVPf03pML/+jC1Jv1vO/r70uSvPc1702SfPpD71xSAepjtyUPzzBA/f4fe/9CbAkAAAAAAAAAAAAAAJYtEWqAlWZkZOrzxSFPinV1JfV6K0D9pjJbTtg/LUltJBnqPiK7nGJ/C/x++1WKSo7rOU6AGgAAAAAAAACAFacdoB5p7r+3qMyBEPUL70ve+Oh/XzoB6u8nz5w7wYlD9idADQAAAAAAAAAAAAAAMyNCDbDSdHRMfb4sx81vVItc+4bmgQB1kgwk2XuUBKiTpFk28/TA0+nd2ytEDQAAAAAAAADAijEuQJ2kTJmUyX//2H9PNiepLN7+RtvwePLMcyY4IUANAAAAAAAAAAAAAABztkQeGwBg3hx77NjjanXscaMx9rgoUu1ZnbfeXqSyv089kGTXmiO2wyWr3qznnmfuSe/e3sXeCgAAAAAAAAAAHLavf//r4wLUbeVD5ZIKUJ+wPek7NUnzkBMC1AAAAAAAAAAAAAAAcFiWyKMDAMyb884be1yrjT1uNJLmIU9qdXbmyge78sG/KzJYLlKAuph+ykIQogYAAAAAAAAAYCX4X1/7X7nszy87GKAuR70eTHJilsxdpKc8nPSe3Pq8UmR8iHq/d7/83QLUAAAAAAAA8P+zd+dhdpf1/f9f58ySyb7AhIRNUESRXUVqVKqoxQ1tXIg//bpha10KtlZFu6i44lJFsahdta2WUCtaqFTbQhVNUUADCkhYxUBCAkmYTJJZz/n9MTnJ7FtmzjmZPB5cuWbO/bnP/XmX73URr+98znMAAAAAACaoTj4+AMCUOemkga8HR6jL5aS7e+j75szJol3lbJ0/faONqE4C1BVC1AAAAAAAAAAA7M8u+N4F+ZP//pO+F5XwdH+Hpm6eIH3MA8mDRw9c2xOi7vdc0cee/bF88DkfrOZoAAAAAAAAAAAAAAAwI9TJRwgAmDJPe9rA14VC0tw8cK2zMymV+r4vlZJyOdcu786Zb6jOiAPUWYC6QogaAAAAAAAAAID90QXfuyCfuv5Tw8enk6QzdfP06OEbk18/ZvhrxUEB6j/97T+tzlAAAAAAAAAAAAAAADDDNNZ6AACm2KGHJs94RvLjH+9da2lJurr2vi6Xk507k7lzkySPFjty5it3VHfOOo1P91cJUSdJ69zWGk8DAAAAAAAAAACj+/D/fnhvgHo4nUkaqjnRyJY/lKw/vO/7UiEpDp65oZilcw7OD1/zwzzh0CdUfT4AAAAAAAAAAAAAAJgpirUeAIBp8IY3DHzd2JjMmjVwrbc32bEjKZWysLspx2ytUhW6kP0iQF1RCVFv3rG51qMAAAAAAAAAAMCIPvPjz+SD//vBkQPUHambAPXSh5MNhw1cK/V/pqiQLJm9JDe95SYBagAAAAAAAAAAAAAA2Eci1AAz0VlnJUccMXBtzpykOOg/+729SXt70tmZO786f3pD1PtZfLo/IWoAAAAAAAAAAOrZh6/9cN7zX+8ZeUNHksaqjTOqE9Ynm5YNf60Sol4y9+D8/A9+nsMXHF69wQAAAAAAAAAAAAAAYIYSoQaYiZqako9+dOBaoZDMn9/3tb9yOenoSNrbc+eXGnPMlmmYZz+NT/fXU+rJA9sfSLlcrvUoAAAAAAAAAACwx5uveHM++MMPjrxhV+omQH3cg8kvjxp9T6kYAWoAAAAAAAAAAAAAAJhCItQAM9Xzn5+86lUDo9MNDcnChX1fC4WBf5Kktzd3/lUxxzwyBfcv9PszAyxuWZwTlp6QwuCINwAAAAAAAAAA1Mibr3hz/v6Wv09G+L3qxZ1Jmqo60ogO2pjcfuQYm3Y/mjMrs6Z9HgAAAAAAAAAAAAAAOFCIUAPMZB/5SHLkoE9uVULUs0b+oNadl+5DiHoGhacrFrcszolLT0xjsbHWowAAAAAAAAAAQJLkI9d+ZPQA9Y6k1FzdmUZS7EweOXyUDf2eOVr9itVpXdBajbEAAAAAAAAAAAAAAOCAIEINMJMtWJD8678mrYM+lFUoJHPn9l1vHv6TZpMKUc+w+HQiQA0AAAAAAAAAQP25/JbL84EffmDE683tSWnk31FfXZ1Jae4I1wb9wvvVr1idc044pxpTAQAAAAAAAAAAAADAAUOEGmCmO/ro5LvfTR7zmL74dH+Njcm8ecnixcn8+cns2X1R6t1/PvWjWWkojfM+AtQAAAAAAAAAADDtrrrjqqy6YlXfi/LQ6y3bk66W6s40oq4kwwWoB8WnEwFqAAAAAAAAAAAAAACYLiLUAAeCo45Krrkmec1rkqamoX+am5M5c5IFC/qC1IsX54pTZ+e853VnaUcxhbFC1ALUAAAAAAAAAAAw7a6646qcfdnZI16f05Z0zK7iQKPpThYtWbQ3ON3/zyAC1AAAAAAAAAAAAAAAMH1EqAEOFAsWJBdfnHzta8mRR4669YqjOnLeMx5NqZB0NJRTGCkyPcKHwvZ3AtQAAAAAAAAAANSbIQHq8sDr87YlO+dUdaSR9STlT5az9X1bs2jWolG3ClADAAAAAAAAAAAAAMD0EqEGOMD0PvfM5Lrr0n7p5/LoM56WJGlv7ElXsZSuYmlIgPrR5nJKg0PTMzQ+nQhQAwAAAAAAAABQf76x9hsDA9SDzN+atM+r4kCj6UnKF+0tZI8WohagBgAAAAAAAAAAAACA6aewCXAAaetsy2u/9do864hn5YKbL0hOSI542vKs37k5xRTS0FtIczmZ39uYcsrZ2dSbUrE89sH7gUIKKWfo/y0NaUgKSUtDS5obmwWoAQAAAAAAAACoK99Y+4289juvHfH6wi3JowuqONBoegcGqCu2vm9rFl+0ONs6t+1ZE6AGAAAAAAAAAAAAAIDqUNkEOEC0dbblFZe9IjdtvClXrbtqz/pvdm5IkvSmnN6GcrqSlFoaM7tpdrp2banRtFOruPufUkp7QtRzm+amUC7kMQsfk4PnHpxCoZAke74CAAAAAAAAAECtXXXHVUMD1P0azwc9lDxyUHVnGlFvUv7EyL/wvn+IWoAaAAAAAAAAAAAAAACqR4Qa4ADQ1tmWs/75rFy//vpx7d/ZszM7e3ZO81TVU9r9TyGFlFNOIYV0dnemudicQqGQYrFY6xEBAAAAAAAAAGCAq+64KmdfdvbehUF959aNyeaDqzvTiErJ2S0njrlt6/u2ZnPb5rQuaK3CUAAAAAAAAAAAAAAAQJKobgLMcBMNUB8oetKTnnJPrccAAAAAAAAAAIAhxgpQH/JAfQWosyH5j8KtueC/LhhzuwA1AAAAAAAAAAAAAABUlwg1wAwmQD26nnJPurq6aj0GAAAAAAAAAADsMWaA+v7koUOqO9OISkkeTHJUUi6X85n/+8y4QtQAAAAAAAAAAAAAAED1iFADzFAC1EOVB38iL0lHuaMGkwAAAAAAAAAAwFADAtTlDAlQL78neejQqo81vHL2BKj7XpaFqAEAAAAAAAAAAAAAoA411noAAKaeAPX49aa31iMAAAAAAAAAAMDQAPUgy+9ONjymujONqJzkgewJUO9dLifl5DP/95kkySef/8lqTwYAAAAAAAAAAAAAAAxSrPUAAEwtAWoAAAAAAAAAANi/jBWgXnpH/Qeo914up1wu56s3fzVdPV1VHAwAAAAAAAAAAAAAABiOCDXADNJb6s2Lvv4iAepxKPorEAAAAAAAAACAOrClfcvoAeq7k02Pq+5MIyonh67NiAHqisZiY376ez9Nc2NzFYYCAAAAAAAAAAAAAABGo8AJMIP8bMPP8uPf/LjWY1RFIYVJv1eAGgAAAAAAAACAerFk3pIsaz5o2AD1nAeTTY+p/kzD2h2gfvC0QeuDHuNpKjbl5rfenMcsqpfBAQAAAAAAAAAAAADgwNZY6wEAmBrtHe05/W9Pr/UY+6yYYhobGtPV27Xn9aLZi3JC6wlpLE7sr60d3Tty4wM3DlgrpTRlswIAAAAAAAAAwD5ra8uGj+7K8rcmG+fvXZ7zYLKztXZjDVBOjvm/5K4zRt9WCVAf13pcdeYCAAAAAAAAAAAAAADGVKz1AABMjXkt83LaoafVeox9UglQJ0lzQ/Oe1+1d7fnl5l+mp9QzofMa0jAdYwIAAAAAAAAAwNR54QuTnTuz4bPJsu271yoB6kItB9vrib8YIUDdbz4BagAAAAAAAAAAAAAAqE8i1AAzyE9+/yd52qFPq/UYk9I/QF3R//VkQ9QAAAAAAAAAAFC3rrwy+b//2/Nyw2eTQ25PUkcB6pYNya+ePPa+H7z+BwLUAAAAAAAAAAAAAABQh0SoAWaY/SlEXUghzQ3NwwaohyNEDQAAAAAAAADAjNHdnbz1rUm5vGdpTSF56JjUTYB68X1JxxEjXOw3418+7y/z9Mc8vRojAQAAAAAAAAAAAAAAEyRCDTAD1VOIulgoprmhech6IYU0NTQlybgC1BXtXe25dfOtKff78B0AAAAAAAAAAOx3vve9ZOPGPS/XFpJnvD91E6A+6NfJ1mNGuNhvxvf+1nvzrme8qyozAQAAAAAAAAAAAAAAEydCDTBD1UOIulgoprHYF5juH6LuH6CeqEIKOXTeoSkU6uTTdgAAAAAAAAAAMBkXX5yUSkmSjUlOe1/qJ0D9YPLI48be997fem8+edYnp38gAAAAAAAAAAAAAABg0kSoAWawWoao+weoK5obmvc5QH3skmPTOrd1KkYEAAAAAAAAAIDaePDB5Cc/SdIXoD7i/UlPnTzRedBDySNHjrJhdyj7wt++UIAaAAAAAAAAAAAAAAD2A3XykQUApkutQtSDA9QVAtQAAAAAAAAAABxIeku9Qxd/+tOkqysbkzzmffUToF7ycPLIYSNcLGRPgPrTz/t0PvDsD1RrLAAAAAAAAAAAAAAAYB/UyccWAJhOtQhR95R6puwsAWoAAAAAAAAAAPZHbZ1t+d3Vv5srbr9i4IVbbkl6evKY9yVdDbWZbbAlW5Ity0a4WNj77YVnXJh3P+PdVZkJAAAAAAAAAAAAAADYd421HgCA6njfM9+Xl1/+8qrdr1QupafUk8bivv1VI0ANAAAAAAAAAMD+qK2zLau+uSo3b7w5P9/w8yTJyoWnJz/9aXL55ZnzJ6W6CVAf9EjyyCHDXCgMfHnuSefmA8/5QFVmAgAAAAAAAAAAAAAApoYINcAB4Irbr8iqb66q+n33NUQtQA0AAAAAAAAAwP6of4A6SUodu3Le11+bXNOSlfe1ZO7/25BdzTUecrcl24YJUBeG7jv3pHPzdyv/rhojAQAAAAAAAAAAAAAAU6hY6wEAmF6VAHV3qbsm96+EqCdKgBoAAAAAAAAAgP3RgAB1Z2fy8MPJtm0pdXXmvGc8mrn/b0N21kmAetGjyZaDx9734TM+LEANAAAAAAAAAAAAAAD7qcZaDwDA9Kl1gLqiEqJuLI7vrx0BagAAAAAAAAAA9kd7AtQb1ibbtye7dg24vrlYSldTbWYbbMH2ZNtBY+9bvXJ1zjnpnOkfCAAAAAAAAAAAAAAAmBYi1AAzVL0EqCsmEqJe3LJYgBoAAAAAAAAAgP3KngD1Az9Ltm5NensHXN9QLiXNNRpukAXbk7bFI1ws7P32yldfmZc84SVVmQkAAAAAAAAAAAAAAJgexVoPAMDUq7cAdUUlRD2WrR1bs3nH5ipMBAAAAAAAAAAA+25ggHrL0AB1SsmsGg03yNydowSo+xGgBgAAAAAAAAAAAACAmUGEGmCGqdcAdcV4QtTllLNuyzohagAAAAAAAAAA6t6eAPWGtcnWrUlvacD1h8qlpLk2sw02Z1eyY8EoGwp9XwSoAQAAAAAAAAAAAABg5hChBphBeku9edN33lS3AeqKUrmUUqk06h4hagAAAAAAAAAA6l1vqTev/dZrc/PGm5Pt25Pe3gHXN5VKKc2q0XCDtHQmO+ePve/rL/u6ADUAAAAAAAAAAAAAAMwgItQAM8iKv1uRRzsfrfUYY2osNKZYHPuvoNFC1N3d9R3aBgAAAAAAAABgZtvVtSsNxYace8q5KXZ1J7t2Dbi+ubeU3pYaDTfIrK6kY+4Ymwp9AerXnPKaqswEAAAAAAAAAAAAAABUhwg1wAzR3tGeGx68odZjjEtPuWfce4cLUa9ZvybXPXBdtuzcMh3jAQAAAAAAAADAqG7ffHsWfWpRVl62MiuPeUku+b9FKZaTlMtJuZyHe0rpmV3rKfs0dSedc8bYVEiufPWVAtQAAAAAAAAAAAAAADADiVADzBDzWublJ7/3kxRSqPUo49LV2zXuvf1D1GvWr0lHT0eSZO2mtULUAAAAAAAAAABU1e2bb8/JXz45Xb1d+fYd387Kj5yYlf+1Ppf8RznFUjlbusvpHiv6XCUNPUn3WDHs3QHqlzzhJVWZCQAAAAAAAAAAAAAAqC4RaoAZ5LTDTpvRIepfbP7FngB1hRA1AAAAAAAAAADVUglQd5e6+xbKybeLd2Tlyzqy8o5CyjuSznm1nbGi0JP0toy1SYAaAAAAAAAAAAAAAABmOhFqgBlmpoaoR9snRA0AAAAAAAAAwHQbEKAup+/Pbt9+YrLoHaU8eHDNxhugoTcpfTJZtn2EDYUIUAMAAAAAAAAAAAAAwAFChBpgBpqKEHVzmrOwsDDFKvxVMVaIejyhaiFqAAAAAAAAAACmy+2bb8+Jl564N0A9SOPDyaMLqj/XcJq6k56L+r7f8NlhQtS7HykSoAYAAAAAAAAAAAAAgAODCDXADPWEg5+Qpx761Em998gFR+aZRz0zT3nMU3J86/FTPNnwRgpNjydAXSFEDQAAAAAAAADAVKsEqHvTO2yAumFj0rOo6mMNq7k3uf9TA9cGhKgFqAEAAAAAAAAAAAAA4IAjQg0wA7V1tmXVN1flN22/SXEC/6kvpJAjFxyZY5YckyTZvGNz1m1Zl4ZCw3SNOsDg4PREAtQVQtQAAAAAAAAAAEyVsQLUxYeS3oOrP9dwmnqTX1+ULBvm2oavzM2yWQclEaAGAAAAAAAAAAAAAIADTWOtBwBgalUC1DdvvDlJ0tjQmJ7enpRSGnZ/Y7ExpVIpxUIxhRSycNbCJHsD1OXhPj03jbp6u9Lc0DypAHXF2k1rc8rSUzKnac4UTgYAAAAAAAAAwIHk9s2350mXPqnvxXAB6oeT0kHVnWkkjaXk/uEC1IVC8vSnJ1dfnQ0LFmRL+5YsmbekFiMCAAAAAAAAAAAAAAA1Uqz1AABMnd5Sb177rdfuCVBXNDY0ptjvP/mFfv/suV4splAsZN2Wdblt8201CVBX7EuAumLtprXp7u6egmkAAAAAAAAAADjQ7OratTdAPZyHk9Kiqo0zqmI5uXlwgLpYTA47LPnOd5If/zhZsCBJBKgBAAAAAAAAAAAAAOAAJEINMIM0FBty7innplgY+p/3Soi6Ep4eSTnlbOnYUrMA9VRpaWxJU1NTrccAAAAAAAAAAGA/9NW1X937YvBjNI8mWVS9WUZTLCc3fSJ5UjlJc3Myb17y/Ocn//7vyb33JmefXesRAQAAAAAAAAAAAACAGmus9QAATK2Vx61Mkpx39XnpLfcOuNbY0Jju3u5ajFVVLY0tWXH4inR0d9R6FAAAAAAAAAAA9jNf+umX8var3z78xUeTzK3qOCOqBKhPmdWSHHNM8tGPJk97WrJ8ea1HAwAAAAAAAAAAAAAA6ogINcAMVAlR/+HVfzjkWjnlFFKY8nsWUkg55TQWG3PcQcflzq13pqOn+hHoSoAaAAAAAAAAAAAmakiAutzv4rYk86o80EjKyZ9+Pzll2e7g9DnnJC97WW1nAgAAAAAAAAAAAAAA6lKx1gMAMD1WHrcyn37+pwcEp7t7u5P0hainWkOhIfOa5+W4g45L69zWrDh8RVoaW6b8PqMRoAYAAAAAAAAAYLIGBKjLGRigbk9dBagXPpr8w7OLueKo3b8k/qSTajsTAAAAAAAAAAAAAABQt0SoAWawlz7hpTl2ybEppJDu3u4B8empDlEvm7sspy0/La1zW/esVTNELUANAAAAAAAAAMBkXf6LywcGqPvbmWRWtSca2extyZw5xZQKyXnPeLQvRP20p9V6LAAAAAAAAAAAAAAAoE6JUAPMcK1zW7N87vJho9NTGaJeMGtBCoXCkPVqhKgFqAEAAAAAAAAAmKzLf3l5Vn1rVd+L4QLUTUmGPhZTEwseShbN3fvoZ6mQnHdmR67Ydn0NpwIAAAAAAAAAAAAAAOqZCDXADLdl55bc13bfiNd7Sj1Tcp/2rvYRr01niFqAGgAAAAAAAACAybr8l5dn1b+NEKDuTt0FqOcuGjpMac7snHf1ebni9itqMBUAAAAAAAAAAAAAAFDvRKgBZrAf3vfDrN20dsx9Xb1do17vLfeOecb92+/Plp1bRrw+HSFqAWoAAAAAAAAAACbrvkfuGz1AndRXgHphksKggRoaklmzUiqX8vdr/z69pbGf8wEAAAAAAAAAAAAAAA4sItQAM9S1916bF//Li8e9f6QQ9ViB6v7Wblo7Zoh6KglQAwAAAAAAAAAwGW2dbXnbf74theEq03UWoJ6/YXeAujjMI5/z5ydJTl52cr7+8q+nodhQ3eEAAAAAAAAAAAAAAIC6J0INMANde++1OfMfz5zw+wYHpycSoK4YLUS9Zv2aCZ83mqk+DwAAAAAAAACAma+tsy2rvrkqN2+8OcvmLUuht9/FriTl1E2Aet6DybzFGT5APXt2MmtWTl52cla/cnUWzFpQ9fkAAAAAAAAAAAAAAID6J0INMMNMNkBdUQlPTyZAXTFciHrN+jXp6OmY9JnD6ejpEKIGAAAAAAAAAGDc+geokyTbt2fZzqRQSl+AOqmbJyvnPZTMXzLCxYaGZP58AWoAAAAAAAAAAAAAAGBMdfJRCQCmwqM7H92nAHXFvgSoK9ZuWpvu7u4k0xOgrhCiBgAAAAAAAABgPAYEqDs7k4cfTtrbkyTlbbs31clTlSfemyysdKULhYEXGxqSxYtz8vJTBKgBAAAAAAAAAAAAAIAx1cnHJQCYCgvnLMwxi4+p9RhJkpbGljQ1NU1rgLpCiBoAAAAAAAAAgNHsCVBvWJu0tSXbtiW9vXs3zEvdPFF58JbklsuKueTqQorlQRcrAerDnixADQAAAAAAAAAAAAAAjEudfGQCgKly5/l31jxE3dLYkhWHr6hKgLpCiBoAAAAAAAAAgOH0lnrz2m+9Njc/8LPkkUeSXbv6LpT7Cs8bmlI3T1M2tCUPL01WvqqUlXcU+kLUKfRdnD07OeggAWoAAAAAAAAAAAAAAGBC6uRjEwBMpTvPvzPL5i6ryb2bik1VD1BXCFEDAAAAAAAAADBYQ7Eh5x5+dopbtiY9PUmp1PenXM7GpiQNtZ6wT8P2pHdJ3/fffuLuEPW9s3LJuseluHhJsmBBTl5+igA1AAAAAAAAAAAAAAAwISLUADPQFbdfkYZiQ4qF6v9nvlgo5rr7r6t6gLpCiBoAAAAAAAAAgCTZ0r6l75u2tqz8g4tzyX+UUiyV91zf2JiU6yVA3Z70Lh649u0nJisveExWfvPWXPK7f52nHPoUAWoAAAAAAAAAAAAAAGDCRKgBZpgrbr8i5119XkrlUpbOXVrVezc3NKeztzPdpe6q3ncwIWoAAAAAAAAAgAPbVXdclYP+8qAs//Sy5IwzkjvuyMrbyrnk6kKK5WRTQ1JurPWUfYo7k95Fw1/7duGOrPy3c7LyuJX59qpvC1ADAAAAAAAAAAAAAAATJkINMIP0lnrz92v/PqVyac9ac0NzVe7dWGhMT29PVe41Hh09Henurm0MGwAAAAAAAACA6rvqjqty9mVnJ0k27ngoy597855rK+8o5JFi0ttUq+kGKuxKSiN1pQt9X75713ezq2tXGooNVZsLAAAAAAAAAAAAAACYOUSoAWaQhmJDvv7yr+fkZScPWK9aiLqhMcV9/KulpbElZx51ZloaW/bpnFOWnpKmpjr5tCAAAAAAAAAAAFXRP0Cdct+XjfOT5X/U90vdF59fSsesGg03SKEjKc8ffU9TsSlr/2BtZjfPrs5QAAAAAAAAAAAAAADAjCNCDTDDLJi1IKtfubpmIepFsxflxINPnNR7WxpbsuLwFUmSFYevmHSI+pSlp2TJnCWTei8AAAAAAAAAAPun4QLUFRvnJ7PeVcq2udWfa1idSXneKNcLfQHqm996c45rPa5qYwEAAAAAAAAAAAAAADOPCDXADFQJUZ+4dGAMerpD1POa5+WE1hPSOq81pyw9ZULv7R+grphMiFqAGgAAAAAAAADgwDNagDpJmtqTrlnVnWlEXUlGi2ELUAMAAAAAAAAAAAAAAFNIhBpghlowa0G++rtfzbzmeXvWunq7pu1+sxpn5YTWE9JYbEySLJmzZNwh6uEC1BUTCVELUAMAAAAAAAAAHHgGBKiH0dCWdE/s96BPn+4kc0a5XkgKKQhQAwAAAAAAAAAAAAAAU0aEGmAGWzBrQU5oPSHzmudNa4A6SQ6fd/ieAHXFeELUowWoK8YTohagBgAAAAAAAAA48AwJUJcHXp/TlvSOFn2uoobuJLNH2VDo+9JYbMxRC4+qwkQAAAAAAAAAAAAAAMCBoHHsLQDszxqLjdnZtXPa79NQbBh2vRKiXrtp7ZBr4wlQV6w4fEXWrF+Tjp6OIdcEqAEAAAAAAOrb5s2bc8MNN+Tuu+9OW1tbmpqactBBB+VJT3pSnvrUp6apqanWIw6wcePG3HvvvfnNb36TTZs2ZceOHenu7s6CBQuycOHCHHXUUTn11FOzYMGCabn/9u3bc+utt+bOO+/M1q1bs3379sydOzeLFy/OYYcdltNOOy0LFy6clnsDwP5kSIB6kLnbkh3zqjfPaIo9Se9IAerC3m8bi425+a03Z3bzaLVqAAAAAAAAAAAAAACA8ROhBpjh1qxfk47eoeHmqXbn1juzbP6yYa8NF6KeSIC6YrgQtQA1AAAAAABA/frmN7+Zz3/+8/nxj3+ccrk87J758+fnnHPOyXvf+94ce+yxVZ4w2bZtW370ox/lxz/+cX7yk5/kF7/4RR5++OEx31coFHLiiSfm9a9/fV73utdl6dKlk57h0UfE3QsRAAEAAElEQVQfzX/+53/m2muvzbXXXpt169aNee8TTjghr3/963PuuedmyRI/LwPgwLNx28ahAep+/3Nj9tZkx/zqzjSSQm9Sahnp4t5vG4uNueWtt+S41uOqMhcAAAAAAAAAAAAAAHBgKNZ6AACmz8lfPnlAsHk6dZe6s2b9mhGvV0LUyeQC1BUrDl+Rlsa+T+XtrwHqkQILtToHAAAAAABgqj3wwAN59rOfnVe96lX50Y9+NOrPNbZv356/+7u/y4knnpiPfOQjVf8ZyEUXXZSzzz47F110Ua699tpxBaiTvp/V3HLLLXn3u9+dxz3ucfnsZz+bnp6eCd373//933P22Wdn6dKlefWrX52vfOUrYwaoK/f+xS9+kfe85z054ogjcvHFF6dUKk3o3gCwP7tnyz05+W9PzpzGOcNeb3o42VVHAeryrPHt/eHrfihADQAAAAAAAAAAAAAATDkRaoAZ6vFfeHzu2XpPVe/Z0dMxZoj6WYc9a9IB6ooVh6/Isw571n4ZoO4p9eSWTbdk847N+3TO5h2bc8umW9JTmljIAAAAAAAAYLqtW7cup512Wn7wgx9M6H1dXV35wAc+kNe+9rXp7e2dpummR3t7e/7kT/4kL3nJS7Jr165xv++zn/1srrrqqnR1dU363jt37swf//Ef53d+53eyY8eOSZ8DAPuL/73nf3PMJcdk045N6ejtGBKibtqUdC+qzWxDlMYIUBf2fnvpCy/N0496+rSPBAAAAAAAAAAAAAAAHHgaaz0AAFPv8V94fO7aeldN7l0JUY8Umm5qapqS+0zVOdXUU+rJLzf/Mu1d7Vm3ZV2SpHVu64TP2bxjc9ZtWZdyyvnl5l/mhNYT0lj0VzoAAAAAAFB7jzzySJ7//Odnw4YNQ6495SlPycte9rIcffTR2bVrV9atW5dvfOMbefDBBwfs+5d/+ZcsXbo0F198cZWmHmju3Ll58pOfnCc84Qk55phj0tramvnz56e3tzdtbW1Zt25d1qxZk+uvvz7lcnnAe7/3ve9l5cqVufrqq1MoFEa4w9gWLVqUZzzjGXnqU5+apUuX5uCDD87OnTtz77335pprrsmPfvSjIe/5n//5n7z0pS/Nd7/73cyaNVrtEgD2X1/9+Vfzpn9/057XpXJpT4h6Z8/OzN6Y7Dq4hgP2Vxr/1ktfeGne9rS3Td8sAAAAAAAAAAAAAADAAU2xEmCGqWWAumKsEPWBqH+AOknKKU8qRN0/QJ0k7V3tQtQAAAAAAEDdeMtb3pL7779/wNr8+fPzz//8z3npS186ZP/HP/7xfPzjH8+HPvShAeuf//znc9ZZZ+WFL3zhdI6bJJk1a1bOPPPMvPCFL8xzn/vcnHTSSWloaBjzfXfddVfe9a535corrxyw/r3vfS9/8zd/k7e85S0TmmPhwoVZtWpV3vjGN+b0009PsVgcdt+FF16YtWvX5vd+7/dy0003Dbh2zTXX5BOf+MSQf58AMBN86adfytuvfvuQ9UqIumV9suuQGgw2nEqAunmUPbt/X4UANQAAAAAAAAAAAAAAMN2G/8QiAPulR3c+WvMAdUVHT0e6u7trPUZdGBygrqiEqDfv2DyucwYHqCsqIeqeUs+UzQwAAAAAADBR//Vf/5VvfetbA9aam5tzzTXXDBugTpKmpqZ88IMfzMUXXzzk2vnnn5+enun/+ceFF16Y//mf/8m73/3unHrqqeMKUCfJMccck+985zt529uGRiMvuuiicd//0EMPzec///ls2LAhX/nKV/L0pz99xAB1xSmnnJI1a9bkBS94wZBrn/zkJ7N+/fpx3x8A9gfv/c/3DhugrijeV0pHPQWoSxGgBgAAAAAAAAAAAAAA6oYINcAMsnDOwlzz+mv26YyWxpacedSZaWls2adzTll6SpqamvbpjJlgpAB1xXhD1CMFqCuEqAEAAAAAgFr7yEc+MmTtgx/8YJ761KeO+d53vvOdef7znz9g7a677so3vvGNKZtvOhQKhXzuc5/LYx7zmAHr9957b2688cYx3//+978/d999d84///zMnj17Qvdubm7O5ZdfnuXLlw9Y7+joyL/+679O6CwAqGev++br8umffHrohfLuP/cnPYdWe6oRlJO0J8t7kkJphD0C1AAAAAAAAAAAAAAAQJWJUAPMMM85+jmTDlG3NLZkxeErkiQrDl8x6RD1KUtPyZI5Syb13plkrAB1xVgh6rEC1BVC1AAAAAAAQK3ceuutue666wasHXzwwXn3u9897jM+8YlPDFn70pe+tM+zTbdZs2blla985ZD12267bcz3nnXWWWlpmfwvh50/f/6w/46vuuqqSZ8JAPXk//3r/8s/3/rPAxcr8ekk2ZhkeepDOWnYnixv7nu5bOcwIerdAerVL18tQA0AAAAAAAAAAAAAAFSNCDXADDSZEHX/AHXFZELUAtR9xhugrhgpRD3eAHWFEDUAAAAAAFALl1122ZC1N73pTWlubh73GU95ylPylKc8ZcDa9ddfn3vvvXef55tuj3vc44asbdiwoSr3ftGLXjRk7Z577qnKvQFgOq1avSpfv+3rexf6x6eTvgD1wVUeaiS7A9RLB/1Pnz0h6kL2BqhfsTrnnHhOtScEAAAAAAAAAAAAAAAOYCLUADPUc45+Tv7j//uPce0dLkBdseLwFWksNo7rHAHqPhMNUFcMDlFPNEBdIUQNAAAAAABU23/+538OWXvlK1854XOGe89wZ9ebjo6OIWsTCXDviyOPPHLI2saNG6tybwCYLm/81htz+a8u37sw+NGJOgtQz35kaIA6STJvXpYtXJ7C7gL16leszjknCFADAAAAAAAAAAAAAADVJUINMIOdcdQZOWXpKaPuaSo2jRigrnjsoseOea8j5x8pQJ2kXC7n1s23TjhAvef9u0PUt22+bVIB6or2rvbcuvnWlMuTez8AAAAAAMB47dixIz/72c8GrM2ZMydPfvKTJ3zWs571rCFr11133aRnq5YbbrhhyNrjHve4qtx7586dQ9Zmz55dlXsDwHR425Vvy9d+8bW9C4MffdiS5KBqTjSKcrLwkWTRvH5rhUJSLCZNTcn8+UmSs445K/f+4b0C1AAAAAAAAAAAAAAAQE2IUAPMcEvmLBkxRF1IIU9c8sRxndOQhlGvz2ueN+r1A0WhUMih8w5NIYVJn1FOOVs6tkw6QJ30/b/tofMOTaEw+TkAAAAAAADGY+3atSmVSgPWnvrUp6axsXHCZ5122mlpamoasHbTTTft03zT7c4778wVV1wxYK2lpSVnnHFGVe5/1113DVlbvnx5Ve4NAFPtj678o3z5Z1/euzBcgHp+sg+PZUypt/8omTd30GLlWY3dAeqTl52c1a9cnaMOOqqqswEAAAAAAAAAAAAAAFSIUAMcAIYLURdSyMJZCyd0zkgh6rEC1Qea1rmtOXbJsfsUot4XhRRy7JJj0zq3tSb3BwAAAAAADiy/+tWvhqwdc8wxkzqrubk5hx9++IC1u+++Oz09PZM6b7rdc889Ofvss9PR0TFg/U1velMWLVpUlRm++c1vDlk77bTTqnJvAJhKq1avyud/9vm9C3UeoP7kt5K/+mFyydWFFAfPOnt2MmvWngD1glkLajIjAAAAAAAAAAAAAABAIkINcMDoH6KeTIC6YnBwWoB6eLUKUQtQAwAAAAAA1XbfffcNWXvMYx4z6fOOPPLIAa97e3tz//33T/q8qdbZ2Znrr78+f/RHf5Tjjz8+d9xxx4DrRx99dD7xiU9UZZZdu3bln/7pn4asv+xlL6vK/QFgqpz9T2fn8l9dPvKGnamrAPVBDyTvvT1JsZiVdxT2hqgLhaShIZk/X4AaAAAAAAAAAAAAAACoG421HgCA6lkyZ0kWNC5IsWHffgdBMcWUUhKgHkMlBL1uy7qUU572+wlQAwAAAAAAtbBx48Yha0ccccSkzxvuvQ899FAe+9jHTvrMifrv//7vvPvd7x6w1tPTk+3bt+fBBx9MT0/PsO97/OMfn+9///tZuHByvxB2oi666KJs2rRpwNqhhx6aF73oRVW5/3j91V/9VS699NJpv8/dd9897fcAYOq98d/emKvuuWrgYv/HLHYmaUrdBKgbtyaPPCZZ/q5kw8V9ayvvKCQNxZz34mJKixfn5OWnCFADAAAAAAAAAAAAAAB1Q4Qa4ADT1NSU3lLvPp8jQD0+1QpRC1ADAAAAAAC1smXLliFr8+bNm/R5w733kUcemfR5k7Ft27bcfPPN494/d+7cvPWtb82FF16YuXPnTuNke9144435xCc+MWT9wx/+cGbNmlWVGcZr8+bNue2222o9BgB16OXfeHmuuPOKgYv9H6/oTl0FqFseTjqW9X2/cX6y/I9K2XBx3y+DX1l6QvLiP8rfr//3fP3lXxegBgAAAAAAAAAAAAAA6oYINQBMs+kOUQtQAwAAAAAAtbRjx44ha7Nnz570ecO9d+fOnZM+bzoVCoW8+c1vzsc//vG0tlbvZzWPPPJIXvWqV6W7u3vA+m//9m/n3HPPrdocALAvVl22amCAevAjFd2714pVHGoU8zYm7YcPXNsTor7mlOQHP8jKBQvy0tK5aSj65e4AAAAAAAAAAAAAAED9qJOPZwDAzNY6tzXHLjk2hRSm9FwBamAsgwMktT4HAAAAAJh5hvv/P2xpaZn0ecNFqLu6uiZ93nQql8v527/925xwwgm58MILs3379mm/Z1dXV17+8pfnvvvuG7C+ZMmS/OM//mMKhan9eRQATIdVq1fl8jsu37tQ5wHquQ8NDVBXbJyfLH/NhmTBgiQRoAYAAAAAAAAAAAAAAOpOnXxEAwBmvqkOUQtQA2PZsnNLrnvguqxZv2afzlmzfk2ue+C6bNm5ZYomAwAAAABmun0JIQ/33nJ5cJlyer3yla9MuVwe8GfHjh154IEH8t///d+58MILc/TRR+/Zv2nTpnzoQx/KSSedlJ/85CfTNlepVMrrX//6/PCHPxyw3tDQkK9//es58sgjp+3eADBVVq1elct/tTtAXU7dB6jnbEl2HDbKhkKycedD2dLu56kAAAAAAAAAAAAAAEB9qpOPaQDAgaF1bmsWtyyekrMWtywWoAZGtGXnlqzdtDZJ0tHTMekQ9Zr1a9LR05EkWbtprRA1AAAAADBEU1PTkLVdu3ZN+rzh3tvc3Dzp86bKnDlzcuihh+a5z31uPvCBD+Tuu+/OF7/4xcydO3fPnvvuuy/Pe97zsmbNvv1ywJG8/e1vz+rVqwesFQqFfOUrX8kLXvCCabknAEylN37rjQMD1MMppW6ebGzaluxcOsqG3b8748pXX5kl85ZUYyQAAAAAAAAAAAAAAIAJa6z1AABUV7lUHvAhvp5STzq7O0d9T29v79BzBn0SsFQqpbNr9HOqrae3Z8ictbZ5x+Zs7dg6JWdt7diazTs2C1EDQ/QPUFdUQtQrDl8x7nP6B6gr1m5am1OWnpIlc3yAGgAAAADoM2fOnCFrUx2h7h96rheFQiHveMc7cuKJJ+YFL3jBnrnb29uzatWq3HLLLVm8eGp+OWmSvOtd78pXvvKVIesXX3xx3vzmN0/ZfaZDa2trnvSkJ037fe6+++50dtbXzywB2Ou9//nefO0XX+t7MdLjHJ1JGqo10ega25Lug0fZ0C9A/ZInvKQqMwEAAAAAAAAAAAAAAEyGCDXAAaCzpzO/3vbr7OrZlbbOtgFh5u1bto/5/lJKY8acf7X1V2nYWiefAuynlNKQtd70RbUbqvypxc07NmfdlnVTFsYup5x1W9YliRA1sMdwAeqKiYSohwtQVwhRAwAAAAD9HXTQQUPW2tvbJ33ecO8d7h714owzzsiHPvShXHDBBXvW1q9fn7/8y7/MRz/60Sm5x/vf//587nOfG7J+0UUX5fzzz5+Se0ynd7zjHXnHO94x7fc5/vjjc9ttt037fQCYuK/97Gv59E8+3fdipMcmOlI3TzTO3p7sGunHoYW93wpQAwAAAAAAAAAAAAAA+4NirQcAYHrt6t6VXz38q7R3t6e33FvrcepKJUZdDVMdoK6ohKg379g8pecC+6fRAtQVlRD1aEYLUFes3bQ2W3ZumeiIAAAAAMAMdMghhwxZW79+/aTP+81vfjOue9STd77znZk/f/6Atb/+679OubzvPxv60Ic+lIsuumjI+oc//OEB4WsAqFdX3XFV3njlG/te7AcB6ob2ZNfiYS4UIkANAAAAAAAAAAAAAADsl0SoAWa43zz6G/HpUfT2TP+/m+kKUFcIUQPJ+ALUFaOFqMcToK4QogYAAAAAkuToo48esvbrX/960ufdf//9A143NDTkyCOPnPR51TBr1qyceeaZA9Y2b96c2267bZ/O/ehHP5oLL7xwyPpf/MVf5C/+4i/26WwAqIbfbP1Nzr7s7NE37UrdBKizMykvTOZ0ZW90elB8OhGgBgAAAAAAAAAAAAAA9i8i1AAz3K6eXbUeoa5Nd6B7ugPUFULUcGCbSIC6YrgQ9UQC1BVC1AAAAADAE57whCFrd91116TO6urqym9+85sBa4973OPS2FgvZcqRHXXUUUPW7rnnnkmf98lPfnLY0PT73ve+fPjDH570uQBQLW2dbfmdf/6dvQvDPTqxM0lTtSYaw64kC5JSIeloTuY0zhl2mwA1AAAAAAAAAAAAAACwvxGhBpjhBkeWSymld4L/jDegXKqzf3ozdmC6VC5N6t/reFQrQF0hRA0HpskEqCv6h6gnE6CuEKIGAAAAgAPbqaeemmJx4OMHN954Y3p6eiZ81o033pju7u4Ba09+8pP3ab5qaWlpGbK2ffv2SZ316U9/Ou973/uGrL/nPe/JJz7xiUmdCQDV1NbZltP/+vT8asuvRt60M0lz1UYaXUeS+XtflgpJR2/HkBC1ADUAAAAAAAAAAAAAALA/EqEGmOGaGwZ+Wq+QQhom8c9YGtKQYh3+M5bGQuOk/92OptoB6gohajiwdHd3TzpAXdHR05Fr7rtm0gHqirWb1g4JwwAAAAAAB4a5c+fm1FNPHbC2Y8eO/PznP5/wWT/60Y+GrJ1xxhmTnq2aNm3aNGTt4IMPnvA5n/vc5/Le9753yPof//Ef51Of+tSkZgOAamrrbMtpXz5tYIB68OMTO1I/AerOJPOGLpfKpQEhagFqAAAAAAAAAAAAAABgfyVCDTDDLZ+7vNYj1LWmpqYpP7NWAeoKIWo4cDQ1NaWlsaXWYyRJWhpbpuW/qQAAAADA/uEFL3jBkLVvfvObEz5nuPcMd3Y9uv7664esLVu2bEJnfOELX8i73vWuIevnn39+PvvZz056NgColrbOtpx4yYlZt23dyJvak8yq2kij60oyd+TLpXIp82bNy4Z3bhCgBgAAAAAAAAAAAAAA9lsi1AAz3EFzD8ryectTLOzbf/Ib0jCpaweacrmcB9sf3KcAdSGFLGlZkkIKk58ju+co1yaEDVTPisNX1DxE3dLYkhWHr6jpDAAAAABAbb361a8esvYP//AP6erqGvcZP//5z3PDDTcMWDv99NNz9NFH7/N8023t2rW5/fbbB6wtWrQoxx133LjPuPTSS/POd75zyPo73vGOfP7zn9/nGQFgurV1tuWITx6R+3fcP8qmJPXxe3aT7iRzRt9SSCH/d+7/Zdmiif1iCQAAAAAAAAAAAAAAgHrSWOsBAJh+y+cvz8EtB6e9pz13PnJnent791xramrK3Ka54z6rt7c3XaWuFFNMYxrT2Fy/f5X09PZk065Nw16brnB2oVDI8a3H55ebf5n2rvaJvz+FHLvk2LTObc3mHZuzbsu6SQWt5zXPy/Gtx6dQmHzIGth/rDh8RdasX5OOno6q31uAGgAAAABIkhNOOCHPfOYz86Mf/WjP2ubNm/O5z30uF1xwwbjOeP/73z9k7W1ve9uUzThdent7c/755w9Zf/GLX5ympqZxnfE3f/M3+cM//MMh629961vzxS9+cZ9nBIDp1lvqzWEXHZb2jPKsRFvGjD5XTU+S2SNc6/eoxTWvuyaPXfLYakwEAAAAAAAAAAAAAAAwbeq3HArAlGpqasripsWZ1TQrvQ17I9RHzD8irfNaazjZ9NnVtSuP7HpkwFoppRRTnNb7NhYbc0LrCRMOUfcPUCfZ83WiIep5zfNyQusJaSz6ax4OJLUIUQtQAwAAAAD9/fmf/3le8IIXDFj74Ac/mOc///l58pOfPOp7v/jFL+Z73/vegLXHPvaxec1rXjOuex911FH59a9/PWDt2muvzbOf/exR33fJJZfkiU98Yp7//OeP6z6DdXZ25g1veEOuu+66AeuFQmHYqPRwvva1r+UP/uAPUi4P/HnQW97yllx66aWTmgsAqu0Zf/2MkQPU5STbksyr4kCj6UnSMva2f3jpP+TZj332dE8DAAAAAAAAAAAAAAAw7aa3wgkAB6hKiHpe8/g+QTk4QF3ROrc1xy45NoUUxnWOADUc2FYcviItjeP4tPQUEKAGAAAAAAY766yz8rKXvWzAWmdnZ57znOfkyiuvHPY93d3d+chHPpLzzjtvyLUvfOELaWpqmpZZK2666ab8zu/8Tp7+9Kfn0ksvzUMPPTSu93V3d+db3/pWTjzxxKxevXrI9d///d/Pb/3Wb415zmWXXZZzzz13SID6zW9+c7785S+nUBjfz4gAoJZOuPiE/OShn4y8YUvqJ0Ddm9ED1Lv/6p3bMDevOXF8vwwDAAAAAAAAAAAAAACg3ilUAsA0qYSof7n5l2nvah9x30gB6orK+rot61JOedg9iQA10GfF4SuyZv2adPR0TNs9BKgBAAAAgJH8zd/8TW666aasX79+z1pbW1te+tKX5qlPfWpe9rKX5eijj86uXbty55135utf/3oeeOCBIef84R/+YV784hdXbe7rr78+119/fc4777wcd9xxOfXUU/OkJz0pS5YsyaJFi1IoFNLW1pYHH3wwa9euzQ9/+MM88sgjw571nOc8J5/97GfHdd/Xve51KZVKQ9ZvuOGGnHrqqfv0f9N3v/vdHHrooft0BgCMZdknl+WhjlF+icPmJIuqNc0YepPMGntbc6E5vzr/V2lubJ72kQAAAAAAAAAAAAAAAKpBpRIAptFYIeqxAtQVY4WoBaiB/qYzRC1ADQAAAACMprW1Nd///vdz5plnZuPGjQOu3XjjjbnxxhvHPOOcc87JxRdfPE0Tjq5UKuXWW2/NrbfeOqn3/+7v/m6+8Y1vZPbs2ePa39PTM+z6LbfcMqn799fV1bXPZwDAaJZ8fEm2dm8decNDSZZUbZzRlTJ2gLqQNKUpd//R3Tl8weHVmAoAAAAAAAAAAAAAAKAqirUeAABmukqIel7zvAHr4w1QV7TObc2xS45NIYUB6wLUwHBWHL4iLY0tU3qmADUAAAAAMB7HHXdcfvrTn+aZz3zmhN7X1NSUD37wg/mXf/mXNDQ0TNN0A82dO3dKzjniiCPyzW9+M1dcccW4A9QAsD9b/LHFoweoN6e+AtSFMfbsDlDf88f3CFADAAAAAAAAAAAAAAAzjgg1AFTB4BD1RAPUFYND1ALUwGimOhgtQA0AAAAAjNcRRxyRH/7wh1m9enVWrFiRQmHk8uO8efPypje9Kbfccks+9KEPpVis3qMMf/VXf5Vbb701n/nMZ3L22Wdn2bJl437vIYcckle/+tX57ne/m3vvvTeveMUrpnFSAKgfiz+2ONt6to284ZEki6o0zFgqAeqmUfbs/p8pN/3+TQLUAAAAAAAAAAAAAADAjKRYCQBVUglR37r51hw679AJB6grKu97sP3BHN96vAA1MKI169dM+XlC1AAAAADAeBUKhZxzzjk555xzsmnTpvz0pz/NPffck7a2tjQ2Nubggw/Occcdl9NOOy3Nzc37dK/77rtv0u990pOelCc96Un5kz/5kyTJhg0bcvfdd+e+++7Lli1bsmPHjpTL5cyfPz8LFy7M0qVLc/LJJ2f58uX7NHOSlMvlfT4DAKpp+aeWjx6g3ppkQbWmGcMEAtT/8NJ/yImHnliFoQAAAAAAAAAAAAAAAKpPtRIAqqix2JiTlp6UQqGwT+e0zm3NwXMO3udzgJlrzfo16ejpmNIzO3o6hKgBAAAAgElZunRpXvKSl9R6jHFZvnx5li9fnmc+85m1HgUA6soxnz0mG3dtHHnDtiTzqjXNGMoZPUDd73GLf3jpP+SNp75x+mcCAAAAAAAAAAAAAACokWKtBwCAA81UhaMFqIGRTEeAuqISogYAAAAAAAAOHEd/9ujcvf3ukTdsTzK3auOMrrz76zgC1H/94r8WoAYAAAAAAAAAAAAAAGY8EWoAAJhBpjNAXSFEDQAAAAAAAAeO479wfO7bft/IG9qTtFRrmjGUk3RnXAHqTzznE/n9p/5+FYYCAAAAAAAAAAAAAACoLRFqAACYIaoRoK4QogYAAAAAAICZ70Vfe1Fu23rbyBvak8yq2jijqwSo54y99YPP+mDed8b7pnsiAAAAAAAAAAAAAACAuiBCDQAAM0A1A9QVQtQAAAAAAAAwc51/1fm5+r6rR96wK0lz1cYZ3XgC1IW+L3/xzL/Ih8780LSPBAAAAAAAAAAAAAAAUC9EqAEAYD9XiwB1hRA1AAAAAAAAzDx//t9/nktuumTkDR1JGrIn7FxzEwhQf/i5H67GRAAAAAAAAAAAAAAAAHVDhBoAAPZjtQxQVwhRAwAAAAAAwMzx0f/9aD7244+NvKEjfU8e1kuAekcEqAEAAAAAAAAAAAAAAEbRWOsBAACAyenu7q55gLqio6cj3d3daWpqqvUoAAAAAAAAwCR9/Acfz1/84C9G3tCd+gtQLxzl+u45v/6yr+c1p7ymGhMBAAAAAAAAAAAAAADUnWKtBwAAACanqakppyw9ZZ/OaGlsyZlHnZmWxpZ9OueUpacIUAMAAAAAAMB+7OM/+Hj+7H//bPiL5fQFqMupnwD1towcoC5kz5xXvvpKAWoAAAAAAAAAAAAAAOCAJkINAAD7sSVzlkw6RN3S2JIVh69Ikqw4fMWkQ9SnLD0lS+YsmdR7AQAAAAAAgNq7d9O9QwPU5X5/elJfAer2JAePcK3fjFe++sq85AkvqcZEAAAAAAAAAAAAAAAAdUuEGgAA9nOTCVH3D1BXTCZELUANAAAAAAAA+7+jlx6dYv/HCcv9LvYkKaV+AtSPJlk0zHohA2b8r//vvwSoAQAAAAAAAAAAAAAAIkINAAAzwkRC1MMFqCsmEqIWoAYAAAAAAID9X3tHe5Kk982/TrE3AwPU3ekLUNfLk4bbkhw0aG1QfDpJLl95eZ537POqMxMAAAAAAAAAAAAAAECdq5ePhgAAAPtoPCHq0QLUFeMJUQtQAwAAAAAAwP7vhgduyIJPLsjpFx+fHHdcej9WTLHUb0M59fOU4ZYkB2dvdHqY+HSSfPGsL+ZVJ72qqqMBAAAAAAAAAAAAAADUs3r5eAgAADAFRgtRjydAXTFaiFqAGgAAAAAAAPZ/NzxwQ07/29NTTjk/3XZbTn91e5LsDVF3pn6eMNyW5JAMG53u79IXXpp3/NY7qjAQAAAAAAAAAAAAAADA/qNePiICAABMkeFC1BMJUFcMF6IWoAYAAAAAAID9X/8Adcp9az89LDn93FKSpNidpKF28w3QlqR17G2XvvDSvO1pb5v2cQAAAAAAAAAAAAAAAPY3ItQAADAD9Q9RTyZAXdE/RC1ADQAAAAAAAPu/4QLUFT89LCm8p5SeeglQb09y0NjbBKgBAAAAAAAAAAAAAABG1ljrAQAAgOmxZM6SPOuwZ6WpqWmfzllx+Ip0d3fv8zkAAAAAAABAbX3vju/lhZe9sC9APZyO1M9ThTuTjON35H7hrC8IUAMAAAAAAAAAAAAAAIyiWOsBAACA6TNV4WgBagAAAAAAANi/ffwHH88LLnvB3gD14A71rtRXgHrh2Nvev+L9Oe+3zpv2cQAAAAAAAAAAAAAAAPZnItQAAAAAAAAAAAAwg338Bx/Pn/3vn+1dGByg3pmkXn4v7a6MK0C98nEr8/Hnf3zaxwEAAAAAAAAAAAAAANjfiVADAAAAAAAAAADADDUkQD3YjiTNVRtndJ1JFoy97enLn55v/b9vTfs4AAAAAAAAAAAAAAAAM4EINQAAAAAAAAAAAMxAX/v510YNUBd3JJlVvXlG1Zlk3tjbTj/k9Kx5y5ppHwcAAAAAAAAAAAAAAGCmEKEGAAAAAAAAAACAGebyX16eN/77G4deKPd9adqelOolQN2VcQWok+R7r//etI4CAAAAAAAAAAAAAAAw04hQAwAAAAAAAAAAwAxy+S8vz6p/WzVwsZw9AeqWtqR7dtXHGl53krnj23rN66/JwjkLp3UcAAAAAAAAAAAAAACAmUaEGgAAAAAAAAAAAGaIIQHqfvHpJFmwKemYU/WxhteTZJyzXPP6a/Kco58zreMAAAAAAAAAAAAAAADMRCLUAAAAAAAAAAAAMAMMCFAPik8nyaGbkh1Lqj7W8HqSzB7fVgFqAAAAAAAAAAAAAACAyROhBgAAAAAAAAAAgP3c5rbNAwPUgyx/KHlod4C6oXpjDa83Scv4tgpQAwAAAAAAAAAAAAAA7BsRagAAAAAAAAAAANjPtS5ozaLGecMGqOdvSjYdNHCtZiHq3iSzxrdVgBoAAAAAAAAAAAAAAGDfiVADAAAAAAAAAADA/u7WW7P1I91ZtGvgcsumZPuSvvbzYFUPUZciQA0AAAAAAAAAAAAAAFBlItQAAAAAAAAAAACwP1u/PjnttKSzM1s/lT0h6paNSceSvdtqGqIuZdxPLApQAwAAAAAAAAAAAAAATB0RagAAAAAAAAAAANhf/eY3yQknJLt27Vna+qlk/gNJx8FDt9ckRF1KUkjSOPZWAWoAAAAAAAAAAAAAAICpJUINAAAAAAAAAAAA+5Gunq6+b+6/PznjjOTRRwdcf+VZyfZDRn5/VUPUpfQ9qdg0aL0w8OULj3phtr1nmwA1AAAAAAAAAAAAAADAFBOhBgAAAAAAAAAAgP3E+rb1OeLiI3LBf/xRcs45ya9/PeD6G56d/NtTxz6nKiHqcvqeUmwcfdt5Tzkv333Dd7NwzsKpngAAAAAAAAAAAAAAAOCAJ0INAAAAAAAAAAAA+4H1betz6pdPzcM7H85nbvhCLljys6Rc3nP9/Kcl//iM8Z83rSHqcvLjTyTFMZ5S/LNn/Fm+8JIvTNVdAQAAAAAAAAAAAAAAGESEGgAAAAAAAAAAAOrc+rb1OeXLp+ThXQ+nXC4n5XI+c1p3Lnhu3/UPnJhc8vyJnzstIepycvSvkxXlpPdjxRRLg64X+r585Lc/ko8+76P7ejcAAAAAAAAAAAAAAABGIUINAAAAAAAAAAAAdawSoH5k1yNJknK5nPLukPNnnpGccWbykZdO/vwpDVGX+w6895jk9N/bfX7/EPXuuT/27I/lz5/955O9CwAAAAAAAAAAAAAAAOMkQg0AAAAAAAAAAAB1anCAuqKcpFxISm3Jdb+17/eZkhD17gB1Wvpe/vSw5PRz++rT/UPUH3v2x/Knv/2nkxsUAAAAAAAAAAAAAACACWms9QAAAAAAAAAAAADAULdtvC1n/OMZAwPU5X7ftiWZk6QwNffrzdDwdEOGD1QPqzPJvIFLlRD1T1bPT+9bbsu9zd05eunR+zoqAAAAAAAAAAAAAAAA41Ss9QAAAAAAAAAAAADAQJf/8vIc/5XjBwao+9uSZHamLEBdMVxwenCYelgdGRKgrvjpYcnpHz4iOfxwAWoAAAAAAAAAAAAAAIAqE6EGAAAAAAAAAACAOnL5Ly/Pqn9bNfKGXUnmZ8oD1BUTDlHvyIgB6iRJIbnh0dvT3tG+T3MBAAAAAAAAAAAAAAAwcSLUAAAAAAAAAAAAUCe+f9f3hw9Ql3f/6UjSmGkLUFeMN0Q965EkC0c5qJAUUshPfu8nmdcyWqkaAAAAAAAAAAAAAACA6SBCDQAAAAAAAAAAAHXg2nuvzVlfP2vgYiU+nSSd6Xvqb5oD1BVjhajnbEw6DxnhzYUMCFCfdthpUz8gAAAAAAAAAAAAAAAAYxKhBgAAAAAAAAAAgBq79t5rc+Y/nrl3oX98OukLUBdS9af+RgpRH/JQsvPwEd5UqHwRoAYAAAAAAAAAAAAAAKg1EWoAAAAAAAAAAACooWED1P3VKEBdMThEffDDyUOHDVos9PsTAWoAAAAAAAAAAAAAAIB6IUINAAAAAAAAAAAANTJmgDqpaYC6onf3n9YtyUPLBl0sDN1/9auvFqAGAAAAAAAAAAAAAACoAyLUAAAAAAAAAAAAUAPjClB3pm6e9JuzNdm4dOx9H3v2x3LWE86a/oEAAAAAAAAAAAAAAAAYU518NAUAAAAAAAAAAAAOHI/ufHTMAHVzR5KGqo00qlltyc7WYS4UBr782LM/lj/97T+tykwAAAAAAAAAAAAAAACMTYQaAAAAAAAAAAAAquy631y398UwAepZu5KuxurNM5pZ25POJWPvE6AGAAAAAAAAAAAAAACoP3XyERUAAAAAAAAAAAA4MFx1x1U5+7Kz+14ME6CevSPZNau6M42keWfSuXiEi4W93371pV/NG059Q1VmAgAAAAAAAAAAAAAAYPyKtR4AAAAAAAAAAAAADhRjBajnttdPgPqQrUnn55JFu0bft/oVqwWoAQAAAAAAAAAAAAAA6pQINQAAAAAAAAAAAFTBv9/+76MGqOdtT3a0VHemkSx5NNl4ad/3Wz81TIi60Pdl9StW55wTzqnqbAAAAAAAAAAAAAAAAIyfCDUAAAAAAAAAAABMs/seuS8vu/xlfS+GCVAveDRpn13dmUYyb2fyyBcHrg0IUQtQAwAAAAAAAAAAAAAA7DdEqAEAAAAAAAAAAGAatXW25W3/+bYUKvXmQRZsS9rmVnemkczdlWz/3PDXtn4qWdTbmESAGgAAAAAAAAAAAAAAYH/RWOsBAAAAAAAAAAAAYKZq62zLqm+uys0bb86yecuy8dENKRf3Xl+yJdmyoHbz9dfcmbR/dpQNJ5+cre/5YTanM60LWqs2FwAAAAAAAAAAAAAAAJNXHHsLAAAAAAAAAAAAMFH9A9RJks7OLOsoplDqe7lsc7KtTgLUjd1Jz5zkgucOc7FQSE44IbnyymTBAgFqAAAAAAAAAAAAAACA/UhjrQcAAAAAAAAAAACAmWZIgDpJdu5MkizrKKZpWynrl/YtF5OUqj/iHg09Se/spFBOPvOMvrVP/s/ui8VicuqpyRVXJEccUbMZAQAAAAAAAAAAAAAAmJxirQcAAAAAAAAAAACAmWTYAHV3d9LZmZTL6W0v5f6lA8PTtXqYr6En6W1JyknKhb61zzwjueB5SRobkze+MbnmGgFqAAAAAAAAAAAAAACA/VRjrQcAAAAAAAAAAACAmWJIgLqzM9m5c0+AumdnsnnJ3v2l7A1QFzMwTD3dCr19AeqKcpIUkkI5+cyKJCvPziff/ndVnAgAAAAAAAAAAAAAAICpVhx7CwAAAAAAAAAAADCWAQHqzs7k4YeTbduSrq4kSe+gAHVF//B01R7q603Ks4Yul5OUi0kaivnqzh+nq6erWhMBAAAAAAAAAAAAAAAwDRprPQAAAAAAAAAAAADs73pLvXntt16bmzesTbZvT3btGnC91F7OpoNGfn8pewPUxeyOQU/PqAOr1/0V+r6Uk8xrmpub3nJTmhubp2sKAAAAAAAAAAAAAAAAqqA49hYAAAAAAAAAAABgNA3Fhpx7+EtTfGTLkAB1Hi3loVEC1BX929CF7GlCT61S+irTs0a+WSGFPO2wp2X5vOXTMQEAAAAAAAAAAAAAAABVJEINAAAAAAAAAAAA++r++7PynV/KJT+Ym2J591q5nPLWUja0jv+YaQ1RDxegHqSQQn77qN/Ot1Z9Kw3Fhqm8OwAAAAAAAAAAAAAAADXQWOsBAAAAAAAAAAAAYH/16M5Hs7CnkLz61cmGDVnZmWRHQ857XnfKW5MNh078zFKS4u7vKxHq8gh7x62ccQeov/Pq72TBrAX7ekcAAAAAAAAAAAAAAADqgAg1AAAAAAAAAAAATMK1916bM//xzBzTszB33tGQbN+e9PZm5aPJ5a3JZb81+bOnMkRdKCflUoYPUBcqXwSoAQAAAAAAAAAAAAAAZqLi2FsAAAAAAAAAAACAit5S754AdZLc1fBoHv+aLUlvb5LkohNK+xSgrij1+76QvTHqiSiWk3I5wweo+1lx2AoBagAAAAAAAAAAAAAAgBlIhBoAAAAAAAAAAADGqa2zLc/4+2fsCVCn3PflroOSx7+9lMuOKOX9Z0/d/fYlRF0sJ6VdSZpH2LD7sJOWnpTvvu67AtQAAAAAAAAAAAAAAAAzUGOtBwAAAAAAAAAAAID9QVtnW577j8/NjQ/e2LdQHnj9/obkda+d+vuWkhR3f1+JUJdH2FuxJ0A9Rlf6pKUn5bpzrxOgBgAAAAAAAAAAAAAAmKGKY28BAAAAAAAAAACAA9tYAermbUl5TlIqTM+DeaV+3xeyN0Y9nHEFqAvJU5Y9RYAaAAAAAAAAAAAAAABghhOhBgAAAAAAAAAAgFGMFaDOtr4AdW+/J/JqFaIuJGnaljED1KcfdnqueeM1AtQAAAAAAAAAAAAAAAAznAg1AFOmXB78CcvansPwuru76+ocAAAAAAAAAKhnQwLUg21LmmYPDFBX1CJE3bw16Wwd5YDdb7jynCsFqAEAAAAAAAAAAAAAAA4AItQATImeUk9u2XRLNu/YvE/nbN6xObdsuiU9pZ4pmoz+tuzckuseuC5r1q/Zp3PWrF+T6x64Llt2bpmiyQAAAAAAAACg/gwJUJd3/6noSJpnJ70NI59RzRD1gvEGqF99ZVoXjLYRAAAAAAAAAAAAAACAmUKEGoB91lPqyS83/zLbu7Zn3ZZ1kw5Rb96xOeu2rMv2ru355eZfClFPsS07t2TtprVJko6ejkmHqNesX5OOno4kydpNa4WoAQAAAAAAAJiR2jrb8vJ/eXlfgHpwfDpJOpJZSXpGCVBXTHeIupikdVPSNs4A9Uue8JJpmAgAAAAAAAAAAAAAAIB6JEINwD6pBKjbu9qTJOWUJxWirgSoy7s/sdne1S5EPYX6B6grJhOi7h+grhCiBgAAAAAAAGCmaetsy6pvrsptm36RYu8wG7qT5iTdjeM/c7pC1IUkhzyYbD50lI0C1AAAAAAAAAAAAAAAAAcsEWoAJm1wgLpioiHqwQHqCiHqqTFcgLpiIiHq4QLUFULUAAAAAAAAAMwUvaXevPZbr83ND/wseeSRHLIzKZb6behOUk66GjPoSYexTccDewc/lDx45CgbBKgBAAAAAAAAAAAAAAAOaCLUAEzKSAHqivGGqEcKUFcIUe+b0QLUFeMJUY8WoK4QogYAAAAAAABgf9fV05UkOfeIl6a4+eGktzdJ9oaou5NCKXuevCuntiHqZQ8nxYW7ZxqOADUAAAAAAAAAAAAAAMABT4QagAkbK0BdMVaIeqwAdYUQ9eSMJ0BdMVqIejwB6gohagAAAAAAAAD2V+vb1uewzx2WJ3zuccl73ptL/qOcYr9HGg7ZmRTKSblh4PtqFaI+5JGkMK/v+2UdxaEhagFqAAAAAAAAAAAAAAAAIkINwASNN0BdMVKIerwB6goh6omZSIC6YrgQ9UQC1BVC1AAAAAAAAADsb9a3rc+Jl56Yh3c+nLu3/zqvf862JMklVxf2hKg3NCXlEZ64q3aIeumWpDh394tCX216T4i6EAFqAAAAAAAAAAAAAAAA9hChBmDcJhqgrhgcop5ogLpCiHp8JhOgrugfop5MgLpCiBoAAAAAAACA/cX6tvV54heemG2d2/aUpNubk9f/bl9a+pKr+wLUaRj9nGqFqJduSRrmDFpsbk4WLcqyhctT2F2g/s453xGgBgAAAAAAAAAAAAAAII21HgCA/UO5XM6tm2+dcIB6z/srIeqdm7O1Y+uEA9QV7V3tuXXzrTlp6UkpFAqTOmMm6+7unnSAuqKjpyPX3HfNPs+ydtPaPOuwZ6WpqWmfzwIAAAAAAACA6bC+bX2O/fyx2VXaNaQg3ReiTtpLGTNAXVE5YiJPNBSTlMa59+Bt/QLUlecmDjoo6fez+bOOOStfesGXctRBR01gCgAAAAAAAAAAAAAAAGaqYq0HAGD/UCgUcui8Q1OY0MckByqnnC0dWyYdoE6SQnbPIUA9rKamprQ0ttR6jCRJS2OLADUAAAAAAAAAdWtAgHoE7b1JGid2bjlDetZjGs+DfIsfTZoqjwQUi30R6lmzBgSoT152cla/crUANQAAAAAAAAAAAAAAAHuIUAMwbq1zW3PskmP3KUS9Lwop5Nglx6Z1bmtN7r+/WHH4ipqHqFsaW7Li8BU1nQEAAAAAAAAARrK+bX2O+dwxewPUw1WjdyWZ5O9eLicpTfA9xWTEJzIWtyUts4a5MGfOnm8rAeoFsxZM8M4AAAAAAAAAAAAAAADMZCLUAExIrULUAtQTU8sQtQA1AAAAAAAAAPVsfdv6HP25o9OZzr6F4QLUOzPpAHV/Ew1RFzI0RH3olmRO/1kKu3c0NCSz+srUAtQAAAAAAAAAAAAAAACMRIQagAmrdohagHpyahGiFqAGAAAAAAAAoJ5VAtQ96elbGC5AvSNJ89Tdc19C1EduSR74UnLJ1YUUB886f34SAWoAAAAAAAAAAAAAAABGJ0INwKRUK0QtQL1vqhmiFqAGAAAAAAAAoJ519XTlcZ973OgB6vYks6b+3pMJUZ+0Ifn1l5IUi1l5R2FviLpQSGbPTmbNEqAGAAAAAAAAAAAAAABgTCLUAEzadIeoBainRjVC1ALUAAAAAAAAANS7N3zrDelKV9+L4QLU25NM44/XJxKiXrI92TknfcHp3VbeUcgl/92UYkNjMn++ADUAAAAAAAAAAAAAAADjIkINwD6ZrhC1APXUms4QtQA1AAAAAAAAAPXuaV9+Wi67/bK+F8MFqNuSzJ7+OcYTol7Ynjy8OLnroOTx7xg47ModR+aSF30xTznsqQLUAAAAAAAAAAAAAAAAjIsINQD7bKpD1ALU02M6QtQC1AAAAAAAAADUu7P/6ezc8NANfS+GC1BvSzKnevOMFqJesDPZumjv67sOSh7/9t3vmDMn+f73s/JZv59vr/q2ADUAAAAAAAAAAAAAAADjIkINwJRonduaxS2Lp+SsxS2LBainyVQHowWoAQAAAAAAAKhnq1avylX3XNX3YrgA9dYk86o5UZ/hQtTzdiXbhulK33VQ8vg/LCX//M/JYx+bJGkoNkzvgAAAAAAAAAAAAAAAAMwYItQATInNOzZna8fWKTlra8fWbN6xeUrOYqA169fU9XkAAAAAAAAAMFVWrV6Vy391ed+L4QLUW5LMr+ZEA/UPUc/dlbSNMstdi5PH//rd0z4TAAAAAAAAAAAAAAAAM48INQD7bPOOzVm3ZV3Kw35ic+LKKWfdlnVC1FNszfo16ejpmNIzO3o6hKgBAAAAAAAAqDvvvOqdoweoH06yoJoTDa+UZE5nsn2sGHYhuWvrXXl056PVGAsAAAAAAAAAAAAAAIAZRIQagH0y1QHqCiHqqTUdAeoKIWoAAAAAAAAA6skF37sgX7jpC30vhnucYWOSRVUcaDSlpL1hjD2Fvi/XvP6aLJyzcNpHAgAAAAAAAAAAAAAAYGYRoQZg0qYrQF0hRD01pjNAXSFEDQAAAAAAAEA9eOdV78ynrv9U34vhHmd4IMnB1ZxoZIXe9AWmW0bb1Pflmtdfk+cc/ZwqTAUAAAAAAAAAAAAAAMBMI0INwKRMd4C6Qoh631QjQF0hRA0AAAAAAABALa1avSpfuOkLfS+Ge5xhfZJDqjnRyAqlpFxM0jTapr4vAtQAAAAAAAAAAAAAAADsCxFqACasWgHqCiHqyalmgLpCiBoAAAAAAACAWvj7G/4+l//q8pE3PJhkWdXGGV05KZcycoC6EAFqAAAAAAAAAAAAAAAApowINQATUu0AdYUQ9cTUIkBdIUQNAAAAAAAAQDVde++1efN337x3YfAjDQ8lWVrNiUZRTgptyfKepFgadK1ffDoRoAYAAAAAAAAAAAAAAGBqiFADMG61ClBXCFGPTy0D1BVC1AAAAAAAAABUw7X3Xpsz//HMvhflDA1QP5LkoCoPNZJy0vBosmxW38tDdg4Tot5NgBoAAAAAAAAAAAAAAICpIkINwLiUy+U82P7gPgWoCylkScuSFFKY/BzZPUe5NiHsetfd3V3zAHVFR09Huru7az0GAAAAAAAAADPUkAD1YFuSLKzmRKMoJ7/3neRf/ycp9pt1T4i636MUAtQAAAAAAAAAAAAAAABMJRFqAMalUCjk+NbjM6953uTen0KOXXJsntT6pBy75NhJh6jnNc/L8a3Hp1CYfMh6JmtqasopS0/ZpzNaGlty5lFnpqWxZZ/OOWXpKWlqatqnMwAAAAAAAABgOGMGqNuTLKjmRKMoJ9mRXPbSvpeXXN0vRN3QkEPmLc2cxjlJBKgBAAAAAAAAAAAAAACYeiLUAIxbY7ExJ7SeMOEQdSVA3Tq3NUnSOrd1UiHqec3zckLrCWksNk7ofQeaJXOWTDpE3dLYkhWHr0iSrDh8xaRD1KcsPSVL5iyZ1HsBAAAAAAAAYDTjClDPquZEY9iRZFHS3py8fmXf0iVXF1IsFJODDsrJhz05G969Idves02AGgAAAAAAAAAAAAAAgCknQg3AhEw0RD04QF0x0RC1APXETCZE3T9AXTGZELUANQAAAAAAAADTZdwB6on9Xuzp83CSRXtftjcnr//dJIsW5ZKXfTlPOeJpWf3K1Vkwa0EWzllYmxkBAAAAAAAAAAAAAACY0USoAZiw8YaoRwpQV4w3RC1APTkTCVEPF6CumEiIWoAaAAAAAAAAgOny6M5H9waoh9OV+gpQP5Rk2dDl9ubk9S/uTA46ON9e9e0smLWg6qMBAAAAAAAAAAAAAABw4BChBmBSxgpRjxWgrhgrRC1AvW/GE6IeLUBdMZ4QtQA1AAAAAAAA/P/s3XmU3XV9//HXnS37QiAhYZOwqCAoyKaAC6hFK4IUGrBWy1IVZGuFH1ZRAVFACwgq4IJgqwKhiAtWi1YEWSWJLBYRIQYhEJZsZE9m5t7fH5NJZjJ3lsxy70zyeJwzZ+Z+vp/v5/tOCp4evfc5wED5wzN/yLiR47LLFru0LJQ22NCYlvj0YApQb9vJtUKyvGllrv39tZWcCAAAAAAAAAAAAAAAgM2UCDUAvdZZiLqnAepWnYWoBaj7R1ch6p4EqFt1FaIWoAYAAAAAAABgoJzy01Py+utfn8IFhTx5xpPZpWFK+w2Na78PlgD13HQZoE6SLYZvke//3fdTW1NbqakAAAAAAAAAAAAAAADYTIlQA9AnG4aoNzZA3WrDELUAdf8qF6LemAB1q3IhagFqAAAAAAAAAAbKKT89Jd946BvrXhcuKOTJq2qyy4K1C41JShk8Aernk+zYybVC67dCZnxkRrYYsUWFhgIAAAAAAAAAAAAAAGBzJkINQJ+1hqjHNIzpVYC6VWuIekzDGAHqAdA2RN2bAHWrtiFqAWoAAAAAAAAABsqGAeqUWr4KJz6XJ6+uSV5YuzZI3gVX82KSHbrf9/Njf56dJuw04PMAAAAAAAAAAAAAAABAkqh7AtAv6mrq8vpJr0+hUOjTORNHTcxWI7fq8zmUN2HkhLxl27ekvr6+T+ccuN2BaWxs7PM5AAAAAAAAAFBOuwB1aYOLNUnhk8V1Pw8K85Pitl1cX/s2iC++/Yt592vfXZGRAAAAAAAAAAAAAAAAIBk8H8EBYBPQX+FoAeqB1V/haAFqAAAAAAAAAAZClwHqtgbLu98WJpncxfU2AepPv+3TlZgIAAAAAAAAAAAAAAAA1hksH8MBAAAAAAAAAABgM9ejAPXqDJ53vi1OMqmL62sD1OcedK4ANQAAAAAAAAAAAAAAAFUxWD6KAwAAAAAAAAAAwGasxwHq2kpN1I2lSbbq4vraAPWJrz8xX3jnFyoxEQAAAAAAAAAAAAAAAHQgQg0AAAAAAAAAAEBV9ShAvSqDJ0C9LMkWXVxvE6D+zlHfqcREAAAAAAAAAAAAAAAAUJYINQAAAAAAAAAAAFXzh2f+sD5A3ZmVSeoqMk73ViQZ38X1tQHqj+31MQFqAAAAAAAAAAAAAAAAqk6EGgAAAAAAAAAAgKrZc4c9178oldmwMkl9pabpxsokY7u4vjZAfdxux+UbR3YT1gYAAAAAAAAAAAAAAIAKEKEGAAAAAAAAAACgqkrnlatPJ1mRwROgXpVkTBfX1wao99t6v9w47cZKTAQAAAAAAAAAAAAAAADdEqEGAAAAAAAAAACg4l5e8nK716X/OyYptllYnqShoiN1bnWS0V1cXxugPnynw/PgyQ9WYiIAAAAAAAAAAAAAAADoERFqAAAAAAAAAAAAKurm/7s5k74yKVtcskXLwvPPJ/fem9K1U5JiUliWZFhVR1xvTZJRXVxfG6Ce9tppue1Dt1ViIgAAAAAAAAAAAAAAAOgxEWoAAAAAAAAAAAAq5ub/uznH/vDYJMni1YtbQtQPPrju+nYLktLwak23gcYkI7u43iZAPf3Y6ZWYCAAAAAAAAAAAAAAAADaKCDUAAAAAAAAAAAAV0TZA3Wrx6sXZ4pEPJEl2ed+8zN2iGpOV0ZhkRBfX1waoz9jnDAFqAAAAAAAAAAAAAAAABq26ag8AAAAAAAAAAADApq9cgLrV4tKqjJw2LytHV3iozjSl8wB1Yf2PO47dMZf/7eWVmAgAAAAAAAAAAAAAAAB6pabaAwAAAAAAAAAAALBp6ypAnSQNizJ4AtTNSYZ3cq1NgHrbkdvmkY8/ktqa2kpMBQAAAAAAAAAAAAAAAL0iQg0AAAAAAAAAAMCA6S5AnZeTNWMqN0+XmpMM637bViO2yh/P+GPGDhs74CMBAAAAAAAAAAAAAABAX4hQAwAAAAAAAAAAMCC6DFCXksKLScZXcqIuFNN1gLrQ8m23sbtl9pmzBagBAAAAAAAAAAAAAAAYEkSoAQAAAAAAAAAA6HdlA9SlNl8vJKUJVRisnGLWRabLWntt3232zQMff0CAGgAAAAAAAAAAAAAAgCFDhBoAAAAAAAAAAIB+9fKSl8sHqFu9mGSrSk7UhdYAdX0n19sEqH/94V8LUAMAAAAAAAAAAAAAADCkiFADAAAAAAAAAADQryaOnZjxw8a3vCilfYB6fpItKz9TWcVk7sXJLks6uS5ADQAAAAAAAAAAAAAAwBAnQg0AAAAAAAAAAEC/WLhs4bqfFx3yPxm/coMN85OMr+REXSglqUm2+2zy5NU12WVBm2uFCFADAAAAAAAAAAAAAACwSRChBgAAAAAAAAAAoM9+9sTPsuVlW2bKpVOS++9PDjkki/69Zl2IurAsgytAnSR1SWqSwrnFPPnj7bLLsCnr4tNJcsC2BwhQAwAAAAAAAAAAAAAAMKSJUAMAAAAAAAAAANAnP3viZ3nfTe9Lkryw/IVM+eGByerVSZJFl9Zki5eTDK/igG2V1n7Vt1mrSQr/PDdPfur57LLFLkmSOz58R+498V4BagAAAAAAAAAAAAAAAIa0umoPAAAAAAAAAAAAwNDVNkCdJCklL4xOpvxLMfOuqMn0HYpZNq6l+1x1pSSNSUaWv1y4oJDSeaW8suKVjBs5rpKTAQAAAAAAAAAAAAAAwIAQoQYAAAAAAAAAAKBXOgSo23hhTDLh5JYAdXNNUpOkWNnx2usqQF1Y/+MfnvlD9txhzwoNBQAAAAAAAAAAAAAAAAOrptoDAAAAAAAAAAAAMPSUDVCX2vy8KnllfNLY5l1qVX3DWmcB6jZO3vtkAWoAAAAAAAAAAAAAAAA2KSLUAAAAAAAAAAAAbJRuA9QrktQmxULLy2KbS1V509rydB6gXjvjyXufnGuOuKZSEwEAAAAAAAAAAAAAAEBFiFAD0G8aGxsH1TkAAAAAAAAAQP/rEKAupX2AujFJfdbFnVtVLUS9Msm4Tq4JUAMAAAAAAAAAAAAAALCJq6v2AABsGhauWJiHX3o4w+uG58DtDuz1OffNvS+rmlZlr0l7ZcLICf04IQAAAAAAAADQV2UD1G21/t7pDQLUrYppCVAXy1/uf8uSjO/kmgA1AAAAAAAAAAAAAAAAm4Gaag8AwNDXGqBOklVNq3Lf3Pt6dU5rgDpJHn7p4SxcsbC/RgQAAAAAAAAA+mjhsoV9ClC3qlSA+uMPJBnbyUUBagAAAAAAAAAAAAAAADYTItQA9EnbAHWr3oSo2waoWwlRAwAAAAAAAMDgMWH0hEweNbnlxYYB6jVr17oJUFfKP/0+ueqPU1K6dkr76nUhAtQAAAAAAAAAAAAAAABsVkSoAei1cgHqVhsToi4XoG4lRA0AAAAAAAAAg8e8s+dlcvPI9otr1n4fJO9GG/1i8t2Hp6x7XfrT37eLTycC1AAAAAAAAAAAAAAAAGw+BsnHfgAYaroKULfqSYi6qwB1KyFqAAAAAAAAABgkfvWrzLt2XCYvX1t0HmQB6sxPlm2bbPGxRck11ySzZiU335zSeaV1WwSoAQAAAAAAAAAAAAAA2JwMlo/+ADCE9CRA3aqrEHVPAtSthKgBAAAAAAAAoLJeWfFK+4XGxuQzn0mSzPvB5JYQdSmD511oi5NMTlJIFmdVtnj8+GTKlHWXS+eV8ugJjwpQAwAAAAAAAAAAAAAAsFkZLB//AWCI2JgAdatyIeqNCVC3EqIGAAAAAAAAgMr4zZzfZPy/j8+uX911/eJVVyWPPZYsWJC8+GJeKZSS2urN2M6SJFu1X1q8enG2uGSLdmt77rBn5WYCAAAAAAAAAAAAAACAQUCEGoAe602AulXbEHVvAtSthKgBAAAAAAAAYGD9Zs5vcuh/HpokeWrRU9n1cxOS7bZL/vVfk+XLkzVrMuYTxaxsqPKgrZYmmVD+UrkQNQAAAAAAAAAAAAAAAGxORKgB6JHGxsZeB6hbrWpalTuevqPXAepWD7/0cBobG/t0BgAAAAAAAADQUdsAdZKklDxVsyi7HvXcuqXx/5osG1aF4cpZlqSbxvTi1Yvz8pKXKzIOAAAAAAAAAAAAAAAADDZ11R4AgKGhvr4+w+uG9zkg3R+G1w1PfX19tccAAAAAAAAAgE1KuwB1qf21p7ZMdj0tWVCXvDKycjPVJCl2dnFFkvHdnzH96OmZOHZiv80EAAAAAAAAAAAAAAAAQ0lNtQcAYOg4cLsDM7xueFVnGF43PAdud2BVZwAAAAAAAACATU1XAepWz45IFo2q3Ew1G3xvZ2WSsWXWC+1fTj96eqbtMa1f5wIAAAAAAAAAAAAAAIChRIQagI1SzRC1ADUAAAAAAAAA9L+eBKiHrUhWN1RupiQptvm57RvdRq5KMqb7+wWoAQAAAAAAAAAAAAAAQIQagF6oRohagBoAAAAAAAAA+l9PAtTDl1c+QN1qwxD16JXJitHd3ydADQAAAAAAAAAAAAAAAC1EqAHolUqGqAWoAQAAAAAAAKD/9SRAPWxZsmpY5WYqpzVE/doXk6WXJ+NXdrKx0PJNgBoAAAAAAAAAAAAAAADWE6EGoNcqEaIWoAYAAAAAAACA/vfKilfWB6g7MWJJsroyv5+6W8NXJY9d2/Lzon8vdAxRC1ADAAAAAAAAAAAAAABAWSLUAPTJQIaoBagBAAAAAAAAYGDc/pfb178odbw++pVk5cjKzdOVmsZkxehkyifWLhQKWXRpTYcQtQA1AAAAAAAAAAAAAAAAdCRCDUCfDUSIWoAaAAAAAAAAAAbGdbOuy7E/PLblRZkA9ZYvJMtGVXamTjUlxREtP74wpk2IOmkJUa9KUhCgBgAAAAAAAAAAAAAAgM6IUAPQL/o7GC1ADQAAAAAAAAD976yfn5WTfnZSy4syAept5iULtqrsTJ1qTrLB78R+YUwy5V+KLS+GDcuiox7IS//6kgA1AAAAAAAAAAAAAAAAdEKEGoB+cd/c+wb1eQAAAAAAAACwuTt2+rG5fMblLS/KBaifT56fWNmZOtWcZFj5Sy+MSab8azH5zW+SAw7IxLGDZWgAAAAAAAAAAAAAAAAYfESoAeiz++bel1VNq/r1zFVNq4SoAQAAAAAAAKCffOqXn8rNf7q55UWZAPW2zyXPT6rsTJ0qptMAdasXxiQLX7drRcYBAAAAAAAAAAAAAACAoUyEGoA+GYgAdSshagAAAAAAAADou4vuuiiX3H9JS3y6kwD1c1tXfKzyit1cL7R83XbcbZkwekIlJgIAAAAAAAAAAAAAAIAhTYQagF4byAB1KyFqAAAAAAAAAOi9i+66KOfeeW6n17ccjAHqhk6uF1q+3XbcbTn8NYdXYiIAAAAAAAAAAAAAAAAY8kSoAeiVSgSoWwlRAwAAAAAAAMDGaxegLnW8vsUzyQIBagAAAAAAAAAAAAAAANikiVADsNEqGaBuJUQNAAAAAAAAAD3XXYB6y9nJom0qO1OnWufrLEC9lgA1AAAAAAAAAAAAAAAAbDwRagA2SjUC1K2EqAEAAAAAAACge90FqMc/kSx4VWVn6kxNKXno4mTymi42FQSoAQAAAAAAAAAAAAAAoLdEqAHosWoGqFsJUQMAAAAAAABA52589Mb1Aeoyxs9OFu9cwYG6UCgl/31dslehJvNumJLJywtlNglQAwAAAAAAAAAAAAAAQF+IUAPQI42NjVUPULda1bQqjY2N1R4DAAAAAAAAAAaVhcsW5h9+9A/rF0rtr4+fnSx+VWVn6kyhlPz8uuTdLySpq0uSzPvB5PYhagFqAAAAAAAAAAAAAAAA6DMRagB6pL6+PntN2qtPZwyvG55Ddzw0w+uG9+mcvSbtlfr6+j6dAQAAAAAAAACbmgmjJ2TyqMktLzYIUNc9nyzeofIzlVVKbrh+bYA6Sdq8B2DeDyZncnGkADUAAAAAAAAAAAAAAAD0ExFqAHpswsgJvQ5RD68bngO3OzBJcuB2B/Y6RL3XpL0yYeSEXt0LAAAAAAAAAJuqOS/NSZLMO3teJmd0+4vPJ00TkxQqP1dZq5PPHt3m9fC17yHYYYfkP/4j8z6/PAvOWiBADQAAAAAAAAAAAAAAAP1AhBqAjdKbEHXbAHWr3oSoBagBAAAAAAAAoKOL7rooO12zU2ovqE1WrMi8fy9l8tK1F59PMpgC1EuSjE6e2jLZ9bQkNTXJoYcm3/52cvfdybvelSSZMNr7AwAAAAAAAAAAAAAAAKA/iFADsNE2JkRdLkDdamNC1ALUAAAAAAAAANDRRXddlHPvPDdJUkwxtZeMSlauzLzLk5rBFqBelKTN//T/1JbJrueOSW6+OXnve5P6+qqNBgAAAAAAAAAAAAAAAJsqEWoAeqUnIequAtStehKiFqAGAAAAAAAAgI7aBqhbFWuS2nOLua+QFAdRgHrs3LQEsTfwVO0r2fWru1Z8HgAAAAAAAAAAAAAAANhciFAD0Gtdhah7EqBu1VWIWoAaAAAAAAAAADoqF6BuVVyZHPSpDJoA9bjnkyU7lrmwdr6nFj2VV1a8UsmRAAAAAAAAAAAAAAAAYLMhQg1An5QLUW9MgLpVuRC1ADUAAAAAAAAAdNRpgLqUpDFJfQZNgHqrF5NXduh6zx0fviPjRo6rzEAAAAAAAAAAAAAAAACwmRGhBqDP2oaoexOgbtU2RC1ADQAAAAAAAAAddRqgTloC1KUMmneFTXkxmb9tJxfXRrLv+PAdOWTqIRWbCQAAAAAAAAAAAAAAADY3ddUeAIBNw4SRE/KWbd+S+vr6Pp1z4HYHprGxsc/nAAAAAAAAAMCmpssAdXMGVYB62xeT5wSoAQAAAAAAAAAAAAAAoOoGyUeOANgU9Fc4WoAaAAAAAAAAANrrMkCdJI0ZNO8G2+YlAWoAAAAAAAAAAAAAAAAYLAbJx44AAAAAAAAAAAAoZ85Lc7oOUK9KUluxcbq0zcvJ89t0crGw/sc9ttyjIvMAAAAAAAAAAAAAAADA5k6EGgAAAAAAAAAAYBCbOmlqajp7q9fKDJoA9ZT5yfNTylwopF2AevrR0zNx7MRKjQUAAAAAAAAAAAAAAACbNRFqAAAAAAAAAACAQa75vOaOIeqVSeqqMk4Ho5Ym8yZ3v2/60dMzbY9pAz8QAAAAAAAAAAAAAAAAkESEGgAAAAAAAAAAYEhoG6IurMigCVAPX5Es36KTi4X1PwpQAwAAAAAAAAAAAAAAQOWJUAMAAAAAAAAAAAx2v/998qlPpfmut6VmeVKqr/ZALRpWJqvGdr9PgBoAAAAAAAAAAAAAAACqo67aAwAAAAAAAAAAANBiTdOaNNQ1tLxYsSK5+OLk+uuTefOSJJM+XkyxoYoDtlG3OlkzposNhZZvAtQAAAAAAAAAAAAAAABQPSLUAAAAAAAAAAAAg8DcJXOzz7f2yfFvOD5fmrVF8oUvJCtXrru+9ceLeXlcFQdso3Z10jSqiw1rA9TfOfw7AtQAAAAAAAAAAAAAAABQRSLUAAAAAAAAAAAAVTZ3ydzs/c29s3Dlwlx675eTe5MvraxZd32HjxTz0iAJUBfWJM09CFB/Yr9P5MR9TqzITAAAAAAAAAAAAAAAAEB5Nd1vAQAAAAAAAAAAYKCsC1CvWJg0F5NScumByScPLSZJdjmpmGe3qvKQrRqT0sjut0177bRc9reXDfw8AAAAAAAAAAAAAAAAQJdEqAEAAAAAAAAAAKqkXYC6WGx37dIDk60+XszsSVUabkNNSUZ0s6eQ/Nub/y3Tj51eiYkAAAAAAAAAAAAAAACAbtRVewAAAAAAAAAAAIDN0dwlc7PH1/fI0qalHQLUSVK7OFkwrvJzldWUZHg3ewrJF9/+xXz6bZ+uxEQAAAAAAAAAAAAAAABAD4hQAwAAAAAAAAAAVNjcJXPz2q++NsublyelpGaD67WLksaxVRmto+YIUAMAAAAAAAAAAAAAAMAQteFnlwAAAAAAAAAAABhA7QLUaxUL66/XLhg8Aeqa5qR0STJ5aRebBKgBAAAAAAAAAAAAAABg0BKhBgAAAAAAAAAAqJC/Lv5r+wB1af21YiGpfTlpHF+V0ToqJqlv+XHe5Z2EqAWoAQAAAAAAAAAAAAAAYFCrq/YAbB5efvnlzJgxI7Nnz86SJUtSX1+fLbfcMrvvvnv23Xff1NfXV3tEAAAAAAAAAAAYUPOXz8/UK6em1FqeLrW/Xjs/aZxQ+bnKKq79VpPUfjZp/mJN5l2RTPmXYl4Ys3aPADUAAAAAAAAAAAAAAAAMeiLUDKhbbrklV155Ze69996USqWye8aMGZNp06blnHPOyatf/eoKT9hRqVTKk08+mVmzZmXmzJmZOXNmHnrooSxdurTdvn/6p3/Kd7/73YrPd9111+Wkk04qe23OnDnZcccdKzsQAAAAAAAAAADdWrJ6Sd7+3bevD1BvYOyCZMn4ys7UqWKSQpK1v1e+WJPUnltsCVF/c1Sm/L9CXsiy3HDUDfnA6z9QzUkBAAAAAAAAAAAAAACAbohQMyCee+65fPCDH8xdd93V7d6lS5fmO9/5Tr73ve/lM5/5TD7zmc+kUChUYMr1br311jzwwAOZOXNmfv/73+eVV16p6PN7au7cufnEJz5R7TEAAAAAAAAAANgIS1YvyYHXHpjH5j9W9vroxcnycZWdqVMbBKjXLdcktZ8tpvmclzJv5MgsXLYwE0ZPqMaEAAAAAAAAAAAAAAAAwEYQoabf/fnPf87b3/72zJs3b6PuW7NmTT73uc/l8ccfz/e+973U1tYO0IQdnXjiiYM2PN3WSSedNCTmBAAAAAAAAACgRacB6lLLt+GLk5WjW35ufbdMc6WG21ApZQPUWfv75ItJav99TJrPaxagBgAAAAAAAAAAAAAAgCFChJp+tWDBgrzrXe8qG6DeZ599cuSRR2bq1KlZuXJl/vznP+eGG27I888/327fjTfemEmTJuWKK66o0NRDw7e+9a388pe/rPYYAAAAAAAAAAD0UKcB6rXqliVNozqu16YKIerS2q9hXW8rppg5L83J1ElTKzEVAAAAAAAAAAAAAAAA0Eci1PSrj370o3nmmWfarY0ZMybf//73c8QRR3TYf9FFF+Wiiy7K+eef3279yiuvzGGHHZb3vOc9Azlut7bccsvss88+2WKLLTJ9+vSqzfHXv/41Z5999rrX48aNy+TJk/PEE09UbSYAAAAAAAAAADq3ZPWSHPn9IzsNUGdZkmFJqVD+ckVD1KUka5KM7n7rF9/+RQFqAAAAAAAAAAAAAAAAGEJqqj0Am45f/epXufXWW9utNTQ05I477igboE6S+vr6nHfeebniiis6XDvjjDPS1NQ0EKOWNW7cuBxyyCH5f//v/+Xmm2/OX/7yl8yfPz+33357Tj755IrNsaFSqZSTTjopS5cuXbd22WWXZfLkyVWbCQAAAAAAAACAzi1ZvSTH3nJsnljcyS8YX57UdRGgblXb/6N1VErSlB4HqD/9tk8P9EQAAAAAAAAAAAAAAABAP6qr9gBsOi688MIOa+edd1723Xffbu8988wz89///d/51a9+tW7tqaeeyg033JAPf/jD/TpnOQ899FB23HHHFArdfLKvCq655pr8+te/Xvf6ne98Z0466aR873vfq+JUAAAAAAAAAACU0xqgfuSFR5IkU0ZPybxl89ZvWJnU1yXFHr5NpTZJc/+P2aK09vCR3W8VoAYAAAAAAAAAAAAAAIChqabaA7BpeOyxx3L33Xe3W9tqq61y9tln9/iMiy++uMPaNddc0+fZemLq1KmDMkA9Z86cnHPOOetejxo1Kt/+9rerOBEAAAAAAAAAAJ1pLjbng7d+cF2AutWU0VNafliR1NQkxY1811ZtP83Xwcokw7vfJkANAAAAAAAAAAAAAAAAQ5cINf3ipptu6rB2wgknpKGhocdn7LPPPtlnn33arT3wwAOZM2dOn+cbikqlUk444YQsX7583drFF1+cHXfcsXpDAQAAAAAAAADQqdqa2py414mpKXR8W9bYJIW6lgB1c2/O7vN07V36w6R0ZU1qil3vE6AGAAAAAAAAAAAAAACAoU2Emn7xP//zPx3WjjnmmI0+p9w95c7eHHzta1/LXXfdte71wQcfnNNOO62KEwEAAAAAAAAAUE5zcX1W+qjdjsrX3vO1diHqRcvmZemapFRoc08vntNfIerP/Dw5688t8zXfe2hqOnkbmQA1AAAAAAAAAAAAAAAADH0i1PTZ8uXL8/vf/77d2siRI/PGN75xo896y1ve0mHt7rvv7vVsQ9Xs2bPzqU99at3r4cOH5zvf+U4KhUIXdwEAAAAAAAAAUGlLVi/J+6e/Pz96/Efr1tqGqBcum5dVGwSoW1UjRH3GncmFj7R529gBB6T5vOYOIWoBagAAAAAAAAAAAAAAANg0iFDTZw8//HCKxWK7tX333Td1dXUbfdZ+++2X+vr6dmuzZs3q03xDTbFYzAknnJAVK1asW7vgggvy6le/uopTAQAAAAAAAACwoSWrl2Taf03LrOdn5fRfnN4hRP2ZPT+ZNauTdPF7xysZoj7p/uTK+zd4y9i0aS1ztAlRC1ADAAAAAAAAAAAAAADApmPjK8GwgT/96U8d1nbZZZdendXQ0JDtttsuc+bMWbc2e/bsNDU19SpqPRRdeeWVufvuu9e93nfffXPWWWdVcSIAAAAAAAAAADa0ZPWSHH3z0bn7r3dnZP3IDK8bntN/cXqSlgD1i3Pn5ozfnJFSTTcHpSVEvbFh6dpsXMD6dU8n1/6m0D6Ivc02yV57rZ/jvObMeWlOpk6aupHTAAAAAAAAAAAAAAAAAINVDz7iBF17+umnO6y96lWv6vV5O+ywQ7vXzc3NeeaZZ3p93lDy5z//Oeeee+661/X19bnuuutSW7uxHzMEAAAAAAAAAGCgtA1QNxYb88rqV7KqaVWKpWJO/8Xp+cavvpYdvrFDGjfi3VkbE5Ru1dN3lNQtSh7fOfnkO0rtL5x0Uoe9AtQAAAAAAAAAAAAAAACwaRGhps9eeOGFDmvbb799r88rd++LL77Y6/OGimKxmOOPPz4rV65ct3buuedmzz33rOJUAAAAAAAAAAC0tWGAulXbEPWpvzkja1Lq4pTyBiJEXb8wKW7V8vOlByafPLTY8mLEiOScc3rxRAAAAAAAAAAAAAAAAGAoqav2AAx9Cxcu7LA2evToXp9X7t4FCxb0+ryh4rLLLsv999+/7vWee+6ZT3/601WcqP9cddVVufrqqwf8ObNnzx7wZwAAAAAAAAAAm6/OAtStXln9SpYsXpRid2XoLjSn+7D0hmpTPmBdvzhpnth+7dIDk6SYL73rc8nIkb2YEAAAAAAAAAAAAAAAABhKRKjps+XLl3dYGzFiRK/PK3fvihUren3eUPD444/nc5/73LrXtbW1ue6661JfX1/FqfrPyy+/nD/+8Y/VHgMAAAAAAAAAoNeWrF6SI288MvfPvb9sgDpJCiuLae5DgLpVf4So65ckzVuW33vpQUn2XpAv9Wo6AAAAAAAAAAAAAAAAYCipqfYADH2NjR0/VDd8+PBen1cuQr1mzZpenzfYNTc35/jjj8+qVavWrZ199tnZd999qzgVAAAAAAAAAACtlqxeknf85zty51/vzOrm1WX31C/vnwB1q+but3TQ+vi6pUnjhC421tTku498N2uaNt335AAAAAAAAAAAAAAAAAAtRKgZEIVCoV/vLZVKfRlnUPvyl7+cBx98cN3r17zmNTn//POrNxAAAAAAAAAAAOs0F5tz2PcOy8znZ65bK5aK7fYMW1bM6voBeHYv7hm7ImnaouXnYrm38NTUZMKICZn10VlpqGvoy3gAAAAAAAAAAAAAAADAECBCTZ/V13f8BN3KlSt7fV65exsaNs0PvD322GPtgtOFQiHf+c53Mnz48OoNBQAAAAAAAADAOr/962/zwHMPdFhvDVEPX1rMygF8a8vGhKhHrUiWjG2/1i5EXVOTCSMn5KGPPZTtxm7XH+MBAAAAAAAAAAAAAAAAg5wINX02cuTIDmv9HaEeNWpUr88brJqamvJP//RPWbNmzbq10047LQcddFAVpwIAAAAAAAAAoNW9f703h/7noZ1eH7GkmBXDBn6OnoSoywWoWxULSWoFqAEAAAAAAAAAAAAAAGBzVFftARj6ttxyyw5ry5Yt6/V55e4t94yh7pJLLsmsWbPWvd5xxx1z8cUXV3GigTNx4sTsvvvuA/6c2bNnZ/Xq1QP+HAAAAAAAAABg0/ebOb/pMkA9ekmybETl5mlOUtvJta4C1Cm0fCuWigLUAAAAAAAAAAAAAAAAsBkSoabPtt566w5rc+fO7fV5zz77bI+eMZTNnTs3F154Ybu1b3/72xk1alSVJhpYp556ak499dQBf87rXve6/PGPfxzw5wAAAAAAAAAAm7buAtTjFiWvjK7gQGs1r/3eNkbdkwB1q7qit4sBAAAAAAAAAAAAAADA5saniuizqVOndlj761//2uvznnnmmXava2trs8MOO/T6vMFo/vz5WbNmzbrXDQ0NOfvsszfqjKeeeqrD2t/+7d+moaGh3drnP//5HHHEEb0bFAAAAAAAAABgM9NdgHr8wuSVMS1951LlxmqnOS0h6pErywSoC2VuSHL9Eddn8vjJAzwZAAAAAAAAAAAAAAAAMNiIUNNnr3nNazqslQsk98SaNWvy7LPPtlvbeeedU1e3af+jumbNmjzyyCN9Pufxxx/vsLZw4cI+nwsAAAAAAAAAsDnoLkC9xcJk8Zj1r6sZoq5fmSzdMEDdieuPuD7H7338gM4DAAAAAAAAAAAAAAAADE411R6AoW/vvfdOTU37f5RmzpyZpqamjT5r5syZaWxsbLf2xje+sU/zAQAAAAAAAABAd55/5fmuA9Tz2weoWxUGcKbODGtMVglQAwAAAAAAAAAAAAAAAD0gQk2fjRo1KnvvvXe7teXLl+ehhx7a6LPuueeeDmtvfetbez0bAAAAAAAAAAB0Z8nqJTnpZyelrqau7PUJC5MVY5LaYlIqc72SIeqGpmT1yJ7tFaAGAAAAAAAAAAAAAAAARKjpF+9+97s7rN1yyy0bfU65e8qdPdTttddeKZVKffp629ve1uHcOXPmdNh3/PHHV/4PCAAAAAAAAAAwRCxZvSTH3nJsHnnhkUwcObFDiHrCgmT5qJafa5PUFcufU4kQdV1zsuXEKZkyekq3ewWoAQAAAAAAAAAAAAAAgESEmn5y3HHHdVi7/vrrs2bNmh6f8dBDD2XGjBnt1g444IBMnTq1z/MBAAAAAAAAAMCG2gaoW00cOTF1hZYQ9VYvJytGtb+nNkltFULUtc3JxK3Wx6e7ClELUAMAAAAAAAAAAAAAAACtRKjpF3vssUcOPvjgdmsvv/xyvvKVr/T4jE996lMd1k455ZQ+zwYAAAAAAAAAABtqLjbng7d+sF2AOqtXJ4sWZeKyYrZ9MVk1KimUWr7aqnSIuqGY1A+v7bBeLkQtQA0AAAAAAAAAAAAAAAC0JUJNv/nMZz7TYe28887L73//+27v/frXv57bb7+93dpOO+2Uf/iHf+jRs3fccccUCoV2X3feeWeP7gUAAAAAAAAAYPNTW1ObE/c6MTWFmpb49Pz5yeLFyZo1GbOkmGWj1+4rdRGibi5/dn+GqBtSyDMffzY3TPuvllk3MGX0lNSsfRuYADUAAAAAAAAAAAAAAACwIRFq+s1hhx2WI488st3a6tWrc8ghh+S2224re09jY2MuvPDCnH766R2uffWrX019ff2AzAoAAAAAAAAAAEdt+4587fm9UrNocdLcUpQevaiYl8YkxcL6mHSnIerCwIao64rJMyc/k6232y5H7XZUvvaer3UIUb9h8huy6N8WZd6Z8wSoAQAAAAAAAAAAAAAAgA7qqj0Am5Zvf/vbmTVrVubOnbtubcmSJTniiCOy77775sgjj8zUqVOzcuXKPPnkk/nBD36Q5557rsM5p512Wt773vdWbO6ZM2fmn//5nzu9vmzZsg5rP/3pT7PXXnt1es++++6ba6+9tj/GAwAAAAAAAACgvz37bHLssTnq6aeTHcfl9INeybAFxczfMmlu7TyXWmLSpUJLiLq1N11qU5iuLSRpTpprOz6i0HJE75SSDEvuWzojR2W7JMlRux2VJDn9F6enWCrmDZPfkOnHTM/YYWMzdtjY3j4JAAAAAAAAAAAAAAAA2ISJUNOvJk6cmF/+8pc59NBD88ILL7S7NnPmzMycObPbM6ZNm5YrrrhigCYsb9myZXnkkUc26p5FixZl0aJFnV4fP358H6cCAAAAAAAAAGBAPPNM8v73J2vf33LU08PzuxGLctU+SaFMObpQqnCIupSkLpk4ekpO/8XpLTOuDVC3fr/u4evyg7/7gfg0AAAAAAAAAAAAAAAA0KWaag/Apme33XbLgw8+mIMPPnij7quvr895552XG2+8MbW1ZT6RBwAAAAAAAAAAvbRyzcqWH5YsSY47bl2AOkl+OnFBrtknaapNmgvl729dri21RKkLG5SlawtJXXOH29rd2xM1pZYbamprsqppVYqlYk7/xen50eM/WrfnqN2Oyo+P/bEANQAAAAAAAAAAAAAAANAtEWoGxPbbb5/f/va3mT59eg488MAUCp1/lG706NE54YQT8uijj+b8889PTY1/LAEAAAAAAAAA6B/NxeY8/vLjGf/l8TnqpqOSz342mT07WbUqWbo0t9fPy4cOW5PGmpawdLGQNG349pVC0rY5XVtqiUVvGKKu6WOIuraUFJuTmoaWAV5Z/UqnIeraGr/kHQAAAAAAAAAAAAAAAOheXbUHYNNVKBQybdq0TJs2LS+99FIefPDB/OUvf8mSJUtSV1eXrbbaKrvttlv222+/NDQ09OlZTz/9dJ/uf/vb355SqdT9xkHkzjvvrPYIAAAAAAAAAACD2pLVS3LkjUfm7mfuTnOpOT9+4sc56uWa/Gh+y/VfTCjmyA+2BKbrii2h6EIpKRWSxpqkvtiyr9y7SmrWLhbTsn/d+toQdVOZRnShk7OSlgB1c3NSM7J9AfuV1a8kSYbXDc91D1+XI15zhAA1AAAAAAAAAAAAAAAA0GMi1FTEpEmTcvjhh1d7DAAAAAAAAAAANhNLVi/Je294b+555p6WhbX15x+/upij/j756K+T9/9z0ry2+dyU8iHqui5+r3mXIepi0lTT8Z5yIeraUtLclNSMKnNDWkLUO47fMT/4ux8IUAMAAAAAAAAAAAAAAAAbpfynlgAAAAAAAAAAAIaodgHqUjpUn3+8Q3LER5OmNj3nYk1LNLp1a6HUstbYzTusakotX4UNnlGTlhB1OYW1X637iis7D1AnSX1NfbYetXVG1Y/qehgAAAAAAAAAAAAAAACADYhQAwAAAAAAAAAAm4wXl77YPkC9oRVJbX3SVOh4uW2Iunnt92JhYELUrddLK5LSuKRYKr+xvqY+b3nVWzL976entqa27B4AAAAAAAAAAAAAAACAztRVewAAAAAAAAAAAID+MOO5GTng2gNSSql8gLqxJUDdXGh52bql0GZLsSZZU5PUFNevt4ao64rt97ZVs/awYpJSm02tIerWqHWrQpIRS5LlW7Z5dqmYmsL64nVrgPqH036YscPGdv2HBwAAAAAAAAAAAAAAACijpvstAAAAAAAAAAAAg1tPAtR1WR+gblVK++3F1q8NotHFQtJUU/7oVjWllq/CBptqktS2CVgXkoxb2D5Ave45pWISAWoAAAAAAAAAAAAAAACgf4hQAwAAAAAAAAAAQ1pPAtQpJU2FMteyPkRdbLM2UCHqmlIybn6yaOvOzyiVSgLUAAAAAAAAAAAAAAAAQL8QoQYAAAAAAAAAAIasdgHqctYGqLt7p1S5u/slRN1mY20pGbs0WTSlu1lK+Y8j/kOAGgAAAAAAAAAAAAAAAOgzEWoAAAAAAAAAAGBI+r8X/y/7X7v/+gD1hmXoHgaou9JZiLqxtoch6jZzjViaLNqy+2fe8eE7ss24bXo9MwAAAAAAAAAAAAAAAEArEWoAAAAAAAAAAGDIefzlx/OGb7xh/UK5InQfA9StyoWoSykfoi6UWr6S9iHqUYuTRVt1/6w7PnxHDpl6SN+HBgAAAAAAAAAAAAAAAIgINQAAAAAAAAAAMMQ8/vLj2f3q3VNMsWWhXIB6dfr13VE9CVEX2lxsG6IevTRZOKn7ZwhQAwAAAAAAAAAAAAAAAP1NhBoAAAAAAAAAABgyWgPU63QWoK7t/2d3GaIuM0dNKZmwJJm/Vfdn33P8PQLUAAAAAAAAAAAAAAAAQL8ToQYAAAAAAAAAAIaElWtWtg9Ql7MqAxKgblVM0rw2RF1KS2i6ptQSoi5usHebRUnjmJrUNa9dKJQ/844P35GDXnXQgM0MAAAAAAAAAAAAAAAAbL5EqAEAAAAAAAAAgCHhM3d8pv1CaYMNq5LUDfwcpbSEqGuSFEotXzVpH6Kesih5ZYuWt2dNXN0mRL2BOz58Rw6ZesjADw0AAAAAAAAAAAAAAABslkSoAQAAAAAAAACAQe9jP/1YLv/d5Z1vWJmKBKjbaq5JmgstUeq2IeqtFydLxxfa7Z24uiZ1hfYDClADAAAAAAAAAAAAAAAAA02EGgAAAAAAAAAAGNSOvvHofOuhb7VfLLX5eUWS+srNU1j7VUpSrG0fon7TX5OVY5IU2keo09CQiaMmpq6mJUQtQA0AAAAAAAAAAAAAAABUggg1AAAAAAAAAAAwaL37P96dW/98a+cblidpqNg4SVoC1K3ahqjf8VRy1/SafO2OYakpbXDTyJFJknfu9M489y/PCVADAAAAAAAAAAAAAAAAFSFCDQAAAAAAAAAADErv/8H7c/vTt3e+YVmSYRUbZ50N+9KlJLu/lNz2wyS1tTnqhS3ytXvHrQ9R19Ymw4blDZPfkOnHTM8247ap7MAAAAAAAAAAAAAAAADAZkuEGgAAAAAAAAAAGHRO/snJ+clTP+l8w9Ikwys2TjultA9R7/Jy8vB1SQqFZPz4pFDIUU8PXx+iHjNmXYB67LCxVZkZAAAAAAAAAAAAAAAA2DzVVXsAAAAAAAAAAACAtk697dR88+Fvdr7hlSQjKzZOWa0R6lctSp741toXI0YkdevfknXU08OTgw7MdVML+cHf/UCAGgAAAAAAAAAAAAAAAKg4EWoAAAAAAAAAAGDQOOlHJ+W6R6/rfMOiJKMrNk6Xhq9J9pqfpFBo+Ro2rP2GqVNz1GdvyBGjR6W2prYqMwIAAAAAAAAAAAAAAACbt5pqDwAAAAAAAAAAAJAkp/z0lK4D1AszeALUjcnKkcmPd0uOmlZqWayvX79hypTkppuSsWMFqAEAAAAAAAAAAAAAAICqEaEGAAAAAAAAAACq7qxfnJVvPPSN9oulNl8Lkoyp/FzlDGtMVo1Y//rHr02OOjZJ7drY9NSpyY9/nGy/fTXGAwAAAAAAAAAAAAAAAFhHhBoAAAAAAAAAAKiqf7/n33P5g5evX2gNT7ean2RshYfqTHOyekTH5R+/upij3rUwmTYt+cUvBKgBAAAAAAAAAAAAAACAQUGEGgAAAAAAAAAAqJor770y5/z6nJYXG8ank+SFJOMrO1OniunyHVc/3ml1jnrTX5Oxg6WYDQAAAAAAAAAAAAAAAGzuRKgBAAAAAAAAAICqOOvnZ+Vf/vdfWl5sGJ9OkueSbFXBgbpSTFJIUl/mWmHtV5KfP/XzrFyzsnJzAQAAAAAAAAAAAAAAAHShrtoDAAAAAAAAAACbtpdffjkzZszI7Nmzs2TJktTX12fLLbfM7rvvnn333Tf19eWKrtXzwgsvZM6cOXn22Wfz0ksvZfny5WlsbMzYsWMzbty47Ljjjtl7770zduzYAZ2jsbExM2bMyOOPP54FCxasm2HnnXfOfvvtl4kTJw7o82GgHTv92Nz8p5tbXpQLUM9NMrmSE3WhqwB1G3WFujz8sYczomFEJaYCAAAAAAAAAAAAAAAA6JYINQAAAAAAAAAwIG655ZZceeWVuffee1MqlSvMJmPGjMm0adNyzjnn5NWvfnWFJ0wWL16ce+65J/fee29+97vf5Q9/+EPmz5/f7X2FQiF77rlnPvzhD+dDH/pQJk2a1G8zPfHEE/nyl7+c//qv/8rSpUs7ff7BBx+cM888M0cffXS/PRsqpdsA9fMZPAHqUroOUBdavtUV6vLoKY9mt4m7VWgwAAAAAAAAAAAAAAAAgO7VVHsAAAAAAAAAAGDT8txzz+Xtb397/v7v/z733HNPpwHqJFm6dGm+853vZM8998yFF17Y5d6BcMkll+R973tfLrnkkvzmN7/pUYA6SUqlUh599NGcffbZ2XnnnXP55ZenqampT7MUi8VccMEF2XPPPXPdddd1GqBuff7dd9+dY445JoccckjmzZvXp2dDJZ39i7O7DlC/nKT/uu59U1r7JUANAAAAAAAAAAAAAAAADFEi1AAAAAAAAABAv/nzn/+c/fbbL3fddddG3bdmzZp87nOfywc/+ME0NzcP0HQDY9myZTnrrLNy+OGHZ+XKlb06o7m5OR/4wAdy/vnnp7GxcaPuvfPOO7Pffvvlqaee6tWzoZI+9+vP5bIHL+t8wytJtqjYOF1rDVA3dHJdgBoAAAAAAAAAAAAAAAAYAuqqPQAAAAAAAAAAsGlYsGBB3vWud2XevHkdru2zzz458sgjM3Xq1KxcuTJ//vOfc8MNN+T5559vt+/GG2/MpEmTcsUVV1Ro6vZGjRqVN77xjXnNa16TXXbZJRMnTsyYMWPS3NycJUuW5M9//nPuu+++PPDAAymVSu3uvf3223PUUUflF7/4RQqFwkY994wzzsjNN9/cYX3ChAn5x3/8x+y2224ZO3Zsnn766fzyl7/sEPl+7rnn8jd/8zeZNWtWtthisBR8ob3P/fpzufCeC9cvlDbYsDDJ2EpO1IVSktVJRndyfe2/4rWpFaAGAAAAAAAAAAAAAAAABjURagAAAAAAAACgX3z0ox/NM888025tzJgx+f73v58jjjiiw/6LLrooF110Uc4///x261deeWUOO+ywvOc97xnIcZMkw4YNy6GHHpr3vOc9ecc73pHXv/71qa2t7fa+p556Kp/4xCdy2223tVu//fbb8+1vfzsf/ehHezzDT3/601x99dUd1k8++eRcdtllGTlyZLv1T3/607n33ntz9NFH58UXX1y3PmfOnJx88smZPn16j58NldIhQL2hZRk6Aeq1alKTP3z8DwLUAAAAAAAAAAAAAAAAwKBWU+0BAAAAAAAAAICh71e/+lVuvfXWdmsNDQ254447ygaok6S+vj7nnXderrjiig7XzjjjjDQ1NQ3EqO1ccMEF+fWvf52zzz47e++9d48C1Emyyy675Cc/+UlOOeWUDtcuueSSHj+/sbExZ555Zof1f/3Xf80111zTIUDd6qCDDsr999+fCRMmtFu/+eabc+edd/b4+VAJX777yx0D1KU2Py9LMqySE3WhJwHqQsu3R05+RIAaAAAAAAAAAAAAAAAAGPREqAEAAAAAAACAPrvwwgs7rJ133nnZd999u733zDPPzLve9a52a0899VRuuOGGfptvIBQKhXzlK1/Jq171qnbrc+bMycyZM3t0xve+9708/fTT7db22GOPHoWsp06dmq9+9asd1j//+c/36NlQCf/1h//KJ+/4ZOcbWgPUhUpN1I2l6VGA+sF/fjB7bL1HJSYCAAAAAAAAAAAAAAAA6BMRagAAAAAAAACgTx577LHcfffd7da22mqrnH322T0+4+KLL+6wds011/R5toE2bNiwHHPMMR3W//jHP/bo/nJ/xgsuuCANDQ09uv+DH/xg9tijfQj3N7/5TZ544oke3Q8DaeGyhZl267SOF0prvy/P4ApQL0kyoYvrheRN270pL3zihey37X6VmgoAAAAAAAAAAAAAAACgT0SoAQAAAAAAAIA+uemmmzqsnXDCCT0OKSfJPvvsk3322afd2gMPPJA5c+b0eb6BtvPOO3dYmzdvXrf3PfXUU5k5c2a7tSlTpuSII47YqOd/7GMf67B24403btQZMBC++8h3O7+4JklDhlSAur6mPrcdd1u2HrN1paYCAAAAAAAAAAAAAAAA6DMRagAAAAAAAACgT/7nf/6nw9oxxxyz0eeUu6fc2YPNqlWrOqz1JMB9++23d1h7//vfn7q6uo16frm/t1/84hcbdQb0p2WrluWqB67KWf97VvkNa9ISnx4sAeqX0nmAus2c9/zTPdlq1FYVGgoAAAAAAAAAAAAAAACgf4hQAwAAAAAAAAC9tnz58vz+979vtzZy5Mi88Y1v3Oiz3vKWt3RYu/vuu3s9W6XMmDGjw9rOO+/c7X3l/mwHH3zwRj9/8uTJ2WWXXdqtzZo1KytWrNjos6CvZjw3I2O+NCan3X5a+Q1r1n4fLAHqF5JsU2Z9g0j2d973ney/w/4VGgoAAAAAAAAAAAAAAACg/4hQAwAAAAAAAAC99vDDD6dYLLZb23fffVNXV7fRZ+23336pr69vtzZr1qw+zTfQnnzyyfzoRz9qtzZ8+PC89a1v7fbecn+2N7/5zb2a48ADD2z3urm5OY888kivzoLemvHcjOx/bReh5jVJShk871h6Mcl2a38ubPDVxmXvvCwnvvHEio4GAAAAAAAAAAAAAAAA0F8Gy0e6AAAAAAAAAIAh6E9/+lOHtV122aVXZzU0NGS77bZrtzZ79uw0NTX16ryB9pe//CXve9/7smrVqnbrJ5xwQsaPH9/lvY2NjfnLX/7Sbq2+vj6vetWrejXLzjvv3GHtiSee6NVZ0BsznpuRA649oPMNgy1APT/JtikbnW7rnDedk08c9IkKDQUAAAAAAAAAAAAAAADQ/wbLx7oAAAAAAAAAgCHo6aef7rDW25Bykuywww7tXjc3N+eZZ57p9Xn9bfXq1XnggQfyL//yL3nd617XIfQ8derUXHzxxd2e88wzz6RYLLZb22677VJT07u3cmz495akQ+QaBsqM52Zk/2v3TymlzjcNpgD1wiSTu9/2iQM+kS8d9qUBHwcAAAAAAAAAAAAAAABgINVVewAAAAAAAAAAYOh64YUXOqxtv/32vT6v3L0vvvhidtppp16fubH+93//N2effXa7taampixdujTPP/98mpqayt6366675pe//GXGjRvX7TMq9fcGA601QN2lVUlqKzJO9xYnmbT250Ln2z6690dz2bsvq8BAAAAAAAAAAAAAAAAAAANLhBoAAAAAAAAA6LWFCxd2WBs9enSvzyt374IFC3p9Xm8sXrw4jzzySI/3jxo1KieffHIuuOCCjBo1qkf3bIp/b5256qqrcvXVVw/4c2bPnj3gz6C9IRegXppkq+63/d2r/y7fPOKbAz4OAAAAAAAAAAAAAAAAQCWIUAMAAAAAAAAAvbZ8+fIOayNGjOj1eeXuXbFiRa/PG0iFQiEnnXRSLrrookycOHGj7t2c/t5efvnl/PGPf6z2GPSzTgPUpTY/r8rgeXfSsiRbdL/tsB0Pyw8/8MMBHwcAAAAAAAAAAAAAAACgUmqqPQAAAAAAAAAAMHQ1NjZ2WBs+fHivzysXU16zZk2vzxtIpVIp1157bfbYY49ccMEFWbp0aY/v3Zz/3hj6ygaoS2kfoF6ZwROgXpFkfPfbjtzlyPzPP/3PQE8DAAAAAAAAAAAAAAAAUFEi1AAAAAAAAABAvyoUCv16b6lUKrNz4BxzzDEplUrtvpYvX57nnnsu//u//5sLLrggU6dOXbf/pZdeyvnnn5/Xv/71+d3vftfr5w71vzc2D8tWLWsfoN4wPp20BKjrKzhUV1YmGVtmfYN/ZT6218fy4w/+uAIDAQAAAAAAAAAAAAAAAFSWCDUAAAAAAAAA0Gv19R1LsytXruz1eeXubWho6PV5/WXkyJHZZptt8o53vCOf+9znMnv27Hz961/PqFGj1u15+umn8853vjP33Xdft+dtLn9vbHouvOvC9S/Kdc5XZPAEqFclGdP9to+/8eP5xpHfGPBxAAAAAAAAAAAAAAAAAKpBhBoAAAAAAAAA6LWRI0d2WOvvmHLb0PNgUSgUcuqpp+bnP/95RowYsW592bJlOfbYY7No0aIu799c/94Y2j55+yfz5Qe+3PKiTIC6sDzJYGmfr04yupNrhfU/nvj6E3PV+66qxEQAAAAAAAAAAAAAAAAAVVFX7QEAAAAAAAAAgKFryy237LC2bNmyXp9X7t5yzxgs3vrWt+b888/PJz/5yXVrc+fOzWWXXZYvfOELnd63Of29TZw4MbvvvvuAP2f27NlZvXr1gD9nc3X9g9d3HaBelpSGV3amTq1J0oMG+8l7n5xrjrhmwMcBAAAAAAAAAAAAAAAAqCYRagAAAAAAAACg17beeusOa3Pnzu31ec8++2yPnjGYnHnmmfnCF76QpUuXrlv71re+lQsvvDCFQqHsPZvT39upp56aU089dcCf87rXvS5//OMfB/w5m6OL7roo5955bsuLcgHqpUlpRGVn6lRjkpFdXF/7r+Qn9v9ELnvPZZWYCAAAAAAAAAAAAAAAAKCqaqo9AAAAAAAAAAAwdE2dOrXD2l//+tden/fMM8+0e11bW5sddtih1+dVwrBhw3LooYe2W3v55Ze7DCLvsMMOqalp/7aNZ599NsVisVczbPj3lpT/vw1srO4C1COWDLIAdQ9mGVk3Mhe/6+IBHwcAAAAAAAAAAAAAAABgMBChBgAAAAAAAAB67TWveU2HtaeeeqpXZ61ZsybPPvtsu7Wdd945dXV1vTqvknbccccOa3/5y1863d/Q0NAhEt3Y2Fg2Jt0Ts2fP7rD22te+tldnQaubHrmpywD1yMXJypEVHalzTek+QF1IRtSOyBOnP5GGuoZKTAUAAAAAAAAAAAAAAABQdSLUAAAAAAAAAECv7b333qmpaf/2g5kzZ6apqWmjz5o5c2YaGxvbrb3xjW/s03yVMnz48A5rS5cu7fKeffbZp8Pa/fff36vn33fffe1e19bW5g1veEOvzoIk+dkTP8sHfvyBlhdlAtSjFiUrRld2pk41J+n4r2B7hZZv//fx/8t2Y7cb6IkAAAAAAAAAAAAAAAAABg0RagAAAAAAAACg10aNGpW999673dry5cvz0EMPbfRZ99xzT4e1t771rb2erZJeeumlDmtbbbVVl/e85S1v6bBW7u+gOy+++GKefPLJdmv77LNPRo4cudFnQdISoH7fTe9reVEmQD18frJ8TGVn6lRzkmHd7FkboH7wnx/MThN2GuiJAAAAAAAAAAAAAAAAAAYVEWoAAAAAAAAAoE/e/e53d1i75ZZbNvqccveUO3sweuCBBzqsTZ48uct7DjvssA5rP/nJT9LU1LRRz/7hD3/YYW2o/L0x+HQXoG54KVk1vqIjda6YHgeo7z/x/uy37X4DPREAAAAAAAAAAAAAAADAoCNCDQAAAAAAAAD0yXHHHddh7frrr8+aNWt6fMZDDz2UGTNmtFs74IADMnXq1D7PN9AefvjhPP744+3Wxo8fn912263L+3bdddfss88+7daee+65/OxnP9uo53/zm9/ssPaBD3xgo86AJLn1sVu7DFDXvZCsmVDZmTpV7OZ6IesC1Hd8+I68afs3DfREAAAAAAAAAAAAAAAAAIOSCDUAAAAAAAAA0Cd77LFHDj744HZrL7/8cr7yla/0+IxPfepTHdZOOeWUPs820Jqbm3PGGWd0WH/ve9+b+vr6bu8v92c877zz0tjY2KPn33TTTXn00Ufbrb397W/Pa1/72h7dD62unXVtjr7l6JYXZQLUNc8lTVtVdqZOtQaoG8pcaxOfTpKfHfuzHDL1kAoMBQAAAAAAAAAAAAAAADA4iVADAAAAAAAAAH32mc98psPaeeedl9///vfd3vv1r389t99+e7u1nXbaKf/wD//Qo2fvuOOOKRQK7b7uvPPObu/72te+ll/96lc9ekY5q1evzgc/+MHcfffd7dYLhUJOO+20Hp3xoQ99KK961avarT366KP59Kc/3e29Tz/9dNnnfPazn+3Rs6HVTx/7aT7ys4+0vCgToM7cpLh1RUfq3IYB6sIGX21c+o5L897XvrdiowEAAAAAAAAAAAAAAAAMRiLUAAAAAAAAAECfHXbYYTnyyCPbra1evTqHHHJIbrvttrL3NDY25sILL8zpp5/e4dpXv/rV1NfXD8isrWbNmpW/+Zu/yZvf/OZcffXVefHFF3t0X2NjY2699dbsueeemT59eofrH/nIR/KmN72pR2c1NDTkiiuu6LB+6aWX5tRTT83KlSvL3nffffflzW9+cxYsWNBu/Zhjjsmhhx7ao2dDknz3oe/myFvW/rtbLkD9bJLJlZyoC63zDUvZ6HRbZ+57Zs46+KwKDAUAAAAAAAAAAAAAAAAwuNVVewAAAAAAAAAAYNPw7W9/O7NmzcrcuXPXrS1ZsiRHHHFE9t133xx55JGZOnVqVq5cmSeffDI/+MEP8txzz3U457TTTst73/veis39wAMP5IEHHsjpp5+e3XbbLXvvvXd23333TJgwIePHj0+hUMiSJUvy/PPP5+GHH85vf/vbDvHnVoccckguv/zyjXr++9///nzsYx/LN7/5zXbrV199daZPn55//Md/zG677ZYxY8bkmWeeye23354777yzwzmvetWrOpwBXbnmwWvy8V98vOVFuQD1C0mmVHKiLpTWfg3rfuunDvpULnrnRQM9EQAAAAAAAAAAAAAAAMCQIEINAAAAAAAAAPSLiRMn5pe//GUOPfTQvPDCC+2uzZw5MzNnzuz2jGnTpuWKK64YoAm7ViwW89hjj+Wxxx7r1f3vf//7c8MNN2TEiBEbfe/Xv/71zJ8/Pz/84Q/brS9YsCBXXnllt/dPmTIlv/zlLzNhwoSNfjabp3/75b/lS/d/qfMNLyTZqmLjdK01QN3Q/dbPHvzZfP4dnx/oiQAAAAAAAAAAAAAAAACGjJpqDwAAAAAAAAAAbDp22223PPjggzn44IM36r76+vqcd955ufHGG1NbWztA07U3atSofjln++23zy233JIf/ehHvQpQJ0ldXV1uvvnmfPazn01d3cb9TvG3vvWtmTFjRl796lf36tlsfk756SntA9SlDTYMtgD16vQoQP2ld3xJgBoAAAAAAAAAAAAAAABgAyLUAAAAAAAAAEC/2n777fPb3/4206dPz4EHHphCodDp3tGjR+eEE07Io48+mvPPPz81NZV7K8NVV12Vxx57LJdeemne9773ZfLkyT2+d+utt85xxx2Xn//855kzZ06OPvroPs9TU1OTz3/+8/nDH/6Q448/PqNHj+50b6FQyEEHHZSbb745d911V7bddts+P5/Nwyk/PSXfeOgbnW9YnMEVoF6ZpPVfhc7/oySXvfOynHPwORUYCgAAAAAAAAAAAAAAAGBoqav2AAAAAAAAAADApqdQKGTatGmZNm1aXnrppTz44IP5y1/+kiVLlqSuri5bbbVVdtttt+y3335paGjo07OefvrpXt+7++67Z/fdd89ZZ52VJJk3b15mz56dp59+OgsXLszy5ctTKpUyZsyYjBs3LpMmTcob3vCGTJkypU8zd+W1r31trr/++nzzm9/MjBkz8vjjj2f+/PlpamrK2LFjs9NOO2X//ffPpEmTBmwGNk0n/eikXPfode0XS21+XpxkVAUH6s7KJGO73/b1w76eU9906oCPAwAAAAAAAAAAAAAAADAUiVADAAAAAAAAAANq0qRJOfzww6s9Ro9MmTIlU6ZMycEHH1ztUdLQ0JCDDjooBx10ULVHYRPwgf/6QG76402db1iclgB1oUIDdWdRkondb7v6PVfnlP1PGfBxAAAAAAAAAAAAAAAAAIYqEWoAAAAAAAAAANiEfeQnH+kYoC61+XlVBlWAumZRUuxBgPq2abfl8N2GRuAeAAAAAAAAAAAAAAAAoFpEqAEAAAAAAAAAYBN13q/Py7UPX7t+obTBhlVJajNoAtSFhUlxUrkL7V/+6SN/ymu2eU1FZgIAAAAAAAAAAAAAAAAYymqqPQAAAAAAAAAAAND/Lrrronz+ns+vX9gwQL06gypAXbsgKZULUG/g+iOuF6AGAAAAAAAAAAAAAAAA6CERagAAAAAAAAAA2MR8d9Z3c+6d565fKBegLmTQBKhHvZA0b93JxTYzXn/E9Tl+7+MrMRIAAAAAAAAAAAAAAADAJkGEGgAAAAAAAAAANiG/ffq3OeFnJ6xf6CxAPUjeOTT6xWT5dt3vu+o9VwlQAwAAAAAAAAAAAAAAAGykQfJRMgAAAAAAAAAAoK9mPDcjb/uPt61f2DBAvSaDK0A9P1m2bRcbCi3fznnTOfn4/h+vyEwAAAAAAAAAAAAAAAAAm5JB8nEyAAAAAAAAAACgL2Y8NyP7X7t/15tKGTTvGBq2MFk2uYsNbQLUXzrsSxWZCQAAAAAAAAAAAAAAAGBTM0g+UgYAAAAAAAAAAPTWslXLcsC1B7RfLG2waXWS2kpN1LXaJcnqSV1sEKAGAAAAAAAAAAAAAAAA6Bci1AAAAAAAAAAAMMSNHj46+22zX+cbVmXwBKiXJs0TutggQA0AAAAAAAAAAAAAAADQb0SoAQAAAAAAAABgE/C7j/wu+2+zf8uLUpsLq5LUVWOiMpYlzVt0cV2AGgAAAAAAAAAAAAAAAKBfiVADAAAAAAAAAMAm4ncf+V32n7j3+oWVGTwB6hVJxndxfW2A+rr3XCdADQAAAAAAAAAAAAAAANBPRKgBAAAAAAAAAGAT8rttPpf9X6xLzYok9dWeZq2VScZ2cX1tgPqLb/9iTtj/hEpMBAAAAAAAAAAAAAAAALBZEKEGAAAAAAAAAIBNyaOP5q91TSk2VHuQtVYlGdPF9TYB6k+/7dOVmAgAAAAAAAAAAAAAAABgs1FX7QEAAAAAAAAAAID+s9vLF+bFcdWeYq3VSUZ3cX1tgPrG99+Y495wXCUmAgAAAAAAAAAAAAAAANisiFADAAAAAAAAAMAm4i0X7JI/jWuq9hgt1iQZ1cX1tQHq2467LYe/5vBKTAQAAAAAAAAAAAAAAACw2amp9gAAAAAAAAAAAEDfHf6lvfNA4+zB8YagxiQju7guQA0AAAAAAAAAAAAAAABQEYPiM2cAAAAAAAAAAEDvvf/L++b2pQ8naXlDUE2pisM0JhnRxXUBagAAAAAAAAAAAAAAAICKEaEGAAAAAAAAAIAh7NjLDsx/L5nVbq1qIeqm9ChA/cNjfihADQAAAAAAAAAAAAAAAFABItQAAAAAAAAAADBEnX7VEbl10f1lr1U8RN2cZHgX19cGqL99+Lfzd6/7u0pMBAAAAAAAAAAAAAAAALDZq6v2AAAAAAAAAAAAwMa79PqP5obnfp7aQtJcKL+n0Ml6v2tOMqyTa21m+MkxP8kRrzuiEhMBAAAAAAAAAAAAAAAAkKSm2gMAAAAAAAAAAAAb52vfOzMXP3ldiklGlGpTW+q4p7Q2/lw70MMUUz5AXUi7APX1R1wvQA0AAAAAAAAAAAAAAABQYXXVHgCA6np26bN5ccWL1R5jQBSLxW73zF8+P6ubV1dgGjYFjcXGLq83l5rzfy/9X4WmAaCUMkWVNpavXu4/lwEAgM3SmuY11R4BABhg37rpk7ng8avT9n8RHVGqzcpSc5rX/kr6UqH9PbVJmgdimGLSzX9dmyS5+j1X5/i9jx+ICQAAAAAAAAAAAAAAAADoggg1AJtskKRU6sEnnbPp/vmpDv88AQwu/nMZAAAAANjU/OcPz8+5j16e5jLl5xGpzapicxpryt/b7yHq1gD1sDLX2kSwh9cOz0lvPKk/nwwAAAAAAAAAAAAAAABAD3XykTMAAAAAAAAAAGAw+a+f/XvOmvXFNJUJULeqKyY1XZSma/trmOLa7+UC1G001DTkyTOeTENdQ389GQAAAAAAAAAAAAAAAICNIEINAAAAAAAAAACD3E9v/3pOvffTXQaom4ot9elhpaR2IEPUrSN01pUurL1c05DZZ87OdmO36+sTAQAAAAAAAAAAAAAAAOilumoPAMDAaUhDCimk1OZDyJNGTUpTc1MVp6qcUqmU1U2rO6wVagrrXo8fNj6jh42u9GgMUfNXzM/KxpXrF0pp9ys96mvqM3HkxIrPBbC5Wt28OqVSm9hKMe3+c3l0w+hsMXyLis8FAAAw2IyqH9Xu9bDaYVWaBADoi588clMaC50HqDfUUErWNCXNnbw7qDZJF53qzpXWfnUWoG7jdyf+ToAaAAAAAAAAAAAAAAAAoMpEqAE2YQ0NDdlixBZZuHLhurUpo6dUcaLKW7x6cZqKnUe3p46fmuENwys4EUNZoVDIS8tf6vT6+OHjs/247Ss4EcDmbVnjsva/HGAD247ZNluO3LKCEwEAAAwN24/332EBwFD0nXPuSb58cG5d/ECne2oLNWkuFde9bkg/h6hLSVYn6er3/K79ncBXv+fq7LXtXhtzOgAAAAAAAAAAAAAAAAADoKbaAwAwsP5mp7+p9ghVNWHEhE6vjawbKUDNRpk0clJqCp3/v08TR02s4DQATBo5qdNr9bX1GVs/toLTAAAADA0NNQ2Z9tpp1R4DAOil75xzT6ZNOLjT64VCIbUb/O9ZDUlqO/+9vant6cM3MkB9yv6n9PRkAAAAAAAAAAAAAAAAAAaQCDXAJu4j+34kB+1wULXHqJrtxm6XccPGdVgfXjc8O47bsfIDMaQ11DVkh3E7pLbQ/qP4hRSyzehtMqZhTJUmA9g8bTlyy0wc2fEXANTV1mXHcTumvr6+ClMBAAAMXsNqh+XU/U/NDhN2qPYoAEAffPPsO3PCxMM6vd7bEHWXMWoBagAAAAAAAAAAAAAAAIAhq67aAwAw8D5/yOdz/7P354G5D2T+ivnVHqfi3rTdmzL3lbl5fsnzWV1cncmjJmfXrXat9lgMYSvWrMiTC57MotWLMrZhbKaOn5otRm5R7bEANktv2u5Nmb90fuYsmZMVjSuy1YitsusWu6ahoaHaowEAAAwatTW12WncTnn3q9+dyaMnV3scAKAfXP6v/52Grx2Vb867rez1QqGQ2tSkuVRct9aQZE1T0tzJu4UKpZY3EjUVylwUoAYAAAAAAAAAAAAAAAAYskSoATYTb97+zXnz9m+u9hgAAAAAAAAA9INLTv9RGq45Nlc9+8MUy1zfmBB1obT+57rS+hB1TZJv/TT51kF1eXB0U5mHrP9RgBoAAAAAAAAAAAAAAABgcKqp9gAAAAAAAAAAAMDG+/wp0/OJqf/Q6RuACoVCagvtrzYkqW3Tky6ko7pSUldMrrw9OWn+lPzuJxOz/4t17W9qc+P33/99AWoAAAAAAAAAAAAAAACAQUqEGgAAAAAAAAAAhqhzP/Kf+dSuJ6a2bE666xD1ujsK7b9qk3x91jY5bdw7kre+NTnllPzu3bdk/0l7d6hWTz96ej74hg/2658JAAAAAAAAAAAAAAAAgP5TV+0BAAAAAAAAAACA3jv7hG9l7E1b5NOPXp7mlDpcLxQKqU1NmkvFdWsja2rTWGzO6g1+hX1NkkvecFY+9sVLO5zzuxyZA759QB58/sEkLQHqaXtM69c/CwAAAAAAAAAAAAAAAAD9S4QaAAAAAAAAAACGuI8e96UMrx+Rs2Z9MU2dhKjrCrVJKUmhZa0+tUmbEHVNkgte8/H8y7SOAepWv/vI77Js1bKsXLMyE8dO7P8/CAAAAAAAAAAAAAAAAAD9qqbaAwAAAAAAAAAAAH334aPPz9UHXpT6UqHzTRtcqk9thhVb3kT0yZ2Oz7996KpunzN6+GgBagAAAAAAAAAAAAAAAIAhQoQaAAAAAAAAAAA2EX9/+P/LtW//SoaVev62oOGpy6WvOSOfP/H6AZwMAAAAAAAAAAAAAAAAgGoQoQYAAAAAAAAAgE3IEYedlm+9/fIehahrkvzbrifk9A9dOfCDAQAAAAAAAAAA/5+9+w6Tujz3x38vsEsvYkOMCGIBO8XeQKISYwvmaE6UiCVRo9GTHEuIRymary2JWI45JMaaqLGGaCxEKRaiUmxBI0pREBFFAUFgl2V+f/ATnMwCO2V3Zj/7el0X15W5dz7P8+zk4s1n5965BQAAAIB6Zwg1AAAAAAAAAAAkzHFHnR9//NbvNjqIuklE/Kzb9+Oi039XfwcDAAAAAAAAAAAAAAAAoF4ZQg0AAAAAAAAAAAn0zUOHxMPfuS9apZrV+PXztjsxLvvh3fV8KgAAAAAAAAAAAAAAAADqkyHUAAAAAAAAAACQUAfte2L87eS/RutUeVr97G2OjZHn/rlIpwIAAAAAAAAAAAAAAACgvhhCDQAAAAAAAAAACbb33kfG4yePibb//yDqwVsMiGt+8miRTwUAAAAAAAAAAAAAAABAfTCEGgAAAAAAAAAAEm7vvY+McYMnxtnbHBs3/ezpYh8HAAAAAAAAAAAAAAAAgHrSrNgHAAAAAAAAAAAA6t6Ou+4b1+z6aLGPAQAAAAAAAAAAAAAAAEA9alLsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAABQeIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACVSWSqVSxT4EQCG0bds2li1bllFv3rx5dO/evQgnAgAAAAAASs3MmTNj1apVGfU2bdrEF198UYQTAVAoesYAAAAAAMCm6BkDAAAAAAAA0BgZQg0kRosWLWr8BSAAAAAAAIBNad68eaxcubLYxwAgD3rGAAAAAABArvSMAQAAAAAAAEiyJsU+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFZwg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACRQs2IfAKBQOnToEIsXL86ol5eXR5cuXer/QORk5syZsWrVqox68+bNo3v37kU4EdAQyRIgX3IEyJccAfIlR4B8yZEN++CDD6Kqqiqj3qFDh/o/DAAFpWecHO5lgHzJESBfcgTIlxwB8iVHgHzJkQ3TMwYAAAAAAACgMTKEGkiMBQsWFPsIFMBuu+0Wb731Vka9e/fuMX369CKcCGiIZAmQLzkC5EuOAPmSI0C+5AgAjZGecXK4lwHyJUeAfMkRIF9yBMiXHAHyJUcAAAAAAAAAgK9rUuwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB4hlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAjUr9gEA4Ot+/OMfxyeffJJR33LLLYtwGqChkiVAvuQIkC85AuRLjgD5kiMAQEPmXgbIlxwB8iVHgHzJESBfcgTIlxwBAAAAAAAAAL6uLJVKpYp9CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKq0mxDwAAAAAAAAAAAAAAAAAAAAAAAAAAAABA4RlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ1KzYBwCgfn3yyScxefLkmDlzZixdujTKy8tj8803j1133TX69u0b5eXlxT5imgULFsTs2bNj7ty5sXDhwli+fHlUVVVFu3bton379tG1a9fo1atXtGvXrk7PUVVVFZMnT4633347Fi1atO4M3bt3j3322Se23HLLOt0fSokcyc4XX3wR06dPj3fffTc+//zz+OKLL6J169ax2Wabxbbbbhv77LNPtG/fvk72hlIlR4B8yZH8ffDBB/Hmm2/GnDlzYunSpZFKpaJNmzbRuXPn6N69e+y6667RvHnzejsPFIMsyc1HH30U06ZNi48++igWL14cq1ativbt20eHDh2iR48eseeee0ZFRUWdngFKRUPLkVLhvVYAKA0N7V6mVH4mci8D68mR7OgbQyY5AuRLjuRP35jGTo7kRs8Y1mtoOVIqvM8KAAAAAAAAAMVhCDVAI/HQQw/FjTfeGC+++GKkUqkan9O2bds46aST4pJLLomdd965nk8YsXjx4njhhRfixRdfjJdffjnefPPN+PTTTzd5XVlZWeyxxx7xgx/8IAYPHhxbbbVVwc70zjvvxHXXXRcPPvhgfPHFFxvc/+CDD44LL7wwTjzxxILtDaVGjtTOkiVL4qmnnorx48fH+PHjY8aMGZvce/fdd48f/OAHccYZZ0THjh1z3htKnRwpvNtvvz3OPPPMGr82e/bs6Nq1a72cA+qLHMnPvHnz4ne/+13cd9998d577230uRUVFbH33nvHkUceGYMGDYpevXoV/DxQLLIke7Nnz47bbrst/vSnP8X777+/0edWVFRE//7946yzzooTTjghmjXThiB5GkKOZOvtt9+OXr16xapVqzK+dscdd8SQIUPy3sN7rQBQGhrCvUyp/UwU4V4Gvk6O1I6+MWyYHCk8fWMaGzmSH31jkCO50DOGdA0hR7KlZwwAAAAAAAAAjUAKgESbN29e6rDDDktFRK3/VFRUpEaOHJlas2ZNvZ710ksvzeqcNf1p06ZN6te//nWqqqoqr7NUV1enhg8fniovL89q/379+qXmz59foFcESoMcqZ0xY8akjjnmmFRFRUXOe7dq1Sp1ww03pKqrq+voFYLikCN1Y+7cuan27dtv8ByzZ8+u0/2hPsmR/KxYsSJ16aWXplq0aJHTeQYMGFCQc0CxyZLsrVq1KnXFFVfk/HPOXnvtlZo8eXIBXxkoroaUI9lYvXp1ap999tng93DHHXfktb73WgGgNDSke5lS+ZkolXIvA18nR2pH3xg2TI7UDX1jGhM5kh99Y5AjudAzhnQNKUeyoWcMAAAAAAAAAI1DkwAgsWbMmBH77LNPTJw4MavrKisr44orrohTTjklqqur6+h0dWPZsmXx3//933HMMcfEihUrclqjuro6/vM//zOGDx8eVVVVWV07YcKE2GeffeK9997LaW8oNXKk9jnym9/8Jh5//PGorKzMee8vv/wyfvrTn8aRRx4Zy5cvz3kdKCVyJLf7kdo488wzY8mSJXW2PpQKOZJfjsyePTv69u0b1157baxcubJAJ4SGR5ZknyVffvllDBw4MEaOHJnzzzmvv/56HHjggfHoo4/mdD2UkiTnyLXXXhuTJ0+uk7W91woApSHJ9zIbom8MhSVH9I0hX3JE3xjyJUf0jSFfckTPGPKV5BzRMwYAAAAAAACAxqFZsQ8AQN1YtGhRHHHEEfHRRx9lfK1Pnz5x/PHHR7du3WLFihUxY8aMuPfee2P+/Plpz7vvvvtiq622ilGjRtXTqdO1bt06evfuHbvsskvsuOOOseWWW0bbtm2juro6li5dGjNmzIhJkybFSy+9FKlUKu3ap59+Or7zne/Ek08+GWVlZVnte8EFF8QDDzyQUe/YsWOceuqp0bNnz2jXrl3MmTMnxo4dm/FLhB9++GEceeSRMXXq1Nhss82y/8ahRMiR3HPk6zp06BAHHXRQ9O3bN7baaqvYYost4ssvv4zZs2fHuHHj4oUXXsi45tlnn43jjjsunnjiiWjevHnOe0OxyZHC5EhNfve738XYsWMLuiaUIjmSX4688847cdhhh8XHH3+c8bWtt946jj766OjZs2dstdVW0apVq1i8eHHMnTs33njjjXjxxRfj008/zfn7hlIiS3LLkpNOOinGjx+fUS8vL49vfetbceCBB8a2224bzZs3j88//zzeeOON+Nvf/hZz5sxJe35VVVWcfPLJMX78+DjooINy+v6h2JKQIxvyz3/+M0aMGFFn63uvFQCKLwn3MvrGUFxyRN8Y8iVH9I0hX3JE3xjyJUf0jCFfSciRDdEzBgAAAAAAAIBGJAVAIg0aNCgVEWl/2rZtmxozZkyNz6+srEwNHz4845qISD3xxBP1cuYrrrgidfjhh6euv/761LRp01KrV6+u1XXvvvtu6thjj63x7KNHj87qDGPGjKlxnXPOOSe1fPnyGq954YUXUltvvXXGNSeddFJWe0OpkSPZ5chhhx227pr27dunfvSjH6UmTZqUqq6u3uh1r776aqpPnz417j1s2LBa7Q2lSo7kdj+yKXPmzEm1bds2LXN22WWXjH1nz55d0H2hGORI7jny8ccfp7p06ZKx1k477ZT661//mlqzZs1Gr6+urk794x//SP34xz9ODRo0KOv9oZTIkuyz5P77769xjWOOOSb14YcfbvC66urq1B/+8Ie0e5Wv/uy2226pysrKWp8BSklDzJHaqKqqSvXu3TvtfPvtt1/Gme+4446c1vdeKwCUhoZ4L1Psn4lSKfcy8HVyRN8Y8iVH9I0hX3JE3xjyJUf0jCFfDTFHakPPGAAAAAAAAAAaF0OoARJo7NixGb9wVVFRkZo8efImrx01alTGtTvuuGOqqqqqHk6euzVr1qTOPffcjLN369at1mtUVlamunbtmrHGT3/6001eO2vWrFTHjh0zrh0/fnwe3xUUjxzJPkcOO+ywVOfOnVM33nhj6ssvv8xq71WrVqUGDhyYsXeLFi1Sc+fOzeXbgaKTI7ndj9RmjwEDBqStf9ttt6UNNPBhYpJCjuSeI2vWrEkdeeSRNX4QZ9WqVTmdCxoqWZJbluy7774Z159wwgmbHJb0leeeey5VXl6escbjjz+e67cFRZPkHBkxYkTa2U499dTUsGHDCvKBYu+1AkBpSPK9zIboG0NhyRF9Y8iXHNE3hnzJEX1jyJcc0TOGfCU5R/SMAQAAAAAAAKBxaRIAJM6VV16ZURs2bFj07dt3k9deeOGFccQRR6TV3nvvvbj33nsLdr66UFZWFjfccENsv/32afXZs2fHlClTarXGPffcE3PmzEmr7b777nHNNdds8tpu3brFTTfdlFEfOXJkrfaGUiNH1qttjgwdOjRmzpwZF1xwQbRs2TKrvSsqKuKBBx6IbbbZJq2+cuXKePDBB7NaC0qFHFkvm/uRTfntb38bzz777LrH3/zmN+PMM88syNpQauTIetnmyD333BNjx45Nq33nO9+Je++9NyoqKnI6FzRUsmS92mbJhx9+GJMnT06rtWjRIn77299Gkya1aykccsghcfbZZ2fUx4wZU6vroZQkNUdef/31uOqqq9Y93nrrrWPUqFEFW997rQBQGpJ6L7Mx+sZQWHJkPX1jyI0cWU/fGHIjR9bTN4bcyJH19IwhN0nNET1jAAAAAAAAAGh8DKEGSJjp06fH888/n1bbYost4qKLLqr1GldffXVG7be//W3eZ6trzZs3j+9+97sZ9bfeeqtW19f0PY4YMaLWv2x/yimnxO67755WGz9+fLzzzju1uh5KhRzJLUeOOuqoaNGiRc57t23btsbX+PHHH895TSgWOZL7/cjGzJ49Oy655JJ1j1u3bh2///3v814XSpEcyT1HVq1aFUOHDk2rbb755vG73/0umjZtWpAzQkMhS3LLknfeeSdSqVRarX///tGpU6esznDKKafUuDY0JEnNkaqqqjjttNOiqqpqXe2WW26JzTffvGB7eK8VAIovqfcytaFvDIUhR/SNIV9yRN8Y8iVH9I0hX3JEzxjyldQc0TMGAAAAAAAAgMbJEGqAhLn//vszaqeffnqtf1ErIqJPnz7Rp0+ftNpLL70Us2fPzvt8da179+4ZtY8++miT17333nsxZcqUtNo222wTxx13XFb7n3322Rm1++67L6s1oNjkSG45UghHH310Rm3WrFn1sjcUkhwpfI6kUqk4/fTTY/ny5etqV199dXTt2jWvdaFUyZHcc+SPf/xjzJ8/P612xRVXxBZbbFGQs0FDIktyy5KFCxdm1Hr27Jn1/jVd8/HHH2e9DhRTUnPkyiuvjNdff33d40GDBtU4hCBX3msFgNKQ1HuZ2tI3hvzJEX1jyJcc0TeGfMkRfWPIlxzRM4Z8JTVH9IwBAAAAAAAAoHEyhBogYZ566qmMWi6/DFbTNTWtXWpWrlyZUavNL/g9/fTTGbUTTjghmjVrltX+Nb1uTz75ZFZrQLHJkdxypBC6dOmSUVuwYEG97A2FJEcKnyM333xzTJw4cd3jgw8+OM4///y81oRSJkdyz5Hbbrst47pTTz21IOeChkaW5JYlNT0nl3uZ5s2bZ9RatGiR9TpQTEnMkWnTpsXVV1+97nHHjh3j1ltvLege3msFgNKQxHuZbOgbQ/7kiL4x5EuO6BtDvuSIvjHkS47oGUO+kpgjesYAAAAAAAAA0HgZQg2QIMuXL49p06al1Vq1ahW9e/fOeq1DDjkko/b888/nfLb6Mnny5Ixa9+7dN3ldTd/bwQcfnPX+nTp1ih133DGtNnXq1Pjyyy+zXguKQY7kniOFUFNWtGzZsl72hkKRI4XPkZkzZ8bQoUPXPW7RokX84Q9/iLKyspzXhFImR3LPkblz58ZLL72UVjvyyCOjY8eOBTsbNBSyJPcs6datW0Zt7ty5We9f0zX19bMVFEISc6SysjKGDBkSq1evXlcbNWpUbL311gXdx3utAFB8SbyXyZa+MeRHjugbQ77kiL4x5EuO6BtDvuSInjHkK4k5omcMAAAAAAAAAI2bIdQACfLaa6/FmjVr0mp9+/aNZs2aZb3WPvvsE+Xl5Wm1qVOn5nW+uvbuu+/Go48+mlZr0aJFHHrooZu8tqbv7YADDsjpHAceeGDa4+rq6nj99ddzWgvqmxzJPUcK4b333suobbPNNvWyNxSKHClsjqxZsyZOP/30tF+YHzFiROy88855nRNKmRzJPUeeeeaZjNr+++9fsLNBQyJLcs+SPffcMzbffPO02rPPPhtVVVVZneGJJ57IqA0YMCCrNaCYkpgjI0aMiDfffHPd46OPPjoGDx5c8H281woAxZfEe5ls6BtD/uSIvjHkS47oG0O+5Ii+MeRLjugZQ76SmCN6xgAAAAAAAADQuBlCDZAg//rXvzJqO+64Y05rVVRUxDe+8Y202syZM2P16tU5rVfXZs2aFccee2ysXLkyrX766adHhw4dNnptVVVVzJo1K61WXl4e22+/fU5n6d69e0btnXfeyWktqG9yJLccKZSHHnooo7bPPvvUy95QKHKksDly4403xvPPP7/ucd++feO///u/8zkmlDw5knuOvPjiixm1vffee93/TqVS8fTTT8eZZ54Zu+++e7Rt2zYqKiqiU6dOsccee8TgwYPj7rvvjkWLFuX7rUDRyZLcs6Rp06Zx9tlnp9UWLFgQN910U63P8Nlnn8W1116bVuvQoUOdfHAR6krScmTKlClx3XXXrXvcrl27GD16dMH38V4rAJSGpN3LZEPfGApDjugbQ77kiL4x5EuO6BtDvuSInjHkK2k5omcMAAAAAAAAABhCDZAgc+bMyajl+otaERFdunRJe1xdXR0ffPBBzusV2qpVq+Kll16K//qv/4rddtst4xfJunXrFldfffUm1/nggw9izZo1abVvfOMb0aRJbv9M/vvrFhEZv0QHpUqO5JYjhbBixYq45557MurHH398vewPhSJHCpcjM2bMiMsuu2zd4/Ly8rj99tujadOmeZ0ZSp0cyT1H3nzzzYzaTjvtFBER//znP6Nv374xcODAuP3222P69OmxbNmyqKqqio8//jj++c9/xh//+Mc47bTTomvXrvE///M/sWTJkvy/QSgSWZLfPcnQoUNjhx12SKtdeumlcfvtt2/y2nnz5sW3vvWt+Oijj9LqN910U7Rt27bWZ4BiS1KOrFq1Kk477bS0DzBfd911GR9yLgTvtQJAaUjSvUxt6BtD4ckRfWPIlxzRN4Z8yRF9Y8iXHNEzhnwlKUf0jAEAAAAAAACAiIhmxT4AAIWzYMGCjNp2222X83o1Xfvxxx9n/EJpXXrmmWfioosuSqutXr06vvjii5g/f37aL8F93U477RRjx46N9u3bb3KP+nrdoCGQI+tlkyOFcM0118TChQvTap07d46jjz66XvaHQpEj6+WTI2vWrIkhQ4bEihUr1tUuu+yy2GOPPbJeCxoaObJetjlS04dr2rdvH7fffnv8+Mc/jlWrVtVqnWXLlsUvf/nLePDBB+Oxxx6LnXfeuVbXQSmRJevlck/Spk2bePLJJ6N///4xf/78iFj74cczzzwz7rzzzjjjjDPioIMOis6dO0fz5s3j888/jzfffDMee+yxuP3222Pp0qVp61111VUxePDgLL9jKK4k5cgVV1wRb7311rrH/fv3jx/96Ed1spf3WgGgNCTpXuYr+sZQv+TIevrGkBs5sp6+MeRGjqynbwy5kSPr6RlDbpKUI3rGAAAAAAAAAECEIdQAifLZZ59l1Nq0aZPzejVdu2jRopzXy8XixYvj9ddfr/XzW7duHeecc06MGDEiWrduXatrkvi6Qa6S+PehPnIkX1OmTImrr746oz5y5Mho3rx5vZwBCkWOFCZHfv3rX8c//vGPdY/32GOP+MUvfpHTWtDQyJHccqSqqqrG72vcuHHxwx/+MNasWZNWb9u2bXTq1Cmqq6vjo48+Shte8JUZM2bE/vvvH5MmTYoePXrU+vxQCmRJ/vckO++8c0ybNi3OOeec+Mtf/rKu/vzzz8fzzz9fqzW6desWN910UxxzzDFZ7w/FlpQcefnll+PXv/71usetWrWK2267LcrKyupkv6S8bgDQ0CXx32R9Y6hfSfz7oG8M9UuO6BtDvuSIvjHkS47oGUO+kpIjesYAAAAAAAAAwFeaFPsAABTO8uXLM2otW7bMeb2arv3yyy9zXq8ulZWVxVlnnRWzZ8+OX/3qV1n9omxjft3g3zXmvw/55Eg+Fi1aFP/xH/8RVVVVafXDDjsszjjjjHo5AxSSHMk/R95+++244oor1j1u2rRp3H777VFeXl6oo0JJkyO55cjixYsjlUpl1M8888x1HyQuKyuLwYMHx8svvxxLliyJGTNmxMyZM2Pp0qUxbty4OOqoozKu//zzz+PEE0+s8f8XKGWypDA/22y99dbx6KOPxtSpU+P888+v9WvYp0+feOCBB2LGjBk+TEyDlYQcWblyZZx22mlRXV29rvbLX/4ydthhhzrbMwmvGwAkQWP+N1nfGAqjMf990DeGwpAj+saQLzmibwz5kiN6xpCvJOSInjEAAAAAAAAA8HWGUAMkyL9/EC0iokWLFjmvV9Mva1VWVua8Xl1KpVJx2223xe677x4jRoyIL774otbXNubXDf5dY/77kE+O5KqysjIGDRoUc+bMSat37Ngx7r777igrK6vzM0ChyZH8cqS6ujqGDBkSK1euXFe76KKLom/fvoU8KpQ0OZJbjqxatarG+ooVKyJi7Wv46KOPxt133x377rtv2n1Gs2bNon///vHUU0/FTTfdlHEP8tZbb8WVV16Zw3cExSNLCvezzcyZM+MPf/hDPPDAA+syZVOmTp0av/jFL2LUqFGxbNmyvPaHYklCjlx22WXxzjvvrHt8wAEHxAUXXFCneybhdQOAJGjM/ybrG0NhNOa/D/rGUBhyRN8Y8iVH9I0hX3JEzxjylYQc0TMGAAAAAAAAAL7OEGqAhMvng2g1XZtKpfI5Tta++93vRiqVSvuzfPny+PDDD+OZZ56JESNGRLdu3dY9f+HChTF8+PDYc8894+WXX85534b+ukEhNfS/D8XKkU1Zs2ZN/OAHP4jnnnsurd60adP405/+FF26dKmzvaG+yZHau+666+KVV15Z93iXXXaJ4cOHF+pbgQZLjmzapr6n0aNHx/HHH7/JdX7yk5/EZZddllH/7W9/G4sXL67VWaBUyZLsVFVVxeWXXx677LJL3HrrrbFw4cK0r7dq1Sq6du0au+66a3Tu3DmaNElvN7z33ntx8cUXR8+ePWPcuHG5fdNQYhpSjrz44osxatSodY+bN28et99+e8bf1frQkF43AEiyhv5vsr4xFF9D//ugbwzFJ0dqT98YaiZHNk3fGDZOjmRHzxgyNaQc0TMGAAAAAAAAAP6dIdQACVJeXp5RW7FiRc7r1XRtRUVFzusVSqtWraJz584xYMCAuOKKK2LmzJlxyy23ROvWrdc9Z86cOfHNb34zJk2atMn1GsvrBrXRWP4+FDpHcvHjH/84/vznP6fVysrKYvTo0TFw4MA62RPqgxzJPUemT5+e9sHhsrKy+MMf/hAtWrQo9PGhpMmRwv1c85V+/frFD37wg1qf7Yorrkj7UGJExNKlS+P++++v9RpQbLIkv59tKisrY9CgQXHVVVdFdXX1unrLli3j/PPPjylTpsTSpUtj9uzZMX369Pjwww/js88+i0ceeSQOPfTQtLXmzZsXRx11VDz88MP5f8NQjxpyjnz55Zdx+umnx5o1a9bVhg0bFj169KiT/b6uIb9uAJAkjeXfZH1jqDuN5e+DvjHUHTmibwz5kiP6xpAvOaJnDPlqyDmiZwwAAAAAAAAA1MQQaoAEadWqVUat0L+s9fVfSC0VZWVlcd5558UTTzwRLVu2XFdftmxZnHzyyfH5559v9PrG+rpBTRrr34d8cyRbP/vZz2L06NEZ9VGjRsWZZ55Z0L2gvsmR3HJk9erVcdppp0VlZeW62vnnnx8HHXRQnZ0ZSpUcyS1HNvY9/eQnP8nqLOXl5XH22Wdn1CdMmJDVOlBMsiS/n20uvPDCePzxx9NqO+64Y0yePDluvvnm6NOnTzRt2jTt6+3bt4/vfOc7MXHixLj11lujSZP17YfVq1fHKaecEtOnT8/ju4P61ZBzZOjQofHuu++ue9y7d++4+OKL62Svf9eQXzcASJLG+m+yvjEUTmP9+6BvDIUjR/SNIV9yRN8Y8iVH9IwhXw05R/SMAQAAAAAAAICaGEINkCCbb755Rm3ZsmU5r1fTtTXtUSoOPfTQGD58eFpt3rx58etf/3qj1zX21w2+rrH/fcg1R7IxdOjQuOGGGzLq11xzTVxwwQUF2weKRY7kliPXXHNNTJ06dd3jrl27xtVXX10XR4SSJ0dyy5G2bdtGRUVFRr1JkybxzW9+M+tzHHnkkRm1F154Iet1oFhkSe4/20yaNCn+7//+L63WsWPHGDt2bOy222612v/cc8/N2GvVqlVx7rnn1up6KAUNNUeee+65uPnmm9c9btasWdx+++3RrFmzgu9Vk4b6ugFA0jT2f5P1jSF/jf3vg74x5E+O6BtDvuSIvjHkS47oGUO+GmqO6BkDAAAAAAAAABtiCDVAgmy99dYZtXnz5uW83ty5c2u1Rym58MILo23btmm13/3ud5FKpTZ4jdcN1vP3Ibccqa3hw4fHNddck1EfOXJkXHrppXmvD6VAjmSfI/PmzYsrr7wyrfb73/8+WrduXWdnhFImR3K/H+nUqVNGbYcddoh27dplfYY999wzmjZtmlZbsGBBQe6JoD7IktyzpKYPHV922WXRrVu3rPa/4IILYs8990yrPf/88zFt2rSs1oFiaag5cs4556T9Pf/5z38ee+21V8H32ZCG+roBQNL4N1nfGPLl74O+MeRLjugbQ77kiL4x5EuO6BlDvhpqjugZAwAAAAAAAAAbUj//CWsA6kVNv9j5/vvv57zeBx98kPa4adOm0aVLl5zXqw/NmzePww8/PMaMGbOu9sknn8Rbb70Vu+22W43XdOnSJZo0aRJr1qxZV5s7d26sWbMmmjTJ/r/X8O+vW0TN/99AKZIjueVIbVx11VUxYsSIjPrll18el19+ec7rQqmRI9nnyKeffhqVlZXrHldUVMRFF12U1Z7vvfdeRu3oo4+OioqKtNrIkSPjuOOOy2ptqG9yJPf7kR122CHj+918881zOkPTpk2jffv28dlnn62rVVdXx+LFi2OzzTbLaU2oT7IktyxZvXp1jB07Nq1WVlYWgwcPznr/Jk2axODBg+Piiy9Oqz/99NPRu3fvrNeD+tZQc2T+/Plpjx955JF47LHHan39ggULMmpXXHFFjBo1Kq123HHHxciRIzOe671WACgNDfVeppD0jSE/ckTfGPIlR/SNIV9yRN8Y8iVH9IwhXw01R/SMAQAAAAAAAIANMYQaIEF22WWXjFpNHyypjcrKypg7d25arXv37tGsWen/09G1a9eM2qxZszb4y7IVFRXRrVu3mDlz5rpaVVVVfPDBBzWutSlfX+crPXr0yHodKAY5sla2ObIp1157bY0fGP75z39e4y/fQkMmR9bKJ0cqKyvj9ddfz/sMb7/9dkbt6x8KhFIlR9bKJUd69uwZEyZMSKs1b9485zO0aNEio7Zy5cqc14P6JEvWyjZLZs2aFcuWLUurde/ePbbccsuc9t9///0zam+88UZOa0F9S0qOvPXWW3mvMXfu3Izz77333jU+13utAFAaknIvky99Y8idHFlL3xhyJ0fW0jeG3MmRtfSNIXdyZC09Y8hdUnJEzxgAAAAAAAAA+Er2//loAEpWr169okmT9GifMmVKrF69Ouu1pkyZElVVVWm13r1753W++lLTL7x/8cUXG72mT58+GbV//OMfOe0/adKktMdNmzaNvfbaK6e1oL7JkbVyyZENuf766+PnP/95Rv3iiy+Oq6++Oqc1oZTJkbUKmSPQ2MiRtXLJkX322SejtmTJkpzPsHjx4oza5ptvnvN6UJ9kyVrZZsmiRYsyarl+mHhD1xpuQkMhR3LnvVYAKD73MmvpG0Pu5Mha+saQOzmylr4x5E6OrKVvDLmTI2vpGUPu5EjuvM8KAAAAAAAAAKXJEGqABGndunX06tUrrbZ8+fJ49dVXs17rhRdeyKgdeuihOZ+tPi1cuDCjtsUWW2z0mkMOOSSjVtNrsCkff/xxvPvuu2m1Pn36RKtWrbJeC4pBjqyVS47U5IYbbohLLrkko/7Tn/40rrvuupzOBqVOjqxVqByBxkiOrJVLjvTr1y+j9v7770cqlcp6/08++SS+/PLLtFq7du2ioqIi67WgGGTJWtlmSU0fQF6xYkXO+/97jkSE90hoMORI7rzXCgDF515mLX1jyJ0cWUvfGHInR9bSN4bcyZG19I0hd3JkLT1jyJ0cyZ33WQEAAAAAAACgNBlCDZAwAwcOzKg99NBDWa9T0zU1rV2KXnrppYxap06dNnrNUUcdlVEbM2ZMrF69Oqu9H3744YxaQ3nd4CtyJLcc+Xc33XRT/OxnP8uoX3DBBfGb3/wm57NBQyBHssuRvffeO1KpVF5/DjvssIx1Z8+enfG8IUOGFPpbhTohR3K7H+nWrVv07NkzrbZ48eJ46623st5/0qRJGbV//1AVlDpZkn2WbLnllhm1999/P9asWZPT/rNmzarVHlCqGmKOLF68OK+fLYYNG5ax5h133JHxvDvvvHODZ/BeKwCUhoZ4L1No+saQHzmibwz5kiP6xpAvOaJvDPmSI3rGkK+GmCN6xgAAAAAAAADAhhhCDZAw3/ve9zJqd9xxR1RWVtZ6jVdffTUmT56cVttvv/2iW7dueZ+vrr322mvx9ttvp9U6dOiQ8Qv1/26nnXaKPn36pNU+/PDDePzxx7Paf/To0Rm1//zP/8xqDSg2OZJbjnzdrbfeGhdeeGFG/bzzzosbb7wx7zNCqZMj+ecINHZyJPccOfXUUzNq99xzT9ZnuPvuuzNqAwYMyHodKCZZkn2WdOrUKdq0aZNW+/zzz2v8YHJtPPHEExm1nXfeOae1oBgae47kynutAFAaGvu9jL4x5E+O6BtDvuSIvjHkS47oG0O+5IieMeSrsedIrrzPCgAAAAAAAAClyRBqgITZfffd4+CDD06rffLJJ3HDDTfUeo2hQ4dm1M4999y8z1bXqqur44ILLsiof/vb347y8vJNXl/T9zhs2LCoqqqq1f73339/vPHGG2m1fv36RY8ePWp1PZQKOZJ7jkRE/P73v4/zzz8/o37OOefELbfckvcZoSGQI/nlCCBH8smRM888M1q2bJlWGz16dMyfP7/WZ5g2bVqMGTMmrVZWVhYnnnhirdeAUiBLss+SZs2a1Tg44Je//GXWZ5g9e3b88Y9/zKgfddRRWa8FxdKYcyRf3msFgOJrzPcy+sZQGHJE3xjyJUf0jSFfckTfGPIlR/SMIV+NOUfy5X1WAAAAAAAAACg9hlADJND//M//ZNSGDRsW06ZN2+S1t9xySzz99NNptR122CG+//3v12rvrl27RllZWdqfCRMmbPK6m2++Of7+97/Xao+arFq1Kk455ZR4/vnn0+plZWU1fqivJoMHD47tt98+rfbGG2/EL37xi01eO2fOnBr3ufzyy2u1N5QaObJeNjly1113xdlnnx2pVCqt/qMf/ShuvfXWnM8GDZEcWS+bHAHWkyPrZZMjW2+9dZx33nlptcWLF8cpp5wSK1as2OT1CxcujFNOOSWqq6vT6ieeeGLsuuuutToDlBJZsl5ts+Tkk0/OqD3xxBNxzTXX1PoMS5Ysie985ztRWVmZVt91111jjz32qPU6UAoaYo6UAu+1AkBpaIj3MsX+mSjCvQx8nRxZT98YciNH1tM3htzIkfX0jSE3cmQ9PWPITUPMkVLgfVYAAAAAAAAAKD2GUAMk0FFHHRXHH398Wm3VqlXRv3//eOyxx2q8pqqqKq688sr4yU9+kvG1m266KcrLy+vkrF+ZOnVqHHnkkXHAAQfErbfeGh9//HGtrquqqopHHnkk9thjj/jzn/+c8fUf/vCHsf/++9dqrYqKihg1alRG/Ve/+lWcd955G/zF+0mTJsUBBxwQixYtSqt/97vfjcMPP7xWe0OpkSPr1TZH7r///jjjjDMyPkh85plnxv/93/9FWVlZ7b4RSAg5sl429yPAenJkvWxzZNiwYdGlS5e02oQJE2LAgAHxr3/9a4PXTZo0KQ455JCM57Rp0yauuuqqWu8PpUSWrFfbLDn55JNj7733zqgPHTo0zjjjjE2eZ9y4cdGnT594/fXXM76WzYeSoVQ0xBwpBd5rBYDS0BDvZYr9M1GEexn4Ojmynr4x5EaOrKdvDLmRI+vpG0Nu5Mh6esaQm4aYI6XA+6wAAAAAAAAAUHrKUv/+aQcAEuGTTz6J3r17x7x58zK+1rdv3zj++OOjW7dusWLFinj33XfjT3/6U3z44YcZzz3//PPj5ptvrvW+Xbt2jffffz+tNn78+OjXr99GrxsyZEjcdddd6x43adIkevbsGb169Ypdd901OnbsGB06dIiysrJYunRpzJ8/P1577bV47rnnMn657Ctf/VJf69ata33+iIhzzjknRo8enVHffPPN49RTT42ePXtG27Zt44MPPoinn346JkyYkPHc7bffPqZNmxYdO3bMam8oJXIkuxwpLy+P1atXZ9T33HPPvD9I/MQTT0Tnzp3zWgOKQY7kfj+SrX79+sXEiRPTarNnz46uXbvW6b5Q1+RI7jnyyiuvxKGHHhqrVq1Kqzdr1iyOOOKIGDBgQHTu3Dmqq6vjgw8+iKeeeiqef/75Gtd66KGH4sQTT8xqfyglsiT7LJk6dWr069cvli1blvG15s2bx1FHHRUHHnhgdO7cOVq2bBmLFy+Ot99+O/7+97/Hm2++WeOap512Wtx555212h9KTUPLkXwMHz48RowYkVa74447YsiQITmt571WACi+hnYvUwo/E33FvQysJUf0jSFfckTfGPIlR/SNIV9yRM8Y8tXQciQfesYAAAAAAAAAkFzNin0AAOrGlltuGWPHjo3DDz88FixYkPa1KVOmxJQpUza5xkknnRSjRo2qoxNu3Jo1a2L69Okxffr0nK4/4YQT4t57742WLVtmfe0tt9wSn376aTz88MNp9UWLFsWNN964yeu32WabGDt2rF9wo8GTI9nlSE0fJI6IeOONN3La/+sqKyvzXgOKQY7kfj8CrCVHcs+RfffdN/7yl7/EoEGDYsWKFevqq1evjieffDKefPLJTa5RUVER//u//+uDxDR4siT7LOnTp0/85S9/iRNOOCHjQ8WrVq2Kv/71r/HXv/611usNGjQobrvttlo/H0pNQ8+RYvJeKwAUX0O/l9E3huKTI/rGkC85om8M+ZIj+saQLzmiZwz5aug5UkzeZwUAAAAAAACA0tGk2AcAoO707NkzXnnllTj44IOzuq68vDyGDRsW9913XzRt2rSOTpeudevWBVlnu+22i4ceeigeffTRnD+406xZs3jggQfi8ssvj2bNsvvvNRx66KExefLk2HnnnXPaG0qNHPEBQMiXHJEjkC85knuODBw4MP7xj3/E7rvvnvW1O+20U4wbNy7OOuusnPeHUiJLss+SAQMGxOuvvx6HHXZYzmdo06ZN3HrrrfHwww9n/R4LlJqGlCOlxHutAFAaGtK9TKn8TBThXga+To7o90C+5IgcgXzJEX1jyJcc0TOGfDWkHCkl3mcFAAAAAAAAgNJhCDVAwm233Xbx3HPPxZ///Oc48MADo6ysbIPPbdOmTZx++unxxhtvxPDhw6NJk/r7Z+J///d/Y/r06fGrX/0qjj322OjUqVOtr916663je9/7XjzxxBMxe/bsOPHEE/M+T5MmTWLkyJHx5ptvxpAhQ6JNmzYbfG5ZWVkcdNBB8cADD8TEiRNj2223zXt/KCVyBMiXHAHyJUdyt9dee8Vrr70Wd9xxR+y7774bfe2aNm0aBxxwQNx5553x9ttvx0EHHVSQM0CpkCXZ22GHHWLChAnx3HPPxSmnnBIdO3bc5DVNmzaNXr16xahRo2Lu3Llx7rnn5nUGKCUNJUdKjfdaAaA0NJR7mVL6mSjCvQx8nRwB8iVHgHzJkdzpG8NaciR7esaQrqHkSKnxPisAAAAAAAAAlIayVCqVKvYhAKg/CxcujFdeeSVmzZoVS5cujWbNmsUWW2wRPXv2jH322ScqKiqKfcR1Pvroo5g5c2bMmTMnPvvss1i+fHmkUqlo27ZttG/fPrbaaqvYa6+9Yptttqnzs1RWVsbkyZPj7bffjk8//TRWr14d7dq1ix122CH23Xff2Gqrrer8DFAq5AiQLzkC5EuO5O7jjz+OKVOmrHvtKioqYosttojOnTvHAQccEO3atauXc0ApkCW5ee+99+KNN96IRYsWxeLFi6OysjLatWsXHTp0iK5du0bv3r2jdevWdX4OKAUNKUdKifdaAaA0NKR7mVL6mci9DKwnR4B8yREgX3Ikd/rGsJYcyY2eMazXkHKklHifFQAAAAAAAACKwxBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgARqUuwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB4hlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAJCzfv36RVlZ2bo//fr1K/aRAAAAAAAAAKgnesYAAAAAAAAAAAAAUPoMoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIIEOoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABLIEGoAAABoZO68884oKytL+zNnzpxiH6tBmTBhQsZrOGHChGIfCwAAAAAAAGCT9Izzp2cMAAAAAAAAAAAAQENiCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQM2KfQAAAAAg+T755JN46aWXYtasWbFs2bJo3759bLXVVrHffvvF9ttvXyd7VldXx7Rp0+L999+PTz75JD7//PNo165dbLnllrHTTjtFr169oqysrE72LoTq6uqYNWtW/Otf/4oPP/wwli5dGtXV1bHZZpvFZpttFj169Ig99tgjmjTx3xgDAAAAAAAASpuecfb0jAEAAAAAAAAAAAAoFEOoAQAAoBEYMmRI3HXXXRv8erdu3Ta5xrBhw2L48OFZ7TthwoT4f//v/8Wzzz4ba9asqfE5u+66a/ziF7+I73//+wX5gO8zzzwTo0ePjmeeeSYWL168wedtvvnm8e1vfzuGDh0aPXr02OS6w4cPjxEjRmzw6/3799/kGqeddlrceeedG/z6jBkz4pFHHonx48fHiy++GMuXL9/oeu3bt48jjjgiLrroothvv/02uT8AAAAAAADQOOkZZ9IzBgAAAAAAAAAAAKCxaFLsAwAAAADJs2rVqvjhD38Y/fv3j7///e8b/DBxRMRbb70Vp556agwcOHCTH6DdmDfffDMGDBgQRxxxRDz00EMb/TBxRMSiRYvi7rvvjt133z3OOeecWLVqVc5752vRokXRu3fv2GWXXWLo0KExduzYWr0WS5YsiYceeij233//OOGEEzb5PQMAAAAAAADUBz3j7OgZAwAAAAAAAAAAAFCXDKEGAAAACmrlypXxrW99K2677basrhs7dmwcffTRUV1dnfWejz32WBxwwAExbty4rK+trq6O0aNHR79+/WLhwoVZX18IX3zxRbz66qt5rTFmzJjYd999Y968eQU6FQAAAAAAAED29Iyzp2cMAAAAAAAAAAAAQF1qVuwDAAAAAHWvS5cusddee0VExGeffRZz585N+3rPnj2joqJio2t06tSpVnudccYZMX78+HWPd9lll/jWt74VPXr0iI4dO8aSJUvi1VdfjYcffjg+/vjjtGufe+65uOGGG+Kiiy6q1V4REffee28MHjw41qxZk1avqKiIww8/PPbbb7/Ybrvton379rFs2bKYM2dOPPvss/HCCy+kPf+ll16KQYMGxfjx46O8vDxjn06dOq17DZctWxYzZ85M+3r37t2jTZs2Gz1rly5davU9tWnTJvbZZ5/o2bNn7LTTTtG+ffto27ZtVFZWxueffx5vvfVWjB8/Pt5+++2069599904+eSTY+LEidGsmbd9AAAAAAAAgLX0jPWMAQAAAAAAAAAAAGi8ylKpVKrYhwAAAADqz5133hmnn356Wm327NnRtWvXrNfq169fTJw4cd3jFi1axMqVKyNi7Qdwb7nlljjxxBNrvHbZsmVx3nnnxd13351W79ChQ8yfPz9atmy5yf2nT58e++67b3z55Zfras2aNYuf/vSncfHFF8eWW265wWtfe+21OOuss2Lq1Klp9Ysuuiiuv/76je47YcKE6N+/f1pt/Pjx0a9fv02euSZz5syJXr16xamnnhrf/e5348ADD6zxQ83/btKkSXHhhRfGlClT0urXX399Vh/KBgAAAAAAABoPPeO19IwBAAAAAAAAAAAAaCyaFPsAAAAAQHJ89WHiHXbYIV566aUNfpg4IqJNmzZx5513xlFHHZVWX7x4cTz88MOb3GvNmjXxve99L+3DxK1bt46xY8fGddddt9EPE0dE7L333jFp0qQ44ogj0uo33XRTzJs3b5P7F1Lnzp1j/vz5cfPNN8dhhx1Wqw8TR0QceOCB8fzzz8fAgQPT6jfddFOsXr26Lo4KAAAAAAAAsEF6xrnRMwYAAAAAAAAAAACgLhlCDQAAABRUeXl5PPDAA7H99ttv8rllZWXxm9/8JqP+9NNPb/Lahx9+OP75z3+m1e64447o379/rc9aUVERDz74YGyxxRbrapWVlTWeqS5VVFREy5Ytc7q2RYsWcdddd0WrVq3W1ebOnRtjx44t1PEAAAAAAAAAak3POHt6xgAAAAAAAAAAAADUJUOoAQAAgIL6/ve/H3369Kn183fdddfo3bt3Wm3q1KmbvO7aa69Ne9yvX7/4j//4j1rv+5X27dvHhRdemFZ79NFHs16nmLbaaqsYOHBgWu2FF14o0mkAAAAAAACAxkzPuP7pGQMAAAAAAAAAAACwMYZQAwAAAAX1wx/+MOtr9t1337THM2bM2Ojz58yZk/Gh47POOivrfb/y7W9/O2P9999/P+f1imGnnXZKe/zSSy8V6SQAAAAAAABAY6ZnXBx6xgAAAAAAAAAAAABsSLNiHwAAAABIjpYtW2Z8OLg2unfvnva4uro6li1bFm3atKnx+RMnTsyoHXTQQVnv+5Vu3bpl1F599dXYfvvtc14zXx9++GFMmjQp3njjjZgxY0YsWbIkli5dGitWrIhUKpXx/AULFqQ9/uCDD+rrqAAAAAAAAAARoWdcSHrGAAAAAAAAAAAAABSKIdQAAABAwWy//fZRXl6e9XXt27fPqC1ZsmSDHyh+8cUXM2onnHBC1vtuzKefflrQ9WrroYceiltvvTUmTpwYa9asyXmdxYsXF+5QAAAAAAAAALWgZ5w/PWMAAAAAAAAAAAAACs0QagAAAKBgOnbsmNN1NX0IuaqqaoPPnzdvXkbt9ddfz2nvDVm0aFFB19uU+fPnx+DBg2PcuHEFWW/JkiUFWQcAAAAAAACgtvSMc6dnDAAAAAAAAAAAAEBdMYQaAAAAKJiaPhhcF+rjw74rVqyo8z2+8uGHH0a/fv3ivffeK9iaq1evLthaAAAAAAAAALWhZ5wbPWMAAAAAAAAAAAAA6lKTYh8AAAAAIFuff/55sY9QUEOGDKnxw8R77713DB06NB599NGYNm1aLFiwIJYuXRqVlZWRSqXS/gwbNqwIJwcAAAAAAACof3rGesYAAAAAAAAAAAAA1F6zYh8AAAAAIFstW7bMqK1YsSJatGhRhNPk529/+1s888wzabWtttoq7rnnnjjyyCNrvc6KFSsKfTQAAAAAAACAkqRnnEnPGAAAAAAAAAAAAIANaVLsAwAAAABka4sttsioffbZZ0U4Sf7uu+++tMdNmzaNxx57LKsPE0c03O8fAAAAAAAAIFt6xpka6vcPAAAAAAAAAAAAQN0zhBoAAABocLbeeuuM2vvvv1+Ek+Tv73//e9rjgQMHxr777pv1OrNmzSrUkQAAAAAAAABKmp5xJj1jAAAAAAAAAAAAADbEEGoAAACgwdlvv/0yas8991wRTpKfVatWxcKFC9NqhxxySNbrVFdXxyuvvFKoYwEAAAAAAACUND3jdHrGAAAAAAAAAAAAAGyMIdQAAADQyDRr1iyjVl1dXYST5O6II47IqD3yyCP1tn+hXsNFixZl1Dp27Jj1Ok888UQsW7Ys6+sAAAAAAACAxkfPOH96xgAAAAAAAAAAAAA0JIZQAwAAQCPTtm3bjFpD+zDqrrvuGjvttFNa7ZVXXolx48bVy/6Feg1bt26dUfv000+zXuc3v/lN1tcAAAAAAAAAjZOecf70jAEAAAAAAAAAAABoSAyhBgAAgEZms802y6jNmjWrCCfJz2WXXZZRO+uss+Kzzz6r870L9Rq2b98+WrVqlVYbO3ZsVmvcdtttMWHChKz3BgAAAAAAABonPeP86RkDAAAAAAAAAAAA0JAYQg0AAACNzO67755Re+KJJ4pwkvyceuqp0aNHj7Ta7Nmz4+ijj4758+fntObSpUvjuuuuiz/+8Y8bfd52220X7du3T6vl+hoefPDBaY8nTJhQ67WeeuqpuOCCC3LaFwAAAAAAAGic9Iw3TM8YAAAAAAAAAAAAgCQyhBoAAAAamY4dO2Z8EPeOO+6IG264IZYsWVKkU2WvadOm8eCDD0bbtm3T6i+//HL06tUrbr311li5cuUm11m9enU888wz8aMf/Si6dOkSl156aSxYsGCj15SVlcUBBxyQVnvmmWdi6NChsXDhwqy+j5NOOimjdvLJJ8dDDz20wWtWrFgRI0eOjOOPPz5WrFgRERHt2rXLal8AAAAAAACgcdIzTqdnDAAAAAAAAAAAAEDSlaVSqVSxDwEAAADUr+uvvz4uueSSjHpZWVl84xvfiPbt20fTpk3TvnbOOefEOeeck1br169fTJw4cd3jww47LCZMmJD1ee688844/fTT02qzZ8+Orl27bvLaxx57LAYNGhSrV6/O+FqHDh3isMMOi/322y+22mqraN++fSxfvjwWL14cH3zwQUydOjVeffXVWLp0adp1119/fVx00UUb3ffBBx+s8cPAERHbbLNNdOzYMZo1a5ZWP+6442LkyJFptaqqqujZs2fMnDkzY53evXvHscceGzvuuGOUl5fHwoULY+rUqfH444/HokWL1j1vt912i2OOOSauvfbatOu97QMAAAAAAADURM9YzxgAAAAAAAAAAACAxqPZpp8CAAAAJM15550Xd911V0yfPj2tnkqlYu7cuTF37tyMaxYsWFBfx8vKscceG88++2ycfPLJGWdcvHhxjBkzJsaMGVPwfU888cQYMGBAPPvssxlf++ijj+Kjjz7KqO+9994ZtfLy8njwwQfj4IMPji+//DLta9OmTYtp06Zt9BzbbrttPP7443HnnXdmdX4AAAAAAACg8dIzzp+eMQAAAAAAAAAAAAANRZNiHwAAAACof61atYqnn346jjjiiGIfpSAOPfTQmDZtWpx66qnRtGnTnNcpKyuL/v37xyGHHLLJ5zZp0iQeeuih+P73v5/zfl/p1atXPP3007HNNttkdd3+++8fL730UnTt2jXvMwAAAAAAAACNh55xzfSMAQAAAAAAAAAAAEgiQ6gBAACgkdp2221j7NixMXXq1Pj5z38eRx11VHTt2jU6dOgQzZo1K/bxsrbNNtvEPffcE++++27813/9V/Ts2bNW17Vt2zaOOeaYGDVqVMyePTvGjRsX++23X62u7dChQ/zpT3+Kf/3rXzF8+PA45phjonv37rHZZptFeXl5Vuc/+OCD4/XXX49LLrkkOnTosNHn9u3bN+6666548cUX4xvf+EZW+wAAAAAAAABE6Bl/Rc8YAAAAAAAAAAAAgKQrS6VSqWIfAgAAAKAufPzxxzFt2rT49NNPY9GiRbFs2bJo3bp1tGvXLrbddtvo0aNHbL/99lFWVlbso6aprq6OKVOmxPTp0+PTTz+N1atXR9u2baNbt27Rt2/f6NSpU7GPCAAAAAAAAFDy9IwBAAAAAAAAAAAAwBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgERqUuwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB4hlADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIZQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQIZQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWQINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACGUINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkECGUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkCHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkCDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAhlCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAhlADAAAAAAAAAAAAAAAAAAAAAAAAAADA/8fenYfJVdX54/9U9ZI9hMQsLAZCEBNAtoAMRDDBUVARiSBkWJ4gOIADyozfQQZGCYqgMKABGZTfoIAIssqmLEHWCCqExIDsBEhCIDFkIXtvVb8/Kh2605VOL9VV1bdfr+fpJ6lz7z3nk74nVbfr9H0XJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggSpLXQBAoYwYMSJWrFjRor2qqipGjhxZ/IIAAAAAAICyM3/+/Kirq2vRPmjQoFi0aFEJKgKgUKwZAwAAAAAAW2LNGCDZrBsDAAAAAACt6clrxqlsNpstdREAhdC7d++oqakpdRkAAAAAAEA31KtXr1i/fn2pywCgE6wZAwAAAAAAHWXNGCAZrBsDAAAAAAAd0RPWjNOlLgAAAAAAAAAAAAAAAAAAAAAAAAAAAACAwhNCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACVZa6AIBCqaqqipqamhbtvXr1itGjR5egIgAAAAAAoNzMnTs373pCVVVVCaoBoJCsGQMAAAAAAFtizRgg2awbAwAAAAAArenJa8ZCqIHEGDlyZLz00kst2kePHh0vvvhiCSoCAAAAAADKzW677ZZ3PWHkyJElqAaAQrJmDAAAAAAAbIk1Y4Bks24MAAAAAAC0pievGadLXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhSeEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggYRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACABBJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBAQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEigylIXAAAAAAAAAAAAAAAAAAAAANATZbPZaGhoiEwmE9lsttTlAFAAqVQq0ul0VFRURCqVKnU5AAAAACCEGgAAAAAAAAAAAAAAAAAAAKCrZbPZqK2tjTVr1sTq1atj3bp1kclkSl0WAF0onU5Hnz59on///tGvX7+orq4WTA0AAABA0QmhBgAAAAAAAAAAAAAAAAAAAOgi9fX1sXTp0li1alXU1dWVuhwAiiiTycSaNWtizZo1ERFRVVUVAwYMiCFDhkRlpegfAAAAAIrDO1EAAAAAAAAAAAAAAAAAAAAABZbNZmPFihWxZMmSaGhoKHU5AJSBurq6WLZsWXzwwQcxdOjQGDRoUKRSqVKXBQAAAEDCCaEGAAAAAAAAAAAAAAAAAAAAKKBMJhMLFiyItWvXlroUAMpQQ0NDLFq0KFauXBkf/ehHI51Ol7okAAAAABLMu08AAAAAAAAAAAAAAAAAAAAABSKAGoC2Wrt2bSxYsCAymUypSwEAAAAgwYRQAwAAAAAAAAAAAAAAAAAAABRANpsVQA1AuzQGUWez2VKXAgAAAEBCCaEGAAAAAAAAAAAAAAAAAAAAKIAVK1YIoAag3dauXRsrVqwodRkAAAAAJJQQagAAAAAAAAAAAAAAAAAAAIBOqq+vjyVLlpS6DAC6qSVLlkR9fX2pywAAAAAggSpLXQAAAAAAAAAAAAAAAAAAAABAd7d06dJoaGho074VFRXRr1+/6NevX1RWVkZFRUWk0+kurhCAYshkMtHQ0BD19fWxZs2aWLNmTZteHxoaGmLp0qUxfPjwIlQJAAAAQE8ihBoAAAAAAAAAAAAAAAAAAACgE7LZbKxatWqL+1VWVsbw4cNjwIABkUqlilAZAKU0aNCgja8Rixcvjvr6+lb3X7VqVQwbNsxrBAAAAAAF5WMwAQAAAAAAAAAAAAAAAAAAADqhtrY26urqWt2nsrIydthhhxg4cKBwUYAeJJVKxcCBA2OHHXaIysrKVvetq6uL2traIlUGAAAAQE8hhBoAAAAAAAAAAAAAAAAAAACgE9asWbPFfYYPHx7V1dVFqAaAclRdXR3Dhw/f4n5teU0BAAAAgPYQQg0AAAAAAAAAAAAAAAAAAADQCatXr251e0VFRQwYMKBI1QBQrgYMGBAVFRWt7rOl1xQAAAAAaC8h1AAAAAAAAAAAAAAAAAAAAACdsG7dula39+vXL1KpVJGqAaBcpVKp6NevX6v7bOk1BQAAAADaSwg1AAAAAAAAAAAAAAAAAAAAQAdls9nIZDKt7rOlwFEAeo4tvSZkMpnIZrNFqgYAAACAnkAINQAAAAAAAAAAAAAAAAAAAEAHNTQ0bHGfysrKIlQCQHfQlteEtry2AAAAAEBbCaEGAAAAAAAAAAAAAAAAAAAA6KBMJrPFfSoqKopQCQDdQVteE9ry2gIAAAAAbSWEGgAAAAAAAAAAAAAAAAAAAKCDstnsFvdJp8U7AJDTlteEtry2AAAAAEBbWaUAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAQSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABKostQF0DMsWbIknn322Zg7d26sXLkyqqqqYsiQIbHrrrvGvvvuG1VVVaUusSy99957MWvWrHjvvfdixYoVUVNTE1tttVUMGjQoxowZE3vssUdUV1eXukwAAAAAAACAVlkz7pi6urp49tln4+WXX46lS5dGXV1dDBw4MEaPHh377bdfDB06tNQlAgAAAAAAAAAAAAAAAFCuUqmIbLbUVVAGhFDTpe6444644oor4qmnnorsZp50BgwYEMccc0x85zvfiV122aXIFbaUzWbj9ddfj+eeey5mzpwZM2fOjNmzZ8eqVaua7TdlypS4/vrrCz7+W2+9Fddee23cdNNNMW/evFb3ra6ujokTJ8bXv/71OPLII6Oy0n9pAAAAAAAAoHx0xzXjLXn55Zdj7733jpqamhbbrrvuujjppJM6Pcarr74al156adx+++0t1qobpVKp+NSnPhVnnXVWHHXUUZ0eEwAAAAAAAAAAAAAAAIAESaU+/FMQdY8nsZYusXDhwjj++OPjiSee2OK+q1atil/+8pdx4403xne/+9347ne/G6nGJ6oi+d3vfhd/+ctfYubMmTFr1qz44IMPijp+RERtbW1cdNFF8eMf/zhqa2vbfMxDDz0UDz30UOy5555x7bXXxr777tvFlQIAAAAAAAC0rrutGbdVQ0NDTJkyJW8AdSFkMpm48MIL46KLLoq6urpWLMEx5AABAABJREFU981mszFjxoyYMWNGTJgwIW6++ebYZpttuqQuAAAAAAAAAAAAAAAAALqRTe/RE0Td4wmhpuBee+21mDBhQrz33nvtOq62tjbOP//8ePnll+PGG2+MioqKLqqwpZNPPrkkwdON1q5dG4cffng89thjHe5jzpw5ceCBB8att94akyZNKmB1AAAAAAAAAG3XHdeM2+qSSy6JZ599tkv6bmhoiOOOOy5uu+22dh/7+OOPx3777RePP/547Lzzzl1QHQAAAAAAAAAAAAAAAADdwqYB1E3bBVH3WEKoKailS5fGZz/72bw3E48bNy6+/OUvx6hRo2LdunXx2muvxc033xzvvvtus/1++9vfxrBhw2LatGlFqrr0jjnmmLwB1FVVVfH5z38+DjzwwNhuu+2iV69esXz58nj++efjD3/4Q7z99tvN9q+rq4tjjz02HnvssRg/fnyRqqesvftuxDPPRDz/fMSLL0YsXRpRVxdRVRUxZEjEbrtF7LFHxCc/GbHttqWuFgAAAAAAgG4uyWvGf//73+P73/9+l/X/rW99K28A9eDBg+OEE06IsWPHxsCBA+Ptt9+O6dOnxxNPPNFsv4ULF8bnPve5eO6552LrrbfusjoBAAAAAAAAAAAAAAAAKFObC6Buul0QdY8khJqCOvXUU2P+/PnN2gYMGBC/+c1v4ogjjmix/8UXXxwXX3xxXHDBBc3ar7jiijj00EPj85//fFeWu0VDhgyJcePGxdZbbx233nprl4xx6623xh/+8IcW7Ycffnhcc801se1mgoGvvPLKuP766+Pf//3fY9WqVRvb6+rq4rTTTovZs2dHVVVVl9RMmauri3jwwYgbboh4+unW950x48O/jx8fMWVKxKGH5kKqAQAAAAAAoJ2StmbcqL6+PqZMmRK1tbUb2/bff//461//WpD+77333rj66qtbtJ9++ulx+eWXR9++fZu1n3feefHUU0/FUUcdFYsXL97Y/tZbb8Xpp5/eZevbAAAAAAAAAAAAAAAAAJSpLQVQN91PEHWPky51ASTHww8/HL/73e+atVVXV8ejjz6a92biiIiqqqqYOnVqTJs2rcW2b33rW1FfX98Vpea11VZbxcSJE+Pss8+O2267Ld588814//3346GHHorTTz+9y8b9yU9+0qLtyCOPjHvuuWezAdQREel0Ok4++eT4wx/+0CJs+sUXX4zp06cXvFa6gYcfjvjUpyJOOy0XQN3QELF+fcSqVRHLl0csXfrh1/Llufb163P7PfVUxKmn5o5/+OFS/0sAAAAAAADoZrr7mnFrLr744pg1a9bGxyeccEIcdthhBem7rq4uzjrrrBbt//Ef/xE///nPWwRQNxo/fnz8+c9/jsGDBzdrv+222+Lxxx8vSG0AAAAAAAAAAAAAAAAAdANtDaDu6P50e0KoKZgLL7ywRdvUqVNj33333eKxZ511Vnz2s59t1vbGG2/EzTffXLD6WjN79uxYvnx5PProo3HppZfGV7/61Rg1alSXj7tw4cJ49tlnm7X17t07fv7zn0c63bb/ngcddFCcdtppLdrvueeegtRIN7FyZcRZZ0VMmRIxf34uWHr58oj334/44IOItWsjamsj6us//KqtzbV/8EFuv+XLc8fNn5/r56yzcv0CAAAAAABAG3TnNePWzJkzJ374wx9ufDx8+PC8odkddeONN8bbb7/drG333XePH//4x1s8dtSoUXHllVe2aP/BD35QqPIAAAAAAAAAAAAAAAAAKGcdDZQWRN2jCKGmIF588cWYMWNGs7aPfOQj8Z//+Z9t7uNHP/pRi7af//znna6tLUaNGhWpEjz5vfrqq5HNZpu1TZw4MUaMGNGufo4//vi8fdNDLFgQcdhhEbffHlFTE7F0aS5YurY2tz2bjchkNv/VOAdra3PHLV2a6+f22yM+//lc/wAAAAAAANCK7r5mvDl1dXUxZcqUqKur29h21VVXxZAhQwo2Rr5/4/e///2orq5u0/HHH3987L777s3aHnvsMWvGAAAAAAAAAAAAAAAAAEnX2SxVQdQ9hhBqCuKWW25p0fa1r32tzTfFRkSMGzcuxo0b16ztL3/5S7z11ludrq9c/eMf/2jRNnbs2Hb3k++YxYsXd6gmupn58yO+/OWIN9/MBUivWBHR0NA8eHqToPMWNt23oSHXzwcfRMydG3HkkYKoAQAAAAAAaFVS14wvvPDCmDNnzsbHX/nKV+Loo48uWP9vvPFGzJw5s1nbNttsE0cccUS7+jnttNNatP32t7/tVG0AAAAAAAAAAAAAAAAAlLFCBUgLou4RhFBTEA8++GCLto7ceJvvmHx9J0W+G67bcxN2o169erVo6927d4dqohtZuTJi8uSIhQsjli2LWL/+w0DpLQVPb07T49evz/X7zju5cVauLGz9AAAAAAAAJEYS14xnzZoVP/rRjzY+Hjx4cFx99dUFHeOhhx5q0XbkkUdGZWVlu/rJ93174IEHOlwXAAAAAAAAAAB0J9OmTYsLLrigxdeKFStKXRoAAAAAdI1CB0cLok689t21CHmsWbMmZs2a1aytb9++sc8++7S7r4MOOqhF24wZM+Ib3/hGh+srZ6NGjWrRtmDBgnb3k++Y0aNHd6gmupHvfS9i7txcUHRjcHRHw6c31dhPQ0Ou/zfeiDj//Ihp0wrTPwAAAAAAAImRxDXj2traOOmkk6K+vn5j27Rp02L48OEFHWfGjBkt2j71qU+1u58RI0bEzjvvHG+88cbGtueeey7Wrl0bffv27VSNAAAAAAAAAABQ7qZNmxbz5s1r0X7SSSfFoEGDil8QAAAAAHSlrgqMTqUKl2lJ2UmXugC6v7/97W+RyWSate27775RWdn+jPP99tsvqqqqmrU999xznaqvnO2xxx4xZMiQZm2PPPJI1NXVtauf+++/v0XbZz7zmU7VRpl7+OGIW2+NWL48F0DdGEJdSNnsh30vXx5xyy25cQEAAAAAAKCJJK4Zf//7348XXnhh4+MvfOELceKJJxZ8nHz/tgMOOKBDfR144IHNHjc0NMScOXM61BcAAAAAAAAAAAAAAAAAZairAqiL1T8lI4SaTnvllVdatO28884d6qu6ujq23377Zm1z586N+vr6DvVX7ioqKuK0005r1rZo0aK48sor29zHsmXL4pJLLmnWNmjQoC65AZoyUVcX8d3vRqxaFdHQkAuJ7kqZTG6cVasivve93PgAAAAAAACwQdLWjGfOnBmXXnrpxscDBw6Ma665puDj1NXVxZtvvtmsraqqKnbYYYcO9Td69OgWba+++mqH+gIAAAAAAAAAAAAAAACgzBQrIFoQdSJVlroAur+33367RVtHb4qNiBg5cmS89dZbGx83NDTE/PnzY6eddupwn+Xs3HPPjVtuuaXZzcXnnHNObL311nHyySe3euw777wTRx11VLz33nvN2q+88soYMGBAl9RLGXjooYg33ohYv77rA6gbZTIR69ZFPP98xCmnRHz848UZFwAAKIza2ojVqyOy2VJXAgBAKfTuHXHMMRF77VXqSoCEStKacU1NTUyZMqVZ6PWll17aIhi7EObPnx+ZTdb7tt9++0inO/Z54iNHjmzRtmnINQAAAD1UXV3Em29GLF9e6koAACiVbbeNyLOWAAAAAAAAAEA3Uexg6FRKVk3CCKGm0xYtWtSi7aMf/WiH+8t37OLFixMbQt2/f/944IEHYuLEifHuu+9GRO4m6lNOOSWuv/76OPnkk2P8+PGx7bbbRq9evWL58uXxwgsvxH333Re/+tWvYuXKlc36++EPfxgnnnhiKf4pm/W///u/cfXVV3f5OHPnzu3yMcrCdddFrFpV/BfkbDYXRH3zzRF9+hR3bAAAoGMymdxXQ0OpKwEAoNQuuyxi8OCIW26JmDCh1NUACZOkNePzzz8/XnrppY2PJ06cGKeeemqXjFWs71s5sGYMAABQQnffHXH77RE1NaWuBACAUtt664hTTon4p38qdSUAAAAAAAAAtEexA6g3HVcYdSIIoabTli1b1qKtf//+He4v37FLly7tcH/dwS677BKzZs2K008/Pe6+++6N7TNmzIgZM2a0qY9Ro0bFlVdeGYcffngXVdlxS5YsaXajNp3w7rsRjz0WUV9fuhfihoZciF06XZrxAQCAtquvz12/AwBAKhWxbFnEEUdEzJ8fMWhQqSsCEiQpa8Z//etf4/LLL9/4uG/fvnHttddGqot+QScp37e2sGYMAABQInffHfGb35S6CgAAysXy5RGXXx4xdWrE7ruXuhoAAAAAAAAA2qJUAdSb1iCIutsTQk2nrVmzpkVbnz59OtxfvmPXrl3b4f66i+HDh8ddd90Vs2bNiuuuuy5++ctfxrp167Z43Lhx4+Kcc86JSZMmRWWl/9KJ98wzEevWbfYF+KYdIo6f1/lhtthPfX1ERUXnB6KgXthqXXzig44//xa6H4rvpYHrYteVnT93heqH4lpWXRuDa6vLph+KzxygNp2J6kznPyikUP1QBjIZAdQAAHyo8X3ldesijj024qGHSlsPkChJWDNev359TJkyJRoaGja2XXTRRbHTTjt12ZhJ+L4BAABQ5m6/vdQVAABQbrLZiBtvjLjkklJXAgA0kclmoqa+ptRlQAu9KntFOuU+IwAAAAAomXIIoG4kiLrbk1hLp9XV1bVo6927d4f7y3djbG1tbYf7607mzp0bv/zlL+OOO+5oUwB1RMRzzz0X5513XsybNy9OP/306N+/fxdXSUn96U8RNfkXkT/2tYg3RkackInIXvhhe1teppteWqS+FxHpiAvmR7x+3WYOqKsTZldmvjGxPn5xYERk1kX2Rx++vP9/UR/PjNv8cdusjrjw1Q/3T51bH5GOOP3pdfHzx1wmdCf/fnB9XHFQtJgD//Px+nivavPHffLvEZOj5Rw4a8a6mPakOdBd/H5UfXzpuIgRq9bFe1d+eN7ei/p4dJvWjz3+vQ/33+Zb9bFoQMR9N6+Lw99y/ruTzc2BR4fVx4pWjtvlHxG7hzmQBO/0z8S4r2fipDmpuOSx3IeFrI36mN+39eNGro3o22QOnDOxIa7fMxvPXZuO7Vf7BbFuTwg1AABNNf0gy1dfLV0dQCIlYc34v//7v+PVJs+PBxxwQHzrW9/q0jGT8H2je6itr41MbP59onSko7rShxMmVSaTidpM688F1enqSKe9J5xU9Zn6qM/Ub3a754DkW1+/vtXtlenKqExbG0yqLT0HRET0ruz4NSjlb0vXgp4DEm7u3Ja/c7q+9dcFAAASKpWK6NXrw8fvvFO6WgCAvGrqa+KlJS+VugxoYdehu0afqo5/qDoAAAAA0AnlFEBNIvitYbpEqhNPVvmOzSY87b6uri5+8IMfxI9+9KNoaGhosb1v374xbNiw6Nu3b6xYsSIWLVoUmSZBYm+88UacffbZccUVV8QNN9wQhxxySDHLp5j+8pe8n/7QGEAdERHpXJB09sK2BVA31RhAHZHr72Nf20wQdTYbUd/6zUkUzzf+OXIB1BG5839u/cYg8tPOjogt3Ct64UW5c9n0/P/iwIjI1sfP/9gFBVNw/z4xcgHUES3mwHeO3MLBn4uYfGnLOXDFQRGRrY9pjxW+Xgrr9ztFfOm43N8XDciFCL/3k9zjL54YMXvk5o+NiBh7cX3sk43Y5tu54yNy/d13Y30c/mbX1U3htDYHDp0SUd9KZkSfuoi1G54DzIHu650BEXv/a8SyPhGXHZCNyNTHJY9E/GW7iBOObv3YnzwQMfm13Bw45zMRlx2Qa9/7XzMx+xeZ2H5VFxcPAAAUT9P3llevLl0dQI/RndaMn3rqqZg2bdrGx7169Ypf/epXJQlk7U7fN7qPGfNnxHur3tvs9pFbjYyDdzy4iBVRTGvr18bdL9/d6j6fG/25GNZ/WHEKouhmvzc7Xn1/8x9EM6j3oDj844cXsSKK7a6X74qGTMvfSWu0//b7x8eGfKyIFVFMby1/K/76zl83u70iXRH/8ol/KWJFFNv0udNjxfoVm90+ZuiY2HfbfYtXEMW1bFnzxzU1EbNmlaYWAABKq7o6Yt8m1/41NRF1dRFVVaWrCQAAAAAAAIDNK8cAaveqdXtCqOm0qjy/bLJu3boO95fv2OrqLSSodmO1tbVx1FFHxe9///tm7X369IlTTjklTjrppNhrr72ioqJi47YPPvggHn300Zg2bVo8+eSTG9vfeeedOPTQQ+OWW26Jo446qmj/BopowYIWTc0CqBttCKLOXNj2rpuGzzZqNYiasvCNf474xfhNGpsEkbdVvvPf2K8g6vL27xMjrtg0E6BAc6CxX0HU5ev3O0V86cTmbYsG5MKEG0OI26Jp+HCjL50Ycd+NIYS4zJkDvDMgYu/TcwHUjS7b8Bp+6Ctt7+ecz3x4XESuv71Pj5j9ixBEDQAASdG4sJtKWeQFCq47rxmvXbs2vva1rzX7EOCpU6fGmDFjumS8prrz9w0AAAAAAAAAAEplzZo18dZbbzVrq6ury7vva6+9FqtXr25z38OGDYthwwrzQc7Lli2Lhx56KB599NF46aWX4q233oqVK1dGTU1NDBo0KEaPHh3nn39+fOELXyjIeOWqoaEh/vSnP8UTTzwRM2fOjLlz58aiRYtizZo1kclkol+/frHNNtvExz72sTjggAPisMMOi7322qvUZQMAAACUjgBquogQajqtb9++LdoKfWNsv379OtxfuTvrrLNaBFDvvPPOcffdd8duu+2W95itttoqJk2aFJMmTYqf//znceaZZ268Kbq+vj6OP/74GDNmzGaPL7ahQ4fGrrvu2uXjzJ07N2pqarp8nJJatqzZw7wB1I3SEek2BlHnC59tJIi6fOUNoG60IYQ41m+5n9bOvyDq8pY3gLpR4xzIbGZ7E63NAUHU5Stf+HCjxhDibZZsuZ/P/UfE0gH5twkhLm9tmQNtkS+AupE5UN7yBVA3umx8xPzNnNdNbRpA3UgQNQAAJFQ2G5Fpw5tGAO3QndeMzz333Hj99dc3Pt5nn33i7LPP7pKxNtWdv2/tZc0YAAAAAAAAAIBCefbZZ2PixIlt2vfQQw9tV99Tp06NCy64IO+2HXfcMebNm9ei/a233oodd9xx4+N58+bFD37wg7j55ptj/fr8N3u///778f7778drr72WN4S6rWN11PXXXx9f+9rXWrRPmTIlrr/++k73HxGxaNGi+OlPfxo33HBDLF68eLP7rVixIlasWBEvv/xy3HvvvXHuuefGrrvuGt/5znfihBNOiIqKioLUAwAAANAtCKCmCwmhptOGDBnSoq09nwTZlmPzjZEETz/9dPziF79o1jZ48OCYPn16jBo1qk19fOMb34iampr4j//4j41tNTU18Y1vfCOefPLJgtbbUWeccUacccYZXT7ObrvtFi+99FKXj1NStbUb/9pqAHWjNgRRp1sJn20kiLr8tBpA3SgdEb2j9RDidGzx/AuiLk+tBlA3ajy3rc2BXrHFOSCIuvy0Fj7caNGAiPfzBNM2k958AHUjIcTlqa1zIDLR6nPAul4R67YwT8yB8pQvgDqTikhFRGrDeza37RHRpyZiYCsfSnHznhF/GPvh42wqIhsR6Q19CKIGAICEamgodQVAwnTXNeMnn3wyfvazn218XFlZGb/61a+isrI4v0rRXb9vHWHNGAAAAAAAAACAnuCqq66Kc845J9auXVvqUkqmtrY2Lr300rj44otj3bp1HerjpZdeipNOOimuvPLKuO6662KPPfYocJUAAAAAZUgANV1MCDWdNnz48BZt77zzTof7W7BgQZvGSILLL7+8Rdt///d/tzmAutG3vvWtuO666+L555/f2DZjxoyYNWtW7LPPPp2ukzJSVxcRbQygbtRKEHVbAqgbCaIuH20KoG7UWghxGwKoGwmiLi9tCqBuVKA5IIi6fLQlfLhRfWVsPoS4HedfCHF5ac8cKNRzgDlQXjYXQB2RC5COVC6IOhsRa3rn2vMFUa/sHfH7sbng6ogPA6gb+xNEDQAACdO4yJtKWfAFCq67rhmffvrpkW3ynPhf//VfseeeexZ8nM3prt83AAAAEmTs2IhevUpdBQAAhbZkScTChaWuAgAAepwzzjgjrr766lKXUVILFiyIr3zlKzFz5syC9Ddr1qw44IAD4oYbboijjz66IH0CAAAA0EbuR04cIdR0Wr7A5Hnz5nW4v/nz5zd7XFFRESNHtjVtt/uor6+P6dOnN2tLpVJx4oltTRT8UDqdjhNPPDHOPvvsZu0PPfSQEOqkyWbbF0DdKE8QdXsCqBsJoi69dgVQN8oXQNqO4NFGgqjLQ7sCqBsVaA4Ioi69doUPNyrQ+RdCXB7MAVoLoG7UGETdmCidL4h6Ze9ce2rDPk0DqJv2K4gaAAASpOlCb0VF6eoAEqm7rhm/++67zR7/7ne/i/vuu6/Nxy9atKhF2/nnnx/Tpk1r1nbEEUfED37wgxb7jhw5MtLpdGQyH755t2DBgshkMpFOt/MNvGj5fYvIf24AAABgo+rqiL59S10FAACFVum2UQAAKLbvfve7PT6A+pVXXolDDjkk3nvvvYL2u3bt2pg8eXL85je/icmTJxe0bwAAAICykUpteZ9iEkCdSH6bgE77+Mc/3qLtjTfe6FBftbW1sWDBgmZto0ePjsoE/uLLm2++GatXr27WNnr06Bg6dGiH+vunf/qnFm3PP/98h/qifHUogLpRkyDqjgRQNxJEXTodCqBu1DSAtAPBo40EUZdWhwKoGxVoDgiiLp0OhQ83KtD5F0JcWuYAbQmgbpSN5u8rNQ2ibgyg3rhvngDqpv0LogYAgISx6At0gaSsGb/00kud7mPBggUt6t9rr73y7ltdXR2jRo2KuXPnbmyrq6uL+fPnx4477tjusZv202jMmDHt7gcAAAAAAAAAAGi76dOnx0UXXdSifcSIEfHFL34xDj744BgxYkQMHTp04+9HPfPMM3H77beXoNquMX/+/Jg4cWIsWrRos/sMHDgwJk6cGBMmTIjRo0fHkCFDolevXvGPf/wj5s6dGw8++GA88sgjsX79+hbHNjQ0xJQpU2LUqFGx//77d+U/BQAAAKD4BFBTJMlL9qXo9t5770in05HJZDa2zZw5M+rr69t9I/DMmTOjrq6uWds+++xTkDrLzdKlS1u0dTSAenPHLlu2rMP9UX5umnlTxwOoG6Uj0lM7X8sbIyNu2iHi+Hmd74u2eWGrTgRQN+pE6GhTvxgf8W/PRnzig873Rdu9NLATAdSNCjQHrjg44tTnInZd2fm+aJtl1Z0IH25UoPP/pRMjlv4oYnBt5/ui7cwBatMR405rWwB1o03fylnTO2J9dURD03nQSgB103GaBlGPOy1iwU8iqjOtHwcAAJSxhoZSVwAkjDXjjhs3blyL8Og///nPHQqhfvrpp5s9rqioiD333LMz5QEAAAAAAAAAQNmZMGFCZDcJwtlxxx1j3ryWN7+/9dZbHfpdnPY4++yzmz0eMmRIXHTRRfGv//qvkU63vKlv//33j6OPPjouvvji+Mc//tGltRXD+vXr48gjj9xsAPVHPvKR+M53vhOnn356DBgwYLP9nHnmmfHOO+/EeeedFzfeeGOL7bW1tXHsscfGiy++GP369StY/QAAAAAlJYCaIipABBk9Xb9+/WLvvfdu1rZmzZqYPXt2u/v605/+1KLt4IM7m7hZnnr37t2ibd26dR3ub+3atS3a+vbt2+H+KD/H73t8RLkE/WUEUBfbJz6Isjr/AqiLb9eVUVZzQAB1cQ2ujRixqtRV5IxYJXy4FMwBqjMRJzX5EWtLAdSb07DJuwBtfcun6XgnzRZADQAA3Z4FYKDArBl33EEHHdSiLd/3YEsWL14cr7/+erO2cePGWTMGAAAAAAAAAIAutnLlhzfd7rbbbvH3v/89TjvttLwB1E1VVlbGtttu29XldbmpU6du9nfFxo8fH3/729/i7LPPbjWAutH2228fv/71r+Oaa66JioqKFtvnzZsXF1xwQWdLBgAAACgPAqgpMiHUFMRhhx3Wou2OO+5odz/5jsnXdxIMHTq0Rdu8efMik+lYmtubb77ZpjHovhoyDXH4G1H6ENpMxOFvRDSU2TVLT5C9MMri/GcvLHENPZg50LO995OI4atLW8Pw1bk6KA1zgEseifjmXzseQN1ZmVRu/EseKc34AABAAXVwLQKgNd1xzXjFihWRzWY7/DV16tQWfV533XUt9rv++us3W8Ohhx7aou2ee+6J+vr6dv1b7rzzzhZtSV1rBwAAAAAAAACAcrTzzjvHY489FiNGjCh1KUXz8ssvx09+kv+mw4MOOigeeeSR2G677drd76mnnhpXXnll3m3/+7//G4sXL253nwAAAABlRQA1JSCEmoKYPHlyi7brrrsuamtr29zH7Nmz49lnn23Wtv/++8eoUaM6XV85GjFiRPTv379Z2/Lly+Mvf/lLh/q7//77W7TtsssuHeqL8lSRroiTZ0dstyZKF0KbyY1/8uyICtcJRbeyV8Rhb0ZJz/9hb+bqoDTMgZ5tZa+IvRdFpEp0/lOZ3PjOf+mYA6zsFfHqRyL6tv3HrILqW5sb3xwAAIAEKLeFaSARrBl3zMc+9rEYN25cs7aFCxfG73//+3b1c80117Ro+5d/+ZdO1QYAAAAAAAAAALTd//3f/8XQoUNLXUZRff/734/6+voW7SNHjoy77rorevXq+M1o//Zv/xZHHnlki/Z169bl/X0pAAAAgG6j3O7zFUDdYwihpiB23333+NSnPtWsbcmSJfHTn/60zX2ce+65Ldq+8Y1vdLq2clVZWRmf+cxnWrRfdNFF7e7rrbfeit/85jct2g899NAO1Ub5mvRKxM/uL1EQ9YYA6p/dn6uD4mpIRRz/lYjZIyJ6ZSOi2Ndq2dy4s0fk6mgos2vXnsAc6Nmanv/qEp3/aue/pMwBms6BhoooyRxoqDAHAAAgMcptcRpIBGvGHZfv3zh16tSoq6tr0/G33HJLPP/8883aJkyYEGPGjClIfQAAAAAAAAAAQOsmT54cEyZMKHUZRbVw4cK444478m778Y9/HEOGDOn0GBdffHGk8vze6w033NDpvgEAAABKotzu8RVA3aMIoaZgvvvd77Zomzp1asyaNWuLx1511VXx0EMPNWvbaaed4rjjjmvT2DvuuGOkUqlmX48//nibji2lY489tkXb/fffHz/+8Y/b3McHH3wQkyZNitra2mbtu+66a3ziE5/odI2Un5IEUQugLrmKbMTkFyJW9ImoS294AS/WNVs2N15dOjf+5Bdy9VBc5kDP5vxjDmAOAAAABZW2RAh0DWvGHXPiiSfGDjvs0Kzt+eefj/POO2+Lx7799ttx5plntmj/3ve+V7D6AAAAAAAAAACA1p122mmlLqHofv3rX0dDQ0OL9t122y0mT55ckDHGjh0bn/vc51q0v/nmm/HKK4IPAAAAgG5GADUl5g5zCubQQw+NL3/5y83aampqYuLEiXHfffflPaauri4uvPDC+OY3v9li25VXXhlVVVVdUmu5OPbYY2OvvfZq0X7uuefGySefHIsXL271+EcffTTGjRsXc+bMabGtPUHWdCMbLhyKGkQtgLosNKQibvlERN+6D9uKEj6ZbX6x0LcuV0dDmV3D9gTmQM/m/GMOYA4AAAAA3YE1446prq6OadOmtWi/7LLL4owzzoh169blPe7pp5+OAw44IJYuXdqs/eijj45DDjmkK0oFAAAAAAAAAAA2scMOO8SnP/3pUpdRdPfcc0/e9smTJ0eqgIFKn/3sZ/O2P/bYYwUbAwAAAKDLCaCmDFSWugCS5f/+7//iueeei3feeWdj28qVK+OII46IfffdN7785S/HqFGjYt26dfH666/HTTfdFAsXLmzRz5lnnhlf/OIXi1b3zJkz4+tf//pmt69evbpF27333ps3QLrRvvvuG9dee22r46bT6bj22mtjwoQJLca47rrr4uabb45DDz00DjzwwNh2222jT58+sWLFinj55Zfj4YcfjhdeeCFvv1OmTIkvfelLrY5NN1VREVFfHxEfBkJ/8wsRC/tF13ysgADqslGRjTh5dsTsbXKPP+iV+zMdEZlsRHTFdeUmoZNb1eSCJ0+enauH4jIHejbnH3MAcwAAAOi0povT5bZQDSRKd10zLrUjjzwyTjvttLjmmmuatV999dVx6623xgknnBBjx46NAQMGxPz58+Ohhx6Kxx9/vEU/O+ywQ4s+AAAAAAAAAACArjN+/PiChi53BytWrIhnn30277ZJkyYVdKxPfepTedtnz55d0HEAAAAAuky5vXckgLrHEkJNQQ0dOjSmT58ehxxySCxatKjZtpkzZ8bMmTO32McxxxwT06ZN66IK81u9enXMmTOnXccsX748li9fvtntgwYNalM/48aNi7vvvjuOPPLIFkHUNTU1ce+998a9997b5rq+8pWvbDH8mm6ssnJjCHVEFwdRbymAOt0Vqde0ZtJrEZHKxjc/n7tw69Lwyc2ETv7sgVRMei3VNaHnbJE50LM5/5gDmAO0WyZT6goAAChHqVT5LVYDidJd14zLwVVXXRXvv/9+3Hnnnc3aly5dGldcccUWj99mm21i+vTpMXjw4K4qEQAAAAAAAAAA2MQ+++xT6hKKbtasWZHJc+9Sr169YsyYMQUda7vttsvb/sor+UIQAAAAAMpMud3TK4C6RxMbRcGNHTs2nnnmmc1+muDmVFVVxdSpU+O3v/1tVFRUdFF15ekzn/lMzJkzJz796U93uI/+/fvH1VdfHXfeeWdUVsqXT6yqqhZNk17JBUVvt6awQ7UaQE3JTHo1FT97IBV963JhkI0K/YK+2dDJV8vsQrYHMgd6NucfcwBzAAAA6BQB1ECRWDPumMrKyrjtttvie9/7XrvXfA8++OB49tlnY5dddumi6gAAAAAAAAAAgHx23XXXUpdQdC+88ELe9p133rngv/s1ZMiQvO0LFy4s6DgAAAAABVdu9/QKoO7xJNXSJT760Y/Gk08+GbfffntcccUV8ec//zmym3nC6d+/f3z1q1+N73znOwX/RMPuZKeddorHH388ZsyYEddcc0088MADsWzZslaPqaioiD322COmTJkSU6ZMiUGDBhWnWEpnMzebT3ol4itfLexQC/ttIYC63C5qepBJr6UiUtn45mG5T4f9oFdEy8+J7ZxM5MInN4ZOPpjeMG6BB6JDzIGezfnHHMAcAAAAOqTxPd1sNiLtc2qBrmfNuGPS6XT84Ac/iOOOOy4uueSSuOOOO2L16tV5902lUnHggQfGWWedFV/9aoEXCwEAAAAAAAAAgDbpiTkP8+bNy9v+4osvRqpIOQRLly4tyjgAAAAAHVJuWY0CqAkh1HShVCoVxxxzTBxzzDHxj3/8I5555pl48803Y+XKlVFZWRkf+chHYuzYsbHffvtFdXV1p8Z6++23O3X8hAkTNnvDc7EddNBBcdBBB0VExBtvvBHPP/98LF26NFasWBG1tbUxcODAGDRoUOy4446xzz77RL9+/UpcMUW1mRDq1PcilxJYSOlcv9kLC9wvBTHp1VREpOObh2VieXUU/vynIjKZJqGTr5bZhSzmQA/n/GMO0HQOrK2MqCn0T/epiKp6cwAAABIrU+iPsgHIrzutGXfEBRdcEBdccEGX9D1mzJi47rrr4pprrolnn302Xn755Xj//fejvr4+Bg4cGDvttFN88pOfjGHDhnXJ+AAAAAAAAAAAQNsMHDiw1CUU3bvvvlvqEmLdunWlLgEAAAAgPwHUlCkh1BTFsGHD4vDDDy91Gd3OzjvvHDvvvHOpy6Cc1Na2aOqSAOpGrQVRu5gouUmvRHzlqOjS87+wX26cCOe7HJkDPdukVyJOPjy69PyvqXT+y5k5wKRXIn79iYi7x3RN/zWVEfstNAcAACAxGt/TTXfVD5IArbNm3DHV1dUxfvz4GD9+fKlLAQAAAAAAAAAA8ujXr1+pSyi6VatWlbqEqM2TvQAAAABQcuUWQA1NCKEG6E42+TTOLg2gbrS5IOpMposHZkuKdv7/O5M/iJySMwd6tm2+HbGiT9eOsaJPxDb/non3ftK149Ax5gDnfCbi3o9HpKJrIqJTkev/nImZuOSRLhgAAAAorsYQah8wCAAAAAAAAAAAAEAn1NTUlLoEAAAAgPJTjgHU7iumia6OLQSgkOrrN/61KOGzjTYEUVM+nH/MgZ5tm29HLBpQnLEWDciNR3kxBzjnMxGXjc/9PZXNBUYXUmpDvxG5cc75TIEHAAAASscHDAIAAAAAAAAAAADQCem0uBoAAACAZgRQ0w1UlroAANphQzhIUcNnG20Ioc1eWORxacH5xxzo2YoZPtyoMYT4vZ8Ud1zyMwdoGkAdEZFNRRT67Z5sRESqeRB1RMQljxR4IAAAoDQaGkpdAQAAAAAAAAAAAADdVN++ffO277HHHnHTTTcVuRoAAACAEhNATTchhBqgmylJ+GwjIbQl5/xjDvRspQgfbiSEuDyYAxQjgHpj3xGCqAEAIKnq60tdAQAAAAAAAAAAAAAlUlNT06njhwwZstl+d9999071DQAAANCtCKCmGylVhCEAHVDS8NlGG0JoKT7nH3OgZytl+HCjxhBiSsMcoJgB1BvH2DBOo8vG5+oAAAC6OYvHAAAAAAAAAAAAAGWroqIib3tDQ0NB+l+2bFmnjh85cmSX9AsAAADQrQigppspdYwhAG1008ybyudZOx1x0w6lLqJneWGrKKvz/8JWpS6i53lpYJTVHHhpYKmL6FmWVZc+fLjRogG5eiguc4DadMT1e3/4uBgB1BvHiuZB1NfvnasHAADoxjZzYwIAAAAAAAAAAAAApde/f/+87atXry5I/0uXLu3U8WPHjs3b/v7778fy5cs71TcAAABAtyCAmm5IbBRAN3H8vsfH0CWd7CQTsc3q3J+dMXRJxPHzOlkL7fKJDyJOf6rUVeSc/lSuHopr15URZz1Z6ipyznoyVw/FM7g24r4bS11Fzn035uqhuMwBqjMRz10TMXhdcQOoGzUGUQ9el6ujupPXkwAAQIkJoQYAAAAAAAAAAAAoW1tttVXe9pUrC3OD76xZszp1/Cc/+cm87dlsNmbMmNGpvgEAAADKngBquikh1ADdRG19baT6RqcSB9OpiD51uT87LBuR6htR6xWk6H7+x4jPvljaGj77Yq4OSmPaYxFfeKG0NXzhhVwdFN/hb0acW+Lv/bmP5eqgNMwBtl8VcfHDUfwE6kbZ3PjbryrR+AAAQOGU4+I2AAAAAAAAAAAAQAdVVFTkba+trS1yJYUxcODAvO1vvPFGp/uur6+PZ555plN97LjjjrHTTjvl3fbHP7oZHQAAAEiwcrxHVwA1bSRCFKCbqK6sjh8+0rkn7j51Eeuqcn92VDoifvhIRHWmE4XQIXeNifj7yIgo1fc+kxv/rjElGp+4a0zEnB0jKtaXZvyK9bnxzYHSuGtMxK/3jehXovPfb31ufOe/dMwB7hoT8f1DIgbWlGb8gTW58c0BAABIgIw3eAEAAAAAAAAAAIDk6N27d972devWFbmSwthxxx3ztj///POd7vu+++6LNWvWdLqfSZMm5W2/4YYbYsWKFZ3uHwAAAKDsCKCmmxNCDdBNNGQa4t4xHQ8dTEUugHpF79yfHb2EGVgTce+YiIYyvAZKsoZUxDXjIpb0i9K9eqdz418zzvkvhYZUxK/2jlhbFZHpVZoaMr1y4/9qb3Og2Jqe/7UlOv9rnf+SajoH1vWKiGL/3J/NjWsOlE7TObCqRHNglTkAAADJIYQaAAAAAAAAAAAASJDBgwfnbV+4cGGRKymMvffeO2/7Qw891Om+r7jiik73ERFxyimn5G1fuXJlXHnllQUZAwAAAKBsCKAmAYRQA3QTFemKOHl2RL+6iEHr23dsKiJSG64Raio2tGXbH0Q9aH1u/JNnR1S45ii6f/SPqC/xK3d9OlcHxVeRjZj894g1lRHZEv0ckk3lxp/8d88Bxeb80zgH1lbmHqcjthxC3Nbz1IZ+Gl9+1poDJVOIOdB4TZjapM0cAAAAAAAAAAAAAAAAALqz7bffPm/7yy+/XORKCmOfffbJ2/7yyy/HrFmzOtzvbbfdFk888USHj29q7Nixcdhhh+XddtFFF8XTTz9dkHEAAAAASk4ANQkhhBqgG5n0aip+dn8uCHqrNgZRNw2gbrGtHUHUW20IoP7Z/RGTXmnjQRRUuVzrlUsdPU1DKuLGPaL96fGb6uz521BHQxn+PJRkzj8NqYhbdo/Yen1EVSbX1moIcXYzP+zl2b+t/VRlcuPfsrs5UAodmQP5wqYrG1puMwcAAKAHSlsiBAAAAAAAAAAAAJJj7Nixedvvu+++IldSGJ/4xCdi6NChebf913/9V4f6nDt3bpx22mmdKauFH//4x5HO83uptbW1cdRRR8Vrr71W0PEiIpYsWRKPPfZYwfsFAAAAyEsANQlSWeoCAGiHioqY9Ep9rK2KOOWIXIh0dgvXJdmIiFT+IOpsqm15pKlsxPrKiP8VQF1SI9ZEVGYi6kuYD1OZydVBaaQ2fKWzEZkS/EySzn5YA8Xn/PdsFdmIm34XcezREX8bEbG8T0RdOhcOnMlG8xOzuQDqDeHDkYqIiuabttRPVSZi63URey3K1VHhPYii68gcaDxNjR9K0q8mold9RE1lxJpeGzZs2MkcAACAHqYcF7wBAAAAAAAAAAB6qF6VvWLXobuWugxooVdlr1KX0GYHHnhg3vYnnngirr/++jjppJOKW1AnVVZWxgknnBA//elPW2x7+OGH4/LLL4//9//+X5v7+9vf/haf//znY8WKFQWsMmLPPfeMb3/723HZZZe12LZo0aLYb7/94le/+lUcddRRnR5r7ty5cfnll8f1118fxx13XEycOLHTfQIAAAC0qhzvxxVATScIoQboTnr3jpV1q+M3e0T0rY+oq4iIDgZRtyeAOhW58X6zR8SXXosYWNPhfwEdVJGNOPW5iOeHR/yjX2mCqCszEcPW5OoQPFl8TefA0r654NEOBRF38OeZdDYXQDpkrTlQCs4/EbnX31vv2EII8WYCqNP1ufMYkdsnk43IVDa/NthcP03Dh2+9w3VAKbV3DjSGT6eyEYPXRPSrzbX3r4noXRexrF9E7/qIdVW5dnMAAAB6iFQqIl3CT7oDAAAAAAAAAACgmXQqHX2q+pS6DOjWDj744Bg0aFDekOWvfe1rccMNN8QRRxwRu+22W2y99dbRp0/+/3PDhg2LYcOGdXG1bXPyySfnDaGOiPjP//zPWLJkSZx//vnRt2/fzfaxevXq+J//+Z+47LLLYu3atRvbt91223j33XcLUudFF10UTz75ZDzzzDMttq1cuTKOPvro+NznPhfnnHNOHHLIIe3q+80334w777wz7rzzznjmmWciK2QJAAAAKBYB1CSQEGqAbmTlVr3j2AmrY86IXGBgRMQHvaLdQdTtDaDeqiY33pwRudBD4YOlMemV3J9nfqH4QdSNAdRX3f9hHRRf0znQliDiDRmiW7Sl/ZoGEJsDpeP8E7HlEOKmLw1b1USs6BWRamgSQL1BOhsR9RFRkdvvgw0fSL9pP8KHy0975kC/2oi1Vc0DqJtui4hoqIiozpgDAADQo5TjojcAAAAAAAAAAABAJ1RXV8fXv/71uOyyy/Juf/zxx+Pxxx/fYj9Tp06NCy64oLDFddDuu+8eJ510Ulx//fV5t19yySXx61//Oo466qiYMGFCbLPNNtGrV69YsmRJLFiwIB5++OGYPn16fPDBB82OGzt2bJx55plxxhlnFKTO6urquO+++2L8+PHxxhtv5N1n+vTpMX369PjoRz8aBx98cIwfPz622267GDx4cAwYMCBWrVoVK1asiBUrVsTrr78es2bNitmzZ8fChQsLUiMAAABAu5TjvbgCqCkAIdQA3URDpiGO/9yqmDP4w7aOBFFvaZ9GmwZQN5ozIuL4r0TcfVsqKtraGQUz6bWISGXjzM9nixZEvTGA+oFUTHot1TzdkqJrOgfe7xtRW9HKztnI/Ufeki3sV9kYQGwOlFzT899aEHUqt1tUZLf8PJHacP7z/XjZLIDa+S8bA+sibr0zG8cenY2/DW8eQtxoq5qIvnUR6yOibjPPE+lsRL91EX0bco+bhhBHNAkfXhxx652pGFjn/JeLts6ByoaI3rUtA6gb9auNOObvETftk3tsDiRQJlPqCgAAKCfpJhf0DQ2lqwMAAAAAAAAAAACgC5x33nlx8803x7vvvlvqUgrm8ssvjwceeCAWL16cd/t7770XV111VVx11VVt6m/o0KFxzz33xFNPPVXIMmPYsGHxxBNPxGGHHRYvvPDCZvdbsGBB3HTTTXHTTTcVdHwAAACARBNATYGIjwLoJirSFXHyi70ivck1QO/6XMhgoeOg8wVQR+QCK0+eHVER6dyndPgq+tek19Jx6R9TUVGk68GKbMSlf8yNW+p/u6/mcyBVnCkQqTAHyulr0mvpuOrBdAxZlwuI3fR1IRURqWzuOTzdhuzR/jWx8YMHmtoYQL0u4qoH085/mX0NrEvHrXemY6/FuZDgqibnujGA+mcPpqNqC5livTbs17cud1yj5uHD6RhY5/yX21db5sC//3nzAdSN/ukdcyDxXwAAAAAAAAAAAAAAANADbL311vGHP/whhg8fXupSCmbw4MFxzz33xKBBgzrd17Bhw+LBBx+Mj33sY50vLI9tt902/vSnP8Vxxx3XJf0DAAAAFEW55bUIoKaAhFADdCOTXk3Fz+5vGTjauz6iT11hx+pTlz+A+mf3R0x6pbBj0T4rq7Pxmz2y0beu5VwotHQ2F2L5mz2ysbLaRWi5aMscSG34aovW9jUHytOkV1Nx1QMtg6hTERsDqDd9Dt+cXo0fZtAkiLpZAPUD6Zj0apn9UExERAysTbUIIW4aQN3W8zbp1VSzEOIW4cO1zn+52tIcOPjttvVjDiSYNxEBAAAAAAAAAAAAAADoQfbaa694/vnn49RTT41evXqVupyC2H///eOxxx6LbbfdtsN9fPKTn4y//vWvsc8++xSwspYGDhwYN910U9x1110xevTogvc/ZMiQOPPMM+Pb3/52wfsGAAAAEEBN0gmhBuhOstmY9Eq0CKJeXxmxrqqwQ62ryvXbSAB1eVhZnY1jj8rEnOG5gNmtarouiDrdJMh2zvCIY4/KCCEuA22ZA41BxO3RNIC4kTlQ3vIFUbc3gLpR7yZB1AKou5emIcSD17U/gLpR0xDiwcKHuxVzgFaV2xubAAAAAAAAAAAAAAAA0MWGDRsW11xzTSxevDh++9vfxhlnnBETJkyIUaNGxcCBA6OysnLLnZSZvfbaK1599dU477zzok+fPm0+bvvtt48rr7wynn766dhxxx27rsBNHHnkkfHKK6/Eb3/72/j0pz8d6XTH421GjhwZp5xySvzud7+Ld999N372s5/FrrvuWsBqAQAAAKL8cloEUNMFut87owBsDIL+5hci1lZFfNArIlvg65ZsKtdvxIYww00DqMvtQqkHWFmdjWO/ko05wz9sawya/aBXRKaApySdJ8g2F0KcjVt/lxJIWSJtmQMdCaBulMpGRCoiG+ZAdzHptdxJP/OwTCztk3u+bm8AdaPG49ZWbQigfjAdk15Lt0wnp+wMrEvFrb9LxfFHZuLkOan2n7cNr+mN8+lXe2bjprvTMbAu5fx3E52aA6kwB5Js02v2fG8uuq4HAEimLS0sd+IX+QEAAAAAAAAAAAC6g6222iomT54ckydPLkh/b7/9dkH66aj+/fvHRRddFGeffXZMnz497r///njhhRdiyZIlsWTJkshms7HVVlvFzjvvHHvvvXd88YtfjH/+53+OqqqqFn2ddNJJcdJJJ3VpvZWVlRu//4sXL44//vGP8de//jVefPHFmDdvXrz//vuxdu3ayGazMWDAgBgwYEAMGjQoRo8eHWPHjo2xY8fGJz/5ydhll126tE4AAACAsstfEUBNFxFCDdCdNLlAmfRKxF+2i7hsfC4wutCXCtmIiA1B1P86c5MAaoquIZWN44/MxJzhLc907/qI2nTEmurCjddnM0G2c4bn6rj79nRUFDr5nFZtaQ5ERCzv1fms0FQ29/9/0wDqRuZA+Zn0ai406rTPZ6Kyky8GvesjKhs2BFC/KoyqOxlYm4oLp2djrxUVnepn0qvpGLW4XtB8NzSwNhX/d282Rqzv/Bw4YJ45AAAAiVdui+EAAAAAAAAAAAAAtMmgQYPimGOOiWOOOabUpbTZ8OHD4/jjj4/jjz++1KUAAAAANFdu99wKoKYLCaEG6E6qP0wZvmtMxE175sKCCxk+3FQ2IvrW5cb5p4WbBFGnhZMWU0VEnPx8KmaPqI/MJteq6ysLPwfW/P/s/XmYHGW9//+/qqqXWZLJZCNh3yEEAoZFo4CiqChKZCAkkaAIcQE0/lxQPAfXj56jgHrwIAYPGsQfEcKSIJsLApooRAFDAoQkLCEsIfssma2Xqvr+UdPJLD0z3T3dVdXdz8d19RWmuvu+38z9nul7qrtfHZNizsAQYtOVLl1jyTLMkacdIy9D9YAkNVuSDMmRt06FyozdbEn7ZgmhpgfC6Y7D09pe7/33vu2Fj/PWqMx4jppe5E+FcnL5e5O6aYYkJy33ml4PCoaG/lk11Ocx3bgqKZnSZSvTWvhYiTYYKIk7j0xqziypsSut5ut71s7U8L+r+/XA2C8l1VIrLbk7rdkv0gNlr/9JxWwnGcN2IhQAAADFMdQTzOwBAQAAAAAAAAAAAAAAAAAAAAAAAAAAUO3C9p5bAqhRYiTLAUA5qamR5AVQLzhb6oxKXdHSTtkV9cKIF5ztfb0niJpNiu+a1huSLC34oL0nKLg7IjXXlGa+5hppbPfeIGrTlW74s9VTB+sfhGw9IElvxSX1+l3gGIUFUfcJt45Kb0naN7H3ED0QTnM+nNKd0/d+/daowoKoMwHUknrGS2rJH0r8IIOiuPy9KS+AWpJML0ja/VGvtRvqx9XVnsd04xspL7RY8sZzk1r4GD1QDu48MqU5s7z/bqn1gqSb/yfas745DNDTA2O/nFJLrXdozixJdyU1+0V6AAAAAKgYYXsiHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhC2N53S7YjfGAGXQAAIA+jRvUJoG6N9wuNLQHH8ObpjHrzLptS2vkwtKb1pm74syXTLW0AdUZzjTfP3vBhtg5B690D0sAA6ox8fzdkvX20Z3zRA2HVP4A6o3egdC6y3f7O6d74CLfL35vSTe/sd9DsCZTOQ+8A6oyb3umNj3C788iU5lzQ91hLrRconY/eAdQZcy7wxgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCIQQI0qFQm6AABA7pYdaWvBEf4FUGdkgqglL4hakppeYrMSlKZ1hlbua+jad/mzBs010mf+bahpnSGJdQ+DpnWG5Jo6b6aTNYA6I9ffEUPeLiq95UpL7zPVtJ4eCJM5H05nDaDOeGuUFEsPP872IQKr75wuyU1pyR/4syGMLn9vemAAdUZPEHVD1/DjZAugzrjpnZLclBY+Rg+E0Z1HpgcEUGe01Eofvkia0D7MIG72AOqMORdIujOl2S/SA2XJdYc/ychJSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVgABqVDFSpACgTNiOrUUH7/I9gDqjdxD1ounSzJccWW7INlFVYtnRrn4yw98N409muJrxptMTQoww+OYpjhTzabKYN58XRI4wmHO2rTtPHP52ySLs9r150lrykDXywVA0l7/P1k3vGuZGptRWK0XswW+ybbQGDaDO8OZJa+Gj9ECY3HmUrTmzh75Ne1zqiEoHNw9+m4vOlzrjQ48zZ7akO9OavYEeKDuOM/xtOBEJAABQPTJ7v7A9OQ4AAAAAAAAAAAAAAAAAAAAAAAAAAACUWtjeY0vuC3xGCDUAlAnLtDS36zA9PGZHwQHUhisZklxJheRHO4bUGZXmPidZMr3B4KtlRzu64DxH9jCBocVmm9IF5zu6a6mppvU+T44Bjr0orbUH+zvn2oOlYz9h6/nb2D4Gbc6H0zkFUBeTN5+tJX9g/cPg8vemhw+gzjCltLIHUactDRtAneHNZ2vhY/RAGNx5ZHrYAOoM15Q2jc0eRL1prHd9LrwgaluzX6QHyopp9j3ZmO3EY9hOjgIAAKA4hnrSmSekAQAAAAAAAAAAAAAAAAAAAAAAAAAAUE3ClrHC+30RAFIkAaBM2I6tOw5oUWIE+wVDUtweWXZ0wpHumCbZBhsXvwUVQJ1hm9IF5zladrQTTAGQFEwAdcbag735EZwgAqgz7jzRmx/ByiuAOsPsCZzuJZ8A6oyb3uXNj2DlE0CdkQmi7i2fAOqMObO9+QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAsEUAOSCKEGgLJhmZYe1AYpUvgYjiE1dnv/FiwqPThBstyQbaYqnG24uvCc4AKo99RhyquDEPJABBlAnUEQdXCCDKDOIIg6WAUFUGf0CqIuJIA6gyDqYBUSQJ3RO4i6kADqDIKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABlgQBqYA9CqAGgTHz1/q+qGFuGt0aNfAx3rPTVowkf9NNvDrPVHQ+6Ck933KsH/lpyYPAB1BlrD/bqgX/+NS74AOqMO0/06oG/nh0zggDqDFNKRzXivwJvepdXD/y1PV54AHWGa0qvji88gDpjzmyvHgAAAABlKmxPlgMAAAAAAAAAAAAAAAAAAAAAAAAAAADFFrb31BJAjYBFgi4AAJCbn5zzE/303z8NugyPI/1kQ1QK2b6qkn3iVUufVniCnz/xqhW+jXWFm/VmRFJ4Aj9nvRmhB3x0Uku41v+kFtbfb9PaopKTCsfHCDk99dACvpqYjKqxK6WW2qArkRq7vHrogTLQ/3d1thOR/D4HAACoTOz9AAAAAAAAAGS4rpRMSp2dUrrfa5DefFOKxYKpCwAAAKXT0tJ372cY3n4wEmH/BwAAAAAAAAAAAKA68L5aYABCqAGgjLgnLJPx76ZgAygdyf1vKxwhmFUk5pi67feuLvqYE3Qpuu33pmIODeA3yzXU+uOIxlwZfBBx648jslz+uPIT6w9Jcn8UlfGNgIOoHa8OBKP5f6Ia++Vgg6gbu7w6AAAAAJQ5ywq6AgAAAAAAAAB+cBypvV2ybS+Iuv8H2CUSA4OpAQAAUP5su+/ez3G8vV8i4e0L6+uDqw0AAAAAAAAAAAAASi2MAdT9X78HBIAQagAoI4tX36a4KyUCrCHuSoun2pr3Qgg3VxXunA2Gjt8qrZkUXA3Hb/XqYCMbENfV+zdKfzk0uBLev9GrQ7SA7xoSUut1lsZ8zQ6shtbrLDUkJRogOO4PIzL+Ix1MELXjzc/6B6v5pxGN/Uo6kCDqxi5vfnqgjLju8Ps2J/gPOQEAAIDPwvjEOQAAAAAAAIDS6Oz0AggBAACAjFTKC6MGAAAAAAAAAAAAgEoUxvfRktuHkAgiugwAUIBkOqmvpB9QypTMgPYRpiulTOkrZ0lJk7A6P9mGq3nnOtpeLzV2B1NDY7e0vV6ad64j22Az67dMDzw/UZrcEUwNkzuk5yfSA0FqSBpqvc4KZG4vgDqEf1xXIfeHEcnvh+E9AdQIg+afRtTY5e+cewOoAQAAAJS1MD5xDgAAAAAAAKA0HMcLGAQAAAD6SyaDrgAAAAAAAAAAAAAAii+M76MlgBohQoIUAJSJWCSmnz41XvNP2qxUMPmjkqSoLf30T1LM4XMM/GS5hi5dbWjVZFe1ae/1fp0x/+avS0q1aS+I/NLVhiw3hJvsCte7Bxx5oeAtNf7N39gtGS49EAaZIOoxX7N9m5MA6vBxfxiR8R9pfz5WiADqUGr+aURjv5JWS23p5yKAGgAAAKggPFENAAAAAAAAVI90euAxq98LUGOxgccAAABQ/tLpvvu8SL/Xgdq2ZPK+IAAAAAAAAAAAAAAVhABqYFikSAFAGZm3olWdW6XLzgmuhhsekuY9K0lZ3pyAkmp6XpItfXqm1B31AoH9yAE2XG++Glv61X1S0zpHklP6iTFA7x5oi3uB0I4PPWC6e+ejB8KhIS21/kga843Sz9X6I6kh4V/gNXLnfl8yvqXSBlE73jw87odT87XS2K+rpEHUjV3ePPQAAAAAUAFs23sC3TQlh3M7AAAAAAAAQMUbNarv16Y5MGgwEhkYSAgAAIDyF4n03ftl+zAS3uwMAAAAAAAAAAAAoFIQQA3khI+rBoAy0mZ3aulUqSERzPwNCWnpVC+MFsHzI4Daz3mQPz8CqP2cB/lpSHgB0aXkBVCXdg6MjPt9lS4Tfk8ANcKs+VovKLoU9gZQAwAAAKgYruuFUfPENQAAAAAAAFD5IhGpoSHoKgAAABBGY8YEXQEAAAAAAAAAAAAAFAcB1EDOCKEGgDJhO7bmNblaPVmqTUuN3f7O39jtzbt6sjTvPMkO4X6r0i2bIi04W4rZkunz3tJ0vXkXnO3VgWDQA+ivlEHUBFCXj5IEURNAXVZKEURNADUAAABQ4Ww76AoAAAAAAAAA+GHCBKmmJugqAAAAECYNDdLYsUFXAQAAAAAAAAAAAAAjRwA1kJdI0AUAAHJjmZYuXSWt2ldyDC8QWt1Siw/vDcgEUEteEO2lqySL/Y2vbENaNN37t7nW6wHDlVwf9r6G683XXCuN7fLqmLmeHvAbPYDBNCSk138qHfiV4o35+k8JoC43rddKY75R3PFQXjb9rLg9sOlnxRsLAAAAQAjxBDYAAAAAAABQHSIR6aCDpLY2qbVVikb7Xl9TI8ViwdQGAACA0kkm++79IhFpzBhp1Cipvj64ugAAAAAAAAAAAACgWAigBvJGCDUAlJGmdd6/C87eG0TtdkutJQyiHtMvgPqGh/bWAf9YrrTwAWn6ZVLK9I4ZklTiEGLD7ZlH3rxp06uD8GH/0QMYTFtcOvBLxR3zwC95IcQEUZeHtrg05uvFHXPM1+mBctIWl8Z/rbhjjv+atPM6egAAAACoWI4TdAUAAAAAAAAA/NLd7YUQmqZ36S0a9QIJAQAAUFlisb57v0jE+zqZ9K7r/+EkAAAAAAAAAAAAAFBOCKAGCmIOfxMAQJg0rfOCoE1XciV1l/h1X91Rbx4CqINlG9LlH5UsR4r2yocp9Ra49/hRx5v/8o969cBf9ACy2RM+XOxdvemN2xYv8rgoOnoAmQDqtFXccdOWNy49AAAAAFSoMD65DgAAAAAAAKD4urul3bt5cwsAAAA86bTU2ur9CwAAAAAAAAAAAADlKIzvkeU1eigThFADQBlqWidd87DUXCMlihw42F/C8ua55mECqINkudKlq6SIKzV27Q0hdkq8D86MH3W8eSM9dVjsdX1HD6C/koUPZxBCHHr0AEoVQJ1BEDUAAABQwWKxoCsAAAAAAAAA4If29qArAAAAQNi4rtTREXQVAAAAAAAAAAAAAJA/AqiBEYkEXQAAIA+GIbmu2uLSbcdLCZ9+iyci3nznbJAaEv7MiYEyIeALzpbGdEnbRvkzr2N480Vc6YaHCCMPEj2AjJKHD2f0hBC3Xsvv/7ChB1DqAOqMTBD1zuvoAQAAAKBiGIYUjQZdBQAAAAAAAIBSSyRye3MLb4ABAACoPqlU0BUAAAAAAAAAAAAAQH4IoAZGjBBqACgn0ajajKTmzJL+eIS/U//xCGnOLGnJ3QQQBqlpndQZlS46z995t42SbltK+HAY0APwLXw4gxDi0KEH4FcAdQZB1AAAAECFMAzvYlneBQAAAAAAAEBlM3N8cUkY35gDAAAAAAAAAAAAAAAAAEBGGF/nRgA1yhAh1ABQRtoOP0BzTnzF9wDqjD5B1G4smCKqXFvM1UXnpgKZ+6JzpXM2RtWQDOFGvIrQA9WtLeZqzJdT/oUPZ2RCiP+H9Q8aPYC2mKvxX0r5FkCdsSeI+np6oKw4Tt8Tlq7b9+tMCCEAAAAqj20PPGZZXugM+0AAAAAAAACgOkSj3jlBxwm6EgAAAIRNNBp0BQAAAAAAAAAAAACQmzC+J5YAapQpQqgBoEzYjq1550t/9DlwsL8/HiHNO9/Qvb+3ZLkh3JRVsLaYqzELuvwPHs0wpTFfTqn1hlrCJwNCD1Q31h/0ANpirsZ/ocv3AOqMtCWN/1JKO39OD5QNx+n7ZuL+odSSF0QIAACAyjNYCDUAAAAAAACA6jJ6tNTaGnQVAAAACBPDkEaNCroKAAAAAAAAAAAAABgeAdRAURFCDQBlwjItPRB5RQrBvuOBw11ZhiWFcF9WqWzD1ZgFncEFj2aY0pgFXUpfX08Iuc/ogerG+oMegG24Gv+FzsACqDPSljT+C13q/hk9UBZct+/J1GwnVsN4shUAAAAAAAAAAAAAUByxmDRmjNTeHnQlAAAACINo1Aug5kOMAQAAAAAAAAAAACB/BFCjzBFCDQBl4qv3fzXoEvYypa8e3K6fbBoVdCVV4zcHdQQfPJphevXMZ/19dfcB4eqBuw/o0JzX6QG/PD02XOv/9NgOvX0X6++ntQ3h6oG1DR2a1koP+GlXLBl4AHVG2vLqmZiIB10KAAAAAAAAAAAAAAAYTiwmjRsndXdLNTV9r9t/f6m+Ppi6AAAAUDqbN/f9IJJ4XJowQTKM4GoCAAAAAAAAAAAAgHyE7flNAqhRAQihBoAy8ZNzfqLr//1TOUEXIslsFgHUPvvUa/X6QqJD3SHIeqxJePXAX3NeH6X/91q71h4UdCXS1NdEALXP3r5rlGavbtedJwRdiTR7tQigDsC01lG67Ml23XRK0JVIlz0pAqgDMDER15J7pTnnpgofxPWyzB1JGsE5tiX3RgmgBgAAAAAAAAAAAACg3BjGwDflRKPeBQAAAJUlEum798u2FwQAAAAAAAAAAACAsArb85sEUKNCmEEXAADInb12ttQccBHNkv1zHj78ZrmGtv5fvSIjyJ0shkhK2vp/9bLckG3Oq8Tzd43SAduDreGA7V4d8N/Ny+s1qTXYGia1enUgGAuXj9JlTwZbw2VPenUgGLNfjmvJvYW/8dPs928hltwb1eyXCaAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQZAdRAyUSCLgAAkLtlrzyo/Q+Q3nQUzMcIONL+EWnZUY6aXkkGUEB1e+QQRxO7pbcikoLYH7vSxG7pkf0SatpAEHkQlh3lyK2RlJJUeAZp4VKSWyMtO6SbHvCZbbia97G0TEuKp6REAOsfT0mmJc37cKfuvTtCGH1AFv4lJtlJ3TTD/7kvWyktfCwmiT1AkGa/YEhpac6s/O5nugO/dvL8MV5ytzT7RUP0QBlxnL4nMl134IlNTnQCAABUD9v2nng3Oa8DAAAAAAAAAAAAAAAAAAAAAAAAAACAkCGAGigpQqgBoEzYjq1FR3XIMaR9O6W36uVvELHrzesY0qLp0syX0gSQ+sg2XC063pEMaVKHtDWA9Z/U4c256Pi0Zq4zWX+fZXrAMaR9E9Jbkr9B1ClvXoceCIQl6dJVhlZ9yNW4hLRL/gZRx1PSuIQXWnvpKkNW2vFvcgyw8C+W5Ni66V3+zXnZ49LCRy1Jtn+TYlCz11nSnbbmzM7hxu7gn11iupLjKqcPN1lypzR7Az1Qdpx+v6+zndjsfxsAAABULsfxnnznCW8AAAAAAAAAAAAAAAAAAAAAAAAAAACECQHUQMkRQg0AZcIyLS2+R5ozS/rnAV5WYL5xcYbr5Ra7kvLNjjUldUekd7whLV4qAkh9Zkl71n/1ZJ+DqHsCqE1JJ2zx6mD9/de/B3wNou4JoJbogSA1rZXkSAvO9gKhd7lSIlb6eeNJaVzSC6u94SGpaR1rHwYLH5bkSjedOsSNHA0bLmy4Pec6hrjdZf+QFv5FInw4XGa/IOkOac7cIW7kSOYwe4XGpNQS05A9sOQOafZ6iR6oUJzwBAAAqB699342+3sAAAAAAAAAAAAAAAAAAAAAAAAAAACEAAHUgC+GiSQDAIRJQ0K6aLXUWUDobCaAWvL+NQrY23RGvfkbEvnfFyPXkJCW3O2FAJuSGn1ah8bE3gDqJXez/kHq3QOSNNaWlypfSm7PPKIHwqBpnRcEbbpeMHQ8OfhtzRx7Y6jbDQygzq9elNbCv3gB0Vk50r6duY2zb6cG/WSLvQHUCKPZ672A6KwcaVx3buMM1QN7A6gBAAAAVATXlRxHSg5xUgEAAAAAAAAAAAAAAAAAAAAAAAAAAADwAwHUgG8IoQaAMrJsinTVB6UxXfnnzvbfXuW73XLlzXvVB706EIxMCPHk3VJbvLAw8XwYrjfP5N2ED4dF7x5ojfds5krVB643fis9ECq5BFHnGkA91O0JoC4PWYOo8wigzsgWQkwAdXnIGkRdpB4ggBoAAACoMK6794nvdDrYWgAAAAAAAAAAAAAAAAAAAAAAAAAAAFDdCKAGfEUINQCUCduxtWi6ZBtSa23+93d79lhxu+/X+Wit9ebP1IFgPHKotGWUFHV6wsRLGEBsyJtnyyhvXoRD7x6QShRE7e7dKNID4TNUEHW+AdTZ7kcAdXnpE0RdQPhwRu8QYgKoy0ufIOoi9QAB1AAAAEAFc13JcYa/HQAAAAAAAAAAAAAAAAAAAAAAAAAAAFAKBFADviOEGgDKhGVaWviAlDallOmFAxt57FVcSbUpqbHb+zefbY7RE0acMr35Fz4gWeyTArFsirTgbEmG1NglRRz1JFEPlGt/DHo7wxu/scv77wVne/MjWP17IBNEna0PRtQDPeNF6YHQ6h1EXdvTB/k8LmSTuX+tQwB1ufngG9Lo3YWHD2fs2+mN88E3ilMX/BM1pIlF6oGJu73xAAAAAFSwSCToCgAAAAAAAAAAAAAAAAAAAAAAAAAAAFCNCKAGAkEINQCUCduxdflHJcvZGzqbz/bJcKWuqNRS4/2bT1BpZp6o481/+UclO2R7t2qQCR92AvreO4QQB65/D5jyAqKz/TxnwuNzMVioveF642c2jPRA+DStk2Y95/1ulyTXyO9DBnpze+4veePNeo4A6nKR+d0wqkiPD6P4WS87mR6IFKkHIvQAAAAAUPlisaArAAAAAAAAAAAAAAAAAAAAAAAAAAAAQLUhgBoIDCHUAFAmLNPSpc9GFOkJhY06e8NCh9M7jDZh9RxT7kHUruHN19glRVzp0lWSxX7JV7YhLZq+N3zYkdRSK6Wswe+Ta38MdbuU5c3Tk3sup6cOQsj9178HMhIRyS7Rjs42vfF7owfCZfFx0k1v7xs4XkgQde8Aaskb76a3e+Mj3Er1AQWEzpcPegAAAABA3kzTuwAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+IYAaCBTvMAeAMtK0e3/d8JAXBF2byi1ktHcA9YDrlFsQtStvvogr3fCQ1LQu95pRHJYrLV4qnbBlbwB10so/aDZfrrx5MkHUJ2zx6iCE3H+9eyCjKyK11GS/fT5BxP0DiHtrqfHmyaAHwmPxcdL8c6WUOfB3+UjX33C9ceefSxB1mJUqfDiDEOLwowcAAAAA5MU0JcvyLgAAAAAAAAAAAAAAAAAAAAAAAAAAAIBfCKAGAhcZ/iYAgNCYOFFNT23Syv2lH5/qhYQOFhwrDR1Avec2kpTDOG1x6bNP9QqgjvAQ4rcGW7r5QUfTP+P4EkCdkQmitk3p5gdNNdgmO4iANNjSkmWu5pznaOX+7qAB1BlD/Vznc7uWGknd0ow3DS1ZZqrBNuiBgC0+1tb8c1ylej5SJtsajmT9XaNvELUsQ/OeJ6AqTJYd7WjBWU7JwoczMiHEskw1reczjMIkpx4oQn/QA2XOdfue8Oz/teQFEQIAAKDyOM7AY73Dp9kHAgAAAAAAAAAAAAAAAAAAAAAAAAAAwA8EUAOhQHwgAJSTmhotmyItPkEak5Ba4z17mGz7qhwCqDMMDT/OmIQ374w3e4Kow7aZqwJtMVefOcdVyscA6gxXUsqSPnOOqyVLpYYk6x+UhpSh89Y5+tNh/s7bGpfOWyc1pMyihJqicIuPtTX/o30DqIv9O8GVpN5B1Oe4kuEQRB0Sy452tOCDpQ+gznAMacFZjmQYhBCHBD2AomJfDwAAUF0MY+8FAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCXe0wqEBiHUAFBGlu2zSwve7gUB1qS9kNCWmkFubHjB0rlsuzJho4ON09DtzecY0oKzvWNNrxBA6CfbcDXvXFsr93fVGg+mhta4tHJ/V/POdXTvPRFZLpv6ICyemtaCD7leeLyP8xqSFnzIVZ3taN5atpBBWTw1rfkfcUoaQJ0xIIj6o14ALesfrGVH2VrwAdu38OEMx5AWfND2Qog3EEYeJHoAebHtgcc4MQsAAFC9CJ8GAAAAAAAAAAAAAAAAAAAAAAAAAACAX8L4vlbXz/Q2IFxIkAOAMmE7thbtv21P4KAjqTM69H3cnpTa3tuvuC0leuUGupnbDaEzKsXTkikvgHDRdGnmJoMQYh9Zkg5vtvXAEcHW0RKXDm82ZBlWbgnnKKrFx6Q1/2xbKVOBhI+mTGn+R2zJMDXvBbaRfuu9/lJpA6gzBgRRs/6BWnakrQUfSMsJaH4vhDgtGaaaXiSEOAj0AAri9OoY1x14ItTkw2UAAAAqEh9IAgAAAAAAAAAAAAAAAAAAAAAAAAAAgKCE8X2tBFCjypEeBwBlwjItLd5+uuZYy7RqstRcKyVzyP7rHUQ9JiHVpKXuiNQazy2AWvLmaa6VxnZJ07dIi++1ZJk8hPgpaTq6/VhbhpvbmpWK4Uq3H2vr2r8bijkEFvopaTr6ypmpQAKoMzJB1F85M6ULXorSAz7qvf6SPwHUGf2DqFn/YNiGq0UnJOXkfWLFHfhl/yHyGNORtOgEWzM3RvkwCp8V1gMDf1NEbSnVew9piB6oJk6WCHNCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUCwHUQCiRIAoAZaThgMN18y+lt12eWwB1hmtIdUkvgFry/k2aUkcs9zGSlpS2pJvvkxqShpdgCN/EbOkHf4vosg+lfQuezcaQV0cs5UqiB/zUuweCRg/4L2ZLP30kqvlnp5S0/AugzsgEUWfqYP39Z0lafF9Ucz6W1OqJWUJkc2Fr74cZ9N5H5HFy5ITtphbfF5WVLrAGFKwYPVCfkOJpKRGROuI9B13RA5XMcSTbHngswzAGXg8AAIDK5brhfNIeAAAAAAAAAAAAAAAAAAAAAAAAAAAAlSGM72UlgBqQRAg1AJSVtuee1iXnSrvzCI/O6IxJMccLoO6OeF/na3dMuuRc6Z4702pw8kjBxojZhqv7jnTUkJBaaoKroyEh3Xeko0vX2LLcEG7yKxg9gHnPm3pysqmfnRJM8Ksr6bJ/m5r3vCmJ8NkgNHRLS5ZFNOfclFbvk+dJjZ4AaqkniNpW3yDqHJywzdCSeyNqSLryPwod0sh6IBNALe39d08QdY7ogTLUP2C6/wlRQggBAACqi+t6F9MMuhIAAAAAAAAAAAAAAAAAAADf/POf/9QjjzyiJ598Ui+88IJaWlrU2tqq7u7uAbf92Mc+pnvvvdf/IkfgU5/6lG699dYBx2+55RZ96lOf8r8gAAAAAABQvcKYY0IANbAH7zIHgDJhO7bmTFquFQdLaVMy89zPuPKCazOXfLdDpuvNu+Jgac4sLxAX/rFcQ5euMVWfkhoHPp/pi8ZuqT4lXbrGJHw4APQAlh1l6+4pTqDrf/cUR8uOsoe/MUqmIWloyb1RnbAtj5/BXgHUGYbrHc+VFz4cVUOSn/2gFdIDvQOoM+Jp73iuWzp6AAAAAKggjuNdAAAAAAAAAAAAAAAAAAAAKtjvf/97nXTSSZoxY4auvvpq3XvvvVq/fr22bt2aNYAaAAAAAAAAI0AANRB6kaALAADkbnvMVqrXxweYruTksd9yJXUV8Ju/d+B1ypS210lKpSRCaH3V9LyktKEFH/YWpKXGv7kz4cM3/MFQ03pHEiE1QaAHqpdtuFo0zZVjSLVpSd3+r39t2nvMWTQtrZlrbYLIA9SQkpbc5X0oxOpJg9/OdKVIUrIH+eghw5XiieH3EydslZbcLTUk04PfCL7KtQcMV6rvHhhAnRFPSR9fIy09nh6oWK47/MlQwgcBAACqh+N4T+AbBk+aAwAAAAAAAAAAAAAAAACAimXbthYsWKCFCxcGXQoAAAAAAEB1IIAaKAuDxJEBAMLGMi1dvcILAg1SY7d09QoRPhqQpvWGbviDofqUf73QN3yYdQ9aPj2Q62oNdzt6IHiWa2jxUkMnbPW+rk37u/61PbmzJ2yVFi81eAwIgYakoSV37+2J/kzX+5m1hsmWjdre7cxBzpd44cOGGpKsedjk0gOXrxw8gDrjpDfpgYrGyVAAAAD05rpeELXjsFcEAAAAAAAAAAAAAAAAAAAV66qrriKAGgAAAAAAwC8EUANlIxJ0AQCA3DWt8/799EyppUZyfNpzOYYXZNjYLf3qvp46+BiDwGRCgBd82NvgttSUbi7Ch8Mplx4wJBmulEtWsOF6d8j2JxM9EB5e4Kw0Z5ar1ZN6gqG7S7/+vQOoCaINl/49kZEJoPZ+Zoc/GdL7d0rvvQVrHn7D9UBth6ubThl+HHoAAAAAqDKuK9l20FUAAAAAAAAA8IvrSomE1N4uJZN9r2tvl9LDfMI1AAAAyk9HR/a9XzQqxePB1AQAAAD45K9//at+8pOfBF0GAAAAAABAdSCAGigrhFADQJnJBFFf2CR1x/ybN5bqFUCNwPkRRE34cLgN1QOZAOJ8ZAsipgfCJ5cg6mKuPwHU4de/J/oGUOeufwgxa14+huqBPx6Q+y8DegAAAACoMoRQAwAAAAAAANXBtqW2Ni9oOpkceG4wkZBMM5jaAAAAUDqpVN+9n+NIXV3eJR6XRo8OrjYAAACgxK655ppBr3vXu96l2bNn67jjjtPYsWMViw18s35DQ0MpywMAAAAAAKgcBFADZYcQagAoQ89O8DeAWvLme3aC1JQ54Dj+FoABml6Q5EoLzpaSptRZxJ6oS/aEDz8kNa1z1TeaFmHRuwckL4i4kADijN5BxHsCqOmB0GnolpbcJc2ZJa2e3DeIuv/6W45k5/gesf7rvyeAeou05G6pIUEfhFWmJ+adJ126qoCf2Z7H9MzvlEXTpcVLWfNyMmgP5Lp89AAAAAAAAAAAAAAAAJWpo8MLoAYAAAAyEgkpwttKAQAAUJk2b96sP/7xj1mv+9GPfqSrrrrK54oAAAAAAAAqFAHUQFni1QIAUGb+32nSd84MZu7MvN/+ezDzY6CmddLK/aUfn1rccbuj0rx/eeMj3DJrtOBsKRGREtbIxjNcqcbuHUA98hpRfA0JLxi6dxB1It13/cckpPaoZA8z1qiE1B73/juz/gMDqEvyv4EiakhI994hWSM8D9K0Tpq5fuTjwH/0AAAAAICchfGJfQAAAAAAAADF5zhewCAAAADQX3d30BUAAAAAJfGPf/wj6/ETTzyRAGoAAAAAAIBiCeP7VAmgBnJCCDUAlJEgA6gz9gRRP24GWwgkScuOdrX4BFe1KakjVrxxa1PS4hOkGZsNNa0P4WYffTRtkFYe4OjH7yrOeAlLmrdGatpgSvyoh1ZDSlpyj6s5s1z9c/+BAdQ1aS+EejixtDRGUmtPEHXCkroj0jvelJbcY6ghZdAHZcKSpAG/sp3h72j2XeDs46AcDFg7I4f1l+iBSubk2AMAAACoDr2f1LdG+ElmAAAAAAAAAMKvfwC160p2v4+07+7mzTcAAACVKJHou/dLp/te339fCAAAAFSIJ598MuvxpqYmnysBAAAAAACoUARQA2WNEGoAKBO72ncFHkCd8Z0zpS885WhcklTSIC072tWCD7vqjEpdOQTN5qMrKsUcacGHvY01QdThtuxoV4uPl+J23yDiQsVtafHx0ow3XdY+5BqShi5a4+qxQ/YeywRQ5yNz+0wQdWdUumiNNz4AAAAAAKgwYXyCHwAAAAAAAEDxZXtjTf/wwe5uf2oBAACAv5LJvns/M8v7f3gjNgAAACrQli1bsh4/5phjfK4EAAAAAACgAoXx/ak87wnkhRBqACgT40aN02Gtll4ZYwddig7bKY1LRyQyqAOz7GhHC87yAqhb45Jb5H25a+wNo13wYVcyDTWtZ8HDqHcvFCOAWvLG6Yyy9uVg2dGOrnq/NLZbaq6R6lL5B1BnZO7XGfXGu+r9Up0t1r/sOcPfJNuLylEZjFzWX/RAJTOMvidLXXfgyVPWHwAAoDI5Wf4eCOOT+wAAAAAAAAAAAAAAAAAAAEXS3Nyc9XhjY6O/hQAAAAAAAFSaML5HlQBqIG+EUANAGXk58mUdvvPHemV8cDUctlN6eaElRYqUdou8LTvK1oIPOH0CqIu9DXYlqXcQ9VmOZJpq2sC6h8mAXpBUjD/TXLH25SCz/o4hGa40rmvkY9ak94ZROwbrXxGMHFLJLda3Ypnp4R8YTNEDlcy2+57EJYQaAACgemQLoQYAAAAAAAAAAAAAAAAAhJPjSIlE0FUAA8XjZfXek/b29qzHLd4/BQAAAAAAUFkIoAYKQgg1AJSTU0/VA5/+saZ+IbgSHrhd4fw0kirhhc6mSxpAnTEgiPoDXpApYbThMKAX5PWD3JEFUfceh7UPr8z6OyX+dewYrD8AAAAAAAAAAAAAAABQsSIRKRYLugoAAAAUG+/7AQCg/CQS0tq1QVcBDDR1qlRbG3QVOXMJHwIAAAAAACi+sD3/yDkgoGCEUANAGXmheYNOuDzYGk64XFr9y7SOaSOM1G9+BlBnEEQdToMGUGtkQdTZxmHtw2ewAGpXIwsgH2wcgqgBAAAAAAAAAAAAAACAClVXJ9XXB10FAAAAii0eD7oCAAAAoKS2bdumbdu2DTje0dGR9fYbN27UhAkThh336KOPVjQaHXF9AAAAAAAAFYMAaqCiEEINAGWiK9mlt736H0oFnP+ZsqS3fU5q+amtWpswUr/YhqtFxzu+BlBn9A+iXnS8o5kvmrLckP1hUCWGCqDOKCSIeqhxCKIOj8ECqB1JLbVSXUqqSRc+fndE6oxKjV2S2Xt8gqjLgm24RfndXKxx4D96AAAAAAAAAAAAAAAAAAAAAAAAAECl+8UvfqHvfe97Od/+0ksvzel2Gzdu1CGHHJLTbd944w2tWLFCzz//vF544QVt2LBBzc3NamtrU2dnp2KxmEaPHq39999fRxxxhE4++WS9//3v1/Tp02WELbxpCK7rasWKFVq5cqVWrVqltWvX7vn/bG9vVywWU11dnerr67Xffvvp4IMP1qGHHqoTTzxR73znO3XAAQeUrLb29nY9/PDDWrFihdasWaONGzdq586d6ujokGVZGj16tA466CAdc8wxOu200/TRj360pPUAAAAAAFBxwnYOgwBqYMQIoQaAMlEbq9UHXo/pwYO6gy5FH3hJBFD7zHINzV1r6OFD/Q2gzsgEUXdGpblrDYIpA5JLAHVGJkA6F7mMQxB18IYKoG6ulZKWd2nszi+IOjNcd0RqqfH6oblWGksQdVlpi7maNzOtS9eYI1qfZUfZWnS8o8X3RdSQ5Hd9OaEHAAAAAAAAAAAAAAAAAAAAAAAAAKA0bNvWo48+qnvuuUePPvqoXnzxxSFv39XVpa6uLm3btk2rVq3SXXfdJUk69NBDdcUVV+iKK65QXV2dH6UXpLm5WT/96U/129/+Vq+99tqgt8v8f+7cuVOvvfaaVq5c2ef6gw46SOedd57mzp2rd7zjHUWpbfXq1bruuuu0bNkydXZ2Zr1NOp1WIpHQjh079O9//1uLFy/WFVdcofe///26+uqr9Z73vKcotQAAAAAAULEIoAYqkjn8TQAAYWA7ttLphIyA90CGK6UtyQ66kCpjG67umOqqNuV/AHWGK6k2Jd0x1WX9A2AbrhYd7+QUQJ2Ra1Z4LuO48ubtjEqLjnfoAZ9l1n+oAGrJW6eWGi9QOqtBlq13ALXkjddc643fZz6D9Q+jtpirOeem9PRkRws+kNayo+yCxskEnT892dGcc1Nqi7HO5YIeAAAAAAAAAAAAAAAAAAAAAAAAAIDS+MpXvqL99ttPH/zgB/XLX/5y2ADqoWzcuFFf+9rXdNRRR+mBBx4oYpXFs3jxYk2ZMkU/+MEPhgygzsVrr72m66+/XjNmzNDq1atHNNa2bdv0iU98Qm9729u0ePHiQQOoB+O6rh5++GGdccYZmjt3rnbu3DmiegAAAAAAqFgEUAMVixBqACgjb9W7OYfKloprSG+NDraGamS5huauNdQVVaAp1F1Rae5aQ1bQjViFMj3QGc0tgLrYMkHUnfRAICzX0OL7Ijph297ve/8A6oxBg6jtXpdeEv0CqDOyBVGfsM2rg/UPj0z48Op9vBV0DBUUQpwJH84Ena/exyWEuEzQAwAAAAAAAAAAAAAAAAAAAAAAAABQOv/3f/+nbdu2FXXMN998UzNnztQPfvCDoo47Ut/+9rd10UUXFf3/V/JCoAu1fPlyTZs2TbfddltRalmyZIlOOeUUPf/880UZDwAAAACAikEANVDR+kfTAQBCynZsvTQ26Co8L42VbNeW5fBZBn6xDVd3THXU0CXtqB9BDrUrqcD9vSGpoUu6Y6qjuc/bhND6rH8PFGwEPSDRA0Fq6JaWLLU05zxbq/ZxswZQZ2SCqM1MgrStvb843J6ve+67O0sAdUYmiHpslzR9m6ElSy01JF0Fl4aP3rzwYXtP+HBGJoQ41xMoy45Ma8EH7D3hwxmZEGJv3fl5D6PheuCSpzT8j6tLD1S83r8LXLfv14bByVYAAAAAAAAAAAAAqGa27V0AAABQWXhtIAAAAFAWXNfVt771LUUiEX3jG98Iuhxdd911+v73vx90GQPcfffduvDCC5VKpYo67saNG/Xe975Xf/3rXzV16tSijg0AAAAAQFkigBqoeIRQA0CZsExL9SmpMxZ0JVJ9SoTP+sxyDS18yNT0z9gyVGD8q9NzMXsueTIkuZa08CGT9Q8APQBJakgauvkBU2/7jD1oAHWGK8k25a15/4ZxtacXhuulpCWlLenmB0xCaEOkLeZqznkDw4czHENa8EHb64EhpCzvdv3DhzNW7+PNQwhx+OTSAwvfISVMKZ4efJwn95PuPY4eAAAAAAAAAAAAAACgKnV2EkINAABQiRKJoCsAAAAASuq73/2uvvvd7w44fsYZZ+hvf/vbgOOPPfaYzjjjjKLWYJqmpkyZolNOOUUnnXSS9ttvP40dO1Zjx45VIpFQc3OzXn31VT3xxBN6+OGHtWXLlkHHuvrqq/X2t79d73vf+4paYz5efvllffvb3x70+mg0qtNOO03vec97dNRRR2m//fZTfX29LMtSW1ubWltb9cYbb2j16tVas2aNnn766aKERj/00EP6+Mc/rnR68DfJHXDAATrzzDN1+umna7/99tOECRNk27a2bt2qZ599Vg8++KBWrlyZ9b7bt2/XRz/6UT311FMaN27ciOsFAAAAAKBsEUANVAVCqAGgTCTTSbXUBF2Fp6VGSpqOau1hElBRNLbh6vKzHZlOgeHDkhc6bPRcCuBKMh3p8rMd3XuXQQixz+gBSF7o7CXnONqdzwcSmPIWr3fjGMoriHx3TLrkHEf33GMQQhsCw4UPZziGlI5KspX9F4chJeKSM0RAsUQIcRjl0wMdcS9zPpbl/aJJS1o8XaqlBwAAAAAAAAAAAAAAAAAAAAAAAABgSKZp6vTTT9fcuXM1a9YsTZgwYdj7XH755UqlUrrrrrv0H//xH3rttdcG3MZxHH32s5/VCy+8oGg0WorSh/Wd73xH3d3dWa+77LLL9K1vfUv77bdfzuO1tbXpD3/4g+69914tXbpUyWQy75pefPFFXXjhhYMGUB977LH61re+pQsuuECmmf1Nsx/72Mf0zW9+UytXrtSXv/zlrGHUGzdu1Gc/+1ndfffdedcIAAAAAEBFIIAaqBp5RM8BAIJUG6vVFWvrgy5DknTFv6RaJ+JtGrn4crFkau7zplprpBHl/o7gvq4htdZIc583ZckM/HtSbRd6gEtbXDp/lq3lB7lK5vsZAFavtTd6vs5D0pKWH+Tq/Fm22uIK/HtRzZe2uHIKHx50/TPy7INMCDHrH/ylkB7oikvJSM+691ySEe94rqPQA2V6AQAAAAAAAAAAAAAAAAAAAAAAADAikUhEF110kdauXau//vWvuuyyy3IKoM6IRqO68MILtWbNGs2cOTPrbV5++WX99re/LVbJeUkmk7r//vuzXnfDDTdo4cKFeQVQS1JDQ4PmzJmj22+/XZs2bdI3v/lN1dfnnpXgOI4uvvhitba2Zr3+s5/9rJ5++mnNmTNn0ADq3mbMmKEVK1boU5/6VNbr77nnHj300EM51wcAAAAAQMUIWz4JAdRASUWCLgAAkLvrN0+T2lfqZ+8Mrob/3xPS9X+WFA/ZprHC2Yar26Y5Sgf8bU8b0m3THM1dZ8kaURIy8pXpATvgb7tNDwTCNlzNaUpr+YEFBFBnWPLSZgtctqQlLT/Qq+OBu6KsfwDaYq7mnJvOL4A6w5Jka28PFNBHq/fx1n/JvVE1JFn/IIykB7pikpJSzPZ+nrti+c9PD5Sp4U72hu1kMAAAAAAAAAAAAAAAAAAAAAAAABAiq1at0qGHHjriccaMGaO77rpLZ511lv76178OuP7GG2/U/PnzRzxPvh5//HG1tbUNOH7GGWfoC1/4wojHnzx5sr7//e/ndZ9f//rXeuKJJ7Je9/Wvf13XXHNN3nVEIhHdcsst6uzs1J133jng+m9961s6++yz8x4XAAAAAICyFbbMEQKogZIjhBoAysmRR+r6//9KSQokiHpPAHUOnwaK4ntzlCs74G+9bXp1IBhb6l2lA+6BtOnVAf9tqR9BAHXGCP/mT1qsf1Bsw9W8mUOHDw+bMZ5jEPlQN1m9j1fHvfdECCL3WS49MJyumJSypfQIfpfQA2XOdSXH2fu1YfT9GgAAANUjbC8MAAAAAAAAAFB80Wjfrw1Disf7HhszRqqt9a8mAAAA+COVklpa9n4di/W93jB43hgAAADIQzECqDNisZhuvfVWHXXUUUokEn2uW7VqldavX6+jjz66aPPlYtOmTVmPz50719c6MpLJpH7wgx9kve6cc87Rj370oxGNf/PNN+uf//zngP/vf//731q+fLne/e53j2h8AAAAAADKQtieLySAGvAFKaIAUE56nki6/6hgpg9qXnjBk6+NCboKz2tjvHrgv4hrKOhvveF6dcB/rH91s1xDl64xZQ7SA46k5lqpe7iPGeq3fP2XszvijTNYJK3pSpeuMQkfDsBwPZCNK2+Ne19SkYHH8kEPlCnH8S79T7i6LhcuXLhw4cKFC5dKvQy1L5T4oEEAAAAAAACgGkSjnAsEAABAdv1DqQEAAAD46qCDDtKnP/3prNc9/PDDPlcjbd26NevxQw45xN9CeixdulSvvfbagOPxeFz/+7//K2OEIVkNDQ36xje+kfW6W2+9dURjAwAAAABQFgigBqoWryoFgHKyebMO/4L0yvhgpn9lvHT4F7Q3qAS+iTmmPrfKDEUA7edWmYo5bCH8ZrmG/vNxS2O7FVgfGK40tlv6z8ctwkd9xvpDkpo2WLrh4ciAEGJHUkutlDKl1ngOQdSD6I5490+Z3nj9H+1NV7rh4YiaNliFTYARG6wH/EIPlCHDYO8OAACAvsL2wgAAAAAAAAAApTVqVNAVAAAAIGwMQ6qvD7oKAAAAoOp97GMfy3p85cqVPleiQUOdd+/e7XMlnltuuSXr8fnz5xctGPviiy9WY2PjgOMPPfRQUcYHAAAAACC0wvY+UwKoAV8VGE8GAAjC4e9YqVcCfj/AK+OlwxdIL/+KEGK/XbM8LhkpXfeOtILYMhuSvvaviK5ZHuVjLALS9JIp/dHUpz+cVHNc8jMH2HClsQnpV3+Mqeklix4IAOsPqacPDFMLPpCUo74B1Bmtce/fmnTu42YCqDMyQdSNXd5ym5Ju+AvrHwb9e2BIRfw9QQ+UKccZ/uRv2E4OAwAAoDiyPeme2fu5rmTb/tYDAAAAAAAAIBjxuDRmjNTeHnQlAAAACINo1PugEssKuhIAAACg6p166qlZjz/33HM+VyKNHz8+6/EHH3xQs2bN8rWW3bt367HHHst63cc//vGizVNbW6vTTjtNDzzwQJ/jW7Zs0QsvvKBjjjmmaHMBAAAAABAaZIwAVY8QagAoE7vad+mVUXmkSZbQK+OkXbGkxiVjQZdSda75W1SSfA+iNiR97Z+RPfMjOE0vWpJivgYR7wkg/kOsZ34EhfWHtLcPPv+B5IAA6ozegdLD6R9AnZEJoh7XJd3wMOsfJpkeyCmIehi57CdM0QMAAABAxSGEGgAAAAAAAKgesZg0bpzU1eWFUvfW2CjV1QVSFgAAAEqo/94vHpcmTOBN5QAAAECI1NXVadSoUWrv9yGCr776qu+1HHfccVmP//a3v9XcuXN11lln+VbLY489plQqNeD4PvvsM2hwd6GyhVBL0qpVqwihBgAAAABUnjA+V+j6maQHQCKEGgDKxpi6MTqy2dSLY0caNThyR+6QxqQIIw7KNX+LKmG6+tkp/gXFfPFJiwDqEGl60VJnJKpLPpJSyoe/6yKu9L8PRwkfDQnWH5J05iZTkzsMba0f/ERKrkHUQ90uZUqTOwyduSlL0jUClS2I2pX3wREj1XscAqgrjOtyAhYAAAAAAAAAAAAAqpVpepfeLEuK8JYCAACAimNZffd+phnON5UDAHLy0ksv6ZlnntHrr7+ujo4O1dbWar/99tPxxx+vY489NujyAAAjMG7cuAEh1K2treru7lZNTY1vdZx00klqbGxUS0tLn+OO4+icc87RV77yFX31q1/VxIkTS17LU089lfX4tGnTZBT575r9998/6/F169YVdR4AAAAAAAIXxucKyT8BAsErRgGgTFimpWtWT9TFM7Zqt3/PGQ0wulu65hHJsl15EYXwW1vM1frxjuqTUkes9PPVJ6X14x21RWw1JEP4h0QVaou5uu3YtEYlpZaa0v4kGpJGJaXbjk3rnBcNeiAEWH+0xVzNmZnSlnpXYxJ7Q6Qdw1szYwRN4RpeT5k9Y4xJSFvqXc2ZmdCSe6P0QMg0rTckN6IFH0grbUgttVJdSqpJFz5md0TqjEqNXV4I/Q0PR9S0wZAU/AehoACO0/eka7YTsJyUBQAAAAAAAAAAAAAAAAAAAIABdu3apaeeemrP5emnn9Zrr7024HZuCV6T3dXVpYULF+qmm27Siy++OOjtDjjgAM2fP19f+tKX1NjYWPQ6AABDW7t2rZ588kk9++yzevbZZ/Xmm29q9+7damtr0+7du2XbdkHj7t6929cQasuy9LnPfU7XXHPNgOtSqZSuueYa/c///I8++tGPqqmpSWeddVbJAqmfffbZrMenTJlS9LnGjx+f9fibb75Z9LkAAAAAAAgMAdQAeiGEGgDKSNP28frRzq36V/YP1fTFMTukpnWSIoU96YWRaYu5mvMxR6v3cdWQ9I6VMoi6Pik1JKXV+7ia87GUliw1CSANWO8eqElLjd1ScwmfR27s9sJM6YFwyLb+pQqiNsT6h1HvHpC89XHl9YHU0wtGYUHUmQBqyQu0zqy/RA+EWdMLUqdpaP45rlLm3lDymrTy/uXQHdl7/5Za6df3G2p6QZLY95Ut1/WCqAEAAABp75PyhiGZZrC1AAAAAAAAAAAAAAAAACHz3HPP6cEHH9TTTz+tp556Shs3bgykjn/84x+aN2+eNm3aNOxt33jjDX3ve9/TL37xC/3qV7/SzJkzfagQAKrbW2+9pVtuuUW/+93v9Pzzz5dkju7u7pKMO5Qrr7xSv/3tb/XWW29lvT6ZTGrp0qVaunSpDMPQ1KlTdfrpp+td73qXTjvtNB166KFFqWOwx78bb7xRN954Y1HmGM7OnTt9mQcAAAAAgJIjgBpAP7zDHADKSNN7tgQaQC1J/zpAapodbA3Vqi3mas55jlZP2ruBrk+Vds7e46+e5M3fFmMDH5RsPRAtcS5o7/HpgWBlW/+4LVklyha1HG/8DNY/eNl6wDWkzmjf27k9x/PRO4A6ozPadxx6IJzaYq5umybVprzwcNfwgqS7I16YvOEOfTF7ljMTQO0a3ji1Kem2aWK9AQAAgErEE/QAAAAAAAAAAAAAAADAAL/61a/0jW98Q3fddVdgAdRLly7Ve9/73pwCqHvbvn27zj33XP3iF78oUWUAgFQqpWuvvVZHHXWUrr766pIFUEuSbZf4zcNZTJgwQUuXLlV9ff2wt3VdV88//7xuuukmffKTn9Rhhx2mww47TJ/+9Kd1zz33KJFIFFzH5s2bC75vsXR1dQVdAgAAAAAAI0cANYAsCKEGgDLRlezSQxNbgi5DkvTQUVKX5f+TV9XMNlzNO7dv8KhtSNvqSjvvtjpvnozVk7w6bIONvN/ogeqWbf1dQ9pVI6VLtKNPm974/UOIWf9gDNUDSWvg7fMJos4WQC1549ID4ZYJJn9msquunjDyzNq3xr2fY8sd/tI7gDqzsl1R6ZnJBI9XBMMI54lhAAAABCOzP3RK9KlWAAAAAAAAAAAAAAAAAAry+OOPa+7cuUqlUn2Om6apmTNn6tprr9Xtt9+u//3f/9X8+fNVV9f3jWWu6+oLX/iCli1b5mfZAFAV3njjDZ1yyim66qqr1N7eHnQ5JTNjxgw98cQTOuKII/K+78aNG/XrX/9as2bN0uTJk/XZz35WGzZsyHuc3bt3532fYksmk0GXAAAAAADAyIQxZ4QAaiAUIkEXAADITSwS0xHmOK11dwRdio7YKcUcPsfAT5Zr6NLVhlZNduUYvcKHS73P75lnn04vpNJ0pUtXG7JyTTZF0dAD1a3/+g8VPlxMmRDicd2SwfoHqpAeyPW0y1C3owfCq3cAdXO/XnAlyZA6Yt4XQ+3akpbUGR0YRp60pOaavUHUS5aaakiy7mXNMLKfkA3jiWMAAACMHHs/AAAAAAAAAAAAAAAAoChisZiOO+44nXzyybrzzjvV0tJS9Dk6Ojr08Y9/fEAA9dFHH61ly5bpmGOOGXCfa6+9Vpdcconuu+++Pcdc19Ull1yid77znZo8eXLR6wSAarR161a95z3v0SuvvBJ0Kb6YNm2annvuOf385z/Xj370I+3YkX+2QUtLi26++WYtWrRIF198sX784x9r7NixOd03kUjkPV+xuYRiAQAAAADKWRjfS8rf2kBoEEINAGUkEbOk4J83UYJHj0A0rfciJK/4kONP+HBGTwjx5A7phj+Ze+qA/+iB6pb5vn/hQ452+hBAnZEJIZ7QxfoHjR5ARrYA6v6n2jJB1K4hyckeRO1I6oj23C7L/QmiBgAAAAAAAAAAAAAAAAAAAABUk0gkoqlTp+rkk0/ecznhhBMUi8UkSX/6059KEkL93//933rttdf6HDviiCP0+OOPa9y4cVnvM27cOC1dulRz5szRPffcs+d4a2urvvGNb+g3v/lN0esEgGrjuq4+8YlPDBtAvf/+++vtb3+7jj32WB188MGaNGmSGhoaNGrUKEUiEVlW9jcDnnXWWdq8eXMpSh+ReDyur371q1qwYIHuu+8+LV68WI8++qja2tryGse2bS1atEiPPPKIli5dqhNPPHHY+5imKdu2Cy0dAAAAAIDqRgA1gGEQIwoAZcSJxUIRQu2Y6tlohnCzWeFO2WyopUb+f+sNqaXGmz+Uf2RUEXqgup35qqkJHY42j/J33qQlTejw5mf9g0UPYE8A9aTBA6gzMscdUwOCqJ2e44aGvn+fIOrzHS1ZahFEXU76/7xmOzHLzzQAAEBlGu5J+UHezAAAAAAAAACggnV3S4l+L0J96y2ppiaYegAAAFA627cP3PslElI8Hkw9AFAmrrrqKv3whz9UbW2tr/O2tLTo5z//eZ9jpmnqlltuGTSAOsOyLP3yl7/U3//+d23dunXP8dtuu03f/va3ddhhh5WkZgCoFkuXLtXDDz+c9TrTNDV//nxdccUVetvb3lbQ+IOFU4dFLBbTrFmzNGvWLNm2rSeffFKPPfaYVqxYoccff1ytra05jbNp0yadddZZ+uc//znsY1NdXV3WcefPn68vfelLhfxv5K2+vt6XeQAAAAAAKKow5ocQQA2EDiHUAFAmbMfWbqcr6DIkSbujki1HlmsOf2MUzRujHB1zmaPugB69uyPSMZfZemGhqwPaWfsg0APVrS3m6vzzbK2bEMz86yZI55+X1j33EEAbFHoAbTFXc5pyC6Dur3cQdSaAWhr+/n2CqCe5mtNka8lSkx4oF647/AlZTtgCAABUH4MPGQMAAAAAAACqypYt0saNUleXtGtX3+v6fw0AAIDKZFnSypVSXZ105JFSY2PQFQFAKO27776BzLt48WK1tbX1OfaRj3xEp512Wk73Hz9+vL72ta/pyiuv3HPMtm3dfPPN+uEPf1jUWgGg2vzkJz/Jenz06NG66667dNZZZ41o/Obm5hHd30+WZWnGjBmaMWOG/uM//kOO4+iZZ57R8uXL9cADD2j58uVKpVKD3n/Hjh2aN2+ennjiiSHnGT9+fNYQ6kgkouOOO27E/x8AAAAAAFSkML5nlDwTIJRIDwSAMhGLxDTrmFlSCPZ5s16QYg4PIX5Kmo6OvcxReyzYOtpj0rGXOUqaTrCFVCF6oLrZhqvZ59lafrAXBhuEpCUtP1iafZ4t2+APfL/RA7ANV/POdfTM5PwDqDMcU7KNvQHUueoTRD3Zq4MeAAAAAMpUJoDa5PwuAAAAAAAAUBU2b5bWr5eSyaArAQAAQBh0dkpr1ki7dwddCQCglzvuuGPAscsuuyyvMS6++GLF4/E+x26//fYR1QUA1e71118fNDD55z//+YgDqFOplNrb20c0RpBM09SJJ56oL33pS/rLX/6ibdu26Wc/+5kOO+ywQe+zcuVKPfjgg0OOe9BBB2U9vosPVQQAAAAAIDsCqAHkIRJ0AQCA3CTTSS1dtzToMiRXWjpV+tljJkHUfjIdpcxwvAkkZUqKRPJPsMTI0APVzXC1bZSjpBXsH9dJS9o2yvDW3w3hyYdKRg9UPUvS3HVpPXxYuqAA6oxCl613EPXcdZYsi9MJZcG2JafXB0c4zsATtYQPAgAAVCbbHngsE0ANAAAAAAAAoHq8+mrQFQAAACBsXFd6+eWgqwAA9GhtbR0QcDp69Oi8g00nTJigM844Q3/605/2HNu0aZNeeOEFHXPMMUWpFQCqzd///vesxw8//HB98pOfHPH4r7zyyojHCJPGxkZ98Ytf1Oc+9zl95Stf0S9+8Yust7vjjjv0kY98ZNBxjjnmGP31r38dcPzFF18sVqkAAAAAAFSOML5nlABqINRIjQKAMhGLxPT0Z5/W9F9O147OHYUnD46EK03olp7+TVwx15RCuPesVJZMTWqXXh0bdCXSpHavnlD+8VHB6IEqZ0itsXD8cd0ac3vWnvX3lSGZrvddD7ITDHl10AP+sw1Xd0x1FLGlhBVMDa6kiC3dMdXR3HWSRRB5+PUPGcz22M3jOQAAQPVg7wcAAAAAAABUlx07pFQq6CoAAAAQRu3tQVcAAOjxxBNPyO73gfMzZsyQZeX/xoHTTz+9Twi1JK1YsYIQagAo0Pr167MeP+ecc4oy/ooVK4oyTtjE43HdeOONevnllwc8LknSo48+OuT93/72t2vhwoUDjq9Zs0YtLS1qbGwsVqkAAAAAAJS3ML5nlABqIPQIoQaAMnJAwwFademTettPj9DOqD38HYpsfLe06pa4DuiwyJ30myFZRtDRox5rT5ghTeAreqC6GZIRkvU3WP9AWDJ05iZL/56UDvZb70pnbrJ6gugDrKMKWTI0dYephw5zZLhSEPnPhit1RaWpO0x6oFwZRt8TtmE8oQwAAAAAAAAAAAAAKI7+b+jhOWIAAIDqxd4QAELr6aefHnDsne98Z0Fjvetd78ppfABAbrZt25b1+MEHH1yU8YcLYy53V155ZdYQ6s2bNyuVSikajWa93/ve976sxx3H0aOPPqrzzjuvqHUCAAAAAFCWwvh8HwHUQFkghBoAykzD3/+ladtM/W1/29coUkPStC1SQ0KSafo4MyRJhivbCMcG2zZcrweCSL+sZoar0cmgi/CMTooe8BvrX/Vsw9Xaia7GJKWWeHB1jElKaye6si1DFj3gq0wPNATYA64hjUnQA2XFNPuepHXdgSeSw3hiGQAAAKXHPhAAAAAAAACofBMnSrGYlAzJC48AAAAQHvX1QVcAAOixbt26AceOOOKIgsY6/PDDBxxbv359QWMBAKTkIOdWa2trRzz21q1btXTp0hGPE2Ynn3zyoNft3LlTkydPznrdQQcdpJNOOinrByn87Gc/I4QaAAAAAIAwIoAaKBukiAJAGWlLtGnOii9q9YS07/st15VW7yvNmZlUW4zNnt9sw1V7LOgqPO0xhSYQu9pM6DIU9LfecL064D/Wv7pZrqGFD8cVcbwPhgiCISniSAsfjhM+HAB6AAAAAEBREUINAAAAAAAAVIdDDw26AgAAAISNaUpZQkoBAMF49dVXBxw7+OCDCxpr//33l2VZfY698sorBY0FAJDGjRuX9fjmzZtHPPb111+vRCIx4nHCLBYb/I3x9cN8MM78+fOzHl++fLmWL18+oroAAAAAACh7YXt/KAHUQFmJBF0AACA3tmNr3u/O1z+j29QSc/1PHzSklrj0z/1dzTu7S/cujRE+6CPLcXXCFunRQ6Qgv+2GK52wRbLSDht/vxmuLNtV1JGS1vA3L5WoI1m2K9l2sM1YbVj/qmcbri5/f1KWLcVsrw/8/C1syJvXsqXL39/NPiAA9AAK4mTZsw33NQAAACqfYXhvKgYAAAAAAABQ+SZP9s4JbtwodXUFXQ0AAACCVl8vHXWUNHp00JUAAHps2bJlwLEDDzywoLEsy9K+++6rN954Y8+xrVu3Flxbsd144436xS9+UfJ5Xn755ZLPAaA6TJw4MevxRx55RN/73vcKHvdf//qXfvzjHxd8/3KxYcOGrMdHjRql0cP8TfLJT35S3/72t7Vjx44B11188cV68sknNWHChKLUCQAAAABAWSGAGsAIEUINAGXCMi1N7RqtB2NuYLmfbk8Q9dQtjqxkOpgiqpQl6fNPm3pugqNto4LJfjVcaZ92rw7W33+WpM/929Caia521gUTRByzpfGdXh30gL9Yf1iSLl0lrTpLauySWmr9CyHOhA83dkkR16uDHvAfPYCC9A+hznby1rb9qwcAAADBsm0vfJoAagAAAAAAAKC6TJrkXdrapH/+s+91hx8uxePB1AUAAIDS2bFD2rZt79exmHTqqVKEt5MCQNjs2rVrwLFRo0YVPF7/+yaTSbW3t49ozGLZvn271q5dG3QZAJCz6dOnZz3+j3/8Q//4xz906qmn5j3m5s2bdeGFFyqdDtd7s2699VadeeaZOuCAA4o25qJFi7IeP+6444a9b319vb797W/ri1/84oDrXn31VZ1//vl64IEHhg2zztfzzz8v13VzqhEAAAAAAN8RQA2gCHjVAACUCdux9cj2lV4KYJAM6ZHDJHu5ZAWVhl2lmjZYkmHo8g/avgdRZwKoF/7ZUtMGM/g+rFKZHvj8B23fg4gzAcQ30gOBYf2R6YEFH7TV2CXtrJPSPuSGWc7e8OEb6IFA9e8BP4Ko+wdQ0wNlqPdJ5GwncMN2khkAAADFMdjez3X5IBIAAAAAAACgWsXjXvhgb5MmSfX1wdQDAACA0mpp2fvf8TgB1AAQUh0dHQOO1dbWFjxetvt2dnaGIoQaw4jHpalTg64CGKiKP8Tu9NNPV11dnTo7Owdc98lPflIrVqzQfvvtl/N469ev11lnnaVNmzYVs8yiuOWWW/SZz3xGF154ob761a9q2rRpIxrv3nvv1Y033pj1utmzZ+c0xhVXXKHf/e53Wrly5YDrli9frpNPPln33HNPUQKjV6xYoWuvvVYPPvigfvvb3xJCDQAAAAAIn7BlgxBADZQtXjkAAGVkYrurWE3pwwYHkwkhnNghKZUOpogq1/ScpLR06UwveNIvY7qlhQ9JTetsSYTUBCnTA/NnSkkfe6A+Kd1IDwSO9UemBz49U3J8OjfkGFLKkhbeRw+EQaYHFpytkgdRDwig5vdAZXKcoCsAAACAX1x3bxB1IhF0NQAAAAAAAAAAAAAAAEDVS6VSA47V1NQUPF62EOpkMlnwePCRaUojCCAHUHzxeFyzZs3Sb3/72wHXvfLKK5oxY4Z+9atf6YMf/OCQ43R0dOjaa6/Vj3/84z6B1g0NDTIMQ62trUWvvRCpVEq33nqrbr31Vh1//PGaPXu2Zs+erSOPPDLnMXbu3KlrrrlGP/nJT+Rkec9SfX29Pv7xj+c0lmVZWrx4sU455RTt2rVrwPUbNmzQSSedpE984hP62te+pqOPPjrnOl3X1ZNPPqm7775b99xzj1555ZWc7wsAAAAAgO8IoAZQRIRQA0CZsExLS9YcrfMP2qUVk5MFhQ0arhcm6Epy89xTZkIIT98kLblbstgDBsqUvIX0428Dt2c+hIoh72c635/lguZy/Wk15I71R4bpljaM2uTxPpSa1nn/9g6iTljFn2dgAHXx5wAAAADgo8yL+Q1DsvlwGQAAAAAAAAAAAAAAACCMjBEEimS7r0sgCAAU7Dvf+Y5uv/32rB8a8Prrr+uss87S9OnTde655+qkk07SxIkTZZqmtm3bptdff11//vOf9fDDD2v37t0D7n/99dfre9/7XmhCqHtbs2aN1qxZo29+85uaPHmyTjnlFJ188sk6/PDDNW7cOI0bN041NTXq6OjQ9u3btW7dOq1YsUKPPPKIuru7Bx33mmuu0eTJk3Ou47DDDtN9992nD3zgA+rq6hpwfTKZ1K9//WstWrRIxx13nN797nfrlFNO0cSJEzVu3DjF43G1traqpaVFO3fu1PPPP69Vq1bpmWeeUUtLSyHfGgAAAAAA/EUANYAiI4QaAMpIQ7ere/48VqfP3Kk149N53bd3iKghSXmGl7qSjt4h3XOn1JDIa2oU0bIpXuBk3JbGJqTmuEqbDut688Rtb16JAMqg9e6BxoTUEi9tELHhevPQA+HA+qN3D4xJSK3xvR8wUWyZ1hpDD4RS7yDqmlRpQqhrUgRQAwAAABXJdXmiHwAAAAAAAAAAAAAAAAiBaDSqRKLvGza7uro0atSogsbLFtAZi8UKGgsA4IUgf/e739XVV1896G1WrVqlVatW5TXu5ZdfrksuuUTf+973RlpiyW3ZskX333+/7r///hGNM2vWLF1xxRV53+/UU0/Vn//8Z51zzjmDBke7rqtnn31Wzz777IhqBAAAAAAgVAigBlAChFADQDmJRvXI/kltr0krZkvJHMMGewdQ7zkm5RVEHbOl7XXSI4cSQhiUTPCo07NmNWkpHpESJXw0j9vePJI3LwGkwcrWA7ES90CMHgiNbOtfZ0odJXwdWF2K9Q+TbD2QLGEPuKIHwq5pnbRyf+nHpxY/jNyQtDsufe4p1hsAAACoSLYddAUAAAAAAAAAAAAAAABA1aurqyt5CHV9fX1BYxXbxIkTNXXq1JLP8/LLLw/4ngLASPznf/6nNmzYoFtvvbUo433qU5/Sz3/+86KMVS4uueQS3XzzzTIKDM867bTT9K9//Utz587Vv//97yJXBwAAAABACBFADaBECKEGgDKy7JAuLRjbKrnS2C6puXb4IOpsAdR7rpNyCqKO2d58InwyMLYhLZq+N3hUktpipQ0flrzx22JSQ9L72umpY+Z6yeJvAl/RA9Ut2/p3R6TOaGnn7YxKMadvCDHrHwx6ANksmyItPkGqTRU/jDwTQr74BGnGm+z9AAAAgIrjOEFXAAAAAAAAAAAAAAAAAFS98ePHq7m5uc+x9vZ2TZw4saDx2tvb+3wdi8UKDrQuts9//vP6/Oc/X/J5jj32WK1du7bk8wCoLosWLdIhhxyi73//+3IKfA1mTU2NfvCDH+irX/1qkasbuWnTpunxxx9XKpUq6rj77ruvrrvuOs2bN2/EYx155JF64okndP311+u//uu/1NbWVoQK+45/8cUX60Mf+lBRxwUAAAAAIG8EUAMoITPoAgAAubEdW4sO3CFH3mYs5y1ivxvG7aGvH26YTPikHbI9aqWzXGnxUumELd7XbbHih00OpiPmzSd58y9eSvBoEOiB6tZ//bsjUkt8+A8RGCnX8Obp7gk7Z/2DQw+gv2VTvA8H6YxKXdE89oY5MuSN2xn15lk2pcgTAAAAAAgWT/oDAAAAAAAAAAAAAAAAgZs0adKAY2+88UZBY9m2rbfeemvY8QGgkr3nPe/R+eefP+BSaLh/hmma+u53v6vly5frAx/4QF73jcVi+uQnP6nnnnsulAHUknTDDTdox44duvPOO3XxxRfrkEMOGdF406ZN03XXXaf169cXJYA6IxaL6etf/7o2bdqk6667Tsccc0zBYxmGoRNOOEFXXnml/v73v2vDhg26+uqrNWHChKLVCwAAAABA3gigBlBikaALAADkxjItLT7uO5pz7zw9M0lqrpXSpmS4QwdQupJkeLcbk5Bq0l6QZGtPcOVw2zvD9eZprpXGdklvI3wyMA0Jacnd0ts+J73l84ePd8SkfTq8+RsS/s6NveiB6pZZ/zMulp6ZXPrw4YxMCPHbmln/oNEDyOgdQN0a944NtyfMl9Gz18uMv+Bs79+mdcWbAwAAAECALCvoCgAAAAAAAAAAAAAAAICqd+ihh+of//hHn2ObNm3S6aefnvdYmzdvVjqdHjA+AFST733veyUd/9RTT9Wf//xnPffcc/rDH/6gv/3tb3rxxRe1c+dOtbS0KB6Pa/To0Tr00EM1depUvfe979WHPvShQYON169fLzdLmFM8Hs+rrt/85jf6zW9+U8j/0h4NDQ264IILdMEFF0iStmzZoscff1xr1qzRSy+9pJdffllvvfWWdu/erd27d8swDDU0NKihoUH77LOPjj/+eE2fPl2nnnqqpk2bNqJahtPY2Kgrr7xSV155pdatW6dHH31UTz75pDZs2KDXXntNLS0t6urqUiQS0ejRo9XQ0KDx48fr6KOP1pQpUzR16lSddtppIw4nBwAAAACgqAigBuADQqgBoIw0HDpFN/9emn6ZlDK9Y4Yk5RBEXZfyAqgl79+k6YXKDsVwe8aXN1/alG6+j/DJIP3XadKrjcHM/WqjN/81jwQzPzz0QHV75FBvHfwKH85wDW/eRw4lgDZo9ACyBVBLxe8J1yCIGgAAAKhoEZ4iBAAAAAAAAAAAAAAAAIJ29NFHDzj20ksvFTTWyy+/PODYlClTChoLADC04447Tscdd5y+9rWvjWicfMOm/TR58mSdd955Ou+884IuZUhTpkzh8Q4AAAAAUP4IoAbgEzPoAgAAuWvbuE6fmSlZjhR1el0xzN7RcKWuqNTdkyvSHfG+Nobb4/UaN+p4835mptQW3uezKtpVZ0rXnep/8GiGa3jzX3VmMPODHqh2y6ZIn54ptdQGM39LrTf/Mp6LDww9gKECqIt96s5V38eb1rg374Kz6QEAAAAAAAAAAAAAAAAAAAAAAIrhpJNOGnDsiSeeKGisxx9/fMCxE088saCxAAAAAAAAAAA+IYAagI8IoQaAMmE7tuat+JJWT/Z+eTd2ecHQw4UOGu7eLOnWuNRSsze00NDQQdSZ8MGo481nSlo9WZp3nmSHbM9a6ZKm9MuTgwsfznANr44kOwjf0QPVzTak/zpdaq4tftBsrlx58//X6TwGBIEegG1Ii6b7E0C9Z2xlD6JeNJ0eAAAAAMqSYUimKVmWdwEAAAAAAAAAAAAAAAAQqHe+852y+r2W54knnpBt23mP9fe//33AsXe/+90F1wYAAAAAAAAAKDECqAH4jPhAACgTlmnp0sdaZfbsz0xJtancA6gzEv2yRXIJoq5N7X3AMF3p0lWSxT7RV5YrHdwSdBWeg1tY/yDQA3BKGDSbK7enDgSDHqhulivNfdYLgc4oZQD1njnUN4i6M+rVweMAAAAAUIZcV3KcvWHUAAAAAAAAAAAAAAAAAALV2NioGTNm9Dm2e/du/fnPf85rnF27dumxxx7rc+yggw7SMcccM+IaAQAAAAAAAAAlQAA1gADwDnMAKCNNa5K64SEvCLo7IrXFBw+QzhZAPZihgqgN15unO+LNe8NDUtO6QqrHSO3bLkXz/wDzooraXh0IBj1Q3fbpkGIBr3/M9upAMOiB6mYb0h3TpMYuKer4E0CdkQmijjre/HdM8+oBAAAAUKYcJ+gKAAAAAAAAAAAAAAAAAPSYO3fugGO//OUv8xrj1ltvVXd3d59jH//4x0dUFwAAAAAAAACgRMIWQA2gahBCDQBlpmmdNG+11Br3vjakgQmEeQRQZww3Tmvcm5cA6mBYrnTn3dJ7NklWQBkxluPNf+fdXj3wV1F6wO0JnC9w/eiB4GTW/92bpEhA6x9xvPlZ/2AUowcM1/tAicE+eGI49ECwLFdavFSavkWqTRX2ozySHnDlzTt9i1cHPQAAAACUMceR0umgqwAAAAAAAAAAAAAAAAAg6aKLLtLo0aP7HLv//vv1+OOP53T/Xbt26brrrutzzLIsfeYznylajQAAAAAAAACAIgljALVLkAxQLQihBoAys2yKtPgEaUzC+9qVBiZOG/kHEw43zpiEN++yKXkOjKJpSEifWhVc6KPlevM3JIKZHyPsgV6h8llD53NADwQrs/5mQOtvsv6BG0kPGP16oJAQYnogeA0J6aLVUlc0//sWowe6ot789AAAAABQAZLJoCsAAAAAAAAAAAAAAAAAIKmxsVGf//zn+xxzHEeXXHKJmpubh7yv4zi67LLL9NZbb/U5fuGFF+rwww8veq0AAAAAAAAAgBEggBpAwAihBoAysmyKtOBsyTGkmrQXAOgOsp908wiidjX0OA0Jbz7H8OYniDoYy6ZIX/+g5AQ0vyNvftY/OJkeKOhPtiwh8/lyRQ8EaSTr3//cQyHnIlj/4GV6IEj0QLBG9DhQBPweAAAAACqIE9RZRgAAAAAAAAAAAAAAAAD9XX311TrggAP6HNuwYYPe9a53ad26dVnv09zcrPPOO0933XVXn+MNDQ360Y9+VLJaAQAAAAAAAAAFIIAaQAhEgi4AAJAb27G1aLoXBC15gcBdUS9HdrAtnNtzZe9tZ9yWElav22jwAGrJu29XVIqnvU8ucAxp0XRp5nrJYu/oG9uQ/u8kaXudlLaGv/1gLFuyC7x/2vLm/7+TWP8gZHpgR52UKnANXUOK2IX3UMry5qcH/DfS9XflnYOIpKV0pLAAW9Y/WJke2FknpQr4KKHMniCWlpKRoR/7B5MyvfnpgWAUqwdqUlJ3lB4AAAAAAAAAAAAAAAAAAAAAAKC/s88+W5s3bx70+mzXve1tbxtyzIceekj77bffkLcZNWqUfve73+l973uf0un0nuPr1q3Tscceq3POOUenn3669t9/f+3YsUOrV6/W7bffro6OjgFj/frXvx52PgAAAAAAAACAjwigBhAShFADQJmwTEuLl0pzZkmrJksttV4Q4HBbuN5B1GMSUk1a6o5IrfHhA6jl3VUp05uvsUuavkVavJTQwSB0WYWHDxdLyvLqQDBSZmHBo3u4vf4t8G/SEdeAgo30e5/5m99l/cuWq9weu0s2v7G3BgSDHgAAAABQNCZ/4AMAAAAAAAAAAAAAAAD9rV27Vps2bcrrPqtXrx7y+mQymdM4p59+un73u9/pwgsv7BNE7TiOfv/73+v3v//9kPc3DEPXX3+9Zs2aldN8AAAAAAAAAAAfEEANIER4hzkAlJGGhHTzfZLdEwLq5LivdA2pNuUFUEvev7Wp3AMMHcObzza9+RsShdWPwtmGtKoIHz5uFyFAetV+Xj3w367aEQaPGlLaUsEBxJI3/67aEdSAghVj/VMRsf5lynKlT6we0fJJ6umBETDk1cGHUfivWD2QiI7s/vQAAAAAUCEIoQYAAAAAAAAAAAAAAABC54ILLtAjjzyiAw88MK/7jR8/Xvfcc4+++MUvlqgyAAAAAAAAAEDeCKAGEDK8wxwAykhbjaHPzJTMPPdvhqSuqNTdEzzZHfG+zndrarrSZ2ZKbfE874gRs1xpQkfQVXgmdBA8GRTTHXn46EgZyv93EIqD9a9utiHdMc37EIlCuYb3wRIjCTOvTXl18GEE/qMHAAAAABSNYYTzhQsAAAAAAAAAAAAAAAAA9O53v1vr1q3TddddpyOOOGLI2+6///761re+pRdffFFNTU0+VQgAAAAAAAAAGFYY38dJADVQ9SJBFwAAyI3t2Jo3O6JnJqbUWpPffV1JMqTWuBdAnbC88MF8t4KtNdIzk6V550n33kEQsZ8sV/p/f5U+ea7kBPgREqbj1cHa+89ypS+vlD71MSltBViH7dVBD/iL9YflSnOfkx4+zAsDD2IJDEldEa8OesB/9AAAAACAEesdPm0FeIIBAAAAAAAAAAAAAAAACKlXX3016BIkSXV1dbryyit15ZVXasOGDXrmmWf0+uuvq7OzUzU1Ndpvv/10/PHHa9q0aUGXCgAAAAAAAADojwBqACFFCDUAlAnLtDT3rfF6+MAtSvWEEJuu5OS4z8wEURcSQG323DhlSs01PcGDMrwkQvjCNlzdcZw0Jik1xxXM99715r/jOGnu85Ll0gB+yvTA6JTUYno/x34zXG9+esB/rD8yPVCXllKWpAI+TGIkDHk9UJemB4JCD6AgnAAGAABAb5kXLRiGZAb4SXcAAAAAAAAAAAAAAAAAcnbUUUfpqKOOCroMAAAAAAAAAEAuCKAGEGKEUANAmbAdW3cc2Kq6tNRq7T1uKPcAQlf5B5f2v/me4MEXDIIHfWRJunS1q1X7OpICCKJ2pbEJqS4lXbralGUQQu63/j3QEvc3iNhwpUZ6IDCsP/r3QGvP44Afp3cy4cNj6IFA0QMoiG0HXQEAAADCxDDC+eIFAAAAAAAAAKXlulIiIXV0SKlU3+u2bpXi8WDqAgAAQOns2NF372cYUnu7FIt5FwAAAAAAAAAAAADFF8b3cBJADaAXQqgBoExYpqVLn5FWneF93doTQFrqrZ0rSUa/4MFVkhXlTQd+a9oo6S+2FnwgKcnHIOpMAHVauuEvMTVttCRecxiI/j3gVxDxngBieiBQrD/690Crjz0whh4IBXoAeUun+54Mdl3JcfrexrIEAACACpRODzwWxhcvAAAAAAAAACgtx5Ha2rwAwmRy4LnDzs7s5xMBAABQ3lKpvvs8y5K6urxLTY00enRwtQEAAAAAAAAAAACVKIzv4SSAGkA/ZtAFAABy17Q6qRse8oKga1OlD6DOcOXNV5eSbnhIalrn08QYoOlFSzc8HFNNWor41AARV6pJSzc8HFPTi4QUBq13D1g+9YBFD4QG64/ePWD61AMmPRAq9AAAAAAAAAAAAAAAAMhZe7sXQAgAAABkdHd7YdQAAAAAAAAAAAAAioMAagBlIhJ0AQCAPDiOmtZJK/eXfnyqZLiS68O+03Clrqj0+X/1CqB2nNJPjKzO3ChN7jC0td4teQ8YruQY3nxnbhTrHhL0QHVj/UEPgB5AXnqfFHacvl8bBieNAQAAqpXFB8wAAAAAAAAAFc9xpEQi6CoAAAAQRt3dQVcAAAAAAAAAAAAAVAYCqAGUETPoAgAAeXBdLZsiLT5BGuPz+wLGJLx5l03xd1701RZzNefclLbUu771wJiEtKXem7ctxh8WQaMHqhvrD3oA9ADyMtxJYU4aAwAAVKcwvqABAAAAAAAAQPElkwOPGUbfi8nbCQAAACpW731f/9cLptM8dwwAAAAAAAAAAACMVBifcyNLBMAQIkEXAADI3bIp0oKzJceQYmnJiklpH/afluvN5xje/JLUtIk3HvitLeZqzsdSWj3R2+D70QOZtZek1fu4mtOU1pLfx9SQDOEfPlWAHqhurD/oAdADyJvj9P0628nrMJ7QBgAAQGmw9wMAAAAAAACqSyw28Fj/Nxj1f14ZAAAAlWOoN5dbFm8+BwAAAAAAAAAAACoNzwECGAYJogBQJmzH1qLpXhC0I6ml1vvvUseGGPLmaan15nUMadF0yTbYaPrJNlzNOyep1RO9N3z07oFS6r32krR6oqN55yRZ/wDQA9WN9Qc9AHoARUHoIAAAAAAAAAAAAABUD9OU4vGgqwAAAEAY1dYGXQEAAAAAAAAAAABQ3sKW4UEANYAcRIIuAACQG8u0tHipdP5sacXBUqrnYwTy2fIZkgxXco3c7+f23C9legGEp2+SFi+VLMssfQI29rBk6NJnI1o1KaW04aqlxlsTP4InM2vf2C1FXK8OS6y/3+iB6sb6gx4APYCCGAYniQEAAAAAAAAAAACgmo0aJdm2lE4HXQkAAADCIh4nhBoAAAAAAAAAAAAYCQKoAZQpQqgBoIzlHTro9vo3j/s6hmT231+aZp6TY6SaXo6pM2po/ocSvoROZuwJn6yRfv3HmJpejkosfyDogerG+oMeAD2AvJlm3xPFrjvwRHbYTmwDAADAH+wDAQAAAAAAgOpgmlJjo5RISB0dkmX1vb621gshBAAAQGXp7Oy797Msb+8Xi3kXAAAAAAAAAAAAAIUJ2/szCaAGkAdCqAGgTNiOrXnnS8/vI43plnbU5T+Ga+zNoS7EmG5v/nnnSfc+4MpyQ7YRrnBtMVe3HZtWbVpK+PyeD8eQatPSbcemdc4rETUkWfsg0APVjfUHPQB6AAAAAEDRhO1FDgAAAAAAAABKxzCkmhrv3/6Bg5MnS/X1wdQFAACA0jEMqbV179fxuDRqVHD1AAAAAAAAAAAAAJUgbO/NJIAaQJ4IoQaAMmGZli59LqZ/T06qtTaYGlprpPGd0qWrJMt2NbJIa+TDNlzNOzuhZyY6ao8GU0N7VHpmoq15Z3fp3mVxQsh9Rg9UN9Yf9ADoARTEcQaeMB7uawAAAFQ+w5BMM+gqAAAAAAAAAAAAAAAAAAAAAAAAAAAAygMB1AAqACHUAFBGzuyarEntr2nLqGDmT5nSpHbpzI2STDaffrJcae5aS3861FE6oHyYtCntrPXqsByJEHJ/0QPVjfUHPQB6AAAAAMCIGUb4XuQAAAAAAAAAAAAAAAAAAAAAAAAAAAAQZmF7byYB1AAKRAg1AJQJ27E17yMJbbGkhoTUUuPv/I4hNXZLW0ZL886X7r3flOWGbFNcwWzD1fVvt5UK+FueMqTr325r7osx1t9n9EB1Y/2R6YF0wN/2ND0QGHoABXHdvieOXXfgie2wnegGAABA6bD3AwAAAAAAAAAAAAAAAICSMXJ4jZbjOD5UAgAoB7k8JuTy2AIAAAAAKLGw/W1GADWAESCEGgDKhGVaurTxvfp32x1qjwVTQ3tMqktJl642ZaV5ottXhqvX6x0p6L9FDHl12LZE8KS/DFe7YuHogV0xesB3rD8MV25ITgC5rksPBIEeQCEcZ2AIdf8XJ5mmvzUBAAAAAAAAAAAAAAAAAAAAAFCBzBxen2/btg+VAADKQS6PCbk8tgAAAAAASogAagAVhhBqACgjZx53juJ/X6K0GcwmMG1K8bR05iuS0ulAaqhWtumoKxp0FZ6uqGTbKVkOT1r5ynA1Jhl0EZ4xSXm/Awgf9Q/rX/UsSV/+p6FLznGVCvBbH3G9OqwUL3jzGz2AgmRCqPsHT/fGvh4AAKB62Lb3ggdejA4AAAAAAAAAAAAAAAAARWdZ1rC3SfMafgBAj1weE3J5bAEAAAAAlAgB1AAqEO8yB4AyYTu23rflGm1qcBXUttSQtKlRet8nHNkGm1E/Wa6hUzYrsLXPMCSdstmrB/7bp0OKDJEh6YeI49UB/7H+1c02XN1xrKv6gMPI65PSHce67AMCQA+gYEMFUAMAAKD6ZD6kJGwvfgAAAAAAAAAAAAAAAACAMmcYhkxz6PiGjg7enAUA8Az3mGCapgxe8wsAAAAAwQjb32MEUAMoEkKoAaCMGNGYXEMKaivo9lxCtjWuCpZr6JI1piJ2sHVEbOmSNSYh1AGwXEOfeNaUGfDfgqYrfeJZesBvrD8s19Dc5w11RRVYH5iu1BWV5j5v0AMBoAdQEAKoAQAAkI3r8oIDAAAAAAAAAAAAAAAAACiB2traIa/v6OiQy+u3AKDqua47bAj1cI8pAAAAAIASIYAaQAUjhBoAyoRlWvrSjC8pEnDgX8SVvvRPQ5ajvWElXEp+seXojqmuxnVJ0YCCqKO2NK5LumOqV0/Q35Nqu2R6YGyXFAuoB2K2NJYeYP1Z/0B7oLFLijr+hxCbrjdvIz1AD9AD5XUBAAAAsjEMPrAEAAAAAAAAAAAAAAAAAEpg1KhRQ15v27Z2797tUzUAgLDavXu3bHvoNwwP95gCAAAAACgBAqgBVLhI0AUAAHJjO7buePo3Gtcl7ayR0gF8jEDEkcZ1SndMMzT3paisgAOxq4klafFDrubMTGjVPo7XA5Z/80dsaVy3NH27qcUPxWVFWXu/9e+BXTVSysceiNrSWHogMP3Xv7lGSvq4/jHWP3D9e6ClRkqZkuPDUuwJH6YHAkUPoCDJpNT7xUicXAYAAEDYXgABAAAAAAAAAAAAAAAAABWkvr5+2Nts3bpVNTU1isViPlQEAAibZDKprVu3Dnu7XB5TAAAAAABFFLb3X5IRAqAECKEGgDJhmZYWN1yiOdv/qlXj09pZ528QdcSRxndK07dIix+qkRXlyW2/NUha8seYzv9Iu5bvP/QnmxabKWnaTktL/jhKDTIklj8QQfaAIXogaJn1n3N2h1ZNSGtHrWT78DhgOT0B1DsiWvLHetY/QP17YGetfwHEjfRAKNADyJvj9P3adQceC9tJcAAAABRH/32f1HfvV1PjXy0AAAAAAAAAAAAAAAAAUCVisZii0ahSqdSgt0mn09q0aZMmTZqk0aNHy+B1/QBQFVzX1e7du7V161al0+khbxuNRvmwAgAAAADwU9jO0RFADaBECKEGgDLS8PxLWrLU0pyZaa2aJN+CqHsHUC+5W2owHImMkgAZsn3+e8WbL2R/JFU1eqBaNSQNLXmoXmfM2q1tdVnCpErAMaT9Ok0teaheDUl6IGhB9IBND4QKPQAAAABgxExTGjcu6CoAAAAAAAAAAAAAAAAAoOIYhqHRo0dr165dQ94unU7rzTfflGVZqq+vV319vSKRiCzLkmn68MZhAEDJOY4j27aVTqfV0dGhjo4O2bad0335kAIAAAAA8BF/fwGoIoRQA0A5eeopNbSntORuQ3NmuVo1SdpeJzklfD7Z7B9AnZAUtaUIDyF+a4s6mvOh3XpqUlq2z68hsE3pqUlpzflIp5b8cbQaUryIIQj0ACTpkUMS2lrnKupISav080UdaWudq0cOcdT0Srz0E2JY9ADoAeQsEvFOdtv23k857H/ym5PhAAAA1cMwJMuS6uqkOHt7AAAAAAAAAAAAAAAAACiF8ePHq7W1NaegUdu21dbWpra2Nh8qAwCUA8uyNH78+KDLAAAAAIDqEMbMjUw+CACUAAmiAFBONm2SJDUkDS25Wzr9U662jirtlI4pTeroFUAteZvmxsbSTow+bMPVvPe8pZUT02qJBVNDS1xaOTmteR/p1r1/21eWG8I/nioYPQBJWnZguxac3CzbMCTDp5MFhmSbhha8p1Oqr1fT6yV+4MGQ6AHQA8hLe7uU6NnEO46UTErp9N7rDUOKRoOpDQAAAKXV0dH3a8uS6uu9DyqJRLyvAQAAAAAAAAAAAAAAAABFF4lENHHiRG3ZsiXoUgAAZWjixImKRIgDAgAAAICSI4AaQBXirBMAlJPW1j3/ef9RrtZP8Gfa9ROk+4+S5j3b6yAh1L6yJB2eaNMDsc5A62iJuTo8US9rzNhA66hG9ACWTW7WgmN3Km0Yaok6Spn+zJsypZa4q8aUqQVv3+kF0G5h/YNAD4AeQN5ct+9J70hkbyi1JJmmF0QIAACAypNMSra99+toVKqp8f7bNPkwEgAAAAAAAAAAAAAAAAAoocbGRrW1tamzM9j3AwIAyktdXZ0ayXEAAAAAgNIjgBpAlfIpsgoAUBRdXZKkxcc5mj/TCwQs9TbWkDfP/JnS4mk9Bx2nxLOiv6Qc3X5Ac8nXeziGpNsPaFZS9IDf6IHqZsvVogN3KG24aonaSpqu/Dpl4EpKmt68acOrw/ZtdmTQA6AHAAAAABSFZRFADQAAAAAAAAAAAAAAAAAlZhiGDjzwQNXV1QVdCgCgTNTV1enAAw+UEcYgNAAAAACoJGH8u4sAagA+iQRdAAAgP70DqF1DJY//cyXJkFKWF0QtSfPWGVJNTYlnRm8xST946WBdNvXlQCMfjZ46YjW88MFv9EB1syQtXH+kps94xtfg2YxMAK1tenVYPAb4jh4APYCCxGJSKrX3a8eR0um9XxsGAYQAAACVKtuLIOJx/+sAAAAAAAAAAAAAAAAAgCplmqYOPPBAvf766+rs7Ay6HABAiGUCqE3TDLoUAAAAAKhsBFADqHKEUANAGVl8rK35p/oXQJ0xIIg66mpeLObT7JAkW67um9yiGttUp+UEVkeNbeq+yS26dOdBshTCP6YqGD1Q3Wy5uvzYF5T28Xd/f66ktCFdfuxG3fv88ay/z+gB0AMoSCQi9X7hkWn2PSFumn2vBwAAQGXpvfezrODqAAAAAAAAAAAAAAAAAIAqZZqmDjroILW0tGj79u2ybTvokgAAIWJZliZOnKjGxkYZYQxCAwAAAIBKEsa/uwigBuAzkoYAoEwk00l95R0tvgdQZ7jy5k1Z0lfOTCup4EJwq5ElQ1M76tUdYPiwJHVbjqZ21BM6GQB6oLpl1r8tkg7sO29IaoukWf+A0AOgBwAAAAAAAAAAAAAAAAAAAAAAAMqPYRgaO3asDjvsMI0bN07RaDTokgAAAYtGoxo3bpwOO+wwjR07lgBqAAAAACi1MP7dRQA1gABEgi4AAJCbWCSmn24+XpccvEqpgPayrqSIK/30sZhibZuDKaJK2YartYfvVG3aUEckuD8catOG1lo7Zb8Zl+WG8I+qCkYPVLcwrL8rqY71Dww9AHoABdm9W0om936dSnmXDMMI54lyAAAAjJzj9H0Bgm1L6bRkmt4FAAAAAAAAAAAAAAAAAOCrSCSiSZMmaZ999lEymVRHR4fa29vV1dUlx3GCLg8AUEKmaaq2tlajRo1SfX29YrEYwdMAAAAA4Jcw/v1FADWAgBBCDQBlpO6wo1XfuUottcHVUJ+Q6txI3zA7lJwlae5LNXp4UocMeSGQfjMkpQ1Xc1+qkZVIDXt7FBc9UN1Yf9ADoAdQkHTaCxvMsG0vjDDDMPpeDwAAgMqR7QUItu1dLMv/egAAAAAAAAAAAAAAAAAAkiTDMBSPxxWPxzVu3DhJkuu6sm1bjuPIJYAGACqCYRgyTVOWZRE4DQAAAABBCePfY5z/AxAgQqgBoEzYjq1fjl6vznSwdXTGpF8en9LMv7qy3BBuriuUbbi647BONSZNNccdJU3/a4g6UmPS1B2HdWruq6NYf5/RA9Wt9/q39Ky/n6cSDEkx1j9Q9ADoAQAAAABF0//DSQAAAAAAAAAAAAAAAAAAgTIMQ5EI0Q8AAAAAAABA0RBADQAD8EwEAJQRe/QopdqCrSFlSXYkgPTbKme5hhYvn6jzz9im5ZO7A6tjWnNMi5dPJHQyAPRAdcus/5z3bNeqcYmCA2gNFXafmCM1JkxN3xVn/QNSjB7ovWr53o8eCF6xesBwJdegBwAAAICqlw740w4BAAAAAAAA+C+dHnhusK1NSqWCqQcAAACl09HRd+9nWd6HFZu8HwgAAAAAAAD/H3v3HidHXef7/11V3T09k2Rmcg8Jt0CAAEIIF0UQDxBZBREdQMJuRDReWRzc3+ou667Hy6qIrjdkd10PGlk1Slx0AgoIbEQNKAohDBgSQoBAEnJPZiaZS1+q6vdHTc10z3TPdPd0d/Xl9Xw82klXd33rO3w+1lT15V0AAAB1gABqAMiIEGoAqCIv9e/IOzy02FxJL02xpXDYSzBE+YRsyQz4v7lpSKGQJCvYedQreqCuNUta9dgRWnrBLj01dUB7o05e6xspP/P9W9ISN7W4K6pVj81RsywpnOcAKIqJ9MDIPUe+fUAPVIaJ9oAxWHTD9RbQA3XAsiTbHr5vmukvlJsmXygBAACoVaaZfiw4Eh9WAAAAAAAAAOrH4cPS3r1SX5/371SdncHMCQAAAKXlOOkXG4nFpC1bpGhUmjXL+wkAAAAAAAAAAADUIgKoASArQqgBoIpMi07Ty8ZLgR5LGq40LRnyQmgJoS4b23C17PyderY1Hug8nm2Na9mb9mj1Y0fKov5lRQ9AkpoV0h1PHKHFb92a13oTDSB2DEN3PHGEmhXhDCJghfbARNEDlaPg/YA7+n4+u3F6oEqFQlIyOXzfMEa/WE4INQAAQO0a64MSYa4sAwAAAAAAANSFQ4eknTuDngUAAAAqxcCAtG2bdMwxQc8EAAAAAAAAAAAAKD4CqAFgTCQNAUCVsExLa65fozNmnzEqTLRcDFc6o6tBax45mvDZMrNcQ9e+OkVdEUfxgP56x02pK+Lo2lenUP8A0AOQpJ6QrQ+9fpcsV4o4Rs5/D0a+DJHryxKGvO1YrvSh1+9ST8jOfbIoiUJ7oFD0QOUpeD9gZL4/3vr0AAAAAFCDTFOaNCnoWQAAAAAAAAAoh717g54BAAAAKo3rSvv2BT0LAAAAAAAAAAAAoLgIoAaAcYWCngAAIHfNDc367ft/pwtvP1NPH3pxVJhgKRmudMb+kH770Gw1J+Ll2zAkSbbh6sdHHZSdc3RsieYhbx7Xbo4QQlxm9AB6wo6Wnr9XnS1xma7UGjPU1eAqbowOl5WGg2XdlJ+GRgdQZ1omefv9yOB2TEmdLQNa+oZtWvW7mWpOcC2bIBTSAyPrr5T7mZ6Xtj49UHEm2gNDCwx6oG7EYlIyOXzftiXHGb5vGOmPAwAAoHY4zugPJ7iuZFlSY6MXRA0AAAAAAACgtvX18Z4wAAAAMuvvD3oGAAAAAAAAAAAAQPEQQA0AOSGEGgCqTHNDs37b/pQu/Nfj9HRof1mCqA1XOmOvqd/+9mg1uyZ/PYJguNobdeQY2YMiSz4FSY4h7Y06UiiUOe0SpUMP1DXbcLXs/+xR57ThiwCYMtQaM9XV4CgmpSUMG/L23SNLlC1kdmQgrYaCZ02ZKQN3Totr2f/Zp9W/O4IQ8jIrRg9k22/QA9WhkB4Yyc3yAD1Qwywr/QvFhpH+wrlpVuYL6QAAAJg400y/AInkvZ7j3wAAAAAAAADUvpHvB5um1NCQviwaLd98AAAAUD6Ok35x4pHvE4/8PCEAAAAAAAAAAACA4iGAGkCF4lvmAFCFmhua9duD79SF7go9Pau0ObCGK52xW/rtL6eqee600m0IY7Ik/ctW6YNTtupgxA5sHq0JS/+y9ShZLVMDm0O9ogfqmyVp+S5p/fRX5aRmh0qK2lIsPBwqZQzeMibQZmIMP9VNWRZNmjJNK+2ppist33UE9Q8APYBCeiDnlyPpgdrluqNDp1OZJl8oBgAAqFX9/ekfUkgNn47FgpkTAAAAAAAAgPKaPt17XTD14sWZED4IAABQf6ZMCXoGAAAAAAAAAAAAQHFU2uefCKAGUMHM8Z8CAKg4Dz+s5tUP6Le/nKEz9iiPhME8+QHUP7LUvLdH6u4u0YaQi7ZdU/XBbTMCncMHt81Q2y5CJ4NCD9S3tl1TdfuGo2Wm7PMHTEeHws7QQf1Q+HABUtc1JR0KOxowh0NtTVe6fcPR1D9A9ADoAQAAAABF4bpSPB70LAAAAAAAAACUw4IFQc8AAAAAlcYwpOOPD3oWAAAAAAAAAAAAwMQRQA0AeSGEGgCqTSIhffrTkqRmJ6xPPDtF4RIdc4Zd6ROPm2pODP65eO01yXHGXgkl0zHnoFbOO6CmZDB/vpuSplbOO6COOQcD2T7oAaQH0A6YjrrD9tBjpgoPnvUZSj9B6A7bGjAdgmcrCD0AegAAAABAUdj2+M8BAAAAAAAAUP3mzJEWLpQikaBnAgAAgEowaZJ0xhnS5MlBzwQAAAAAAAAAAACYGAKoASBvoaAnAADI04MPStu2SZI6jh3QzW/s1fR+aV+jVMxc2pAjTe+Tbl7iqMk21Pa8KcXjUk+P1NpavA0hJ7ZcrThqn/osR/0hR4akcp5uGJL6Q44irqEVR+3TFbtaZU045hL5oAfga9s1VY+3HtbXjt9dlu11h2196NUZBM9WEHoA9AAAAACACTO5Ti0AAAAAAABQN+bM8W49Pd7nQFMtXChFo8HMCwAAAKWzb5+0ffvw/YYG6bzzuDgJAAAAAAAAAAAAagMB1ABQEEKoAaDa/Pd/S/ICqNvP75ZjSIYjTY5LXUX8HsDkuBc66xhS+1/ZkuQFUe/fTwh1ACwZunbHND08o0euyhs+rJTt9VmOrt0xjfDhANAD8HXMOaiV8w6oJWGpO2yXfHstCUsr5x3QuV2TCaCtEPQA6AEAAAAAExYOBz0DAAAAAAAAAOUWjUqNjenL5swZvQwAAADVz3W97//4olECqAEAAAAAAAAAAFAbCKAGgIKZQU8AAJCH116THnssLYBarquBkNRdxABqyRtvYPBSBX4QdcdJjnT4sBSPF3djGJctV3fNO6BG2yx7+LDPldRom7pr3gHZgc2iftEDkLzg2fZTX5VjSFHHVEvCKun2WhKWoo7p/R049VV1zDlY0u1hfPQA6AEAAAAAExaJSCZvEQIAAAAAAAAAAAAAAAAAAAAAAAAAgCpCADUATEgo6AkAAPLw5z+nB1BLGrBcdUVV9DhYV1JXVGodkKLJ4SBqSWobGJCamoq8RYzFknTtzhl6eEaPTElOAHMwJfVbjq7dOUNWKBzADOobPYCOWQfUfsq2tNpHHVNKSN1hu+jb84NnfY4htb9um2Raatszrejbw/joAdADyJtleTefYaS/oG6a6Y8DAACgdhmGFAp5x38EUAMAAAAAAAAAAAAAAAAAAAAAAAAAgGpCADUATBgh1ABQRTo6V6UHUJtOSQKofVmDqJ/tU1vzaSXaKjKx5equY7aq1Ymoy0goYThlDSE2JYVdU61OWHcd16trrUWyVGEnZDWOHqhvtlytOGarHGt0SFRUlmSb6rYSRdteix1W1LC89PMUjqQVC3p0Rfh11L/M6AHQAyhYash0aMTLQKGQNGVKeecDAACA8jh4ULJTLlZjWVKYi4oBAAAAAAAAAAAAAAAAAAAAAAAAAIAqQwA1ABTF6PQqAEBFsh1bKw79bjiA2nJLGkDt84OoBwbz6hxDWnHUPtkl3zJSWTK0ctvrtXigVa12WGHXLNsf8aHwYTusxQOtWrnt9YROBoAeqG9+/RcNtGR8POpaanCtjI/lq8G1FM0y1qKBFuofkGL1QC6VowcqEz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoK4QQA0ARUMINQBUCcu0tPLZE7Vof9gLoG5w846BNiSZbm7hg6lSg6gX7TG18teTCB4MQLMT1qpX3zAUQmy65amB6RpD4cOrXn2Dmp1wWbaL0eiB+ubXP1MA7YBhK2bYRdlOzLA1kGGsRQMt1D9gE+0BY8TPbOiBykUPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKgLBFADQFERQg0AVaR5wNV7XojqcLiwAGpjcCWjwCDqwxHpPRtMNccr7KC8jvjhk3OTUdlGeU5GbMPV3GSU0MkKQQ/Ut0wBtAOGrW4rUdTtdFuJtABagmcrR6E9MPIv93h/yemBykUPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhpBFADQNERQg0AVaRjzkHddH6P7DyPi1MDqIeWFRBEbRvSTZck1XFcPM81UUxrJu/R7lBMllueEyTLNbQ7FNOayXvKsj2Mjx6ob6kBtOMFz4adwg/3/QBagmcrTz49YCj733tDkjnGa1v0QOXKpweksXugcYz9BD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKwIoAaAkiCEGgCqhO3YumX+dnVFvAPRsUIjU40MoG6wUx7LI4ja315Xg3TLOf2yxQFxEDqad6h9bqf6DVv2yGTxErENV/2Grfa5nepo3lGWbSI7egCSF0D7noNHqc+0sz6nxQ4rlMNefoodyvpYn2nrPQePIni2AuXaA+N1gClDLXb2+tIDlSuXHmhyrHF7IOya9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4BFADQAlQwg1AFSR6Y3TFHaG748XRD0ygLp1QHr3Bu/n0HNyCKJO3U7YkaYnI7lOGUXkhw/3GUl1WYmyxYC7krqshPqMJCHEAaMH4Oto3qGbj9igVjussDv6kL7FDivqWjmN1ZAlgDbsmmq1w7r5iA3UvAIVsweirkUPVKFceiCSYXkm9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQBFADQAlFQp6AgCA3FimpZ+97l911a+u09ojHSUGMwVNV3IyHDNnCqC+416pbZPUsVD60BVSV3Twua63QqZD3ZEB1Be8Iv3ssVZZ0U1F+s2QC9twteL8bepzYuqKOGULH/b5IcSK21oR/ouu2NQty62wk7UaRw/A1zGvR+3H75KT9K4o05o01BUxlBjcYbfETUUdV1JSCjnjX3YmmVRUpmSb6o54VzoIO4Za44ZM2XJkq33mk9L27Wrb0VzS3w25yasHLI1ztQl3sAdED1SRXHtgwHS8HhiL40g2PVCzenqkgZQr0CQSUjw+fN80pWSy/PMCAABA6Q0MpH+4YWBA6u+XGhuDmxMAAAAAAAAAAAAAAAAAAAAAAAAAAEAmlRZADQA1iBBqAKgizW+8UD9/j6ur3i2tPUZDQdQaDJFOlS2AWhr+OTKIelSebIYA6p//TGp290rGviL9VsiFJenaiK0HLy9/+LDPlXQ45OjaJwZkbXkpoFnUL3oAktRxoq3205Jy7OFlXgCt1NUoNSWkaNKR5IXIjhs+K0mDz4/KW60vLLX2uzI1vBFHUvtp26VdIbVtzmVQlErePdAwzoCuhgJo6YHqkFcPWMp8lZFUtjO4H6AHapJtpwcP2vbo56SGVAMAAKB2jDz2GxiQduyQwmFp1qxg5gQAAAAAAAAAAAAAAAAAAAAAAAAAADBSJQZQu0ElfQFA6RBCDQBVpnnA1c9/Jl11jRdEHTM1KoBa8oICTY0OoPaNDKJ2Mm3MkBxXakgNoI5JCnNgXG624epb59iyAz5Psg3pW+fYuvY5Q9ao1HKUEj2AjhMdtV+SlJPhP7spqbXf+zkR0aQUSWYexzGk9kuSkiu1bZ7ollAIegDj9cDU/oyHhXmJJqWGZOZx6IEq5Lrjv6jNi94AAAD1JZGQdu2STjop6JkAAAAAAAAAAAAAAAAAAAAAAAAAAIB6RwA1AJQNIdQAUE3+678keUHQP/+ZdOEyaf1RWZ5rSHIyB1D7/OXvfreyp1Ya0imvpQRQS15QSYg/IWVluJre5yrsSAlTGcMnc+Kq4HRK05XCjjS9z5UcRyKAuLzogbpmG65WnO5krbsjqatRakp4AbLZWLZkW9kfHwhJfeHsYcaOIa043dYVz7uEkJfZhHog5TUty5HsMbKD6YHKNV4PSLnt3kO2lBxjPzDeOPRAlXEyXmomHS98AwAA1A//2M+2pZdeCnYuAAAAAAAAAAAAAAAAAAAAAAAAAACgvhFADQBlRYIoAFSTu+8e+ue6WWMEUA9yTOnmt2QPoZa8x50xwiglbzvrZkkXbUtZaNvjzxdFY0n62f9IV10jrT1GipnKP0jYlgx3MDd4nPDJUQbDhy94xZuHlcwh0BBFNbIHCgmiNpNekLRjSE6eR4EmPRAoS9LKn7taerXUOSf9MT98OG5KiQZvmR9CbLjeTZKicSlsSwlLGoiM3sZASOpu8PKKuxozhxAv2uXNg/qX30R6wM8JbopJkaQUD0l9g89LDaimByrbWD2QjeGmHy5M7pcaklIsJB1uHHxOnvOgB6pMLi9s8+I3AABA/XAc7wMZrisdOhT0bAAAAAAAAAAAAAAAAAAAAAAAAAAAQL0igBoAyo4QagCoJlu3SpIeOUq6eHluq2yZLp34MWnzv49+7MSPeY/n4uLl0m9WpARRc6Bcds0x6ec/k95+rfTosbmvZzrS67dL81JyZXZMkf585PgB5EMM6Zxt3vabY1JaainKxu+BXIOo/YeiCemdm6RT9g4/9txM6Z6FXhCpa4xd0dQAanogOM0xadXdSgugTQ0fdg1JrhciLHkhxE1JyXKlyzaPrv/9J3rrWEoPH3YNb7yRIcSLdnnbp/7BKaQHpsS9/US2HrAGS0kPVIdMPTCWsCNNSnhh1Nl6IJLHdUXoAQAAAKAG+K/rJpPBzgMAAAAAAAAAAAAAAAAAAAAAAAAAANQnAqgBIBC5Rk8CACpBf39eAdQ+P4g6VT4B1L6Ll3sB2AhOT0TaODu/dRxTOtCYvuxAYx4B1IM2zva2j2D5QdQXvOIFjI/FdaXGDAHUknf/nZukSfHxz33NUQHUCIofQLtoV4bwYQ0Hinc3eKHCmYJnJe/+ZZu9x0eGD/vj+CHEjkYGzyJIefeA6IFak9oDuRhvP2Dm+PonPQAAAADUAMfhQxAAAAAAAAAAAAAAAAAAAAAAAAAAACA4BFADQGAIoQaAKlJIALUvNYi6kABqH0HUwdk+RVr8UelgNPfASN/mmdKzs7x/PzvLu58P0/W2u/ij3jwQrOaYdMvDkm2N80RDmtE7OnjUd8peaV6P97yx2Ja3PYJHK0NzTLrjXsk208OHfakhxJc/P3b9T981Onw4dZy46W3njnupfyXJpwfOfXXsHrjgFXqgGmUKonblXWRiIDS8zFTmAGrfKXulz/8m/bhiIOSNk3qoQQA1AAAAUENcd/gGAAAAAAAAAAAAAAAAAAAAAAAAAABQLgRQA0CgCKEGgCrR3dddcAC1b8t0yfpM4QHUvouXS93hiY2B/MRN6ayPeKGQkuQUcB61eab06xPyD6BO3d6BRm8ecY4gArVxunT+B9MDQrN5tVX6yWmZH/vJadKmHPrBlbe9jRPcd6A4ehqkD10hmU7257iG1JiQfnWS9FyWGj83U3pmjve8keHDqUzH215Pw8TmjeLJpwceP3rsHlh7DD1QrVKDqF1JBxulhOmFig+EvGDpWx7OHkDte9sW6fb7vecPhLz1E6Y3nisCqAEAAICaZBhSMhn0LAAAAAAAAAAAAAAAAAAAAAAAAAAAQL0ggBoAAkeEJABUiZamFh23f+LjjBUymavj9kstiYmPg9xFHOl9671/FxJA7euNFL6uv933rffmg2BsnC4tukFKWLmvs2nm6CDqXAOofQnL2y5B1MHqaZCWXi2tnyN1N0rZdgeGpP6wFyh7/4mjQ4ifm+ktj1ve88Yap7vR297SqwkhrgT59kDMHLsHYvRAVWuOSXfcKyVNLzja190gLeuU3v5CbuO0bfKe351S34TpjXvHvQRQAwAAADXHdflgBAAAAAAAAAAAAAAAAAAAAAAAAAAAKA8CqAGgIhBCDQBVwnZsnbJfMgMO/zUd6ZT9kl2Bx/O17n1PSwr6nMUdnAcCUUgAtS81iDrfAGofQdTBSg0f7mr0AmKzhdK78i46cDjiBU2nhhCnBlDHQt7zsu1aHMPbThchxBWhkB7oH6cH+iL0QDXraZA+dIVkOVI45RixJSatXCTdd0Ju43Qs9J7fkhI2HXa8cT90BTUHAAAAao7rSiZvEQIAAAAAAAAAAAAAAAAAAAAAAAAAgBIjgBoAKgbfMAeAKmGZlpavl47oDS6I2nS87S9fL1kcP5dVvyWdcYPkBPyX2zG9efQXEIKMifF7oJAAat+mmdIXLiwsgNqXsOiBINiGtOzK3MKHfX4IcSw0HEL8i1NGBFBr/Gz7kSHEy67kQgRBKLQHpLF7IPV52dADlckPJe+c453Yt/Z7wdEtMSma9Or2z5cMh49n8+sFUvtl3vOjSW/9sOONZ8obn/BxAAAAoAbxAQkAAAAAAAAAAAAAAAAAAAAAAAAAAFBKBFADQEUJBT0BAEDu2jZ5P//27dKuyeXf/qw+6fb7h+eB8mm0pUu2SPedFPRMvHk02kHPov4UqwcSRQgypwfKz3Kla5+VHj4+t/BhX2oIsSvphelS0pDiofGDh1OlhhBf+ywXIggCPYBUqQHUPlPS1H4ptTUceaHjknTK3tHjPDdT+s/Xp68TTUoNyfRlfhD1qrul5ljRfg0AAAAAQeJDEgAAAAAAAAAk6dVXpQauTA0AAFBz9u0LegYAAAAAAAAAAACodwRQA0DFIYQaAKrMOTuk3nAw2+4Ne9tH+dmGdz4VSXrBoUGJJL152AYBpOVGD9Q325DuOk1qTEixaP7ru/L6JulIjplf+LDPMbzt33WadO0G6l9u9AB8mQKofZleenWNzEHUz830lkeTo2uZaRyCqAEAAIAa4zhBzwAAAAAAAABAJejtlQYGgp4FAAAAio33hAEAAAAAAAAAABAkAqgBoCKZQU8AAJC77VOkxR+VeiOSUeZjWcP1trv4o948UF6WK137l8yhkOVkyJsHwaPlRw/UN7/+/aHCe8CVZBcYPix52+0PUf+g0AOQxg6gHosfRP3cTO++H0Dt5tlMfhB1T0N+6wEAAACoQJX4AQ4AAAAAAAAAAAAAAAAAAAAAAAAAAFDdKvH7iwRQA4AkQqgBoGrEk3Gd9RHpQKN331D5gqgNdzjw8kCjdNZHpDh/QcrKNqS7Xic1JSUzoHMZ0/W2f9frvPmgvOiB+pZa/9R9crn4f3Oof3DoAdiGtOzK/AOofX4Q9S9OKSyA2tc5x5sHPQAAAABUuUr8EAcAAAAAAAAAAAAAAAAAAAAAAAAAAKhelfjdRQKoAWBIKOgJAAByEwlF9L710tfOH15maPDYtpTH3BmCLt+3Xoo4JdwmRrFcafl6af0R3v3uBskp47mW6UotMakp4c3D4pyq7OiB+pap/jKkcpTBDx+m/sGiB5DaA4Xu/11DenHaxOZhuvQAAAAAUBNMrjIIAAAAAAAA1LyRrwNaltTamr5s2jReLwQAAKhF8bjU0zN8PxJJf9wwOA4EAAAAAAAAAABA7SOAGgDSEEINAFXkK2u8n34QtSuVNoB6cHw3JYj6k48NzwPl1bbJ+9l+mfezXCHEqeHDt98/PA+UHz1Q3zLVv9QhxCPDh6l/sOgBpPZAOS9E4DNdegAAAAAAAAAAAAAAgKoxMnDaMKRZs9KXzZ7thVMDAACgtvT3S9Ho8P3QiK+RTppU3vkAAAAAAAAAAACg9hkBhKGMhQBqABiFEGoAqDJ+APS/nS+5ZTredg1JrvQPBFAHrtwhxIQPVx56oL6VM4SY8OHKRA8gqCBqAqgBAACAGmKafHgCAAAAAAAAqAehkBc6vWdP0DMBAABApZk7N+gZAAAAAAAAAAAAoJYQQA0AVcEMegIAgPz9y6PSsV3l3eaxXd52Eby2TV4IZFPCCwYtSfKovHEJHq1MI3vALFEPEEBdmUbW33C9sOBiIny4stED8HugVPv/kQigBgAAAGqEYQx/kCPEdWoBAAAAAACAuvC610lTpgQ9CwAAAFSSWbOk444LehYAAAAAAAAAAACoFQRQA0DV4BvmAFBlehqkpVdLA2FpUlzqjZR+m5Pi3vaWXi2tultqjpV+mxibHwL53jYVP3nUZ0gJk9DJSuXXpP0y72d3g+QUsRcIoK5smervFrH+hA9XPnoAqT1QzP3/SARQAwAAADXE/+CEaUqWFexcAAAAAAAAAJRHNCqdf760bZu0b580MJD++PTpXLQOAACgFvX1pX+5PhSSjjxSmjlTOuKI4OYFAAAAAAAAAACA2kIANQBUFT4xCgBVxA+g7pzj3e8v0168PyQ1x73tDgVRxyvswL8OPX6kq95wabfRG5YeP1Jqe556V6K25yUZrtovlQ6FJaeI2UGmMxg++8Bg/WmBipNa/7hZ3IsSNCaofzWgB5DaAxmDqCdYN9OlB6oeL44DAAAgE8fxgqgBAAAAAAAA1AfTlI45xgsdbGpKf2zBAilc4g8iAgAAoPx6eqQdO4bvRyLS8ccHNx8AAAAAAAAAAADUHgKoAaDqEEINAFXCdmwtu3I4gHp3k+SUKSfEMb3tze7ztr/sSmn1zyTLrbATgDpy88WOvnaelwdZytMeQ9LXzpMkV1/5DcE0lajteUO3nu9ox5Tijpu0pHk9UtvzJsGjFazteUOPz3MG/39aPP1h6cYnqH81oAfgXSjCVfulbuYg6gJ5AdQGAdTVjhfIAQAAkI1tBz0DAAAAAAAAAAAAAAAAAAAAAAAAAABQjQigBoCqRAg1AFQJy7S0/Glp/RHSzknlC6D2+UHUR/RKy9dLlu2qtPHHyObmJRoKGy1m2GQmjuGFUH7tPEmuo6+sKe32kL+2a6Q/zyvN2H+eJ7Vd7ajjZ6UZHxPXsVBaebrUmJB6I8UbtzHhjXvudkdtm4o3LoqPHoAktW2U5Ertl404NijwUM10pdvvl9o2cbwHAAAA1CTDIIQaAAAAAAAAAAAAAAAAAAAAAAAAAADkjwBqAKhahFADQBVp2yj97aXlD6D2OaZkS14YZaWdBNSJm5e4ZQug9g0FUZ8vyZC+sobaV4q2a1ytXljabaw+WWpbKnX8jLpXmo6FrtovlfrCUn+4uGP3h6WI4wXaypDaNlH/SkQPIFXb89Lqha4ePj5lYYFlW/KS1Pa8UfD6qCC8UA4AAIBMHIfXdwEAAAAAAAAAAAAAAAAAAAAAAAAAQH4q7buJ5GoAQF4CijEFABTihI9Ju6YEO4ddU7x5oPyCCKD2+dv72nnePBC8cgRQ+1Yv9LaHypEaPtzdILlF3ie4hjduX1hqv9TbHioLPYCROha6WnNcccZacxw1BwAAAGpeiOvUAgAAAAAAAAAAAAAAAAAAAAAAAACAHBFADQBVjxBqAKgS3X3d2jI96Fl4tkyXusMcfJdT3HR15xnev8sdQO3zt3vnGd58EJxyBlD7CKKuHJnCh4tdGVeEEFcyegAj+T1RrGMEx6DmAAAAQM1znKBnAAAAAAAAAAAAAAAAAAAAAAAAAAAAqgEB1ABQEwihBoAq0dLUos+vCXoWns+vkVoSFXZCUOMijqF135VCAWfDhBxp3Xe9+SAYQQRQ+wiiDl45wod9hBBXJnoAIxU7gNpHEDUAAABQw0yTD1gAAAAAAAAAAAAAAAAAAAAAAAAAAIDxEUANADUjFPQEAAC5sR1bTxwltfZKXZOCm0drr/TEUZIdtmS5FXZiUOPa355U3Ar25CduSe1vN9Txcw4hgtB2VVKrTwp2DqsXSm1LRQ8EoOMkR+1/ZZclfNjnStJgCLHkBdLKMtX2PNeyCQI9gJH8nijVtSH8IGpqXsUcx3vx3An4SiYAAACoDKY5/NPkGB8AAAAAAAAAAAAAAAAAAAAAAAAAAIyBAGoAqCmkBwJAlbBMS9/5lbT4o/ISIYM4LnelkCF951eS5QwuQFn0W7buX1AZ/73vX+Cq30yq0baCnkpdoQfqm224WnG6U9bwYd/IEOIVpzu64nlxIYIyowcwkhdA7YwbQD3R6GHHkNr/ypZclyDqauYHDLru6BfUCR8EAACoTZkuRJJ67BeNlm8uAAAAAAAAAAAAAAAAAAAAAAAAAACguhBADQA1hxBqAKgStmPrhsu98GdLkh3AHCx527/hcmn1z2zCJ8uo0TH0bw+5+vilExvH0MRDS//tIakxYWjisZbIBz1Q3yxJ1/7F1cPHTSx8uND6+yHEfWFvHpbtFjgSCkUPIFXHSa7a3+qOG0DtyuuX8Z4zHseQ2t/qSI6rtuc5/qsqmUKnR8oUTggAAIDa5Lrehz4sixBqAACAGmY7tixz4heTLdY4KC/qD3qgvlF/0AMAAAAAAAAAAAAAAAAAgKIggBoAapIZ9AQAALmxTEvL/xJSb0SyAzo2tw2pNyItXy9ZMr2TBG5ludmm9PACqXmg8PoZkkzH+1mo5gFvHrapwP+b1NuNHqjvm21Kd71OakxMLHx4IvV35W3/rtdRf3qAHgjy1rFQar90/ADqYnMMb7sdC6l9Vd8yCXpO3Lhx48aNGzdu3Epzy8Y0pVBo7OcAAACgavXEevSuVe9Sx8aOCY3TsbFD71r1LvXEeoo0M5QD9Qc9UN+oP+gBAAAAAAAAAAAAAAAAAEBR8P1DAKhZoaAnAADI3eOnT1dveHegc+gNS4/Pk9q2hgOdR72xJF27KamHj0t6KaB5nqMZksJJKeRKSUdKhAoIMXWlWFi6dlNIVohDiHKjB+pbav1NV3mHzxaj/qYr9VP/wNADkKSOE221vyWRe/1zeZ6hnJvBMaT2tzlSKKy2zVaOk0CgHMe7+Vw3/eqO4wUUAgAAoHolk6OXhcPe8d/I40QAAADUhJ5Yj5bevVSduzq1fud6SVLbyW15j9OxsUPtD7TLcR0tvXupVl29Ss0NzcWeLoqM+oMeqG/UH/QAAAAAAAAAAAAAAAAAAKAoKjGDws07KQsAkIUZ9AQAALmJJ+O687geGZKMgI6HDdfLKbxzsRS33OHQOm4lv9mmdNcpjlr7pQZHeSWH+sGjYVc68pChsOvdz+tUz/W229rvzcM2Ffh/k3q70QP1fUutf9jxwoBzrX0x6m+63napf/X1gN8H9ED132xTWnG6PWYA9XhtYcjrgfFqP9Y4juHNgx6oktuoJhiv+gAAAKhpqceD8Xhw8wAAAEDRpQZPSpLjOmp/oF0dGzvyGic1eFKSOnd1aundS9UT6yn6nFE81B/0QH2j/qAHAAAAAAAAAAAAAAAAAABFUYmZFARQA0BREUINAFUiEopoXf97Na1fBQdRG/JCJAs5zPcDqKf1S+vuMBSxDe/gnFtZbpYjrbw3rMV7zLxCiA0NB4++aZuhi7caetO2PANIU8KHF+8xtfLesCxHgf83qbcbPVDft5H1zyWE2P9bMV79x+uB1PBh6l+FPZDDPoAeqI6b3wOL9mQ+jXckHWyUBkLZ+yG1B7LVfSDkjeNkeXwRPVBdt5EyLQMAAAAAAABQ1UYGT/r8AMp7n783p3FGBk/6CKCsbOPVP9cAUupfveiB+kb9QQ8AAAAAAAAAAAAAAAAAAIqCAGoAqAtZ4qkAAJXoyD89p/VPS4s/Kh1oHDw+zvG4PTW42hhcL+fDa3c4gHr9f0lHHnKlsJ3n7DFRzf3Sql+YWnqlq/WzXHU1SjFTWXvAdKXGhPf4m16R5ndJkqv5ByQ50qPHSEZSSliSk62P3NTwYUOrfmGqOZ4tlhKlVkgPhG0p5GbvgXBc6g/TA9UgU/0TZuba+fv8SQnv8Wz1V1JKWsr6NyE9fJj6B62QHojYkjXGPsBKSLGQ6IEqkdoDnbOGK+ZIQ/3Q3eAtiyY1VFRDY+wHUgyEhtfvavTqnhp5vYgeqD4jw6gdZ/TjJtcnAwAAqBu27R3/GUZlfiAEAAAAecsWPOlzXEf/8PA/6N0nv1tnzz076zj3v3C/Pv3Ip0cFT/r8AMpVV69Sc0NzUeaOicul/u0PtOumN9ykuZPnZh3nj9v/qP/u/G/qX4Vy7YFrTrlGZx5xZtZxHnrxIX350S/TA1Um1/p/6k2fUktDS9ZxntjxhH723M+ofxXKtQeuX3S9Tp5xctZxHnn5Ed32p9voAQAAAAAAAAAAAAAAAACoV5X4fUMCqAGgJAihBoBq0tmpIw95QdCn3CgdashttdQA6qFl+QRRG9KkmB9APbhsZIAdyqJ5QFp1t6GlV7laP1s62CjFrdHPMyS1xLw6n7NjOHTS592XHjtaakpKXdHMvRDxg0d3S6t+bqg57iqP+HKUQL49kDCl81/N3gNPzPPqTA9Uh1zrL3n1DznSma9lr/+jx0hNMak7mnmMEPWvOPn2gG1Ib9yWvQf+dKQUtb19QCb0QOVJ7YHO2ekB1D4/SDpsjw6g9vk98PQR3s/UAGrJGy81iHoRPVCdRoZQZ3qRneN6AACA+mHb3vGfaUqRSNCzAQAAwASNFzzpc1xHP3zmh5KUMYj6ydee1M+e+9m42yOAsrLkU/+v/+Hr+uvX/XXW+v/42R8rYo19jkD9K08+PeCHjGfrgbs23CXTGPuilfRAZcmn/l/4/Rd07anXZq3/j575kRpCY38IjfpXnnx64Lvrvqv3nPaerD3w0w0/lWVk+eDBIHoAAAAAAAAAAAAAAAAAAGoUAdQAUFfG/uYAAKCyHD4syQuNnZSQzByOkzMFUA895nqPj8d0ve09MS9loR9ox63st+aYFz552p4xiuZ69f3guuGQyZHmd0lLXhrsjzF66bQ93vaaY9S9Um759MCSl8bugeVP0QPVdsun/n//h7Hr/6ZXqH813vLpgSs2jd0D795AD1Tjze+BU/eMDqD2dTd4AeXDAdSZe+DTv5ViVnoAtc8Poj6VHqjem+Ok38+4v6iAeXLjxo0bN27cuHEr/m2sYz/JC6QGAABA1co1eNLnytUPn/mhnnztybTlT772pH74zA/luLldrM4PoOyJ9eQ9ZxRPvvV35IxZfzfbOcQI1L9y0AP1Le+/Ae44fwPE34BqU/Qe4DgAAAAAAAAAAAAAAAAAAOoTAdQAUHdCQU8AAJAHx1HHQqn9Mi88ekaftK9JcrIcx48VQD30HNd7Yranma63HUPediWpbZMq8+ShngwW16+xm1KOtHDxHMtkSFK2cQx59abmlSXXHshjOHqgihSx/oaof1Xi7wByOdDLdZyctkUPVCXTTH+BPdOL7dQVAACgNmU79jMM72Il8Xj55wQAAICiyDd40ucHUUvS2XPPHg6fHetKlRn4AZSrrl6l5obmvNbFxJWi/kYe7y5S/+CxD6hv1B/0AAAAAAAAAAAAAAAAAACgKCoxa4IAagAoOUKoAaCK+AHUfui05WYPos4nlzBbELUfQG0NPuAYKUHUWyrwBKJO9ERcLb3S1YaZ0tQB6WBUiptecKgfGNoSkxps6XtnSufskOZ3jR7n5VbpsaOlKXHv+d0NGgogNVwp4njjb5gpLb3K1apfGGqOU/dKkE8PrDlOOv/V7D3wxDzvefRA9cin/t84Tzrztez1f/QYaUqM+lebfHrg3pOkN27L3gN/OlJqTNID1SZTDyTM9Oe0xKSw7f3/XMreAx0nj/g7kCJMD9SmkS+6V+IbAwAAAJi48S5AEouVby4AAAAoGtuxtewXy/IOnvT5AZTrdq7Thr0b8g6e9HXu6tSyXyzT6qWrZZlWQWMgf9Qf9EB9o/6gBwAAAAAAAAAAAAAAAAAARVGJORMEUANAWRBCDQBVwnZsrVg8OmzaD6Le2+SFRkpjB1A32FIsw3c/RgZRGyMCqH2OIa1YLF2xxZHlVuCJRI3zQicddc727huuNLVfOtjoBZD6waPRpPe4a2QOn/TDZ33+8/0A0ojjjetXuHO2q6VX2lr1c5PwyYAVuwcitnefHqgOeddfY9ff38VT/+pR7H2A5Xj36YHqMVYP+EHUfg/Yxvj7gaa4ZGpED2gwgJoeqH6OM/4L7Y5TnrkAAACgsnAcCAAAUJUs09LyM5Zr/c71ctzCjulcufrL3r9MaB6mYWr5GcsJniwz6g96oL5Rf9ADAAAAAAAAAAAAAAAAAIAJI4AaAOoaIdQAUCUs09LKX0hLr5Y656Q/lrC8gMDBHOmsAdR+IOFAaDhgMFVqELUxOK6VTH/Ool3Syl+IAOoA9ERcLb1qOHTSZ2g4fLIpMRwi6RsZPpkaPptaRX+9vnB66KSvc7a09CqH8MkAlaIHUtEDlY36gx4APYC8mWZ6uGCmF94r8Q0CAAAATNx4H7oI8RYhAABAtWo7uU2S1P5Ae8EBlBNhGqZuv/T2oXmgvKg/6IH6Rv1BDwAAAAAAAAAAAAAAAAAAClaJ+RIEUANAWfENcwCoIs0xadXd6UHUfqD00GH0OAHU0vDPTEHUSgmi9h/3n79ol7f95pikUAWeTNQw23C1rM0dFTrpMyRN68++vh8++fJUaUdz1jZRNDk6uDJV52xpWZur1f9jEEReZvRAfaP+oAdQsh7wr2QyiB6oMa47+k2AkS/AV+KbBAAAAJi4sT54YRiSZZVvLgAAACi6oAIoCZ6sDNQf9EB9o/6gBwAAAAAAAAAAAAAAAAAAeavEbAkCqAGg7AihBoAqkxpE/acjhwOo/QxAdzBIMPVwPzWA2pcpiDrTOP7jb9ieEkAtSaZZzF8L47AkLX/G0Po5STkFnsu5krY3T2wepistf8aSZZjpTYaSowfqW8H1T3ku9a9u7ANAD6AgzjhfOjeMynyjAAAAAKXhH/uZphSJBDsXAAAATFi5AygJnqws1B/0QH2j/qAHUDDHkZIjPkw6MCDZdjDzAQAAQOkMDKQf+5mm9yV+PjMIAAAAAAAAAABQfyrxPSICqAEgEIRQA0AVao5J73lGeuTY9OBoX2oQdaYAal9qEPVY4/SFvO0NBVBLhFAHoG2LKZmG2t+SKDh8ciJMV7r9f8Nq22JJlD8Q9EB9o/6gB5B3DxS5T+iBKpTLi+6V+GYBAAAASsMwJMvyXtvlOBAAAKAmlCuAkuDJykT9QQ/UN+oPegB56euTdu/2fm7blv7YyPsAAACoTeGw95nCSZOk2bO5cDEAAAAAAAAAAEC9qMTvEhJADQCBIYQaAKpQx0Lp5kuklgFp76TMz3ENqSmePYDaF01KcVPqHePzYy0D3vaaElLbpsGFhFAHom2LFxCTewBpcYIHTVe6fU1YbVtChE4GjB6ob6Wp/9D/ZEX9Kwf7AOTXAzm+6EoP1DYn5Qvnrpt+X+K4HgAAoJ4QQA0AAFCTSh1ASfBkZaP+oAfqG/UHPYCcHD48HDTNl7cAAADqm+t6x4d9fdJxxwU9GwAAAAAAAAAAAJRaJX6XkM8wAUCgCKEGgGpiWeo4wVb7ZVLSkLobvdjQTIfUhqT+sBRxxg6iHgh5zxtrnO5GqbVfar/MW9a2SRzIB6htsyW5UvslcRXlq0Pj1NKUdPvDEbW9YCnnMEuUFD1Q34pf/6H/yYj6Vx72Aci5B3J9LZgeqF2um17fkbU2DI7rAQAA6o3jcCESAACAGlSqAEqCJ6sD9Qc9UN+oP+gBjGvXrqBnAAAAgErjONKePUHPAgAAAAAAAAAAAKVEADUAIAO+ZQ4AVaRjUWQogLqrUUoM7sXNkVlykozBZd0NXtB0JgMh73ENPn/kKYM/bsL0tpc0vCDqjoXF+G0wEW0vWLr94UjJ/5Cnh06iktAD9Y36gx4APQAAAACgYI7j3QAAAFBT2k5u0+2X3i7TKM4rxwRPVhfqD3qgvlF/0APIKh6XEomgZwEAAIBK1NcX9AwAAAAAAAAAAABQTwigBoCKQAg1AFQJ27G14kxjVAC1zw+MTg2g9vlB1KYrXfKi9zM1gNqXGkQ9Mtg6NYh6xWLJHrkRlF2pwycJnax89EB9o/6gB0APAAAAACgYH9gAAACoSW0nt2nJcUuKMtaS45YQPFllqD/ogfpG/UEPICNeBwQAAEA2HCsCAAAAAAAAAADULsMY/znlxHtTAFAxCKEGgCphmZa+s/882eboAGqf6Y4OoPZ1N0jLOqU7V3s/RwZQ+wx3dAC1L2FKtil95z7JcivsJKNOlSp8ktDJ6kEP1DfqD3oA9AAAAACAgvChDQAAgJrUsbFDa15aU5Sx1ry0Rh0bO4oyFsqD+oMeqG/UH/QAMmpokEKhoGcBAACAStTYGPQMAAAAAAAAAAAAUAoEUAMAxsCnSgGgStiOrRsWvarQISnsZA+izqYlJq1cJO2aIq05zrufLYg6m7AjhRzphncYWn2PQRB1hWh70ZRMQ+1L4nJGlcSVxiqTq1EnjaYr3b4morYXQ1yuokpMqAckeqDKTbz+Q/8jifpXI/YByN4DOdRfogdqmeum1zfTi/OV9gYCAAAAyoPjQAAAgJrTsbFD7Q+0y3GdooznuI7aH2iXJLWd3FaUMVE61B/0QH2j/qAHMKbZs6UdO4KeBQAAACqJYUizZgU9CwAAAAAAAAAAABRbpX1vkABqAKg4hFADQJWwTEvLj23T+me+oqn90sHG3IOoW2JSNCk5hvTw8d6yaNL7mWsQddiRpvZLlistfzYkS2ZuoYYoi7YtYa0+wdbDx9gTHmvJq5batoSpb5WhB+ob9Qc9AHoAWaW+SWCakuNkfxwAAAD1IxIJegYAAAAoomIHT/oIoKwO1B/0QH2j/qAHMK7mZu/nrl2SPfHPFAAAAKDKNTRIRxzh/QQAAAAAAAAAAEDtqLTsCAKoAaAiEUINAFWk7bRrpFu/ovbLlHMQtR9AnUmuQdSpAdS33y+1bbX4C1JhOhYktebo4nxBZM3RtjoWJNW2hSJXE3qgvlF/0AOgBwAAAADkzLK8C5QAAACgJpQqeNJHAGVlo/6gB+ob9Qc9gJw1N3u3gQEpkUh/bO5c7zVDAAAA1JbDh6WDB4fvRyLSCSdIIT4bCgAAAAAAAAAAUHMIoAYA5IhPDQBANXn1VbVtNiU5OQVRjxVA7RsviHpUAPUmSU0mXzqoIB3HJ9R+UUxOpvPAAs4NHUNqXxKTTFNtL4YnPD+U3pg9MJ4M69AD1WXs+huSxntRJn1F6l992Acgew/ksA8wjFFPoQdqiOtKTsoXzm179JsHhA8CAADUD/81XcuqvA+VAAAAoCClDp70EUBZmag/6IH6Rv1BD6Ag4bAUjaYvmzbNWw4AAIDaEolI/f3p9wmgBgAAAAAAAAAAqD2V9l1BAqgBoKLxyQEAqCaPPSa5rhcELY0ZRJ1LALUvWxB1xgBqyQuva8iSWo2y6jg+rvb/0z9G8GguAbSjOYbUflG/ZBpqezEykSmixMbvgcLQA9WB+oMeAD2AMRlG+hsGppkeSj3ycQAAANQuwyB8GgAAoMaUK3jSRwBlZaH+oAfqG/UHPQAAAAAAAAAAAAAAAAAAqLjvCxJADQAVjxBqAKgmf/yjd9A/ThB1PgHUvpFB1FkDqCUvhNqyJvSrYOI6joup/c39csY4EXTljh1BbSjriaRjSO0X9kumqbaXCB2vRDn1gDF2D7jKHj5JD1S2YtRfkrcf0OgxqH/lK14PsA+oVuP3QA71l+iBWuaM+NK566bX2zC8YGoAAADUPi5AAgAAUFPKHTzpI4CyMlB/0AP1jfqDHgAAAAAAAAAAAAAAAAAAVNz3BQmgBoCqQAg1AFSTnTu9n2MEUTcl8g+g9vnr9YXHCKCWRofZoey80MleOeOcB7qS3LGeM855m2NI7W/ulSTCJytMsXpgzP4QPVCpirYPGAf1r1zsA5BTDxjj13i8l3DpAQAAAAAAAACoLEEFT/oIoAwW9Qc9UN+oP+gBAAAAAAAAAAAAAAAAAAAB1ACAQhFCDQDV5NAh76d/AjAiiHpa/8Q3EU16NzNbAPXgdmWaE98YCtIxP6b2C8YPHpUkFeFccSh80jDV9jLhk5Ugrx4oAnqgslB/0AOgB5Azw0h/88A0R794X2lvLgAAAKA8OA4EAACoSrZja8XTKyYUPGnI0KkzT9WGvRvkjnupwswc19GKp1foipOukGVaBc8F+aH+oAfqG/UHPQAAAAAAAAAAAAAAAAAAqLjvBhJADQBVhRBqAKgmyeTwvw1j6OA7NYi6GGGEYwZQ+yy+QBKEjmMH1H7+obKFTvocQ2q/4JBkmmrbGi3vxpGGHqhvedc/p+eN/yTqXzmK3wO5DUQPVI78esCQxvvisGGM+xSJHqhaI4/ZXTf9DQXD4LgeAACgVqW8fjx0PxUXGQQAAKhKlmlp5ZUrtfTuperc1Zn3+oYMvff09+rsuWfrydee1A+f+WFBAZSL5izSyitXEjxZZtQf9EB9o/6gBwAAAAAAAAAAAAAAAACgzhFADQCYIEKoAaCahLLvtts2SasXSg8fP/HNLHlpnABqSTp8eOIbQl46FiTUfl5MjpRTWKQk7yRtvOfmeCLnSGo/r0saaFDblnCOE0AxFdQD4z03lx4ZRA8Eq3T7AEc5BVGL+getsB4Y73H2AdUk/x7IcR/g5hhGLnqg6iST6cd6juPdfIaRfh8AAAC1Y+Rrfo4j2bZ3DGiahFADAABUseaGZq26elXeAZSpwZOShn7+8Jkf5rX9RXMWadXVq9Tc0JzXeigO6g96oL6Vov75hBBT/+CxDwAAAAAAAAAAAAAAAACAOkUANQCgCAihBoBqMnmytH9/xoc6FkprjivOZtYc542XNYjadaV4vDgbQ05sw9WKU5JycgmTzMKQNLNX2jtpxBB5nMw5klacEtcVGx1ZOQZWojjogfpWcP1Tnpu9/iOeOAbqHxz2ASioB4zRd0f1gCt6oJbZdvp91x1db17YBwAAqB/JpPczEiGEGgAAoMrlG0A5MnjS59//2XM/y2m7BE9Whnzrb8rUstOXZa3/j5/9cU7bpf6Vo5AeuO7067L2wF0b7sppu/RAZcj7b4Ax9t+AHz3zo5y2S/0rRyE9cN1p2fcBP93w05y2Sw8AAAAAAAAAAAAAAAAAQEAIoAYAFAkh1ABQTebOlV55ZdTijoVS+2WSU6TzBMfwxpPGCKJ2nOJsDDmxJK1cbWrpla46Z+V/AmZIWrRTmndI2jFF6jyisAzTRXsMrVxtyrJdFZyCioLQA/WN+oMeAD2AgmQKnCaEGgAAoD75x32m6b22O/KCJQBQBnv37tUTTzyhF198UT09PQqHw5o+fbpOOeUUnX322QqHw0FPMc2uXbv08ssva9u2bdqzZ496e3uVSCTU3NyslpYWHXvssVq8eLGam0sbwLZz50499dRT2rlzp7q6uhSLxdTS0qLW1lYtXLhQp59+uiKRSEnnAKAy5RpAaRpmxvBR39lzz9YZc87Qpx/5tBw3++cACJ6sLPnU/+/O+zvNnTw34+Nnzz1bkyKT9N+d/039q0w+PXD9out15hFnZnz87Lln64TpJ+jLj36ZHqgi+dT/Xy74F7U0tGR8/Oy5Z8s0TP3suZ9R/yqTTw985KyP6OQZJ2d8/Oy5Z2te8zzd9qfb6AEAAAAAAAAAAAAAAAAAqEQEUAMAiogQagCoJueeK/3xj96/B0Ogix1A7RsziLrSTkrqRHPc0KpfWFp6pZ1X+GRq6KQ0/LPziPy2v2iPt/3mOPUPCj1Q30pR/3xe0qH+wWMfAHoAAAAAQMH813Qdx/t3IhHsfADUlbvvvlu33XabHnvsMblZPmg2ZcoUXXPNNfrHf/xHnXjiiWWeodTV1aVHH31Ujz32mP70pz/p2Wef1b59+8ZdzzAMnXbaaXrve9+r6667TrNmzSrKfF5++WV973vf08qVK/VKhgvUpopEIrrooov0wQ9+UO9617sUCvExEKCejBdAaRqmvnrJV+WMc5Hpy064TC3RFrU/0J4xgJLgycqUS/1vv/R2Hdl8pJ7f93zWcd545Bt19tyzqX8VyrUHBpIDsp3sFyP6q+P/SnOnzKUHqkyu9X/drNfpT9v/lHWcc+adowuOuYD6V6FceyBshtU10JV1nIvmX6QF0xbQAwAAAAAAAAAAAAAAAABQach6AwAUmRn0BAAAeXjTm6RIZOhuqQKofX4QdcfCEQ+Y/PkIih8+uWhPbkU33fTQSd+8Q95yI8f8SkInK0e+PWDQAzWl6PuAHLdL/SsH+wDk3QMauwdMeqD2uW7223iPc+PGjRs3bty4caveW6bjQp9tS8lkeY5HAdS1HTt26MILL9S73/1uPfroo8oWQC1Jhw4d0ve//32ddtpp+sIXvjDmc0vh1ltv1Tve8Q7deuuteuSRR3IKoJYk13X1zDPP6JOf/KSOP/54feMb31ByAvvYeDyuz372s1q4cKFuueWWcQOo/XUefPBBvfvd79bZZ5+tJ598suDtA6hOfgDlojmL0pb7wZNXnHRFTuO0ndym2y+9XaaR/nkAgicr23j1bzu5LadxqH/1ogfqG/UHPQAAAAAAAAAAAAAAAAAANaoSA6jL/H0fAEDxhYKeAAAgD69/vdTYKA0MlDyA2ucHUUtS26bBhZZVmScodaI5Ka1abWrpuxLqnJX9pMx0pb/5i6Fdk5XxshPzeqXoDlcvTB+7jxbtMbRqdVjNSYPLV1SIfHrg9Tuk6QOZazevV1q8R7r3RJceqCL51P9vnzS0YZay1l+7Xb3aLLnUv6rk0wMXb5XCTvZ9wLFbpLVHsw+oNrn2gOFKi3ZL83qz98C7n5e+8QZ6oGa5bvpxe6ZAQi4wAwAAUJscJ/3+yNdzeX0XQIlt3rxZF154oXbu3JnXevF4XJ/5zGe0ceNG/ehHP5JlWSWaYfEdPnxYn/jEJ/TQQw+po6NDjY2Nea3f19enyy+/XI888kjBc+js7NR5552nVatWqa0tt7A5ALXBD6BcevdSde7qTAuePBw/nPM4flBl+wPtclyH4MkqMVb980H9qxc9UN+oP+gBAAAAAAAAAAAAAAAAAKgxlfj9PwKoAaAmEEINANVk7lzpggvUsfnejAHUrqRinDqMHGdUEHUlnqDUmea4FwaZLXzSdKXbHw7pYMTR/Quyn7wd02PopqcstV+SzBg+ORQ6GafmlSbXHrhnga3DkezjLN5l6JJX6IFqk2v9J/c72jBGQO28Q4Y+/ifpk5dkDqCl/pUr1x54bK6tra3Zxzl5v6FrnmcfUI1y6YH/u9bQmvljj3PxVkPze+gBAAAAoO5ExnjBCAAmaP/+/brkkksyBlCfddZZeuc736n58+erv79fmzdv1k9+8hO99tprac/76U9/qlmzZulb3/pWmWadbtKkSTrzzDN10kknacGCBZo5c6amTJki27bV09OjzZs36w9/+IMef/xxuSM+RPfggw+qra1NDzzwgIw83lO75pprMgZQh8NhXXrppTrvvPM0b948NTQ06ODBg3rmmWd03333aevWrWnPTyQSWrp0qR555BGdf/75Bf3+AKqTH0C57BfLtPyM5XkHT/r89VY8vUIrr1xJ8GSVoP6gB+ob9Qc9AAAAAAAAAAAAAAAAAAA1ohLz3QigBoCaQQg1AFSZjln71b5gdAC1I6mrUWpKSNFk4eMPhKS+sNTaL5mp4/tB1IbU9lLh46N4UsMnn57t6kBUmpTweuD2h0Nq22xpxeucccdp22xJktovSaovLPWGpWkD0hm7CZ2sdLn0wD0L7HHHoQeqUy71f/io8fcBV2w21CCL+lehXHrgsbnsA2rZeD1w+i5Ha+aP/0IuPQAAAADUmXBYikaDngWAGvbhD39Yr776atqyKVOm6Mc//rGuuOKKUc+/5ZZbdMstt+hzn/tc2vLbbrtNb33rW3XppZeWcrqSpIaGBl188cW69NJLtWTJEp1++umyLGvc9bZs2aK///u/1y9/+cu05Q8++KDuuOMOffjDH85p+6tWrdJ99903avnll1+u7373u5o7d27G9b797W/rzjvv1N/93d/p0KFDQ8sTiYQ+8pGPaP369QqHwznNAUBtaG5o1uqlq2WZ4+/DxtJ2cpuuOOmKCY+D8qL+oAfqG/UHPQAAAAAAAAAAAAAAAAAAVY4AagBAiRFCDQBVpGNjh9pb/yhnxDG5H0CdMKXuBm9ZIUHUA6Hh9bsaswRRXyrpf121vcCXTCpBc1K649eGFr0/prjl9cCHOkNq2xL2imeY8jpkDKapti2mHp8n/dvrk3INKW5Kd/w6ouakmd4EqDjj9oDGeWHBNOmBKla8fUCY+lep8XtgvBcXDfYBVW6sHnixOaFc9gH0QA1z3fQX9DO9uF+Jb0IAAACgNCxLCoWGbwBQAg8//LB+8YtfpC2LRCL6zW9+o7PPPjvjOuFwWJ/97GfV2tqqv/u7v0t77KabbtLGjRsVKvF+6/Of/3xB6y1YsED33HOPbrzxRn3nO99Je+zWW2/NOYT6G9/4xqhl73rXu/Tzn/9cppn9xRnTNLV8+XKdcMIJWrJkiRKJxNBjGzZs0EMPPaS3v/3tOf42AGpFsQIjCZ6sTtQf9EB9o/6gBwAAAAAAAAAAAAAAAACgSlVi9gMB1ABQc/iGOQBUCduxteJ335TjpgcJpgZQ+7IFUZuutOQlac1xXqB0qtQAaskbL1sQ9YrFrq7Y1yLLrcCTljrTE3b0/ksO6nBkcIEhfW+RrXO7p6hta1Rq6pXCsTFGMKTWVnUcO6DvLRoYyis+HJHef4Wrnz/crOYEyZOVbNweiByUwmOczDdGpNbJ9ECVGrf+U/qlcP/Yg7ROUcexNvWvUuP2QEOXFB4jhDgaklqb2QdUsbF64PQ9k6TwobEHmDxFSobpgVoVj0u2PXw/mUy/bxhSJDJ6PQAAAFS/Q4fSj/1CISkaHf53JX4gBUBN+MIXvjBq2Wc/+9msAdSpPv7xj+u+++7Tww8/PLRsy5Yt+slPfqL3vve9RZ1nMRmGoW9+85u6//779corrwwtf/nll/Xkk0+O+7vv2LFDTzzxRNqyaDSq73znO2MGUKe64IIL9JGPfET//u//nrb8nnvuIYQaAAAAAAAAAAAAAAAAAAAAAACgklXi9/0IoAaAmkQINQBUCcu0tPKVs7V091p1zvaWZQqg9o0MojZd6dv3S22bpI6F0k2XDQdRjwyg9mUKol60S1r56wZZTeFi/nooQE/Y0VUXH9DaOXElTa/GktTV4OqD/6dbskzJNMc+wTQNdRwf1wff1K2uiCvD9bInk6a09oi4rvqrLv38NzMIn6xQufWAMRQompFl0QNVKpf6Tx6wxn2R6d7jk7rxTT3Uvwrl/ndgjBf1TJN9QBUbrwe++ETz+C80W/RATbPt9Bf2LSv9vmF4+wkAAADUB9P0jgkBoEQ2bNigtWvXpi2bMWOGPvnJT+Y8xpe//OW0EGpJ+s53vlPRIdSS1NDQoKuvvlpf//rX05Y/99xz44ZQP//883JHfDDvoosu0pw5c/Kaw7Jly0aFUD///PN5jQEAAAAAAAAAAAAAAAAAAAAAAIAyIoAaAFBGhFADQBVp/tPTWvUHaenV0vo52QOofX6wdFNiOIBaGv5502VSXzhzALUvNYh68S5p1d1Ss+VIsyYX55dCQXpCtq46f7vWzoxn7IGuBkcfvOCg3v3KFMUasgfL7J5s64PHHlRXxBn1WMLywycP6uePHanmJAE1lSTXHjilK6LWRPbaPXGEq58fTQ9Um1zrf8Pm1jH3ATujSf3tBT3qpv5VJ9ceeMPeqCxlr90zs1zddjr7gGqUSw986vU9WnAorCMGsp/6P3yco1tPpQdqlvg8argAAQAASURBVGVJsdjwfdtOfwPCMKSGMU4GAAAAUN1Sj/0IoAZQBnfdddeoZe9///sViURyHuOss87SWWedpXXr1g0te/zxx/Xyyy9r/vz5RZlnqRx//PGjlu3cuXPc9fbs2TNq2cknn5z39jOts3v37rzHAQAAAAAAAAAAAAAAAAAAAAAAQBkQQA0AKLMxoksBABVnyxY1x6Q77pVsc+wAal93g7Ssczh42te2yVs+VgC1L2F627vjXqk5JikeL2j6KI7h0Ml+JczsJ2xdEUc/mt+jV5oS6rOcUbdXmhL604yBjKGTvoTpau3Mfl11/nb1hOxS/DooQD498KcZA2P2wMpje+iBKpNP/W9beHDM+ndOjWUMoPZR/8qUTw+sOaJvzB64b95h9gFVKNceOBRx1Dk1NmYPfPF1B+gBAAAAAABQFL/+9a9HLbv66qvzHifTOpnGrjQDAwOjluUSwJ3pOfkEd/saMlxoKhqN5j0OAAAAAAAAAAAAAAAAAAAAAAAASowAagBAAEJBTwAAkIeeHvU0SB+6Qgo5UtgZP4i6JSatXCS9YUd6EHXHQm95S2z8IOqw423vQ1dIq+6WmuO21N8/8d8HeesJO7rqTXu0duaAEoakcc7Z+kOuNrbEpa6QZg5YQ8v3Rm1tbEkqaUpjZFdKkhKGq7Uz+3TVua/q57+dpeZc0s9RMvn2QMLUmD1gm5JBD1SNfOvfyz6g5uTbA3H2ATUnrx4wpOQ4PeCY44wheqCqxWJSIjF8P5n0bj7DSH8cAAAAtSX1Ax+O492vxA+mAKgJvb29euqpp9KWNTU16cwzz8x7rAsuuGDUsrVr1+qGG24oeH7l8MQTT4xadvzxx4+73vz580ct27ZtW97bz7ROLtsHAAAAAAAAAAAAAAAAAAAAAABAGVXi9/wIoAaAukAINQBUkR4jrqVXS51zJEPS1H7pYGP2IOqWmBRNSo4h3XSZt6xtkxdAfdNl3vLoYAZdtiDqsONtx5C33aVXS6vudtV8+HCxfz2Moyfs6KqLe7R2dtILnRzBlVenkZKmtLE1KR1wNLPf1N5GRxtbHSWz9E2mcRKGtHb2gK664DX9/IFmwicDUooeyPR8eqAysQ8A+wDk3QODC8bqgUyVpAdqSCIh2fbwfdv2wgd9hsEbAQAAALUq9bjPvz8wIJmmFIkEMycANe3pp5+WM2Lfc/bZZysUyv8jCeecc47C4bASKRdOWrdu3YTnWEovvPCCOjo60pZFo1G9+c1vHnfd008/XdOnT9f+/fuHlq1Zs0aJRELhcDjnOdx///2jli1ZsiTn9QEAAAAAAAAAAAAAAAAAAAAAAFBiBFADAAJECDUAVAnbsbXs8pg6Zw8vGyuI2g+g9vlB1PcslNYc5933ZQuiTg2g9nXOkZZdKa2+b0CWW4EnMzXKNlxdc1mf1s51MoaOu5Jcw/tH1gDSaY729jna16Qxw2ezjZMwpbVzk7rmki7dt7qJ+pcZPVDfqD8K7YHBRfRADSjVfsAd8Xx6oMbYdnoI9cggQok3AwAAAOqN40ixWNCzAFCDNm3aNGrZggULChorEonoyCOP1Msvvzy07MUXX1QymSwo1LrUXnrpJb3jHe/QwMBA2vL3v//9am1tHXd9y7L0kY98RLfccsvQsl27dunb3/62PvGJT+Q0hwMHDugrX/lK2rLW1lZdd911Oa0PAAAAAAAAAAAAAAAAAAAAAACAEiOAGgAQsMr7hiYAICPLtLT8mZDWvyWeFiCdGkQdMyVTowOofY4hPXx85vFTg6gdSQ0ZAqglyXSl5esly5G8mEKUh6v9TaPDxr1HBsMiNX745J5J6QHk+Y6TMKX9TfJOHCl/mdED9Y36o7AeSC0TPVDtSrMfyBhAPcY49ECVyfRiP28AAAAAwHWl/v6gZwGgxmzdunXUsmOOOabg8Y4++ui0EGrbtvXqq6/quOOOK3jMYorFYlq/fr3uuusuffe73x0VQD1//nx9+ctfznm8T33qU7rrrrv00ksvDS27+eabNXXqVC1fvnzMdbdv366rrrpKO3fuTFv+7W9/W1OmTMl5DgAAAACAOrVrlxQOBz0LAAAAFFtPT9AzAAAAAAAAAAAAQCoCqAEAFYAQagCoIm2vNkn3x9V+2ejwwCn9UmyyFE5mDqDORTQp9YWkWMgbL1MA9e33S22bJDU5Bf4WKIQl6Z//GNIH3xZXV8Pw8tSwyKFlY4RP5hI8OtY4rTFvHpbtiuTJ8qIH6hv1Bz0AegAFcd30F/1H3veXAQAAoPaMd5xn2+WZB4C6sWvXrlHLjjrqqILHy7Tu7t27yxpC/b//+7/65Cc/mbYsmUzq0KFDeu2115RMZn5D7oQTTtBDDz2klpaWnLc1efJkPfDAA7rooov02muvSfKCtz/wgQ/ozjvv1PLly3X++edr7ty5amho0MGDB/Xss8/ql7/8pVasWKGeEUESX/ziF3Xdddfl+RuX1n/8x3/oP//zP0u+nRdffLHk2wAAAACAmnL4cNAzAAAAAAAAAAAAAAAAAGobAdQAgApBCDUAVJPJk9W2qUuS0oKok5L2T/L+HQtJPRGpOZ7/8D0Rb30Njjejd/gPRVoAtURISQDaNhmSE9IHL02qK5o5LNLnh0bmIpdxDEmtA9L3HgipbbMhifoHgR6ob9Qf9ADoAeTNP2b3X/wnhBoAAKB+ua53fGia3gdWOA4EUGQHDhwYtWzy5MkFj5dp3f379xc8XiG6urrU2dmZ8/MnTZqkj370o/r85z+vSZMm5b29E088UU899ZQ++tGPavXq1UPL165dq7Vr1+Y0xvz58/Xtb39bl19+ed7bL7W9e/fqueeeC3oaAAAAAAAAAAAAAAAAAAAAAAAA9Y3vFwJA3SKEGgCqyRFHSNu3DwVBt18mxQ1p36T04MDeiPcznyDqnsjwepI33r7BIOrIyABqyQsrQdm1bTGlX5v6wKVxHYyO/dxsYZL5Ps81BkMnfx1R2xZLovSBKnYPuJKXLDrOOPRAZWAfAPYBKEUPsB+ocY6Tfj/1zQDDqMwrZgIAAKA0UoOoQ7xFCKC4ent7Ry1rbGwseLxM6/b19RU8XikZhqEPfOADuuWWWzRz5swJjTV79mx1dHToqaee0g9+8AN9//vfV39//7jrnXXWWbr55pvV1tamEPt4AAAAAAAAAAAAAAAAAAAAAACAylBpmQ4EUANAXePbhwBQTebPl9atkxxHbZukfVHpI1dkDg7MJ4h6ZAC1zw+i/u69IwKoQyHJsgr6FTBxS7abOrYnqa6oo3KczhmSju0xtWR7WLIq7IS2TtED9Y36gx5AMXsgl6BqeqCK+S/+p74pMfJiMpX2hgUAAABKI/W4z3UJoQZQdIlEYtSyaHScK2iNIVMIdTyex9VXy8h1XX3ve9/Tvffeq7/927/V3//932vKlCkFj/fiiy/q+9//vu6+++6cAqglad26dfrnf/5nvfLKK/roRz+qyZMnF7x9AAAAAEANGfl+sGFIU6cGMxcAAAAEK9N7xHx+EAAAAAAAAAAAoLQq7f0YAqgBoO7xDXMAqCannirdc48Ui2n7FOmfL5GXCphFLkHU2QKohxjedi59UTry0OAy06y8k5s60RNxtfTyAe2a5Ko1JnU1qKQBpIak1pi0a5Krpe8Y0KpfNao5Tu2DRA/UN+oPegD0APJiGKPDBgEAAFAfDGP08Z9hDL+2GxnrRWEAKA5jAu8lZVrXLfN57dVXXz1qm319ferq6tLGjRv12GOP6c4779TLL78sSdqzZ48+97nP6c4779Rdd92lN7zhDXltL5FI6F//9V/15S9/WbZtj3q8qalJs2bNUlNTk7q6urRr1y45jjP0+JYtW/QP//APuu222/Tf//3fuvjiiwv4rQEAAAAANWXkBaJMU5ozJ5i5AAAAoLJkuCAoAAAAAAAAAAAAiqjSMtrImwAAiBBqAKgup58uua62T5EWf1Q60Dh+6OBYQdTjBlDLG/9Ao7e99f81GEQdjUoNDQX8ApiInrCjpW/tUecMV5KhqG2oNeaqq8EtSfikFzrpbUeG1DnL1dIrYlr1YLOaE2YJtojx0AP1jfqDHgA9gLzFYun3TVNKDbHyQwgBAABQezKEl0oaDqDmOBBAkYXD4VHL+vv7Cx4v07qRCgjQb2pqUlNTk+bOnaslS5bo//7f/6v//M//1M0336ze3l5J0tatW/WWt7xFDz74oM4777ycxo3H47rqqqv0q1/9Km15Y2OjPvCBD+h973ufzjjjDFmWNfRYd3e3fvOb3+hb3/qWfv/73w8t3759u9761rfqrrvu0lVXXVWE3xoAAAAAULVMU2ptlbq6gp4JAAAAKs20aUHPAAAAAAAAAAAAoHYRQA0AqFCEUANANTn6aG2PxrX4I14wtJPjeUamIOpcAqh9jjEiiNowJMfJb+6YENtwteySQ+qcnkxLHo8mpWZJ3SXIBG+OeeOnbrBzelLLLunR6vumyHIr7ES3xo3VAy2SukrQAy30QMWg/qAHQA+gKEa+MeC6vFkAAABQb/zjPy4yCKDImpqaRi0rdgj1pEmTCh6vVAzD0I033qjTTjtNb3vb24bmffjwYS1dulTPPPOMpk6dOu44H//4x0cFUC9YsECrV6/WqaeemnGdlpYWtbW1qa2tTd/5znf0sY99TM7g+3fJZFLLli3TwoULs65fbjNnztQpp5xS8u28+OKLio28MBcAAAAA1LOjj5YGBrwbAAAAIEktLdLs2UHPAgAAAAAAAAAAoDYRQA0AqGCEUANAFdm+5Skt/qh0IJp7ALUvNYg6nwBqX1oQ9U+lI+08B8CEWJKWb3a1fmZ3Wu2TctRTolL0RKSI7Sokc2iZ6UrLN0+WFSakptyy9YAjV/0hyVBaJumEGZL6Q1KDLZka3iA9EAzqD3oA9AAK4rrjXzzGNMd+HAAAANVp5AdVTFOyLO/fti2FeIsQQHFNnz591LLDhw8XPF6mdTNto1K8+c1v1uc+9zndfPPNQ8u2b9+ur3/96/riF7845rp/+MMf9F//9V9py6ZNm6aHHnpI8+fPz2n7N9xwg2KxmP6//+//G1oWi8V0ww036Pe//30ev0np3HjjjbrxxhtLvp1TTz1Vzz33XMm3AwAAAABVIxyWTj5Z2rdP6u2VEomgZwQAAICgNDRIzc1SDhfQBAAAAAAAAAAAQAEIoAYAVDi+YQ4AVSKejOusjX9XUAC1rzciDYQlu8D1/SDqs/66W9t+ElXEIbCunNq2RiVJ7ed74ZNJOdrXKLklOu90DWlfozSj31FIpkxXuv2xlqF5oPxG9oAjV10NrhIl+r9iwpS6Gly1xrwAUnogWNQf9ADoAeTNMLygQdsOeiYAAACoBIbhhVGHw1IsFvRsANSY2bNnj1q2ffv2gsfbtm1bTtuoJB//+Mf1xS9+UYcOHRpa9v/+3//TF77wBRljfIjw61//+qhl//Iv/5JzALXvpptu0g9+8AM988wzQ8vWrl2rp556SmeeeWZeYwEAAAAAaoxpSrNmBT0LAAAAAAAAAAAAAAAAoHYRQA0AqAKEUANAlYiEIvrrfXN12/QXJjROoQHUPseQ/vovpiL9iYkNhIK0PW9IiSbdcOFh7WsqXQC1zw+intXn6D9+O1ltLxmSCKgJkt8DN154WF1RLyDUNaRin/K7kmQMB5BOG3B1Oz0QOOoPegD0APKSTHoB1K7r3RzHuwEAAKA+pH5IxHWHQ6gNQ0rw+i6A4soUmPzKK68UPN6rr76adt+yLB199NEFj1cODQ0Nuvjii3XPPfcMLdu7d6+ee+45nXrqqRnXSSaTeuihh9KWGYah6667Lu/tm6ap6667Tv/wD/+QtvzBBx8khBoAAAAAAAAAAAAAAAAAAAAAAKBUCKAGAFQJQqgBoErYjq0XjYOaFJd6I8HNY1JcenGqK9u1ZZU6ARkZnbPTVF+49AHUPteQ+sLedgktrAxLXrU0p8/U7ianJMGjvtQA0jl9ppa8atEDFYD6gx4APYCcjQydHvnGhR9CCAAAgNpjGOnHf/6xn+t6FyrhOBBAkZ100kmjlm3ZsqWgseLxuLZt25a27Pjjj1coVPkfbzj22GNHLXvppZeyhlC/9NJLOnz4cNqy448/XjNnzixo++eee+6oZc8880xBYwEAAAAAAAAAAAAAAAAAAAAAAGAcBFADAKpI5X9LEwAgSbJMS8t3zNL6Y/dJCiaIelJcao1Jy582ZCUJIAzC9kmOFi/rVW9YMlS60MlUhqTesLR4WY/W/3CSjuwloCZIPRFXSy/t164mV41Jrzal5EpqSkq7mlwtvfSwVv2qUc3xCnvho45Qf9ADoAeQF9tOf4Ng5H2JNxAAAABq1VjHeVxcBkAJLF68WKZpyknZxzz55JNKJpN5h0c/+eSTSiQSacvOPPPMosyz1KLR6Khlhw4dyvr8/fv3j1pWaAB1tnUPHDhQ8HgAAAAAAAAAAAAAAAAAAAAAAADIggBqAECVIYQaAKpI255p0kZD7Ze6SppSrIx78YakF0B9+/1S22ZJTZxslNv2yY4Wv7dPB6KSa5QngFoa3I4hHYhKi9/bq/U/bNKRhwmiDkJPxNXSywfUOdNRf8gtefCorzcshR1XnTMdLb28X6t+GSWANADUH/QA6AHkzXXHfpNgvMcBAABQm0IhgqgBFN2kSZO0ePFirVu3bmhZb2+v1q9fr3POOSevsR599NFRy9785jdPeI7lsGfPnlHLZsyYkfX5mUKr+/v7C95+X1/fqGVNTU0FjwcAAAAAAAAAAAAAAAAAAAAAAIAMCKAGAFQhQqgBoJq4rtqeN/T4PFf/dl55Nx23pGWdUtsmSZbhBZWgbOKmo7Ou6y17ALUvNYj6rOv6te37UxRxCKIuJ9twtezy3qHg0a6G8m7f254XQLrs8phW/3KSLLfCXgipYdQf9ADoARTMtof/bRij75sc0wEAANQFw5Asi+M/ACX1tre9LS2EWpLuvvvuvEOo77777oxjV4PHH3981LI5c+Zkff7MmTNHLXvllVfkOI7MAvbZL730Uk7bAAAAAAAAAAAAAAAAAAAAAAAAQIEIoAYAVCkSRAGgmkQi6jjJ1Y9OlyxXSpbxPMRypR8tks7dIbW9ZEmNjeXbOBSR9L7Ntv7tjN6yB1D7/CDq921uUqRhUkCzqF+WpOUvmHpsblfZg0d9XQ2SIWn5C1NkRaPBTKJOUX/QA6AHUJB4PD10OplMfzPDMKRIpPzzAgAAQOnF4+n3TTM9gJowagAlcO211+pLX/pS2rIf/OAH+sIXvqBIjuef69ev1xNPPJG27A1veIPmz59ftHmWytNPP62NGzemLWttbdXJJ5+cdZ05c+Zo8uTJOnz48NCygwcP6vHHH9d55+V/Rdr7779/1LITTzwx73EAAAAAAAAAAAAAAAAAAAAAAACQAQHUAIAqRgg1AFSRjpadunGxqwNNkmN4IYDlOPw35G3vQJN042WSHnLU1mWVYctIdfrBiOT0SkHmwziD87CofxD6wlJ3ONiT/u6wq76w6IEAUH/QA6AHkDfTlBwn+33DqLw3OAAAAFAchpH9wyOWJYXD5Z0PgLrwute9Tm9605v06KOPDi3bu3evvvnNb+rmm2/OaYxPfepTo5bdcMMNRZtjqdi2rZtuumnU8re//e0Kj7HPDYVCWrJkie6555605V/60pd033335TWHl19+WT/+8Y9HLX/rW9+a1zgAAAAAAAAAAAAAAAAAAAAAAADIoNLyGQigBgDkiRBqAKgStmPru0fu0oEmKTEYQmy4kozSBlEb/nbkbfdAk/TdxUld8RtbllthJ0Q1LG46uvH8LrlBBlBLck3pxvO79O6XGhRxAp5MnfF7IOj/7A49EAjqD3oA9AAK4rrpbxo4zug3EXhTAQAAoHZl+kCLZUmhkHcDgBL49Kc/rbe97W1pyz772c/qkksu0Zlnnjnmuv/+7/+uBx98MG3Zcccdp7/5m7/JadvHHnusXnnllbRljzzyiC688MIx17v99tu1cOFCXXLJJTltZ6RYLKbrr79ea9euTVtuGIY+9rGPjbv+0qVLR4VQ33///br11lv1T//0TznNobu7W21tbYrH42nLTznlFJ122mk5jQEAAAAAAAAAAAAAAAAAAAAAAIAsCKAGANQAvmEOAFXEyHASUsog6tQA6vR5mNLkyRIh1GVjGa6O6z2g9ZH4+E8useN6w7ImTaH+ZUYP1DfqD3oA9AAK0t8vJRLD95PJ9PuGIUWj5Z8XAAAASq+vz7sIic+ypIaG4fvhcPnnBKAuvPWtb9U73/nOtFDlWCymiy66SD/+8Y/1jne8Y9Q6iURCt956qz7zmc+Meuzb3/62wiXeZ61bt0433XSTzj33XF133XW66qqrNHv27HHXSyQS+uUvf6l/+qd/0gsvvDDq8Q996EM699xzxx1n6dKl+upXv6qnn346bfmnPvUpbd68WV/+8pfHnM9vfvMbffjDH9aLL7446rFbb7113O0DAAAAAAAAAAAAAAAAAAAAAABgDJUWQA0AQIEIoQaAKmGZlj68dbqeOeGg9jdJCXP4McMtTQbgyADqsCNN75M+/LQly+RPSDlZkn77yLE67+Kt2tAaXPjkqV0R/faRY2WZVmBzqFf0QH2j/vB74IKLX9EzrbHA5nF6V4N++8gx9EAA6AEUxLK84OlUI9/c4M0OAACA2mSa6SHUqcd9kYj3OACUyB133KF169Zp+/btQ8t6enp0xRVX6Oyzz9Y73/lOzZ8/X/39/XrhhRe0cuVK7dixY9Q4H/vYx/T2t7+9bPN+/PHH9fjjj6u9vV0nn3yyFi9erFNOOUXTpk1Ta2urDMNQT0+PXnvtNT399NP6/e9/r/3792cc66KLLtI3vvGNnLZrmqa+973v6cILL9Thw4fTHvvBD36gn/zkJ3rrW9+q8847T3PnzlVjY6O6urq0ceNGPfzww3r22Wczjnv99ddnDP0GAAAAAAAAAAAAAAAAAAAAAABAjioxk8F1x38OAAAZkCAKAFWk7YWQ9IL0scuUFkTtlOgcxTEkc/Bcww+g/vf7pbaXDOlEggfLzpKOiIf1vBtXMoDz0pDrbV+WJbnUPxD0QH2j/nWv2bW09nfH6YILX9IzLeUPIT69u0Frf3ecml3LS0RG2dEDyJtpevttn+NItp39cQAAANQuw5BCIe9WiR96AVBTZs6cqYceekgXX3yxdu3alfbYk08+qSeffHLcMa655hp961vfKtEMx+Y4jjZs2KANGzYUtP673vUu/eQnP1FjY2PO65x11llavXq13vWud40Koo7FYrr33nt177335jzelVdeqe9973s5Px8AAAAAAAAAAAAAAAAAAAAAAAAjVOJ38QigBgBMACHUAFBNBgbUttX7px9EHStxZpxjSA12SgD1JkkNhjRtWmk3jDS2XC07fYM2TEloRiKsvZGE7PFXKxpL0oxEWBtaE1r2pt1a/cypslSBJ8g1jB6ob9QfvmZJazun6vTXr9Mr0fKFEB8z0KC1nWepuZlTyKDRA8hLKCT19w/fj8XS3+QwTWnSpPLPCwAAAKXX3e1dhMQXCknh8PD9SvzwC4CacvLJJ+vPf/6z/uZv/kaPPvpozuuFw2H98z//sz7zmc/INM0SznDYpCKdGx911FH65je/qauuuqqg9ZcsWaLOzk4tX75cv/vd7woaY/LkyfrqV7+qG264oaD1AQAAAAAAAAAAAAAAAAAAAAAAoMr8Dh4B1ACACSI9CgCqyaFDkgaDoCVd11b6EGpJCtkpAdSSZNteaAnKxpK0fPc8rZ+yWX2mo3KfCrqSYqarJsfU8t3zZIXC466D4qIH6hv1R6o10w8qYboKuYaSRum7IeQaSpiu1sw4pLb9M0u+PYyPHkDOLMsLmk69PzKEukyBXgAAAAhA6rHfyA+8hDm3B1B6Rx11lH7/+9/rf/7nf3Tbbbfpj3/8o9wsH3abPHmy3v3ud+sf//EftXDhwrLO8z/+4z9044036oEHHtDvfvc7PfHEE9q1a1dO686ePVsXXXSR3vve9+qv/uqvZFkTe+PuuOOO029/+1utXbtW3/3ud/XAAw/owIEDY65jWZZOP/10XX/99br++uvV2to6oTkAAAAAAAAAAAAAAAAAAAAAAADUNQKoAQA1igRRAKgmyeTQPx+fJ/WVKSekL+xtbyiEmpORQLTtn6nHp3Tra0e9KkkyJTll2K4fS9gdSupD2+YSPhkgeqC+UX9IUsf0vWpfsFmupBnJsPaFEiUNIQ65hmYkw3IltS/YLEn0QMDoAQAAAAATZppSJBL0LADUCcMwdM011+iaa67Rnj179Oc//1kvvfSSenp6FAqFNGPGDJ188sk655xzFJngvmnr1q0Fr3vKKafolFNO0Sc+8QlJ0s6dO/Xiiy9q69atOnDggHp7e+W6rqZMmaKWlhbNmjVLixYt0hFHHDGhOWdzwQUX6IILLpAkbdmyRc8884z279+vrq4uxeNxNTc3q7W1Vccee6zOPPNMTZo0qSTzAAAAAAAAAAAAAAAAAAAAAAAAqCsEUAMAahgh1ABQhW5eIn3tfEnlOlcxBrcn6StryrRNjNIxfa9Wzt6tlmRI3SEvkLzUIbRmyr9bkiGtnL1b5x5qIXwyIPRAfaP+8MOHHXkvDBpuaUOI/fBhf2hHLiHEAaMHAAAAAEyYZXkB1JX4QRgANW/WrFm6/PLLg55GTo444ggdccQRetOb3hT0VLRgwQItWLAg6GkAAAAAAAAAAAAAAAAAAAAAAADUtkr83h0B1ACAIiKEGgCqiWnq5rdIXztPcg2pXKcGrpQeRP17U2psLNPWIUm2XK2Yt1uOIUVdS0pqKIS2HFqSIUVdS44hrZi3W1f0HSWrbCnokMbuAUOl2R+kVpgeCBb1R2oPpFbHkDTZttRVgr8Jk21Lhoy0ZnBEDwSFHkBBBgYk2x6+77pSODx837KkhobyzwsAAAClZ1npH3gxTSka9ZYDAAAAAAAAAAAAAAAAAAAAAAAAAIBhBFADAOqAGfQEAAC5u/nCRNkDqH2uvO1+7Xzp5iVOmbcOS4ZWvniGFvU1S/JCaFuSIZW6Eo6Gw2claVFfs1a+eAahkwHI1gOuSrc/8MemB4JH/TGyB3wDhq2eULLoJ3ampJ5QUgOGnbacHggOPQAAAAAgb4YxfLMsAqgBAAAAAAAAAAAAAAAAAAAAAAAAABiJAGoAQJ0IBT0BAEBu4sm47jw5FkgAtc+VJEO68zRHX1jXqwjXMiirZkmrNpyspSf/RZ2TDitulicMPG44ijqmFvVO1qqNJ6vZTkpKlmXbSDeyB8qa/+m69EDAqD9G9sCA6ag75NWi2McGrrwW6w4lpaT4O1Ah6AHkLRbzbr5Ewrv5HCf9cQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHpBADUAoI6QHgoAVSISiuiLunjCCYPmRM8tXOmLT7USQB2QZjukVRtfp6hjqtcqTwh1r+WFUK/a+Do121y/Imh+D8yJR9QdSpY8h9gPIJ0Tj9ADFYD6Y2QPSN6hQSkCiP0x6YHKQg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE0QANQCgzpAgCgBVwnZs3XtUn2b0SkaB5wimKzXYhQdRG640o1e690RHdtGjDpGrLx21Va9EB8q6zVeiA/rSUVvLuk1kt6b1oHZH4gq7Rsn/n+hKCruGdkfiWtN6sMRbQy6oP0b2QKn6wB+bHqg8xeyBsV4OpwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQcwigBgDUoVDQEwAA5MYyLa18/6+09MZZWqeY9k2S3DzOYUxXaolJ0aQ0EJK6GyQnj/X9AOqz9hhauf9sWWH+hATh5qOf19fmvirJC40sxymj3yZfO+pVyTL1lVdPKsNWkU3HtN1qP3azXMNQo2MpZiVLuj1XUqNjyTUMtS/YLIUstR2YXdJtIjvqj3x6INe/E2M9jx6oPPQA8hIOS5Y1fN800+9bVvp9AAAA1A7DSP8QzMgPxFTiB2QAAAAAAAAAAAAAAAAAAAAAAAAAACi1Svx+HQHUAIAyIEEUAKpIc0OzVs39uJa+/FWtmy3tm5xbsGBqALU0/DPXIGpDgwHUu6RVnQvUfFJrgb8BJuLm2c/qazO3SvLqXq5TRn87hqSvzd0qhSP6yu7TyrR1pOpo3qH2uc/LkaEBw1aPlZQpySnhNk1JPVZShgxFXUvtxz0vRaNq65lXwq0iE+qPfHrAUH4BxMryXHqgstADyFssJiVHBJUnEsP/DoelaLS8cwIAAEB5WJZ3ERLfyA/FcDESAAAAAAAAAAAAAAAAAAAAAAAAAEC9IYAaAFDHzPGfAgCoJM3/9Fmtuq9JRx5WTqmCIwOofdGkt9zM5dzDlY48JK36hanm408pZNqYoLgc3Tn1FUnlDaD2pW7zzqmvKF7S2FtkYsvViqlb5cjVgGGr2xoOkCzVyxqp43ZbCQ0YtpzBedhl78L6Rv0xVg+MPKnzw4czGWv5yMdSx6UHgkcPAAAAACiqSCToGQAAAAAAAAAAAAAAAAAAAAAAAAAAUD4EUAMA6hwh1ABQbZqatOYTV2r3JCniSMYY5w/ZAqh9uQRRG663nd2TpTUXHCmFQhObPwoSkal1Wy7WJCcUWOSjK2mSE9K6LRcrwiFE2VkytHLb6zUn2ZAWPFrKUPKRY3dbCc1JNmjlttfLKln0MTKh/sjWAz5/rzxW+LDpSpZrZP27n7pupr08PRAsegAAAABA0TQ0SOFw0LMAAAAAAAAAAAAAAAAAAAAAAAAAAKB+EUANACgzkkQBoMp0bOxQe+MjcsMhTe1P6mCjFDcld0QO4HgB1D7/8e4GyRkxhh9APbXfG7/99O3SHw6pbWtj8X4h5OyJY/vVdFRSh5tG17scDFdq6k/qiW2P60h6IBBrju3XrmN6FLalhDkYElziXnAH/8eQFHakXXaP1uxYy34gANQfI3tgpIyXBxjsEdPxH3e9n67k+Cu46U/P1lb0QPDy7oGUYtIDdSoel5IpJwS2nX7fMKS9e8s/LwAAAJReX5/kOMP3bds7/ps2TWpuDm5eAAAAAAAAAAAAAAAAAAAAAAAAAACUmxFAaNdYCKAGAASAEGoAqCIdGzvU/kC7HNeRpk+TsWevpva7o4Kocw2g9mUKok4NoDYkyTTlSGo/r1typbat0SL/dhiLbbhacVKfTMPUjH5H+5rS8iJLzpA0o18yDVMrTurTFVsbZAWRhF3H/B6QYag1Ju2PukpmTJwdm6H8e8c1JMuRWmOGZBj0QACoP0b2QFeDmzGEOJPh8GFpUsJQb3gwhNhJCSEeR5geCFypesClB2rbyDcdeBMCAACgfrmud5GSXbukgQHphBOCnhEAAAAAAAAAAAAAAAAAAAAAAAAAAKVHADUAAJKGc6gAABXOdmyteHqFF0AtSaYlTZ8uQ15QdHhwsTFGALXpSpe86P0cKZr01jMGHwunBlCnnEA5hrRiYZ9sg5OYcrJcQyvXtGrR/rCSllFQArXherUvqHSulLQMLdof1so1rYROBiC1B+LWcGB8Pkx3+JYvx5DiluiBgFB/pPaAKUOtMWPob7/PMYYvSOELpYQPz+41Nfewqdm93hJTGjWGa4zuLz982BR/B4JUaA+Y4/TApET68+kBAAAAoA50dUl79gQ9CwAAAAAAAAAAAAAAAAAAAAAAAAAASosAagAAhhBCDQBVwjItrbxypRbNWTS80DQly8ppfdOVvn2/dOdq72deIaQpJ1EEDwanOWHqPS9E1RdyZSi/MGnDHQwUlwpety/k6j0vRNWc4PAhKKk9II3//+PU/5eaI3rAX9cY8bxM/OfSA8EqpP5+bbPVX6L+1aQ5YWrV/2YOIfZDg10NhxC3xA1Zg/Wb3WuqOe490Bw3hkKILdd7ngbX81vDH29k+PCq/22lBwKUbw9MiqcHUGfqgYhj0AMAAABAPdq9O+gZAAAAAAAAAAAAAAAAAAAAAAAAAABQOgRQAwCQJhT0BAAAuWtuaNaqq1dp6d1L1bnzaenAAbm2rYONUtIcDgrtbvB+RpPeTz+Aum2Td9//edNlwwGDAyFvPT+gOGlKBxulqf2S4TiSYWjRXlOrfhVWc7yvXL8yUnQsSOjm18c0dcDQwairhCnJHQ6aHMkcfMx0MofVOoZkD/aNk2UMP4A67EhTBwzd/PoeNR2OqW1LuFi/FvKQqQey1c///7JrSKFxesBwvRUyvUThr0cPBK+g+ksKudnrn6T+VadZ0qp7wlp6eVKdM121DEh7m9Kf40pqSnrHATFTOvGANKvXSXvOXEnT+qSXp3rPi5tSb3j0OC0DXojxor0GxwAVIt8eiFvSifuy98CuKa5CrkEP1KpkMv1NCMfxbj7DSL8PAACA2jHyWNAccTGZgYHyzgcAAAAAAAAAAAAAAAAAAAAAAAAAgHIhgBoAgFEIoQaAKjMURP3ZU/R0MqmDjfLCiEfwg6ibEukB1L7UIOq+8PDzUyVSgqjP2OVq1S/Dao7bxf2FkBPbcLXi1LgcuTJcaeqAdCDqBUtm4xpSY2I4oNaQNLNX2jvJC5W0XO+WGGeMsO1tz3BdOZJWnBrXFc9LVrb0a5REvj3gSpIhRezhIOGRPWC63uP94cwBxJLXPxF6IHCF1n9S3AuaHrw7qv6GvMepf3VpTkqrVod11bviWnvU6OoZrtQfkhpsV2952VA4y5UGWuPSqfukh4531B8aDq5P1R2VLthmaNVqjgEqSa49EHakxbsMzTuUvQfe9xfpS+fTAzVrZOi066a/McGbFAAAALWLYz8AAAAAAAAAAAAAAAAAAAAAAAAAQD0igBoAgIwyxJYCACpd8+//pDu+u1NJM3MAta+7QVrWOTqA2te2yXs8UwC1L2F6AaV33CM19zvZn4iSslxDK38Z0aK9hf3pNiQt2m3onJ2mFu02VOgp8qK9plb+MkL4bADogfpG/ZGZ9wKjIS88WIM/C61O9nF4IbNyjd0D+b4GTQ8AAAAAdSQcDnoGAAAAAAAAAAAAAAAAAAAAAAAAAAAUFwHUAABkRQg1ymLv3r26//77dfvtt+tLX/qSvvrVr+r73/++/vjHPyqRSAQ9PaC6JBLq+cj79KG3O7IcKTxGLnRLTFq5SOpYmPnxjoXe4y2x7GOEHclypA9dIfUYcU5oAtQcN7TqnohO3WfqYNQLBzezlMMPkewPS47hhc/OO+SdHM87ZGjRbkOOISWssQNLTdfbzsGodOo+U6vuiag5XmEn2XWkkB5IWGP3QH+YHqgWhdS/b7x9gEn9q1FPxNXSd8a1YYar1n7vb7Vfc786LTGpISn95lhXO6ZkbpQdU1zdf4KjhuTwsUDqOGFHau2XNszwttcT4RigUuTcA47UOXvsHvjKG+kBAAAAoK4YBgHUAAAAAAAAAAAAAAAAAAAAAAAAAIDaQwA1AABjCgU9AdS2u+++W7fddpsee+wxuVkOhKZMmaJrrrlG//iP/6gTTzyxzDMczXVdvfDCC1q3bp2efPJJPfnkk1q/fr0OHTqU9rzrr79ed95554S29bnPfU6f//znJzTGWLL9N0d16/nFT7X0vNfUOce7kkBrv9TV6AWJpmqJSdGkFz5602XesrZNw493LPSWO4b3PEnqbkgfww8eNCV1zpGWXi2tesBSs9lYql8P4wk7kpWUNJw+brpeHX1+eGQa05RCKU1iOpJsuanPN6TU1UaF21qm1NQkhbmGRaDy7IGhMmbpgaF16IHqkG/9/eXUv2b0hB0tfdshdc6QJNM7Foi56mpwh44FWuKGoo4hmZJrOOqc7UqmqXm9w7XbMclR50xHIVeSaSrqSIq76o64w+HDMUOm6TVR52xp6ZW2Vv16ippHHnSgrPLpAdtw5RrumD0wKWHIMg16oFYlk97NZ9uSk3IVG8OQQrw0BAAAUJNSjwN9oVDlfYgGAAAAAAAAAAAAAAAAAAAAAAAAAICJqrTvzpEBCACoQCQNoSR27NihZcuW6Xe/+924zz106JC+//3v60c/+pE+/elP69Of/rSMMh/I/eIXv9Djjz+uJ598Uk899ZS6u7vLun0gVz2xHi195G/VOWd4WaYgaj+A2jcyiDo1gNo3Mog6NYDa1zlHWvr2Pq16ep6ak1axfz2Moydka+l5O7ShVWpNWOqKOEoMpsSa8iJpjcGbBmvbmDTkGFLnLEc6GNa8/pB2NCbVOTUpU4YijqvkYJH9dnAHx/MXhB1DrQlTG2ZKS6+IadUfqH9QCumBiCOZMrL2QGNSGgh5Y9ADla2Q+k9KGkqOsQ8IO65s9gFVw++BztahKkmD/2pNuOqKOGpKGoq65vDDhis3Sw+4fpFN78lRV1LCUV/IVWvCHAof9nXOcumBgOXdA4YryRm7B0xzKLGeHqhB/f1SLDZ8P5FIDyM0DCkaLf+8AAAAUHr9/ekXIDHNyvsQDQAAAAAAAAAAAAAAAAAAAAAAAAAAE1Vp350jgBoAUKHM8Z8C5Gfz5s0655xzcgqgThWPx/WZz3xGy5Ytk23bJZpdZsuXL9e//du/6ZFHHqmZAOo3vvGNQU8BRWY7tpb95Cp1Tu4d9ZgfRG05owOofX4Q9fveNTqA2hdNeutbGQKofZ2zXC17w3bZBic55WQbrpad+5o6W70QQVOGWuOmwimFNDUcIitJLXFT4cFQSVdS59SYnpg2oM6pMfnVs1xDLfHhShtKr3vY8bZjDo7c2RrTsnNfo/4BKLQHrHF6IEwPVIVC6x9xxt8HNFP/qjCyB0YyZWhq3FTUyXyKl60HRoo6pqam1HwkeiA49AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQggBqAAByFgp6Aqgt+/fv1yWXXKKdO3eOeuyss87SO9/5Ts2fP1/9/f3avHmzfvKTn+i1115Le95Pf/pTzZo1S9/61rfKNOvgzJkzR4sWLZrwOJ2dnaOWffCDH5zwuKgslmlp+Z55Wu9mDpB2JNmmFDelaJYxHEN6+PixtxM3vXEcZQ6hNl1p+TOhoWBblIflGlr+covW///s/XmcXHWd7/G/v+fU1t1JJyEJhEVkk0XQEBZBUIYBFMVrtBy1nYmjQ+DnMA9sx58z98GduXNnuf6uztzrddS4cYW4DFHiII3OCAqDouAYBY2NQsKSsENCtu5Ob7Wc8/39cfp0V3UtXVVdXUvX6/l4NJ06Ved7vs3n06fOqap+nxWT0/UPQ2iHYr4yTv6J57KpEMpx159eZiW9nCgM+U/4jpSWhmN+3vLZ4bPSVP2fWkb9m6DWHph0Z2pOD7SvWuufcirZBxiZtEP9W1yxHpjNlAgNDpXqgWrGoQeahx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAphBADQBAVQihRl196EMf0rPPPpu3bOnSpbrlllu0fv36gsd/4hOf0Cc+8Qn9/d//fd7yz372s7ryyiv11re+dSGnO6eVK1fq3HPP1YoVK7R169a6j3/dddfpuuuum9cY27Zt0+tf//q8ZUuXLlVfX9+8xkVrSv77Lmm/1H9VfhB1VtL+HskaaSwWLOtNVz/+SGxm/f090qqx/CcKx0qb7pSSz2SkE2r8IVCz5Au9kqT+c/aWDaENw2erMTuEuFT47KZfHzU9DzQePdDZqD+K9UAj0QPNRw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg4xFADQBA1QihRt3cc889uv322/OWxWIx/ehHP9J5551XdJ1oNKq/+7u/0/Lly/XRj340776PfOQj2rFjhyKRxrTpsmXLdM455+i8887T+eefr/POO08nnniiJOm+++5bkBDqerjpppsKlvX19amnp6cJs8GCe+wxJfcF/wyDqHMDqEO1BFHnBlBLwXi5QdTTAdQ7Jbk1JFyjLuYKoe3OmqrDZ0NhCO14xBI+28Logc5G/dGsEGJ6oHXQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOhYBFADAFATQqhRNx//+McLlv3d3/1dyQDqXH/+53+u73//+7rnnnumlz355JP65je/qQ984AN1nWcx27dv1wknnCDTageVcxgdHS0ajn3ttdc2YTZoiOFhSVNB0JL+7Cpp/5L8AOpQNUHUswOoQ2EQ9ZGj0hfunNmufL/6uaNuSoXQrkg7MprffizhO4qnbd44hE62Hnqgs1F/NDqEmB5oPfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOk6bZQUCANBKnGZPAIvDI488ovvvvz9v2apVq/SXf/mXFY/xyU9+smDZl770pXnPrRInnnhi2wVQS9K3v/1tjY6O5i0766yzdMEFFzRpRlhw2ez0P89/QRqPFQ+gDo3FgoDpckoFUIesCbZz/gu5C7nqTrMlX+jVpl8fJSenFPMNny02DqGTrYse6GzUH8V6YCHQA62LHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDHaMWsQPLYAABthBBq1MWtt95asOzqq69WLDZH+m2Oc889V+eee27esm3btumpp56a9/wWq5tuuqlg2TXXXNOEmaBhpk42nl8qrbtOGq3gV6xcEPVcAdSh0ViwveeXVjFXLLiFDp8kdLL10QOdjfqDHgA9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEWPAGoAAOaNEGrUxQ9+8IOCZe9+97urHqfYOsXGhrRjxw79/Oc/z1sWj8f1x3/8x02aERrC2ukA6gNdkq3wnKhYEHWlAdRSsJ0DXQRRt6Lc8Elffl3G9OUTOtlGcnvAqj4vSlhZeqBNUH8sVAgxPdA+6AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsWgRQAwBQF5FmTwDtb2xsTL/+9a/zlnV3d+ucc86peqw3vvGNBcvuv/9+/dmf/VnN81usbr755oJl73znO7Vy5comzAaNUksAdSgMnO5NVxdAHcoNot7+Zem4w4erGwALJrnTaL+3RNe9cUhdWV+9mZlrTFjXyjelT1aNleTPhFePRH1NRKQv39+r5BNGEnVuB8mdRuPppbr2kkPqyholvNwdxBwvVszqgUnXaiJiddNPVyi5mx5oB2Xrb6zm7AF/5jHUvz0ldxppYpn6LxqSX7TeZXrAmrx9gCQ5Mtr0n8uVfIYeaBcle8BIcz8P2Kn9wAx6YBFJpaRsdua25+XfBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaFUEUAMAUDeEUGPefvOb38ifFVx33nnnKRKpvr3OP/98RaNRZTKZ6WW/+tWv5j3HxSaTyehf/uVfCpZfc801TZgNGiWdTevcP60tgDo0FpMmo5JX4/phEPW5fyo9962MYr4z90pYcM93Z/XXrxuWb6SxqCTNBFHPGT+b0wsjUX9qfemvXzestz4b1XHjHCq0g5Gor1tOGZeRNByzUlrTQcS+yu8zcu+bdK2GY1ZxX7rllHG9/elYXqg5WlO5+ltJ/pz7fCvJUP82l9wd0+3HR3XvcelZ91T/ouXvPx9VcndMkleXuaExkrtjuuP4mO45LjXvsS5/PkYPLBa+n//mxezbxvDmBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaD0EUAMAUFekymHedu7cWbDslFNOqWmsWCym4447Lm/Zrl27lM1maxpvsfre976nl19+OW/ZCSecoCuuuKJJM0IjxCIxvWtH7QHUoVoDqEPWSO96VARQt4jnu7Na9+79OpCYOTEdiwahtNXIDaCWpAMJq3Xv3q/nu9n/trqRqK++K4a07ai0Jtzgd3Q4ZjXpVvdiRRhAbI004Urbjkqr74qhqnsJjUX9Edpy8oRuO3my6trPNula3XbypLacPFGnmaFRBk6Y1L3Hzj+AWpLuPTalgRMm6zIWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUBUCqAEAqLtIsyeA9vf0008XLHvlK19Z83jHH3+8nnrqqenbnufp2Wef1UknnVTzmIvNzTffXLDs6quvlmnFA2bUTTqb1nde3exZBL7zaumzD6UIom6y57s9rXv3kA4krGafmgaB0v7cV5uwhQHUU4ung6i3f2u5jht36zVt1NFI1Fff5Ye17cishmJBF1hJmgoiVnrqgeVeu7BWk66mA4jDhw7FrLYdmVbf5Qe19QdL1Zvh973V1KX+CkKHR2Ki/m1sy6mTuubSUWUcKT1V+0R41Qkrqewh4swDwjBySbrm0iHJz2rD44kFnDnqZeCklPovHpNfUOsKXry2hU3iG6n/4mHJyyq5O16vaaIZPE/KvaiT7wdfubjoEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaBWtmKdHADUAYBEghBrztmfPnoJlr3jFK2oer9i6e/fuJYR6yvPPP68f/vCHecscx9HGjRubNKO5feELX9AXv/jFBd/Orl27FnwbzeQ6rnrTRvu6m38i0puS3HhXkFiKpni+O6t1yQNFA6hDY1Ep6pWPn/SMlI4Wv286iPoPh7R94CgdN85hQysZifrqu+xAXgBxKDeI2LHl82fTjpR28wOoQ0Nxq21rsuq7akxbf7SSIOIWUmn9E9nyu2pfKgigDlH/9rDlpDFdc0kQQB0azgmitiaocym+KQyglqSMI11z2agUiWrD7p4Fmj3qYeCVE+q/aLxEnY3mDKI2RXYAmgqi/r1xKRpT8pmu+U8UzZFK5b+5ks3mv7FhjBQtcTAIAACA9pZKFR775WrFD+EAAAAAAAAAAAAAAAAAAAAAAAAAADpbK/7tGwHUAIBFgjRJzNvBgwcLli1ZsqTm8Yqte+DAgZrHW2y++tWvyvfzI+auvPJKHXfccU2a0dz27dunRx99tNnTaHuu4+offtmjD14xKq+JOaCuL/3DTyTXJayuWZ7vymrdO17WgXjpAOpQxpWMldwi93maO0d8Ooj6XS9r+3eP0XETHDq0gpGor77fO6Btq9MFAcShMIg4a4Lf22K7DV9SNpLz+CKGYlbbjkyr7/JD2vqT1QQRt4Bq6j8RlZwy9fec8hG11L+1bTnxsK65+JCKlWU4ZqWMkZUJnghKsdJkRBqOFj4m40jXXHJIch1teGppHWeOehk4fkz9FwzJN1LRSw6Uq33e44ofEPiS+i8aklxHyWcJI29Ls0OnrS0MInSLHSkCAACg7RmTf6w/+7g/FmvsfAAAAAAAAAAAAAAAAAAAAAAAAAAAKIcAagAAFhRJkpi3sbGxgmVdXV01j1ds3fHx8ZrHW0ystfrqV79asPyaa65pwmzQaJ7v6ZYz0sXiBRvKSLrltdL7fjQpd64EY9Td891ZrVu/v6IA6pA1kufnB1F7kmyFWbJW0oG4r3XrX9D221bpuHEOH5ppJOqr741DZQOIQ+G9niNpVhBxGEBciaGY1bbVk+p7415t/Y/lBBE3UbX1N5q7/nPtS6h/a9py8oSuuXgoL4DaN0HNw9zh4aiviF909WlZYzWRE0BtTdATztSijCNdc/EBKeNpw67aj/FRfwMnTKr/dcPypelfZCsrU8vR4qwXvHPH8SX1v+6AlMkq+XRiXnNGE2QykufN3M5m828bEywDAADA4lPugy2uK3V3N24uAAAAAAAAAAAAAAAAAAAAAAAAAACUQwA1AAALjhRJzFsmkylYlkjUHk5WLIQ6nU7XPN5i8qMf/UhPPfVU3rIjjzxS69evb9KM0Gj7uqz8Jp8n+Uba1y0pHg+SKtEwz3dlte4de6sKoA5ZR/JsEETtqfrSWUkHElbr3nNA2797jI6b4BCiGUaivvp+b19FAcSz5QYRVxNAHRqKWW07Kq2+N49o609WE0TcBLXUv1gQOfVvf1tOPFw0gFqaqrmZCaJOu1JkVgj59DqSPHfmsWEAdTheXhD1pUNS1NWGp5bW+8dBDQaOH1P/BSPyc15A92U1FLfqzholvKnlpsLnipxxJl2r8YjV8pSREwZRG6n/DSNSNKLksz11+znQANYG9fX94Mva/Dc5rJU43wYAAFicwuO/3NuZjBSNSomEFIs1b24AAAAAAAAAAAAAAAAAAAAAAAAAAIQIoAYAoCFIkMSCMPM4mCu2ruVATJJ00003FSz7wAc+oGg02oTZoNFcx9V/H+zVH7/xgMaamA/SlZH++88cufHCwHgsnLTj69y3P6cDcb/qAOqQNVJ2HnOwkg7EfZ27/iU9928nK+YTQttInrHa8IbntW11SkPR2rrAcyTf1p4fPxSz2nZkShsuPaA7HjhOLkH0DUP9Edpy/LCuueBgfgD1rMdMB1FP3c46hUHU/tRyM/VYKxU8v/hmZp2MK13zhoNSNKYNzy6r00+DWgwce1j95x4qDKCOWWUcaTjmS2lHCT+nwOUYM/2YSccP1pc0FLdanp4VRH3hISkaU/IFwsjbhrVB2GB26ijQmMI3XzjfBgAAWJyMyT/WM0Zyps7yrJVctznzAgAAAAAAAAAAAAAAAAAAAAAAAAAgRAA1AAANQwg15q1YAPLExETN4xVbNxZrYuJuizh48KAGBgYKll9zzTVNmA2aZTzmKN3kPXc6Io1HjdS1pLkT6TAxSecPL9H3E8NNnYedmkesu7ep8+hErqSTJ3v079GxeY0z39zgoaivkyd75PYQQNpI1B+StOWYA7pm7R5lnJkXKmcHUIdmv5Q5E0Rt5Msq6+Q/ttRLn75ygqgdq2su2CMlEtrw4sqafgbMz8CaQ+o/8+XCAOqon9cXwzFfyhhFrZkzgzoMoZ50fA1HZzoq41gNxXwtz7j5QdTnvSx1JZTcs6KePxoWirXS+LgU4eUfAACAjuN5+bdddyZ4enKyNT+YAwAAAAAAAAAAAAAAAAAAAAAAAADoHK34d24EUAMAFjFSiDBv3d3dBcvqHULd09NT83iLxZYtW5RKpfKWXXzxxTr99NObNKPKrV69Wq9+9asXfDu7du0q+H+0mKSzaX3sdQflTWUJNuM0xUjyjPSxN3l6z/2OYnLmXAf1kZavB1fML3y2Xh5cMaZ0hPo3Wlq+vnXcwab9/oeMpG8dd1D/+4kT6IEGov5Iy9fHznyuogDqULEg6oQvpZ3SjylmdhD1x858Tu95eTU90GCerDYff0B+zuvnQQC1l9cXoeGop6XZ/BoZSatTUe2LZ/JqHwRQzwqo01QQddQrCKLefPwBrd+/Su6cCddoOs8L3nQJ33hxnNZ8EwYAAACN47rBRUomJ5s9EwAAAAAAAAAAAAAAAAAAAAAAAABAp2rF7AMCqAEAixwh1Ji3lStXFiwbHR2tebxi6xbbRqe5+eabC5Zde+21TZhJ9a6//npdf/31C76dM888U48++uiCb6dZYpGYPv3EybrmjMeD8MhmnD9ZKepJn/5xTLFsugkT6FwxSZ/+7TG6Zt1zShUJmmyUuG/06d8eo9gk9W+0VumBGD3QFLn1Tzu2aRcioP7Nk9sDGcfOGUBdTMQGgdIRK2WrPI4Ig6ij9EDTuJK2/PIV6jv/aQ32TgQB1DG/aAB16HDEl+tLroyMldYOdenYiahe6IpocPmErJFSjq+xSOmOmg6iTjtyZLR2pEtbHnyF3OzivfjLopJKBUHUIc+T/Fr2IAAAAFh0OC4EAAAAAAAAAAAAAAAAAAAAAAAAADQDAdQAADQFIdSYt6OOOqpg2fPPP1/zeM8991xF2+gkDz30kAYHB/OWLV26VO95z3uaNCM0ywb3bI3fvUt/+hZv7gcvkE13Shue7pFO5imk0TbsOVIHHrH689cU7icb5X8/cpw27DmSI4gmoQc624Y9R2r8t0bXrX2maSHUm357vDbsWU39myS3B6rlWMmxZurfRo6s/Bpej6UHmqtXEW3dfor+4Nwndf8Ro2UDqEMZRzK+1TnD3To2FZMcBd+HpV8vH9dYpJIxgsDrNx5coq3bT1GvXHqgXUSj+W++GNOab8YAAACg/mYf+4X/Di9S0t3d+DkBAAAAAAAAAAAAAAAAAAAAAAAAANBqCKAGAHQIp9kTQPs78cQTC5Y980z1wXihZ599Nu+267o6/vjjax5vMbj55psLlv3hH/6henp6mjAbNNPIq0/W7a92tCzVnO0vS0m3nymN9MabM4EO93w8rf95+otNncP/PP1FPR9PN3UOnYwe6GwjEU/fPvagHL8523d86dvHHtRIpHkXQuh08+kB30iesbLGyjO1BVDTA+2sVMEJI170ZodQAwAAAK4bHCfGYs2eCQAAAAAAAAAAAAAAAAAAAAAAAACg07RaBgIB1ACADhJp9gTQ/k477bSCZU8++WRNY6XTaT333HN5y04++WRFIp3bqhMTE/rWt75VsPzaa69twmzQTJ7vaUPvPRpc7akrK2lSGko0bvvLJ6WurDR4lLThimHd8es1cgkubJi0fJ1zySM6EG1u8OeBqKdzLnlEz//gLMW4lkVD0QOdzZNV3/m7dP8Ro/KdIDa2kS9fGUm+I91/xKj61j2pf992Ms8BDVaPHvCM5NewnkQPtIqRiKe+dU/pkaUTWpFxdSjqKeOUr2jUN3IkDS6bkKx07GRULyQyGlw2IUfSkqyj0Uj5ZPOob7Qi4+qRpRPqW/ektj50onqzbv1+MCwca4OAwVSTrmIDAACA5jFGcnJeu4lEpPjUxQV7eoIwagAAAAAAAAAAAAAAAAAAAAAAAAAAGoUAagAAmqpzk31RN+vWrZPjOPL9meCyhx56SNlsturw6IceekiZTCZv2TnnnFOXebarf/3Xf9Xw8HDeste85jU6//zzmzQjNIvruNr4uuu0/Y4PyTdmzsDBess4Upckx0obXzhSrstTSCO5crQ062pfrLkBxJK0NOtO1b/FTugXOXqg01nti8+EzZrppQvP5Gwv4wTzCIKqqH9j1acHag2gpgeaz5PVhvN2a3DZpCQjI80ZRL0k62jSsfIlyUjbV0zomXRaB2PedC/EfKNlGVfDJS5yEAZQm6l6Dy6b1IbzntEdD55CEHk7cBwpFguCqNPp4MufFTpO+CAAAMDi5PuSl3Oc7zhSd3cQRM0xIAAAAAAAAAAAAAAAAAAAAAAAAACgkQigBgCg6UgQxbz19PRo3bp1+tWvfjW9bGxsTNu3b686KPmBBx4oWHbJJZfMe47t7Oabby5Ydu211zZhJmgFyYuvkW6+WR9Y83ONxRq77bFYEDX5jXt6lNTqxm4ccmX0Px87Vh88+yl5TTyXdq30Px87ltDJJqAHOpsro//+5NG69jVPa2gqiLwRQdS54cOStDzt6r8/eTT1bwJ6AK6MNj63Stt7n5U/9b/fyJQMol6WcRWxRpPOTOiclXSgyMUMEr4jZVQQRD07gFqauiDJc6vogXZjTBA26Dj5b8yEQYQAAABYfIaHpdyLfsbj+cd+sQa/wAwAAAAAAAAAAAAAAAAAAAAAAAAA6EwEUAMA0BKcZk8Ai8Nb3vKWgmW33XZb1eMUW6fY2J3iiSee0E9/+tO8ZfF4XO9///ubNCO0gm3nrdFYtDnbHotK207g+gXN4Mnq1mMPqjfrNnUevVlXtx57UN6CRp6iGHoAyT0rdNNvT9Dy9EwPzA4Irqdi4cM3/fYEJfesWKAtYi70AJJ7VmjTI8crN286DKKO+jPVWpZxg2DpKiR8R8syM71VKoB60yPH0wMAAABAu4tGCaEGAAAAAAAAAAAAAAAAAAAAAAAAACw8AqgBAGgZJImiLt73vvfpf/2v/5W37Ktf/ao+/vGPK1ZhkMH27dv14IMP5i274IILdOKJJ9Ztnu1m8+bNBcuSyaSOOOKIJswGreCGe27Qp/Z9V7ZJ51TWSJ969bC0dK/+6amTmzOJDuVK2rjvOG1f/oSUNToUyTZ8DiuyEXVbRxv3HSd3ydKGb7/T0QOQpOToEumJhK497TENTfWAkRYkEjwvfDgb0U1PnKbk6GppyQJsDBUr1QNSffugIICaHmgZydEl0q6E+l/1hPypZUZGK7KODkUy6vZdJawzU8S5jhvNzIMS1pWyRuOOpxXZaN7r+I6kTU++ih5oN56Xf9sYyfdnbruulEg0dk4AAABojNHR/A/DuK7kOEH4dCwW3AYAAAAAAAAAAAAAAAAAAAAAAAAAYKEQQA0AQEshhBp1cdZZZ+kNb3iDHnjggell+/bt0z//8z/rhhtuqGiMv/qrvypY9md/9md1m2O7yWaz+vrXv16w/Nprr23CbNAK0tm0vjb4NfnWn/vBC8g30teO26+Px69UjKeRhkrqdGn8OPX3PiBZV4dMqmHbXmHj6nYi2jT6BiVXnSitatimkYMegDTVB6PH6dre+zTkpGUXJII6CDQ2Mlrux3TT6KXUvYXM7gFJMnXuBJPzX3qg9eQ+H/jTlbeS40nGlZwwTM6XjFdqmIDrKrjUwRTjScZKEVdhDzgy2jTC/r8t7d0rDQ/P3B4fz78djUqrKCoAAMCiNDEhjY3N3E4kpCU5V5SJRhs/JwAAAAAAAAAAAAAAAAAAAAAAAABAZyCAGgCAluM0ewJYPP7mb/6mYNnf/d3f6de//vWc637+85/XD3/4w7xlJ510kv7oj/6oom2fcMIJMsbkfd13330Vrduq7rzzTr300kt5y0488URddtllTZoRmi0WiekPXvGWZk9DkvQHh48jgLpJkqkTtWnkDeq2Ea2w8YZsc4WNq9tGgvDJ1IkN2SZKowcgBX1w08il6vbdBYqgDkKou31XN41cSt1bUNgDy/2YJKt6X6IiGM8GAdT0QEsKnw+cqQjyQ05KGfkaNmlNzhU8XcKk8TRs0srI1yEnJSs7E0BNDwAAAACLh+MEodQAAAAAAAAAAAAAAAAAAAAAAAAAANQbAdQAALQkQqhRN1deeaXe8Y535C1LpVL6/d//ff3bv/1b0XUymYw+/vGPq7+/v+C+z33uc4pGowsy13Zw8803FyzbuHGjTKsdWKNh0tm0vvn4bc2ehiTpm0ueUlrZZk+jY4WhkxlbW8BktTLWI3yyxYQ9YKy00M8KRpKxogdaVNS4bT0+5ieZOlGfO3yxFm5PYPS5wxfzu9/CkqkT9U+HL9AhJ61MTiR9LUHUYQB1KCOrQ05a/3T4AnoAAAAAWEwiEWnJktb7EA8AAAAAAAAAAAAAAAAAAAAAAAAAoP212t+uEUANAMC0SLMngMXlK1/5in71q1/p+eefn142MjKi9evX67zzztM73vEOnXjiiZqYmNATTzyhLVu26IUXXigY58Mf/rDe9ra3NWzeDz30kK699tqS94+OjhYs+973vqezzz675DrnnXeebrrppprm89JLL+nOO+/MW+a6rq6++uqaxsPi4DquzvfX6F7tVjNPaYyk80eWyD1ilbiWQfNsc36jMacxQeBjTlbblg4r2XNEQ7aHCpl9so5Z8P2BlWQdE4QT0QMtY8A8pg9HfqbDyizodg6bjD68/GdSdomS9rQF3RaqN6KU/m/kEdkF2hNYWf3f3kf09u516lV8QbaB+RlRSrdEnla3ohpWKu++YZPWEhPVnCHljqNJ+RpWuuCubkV1S+/T9EA7m5yUsjnHjNYGy0LRqNTT0/h5AQAAYOFFo0HgdCiRkHp7JZcLTgEAAAAAAAAAAAAAAAAAAAAAAAAAFgAB1AAAtDRCqFFXq1ev1t13363LLrtMe/bsybvvoYce0kMPPTTnGO9973v1mc98ZoFmWNzo6KgGBwerWufQoUM6dOhQyfuXL19e83y+/vWvK5vND5d9y1veomOPPbbmMdH+XMfVnzy/Sj8+ere8JmY/O770J493yz2XsJJmucG5V59yftGwMHIr6VPuLyQj/ZN/eYO2inIGzE592P2hDhcJDF0Ih5XWhyM/lDwpaU9vyDZRWlj/lzWurPwF3VZWvl7WOPVvQSNK6VL3Fg2al2VkpDpHURtJRkaD5mVdGrlF93l/TAhxixlRSn3ugAbNy0pMndrPDqIeVUaOjJwyQdQpeRorEmi/THElFNGgeVl9kQFt9d5FD7QjYwrfpMm9Xex+AAAALB6zj/0IoAYAAAAAAAAAAAAAAAAAAAAAAAAALIRWyy4ggBoAgAKEUKPuzjjjDP3yl7/UH/3RH+mBBx6oeL1oNKq//uu/1t/+7d/KcZqYsNsCNm/eXLDsmmuuacJM0Eo839Nnlj4iv8nnWb6RPnPiXr1v5w65ZQINsTBuOOq3+tTqxxc4draQL6tPOdukAwf1T3tf0+CtI9dA7wv68DG/0ctKKdugKPIgiHhMH7bfl158QckRLorQLNQfkjTiZHTpST/RYGR4gbcU9Nig2atLs1/Rfbt/T71+dIG3iUqMOBn1Hf8LDSZmeiAhadI1Spn8o4SsrCK2eBC1L6sx4xUsj1tHCS9YW5IG9aL6Jv9FW5+9gB5oNwcOSKOjM7cnJ/NvR6OS3+gjSwAAADTExISUyeTfHhqSYjEpkWjatAAAAAAAAAAAAAAAAAAAAAAAAAAAiwwB1AAAtIXOTvrFgnnFK16hn/70p9q6dasuuugimTIHh0uWLNHVV1+thx9+WH//93/f8QHUP/3pT/XEE0/kLTvqqKP09re/vUkzQitZOZxRrMkZcTFfWjlKUF0zNCuAOuRL+tTqx3XDUb9t0gwwHUAcaVwAcSgrq5cjKX34mN9ooPeFhm4bAeoPKSeAOid82Ep174jZYw4mhnXpST/RiJMptQoapFgAtSRNGq8ggDqUNVb+rC7xZZU1xTsnZXxNzgqnHkwMq+/4X9ADAAAAQDuzVkqlpLGxZs8EAAAAAAAAAAAAAAAAAAAAAAAAALAYEEANAEDbiDR7Ali8jDF673vfq/e+9716+eWX9ctf/lK7d+/WyMiIIpGIVq1apTPOOEPnn3++YrHYvLb19NNPz2v9Sy+9VLZFDhovueSSlpkLWovruPr2t7J64wekh9fUNoaRZKxkTe1hlaftk779bSv39F01joBapOXrq6/a1bQA6pAv6au9u/Txn8UV41oWDeXJ6v+9/im97E4q26Q5ZGX1sjup/xd/ROufHJerFnsBaBGj/pCkkYinS9/wpAYTk9PLFiKAOndsSdOVHkwM69Jj7tZ9D5yi3qy7QFtFOSMRT33nP6PByIRydwaTjq/hOa5UkjVWEWvlWCPfWGXn+BUedjNS2lPCn3m+H4wcUN/KH2vrg6+kB9rF2JiUTs/cTqfzbztOEEIIAACAxefwYSmbc+LgusGyrq7gNseBAAAAAAAAAAAAAAAAAAAAAAAAAID5IIAaAIC2Qgg1GuLII4/Uf/kv/6XZ0wDa3r2v9LW/R4p5UrrK3L8wgFrh9xqCqGOetL9HuvdEKbl7d5VrYz5cY7VmxNO+1c2eibRmxJP71FNBmjkax1jtuWhsztDQhZY10h4zKj21mx5oJOrf8TxjddkfjWtwmT/9BD6fi0pUajqIeuofg8smddn5j+oX3+yWSw80lGesNrxjQoNLfMmbWT7pWg1HVboZcsqUNZIjKz+3dGWaaDjqSylfCW9mhcElo9rw6h2647td9EA78DzJzwko9/3828ZIo6ONnxcAAAAWXiaT/4GZTCa4SMmSJdIJJxBCDQAAAAAAAAAAAAAAAAAAAAAAAACoXasFUAMAgDkRQg0AbcLzPW1eFwROHjEh7e+Wsk5l6+YGUMc9KeVWH0Qd8YPtWiNtXietf8EneLChrOK+I1k/L0yyCdOYmodd+ORTzGIVsUbG2qZm/xorRayhBxqO+sPm7f4bEUA9s2VJJudiFhI90ASulTb+NqrtR6amQ6QnXavheHXj+FXuQ4bjklJ2OojamZqH60s0QRvw/fzgwWJX7eRKngAAAJ3B2uAiJcPD0mOPSWed1ewZAQAAAAAAAAAAAAAAAAAAAAAAAADaUSsGUJOdAADAnCqMLwUANJvruNpyu7R2j5SKVB4gmBtAvSwlLZ8MvmtqeaWncr4Jtrt2j7TldhFA3WCuNbr3211at6+5T93r9jm699td1L8Jwh44u8k9cDY90BTUH2EPrN3nNDSAOmQVBF+vpQeaKvlkRJvujcuxtQVQ12o4HmzPsdKme+NKPsn1rAAAAIC2NjkpPf54s2cBAAAAAAAAAAAAAAAAAAAAAAAAAGg3BFADANC2CKEGgDbSm5Le/7A0PpX758xx3jM7gDqRDf6dyFYXRB1uZzwSbL83VcvsMV+9aaNLnmvuU/clzznqTbfgiwAdgh7obL1po794MCq3Sa95uVb6iwej1L+Jwh6Y6/l/oTj0QEtIPhnRhkcjDQugDg3HpQ2PRgigBgAAABYDY6SDB5s9CwAAAAAAAAAAAAAAAAAAAAAAAABAOyGAGgCAtkZ6FAC0kYHTpRveJK2YlA51SRknCIT0i5yXlQqgDoW3h+NTjzNSsVOpMOgy6gfbveFNUndGSj4xUaefCpW64TJfnzunuSe8nzsnq3hqTP/0I65j0Qz0QGcbOM3qI5f58pu0fV/SRy5LqXs8o+RjLfiCYAegByAFfbDlDF/LUmpoEPWylLTljIwufMaj/u3E93nDBAAAAAF/6mwyEpFcd+Y2AAAAAAAAAAAAAAAAAAAAAAAAAABzIYAaAIC2Rwg1ALQJz/e0eV0QOG0krZgoHURdKoDasdLlu6V7TwoeP1cQdV4A9UQwrm+kzeuk9bsk17bgSeEilXZ83XiuVbP/l1sj3Xiu1cd/YhXzCSFuJHqgs3nG6hNv8DWUCPbFsmpoLxgbbHcoIX3iDb7WP+HyHNBg9AAkaeA0X/1X+gXHcQstPJ70jdT/Fl8yjpKP8RzQFozJfyOnWNCgQy0BAAAWpVIh09ls8MGaVasaOx8AAAAAAAAAAAAAAAAAAAAAAAAAQHsigBoAgEWBpCEAaBOu42rL7dLaPcHtMIg6OpUlEgZGlwug/tyd0tfuCL6Hj09kg8dJMwGTuePlBlBLwfa33E4AdaO51ui8F2bq0CxG0nkvUP9moAewcnxmn5+7r69GreuE1Y76wTzQHPRAZ/OM1ea1Nu/CI7nHcZVyquyB3ONJaeqCJGutvFqaCQAAAEDrOPLIZs8AAAAAAAAAAAAAAAAAAAAAAAAAANDqCKAGAGDRIIQaANpIb0raelv5IOpyAdTJncHt5M7yQdTlAqi33hbMA43lWqOrH3YU9Zo7j6gnXf2wQwBxE9ADnc21Rt++3dUbn6k9hNj1pYgffK/U7PDhNz4jfft2l/o3AT0A1xptucPR2r35/++rCaKO+DNfoXItNDuAWpLW7g3mQQ+0idlv5sx1GwAAAIuXMcFXNCr19koHDjR7RgAAAAAAAAAAAAAAAAAAAAAAAACAVtaKmQQEUAMAULNIsycAAKhCPK7eVEpbb5P63i0NrpkJoj7UJWWmLi1QLoA6FN7+yFWSb2YePxwPvs8ZQB2LLdAPiWI8Y3Xra1I6YlI6kJAybm3jGCvVmhkZ9aQjJqVbXyO978ko4ZMNRg+gV9J3/s3qD94xqftfYZVxpvbRFdQ04s9cYMC1kvGl7ByXoykIH37O6Dv/llCvjMRTQFPQA+iVtPXfrfrWpzR45MyL4glPUspOH8cVk9sDjg1uZ52ZGs+2LCUlPJP3gLUvG2399zg90E48T/JzU8dt4RsqDtcnAwAAWLRyjwXD8OloNLid4kqDAAAAAAAAAAAAAAAAAAAAAAAAAIASCKAGAGDRIYQaANrJSSdJO3aoN6WSQdTdmbkDqEOlgqjHo3MEUEuEUDeYK2nL3TH1XTWm36z2dCBuqw4hdn3JkeRbyasyazDqSStTRmfvd7Xl7h650RZ8gWCRowcgTYUQ3xXTH7xtVPcf61UUQpwbPBvKDaAtpiB8+AVX37lrCcGzLYAeQK+krT8Ing8GV3nTyxOe0aRnlSry3FCuB/wifRP3pgKoc6zd72rrD3rogXaTzQZB1CFr828bI7k1XtkCAAAArc3a/A/5OM5MALUkRXiLEAAAAAAAAAAAAAAAAAAAAAAAAABQBAHUAAAsSlXGDwIAmuqII6b/GQZRr90T3DaSjpioPIA6lNwpbbpzJpgwkQ3GKRtATVBdU/Smjbbe2aOz97lamTKKenOvEwrDh6Xgu+tXvu50+PA+V1vv7FFvugVfIOgQ9ACkoA++8/0leuMLrqJhHYuUxFipJ10YPBsKA2hNsfunxpsOH/7+EureQqrpgZhXvgfiWXqgHYXPB2v3zxyTTUZUcQB1yLFST6ZwecoNxgut3c/+HwAAAFhUHEdasqTZswAAAAAAAAAAAAAAAAAAAAAAAAAAtBoCqAEAWLQIoQaAdjLr5Gx2EHXIsUGw9FwB1KHZQdShogHUaKpqQojN1Fdu+HAoN4S43Ck/4cOtp9oekMr3gBE90I5yQ4gdK81+mcxYaXlKivnl6+VYaVmqMITYTt1H+HDrqrQH3DleQ41MPY4eaD+5QdSTEWk4VljsJWWC6ENxz2hZkWO94ZjVZIQAagAAAGDRcV2pp6c1PwgEAAAAAAAAAAAAAAAAAAAAAAAAAGieVvy7MwKoAQCom0izJwAAqILjSJGIlM1OLwqDqP/gvdL9r5R60tJN3wuCpas5dQoDq69dL43FpDc+UyaAOhqVVqyY14+C2vVK2vqfy9V3ycvatjqloTBNOodRECga8ySvxCUnHEnGl/ypFOJi/dLjOTr7UFxb//NI9fY4Uk/9fg7UrpoecG3pkGlHUjQrpV3RA22oV9KfPBPVT4/dn7fcWGl5xlHCGk26tjBdeJaEdWQy0lDUl81pFsdKf/LMCvX2LKXuLaqiHpBfvgeMUcI6Wp6x9EAb6pX0/mej+vFxQQ/4Zmb/vyzjKGKlSVP4HJHHMUr4jpSxGp7qgTCEfDxi9f5nl9MD7WxyUspkZm57Xv5tY6R4vPHzAgAAwMIbGZH8nPOBaDQIn45EWvODQAAAAAAAAAAAAAAAAAAAAAAAAACA5mnFvzsjgBoAgLoihBoA2kk0Ki1dKh061Lw5RCJSV5d04onNmwOC0MnDPfrxMTvkSMqNl5zKlNYyL6KssfLKhE86kpZ6roYjQbC5nXXfRNTq/YdPVO9xa+r9I2CeKu2BMdcrG0gfMY66PEMPtKGBlft0wykvapkX0T535uIE3b6jhCKSK8mZI4BYktyIEpK6/azGcgLNl3kR3XDBYXWvPFrJA6sX5ofAvFTWA2WS6KXgBWDXpQfaVNgDvV5E+92Z/XjYA9kKgujlOJJxlJCUzukBa6ReeqD9DQ9L4+Mzt9Pp/NuuG5xfAAAAYPGZmAiO/0KuG7y+DAAAAAAAAAAAAAAAAAAAAAAAAABALgKoAQDoCE6zJwAAqMLKlVI8nhcWMhKX+t4t/fbIIHTQGqn/Kmng9OqGHjg9WM+aYJzfHhmMOxLPeZAxwRdhJU03sHKfbjhpl3ozbkHAsJXU5TlK+JU9zSd8R12eU3Sc3oyrG07apYGV++owa9QTPdDZBlbuU/8pjysrXyNRbzpj2EiacH1NOqXD54uZdHxNuH7eOCNRT1n56j/lcerfgugBzO6BUL16QKIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFjUCqAEA6BiEUANAOznzzOCEbelSSTMB1NvXSENdUtaRhuPSeLS6IOowgHo8GqyfdYLxtq+ZFUTtusH2e3oW5udDRUqFToaqDZ8sFjoZInyyNdEDnS23/kPRrDLGykjTX5I0HMlWVf/hSFbKGcNIyhiroWiW+rcgegCV9kDK0AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoggBqAAA6CiHUANBOXvva6X/ODqDO5OzRwyDqj1QQRD07gDqUKRVELUlLltTn50HVyoVOSoXhkxlT/oTaly0Incz9N+GTrafaHvBVvgeyhh5oJ8XqH5r9kt5wJKv0HAG0vqxGpupfbBzq33qq7QGvin1AsXHogdZTTQ+MRrw5nwdSxqcHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FwEUAMAsKAIoQaAdvK610nWaiQ1or73FA+gDlUSRD1wenD/7ADqUEEQtZsNTtJ6e+v7c6Eic4VO5gYIh1KOXzJ80pdVdtYKxcYhfLJ11NIDWaOyPZBy8kOK6YHWVa7+pYy71e0DiqH+raOWHkg7tmwPpJ25x6AHWkctPTDX88BYpHxYvUQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALCqmguCZRiKAGgCABUcINQC0k2OO0cirjldfMqvtR5UOoA6VC6KeK4A6VBBEvbxLipdZAQvCk9XmNS+WDZ0sdUrv5YRP9mZdScFtr8QKxRbnhk9uXvOivBJhllg49EBnq6T+pYQBtEbSEZmIjCoPoA5R/+ajB0APAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYN4IoAYAoCMRQg0AbWQkNaK+tY9XFEAdKhZEXWkAdSgviPqqcY242fn9IKiaK6MvPXGaPKOqQidDnpGOSEd04kRCR6QjJcOHy8mYILT4S0+cJrdk3DEWCj3Q2eZb/6yRjkpF9eqxHh2VilYVPBui/s1FD4AeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLwQQA0AQMcihBoA2oTne9rwzT/Q9q7higOoQ7lB1H/yzuoCqEPTQdSrstpw6m/liRO3RvJk9WevekwRGUVt9SfxrpUOxrJ6qmtSB2NZuTWUL2qNIjL6s1c9Rv2bgB7obPOtf8Qa7Y1n9GjPmPbGM4rUMAb1by56APQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAakYANQAAHY0QagBoE67j6n06S0NxW1UAdSgMor7n5OoDqENhEPX7nuqRqxY7mVzkXBlt3HOMXGu0IhutKnzStZIzVa+RiCcpuF1NCHF0aruunZoH9W84eqCzzaf+EWvkSLKSDkazsgpOAqoJoKX+zVdrDxjRA4sF+wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUhABqAAA6XqTZEwAAVMbzPd367J3qzhoNx2o7eRqOS5MRKeXWPo/ujHTr0Qf0vqcs4YMNljywWpLUf8rjWpGN6lAko4wp3wtx35FX4jGOjIy18ucoY27o5KYnT52eBxqvlh6IWMmU+F11ZBT1jdKOX3YMeqA11FL/Hs8tWd8wgNafYwzq3zpq6YFyQcWOJNc3yjj0QLuo7XnAlLz6lCOpy3M15nplx6AHAAAAAAAAAAAAAAAAAAAAAABoDs/z9Oijj+qRRx7RwYMHNTw8LNd1tXz5cq1evVrr1q3TCSec0OxpAgAAAAAAoJURQA0AAEQINQC0DddxtfG5Vdq+4gnJBoHStZhPAPWyVBBCvfF3Mbk9LXZS2SGqCZ9clo0oa2zJEGopCCFemnU1HMkWvZ/QydZTbQ+MuZ7KveQSsUZd2Qg90Caqrb8kpcuM50hako1ohPq3jWp7YNLxyz4PRKxRN88DbaWaHljiuZqc40IDcd8oYnkeAAAAAAAAAAAAAAAAAAAAAACgldx999266aab9P3vf1/j4+NlH7t69Wr19fXpQx/6kF7zmtc0aIYAAAAAAABoCwRQAwCAKU6zJwAAqFzy6S5tujui7kwQCN1IYQD1pruMko/z9NFMyQOrtenJU+VOhUJGbeFJ/rJsRAm/sjolfGc6rDYXoZOtix7obNQf9AAq7YE4PQAAAAAAAAAAAAAAAAAAAAAAQFt58sknddlll+nKK6/Uv/7rv84ZQC1J+/bt0+c//3mtXbtW1113nYaHhxswUwAAAAAAALQ8AqgBAEAOUkQBoJ2MjSn5O0+b7jINDaKeDqC+U0rusJLnNWbDKKlc+GQ1waOh2eGThE62Pnqgs1F/0AOgBwAAAAAAAAAAAAAAAAAAAAAAWFy2bdumc889Vz/+8Y9rWt9aqxtvvFEXXXSRXn755TrPDgAAAAAAAG2FAGoAADBLZO6HAABaxtQVq5OPBSd3/W8NTqqG4wu3ybwA6p1TCwmhbglhGGT/KY9rRTaqQ5GMuj236tDJUMJ3pGxE465H6GSboAc6G/UHPQB6AAAAAAAAAAAAAAAAAAAAAACAxWH37t268sorNTIyUnDf0UcfrfXr12vt2rVauXKlMpmM9uzZo23btunf//3fNTk5mff4Rx99VG9+85v14IMPKhqNNupHAAAAAAAAQKsggBoAABRBCDUAtJOc8OfkY0ayVv1XBbcXIoi6aAA1Wkpu+OQRmfl/GCThO0r4jhwROtku6IHORv1BD4AeAAAAAAAAAAAAAAAAAAAAAACg/V1//fUFAdTxeFz/+I//qOuvv75kmPSBAwf00Y9+VLfcckve8sHBQX3qU5/SX/3VXy3YnAEAAAAAANCCCKAGAAAlOM2eAACgdsmdQUB0dyYIjK4nAqjbR/LAam168lTV69TfSIROthl6oLOF9Xfq1AEEz7YfegD0AAAAAAAAAAAAAAAAAAAAAAAA7WvHjh36wQ9+ULD8m9/8pj760Y+WDKCWpJUrV+pf/uVfdN111xXc99nPfla+79d1rgAAAAAAAGhhBFADAIAyIs2eAACgCq5bsCgMiO6/SpqMSKnCh1Qt7s0RQO370uHD898Q6ubyiaick6zGXF8JP+caE9ZKKnMibk3eifqk46vHc3T581EpS43bSekekGTK9YClBxaB5OGE7li2RPesGsm/w9qyu4DgMb6UE1x7+f6lSj6dkET920nZHpjLrMfQA+2peA9Usg8QPbCYjY9Lk5MztzOZ4Cvk+/n3AwAAYPHgwzkAAAAAAAAAAAAAAABA2xgYGChY9s53vlPvete7Kh7jU5/6lAYGBrR3797pZXv37tW2bdt00UUX1WWeAAAAAAAAaGEEUAMAgDkQQg0A7aSra+bfOSdYyZ3StmOlT11cn82kXGnDYIkAaik42eQEr2WMRDxdeuFOvZiYChTMaDqE2DdzZE+a/PDh4ain4ainSy/coft+frp6s3VINceCK9cD1tiyPWBzXjuiB9rXwJpDunflyNwPrMC9K0c0cNRBJfesqMt4aAx6ALX3gFVuEL1EDywqsy42UXAMP/t+AAAAAAAAAAAAAAAAAAAAAEDD7dxZ+Mecf/iHf1jVGD09PXrnO9+pG2+8MW/5Y489Rgg1AAAAAADAYkcANQAAqIDT7AkAAKqwZIkUixWExQ2cLm1ZK8W8+mwm5gXjDZxe5E5jJJdQ2lYxEvF06et3arB3YnrZcNTTpONXNU4YPhwa7J3Qpa/fqZFInZoKC4YewMCaQ+o/81n5dXot0DdS/5nPamDNofoMiAVHD4AeAAAAAAAAAAAAAAAAAAAAAACgfb388ssFy84444yqxym2zt69e2uaEwAAAAAAANpEqwVQAwCAlkUINQC0k5UrpUSiIIC6/yppLCpNRqT5Xv/HKhhnLBqMWxBEbYwUicxzK6iHYuHDoWpCiGeHD4cIIW599ADqHTwbIoC2fdADoAcAAAAAAAAAAAAAAAAAAAAAAGhvsVisomVzicfjBcsSiURNcwIAAAAAAEAbaMUAajvfFDQAALBQSBEFgHZy5pnS3XdP38wNoB6a+hyANZKsVMupoQ3X18x4/VcF35M7px5kjLRsmdTTU8MWUC8jblaXrhvU4JLC8OHQcNRTdI5ESn/qcaUM9k7o0ouf0H3b16rX47ChlVTaA2aO/UHWWE1ES4dV0wOta2DVfvW/6jn55V4MrOSFQmNUrEt8I/Wf9ZwUTyi5f1XtE8WCqbwH5nhxtsT69EDrm7MHKjkgLLEPkOiBRcGbdZxnjOTnPO87TnCRGwAAACw+rpt/PDj7vMHhOrUAAAAAAAAAAAAAAABAqzjxxBMLlj333HM67bTTqhrnueeeK1h28skn1zwvAAAAAAAAtDACqAEAQJVIEgSAdvLa10qTk5IxGjjNFgRQh2oJos4NoA4VDaK2Vlq6NAgxQVOMuFld+tpBDS4ZzVtuVVjztGNlrFQsUsZXEC45+77Z4wwuGdWl6wZ138PnEELcIqrpAc9ITpke8BxbsA490PoGVu5T/ylPKjc+3MrKFNvzz/lkkP+A3HF8I/Wf+qTkOEoeWD2vOaO+6tYDRV67pQfaQ8U9UMN7BvTAIuI4+W8czQ4aNKY131gCAABA/c0+7ovwGg8AAAAAAAAAAAAAAADQKi677DJ97nOfy1v2gx/8QFdccUVV49x11115t2OxmN7whjfMe34AAAAAAABoMa2YE0AANQAALY+/MAeAdnL88VI6rYHTpf63Fg+gDlUTRF0sgDpUGETtS7GY5PvFV8CCCsKHf1M0fDg8BZ9dSr9IL9hw+SylxhlcMqpLX/tr3febswkhbrJ690CxAGp6oLUNrNqn/lOeyAue9WU1FMmq23eV8GcCRq1ssYzhWWZixycdX+OOp+XZiJwwgFZW/ac8Jllfyf0E0LaCevbA7OcCeqA9VNoDufv0UmbfTw8sMr6f/0ZNsWN43sgBAADoPK4rxePNngUAAAAAAAAAAAAAAACAKW9729v0yle+Us8888z0si9/+cvq7+/XK1/5yorGuPXWW7V9+/a8ZX/8x3+sFStW1HWuAAAAAAAAaDICqAEAQI1IEASAdvLssxo4y1X/FZmyAdShSoKoywVQh/KCqI2UHBpqzRPRRW4k4unS1+/U4JKJvOW5AZPlQoidqV6oJIC6dAjxr3Tfz09Xb9at+edA7egBDKw5pP6Tn5Wfmycqq6Gop4xjNexkpUxOCLGd/k9pUy/iTTq+hiOeJGkoktXyjJsTQCv1n/y4NDmp5B4+eNZMVfeApLI9YEUPtJnqesBXRfsAemDxmpiQJidnbmcywVfI8/LvBwAAwOJHADUAAAAAAAAAAAAAAADQciKRiL74xS/qbW972/SysbExXXnllfre976nU089tez6d9xxhzZu3Ji37KijjtInP/nJBZkvAAAAAAAAmqQVc78IoAYAoG0QQg0AbWRgcKv635zVmDt3AHWoXBB1JQHUoekg6rdKenBESR1T2YqoC09Wl5//Gw0uLR0+nLtMKh5CbIo8vppxBnsndPlFT2jbg2fLLRtvjnqjBzCwer/6T31Ofs6LgdPBs2amesNRT8qaIIDWSOUvRSDJGE06djp4VpIyjtVQzNPyTGQmgNZI/Wc9J8ViSu5bVc8fDRWqqQckle0BY6Z6wKcH2kC1PeD6RpXsAyR6YNHKZiXfD9608f3g9myeV7gMAAAA7c/3C5fFYlI02vi5AAAAAAAAAAAAAAAAAJjTVVddpc997nP68z//c9mp4J7HHntMZ599tj7wgQ8omUzq7LPP1hFHHKFMJqM9e/boF7/4hb7+9a/rhz/8Yd5Yq1at0g9/+EOtXr26GT9KUV/4whf0xS9+ccG3s2vXrgXfBgAAAAAAQFMQQA0AAOaJEGoAaBOe72nz4Z9oLGo1FK9u3dwg6rgnpdzqAqhDYRD15pOHtf7ZCAG0DWUL6lUsNDj3vspHnnuc3E1bo6mwGurfWPRAJ/NktfnYl+Xn/C8PgmezecGzoeFIVspGNLtGvVlXI5H8sNFJxy9YJkkZE4w/O4B287Eva/3QGp4DGmx+PTBzf6keGI4UBtPSA62llh7oyboFywt6wEiThh5YtFxXchwpnS4eQmht8WBqAAAAtL9iHyhKp4Pjv1is8fMBAAAAAAAAAAAAAAAAMKf+/n6deuqpuu666/T0009LkiYmJnTjjTfqxhtvrGiM9evX60tf+pKOOeaYBZxp9fbt26dHH3202dMAAAAAAABoTwRQAwCAOnCaPQEAQGVcx9X6l5ZpuMZ8EGukroy0fDL4Xm0AdWg4Lq1/wiV0sMFcGf3o4XO0dnSJpPKhwaHZj3EkObbwyb+acdaOLtGPHj6H+jdBrT2Qq1gPVNtL9EBzuDLasvNMrR0L6l8ueDY0HMkqbWYCR4+fiOvEiYSOn5i5koEvWzSAOhQG0PpTHbB2bIm27DyT+jdBrT3g5fyGF+sBT7Zo+HCIHmgdtfTAWMSbrp1UvAdSJQKoQ/RAm7O2dAA1AAAAOpPvS6kUH/ABAAAAAAAAAAAAAAAAWtSVV16pxx9/XLfccosuu+yyitZxHEcf+tCH9Jvf/Ebf/e53Wy6AGgAAAAAAAPNAADUAAKiTSLMnAACoTDqb1t+csEtGcwfGFmMkTUSlo8akvT2a1zh/c/GkPvj4EsW4lkFD9Uq676nf0xtPuV8Pd41Uta6joHYywXdHUjVRhFbSayZ6dd9Tb1RvT7SqbaN+6IHO1itp6/Ov1x+c8Avdv+Rg2eDZ0ITry7HSCalurbAxyZVW2IiUcvR0fFyemfuqNEEArac3jh6hrc9fQP2bqJYeyDhWbrkecOiBdlJLD3hGkrUle2DcraCP6IH2NTkpxXKuYpNKSV7OxQeMyb8fAAAAi8f4eP6xn5Nz9metlMk0fk4AAAAAAAAAAAAAAAAA5mSt1Q9+8AN94xvf0P3331/ROr7va/PmzXr66af1sY99TFdeeeUCzxIAAAAAAAANQQA1AACoI0KoAaBNxCIxfXr3qbrmlEeUcmsYwErLUkEQ9bKUNBTXVCJtdaK+9OkHehQ7mvDBpnB8HeklFNFhZWuKEa9NREZHegnJdSVTSwOibuiBzub4kqnyAgClXkw0VV6OwDjUvxXUuQcMPdB+2A+gGtbm19+YwtsAAADoTBwLAgAAAAAAAAAAAAAAAC1n9+7d+uAHP6gHHnig6P2rVq3SqlWrlM1mtX//fg0NDU3fl81mdffdd+vuu+/WO97xDt10001atWpVg2YOAAAAAACAumvFvwEjgBoAgLZGCDUAtJG361SdNvSYHl6ZbdocTtsvvX13VPKeb9ocOtVIJKu+s5/UI9FxrUpHtD+aVdZUdlLuS3JskDtuJflVvL4QsUarMhE9Ej2kviN/oq2/OUW9WQ4hmoEe6Gy59V+RcXUoYpVxyte/23OUdqyejU9I41mtyER0KJrVs/GMwlXtHL0Q9Y1WZF3q3wJq6YHoVIFL9YBrjbJzjUEPtIxaesC1kqPSPZDwHI1F/LJj0ANt7NAhaXx85nY6LWUyM7eNyb8NAACAxSOdljxv5nYmEyyLxYKLyyQSzZsbAAAAAAAAAAAAAAAAgAIPP/ywLr/8cu3fvz9v+SmnnKKPfexjWr9+vY499ti8+5588kl95zvf0Wc/+1m99NJL08u/+93v6vHHH9ePfvQjrVmzpiHzBwAAAAAAQB0RQA0AABYAqVEA0CY839OG0x/RvjFfy9NGQ7HKT8jM1NdwXJqMSCk3uC0FYbSVWj4p7euRNlwxrDvu3iV3ruRS1I1nrDa8dUSD3VnJC+q3KivtT0hZp/g6s2vsm5kA4tmPK9UHEV9aNSkZBYE1g92HteGU3+qOu3qpf4PV2gO5tS3WA3PtC+iB1lCs/iuy0qG4lClR/2VpIyurdDSo7rNdaQ05GY3E7XTBHUk9aWkkVnyMqC+tSFH/VlBrD0xErLypUhXrAdeXejJGwyWOK+iB1lFLDyzJSBMRKSx4sR6IZaWIRw8sWul08BWyNj+I0JjWfPMJAAAA8+d5+R/qmZiQDhwIQqiPOkqKx5s3NwAAAAAAAAAAAAAAAAB5Dh48qKuuuqoggHrjxo36whe+oESJi86fcsopuuGGG/ShD31I73//+3XnnXdO37djxw719fXpxz/+sRynxB8eNNDq1av16le/esG3s2vXLqVSqQXfDgAAAAAAwIJpxQwAAqgBAFgUCKEGgDbhOq42npDU9t/9H3Vlg5PESoKojSST87CUm3OfDR5Qyend8kmpKys5Vtq4IyHX4SmkkVxJGx/r1vbVI/KnXiMwMlo1abQ/4ReEEId1n50NWazWpfogCB92lDuEY4N5UP/Gowc6W6n6r0gZHYr7yjhB/cJaLUsbJTyjCTe/qiPxwg5IeEYmrekA2nCcIHiW+reKmnsgUlkPiB5oebX0gOuLHuh0ritFIjNv6HieNPvDwy3wYWIAAAAsAM/L/7CR4wTHhr4vHTrEh34AAAAAAAAAAAAAAACAFvLf/tt/0wsvvJC37F3vepduuukmmQpCh1asWKHvfOc7uvTSS/WLX/xievlPf/pTfe1rX9PGjRvrPudqXX/99br++usXfDtnnnmmHn300QXfDgAAAAAAwIIggBoAACwgUqMAoI0k3/QR6cb/p/6LhysKop4dQF30MRUEUecGUG+6yyh5YInktuDJ6iKXfKZLMkb9Fw/nhE9Kq1KO9sV9ec7MsrnqPtvsPnD9YNzZoZObfrZMyWcSEuVvCnqgs5Wq/4q0o4MxX2lXkpWWT4UPVyMMoB2KWVkjRb1gXOrfWugBVNsDmSqeDOiBRcqYIIja2uDL94s/BgAAAIuP4+Qf/zlOcOznOEFA9UsvNW9uAAAAAAAAAAAAAAAAAKbt379f3/jGN/KWJRIJfe5zn6sogDp3nc9//vM6//zz85Z/5jOfaYkQagAAAAAAAMyhFf/2nwBqAAAWFUKoAaCdHHOMksdeLv3s3ukgamuthuPFH15p7qCxki1x/rlsdgD17pi0TEFQCRouuSsq+UvV/8bD0+GT1lq5VpquSK3n7VMhxJLk2mBcM7XAsdKm+5cq+VRUOVtCE9ADna1U/afN97XEnPWpf2uiB0APoCqel3/cbkz+G09hSDUAAAAWn2w2/7YxUiTnbcHR0cbOBwAAAAAAAAAAAAAAAEBR//Ef/6FUKpW37IorrtCxxx5b9VjnnXeezjzzTD3yyCPTy37729/qpZde0tFHHz3vuQIAAAAAAGCBEEANAAAagBBqAGg3H/ygkh/6mSTp+ouHNBkJsgKLna7l5MmWVepUz0iajErdGWnTXVJyp6QuV5r1gQY0VnKnpExC/b8/oayxGkpImZzsQDvVENW8rGCVH0SecaWhuNXySauINdr04y4ld0kStW8F9EBnK1b/rBMExErScMxKKauEV+rZYRZrNelaDceCixIYBeNR/9ZVVQ9UcjBAD7SdSnvAreT1fGslK3pgscpmJd+fue37+bdb8Y0oAAAA1MfsiwjOvp17XAgAAAAAAAAAAAAAAACgaR5++OGCZRdeeGHN41144YV5IdThNgihBgAAAAAAQMUIoAYAYFEihBoA2s2VV0qveIUuf+EZrZlwtbc7KzMVMDn7tK2SINrZwbMhoyCEMONIa0aly3dLchwpGiWsrgUkd8c0HrW65k0TSrula1+JYj1gJaVdaSgh3XxPQsndseoSjbHg6IHOllv/jFN4/3BcUqqyBph0pZF44fKMQ/1bWX17wAaPn4UeaG2V9EBPpoKBDD2wqM0+buc4HgAAoHMYU/6DPrFY4+YCAAAAAAAAAAAAAAAAoKQDBw4ULFu9enXN4xVb9+DBgzWPBwAAAAAAgAXWajkABFADALBoFYmqAgC0tGhUI3//V+q74pD2JLJalgoWmxLnbbZIOPX0fSoeQJ073rKUtGep1PduaaQ33nonrB1qJGZ1yxkZRfwy9S1T+9mPK7pcUsSXbjkjo5EYLwy0mkp7YC7l9gP0QOsK69+dLV3k4biUnuNo31fxAOpQd9ZQ/xZVaQ94c+wHPKOi4cMheqB1VdIDY9Hg97yclEMPAAAAAB3HdaWenmbPAgAAAAAAAAAAAAAAAICkRCJRsGxiYqLm8cbHxwuWdXd31zweAAAAAAAAFlCr5XkRQA0AwKJGCDUAtJmR1Ij6Dt6owdVBpGAiGwRFlzt1KxZGXC54Nrx/WSoYX5IG10h970gTQNgCRmJWfVeNaduarMaiC7utsai0bU1WfVeNUfsWQg90trD+g6u84DkgXXpnPhGVPE3t82d9eZK8MmcDy9JGiaw0uMqj/i2mmh7IuOV7IO2W3g490Lqq6QHPKd8D47HS26EHAAAAgEXGcaRYjABqAAAAAAAAAAAAAAAAoIWsXr26YNlTTz1V83i7d++uaBsAAAAAAABoMgKoAQBAg0WaPQEAQOVGUiPqu61Pg8/8UvL9qta1RpKVpr6VDaAuZfAoqe+9RlsHT1Wvx1NIM4y4WfWtfVzbllkNNagEQ3Fp27GW2rcIeqCzhfUfXGIUHsonJMnzNRzxiq7jO5Js/tVnfEl++DxQ5PlgWdZVQs702cLgGvb/rYIeQL17wKj4+xL0wCJx+LA0MTFzO52WJidnbrsuAYQAAACL1YsvBsd/oWg0OPZznNb7cBIAAAAAAAAAAAAAAADQwV71qlcVLLvrrrv0mc98puqxxsfHdd999+UtM8bolFNOqXF2AAAAAAAAWBCt9jdeBFADANARSI4CgDbh+Z423L5Bg3sGgzA5SXIcTTq+huMz4dLlWDP3Y0JG0nA8+HciG07C0+DScW04e5fueOS1coulVmLBjLhZ9Z2xU9uWjmqoRMjkQhmKeNq2bFR9657U1h1nET7ZJPRAZwvrP9gzrtmpwQnf1YTvK+0U38v7U08SjmaFDxcR840SvlsQTDy4dJz6Nxk9AHoAVUulpGx25ra1UiYzc9t1gzBCAAAALD7G5H8QyXWDLwAAAAAAAAAAAAAAAAAt5YorrpDjOPJ9f3rZ448/rn/913/Ve97znqrG+ud//meNjo7mLVu3bp2OPPLIuswVAAAAAAAAdUAANQAAaBKn2RMAAFTGdVxtPHujnFRa8oLw2UnXTgdF2zqfV4bjDcelyTBj0Fo5vtXGPccQQN1gnqw2nP6Iti0d0VAkO/cKC2AoktW2pSPacPoj8iqOM0e90AOdLaz/YM9o0fsnHE+Tji1bFd9InikfPGslTTpWE07xkPPBnlHq3yT0AOgBAAAAAAAAAAAAAAAAAAAAAAAWn5UrV+qKK64oWH7ddddpx44dFY9zzz336B/+4R8Klr/vfe+b1/wAAAAAAABQRwRQAwCAJiKEGgDaSPKMpDY9eaocOxVAHQtO4KxR3WMArQqDqB0rbbqvW8kDq+u8NczFldHJE11NCx8ODUWyOnmiixDyJqAHOpsro417jpFT5P/7hONpKBKExVqVfz6Y677w/qGIVzSA1pmaB/VvPHoA9AAAAAAAAAAAAAAAAAAAAAAAAIvTJz7xCZlZAUQHDx7UhRdeqK997WvKZkv/Tdn4+Lg++clP6m1ve5symUzefccdd5w+/OEPL8icAQAAAAAAUCUCqAEAQJNFmj0BAEAVXnxRyR88rW2v69Kn1o5JWpgA6pCVJCMZGwRR/3+2O0pun5DOT0nx+AJtFcWk5etbR+6V0cLVuxJG0reO3Kv/vfsUxbiWRUPRAwgvANB/yuPyp7ogN3g2FPZHNS87FgutHYp4Ulbq8l1JQfDspidP5UIETUQPgB4AAAAAAAAAAAAAAAAAAAAAAGDxOffcc3XDDTfoH//xH/OWj4yM6Oqrr9bf/u3f6i1veYvOPvtsrVy5Ur7va9++ffrlL3+pu+66SwcPHiwYMxqN6uabb1ZXV1ejfgwAAAAAAACUQgA1AABoAYRQA0A7+eUvNXDCpLa8alzLUtJQYuHDaMMg6uWT0pazfF34oq/kyIi0mvDBRorJ0ad3vUrXnLZDaWObEkJsJMWs0ad3vYrw4SagByDlB9COOdmC4NlQNf1RLHg2FAbQ9vgRgmdbBD0AegAAAAAAAAAAAAAAAAAAAAAAgMXnk5/8pIaHh/WlL32p4L7nnntOX/nKVyoeKxaL6etf/7re/OY313OKAAAAAAAAqAUB1AAAoEWQHggAbWRgcKv6Lx6WP3US16hzuXA7vpH635zVwBF7G7Nh5Nmwb41ufuwMxWxzXlSIWaObHztDG/atacr2QQ8gkDywWu9+eXXJ4NlQuVDZ2Y8rZyji6d0vryZ4toVU0wOVoAfaTz17oJJ9BT0AAAAAAAAAAAAAAAAAAAAAAMDC++IXv6hbb71Vq1atqnmMs88+Ww8++KDe97731XFmAAAAAAAAqAkB1AAAoIUQQg0AbcLzPW0+/BP5spqMSENxSY06vzTB9iYjQRD15hOH5FUcbYl62rBvja5+6eimbPvql44mfLgF0APYsnqPvnzsC418CtCXj31BW1bvadAWMRd6APQAAAAAAAAAAAAAAAAAAAAAAACLU19fn55++ml95Stf0UUXXaRoNDrnOkuXLlUymdRdd92lX//613rta1/bgJkCAAAAAACgLAKoAQBAi4k0ewIAgMq4jqstvz1Vl560R785UrI1nF8aScYG61Z7OmingqjPHpK23NUt98wWO8HtEFtW79FXj35JRtXXcD6MpK8e/ZLeMLKcEOImowc625bVe3TNaTuUMXY6fHYh+8BMfWWM1TWn7ZAk6t9k9ADoAQAAAAAAAAAAAAAAAAAAAAAAFreenh5de+21uvbaa5VKpbR9+3bt2rVLQ0NDGh4eluu6Wr58uVasWKGzzjpLp59+uhzHafa0AQAAAAAAECKAGgAAtCBCqAGgjdybeEkvdtd+MmfszPdaQqwl6cUe6d5jU0rWPAvUqtGhkyHCJ1sHPdDZcusfWsg+COseov7NRw+AHgAAAAAAAAAwF8/35Dpuy4yDxqMHOhv1Bz3Q2ag/6AEAAAAAAIDFKR6P68ILL9SFF17Y7KkAAAAAAACgEgRQAwCAFsUlTQGgTXi+pxuPeVFD3flhgNWwkuJe7SGFRtJQt3TjmSl5DYm+RSgtXx87+YmC0MmFfrmhWPjkx05+Qmn5C7xlzEYPdLZi9Q8tRB+UGpP6Nw89AHoAAAAAAAAAwFxGUiN659Z3amDHwLzGGdgxoHdufadGUiN1mhkahR7obNQf9EBno/6gBwAAAAAAAAAAAAAAAIAWQAA1AABoYZFmTwAAUDmTc0LnWMmv9nzTzPpeBSfnXNIYSaOjtQ2EmsQkffrRV+ia1zyljJMfQizVHixeTrHwyahv9OlHX6HY6PgCbBHl0AOdrVT9Q0b17YFSe3fq3zz0AOgB1GRiQkqlZm6n01I2O3Pb9/PvBwAAwOLBh4MAAOg4I6kR9d3Wp8E9g9r+0nZJUvKMZNXjDOwYUP9d/fKtr77b+rT13VvVG++t93SxAOiBzkb9QQ90NuoPegAAAAAAAAAAAAAAAABoAa0WQA0AADALIdQA0CZcx9WHdi7Rwz1jOtAtZZzqgqiNJGOllBt8l6k8qDDMOYz60spx6UPbHblxq4WJvUUpG54/QvKtrln7dNHwyYUW9Y1uHjxBG148QpLf8O2DHuh05epf726YeprIQ/2bjx4APYCq+X7wFbI2P4zQ2vz7AQAAAAAA0JZyQwclybe++u/ql1Rd+GBu6KAkDe4ZJHywTZTrgTed/KaKx6EH2hP7ANADnY36gx4AAAAAAAAAAAAAAAAAWkArBlBb8sEAAEA+p9kTAABULvmor8/fGQRBR6ey4io59QwDqPOW2crXlWYCqD9/p5TcUfmcUV8bXlypmwdPUHQqfXwho8Bzx54JnVy5QFtDpeiBzja7/tLC9MDsMal/66AHQA8AAAAAAAAAyDU7dDAUhg8O7BioaJzZoYOhMHxwJDVStzmjvubqge899r2KxqEH2hP7ANADnY36gx4AAAAAAAAAAAAAAAAAWgAB1AAAoE0QQg0A7WRyUsmdmg6iduzcgYPFAqin76sgiNoq2M50APVOSb4/x1pYSGH4ZMRfuPDhkJUU8UXoZIuhBzpbbgBtI0LICZ5tPfQA6tkD5Y4F6QEAAAAAAACgtZUKHQyF4YMPPPtA2XF++sxPi4YOhggfbF2V9MB/vee/6qEXHyo7zp1P3EkPtKFK9wE/fvrHZcf5+fM/p/5tqtIeePCFB8uOc/euu+mBNlRp/e/edXfZcR584UHq36Yq7YGfP//zsuP8+Kkf0wMAAAAAAAAAAAAAAABArQigBgAAbSTS7AkAAKqQTksKgqC3HSt96uLyDy8XQD39GBs8sNzDfCO9f3AqgFoKTjK7uyucNBbC2w/HdHT6RT2TSC34to5Ox/X2w0dL3Rw2tBJ6oLNtGOrWg8+n9NnjXyz5mPAlykouVlDqMVbSdc8frQ1Dr5DY7beUSnugkpeF6YH2RA+gItls4RtEnjfzb8eR4vHGzgkAAACN4brB8WBo9oeZWvHDTQAAoCpzhQ6GfOvr8w9+XhvO2qDzjjmv4P6HXnxI3/zdNxVxyr8PFIYPbn33VvXGe+c1d9RHNT3wjYe/IUkle+Dbj357zu3RA62lmvr/3//8v/rDs/6wZP1v+e0tirmxsuNQ/9ZTTQ98ffDr8q1fsgdufeRWOcYpOw490Fqqqf/Hf/pxve/M95Ws/788/C+KR8q/X0T9W081PXDjr27U+1/z/pI98K1HviXXuGXHoQcAAAAAAAAAAAAAAACAIlrxb7QIoAYAAGWQJAgA7cT3JUkDp0tb1krLUtJwPAiJnq2SAOrpx5YJonZssJ0ta6ULX8gJoo7wFNIsI25Wl772YT2XSFUcLlkrI+m5REqXnvOw7nv4HPV61L0V0AMYWLlP316zXxFrlK10Z1+DiDX69pr9+r3RlUoeWL1g20H16AEMrNyn29Yc0PJsREORbMH9RtWFUKvEY5dnI7ptzQF6oF25bhA0nXs7940sx8m/HwAAAItL7rHf7A80RaONnQsAAKirSkMHQ9baoiHED734kL7x8DfmDB4NET7YOqruAZXvgZgbq6gP6IHWUG39fRUPIg/rb1TZH0BQ/9ZR7x6IOlFV0gb0QGuo93GArfBTJ9S/ddS7B1zHnTOEWqIHAAAAAAAAAAAAAAAAgDwEUAMAgDZE0hAAtBPH0cDpUv9VQfB0IhsERDuzzv2qCaCeXscW/j1ZGECdyAbb678qCMBG8wThw7/W4JJRWS1s+LCmxreSBpeM6tLX/lojbmHIJRqLHsDAyn26/pTHdDCakW9syb8FrrQ/Sj3GSPKN1cFoRtef8pgGVu6rab6ov2p6oBL0QPsZWLlP/ac8Ll9WXb6j5dn8CwSEAdTVKLbO8mxEXb4jX1b9pzxODwAAAACLheNIsVizZwEAAGpUbehgKAwhfujFhyRVHzwZCsMHR1IjVa2H+qEHOhv1Bz3Q2ag/6AEAAAAAAAAAAAAAAACgBRBADQAA2lRk7ocAAFrFwBlS/2VBIHQoMZUHOxwPltcSQB0yVpIJwihzA6hDYRC1jJQcHa1tI6jZSMTTpRfs0OCS8YaED4fC7QwuGdWlZz2k+35xhnqzboO2jlz0AAaOOqjrT3paByOeMlM7e6OF6YXwqSZjrA5GMrr+pB3S5ISSe49YgK2hUqV6QKpvH+QGEtMDrWXgqIPqP+kZ+TkF7/KMZF0NRb2aAqhDub20POOqy5/Zw/iy6j9pJz3QbiYmpFRq5nY6LWVzD/D9/PsBAACw+LmuFI+35gedAADAnDzf04bbN1QdOhgKwwd/9dKv9Mi+R6oOHQwN7hnUhts36I6+O+Q6vGfUSPRAZ6P+oAc6G/UHPQAAAAAAAAAAAAAAAAC0gFb8uywCqAEAQIUIoQaANuH5njavyw+gDuUGUc8l7kmpMn/7YWwQQDg7gDrkG2nzOdL6Z6Jya444RLU8WV1+/iMa7G1s+HBoOoS4d1yXX7BT2x48m/o3GD2AgdX7df1pz+hgbCZ8WJL8BdqeL8mZ+nfGsToY93T9mc9IkYiS+1Yt0FZRTqkekOofRj77t5seaA0Dq/er/7Rn5Rd5U6LLukr5vlLO/DrBSEr4Rl3WLWgE30j9Zz5LD7STaLQwdDr3tuNIEV4aAgAAWLRyzx0cR+rqCr4DAIC25TquNp69Udtf2i7f1vYOgZXV7/b9bl7zcIyjjWdvJHSwCeiBzkb9QQ90NuoPegAAAAAAAAAAAAAAAABoMgKoAQBAmyNpCADahOu42vLc69SXvl+DawrvT2SlyUj5gOkwWHoyUj6wOu4VD6CWpLV7pC339Mo9q4LEa9SRlXVMU8KHZ2Yw9d0xUiymwohSLCx6oJN5srrxFXt1MJadVwB1tUHFeUHUxupgLKsbX7FX64ePJoS8wUr1QKjSulbaA1ZFgqjpgabyZLX5uH1FL0giSZNOZQHUlfRAyrGadHwl/MJwOt9Im4/bRw+0i0hEcnNOEFy3MIjQ5Y/DAQAAFiXXzb8AiesSQA0AwCKRPCMpSeq/q7/m8MH5cIyjTW/dND0PNB490NmoP+iBzkb9QQ8AAAAAAAAAAAAAAAAATUIANQAAWAT4a3MAaCO9512srbcFQdCzVRpALQXfl6VKPzblBuPNtnaPtPU2qbdreVXzxvy5Mvr/Pn+83Caf97tWwTwInWw4egBm1v/zRv0p4eztzJ4HGqfU//uFCKcvNyY90ByujLbsPFNrx5YU3Dfp+BqOlLiCSA5HwX68khcChiNZTTqFe5q1Y0u0ZeeZPA8AAAAAAAAATZQ8I6lNb90kxzT2Yz+EDrYOeqCzUX/QA52N+oMeAAAAAAAAAAAAAAAAABqMAGoAALBIFIkYBQC0rPe8R73/9E/aeptV37ulwTXB4smINBwvvVpuAHUovF1qvXB5+LjpAOqUpOOOkxKJmn8MVM+T1a1r9mtlNqYDkbSyTXhdImKlldmYbl2zX+87/ErCJxuMHuhsrqQPHThBDy8Z0/5IWmlT2wuBtb586EuKWaOV2Zg+dOAEuYmuGkdCrXJ74EAko4wJwoGrDaCu5bHhb3rUOlqZjdIDTdQraevuc9V3ym802D0iSZo0XsUB1I4NqulYScbOGWY/HMlK2YgSNrjSydrxXm3dfbZ6o1EpWvvPgQaamJCyOf3h+1Ik56Ug15ViscbPCwAAAAvPcYLjvdzbs+8HAABtLQz/67+rX75d+EtXEjrYeuiBzkb9QQ90NuoPegAAAAAAAAAAAAAAAABoEAKoAQDAIkIINQC0k3POkY45Rr0vvjgdRP2L46oPoA5VGkR9wfM5AdTxePA1OVnzj4HquZK2PHq6+s74nbb3HNaBaKahIcQRK63MRLVubIm27Dhdrpdq3MYhiR6AlHxpucazJ+ua03Y0ZftG0v/edbKS+5ZL4jmgGZIvLZfSp+rDpzymA9GM0sbWHCxeqXD8mDVamYno80+equSB5aIHmqdX0tZHzlDfGb/TL5aOVBFALeXGkAdB1HMHkwdB1NIFh3u1dccZ6vU8SV7N80eDpdPBVyibzQ+ltjb/fgAAAHSOCG8RAgCwGDQqfJDQwdZFD3Q26g96oLNRf9ADAAAAAAAAAAAAAAAAwAIjgBoAACwyTrMnAACo0saNkoJA6Pc/LI2XyQopF0AdSmSDx5UyHgm20xs+5uijq5sv6qbXi2jrjrO0bmypejy3odvu8VytG1uqrTvOUq9HQE2z0AOdbcTN6paj9qjbc9XolyiNpG7P1S1H7dGIO3fgLRZO8sBqff7J09TtuQseQB2yCur/+SdPU/LA6gZtFeX0ehG9f+8ajbtzh0HPBFAXuc+qoueTcdfT+/euYf8PAAAALBaOIyUSzZ4FAACok+QZSW166yY5ZmE+AkToYOujBzob9Qc90NmoP+gBAAAAAAAAAAAAAAAAYIEQQA0AABYhQqgBoN38xV9IxmjgdOmGN0krJqWoX/iwSgKoQ6WCqKN+MP4Nb5IGTp9aeNxxNU8d8xeGTk66fsOexB1Jk65P+GSLoAc6kyerDac/osGe0abOY7BnVBtOf0Rew+KPUYrR3Cdzlb6cPdfjnCrGQmMMrNynG07apRXZqKK2dHV6PLdkAHUoZo2WZUvv26PWaEU2qhtO2qWBlftqnTIAAACAVuE4UldXa34ICgAA1GyhwgcJHWwf9EBno/6gBzob9Qc9AAAAAAAAAAAAAAAAANRZK/7tFQHUAACgDkgRBIB2c//9Gjgrov4r0vJNEAq5YkI61CVlpv6OpJoA6lD4+OF48D3qB+MaSb6R+q+SZIySqZS0fHl9fhZUbWD5S7rh+N1akY3pUCSjjPFVJIO8bhxJUesE4ZMn71Z3tEvJoaMXcIuYCz3QmVxJGw+doP9c9rCG3ex0IHAjXh40U1/DkayMF9XGQyfI7e5pwJZRzMDyl9R//BOKW1fLskFdiu0DwrpV0iPl+smRtCwbUdy66n/VE1I8xj6gycIe8CUZmbzng1zLvKhcK03M+SxhlLCO5BkNu5m8e8L9//TxID3QflIpyfNmblsrRaMzt11XiscbPy8AAAAsPNcNvkLRqNTdHSxrxQ9BAQCAeQvDAfvv6pdv5//uEaGD7Yce6GzUH/RAZ6P+oAcAAAAAAAAAAAAAAACAOnHqezH4uiCAGgAA1Akh1ADQZga+8/+bDqAO5QZRd2eqD6AOheuNR2cCqEO+kfrfaqVf7lZy2am1Th/zMNDznPpXPyrfmCB00o/pkJMuGUJcTfhoqeDRqHW0wo/JOEa+pP5XPip19yg59op5/CSoFT3Q4bpHlLtnbkQQdRhknLeku0eyyxZwqygldx8gGSXkSL6jYSedtw8orNvcivWTI2mZH1PCuJIR+4AWMLsHNPXf3OcDaapucpUx3tzN4BjJOlP9ZDTspCXl7/9D9EAbymYl3y9cFopEpK6uxs4JAAAAjRGL5R8LRiLBB6DCAOrcgGoAALBoJM9I6o7H7tA9u+6Z91iXn3Q5oYNtiB7obNQf9EBno/6gBwAAAAAAAAAAAAAAAIA6aLXA51abDwAAaGuEUANAGxn42c3qX/nLkmGzR0zMfxuJbOkQa99I/a87ID36gJL7V89/Y6iYJ6vN5z8p35spjpG0Qo4ORa0yji0aQFppALFUGDwa9Y1WZBwZedPLfUmb3UGtf2xMbtURp5gPeqCzhfWPZ62W+a6Go0FNFjKIenaQ8bKMq7hvqX+TFNsHSFJCkpygJ3zNHUBdbr+Q20+OgponfCtpZpvsA5qnVA9I+c8H3Z4zUzfjS05+xXuyjsYiOc8YWW/6TYewn8Zdv2D/H6IH2szoqDQ5OXM7k5FSqZnbjpN/PwAAABaP8fHg+C80Nibt3St1d0tLl0rxePPmBgAAFszAjgHdu/veuox17+57NbBjgPDBNkMPdDbqD3qgs1F/0AMAAAAAAAAAAAAAAADAPJkWy1AggBoAANQZIdQA0CY839PmX35Z/jyiRh0rXb5buvekIFC6Fr6RNh/zsta/sJTgwQZyJW3Zdqz6LnhWg8tmggKNpBUZV/ujWfnOzLJilTGSjJWsKQwgnR1k6/jBuMbmLpXWDie05RfHys2m5/9DoSr0QGcrqL91NBwLQmQXIoi6IIA67SjhG60djlP/Jim1D5CkhGfyeqIUx86EUJc6DghrH9Z8dmexD2iecj0gTV2QJO1O3bIzC3McNR5Rb8bRSNTX3u7szGNz3nhIeEYJb9Y4OeiBNpNO5wcPZrOSlxMubm3+/QAAAFg8PE/y/fzb2WwQRm0tIdQAACxCAzsG1H9Xv3xb/rXiSvnWV/9d/ZJE+GCboAc6G/UHPdDZqD/oAQAAAAAAAAAAAAAAAGCeCKAGAAAdgBBqAGgTruNqywsXqm/PQxpcU/36jpU+d6eU3CkNnC595KragqjX7pG2/Edc7nLC6hqtNy1tvX+N+i5+SYPLZ8InU47NDx/Off3AFC43Nlgw/bDcnMqp5b4jpYw/FUAaWDuU0NafrVFv1pOUE16IhqEHOltB/dOOhqMzQdS2jq9l5vbQsoyjhGe0dihO/Zus1D5ACoKDJz2jlDPrReSpvggDqMNFjs05Dpi1Stw3QbD17ABq9gFNV64Hisp5U+GocVe9maCuvRkjjbva2+0VPK4ceqANeV5+6PTsIEJr8+8HAADA4uH7hSHUnhd8GMr3pUOHmjc3AABQd/UOHQwRPtg+6IHORv1BD3Q26g96AAAAAAAAAAAAAAAAAJgnAqgBAECHIIQaANpI70+2aetvpb53q6og6twAamnme7VB1Gv3SFtvk3rtuLSUsLpm6PWkrfcfpb437NHgipQmXRuE0FrJKbFOQSixioQQ5ywPWyIIt50Knz0U19YHjlJvRiJ0srnogc42u/5SEERd75cOp9pjJoCa+reMwh4ITLq2MIB6Sm4AdaggiDpHyrGadO1UEHWAHmgdpXqgnKPGnOkA6ulx0kayjiajlW2XHmhTs0OnZwcROk7+bQAAACxe1s4cD6ZS0uHDzZ4RAACok4UKHQwRPtj66IHORv1BD3Q26g96AAAAAAAAAAAAAAAAAJgnAqgBAEAHIYQaANrJc8+pNxUEQVcaRD07gDpUbRD1dAB1SpKTlcbGqp4+6qNX0tYfLtWlb09rcGX5EMioL3kl6js7lLiY4aivE0Yi2vrDperNTFQ/WSyIanrAFAmfzb0vYkv3iEQPtKKw/n1XeBpcmVHaSGMVhshWyhqpOyMlstLaAxFt/Q/q30pm90AQRl98px6xhWHzISMp4hc/DgjC7U0QQn4gSg+0mNk9UIrxrY4adYLA6SKd0JsyunpHQl999UTZ40F6oI1lMlI2O3M7mw2CqXO12ptiAAAAqI/Zx37ZbBA+nc0GQdSTk82bGwAAqJuFDh0MET7YuuiBzkb9QQ90NuoPegAAAAAAAAAAAAAAAACYp1b7W3sCqAEAwAIjhBoA2snIiCRVHERdKoA6VGkQdV4AtRSElOSG2aHh7n1FSnu7fEV9KeMUf8yytNGEa+W5pccxU48bjhV/ASLqS3u7fN27ZkLJp+LznzjqptIeKFXbkGulJRl6oN30ZqWtP1iiS985pL2rgt/l2RUMd+tzvbxYat2JiHTqkNHWHyxRb8aXtLB/tIjq5PbA4KritVmWNhqNWtkyz/GulZaW2AcMx6xO2O/QAy0q7IG+K0c0uKrwggSOlf7yobi+9uq0yu0JLnrB0Tn7l6j/ktGix4Nr97va+kN6oG1ls/nH7b4ffIWM4bgeAABgsfL9/A8dhceBnheEUadSxdcDAABto1GhgyHCB1sPPdDZqD/ogc5G/UEPAAAAAAAAAAAAAAAAAPNEADUAAOhAhFADQDvJCQaZK4h6rgDqUHJnEDbaXyKIuiCAOkRYXdMMnJxW/xvHZSWtSBkdituCEOJlaaNEVpooE0AdSmQlqTCANOoH41tZ9b/xsOR7Su6K1evHwDxU0wPDc5XM0gPt6t5XprW3eyaIPDdo2EgyVmXDh6cfa4MV7KxlUV/a2+3r3mMmqXuLmt0DucJ9wGhEM4nkJZTbB9ADra03K229s0d9bx3NC6J2rLTpJ9069qCvr716jjcavKySTyQkv0v9vzeedzy4dr+rrXf1qDdNAHXbymbzQ6c9L/+2JDklrmYBAACA9jb7AiSeJ6XTkusGx4C8vgsAQFtrdOhgiPDB1kEPdDbqD3qgs1F/0AMAAAAAAAAAAAAAAADAPBFADQAAOhQh1ADQTmYFxpUKonastOlO6Z1zBFCHwqDq2UHUJQOoJenQoermjroYOF3qv2QqBtIGQbErJqRDXTMBpMtSUiJbxQsL1iqRCcYbjgeLon4wrpmKpfUl9V8yJo2OzRlsjoVFD0Ca6QM7Vf/93TP77zCAuhqzg6idqXGtLHVvUbN7oOw+oFw/WJXdB9ADra9X0tZvzRwPhseByZ1j+uVRkrw5BhidkA5NKPmQpNGZ48HgODCr3tTQgv8MaLJMptkzAAAAQCOkUkHwdDwuLVtWeHESAADQNpoVOhgifLD56IHORv1BD3Q26g96AAAAAAAAAAAAAAAAAJgnAqgBAEAHc5o9AQDA/IRB1Gv3BLdnggerGye5M1jPmTonLRtALQUn03w19GvgjMKgcCkInF0xEQSGBsGj1dU+lMgG68+ED+fzTbD9gTOoPz1AD7RSH6Qi8wugnu4jO1Nz3wTjUvfW/JrdA0YLuw+gB1r/qzdttPU26dwXpU13ScnHpu6reAcQPD75mNGmu4Jxtt4m9aab/7PxNc8vAAAAIJe10uSkdPBgs2cCAABq5PmeNv9m87xCB42Mzlp9lkzBO0GV862vzb/ZLM+f6yp4qDd6oLNRf9ADnY36gx4AAAAAAAAAAAAAAAAA5qnV/gafAGoAANBghFADwCIQBlGf+2JtAdShMIh6OniwVAC1FJzA8tWwL09Wm88uDB8OGUlHTMwdPBqd4/5ENhin1MslvpE2ny15av7/k077ogf4krUaOM2q/60zfTAZkYbjwb8dq5oDqEPGzlyMYDgejB/Wvf+t0sBpzf9/0Olfs3tgunaqbB8wl1L7AHqg9b96U9Idt0rJHZpZXqmccZI7gnF6U2ro/PlaoC8AAAAgV3iMmMlIe/Y0dy4AAKAmruNqy7u2aO2atTWtb2T0gdd+QH967p/qA6/9QM3hg2vXrNWWd22R67g1rY/a0QOdjfqDHuhs1B/0AAAAAAAAAAAAAAAAADAPBFADAAAQQg0Ai8V08GCNAdSh5M6c4EG0DNdKW26X1s4jG6ZnUlo6GXyv1do9wTxcXsNoOHoAA6dL/VcVD6BeKAVB1FcF80BzzO6BRqMHWl+99s3s4wEAAIBFylrJ94N/79/f3LkAAICa9cZ7tfXdW6sOHwxDB8875jxJ0nnHnFdT+ODaNWu19d1b1RvvrWo91A890NmoP+iBzkb9QQ8AAAAAAAAAAAAAAAAANSCAGgAAQBIh1ACwqBA8uLj1pqStt1UXQuxYyUhaMSYtn5S6ssH3FWPBclNFrdfuCbZPQHnz1NIDhh5YFDwjbV43/wDqauodmh1EvXldMB801uweqFRuzY2knrTy/oS02lLSA+0l4kmJTPmvqNfsWQIAAABoGGNmPjCVzTZ3LgAAYF6qDR80Jj90MBSGDzqmso8PETrYOqruAdEDi0m19XfklK2/qfAPK6h/66AHOlvdjwMq/Bgx9W8dHAsCAAAAAAAAAAAAAAAAVSCAGgAAYBoh1AAAtJFqQ4iNlY4YlZamJNef+VqaCpZX+hIJ4cOto+oeUPkecCp8XYoeaC7XSltuD+pQawC14wf1dvzq1w2DqNfuCebBxQoaL7cHqmFyvo4akY4dDr6Hy6pFD7QXx0iu5v4CAAAA0IFa7cNTAACgapWGDzrG0YfP/3BB6GDovGPO00de95E5wwcJHWw91fRAseDJ0HnHnKdPXPYJeqDNVFP/v7joL8rW/0/P/VPq34aq6YEPrv1g2R74H5f8D3qgzVRT//9xyf8oW/8Prv0g9W9D1fTAn577p2V74C9f/5f0AAAAAAAAAAAAAAAAABanVvsbKgKoAQBAkxFCDQBAm6k0hNix0hufknrSxe/vSUtrhucOISZ8uPVU0wNrhsv3wEVP0wPtojclvX9QGo9Wv67jzwQOG9UWRD0eDbZPHzRPtSH0uY4amaldbyq4XS32BQAAAADQ5nI/pORySRoAABaDucIHHeNo01s36Q3Hv6HsOJe88hJteuumkuGDhA62rkp64P+86f+UDJ4MXfWqq+iBNlTpPuD3T/j9suO8/rjXU/82VWkPnH/s+WXHefPJb6YH2lCl9X/zyW8uO875x55P/dtUpT3w+uNeX3ac3z/x9+kBAAAAAAAAAAAAAAAALD4EUAMAABQghBoAgDY0VxCpY6VNd0onHZx7nE13lg4hJnC0dVXaA3PV7sRD9EC7GDhduuHN0vIJKVpFiHRuAHWo2iDqqB9s94Y3B/NA89QSRJ0bQJ07zlEjkqnwNWr2BQAAAACwSBjTeh+gAgAA81IqfDAMHUyekaxonOQZyaLhg4QOtr65emD9aesrGoceaE/sA0APdDbqD3oAAAAAAAAAAAAAAAAAKIK/nwIAACiKEGoAANpUqSDSMHw4ubOycZI7i4cQEzja+uiBzuEZafM6yTfBAXylQdSJTH4AdSIz8+9Kg6jDAGpHwfY3rwvmg+apNIjasdLpe0v/DvempLNfLB1CH2JfAAAAAACLiLX53wEAwKIwO3yw2tDB0OzwQUIH2wc90NmoP+iBzkb9QQ8AAAAAAAAAAAAAAAAAOVoxgJq/5QIAAC0i0uwJAADaVCuebHeg3rS09TarvndLg2umwofvkpKPmSBh1szxAoSRZIySjwWP7X9rEDI7HTiaNvkJtmg58+4BiR5oA66kLbfn1FlBMPRQl5QpcVmZZakgLDrtBrePGJN60tJYTDrYEywzkpakpMPx4mPkBlBLQV9suV1yRV802+zf/dnCfcGXz5aeW1Z6nGNHpP/6C03/7s/GvqDdVfhGBMd1ixdvRgEAAGA2a4Mvv4IrUwEAgLYShg9uuH2DNp69serQwVC43ubfbNaWd20hdLCN0AOdjfqDHuhs1B/0AAAAAAAAAAAAAAAAAKDWzE7gb/4BAEALIYQaAFAbTm5bRm8qCAjd8C5p43YpuVOaDp2cq0xW07VM7ghub14XhMz2pioZAK1gXj0g0QNtIqxzJUHUy1JSIiuNRYPbYQC1NPM9DKJOZIOxhmcFURcLoN56G33RSmb3RMix0qY7g33Bl9fOPU74u99/VX4QNTXvIBzXAQAAAJ3FWimTafYsAADAAuiN9+qOvjvkOu68xkmekdT609bPexw0Hj3Q2ag/6IHORv1BDwAAAAAAAAAAAAAAAKCjEUANAAAwJ0KoAQBYBHpT0h23Su48X3dI7pTWPzb/cdB49EBnqCSIOgygliRj8wOoQ8WCqKWZIOryAdRoJQU9kRNAXY3w8WEQNTUHAAAAgEXMWsn3mz0LAACwQOoVFkjoYPuiBzob9Qc90NmoP+gBAAAAAAAAAAAAAAAAdCQCqAEAACpCCDUAAItEsdDg1WPSyonS63SnC5cRPty+itXuyDHpcLz0OqvGKxsHraNcEHV3ZiZQ2rHSB38t/ez44uOsnJCWpqWJmCQzs954lADqdhP2xIZ3SRu35wdQHzkmjcdKr7t6dObf4Xqb10lbbqfmi0FXRlpZZD+fK17kWAAAAABAByCEGgAAAAAAAAAAAAAAAAAAAAAAAEC7I4AaAACgYoRQAwCwiL37cemUkdL3d2UaNxc0x4cfkiaipe9/7d7GzQX1UyyIesWEFL4s6lhp053SuS9K5+8pP1YiK330rZI/FUQdz86MQwB1++hNSXfcWhgi/4HfSXuXlF7vhOH828md0vrHCKNfLI4el97/u/KPObXMcQIAAACARYwPMgEAAAAAAAAAAAAAAAAAAAAAAABoZwRQAwAAVMVp9gQAAAAAVC8Mol47FTI9O4A6ubOycd65M3i8Y/PHIYC6/dQrOJoAagAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALQsAqgBAACqRgg1AAAA0KZmB1FXG0AdSs4KoiaAGgAAAACARS4SafYMAAAAAAAAAAAAAAAAAAAAAAAAAKB6BFADAADUhL8wBwAAANpYGES94V3Sxu3VB1CHwvU2r5O23E4ANQAAAAAAixoh1AAAAAAAAAAAAAAAAAAAAAAAAADaDQHUAAAANeMvzAEAAIA215uS7rhVcuf5mmRyp7T+sfmPAwAAAAAAWlwrftgKAAAAAAAAAAAA+P+z9+/xjZz13f//vmYkWfbuynvOJiyQAxASILshgaQctywJEEjAJMW97w00XQ6FG1z6o9yk/bU3hXKXNoVyl+ZB01C6AZKlcZviAE2AHCAlDezmwMYJOZIj2Ww2e7S1Pug0c33/GI9XsmVZkm2NZL2ej4fiSJrD5f18PJJmNO8BAAAAAAAAAAAAZtKM50QRQA0AAFqIE/UAAAAAAMzdfAVHE0ANAAAAAMAiZ4xUKEQ9CgAAAAAAAAAAAAAAAAAAAAAAAACoDgHUAAAAcxaLegAAAAAAAAAAAAAAFpgxR79s5fvRjgUAAAAAAAAAAAAAAAAAAAAAAAAAqkEANQAAwLxwoh4AAAAAAAAAAAAAgAYxRnLdqEcBAAAAAAAAAAAAAAAAAAAAAAAAAJURQA0AADBvCKEGAAAAAAAAAAAAFrvwC1fWSh0d0Y4FAAAAAAAAAAAAAAAAAAAAAAAAACohgBoAAGBexaIeAACgRTXjB3RMZ6xUqVRG1HKxm60HJHpgMaum/hI9sJixDWhvbAPAASwAAACU4zjBDQAAAAAAAAAAAAAAAAAAAAAAAABQHc7fBwAALY4QagBoJa4reV7UowgQVtgaCKEGPdDmqgkgnvwPFiNCqNtbVfUXPbCYcRALAAAAxYwJwqf5DAAAAAAAAAAAAAAAAAAAAAAAAACgmTXbOVCcuw8AABYBQqgBoJV0dUlHjkQ9ioDrRj0CVKEQk3IVSuX6opaLXM6t3AOFmOiBxcw1swfQupLkNGAwiIQzSw+4klzqv2hVuw2gBxavqQfWfL/04FYYQggAAIDFp9zFDF336HvEGIcIAQAAAAAAAAAAAAAAAAAAAAAAADQhAqgBAAAWBGeYA0ArWbaseUKoCatrCUOdVs92z7wTY0lO1HKRey7lazQx8/PHHyF8clFzJDmz7Mh0jAihXsQcW7m8DtuARa3abQA9sLhNDZ2eesCt2Q7AAQAAYOGE7wd5DwgAAAAAAAAAAAAAAAAAAAAAAACgGTXbuU8EUAMAgEWEEGoAaCWuW/HpnCMl/LmvZtblGMIKm5FnrFw7NVTQSqZCMY2m1bLsctASyveACeo8E8ehBxaJ8vVX5W2ANFH/oz1A/VtX+R7wK28Dyrym0wOta1rtHFW3DaAHFje/qAccZ/pBrmY7CAcAAICFU/zeP1HhqmUAAAAAAAAAAAAAAAAAAAAAAAAA0GjNdu47AdQAAGCRIUEUAFpJPD7jU7uXSes/JV26eW6ruHRzsJzdy+a2HDRWOmH1nvfmNPBSb07LGXipp/e8N6d0gh0grYYeaG/UH/QA6AEAAAAAVYvFghsAAAAAAAAAAAAAAAAAAAAAAAAANAMCqAEAABYcZ5gDQCtJJss+vHuZtOGj0qEu6UuvDx677NbaF3/p5mB+a4LlDf6TtP7IDBM324f2NpZOWPVekNPgWqtdx+QlI/X8OnyJn6VORpO1HHhpQX1vzcs3Uu+7c+r/fodSOercCir2wGwlNIYeaHGV6280+3YgmIb6t67Ze6ACXgcWhRl7oNptAD2wuBVvB8od6OJ9PQAAQHtx3eDG+0AAAAAAAAAAAAAAAAAAAAAAAAAAzaDZznUigBoAACxShFADQCtZuTL4wFz0IbU4gFoKAqTDIOq/qSGIujiAWgqWN2MQteNIiUT9vwfmTTph1XveqAZXBz3hG6nvrXkpFlPP4wkpkZPcCgvwjZRIaOCknPo2BaGTkjS41qr3PXn137iE8MkmN2sPuL7kVtix5br0QAsrrr+VlW/MlG2AL8XylReSiGvgpMJk/a2sBteK+reIWbcBMSPF/JkXEHcmeoBtQKuq1AObf5Ooahsg36EHFqt8XvKLtgGOI3ne0fvGBO8FAAAAsPg5ztH3fp4X3AcAAAAAAAAAAAAAAAAAAAAAAACAKBFADQAA0DCEUANAKznuuJK7UwOoQ7UGUU8NoA7NGERtTGl4HSKRTlj1vmNcg6tLw0V9I/VtGpd8XyvGjeRX2LHhWw2ckFHfpuxk6GRocLWn3neMqP8/OwmfbFLV9EBwq7AQ36cHWlRx/X1ZDSWlrrxV0jOT9T9jr1t5GyDp+hOy+qNNOflGyrhWY3FpecZS/xZQzTZgaW6W1wGPbUArm60HLvtZQtMKO5XnaeCEHD2wWFlbepDL96cf9OIgGAAAQHvgfR8AAAAAAAAAAAAAAAAAAAAAAACAZkIANQAAQEMRQg0AreSFL5z8oDpTAHWo2iDqP5khgDpUNojaWqlQqO93wLxIJ6x635kLQifL7LvwJfW9JaM/+GWs7POh+1f5+spr/CCjuMx0g6s99b5zTP3fSxA+2WSq7YFznnB04rAz43L++zhfX99YoAdaTHH9fSsNdUp5RxrukJS1ShaC+n/29pi6vJnrdvc6X9e93JMvKeNOzC9pKCktH7fUv4lVuw344L2uXjo08zbgZ8dZ/eOr2Qa0omp64DNvyup3HnZ15t6Ze+CGFxf0Z2+mBxat8IIUoamh1BwEAwAAaB/WBhcWdF3JcUrfJwIAAAAAAAAAAAAAAAAAAAAAAABAIxFADQAA0HCEUANAK4nHJc0eQB2aLYh6tgDq0LQgascJwkoQiXTCqvf8jAbXWEkzF8+X9A+vKeitT7k69eD08MkHV/n64Ym+ugqVG2BwrVXve/Lq/0GS8MkmUUsPDJzs6x1PmBl74JbjPcV9eqCVFNffVxAYnS8qbxgknfSM/uJNnnofdnXm89O32Xcf4+nbr/CU9Iwyrp2cTwqWN9QpLc9Q/2ZUyzbgH8/wtOVBM2MPfOfUgmJsA1pOLT3w7Vd6kpm5B/7t5V7FZUj0wKIyNWjQmOC9PQAAABY/Y47u0/U8vhQFAAAAAAAAAAAAAAAAAAAAAAAAIBoEUAMAAESCpCEAaCVDQ1UHUIfCIOo/2Vz6eLUB1KEwiHr3MvGhOUJHQyf92SeWZCXdeJKnB1eVTv/gKl83nuRVXf/BNb56z88onaD2Uau5Bww9sJgU19+XnRZAHRrukDKulW+kb7+ioLuP8UqeDwKoC7JG0wKoQ3knCLj2Zal/E6l1GzBbD1S3FLYBzaSe14GKPcDrAAAAANCepl6gBAAAAAAAAAAAAAAAAAAAAAAAAAAWGgHUAAAAkYlFPQAAQPV23/GjmgKoQ2EQtST9za21B1CHwiDqwX8qaH3Bm30GzKt0wqr3XTkNrvaDdOkqhUHUslanHnQmwod9WUlGqnpHyOBqT73vGlf/9xJK5ZpsZ06bWIgekBU90CKK6+9baaizfAB1aLhDWpazMgoCaGWtztzr6O51vr79iiCAPOdImQqfCMIg6uXjlvo3gbq3AWbmHmAb0Fpq7oGJMlXuAVt1P9EDLcj3S8MFrS39m+eAGAAAQPuwVvI8yXGCL2o5XKcWAAAAAAAAAAAAAAAAAAAAAAAAQAMRQA0AABApQqgBoEXkCjmd/ranag6gDoVB1Ne9Qnpyee0B1KFDXdLpfyA9+9WMEj5BJY3iGastPb4G19Q3fxBC7Ovhlb6eWFGUNVnjfpDBNb62vDOj6//NkVtvE6EudffARNr4jD1QI3ogGsX19zV7AHXoSEJK5qWElb79Sk/3HOPpgTVB/XNGGo9LZpZmyDvB+paPU/8ozWkbMPFjag/UsyGgB6JTVw9Y0QPtrprQ6eKQagAAACxuXnCRMsVizfeFLQAAAAAAAAAAAAAAAAAAAAAAAACLV7Odz0QANQAAaEOEUANAi3AdV91Z6cCS+pdhjfTEirmPpTsruQUrWW/uC0NVXElbfyntOk/yZ9ifMpE1XMKX5IUPGunRVaXPl8uwLbecyeltMA63QFhho9XdA6Zo+jI9UK6S9EDzCet/z3nSUFd1AdSh8YTkF6S4Lw0eEzyWd6RsDZ8EwiDqlWPUPyrVbAPK8Y3kFfVL2AMhU2Mp2QZEp54esCqtvzS9B2p9O0cPLEIcHAMAAGgfhYLkcGFBAAAAAAAAAAAAAAAAAAAAAAAAAA1EADUAAEBT4ExzAGgRruPqSzdLS3PRjmNpTvrSzZLL5+iG63lYuvzGIPxxKl/S4U4pU+PlJaYuKhMLllMuVtKxwfp7Hq5tHZg/9fTArH+qU/bR0QPNa/OT0rqR2gKoQ9nY0flqDaAO5Z1g/ZufrH1ezI9K24BGYBsQPXoAAAAAwJz4fhBEnc8HPwEAAAAAAAAAAAAAAAAAAAAAAABgIRFADQAA0DQIoQaAFtLzsPTtgeiCqJfmgvUTPBidcuGTvqShziAgdrij9iDqUCYWzJ93guUVhxATOtk86IH25Blpy3ulvcuk7mx9y8jGpPFYfQHUUrDevcuCcXhNtn+3nUQVQsw2oHnQAwAAAADmzPOk4eGoRwEAAAAAAAAAAAAAAAAAAAAAAABgMWu2AGoAAIA2Rwg1ALSYqIKoCaBuHsXhk8Xhw6F6QojD8OFQcQgxoZPNhx5oP66Vtu4KapEs1B9E7dX57r87G6zXmRiHy0X9ItXoEGK2Ac2HHgAAAAAwZ2NjUY8AAAAAAAAAAAAAAAAAAAAAAAAAwGLVjAHUlsAUAADQ3gihBoAW1OggagKom0/Pw9JlN00PHw7VEkI8NXw4FIYQX3YTtW9G9ED7KQ6dnUsQda2KA6gJoW0ejQohpu7Nix4AAAAAMCd8YQoAAAAAAAAAAAAAAAAAAAAAAADAQiCAGgAAoCkRQg0ALapRQdQEUDendId0zQapKz/zNMMdUs6tvJyCUz58ONSVD9aTrjANolFtDxRmebeXowdaSqODqAmgbm4LHUJM3ZsfPQAAAACgbg6HCAEAAAAAAAAAAAAAAAAAAAAAAADMMwKoAQAAmhZnmANAC1voIGoCqJtTukPqvUgaXFcaQltuV8dYXCrMsF+mYKRcbPrj4XLC8NnBdcH6CCFuHrX0QC5WuQfGEtMfpweaW6OCqAmgbg3F/TBfu7ytqHsroQcAAAAA1GXp0qhHAAAAFkiuMD8Hj+drOQAAAAAAAAAAAAAAAAAAAADaBAHUAAAATY0QagBocWEQ9ZJ5Pgd4CQHUTak4fDiULEiprGRN+fDJfJkQ4oIJHp/KKlhOaiJ8NkQIcfOgByBND6JOZSXfBLWbC2uC5aQIoG4pPQ9Ll90kDSWlTJm/61pkYsFyLruJurcSegAAAABA1YyREglpyZKoRwIAABbA7vRuveArL9ClN186p+VcevOlesFXXqDd6d3zNDI0kud7TbUcNBb1BwAAAAAAAAAAAAAAAAAAkSCAGgAAoOnNMZ4KANAMNj8pveygtOvY+Vvmyw4Gy52R687fylCVdMKq90Jfg8eUPu5LGo8H/2+NJCtN7pKZ+J98TFJBitnZw4c1sbyOQunVKgbXSb2/I/X/h6NUrgl3+rSBunpgAj2w+PT8WtKPrD7xDv9o/SXJSKaOfaDFIebjcamrIF3+I0c9vzYSm/ymlk5YXbPRl5E0PBEUPxkiX8OfaiYWzN/hSddslM5/nL/1VjFjD9RYPnpgEfL90vscJAMAAGhv8XiwXzcWkxyuUwsAwGKzO71br/rHV2koO6S//fnfSpIuO+eympdz6c2XTs7/qn98le7/X/drfWr9vI4VCyedTet//sf/1AdP/6B6TumpezkDDw3oX3b9i75z4XeU6kjN4wixkKg/AAAAAAAAAAAAAAAAAACIBAHUAAAALYEQagBocekOqfci6dFV87vcR1cFy+2/Tkply0yQTM7vClGRZ6y2vCerwXWlO1x8WQ0lpVxRQGylEGLPSn6ZfTbF4cNSsLyhTml5RnKKljS4TtpyodH113fItU2482cRowdQzubnrI4Zzei5pUdDRusJoi4OoJaC+h8z6mjzc0kpSZ2bWTph1Xt+VjuPlbIT24HJEGJvYmMwG2OUce3kfFlX2vkCqfd3jPp/0EEIcZOr1AMJf+b5JpngP/TAIuV5pUHU1pYeLDOmOQ/oAQAAYO5yudL7xkgdE2/6wyBqAACwaBQHUIfqCaIuDqCWpKHsEEHULSSdTevCf7tQtz99u37xzC8kqa4g4oGHBvSh739Io/lRXfhvF+o/3vcfBBG3AOqPkOd7cp25X2V4vpaDxqL+AAAAAAAAAAAAAAAAABquGc9XJ4AaAACgLM4wB4AWFgZQ3/4iaTQxv8seTQTLnTGIOgwsQUO4krY+7GjXulGFMYLF4cNTd3vYGXJHqwkfDh/LudJQUlqesZMhxI6krQ93yk3Mc8NhVvQApkonrHrfPqKnltugYEU1nAyirmI5UwOowwU8tdyq99159f9oKQG0TSrsgZ3rfA1P+ZMc7pCUnWiMSonkUwKoi+ffeZxPDzS52XpgWU5VbAjogUXN96V8vvT+1BBqx2n8uAAAALDwyoVQO87R938uQVIAACwW5QKoQ2Gg9LknnTvrcqYGUIcIom4NYQDxz57+mXJeTjkvpw99/0OSpHNOOqfq5YQBxIczh2Vl9bOnf0YQcQuoVP9agqipf+tLZ9Pa8t0t2rpxa10h5KGBhwa07d5t2v7e7dS+hVB/AAAAAAAAAAAAAAAAAA1HADUAAEBLIYQaAFrUQgZQhyoGURNC3XA9z3ZId8TV9/phFYzVUEf58OFQGCpcaVeNrTBBSQhxVopZo8vv6FbPs0mJ8keCHkAoHffV+9Yh7Vxb0HDCqlzmeDW7RGeaxkgaTljtXFdQ73lj6r9luVJ5QkqbydQeKGe4Q0p6Vu7UlPkiOcdqfIZPhfRAc6umB44kpIQnxSv0QDYmHYmXf44eWAQ8LwgXDMOnfT+4FYuxawgAAKAthCHUxT8BAEDLqxRAHfrbn/+tnh5+Wu966btmnOaf7v4n/esD/zrj8wRRN7epAcSSZGV1OHNYH/r+h3T5eZdXtZypAcSSlPNyBBE3udnqL6mqv1vq3/rS2bR6r+vVvc/dq13P7ZJUWwh5aOChAfX9sE+e76n3ul71X9RP7VsA9QcAAAAAAAAAAAAAAADQcM14fhIB1AAAABWRNAQALagRAdShGYOox8cXdsUoq+chaczv0AfPGa8YPlzMqnzGcLXz5lxpqMPqX25OqucRK4naR4keQDph1fu2Ue1c600Gz84YRD7xs9b6hz0znLDauTan3rccVP+NS5TKNeEO4DZUrgdmMh6TOgpW8TKT5U0QQGwqLIIeaE619EA2JqlCD+Rm2StAD7Q4zzt6oMzao0HUIWM4kAYAANAuwveDBFADALBoVBNAHep/oF8j2RH97it/d9pz1/7qWt3w2A2zLoMg6uZULoA4FAYRf+LGT+gDp31AZx535ozLufHXN+qPb/rjkgDiEEHEzaua+n/o+x/SpW+4VMctPW7G5fxi9y/0T3f/E/VvYWEA8a7ndmkoM6SueJf6ftgnqbYg4jCAeCw/prH8mHY9t4sg4hZA/QEAAAAAAAAAAAAAAAA0XDOen8R58wAAALMihBoAWokxQehggwKoQ2WDqLPZWefD/EsnrK45OaeYL2Xd6uebGkJcyy4TKynmS9ecnNX5D1vCJyNGD7S3dMKq9+057TzG1/DEa4CVZGcpSa31tyaYaDKI+piCet9+RP3fS1D/iJXrgdkEIcRSvCh3Nu9MPF4FeqC5zHcPVAohD9EDLSwMGpzpvhSEEAIAAKA9hBck4QtVAAC0vFoCqENh0HRxEHW1AdQhgqibS6UA4pCV1VBmSN/Y9Q1JKhtEffeeu/Xt+76toczQtADiEEHEzafa+h/OHNYXf/ZFXbLxkhnr/y/3/otGc6PUv0VNDSDO+3kNZ4claTKIuBrFAcTh/EOZIYKIm1w19X/l2lfOuhzqv3h4vifXqeELRQu8HAAAAAAAAAAAAAAAACxCBFADAAC0LJKGAKCFpLvchgdQh4qDqNMdjV03AumEVe+7c9p5rK/xWGmgbDXslJ/VMpLGY9LOY331vjundIKdLlGhB9pbcf2HJ7bD1QRQh2qtvzVHpx3uoP7NoFwPVCsbC0KHpdoCqEP0QHOgBwAAAADULbwgiecdvQEAgJZUTwB16IbHbtC1v7pWUu0B1KEwiHp3enfN82L+VBNAHLKyGsuP6Ru7vqG799xd8tzde+7WN3Z9o2IAdag4iDidTc/5d0D9aq1/OpeuWP9KAdQh6t+cygUQ+9aXtVbD2WGN5cfU98M+3fXsXRWXc9PjN5UEEFtr5VtfeT9fEkRM7ZtLtfW/6fGbKi7nrmfvov6LRDqb1nv636OBhwbmtJyBhwb0nv73UHMAAAAAAAAAAAAAAABMRwA1AABASyOEGgBahOd72vI7biQB1KEwiHrLeyXP8OG7kTxjteX80tBJY+sPIa6WmViPdDR8csv5OeofAXqgvZWrfy0B1KFaq1YuiJr6R6NcD9QqGwsC5WsNHw7RA9GiBwAAAADMG9+XCoWoRwEAAOqQK+R02hWn1RVAHbrhsRv0xzf9cV0B1KGh7JBOu+I05QqVw2+xMGoJIA6VC6IOA4jH8mOzBhCHCCKOHvVHaKYAYimoeXEQ8bcGvzUthDx095679YWffaEkgDjsCYKIm1ct9f/Cz75Qsf7fGvwW9V8Ewp64Z8896vthX91B1AMPDajvh326Z8891BwAAAAAAAAAAAAAAAClCKAGAABoeYRQA0CLcB1XsVVrIgugDo0mpJgvubUmn2JOXGt06gFnWujkQuc/Tl3+cId06gGH+keAHmhvU+tfTwB1vaYGUVP/aMy0DaiVN8dPgPRAdOgBAAAAAHMy9UtenhfNOAAAwJx4vqfh7PCcl7NvbN+clzGcHZbn856i0Tzf0/v+/X01BRCHioOIr7znypoDiENhEPH7/v199ECDUX+EKgUQh4qDiDNeRt++79vTgojv3nO3vn3ft5XJZ6YFEIcIIm4+Ndc/P0v9Perf6sKeGNw7KCmoWz1B1GEAddhPg3sHqTkAAAAAAAAAAAAAAAACBFADAAAsCoRQA0CLyBVy+mn3oaiHIUn66fFSzvFnnQ7zxzNWD6721Z0tfXyhqzB1+d1Z6cHVvryFTj7GNPRAeyuufyMDqENhEDX1j85M24BauXPcaNAD0aEHAAAAAMwJX6oCAGBRcB1Xjm2Or/o41pHruFEPoy3tG91XcwBxKAwi3vnszroCiEM5L6d9o3MPM0ftqD+qCSAOhUHE4/lxZb1sSRBxGECc9bI6kj9SNoA4RBBx86in/kfyRyrWfzw/Tv1b2NQA6lCtQdRTA6hDBFEDAAAAAAAAAAAAAACgKXGuFAAAQF2a48w0AMCsXMfVa9adobnk/RlJnYXgZ93LsNJr9hq5jU5AbXOuNdr+g4TOes6ZDJ/0pbkVsxrmaAhxd1Y66zlH23+QoP4RoAfaW1j/44fNnGo+p6oZ6fhhQ/0jUm4bUKuOQvA+oKNQ3/xsA6JFDwAAAACYN8ZIiUTUowAAAHWKubGohyCpecbRjrL5uV2t0Moq7+frDiCer3GgPgWvzp38E+ar/nMdB+rj+Z62fHdLVQHEobDWxUHUV95zZdUBxKGpQcRbvrtFnu/N2++G2dVb/6lB5FPrH05XCfVvTuUCqG3RyXVhEPUvdv+i4nJ++uRPpwVQFy+HIGoAAAAAAAAAAAAAAIA2Z5osW4AAagAAgLoRQg0ALcJ1XF3V+x2t8ON1L6MrJy3PBD/rtSIjXXUjwYNRSOWM+r8XhE8uy2rhw4dDRlo2ETrZ/72EUjlqHxV6oL3d+mJfzy+xStR5HqeZ8rNWCU96fonVrS+ufBIrFk7xNqDWEOKOghSfKF3crz2EuJttQFOgBwAAAADMmTGS6wY3AADQcnKFnDJeJuphSJIyXka5whwOPKMuuUJOjx5+NOphSJIePfwoPdBgnu/p6fTTUQ9DkvR0+mkCaCPgOq5+9xW/W3UAcWhqEPWv9v+qpgDiUHEQ8e++4nflOny2bCTqj2LlAqh96+tw5rAyhUzJY1fec6Xu3nN32eXcveduffkXXy7pp0who8OZwyWPEUQNAAAAAAAAAAAAAADQpgigBgAAWFRiUQ8AAFAdz/f0sRs+pkRyiRKZIeVqPI/HSBqPS74jZd3gfq0fqROelPClj729oOu/10kQdQRSvvSVnzracMlYQ9c7lpC+8tOkUr7Lu4eI0QPtyTNW2zbkZI1Rd8Zqf5dUyyY4nNT1Jc+p/TXAWKk7I1ljtG2Dpwue4mIEUUn5Uv8NMfW+a1w713ka7ph9nuLw4VDcl1SQslX8PXdnpbP2uuq/oVMp37ANiNh890A17ynpgRZmreT7pfenHlhzuD4ZAABAWzBGik28mXfd5vsCGAAAqMrS5FKdcewZuue5e6Ieis449gwtTS6NehhtJxFLaFXnKj0/+nzUQ9GqzlVKxBJRD6OtuI6r1V2rmyIAdHXXagJoI+D5nq594Fp1xjuVzdR2xVIrKyOj8fy48l5eBb8w+XgtfOurM96pax+4Vr/7SoKIG4n6IzRTAHUYUD6cHZYkJWNJSZK1Vt++79uSpDOPO3Nynrv33K1v3/dtuY4r1wS1zBQyk/MPZYa0PLlcjgmOJ4ZB1P0X9SvVkVr4XxQAAAAAAAAAAAAAAADRarbzjwigBgAAmDOiowCgRbiOq60bt2rXEz/XynHpUGd1oYFSEDZqJj5DZyfmMTZ4otqP1glPWjkuuTLa+kiX3EQViYeYd7u7PL3pf4zIa/A+Gs9Ib/qf49r1r8u1fowTyKJED7QnV9L2WxK68B1p3X5coeYQaSspWZDiVsr7UqbGTwFG0nBSeuMeV9tvSclNEFgapZSk/psS6n37Ee08pqDhxMzd0FmQ3InX/KniVnLz0niFfujOGZ21L6b+m5YpZRyJl/+mUEsPdHhBrWfqgY680ZH4zPPTAy3O80oPpvl+aSi1dDSIEAAAAIvL+Hjpe0FjCJ8GAGAR8HxPxy47Vu5eV571IhuHa1wdu+xYeb5H+GSDuY6rvzv37/T+gffXHBw6n4yM/u7cv6P+DeY6rv5y01/qA9d/QL71Z59hgTjG0V9u+kvqHwHXcfW7r/hd3fz4zXXNHwYR1xtAHBrPj+t3X0EAcaNRf0izB1CHpgVRqzSIOgygLu6D4gBqScr7eYKoAQAAAAAAAAAAAAAA2lWznYNEADUAAMC8IGkIAFpIzyk90t1/qr4TD1UdRF0cQD3tuSqDqCcDqK10+U2Oeg4uleJ1/AKYk91dBZ1+0ZAOdQQVqzWEtl7hLqFDHVan/48h7bputdaP8RYiCvRAm4v7knM0/Nmxkl/zPtvau8YpntxxpHhcEiHUUUtJ6r81rt63Dmnn2lzZEOLunJE1qhhan/ClRE4zzn/WvoT6b12ulBxe+5tMNT2QyptZL1rQ4Rk5lh5YtBynNHSaEGoAAID2ZUzzffkLAADULAyfvPHRGyMdh7WW8MmIeL6nax+4Vsviy5TOpyMbx7L4Ml37wLX63VfSB40U1n9pbGmk9V8aW0r9IxL2QGesU1kvW9cy5iPAvjPWSQ9EgPrD8z1t+e6WWQOoQ2GgtJn45k8YRH3Pc/fogf0PVAygDs0URL3lu1t0fe/19AAAAAAAAAAAAAAAAMBi1GznIBFADQAAMG9IjwOAVrJnj3p+9LQu/6GRa4Ng6IQ38+SVAqgnp7FHA2bLKQmgvlHq+ZUneRVWigWRc3ydceHByfBhW0V4+HyxE+uTghDiMy48qJzjV5wH848eaG+esdqyeUgPrChoRc5RfOKf36myCYykbEwad62yscrb/WLh8uO+tCLn6IEVBW3ZPCRvthcXNEQq76j/luU6a18iCJwueq47Z5ScLX14QtIz6s4dndaqKHz4luVK5fnY2Kym9kCx7pxRR509EM5PDwAAAAAAAADNxfM9/f2Ov5evaI/T+PL19zv+Xp7PceNGcx1X55xwTqQBxJKUzqd1zgnnEDzZYNQf4cUIRnOjkY5jNDfKxQgiENZ/LD8W6TjG8mPUPyKu42rrxq2TYdCVAqhDw9lh5bzc5H0rq1/t/1VJAHW2kC0bQB0Kg6h9G7wHdYyjrRu30gMAAAAAAAAAAAAAAACLEQHUAAAAixpJUgDQSn70IymXU88jZtYg6moCqCennSGIeloA9cMTT2Szdf4CqFfCd3TJI52SGhs+HCoOIb7kkU4lfN5CNBo90N5ca7T14S45NthmVxtEbVS6ffec0ucqmRpAbWzw2NaHu+TaJttp3MbCEOIz9sdldDRAutoA6lAYQmwV9MYZ++OED7eI4iDqjon3hHPpAUnq8EQANQAAAAAAANCEhseGdfdzd0c9DEnS3c/dreGxmcMKsTDGc+P61I8/FfUwJEmf+vGnNJ4bj3oYbWU8N65P3/zpqIchSfr0zZ+m/hHwfE9X3XuVCrYQ6TgKtqCr7r2KixE0mOd7uvq+q5viYhRX33c19Y9Izyk9uvwdl0tS2QBq3/qyU068G82PlgRRF8t5OY3mS4PtrbWTgdOhMIhaki5/x+XqOaVnLr8GAAAAAAAAAAAAAAAAmhEB1AAAAIseaVIA0Epuvnnyf4Mgak0GUceKzvuoJYB6cp4pQdQxf4YAaokQ6ohcdmdKFzzV0fDw4ZCVdMFTHbrszlREIwA90N56nkrq8ju6ywZRlzM1gLqeaaYGUF9+R7d6nkrWPngsuH2dvvxqij4bI/kmWB5aRyrv6OJfJ2VNfQHUockwciNd/OskAdQAAAAAAABAk0nEElEPoUSzjacdeL4nT80R+unJI4C0wVzHlZnzwaD5YWTkOm7Uw2g7nu/p7j13y0b2rYGAldXde+5mGxCBg2MHp4UDN5pvfR0cOxjpGNrd5hM3a93SdWUDqKXgb3RqEPV4fnxaEHXOy2k8X3pBAWvt5DamXBD1uqXrtPnEzfPyewAAAAAAAAAAAAAAAKCJEEANAADQFkiUAoBWcv/9JXd7Hja6/EYp5waBkVJ9AdSh4iBq3wTLnRZALUmFQn0rwJwMHJ/RXWvzWpKffdqFsCQv3bU2r4HjM9EMAPQApgVRd+cc2TL7cWt5LZh6EYJQEGZLAHWzS8d9bTr/oH61sjDZF8MJq4xb25uBjGs1nLCT9f7VyoI2nX9Q6UpJ52gaA8dndOlZR7Qi69QdQB1KekYrso4uPesI23sAAAAAAACgyXQmOtXd0R31MCRJ3R3d6kx0Rj2MtrM0uVRnHHtG1MOQJJ1x7Blamlwa9TDaSiKW0Mde87GohyFJ+thrPkYQfQQSsYQu2XhJ1MOQJF2y8RJ6oMFcx9Ufnf1Hck20AfCumRgHQfSRSGfT6r2uV3tH9pa8L5waGD1bEPVsAdTlltvd0a29I3vVe12v0tn0vPw+AAAAAAAAAAAAAAAAaAIEUAMAALQNQqgBoJXs3196f8oH5jB8ci7C8MmKfAIpG80zVttePibfSKm80/AQ4iX5YL2+kba9fEzeXBsNNaMHEAqDqI2kQx2+ylXCSmXDqcuxRjMu41CHLyMCqJtVGEA9uGr6xSFqCaIOA6inGlxFEHUrGDg+o77XD09ekGS++Ebqe/0wQdQAAAAAAABAE3EdV1e9+yrFnXik44g7cV317qsIn4yA53s6dtmxijmxSMcRc2I6dtmx8nwv0nG0G8/39Pjhx7UkviTScSyJL9Hjhx+n/hGgB9qb53u69oFrtTSxVKbspaYXnpHR0sRSXfvAtdQ/Ap7vact3t2hw76AkKRlLKtWRmhZAHZopiHo0N1pVAHXIt75SHSklY8H3Rgb3DmrLd7fQAwAAAAAAAAAAAAAAAIsBAdQAAABtJdozkgAAtcnlSu4OvFzqO0/q8KTurDTcMX+r6s4Gy+07L7jf83DRk74vjY3N38owK1fS9v/sUO95ngbXeErljArGKtuAV/KOgpTKGUlWG/a72n5jh9zc+KzzYX7RAyi2+TGrjrOsCl0zT1PNbtXZpik4UkfeavNjnpRju99M0gmrTe8Z0eCqmQOihxNWyUKw/ZhJzpHGK2xHBlcVtOmd+3XbdUsntgNoJgMn5dX3unH5UoU/6Fn+0u3Mk/iS+l43JGU71fN4tKE2qJPnlR5oszZ4LGSM5BIUBAAAsChN/cKVtcF+XYfr0wIA0Op6TunRVe++ShcPXBzZGK5691XqOaUnsvW3M9dxtXXjVu16bpeeH31eBX/6hSoXWsyJ6Zglx2jrxq0EkTdYcf0laTQ/2vAxLIkv0fLkcuofEXqgvU2t/1BmaMbQ4IVgZLQ8uVxd8S7qH5HiHvCtLyur8fy4jMyMvWBlp4WWT33/UCmAWgpqP54fVzKWlJGRYxx6AAAAAAAAAAAAAAAAYDEggBoAAKDtEEINAC1q4GRffe+Q/InP8smClIlJ2Xk4t6PDC5YnBcsvG0RNCHXDpcak/uuk3vdKO4+zyrsKQiMXcn+OlfKulHGtztpj1P9dKUX4cGToAUgT4cP/o6CnU5Kxkq1Q/3D3arlJqtn1aqz0dMpq04Vp3XZ1jBDiJhH2wOCa2acdjwdB8vEyWdV5R8rGgjpXMrjGpwea0MDJvvo2ebMEUM/ynBQciKkwjS+pb9OYlHPV8whhdS2nXPDgVIXGh9QAAAAgAtYGFzl0HCnG4UEAAFpZOpvWNfdfoxXJFTqcOdzw9a9IrtA191+j808+X6mOVMPXD00GgH/ih5/QniN7Gr7+tUvW6vJ3XE4QeUSK6z9eGJdvZ75g6XxzjKPuZDf1jxg90N6K638kd6ShFyNwHVed8U7qH7HiHjg0dkh5Py9jjGRVUxD11OdnYmRkjFHez+vw+GGt6lpFDwAAAAAAAAAAAAAAACwGBFADAAC0Jc4yB4BWkkhImh5ALc1fALUULCcTmyWImg/ukUhlpYvvM/rpi4N/f0eSv1AhxDZYviSNxYP1prITTyAy9EB7SyesNl3saXBtcN9IwYmEs9R/aotUG0AdzjO4Vtp0cUG3Xe0SQhyxqT1QjWxM0pQg6jCAulr0QHMZONlX37l+yXvBheQbqe9cT7KWIOpWU00INQAAANqL70v5fPATAAC0HM/3tOW7WzS4d1A5LxfJGHJeToN7B7Xlu1t0fe/1cp15OkiNmmw+cbOOWXKMnjvyXMXgyPlmZHTMkmO0+cTNDVsnpiuufyNZa6l/kwh7YO/I3oavmx6IXnH9jUxDXgeMjHzrU/8mUW4bUE0QtaSSMOrZeicMoA7l/Tw9AAAAAAAAAAAAAAAAsBgQQA0AANC2CKEGgFayZo0GVu0vG0A93DG/qwqXN2MQNR/eIzFwstWlm32tGJcOdwYhogsSQlwUPhz3pRXj0qWbfXXlpZ5HmmxHUpuhB9pXOmG16f2+Bo8pfbzWIOpaA6hDg8dIm97v6bZvO4QQR2SmHqhGcRB1rQHUIXqgOQycbNX3tsYFUId8I/W9zZcsrwMthRBqAAAAhIrfC1or5aIJrQQAAHPjOq62btyq2568TaP50UjGMJoflZHR1o1bCaCOSDqbVu91vXpq6KmGBlBLQVjlU0NPqfe6XvVf1K9UR6qh6wf1x9Ee2DuyV90d3RrKDDUshLi7o1t7R/bSAxEqV/9Gof7NYWoPDGeHa5rfytYdXk4PAAAAAAAAAAAAAAAALAIEUAMAALQ1QqgBoIUM/NYK9aXsggdQhyoGUT/KB/hGGzjZqu/tQf2NND2EeB7XNTV82Gii/m/3JWsIn4wIPdC+PGO1+WI7Y/hwteHS1W65Z6ru4DHS5ot97dhm5M6Weo15NVsPVCMbkwq+5DmzTzsTeiBaxa8DUeB1oEVNDRsEAABAe7JW8rzgi2KOI/nzuScJAAA00o7dOzSSH4l0DCP5Ee3YvUM9p/REOo525Pmetnx3i3bu3tnQ4NFiQ5kh7dy9U1u+u0XX915PGHkDUX+EPTC4d3DysUaFkRevZ3DvID0QAeqPqT2QjCUlScPZYVlrq+6HmqazkjFBCH24PnoAAAAAAAAAAAAAAACgRTVbADUAAAAajhBqAGgRnu9p20uOyN9/9LF6Aqg7PClbw7kf5YKot50uXfCYCJ9sIM9YbTu9NHSyOIQ4O4dA0XJ8SR1F4cOTjxtp2+lWF/ya8NFGowfanJGsmfkkwPk+rdRq5iBqazSxY5n6N9QsPdBI9EA0yr0O1MpY6cTD0hMrJupYB14HWoy1sx8M5GAhAADA4jT1AiTh+74wjNqZ551JAACgIXKFnP5+x99HPQxJ0t/v+Ht94be/oEQsEfVQ2orruDp19am64dEbGhY8OpWV1VBmSKeuPpXgyQaj/nAdV1s3btWu53ZpLD+mw5nDDV3/4cxhrUiuUFe8S1s3bqUHGoz6o7gHfBtcYCwZS8paq6Hs0IKs08qqO3E0gFqSHOPQAwAAAAAAAAAAAAAAAK2mGc8pn3r+EwAAABYcIdQA0CJcx9X2Tf+g3svfrMF19QVQd2eDMOla5y0Oot6wV9p+vSPXuGRPNpArafv3HPW+19Pg2qM7UIwk15uYYD6ZYLlTS7xhn9H277lyjaH+DUYPtDdX0k+2O9r0/oIG15Y+Z1V/mOxMrAkWPL3+0k+2x6h/BCr1QLUSnuT6kmelXJ3bDHogOjO9DlTLWOm8XxudesDowdVWN77U1rXt4HWgxUw98FbuQFwzHjAEAADA3Pl+6f2p7/s6Oxs3FgAAMG8831PBFqIehiSpYAvyfC/qYbQdz/d065O3RhZAHLKyuvXJW+X5HgGUDUT9IUk9p/Rox+4d+tuf/20k6z+cOawPv/rD6jmlJ5L1tzvqj/Dfvu+HffKtL9/6OpI7sqDrPJI7oo5YhxzjyDGOLn/H5fQAAAAAAAAAAAAAAABAK2nG88kJoAYAAIgEIdQA0EJSzx1S/3cdbXq/r8F105/3J7IATZnP2GEAtXT0Z7kgamuCQFNnyjKGO6TjD0v910mpgpGcufwmqEcqZ9T/XbckfDKdkMYSC7O+sUTQT6lccH/DvmD9qVwT7lhqE/RAe0vljG67OlYSQrwQAdShqUHUG/ZJt10do/4RKtcD1QoDqKXgZ0K1B1HTA9Er9zpQjeIAakmTP298aW0HZngdaGHFB+GqCaYGAADA4mRt8KWxREJasiTq0QAAgDq4jquIs2ePsiJ8NiJ5Lx/1ECQ1zzjaTbP8uzfLONrRwEMD+tbgtyIdw7cGv6Wz159NCG0EqD+ko0HUH7/x4zowdkCeXdgLg3jW04GxA1q7ZC0B1AAAAAAAAAAAAAAAAK2GAGoAAAAUIYQaAFrJfffp1pc4en6pr7gv5YuCoP2Jz/tWkkxpEHVxAHWoXBB1GEAdLq84iDruS88vlW49Qer5tSSHFOoopApS//WOet+T1+3rrUYXKHw4FC7/jbuN+q+PE0DeBOiB9pYqSLdtd7RpS073rl24AOpQGES9cZ902/YE9W8CxT1QbRB1cQB1qNYg6g30QNMofh2oJojaSDrvMUenHiqt3amHjPSY1W3H+zPOW2zDPl4HWpK1ku8fPTgYhg4CAACgPRkjxWJSMhncAABAyzk0cki+qtunt9B8+To0ckjrlpe5ejIWjOd7evDAg1EPQ5L04IEH5fkeYeQN5PmeHjn4SNTDkCQ9cvAR6h8Bz/f0tbu+pudHn490HM+PPq+v3fU1XXDyBfRAA4X13ze6L9Jx7BvdR/2bwOYTNyvhJhY8gDrkWU8JN6HNJ25uyPoAAAAAAAAAAAAAAAAwD5rxvHICqAEAACJFCDUAtJCB3/xYfecUZI20Ylw63BkEUftTPu8XB1GXC6AOFQdRFwdQh8Ig6rgfrM8aqe88STcb9exNze8vh6qlJJ185Ih+lMg0ZH2jCenkIx1KJZdJZNM0BXqgvaUk/fF94/r9zSPKz7K/dyJDek5iVvrj+5Yqleyk/k0iJem27/va9J4hDa6ufEJpshD0gcr0imulzoKUmeW84A0HXN32/eVKJR16oEmkJPXf6qv3bemKPeBYq/OeiuvUEVfqmP78qSPSb9/p6i9fOzbt/WSxDQdc9d+aogdakedJ+fzR+77PgTkAAIB2kckE7/9Crit1dQU/HYeLDAIA0KI6E51RD6FEs42nHYxkRlTwZ/gCQIMV/IJGMiNauXRl1ENpG+O5cWW9bNTDkCRlvazGc+NKxBb4qsko4fme7nz2zqiHIUm689k7CSJvMM/3dNeeu2Tn/C2AubGyumvPXdQ/QulsWm/c9kY9Pfx0Q9f79PDTeuO2N+r2rbcr1cF3BwEAAAAAAAAAAAAAAJoaAdQAAAAogxBqAGgRnu9pW+KByYBAI6k7Ix3oKj+9ldSVLw2gdqy0+Qnp1hOPBlcnC1LOCUJmZ9KdOZpd6Rtp22meLhjukGubcGdDG7j0zMO6/FUZOXZ6AHmx8KnZdr/MFlLrWOny0zLqMDFddveK2gaLBVFLD1RTf80yHT3QXAZePKZLf2tcq7KODnT4KsyQGVXtFrpSn8R8aVXW0aWvH1eX06Gep2d40UHDpSTd9qOkNp23T4Mr82Wn6c4bFYzkVWiGmC91+9JwvHwXbDgU120/WquU60icP9xUUpL6/yup3t8+qMGVuWnPOzL6v3d365klXsXavX1vl9bs6FDfbw3JL7M12HAoof7/WkUPtKrclN7w/dIgQgAAACxerjv9fiJx9P/50hYAAC3J8ytfmLDRmm087aDZgr+bbTyLXSKWkJGJPIBWkowMAdQRaaYgejSW67halVyldDYd9VC0KrmKAOqIhAHU9+27L5L137fvPoKoAQAAAAAAAAAAAAAAmh0B1AAAAJgBIdQA0CJcx9X2Hy1R7+uGNbguCAwdTs48vZE0HpcSfhA07VjpH26Ueh6WBl4u/eF5QXhtJhZMVymEdDgprRgPptmwV9r+XSP3WE4mjMKlpx/Ul18xMnl/phBiI8lYqZqccGODGcrV3yl68MuvGpEcV5ftWlXrsDGP6IH2NvDCUfW9dki+CU7sXp11dSDpqTClzvNR/5iVVmddGQU91vdbQ5IbU88zS+bld8HcpSTddvMLtOncPRpcURo02513lPSMRmKzhM0aKVlwJFkNx0un3XA4odtuPk4pOVJ8fseO+ZGS1P/f69T7pudLesCx0uV3rtYbnk/qn04erryQeEw9e7qkO2Pqe+2BkteUDYcT6v/vY+iBVuZ5paHTzXjAEAAAAAun+P2fMUH4tOMENy5OAgBAS+ru6lbCSSjnT78wXaMlnIS6u7qjHkbbScQSWtO5RvvH90c9FK3pXEMIcYMlYgmt7lzdFPVf3bma+kfAdVyt7Vqrp9NPRz0Ure1aSwhxBJYllkU9BEnNM4524/meNl21KbIA6tB9++7Tpqs26a6P3MV2AAAAAAAAAAAAAAAAoNk04/nkBFADAAA0DUKoAaCFpA6Pqf866cL3Sbe/WMo7weNTQ2jD8FFJGu4I/v+fvx8EUEtHf374guB5qXwIaRg+m3ekw53SG5+W+q+TUgUjrVy5QL8lZnLpy5/Rl0+aHiTpSCqOjDETN1W7T8gcnbSk/mWW8eVXDkudSV328AurXDjmEz3Q3gbWHVbfKw7JN87kY0bS6pzRgURhMoh6Puofs9LqXEzGOboQX1Lf2YekZUvVs3fFXH4VzKOUpNvuWqFNZz+swe5xSVJ33lXSOsEfsbGz94LjKGklFYyG454kacNwp2676+VKLeOE0WaXktR//wr1vvpxDabGgwDqB1+kntEV2r8iJ3XOEkbTvULq7FDP6ErpoaXqe8Vv5BtpQ7pT/fefRA+0uvFxaXT06H3PkwqF6MYDAACAxhkfL/2ClutKsaLDgo4zfR4AANASlsWX6WD2YNTD0LI44ZNR8HxP6fF01MOQJKXH0/J8j/DJBvJ8T6PZ0dknbIDR7Cj1j4Dnezo4Fv1rgCQdHDtIDzSY53t6cujJqIchSXpy6EnqHwHP9/TE0BNRD0OS9MTQE/QAAAAAAAAAAAAAAABAsyGAGgAAALPgDHMAaCXZ7IxPhYHRxQHUtSrOqXQqLcP3KzyJhZCTr2++cOYTCcMX9Mnw2RkkvZmfLZ630huEb77woHKiBxqNHmhvnqy2vfBAyQUHQkZGq3OxIG9YletfadsezutoIoC6zJJ8I2174QF5YidvM0kVXN224+U6LhMPAqj9o3/B1ki+sTPeiiuZ9B11510dl4nrth0vV6rAyaKtIlVw1f/Lk3TGcJcuf+BFk0HxeWN1MF6oeMuao9vznr0rdPkDL9IZw13q/+VJ9MBiYExzHiwEAABAtIyR4vGoRwEAAOrwyJ5HmiKAWpIOZg/qkT2PRD2MtnNo5JCymvl7A42UVVaHRg5FPYy2Mp4b15g/FvUwJElj/pjGc+NRD6PteL6nMa9JesAbk+d7UQ+j7RRsc1xstFnG0W4SsYS+dt7XFHei3a8Td+L62nlfUyKWiHQcAAAAAAAAAAAAAAAAKNKM55QTQA0AANB0YlEPAABQvXTMU+8F0gNrpeXj0lCnlC9Kii0XLtqdlTo86Q/PC+73PCwNvDy43+EFzw93HJ2+OIg6FPeD9T2wVuq9SOq/zip1+PC8/36YWULSPT94gU5/1zM6lCgf/ls2NLiomC8acfWSdFyPpfL6zdKiEwFt6eSVdimtzDm65z9foMT4cPWDx7ygB9qbK2n7T1eq9405Da7ITXs+61qpzPa7+IG4L7nWyDO25LVjav0lKWv8soHlGw4ntP32lXLzQ/X9Ilgwt75wRNb3lbSSikLi7aw75W3JxSWSvmStr1uTe9TzzNIFGSsWRkrS9TevkmslKXif5icLyuYzFefzR4akkaPT9ByWLnh4lVybXrCxooEKBSmXk7yJ133fP/r/AAAAWNx8v/SLWoVCcIvFggBqh+vUAgDQitYtXxf1EEo023jaQXdXd9RDKNFs41nsmi3ss9nG0w4SsYSSblJjheiDqJNukh5oMNdxlepIabwQfQB8qiMl1+GCtlHYctoWjRXG9JEffCSyMXztnV/TltO2RLZ+AAAAAAAAAAAAAAAATEEANQAAAKpECDUAtAjP97TlgoIGJ87jdVQ+iLpYd1ZKFoL/900QPP29l0u3nhjcl44+XxxEXSwMoA5XMbhO2vJe6fr/GpVrm3AHxCK2fkza9e+rdPpFB3Soo7YdLS864uglw44kTy8ZciRr9Ztl5YOMZ7Iya7TrulVaP5aTND0EFwuPHmhvKUn9P06p961DGlyVn3w841oNxyv3QxBALUk2+OnP/NohScNxX7KmJIh6w8G4+m9JKTVLoC0ab+D4jPrOHA6ip6e1wizbCmum7bz3JfWduV/K5tTzVHL+BooFN+00b38iZK6S8Zw0Vvp6wOnii4jnHQ0f9P3yIdTNeFARAAAAczc1hFo6eoGSGIcHAQBoVc0W9tls42kHnu/JyMjOtv+/AYyMPJ+L3jWS67ha0bFCh7PRXzR8RccKAmgj4PmeuuJdTRFC3RXvkud79EGDvWrtq/T8k89HPQy9au2roh5C20pn07ririsiez9gZHTFXVeo9xW9SnWkGr5+AAAAAAAAAAAAAAAATNGM54oTQA0AANC0OMscAFqE67jaep+jXcf4kwHSlYKoiwOoQ76Rbj5p+rJnCqKeGkAtSY6Vtu6SXM9q1mBLzLv1I452/dtKnf6+Q1WHEL8obSbCh49OPxlCnKpuGSuzRrv+baXWjzkK4kkRlfnugWfogZaSykr9N6XUe+6wBlcVggDqRLUB1EdVFUSdsFJOSnpGGw7G1H9TSqm8RP2by8AJGfW9/sjke4P54hup7/XDkvXV8yRB1C2rXOhcuWl8/q4XLc872gPhAUSnaONvjOQSDgEAALAolfsCWfjeb3yczwEAALSozkSnXv/C1+uOZ+6Ieih6/Qtfr85EZ9TDaDudiU69bMXL9MjhR6Ieil624mX0QIO5jqv1qfU6vD/6EOr1qfWED0fAdVwdu/RYHRg/EPVQdOzSY+mBCBwYi772UvOMo914vqe3fOstGnx+UMYYyaqhQdRGRsYYDT4/qLd86y3a+aGdbAcAAAAAAAAAAAAAAACiRAA1AAAAakQINQC0kJ7H4lK+oL7zVDGIulwA9WymBlHPFEB9+Y1Sz8OSlmfn8JtgLtZnpV3XLNPpW47oULLyjpdNv3FkrFG5wPCXHHaU8Hw9sbzyMlZmjHZtX6b1o54kbw4jx3yppQdectjoRenSAOqjzzk6ccjqZy+sHDpEDzSXVFbq/89ObbroiAZXV67/kpxUmOF8vzCI2quwT3k4YXX8AaP+/+xUKpevf9BYEAMn5dT3+vEgFnymVrCSKh43sDPO60vqe31ayufV83hiDiNFZJxCEEJcST4rZdm2L1rFIdRS8P9TwwYJoQYAAGg/vi+NjEQ9CgAAUAfXcXXjlhv1tmveph27d0Q2jrPXn60bt9xI6GBEliWXRT0ESc0zjnbTEeuYfaIGaJZxtKNm+bdvlnG0m5gTk5FpaPDwVEZGMYevHkfFFH0BwBgj28CT9kzRSYum8hcRAAAAAAAAAAAAAAAAsNAIoAYAAEAd+CY4ALSSjg71PDwuSTMGUXflaw+gDoXzjcVnCaCWpCwh1FFan5V2XZXQ6b+f1aFk+Wk+fWdM69JW//nSmQOGT90vvffRmL782vJNszITrGf9COGzzabaHnh4haeRxMw98M7HHL32OXqg1dz6Ik97O33F/aMXIJiqOysZKxVmeF4KgqiXFKT0DOcHx31pb6evW9eNq+fXBEk0k4GXeurblKscQB2q9LxVxR35vqS+TWNSvkAPtKJ4YXrg8FQ5QqgXNWunh1AX3zdm9h4BAABAa5p6ARLfDy5SEl6EJM++HgAAWlWqI6VPvOYTumv3XfIiuHioK1efeM0nlOpINXzdCILIb/29W7Xpm5u0a++uyMZx+rrTdevv3UoQeYNRf9AD7a24/vfuvTeSIGojo43rNlL/iBT3wODzgw0NoJYka62MMdpwzAZ6AAAAAAAAAAAAAAAAIEoEUAMAAKBOhFADQCtZulQaGpoMgp4aRL1iXJrrLoJkQeoolC5nWgC1JBXqTLrGvFk/JO36Z1enf9ibFkL86R2OLvup0f87sxAkiM7Ely671Ui+oy+fXTrhykyw/PUjviovBFGppgfe/V5buXyep8tujdMDLWTgZF99bw1CJcILEEwNou7OBtvzbBXn+yUntvnDU4Ko436wfEnqe2tO8l31PFIh0RoNE/ZAo/4qfdEDLatQ0KwZNAVf4m3d4jX1YF25g3fNeJARAAAAc+f7pe//fF/K5YL3f4mE5PD5DgCAVjXw0IAuveVSrV6yWgdGDzQ0iNqVq9VLVuvSWy5VV7xLPaf0NGzdOCrVkdJtl9ymjf+0UU8OPdnw9Z+w/ATddsltBJFHhPqDHmhvUdf/+OXHU/+IRdkDVlbHd9MDAAAAAAAAAAAAAAAAkWrGc8MJoAYAAGgZhFADQCs59lhp925JKhtEPV+7CGYNoJb48N8k1h8x2vV1R6d/2NehzuCxT//C6LKfOpKsVo1Kxx6Zef6lOUnW6rKfOJK1+vJvBXVdOS7t+mdH60eMJGrdzGbrgRekpXTHzPOvGRU90EIGTvbVd65fcgGCqUHUYQC1JBkbbMdnE04fBlGHAdRhHJVvpL5zPclaQogjNrUHZuPYyn/Bpso/b3qgNXjGyrVHm8Mt2OC1vgLX07T3dVOXgxZXKYjaGN7XAwAAtBtrpWyWEGoAAFqU53vadu82+daXYxyt6FqhA2MHGrb+FV0r5BhHvvW17d5tuuDkC+Q6VVwRE/Pu1iduVaaQUcyJqeA37kqDMSemTCGjW5+4lRDyCFF/0APtjfqDHgAAAAAAAAAAAAAAAEDT4Fx1AACAlkIINQC0khNOkO65R/J9SeWDqOfTjAHUjkNISRNZP+boZ1d72vghT+c9ZnTZf8Unk2NfNObq5KGZd9YsyWmylpf9l6NHV+V140usfna1q/Vj7tEEWjS1Sj3wkmFHo4mZ533hmKEHWsTAy8qHDzuSujPSgS6pM380UDp8zp1lf224uGRByjnSeDxY3tTS+0bqe5svGUc9j9IYUZipByTJGulwUuqa0gOz1X/q85mYNBaXVmSmB1TTA80tnbDa8m5PWwfdyfrEHFepfOUmSMiUvK8beJmvbRt8bf9eTKkcQdQtr5qDds14tVsAAADM3dT3ecX3XVcqNC6gCAAAzB/XcbX9vdvVe12vfvncL3Vo/FBD139o/JBWd63Wq499tba/dzsB1BEZeGhAfT/sk5WV0+CDeY4cWVn1/bBPkgigjAD1Bz3Q3qg/6AEAAAAAAAAAAAAAAIA21mznhRNADQAA0HIIoQaAVvKKV0g33CCNjk4+tFBB1DMGUEuEUDeZdMLqU+dYrRiX7jrOauDlVj2Phid8W8n4M8/saLKWAy/zdNdxwXI+dY5V//cM4ZMtomIPOOZoynA5RX/P9EDz8ozVto0zhw8PJyWrIEA64ZeGEIeMpBMPGz2xwqrcbtxMLJjfKljeTCHE2zb6uuBxV66lNxppth44nJTyjjTcETxWbw+E8x+mB1pKOmHV++6CBtda7TqmIDnx4HXAmeV9gDTtdaDvrQX5Rurt8dT/vTivA63O90sPJpY7kMf7egAAgMVp6ns/Y4Kb6x69DwAAWlKqI6WvnPsVbfinDfLtLPv/5plvfR0eP6yvnPsVpTpSDV03Ap7vadu92+RZT4fHDyvv5xu6/ryf1+Hxw1rRuULb7t2mC06+gDDyBqL+mNoDBdvYCwwVbIEeiBD1R7keMDIq/w2A+WVk6AEAAAAAAAAAAAAAAIAoNdu5QARQAwAAtCRCqAGglZx2mhSPT3u452FpLC596AKps1A+eLJamZg0HpO+8f0ZAqglKRYLbohcOmHVe35Gg2usHBn5Ruo7pyA5rnoei0mugqDpmTiSYjENvKSgvs0F+cbIkTR4jFVvT0H9P0gSPtnkZu0Bx5ulB1x6oAW4krbfGJuo9dFACSvpcNIq7xzNGp8MIfbMZIKwkXTe465OPejowVW+bjzJO3oKopEy7tH5jIIw4yCE2JRkmG/Y72j7jUm5Lj3RaNX0QKikBzRLDxhJxijj2sn5JHqglRS/DmjK68Abno1JzixvDGMxKeaWvA5IvA4sGtYGQdTF94sP6IVBhAAAAFh8fH/6l7nCAGrXlbq6Gj8mAAAwL3and+tN33xTw8NnQ3k/rzd9803a9Qe7tD61PpIxtDPXcXXFO6/Q6VeerpyXa0joZDErq5yXU8Ev6Ip3XkHwZINRfxT3QN7PR3IxgryfpwciQv0xtQckyRgj24AT+szEMUV6AAAAAAAAAAAAAAAAIALNdj44AdQAAAAtiwRRAGglr32tlMlMezjdIV1zWpAjORk8WUcQdSYWzN/hBcs7/1EplS0zoes2386JNpROWPW+qzSMVFIQPrk5KxlpxbiRVLlWAy8tqO8tWflTJhtc46v3/Iz6/7OT8MkmVU0PzFZ/GXqgVaTyRv3/2aned41rcI1fNnw4NNwhKWcV842MrM57PKZTDwYTnnrQlWR040kFWU1s+xPTlxGEENvJEOIN+52gF/Jm1rbCwqinB6QwgLp8D0hSJmbpgRY12+vA/709rtlfBwyvA4vdbO/beV8PAADQHsILkLiu1NER3AAAQMvJFXI64+tn6MDYgUjHcWDsgM74+hl65o+eUSJWZgczFozne/rYDR9T3ss3PIA4ZGWV9/L62A0f0/W91xNA2UDUH2EPuCbaf3fXuPRABKg/insg7sSV9/MNCaCWJGutjDGKO3F6AAAAAAAAAAAAAAAAoJGa7VxwAqgBAABaGiHUANCKHEfyg7DBdIfUe5G0c72UnTino54g6jCAWgqWs3N9sNz+68oEUSeTQVgJIpOO++o9N63B1VblwiWD8Mmc/uBXSVV6ub9/laevvDYnf4YdToNrrXovyKn/ppRS5VJOEZlqe+Cc38R1Ynrmv9f/Pl76+isy9ECLSEnqvyWpC98+rNuPzZcNHw4NJ6Rleem8pxI6NR2T4kefOzUt6SlH3zsxp9EKm/MwhPiNz8XVf0u3Uq4jdc7Xb4N61NoDnQXp/Cdn7oH/PCGnsQqfCumB5lXN68D//80FvXl3TKcenrnIP3qpo798La8Di5bnTX5ukBT8/9QDe7yvBwAAWJwKhdL3fvG41NUVfPEsHg9uAACg5SRiCY1kR6IehiRpJDtCAHUEXMfVqatP1X8++p+RjmM4O6xTV59K8GSDUX+4jqutG7fqtidvk2/92WdYAL71NZob1daNW+mBBqP+CHtg13O7tDy5XAfHD6pga/iC4BxYWbnG1fLkcsWcGD0AAAAAAAAAAAAAAADQCARQAwAAYJ4RQg0AreTOO6XOTimXk1QaQB0GSIdqCaIuDqAunr9sELXjBDsoksm5/S6oWzruq/e3D2hwpadyoZMh30j/sCGjtz6b1KlD00NlHlye1w9fmFOXVzlQcnCNp953jKj/p6sJn2wStfTAwEk5veOZzhl74JYXZBS3lXc60gNNJu5LzpFKpS/lxqRYmWApV5Jys89vFGz7k0nJpf5NoZYeMJqlB/KSZtnRTw80napfB2R14wl5yY3N+Drwj8eNyczSTLwOtLBCoTSEemootTFSjF1DAAAAi9L4eOkXuxwnCJ523eD/EwRGAgDQig6NHNJYYSzqYUiSxgpjOjRySCuXrox6KG3F8z19a/BbUQ9DkvStwW/pi5u/SABlA1F/SNKO3Ts0ko/2ggQj+RHt2L1DPaf0RDqOdrRj9w6N5kcjHcNofpT6Ryj8d//g9z+ogt+YAOpQwS8o5+V0xTuvoP4AAAAAAAAAAAAAAAALjQBqAAAALACShgCgldx3n9TRIbmu0gmr3gtt2QDqUDVB1OUCqIvnLwmizpmjASVr187td0Fd0jFPva9+XIMpT9LsIZDW8XXjizNSskOnjhwNDn9waUY3HpORZCQ7+3IGV3vqfVta/b88SakCJ5FGqfYesBV7IG6N5NMDrSKs/wMpX8vzMQ3FPeWd8jtqu/OuYjIV6x+To2RBGo77ZZcR942W5109sMqn/k2i1h6wRrNsAxx1F6ThuFd2GfRA86ntdcDKmsrvBZKeI7eKRHNeB1pULifl80fvFwql9x0n+HwBAACAxWd0tPTLXbFYEEItTe5jBgAArae7q1uuXHkqv0+3kVy56u7qjnoYbSdXyGn/6P6ohyFJ2j+6X7lCTp2JzqiH0jaoP3KFnK6858qohyFJuvKeK/WF3/6CEjEuctQouUJO3xz8ZtTDkCR9c/Cb1D9CY/kxpbPpSNadzqY1lm+Oi6IAAAAAAAAAAAAAAAAsWgRQAwAAYIEQQg0AreSBByRjlF61VL1vPaydL5g5QDpUKYi6UgB18fyTQdTfNUoVjJTJEFISgXSsoN6NT2hw2XgNcxlZY3XjMWnJODp1pFMPLh3XjWvTskYytvqdToOpcfWe8YT6732JUgXeQkRhIXpANeznoweiNbX+joJw4HIhxN15V0nfUcHYIIR4pvpLSnqulDfTQojD8GFnIpyW+kevnh4Yd/0qesCR8tODqOmB5lPz64AJblYVeqCG1wJ6oAU5Tun7dmsl35/5eQAAACxejhMEUcdivAcEAKCFDY8NN0UAtSR58jQ8NqyVS1dGPZS24jquOuOdGs2PRj0UdcY75Tq8t2wk6g/XcbU+tV7D+4ejHorWp9bTAw2WiCX0Z2/4M33yx5+MdBxWVn/2hj8jgDoi2+/brku+d4k8G817Qs96uuR7l0iStpy2JZIxAAAAAAAAAAAAAAAALGoEUAMAAGABkRoFAK3k4EGl47563zqmnWtmD5AOlQuiriaAunj+IIjaqn9ASvm+lOBEokbyZLXltF9rMDUuqZadRVZBCLF04zFDenhZRk90ZSayJs1EOGVtQdRbNj6p6+87VW5N48Bc1d0DJvjPjD0gQw+0gJnq78hoecFoKF5Q3gRV7S7ElLTORHln2QZM/EhaVyoYDceCF4q4NVpeiMmZ0hvUPzp194CkarYB9EDzq/+9QDAtrwNtqtxBvakh1DF2DQEAACxKrhu83yu+31HlDmEAANC0Vi5dqT99/Z/qr+/466iHoj99/Z8SQB0RR87sEzVAs4yj3TTLv3uzjKPdeL6nZ4afiXoYkqRnhp+R53sEUTdQrpDTZ2/7bNTDkCR99rbP6qNnfpQg6gbLFXL6+I0fV8EvzD7xAir4BX38xo/rd079HXoAAAAAAAAAAAAAAABgPhFADQAAgAVG0hAAtJC0P67etw5p59qchms8f6M4iLqWAOri+XceZ9XbU1D/DXmlxsdrWwDmxJW09ekV2vWKI/Jryp20kzt0rKTHO8elqft3atjh49hgHO54poZBYD7U3QNF9aUHWlel+juSludcDcU9dXmOkr5RSZGr3AYkPSNZV2Our+V5d+K08dKJqX90FqyMcZ60AAEAAElEQVQHrOiBFlHf64Cd/XWgxgM/9ECLyeWkfP7o/UKh9L7jNN/BSAAAAAAAAMzI872mCKCWpL++46/1hbd8gfDRBnMdVyP5kaiHIUkayY9Q/wZzHVdZLxv1MCRJWS9L/SPgOq5Mk1wk1MjQAw3mOq463Oa4wFSH20H9I+A6rk5ccaJ27d0V9VB04ooT6QEAAAAAAAAAAAAAAID51GznfBNADQAAsCg5UQ8AAFAdz/e05ZWPTgRQ1/chfbhDGkrWHkBdPP/O46y2vDMjb1qKKRZaz94VuvyBF8kp809vZXUoXlDG8ee0jozj61C8IFumvo6VLn/gRerZu2JO60D96IH2Vqn+QeTw/GyXrWzZ05apf/ToAfA6AAAAAAAAALS3x/Y+FvUQSjTbeNrB/vT+eTseMFdWVvvT+6MeRlsZyYwo5+eiHoYkKefnNJJpjkD0dpIr5DReaI6Lxo8XxpUrNEc/tgvP95rqNcDzvaiH0XZcx9Vtl9ym0445LdJxnHbMabrtktsIoQYAAAAAAAAAAAAAAJgvBFADAACgQQihBoAW4TquTrWr6g6gDmXneO7HcId06uGY3LLxlFho5cInrawOxz3lHavhuFd3+GTG8TU8sZzD8dIT1widbB70QHurVP+Co3mpf8ER9W9i9AB4HQAAAAAAAADa18nHnazPnP2ZOS/HzMOx3s+c/RmdfNzJc14OarNu+TpddcFVUQ9DknTVBVdp3fJ1UQ+jrXR3desnH/hJ1MOQJP3kAz9Rd1d31MNoO52JTt370XvlmmiDX13j6t6P3qvORGek42g3iVhCv/yDX2pZYlmk41iWWKZf/sEvlYglIh1Hu0p1pPSZ131GMScWyfpjTkyfed1nlOpIRbJ+AAAAAAAAAAAAAACARYcAagAAADRQNN9CBgDUzPM9Pbjaqjtj5hRE3eHNLYi6Oys9uMbI22cIoo5Iz75VkjHqO/VpeUaToZOh4bgn5aWk78hKspXKNDFbGDoZCsMnV+Rjcq10+YMvVs++lVy+oknMZw9YeqDlzOs2QJJkqH+LmddtwMRPeqC1VNsDCd/Mvg0wkiw9sGg5TnCr9j4AAAAWj6lfQGu2L6QBAIC6Xfa2yyRJf7vjb+uaPwygNjIlF6KrxWfO/szkONB43clupeIppfPpyMaQiqfUnSSAOApDmSGtSK7Q4czhyMawIrlCQ5mhyNbf7h4+8LBWdq7U/rH9kY1hZedKPXzgYZ2y5pTIxtCu7nr2LnXFuzSSG6n7dXwujIy64l2669m7tD61vuHrhzTw0IAuveVSrepcpYNjB1WwhYatO2ZiWtW5Spfecqm64l3qOaWnYesGAAAAAAAAAAAAAABYlJrtfB8CqAEAABY9QqgBoEW4jqvtr/wL9d64VTvX5uoKou7OSsmClIlJwx21j6E7K521x2j7r06Uu2JZ7QvAvOkZXaqxpxL64MkPKW+m98Jw3JMKRpKRX+b5kJGUca2GY9605/KO1eFEQf/yyCnqGV0nLZ3HXwBzVm0P+GaWAFpj6IEWVG39XRv0QCXUvzXVsg2o1AO+6IFWVU0PLCu4s24DrDHKOPTAopXJSLnc0fuFwvQQ6s7Oxo8LAAAAC891g1to6pfS3DlcqRAAAESu3iBqM+Uiw/UEURNAHS3P97Tt3m1a0rFE1lodKRxp+BiWxZZpSccSbbt3my44+QK5Du8tGyWsfzKW1PKO5RrKDjV8DMs7lisZS1L/iIQ9EHOCINiD4wcbPoZVnasUc2L0QATC+jvG0equ1TowdqChQdRGRqu7VssxDvWPSNgDvvXlGEeruhoXRB0zMa3qWiXHOPKtTw8AAAAAAAAAAAAAAADMFQHUAAAAiIAz+yQAgGaR+q1N6r+5W2c9GwRC1yIMoJaCn/XMf9Zuqf+7rlJdK2qbGfMu7RZ0zTF71eXNfCLPcKygXIUAakkqGKvh2MwnInV5rq45Zq/S7sKfrITaVNsDhVl6IGd8eqAFVVv/rONXXI7HNqBlzdc2gNeB1lVNDxyJefJm6YGsw+sAAAAA0JYSiahHAAAA5uiyt12mT575yaqnnxpAPdvj5XzyzE8SQB0x13G1/b3btWHdBi1NLtWyWH0Xj66l7sWWxZZpaXKpNqzboO3v3U7wZIMV178z3qnlHcvrWk699V/esVyd8U7qH6HiHki4Ca3qXFXXcurtgVWdq5RwE/RARIrrH3NiWt21uq5a1jvP6q7Vijkx6h+h4h6QNBlEHTOxmpZTaw8UB1BLogcAAAAAAAAAAAAAAADmqtkCqAEAANA2CKEGgFZy3HFKvfAl6v931RREXRxAHaoliHoygPo6KRVbInV01DZuzKu0W1DvKb/S4JIRJX1H3YWZTyQac2cOn/SMVc6ZOZiyuxBT0nc0uGREvaf8ivDJJlJLD+QcW7EHxtyZQ4rpgeZUS/1HZ9sGVAinpf7Nq5YeyDh+xR4YrxBUTg80r5peB0zl14ER15txXnoAAAAAWKTicUKoAQBYBNLZtO7Yc0fV01uV30840+Pl3LHnDqWz6aqnx8JIdaTUf1G/NqzboGQiWfP8YfBkPSGkyURSG9ZtUP9F/Up1pGqeH3NXXP+4G6+5jvXW38go7sapfxMo7oGEm9CKZG0Xkq+3B1YkV0wGUNMD0Smuf8yJaWXnyprmr7f+KztXTgZQU/9oFfeAFARRL00srXr+enpgaWJpSQA1PQAAAAAAAAAAAAAAADAHzRhAbav/PjEAAABaGyHUANBqjFEqZ9R/nakqiLpcAHWomiDqkgDqKkOrsXCKQydD9YRPVhs+GyJ8snnQA+2N+oMeAD0AAAAAoC7GSK4rJZNSZ2fUowEAAHOUzqa1+dubdfeeu2uab2rgdC0B1JJ09567tfnbmwmibgKpjpS+cu5XNJQZqmm+qYGTtYaQDmWG9JVzv0LwZMSK61/L3/Fc6m9lqX8TCUNoX7H2FTVtk+fSA+lsWq9Y+wrCZ5tAcf1reR2YS/2HMkPUv4kUB1FnChmlc9VtB+rtgXQurUwhQwA1AAAAAAAAAAAAAADAXBFADQAAgIjNnFIFAGg+e/ZITzwhua5SOU/9/27Ve5G0c7003DF98koB1KHw+ZnmLwmgNkbKZgkqiUjayav3RTs1mBzT1OtIJOUoY31ljV923pyxSsjItWbW0MkO6yip2LRLVQwuG1PvaY+o/zdnKeXH5/rroA70QHuj/qAHQA+gZmNjwfv3UC4nxYp2BbmutGRJ48cFAACAhZdISIWincMdHbz3AwBgkag3gDpkZWVkag6gDoVB1Ld+4FYCCCO0O71bb7zqjcr7+ZrmC+tffL8WeT+vN171Rt370Xu1PrW+pnkxf6g/Qs8deU6e9RqyLs96eu7Icw1ZF6pD/dtbqiOli191sX765E9lqzgRcKbA6WreF1prNZYf08Wvupj3fwAAAAAAAAAAAAAAAPUigBoAAABNwJl9EgBA07jzzuDnsmWS7yuVDQKiz9odBEYXf6yvJoA6lCwE04esygRQS1J8Imzw8OE5/iKolSerLS+8U4PJ4bLPZ4w3Y+hkKGd8ZR1fuVmmyxpfGVP+JLXB5LC2vPBOeXWelI760QPtjfqDHgA9AAAAAAAAAMDzPb3t6rfVHUAdqjeAOnT3nrv1tqvfJs9vTPAlSu1O79bGf9qog+MH65o/rH+9fXBw/KA2/tNG7U7vrmt+zA31hxRckOCN296oB/Y/UNN8U+teax88sP8BvXHbG5XOpmuaD/OL+kOSBh4a0KW3XFpVKPRMAdTVPi8FodeX3nKpBh4aqHqMAAAAAAAAAAAAAAAAmEAANQAAAJpELOoBAABqcN990x4Kg6gvfJ/0kxOCAOnlNQRQh8LphzokI+mMPVMCqIsND0vHHVfr6DEHroy2Hj5euzoH5U85CSxjPA27+aqWM3XemQy7ecmTktYtedyZGIdbxclHmF/0QHuj/qAHQA8AAAAAAIBWt3//ft111116/PHHlU6nFY/HtWrVKp166qk688wzFQ8vhtok9u7dqyeffFLPPPOM9u3bp9HRUeXzeaVSKXV3d+v444/X6aefrlRq9tC3+fKb3/xG999/v5566iml02lZa7V06VIdd9xxOumkk3Tqqaeqo6OjYeNB441kRrTj2R1RD0OStOPZHRrJjKi7qzvqobSVXCGnV1/56roDiENzDSI/OH5Qr77y1dr9/9utRCwxp2WhetQf0tEA4vv2Tf8OUTWsrIxM3X1w37779MZtb9TtW2+vKvwW84v6QwoCqPt+2KeCX1A6m5YxRrbCSYFh3Ss9X4kxRulsWsuTy9X3wz5JUs8pPfUNHgAAAAAAAAAAAAAAoN0QQA0AAIAmQgg1ALSSBx4Ifg4PT3tq3xLJN5p7HKCR/InlTZPLSR0dwfoLNaZcY856Dh0jea9U3/r75ZtgZ04QOrkwtQjCJ+1k+KRjjS7f/Ur1DB8jifpHgR5ob9Qf9ADoAdTM84Jb8X3fP3rfmNLnAQAAsHjwZTAATeS6667TV7/6Vd1xxx0zBqMtW7ZM73vf+/SZz3xGL3vZyxo8QmloaEj//d//rTvuuEM7d+7U/fffrwMHDsw6nzFGr3rVq/SBD3xA73//+7V27dp5H9vu3bv19a9/Xf/6r/+qxx57rOK0iURCGzdu1Lnnnqv3vve9Ov300+d9PIhWZ6Iz6iGUaLbxtAPXcVXwmmP/bMEryHXc2SfEvHEdV57fHPt0Pd+j/hHwfE+brtpUdwBxaK5B5Pftu0+brtqkuz5yF33QQNQfUmkA9VBmSHk/L9/6s843UxB1Nf3gW195P6+hzBBB1AAAAAAAAAAAAAAAALUggBoAAABNhhBqAGglBw9KmUxJUFy6Q9r0e9L94TntVhruCP43WcO5p5nYxHxWkgmWt+n3pNu+JaWyRRMWCtLISDAWNFzPwQ7pyPHqO/kJjbn+goVOhobdglSQujxHlz9ygnr2d0ii9lGiB9ob9Qc9AHoANclmpXz+6P1CIbiwTMhxSp8HAADA4sFFBAE0gWeffVZbtmzRf/3Xf8067ZEjR/Qv//Ivuvrqq/Xnf/7n+vM//3OZBn7h9m/+5m902WWX1TyftVb33XefPv3pT+tzn/ucPv/5z+sP//APFYvN/asYmUxGn/vc5/TVr35VmUymqnlyuZzuvPNO3XnnnfrFL36hW265Zc7jQHM5NHIo6iGUODRySOuWr4t6GG1lJDOiw9nDUQ9DknQ4e1gjmRF1d3VHPZS2MZ4b1+FMk9Q/c1jjuXEtTS6NeihtxfM9PTH0RNTDkCQ9MfQEYeQNRv3h+Z623but5gDqUBhEHV7UoJZA8qlB1Nvu3aYLTr6AHgAAAAAAAAAAAAAAAJgJAdQAAABoQoRQA0AryeeDAOgJYQD1veskO7HfwRrVHEQdBlBblS7n3nVlgqg9L7hVebI75l/PM0u1Y8kKffmk5xuyvuFYQR9++hj1PLNUEnVvBvRAe6P+oAdAD6Bqudz0EOri+47TnAcwAQAAAAAt79FHH9WmTZv03HPP1TRfLpfTZz/7WT300EO6+uqr5bqtE2g2MjKiP/7jP9ZNN92kgYEBdXZ21r2sJ598Uueff74eeOCBeRwhFoM1qTVKOAnl/NzsEy+whJPQmtSaqIfRdrq7urXxmI269/l7ox6KNh6zkQDqBluaXKpzTzpXP378x1EPReeedC4B1BFIxBL60rlf0kd+8JGoh6IvnfslJWKJqIfRVqg/XMfVFe+8QqdfeXrNAdShmBNTMpZUppBR3q/tYrVhELVnPV3xzisIoAYAAAAAAAAAAAAAAJhJM56/TQA1AAAARAg1ALQW358MjSsXQB2qJYi6XAB18XLKBlEjUgPrDmv7Cw6pO+9qOO4t+Pq68662v+CQzh5aqp69KxZ8fZgdPdDeqD/oAdADAAAAAACgmR08eFDnnHNO2QDqM844Q+9+97t1wgknaHx8XI8++qi+853vaM+ePSXT/eu//qvWrl2rv//7v2/QqEstWbJEr371q3XyySfrJS95idasWaNly5bJ8zyl02k9+uij+vnPf64dO3bITvky7o9//GP19PTohz/8oUwdXx5+5JFH9OY3v1nPPz/9AmTHHHOMzjvvPJ1yyilau3aturq6NDQ0pGeeeUb33Xef7rjjDh04cKDu3xvNz3Vcffj0D+tr93wt6qHow6d/mODBCHi+p+5kcwQ/dye75fkefdBAnu8pU2iOi0VmChnqHwHP9/QfD/6HXOPKswt/jGgmrnH1Hw/+h7Zu3EoPNBD1h+d7+tgNH1PMicmovhMVC35B44VxeX59PWRkFHNi+tgNH9P1vdfTAwAAAAAAAAAAAAAAAFMRQA0AAIAmRgg1ALSSTHAyYaUA6lA1QdSVAqiLlzMtiNrzghsabuDYIfW9Yrd8Y5X0jVQUPmmlOk8vKlW8nO68q6Rv5Burvlf8RvJ99Ty3fB7WgnrRA+2N+qNSDywEeqD50AOoiecFF7IJWVt6kND3S58HAADA4jHTez/HiW5MANrGRz7yEf3mN78peWzZsmW65pprdMEFF0yb/otf/KK++MUv6nOf+1zJ41/96lf1tre9Te94xzsWcriSpI6ODr3lLW/RO97xDm3evFmnnXaaXHf2MLXHHntMn/rUp/SDH/yg5PEf//jH+ud//md95CMfqWkc+/bt07nnnjstgPqlL32p/u7v/k7vete7KgZb+76vO++8U1dffbX27t1b07rRGvYO7W2KAGpJ+to9X9Ofv+HPtW75uqiH0lZyhZxuf/r2qIchSbr96duVK+TUmeiMeihtg/pDkvaN7Is0gFiSPOtp38i+SMfQrqh/e3MdV1s3btUdv7ljTn1QbwC1FNQ/W8gSQg4AAAAAAAAAAAAAAFAOAdQAAABocoRQA0AryWSqCqAOVQqiriaAung5JUHU1krx+Fx+E9Rh4JhD6jt1t3wjhRGxQfikNBT3FO7ymVrOSruCyk0bTr887yrpHw2l8Y3U96rdkuuq5/mV9f4amAN6oL3VU//ies5kpumpf/Op1AMLEULcTQ80HXoANSt3ULA4dNpxpBi7hgAAABalWEwqFO0QtlYaGQkeTyalKoJVAaAeN998s7773e+WPJZIJPSTn/xEZ555Ztl54vG4/uIv/kLLly/XH/3RH5U894d/+Id66KGHFFvgz6+f//zn65rvJS95ib73ve/p4x//uK644oqS5/7mb/6mphBqa63e//73Twvwft/73qerr75aiURi1mU4jqOzzz5bZ599tixfFl6Umi3or9nG0y7srEd/GqNZxtFumuXfvVnG0Y6GskNRD0FS84yj3TTLv3uzjKMdjeXHNJIbqXt+KysjM6ft+EhuRGP5sbrnBwAAAAAAAAAAAAAAWJQIoAYAAEALIGkIAFpIeuj5qgOoQ+WCqGsJoC5ezmQQ9TV5pQirayhPVttedHAidLJUwjdyrOQZzRhCHHKsSpZhi6YtDp91bLDcqXwjbXvRQV1wcI3cGdeChTBbD7hWKpTpgam7A6f2QLHiHnDpgaZSb/2nov6tq1IPJH1HKkjDsdlDiCv1QLHuQmn4cIgeiA49gLp4XnALuW7pfWOCIGoAAAAsPtaWfnnNWimfD35aGwRRA8AC+MIXvjDtsb/4i7+YMYC62Cc/+UndcMMNuvnmmycfe+yxx/Sd73xHH/jAB+Z1nPPJGKP/9//+n2688UY9/fTTk48/+eSTuvvuu6v63SXp6quv1k033VTyWE9Pj77zne/IrePiAaYZv8SMOVuTWqPlHcubIvhxecdyrUmtiXoYbcd1XMWduHJ+LuqhKO7ECSJvMOoPz/d0aPxQ1MOQJB0aPyTP9+iDBqL+yBVy+tRNn5JnvTkHSdfLyMiznj5106f0O6f+jhKx2S+WAwAAAAAAAAAAAAAAsOg143e3CaAGAABAGSSIAkCL8HxPm995QPceU31wdKg4iDoTk7JubQHUxcu5d520eYunHXeNEjzYQK6k7TvXq/c1T2kwNT75uC+rwwlP3pRgaWl6CG3MlxwZ+daqMCVrsDh8VgoCrQ/HC1qRc+UULWlDulPb71ovtzAuNFalHhhK+NPCxaXpPRD3JVdGnrXKz9IDvpGG4p6W5xx6oAlQf8zUA6FkwWjcSLkK5/jGfSlmjQpmeg8US3jB8qbH2NMDUaqmBzLGKOvOfDCo2h7o8Aw9sFjkclKhcPS+5wXBgyHHac6DmgAAAJi7qRckyeelbDb42dUldXRENzYAi9YDDzyg22+/veSx1atX69Of/nTVy/jrv/7rkhBqSbriiiuaOoRakjo6OnTRRRfp7/7u70oef/DBB6sKoc5ms/rTP/3TksdWrVqlr3/963UFUGNxO/wnh9X9191K59KRjSGVSOnwnxyObP3tLBFLaNu7t+n9A++PJHgyZGS07d3bCJ5sMOqPRCyhr533NV3yvUtU8Auzz7BAYk5MXzvva/RAg1F/JGIJfeXcr2jr97cq50VzQQIrq7gT11fO/Qo9AAAAAAAAAAAAAAAAIDXnudoEUAMAAGAGhFADQAspyNYcHB2yRTmC9QRQFy+nYCRlM/UvBHVJSeq/fZ16X7dHgyuykwHUuTIhklN3Bbl+EEhrZWUm7nvO0WnL7TrKOdLhhDcZRL3hcIf6f75OqUJeUr7MHFho5XpgKOEr70w/xXjq/TCE3Cr4GfOPhpGX6wErKe8Eyw+DiOmBaFF/TO2BYuOOp4wbbOunvjpbSQlfcm3QA641km+Vc8pPm3Glcc9Tp18abkMPRK9SD2QcX1ln9gBqaeKnP3MQddaxyji+kn7pBPRACyoUpodQF99vxoOaAAAAmB+FguT7pfezWSkel1yXL5MBWBDXXnvttMd+//d/X4lE9cFkZ5xxhs444wzdc889k4/t2LFDTz75pE444YR5GedCOemkk6Y99txzz1U17zXXXKM9e/aUPPbZz35Wq1evnpexYXHZnd4dBP5FkzsoKQhA3J3erfWp9dENoo29+fg3a0liiUZyI5GNYUliid58/JsjW387o/548/FvVjKWjLQHkrEkPRAR6o83H/9mJdxEZCHUkpRwE/QAAAAAAAAAAAAAAACA1JznanPOEAAAACoghBoAWsjqsTBIuE5mys86F7F6XFKGEOoopCT1/3SVLty0Tz9blykbQB0K+8T1pamTOZI0EURdqZ/CIOo37U2q/7ZVSuUJnYxacQ/cvi6jvJk5SDx8LDbRA8VRxc7E44UZeiicMm+shhKe3kgPNIWFqH+leal/8wl7oPfN+zW4MjipdNz1NZQIqmYn/jP5Cm2C8GHHTukBGzxecDRZ8OKLVAwlrJTz1DlxxYINhxLq/y96oBmU64GMazUcnwiXK/6jnqhn3DsaQB2KWSNZq4KrshuC4bgv5aWkF8xHD7SoQiEIng75ful9iQOJAAAAi5Xnlb7387wgfDqRCN4DHjkS3dgALFo/+tGPpj120UUX1byciy66qCSEOlz2xz72sbrH1giZTGbaY9UGcH/jG9+YNt/FF188L+PC4pIr5HTG18/QofFDcowj3/qzzzTPHOPo0PghnfH1M/TMHz0TBGKjYcIeGMuPycho+qVKF56R0Vh+jB6IAPUHPdDeqD/mqwfm0jv0AAAAAAAAAAAAAAAAwAQCqAEAANCCCKEGgBZyOCkZW3/2s5U0Psctv7HBONTZSQh1VGKeCjGjfIUA6vmUd6RCzEjJpBRzG7NSVBbzJNeRZGTNwp1WaKWJ5HsTrI8eaA411H8uW2nq37xSkvp3JtX7ume1Y+XYZAB1KHx5NpISXnASaDmulVzPKueWDzMPgqh9nX2oS/07X6BUzOUTZJMo7oGdK8eDwOgZ/uDjvhSTKft8TEbJvNFIvHxQTRBs7eisQ530QKvK54Mg6tDUIEIpCCEEAADA4pPJlH5xLJGQ4vHg/WAmI42ORjc2AIvS6OiofvnLX5Y81tXVpVe/+tU1L+uNb3zjtMduv/32pg+hvuuuu6Y9dtJJJ8063zPPPKMdO3aUPHbuuedq5cqV8zY2LB6JWEKXbLhEX/7FlyWp4UHUjjl6gPKSDZcQOhiB4h4wxshGcLKAmThpgh5oPOoPeqC9UX/QAwAAAAAAAAAAAAAAAJgRAdQAAACoAvFRANAiXMfVn/239KHzpaGk5EeQ/+xYaXlG+rPbJTceb/wAoHTM04VnP6tfrM5UPY/nSPKl4sxqP3y8Sr9YndGFb3hW/7HjxUoVCKGNUjrmqfesPXqgO6ekZ5R1Zt4JaBSEyhYcKeZLTlECqS+rgnM0k3SmpVhJSc/oge6cel+/R/07X0QPRKjW+kuV6x9OR/1bT0oxvffZbv14XfnQMCupqxDUvNL2Pu47cgtWo7HyXTCcsHrvs91KqYNPj00mpZgufmaFfrp2bMYA6mV5R/kK2wlJ6vCN3Jyj4USZoBojjcWsLn5mBT3QqqYeLDSm9DHHkWIUFgAAYFEyJrgV3w/l81Iu1/gxAVjU7r33Xvl+6f6FM888U7E6Pne+5jWvUTweVz6fn3zsnnvumfMYF9Kvf/1rDQwMlDyWTCb1pje9adZ5b7nllmmPnX322fM2Niw+l51zmSTpy7/4csODB621Msbo07/16clxoPHCf/sv/fxLkazfWqv//br/TQ9EhPqDHmhv1B/0AAAAAAAAAAAAAAAAQBMwEQQ/VUIANQAAAKpE0hAAtJCeh43GXKtLeqILof6HG6WehyWdUmj8ANpcOubpwrN26/bV48o5dsbQ2HKKg6hrDaC2knKO1e2rx3ThWU/pP+5YTwhtRNIxT72vfVaD3VmNu76G42UCQ4sU90gQRGwneyAMIK6mj4bjvoykwe6Mel/7tPp//gJ6IAL11L80iHp6/cPpKqH+zWn7i4bUd/reGUPEjaTxmFXck4yd+U1D3vjKuTOHkRtJfac/p6681ZbfLJ+PoWOeDLwgrUtf+byW5xwNJfxpYdPdOUdxa2YNoZakpO9IOU0Loo77Rstzji595V515ax6nk3N6++ABigUglvI84JbyNrS5wEAALB4+H7pF8imBMPK5bM9gPn18MMPT3vsJS95SV3LSiQSWr9+vZ588snJxx5//HEVCoW6Qq0X2hNPPKHzzz9fmUzpBUR///d/X8uXL591/jvuuGPaYxs3bpz8f2utbrrpJv3bv/2bdu7cqaefflrZbFYrV67UmjVrtHHjRp1zzjl65zvfqVWrVs3110GLuOycy5QtZPXVO7/a0PVaWf3ha/6Q0MEm8Gdv+jP9+4P/rieHnpx94nl2/PLj9Wdv+rOGrxdHUX/QA+2N+oMeAAAAAAAAAAAAAAAAiBAB1AAAAGhhzXeGJgBgRulOR9ds8LQsJw11SBUyJeedsdKynHTNBun8X0upfL5xK4c8Y/W+N+zR7WvGlXOqCw6etgxH8m19fTMZRL1mTO87+xndcNtxchvZgJBnrLa8/rkggNixGpolgLicghOEydcTYj8U9yUbBBFvOWu3rv+vY+mBBqq3/lODyKn/4rD9+LQ++Jp9yk8kRzsqratR8LotSTk3CCAvVy/PWBWcYFozMWNxz4TZxXlj9cHXPCd5nrY8RQhxMxh44Yj6Tt8vX0GdlmeNhjps0BOSuvOOkp6RN1O6eDFrJSslPSPlnMmA+/jEcoPwequ+0/dKnqeeZ5Yu4G+GeVdNCHWzHegEAADA/LC29L2f50n5vBSLScmk1NUV3dgALEpPPfXUtMde/OIX1728F73oRSUh1J7n6Te/+Y1OPPHEupc5n7LZrHbt2qVrr71WV1555bQA6hNOOEF//dd/XdWy7r///mmPvfSlL5Uk/epXv9Lv/d7v6Ze//OW0aZ5//nk9//zz+tWvfqVrrrlGS5cu1Sc/+Un97//9v9Xd3V3Hb4VWks6m9bPf/CySdf/sNz9TOptWqoP9xVFJZ9Pqva5XmUJGMSemgt+4C83FnJgyhYx6r+tV/0X99EEEqD+Ke2BJfIlG86MNW/eS+BJ6IGLUH/QAAAAAAAAAAAAAAABAhJrtvGwCqAEAAFAjQqgBoEV4vqct77UaPEZKFqTlalwQtbHS8myw3sF10pb3Stff5RNA2lBWBzu8ugOoJ5cyh5IFQdTSwQ5vMrASjeNaaetjy3THb2U0lKg9gDpUTwBxaCjhy+QcbX1smVxfogkah/ojtP34tD549n7lndLHw4Dx4gDqUN6RNCWI2jNWeWcifHqCsZoMonbKLOODZ++TrCWIOmIDLxxR35kHSv6eHRktzzoa6vDVVQgCqOsRzOdoLOZredaRU9QhvpH6ztwvWUsQdSuZ7cAhBxYBAAAWr0rv9ZJJKZFo3FgAtIW9e/dOe+yFL3xh3csrN+/zzz/f0BDqW265RZ/+9KdLHisUCjpy5Ij27NmjQqF86OdLX/pS3XTTTVUHQT/xxBPTHuvu7ta2bdv0v/7X/1I2m61qOSMjI/qrv/or/fu//7t+8IMf6GUve1lV8zXK1772Nf3jP/7jgq/n8ccfX/B1RC2dTWvTNzdp195dkax/195d2vTNTbrtktsIHoyA53va8t0tGtw7qHQ23dAAYkkq+AWls2kN7h3Ulu9u0fW918t13IaOoZ1RfxT3gCQl3ERDA2gTbvBZkh6IBvXH1B4I34s1og+WxJdMro8eAAAAAAAAAAAAAAAAbYkAagAAACwChFADQItwHVdbBx3tOseXbxoXRF0cQC0FoZRbd0mupiRXYkG5Mnr9/k7dvSoX6TispNfv76T+ERmLWR2J1R9APB+OxHyNxWzz7RxtA9QfMwVQh6YGRxcrDqIOA6jLMXbmzXvekT74W/slYwiijki5AOqQI6MVWUdmji/QSc+owyu/HN9Ifa85IBlDEPViwcFFAACA9mGM1NER3HxfisejHhGARebQoUPTHlu6tP79B+XmPXjwYN3Lq8fQ0JAGBwernn7JkiX66Ec/qs9//vNasmRJVfPk8/myv9dPfvITffjDH5bvl+4TXrZsmdatWyfP8/Tcc89pfHx82ryPPvqozj77bP385z/Xy1/+8qrHv9D279+vBx98MOphtDzP9/SWb70lsgDq0K69u/SWb71FOz+0k+DBBnMdV1s3btVtT97W0ODRYqP5URkZbd24lfo3GPVH2AO7ntulsfyYhjJDDV3/UGZIy5PL1RXvogciQP1R3AO+DT4rpDpSKvgFZb3qLl5Tjw63o+TiI45x6AEAAAAAAAAAAAAAANBemi1jg3PEAQAAUCdCqAGghfQ8JCkv9Z2nhgRRlwugvvxGqedhSesz879CzCjn+PrX44/I2IUNHZ+NsdK/Hn9Ef/uLJUr4MySYYkHkHF+fOiMIHo2qD4wNtj2fOuOAfufRGD3QQNQfYQ/MFB5djbwjJQpWmTmcB5p36IGoeMZq2wlD8mWDq0KUEWwaZj5gZCS9YNTRs0v80qmmHGSqtBxf0rYThnTBY67cKN+UoDqFQhAwGPJ9yfOO3m+2A54AAACYP1PfCxYKUjotdXZKq1dLuWgvdgdg8RkdnR6E2dnZWffyys07NjZW9/IWkjFGH/zgB/XFL35Ra9asqWneoaEh2TJfAP7gBz84GUBtjNHFF1+sT3ziE3rNa14jM/F5vlAo6Pbbb9dll12mH//4xyXzHz58WBdeeKHuvPPOqgOx0Truf/7+qIcgqXnG0Y527N4RWQBxaDQ/qh27d6jnlJ5Ix9GOqD96TunRjt079KWff0m2wnGhhWBlNZQZ0odf/WHqHxHqj/Dfvu+HffKtr0who7yfl5FZkJ4wMsr7eWUKGSVjSTnG0eXvuJweAAAAAAAAAAAAAAAA7aPZzscmgBoAAABzQGoYALQS31fPw0EQtDOxPyBZCIKi5/0ckkoB1FKwg4Rbw24J6+orO5Yr4QdBsFEwVkr4CsZh3cj/TdrtFvZA3JeMGt8HxgbrjdMD1J/6R94D9Yr7kmc052XQA9HcXDnaftsqbTiUqKt2RtIbnkvoLc8m9YbnEhNB07XbcCih7betkisn8n8Tbty4cePGjRs3bty4Vbg5U96zS5LrBuHThw9L2WydnwoAoLx8Pj/tsWQyWffyyoVQ55o0QN9aq2984xt65Stfqc9//vM6cuRI1fNmZ9gej4+PSwr+DQcGBvTtb39br33taxUGUEtSLBbTb//2b+tHP/qR/uEf/qHkOUl68MEH9YUvfKGO3wjNbCQzopzfHH8LOT+nkcxI1MNoO7lCTlfec2XDg0ensrK68p4rlSs0Rz+2C+oPSRp4aEDf+OU3Ih3DN375DQ08NBDpGNoV9YcUBFFf/o7LlS1kNZwdbsg6h7PDyhayBFADAAAAAAAAAAAAAID2MuU72pEjgBoAAABzFIt6AACAGkzsCAiDoPvOk/yJfRXGzG8OdfE+kGkB1FIQWIKG2vJ0SnIcffD1B5RzJNvA/VRhAPW/3LFaW55eKlH+SBT3QN6Z2CQ0og+KAojpgehMrb9sY7YDhvo3jWk9UIO4L7kTbxRcK8lXXcugB6KV8l31/2ytet+8X4Mrqwh2mEisN5Le8HyHThiNSY50wmhcet7ov4+ZCDmq8uDXhkMJ9f9sjVK+Qw+0inIHEqc+5nB9MgAAgEWpOHw6vB8aH5dqCEgFgHpNDUWe67y2wV+Yveiii6atc2xsTENDQ3rooYd0xx136Jvf/KaefPJJSdK+ffv0uc99Tt/85jd17bXX6qyzzpp1HbP9TldeeaXe/e53z7qcvr4+7du3T//3//7fksevuOIK/cmf/ImWL18+6zLQGjoT0wPao9Rs42kHruPKt3O42uQ88q0v12FncSO5jqu4E496GJKkuBOn/hHwfE9/dftfaSg7FOk4hrJD+qvb/0oXnHwBfdBA1B/TTHxsstYu2AUKrGzwvSFjGvMdJQAAAAAAAAAAAAAAgGZBADUAAAAWIUKoAaCVFO0MCAOhP3SBNNyhIIF6Pvdd2GC5xkrf+P6UAGqp+XaUtIktTy2TjNHW1+1XroHnccV96V9+vkZbnlrKCUURi6QHjBTz6IFmENb/g6/b35Ag6pIAaurfFKb1QBWKA6hDYRB1oYZl0APNIVWYCKJ+076qgqgnA6iPlH78D+/fW02YtcIA6rVKFRx6oJVUCh4s9zwAAADagzFSNhv1KAAsMvH49EDM8fHxupdXbt5EIlH38uZLV1eXurq6dNxxx2nz5s36P//n/+gf//Efdemll2p0dFSS9NRTT+mtb32rfvzjH+t1r3tdxeWV+3cLbdq0SR/4wAeqHttnP/tZbd++fTIUW5LS6bSuvfZaffSjH616OWhuI5mRqIdQYiQzopVLV0Y9jLYynhvXSK45+mAkN6Lx3LiWJpdGPZS2kSvklM6mox6GJCmdTStXyBFGH4E1XWvkGEcFW4hk/VZWrnG1pmtNJOtvd9QfkjTw0ID6ftinDrdDnbFOjeZHF3R9VlZdsS51uB3q+2GfJKnnlJ4FXScAAAAAAAAAAAAAAECkmu38awKoAQAAME8IoQaAVmJM2Z0CVvMfQmrNxILRdM7f3aWXp+O6b0W+Yet8eTqu83d3NWx9qIweaG9bngxO5K8miHoum/JpAdRPEiDQLKb1QAUJb+a8YNdKriflZlkGPdB8UnmnqiBqxxq94fnEtADq0AlHYnrXM536m9PS8iu8l5wMoK42+RzNY7aQaUKoAQAAFq9yFyAJf8bjksP7ewDzq6tr+v7j+Q6hXrJkSd3LWyjGGH384x/Xq171Kr397W+fHPfIyIh6e3t13333acWKFTPOX+l36uvrq2ks8Xhcf/AHf6A/+ZM/KXn8tttua4oQ6jVr1ujUU09d8PU8/vjjyi7iiy0sTS5VKpFSOhd9CG0qkSJ8OAJLk0v1uTd/Tn/xX38R9VD0uTd/jh5osM5Ep750zpf0yR9/Muqh6EvnfIkA6gi4jquLT7tYtzx5S9RD0cWnXSzXaeDV00H9IeloALVvfWUKGY0XxmVkZBfwi35GRuOFcSXchJKxJEHUAAAAAAAAAAAAAABgcWu2c68JoAYAAMA8IoQaAFpJUQj1wMulvvMmgkcXat+FCZbfd15wt+fhoudcTiSKQjruq/cN+7U/6Wt5ztFQwl/wdS7POdqf9NX75v3q/+91BFBGjB74/9i78zi56jrf/+/vObV1d9KdkJUQIEEFEsSwCKJy+QEZ1HHBaZghaHMVA47yw577+znjMs7ivYM6ooyMl/GHC0SuY9QMzDS44LigDPsWkkZZZUlIQvZ0V6eX2s75/v6oPt3Ve1V1dZ2q9OvJo+nUqTrnfDufT1dVTp3v+0CS2l5tkRxHV711n7LGjhtEXexLw3hB1UMB1Nbo1kcWq+3VuRJP+zVlTA+MoyXrKONYeZM0Q9RKDVmjZHT85xJ6oHY1+642PXi01p27R53zx4bqOFb6fOdRevKo1KRPCBftbdIxT8TV/ub94wZRr+mKa9ODS9XsO/RAPbJW8gt+v40ZGTboOLX3QSgAAAAqY/QFRxxHisXy3x1HamkJb2wAjkgLFiwYs6y3t7fs7Y237nj7qBXnnXee/uf//J/6zGc+M7Rs586d+qd/+id94QtfmHC9uXPnKhaLKZMZeaExx3H0R3/0RyWP4x3veMeYEOoHHnig5O3MhGuvvVbXXnvtjO/nlFNO0TPPPDPj+wmL67g6nDkc9jAkSYczhwmfDEEml9EX7pv4eaWavnDfF/TZcz+rWCQW9lBmDc/39IX7a6T+939B1559Lc8DVeb5nm585Ebl/Fyo48j5Od34yI26/I2X0wNVFNTf872aGAf1rz7P97Rh64ahAOpkOlnV/Qf7S0QS2rB1gy4+6WJ6AAAAAAAAAAAAAAAAHFlqbd41AdQAAACoMEKoAaCexOPSwMBQAHV/VOpOjA0PrRSr/PalUUHUxkjR6AztFRPpiXha97bd6pyXkWTU4BspK3VPEBxaCfOyjhp8RzJS51EZrTtvrzY9dIyac0wgCgM9gEJtu46SHnN01dl7lHXsiNeC4PoExbw+BIfAR6xvpKhvdOtjS9W2a57EU35NGt0DQ2w+gDrhO8o63pSB5AnfkbLKB1EXPJgeqH3NkjY9slzr3rZLnfOGg6gdK920ZYnesj+uZ+dnJ92G48bUumeutMVV+xl7RwRRr+mOa9Mjx6hZLj1wpBj9wafjSBEODQEAAByRxrsAievmlzc1SQsXhjc2AEekJUuWjFm2c+fOsre3Y8eOovZRS/7H//gf+sIXvqDDh4cDgr/97W/ruuuuk5nkZOSlS5fq1VdfHbHshBNOUHNzc8ljeNOb3iTXdeV5w8GEe/bskbV20jGgfuw6tEt2xj4dLo2V1a5Du3TcwuPCHsqsMpAZUNZOfty3WrI2q4HMACHUVTSQGdD+/v1hD0OStL9/vwYyA5qTmBP2UGadbK5GngNqZByzje/7ob8XsLLy/Zm/YDrGch1XGy/ZqPNvO1+dezslSdbaGe8Jq/zF0Y0xSqaTWjFvhTZespEAagAAAAAAAAAAAAAAcGSptfOtCaAGAADADCBpCADqyXHHqcM8X5UA6sC4QdSvxKQYE0mryZNV2zkjAyYlqcFzJBl1R73xV5yGeVlXDd7IA2Sd89Jqe9se3fnICrlTxpqikugBjKdtz2LpyaiuPONV+YO5UkEAdSlGB1E7vnTrk8eqbc98iaf7mhb0wFVn7BgKom7JuUoMJgkbGZlJ3i2YweonfEfKGSUHn0uivqEH6kSzpE1PrNS6s7ars2VAjoxueuoYte5v0f5YRvP9+KTrxyNxKRZT6/6F0lNRta/ZJV9Wa5IN2vTE8Wp2XHqg3hV+4FkYQhjc5uIyAAAAR6ZIRCoMhHLd/EUOGxvzAdSj3xsCwDStXLlyzLLt27eXvb3Rocyu6+q442o76DYej+vCCy/UXXfdNbRs//79euaZZ3TKKadMuN4JJ5ww5uddsGBBWWNwXVctLS06dOjQ0DLP89Td3a358+eXtU0AtcXzK/+Z4HTU2niAI53ne9rWsy3sYUiStvVsk+d7hNBWW62cplEr45iF7nn5Hu3t26uoE1XGy1QtlDwIoo65Me3t26t7Xr5Hrataq7JvAAAAAAAAAAAAAACAGUcANQAAAGYJQqgBoI50vPsEtZvnqxZAHRgTRP3kPLUueH2V9g5JciWtzzRqS6RT/qjKG+NJqvzkXuM4khk5WdCR0frMarmvP6bi+8PkpuoBI6+izwlG9EC9aGzepbl2t7qULSuAOlAYRD3XRtW4eJmUoM71oE2Sdi3R1cs3q8F3lTDu8L/0nJwmfcdgTD6YTFJCkjxHA46nW3adqbbEcRIv93WhWdKmgyeorfExre9aodamY/K1cwekqbKFzPGS1yRJapWkfUu1Yf42bTx4tppXEE5c9wYGpHTBBSwyGSmVGr7tulJTU/XHBQAAgJlnrdTfP3x7/nzp2GPzFyExhouRAKi4k046acyyF198saxtZTIZ7dixY8Sy173udYpEav/0hhUrVoxZ9vLLL08aQr1q1Srde++9I5bF45NfWGwyiURizLJU4fEA1LXjFh6n05ecri17t4Q9FJ2+5HQdt7C2w+GPRC2NLVqQWKCDqYNhD0ULEgvU0tgS9jBmlYZYg1YvWK1nDj4T9lC0esFqNcQawh7GrOM6rk6Yd4K27t0a9lB0wrwTCKAOweKmxYo6UWX9bGhjiDpRLW5aHNr+ZzPP97Rh6wZZaxVxIkp76alXqiCr/H6ttdqwdYMuPulingcAAAAAAAAAAAAAAED9I4AaAAAAs0jtz9IEAEganERyYq/6t1U3gDpQGES94Qyji/sXyJVT5VHMbq1aJPW2qL35gaEQ4pRy6nZmZmJZt5vVPN8oMfh2wZHRTT3nqjW+Ulo0I7vEFCbqgaSTk5GRreAzg5FR0s1J9EBN64i/ovbm3ymhqBrkKy1/1COK6Qkz4k8JOUqYqNqX/07qaVFremUlh4wZ0qZF+kW6W7+O7RqZRD7lBx5GcoZfzxNy9N70CrXFzuT3vM40S7qz/2K5caegdgNS477JVzQLJM0dutmqRbq4/01yF/A+74jQ25sPog6k0yPDBl1Xam6u/rgAAAAw8/btk3K54dsNDVIsNnx7GuGmADCe008/XY7jyPeHj1E+8cQTyuVyJYdHP/HEE8pmR372ccYZZ1RknDNtvADow4cPT7rOWWedpZtvvnnEsmQyWfYYuru7xyxbsGBB2dtDbfF8T4vnLJb2hj0SafGcxfJ8j+DBKnMdV/evv1+r/7/VYQ9F96+/n/pXmeu4umPdHTVR/zvW3UH9Q+A6rn5w6Q90yv93SkXPDyiVkdEPLv0BPVBlruPqlotv0RtuekOoIdTBOKh/9bmOq42XbNRp3zxNu3t3hzKGvmyfFjct1sZLNtIDAAAAAAAAAAAAAACg/tVaADUAAAAwwwihBoA64TquLn/bx/SL1+4PbRqZldQbky5/vknunqdCGsXs1ipJi49R++pt6nc8dUe9GesHK6nbyWhe1lOj7+qmZ1aodV9S0tYZ2iOKMboHklFPUuWD6a2sjKSkk5HogZrUsfiQ2ldvk5+1Sjm+0o5X5pZGdk9anlJeWgnfUXvDb6VXXlHrvqOmP2DMqI7Fh/Sbedul7KhnA9cbGUo9mjWSN3KC8m/MdnW89hvqXofGTPF1M9LxU4RQ78xJmZHhSEwVPoKk01JhaFcuN/K24xA+CAAAcKQ6dEjKZIZvGyMlElJLS/5rnJBUAJiOpqYmnX766dq8efPQsr6+Pm3ZskVnnXVWSdt64IEHxiw777zzpj3Gati3b+yxmIULF066zvnnnz9m2fbt22WtlSnxpOb9+/erv79/xLLm5mbFCi9EgLq3dc/WsIcgqXbGMdtkchm9+TtvDnsYkqQ3f+fN6vp0l2IRnmOqhfoj6IEwA6il/PkE9ED1eb6n8287X6lcKtRxpHIpnX/b+Xr+E88TQhyCL973RW3r3hbqGLZ1b9MX7/uirr/o+lDHAQAAAAAAAAAAAAAAMC21GEBtwz03DAAAAEc+QqgBoE54vqd/eviflHXCHUfWkf7puJ26/IWoXFuDB1Nmgdakq0ca5uirJx2a8WmFVlJ3xNNHn29R6x9cSckZ3iOKEfTADScdkpSvU+VDqPOMpCQ9UHM6julR+8l75Vsp5fhKRvyKbj8Z8aSszQdRn/yy1N+n1l3NFd0HKqewH8Y3yTOE1ZgPInxZ6n6kiGWk1BST0HsPSwPp6owH1ZfN5oOnA5438rYxI0OpAQAAcOTIZEa+90unpa4uqbdXIogUwAx517veNSKEWpLuuOOOkkOo77jjjnG3XQ8eeeSRMcuWLl066TorV67UqlWr9Oyzzw4t6+7u1jPPPKNTTjmlpP0/9NBDY5adfvrpJW0Dtc3zvdCDJwOpXEqe7xE+GYZamV9QK+OYbWrl771WxjEb1crffa2MYxbxfE8H+g+EPQxJ0oH+A7wPCEEml9FtnbdNeztGZtph9rd13qbrLriOIHoAAAAAAAAAAAAAAFCfCKAGAADALEUINQDUCc/3tKNnRz4RdhrHDFwredM8DrKjMSevoUGuQk7EnqU6lnbplhOS+V6oBiPdckJS5/TOU+ue+VXaKSbTsbRLG1ccVkvOVXfUm7G5ncF25+VcbVxxmB6oER1Lu9T+xn3yjckHUEcrG0AtSTJSMuZLWZMPoj5znxSPU/8aVNgPE5vkPqNxPyDxjaj7kSAWkaL9kz8m0SgZJgYfsTKZkSHTnjfytjFSPF79cQEAAGDmpdMjTz6LxaSGhvyfd+6UDh8OZ1wAjmiXX365vvjFL45Y9t3vflfXXXedYkUG4G/ZskWPP/74iGVvectbtHLlyoqNc6Zs3bp1RJC0JM2bN0+rVq2act0rrrhCf/M3fzNi2b/+67/qy1/+cklj+N73vjdm2dq1a0vaBmpbLBJTx7oOXfi9C8MeijrWdRA6GIJYJKaffvCnNdEDP/3gT+mBKqP+iEViuvfKe3X2LWeHPRTde+W99ECVxSIxPXzVwzr15lPlWa/s7Uw3gNg1rh6+6mHqH4JYJKZ7P3yv1nxzjbJ+eReajTgRNUQaNJAbUM7PTb3CBNu498M8BwAAAAAAAAAAAAAAgDpFADUAAABmMUKoAaBOxCIx/fM7/1nr71qvjJ8pK4g6yK+eTo51zJf++ZnjFDNumVvAdHQs7dLVp25Xd6z8yWTl6I55uvpN2yVjCCMNWcfSLrWfskN+lY9p+kZqf+MOeiBkhfXPB1DP7HNBMupJWeWDqKl/zZnp5wN+748EpriLVtTiB2WoDGMmr6+1+aBqAAAAHHmsHflesPDP1kq7d1d/TACOeG984xt17rnn6oEHHhhatn//ft144436zGc+U9Q2/vqv/3rMsmuuuaZiY5wpnufpL/7iL8Ysf8973qNoNDrl+ldddZW+8IUvaGBgYGjZt771Lf3FX/yFli1bVtQYnnzySd11110jlhljdOmllxa1PurDQGZA79r4rrCHIUl618Z3qfvT3WqINYQ9lFmFHpjdqD8yuYze+8P3yjGOfDsDFysukmMcvfeH79WO/2cHIbRV5PmePv3rT2tB4wLt69tX9namE0AtSQsaF+jTv/607lx3p1yH88eqKeiB+Q3ztb9vf1m19HxPqVxKnl/e+SZGRvMb5tMDAAAAAAAAAAAAAACgPtXivHoCqAEAAFBFhFADQB1pe1ObHn/tcX390a+XvK6RZAaPOZjBJOpyDkFc8+J8tb3YIKm/jLUxHR3H9OjqU19Td8yXVflB4qUK9tMd83T1qa9I6bRadzVXae8o1HFMj9pX75GvwQDiiD+ULToT/WAGv5IRT8pZJTxH7au30wMhGa/+1UD9a1NhP0z9BDDJA6yZ9EMJX6Lu9SyWkbLZyR+THpAGqntxC1RRNivlcsO3PW/kbQAAABy5stn8+7/A6PeB/RzfBTAz/vZv/1bvetfIcMzPf/7zuuiii3TGGWdMuu6//Mu/6Be/+MWIZSeccII++MEPFrXvFStWaPv27SOW/fa3v9X5558/6Xo33XSTTj75ZF100UVF7We0dDqtD3/4w7r//vtHLDfG6BOf+ERR21iyZImuvfZa3XDDDUPLuru71dbWprvvvlsNDZMHfO7bt09tbW3yvJHHeS699FKtXr26yJ8E9aAh1qB3v/7duvP5O8Meit79+ncTPhsCemB2o/6IRWK6cs2V+upDXw11HNZaXbnmSgKoq8x1XK0/bb0e2vFQaEHkjnGU83Naf9p6wodDUNgDxhjZEicgmsGzjHJ+buh2qUHWxhh6AAAAAAAAAAAAAAAA1CcCqAEAAABCqAGgnnQ826E7nrlD8xLz1J3qLjp1tjCAemhZGUHU8zJGdyzv0f+1K6LWV5tKWBPT5RmrL560T93R6gZQB4aCqKO+vnjSPl38oivX1uDBtSOYZ6w2HHdQvqxSjh0OIA6KMxPlKGi0ZMSXrJTwjDYcd5AeqLIp6z+RUSVyrOSPLlsRTyjUv7Z0HNen9tMOFRdAPeWHDnbKx/iS2k/bnQ+i5vW/vuQ8KTtF4HB/vzRAKPERK5cbGTzo+yNvAwAA4Mg1+r3g6BDqWjxxDsAR4Z3vfKfe//7366677hpalk6ndcEFF+j73/++3ve+941ZJ5vN6stf/rL+/u//fsx9//t//29Fo9EZHfPmzZv1F3/xFzrnnHP03//7f9ell16qJUuWTLleNpvVT37yE332s5/VH/7whzH3f/SjH9U555xT9Dg+//nP69/+7d/06quvDi279957tXbtWm3YsEEnn3zyuOs99NBD+shHPqIXXnhhxPI5c+boC1/4QtH7R/3ouLxDb/nOW/TYa4+FNoazl52tjss7Qtv/bPehNR/Sf774n0p5qdDGkHAT+tCaD4W2/9mM+uOc5eeoKdqk3mxvaGNoijbpnOXFv89BhYU97yzs/aOsGpgJTiwqJ4iaHgAAAAAAAAAAAAAAAHWnFufREEANAACAEBBCDQB1wvM9bdi6Qb71FXfjinhSzily5YJjDnFPSrsFy4s8RhLxpbhn5Btpwxt6dfGORgJIq2xRypEjKayYSCvJHRwHqs+1RhvvW6Tz37VbnfOzQ8utpJn6VbQmv4Ng88morxW9UW28bxG//1U2Uf1LEfUl10qekbJl/BpT/9rQcVyf2t9yaGyY+AzzjdT+lkOSRBA1AAAAABwJ4vGwRwDgCPad73xHmzdv1s6dO4eW9fT06OKLL9ab3/xmvf/979fKlSs1MDCgP/zhD9q4caN27do1Zjuf+MQn9J73vKdq437kkUf0yCOPqL29XatWrdLpp5+u1atX66ijjtK8efNkjFFPT49ee+01bd26Vffdd58OHjw47rYuuOACfe1rXytp/3PmzNHtt9+u8847T+l0emj5ww8/rFNPPVUXXXSR1q5dq2XLlsnzPL366qv6z//8T91///3jbu+2227TSSedVNIYUB86nu3Q9uT2UMewPbldHc92qHVVa6jjmI2C8wbmxucq1R9eCPHc+Fxt2LpBF590sVzHnXoFVAT1R9ADTbEm9ef65Vu/6mNwjKOmWBM9EIKg/lE3Ksc4odU/6kapf0im0wNWdiiIOupElfWzQ8tLQQ8AAAAAAAAAAAAAAIC6QwA1AAAAMIQQagCoE67jauMlG3Xpv12q+1/8jXyTD4Yt5pBCECQ7Ly0lclIqInXHiw+uNcqHT3bHfP23vQkCSEPgWqMrXmrSb5emlAtx7o7rS1e81ET9Q3LP0QPak/AUtVLWzGwAdaAwiDpqpT0JT/ccPUAIbQhG178UQQC1NPjdLz2ImvqHL6wA6gBB1MARwBjJZSI4AADArOB5I09IcwoOBCQSUoSPCAHMnEWLFumXv/ylLrzwQu3Zs2fEfU888YSeeOKJKbdx2WWX6Z//+Z9naIST831fTz/9tJ5++umy1v+TP/kT/eAHP1BDQ0PJ65599tm68847dckll2hgYGBoeS6X089//nP9/Oc/n3IbsVhM3/jGN3TppZeWvH/UPs/39I3Hv6F9fftCHce+vn36xuPfIHgwBK7j6it/9BWt+eaaUMfRnerWV/7oK9S/yqg/XMfVze+5Wad/6/RQx+FZTze/52Z6oMoK6+9bX0am5ABhSdNaz7c+9Q/RdHvAyiruxtUQbdBAdkBpLz31SgXoAQAAAAAAAAAAAAAAUHcIoAYAAABGYIY5ANSbbE7yfcmRjJVkigui1uhjIiUEUJvCHbiuNGeOQk1CnoU8Wf3oxIOal3XVZTxlSgyPDRQbXD6emC/Ny7r60YkZXX5gjtximwgV4clqw6qDkuNoXsaoK1ZeHziS/BLXsSYfYjwv40qO0YZVKV3ctYQeqKLR9e+O+co6xf02R33JlZGRtCjtan/ckytJvs0HURdRxqhvNC/jUP8QBT3gOyX+vRsz9EJuJB3TH9WuxmzBa4Ep6YMT34geqCexjBSbYuLw3LlSJFad8aD6PE/KZMIeBQAAAMLQ3T3ydjQqxeP5746T/w4AM2jVqlV67LHH9MEPflAPPPBA0etFo1F97nOf09///d/Lccr8MKRETU2VueDascceqxtvvHHa4c/vete79PDDD+uKK67Q73//+5LWfcMb3qDvfve7evvb3z6tMaB2eb6np/Y+VVZwZCVZWT219yl5vkf4YJVlchmd/3/Ol2e9UMfhWU/n/5/zteP/2aEYx5irhvrD8z1d87NrFHEiijpRZf2sfFvqGQDlc4yjqBNVxInomp9dozvX3cnrQBWNV39Zlfy+oNwAamMM9Q/ZdHvAyCjjZWStVdbPlhRiTQ8AAAAAAAAAAAAAAIC6QwA1AAAAMAYh1ABQJzzfU9t/tOnplx/R/JTU1SBliwyiDoKkk3EpFZHSbmnrSfkQ0/kD0tNzB9R2wSHduf1thE9WkStp46ETtG7Oo9oc6dIBJ1PylDBXRo7NB4h6Ja5tJLX4MZ2em6+Nh94i90RCaqqtsAe2JLol46vUSPGINXJk5MsqZ0rsIGOkSERrUvPogRAU1r8zkdQ836rbZJU1k08obvIjyhlfRtKagRYdk01ol02pszGZfw63Vt4UvRC1jub5UTkRozWpFuofktE9UDQnJ8nKSDq39yitzDTpFdunB+Ycyj+DDP5uF4seqDPugDT/lckf4xwveZUJWkINslY6fDgfRg0AAIDZJZuV+vqGbwch1FL+34INDeGMC8Cscuyxx+q+++7T7bffrq9//et6+OGHZSc4aXbOnDn6sz/7M33605/WySefXNVxfuMb39C1116rn//85/qv//ovPf7449qzZ09R6y5ZskQXXHCBPvShD+kd73iHXLcyAWxr1qzR1q1b9a//+q+6+eab9fjjj0/4d+e6rs4++2x97GMf0xVXXFGxMaA2xSIxfeS0j+iGh2+oaujoaI5x9JHTPkL4bAhikZiuXHOlbnj4BjnGCaUPHJO/SMCVa66kB6qM+sN1XK0/bb227N6i+Q3z1TXQVbUg6iCAen7DfLkmPw7CZ6trovqXE0RdisLwYeofrun0gCk4zy/rZ0csL2ZdegAAAAAAAAAAAAAAANQVAqgBAACAcRFCDQB1YmgSyRM/lW/ygdDFBFEXBklL+QDqofuKXC8IoDaSHM/X+q4VBFCHoNmP6js7z9Dpb7in5HUdSc5gPR0rWSOVOgXRGuk7O89Qs0/waFgKeyBn8qGyxR5idKzkDP7eOjJyrJVf5K+xkZQz+bBieiA8zX5Um159i9YdNxhE7UXV7U4cRN3iRWVk5Blfa/rzAdSS8t/7NRRE3eS56nFz424jah3N86JylA+g3vTqW6h/iEb3QLEKA6gl5b/3Sg/MOVTS/ukBoA4ZIzU15cMHCaIGAACAJDmO1NiY/w4AVWCM0WWXXabLLrtM+/bt02OPPaaXX35ZPT09ikQiWrhwoVatWqWzzjpLsdj0giy3bdtW9rqrV6/W6tWr9Zd/+ZeSpN27d+ull17Stm3bdOjQIfX19claq7lz56qlpUWLFy/WmjVrdPTRR09rzJNxXVdXXnmlrrzySu3du1dPPPHE0N9dLBbTwoULtWzZMr31rW9Vc3PzjI0Dtef6i67XCwdf0J3P3xnaGC4+8WJdf9H1oe1/tgv+7r/60FdD2b+1Vp9626fogZAEf+83PHxDUcGhlRQEmP7VW/+K+oeodVWrJKn95+2a3zBfB/oPVC2EOgifvemPbxoaB6prdP1nOoh6vPBh6h+ucnrATHGe32SvJ/QAAAAAAAAAAAAAAACoOwRQAwAAABMihBoA6kjrq43S3VL7uzVuELUddQxkdAD1eCYKoh43gNpKN90ttS5wpaWV+ZlQvB4nq48uf1IRa+TKKFfC5DFfkpGVIyNftuQAaldGEWv00eVPEkAaosIecErtASP5tqAHSjhmakUP1Ipig6hbvKgS1lV2VAB1oDCIOmFdGc8o6WZHPIYA6tpUahD16ADqQBBE/WhTd1H7pQeAOua60ty5UjZLEDUAAMBs4rojg6aj0fwFSqLR2jyZDsCssHjxYr33ve8NexhFOfroo3X00Ufr3HPPDXsokqQlS5boPe95T9jDQI3oeLZD9716X6hjuO/V+9TxbAfhgyE6Z/k5ijiRfOhklUWciM5Zfk7V94thYYXRW1m9/8T3E0BdA4Ln36t/fHVVAqglybe+MrmMbrn4Fp7/QzY6hPjQwCFlvMyM7MvKEj5cg0rpgakCqAsfN14QNT0AAAAAAAAAAAAAAADqSi3OmSGAGgAAADWEEGoAqCff/rZan8v/cXQQdcYd+dBiAqiHHjtOELU1UswbJ4D6OUnLXpGWkkJdTZ6s2o59TJ2JpNLGl19C+PDQNozkjztdaGq+rNLGV2ciqbZjH9Od298mt8hJSqiMSvRAzlg5ZYSQS/RALZkqiDoIoHZk9H8fOEFPx8cPKg6CqF+NDyhhXcnTUBA1AdS1rdggakdGFyeXao43/j/7VmaadFy2SXe37J30OYUeAI4AxkixWNijAAAAQDVFo/kg6sLbvCcEAKDueb6nL93/JXUNdIU6jq6BLn3p/i/p4pMuluu4U6+Aiup4tkMfuvNDoQRQS1LWz+pDd35I39P3CKEMSRBGP1Fg6EwxMoTQ15pqf2TPKQI1I/gd/MTPPzHjQeS+9eUYh/DhGlPYA9VADwAAAAAAAAAAAAAAgJpHADUAAAAwJSfsAQAASvDkk5LyQdA33Z0PhjaSGrIjA6RLCaAeWseOnCtmB7c7JoBakrq7y/wBUC5XRuu7Viht/KGQ2KlexI3Gzv8bry2mOoQW7CfpZpU2vtZ3rSB8OATl9sBoo6cejtcno9EDtScIIV6TapEjo3leVFHrjAigvum1NTq3d4GGqzz265hsg/7ptTfKkVHCumoZ3A4B1LWvsAfGE/TA8ZlGJd3chF+vyzTqptfWyJngd5oeAAAAAAAAAIDacnDgYFVDZ8djZXVw4GCoY5itPN/Tp371KfVmekMdR2+mV5/61afk+V6o45iNOp7t0NU/uVrdqW6ZKk+YMcaoO9Wtq39ytTqe7ajqvjFSx7Mdav95uyJOZMYDiAO+9RVxImr/eTv1rxFrT1iruBtXzs/N6H5yfk5xN661J6yd0f2gdGtPWKslTUuU83NyzPhnERX7vnGixznGUc7PaUnTEnoAAAAAAAAAAAAAAADULgKoAQAAgKIQQg0A9WTv3qE/BkHUaVfqieeDoqXyAqgDhUHUjs1vN+2OCqCWpHS6vB2g4iZ6IS8mWLiYx/JGofbRA7PX6CDq+aMCqFt7jhk8UG4n/bq4Z9lQCHHCuppPAHXdmCiIurAHUsZTZpKvtLFq7Tlm3CBqegAAAAAAAAAAaovne9rVsyvsYUiSdvXsIoA4BJ7vaUdyR9jDkCTtSO6gB6rM8z196f4vqTvVLUlVCx8OBPvrTnXrS/d/ifqHJAigzvpZ7evbV9V97+vbp6yfJYi6BvSke3T+bedre3K7zAxfRNzIaHtyu86/7Xz1pHtmdF8oXk+6R+vuWKc9vXvUEm+RnWTSoh38r9T7JMlaq5Z4i/b07tG6O9bRAwAAAAAAAAAAAAAAoPYQQA0AAAAUjVxBAKgn2eykdzu2/ADqgLHDgdYT8qs7kRGSJ6sN87cpbh21eCPDQEe/mE8WKDzZ8tH3jd5uixdV3DraMH+bvEkmH2Fm0AMYz+gQ4hEB1MpPBrRWk35JY0OICR+uH4U9YGXH9ICRmbL+kkb0gJWlB44QvqwGjDfpF8/nAAAAAAAAQP3wfG/SkMBqsrIE0IaAHsCCxgWKOJGqB1AHfOsr4kS0oHFBKPuf7Tzf04atG0IJoA4EQdQbtm7gOSAkQQB1597Oqu63c28nQdQ1Igig7txTWg+Mfg9R6nuKzj2dBFEDAAAAAAAAAAAAAABMhQBqAAAA1DBCqAGgnhQcZOg4WWp/txT3pJZ0fplvJDvNi3NZk9+OlN9u3Mvvp+Pk8ceB6nBltHHH2VqTalHCuhOGEE8WPuxIcq2Z8MW/cN3xwocT1tWaVIs27jhb7oR7wUyhBzCRZj+q7+w8Q76ktq5jh8KHJckYI2M06VdQ9daeY9TWdax8Sd/ZeQbhw3Vksh6wskXVX6IHjkRZ46vLzUz6lTFcXAQAAAAAAACoFw2xBv3teX8b9jAkSX973t+qIdYQ9jBmnYZYg35xxS/CHoYk6RdX/IIeqDLXcXXjO29U1pv8AuYzLetldeM7b5TruKGOYzZyHVdf+aOv6EDfgVDHcaDvgL7yR1+hB0IwOoDaWjvjFyewsrKD54oRRB2+0QHUqVxKyXQyf35IEefyBP1STN8YGRljlEwnlcqlJBFEDQAAAAAAAAAAAAAAaoypsewTMpkAAABQ4yJhDwAAUILBAx9BAHUQFh3JSX48/2crSUYyZRyTsEZD00v8we1K+f20vzv/59bnBsdx+HB5PwPK1ixp0zOnaN2Jneps6pVsRMnBIgXxkUH9Rh8icyQ5gwnljs03yOjISauR9Q9CiFtyESWsozV9Tdr0wilq9lKSUhX7uVA8egDj6XFz+uiJnXKt1caW7TrnUINaDy0ZvLdPavYm38Dhw5Ki6jhqrza2bJdrrT669DFtemGNmj3+uVAPJu2B+RnJmaQHMumh13R64AgUSUnzcpM/ZqBPStXYh2sAAAAAps+b4ngAAACoSwOZAV1333VhD0OSdN191+lTb/0UIcRVlsll9N4fvDfsYUiS3vuD96rrM12KRWJhD2XWyOQyevO33zzjgbNTsbJ687ffTP1DEPSAP+bT/ury5dMDIfB8Txf+nwurGkAdsLKSzV8Iu3Nvpy78Pxfq0asfJYi8yjzfU9t/tI0JoA4YY4YCwydTbN+YgkmawX4SkYQ693Sq7T/adOe6O+kBAAAAAAAAAAAAAAAQHgKoAQAAgJKRKAYA9SQaVcfrcyMCqHOSDjRpROJsOUHUhQHUGlz/QJO0sC//YjEiiPoFI+WmCDTEjGjODYYQr/q9Opt65edcJSMjA2VGhxDnw4cL7xm8bUYGF49uF19SS85Vwh8MH372lMEsW2ofpkr3gC1Yhx6oPz1uTuve8Ht1NvZKVvJl1b7yOcnz1XpwkeT5kp1iAnIup44FB9S+8gX5gxNHOxsPa90btmrTs28khLjGTd0DmrwHPG+wB/bTA0eknORPETyXy/G+DgAAAAAAAKgTsUhMxzYfq1e6Xwl7KDq2+ViCR8NSK3MmamUcs02t/L3Xyjhmo1r5u6+VccwyZvAvvpoB1IHCIGpDA4TCdVytP229tuzeov5s/4gAaklFBVCXwlo7bhB1Y7RR609bTwA1AAAAAAAAAAAAAAAIDwHUAAAAQFmcsAcAAChex1lzxg2gtuMcF7Eaf/l4xgRQFyw/0DQcNxsEUXe8kQkkYWr2Itr07Bt1Sl+TUq4/7rSuIFA45pvB8OGxHCu5dvzwYSk/XzDl+jqlr4kQ0hpTSg+4VpP2QMw39ECd6nFzQ2HkhXxZtb/+BXUs2K+M8dVvvEm/7lqwX+2vHwwfLtDZ1Kt1q36vHpdw2lpVTA8MOLlJ6z/g+PkAanrgiJSTVa/jTfqVMVME1QMAAAAAAACoGa7jauvHt6oh0hDqOBoiDdr68a0ED4YgFonp+U88L8eEe8qXYxw9/4nnCSKvMuqPoAciJtzP7iMmQg+EwHVc3fPhe3R8y/FVD6AOWFkd33K87vnwPbwPCEnrqla1ndo2bgB1pfvCyo4Jtk6mk2o7tU2tq1orui8AAAAAAAAAAAAAAICiEUANAAAAlI0QagCoE57vacOb3aICqAPjBVHHvVGPmSCAuvD+0UHUG0438kKazIQCZvhbpQ+PjdhmjR17QwF6YNaaKHw4EIQQ39+SVNq1E37tTKT1V69/eUz4cIAQ4tpVbA881zgwaQ/8vqlv3ADqAD1Q3zxjNeD6k355hvd0AAAAAAAAQD35cMeHNZAbCHUMA7kBfbjjw6GOYTZrv7tdvg33AoO+9dV+d3uoY5itqD9uevQm+Qq5B+TrpkdvCnUMs9U9L9+jVC6liBNOEHnEiSiVS+mel+8JZf+QOp7t0MbfbVRLvGVo2UwEUA9te1QQdUu8RRt/t1Edz3bMyP4AAAAAAAAAAAAAAAAmRQA1AAAAMC3hnIkOACiZ67jaeOE3tO6Hl2rz0qkDqANWkoxkrNSSlhI5KRWRkvGpA6iHtjEYRL2wTzpzj7TxlVPlzm+c5k+EcvU4Wa173e/0dGO/5udi6opklTUj40ODAOGMY2UkOeM0i2+sfA1fkWL0+lHraH4uqqeb+rXulGe16aXT1exHZ+inQilK6QHP5Gs8UQ94xg5lTNMD9SGof2djnyZLCPcl3XLMbi1Lx7UoGx9z//5oWi80pjQ/F5GZZDudc/qof40ppQcemXdYrxtomLAHXmkY0FwvMul26IE6FvWlqSagRxukhobqjAcAAABA9UQi+a+A6468v9ZOugMAAEUZyAzo7hfvDnsYkqS7X7xbA5kBNcQ4vlhN9MDsRv2RyWV0W+dtkiTHOKEEkjsmf5bJbZ236boLrlMsEqv6GGYrz/e0YesGSdKChgU6OHBQOb96FxOOOBEtaFggSdqwdYMuPuliuY47xVqopKAHfOsrEUlIkrpT3TMWQB2wspKV5iXmKRFJyLc+PQAAAAAAAAAAAAAAAKqv1ubCEEANAACAOkQINQDUkeb3XKKvfTSqNVdliwqgDlhJcS8fQC3lvw9E8mHURW/DSN0N0td+KTWft6KUYaOCepys1h33hDoTh6XB2Nj5XlQH3Ix8kz84FYQPB3xJMnZECHEQQB0YHULsWKP5XlRm8ABcZ9NhrTuxU5tefQsBpCGrdA8ES+iB+jC6/lPxjfRCY7+UMlqUGw4h3h9J64VE/+CFCkZ3zFjUv3aU2gNWdtIeiFhT1Ict9ECdimYkd4r6xmOSk6jOeAAAAABUTzQ6MnjaccbeDwAA6k5DrEFbP7ZVa765Rlk/W9rKk53nXuI5+VEnqq0f20r4bAim1QMVRA+Eg/ojFolp859v1unfOl2HBg7JyMx4+Gyh4OLGRzUcpc1/vpkA6ipzHVcbL9modXesU+eeTs2JzlF3urvk7ZTbN3Oic+QYR2uWrtHGSzYSPhyC0T1Qruk+d9ADAAAAAAAAAAAAAACg6gigBgAAACrCmfohAIBasbNnp867ysgr49k7FZF6Bud+9cRKC6AOeI503nqjnZH+0lfGtOWDRx9VZyI5Ynna+BOGDwd8aegxowOoA4Xr+sYqbUY+qjOR1LrjHlWPE95k1tmOHpjdJqr/VKykFxJ92h9JSwrCh/tKnk5I/cNHDwAAAAAAKsIYqbEx7FEAAIAyrVq0Sp0f75RjivjQ2BZ8VeJxkhzjqPPjnVq1aNXUD8aMKKkHZgA9EC7qj+XNy7XlY1vUFG2qagC1lL8AblO0SVs+tkXLm5dXdd/Ia443a9OfbtLSOUvVk+kZCgYvVvD4ctbryfRo6Zyl2vSnm9Qcby5pfVROYQ8k00kZY0qqZzk9YGRkjFEynaQHAAAAAAAAAAAAAABA9RFADQAAAFRMGRGkAIAwZHIZnfntM3UompP1yttGX0xKRSWvzGMrVtKhhNWZJ/xaO+4/SzGuZVA1nqza1jyjzlifCtODU46vpJuTNPWVJXxJ1kw+BbEwhDjpZqWcVcIf3nJnrEtti+/XnZ2r5ZY4IQ3TQw/MbhPVf0rGlwZr/kK8V/udlLqiuZHHtH1f40eXj0X9w1N2DziS7CQ9YDXYA8WhB+pMtF9qyUz+mEMHpf4pHgMAAACg/hw+LGUK3usPDORvx+PS3LlShI8IAQCoZ7dtvU2+neTY7nTObQ/WneAQsG993bb1Nl1/0fXT2Amma8oemEH0QPioPx7f9bgao43qzfRWNYjayKgx2qjHdz1OCHWI7nn5Hu3p3aOoE1XWz0pWRfXB6NBhI1P0esYYRZ2o9vTu0T0v36PWVa1ljx/TN7oHjDGyRUxuLLsHBidy0gMAAAAAAAAAAAAAAKDqCKAGAAAAKooZ5gBQJ2KRmK5cc6W++tBXZadxfKTcAGpJ+f1a6cpn44pte7X8DaFkrqT11tGWt3nyByf/pFyrpGsnn0Q+qt7jPnSS9ZNuTvKMEoON48ho/VZH7vbtpQwfFUAPzG7j1b+4FW3+S4MXEohmxz4mV/yVDah/eMruAccfSqgftwespFyu+M3RA/WlMSst75v8Mbtek5Lx6owHAAAAQPWkUpJX8G9+x5F27JCam/Mh1AAAoG595lef0Q0P3yDHOGNDaCt5XvsEYdSOcXTDwzdIEiG0IZm0B6qAHggX9UfHsx1q/3m7HONoYeNCHeg/UJUgaiOjhY0L5RhH7T9vlyRCaEMQ1F+S5iXmqSvVpYw3+QVnRwcPj75vqv6xsoo6Uc1LzJMk6h+ycnpAmrgPiukB3/qKuTF6AAAAAAAAAAAAAAAAVBcB1AAAAEDFEUINAHXknOXnqCnWpN5Mb2UnEJegKWd0zqEGKcJLSLW17porPeqo/S2H1B+xSkar0wTJmJWyRo05o5sePUqtu5p4BxESemB2K6y/X+yxciNN+YJhhv43KceK+oesrB7Q4BUkJn1IcRujB+pQxErOFPWNOLyvAwAAAI5Eo9/nRyL5r/5+6YUXpJNPDmdcAABgWjK5jG7rvE2SZjaAevR2Cw4z+taXYxzd1nmbrrvgOsUisRnaMcZT2AOSqh5E7Bhn6M/0QPVRf3i+pw1bNwzV3XVcRUxEWTvOxYgrLGIich1XUv61YMPWDbr4pIuHlmHmja6/Maas13/XceX5xV+sWpJkB/cn6h+mcntgdAD16B4oJoiaHgAAAAAAAAAAAAAAAFVFADUAAAAwI0iaAoA6EUwimRubK2ut+rJ9VQ+ibsoZzc052vCGXl28o1GurbEDNrNA66tNemRhWje8saeq+01GfX30+Wa1vtpU1f1iLHpgdgv+/ksLIZ6+ofBh6h86egAAAAAAMG3ptLRrV9ijAAAAZYhFYrr3w/dqzTfXjAyeLfFzY8eqtGPMo4KoXTm69+23KPbCi6XtGNMWk7T5/B/q9F/9qQ5lkvJVXgBxEZewHJdvfTlydFSsRZvP/yE9UGXUH66kjav/Tut6/lJbu59TV6ZHni0xTFjl9YBnPXX1H9L8WLNOm3eyNq7+O7nPPV/yvlG+8eqf83NTBggH9xkZxZ2ook5EWeWU9rNTBw8Prpfzc9S/BtADAAAAAKYtFpOam6VFi2ovwAUAAAAAAAAAArV2/JIAagAAABxBCKEGgDrhOq42XrJR6+5Yp849nZJUchC1scMTyUrNj27KGTVnHa05FNPG+xYRQB2SjuP6tPF1fWrJOkpGy5tQWo6WrKONr+vTOQfiBJCGjB5AaSHE0z+YTfhw7al2EDU9AAAAAAB1arKT3Lq6qjcOAABQMZ7v6dO//rTmJebpQP+BfGhgGR8FlHVseTCI2shoXmSuPr31q7rzrBvkGreMjWE6lpsW3ffWb2vNfR8YGUZeJFPwvZxPklzj6L63flvLTYs0MFDGFjAd1B/NcvWdU/5ap9/XpqyfkyQ5cooOJS+nBxw5kqSsn1POy+k7p/y1mnOulKMHqm28+k8VQByIGFdRE5GsFDURecZX1uamXM8Mdg31rw30AAAAAIBpGRiQksn858Unnlh7QS4AAAAAAAAAUGvHLQmgBgAAwBGGEGoAqCPN8WZt+tNNWnfHOm3ZvUWpXEqevKJmhQUB1NLgd1t8ELVrpTkZac3BiDb9ulnN2WyZPwGmo2NFSu1nJ+VLSuQkWaNkbOYPVrVkjBKe5Muq/eyDUjan1m2JGd8vxqIHEGj9Q0TKNqv97clJgyJsMdkTkxz0dqx004Mtat0WkZQuZ6iYIUX3gJl8qqkvSw8cydys5E0ROJDxpDS1BQAAAI442azkecO3c6MChWrtpDwAAFAU13G1/rT12rJ7ixY2LtSBvv0VuBxl8YyVFsbmKeZGtf7YiwmgDklPtleffOZGzYvM1YFsd1Ghk4UG88TL6p0ghPyTz9yoTWd8Sc3ROWVsBdNB/dGT7dVHn/qiXOMoalxlrVd0ALVUXg/48uUovz/XOProU1+kB0IyXv2LfR7IWU9Z6w2tl7Pe1CtJsrIyMtS/RtADAAAAACqit1favVtatizskQAAAAAAAADAsFqb60IANQAAAI5ATtgDAACUpjnerO+87zvK+Tl5RU4EUUEAdSAIoi6GZ6ScK33nv5rVnOWlIwyesdpwcv+IoNGEZ9SSKe0Aminx+FY+fHh4H76RNpzcL6/UDWHa6AGM1rotoZsebJEzQ6UYDh8mcLxW0QMYrVLPzTzHAwAAALPAHEKCAACoV62rWnXTH9+kWM5qYX91972wX4p5Vjed8im1Hn1BdXcOSZJnPbVt+Tt19rygiONqYXReWdsp9yjwwug8RRxXnT0vqG3L3xV/zgIqgvqjsAcc42hedG5Z2ym3B+ZF58oxDj0QkvHq7xgzZQCxUT5EXpLSfkYDflppPzN439TnnFhZOcZQ/xpQbg9I9AAAAACAcXR1hT0CAAAAAAAAABhWawHUAAAAwBEqEvYAAACl6Un36CN3fUSHM4fzC4qZGWbyF9cqPNxiB5cX63DU6iMXJPXvv5xPEHUIXGu08Z55WvdH3epckB1anvCMlJGSMSvfDE4cm6AnHD9/9QnfSv4EJbQm3xuOHRs+LElrDka18Z55ci0H76qNHsB4gnDgT5yb1MG4r8bc2JqVIuVa9UesFqQdwofrBD2AQE/UV9vabq1/rnFadetYkdKGk/u18Z55vOcDAAAAjlQNDVJzc9ijAAAA09D6+vdKD8/Th954oKr7HYhI37q3Qa2rV0o7d1Z138hzJa1vfLu2dD0j3/rq96qbRN6f61ez2yjHOFrf+Ha5u3ZXdf+zHfXH6B7o9frly6/Kvn356s320QMhGl3/jJ+ZMgQ4CKAuDCkevU7w6fJkp6B51lMml1bCiVH/EJXbA/n/T9YD+fvpAQAAAOAIF41KS5YM306lBicaMS8AAAAAAAAAQMhq8TilLSbQCQAAAKg/hFADQB3pSffo0n+7VPdvv185PyfHquipZHZwLkkwpaSU/FjHSjkj3b80o0vf0UUQdUias442/XpsCHHcN3JsPoA4CBcfHUIchA9Lg9/9sSHEQfiwlK953B8bPrzp1wRShokewHjW7oppSb+jPQ2+kjErZVRWCHHKtfn1JS3pd7R2V6zSQ8UMoQfQE/WHXhu2vD0pSWUFUXesSKn97Un5Rlr3R9085wMAAABHmkhEamoigBoAgCPBL36hR5zd6qvyYdy+mPRIw0G1PvywdNpp1d05hrS6p0hHXaEP7fum+my6qvvus2kZT/re4o/nx3H4cFX3D+oPemC2C+p/9f5blPT7Jw0PDgKoi1HMdvL7k25ZdDX1D1E5PTB5vHTwWHoAAAAAOOLFYiNDqAEAAAAAAACgFhBADQAAAFQVIdQAUCc839O629fp/u33K+tnJd9KNh8m6xd5PKUwYLZYTsEKWVe6f1lO6y719dMXz5Jb5EQlVE6zpE0Hs1rXslmdDT2yRupysyN6YCiEePC2YyVn1EE3R5IGQ4s12BeFveE7UldCmu9FZay0ZqBZmw6eqeY10Zn74VCUSveApQfqWo+T1boTNmtPg6u49ZV2fCXjVvIiSviO5HiS8SbfSDSmlOMr6eaDzeO+oz0trtZd6mvTy6er2afmtWzqHshq0ld/x0jRKD1Qx4Ie6GyQpKh8Se0XDEg7Xqc39c2Vjnp28g2seoOUnaeOebvVfuzv5Stf786logcAAACAevbss1Jf3/Dt+fOlY44JbzwAAKCiPvPzv9QNa/ryFyUt4zPgchjlL4J6w5kZ6ZWNul6nVWGvmMgjqRfVZzOh7LvPZvRI6kW1znlzKPsH9Qc9AEkF52yNFx5cSgB1advhXLHaQQ8AAAAAAAAAAAAAAIA6RwA1AAAAUHWEUANAHdnfvz8fQG3tiIMWji0+iLoUzjjHRbLG1/5oVorFxKSScDQrpk0736pLj3tE9zcdUNb4YyaWB7djviPPjH+Ay5GRGQyiHm/9rPHV5Wb13/oWatPOc9QcIYCyVpTSA66deFKZIyPXN8o4469PD9S2HierdcdtUWfisAaMpwHHH5z8p8Ew4aiKeZ5OOb56BsOHraQBx1fceupsPKx1r9+iTa++hQDaGlVcD0zFjAigpgfqS2EPWOUvStDou0pYV+3HPa2/2Xvi1B++xaLqaNmv9mVPy5eUMr76HU/zvSg9AAAAANQz1x1523HCGQcAAKi4z3RcqxsWvjB0uxpB1EEAdeCGlXukXbfp+mOunMG9YiKfOfAj3ZC8e/BTIDMqKnJmmcFPHm9I3i1Jun7h5VXbN/KoP+iB2a2j9wm1H/ie4iaiFqdRSb9f0sjw4HLChwOTbafFaVTcRNR+4HuSRBB5SOgBAAAAAAAAAAAAAABwRCCAGgAAAAgFIdQAUCdcx9Xf/Le/0dU/vlrdA4dG3Gdn6LiKNSMnE8tK87yo/mb/yXIJoK4Bduj/Ex7GmqpMxoy7tp3kFmpJMT0wRerABD1CD9S2fPDso+pMJDVgcup2c5KGKxWEEDf47oTbkPIXMCgMoA7W73Zzkid1JpJad9yjBNDWoGJ7wJ3iTYJnrJIOPVCPCnvAyqrLzSprfCVdX/KkhHX1v5Y8p5XpRh2TTUy4nd/M2a+vLXlRvqxSxhsKJO9ys/kganoAAAAAAAAAqBmZXEa3PbNxzPJSg6hdK3lFftw7OoA6cNvAI7ruqL9QzIkVuVdUQsbP6LbtDw7dLjeE1pS5TmHb3Nb3oK478c/pgSqi/qAHZjfPetpw8GH5Tj4aOKG4ZIySXp+k4fDgqcKHXbny5E14/3jbaXGblBistS9pQ/phXXz8RXLN5OckoLLK74GR54fRAwAAAMAs0dMjZTJhjwIAAAAAAAAAxiKAGgAAAAgNIdQAUEdaV7VKTzyhq5/+R3XHB8NnS5hMXCorSQVB1PNS0i0vnKBW95gZ2iOKEYROPp04rIRvlJ5gLo+RlDG+jCRnnBBS31j5khyN30NWUsI3ejpxmPDJGlNKD3iycszEPeDJjppqNoweqE0ThQ8HCkOI+x1PjoyccQrsm8H+0PhB5oQQ165SeiBrrNxJesCXP/QcQA/Uj4kCqANJNyt5UtQadTYmpX6NG0S9K5rS9UtekCszIoBakrLGJ4gaAAAAAAAAqDGxSEybc1fp9PSNOhQfeVS32CDqpozUnJF6YlLfFLmhEwVQH5U22ny4VbElfG5cbTFJm/+vjTr9vjYdyvZIGr7mbLGBslETUcKJKeVnlLW5qVdQED47/HnjUdFmbT5vo2INS0oZPqaJ+oMemN1cSRvnf0XrnvycOntekCQlnITkOEpmeyVJ4wdQD75JkBR3ooqaiLI2p7SfLXjMyPVGhA9H5wyFD0vSmuYTtfGML8mNzqnEj4US0AMAAAAAShKPS7t2hT0KAAAAAAAAABiJAGoAAAAgVE7YAwAAlKb1xy/olvvmaV7azGgAdcAqH3Q9LyXd8p9RtT7eO8N7xGRGB48mXW/Cxwa94SsfNlwoCKAufNx4kq6nAZMbCp/scbKTPBrVQA/MblOFDwcKA4U9WfmjjsMHAdSjHztat5uj/jWm0j1gRQ/Um6kCqANJN6u048tK6mxMalc0NeL+XdGUOhuT8mXHBFAHgiBqK0sPAAAAAAAAADVi+TM7teWOhToqPfYk/PECowsFAdRS/ntTZvLHTxRAveWH87T8D3uLHDEqbXnDEm05b6OOijYPLRsdEDuRIHxWkhJOTFETmXKd8cJnt5y3UcsJnw0F9Qc9MLs1R+do0xlf0prmE4eWJZyYWooIAw7Ch6V8L8SdqS8+O1748KYzvqRmwodDQw8AAAAAAAAAAAAAAIC6RQA1AAAAEDpCqAGgnrz2mvTgg2rdltB5u2MzHkAdsJLO2+Go9QVXOnhQGhio0p5RqNjg0UBhqGhhCHFh+LA0dZA5AaS1o5weCEzUA5OFzwbogdownfoXhhAXBlCPftx4qH/toAdQbAB14LCTU05WnqQtjUm9GOtTj5PTi7E+bWlMypOUdvxxA6gDBFEDAAAAAAAANebgQS3vj4wbRG0nOTe/MIA6MFUQ9ejtDQVQ97tSMlniwFFJ44XQTqUwfDZQbAhtgPDZ2kD9UU4QdTk9QAB1bSonhLgwfDgwVQgx4cO1ix4AAAAAAAAAAAAAAAB1hwBqAAAAoCYQQg0A9eSxxyRJnzm7Rz9ekZ5k6lhlGUk/foOvz5w/GDjY1VWlPSPgyart2MeKDh4djy/JGxVAXazCANK2Yx8bEV6K6qAHZrdy6z86hDhnbFm1o/7hq8RzAD1Q3wp7oJgA6kDOWPmyspKea+jV7xp69FxDr6wkX1Z9ztS9NDqImh4AAAAAAAAAQpTNf2Y7FESdyi+2ZuKLDo4XQB2YLIjaajiI+qiUhgOoJSlX+nFqVFZhCK0d/G8i44XPBhJOTI1OfMJ1g20TPltbSql/wolNWv+YmTiAlPrXromCqMcz1XPARPcRQF27JgohHi9QuMltmDBsfKIQ4rgTJXy4xpXSAw1OfNIeaHITY5bTAwAAAAAAAAAAAAAAoGIIoAYAAABqBiHUAFBPnnpKnzm7Rzes6ZMkGasZD6I2g/uRpBvO9vJB1MnkDO8Vo7kyWt+1QinjlRU8GpjOIbBuN6eU8bS+a4XcqkWgI0APzG7UH/QAgh4wUtEB1IHCIOpDkexQAHXOFN8RQRC1kegBAAAAAAAAIEzR4WDB5b2OtnwzHyJdTgB1YKog6qaMtOVmaXlvwXHByPhBhqiu5Q1LdN/bvqOIcSd8TMxEJwyYDcyJNCo+SRBxxLi6723fIXy2xhRT/7iJqnGccNFCDW6c+tep0UHU44WRNzmJqZ8D3EY1OWP7JNgeAdS1aXQIccrPKO1nRzymJdKk+BT1j5qIWiJNI5al/axSfv7NAeHDtavYHog6k79vizlRegAAAAAAAAAAAAAAAMwMAqgBAACAmkIINQDUkc/s/8FQAHVgJoOoCwOoAzec7ekzJ746Q3vEZPqNp95pBI9WQq+bU7/xQh3DbEYPzG7UH/QA1vYu1pJcvKQA6kAQRC2VHkAdyBpfS3Jxre1dXPK6AAAAAAAAACpkwYLhPx8+rMePkRozYz/XlYoLoA5MFERtbH77jy+X1N8/fEdLS0nDxszoyfbqk8/cqPnRZplxzhwwknLWU9ZO/vlC2s8oa71xzz0wMpofbdYnn7lRPdneygwcFVFM/bPWU2ZUIOloWT9H/etYEETd5DaMCaFuchJFh8Y2R+eMCaK2smpyGwigrmFBCPHS+AIlR/2OtkSalHDjRW0n4cbHhBAns71aGl9A+HCNowcAAAAAAAAAAAAAAEDNIoAaAAAAqDmEUANAncjkMrqt+eVx75upwxsTbfe2E/uUUenhhyhfRr4+efRT8mRnLHR8KkaSJ6tPHv0U9Q8BPTC7UX/QA/Bk1XbsY9oTSavFi5a1jZyxyhm/rABqSWrxotoTSavt2Mfkzdg7UAAAAAAAAACTOuWU/Pd0Wh3HD6j9jyXHSAv7NOID3lICqANjgqhtfruOkdr/WOpYmZYygw943eum81OgAnqyvVr35OfU2fOCsjY35vMDI8nIkWSV9rMTBlFnbU6Hc/2D6zjjbidrc+rseUHrnvwcQcQ1ovj6S31eatL6D/jpwXWof716vPsZNbrxEWHkpQRQB0YHURsZNbpxPd79TMXGisq758Dj2pM+qIhx5cuXlS0pfDgQhBBbWfnyFTGu9qQP6p4Dj8/QyFEp9AAAAAAAAAAAAAAAAKg5BFADAAAANSkS9gAAAMWJRWLa/NjpOv3Mx3UoPnxQwy/hmIuRZKxkTfHB1b6RnIIHH5WSNv9onmJncR2DaorJ0dd2n6qrlj+prMkHf1bz0JYZ/Ira/DhiXMei6uiB2Y36gx6AK6P1XSu0paFTCetKnpR0syVvp9z48BYvqoR15QyOww0tDh0AAAAAAACY5d70JsladSxLqv0ddujz4uA4biWPHQfblPKfG7f/sZV+0avW3fOkZcukZLKCe0MpenJ9Wvfcderse1kpP6Nkrm+cRxV2hFXaz0iOFDXu0COy1lPazwwG19px1stLZnulSJM6k89r3WOf0qaT/07NkabK/2AoSun116T1F/Wvax0HHlD7SzfJWCkiR1l5kqSYEy2YNDXFq4O1Q4+NOVH1+SlJ+e0ZK7X/7nqpv1+tC8+dqR8DZQrqb60/dpJccNtaFdUD4yyzvk/9a1xFeqDgOWD0cnoAAAAAqGOHDw9fVDDgeZLrjv94AAAAAAAAAKgUAqgBAACAmkUINQDUkeV2rrbcvkCnX3pAhxrKC6BW8L2MIOqjBqQtt0a0XEbq7S1x9Jiutt4FUvoUXfW63ys7WMxqHOIaDh41uvWlU9R2YIEk6h8GemB2o/6gB9Da2yKlTlL7imeVMI5kI0pGcjO+35ZcRAnryLFWN207Wa2HWkQPAAAAADXO88IeAQAAmClnn62O5YfVfp439HmxJ2l/U/5ixIG+WP57c2bMFibUExteT8pvb3+TtKhPcjUYRP1OX/p1r1oPH5YefHC6Pw3K0GNTWmf/TZ3aq5SySiotSfJHfWpgB2+bgosK5gOHI4rKUVa+0sqNWWf0Zw++rBxJyVyvpLg6M89p3cOf1CZzmZpNosI/HaZSXv3zf564/vmTSKh//emwz6jd3i1Pvro0IG/wcqSOzFDNEopKmurfiFlJ/lBPOTLyZfPbzSY1Xw1qf/afJPOsWs3qGf6pUKzR9c/JH/psd2z9p+gBLzNU/+BVIyeP+te44nsgp2LOLqAHAAAAgCNcNJr/3tAgLV0qJTi2AwAAAAAAAGAGEEANAAAA1DRCqAGgnixYoOUP9uq+DdKaayTfLX5VY8fetiUct3F96b4N0vJuX1oYkbLZ4ldGxbTtXiTlVumqk56tSgDpiODR51epbf8i5ScfIiz0wOxG/UEPoHXvUVLuRLW//gUlrCPlZjaIuiUXUcJ35Ei66cUT1XrwKNEDAAAAAAAAQHg6ko+q/fwB+YMHh8cLoA6UEkQ9OoA6MG4Q9UVZac4OtYoQwmrzrK82e8eUAcSB8T5JSCunnJyhsNrhx44NIA7kg4jN0P46tVdt9g7dqQ/KNc40fiKUgvqj0Ojw2WxBAHUgqFkxCnuqcDvZwe3PV4Pa7d2SRAhtDZio/mac+rua+vd0dP0N9a95pfRAMegBAAAAYBYZGJC2bZNOOCHskQAAAAAAAADAzCOAGgAAABiBWSAAUE9OOUU9NqVPvkuamypt1dGTjksJoJby+/vku6SeqC81NZW2Miqqbf9S3fr8KkWtGQoHnQljg0eXztCeUCp6YHaj/qAH0HpwkW568UQ5Mkr4jlpyM3N9qeEAajMYQL1oRvYDAAAAAAAAoDie72nDI//fUODsZAHUgb5YPmA64Fjpopfy3wMTBVAHgiBqb/C2L6sN2cfkWX/ilTAjXONovTlDaeWmDCAOWI29oGUpAcSBYD9JpZVWTuvNGQQQV1m59R9tdP0nelwh6l9bJgqfHU9SaeUmuV/SiJ4aTxBC68lXu71bHfaZsseO6Su1/mlNfkHbnHzqX2dK7YHJ7pekjDx6AAAAAJhtrJX27Qt7FAAAAAAAAACONGamkg/KRAA1AAAAMAYzQQCgjvR4/Vr3p9KTS6VDjaWtazU8+diaqScQjnaoMb/fdX8q9biTT07CzCsmgLTYYNLJ1iV4tHYV2wNTmap/6IHaxHMAKvUcMNHj6IHaN9NB1ARQAwAAAAAAALXHdVxtbP6I1hyKyTNTB1AHgiBqx0r/+27ptjvz3x07dQB1oDCIes0BVxtfIYC2FkwVQFxookeOF1Jdif1h5hVbj8lqTP3rTynhs4GUchM+LitffcpOuQ1CaGtDOfXvU3bS+qemCKkOHkf9a0M5PTAwRQ/wHAAAAADMUv39YY8AAAAAAAAAwJGEAGoAAACgLlQ2pQoAMGM831NbcoOeXCrta1LxyZIFCoOoS2by+31yqdT29r26c/8b5ZYzCFRM2+EV0itRXbXyd8qakdM9g/DQYg6JBVUcvX7UOrr1lVPVdvgYKVGZMaOy6IHZjfqDHkBr37HSq1G1H/+MEtYo5ftKO1NPMp5K3HeUsK4cY3TT9tVq7VtKDwAAAAD1JhKRXHf4tjMqILLWTu4DAABFa376RX3toTla82fpkj777YtJF70ktT6Xv936nPSvb5LuXFX8NqyRuhqlr/0mruY3HJJOKm3smD7P+tpgn1RMrhyZkkOBrfKfAQTrljPFwpFRTK422Cd1sU4mjLyKqD+CHiglfDaQVk5SRDG5OkHz9bK6lJGntHIyRZ7/E4TQzlcDPRCCmap/sah/+Ga2B6Z+HqAHAAAAAAAAAAAAAADAuGptjgoB1AAAAMCECKEGgDrhOq4uftrTT9+msgKoK2IwiPriB6zc5Y0hDQKF2vpfL+2M6iPLN8s3+YNgQfBoKUYHkLrW6NadZ6it/3ipoUKDxYygB2Y36g96AK2pldLumK4+5smKBFBLUtrxlbZWt+w6Xa2pY+gBAAAAoB5Fo/kg6kBhIHVwPwAAqEs7n39c573/kLwSDwQbST8+WfrsWunL9+S///jk4i9oGPCMdN4H+rXlNzu1vLQhoAJc4+hm+z6drpvly5ZcP0ly5SgmVxl5ypUQXinl+8WXVU6+btb7CJ6sMuqPwh4oJXw2kFZOb9YyvUOv1y/1oh7UqyVvIyufHggJ9Qc9AAAAAKCiGpkTBAAAAAAAAKACCKAGAAAA6goh1ABQJzK5jD715kPhBVAHjPSp87P68Iu+YmIiSS1otBHN8SPqcrNlBY8GCgNI5/gRNVreJtQLemB2o/6gBwAAAAAAJTGGCcUAANSpTC6jM1f8Qoci+RPkHSv5RRwUNpIGr2OoG94u3XGKtG3e4H02/4BiTrl3Bh90KCGdufZF7fBzijkcS64mz/q6Rj+RK0dROYMBlLa0IHH5SsvKLzG+OP8ZhFFUjlw5ukY/0Z32gwRQVhH1x/g9ULy4InpKe9WrjF5Wl+KKKK1cSdugB8JD/UEPAAAAAKgYY6TFi8MeBYAakc1m9dhjj+mRRx7R5s2btW/fPnV3d+vw4cOaO3eu5s2bp8WLF+vMM8/UOeeco7PPPltRLn4OAAAAAAAkAqgBAACAOsRMMACoE67jKpGVkvGwRyIlcpIbeho2JKmjeZfal3UqYV0lrKeMKW1y0WhGUtw6SlhX7cs6JUmtPcdUYKSYKfTA7Eb9QQ8g6IG4dRS3rtLGm/Y249ZV3Dr0AAAAAHAkMkaaM0eK8BEhAAD1KBaJ6crXluiG43YOLZsqiLowgDoQBFAPPaaIIGpn1J1X/qFJsdW+pMzUA0fFuJLWmzdpi7Nb85RQt1IlBREHrRIEEBsVF0BeGEA8TwlFZLTef5NcW1pwJaaH+mPiHphaXBFF5cjK6iUdkpQPk5UiyiinYi51Sw+Eq/z620nrX2wIMfUP30w9B9ADAAAAwCxhreR5+c+Ljz5aisXCHhGAkL3yyiu6+eab9d3vfleHDh0acZ8tCGwyg2FSmzZtkiQdddRRWr9+vT7+8Y9r5cqV1RswAAAAAACoLQRQAwAAAHWJGeYAUEdO3SftnRP2KPLjUDwmyQl7KLNax5wdal/UKd9IKeNPO3g0kDG+Uo4/HEAajaq199iKbBuVRQ/MbtQf9ABG90AlAqglKW08pRyXHgAAAADqWSQiue7w7WhUamqS4vGRywEAQN25fsdJ0p7duuHs4eOBEwVRjxdAPZHJgqhHB1D/1cNG17+4UDqlxiYQzBKtWiX5Ru3Of5YURDxRtYLlE607NoDY0U3+u9Sqk4vJrEWFlVP/yco0VRA19a89E/fAxILw2fFE5SiqmPqUnXQb9EBtKKf+TZo4VGw4iHzyzxmpf+0opwcaFJE7yXNARFH1TxFETQ8AAAAARwBjhkNhCGMBZjXP8/SlL31JX/ziF5XNZkcETgdMQYjU6PsPHjyoG264QV//+tf1t3/7t/rrv/5ruZyLAgAAAADA7EIANQAAAFC3CKEGgDriWinmSZkQz8uIeZLrS2puFiHU4emIv6L25iflyyhlPCVNVuPP7CnmQNnY9ZJOVrImHz655EmpoVGtaa5OX0vogdmtsvXXmHWpf+3jOQDF9UB5zwESPQAAAADUvURCSqWGbzc0SI2N4Y0HAABUTmOjrv+ZlXLSDW8bXjw6iLqUAOqhdcYJoh4TQP2QdP09kk6M5S90gVC06lTJumq3d2ueGtStgQmDiIuZ6mEGo4jHW3c4gLghHzxp3q1Wd3UlfgyUqfL1z6P+9WPiHhirRXHligipjshRUulx76cHakup9XflKD1JwHBUjhoUof51pNQe8GXlT/LZcUwRReXSAwAAAMCRLhqVHEcaGJC2bZNOOCHsEQEIQVdXl975zndq8+bNQ+HSZorQqPHut9Yqk8no85//vH7yk5/oP//zPzV//vwZGTMAAAAAAKgxBFADAAAAdY30UACoE67j6mNPOlrQnw+CDkPMkxb0Sx97UnJ5CQlNPnTyAfmyg6GTmcF7KnVgLL+dpMkoZTz5smpvfkAd8VcqtH1MFz0wu1F/0AOgBwAAAAAAAIBZrKlJknT9bxz91UMj7woCo8sJoA4YOxxIO34A9eC9sVh5O0DFtJrVusm8W5HBYMionMEw6WFBiHAxzDiPHDeA2BA8WQuoP8brgdFaFFdCxV0wIKGoWhQfs5weqE3UH/QAAAAAgGmxVtq3L+xRAKiygwcP6sILL9QTTzwha62MMUMB09baoa9oNKoFCxbouOOO04IFCxSNRkfcL2loXWutHn/8ca1du1aHDh0K88cDAAAAAADVQAA1AAAAUPdIEAWAOtL6ckzfuFuhBFEHAdTfuFtqfcGt7s4xZLLQSV+SnWb4pB3cDuGTtYsemN2oP+gB0AMAAAAAAAAAAqODqO2YP5TJjt3MXz1YEECNmjE6gNIpiBEuJYB4eJ2RazgyBE/WMOqPyUJoSwmfDYwOoSV8trZRf9ADAAAAAKalvz/sEQCosquvvlqdnZ1jwqcTiYQ+8IEP6Pbbb9dLL72kVCqlffv26ZVXXtG+ffuUSqX08ssv6/bbb9cHPvABNTQ0jAijlqTOzk5dffXVof1sAAAAAACgCgigBgAAAI4IhFADQD2ZM0etz6nqQdQjAqifkxQtbYIKKmOq0Mn8n8oPn7QFaxI+WZvogdmN+oMeAD0AAAAAAAAAQH19I25ef4/RXz04eGxw8Px+a8rPoR5vO/kA6lEPzGSE2hAEUGblyRs6Wlx6APF463nylZVH8GQNK6y/P/ibX04AdaAwiNqXpf51YLwQ2nLCZwNBCC3hs/WB+oMeAAAAAAAAxbjzzjt11113DYVGS/kA6iuvvFLbtm3Txo0bdemll2rlypXjrr9ixQpdeuml2rhxo7Zt26aPfOQjI4KorbW66667dNddd1Xl5wEAAAAAAFVGADUAAABwxIiEPQAAQAmWL5cOHMgHQUu65t3S3jlSmXMHi2Ol+YUB1JLU0DBmcjNmlidfG+b+Xr71B0MnswqmjvujHmsH/z9eWxiNN+HcDgZWjuRLcgrCJ2WjSlhXG2K/18WHFsrlWhZVRQ/MbjNb/5HBswHqX1t4DkClesAZ5/H0AAAAAHAEymbDHgEAAJgp/f1SLDYiBPpvHpB+eKq0o2X4YXbwgHApHyUXBlAHlvfktz+C6/J+owaN/rzHypYVRFy4lelc+BDVV+laUfv6EYTDttu7NU8JOdP8DCehqGJyCZ+tE4X1n6+GskPoAwlFFVdELvWvG/QAAAAAgLI0NoY9AgBVdOONNw792Vor13X1L//yL/rYxz5W8rYWLlyoW2+9Veecc46uueaaoTBqa62+9rWv6f3vf3/Fxg0AAAAAAGoAAdQAAADAEYUQagCoJyeeKG3dKkla+4q0rFfaP2e8IMHKcZTfz9pXChY2NeUnN6NqXEkbt52p80/4L3UmkkPLJ6r9eIfMHCs5MvJl5ZuRj53oEFs+fDL/qKST0YpUizZuO1Ounyr9h8C00AOzWyXq7xbU36P+dYceQCV6IGLNUA/kzOgQkfHRAwAAAAAAAECNyWbzFw0eDKHuiVm9/3JpV/PYh5YSRD1eALWU3+77L5fu+pHUHOReR6OS55X5A6DSOuwzutb+TH0aGQw+fMHC4ieAjHfh0j5lda39mSQRQlmDOuwzard3KypXroxyQzUsP4Q86AFXRlG5ard3S6L+ta7VrFa/zepq3aUGRZRQtOxtpZTVgHK6Re+n7nWiMITYr0CAPOHD9YceAAAAAFASY6TFi8MeBYAq2b17tx588EEZY2StlTFGn/70p8sKoC700Y9+VNu2bdM//uM/Dm37wQcf1O7du3X00UdXaPQAAAAAACBUBFADAAAARxwn7AEAAEpwyilSIqGeuLTuT6U9c6Xm9Mzusjmd38+6P5V64pIcR2oeZwYzZtw9c/ZpTyStqM2/fE8VPl4YKBmED0v5744d+bjJBPuJWkd7ImndM2dfiSNHpZTTA4GJemCy4NEAPVAbplN/d1T9XZ4D6hI9gOn0QMQOh0k7g7eDx9ADAAAAAAAAQB2JRqV4XHLdoQDq+47XiAuQFrJm6mOAEwVQS/nt3nd8Poi6J2bzEwpcN/+F0AUB1AfVr4zGBoPnjwEXN+livABqScrI00H161r7M3XYZ6Y3YFRUEECdk68uDShXUMFSaj+8zsg1crKD2/XVbu+m/jWux6b0fXVKskoqrdSoYPpipZRVUmlJVt9Xp3osFyatF61mtS7Qyops6wKtJHy4DtEDAAAAAIrS0CCtXCnFYmGPBECVPP744/L94TPPFy1apM9//vMV2fbnP/95LS4ItbfW6rHHHqvItgEAAAAAQMgIoAYAAACOSJGwBwAAKMGb3qSeRc1ad15KnUvzkwZ7Z/i8r96YlMhJnUvzQdSbfhxRc0vLzO4UY3iy2jB/mySp2YvoQCRT9LqmIHi0yXfV53hylL/C/ESTyUezg/uVpA3zt+ninmVyVWMHDI9w9MDsVm79rUYGkDd7EfW4uaH6TxRIMd52qH+4pvMcQA8cGabfA/kumJ+LqiuSHbwggU8PAAAAAAAAAPVmwQLJGPUsmKP3v7Nr0gDqgDWSrMY9ojdZAHWgMIj6rp82qllx6fjjpXPPLfOHQCV0HLhf1/7hlzqYG1DGjg2gDgTTLiYr80QB1IGMPB00A7o28kvpDavUuvC/lTNkVFDHgfvV/uKvlbOuunL94/aAHfq/0VRx9JOFkHeZlOZH5qrd/Fp6PfWvRT25Pq179jo9nNytlJ/vhaQyUiSihBOXPE+T9oCJSk5EKT+tZC4jX1YpeXrY2a11Lb/WplV/p+ZIU3V+GJRt495f6Y4XnlGDG8/XPeDnppiEZyR3+AS0lJ/WHd4zetcb3q22JRfN3IBRcRP2gOdr0kscm4jk0AMAAADAEae3V9q/f/h2LCaddJLkOOGNCUAoXnvttaE/G2N0ySWXKFahIPpYLKZLLrlE3/zmN4eW7d69uyLbBgAAAAAAISKAGgAAADhiEUINAHWk57RVWndRUp3z81PDDjRKuRk+/yvn5PezsH8wiLo1p029R6m5QieboDiupI17z9WlR9+v+xv3T/n4QtZIvqyOziTU7EfV42S1O5aaYorpWD1uTv+tf5E27j1Xbixa4tqYLnpgdptO/X0jGWu1Ituk+V5MXX5G26J9RQfPBqh/uOgBTLcHfGu1Kt2sRV5c+720no335HtDU8VODKMHAAAAgDoSiUiuO3ybicQAABw5TjlFPY/8l97/zl7dd/TUAdSB8YKoiwmgDgwFUbemdNfPYmo+6SSpubnEwaNSOnb/Vte+dJMO5g4rY3NFrZOPIh5b8Mnjp4dlbE4Hc4d17Us3SQ2Naj36glKGjArq2P1btb/8DeXkqyvXO2kPBEHU49V++DGT90DG5tSV69X86Fy1v/wN6l9jerK9WvfkP+rhnmeU9PuGlvvylcz1S5Gg9pM84RujlJ9RMtcvvyCoNun36eGeZ7TuD/+oTWd8Sc3ROTP0U2C6Nu78ua76wz8paz1lBuuecAdDiI2Z+gV/cOJgykvn+0bSVX/4J6mhUW3L/3gmh44KmVYPGEMPAAAAAEeqZHL4z7EYnxsDs9ShQ4ckSdZaGWN06qmnVnT7b3rTmyTlA64L9wcAAAAAAOpUrQVQAwAAAKgoQqgBoE54vqe2h/9KnUcb2ayjA3F/xgOoA0NB1ANS51KjNuf3urP7nXLFCWhVZTJSNDLpvMBJVh48YdCVHE+lRU4Ob0LRSH4yuSWEPBT0wOxWUH8zWL/JKhi0iZUGJww6kuPmv5vh+k/VCUaD+6P+4SujB4bupweODNPqARW8DjhDTxIjnism2Q49AAAAANSZhgYpVxBEN/qiglEuLAMAQL3qOeX1ev87D+m+ZdmCmNDiFAZRlxJAHfCNdN8xOb3/PT2663XLRQR1ODp2/1bX/v56HcwklbHZkta1o8KIiw2gDmRsVgczSV37++sliSDiEHTs/q3an/6qcn5OXdnDRffA6NoXLi9GxmbVlT2cD6J++quSqH8tyAdQf04PH3pKSa93zP35IOo+xZyIombiU0XTfkZ9XmpEAHUg6fXq4UNPad2TnyOIukZt3PlzXfXUdcr6uaHf9WQuH0g+FEJchHz4cH49K6usn9NVT10nSYQQ1zh6AAAAAAAATKapqWnE7YULF1Z0+wsWLJh0fwAAAAAAoI7UYgC1LTEXBQAAAMCkSA8FgDrhOq7Wn7ZeprGxqgHUgZwjHWiQTCSi9QMnE0BdZZ58tbXco6cjXWrxSwt9NMq/4O+NDOi1SJ/2RgbkqPQc4xY/pqcjXWpruUdeyVPaMV30wOxWWP/5flxRmcH/xjcUGCvJlZEjo1ejfXolelivRvvkyMgdvN9o4l4IthOV0Xw/Tv1DNFM9EDyOHqh95fVAXmSwB16IJfVMtFsvxJJyZBQZeh6gBwAAAIBZp7Ex7BEAAIAyeL6nSw99s6wA6oA1+TDpUgOoA77yQdSXunfIs16Zo0C5POvpW9v/o6wA6oCVlWuckgOoA0EQ9be2/wc9UGWe9bRhx49LDqAOBDV3jTPidrGCIOqcn9OGHT+m/iGbKoA64MtX2s8qa3Pj3p+1OfV5A+MGUAcKg6h7shPvC9U3Onw4+E+Skrk+pbx0UdsZHT4c/BeEEG/c+fMZ+xkwPfQAAAAAAACYysqVK0fcPnDgQEW3f/DgQUmSHQyEWrFiRUW3DwAAAAAAqoQAagAAAGBWiIQ9AABA8daesFbxxmblModC2X/OkeIZo7V/yEneK6GMYbZyJa0/ar42r9itZDQrIxU9HdRK8q2VI6M+k5Os5MuWNLHcSEqatI7KRrV++3y5h7aX/DNgeuiB2S2o/5YVe+Qbab4XUVckp6zJd0FhLwwHz1o1+q4yxh96RI/JDD04uJSANcNBteNtJ2qN5uciMvLlWFH/kJTbA1E7srqje8CVUc5YeqAOlNcDUsQaFUZJHHJSI3qgwXfV53r0AAAAAHCk6e6WMpnh24cPSz09UiIhHXVU/jsAAKg7nu/p8YNPhX6JOF/S4/0vyrOeXOOGPJrZx5M3YZhstWRtTp4IIK4217i6+dTP6rT7Plh2CHnEuEo4MaX8TFl9lLFZ5aynm0/9LL//ISo2gDpgZZX2s5IjRc3wKaNZm1PazxYVSF4YRL3pjC+pOTpnWj8Dpm+88GFpOGDeyCiZ61OTO/kxgHwQeWpo3dHbCUKIJalt+R/PyM+C8hTbAwknNnQBgvFk/Kz6B8Oq6QEAAAAAAI48Z511liTJDAZJPfXUUxXd/ujtBfsDAAAAAAB1hABqAAAAYNYghBoA6oTne7rw/1yo7T2vqqT02QrbnkjpwlWP6dHOs+WqBg8iHcHWHpqnpcfEtTeWD49xpEknmBeGSfpGkrVD6/hm5OMma6dgClLWWC3NxrX20DzJY0JxGMrpgaC2E/XAeKGjo9EDtaF1/0LJP0ntJzwvX9L8XERdkawyZvzqteQispIyk8z9dmTUlHPVExl/gvlQ8KzN98FNL5+k1oMLJUIFQlFODww4vrwJ7pck1xo1ea6S9EBdmKgHsmZkNEDw3D7Hc5VyJo+jiVtHkZxRMpIb855gRAA1PQAAAADUF2dUsJC1wyfg1eLJgQAAoCixSExXnnalvv7o10P7vFiSZKQrl79PMScW4iBmr4OZ7qICYyeTs9M7xmtldTDTPa1toHSe9fTRp76gw15/2dvI2pysb6fVA4e9fn30qS/op2f/M0HUISg1gDowOoi6lADqAEHUtWOi8OFAYQhxnzegmBMdEUAeCPrAyEy6HUKIa08pPTDgpxWnBwAAAAAAmLWOPvpovfWtb9Ujjzwia63+4z/+Q1//+tcVi03/c55MJqN///d/Hwq4Puuss7Rs2bJpbxcAAAAAAFRRLc4xIYAaAAAAmDGEUANAHTEy8u3kQYIzzZdkXFdqaZEIoa4aT1Ztxz+kPfGsWryokm5W0uQB0qPv803+9ujHT7WNQIsX1Z54Vm2nPKc7t7+NEPIqowcgSa25FmlPo9qXdcqXVYsX1f5IZsRjrKRG31VCEQ2YqSePJ+Qq61v1OWMf2+JFZYwjxxjd9NoateaOkVoq9dOgHKX3QGb8DQ0xSiiiDD1QN0b3wHwvpkNuZkQYuZU0z4sqIqPUVMEBxihhXckz6h58bQlErNF8LyZjDD0AAAAA1JtUauSJgM3Ng8d0JR0+nL8fAADUHc/39FLXS4qYiHJ2/IsLVkNEjl7q3ynPegTQhsCpkb/zWhnHbLM/062sP73f/+mGkGf9nPYTQh4Kz3pq2/J3JQdQB4Ig6pzx5Fm/rED7IIi6bcvf6c6zbuB1IARThQ8HhkOINSKAPBCEDwePnWo7hBDXjlJ7QKIHAAAAAACY7T71qU/pkksukTFGBw4c0P/6X/9LX/ziF6e93X/4h3/Q/v37JUnGGH3605+e9jYBAAAAAEAVEUANAAAAzDqEUANAnXAdV28/7u16YvcTYQ9Fb+9bQPhslbkyWt+1QlsaOgeDIqVuNzvpdEBfY2PCx3v8ZLHmwePneVElrCtncBzUv/rK7YHR6IH619pzjCTp2mVbJ+yBfsdTzDpFbS9lPPWPEz5sle+xBV48Hzw7uF+Ejx5AUIv2ZZ3KlREOUAqr/GsQPQAAAAAcYQYGwh4BAAAog+u4yuQy+QDqya4yOsNy8pU53C33hRfDGcAs5ko6yy7TZj0b9lB0ll1GD1RZrdTfylL/kLiSlqdiZQVQB6ysPOtN6yUk6fVqeSpGD4RgY88Dumrfd5S13iSRwcNGhhBnJFlFjaus9ZRWED48NTt4yfOsn9VVnf9L2v2a2prPLffHwDSU2wP5MHJ6AAAAAJhV+vqkdHr4djQqJZNSY2P+zwBmlT/5kz9Ra2urOjo6ZIzRV77yFa1YsUIf/ehHy97mrbfeqi9/+csyg2FV73//+3XJJZdUasgAAAAAAGCmEUANAAAAzEqEUANAncjkMvrh738oxzjy/ckiY2eWI+mH83bqK3vepJiKC7dEZRQGTkZtcQfzKnV4LWqNHAIoQ1dOD0yl2B6hB2rL2t7FWpSLaXckNe79QXhwg+9Ouh1fVkl34gjbjLFalItpbe/i6Q0YFVdsD0SmeK7wZCcNtKcHaldrzzHqNzldtfxJ5czYCibdrOb4xf2TP2U8Jd3smOU5k++PW3eewXM/AAAAUG9Gnww4+kQ8b+zFiAAAQO3rTfXqVy//KtxBDL7N+NXA79T7h6c1x0mEO55ZZsDPaIPuDXsYkqQNPffqaz1vVYMTC3soswb1R6V6oBLnktAD1Zfxc/qkvqesigsfDgSPM5LSyqrBuuotIXx45HasstbTJ/d+T3+2d5FiDqcgV1O5PSDl60cPAAAAALNcNCq99lr+s+TFi6Wjjgp7RACq7Pvf/77e+c536oEHHpDnefr4xz+uRx99VF/+8pe1cOHCordz8OBBffazn9WGDRtkB89HOffcc/X9739/poYOAAAAAAAqjQBqAAAAYNYiPRQA6kQsEtPmP9+sJhMPdRxNnqvNL15IAHVIWnuO0ef3rNL+SKZiAdNTsZL2RzL6/J5VBFDWAHoAPU5Wlx73iJ6P92qyQ/tW0oDjyZ+gU3xZeWbyCYVG0vPxXl163CPqccYG1CIcpfRA1thJeyDjTHRvHj1Qu3qcrL4/f4cafFejL09iB796ndyE9Q+kja/kYBD56Ef6khp8V9+fv4P6AwAAAPVm9Ml3o08QjEarNxYAAFAxcxJz9PEzPz68IMQ5AB/XWQRQh6DBiekanRX2MCRJ1+gswmerjPqDHpjdYk5EX9O7FJEp63wRKymuiHLyFVek7G1EZPQ1vYvw4RDQAwAAAAAqwlpp716ptzfskQCosoaGBv3617/WtddeK2OMrLX67ne/qxUrVqitrU233367Xn755XHXfeWVV3THHXfoiiuu0PHHHz8UQO04jq699lrdc889amxsrPJPBAAAAAAAykIANQAAADCrcQYwANSRx3c9rkTa0+EQn70TKU+PN3ZpeQ8nhoRhZ6Rff33076sWPhywkv766N/rj3uXaHmO2oeJHpjdgvDh+5sOKGumipbN180zkqyVU5BEEQRQTyUfYuzr/qYDuvS4R/Tvr56jZp+QqjCV2gMSPXAk6nGyWnfco9qa6NaA48lobIB0cDtnrCJWI+of8GXV5+TGDaCW8vk1A46nrYlurTvuUW169S3UHwAAADgSOI40Z07YowAAAGX68kVf1k//8FPt6NmRXzDeAcKZMniY8Vi16MvmoirtFKP9g7lQd9pntV3J0MZwvFr0D+bC0PY/m1F/0AOz2/vMSTrZLtJT2hvaGE7WIr3PnBTa/mc7egAAAABAxRw4EPYIAFTRCSecMOJ2LBZTJpORtVb9/f360Y9+pB/96EeSpEgkorlz56qpqUl9fX06fPiwcrnc0Lp2MBTKGKNYLKaf/exn+tnPflbSeIwxeumll6b5UwEAAAAAgJIRQA0AAADMeoRQA0Cd8HxP33rof6vHZORYyQ/huI5jpZ6E9K3mF3VxzzK544QZYubsjPTrtDfco4NuJpT9H3QzOu0N92jrH9YSQhwSemB2Gx0+7JewbmEIcbHhwwFfhBDXCnoA0sgA6i43q6zxh96RlRJE7csqZ+yE+TRm8CtrfHW5WYKoAQAAgCOF60rz5+e/AwCAuuP5ntr+o005P6eGSIMGcgP5O6oRRD14eLFBEeXkq83+u+40H5RrnBneMQp5Nv93n5GvBkU0oNzUK1VYgyLK0AOhoP4o7IFGRdQfQg800gOhCeq/X/1qUVxJpUta30hKK6ecHHnyy3r70KK49quf+oeEHgAAAAAwLaPDZVKpcMYBIBTbtm2TMUbWWpnB54PRfw5ks1kdOnRIhw4dGndbheuk02lt3759xPrFMLUYeFVHPM/TU089peeee0579uxRX1+f4vG4mpubtWLFCp144olauXJl2MMEAAAAANSaWvz3OAHUAAAAQNURQg0AdcQkk0N/rnYQtVNw3MYYSYsXSWISSbVklNMZC3+mg0444cOBg25GZ5z4W+088N8V421EVdEDs5snX+vm3a37YweUlS0pfHhoGyYfOlvOYfh8CLHV/XMOaN3rt+in3e+Wy2tAVdEDkKQek9G6ll9qa+SwupyssrIKkl/yE4Qnrm7OWEWkoSDy3OBjJ1rDFARWZ41VVySrrY2Hte71W7Qp+Q4121hlfigAAAAAM6OnZ+TtxkZpwQIpGpUc/j0HAEC9ch1X609br82vbZZvyzlSPH3+4FHF9eb0/EWLmQBQVa6M1pvT9YTdpVQI4bOSlFJOVpYeCAH1R9ADT9rX5M341QfG5yl/kVN6oPoK659SruQA4eCTRW/w0+ZSK2eUfw5oUoz6h4QeAAAAADAto9+/R6PhjANAqArDnyf683S3NZVSA6sx7Le//a2+/e1v6+6771bP6HODRlm4cKHe9ra36d3vfrf+9E//VAsWLKjSKAEAAAAANYkAagAAAACDSA4EgDrhOq7+/PBJeirdqYNxX1mnekHUQQB11JcWpIz+fNfRck89ZuZ3jCGu9TXXNmi/UmEPRXPdBrlLj5EMYTXVRA/MctbXfpsbDB8u/2D6dA7D+7LKStofz0lLj6b+1UYPzHqe9dVmf6Ct6lKX0oMB1MOKiRfPycqRiuohKzsyiFpWXW5aW90utS2+X3eaD8qlBwAAAIDatW+f5HnDtxsapHg8vPEAAICKWXvCWi2ds1R7+/bKMU4+jLoa5+FbyTFGWflaqjlaqxOqsFOM5yx7jPqUCSl+Nt9ufcroLHuMVIPzUo501B9rdYKWqEl71Dt08dFqcZR/HViiJl4HQlJYfyNT8iWIgxDicrrGUP+aQA8AAAAAqJi5c8MeAYAqI/y5fj377LO65ppr9F//9V9Fr3PgwAH9+Mc/1o9//GM1NTXpiiuumMERAgAAAABqGgHUAAAAAAoQQj0Nr7zyijZv3qznn39eyWRSyWRS2Wy27O0ZY3TrrbdWcIQAjjStz/jSjhZ94tzkUBB1tQQB1P9yT1ytWSudWr19Q3KNo3+wF+pD+o+qTiAczZHRP+hCQidDQA/Mbq5x9P/at+lKdYRe//9Xb6P+IaAH4BpHl9tT9Su9pKz8EffZEqYWF9s/dvD/I4OofXVpQJfrVHoAAAAAAAAACIHne2r7jzbt6d2jlniLulPd1QmgHmSt1TyT0B71qs3eoTvFxeqqLePndKa+qT5lyw6QnC4jqU9Znalvaof/l4o5nH5WLdQf+YuW3qE96lOL4uqq8kWsfVnNV0J71MfrQAgqVf9ynzuof/hG90B3lXvAymoePQAAAAAcGRoapIULwx4FgCr68Ic/HPYQUKbvfe97+vjHP66BgYGwhwIAAAAAqEcEUAMAAAAYhVkgJTp8+LBuvvlm3XrrrXrxxRcrtl1rLSHUAKZ28KBatyUkSf/3uUntbfSnWKEyrJHmBwHUL0alRf1V2S+GedbXj/S7UCYRFmpRXD/S73S5JXyy2uiB2S2o/1zF1K1UaBPK5ypG/UNCDyDogUZFlVR6aHkpAdSlGi+IulFRegAAAAAAAAAIieu4Wn/aem3ZvUVRNxrKifhRReQYR+tj58iNNFV9/7NdTNKV6bN0Q+6/wh6KroycpVh8btjDmFWoP1xJ63PnaEvmLkVspOph5EZShNeB0FB/FPZAzEblKqOcqnP+YH7/jmKK0gMAAABAvchmR96ORKSmpvzXUUfVZvgMgBnz3e9+N+whoAw33nijPvnJT45ZbozR6aefrosuukjHHHOMFi9erFwup66uLj333HPaunWrHn30UeVyuRBGDQAAAACoGbV4DJAAagAAACB0hFCX4Je//KWuvvpq7dq1S7aC/6AxtfgPNgC1afAksLW7YmrIVW8ikZXUkJPWvjr4suF5VdozAq5xtF5naIvdIyur7oLwyWqZp7gaFdN6cwahkyGgB2a3Wqh/C/UPVWEPSKp6ELWRNE8JeiBEo3sgqfSMBlAHCoOoeR4AAAAAAAAAwte6qlUH+g/oYz/9WNUvWGgl7VefvvXGz6n1+NYq7x2B63WBep76sr756h2h7N9K+thxl+r6N302lP3PdtQfrbpAB7Yfq4/97kuhvA4c4HUgVNQfrbpA/TvfoKueuk6+LxmZKnxqnN+PL6nbSevWN/2dWpf/8YzvEwAAAMA09fRIu3YN347FpOOOC288AICS/PCHP9Rf/uVfjll+2WWX6ctf/rJWrlw56fo9PT26++67dcstt8hxOPcfAAAAAFADCKAGAAAAagKfHBXpJz/5id73vvcNBVAbYyr2BQBFi0bVE/V1/vsOavtcX6ZKx1eMlbY3W51/Wb96YlZy3ersGCO0mtW6XhdpQDlV+9XDSBpQTtfrIrWa1VXeOwL0wOxG/dFqVusm8241KqZGRau670ZF1aiYbjLvpgdCVNgDDYpU94IkitADAAAAAAAAQA3Y2bNTn7vnc+GdjG+tPvfcv2jnwN5w9g/tHNirO3b/uuqfFwWMpDt2/5oeCAn1x86Bvfrcc98IdQyfe+4b9EBIqD96sr36/q6fq9FNhLL/Rjeh7+/6uXqyvaHsHwAAAAAAYDZ44YUX9Od//ueyBZ8HRqNR/du//Zs2bdo0ZQC1JDU3N+vyyy/Xr3/9a33gAx+YyeECAAAAAGpRrWWaEUANAAAA1IxI2AOoBzt37tTll1+ubDY7Iji68AO8pqYmtbS0KBqtbhgcgNmlZ1Gzzj/5oDoX5PILqnXMx0iyUuciX+df1q97H46ruUq7xrAem9L31amIXKXlVXXfVlJErr6vTr3PnqRmE85EptmOHpjdqD+kfAjxI3anbtCDwcvzjAtCyK/VmwgfrgH0AAAAAAAAADB7ZXIZnfntM3Vo4GD+4GAYcwSsdCjTozP/64PaserbijmxEAYxe2X8jM589s91KNcjIyNbtcsVDjMyOpRN0gMhGF1/VbkDjKh/2Eb2gKQqPw+Ywc6jB8JB/eFZT23bvqzO/peUkCvrNKjb76vKvq2sWpxGJayrzq5n1fbwX+nOFZ+Va9yq7B8AAABAGXp7pb0FFxGKRqWmJmnOnPwXAKBmXXPNNertHXkRsB/+8Ie69NJLy9qeqbXgMQAAAADAzKq1fwcSQA0AAADUFEKoi/D3f//3GhgYGBE+bYzRZZddpiuuuEJnn322Fi9eHPIoARzpPN/T2pMfVaefD6C2pjqhg9LgfoxkBoOo117wqh45nJQrp0ojgCdfbfE79ai7UwPKVi10MpAPn8zqUe1QW26T7kz/CfWvMnpgdqP+CHS4L2hjbKtaFFPSZDTT4QJBmECLjWmjtuqc1AK1eifO4B4xFXoAAAAAQFHS6bBHAAAAZkAsEtOVa67UVx/8imxIcwTy+7W6sulcxfozkjLhDGSWikm6sulc3ZC8O5QAail/VNrI0AMhKKy/VN3PC4P9BU891D8cY3ugul0Q/P5L9EAYqD9cSesb3q4tfS8pZ30N+OmqXZTCyGjATyuuiCLG0fqGt8vtG5jx/QIAAACYhr4+qb9/+HY0KnV15b+am6Vly8IbGwBgQj/96U/1m9/8ZsSyD33oQ2UHUAMAAAAAZhkCqAEAAABMgRDqKWSzWd1+++0jAqgXLFigO++8U29/+9tDHh2A2cY2NEh91Q2gHtq3NBREbR1XOnxYIoC0alxJq+1c3d0U7uStpDJanZort7cv1HHMRvTA7Da6/mYwhroarwVBAK1E/cPWEX9F7c0PyLdWCbmSjSrpZDVTvTAUPuxHlZArX77ao7+WBlJqTa+cgT1iKvQAAAAAAAAAgHMaT1TEl7IhflQb8aVzvKXhDWCWu37h5Xo6s0s/G9gayv6tpHc3rNH1Cy8PZf+z3fULL1fa5vT1nl+Esn9fVv+j+Z3UP0T0wOxG/dE6583q99O6av8tysobujjAzF+4WMrKU7ffp1sXXa3WOW+ewT0CAAAAmHE9PVJDQ9ijAACM4/rrrx9xOx6P64YbbghpNAAAAACAukIANQAAAIAikB46hYceekh9ffmQPWutjDH693//dwKoAVSd67j6zWU/0/GHnaoHUAespOOT0m/2/7FcXkKqypOvZyJdavGjslUKni1klY+3bPGjeibSJU9+lUcAemB2K6x/wAxFQ8+cwgBqSdQ/RJ58bWh4Tn7Bb39CEbX40RnphZHhw8PXLvJltaHhOXogBPQAAAAAAAAAAM/39Kn7/jbUAGopH4D9qeQd8izHCcOw8fBD+uXA70Idwy8HfqeNhx8KdQyzVY8/oPtSz4U6hvtSz6nHHwh1DLNZjz+g57O7FS/4/Kaa4oro+exueiAkQf2bTDyU/TeZOPUPWY8/oO/3PqRGJ98DVjMbQD16H41OXN/vfYgeAAAAAI4E3d1hjwBAjenp6dHLL7+sxx9/XPfdd5/uu+++sIc06zz//PN64IEHRix773vfq0WLFoU0IgAAAABA3SCAGgAAAECRwpmJUEdefvnloT8bY7R27Vqdd955IY4IwGx2z8AzSjXGFPFTyoUwsTjiS6mYo3vmd6s1Pb/6A5jFXDnamFyr84+6S1udg6GNY4U/VxuTawkhDwE9MLsF9V8371d6NLJXSScrKQiInplQ8vECqN+SW0L9Q1LYA52R4eeAhCKSL3U7mYrvc3T4sCStyS2gB0IyVQ8knWxFnw3GC6CW6AEAAAAAAAAgTJ7vqTuTDHsYkqRuv0/ewQNyHU49qqaMn9O1ye8qKy/UcWTl6dp939WfpV+vGD1QNZ71deHhr2mrtyPUcWzNbNeFr16nR+d+Uq7h84Jq8qyvtr5b9Gj25dCeB7Ly9OjAH9S28+u6s+lqeqCKgvp35naoWXHl5CmtXNX2H1dEzYqrM7WN+oeksAcScpVRVH2q/LkC47GyalRMCevSAwAAAEC96O+XenqGb8diI+/PVOffEwBq209/+lN1dHTo3nvv1bZt20bcZ4xRLjfx8adnnnlGqVRq6PZxxx2nhQsXztRQZ4Xbb799zLIPfOADIYwEAAAAAFBXCKAGAAAAUAJmAU3hwIEDkiRrrYwxesc73hHyiOrT/v379fjjj+ull15ST0+PotGoFixYoNWrV+vNb36zotFo2EOsea+++qp+97vfadu2berp6ZG1VnPmzNGyZcv0ute9TqtXr1Y8Hg97mJhBnu9pw9YNUmOjFnSndTBhqxpEHfGlBQOS4lFtiL2gi81JhA9W2T3RndrrphSTq4y8GQmdnYiRFJOrvW5K98zZp9bs66u4dwTogdmtWQltGniv1jXdrUfNHiVN9U78bbExvcVfqk0D71Yz7zdCU9gDne6Bgntm6IMhY0Zse423kB4I2UQ9kFBUGeurz1RuknmDdZUwI/+dRg8AAAAAdSQel7LZ4duuG95YAABAxbiOq2UDMR1MDIQ9FC077MiNHZYIHqwq1/o6SgkllZr6wTPsKCXk9tADVWV9ddveqn5OPO4wJHV7vVIySf2rzJW02p+vu5WSH1In+LJKKqXV2fn55wBUjStpvT1VW+wO9StT9SDyrDylbEaNiml97lTqH4LRPTCg7OCly2eekTSgrGLWoQcAAACAejEwIPX2Dt9OJEbeb23+q9YCagBUxd13363PfvazevrppyXl50+X6pvf/Ka+8Y1vDN3+wAc+oO9///sVG+Ns9Ktf/WrMsnPOOSeEkQAAAAAA6katHd8jgBoAAACoeYRQT2H0h6fHHntsSCOpT3fccYe+/vWv68EHH5zwg+i5c+fqsssu06c//WmdeOKJVR7hWNZa/eEPf9DmzZv1xBNP6IknntCWLVt0+PDIE+Y//OEP67bbbpvRsezcuVPf/va39cMf/lAvvvjipI+NxWI67bTT9I53vEOXXHKJTj/99BkdG6rPdVxtvGSj1v3bZeo8/BstSOVKDqI2koyVrClt8knElxb0S44xWnMoro1PtsjNPVjqj4Bp8GS14ayXZN2M5suoK2qUcWzVJhHFfKP5WSOrjDYcvl8XP/6a3JkKPcW46AFIUrOkTZH5Wndmlx6dl1N3dObCyO3g/+dlXb2lO65Nm+erOffYDO0NxSrsgc7mAaUcf0b6wErqNmnNy+aU8B2t6WmgB2rE6B6QpJTjayBa2UnmAyanWNYq4effbNIDAAAAQJ0ZGJC8gn8n7N+f/zr2WGnZMikWC29sAABgWuI5P+whSJLitTGMWelELdAr6g57GDpRC8Iewqz0eh2ll9Wt6nxSPD4jo9frqND2P5t51tcz+v/Zu/P4uMq6//+v65yZydI0SfdS1rJThLIUiyxS5IssKhhBym1ZFNxQq9+vP71xBRS3G1FvQURRCgpFimhB2QRKQXYolCJLqZZCS0v3LE2TzHau3x+TM5lJJpklk5lJ8n76KOmcnHOdK16fTpJznet9NhPEJUzxHk6aryAur7GZuPVwFUReUk1mBs/Yd7ia8ty31UqYzzCLJjOjLOeXvjVQqu8GlsT9Q6oBERERERERkeHNWsu3vvUtrrrqquRrANMrsCqXUOqvfvWrXH/99cS770+566672LFjB2PHji1yr0eHeDzOs88+m7Zt4sSJ7LrrrsnXra2t3Hrrrdx33328/PLLbN68mWAwyMSJE9lll114//vfzwc/+EFOPPFEHEfXbkVEREREREY8BVCLiIiIiEgBFEKdxeTJk9Nex2LlW7wxnKxfv5558+bx2GOPZd13x44d3Hjjjdxyyy185zvf4Tvf+U6fSeuh9te//pVnnnmGZcuW8eKLL9La2lrS8/fW1dXFFVdcwS9/+Uu6urpyOiYSifDcc8/x3HPP8fTTT/Pwww8PcS+lHOqr6ll0zh3M/c1JrFj/ImOiltaq3I71A6jxP+YRRD0mAg4ws6WKRc9OpT4Wzr/zMigusPDJKcw9Zj0rGsOMizhsropjS/B2aSyMizgYYGZLiIVPTcGNdQ79iSWNakB89cCix6cy58S3WT6uuKGzvVlgr/YAix7Xe38lSa2Bl8ZFhzSIvCUY57Bm1UCl8Wtg7jHreXZ8J61Br+A6MGT+mdACrcE4RCyzt9ew6CnVgIiIiIjIsBKJpIdQOw5s2pT4s/fecMQR5eubiIiIFMx1XI7dPpZldTuy7zzEjt0Ywp2sxeul5hqHA+0k/sHqcneFA5mk8NkSq5Txt1iNf5m4xmEfO557WFXWfoSJsQ/jVQNlsNi+xkJeZixVtJLbfYXF4mFpoJqFvMzRdjeFEJeJakBEREREREREBuOSSy7hd7/7HdZajDEYY7DWpoVO57q2d6+99uLDH/4wd999NwCdnZ387W9/Y968eUPS95Fu1apVhMPp9+vvt99+yb/fcMMNfO1rX2PHjvR5wkgkws6dO3n77bd55plnuOqqqzj44IP5/ve/z8c+9rGS9F1ERERERETKQAHUIiIiIiJSIIVQZ3HIIYcAPROnGzduLGd3hoVVq1YxZ84c3n333byOi0QiXHbZZbz++uvccsstuK47RD3s66KLLip78LRvzZo1fOQjH+HVV18td1ekQtVX1bPo80uYc+W+rHC34FjwslwbSg2gTm7LMYjasbCjCvbe4bDo2T2oj5Xu36akq4+5LHpqV+Yes57HJ3ZkHfdi8QzsCHgcv7WWRU/tqhooI9WA+JZM2clbY6IlOddbY6IsmbKTpvX1JTmf5MavgaGejrGoBipVfczlvLfqWTq5A0vmn+n6C5juvQ8Z9vNfdwQs571Vr/d+EREREZGRZP162LKl3L0QERGRAkRiEf60S25zxEPJsfCnfTq4yosRcnTrUSlFvBh/4l84GAp/POHgORj+xL+4yvugaqCENP6iGhjd4tZjgX2RGB47iZSlDzuJUE2ABfZFzuBABZGXmGpARERERERERAbj17/+NTfccENa+DTASSedxIc+9CGmT5/O1772Nd58882c2zznnHO4++67k+uvH3roIYVQFyjT/+8NDQ2Ew2HOPvts7rnnnpzbevXVVznrrLP4zGc+w3XXXUcwGCxmVwfluuuu49e//vWQn2f16vI/0FVERERERGTIKIBaREREREQGQSsAsjjiiCOYMmUKmzdvBuCf//wn/9//9/+VuVeVa9u2bZx88skZA6iPPPJIzjzzTKZPn05nZyerVq3itttuY8OGDWn7/elPf2Ly5Mn87//+b4l6XTneeOMNTjjhBDZt2tTnc1OmTOH000/noIMOYvLkydTW1tLS0sK6det4+eWXefLJJ9m6dWsZei3lsOTNJWxqdAm2GaLGDrjIOFMAdfJzWYKone5PBD3YVOewZGonTRsUQFlO9Z7DAW1VPDB1Z0nPuzNgOaCtinovCFo7VFaqAVk8rY1Pz9pIa9DLKWB2MAzQGvT49FEbwTj6HlAhVAMCiTq4dOYWauKGsNO3Cgy5hVD7+5JhXwvUxA2XztxCrRfQ+IuIiIiIDCfGgJNyEcdxIBCAUCjxcdWq8vVNREREChYKhHjhrVOYsec97AiVrx9jIvDCkn0JnaHbjkot5AR41PsUh3BdWfthgEf5lMJnS0zjL6qB0c01DtfbjzCDa4nhlaUPMTw6iHA9H1H4cBmoBkRERERERESkUM3NzXzrW99KhkVba9ltt924/fbbOeaYY5L7XXHFFXm1+5GPfIRQKEQ0GsVay5IlS4rZ7VEl05rsuro6zj///D4B1MYYJk+ezPjx42lpaWHTpk14Xt/rRb/73e/YsGEDf/vb33CcyriWs2XLFl577bVyd0NERERERGT4UgC1iIiIiIgMklYBZGGM4bOf/SxXXnklAEuWLGHTpk1MmTKlzD2rTJ/97GdZu3Zt2raxY8dy6623csYZZ/TZ/0c/+hE/+tGP+kxO//KXv+SUU07htNNOG8ruZjVhwgSOPPJIxo0bx6JFi4b0XJs3b+aDH/xgnwDq/fbbj5/97Gd8+MMfTk7yZ+J5Hs899xy33HILGzduHNK+Snktfn0x8++fjzWGcXUT2d6+lUiG4EEYOIA6uc8AQdSegVAcxkUcLJb5h22ASJimtWMG+2VIgS49YjvX7N9alnNfs/92qiJx/ufF8WU5vySoBka3xXvs5NNHbqUl6GEHeIhAsVgAAy3BOJ8+cr2+B1QA1YBAog7mH7aNDtfSFvD6PJAk+TNgrvOItnvXXjXlWGgLeBiLfg4UERERERluolGIx3teV1VBbW3P69byXF8SERGRwXt+d5cxYWgPgi3DWgJjEyHUz+/usJvrlr4Do1zcepzv/RVvyGcIBuZhOZ+/8qxziQIoS0jjL6qB0S1uPT7q/YmdRMvaj51E+Sh/0viXgWpARERERETy4rp9H1wsIqPW1VdfTVtbG8YYrLVMmTKFp59+ml133XVQ7dbV1XHIIYfw4osvArBhwwa2bt3KxIkTi9HtUaW5ubnPtnvvvZfOzs7k6wkTJvDtb3+buXPnMm3atOT2rVu3snjxYr73ve+xfv36Pm1cccUVfP/73x+6zouIiIiIiEhpKIBaRERERESKQCHUOfja177GggUL2LBhA52dnXzjG9/gpptuKne3Ks5DDz3EX//617RtoVCIRx55hFmzZmU8JhgMcvnll9PY2Mj//b//N+1zX/7yl3n99dcJBEpTpg0NDRxxxBHMmjWLo446ilmzZjF9+nQAHn300SENobbWcv755/cJ8D7nnHO45ZZbCIVCWdtwHIejjz6ao48+Gqtf0kcsP4Das32fTD2kbOI/HjD/qK0QidL0VnVp+yBc+t42fvqenWVbSmiBn76nFWIx/ue5+jL1YnRTDYxui/fq4tPva6ElZEsSPuxLhhCHPD79vi36HlBGqgGBRB3MP6qVDtfSGkxUgddrztAfs3yCqDPVlGcSQdStQQ+s0c+BIiIiIiLDSTwOXsp15GivcCIFRoqIiAxLcS/OgtArmBiMDUNbGS7VjQ0n1jEs2LOZM3bfTcGDpWY9zDtVmIjBljGE1mAwoSrYbQ9QDZSOxl9UA6Nb9/gTSYxBOWrAdE8+avzLRDUgIiIiIiL52LkTUtejBYPpnw8EKi+0RkSGzB133JEMoDbG8Jvf/GbQAdS+I488khdeeCH5euXKlRx33HFFaXs0CYfDfbalBlAfdthhPPDAA0yZMqXPfhMnTuQzn/kM5557LmeeeSZLly5N+/wPfvADzj33XGbMmFH8jouIiIiIiEhpVNq1PGVbiYiIiIgMW7r7Nwdjx47ltttuI9h9s8Uf//hHfvzjH5e5V5Xnyiuv7LPt8ssv7zeAOtVXvvIVTj755LRt//nPf7jtttuK1r+BLF++nObmZh555BGuuuoqPv7xjycDqEvhlltu4cEHH0zb1tTUxG233ZZTAHVvptIuHEhRxL04C15akAygtl6c5vatxIztN1vQkggUTFUV77XPACGWBog50FzlJffxDCw4sIO40QWhUoo4Hr+d0VHGJYQJFvjtjA4iTomD0EU1MMrFjeVHh7eXPHzY538/aQkl+qHvAaWnGhDoDqA+tpWOgKU1lDmA2pfp58D+DFRTfvutIUtHwDL/2FYW79WVV79FRERERKTCGAO1teXuhYiIiBTAdVwWdpzGpJ3lCaCGxHkn7YSF/zlUAdRl4BqHJbt+k4nO2LL2Y6IzliW7flM1UGIaf/FrYM/AxLL2Y8/ARNVAGaSOf7lCyC1W419GqgERERERESmqMWPK3QMRKZG33nqL1atXJ18fcMABnHnmmUVrf//99097vWbNmqK1PZrYAcK7Jk+ezIMPPpgxgDrV2LFjueeee/qMibWWn/zkJ0Xpp4iIiIiIiJRBpeVIKYBaRERERGRY0x3AOTr++OO58847qaqqwlrLd77zHc455xxNiHZ79dVXefzxx9O2TZw4ka997Ws5t5Ep2Pv6668fdN9yMX369LIFN4fDYb75zW+mbZswYQI33HADruuWpU9SmVzHZeHHFjJz6kwsluad24ia7EGUqQGEDWFo7Ep8hIEDB1OPjfpB1AZmbguycEkjbq6phlIUrjXM2hzoN3C8VAwwa3NA418GqgGZ0GVwbOnDh30WcGyiH1IexaiBwWRHqwbKK24sCw7syCmA2pdpuB3bd59sZdE7iFoPJBERERERGcYcB+rqKu8mRBEREcnZ31uf543yZo/yxkT4e2B19h1lSPxw+91s9XaUtQ9bvR38cPvdZe3DaKXxlyUdr9LlRQmU6dbPAA5dXpQlHa+W5fyjncZfVAMiIiIiIlIUrguTJ5e7FyJSIi+99FLy78YYTj311KK239jYmPa6ra2tqO2PFsFgsN/PXXXVVUyaNCmndmpra/n1r3/dZ/uf/vQnduwo7/yCiIiIiIiIFEBrP0REREREpMgC5e7AcPDPf/4TgPr6en784x/zzW9+k66uLv7yl7+wePFiPvCBD3DCCSew3377MX78+AEn+7J5//vfX6xul9Ttt9/eZ9unPvUpQqFQzm0ceeSRHHnkkbzwwgvJbc888wxr1qxh+vTpRelnJbr11lvZsGFD2rbLLruMiRPLvGpUKlJ9VT2/+8jvOPzag4naeNYQaZ8FaqNQHUu8ro5BxIGdOfwTtQDdQdQxB373ynTqG3P/ty3F4QKf2hjkn9PWES3jIyQCHnxq41TciePK14lRSjUwurnA+ZuCLN11XVn74QDnb5qi8S+DYtSA6yXG0LMQL/B9RDVQPi5w7uYgD+32DhjwCmgj4IGDwbOWWHcN5Bol7ZnE+HcE4dzNk1UDIiIiIiKVbsuW9NehENTWQjCYCKIWERGRYSkSi/DVyS8SdRIPnMv2oLqh4NjE3PFXD3iLj7/5H0KObj0qpYgX42b7KNB9vbcMjy91uh+be3Pro1zZNks1UEIaf4lbjwXeA0CcCdSymfaSVoEBJlALXpwFmx7gjC3jcY1+xywVjb/0roEt7Czp9wIHoxoQERERERlOOjuhubnndSCQmCueMAEOOijxWkRGhS3d95BYazHGcPDBBxe1/YaGBiARcA0o6LhAY8aMybh94sSJ/Nd//VdebZ100kkcdNBBvP7668ltsViMJ598sugh5PmaNGkSM2bMGPLzrF69mnA4POTnERERERERGVKVGEBtS3/PmoiIiIiIFJfuFsjBnDlzkhOgPmMM1lri8TgPP/wwDz/88KDPY4whFosNup1yeOCBB/psO/vss/Nu5+yzz04LofbbvuSSSwruW6X7/e9/n/Y6FApx3nnnlak3Uunawm185u5P47Z34AQhluP1ImOhMwghLxFA3RVIvDYWbA5tWMC14MY8PnNcM4vWzabeKzxwX/IXx3L7nk/R6IXY4kTK1o9GL8TtB0Q5t3pfXCrwguUIVqwaMOQeOJqJaqA8/PFvKPP4N2j8y2awNWAsOMYwNh5ghxvDszannwF6Uw2Uj18D9V6QrQXUgNNdA42xIC2BKI61eQfUWKDeC6oGRERERESGg3AY2tp6XgeDUFVVvv6IiIhIUYQCIX6+am8uPvANwm55+uAZqIrDz5dPJvSJkftA8UoVAl6IXcnhGy5jq9delj54WCY6dbww7fuEAuPL0ofRSuMvLrDQ+7/M3fJrHu96o+RruizQbiIcX30ACyd9AdepKW0HRjmNv6TWwLPh1YU9uXiQIo7H7Kp9VAMiIiIiIsPBzp2JhxX7gkGYNi3x93XrYLqu74qMFtu2bUt73djYWNT2Ozo60l4Hg1pzWIgJEyZk3H7CCScQSn0/z9HJJ5+cFkIN8MQTT5Q9hPqLX/wiX/ziF4f8PAcffDCvvfbakJ9HRERERERkyCiAWkREREREhohCqPNge/0i5AdT994+2uzcuZMXX3wxbVttbS1HHHFE3m0df/zxfbY9/vjjIzaEet26dTzzzDNp2z74wQ8yfrwWaUlfcS/OvL/OY8W654nYGPE8Aqj9XVurEgHU/oJkA5BjEHXcQMSFFYHtzNv9Oe56+xgFD5aQi+H69Ydz+H5LCm7D0BNAW+h3Lmvg+vWHa+zLoFg14JBYg6YaGF6KNf6uNcSN1fgPQ6k1UEiYuDUwNhZgSjQROLY9EM27DwbVQDkN9n3AMzAuEmT3aC3GdrApVFigvWpARERERERERESkvOZtnMSfgm9w7/7l68P/WQ3z3qoHt0xJ2KPcbu4kPj5mNtfvKHzeaLA+PmY2u1VNKtv5RzONv9S7dRwQmsYDnf8qy/l32ggHhKZRH6wry/lHO42/1Lt1nDf2OJZ2rgTAweAN6nHkuXG654c7vCjnjT1ONSAiIiIiMhy4LjhOz+vUv0ejsGVL6fskImUxZsyYtNe9Q6MHyw+5ttZijOk3TFkGtssuu2TcfvjhhxfUXqbjNmzYUFBbIiIiIiIiUmIKoBYRERERkSHkZN9FfMaYtD/9bS/kz3D20ksv4Xle2rZZs2YRCOSfcX7UUUf1edLxCy+8MKj+VbKHH364z7ajjz66DD2R4cB1XC467CLCHTtoreoOFM5yjSY1gNoX7rUOOJ92WqsgbGNc1LyXggdLLI7lkl2XE8PLvnM/LIMLHwaI4XHJrsuJl2DxkqRTDYxuxRr/wQRQg8a/nPwaCFhDyDp5fxd2gDY3xoZQF21uLO9fBA0Qsg4Ba1QDZTLYGnAxbA9GWVO1k+3BaN4/y6kGREREREREREREKsOl+6zh/v36zgOXigHu3w8uPVQBJeVy6dbb+e2OR8j/SnFxOBh+u+MRLt16e1nOP9pp/OXSrbdzbeuDZa2Ba1sfVA2UicZfFrcv49JttzPOrSWIy+DuAsmdxRLEZZxby6Xbbmdx+7KSnFdERERERIZQe3u5eyAiJTJpUuKhgv465s2bNxe1/RUrVqS9Vgh1Yfbee++M2wv9/zPTcX5guIiIiIiIiFSwSswhUwC1iIiIiMiIkn9K8Chl9ctQv1auXNln27777ltQW6FQiN122401a9Ykt61evZpYLFZQqHWle/LJJ/tsO+yww5J/t9by4IMPcscdd/Dss8/y9ttvEw6HGT9+PJMmTeKwww7j5JNP5kMf+pAm50eL7dshFoPuIGkDYMFmuIaUKYC6P3m1Yy1EInl0WorBxTCjq577xm7EgUHE0BbODzCd0VWvEPIyKFYNDOYnGtVA+Wj8xcVwUfNeLK9pZVw8SLMbJWK8AcfUkBhzB3C6v8nvdOLgvzYWL2W/gdoJWYdx8SAujh5GUSaDqQEXg9O9Y5sbA0i8NgbbvSxZNSAiIiIiIiIiIlL5IrEIN++aCAYwFjCDu/afr9QHHN+8TytXvrOWkDPy7uWoZBEvxs3hx5Kvs13jL7bUK8M3tz7GlV3HqAZKSOMvqoHRTeMvceuxIPIgnhfDADUECBMryblt9/lM3MPDY8GWBzmjdSquyfcR2CIiIiIiUjKdnZAaNlpVBbvt1vM6Gk2sD6rEUBsRKaqpU6emvX7hhReK2v7SpUsxxiTXYB900EFFbX+02H333amrq6O910MCqqqqCmqvurq6z7aurq6C2hIREREREZESqcRrdcpcExEREREZcXQHeA6WLl1a7i5UtLfeeqvPtj333LPg9vbYY4+0EOp4PM7atWv7fZLvcPavf/2rz7b99tsPgFdeeYULL7yQF198sc8+mzZtYtOmTbzyyivceuut1NXV8ZWvfIWvf/3rNDQ0DHm/pTziXpwFz/2GqpilAWjtvn8gU4D0QAHUVXEIu32359JOQzhx/IKGNZzRpfDBUopjea26jYZ4kBY3WpY+WKAxHuS16jbiWI1/iaXWQKsbLTiIuNBFiP6SsQbVQFkUOv69x1vjP7w1te0KwPxpK7KGEJvuP26mJ0x0c6zBBeLdiSH9tZMaPnzthpnJfkjpFVIDTkoAdW+OhWobYKeTWJisGhARERERERHJned5PPjggzzxxBM888wzrF27lpaWFlpbW4nFCgsBM8YUfKyIjA6hQIgXnj6Uw2e9wPaawttxLHiDuMw/vhNe+PtUQp+IA/HCG5K8hYAX+ByHcz3b6Cg4fLTQOSN/RmECtbzA5whFVQOlpPEX1cDopvEXF1hom5jLHTzLO7QRxsEw8KOL+yqkBhwMbYQxwGx2Y6Ftwo2U5x42ERERERHJUTicCJr2uRkWEonIqDB79mxCoRDRaBRrLQ899BCRSIRQKDTotu+9917Wrl2L6Q7JmjZtGvvuu++g2x2NHMfhiCOO4J///Gfa9tbW1oLaa2lp6bNtwoQJBbUlIiIiIiIiJaAAahERERERKRGFUOfghBNOKHcXKtrGjRv7bNt9990Lbi/TsZs2bRqRIdRvvvlmn20NDQ0sWLCAL3zhC4TD4ZzaaW9v54c//CF//vOf+fvf/87+++9f7K4OynXXXcevf/3rIT/P6tWrh/wc5eQ6Lgs3vI+5m5axYkpiW6Yg6oECqBvCUB2DrkDPsakGasc/duZGWPjiONwZFXgBawRzMSxc917O2uNpHh2zlZjJ/2KdH0ZpKWwxmWsNR3Y2snDdexU+WwZ+Dczd41merdmeUxBx70VjTso2L2UfGLgmUgOIZ3eOVw2UQaHjn8qxJBcfpgZLZFtcqPGvLLmEEPvv9w3xIB1OnPgAI+xiqIsHaO1+wEHvdhQ+XHnyqYE6L0CnGXjhd8g6BLoD7kE1ICIiIiIiIpKN53n87//+L9dccw3r1q1Lbre6yVZESmS3aA3LfwMzvgQ7CsgG8B9aV0gQtQXqorD8N7BbnYXNm/PvgAzabsCPqmbzubqlBR1vUj4W+t3rR+2z2S0cBlQDpabxF9XA6Kbxl3rgvKrpLK1bk9yWTxB1ITXgpNwj0kGU89qnUx9uA9pybEFERERERMoiHIbU4NKqKti0Caqrob6+MkNtRGRI1NTUcNxxx/HII48AsH37dm655RYuvvjiQbUbiUT47ne/CyTmy40xnHjiiYPu72g2Z86cPiHUa9as6Wfvgb311lt9tk2aNKmgtkRERERERGSIVeK1Ot0bLyIiIiIyYimEWgZt+/btfbbV1dUV3F6mY7dt21Zwe5UqGo1m/LoeeeQRPvOZz+B56bGSY8eOZerUqcTjcd599106Ozv7HLtq1SqOPvponnrqKQ488MAh63u+tmzZwmuvvVbubowI9U+/yKIXDHPPtv0GUWcLoIaejwMFUfcXQL3oTqiva4UZg/1qpDAGF0McW/BisMLOSnfobAVevBxF6r0gi9bOzimIODV0HHoCqP3PpR43UBB17wDiRWtnU+8FB/21SP4GNf62Z1GggwHbE0St8R9+BgohTg2grrYuHQwcQAxQbV2IkxZCrPDhypZrDbiYrCHUoBoQERERERERydWGDRuYO3cuTz31VFrotDEGM8ibfxViLSI5cxwemw5hN/9De79TFRJAGXbhsb1g3lYgFsu/EzJoi6vWcEXtswQwREs6a5wQwHBF7bNMjIVoCk8v+flHO42/LK5aw/dqn2OSV80WpyuvKhjs9wEDTPKq+V7tc6qBMtH4y+KqNVxa+xTjvBDNTjj5vSCX8SykBlKPCWIY54W4tPYpamOOakBEREREpNJFoxBPuYc0FoOOjp4/U6eWr28iUnLnnnsujzzyCMYYrLV84xvf4PTTT2eXXXYpuM0vfelLvPTSS8k2AT7/+c8Xq8uj0oc+9CG+//3vp2176qmnCmor03GHH354QW2JiIiIiIjIEFIAtYiIiIiIlJiTfReRge3cubPPtpqamoLby3RsR0dHwe1VqpaWloyLyS+++OJkALUxhvPPP59nn32W1tZWVq1axerVq2lra+ORRx7hlFNO6XN8c3MzZ511VsZxkRHg3XepjxgW3WmYuSkRDN0Q7vm0NYk/vaUGUPt6H9tfG30CqMNAV1dRvhzJXRzLvN2f49XqNsbFg4Ss02dhUDaWRFhtvpf7UkMoX61uY97uzxEvw2JWSfCDiGd3jqchnggD7v0DXe+4cIfMC8mcXq9776MA4spT0PinBFAnt2FwbP/HpLar8a9MTW27cu2Gmbg4ad8XUgOo81FtXRriwWQbCh+ufKoBERERERERkdJqbW3lxBNPTAZQpwZPW2vT5v3816l/UmX7vIjIQBZO2sjFH4GYAybPtw9Lz1ywNQXMG9rEeS8+AxbuM/Lu4xgO4njcUPsa25wu4hT2CGFL4gHEhXz3MUAc2OZ0cUPta8QzPi5VhorGX+J4LKhZiYfFxWGSV51zHaTu56a8yuf4SV41Lg4elgU1K1UDJabxl9QaMBjGeVUEMVjsgO/rve8J6V0DA9WBBSy2O4C6CoNRDYiIiIiIjARdXdDSUu5eiEgJfepTn2LfffcFEmtWt23bxkknncTatWvzbqutrY2zzjqLG2+8MRlAbYzhuOOO45hjjil210eV9773vey3335p25YtW8brr7+eVztbt27l/vvv77P9pJNOGlT/REREREREpMgUQC0iIiIiImUQKHcHZPiLRqN9tlVXVxfcXqYQ6kgkUnB7lSoczpD+C3R2dgKJ/w9vv/12zjzzzD77BAIBTjzxRE488USuvfZavvKVr6QtTn/ttde48sor+clPfjI0nZfy2bEDoDuIGuaeZVkxNbHYo6X7n50FMD0LjjMFUPv87a1V3cemLDT2DDR2ZQigBohEkn2R0nCBizZMYfn0ZjwD42IBmgNRImbgRUSDlQihNIyLBRKhxdZy0YYpuDvah/Cskk09sOi1g5m7/wqerWulNRDDIREynimAuL9LzwYIWEOsO43Y38+SEkAcCzC7vZ5Fqw6mPt4FKIS+3PIZ/xrPIdJPAoWDSUwCdB+g8R9+mnbUQ+f+zJ++knE2QHMgRm3codo69HxHz/JdwpKcDKq2DtgAHa7HuFgA18K1a/anaXs9oO/7lShrDVib/dFT1kumzqgGRERERERGkHi83D0QGXE++clP8u9//zsZPm2tpba2llNPPZX99tuPm2++mc2bNycX2F522WV0dnayfft23nzzTZ577jna2xPX1v3jGxoauOSSS6iqqirzVyciw0UkFuGr+68h2v0MOgOJS4F5rEPw5wHyjQw0KXNOURe+eswOPt4WI6Rbj0oudY2H6Q6eLBWTMhOltSblofEf3VwcFraexNzGh1gR2IaLQ70N0mr63r+XKvXbRJV1CeIQxSNsEr875vJ9od4mHl4KMDM2gYWtJyVfS2kUOv6ps8eZxt+Q/cEUGv/K0LsGDIYaGyBs+r+/tvePiZlqwN+vvzqwQI0NJL8PqAZEREREREaInTvL3QMRKSHXdbnqqqv42Mc+lpzzXrlyJe95z3v47//+by6++GJ22WWXfo/3PI8XXniBv/71r/zmN7+hra0tOTcOEAqF+NnPflaqL2dEmz9/Pl/+8pfTtl1++eXccccdObfxwx/+sM/65fe+973svvvuRemjiIiIiIiIFIECqEVEREREpEy0EkyGhBnEL7qZjrUj8JfUbF/Tb3/724wB1L3Nnz+fzZs384Mf/CBt+/XXX883vvENGhsbB9NNqTSxnjTpRBC15axz4PE90xeC+EHUfoj0QPzPt1SnLyQxQGcQZm3oFUANiQtHsSwNS9E1bZ4A8f2Zv+8qPGBcLDhgEHUui8QG2q8ngDqI6c6wvPY/+9O0bQKg8S+3+lh3EPFBr/Ds2LZkEHGqhliAHW5swDoIYBgTc2kNJMY0NcS4IRZg9o56Fr1+MPVx0LhXjlzH38MScftfLuwAdTGXtkDP4lKN//CS+r1hfNT/9S7lX72l58kUGZm0CaFq61DtOTgYvecPEwPWQK6/lqkGRERERERERAb03HPPcffddyfDo40xnHrqqfzhD39g0qRJADzwwANs3rw5eczll1+e1obnedx77738/Oc/57HHHsMYQ1tbG/fccw/33HMPe+yxR0m/JhEZnkKBED9fvS8X7/860e6JgXyDqI3tuXSczzGpuwY9+PkzDYRm6LajUnNx+FznDF4ObmO700Uk7zjxxFjGsTnPJ6eyWEI4jPeq+VznDIVPlpjGXwDqbYhFLSczt/Ehng1uZoeJDTieTkpYuR8+CyQ+WlKCqA1eP60YYIeJ4eAwOzqZRS0nU29DRf7KJBeFjD8a/xGldw20mWi/QfKJe0Byew8w3bWSqQocoM1EMRjVgIiIiIjIcNZ7vZ7WBImMOh/96Ef57ne/y5VXXpkMom5vb+fyyy/n8ssvZ88992Tr1q1p616POeYYtm/fzvr16+no6AB61sWmzp///Oc/Z9asWWX5ukaaz3zmM/z0pz9l3bp1yW1//vOfuf7667nkkkuyHn/33Xfzy1/+ss/2yy67rKj9FBERERERkUFQALWIiIiIiJSRVoLIoAWDwT7bOjs7C24v07Gh0Mi7YT3T/2++OXPmcMEFF+Tc1mWXXcb06dPTtrW1tXH77bcX3D+pUIH+F/H2yZfMf7XgwO2lfbICL2iNEk3bJnHtf/bHwWBsIog6ZE2fjMnUINlsMu3bN4DaD6KcNNgvQYqoPh5g0evvYfaOehpi6e8PDbEA1V5uP+pVe07G4xMBxO+hPq4AgUqk8Ref/72hWN+dDeg9f5hRDYiIiIiIiIgMrauvvjr5d2MMs2bN4q677koGUOfCcRw+8pGPsHTpUm644Qaqq6sBeOWVVzj++ON59913i95vERmZ5q0fz413J4KgfTnPC6aESRuyzAmnHpfy96AHN94N81ZV5XhWKbam8HSuazueWhvI+7aATPPC+bBArQ1wXdvxNIWnZ91fik/jL5AIoT2vY386jP+w6b73jYAfQJyQGj7rC+JQZd2M+/v8EFuADhPjvI79FT5bZhp/6V0DYPrcDJ46dpBbDWSqJSfZmmpARERERGTY6x0iMwLX6olIdt/73vf47Gc/2ydI2lrLW2+9xc6dO5P7Wmt59tlnWbVqFTt37kzu5wdY+y699NKcwpElN9XV1fzqV7/qs/0LX/gC3/72t/tdux2NRvnZz37G2WefnRYkDvDBD36QD33oQ0PSXxEREREREclTJeb1KIBaRERERGRUUaJckTQ3N7N8+XK2bt3K9u3b2bFjB2PHjmX8+PFMnDiRI444gsbGxnJ3c0jU1tb22VbsEOoxY8YU3F6lGuhrmj9/fl5tBYNBPve5z/GNb3wjbfujjz7K5z//+YL6V0yTJk1ixowZQ36e1atXEw6Hh/w8ZVVXB9u2AdAW9Jh7Nrw6GRo7YVsteN3XmvzFw63d636rY5mbA+gKJPYzABZsdxuOTbT76mSYezYsuhPq/f97Xbef1qQU/EDI+fuuwrOWcbEg2wNRIt2rxPMJoPb5+/uXBoMKoB42/CDis2b8i0cam7FAY0oAsWXgTHr/c9WeA7EALYEYBjiyfawCiIeBwY6/T+M//J3UMg4Hw04nnhZAbk2294D0z3Y5HmM8l5Naxg1RT2Wo9FsDWY7r/XnVgIiIiIiIiEg6ay0PPfRQcvGtMYZf/vKXg3qI7qc//Wl22203PvrRjxKNRlm3bh0f//jHeeKJJ4rYcxEZsYxh3qsO4HHxmRB1euZ4BzzM9hNAa7Mfb03i+GQA9SsGphTWfSkeYw0myzxA2v5ZtufSjuk+r5RfMcc/nzY0/pVhcdUaLq1/hkYvRIsTJortjo7tmf3LFkDsC+IQ9Bx2OrHkcR6p95+Y7v0MjV6IS+ufobYtoCDyMsp3/Md4wX7fBII4YCFivORxGv/Kl6kGEkHUFo++AdQ1NoDbTxEEcQhYQ4eJQ/K4RC2lBlCrBkRERERERqCGhnL3QETK5De/+Q2zZ89m/vz5dHR0pAVKQ08wNZCcI+/NWktVVRW//e1vueCCC0rS79HkjDPO4P/9v//HL37xi7TtP/rRj7jxxhs588wzOeKIIxg/fjwtLS288sor3HXXXaxdu7ZPW3vttRe33XZbqbouIiIiIiIiA3Ey379TVgqgFhEREREZdZQqNwj//ve/ue6663jooYd44403+jwdNpUxhgMOOIBTTjmFL37xi+yzzz4l7OnQmjBhQp9t7e3tBbeX6dhM5xjuxo4dSygUIhKJpG13HIf/83/+T97tffCDH+wTQl0pC9W/+MUv8sUvfnHIz3PwwQfz2muvDfl5ymraNHj77WQA9Yqpic2RAMR7BVD7Bgqi9gOofamLjOMm0W51LHGetCDqmhqori7+1yc5a9q5O6wNMn/P14jj4RW5fb89xzhc+/YMmnZOBQ155XKibA7FkgvJgPQnIA60Dtj22pfE+G8OxaCqCrxgUbsqQ2Cg8c9hDbg1Jm3xocZ/+Glzosw5aBkbQt1Pi4gFqLaJB0ZknfYxJOuly8RpDcRoJcacw17i0ddnU68aGBb6rQGTY2SIakBEREREZOQJBBJ/fL0fLJhhgaCIZPavf/2L1tbW5MLagw46iKOPPnrQ7Z566ql861vf4oorrgDg6aefZuHChcybN2/QbYvICOc4EAox79UI4PGpj0I0y7f2TAHUyc9B1iBqCwRsSgC14+jniTJaXLWG+fVPUIXbHT4ZGXA+IJeRyiWI2gCNXogqXObXPwFtKICyDDT+4teAh8XB0OhVdYfQemljaLuDiRu8ILEsc0ZVuAQ8Q6sTTXuIbSLW1hLEodGrSgYUqwbKp5Dxd3EIE++3zSAONZ6r8R8mBqoB/36v7oioZA14hl4Vki6ES9BzkjXg7+kBjmpARERERGTkMQYaG2HMmHL3RETK6FOf+hQf+MAHuOqqq7j55pvp7OwESM6L9xc8DeC6Lueffz6XXXYZe+21V8n6PNpcffXVtLa2smDBgrTtmzZt4oYbbsipjQMOOIC///3vI3J9toiIiIiIyLDjOJUX+Fxp/RERERERkZJQCHUB3nnnHb74xS9y7733Yq0dMHzaZ63l9ddfZ+XKlVxzzTWcccYZXHPNNey2224l6PHQmjJlSp9t77zzTsHtrVu3LqdzjARTp07t83Thvffem/r6+rzbOvTQQ3Fdl3i8Z8HIxo0b+33atAxTRx9N2wtPMfesngBqP0jaXxycabQzBVH3DqD2pbaTelxaEHVdHXR1FeurkgI1vdtIR2xvPnXA62kLBv2/5fMv35K+oDRmLNsCUW564yCatjQCGu9K1ebGmHPoi7xS257IkgVaAzGIQbWX45MQraXL8WgNxJJ180rtDuYc8DSPvnwE9XH9yFipso5/Ltf9Nf7Dml8DK2p7HuSS13uAJa0GfCtq21QDw8RANeBaQ/Y3AqsaEBEREREZiYxJD552ev2OGAqVtj8iw9jKlSuTfzfGcOKJJ+Z0XDwex+0dAN/Lf//3f3Pttdeyfft2rLVcc801CqEWkeyCQaithUiE2pihLmxprul/94ECqJP7QNYg6row1PqXEEOhxIOLd901v77LoMWtxwJvKR6Jn++qcWnEoYWufq8GG0xaqCiAi0M87VHHiUeW9t6v57PQSDXVbuLBhR6wYNxbnOEcg2tynJOUQRu68c+8X8/nNP6VoncNADhAPQ5b2Zm2rwVqCVDtVtFOOLndYNibcbxJc8qYO1QTJIJlJ9E+7dRTg+P2nFM1UB6Fjn+UOP7j6DOPP1RTpfEfBgqtgQ4iye39vwcEVAMiIiIiIiPN9u0QS1lEVF0NEycmPgaD5euXiFSMPffck+uuu47vfe973HvvvTz22GM8+eSTvPPOO8lQaoBAIMCkSZOYPXs2J598Mh/60IfYY489ytjz0cFxHG688UZmzpzJt771LXbu3Jn9oG7GGM455xx++9vf0tDQMIS9FBERERERkZwogFpERERERCqIkqTydOedd/K5z32OlpaWZPh0PgG/fmj13XffzWOPPcYNN9zAWWedNVTdLYnp06f32fb2228X3F7vUGbXdUfspPTee+/d5+st9KnCruvS0NDA9u3bk9vi8TgtLS2MGzduUP2UytH2viOYuxlWTE687h0kPdC7UWqgdH8B1JnayRhE/dpY8o9Kl2Jrc2P8bLe1aQHUvnwu9/UOoPbFjOVnu63lI9snKnyyQiWDR+sSwaNp/3YDMYjlNm69g0f9dlbUtTPn0BcVQFqhijn+OwI9D7HQ+A8fvWsg1WDeA3yqgcqXrQbGxAYOuvKpBkRERERERhljEsGVIpKT5uZmgOSDX2fMmJFxv95zxl1dXYwZM2bAtqurq/nwhz/MH/7wBwCWLVvG5s2bmTx5chF6LiIj1oQJUFXF4hmG+R/0qI5DYxe0VPfdNZcA6uS+0G8QdWMXVMdh/mmAMTRtqIJJk2CvvQr+MqQwLrDQ+/+Yu/FXrIgk7jcJWQfXixDrFSrs6z0XXGWCBHGJEidso/3ul35eh5BTlfhZEpgZ2oOFU7+E6wyQgC5FV/j49zy0UuM/vGWqAc9a2rzOPvsaoJMYISeO232bqMFwwdjjmFU1nWXhNfxxxxNYLA4uXcTp9GJkesRpG2EanTE4qoGyKnT8g7i49D/+gMZ/mBjMe4DB6j1ARERERGS0qa2FlBBZqqth7Njy9UdEKtbEiRO58MILufDCC5Pburq6aG5upqamhsbGxvJ1Tvjyl7/M2WefzS9+8QtuueUWNm3a1O++48aN49RTT+XSSy9l5syZJeyliIiIiIiIDKjSAp8rrT8iIiIiIlJSTrk7MJzcfvvtnHvuuTQ3NycXGfuLif1w6YH+AMljrLU0Nzczd+5cbr/99nJ+WYN2wAEH9Nn2n//8p6C2IpEI69atS9u2zz77EAiMzMCzgw46qM+2qqoBkoGzqK7uu6q0q6ur4PakssS9OPPabmLF5O7FP1mCpDNprUosPi7kuK7uf4YrpsK8Y94lnlfMsRRbauikIfPi8VxHKNN+fpt++GSb2zeYUsorU/Bo77FsDcSy1kEc2yd4NPUY1UBlynX8oxlC6lNZSAug7t2Oxr9y5VoDXpZ3Ab0HDF+51MDOQLyfyIkeEdM3gFo1ICIiIiIyghkD9fXg5vbQGhHpCaH29ffw15qamuScMEBHR0dO7R955JFpr5ctW5ZnD0Vk1Dn4YBbv1cX8Uz287knCmhjUZ7g1IPdHqve/f31Xon0Az8D80yyL94nAbrvl2boUS71Tw6KpX2JmaA88a2nxduJh+x1vm4wY7QkgBgjiUmWCKftknlMwgEf3eaxlZmgPFk39EvUKniyLQsa/dwA1pI9/z359afwrT6YaiBLHYJJ1kLjnI/Gq1eskYmNp4bMAs6qmc8HY4zAYwjZKa3eIbaZ2osRVAxWikPEP2+iA4x+xMY3/MKL3ABEREREREREpherqanbZZRcFUFeIadOm8dOf/pR3332Xl19+mYULF3L11Vdz5ZVXcs0113Dbbbfx/PPPs3XrVm677TYFUIuIiIiIiFQSk++dnENMAdQiIiIiIqPeyEz2HQKPP/44n/zkJ/E8Lxk8DYnwadd1Of744znqqKOYMWMG48aNY8yYMezcuZOWlhZee+01nn/+eR5//HFisVhaeLXneXzyk59kt91247jjjivXlzcohx9+OI7j4Hk98WbLli0jFovlHR69bNkyotFo2rYjjjiiKP2sREcddRTXX3992rbW1taC22tpaemzbcKECQW3J5XFdVwu2v9clr/yMB3B/IOkfeECs0X889VG4aJNu+JW9Q09l9Joc6PMOWg5K2rbs+9cBCvq2plz2HIefX029fFg9gNkyGWqgZ6lw+kBAZ7pCRXvzQIRx6Y9lSRTO6qBypLP+He5Hsb2P/6eQeM/DOVTA3EDzgA1EHdUA8NRvt8HsOBkqAIPy07XS/uMakBEREREZIQIBiF1viUUgrFjEx8dPaNWJB9ur9D2UCiUcb/6+vq01xs2bGDSpElZ2588eXLa6zVr1uTZQxEZbRbv2cH8Y1vx/HtXrMUDwkESF/dSLvhZA1meV5nG9r6MaBPt1sR6riV7BubP6QQnTFPBX4UMVr1Tw+8mX8zh675DlMQDRxORkf1FCSdCh/0A4tRtHh4R4hmPSQ2xjBInjsfvJl+s4Mkyy3f8LRDS+I8omWoAeurA9JoX6rRRTqyZkQyf9c2qms5/opu4v2NF2vZM7agGKke+47/DhjmtZma/439fx4q0IzT+lS/fGuiwEU6rOUjvASIiIiIiIiIiw5wxhkMOOYRDDjmk3F0RERERERGRXCiAWkREREREKpBCqHPgeR5f+MIXiEQiyfBoay01NTVceumlfPazn2Xq1KlZ29m8eTO//e1v+Z//+R86OzuBxKRfJBLhC1/4AitWrEgLuB4uxowZw+GHH84LL7yQ3LZz506WL1/OUUcdlVdbTzzxRJ9t73//+wfdx0o1Z86cPtvefvttrLV518KWLVvo6OhI21ZfX9/vQngZnpq2TOCZVVVcfUS4LOdvrYLPvOTQZKfBXruXpQ+jXZuJMGfC31kRbMdfQW4HWEhcqJ7wycQ5VtS2M+fQ5Ty67SPUW72vlFO2Gug9dqkLjfsLGc2lHdVAZShk/P2g6dTFgZZEIEUPo/EfJoamBvQeMJzkVwOJV55JfCY1iNrrrgHTvffA7agGRERERESGna6uRBC1r6EBqlMeLOgW+LRCkVGod7j0jh07Mu7X0NCQ9vrtt99m5syZWdv3H9Drzw32176ICEDci7PAe6H7mh9gDJ61tNRAtPuhg6nX/y1AhiDqqnjfhxdbkzp3lOCQaLelBho7wfEfuG5ggbOCM5ZNx0UPuCiHNsJ8pu5+Am6coHGIdo+86Z7zySRKHMdC0PaMWdR4RImnXFFOlzq3EMQhEIvzmf/8nEXtp1FPgU/OlkHLd/wNGv+Rpr8agPRx89Xi8lT76+y7zTIrPiW5fZm7iaeqVlJHkHYTTTumdzuqgcqR7/jX2eCA419rXDp7hdFr/Ctb/u8BgQFrYAxBduo9QERERERk5GluhnjK73uRCLS0QE0NVOlnehERERERERERkSFVaRliCqAWEREREZFuCqHOwR/+8AdeffVVjDHY7l+o3vOe9/C3v/2NvfbaK+d2Jk+ezHe/+10uuOACzjzzTF5++eXkYuJXX32VP/zhD3zyk58cgq9g6J166qlpIdQAd955Z94h1HfeeWfGtkeq6dOnc9BBB/H6668nt7W0tPDaa69x8MEH59XWU0891Wfb4YcfPug+SmVZvGIRCw+I0BBOBEKXWkMYFh7scfSqN2ly9i59B0a5NhNhzvh7WBHYntw2FAHUPW0n/psMnwxuZ87Ee3h0+xkKnyyTXGug99j1bCO5gLjvMdnbUQ2U12DG3wOc7m19A6g1/sOFakDyr4EeXvc2B5MMoE4/RjUgIiIiIjLipN602PsGRi0qFsnZrrvuCvSERLe2tmbcb//99097/dxzz3HGGWdkbf8///kPQPIhtYGApvBFpH+u47LwE39h7rf3Z4WzBY+eAGrIHCLbO4i6IQzVMegK9Mw5Zwqg9o81pAZRWxxgZksVC9sOx/U2FPkrlFy0OVHm7vEsK2jFxGEcAZrdKFHj9RMk3CNMHLAErUPUeIST4cUJmeYQDYng4nHxAAaPFWxibmAxi9bOpt4LIqU1FOPv76fxHx4GqoFMGuLB7nsEPP4YfA3a25nVOY5lNc38cdxarAfVOLgEaHWjGdtQDVSOQsY/iCEywPgHMYQ0/sNGITVgAG+AGqjCEFANiIiIiIiMfJ6XCKZubob6epgwodw9EpES2nvvnnWABx98MH//+9+L1vaHPvSh5PpYYwyrV68uWtsiIiIiIiIiw5ICqEVEREREpIJpBWsObr755rTXBx10EI899hjjxo0rqL0999yTRx99lGOPPZaVK1cmFyzfdNNNwzaE+txzz+WHP/xh2rabbrqJK6+8klAot3Cy5cuX8/zzz6dtmz17NtOnTy9aPyvReeedx7e//e20bbfccgs/+clP8mrnj3/8Y59tJ5100qD6JpUl7sVZsOMxPCzVscS2QoKoq+IQdvM/zl+M7BlYMPkdzmjehouTf0NSkDgeJ+31MCsCzcltmYKEi613iOWKwFZOql/MM2/9H41/ieVbAzblv9n2HyjMXDVQGYox/h50xw/33VfjX/mGtgb0HjAcFFYD6Tz6C5tWDYiIiIiIjDjRzKFBAASDUFdXur6IDHMHHnhg2ut///vfGfc79NBDAZIPNr7//vv5wQ9+kLX9v//972kPQ544ceIgeywiI119VT2Ljr+Gs/5+Po/vEkkLoLb9rFvwr/81ds/5Qs/HlqoBrjN2p9KmBlEfv9awaM1M6icrdLAc4ljm7f4cK6p7HopgMIyLB9nqRoiZ9NE09A0XDhuPGJZ4hn3pta8FXJtoP/XhlyuqW5m3+3Pc9fYxuFTYgpkRTOMvA9VAphDahniQauvSaeJAYkz/OG4tL9S08Gp1W9p4V1sX4vQJoU2Ez6oGKkGh4+//e9f4D3+F1kBY7wEiIiIiItJbWxvkuN5PREaGt956Kzkv3djYWNS2N2zYwFtvvQX0PNxZREREREREZNSqtN+NFUAtIiIiIiK9KIQ6ix07dvD0008nJ1gdx2HBggUFB1D7GhsbWbBgAccccwwA1lqeeeYZduzYwdixY4vR9ZJ6z3vew3HHHccTTzyR3LZlyxZ+8YtfcOmll+bUxje/+c0+2y655JKi9bFSXXzxxfzgBz+gs7Mzue23v/0tX/7yl5k2bVpObbz44ovcfffdaduMMZx11llF7auUl+u4LFy2J3N3f5cVUygoiNoPku4KFHYcwMyNsHBJDe6xHokoQykNmwygSLwa+gDq1HNByqJTayEWR+NfavnXQK41kms7qoFy0viLakCGpgby2Uc1ICIiIiIyAlRXQ2Nj5d3YKFLB9t57b8aMGUNHRwcAr7/+esb9jjnmGBzHSf7+/tJLL7FkyZIBHxr7l7/8hRdffDFtIe7BBx9cxN6LyIh10knwcDUQAQYOoB6s1CBqAAIuTJ48NCeTrFwMFzXvxfKaFXgpV3jDxsPrJ4A4k94BxKnHQPq1Y89YwsZLhFN2c7r7oeDJ0tL4S381kCmE1g+f7c0Cr1S3ZWy/dwhtpvBZUA2Ui8ZfVAMiIiIiIlJUbZl/NxARKUTqg5dFRERERERERq1KW6eh39VFRERERCQDhVBn8cwzzxCLxTDGYIzh6KOPZvbs2UVpe/bs2RxzzDE8+eSTAMRiMZ555hlOPvnkorRfat/5znc49dRT07ZdfvnlnHzyyRxxxBEDHvurX/2Kf/zjH2nb9t57bz7xiU/kdO699tqLt99+O23b0qVLmTNnTk7Hl9OUKVP44he/yNVXX53c1tLSwrx587jvvvuoqakZ8PjNmzczb9484vF42vazzjqLGTNmDEmfpXzqt7Sx6FnD3LNt3kHUqUHShR43cyMsuhPqa2wiqERKxgUe2f4R5ky6j5dC20oWQO3zz3dYZAKPbD8dtzFU4h5IMWrAX2hcSIi5aqC8ijH+DomFhxabd2ysxr/8VANSnBowOCSio708W1ANiIiIiIgMMx0d4KYEDTU0wNSp4Djl65PIMOU4DsceeywPPvggAM8//zzxeBzXTQ/zmjZtGieccAJLly5NLrA977zzuOeeezjyyCP7tPvAAw/wqU99Ki2AurGxkVmzZg3tFyQiw15buI25d5/Hq7sEGNfqsLXKI5blW7w/R+TPD6c+uDhT6Gxv1oDrwbgueHWKw9wJL7Jo43HUW10nLIem6L6wNcT8ScvwsHSZOK1OIizSvwY8UABxNqk14ZdWqxsFz1BtXRwM126ZRVN0Dxj4lhYZAhp/6V0DPoNhnBei2YlQawNU4yYH1Jos7/OW5CK4agLgGTpMjHFeKO3nVUA1UGYFjT8Wb4A3BZPyX41/5SukBjwz8OOFbXcLoBoQERERERnRgsH019Go5o9FRERERERERESKRQHUIiIiIiIyTCiEOotNmzalvT799NOL2v7pp5+eDKEG2LhxY1HbL6VTTjmFM888k7vvvju5LRwOc+KJJ3LrrbfykY98pM8x0WiUn/zkJ1x22WV9PnfNNdcQ7H2Dywh1+eWXc8cdd7B27drktkcffZSTTjqJBQsWcOCBB2Y87qmnnuJTn/oUq1atStteV1fHD37wgyHts5RJVxf1EcOiO8kriDo1SNqX73HJAOqIgSqv7w1oMuTqCfK31tPYb+Kf6DLx7AcUWZV1+VvradQHxpT83JLg18CMiYvYYaJ5H29SPhZyybjOBlUDZTSY8U8sNPeXjvoxxPnR+JefakAGWwP+UgGHwh5IoBoQERERERlGXDc9hDoQ0AJikUE48cQTkyHU7e3tPPXUUxx//PF99rvkkktYunQpAMYYNm3axPve9z5OPfVUjj/+eMaPH8/WrVt58MEHefTRR7HWJgOrjTF89rOf7RPwJSKSKu7FmffXeazYuAKqqghXBfBMZMBjDGBSLga2ViUCqMMpPyoYm9hxoGuGnoFw0KE6EGBFoIV5uz7LXS2n4KKfMcqhiRmwo4ZP1z/aHUDc8/2j74jkejXYpP2t93ekVieK8Qy/b5tDk5kOdXl3W4okv/GH3GpA4z+c+DUwv/6JPiG04221/yJpoABiANtr1KsJUG0DfQrBwXBt23GqgTLLd/wtBjtADaQGEIPGfzjIuwbMwHcI6D1ARERERGSUCPRaRjpmTCKIRnNTIiIiIiIiIiIig1Np19gUQC0iIiIiIgNQCHUWmzdvBkgu/N19992L2n7v9rZs2VLU9kvtd7/7HS+88ALvvPNOcltbWxtnnHEGs2bN4swzz2T69Ol0dnby73//m4ULF7J+/fo+7XzpS1/iQx/6UMn6vWzZMj796U/3+/n29vY+2/72t79x2GGH9XvMrFmz+P3vf5/T+evq6vjzn//M+9//fsLhcHL7008/zSGHHMLJJ5/MSSedxLRp04jH46xdu5YHHniAxx9/PGN7N998MwcccEBO55ZhJpoIG0wGUZ9lWTG1Jyi6parvQsBMAdS+/oKoLdDYXwC1r7FxMF+JFKCNMGcEFxMxXlnOHzEeZ0x4iEejn6CeAdLLZci0EeYzwQcZY0J0EidGfrWQyA8oJHoWAjiMMSE+M+EpFkXPVA2UwWDGPxE2a5Pjn28FaPwrg2pABlsDHhYHg6caEBEREREZ+Vpa0l9X9foZvtJuchSpcB/72Mf45je/mQyI/stf/pIxhPrss8/mxBNPZOnSpRhjMMYQi8W49957uffee9P29eeffbvssgtf+9rXhvYLEZFhz3VcLjrsIpa/u5yOaEcifNaCYzMHjPYOoPalBlAn9x0giNrp3tga8sCLUUuQizoPVAB1JSj1j3X6MbKyaPxHtabwdGijTwjtUEmGz4anD/m5JDuNv6gGRERERERk0KZOLXcPRGSESF0PW11dXcaeiIiIiIiIiJRBpa3NUAC1iIiIiIhkoRDqLOLxeNrrQO+nfg+S6yZW9vkLjHufb7iZNGkSDz74IB/4wAfYuHFj2ueWLVvGsmXLsrZxzjnn8L//+79D1MPM2tvbWbFiRV7HNDc309zc3O/nG/MM6H3ve9/LXXfdxcc+9jE6OzuT22OxGPfffz/3339/1jZCoRDXXXcdZ511Vl7nlmEk5T0oEURtmXs2rJgKoRiYKj9kNmGgAGpf7yBq//jQQAHUrgu1tUX4giRXcevxAfsHVpB4OIIfIFkqTndVrXA38wH3dp41n8M1WlReSnHrMc/+lRVsweAwkVq20lFQCG2+At3nMxhWuFuY597LXeYTqoESKsb4e1BQBLnGvzKoBqRYNdA7hNyQOVQmlWpARERERGQYqq5OPtQQSLu2DPQNpRaRAe23334cdthhvPTSSwDccsst/M///A9VGf4t3Xrrrbz//e9n9erVySBqm+FmXn9+2FpLbW0td9xxBxMmTBjSr0NERoamg5p45p1nuPqpq9MWC/QOou4vgHogmYKondQXFlqdCJ/ZOUMBhGW2uGoN8+ufoMq6NBCi1USG/JwNNkSVdZlf/wS0oRooI42/+EoVQqvw2cqk8RfVgIiIiIiIFGziRNh333L3QkRGiE2bNiX/XldXV8aeiIiIiIiIiJSYAqhFRERERGQYUgh1FpMnTwZ6FgGvX7++qO377VlrMcYwadKkorZfDgcddBDPPfccn/jEJ3jiiSdyPi4YDPKtb32Lyy67DMcZnWFmp556Kk8//TTnnXcer7zySl7H7rffftx0000ce+yxQ9Q7qQg1NWkv68OJgOizzoFH90pZVGyhMYcAap+/X0sV2O5FxdtqYc5b3QHUYXqSraFvYImUhCH9AmSpgqidXuft3Q8pDdc4XMQRLLf34WExmKwBpLkEi2bbLzV4FBL1cJE5QsGjJVbo+EP62GYaZ43/8FCs9wDVwPClGhARERERkaJxHGhoKHcvRIadhx9+mB07diRf+w8b7m2XXXbhscce48ILL2TJkiVAz1xzKj+Yep999uHPf/4zhx12WPE7LSIj0uLXF7PwXwtpiBhae03b+kHUhQRQ+1KDqJ0MbTREDAvHrObomv1o4sDCTiKDspiVzHeewkuMNNU4gKGVcD9H5DJrOPAccANVVJsAmMQDD+c3PgVevWqgDPIf/8HT+Fe2JiYB9cx3HhjgHpIs93kYA2Se+3EwXOudSlO9xrsS5Tb+3d/cB9LP3J/Gv/IV5T0AoxoQERERERmJurrSXweDsOuuiQDqXXctT59EZMRZuXIlzc3NyTnxqVOnlrlHIiIiIiIiIiWiAGoRERERERmmlCKahR9C7Xv44Yf52te+VrT2H3nkkQHPN1ztvvvu/POf/+TPf/4zv/zlL3n66aeTC6l7q6ur4+Mf/zj//d//zYEH6kb1mTNn8tJLL3HLLbdw/fXX8/zzz/f7/53rurz3ve/lc5/7HOedd16/i91lBBk/Pv21SSwW3TwGYqnrQAq9VpVyXMyBzWP62a9XGLYMPdc4LOGTzLE3sYKNye1DHUTdO4B6JlNZYj6p4MkyaTIzAJifEkA6nhq2sLOfUFGDzaE++tvPAOOpSQsevdacnuyHlFam8e8vgDax5Dz38SfDnpmCZzX+5aUaENWAiIiIiIgMmuvCpEmJjyKSl/HjxzO+9zxNP6ZNm8ZDDz3Efffdx5/+9CceeughNm/enPx8bW0txx13HOeccw4XXHABAT38U0RyFPfiLHhpAV5XJ9URD+LQWpW+j7HZp4ur4hAe4MeB/gKsG8JQHQev2rBgykbOOOpruEY/V5RS3MZZ8PyjeL0GvhrAC9Eabcd2Xz/u0Td81DUOcdv7AYfp+/jtNATrqHZCaZ/zgAUNqoFSK2z8+9L4jzxNnAnvvpf5r/4Ur8/YArHMDzRNckLg9P2Z1DEO1x78dZp2ObFIPZWhkHX8vRh4kYEbCVT32aTxHz6y1kAcyLTd5wQS7wO9N6sGRERERESGt7Y2WL++53UoBPvsU77+iMiI09nZyde//nUg8RBmYwwHH3xwmXslIiIiIiIiUgIKoBYRERERkWFMq1mzmDVrVvIpvNZali5dyurVq9mnCDddrF69miVLlmCMSU6yHnXUUYNut1IYYzjnnHM455xz2Lx5M8899xxvvvkmbW1tBAIBJk6cyEEHHcRRRx1FKNT3BvZ8vPXWW4M6fs6cOf0GPZeD67p88pOf5JOf/CSbNm1i2bJlyf/vQqEQEydOZNq0abzvfe+jvr6+3N2VUpo2LXHjVySxMKgtZJlzIfyrd3697VlsXB3L3mxXoHv/XmtP/zUZ5lwIj/4B6v21SK4LEyZAQ8MgvxjJVz0NPGr/L3N2XMOK+AaAIQ2g9tv3g6hnutN4dOyXqTd9F55J6TTxPojUMr/jL8SsRytd/YaM5hI8OtB+BkMrXTRSS8A4XFt7Fk2hmYPqvwxO6vj3BNCOYavdmQyg9YNn89E7gDaAw0QzJj14VuNfEVQDUvwaMN3/VQ2IiIiIiIwodXUQS7k4PHYsTJ6ceMCgowfMiZTK6aefzumnnw5AJBJh27ZtjBkzRvN7IlIw13FZ+LGFzP3W/qwwNjkX7M8NW8AmLvX1e4WwIZyYQ07OEWeQqR3/OLDM3BZg4QevVPhsGbjGZeHhVzL3xW+xom1V2ueqnRA2MIaW2A6g/+vEVU6QoAkQtTHCXjTjPrb7fw2BvgHEADPr92fh4aqBUtP4y0D8kNh+Q2jzpPDZ4UXjL6oBERERERERkdHt+9//fs77bty4Ma/9U8Xjcdrb23nzzTd57LHHaG1tTa6PBjj++OMLaldERERERERk2FAAtYiIiIiIDHMKoc5i0qRJHHHEEbzwwgsYY4hGo1x88cU8/PDDBAKF/98Xj8f57Gc/SzQaTYZcH3bYYUyaNKlYXa8okydP5sMf/nC5uzEsTZkyhQ996EPl7oZUioMPhocegkgkGUD90pTuBcAp/AXBuQRR+4uLkwuJe7Xz0lSY80l49GZLfcRAVRXsvTeMH1/EL0xyVQ88Ou5yjn/nSl6OrivJOT0shwZ359Hdvku9U1OSc8rAmjiRjrYQF2/5PdHuwFEH0yeUPNfLxZn288PHo3i00MmNEz9NU/2xg+i1FEsTJ0L7WOZv/WN3AC1MZCyb4q3kHz3cC74ZAgABAABJREFUo+dIy0R3bHrw7MQLaKqbVYTeSzH0VwOb4229nyeRF5MMI0Y1UOFUAyIiIiIiktXYsekh1PX1MGZM+fojIoRCIXbZZZdyd0NERoD6be0surmduafBiqk9c8EtVT3zvf0FUfcESdMnwNqXOm/st9OYctzMjbDong7q378VJhb3a5Pc1AOLDvg2c1/7HivaVye3e9ajM94F+I8ctGnzPwBVToigcQGb+OhA2ItA94MK/WP9+cPOeBdVJoBjeh5kMrNuHxYd8G3qw0C4fQi/UsmksPFPbNX4j3xNY4/irobDeah5WYbPDnAHgbV9FqSd1Hg4TWOPgnaN83DR7/jbxHtC/4zGf4QouAb0HiAiIiIiMjK1t0NHR8/rWAy6uhJrgiotKEdEBu2KK65IrlPujx8UvWnTJr73ve8N+px+e/55Q6EQc+fOHXS7IiIiIiIiIhWr0q6rKYBaREREREQKoBDqHJxzzjm88MILydePP/44Z511Frfffjs1NfmHcXZ1dfGJT3yCpUuXJp/ya4zhv/7rv4rZbREZiQ49FKqqaKtxmHNeLGMAtS+XIOqBAqhT23lpSncQ9R8N9YEA7L57Eb4YGYzJbj2BqEuM+JCfK4DLZLd+yM8juWvzOrm1/SlqnSpavcSNob0DqAfLwyaDqGudKm5tf4qP1B2hIPIK4QfB+gG0XV60O3h2MPGz4C9J7/Ki1DghBc9WsN41ELaJb/SDnbryjw/bGNUmqBqoYKoBERERERERERGRUeq556hv6WTRnTD37EQQdSgGbghiKRcIewdRpwZQ+3oHUWeaN3Zton3oDqC+E+ojYXjiCTjyyCJ/cZKremBRw6eZ2/krVkTW4llLi7eTSMr8sR8p7AcRVxEkaJ20hSdBHCBIhFj33jZt1jFiY7REd9DojMExhpmhPVjU8Gnq390ObB/ir1L6U+zxDxMlMdOo8R/uFrcvY8nW5+gTNut5Ax9o4n2+ASzZ+hyLX1+sOaJhpN/xt/Esiw4t9Lr/SOM/PPVfA97ANWC8RJ2kUA2IiIiIiIwAO3fC5s09r4NBCAQSH6dOhbq68vVNRIaMzSF8Kpd9cpEaem2M4fLLL2f8+PFFaVtERERERESk4lRaAHWl9UdERERERIYNhVDnYP78+VxzzTVs2LAhGRp9zz33MGPGDH72s5/x0Y9+FMdxsrZjreWuu+7ia1/7Gm+99Vba56ZNm8aXvvSlIfoKRGTEeO97aQtZ5lxoeWli/8HRvoGCqHMJoE5tJxFEbXn0L1C/zz6D+SpkENq8TuZu/BWvRtczwaljm9c+pEHUAVwmOHW8Gl3P3I2/YtHULymEuMz8GlgRWUu1CYJTS7O3c0jO5WEZ54yh2gRZEVmrGqgw/kK/izf/nhabCCPvvZg8H6mLyltsB8Yz3Dj501pQWMH8sfn0lhuTgfTF0up1YJwx/H7SxaqBCqYaEBERERERERERGYUeeAA8j/pwIhD6rHPg8T3BM4nA6dTYAH++uDFDALXP395S1Xfe2JBot6UGjn+7O4A6TKLRJ5+EiROL/dVJHuqBRfYMzorfxuO8TYR4n8fW+nNHVQQIYhIhlL0EMVQRoo1whuMtEWK0eO0cz54sipxB/brNfdqQ0stn/McQSswe9jP+DgE6iWn8h7nF3mvM9+7p5wHWWUKorUfvEGIPmL/pJtiyhSZnRrG6KUMk+/hnqYG4xn+4y14DA4RLWYPeA0RERERERqDOTtie8iCxQCARTFNTA5EI7L13+fomIkPG9BNAlRo83d8++fLbDAQCfOc73+Eb3/hGUdoVERERERERqTiVFvhsTPaH0ouIiIiIiPRDIdQ5qK6u5uqrr+a//uu/MMYkg6jffvttPv7xjzN16lQ++tGPMmvWLA466CAaGxsZM2YMO3fupKWlhddff51ly5Zx1113sXHjxuTkqt+OMYaf/exnVFVVlfkrFZFK1zahjjn/FealqnjW4GhfpiDqfAKoU9t5aZJlzrwoj9ZXUV/IFyCDkho+DOAYwxhCtNI5ZOccQwin+4KoQojLr3cNQPqNYEPBWoufZ6waqDwdXph225W2rZAg6tQAal+77aLDCw+2i1ISQ/U+MLTvL1JMqgERERERERGRoXTRRRcl/77HHntwxRVXFK3tK664grVrE9d8jTHceOONRWtbREaoxx7r/3MW+kwP5DpdkGm/gS4RrlmjRQyVoDtUOJ5hrqdop+huH0iMudG4VwyNv3RbbF9jvr2vn/DZwnlY5nv3gPVoMgqhrVQaf1ENiIiIiIhIRp4HqWsNrE2ET0ci0NGRCKMWkREl1/VFg1mH5LouY8eOZdy4cRxyyCEcc8wxXHDBBUydOrXgNkVEREREREQqmgKoRURERERkhFEIdY7mzp3LqlWruPzyy5NB1JCYcH333Xf5zW9+k7WN1PDpVFdccQXnnHNO8TstIiNK3Itz0h9O4qWaFvK91yM1iLorAGE3vwDq1HZequ/gpPU/5pndrsA1Tn4NSMHi1mPepl+nhQ93epEhDaAGaKUT4xlqnBCQCCGet+nX3DX1/2n8S6y/GmixHUN63hbbAR6qgQq0sO1JLt7ye+J4GEza0nKb8t9sMgVQGwxxPC7e8nsA5tUfW5Q+S3Etbl/G/K1/pMoEaXBqaPWK9z2hwamhygSZv/WPADTVzSpa21I8qgERERERERGR0rj55puTc7wzZ84sagj13Xffzcsvv5x8eLFCqEUkq02bAGirgrlnw6uTYVwnbK+BiJu+qwFMrwcW9+Y/wNh0B1inzhlYA8F4ov1XJyfOt+hOqA8D7e0Qjw/BFyi5aiPMXO7kBTb0GzppSMz7hIkBAYL0nd+L4hEh3v2A08xhxh6WF9jAXHsHizibeqqK+aVIAfIZ/51EqBpg/MPENP7D2GJeZz73FyF8NvPxHpb59l7Ao4mDBnkOKTaNv6gGRERERESkX/E4xFIuCqeuZ4xG4d13S98nERkyXpbwKcdxMMZgreWwww7jxRdfLFHPRERERERERIYxBVCLiIiIiMgIpBDqPHz3u98F4Pvf/35yUjY1jDqb1PBpay2u63L55Zfzne98Zwh6KyIjUcyLFbxcxA+ihsICqFPbiVktJi411zhcNPYEloffxsOWJHzYlxpC7GC4aOwJCh8uA9WApPIDqKMk3o9T3uKTcv1+kWk//1tElLiCqCuUHz7sLyStNiG6TJSwzZAgkqcqE6DaJILnPaxCiCuUakBERERERESk9HKZE66kdkVkhOroSAZQr5ia2GQBL9P8b8rbS6Ygaj+AOm3/Xu14pmfziqkpQdSRSDIQW0qvzUSY2/gQzwY302oi/UQH+xKfCxMD66YFEUfxCJt497D3fxOBxdJKmGftOuZGF7Ko5WTqbagoX4vkL7/xTxho/LPR+FeuxVVrmF//RPbwWZPl83bgxWkeMJ97oa2VpvD0/DopQybn8ccbVA1o/CtXfu8BA+3jDXgzoWpARERERGSY6uqCHTt6XodCsMsuPa/b28HaygvSEZEhZfRvXkRERERERCQ3lfg7tAKoRURERESkCBRCnafvfve7fOADH+Diiy9m1apVQGLiNdfJV38B8YEHHsiNN97I+973viHrq4iMPFPrphLYEiDmxXJPF01len0sQMA6TA0HYdUbgEJoS6mJsWBO4mLnHlroKum5W2wHxvO40fswTevHAm+U9PySoBoQgIXmX1zs3EOUnkmCXBaW58NiMd3fLKLEuXjz72Dju8yzhxT1PFKYxWYl851/pC0k7SKWCA8ogrCN0eV1Ud3966IHzN+4ALz1NNkDi3IOGZzcayCX94a+qTKqARERERGREWDjRgiHe16PGQOtrYmPAU0PilQaY4yCqEUkZ21ujLlNPQHUHrCtFmIZpm79BxX7VwBTg6h7B1D39yDjmJNof0JHYna4J4jao75oX5XkI1MAcX/fRXpvD5s4WAji9Akgzt6OpdVEeDa4mbmNDymIuEzyH/+ez2r8R5bcA4iLw8Myv/4JaEMhtBVA4y+qARERERERGbR49oeTicjIojlpERERERERkRxVYgC1fq8XEREREZEi0SrzAhx77LGsXLmSe+65h+uuu47HHnuMrq7sQZDV1dWceOKJfPGLX+T0008vQU9FZCRxHZfPHvlZXt78Mpt3biYWzy9o0gDGQthNfMTkn2MdwDDZq+azbfvihrfnebQUQ0dVM+2N4ew7DoF2wnS0NUN4a1nOLwmqgdFtYdW/ubjx0T4B1MWeMvAXkvcEUXtc7NwDLe3MC+9X5LNJPpILSb308OFWJ1rU87QSBs9LDyHmftixQwtKy0w1ICIiIiIiOenqgkik5/XOnbB9O7S0wMSJZeuWiIiIDE7cizOvycspgNqXKYi6K5CYN07uQ+YAal+mIOp5Z8FdeLh6cHFJxfGY17AkpwBin/95f4jDJk4Mj3jKkZbs9w/0DiKe17CEu1pOUQ2U0FCOfzYa/8pS6vBZn0JoK4PGX1QDIiIiIiJSFFVV2fcRkRFj6dKlyb/X1dWVsSciIiIiIiIiFU4B1CIiIiIiMsIphHoQPvzhD/PhD3+YaDTKiy++yIsvvsjWrVtpbm5mx44djB07lnHjxjFp0iSOOOIIjjjiCAIB/V8uIoVrOqgJgC/d/yU2t28m5uUWRO0HUKdtyzOIOhFAXcOv2o7XIpIy8cNn4yTGtJSXCQ0QBy5ufBRaUAhtmagGRrdSBVD3tJ34b1oQtca/rDItJB2K8GFfqxMFj5QQYi0oLTfVgIiIiIiIDJrnwdatsNde5e6JiHSLxXrmeoLBYBl7IiLDgeu4XPSvAMunRImZ7AHUvt5B1PkEUPtSg6gDFi56ycF9v8JnS83FYUZsHPdVrc17nqj7FgGAvAOI0/dNBBHPiI1TAHGJafwFBg6ftVianQi1NkC17Xmzdxn4jb73SHaZOB0mxjgvlJwv9mm+qLwKGX+H7DWQSuNf2Qp9DxioApxePwyqBkRERERERonGxnL3QERK6IQTTih3F0REREREREQqnwKoRURERERkFFAichEEg0Fmz57N7Nmzy90VERkFkkHUt5/PZhvLuqg4UwB18nM5BlEHPJgccflVlwKoyyVCjK/WP5UMnzXdEcSluFxokudLhNB+tf4pPr5lOiH9GFFSqoHRrff4w9AGUPecI/FfjX/5xfFYULNy0OHD+QbYZwohXlCzkjPCeypYoMRUAyIiIiIiUjSeBzt2lLsXItJt+/btyb/X1dWVsSciMlw0ra+n48FtfKoptwBqX+8gasg9gNoXc2B7Ldy0GJr+E4CZrbkfLEURx+O1us3UewFaCnhAoR9EHLQOUZMpvjK3Nhq8AK+xmXhrs64Vl5DGX+J4LNj1X3jW6/M5P3w2ikeriYMNpYTQ9oy2wXBwuJ5Xq9p6ZpytTe7TZeK0mggAzSbcbwjtguC/OGNzo2qghAY3/onxzTj+kFywqPGvbENWA3oPEBEREREZmaJRaG/veR0KQVsb1NTALrskPoqIiIiIiIiIiEiCAqhFRERERGSUUHKciMgw1PROHTwU4kvHdbK52ut3cfFAAdTJfbIEUQc8mNwBv3rYoWm3AOw+iI5LwUIE+PmO93Fxw2NE8UoSPutLDaEN4vDzHe9T+GwZqAZGN42/uDgsbD2JuY0PsSKwraDwYYfEglKLpe+S1P6lhhDPjE1gYetJWkhaBsWpAYMDeEA+0RKqARERERGRYWqgmyAjkdL1Q0T6tWXLFt59911M97/X8ePHl7lHIjIctM3Yh58dtI1YAesdUoOo8w2g9sUM/OwY+Mj2sdSHQvk3IIPiAtdvO4bDd/t73g8d9IWsQ40N0EmMsMlnxiDBAAEcrt92DG6ouoAeSKE0/uICC7eewNzJ/2RFqOdhJhYS4bMpY5qc37Eu/iMIDHDBjr2ZFZnIsshW/jj2zUQdmcSNQ10mnjb/FDUezU6EcV5VWgTtzMh4Fm59P66+D5RUweNveh49nnH8u2n8K1/h7wEwYA10f1NRDYiIiIiIjDDWQjDY8zoQSARRu67mi0VERERERERERFIpgFpEREREREYRpceJiAw30Sh85zs0rUss5vvSca0Zg6hzCaBO7ttPEHVPAHWIpn8H4N3nYdq0xE1nUnLzuvYH4FMNjxItWfxsggUCGG5sPSHZDyk91cDopvGXehtiUcvJzBl/NysC27MfkMIPoKb7o1NAEPVesbEsajmZequFpOUyuBowydjoxEeTdxC1akBEREREZJgZ6KbD1MXGIlI2v/jFL5J/N8Zw0EEHlbE3IjIcxL04J524lhWQDALMd8bADvCA4mxM958VU+Gkj3fwTLhKD6wrsTgelzQ+SgCHEA6RvK70JsYvYjw8EyOGl3eQsQFCOARwuGTK89zVcopqoIQ0/gJQTw2LdpySfHCpxdLshLvnkNMXxLU60eQTBwyGCzr2Z5adBEGYZadBZ5A/1q5KhM86Hq3GD5/taSdqLM1uuDuE1jAzNoFFO06mvlrzReVQyPgHrcGY/sffYukyGv/hopAaMH4Adb/vAUbvASIiIiIiI5ExifVHvlAIqrsfKtbWlngtIpKjf/zjH/zlL3/h5ZdfprW1lUmTJjFz5kzOO+88Zs+eXe7uiYiIiIiIiBROAdQiIiIiIjLKKIRaRGS4+cc/YN06AJre6g6iPqaFzbU2GUSdTwC1r3cQdZ8AaoD2dnjnHdhzz0F/GVKYWhukzgvQ7ERKfu46L0CtVThNuakGRjeNvywJrWeT00kQk3MYeWoAtS/fIOoghk1OJ0tC62kKT8+v01JUhdWA6RMB4QdR2xzbUA2IiIiIiIwgxsDYseXuhUhF+ec//5nzvu3t7Xntnyoej9Pe3s6bb77Jfffdx8MPP4wxBmstxhhmzZpVULsiMrrYurHQvhFIzPHaEq5/SJ2DtsEQhEt3bklwcbio80CWB7cyzqtiuxMmkuPV/tRSiaUck08QcRCHcV5Vsh8KIC4tjb/4/AeXntX4Dx4PvTvgnFGriVBrXS7uOIhZ0Ulpn5sVnQQd8IfaN2gz0X5agGh3yO3xkV30wNIKkO/41xPkwo4D+h3/G2tfp8PE+21D41958q2BMTbARR0H9lsDN9euZIeJ9duGakBEREREZIRqayt3D0SkhMLhMH/4wx/Stl1wwQVU++H0/Whra+Occ87hoYceAsB2h2CtWrWKJ598kl//+tecd955XHfdddTV1Q1N50VERERERESGigKoRURERERkFFIItYjIcNPrho+mf7vQAl86DTbWJRYZ5xtA7fODqI2FyTvhV/dD0xqHtHWDb7yhEOoyWVy1hvn1T1BNgEYPWkoYQtvohagmwPz6J6ANhU+WiWpgdNP4i18DFhjnVdHshLOGEAcw/e5hMAQgazRBEMM4rwoLqoEyK6QGMgVQ93wOqm1gwEXloBoQERERERlRjIEJEyCksCCRVHPmzMFkuYnYX0y7evVqTjzxxKKc1w+f9p177rlFaVdERi7XcXlk7yuY8+A8VkwFr4D1D/4Dja3JPXjW5xlwLMzcCI+8Mwt3DwXQlkNTeDq0wZfqHy/L+R0M17Ydp+vEZaLxl6Fgu+8XkpFJaxMl64OJ9R4gIiIiIjIyZQvQiUYrM2RHRIbEAw88wOc///nk/PThhx/OZz/72QGPicfjnHLKKTz33HPJ+XIg+aBl36233sr69eu5//77CQaDQ/MFiIiIiIiIiBRbJV4b000eIiIiIiJSAgqhFhEZTjZsgCefTN/W0UHTG4ZndrVcfUzhAdQ+//jzXoamlQYCcQikfLvYvBlcF8aOHdyJJC9xPBYE/4PnGMBQQwgwtBAe8nM3UkWNk7gJyAMW1P+HM6IzcfuNtJShoBoY3QoZf3/aI9u3BZNlH41/ZehdAwYYRw3NdBHtJ0a6gSraiaQtKK22AbpMLPnaxWEsQVr7qaUgDuOoxjiJilINlE8hNTCGEJ1EU7YYxtggO00U/19+yAQIElANiIiIiIiMNF1d6a+rq6GxEcaMUQC1yABsDjfu5rJPrvwFvsYYPvGJT7DffvsVrW0RGbnqX/0Pf7urmhkXdbGjKr9j/QBq6HlAcb7vamMi8Lfbof6ANtgjz4OlaE6K7MoUr4aNTicO2R84CT1jbTJsy4UDxLBM8Wo4KbJrHkdKsWn8pc1EmNv4EK8Gmmn0qmgZ4MGlDV4Qa+CPtaugA2ZFJyU/tyy4hT/WrqLKOjhekFYnmrGNIIZGr4pXA83MbXyIRS0nU2/1u2W55Dv+QZwBxz+AQ4PnaPyHkXxrwBgzYA0ErUuDZ1QDIiIiIiIjTbY5rWAwsU8lhu2ISNH99a9/BXoelPz5z38+6zE//elPefbZZzHGpD1cuffDlq21LF26lG9/+9tcddVVxe+8iIiIiIiISLE5Fbg+WgHUIiIiIiJSIgqhFhEZTp57Lv21tRAOs/gAy8JDoSoOYXfwp6mKw8JD4ej1lqY34onQ6dQby4JBOPjgwZ9IcuYCC719mbvxV6yIrAWghgBYlxavY8jO2+jUUmN6Fg3NDO3BwqlfwnVqhuyckplqYHTLd/xNd0Btavhwz7a+2+m1zafxrxyZaiARQhygOb6TKPG0/RucWqpNkPZ4zyLR8c4Yxpgqdtow272d3VsN1W41WJfWXrUUxGWcOyZZI6AaKKdCasDF0On1hI5PcRqod6pp87rY5LUmNjou1SaoGhARERERGWmMgebmntcTJsC4ceXrj8gwYfpZZJ8aPN3fPoXw2z3ppJO47rrritauiIxsba+/xGc+GKY2Cp1BiOWxFsICmEQAtS0ggDrgQW0UPvMRWPTCVurzPF6Kww+e3Oh00tAdGutgcwoihsS4Z3tIaW+JMjM0eEE2Op0KoCwjjb/4NbAisA0ApzscNlMIbYMXpJoAncSw2LQQWj981nZXRTUB8OgTQuuHzzrd80UrAttUA2VUyPjH8bKMPxr/YaSQGggT13uAiIiIiIj0VVdX7h6ISAk98cQTGGOSAdJnnHHGgPu3t7dz9dVX9wmbnjBhAvvttx/vvvsub7/9djKg2lrLNddcwyWXXML06dOH+ssRERERERERKZzjVF7gc6X1R0RERERERrRRG0K99957l7sLfRhjWL16dbm7ISKV7OWX019HIize32P+aZaOYHECqCHRTkcQ5p8G4NG0Lg6BlG8Z69bBkUcW52SSs3qnhkVTv9QnfDLfBaK58tv2zQztwaKpX6JeoZNloxoY3TKNf40JgUNaELVJi4vtu810/zc9iLrvtkwB1Br/8sr8HmAY545JCyH2A6hT+QHUQOKjQ0oQNYn9ndpkCHF/4cOqgfLKtwaitm8AdaKdxMdkEDWqARERERERERGb4827ue6XTUNDA+973/u46KKLOOuss4oabi0iI1fcizNv0uOsCFkcYHwHbB4DfSYGBmBJBFDnzSbO5wArpsK8973LXXi45JGCLYMWx2New5Jk8GRqYGS+QcS5Sg0gru6+1WxFYBvzGpZwV8spqoES0vhL7xrwZQqhTR0znx9C+0J0C68Gm/s8qLh3CG3v8FmfaqA8NP6iGhARERERkaIZMwbq9ZhBkdFi69atrFmzJjknPXPmTCZPnjzgMXfeeSfbt29PC67+4Q9/yKWXXorjJK4H3H333Zx//vns3JlYlxCNRvnd737Hj370o6H9gkREREREREQKpQBqERERERGR0RtC/dZbbyUnQCuFFhaLSFavvpr2cvFencyfkwigbq0Cz3SHxg7irc2axILD1kROZSKI+uEITWtTvmW8807hJ5BBSQ2ffDb8H1q9zu5wyN7LggYnET5saPU6wYHZVfsqdLJCqAZGt2xB1NkCqHu2Jf7bXxC1Aqgr14AhxN5Oak1VWgC1wTDeqU0GUPv8IOo2ryu5zQ8h7rBhxjkKH65U+dYApAdQ97STeN1FNLlNNSAiIiIiIiKj1dKlS/v9nLWWD3zgA8m55X333Zff/e53BZ0nEAgwduxYxo0bx+67715od0VkFHMdl4tWj2X5gVuJG2itGbqHlfZmSJxvXCe4Fi56CdzJb5fgzJLKBS4aP47le23E676EW40Bz6U1ECt6PfhXiRtiLtXWQPfDEB0LF709Dne7aqCUNP6SqQZ8DtAYD9ASiFEbd9LGDKcnotwCr7hbSUst9/zP9NRUh+vRGAvgZIg3Vw2UR8Hjj03WQMbxB/AS+2r8K1vBNWDiyTf1jDVgbXJRq2pARERERGQEiUbTXweD0NICU6ZAlvBZERlZ/v3vfyf/boxh5syZWY+5/fbbAZIB1Oeeey7f/OY30/Y588wzueaaa7jooouS8+m33367QqhFRERERESkclVQzhhQef0REREREZFRYdSGUPsqJfi5ksKwRaSCbduW/OvivbqYf0wXHYGeAGroXhJmCgui9gOoIdFeMoj6/0TgsQBNq7sDSdvbC/0KpAjqnRrOG3ssSztfT24zvcJkBys1dLLDi3Le2GMVOllBVAOjW39B1GETJWxjaftWm2CfbT6T8t/UbdUmqADqCtdfCPF4py5tPwfD3u6ktJDhVGNMFbsFJrDZtuL5i8pNsE+AsWqg8uRaAwaTMYC6p51qPjXmeG5qf1w1ICIiIiIiIqPaCSeckNN+xhjq6upy3l9EZCg0/XMLHevg4jMg6nRf6beJud6hYmziPFEHmqvhxr9B07+64AOZrz/L0GraNB5i+zN/31U913atQyTusNPtGxQ5GBYSQZaeg383gYPh2v/sT9O28dDPHIQMHY2/ZKoBnwOMi7rJB1knZb2VwKbtU20dqjz/roHe51ANlFNB429s9hpIuX9V41/ZCqsBBq4Bi2pARERERGS06OiANWsSa4L237/cvRGREnn77fQHSc2YMWPA/SORCP/85z+TwdIAX//61zPue+GFF3LFFVewbt265LneffdddtlllyL0XERERERERKSIKiRjLElZYyIiIiIiUiajOoRawc8iMuxEEws3Fu/VxfxjW+lwbVoAta+QIOrUAGpfWhD1nE6ARBB1LHOgqZTG4vZlXLrtdsa5tTTHdxIlnjF8ONdQ4kz7WSwGQxCXcW4tl267nVoToqluVtG+DimcakB6B9B22UifsOkGp5aYjROm//dsA9SbatpsV3Jb2MboshGqTUjBsxUsUwhxKgfDtRMv4Gfb72O919xvO1PdBr7beCbzt/6xzwJVUPhwJculBr7WeBo3tz0+YDvHVO3HEdXTVQMiIiIiIiIiWWhuWUQqRVu0nVsPhdoYtLqlP39tDG49FD6yCupffLH0HRAAmgDedJk/pxPPQJdr6Qx254wWca2MsdDpeISiEarjBsfCtY/W0LR6HbCueCeSvGj8pXcNpMpYAoEsP8t6BnplmGdqRzVQGfIef4fE4A0k1vcB1n2a0fhXjLxrwGXgGwn1HiAiIiIiMjoYA2+/DZMmwQEHwJgx5e6RiJTI1q1bgcSctzGGCRMmDLj/s88+S1dXF6Y7nGu//fbjsMMOy7ivMYZTTz2VG264IbntX//6l0KoRUREREREpLIogFpERERERCRp1IZQX3jhheXugohI/oLBngDqgKU11DeA2pdPEHWmAGpfTxC17Qmi7hq13z7KbnH7smRIpMEwzh3D1vgOYr1G0GAw9D+u6fsm/psaQmwBt7t9g8HDMn/rHwEUQlxmqgHx+QG0c9b/sE8AbYNTS7UJ0m7jWdupMkEajEOr15Hc1up1sldokoJnK1x/IcR+AHVT3Sx+tv2+rO34/6Z7hxArfLjyZauBXQONWUOoQTUgIiIiIiIiks3ll1+e/PvUqVPL2BMRGe3iXpx5H4MVU6G6+xmULVXFDZ3NxHZPOjWGE+ddMRXmfQzuWtyBO9Qnl341vQJEXD59Wiz5cOlc5wdz5Y9uaxWYLsvv7w/QtCoOdBbxLFIIjb/4NTD/5Fi/9w4lWfpJpvU/b7MWj2Ph2odUA5Ui7/HP9vksixs1/pUnrxrISu8BIiIiIiKjgjGwfj1s3Jj4WKN7Q0VGi46OjrTX9fX1A+7/1FNPJf9ujOG0004bcP+DDz447fXatWv72VNERERERESkDBRALSIiIiIikmbUpojedNNN5e6CiEjeFu/VyfxxfgC1zbqAJJcg6oECqH19gqj/HaEpr55LMaSGD/vCNpr2GnrCh/ORKYTYwxK2UapNKPlaIcTlpRqQ3pZ0vMqmeCtBXKIkAqf9AOp8VJsgOLXJIOogLpvirSzpeFVjXeF6hxCnBlDno3cIscKHh4+BauC5rv/k3I5qQERERERERKR/qSHUIiLl5DouFy2H5bsk5nAtQx9A7UudV3YsXLQcBVBXoGIvT8mWWyuVReM/+jStcgGyhtBmuzcoW+30hM+6efdRhk7O4w94A7STba2lxr9y5VoDHgPXgN4DRERERERGEWshFoMtW+DJJ8Fxyt0jESmBaDSa9joejw+4//PPPw+AtRZjDO9///sH3H/y5MlAIrAaYMeOHYV2VURERERERKS4FEAtIiIiIiLSh+4UEBEZJuJenAW7b805gNrXe+FxVcp9IrkEUPv8IOqOgGXBvjuI24GWpkixxa3Hgh2PpYUNd9kIrV4nAE4yQjj/8GGf6T4+tb1Wr5MuG0nu42FZsOMxjX8ZqAakNz+U3ALj3DEEjVtQALWv2gRpcGoJGpdx7hgsiTDaxe3LitpvKT4/hPjIqr0KCqD2NdXN4tqJF3Bk1V4KHx5mVAMiIiIiIiIiIiKjR9NKuPY+6HKhpbq0526pTpz32vsS/ZDyWrx/nPknx6iKQ0N4aELJ/XsKGsKJew3mnxxj8f4Dh1NIaWj8xde0yuXahwI4A9wA5Jnu8RzgT38UPlvZchn/bGM/0D1oGv/KV4wa0HuAiIiIiMgoZC1s2ACe1gSIjAZ1dXVpr9va2gbc/4knnkgGSgMcd9xxA+4fDKavYeno6MizhyIiIiIiIiJDQAHUIiIiIiIiGQXK3QEREcmN67icu8fpPPTm/+YcQO3zL0U1hqE6Bl0BaKnKPYDa5xnoCMK570zGffqZPI+WwXCBheZI5jZsY0VgG13EaHXSn0Tv5BA9bBh43FNDiH2t8U7wYlQTYGZsAgvfPRJ3jca/1IpRA6mf7a8OVAPDw+KqN5k/9olkKLkBxhMiMbI9oeGYOJgs7/bRKH51VAPVhIBEbXnA/A2/hx0raQrvXdwvQoqqHriL2bhEgKd6PtHQBm5X/wdGt8Panv2bgDOYjbtm+VB1VYZI5hrYCOM6Bz5w/WtAz42+qgERERERkRFi/XpIXdTX1QV77VW27oiIiEhxdQShvao8526vSpwfUEBJGS0+wGP+yfH0eweGas1MSrueSQQRYy1NbzhDdELJRuMvvTWtNGBd5n8wnvc9RUC/NxA4Fq590KXpDUNi9lgqUdbxL3ANo8Z/+NB7gIiIiIiI5CyQspQ0GgVH13hERoPGxkaAZLD06tWr+933lVdeYfPmzcl9p0+fzqRJkwZsv7W1FQBrLcYYampqitBrERERERERkUFQALWIiIiIiEi/FEItIjJMxL04t3ovYQdxrctYOHk13LN/4W1Y4FZe5tzfvIyr61wlVQ8sqoI5F8KKqeS2SCylXvwcWgPpdZTDBctWE2GvjREW/aGD+vCNuXdaimowNWBI39+YlJeqgWFl8YEw/3TwOrLvSxAIZdmnY+CAWg+Y7/wDlkLTyhw7KWXhZtp4PtAwwEFb2mHR9dnbkWGhz9hNIZEqPZAH7oe3srQjIiIiIiLDnzFwyy0wbhxcfjlMm1buHomMKOvWrWP58uVs3bqVbdu20dmZuOZ22WWXlblnIjISLTwELj4D4ib7A2iLzZA478VnJF7P+1d0wP1laCw+EOZ/kGTIZFcAWqu654NNcWvCkGi3tTv0vDrWHUT8wTjE4po7KgONv/Sn6RUg1j2XXIR1dI6Fa++DppVxID74BmVIafxFNSAiIiIiIjmJdl/TbWyE2trEgwYVRC0y4u2/f/pCwieeeKLffRcvXpz8uzGGY489Nmv7zc3Naa/r6+vz7KGIiIiIiIhIESmAWkREREREZEAKoRYRGUZsVRXGODjWy2uxiCEtizi5DfJbgOjY0i9klnRLpsOmOgh6EM3jXj9j+77OJ9A86CXOu2S6QmjLrZAa6B1ATfdrk8ciZNVAZUgGUJd47sMzifOCxl9ERERERERk2LIWtm+HSy+Fv/+93L0RGfY2bNjAz3/+cxYvXsxbb72VcZ+BQqhvu+02Nm7cmHx9/PHHc9RRRxW7myIywkRiEb56CkT9J8l1h86WTPfEUtSFr54CH38VQl4Jzy/EDSw4vG8AsS/feeBsUueZewcRLzgczngDPby6hDT+kk3TSrjrQHhon8G3ddKbmhsebjT+ohoQEREREZGctbTAYYeVuxciUiKHHHIIjuNgrcVay9NPP83KlSs58MAD0/aLx+PcdNNNGGOw1mKM4cQTT8za/sqV6RcRdtttt6L2X0RERERERCRnCqAWERERERHJSo+qFhEZJlzH5XNHfo7xoQaCXiIQOheGxMLAhjBUxROLTKriidfG5r4m2bGJENrxHfC5F7SQsBz88FlrYFxnYjyyCXh9A6h9uY5/0Eucz3aH0C4+MPsxMjQKqQFj6T9p2kIwnr0N1UBlKFcAtc/T+IuIiIiIiIiMDF1d8N3vlrsXIsNWPB7n0ksvZZ999uEXv/gFa9asSS7WTf2Tzfr16/n617+e/POtb32rBL0XkeEuFAjx8wcSczeW4obN5sJ2P+A06MHPH1AAdTm4Fhb+FWZu7BtADLnXRK6l07u91qrEeWduTPRD9w2UlsZfsll8ICzZuzhtLdlbc8PDjcZfVAMiIiIiIpKXVavK3QMRKZG6ujpOOOGEZLC053lccMEFtLS0pO13+eWXpz2AORAI8OEPfzhr+8uXL8ekhHzts08RnpAlIiIiIiIiki8FUIuIiIiIiOREIdQiIsNI00FNXHfyLxjfQU5B1KkB1NWx9M9Vx3IPok4NoL7uPmhameUAKbq4gQWH94TPGrKHEDeEwe31+d6v6a6P/vjhw36NeN39iFfY9dfRoNAa6D1UgV6h045qYFjoPf6FqooO7niNv4iIiIiIiMgIoQXFIgXZunUrJ554IldffTXhcDi5SLf3n1x8/vOfp76+HgBrLUuXLmXdunVD2X0RGSHmvQKff670AdQ+axLnn/dKec4vUB+G816GjkD6dj8kPBvT6+NAMoWddwQS568fYI5Rho7GX/pT7Ica6yHFw4vGX1QDIiIiIiKSF2Ngy5Zy90JESuiCCy5I/t0YwwsvvMABBxzA5z//eb797W9zwgkn8OMf/xhjTHIe/LTTTmPixIkDttvW1sbLL7+cfF1bW6sQahERERERESk9BVCLiIiIiIjkTCHUIiLDTNPP7+e6+xKB0IEBwmd9mQKofX4QdTYBBVCXnWth4V9h5saebQOFEPvjHna7F5sasB7EbOJjcpvpvw56hw9D4vwL/5roj5RWoTXgpYy1iYNnEx/9bXHVwLCQafxzETeJGvAMOLHE+Duxnm1ejovRfRr/4WfSThjf3v+fSTvK3UMZSsEuqM3yx4lnb0dEREREREaA3jcxdnWVpx8iw1gkEuGMM87giSeeSAufttam/cnV2LFjOeecc5LHWGu56667hqj3IjKSLD6sijvfA41l+nbe2AV3vkeBhOW0+EC49GQY19UzT5hvAHF/rzNJDSIOeonzXnqyaqBcNP6SSbbwWcd2P6S+vz/9tKsQ2uEh2/gbBh5/p583EI3/8JG1BvQeICIiIiIiPmPAcRIf4/HE30VkVDj//PM55JBDkq+ttWzZsoXf/e53/OQnP0nOg6f67ne/m7Xde+65h2g0CiTCrWfNmoWj9xYREREREREpJQVQi4iIiIiI5EWzeSIiw83dd9O0En76YA775nptKof9fvqgAqjLrT4Mi+7MHkKcMXg8Ts842+7XKXqHEPcXPrzozkQ/pDwGUwNOrHthKYmPTiylAVQDw0Gm8c/GXxAeiILbXSOul3idL41/5YtnmCNzAcft/4+b4TfCTO3I8NB77EwIjDvwn1AO7YiIiIiIyAjkuuXugciw85WvfIVnnnkmLXx6woQJXHnllbz44ots376dmTNn5tXmOeecAyQW4wI8/PDDRe+3iIwscS/OgmNr8QzUxEofRN3YlTivZ2DB4bqWWA7x7v/vPdMzT+jY7FP+hvR5v0C8/89lYkmcx58/VA2Uh8ZfMskWPgs9QcP9/TEDFJFCaCubxl9yqYGBxl81ICIiIiIyyvQO5GluLk8/RKTkHMfhlltuoaGhAaDPQ5f9bb6vfvWrHHnkkVnbvfPOOwGSbRx33HHF7rqIiIiIiIhI/xRALSIiIiIikrdAuTtQLnvvvXefbcYYVq9endO+Q6G/84uIJP3jH9DVRVsV3DoTxkQh6vSEjKYy3WGzrVWJ131CiYGuQOLzBsD2386YaOJ8H/m3wkfLzQ+hnXs2rJia2GaAhi7YWgs10SwB1D4/iDola6Y6BhEHOoOJ9hQ+XJkKqQE/gDptmwVipA20aqDyZRp/SPyTbq6B2l7jb2x6ALXP9YAoxILp27sC0BFUAPlw1FYF8z4GFy0f3EMjFh+YCA1Y+FeN93CjGhARERERkbwohFokL2+88Qa///3vk4twjTGcfPLJ/PnPf6a+vr7gdufMmUN9fT07duzAWstjjz1WxF6LyEjkOi4LNx3H3Kq/s2Jqzzxv1gTZYrA9p5m5MXEN0dV6iZJzbeL/e3+uKByAWJ7jXxOBkAeROHR2P6nQ9HO/QKqYSZyvOqYaKJdM4z9Q6Ch0h0ynjG+m8ccm1mMNNJyexr8iZQqfLda3hdR2/BBa0APsK4nGX3IJoC4G1YCIiIiIyAhVaQE9IjLkDj30UB566CHOO+883njjjeR2fx7c//tXvvIVrrrqqqztrVu3jr///e9px5922mlD03kRERERERGR3irt+pYCqEVEREREZJgYtSHUb731VtrkJqQ/qTfbvkOhv/OLiCTdcANtVT0LCqtj0Ai0VKUvCDU2fUFRpiBqP4A6eQz0CaI2FhrDieNWTE2cVyGk5dc7hNYCrdWJz3UGEwtGq7tDh0NhiPT33b47iNqxicVCXYHE8XS354fQKny28uRTA4Fo/+04FnZpBS+kGhhOMo1/c03ioQSp7/eOhaPfgif3zNyOH0TtdK8eTf2+0Fyj8R9OUn82WL5LYlshCz9TF6jqe/7wohoQEREREZGcGVN5N1uKDAM//vGPicfjGGMwxnDkkUdy7733EggMbrrddV0OP/zwZPj0jh07WLt2LXvssUcxui0iI1T9hGksuhnmXAjLp1KaAGoS52mugsObde2w3Py5onxqwA8T9QOIoftjJBFE7A1wbJJqoCKkjr8/VziglB36G//kfgPUkiUxl7iXxr9iZAqf9YCWDA8vzpf/8OLGTnD8thVCW1E0/lKqAGqfakBEREREZITRvLHIqHXkkUeyYsUK7rjjDv72t7/x5ptvsmPHDiZMmMDs2bP55Cc/ycyZM3Nq69prryUejydfT5gwgfe9731D1XURERERERGRHpV2bUsB1CIiIiIiMow42XcZ2fyFwvnsOxR/RERy0favZcmAQV91DBpyWNzXWpVYJAR9A6j70xBOX5TkB1G35XCsDC1/YenBm3vCZ32tVRB24dr7wI333wYANrFf2E2viaiTaPfgzVpAWqlyroEsK8bru1QDw1Gu47/X9oHbcT343v0a/+EsNXwYehZ+Lj4wv3Z6L1DV9/zhQzUgIiIiIiI5c5zKu9lSZJi499570x5a/Pvf/37QAdS+I488Mu31ypVK8xKRLJqbWbK34Z06ShdA7TPwTh0smV7i80ofS6aTdw248Z4AYl/I655TzrUd1UBFWDIdNtZBwEt/0Hgm1iQCpFMDqH0hL7Hdkls7AS9xXo1/+Q0UQOw/vLirwB9X/XuKok6ivdSyKXQeSopL4y+lDqD2qQZEREREREYAP3xa88Yio1ooFOK8887jjjvuYNmyZbzxxhs89dRT/OIXv8g5gBrg8ssvp7m5OflnzZo1WistIiIiIiIiQ6/SfvestP6IiIiIiIhkUZyVscOUzeMpQvnsKyIyFOJenHmz32HFlPTtHtAZTKwJ9d+pbPeL3peq/EVGYbdv+70XFZrudqti6U8sWDEV5n0M7rrTxc22ClGGlmuBAVKmXQdMlgRifz8G2M91IaCxrki51MBAYwuJf+yqgeGpWO8B2R5Lo/GvWG0hy9yPeayYkv67ir/wE9cBJ0sNOLD4YIf5p3h9FqiumApzP25Y9FeH+ohqoBJlq4GvPpVDI6oBEREREZGRKRbLvo+I5GT58uVs27Yt+XDh4447jkMPPbRo7e+xxx5pr9evX1+0tkVkZFrM61xyumXrmPKcf2sdXHI6YKDp36P6tqOyWXyAxyWneGyty++4mAsdFmpTflTsCCS25yNZA65D0xvZJpqk2BYf4GW8pj+gLPsa03O/STap81Aa//LIVAOpAcQ+/yHE1bn8eth9n1Hvh9r7QcSNnT3TyqqB8ipo/HN8v9D4Dw8FfR8oItWAiIiIiMgwkmnOWIE4IlJEY8aUabJKRERERERERq9Ku75lDHg55DmIiIiIiIhUkFG7GuzCCy8ckn1FRIaK67hctByWn0JyEUnqIiJj00Ok+wuiziWAGhLtZVpM5Fi4aDkKoC4zP3Ty1cmJ8UldTNYQhqo4zD/FI55twbBJ7FcVTxznLyYLeol2X50Mcz/mKXyyAuVcA1nWe7VVqwaGo1zH/4B3B24n7sDlp6DxH4b6Cx/2ed3v77s3D9zO2w0MuEB1xRSrGqhQudTA/xwHY7tgXGf/7Ty+B9xwlGpAREREREREpD///ve/016fdNJJRW2/sbEx7XVbW1tR2xeRkSXuxblu6jo2j+k7v1sq1sDmOrhuFpzxH6t54xKLG8t1R3hsriusBiKBxD0ER70Lz++SeJ2vZA0c4XHGKqMaKKG4sSyYaYmZvoGzA7LQGQIiUOXBwVvg1UkQdhLbrSWnkNrUe0gWzLScsUrvAaXm18BAAcSpw5kaKOwz9NRA6ixT7wBiv53+gohVA6VX6PgHU9Y6avyHt0w10Fu2t/T+aiCfdlQDIiIiIiIiIiIiIiIiIiJScgqgFhERERERKYpRG0J90003Dcm+IiJDqWmlgTjMP50+iwozrefoL4g6bZ8Bju0dRB2wcO190LSSUfwdpPx6h0469ITQ1kahOpbYzzMQCZFYcZZp1ZAB3J5Qc/+4jmD64jGFT1aefGogFgQnlgiQ780z8G4jTOpIvFYNDA/5jP8ze0HcgJth/iLuJOrDC4OLxn84yRY+7PMMrJgG01ozhxA318BrUxIB5ANRDVSefGpgbWPi7/3VwLVHpy88z0Q1ICIiIiIiIqPZli1bALDWYoxhr732Kmr7Y8aMAcB03xi9c+fOorYvIiNL3Iuzom5n2QKofdbAiqmJIEQFD5ZW3FhWTB1cCHk4AKvGJz4WSjVQHq41XH+f4fDPWCJO7nXg79cZghNXwbmvOdw+w+O+/btvJcijnYiTmGe8/j4FkJeDaw0L73KS80SZAoitSXz07xForYLqKIS8xFBfsMIw613Dsl0sf5xpsSQeaL8j1HOeZMCtzRxEPHNToh+qgdIqdPzHRhL3gPU3/hEHuoI959H4V67eNdCbXxOp946k6q8GeusK9L13JJVqQERERERERERERERERERESqrSAqhBAdQiIiIiIjJsKUJURGQ4MYamldARgIs/mh5A3V8E4UBB1P0FUPufo1cQ9Y13dQdQS9n0FzrpkAiXzDicLhAnvUi6A6h7q45BVaxvOwqfrByF1IAXAOKJf88+a8Bzwel1bVs1UNnyHX/bHUROLH2sPQdiGX4T0PhXvlzDh30esHZcIoy8oatne2s1rG+EQI7zW6qBypFvDVgzcA2MzRJC7lMNiIiIiIiIyGjV1taW9rqurq6o7be2tgI9IdfFbl9ERhbXcamzQbYSLXdXqAt3PwTT5natUorD9aA+DFtrB9fO5jGD70u9aqDk4sZyyelenzneXIVi8NQe0Frj8eqkxOtCwsgdDy453eOuO1AAaRnUh2HRXwxnnW35/9m79/g4yzr//+/rnmQmSds0LdAD54NKOVkqKAeRLSCgIIdUsEo5LK2wrlp/sifXwwroelzX1S+762kpLFgxbmkqKqi0Uk4KuGwJWG1BzgXaQtskbZPM6b5+f9xzT2YmkzllMvck83o+HnmkM3PPdV/l82GS3vd9ve8HDxkZQOxzzXAQ8WBYMjHpwxukE1/ztva+S/+1QBrMF0Cs7GuO/GuH3vWit//2mL9X1FIl9d8dllrjBeofHr6ehPrXP78HFr/fqmf28POZoeR9Ee+5zCBqL4B6ZA/cNj97/KGm4fdnho/75m+jBwAAAAAAAAAAAAAANVSPAdRcMwcAAABgAiOEGgAmkuZm9YcS+uF8qS3uLfgoFEDtyxdEXSiAOnMbP4i6LS79cL50wTPeYhbUXrmhk1kyg6hHCaAuhvDJ4I2lB9yQ5KSCqP0Aaqm85WD0QLDGUv9EkxRKBVG7jpSs4F8B1D94xXrA/4jPkvo9YUuHFO/3fob3R6Rt7cPvKWkc0QP1oNLPgUI9UA56AAAAAADQiGbMmJH12A+Nrpbt27dnPd5nn32qOj6AyScUiUh2IOhpeKcbrSV7sMZCVvrCfdKVF3vnfILiuN48Qq5EE9ROyEoffEq69/Di13vkE2vyavaH/aSY4z0ulzVSX6s3D+ofoJyFbKNdA5QOIs66Zij7vSZn+xG7ynPNEZ//ASu3/ipS/zwB1OmtqX9dao9KXauMFl/iBVFnBlD7MoOojaQrMgKofX4Q9R3Het8zA6il4fBxP4h6/jZvvwRQAwAAABOY/2/KegzuARCYeDyuRx55RBs2bNAbb7yhHTt2aHBwUMYY3XzzzUFPDwAAAADQyOrxOBYB1AAAAAAmuACXIwEAytV/4H5afInUM8dbINIaL305R2ZYdSkB1On3ydtPS8Lb7+JLvOBC1FbSWC25ePTQSVfSrlZvMdCoQhlfoxhq8sZxR3m9Z7Y3j6ThwGitVaMH3NDw12jogfpUjfonm7ww6kIB1NS/flWjB7a1S69OLxw+TA/Ur2I9UIpSeqAYegAAAAAA0Gj2228/SZJJXcT88ssvV3X8Rx99NOvxvvvuW9XxAUw+01o6gp6CJGnaUNAzaExJY/XD+cFf8OXIu4k1x4pry69/ssK1VVbSYFja2+x9r7R6SUP9g9Qftlp8idXGWdKMQS8MvNA1QK6ktoTU5Eq3zZf+d673/P/O9R43udLU2OjnByVv/JDr7W/jLGnxJVb9YeofhErqPzVWuP5tCeo/EbXHjLpWGR2zfWQAta8vIkVD0l89Phw4nevE16S/+623XV+eawL9IOpjtvsB1HW4wBcAAABA+QjKASDpf//3f3XJJZeoo6NDCxcu1HXXXacvfelL+u53v6tbb71Vt956a8H3/9u//Zs+8YlPpL9+9atf1WbiAAAAAIDGQAA1AAAAAIyLQlGVAIA6knSTWnJBTD2p42RDTdJgs2RUWRB1qYy8/YTd4SDqJYukNT9JKlRqkjXGLCRp6QZpwxzJzfnP7mp4MZG/GKglMcpABUo21DT8/t5WqWNw5OJlx3rzCCWtKl+SikpUqwcK/W9LD9SvqtW/QCIB9a9v1eqBveHR90EP1LdCPVCOQj1QCnoAAAAAANBoDjnkkKzHuaHRYxGNRnX//ffLGCObuij5bW97W9XGBzA5zdn3EDW9+LwSAaYQN7nSnL3B7b/Rvd7mHScu51qBajLy9v96WwA7x5jrbyXFC9y0uBjqH6yksVqyyKpntvfYlYr/PDBSwkjN8up/23zp8f2ljfsN91DcUcHrSZTajyvvnFXPbGnJIqs1XeLaoRqqtP5xR4okR69/woj6TyL+z4ix3CfAv8bQ4XQwAAAAMLkRmAM0rD179mjZsmVatWqVJKXPVZdrypQp+vd///f0DZ1///vf69xzz63aPAEAAAAADYwAagAAAAAYN4RQA8AEEXJCWnriNdrwv1/UQPNwSKSxkioIly5F5oIUf39t8VTwoCsRPFhbnZu878vfOxw+mRk86isaRJ1HZvCo5I2XG0DqWOmme/x5UPsg0AONjfqDHkC+HqglegAAAAAA0Ije9ra3qaOjQ319fbLW6je/+Y127NihffbZZ8xjr1ixQr29velFuUcddZT222+/MY8LYPIKOSFde+on9MQzD2lrOQeBq2zfvdK1/2cIngxAyBp99kHpwxdY9bYUvgHteDFW6hiSPvsgPVBr1B8ha1I3LbWKG+n1KaX1QTR1lWhrwjvD84eMXzkHm4ZfL8Sm9rffXqnZSks30AO1Vmn9B5u9c4vUf3LpD1stvsRq4yxpxqC0s1WKpW4y4J/J7Yh6AeTfO0G6/EnpxNdGjvO/c6U7jvW2mx6VeiPD73eNFE5642+cJS2+xKprldQeo/YAAAAAAExUzz77rM4//3w988wz6fBpkyfYq5Rg6quuukrXX3+9tm/fLmutHnvsMW3evFlHHnlk1ecNAAAAAGggBFADAAAAwLhyim+CahkaGtK2bduUTCaDngqACarzQ1/Qkj+GskIiJW+RX7UPo2UGUPv6ItKSHqlzcx0etGsQnZuMbrrHC4HMFzzq64t4gaKlyA0e9fkBpK4yQyepfdDogcY2HvWPUv8Jhc8AZPZALdEDAAAAAIBG5TiO3v3ud6cX2cZiMX3jG98Y87ivvfaabrzxRhljZK2VMUbnnnvumMcFMPmddfhZah0MLoBa8kIsz3o+0Ck0tM7NRl9d6x2/D4Ir6atruW4gKNQfnZuNrl9fegCxL9rkBQ5nKjWA2OcHEV+/nh4ICvWHNBxA3TO7tO2tpNvme4HTmf53rvd8qTdA7pntBVH3h1lcCwAAAADARNTX16f3ve99evrpp9PnqP3z1dZatbe3q6mp9ANGkUhEH/rQh7ICq3/605+Ox9QBAAAAAI2CAGoAAAAAGHeEUI+zXbt26dOf/rTe8pa3aMqUKdp///0ViUR03HHH6etf/7qGhoaCniKACaT7T91aeXxI06MjX8sNjB6rfONNj0or50vd8zhIFqTOTUZfu3f04FFfvkDRcrfzA0i/di+hk/Wkmj1gi2xHD9SfcuqfLKFku6n/hFPNHkgaPgMmoloHURNADQAAAABodNdee60kpRfgfvOb39QDDzxQ8Xi9vb1atGiRtm/fnn4uFArpE5/4xJjnCmByS7pJnfXfZ+nFjurfpLhURtKLHdJZV1glq32SGiXZMtXVZ84Kbr2NMdJnzvLmgdqj/vB7oJIfBJlBxOUGEKfRA4Gi/sgNoLaSdrVKCWf4/LFJfWXevDo3iNoPoPZ/m/NvXu2/V/LGSzje+P52BFEDAAAAADBxLVu2TJs3b84Kn543b55uv/127dixQ7t27dLRRx9d1piXXnqpJO9cuiStXbu26vMGAAAAADQIAqgBAAAAoCYIoS7Bjh07dNlll6W/rrjiipLCozds2KBjjz1WX//61/XnP/85fUdg13W1ceNGffrTn9aCBQu0adOmGvwtAEx0STepFU+skOsYtSQ0IojaVvl4Wu5406NSS0JyjbTieLGgOED9YasfvlVqi5ewcRX6oi0u/fCtYvFQHSmrB4pwS/htkB6oL+XUP1bJotEc1L/+lNMDCUcabfmvKykeKj4GPVCfahVETQA1AAAAAADSu9/9bp1xxhmy1soYo3g8rve9731avXp12WOtX79eJ554oh577LH0wl5jjD70oQ/pkEMOGYfZA5hs7FNPSfJuKlzro3ZGwzcz5ohxMGKOqxOulXa2BtsDO1ulE6715oPaof6oRg9EU0GzlQQQ0wPBov5IGqsli0YGUGfevNqxw7+vScP1do13k+pb50s3vd37njTe835f+IzNPg8dzxNEvWQRNyQBAAAAJrx6DPUBMG5+//vfa/Xq1elz1JJ09dVXq6enR0uWLNGMGTMqGveUU07RPvvsI0my1uq3v/1tenwAAAAAAEpWj8eq+PctAAAAgEmqCrF0k193d7d+/OMfp+/Ge/7556ulpaXge9544w2df/752rp1q6ThO/lmstZq8+bNes973qPf/e53mjt3bvUnD2DSCDkhrTzlG1q8dr56ZniB0JK3AMSa0hb5+ouBStnept5g7HAAtSTN3yqtXOMo5HAfgyD0h60WL3LVM9tm9cB48WvfM0dafKlR12pH7bE6PIDbQOiBxkb9UUkPuI4kN/sORK5KC6GnB+pb5zOSHFfLz3XljkNZHCvd9CtHnc84UgmB5QAAAADqSCJR+HWO7wJl+9a3vqVTTz1VAwMDMsZoz549uvTSS7Vw4UJdc801OvXUU0e8Jx6Pa8eOHXrxxRf1wAMPaPXq1XrsscfSi26NMTLGaM6cOfr6179e678SgAko5IT0mx9EtfAq77htrZc4WHnnnOdvlX5zmxSq9p2SUVTYdfSXT7j6RurHTlA9IEl/+YQ3H9QO9Ue1eqDSj296IFjUHyFrtHSDtGGOVdKMDKAezUCzFElIza5X/z/tN/xa3JGioeKh5n4Q9YxBKWSlpRsMvwsCAAAAE1k9hvoAGFdf+9rX0n82xujcc8/VzTffXJWxTzjhBP3617+WJA0ODuq5557TEUccUZWxAQAAAAANoB7XNhBADQAAAGASI4S6BHfddZckLzTaGKMPf/jDRd/z6U9/Wlu3bs0Kn868g6+/oNhaq5dfflkf/ehH1d3dXf3JA5hU2p/4k7rWdmjxmTvVs09cLQkp5kh7w8Xf6wdQy/9eYhB1Wzw7gLprldQeV3aSJWoiM3jUN54htJnh45LUM9vbPwGkwaEHGhv1x1h6IDOIutwAah89UJ86N3vFrHYQdTqAejO/9AEAAACTUog7zQDlOu644/SjH/1InZ2d6fPG1lqtX79e69evT2/nnxO21ua9sbH/Xv/Pzc3N6urq0uzZs2vy9wAw8bVHpZV3Ssd9VMXTAseBsd7+26OSQhwrDsLX7gsp2pTUt08KZv+ukf6/R715BNGDjY76gx5obNQfnU8bDTS7WnahLSmA2hdtkpQKovbFndTzJa6d9YOob77LqPNphx4AAAAAAGCCSCaTuvfee9PnuJuamvQf//EfVRv/bW97WzqEWpI2b95MCDUAAAAAoDSOU3+Bz/U2HwAAAACoMtKkSvDII4+kFwJHIhGdffbZBbffsmWLbrvttqzFw47j6OKLL9Y//uM/6qqrrtK0adOyFiffddddeuihh8b97wJggnvySbXHHXX9j9X8rdJQkzTYPBwuPZrMAOr0c7b4OhBjvfGHmjICqKNj+QugUkljteTi7OBRX0vCCwqtptzgUV/PbG8eyWJNh6qjBxob9Uc1esB1pKSpLIDaRw/Up87Njm76lSOnSmUhgBoAAACY5IyRwiXc2RDACBdccIFuu+02tba2SlLW+WD/K1Pm8/5X5numTZumO++8U6eddlpt/yIAJrQt06TTl0o2oNA/a7z9b5kWzP7h3bRy877SlFgw+58Skzbv680DtUf9QQ80NuqP/rDVD99q1RYv/73RJqWDq9MB1GVqi0s/fKulBwAAAICJjiAdoKH8/ve/1+7duyV557jPOussHXbYYVUbf//99896/Nprr1VtbAAAAADAJEYANQAAAAAEgkSpIl588UW98cYbkrwTrCeddFJ6UfFofvSjHyke967wttaqtbVV9913n1avXq0vf/nLuuWWW/TUU0/pTW96U9b7brnllvH5SwCYPDZulKJRtQ8kdfmT0kBqIUi+kGlfwdcKBFFnvjbQJF3+ZEYANQfOai5kjZb2mFHDJVsSUiRZnX1FkvmDRyUvlHJpj1EoqFXtDYweaGzUH9XqgVJKRw9MTJ2bHZ31QnXqctYLhgBqAAAAYLIKhaSmChKGAKRddtllevTRR3X00UenQ6eNMSV/Sd455Hnz5um3v/2t3ve+9wX51wEwwcQSMZ3wV9LO1GUr1boxXan8/e1slU74KynmuLWdALybVna66pkttcdqH0I6Jebtt2e2tKSTm1bWGvUHPdDYqD8ye6DSG5ZHm6TBpsoCqP2bWdMDAAAAwCTBuiCgYbzwwgtZj//iL/6iquN3dHRkPfYDrwEAAAAAGBUB1AAAAAAQGFaZF/Hcc89lPT722GOLvud//ud/ZIyRtVbGGF133XU67bTTsrY56KCDdOutt+q0005Lb9vd3a2bb765qvMHMMns2CENDKj7SKtPnS3NGJJ2tUpxxwuMzj2kVSiAOr2N9TbM915Jana9/XzqbKktLnVukmSM1Nxchb8QytH5nKS1SS0/O6bc5dxDTVI0VJ39REPeeLkBpI6km9aG1flcSKL8gaAHGhv1Bz2AQrrfnNS6w0ZJDy/TusOsuo921PlMlZoKAAAAQO0l8vz7gGO6QNUcc8wxevLJJ7Vq1Sp9/etf1+OPPz5iG/8ccK43v/nN+uxnP6vLL79cjsNNoACUJ9wU1l9ukL7xzownU+d7x13OR9pfbpDCLp9jtRayRkufcLRhjivXeGGg0ZCUqMHh3Kaktz8pddPKJxxuWllj+eovSXvD479vP3xWov5BogcaG/VHbg/45/T7IuWNk6zgVzg/gFqiBwAAAAAAmGhef/11SUqvdz7wwAOrOn5rq3f3VP+mzAMDA1UdHwAAAAAwCdVb4HO9zQcAAAAAxhEh1EW89NJLkoZPsL7lLW8puH1vb682bNiQfuw4jj760Y/m3fbUU0/V2972tvT2fX19+vOf/6w3velNVZo9gEln7151Hzak5e+VXOOtJZ4x6AVRx3IWh5QSQJ3eNk8QtZUUdr3xjbz9LT/Pe61zMwfQguKFQYazAkiHmspfTFSMP1568ZCkm+4NE0ZZB+iBxkb9QQ8gn+435w8nr5QrafnZMUnUHAAAAACA0RhjdOmll+rSSy/Viy++qPvvv18PP/ywtmzZoh07dmjXrl1qbW3Vvvvuq9mzZ+ukk07S2WefraOOOiroqQOY4L62zvv+jXd6x/JqEkCd2o9rvePFf/dwah4O542D0LlJkjVa/l6r3khtAqglbz/9YakjKt10j1HnZmnk7a4x3jLr7xrvuo4BjW8ljLz9SN7/9tQ/WLk9UIsg4twAYnogONQfuT1QaRB1OXIDqOkBAAAAYBIhXAdoCHv37s167IdGV8uuXbskDa/Bbm9vr+r4AAAAAIBJxtTZDY85RgYAAACgwRBCXURvb2/W446OjoLbP/jgg3JdV8YYGWP09re/Xfvvv/+o259xxhn6v//7v/Tjp556ihBqAKPq7nhNy0/1AqF9RlJrXIq2ZD9XagB1+j05QdTWeONmHr5LB1Ebq84XKvgLoCoyA0gHxiF41OeP25YgeLTe0AONjfqDHkCmagdQ+wiiBgAAAACgdIcccoiuvPJKXXnllUFPBUCD+No6af2h0mMH1njHRjpxy3AQNoLTudnotrdarZlX2/3uDUtnP+ftH8Hx//t/+ALrnc9JXe8xbqx33shY6b9+Zqh/HfBrkBlEnHCk6DhcDRpJ5AsgpgeCRP2R2wPjGUSdP4CaHgAAAAAAYCLZZ599sh7nrpkeq9dee63g/gAAAAAASCOAGgAAAAAC5wQ9gXo3ODiY9Xjq1KkFt3/00UcleXftlaT3vOc9Bbd/y1vekvV4+/bt5U4RQINIukmtOOiNrABqSRpqkvoj3iIPqXgAdSQ5+mvGDq9LdKw37lDOAiXXSCuOl5LlplyjqjqfCWnJxqZxCx719UWkJRubCJ+sQ/RAY6P+oAcgjV8Atc8Pou5+c4FfIAEAAAAAAADU3KfOkn5/QDD7/v0B3v4RrE+d6eqnRwaz758e6e0f9cHKu8n4uO4j44bmqB+dm41uusfIsd61PfFxOp0XD3njEz5bX6g/MntA8oKip0eruw8CqAEAAAAAmBz2228/SZJJBX09//zzVR3/t7/9bdbjWbNmVXV8AAAAAMAkQQA1AAAAANQFQqiLsDn/YIxGC1+l7YdQ+0477bSC23d0dEgaPoHb399f5gwBNIqQE9LKdR2av3X4uaEmZYVPOrZwAPX0qNQxVHjBibHDgdaSN35mEPX8rdLK1VJovFcxoqDuNye18phE1RcP5ZoelVYekyB8sg7RA42N+oMewHgHUPsIogYAAAAAAADqy6fOkv7lneMfOjsaa7z9E0QdnE+d6epfTg24B04liDpI3UdaLX+v9XqgVn1gvNovf69V95EswKoXnZuNljw5fO2QU+XS+OP1RaQlT4rw2TpD/ZEviDpSpdO6kSQB1AAAAAAATBZHHHFE1uPc0Oix6O/v10MPPZReH+04jk488cSqjQ8AAAAAmCQIoAYAAACAutFUfJPG1t7envV4x44do26bSCT0u9/9TsYYWWsVCoV08sknl7W/eDxe0TwBNIb2PXF1rZIWXyI9emB2AHUx06PDC0P876W+39/upC1S1yqpPSqptfR9o7oyQyfLrWU5/J7xwyelsDqfCVV/RygbPdDYqD/oAdQqgNpHDwAAAAAAAAD1IZaI6XtvDy582GeN9L0TpS8+YBV2nWAn02BijqvvnVhHPXA/PVBr3UdaLX+P1UCz1Nsi1Wo5lJW3P8kLopYhjLQedB9ptfKt3nm9vojkVrkkrvHCZ6dHpZVvlU5+lSDiekL9IUmdTxvJWC1/j6uBZilapdO50ZA01CS1xaWbfumk9lOdsQEAAAAAQG0dd9xxmj17trZv3y5rrR588EFt2bJFBx544JjH/s///E/t3bs3HUI9f/58TZ8+fczjAgAAAAAmEQKoAQAAAKCusAqoiJkzZ0pS+iTopk2bRt32oYce0sDAQPrxscceq7a2toLj9/b2SpJs6h+oU6ZMGct0AUx2iYTao9LlT0oDeW4j4Jr8i00zA6h9LQnv+VzW5F+UNNDk7bc9z3tQO/lCJ0er5Vjk9owfPtn95mR1d4Sy0QONjfqDHkCtA6h99AAAAAAAAAAQvJAT0sGxwteh1MrBvVIo6CTkBhSyRie+EnwGpJF04iv0QK0ljdWK492aB1D7/CDqgWZpxfGukoYFWUHyAslducY7r9c8TqdwmpOpG9caafl7XHUfSd3rAfVHps7NRkueMlW/eXVfRFryFDcdAAAAAABgMjj77LPTa5hd19WNN9445jE3bdqkL3/5yzLGyForY4zOP//8MY8LAAAAAJhECKAGAAAAgLqTJ8IUmY499tj0n621Wrt27ajbrlq1Kr2dMUbvete7io7/+uuvZz3u6OiobKIAGoO16p4nfepsacaQtKtViqduJ+AHR1tJMpK/1i9fALXPf95fgGLN8CJF10hO6kGz6+3vU2dLbXGpc5OkJAGEtdb9FlfL353IGzrZkpCGmqRoaOz7iSTz94wrafm7Y5LbpM6nuY9FEOiBxkb9QQ+gUA/UAj0AAAAAAAAABO+ARIs2ugNyAzxE57jSAXuC238jC1mjq3uM1h9qlQy4B67uMYRQ11jIGn3wD0a/OsLWPIDaZyXtCUsf/AP1D1JmALEk9Yel6DhdCRpt8sZvjw0HEUsOobQBov7I1X2k1crjrKZHVdUg6ulRaeVxVie/Yqk5AAAAAAAT3P/3//1/+uEPf5gOjF6xYoXe/e53a/HixRWN98ILL+iiiy7Snj17ZFKBYi0tLfr4xz9ezWkDAAAAACYyAqgBAAAAoC4RQl3EUUcdpdbWVg0NDUmSnn76ad19990677zzsrbbtWuXVq5cmT4JK0lnnnlm0fGfeuqprMeHHnpodSYOYFLqfnNSy0/zFvUYSTMGpZ2tUiwncNI/9NVRIIDa57/eG9GIRYqukcJJbz8m9Xh56uOv81kOsNVS0litmJ9MLyDLVa3gUckbZ6hplABSI62Yn9SFT4sFpTVGDzQ26o9q9YDRyJ/3ueiB+lSsB0o1JSbtDVf+fnoAAAAAmMBc17uQs94u5gQmiYGBAfX19Skej49pnIMPPrhKMwIwGYWckC7vPUT3te9UNMB5NFvp8h4p5ErFjzqjmpLG6lsnWQV9eNYa6VsnWX1wo8ux4hry658M+D95kvoHygsgtlkBxGM591MKf/ysIGJrCKUNAPVHrsyeGI+bV1NzAAAAYJLxg3Y4Zww0nBNOOEGdnZ3q7u5Or4G+4oor9Morr+i6665LB0kXk0wmdfvtt+vv/u7vtGvXrvRYxhh9+MMf1n777TfOfxMAAAAAwIRQb8efCKAGAAAAgDQn6AnUu6amJl1wwQXpE6HWWi1dulQPPfRQepvdu3dryZIl6uvrSz83bdo0vec97yk6/hNPPJF1gvaII46o7l8AwKSRdJNacVxiTMGDjpXOftb7XinXSCsWeIsbUTsha7RyTUjzt49sgKEmqS9S3f31Rbxxc83f7s2DhaS1Rw80NuqPavSAY4e/iqEH6k+hHijV7N3S/v3e90rRAwAAAMAEZ+3wF4CKRaNR/ehHP9JVV12lY489VuFwWNOmTdOBBx6oww47rOKvww8/POi/GoA6l3ST+vGsbeoYlJrcYObQ5Eodg9KPj+OccVD2GZSa3bGd9x8Lx3r732cwmP03Ourf2JLGasWC2gYQ+/aGvf1J/rVDlp8DNUb9kav7SKvl7x3uifG4gbmUCqJ+r1X3kdQcAAAAmDQ4Xww0pH/7t3/TrFmzJEnGGCUSCf393/+95s2bp69+9at64IEHFIvFst7zzDPP6JFHHlFXV5c+9rGP6fDDD9eyZcu0c+fO9DbGGL3lLW/Rl770pZr+fQAAAAAAdYoAagAAAACoa4RQl+AjH/lI+s/GGG3fvl1/8Rd/oXnz5umd73ynDjjgAP3qV7/KumvvFVdcoUikcBLcyy+/rM2bN6cf77vvvjrwwAPH7e8BYGILOSGtfOY4zd/qPbaSdrVKCWfk4kKT+soMkHSs9P/ulm5d43333+MHV/rvyeRYb/xdrd7+JGn+VmnlahE8GID2mFHX6uzwyfEIn/XlBpDO3+7tvz1G7YNCDzQ26o+x9IBjJWMlpb5XEkRNDwQvXw+Uana/1D4kyXrfZ/eXv396AAAAAJgkrJXcgFIrgQnOWqtvfvOb2n///XXFFVfohz/8of74xz8qkUjIWluVLwAoJOSEtPLVU7T/bikZ0GG6pJH2380546CErNFPVhm968WR5/drxUh614vST1YZeqDGqD9C1mjlaqP522obQOzzg4jnb5NWrqYHao36I1O+AOrxvIE5QdQAAADAJMR5KaDhHHzwwVqzZk163bO/HvqZZ57RZz/7WZ1xxhnatGlT+ry1tTa9hvqyyy7Td7/7Xb388svpNdT+NlOmTNGdd96pqVOnBvZ3AwAAAADUCQKoAQAAAKDuNRXfBAsXLtTFF1+sNWvWyBiTPrn69NNPp/8sKX3idMqUKfrMZz5TdNzu7u70n40xOvnkk8fnLwBg0mh/x7vUddOjev8HpAcPkeIZtxJwrLfYwygVMpnSF/Ee/+AuqXOT95z//ZoLsxefGCvJeIHTmeGU8VQQ9btelLpWeQGICnGwLQjtUanrTkeLF7l69ACbVb989S+Xzam/P/5Jrxh1rXbUHpOGI8kRBHqgsRWq/3ig/vWnkh5IB1BnMNa7I5Fb5FwePVB/MnugZ3ZptZjd770vdxz1S0MlLk6fv40eAAAAACYVLqYEyjYwMKDzzz9fDzzwQFZYtKnSxdIEUAMo1brkn7VtqhR2pZjjndupFWO9/W6bKq07TOrczGdXENqj0jHbpbWHB7P/pPH27x13pgdqjfqjPSod+br0yyOC2f/esLd/eiAY1B+S1D3Pavl7Na4B1D5/3JbEcBC1ZNW5qc4WDgMAAAAojX8+qt7CgADUzMknn6y7775bH/rQh7Rt27asMOl8cp/PPD9urdX++++vn/70pzr66KPHb9IAAAAAgImh3o45cW02AAAAAORFCHWJVqxYoWeffVZPPfVUOojal3mi1Rij73//+5o7d27RMe+44450iLUxRgsXLhyv6QOYLI46quDLThWOgRnrhdiifrXHjC5/yui+Q4cL7i8qspJkKgsh9sOH/fH8fhpoli5/ynjh46gL1eyBzM8NemBiyFf/0TQnpXhobPuj/vWnnB5ockdf+mus1GSLB1HTA/WnPeYFQhcLojY2fwB1epyodPUT0i0nFO6D4QBqegAAAACYNOrtAk9gAli0aJHuv/9+SSMX1gJArSTdpFZ0PCdrpBmD3o2Eo2M8D1COsOvt1xppxQLpws2WexcH4FNnSTedNHyj6lpzrLf/SMLqa+tqv/9GR/1BDzQ26o/ueSoYQG1VnWv/MscZGUQtyVp1bqrCjgAAAAAEw1rvnDHnuYCGtHDhQj3xxBO6+uqr9ctf/lJSeTdf9s+Rn3322br11ltLWksNAAAAAJjk6m19Ase9AAAAAGBUhFCXqKOjQ/fff7+uu+463XbbbXkXE8+dO1f//u//rs7OzqLjPfbYY3r00UezTs6ed955VZ0zgMmn3x3U4kukjbOkjkGpt1WKO4XfMz0qRZLSJ1IfMZ2bvMUonzjPe356NHshSj7Nrre/jbOkxZdIXXdK7Ynq/J1Qvu4jXX3qLFczhqSdLVIsZ2G5/xOqIyrtiqjoyqLpUak3MjKk1DVSOCnNGJI+dZartoTUublIw6EmyuqBlsJjGSu1x+iBiSSz/rtaRv85MD0qDYaKh1BPi0q7R/k50OxS/3pUTg/safbCQEYTstK02Oi/C9AD9atYELVjpb/7rXTr/MLjnPqy9LY3HC0/1827UJ0AagAAAGCScvj3HVCOH/3oR/r1r3+dN3z6bW97m97xjnfoiCOO0PTp09Xc3BzUNAE0gJAT0sp1HVp80m71zPFuRFhuCLV/U2KrwseP82lyvffO3yqtXC0CqAMQc6RbFww/9mtZLmPLr7+/P9+tC6Qv3ueFk6M2qD/ogcZG/ZFM3QikUAC1TTVGoRKHXClZ4NBQvnFyg6i9G5Lw+yAAAAAwoRHEAzS02bNn6+6779bvf/97fe1rX9MvfvELRaPRou9ramrSwoUL9bnPfU6nn356DWYKAAAAAKh7BFADAAAAwIRCCHUZOjo6dMstt+iLX/yi7rrrLj333HPavXu39tlnH5100kk699xz1dJSJOkx5Z577tH8+cNpYHPmzNGRRx45XlMHMAkk3aSWvPL/1DPHe+yoeBD19Ki38EPyFn984jzpp/OkdYcPL0bxXy8UPtkx6O1PknrmSEsWWa35H6tQJSuSMCbdR7qjhkSOJ9dIy8/1Vo4RQBoseqCxZdbfWI0aQux//g+WEDwRSXif8bk/B/zwYWOpfz0ptwf2lJB5NNrvAvRA/RstiNqx0k2/cnTATrdoCLU0XNPcny8EUAMAAACTlDH1d6EnUOe+/OUvp//sh0+fe+65+uY3v6mjjjoqqGkBaFDt/VF13Wl0/LVWr00t770mI0jQSFKZIZR7m6VZe6SuVVJ78RwCjIOwKz3+PWnBR6QdbZWFj4YTUktSGgpJsTKvHLOSZKR9Brx5ED5aW9Qf9EBjo/4IWe9GIIsvkR49cJQAahUOom6Je9cCxB1pKM/1BIXG8fd30hZuSAIAAAAAwGTx9re/XatWrVI0GtWjjz6qhx9+WFu2bNGOHTu0a9cutba2at9999Xs2bN10kkn6YwzztC0adOCnjYAAAAAoF7U27oEAqgBAAAAoChCqCtw4IEH6qMf/eiYxrj++ut1/fXXV2lGABpByAlp6cv7akPHM3JTy4gKBVFnBlD7XCPde8TIsQuFT2YGUEteqOHSDUYhE8q/UgXjpvstrpaf44VDWuOFjiYcryaZgZEm9dUXUUk16osMb5Z5SNWx3vi7WrwQUlepAFLjqPNpAkiDUFEPFGENPTBRZNbfly+EOOvzv8TP6dyfA5nhw750CDH1D0xFPSAV7oNUjemBias9IXWtcbS4M6GeWdYLoP51kzqfcfTYfrHinwNGkuOo8xlHMq6Wn5OQa6T524261jSpPWGyfxkEAAAAMHFlhk87/KIPlOqll17SH//4RxljZK2VMUZXXnmlbrnllqCnBqCBfek0qxc6ynuPyRNEWEkQ9Qsd0pdOk762rrz9o3oO3C19+V7pry5U2efswwmpLXVOwP9ebgiprLf/A3eX+T5UBfUHPdDYqD/ao9LlPdJ9hw0/lxkcnX4uM0DaSjJSa2w4PDyS9H4/HAxnXzNUcBxJA83e/rkhCQAAAAAAk0skEtHpp5+u008/PeipAAAAAAAminoLoK63+QAAAABAnSKEGgAmkM4XWqW+Ni0/fW86gDJfEHW+AOpi8oVP5gugvuluqfNpI0VCY/mroExJY7Xi+ERW+HBm8LgfQmyUHRg6QmpRUT4m9ZpNjeeL54QQrzje1YXPNSlUzmp0jNl49YBrhutND9SvzPrnygwhbosX/vw3BYIk/PcNNI8MH/a5hvoHpdIeyNrcSi1xaag59wUPPTBxtSelrrtCWnJBTEufbFLnsyEpJCVCUqzIr2zxZkkhb6POZ0PSWkcr3prQyp+F1Z40Er/yAQAAAJMHF1UCFXn00UezHs+ePVv/8R//EdBsAED61GlD+sax5QVI5wugTr9WwTjfeKf3mCDqYHTPk248U9p3r/TGlNJDxDPDR33lhpAa6+33xjOlfYekzk2lzxvVQf1BDzQ26o/uedKnzhm+XjDmjN4HfoC0lB1A7Qu7kmLeNQT5Aqhzxwmnrif81Dle/9ADAAAAwARk/YUDnDsGAAAAAADAGNTb8SVjJNctvh0AAAAAgBBqAJhQ4nF1PpWQ9kjLz1PeIOpiAaSFZIZPjhpAvUmpFNNCKbeotpCVVt7VrPd3xvTgQTYrfNjnFCtJUsMBxKMESo62AN0PIX7Xy0Yr72pWyJXSq5RQE9XoAZMcDiG29MCE4td/8UVx9cwaeQLEWGnmYOExnORwWLk7Sv1bEoV/hszf7lD/gFTaA5lVmjkgTYlLe5ulnVPy74cemLjao9KaO5tT4eBebVxJyTw/LzIlpazf6zqfdnThM80KWYkaAwAAAJOUMemb0QAobvv27ek/G2P0/ve/X21tbQHOCEAjiyViuvUte9OPSwmQznfu59Be6YWOjG0qGOfWBdIX7xsZZojxlTTSigXe+Z4mSTP3SjumFn9fU3I4bNRY6ZjXpY37eTUvJ4R05l5vv25qHhduVup4Mmqh0vo3JwrX3xopXsI/Eah/8PgMaGyV1j9c5DPANd7NbYuh/sHL7AFHUvugF0ZeiDXeNQD+72y5PRB2JTeRupl1Ee2p6wnpAQAAAGASsFZyilxgCgAAAAAAAORDADUAAAAATGiEUAPAROK6UizmBUFrZBD1jMH84bHlaElIkUT2OFkB1L5kcox7QtmSdRD+ba1X+2SdHRhuFPRAQ2sflLpWO1q8yKpnVnl94CSGQ8odK8lKbpn/Epi/3ahrtaP2GCdhglJxD1hvQfCUmPdwStR7brQg6tHQA/VvxNpwN/VViKsRv9cRRQcAAABMUq7rLSRmMTFQlr6+PkmStVbGGC1YsCDgGQFoZOGmsB7ffIYWvGmtdrZ6zxUKkM4XQP13D0tfXSf941nSN96ZsW0Z48wclB7/HgHUQQhZaeVqafEl0oY50p7W4ZvQFpIMSbGkFElKV/ZIJ74q/e/+0m3zpWiotPBRY739dQxKC7Z68yB4srbGVH+3QP1L+CcC9a8PfAY0tkrrnyjyGZCk/hNGbg/0t3q/oxUqhZFXZ6dAD8SaShunnx4AAAAAJpeg1yUAAAAAAABg4qm3AGqJAGoAAAAAKBMh1AAwkdjhANp8QdRbJc2twm4yx8kbQC3V58HBSSxprJZcnNTG/bzFPL2tUjxnIagrL4x8VCF5q4WKlC7fOM2ut9+N+0lLLk5qzaomhYqtYkNVVaMHbCj1EUIPTFjtcaOubqPFnYkRIcQDRmrLuRbYWMlJpuqZUS5HkpKSm2cxab5x5m836upuUnvcjP1uBxiTQj3gmuGwcZ+RNHNAmhJXVu2mxCUNSP0tI/eRbxx6YGLYGY5pZiw8/IRRafXK+b1uxDgAAAAAJgc/fJobDAJlmTp1atbj6dOnBzQTAPAcePy7tOGmB7Tg6lg6iLpUfgC1NPw9M4i6FDMHpQ3flQ7cXd77UD3tUekHd0kLPuKdLywUIC55x/ytkQabpTNe8IInJe/7n2dKd7/ZG8Oxw9ce5PKDyOOOlHS8/bdHq/5XQwkqqb9UuP7+dtR/YuAzoLHxGYDcHpBGr59RKqhcxT8DTOp6onwRdH4f0QMAAADAJEMINQAAAAAAAMpRjxkzHOMCAAAAgLIRQl0Fr7zyih555BE9/vjj2r59u3p7e7V7925NmzZNHR0dmjVrlk444QSdfPLJOuCAA4KeLoCJLOcAWGYQ9SvNklqk1yTN3VP5Ll5LZSm8NiQdEB8lgDojDBu1EbLS0h5HG2YnJTMyhNiVJJMKD84sTW7gcLHw4dTrrh0OIfbDh53U2Et7HIVcf3DUSsU9kCunBxw3+zl6oP61R6Wu1SEtXpRMhxD3haSBVqnPSnP3ets5VlqwRXrswPzjOFaSTX1P1f21Kd6f44PS9FQe1fztRl2rQ2qPSdS8PuTrgWhI2tnq1XN2Rg8cvlMaGiWdfkpUOrBf2j5t+P/9bVO8P88clCL0wITy88PiuuBD0pzdMb12U7P3ZOr/86Iyfq+buzyurdOkn90R0/uebx6XuQIAAAAISOYxXYKogZIdfvjhWY937twZ0EwAIOWtb9WB7lRt+N5OLfgraUfr6MGT1khKBUdmBlD7MoOorYqPsw8B1HWhPyJdc6HU5Hrn8QqFkKbPG1qpLSH99iDpTTu94Mn/3d973JaQBpuGt88NsfTDRyVvf02ut/+uVQRQBqGi+qtw/Qeo/4TCZ0Bj4zMA+XpAGlm/dLB0SimfAfmCqDP7iB4AAAAAJqEZM4KeAQAAAAAAACYCAqgBAAAAYNIghLpCu3fv1u23367vfve72rhxY8nvO+aYY/TXf/3XuvzyyzVt2rRxnCGASSlPsEHnJmnZ2ZIyPlJem1pZELUfQC1JapEGBvIEUCMwnZu9VUPLz8kOIY46GhEi7FhpelTaFSk+7vSo1BfJWUhmvBDiSE748E2/DqXngdqrqAdaCo9p5C0KowcmlvaYSYcQPzDXaqA19YLxgqQP2OPV6sdHJEcNoZa8mn7+19KXzpFemap0Hw20ShqUTn/NDx+uwxNDDS6zBx6ba7Uz1QOu8YKk56Z64F9PTHq1HcWcPdI//S6k5eck9drU4c+Bna1eEPU76IEJwQ+glqSt07wg6XQQdRn8AGpJuuBD0s/uiBNEDQAAAEwm/kWWxnDBJVCGk08+WY7jyKb+v9m0iRMnAAL2jndIkYgO3N2sB26Ja/5HpHho9M2tkS7608gAat9X10lP7yOtOarwbptc6YEVBFAHLWmkJYuknjneaZ0Zg9Ku1vwhpLnho81J77Xb5kuP7y9t3M973Jz0vvojw+/zzxfkho/OGPQe98zx5rHmx97NdFEbldZ/Ssyr02j1n2Klgebh91H/+jVenwEhV9oTHn4fPVCfKq3/1Jj3eLT6tyl/EDn1rz+FekAarl9uAPWUuPe73Gg94LjS3tRnQGYQdW4ANT0AAAAAAMDk9eqrr6q3t1d9fX2Kx+NjGuv000+v0qwAAAAAAHWBAGoAAAAAmFQIoa7A7bffruuuu067du1KLzYu1R/+8Ad9/OMf1z/90z/pW9/6li6//PJxmiWASam/f8RTB10j7Zo5ctNyg6hfyxNQuWumN/7LPyhjjhhXuSHE0Zik1pHbuZJaEpJKCKFuSYwSVp0an/Dh+pLbAyrWAyUo1AOiB+pWe8zo0G1Wvzw85wUjvTLF65UfH5EsOs65m6WPdioryFzygqgP3WYJH65j7TGjqx+3+uWl2c+7Rtrb5PXAv55YvAc6Nztael4yO4heXhD11Y/TA/UuM4Da5wdR/89PSh8nM4DaRxA1AAAAMElZy0WXQBn23XdfnXnmmVq7dq0k6Z577tG//uu/BjwrAA1t//2ld75T/Q+t09+8e5dmDElvtGnEMV7flJj0+wOl7nn5b0DcPc97fUpsOHwwl2OlGUPS37xH6lrl3eAUwQhZaekGacPc4ZDJfCGkme3QHpWSjvfl65mTPW5rfPjmxVIqrFT5w0f915duIHiy1iqp//SoFyiaGVafW/+Qpf4TRaU9kDCFPwMiCXpgIqi0/iFXimZcKZxbf8el/hNFsR6QsoOjJa+2bpHPgOZkdg+YnD6iBwAAAIBJyhhp925p+vSgZwIgAK+++qpuu+023XPPPerp6dHu3dW5C6kxRolEiYuZAAAAAAD1jwBqAAAAAJh0CKEuQzQa1Qc/+EHdddddWeHTpox/MFtrZa3Vzp07ddVVV2n16tW64447FImUkBIKAHuyU6UPukbasv/om5caRJ0vgNq3Zf9Rgqg5MBeYzk1Gso4Wne/mDR+WJBnptSmljffaFI0In01rlV4blFb/wlHnZiNvmRmC5vfAZee7io5zD0RbpV2D0o/ogbrzydMT+u4po7zoSOYf4/pAT/FxjvhHb/t8vnuKFEnE9a0H+GdDPfr5YQktvjT/a72tXqjwETuKjzN3eVy9o3yWLL5UavtRXO97nh6oRz8/LDEigNq3dZp00Yek9sEig9j8AdS+Cz4k/YweAAAAACYfju8CZfnMZz6jtWvXyhijzZs3a82aNbr44ouDnhaABtZ/+aVa3P4z9czwwv/2HcgfRD0lJrXHvOc/cZ73XGYQdfc873nXeNtJI4OondT4IesFFi6+hCDqoPk1XH5egRDSlOlRKZyQBkYJGM/k3+A2HUCZej5f8ORNd+cPNcf4K7f+LQkpGso3UjbqP3FU0gN7+AyYNCqpf7zYvcaN1BL3/kj961+xHsjk98BACfcczv0M8NEDAAAAwCTWXMI/FgBMOrt379anP/1pfe9735PrupKUtVYaAAAAAIA0AqgBAAAAYFIiRapEQ0NDuuiii7R27VpZa7OCp8s5yZr7vp/+9Ke68MILdddddxFEDaC46PBK3mIB1L5iQdSFAqh9eYOoOTgXqE+/o0AAta/UY7rFtmv19te5qQ4PEjewnx/kaqgKPZAstthQ0lCrtz96oH588i+S+va7imzkSD+ZLzUlR98kEdKoAdQ+bz8Jfev+Elano2Z+flhSF1xWeJut06QdrdIBfaNvs+5wKVbkX4UXXCb9bGVC73ueHqgnpfTAzjapt0U6eNfo2yy9WOptKzwOPQAAAABMEqnFg3Kc+rwgFKhjCxcu1LJly3TzzTfLGKOPfexjOvHEE3XggQcGPTUADag/2q/F/SvUM8uVUoGR+YKo/QBqX24QdWYAtS83iDozgNpHEHV9KCWA0g+edMsYNzeAkuDJ+lRO/ctB/ScOeqCxUX/QAwAAAAAq5jhSKHUtKOeMgYazZcsWnXHGGXruueey1kSbKn0eEGYNAAAAAJNIPR474t+dAAAAAFAVJcQOQpKWL1+ue++9V9LwSVVrray1OuWUU/Qv//IvWrdunV555RXt2bNHrutqz549euWVV/Sb3/xG//Iv/6JTTjkl/R5/HGut1q5dq+XLlwf2dwMwgSS9JNFSA6h9owVNlxJA7fODqBG8eVcmtfng2u5z88HeflEflp2d1IqTarvPFSd5+0XwSgqg9jmpoOk8Sgmg9n37Xd5+UR9+flhSFywpbdt4k/TSjPyvvTSjeAC174Il3n5RH8rpAdcp3APFAqh99AAAAAAwCRjjLSqWuAATqMB//Md/aOHChbLW6rXXXtOZZ56pJ554IuhpAWgwSTepJauXqGf7k1I8nvWaH0Rt7MgAap8fRP2XF48MoPa1x7z3mzwB1L6eOdKSRVKyDteZNJLOTV4QpJOqkR9A2eRWFjzpa0l4728ieLKuUX/QA42N+oMeAAAAAFARx/HOFddjiBCAcTU4OKgzzzxTzz77rKy1Msakv/w1z2P9AgAAAABMEvV47Ih/dwIAAABA1ZQYOdbYHnjgAa1YsSLrjr7WWi1cuFA33XSTjjnmmLzva2trU1tbm+bOnauFCxfqb//2b7Vx40Z94hOf0H333Zd1kvbmm2/WFVdcoXe9q9REQQANyXXLDqD2vTZVmrsn+3G5/CDql3+g4bAS1NS8y+M1D6D2+UHUm37YHMwEIEla9u64VrwjmH2vOEmSSermtfRAUD55elzfPq3MNzlSQlJTRnZsOQHUvm+/S5JJ6lsPUP8g/fywuC74UHnv8UOID941/NxLM7zny3HBEulndyT1vufpgSDRAwAAAABKksxzE5nMi0Fdt3ZzASaJcDise+65R0uXLtUdd9yhP//5zzr55JO1ZMkSffjDH9Y73vEOhUKj3BEOAKok5IS09Pil2vDCI8r309xYKex6X6NxjXTvEYX3E3alhOuNl49jpaUb8gdUo7b8IMjlqVBxq+GwyLEyGh6P4Mn6RP1BDzQ26g96AAAAAEDZ/HPGBFEDDeef//mf9ec//3nEGumOjg69733v04IFC3TooYdq2rRpam7mWnEAAAAAaFj1eMyIAGoAAAAAqCpCqEvw1a9+NX13X//7P/7jP+rLX/5y2WMdc8wxWrdunT73uc/py1/+ctZJ269+9auEUAMo6KBlbkUB1D4/iLqSAGpfOoj6Fg7U1dq8KxKBBVD7Nh/sBWFvup1fIYKw7N2JwAKofSveIcnGdfNaeqDWPnl6ovwAal9GEHUlAdS+b58mycb1rQeofxB+flii7PBhX2YIcSXhw74LPiT97Edxve95eiAI9AAAAACAquFCTEBnnnlmxe9taWlRNBpVLBbTrbfeqltvvVWtra065JBDNHPmzIoX5RpjtG7duornBaAxdB7VKS1alA4b9LmSeluluCP1RbznWhLljz/UNPz+3lapYzD7tEI6hPDZZokMgrrQ+aykX7v62DlJ9bbl6YEy1wXl9sDMAemmX4fU+axDzetQ0fpLZfUA9Z94SuqBMtADEwv1Bz0AAAAAYFTxeOHXOWcMNIxkMqnvfOc76bXM1lqFQiHdeOON+tu//VtFIpGAZwgAAAAAqAtOhQuPxxPHsAAAAACg6kiNKmLXrl1at25dVgD10qVLKwqgzvTP//zP2rZtm26++eb02GvXrtWuXbs0Y8aMKs0ewGRy8yM3jymA2jeWAGrflv2lmw9PaNmzobEPhpLccXAy8ABq3+aDpTsOSuhDL1H/WnqiI6kVJwU9C8+Kk6Tlv0/o+F56oFb+2J7Ut8d6rxJHSlTh3M+33yVduyGho/upfy3tDCd1wWVjG8N1pBf2GftcLrhM2vH1hGbG6IFaogcAAAAAAKiu9evXZ90wuBL+eV5JGhgY0J/+9KeKx/TPRQNAKTo3ed/9IOrMAGpfJeGDmaGDkjdeZhB1OoB6kwghrDNnPW80Z0DalnE9gF/LcLL0cfL1wJwBb3zUr0L1H+tnAPWfGOiBxkb9QQ8AAAAAqAgBPkDDeOihh9Tb25u1Rvq//uu/dNVVVwU9NQAAAABAvXCc+jteVG/zAQAAAIBJghDqIn73u98pHo+nF/y2t7frm9/8ZlXG/td//VetWrVK/f39kqREIqHf/e53Ou+886oyPoDJZdnJy/Thuz/sre4Nmiste65JYn1JzXzo5SZd5ibqpv4fepn619rxfU1SHfXA8X30QC0dvbu+6n/0bupfazPjTZqzO6Gt04KeiTRntzcfeqC26AEAAAAAAOpDblg0wdEAau744yUNB1F/7Dypty07gNpXTvhgbuigzw+injmQEUAtSfG41MRlR/WgP2y1uNPV1inS9Gh2Hfsi0rRoaePk64HpUWnrFGlxZ1Jdqx21x/i5V2+K1V+STAnrsaj/xFVKD5SCHpiYSql/yC0+DvWfuPgMAAAAADAmBPkADeHZZ59N/9kYo5NOOokAagAAAADAMAKoAQAAAKCh1EOMXV175ZVX0n82xuiiiy7StGnVSf1qb2/XRRddJJvxD9/M/QFALvu1sFTCwqBx5Ur2iwHPoUHZrzTVR/2/wmLyoNADjY3647X/16TZe4Kdw+w93jwQDHoAAAAAAIDqs9aW9VXJe0odFwBK0tOT/uNZz0tz9uQPoPb1RbxQwUJGC6D2xR1vP2c9X+ZcMe76w1aLF7nqme39LGlJSJFk9ja7I4V7RJKioZE9EEkOB5j3zPb20x/mZ1Y9KaX+fREpFio8Ttyh/hNVqT3AZ8DkVGr9o3wGTFrV+gyI8RkAAAAAAMCktn37dklKn5e+6KKLgpwOAAAAAKDe1Nt1zPU2HwAAAACYZEiOKuL111+X5J1gNcboxBNPrOr4b3/723XbbbelH7/xxhtVHR/A5LLyOCniStEAbyEQcb15LPlTcHNoVP1hq/c8b/TLw2wwt5Fwpfc8b9QftmqPmQAmAHqgsVF/9IetFmwz+lWblQ2gB4wrLdhGDwSJHgAAAAAAoHpOP/10GcO/bwFMXP0RafEl0tZp0vRo4RBp/zU/SDBTsQBqyRt/6zRvf12rpPZo5fNG9eQGT0pePfOFjUabJCWk5jw3PI07Uqw5z3tC3ni5AZRdqx2OEdeBcuq/t9kLEx2t/tEmyeSs3aL+9a+qnwH53kMP1LWyPgPCUpjPgEmnnB4YbJYiBT4DoiEpt6r0AAAAAAAAk0c4HM56fOihhwYzEQAAAABA/am3a6kJoAYAAACAcUcIdRGtra1Zj2fPnl3V8WfNmiVJ6QXOLS0tVR0fwOQRS8T0N2fFFQ9JjpXcAI7lOVaKh6S/OVe69M9GYTfANOwGkzRWSzoT6pltNXdAeq1NtQ2hdaW5A96CoiWdVmvuDClk6+yA8iRHDzQ26o/MHpgzIG1tU01DiI0rzaEHAkUPAAAAAChLIk/CZKZ6u1gUCMD69euDngIAVMwPoO6Z4z32wwHLDaIuNYA6HT44hyDqejFa8GSheuYLoR0tfNSX2zcEUNaHatd/NNS/fvEZ0Nj4DEDVe4DPAAAAAAAAJrW5c+dmPU4Uu6YEAAAAANAY6m1NAQHUAAAAAFAThFAXcdBBB2U97u3trer4/njWWhljdOCBB1Z1fACTR7gprG8+2qFl79qluFP7IGondbyu2ZW++UspHLeSkrWbQIMLSVr6hLThXK/uM2LSrhret2BGzPvuWG8eoYRbcHtUHz3Q2HLrX9Mg6lQAtUT9g5TbA7UMIfbDhyV6IEj0AAAAAIAxc13vQlFjJIcbDAIAMFHlBlD7yg2iLjeA2pcVRB3EnZMxHDw5q/TgSV9mAGWx8FFf3gDK97vqWh0igDIAFdU/VSbqPznwGdDYqD/oAQAAAAAAUK4FCxZIkkwqXOzVV18NcjoAAAAAgHpAADUAAAAANCxCqIs44YQTJA2fYP3Tn/5U1fE3bdqUd38AkM+S7XOkNbu07GLVNIg6M4D65jXSkj+InyAB6NzsBcN8+HxXfZHa1r8vIhkr/dcvnPQ8UHv0QGPz/7svP9etXRB1TgD1Tb+i/kHK7YFahBDnhg/TA8GiBwAAAABUTb1dNAoAAEqSdJNasmhkALXPD5eOhkYfoy9SfBtJiiRHBlD7euZISxZJa1a5Cll+r6ilpLFaclFlwZO+aJOUcKVkGYd6RwRQzrJaclFSa/7HoQdqqOL6W2UFUVP/iYvPgMZG/UEPAAAAABgzP8yH88VAQ5k3b57e9KY36dlnn5Uk/eY3v9Hf//3fBzwrAAAAAEBg6u3YEAHUAAAAAFBTJEcVcdhhh+m4446TJFlrtXr1atkq/ePVWqs777xTxhgZY3TUUUfp8MMPr8rYACap9nYt+YMXBN3sek8543w8LW8ANepGreqP+kUPNJbOzY5u+pWTrsvcAUnuOO2MAOq6lNsDcwa8kODxQPhwfaIHAAAAAFTMmOELRpPJYOcCAAAqEnJCWrph9PM3pYRLS6VvMzTKjYkdKy3dIEIHAxCyRkt7TLoH8gVPukYqVppiwZPWjLwZrh9gLqV6oMfQAzVG/UEPNDbqD3oAAAAAQNUQ7AM0nI9//OOy1spaq/vuu0/PPfdc0FMCAAAAAIyD879/fuENSgygjldhLiXhOBUAAAAA1Nwoy8WQ6ZOf/KSWLVsmY4xefvllffvb39YnP/nJMY/77W9/Wy+99JIkyRij6667bsxjApjkpk6VjNGSP3gH0pZdLMUdb2FH7sKPahg1gDozrAQ1032kq+XnuIokpenR4UVE411/ydtfJCktP9eVjCGAMiD0ACSp8+mQZIyWn5OUa6Q5g9LWNknV7AHrjSulgmd/HVLn005194GK5fbA7HHqgdn0QN2iBwAAAABUJPOYLhdrAmX5whe+kP7znDlzdO2111Zt7O9///vaunVr+vHnP//5qo0NYHLq3OR9X35e9vmhfCGEY+WP15IYfs6x0k13p+bBVUeB8M/Tffh8N2/wpCRZSTKSqeDXPmtS70+Nl3nOsC/ijflfv+CmhUGh/qAHGhv1Bz0AAAAAoGo4Zww0lI985CP6wQ9+oD/+8Y+Kx+P66Ec/qrvvvluOw7/xAQAAAGCyMDea9Hd7fZ5jP2UGUMclNVdnavlxfAoAAAAAAsEZwhJcffXVOu2009J3+v3MZz6je+65Z0xj/vKXv9RnPvMZGWNkjNGpp56qZcuWVWnGACattrb0H5f8wQuGbnbHJ3xW8sYdEUAtcTAvAEljtWK+m651S8ILBZbGt/6Stx9/YblrpBXzXSUrWaWEMaEHkKlzs6Obfh2SkbSrpfq/1DupcY1SwbMsHqw79ADoAQAAAABjwk0GgbLccMMNuvHGG3XjjTfqu9/9blXH/s53vpMe+8Ybb6zq2AAmr85NXhC0HwqYGUBdrTM4/jh9EW98KSeAGnUn95yhlRckWY7M4MnRxkV9ov6gBxob9Qc9AAAAAAAACgmHw/rJT36imTNnSpLuvfdeXXXVVRoaGgp4ZgAAAACAavADqEd7XG4A9WiPq4bMGgAAAAAITFPQE5go7rzzTp1++unavHmzhoaGdPHFF+uf/umf9A//8A8Kh8MljxOPx/X1r39dX/ziFxWLxSRJRx55pFavXj1eUwcwmUyZkvXwgmekI1+Xnpwzfrs88nVvP1kIKKm5kDVauSakxYuS6pnlHVCNJL2F3uO52Mex3n5887d78wiVu0oJY0YPINdZzxvN3ittnVL9HnCNFHek2Xu9/aA+0QOgBwAAAAAAqC07Thc8++Mazr8AKIMfBP3hC7MDqK3x/jCWT5TccfoikrHSf92VE0DNQpBAdB9ptfxcV5GkdzPZvsjox4itVHIz5Aue9LnGO284PeqdO1x+ritZqXMzP7tqraL6l/C/KvWfOPgMaGyV1L+Ue4xT/4mDzwAAAAAAVcUxXqChHHXUUbr33nv1vve9T6+++qp+9KMf6fHHH9f111+vSy65RKFQKOgpAgAAAAAqMCJwOuN5e72tOIA68/nmyqaWH8ekAAAAACBQhFCXaL/99tPvfvc7XXHFFfrFL36heDyu66+/Xt///vd15ZVX6qKLLtL8+fPzBlLH43H19PRozZo1uv3227VlyxZZa2WM0Xnnnafbb79dHR0dtf9LAZiYjJGsVX9EWnyJ9PpUSa4kZxz25XrjL75E6loltUfHYR8oWXvMqGu1F0L8xGyrXS3jGz4seePvapFmDEnHb/P23x5jAVFQ6AH4+sNWixclveBZq7ElSYzCtV6w7eJFSepeh+gB0AMAAAAAKmaMxMJBoK4YY8Yt4BrAJNTaKg0Ojng6HRytsQVRV2scjI+ksVpxvJs+RxhJSE648DlD/ydM5iYhV0pmXGNQKHjS51hvf5K3vxXHu7rwaYeb19ZQpfXPXUeWW39/u0Kof33gM6CxVVz/Ip8BpfxLhPrXh4p/DuQ8N+LnAJ8BAAAAAAA0jOOPP16PP/64rrnmGv385z/Xpk2bdNlll+mv/uqvdPLJJ+tNb3qTZsyYoebmyuPFPv/5z1dxxgAAAACAQkYLoPb1G6P2EsYZLYA68/WqBFFzvTQAAAAABI4Q6hKceeaZWY9bWloUjUZlrdWWLVv0la98RV/5ylfU1NSkgw8+WNOnT9eUKVO0d+9e9fX16aWXXlIi4V197S8eNsaopaVFe/fu1aJFi8qajzFG69atq85fDsDEsndvVgB1zxzptTaNTwC1vHFfa5M0hyDqetEeM/rBzx0tuCapuFObAOK4IyUc6Qc/dwifrAP0APzg2Z5ZtjY/A2ZZAmjrTGYPbB3nHthKD9QlegAAAABAxYwZmUAHAAAmlre/XXrgAXXPk5afJ0WS3jnc3pbszSoJkM4MoM4cZ/qQt5/l53nPdW4aw/wxJiFrtLLb0eL3u3pitrSrNXW+sISbFfqbRBJSs+udA4w2lRY+Kpu6eW2rNGNQOn6btLKb4MlaG63+xo78fzdTZghxJfU31L9uVNoD0tg+A+iB+sBnAOgBAAAAAABQDbNmzdJll12mxx57TK+//rqsterv79e9996re++9d8zjE0INAAAAALVRLIC69wapVcUDpIsFUGduN6YgagKoAQAAAKAuEEJdgvXr18vkWZDvP+cHS8fjcT377LPp12yef/xmjjM0NKT777+/rLlYa/POBUCDGBhQf1tIiy9OjH8AtS9fEHXcSE38CAlCf9jqmguSCiXHP3zY5xoplJSuucCq66eETwaNHmhs/WGrxRfF1LPfOAdQ+zKDqN/vquunYeofsMwe2Nom2XHuAZsZQkwP1AV6AAAAAEBJ4nkuBXXG+0ACgEokk8n0n5s49wKgFM3N6QBq10iupMFmL1Qw9yqVcoKo8wVQS957B5u9wEIZgqjrQXvM6Ac/M1pwrVXcSdW9xMO2zUkveFLyvrtJKRYq4Y3GWwOUvnntzwzHigOSW38p9f9/CUHkFdU/4zOE+tcHeqCxUX/QAwAAAAAAYCyefPJJXXXVVXryySfTz+Wukx4L1j4DAAAAQG2UEkDdlvF4tADpUgOoi41TFAHUAAAAAFA3WMVapnwh0KOdGC3lhCmh0gDK0e8OavGipHpm1SiA2pcbRH2nVXuNdo1hw6GTrra1Fd++mra1ST37uVp8UYzwyQDRA40ts/6B/Ayg/oHL7IFahA/70iHE9EDg6AEAAAAAACafvr6+9J+nTp0a4EwATBTdhw5q+fFGrqxcSb2tGg4izqOUIOrRAqj91+KOt5+OQQ0HURup8xmOEwbBu2mtFHKlJrfEEOmUeEhyrBc8GXe8x6WyxguvDLnSNRdIXavFseIAZNbfr2OpQeQV1T8VQG7kvY/6B48eaGzUH/QAAAAAAACo1H333acLL7xQAwMD6cDpzLXNY13nXI0QawAAAABAccUCqHfckB1A7csNkC43gHq0cYri34sAAAAAUFcIoS6DfxK02idDObkKoBRJN6klR/9JPS22tuGjvowg6iWdVmu6kwqNthIZVZc0Vkvel6h9+KwvI4R2yftiWnNnE/WvMXqgsVF/ZPZALcOHfZkhxPRAMOgBAAAAAAAmn/7+fm3ZsiX9uKOjI7jJAJgQkm5SKw56Q+5eI9e16QBqt8ihutwg6khSiqZCBwsFUPtcMzKIesXx0oWbEgpxyUtNJY205CKpZ3blY0SbpIQrJcdwnLlnttWSi5Ja82PRAzWUWX9H3v+Pu1qLB5Fn/i+eW3//tUJl9APIOwa9/VL/4FTaA9JwremBiWu8PgOKlZD61w9+DgAAAAAAgEq98sorWrRokfbu3StjTDpwmrXNAAAAADCxFAugfuMGaVqB1/0A6UoDqHPHKYp/dwIAAABA3SGEugSnn376mO/iCwBjFXJCWvrKbP38uF21Dx/1pUJIlz4hQgdrLGSNlj7p6OeHu8HX/0mH+geAHmhs1B9+D9x9uFvz8GGfdaRt9EBg6AEAAAAAACafFStWyFqbXuR75JFHBj0lAHUu5IS08tjr9f57rtaDc2MlBVD7/CDqjqjUkpCGmqTeSPEAal9mEPW7XpRWriZ0MAghKy3dID0+V+ptkxJlHi+28sIm/eDJckuYSPXAzAFvHvRAbfn13zC39P/3JW8tV+alb7kB5OWW0bHUPyiV9kCuESH0/odDieiBYFRc/5z6juUmBBL1D1LFPweU/b/4iJ8DfAYAAAAAjcMP/WGdJNBwPvOZz6ivry8rfNoYo/POO0/vf//7tWDBAh1yyCGaNm2amppYdg4AAAAA9ej8759f8PXtN0jtJYwz1gDqzHEKBlETQA0AAAAAdYmzgSVYv3590FMAAEnSouM2BRc+6nOkRZdI9usBz6MBLbo4UR/1vzgh+/VQwBNpTPRAY6P++OtzEnID7gHX8ebR+TQ9EAR6AAAAAACA8fHSSy+VvG0sFtPLL78sW8GF0clkUnv27NFzzz2nu+++W7fccouMMekFvgsWLCh7TAAN6IQTpF96YYJlB5Dmbl/m+11Tflgtqu+s56U5e6RtUysLofVzJiuppR9GPmePNw/UXucm7/vHzhsOIndskV4wo2cMl9IHjs0OIL/p7uF5oPYq6gEV6YEi76UH6kcl9fdvOMFnwOTAZwAAAACAqsi9axmASa23t1c/+clPsgKoZ8+erdWrV+uUU04JeHYAAAAAgFL94tpfyNyY/5jO1hukjprOhgBqAAAAAJioCKEGgAni5kduDj581OdINx8W1bJnCx4WRBWtPCReV/VfeVBUS16k/rX0+Iz66oHHp0d1wi56oFaeml5f9X9qWlTH9VH/Wno9Ete2qUHPwrNtqvR6c1T7RemBWqIHAAAAAAAYP4ceemh6we1o/NDpP/3pTzr00EOrsl8/fNp36aWXVmVcAJNX0k1qye/+Tn/Yr/IFGn0RaahJio7hPnN/mCUtWSSt+bEUYq1ITSWN99/+tWmlBU6OZixlc6y3f3ogOJlB5NJwwGwxuQGkpZbOGslYAsjrCT3Q2Kg/6AEAAAAAVUEQENAwfvvb3yoajaZvkBwKhXT33Xdzk2QAAAAAmIDs9XZEEPWrN0gzazyPgquLufkZAAAAANQ1QqgBYIJYdvIy3XDHh7VlxtjGGctCVN+Br0rLno/UTyBqA1jyckR/vz2q12YFPRNp7nZvPtS/tk7oi+iMp6O67y1Bz0Q642lvPvRA7Ry3O6Lz/hjV3UcHPRPpvD9686H+tbVfPKJPPxjVV94V9EykTz/ozYceqC16AAAAAEBVcWEnMIItcaF9qduVwg+gNsbo7LPP1vHHH1+1sQFMTiEnpA8e80Hd+6dfKGHKP/drJcl4AdTWlB9E7Fgp4Ui7WqQP/oHw4SCErPff/t7DvdobjS1QulxG3n7pgeD0R6TFl0hbp0nTo1JvpLwe8ANIy32PJHVEvf0uvkTqWiW1R8sYBFVDDzQ26g96AAAAAAAAlOvPf/5z+s/GGF1wwQUEUAMAAADABJYZRP3yDdK+Nd5/0QBq163VVAAAAAAAFSCEGgAmkJefOF0zjn9AvRUGUTt2+HulQdQdO6SX/8tIzawmrbVXbw6r4yMx9Y0xiHwspu/y5lHbpczw/ebOsI69PKaNBwU3h2Ne9uZBD9TeL34a1tumxLThkODmsOBFbx7UPxhffiiszTNjWn1McHNYtNGbBz0QDHoAAAAAQNUQQg2MYAr8f5EZPF1ou0pYa3XMMcfolltuqeq4ACanpJvUjx+/VW0xq76IFyRdLqvK3qfU+4yV2hLSj4+VPvhHo1Clg6EiSWP14+Os2hJSXyi4ebQlpB8fRw/UWtJYLXm/Vc+csY0z1iP8PXOkJe+X1nRR/1qjBxob9Qc9AAAAAKBshW6u6jjS9Om1mwuAwOzevVuSd27aGKMzzzwz4BkBAAAAAMbKXm/1ojGaXeP9EkANAAAAABMfIdQAMIF0z9mlKc1GvQNWaivvvY4d+bjsIOoBaUpY6p5n1flnggdrrftIV1ObpL6opEgAE4hKU5uk7rck1bnZCWAC6D7SVW+HZKKSDaAHTFTq7aAHgtJ9pKvtM6VQVEoGUP9QVNo+k/oHqftIV48eLE2JSnsD6IEpUenRg+mBINEDAAAAAKrG4Xd6IJcttAi/gu1KMW/ePC1dulQf+9jH1NraWrVxAUxeISekpXuP1Ib4WsUcaW+4tvu3ktri3tfSDSJ0MAAha7R0g7Rhjq2DHiB4stYy6z/QLPVFJKPa3DbSyNufRP2DRA80NuoPegAAAABAVU2ZEvQMANTIlJz/3+fMGeMdrgAAAAAAwTNGh0iK13CXBQOoJQKoAQAAAGCCIIS6ipLJpHbu3KnBwUFJ0sEHHxzwjABMJkk3qRUHvSFXVnNd6bUBlRxEnRlAHUlK0dDw8yUHUQ9Ic11v+xULpAufZyFJLSWN1Yr5Vq6R5sal16TaBlFHvf26Rlox3+rCP1P/WsvsgTlxaatqG0Rtot5+6YFgZNZ/VlzartoGUYei3n6pf3Aye6A9dUawliHEU6LefumB4NADAAAAAKomFCKEGshxyy23jPqatVZLly6VMUbWWh188MG68cYbK9pPU1OTpk2bphkzZujYY4/VjBkzKp0ygAbW+fAOPfKG9I1TJWOlWh6mM1YabJY+9pjUuUkSv1IEonOz0SMH2GB74PfePFB7mfWXKrj5eIVc411j0heRrnmc+geJHmhs1B/0AAAAAICqMEb6q78KehYAauSQQw7Jerxnz56AZgIAAAAAqAozfL62WbUJoi4aQG1rcftkAAAAAEA1EEI9Bk899ZTWrFmj9evXa8OGDerr60u/ZoxRIpEY9b19fX1KJpPpx1OnTlU4HB7X+QKY2EJOSCvNJVq89Sb1zFbJQdSZAdTTo1JLQhpq8haE+K8XXYySCqCWpPlbpZXdDqGDNRayRivvatLii+PqmWVrG0SdCqCWpPnbvXlQ/9rL7YFaBlH7AdQSPRCU3PrXMojaD6CWqH+QcnugliHEfviwRA8EiR4AAAAAUBUh/w6FJEYCma666qqCry9dulSSdw545syZRbcHgPHUveNhrXyr1B6Veltqu29rpOlD0sr50smvSJ1P13b/8HQfaYPvgbdKJ79iCaAMQJD1d43UQf0DRw80NuoPegAAAADAmBgjTZ3qBVAfe2zQswFQIyeeeKIk73y3JD3//PNBTgcAAAAAMBZm5Hna8Q6iJoAaAAAAACYXQqgr8MQTT+hzn/uc7rnnnvRztsx/EH/iE5/QD3/4w/Tja665Rt/97nerNkcAk1N70xR1rTJafIktKYg6XwC1NPy9pCDqnADqrlVSe8JIzSwiqbX2uFHXT8NafFFcPbPc2gRRZwVQO+r6abPa40ai/IHI7YFaBFFnB1DTA0HKrX8tgqizA6ipf9Bye6AWIcTZ4cP0QNDoAQAAAABjlkx6QdR+GDWAkpV7PhgAxkPSTWrFAduUNNJgs2SsFwpcK8Z6+21JSCveHtKFf/2vChlublFLSetqxZ4fKJl4SYN2UEYJ1fInlJE02NqklrZWrbj8YF049Rp6oIaoP+iBxkb9QQ8AAAAAKMvrr0vPPDP8uKVFOuus4OYDIDAHHXSQTjzxRD3++OOSpHvuuUc33nhjwLMCAAAAAJQtTwC1b7yCqAmgBgAAAIDJhxDqMn3ve9/TJz/5ScVisfRCY2NM+i7AUmkLkP/+7/9eP/zhD9Pb/uQnP9G3v/1tRSLjmSQKYMKLx9UeM+papaJB1KMFUPtKCqLOF0AdlRRSwQOUGD/tcaOuu8JafFFMPfuNcxB1ZgD164667goTOlkHcntgPIOoswKo6YG6kFv/8Qyizgqgpv51I7cHxjOEOCt8mB6oG/QAAAAAgKrg+C5Qlquuuir954MPPjjAmQBodCEnpO/c26IFl8UUd1KH6soMojYaDq8uZ/mHsd57446UcKTv/KpZoXP2KWv+GLuQpO+0X6sFL39OcZuUkZFkaxJAaSQZGcWVVMJI39n/WoWaZtZgz/BVq/5Gpux3Uf/6QA80NuoPegAAAABAWeJxqaNj+HFLS2BTARC8v/u7v9MHP/hBSdLjjz+u++67T2eccUbAswIAAAAAlKyE6/+rHURNADUAAAAATE6EUJfhn//5n3X99ddnhU9L2aHTpsRF+8cee6zOOussrV27VpLU19enu+++W52dnVWeNYBJ5eWXpXBY7bGYuv7HavEl0oY5UlOLlJMxLStv8Ue+AGpfZhB1vsN7TS2SOyAtyAyglryDgRwQDEx7VOpa06zFF8XVM8tVh6TecdhPR+r7/O2Oun7arPaYVN5SdIyX3B6YrvHpgemp7/RAfcmt/zSNT/2npb5T//qT2wNFT+JVyB+XHqg/9AAAAACAshkjhULDjzm+C5TllltuCXoKACBJSrpJ/fVZAwq5UrOrioKorcoLrZaGA6glb78hV/rrc2JaMzigkHHKGwxjkrSu/nrnzQpZo2aFFFdtgqj94ElJalZIIWv019tu1pqZH6MHaqha9a80eFSi/kGjBxob9Qc9AAAAAKAssZiUTA4/Tia988TcsBhoSB/4wAd022236e6775YkXXPNNfrd736n/fbbL+CZAQAAAACKKvF4TjUDqP3xRl2/zHoEAAAAAJiwCKEu0Z133pkOoM4Mn37zm9+s9773vTrssMP0zW9+U1u2bCl5zMWLF2vt2rXp8X71q18RQg2gsB07pNZWKRpVe1T6wV3S0R+TEnnWclgjtcVGD6D2tSSkmCPtDY98LeFIA83eftIB1KgL7TGjrp82611LYnpyVv4DtKbExeajbdcbkQ7uM6nQSS40rDf0QGOj/qAHUEoPpO9KUkChgBp6AAAAAJikHIeFxQAATFAhJ6Slf2rRhn33qGNQ6m31gqhrpdmVOgalJistfTKk0NQNtds5JEkhSUsjc7Wh/Vl1qFm9jqv4OAdQS8OHm5tl1OE2q0lJLd05V6EX6IFaov6gBxrbaPWvFeofPHoAAAAAQFmGhqTdu4cfh8PSiy96a5JmzpSaR40QAjBJ3XHHHVq4cKE2bNig559/Xmeeeaa6urp09NFHBz01AAAAAMBoAgqgzhx3xFEkAqgBAAAAYEIjhLoEAwMD+vjHP54OoLbWqr29Xf/5n/+pyy67LL3drbfeWlYIdWdnpz7ykY/IdV1Za7Vu3brxmD6AySQe9y78ktQfkS78UP7waMlb/DXYLIXdwkHUQ03edkbKuyRlb9jbz/r/zgiitpYDg3XgZ0cktWmfAnUoNUemwHab9rH62RFJLfljqKy5oTbogcZG/UEPoFgPGJP/97uRG47+Ej0AAAAATCLGDAdQc3wXAIAJq3PrDOnuPVp+nhcIvatVio3z4TtrpObkcAD1TXdLnS+HpVPHd7/IrzN6mNQvLW9/SB1uRG84gzXZr5FVh9uiJjm6qf80bx6oOeoPeqCx5dZ/hzOkApeFVYWVF37c4Uaofx2gBwAAAACMibXSwIAXUH3AAUHPBkCNTZs2Tffff7+uvPJKrVmzRhs3btSJJ56oK6+8UkuXLtWJJ54ox6nh3U8BAAAAAIUFHECdOX46iJp1CAAAAAAw4RFCXYJ///d/17Zt29IB1NOmTdMDDzygt771rWMad+bMmTrqqKO0ceNGSdJzzz2n/v5+tbe3V2PaACaj5mYpFlN/2GrhVVLPHO9px0puxvFDI8mkjt31Rbzv+YKoh5qGXzfWe2PmIT8n9aBnjrTwqowgaj+sBIFZeVRCy85LKFGgDKUevi20XcKRlp2fkIzRkj/xa0M9oQcaG/UHPQB6AAAAAEBZjJFC3FwGAIBJIRxW5ybvjx87r7a7dvwA6k2SpjlSYrwjDzGazsRBUvIULZvxgJI12mdSUkxJfWfXO9U5dJA07pGXGA31Bz3Q2Pz6f3jGg0qWfEZwbJKyisul/nWCHgAAAABQkkQi+xhu5hog15V27qz9nAAE5swzz8x6HIlEFIvFNDQ0pB/84Af6wQ9+oLa2Nh1yyCGaMWOGmpubRxmpMGOM1q1bV40pAwAAAEBjq5MAat+fJb2JAGoAAAAAmBRIkCrB7bffng6gNsbo3/7t38YcQO074YQT9Ic//CH9+E9/+pNOOumkqowNYBLaZx/1x3ZnBVD7/CDqzABqX74g6swAal9mELWTM0ZWEHXSIbAkQCvnxbXsPXHFHcmWduy4YtZIcUdadl5cchwt2VTZRUSoLnqgsVF/0AOoZg8UO+VLDwAAAACTRO5FqNxkEACAiWvXLknSWc9Lc/ZI26Z653nH83ixsd4N6+bs8fYrSRoYkDZtGr+doqiB2du0Z2atlhF59pi4Bl57Udo2VNP9YiTqD3qgwe33htSelEn98348l3ma1JeSSemVLdLr1L8u0AMAAAAAionFvC9fU5P3e317u3TAAawJAhrM+vXrZfIEmPnrpiVp7969+uMf/5h3u1L4668BAAAAAGNU4rX+tbpq5FVJb75B0o1G9nqCqAEAAABgoiOEuoitW7dq48aN6ZOfBx98sP7yL/+yauMfffTRWY+fffZZQqgBjKr/oFlauCQxIoDalxscnSkziDpfALXP2NSikTzSQdQrpXYuCgnEynlxLTs3mg6dHO9DtFaS/PDJ90QlYwifDBg90NioP+gB0AMAAAAAqoIQagAAJq49e9QfkRZfIm2dJrXGpb3h8d2lNVJbzNvf4kukrlVSezQpvfDC+O4Yo1p5+F4tO2qXkjXeb1JWy456Rnr9DS15bkqN9w5fZv2Nxv9cgVL7of71gx5obN2HDGr5m3oViVtNd436wjZ9Tq/qUteRTY8ZRZKulr/pGWn76+p8sXUcdoZS0QMAAAAASpJMel8+x5H6+6W2NmnnTun44wObGoBg5YZFExwNAAAAAHXEcSRb/EqQWgVQb5N06A3Djw1B1AAAAAAw4RFCXcTvf//79J+NMXrve98rp4oL82fMmJH1uLe3t2pjA5hckm5SZ01ZpZ4xrOHqi3gB1NFQ5WP0zJHOujypR37iKGS5yKSWVh4Z07Kzh2oWOunLCp88d0hyHC3ZPM4r2ZEXPdDYqD/oAdADAAAAAEpmzOgXnxojhcZwkBgAAASq38S0+BLvvO1QkzTYPP4BpEbefsKut990EHWy1hHIkKSVRwxq2em93rHiGu/bKnWs+PRdkmu15FkCKGsts/6Sd6NxjfM5A+PvR9S/HtADja370CEtP6VPbupxS9IolrDaO173kDXeDS9akt41Yq6slp+yS3Jddb7QMk47RSH0AAAAAICSWSu5bvZzsZj3tXevNHNmMPMCECibupbElhBoBgAAAACosToLoH5D0kE3jHyeIGoAAAAAmNgIoS5i+/btkobv7rtgwYKqjt/R0SFp+G7Bu3fvrur4ACYXOzQk1cHaDS40qb2Y4+pvTh+seeikLzN88m9OH9SlzzQp7Fbvpgwojh5obNQf9ADoAQAAAABVEQp5IdQAAGBCSrpJLVk0HEDdF6nN8UL/+GBfxHvcM0daskhac7/lxsU1FnNc/c2p/ekA6lr/57epxPO4I/3Nqf269PkIx4prKLP+vlp+BmSGEFP/YNADjS1prFbMG5Cb8dk/FLIabBq/G1IYSYNNUti1wyHERloxb0AXvhjh94AaowcAAAAAVE08Lj37bNCzAFBDp59+enoNMwAAAACgTtVRAPVOSfvfMPrrBFEDAAAAwMRFCHURb7zxRtbjmVW+y3c0Gs167DgsygCQX8gJ6Tc/adXCc3rVM6eyMaZHpZbE8ILkSszfKv3mv6VQKxee1FLYdfTNB1p09TmDigf0n95KarLSNx9oYRFhAOiBxkb9QQ+AHgAAAAAwJsZITZwWBABgogs5IS3dIP32oNoFUPsyg6iNlZZukEIJt0Z7hy+clL758BT95Zm7lQjoMK01Usj15hGOW0nJYCbSgPz6Lztjd81vWpkZQtxM/QNDDzS2kKSVv56mxef0q2ffhIZCVn1hrwOMlVRiP5QaVmw0HDzeF7ZSTGpJGs1/o0krfz2N3wMCQA8AAAAAKIu1UjLPv9sdRwqHpf7+koKNAEwO69evD3oKAAAAAIBCSrhxUK0CqHslzbmh+Hbnf/98/eLaX4zzbAAAAAAA1cZq8yIikeyU1qGhoaqOv3PnTkmStVbGGO2zzz5VHR/A5NK+dZfW/7e08CqVHUTtB1BLw9/LDaKev1Va/99Se1RSa3nvxdi1JYymxqRdLcHNYWrMmweCQQ80NuoPegD0AAAAAAAAAACfVe2CRzP3mYUbrQeiLRnStLjRrkhwATHT4kZtyRA9EIAlz06RjKOrz+ir+U0r/ZtV3rx+upY82ypR/kDQA42tPemoa22HFl64Uz37JLJeM9YLJi/EZHwv9lPE5GzQF7Y6dEdIXWs71J50qH9A6AEAAAAAJbM2+/idMVJLy3CgUQnBRgAAAAAAAKiBEo/TNKs6QdSFxumXNOuG0sYhgBoAAAAAJiZCqIvYb7/9sh6/8cYbVR1/48aNWY8JoQZQUCymdldlB1FnBlD7yg2izgqgRs0ljdWKY2JqSRp1DFn1BhA+2TEktSSNVhwT04XPNStUbNUSqooeaGzUH/QA6AEAAAAAAAAASTepFQsk1xQPGBwv1nj7X7FAuvDHWxUKLge5ISWNtOIMSba0oMnxYKwka7XisF5d+KjogQC0dUhTo9KuAG4ePjUqtb3RJ23tq/3OkUYPNLZ186RtEanZleIZWWKlhg9nPi70EW5NdghxsyttiyS0bsp2dW4qc9KoKnoAAAAAQMV27pTCYWnOHGn//YOeDQAAAAAAAMq8UdhYg6ibC4yzW9K+N5Q2jr2ei8YAAAAAYKJyim/S2GbPni1JMql/tG/YsKGq469fvz49tiQdccQRVR0fwCTjupK8IOj1/+0FQxeTL4Da15LwXi+GAOrghazRyl9O0fw3QookpSa3tvtvcqVIUpr/RkgrfzmF0MkA0AONjfqjGj1gJDl25MLSUtADwaMHAAAAAAAAAISckC7cVPqNhsdLX0S6cBPhw0EIWemDT0kDzd6x3lofqfX3OdDszYMeqL3uedLy86SWpHfzyFryblbp7b97Xm33jWH0QGPz62+NNGPQCwWWvMejfSQX+nlR6OeI1XCocbPr7c8a6h+08eiB0V6jBwAAAIBJKJmUBgell1+WDjoo6NkAAAAAAAA0tjIDqH3NxTcp6X2Zjwck7XNDaeMQQA0AAAAAE1tT0BOod29/+9sVCoXkuq6stVq3bp2stVnB0ZV66KGH9PTTT6fHmjlzpo499tgxjwugMfhB1Auvknrm5N+mUAC1z399tIXKowZQV+FzEOVpjxv9YO0ULbisX66xMhp98VA1GUmukZKOt//2uFP71cyQRA80OuqPsfaAscPfy8kPpgfqBz0AAAAAoGTGSNZmPwYAABNeLBHT584Kehaez50lXdUjhWt848xGlzTSj4+TOgal3lYp7kgqEDpZTUbe8eVm19v/j4+TPriRIOpaShppxQLvmL0ktSYkDUm9LeO/746h1P7k7X/FAunCzdS/1uiBxpZbfyMvFPiNNikxyj/7/c/uzHODIVdKOtnbSPl/llh5NZ4xOLwd9Q9OpT2QK7cHZFOHkvJsSw8AAAAAk0zmeeN77w1uHgAAAAAAAI1ujNf3N0uKl7n9aM/3Seq4obRxCKAGAAAAgInPKb5JY5s+fbre8Y53yKYW6r/66qvq7u6uytif//znJSkdar1w4cKqjAugcfhB1PO3jnytlABqX0vC2z7XqAHUkhdgwldNv/qbXV3z7r1qSi3sNXb88x8zFxI3Wemad+9Vf7Mb+H+LRv2iBxr7i/rzNdYesDnf6YGJ90UP8MUXX3zxxRdffPHFF18lfxUTCpXxLwMAAFAvwk1hfXNtSGF3+KZztWasFzz9zV8SQB2EkJVWrpYWbPWCoJsrrEGl55j8AOoFW715EDxZW379M68R8Y/jl6Pc+ueej5hP/QNDDzS2fPWPNg0HEufK1xuRhBcmHsm5pqzQeUfXePvxUf/g0AMAAAAAxsxxvC9J2rkz2LkAAAAAAAA0qjEGUPtGC5Yud7vppaw/kAigBgAAAIBJghDqErz//e+XJBljZK3Vddddp927d49pzBtuuEHr16+XyTgwcPXVV49pTAANIM/BxHxB1OUEUPtyg6gLBlCj5pLGasl79qpn36SMlWZEzbiH0GaGTs6IGhkr9eyb1JL37FUyqFXtDYweaGzUH9XoAWu8xaG2xDfQA/VlvHqg0HvpAQAAAGASI4QaAIAJa8m2Wbp5TXAB0GFXunmNtOQPwewf3jn8rlVeEHRrXGXdeFAaPi5c7jkmK29/C7Z6++dagmD49Z+/VRpqkvoi5YUQl1t//zxEX8Tb33zqHzh6oLHlq78kOTn1z9cTrXEpkvS2jSS9x1nvyXPe0R+X+tcPegAAAADAmBgzvC4pkZD27g12PgAAAAAAAI2mSgHUvmIB00WDqlMB1MUCpgmgBgAAAIDJgxDqEnz0ox/V3Llz04+3bNmi8847T/39/WWP5bqurrvuOn3xi19Mh1obYzR//nydd9551Zw2gMkoHM77tB9Evf/uygKofX4Q9f67CaCuNyFrtHRjOL2wp5TwyZIXDI7yXG7opOQtLFq6MaxQqQmmqBp6oLFRf9ADoAcAAAAAVE1Tk+RwihAAgAlr+nQt+YP0kceC2f1HHiOAuh60R6XLe6TB5tKDZ6WRx4PLOdJrrLe/y3u4liBofv0HMlaJlRJCXG79c88/DFD/ukEPNLZ89ZeGw4Lzhg/HpHAyVdPUVzjpPZ8ps+a5ocbUv36U3QO2cA9k/n9ODwAAAAAAAAAAAADAOKlyALVvtKDpUgOo0w9HCZomgBoAAAAAJpemoCcwEbS0tOjGG2/Utddemw6O/u1vf6tjjjlGX/nKV/SBD3xA4VGCYX2vv/66Vq9erW984xt67rnn0uHTkmSM0Ve/+tVa/FUATHTt7dLrr+d9ad1hkjWVB1D7WhLeOOsOkzo3FdiQkJKa63y+RTKOli/cK1fD4ZO7IlZxx6ubz19MVEo+pLHeG2zOcyNCJyXddP8UdT4f5jYWAaEHGhv1Bz2AcnugVPQAAAAAMAnlXqBqjBQKed/H6eJVAABQI+3t6p4nrTpW6hiSeltqt+uOIW+/f/FSkXPJGHfd86RPnSN1DEq9rVLMKX5OYLSX/ecLLRUyVgq73v4+dY7UlqAHgpRb/3jqmL1R/joWao1C9c98XzP1ryvl9oD/WqHn6YGJY7T6SyNDgyVpWnT0+oddSTFpKDPQPM8NcKl/fSm3B6bEpSY3/1hhVwrFpL0Zl0DTAwAAAECD4LwxAAAAAABA7YzzsZhmSfGcxwXZ/FeY2OutzI0m6zEAAAAAYHIhhLpEH/7wh/XII49oxYoV6SDqV155RVdddZU+/vGP621ve5teeukl2Yx/ZF922WXauXOnXnzxRT399NOSlH7dH8MYo8985jM655xzAvl7AZhg5s3LG0LdPU9afp7kVum4o2u88aRRFow0N0uRSHV2hrJ0vhKRHm7W8nf2yTXegp8ZMaM3Im66/n7waDlywycdK82IOd6CIuM9vunh6ep8pUWi9IGiBxob9Qc9gHJ6oJQQch89AAAAAEwyjpN9YajjZN9YkAXFAABMWN0H7tHyQ71zuq0JSTUKou4Y8vZX9Fwyxl3m9QGOigdRl/KbX76bFWa+5gdQO6IHgjZa/eNO/mtGjOQVtoSQ8tz6u6nzA83Uv65U1ANFjPYZQA/Un0L1z2d6VGpOSrHQ6GOGXSkSlfpGOQdI/etLJT1gbOHrCiNJqYkeAAAAABqDtcM3LjZm1LAhABNDKDTyoI8xRolEoqRtx8No+wcAAACAhlaja/f9IOpKA6jTL19vdf73z9cvrv1FlWYGAAAAAKgno1x2jHy++93v6r3vfW86PNoPku7v79f999+v3t7e9LbWWnV1denee+/V5s2bZa3Nep/vgx/8oL7whS8E8LcBMCG9+90jnqp2ALXPXzDSPS/PiwRQB6rzhRbd9PB0Oalju1HHjil41Gfs8OJD13jjShmhky/UYPU6SkIPNDbqD3oA9AAAAACAMWviPrUAAExESTepFW2bs84Ntyak6UPju9/pqQBqn2ukFQukJPe1qLlk6r99Zg84ktoHRwmQVv5jxiE3z7YZx4gz2dT4mReZ0QPBKFT/PCWtSv1dUf96Qg80ttHq3zHohQTnmh6VWnLyfoyVjt0+si9aEt72uTLDh33UPzj0AAAAAIAxywygBjDh+WuWc7/K2XY8vgAAAAAAGWp8HGasAdQ+AqgBAAAAYPJihXkZmpqa9POf/1w33HCDvvSlL8l13axA6dwTpP5jk3NAwA+jvuGGG/T5z39+/CcOYPJ461u9AOiot+JjvAKofX4QtSR1bsp4obnooUeMMz8E8sN/0au+8HBA5FhlLirsC1uZmPRf93cQOlmH6IHGRv1BD4AeAAAAAFCxUIgQagAAJqiQE9LK/0lq8SVSzxzvOVfS3nDpY/iBpNbkDy3OZ2/YCyb0wwfnb5VWrpZCIX6nqLWQpJU/tVq8yFXPbK+CrqRdbcqbHms18vnWuBcoGXekwYxT/6P2hPHG32cgowe2Ga38qaNQiLCaWqq4/hmFpf4TG58BjS1f/aXhEOLeVq+uUk74cMbNbK980ujE14z+d67VbfNtVs397fsi3vd84cMS9Q9SxT2QQg8AAAAADSaRGPmcv8bRWoKogUmi0PrmQtuOBwKoAQAAACBHvR1/4d9tAAAAAACNvDYYRRhjdOONN+rBBx/Ue9/73qw79Bpj8n5J2XcKXrhwoR588EECqAGU7x3vkKZPlzT+AdQ+P4i6e17Gk4RQ14/xPs7LceT6Rw80NuoPegD0AAAAAIBSGUMANQAAk0B7VOpa5QVBu5J2tEmJEq/+8QOopewb0hWTcLz9uPL227XKmweC0R4z6lrtaP42U1IPZB7mbYtL4aRX/3DSeywVDyXP6oFt3v7bY3W2SKpBVFT/VKlGq396u1FQ//rCZ0Bjy6x/Jj+EuNktED7c44UPS9KJrxld2WNG/C7QkvDeXyh8mPoHix4AAAAAUDWEDgGTQua65XK2HY8vAAAAAEAGAqgBAAAAAHWKVeYVOuWUU/SLX/xCGzdu1KpVq3T//ffrkUce0dDQ0IhtjTE6/vjjdfbZZ+uiiy7SqaeeGsCMAUwK++8vnX66up++S8vfHRv3AGqfH0QtSZ0vtUltbbXZMUbVffBeLT+pXxHraHrcqq/Zrfo+pscdRazR8tP6peYmdb40per7QOXogcZG/UEPgB4AAAAAUFDuRauOI4XDwcwFAABUXXtU+sFd0tEfqyyAOv2c9V4oZXlJwpEGmr39EkAdvPaY0Q9+bnT0R2xJPWAlRZJSczL7+eakFHakaKj4GOke+LkheDJg1B/0QGPzQ4gXL3LVM3v4p7gjacbgyJtMGJsdPuzzH98+P/s3gZaEFEmMHIfw4fpRdg9IuqJAD9xxHD0AAAAANCRr6y8MCUBZrr/++nHZFgAAAAAwRvV2zIUAagAAAABABkKox+iYY47RMcccI0lyXVc7duzQjh07tGvXLrW2tmrffffVfvvtp0gkEvBMAUwW3Re+RcufTMit8XG+dBD1w83q3FbbfSObFzq5Mx1C3pI0kpyqhk9OjzupcVO1P2mnJBE+WSfogcZG/UEPgB4AAAAAUJLMi1fr7UJWAAAwJv0R6cIPSXvLuMeElSSTHURtSwyg9u0Ne/td/98EUQetP2x14WK35B4wkmIhqcnNDqGNh7znjUrrhb1h6cLFrtbfTghtkKg/6AGMFkKcWxXHSp990Gh6NH+9TnzNyJH0k6Nt+txjvnEIH64/5fTAXz1udNQbo/fAAbulb59EDwAAAAANxxgCiIAJjhBqAAAAAKhD9Xbdfr3NBwAAAAAQOCfoCUwmjuNov/3207x583TKKafo+OOP14EHHkgANYCq6f5Tt5a//t9ym0KBHOxzjbT89D3qPnhvzfcNT27opK8laRTJfbJCEdekQyd9fvgktQ8ePdDYqD/oAdADAAAAAAAAQGPrj0gLr5J65niPnTIyQqy84Gmp/ABqfz89c7z993MpTGD6w1YLr0iqZ7b3uFgPZB7tHWj2Qmcl7/tAc2obOzJsMle6B2ZLC69Iqj9MQE0QKqm/Hz4/Wv1F/ScUPgPg80OI52/LXz3HSjf9ytE5zxeu7ttfNbrpV86ovUT4cP0qtQdO2VK4dme8SA8AAAAADYkAIgAAAAAAgOqqt+MtxkiuG/QsAAAAAAB1pinoCQAASpN0k1rxxAq51pWmTZN6e70XbOmLuhwrnfWctO5wjQguLIkxcmW14oh+XfjnkEK2zg6CTnLdhw5p+Tv65EojVoQPhayi5awwLyDqWA057sjwSUnL37FDiifU+UJLVfaF8tADjY36gx4APQAAAAAAAAA0tqSb1JlXDgdQS+UFSfvbV3Ka12o4oLRnjnTmldKjt1rOGddY0lideflw+KzP2NHrmvvaQLPU7AwH0ZY6Rqae2dKZlyf16C1cN1BLo9XfsfmvAckMoPYVqr9GCafPPf1A/YNTaQ+U+hlAD0w8fgjx4kWuemYPF8oPH+7c7OiZGcUXlHZudiRJy891s3qJ8OH6V0oP/PwIegAAAABAjnoLRAIAAAAAAJjo6u14CwHUAAAAAIBREEINABNEyAlp5aKVWrxqsXq29kitrdLgoPdiCUHUjpX+391S5yape570ifPKDKI2RjJG83c0a+W6DhaR1VjSWK2YN5C3ZkMhq75wdUInfX1hK8U0MnzSSCvmDejCFyP0QI3RA42N+oMeAD0AAAAAAAAAQBoOgpYqD5SuhDXeDv3dGSm1cIbjhDVlRv4XL9YH+Y4el/pc+rWc+qemQg/UWp76SwVqN8oLI55O1TcrbT5n+9ynqX9ARukBKX+QfG4IuW+0nilnDHqgfrTHjbq6jRYvSqpnlvXCh38dUufTTiqJvEDj+IxR59MhyRgtPycp10jztxt1dYfUHi/h/QjUmHsgtQ09AAAAADQAxwl6BgAAAAAAAJMPAdQAAAAAgAmEEGoAmEDaI+3quqTLC6K2T0ixmBSPF31fZgC1NPy9rCDqVAB119oOtce58KzWQtZo5boOLX53r3r2Ga75eIRO+vKFTxJCHhx6oLFRf1SjB4yUTgko5R30QH2pVg/44QH0AAAAAAAAADDxhJyQ1t0mLbxKemJOZQHUxmbkzZb5fj+I+Pit0rrbpJAJEUhYYyFJ6+5wtHBJXD2zbEl19F/3N2uNS2FXirnSYHNqm1LHSfXP/O1G6+5oVqiUYFNUTW79pcK1yxcenq/+5Y5D/YOTrwek0euXL0B8tB7wtx8xRp4+ogfqT3tC6lrj6LIL41r2ZEidz4Qk//IuR97FY6NxlQ4h63zGkYzRzW9N6kd3Nas9YYbHQV3ze2DJhQktfdLJ6QFbuI7GjOiBFW91tfKuJnoAAAAAAIBJ4gtf+EL6z3PmzNG1115btbG///3va+vWrenHn//856s2NgAAAADUvXoLoJYIoAYAAAAAFEQINQBMMOkg6h+/Xz077i+6fW4Ata/cIOr5O5oIoA5Ye9xR19rh8MnxDJ/1ZYZPEkIePHqgsVF/jKUH0gHUqe+mghBieiB4Y+0Bk9rUVBhGTg8AAAAAAAAAwWuPSnfdIb15uTTUXHz7LBkhokaSzZdOWkQk4e2/PSrJxMqcAKqhPSatv8XqXVdLT84u/X1WUlvMC5+VpHDSe3IgrJL7wBrpuG3e/ttjxW+Yjerz67/wL6UnZpceHi5JrXnqPxgu7bMgHUK/TVp/K/UPUmYP9MwuLUDcN1oPSKUHkc+nB+qY9QqZSEix5PDTMSslCrzNVfb2idQ4sZgUq8PFshhVe0xac4dVyFpJOTUt1AMJZdW68w/ShRutQpb/zwEAAAAAmCxuuOEGmVQw2vz586saQv2d73xHTz75ZPoxIdQAAAAAGkY9BlDb8c0eAAAAAABMfIRQA8AE1B5pV9f/HaHFex5Uzz7OqHeiGy2A2ldqEPX8bVLXPWG1T2uVImOcPMakXVLXgxEtPHerembWZlF3X9jq0J3N6npwttodhx4IGD3Q2Kg/KukBM+IPww9LDSGmB+pHpT1gcoptygiXoQcAAACACcjJOW6ce4Grw81lAACYqPpPeZvOn/9/5QdQS97N6WzG8eEK1sAMNUvnL5EevEVqj7JgJUgzB0s/1l8tJrVfSSxYClB7VLrrR9LRH5N2l3DM3hopnBgOH/aF3VRWbYlXEE6Nefttj0q17Tzkao9K62+V3vWX0pNzCm/rB0tnhtD7wq6kmDTYXFqg+XFbvf3SA/WnPyItvkR6Yo73JWvT14U1J6X2odHfG7JKf6Z3z5OWv1dKGm+8rlU2VW9MFCEr5f7/OTXqZY2PpiWuET/X840DAAAAYBJIpm5YEwoFOw8AgbHjdGzfH9fUYwAbAAAAAIyHevz3D9dzAQAAAABKwApzAJiI7r1X7f9zl7rWdmj+jua8gSHFAqh9nZukm+72ts9n/jap605H7b2D0uBg/o1QU+vmDmpbW1LNNToG3GylbW1JrZtL/etFNXsgN5Q0H3qgvpRT/6ZCqwhLRP3rTzk9MNrPd1+Iz4AJqZweyBdAnX7NSm2J4ie66QEAAABgEmJRMQAAE1LSTWrhVVZPzq58DGu8GxQXCxst5MnZ0sKrvIBK1F5/RHr/B6TfHlR+NORgWIqlLi+IOd7jclh5+33/B7x5IBj9Eenqi6VoieHRkhRvGq69L+Z4z5cq2uTtl9rXj1kDpZ0TLvpxXcLneZPr7Q/1xw+g3jBH2tUqDTRLy8/zAqUlaVpMOmD36F/77/a2657nvW+g2RtnwxxvXP6fn/hm7y3cAzMKhJQDAAAAmKT8MGoAqBLCpwEAAAA0lHr8NxAB1AAAAACAEhFCDQATTTwufe5zkqT2uJMKos5eFehYL1i6c5O3CNQ1o39ZjR5EnQ6gjqUOgu7axcHHgHUfvFfLT9opK2lGNFQwfHJ63Clp1fH0+Oi/DjRbbz9W0vKTdqr74L1lzxnVVXYPFGGKbEcP1Jdy619KwPDU+OivUf/6U24PFDuNaSyfARNNOT0wJW6K3myg2aUHAAAAgIbjOFK4zLRBAABQF5JuUs/ufDboaUiSnp1BCHUQksYLBH3gEClWwX1FrLzg6b3N3vdKzv7HQt7+F19CDwTBDyF/8BAp4RS/IanPr31uCHmpPeBYb38PHkIIeT3wQ4c3zpJmDhbOkPZfy6y/z+8DY4uPMXPQ2x+hxPUlM4C6t1WKO1JfZGQQdTGZAdR9EW+cXoKoAQAAAGByc0u4sxUAAAAAAACyEUANAAAAAJjgCKEGgInmV7+SXn45/bA97qiru0nzt3mPHSvddI/U+bQjGSNb5Bim/3puEPX8rVLX/2g4gFqSkklpcLCKfxmUww+ddFMlMRo9fHJ63FFLiSt+W5Imb/ikHzrpj+IawieDRg80tvGqf4T6Txh8BqDcHgi79AAAAACAHKEQAdQAAExgISekQzsODXoakqRD+1TSzTBRfdumVBZA7bOS4qHKAqh9sZA3D9SWH0L+4CFeQKwklXgqQNLYQsj9/cRTQdSEkAfHDx3umePVsK9FBW9KmvlSviByybt2qFA/GOvtx8rbL6HE9SFfALUvM4j6F28uPM5vDs0OoPYRRA0AAAAAkxzhRACqJJlMpv/c1NQU4EwAAAAAYJwRQA0AAAAAmAQ4owcAE81//3f243hc7X1D6lpltGSR1dINRp3PhaVZMzQU3avBwd1qcqVmNxUwbSUZb4Fg3JESRpqZWoXUucmVJK1YIK1cLbVH5b0p82Do3r3S1Kk1+atiWNJYrXjz3hELSP3wyV2RpOKp1woGj6bqn8vb3lFfs9cDuaGTPtdIK968Vxe+MlWhYgnnqCp6oLFRf1SrB5qSUiJPMAU9UP8q6YGoM/LkcXPSCxfJRQ8AAAAAk5wxUktLfV74CgAAytLsemGgQR6eM9Y71ohgOLY+eiDPIWjUwOttlQVQ+/wQ8kq4xqt73PHmgdpLGmnJouEA6l2p4OFivZB5mngwLMVzzhkW+9/Zv8ZoV6s0Y9Db/5JF0pofc0OCoBQKoPb5gdL/eLb0N7+Vznhh5Db3HSr9yzu9z4W+PCHTuUHUXatS15MBAAAAACYH1gYBqIK+vr70n6fyuQIAAABgsqrH6/AJoAYAAAAAVIAQagCYSF59VXr44eznBgYkSe0xozVdUkiOtM907yBmyNFQkU96YyXF/QdGnZusLtycsUgs98Dj4KC0Z48UqnBVIioSkrTy3mla/O6kevaJZ73mhU862hV21ZYwaklKeZcIJjW8sjCzfKkatyQkWaOBJqsZMUcmz0Hn+TuatXLtNIXiQ9X4a6EM9EBjq1b904EEI+pvqX+dG1MPpP7YGpfCSSkWkgabMwbgM2BCqKgHcmo4JSpFklI0JO31F5Fb0QMAAADAZJT7+7y10tCQ1NTkfQFAAF5//XX9/ve/17PPPqv+/n41Nzdrn3320dFHH60TTzxRzc3NxQepoa1bt+r555/Xyy+/rO3bt2vv3r2Kx+Nqb2/X9OnTdeihh2rBggVqb28PeqpoICEnpM9Ofa+WbXlKuyLBLSDpGJI++5AUMk7em19i/IQkffYhq2UXWO1qDW4eXg8YhYyhB2qoHurvGi+EmPoHIyRp6RNW/zfXamdbaQHUvswg6nICqH2ZQdT7DEhLn6AHgtIftlp8idWG2aMHUPv6IpIrL2hajnTGC8MFu+9Qq385RRpskvaGRx8jK4j6UqlrlVF7jMLXq6SxI28m7FipQJ/IkeRkvyfvOAAAAAAmnkJBRC0ttZsHgEmrv79fW7ZsST/u6OgIbjIAAAAAMF4IoAYAAAAATCKsMgeAieSxx7IfWytFo+mHIWukqVOGA6LLPW6YOvgZyjzgaO3Ig6LxOCHUAWiPO+pa26HF7+4dGT5ppRlRIzPa6j4/fFip70llh9CmtCSNIsn8awTn72hW19oOtRdavYZxRQ80tmL1nxktUJdUALW/rS1Q/5Zk/h6i/sEbSw/4AdTS8PfBPJk+9EB9G0sP+AHUUup7NCOIOgM9AAAAAExyiQQXnAKouVWrVunb3/62Hn74YdlRPoOmTZumD3zgA/qHf/gHveUtb6nxDKXe3l499NBDevjhh/Xoo4/qqaee0htvvFH0fcYYHXfccbryyit1xRVXaNasWTWYrbRixQotW7Ys72vPP/+8Dj300JrMA8E46wVHh+4OqTecUBC5gMZKh/ZKZz1X+33Dc9bz0qF9Um+LguuBPm8eqD3qj7Oel2bvlbZOLT2A2pcZRO0/LocfRD17Lz0QlGIB1G4qF9xkFHd3RHJj0r+cIklWZ7xgCgZQW+P1hpMxRjqIera0+BKrrlUiiLoO9YetLltktWyD1Lm58vp0H2l18wKrH62mzgAAAMCkds45Qc8AwCSwYsUKWWtljJExRkceeWTQUwIAAACA6iKAGgAAAAAwyRBCDQATyZNPZj+OxbIOECYdKdTaOubdJI0UyjzumBtEHY9LLS1j3g/KN1r4pCur3oj9/9m78zg57vrO/+9vVV9zaA7dtmVj2QbL90m4bDAYL1cwDDbIv1WCsWyyYc2Q/IBdNoRgsyQcWUhIlEASbMFvQYmVNYwhiQl4TQBhMMZGHoMs36ck67CkmdFcfVR9f3/U1ExPT9/T08fM68lDSF1T9a0afz6qHlX1911qz2hucGR2+HCoQAjxpGs1HrHqSUpO1tRDQiebR817IKek9EBzKxZAm9dUnU1O/YsFUedD/ZtHxT2g2QHUofB1usx/EdIDzaOaHsgOoA6FQdTl3v+mBwAAAIBFxPOCa8sAsMD27t2rTZs26cc//nHJdY8dO6Zbb71V3/jGN/SJT3xCn/jEJ2Tq+MH9z33uc/r85z9f8XbWWj300EP66Ec/qptvvlmf+tSn9KEPfUiRyMJ9FGPPnj368Ic/vGDjo7l5vqdNx76ufe2eXCtlGjC/xbXSvmXSpndJd/yzDR6UjLrxjNWmd1nt61Rje6BT2vQuqzu2ix6oI+qP7B5wbOUh1FLlwdO5HHqgYcL6FwuglqZqbGZ/TiAMmv5fr5J+9BKrXx5fPIA6HK9QEDX1bz4jMaur3m214yXSz9cFhasmiHrgdKsb3m41FpOuerfVt/4PQdQAAADAohONSpdcIp1/fqOPBEANPffcc2Wvm0ql9Pzzzxd8gHAxnudpdHRUTz31lO6880597WtfkzFmOoj6ggsuqHhMAAAAAGhaThPOpyWAGgAAAAAwT4RQA0Ar2bVr9utMZvqPIzGrTVcZbX4qpb5nqg+IHtggbT1f2vZtqStZYKWs/aL+csMnw/DhtCMNx6yUCkKIHSs5KckvFDI7FU4bTkycdG2wvaSh+EwIMaGTzaeSHsgbQB2yUucEPdBqyg2gday04ZD00Kr8Xw+DqB0rqch8QerffCrpgZVjUrLA+0DMk1aPG6WjxSeo0wPNp9weMMofQB2Ke9L/83hC335pkh4AAAAAlhrfb/QRAFjkHnvsMV122WV64YUXKtoulUrpk5/8pHbv3q1vfOMbct0yn6TXBEZHR/WRj3xEP/jBDzQwMKC2Gjw4Np/rr79ew8PDCzI2mp/ruLpmb6/uOu0F+VPhkvXMfjRT95SG2qRrnmqTe8lv1W/nkBQ8X/Sa9AHd1f6ofMfKaP6BspUwknxHGmo3uiZ9utxL1tRx76D+oAeWtuz6p53Zlc/9V/50EHXWsrG4JNfVL052lDS+xiLenG1y+8k3s59tnnapfzMacTO66uxd2tEzrLSxGmqTbuhzpUdPV9+LK6X2Mckpci0oFZNScQ2sfFE3nP6ohqLBZwN3rDe66ve69a3fnKUuj4+bAwAAAC1nZEQaGpp5HYlIr3+9tG5dww4JwMI5+eSTSz7kNwyd3r17t04++eSa7DcMnw69+93vrsm4AAAAANBwjtN8gc/NdjwAAAAAgJbEp4IBoJUcPjz79VQY9EjMauPVVoNrpZ3HBZPOqwmiHjjdqv8tVr6RNl4tbb+9QBA1ASUNF4ZPXnXFUe04LqXsTMjhmJVJSrf8pEfvvuRoMAutECttuadbN7x2aDp8WJLSThBCfOkLhE42q3J74F1vOFp0nHha2vILeqDVlAqgdab+bv/dKUPSqsI3lIyV/vgeV59/jc0bQEvwbPMqtwf+28uPFgyhlqSepNEn7+tW/2uG6YEWU04PfGAwob87e6LoOBcdjOr1BxP0AAAAAAAAqJnDhw/riiuuyBtAfdFFF+kd73iH1q9fr4mJCT322GP6x3/8R+3bt2/Wev/0T/+k1atX60tf+lKdjnq2jo4OXXjhhTr99NN12mmnadWqVVq2bJk8z9PIyIgee+wx/exnP9O99947PVk79P3vf199fX363ve+V3Kid6X+4R/+QT/4wQ9qOiZai+d7um3lfrVnTHA/SPUPH5Wk9rR021nSNS95vVzDtcN68qyv2+w/ql1xDSs51QP16wIz1QXtbly3neXrmrPpgXqi/qAHlrbc+of8Aj0QLjUy038ei/pKSQoed26mvh70UaFO8hU8wDxE/ZvLiJ3UVfY27dAxBXeNg1oNxTzdcM5TkjlHp9jlmlSq4BhpLdOAeUE32Ps0JG96jLSRdiw/pqte+4K+Za5Rl6n884gAAAAAGmjfPumxx2ZeJxIEUAOLXO59y/muV47wfqgxRldccYXOP//8mo0NAAAAAA1DADUAAAAAYBEjhBoAWkl6bsDgdAD1muC1b6T+1wRB1G9+bM7qBWUHUEvS4NqsIOrCc1DQaIWyCyrNNKjVOKg/emDJKhRAG4YP9z2T0N+dUnqcK55xtE6dcwJoCZ5tfuX0wH97eelxwgdX0AOtp1QPtI17JUOoJXoAAAAAWJIi3CIEsHB+7/d+T88999ysZcuWLdM3v/lNXXnllXPW/8xnPqPPfOYzuvnmm2ct/6u/+iu96U1v0lve8paFPFxJUjwe1xve8Aa95S1v0eWXX65zzz1XrlvsKZ+BJ554Qh/+8If1L//yL7OWf//739dXv/pV/d7v/V7NjvHZZ5/VRz/60enX3d3dWrt2rR599NGa7QPNz3VcbT54gnbGjkhWGorXd/9WUk8yCKHe/GSX3JO5dlhvrnG0WRdqp90vSRrSZF33b2XVo4TaFdNmcyHho3VG/UEPLG259R9WsmAAdchm/X/4p5S8OeuUmqrqy8qRUbfi1L+JzARQP6u0/DlfH9KkbrDf0e/r5TpDqwqO8zM9p8/ZHXnPKWn52qFndZW9Td8SQdQAAAAAADSzYg/IzQ6ervWDdK21Ouuss/S1r32tpuMCAAAAQMM0W+Bzsx0PAAAAAKClMcMcAFpJNDrr5UjMauNvzwRQh8Ig6i9kEnrt7tLD5gZQh2aCqK260iTRNpORqK+NbxzSrt6MelOOjsZ8hfmQ3SmjuGeCIMlS+QhTvRL3jLpT0nAsuAAd9aXelKNdvRltfOMQAZRNqNwekFHR2YKTUXqgleUG0GaHD1ciN4CW4NnWQQ+gWA/8++qxssehBwAAAIAlxHUJoQawYO666y59+9vfnrUsFovphz/8oS6++OK820SjUd10003q6enRH/7hH8762oc+9CHt3r1bkQU+b33qU5+qarvTTjtN3/nOd3TjjTfqK1/5yqyvfe5zn6tZCLW1Vtdff72OHTs2veyLX/yivvGNbxBCvQT1TZwsfe83uuHtjZlYYqy05U6pb9iRVg425BiWuj5J6jpT15/wgGzpvPyaspLkedqy90z1jaQl0QP1Rv1BDyxtYf0/ePyDOhZRntjhuayKP3+83J8oHEltGWnLPurfDEactK466efa0XFYaVO4E4Y0ob/2f6brj7xEF0/0zvn6/W1H9fXeZ3XMzRQcIy1PO+wzumrsq/rWc69Slx8tuC4AAACAJjI2Jo2MzLxOJqWDB6V4XFq2THL4fCiw2NgyQ8nKXa8cGzZs0ObNm3XjjTeqra2tZuMCAAAAQMPU+ME980YANQAAAACgxphhDgCtZMWK6T+ORH1t/E8pDa4MXltJRxNW7Rkp4Rn5RvrIayf02aT0zkeCQFnHanpmkW+ktCPdcbr08StmAqgnI9J4VOqdCCYgTQdRf8uqKzW1Eh82a6gwfHhwRVpSMNE7DCFuzxglvKBOvpFsTMGMs3zXlo0kV9O1T3hGSknjEavelCMztc3gijQhxE2mkh6QK8lTwR4Ya5M6J4KX9EBrCgNoN10+pM2PtFccPhwKt9u6YVzb7qbWrYQeAD0AAAAAoCzGBAHUUYKCACycT3/603OW3XTTTQUDqLP9wR/8gf7t3/5Nd9111/SyJ554Qv/4j/+o9773vTU9zloyxugv//Ivdeedd+rZZ5+dXv7000/r/vvvL+t7L+UrX/mK7r777unXb3zjG3X99dfrG9/4xrzHRgvq6JAU3PqxdZ7vYk3WLSceatFQ4yajY066Ifs+5qQ1bgoHVWLhUX+MG6/BPeA1ZN8IXD66WiszMe2LTJa9TaEg6kqmqmZktTIT0+WjqyvYCguh3ADq0JiT0S3Ln5GOaFYQ9f1tR3XL8mc04ZT+O502vnZ0HNZVJ/2cIGoAAACgVeQLKMpkgl+Tk9KqVfU/JgAL5mtf+1rBr1lrtXnzZhljZK3VSSedVPVDeiORiJYtW6be3l6dffbZ6u2d+9ArAAAAAGhZBFADAAAAAJYAZoQBQCs56yxpx46ZANrlvmSnAqjbglDp4ZiVUlIibWUlffyNUkc6CKKeNnWt8c6XSh+/QrMCqIfjwZ+PtuUJov62CYKoOzul7u76fd+YNhLxtPHV+zTY60maCYY0kpanTfCnrLxII1/WlZRREEYdchSEE0uzQsUTNugdGTNr9tngKk8b3zyq7T87Xl0ZV2icansgkpGcrB7wHSnjSq4vemAR6JJ0x709cq2Rsk7P542M6hfpY0W37e3uUrhR39FuXXmvldveZDfJUFKhHnjZ6FE9bwsHAWwYjc96T6cHWle+Hlgdc3TqWPHJ58d5y6TuZdOv6QEAAABgkRgZkfysi0GuKyWqe2ANAJRr165d2rFjx6xlK1eu1Ec/+tGyx/jsZz87K4RaCgKYmzmEWpLi8biuvvpqffGLX5y1/OGHH553CPXTTz+t//7f//v0646ODn31q1+d15hobQOde3TjW6zGY8GDSusZRG2sNB6TbnyrpPvG1Ve/XSPLtu5ntXndA8o06DJuxkib1z0gSdo0/JLGHMQSRv2xrfs5bV53f4N74H5J0qbhkxpzEEtYGD78aHxURpWFSOcGUVc6VdVIejQ+Sghxg1UaQB0ad7xZQdRhAPW44+UNKM+HIGoAAABgEfG84J4ygEXj2muvLfr1zZs3SwoesLt8+fKS6wMAAADAkkMANQAAAABgiSCEGgBaybnnzgRQr0hLCp5AHgZQh4ZjQTJ1IhMETP/BW4Ll2UHUd2wIlucLoJaC8WYFUa+x2vguX9u/7agrkWi+i6hLwHT4cE+ywBpza9KVcZR0rIyRzhuJ64SJiPa2ZTTYm5T18m2RfxxJGuxNauNr9mn7z04ghLhBqumBhGeCiYR5eiDiSXE/X73pgVbkyswp3XsPrNCyaDz/BlN6zXJlb5hvHLSGfLV7z74ePd9eJIR6JDbnPZ0eaF25tTttsl0ffGpF0W0uTLbTAwAAAMBSwPVcAHVw2223zVl23XXXKRaLlT3GRRddpIsuukgPPPDA9LJ7771XTz/9tNavX1+T41wop5566pxlL7zwwrzGtNbquuuu09jY2PSyz372szr55JPnNS5al+d7+vvOR3WkPbifazQ116Qeb/U22E3akY60S3//smO6ctgG1xNRNyn5+sPjHlLKNHaSUcpY/eFxD+ndwycqlv2EXCwo6o+gBwabpAcG9e7hdfRAHXmyes+J906HD4fvwJUGUVdj6pHo0yHE7znxXv3bs5fwc0Cd5fZApcIg6gcmhrSzbUjjjlfxGPQAAAAAsIgkC81JALBYWQLMAAAAACC/ZvusPf9+AwAAAAAsIEKoAaCFjJx/RlYAtWSN5gRQh8JA6XxB1KUCqEPTQdSTkrFZQdQPxNS1AN8fCvOM1aZXFgsfLs4qCBDe15bRoYRX9aSywZ6kNr1yn+64Z51c22QX0xc5egAAAAAAAAAA0Mz+/d//fc6yq6++uuJxrr766lkh1OHYH/jAB6o+tnqYnJycs6ySAO58tmzZoh//+MfTry+55BJ98IMfnNeYaH3GnwkLtFL9Hihngrkt4e6MtUx2aQBX0onpNr0YSTX6UHRiuk2ulaqPNEWlqD/ogaXO6nAkNSt8uJog6kqFAdShtPF1OJLi54CGmNsDlRp3PP2i/Ygy8wizpwcAAACAFpEbnpT7M7xf/b8tALSea6+9dvrPJ510UgOPBAAAAACaDAHUAAAAAIAlhhBqAGgRnu9p088/qsHjjJSaCqCO+XkDqEP5gqi/e7p09ymlA6hDaUc6msgKol4rbbrkIAG0deZao81Pd2tn7+R07bJZWR2N+WrPGCX8/E1hJR1MeHm/Fpp0fI1HrHpTjkyeGeuOlTY/3U3tG4AeAAAAAAAAAAA0q7GxMf3qV7+atay9vV0XXnhhxWNdeumlc5bt2LGj6UOof/nLX85Zduqpp1Y93pNPPqk/+qM/mn6dSCR06623yjTbhAfUleu4+r09a/XQKUd1sM0qU+Re8UKwRnJ9acWE9Hu7EnJPrPMBQK6M/uTQGbr+hAd01E037Dh6vaj+5NAZcg09UE/UH/TA0ubK6OOHNuiGE36lIXcmiHwhg6hzA6glqceL6eOHNlD/BijUA5WaTwC1RA8AAAAALSM3sCj3/kI0Wr9jAdBwX/va1xp9CAAAAADQfJrt85gEUAMAAAAA6oBPAANAi3AdV5vP3yynvaOsAOrQcDwImpaC4Om7Ti0/gDoUBlFbIznGIYC2Qfr2dmnLr9bIybl2HIYPpx2r4aivScevavxJx9dwNBjnaMyXzZme5lhpy6/WqG9vV7XfAuaJHgAAAAAAAAAANKMHH3xQvj/72vTFF1+sSKTy52K//OUvVzQn+OCBBx6Y1/EttMcff1wDAwOzliUSCb32ta+tajzf93XddddpfHx8etmnPvUpvexlL5vXcWJx6Bs+Tu9+LFr3AOpQxpHevcuo7+lEYw4A6hs5QbfuvUgdvtuQ/Xf4rm7de5H6Rk5oyP6XurD+vV5jQoJ6vSj1bzB6YGnrGzlBt+y9UD1ebNbyhfoUV74A6lv2Xkj9G6hQD9QLPQAAAAAsIsuWNfoIAAAAAAAAGocAagAAAADAElX5jE8AQMP0ndGn8cljun7gfUpXcE0zDJpOZGaWlRtAHQqDqG+9bzUBtA0U/rfvv/CAfDM7fFiSZKThqC+lpYRf/szzMHw4nD0WhhD3phwZGcKHmwg9AAAAAAAAAABoNo888sicZaeddlpVY8ViMa1bt05PP/309LInn3xSmUymqlDrhfbUU0/p7W9/uyYnJ2ctv+6669TT01PVmH/1V3+lHTt2TL+++OKL9ZGPfGQ+h4lFZNv6UX35uFRDj+HLL7d6+WhKm44da+hxLGnRiQULHC3FSNLEhET9G6bvWJd+HD1Of3Xcc3Xf93sPHjd1z5j6N1LfsS5p4kz97mm/1phb3UOqq9HhObr1iTPVd4QeaKSg/mfohlMf1lAkLUlaqKmoVjNB1D2ZqG558gzq3wTy9UA90AMAAABAixkfl7LvXfh+cE0vHpfWrAl+BwAAAAAAWIoIoAYAAAAALGHNN0MTAFDQSHJE33z4n9Qe69BwerSibbODqCsNoA61e46+uX5Eb39hmboybuUDoCbCEOAPXnhAR+JZ4cOhrBDicuSGD4fCEOIVSZfw4SZDDwAAAAAAAAAAmskzzzwzZ9lLXvKSqsc76aSTZoVQe56n5557TqecckrVY9ZSMpnUzp07ddttt+nv//7v5wRQr1+/Xp/97GerGvuxxx7TH//xH0+/jkaj2rp1q1yXe3OQUpmUbjxhZ7m3gBZM2pFufO0xvfupLsX46FHdDXTu0fXH7dao4zVk/6OOp+tfult6YZn6Rtc15BiWum1dz+jLxz3fkH1/+bjn9XIdr00jJzdk/8jSOa64IhpXasECiLMZSXFFpM5lkpbXYY8opk/LpQPLdMPa+3TUXbgeCMft9WK65cBvqU/rKH+TyO6BIXfhH1DSQw8AAAAArWk0a95RJBIET0ciwUPmEonGHRcAAAAAAECjEEANAAAAAFjimAkGAC3C8z1t+vYmDe4fVMKJScnKg6SH40EAdbKKOerdSSnhS4M9SW165T7dcc86ubbJLrAuIZcf6NCaSVf72zL5V5gKIU74xWvkGavhqJ0TPhxKO1ZrJl1dfqBjnkeMWiu3ByJWcor8XU07VpMOPQAAAAAAAAAAqN7+/fvnLDvxxBOrHi/ftgcOHKhrCPX//b//Vx/96EdnLctkMjp27Jj27dunTCb/9fmXvvSl+sEPfqDu7u6K9+n7vt73vvdpYmJietkf//Ef65xzzql4rGbzt3/7t/ryl7+84Pt58sknF3wfjeQ6rnq8mIbrEDRYSk/KkduzXJLT6ENZUjz5+vSK3TrqNLYHjjopfXrNbl0ZOVMuPVBX2xKP6bru+5SuS+zwXGlZXXfcfVJ7uzZNvqwhxwBpIP60+rt2Kq6I2q2vMVPgcwM11G4jipuI+o/bKY10qC+5fsH3ieL61KN7J0f1vzoeXPB93TB5pvoiZ0s9C74rVKBPPdKxDt3Q/SMNmWI/G5TznlH4s0U9NqZbjl2mvsh6egAAAABoJem0dOTIzOtoVIrFgj9PTkpjY405LgAAAAAAgEYhgBoAAAAAAEKoAaBVuI6rzedv1s4Xdso/dkwJ35GSfsVB1FUHUGckyZdjHG1+upsA6gYaiXja+Oq92t/mqTvlaDjm51/RSBOuVcRX3np5xirjFJtCJHWnHO1vC/a3/WcnqCtTRQOh5irpgbSRIr4t2ANJegAAAAAAAAAAME9HskMMpnR2dlY9Xr5tDx8+XPV41RgaGtLg4GDZ63d0dOj3f//39alPfUodHdU92PGLX/yifv7zn0+/Puecc/Txj3+8qrGazaFDh/Twww83+jBanud7OqrxRh+GJOloNCNPPgHEdebJ15PuSKMPQ5L0pDtCD9RZShnd2PVTpVXg/nCdpOXrxq6f6t2TpyjGxw/rLgig/ql8WU0aTxPGk1F5EbPVMpImjKeYPCWsq/6un0ojIoi6wQbiT2tb2+Nqt5EFDSJvtxFta3tcr0yvoeZNqC+5XhpWGUHU1emxMd0yfBm1BwAAABaj8ea41gwAAAAAAFAXBFADAAAAACCJEGoAaCl9Z/RJ99+v/hc+J9+o6iDqSswEUEuOlbbc062+I10Lt0MUFYYPD/YkJU31QEqFQ4glpR1JOSHEnrHBchUOIO5OOcH4kgZ7koQQN4lKe8CqeA+UCqCmBwAAAAAAAAAApYyNjc1Z1tbWVvV4+bYdb9IwBGOMrr/+en3mM5/RqlWrqh5n9+7d+uQnPzn92nVdbd26VdFotBaHiUXCdVydOuRo54rGBtBK0qlHJXfvfhW/24Rac2V16rI27WxPN/pQdOpEGz1QZ66sTlmW0M722oeMVuqUiQT1bwBPVltPfVC+l9Gk42vYSctqYQOoNT2+1bBJSn5UCd/RVvOgrtwblUsPNMRAzwvqX/4bjfsZTUQyCxZEHgSQZxTzpP6OH0tHDqtv6LgF2BPmo08xqecc3fCSQQ25lf+MYCWZPB3U40V1y7PnqG8oJmnv/A8UAAAAQH0NDUkjWQ+0i8WC19Go1NYmZRbugUYAAAAAAABNhQBqAAAAAACmEUINAC2m77uPSXu71f+a4SCI2jNS0mo4LvkmmPxj5nHN0ZpgYolj8wRQf0/qe2JEaufDZo0wErPa+NZxDS7zJG9mecKT5Ct/GPnU9fAwhNixQZ+EAdSS8s5C605KCc8qe0eDy8a18cKntP3OdnWlmuxC+xJBD6BSmeUZTSwvPsHQ7psQ/yxYvCaXT2qiyHTj5Igj7ZsbEITFwY95Gusq/nObd+CYNMHDBQAAAIBFJ5mc/eHUVEqamJDicclxCm8HAFVKp+deh0wkElWPly+EOpVqfOBmPtZa3XLLLfrud7+r//pf/6s+/OEPa9myZRWN4Xme3ve+92lycnJ62Uc/+lFdfPHFtT5ctDjXcfWjbTGd+7sZPdvbuON4yVHpR183cs850LiDWKJcST968TSde8mv9WwDg6hfMh7Vj356mtwMPVBP1B+upG0vnqDLXnlMg13JugRQh8L9DLtpnTzWrm2/OIEeaJCBNUfVf/yzGpev4UjwmY7wExy17AeTNe5wJCOlrfqPH5SODqnvQAN/EEFeffuNdPQl+p3zn9KkO/8HliQ8R7c8+BL1HTCS9s//AAEAAADU39iYNDo68zoalQ4dkiIRadkyqbeXwCMAAAAAALD4EUANAAAAAMAspM0BQCvZt0+65x71KZi03/+aYfmS4hnJiQXBslaSTHVB1GEAtRSETsezA6jvlPoekaR0EFbSbBdbFznPWG367YwGV/p5Z4wlMtJkREoWyZBMO5oOIC4m7oXh43N3NLgyo03/aVR3fCsi19ID9UQPoBoTfkZHo8XfEOykJ/5ZsHgNuWkdjRb++rBjpEluWC5WaePpYKx4fZPpjDRJCDUAAACw6Fg7+wOqmUwwwXh8XOrsbNxxAVhSzDzuJeXb1tb5g/dXX331nH2Oj49raGhIu3fv1j333KOvf/3revrppyVJBw8e1M0336yvf/3ruu222/SKV7yi7H39+Z//ue67777p16effrpuvvnmmnwfWHzuPn5SqUh593wWgmOlVES6+2SrPibENMTdK4aVcmxje8CxunvFsPr2E0Jab9Qfd68Y1v5YSo6VMnXuASvJtdL+WIoeaJCBtUfVf9ZzGnd9DUe90hvUULi//rOelWSpf1OysjWKIrdhzD0/7wEAAACtK/eesSR5XvArnZZiscYcFwAAAAAAQL00WyYK918BAAAAAE2AtDkAaCVZk8/7nklI1uqDrxnSkbbZkwurCaLODqCWgvGOtkkrxrMDqKdkMpLjVPlNoBqupM0PSjvflH8iaanw4VA5k1CTbjBeIjP3a44NjsPN+KUHQk3RA6iK70mlSuVJUpPdREPt+H7xHvAledR/0fLKPAfUd346AAAAgHrInVBsbfBvBGuDMOp0unHHBmBRikbnPgltYmKi6vHybRtrgjCE9vZ2tbe36/jjj9fll1+uP/mTP9GXv/xlfexjH9PY2Jgk6ZlnntEb3/hGff/739erX/3qkmPu2rVrVuC0MUa33nqrEonEQn0baGGe72nreb4mo3mfWVoXVtJkVNp6gXTlMxG53GOoK09WW086oknXqlHPi7VGmnSD47jy8Cp6oI6oP7J7oFG3+Dx6oGHC+ucLoJ6KC66pcLzsCof7pf7NZ2D1Yd1w1rNKurXphKRrdcO5z0quq76DK2oyJgAAAIA6i0QkN2uCQXboku9LQ0PNF8QEAAAAAABQK8123aPZjgcAAAAAsGQRQg0AreShh2a9vPwZozXnSfs75uYLVhJEnRtALQXjpR1pzah0+dPVHzJqp+/RIPi7/03+rCDhyYg0HK/tvsLxskOIHStt+b4zfRyoP3oAAAAAAAAAVcsOoh4ZafTRAFhk2tvb5yyrdQh1R0dH1eMtFGOMbrzxRp1zzjl685vfPH3co6Oj2rhxox566CH19vYW3D6Tyejaa69VKpWaXvbBD35Qr3nNaxb82Ott1apVOvPMMxd8P08++aSSyeSC76dRXMfVNb+R7lo/FQhpVdcgWmOD/Y5HpGt+I7mdTIypN1dG17ywQnetGJqO/axnILmZ+jXu+rrmhRWEj9YZ9Qc9sLRl1z/bQgRQZ48tzQ6ipv7NJwigfkpD0TxPm5+HoWhGN5z1lCQRRA0AAAAsBrlBR1n3JgAAAAAAABaVZgt8NiZ4KBgAAAAAAE2AEGoAaCW7dk3/cSTqa+PrR7S/U4pmpGR07urlBFHnC6DW1HbRlLR/mbTxamn77VJXOF/b1nMKG7LlhhAvRPhwKDuEmPDh5kEPAAAAAAAAoCRrC1/H9X1pHsGwAJDPihVzA8lGR0erHi/ftvn20Sxe+9rX6uabb9bHPvax6WV79uzRF7/4Rf3pn/5pwe0+97nP6YEHHph+ffLJJ+uzn/3sgh5ro9x444268cYbF3w/Z511lh5++OEF30+jeL6n286Weielo23BQ4XrFUQdBlBH/WD/t50tXfN4igDKOvNkddvaQ+pNuzoa9ZR2bN0DaKO+UW/a1W1rD+ma57vpgTqi/qAHlrZC9V/oHsgOoqb+zWdg7VHdcOYzGop6VY9RrIpD0YxuOPNJyfPUt7/wA3YAAAAANCHPmx1u5OX8uyEaZW4QAAAAAABYfAigBgAAAACgKEKoAaCVHD4saSqA+o1DGlzuaySSP4A6VCyIumAA9ZRkTBrxpcG1eYKo0TBhCPANb/MXLHw4NBwPeueWfyN8uJnQAwAAAAAAACjKcWZPGM79MK3r1vd4ACx6a9asmbNsz549VY/3/PPPl7WPZvIHf/AH+tM//VMdO3Zsetk//MM/6NOf/rRMnkkNe/bs0ac//elZy7761a+qo6NjwY8Vrct1XG37blQb35HWg2ulI21Sqk5v69ZIUU/qnZDO3y9t+7bkvpSbx/XmStr28+O18ZXP68HuSb0Yz8iv47wpx0q9KVfnDye07d7j5WbogXqi/qhVDxhVF1xMDzRWvvpn6lR/K8ml/k1n4PgR3XDOHg3FFnbC8lDM0w3nPC2l0urb17Wg+wIAAABQQ8mklE7PvLZWmpyUIhEpkZA6Oxt3bAAAAAAAAAuBAGoAAAAAAEoihBoAWkk6PRNAvSKtEddqrIwA2nxB1KUCqENjCUmTuUHU1UxFAwAAAAAAAAA0hd7eRh8BgEVm/fr1c5Y9++yzVY/33HPPzXrtuq5OOumkqserh3g8rje84Q36zne+M73s0KFDevjhh3XWWWfNWf/FF19UKpWafh2LxfTRj360on0+8cQTc5a99a1vVSwWm7Xsf/7P/6krr7yyorHRvLoU1/bb07rqPdKPTq7vvn0jnX1w6p5xmoeXNkpXxtX2e0/UpZc9pf2JTF33nTHS6mSw/64MDzZpBOqP+faAyfq90k//0AONR/0RGjh+RDdctPAB1KGhmK8bLtojaR1B1AAAAEArszYIPnIciYdiAgAAAACAxaTZAqglAqgBAAAAAE2JEGoAaCEjCTMTQB3xNRYrvU0oO4i63ADqUN4gaq+yY0ftDJzuq/9NvuKe1J2UhssIIq9Wd1KKe1L/m4IL3H2PMpm8GdADAAAAAAAAqFpnp9RFWBCA2jr99NPnLMsXkFyOVCql559/ftayU089VZFI83+84eSTT56z7KmnnsobQp0rlUppcHBw3sewe/fuOcuOHDky73HRRBIJKT2qg+1Sps63bTKOdLB96oUxUgv8vVys/mXdiHYtSzZk37uWJfUv68a0ac/yhuwf1B9BDzzc1ZgeeLiLHmg06o+B44Z0w/l76xZAHQqCqPdKrqO+F3rqum8AAAAAVXDdIGw6+3U0OvO7x6QgAAAAAACwSDRjALWt9NHQAAAAAADUB7PBAKBFeL6nTec8pkGn8gDqkFUQQF2N7CDqTVdJd3zLyK12MFRt4GW++v+TL3/qP30iE/y+ECHE3cmZ8X0zFUJsHPU9RghxI9EDqIjjBE8fKLqOkURNF61SPWDM7A+YY3FxbHnnAHoAAAAAWHxyJwwbI7W1BaGVbW1SfAGfagZgSbrgggvkOI58fyYE7f7771cmk6k4PPr+++9XOp2etezCCy+syXEutEQiMWfZsWPHGnAkWMxGEkaXvUv6zZqZBxDXi7HBfi+7VvrRN6y6mCjTENvWHdX7LnhOXoMu7XqO9L4LnpOstGlPb2MOYgmj/ti27qiuu/A5Zao8/1tJRpU9vD5bxkjXXUgPNAr1x8Bxw7rh/Oc1FGtMWNxQzNMN5z8vWanvhe6GHAMAAACAMuVevw1fGxP8eWKi/scEAAAAAABQawRQAwAAAABQEUKoAaBFuI6rzctepx8lb6sqgLoWxhKSmZQ2P9ou97jVjTmIJWzgpDH1v+KIfOPOWp6wktJWw1E//4ZV6E47SlgjZe3Kl9T/Fist71bfcx012xfKRw+gYismpY7R4usc3yP+WbCILRuSOjKFv56OSsczMXTRinlSV4mQozXtUleDfrgEAAAAsHAOH5YyWf8e7OiQenqCh9DE45LrFtwUAKrR0dGhCy64QA888MD0srGxMe3cuVMvf/nLKxrrpz/96Zxlr33ta+d9jPVw8ODBOctWrlzZgCPBYuX5nt5w5VENTrXVfEIkqxFO1xlcK73hd3394lcRuWrCSTyLWEq+bjx/jzINfrZgxpFuPH+P3n1gpWI87LRuqD/CHkjP89Q73/ePtKEHGoH6w5PVn204OO8A6qg1Spd6mHERQzFPf7bhoK58cQU/CwIAAADNLBqdfV84Egl+SdL4eHDvuBlDmgAAAAAAAMrVjNc2CKAGAAAAADQ50uYAoIX8erU0eqCxxzCakH69xlHfeFtjD2SJ8YzV1tNflO/kvxCe8I0mfaukW/yitLGSzR0i53XcM0r4zpzlkuQbaevpE8EkojkDYSHRA6hK3J/5sHAhbW3inwWLWHS0eHkj0akewKIUS5V5DiCEGgAAAFh0XFfysx5YFonMhE8bU/rfCgBQhTe/+c2zQqgl6fbbb684hPr222/PO3YruPfee+csW7t2bd51zz//fNl5Tja47LLL9OMf/3jWsqefflonn3zyvMZFc8vOC6z3rRprZvbPXaLGcGV0ynhcO7smGn0oOmU8TvBknVF/uDI6ZSyund3V94CRFJkKoJ3PTyKnjNED9Ub9IUmrUhFFfaO0U10FOzxH5w+36cHuCY251T3sPuobrUpxbQkAAABoetYWDz1KpwlFAgAAAAAArYsAagAAAAAAqsKngAGgRRwZPaKbDt7W6MOQJN308lF98GBUywksrBtX0rZfv1QbL3xSg3kmlE46fsnwYddKjiTfSl6Ra+pJ12rSt0EIcY7zRtq07denym13K/wOMF/0AKqS8KXIePF1OjrEPwsWsdhw8fLG41M9gEUpGpViJc4BiXbJidfneAAAAADUTyQiZTIzr7ODpx0n+PcgANTYNddcoz/7sz+btexrX/uaPv3pTysWK++e0s6dO/XLX/5y1rJXvOIVWr9+fc2Oc6E8+OCD2r1796xlPT09OuOMMxp0RFiMXMfV3Xd06bK3H9GDazWv8MhqhPs7f7909zccuWc14USeRc6V0Y9+vkGXvuoRPVRlEHF21artoXNH2vSjn28ggLTOqD9cGf3o3g269FW79VDXZMXbG0ntnqPoVAjxuOtX1QfnjiT0o3vpgXqj/nBltP1Xp+qqi57QjuWjFQdRd3iOrn9uhS4e7tD93WO69aTDFQdRR32jS490avuvTqUHAAAAgGZnzOwwptwQJJf5AAAAAAAAoEURQA0AAAAAQNXmJgsCAJrS8s7lOqXnlEYfhiTplFECqBuhK+Nq+69O1XkjbbOWTzq+hqNe0W3D8GEp+L1EVrGGo54mndmTjM4badP2X52qrgwfNmwUegAAAAAAAADzEolI7e3N+cFbAC3v7LPP1iWXXDJr2aFDh/SXf/mXZY/xR3/0R3OWfeADH5j3sS00z/P0oQ99aM7yt73tbYpGow04IixmXV5EH/mZFGnQnJWIlT7yM6krzUeOGqUr42rHzzfo3Jx7huXI/Smwmp8Kzx1p046fb+CeYYNQfwQ9cIbOHUlUtF12ALEkRa1Ru+dU3AfnjiS04+dn0AMNQv3RlXH1rQdO06VHOhX1y69gdgC1JF083KHrn1uhDq/8n+nCAOpvPXAaPQAAAAC0Amtn/8q+RxyLBfeNAQAAAAAAWk0zfg6eAGoAAAAAQAuJNPoAAADle/IPntSaT3booDPesGNYPW705H2vlCqfz4ga6JK0/eGztPHsRzS4bCwIH46UEz48+2K6I0nWyityjX046kkZo4Tv6LxjHdr+8AZ1RSMSWQkNVeseKDYfjR5YBOKpIFyqmLY28c+CRSwalSJ+8a+38aa+aLmuFClx0m6LSy49AAAAACw6kUjwb4JQLCZ1dkoOYZEAFtYnPvEJvfnNb5617KabbtIVV1yhCy+8sOi2f/M3f6Pvf//7s5adcsop+s//+T+Xte+TTz5Zzz777Kxl//Ef/6HLLrus6HZbtmzRhg0bdMUVV5S1n1zJZFLXXnutduzYMWu5MUYf/OAHqxoTKGbgdKuPvVxqT0nDleVP1kR7SvrYf5LaJfURst4wXYrqvz9zgq4750mlTXmTmArdFjSSyp0GFbVG//2ZE9RlEtwzbCDqjy5FteOX5+jS39qlh5aV/gxRbgBxKAwiHnf9svrg3GPt2vHLs9Rl+NxAI1F/dCmqbw1u0FXnP6YdvSNKO8Ur2Ok52rxntS4e7ZSyLhddPNot7XH19RMO6ViJzx5FfaNLj3bpW4MvowcAAACAVpF7z9hxpHg8+OxwNBrcQwYAAAAAAGglBFADAAAAADBvpM0BQAsZ2D2gqOfLkeQ3ICvE8YMJSANrh9R3eFX9DwCSgolE2x89R5ed+ysNdo4WXTfuO/IKTDp1ZGRKhRBHMjp5tFPbHz1HXU5kKrkYjVZJD0SsZApMKXZkFPWNUk7hgFp6oMVFI5JT4oZaNCr+WbCIGbd4D7jOVA9gUXJtUONiolHJ0gMAAADAouM4sz9k6zgEUAOoize96U16xzveoe985zvTy5LJpF7/+tfrm9/8pt7+9rfP2SadTutzn/ucPvnJT8752l//9V8rusDXrx544AF96EMf0itf+Ur97u/+rq666iqtWbOm5HbpdFr/8i//ov/xP/6HHn/88Tlff//7369XvvKVC3HIWMI839PWMyc1HpWOxSXHqui9vlpz7NR+JW093+rKfQm5BaNtsZAGVhzSx057XisyUb0YSStTIoi4VJXKCSKOWKMVmag+tuF5tUfa+MxAA1F/SMEDrHf8+mJdet4DeqhjrOB6MwHE+f9NGLVGyzyjY65XtA/OHevQjl9fpK4Y95abQSX1X+a5cmz+M0EQRK2SQdTUv/l0SfrWo+fpqjN/rR3dQwUfStCTieh/PPcS/daxZXm/fuJQp05PdekT65/SUCSTd52oNbp0pEffevQcegAAAABoJel0EEQdikal9vbgz64782cAAAAAAIBWQAA1AAAAAAA1waeBAaBFeL6nrfd+WX46pVUp6UBH/Y9h1bjky9fW1Xt05eGVTChuoLt7jmp/LKWoNdOTiKxmTx7tzkSUMbZgCLUUhBAvy7gazppElD1O1Brtj6V0d89RJpE2mXw9kKs7E9FYiYmiEWvUlonM6oFs9AAAAAAAAAAAoBJf/epX9cADD2jPnj3Ty0ZGRnTllVfq4osv1jve8Q6tX79eExMTevzxx7Vt2zbt3bt3zjgf/OAH9ba3va1ux33vvffq3nvvVX9/v8444wxdcMEFOvPMM7V8+XL19PTIGKORkRHt27dPDz74oH7yk5/o8OHDecd6/etfr7/4i7+o27Fj6XAdV9dMnKa7Vu2cXlZpELWRZKxkTenQ2WxO1srjEemaJ9vkdrgVjIBaGVhxUP2nPCZfVsZKK0sEEZfTHuE6hXoiYo1WZqIyVvJl1X/aY5Jj1Hd4dTXfAuahmvqXEzJdbB3q37y6bEw7fv1yXXrO/XqoY+4DrI2CANpS9U/4jlxrNBTJ5F333LFO7fj1xeqyPLi6mZRb/6g1ShX57FDUOurJONS/BXXZmL71yHm6asND2tF9dM7nh3oyUd3yxBnaMN6hcccrOM6VQ51a+0RCN5y2W0OR9KyvRa3RpcO9+tYj59IDAAAAQKsxZm44UyQShFF3dDRncBMAAAAAAEA+ThPeqCSAGgAAAADQogihBoAW4TqutnVdp6uO/Fg7jvMrnkw8X46VhtqkS5+Ttv36OLm9fOCsUQZWHAomdUrqSUc0FM0oZez0RDCjIHw44TsadQtPIAolfEeaCiG2mplYGrNGPengR4Vwf4QQN4d8PZA7kSzsgbEKeyBblB5oKZ5sTR4OUKtxAAAAAAAAACxNq1at0g9+8AO94Q1v0P79+2d97f7779f9999fcoz3vOc9+tKXvrRAR1ic7/vatWuXdu3aVdX273znO/WP//iPamtrq/GRAcGDi287ZUy9o9LRhJSemltT7r3jMIA67klJN1hQzlSY7ADqqC/1Tkq3ne/qGnuKXJII68qTr609j8uPzASAG0krrasXzaRy40MLBRBH5CgjP2fdYM256xqttAkZd6bJfElb1w/ryt5X0gN1VF3953YA9V9cuiTtGDtFl8bv0EORI9PLjaQeG1fCcTVh8j+Uepp1lJCjHutqyCRn9cG5meXaMfZOda2PLcThY57Kqb8nXzJ+wTEkKWEj1L9FdUn6VuoUXZX+vnbEXlBaviSjHhvTLaOXqa93vXavPCoVOw/4berzO6XR43RD9480ZFKSrKJydGn6OH0r9SZ6AAAAAGhFe/dKo1kPLYrHpd7exh0PAAAAAABANRyn+QKfm+14AAAAAACoALNAAKCV/OY3ku/Lqr4B1Jran5WC/xsbq+/OMS0MH/anpnw5MupKz0wwtZLaPCcIFa5AwnfU5jmzJpJ1pV05U0G0vqz6T3tMAysOzfdbwDzl64GedEQRa+Qr6IEwgLoSCd9RdyYSnF8kRaYCqOmB1jDiZvTOsx6ad30GVhzSO896SCNuiUnIAAAAAAAAAFDEGWecofvuu0+XXHJJRdtFo1HddNNN+qd/+ie5rlt6gxro6OioyTgnnniibr/9dg0MDBBAjQXjOq62nX2Tzn8xot6JIBA65JSY1xIGUHcnpZ7J4HdjVfKxlHMCqCek8w8abXv2YsJnG8CVo23Dl+u8zIpZy42MVvoJRbIqOhNAPFubjajDRtRmI3O+ZnK2iEyNmzvOeZkV2jZ8OT1QZ9QfhXTZmHYceafOygRBUtMBxLayn6cS1lWPjU9X/KxMr3Yceae6LOGzzYz6o8vG9K2hN+lVqbWSpHYb0S3Dl6kvub6icfqS63XL8GVqn3qPeFVqrb419CZ6AAAAAAAAAAAAAEBjEEANAAAAAEDNMRMEAFqE53vadOzr+s1yr6HH8ZvV0qZXvyBPXBytt9zwYSkIBh6Ozq7GuOtr0vHnDlDEpONr3J3Zxkoajnpz9kUIcWPl64EZtf47OXc8eqA5jbgZbTzjN3qg89i86hP21wOdx7TxjN8QRA0AAAAAAABgXk488UT95Cc/0fbt2/XqV79axhSOuu3s7NR1112nhx56SDfffLMcp34fZfjbv/1b7dq1S1/4whf09re/XWvXri172zVr1uiaa67RnXfeqaefflpXXXXVAh4pEOh61WXafvdynX/QlB1EnR1AnZi6/J/IlA6izhtAfUDa/t24ulYcX4tvB1XosjFtH7piThCxpOkHzBbSZiOKTX1cLCYnbxBxqfHOy6zQ9qErCKRsEOqPYo7z22v2gVBnajy0DuqPiIyichSz8+uEmHUUlTPr4QYAAAAAAAAAAAAAUHfNFvjcbMcDAAAAAEAVis8kAQA0Dddxdc0zy3TXhheUcYIJv34d53k4Vso40tGEdM3DrtxOJpnUkyerrWv3zQmFPhrNKGVmX6y2koYiGfVkgqlAYaWMpN50REejmelRjA0CqIcimTmRwykTjN+bjkxPLvWnjuPKwyvlMtGorvL1gBTUZCiaUcZout7DkYyUiSjhOzJW002QrwfCaWeTjq/hSGa6qhkjDUUz6smqf7g/eqB5hAHUgx2jkmaCwiWp7/CqssfJDTgf7BjVxjN+o+27z1aXxz8ZWoUnW5O/l7UaB/VHDwAAAAAAgGZjjNF73vMevec979HBgwd133336amnntLIyIgikYhWrlypM844Qy9/+csVi80vzPKZZ56petszzzxTZ555pj7ykY9Ikl544QU9+eSTeuaZZ3TkyBGNjY3JWqtly5apu7tbq1ev1nnnnafjjjtuXsc8Xz/60Y8aun80yPHHq+sVr9X2u+7Wxjce1YNrpKNtUtqRbJ7LevkCqEPh6+F4sGLu/UJrgm2nA6j3S9tvl7qSk9I3vrEA3xzK1SVpe1zaeLU0uDao3dE2KZ21jp36//B+YVtKivmzmyAmSY40GQ3WtTl9kJavo3ZCvRNBL523X9p++7i6klsX7ptDSRXXX1JbunD9J6h/yxuZ6ocHuiRNPVxgWEkpNXWuL3XL1wu2m4wE7wlh3zzg79XGka1T5/4F/RYwDyXrbyS5JQbJpKh/Cwt7YFe71JuSjJLqd78v/Ujqe0TSSknRIgOMSjomDfbnAzEAAQAASURBVGyQ+t8qxceD94hdogcAAACARefBByXXld7//kYfCQAAAAAAQHGmyea4EkANAAAAAFgkSJQDgBbh+Z5u63le7RlpuNTEoAXUnpFue+mkrnlqnHDCOnIlbdt5ijae97gGl41NBVB7cwKoQ2EQdcJzpieYvWw0rlWpqA7F0nqsMymrIGQyXwB1KGWsjkYy6k27cmR03rEObRs8Ra43uTDfKArK7QEpDKD2lDbhFOLAdBB1eupkUaQHZK0mjafhiDc9RphbnTZBf/RM1V8SPdBERtxM0A/tY8HE8khG7b6jhOeo/9RHpVRSayeikucVHec7y/bpI6c+J99aTbq+xh1fvZmIBtuPaePLHtL2wZcSRN0CRtyMNp37hDbvXaW+gytmvpBJF++BdFqamJh+ObD6sLaecEjbHjqNureYvD3gpqRMpviGE5NSauYlPQAAAAAsEpnM7A+6+n7wy3EKbwMAC2z16tX67d/+7UYfRlmOO+44HXfccbrkkksafShAftdeq6577tH2f23Txt+e0INrpBfbg4eMZisWQB0qFkRtJbk2N4C69t8OqtOVDGpy1XukHS+RUm6eIHEpK4A6/zgxX4ompZFE/u1TbhBwfOmz9EAzqaT+ncng73I+MV9y0tJYjPq3qjB89hfrps7lWXJfFxMGEOdu/4t1wfjUvzmVU/9o8Y8MSKL+rWwk66EE0vRz6uWbIFBakja8WHqcMIDaz3rQvRSMSw8AAAAAi4znSX/3d9Lv/36jjwQAAAAAACA/AqgBAAAAAFgwJEoBQItwHVebdxrtvGwqYDhR3/37RuqZlNrT0uZfSa6G63sAUJek7T9Zrates0c/WTWuVIm8GCtpwvUV8aUzhmNalTSSMlqVMZIX1e7ulDJlZM6kHKuj0Yxee6hd2+9Zra7MaA2+G1Qj7IGNr96rnT2TGor5SjvBTYtwzvisIOqoJ8cPAqxflqcHHutOKS1pNOpPbxtu70tyJKWdIOi6J+XogqGEtv+MHmgGIxFPG1+9V4OdSVlrdTQa9MKw8STfKuE76j/9KX3wsR4pWTiA9umOlL57+hFZK006voZdXzJBoHVvytFg56g2nvWwtv/sBHVlGvgEBBQ13Q/Lktp5+jFpbEx9e7uCL66ZkNwiIcTjkoaGJEkDJ4yo//QD8o2oe4sp2AOxVBAyXcyxkel16AEAAABgEclkZj+UKJWSRkelSERK1PniMgAAqL03vUk68UR1Petr+0Bal/1ORgc7Zq9STgB1qFgQtW+k444RPNjsPDM3QHhauXOgwifV5lnsNdm8LsxG/ZeuYgHEoeG41JYpHkQ8GZFGY4W3J4i4OZVb/86U5BQ5F6RdaaLAJ4mpf3PLDaDOFQZRf+yn0qufLzzO906Tbn79TAB1LoKoAQAAgEXq7/5O2rKl0UcBAAAAAAAwGwHUAAAAAAAsqDKiJwEAzaJvl6fP31V44s9Cm4hIn79L6nukMftHIGNsWeHRIVvgOnuh5Xn36QT7ReN1ZVx99b618ozmBFCHssOkM460ZjyiVcnZIaKrkq7WjEc0GbFztgmF46YdK89IX71vLWGkTWA6bLYnKSuro1lh5DLScNTXpOPLN9JfbDiqpztSecd5uiOln66akG9sEEAd9acnlqedYFwrq8GepDa+eq9GIkVmJaNhsvtBmppEeuEBDZwwUtE4AyeMqP/CA9OTSql766AHAAAAAFQkk5HGx/kwLAAArS4alf70TyXH0d1nd2h/hxTJvWGk8gKoQ4lMsH6uiC/t75TuXj+/Q0bthcGTDxxfOCTY2OD2z0RMBR9ynHKkY/GZ4PJ8PBPsZ+PVwX7ReJXUf6xE/cei1L8VlRNAHBqPBEHD+aTdwgHUoewgYnqgOVRS/9FY8fqPl/gcGvVvTqUCqEO+kf7stdJ/nJz/6/9xsvQnbygcQB0Kg6jpAQAAAAAAAAAAAAALhgBqAAAAAAAWHCHUANBCRpy0vnlu/gnE9RDxpW+eK43EuFjaCCMRT1e9Zo9+vnKyou08I+3uSelgPCMrq4PxjHb3pApORC3k5ysnddVr9hBG2WAjEU/v/639ilgp4ps5AdShMFQ66ksH2jM6FJ9dt0NxTwfaM0p4Jm8AdchXsJ+Ild7/W/upf4MVDaAOZQVRW0k/XTUxJ4g6DKC2Rko6dlYAdYgg6uaXGz4cqjSEODd8OETdm1+pHvi340bLGoceAAAAAJYY35eSeRImAQBAa7niCg385wvVf+kx+W6eG3/V3tLNs51vpP63SgMbqhwTNZcbPpovQDgMIA5NxIIHT6edmV8TkWD59DZFxiGEtHlUWn+rEvWfWpH6t45KAoglSUYaj+bvgfFoeW8Z9EDzqLT+VsXrn/tZgXyof3MpN4A6NBmRPv066QuvlP7t1JlfX3hlsDxV5vPoCaIGAAAAFqFIiScTAQAAAAAA1AsB1AAAAAAA1AWfFACAFuH5njb1+frFOmkiGkz0s3W8jmpssN9frJM2vUu6475JufU8gCXOM1YbL9mvHasmlDYKZohV8J8/Y6TdPWntS2Y0HLcVB1DLSmljtWPVuDa+8nn96w/XUv8GGIn62vjKAxrsTk3NAi3v5oWV9Gh3Sv5QRKsmHR1K+Hq8O1PBnq1kpcHuSW185fPa/pM16krzLJN6y66/tdLRuDdzPshjOOqrI2Omg6h939P60Yie7szoZ6tSspIyxmoyOjVAnnHSxupozFNv0qX+TWbu+WA2X1L/Bfv1+hcS6swUPl8PdmX02XUTQaB9nnGoe/Mqpwc+fu6Let3+uM4cjs1dYcq/rxjS/zx/iB4AAAAAFptSH3rNVHJtCAAANKOB3QPqP26nMi86GopklHFm7iFnh8ZKUqKMt/7JyEyYrbLGyTjSUJvUMxEEUUtS3yML9E2hLIXCR3Nrl313IPzpMBmRfE9ybfAw47SbtW0Z42SHkG6/Xeri2SZ1V039ZYIeoP6LQ8UB1KrsHFAMPdB41dRfKn4OkMrrAerfHCoNoJaC0HHfSN85U3pmn3TCMWnvMmnw+JnzQ7zM5xKHQdT0AAAAALBIPPKItIGnDwIAAAAAgAYjgBoAAAAAgLohhBoAWoTruDrzoHTnacHreuf/hhMMh+PSmQcl17MqNwAXNWCsDoWBswomBlXKM9LRhK2qar6RHCuljXQo7km+X/8mXOI8Y7XpkoMa7A3Cg4/GPWWm6pKvH4yCv7NpJ5hA6FjpsZ6M9qeMRmJBF/hGSjtWZirUPF9vODYIMT8anwoi7k1p0yUHdMcPVxNEXkf56p8u4z//WNTK9YMe+OnapB6dyOhQmyerqUmlTlDjYtLUv+mMRH1tvPSQBntTRdfzjfTdk8b1qoNxrT82959+Ty/L6BerkmrzigcLD/amtPHSA9r+41WEEDeJsntAVneum5Cs8gZRP9yd0pdPn5QpMa2cHgAAAAAAAACay8DuAfV/r18Z62mo3VHak2RnwmNzQ2Ol4kHUYQB1KHecNEHUTcMzwUOjC4WP5uuBXGlX8grcYyxnnDCEdNO7pDtuC+5DoT6oP0r1QDnSruRPhRBXgx5oHOqPsAcqCaDOZhUET+8blQ51Vv/Jv8G19AAAAAAAAAAAAACAGiGAGgAAAACAuiI9CgBahOd7eni11J2sLoC4FnwT7P/h1UEgKurHtUZ//FC3utPOvOo/n6r5RupOO/rjh7oJn20A1xptfrxTRnMDiHNDhMMA6pBnZs4b2QHU2ZMKTZ5JxNnjhkHERtLmxzvpgTorVv9irIJgCG8qZPxgTgB1uah/8xiJ+tr4ukMaXF48fDhkJf10TVJPL5udLvL0sox+uiZZ9nvK4PKUNr7ukEaifoVHjFqrpgfuPHFCD3fPXv/h7pTuPHGCHgAAAACWqtjcB9UAAIDWMB1A7Wc0NDmktM1Ixpm+0VMoNHaywGPqcwOoQ7njhEHUGRMEUQ9smM93gWq5NnhodLHw0XIu+5ZzbbjYKtMPr+ZjA3VF/VFOD5Sj2gDiED3QGNQfrpU27yz9sPFirKSD8wigloL9b95JDwAAAAAAAAAAAACYJwKoAQAAAACoO0KoAaBFuI6rbXe4Sjb4zJ10pG3fFgGkDXD5C206+VhEjcr/NlY6+VhEl7/Q1pgDgC5/oU1rxt28AcThBLPcAOpQGERtNTeAOpQdRJ1vwlraSGvGXXqgQYrVv5S0E4RC+Cb4vZIA6ukxqH/DVRo+LEl26u/7T9Ym9evelI7GfP26N6WfrE1Oh5OXixDixqumB8Jz/r+cNKF7V07qUNzTvSsn9S8nTdADAAAAwFIViRBCDQBAi/J8T1sf3DoTQO2ngy8YSY5TNDU2DKJ2rHTFk8HvhQKoC8kOot56wfxDLFE5z2j64dXzMd/QyJmHV89vHFSG+qNWPTCfAFuJHmgU6g9J6ntE2nLn/OtYLccG++97pDH7BwAAAAAAAAAAALBIEEANAAAAAEBDRBp9AACA8l10g6fxBmeDjMeki94vPX5XBbORMW+esdp06V7tb/fUk3Y0FPVVzxxwY6WetKP97Z42XXZYd+w4gSDyOsvuge60o+E8AaClJph5JrgfU2y17CDqXN30QMOUU/9SMk7QI36VZaP+jRX2wGBv+eHD0szfdyvpVyvTer7T16GEN3MeqLCMg8tT9ECDVNMD1hjZrCcT/Pi4pJ7o9rS3PTPzc0SpN4Yc9AAAAADQIlxX8v3Zrx0nCJ+ORoM/AwCAluM6rr7ytq/ogr+/YCaAWgqu8Vm/5LW+4bj0/vulz90t/Y/LpS+8pvJjSDuS50hf+df5B9micq4NHhq98WrpF+sqCxEPRb1gHMdIabfy7buT0iv2hA+vrnx7VI/6o5Y94NEDLYf6IxQGQPe/tfrPgFSDAGoAAAAAAAAAAAAANUEANQAAAAAADUMINQC0iOHxYT3R2+ijCDyxQho+bqW6FW30oSwZrqTNR6PaufJxJST1eL6GIplKMiOrZiT1eBEl5Mhxpc1HT5a7dlUd9oxsuT0gz9dwJFPxOHl7poz7NN0ZeqCRalX/vJMPqX9LyO6BiiLIs5LlraSDbb5mF90EQWRlckQPNEp1PWCDHghfGWlPp6dZPeA4Fd2wpwcAAACAFjE5KY2NzbxOJKTOzpnXEW4RAgDQijzf0wf+7QOKOBFFnWgQRF1mALUUBEduO0/av0y6+5TgdaUBllFfivjSB35buuM2AigboSspbb+9uhDSMHxUmvrdqyyENAwf3X57cByoP+oPemBpo/4I1TuImgBqAAAAAAAAAAAAADVBADUAAAAAAA3FDHMAaBHd7d364c9epje8+rFGH4p+eFtC3SdUOBsZ89Z3ZI30hKP+0x5TwnfUk4kseBC1kdSTiSjhO3JktOWJl6nvyKoggRJ1l9sDykSqCiKuVDc90BSoP7J7wK/LYwhmowcar+IeqPG9eHoAAAAAWCQcR2pvb/RRAACAKriOq83nb9bOF3aqt61XRyeOKJ1JlR1AncgEIYV3nRosS0zdZig3wDLqS70TQXDl5p0EUDdSNSGk2eGjoTCE1Cvjmi/ho82j1vXPlBFCS/2bS817gHNAS6l1/csJoqb+zaleQdQEUAMAAAAAAAAAAACoCQKoAQAAAABoOGKjAKCFvL73fP1wa2OP4Ydbpdcf7WrsQSxhfYdXacsTL5MjMx1EvVCX2vMGUB9etUB7Q7lye6A7s7DPFJkTQEwPNBT1R3YP1BM90DzoAQAAAADz4jhSZ2fzfYAXAACUre+MPm15yxa5xlVvOqKoN/vr+abFhAHU+SQywddz5Y6THUBNCGFzCENIX7Fndg3z9UC+8NGQa6WO1Nzl2asTPtp8Kql/Il28/jFv7nLq3/wK9UA+pc4B7eni29MDzaeS+reXOAfk/iyRi/o3t75Hgp/NnKka12qKdDgOAdQAAAAAAAAAAAAAaqLZPr9OADUAAAAAYIkihBoAWslZZ+n1RzoaFkT9w63S6/c6UkdHYw4AkuoTRE0AdXOrVxAxAcTNifqj3iHE9EDzoQcAAAAAlGSMFInM/IrFpGXLpK4uyXUbfXQAAGCe+s7o05bjr5c7PqnelKOoHyy3kqyZGx6bHUBts36FcoOoc8chgLp55YaQ5uuBZcnC4aOhuFe4BwgfbV7l1L87qelzRCGuT/1bVb4gYt8E9Qt1l3EOiOWeA0wwTrg9PdCcyq1/vqD5bK6l/q0uDKKWlY62SZPz/BjJZCQYR/zsBwAAAAAAAAAAAKAWCKAGAAAAAKBpLExiHQBgYZx7rtTZqaGOMa0ck16sYxb0yjFpqEPBBV7XlY4dq9/OMUffsYQ0caL6z3pWCWvUY10djZaYNVaBnrSrhG/kWKstu05S34GEJGreTHJ7QNbVcA17oJseaGrUH9k94Je891rkZqhV0ZuljhU90KTK6wFbtPzBKsXXoQcAAACAFpb9Yd1oNAijBgAAi0M6rb6//HfJ7Vb/a4bVm3J0JOYrNfWsCWskWalnKoA6vASYeynQStOPuguDqofiM+GV1khRjwDqZheGkF71HulHJ0sZM7sHop6ULONHwXw94Frpon2EjzazUvVPZKSxaOlxqH/ryu0BPwwiN1LPZFDbiUrOAYmZ9wuHHmh65dR/soxnUVH/1nf509LaUelApzQcD5ZlP4ikXJORme3XjgbjAgAAAFjECFwCAAAAAAALrdkCqJvteAAAAAAAqDNmmwNAK/mt39LAKSn1v9rIc62MnZn8t5CMlTxX6n+rpB9IfU675PsLv2MU1fdCt2RPVP/Zzy/I+I6VtvzmRPXt75ZEvZtRdg8kfEeTvq+kM/8PgsZ9o4Tv0ANNjvojuwdKB1FXjh5ofiV7YJ6nBHoAAAAAAAAAaFLf/770/PPqU0KSdONrhuauE14zdBzJ9wteLswOop61XfYiAqhbhmul6bzJau8dZG3nkkHTUqg/ZvVAtfXLemOgB1oL9V+6RuLSxqul/cukuCcl3eqCqLMDqONeMN7GqwkiBwAAAAAAAAAAAFClZgt8NoacFAAAAADAkkcINQC0kIHhX6j/DZMa96ThWDDnpx7zfYxmJpj0v8mXBg+rb29XHfaMUvqeiuvezmX6XxuO1HTcoain9z/Zrb6n4pLGazo2aqvvqbiUXK0bXv5CTQKIJSnpWCWNp1vuP059e+mBZkb9EfZA/4UHCoQQl+oLm3cdx0pbfrWGHmgBRXvAWJX8adHavKvQAwAAAECL48OxAAAsbv/f/zf9x8v3xrR23NGBdk+OlXwT3N81duoeb8oq7k8tyzNUeHkwDB00U+GTVsF1wowjrR2VLn96ob8pVCsMnty1WmpLB8GT2T2wrMzQyHw90JYOxiWAsnmVqn+5qH/rytsDdvZnfcox3QNScAvR0AOtoKz6l/FRAurfusIeGFwb1DHpznytmnNAKOkGywbX0gMAAAAAAAAAAAAAqkAANQAAAAAATYkQagBoEZ7vaeuDWzWecDWcDmYH5Q2bXAC+CSYYD8clOUZbTx3RlQd65eadpox6Gjh+WLecMrwgY99yyrBeOdSpvn3dCzI+ash1NT0TuBZ/La2CgVxXivDjYtOj/kte34Hl0qCr/vP25f/ZoFhf2LlfdKy0ZfB49R3o5l+MLaJkD1SIHgAAAAAWAceZumYwJfdDvM32oV4AAFC+ffuke+6RJI1EfW1845D2t/vqTgb3c3OfWTkcs+q2UiKTfzijuaGDYXilJHUnpf3LCB9sVrnBkyN5euBYXHJ9yS0SQpp0pbHYzOuwB0amAkkJoGxO5dR/OC7FC/z9D2WMNJnnHED9m1++Hsg+h0tBD5Q6B6RcaSI68zoMIqYHmlu59W9LFx/HMzk/B0jUv0Xk9kC+0OnhuBTxJKfIOGlHGs1zXzgcjx4AAAAAAAAAAAAAUJFm/Kw6AdQAAAAAAEgiTgoAWobruLrmrGt015N3SUaq5hJnONHIKm/mZFFhEPV4xOqaw8fL7V1exRGglgZWvqgbNuzTUNSbrmutGElDMU83XLRP6uhU34srazg6amlg5Yvqf9l+xeUqbq2SZv43QOLWUVyu+i/YT/2bHPVHqG+iV3cMT+qu5UOzv2B8FX2HMCYIJsty+ZEe9U2cLPXW+iixkPL3gA1+ACzGceb8YEgPAAAAAItEKjXz57a22V+LxQQAAFrUffdJmgmgHlyRlnw7HTJdKHxQyh9EXSiwUAoCqMNtCB9sPoWCJ30T3O/NvjycdiV5+UNoPSOlcn48tFPPP51+WLXogWZTSf0no0EAaaH6Z9zZ61P/1lCoB8LbPpWcA5LR2cHFYQ8YeqBpVVL/8agUKRBE7pmgP5w85wDq39wq+jkgUuJ9IML7AAAAAAAAAAAAAIAaacYAalvLJA4AAAAAAFobIdQA0CI839Ntu25Td6Jbh8YOVXWh00iKe1LSrS6w2BqpOxPRbce9qGuOHC9XTXgBeIkYWHFIN7zsMQ1Fglnftb7sbTUVRB3N6IYzHpMec9V3eFWN94L5GlhxSP2nPSlf0qTjK+nU5gmcScfXpOMr4TvqP/1JyaX+zYj6I9vAikO6e/lwga9W9n599/JhDaw5St1bTN4eqPJHNXoAAAAAWARcd/ZDh3IeQKTu7voeDwAAqJ2HHpodQJ113ziRCUIIk+7czfIFURcLoI57c0OrCR9sHsWCJ6Wp+8emdAhtsfDRcDwCKJtPreufL3w4HI/6N6ea9wDngJZS6/pno/6tgfcBAAAAAAAAAAAAAE2JAGoAAAAAAJoeIdQA0CJcx9VX3vYVXfD3F8hWGTnclpa6UtJITBqLVb69leQ7Rl954SK5Xe1VHQPmb6B7n2448RENuTMB1AsRQi1NBVFHMrrh9Eek59vUN3x8jfeEag1071P/CY/LN0aTxtewmym9UQWGIxnJiyphHfW/9HGpnfo3E+qPbNn9MCd12OTMLM0nJ4jMl6h7iyncA75KJlEbIxl6AAAAAFh0kskgiDoUy7og3NUlrV5d/2MCAAA1MbL7wZkA6hyFAqhD2UHUxQKopWCcyQhB1M2oVPBkqFQAZanw0RABlM2F+oMeWNqoP+gBAAAAAAAAAAAAAE2JAGoAAAAAAFoCIdQA0CI839MH/u0DynhTs3yNKkoeNlaaiEq+E0wYNjaYOFKpjPH1gZf8RnfseY1cOaU3QE0NLNujG9Y+qCE3mFS+EAHUoVlB1G5aN5z4oBSNqu/YugXaI8o1sGyP+tf8Wr6kScfTsDM3ZKAWht205EsJ31X/ul9T/yZB/ZEtux+srEypwOE55q5vZeUbQ91bRNEeMKZkBrXM3JnE9AAAAACwCESjUiYz+3UiIXV2BgHU7TxkEACAVuT5njat2qHBRNa9gamJMqVCpUPD8dJh1dnrSvmDqDe9S7rjtiDEEPXjmeC/fangyVAYQJkt7UqezRNWmSd4MpQvgJIeqD/qD3pgaau6/jkhxNS/dXEOAAAAAAAAAAAAANCUCKAGAAAAAKBlEEINAC3CdVydufJM3fn4nTIysrJlB1EbOzOfJJxMbBRsW0kQtZE04ng6M7FO7kvWV3T8mL8B9zHdEHtAQ0pLUz2w0Je+Z4KoTRBEfcIDUmqV+ryXLfCeUciA+5j6o4Py5WjSeBpWRuHfcF9WRsoJoS2nS2bWD/vKmVo27GQkx1XCOuo/flBKU/9Gov7Ilt0PvqyGTFLtNqJE9j/zjCfJLzyIMZKZSRqZVEbjJqMeG5dkqHuTK90DdqoHinAcKevBIvQAAAAAsIiMjs78eeVKad06KRaT4nGpq6txxwUAAKrmOq42712tnaccmRUcWG4AdaicAOpQviBqx0qbdxI62Aju1H/7n51YOngylK9MlQRPZm8TBlAaeqAhFqz+Zeyb+jeHheoBcQ5oCdXWP3eub75tqH9r4H0AAAAAAAAAAAAAQNMhgBoAAAAAgJZCCDUAtAjP9/Twiw+rO96t4eRwECBdRhB1dgC1JMW9KoKojaaDTbsV18PRIXmxdrnGKbEhasWzvj5j79OQkpJUlwDqkJ36fyOjISX1mfh9utKcT/0bYMA+rH77Q/kymlRGw1P9IAUBxNLselUqu6982ZkgYiUlE1dCUfXHfyiZhPrMmfP7ZlAx6o9s2f3gSxrSpNLyNWxSkowSimatXawfjDR1Pp9UWsNKSZKGTFI9apNkqHuTKq8HfBWvv6bqTw8AAAAAi05bm5TJzH4djwe/r1zZnB/2BQAAZekbPk665wX1v2ZYvmzFAdTVyA6idqy05U6p75GF3SfKUyp4slzl3nsOAyjRHGpV/0r2R/2bC+eApa3c+teqZNS/+fA+AAAAAAAAAAAAAKChmvEz6QRQAwAAAABQFCHUANAiXMfVtndt08bbN+oXe35RVhB1bgD1sqSU8KRJVzo2NVG4aBC1mfnNyKjbtOkVsfXa1vN+uU5bLb89lGJ9rTjSo2jqoFLy6hZAPb37qd9jcrUi1iMtXzMdWor68KyvrUd3yU8bTdqMhu3cAOJQ+KrQX+t8/WPzLJ8bROwoYaLaGt2lK3tfRxB5HdWu/iZvhD31by0DkzvVP/zv8o2Rb6UhO6G0/OmvZ9crmHVa7GkVQQj1pE3P6qu0fA1pUj2mXTJG/fp3qbtHfYkLFvA7Q7nK7YGocUvPPHaCEGp6AAAAAFhkjh6d/aHeFSukE0+UItwaBACg5a1Yob6HE1I6rRveMLrgAdSh4Xhw//mW7xJA3UiekbZeIMW8IASy2vBJ1wZjVcOxwf63XiBd+WgwFuqD+oMeWNqoP+gBAAAAAAAAAAAAAE2DAGoAAAAAAFoSM80BoIV0xbu0/erts4KobXghNLxGm31dNCt3MgyglqZ+T84EURdMqp3+o1G306ZXxE/T9rUfVBcB1HXnSvrntj/UpXs+rYfSz1c1RhgmbvNG0JZmZXV69Dj98wl/SAh5A7iStrX167K9f6bB1HPTy3MDiENBlWf/5XZkpnsgezs7vf5cs4KI7YROjq7StuP76YE6q77+M28Erhw5MvJl5WWF1VL/1jIwer/6R7bLN5oKHx5XWt6c9YbthGSCh0wUu2fqS5pUOlg/R1qehuy4ekyHZKT+ke1SLK6+zotr+B2hUpX0wDKTkDWl3/XpAQAAAGARSiSkeHz2awKoAQBYHM46S/rJT6TJudf0sPi5VvrKv0oX/H4QPGkKPXC62Bi+FPUlOZJX4TNHzVTgZcYJjoPgyfqi/qAHljbqD3oAAAAAAAAAAAAAQFMggBoAAAAAgJZV4UeIAQCNFgZRX3T8RXJMntN4mDmqqWBRI3UlpbaM5NiZX22ZYLk1s3Ors7cPOTK6KL6eAOoGu3t8lw55xxSTW/G2YQC1pn6v5rJ+TK4Oecd09/iuKrZGLdw9vkv7M8OKTvVAoQDiUHawsMlZlp1bXyqWPNxPVK72Z4bpgQaprv7BOs7U33srKzP1evZ6hVH/5jEwer/6X/zf8mXlW6shf2xW+LCfU81hf0Jp6wXrF/iVtp6G/ZmgEqvZvZWWpyF/TL4N1u9/8X9rYPT+Ony3yKfSHjjmTyptPXnWFvw1adP0AAAAAAAAANBKzj1XA+uOqf8/eYp7UneyPrvtTkpxT+p/qzSwoT77xFyekT7w2zMBkkZBIGRFYzhS2q0ueNIo2K/rB8fhNeF8ssWM+oMeWNqoP+gBAAAAAAAAAAAAAA3nNGFUFQHUAAAAAACUrQn/ZQ8AKJdr3NJxwqWul5b4upHkyik9DhaUZ31tPfZjyUjdpqPi7cM+CcNrq4mh7jYdkpG2HvuxPOtXvD3mJ7sHukx7xX8lw5rHFZn1ulxWwX7pgcaotv5WmhU63WHikmZCqctF/Rsv7IFi4cNSECqe3R9pebMChbucxKxtUspMv84OpS8WQkwPNEa1PZCRL19BvYyk5U7H9N9/X77G7ExCDT0AAAAAAAAANL+BVYfV/9ox+VMX+hKZhQ+i7k4G+5Ek3xBE3UiulTbvlCJW6pmYRwBlhbeLs4MneyaC/W/eGRwP6of6gx5Y2qg/6AEAAAAAAAAAAAAADeU4zRf43GzHAwAAAABAkyOEGgBazEhyRBtv36hdB3epJ9GjmBubvYLVdGC0mfo1EpcmIsGE4PDXRCRYHq6Tb3tJiimiHqdDu9J7tXH/32jEn1jA7w6FuMbRtjX/VWdFT9CIHa84QtrKqkNxLTMJdSieE09ZmpE0Ysd1VvQEbVvzX+UafoSot9weqDQZ3sqq27Spx+lQt2mruAckSw800HzqbxWEya5xunW826M1Trf8ijuA+jdadg8UCh8O5YYQe/Lly+qkyHKtj6zSSZHl8mXlyc/aRnO6Il8IMT3QOPPpgTCI+mXRNTozdrxeFl0jX74y9AAAAAAAAADQUjzf09bHbpsOoA5VGkQd90qvE8oOoA75Rtp6QeUBhqiNvkekLXfOP4AyW7FS5gue3HJncByov4WofzHUv/lwDljaqqn/fN6uqX/z4X0AAAAAAAAAAAAAQEMQQA0AAAAAwKJAahQAtJAwgHpw/6AkyTGOuuJdMjJzwqOl2ZNLjsWlSTf486QbvM633rSpCSRdpl2OCaYjDaaeI4i60Uz4m5nXJLFKd2lmdoxGq7oHctcuf2t6oIk0+r9/o/ePOTXIDR8O5YYQF5MvfLjg+PRA41XUA+V1AT0AAAAAAAAAtAbXcbWt6zqddzg652vlBlF3J6WeyfLXzQ2glqTz9kvbvi25zOFpmEoCKMu5rBsGTBZaTvBkc6m0/qV6oNA61L951focIM4BLaXi+pfxfk39WwvvAwAAAAAAAAAAAADqigBqAAAAAAAWDUKoAaBFeL6nTd/eNB1ALUm+9TU8OSRb4AJp7tJjcWkkPjuAOt9608utNGzH5GeNP5h6TpsOfFme9av4LlAtz/radODL2pXaq163QxG5ZYeLhgHCY0rqmJ3UmJIVBRhbSRG56nU7tCu1l/o3yPx6IKj3sJ3QkD+mYTsxO1i6BHqg8bLr3+20q9IQcUdGB/xh7fOGdMAfllNFiHm30079GyjfOaBQ+HAoDBV25ciR0XOZI3o6c0jPZY7IkZE79c/BUkHFvizngCZQXQ8EInLkyNFj6QN6OLVPj6UPyJGjiJyywqrpAQAAAAAAAKB5dO16Qtt/uFznHZj7tURGinuFt80OlS4VWh33CgdQb79d6iojxBoLq1AAZbZCgZT55AuiJniyeVF/0ANLG/UHPQAAAAAAAAAAAACgbpot8LnZjgcAAAAAgBZCCDUAtAjXcbX5/M1yTHDq9q2voxNHlPLSBbexZm7AdNLNWWdqvUJS1tNRf3Q6iNqR0eZlr5NreAupJ9c42rzsdXIqjI3NlVaRWedloP6NU6seSCpPWkAF6IHGCOsvKw354yUDY7NZaTqodswGiRB+RSMEIcVD/rhkRf0bpFbngBF/cl7bcw5onFr0gJV0xB+r6O9/LnoAAAAAAAAAaLBdu9SVdrT9W47O2z/7S5ORufeDQ9kB1KFiQdRJNxgvGwHUzSc3gDI7aLKS4MnpbXICKI0leLKZUX/k9oBT4x5w6IGmRv1BDwAAAAAAAAAAAABYcGZ+85prjgBqAAAAAADmhdQoAGghfWf0actbtkhSyQDqUL4g6umvqXgAdSgMopaVtqx8r/o6Ly7/oFEzfZ0X6/MrrtFRb1wZeSVDKM3U1600J27WZi0xJcZxZJSRp6PeuD6/4hrq30DV98DcwOHsvqAHWsPl7WdpVWSZUlUEifuy08HT4Z8rlVJGqyLLdHn7WRVvi9qo9hzgyZ9Tc19WnvxZ6xXCOaB5VN4DgYx8+VP1DvnylZEvM/W/YugBAAAAAAAAoIkcPiwlk+pKBoHQYRD1ZEQajue/N5wvgDpUKIjaKhgvDKImgLp5hQGUKVfysj8JVu18q6ztPCcYl+DJ5kX9EfZA2pX8qVs+1YTPhrJDaH0TjEsPNC/qD3oAAAAAwLwQ2gQAAAAAAIohgBoAAAAAgEWHEGoAaDGXn3K5lrctLyuAOpQviLrcAOpQynpa7nYSPtpAI/6EvnnsHrU70ellhcInc+MkswOHcwOJjQoHkGaP3+5E9c1j92jEn6jyO8B8za8HZuqeG0xODzQ/z/rauP9v9GjqhZJhsYUE4dNzw4jLZWT0aOoFbdz/N/KsX3oD1Nx8zgHZQdTZAdTBupwDWkXlPTDztewg6jCAWgreE+gBAAAAAAAAoIWk09L4uCSpK+1o++3S2mMzAdS594aLBVCHcoOos8cZjgfjE0Dd3MYj0mh89rJiD6wuJN/nCEbjwfhoXtQf2RxbffhsyNhgHLQe6g96AAAAAAAAAAAAAEBNEEANAAAAAMCiRAg1ALSQkeSI3nHbO7T70MMVb5s9wbDSAOrQ7tQeveOFvyR4sAE862vTgS9rMPWcEiambqdNkgqGydo8y+3U+vm2yL90Zvxup00JE9Ng6jltOvBlAmgboDY9YKd6IP/X8qEHmschb0RpeUXDYkup9vZaGGWblqdD3kiVo2A+Cp0DCv3dzVdtT74y8mYFUBdbP3t8zgGNV6gHpLlB1Lkh5KGMfKXlTQdQz95m7rkle1x6AAAAAAAAAGgSvi+lUtMv714vHeiUIv7MPeDw3nA5AdShMIg6+16yNcG4BzqD/aA5bTtbuv6dkmc059pwJUHE+T5HYBSMe/07g/2g+VB/DGyQ+t8qxb3ZDxSohe5kMG7/W4P9oPlQf9ADAAAAAAAAAAAAAGqOAGoAAAAAABYtQqgBoEV4vqertl+lnzzzE/lVXiS1RvJNdQHUkuRL+snkI7pq/18RPFhnrnG0ednrpsMgEyamZYoX3aZQOHGl6y1TXAkTkxSEUW5e9jq5hh8h6o0eWNpc4+iPe9+hHqddUhgWWx/Z++px2vXHve+g/g2Q7xzQZRJFI6gLPZBg7rLiUdZdJsE5oAnk64F8QdSFAqhDhas9O4g6XwB1uJweAAAAAAAAABoo617xwOlW/W8NQmLnqPZGQp7tPEP4YLMKA4jTU5dsTZ5LwOV8PqDQg6zD8dIOQcTNqNz6l7prTP1bVxg+60/VL5EJAmNrIe7NPMjA532gKVF/0AMAAAAA5q3ZAqUAAAAAAEDjNdv1AgKoAQAAAACoKVKjAKBFeL6nX+77pXw1NvzZt1a/nHyKEOoG6Ou8WFtWvleOjDK+rxEl67LfESWV8X05Mtqy8r3q67y4LvvFXPTA0tbXebFuWXXDdBB1vW6Zhfvpcdp1y6obqH8DZZ8DfGs1YdNF44bL7ZFi6xkZTdi0fGs5BzSB7B6Q8gdRz/f2vlHxAGp6AAAAAAAAAGiwWHC9buB0q/63WGWMNNQmZRzJmbrgaxSExw7HpclIecNORoL1jZ3JoXZsMO5Qm5QhfLDp5AYQS6UDp02eX8W2y15OEHFzqWX9C6H+zS03fFYKzuVJd+66+Wpfqg+S7uz3EEJom0sl9Zcq7wHq3/xq2QP50AMAAADAEkGIEwAAAAAAyEYANQAAAAAAix4h1ADQImKRmP7LRf+lfqmjRfyXrjco5pQ5Wxk11dd5sW7q6dOL9phsnZrByupFe0w39fQROtkE6IGlra/zYv31it+dFRBbD46M/nrF71L/JtDXebE+v3yjhvwxpeVNTQpdmH4wUyOn5WnIH9Pnl2+kB5pAqSDqWiKAGgAAAAAAAGhCqdScAOrsEFrHBkHSoXKCqMMA6pCxM4HWUjA+QdTNpVAAcam7h7lfL2d9goibD/VHofDZ7HN5LeS+hxBC2xyoP+gBAAAAAAAAAAAAADVHADUAAAAAAEsCIdQA0ELOjZ0o12/sMbi+dG5meWMPYgnbkzmijx/9Pw3Z98eP/h/tyRxpyL4xgx5Y2kb8CX1z9Gda5rTVLYbaSFrmtOmboz/TiD9Rp72ikLAH2p2Z2aMLEURtckZsd+L0QBOpRxA1AdQAAAAAAABAcxpYfbhgAHUhxYKoyw0sJIi6eVQbQDy9bs7v5axPEHHzoP6oV/hsiBDa5kL9QQ8AAAAAAAAAAAAAqDkCqAEAAAAAWDIIoQaAFpHKpPThn35i1uS+RrBG+vCx25XyM409kCVoT+aILnj+Ezrijy5I4GghYRDpEX9UFzz/CUKIG4geWNpG/Alt3P83Gkw9p4SJqsfpWPAOMJJ6nA4lTFSDqee0cf/fEELcQLk90O20T3+t1r2QPV63004PNKF8QdRxUyBFpkJxEyGAGgAAAAAAAGhCnu9p6wkHKwqgDoUBgo6Vrngy+L3SwMLsIOqtF0hek809WgpSjvThN1cfQDyzUeWr5wYRf/jNwfGgfqg/vKnz73zDZx2/svXzhdDyPlB/1B/0AAAAAAAAAAAAAICaI4AaAAAAAIAlhakgANAiYpGY/iLzRkX9YEJwIzhWivrSX+w5SzGnNiGHKE/Kz+ii5/9ER/zR6WX1CCE2OXs44o/qouf/hBDyBqAHljbP+tp04MsaTD03vWyhg6izA6hDg6nntOnAl+XZCmckYt4K9UAYRF3rHw3C8cIA6hA90Fyyg6gnbUpJW5tzc9JmNGlTBFADAAAAAAAATcZ1XH3lyTPkuZUFUIeG49KmQenrdwS/VxpYKAX79RzpK/8qucz3qbuYL/3F96WoF7yuKoBYqurpltlBxFEvOI4YtwvqivrDtdK2b0vn7Q9eVxM+G81IcS/4vRLZIbTn7Q+Og/eB+qL+oAcAAAAAAAAAAAAA1BQB1AAAAAAALDmEUANAC9n0sKtbf9TTkCDqMID61rvatGmXW9+dQzEnovctu3TOcqOq5oeWpdDY71t2KSHkDUAPLG2ucbR52evk5FQkYaJqN1UkRJSh3cRnhQ9LkiOjzcteJ9fwz4h6K9YDbSYmW+MYaiurNhOjB1pAX+fF2tT5ag37EzUdd9if0KbOVxNADQAAAAAAADQRz/f0gdOfUMQL7t3m45uZoNhc3Ulp23nS+94Z/N6dzL+eNcE4+UR9KeJLH/htyWuyOUhLxaZfS7d+Nwh+rObugMn5vRJWwX5v/W5wHKg/6o+upLT9dmntsfzhs8XeB6IZKTLVOBFbOIS20PvAcDzY7/bbg+NA/VF/0AMAAAAAAAAAAAAAaoIAagAAAAAAliSSwwCglRw+rE1PttU9iHpWAPWjcWl0tD47xiyfX3mNPtr91lnLrKqbWFqOfGN/tPut+vzKaxZojyiFHlja+jov1paV750VQjxp05qwKZkaR5EbGU3YlCZtenqZI6MtK99LIG0D0QPIZ2D0fm0b/Zm6nfaajtvttGvb6M80MHp/TccFAAAAAAAAUD3XcbV59KVyrdQ7MTeIOgwLtJobPtidlBKZYJ27Tg1+T2TmBlFbM3N/KDd8MOoH+3WttHln8Dsaoz0tdVYR/ph7N6GauwudyWD/aBzqj7vXS/s7K3sfyA6fDeULoS31PrC/M9g/Gof6gx4AAAAAAAAAAAAAMC8EUAMAAAAAsGQRQg0ArSQdzOQLg6jrGUI9HUAtSZlM8Q2wYLJDiIOA4IVtApu1B8KHmwM9sLRlhxBP2rSG/fGpr9S6D4Lxhv1xTdo04cNNpFAP1Pp2bzgePdDcBkbvV/+L/1u+rBImqriJ1mTcuIkqYaLyZdX/4v8miBoAAAAAAABoIn2j67Tle2ZOEHVuSGB2+GAYQJ1PdhB1duhgKBw3O4B6y51S3yO1+G5QjYENUv9bpYQndU9Wtq3N80sq/z5D92Sw3/63BseB+luI+peL+jeHsAdkpJ4y3wfyhc+GIlbqmAoWL/U+0DMR7JceaJxq6t+RLl7/MISY+reGanogXuIc0Jaa2oYeAAAAAAAAAAAAABY/AqgBAAAAAFjSCKEGgFYSzQoWNAsdPTsj2E/WxeRIpE57Rj6fX3mNrmy/cMHDh0NWVle2X0j4cBOhB5a2vs6Ltanz1dPhw3YBOiE74HzYH9emzlcTPtxEcntAWqgY8gA90JyyA6gladKmlbTpmoydtGlNTo1FEDUAAAAAAADQZMbG1PeomQ6iLhZCayW1pQsHUIcSmWC9YteauycJoG4GnpG2XjATCNmeKR1EnG/amJtTbGNLB1F3Twb7k4L9b70gOB7UT7X1zy3TnPrnWScX9W8OuT3gSOqeKHz+Dt8HssNnjaR1I7NrHvOKvw/Yqf2EHzalBxqj2vrHvJll+eofsdS/VVR9DvBnluU9B/j0AAAAAAAAAAAAALBYnP2pswt/sYIA6trMVi2BAGoAAAAAAOqOEGoAaCUrVkiStp02rutfNyxrVPvUyVxWska6/opxbTs9FSzr7FzgnaKYgdH79cvkU+owsbrsr8PE9MvkU4RPNhF6YGkbGL1f20Z/pm6nbUECqENhEHW306Ztoz+j/k0kuwek2aHhtZLdW/RA88kXQJ0dSl4Lw/44QdQAAAAAAABAMxofl2Ix9T1q9Pn/Kw3HC69qJE1EpckSzxiejATrFZtiNByXPn8XAdSN5lpp27el8/YHr62kyaiKfm4g90tRb+bX9DqmxEcPbLCfcJ3z9gfHkRtmjIVVbf2zv5y3/sWHoP5NJF8PDLcVXt/Y4PzuTX1K1Ei65FnpDU8Fv4fn/ZQ79T5QpKbDbfRAo1Vb/5Q79Vr56+851L9VVNsDmRLngDTnAAAAAAAAgJZkrdVll10mY8ycX5dddlmjDw8AAAANYD5ltEu7ZD6V55NgVQRQL2gQdQXHAwAAAAAAaocQagBoJWedNR1AnZ46gzvSwgVR25k3irSTFUS9bt0C7RClZIdOdjntiqvEjPF5iiuiLqed8MkmQg8sbbnBs/VC/ZtHdg8kTExtJrZgUeRWVm0mpoSJ0QNNpB4B1CGCqAEAAAAAAIAmlE5L7e0aiVl981ypPRMsdnIuFRvNBAkOxwsHUU9GZoKsjZ0bRB2O256RvnmuNFIk9Br10ZWUtt8unXVQOtoW3Msv93MDUW8mMNK1M0HEpQKIHQX7OdoW7Hf77cFxoP4Wov5FUf+mk68Hss/5oexzesqVPBOEzq4/GixbfzR47RlpPDq1TZFx6IHmUE39x6PF658dUk39m181PZCMlDgHTP2cSA8AAAAAAAC0li1btujHP/5xow8DAAAATSI3eHrW6yoCqAu9rgljJN9fiJEBAAAAAEAJhFADQAvZduLRWQHU0tQ8woV6yJ+ZPU9xOoj6lNEF2iGKyRc6mVY5s0Krl5ZH+GQToQeWtuz6T9qUhvyJBY+itpKG/AlN2hT1bwL5zgETNrWQPwZowqY4BzSRUgHUfg0iye3UOCGCqAEAAAAAAIAmE41qpDOqje+WBtdIiYzUPRUCGAZG5wsQzBdEnR1AHcoOLAzH604G+xlcK228miDqZrUgD7C2fLisVVB/ZJ/78z1UoJjs1pnPOGicYnWr5NRA/VvXvGpnZv+RHgAAAAAAAGh+TzzxhP7oj/6o0YcBAACAJpEbQD1r+TwCqEstrwoB1AAAAAAANFSk9CoAgGaQyqT04YPfnBNAbRd4poc1wY7C3aQd6cPtO/Tup16pmMPbSL141tdW/9/lKyNJmlRGw5qUJDkys8Iia8WZqnoQbplQQhH5krYe+HddeWi5XMN003qiB5a27PpPKq0hTS54AHXIymrIH1ePfCUUpf4NUuwcYGRqED08l+Ec0FSK9YA0Exwd9oIpMB146ke7LFbhT3o2q5N8Wd4HAAAAgFY2MdHoIwAAAAtkZFWXNr5kSIPLNX2xLxFcNtRwfCY4Op8wcDqRyR9AHcoOHAwDqENhEPX226Wu5Hy+E1RrJB7UYNdqqWdCGmrT9OcIHEnFpmilXUme5FrJM1Ovle/a8cx4oagf7G/XanqgkRai/oVQ/+ZUrAeMNOszPqFoJqj7T18SvF5/VHq6N3jtWqkjLY1HZ9bPNw490ByqqX9HWvJN4fpHM1Im63xA/ZtbNT0QzwQ/IxbqgbaUNMk5AAAAAAAAoGX4vq/rrrtO4+PjjT4UAAAANIFCAdSS9PjNQYB0tOAaM0oFTZc7TkkEUAMAAAAA0FCkhwJAi4hFYvqLt3xJ13/rvUpPxQwudAB1KDuIOmqN/sJ5i2LGlWy9IlDhymibuUob7T/rF9qjYc3M4lmI8OFw3OnwSU1KiusVWqdt5iq5MtS/zuiBpS2s/2V2qx7U/roFUIespCFN6nz1UP8G4RyASnogjKPODaJ2ZKYfXDB3m7lR5vQAAAAAAAAA0Fw839OmDbs0OJaWcq7RZQdRFzMcDwKokyXCZ6W5AdShwbXSpndJd9wWBBeifjwT/LcfXBu8djQ7gDJfOXIDptOu5E+FEE+vM/W8wtztw8cYhsGTYSgxPdAY1dZfmvla3vrnrKOs19S/uZTqAWlu+Gx3cuacbxWEzj7dK+3tmql5zAvqnP0eki98lh5orGrrb2zw3l+o/hErdSSpfyuotgfSThBEXvAc4EtxegAAAAAAAKBlfOlLX9JPf/rT6deveMUr9Itf/KKBRwQAAIBGKRZAvetmaeo5tSUDpEsFUGevN68gauakAgAAAADQcE7pVQAAzWLTuZt06yn/rxxbvwDqkDWSY6VbD75Km5zz6rtzSJK6TEK/o/M0nnUZf6GCR/ONP660fkfnqcskFnSfKIweWNru1lN6RsN1D6AOWUnPaFh366kGHQE4B6CSHrDSrFjpMIA6989S/gDqfOPTAwAAAAAAAEBjuY6rzSf3ybHKOyEnkZHiXulxygmgjnv5A6il4L7x5p2EDjaCO/Xf3sn6bx8GUOb7HIHRVMB0Di/P5w2MnRtcGX5OIDt4UqIHGoX6o1gPRP256+d7mICVtKdrbuh4IhOsnys3fFaiBxqF+oMeAAAAAAAAwGOPPaZPfOIT069XrFihv/7rv27gEQEAAKBRigVQ33+z9NKcZYWCpssNoK52/WkEUAMAAAAA0BQIoQaAFtN+0SsUmTP1rz4iVmpfu64h+4Y0YB/Wx3SXetSmiJwFDx4N+bKKyFGP2vQx3aUB+3Bd9ou56IGly7O+PmN/omFNzgqOrSdHRsOa1GfsT+TZPLMXseA4B6DSHgi/mhs6nbusVCfRAwAAAAAAAEDz6LviQ9ry0y45/twre5OR8gKmy5F0g/FyOVbacqfU90ht9oPK9T0S1CA7gDIVkfwyA4iLyRdE7Jtg/BA90FjUH/l6IF8Ibb7w2VJyQ2gLhc/SA41D/UEPAAAAAAAALF2+7+t973ufJiYmppd96Utf0urVqxt4VAAAAGiEUgHU5xb4Wm6AdLWB0hVvRwA1AAAAAABNI890MQBAsxrYPaD3/stmTbq2dFrgAph0pfc639H/7l2pvrYL638AS5hnfW09fLv8lJGs05D6yzjyjdHW2MO6csUb5BqeZVFP9MASZ32teLFX0eRBpeU17DCicrUi3iutPF6i/nVVq3OA0TxOH5wDGqpWPdBh4hqzMzOHKxqGHgAAAABaRyQijY/PvO7omP11t0bplAAAoP6OP159zpnS936u/rfY6eDZyYg0HK/trsLxwgBDQgebR1iD/rdK49GZWjk2CA2uJoA4ZKwkE1w/DgMuw/Hb0/RAM6D+yO6B8H0gDKE90iZ1pisPnw2F241GCZ9tVsXqf7RN6qhB/ceof1Mr1gNDbcH5er49ME4PAAAAAAAANJ0vfOEL+vnPfz79+m1ve5t+53d+R88880zjDgoAAAB1VyyA+kc3S+eU2D4tKarqA6hzxymJAGoAAAAAAJoKIdQA0CI839N/u+u/aTQ12riDMNKoTeq/Hd2uK72XEjxYR66kbYlNuip9q3b4Tyojv677z8jXkB3Tpc6p2pbYJHd8ovRGqCl6YGlzJf1z23v1jvQ/6Mf+k1WN4chMBxD7VaTXWlm9ynmJ/rntvdS/AWpxDgh6wMjKVtwDnAMaL18PlAoVz/47bySdpB71qE1DmtBzGppaHqxVahx6AAAAAGgxExNSJittKJWSfF9ypq7ptrU15rgAAEBtGKO+R4Nre/1vmR1CO98AWkmyWQG0hM82r75HpHtPkL7wmvrsbzguvf9+eqBZUH/kC6H1JXmOlHKkxDzGTjnBOL5mAmgJn20u+eovBT8D1ELuONS/+RQKou6dmH8fJDJSPDN7HHoAAAAAAACgsXbv3q1PfvKT06+7urr0d3/3dw08IgAAADTC2Z86u+DX/vlm6VUq737hfAOos8cpGkRNADUAAAAAAE2HEGoAaBGe72k4OTyzoFTq4EKY2t9w8pi8HT+RK0Ko68pJSycNSR1W/nxmjVfBlw0u8h8bkh66R/LLei4lao0eWNqctCInHVO0wyhVVf3n1zNRaxQ5dkz6NfVvmHmfA6yMlWwV23IOaBJZPSBjpz8MkK+iRnN/XHQmk3I9K8dNZSUPlDeO6AEAAACgtbW1Sc8+K61eLb30pVJvb6OPCAAAVGvfPumpp4Ig6t3SvcfPhNCGAYRWkkx1QdRhAHU4XhhETfhs8xnYIG07T+pOzg4hl+b2QCVhlPl6QAr2s+086ZV76YVmUEn9p16Whfq3luwQ2pSRXuwIajgWC5Z3pSofcyQ2s/2LHdLKMSlG+GxTyq5/xkhDbVLamTknJDKFty1kMjKz/VCb1DMhRah/08oXRL0QQeQEUAMAAAAAADSW53m69tprlUwmp5d94Qtf0Lp16xp4VAAAAGiE39z0G5lPzb0r+M83S+9Q7e4XlosAagAAAAAAWg/poQDQImKRmHb+l53qjHbOLKziKrAzz2u1nb6rnU9crhhvIXXlyWrTifdpV2JEboOut7tW2pUY0aYT75NX9wR00ANLW3b923y3qjH8rF/VaPNd6t9A2T2Q8Kt7D/YlecZW3QMJ36EHGii7B3q9qKI26IOZkOgZuctcGTlWei4+oafjY3ouPiHHBstNgW1yl0Wto14vSg8AAAAArcxa6cgRaf9+yeH6LgAALeu++6b/GIbQdiVnggdDVkEQaSWyw2dDvgnG33ZesD80h4ENM4GTiUx9eiCRCf7c/1Z6odGoP7L1PSLd9MOZAOrQWCwIlK5EdgC1FIz3YkcwPuGzzanvEenzP5gJoA4Nx4NA6UpkB1BLwXhDbcH41L959T0SBETP9zOBhRBADQAAAAAA0Hh//ud/rl/+8pfTry+//HK9//3vb+ARAQAAoJHsTbNvDt58MwHUAAAAAACgfBV+zBwA0Ei/3PtLdcY7NZoenVloNHcWYAHhZBPHzp2AWK5OG9Uvl09o3fjq6gZAVVxJmyc26D86fqpxp9r40PkZd3wZZbR5YoPczmUNOYaljB5Y2sL639PxMw07marHmc8tu2E3I8d3qH+D0AMIe2Bn+33yZdXrx3XUSSpt/OkPB1gVCKDWzMKRyEz/OJISNqIx40myBceJWke9flzGSI4MPQAAAAC0omXLpJ4eKRqVxselZ5+VTj210UcFAACq8dBDUjKpgZf56n+L5BlpIpr/trGVJCOZMi4O5wufndpcE9EggLb/rcEyQggbKzuAWArqVqoHylFODxjNBBFL9EIjUH/k2rNM+vgVylvrsQpCqHMDqKeZYPy3PCmtO1btUWKhjMSlb54ntadnB0hLM6/L+TkgN4A61J4Oxn/740EgPZpTeD7Ofn+oBQKoAQAAAAAAGm/Xrl26+eabp193dHToq1/9auMOCAAAAE3B3mRlPmV0883SH4kAagAAAAAAUD5CqAGgRXi+p60PbpWR0eqO1To4dnDmi2UEUYcB1DFPSrnVBVGv9hMyxtHW7qd1pX2Z3CDSEHXy487DGptH8GgtjDkZ/bjzsPrshoYex1JFDyxt43FHow2u/6iT0XjckWxbQ49jqaIH0Gc3SMfi6u/6aRBEbeM6apJKTwdIW5msjwt02ogmjFd0zJh1FZGrYZOSpDnjRGXUa+MyxsiR0ZaRS9Rn10u0AAAAANBaEgkplpUmduRI444FAADMz65dGlh3TP1vtPKMdLRNSjtTAZN5QmTLCaIuFj5rbDD+0Tapd4Lw2UbzjLT1gtkBxGX1gGZPNnN8yc+63V9JD4RBxFsvkK58VHKZN1Y31dY/96Mhc+pfYH/Uv/ntWSZd8PvSkbbCPTAWkyKeFCvyrOvxaBBCnCvsgSNtwX52/h1B1M1kJC5tvFoaXBsExUv5g6jb08XHyRhpMk8AdXcyGHdwbbCf7bcTRN3Mah1ETQA1AAAAAABA42UyGV177bVKpVLTyz7zmc9o/fr1DTwqAAAANAv7KaPU9NzS+iGAGgAAAACA1kYINQC0CNdxte1d27Tx9o0a3D+ole0r9eL4izMrhFeH81yXDQOolyWlhCdNutKxeGVB1CszUbmSzptcpm3PnSfXPzyfbwcVmpCnr6ze1ejDkCR9pW2XPvvUqWqT2+hDWVLogaUtJV8f3nCPPPnlPHdgQRhJnnx9uOMevfv5bsV4EEFd0QMI9alT6jpH/ccPBkHUflRH3bTSxp8OkJakbi8qV0YTTolusVYJ35FMRMNuMAM9HCdqHfV6URlZOZK27DtXfSOdkg4t1LcHAAAAYCF1dc38OdPYhxwBAIDqDaQfUv8b07MCqEPGBmHCuYoFURcKHw7HCxFE3RxcK237dhAG+uDa8ntAmgkjjmakiJUyvpSOFL/nUKgHzt8fHAcBxPVVbf2zg8ip/+KRHUAdKtQDmalb+/mCqFPOzNdzZfcAQdTNJTuAOpTIBGHiyZx6jkWlqBf83c+VMcG5IPdnhLg3E2wtEUTdKvoeke7YIN116vzHuvwpftYDAAAAlgSCoQCgqX32s5/VAw88MP361a9+tT74wQ828IgAAADQNBxHslYxSSWeS1xTBFADAAAAAND6CKEGgBbSFe/S9qu366p/vko7nt0hIyObOyUwTxi1VTABKOEFrxOepGQwIakcRtIx19OlYz3a/twr1OUXvTyMBdAmV3+z9zz9l3U7GxI8GjKS/mbveYQPNwA9sLTF5OgvXjhH16/7ldImmBlczz4wU7+iNjgOwofrjx5Atr6REyRpKoha6vVmgqilIIA6Yd3p1+VIWFfyNB1EPRNAbeTIaMu+86b3CwAAAGARaGsrvQ4AAGg6nu9p66o9eQOopcLhw9LsIOq4FwRUFgugDscrFEK79QLpykcJoW2ErqT01e8GYbCV9IAkuVkhpBEr+V7h8NlwvNweyDjB/gkhbQzqDyl/ALVUvAfyBVEXC6AOxyOIuvnkC6CW8gdQh9IRSZnZQdRhAHU+STcYjyDq1jKwQbr7lNqMdfcpwXgEUQMAAAAAADTGQw89pE9/+tPTrxOJhLZu3SrHae25HH/7t3+rL3/5ywu+nyeffHLB9wEAANAwUwHUoajqE0RNADUAAAAAAIsDIdQA0MKMMbKFLshmhVFbE0wEzGRPJHJKT0DMHSr7T6i/9w+dognj6w9OGGzYMXxp73l6/1CNZiuhYvTA0rZp+CWSVPcQ4uzw4Vv3XDh9HKg/egDZCgVRt/tuEChdhTCIetzxCKAGAAAAFrNEQlq2rNFHAQAAquA6rr5yz3Jd8NbRvOGzpa4ZW0ntaakrJY3EpLFY6fVVIIT2K/9KAHWjjMSl918pub4U9WeCiMvpAc8NPjcQsUH4qFficnJuD0T9YL/vv5IQ0kah/igWQF2qB7KDqEsFUEv53wcIom6sYgHUw/Hi22YHURcLoA6F4xFE3RoGNkj9b5X8Gn28zzfBeBJB1AAAAAAAAPWWTqd17bXXKp2eiRK86aabdPrppzfwqGrj0KFDevjhhxt9GAAAAK0rJ4A6tNBB1ARQAwAAAACweLT2I08BYIkZSY5o4+0btevgLvW29cqUEwo9lRw5FpcOt0uH24JfpSYU5w7R60W1KzGijSf9QiNOPZ6FiFwjTlrf696v7lIzQRdIt+fqe937qX8D0QPYNPwS3brnQkWtMx0MvJAIH24+9ACy9Y2coC37zpMjIyOj5V6s6gDqUMK6Wu7FCKAGAAAAFiNjpK4uac2aRh8JAACokud7+sArDk6Hz4bKCR6VghDRiag0lAh+N2Vs9P+z9+dxcpV13v//PufU1t3p6s5KCMi+REBDWJRRUUbGW4dx4jSC4TaOMgHGNXrfzjjejo7LjTo/HH8uE9dR4jJEiQJR5pZxGQYEZlQIhEaByCp7Q0h6SXdX13LO+f5x6nRXV9feVXVOpV5PHk2nTp26riv5fHKqU1XnfVzNv7ixH0L7ztdLNtcwbjvbkDad74WAmpIGU15NaukBv1zZiJS25sJHDVXuBb8Hoo43nylv/k3n0wPt1qr6V0L9wyVjSqe/vbEAal/OklKR6gHUs2Nr4UXu9/d468jw6dO2KjwGFKolgNpXfAyoZjzujV+IY0D4NDuA2ucHUe9c29xxAQAAAAAAUNknP/lJ3X333bO3Tz/9dH3gAx8IbkEAAAAIjwqBzxWDoheBAGoAAAAAAA4uNX6UHAAQNNuxtem6TRoeGZYkzWRnZLv24geu4eQTW9JM1FSPEdVwLKVNpz6iH/VfJsvgbLJ2sV1Hmw58Q8O5lHrVJ7lpjSvdtvkHFFdvNK7hKPUPCj0A3yZJmjlJl0x9T1l5zwNuzacU187IX+ogKktXLnmzNq0/s+lzoDH0AAoNSVL6FG2ZvkaO6xTda0turvIAVkSlXhowDVNbey/Q0Op1TVopAAAAgLZ64AEplZq7vWqVdOSRXhA1AADoWJZpafPDSe0+fUaDKWmsR8pYtQdQ+z8JpPPBo4YkuQvDRYu5+Z1jthdCG3Glzbsli3OI2s7K/9nvPtQLhjQl9WTnalqK4WrB5wKcorf5qvWCm5/Hf5hJDwSC+iPmSBfvlj778rlt9QRQFz6mrv0lyZgfWH/xbm89aJ/iY4BUXwC1r/gYUI0/fiL/tiPHgHBpVQC1zw+ilqShPa2ZAwAAAAAAAHN2796tT3/607O3o9Gotm3bJsuq8cqCAAAAOHjV8DnwqKRsE6ckgBoAAAAAgIMPIdQA0CEs09LmUzdr9zO7NZWZ0lh6rK3zjyklyVCfGdfmZefKWrKsrfN3O0vS5ui52v38d+XIVa96JNvQuGZaPveAEuq1EpIkUwb1Dwg9gEKb9BppoleX7P2mMiodMOu/lVjtLTyj7D6uooroypWXalPy5SX3QHAKe8ALojYWBFGXr+18pfabF0BND4TekF4lTfZpS/45YpZbQ3qMYXpfBUwZ2rrirRpackYLVgsAAACgLZYskbIFHyGORgmgBgDgIDG0d4X073u15U/dquGzvsIA6gX3STUHUfdkvQDqrTcQQhgk/89+y3nSdFSaiHs1LlVDv/a1vl9QrhcMNz+PpN4sPRAk6o8rbvS+f/bljQVQN6owiPpv/2tuHWiv4mNAvQHUjfLn4RgQLq0OoPYRRA0AAAAAANAemUxGb3vb25TLzZ0n9KEPfUgvfvGLA1wVAAAAQqHGz4E3M4DaH69kEDUB1AAAAAAAdCyz+i4AgLAYeuGQLnjhBW0PoPaNudO6oO9MAgkDMrTkDG1d8VaZ+VPEe62Ekmrt2WRJxeeFDxNIGSx6AIU2JV+urcvfqnKxEUbZOIla9zO0dflbCR8OsU3Jl+vKlZcqKmtBFQ3V1wOlHk8AdWcZWnKGzu05uSljndtzMsd6AAAAAAAAIKyWLdPQHmnTsBcKW5NqLxfXGFw4EffmJXwweH4P+KGghrxg2EKVwsfLqTbOOD0QCtQfV9wobdjTvgBqnytvXgKog1V8DGgXjgHh0q4Aap8fRL1zbXvmAwAAAAAA6Eaf+MQn9Nvf/nb29imnnKIPf/jDAa4IAAAAoRBQAHXZcQmgBgAAAACgo0WCXgAAoHbb79mur935NRky5Lb9VDIvpPJrE/+pM+PHEEgZED8Qcsvz31XOdZSW3dL50rLV47qKGCbhwyFBD8A34aR03fQuDZg9GnOmF9xf6/NEuf0GzB5dN71LG5NnKWn2LGqtaB3/+fiv9n5DTv54UE8Atc/bf64bLJkEUHeYnZO7dGPq3qaMdWPqXu2c3MUxHwAAAAAAAAijNWu0c6101TrJdGsLHnQlyVgYLitJrlF7iKnpevOe9RQBlEHbuVbavk4aSM8PIpbr1bSRAGJfpXEG0t689ECwqD92rpXuOFzqy0hTsfbN25fx5t25lh4IUqljQDtwDAiPdgdQ+/wgaokeAAAAAAAAaLZdu3bpM5/5zOxty7K0bds2xWJtfBG4DVauXKmTTjqp5fM8/PDDSqfTLZ8HAACg5QIOoC4cPyoRQA0AAAAAwEGAEGoA6BCZXEbv//n7lXWygQRQS140ZVa23r/ve7pwyUsVM3kaCcLQkjM07aR1yd5vKiu7ZaHkhgxlZWvMmdKVKy8liDJE6AFMOCltHPmShjOPy8j/V9wDtXZEqf38MYczj2vjyJe0Y/V7CKIOsV4zriVGXKPudEMB1L7CIOolRly9ZhvPWMai7JzcpS3Pf1dOk54LHLna8vx3JYljPwAAAAAAABAyO49O6z2Hu9rX6wUBGvmw2GpKBVHXE0Bt5AOv9/VK7yF8MFCFwZOJnLetOIh4sZmUpcYZSHvzEUAZLOqPwh5IZrxt7Qii7st489EDwap0DGgljgHh0UgAtVnlB75SFyophx4AAAAAAABovnQ6rYsvvli5XG522/vf/36deeaZAa6qNd797nfr3e9+d8vnOfnkk3Xfffe1fB4AAICWCkkAtSSlJMU+XvtnzQAAAAAAQHiZQS8AAFCbWCSmT776k0EvQ5L0yeUXEEAdoAknpasm/1u9Zlyu1LJQcjc/cq8Z11WT/60JJ9WSeVA/eqC7FQZQz7hZjTvTiz6RvJghadyZ1oybnQ2ipv7h5IcPJ8yYEoo0HEDtM2QooYgSZkxbnv+udk7uatJK0SrNDqD2+UHU9AAAAAAAAAAQHrZj619i92hfr5TNf+LHUO3BgW7+K27P/boWRkEYbdb0gqj/5XTJbvYbFKjKNqRt6+cHTyZyXjior5aymE71fUoFEPuc/Drogfai/ijVA8mMFxDdSn4AtY8eCEYtx4Ba1HIMKMQxIDxK9UAtjIIv05WO2+99L9xeD3oAAAAAAACgub74xS/q3nvvnb19/PHH6xOf+ESAKwIAAEDgQhRAPSNp4OPer41P8CYhAAAAAACdjgRRAOgQtmPr+t9fryXRJZrITAS2jiVK6Pqpu7S5/1WyDK5l0G6F4bPt5IfQ7lj9HiXNnrbOjfnoge5WKoBaUkvCZ00Z3vhmL/UPqcLw4Rk3o4zspoybka0ZN6OE4QVRS9LQkjOaMjaaq1UB1D4/iFqiBwAAAAAAAICwcN2FrwcakuRKbgvO8SkMoJ63juZPhRpYrrT9OmnjBdLw6rntfjjoeLz6GDFbshzJdqWMVX3/4vBRSVo34q3DohHaivqjXA/4AdFTsebPWRxALdEDQeEYgHI9UCvDlc57QDppr3TfSumGExr7+ZEeAAAAAAAAaK6nn3563u0DBw7oj/7oj2p+fCaz8EqFu3bt0qmnnrpg+913313v8gAAANBuIQqgTktKfnz+NuMThtyP8WYhAAAAAACdihBqAOgQlmnpopMv0i8e/oUMGXIDOK3XkKG0srqo7ywCqANQKnzWUGtP8DYkQmhDhB7obu0KoPYRRB1uxQHU405KjlwZMkqGgdTKleTK1biTkkwRRB1ixQHUrlyNOlPqNeJKGNGGx51xs5p201pq9smQQRA1AAAAAAAAECKWaentz6zRPQN/0P5eKVvwlm0tQdRG/ittzQVLV3qXoVQAddSRlk1Lb7+T4MGgJNPSjmvKh5COxUsHh0tz4aOS9z2m8iGkrqTBMuGjO67x1oH2o/4o1wOtCKIuF0BNDwSn2jGgUhB1PccAqXwANfUPVrke8Lkq/TxQGEAtzX2/4YTS85Qbhx4AAAAAAABovZGREY2MjCxqjKmpKQ0PDzdpRQAAAGibEAVQZyT1f7z0fQRRAwAAAADQuUgQBYAOYTu2rr73avVGe2UYi42YrJ8/Y68Z19VTv5btOm2dv9vZrqNNz36lbeGzPn/8cWdaM25Ww5nHtenZr1D/ANAD3Y36o1C5AGrJCyJutCv8AGrJq/24k9KMm5kNId45uas5vwEsWskAantKWdee/fvaCP/4knVtjdpT8/qBHgAAAAAAAADCYegPPfryDV4QdLTo5fpK7yAb8sIH520rETJdaTw/gPrLN0hDe2pfM5rPD6BcV5Q/EMup7EVsC8NHfZbjbS/mB0/GCB8NJeqPcj2wJFN6/0YVj0cPhEOlY4C08IIUhuo8Bhjzx/NR//Ao1wOOpNEeaSYyf3txALXvpL3e9uKfEWci3jjFnwyhBwAAAAAAAAAAAIAWClEAdVbSko9X3sf4RHvzTgAAAAAAQHMQQg0AHcIyLW0+dbN6o70aiA+0NYjan2nA7FWvEdPm/lfJMngKaSfLMLW5/1VKu7m2hc/6CkNo026O+geEHuhu1B++SgHUvkaCqAsDqH0EUYdT2QBq2XLyVZwLonZr+k+aC6B25dU+K4KoAQAAAAAAgFDKZjW0RyWDqMu9NlwqgHr2vgpB1IUPIYA6fIoDKB1J+3olx/ACRAvrVyp81Gc584NmXXmPd4z8ePntBE+GSz3178lWrn+8IGiW+neOUj2wt7exsco9D+ylB0Kr4jFA84Ooe6scAwqDqP3jB8eA8CvVA2M9UtaUxuNzQdSmK73pdwsDqH0n7ZXecYe3n+Q9bjzujTPWQw8AAAAAAAAAAAAAbRGiAOqcpL6P17bvKZ84pZVLAQAAAAAALUB6HAB0kKEXDmnrn25taxB1cQD11hVv1dCSM1o6JyqZC4Jsp7n52jsvSqEHuhv172a1BFD76gmiLhVA7SOIOlyqBVD72/wg6rSbqzDanMIA6sLQaYKoAQAAAAAAgBC65RZJWhBEXRw46asUQD27T5kgaj+IkgDq8PIDKE9+zgsLzRV8EsyvX3+6fPioL56TBtIL+yhneuOe/BzBk2FUS/0H0vMDZkuJONS/UxX2wN5eySnxadCaPlVU5nnAMb1x6YFwqngMUO3HAKvwGFCwnWNA+BX2gB9A7RuPS2lL2nqDdOpI5XFe9oS3X9ryHufzg6jpAQAAAAAAgNb6whe+INd1G/569NFHF4z5qle9quS+AAAACKEaA6glKdqkKcuNk5PU+/Hax/ndx37XhNUAAAAAAIB2IoQaADpMO4OojfwXAdTBs11H2w78UnEjqrisQNYQl6W4EdW2A7+U7VY5SxlNV9gDCUUCWUNCEXogINQffg/UEkDtqzWGutp+xUHU9EAwCntAKh1A7fODqKfc9IL7+oz4vNsZN7cggNpXLoiaHgAAAAAAAADCwQ+i7s00HkA9u2+FIOreDAHUYfdc3/zw0Vn1fpSgxP450xsf4UX98eCy0gHUzeCY3vgIr7LHgCbgGAAAAAAAAAAAAAAALVRHALVvsUHU0aLvPlv1BVC7H+MiJwAAAAAAdCJCqAGgAxUGUfdEemoOmayXK6nHiBFAHQKWYWr7Ie/SMqNPKeUCWUNKOS0z+rT9kHfJMvgRot38Hlhp9mta2UDWMK2sVpr99EAAqD/8HlhtDdQUQF2KIUOmGrt4hR9EvdoaoAcC4vfAutgRFQOofW7+Pyf/JUmHmANaYw3qEHNAklfXKTdTMoDaVxxEvS52BD0AAAAAAAAAhIwhyXQXbqs1gHr2MSWCqM0y4dQIh4m4dM7bpN+tKt8DB+JSrkoR05Y0Hi/fA79b5c0zES/5cASklvqPx6VMlZf0cyb171QTcenUt0uPDZbfp6anAqPyfo8NevPQA+FS9Rig/DGgyrXubf8YII4BnWYiLm28QLp3lbQ0JUULriM8kJbitrTlPOnu1ZXH+e8XePvFbe9xvqjjjXvvKm8eegAAAAAAAAAAAABoogYCqH2NBlEXP86/bUvq+Xjt4xBADQAAAABA5yI1CgA61NALh7TpRZuUyqUqh0m6RV+l7i/DkKGUm9GmJS8jgDoEdkz8Wvflng50DfflntaOiV8HuoZu9m+Td2lP9plA17An+4z+bfKuQNfQrag/bpy+V8/YYw09tvCE4VInD9fqGXtMN07f2+CjsVhJs0ffWHWJcq5TMYDa59/ryFXS6FHSTOTHSShp9OQf71a9oIkfRJ1zHX1j1SVKmj1N+N0AAAAAAAAAWKyda+cHBvoBlI0EUPsKQ2hNd36A4c61zVg1msUPHx0uCJYs1wPZSPkg6pwhTRaEShb3gG94NSGkYVJP/VOxyvVPR+ZuU//O4QdQP7p08WPV8pTx6FKCqMOknmPAdNQLmi7FNueHVHMM6Bx+ALXfA4bmgqgH0lIi5213DOnqF0l3HipNxBZ+3Xmo9NWXePtJ3uMG0nMB1H4/DK8miBoAAAAAAAAAAABomkUEUPvqDaIut39UBFADAAAAANBNCKEGgA618/6d2v7b7RqID8gwjIVB1OVCp0spEVLtB1QOmD3aPvnf2jm5qxnLRoNSdkbv2fedqiGRrebK1Xv2fUcpOxPoOrpRxsnpf+/broxywa5D+XU4wa6j21B/2K6jf5m4SaP2VEOP9589eozYvNv1GrWn9C8TN8l2nQZHwGJMOCld9tyVMmXUVUND0oSb0oQzkx9nRhNuSobq+3HRlKHLnrtSE06qvoUDAAAAAAAAaDo/gLowMDCZzt+52LcU849PFgUYEkQdHqXCR32mWzqEvFQQdc7wthcz3Pnhoz5CSMOB+mMxAdSGGr9oLUHU4VDvMcCVFzRdHERdHEDt4xgQfsUB1D5D0rLU3M9vPseQ/uM46bervQtP+F+/Xe1td4oOCImcN07xcYIgagAAAAAAAAAAAKAJmhBA7as1iLrifoZRc7A0AdQAAAAAAHQ+QqgBoAPtvH+ntvz7Fjmuo0QkoZ5Iz1w4cT3h06XkH+9K6jGiShgxOXK15fnvEkQdoJgZ0ZpIA2cPtsCayFLFzBJnoqKlLMPUYSHpgcMiS2UZ/BjZTtQfknchAFeSE9AFCZz8/EFfEKFb2a6jTc9+RXdnHtO4M616fuDz++ZZZ1xP22N61hmfrWftXI0707o785g2PfsVgsgBAAAAAACAABUHUEuSIymVP1vINRp/y9jNP1758QpfCSSIOhwqhY9WUxhEXC6AuBpCSINF/bGYAGpp7vmh0ecJgqiDtZhjQGEQdbkA6mo4BgSvXAB1Na6k246cO3Y8utS7Xe+xgCBqAAAAAAAAAAAAYBGaGEDtqxZEXS2AWo73CbFqAdMEUAMAAAAAcHAgPQ4AOkxhALUkzeRmNJWdWnz4dDFXmnIzmnEzkkQQdcAsw9Qnl12o5r+tUB9D0ieXXUgAbQAsw9TfDv6ZzIC7wJShvx38M3qgzfz6RwL+8T0ik/oHxDJM/WX/KxY9zoybXfQYf9n/CnogAJZh6qIlf6RRe1pZ2XU/3pErR66m3PTsr+uVla1Re1oXLfkjegAAAAAAAAAISLkA6rGe+WGSjQRRFwZQS954Yz0EUYeJbUjnvrWx8FFfNiKlrcYCiH3Dq7112EG/gd1lqD9sQ1r/140HUPsW+/GiR5d666AH2ss2pFcv8hiQsbxjQCMB1L7h1d46qH/72Ya06fzGe8APov7PYxoLoPYNr/bWQQ8AAAAAAAAAAAAAdWhBALWvXNB0rQHUvnJB0wRQAwAAAABw8CA1CgA6SKkA6tGZ0eaGTxdypVFnmiDqELBdR58f+/eglyFJ+vzYv8t2neo7oqn8HnBb9he+Nq5ceiAAtuvo6slfqd9MBLqOfjOhqyd/Rf0D4PdAnxlreAwveNhpKHzY12fG6IGA+D3Qa0blNvhs4MiV3WAPeNc7cdVrRukBAAAAAAAAICC2Y2vb+vIB1MWv/JULoo6XuM5dcQC1v61cEPW29QQPBiUsp3SFZR3dJix/7mFZR7exDWlf7+LHMZpQwH29PA8EISx/5GFZR7exXGnzbslcxN9hV9KTycUdx838OiyeDAAAAAAAAAAAAIDatDCA2lccOF0xgFpaEEDtKw6cJoAaAAAAAICDCyHUANAhbMfWtru3tS+A2lciiHrbgV8SPBgAIySncIVlHd0oLH/2YVlHN7EMU5v7X6W4ooH96RuS4opqc/+rZBn8M6LdmtUDi/mxgR4IVmEPLMZif3SkBwAAAAAAAIDgWKal7ddJ60a825UCqH3FQdQDaWlwxvs+u48WBlAX3lccRL1uRNp+HcGDQbBc6T+/O9cDjYjZXhB5rEQYea3WjXjroAfai/oj5ki/+4rUn66+bzkRW+rJed8b1Z/21hHjo0NtZbnSjYs8BkRz3jEgmmt8jHUj3jo4BgRjaI+09YbFBVEvhul68w/tCWZ+AAAAAAAAAAAAoOO0IYDaFy36XpZb+Q1H92OuTtbJBFADAAAAAHAQIjUKADqEZVrafv52rVu9rn0B1L6CIOp1sSO0/ZB3ETzYZpZh6ruHvENmwE/dprx1UP/2owdwZuIYTbnpth36i7mSpty0zkwcE9AKQA+AHgAAAAAAAACQTEs7rpFOfq56ALXPD6IeSEuJfOhkIufdrhRAPft4zQVRn/ycN39yEQGoWJxkWrr5O42FkMZsycqHxlpOY0HE60a8+emBYFB/HH5Auu/LjQVRR+y54OiY01gQdX/am//wA/U/Fou3mGNANCdF8j80RNzGgqg5BoRDUEHUBFADAAAAAACE01FHHSXXded93XzzzUEvCwAAAFJbA6h9iw2g9v3uY79b9FoAAAAAAED4kB4IAB0kGU/qLS96iybTk+0LoPa50qST1lv6X66k2dPmyZFxcjrnqU/JDSx20uPK1TlPfUoZp4Ez0bAo9EB3yzg5nf7EP2jKTctQ+99wlCRDhqbctE5/4h+ofwDoAdADAAAAAAAAAIrZRh1vG5d7WbHGlxvd/HwIh0ZCSAsDiH31BhETPhoO1B+NBFEXBlD76g2iJoA6HBo5BhQGUPvqDaLmGBAu7Q6iJoAaAAAAAAAAAAAAqFMAAdRV1RhADQAAAAAADl6EUANAB9l5/079zc//Rjk3G8j8OdfW3+z9nnZO7gpk/m4WMyO6uP9sSZIZUPCkP+/F/WcrZkYCWUM3owe6W2H9DantAbRGwYzUPxj0AOgBAAAAAAAAAJI0MTOujRdId66RnBpfJjQkGa40Hpdm8i/tzUS824Zbcw61HMObd+MF0kS8kdWjmeoJIS0VQOyzHGlJpvoYhI+GSz3178lWrn+8hhBa6h8+9QRRlwqg9sUcKVFDDxBAHS71HAP6sgsDqH21BlFzDAindgVRE0ANAAAAAAAAAAAA1IkAagAAAAAAEFKEUANAh7AdW1++48t6buq5wF7fdSU9547ry+O/kO2WOTsNLXPFiov0twPnSar9RPBm8ef724HzdMWKi9o8O3z0QHcrrL93RG4nbz7qH6ziY0C7QogLw4fpgWDRAwAAAAAAAEB3sx1bm67bpN8c7gVIS9VDB/0Aat94XBpLzD1eqi2I2p9nPC795nBp0/mSHcJzpbpNLSGk/enyAcS+eE4aqBAsSvhoONVS/4G0F0JeScSh/p2qliDqvkz5AGpfb9bbrxwCqMOpaccAl2NAJ2t1EDUB1AAAAAAAAAAAAECdCKAGAAAAAAAhRgg1AHQI27F1x9N3yG178Oh8rivdkX6UEOqAXLHiIm3oPS2Q+NkNvacROhkC9EB3o/5odwgx4cPhQw8AAAAAAAAA3csyLZ204iSNJ+a/LlgudLA4gNqXtkrsWyGIunj88bh00nOSxblJoVAphHQgLSVytY2TKBNETfhouFF/VAqi7stIyQrh0oWSmdJB1ARQhxvHAEitC6ImgBoAAAAAAAAAAACoEwHUAAAAAAAg5AihBoAOYZmWVvSuUMAZ1JKkFdYSWQZPIUHYOblLd6QfUZ8Rb+u8fUZcd6Qf0c7JXW2dFwvRA92N+kOaH0Lc6otT+OMTPhwu9AAAAAAAAADQnWzH1n3P36eBSN+C+4pDB8sFUEtS3C69vVQQdakww4G0dN8qyQ7hOVPdqlQIaT3ho77iEFLCRzsD9UepIOp6Aqh9xUHUBFB3Bo4BkJofRE0ANQAAAAAAAAAAAFAnAqgBAAAAAEAHIEEUADqEZVr6v+v+t0wn2HWYjvR/468jhDoAOyd3acvz35UjV/1mQlabnsYtmeo3E3Lkasvz3yWENkD0QHej/ij04WVv0JGRFW2Z68jICn142RvaMhdqRw8AAAAAAAAA3ccyLW0/f7teOtY3LyTS54cOVgqgHkhLgzMq+XhpfhB1uQDqlz4pbb9OsjhHKVT8ENJDDzQWPurzQ0gPPUD4aCeh/vCDqBO5xgKofX4QdSJHAHUn8Y8Ba5p0DFjDMaAjDe2Rzn2kOWOd+wgB1AAAAAAAAAAAAEDNCKAGAAAAAAAdggRRAOgQtmPr6ru+oxXpAA/drrRixtDVY7fJdgNOw+4ytuto24FfypErV65G7Sm5as8L/4XzOXK17cAvqX8A6IHuRv1RaMJJaePIlzTjZtVnxFs6V58R14yb1caRL2nCSbV0LtSOHgAAAAAAAAC6V3LfpHb8UHrp08aCIGl3wS/mKwyl9EMmS3JLD+MHUO+4hlDKsPq346V9vc0Za1+vNx46B/XHHYdJS1ONB1D7khlvnDsOa8660B43Hi05RuMB1L5EzhvnxqObsy60z8610o3HNGesG4/xxgMAAAAAAAAAAABQhRnC6CYCqAEAAAAAQBkhfCUDAFCKZVr66sQr5RiuzAZf8zUkma73vRGmvJOMvvrQWlkGTyHtZBmmth/yLp0cO0yj9pSysuW0KYDWkausbI3aUzo5dpi2H/Iu6h+AUj3QzhBieiBY1B8+P3x4OPO4JClmWC2dzx9/OPM4IcQhQQ8AAAAAAAAAXe7225WczHpB1E/NBUm7ktz8G8GuUTpAujiUslQQdblxCKAOv+2nSJf8hZSxpPG4NBNpbJyZiPf4jOWNt/2UZq4SrUL9sXOttOU8Nf6hoGKGNx4htJ3Br7/bpPq71L/j+D3gNKkHHHoAAAAAAAAAAAAAqM40wxf4HLb1AAAAAACAUCE9DgA6hO3YeueB78typKijhoKoXXkniDTysrHpevNajqt3Lv+VbNdpYBQsWr547Qqg9s3Ox3sOwZstRbsiiPNhA/RAOFD/rlYcPjzjZjTupGQ07Uzy+QwZGndSmnEzkgghDgN6AAAAAAAAAIDuuUeanlYyY2jHNYZe+qQXCl0cOlkcIF0cQO0rDKIuDKAuHCdJAHXo+QHE2YJPgjUSROwHEPuyJkHEnYD6o9nhsz5CaDsD9Qc9AAAAAAAAAAAAAASAAGoAAAAAANCBCKEGgA5hmZY2P7FCEdfQQLr9OaCupIEZKeIa2vxgvyyDp5B2sl1Hm579iu7NPiUroKdvS6buzT6lTc9+hRDyABT2QMKIBXIMSBgxeiAg1B9+DxSHD88LCW8yP+y8OISYHggGPQAAAAAAAABAkrRrl5TxXq9LZgx943op4qjkpepcQ+rJlg+g9iVy3n7FAdSSN27Ekb5xPQHUYVUqgNhXTxBxcQCxjyDicKP+aFX4rI8Q2nCj/qAHAAAAAAAAAAAAgICELfA5bOsBAAAAAAChVONpJgCAMBgaWarpp/t1yTnjgcw/npCu/FlcQ/ui0nPPBbKGbmVJ2uycqpvt+zStTCBrmFZGpu2tw9r7fCBr6GZ+D/y3/YAmNB3IGibcaVn0QCCoP/we2O08qmk3o3HNzAYEt5I/w7iTkuSq14jRAwGhBwAAAADUZXRUShekRKZSUjYrRaPBrQkAADTHY4/N/nIi6uiyDV5IdMyWMtb8ixkbklJRKeZUDqKeiXj7GVr4+JjtjX/ZBmnHNQRRh02lAGLfgbgUsaVIhReU05Y0WSKA2OcHEUvSpt81slK0Qi31H49LiWzlcXKmNF3hnwrUP7xaHT7r80NoJWloT2vnQu2oP+gBAAAAAAAAAAAAICBGi9+kqxcB1AAAAAAAoEaEUANAB5lIGLpqzZR6s1I2LsmV3Da8Pm243gnGvVnpqrVp/fmtKSUffLD1E2OeXy+5W1N9wQRQ+6aU0a+fv1tDk4lA19G14s8oM5Bty9/7UlxJGTcrPfOMlKYH2o76d70hJfTrJUfrs33DbQkf9rn5/49rRpdNnqihZxKS+DkgCPQAAAAAgJqNj0uZgtcS43HpySelREJauTK4dQEAgMUb9y5YPBF1tPECaXi1917u0pQ02uOFCUveNiP/IuJ4Ply4VBD1TGTufsP1Hui/9hizvXENefNsvIAg6jCpJYDYl41IypUOos4Z0kyFAOrZMQgiDpV66p+KSdEK9c9G5o4X5VD/8GlX+KyPENpwof6gBwAAAAA0BQFVAAAAAADUjwBqAAAAAADQwWo4DQUAEAa2Y2vTix7Q8PKcEjlpID3/xOFW8QOoB9LeScnDq1xt+pNx2XJaOzHmySinr/fe17awyXJcSV/vvU8ZlThDHS1ly9Gn++7StJFTUG9NGZKmjZw+3XcXx4A2o/6QpJ3xR7W950H1uFbbnw9cST2upe09D2pn/NE2zw4fPQAAAABg0WZmpJERyeHf9gAAdKxUShMxdzaA2mdI6snO/br4feTxuBc4XagwgHp2nPz7w8qPV/i+hB9EPVFDYDFaq54AYl824gUOF/IDiGseIx9EvP2U2h+D5qP+aHf4rM8Pod25tr3zYj7qD3oAAAAAAAAAAAAACAgB1AAAAAAAoMMRQg0AHcIyLW2OnCkz/zpwO4KoiwOoJcl0pc1PrpLFU0hbWTJ1RmZlYOGzPkPSGZmV1D8gy52ETCmwMHJX3g+Py51EQCvobtS/u9lytK1nj6aNnFKG3fbnA0NSyrA1beS0rWcPQeQBoAcAAAAANE02Kx04EPQqAABAgyaijja+0Z0XQC15gdITce/93HLvHxcGUZcKoPYZrjfORIngaoKog9dIALGvMIi43gDi2TEIIg4U9UdQ4bM+QmiDRf1BDwAAAAAAAAAAAAABIYAaAAAAAAAcBEiQBIAOMmScpK03aEEQdateHna1MIB66w3S0LNLWzQjyrFk6q9SaxUJOIY6IkN/lVpLCHUALJn6y9QJMgPuAVOG/jJ1Aj3QZtQflkxdlDpO04b3pNzut4b9+aaNnC5KHUcPBIAeAAAAANBUMzNBrwAAADTAdmxteu1UyQDqcoHSxcbj0liivv1LBVFvOl+yQ3ZeVTfImNL7X1c5gLja68fZiBRxqgcQVxonm19HhpeK24r6wzakbesrh89W6wFD0uETqvrOc6VxnPw6eB5or1rqX02t9a+E+geHHgAAAAAAAAAAAAACQgA1AAAAAAA4SHAqCAB0ktFRDe3RvCDqjKnFnRVSiTF30uBsAPUeSel0iyZEObYcXd3zkJY5iUDXscxJ6Oqeh2TLCXQd3cjvgaVOPLAYYkPSUidODwSA+sPvgUEnpvbHD/tcDToxeiAg9AAAAACApjJ5ixAAgE5kmZY2P75s9r1iqb4Aal/aqm//4iBq05U275YszmVqu5gjfe5nUtQufb8ryTUqv4ocs6Wc6X0vp9o4UdtbR4yXituK+sNype3XSetGSt/vSBrtWXjxAJ8h6RWPSa9+xPte7r3nmYg3TrkSrxvx1sHzQHtVq381tda/GuofHHoAAAAAAAAAAAAACAAB1AAAAAAA4CDCGeYA0El+9ztJmg2iPhCTpmKtnXIq5s0zG0AtSfv3t3ZSLGDJ1Pbxc9XrljlTsE163Yi2j58rix8h2q6wB4KLHqUHguLXP+FagdY/4VrUPyCFPRDU+fyO6IEg0QMAAAAAmqq3N+gVAACABg2NHTp70eJSAdTNeh+heBw/iHrexYsRiE2/la68fmEQsR8cLJUPEI7ZkpV/kdlySgcRVxsnanvzb/pt478HNI76I5mWdlyzMITWkTTWI2XNhRcPkObCZ48e9W4fPVo6hNZ/bsma3njF70utG/HmT3L9+kCUq381tda/GuofPHoAAAAAAAAAAAAAaCMCqAEAAAAAwEGG1CgA6CTPPDP7QvWvD5Omou2ZdirqzTdrero9E2OeT/XdpcesyUDX8Jg1qU/13RXoGroZPdDdPtp3Ryjq/9G+OwJdQzejB0APAAAAAGiKJUukvr6gVwEAABoVi2loj7RpuHQAdbnw2XqUG2c87s1LAHXwioOIC4ODfcU1LAwg9hUHEVcbhwDicKi7/i71P9gUh9AWBlD7CoOoDVc6+w/Ssfu9iwn4X8fu97ab+SIXX9ygOIia8NlwqDeE2KxSf6PGHxyof3jU2wPVjgH0AAAAAAAAAAAAAFACAdQAAAAAAOAgRAg1AHSSAwckw9AHz5U++3LJkPfVSv4cn3259MFz8xszmRbPimIZ5fTtnt9LCu7J25/32z2/V0a5gFbRveiB7pZSRl/tuzfoZUiSvtp3r1LieaDd6AHQAwAAAAAWxTCkWExatkxauTLo1QAAgMXYv18710rb10kDBQGAheGxiwmirjTOQNqbd+faBgdHU/lBxBF7YXCwz69hqQBin+VISzKlA4gLx4kQQBwq9dS/J1e5/vEc9e9Efgjtyc8tDKD2jceltCX9xf3Sy56QVk8u/HrZE9IHbvP2K764gTQXRH3yc4TPhkmtIcSm69W3Uv3/4v65IPJyCB8On3p64H/+tnIPvOt2egAAAAAAAAAAAACYhwBqAAAAAABwkIoEvQAAQB1yOX3w1Y4++7K5TYYraREnEVdi+OPnffbl3sYr/suQ1qxpwYwoJybpTuddWq+var9SMiU5Lal6aWY+7nyZenSn9U7F1gy0bW54mtUDhho7XtADweqR9CXn9Xq7rm/j3/yFDElf0uvVs+aoAFfRnegB0AMAAAAA6pJISDMzc7fXrJEOOyy49QAAgKbZufJ5bTlTcgwpkb9m6Fh8YXism39TqJ7ToUqF0PrjDKa9+RxD2nKed9/QnsZ+D2ieP39AWrtPuueQCjsZNZyHlv/cQSVr93nzITxqrX8t9aX+QOfxQ4g3XiANr154v+lKW2+QDhuXfnZc+XFO3iu9cY/3/O6UOBYQPhxetfbASJ/0fG/5cV72hHT6CD0AAAAAAAAAAAAASCKAGgAAAAAAHNTMoBcAAKjdB18xMy+AWvJO+m3Vy8alTjL+7MukD74q26IZUcnh5oB2651aph5Jc6HArVYYPrxb79ThJuHDQVlsDxhF32tFD4TDZeYZ+ro2tOlv/kKGpK9rgy4zzwhoBaAHQA8AAAAAAAAA3c12bG07ZmJeOGAsJ1ll3jAu915y3C6xrxa+N+yzXG8en2NI29ZLdsjOt+o2E3EvdHJvnzQ4U3of/8LT2YiUK1OvnCFNxr39ypV0cMabZ+MF3rwIXj31T8Uq1z8dof6dyO+Be1dJS1NS1Fm4z0DaO+b/21rpvpWlx7lvpXdR+rjt7V8s6njj37uKHggjP4R43cj87X74cK0XjBja4+1vFv3gQPhw+NEDAAAAAAAAAAAAQBMRQA0AAAAAAA5ykaAXAACoTSaX0bdPmn82RysDqGfnkCTDO+HQ9+0X27o8uUQxk6eRdjtcg9rtfFDrxz+j/e502+ZdZvRq98Df6XBzadvmRGmN9kDxW16G6jt+0APhcJn+RJrp0dunfyC35c8AcwwZ+nrvm3RZ4uVtmxOl0QOgBwAAAADUJJeTIgWv38aLUsJMrlMLAEAnskxL23/aq41/ktHwasmRNNbjhUKXe+/Hzd/hv1c0kJYSOWkmIo3nf0SoFEBtyBt/rEcaTHlXu183Im2/rnz4NVrPD58dXu3d7slJmpHGEnP7+AHEvmxEUk6KFGzLGd52fz/D9R5YWNrBmfz48ubbeAFhlEFrdv1nH0P9O0ZxDxjygqJHe6Rs/p97/vFe8o7xN5zg/fqkvXPj3LfS2x6zJblz+/vPD34Atf8UQQ+Ekx9C7PdEveHDPn//Led5z/2ED3cOegAAAAAAAAAAAABoAgKoAQAAAABAFyA9FAA6RCwS0523r9f6M+7U/p4GA6hd76RgR1qYSFv5YbNB1MtS0p0/PVKxv1tZ7+xoksO1VLf0f1QveuJDqtYF9QYNlx7D0C2Hf1SHx9YsciQ0Sz094Cu3Vy09Qg+Ey2V6vVJjUb1v31Vtm/MLyzfpssHXtm0+VEYPgB4AAAAAUFUmMz+EOpGYf3/xbQAA0DGSTlQ7rjX0xgtd3XrkXNhoqfBYnx9EPVgQSOp/H4tXDqD2Q2yzphdEffZjhBEGrTh81lcYRFwcQOwrDCIuDiD2FfZSYQCxjxDaYFF/lOuBwiDq3uzccd5XHETtB1AXPwf4j5uOzg+g9tED4eSHEL/5fOmS3fWHD/v8x125XvreddS4k9ADAAAAAAAAAAAAwCIQQA0AAAAAALqEGfQCAAC1O/y0c7T761JfpvEAain/vc4BXHnz7v6adPgLTqp3djTRhJPSRSNfku3FiVfUjLcXbDm6aORLmnBSTRgNzVBPD1RTS4/QA+Ey4aR05cQv2zrnlRO/pP4hQg+AHgAAAACwKIYhJZNBrwIAADRqyZKyd5UKnZ27s87t1cZDIGxD2nT+wvBZXyInmVXqlo1Iaat0AHEh010YYusbXu2tww7Z+XcHO+qPaj1QjR9Efd1JpQOoa0UPAAAAAAAAAAAAAAAOGgRQAwAAAACALkIINQB0kle8QnccFVVvps4Tft2FB/x6g6gNV+rNSHccaUknnFDH5GimCSels5+8XPdkn2jrvPdkn9DZT15O+GQI0APdjfqDHgA9AAAAAGBRDEM69FApHg96JQAAoEETL1iljRe4uneVtDQlRQuuWVouTNSQ937veFyayQfPzkS824ZbPoe6cLyo48137ypp4wXSBD9OBMJypc27SwcNu5Ke75Ucw/t1pXBZp8Inxtz84x3DG6/UxwrM/DosznlrK+qPaj0w2iNlzfnH+wX7GdLDy8r3iP/8kDW98eiBzjAR956f71ojbTlP2rm2sXF2rvUef9canu87DT0AAAAAAAAAAAAANIAAagAAAAAA0GXKnGoAAAijnSv3actrcjIlrZiSnl9SQ450iQBqnynJcVX+rOI8Iz+faUhbXutIR2c11N9f5+qxWBP2tM5+8NNtD5303ZN9Qmc/82ndevynlbR6A1lDt6MHuhv1Bz0AegAAAABAzSYn59/u75dWrpSSSSkWC2ZNAABg0WzH1qZX7tVw/lpxhrxg6NEeKWOVfu/YD6D2+cGkaatgn/x7xsWPd/MDxGxvHv9t5eHV0qbzpR9dTQBpEIb2eN+3nOcFBUtzAcS5gg8H+PWr5wLXblEf5Exv3BXTc/U3XWnrDXPrQHtRf5TrAT+A2jeeD45N5Gof2w+g9vlB1IXPAfRA+Pjhw8OrvduO4fWHVF+d/PBhv6+GV3vj7rhGSqabu2Y0Fz0AAAAAAAAAAAAANCBsAdRhWw8AAAAAADgoEUINAB3Cdmxte/xHchJxaWZGuUj+QoaVXksuEUAdt+efUFxLELXrSrmIFMlJTiyqbeY92nDYW2UZVvkHoals19Y5t75V98z8IdB13DPzB53z2Cd0x9nfpf5tRg90N+oPegD0AAAAAIC6HTgw9+sVK7wvAADQ0SzT0ubjLtTue66YDQc0JPVk578H7CsOoPaV3LdCEHVPdv7byaYrbd5NAHWQCkNobWNhALHPDyKuRXEAsa8wiNgifDYUqD+Ke6A4gNpXGChdTXEAta8wiJoeCJ/i8GFfYQjxYePVxykOH/YRQhx+tfRALegBAAAAAAAAAAAAdJWwBT4bhuQ4Qa8CAAAAAAB0gRKnHgAAwsgyLW0/f7vWLT9JM1FD4/H8Qbzcib0lAqgH0tLgjPe9UC3jjMelmai0ru8YbV9/OaGDbWa7th6ZfiroZUiSHpl+SrZrB72MrkMPdDfqD3oA9AAAAAAAAAAASRp6zXu19ZY+mfn3d2ciXvigWfR+b7kA6koMd2Ferel6489E5m4TQBoOQ3ukK34h7SsTQOxzVf7jALP7lAkg9uVMb54rfkHtw6Ke+ldTrUeofzj5PTCaKB1A7RuPV+4Rybs4QaXA6qzpzUMPhEu58GGfH0J881GVx7l3ZenwYZ8fQjxRR6g52qPWHri7zP2+/34BPQAAAAAAAAAAAIAuQgA1AAAAAADoYoRQA0AHScaTess579V0dG5buZe4i7cPpKVEzvt1IrcwiLqWcaajht5y0kVKRpfUvmg0RcyM6cunfFARIxLoOiJGRF8+5YOKmbFA19GN6IHuRv1BD4AeAAAAAAAAACBJWrNGQ0e8Vlt/bi0IDfWDqBsJoPYVBlEXBluPx72QUgKow2MiLv3//0jK1XheXIXrUtcUVJwzvPkIoAyHeupfqca1Hiqof/hMxKWrXiz15qrvOxMpH1SdNaWpGt726c1589ED4VAtfNjnGNJnXy7dt7L0/fetlP5tbfnwYR8hxOFTTw/84JTKPfC1M+kBAAAAAAAAAAAAdImwBVBLBFADAAAAAIC2IoQaADrIzvt36oM3fViD8UFFnfyJgmVe53aNuZMFCwOofYVB1LWME3WkwUi/PvjAV7TzmZsW/5tB3TYd/qf69rqPBRY+GTEi+va6j2nT4X8ayPygB7od9Qc9AHoAAAAAAAAAgCTpr/5KSvSUvMt0Gw+g9hnu/ABqhM9EXDrnbV4gZD2h48W71VpmP5x8eLU3LwGUwaL+KAyfLXUh+lLS+SBqP5TclXc7HaneC/7njgihDYdaw4d9jiH95ATpt6u8mvtfv13lba8WPuyj/uFBDwAAAAAAAAAAAAANCGMAtcuHtAAAAAAAQHsRQg0AHcJ2bG27e5sc15GZSChplj6puJBrSD3ZuQBq05Ve8/DcCcOJnHd/uQDqQknFZcZiclxH2564XrZrL+J3g0b54ZOWrLbOa8kidDIk6IHuRv1BDyCoIGoCqAEAAAAAAIDw2HlUSlvOTSvuGDUFjzbDQFqK29KW86Sda9szJ0orDCD21RtE7H/Vwg8g9hFEHCzqj1Lhs9WCqP2az0SktCXlTO/7TB0B1D5CaINVb/iw5H0uzDalG06Ubj9c2tvnfb/hRG97rQHEEvUPg0Z6wKnSA7V8dtBHDwAAAAAHmQMHgl4BAAAAAADtQQA1AAAAAACAJEKoAaBjWKal7edv17rV6+S4jiaidtXXug1Jqah30pjpSv98g/TtH3nfTdfbnorOP2Gw5DiGNBF15LiO1iVP0Pb1l8sy2ht+iTl/fsjZOrn/mLbOeXL/MfrzQ85u65wojx7obtQf9AD8IGqzTf+kN2USQA0AAAAAAACExM77d2rLz/+3nGS/ZBhVg0eboTCA1DEIog6SbUivfmvp4Ml6gohrVRxA7Bte7a3DDuH5eQcz6g/bkDadX7oHan0+yFpzX9UUB1D7hld766AH2qtS/WvhSrrtSOk/j/G+N3rIoP7BoQcAAAAAAAAAAACABhBADQAAAAAAMIsQagDoIMl4Ut/482/Idm1lnZxkmBUDpP0TDMfj0qZhaWiPd3toj3d7PD5/v5JjSJJhKOvasl1H33jxh5WMLmnC7waNmMhOauNdf6+9mVENRvrbMudgpF97M6PaeNffayI72ZY5UR490N38+j8x86yMqpcQaA5Dhp6YeZb6hwQ9AF+vldBAm34mG4guUa+VaMtcAAAAAAAAAMqzHVvb7t4mx3WkeFwyvY/9FAaPOobkVnn5OG5Xvt81vHGk0gGkjiFtW0/wYFAqfkagg+dCbah/d7NcafNu78LzpcTzx+tqzwPVjt/+4+MlAqglb/7Nu731oH2q1d+VtL9HmomUH8OV9GSycvjwTMQbp9w+1D849AAAAAAAAAAAAABQJwKoAQAAAAAA5qnwUWMAQNhMpCd02b9dpogZUdSMKmNnvBO/KpxYYsg7MXj7OuklT3kB1DvXercH0l4QdaWXqf0Ty2KmpYhh6bLhT2rHqZ8kiDoAE9lJbbz7Ixo+8KAkqcfyUsTHcgdaNudgpH92nuGJB7Txzg9R/wDRA93Nr/9vxn6n8dzUbACxW/EovjhG/r/x7KR+M/pb6h8wegC+nSM3a8t9n1XCjGkw0t/y54GEGdOW331GchwNrT6nZXMBAAAAaCLH8b4AAMBBxTItbT9/uzZes1HDI8NSbi4dNGrPve/rSpJR+mLEfqj0TGTuosWFXGP+ONESgdXrRqTt1xE8GATLlW78rnTO26Th1Qvvd5p83pxjlA66XDfirYMeaC/qD2nuAvRbzptfc1fS870F28o8D1TjPw+4hjfeiun5oeOmK229YW4daK9K9R/tkbLm3PN78UUkalH488Foj7Q0Rf3Dhh4AAAAAAAAAAAAAakQANQAAAAAAwAKEUANAh7AdW5uu26ThkWEZMjSQGNBzU895d5YJonYNqTfjnVDiGNL7zpOuXyvdeIx3O5GTMqY0FaswseuFWw5kLRnZlIZTw9r0/zbrR2OvlSWzFb9VlGDL0abBn2k4unfe9h5JMmIaMzJNn3PQjaknbUuant02PE39g0IPdDe//r+JjWi8oNb+25+teMvRmB3fG308O6nfPHcX9Q8IPQDfzvij2pK8TU6+Lu16HnAkbdn1f6WJ/9RQ+uimzwUAAACgxZJJafVq6bDDpGOPDXo1AABgEZLxpHZcsEMbLxmYDaG180GhblEQYXEAqR9ALc19LwyiLgyg9m/7AaR+2Oy6EWnHNVIy3eTfGGqWTEs3f2dhEHGzA4gLxy0MIl434s1PDwSD+kNaGELrB1DnCt6+q3RBgnKKnwdy5vwgasJnw6FU/f3wYV8jIcTFF6jImvNDiKl/eNADAAAAAAAAAAAAQBUEUAMAAAAAAJREahgAdAjLtLT51M0yDVOO62gsNTZ/h7mkyHmmo94JIpJ30skvjp07+XAm4t1fizEzLUeuTBnanFpL8GSbWTK1ObVWZoki97gRDbg1FrJGA25UPe7Ca1VQ/+DQA93NkqmTckvnhQ/7DBmlDv+LYuTHLTZuZHRSbin1DwA9AGlhALWvx41o0K10VZH6DbqxBc8DjlxtSd6mnfFHmzoXAAAAgDZwHGlyUvr976Xdu4NeDQAAWKTkzb/Sjmu8MFg/gLpUAK2ruWDqwgBqXyLnbZcWBo/6nPz4tkEAdZj4QcTrRrzbrQog9vnjE0AcDtQfkhcCu/UGL2S6OIDaV/g8UE255wE/iNogfDZUCutfGD7sGHM1H4/PfWasmsLwYdeY+3vvhxBT//ChBwAAAAAAAAAAAIAyCKAGAAAAAAAoi+QwAOggQy8c0hV/coVGU6PKOAtDKEtxDWmsxAklMxFve60nm2XkatRM64qJszSUPrrOlaMZhtJHa+vEKxaEEDtyNWXkyjyqMVNGbkHApSlDWydeQf0DRA90L1uO7ouMasBpbth4vQacqO6LjMqWE+g6uhE9AFuOtvXsWXBs9jUzjLxcCLnkPeds69lDDwAAAACd7JlnvC8AANC5Xvc6JdPS534qjSYqB9C6kmL2wgBqXyLn3V/pNCfH8Ob53E8Jnw2TZFq6/vtSrMa3CY0KX7WI5bz56IFwoP6QpHMfleK50gHUPv/4XrEHygRQ+3KmN8+5XKc0VM59VDpkcn74sDQ/fHw8LmWsyuPY5vzwYb8XCkOID5mk/mFUaw9UOkZIUtaiBwAAAAAAAAAAAHCQIIAaAAAAAACgIkKoAaCDTKQn9O3hb8spFfrnquwZYcVB1PUGUPscufp27x5NGLUFYKP5ikOIHbnaZ84oV/F0wPrl8uP6QZeED4cHPdCdLJnaPn6uXpo7ZEEIsSu3ydX3n1LmjzrgRPXS3CHaPn6uLP4Z0Xb0APweWJdbvuC+GcPWmJFuWh+4ksaMtGYMe8F963LL6QEAAADgYPDcc0GvAAAALNKT/dIrN1cPFZS894cnYqXvm4gtvKBxKTnTm+/J/vrWidaZiEsb/qeUqaF+UvmA2VpfW85EvPkm4jU+AC1F/TERl855m/TYYG1h4pV6oFofGPLmOedt9EBYTMSljRdII/1eOHzxBSkKQ4ino17QdCm2ORdS7ZYII3cMb/yRfm8+6h8e9fRAOlK5B6bzzyX0AAAAANCFCMECAAAAABxMzBCe88i/vQEAAAAAQMjUeBoKACBotmPrTT98k2557BblnNz8O2t47dkPok5EpBmr/gBqyQulvSX6jN7U+xP95ImzCR8MyJAGpMl1evfqu7Qvkm56+LDPDyFemYtr68hpGjowIGl/S+ZCfeiB7pSUtGP0DG08/Ff6TWKfxq1sTScEN8rN/9+QNGBH9dKZZdrx5BlKOpMtmhHV0AMo7IHh+Jgkaca0NWZkWxJEPmakNehGlXC8M8/XpQfpAQAAAKBTGYaUTM7dTqeDWwsAAFicU0/Vk/3S+ndI+3tqf9hUPoQ6WXC94YnY3PZa7O/x5t39NenwA7U/Ds3nh88Or67vca7mh9XW+9ry8Gpv3pu/4wVSIhjUH8U9UGstG+0B/3H0QDj44cPDq73apKKS4S78LJgreYVzvaDpmCTLmbu/WgC15I2bikqJnDffxgukHddQ/6DV3QOqoQdEDwAAAAAAAAAAAKCDmWb4Ap/Dth4AAAAAAAARQg0AHeW5qeeUsTPzN9bx2rNrSKlFHvkzhqPnIjOS7dQ3OZrq3IkVSqwyWxY+7MvJVcIxde7ECsmxWzoX6kMPdKekbWrHYy/RxiN+o1t7n9eU2dqauJJ6HUsvTS3TjsdfoqRjSqIPgkQPoLAHftOzX2Nm8wOofa6kMTOrQVf0AAAAANDpij/EnEgEsw4AALBoTz4yPBtA7aq+iw8XBlHXG0Dt5kMsCaIOXnH4rFPnBaj9MNl6X1t2DMl0CaENGvUHPdDdisOHR3ukrJnPGS4TQmyUCCEuDh8uxXC9cbOmN8/SFCHEYdBID0je/eV6oHC/QvQAAAAAAAAAAAAAOgIB1AAAAAAAADUzg14AAKB2pmHKUMGZIgG89mxIMus5kxlNN2Fmdc4xv9QfYtNtme8PsWmdc8wvNWFm2zIfqqMHulvSieotoy9QxnDaMl/GcPSW0Rco6UTbMh+qowfg98Ck2epLEXg/bk6aOXoAAAAAOJhEo1IyGfQqAABAAzK5jE5/e2MB1L6pmPRcX30B1D7X8Obd3yOd/nYpw6eO2s42pFe/tfHwWV+jry378w2v9tZh89GBtqL+oAe6m21Im85fGD7sK1cOV3M1z1hS2qoeQF08nh9C7Mqbf9P51D8IjfaAVLkHygaRF/yaHgAAAAAAAAAAAEBohS3wOWzrAQAAAAAAKMDpYADQISzT0ofP/rCWJpZ6QdQBBVAvtWP68N61siqetoJW8cOH706Mt60FXEl3J8YJIQ4JegA7k0/pvWvuUdZoTwdkDVfvXXOPdiafast8qM7vgVybeiBHD4ROM3vAUOWTkSV6AAAAADioJBLS6tWSweu7AAB0olgkpot3Nx5A7VtMYKAfRH3xbinWnmsloohfvkbDZxfLn5efKINB/UEPdC/LlTbvlgx3YfiwVP2jZP79jlnf/j4/hNjIr8PivOm2owcAAAAAAAAAAACAImH7TDQB1AAAAAAAIOQiQS8AAFC7oRcOaTo7rYt3vlW5AFKoLVf65/hfaOj4U9s+N6QJd0bn5L6hu932hQ/7XEl394zrnFPu0M2Ry5Q0Em1eASR6ANJO515dmhvWqDJtnXc0ktGlRw5LkWM1ZJ7c1rkxn98DY8p6F6WQ29LjgRdQbGgskqUHQqLWHvA/OlFLf1Qbhx4AAAAAOtBDD0lOQSrk8uXSC14gRXhrEACATnfWU1JfVpqMBbeGvqy3DrSf5Uo7r5ZOerd0IN74ON6rwo3ry3jrIHyyvag/6AGc+6h0yKQ0smT+9lovUOGq9vq7+R0Lh82a3vznPlrritFs9AAAAAAAAAAAAACQRwA1AAAAAABA3TjTHAA6yER6Qlfd/R31pxyNxWs7caRZDFfqT0tX9dynP1/zJ0qaPe2bHLJdR+c++XHd7Y4EED/ucSXd7Y7oXONf9evDPy7LMANaSXeiB7Bzcpcu3ftjjSoVSAj5qFK61PmxtHyFhpac0eYVQJrrgTHNzG5rZRC1Hz7sG9MMPRCwWnvAr523rVp3GFXH8dEDAAAAQAc5cEAaHZ27nUgQQA0AwEHAdmxtWy/1Z7xX/qYCCKLuy3jzb1svbfg9AaTtZhvSO18v9WalVFTKNfh23WLKFnG8+d/5eulHhNC2FfUHPdDdbEPadL400i8NpKXxfBB5reHDvnpKVhxCPJD25t90PvUPAj0AAAAAAAAAAAAA5BFADQAAAAAA0BCSAwGgQ9iOrU3XbdLwI79SIicNpr1g6HYwXG++RE4annxIm579imzXac/kmDXqTLUoZrR2rlyNOlOBrqGb0QPdy3YdfXr0eo06k4GGkI86k/r06PU8BwTA74GxEn//CkOCm6nUuGPOFD0QkGo9YMz+uvGeqGUcegAAAAAAAAAIjmVa2n6dtG5ESma8QOh6Ga5kuo2919yX8eZdNyJtv47QwSBYrrR5txRxpeXTXhhsO0Wc/Lz5ddAD7UX9QQ90N7/+put9hmsgXX/4cCNcw5tnIP/ZMZP6B4YeAAAAAAAAAAAAAEQANQAAAAAAwCIQQg0AHcIyLW0+dbPMqWlJalsQdWEAtSSZ6bQ2979KlsFTSLsdFVkR9BIkhWcd3Sgsf/ZhWUe3GTB7Ao4gz59UaPYEvIrutdxaoqisBdtbFU5fatyoLC23lrRkPlRXrgekuQDpSgHUhqQeRStGVFcbhx4AAAAAAAAAgpVMSzuuaSyI2nA1/0J0dby8XBhAveMabx0IxtAeaesNXgjskgaCyBdjScabd+sN3jrQftQf9EB38+tv+s/h7Tq3Oj+PSf0DRw8AAAAAAAAAAACgqxFADQAAAAAAsCgkiKIt9u7dqxtuuEFbt27Vpz71KX3mM5/RlVdeqV/96lfKZrNBLw/oGEOpI7X1J+7sSSSJnNTb4r9CvdmCAGpX2voTV0PPE0AbBGM2FrK719DNwvDnH4Y1dKsw/NmHYQ3dyjJM/WD1Fp2dOHFeCLFbRwS1UfBVC1fzg6ijsnR24kT9YPUWLkYRgHI9UKhaAPWg0atBs0+DRm/VIOpS6AEAAAAAAAAgHBoJoi4MoJ7dptqCqAmgDp+hPdKmYWki3voLV/sM15tv0zDBk0Gj/qAHuptf//F46ef3ZvN/Xhin/qFBDwAAAAAAAAAAAKArEUANAAAAAACwaKRGoaWuueYanX322TrkkEP0Z3/2Z3rve9+rj3zkI/rgBz+oSy+9VC972cu0fPlyXXrppXrggQeCXq4kyXVdPfDAA/r+97+vv/mbv9GrXvUqJZNJGYYx7+viiy9uynw333zzgrEX8zUyMtKUdSGkfvhDDf3e0NZ/N2S60kxESkVbdyKJIW/8mUg+gPrfpaE9hnT77S2aEZWMOdOBR78a+XUgGPRAd6P+SJo9uvbQ982GENcbQF3pdjl+ELUfPnztoe9T0uypfdFoquIeqJUfQJ0wYpKkhBGrGkRdjB4AAAAAAAAAwqUwiLo/I1kVXjCuFE5YLYjacr3xCaAOl51rpe3rpIF07WHii+H30EDam3fn2tbOh8qoP+iB7lZYf6k99Zeof5jQAwAAAAAAAAAAAOg6BFADAAAAAAA0BSHUaImnnnpK55xzji688ELddtttciu8gHbgwAFdeeWVetGLXqTLL7+84r6tct111+nv/u7v9OpXv1pLly7ViSeeqDe/+c363Oc+p1tuuUUHDhxo+5qAkn7zG0nS0O8NbbpHGo97m1t1Iok/7nhc2nRPPoBakh5+uDUToizLMPX3Szdo0OyTGVAMrSlDg2af/n7pBlkGP0K0Gz3Q3ag/fH4I8YnRQxsOoK62vZgr6cTooYQPh0Q9QdSGFgZQ+/wg6r6i7aUQQA0AAAAAAACEyKpVs79MpqVvXC/lTO+13EZfD670OFfe+N+4ngDqsNi5VtpynuQYUiLn1cVt8dtHruHNk8h58245jwDKoFB/0APdrVT9nRbX36H+oUIPAAAAAAAAAAAAoOsQQA0AAAAAANA0kaAXgIPPAw88oHPOOUfPPPNMXY/LZDL66Ec/qvvvv1//+q//KsuqHKjWTJs3b9b4+Hjb5gMa9tBDkqSdJ7ra/mJpIO0FRLfqZWr/ROWBtLT9xdJZT7leEPUzz0hjYy2aFeUM6Tip9yK9dfJfNan2n+Hdq5i+2XuRhnLHUf+A0APdjfrDd2N6WM/nJhSTpYzssvsZMvIBIeV/UrBkyKmyT0yWns9N6Ma9t2sovm4RK0ezJCVd2/M2vTH3Td2ae1hZOSX361NMEZlKuBHJXbhPQhH9Vewl+nb2do25qZJjRGXq7MgxurbnbUpOpKUAjj8AAAAAGpAq/TM+AAA4CJxzjvSDH0iSJuLSZRsky5GijpQ1SweRukblCxuXCy81XG9cy/Hm2XENQdRBsw1p2/q5sElXUio6FxjeKkZ+nkTO+7WTX8eG30sW59W1DfUHPdDdqD/oAQAAAABNR2gWAAAAACDsCKAGAAAAAABoKkKo0VT79u3Ta17zmpIB1Keffrre8IY36Oijj1YqldIDDzyg733ve3r66afn7ff9739fq1at0he+8IU2rTp8jj32WC1ZsqShx0aj0SavBqEyOamdJ7ra8qeuHMM7sSNjSlOx1kznGlJvxpvHMaQtfypJrob+MCONjrZmUlTmTioms+UnDxUzJMVkSlOT0jS1DxQ90N2of9fb6d6nLe4NcuVqmXq0X6mSQdSGpEHFNaF0xV4xZGhQMY1ppuR+MVlaph65rqMtkz+QpiY1ZJzUrN8OFiEp6Vr3Ar1RV+tWPbYgiHpQCb1PL9XXtEsqE1ItSWdmlusVxgZdqh9rTDPz7ovK1Nk6UtfaFyg5PiMV3Q8AAAAAAAAgAPv2SfICqDdeIA2vlkxJgynp+b7SD3ElqUwQtWuUf8/ByI9ryptn4wUEUQfNcqXt13m1uHu1NNrjhY8b+StM1/r+UT3vNRnyxs+a3nxLU9KpI946CJ5sL+oPeqC7UX/QAwAAAAAAAAAAAOgqBFADAAAAAAA0HSHUaKq//uu/1uOPPz5vW39/v6666ipt2LBhwf6f/vSn9elPf1of//jH523/4he/qNe+9rX60z/901Yut6rly5fr9NNP19KlS7Vjx462zfvNb35T55xzTtvmQ+fYeXRaW87xAqglaSYiTbc4d3w6KsWcoiDqX2Q11NppUYIfPBpXRINKlA0MbTYvyDShuCLa4t4gSQSQBoQe6G7UH34POPnKGzJKBlH7NUsoqglVTwJJKKpBaUFP+QHUhrwfPBy59EDIJI2ErtVFeqM7P4h6UAl903iDBtxYPoS6Mr+el7pzQdSzAdTGRUoaidb9JgAAAAAAAADUJ5vVxPIl2vi6SQ2vnts8GZPsCuddlQqirhRALXnjTcakZMa7TRB1OCTT0jeul9a/wwuErJdR8L3e95qyppQzvfnpgWBQf9AD3Y36gx4AAAAAAAAAAABAVyCAGgAAAAAAoCUa+AgyUNovfvELXXfddfO2xWIx/ed//mfJAGpJikaj+tjHPqYvfOELC+5773vfq1wu14qlljQwMKA//uM/1gc+8AH94Ac/0COPPKLnn39eP/vZz/SOd7yjbesAyrEdW9tOyc4LoB6LeycGt5JrePPM5C9b4BjStnWObNdp7cSYx3YdbXPvmg0e9QJDE2r12yeFQaaSF0C6zb2L+geAHuhu1B/FPeDzg6hjsvK359esWKTMPwGLe6o4gNpHD4RP0kjoWuMina0jFZU5G0Bdb1D4kHGSvmm8QYNKEEANAAAAAAAAhNhEwtDGP0/PC6CeiElTseqPdTX3/nK1AGrfVMwb3+cHUU/E61k1mmkiLl22QbIcKZp/ub7Wekpz+9Wzv983Uceb97IN9EBQqD/oge5G/UEPAAAAAAAAAAAA4KBHADUAAAAAAEDLRIJeAA4el19++YJtH/vYx3TGGWdUfez73vc+/eQnP9EvfvGL2W0PPfSQvve97+mtb31rU9dZyu7du3XUUUfJCNuLkUABy7S0/bZV2viyp/Sbw9oTQO3zg6gHJb30SWn7L/plnbqkPZNDkmRJ2u6+VRtn/lXDzjOSpIRiGnQNjSlV84lB9fCCTHuUMOaCTNeZh2p74i9lEUjZdvRAd6P+KNUDPi+Iulejbkq9is6rWWFz9CiqmCxlZCulbMEA3g8Ufk9NK6ulxsIAaokeCKukenWtu1lvTl2lS2Iv1VDkRd4d0wnNXsGkHDMu9fZKkoZ0hpSL68rMb/S9nrcQQA0AAAB0sunp+bejRRcr4v0QAAA6ku3Y2vSiBzRc8BpvrQHUvsIgwVr54ycz3vfh1dKm86UfXS1ZnGPVVrbh/dkPr5ZMSYMpaV+vlKuzpvWWzZVX68GUNy89EAzqD3qgu1F/0AMAAAAAAAAAAAA46IXtM84EUAMAAAAAgIMMIdRoinvvvVe33nrrvG0rVqzQ3/7t39Y8xj/+4z/OC6GWpK9+9attCaE++uijWz4H0AzJI0/QW+55Sv9xdPsCqH2uIR2ISm+5R0quOEw65JD2LgBKStrh/I02jnxJw5nHJUkJxdXr2JpyM02fr9eIKWHGZ2+vix2hHavfo6TZ0/S5UBt6oLuVq/+ga2jMScltYhS1IUODZo8SxlxqBfUPXqke8BmSlqnEBSJsQ5KrHsUUkyVJiikiyVBKGe+Rpjm7e0JxJRRfOI7ogbBLSvqx+yFZxlw9Nb1Xetaq/MBlA9LA3M91QzpEG9xXzx8HAAAAQGcqDKLOX3xmVrz0v/0AAEC4WaalzZGXaHf2x3KM+gOoF6MwiNp0pc27CR0MgpX/s999qHcNwkwk/1ZAG9j5+RI5eiAo1B/0QHej/qAHAAAAAAAAAAAAcFAjgBoAAAAAAKDlSJVCU1x99dULtv3VX/2VYrHaz3Y8/fTTdfrpp8/b9utf/1qPPvrootcHHCx2/tGg3vs6yQ7o6G1b0nv/VNp5em/1ndESSbNHO1a/R+tiR0iSZtyMUm5Whpr7poohQyk3q5l8sDHBo+FBD3S34vpLUsKIabDJdSGAOrxK9UA1hQHUvpgs9ShW85GDHugMzQqOJoAaAAAA6AL9/UGvAAAANGjIeKG23iAdaGMAtW8q5s279QZpaE9758acoT1eDdKWNB5Xk98lLM+QN1/aogeCRP1BD3Q36g96AAAAAAAAAAAAAAelsAVQh209AAAAAAAATUKyFJripz/96YJtF1xwQd3jlHpMqbGBbmQ7tj61co9Ge6SgrpnoShrtkT517NOyXSegVcAPIF1tDWjcSbV0rnEnpdXWAMGjIUMPdLdGQogXg/Dh8Km1B0wZWmH0Lwig9sVk6TBzqcwqp6XSAwAAAABwkFmxQurlQoMAAHSsbFa/PkyaigYz/VRU+vVhwcyN0pw2nfPWrnlQH+oPeqC7UX+4bapNu+YBAAAA0GaDg0GvAAAAAACA8AU+G4bkkKUBAAAAAAAOTpGgF4DONzU1pbvuumvett7eXp122ml1j3X22Wcv2Hbrrbfqne98Z8PrAw4mTk9C7liwa3AlOfGYFI1KBtcyCMqNB3brWWdCUcNSxrXlNjma3BvPUMyw9KwzoRszezTU/5KmzoHFoQe6W1JR7Tj8f2nj01/Ub1IPacyZXrCPIaOmvjC08OIGY860Bk1DL+05TjvWvE9Ji2CqsCnsgeH04wvuN2Vo6yEX6wMj25V2MmXHGbR69dFVF2jLs9+WU6Jf1sWPoAc6mRVRlYxxybS8n+sAAAAAHFyiUSlS8DZgLCb193snES9ZEtiyAADA4n0w/f/02ZeXfn2/HQxJn3259+srbgxgAdDOtdKW86S4LcWzUirWvrnjWW/eLed5t4f2tG9ueKg/6IHuVlj/RFaabmP9E9Q/FAp7oCcrTbWpB1xJvfQAAAAAcPBxg3iVGQAAAACAAgRQAwAAAAAAtBUh1Fi0u+++W07Ri2hnnHGGIpH62+vMM89UNBpVNpud3XbnnXcueo3AwWJV3yrFZCkju6HHG66UsKUZS3IbfD0+JlOr+g+VjjtWMqzGBsGi7HzmJm35w1VyLUs96lE6d6Al87hy1WP1yLUsbdl3lbT6UA0d+sctmQv1oQcgSUlJb+m7QP8x/IkFIRNG/r/aQqi9J4TCfV1JB9y03nL8BUoe/uLmLRpNlZS045gvauNdf6/hiQdmt5uGqa0nf0BDh/6xPnDjD6VshefreEJD698sPXOottz7T3LcuZ/r1yVP0I7TPq1klHCyjvXcfmlvlX+XHXqo9ILj2rMeAAAAAO2TSEgHCl4zWrFCWrkyuPUAAICmyOQy+nb/w5KkxZzqZLmS3eD7xY4kU9K310uX3yTFOOeqrWxD2rZecgxpOtLe8FnJmy/mSL05bx0bfu/1E9qD+oMe6G6F9U9F2htALXnzxRyph/oHprAHZiJSKup9HrDRzwHWw3C9+WKOlKAHAAAAAAAAAAAA0AwEUAMAAAAAALSdGfQC0Pn27NmzYNtxxzUWYhaLxXT44YfP2/bwww8rl8s1NF6n+vGPf6zNmzfrxS9+sVatWqVYLKZly5bp+OOP1ytf+Ur9n//zf/STn/xEMzMzQS8VbWSZln5w4Q/0yqNeqUgDr10brjSYlgZnvO9GAyeARBzplcvW6wen/6MsAqgDsfOZm2ZDQmecjMZzky2dbzw3qRknI8d1tOXef9LOZ25q6Xyojh6Ab+czN+m99352XmiwNBdAXY9Sj3FcR++997PUPOSS0SXacdqntS55gqT5AdT1GDr0j7X15A/INLx/IhJADQAAAAAAAADhE4vEdOdVSzSQkup8K2BWX0ZaNeV9b4ghDaSkO79OAHUQLFfafp20bEoaTzQ+zmJO4RtPePNvv47gyXaj/qAHuptf/5WT0lhA9R9LePNT/2D4PbD6gDQe97YZqv9zgPX2gOHOPWY87s1PDwAAAAAAAAAAAGBRwhZALRFADQAAAAAAugIh1Fi0P/zhDwu2HXnkkQ2Pd8QRR8y7bdu2Hn/88YbH60Rf+MIX9K1vfUu//e1vtXfvXmWzWY2Ojuqhhx7SrbfeqiuuuEKvf/3rddRRR+lTn/qUxsfHg14y2iQZT+ri0y6RadUXAO0HUCfyee6JXGNB1KZp6uIj/4JAyoAUhw+PZQ/IVWvP5nHlaix7gBDikKAH4Nv5zE269J5Paix7QJJk5k/3aySA2lf4WH+8sewBXXrPJ6l5yPlB1KcPvLChAGqfH0R9+sALCaAGAAAAAAAAgLA6MBH4OVhBz9/tdrxQum9VsGu4b5W3DrQf9Qc90N3+7Xjp9yuDXcPvV3rrQDBuPFoaWSJFGzz/3Sj6Xq+o481/49ENDgAAAAAAAAAAAACE8cNHLldgBQAAAAAA3SES9ALQ+UZGRhZse8ELXtDweKUe++yzz+qYY45peMyD1bPPPquPfOQj+pd/+Rft2LFDZ511VtBLQovtvH+nPvgfH9SyJSu1f3xEmRouJVAcQO1L5KRBSWNxya3hdfqYLS0zE/rgXVeo979u11DuuEZ+C2iQLUfbeq+XY01pRjmNGekWRw/PceVqLDOhQTeuhCLa9uuvaMP0k7K4lkVb0QPw7Yw8pEt7fqExIz1vuzl7imC9nTG3vyEVhFh728cyE7r0jn+QUq/h2B9iSUk/0mmyHnxa0va5O3rGJSNT/oFT+6Ttc/sPSdqg02Q9+ONWLRVt9ZjUO115l1tukfR8W1YDAAAAoI1mZubfHhiQjjhCOu44admyYNYEAAAWLZPL6PRLHe1PND7GVEyaiUr2Is7l2p+QTn+79MTnpFiDAYhoTMqS3vP62t7jr2Sx7zO6hreOt/xW6rEXORhqRv1BD3S3jCm9/3VS1pRMV3Ia7QNXDScQm643//tfJ114Hz8HtJttSNvWSzKkwZQ01uP1Ra3HBH8305Ec07tdy/HAze8Yc7x5lV/Hht9LFufiAwAAAAAAAAAAoB4EUAMAAAAAAASKEGos2v79+xdsW7JkScPjlXrsvn37Gh6vU/X09GjFihVKJpOamprSvn37dODAgZL7Pv7443rlK1+p7373u7rooovavNLqvvzlL+srX/lKy+d5+OGHWz5HkGzH1ra7t8lxHRkyvCDqA3uVsco/pjiA2nSlcx+RbjzGOxGp1iDqmC0tc2IyXEeOHG2z79CGx6OyGj0jCXWzJG03X6Rzjvml7k5MtS182OdKGjPSOnUmoe2PvEiW82SbVwB6AJK0M/mULj3sLo1VChVuSOWOGjNmdGn8Z9LzezU0cViT50azlPyR4NisFKlw5m82Iz3+ePVx0Jl6npUOr3Lm//PPS9OPV94HAAAAQOc7cEAaG5N+9zvprLOkl70s6BUBAIAGxCIxnX+v9LWXLG6cxQRQS5IM6fx7CZ4MQo8tbb5L+tqZQa/EWwfhs+3VY0vvvEP6YgiuUf/OO6h/EOiB7hZzpM/9TLpkg5S1vM+FNRRI3uDPAUb+YwVR21sHPwe0n+VK26+TNl4gDa+Wkinp+b7aHuuXPWZLliPZrpSxag+ilrz5TEnrRrx1EEANAAAAAAAAAACAuhBADQAAAAAAEDhCqLFoU1NTC7b19PQ0PF6px05PTzc8XqdYvny5zjvvPJ133nk644wzdMwxx8g0zXn7PPjgg/qP//gPbd26Vffff/+8+7LZrC6++GIddthhOvvss9u59Kr27t2r++67L+hldDzLtLT9/O3aeM1GDY8My7AiWta7XPun95UMoi4VQP3PN0hDe6Sda6X3nldbEHXMlpbZMRn5flw3M6DtT7yEAOoA3LjkOf0hOt328GGfK+kP0WnduOQ5QmgDQg90t9kAaqvZAdS1GbMyuvSwuySJ+gMAAAAA0KkcR/r1r6UTT5SOPTbo1QAAgDplchldc0rQq/Bcc4r0RQIo2842pIeWB70Kz0PLvfUQQNle//dm6UdrpccGg1vDkWPeOhCML/zM+x5kEPX7fj23DrTXpt963ze/QSU/L1aNUfC93sO3a3gB1FdeP7cOtF8yLe24Rnrjm6Rbj6y9lq6keD6AWvK+xySla+wjQ9JEj3T2Y978yXRDywcAAAAQNgRtAQAAAADahQBqAAAAAACAUDCr7wJUls1mF2xLJBINj1cqhDqTCSZssR3WrFmjq666Sk899ZS++93v6qKLLtJxxx23IIBako4//ni9853v1L333qutW7cqHo/Puz+dTutNb3pTyWBwHByS8aR2XLBD61avkyQZsZiW9S5XzJ6/X6UAasn7/s83eNulfBB12ntcoVIB1Dsef6mSTrRVv0WUYcvVp1bu0biVDSz+25A0bmX1qZV7ZAcWg9y96IHu5tc/qABq35iVof4AAAAAAHQ6x5EeeCDoVQAAgAZNh+Ry82FZR7exDemONUGvwnPHGm89aB/bkDadL6UC/shGKuqtg/oH52//e+4zQe2WyHnzIziv+oMXJhyEuO3Nj3Axa/wIR/E59LWeU1/r+AAAAAA6UBgDwAAAAAAAB58w/vuTAGoAAAAAANClOCUMLWEs4kXAUo91D+IX8E444QSdcMIJdT3GMAy95z3v0dq1a3XeeefNCwIfGRnR5z//eX3kIx9p9lIREn4Q9cZrNmp4ZFiGZWlZLqL9yiljVQ+g9vm333ue5Bj5IGpJY3HJNfIB1DOGjIgrOY7WTS3RjvtPVNKebOdvF7NcrZwxFU0YyubTwhs6MtqSrPofZuS/oq6hlTOmNDqa34L2aU4PRGwpRw90oIX1r4WhuT4xJEVtKWs1ePwQ9e9EJ0zE9FhP+YofPxnN1xMHo1XjaR2+vPI/+1eOZaQpegAAAADoCkuWzP2afwsCANCRYpGY3jYsffXMoFcivW1YijlBr6L7xBzpzb8NRw+8+bf0QLtZrrRhj3TD8cGu4/lebx3WwftxrlB7sl9a/w4p08D7/s2Qsbz5d39NOvxAMGvoZn79p6LzPw9QK1eNPU75x01FqX/QJuLSxguke1dJS1PSaE9txwNDUjYiKSdFXClneLf9T35U6gn/s4RLU968Gy+QdlwjJdOL//0AAAAACNhBfL4eAAAAACAkCKAGAAAAAAAIFUKosWjRaHTBtlQq1fB4pR4bi8UaHu9g9id/8ie64oor9P73v3/e9s9//vP60Ic+JMsK6GwjtNxsEPW/btDww/8lw3a0LCftT0h92eoB1L5yQdRTUWlZSjLkSrmc1k0u0Y67j1QyN92O3x5KsCTtuP1IvfH0rG5dNqmsWT2EuPikMcv2esKxJdsqv1+pcQxJUcfQ2fuXaMedR8rKcSZZuy22B0xXOjQVUTJnaSJi65menByjtpPJ6IHglat/rcrVvx7UvzO9cn+fHutZ+PO675QDPdLERBtXhHYajM3o9LGeivscPupIM/QAAAAAcNBLJObfDuMHugEAQFWZXEbXnqS5BMmguNK1J0lf+CkhxO2WMUUPdLGMKX3k3MYvONssrrx1EEbffhlTOv3t0v782z+mq7rf910M/23q/T3eOp74HD3QTsX1N/LPBY0EUdfL8OcT9Q+SbUibzpeGV3u3DUk9WSld4WOixYeIbESyHckxF+5Xrjfc/Dz+WMOrvXX86GouSAAAAAAAAAAAAIAKwvh5ZQKoAQAAAABAlzOr7wJU1tvbu2Bbs0Oo+/r6Gh7vYPee97xHRx111Lxt+/fv1+233x7MgtA2ybS04zvTWvesKTmODFdanqo9gNo3tEfaesPciWKJnDeO/5L+uhFpxw5byXTLfiuoUTJn6do7j9PZ+5co6hizwcClFN/nB1BL3nfLLr9vqXH88Nlr7zxOyRwB90FptAcKA4j9cQ5NRWZ7gh7oDMX1r1W1+teC+gMAAAAAcJAp8d4OAAAIv1gkpot35z/sE9T5UK43/8W7CZ4MQswRPdDF/PoXhsG2m+F681P/YPg94HPbfL5u4Xz0QPuVqn+7DgWuqH8YWK60effcZ8BmItJEXGU//1Hu+aI4gFqaO76XYrrePDORudubdxNADQAAAAAAAAAAgAoIoAYAAAAAAAilSNALQOdbvnz5gm2Tk5MNj1fqsaXmgCcajerCCy/UP/3TP83bfuONN+qP/uiPAlrVfCtXrtRJJ53U8nkefvhhpdNdlJT8D/+g5AOPacddtjaeLw0fMneX6XrB0n9RJYDa5wdVbzlPKsw1XTci7bjGVdLOSE89JR1xRPPWj4b4IbRvPP0h3bpsUtn8WUSFb3kUBgpbriRn4clGpivJlmxr7jHlxiF8Nlwa6YHVBQHEheMoJe1L2MqYLj3QIcrVv5xe29Rg2ixb/2d6cuXPIsyj/gAAAAAAHGSWLpVisaBXAQAAGnTFLVFJWf3Ty4PJIDYk/e1/SVfcGMDkkDT3Z08PdKfC+geF+gcryGOAP98H6IHAUH/4n/O7dIM0Hp/bbrrzP/dX1wUL/IvYu94DCx9W+LGU8bi3zzevn1sHAAAAgA73ohcFvQIAAAAAwMHILHFV1KARQA0AAAAAACCJEGo0wSGHHLJg25NPPtnweE888URNc2DOOeecsyCE+vHHHw9oNQu9+93v1rvf/e6Wz3PyySfrvvvua/k8ofCLX0g7dkijo0rarnZcY2jjBa5uPUQazAdQD+2p72SjwiDqMUM6e0TacY2UTEsybGlsTHrBC6QVK1rwG0I9kpKufXSZ3hi9W7cmR5U1HElevQvDhwdzUS2dMfV4onQ4u+lKli0tcaMai2TnhRDPhg+7ps4+sFTXPnqqkgP82BAWdfVAxlLMNaUS2cFJ19Jpoz36r4EJeqCDlKu/I6nwbdnBXFQbn1ulmwdGy9ZfaVPTEUfjkdzs9sJxqH9nseXKKk4V7xuTYhXesHeWSEUXfCk5DjrCgtpFZqTEWOUHLRuU0ksqjwMAAACg84yPz78di0n9/VJPjxTh3/gAAHS0NWt01lOPqS8rTQZwXYm+rHTWU+2fF/Od9ZTogS5G/UEPdDfqj3L8IOoFAdT+B4HKKLyrMIi6ynXRAQAAABwMnntOWrUq6FUAAAAAAA4mphm+wOewrQcAAAAAACBAnGWORTv66KMXbHvssccaHq84PNmyLB1xxBENj9cNDj300AXb9u7dG8BK0BbZrPSRj0gHDki2LUlKZgyt2O9q6lhpypkLlK7X0B7p/AslmdKKUW/cuVRaV3r2Wen1r5esEmmmaKukpGvdl+qN7tW6VY8pLa8XvPOADA0qoW/G3qBPR3+px/Vs2XEsmfqm8UZd6v5YY5qRm48udyXFZOls40hdu/QiJc9KtP43hbrU3gO3aEqZsuMct+Q4/ZVxFD3QYcrV3wuQnqv/84dN6Wb9quI4/z+drffppxrTjJx8/R1JcerfUSbcGW1yr9Fm4zQNGSfN3eHYksYqPHKVdPxZs7d2uvdpm3uXthsXKGlQ905SsgecMUlTlR946GmSuXL2Jj0AAAAAHCSGh6XR0bnb/f3eFwAA6Hg7T+vRlqOl/oz3fs5UGwMo+zLevFvO8243+r40FmfnWq8G9EB3ov6gB7ob9YffA3FbGkhL4/H59zcjONpwS2dWD6S9eekBAAAAAAAAAAAAlEQANQAAAAAAQOiZQS8Ane/EE09csO2hhx5qaKxMJqMnnnhi3rZjjz1WkQh56ZX09fUt2JZKpQJYCdriZz+THnpImpmZ3XTJaxxddWb+hikZ/9DY0MY/aPaZ4aozpUv+R8GL6rmctG+fNzdCIWkkdK1xkVaqd952R66+abxhfghpBUPGSfqm8YbZ8FnfSvXqWuMiAihDzO+Bk7Sy6J7GekBFPXCSVtIDIdas+r9eJ1L/Djfhzmij+wPdqWe0xb1BO937Ghpnp3uftrg36E49o43uDzThzlR/EEKBHgAAAAAAAAC6g+3Y2vaC5+XkUwGTGS8Qsh36Mt58kuQY0rb1kl0qnRAtZef/7P0eWJKRrDadK2e53nwSPRAU6o/iHuB5oLtQfxT3QCLnBUMXcgzJrVQbV4raKv6IyPxdjLk5fANpbz5/DnoAAAAAOEgQxAUAAAAAaKaw/TszbOsBAAAAAAAIAUKosWjr16+Xac5vpV27dimXy9U91q5du5TNZudtO+200xa1vm6wd+/eBdtWrFgRwErQFt/6lnTgwOzNS17jaNtZRfs0EERdGEDt23ZWURB1Oi3t3l3fwGipT7k360kdWLD9fPfqusYptf+TOqBPuTc3ujS0yZ3u09qtkXnbHEl/5/68rnH+zv25nKJtuzWiO92nF7dAtBT1hx8+PKxnJXkXImgkhNgPH/YvSDCsZwkh7hD0AAAAAAAAANA9LNPS9j0na13BWwPtCKAsDJ6UpHUj0vbr2hd+izmW6/3Zrxvx3hMa6/EyJFudAWnIm2esx5uXHggG9UdhD/h4Huge1B+leqAwiNoPjnZVJojalXpzUm/W+14qiNo15jb74xUGUEv0AAAAAAAAAAAAAEowQnYFUwKoAQAAAAAASiKEGovW19en9evXz9s2NTWl3Q0E1d52220Ltr3yla9seG3d4v7771+wbeXKlQGsBC339NPSTTdJti2pTAC1z5TMGoOoSwVQ++YFUbuu9Oij0sREXctGa3zQ+ak+o/8ue7/hfLSmcSrt9xn9tz7o/LTutaE9bnIe0av17ZL3PaT9Ot75Qk3jHO98QQ9pf8n7Xq1v6ybnkQZXiFZqVv1P19epf4cqDh/21RtCXBw+7COEOPyq9cC/68GaxqEHAAAAAAAAgM6RnHG144beeeGDxReabLbC8deNSDuukZLpFk+KspJp6RvXS7YpZfPv87f6tDl//KzpzfuN6+mBoFB/JNPecbjweaBdPSDxPBC0UvWPtPgHgcLxqX/wSvVALCeZRQeCeUHU+e+JnGQ5Xri05cwFS/sPLQyg9pmuN76PHgAAAAAAAAAAAMACBFADAAAAAAB0DEKo0RSve93rFmy75ppr6h6n1GNKjY35brjhhgXb1q1bF8BK0HK33y6lUpKqBFD7agiiNisEUPvmBVFns9JTT9W0XLROtQBq3y49U/H+lHIV75cIog6rSgHEvoe0X/dopOI+27S7bACxjyDi8Km1/h/WjVX3eUSjFfeh/uFULnzY54cQ36vnKo4zrJGS4cNz9xNCHFa19MBHdZMerfJ3/Bd6mB4AAAAAAAAAOkk0qmSsfzZ8cCwmpWKtnTIV8+YhdDAcJuLSZRu8UNBoPkiyHRzDmy/iePNPxNszL+aj/pDmh9COx6TpFj8PTMe8eXgeCIfC+k9HpPFEa+cbT3jzUP/wKOwBR9JYj3ecNioEUcdzUsTNB03nvyKut10qHUBtuN64Yz3ePPQAAAAAAAAAAAAAFiCAGgAAAAAAoKMQQo2muOiiixZs+9a3vqVMJlPzGLt379Ydd9wxb9tLX/pSHX300Yte38Hs/vvv1/XXXz9vm2EYhHcfrG67Tcpkagug9lUIoq4lgNo3G0Rt29Ljj9c4OVqh1gBqX1ZOXdtLIYg6XGoJIPZl5JQNmX5I+zWu2s4MI4g4POqp/15NV6x/rccB6h8u1cKHfY5cXa/flw0hflSj+qHuKxs+7COEOHzq6YHb9HjFHvikfkkPAAAAAAAAAJ1k+XJp/34l09Ka8dYHUPtSMW8+QgeDZRvSpvOl4dWSIcmq/S3fprAcb97h1d467JCdR3iwo/4olExLR4+2PoDaNx3z5uN5IBySaen8+6QDbQqEPxD35qP+4ZFMS9+4XrJNKZv//F+pw7IrKWp7FxIoJepIcXthAHXheFnTm+cb19MDAAAAAAAAAAAAKEAANQAAAAAAQMchhBpNccopp+gVr3jFvG179+7V5z//+ZrH+NCHPrRg2zvf+c5Fr+1glk6nddlll8m27XnbX/7yl2v16tUBrQot9etf1xdA7SsRRF1PALVvNoj6iSfqXACapd4Aal9x0Gw9AdQ+gqjDoZ4AYl+2RBB1PQHEPoKIg0f9USl82C1xWqhbJoT4UY3qNj1eMny41DiEEIdHrQHUPleq0gO1oQcAAAAAAACAkDj5ZCmb1bvOk7ad3t6pt50uveu89s6J+SxX2rxbMl1pPCZNR9s7/3TUm9fMr8Pi3L22ov4o9L9eK331zPbO+dUzvXkRvO0vkra0+Tl5y3nevAiHibh02QYp4swFTJcLks5ac0HVxbKmlLbKB1hL3vgRx5tvok3B5wAAAAAAAAAAAAg5AqgBAAAAAAA6EiHUaJqPfOQjC7Z97GMf01133VX1sV/60pf0s5/9bN62Y445Rm9+85trmvuoo46SYRjzvm6++eaaHhukL37xi3rssccaeuyBAwe0ceNG/dd//deC+z71qU8tdmkIqUsOvav+AGpfQRB1IwHUvm1nSZecSgh1EBoNoPb5gbONBFD7CKIOViMBxL7CIOJGAoh9BBEHh/qjUviwI1ejSmlG2QX3FYcQ++HDpd5Sn1FWo0qVDKcmhDh49QZQ++rpgUroAQAAAAAAACAEXvxiveu89geP+r56JkHUQRvaI536jDQdC2b+6Zg3/9CeYObvdtQfkhcE/cVGPz+0SF88iyDqoG1/kXTJBi9YWPKC4VvJHz9refMSRB28ibi08QJpeLUXHr005dXJLTrP35Bk5OuXjiwMos6a3nbl9yuOCXANb9ylKe++4dXevARRAwAAAAAAAAAAdDkCqAEAAAAAADoWIdRomte+9rV6wxveMG9bOp3WH//xH+vf/u3fSj4mm83q8ssv15YtWxbc98///M+KRqMtWWtYfOtb39Jxxx2nN7/5zbr++us1M1M9zM22bf3whz/Uaaedph//+McL7r/ooov0yle+shXLRcDu/sPd2nZyanGDmJL5MS366L9tvau7nT8sbhDU5ffO04sKoPYtJoDa9xn9t37vPL3ocVCfcWe64QBiX1aO7tfzi+6DV+vbGnemFzUG6kP9YbuONrnXlA2gHlNKWTkaV3peELUjV45c2XJ1ix7Tv+tB3aLHZOe3uwUxxDPKalxpZeVorEIQ9Sb3Gtnu4p9PUJ9KPVALP4j6P/VoQwHUPnoAAAAAAAAACNa7vrMxsABqH0HUwfpfr5V+ckKwa/jJCYTQBoX6I8gAah9B1MEpDqCWJKfF53cXjk8QdfAKA6h96cjCPigMoC7czw+iLgygnn1MiSBqx5i/H0HUAAAAwEEmbKFhAAAAAIDwC9u/JQmgBgAAAAAAqEuk+i5A7b7xjW/ozjvv1JNPPjm7bWJiQhs2bNAZZ5yhN7zhDTr66KOVSqX04IMPavv27XrqqacWjPOe97xHf/Znf9a2de/atUuXXnpp2fsnJycXbLv++ut16qmnln3MGWecoW9+85tV587lcvr+97+v73//++rr69P69eu1bt06HXvssRocHFR/f7+mp6e1b98+3XXXXbrppptK/plJ0ite8Qp961vfqjonOtOpR50qOQrH5QMc6dToUUGvoqucaK5RE/Kjm+ZEc03QS+g6A2avjnOW6SHtD3opOk7LNGD2Br2MrkL9YRmmNus07XZvmBcOXRhA7cqVIUPjSkuSEpp/QRdX0rOaKjm+H0Dt7efOBlEPqkdmwWmmpgxtNk6TZYThB5LuUq4H6uFKelITi1oHPQAAAAAAAAAEZ3JmUl97cSboZUiSvnaG9JmfS0tyQa+ku6QsBR5C7vvqmdI//ofUYwe9ku5B/UEPdLeMKb3/te0NoC6cx8y/RZm1vHVceK8UC9FnmbqBbUibzp8fQD0TkcbzgdCm69WqVAC1Lx2Rco5kl3m713AlGd57y37N/fET+Z/7hld76/jR1ZLFOf0AAAAAAAAAAADdgwBqAAAAAACAjkcINZpq5cqV+vnPf65Xv/rVGhkZmXffrl27tGvXrqpjvOlNb9IXvvCFFq2wtMnJSQ0PD9f1mNHRUY2Ojpa9f3BwsO51TE1N6bbbbtNtt91W92M3bNig73znO0okEnU/Fp3D/dpKGe/YG2wQtSO5n+2R3jkW4CK6k6v3y+j7XPD1n3q/pLEAF9G9HtTFOr7vSj1kjge2huOcAT04dbHogfaj/hjSGinyKm1J3CRHrhdAbaRnA6i9t8sLgqhd1zu7tGJgsasZN6NxI5O/NTfObBC1G5cpQ6YMbZ05R0O5NaIHglHcA9W55c8unt2l9jPD6QEAAACgg2TCEU4JAACaa0liidaNSHcfGvRKpHUjBFAHoceWLrlT+upLgl6Jtw7CZ9urx5a+9P+kv94gKcjzOl1vHdS//fweePsGyQ2wBwx6IBAxR/rcT6VL/kLKmu0LoPb5QdTR/DoIoG4/y5U275Z2H+rVozCA2mfW8DZyuQBqn+EufJopDKI28+sggBoAAAAAAAAAAKCLEEANAAAAAABwUCCEGk33whe+ULfffrve/OY31xWmHI1G9fd///f66Ec/KtMMMmG1sxxyyCG6/PLLddlllwW9FLRDf7/cy/fK+AcFE0TsSO7lkpJRaXo6gAXAnX6HjJVfC67+e98hidoH6cHp/6njl39PD0Um2j73cbmkHtz3P0UPBIf6Y0iHSemX693JWzVmziibj4323y6fF0RtZBR1DRkVUgiycjRl5PKPWjhOVo7GjBktcxLaOvEKDaUPEz0QLL8HtiRvqyGIuoYPUrhuTfuZMrR14uX0AAAAAAAAABCgTC6jB1YEvQrPAyukjEkAZbvZhvTz44Jehefnx3nrIYCyvVbMSINpaSzAa9QPpr11IBiX3e19/+s3BLeGr18/tw6016bfed/fNqRAwugNV7ryR3PrQPsN7fG+X7phYQB1q43HvR745vVz6wAAAAAAAAAAAEAXIIAaAAAAAADgoEEINVriBS94gW655Rb98Ic/1Be/+EX96le/klvmhbwlS5bowgsv1N/93d9p7dq1bV5psK677jrdeOON+uUvf6ldu3bpwQcflONUP0Ozv79fZ511lt72trfpwgsvVCwWa8NqEQrLl0uPPCL3crU/iNoPoJakWExKp9s4OQqNP7VJA4dtb3v9x5/aJLnUPQzufObPdehhV2vatNs2Z69j6c5n/pweCAHqj3MzK7S6N6FnY6l5wdG+uSBqKWO4irimrBJnINtylTMcGfnHlBsnK2l1LqFzD6ygB0JiKL1Gyr5UW5b9ukoQteudBVxNlQ9dmDK0df9LNZRaI4keAAAAADpCJhP0CgAAQIv0ZKTpaNCr8NaB9rMNaaLNgZPlTMQJoW4325C2rZeyQVy0ukDW9Nax4ffUPygPLZf3Zl4Q5/m6+fkRmHsOkZyAzvF2DG9+QqgBAAAA4CBBaBcAAAAAoBoCqAEAAAAAAA4qhFCjZQzD0Jve9Ca96U1v0nPPPafbb79djzzyiCYmJhSJRLRixQq98IUv1JlnnrnoEOU//OEPi3r8OeecUzYku5WOOeYYHXPMMbrsssskSdPT03rggQf0xBNP6Omnn9aBAwc0MzOjeDyupUuXaunSpTrhhBN08sknyzQDPqMMwVizRpJ3MufrHpF+eozaE0TsePNNxKVkWl4I9cREGyZGsQkzq41H/EaHOgk9o5m21f9QJ6GNS/9DOx5/qZJOCM5q72J+Dww4Uc3IltOGHjAdacCJ0gMhQP3h98CIOa2kbWnMypXcr/An26zhSK4xL4jalqus4ZYNoC4cZ8C2NGJO0wMhMzSxVEq9WFvWDFcIonbLF9fnOKr0A4UpQ1uffrE3n/j5DwAAAAAAAAhSLBLThfdKX3tJ0CuRLrxXilW/xjaaLOZIbwxJD7yRHmg7y5WO3Sf9vxOCXcdUzFsHAdTB+OC50mdf7r27E8RfQVPe/JJ0xY0BLKDL+fX33/lt519DI/9F/YO1c6205TwpbksDaWm8jRenGEh78245z7s9tKd9cwMAAAAAAAAAACAABFADAAAAAAAcdAihRlusWrVKr3/964NeRuj19vbq1FNP1amnnhr0UhBWPT2aiEsbL5CGV0urp6WRPkmtfP3e9eYZXu3Nu+MaKRmNSj09LZwUpUwYGW1c/SsNxyfkSIobptJtOKUwbphyDGm4Z0Ibj9qlHSOvUNJd3MUD0JjiHoi2qQei9EAoUH8U90DKdGZDpEuZH0TthRFbMmYDqIv3KcXIzxN36IEwGsoeJz0f05aVu8oHUVf7OdEwyu5kytDWvWdoKHuExI9+AAAAQGfJ5aTCi1lGuaAQAAAHg0wuo+tOlvfibpDneLnSdSdLX/wZIcTtljFFD3SxjCl9/8WS4UpugPU3XG8dn/kP6t9uGVP69vq526YrOQ30QqM9ZBa8HfXt9dLlN9ED7VRcfyP/XFDvadaN1N/w58uj/sGwDWnb+rm/94n8NavrDaK2HMmu86LnA+m5+Zz8Ojb8ngsSAAAAAAAAAAAAHLQIoAYAAAAAADgoEUINAB1kIjU2G0DtShrtkUyppRGkZn6epamCIOrfOEouWdLCWVHMlqNNg7dqODomR9KYmVFWbsXw0WYw5AWXjlkZDTpxDSfGtOmw3+hHY6+VpTrPRsKi0APdjfqjXA/UI2u4suXW/XMDPRBuQzpJOtCj9yRv1T4zrV43ooRrFexR5cMeRSHUM4ataSOn5U5cWyfO1pBxtMSPfQAAAEDnsW0pUvA2YKzoYkLxOtOJAABAKMQiMd35dWn9O6Tne9RQCLEfIuk2EFopSXKlFSnpzq8TPBmEmKNF94DyD2v4PSZ6IDCF9d/X03gQ9WLqb7jScuofmMIe2J+/gGi9QdRRW0rY0owlZa3q+/sKA6iX0QOBKFX/eoOoG6l/cQA19Q+O5Urbr9Ps5wel+oOo4zkp6khZU0rX+AnywgBqSVo34q2DAGoAAAAAAAAAAICDFAHUAAAAAAAABy1CqAGgQ9iOrU1H7NJwbC6AOpvPfqz3hLJa+SeQZc35QdSbXrlXP7IMwifbyJKlzemTdGf0lxoz08rKzf/XWm7+/1lJY2Zay5yENqdPkmVFWzwzitED3Y36o1k9UO95wPRAZzjXPkKHOL0aMVMaNzKSYkVB1JXMD6D2Hi8d4vTqXPsIyaojfQAAAABAeFiWZBa8flv4YXDDkPr7278mAADQFIcfkHZ/rbEQ4sIQyXpDKyXNhg/v/pq3DgRjMT2ggt0bCiKmBwJXWP9GgqgXU38/gJr6B6uwB+oNovYDiKW577UEERcHUNMDwSlV/1qf0xupf6kAauofrGRa2nFNY0HUfgC1lP+eqx5EXSqAesc13joAAAAAAAAAAABwEApbAHXY1gMAAAAAANDhCKEGgA5hmZY2P7VKdx2zT/sT7mwAta/ZQdRm0ZlJfhD18pS0+cF+Wa85tHmToSbnugNa7d6tZ5VqS/isrzCAdLU1oHMH10tGok2zoxA90N2oP+gBlDLhzmij+wONKK24LKXlB0nHFZWl6ukjpiRTM8pqXF4AdVyWRqJpbVxxk3YYb1KSegMAAACdJxqVZmbmbvf1ed8NQ1q+XFqyJJh1AQCApmgkhLg4RFKqM4ia8OFQaTSIuni3uoKI6YHQaDSIejH1J4A6XBoJoi4MIPbVEkRMAHX4NBJE3Uj9CaAOr0aCqAsDqH2zQdRleoAAagAAAAAAAAAAgC4TtsBnw5Acp/p+AAAAAAAAqBkh1ADQQc6dXKlDUg9opDe34L5mBlD745UKoj5k2tS5z/dLCcII28l2HW1Kf18jmlTSjWtMM9Uf1ESupAHFNWJMapOxUz+Kv02WYVZ9HJqHHuhu1B/0AEqZcGe0MX2thvWsZtys0po7c3xcafWrzBnGRWaU07jmzhROy9aMsho2ntVG41rtiG8iiBoAAADoNPH4/A9d9/RIyaQXPh2PE0INAEAnW7FCev75ukKISwVQz95XSxA14cOh5PfAC98tTdbwcnC5Fqk1iHhJhh4Ik3bXv4/6h049QdSlAoh9CVuyHGkmuvA+AqjDq1wQdalQ+kRWipb5i14piJoA6nArF0Q9E1kYKt2TlawyPRB1pIgjTRcdA+I2AdQAAAAAAAAAAABdhQBqAAAAAACArkAINQB0CNuxtelFD2jEdDSQlsYLTiJsdgB14biFJ5QNpKWRPleb/ni/frT6EMIn28iStHnyf+jOvd9Ryk3JkCG3plNBm8OQoZRy6jES2rzyf8hacljb5oaHHuhu1B/0AIpNOCltHPmSho1nNSNb4+7Cs30PKK2orIo/s6XlaNJdGGo+rrRkmF4Qta7RjkPeo6TZ09TfAwAAAIAWMk1penru9uCgtHSp9+tkUurvD2RZAACgCfbunT3p6/AD0i3bpHXvLB0e6SsXQF14f6nQSl/U8eYheDJ8fnmklGnCp7+q9YDkzfPLI6VNv1v8fGiOZtW/FtQ/nIqDiEv9Pe7LSNU+3bMkH1A7FZu/3TW84wMBxOFUa/17clK6wrEiYUsxm/p3ouIg6lIB1ANp7zOAlT5fGLO9n/cKP4+YtrzxEjkCqAEAAAAAAAAAAA56YQuglgigBgAAAAAAaBHSQwGgQ1impc39r5LpSgnH1ED+pI5WBVD7/PEH0lLCNmS60ubUWgKoA3Bu78laHRlQVnZbg0clyZWrrGytjgzo3N6T2zo35tAD3Y36gx6AbzaAOvO4ZtyMxp1U2X0zysl2S3/gwnZLB1D7xp2UZtyMhjOPa+PIlzRRYR4AAAAAHSAWk1atktasCXolAACgSSbi0vtfJy0t/zKfJFV9Rbna/UtnvHkm4lV2RFttP0W65C+knDn/4tLllNvFVfUAatP15rnkL7x5Ebxm1r8a6h9ufhBxX2ZhPfsyUjJT2zjJjLd/ITc/BgHE4UX94QdRrz7ghUg7xtzz+kDaC5GuRSKn2c8juvnQ6vG4N+7/x969x8dR3/f+f39n9ibJXsk2tgXmZiCAgSAIoeS0SUqgaS49kIrSilM1+SUm6SWJ6WmaJukvaYGmaZI2TZo6vaQ0Tk4b9+DWP0RCC02oaZpbIQSwSMDcIYCxjDGWZEva28z398dq5JW0u9pdrXZmrdczD0Xe2Z3v9ys+H4/WOzvvJYAaAAAAAAAAAADgGBbFAGrb2utnAQAAAAAAlpNY2AsAANSuv29A+tNvaMvPjCnlOzpkfakFr+v7djqAWkZbv9Ol/l/+Jemss5Z+YszwrKfB+35P+3REjnHkW6/la3CMo306osGJf9CtF/2ZXOO2fA3LGT2wvFF/0AMIjOePaGD3RzXsv6CM8TTmZVT5CWHxzRY5FZRQfFbNPOspp4KMTJX9pTE/I8VcDfsvaODIl7Xjgk8oHV/RvB8IAAAAwNLo6pIOlyRErV1bDKAGAADHhr//e42/790auFoa7pUm4tUfbo0kW/6VwFoCiCfixXkGriaEMCqCAOL89GdHL1TDgNXsPqj1kj1rJGOL8137i8Vtgz+ucWc0HfXHXPdukDpy0uGSDwtIFmoPIA6kc8XA8WzJu0o7csXxT3ykOWtF81F/7Noo7Vtx9LhuJXXmaw+gDqQKUs6RJhJHx9m3ojh+Pz0AAAAAAAAAAABw7CGAGgAAAAAAYNlxwl4AAKAOP/VT6n8mpa3f69a+lN+6o7gj7euw2vrtLvU/lZTOPbdFEyPgGlfXHP9GHSoclh/SyRPfWh0qHNY1x7+R4NEQ0APLG/XH3B5o9al9I3ogCmYCqMcfV8bLaqwwUfO+OZuXNx1e7llPOZuved+xwoQyXlbD449rYPdHNZ4/UvfaAQAAALSYMZLjHP2K4pvEAQBAw8Z/7ZdnAqjHE0eDAquxZn7gbC0B1FJx/PHE0SDq8eTC+2DplAsgrufskZ3zvdZ9gl4Jgoi3n1fHAGga6o+5hs6W3v9WaaxTswqcd6VMrNqe82Vixf1KxxnrLI4/dHbz1ozmof4IeuBQ59FtxkpT8cZ6YCpe3D9wiB4AAAAAAAAAAAA4NkXxvcUEUAMAAAAAACy5Ot9iDAAI1QknSD/zM7pq087Wf4yAI131psOy39gkHTxY/ELLeNbXzSND6lRMh5QLZQ2+fHUqppsfH9I1h0+Va/gsi1aiB5Y36o/SHhhVvq5ggGaw0/9PD4THs74GRz6n4ewzyticxvypusfI2bwc68mXP+eehTtqrHBE8j0Nv7xHg9/7gG7t/R16AAAAAAAAAAjBeHZcAzsHNHzh8Ro/uK+mAOqANZJs8YMHaw2gDgTzBEHUO3ZK6WwdC0dT5BzpA29uPIB4hpXq/cRLq+I+xhbn/8CbpV9+WErMfckZS4b6Y64gfPZgZ7E/ZupqitfmjtXxoQGZWPHxQa2DcXJOcfz3v7W4qf+Rpi0fi1Rr/d0a/p5S//ZU2gN5Z7p09mgJGzkGSLPHydMDAAAAAAAAAAAAxx4CqAEAAAAAAJYtEqMAoM2Y80IIoA44knnTD0KafHlzjaPNK39Wh/zJUNdxyJ/U5pU/S+hkCIIeGG8gdLSZxv0peiAE1B9BD5iZaJAwWBkZeiAkQQ9kbb6hAOrA/ADq2o35U8raPD0AAAAAAAAAhMTzPQ3eMqjhkWGNZ8frCqAOWCP5pr4A6sBEQhpPFIOoB6+SvAhej3asS/jSZ78hxb1FBBBLdQcQB4Lw8rhXXAcBxK1F/VFqbgDx3ON60CNjSamwwGmdrHs0gLjcOKVBxENnN/OnQKPqqX/WrT5WwaH+7WhuAHVg7iF+LDn7/nJy7vzA6tJx8vQAAAAAAAAAAADAsYMAagAAAAAAgGWN1CgAaCPmxgi8qO9K5sm3h72KZemq/Z8PewmSorOO5ehDB2+WF1r4bJEnqw8dvDnUNSxX1B9FZvp/rZ5V07NG4LnIsldfDewCX0s9PwAAAAAAAIDmcR1Xmy/YrMO5w5rIT4Tyct1EQjqckDY/ILlc/xWKwR9Jv3lv4wHEZs73elkV5x/8UYMDYFGoP6SFA4gDQRBxJlY5hDbvFI/t5QKIS8chiDg66q3/RKJ6/TMx6t9uKgVQS+V/P0zFFzgGxOdvnzsOQdQAAAAAAAAAAADtIXljsvKddQRQ55uwlpoQQA0AAAAAANBShFADQJvY/czuozcikP23e/SZsJewrDx6+IWwlzBL1NazHIzlJ/VEYX/Yy5AkPVHYr7H8ZNjLWFaoPzzra9vh/1LSxNTtdLY0iDoIoO52OpU0MW07/F/yrN+i2RGY2wONchbROfQAAAAAAAAAEL67n79bE7mJUNcwEZfu3hDqEpa1obOlfzlPioX0Mm3ML85PAGU4qD9qDSAOBEHE2TJB1HmnuL1aAHHpOAQRh4/6Y6EA6qDmc1XrgbkqjUMQNQAAAAAAAAAAQLSZG41yysncWOYEYAMB1EseRE0ANQAAAAAAQMuVefswACCKLjj1Am0+f7O2PbhtUeM4VvIbzR6c3m9z7y/ogvMvX9Q6UJ+zdLo+9Miv6k+f/aewl6IPnfyrOuvs14W9jGWnW9Jda7fqsvu2hL0U3XXRVnWveWXYy1hWqD9cSdtP/TMNDP+Bho88IXmOxgoTslr6hAEjR92xLqXcpPpWnKHtfR+XG+ta8nkxW6UeqG72mzDiJibXOPKsr7wtlNyz8JNDegAAAABoc647+3aMU4QAALSjXCGnL+/+smzZaMHauVbyFvFJh9ZIX75Q+vh/Sgk+r66lPCP93UXFAMhGa2hVDBIuOAs+tOIaDnYW13Hlo8V+QmtQf5T2QC0BxKWCIGKTl846KD265mgAca2fYVoaREwPtF6j9Q8eV7H+NaL+4SvtgUoB1Aq+2/l/tcv1wFwLjZOnBwAAAAAAAAAAACJpbvC0udHIXj99MqeBAOrS2/HFLa08AqgBAAAAAABCwRXmANBGvtT/JUkqBlFPX+RRD8ce/V53EHUQQH3ClfrSq/6wzp3RDJ8+/wOSE9OfPvMPoa3hQ6e+Q58+77rQ5l/u3nD8/9Bdl/ytLrvnN0Nbw12X/K3esPbVoc2/nFF/pBMJ7Xj1pzRw//+r4fHHlLMFTXhTSz5vh5sshg+nz9SOV/2J0vEVSz4nypvbAzJGY/kjNe0bBFBLmv4emxNEXVl3fIVSToIeAAAAAI4lXXywDAAA7ch1XJ2//nzd9fRdxSDqBq7FMpISnpSpM3hy1hhWOn8/oYNhsZodENny+c3RNaD1qD8W0wPBfkGAcSN1pAfCRf1R7r99uZ6oFERtJXlNGgcAAAAAAAAAAADRMDeAunS7vaH2ceYGUJdub2oQNQHUAAAAAAAAoXHCXgAAoD5f6v+SNp+/uXijjguKHFv9dlUEUEfGp8+7Th869R2hzE0AdTS8Ye2rddclfxvK3AQQh4/6Ix1foR2v+hP1JtdoysvK1PNkoAFGRlNeVr3JNYQPR0TQA33pM5VyEuquoSalAdQB1ziKm4U/l4oAagAAAOAY1NEhrVkT9ioAAEADXMfV+y5+n9Z1rZPx69/fqBggnXWL3xt5hdlYad0R6X33EkIdBtdKbx9urHalCot8x5hRcR30QGtRfzSjBzwjPbW6+L1R9EA4qD9cK/3GfdLqSSk+/VywWij53LDxeKH4pvEn1xS/x4PPLDa1jxP3i/P/xn30AAAAAHBMWLky7BUAAAAAABapUgC1JOkGKVvjOJUCqGu9v2YEUAMAAAAAAISKEGoAaENf6v+S3nDyG4o3argoqFLgdE1B1NPjv6HnIgKoI+I1a16pTiVbOmenknrNmle2dE5UNlo4rNVud0vnXO12a7RwuKVzojzqj10v3av92YOKO25L5os7rvZnD2rXS/e2ZD4srJ4g6nIB1AHXOOqKdVTclwBqAAAA4BiUTkuveIVklvZDjQAAwNLp39SvvznvI1p3RLNTBRcQBFDP2lZvEPV0APXf3C71P1LPjmgWz0g3v1LqzNf5wdNN5Nji/De/cnEhpqgf9UczeiDvSjm3+L0R9EB4qD+k4nOwv7q9GAQd8ysHRweCAOl4QYrN6ZuYLW6vFkBdOk5sOoD6r3guCAAAAAAAAAAAEAkLBVBnVAwValbA9KKDqAmgBgAAAAAACF0s7AUAAOo3tGdIjx16TAkllFOueGVwg0HTjpX8SucXprcnlNBjhX0a0h71n3FFo8tGEww9cZu2PPo5dXetUm7igArylnzOmFx1d63Slkc/Jx3fSw+ELOiBZKpDK6YKOuJPLPmcK5wuJVMd9EAEUH8EPWBjMXXYTmVzY0s6n5VVR6xTNhajByImLWnHaTdr4PbNGn7px5LjaCw3PusxK+MrlPVyVcdJxjsUcxPz9u1OpJWKpdR33Hna8dZtSifTzf4RAAAAALSSMVJHhxSPh70SAADQBP1X/b+aPF3a/IvFIMlWSfjSn3+T0MEwuVba/ID0wPHFtwiMplq/hnS2GEC6+YHietA61B/N6oGK7xOqAT0QHuqPQP8j0mRMuvYXmzNelbceznvcn/FcEAAAADh29PSEvQIAAAAAwCLUGkAdyEsq9y7ieoOlK42zIAKoAQAAAAAAIoEQagBoM0N7hrTlji3yra+uVJdymelgweA8Qcnr7wsFUJc+btYFRnPOOXSluuTLast/fUTq7FL/pv5Gl49FGNozpC3/9RH5ssp4WfnG1nYF0CL5pjhfKpaiB0I2twcm7VRL5p20U4p7CXogZNQfc3tgPH9YjnHkW3/J5nSMo/H8YRnHoQciKK1u7fhf/58Gdg5oeGRYGS+rrJeVJHUnuxV34sr6C7wNxBil4h2SMRrLFkPNk25SqXiH+nr7tOPqHQRQAwAAAAAAABEz7k/pq31SV14qOLWFSVpJMpIpOb9oTe2nGx1bnO+rfdIVjxdDKBGO/kekybh07ZW1h0Y2i5E0FZO+cDsBlGGh/qAHljfqD0kaTxafk3XmpfwCzwWDu/IxSQUpVtI0BTO9XQv3k2OL8/FcEAAAADhG9PQUP8QYAAAAANCWqgZQS5rS7ADqwNwA6XoDqCuNsyACqAEAAAAAACKDEGoAaCOlAdSZQkZj2bH54ZPT5wxqDaAOOCp/QYpjnJlAwlQspS13bJEkwidbzPM9bdu9bVbtJcnIyC7hJWVmuqFKe2Db7m268qwr5Truks2L+eiB5Y36o1IP2CU++W6tlSkJJ6YHoiedTGvH1Tt06Vcu1f6J/ZKKAdSpWEqe79U8TiqWklT8+571supd0UsANQAAAAAAABBB4+/8Xxq4WhrulVKF4raxZP1B1PUGUHdni/MN90oDV0s7vp5QesWaBn8KLMZ43NdXLx5Vp5dT3rVSHbVcDKNi73R6Rl+9OKErxnqUzpe7ZBFLifqDHljeqD/G474Gfm5Uw2vySvmSclZjCVv2uWBQNzt9Xz4mySsGUReMlC855W+sKvaTY6XunFHKNxo+QRoYjGvHf9ADAAAAQOSNjUlTU0dvGyOtXx/eegAAAAAATbFgAPUNUrUrP4MA6UYDqOeOsyACqAEAAAAAACKFdwADQJuoFD4pFYOiSznGkRxHcox8M30B8fRFInG/+N2WbJdbfHzZcaaNZceUKWTkW1/bdm+rK9QQi+c6rrZftV29K3pnBY8uZfisJFnZmYDTseyYelf0avtV2wkeDQE9sLxRf9ADqGbXU7s0cmREcSc+E0DdiFQspe5kt+JOXCNHRrTrqV1NXikAAAAAAACAxfB8T4OFf9Zw79FtqUIxILrWDym2KgZWNxJAHRjulQb/Z06e4SKxVvOM1eDl08GTnlF3zsjYmc+qXjJBiGV3zijlGQ2vyWvw8lF6oMWoP+iB5Y36o7QHAkEvzH0uGNRtrrwrZd3ZAdQz+5TpJ6ek9gF6AAAAAAAAAAAAIBzJG5NV75+8oXoAdWCxAdQ1j0MANQAAAAAAQOQQQg0AbaJc+GTAt37528ZIpSHUjpSNFb/PCqFeaJxphE+Ga9dTu7R/Yr/iTrwlwaOBIIA07sS1f2I/gZQhogeWN+oPegDlDO0Z0pY7tkiSVqVWNRxAHUjFUlqVWiVJ2nLHFg3tGVr0GgEAAAAAAAA0h+u42nyfPy9kMFWQOpp1ddgcHfnZAdRSMYxw8wOSa5c69hJzudZo8yOdMz0QBE8u+SmDOQGUjpU2P9JJD7QY9UelHljKIOK5AcQSPRAW6o+5PRCYG0RdKYA64FcpXWk/lQugDrbTAwAAAAAAAAAAAK2XvT5b8b7JG6RY65YiSYpXu5MAagAAAAAAgEgihBoA2siup3Zp5MiI4s7Rl+TnBkUvtL2SWsaJO3GNHBkhfDIEnu9p2+5tstaqI97RsuDRgNX0vNZq2+5t8nyvpfODHljuqD/oAZQTBFAHz9eMac5FvsE4vvUJogYAAAAAAAAipv8RaevtmhU+mIlJU1Wv6mrcVLw4fsCxxfn7H1ma+bCw/mdS2vq97tkBlEudAVkyvmOlrd/rVv8zi/tQRDSG+mNuD5QGES+FcgHE9EB4qD/K/h6QlPSPhlBbSY3mQ9uSzzZwbHHcUvQAAAAAAAAAAABAuOz1808OTtxAADUAAAAAAABqQwg1ALSJIHxSknpSPYo78QWDpmsNoq5lnLgTV0+qR5IInwyB67jaftV29a7o1Xh2XGbJryKdzchoPDuu3hW92n7VdrmO29L5QQ8sd9Qf9ADmmhtAvVQIogYAAAAAAACipzSIOhOTxpKSv0QvG/umOH4mRgB1lAQBlFnHaixhlyx8NGCsNJawyjqW4MkIoP6YG0JbGj7bbKUhtITPRgP1x9wesEY6lPBnPR9sJIi6NIBaKj4PPJTwZ8ahBwAAAAAAAAAAAKKhNIj6yA0LBEIvAQKoAQAAAAAA2hch1ADQJoLwyb7ePjnGUbzFpwPiissxjvp6+wifDMmup3Zp/8R+OcaRVWtPwFhZOcbR/on92vXUrpbOjaPogeWN+oMeQKBVAdQBgqgBAAAAAACA6Ol/RBocXtoA6kAQRD04TAB15EzXvhU9UDofIoL6L2tBCK3R/PDZZgpCaI0In40S6o+5PZB35odO1xNEPTeAOtiWd+gBAAAAAAAAAACAKLLXWx25QUq0eF4CqAEAAAAAANobIdQA0EbSybR2XL1Dq1OrdcQ70tK5j3hHtDq1Wjuu3qF0Mt3SuSF5vqdtu7dpKj+lgl8IZQ0Fv6Cp/JS27d4mz/dCWcNyRg8sb9QfpT2wmOBhs4h0AN/69EAEtDqAOkAQNQAAAAAAABAtQ2dLX+2TnBZdu+XY4nxDZ7dmPlQ3dGpGW35mTAnftLQHEr7Rlp8Z09CpmdZMirKoPwKX701o/aRTNny2WYIQ2vWTji7f2+rLl1EN9cfcHij3K8Gq/PZyjyu7Lz0AAAAAAAAAAAAQTcaoq8VTEkANAAAAAADQ/gihBoA2c8vDt+ihlx5qaN8VsRUzX4146KWHdMvDtzS0LxbHdVxdc+41Gs2MLmqcxYSPStJoZlTXnHuNXMdd1DioX9ADR7KNB9C7xlXcics1jdfvSPYIPRAC6o+gBybzk5Ikx9T/T7m4E1cyllTcqXqqv6xgvsn8JD0QoroDqI3kLPC/ep4bEEQNAAAAAAAARMPQ2dL73yod7JR8o0WeAVyYUXGeg53FeQmiDlcQQOw50qGE39IeOJTw5TkiiDhE1B+B8bivgZ8b1Uinr45CbSGzjbCSOgrSSGdxvvF4az8oFeVRf9TbA5XuXyikmh4AAAAAAAAAAACIIHP0nQL1Xy3aGAKoAQAAAAAAjg2EUANAG/nKA1/Ru77+rob3P1I4olQ8pSOFxkNM3/X1d+krD3yl4f3RGM/39Lm7Pye7yMvGUrHUova3svrc3Z+T53uLGgf183xPX979ZRVsoeExrKzWdKxZVB8VbEFf3v1leqDFqD8839PND92snlSP4k5cto6T8kZGCTehhJvQyemTZ/5cT/iwtVZxJ66eVI9ufuhmeiAEnu9p2+5ttQdQB8zRL2OMTkyfKGPM0e118q2vbbu30QMAAAAAAABASEoDqPOOZM3SBU8GrIrz5B2CqMPmGattZ0/OBBCH0QNBEPG2syflGS4ibCXqj0AQPju8Jq+MazUV05KmEE/FpIxrNbwmTwhtBFB/lOuBWg7Jcx9SS9sYegAAAAAAAAAAACBazPyLApc6iJoAagAAAAAAgGMHIdQA0CZGRkcWFUAdeGnqpUWP8a6vv0sjoyOLHge1G5sc03377lv0OFOFqUWPcd+++zQ2ObbocVAfz/f04P4HFxUg7Ftfo9nR+gNMS1hZPbj/QcJHW4z6w3Vcbb9quy48/kKlk+m69407cb32pNfqso2X6bUnvVZxJy7XcesaJ51M68LjL9T2q7bXvS8WL+iBvt6+hvY3MrN6oJ4Q8lJ9vX30AAAAAAAAABASz/f0dxeblgZQB+YGUf/dRSKANgSuNfqbb6dVMDbUHigYq7/5dlqubey1ZjSG+kOaHz47lpg+i7xU5Zjus7GEJYQ2Aqg/yvWANP0ZxHUEUdcaQB20Fj0AAAAAAAAAAAAQAWUCqANLFURNADUAAAAAAMCxJRb2AgAAtent6VVnrFOThcmwl6LOWKd6e3rDXsaysnrFavV29WpkIvzw796uXq1esTrsZSw7iVhC77rgXfrMf39mUSHCmUJmUetwjKN3XfAuJWKJRY2D+lB/SMUQ6JuuuEkXfvFCGWNkazxB7/meXrH2Fdq4aqMkaeOqjdo/sV/D+4drntsYIyurm664qe4QbDRPOpnWjqt3aGDngIZH6qjfdAB1aQ9I0nef+25d8/f19mnH1TvoAQAAAAAAACBEtvd4SS+0NHx2Zm5pJonQStLBg8VUWrSMZ6x+67KC3IKVk5AKLf7PbyW5VnILVr/1mpd0684YQcQtRP3hGavBqwsaXmWVcaSxxNGA8KVkjSRbDKFV1mp4VVaDr3uRHmgx6o9yPVBqulQLqvU55Nzq0gMAAABAm8nn54eBeZ7kOFVDywAAAAAAEVXDv+XikvJNnJIAagAAAAAAgGMPIdQA0EYmPjqhrk90hRpE3Rnr1MRHJ0Kbfzl7dMujWvuna5Xzc6GtIeEk9OiWR0Obf7n76Os/qn95+F/09OjToa3hlO5T9NHXfzS0+Zcz6o/x7Ljec9t7FHNiijtx5f181VByM31JaMJN6PGXH9f6rvXauGqjnj70tB5/+XEl3IRyXvF3iq1ymaljHMWduGJOTO+57T2EEIes3iDquQHUgeD27v27a5qXAGoAAAAAAAAgfK7j6jfe9QX94CtXKdsRzhqspM6c9Bv3SW62mZetoRaupM33Sd+/UvJCyonxjJR3pc33WXqgxag/SntgLNmaAOLATBBxUjKWHggD9cfcHpir2Zf5W5UJoqYHAAAAgPZlrZSbvhYlFpPiVaPEAAAAAABRUuOHCTX77E1eFYKoCaAGAAAAAABoW07YCwAA1GfioxPqjHWGMjcB1OHxfE+DtwxqTeeamVDRVjMyWtO5RoO3DMrzvVDWsJwFPZApZNQV7wplDV3xLmUKGXogBNQfQQ8MjwzLyGhVxyrFnbgcU/6fdEZGxhilYim5jisrq+8+913d9fRd+u5z35WVleu46oh1yBhT8XdLEEC9qmOVjIyGR4bpgQgIgqj7evuqPs4xTtkA6sDGVRv1sdd/rGIfBQigBgAAAAAAACLk5ZdlVAz/C4Ox88MIAQCt18oA4pk5TfNDbtEY6o+5lqInqDkAAABwDCsUJI/3AgMAAABAWwgpgLriuARQAwAAAAAAtDVCqAGgzYxnx/X6U18fytyvP/X1Gs+OhzL3cuc6rjZfsFmOcdS7orflQdRGRr0reuUYR5sv2CzXcVs6P2b3QDqZbnkQcVe8S+lkmh4ICfVHaQ9IqhpEHQRQdye75RhHvvXlW1+e9fTs+LPyrDezzXVcdSe7ywZRzw2gDrbRA9GwUBC1Yxz90c/+UcUA6sAbT3ujtr5la8UgagKoAQAAAAAAgOjwfE/bfvC3SvpGPdnWB1EbK/VkpaQnbbtQ8kijbjnPFP/bW6Pw0sBNcX56oPWoP+iB5Y36I+iBpCd1Z49uX8pQ8rlB1N08FwQAAACOHfmliicDAAAAADRNyAHU88YngBoAAAAAAKDtxcJeAACgduPZcQ3sHNDwyLCOX3G89h3Z17K5j19xvIZHhjWwc4AgwpD0b+qXJG25Y4t6V/Rq5MiIrJb+ZE1pAPXWt2ydWQdar7QHgr+DE/mJJZ+3NICYHggP9UdpD/jWnwmiPjR1SHk/P7MtCKBOxVLKebkFx03FUpKkseyYZCUrWzGAmh6IliCIOnh+GAhqdfHxF+v+kfsXHGdubwUIoAYAAAAAAACixXVcbR9/owYOPKDh4zz1SDqUVF1BlEbFMOm5gYILmg6gThWkvhFp+y2Sa5zwQjCXKVfSNQ/5uvP06RDyeuu4SEH/TMalax6iB1qN+oMeWN6oP1xJ24esBq62Gl5f3DaarD+A2qi+3rHTO8w8F9wvbR8yco2hBwAAAICo84++J1SOM/s+gsMAAAAAINoiEkAtSb7qP8cEAAAAAACAaCKEGgDahOd7GrxlcFbAYKuCqI9fcfzMn4dHhjV4y6BuHbhVruMu+dyYrdVB1ARQR0+rg4gJII4W6o+FgqglzQRQ16M0iNrIEEDdRuYGUZfW6vnR52seZ25vEUANAAAAAAAARFP64Se14+u+Bn5JuufE4vVmtZ4tDMIjpfrDK4Pr2vpGpB07pXTBlZKJ+haPRfOM1c3n57Qq4+tQSsqFcMo+7kurMtLN5zu65omE3HqTL9Ew6g96YHmj/pCktKQdt1kNvC2ne4736w6BNiXf63rHWfBc8ICjHbcllDZGStY3NwAAAIAWs3Z20PTc8LJksvgFAAAAAIieiAVQpyTpBsncaGSvJ4oaAAAAAACgnRFCDQBtwnVcbb5gsx7Y94B8689sX+og6tIAaqkYQrn5gs0EUIeoVUHUBFBHV6uCiAkgjibqj2pB1J3xzroDqAPBfpP5SQKo20wQRD14y6A2X7C54VoF+23bvU3br9pOADUAAAAAAAAQRc88o3TG6tcelP7z1NrDpEsDqGe21bnvZEz6tQeldFaS8SXfX2BPNJsrafvXYhr4xbzu3mCVbfFpeyupoyBdsN9o+9dicj2rOiMssQjUH/TA8kb9EUhnpF/7kaP/PNmv64NF5kYV1BpEPfNcMF6cN52h9gAAAEDbKH0N1xipUCh+d11p/frw1gUAAAAAqCyiAdQBgqgBAAAAAADamxP2AgAAtevf1K+tb9kqx8w+fM8Nim6WcgHUhFBGQ2kv9K7onQkKbRYCqKOvtAfSybS64l1NHZ8A4mij/pj7nMDIaHXH6oYDqAOpWEqrO1YTQN2G0sm0bh24ddG16t/Ur1sHbiWAGgAAAAAAAIiqffs0dLb04TdKqzJS3C+GAlY7W1gugHrmvhr3jfvF+T78RmnobEmWi8nCks4Z/dqPHU3FJKeBMpiSr3o5VpqKSb/2Y0fpXHPPUaM21B/0wPJG/SFJQ2d6+vAbCjU/F5Qq379QP8x7LviGgobO9BpaNwAAAICIsFZKJKQ3vznslQAAAAAA5opQALWV9ClpVgB1wNzI+UIAAAAAAIB2FQt7AQCA+gTBglvu2CLf+jPbj19xvPYd2de0eQigjr7SXuhd0dvU+hNA3R5KeyCdTCtTyMizi7/QyzUuAcRtgPqj0nOCZqEH2o/ruJEaBwAAAAAAAEDzDa09qC2XSr4phgKumpIOdUh5R5IpXgBWqloA9cxjbPV9435xHqPivFveWry//znedhSGoVcU9OHLfPVkpNFUsfZ+jdf2zX2Y0fy6V+JM90JPRvrwZb46rdT/OD3QatQf9MDyRv0x9IqCtlzuyTfFj5ZelZEOpWzV54K1KNcPswOoi/P5jrTl5z3JdekBAAAAIOqsnR1e5jjSihXS6tXSxRdLuVx4awMAAAAAzBexAOpPSrrhhsqPMTca2ev5EHsAAAAAAIB2wzuAAaANlQudbGYAcTBeEERNCGV0BTW5+p+vbuq4+4/s185f2UnN20BQo3cMvaMpAcSS5FlPh7OH9Q/9/0APRBz1x1IFUfO7HwAAAAAAAACix/M9bds0NStscm4QtZ1zX7kA6qQnZed8Fl25IOq5AdQB30jbXiVdee6b5NYcbYhm8GS17ZTvy0+NypHUY61GlVdevhY6S1BaKcca+dPNEWyvdlmgIykuRz02Lidp5EvadlmPrjz9p+mBFlqq+i90SSj1jw56YHmj/ijtgYCRtMpaHZruhVnP5VS+xqU9UPpYzXmsUbH2q2xcJnm01vQAAAAA0CaOHJEOHjx6O5mUXvnKo7cJoQYAAACA6IhYAPXXVD2AOpC8Mans9dklXhEAAAAAAACaiRBqAGhTpaGTew/vXZI59h3Zpw0rNxBCGXHv/bf31nA5WX18+Xrvv72XureJu5+/WxP5iaaOOZGf0N3P300PtAHqj2YHURNADQAAAAAAAADR5Dqutg85Guj3NNx7dHsQRP1Sp2YCqisFUHdnpVRBysSkseTs++YGUTt2fgC1JPWNSNv/P8n9BWnh6Eo0kytp+7MXa+DkH2i4Y0yOjHq8uEbdvPKm/FnjufWL+45iMipYq7zjz3pMuWo6kuLWUY8XlzP9yL6pbm1/9mK5ttJeWArUH/TA8kb9MbcHAkZGq7y4XnJzswLGy0UVlOuBo+MUHX0uWBzXzBmJHgAAAAAAAAAAAGiiGgOoJSmu5gRRVxonCKD+lRtqG4cAagAAAAAAgPZDCDUAtLH+Tf26Zuc1SzrHgYkDhFBG2PGfOV4jEyNLMvbIxIiO/8zx2vfBfUsyPprjw3d+WJ/578/IGCNrm3dhlzFGn/nvz0iSPv3GTzdtXDQX9Uegf1O/bn30Vt355J2LHuvy0y7ndz8AAAAAAAAARFQ6K+3YKQ1crVlB1JmYVHCq7xsEUEtHv88Noi5VcIrjdhSObusbKc6fzqqui+DQPGmb0I7nLtHAyfdoOHU0hPRgSfBkIAigDLYGwZOSit99Z8EQUsea2eGjmW7teO4SpW28fLollhT1Bz2wvFF/zO2BQNb4NQdQS/N7IFDaC76xyhpfKevO3E8PAAAAAMeQRCLsFQAAAAAAGnjvzWKDqOMVxrGS/lu1B1Db6/mwUgAAAAAAgHa0wOVnAIAo6/pEl3J+bknnyPk5dX2ia0nnQGOWMoA6EARRI5qCAGJJTQ0gLh3vM//9GX34zg83dWw0B/VHqaE9Q9r11K6mjLXrqV0a2jPUlLEAAAAAAAAAAM0XBFH3TZ8qnIpJo6nZj7GSbMl1aqUB1IFUobh9Zh8zP3xyNFUcX5oTQI1Qpf24djx7ifoy3ZKknPHlVQgfDZQGTwZiMor7TsV9JMkzVjlTDKjsy3Rrx7OXKO3HhfBQf9ADyxv1x9weyBhPY24xIsDRwgHUgbk9EDA6+ubyMTevjPEk0QMAAADAMcUYaeXKsFcBAAAAAMvbIj78vdGzNXP3K73935IuvaG2cQigBgAAAAAAaF+EUANAm+r6RJcmC5MtmWuyMEkQdcS0IoA6QBB1NM0NILbzIgEWx8oSRBxh1B+lhvYMacsdW+Rbvynj+dbXlju2EEQNAAAAAAAAAFEUKyZCB0HUayfmB1AHgiDqcgHUgSCIulwAdWA0VZxnVgC1w1uOwhYEUPYWkhpz87PCQ2sJHw3EZLTCi83cLjfOmJtXbyFJ8GSE1FP/jgXqn6wQQkv9o62Zx4Au3525TQ+0h3rq3+W7VetfKYia+kfb3B6oJrnAMaCj5BhQDj0AAAAAHGNiMWnNGinO83sAAAAACM0iAqgD9f6rrtLj45IeFAHUAAAAAAAAy0Vs4YcAAKKmlQHUgSCIeuKjEy2dF/O1MoA6EARR7/vgvpbOi/KWOoA4YGUlKxljZub79Bs/vSRzoXbUH6WaHUAdCIKoJal/U39TxwYAAAAAAAAALEJnp5QtJkHfdqb0yJoFHl/raQQrVcgmlFSc57YzpcEfTW+Ix6XTT69xcCyVXe5jGokXFJervPzpElqZkmKutHHlnernEZI2Lte6GjM5SZo3TlyORpIF7TrDUb9H3aOilvp324SsI+XkVRwnJkcdNk7921CtPZB1KtdfkhI2priN0QNtptb6G2OUMRU+jULTQeQcA9rS3B4op9smlHd8+VWeFCbkKllyDJiLHgAAAADa1MiIlMkcvZ1MSuvXS271D6IBAAAAACyxJgRQB+KSqn9c6dHHVXORtdKNC6+LAGoAAAAAAID2Rwg1ALSZMAKoAwRRhy+MAOoAQdTR0KoA4gBBxNFC/VFqqQKoAwRRAwAAAAAAAEAErV8vHTqk7a+Urr1SKriSsZItcx2YscUgybFk8XaqTP5kJla830hSlXEKbnE+aTqIeuVKacWK5vxMaMiQfVhb7F2SHPWoQ6Oamg4hLQkfVVIJE5On8qGSAWMcpRSTZDSmYsh5afhojzokY7QleZdkUuo35yzVj4Ua1Vr/lIkro7wcORXHcmSUMglR//ZSTw8UlK16ZtkYR0m5ogfaRz31z8mregwwEseANlSpB0oFPVB8HlD5KGDkKGVmPw8I0AMAAABAG+vsnB04HYsRQA0AAAAAYWtiAHVgoSDqhQKoZYvnkez1VqZKEDUB1AAAAAAAAMeGyu8sBwBETpgB1IEgiBqtF2YAdSAIokY4Wh1AHLCystMnET/z35/Rh+/8cEvmxWzUH6WWOoA6EARRD+0ZWtJ5AAAAAAAAAAA1+tmfnQmgzk/nhRgVg6JLBQHUgbFkMXC6VBBAPbPPAuPkp4Oot79S0saNi/5R0Lhi8OTt8qfPFzky6lGH4iVvBetWUqnpSwnNAl+BlOLq1tGmCIInnelH+bLaYm/XkH14CX86LKT++puaeoD6t496e0Cq7ThAD7QHfgeg2T3AMQAAAAAAAAAAAKAFnKWL96kUNF1rAPXMzQpB0wRQAwAAAAAAHDtiCz8EABAFI6MjoQdQByYLkxoZHVFvT2/YS1k2Xj7ycugB1IGRiRG9fORlrV6xOuylLCu5Qk5fGf6KpNYGEAesrGQlY4y+MvwVffwNH1cilmjpGpYz6o9SrQqgDgRB1JLUv6m/JXMCAAAAAAAAAMrbfkmHrl0r5edcl2YkyUrWzA+gDgSB06nC/ADqWscJgqj1TFaD+/Yt8qdBI4aST2nLyu/OBE8GHEk9SmjUyarTjyklR5Kn4kmeBc4tWb/4OGl6v7gmnYJ6/IQczT4f4Uvaotukw4fUnz2tST8ValV//SWZo/WtyBYfS/2jr7EeqOUYUEQPRFtD9ZdfQw9wDGgXjR8DqvWATw8AAAAAx6KDB6Vcbva2qSkpkZBcN5w1AQAAAMBy5TjzAp+bLS4pP+d2VRXWY6+3MjeaWbcBAAAAAABw7CCEGgDaRG9Pr7585Zf1rq+/a1HjGJlFh5d++covE0DdYqtXrNZt19ymK26+YlHjOHLka3GhpbddcxsB1CFIxBK679fv0zl/dY4O5w43NIYjR67jyvO9hvrAympFfIXu+/X7CCBuMeqPQKsDqAMEUQMAAAAAAABA+HKFnD7w4lfnBVAHggDpcgHUgbGktGpK2t9V+TELjZN3pQ+c8oh++dHTlVCFxWBJeLLadsqwfN8re78jaZUfl5GRZs4HWck5+h4BI+m0bJeeSk4cfeeA76u04ik5SvpxGZUPrfQlbXOGdeWLXXKrdhyaqbH6qxhCPR1AW7b+stM9UET9o6vhHljoGGD9WaWmB6JpUccAVTsGiGNAm2j8GHD0z5WPATwPAAAAAI45R45ImczR29ZKhw4V/9zdLXVVeZEYAAAAANA8LQigDgRB1I0GUM/cfb1V8sakstdnm7QyAAAAAAAARAVXggFAG3nnhe/Ul6/8csPPz2frAAEAAElEQVT7u8aVYxy5xm14jC9f+WW988J3Nrw/Gpf38+pJ9jS8f8zE5BhHMdP4Z1D0JHuU9/MLPxBL4t6996oz3jl9sVh9HOMo5sZkjFHMLfZCvYyMOuOdunfvvXXvi8Wj/ggrgDoQBFEP7RkKZX4szJtzsbHne5rIT1T9ynvzf6/PHQcAAAAAAABANCRiCX32LX+h+CLe7tOdlabixe+NivvSZ0fOJ4A6BK6Mtj/3U+rLdDe0v5H01rH1umrsBL11bH3DsZF9mW5tf+6nCJ5sMeqPWnqg2vnkenqg2jj0QDioP+gBAAAAAE0zNjY7oBoAAAAAsDRaGEAdWGwAdYAAagAAAAAAgGMTV4MBQJt554Xv1Psuel/d+6ViKcXd+MxXKpaqe4z3XfQ+AqhD4vmetu3epo54h7oT9V9QGtT/hJUnNFz/7kS3OuId2rZ7G+GUIQh6wDGOjus8rq4gYte4SrgJucZVb1fvrNu1MjI6rvM4OcahB0JA/RH0QKUAaiurl6deVqZQ+Q3hRkbrOtdV7Z9MIaOXp16WVfk3EvjWpwciajw7rl/c8YuzQsILfkGTucmqXwW/MGucoT1D+sUdv6jx7HirfwQAAAAAAAAANRg8f1BfslcqXublYivJGlV4hbcYPJ2afkkwVagcRF1tnLgvfekHx2tw7JT6F4+mSPtx7Xj2krIBlL6sDrl5Zcz81/GD4MlzsmlJ0jnZdMUAyozxdMjNyy/TBX2Zbu149hKl/QUvW8QSoP6o1gPV1NMD1dAD4aL+oAcAAAAANM2RI2GvAAAAAACOfS0OoF5Q1NYDAAAAAACAlouFvQAAQH2G9gzp1sdu1crYSh0uHK5pn0qBw6lYqmpYZamVsZW69bFbdfmey9W/qb/m9aI5XMfV9qu2a2DngIZHhiVJY7mxmvZNxVIyMupb36cNKzdo7+G9Gt4/XFf9uxPd6kx0qq+3T9uv2i7XqT28Fs0xtweO6zxOL02+VDEoNhAzMcXcWNkeiLtxub6rnJ+rOkYQQBxzYvRASBqtf3D8r1R/eZJnq4cJU/9oKPd7IGBldWjqkPJ+XmPZ4u+Gub/7y/XA3P7JFDIz+x+aOqRVHavmBVbTA9E0nh2f6Y0H9j0gSQ09XxvaM6Qtd2yRb30N7BzQjqt3KJ1MN3u5AAAAAAAAABZp8CFHesrRtf/TV3764+eD4GgF361mvcJbGkAdCG6PJY9uqzZO3Je+9DVp8CVJF+eb+BOhXmlJO558lQY23qfhjuJr+76sRmN55Y3VmOtLBauUdSUzHTw5uk7nZFZIOppgfs7UCslafSt9cOZCw4zxNOYWm2PUzamnEJcz3QV9U93a8fSrlPYliR4IS131VxA8Wrn+/979IvVvM+V6oBpjq/fArvRLNV1sTA9EQ931V/X6315yDKiG+kdHI8eAt1TpgTvTB+gBAAAA4FhUKBS/Aq5bvO26kjFSrvo1BAAAAACARTL1fhzoEiOAGgAAAAAAACKEGgDaSmkw4IrUCimjBYOoKwVQB1Z3rNbLUy9XfczK2EqtSK2Qb31tuWOLpMaCDbE46WRaO67eUXMQtZFROplWzsvNBI9Kmvk+vH9YHbEOZQqZqkG2pQHUhFGGa24PLBRE3BXvkm+LF49V7IF4h+J+XBP5ibJjzA0gpgfC00j9k7GkpvJTFesfd+NKmqQm85Nlx6D+0VLu90BpAHVgbhB1aQC1NLsHAqUB1JKU9/PzgqjpgWgqDaCWNOv52vlrz695nNLnmZI0PDJMEDUAAAAAAAAQRS+8IP33f2sw2yN97WVd+zYp5xwNjg6UBkiXC6AOlAZRlwZQzx0n4UtfulUafCQmOQelgwelZFIIT1rSjh+frYFNP9YDXYc1Gi8ob46eNxqLFaSClPIdvfXlVTpnMiEpO2+cc3IJ/exLp+iPT/2JJh2vuN+0vCkGG/fkY7pwYqV27DlbaS9bdhy0Vq317/Rd/ca+45XyHVWqfzq7Vv+25mXq32ZKe2C460jFxzkyuuKl1TprqvIx4MLRE/WXJ+6VX+W9I30TK+iBCKmn/h987kRlHV+V6u/mV+tbq8aof5uppwd+5cW1OjFb+Rhw+uET9JXjR+gBAAAA4FgzOSllS56/WysdOiQ5jrRypdTREd7aAAAAAOBYRwA1AAAAAAAAIsoJewEAgNp4vqdtu7fNBANKUmeys+o+PameWbeNjNZ1rpsJkwysSq2qOk7pPL71tW33Nnm+V+PK0UxBAGlfb586Eh3zalmqJ9UjxzizgkcDG1ZuUN/6Phlj5vVJKSOjjkQHwaMRUtoDruMqZip/pkjCTcgYs2APJNxExTFiJibXcemBiKi3/gseA0T9201pD5QLoA6MZceUKWQWPgbIzAugDgRB1FaWHoiouQHUgSCI+ptPfbOmceYGUAeCIOrx7HjT1gwAAAAAAABgkX7wg+L3ZFKDT3Vp679Vfqg1Uke+cgB1IFUoPm5uAHWprf8qDT7sFANKJGmc1w2jIO3FdNNjZ8szmgkgLr1scCxW0NUH1uqcya6q47zp0BoN7l8/K4A4GCdvrDwj3fTY2Up7lc9NofVqqf/g/vX6H+PdVce54MhK6t+m0l5MO/acp76JFTPbSj/E2JHR1ifO1LkLHAMuHVulrU+cKafkPSil4xTDZ8+jByKmXP1LBfW/dKz6+8LOneyaV/9S1D+6au2BC46srDrOT4930wMAAADAcuL70tiY5LphrwQAAAAAjk0EUAMAAAAAACDCCKEGgDbhOq62X7Vdfb19korhgqOZUTmm/KHcMY7Gs+MzYdFGxRDKi0+4eCZ0UpJyXk5j2bGq44xmRmdCCft6+7T9qu1yHd5wFpZ0Mq2brrhJBb8gU+FElGMcjWXH9JoNr5kXPBrYsHKDNvZsrFp/Y4wKfkE3XXETwaMRUtoDnsoHwgc9sLFnY9UeuGTDJVV7wJNHD0RMPfW/7NTLqtb/pPRJGs+OU/82U9oD5QKoA2PZMW1as6lqD5y//vyyAdSBvJ+nByKqUgB1wLe+bvz2jdp7eG/Vce56+q6yAdQBgqgBAAAAAACAiHnwwZk/jq/u0i3nSt3Z8g81kqbiUmaBvMBMrPi4SpfAdWelW86VxjtLzhEfOVLXsrE0xt2C3nPmI4rJKG6NrDTzJUndhZh2rj2ghzsnqo7zjVUHtX39fnUXis1SOk7cGsVk9J4zH9G4u0CiOVqqlvpvX79f/52ufC5IknavOEz921hpCK0vq0OxgjKOPxM+239wbU3j9B9cOxNCm3F8HYoV5MsSPhtxlUKIF1P/UtQ/+ugBAAAAAA2JxQghAwAAAIClQAA1AAAAAAAAIo53BQNAG0kn09px9Q790j//kr7zk+/MBE86xpkVHFgaJpr38zIyetXxr5oJoQy+37/vfk0UJmaCjCuNk/fzGs2M6nWnvE47rt5BCGXIxrPjes9t75FrXMWduPJ+vmzdupPdunvv3TprzVllA0j3Ht6rp0efVneyeyaEeO44cScu17h6z23vofYRUk8PPD36tFYmVlbsgUcOPkIPtJl66n/XM3fpjFVnVKz/c+PPKZ1MzwRRU//2UK4HyulOdmvPwT1yHbdiDzx84OGZY0A59EA0LRRAHbDWanh/8TGVeuDT3/+0XFP9w0WCIGp6AAAAAAAAAIiAhx6SJI3HfQ383KiGV0kdBUkZaTR19GFGkpm+jmwsWfyeKpMfm4kdvd/Y4o6ll5/1ZIrjD/dKA/0F7RiKKZ0z0uSk5JT/kEu0xrhb0MBZD2m464iMLQYOH4gXzxlYSZ2eo5TvyDfS7WteluTonMmueeM83Dmhb214QcZKKd9RznM04R49Z9RdiMlYabjriAY2PaQdj76SIMoIqLn+svriCfv0xpdXV6z/v68+qA7fof5tLG0TuumJc3ThBfco71iNOQW9Z+8G9R9aLzmavtC5ysXOxkiOo/5D63X3gXF9ZsNPJEmekW564hylbaI4DiIpbRPa8ej5GjjrRxruOlwMH37qLPUfWldS/yoFNJqpv54y2nLao9MB5CuLf+dtjPpH3KJ7wDH0AAAAALAcWCvF48Wvzk6pwAeOAQAAAEBTEUANAAAAAACANsAVIQBwjAjCQ0sDqGth5pzQaHQctEZp6KRjHPWkejSaGZ0JoS0Nn03FUprMT5YNn9x7eO/M9lSseDV6aQhxED7bk+qRYxzCJyOk3h7IFDJVeyDhJtQR75BED7SDeuuf9bJV629llYqlZGSof5uo1gOlgh7IZXNVeyDmxGb9HihFD0RTrQHUAavyQdRBD3QluhYMoZYIogYAAAAAAAAi4+DBowHUq/MzidGlQdSlAdSBckHUpQHUgdIg6iCAOjC8zmqg39OOr8WV9n2pu7u5PxtqNu7kNXDyPRpOTUgqBg2PuQUZFWtnJE25vhKySlhH1hjdftxBaSymc7JHX+N9ODmu27sPKuW7co1Rxniacv1Z44zFPPV4cTkyGl45oYHz9mjHs5co7cfD+NGh+uqfsq6s8arWf/pjy6l/Gxt38nrPyT9SzDiKW0edvqvt61/Ua7zj1T++QUp1SPIrD7BihRTr1lB6r7avf1HdXlyTjqeYcfSeTY9T8zaQlrRj38/oV0+6R9ce2qj+wgYp+DWdKkipiSp7OzO/0/sL3dJIp7606mn9075LlF5B3dtF1R7oPFD9w0PsCsnSAwAAAMAxx/elsZL3BjuO1NNz9La1BJIBAAAAQLMQQA0AAAAAAIA2QcIoALSRIHTwoRcf0qqOVYo7sy/yKBccHXfichxHw/uHtffwXklHQwcdx1FnvHPePnPHiTtxrepYpYdefEgDOwc0nh1v4k+FWpULnQwCSONOfF74bCAIn5xbf6ujJ5BSsZS6k90zY5YGjwaC8EnqHx56YHmj/lioBwKL7QFJ9EBE1RtAHailB2pBDwAAAAAAAADhG/enpgOoc/MuGEsWJMdKlV76G0sWg6el8gHUM2xxnGRh/l3D63wNvC2v8ZjX8M+AxTkaQFwMkPFlNermlTfzA2bH3LwyplgrK+n27v16OFl8jbcYQLx/pl0yxtOYm583Rt74GnXz8qcfOZwa08DJ92jcmf9YLD3qj7nm9kTAl9WWE4Y1lN5b0zhD6b3acsLwTK0D1LzdNOvi9ohdJI860AMAAAAAAAAAAAAtRQA1AAAAAAAA2ggh1ADQJjzf0+AtgzOhg0ambBB1qXQyLddxJR0NH7z3hXtnhQ4m3MSs0Mm5ggBqM31hyfDIsAZvGZTnc1FxK82tf6nSANK5waOBSvUvFQSQlgseDVD/8NADyxv1Bz2Aaj1Qi1p6oBb0AAAAAAAAABAez/c0eN5jGl6Tn3fBmC/pYKfkG8maijnUGktKo6nKAdRWxf19Mz1emccMr/M1+PNH5DX4OiMa58lq8KQfVAwgDupVmkV+2C0oP31PEER8S/cLswKIsyUBxKX7BuOVCyIePOkH9ECLNVL/MTevnKle/7x86t+mSgOorawOTfdDEEAeBFE/lKz+AaPf6jowE0AdBJLnja9Dbr54jokg6sgLeuH+jtG6wsfnCsLI7+8YpeZthh4AAAAAAAAAAAAIAQHUAAAAAAAAaDOEUANAm3AdV5sv2DwrELJaEHW5EEorqxcnX5wXOhiETs41N4BaKgZdbr5g80y4NVqjXP1LOcbRqtSqssGjgUr1L5WKpbQqtarqPNQ/HPTA8kb9QQ9goR6oRS09sBB6AAAAAAAAAAiP67jaPHmmnAoB1IWSlw+rBVFnK7y8FwRQBwpO+SBqx0qbn1gpVxG7kG4ZcGW0+dCpcmQqBhAHSsOEs44/K4j6yeTErADiw25h3j6BckHEzvQ66IHWarT+E45Xtf5Tjj9vnwD1j65KAdSB0iDq27r36eEKQdQPJ8f1mbWPzwqgDhBE3R5Ke0HSTPh4vSHEQfhwaeA8NW8P9AAAAAAAAAAAAEAICKAGAAAAAABAGyKEGgDaSP+mfm19y9YFg6jLBVAvZG4QdaUA6q1v2ar+Tf2L+CnQqHL1byXqHz56YHmj/qAHsFAP2Ca9UaTSOPQAAAAAAAAAEL7+k9+krd+MyZl+Ga9cAHWgWhD1vMdqdgB1YG4QtWOlrXcY9R9aX//i0RT94xv06X3nVg0gDlQKog7k5StbJYA4MDeI+NP7zlX/+IZF/BRoFPWHtHAAdSAIoraSbu/ePy+I+uHkuG7v3i9rNC+AOkAQdbTNDR8O1BtCPDd8OEDNo48eAAAAAAAAAAAACAEB1AAAAAAAAGhThFADQJtZKIi6kQDqQBBETQB1dFUKn/Str0OZQ8oUMosaP1PI6FDmkHw7++JE6h8d9MDyRv1BD4AeAAAAAAAAAJa5E09U/489bb2jmDBdKYA6UEsQdaUA6kAQRC0rbb1d6t9jpY6OBhaPZhh38vrqqufU6buSKgcQByoFEdcaQBwI5un0XX111XOEUYakkfoHKtV/7uPKof7RUWsAdWDMzatg/HlB1DMB1JKyxi8bQB0giDqaKoUPB4IQ4m91Hag6zkPJ8bLhwwFqHl219sDuCvcHvt95kB4AAAAAAAAAAACoFQHUAAAAAAAAaGOxsBcAAKhfEP635Y4tMwGBRkarO1YveuxULDUvxJrQwWiZW3/f+hrNjCrv5zWWLV401EgQeaaQmdl/NDOqnlSPHONQ/wiiB5Y36g96APQAAAAAAAAAgMufllKF6gHUAWskWancJXALBVAHCk5xvsufnt5gTPQuqlsGPFkNnnSvhlNjSlpHjkzFwMi5rIo9kHV8FayVZ+zM9lo5MkpaR8OpMQ2edK9uffan5ZbtLCyFRusfPIL6t7/SHqglgDqQMb6SkmLW0b9179ee3BE9lZiQlVQwvnI1jBEEUa/y4vRABIw7eQ2cVDl8OODL6jPrHtflh9fpnGx63v0PJ8d1e3pEXX71txIHIcQ7nnuN0n58UWtHc9TTA//cvVdvPry+Yg/cufJFJWz1J5X0AAAAANCGHKf4FeD1XAAAAABYvKj924oAagAAAAAAANSJEGoAaFPlgqiXAqGD0RTU4323v28mdDLQSPhkaeikJOX9vEYzo1rdsZr6RxQ9sLxRf9ADqKUH4k7tF//SAwAAAAAAAECbeP55ja+I69L/ldVPeoqhsrVcTlYuiLrWAGqpuN9PeqRL3yl96x8cpY2RjjuurqVj8VxJm73zdb/zHb3sZOSr9h5QyeMKpv6LEI0kX9KhWF5r/JQ2e+fLPW5t3eOgcdQfc3sgPxMvvxCrrPFljeRaR48nJyRJnvGVU/E9R6aGcfLG0gMRMG5yGui5U8Oxw5IW/jQKK+n27v1SJqlzCqtmtj8cO6TbU/tlZWaHklUw3HlYA6ffrx2jb1TaJhbxE2Cx6u4B41ftgZgcaYEQaokeAAAAANqOtdLo6NHbyeTs+x0neuFpAAAAABBlUfs3FAHUAAAAAAAAaMDC7xoGAERW/6Z+bX3LVjlmaQ7nBFBH2+WnXa7eFb2zQicDY9kxZQqZmsaZGzoZyPt59a7o1eWnXb7otWJp0APLG/UHPYCFeiBbyNY0Dj0AAAAAAAAAtI/xPbt16a8VNLy+eNvY2uJHpWLgdHD5Wb0B1EFm7fB66dL/x2r88Eu1LxpNdXlug9b7HdPhs8Xg2KW+zNHoaEBtXlbr/Q5dntuwxLOiHOqPuT1Qj5x8eaYYOl0aQF0PeiBcR8OHD9a1n5V0e+pZPRw7JCkIH3627i4ajh3UQM+dGje5OvdEs9ADAAAAAJpmbig1AAAAAKAyAqgBAAAAAABwjCCEGgDa3FIFURNAHW3j2XEN7BzQyJERdSe7yz5mLDumvDc/lLKU53tlQyclqTvZrZEjIxrYOaDx7Pii14zmqrUHPN+rOk7ey9MDbajW+ue86hf9eb5XsbbUP9pq7YGCX6g6Tt7nGNCuaumBw/nDC/4eyBay9AAAAAAAAADQJjzf0+Ub/kPDx81+3c/UcV2ZNZJvag+gLjf+8Dqryy9/Xl4D4aVYHE++Brt3acSZUrcfn9m+lEHEpQHEktTtxzXiTGmwexc90GLUH5V6oB45+coar6EAaokeCFNQ/3rDhwNBCPEtqacbCh8ODMcOUv+Q0AMAAAAAmsZxpHQ67FUAAAAAQHuIWgB11NYDAAAAAACAtkIINQAcA5odRE0AdbQFoZPDI8OSpFQsVTF8cqowVTF80vM95fzyAbXdyW6lYilJ0vDIMOGTEVNPD+T8XNUemCpMlb2PHoiueuo/kZuoWv+8Xz6onvpHW13HAK/6MSBbyJa9jx6Itnp6IO/nq/bARH6i7H30AAAAAAAAABBN1s6PC/SX+NqycuOXWweWnitHm6fOliOjlGJLHkRcLoA4pZgcGW2eOlsubz1rKeqPaj1QD7/B6Fl6IFyl9W+UlfRkbLzh8GFJ1D9E9AAAAACARTNGSqWktWsl1w17NQAAAAAQfVELfDZG8vmgUAAAAAAAADQuFvYCAADN0b+pX7c+eqvufPLORY91+WmXE0AdUXNDJwOpWEqZQkZZb36YaBAy6zpH3yRYLXw26SZnQicDQfjkjqt3KJ1ML/bHwCI0uwfKXYpMD0QXxwBwDECze6Dch5jQAwAAAAAAAEA0uY6ru358kS59xfc0vKYgqf4AaiPJWMka1RU+6BvJmd6h70Wju76xTu5bGws/xeL0F86QjjjasuLbSikm+dKYU3wd2MjILipWcrZKAcRbj7xe/YXTJHJqWo76o1oPLCV6IBpK619zmHgTr4un/uFrqAeaiB4AAAAA2ojjFL9KbyeTxS+HD5UBAAAAgAURQA0AAAAAAIBjECHUAHCMGNozpF1P7WrKWLue2qWhPUMEUUdMpdBJSRVDJwOl4ZPVwmclKetllSlkCJ+MIHpgeaP+oAdADwAAAAAAAABI96zXt3au0Ov6R/Xg+vr2DQKoFXxvIIj6/P3St7bHlV7XIXlefQtA0/RPnSL5r9WW9HdnhdA2M4BYkqysjMzs8Nnx16o/e4ok6h8W6o9KPbBU6IFoKa1/TSHE07/zF4v6R0fdPdAk9AAAAADQZnx/djiZ70uZTPFrakpasya8tQEAAABA1EUtgFoigBoAAAAAAABNwcdWA8AxYGjPkLbcsUW+bc7JA9/62nLHFg3tGWrKeFg8z/c0eMtgxdDJsezYgmPk/bxyXq5q6GRgLDumTCEzb/vwyLAGbxmU53MhUavRA8sb9Qc9AHoAAAAAAAAAgCTp3HOlqSmtm5BiLb62LOZL6yYkFQrS6tWtnRzz9Gc3auv4a+XIKKWYOny36TGUVlKH784Jn93Y5FnQCOqPuT3Q7ceXZJ75AdT0QBSU1r8VqH/00AMAAAAAFiWXkw4fDnsVAAAAABBNUQygtq37YFIAAAAAAAAc2wihBoA21+wA6gBB1NHiOq42X7BZjpn9q7vW0MlAPX1SLnzSMY42X7BZruPWPA6agx5Y3qg/6AHQAwAAAAAAAAAkafyENRq4MquH1knHTdYXRG0l2enr5KxRXYG1Mb8430PrpIGrfI2vTNSzbCyRIIAyK09Tjtf0GEojacrxlJVH8GQEUX8sdRA1AdTR1qoQYuofXfQAAAAAgEXJZBZ+DAAAAAAsNwRQAwAAAAAA4BgXC3sBAIDGLVUAdSAIopak/k39SzIHahfUIKh5vaGTjQjGT8VScoyjrW/ZSi+EiB5Y3qg/6AHQAwAAAAAAAMDy5vmeBg/epOH1xdtG0oqcNJqqfYzSIOp6rMhpJt5wuFca7H5It46eJFdO1f3QAismpbSVZGVUX7j4Qoo1L46tqUnpyHgTR0dTUP9lr19rpKlXacvaHyplXGWsp6zxGhhpdvckrauUdeVYq60HLlL/kTWS6IGoKa2/X/H3+/Tf42oqXLjuWFH/iGtOD1h6AAAAADgWTUxI2Wzl+wuF1q0FAAAAANoBAdQAAAAAAABYBgihBoA2tdQB1AGCqKMlqMG7b3v3kodOBsayYzLG6O+v+Ht6IALogeWN+oMeAD0AAAAAAAAALF+u42pzZpMesMPyjZSJSePJYjhg5dDBxXNscR4jKVUo3t78+Aq56fzSTYqaDKX3asvaYSV9R902rlG3uTWxknq8uJLW0Za1P5TyefWPb2jqHGgc9UegP7tOyvfp3RvubzCAer6s8ZSVp79/4VXqH18nqUpoFUIV1H/LCcPyywUNmxouTC9z8bojo60v9FH/NrDoHrDlQ6jpAQAAAKDN5XKzg6Zdd/5jCDMDAAAAgCICqAEAAAAAALBMOGEvAABQv1YFUAeCIOqhPUMtmQ81aPV5I85TRQ89sLxRf9ADoAcAAAAAAACAZan/YV9bv71CWVcaSx7d7izRa3il444lpawrbf2mq/49SzMfajeU3ls5bHIJ+LLacsKwhtJ7WzIfqqP+AEr1j2/Q1hf65Kg5F8cfDR8meL5d0AMAAAAAAAAAAAANIoAaAAAAAAAAywgh1ADQZlodQB0giDoagvonY0l1J7tbMmd3slvJWJL6RwQ9sLxRf9ADoAcAAAAAAACAZe7gQSkeL3tXs4OoK47nOFI229zJUJe5AcQZ42nMzTcpdvIoI2nMzStjPEkEEUcF9cdcQU8kraOkbc5bQoOxqHn76B/foDccOa4pY73hyHGED7chegAAAAAAAAAAAKBOBFADAAAAAABgmYmFvQAAQO3CCqAOBEHUktS/qT+UNSxnc+ufiqUkSWPZsSWbszvZPTMP9Q8fPbC8UX/QA6AHAAAAAAAAAAx179OWC8eU9I26s1ZjyaP3NfsSNCvNCrXtzkpJT9ryc3np25PqP3y4yTOiFkOr92tL7yPypwteDCAuSFq6Hhhz81LBKmXdYhBx7wPS1JT6X17f5BmxEOqPuUp7YsrxNGV8GWlRoeRW0pTxlTQFdfguNW8T2497QTvTe9XhO0pZt+QeqwWPECUXsmeMp53pvXpz8lENvnTCkqwVS6NiD9iZ/yvPih4AAAAAjkUTE7M/TNBaaXxcSiSkVCq8dQEAAABAVBBADQAAAAAAgGWIEGoAaBOe72nb7m2LCqA2MlrbuVYHJg/INnj5oW99bdu9TVeedaVcx114BzRFpfrXGz7pGlee9Wp6bGnoZID6h4ceWN6oP+gB0AMAAAAAAAAAPN/Ttg0vyjeSfKtUMXdWY8np7MAmXxtnjSRbDDLtzmpmPt9I287J6crn83IXFXOKenmy2rb2efmykpUyjq+x2NEA4qUIIZamg4hjBakgpXxHvqRta5/XlS+upgdaiPpjrqE1B7Rl42PyZTVlfI3OCSRvpDqlvTTqFiQrdVhHWzY+Inm++g+ubcLK0Wzb147o2jP2KG+sco4/8/d1xkLNMH0xe+lx5dozHpI8X4MHepdo1Wim6j1Qw28IegAAAAA49nie5Je859T3i6HUwVc6Hd7aAAAAACBsBFADAAAAAABgmXIWfggAIApcx9X2q7arr7evof2NjPrW9+niEy5W3/o+mQYvBOzr7dP2q7YTOthi1eqfiqXUnexecIy4E1fcjSvuxBd8bLnQSYn6h4keWN6oP+gB0AMAAAAAAAAAXMfV9gOvU9+Bo2/3SRWkVL72AGojybG1B5NaUxw/CKCWpL79Rtt3dRM+GwJXRtsfOVd9EysWFUBcT+VKxx6LFZRxfPVNrND2R86lB1qM+qPU0JoD2nLGdAC142s0Vph1fyPB5OX2GY0VNOX48mW15YzHNLTmwCJWjaWwfe2Irj2rGD4cCP6+1qP0uCJJeWN17Vl7tH3tSNPWiqVBDwAAAACoWy4nTU2FvQoAAAAACIcTwZgdAqgBAAAAAADQIhF8dQwAUEk6mdaOq3fUHUQdBFBvWLlBkrRh5YaGgqj7evu04+odSifTde2H5qhW/1QspaSbrLhv3InPhEW6jls1fDLpJiuGTlL/cNEDyxv1Bz0AegAAAAAAAABAetMF2nGLq779xdtTMWkyUdu+RlKQTWjqCKKeTBTnkaS+EWnHTimdWFnPstFEaS+mX9vfq0nXk9R4AHGjQcSTrqdf29+rtBerYwQ0C/WHtHAAdaCe/qj2WIKoo6tc+HCgnhDiueHDAUKIo48eAAAAANCwTCbsFQAAAABA6zlO9AKfo7YeAAAAAAAAHNMIoQaANlNvEPXcAOpAEETtmNp+FRA6GA2V6p8pZJT1smX3KQ2dDAThk+WCyLNeVpnC7DcUUv/oqLcHjEzVHiiHHoiuuutvqP+xptm/B8qhB6KNHgAAAAAAAACWuRNPVPpIXjv+RVo7IY3O/zy5skoDqGe21RFEPZoqzrdjp5TOWClZ+UPxsLSG1hzQh097UqsKcTnWNBRAXOl2NVaSY41WFeL68GlPEkIbEuqPWgOoA7UGUS/0GIKoo6da+HBgLFZQ1lQPIc4bWzZ8uPR+QoijqdYeqHa/JOVM+QDqAD0AAAAAtCljZn/N5XnltwMAAADAsYoAagAAAAAAAIAQagBoR7UGUTvGKRtAHdiwcoPe++r3LhhETehgtMytf6aQ0Vh2rOxjO+Id80InA67jKu6WD58cy47NhE9S/+ippwfi7vzg0YDruOqId5S9jx6Irnrq3xnvrH4MqBBAS/2jrZ4eSLiJqj2QjJUPCaEHoq2u3wNlAqgDruNqRXxF2fvoAQAAAAAAACDCrNVtZ0qPHtfaaR89TrrtzNbOidk8WW3rfUG+rDLGV2GBUMlKXNtYuEzBFOf1p9fh1RWBjMWi/ijtgVoCqEuVVqu0B2oNqZZmB1HTA+GqJXw4MBHzKj4ub6yyTvWQ6uBxhBBHSz09MOX4VXtgwqUHAAAAgGOStbO/5gZOx2KEnQEAAABYXqL2b6CorQcAAAAAAADLQizsBQAAGhOEDw7sHNDwyPC8+x3j6DM//xntfGhn1XFee/JrdUHvBdpyxxb5dv4FJYQORlNQ/0u/cqmG98+vvyR1J7vlW19ZL1txHNe46kp2lQ2uHMuO6dSeU6l/RNXaA5lCRrbKhZ9xJ65kMkkPtJla62+MUcGvfOGx67jqinVpPDs+7z7qH2219kDOy8mzXsVx4k5cHbEOjgFtqJYeWJlYWfV5gCQlYgl1O930AAAAAAAAWHIHDhzQvffeqyeffFLj4+OKx+Nas2aNzjnnHL361a9WPF7+Q/PCMjIyoqefflrPPfecXnzxRU1MTCifzyudTqu7u1unnnqqLrzwQqXTS/O6yeHDh/XQQw/p8ccf16FDh3T48GF1dXVp1apV2rBhgy6++GJ1d3cvydyIuOef1/Y+o2t/wSrvSI6V/BryZK0kGak0f9Ca2oNHHSvlHenaK4u3B0cnpKmpOhePxXIlbX/gNL3up36sB1fm6t7fSkr5RnFrlDdSxqn/gsbRWEEnH+7Q9gdOk+tl6t4fjaP+oAcgSdt7X9S1Zz5VU/hwIOv40nTtA8UA6trHyBura8/cI+WyGhxZV9ea0Vz0AAAAAICaZLNSoeR95I5TfE03Hi8GUHd0hLc2AAAAAGi1uR/MEzYCqAEAAAAAABASQqgBoI1VCqJ2jKOtb9mqN53xpgVDqCWpf1O/JM0LoiaAOtp2PbVL+yf2K+7Elffzs+7rTnYrFUtpMj+54DipWEqS5oVPxp249k/s166nds30CKKllh7IFBa+6JMeaE+11H+h8FmpWH8jQ/3bUC09kPMWvvicY0D7WqgH4k685uOARA8AAAAAAIClsXPnTn3+85/X9773PdkKF8+sXLlSv/Irv6IPfehDOvPMM1u8Qml0dFTf/e539b3vfU/33HOPfvSjH+mll15acD9jjF75ylfqHe94h97+9rdr3brGg9jGxsb07//+7/rP//xP/ed//qcee+yxBec+77zz9I53vEObN2/W6tWrG54b7WX7c7fr2v/pK+8c3dZIEHW9AdSBvDsdRL3roAbz62tfOJrmtrUH9UjXIgLArWovfgWPdE3pttUvafCFNYsbCHWj/qAHlrftJxzUtec9o3wDAeJZx0qepkPI6wsfDuQdq2vPe0ryfOofEnoAAAAAQM0KBcnzjt72PCmTKX51d0upVHhrAwAAAIBWIoAaAAAAAAAAmEEINQC0ublB1EEAdf+m/poCiANzg6gJoI62oT1D2nLHFllrtapjlQ5NHZoJnwyCR+sxN3wy7sS1qmOVrLXacscWSSJ8MmLogeWN+oMeQC094PneAqMcRQ8AAAAAAIBm27t3rwYHB/Vf//VfCz728OHD+tKXvqR//Md/1Mc+9jF97GMfk2nhxT+f+tSn9OlPf7ru/ay1evDBB/XBD35QN9xwg2688UZdd911isVqfyvG17/+dd1000365je/qVxu4Q+VK537Rz/6kX7v935P119/vT7xiU/ouuuuk+M4C++MtpUr5PSBtffPCqCWioHStbKSHEn+Qg+cM76ZE0T9gddN6Zfv7VRC9Fwr5eTrA+cNq+BIRvXnyBpJWdeqo+DqiFtoeIyCI33gvOf1y+Mn0QMtRP1BDyxvQf0bCR8OlNa/UXnHUv+Q0AMAAAAA6pLPS6579LbrSh0dUiwmOY40tYgPuQIAAACAdkEANQAAAAAAADALIdQAcAxIJ9O66YqbdNHfXaS3n//2hgMC+zf16+7n79ZXhr+im664iQDqiApCJ31bvDTcyMyET3bGO+sOHg0E+03mJ7WqY5WMiifWfOsTPhkx9MDyRv1BD4AeAAAAAAAAUffYY4/p0ksv1b59++raL5fL6Q//8A+1Z88e/eM//qPc0nCEiDty5Ih+93d/V9/85jc1NDSkjo6Omvb77Gc/W1NQdzWTk5P6nd/5Hf3rv/6rvva1r6mrq2tR4yG6ErGEPvvAWl376hdmgqitqS9A1Nji442tPbzaSlJJEHXclz77rYQSJ6+tY2Y0Q0LSZ0cu0LUn3qe8Kb5GXGv9g3InraOCU/yeNf7M9lrGMdNfcevosyMXKLGGHmilpap/PWNQ/3BxDFjeytW/XnPr3wjqHx56AAAAAEBdPE8aGzt6OxaTUiXvL81kWr8mAAAAAGglAqgBAAAAAACAeQihBoBjwHh2XO+57T1y5Gj7j7brNSe+pqGAwKE9Q9r+o+1y5Og9t71HO67eQRB1xMwNnQwYGa3uWL3o8VOxVNngSsIno4MeWN6oP+gB0AMAAAAAACDqDh48qDe+8Y1lA6gvuugive1tb9PGjRs1NTWlxx57TP/0T/+kF154Ydbj/u///b9at26d/uIv/qJFq56tq6tLr3rVq3TWWWfpjDPO0Nq1a7Vy5Up5nqfx8XE99thj+v73v6+7775bds7FQd/4xjfU39+vO+64Q2YRFzL19PToZ37mZ/TqV79a69at03HHHafJyUk9/fTTuuuuu/Td73533j67du3SlVdeqdtvv13JZLLhuRFtg48mpb3StW+Tcm79AdRBVxpJaiCIOuFJX7pVGnzSkdYRUhKGwcw6Kf9KXbvxRzWF0JaWOOk7ik/HDsetkayjrFNbCG1p+OyXnn6lBl9eJ4keaDXqD3pgeStX/1pVqn89qH/46AEAAAAANcvni0HUgdI/S1Kh0Nr1AAAAAEArEUANAAAAAAAAlEUINQC0ufHsuAZ2Dmh4ZFjGmFkBgW864001j1MaaGiM0fDIsAZ2DhBEHSGVQidbhfDJ8NEDyxv1Bz0AegAAAAAAALSDX//1X9ezzz47a9vKlSv11a9+VVdeeeW8x//Jn/yJ/uRP/kQ33HDDrO2f//zn9aY3vUlvectblnK5kqRkMqnLLrtMb3nLW3T55Zfr/PPPl+u6C+73xBNP6AMf+IBuu+22Wdu/8Y1v6KabbtKv//qv17WO7u5uDQwM6J3vfKcuueQSOY5T9nE33nijdu/erXe/+9267777Zt1311136ZOf/OS8/544hhQKGnzI0b0n+Pr8a2rfrTSAemabVHcQ9W/+QBr8saSkL01N1b4ANNXg3jVS7mxde9Ye5UxtFyomfacYOFkiLiP5jnI1BlDGrdGXHj1bgwfWSKL+YSmtf366/uW6IAgNtqpe/4VCiI+GD1P/qGh2D+TogbZSrv4LWegYUAvqHx30AAAAAICaZDKzg6bLnXMgBA0AAADAsYgAagAAAAAAAKCi8lcsAgDaQmkAdakgIPDrj369pnEqBRoGQdTj2fGmrRmN8XxP23ZvW1TopJHRus51MvMuL6+db31t271Nnu81PAYaQw8sb9Qf9ADoAQAAAAAA0A7uvPNO3XLLLbO2JRIJ3XXXXWUDqCUpHo/r+uuv11/8xV/Mu++6665ToTQgYYnceOON2rVrlz74wQ/qwgsvrCmAWpLOOOMMfe1rX9Nv/dZvzbvvU5/6VM3zn3DCCfr85z+vffv26Ytf/KL+x//4HxUDqAMXXHCBvv/97+vNb37zvPs+/elP6/nnn695frSZeFxDZ1ntPFfqztS4T5kA6kAQRF2L7oy08zxp6GxF74K9ZWjwQK+2Pn7mgo+zkmK+mRc8GYhbo5Tv1NQGWx8/U4MHeutbKJbE4IFefenRTYrbyq/6B9u7PLdq/Tt8Z9bjy41TDB7dRP0jpJ4eSJUJnw3ErVGX5856fLlx6IFoKa3/QhY6BqT8hd9GTP2jp54e6KjxGFANPQAAAAAAAAAAANpC1N7PQgA1AAAAAAAAIoYQagBoU5UCqAO+9fW73/xd7T28t+o43332u2UDqAMEUUeD67jaftV29fX2NbS/kVHf+j5dfMLF6lvf13D4ZF9vn7ZftV2uU1v4ApqHHljeqD/oAdADAAAAAACgHXz84x+ft+3666/Xq1/96gX3/e3f/m298Y1vnLXtiSee0D/90z81bX1LwRijz33uczrllFNmbX/66af1wx/+cMH9f//3f19PPvmkrrvuOnV0dNQ1dyKR0D//8z/r+OOPn7U9k8noX/7lX+oaC+1j6PSctrzFqmCkqXiNO5nKOdN2+v5aTMWlgpG2vFUaOpuL5MI27hZ0y9oDShcWfr224FjlTfma5Y1Vxln4AxDTBVe3rD2gcXfpPxwAtQkCSGMV/jpaSd2FmBILBJTGrVF3IVbxOBGzIng0omrtgdgCPZD0HXqgDdUSQtxdiCm5QMh0bPoYUAnhw9FVaw8sFFSdoAcAAAAAAAAAAMCxgABqAAAAAAAAYEGV3zUMAIishQKoA771Nby/+JgNKzfMu3/v4b36r2f/S3Gn+tXJQRD1jqt3KJ1MN75wLEo6mdaOq3fUVPtSQehk0APB96A3atXX20cPhIweWN6Wov624mXE81H/8HEMAD0AAAAAAACi7KGHHtJ3vvOdWduOO+44ffCDH6x5jE9+8pO68847Z237m7/5G73jHe9oyhqXSjKZ1NVXX60///M/n7X94YcfXjCA+01vetOi5l65cqU++MEP6nd/93dnbf/Xf/1X/c7v/M6ixkb0eL6nbWdOqGCkQx1Sro7PirNGki3mTSc9KesWw0kXyCScJecW5101JW0739OVI67cBj/wDosz7hY0cOZDeqDriKbchQOkraSs40u+MyuIMm9scXsNplxfD6w4ooFzHtKOx/qU9njbWRRcMd6rs6ee1YOdRxYxSvW/x2dPrdAV471SjJpHUVN6YIFDOT0QXYOHTpSecHXtGQ8pb2Yfz7sLMaWsO297OSnrSgVpLDb7gwbi1tGXnjhXg4eO593GEVVLD0waT5U/kqSIHgAAAAAAAAAAAG2NAGoAAAAAAACgJrwlGADaTK0B1AErWzaIeu/hvRreP6yOeEdN4xBEHQ31hk86xpkVOhkIbj/44oM1zUvoZHTU2wPGGJ2/7vyKPfDIwUdqmpceiIZmHwNqDaCl/tHRyDGgb13lHnj4wMM1zUsPREfdPTAngDoQ3H5q9Kma5qUHAAAAAADAQm6++eZ52971rncpkUjUPMZFF12kiy66SPfdd9/MtrvvvltPP/20Nm7c2JR1LpXTTz993rZ9+/a1ZO63vvWt80Kon3qqttd90F5cx9XfHPoZ9Z34r3UFUAeskTpzUjonjSekidr/es7IuVLekf7m7uPkvpLXC8Mw7uQ1cPI9eiB1RIfcvHKmtgsXZwVRy1FevrKOX/NHluaM1aFY/mgQ9bOXKO1X/8BrLK2gF0YSOU3nzM9iVQwT7fRdmSopw3n5yrjle8FIGknkqHlEBT2wP5FXzBoVyhwPxmIFJab/3leSNVYTTqHsfTFrtD+RpwcibDC7Uno+pWtPvE8548tI6vbiSskt/iU2ZuGL7o1RSjHJMxpz87KSEtbRl56/SIPZk6WVLfhB0LCFe0CqnjZffBA9AAAAABxjxsfDXgEAAAAAtAYB1AAAAAAAAEDNKl9ZAACInHoDqANBEPXew3slHQ2gtjVfTloUBFGPZ3kzWpiC8Mm+3r6qj3OMo18971fnhU4GNqzcoJ864afkmOpPBwidjJ56euCnTvipqj3wv877X/RAm6mn/u999Xur1r9vfR/1b0P19MBlp15WtQfe+oq30gNtqNYeMKZ8AHVgw8oN+vBPf5geAAAAAAAATfHv//7v87ZdffXVdY9Tbp9yY0dNJpOZt62eAO7FOPnkk+dtGxkZacncaC3P9/TuM/foyCJaazIujaaK3xt1JCm9+w2H5dV5vhmL58lq8KQf6IHUqA65uZoDqANBEPWU8eoKoA7kjNUhN6cHUqMaPOkH9ECIgvDh+1OHdCCWq1gJX9KE4ykvv+z9efmacvwK9xZ75kAsp/tThzRw8j0ad/JNWD2a4Wgg/ahG3bx8Y+dFzFod/XtfrQcmnMLMY0sZSb6xGnXzeiA1Sg9E2ODYydq69wIZSR2+q5Rt4NMqJKWsqw7flZG0de8FGhyb/zwT0UQPAAAAAAAAAACAZYkAagAAAAAAAKAuhFADQJvwfE+DtwzWHUAdCIKo733h3oYCqAPDI8MavGVQnu81tD+aY6HwScc42vqWrXrV8a+qOs4p3ado61u2VgyfJHQyumrtgVO6T6k6zoXHX0gPtKFa6//ak19bdZwNKzfoz3/+z6l/G6q1B16x+hVVx9l03CaOAW2qlh64/vXXVwygDly28TJ6AAAAAAAALNrExITuv//+Wds6Ozv1qldVP09Rzute97p5277zne80vLZWuffee+dtO/3001sy9+Tk5LxtHR0dLZkbrXewQyos4t0+1khTseL3RhUc6WBn4/ujca6Mrhk9UaNuvu4A6oCV5JlG3zFQDKIedfO6ZvREufMib9EKtQZQByqFEOfl1xRGThB19MwNoM6bYm3L1bJaEHVpD1TaV5LyxieIOuLGnbxu6dmrpHU15XjKmMbe15UxnqYcT0nr6paevdS6jdADAAAAAAAAAABg2SGAGgAAAAAAAKgbIdQA0CZcx9XmCzZXDAishZXVi5MvNhxALRUDDTdfsFmu4zY8BpqjUvhkEDzav6m/pnH6N/WXDZ8kdDL66IHlrVn1v/KsK6l/m+IYgIV64OdP+/maxqEHAAAAAADAYu3evVu+PzvU8NWvfrVisVjdY1188cWKx+Oztt13332LWt9Se/zxxzU0NDRrWyqV0utf//qWzP/EE0/M23b88ce3ZG60luu4+t+X/G81mD3cNMZK//vAGQQQh8CT1VdXPTcTONuoxbZQ3vj66qrn5C16JNSr3gDqwNwQ4loDqEv3J4g6GioFUC90VKjWA9X6IBiXIOroCnrino6XlZ0OHh5z83WHEGeMpzG3WNes8XRPx8vUuk3QAwAAAAAAAAAAYNkhgBoAAAAAAABoSP1XfAIAQhOESW65Y4t8u7iLShtRb6glll4QPjmwc0DDI8MN12hubxE62T7ogeWN+oMeQLUeePKlJ2sehx4AAAAAAACL8cgjj8zbdsYZZzQ0ViKR0Iknnqinn356ZtuTTz6pQqHQUKj1Unvqqad0xRVXKJPJzNr+rne9Sz09PS1Zw86dO+dtu/jii1syN1rL8z19+Se3ygv5I+c9R/py/CFd8829cm3ELuo71hmrvb0vy18R7jJ8SXszB6TvfFuiB1rGM1aDbxnX/U5OB9z6w8SDEOKC78tzGtv/gJvT/c5+DXb+u269I80xoMWCHnjAyWvUWOUlyUp+jWVotAd8SY4tBlePmqwecF6kByJiPO5r4E3juide0JhjZxV1zMlLuYJcKxX/r7KM72ksMX//e+IvamDFHdrxjbTS+ZCfgKCsWnpAvlT1U0x8o4wK9AAAAABwrCkU5t/ev19KpaSVKyWH5/gAAAAA2hQB1AAAAAAAAEDDoneFJgCgqrCCqAmgjq4gfHLwlkFtvmBzwzUK9tu2e5u2X7Wd0Mk2Qg8sb9Qf9ADoAQAAAAAAELZnnnlm3rZTTjml4fFOPvnkWSHUnufp2Wef1WmnndbwmM2UzWb1wAMP6Oabb9YXv/jFeQHUGzdu1Cc/+cmWrGVqakr/+I//OG/72972tpbMj9byfE8/2PsDyaj+9Ngm+0FvQV4hJ9cnqKSVPMfXM+nWf2B1Oc+kfXqgxVxJVz7h6t9OaTz720oNBVDP7G+kAx3Fdbi5wsI7oKlcSdc84urOk3IKsmBrDaAONNoDvpkOonak0aTVNY/QA2EbT1gN/PyE7lk/HSBdxljCqitffZy8kSaq7H/P+oIGfn5MO27vUjoXsQv6l7laeyDlVc8hzxmryXj5++gBAAAA4BhirZTJFL8mJ6X168NeEQAAAADUjwBqAAAAAAAAYFEIoQaANtTqIGoCqKMvnUzr1oFb5Truosbp39SvK8+6ctHjoPXogeWN+oMeAD0AAAAAAADCNDIyMm/bSSed1PB45fbdv39/S0Oo/+M//kMf/OAHZ20rFAo6fPiwXnjhBRUK5UMXX/GKV+ib3/ymuru7W7FMfepTn9KLL744a9sJJ5ygt771rS2ZH63nWS/sJUiSvIhd07ecROW/fVTWsZzkHF8f++lMMYh+ERZ9CayRPvbTGf0/e+JKEELeUp6xuvmsvDoLRmMJW3cAdaDRHgiCqDsLRjefldc1jyXkNpqIjkUZT1gNvHVC9/RWDh8OTMSlhCfFyzwsb6RsTDJVhhhLWN3T62ngrROEEEdIPT0wFZOShSo9EKcHAAAAgGUnl5PGxsJeBQAAAADUJ2oB1FFbDwAAAAAAAFADQqgBoE21KoiaAOr20aywSEIn2xc9sLxRf9ADoAcAAAAAAEBYXn755XnbVqxY0fB45fY9ePBgw+M1YnR0VMPDwzU/vqurS7/5m7+pG2+8UV1dXUu4sqN++MMf6pOf/OS87X/0R3+kZDLZkjXU6q/+6q/013/910s+z5NPPrnkc4QpEUvo/Re/X3/2/T9dfIjsIhhJ7x9OED4bgoTv6P3DCf3pRblFBxEviqUHwpDwHb3z4bg+c1FOYeb+Giu982ECqMPgWqPNDyV0/7opHY6r4RDqxXCs1FGQNj9EAHVYqoUPW5X/9ZCNSZoTQhwEUJczdxxCiKOFHgAAAADQFJOTYa8AAAAAAGoXtcBnYyR/6fIdAAAAAAAAgKVCCDUAtLGlDqImgBoAAAAAAAAAAAALmZiYmLeto6Oj4fHK7TsZ0TAEY4yuvfZa/cmf/InWrl3bsnkPHjyoX/7lX1Y+n5+1/Wd/9me1efPmlq2jVgcOHNDDDz8c9jKOCVsu2aK//M5nlHHCu5AtWZC2PNojdfK2ozB89Mcp/cuZL+rpdHg9sPGwo4/+eLXUSQhxq0Wh/qdQ/1Bd/lJK66dy2tdVCGV+z5HWT7m6/KU0PRCC8bivgcsP6Z515cOHrSn+YdYl+NM3sjHJKUhx3yjv2Krhw+XGmQkh/p8Z7di1Suk89Q9DQz0wjR4AAAAAljlnznN435dcN5y1AAAAAEA9CKAGAAAAAAAAmoarwQCgzS1VEDUB1O3H8z25zuLfBNiscdB69MDyRv1BD4AeAAAAAAAAYZkbhCxJqVSq4fHKhVDncrmGx1tK1lr9/d//vb7+9a/rve99rz7wgQ9o5cqVSzpnLpfTVVddpWeeeWbW9tWrV+sf/uEfZKJ24RWaJlfI6aK/uVDZEAOopWKA4UVXvaTndhyvhE/4YCt5xmrw8pc1mrLFhMgw/rpbaTRlNXj5qG79j+PkWo45rUL9EfTAM2kv1B54Ju3RAyEI6n/P+pzG4hXCh1UmPLikV6ZiUsG3qpQdXHUcTYcQr89R/5A02gPTNyWV74HSKtIDAAAAwDHMdSXPK4ZRGyMt8bkMAAAAAGiKKL4PigBqAAAAAAAAtDFCqAHgGNDsIGoCqNvPeHZcg7cMavMFmxdVt6E9Q9q2e5u2X7Vd6WS6iSvEUqMHljfqD3oA9AAAAAAAAIiaxQQhl9vXWlvmkUvn6quvnjfn5OSkRkdHtWfPHn3ve9/TV77yFT399NOSpBdffFE33HCDvvKVr+jmm2/WJZdcsiTr8n1f73jHO/Ttb3971nbXdbV9+3adfPLJSzIvoiERS+inE6fr1qmXQl2HlfTTLzhK5HxJXFjXSq6kcw66+tcTbTjhs5JkpENxq3MOunLzXkiLWJ6C+t9+Ymt/J841Rv1DU9oDYXWBFT0QlkrHgNLQ4JltZUKIAwWn/K+QWsaRqH+YlqwHbO3jSPQAAAAA0LaslTKZYoBbIiFdeGHYKwIAAACA6qIYQN3i97ABAAAAAAAAzeaEvQAAQHP0b+rX5add3pSxLj/tcgKo28h4dlwDOwd03wv3acsdWzS0Z6ihcYb2DGnLHVt03wv3aWDngMaz401eKZYKPbC8UX/QA6AHAAAAAABA2OLx+LxtU1NTDY9Xbt9EItHweM3S2dmpE044QZdffrn+8A//UE8++aS+8IUvqKura+YxzzzzjH7u535O3//+95dkDe9973u1Y8eOWduMMfriF7+oN7/5zUsyJ6LD8z0dHn8x7GVIkg67njzDhXWt5hmr+47LhX6dpTHSfcfl6IEW84zVw6sLWplTqCHkK3PSw6sL1D8E9MDyFtS/O3e0+OVCg2fuM5ofVm6luKd5d9QzTnfOUP+Q0AMAAAAAmuakk6Qzzwx7FQAAAABQWdhvjCiHAGoAAAAAAAAcA2JhLwAA0BxDe4a066ldTRlr11O7NLRniCDqNhCETg6PDEuSfOtryx1bJKmu+gWhk771JUnDI8Ma2DmgHVfvUDqZbv7C0TT0wPJG/UEPoFoPnL/2/JrHoQcAAAAAAMBidHZ2ztvW7BDq0qDnqDDG6H3ve59e+cpX6s1vfvPMuo8cOaKBgQE9+OCDWrVqVdPm+8AHPqAvfvGL87b/xV/8ha699tqmzYPo8nxP9xeel9ywVyLd32vlnXaaXDlhL2VZ8eRr9/qX5gdKtpiVtHs9PdBqrqQ/fX5C55/0QKjrmEhIf/r8OXJPi97v5mNd0AN9J+1WmWjZlplMGHogBK6k7U8VNND1qO7pPqzRWGHBLghChYNL9Ff4rhK+UU5WR1yv+BhVDh+eO05PIaZLjqzU9qfOknsabz9utSXrgXJh1RXGoQcAAACANjIxIXne0duuK51xhnTCCdKaNdLoaGhLAwAAAICqCKAGAAAAAAAAlgzvAAaAY8Dc0MDFajTAEq01N3QyUFq/WlTqH8Ino48eWN5qqf+KxIoFx/n6o1/XB7/5QerfhjgGYKEe+OhrP1rTOPQAAAAAAABYrDVr1szbduTIkYbHK7dvuTmi4vWvf71uuOEGffjDH57Z9vzzz+vP//zP9cd//MdNmeP3f//39bnPfW7e9k996lO67rrrmjLHUlq7dq3OOeecJZ/nySefVDabXfJ5wuL5nsacfNjLkCSNJSXv0tdKSoS9lGWmoCPuPWEvQpJ0JG6lS18v3n7WOjkV9Hr3L1UIeR0FI73+px/VXu86Jah/S+VU0KXuVnkLP3RJeUa69Kcf03PeFnqgxdKSduh1+iVnp76ln6ighd8rFlwOv1IJJdyY5BZ/e69QQYeVqznO3JWji9yTtKPnaqVfl2zwJ8Bi0QMAAAAAanbokPT880dvJxLSK1959PYx/Fo6AAAAgDZGADUAAAAAAACwpLgCAADaXLMDqAMEUUdbpdDJQFC/XzzrF6uO85Oxn1TtH8Ino6vWHnjF6ldoTUflYI4H9j2grz/6dXqgzdRa/2svvLbqOHsP79XvfvN3ZSucBKf+0VVrD1x0/EWKO/GK4+x5aY/+7v6/4xjQhmrpgRu/faM29mzUhpUbKo5z19N36bN3f5YeAAAAAAAAi7J+/fp5254vDTao03PPPVfTHFHy27/92/rjP/5jHT58eGbb3/3d3+njH/+4zCIvjrrhhhv0qU99at72P/qjP5oVfB1l73vf+/S+971vyec599xz9fDDDy/5PGGyEbnWzkrSSy+JEOpWK8hdZ6QI9IFrzXQP8PazVnHlq/u4mF5yw16J1O3F5L70siQn7KUsKwlJ71zxCn2mq/z5oVZ658QrlDgyGvYylieTk3pychOSJ9UcIGx9K5UEFlvZmv8KG0muJOVz0uhByfL7P1T0AAAAAIBajI1JJecslErNvt9agtQAAAAARAsB1AAAAAAAAMCS4yoQAGhjSxVAHQgCLIf2DC3J+GjMQqGTAd/6+qcf/5P2Ht5b9v69h/fqBy/8YMH+CcInx7PjDa8ZzVVPD/zghR9U7YH/++P/Sw+0mXrq/9c//Ouq9R/eP0z921A9PXDXM3dV7YHbH7+dHmhDtfaAtVbD+4er9sCnv/9pegAAAAAAACzaxo0b5237yU9+0vB4zz777Kzbruvq5JNPbni8Vkgmk7rssstmbTtw4MCiA5H/+I//WDfeeOO87X/wB3+gP/iDP1jU2Gg/HYkOve3gcWEvQ5L0tp+k1EEAdcslFNN7pjaFvQxJ0numNilBAHVLuXJ045FXyw05hdyVmV4Hbz0Mw0cnXqVTvK5Q13CK16WPTrwq1DUsV+Mmp4GeO/VQ7JBW+Ukl5Cx4RDDTXxNOXll5kqSsPE04+Zn7Fto/IUer/KQeih3SQM+dGje5Rf8saAw9AAAAAAAAAAAAjkkEUAMAAAAAAAAtwZVAANCmljqAOhAEUUtS/6b+JZ0LC6s1dDLgW1/D+4uP3bByw8z2IHy2VkH45I6rdyidTNe3aDRVvT0QBJBK5Xsg4dYWDkAPREOzjwFWtZ0Ep/7R0exjQMyp7Z+E9EB01N0Dqt4DXYkuucZdcBx6AAAAAAAAVHPWWWfN2/bEE080NFYul9Nzzz03a9vpp5+uWCz6b2849dRT52176qmndO655zY03qc//emyQdMf+chH9Ed/9EcNjYn2N/TiZeo/uFO3nrm054mr+cVHpKF7eqVLM6GtYbny5OvJ9CF1+TFNOIXQ1tHlx/SkOSQvM0kQcQt58nVz+jGl/bhGnVyNZ/qay0hK+3HdnHhM14yeSP1bzJOvwXV3KSMvtONAlx9TRp4GV35Tt754GT3QQkH9h92Dki3+fVzlJfWym1VO5Z8XBAHDwfFiwskrZz3ljT/rGFL6mLnicrTKS04HFVsNuy9R/5AsVQ8EkQ70AAAAAHCMyeeLXwHHkXI5KR6PZrgbAAAAgOUriv9GIYAaAAAAAAAAx6joX6UJAJinngBqo+onXha6XyKIOirqDZ2UJDN94u3BFx9UMpbUyd0n69mxZ/Xgiw/Our8WhE+Gr9EesNbSA8eAhuqvBY4BNfwOCFD/8DX8e8DSA8eKunvAcBwAAAAAAACtceGFF8pxHPn+0XNXP/zhD1UoFOoOj/7hD3+ofGkogqRXvepVTVnnUkulUvO2HT58uKGx/uzP/kwf+chH5m3/vd/7PX3yk59saEwcI04+We/4N6t/O13KL/z5ck0X96R3DKsYVNJgf6NxrqTN5kR9f8OLmghxHUnraPOBE+UeDnMVy09Q/wdOOCjZuEbdfEuDqI2kHi+uTutS/5CU9kDaxmTla9Jp3YcSdPqO0n5MjkQPhKC0/kfjg20xObjGU35WUs7U2TNWkvVnJnFkqH9IGu0BO+fP9AAAAACwTBw5Ik1NHb3t+9JLLxXDqHt6pDLnNAAAAACg5QigBgAAAAAAAFrKCXsBAID61BNALRXDJ6t+1XgVUhBEPbRnaDHLR4M839PgLYN1BY9KxWDJIGT4hy/8UPc8f49++MIPi/fVUf/A8MiwBm8ZlOd7de2HxaMHlrclq3+dJ+ipf3iWqgfqPATQAyFquAfMAj1QJ3oAAAAAAACU09XVpQsvvHDWtomJCT3wwAN1j/Xd73533rbXv/71Da+tlV588cV524477ri6x/nc5z6nD33oQ/O2/87v/I7+9E//tKG14dgxlHhS777CygvpHT+eI737SmnoZEIHwxbWZZgRvPxzWekf36CtL/QpZV2ZFl/3aqyUsq62vtCn/vENrZ0cM4IekBoIkl2kYD56IDxB/R0ZWVkdcvMqGL/iG4GtVFNYfaXHOJIKxtchNy8rK0eG+oeskR5YSLU+oQcAAACAY5DvSy+/LOVyYa8EAAAAwHLnRDDuhgBqAAAAAAAAHONiYS8AAFC7egOomy0Iopak/k39oaxhuXIdV5sv2KwH9j3QcP2trJ4//Pyi1uEYR5sv2CzXcRc1DupHDyxv1B/0AOgBAAAAAAAQdW9+85t13333zdq2c+dOXXzxxXWNs3PnzrJjt4O777573rbe3t66xvjLv/xLfeADH5i3/brrrtNnP/vZhteGY4Pne/qE+32NxiQ/pCRg30ijKekTm17Slc/l5RJJ3FKerLb1PC1ffk2hkkvBSvLla1vP07ry5XX0QAguH12tRK+R3+J3/vlGSvhGl4+ulvxCayfHLEEPFFrcAwV6IBL6X16vSX+Trj1lt/IlQeRG5YOErap/gECl3yel++SnQ4i/9JML1D+6XhL1DxM9AAAAAKAmnlcMnC697XmSO/3+z8OHw1kXAAAAAEjFAOqoBT5HbT0AAAAAAADAEiCEGgDahOd72rZ726ICqI2MNqzcoL2H98o2eEmqb31t271NV551JeGDLRYEf4cVRO4YR1vfspUA8hDRA8sb9Qc9AHoAAAAAAABE2TXXXKNPfOITs7Z9+ctf1sc//nElEomaxnjggQd07733ztp2ySWXaOPGjU1b51LZvXu39uzZM2tbT0+PNm3aVPMYf/3Xf63f/u3fnrf9fe97nz7/+c8veo04Nqw64smmw12DNdKqSX86pIQA4lZyJV050qN/O3N/qOsYcwu6cqRH7uEjoa5jORp3C3pd3336SWIqlPl/kpjS607/L31n+CKlPd56GAZ6AONuQV895Rl1eo7GYsVzhlaVg4SD+8v9xl5oH5Xs1+k5+mr3M7rihRXUPmT0AAAAAICaTE5KmczR24WC9PLLUiwmrVghGV7bBQAAABASAqgBAAAAAACA0DhhLwAAUBvXcbX9qu3q6+1raH8jo9ee9FpdtvEyvfak18o0eDFwX2+ftl+1nQDqkPRv6tfWt2yVY1r7K5zQyeigB5Y36g96APQAAAAAAACIqvPOO0+vfe1rZ207cOCAPve5z9U8xu///u/P2/Zbv/Vbi17bUvM8T9ddd9287b/wC7+geDxe0xg33XST3v/+98/b/pu/+Zv6whe+sOg14tjxon+4wY8bbh4r6cVkIeRVLE85+frg6U9Eogc+ePoTyqn1H5i4nHmyuvT8+/Vg10So63iwa0KXnn+/vNA7cfmhBzDuFjSw6cca7jqilO+ouxBbMHw4MDdQuNZ9rKTuQkwp39Fw1xENbPqxxl2eB4SFHgAAAABQF2uPfgWh04WCNDYm+by2BwAAACAkUQt8jtp6AAAAAAAAgCVECDUAtJF0Mq0dV++oO4g6CKDeuGqjJGnjqo0NBVH39fZpx9U7lE6m69oPzdXq8ElCJ6OHHljeqD/oAdADAAAAAAAgqj72sY/N23b99dfr/vvvX3DfL3zhC/rGN74xa9tpp52mX/3VX61p7lNPPVXGmFlf3/rWtxbcb+vWrbrzzjtrmqOcbDarwcFBfec735m13RhTNlS6nP/zf/6PfuM3fkN2zgVNv/7rv66//uu/bnhtOPZ4vqdHVmbDXoYk6ZHVInw0JBnjhb0ESdFZx3LiyeqpjqmwlyFJeqpjimNACOiB5c2T1eDZD2m460jDY1hJvmoLH65kuOuIBs9+iPqHgB4AAAAA0DTWSvl82KsAAAAAsByZ+rINlhwB1AAAAAAAAFhmYmEvAABQnyCIemDngIZHhhd8/NwA6kBw+/6RhS/6lwigjpogBHLLHVvkW3/J5iF0MrrogeWN+oMeAD0AAAAAAACi6E1vepPe9ra36Wtf+9rMtmw2qze84Q366le/qiuuuGLePvl8Xp/61Kf0h3/4h/Pu+8u//EvF4/ElXfN9992n6667Tq95zWv09re/Xb/0S7+k9evXL7hfPp/Xbbfdpo985CN6/PHH593/nve8R695zWsWHOfmm2/W5s2b5wVQX3vttfrbv/1bmahdeAWUslaLizBE/awko2j8dzf0QIslZPTaQz36t+MOhr0UvfZQjxI2Kr24fCRk9M59vfr8iXvDXoreua+XHmgxV9LmfcfrgVcckS+rjONrLFZQ8GxxKSphpr/GYgWpEFPKd+TIaPO+4+XapZoVldADAAAAABal9DyE40iJRHhrAQAAALA8Re19UARQAwAAAAAAYBkihBoA2lCtQdSOccoGUAc2rtqoS0+9VF+49wtVwwsJoI6mpQ6fJHQy+uiB5Y36gx4APQAAAAAAAKLopptu0n333afnn39+Ztv4+LiuvPJKvfrVr9bb3vY2bdy4UVNTU3r88ce1fft27d07P0jx/e9/v37hF36hZeu+++67dffdd2vLli3atGmTLrzwQp1zzjlavXq1enp6ZIzR+Pi4XnjhBe3evVvf/va3dfBg+RDQN7zhDfrsZz9b07xvf/vb5fvzX9u59957deGFFy7qZ7r99tt1wgknLGoMRE86b/SSG/5FcOmcpi8OjNgFgsc8oxWeo5cdL+yFaIXn0AMtlpOve7vHQ48hN5Lu7R5Xzlgl5IS4kuXHk9WTnRn1FGIajRVCW0dPIaYnOzPyjORyDGip/pfXSU8YvfvMPcVQ4BYaixVkCjH9/WOb1P/yWg7/IaEHAAAAADTMmKPh011dxT8DAAAAQKsQQA0AAAAA+P/Z+/fouO763v9/ffaem2R5JPmq+JLEITfbSZwQQiiEJpCENhQCIjmY4p4WHDhtD9X6nQWnZfWsrja9fL+rtJTSrw/tH1DTdtWA24AMNEkhJE1JSBNI4ijBuTp3O/FVN+s2l70/vz9GWxpJI81Fo9kzmudjrYk8M3vvz1t5v70lS7NfAwCoC4RQA0CDKhZE7RhHf/W+v9L9r9y/4HGuPfdaXbTmonnDCwmgrm9LFT5J6GTjYAaaG/0HMwBmAAAAAAAA1Ju1a9fqhz/8od773vfq2LFjM5579NFH9eijjxY9xkc/+lF9+ctfXqIKF+b7vg4dOqRDhw5VtP+HP/xhfeMb31BLS0tJ22ezhYPjnnzyyYrWz5dOpxd9DNSXWCSmg9/boAu6j2oiGl4diYx08B8Til2zKrwimlRMUt/hG3XxRT/UqFP9Nycs1QrfUd/hGxXraA2thmYUk/TY4eu17aIf6YwTXgBxmx/RY4evp/8hcCXte/Oduq7lx3oiMhRKGLmRtCWzQvvefKfcjhC/GDWzFaMzLtK3Wrpg+uC4U6sZI61olbyOJVoRJWEGAAAAAJQiEpEymen78bi0evX0/Vis9jUBAAAAaE4EUAMAAAAAAAB1gxBqAGhg8wVRB6GBN11wU9EQamn+8EICqBtDtcMnCZ1sPMxAc6P/YAbADAAAAAAAgHqzdetW/fSnP9XHP/5xPfjggyXvF41G9X/+z//RH/7hH8pxnCWscNqKFSuqcpzNmzfrr//6r3XLLbdU5XjAfPZcntZEyK/2mYhIe97m6wv1dpFgk/jZikElfDfUEOqE7+pnKwa1abg651CU7mcrBtXqu6GGULfS/1Ddu/KkjkVTilqjtKn9xdFRa3QsmtK9K0+qe3hjzddvdr3Jo+rZ8KTi1lW7Jw26mSUPIw+O3+FFFbeuejY+KRlD/0PCDAAAAAAomTEzg95m/7m9vfY1AQAAAGg+9fbaEgKoAQAAAAAA0ORqc9UmAGDJBEHUO7p2SKo8NLB7a7f23LRHjsl9aSCAurF0b+3W9eddX5VjXX/e9YRONiBmoLnRfzADYAYAAAAAAEC92bx5s3784x9r//79euc73ymzwAVFbW1t+uQnP6knn3xSt99+e80CqCXpK1/5ig4dOqQvfvGL+uAHP6iurq6S912/fr0+9rGP6a677tLLL79MADWWXDqb1lfP65fCvj7PSF+9JK20wgtBblaerL7SeVinI5lQ6zgdyegrnYflLXnsJfJ5strb+YokKRLS//pg3b2dr9D/EAQz4MvKhvT/38rKn6yDGait/P5LUsw6cm1tvilwrVHM5r5Hp//hYQYAAAAAVEUsJq1ZI7lu2JUAAAAAWO4IoAYAAAAAAADqTiTsAgAAixcEUe/6zi7tvnx3xaGBwX57n9irfR/ZRwB1A+l9plf3vnRvVY5170v3qveZXsInGwwz0NzoP5gBMAMAAAAAAKAeGWP00Y9+VB/96Ed14sQJ/fSnP9VLL72k4eFhRSIRrVmzRlu3btVVV12lWCy2qLVeeeWVivfdtm2btm3bps997nOSpDfffFMvvviiXnnlFfX392t0dFTWWq1cuVLt7e1at26dduzYobPOOmtRNUuS5eImlMHzPQ1FPdVD3t9QQvIueoukxf3dRXk8ZfV49M6wy5AkPb7yjLyLzpfLy89qxpX0d9qgHZGvKRtSDVkjZSJGf5e4Ve5FvKak1vJnIKwo+gwzEBpX0j5t0U63VwfNcQ1qouwQ4PzL/MvZ0zNWg5GsOpTQFXa99iW65V4UL2ttLB4zAAAAAKAsx45JqdT0/Xhc6uqSavhGoAAAAACaGAHUAAAAAAAAQF3iKiAAWCaS8aQO7Dwg13EXdZzurd26+aKbF30c1E7vM73qubtHvvWrcjzf+uq5u0eSCJ9sEMxAc6P/YAbADAAAAAAAgEawbt06feADHwi7jJKcddZZOuuss3TNNdeEXQowg+d7qs5PARfPN5IXi0lOIuxSmornpzWoVPENa2BQqckZIIi8Vjzr61P27tBnYFApfSp2t+40/12uIbSolpgBJJXQV/1uXaG/U7rs+OHKWUlpefJk9VXTrWSivUYrYzZmAAAAAEDJYrGZgdOuSwA1AAAAgNoggBoAAAAAAACoW7xyAACWkWoFRxNA3TiqHToZCMIne5/prepxUX3MQHOj/2AGwAwAAAAAAAAAzaPefo/r8rKjUNTLpZH1UkezOahj8kP+v+/L6qCOhVpDM2MGmtuwndCn9V05quzCfTvrY7kcGX1a39WwnajwCFgsZgAAAAAAAAAAANQ1AqgBAAAAAACAusbVYAAANKilCp0MED5Z/5iB5kb/wQyAGQAAAAAAAAAQmjq7ZhBoBmmb1QmNhl2GJOmERpW22bDLaDppm9WpOpmBU8xAzXnW1y57hw7qmPo1XnGI8GL269e4DuqYdtk75C3R7ygxP2YAAAAAAAAAAADUNQKoAQAAAAAAgLpHCDUAAA1oqUMnA4RP1i9moLnRfzADYAYAAAAAAACA5tM/0p/7Q51cs9evkbBLaDpDGgu7hBnqrZ7lzlN9hX3WWz3NwJWjVsXCLkOS1KqYXF5+WlOucfQxXap+jSkb0t+/rHz1a0wf06VyDf2vNWYAAAAAAAAAAADULQKoAQAAAAAAgIbAK4ABAGgwtQqdDBA+WX+YgeZG/8EMgBkAAAAAAAAAmlNXR5eiTjTsMiRJUTnqMh1hl9F01pqk3DpJIXdltNYkwy6jqbSYmJJ1EkCcVEwtpj5qaSaucbRC9fF1YIWiBNDWmGd9fVn/FVr4cCCrXB1ejX5XiWnMAAAAAAAAAAAAqEsEUAMAAAAAAAANg6sAAABoILUOnQwQPlk/mIHmRv/BDIAZAAAAAAAAAJqX67j6yq98JXcnzOv3jPQVfYDw0ZBcrq6wS5BUP3U0mwu0OuwSJNVPHc1ok+oj/L1e6mg2VlZGJrRvA4wkIyMrLtwPCzMAAAAAAAAAAADqCgHUAAAAAAAAQEPhajAAABpEWKGTAcInw8cMNDf6D2YAzAAAAAAAAADQ3NLZtP7gvj8IMXZQksmFD/6B7lXaz4ZXR5NyjaP7zCd1RcgB0FeoS/eZTxJEXmP0H8xAcwv6v0PrQ/tewMhoh9bT/5AwAwAAAAAAAAAAoK4QQA0AAAAAAAA0HF4BDABAA/B8T3uf2Luo0Ekjo00rNy3qIiTf+tr7xF55vlfxMVAZZqC50X8wA2AGAAAAAAAAAMQiMX1ixydkgov4QrqWz8joE7pCMScSTgFNLmkSut/s1mYlQ1l/s5K63+xW0iRCWb/Z0X8wA80t6P9WrQll/a1aQ/9DxgwAAAAAAAAAAIC6UG8B1PVWDwAAAAAAAFCnuBoMAIAG4Dqu9n1kn3besVN9x/rK3t/I6JrN12hL5xa9PPCyHnz9QVmV/46uO7p2aN9H9sl13LL3xeIwA82N/oMZADMAAAAAAAAAQJK+cOMXdOjEId15+M7cA0aq4Ed9lbPSTd4WfSH9TkkjNVwY+fa7fToSGw5l7SMa1v7UY/q0tyOU9UH/wQw0u2EN67WWwVDWfk2DGh7rVzKkEHTkMAMAAAAASjI+Lnne9P1sNnff5fWfAAAAABap3gKfjZF8P+wqAAAAAAAAgIZACDUAAA0iGU9q/637yw6fzA+dlDT18cHXHyxr/R1dO7T/1v1KxrmIKCzMQHNbiv6XE0BL/8PHOQDMAAAAAAAAAIB9T+7TD1/64cwHaxxE/UP3Ze079R/aNXR27RbFlK92vqTf3Hiwptnj+ayk34z9QDp6Qp8eOC+kKpoX/Qcz0NyORMa07cJ7dEbZUNY/o4y2xb+mp5+/UZuyraHU0OyYAQAAAAAlGxmRRken72ez0vHjUiQidXRIsVhopQEAAABoYARQAwAAAAAAAA3NCbsAAABQuiB8ckfXjpK2N2Zm6GRgS+cWXbP5GpkSf9lH6GT9YAaaW9X7L/rfaKo9A06J/yRkBupH2TOgIjNgmAEAAAAAAACgUaSzaX3mrs8o42fmPlnDa/wysvrMxoNKi4v4am1cnv7nxidCC58NWEn/c+MTGpcXciXNhf6DGWhuafm65MJ7dMYJJ3w4cMbJ6pIL7+H7gBAwAwAAAACqIpuVTp2SMgV+zgwAAAAACyGAGgAAAAAAAGh4hFADANBgSg2fdIyjT13xqTmhk4EtnVt0/bnXFw2fJHSy/pQzA9efe/2CM7D7it3MQIMpp/+ffcdnF+x/KQG09L/+lDMDN19484Iz8N+2/TdmoAGVMwOFAqgDWzq36A9+8Q+YAQAAAAAAAKBBuI6rLR2Ff95Xa1tSK+TWMvkakqSYHG1KJ8IuQ5K0KZ1QjJee1RT9BzPQ3FwZrc7Gwi5DkrQ6G+P7gBAwAwAAAACq6syZsCsAAAAA0EjqLYBaIoAaAAAAAAAAqABXAQAA0ICKhU86xtGem/bo6o1XL3icC1ZfoD037Zk3fJLQyfpV6gxcsPqCBY9z9carmYEGVGr/rz332gWPs6Vzi770vi/R/wZU6gxsX7t9wePs6NrBOaBBlTIDf3Ltn8wbQB248bwbmQEAAAAAAACgQbiOq//85H/qsnWXzX3S1q6Oy8aT+s+XflGulWQttxreXCv1vXCDzkm31K7hBZyTblHfCzcwA/Q/9P8nzXZjBpr75lrp4AvXa0u6NdT+b0m36uAL19N/ZoAZ4MaNGzdu3Lhx48at3m+zA+KsnXk/larZvyMAAAAANLh6DKCe/W8cAAAAAAAAACUhhBoAgAY1X/hkEDzavbW7pON0b+0uGD5J6GT9YwaaW7X6/6GLP0T/GxTnABSbgZvOv6mk4zADAAAAAAAAQONIxpN6YPcDM4Ooa3hd3WUTST3w8nVK2ljuIkNuNb8lbUxPHr4xtBDac9ItevLwjcwA/Q/9/0Wz3piB5r4lbUxPHL4htBDiLelWPXH4BvrPDDAD3Lhx48aNGzdu3Lg1wm12IJsxC98HAAAAgELq8d8OBFADAAAAAAAAFSOEGgCABjY7fLLc4NHA7PBJQicbBzPQ3Og/mAEwAwAAAAAAAEDzScaT2ty+OXenxtfVbU63KulHa7so5kj6UX14eGMoa394eCMzELKkH9WTh2/U2myspuuuzebCj+l/+JiB5pb0o6GEEE+FD9P/0DEDAAAAAKoiHg+7AgAAAAD1jgBqAAAAAAAAYNkhhBoAgAYXhE9eueHKikInA0H45JUbriR0ssEwA82N/oMZADMAAAAAAAAANJfub3XrzhfurHkAtSTdmTym7s0P1X5hzPD59U/pb9YcDmXtv1lzWJ9f/1Qoa2PavW0nlDW1PQlkjdW9bSdquibmxww0tyCEeE22NmHAa7JRwofrTDAD62oURr8uG2MGAAAAgOXEGGnlyrCrAAAAAFDPCKAGAAAAAAAAlqVI2AUAAIDFS8aTOrDzgFzHXdRxurd26+aLbl70cVB7zEBzo/9gBsAMAAAAAAAAAM2h+1vdOvDcgVBrOND+prr1kHpff2eodTSrz69/Sn+x9vlQawjW/8LxS0Oto1n1Jo/qUxsf16Cbqem6g25Gn9r4uCSpe3hjTdfGTMwAJOn7K9/QGderyVpnXE/fX/mGdg2dU5P1UJp7204oIkdGS/veJEZSRI7ubTvB330AAACg0RkjxWJSe7sU4bJSAAAAAPMggBoAAAAAAABYtni1AAAAy0S1wiIJnWxczEBzo/9gBsAMAAAAAAAAAMvbeHp8OoA65GvrDrS/qfEV56lFsXALaTJpZfXlSG/YZUiSvrz2sP60s1sxXn5WU73mWX3KfUIDStf8NGAlDbhpfersJyRvo7rtxTWuABIzgJx95ind5h5UWn5N1ksbX7dtPiht2KBdljcgqAe95ln1uIc0LsnIyC7hGcHIaDwi9Zx9iL/7AAAAQCM5dkxKpabvJxJSV1d9hskBAAAAqB/1+G8GAqgBAAAAAACAquEqIAAAAAAAAAAAAAAAAKDOeb6X+0M9XFtnJC8alZx42JU0Fc838upiACRPdnIGCCKvFc/6+n/sQxrQRGhTYCUNaEL/T+Qh3WwulWuckCppTswAJGmf36fbdKfSNfyKYCWl5em2yJ2Sotrl7KjRyiik1z6tHnuPxpTRkHKBco6M/CWYCEe5oIlgnZ7IPZKJqttsq/paAAAAAKosGpWcvH+3O059hskBAAAAqB/1+G8GAqgBAAAAAACAquIKAAAAAAAAAAAAAAAAAKDOtcRa9K7N7wq7DEnSu7RZLYbw4VqLmYgu0Kqwy5AkXaBViplI2GU0ncySRIyWx07WgXAwA80tF0B9oKYB1IGpIGod0D6/r8arI5ALoL5LY0pPBUNLWrIzQ/5xh5TSmNLqsXep1z69JOsBAAAAAAAAAICQEEANAAAAAAAANAVCqAEAAAAAAAAAAAAAAIA65zquDh9/JuwyJEmHsyflGl52VGue9fWcToddhiTpOZ2WZwmhrSXP+npGJ8MuQ5L0jE7S/xB41tfzdXIOeJ5zQM2l/aw+q38PJYA6EARRf1b/rrSfDamK5uVZX3vt4zULoC50/CCIeq99nHMAAAAAAAAAAADLhVOHr/8ggBoAAAAAAABYEnX400AAAAAAAAAAAAAAAAAA+fpH+nU81R92GZKk4+6E+v2RsMtoOiOaCC14dDarXD2oHU9+iNGzM3my8kT4aBhM2AVMqpc6mknMiehXdWnoZwEr6Vd1qWJOJORKmo9rHH1Ml2pMmanHljqAutA6Y8roY7qUNyQBAAAAAAAAAGA5cJz6C3yut3oAAAAAAACAZYRXAAMAAAAAAAAAAAAAAAB1rr21XVcOtIVdhiTpyhOu2k1r2GU0nXbTqit1VthlSJKu1FnMQI3FTETv1tlhlyFJerfOVswQQFtrrnH0Tm0OPQDaSHqnNhNAW2Oe9fWi+tWhRKh1dCihF9UvzxJEX2ue9fUtPaVOtSgip2YB1AFfVhE56lSLvqWnmAEAAAAAAAAAABodAdQAAAAAAABA0+EqAAAAAAAAAAAAAAAAAKDOuY6ra47Wx8V217zuED4aAtc4us98UpdpXah1XKZ1us98khmoMdc4+p7ZpXdoU6h1vEOb9D2zi/6HwDWOvmN+Ve8KOYz8XTpb3zG/ygzUmGsc7TO36m3aoEhIL/2NyNHbtEH7zK30PwTBDFyyyO8DFhtkf4nWMQMAAAAAAAAAACwH9Rb4XG/1AAAAAAAAAMsQrwAGAAAAAAAAAAAAAAAA6lw6m9a+80YXfRy3Ctfs7duaUdrPLv5AqMg6tS06QLJSZnJ9hKdNMUVCWjsyuT7ClVBE0ZDOAlEZJUKbQATckPof1rqYq9JOmFkfa7UuAAAAAAAAAACoM6bOfupPADUAAAAAAABQE1wNAAAAAAAAAAAAAAAAANQ513F1yWlX97d6izpOzJPGF/mKoUtOSq4Zk+Qs7kAoiydfu+K9OmSOq0URjZnaB4G32IgO6bh22f06kOqWywzUTH7/Y4ooG0L/Y/Q/VPkzEJWrTAgzELUuMxCS/P67MqGkAbvW0P8QVWMGFhvfwAwAAAAADWR8XEqnp+8bI01MSNGo5Lrh1QUAAABgSZk/NrJ/VOQ3AiUEUGckRatTUnEEUAMAAAAAAAA1Qwg1AAAAAAAAAAAAAAAA0ADOxHJ5g4u5/G6xAdRG0pmYkYaHRQh1bbmSdsfP1/3JVzXm1D58VpLGTFaOL+0ePl9uaiSUGpoV/Qcz0NzoP5gBAAAAAGUZGcmFTgeslfr7c2FzyaS0YkV4tQEAyvL666/r0KFDOnLkiAYHB5VOp9XZ2anOzk5dfPHFuvTSS+XyBgMAAOUCqIOP8wZRlxhAHXxc8iBqAqgBAAAAAACAmiKEGgAAAAAAAAAAAAAAAKhzruPq+uMtenzdSC4JOixWuv71iNxzCKAOw8PR4xoNKXgyMOpk9XD0uLpTW0KtoxnRfzADzY3+gxkAAAAAsGjWSkNDUoTLSgGgXj377LP6wQ9+oPvuu08//vGPNTg4uOD2K1as0HXXXaff+q3f0vvf/345Dr/DA4BmFARQ59+fE0RdRgB1/v0lC6ImgBoAAAAAAACoOX6TBAAAAAAAAAAAAAAAANQ5z/f09Ka4OlKSCek6PGOljpT0dJcrT344RTSxtLL6h5bnZGRCyyE3koyM/qHlOaUVbghms6H/YAaaG/1HtWZgsfsyAwAAAMAyceZM2BUAAPKMj4/rT//0T3XppZdq69at+l//63/pe9/7XtEAakkaHR3VnXfeqQ9+8IO67LLL9Oijjy59wQCAujI7gLrg4xUEUBd7fFEIoAYAAAAAAABCwVtWAwAAAAAAAAAAAAAAAHXOdVztW/Hr2nnkr/XIRmkwLtkyUwSNckHS1kjlXs4XBFBffUTa98xb5F5O8GCtxSQ99uYHdcVZ31W/k5JUfh+l3BxUup+RtMqP6bE3P6iY70tKV3AkVIL+gxlobvQf1ZiBmO+oVRGNKau0U94bijADAAAAQIPJZCTPm76f/+fgeQBA3Th+/Lj+8A//cNHHOXTokH7hF35Bf/3Xf63f+Z3fqUJlAIB6N18Adf7z9vbixyn2L4SMpGipRRVDADUAAAAAAAAQGkKoAQAAAAAAAAAAAAAAgAaQ/G+/pv3v/GvtvFV6ZFN5QdRBALWCj2UEUecHUO+/Q0q+a700NFTBZ4DF2iTp4Jn36ooL7lW/mwt+LOfyTJP3sdz9jKRVXkwHX3ivNmU9ScxArdF/MAPNjf5jMTMQ8x21WleSVatcyVfJQdTMAAAAANCARkakiYnp+7ND3qwl+A0AGsT555+va6+9VhdccIHWrVunFStWqL+/X0888YTuuusuvf766zO2z2az6unpUSwW0//4H/8jpKoBALVQLIBaks7cXjxAutS3qKlKEDX/DgEAAAAAAABCRQg1AAAAAAAAAAAAAAAA0Aje+lYlWzu1/46BsoKo8wOopx4rMYh6TgC1H5U6OxfxSWCxNmVbdfCF68sOoJw9JqWGkM4Mnrxem7KtZdWL6qL/YAaaG/1HJTMwHUA9rdWWFkTNDAAAAAAAANTetm3b9IlPfEIf//jHtXHjxnm3y2az+vrXv67PfvazGhkZmfFcT0+PrrvuOl144YVLXS4AIASlBFAP3y7FJ/88X4B0qQHU+dtXHERNADUAAAAAAAAQOifsAgAAAAAAAAAAAAAAAACUaMUKJVO5QOirj+QComcHTOcrFEA99ZydG0o5+/kZAdQpSRHe874eBAGUq7xYSdvP12ezwHP5CJ6sL9Xsfynof/1hBpob/Uf+DBT7Wp4oEEAdaLWuEv78LyUngBoAAAAAAKC23vOe9+g///M/dejQIf3u7/7uggHUkhSJRPTpT39aP/nJT9TR0THjuXQ6rc997nNLWC0AICylBFAP3S4lZj02O3C63ADqRe1HADUAAAAAAABQF7gqDAAAAAAAAAAAAAAAAGgEb7whnTwpSVNB1DtvlR7ZJA3ENSeBcKEA6qltbG7DOZsVCqCWpFRKmpiQWloW/elgcTZ5K/T/HrtEv7Xx8bn9m1RKwGiwzULH+H+PXaJN3orSE0ux5Og/qjUDjnL9ZwYaS6n9N5q/t8E2WmAb+l+/NnkrdPDwDbri/B+p301LmtvHFb6ruHXkL9C7NhuR63sadbwZj88IoD58gzZ5rcwAAAAAAADAEmlvb9f999+va6+9tqL9L7vsMn3ta1/TrbfeOuPxu+++W6dOndKaNWuqUSYAoA6UEkA9eLs03ys6MpKiqjyAevZxSkIANQAAAAAAAFA3CKEGAAAAAAAAAAAAAAAAGsG//7uUTk/dDYKob/modP+5UjbvWsNSAqinti0QRB2x0pVvzAqgliTfl06fls4/v/LPA1XRu+I1/fHaZ7Xai+ukmyq4TbHw0VK2W+3F9cddz2qN26bu0bMrrBbVRv8RzMAaL6FT7oT8Wc+XEkCcv60KbOtIWuMlmIE6VGr/S0H/G9cmJXTwtV/RFWffpX43NaOHK/yIkjaqlPFULIo8aWOSn9Gok817VFrlxXXwtfdrU2QFrzgHAAAAGo3jSJm8WDljpPFxKRqVInyDDwD1prOzs+IA6sAtt9yiyy67TE8++eTUY57n6e6779Z//+//fbElAgDqQCkB1P23S61FtllsAHX+cYoGURNADQAAAAAAANQVXjEAAAAAAAAAAAAAAAAANIJ77qmPC/Ree01aty7sKppab/ub6ln9lDxrNexm5EhzAkil0sJnF9rOkTTsZNTpST2rfyqNjat76KyKakb10H8EM+D7Vq6kNTamk5H0VC/LCSAOzA4iNpLWZGNyrZUvjxmoI/Qf+TZJOjjybm3bfr/OTIZIr/AcJX1Xki85Vgt+RbBWsr6SciXra9TNfUVZ4Ud08Ol3a1PWkzS81J8GAAAAgGobHZ3xhoaSpKEhyXWl1lZpxYpw6gIALKmbbrppRgi1JL300kshVQMAqDb7R3bBIOrTt0tttSuHAGoAAAAAAACgARFCDQAAAAAAAAAAAAAAADSCgwdn3B2OSztvlR7bIHnOzE2tJBnJlHBNnzVzowk9J3fcnbdK+++Qkqm8J/v7pZMnK/gEUA29606rZ+Mr8qzVgJtVxth5oyWtigeRLhRNaSVljK8BJ63ObEQ9G/uk4SF1n1hdaflYpGr3P9huvsfpf/0JZsD3pzuXcX0ZTfe83ADiQH4QsZGUkSfXz32B8SVmoA7QfxTys3Wn1ZqRRuNSS9ZR0psMoJZyHxcaCutLfm6DpO9KVhqP+GrNSD/zXtOmk/QbAAAAaEhDQ9LExPT9bFY6dUqKRqVMRopwWSkALEdnn332nMeOHTsWQiUAgKUyXxD1qdullTWsgwBqAAAAAAAAoDHxagEAAAAAAAAAAAAAAACgEbzxxtQfgwDqRzZJg4nCIbKlBFEXCqAO9h1M5I4/J4g6nc4FlaDmersG1HPxa/JkNRDxlHHsgiHSUvEg4mL7SlLGsRqIZNWZcdVz8cuS56n7WGe55WOR6D+CGfDzHptwfA1FPEmSU3i3suSHGA9FPMlKiakgYssMhIj+o5BgLhwZrUk5cuWWd4BZXwiSnqsVnuTI0G8AAACgkWWzkp/3L0jfz4VST0xIqVQujBoAsOyMjY3NeaylpSWESgAAS2l2EPWx26VkDdcngBoAAAAAAABoXIRQAwAAAAAAAAAAAAAAAI1gYkJSaQHUgYWCqOcLoM7ft2AQte/nQkxQU56s9m46Kc9YDURLCyAO5AcRR3yjrGOnHi9lX2kyiDjqqTPjau+mk7r5SJvcBeONUU30H8EM+LJTjZlwrYai3tQ2vmaGCBeSPwOFBHMVBBoPRT0pIyU8M7UGM1B79B+F9J41qJ7tR+XLyrdWQzGr1qw3FRw+ZcETvp3x/ITjayxi1ZHOTVTP9tdyQdRvdlT/EwAAAACwdDxvbgh1IJ2WBgZqXxMAYMkdPnx4zmNnnXVWCJUAAJZaEET9xu3SqhquWzSA2vD7IwAAAAAAAKCeEUINAAAAAAAAAAAAAAAANALPKyuAOlAoiLpYAHX+vvMGUaOmXEl/9/gGXXH9C2UFEAespJgntfpGY9Yq7Za3r5QLIs4aq797fINcv9wKsBj0H66kfT/drJ1vf0197eMFA4il6a4Uury7JWsUs0ZpXxqPzO1ffld9zQoilquEZ7RjqEX7frqZGagx+o/ZejcMqeeyN3IB1LIajPnKOLkgaqU1K4h6oV5NT8uE42solpumwZivjnTuGD2XHZWsVfcb7UvwmQAAAABYEtbmbvn3842N1bYeAMCSy2az+u53vzvn8auuuiqEagAAtWBvlzI1XK+kAGpeSwIAAAAAAADUNUKoAQAAAAAAAAAAAAAAgAYwHPXLDqAO5AdRlxpAnb/vnCDqTC0vZYQkecbqt3ccketLjpWyhRJGi8i40qjxlXWKbzubleRayfWl395xRAd+skmuraAIVIT+Q5KSGWn/T87Sde95VX0dqanHZ1/KXSiIOAgglpT7mJ0ZRFwoUnhGEHHE07kjce3/yVlKZv0Cq2Kp0X8EejcOq+ey48p1YjqAOjAU86eDqK0tnEoemNwtP4Bayr3xwJwg6mxW3UeTS/AZAQAAAKi6bHbhEOrZ9wEADe973/uejh07NuOxVatW6Zprrgmporm+8pWv6G//9m+XfJ0XX3xxydcAgNCZ3A//o6pNEDUB1AAAAAAAAMDyQAg1AAAAAAAAAAAAAAAAUOc839OuWyoLoA5Y5QKoK5EfRL3rI9KBPksAbY251mj3y+16aM2YvAr2D7oVBBAblT9HnnKhlLtfbqf/NUb/Ebh3/aiOJbKKWqOMsfNGAef3Nz+AOBAEEU9EbMEA4kAQRBy1RscSWd27fpQQ2hCV23+jhfs/Tv8bTu/GYfW89bh8UziAOhAEUZdytp4dQB2YEURtjHreelySmAEAAACgEc0OnW5pIYgaAJaRiYkJ/f7v//6cxz/5yU8qEqmfKIGTJ0/q6aefDrsMAGh8ZuZP/5c6iJoAagAAAAAAAGD5cMIuAAAAAAAAAAAAAAAAAMDCXMfVtlOOBuOVBVBXg5U0GJe2nRABtCEzprRQyanty3x8vm0Nba8L9L95BeGzMkbJtCn69cBKinqaE0AciFmjRLa04yTTZiqEtnfjcAXVY7Eq6X+iQAB1IGaNol7x7yvof/0oFkDta2Y/h2K+0gUCqvOlHDsjgNpOHicQBFH7svKNmAEAAABgOYjHpRUrwq4CAFBFv//7v6/nn39+xmOdnZ36/Oc/H1JFAIAlM88vbYsGRVeopOMSQA0AAAAAAAA0jPp5+1IAAAAAAAAAAAAAAAAABXm+p/vOC7uKnPvOk7yTEbllRdhisTxZ7X3LsOK+o5VpzQiMLEfUNzMCK0uVCyF1FPcd7X3LsG4+sYoZqCH6j2AGgvDZ4VjxPhpJGVdKW6uYNTIy2j4c16FkSlZWaWM1EbEyKh5EPByz6khbyRhmIASV9n8iYqWs5u1/xhX9bxCzZ6BQALU03cugO6MRq5YFZmAiMn0Mm7e/L8mZ/HMQRN2RdpgBAAAAoFG47sxwOseREgkpEsmFUMfj4dUGAKiqb3/72/ryl7885/EvfvGLWrt2be0LAgAsnSLvGhyVlKniciUFUNuw3kYdAAAAAAAAQCUIoQYAAAAAAAAAAAAAAAAawGo/oZg/prRbPCyyEGOlhCdNuJKtIDPQSIr50uoJI7W0SAQP1pQrad/PL9QtV7ygBzrPlBQaGrDKdavVcxS1RhlrNeb6Zc1REGZ61UCr9v38ArktvPSslug/Zs9AxrFTZ+H5ehnMyXjEymSNPnVkjd421KZH20f0tU0nc49r4RDi4PkghPbdAyuZgRBU2n9p4f4H29H/+ldoBgKz35ZgdhB1sXNAsM/sOSgURM0MAAAAAA0inc4FUQeiUamtLfcxFguvLgBAVT322GP69V//9TmP33LLLdq9e3cIFQEAlkyRAGqpugHUwfEWDKImgBoAAAAAAABoOLwCGAAAAAAAAAAAAAAAAKhzruPqX0Zu0i3j39YD56jsIGpjpY6UlMhKExFpMF5eELWRFPOkd78q/cuP18u9dF25nwKqwclI0VclY2QmJ6CcIGLP5K5N9crYT5oOIZUxUjQmrV4j+QteboqlQP+RNwMqYQbyn7OO0ZkVUZ124jrTkpJ1TMHtCh1jaktmIFwV9H8qYJj+Lw8FZmB2AHVgdl/nmwE7z/aB/CBqZgAAAABoIMZIo6PT92MxacWKudsAABrWSy+9pA984AMaGxub8fjFF1+sr3/96yFVBQBYEiEEUOcft+BvBAigBgAAAAAAABoSIdQAAAAAAAAAAAAAAABAA0he/359+39+W7d8VPrxZBB1KfIDqKXcxw6VF0QdnQyg/va/SMlLNkrxeCWfAhbBk9Wucx7VoZYRdXpR9bsZpc180ZNzGUkpx1dGRr6spuMri7OSotZRpxfVodYR7Tq/TwdefadcEVRTK/QflcxA0OOEdeTK6I7Vx/R46oxeio/KlVHcOkoZv+gs+JJizECoFtP/+AL9nyjhPEL/60OlM2C08AxwDgAAAACWqWhUcvN+gOzO+mFyhMtKAaCRHT16VDfccIOOHTs24/HNmzfr3//937Vy5cqQKlvY2rVrtW3btiVf58UXX1QqlVrydQCgJkIMoM4//owgagKoAQAAAAAAgIbFqwUAAAAAAAAAAAAAAACARvDLv6ykjenrB9La8VtSf2tpu7VmpgOoA4ms1OpIo7HSjtGWkr5+QEqmJK1fX07VqBJXRrsHztXBlj55JccHz1U8anJhzmQdBE/WFv1HNWbASnoxPrqoOpiBcNB/MAMAAAAAqqqlJewKAAAVOnHihG644Qa9/PLLMx7v6urSj370I51zzjkhVVbcZz7zGX3mM59Z8nW2b9+up59+esnXAYAlVwcB1PnrRCUCqAEAAAAAAIAG54RdAAAAAAAAAAAAAAAAAIASbNig4QvP0advlmK+FPOK72IkjUeliVlvVT8RyT1eSnxgzMut9+mbpeHVbQSUhKh7eKO+8OYlGnAzyhq/rBd/zb4UtJxLQx1JWeNrwM3oC29eou7hjWXsjWqh/yh3BszkLWV8ZYw/47mM8ZUy/tQ2C2EG6gP9RyUzIC08A/nbzYcZAAAAAJaZ1lYpkQi7CgBABU6fPq3rr79ezz777IzH16xZox/96Ee68MILQ6oMAFB1dRRALUkvSDK313BBAAAAAAAAAEsiUnwTAAAAAAAAAAAAAAAAAGEbTg1r57Un1ZfIhQWuGpf6W6S0W3h7I8lMJs0OxXMfE9lcAHVw39jchvMF0sa83DpGUl+XtPPmlPZnXSVtrGqfF0o3bNL659VH1WojGjJpSblgSH/h3aZMtrvsAOJAq43on1cf1QczW5iBENB/lDMDQbhw0O9c2KxR1BpljJ0Knw22lQrPBjNQPyrpf4D+Lw+cAwAAAACULB6XInmXjkYiUlubFI3OfBwA0DAGBgZ044036uc///mMx1etWqUf/ehH2r59e0iVAQCqrg4DqLffnvuz+WMj+0fl/MYZAAAAAAAAQD3hFQMAAAAAAAAAAAAAAABAnfN8T7u+cYv6WoenkgYXCqLOD6AODMVzAdSp2dvOE0SdH0Ad6Fud1S7zEx048ytyZ8QSYql58rWr4wH1RQeVUETypSEnd2mpI1tWEHGpch3OTUC7H1VCEfUlBrVr4yM6MPhLzEAN0X+UMwO58Nm5sbIp4ylrjLw5kxBsbWc8wwzUD/oPZgAAAABAWVpacoHTgVgs9xgAoCENDQ3pxhtv1MGDB2c83tHRoR/+8IfasWNHSJUBAKquzgKoX9V0AHWAIGoAAAAAAACgcRFCDQAAAAAAAAAAAAAAANQ513G127lSB+198o2RbO6CPiOpY0I60aqptOhCAdSB2QHUgTlB1DZ33NmXNzrWavdL7XITI4v5dFABV9Ju/2wdXHtCvpEScicDKNNlBQuXIzcWVu1+TAnrSrJyrLS7/2y5I8xALdF/LDQDUi4s1lcQPivNFzk+N3x2etv8yFon7zlmIHz0H8wAAAAAgLKMjUnp9MzHRkZyYdSxWDg1AQAqMjw8rPe973167LHHZjyeTCb1gx/8QFdeeWVIlQEAqs4p/uaPtQygfkPSBbcXfo4gagAAAAAAAKAxEUINAAAAAAAAAAAAAAAANIDuV1uln7Sr5xcG5E+mBFpJ/S2akRZtlbs/XxB1IdbMiio0ueOuGZs+tGOlPT+MqHtsQtpyfBGfCSrVfTwmDZ6vnrc8L19WCUlp19Go6y/JelZSq+co4UmSJ0dGe168UN2nY5KYgVqj/yg0A3IiGopkJeWHxlZuOsA2pz0bUcKXmIHw0X8wAwAAAABK1t8vjY9P389kpGPHpGhU6uiQ2ttDKw0AULozZ87ol37pl/TTn/50xuMrV67UD37wA7397W8PqTIAQNU5ztSbkc+nlgHUxyWde/vC2xBEDQAAAAAAADQeQqgBAAAAAAAAAAAAAACARnDokLqfM9KgUc9NVp6RTrVK2QKJg+UEUc8JoJ6UdXLHXzMmuVbac5fUfVjSqpGiFz9i6XSfWitZqef85zXmeBp3fRkV7uFiGUnjrq+Y9dXqu9pz+EJ1n167RKuhFPQf+TPgyyrhO1J2OoS2mnLhs7kvMo4MM1AH6D+YAQAAAAAlsXbuz3B9X0qlpJMnpQiXlQJAvRsZGdEv//Iv6+GHH57xeFtbm+6++2694x3vCKkyAEDVlRBALUlRVSeIuthxTknafHvx4xBADQAAAAAAADSeApegAQAAAAAAAAAAAAAAAKg7p09LY2Pqfs7oCz+STrUUDqAOWOUCphcyXwB1IOvk1vnCPVL3s8oFlWSqcVkjFqP79FrtOr5+KnDSTN6qKf+YQ5Gsdh1fPxk8ibDRf3SfXqs9hy+UM9mlhO+oPVvd8Kj5w2cRNvoPZgAAAADAovi+NDAQdhUAgAWMjo7q/e9/vx566KEZj69YsUJ33XWX3vWud4VUGQBgSZTxJuDRRS4VnfVxtn5JG24vfhwCqAEAAAAAAIDGxFtWAwAAAAAAAAAAAAAAAI1gdFRKpzUcs/qrX5A8t/guVpKMZApc/1csgDrgudJf/YL0weelZMqXslkpnS6zeFRT79pT2rfumNqzkRlBxNW8zDM/1Lg9G9G+dcf0joFWdZ9cU8VVUAn6D0nqfrNdym5Rz0UvyTe5ENoJ31HK8Rd97LjvTIfPWmnPc1vUfbJdEuf+ekH/wQwAAAAAWFA2K3ne9H131g+TJyZqWw8AoGRjY2P6wAc+oAceeGDG462trbrzzjv17ne/O6TKAABLwpT/dsNRSZW8dfjs4OnZxxmU1HV78eMQQA0AAAAAAAA0LkKoAQAAAAAAAAAAAAAAgEYwNqbhmNV1v2HVt34yWLqEIOlCQdSlBlAb5fbr65Ku+w3p/n+UktksISUh6u0aUM+Fr8mXlPCMZF0NRb2qBhBLufkwktozrhK+kS+rngtflDIZdR/rrPJqKBX9R77u19ukzGb1bH9NY65flfBZSUo5viaMp1bP0Z5DZ6v7WJskzvv1hv6DGQAAAAAwr0xG8vP+jZDNznze2twNAFBXJiYm9KEPfUj333//jMdbWlr0b//2b7r22mvDKQwAsDQqCKAOlBtEPTuAevZxzkhad3vx4xBADQAAAAAAADQ2J+wCAAAAAAAAAAAAAAAAABQ3bNJTAdQBY3NBscVY5YKnpfIDqANBEPVwtDoBhyhfb9eAera/Jj+v6QnfUYvnLEkIcYvnKOFPv8TMN1LP9tfU2zVQ5dVQCvqPQrqPdWrX0VUainpVPe5Q1NOuo6sIHa9z9B/MAAAAAICCigVMu25t6gAAlCydTusjH/mIfvSjH814vKWlRd///vf1nve8J6TKAABLYhEB1IH5gqXL3S4qafXtxY9DADUAAAAAAADQ+AihBgAAAAAAAAAAAAAAAOqc53t677WvzAigDpQTRO1XGEAd6OuS3vuraXlVj7xFMZ6s9m4+NSOAWJImHF/jrl/SDJTDSBp3fU04M0PHfSPt3XyKGagx+o/59HYNaN/GfrVnqhse1Z5xtW9jP6HjdY7+gxkAAAAAUJGWlrArAADkyWaz+uhHP6q77757xuOJREIHDhzQ9ddfH1JlAIAlUYUA6kApAdNFWVs0YJoAagAAAAAAAGB5iIRdAAAAAAAAAAAAAAAAAIDizAIXIhor2Sqm0BYKoJ56rnrLoAyujPYdPE873/qi+pLjknIBxENRT1KuL6UGjJe6naTc8TNSwnckSTuGW7Tv4HlymYSaov8opLdrQD3bX5Nvcj2a8H2lnMVfAB73jRK+I99IPdtfkyR1H+tc9HFRXfQfzAAAAACAshkjtbZKES4rBYB6sn//fn33u9+d83gikdDv/d7v6fd+7/cqPvbb3vY2fe1rX1tMeQCAaqpiAHUgKikzz+NF2enfK9g/sjJ/PLc+AqgBAAAAAACA5YNXCwAAAAAAAAAAAAAAAAB1znVc3fvoNl13yWPqWz/3+VICqI2dDqAttr01hYOodxyT7v1Om9wdHSVUjWpLStp/OKmdF/9cj6wc0lDEm3qunGDhUoKIrWYFEWeNrj7Trv2HL1FyBS87CwP9R77e1SfU85Yj8ic7NeFUJ3xWklKO1YRrp0NoLz0itbaq+/S6qhwfi0f/wQwAAAAAWFAqJTnO9H3XldracuHTSxB6BwBYnEymUHSoNDg4qMHBwUUdu6OjY1H7AwCqaAm/F58dRF1uAPXUQ7OCqAmgBgAAAAAAAJYXrgYBAAAAAAAAAAAAAAAAGkAy0aH7vxnXdb+amhFEbU3xQNkggFqa/GgXDqK2kxvmB1HvOCbd/49SMiZpaKiCzwDVkJT0a68k9R87+qcesyphBgrcX2gfm7edJI05nn7tlaSS/aNlVItqo/+QpN6uAfVseU3+ZKMmHF9DEW9GePhiWElDkayUcXMhtLLq2fKsNDam7mOdVVgBi0H/wQwAAAAAKCqVknx/+r7nSaOjuRDqlpZcKDUAAACA2qnBm8EEQdSVBlBPPTUZRE0ANQAAAAAAALD8OMU3AQAAAAAAAAAAAAAAABC61auVdFt1/z8a7Tiee6jcAOqpxzQzYLoQq+mg6qkA6qybCypBaHq7BvT5rUfUkXEV9U1FAcT5jy90qWtw7Khv1JFx9fmtR9TbNVBB1aiWavd/IfS/PvV2Dahn+2vyJxs44fgainpT/VrspeD5xxmKeppwcoFVvpF6tr/GDISM/oMZAAAAAFAxa6VMRjpzZmZANQAAAIClVYMA6sBiA6inNiGAGgAAAAAAAFiWCKEGAAAAAAAAAAAAAAAAGsH27VI8rqQX0f3/IJ0zWFkA9dRzKi2I+pzByQDqtMldHNnSUmbhqJb84ElHRi2eWXAGioVMl7KNldTiGTkyBFCGjP6jWPistLgQ2kLHIYS2ftB/MAMAAAAAqsJaaXw87CoAAHk+8YlPyFq7JLf7778/7E8PAJpbDQOoS1JCADUAAAAAAACA5YsQagAAAAAAAAAAAAAAAKARXHZZ7gLFREL3bpEmIlLEn3/zhQKop7bRwkHUET+3zr1blFubEOrQeLLau/nUjODJ4egCA6DC/XcL9LvYnAxH/RkBlHs3n5JXccQlKkH/UWgGZofPBhYKoS00A/PtM18ILTNQe/QfzAAAAACAqspmw64AAAAAWP4IoAYAAAAAAABQZwihBgAAAAAAAAAAAAAAABrB298uWavec8bU835JRlo9VjiIupQA6qltVTiIOuLnji8j9bxf6r3Iz12UuGJF5Z8DKubKaN/B87RjuGVG8ORCZj/f4jla4blq8ZwFtyt0nCCAcsdwi/YdPE9uyROGaqD/mG8G5utfoecWmoFix2EGwkX/wQwAAAAAqCrC5wAAAIClRQA1AAAAAAAAgDpECDUAAAAAAAAAAAAAAADQCDZsUO872tXzPk9+3vWKzhJdK5h/XN9IPTdJvZdEpFhsaRZEUcmsq187slpjrr9gYGQgf5sWz1HMGhlJMWumAijLOc6Y6+vXjqxWMutW/kmgYpX0P0D/lwfOAc2N/mMpZkBiBgAAAICmFImEXQEAAACwfBFADQAAAAAAAKBOEUINAAAAAAAAAAAAAAAANIDeZ3rVc/HLUwHUvqTBFinrSGbWNYPWFA8UnNp2cvt8xuaOO9iSW0eaDKK+PqXeroHKPwksSm/XgD6/9YiSmfJe9hX1jWKzmhyzRlHflDwnkpTMOPr81iPMQEgq6b/Vwv0vB/0PH+eA5sY5AJwDAAAAAFRNS0vYFQAAAADLEwHUAAAAAAAAAOoYb1kNAMuI53tyHbdujoPaov9gBpob/QczAGYAAAAAAAAAWN4839Peh/9WvpeVNB1APZVBWOA6Rmsk2ZlPxT0plfcjwEIB1FPHs7njD7ZIHeO5d7v3ZbV31au6+b/65RbcEUvFM1Z7t48o62U0nMgFhZfSAiMp41ilPU9x32j7aVeHVntKOVYZZ6rVxY9jpeGIp44JT3tXv8YM1Bj9BzPQ3Og/mAEAAAAAZfF9KZudvh+JSKdOSfG41NUlubxOFAAAAKg6AqgBAAAAAAAA1DlCqAFgmRhODWvXd3Zp9+W71b21u+Lj9D7Tq71P7NW+j+xTMp6sYoVYSvQfzEBzo/9gBsAMAAAAAAAAAMuf67jal/ykdp7+sQ52pmcEUFszf3hgfhB1e0pKZKWJiDQUXyCAWpPHM7nAwfwg6iuOSft+2Co3Eqv2p4giXEl/9+OkrvhovzJOruOOlfwFrmPNf2o8Kr3nlag+djihb50/obvOTee2sbkNF7r8dHI5ZRzJc43+7sdJuRFeelZLlfY/CBedr/9S8QBS+l8fOAc0t4rPAZNBxZwDGt+SnQMmn2cGAAAAgGUmm50ZOOe6UjSae+zkyVwQNQAAAIDqqbcA6nqrBwAAAAAAAEBd4BXAALAMDKeGtfOOneo71qeDbx6UpIrCB3uf6VXP3T3yra+dd+zU/lv3Ez7YAOg/mIHmRv/BDIAZAAAAAAAAAJpH8tBhffWHLbriV9MlBVAHrJFa07kAain3Me1Io0VypGcHUXuO9NXvSUnrSyudRX42KJdnrH77uhFFrFHUt1MzMF8AZX74qCS1Zo0eOiujoYTVoc6sWrNGY5Hc9CwUQuvkPRj1pYg1+u3rRnTgB51y50sxR9VV2n/R/2WDc0Bzq/gcMIn+Nz7OAQAAAADK4rqS503fN2Y6hC6blQYHQykLAAAAWJbqLfDZGMn3w64CAAAAAAAAQB3iajAAaHD5oYOS5FtfPXf3qPeZ3rKOkx86KEl9x/q0846dGk4NV71mVA/9BzPQ3Og/mAEwAwAAAAAAAEBzGX7mCX36PWcU8XMhgKUEUEu5EMLxqDQx+Xb1E5Hc/VIug7TKrRP1pYgvffpmadjJVP5JoGKuNdr9bKtcX+pMO4rmXTPqzBqEQuGjwcz8fFV2qqet2ekpMHbuTMwOnuxMO3J95eogeLKm6D+YgeZG/7FkMzC5HTMAAAAANJmJibArAAAAAJYHAqgBAAAAAAAANJBI2AUAACo3O3QwEIQP/pX3VyUdZ3boYCAIH9x/634l48mq1Y3qKNb/UtH/xsUMNLdS+t/V1lX0ON999rv63A8/R/8bEOcAFJuBP/rFPyrpOMwAAAAAAAAA0Bg839Ou1ferL+HLSGrJSCm3+H75IYRD8VwAdbCfsbkNigVZ28n1jKS+LmnXB9M68IBL+GAIuo+0SQ876vmFQXWmHQ3EfWUm2+BYyTfzB08WEvWlqG80HM3tkD8TM4In7WTwpDXa83CHuo+08sqzEFTS/xUZI3eev+RRX1qRNRpz6X+jWIpzgGuNRiLMQCOopP9tWTMnoDgQhBCPcw5oGBV9HcgaRRY4BzjWaJRzAAAAALD8WCs5zvT92cF4nld/YXkAAABAo6nH76kJoAYAAAAAAACwAGOtLXYdGQA0hO3bt+vpp5+e8/i2bdt06NChECpaWvOFDuYzxujStZdqS+eWebc5p/0c/d+f/d85oYP5dnTtIHywzpTSf8c42nXpLg2nhufd5s0zb+rRNx+l/w2o1Bl421lv01krz5p3m7Z4m7751DeZgQZTav9/56rf0atDr867zcsDL+upk09poX8S0P/6VOoMvOfc96gt1jbvNp7v6a7Dd3EOaEClzICV1Y51Oxb8XnD7uu368wf/nBkAAAAA0FSa7fcJANBMmuEc3/u+zeq59IjGorlAaSkXNjif2SGE87FFgqiDEML2lNSakfb8wFH36Nmllo0l0Hv2qHqu7pdnpIG4NxVAOVsyY5SbhPnFPSntSkPzpNRGrdSZcuVaac8jq9T92opFVo/FKrX/7RlHrpWyC4yAo9zff/rfWMqZAWnhc3zUl7IOM9BIyul/xJcyTuHnpemvEPS/sZQzA0bSQnETESt5hhkAAAAAlp1sVpqYmL7vutLmzdP3W1ule++VIs35DjPN8PsEAGhmnOcB1EQ9BlATHQMAAAAAAACUpJl/l7DAS8sBAPWqlNBBSfKtrwdff1AvD7xc8PmXB17Wlx7+0oKhg5LUd6xPO+/YuWCYMWqnnP5/7eDXFuz/va/cS/8bUDkzcO8r9y44A3sP7mUGGkw5/f/Sw19asP8Pvv4g/W9A5czA957/3oIz8K9P/ysz0ICq+b3gn/34z5gBAAAAAAAAoIF0H45q15PTAdTSdED0bKUGUGtyu/kuj8w//lBc2tUndT/HS47C1v3aCu15ZJXcyWDI6GSf8lvennGU8ErrVcIzU2G1+ccheLI+zdf/fLn+l3bh8+z+B+h//SpnBop9KTBiBhpNOf0vdhawov+NiK8DAAAAABatqyvsCgAAAIDGRQA1AAAAAAAAgAbFFWEA0GBKDR0MWNmC4YNB+Kgt8ZdKhA/Wh7L7b+n/csMMNLeq97/o5cY59L9+VHsGfC0cPhxgBupHtb8XLBZAHWAGAAAAAAAAgPrQu3FY+y6T2lMzHy8UNl1qAHU5x2hPSft2SL0XlvazRSyt2QGUEStZkwsULSd4MhAEUFrljhMheLKuFQogDf7KLqb/Uu44BI/Wv4VCaBc7AxIzUO/oP5gBAAAAABUxRtqwQVq1KuxKAAAAgMZEADUAAAAAAACABhYJuwAAQOnKDR0MBOGDkrSlc0vZ4aOBIHxw/637lYwny9oXi7cU/Tcq/Zed9D98nAOaG/0HMwBmAAAAAAAAAGhunu9p70Xj8o2UyOYeG4prKjB4NisV/G1g3JNSbuHt5zxmck8Y5QKoE1nJN9Let0o3v3623DJ+34il0S1JL53SZy54XjK+phrmOJKc3H2n2M+DjaamxfEnjyPJGBnH0Z4XLlS3WSOdszSfAyoX9L/nghfUnjU6FcuqxXOUUEQK/p4bv/DJYIZc6GhCUtrPatz11Z6JyHUc7XnhAvpfx/JnoDPraCCSVavvKiFnegacIm8cYMzUF5KEJHm+xhxPndmIXMcwA3WspP4bW8I7U0yfA+h/Y6nKOcCaqcAMZgAAAABYRoaGpP7+6fvRqHTOOdLKlVIiEV5dAAAAQCMjgBoAAAAAAABAgyOEGgAahOd72vWdXWWHDgaC8MGXB1/W0TNHyw4dDPQd69Ou7+zSgZ0H5DoFrkzGkqD/YAaaG/0HMwBmAAAAAAAAAIDruNr3s83aeelz6uvKBUJbSYPz5IXkB0gHgiDpiUguwHpqWxUOsg6O0z4xHXy945i070dJud3bFv9JoSquN2mtdY/pTXNa0uRcRLLq8GOKKyIZb+EDOK4kowllNehkp36CnDZWa92krl93tbQ2tpSfAhahW9LYeJdu67hfkjTuWsWMckHUkqS8YPGCzOQMSBPKanwytHwoZvX3g+9W99oLpLVLVj6qoFuSxjepJ/mgOhWRcUyQKZxjsgsfwAah9TkJSXFZuRFHe4avUffaLcxAHcvv/ypFc63M73/Rc4AkZ/qlxInJmxMx9L9BFJ0B46nw241MKnAOYAYAAACAZeDoUSmVmr4fj0tr+eYeAAAAqBgB1AAAAAAAAACWAUKoAaBBuI6r3Zfv1sE3D8q3RS4MmoeV1ZEzRxZVh2Mc7b58N6GDNUb/wQw0N/oPZgDMAAAAAAAAAABJSibXav8dz2nnrdLBLmksuvD2+UHUQQC1NP1xKL5wAHVgLCrFs9IVx6T9d0jJ9pg0Pr7IzwbVMGzSumXd/XrOHZjxuJU06KTV7scWzJ3MbWw1YTwNOuk5mz7nDuiWlXfr2yeuU9ISRF2Phk1a/5x8Vi2+q5TjychqyElLvpSwrmRskRmwUzMwNDkDVlKL7+qf48/qg0Pr6H0D6B7v0ljmCn1qzUNqsZFc78uRd4H6hPE0brL62ql3qnu0SxLn+3rXPd4lpa9Sz+qfyp/9F37ye4EFzQoocGS05/RV6h6j/41iwRkoPgDMAAAAALAcpVJSNu+NqVxXSqelSERynPn3AwAAADAXAdQAAAAAAAAAlglCqAGggXRv7ZYk9dzdU3H44GI4xtGem/ZM1YHaov9gBpob/QczAGYAAAAAAAAAgDZsUDLj6Kvf83X5b0vpEjJGrZFa09PB04FEVko70mgJ2bJpV8q60le/JyVTkmIxaWSkok8B1TPsZHTL2Q/rgcQppc3cnxtbSUNOWi2+q5idP1hmQlkNO9mCEZVp4+uBxHHdsvpeffu1dyjpF0k+R00NOxntPPsRPREd1LjJ/SUP+jjkpCUvKtcWT6CdUFZDTmYqgFqSxk1WT0RPaefq+7T/tavpfZ0bdjL65zUvyGi699NB1KUE0Ob+lAsjzyhuHf1zywv64MlV9L5BdI+s1ndiq3Vv28lZz+T/zZ7HrJCC94ysUfeJ1ZL4Wt9IukdW60Bsje5pOzHrmRJCKGbNwPUja5kBAAAAoNGNj0uZzPR9Y6ShodzHtjYpkQivNgAAAKCREEANAAAAAAAAYBnhbasBoMF0b+3Wnpv2yDG1PYUTOlgf6D+YgeZG/8EMgBkAAAAAAAAAmtzmzRqO+vrkh6UzJYRHB8Zi0sSst6qfiOQeL9WZmPTJD0vDcUktLaXviCUxFUC9IhdAPd8lplbSuOMVDKmWciHTw27hAOpg/7Tx9cCKU7rl7Ic17GTm2RK1NhVAnRjUgJuZ0eMgcnbIzSg1T+8DaeNryM3MialNG18DbkZPJAa18+xH6H0dC2bh4ZZ+jU+eD4bcjCaMV9ZxJow3NQvjxtfDLf30voHsa39Vd7QfLbvvs00YT3e0H9W+9lerVBlqpTd5tEAIeWXubTup3uTRqhwLAAAAQJ2xVjpzRkqnw64EAAAAqH8EUAMAAAAAAABYZgihBoAGVOvwQUIH6wv9BzPQ3Og/mAEwAwAAAAAAAEDzGo76uuWj0o/PkdJu6ftZSYOJ6SDqiUjufjmXJqbd3Lq3fFQajnFRY5hKDaAOzBdEnTa+xh2vpP0Joq4vhQKoZ/cxCJUedbILhpCPTs5Aof0Joq5/+QHUg26uP/kh5KUGEucHUAezMOhmCKJuEPvaX9Vtmx6fCpWvNIg6mIO08XXbpscJom4gvcmj6tnQp+LfFZTGl1XPhj6CqAEAAIDlbGws7AoAAACA+ubUYRQLAdQAAAAAAAAAFikSdgEAgMoEIYA9d/fIt4UvFqwGQgfrE/0HM9Dc6D+YATADAAAAAAAAQPPxfE87I71lB1AHgiDqRDYXQl3JpYlBEPXOxBv6txPb5MpUcBQsxrCT0S3n/EwPrDhdUgB1IAiili/FrFNyAHX+/lNB1Jv/S99++Sol/WhlnwQWZdjJaOc5j+qJxNC8AdSB4PH83geCGcjfrtD+M4KoNz+s/S+/jd7XiWAWHm4ZmAqgDgQ9HXIzSvjujN7PlpKnM262YBj5VBA1va9b+zpe122bnlAmL2x+yM1InlXCurkwgqJfru1kAHV26pHMZBC1PF+7BjcvTfGoit72N9Rz1lOVB1Dbqf/M4Muq56wnJM9T99CGxZQIAAAAIAyeNzOgzp/1WtNsVgAAAADm4Tj1F/hcb/UAAAAAAAAAaEiEUANAA1vq8EFCB+sb/Qcz0NzoP5gBMAMAAAAAAABA8zme6le6tfL9raTxRb5aKO1Kx6Mp6cwZlZBqiSryZLXzkj490DagtLFlR00GQdQZ6ytb4f5p4+uBtlPauflh/dvPdxBEXmPDblY7t/5cTyRGJgOoi/fRKvc3ddzxJM/mhZD7U88X2z8XRJ2eDqJ+5hIlPV56GKZgFh5uGdagWzg0akYI+WTvZ0sbXxOuXzCAOjAjiJre15V9a4/ptnOeUcbM7d6Qm5WyUtQaFfubPqGZAdSBjPF12zkHpYkJ7TrZVa2yUUW9q0+qZ+Pz8q2dv81OkTP9AicAX1Y9G5+UxifUfXrtYkoFAAAAUGtjY1I6Pf/z1hJiBwAAABRCADUAAAAAAACAZWzuVQUAgIbSvbVbe27aI8dU95RO6GBjoP9gBpob/QczAGYAAAAAAAAAaC5OKl08MXapWcnxwi6ieZ2MpisKoA5YSZlF7p82ViejCwTYYEl4stp18SE90TaigUhpAdSBqTBi19eo62ncLS2AOn//tLEaiGT0RNuIdl18SF7oJ6PmNRVAvXJYg5HCAdSB/N6nzcw3NU0bX+NFAqgDg5GsHl45rJ1bf67heUKvUVv71h7TbRcVDqAODEWySpmF38w2bXwNLTBHGWN120XPaN/aYxXXiqXRu/qkes5/Xn7e3+DKv8LPlH8cX1Y95z+v3tUnq3JsAAAAAAAAAADqFgHUAAAAAAAAAJY5QqgBYBmodvggoYONhf6DGWhu9B/MAJgBAAAAAAAAoDm4jqtffy4hmZALMdKvPyW5oRfSfFwZ/eYbG8MuQ5L0m29sZAZqzJXRx06sLzuAOhBsn50MrK1k/yCI+mMn1tP/kJQTQB0Iej3h+soaX66krPE1UWYYOUHU9WO+AGpfc/t5JuJN9X32LX8OAnbyOPkIoq4/hQKofVkNRLKacGZ20LGmYP+D2+zfMk84vgYi2TnHJogaAAAAAAAAALDs1Vvgc73VAwAAAAAAAKDhRcIuAABQHd1bu3XguQO658V7Fn2s68+7ntDBBkP/wQw0N/oPZgDMAAAAAAAAALD8jafH9btvHwy7DEnS777X16d7j6jFd8MupamkHV9/cNXhsMuQJP3B2Yf1G09KMb86b5CI4jxj9a23HJHrSbbCV/0t9hJlK8n1pG8lX9PHnvLlWoKoa8kzVrvedUQPt41pMDI7JnhhQe/HXF8Z3yrj5ILMy52JwUhWD7cNate5j+vATzYxAyHYd/agbrvwWMEAamm6p/mdGXN9mYwU96cfTTlWY5G5AdTB/r5mhhNnjNVtFz4jDQ5o12sdi/48ULnejcPq2XJcfl77fFkNxnxlHKshJyulHSUmv0Ybs/DfdCMrTf5dnnB8DU3OxWAkq460I2dymnxJPVuekQb61X00Wf1PDAAAAEB1pdNhVwAAAAA0FlNnv/cigBoAAAAAAADAEuAqIABYJnqf6dW9L91blWPd+9K96n2mtyrHQm3QfzADzY3+gxkAMwAAAAAAAAAsfy2xFt34WjTsMiRJN74oAqhDEPMdXdWfWHSQ8GJZSVf1JwigrjHXGr1lJKqxSLgTMBaxestIlPDhEAQzMBgtL4A6EAQMVxpAHRiM+sxASPadPajb3n5MGadwAHWgUH9Ho75Sk/ulHKvR6PwB1PMdN+NY3fb2Y9p39mD5xaMqejcOq+etx5WXJz4jgDowFPM14ZR3rphwfA3FpvfJOLnj+nmT4Rup563H1btxuPJPAgAAAAAAAACAekMANQAAAAAAAIAmEQm7AADA4vU+06ueu3vk28ouMpvNt7567u6RJHVv7a7KMbF06D+YgeZG/8EMgBkAAAAAAAAAmoPnezKOq4iXUTbE/OeIl7v+0sumCSCtsbTj62erxnMpoWH+r7fSz1aNK+2lCKKuobTj65tnD8lYKcy/esZK3zx7SH/xWCf9r7FqzICVFj1DzEA40o6vz15+XBljZ6RF+/P0Mtgk/+nRqK/kmKv+ePEA6qnjS8rPvM4Yq89eflz/7eUW+l9jnrHae+5ALhR6sie+rAbjvjJGc5o4FPWljBSx00861uiq03H9bHVKvpncwZpcAHXUn3OMjLEajHnqSDlyJqfJl7T33AHd/GqC7wUBAACAepbNSp43834qJUUikssbDAIAAABTCKAGAAAAAAAA0EQIoQaABlft0MEA4YONgf6DGWhu9B/MAJgBAAAAAAAAoHm4jqttQzHdtXkivBBiK/mOtO2kkZvOhlBAc4tJ+tJPO3Xbu04r5Si0GYj7uTpiKU+SV3QXVEd+/9NOOEHUxkox+h+aasyAmfxPgbza0vZnBkKT3//MZPbzfAHUgdlB1G0Zo5Rr1ZYxGonaqW2KzYJvpoOoo/Q/NK6kffev1s7rTqpvVWZmAPU8hqK+2jJGMWvkWOl3n1qp9xxL6D+6JvSXlw7LN9KE4+tMdP4pyBhpMO5PBVHv6I9q3/2r5Wb4XhAAAACoa7NDqI2RRkdzHxMJqaUlvNoAAACAekEANQAAAAAAAIAmQwg1ADSwpQodDBA+WN/oP5iB5kb/wQyAGQAAAAAAAACai+d7enpVVu0paSAeXh3tKenpdZJ3bKXcUFKQm9uuU0np8RZ98sojC4ZOLpWolf7+8U3adapTStZ+/WYXdv8j9D90wQzsvvKI0mXOgNF0GHHwsdzL2DkHhCvo/21XHlXKKa17wVYrs45iNpdAHrNGbVmrMxG/5BnwjRT3jf7+8Y30P0RJSfsfW6lb3vGqHlgzNhVIHij0PiUjMauVGaM/eHat3nOmTVohvefMCumFuP7s4pMFA6hnHycXRG317lMt2v/YOUq2uBJ5dQAAAEB9S6dnBupFItLIiOS6uXDqWCz3ZwAAAKBZEUANAAAAAAAAoAkRQg0ADWqpQwcDhA/WJ/oPZqC50X8wA2AGAAAAAAAAgObjOq723depX3n3mB48N6QijLT9mLTvgCt3ayKkIvDWkXb55kgoa/smt77iISahNzn6j2uHVinuv6G0U97viWaHylZyGXvcd3Tt0CopHqtgb1TDB/vX6qKRU3oyOVHB3oubgItG4vpg/1opTkhZqCKe5DhzHraa7uqc2AyjXOBcLO/vbiRSYMMix3Gc3NcAguoAAACA+mdt7vv+gOvmHstmcyHUq1aFVxsAAAAQNgKoAQAAAAAAADQpQqgBoAHVKnQwQPhgfaH/YAaaG/0HMwBmAAAAAAAAAGheR82oHjk73BoeOVs62ppVcng43EKa1DNtKe249lV5IV0T6xlpx7WH1HfnOdo6QhBxrdF/HElkdMUNr2rU9WVUfoywL8mZ/FguI2nU9XXFu3+ug3edo00T0QqOgsUYjnjaec2bOhnNqCPtaDBWvJNm8jYS8dWWkWK+UdqxGon4UwHDpcxRR9rRyWhGOy97TvsfPEvJLCHEYQhm4NCKlDrTjgZivjLG5oKjJxtqJ/8T9Lct6yjqG/3lecekiZTec7xV/7F+TH953oCintFK6+hMxJ/at9BxotaoM+3o0IoxZgAAAABoFOm0NJH3BkbGSIlE7s1lYjGpoyO00gAAAIBQEUANAAAAAAAAoIkRQg0ADabWoYMBwgfrA/0HM9Dc6D+YATADAAAAAAAAQPMaT4/r8l8dVMYJt46MI13+m9LgN8fV4hE+WEvjrqfLf+X1+piBX3lVg9/YzAzUEP1H2vF15U1H1D8ZPGysJFNZEHW5TLCepP6YrytvelWv/+smxfyQB7KJeMZq17tPqK8jLUlq8YxUJIh6qm+TWQojUV9RXzPOI6UEUXekndx6kvo6Utr1C2/owH3r5No6C2lY5mbPgLFSZ8pRf9xTetZfRTuZUt+RcRTxJWusfEl/ubVf968d1c/WpKbOBQlPcqyjwaiv2S21Ror6uXWCp5gBAAAAoEFks7lbwHEk388F7q1aJcXjhN0BAACg+RBADQAAAAAAAKDJEUINAA0krNDBAOGD4aL/YAaaG/0HMwBmAAAAAAAAAGhuLbEWvf9FRwcuDOdnhPne/4LU0rk+7DKaTouk958Y1oGuobBL0ftPtDMDNUb/EZP0iaMpffEtx6cem8yZXXJm6j85nzi6VrFV62qwMgKupN3HIzq45jX5k72IW6uI7yu7UBb4rCyFcoPsI74Ut47k5A7kWGn38Q1yV3eWdyAsWqEZsApSxgucCYxyYRrO9BD4RnpkXUbSrCRyY+fMSv4G1jEyYgYAAACAhjIxIY2MTN+PRKSzz5ZaWiTXnfkcAAAA0AwIoAYAAAAAAAAAQqgBoFF4vqe9T+xdVOigkdHGlRt19MzRyQtQyudbX3uf2KubL7pZruNWXAvKQ//BDDQ3+g9mAMwAAAAAAAAAAEnq/U5U3R9K6cDW8Gr48DNS778a6Rdi4RXRxHqf2q5u5xkdWDcQWg0fPtGp3qe25hJxUVP0H1946S2S6+qL574hSarV2xL4mo6s/d+vbNAXXjqXGQhBd/966bmIei5+WVn5Gox68p35w8iDxxaKVLDz7Bvs5zvSYNRTR8ZVRI72PLdF3f2r6X9ICs1A1rFyNPN8YCZvQ1FPbVlHMTt/+viEsToT8abmJH8eHElZxzIDAAAAQCPy/VzwdCASmXkfAAAAaCYEUAMAAAAAAACAJEKoAaBhuI6rfR/Zp5137FTfsb6y9zcyumbzNdrSuUUvD7ysB19/sKLwwR1dO7TvI/sIHawx+g9moLnRfzADYAYAAAAAAAAASJKM0T9+V7pgs3SirfbLrxuR/vG7k3fS6doXAElS78/eog+87QXduX6o5mv/yvF29T76Fkn0Pyz0H184tEEpP6u/Oe9ETdf1Jf3/XlqnLzyzQcxAeLqPrNSYv1G37XhFGSf3+75C4cFa4LFSng9CjCUpMxlC/Pd9m9X9xkrR/3AVmgFJU0HU+b2TpJGIrxVZKe7PDaJOOb5GI9Px1fmzlL81MwAAAAA0oExGymZnPjY+nrslEtLq1eHUBQAAANQaAdQAAAAAAAAAMGXuK4oBAHUrGU9q/637taNrR1n75YcOStKWzi26ZvM1MirvF2c7unZo/637lYwny9oP1UH/wQw0N/oPZgDMAAAAAAAAAIDhVlc7b5UyIb3tfCYi7bxVGo6Hsz5yhiOePMcqLzOyJiK+5DlWwxGvtgtjhqD/ca+2F0vHPUP/68RwxNNzKye0Ilvbl3+uyDp6buUEMxCy4Yinf950Wq3ezP4vdEaYL8pgoYiD2cdr9Rz986bT9L8OzDcDUu5F4YVmYTTiK+XM/MZhdgB1wKjwi8uZAQAAAKDBzA62C4L3XFeKRmtfDwAAABAGAqgBAAAAAAAAYIaQLkkDAFQqCB/cecdO9R3rK7r97NDBQHD/8WOPl7QuoYP1oez+m4X7/5MjPylpXfpfPyqZgXdtete8M/CzN39W0rrMQH2o9jngwdcfLGld+l8/KpqBTfPPwCNHHylpXWagflT7e8Enjj9R0rrMAAAAAAAAABA+z/e064NpPdIlDSbCqWEwIT2ySdr1EenA0Va5Zb7ZHRZv2M1q5/an9UhyTAWyJ5eU50iPdI5p51WvaP+hbUp6vPSs1oL+97VNqNW6Silbs7Vbrau+9gn6H7L8GUj6EcnLatRd+kT6FZ6jpB9hBkKW3/+EdaWs0VAkdx4oFllgNTOcuJzt27MRJaxD/+vAQjNQzGjEl7JGcesoZQoHUM+HGQAAAAAakONImcz0/WhUam/PPR48DwAAACxnBFADAAAAAAAAwBy8AhgAGlCp4YOOcQqGDga2dG7Rdedep//7s/8r385/UQmhg/WlnP5/6opPaTg1XPD5LZ1blIgk9Oibj9L/BlPODFx/7vU6a+VZBZ/f0rlFl3Zdqm8+9U1moIGU0//PvuOzenXo1YLPB18bnjr5lOwCL2Cg//WnnBm4+cKb1RZrK/j8ls4tOrv9bN11+C7OAQ2mmt8LfuCiD+jPH/xzZgAAAAAAAABoAK7jattwXHeekykaHLlUrKTBuLTttJHr8rKjWvNktWv7s3okeUaDkWzN58BKGoxk9UjyjHZtf1YHDl1GEHkNBf3vaxvVhONrKJKVUfEg2WowUi7kNBtRX9so/Q9J/gwEYtbRqJY+hDpmp4OpmIFwFOp/wnekbKTkrwnlnC+CbTuykdw6k+h/eBaagWJB1EE/RyKeUtZXxkxPQ7EutjMDAAAAQGNy3ZlB08F9x5HaJl9bXG+hfAAAAEC11Nv3ugRQAwAAAAAAAKgTXA0GAA2qWPigYxz91fv+Sve/cv+Cx7n23Gt10ZqL1HN3T8HwQUIH61Mp/d9z0x5Za3XPS/fMe5wLVl+g37j8N+h/Ayp1Bh56/SGNpEfmPc7VG6/WOze9kxloMKX2v6utS//U90/zHmdL5xZ98opP6nM//Bz9bzClzsBzp56bN4hcyvX4pgtu4hzQgEqZgT/6xT/S48ceX/A4N553ozau3MgMAAAAAAAAAA3A8z3dtylTPClwqRnpvnOtvBcNwYM15kraNt6mO1edDjeIPJLVtvE2uY4bUhXNyZW0+8RGPZR8WkOTgbO1moNgnaFIViYb0e4TG+l/CIIZONj2nHzZmoWR54eQJ3xHjgwzEILZ/Q8L/Q/PfDNQLIh69rTkB1AXMzuAWmIGAAAAgIYRBE4HjJFaWqR4XIpGpUiEIDwAAAAsT/UWQF1v9QAAAAAAAABoaoRQA0ADmy98MAievOmCm4qGUEtS99ZuSZoTPkjoYH0r1v/urd36ztPfKXoc+t+4SpmBh15/qOhxmIHGVEr//+v1/yp6nA9d/CHF3Bj9b0ClzMCfP/DnRY/DOaBxFZuBq866qmgItcQMAAAAAAAAAI3Ec0yIsZM5VpLnSPJ9hZ+I3Vw8Wd3X3h92GZKk+9r75fkeQeS15ufOALUMoA7MWM+3k+cA1Fr3yTWSb/WpC5+pWRj57BDyrz2/Vd2n10hiBmot6H/P+c/PCSKXqjsLRoUDyPccvpD+h2j2DASCIOrBvHlYDCupY54AamYAAAAAaBCeN/PnN9ZK4+O5W2ur1NUVXm0AAADAUqm3wGdj+L0qAAAAAAAAgLriFN8EAFDPgvDBHV07JM0MnixH99Zu7blpjxyT+9JA6GBjoP9gBpob/QczAGYAAAAAAAAAaC7rsvHw8/58ad0oLzkKy+pMRCbkJHJjc3WgtjxZ7e16oy6C6Pd2vSEv9EpQyzDyMILPUVj36bXac/hCpSYDqAPVjlTIP95QJKuU40+GD6+t8kooVzADzqyuR23uzUoW+62ir9zf96idefzpAGpmAAAAAGh4mYzkumFXAQAAAFQXAdQAAAAAAAAAUBRXAwHAMhCED+76zi7tvnx32aGDgWC/vU/s1b6P7CN0sEHQfzADzY3+gxkAMwAAAAAAAAA0B9dxFbFO+G8570gRa+RGoiEX0nxcSRdPrNQPzECodfgmVwczUFuupI+dPkv3dPaHWseY6+ljp8+i/yHpXXVcPVueDy0Q2krqOf95yXXU3b8+pCog19Hs2OlqRxj4mv0th8mtG+Flx/Wge+gs6WVHPVuelW8kT75ORjNTz8/tX2ny5+hkNKO1mahcOXKstOfli9U9tJ5XngMAAACNIhKZGTTtOFI8LsViUiIhjY6GVxsAAABQbfUWQC0RQA0AAAAAAACgLvFSYABYJpLxpA7sPCDXcYtvvIDurd26+aKbF30c1Bb9BzPQ3Og/mAEwAwAAAAAAAMDyN54e1z2rB8MuQ5J0z7lZjY+1qkX8LLGW0vL1zbXHZaTQAmilXOzpN9ce11+cvlKx0FPRm4cnq291nVKL7yrlZkOpwUpq8V19q+uUPpa6UK7q8GLuZcyT1d4NT2rM9TXkZqf+79fifGAmb0ORrOQZ7d1wXDdn3sIMhKA3eVQ9G55XXK7aPWnIzVQ9gDoQBBm3e1HF5arnLc9LLS3qHt64RCuiHN2ZldKxFv3PDQd1MpKZcy4oN4h69hxZ5YKo12fj2vPmFerObJRWLqpkAAAAALXkONLExPT9eFxKJqfvZzJz9wEAAAAaUT0GUNswf6MPAAAAAAAAAPPjKiAAWEaqFRZI6GBjov9gBpob/QczAGYAAAAAAAAAWN5aYi36yxfPC7sMSdJfPrCCAOoQxOToz45tC7sMSdKfHdtGAHWNuTL62OAmjTt+aLG/RtK44+tjg5sIHw5BMANjjjf1WK26kL/OmOMxAyHJBVD3yZ+MG45aZ8kCqAP+5Dq5P1v1bOhTb/LoEq+KUl011qkhd24AdaDU+ZhvO6tc0PlVY53lFwcAAAAgXMVC7yKR2tQBAAAALCUCqAEAAAAAAACgLFwJBAAAAAAAAAAAAAAAANQ5z/d0T2e/Vo+EW8fqEemec9Ly5o07xFLxZPW99je1JhsLNYR4TTam77W/yQzUmCerb3UcUYcXVcw6NZ8BIylmHXV4UX2r4wj9D0H+DEyHAtdGsE6UGQiNJ6u9na9MBVB7sjoZSdVk7ZOR1FS//ck66H/4jkTGtO3CezRuFj4TFOtUsfPIuPG17cJ7dCQyVlZ9AAAAAOpcIhF2BQAAAMDiEEANAAAAAAAAAGUjhBoAAAAAAAAAAAAAAACoc67jat/PL9JVx6WO0XBq6BiVrjom7ftBm9zQYpCblyujfa+/XVdOdKojGwmlho5sRFdOdGrf629nBmos6P8VEx1a4bk1j3+1klZ4rq6Y6KD/IcmfgZVepGYB1AFf0kovwgyEJOj/jon2qQDqSs4DlXTNajqIesdEO/2vA0EA9RknW9L2881KqTN0xskSRA0AAAAsJ9Go1NYWdhUAAABA5QigBgAAAAAAAICKhHM1EgAAAAAAAAAAAAAAAICyJG1Mf/LjiN7+ydICB6ttcIX0J/8hJf2oFI+HUkOzSyquPzm1Q28/94ehrD8QyepPTu1QMkpITRjC7n9/JEP/Q5ZUXF86+TZdsuXOUNbvj6T1pZNvYwZCEvT/0i13LSqA2qj08OGAlXSa/teFI+6Ytp1begB1wGpmCHm5MxAEUT/9yge0yWstc28AAAAANTc+Lrnu9H3Hyf1MNx6XVqyoz9A+AAAAoBT1+L0sAdQAAAAAAAAAGgQh1AAAAAAAAAAAAAAAAEADeCaZ0tWfCCeAOnD1p6RD38poKxdRhuKZ6JCuDimAOHD1uT/UoZffr62Z9lDraEb0H0ciY3rrOXfLD2l9X9Jbz7lbL7zyQW3KEkJba0ciY7r6nB/IqyiCejqEuNKv4J6srj7nB3r6lV+h/yE5EhnTtnPvLDuAOrDYGTjjZLXt3H9jBgAAAIBGwc9wAQAAsNwQQA0AAAAAAAAAi0IINQAAAAAAAAAAAAAAAFDnxtPj2n7lIxWHBlaLNdL2nQMafXpcLXJDrqa5jMvT9gvvCn8GJG3fcpdGf/5hZqCG6D/S8nXR+d/XhBNWBHXOhOPronO/r4GnP6SYnFBraSZp+brk/MrDhwOLPYeccbK65Nw7deLpD9L/GmMGAAAAAJTF8yQ/72cIvi+lUrnb+Li0enV4tQEAAACVIIAaAAAAAAAAABaNV/8CAAAAAAAAAAAAAAAAjaBerqnkFUcAANSUK6M12VjYZUiS1mRjcuvmm5LmwQwAAAAAqJpMRhoZCbsKAAAAoHQEUAMAAAAAAABAVXBJGAAAAAAAAAAAAAAAAFDnWmItOnTh/ycT8nWMxkqHHtihFrnhFtKEWuTq0PM3hB75aCQdev4GZqDG6D9icvTc87+kFhvuyz5bbK6OGC8/rSlXRo8fvkFb0q2h1rEl3arHD99AAHEImAEAAAAAVTUxEXYFAAAAQGmcOvydFAHUAAAAAAAAABpUHf7EFQAAAAAAAAAAAAAAAMBsW6+9RYe+Gg0t8s9IOvS30tbExpAqwNZ0e6hBxEEA8dZ0e0gVNDf6j03ZVj3/XHhB1C3W0fPP/ZI2ZcMNwW1WST+qJ0IMId6SbtUTh29Q0o+Gsj6YAQAAAABlMEV+gpTN1qYOAAAAYDEcp/4Cn+utHgAAAAAAAAAoAyHUAAAAAAAAAAAAAAAAQIN4dq209kw4a689Iz27Nqz4WwS2ptv15aM7Qln7y0d3EEAcMvqPTdlW/c3Ry0NZ+2+OXk4AdciSflR/eny73Bqv60r60+PbCR+uA8wAAAAAgJIUC8aL8r09AAAA6hwB1AAAAAAAAABQdYRQAwAAAAAAAAAAAAAAAA2g957/Tz3vy8o10pqR2q69ZkRyjdRzk1Vv9HBtF8cMvcmj+ov1z2tNtrZBMWuyUf3F+ufVmzxa03UxE/1Hb/Ko/rjrGa3Lxmq67rpsTH/c9QwzELLe5FF9/qyfa202XrMXADuS1mbj+vxZP6f/dYAZAAAAAFAVbW1hVwAAAAAsrN4Cn+utHgAAAAAAAACoACHUAAAAAAAAAAAAAAAAQJ3zfE97X+mVb4wkKSpp1Wht1l41mltPknwj7V3/hjxxgWUYepNH1bOhT76sonK1qkZBxKuyUUXlypdVz4Y+AihDQv+RPwOuHK3KRmqy7qpsRK4cZiBk+f03MlpToyDyNdmYjAz9rwPMAAAAAICqSCallpawqwAAAADmN/m6iLpBADUAAAAAAACAZaI2VyAAAAAAAAAAAAAAAAAAqJjruNr37HbtbH1VfavSstZqNCHJSlrK6y+tNJqQYuO5ZXacdLTvp2vlXrduCRdFIZ587e14VL5jJBlZWY06Xk3WHo14ivmRyQBKae/6N3Vz/DK5cmqyPug/5s5AVr4GnGxN1h6IZLXGjygihxkIyez++7IacrJyJPlLuK4jaSiSVYcfl8M5IFTMAAAAAICyjYxM/zkelzo6ch9dN7SSAAAAgKIIoAYAAAAAAACAJUMINQAAAAAAAAAAAAAAANAAkieHtf+FDt3yvgE90JVWxskFA/pLFURtc8fPONJAi/Tuo67239miZLuRNmxYggWxEFfSPrtLO+2/6Akd04DGlZGdDIRcugtfHRllZDXgptWpFl2uLu2LfFRua2LJ1sRc9B/5M/CY3tQpTVTUeSOVvZ+VdMqd0Bqt0JU6ixkIQX7/D+qYBifPAZKZDCEuravl9N+Z/OYiI6tBN60OtegKzgGhYQYAAAAAlG1gYPrPiYTU2hpeLQAAAEApCKAGAAAAAAAAgCXlhF0AAAAAAAAAAAAAAAAAgBJkMrmPs65zdAo8tmi2wAuLggssPa/Ki6FUSZPQV/UhZeUrI3/qcWdJUshnHjcjX1n5+qo+pKQheDIM9B9Jk9CX9Msa1HjFAdT5H8thJQ1qXF/SLzMDIQnOAd6sc4BU2nmgnP7PPl5GvjzOAaFjBgAAAAAAAAAAyxYB1AAAAAAAAACw5CJhFwAAAAAAAAAAAAAAAACguOGE0c4bBnVoVVYdKaPBuFUmSIqu9vWYRlPB1lFf6piQDq2x2vkr49r/kK/kyEiVF0QphpXSp+Pfk2ukqHHmBFAupagcuVb6tP2O9o/drKTiNVsbOfQfRzSsX2z5R3kVvvOA1YzTe9k8Wf2i/l4HR35Dm5Ss8CioVHAOiBgz5xxgS+hqOf23sjJ531xE5ShiDeeAkDEDAAAAAEo2Pj7zzQSz2dx91w2vJgAAAGA+BFADAAAAAAAAQE0QQg0AAAAAAAAAAAAAAADUOc/3tOvS59XnZCRJjow6JqwGE1JqiXJDfCPFPaljXMplXVv1rfW06xdP6sCLh+VWPfkaC/Fkteuch9QXHZQjqUMRDboZZYy/ZFHEvqwcSVHrqMOLyJGvPr2pXdn9OvDqO5mBGqL/SMvXlRffpX6lJOXOy5X0vtJL5oOvA/0a15XRr+v1Z9+vmJwie6Fa8s8BRlKnIhqYPAdYld7X8razMsqdAzq9iIw8zgEhYgYAAAAAlGVkRBodnb6fzUrHj0uRiNTRIcVioZUGAAAAzEAANQAAAAAAAADUDFcAAAAAAAAAAAAAAAAAAHXOdVztXnmtnLzrHR2ZJb/+0dqZLzByrLT79TWEDobAldHugXPlTP6/d2TU4UVrMgMdXnTGursHzmUGaoz+IyZHnxg4Z8ZjtXoB6Ox1PjFwDgHUNTb7HGBk1OlFZWQqDhYvxs5aR+IcECZmAAAAAEBVZLPSqVNSJhN2JQAAAAAB1AAAAAAAAABQY1wFAAAAAAAAAAAAAAAAADSA7h07tecn7VNB1P1xq3RkaddMR6T+RO7PjpX2/Ciq7pHNS7so5tU9vFF73tgxFUA56GRkl/i6XGty60i54Mk9b+xQ9/DGpV0UBdF/fOH4pfrfJy+cul+ry+Dz1/nfJy/UF45fWqOVkW/2OeCMk5W3xFPgyeqMk5XEOaAeMAMAAAAAqubMmbArAAAAQLMjgBoAAAAAAAAAam6JL0MDAAAAAAAAAAAAAAAAUBVvf7u6X8klQn/8vQNK1eiVP6mINJCQvvH9qLqfd6X3dHABZoi6hzZI1urjm3+mlOPXZM2U42tAaX3j9avUPbxBtYu+xWz0H184dokkq79c+0LNQ6h/9+QFU+sjHME54Nc3P6ZRx6vJmqOOJyOjf3r9Ss4BdYAZAAAAAFCS2YF+s3+em0rVrhYAAABgNgKoAQAAAAAAACAUhFADAAAAAAAAAAAAAAAAjWDDBuld79I/tX5fEzV+1c9ERPqn7Z66T6+TWltruzjm+KeO1zRRowDiwITj6586XlP3mU01XRdz0X9IpuYRsHZy3boLBWhCD7cOaNTJ1nTNUSerh1sHOAfUCWYAAAAAQFGzQ/Rm/3uef98DAAAgLPX2vSgB1AAAAAAAAACaiBN2AQAAAAAAAAAAAAAAAABK0/2uIzqwJRXK2gcu9NV981goa2Na9+aHdKD9zVDWPtD+pro3PxTK2sih//j8+qf0xbXP1/zFn46kL659Xp9f/1SNV0a+oP9GUq0iGoK16H99YAYAAAAAVEU8HnYFAAAAaEYEUAMAAAAAAABAqAihBgAAAAAAAAAAAAAAABpA97e6dWDo4VBrOLBugBDaEIUZQBwgiDg89B9B+GygVi8AzV+HENrwzO5/LQOIA/Q/XMwAAAAAgKowRlq5MuwqAAAA0GwIoAYAAAAAAACA0BFCDQAAAAAAAAAAAAAAANS58fS47jp816KPU43LOu9KHte4vCocCeUYl6e7ksfDLkMSMxAG+o+0fP1D56szHqvVpfGz1/mHzleVll+j1SFVr/+VvGiY/tcHZgAAAADAohkjxePS2rVSJBJ2NQAAAGgmBFADAAAAAAAAQF3g1QIAAAAAAAAAAAAAAABAnWuJteiJ33xCO75yiTIVhv7Fs9KqCak/IaUqfNVQ1Bo9MfRxtWxaXdkBULEWSU8MfVw7Or5R8QxEZNRmYxoxaWUrjK+NymEGQkD/EZP02MguXdH+DfWblKxsRV00Kj+4NtjeyGiVjeuxkY8rtmllBaujUtXof1yuWmxE4yarVBlB8vS/PjADAAAAAMpy8qQ0PDx9PxqVkslcCDUB1AAAAKglAqgBAAAAAAAAoG7wigEAAAAAAAAAAAAAAACgAWxdu1V9/7JaO245qYxb3r5BALVUeRB11JP6/iGurR9ok5Qqb2dUxVa1qe/Urdqx5l+VKTN6MmKN2hSVZNVmoxpRRllT3jGiMuo7dau2esxAGOg/Nimmg5Mz0G/K74HJ+1hJEHWnza2/yY+JGai9xfQ/Fz7sSrK5j0ZlhxDT//AxAwAAAABKlkpJmcz0fceRhoZyf04mpba2cOoCAABAcyGAGgAAAAAAAADqihN2AQAAoDo8v/SLgmpxHNQeM9Dc6D+YATADAAAAAAAAQBN4/HFtfPmUrj5S/q6t2YXvl+LqI9LGkxPSyZPl74yq2ei36er0+rL3i8ld8H4prk6v10afgJow0X8kbUyXZVbX/MWfjqTLMquVtLEar4x8lfbftWbB+8XQ//rBDAAAAABYtOFhaXw87CoAAACw3NVbAHW91QMAAAAAAAAAISCEGgCAZWA4NawP7/+wep/pXdRxep/p1Yf3f1jDqeEqVYZaYQaaG/0HMwBmAAAAAAAAAGgOw//6z9p5q9WLq6U1o6Xv51hpKC5NRHL3JyK5+44t/RhrRqUXV0s7b5WGX3uhvMJRNcMmrZ0d9+jFyLDW+ImS9zOSxk1WafmSpLR8jZusyrnMdo2f0IuRYe3suEfDJl1e4agK+o9gBp6LDGqN31L2C0DtrI+lciSt8Vv0XGSQGQhRJf03Wvw5gP7Xj0rPAcwAAAAAgDlGRsKuAAAAAMtZvQU+GyP5fthVAAAAAAAAAEDoImEXAAAAFmc4Naydd+xU37E+HXzzoCSpe2t32cfpfaZXPXf3yLe+dt6xU/tv3a9kPFntcrEEmIHmRv/BDIAZAAAAAAAAAJqD53vaNfpP6lufux+1uWDoUysW3i8/aDoIok65M5/3i1z/uWY0t54k9XVJu2LP6cDE5XLLjj/FYnjytWvdfepzT0tWispojRfXKTe14H757R03WWWso6yZvsDWkVTscts1XlxRGUlWfe4p7Vr5Qx048V5moIYq7b+j6cDhQv03Kh5ITP/rw+wZcCWt8RI64U6UdZxyA6g1uY47uTczEI75+n/SnZi3p0EAdbFzgDT/XBjR/3pR6Qzkm+/7ACtmAAAAAFh20mkpm52+77ozn89/DgAAAKgmAqgBAAAAAAAAoG4RQg0AQAPLD52UJN/66rm7R1J54ZP5oZOS1Hesj/DJBsEMNDf6D2YAC83AVWddVfJxmAEAAAAAAACg/rmOq90HpYNvnw6N9lzJWMnOcw2nUyBNMOUW3m6+IGpjc+tEs9Pb7n7Myr1gtPxPAoviStptNunghtPyJ6MiPeMvGCLsFHguP3gyf7v5Lrs1ygVfRicHzZHR7pOb5J5hBmqp0v7PRv8bV6EZGHUyNVl71GSU9KOSmIGwFOp/xnjzngOCAOrZCp0DFgqiNpIy8uTa3DcQ9D88lc5AKd8HMAMAAADAMjQ6KqUWePMya3M3AAAAoJrqLYBaIoAaAAAAAAAAAPIUus4EAAA0gNmhk4EgfLL3md6SjjM7dDIQhE8Op4arVjOqixlobtXq/3ef/S79b1CcA1BsBu4+fHdJx2EGAAAAAAAAgMbRfcjXnruNHCtNRKSh+GTAYIGskEIB1AsptL2xueMPxXPrOVbac5fU/QzhJGHpHt6oPW/skCOjCfP/Z+/f4+Ss6/v///m+rpnZY2ZzJkAICeej4RDqCRVFqtiK3YLEb2NtDWpVjPZDqXxb/QrUekDUSrFQi0R/H40aRENp6wGrggHkkBBWhXBISMg55LS72cPszFzX+/fH7OzOzszOaWfnmtl93G+3Mcx7ruv9fm9er1xZN3M9x1OPmxg3aLTcN4blOz49d4+bUMx4cmR0+56l6uw9vtytowqoPzJ7oNdJqN/xarJuv+Op10nQAwHLdw2Qcv/8jnddKCTfOel5uQbUD3oAAAAAAAAAAFC36jGAmg9eAQAAAAAAAIAxCKEGAKABjRc6mZYOn3x89+MF53nx0It5QyfTCJ+sX6X2wIuHXiw4z+O7H6cHGlCp9X9o+0MF59l2ZJuue+A66t+ASu2BZw48U3Cern1dXAMaVCk98JmHPqNtR7YVnOcXL/2CHgAAAAAAAAAaie+r83mjFV2pYOi07CDqcgOo852XDqBO62mSVnRJnc+JGzUD1tl7vFYcOWEkeFLKDY6s9E1hmedlz9njJrTiyAkETwaM+qOz93hd1D+zZgHUaf2Op4v6Z9IDAct3DZBG//xWEj6clnlu9nWEa0D9oAcAAAAAAAAAAHWHAGoAAAAAAAAAaAihoDcAAADKUyx0Ms23vr656Zu66NiLtGTWkpzXtx3Zpkd2PaIZkRkF50mHT669aq2iTdEJ7R3VUU4P/HL7L/X6ha8ftwee3PukmtymPGePogfqSzn1/+pjX9UFCy4Yt/4P73xYM5pmyBS4/ZD6159yeuD+F+7Xa49/7bg98Pjux9USbik4Dz1Qf8rpgYd3PixJ4/bAuufWyTGFoyjoAQAAAAAAAKCOOI7Wne5rzVKpYyg3iFq28tDBkSWsZJU7T8eQtGap9JrdUudWI7nuBFdCpdbN2KU1s3aqwwvnBBFbVR5AnOZI8pWnB7yw1szaqdcMzVXn0YUTXAWVov64YX6X7u/YO1LzWjGS7u/YqxuSf9Atryyt4crINN41QJpY+HDmHPlwDagf9AAAAAAAAAAAoK4QQA0AAAAAAAAADYMQagAAGkipoZNp1tq84ZPp8NlSET5ZP6rdAxE3UtI89EB9qHb9bYm3JFP/+lHtHnCd0gJC6IH6UXYPqHAPtIZbi4ZQS/QAAAAAAAAAUC/Wne1o1R9JvpGak6mxnCDqKsgXQN2cTK276h2SfuWqc/bsKq2Gcqxr2qZV0S75MmpWWPKNepxUAGX6335SIeLpKpZ6c+1o1fPN0+GH1WxCqR44rkvqnaHOodwPQMTkKr/+6ZFiqH+juKH9MX257QWNVqfUf/WdGJOx4pfnvCA1t+iWvtfUYGVkKnYNSPfCRK8B2fNwDagf9AAAAACAkg0OBr0DAAAATAcEUAMAAAAAAABAQymeNAUAAOpCuaGTaenwyW1HtkkqP3w2LR0+2TvUW9Z5qB56YHqj/qAHQA8AAAAAAAAA05vne1q91JefcQ9nczIVEF2OJq+849MB1Gm+kVafZ+XJL28iTJgnX6tbnpOf8fPdZoXU4YfHBEZaFY6lDRd4y1i+eTr8sJoVGjnGl9XqlufogRqj/ogrqW+3PD9mzGRFzZai3DeNZgZQp3275XnFlcx/AiYF1wDQAwAAAAAAAACAukIANQAAAAAAAAA0HEKoAQBoAJ7vacWPV5QdOpmWDp/81bZfVRQ6mda1r0srfrxCnl/mnemYMHpgeqP+oAdADwAAAAAAAABwHVdr9l+spfvGjpcTRN0xJM2MlXd8c1bG6NJ90ppHF8jlbUc158rRmp5LtTQ5Z8x4RK7crIDY8QIoW21o5JHN5jnDlVFE7pixpck5WtNzKT1QY9QfEYW08dCVmm2bxoyXc3t/k3UUtRE12dLrlz3/bNukjYeuVES5fYTJwzUA9AAAAAAAAAAAoG4QQA0AAAAAAAAADYl3AAMA0ABcx9XK81bKMZX/1W1ltevoropDJyXJMY5WnrdSruMWPxhVRQ9Mb9Qf9ADoAQAAAAAAAACSFJ1znNbeq3GDqAv99C8zULpYcLXV+AHUa++VoqG2SraPKojaiNZ2XzYSQOnLqtsZkq/coFirsT3RakMKD79dLCxnTABlvuBJI8mXhudPvbo0OUdruy9T1Eaq+FWhVOXXf7Sq1H9qWOi3a9PBqzKCqK38Es9tso5ahoOjWxQqOYjaH15HSgVQbzp4lRb67eVsG1XCNQD0AAAAAAAAAAAgcARQAwAAAAAAAEDDIoQaAIAG0Xlmp26//PYJhU9OhGMc3X757eo8szOQ9UEPTHfUH/QA6AEAAAAAAAAAOnJE0YSTN4g6nJSskfw893vmC5QeL4jaN6l5wuMFUMeNNFQgwRqTLh1AeXZylrqdISWGgyHz3eqbDqLODJ5MSwdQZodVp6XnSwwHXJ6dnEXwZB2g/kgHUc+ykYoCqNPKDaKeZSMEUNcBrgGgBwAAAAAAAAAAgSGAGgAAAAAAAAAaWqj4IQAAoF6kQx9X/XSVfFvqrYQTR+hk/aAHpjfqD3oA9AAAAAAAAAAwzR06JLW0KNrfr7X3SsuvkroWSJ6kAxmZoL6RnOH7LPMFUKelx3uaRs9LO9AuzeuTXGUEUA9JCrlSf7/U11flLw5lMXFphpdKjTSpYo/3U2Mjydr8EZNWNn9q5fB8TvocayTPS9Wd8MnglVF/qXD9jckfPkr961vUxHVue4ceanklb/2yudYoX6VdmXGvAZmMpHNjHYoejUuW63/guAaA7wMAAAAAFBOLjQ3js1byfckp7QOpAAAAgBz1+L0kAdQAAAAAAAAAUBZCqAEAaDC1Dp8kdLL+0APTG/UHPQB6AAAAAAAAAJjGEgmpvV0aGFB0yGrtvdK7lksPLcmNFfQlzSoQQJ2Wfv1I09hxq1QQ9Zu2ZQRQS6mbOPv6pOeem/jXg4r0hjwtv2CrnnEGNSvu6HDYKu7kv7k2nSs56HiSZxWxo0mTcWM16Pojx4wXQhrxjWYlHD3jHNLyGT/T2qdOVjTpVvNLQhnKrb9R4fqnj6P+jSPdA887g5o35OpAk1cwiLpYDzgqHGBsJM0bcvW8c4QeqANcA8D3AQAAAABKEoulHmnWpj7kMBxO/Yw5xG2lAAAAKIPj1F/gc73tBwAAAAAAAAAaQB1+3CAAACim88xO3X757XLM5P5VTuhk/aIHpjfqD3oA9AAAAAAAAAAwTYXDqZs729slSb0RaePx+UMDZaR4iT9CjDsaTSnMYJWavzcyPOA4qYfJczBqIh082RUdHBnzTWk31w66vuLDx2aGjxaTOX9XdFDLL9iq3pBXxq5RLdQf2T3gyGic7FlJYy/thXqg0FXdsal1JHogaFwDQA8AAAAAmLBEQurulpJFPr0QAAAASCOAGgAAAAAAAACmDEKoAQBoUJMdPknoZP2jB6Y36g96APQAAAAAAAAAMA3NmTPyn7tmSGddKx2NjH94fyQjQHocvZHUceM5Gkmts2tGxmAoVNp+UVWerFac/9JI8KSV1cFIUskC6bHZt94Our76XX9M8KTNc1ympJEORpKyw0d1RQe14vyX5BU8C9VWaf0zq5Sv/hL1bxTj9YA3ydcAjx6oC1wDwPcBAAAAAKrGWqm/P+hdAAAAoFHUW+Bzve0HAAAAAAAAABoId4QBANDA0qGQq366Sr71ixxdOkInGwc9ML1Rf9ADoAcAAAAAAACAaebss6WHHtIuHU0FUDcVPyUdMB2N575WLIA67WhTKoj62X/ztbBfUnOz5HllbR0T50pa+fJsbTp3QJ4pHjyZZiVlHpY0Nuf1YtIBlHPjIbnWaOXLs+V61fu5NIqj/qAHpjfqD3oAAAAAQFk8T/L9sc89T3Ld1PNEIph9AQAAoLGYEn4QXUsEUAMAAAAAAADAhBBCDQBAg6t2+CShk42HHpjeqD/oAdADAAAAAAAAwDTyqldpl3pLDqBOyxdEXWoAddpIEPUdvha2tkqOU/rJqJrO/bM1ELJ6/3nbSwqeTEvfimvyjJUqaaRDkaS+9fRide6fLdECNUf9QQ9Mb9Qf9AAAAACAkrlu7s9we3tTY62tUlNT/QUKAgAAoL7U2/eLBFADAAAAAAAAwIQRQg0AwBTQeWan7nv+Pv1i6y8mPNelJ11K6GQDogemN+oPegD0AAAAAAAAADA97DrrBJ31/sGyAqjTMoOoyw2gTjvaJJ31UenZX4W10K+zG06nid6Qp6+ctL+s4MlMVqkAykpvz00a6Ssn7dc7X5mlaNKtcBZUivqDHpjeqD/oAQAAAAAVSwcI+r7U1ydFo8HuBwAAAPWNAGoAAAAAAAAAmJKc4ocAAIB6t27zOv3ypV9WZa5fvvRLrdu8ripzoXbogemN+oMeAD0AAAAAAAAATH3xZFzn/PCSigKo0/oj0ittlQVQpx1tks556wuKy698ElTEk9VbXvO8ujoGZZQKkaxEpbfnptfs6hjUW17zvLyKZ0IlqD/ogemN+oMeAAAAAFA1xkjt7UHvAgAAAPWKAGoAAAAAAAAAmLJCQW8AAABMzLrN67Tqp6vk2+rc5O1bX6t+ukqS1HlmZ1XmxOSiB6Y36g96APQAAAAAAAAAMD24jqu58ZB6Jni/p1eF+0XnDkiulSqPMURl7JjASTMyOvmywy6NxM2+NUf9QQ9Mb9Qf9AAAAACAMmR/z55+HolICxbUX7AgAAAA6kO9fZ/Iz6IBAAAAAAAAoKoIoQYAoIFVO3QyjfDJxkEPTG/UH/QA6AEAAAAAAABg+nAdV089eq7OO2u9ts2qbA4jyVjJmsoDC5cckZ66p0PuefMrnAGVciX98sXZuuTMx9XVdlRSZXU0FZxnNRo+ubR/hn754qvlzuOtZ7VE/UEPTG/UH/QAAAAAgLL09kqJxOjzSEQ66SQpNPy9vLUE+gEAAGAsAqgBAAAAAAAAYMrjHcAAADSoyQqdTCN8sv7RA9Mb9Qc9AHoAAAAAAAAAmH6iz2/X0w8bnfchW3YQdTqAWulfKwiiXnJEevobUtSJSW1tZZ6NaohKevDlN+sNJz2o3zX3ln2+yfi13Pr7kl4Vi+rBly9RtDlc9tqYOOoPemB6o/6gBwAAAACULB6XXHf0eSg0GkANAAAAZCOAGgAAAAAAAACmBSfoDQAAgPJNduhkWjp8ct3mdZO6DspHD0xv1B/0AOgBAAAAAAAAYJrq61M0bvSbb0nNidJPywygHhmzo0GEpWhOSL/5lhQdkpRMlnEmJsPsZKSs+lWDGV4XwaP+oAemN+oPegAAAAAAAAAAUDUEUAMAAAAAAADAtEEINQAADaZWoZNphE/WH3pgeqP+oAdADwAAAAAAAADTmO+rN+zrg1dIHUOSU+KPCa0km3XfqDWp8VI4fmq9D14h9TaJmz4D1OskdOWix/TbtsMVnW+zfi3Xb9sO68pFj6nXKSMFHVVD/UEPTG/UH/QAAAAAAAAAAKCqCKAGAAAAAAAAgGklFPQGAABA6WodOpmWDp+UpM4zO2u6NsaiB6Y36g96APQAAAAAAAAAML31Nhst/1Opa0Hqk+fnDUgHWiW/hI+ht5JkJGPLD6CeN5Bar2uBtPwqae39jqJz5lT8daAynnwtn/0zrW86qISsjIwkW3aQZCW37RpJRkYJY7W+/aCWn/yU/vvw2+WqhOZDVVB/0APTG/UHPQAAAACgLENDQe8AAAAA9Y4AagAAAAAAAACYdgihBgCgQQQVOplG+GTw6IHpjfqDHgA9AAAAAAAAAExvnu9pxZ/E1DVrdKySIGpbxn2kmQHUaV0LpBV/5uk+RwQPBuCAM6RERnxkpQGU5UgHT6YlZHXAGZIcR6IHaor6gx6Y3qg/6AEAAAAAJau3QEEAAADUl3r7fpEAagAAAAAAAACoCUKoAQBoAJ7vafXTqycUOmlkdPyM47X76O6Kbz3yra/VT6/WFadfIddxK94LykcPTG/UH/QA6AEAAAAAAAAAruNq5Z5jtGnmy/Iz7gctN4i6VPkCqCXJsdLKp41c94nqLYaSuJI+dWybPnDeYXVHvBqvPvpz5ZlxV596uk3uXnqglqg/6IHpjfqDHgAAAABQlqNHpYGB0efhsLRtmxSNSnPmBLcvAAAATDpzs5G9scB9QyUGUCckhauzpcIIoAYAAAAAAACAmiGEGgCABuA6rtb8+Rotv3e5uvZ1lX2+kdHFJ1ysJbOWaNuRbXp458MVhU8uXbBUa/58DaGTAaAHpjfqD3oA9AAAAAAAAAAASep81krbpVXvUN4g6v3t1VtrvADq238idb7gS4u6q7cYStbZLal/tj7wukPqjviykmxp9whXzA7/j5E0M+7om4/OVucOSeqe3IWRg/qDHpjeqD/oAQAAAAAlSyalRGL0ubXSoUOpx+HD0qmnBrc3AAAATBpzsxn5NW8QdRkB1OlfJzWImgBqAAAAAAAAAKgpQqgBAGgQ0aao1l61tuzwyczQSUkjvz688+Gy1l+6YKnWXrVW0aZoWeeheuiB6W0y6l9OAC31Dx7XANADAAAAAAAAAHTggDoHU/+ZHUTdG6nuUr0RaWZ89PlIAPVzkuRLsVh1F0TJOl9wpXhU73tzt/qqXPfxWCO1xaVvPhhV53ZXEvUPCvUHPTC9UX/QAwAAAABK4nlSPD72eSwmhUJST4+0Z09wewMAAMCkSAdQZz4fE0RdZgB15vNJCaImgBoAAAAAAAAAao4QagAAGki54ZPGjA2dTEs/f2TXIyWtS+hk/aikB16/8PXj9sCTe58saV16oD5U+xpQagAt9a8fFfXAwvF74PHdj5e0Lj1QP8ruARW+Djy9/+mS1qUHAAAAAAAAgDoxHPycCoIeDaLujkiDVQ4hTM83M54dQD2sr6+6C6I8saQivmSkMj52tHJGUsRXqgf7kjVYEQVRf9AD0xv1Bz0AAAAAoBjfTwVPpzmO9MorqRDqjg7p0KHg9gYAAICqyw6gzhy3N9qKA6gzx6saRF3ifgAAAAAAAAAA1UUINQAADabU8EnHOPrA+R9Q71Bv3teXzFqi5lCzNuzdIN/6485D6GT9KacHLl18qY6dcWze15fMWqJzF5yr7//++/RAAymn/te95jq93PNy3tfTAbS/P/B72QKfGk796085PXDFaVeoPdKe9/Uls5ZoUcci/WTLT7gGNJhyeiBfAHXakllL9Ken/6m++PAX6QEAAAAAAACgUWT8TD8dCP3ezuoHUKcNRlKhg99dlxVALUlJAgiDsu40T6veklBTUpoZk440T/6aM2NSU1Ja9ZaY5IfV+YI7+YsiL+oPemB6o/7I7oHu5skNojaiBwAAAICGZO3YEGrfl+Lx1COZlFw3FUwNAACAhjdeAHXaXmOU/w7TscYLoM58vSpB1Makvj8FAAAAAAAAANQc7xQAAKABpcMnly5Ymvd1xzi6/fLb9erjX11wnlPnnKrbL79djsn/LQGhk/Wr1B44dc6pBed59fGvpgcaUKn1f9PiNxWcZ8msJfrqH3+V+jegUnvg7HlnF5xn6YKlXAMaVCk98E9v+qdxA6jTLjvpMnoAAAAAAAAAaGAPLJEGJimAOm0gklonh7U8AnisOzWpVW9NyB++j9gvfD9x1WSut+qtCa07NRn478V0fFB/HvTA9H5Qfx7ZPWCNJjWAWkrNb+kBHjx48ODBgwcPHjwa8zHmm/uM5/G41Ns7NqQaAAAADalYAPXOm6S5Ki1guhSlHjcuAqgBAAAAAAAAIFCEUAMA0KDGC59MB492ntlZ0jydZ3bmDZ8kdLL+0QPTW7Xq/64z3kX9GxTXABTrgctPubykeegBAAAAAAAAoDF95HLp3/+oNmv9+x+l1hvDGB41fniOtHqpPxI8ORCWeppq0wM9Tan1pFQA5eqlvjyHPqD+wf++TKcHPTC9H9SfR3YPDIal7hr1QHdTaj16gAcPHjx48ODBgwePBnoUE49P6v+PAAAAwOQrFkC9/SbpmIzn4wVIlxssXXEQtTEEUAMAAAAAAABAwEJBbwAAAFQuHT65/N7l6trXVXbwaFr6+FU/XSXf+oRONhB6YHqj/qAHUKgHdnXvKnkeegAAAAAAAABoLLUMoE5Lr3fnT4cHQrztqNZcSWt+EtLyd8b022O9moWPpqXXe+1eV2t+0izXLSHMBlVD/UEPTG/UH5k98NixXs0CqNPS672GHgAAAAAag+dJ1o4+d93R/w6FpEhk7BgAAAAaSrEA6hdvko7LM56QFM56XonseUpCADUAAAAAAAAABM4JegMAAGBi0uGTFx53YUXBo2mdZ3bq9stv14XHXUjoZIOhB6Y36g96APQAAAAAAAAAML0EEUCd9u9/lFofwYnGjS7f4tQ8fDStp0m6fIujaJzgySBQf9AD0xv1RzRu9OfPu+qJBLN+T0T68+ddegAAAABoFI4z+pBGw6fDYSkaJQQQAACgQRULoH7mJunEAq8nsn6tVFnnZ35ACgAAAAAAAAAgMKGgNwAAACYu2hTVfcvvk+u4E5qn88xOXXH6FROeB7VHD0xv1B/0AOgBAAAAAAAAYHoIMoA6Lb3+neuD3cd0ddc5cf3tpRO9HXhi/vbShFo8ow/+IaAEzGmM+oMemN6oP9ackdCqt8YD3cOqt8bVmjRa8Vw40H0AAAAAKMJ1xwb9GTMaSB0OS+ecE9zeAAAAULFiAdQbbpJOLWGeav1rQ0JS0Z8WE0ANAAAAAAAAAHWDEGoAAKaIaoVFEjrZuOiB6Y36gx4APQAAAAAAAABMbX2xPn3joqB3kfKNi6RbH/fVnuStR7U06Hr62FvjsoXvK5501kgfe2tc730+rBaPnynXCvUHPTC9UX/EHV/XvTmuhCMZSbKqaT8Ym1o34UjXvTmud28JK+I7tdsAAAAAgPL4fu6Y60otLdLJJ0sdHbXfEwAAACbM3mjHDaJ+8CbpVbXdDgHUAAAAAAAAANBguBMMAAAAAAAAAAAAAAAAqHPtze368CZHd16QJzykxj68QWqfuzDobUw7LZI+8uJ+3XZGT9Bb0Ude7FDLvGOC3sa0Qv1BD0xv1B8RSV99ukfXvOYVJYyVkVTL6I50pEnYGn316fmKzCewDgAAAKhr8bg0ODj6PByWzjlHamqSQiFpYCC4vQEAAGBC8gVRP3iT9Noa74MAagAAAAAAAABoPIRQAwAAAAAAAAAAAAAAAA3gjo0LJG+P7rwouD185EnpjgdC0nnR4DYxjX1ta1SK7NBtJ70S2B4+8dJ8fW3rIokWqDnqD3pgeqP+WHEkKnW16pql2xV3ahveYY0U8Y3u7lqsFUfm0AMAAABAvYvFxj5vapLa2kafDw3Vdj8AAACoqswg6ntuSgVQm4JnVBcB1AAAAAAAAADQmAihBgAAAAAAAAAAAAAAABrB6afrjp/skaRAgqg/8qR0x08kdbRJzc213wAkSV/bdpq2zEjof+Ydqfnaf3Jglr627TSJ8geG+oMemN6oP1YcPl5P7orptkV7a7qulfThXQu04vDx9AAAAADQKOLx0f8OZ8UEep7kOLXdDwAAAKrK3mj1Q2P0LhFADQAAAAAAAAAoDSHUAAAAAAAAAAAAAAAAQCN49aulX/9al70k/f+WSgOR2i3dGpcue2n4ycyZUqSGi2OMdXMO6Lezjgay9m9nHdW6Y3vUeWheIOuD+oMemO6oP9bNOaDvHHdARqlg6Foxkr5z3AG9qW8uPQAAAAA0gmRSct3R55n/LaU+ZJBwQAAAgMZmjN4tKVHDJQmgBgAAAAAAAIDGxsdVAwAAAAAAAAAAAAAAAI3g3e/WujOlVe+QOuKpYOhaaI2n1lv1DmndGZLmz6/Nwsixbs4BfeC0zeoOJWv+xi9HUncoqQ+ctlnr5hyo8eqQqD/ogemO+iOzB4xSwdC1kF6LHgAAAACmkHl8uAwAAEBDM6M/IS4aDF0lBFADAAAAAAAAQOMjhBoAAAAAAAAAAAAAAABoAOtaXtaqP3HkD99PWosg6nQAtST5ZjiIenFschdFXp6sPr9ou7pDyZGxWr35K3Od7lBSn1+0XZ64ibiWqD/ogemN+iNfD9QiiDp7DXoAAAAAmALmz5dmzw56FwAAAKiUk/svBJMdRE0ANQAAAAAAAABMDaGgNwAAAAAAAAAAAAAAAACgMM/3tPrp1fLbWqW+vpHxdED0QKT6a2YGUKf54ZBWLz6sK5rOlVuz+Euk+JrjtCts+5Uw/sioI8kf/6QJy65y2Dqa47RLxx2b51VMHuoPemB6o/7I3wPpgOhS4j2MpLAcJeSXfHx2yDU9AAAAADSIQ4ek5OiH2KipSTruOKm9XWppCW5fAAAAmBjHGTfwOSwpMQlLEkANAAAAAAAAAFMHIdQAAAAAAAAAAAAAAABAnXMdV2v+fI2Wr71KXb//3zE3cpYaRG0kGStZUzyoMF8AtSQtbTpRa9zlck9rLmv/mDhX0j12sa60P9B6vayEMgMobUlhkqljSwuqTB+bGT8ZlqM3mBN1T/t76IEao/4o1AOpIOLSKltODzhZ8bP0QHCoPwr/PSCpyN8FRlKrwgrLVUKeBpQoeryhBwAAAIDGtWePNDQ0+ry5WZo3L7j9AAAAYOIKBFCnVTuImgBqAAAAAAAAAJhanKA3AAAAAAAAAAAAAAAAAKC4aFNUa5ffq6UzTs15rSMuOQXu70wHUGv4VzP+oXLsOAHUyTla6y5X1BA6GJSoadaPzHv0Bp2o8PBbv2yZAcSZvxZjNRppGZajN+hE/ci8hx4ICPVHvh5Iyw4MzqecHsgbQEwPBIr6o1APZAdGj31tNIBaksJy1apwwV7IG0BNDwAAAAAAAABAcEoIfK5mAHXR+QigBgAAAAAAAICGQwg1AAAAAAAAAAAAAAAA0CCiTVGtveFJLe2fMWa8NyL54yQJZgZQj4wVCKL2TWq+TEuPRLR29t8QOlgHMgMoQzJlBxCP93w8VlJIhuDJOkH9MV4IrV+kG8rtgcz5CJ+tH9Qf4/XAeB9JkB1AnVYsiNrSAwAAAAAAAABQP0zxf92rdgB1wXkJoAYAAAAAAACAhkQINQAAAAAAAAAAAAAAANBAok1Rrf3L/9TSfannvRGpP5L/2HwB1COvFQii7o+MBlEv3SetDf8FoYN1JGqa9S11aoaaSjp+vDqXGkQ8Q036ljrpgTpB/ZEdQltuAHHmeKE+8GUJn61D5dS/UI1LCaKm/vUpuwfsOBHURlKbIjkB1GlhuWpXU95esEoFUdMDAAAAAAAAABCwAAOo885PADUAAAAAAAAANCxCqAEAAAAAAAAAAAAAAIAGE/3o/9Hae6XmRGUB1CPHFAmibk5Ia++Vov/5s4lsF1XWa2P6oP5TYblyS4gSHq8NSrk92JVRWK4+qP9Ur42VtU9MDuoPaTSEdoHaxz2mWMh06hhT8JgFaid8tg6VXv/CHVCsR6h//Ur3wOmaO24A9Uw1KzJOAHVak1zNVPO4QdSnay49AAAAAAAAAABBqYMA6rQjEgHUAAAAAAAAANDgCKEGAAAAAAAAAAAAAAAAGskXvyj9/vf63Buk7TPHP6xYAHUpx22fKX3uDZL275d+85syNonJ0mtjWm7vUZf266ji8kqKEs4NHC719mBPVkcVV5f2a7m9hyDigFF/ZPqc/Y12qGfc14sFEJdy3A716HOW6389+pz9jXaqN+9rpQRQjx47/pE71Uv969gv9ZJeUX/e+rUqrGaFS5qnWWG15jnWSHpF/fqlXprYRgEAAAAAAAAA5aujAOoBSbNvkszNpf3bAwAAAAAAAACgPhFCDQAAAAAAAAAAAAAAADSKgQHpn/9ZN7zF162vk2yBezz9Eu//LHScNdKtr5NuuNSmQqjj8fL2i6rKDCDu1ZD6VV49bNavpepXXL0aIog4YNQfmW7wH9CterhgPf0Sq13oOCvpVj2sG/wHytsgJtUN/gP6sh4Zt3ZWki05pH78I31ZfVmPUP86tM4+q2vt/+iIBnNixI2kQSUVKzF+JKaEBpXMCbM2MjqiQV1r/0fr7LPV2TgAAAAAAAAAoLg6C6CeedPoc4KoAQAAAAAAAKBxhYLeAKaHAwcO6Mknn9TWrVvV29urcDisOXPm6KyzztKyZcsUDoeD3iIAAAAAAAAAAAAAAED9++IXdcNr+4sGUKf5RnIKZFCWElSdDqKW4rrlZz+TXv3qUneLKvLka0X0p+oKvaJeE1e/SVY0T7kBxGn9ikvWV5fdoxXJ7+m+3svlyqlwNpSL+iPTDa2P6tbWTSXV00o5wbKZSgmqTgdR62i/bhl4XYm7xGS5ofVRfbn16aK1sxn/W/iYwtJB1NS/fqyLvKRr2x/SYSemxHAVHRn5sjLSSCh1j4bUal2FClyvh+SN/J2SOi8VSu4Mz5GQr8Pq17Xe/VJfjzrjJ03mlwYAAACgWg4flvr6Rp8nEtLBg1JTk9TeXlKoIQAAAAJSRwHUMY0NoE4zNxvZGyv9l0cAAAAAAAAAQFAIocakuvfee3XbbbfpkUcekbX5/yFhxowZuvrqq/XJT35Sp512Wo13mMtaqxdffFEbN27Uhg0btGHDBm3atElHjx4dc9xf/dVf6dvf/nbN97d69Wpdc801eV/btm2bFi9eXNsNAQAAAAAAAAAAAACAmrnh9/9ScgB12nhB1KUEUKeNBFE/+bRu8ZaVfiKqxpW0cuB0Pdixu+IA4onqN0kZGa0cOF2uZyV5gexjOqL+SLuh/THd2vp0WYHi4wVRlzvHra2bJGt1S99ryjgT1XRD+2P6cmtXSeHhUvEQ8lL5svpy69PUvw6sa9qma9vXjwmgTnPyVLvfJNViQ4rkCaKOy1fMJJXZJWYkwnpUQlaHnZiubX9I6vXVObSkGl8KAAAAgMnkeZLvjz73fSkeTz1iMWnOnOD2BgAAgPHVUQD1kKToTeO/ThA1AAAAAAAAADQeQqgxKXbv3q0VK1booYceKnrs0aNHdffdd+s73/mOPv3pT+vTn/60TI0/Tf3HP/6xHnvsMW3YsEFPPfWUenp6arp+qXbt2qXrrrsu6G0AAAAAAAAAAAAAAIAA3PDdv9Ktr+orK4A6LTuIupwA6jRrpFsvSkoHf6Vb/LeUPwEm7LHwfvWbWt1WnF+/Seix8H4CKANA/XFD+2O6ta28AOq07DDiSue4te1pSSKIOAA3tD+mL7eVHkCdVo0Qcmk4iLqtSxL1D8q6pm26Npo/gLqQQZOUsoKo4/I1aJIlh5SPBFFH10u94u8BAAAAoJElElJfX9C7AAAAQLY6CqCOS5pxU/HjCKIGAAAAAAAAgMbiFD8EKM8LL7ygiy66qKQA6kzxeFyf+cxntGLFCnmeN0m7y2/lypW69dZb9etf/7puA6gl6Zprrqnr/QEAAAAAAAAAAAAAgMkRT8Z195Z7KgqgTvMlLe5O/Vopa6S7O7YoruQEZkEl4krqWy3PVRQcm2miHw1vJX2r5Tl6oMaoP+JK6u6WzRPqAStpnt884TnubtlMD9RY+hpQbgB1WvqseX7zmOfl8mW5BgTEk69vtDxbdgB12qBJKiFf5yRmKzEcQF2udBD1N1qelTeh7ygBAAAABC4WC3oHAAAAyFRCALUkhau0XKF54pLabyptHgKoAQAAAAAAAKCxhILeAKaWQ4cO6bLLLtPevXtzXrvwwgv1rne9S0uWLNHg4KBeeOEFfe9739OePXvGHPf9739f8+fP19e+9rUa7box/Md//IceeOCBoLcBAAAAAAAAAAAAAAACYhLehO4qTd+3akzl4ZOSZHwrdXeLtx7VlitfS9uj+mVbbEL1c2WUnMAMRtLSwajc7l5JzgR2gnJQf0hJmblVuJHfTnwOY/l7oNaqcQ1o8h2dNtSu3qa4Yk5lAcJcA4Lky7QnpIgkU1kXGCvJS8qElPWpBGXMZ41MMjF8DaAHAAAAgLrV11c4aDqZrMrPCAAAAFAFJQZQp4UlJSawXDjj1+x5EiKAGgAAAAAAAACmMu4AQFV96EMf0o4dO8aMzZgxQ9/97nd1xRVX5Bz/+c9/Xp///Od10003jRm/7bbb9La3vU2XX375ZG63qDlz5ujCCy/UrFmztHbt2sD28fLLL+v6668fed7R0aEFCxbo+eefD2xPAAAAAAAAAAAAAACgdiKhiFZubtKXz03IL+8e1BHGSttnpn61Fc7hWGlll6tIm9XEbm1FuVxJHz10kv7Q1KP9oaGKQkiNJE9WRpUFkRtJxySb9NFDJ8lNeJK8CmZBJag/IpJWHl6sL897QZXFB6dqeMAdqrgHpFTk7MrDixVJ8PdALU30GtDkO2q2rv4Q6VGzdWV9aajMIGquAcFyJX3o0GL9rqlbh9y4Eqa8+rX6rkLW6A+RHoWsUavvasApr4Zh62iOF9GHDi2mBwAAAIB6l0hIXsb37MlkcHsBAADA+MoMoE6rNIg6+zOvM+dJSmq7qbR5CKAGAAAAAAAAgMbkBL0BTB2/+MUv9OMf/3jMWCQS0a9+9au8AdSSFA6HdeONN+prX/tazmsf//jHlazhG1w6Ojr05je/WX//93+ve+65Ry+99JIOHjyon//85/rwhz9cs31ks9bqmmuu0dGjR0fGvvKVr2jBggWB7QkAAAAAAAAAAAAAANTepx4N6cTuys9PB09XGkAtSSd2S59aX/n5mJjO3uN1x57zdUyySeWWMfv4Ss4/JtmkO/acr87e48s8G9VA/XHL/nN1/YHTKnrj50R7QEq94fT6A6fplv3nVnA2JqrSa0CT76jFumPGWqyrJr/0TuIaUB86e4/X1/ecpzleRGFbev1afTfn+LB11Oq745yRKx1A/fU959EDAAAAAAAAAFANFQZQp2UHSld6fFipAOrWm0qbhwBqAAAAAAAAAGhchFCjaj772c/mjN14441atmxZ0XM/8YlP6LLLLhsztmXLFn3ve9+r2v4K2bRpk44cOaJf/epX+tKXvqR3v/vdWrJkSU3WLubOO+/UL3/5y5Hnb33rW3XNNdcEuCMAAAAAAAAAAAAAAFBrnu9pxdv6FAtLbfHK5rCSfJP6tRJtcSkWlla8y5NX8SyYqEpCSMc7zhR4Lfs4wkfrQ7XrX+r51L9+VBJEPdEekAigrhflXgNa8gRQj7xWYhA114D6Um4QdVueAOq0sHXU5oeKzkEANQAAAAAAAABU2QQDqNNKDaIudlyLLe3f/wmgBgAAAAAAAIDGVvydw0AJnnnmGa1fv37M2Ny5c3X99deXPMcXvvAF/eIXvxgzduedd+p973tfVfZYSL0ETmfbtm2bPvnJT448b2tr01133RXgjgAAAAAAAAAAAAAAQBBcx9XKZ5u06Y1JRYdDqPsjtVu/LS5F45JjpZW/c+Ve0F67xZGj0ztNOtSsj859TPvd2LiR4KUGTEvjh5MbScd4zbrj0GvU6S2S2sreLqqM+uOWvtdI4bC+PPMZ+QWOK6UHHKXqXygywJF0fffZuqXvQnqgDpR6DWjzQ2qzruJm/Oq2KKSQ76vfSeZ9nWtAfUr3wMfmPq5DzpASJt+VwKjDD8so9SEk42mSo5DvqMdJKN+VIGwdzfGb9PVDr6YHAAAAgEbS2xv0DgAAADCeKgVQp4UlJYq8XtBwALW90crcPP7eCKAGAAAAAAAAgMZHCDWq4gc/+EHO2Pvf/35FIqXf7XjhhRfqwgsv1MaNG0fGHnvsMW3btq1uQ6Ink7VW73//+9Xf3z8y9oUvfEGLFy8OblMAAAAAAAAAAAAAACAwnftnSz8d0KrLbU2DqDMDqG//qdS5s1m6uHXyF0ZBnTpDOtqkj0Z/o/3OYE5spBl+lHIrsBk+Mt8cx/gtuuPoG9WpJRJlrxul1d/kqWou6t+Ybhl6g9Qf1pfbns4bRF2NHpCGA6j7z9MtQ6+hB+pIsWtAmw0pqog840sFQqglKWojkpX6zdggaq4B9S3dAx+LrtchE1Miqws6bETNcjVkPBX8bsAaNcuVrFGPiY95KSyjObZZXz/6BnoAAAAAaDTNzUHvAAAAAPlUOYA6bbwg6qIB1Fn7GS+ImgBqAAAAAAAAAJganKA3gKnhZz/7Wc7YVVddVfY8+c7JN/d0cPvtt+uhhx4aeX7xxRfrYx/7WIA7AgAAAAAAAAAAAAAAgTrlFHU+b3T7T40cmwqGbosXP20icgKonzNSR8fkLoqSdQ4t0R29b9QxfsuY8XT4bDlMnjOO8Vt0R+8b1Tk0/T5AvhFQf9zS9xpd339ezhtBq9UDIwHUfa+ZwC4xWTKvAZm1a7OhVLB0GaI2ojYbGnk+EkDNNaCudQ4t0dd736A5frPCGV3QYSNqtm5ZczVbVx0ZfROW0Ry/WV/vfQM9AAAAAAAAAADVMEkB1GnZgdMlBVD7uR91mh04TQA1AAAAAAAAAEwdhFBjwvr7+/XUU0+NGWttbdUFF1xQ9lxveMMbcsbWr19f8d4a1datW/UP//API8+bm5t19913y0zyPy4BAAAAAAAAAAAAAIA69upXS1LNgqjzBlBL0vz5k7MgKtI5tETvGzx95I1glYTPpmWG0DqS3jd4OsGTdY76IzuIupo9QAB1/csMonZUWQB1WjqI2hEB1I1kbBC1U1EAdVo6iDoshwBqAAAAAAAAAKimGmUEhLN+Hdc4AdRp6eBpAqgBAAAAAAAAYGohhBoT9vTTT8vP+keGZcuWKRQKlT3XRRddpHB47D9rbNy4cUL7azS+7+v973+/BgYGRsZuvvlmnXbaaQHuCgAAAAAAAAAAAAAABO7d7x75z8wg6vbhoOhqypx3TAC1JJ10UnUXw4Ssa9qmNS0vqsM2yRkTIVsZIyNHRh22SWtaXtS6pm1V2ikmA/WHlBlEXb0eIIC6caSDqBf4rRUHUKdFbUQL/FYCqBtMOoh6rt9ccQB1WrN1NZcAagAAAAAAAAConhoFUKdNNIA6jQBqAAAAAAAAAJh6CKHGhD333HM5Y6ecckpFc0UiES1cuHDM2NatW5VMJiuarxHddtttWr9+/cjzZcuW6e/+7u8C3BEAAAAAAAAAAAAAAKgLF1wgHXvsyNPO541u+YV0pEXyq3zfqm9S897yQFYAdWurNG9edRdDxdY1bdOq6MPyZdVsXTVV6e1gTXLUbF35sloVfZgg4jpF/ZHplr7XaLE3oypzLfZmEEDdYDqHluit8YXFDyzBW+MLCR9uQJ1DS3Rp/PiqzHVp/Hh6AAAAAAAAAACqocYB1CUpIYAaAAAAAAAAADA1EUKNCdu+fXvO2IknnljxfIsWLRrz3PM87dixo+L5GskLL7ygT33qUyPPw+GwVq9eLdd1A9wVAAAAAAAAAAAAAACoGytXjvxnb8Tq2+dVP4A6zTfSt89PrTPijDMmZzGULTOAWJJixtOQqnPD8JB8xYwnSQQR1ynqj2w3tD+m7e7Rqsy13T2qG9ofq8pcqI11Tdv0y8juqsz1y8hu/sw3IHoAAAAAAAAAAOpMPQZQW1v8GAAAAAAAAADAlBUKegNofPv27csZO+GEEyqeL9+5+/fv10knnVTxnI3A93399V//tQYHB0fGPvWpT+ncc88NcFfV8W//9m+64447Jn2drVu3TvoaAAAAAAAAAAAAAAAE6v/9f6WvflW93oCufLfV+hMlb5I+ht5zpPUnSldeLf3oHquoF5LOO29yFkNZ8gUQ95h4VddIzRdRs3VHgojVK3UOLanqOigf9Ue2G9of05fbuqo6Z3q+W/peU9V5UX3Z14SJ4s9846EHAAAAAAAAAKDOEEANAAAAAAAAAKhDhFBjwg4fPpwz1t7eXvF8+c49dOhQxfM1iq985Sv67W9/O/L83HPP1T/+4z8GuKPqOXDggJ599tmgtwEAifX2bAAAy9lJREFUAAAAAAAAAAAAQONrbVXvp67XlZtv1voTpbirKsUN5rJKzT8SRP3SUkXD4UlaDaWqRQBxGkHE9Yf6I9tkBFCnEURd/6odPpzGn/nGQQ8AAAAAAAAAQJ0hgBoAAAAAAAAAUKecoDeAxtff358z1tLSUvF8+c4dGBioeL5GsHnzZn3mM58Zee66rlavXq0wN24CAAAAAAAAAAAAAIAMvUO9unLhI1q/2ExqAHXamCDqN+5T7ySF3aI0xQKIbZU6InOeHhNXzHiSRgMp1zVtq8o6KA/1R7bsAOrJ6IEvt3XphvbHqjIvqiv7mlDt+vNnvv5NVgB1Gj0AAAAAAAAAAGUigBoAAAAAAAAAUMcIocaEJRKJnLHm5uaK58sXQh2PT90bGD3P01//9V8rFouNjF1//fVatmxZgLsCAAAAAAAAAAAAAAD1pneoV1fec6XWv7y+JgHUaSNB1JG9unLmzwmiDognX6tbnisYQGxVPIQ0VOQtY/nmyQ4iXt3ynDz5lX0hqEil9c++zZ36Tx35AqhLuQYUk28egqjrT3b4sC+rI86QYkpOaN6YkjriDI2ZlxDi+jTZAdRp9AAAAAAAAAAAlIgAagAAAAAAAABAnSOEGpPCTOAfSfKda6fwP3B86Utf0hNPPDHy/PTTT9dNN90U3IYAAAAAAAAAAAAAAEDd8XxPV//w6lQAtRdPhYPW8B5WKykuX+sje3V1xy8IoA2AK0drei7V0uSccQOIU/89fghtiw2pzYbUYkN5Xy80TzqIeGlyjtb0XCqXt57VFPVHpvECqFP/XXkQdaF5CKKuH/kCqLudISVk1eMkKg6ijimpHiehxPB8BFHXr1oFUKfRAwAAAAAAAABQBAHUAAAAAAAAAIAGwJ0gmLBwOJwzNjg4WPF8+c6NRCIVz1fPnnnmmTGB08YY3X333Wpubg5uUwAAAAAAAAAAAAAAoC4dGjg0GkCdFkAQ9SEnVrtFMUbURvTegdM0YEYDRm2euNl8IbQtNqTI8NvFInJygohLmWfAJPXegdMUtVPzvTz1jvpDKhxAPTpWfhB1KfMQRB28QgHUaZUEUacDqNMIoq5ftQ6gTqMHAAAAAAAAAGAcBFADAAAAAAAAABpEqPghQGGtra05Y9UOoW5ra6t4vnqVTCb1V3/1V4rH4yNjH/vYx/T6178+wF1Njnnz5umss86a9HW2bt2qoaGhSV8HAAAAAAAAAAAAAIBacx1XC6MLtWHvhtwXjVSrHEIraeFQk9y+gdosiDHWte3QDTM2aKYXVrcTV9yMH0GZOd7iu4pkNUpERrKuYo6XN3x27DxWEetoph/WDTN+q9ZYQp39i6rxJaEM5dffyqhw/Qepf0O5YfZT+nLbZo1WZvzLv83432JK6YF0fMKX27qkeFy3HL6gpLlRPevadmjVjA3ybWYAdVwJ+TnH9jhxyZfCtvg3CakA6njOeEJW3WZIM/2IHJlUCPGM9VJskGtAQLJ7oDSFrhQaDiIpbT56AAAAAGggsdjY4EFrJd+XHCe4PQEAAExFBFADAAAAAAAAABoIIdSYsDlz5uSM9fX1VTxfvnPzrdHovvjFL2rjxo0jzxcvXqwvfOELAe5o8lx77bW69tprJ32ds88+W88+++ykrwMAAAAAAAAAAAAAQK3Fk3E9uutRGZn8UaHpe1sn+X5SI+nRyD7Fn3tWERFYUkuerFZftEV+MiFHUlRGB5sKn2MlRXyjiC9JvoyVzj7arGdmxGSNFJEk32ggVLxxonEjR558eVrtdOmK5/rlqg5vqp6iKq1/k2cUsdJ49fetUcyl/o0gLl/fvuwFlRJAnZZ+PbNS84ZCOtCUHHNMefNYfbvtBX320Wb+HqihzGuANBxAHfaUMONXr8eJa0bSkbGpymVfAyQpLqtYKDfEOi1h/FQQdcIdDqIW14CAZPdAyRx/5CKQrwfkW8mO3wPZ6AEAAACgQcRiqUeatdKhQ1I4LLW3SyFuKwUAAJiwevyADwKoAQAAAAAAAAAF1OFPttFojjnmmJyxXbt2VTzfzp07S1qjke3atUuf/exnx4zdddddamtrC2hHAAAAAAAAAAAAAACgnkVCEW380Ea1R9oLHzjJWYDtSUcbf3MWwaMBcGW0ZtNJWtrbIl9WvWG/aLmNpIRjFTdWxkrv2zVbf7Njnt63a7aMleLGKhayJc3TG/bly2ppb4vWbDqJ4Mkaq7T+cbdw/Ydc6t8oIkpdf2fH3ZKCozOlj33H/qi+snmh3rE/OjJe6jzpY2fHXf4eCED2NaA77CnhFK/e0ZBf8BowWCCAOi3hpNbjGhCszB6oRL4eqAQ9AAAAADS4RELq7paSyaKHAgAAoADHqb/A53rbDwAAAAAAAACg7vCR1ZiwJUuW5Iy9/PLLFc+3Y8eOMc9d19WiRYsqnq8eHTx4UPF4fOR5JBLR9ddfX9YcW7ZsyRl7xzveoUgkMmbsn/7pn3TFFVdUtlEAAAAAAAAAAAAAAFA3ntz9pFrDreqL98kWig3NzASs4n2mRlJr0ujJWf1auC9S9HhUXzTp6q6uxTr/jc+MhI86kvJFiJrhh5U06Pp688GolvWkPiB9WU+btrQO6SfH9I4cJ+Vvl3TMbMKx8ozVXV2LFU26VfyqUKpK6i8Vrr9E/RvJwqGIfvPIGVp6yTNKlJn/ekF3i96zd7Yk6T17Z2tfU0IbZw6WNUfISr955AwtHOLvgCDkuwaUotg1oBRcA+pDNOlq7VMna/kFW9UVLf3PbzqAOrMHJOn/Ljxc1vpLe1u09qmT6QEAAACg0Vkr9fcHvQsAAIDGRQA1AAAAAAAAAKBBEUKNCTv99NNzxvIFJJciHo9r586dY8ZOPvlkhUJTu1Xj8bi6uromPM/mzZtzxg4fLu8mAQAAAAAAAAAAAAAAUH8839Pqp1fLMY7mts7VgYEDNd/D3CFXjnG0+oSDumLfTLkqMwEVE9Yb8vTBpdsVskZh34wbRJwZQCxJrZ6jR2f365SBJi3radOGjn49OrtfrZ6jQdcfOUcaG0TsZPx32DcKWaMPLt1OAGVAJqP+A9S/ofSGPF13zk7NSoR0MJLMG0CeT5Nv9FJbXBs6+kd64KW2uJp8o6ESw4wdSbMSIV13zk56ICDjXQOKKeUaUAzXgPpRbhC1kfSXGQHUaenn3z/+SEnrEkANAAAATDGJRNA7AAAAaFz1Fvhcb/sBAAAAAAAAANStqZ3si5o4//zz5TiOfH/0ZoQNGzYomUyWHR69YcMGJbLexHLBBRdUZZ8AAAAAAAAAAAAAAACNynVcrfnzNVp+73Jt2rtJYSeshF9eUEhmKG25t6GGrZFjHC3tm6E1L5wlt523HdWaJ6sV5/xBXTNiMnI0K+noSDihhBkbRJwTQOw7CltH1kj/94Qj2jh7SM+0DcjKKGyNwkmj3pAnaWwQ8ZgAYms0KxmWMVJXR0wrlu3QfX84hyDyGqq0/m2eK9eacevf5ilvEDX1rz+ZPeDK0dxEWAfDiaJB1E2+UYvv5u2BFt+VK18DTuFZHElzE2G5MvRAQIpdA8bT7rlyClwDWj2NfBjBeLgG1J+opLXPv0rLz3pWXe194x7nSPrMy4v1up6OvK+fcXi2zo7P0s1Lthe8lizta9fa589StJnv/wAAAICGEQpJyeTo83B47OvGpB4AAAAoT719D0UANQAAAAAAAACgDLwbGBPW1tam888/Xxs3bhwZ6+/v16ZNm3TRRReVNdfDDz+cM/bGN75xwnsEAAAAAAAAAAAAAABodNGmqO565106/xvny7OeHOPIt0XiR43KT5zO4kjyjJVnpLtePENRGxmbUIuacCWt3H+cNs14Qb6sjKRZybCOhMYGEWeKJse+PcxK+kPbwJixJuuqI2nUE0qF0mSHGI+Ejw4/d2S0cv9xch23Sl8ZSlFJ/TuSIbnWKDn8er76R6yjcNKh/g0guwdca4oGUbd5rsJ2tKL5eqDdc2WsUb/r5Z1jJIB6eB56IBilXAOydSRDClujeIFrQNg6imRcA7JxDahfURvR2ufO0fIz/6CuttwgakdGt285TWcMtGpgnD/fkvSO7nmau6VJq05J9Va2pf3tWvvcOYraEN//AQAAAI0mMyDRyfqGvq2ttnsBAACYCgigBgAAAAAAAAA0ON4OjKp4+9vfnjN27733lj1PvnPyzd3ozjvvPFlrJ/R405velDPvtm3bco7767/+69p/gQAAAAAAAAAAAAAAoOp6h3r1wf/6oEJOSGEnLElyTJG3/2TddzpOTuW40rOHrVFIRh887Tn1uvmDKjH5Og/N0+1bTpMzHAdqbCqENDNkNq0jGVKzX9rbw5p9Rx1ZgdVSRvjocN+kAy07D82r/ItAxag/snsgHUSdr9JtnquoV1pQcNRz1Zbn2HwB1PRAcLgGIFvUC2nt5nO0tL99zHi5tcrurbSl/e1au/kcRb3c/gAAAADQwIyRjjsu6F0AAAA0FgKoAQAAAAAAAABTACHUqIr3vOc9OWPf+ta3FI/HS55j06ZNevLJJ8eMvfrVr9aSJUsmvD8AAAAAAAAAAAAAAIBG5vmeVvx4hbr2dcnIaFbLrMJB1FY5AdRWkm9yhseVGUCdDqHsauvTijOekVfyLKi2UkJIywkfTcsOISV8tD5Rf5QSRF1OAHVadhA1AdT1iWsAsmUHUVdaq+zeIoAaAAAAmKKam6VTTkn9CgAAgNIQQA0AAAAAAAAAmCJ4ZzCq4pxzztHFF1+shx9+eGTswIED+pd/+RfdcMMNJc3xD//wDzljH/nIR6q2RwAAAAAAAAAAAAAAgEblOq5WnrdSm/Zukm/9kSDqI4NHFPcyPiS8ivebWkkRuZqlJpnQaAjpytbXyz3/1OothLJ1SpK/RKuafiVfVkbSLIV0RENqVUjNbkhKZ8maZOHJrCsNB06momdcDSiZU/fbh96izkWnSosm4ytCOcqqv3zJ+ONPZo3kpg6m/o0juwdcSXNtWAfNoFoUUtSJjH6SQNFrgKP0wVGFJcU1qKTm2ha59EBdquo1QJJs6q3EXAMaV1TSWr1KK9yfaGXinLG1cg5JKnAdsK2SnSFptLdWh/+gNeF3KPqqpsndOAAAAIDJs3+/9PLLo8+bmqSzz5ZC3E4KAABQFgKoAQAAAAAAAABTCO8aQNV8+tOf1tvf/vYxYzfeeKMuu+wyXXDBBQXP/frXv66f//znY8ZOOukk/cVf/EVJay9evFgvZ74xRtKvf/1rXXLJJSWdDwAAAAAAAAAAAAAAUO86z+yUJK366aqRIOqWcIuGvKGqhk+nWUktJixjUkmWjoxuN+9QZ9tZ1V8MZevUMsm2apX9yUgI6Wy1SDLpTGmlqljkxmhjNJpWKzUromaFR26opu71qbT6S0V7gPo3rOwecCUdozbl9kCxa8BoCLUkRdWsqCw9UOdKvwZIRb9JMFwDpoKopPvs++RGnLEv2LikRIEz2yUTHXnWqWW6wl6QOw8AAACAxtLfL4XDo88jEQKoAQAAykUANQAAAAAAAABgiuEdwqiat73tbXrXu941ZmxoaEhvfvOb9V//9V95z0kkEvrsZz+rVatW5bz2r//6rwpnvtkFAAAAAAAAAAAAAABgmus8s1O3X367HOMoloypJ9YzKQHUaT02ppgSoyGUhhDKetJpztLt5h1yRhJHq3UjdFb4KHWvS9Qf9MD0Rv2RzTXVeVt4teYBAAAAAAAAgIZFADUAAAAAAAAAYAri46tRVXfddZc2btyoXbt2jYz19vbqiiuu0LJly/Sud71LS5Ys0eDgoF588UWtWbNGu3fvzpnnYx/7mP7kT/6kZvvesGGDPvCBD4z7el9fX87Y/fffr/POO2/cc5YtW6ZvfvOb1dgeAAAAAAAAAAAAAADAiM4zO/XYrsd066O3yk7yzaZWUreN6YNmGSGUdSpdl1X2J/KrmEhO+GhjoP6gB6Y36g8AAAAAAAAAQJURQA0AAAAAAAAAmKIIoUZVzZs3Tw888IDe8pa3aN++fWNe27BhgzZs2FB0jquvvlpf+9rXJmmH+fX19amrq6usc44cOaIjR46M+/rMmTMnuCsAAAAAAAAAAAAAAIBc6zav0zefuqumN5t+027Qa+xCwijrVLouH7P/U5UIUiMRPtpAqD+qHURMAHFjof4AAAAAAAAAAFQJAdQAAAAAAAAAgCnMCXoDmHrOPPNMPfHEE7r44ovLOi8cDuvGG2/U97//fbmuO0m7AwAAAAAAAAAAAAAAaFzrNq/TB+7/gLoHu2VsKix2MhlJxkrdiukD9j+1zj47ySuiUpfqJDkyiikxoXliSsiR0aU6qUo7Qy1Qf3Sas6pWt0t1EgHEDYb6AwAAAAAAAAAwQQRQAwAAAAAAAACmuFDQG8DUdMIJJ+g3v/mNfvjDH+q2227Tb3/7W9lx/qGjvb1d7373u/XJT35SZ5xxRo13CgAAAAAAAAAAAAAA0BhGAqhjR0ZuODVWkpEm4/bTdAC1JMlK3RrUB/z7pMF+dSZPmYQVUaleDemSth9qj3s0NWCtmhVSqjOKdYeV5EuSYkqqx8TVoyFdkrxLD/a/W1E1TeLOUQ3j118q3gPUf6pYF9qiX7ZsUW69i10D/JyRX2qL1vU/ybW+gYxffz/PWLaxPUD9pxinR1Jy/Netl3oAAAAAmFp6e6XBwdHnvp8aa2pKPQAAADAWAdQAAAAAAAAAgGmAEGpMGmOMrr76al199dV65ZVX9MQTT+ill15Sb2+vQqGQ5s6dqzPPPFMXXXSRIpHIhNbavn37hM6/5JJLxg3JrlcPPvhg0FsAAAAAAAAAAAAAAAA14vmePrf+c+oe6s654XSy3vEwnG89ZqDbDOlz4cd0xdFj5cqZpJVRjl4T1yWz71eXe2hkrMfEJd+qSW5Gkvg4hvsppqR6nMTIcJd7UJe03qMHD1+hqJ3Ye3sweQrVfySIvGAPGMla6t/g1jVt06rmh+Xnew9cSdeAscf4slrV/CupN67OoSXV2ygmRcH6F70GKOf7Cuo/xbhDkikQQu07ku/Wbj8AAAAAamNoSEqM/qxHjiP19aUera3SzJmBbQ0AAKDuEEANAAAAAAAAAJgmCKFGTcyfP19/+qd/GvQ2AAAAAAAAAAAAAAAAGta81nkKy1XC+iNjfhn3wxpJzUkpFio9uNo3kpNxcNgazbPNpS+KSTUSQBw6lPNaj5NQ1M9zUh7ZAcRpXaFDumT2/QQR16li9ZevksLiqX9jW9e0TauiD8uv8kcS+LJaFX1Y6hVBxHWM+gMAAAAAyjYwIIXDQe8CAACgPhBADQAAAAAAAACYRorfYQIAAAAAAAAAAAAAAAAgUK7jau271+oNR2cpPBwsXG4A9czY6KOcW2nT64R96Q37mrS2+7KSgm0xuQoFEI8c48QVV+Ek6pi8vAHEaekg4l4Tr3ivqL5S6t/jJDQkr+A8cerf0CYrgDgtHUS8rmnbpMyPiaH+AAAAAICKDQwEvQMAAIDgEUANAAAAAAAAAJhmQkFvAAAAAAAAAAAAAAAAAEBx0UN9+tE9Ru96W1i/OW780Nhs6QDq5mTqeXMy9by7WWXFVr52t9GPfmwVfWuP1Npa1t5RXb0mrkuOf0BdoW4Vq+KgSUq+q0ie4PC4fMWcwiHF0nAQ8cx1enD3HytqIxXuGtVSTv37nYSaC9R/0PGKhtJT//q0rm2HVs14Un5GIIGVlclb0QJ9Ym3O65nz+LJaNWO9NBRTZ/+iKuwc1ZCv/vnl1ncsUzDUgvpPAeFBySTHf92T5NVZ0AoAAACAiYvFpETGz5CdrJ8NJUr/+TIAAMCUVG8B1PW2HwAAAAAAAADAlEQINQAAAAAAAAAAAAAAANAInnhCkhTyjVxP8t0SzxsvW9JKRdNnh7m+FPKUCqrcs0c67rgSF0e19ToJXXLSQ+qK9OS85itV0uyyDjqe5EsROxo2Ezf5A4jTcaVO1mhX5IguOfZnevClNynqh6vwlaAS1a5/NurfGNZFd2vVnK4xAcS+rLrdhFp9V8028y+IEj5uIGOemPE04Hia6YXlZAZRz3lCGhpSZ+/x1foyUKF89R+XUZEWsAVDqCXq3/CaBiVT4AMnksMPAAAAAFPL4KAUj48+zxdqWMr/rwQAAJiK6i3w2RjJ94PeBQAAAAAAAABgGnCKHwIAAAAAAAAAAAAAAAAgaL1dT2j5W7v1+9mJUrOjR/Q0SbHhj6uPhVLPy2Ek/X6e1fJ3JdTbf7jM1VEtIwHEzfkDiKXREOFsg46nuEkdVSyAOHO+TF3NPbrkpIfU6yQq2D0mivpDGg4gPq5LvnIDqBPGV4+bUKxQ4GwBMeOpZ3iebjeRs8aq47q0Lrp7wl8DKpev/rVA/QEAAAAAAAAAUwIB1AAAAAAAAACAaSwU9AYAAAAAAAAAAAAAAAAAFOb5nlYc/bY2zYmru8kq4ZZ+rjWS7GgQ9ZA7HDZbxv21CVfqbpE2zfe14sLtuu/AKXLLjsLGRHiyuvTMhwsGEKelo0mzKzToeEpYX0mTG16aL7zYl+RkjXU19+jSxQ/psc0X0wM1RP0hSetm7tWqY5+Rb7MCqEMJJTLq2uMmpKRVs3WlPPUew1rJpgOokyPDqSDquGYmw3KGa+3LatWxT0uJhDq7j63q14bi8tW/OFtaD5SA+jcoE5fyfPDAiISREtlXewAAAAANLx6XkqP/P1+umxoLhSSH/w8AAACmqXoLoJYIoAYAAAAAAAAA1BQh1AAAAAAAAAAAAAAAAECdcx1X79k9S784Za/ibm5YbDHpIOpKAqiVOlXx4SDq92wOye1IFj0H1WZl/dzKj3dbcr4eMUqFCpus1/MFEGfOnx1LY30rJRLKjTnG5Kms/pkVylf/9H9T//rnyWr17B3yVTiAOq0nlJSSkptxwTeSLuiL6qn23tEeSAdQh3Kv6wmTmj87iHr17B264sAcgshrKF/9S2GsRuqUr/7lov4NKJQsHEKddIev6QAAAACmlFhs7Pf6xkg9Palf29ul5ubg9gYAABCEegygLutDJwEAAAAAAAAAmDhCqAEAAAAAAAAAAAAAAIA65/mefjB3n0J+Kki6EtaUH1495nxJIV/6welxvaevjfDJGnMl/WrHJbrkpIfU1dwjafwA4jSrVOhoulLtfkgR6yhufPU5yZFjivVFZhDx0liHfrXjTXLbwxV8FahUpfWXqP9U4Upas/e1Wr7ocXU196QCqN3kmADq9J/5tJ5QUm1+SE3WkWON/v7AaXpz/zz9evCAbp33gnxjFTO+jrpjA6gz50kFUSc100sFUS+NdWjN3lfTAzWWXf9yGKNx6z98RMlzUf8G1ORLpkAIdbhZirTUbj8AAAAAamNgIP+4tdLRo5Jb4Q+ZAQAAGhEB1AAAAAAAAAAASBq9NwQAAAAAAAAAAAAAAABAnXIdV2cNtmswVE5UZHUZSYMh6azDIQKoAxL1w3rwpTfpnFi0aABxWjpkOB1ALEkR66jdD5UUQJzmSzonFtWDL71JUZ/w0SBQf0T9sNbueLXOjs1Qt5tQwox2glX+UPF+J6mE/JEAYkl6c/88/f2B05RQ/gDq7HkSxle3m9DZsRlau+PV9EBA0vVfGuso67zMAGpptP6OLe/v8qWxDuoPAAAAAFNFf3/QOwAAAKgNAqgBAAAAAAAAABgRCnoDAAAAAAAAAAAAAAAAAArzfE/PzhhSx5DU0ySVmRtZFcZKHUPSs3N8eUcSBFEHxUlqfqJJoSajpCnzBuXMw8ssX8gazU80Scmk5FP7wFB/OMmcpOnM0Oj0rzlV8n3J88Y+z1J0Hit6IGBRGa196UItX7JBXS09RY93rHTdK6fozX2zJY3W/829syX/FN16zIsqJY5+6WCH1m67UFHfSEoWPR51xPUkxxv/dS+Z+nMNAAAAYGrxvLHhhtk/B+D/BwAAgOmAAGoAAAAAAAAAAMYghBoAAAAAAAAAAAAAAACoc67jas0rF+tK90d6cHFl+Z9GqSBpa0qJm8zlWOnCPdKaX82Qe3pfBTNgonrdpJaf+Qc909SnucmwDoTi8or0ghl+9DlJtVtXEd9R3PHV53gj4bLF+sG10txkWM809Wj5CY9p7eZzFPV461mtZdf/YCiuZA3qH6L+dSOzB2YlQzoSSihubE4NMwOk2z1XYd/o1vkvSEMxvblnln7dcUS3zt+hsG8UtSH1hpJjAqiz54lYo1nJED1QJ6KS1v7+DC0/8w/qahv/72NHRp/fdpLOHmiR1J/z+psHWmSGFulfFu6UX+BKsLS/XWs3n6GoF5MUm/gXgNpK9qeCqMcTT6YeAAAAAKaWgQEpHh//dWsJQAQAAFMbAdQAAAAAAAAAAORwgt4AAAAAAAAAAAAAAAAAgNK5+ZJCJ5sdXheB8WS14oxnRgJHrbVyVd7N032up6OhpPoKhVHm4crIDt8U3dXWpxVnPCOv5k04vWXX31hpdjJc8Jx0AHVavvpnH5PP7GRYZrjc1D84+XqgIzl+ELSV1OI5ivipt4n6km49YYduPHGbbj1hh/zh45qsoxbPKVjRjmSIHqgzUS+ktZvP0dL+9ryvOzK6fctp+pPDcwvO85buWbp9y2lyxrkSpAKoCR0HAAAAAAAAADQQAqgBAAAAAAAAAMiLEGoAAAAAAAAAAAAAAACgznm+pxXzH9Yz86WOweKhsflYSb6pLL/aKLXuM/OlFW/tIXw0AK6MVu47To6MfFkdCScVN8XrkJ1Znsg4p9Q887hJrefLyhneR7kB2JiYzPpLki+rnlCy4BsA89U3kdUzxXrAkdQTStU+9Zz6B2W8HhivEkbSoOtryPgjY76kx2f0ys84LmZ8Dbp+wXnogfo0XhB1OoC689C8kubpPDQvbxA1AdQAAAAAAAAAgIZDADUAAAAAAAAAAOPineEAAAAAAAAAAAAAAABAnXMdVyv3zNfGhfvV3SrZGt87a43U3SLNGZBWPhOR21Eo+haTpfPwfA1s83TNaZtLCqBOSwcNm6yxcsSNVXc4qbtfOFOdh+dXloSOCek8PF/aKl178vPqDieVMLZoHavxemK49rMTYd2+9TTqH6BKeqA/5Eme1GRzr9tDxle/6xU8nx6ob1E/rLXPnavlZ/xBXW1HUwHUmTUypkjgRur1dG+tOvkF+bJa2j9Da587R1E/RK0bXbEeSPcJAAAAAAAAADS6evxZJwHUAAAAAAAAAIA6Qgg1AAAAAAAAAAAAAAAA0AAu3d2kebOlvTOCWT/uSvMGpEt3RaQTZwaziWmu10no28cfVLKMAOpM6SDqSm91Thqrbx9/UO/0TlHUD1c4CybiUtumBf4O7TfxkXDxYrIDyDPHSzlXSoUQL/BbdKldIs2k9kEqtQfS40ZKBU37ZkwQ9ZDx1e94I8cWm4ceqF9RSWv3vl4rTnhCK48sVqd3vDRz+EV3SAoXequwkcKpgzu9mdK+Nq2etV1r9v6RojOo85TQ5EimQNh8sllKttRuPwAAAABqo78/6B0AAADUllOHH6JMADUAAAAAAAAAoM7U4U/TAQAAAAAAAAAAAAAAAGTyfE/Lz31Oz80Ndh/PzZWWv+2ovIpjjFEpT1bLFz2u37QdUIEoyaImUjlP0m/aDmj5osfpgQD0OgktX/S49oWGFPVCZVUg+9hyz416Ie0LDWn5osfV6yTKOBvVVG4PZIZL9ztJDRlfUjqAOplzTKF56IH6FvXDuu/l16mz9/gJzdPZe7zue/l1fNAAAAAAAAAAAKBxOE79BT7X234AAAAAAAAAABAh1AAAAAAAAAAAAAAAAEBD2BdJKO4Gu4e4K+1rnUgEMiZinxtT3AR7w3LcWO1zY4HuYTryZLXihCfU1dwjX1aDji9T5hxWpQUOZzOSBh1fvqy6mnu04oQnCCEPQKU9YCX5w7/2OUn1Ogn1Ockx48XQA43BLfuqMLnzAAAAAAAAAAAw6QigBgAAAAAAAACgZIRQAwAAAAAAAAAAAAAAAA3AmPoIhTSEUwYmVAe/+2Z4H6gtV0YrjyyWJHW7CSVM+SHUlTKSEsZXt5uQJK08spiQ2gBMtAfScQeJ4SD7cuIP6IHGUK1gcALGGxc9AAAAAAAAAGBaIYAaAAAAAAAAAICyEEINAAAAAAAAAAAAAAAANADHKvDITzO8D9SeK6O/PXhq4AHQoeF9EEBbe5f2zdeCZJMSxpck+TVaN71OwvhakGzSpX3za7QysmX3QLmXY5v1a7nn0QP1q9dJ6M9OfFTrorsnNM+66G792YmPqtdJVGlnqBV6AAAAAAAAAMC0U2+Bz/W2HwAAAAAAAAAAshBCDQAAAAAAAAAAAAAAANQ513H1qe0nKDoY7D6ig9KnNrQSQBwAT1Y/mLlTrV6wb/lq9Rz9YOZOeWXH2GIiPFmtOOEJ7QsNqcML1yyAOs2X1OGFtS80pBUnPEH9A5DdA1blh0lrAudY0QP1qtdJaPmix7WxpVurjuuqOIR4XXS3Vh3XpY0t3Vq+6HFCiBsIPQAAAAAAAABg2jF19u/VBFADAAAAAAAAABoAIdQAAAAAAAAAAAAAAABAAzjDn62+5mD30NcsndEdCnYT05Qroyt6jlWv6wW6j17X0xU9xxJEXmOujFYeWSxHRn5A4b++rJzhfVD/2svsgYh15Nra1sC1qXXpgfqSDh/uau6RlPpzWkkIcTp8OH196WruIYS4QdADAAAAAAAAAKYdAqgBAAAAAAAAAKgIIdQAAAAAAAAAAAAAAABAnRuMD+q8C56UF/D9tJ6Rzvt/ujWoYIOQp6O4fH16wbNBb0OS9OkFzyouP+htTDudvcfrqu7j1OMmA1m/x03qqu7j1Nl7fCDrI9UDt+w9W91uQr6xNYuBNpJ8Y9XtJnTL3rPpgTqRHT6cVm4IcXb4cBohxPWPHgAAAAAAAAAw7RBADQAAAAAAAABAxUJBbwAAAAAAAAAAAAAAAABAYZFQRC1OWHE7FPRW1JI0iiR9SdxQW0sRSRf1z9T/dOwPdB92eB+pHiCIupbWzNypf5+zTUbB/Okzkv59zjZd1NehFd0nBLAD9DoJfXfmDrX6rnrc7LjYyWOVqn+r7+q7M3fonUfmK+qHa7Q68ul1Elp+4oac8OE0X1arjn1aN+49XScPtY07z6Pth/Tvc1/OCR9O62ru1vITHtPabcuoeZ0ptQc+/soSLRuYNe48j7Ue0BeOfZEeAAAAAKYawhABAMBURAA1AAAAAAAAAAATQgg1AAAAAAAAAAAAAAAA0ABObVmoDf1bU0mgQbHSqb0h6cUXJFtnN/lOcXHH15NnHAx6G5KkJ5sOKr7lOUV8J+itTBtxx9d1f7pFCeMHGkKdML6uW9Cld2/op/415hmrFa/fpa5wTE0JK8eR/Bpehh0rNSV8dYUPa8Xc3+i+RxbK5e+BQPSGPC1/3W51hYek5PjH+ZL+v/l/0Ht2RLXscHPO6xtmx/SdOT1q8gr/We4KH9by+Q9p7aPHK5p0J7h7VEM5PfCleS/ovdvH74HvH9Mr1yv8Z5keAAAAABrQ4KCUSIwd6+6WwmGpuVly+d4eAAA0GAKoAQAAAAAAAACYMO4CAQAAAAAAAAAAAAAAAOqc67j621f/rcIB38sattLfPj+b4NEARHxHX316vppqmTqbR5Nv9NWn5xNAXGPp+od9Iz+gPfiSwtQ/MK41WrmtQ8ZKRyK+fFO7zyQwSgVeH4n4MlZaua2DvwcCMhI+PHOopOOtkf7v4h5tmB0bM75hdkz/d3FPyUHmXTOHtPx1u9Ub8srdMqqs7B6QLdwDJa5LDwAAAABTgLVSPC4dPSp5fG8PAAAaCAHUAAAAAAAAAABURSjoDQAAAAAAAAAAAAAAgKntwIEDevLJJ7V161b19vYqHA5rzpw5Ouuss7Rs2TKFw+GgtzjGvn37tG3bNu3cuVOvvPKK+vv7lUgkFI1G1dHRocWLF+v8889XNBqd1H0kEgk9+eST2rx5sw4dOjSyh5NPPlkXXXSR5s2bN6nro754vqfv7vwfGeNIgUXQSsZK3z25T+/ZM4sA0gC8c88Mnd5zSL+bFQ9sD6f3hPXOPTMCW386o/64dH+bjom52teSlJVUq4iD9DoJx+qYmKtL97fVaGVkKjd8OC0dRC1Jyw43j4QPl/vXeDqEeO2jxyuadMs7GVUxKT1QxoWEHgAAAACmCGulWKz4cQAAAPWAAGoAAAAAAAAAAKqGEGoAAAAAAAAAAAAAADAp7r33Xt1222165JFHZMe5EW/GjBm6+uqr9clPflKnnXZajXcodXd36+GHH9Yjjzyixx9/XL///e918ODBoucZY3Tuuefqfe97n/7yL/9S8+fPr9qenn/+eX3pS1/SD3/4Qx09enTc9S+++GJ94hOf0JVXXlm1tVHfrKyM68rxfPkB3GvrWMmI+2qD4hmrFa/ZowMtvlqT0kAA7/xqTUoHWnyteM0e3ffIQoLIa4j6I90D+1o8tSSN+kO1vRhbSa1Jo30tHj0QgHT9yw0fTkuHEG+cFdMzHUNlB1Cndc0cov4BoQcAAAAAVFUyGfQOAAAAiiOAGgAAAAAAAACAqiKEGgAAAAAAAAAAAAAAVNXu3bu1YsUKPfTQQ0WPPXr0qO6++2595zvf0ac//Wl9+tOflqnhjYRf/OIXdcstt5R9nrVWv/vd73T99dfrpptu0s0336yPf/zjCoUqfyuG7/v67Gc/q8997nNKJBJF11+/fr3Wr1+vSy65RN/73vd07LHHVrw26p/ruPqbC/9Gv9v/Ox3o3Ss/gD04VpqdCOlvdh0jt7k1gB1Mb66klbvn69G5L2swoHd9DYakZt9q5e759ECNZdY/FlD9Y9Q/UGOvAcGEHAyGrJrogUCk679p9s5xP4jCysoo68WMp9ZIf5gZHzso5YR45J1nmGNF/QNSSg/klVHfvD1gpJyeKIAeAAAAABqEtVIsNvo8379d1FuoIwAAQKZ6+16FAGoAAAAAAAAAwBRACDUAAAAAAAAAAAAAAKiaF154QZdccon27t1b1nnxeFyf+cxntHnzZn3nO9+R67qTtMPq6+vr09/93d/pgQce0Lp169TS0lL2HJ7n6S/+4i90zz33lH3ugw8+qIsuukgPPvigTjnllLLPR+PoPLNTD730a9325O2BrJ90pKv3zFLnK7MlJ5AtwDGyxiqoW5ytJGus5BjJoQlqzjGSUaD1lxH1DxI9MK11vjJbesZo1dk7ckKIfVl1hz21eo6a/azaFMrpyGqmmONrwPU1M+HKyTrRsdLtzyxS5yuz+D4gIIV6oKCCPVBeADU9AAAAADQIY8YGN2aHODY11XY/AAAA5SCAGgAAAAAAAACASUEINQAAAAAAAAAAAAAAqIpDhw7psssuyxtAfeGFF+pd73qXlixZosHBQb3wwgv63ve+pz179ow57vvf/77mz5+vr33tazXa9VhtbW264IILdPrpp+uUU07RvHnzNGPGDHmep97eXr3wwgt69NFH9dhjj8lm3Wj485//XJ2dnfrpT38qU+ZNkR//+MfzBlDPnj1b733ve3XmmWcqGo1q+/bteuCBB/TQQw+NOW737t364z/+Y23cuFGzZs0q/wtHQ1jzuzW6c8Mdge7hzhMP6KKedq3YMyfQfUxHnqy+seiA+lw/0H30ub6+seiArtg3U27BVEtUkyer1SccVNg3cq2UDOC33rVS2DdafcJB6h8AegCS1Lkv9X1eZgixL6sjYU9xxyrueJqZUG4QdQlijq/usCcr6UjY06yMIOqR8OF9fJ8ZtHw9IEl2uA/yBpGXIR1EPivhymT8GacHAAAAgClm7tygdwAAAJAfAdQAAAAAAAAAAEwaQqgBAAAAAAAAAAAAAEBVfOhDH9KOHTvGjM2YMUPf/e53dcUVV+Qc//nPf16f//znddNNN40Zv+222/S2t71Nl19++WRuV5LU1NSkt7zlLbr88st16aWX6lWvepVc1y163pYtW3Tdddfpv/7rv8aM//znP9ddd92lD33oQyXv4f7779cdd+QGC3/4wx/WV77yFbW2to4Z/8d//Ec98sgjuvLKK7V///6R8W3btunDH/6w1q5dW/LaaBzxZFyf+NknFLdesPtwpU+cvUPv3jNLEVUecIjKDDm+EgH/tiec1D5QW66M7vzdiTr/jc/IC+jee89InrG683cnEj4cAHoAaZkhxEkzGkAtSVZSd7j8IOrMAGpJijt2JIg6ZA3hw3UmO4g6HUCdcKx6HE+aQBB5Tzj1vWa6/kaGAGoAAABgKgmFpPnzpZaWoHcCAACQiwBqAAAAAAAAAAAmFSHUAAAAAAAAAAAAAABgwn7xi1/oxz/+8ZixSCSiX/3qV1q2bFnec8LhsG688UbNnDlTf/u3fzvmtY9//OPavHmzQqHJfWvDzTffXNF5p5xyiv7zP/9T1157re68884xr33xi18sOYQ6kUjoE5/4RM74//k//0df/epXxz3v9a9/vX77299q2bJlOnz48Mj4Pffco4985CO65JJLSvtC0FCG4oNBb0GSNOT60uzZEiHUNeXJ18aZ/UFvQ5K0cWa/vNmz5NIDNePJ6iNnbJJjHEnBhdE7xtFHLtyj+547nxDiGqMHkKkzPlsDO1t0zSnPKG7GhmCMBFEnjcLWqGCZjBQzVt2h0QDqtLhj1R3xdPeWs9UZP06aXe2vAhPRGZ8tvdyuj530nA6H4kpk9EFP2JOSRs3WlYwt3AOOkayjmPHUExq9tiQcqyMRT3OSEd3+0hnqjB9DDwAAAACNpq9v9L9DIWnmTKmtTcr64EsAAIC6QAA1AAAAAAAAAACTjhBqAAAAAAAAAAAAAAAwYZ/97Gdzxm688cZxA6gzfeITn9D//M//6Be/+MXI2JYtW/S9731P73vf+6q6z2oyxuhf/uVf9JOf/EQvv/zyyPi2bdu0YcOGkr7273znO9q+ffuYsXPOOUdf/OIXi567ZMkS/eu//qve+973jhn/p3/6J0Kop6i4Fw96C5KkuJE0Y4YIoa41X0N18ls+5IgeqDFX0nv6FuvnMzfmBMXWipV0JJTUe/oWy50RDWgX0xc9gEy9TkLfPvYVeeNkclhJ3aGkon5Ixo4f3BE3vgbd3ADqNM9I3z72Fb0zcZKifnjC+0Z1Xeo16xhvu/aFh3Je6wklJc/IFAuLN0Yx46vHTea8lDBWx3jNutQ7UZpB/QEAAICGMjgoue7o81AoFew4MCAlElJHR3B7AwAAyEYANQAAAAAAAAAANcFdQAAAAAAAAAAAAAAAYEKeeeYZrV+/fszY3Llzdf3115c8xxe+8IWcsTvvvHPCe5tsTU1Nuuqqq3LGn3322ZLOz/c13nzzzYpEIiWdv2LFCp1zzjljxn7961/r+eefL+l8NBjrB72DFG66DU69/NbXyz6mEU9WX5u7RUkT7G9+0qT2MX5kLSYLPYC0XiehKxc9pvVtB+XLjhsxbCX1OknFjCfP2JxHzHgacMavpJHky2p920Fduegx9TqJyfmCUJFeJ6Hlix7XvtCQOrz8AdE9bkIx4+et/2gf+Opx89e2wwtrX2hIyxc9Tv0BAACAqSSRSIVRAwAA1IN6C6Cut/0AAAAAAAAAAFBFhFADAAAAAAAAAAAAAIAJ+cEPfpAz9v73v7/kIGVJuvDCC3XhhReOGXvssce0bdu2Ce9vsp188sk5Y3v37i163pYtW7Rhw4YxY8cee6yuuOKKstb/m7/5m5yx73//+2XNgcbgevUR+OnWxzamHVdGxyVbgt6GJOm4ZIvccWNPMVmsFPjvuhEZ5EGiB5AZQJ0wqQ+nMBq/L6ykmOMrobEfZJGQr5gz/odbZM6ZMD5B1HUmHUDd1dwjSWq27rhB1IOON9Ir2RLGV7+TzPtahxdWs3UlSV3NPQRRAwAAAFPN0FDQOwAAAKi/wGdjJL9OPhgaAAAAAAAAAIBJEAp6AwAAAAAAAAAAAAAAoLH97Gc/yxm76qqryp7nqquu0saNG3Pm/shHPlLx3mohFovljJUSwP3zn/88Z+zP/uzPFAqV93aOq666SqtWrRoz9tOf/lQ33XRTWfOgvrmOqwWDrra15w8KrKUFfZLbP6Dgo1CnG6tTBlu0PTIQ9EZ0ymCL1N8veqB2XEn3bT5Pp573m4LBsZMt4ju6b/N5chPB9+F0Qw+g103qylM3aX3bkZxQ4WLh4DHHl3wpbI0Sxhbtoeyr+0gQ9fGP6Ecvnq+ox9uPg9LrJrX81KfV1XR0TNGbraOYcTSUp7ZDxpdsqv5pCWNT43k0+Y6afUeZC3Q1dWv58Y9q7YvnUX8AAACgEcRiUjLjZ8nZAY+eJ1k+ZgoAAASIAGoAAAAAAAAAAGqOdwEDAAAAAAAAAAAAAICK9ff366mnnhoz1traqgsuuKDsud7whjfkjK1fv77uQ6iffPLJnLGTTz656Hnr16/PGbv44ovLXn/BggU65ZRTtGXLlpGxjRs3amBgQK2trWXPh/p12iGjna1S0gluDyFfOu2wpHhcBBDXmtUrbm7ofRBecWP0QI15srri7A2Bhg9LqSDbK07boCc3XSSX+tcUPTC9ebJafk6X1kePKGFyQ8JK6YqY4ytpjZJ5zs83X/a3Gwnja330sJaf/JT++w9LqX8Aet2klp/2B3W19OWkjsccP28AddqQ40u+MxJEXuzYmO8NB1GP6mrp1fKTn9LazecQRA0AAADUu0QiFTSd5rrB7QUAACBbvQVQSwRQAwAAAAAAAACmhQBvSQMAAAAAAAAAAAAAAI3u6aeflp91M96yZcsUCpUfSnbRRRcpHA6PGdu4ceOE9jfZXnzxRa1bt27MWHNzs974xjcWPTff1/ba1762on287nWvG/Pc8zx1dXVVNBfqk+u4uuenbZo1GOw+Zg1K9/zIJXgyAJ6sXm6pjxDql1ti8rLTLzGpPFm91BLwBWDYSy2D1D8A9AAOhOMVB1CnlRJAXWjehLE6EI6XsSKqxZPVijOeUVdbX85rMcdXTyhZdI4hx9dgkbDqtJ5QMm/ofVdbn1ac8QzXAAAAAAAAAACVqccAasvPOwEAAAAAAAAA0wMh1AAAAAAAAAAAAAAAoGLPPfdcztgpp5xS0VyRSEQLFy4cM7Z161Ylk8UD1YLw0ksv6Z3vfKdisbGhsO9///s1c+bMgucmEgm99NJLY8bC4bBOPPHEivZy8skn54w9//zzFc2F+vVXfzygA23B7uFAm/RXV5QTd4lqicjRxd0zg96GJOni7pmK8NazmorI0b+9eLrCNtgb88PW6N9ePJ36B4AemN5cGX1qxxLNTI79oJfJ/hs5e/6ZyZA+tWMJH0YRAFdGK/cdJyfr9z4zgNqXikZDe0WCyK1G654viNoZ3gc9AAAAAAAAAKBsBFADAAAAAAAAABCoUPFDAAAAAAAAAAAAAAAA8tu+fXvOWKVBypK0aNEibdu2beS553nasWOHTjrppIrnrKahoSFt2rRJP/jBD/SNb3wjJ4B6yZIl+sIXvlB0nh07dsj3xwa6LVy4UI5TWaDjokWLcsayQ67R2Abjg/rvJfGgtyFJ+u9TrQZ7w2qRG/RWppW4fD0ZPSqj4gGTk8lIejJ6VPHmCCG0Nbbi6GI9+cqAbjtme2B7+OgrJ2rF0cVSc2BbmNbogemts/8EaXtYH1j8e3WHEpMeQJ3mS3IkzUyG9c3t56qzfwH1D0hn/wnSjrBWnfisfFnFjDcmgFoa/R6h1CiXzONsxvnpuveEklIypGbrypHR7S+fRQ8AAAAAjaDCf2sAAACYNARQAwAAAAAAAAAQOEKoAQAAAAAAAAAAAABAxfbt25czdsIJJ1Q8X75z9+/fX9MQ6v/93//V9ddfP2YsmUzq6NGj2rNnj5LJZN7zTj31VD3wwAPq6Ogoukatft/qwb/927/pjjvumPR1tm7dOulrBCkSiuj13VE9NKs36K3o9bsdRVraVHq8IaohIumf95+tv1m4Keit6J/3nz3cA6ilddHdunfOfs30wup2EzVff6YX1r1z9utNQwvU2Xt8zdcHPQCpM7ZE2hPRXy58Uv2OV7N1W3xX39xzoTpjx0stNVsWeXTGlkh7I/rA8U+pxx0bQJ1WbhB1+pzsuJXMIGrjOfrm7vPpAQAAAKBRRCJB7wAAAGAUAdQAAAAAAAAAANQFQqgBAAAAAAAAAAAAAEDFDh8+nDPW3t5e8Xz5zj106FDF81Wiu7tbXV1dJR/f1tamD3/4w7r55pvV1lZaKOtU/H0bz4EDB/Tss88GvY2G5zqu7g+/T3+y/et6eHFw+7h4u3T/E4vlnlWHNwpPcZ6s7u/Yq7nJiA6G4jlBkbVgJM1NRnR/x16t7F4ilyDymvFktXrWdvmBVH6UP7yPK3qPo/41Rg8gbcAkFTfZscOTK258DZj8H8SCYI3XCeVcKfIFUGfO75S1IwAAAAAAAADIQAA1AAAAAAAAAAB1gxBqAAAAAAAAAAAAAABQsf7+/pyxlpaWiufLd+7AwEDF800mY4yuueYaff7zn9e8efPKOnc6/76hctGLL9WHP/vveuyEpJJu7dcPedKHn5Ki4Xapu7v2G5jmXElrjp6uN7xqgw6E4oHswUo6diisNX84Xa7XE8gepqvM+v+uLRbIHrrdhBb1R6h/QOgBSNKaeXt1zcLN8kxtAzI8Y3XNwo3SwIBWHDi2pmtjrHVzXtGqBS8o4kuOY+QX6AUrFY2KLxRAneZYo4gvrVqwServV+eh+WXuGgAAAEDNDQxIfsbH1nieNDQkhUKSG8APlwEAwPREADUAAAAAAAAAAHWFEGoAAAAAAAAAAAAAAFCxRCKRM9bc3FzxfPnClOPxYMJWi7HW6pvf/Kbuv/9+ffSjH9V1112nGTNmlHTudP59Q+XWzTukG97sKRqTDrfVfv1oTLrhMqn12R51HozUfgPQfx13SM+15IbY19JzLf36r+YdWrFnTqD7mI6oP+iB6W3NcYd0zanblTBWfvHDq8qXlDBW15y6WRoYpP4BWbfgiFYt2SHPWh0JefKNlVHhEOliQdTF4laMJN9YHXETmpVwtWrJc9LAgDr3zSp3+wAAAABqKRZLBU+nGZMKpjZGammRmpqC2xsAAJgeCKAGAAAAAAAAAKDuOEFvAAAAAAAAAAAAAAAATC1mAjcT5jvX1vhGwKuuukrW2jGP/v5+7d69W//7v/+rm2++WUuWLBk5/pVXXtFNN92kV73qVXr88ccrXrfRf98wuTzf0+od92moORxIALWUCr4ecqXVS7rlFY0sRLXF5eu6s3cqGfA7vpKOdN3ZOxWveQTq9Eb9QQ9Mb+n6J5zaB1Cn+ZISjqX+AfFktfqEg/KM1ZGwp4ST+l7MqHDItDQ2aDpkTd7xfDLnTjipdT0zvA++FwQAAAAak7WpMGo+xBIAAEwmAqgBAAAAAAAAAKhLhFADAAAAAAAAAAAAAICKhcPhnLHBwcGK58t3biQSqXi+amltbdVxxx2nSy+9VJ/5zGe0detWff3rX1db22ga8Pbt2/XWt75Vjz76aNH5psvvG6rHdVx95o2f0aFwsOEgh1qlzzx3rNyicYeotogc/fPm44PehiTpnzcfrwhvPasp6g96YHqj/nBldOfvTlTS2JEA6rRSg6gjvlGb5yjim7ICqNMSjlXSWN35uxP5XhAAAABodENDQe8AAABMVU4d/vyYAGoAAAAAAAAAACRJoaA3AAAAAAAAAAAAAAAAGldra2vOWLXDlDODnuuFMUbXXnutzj33XL397W8f2XdfX5+WL1+u3/3ud5o1a9a450+n37d58+bprLPOmvR1tm7dqqEpHJwxGB/Uxd+6uGhg4GSzki6++Hl1//Q8tcgNeDfTiyer+4/tVnPSaCAUXCc0J43uP7ZbK3fNJYCyhtL1n5Fw1BP2A9vHjIRD/QNCD0xv1B+erD7yqpflWqOwb/IGURf77iDuWFnjK2GKfx+Rr7ph38i1Rh951cu678lT6AEAAACgkXle0DsAAABTkePUX+Bzve0HAAAAAAAAAIAAEUINAAAAAAAAAAAAAAAqNmfOnJyxvr6+iufLd26+NerFG9/4Rt1000264YYbRsZ27dqlr3zlK/rnf/7ncc+bTr9v1157ra699tpJX+fss8/Ws88+O+nrBKUl0qLzjjlPT+x5orSUwUl0Xk8LAdQBcGV01tFm/ff8nkD3MRCyOutoM8GTNebKaOXOuXp0Zl9glwAjybWpfVD/2qMHprd0/TdFB2Rl1RuufQdEE0btnkv9A5LZAzMTrrrD3pgg6mIdka5YOoC62HXEamwQddg3mplwFeIaAAAAAEwNjhP0DgAAwFRDADUAAAAAAAAAAHWPdwsAAAAAAAAAAAAAAICKHXPMMTlju3btqni+nTt3lrRGPfnEJz6hGTNmjBn7j//4D9kCNzTy+4Zyeb6nQ4OHgt6GJOlQU1JekCnY05Qnqx8deyTobUiSfnTsEXogINYEl0Fvh9dHsOiB6atz3yzdsnmhhlzVPP7XSBpypVs2L1Tnvlk1Xh1pnftm6fZnFilkU4HQYT/VCVaFrwvj9Ysp8FrmnJkB1Lc/s4geAAAAAKaCcDjoHQAAgKmEAGoAAAAAAAAAABoCIdQAAAAAAAAAAAAAAKBiS5YsyRl7+eWXK55vx44dY567rqtFixZVPF8tNDU16S1vecuYsQMHDujZZ58d95xFixbJcca+bWPnzp3yfb+iPWT/vkn5a4PG5fmedh/dnXoS8P2yu5sSBBAHwJPV7qZE0NuQRA8EwZPVfyw6oKOuF+g+jrqe/mPRAeofAHoAvSFP3114SK2eUzA8uNrSa7V6jr678JB6Q8H24HSXHUTt2PG/NSylT4oFUTtWBFADAAAAU43rSs3NQe8CAABMJfUW+Fxv+wEAAAAAAAAAoE6Egt4AAAAAAAAAAAAAAABoXKeffnrO2JYtWyqaKx6Pa+fOnWPGTj75ZIVC9f/2hsWLF+eMvfTSSzr77LPzHh+JRLRkyRJt3bp1ZCyRSGjHjh155yomc560M844o+x5UL8831PCq48A4oRj5YVcSW7QW5lWPHlKOPVxwzQ9EASrfU1JJZ3iR06mpCPta0pKoZBqF4GLFHpgOvNkteKCLeqKDqrZdxT3rPrdyj68pFxWqQDqZt9RV3RQKy7YpvueOl0u9Q9M58F50mZX15yzVclJLkPSSHHH6s4/nKTOg7N55zkAAADQKIzJfR4KSeGw1NSU+zoAAECl6u37CgKoAQAAAAAAAAAYF28FBgAAAAAAAAAAAAAAFTv//PPlOI58fzQEb8OG/z97dx4mZ1nmDftXVd2dPQSyAEKAyJqAIpsgw64ICoIIsrkNLowocfwcXx3GJfAygxvvAG7o6CAziojCoIOK4C4gCIEAAoGw74FASELWXqq+P0LHdLqT9F7dVed5HDmSvrue+7mS+86TSl1Vv2d2WltbexwePXv27LS0dAzZ3XPPPfulzoE2cuTITmMvv/zyBo/Za6+9OoVH33zzzb0Kof7zn//c4etSqZTdd9+9x/MwdDU1NGXr8Vvn8UWPV7uUbN0yKk1bTY3w0cHVlEp2XflA7h61pNqlZNeV4+2BQVdJQ+MDKWZ5Bid2tmvFJA2NTclWW8X6DzZ7oJ6Vkrx/RSFzNr0rywutWT5IAdTtlpfKaUopoysNef+KXVLaaqtBPT+dLd+kNUsbNrwP2qNWNvQ3tbLW49ZnaUM5yyeNTxqtOwAADCtL1nodsakpGTeuerUAALVJADUAAAAAAAwrxWoXAAAAAAAAAAAMX2PGjMkee+zRYWzZsmWZM2dOj+e68cYbO40ddNBBva5tMD3//POdxiZNmrTBYw488MBOY139GWzMc889lwcffLDD2F577ZXRo0f3eC6Gtl3GTUuxmsmjSYrlZJflY6pbRJ0qpZAbHj0kU5s7h94PpqnNI3PDo4ekJHx2UJVSyG8fPSjbNlf32r5t8+j89tGDrH8V2AMct2SrvOulqVlUatloaHB/qyRZVGrJu16amuOWCCKutss2eTwf2PqOtBUq3fqbuL790p0A6kKStkIlH9j6jly2SfVvhgIAAAAADBECqAEAAAAAYNgRQg0AAAAAAAAA9MmRRx7ZaezKK6/s8TxdHdPV3EPRLbfc0mlsiy222OAxRxxxRKexn/3sZ2ltbe3Rua+66qpOY8Plz43uKxVL+fGED+Wg+Y1VreOgJ5Mf3z5N+GiV/Hbs83m51LNrRH97udSa347tHLzPwPvt2OfzUqm5qjW8VGq2/lVkD9S3q8c/ne9s9uigB1C3qyT5zmaP5urxT1epApK/BVC3FFbfmaTwyo+NWXffdGcfrT13S6EsiBoAAAAAWE0ANQAAAAAADEtCqAEAAAAAAACAPjn55JM7jX3ve99Lc3P3QxLnzJmT2267rcPYvvvum2nTpvW5voF25513Zu7cuR3GJkyYkOnTp2/wuB133DF77bVXh7Gnn346P//5z3t0/m9/+9udxk455ZQezcEwcc89aSgX0tRWndM3tSUN5UKyZEl1Cqhzbank3Clzs6jKIdSLSq05d8rctFUtBrU+WX/sgfrWvv4vlVqqWsdLpRbrX0XrBlC362kQdU8DqNsJogYAAAAABFADAAAAAMDwJYQaAAAAAAAAAOiT3XbbLQcccECHsQULFuSCCy7o9hxnnXVWp7Ezzjijz7UNtLa2tnzsYx/rNH7UUUelsbFxo8d39XucNWtWWlq6FzD4ox/9KHfffXeHsUMOOSS77LJLt45n+Ggrt+VdL1+aezdrzaYrMuhB1E1tyaYrknsnV/KuvR8XPlkFbankyYYV1S4jSfJkwwp7YJBZf+yB+mb9aU45n9jyr50CqNv1d+zL+uZrKayuozld1wEAAAAA1DAB1AAAAAAAMKw1VLsAAAAAAAAAAGD4++xnP5sjjzyyw9isWbNy+OGHZ88999zgsV//+tdz3XXXdRh79atfnVNPPbVb595uu+3y+OOPdxj7/e9/n0MOOWSDx33ta1/LLrvsksMPP7xb51nXqlWr8r73vS833HBDh/FCoZAzzzyzW3O85z3vybnnntuh/rvvvjv/8i//kq985SsbPPaxxx7r8jyf+9znunVuhpdSsZT3Pzkpc6bOT7I6EPqlUUlzaeDP3R5AXUxSrCTvv6cxpS0HOQWbNCW58Knd8v5t56S5UL0PVDdVCrnwqd3S1FpOBFAOGuuPPVDfrD9NSf79qV3zgW3v7DKIuju7orDWzxt7fCVdB1E3Vor596d2tQcAAGCoa2vrGMpYLq/+USxWryYAYHgTQA0AAAAAAMOeEGoAAAAAAAAAoM+OOOKIHHvssfnZz362ZmzVqlU59NBD84Mf/CBve9vbOh3T0tKSL37xi/n85z/f6Xtf/epX09jYOKA133777fnYxz6W/fbbL+95z3ty/PHHZ/PNN9/ocS0tLbnmmmvyz//8z3nwwQc7ff9DH/pQ9ttvv27V0NTUlAsvvDDHHXdch/Hzzz8/y5cvz/nnn59Ro0Z1Ou7Pf/5zjj/++Lz44osdxk844YQcdthh3To3w89x8zdN7m/IzDe1JIVkkxXJgjHpOiGwv1RWn6c9gPpr1xZy3LOlZOzLA3hS1uddL09IVk7P+3e+L81V+Jx3UyW55IHpedeCCUnsgcFm/bEH6pv1Z/Ue2CUf2HluWtYKI69k46HS626ZjQVRV9Z6XLvGSiH/+cAu9gAAAAwHK1Ykra0dxxYvTkqlZPTopMHHSgGAHhBADQAAAAAANcG7BQAAAAAAAACAfvGd73wnt99+e5566qk1Y0uWLMkxxxyTvffeO8cee2ymTZuWFStW5MEHH8xll12Wp59+utM8Z555Zo466qhBq/uWW27JLbfckpkzZ2b69OnZY489MmPGjGy22WaZMGFCCoVClixZkmeeeSZ33nln/vSnP3UKf2536KGH5t///d97dP63v/3t+Yd/+Id8+9vf7jD+zW9+M1dccUXe/e53Z/r06Rk3blyeeOKJXHfddfnDH/7QaZ5tt9220xzUmHI5x93TlrQkH31Lsnh0BjaAOqvnXzwqmbg8+dovk+PurySb+FBvNb1rwRZJkvftfF/aBvHz3qVKcskDM9acn+po//P/+53vS+sgrn+D9R8y7IH6Zv1pX4P2IOreBFCvPd7dIOrVAdTT7QEAABju2tqSpUuTceOqXQkAMFwIoAYAAAAAgJohhBoAAAAAAAAA6BeTJ0/O9ddfn8MOOyzz58/v8L3Zs2dn9uzZG53jxBNPzIUXXjhAFW5YuVzOvffem3vvvbdXx7/97W/PD3/4w4waNarHx37961/PCy+8kKuuuqrD+IsvvpiLLrpoo8dvueWWuf7667PZZpv1+NwMI5VKUqnkjY8kk5clzw5STkhzafX53vjo4JyP7ilsNDpyIM7HUDC6XMq4toa81NA6aOcc19aQ0eXSoJ2PDbMH6pv1pz0I+rRXgqg3ZGP/encniLpBADUAANSWSiVZsaLaVQAAw4EAagAAAAAAqClCqAEAAAAAAACAfjN9+vTceuutOfXUU3PjjTd2+7jGxsb8y7/8Sz7/+c+nWCwOYIV/M2bMmH6ZZ+rUqbngggty/PHH93qOhoaG/PjHP87ZZ5+dL3zhC2lt7X6o4EEHHZQf/vCH2WqrrXp9foaJpqYsaark+BOTezYf3FPfs3ly/InJVT9OxhcKPuBbRZdNnp8P7Hx/WjcSOtnfWguVfGDnuUmlIoSyiq6euCAzd3iwKueeucO8pFLJcS9Orsr5Wc0eqG9rr/9g3YqgPWLE+g8to9uKGdtW2mAYeXfiYdofs6G9NLatlNFtRc//AABguNnQc/ge9CAAgDolgBoAAAAAAGqOEGoAAAAAAAAAoF9NnTo1f/rTn/KTn/wkF110UW6++eZU1vOBwLFjx+ad73xnPvWpT2WXXXYZ1Dq/8Y1v5KMf/Wiuvfba/PGPf8xtt92W+fPnd+vYzTffPIceemje+9735s1vfnNKpVKf6ykWi/m///f/5tRTT82XvvSlXHnllVm6dGmXjy0UCtl///3zj//4j3nnO9/Z53MzPCxpW57jT0x+Ny0pD/JnfsuF1ec9/sTkql+0ZPzLLw9uASRJLnvVi/nAzo9l1SAHULdbVajkAzvfn6xcmXc9M7EqNdSzq7d4KTO3fyLLC+Usamgb1HMvamhNWiqZuf0DycoVOW7+poN6flazB+rb2uu/uKGtW+HBfVV45cdi6z+ktO+FkW2FbFIpZnFjudNj2tduY/ujkg0HUW/SUszIcsHaAwDAcLNiRdK21msH64ZIViqCHAGA9RNADQAAAAAANUkINQAAAAAAAADQ7wqFQk488cSceOKJef7553PrrbfmkUceyZIlS9LQ0JBJkyZl+vTp2WeffdLU1NSncz322GO9PnbGjBmZMWNG/umf/ilJ8uyzz+bhhx/OY489loULF2bZsmWpVCoZN25cNtlkk0yZMiW77757ttxyyz7VvCG77LJLvve97+Xb3/52brvttsydOzcvvPBCWltbM378+Lz61a/O61//+kyZMmXAamDoaSu35cTd5uZ3kwY/gLpdexD1iUctzy/uWpVShtiHj2tcc8r5xIwnsqpY3Q9ZrypW8okZT+Sdj41JU4pVraWetKWSS7Z6PstL5SxqbBvQ0NmuVJIsalwdXHTJVs/nmCdGuwYMMnugvq29/osbBzeAvN1i6z8kXP2qxZm56zMpp5JUktFtxaSSLG76WxB1ewB1T3QVRL1JczGjy8UklZSTzNz1iaS1Ncc9s0mffg8AAMAgaG1NymvdsKZcTlpaklIpKXpNDwDYAAHUAAAAAABQs4RQAwAAAAAAAAADasqUKTn66KOrXUa3bLnlltlyyy1zwAEHVLuUNDU15e/+7u/yd3/3d9UuhSHiLxOWVi2Aul25kPzlVZXk9pakMsQ+gFzjmpK848lx+dYOi6pdSt7x5Lg0tbQlqU4Qaj0qJTn5sbG5fsrLgx4+3K6SZFmpLSc/NjalltYqVVG/7IH61r7+v56ydM1YJRnwvdA+f/u/+MtLZetfRVdvtSQzX/tcyuuMjywXsqyctPZjjlxDefW8ayunkpmvfXp1EPXT4/vvZAAAQP9ra+scQr1ixepQyREjkj7eHBQAqFECqAEAAAAAoKa5bTUAAAAAAAAAAAxxza3Nebm0buRgdbzclDQXhkYt9aS5WM5VU1+udhlJkqumvpzmoj0wmNoKlXx/2yXVLiNJ8v1tl6St4EP/g80eqG9thUp+tM3LmdBcTGO5MCgB1O3az9VYLmRCczE/2uZl618FbYVKLpm2uNMNScqpZFFTOeW13hG+of1RWs831j2mXMzqedeZqVxILpm22B4AAIDhqlJJVq5MWlqqXQkAMNQMtQDqoVYPAAAAAADUgIZqFwAAAAAAAAAAAGxYU0NT3vB8Y27covrhIG94KmlqGJnEB38HUymVbLmiIQtGtFW7lGy5oiGlhhGxBwZTJYViMYUUMnjRs50VUkihWEwam2L9B5s9UM9KSS67Y7uctM/juXnTZVnV1Ls90NvdU0kysrWQPRaPzmV3bJtSY6lX56f31t4Dd22yIsnfAqhbipVO69rVOo9oK6SxUkhLoZJVa6VRdxVaXUnSUlw9/4TmYoqv/H3fffEoewAAAIaDhoaOwY3rhjg2Nwt2BAD+Zqg9LygUkrIb4gIAAAAAQH8TQg0AAAAAAAAAAMPASyOqFzq6tpdG5ZUPIg+xDyPXgdIQ+TMvpWAPDLJSCjn98Ym5ZbNlWVWs3rVgVNvqOkqFYtVqqFf2AOPbGvLupzbN7ycvTTFJT+M3Cmv93NMdVEyysqGSdz+1aca3Nbj8V8n4toZcMXu7nLTPY5kzfnmHAOqu1rSSvy1VewB1ktU/t2VNEPX6jk06BlHvsWR0rpi9Xca3lewBAAAYDoZamCQAMDQNtecMAqgBAAAAAGDACKEGAAAAAAAAAIAhrrm1OXMntFa7jCTJ3ElJc8uKjCqXql1KfSlUsqixrdpVJMnqOppXJZUh9qH0Gre8vCrLGqr7oftlDeUsL69KVq2qah31yh6ob1dvtSSfnvFcNmkpZsGInv17sO7VuqdB1JUkm7QU8+kZz2T0yrYc9/T4Hp2f/jN+VfKdW6ZkjyMe22AAdbtKkqZy1gRQt2usFFIuV9K8gTz5tYOo2wqrzzt+ZWuSofGcFAAA2IDW1o7hjeuGSzY2JpWhcdNDAKCKhloAdSKAGgAAAAAABpAQagAAAAAAAAAAGOKaGpoyubkhz42ofujf5GVJU7EpKQ7BDyXXsLaUs7BpaIRQL2xqS1uplFI2kFxJv2pOOZ/Y4/m0VfmvXVsh+cQez+edz2yWJus/qOyB+taWSi7ZfknaiqtvBNDTmLBKVgdPN1SS1kLPAqjbj1/U2JbNWhpyyfZLcsxzm6bUKdqawbCkoS0f2ve5NKSQYjlp3chfw0KSlmJSqlQ6BFG3FCppKW48kLySpFROGlLIh/Z9Llf8ZZuMb3UjEgAAGPKKxY6hkmv/uqFhdQg1AFDfhmIAtZtkAAAAAADAgBJCDQAAAAAAAAAAQ1ypWMrvn3pjdp12XSpVzPwslJPfX71JSlPGVq+IOtWU5Cv3b5vTX/NotUvJV+7fNk1jxlW7jLrSlORf522Tf6jy+ldeqcP6Dz57oL6Vklw8d4fsfsDdae7l84CmciGjysWsKJazqtjzII/mYtJcrOTiuTukNGZE74qgT5aUWnPS6x7MXeNWZVWxknI3AqjbrSxVUmwrpLFSSEuhkpWlSofHbGhHlIvJqmIld01YlZP2fzpX3Lljxrd5CzoAAAxpq1YlpbVuINPQkDQ1rf65oWH194Zi8CQAMDiG4vMAAdQAAAAAADDgvAMYAAAAAAAAAACGuObW5hyyw40plDccEjjQCoXkkHe+nCdvbkhTqpiGXYfaUslVWy1KQyVpreLnwhsqyVVbLcr7X9g6pQzBD6jXqPb1L1V5/UvWv2rsgfrWlko+uPsDWdpQ7vUcq4qVVArlNBd6/0xiaUM5H9z9sfzirt2s/yBrSyXveu283DVuRVYWK1nc0JYkKSbpalcUXvmx9movL5XXhFCv+9ik6+eY7c/2Fje2Ja2F3DV+Rd61xyP56d272gMAADCUlUpJsdjx66amv401NlanLgB6bcGCBbntttvy8MMPZ8mSJWlsbMzEiRMzY8aM7L333ml0becVhXMKqczawOvA3QygbkkyaLtKADUAAAAAAAwKIdQAAAAAAAAAADDENTU05e8nvzlfef7qqtZRSfL3D49L0/KVVa2jPlXyYmlV2qqc99hWSF4srUqWL0+ETw4i6489UN9Wr/+64cE91ZcA6iRpKVSsf5WUkrz/sU3z59csXhNA3W7dIOr2AOqurG8PdRVEve7tRhY3tKbQXMr7H9s0peUruls6AABQDc3NSXmt/ym0tiZLl64OoR4zJhk5snq1AdAjV155ZS666KLcdNNNqawnqHfcuHE58cQT86lPfSo77bTTIFfIUFI4p7Dm5zVB1N0MnV5by1o/D3gQtQBqAAAAAAAYNEKoAQAAAAAAAABgGNhv96My5hdXZ2lT9WoY05Lst3yzpFSqXhF1qpTksBc3ye2bLK92KTnsxU1SKnnr2WCy/tgD9c36k2R1WNx6AmPag6g3FEC9MWsHUa8bQP23BxVW1+G5IAAADG3r/t+hUEgaGlb/SDoGVAMwJD399NN517velT/+8Y8bfezLL7+c//zP/8z3v//9fPazn81nP/vZFHoRPMzw1h5AnSSpJIXPF1I5t+fztHTx9YAFUQugBgAAAACAQeVd4AAAAAAAAAAAMMS1ldtyybwfZVzz6mDAZVUIoh7TnIxrTi6ZtijHrNwupV5HHNIbbankvgnNmdDakEUNranGR7ILSSa0NuS+Cc1pGzPaHhhE1h97oL5Zf9pSySXbPpQRlWI2aW3I4obWTo9Zb3D0WhoqhbQW1r+DNhRivUlrQ0ZUirlk24U5ZunW9gAAAAxly5b9LXA6Wf3r0aP/9vXy6t/kCID1mzdvXg455JA8++yzPTquubk5n//85zN37tx8//vfT8mNxOrGugHUSZJiUvhcehREvW4A9drj/R5ELYAaAAAAAAAGnRBqAAAAAAAAAAAY4krFUi4bf1pOevEPuWvi6tDBwQyiHtOcjG9Odn+ukMvu2SKlCZWkKhGY9auU5LL7puekGfflL+OXDHoIaXv46L5Lxuey+6anVLYHBpP1xx6ob/2x/mvHBffmWOtfXWvvgbvGLk3WE0S9IaPaimmqFNNcKGdFqdyjYzdpbcjIcjG7Lx1rDwAAwHBQqWw42LGtbfBqAaBHXnzxxRx++OFdBlDvtddeOfbYYzNt2rSsWLEi8+bNyw9/+MM888wzHR53+eWXZ8qUKbnwwgsHqWqqaU0AdVf/9BeTc5LM6sY86wugXvv7/RZELYAaAAAAAACqQgg1AAAAAAAAAAAMA+PvfShX/HaznHTIgtw1pZLWYrJqEN79M6L1lQDq+ckVVxczfsLipGHMwJ+YTsYnueK2bXPSng/nLxOW5aXGwQuLmdBSyr6LRueKO7bN+NaVg3Ze/mbd9V/U2DYo8Z+FWP+hwh6ob31Z/0IXX/fkWOs/NKy9B+4avyKplLK4m88FVgdQr175pkohaSt2O4h6k5ZSRpYL2X3JSHsAAACGi5UrOwZNF9b5n+HGQqoBqJrTTz89TzzxRIexcePG5Qc/+EGOOeaYTo8/77zzct555+Xss8/uMH7RRRfliCOOyFve8paBLJcq22AAdZKzz0nOysYDpDcWQL324/ocRO05CAAAAAAAVE2x2gUAAAAAAAAAAADdcO+9Gd9ayhW/npAtlibNpcE5bXMp2eLl5Ir/KWZ8SzFZsWJwTkyXxreWcsUd22e75U2dQkUHSiHJdsubcsUd22d86yBtPLrUvv77LhqTCS2lAd8DfwufHWP9hwh7oL71Zv3X95juHmv9h5b2PbD7klEZWS5mk5aNr8nfAqj/pqlSyKi2jb+NfHUAdTG7LxllDwAAAAAMsF//+tf5n//5nw5jTU1N+d3vftdlAHWSNDY2ZtasWbnwwgs7fe9jH/tYWltbB6JUhoCNBVDnnOSf87fXgtcXNN3dAOrePr4DAdQAAAAAAFBVQqgBAAAAAAAAAGA4ePHFJMlvpyWPTUgqg5RAXCmsPt9vt3/lhD6sXnW/nbQkz41sTak8OOcrlZPnRrbmt5OWDM4J2aC1Q2hHtw7sWwBHtxaFzw5B9kB960kQ9caeKmzsWAHUQ1NPgqjHtHYOoG7XVClkzAauIQKoAQAAAAbXueee22ls1qxZ2XvvvTd67D/+4z/m8MMP7zD20EMP5Yc//GG/1cfQ0Z0A6pXpHCSxboB0bwOle3WcAGoAAAAAAKg6IdQAAAAAAAAAADActLTk6u1W5oMHLcriERsPluwvhSSLRyYffGtbrt657APCVXb1Fi9l5q5PZEWxnLZBevdXWzFZUSxn5q5P5OotXhqck7JB41tLefdTE9NarAzYtaCQpLVYybufmih4dAiyB+pbd4KoC+nec4X1HSuAemjrThD1Ji2l9QZQtxuxgWMFUAMAAAAMnnvvvTc33HBDh7FJkyblk5/8ZLfn+MIXvtBp7OKLL+5zbQwtawKo12c9AdTtWtb5ubd6dLz+MgAAAAAADAkN1S4AAAAAAAAAAADYuKu3eCkfnLYoi0ZUUikkg/VR3UqSFJJFrwRR53eVHDdu3CCdnbVdPXFBZu74VJYXK1nU0Daoe2BRY1tSKGTma55KRo7KcS9OHqSz05WrJy7Ip3d8Jpu2NuaFxua0DkAKcamSbNramE/v+kxGN42x5kOMPcD4JFfM2z0nzbg3fxm3JC81tK75XncDqNsfm3R8XjGhtSH7Lh2fK+btmvGjvNV4qFp7D9w1ZmlWlitZVSwnSTZpbcjISnHN1+tVKGRkpZi0FrL4lT00olzMyEopuy8faw8AAMBwtXRptSsAoId+9KMfdRo77bTT0tTU1O059tprr+y11165/fbb14zdcsstefTRRzNt2rR+qZPq6hBAvZ5G4YYCqNv1NYB67XkaN/YgAdQAAAAAADBkeFcwAAAAAAAAAAAMcW3ltvzbtKcGPYC63dpB1P/2+lU55v6k1O14S/pDWyq5ZMtns7zYlkUNrVXZA4saWpPW5JItn80xCyfbA1Vy9cQFmbnDgylnddhoeYCWoVxIVhXLGVkuZuaODyaFghDiIcIeoN34cmOumLtbDnntHXlp7OqAsZ4EULdbN4h6u5Ujc8Xc3TK+3NDzyRhUa++B55qak7wSQF3eWMxMRyPLxaS1IYsbWrOqWM4WzU32AAAADGcFT+QBhptf/epXncZOOOGEHs9zwgkndAihbp/7jDPO6HVtDB2VWZXVQdTraRSuOGfjAdT9SQA1AAAAAAAML4PZRwAAAAAAAAAAAHpp8qiJKVYGP4C6XSVJsZJMbtnox4kZAKUUcvLzm2dpqa2qe2BpqS0nP7+5AOoqWR0+PC/lVLKyWM7iAQwkryRZ3NCalcVyyqlk5g7zcvXEBQN0NrrLHmBdv53wUh4buTJJ7wKo26197GMjV+a3E17qh+oYDL+d8FLmNzWnsVzoVQB1u5HlYjZpbUhjuZD5Tc32AAAAAMAgWbZsWe64444OY6NHj86ee+7Z47kOPPDATmM33HBDr2tj6KnMqiTlzuMrzklKg1iHAGoAAAAAABh+hFADAAAAAAAAAMAQVyqW8u5tjq52GUmSdz89UQBxFbSlkgu3fjKthep+YLu1sLqO6kVh16/1hQ8PZACxEOKhxR5gXVdPXJAP7jQ3ixtaU0zvA6jbFbL6jcWLG1rzwZ3mWuthoP26kCSb9iGAut3IcjGbtjYkib/vAAAAAIPkzjvvTLncMVV47733TkNDQ4/n2meffdLY2DEe+Pbbb+9TfQw9lXPTIYh6uQBqAAAAAACgG4RQAwAAAAAAAADAENdWbssFy3+X1iq/26e1mFyw80sCiKukNeWq/8lXXqmDwdWWSi7Z4plBCx9u11UI8SVbPOMaUAX2AOtqD6Be1NA6IPMvEkQ95K0dTJ8khX66SUj7PILnAQAAAAbH/fff32lshx126NVcTU1N2XrrrTuMPfzww2ltHZjXEamCwurX79qDqJefk/Q8rrz3BFADAAAAAMDwNZg9BQAAAAAAAAAAoJeeXD6/2iUkSZ5sWpE8+URS6Z+gQ7qpUElh15ZqV5EkKTS32AODrJTksmc3ySFvejl3bTo44cPt2s+zuNSa7ZY05bLfbJJSy5ODdHba2QOs7eqpS/PB7Z/PolJ5wxuhO5fpDRy/qNSaD25/b/LClBz35NielskAunrq0szcbkHKbRt75EauFJUk5fVvlHKSmdvdl7ww2R4AAIDh5OWXq10BAD3w2GOPdRrbdtttez3fNttsk0cffXTN121tbXniiSfy6le/utdzMjRVzk0Gs3sogBoAAAAAAIY3IdQAAAAAAAAAADDENbc2Z9HKRavDJKv82d1FTeU0L3w+o9pK1S2k3hQqSVtrtatYra01eeEFIdSD7LfbN+e5ES0pVpLWQf6jryQpVZLnRrTkt6Pn57iHmwa3AJLYA6x29fbN+eDrl2dRd5agku4FUW/AoqZyPvj6+cmS0dZ9iLh6++bM3HNFyt1Joy9k9XOI9SkXsnqiDTwkycw9n0uWLLEHAAAAAAbA/Pmdb0Q7derUXs/X1bHPPfdc1UOov/GNb+Sb3/zmgJ/n4YcfHvBzDCWNGZwgagHUAAAAAAAw/AmhBgAAAAAAAACAIW5U06jc+eE7s9s3d0s55d5NUkmKWR0k2NtAymIlufP74wRQV8mUZYU0TExai9WroaG8ug4GV1uhkkt2bc6KhqStSuvfVkxWNCSX7NqcYx5pTEkI+aCyB0heCaB+0/IsGjG45100Ivngm5YniRDiKrt6++bMPGRFyoP8169cSGYesiKJPQAAAADQ3xYuXNhpbOzYsb2er6tjX3zxxV7P118WLFiQ++67r9pl1KSBDqIWQA0AAAAAALWhih9HAgAAAAAAAAAAuuvSOy9dHUDdm9DByt/eKFR85eveKCe5dNdVvTuYPilVCnnP/X0PfeyPzMr33N8kfHaQlSqFnPxAY5Y2Vnr71zdJ39a/kmRpYyUnPyB8uBrsAaoVQN2uPYj66u2bq1MAVQugbtceRG0PAAAAAPSvZcuWdRobNWpUr+fr6tjly5f3ej6Gh40GRQ/UvAKoAQAAAABg2GiodgEADJyGNGTr8Vtv8DFjGscMUjVUw6TRkza4B8Y0Wf9at834bbKkecl6v7/ZyM0GsRoG2/gR4zf67wC17VXjX5W2Stt6v7/52M0HsRoG28iGkRu9BoxoqNIn1AEAAACAHmtubc6ld12aYqGYcqXcs4PXCqDeblHy2ITVX5cr6Vka6SvzXLpra86d05SmcnGjh9B/2gqVXLDX0rT1IXiymKShnLQWVweK966O5IK9WnLyE+OF0A6i9vVvrfL6t1r/qrEH6ltboZJ/23dpnwKoC/nb+vc2EmTRiOTf9m3OMc+Ms/6DrK1QySWvWZFysWd/7oVUUnzlCV+xkrzuhcbcOallTZB1IYUePR8sF5JLXtOWY54ZYQ8AAMBw0uBjpABDWUtLS6exkSNH9nq+rkKom5vdWKwmFDb8mlxjks67qfcEUAMAAAAAQG3x7gGAGtbQ0JDPHPSZapdBFR203UE5aLuDql0GVTRzv5nVLoEq2nXKrtl1yq7VLoMqeu/u7612CVTRpLGTPBcEAAAAgBrS1NCU20+/PXt8e48sXLEw5ZS7lyC5VgD1J29KvvTb5NNvTM7/u54HURcLyWYtjbn97n3StEvvP/hOb1UyueGuNOWlNKfSowDRwis/JrQ25OiFk/LzzV7IoobWVNKzINJCkqYUMrlhfDJ9RnqWYk7fWH/sgfq2ev0b81JaCj0L9WhfpXXXv9MDuqGxYv2rpZTksqdbc9L4e3LXmKXdPq7plZ+LKeRrD++U416cnKuXLMjMHealnMrqiXtg92Vjc9nTu6U03VvQAQBgWBs/Pmlq2vjjAKiawkbChnt6bEVYcG2oVDYYRN2fAdTt8200iBoAAAAAABg2iht/CAAAAAAAAAAAUG1bj986c/5hTjYbtVmKheLGsx+7CKBOVv/8yZtW/7r4yuM2ppjVAdRz7tgnWzcLoK6GUgq5Yu5uOXDxhDRVCt2O/lw7fPa786bnvx6Yke/Om54JrQ1rvtfdeZoqhRy4eEKumLtbSsJHB5X1xx6ob2uvf2Ol53/2Xa1/TzVa/6ob39aQK+bult2Xje3RccUU8rWHVgdQJ8lxL07O1x7aKcUeruPuy8bmirm7ZXybAGoAABj2ZsyodgUArKWxsXPM74oVK3o9X1fHNrn5QM3r7wDqgZ4XAAAAAAAYfN4FDAAAAAAAAAAAw0R7EPUe394jC1csTDnlrkOk1w6gvrUhX/pDJSn+7YFf+kMhKZZz/hsqKSYpV7LeJFIB1EPH+LaGXHXfa3L8jL/mhk0WpblQ2WCG+Lrhs2uHT2Ze8sGd5mZRQ2uSDWeRrx0+e9V9rxE+WSXWH3ugvq27/i2FbtxFIt1b/41ptP5DRnsQ9UnT78ldY5Zu9PHrBlC3a/965g7zUu7GHUkEUAMAQA3ZbLPkrLOqXQUAaxk9enSnsf4OoR4zZkyv5+svkydPzoxBuBHCww8/nFWrVg34eYaSgQ6KbknSOSodAAAAAAAYbrwTGAAAAAAAAAAAhpGNBlGvHUB915h86a7xyfiVycqVSbm85mFf+lOSYkvO37e83iDqYpLNWhsz556/y9aFUcmIAf2t0Q3jMyJXPbxXjt9xTm4Y91KaC11HR/4tfLYx3310txy3dIsO63fc0q2TRxvywWn3ZFHD6o+mr2+epkoxB768aa56eI+Mb2j0rrMqsv7YA/Vt3fVvKZQ3+PierP/6NFr/IWd8RuSKR/bMSTvcmbtGv7zexxWTfO2xGZ3Wv91xS7dOHm/IzO3uy4Z20u7Lx+WKR15n/QEAYLjbdNNkxozkH/8xGTu22tUAsJaJEyd2Glu6dOM3IFufro7t6hyD7aMf/Wg++tGPDvh5dt1119x3330Dfp6hYqADqNutTOJ2xQAAAAAAMLx5KzAAAAAAAAAAAAwzXQZRJ50DqG8dv/qLkSNX/1jHl+5OMnJJzt992eog6mRNEHWxUMxmozbLnH+Yk63Hbz2wvyF6ZHySq1YtyfE/Pj43PH5DmtuaU1krPraQQgqFQiaMnJDvvu27OW76cV3Oc1ySzL06H7zmg1m0clFSqXSap6nUlAO3PTBXnXhVxo8YP6C/L7rH+mMP1Ld117+l3HXESI/XvwuNxUbrP0SNT3LFqiU56cqTctf8uzp9v1go5mtv+dp6179d+z6Yee3MlCudo6h332L3XHHCFdYfAAAAYABtvvnmncaeeuqpXs/35JNPduscDH+FzyUvnpuMG+DztCUZNStJOamcO8AnAwAAAAAABkxx4w8BAAAAAAAAAACGmvYg6s1GbZZiYfXbgIrFYlIs5pMv7PS3AOqN+NKt4/PJF3dOisXVx0cA9XAwfsT4XHXiVTlw2wPTVGpK4ZX08O6Gz7Y7bvpx+e7bvpsJIyekUCh0mEf47NBl/bEH6tva699YbOz0/d6s/7oEUA9940eMzxUnXJHdt9i9w3h3A6jbHTf9uHztLV9b83yynQBqAAAAgMExbdq0TmOPP/54r+d74oknOnxdKpWyzTbb9Ho+hpjK6ptJFj6XpJhMnJUsGcDTlfNKAHVWn6/wuY51AAAAAAAAw4cQagAAAAAAAAAAGKa6CqL+5P6fzJe+8UAye3Zy8cXJGWckBx2UzJiR7Ljj6p8POmj1+MUXJ7ffni99/f58cv9PJhFAPZx0FULbk/DZdl2F0AqfHfqsP/ZAfVtfEHVf1r+dAOrhY90g6p4GULdbN4haADUAAADA4Nl55507jT300EO9mqu5uTlPPvlkh7Htt98+DQ0NvZqPoak9gLrdpFnJogE4TznJyHUH1w6iBgAAAAAAhhUdIwAAAAAAAAAAGMbag6j3+o+98ve7/32+dPiXVn/jVa9Kjj129Y9uaD/u0rsuze2n3y6AephoDyE9/sfH54bHb8iYpjE9Ch9t1/74D17zwSxrXiZ8dJiw/tgD9c36k/wtiPpd//OuvP917+/x+rdrP+6SOy/JZe+4zPoDAAAADJI99tgjxWIx5XJ5zdjs2bPT2tra4/Do2bNnp6WlpcPYnnvu2S91MjQUzil0CKBuN2VWMv+cZLN+Os+aAOpZXXyzuLqOyqxKP50NAAAAAAAYDEKoAQAAAAAAAABgmNt6/NZ58uNPpqmhqU/zfOnwL+XcQ8/t8zwMrvYQ0lOvOjUf2OMDfQ6f/M85/5kfHv9D4ZPDhPXHHqhv1p9k9T746Uk/TalY6tM8x00/LsfsfEyf5wEAAACg+8aMGZM99tgjt99++5qxZcuWZc6cOdlnn316NNeNN97Yaeyggw7qc40MDYVzCq/8IkkX+c9bzEqeOSeZ1MfzVLKBAOr280cQNQAAAAAADDdCqAEAAAAAAAAAoAb0V3C0AOrhafyI8fnZyT8TPlmnrD/2QH2z/iTpt3Wz/gAAAACD78gjj+wQQp0kV155ZY9DqK+88sou56Y2VGZVNhpE/apZyZPnJJtvYJ7GJC3rO0eSLyQbDaBurwcAAAAAABg+itUuAAAAAAAAAAAAgL4TPlnfrD/2QH2z/gAAAAAwfJ188smdxr73ve+lubm523PMmTMnt912W4exfffdN9OmTetzfQwd3Ql+njoreWY932tc5+cOc2d1APXZ6wug7mEdAAAAAADA0CKEGgAAAAAAAAAAAAAAAAAAAKpgt912ywEHHNBhbMGCBbngggu6PcdZZ53VaeyMM87oc20MPWsCoAvrf8x2s5LH1xlbN3h67a8rSX6WjQRQF9Y5PwAAAAAAMKwIoQYAAAAAAAAAAAAAAAAAAIAq+exnP9tpbNasWbnjjjs2euzXv/71XHfddR3GXv3qV+fUU0/tt/oYWroTRL3jrOTBV369bgB11hpvD6A+UQA1AAAAAADUNCHUAAAAAAAAAAAAAAAAAAAAUCVHHHFEjj322A5jq1atyqGHHpprrrmmy2NaWlpy7rnnZubMmZ2+99WvfjWNjeuLHqYWdCeIetfPrT+Aul1TkhM/t4EHCKAGAAAAAICa0FDtAgAAAAAAAAAAAAAAAAAAAKCefec738ntt9+ep556as3YkiVLcswxx2TvvffOsccem2nTpmXFihV58MEHc9lll+Xpp5/uNM+ZZ56Zo446ajBLp0oqsyopnFP4WxD12jnR5aRybjfnOTcpfC5Jca3BtcKtBVADAAAAAMDwJ4QaAAAAAAAAAAAAAAAAAAAAqmjy5Mm5/vrrc9hhh2X+/Pkdvjd79uzMnj17o3OceOKJufDCCweoQoaiNUHUyerg6Ep6FEC9Zp61g6gFUAMAAAAAQM0pbvwhAAAAAAAAAAAAAAAAAAAAwECaPn16br311hxwwAE9Oq6xsTGzZs3K5ZdfnlKpNEDVMVR1CIouJJX/W0kqPQyPrlRWHyeAGgAAAAAAapIQagAAAAAAAAAAAAAAAAAAABgCpk6dmj/96U+54oorsv/++6dQKKz3sWPHjs1pp52Wu+++O2effXaKRfEB9ao9MLpDcHSl0v0fG5oHAAAAAAAY9hqqXQAAAAAAAAAAAAAAAAAAAACwWqFQyIknnpgTTzwxzz//fG699dY88sgjWbJkSRoaGjJp0qRMnz49++yzT5qamqpdLkNEfwVHC6AGAAAAAIDaI4QaAAAAAAAAAAAAAAAAAAAAhqApU6bk6KOPrnYZAAAAAAAADGPFahcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQP8TQg0AAAAAAAAAAAAAAAAAAAAAAAAAAABQg4RQAwAAAAAAAAAAAAAAAAAAAAAAAAAAANQgIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAANUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEANEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAUIOEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADUICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABADRJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFCDhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAA1CAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1SAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA0SQg0AAAAAAAAAAAAAAAAAAAAAAAAAAABQg4RQAwAAAAAAAAAAAAAAAAAAAAAAAAAAANQgIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAANUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEANEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAUIOEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADUICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABADRJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFCDhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAA1CAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1SAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA0SQg0AAAAAAAAAAAAAAAAAAAAAAAAAAABQg4RQAwAAAAAAAAAAAAAAAAAAAAAAAAAAANQgIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAANUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEANEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAUIOEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADUICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABADRJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFCDhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAA1CAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1SAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA0SQg0AAAAAAAAAAAAAAAAAAAAAAAAAAABQg4RQAwAAAAAAAAAAAAAAAAAAAAAAAAAAANQgIdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAANUgINQAAAAAAAAAAAAAAAAAAAAAAAAAAAEANEkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAUIOEUAMAAAAAAAAAAAAAAAAAAAAAAAAAAADUICHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVICDUAAAAAAAAAAAAAAAAAAAAAAAAAAABADRJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAFCDhFADAAAAAAAAAAAAAAAAAAAAAAAAAAAA1CAh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1SAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA0qVCqVSrWLAOgP48aNy9KlSzuNjxgxIttvv30VKgIAAAAAAIaahx9+OKtWreo0Pnbs2Lz88stVqAiA/qJnDAAAAAAAbIyeMUBt0zcGAAAAAAA2pJ57xkKogZoxcuTILi/mAAAAAAAAGzNixIisXLmy2mUA0Ad6xgAAAAAAQG/pGQPUBn1jAAAAAACgN+qhZ1ysdgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9D8h1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1SAg1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQA0SQg0AAAAAAAAAAAAAAAAAAAAAAAAAAABQgxqqXQBAf5kwYUIWLVrUabyxsTHbbLPN4Bc0hDz88MNZtWpVp/ERI0Zk++23r0JFwGByDYD65hoA9c01AOqbawDUN9cAWL8nnngiLS0tncYnTJgw+MUA0K/0jNfP80Oob64BUN9cA6C+uQYArgNQ31wDoGt6xgC1Td+4a54bQn1zDQBcB6C+uQZAfXMNgPrmGgBdq+eesRBqoGbMnz+/2iUMWbvuumvuu+++TuPbb7997r333ipUBAwm1wCob64BUN9cA6C+uQZAfXMNAADqkZ7x+nl+CPXNNQDqm2sA1DfXAMB1AOqbawAAUI/0jbvmuSHUN9cAwHUA6ptrANQ31wCob64BwLqK1S4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP4nhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgBgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAKhBQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAapAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAaJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAYJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAACoQUKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAGqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAGiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKAGCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAqEFCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABqkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBokhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgBgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAKhBQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAapAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAaJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAYJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAACoQUKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAGqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAGiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKAGCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAqEFCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABqUEO1CwBg4H3kIx/JggULOo1Pnjy5CtUAg801AOqbawDUN9cAqG+uAVDfXAMAAFib54dQ31wDoL65BkB9cw0AXAegvrkGAADQznNDqG+uAYDrANQ31wCob64BUN9cA4B1FSqVSqXaRQAAAAAAAAAAAAAAAAAAAAAAAAAAAADQv4rVLgAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/ieEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKAGCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAqEFCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABqkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBokhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgBgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAKhBQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAapAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAaJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAYJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAACoQUKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAGqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAGiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKAGCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAqEFCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABqkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBokhBoAAAAAAAAAAAAAAAAAAAAAAAAAAACgBgmhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAKhBQqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAapAQagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAaJIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAYJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAACoQUKoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAGqQEGoAAAAAAAAAAAAAAAAAAAAAAAAAAACAGiSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAAKAGCaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAqEFCqAEAAAAAAAAAAAAAAAAAAAAAAAAAAABqkBBqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBrUUO0CABhYCxYsyG233ZaHH344S5YsSWNjYyZOnJgZM2Zk7733TmNjY7VLBAbIk08+mXvvvTdPPfVUFi1alObm5my66abZdNNNs8suu+Q1r3lNSqVStcsEAAZBW1tb7r777tx///2ZP39+li1blhEjRmT8+PHZbrvtstNOO2XatGnVLhPoR21tbbnvvvty7733ZuHChVm8eHFKpVImTJiQyZMnZ4899sh2221X7TKBIeqhhx7KnXfemSeffDLLli3LqFGj8qpXvSqvfe1rs+uuu1a7PAAAekjPGOqXnjEA0E7PGOqPnjHQF3rGAAC1R98Y6pOeMQDQTs8Y6o+eMdBX+sZQm4RQA9SoK6+8MhdddFFuuummVCqVLh8zbty4nHjiifnUpz6VnXbaaZArBPrb/fffn+uuuy6/+93v8qc//SmLFi3a4OPHjBmTQw45JB/+8Ifz1re+NcVicXAKBaqqUqnk0EMPzR//+MdO3zv44IPzhz/8YfCLAgbM73//+/zHf/xHfvnLX2bJkiUbfOykSZOy//77561vfWtOOOGETJw4cZCqBPrT9ddfn+9+97v5xS9+keXLl2/wsZMnT85JJ52U008/Pa95zWsGqUJgQxYuXJjZs2ev+XH77bfniSee6PS49b3e1xcrVqzIxRdfnG9961t58MEH1/u4rbfeOh/4wAfy8Y9/PBMmTOj3OgAA6D96xlB/9IyB7tAzhvqiZwz1R88Yhjc9YwAA+pu+MdQXPWOgO/SMob7oGUP90TOG4U/fGBhIhcpAXD0AqJqnn34673rXu7p8wXd9mpqa8tnPfjaf/exnUygUBrA6oL+tWLEi559/fn784x/nnnvu6fU8u+66ay699NLsvffe/VgdMBR99atfzT/+4z92+T3NYagdc+fOzRlnnNGj/xes7fvf/37e/e5393NVwEB66KGHcvrpp+f3v/99j48tFAo5/fTT86UvfSmbbLLJAFQHrM8999yTX/ziF7n99tsze/bsPProo906rr9bOzfddFPe9a535fHHH+/2MZMnT853v/vdHHPMMf1aCwAAfadnDPVFzxjoKT1jqA96xlB/9IxheNIzBgBgoOgbQ/3QMwZ6Ss8Y6oOeMdQfPWMYvvSNgcEkhBqghsybNy+HHHJInn322V4df8opp+T73/9+SqVSP1cGDJTHHnss06ZN65e5GhoacsEFF+TMM8/sl/mAoeehhx7K7rvvvt67FWoOQ2347//+73z4wx/OihUrej2H5jAML7fcckuOOOKIjd6JfGNmzJiR3//+95kyZUo/VQZszMc//vFcdNFFPT6uP1s7//M//5OTTz45LS0tPT62UCjk61//ej7ykY/0Wz0AAPSNnjHUHz1joCf0jKE+6BlD/dEzhuFLzxgAgIGgbwz1Rc8Y6Ak9Y6gPesZQf/SMYXjTNwYGU0O1CwCgf7z44os5/PDDu2wK77XXXjn22GMzbdq0rFixIvPmzcsPf/jDPPPMMx0ed/nll2fKlCm58MILB6lqYCDtsMMOOfjgg7PjjjtmypQpGTNmTBYuXJg777wzv/zlL/Pkk092eHxra2tmzpyZpqamnH766VWqGhgo5XI5p5122nobw0BtuOCCC/KJT3yi03ihUMgee+yRww8/PFtttVWmTJmS1tbWvPTSS7n//vtz55135i9/+UtaW1urUDXQF4888sh6G8NbbrlljjnmmOy+++6ZOHFiWlpaMn/+/Nxyyy35+c9/npUrV3Z4/H333Zc3v/nNue2229LY2DhYvwWgiv785z932RQuFos5+uijc8ABB2Tq1KlZsGBB7rrrrlx++eUd/k9RqVRy5plnZsstt8xxxx032OUDALAOPWNgXXrGwNr0jKE+6BlD/dEzBvpCzxgAoPboGwNr0zMG1qZnDPVBzxjqj54x0Ff6xlBfhFAD1IjTTz89TzzxRIexcePG5Qc/+EGOOeaYTo8/77zzct555+Xss8/uMH7RRRfliCOOyFve8paBLBcYIDNmzMjf//3f59RTT81WW2213se1trbme9/7Xj7xiU9k6dKlHb43c+bMHHLIIdlpp50GulxgEF144YW58cYb13y977775i9/+UsVKwL62+WXX55/+qd/6jR+4okn5otf/GKmTZu2weOXLFmSX/7yl/nud7+bYrE4UGUC/eyjH/1op8bwiBEj8sUvfjEf/ehH19vkffHFF/Pxj388P/jBDzqM33XXXTn//PNz1llnDVjNwMY1NTVlt912y957750f//jHWbRoUb+fY9myZTnllFM6NYV33nnnXH311Zk+fXqnY7785S/ntNNOy//+7/+uGatUKjnttNPyhje8IVtssUW/1wkAQPfpGQOJnjGwfnrGUPv0jKE+6RlDbdIzBgCgt/SNAT1jYH30jKH26RlDfdIzhtqlbwwMhEKlUqlUuwgA+ubXv/513vzmN3cYa2pqyk033ZS99957g8dedNFF+fjHP95hbIcddsjcuXPT0OBeBTDUPfbYY5k2bVoOPfTQnH322TnooIN6dPzdd9+dgw8+uNN/MI8++uhcc801/VgpUE3z5s3L6173uqxYsSJJMnHixPzyl7/Mvvvu2+FxBx98cP7whz9UoUKgr+bNm5e99tqrw5u+Ghsbc9lll+Wd73xnj+erVCopFAr9WSIwAObOnZsZM2Z0Gr/qqqvyjne8o1tznHHGGfnWt77VYWzzzTfPM888440iMAg+/vGP5xvf+EZmzJiRvffee82P3XffPU1NTUmS7bbbLo8//niH4/qjtfOZz3wm5513XoexHXbYIX/5y1+y2Wabrfe4tra2nHTSSbnqqqs6jL/vfe/LpZde2ue6AADoHT1jqF96xkB36BlD7dMzhvqkZwzDn54xAAD9Sd8Y6pOeMdAdesZQ+/SMoT7pGUNt0DcGBpMQaoAacNBBB+WGG27oMPZv//Zv+Zd/+ZduHf/mN785v/71rzuM/dd//Vfe+9739luNwMB46aWX1jR4e+uqq67KCSec0GGsVCpl/vz5mTRpUl9LBKqsXC7ngAMOyM0337xm7Pvf/34OOOCATncr1RyG4euNb3xjfve733UYu/LKK3P88cdXqSJgMJx33nn5zGc+02Hs7W9/e66++upuz7Fs2bJsv/32ee655zqM33TTTdl///37pU5g/Z599tlMmDAho0aNWu9jBqIxvGjRomy77bYd7nBeLBbzxz/+MQcccMBGj3/xxRez6667drh2lEqlzJs3L69+9av7VBsAAL2jZwz1S88Y2Bg9Y6gPesZQn/SMYfjTMwYAoD/pG0N90jMGNkbPGOqDnjHUJz1jqA36xsBgcosJgGHu3nvv7dQUnjRpUj75yU92e44vfOELncYuvvjiPtcGDLxNN920T43hJDn++OPz2te+tsNYW1tbrr322j7NCwwN559/fofG8FFHHZV3v/vdVawI6G8///nPOzWG3/ve92oMQx24//77O42dcsopPZpjzJgxefvb395p/IEHHuhtWUAPbLnllhtsCg+Uyy67rENTOFn9f4XuNIWTZOLEifk//+f/dBhra2vLd77znX6rEQCA7tMzhvqmZwxsjJ4x1D49Y6hfesYw/OkZAwDQX/SNoX7pGQMbo2cMtU/PGOqXnjHUBn1jYDAJoQYY5n70ox91GjvttNPS1NTU7Tn22muv7LXXXh3Gbrnlljz66KN9rg8YHt7ylrd0GnvkkUeqUAnQn+bOnZvPf/7za74eP358vvWtb1WxImAgfOlLX+rw9YgRI3L++edXqRpgMD3//POdxqZPn97jebo6Zt07FgO1pavXFD/84Q/3aI73ve99GTFiRIexyy+/vE91AQDQO3rGQH/QM4bapGcM9UHPGOqXnjHQW3rGAAC1R98Y6Cs9Y6hNesZQH/SMoX7pGQN9oW8M9UkINcAw96tf/arT2AknnNDjebo6pqu5gdq0zTbbdBqbP39+FSoB+ktbW1ve9773ZdWqVWvGzj///Gy99dZVrArobw888EBuvPHGDmNHH310Jk+eXKWKgMHU1ZvCe/JG8XbrNnaSZOTIkb2qCRj6Fi9enJtvvrnD2Lhx43LEEUf0aJ5JkyblkEMO6TD2+OOPZ+7cuX0tEQCAHtIzBvqDnjHUHj1jqA96xlDf9IyB3tAzBgCoTfrGQF/pGUPt0TOG+qBnDPVNzxjoLX1jqF9CqAGGsWXLluWOO+7oMDZ69OjsueeePZ7rwAMP7DR2ww039Lo2YHhZvnx5p7FRo0ZVoRKgv3z5y1/ObbfdtubrN77xjfnQhz5UxYqAgfCTn/yk09gpp5xShUqAapg2bVqnsSeffLLH83R1zPbbb9+rmoCh7+abb05bW1uHsf322y+lUqnHc3lNEQCg+vSMgf6iZwy1R88Y6oOeMdQ3PWOgN/SMAQBqj74x0B/0jKH26BlDfdAzhvqmZwz0lr4x1C8h1ADD2J133plyudxhbO+9905DQ0OP59pnn33S2NjYYez222/vU33A8PHQQw91Gttyyy2rUAnQH+69996cffbZa74eM2ZMvvOd71SvIGDA/PrXv+40tt9++1WhEqAaDjvssE5jv/rVr3o8z7XXXtvh66amphxwwAG9rgsY2rp6ze8Nb3hDr+baf//9uzU/AAADR88Y6C96xlBb9IyhfugZQ33TMwZ6Q88YAKD26BsD/UHPGGqLnjHUDz1jqG96xkBv6RtD/RJCDTCM3X///Z3Gdthhh17N1dTUlK233rrD2MMPP5zW1tZezQcMH62trfnZz37WaXyfffapQjVAX7W2tuZ973tfmpub14ydd955Xd7BEBje2tra8pe//KXD2KRJk7LVVlut+Xrx4sX5xje+kaOOOipTp07NiBEjMnbs2Gy33XZ5wxvekE9/+tP57W9/2+kNp8DwcNRRR2XbbbftMPatb30rjz/+eLfn+NGPfpQ5c+Z0GHvPe96TTTfdtF9qBIae/nxNsau7mT/wwAO9mgsAgN7RMwb6g54x1BY9Y6gfesaAnjHQG3rGAAC1R98Y6Cs9Y6gtesZQP/SMAT1joLf0jaF+CaEGGMYee+yxTmPr/qewJ7bZZpsOX7e1teWJJ57o9XzA8PC///u/mT9/foexzTbbzB3JYJj6whe+0OFuYPvvv3/OPPPMKlYEDJR58+Zl1apVHcZ23HHHNb/+j//4j0ydOjVnnnlmfvnLX+app55Kc3Nzli1blscffzy33HJLvvzlL+dNb3pTXvva1+Z//ud/Bvu3APRRQ0NDvvnNb3YYW7ZsWY444ojMmzdvo8f/9Kc/zfvf//4OY5tvvnm+8IUv9GudwNDSn68pbrXVVimVSh3GHnnkkV7NBQBA7+gZA/1Bzxhqi54x1A89Y0DPGOgNPWMAgNqjbwz0lZ4x1BY9Y6gfesaAnjHQW/rGUL+EUAMMY+s2c5Jk6tSpvZ6vq2Ofe+65Xs8HDH0rV67MWWed1Wn8tNNOS0NDQxUqAvri7rvvzrnnnrvm65EjR+aSSy5Jsei/flCLunrRdZNNNsmqVavytre9Lf/wD/+Ql19+uVtz3XvvvTn++ONz+umnp6Wlpb9LBQbQW9/61nz1q19NoVBYM/bAAw/kda97XT784Q/nuuuuy3PPPZeWlpYsX748jzzySC6//PIceeSROe6447JixYo1x02aNCnXXXddJk+eXI3fCjBI+vM1xVKplC233LLDmNcTAQAGl54x0Fd6xlBb9IyhvugZA4meMdBzesYAALVH3xjoCz1jqC16xlBf9IyBRM8Y6B19Y6hfXvEDGMYWLlzYaWzs2LG9nq+rY1988cVezwcMfWeddVanO5dtuumm+fSnP12lioDeamlpyfve974OTZ1Zs2Zl5513rmJVwEB69tlnO42NHTs273nPe/Lzn/+8w3ihUMiUKVOy2WabZdGiRXnuuedSLpc7Hf+d73wnzzzzTP73f//XG0tgGJk5c2Z22mmnfPjDH15z19EVK1bk29/+dr797W93a45jjjkmF198cV71qlcNYKXAUDDQryk2Nzdn6dKlfZoTAIDu0zMG+krPGGqHnjHUHz1joJ2eMdATesYAALVH3xjoCz1jqB16xlB/9IyBdnrGQE/pG0P98iwfYBhbtmxZp7FRo0b1er6ujl2+fHmv5wOGtquuuioXXnhhp/Hzzz/fHclgGPrXf/3X3HnnnWu+3muvvfJ//s//qV5BwIB76aWXOo394he/yE9+8pM1X0+cODH//u//nqeeeirz58/Pfffdl2eeeSbPPfdc/uM//iNbbbVVl3OcffbZA1k6MACOOOKIzJs3Lz/4wQ9y2GGHdeuYYrGY008/PXfeeWd+9rOfaQxDnfCaIgBAbfH8DugLPWOoLXrGUH/0jIG16RkD3eU1RQCA2uM5HtBbesZQW/SMof7oGQNr0zMGesJrilC/hFADDGNr34Gw3ciRI3s9X1dP4pqbm3s9HzB03X777Xnve9/bafz444/P+9///ipUBPTFnDlzct555635urGxMZdccklKpVIVqwIG2qpVqzqNrVixYs2vX/e61+Xee+/N//f//X+dGj6TJk3Khz70ocydOzeHHnpop3n+9V//Nffdd1//Fw0MmEqlkl/96lf57//+79xwww3dOqZcLueSSy7Jpz71qVx33XUDXCEwVHhNEQCgtnh+B/SWnjHUFj1jqE96xsDa9IyB7vKaIgBA7fEcD+gNPWOoLXrGUJ/0jIG16RkDPeE1RahfQqgBakyhUOjXYyuVSl/KAYagRx55JEcffXSnOwXtsssu+d73vlelqoDeam5uzvve9760trauGTvrrLPy2te+topVAYNhQ8/Vp0yZkuuvvz6bb775BucYN25cfv7zn2ennXbqNPcXv/jFfqkTGHiPPPJIDjrooBxzzDG5/vrrOzV9Jk2alF122SU77LBDJkyY0OF7ra2tuf7663PkkUfm7W9/e1544YVBrBwYKrymCABQWzy/AzZGzxhqi54x1C89Y6CdnjHQV15TBACoPZ7jARuiZwy1Rc8Y6peeMdBOzxjoD15ThPoghBpgGGtsbOw0tvYdyXqqq2Obmpp6PR8w9Dz99NN505velPnz53cYnzp1an71q19l3LhxVaoM6K1zzjknf/3rX9d8vdtuu+Uzn/lMFSsCBktX/x9o9+UvfzmTJ0/u1jyjR4/ON7/5zU7jl19+eV5++eVe1wcMjrvvvjv77rtvbrzxxg7jO+ywQ775zW/mqaeeyoIFCzJ37tw8+OCDeemll/Lggw/mi1/8YrbccssOx/zsZz/LQQcd1On/C0Bt8ZoiAEBt8fwO6Ck9Y6g9esZQv/SMgUTPGOg5rykCANQez/GAntAzhtqjZwz1S88YSPSMgd7xmiLULyHUAMPY6NGjO43195O4MWPG9Ho+YGh5/vnn86Y3vSmPPvpoh/Etttgiv/nNb7LttttWqTKgt2bPnp0vf/nLa74ulUq55JJLvAgDdWJ9z9UnTZqUU045pUdzvfGNb8z06dM7jLW2tuamm27qdX3AwFu4cGHe+ta3drqr8Pvf//789a9/zRlnnJGtttqq03E77LBDPv3pT+fee+/NW9/61g7fmzt3bk466aSUy+UBrR2oHq8pAgDUFs/vgJ7QM4bao2cM9U3PGNAzBnrDa4oAALXHczygu/SMofboGUN90zMG9IyB3vKaItQvIdQAw9jEiRM7jS1durTX83V1bFfnAIafF198MW984xtz//33dxifNGlSfvOb32SnnXaqUmVAb61atSp///d/n9bW1jVjn/jEJ7LPPvtUsSpgMK3vufrBBx/cqzeJHH744Z3G1r3jKTC0/PM//3OefvrpDmPveMc78t3vfjcjR47c6PGbbrpprrrqquy7774dxv/0pz/l0ksv7c9SgSFkoF9TbGpqytixY3s9HwAAPaNnDHSXnjHUHj1jQM8Y0DMGekPPGACg9ugbA92hZwy1R88Y0DMG9IyB3tI3hvolhBpgGNt88807jT311FO9nu/JJ5/s1jmA4eWll17K4YcfnnvuuafD+GabbZbf/OY32XXXXatUGdAXF110Ue699941X++4444555xzqlgRMNi23HLLLsf32GOPXs3X1XHPPPNMr+YCBt4LL7yQ//7v/+4wNnLkyHz1q19NoVDo9jwjR47M17/+9U7jF154YV9LBIao/nxNsa2tLc8+++xG5wcAYODoGQPdoWcMtUnPGNAzhvqmZwz0lp4xAEDt0TcGNkbPGGqTnjGgZwz1Tc8Y6At9Y6hfDdUuAIDemzZtWqexxx9/vNfzPfHEEx2+LpVK2WabbXo9H1B9ixcvzuGHH545c+Z0GJ8wYUKuv/767L777lWqDOirdRs2L7/8ct7whjd0+/jm5uZOY7Nnz87rXve6TuN33nlnT8sDBsGrX/3qLsfXd+fijenquBdffLFXcwED7ze/+U1WrVrVYexNb3pTttpqqx7Ptffee2fXXXft8Mazv/71r3n22WfX+0YUYPiaNm1abrrppg5jjz/+eA488MAez/XMM8+ktbW10/wAAAwePWNgY/SMoXbpGQN6xlDf9IyB3tIzBgCoPfrGwIboGUPt0jMG9IyhvukZA32hbwz1Swg1wDC28847dxp76KGHejVXc3Nzp7sTb7/99mlo8E8FDFdLlizJm9/85tx+++0dxsePH5/rrrsue+21V5UqAwbC/PnzM3/+/D7NsWzZstx11139VBEw0KZOnZqxY8dm6dKlHcZHjBjRq/lGjhzZaWzlypW9mgsYeHfffXensf3226/X8+23334dmsPt59AchtrTn68pPvzww53Gdtlll17NBQBA7+gZAxuiZwz1Rc8Y6o+eMdQ3PWOgt/SMAQBqj74xsD56xlBf9Iyh/ugZQ33TMwb6Qt8Y6lex2gUA0Ht77LFHisWOl/LZs2d3uiNId8yePTstLS0dxvbcc88+1QdUz8svv5wjjjgit956a4fxcePG5brrrsvrX//6KlUGAPSXYrHY5XP2xYsX92q+RYsWdRrr7d2OgYHX1R3EJ0+e3Ov5ujp24cKFvZ4PGLq6erP4zTff3Ku5/vznP3ca85oiAMDg0jMG1kfPGABqn54x1Dc9Y6C39IwBAGqPvjHQFT1jAKh9esZQ3/SMgb7QN4b6JYQaYBgbM2ZM9thjjw5jy5Yty5w5c3o814033thp7KCDDup1bUD1LF26NEceeWRuueWWDuNjx47Ntdde26e7lgEAQ8shhxzSaezRRx/t1VyPPfZYp7G+NJqAgdXVXcVXrFjR6/mWL1/eaWz06NG9ng8Yut7whjekVCp1GLv55pvT1tbW47m8pggAUH16xkBX9IwBoH7oGUP90jMGekvPGACg9ugbA+vSMwaA+qFnDPVLzxjoC31jqF9CqAGGuSOPPLLT2JVXXtnjebo6pqu5gaFt2bJleetb39rp7kBjxozJL3/5y/zd3/1dlSoD+tuFF16YSqXS6x9dNY8OPvjgLh8LDF1HHXVUp7Gu7hLYHV0dt+4bUYGho6s3b/T2zSFJ8sgjj3TrHMDwN2HChE5vHH/55Zdz/fXX92iehQsX5ve//32HsW222SbTp0/vc40AAPSMnjGwNj1jqB96xkCiZwz1TM8Y6C09YwCA2qRvDLTTM4b6oWcMJHrGUM/0jIG+0DeG+iWEGmCYO/nkkzuNfe9730tzc3O355gzZ05uu+22DmP77rtvpk2b1uf6gMGzfPnyHH300bnhhhs6jI8ePTq/+MUvcuCBB1apMgBgoLz+9a/Pjjvu2GFs9uzZmTt3bo/meeGFF3Lttdd2Gn/jG9/Yp/qAgbPu3/0kXf497o7ly5fnD3/4Q4exQqGQHXbYoVfzAUNfV68pfvvb3+7RHP/1X/+VlStXdhg75ZRT+lQXAAC9o2cMtNMzBoD6o2cM9UvPGOgLPWMAgNqjbwwkesYAUI/0jKF+6RkDfaVvDPVJCDXAMLfbbrvlgAMO6DC2YMGCXHDBBd2e46yzzuo0dsYZZ/S5NmDwrFy5Mscee2ynF3RGjRqVn//85zn44IOrUxgAMOBmzpzZaWzWrFk9muPf/u3fsmrVqg5jr3/96zN16tQ+1QYMnDe96U0pFju+vDtv3rz85Cc/6fFcF1xwQZYuXdphbI899siUKVP6VCMwdL373e/OuHHjOoxdc801+fOf/9yt4xcuXJivfOUrHcZKpVI+9KEP9VuNAAB0n54xkOgZA0A90zOG+qRnDPSFnjEAQO3RNwb0jAGgfukZQ33SMwb6St8Y6pMQaoAa8NnPfrbT2KxZs3LHHXds9Nivf/3rue666zqMvfrVr86pp57ab/UBA6u5uTnveMc78pvf/KbD+KhRo3LNNdfk0EMPrVJlAMBg+NCHPtSpifuTn/wkF198cbeO/9nPfpaLLrqo0/jnP//5fqkPGBgTJ07Mm970pk7jH/7wh3t0l/Jf//rXOeecczqNd3XnUqB2TJgwIR/96Ec7jJXL5Zx22ml56aWXNnhsuVzOhz/84Tz77LMdxk899dRsv/32/V4rAADdo2cM9U3PGADqm54x1Cc9Y6Av9IwBAGqTvjHULz1jAKhvesZQn/SMgb7SN4b6JIQaoAYcccQROfbYYzuMrVq1KoceemiuueaaLo9paWnJueee2+XdzL761a+msbFxQGoF+ldra2tOPPHEXHvttR3GR44cmZ/+9Kd54xvfWKXKAIDBMnLkyHz961/vNP6Rj3wkn/nMZ7JixYouj2tpacn/+3//LyeccEIqlUqH7735zW/OUUcdNSD1Av3nvPPOS6FQ6DC2cOHC7Lfffrn00kvT2tq63mOXL1+eL3zhCznqqKPS0tLS4Xtbb711zjzzzAGpGRg6PvOZz2TrrbfuMDZv3rzsv//+uf/++7s85qWXXso73vGOTndDHz9+fL74xS8OWK0AAGycnjHULz1jAEDPGOqXnjHQF3rGAAC1R98Y6pOeMQCgZwz1S88Y6Ct9Y6g/hcq6z/4BGJYWLFiQPffcM0899VSn7+2999459thjM23atKxYsSIPPvhgLrvssjz99NOdHnvmmWfma1/72mCUDPSDyy67LO9+97s7jU+YMCHbbrttn+bee++9893vfrdPcwBD12OPPZZp06Z1GDv44IPzhz/8oToFAX32iU98IhdccEGn8c033zzHHnts9txzz2y22WZZtGhR7rnnnvz0pz/NE0880enx2223XWbPnp2JEycORtlAH5111lnrbcZMnTo1Rx55ZF73utdl4sSJKZfLWbBgQW699dZce+21WbhwYadjGhsb8/Of/zxvfvObB7p04BVvfetb88wzz6z3+/fdd1+nN3HsvvvuG5zzl7/8ZV71qldt9Nw33HBDDjvssE5vJikWi3nb296WAw88MFtttVVeeOGF3HXXXbn88suzbNmyTvP85Cc/yQknnLDR8wEAMLD0jKE+6RkDvaVnDLVHzxjqk54xDH96xgAA9Cd9Y6g/esZAb+kZQ+3RM4b6pGcMtUHfGBgsQqgBasjcuXNz2GGHZf78+b06/sQTT8wPf/jDlEqlfq4MGCiXXnppTjvttAGZW5MIapvmMNSecrmcD33oQ7nkkkt6PcfOO++ca665JjvuuGM/VgYMtI985CO5+OKL+zxPU1NT/uu//isnn3xyP1QFdNd2222Xxx9/vF/nfPTRR7Pddtt167E/+clPcuqpp27wrubrUygUcuGFF+ZjH/tYj48FAGBg6BlD/dEzBnpLzxhqj54x1C89Yxje9IwBAOhv+sZQX/SMgd7SM4bao2cM9UvPGIY/fWNgsBSrXQAA/Wf69Om59dZbc8ABB/TouMbGxsyaNSuXX365pjAAAAxTxWIx//mf/5mLLrooY8aM6dGxhUIhJ510Uv7yl79oDMMw9M1vfjM/+tGPMmnSpF7P8brXvS633XabxjDUoXe+85357W9/m6lTp/bouIkTJ+aqq67SFAYAGGL0jAEAoH7pGUP90jMG+kLPGACg9ugbAwBAfdIzhvqlZwz0lb4x1A8h1AA1ZurUqfnTn/6UK664Ivvvv38KhcJ6Hzt27Nicdtppufvuu3P22WenWPTPAgAADHcf+9jHMm/evHzyk5/M5ptvvsHHbrrppjnllFMyZ86c/OhHP8omm2wySFUC/e2kk07KY489lu985zvZf//909jYuNFjxo0bl+OOOy7XXntt7rjjjrz2ta8dhEqBoeiggw7K/fffn6985SvZYYcdNvjYrbbaKp/73Ofy4IMP5rjjjhukCgEA6Ak9YwAAqG96xlCf9IyBvtAzBgCoPfrGAABQv/SMoT7pGQN9pW8M9aFQqVQq1S4CgIHz/PPP59Zbb80jjzySJUuWpKGhIZMmTcr06dOzzz77pKmpqdolAgAAA6RSqeSee+7JX//61zz77LNZsWJFNtlkk0yaNCk77rhj9txzT28QhRq1atWqzJkzJw8//HAWLVqUxYsXp1QqZcKECdl0002z2267ZZdddnENALo0b9683HnnnXnyySezfPnyjBw5Mq961avy2te+Nq95zWuqXR4AAD2kZwwAAPVLzxjql54x0Bd6xgAAtUffGAAA6pOeMdQvPWOgr/SNoTYJoQYAAAAAAAAAAAAAAAAAAAAAAAAAAACoQW4/AQAAAAAAAADw/7d3p8FV1fcfgL8hiUAUZA0aLRDRVqfuCFikClXGvYpYtXUD21qs1lZtK0X+gi8UrdWOu7QOQqnazRSqFtRxobhLrKCWKRUIihsQCWvY7/8FU+rlJuHem0Dg8DwzzHh+5/yW3Nw38HE+BwAAAAAAAAAAAAAAAAAggZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACABFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBASqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgARSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAimhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACABFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBASqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgARSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAimhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBlFADAADATmL06NFRUFCQ9gcAAAAAAACA3YfcGAAAAAAAAGD3JTMGAABge1FCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBASqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgJNQAAADTC+PHjo6CgIO1PVVVVcx+LndDW35PRo0c395EAAAAAAACAJiA3JltyYwAAAAAAAEgemTHZkhkDAADNSQk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICXUAAAAsJMYPXp0pFKptD8AAAAAAAAA7D7kxgAAAAAAAAC7L5kxAAAA24sSagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASqKi5DwAAAADsGB988EHMmDEjFixYEKtWrYo2bdrEgQceGH379o327dtnvc7s2bPjn//8Z3zyySexbt26KC0tjR49ekS/fv2iqKjp/6khlUrFO++8E3Pnzo3FixdHdXV17LnnntG5c+fo3r179OrVq0n3XbFiRbzzzjsxZ86cqKmpiZUrV0ZxcXGUlJREp06dolu3bnHQQQdF586dm2zPprZ69ep4/fXX49NPP43FixfHqlWromPHjtG5c+c48sgjo7y8fLuf4eOPP44333wz5s+fH6tWrYoOHTpEWVlZ9OrVK8rKyrb7/gAAAAAAAEAmuXF25MZNQ24MAAAAAAAAOxeZcXZkxk1DZgwAADuXglQqlWruQwAAAMCuZMiQITFhwoRGrTFq1KgYPXp02tjo0aPjpptuShvL5q/t/fv3j2nTpm25PuGEE+LFF1/ccv2nP/0pbr/99pgxY0ad81u2bBnnnXde3HLLLbH//vvX+czatWtj7Nixcc8998T7779f5zPt2rWLK664IkaOHBklJSXbPPe2zJgxI+6+++545pln4rPPPqv3uTZt2sTAgQPj+uuvj969e+e118aNG+P3v/99TJgwIaZNmxabNm3a5pzy8vLo169fnHPOOXHKKadEq1at0u6/+OKLMWDAgLzO81/dunWLqqqqrJ7dsGFDjB8/Ph577LF46aWXYt26dfU+26NHjzjvvPPipz/9aXTo0CGnM239/d/6jJMmTYpf/vKX8eqrr9Y5v0WLFnHcccfFNddcE4MGDcppbwAAAAAAANhZyI3lxhFy4/rOKDcGAAAAAAAg6WTGMuMImXF9Z5QZAwDAzqlFcx8AAAAA2D6WL18eZ5xxRpx//vn1hsIRm0PfiRMnxqGHHhrPP/98xv3Zs2fHMcccEz/+8Y/rDYUjImpqamLMmDFxxBFHxIcffpj3uRcsWBCDBw+OXr16xcSJExsMhSM2v024oqIi+vTpE4MHD46ampqc9ps1a1YcffTRMWTIkHjhhReyCoUjIubPnx8TJ06MQYMGxfjx43Pas6lNmjQpDjnkkPj+978fzz//fIOhcETE3LlzY8yYMVFeXh733Xdfk5xh9erVMXjw4Bg0aFC9oXBExKZNm2L69OlxzjnnxNlnnx1Llixpkv0BAAAAAACATHLj7MiN5cYAAAAAAACQRDLj7MiMZcYAALA7UEINAAAACbRixYoYMGBAPPXUU1nPWbZsWZx55pnx9ttvbxl7++234+tf/3q8++67Wa/z/vvvR//+/WPZsmW5HDkiIl577bXo3bt3VFRU5Dw3IqKioiKOPfbYBgPsL6qsrIwTTjghZs2aldd+zS2VSsWoUaNi0KBBWf/MX7R8+fK46qqr4gc/+EFs3Lgx73OsXbs2TjnllJx/b5MnT44TTzwxqqur894bAAAAAAAAqJvcWG6cDbkxAAAAAAAAJJPMWGacDZkxAADsPoqa+wAAAACwq+natWscccQRERHx+eefZ7yJ95BDDok99tijwTX22Wef7Xa+iIhLLrkk3nrrrS3XPXv2jFNPPTXKy8tjr732ik8//TSef/75eOKJJ9Lexrt69eq49NJL46233oolS5bEGWecsSW0Ky4ujgEDBsQ3vvGNKCsri6KioqiqqorJkyfH66+/nrb/vHnz4he/+EXcf//9WZ/5xRdfjFNPPTXWrFmTNt6iRYv4+te/Hn379o3y8vJo165d1NbWxsKFC2PatGnx3HPPpYWa//73v+O0006LGTNmRNu2bevdb+3atXHRRRdlvM24oKAgvva1r0W/fv2iR48e0bZt2ygsLIzly5dHdXV1/Otf/4qZM2fGzJkzI5VK1bv+XnvtteV7EhExc+bMtPtdunTZ5vegrKyswftXXHFFjB07NmO8Q4cOMXDgwOjZs2eUlpZGSUlJ1NTUxHvvvRdTp06Nf//732nP/+Y3v4l27drFbbfd1uB+9bnuuuti+vTpW647deoU55xzThx++OHRqVOnWLJkSbzzzjtRUVERixcvTps7a9asOPnkk+PVV1+N4uLivPYHAAAAAACAHU1uLDeWG6eTGwMAAAAAALA7kRnLjGXG6WTGAACwC0gBAAAAeXv44YdTEZH2Z/78+XmtNWrUqIy1snHCCSekzWnZsuWW/y4vL089++yz9c6dMWNGqkuXLhn7Pvroo6kzzzxzy/VJJ52UmjNnTr3rjBs3LlVYWJi2RosWLVIffvhhVj/DJ598Uuc5hg4dmlqwYEGDc99///3UySefnDH33HPPbXDexIkTM+YcffTRqXfffTfrM48dOzZ11FFHpR544IFtPr/1XqNGjcpqn/qMGzcuY80OHTqkxo4dm6qtra133qZNm1IVFRWp0tLSjPlPPPHENve99NJLM75vBQUFW37n119/fb3719bWpoYPH55q0aJFxt6jR4/O+7MAAAAAAACA5iQ33kxuLDeWGwMAAAAAALA7khlvJjOWGcuMAQBg59YiAAAAgERZu3ZtRGx+S/Irr7wSJ510Ur3P9uzZMyoqKqKgoCBt/Cc/+Uk88cQTERHx7W9/O6ZMmRIHHXRQvesMHTo0brrpprSxTZs2xe9+97usznzZZZfFZ599tuW6sLAwHnnkkRg3blx07dq1wbk9evSIKVOmxNChQ9PG//KXv8Qbb7xR77zJkyenXXfq1CmeeeaZ+OpXv5rVmffZZ5+4/PLL46233opLLrkkqzlNpaqqKq666qq0sS9/+csxc+bMuPzyy6NVq1b1zi0oKIhBgwbFjBkzYv/990+7N3z48AbfuFyXtWvXbplz3333xa233lrv/q1atYoxY8bEfffdl3Hv5ptvjrlz5+a0NwAAAAAAAFA3ufFmcuO6yY0BAAAAAAAg2WTGm8mM6yYzBgCA3ZMSagAAAEigli1bxh//+MfYZ599tvls375949RTT00bW7RoUUREfOUrX4mHHnooioqKtrnOddddF+3atUsbmzJlyjbnvfnmmxnPjRkzJr7zne9sc+5/FRQUxNixY+OQQw5JG7/11lvrnTNv3ry060GDBkXHjh2z3vOLSkpK8pqXr9tvvz1Wr1695XrPPfeMqVOnZgS9DfnSl74Uf/jDH9LG3nvvvS3/Q0CuhgwZEsOGDcvq2WHDhsWQIUPSxtavXx8PPPBAXnsDAAAAAAAAmeTGm8mN6yc3BgAAAAAAgOSSGW8mM66fzBgAAHYvSqgBAAAggS6++OI47LDDsn5+8ODBdY7feOONWYeerVq1ijPOOCNtbObMmdt82+1tt92Wdn3ggQfGtddem9WeX1RcXBwjRoxIG5syZcqWtzVvbcWKFWnX+YbCO9rixYvj4YcfThv72c9+FuXl5Tmvddxxx8WJJ56YNvbXv/4153Vat26d8Xvclttuuy1at26dNvbwww/X+/sCAAAAAAAAciM33kxu3DC5MQAAAAAAACSTzHgzmXHDZMYAALD7UEINAAAACfTd7343p+ePOuqojLE2bdrEt771rUats2LFivjoo4/qfX7NmjXx5JNPpo0NGTIkCgsLc9r3v0477bSM9V977bU6n906CH7ppZfy2nNHe+qpp6K2tjZt7Hvf+17e651++ulp1y+++GLOa5x11llRWlqa05zS0tI4++yz08Y+//zzeOONN3LeHwAAAAAAAMgkN/7f+nLjhsmNAQAAAAAAIHlkxv9bX2bcMJkxAADsHpRQAwAAQMKUlJTEMccck9Ocbt26ZYwde+yxUVxcnNM63bt3zxirqamp9/nXX3894220xx13XE57flGHDh1i7733Thv75z//Weezffr0Sbt+6aWX4oYbbogNGzbkvf+OMG3atLTrbt26xX777Zf3elu/1biqqqrB31ldtg54s3XOOedkjNUX5AMAAAAAAADZkxvLjXMhNwYAAAAAAIBkkRnLjHMhMwYAgN1DUXMfAAAAAGha3bp1i6Ki3P7K36ZNm4yxAw88MOe961pn2bJl9T7/8ssvZ4z98Ic/jD322CPnvf9r9erVaddLliyp87khQ4bE3XffHalUasvYLbfcEo8++mgMHTo0Bg0aFIcddlje59hetv7MlixZEkceeWTe661cuTJjbMmSJdGuXbus1+jZs2deex999NEZY5WVlXmtBQAAAAAAAPyP3FhunAu5MQAAAAAAACSLzFhmnAuZMQAA7B6UUAMAAEDCtG/fPuc5db2FuKnWWb9+fb3PL1y4MGNs9uzZOe/bkOrq6jrHjzzyyLj66qvjrrvuShuvqqqKUaNGxahRo6K0tDT69esXvXr1ir59+0afPn2iZcuWTXq+XG39ma1atSpmzpzZpHtUV1dn/T8GFBUVRY8ePfLa54ADDog99tgj1q1bt2Vs0aJFea0FAAAAAAAA/I/cOJ3cOHdyYwAAAAAAANh1yYzTyYxzJzMGAIDkUUINAAAACVNXONuc6zSkvtC2KdXW1tZ774477ojCwsK4884767y/aNGiqKioiIqKioiIaNWqVRx//PFxwQUXxLnnnlvn25i3p9ra2gZ/nqbcJ1tt2rSJgoKCvPdq27Zt2huka2pq8l4LAAAAAAAA2ExunE5unN8+2ZIbAwAAAAAAwM5FZpxOZpzfPtmSGQMAwK6hRXMfAAAAANh9LV26tFn3LywsjDvuuCPeeOONOPPMM6OoqOH3da1ZsyaeeeaZuOyyy6J79+4xZsyY2LBhww46bfN/XnXZc889m3T+ihUrGrUeAAAAAAAAsGtp7hxUbtx4cmMAAAAAAAAgX82dgcqMG09mDAAAu4aG/7YDAAAAsB21bt06Y2z27Nlx8MEH79Bz9OrVK/72t7/FokWL4sknn4wXXnghXn755Zg/f369cz7//PMYMWJETJ48OaZOnRrt2rXb7ues6/Pq06dPvPbaa9t97/qsWrWqSefv6Dc+AwAAAAAAAM1LbpwbuTEAAAAAAACQJDLj3MiMAQCAfLVo7gMAAAAAu69OnTpljH3++efNcJLNSktL47LLLouJEyfGvHnz4tNPP42//OUvcfXVV8dBBx1U55zXX389zjvvvB1yvnbt2mW8Qbk5P6+IzW8TTqVSec9fvnx52vWOCNgBAAAAAACAnYfcODdyYwAAAAAAACBJZMa5kRkDAAD5UkINAAAANJsuXbpkjC1YsKAZTlK3Ll26xODBg+Ouu+6KOXPmRGVlZVxwwQUZzz377LMxZcqU7X6egoKC6Ny5c9rYRx99FBs2bNjue9dnw4YNMW/evLzmzp8/P9atW5c2Vlpa2hTHAgAAAAAAAHYRcuPcyI0BAAAAAACAJJEZ50ZmDAAA5EsJNQAAANBs+vTpkzH2j3/8oxlOkp2jjz46Hnvssbj55psz7j3++OM75Axbf2arV6+OysrKHbJ3ffLdv655PXv2bOxxAAAAAAAAgF2I3Dh3cmMAAAAAAAAgKWTGuZMZAwAA+VBCDQAAAI1QVFSUMbZx48ZmOMmuacCAARmf4ZNPPhnr169vphNl5/rrr4+OHTumjc2aNavBOYWFhWnX+X5PBg4cmDFWUVGR11pNZdKkSXnNq+vcxx57bCNPAwAAAAAAADuW3Lhx5Ma5kxsDAAAAAADAzkNm3Dgy49zJjAEAgHwooQYAAIBGaNOmTcbYypUrm+Eku6a2bdtG//7908YWLlwYEydObJ4DZamwsDAOOuigtLFly5Y1OGfr70q+35PTTz89I2R+8MEHo6amJq/1msKkSZNi8eLFOc1ZvHhxTJ48OW2sQ4cO0bt376Y8GgAAAAAAAGx3cuPGkRvnTm4MAAAAAAAAOw+ZcePIjHMnMwYAAPKhhBoAAAAaoX379hlj8+bNa4aT7LpGjhyZMfbTn/50p/8cP/nkk7Trzp07N/j81t+VfH++bt26xcUXX5w2tnz58hg6dGikUqm81mys2traGD58eE5zhg8fHqtXr04bGzp0aLRs2bIpjwYAAAAAAADbndy48eTGuZEbAwAAAAAAwM5DZtx4MuPcyIwBAIB8KKEGAACARjj00EMzxv7+9783w0l2XSeccEIMHDgwbWzp0qVxyimnxOzZs/Nac82aNTF27Ni4884767y/cuXK+NnPfhYffPBBXutPnjw5FixYkDZ2xBFHNDjnsMMOS7ueNm1arFq1Kq/9b7zxxowAddKkSXH55ZfH2rVr81qzqqoqfvSjH8W7776b1/xx48bFQw89lNWzv/3tb2PcuHFpY8XFxXHFFVfktTcAAAAAAAA0J7lx48mNcyc3BgAAAAAAgJ2DzLjxZMa5kxkDAAC5UkINAAAAjdChQ4c4+OCD08Yefvjh+PWvfx3Lli1rplPtesaPHx9lZWVpY//5z3+id+/eMWbMmKw+y1QqFa+88kpcc8010b179xg2bFi9bwDesGFD/OpXv4oDDjggBg0aFI888khWe2zatCnGjx8fF110Uca9usa+qG/fvmnXy5Yti/PPPz+v8Lu8vDzGjh2bMf7QQw/FscceG08++WRWbypesWJFPProo3H22WfHgQceGPfee2+sWbMmp7O0bNkyCgoKIiLiBz/4Qdxwww31htNr166NG264IYYNG5Zx74YbbogePXrktDcAAAAAAADsDOTGTUNunBu5MQAAAAAAAOwcZMZNQ2acG5kxAACQq6LmPgAAAADs6i677LL4+c9/vuV648aNce2118Z1110X+++/f+y9995RWFiYNmfYsGF1hmO7q7Kyspg8eXL0798/7Y29K1eujBEjRsTNN98c/fr1i759+8a+++4b7du3j9ra2qipqYmPP/443nrrraisrIzq6uqc9t24cWNMmjQpJk2aFMXFxXH44YfHUUcdFQcffHC0b98+9t5771i/fn0sWrQo3nvvvZg6dWqdbzS+8MIL42tf+1qDe11yySUxcuTI2LBhw5axp556Kp566qlo3759dOnSJeONw2VlZfW+7frSSy+N2bNnx2233ZY2/vbbb8eZZ54ZXbt2jQEDBsQRRxwRHTt2jJKSkli2bFnU1NTEnDlzorKyMt55551Yt25dth9XnfbZZ584/fTT4/77749NmzbFLbfcEr/97W9j8ODBcfjhh0fHjh2juro6Zs2aFRUVFbFo0aKMNXr27BkjRoxo1DkAAAAAAACgOcmNG09uLDeWGwMAAAAAALCrkhk3nsxYZiwzBgCA7UsJNQAAADTSlVdeGRMmTIj33nsvbTyVSsWHH34YH374YcacTz/9dEcdb5dxzDHHxGuvvRaDBw+OOXPmpN1btWpVPP300/H0009vt/3Xr18flZWVUVlZmdO8/v37x/3337/N5/bdd98YOXJkjB49OuPe0qVLY+nSpRnjNTU1Da556623xpe+9KW49tprMwLeDz74ICZMmLDNczWFO++8M2bNmhUvvfRSREQsXrw4HnzwwazmHn744fH0009HcXHx9jwiAAAAAAAAbFdy46YhN5YbAwAAAAAAwK5IZtw0ZMYyYwAAYPtp0dwHAAAAgF1dSUlJPP300zFw4MDmPsou79BDD40333wzrrrqqmjVqlWj1urVq1ecfvrpdd4rKiqKjh07Nmr94uLiuPbaa2Pq1KnRtm3brOb83//9X9x8882xxx57NGrvL7ryyitj+vTp0a9fv0at07p167jggguia9euOc9t2bJlTJ06Nc4666yc5n3zm9+M5557rtG/CwAAAAAAAGhucuOmIzfOndwYAAAAAAAAmpfMuOnIjHMnMwYAALKhhBoAAACawH777RfPPPNMVFZWxvDhw+Pkk0+O7t27R7t27aKoqKi5j7dLadu2bdxzzz1RVVUVI0eOjKOOOipatNj2P2G0bt06TjzxxBgzZkz861//ijfeeCNOPfXUOp/da6+94rPPPovp06fHiBEj4vjjj4+SkpKsztetW7f4+c9/HrNnz4477rgjWrZsmfXP1qJFixgxYkR89NFHce+998b5558fhx56aHTq1KlRQXjv3r1j+vTpMX369LjwwgujrKwsq3llZWVx8cUXx+9+97v45JNP4rHHHovS0tK8zrDnnnvGpEmT4s9//nP06tWr3ucKCgqiX79+8fjjj8fkyZOjU6dOee0HAAAAAAAAOxu5cdORG+dObgwAAAAAAADNS2bcdGTGuZMZAwAA21KQSqVSzX0IAAAAgIYsXbo0ZsyYEYsWLYrq6upYvnx5lJSURJs2bWLfffeNr3zlK3HAAQdEYWFh3nts2LAh5s6dG3Pnzo2FCxfG8uXLo7a2dss+Xbt2jcMOOyz222+/JvzJtp85c+bE7Nmzo7q6Oqqrq2P9+vXRpk2baNu2bZSXl8fBBx+cVwg8ZMiQmDBhwpbrbt26RVVVVcZzCxcujDfffDOqqqpi1apV0aFDh9h3332jd+/eu8xnCAAAAAAAAOw85Ma5kxsDAAAAAAAASSEzzp3MGAAA+CIl1AAAAABkLdtgGAAAAAAAAIBkkhsDAAAAAAAA7L5kxgAAsGtq0dwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDpKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgARSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABKoIJVKpZr7EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0rRbNfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmp4SagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACABFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBASqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgARSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAimhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACABFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBASqgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkgJNQAAAAAAAAAAAAAAAAAAAAAAAAAAAEACKaEGAAAAAAAAAAAAAAAAAAAAAAAAAAAASCAl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJpIQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIGUUAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkBJqAAAAAAAAAAAAAAAAAAAAAAAAAAAAgARSQg0AAAAAAAAAAAAAAAAAAAAAAAAAAACQQEqoAQAAAAAAAAAAAAAAAAAAAAAAAAAAABJICTUAAAAAAAAAAAAAAAAAAAAAAAAAAABAAimhBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEggJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaSEGgAAAAAAAAAAAAAAAAAAAAAAAAAAACCBlFADAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJASagAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEUkINAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEBKqAEAAAAAAAAAAAAAAAAAAAAAAAAAAAASSAk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAQAIpoQYAAAAAAAAAAAAAAAAAAAAAAAAAAABIICXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmkhBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAggZRQAwAAAAAAAAAAAAAAAAAAAAAAAAAAACSQEmoAAAAAAAAAAAAAAAAAAAAAAAAAAACABFJCDQAAAAAAAAAAAAAAAAAAAAAAAAAAAJBA/w/eVArWqoAyQQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], + "source": [ + "# Take point from previous solution and define a box around it (used to label the box)\n", + "from funman import Box\n", + "point = results_parameter_constraint.parameter_space.true_points()[0]\n", + "# parameters = results_parameter_constraint.point_parameters(point)\n", + "parameters = results_parameter_constraint.model._parameter_names()\n", + "b = Box.from_point(point, radius = 0.01, radius_vars=[p for p in parameters])\n", + "# b.bounds[\"epsilon\"]\n", + "b.bounds" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ + "# Step 4: Synthesize all Parameters\n", + "\n", + "\n", + "from funman.constants import LABEL_ALL\n", + "from funman.representation.parameter import ModelParameter\n", + "\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request: FunmanWorkRequest = FunmanWorkRequest.model_validate(json.load(request))\n", + "\n", + " # epsilon = funman_request.parameter(\"epsilon\")\n", + " # theta = funman_request.parameter(\"theta\")\n", + " # epsilon.label = \"all\"\n", + " # theta.label = \"all\"\n", + "\n", + "\n", + " funman_request.parameters = [ModelParameter(name=p, interval=b.bounds[p], label=LABEL_ALL) for p in parameters]\n", + " \n", "\n", - "# Step 3: Constrain peak infected\n", "\n", - "# {\n", - "# \"name\": \"infected_maximum1\",\n", - "# \"variable\": \"Infected\",\n", - "# \"interval\": { \"lb\": 1e-5, \"ub\": 0.4},\n", - "# \"timepoints\": {\"lb\": 40, \"ub\": 125}\n", - " \n", - "# },\n", "\n", - "# Tighten epsilon <= 0.18, theta <= 0.4\n", + " # adjustment_factor = 0.49\n", + " # epsilon_adjustment = float(epsilon.width())*adjustment_factor\n", + " # epsilon.interval = Interval(lb=epsilon.interval.lb+ epsilon_adjustment, ub=epsilon.interval.ub-epsilon_adjustment)\n", "\n", - "SAVED_RESULT_TO_USE = os.path.join(SAVED_RESULTS_DIR, \n", - " # \"1a6108d5-58c8-44ed-b41e-93d95dd4ddab.json\"\n", - " \"29da5af4-9463-44f4-b51b-1b6f28cb79a5.json\"\n", - " )\n", + " # theta_adjustment = float(theta.width())*adjustment_factor\n", + " # theta.interval = Interval(lb=theta.interval.lb+ theta_adjustment, ub=theta.interval.ub-theta_adjustment)\n", "\n", - "with open(SAVED_RESULT_TO_USE, \"r\") as f:\n", - " results: FunmanResults = FunmanResults.model_validate(json.load(f))\n", + " # funman_request.config = FUNMANConfig(verbosity=5)\n", "\n", - "# Plot the trajectories\n", - "results.plot(variables=[\"Infected\"], label_marker={\"true\":\",\", \"false\": \",\"}, xlabel=\"Time\", ylabel=\"Infected\")\n", + " funman_request.constraints = [\n", + " StateVariableConstraint(name=\"peak_infected1\", variable=\"Infected\", interval=ramp_up_infections, timepoints=Interval(ub=peak_time.lb)),\n", + " StateVariableConstraint(name=\"peak_infected2\", variable=\"Infected\", interval=peak_infections, timepoints=peak_time),\n", + " StateVariableConstraint(name=\"peak_infected3\", variable=\"Infected\", interval=ramp_down_infections, timepoints=Interval(lb=peak_time.ub)),\n", + " LinearConstraint(name=\"2_eps_le_theta\", variables=[epsilon.name, theta.name], additive_bounds=Interval(lb=0), weights=[-2, 1])\n", + " ]\n", "\n", - "# Plot the parameter space\n", - "ParameterSpacePlotter(\n", - " results.parameter_space, plot_points=True, parameters=[\"epsilon\", \"theta\", \"timestep\"]\n", - " ).plot(show=True)" + " results_synthesis = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIDARTHE demo\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " # dump_results=False\n", + " )\n", + " summary = summarize_results([\"Infected\"], results_synthesis, ylabel=\"Infected\")\n", + " print(summary)" ] } ], diff --git a/notebooks/pde_as_petrinet.ipynb b/notebooks/pde_as_petrinet.ipynb index f4539ea9..f895ae07 100644 --- a/notebooks/pde_as_petrinet.ipynb +++ b/notebooks/pde_as_petrinet.ipynb @@ -31,21 +31,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[1.00000, 1.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", - "2024-01-29 21:31:43,958 - funman.scenario.scenario - WARNING - Warning: The scenario is not normalized!\n", - "2024-01-29 21:32:55,255 - funman.api.run - INFO - Dumping results to ./out/ad6d238f-5793-4c2d-8f2c-edc1e07c7d3a.json\n", - "2024-01-29 21:32:55,278 - funman.scenario.consistency - INFO - 10{100}:\t[+]\n", - "2024-01-29 21:32:55,282 - funman.server.worker - INFO - Completed work on: ad6d238f-5793-4c2d-8f2c-edc1e07c7d3a\n" - ] - } - ], + "outputs": [], "source": [ "# Halfar Model\n", "\n", @@ -166,70 +154,550 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2024-01-29 19:51:16,944 - funman.server.worker - INFO - FunmanWorker running...\n", "[1.00000, 1.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", - "2024-01-29 19:51:16,950 - funman.server.worker - INFO - Starting work on: 302a9155-bf60-42c4-ac43-5d29326f4b99\n", - "2024-01-29 19:51:16,953 - funman.scenario.scenario - WARNING - Warning: The scenario is not normalized!\n", - "2024-01-29 19:51:18,959 - funman.api.run - INFO - Dumping results to ./out/302a9155-bf60-42c4-ac43-5d29326f4b99.json\n", - "2024-01-29 19:51:27,445 - funman.scenario.consistency - INFO - 5{5}:\t[+]\n", - "2024-01-29 19:51:27,447 - funman.server.worker - INFO - Completed work on: 302a9155-bf60-42c4-ac43-5d29326f4b99\n", - "2024-01-29 19:51:29,011 - funman.server.worker - INFO - Worker.stop() acquiring state lock ....\n", - "2024-01-29 19:51:29,459 - funman.server.worker - INFO - FunmanWorker exiting...\n", - "2024-01-29 19:51:29,460 - funman.server.worker - INFO - Worker.stop() completed.\n", - "2024-01-29 19:51:29,462 - /home/danbryce/funman/auxiliary_packages/funman_demo/src/funman_demo/plot.py - INFO - ********************************************************************************\n", - "2024-01-29 19:51:29,462 - /home/danbryce/funman/auxiliary_packages/funman_demo/src/funman_demo/plot.py - INFO - ********************************************************************************\n", - "2024-01-29 19:51:29,463 - /home/danbryce/funman/auxiliary_packages/funman_demo/src/funman_demo/plot.py - INFO - * Analysis Summary \n", - "2024-01-29 19:51:29,464 - /home/danbryce/funman/auxiliary_packages/funman_demo/src/funman_demo/plot.py - INFO - ********************************************************************************\n", - "2024-01-29 19:51:29,464 - /home/danbryce/funman/auxiliary_packages/funman_demo/src/funman_demo/plot.py - INFO - 1 Points (+:1, -:0), 1 Boxes (+:1, -:0)\n", - "2024-01-29 19:51:29,585 - /home/danbryce/funman/auxiliary_packages/funman_demo/src/funman_demo/plot.py - INFO - Parameters = {dx[1.0, 1.0): 1.0, u[0.01, 0.5): 0.08615513766690462}\n", - "2024-01-29 19:51:29,586 - /home/danbryce/funman/auxiliary_packages/funman_demo/src/funman_demo/plot.py - INFO - {dx[1.0, 1.0): 1.0, u[0.01, 0.5): 0.08615513766690462}\n", - "2024-01-29 19:51:29,593 - /home/danbryce/funman/auxiliary_packages/funman_demo/src/funman_demo/plot.py - INFO - a_0_0 a_0_1 a_0_2 a_0_3 a_0_4 a_1_0 a_1_1 \\\n", - "time \n", - "0.0 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.500000 \n", - "1.0 0.275897 0.304615 0.304615 0.304615 0.304615 0.304615 0.462569 \n", - "2.0 0.231619 0.256520 0.282857 0.292500 0.292555 0.257865 0.449656 \n", - "3.0 0.203894 0.211123 0.265844 0.291503 0.288740 0.211898 0.453423 \n", - "4.0 0.179848 0.191845 0.258577 0.281531 0.287757 0.192433 0.410403 \n", - "5.0 0.158992 0.190526 0.230420 0.236211 0.248138 0.156514 0.409941 \n", - "\n", - " a_1_2 a_1_3 a_1_4 ... a_3_4 a_4_0 a_4_1 \\\n", - "time ... \n", - "0.0 0.500000 0.500000 0.333333 ... 0.333333 0.333333 0.333333 \n", - "1.0 0.473475 0.502159 0.347693 ... 0.346652 0.304615 0.347693 \n", - "2.0 0.427490 0.478838 0.350349 ... 0.319800 0.277978 0.372240 \n", - "3.0 0.451633 0.503150 0.317243 ... 0.383354 0.248292 0.415301 \n", - "4.0 0.477844 0.507689 0.370156 ... 0.364515 0.248562 0.447840 \n", - "5.0 0.409480 0.440894 0.337219 ... 0.344223 0.242787 0.390335 \n", - "\n", - " a_4_2 a_4_3 a_4_4 dx id label u \n", - "time \n", - "0.0 0.333333 0.333333 0.333333 1.0 0 true 0.086155 \n", - "1.0 0.334114 0.351867 0.333333 1.0 0 true 0.086155 \n", - "2.0 0.368988 0.402886 0.364477 1.0 0 true 0.086155 \n", - "3.0 0.347869 0.406982 0.383945 1.0 0 true 0.086155 \n", - "4.0 0.382367 0.403997 0.428069 1.0 0 true 0.086155 \n", - "5.0 0.354806 0.467267 0.457276 1.0 0 true 0.086155 \n", - "\n", - "[6 rows x 29 columns]\n", - "2024-01-29 19:51:29,608 - /home/danbryce/funman/auxiliary_packages/funman_demo/src/funman_demo/plot.py - INFO - ********************************************************************************\n" + "2024-02-08 15:12:33,815 - funman.scenario.scenario - WARNING - Warning: The scenario is not normalized!\n", + "2024-02-08 15:12:35,505 - funman.search.box_search - INFO - progress: 0.09091\n", + "2024-02-08 15:12:35,551 - funman.search.box_search - INFO - progress: 0.18182\n", + "2024-02-08 15:12:35,592 - funman.search.box_search - INFO - progress: 0.27273\n", + "2024-02-08 15:12:35,628 - funman.search.box_search - INFO - progress: 0.36364\n", + "2024-02-08 15:12:35,659 - funman.search.box_search - INFO - progress: 0.45455\n", + "2024-02-08 15:12:35,687 - funman.search.box_search - INFO - progress: 0.54545\n", + "2024-02-08 15:12:35,712 - funman.search.box_search - INFO - progress: 0.63636\n", + "2024-02-08 15:12:35,733 - funman.search.box_search - INFO - progress: 0.72727\n", + "2024-02-08 15:12:35,752 - funman.search.box_search - INFO - progress: 0.81818\n", + "2024-02-08 15:12:35,768 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:36,405 - funman.api.run - INFO - Dumping results to ./out/4b66c65d-54a1-4542-a660-76a9af861f48.json\n", + "2024-02-08 15:12:36,408 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(1e-18, 0.057344315320017415)][(0.057344315320017415, 0.1)])\n", + "2024-02-08 15:12:36,410 - funman.representation.box - INFO - widths: 0.10000 -> 0.05734 0.04266 (raw), 1.00000 -> 0.57344 0.42656 (norm)\n", + "2024-02-08 15:12:36,412 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:36,673 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.057344315320017415, 0.06800823651259927)][(0.06800823651259927, 0.1)])\n", + "2024-02-08 15:12:36,675 - funman.representation.box - INFO - widths: 0.04266 -> 0.01066 0.03199 (raw), 0.42656 -> 0.10664 0.31992 (norm)\n", + "2024-02-08 15:12:36,676 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:36,760 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.057344315320017415, 0.06001029564074908)][(0.06001029564074908, 0.06800823651259927)])\n", + "2024-02-08 15:12:36,761 - funman.representation.box - INFO - widths: 0.01066 -> 0.00267 0.00800 (raw), 0.10664 -> 0.02666 0.07998 (norm)\n", + "2024-02-08 15:12:36,763 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:36,779 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.057344315320017415, 0.05801081042278653)][(0.05801081042278653, 0.06001029564074908)])\n", + "2024-02-08 15:12:36,780 - funman.representation.box - INFO - widths: 0.00267 -> 0.00067 0.00200 (raw), 0.02666 -> 0.00666 0.01999 (norm)\n", + "2024-02-08 15:12:36,782 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:36,795 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.057344315320017415, 0.0575109391182959)][(0.0575109391182959, 0.05801081042278653)])\n", + "2024-02-08 15:12:36,796 - funman.representation.box - INFO - widths: 0.00067 -> 0.00017 0.00050 (raw), 0.00666 -> 0.00167 0.00500 (norm)\n", + "2024-02-08 15:12:36,798 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:36,812 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.057344315320017415, 0.05738597129217324)][(0.05738597129217324, 0.0575109391182959)])\n", + "2024-02-08 15:12:36,813 - funman.representation.box - INFO - widths: 0.00017 -> 0.00004 0.00012 (raw), 0.00167 -> 0.00042 0.00125 (norm)\n", + "2024-02-08 15:12:36,815 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:37,097 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(1e-18, 0.046986718331408224)][(0.046986718331408224, 0.057344315320017415)])\n", + "2024-02-08 15:12:37,098 - funman.representation.box - INFO - widths: 0.05734 -> 0.04699 0.01036 (raw), 0.57344 -> 0.46987 0.10358 (norm)\n", + "2024-02-08 15:12:37,100 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:37,328 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(1e-18, 0.030061240276837778)][(0.030061240276837778, 0.046986718331408224)])\n", + "2024-02-08 15:12:37,329 - funman.representation.box - INFO - widths: 0.04699 -> 0.03006 0.01693 (raw), 0.46987 -> 0.30061 0.16925 (norm)\n", + "2024-02-08 15:12:37,331 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:37,474 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.030061240276837778, 0.03757655034604722)][(0.03757655034604722, 0.046986718331408224)])\n", + "2024-02-08 15:12:37,475 - funman.representation.box - INFO - widths: 0.01693 -> 0.00752 0.00941 (raw), 0.16925 -> 0.07515 0.09410 (norm)\n", + "2024-02-08 15:12:37,477 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:37,510 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.030061240276837778, 0.03522400834970697)][(0.03522400834970697, 0.03757655034604722)])\n", + "2024-02-08 15:12:37,511 - funman.representation.box - INFO - widths: 0.00752 -> 0.00516 0.00235 (raw), 0.07515 -> 0.05163 0.02353 (norm)\n", + "2024-02-08 15:12:37,513 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:37,527 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.03522400834970697, 0.03651470036792427)][(0.03651470036792427, 0.03757655034604722)])\n", + "2024-02-08 15:12:37,532 - funman.representation.box - INFO - widths: 0.00235 -> 0.00129 0.00106 (raw), 0.02353 -> 0.01291 0.01062 (norm)\n", + "2024-02-08 15:12:37,534 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:37,551 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.03651470036792427, 0.036837373372478596)][(0.036837373372478596, 0.03757655034604722)])\n", + "2024-02-08 15:12:37,553 - funman.representation.box - INFO - widths: 0.00106 -> 0.00032 0.00074 (raw), 0.01062 -> 0.00323 0.00739 (norm)\n", + "2024-02-08 15:12:37,556 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:37,570 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.03651470036792427, 0.03665257912908644)][(0.03665257912908644, 0.036837373372478596)])\n", + "2024-02-08 15:12:37,571 - funman.representation.box - INFO - widths: 0.00032 -> 0.00014 0.00018 (raw), 0.00323 -> 0.00138 0.00185 (norm)\n", + "2024-02-08 15:12:37,575 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:37,591 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.03651470036792427, 0.0366063805682384)][(0.0366063805682384, 0.03665257912908644)])\n", + "2024-02-08 15:12:37,592 - funman.representation.box - INFO - widths: 0.00014 -> 0.00009 0.00005 (raw), 0.00138 -> 0.00092 0.00046 (norm)\n", + "2024-02-08 15:12:37,595 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:37,863 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.06800823651259927, 0.08133813795815417)][(0.08133813795815417, 0.1)])\n", + "2024-02-08 15:12:37,864 - funman.representation.box - INFO - widths: 0.03199 -> 0.01333 0.01866 (raw), 0.31992 -> 0.13330 0.18662 (norm)\n", + "2024-02-08 15:12:37,866 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:38,015 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08133813795815417, 0.08733659361768836)][(0.08733659361768836, 0.1)])\n", + "2024-02-08 15:12:38,017 - funman.representation.box - INFO - widths: 0.01866 -> 0.00600 0.01266 (raw), 0.18662 -> 0.05998 0.12663 (norm)\n", + "2024-02-08 15:12:38,020 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:38,054 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08133813795815417, 0.08417074202211046)][(0.08417074202211046, 0.08733659361768836)])\n", + "2024-02-08 15:12:38,055 - funman.representation.box - INFO - widths: 0.00600 -> 0.00283 0.00317 (raw), 0.05998 -> 0.02833 0.03166 (norm)\n", + "2024-02-08 15:12:38,057 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:38,072 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08133813795815417, 0.08337927912321598)][(0.08337927912321598, 0.08417074202211046)])\n", + "2024-02-08 15:12:38,073 - funman.representation.box - INFO - widths: 0.00283 -> 0.00204 0.00079 (raw), 0.02833 -> 0.02041 0.00791 (norm)\n", + "2024-02-08 15:12:38,075 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:12:38,167 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:38,311 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(1e-18, 0.019261989652061502)][(0.019261989652061502, 0.030061240276837778)])\n", + "2024-02-08 15:12:38,312 - funman.representation.box - INFO - widths: 0.03006 -> 0.01926 0.01080 (raw), 0.30061 -> 0.19262 0.10799 (norm)\n", + "2024-02-08 15:12:38,314 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:38,450 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(1e-18, 0.01233080748222482)][(0.01233080748222482, 0.019261989652061502)])\n", + "2024-02-08 15:12:38,452 - funman.representation.box - INFO - widths: 0.01926 -> 0.01233 0.00693 (raw), 0.19262 -> 0.12331 0.06931 (norm)\n", + "2024-02-08 15:12:38,454 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:38,477 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.01233080748222482, 0.015413509352781025)][(0.015413509352781025, 0.019261989652061502)])\n", + "2024-02-08 15:12:38,478 - funman.representation.box - INFO - widths: 0.00693 -> 0.00308 0.00385 (raw), 0.06931 -> 0.03083 0.03848 (norm)\n", + "2024-02-08 15:12:38,480 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:38,494 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.01233080748222482, 0.014451389277960906)][(0.014451389277960906, 0.015413509352781025)])\n", + "2024-02-08 15:12:38,495 - funman.representation.box - INFO - widths: 0.00308 -> 0.00212 0.00096 (raw), 0.03083 -> 0.02121 0.00962 (norm)\n", + "2024-02-08 15:12:38,498 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:38,510 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.014451389277960906, 0.014981534726894927)][(0.014981534726894927, 0.015413509352781025)])\n", + "2024-02-08 15:12:38,512 - funman.representation.box - INFO - widths: 0.00096 -> 0.00053 0.00043 (raw), 0.00962 -> 0.00530 0.00432 (norm)\n", + "2024-02-08 15:12:38,515 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:38,527 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.014981534726894927, 0.015114071089128434)][(0.015114071089128434, 0.015413509352781025)])\n", + "2024-02-08 15:12:38,529 - funman.representation.box - INFO - widths: 0.00043 -> 0.00013 0.00030 (raw), 0.00432 -> 0.00133 0.00299 (norm)\n", + "2024-02-08 15:12:38,530 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:38,542 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.014981534726894927, 0.015039211523215286)][(0.015039211523215286, 0.015114071089128434)])\n", + "2024-02-08 15:12:38,544 - funman.representation.box - INFO - widths: 0.00013 -> 0.00006 0.00007 (raw), 0.00133 -> 0.00058 0.00075 (norm)\n", + "2024-02-08 15:12:38,546 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:38,653 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.06800823651259927, 0.07667267244769271)][(0.07667267244769271, 0.08133813795815417)])\n", + "2024-02-08 15:12:38,655 - funman.representation.box - INFO - widths: 0.01333 -> 0.00866 0.00467 (raw), 0.13330 -> 0.08664 0.04665 (norm)\n", + "2024-02-08 15:12:38,656 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:38,719 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.06800823651259927, 0.07350682085776136)][(0.07350682085776136, 0.07667267244769271)])\n", + "2024-02-08 15:12:38,721 - funman.representation.box - INFO - widths: 0.00866 -> 0.00550 0.00317 (raw), 0.08664 -> 0.05499 0.03166 (norm)\n", + "2024-02-08 15:12:38,722 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:38,738 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07350682085776136, 0.07488146694405189)][(0.07488146694405189, 0.07667267244769271)])\n", + "2024-02-08 15:12:38,739 - funman.representation.box - INFO - widths: 0.00317 -> 0.00137 0.00179 (raw), 0.03166 -> 0.01375 0.01791 (norm)\n", + "2024-02-08 15:12:38,742 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:38,755 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07350682085776136, 0.07443366556814167)][(0.07443366556814167, 0.07488146694405189)])\n", + "2024-02-08 15:12:38,756 - funman.representation.box - INFO - widths: 0.00137 -> 0.00093 0.00045 (raw), 0.01375 -> 0.00927 0.00448 (norm)\n", + "2024-02-08 15:12:38,758 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:38,772 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07443366556814167, 0.07466537674573676)][(0.07466537674573676, 0.07488146694405189)])\n", + "2024-02-08 15:12:38,773 - funman.representation.box - INFO - widths: 0.00045 -> 0.00023 0.00022 (raw), 0.00448 -> 0.00232 0.00216 (norm)\n", + "2024-02-08 15:12:38,775 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:38,788 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07466537674573676, 0.07472330454013552)][(0.07472330454013552, 0.07488146694405189)])\n", + "2024-02-08 15:12:38,789 - funman.representation.box - INFO - widths: 0.00022 -> 0.00006 0.00016 (raw), 0.00216 -> 0.00058 0.00158 (norm)\n", + "2024-02-08 15:12:38,790 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:38,924 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08733659361768836, 0.09216868289396064)][(0.09216868289396064, 0.1)])\n", + "2024-02-08 15:12:38,925 - funman.representation.box - INFO - widths: 0.01266 -> 0.00483 0.00783 (raw), 0.12663 -> 0.04832 0.07831 (norm)\n", + "2024-02-08 15:12:38,927 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:39,000 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.09216868289396064, 0.09487631912791225)][(0.09487631912791225, 0.1)])\n", + "2024-02-08 15:12:39,001 - funman.representation.box - INFO - widths: 0.00783 -> 0.00271 0.00512 (raw), 0.07831 -> 0.02708 0.05124 (norm)\n", + "2024-02-08 15:12:39,003 - funman.search.box_search - INFO - progress: 0.90981\n", + "2024-02-08 15:12:39,089 - funman.search.box_search - INFO - progress: 0.91227\n", + "2024-02-08 15:12:39,166 - funman.search.box_search - INFO - progress: 0.92348\n", + "2024-02-08 15:12:39,242 - funman.search.box_search - INFO - progress: 0.93330\n", + "2024-02-08 15:12:39,324 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.046986718331408224, 0.054754916050278914)][(0.054754916050278914, 0.057344315320017415)])\n", + "2024-02-08 15:12:39,325 - funman.representation.box - INFO - widths: 0.01036 -> 0.00777 0.00259 (raw), 0.10358 -> 0.07768 0.02589 (norm)\n", + "2024-02-08 15:12:39,327 - funman.search.box_search - INFO - progress: 0.93330\n", + "2024-02-08 15:12:39,376 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.046986718331408224, 0.051518167008278194)][(0.051518167008278194, 0.054754916050278914)])\n", + "2024-02-08 15:12:39,377 - funman.representation.box - INFO - widths: 0.00777 -> 0.00453 0.00324 (raw), 0.07768 -> 0.04531 0.03237 (norm)\n", + "2024-02-08 15:12:39,379 - funman.search.box_search - INFO - progress: 0.93330\n", + "2024-02-08 15:12:39,394 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.051518167008278194, 0.05265102917749569)][(0.05265102917749569, 0.054754916050278914)])\n", + "2024-02-08 15:12:39,396 - funman.representation.box - INFO - widths: 0.00324 -> 0.00113 0.00210 (raw), 0.03237 -> 0.01133 0.02104 (norm)\n", + "2024-02-08 15:12:39,398 - funman.search.box_search - INFO - progress: 0.93330\n", + "2024-02-08 15:12:39,410 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.051518167008278194, 0.05212505745929988)][(0.05212505745929988, 0.05265102917749569)])\n", + "2024-02-08 15:12:39,411 - funman.representation.box - INFO - widths: 0.00113 -> 0.00061 0.00053 (raw), 0.01133 -> 0.00607 0.00526 (norm)\n", + "2024-02-08 15:12:39,413 - funman.search.box_search - INFO - progress: 0.93330\n", + "2024-02-08 15:12:39,425 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.05212505745929988, 0.0522767800720553)][(0.0522767800720553, 0.05265102917749569)])\n", + "2024-02-08 15:12:39,427 - funman.representation.box - INFO - widths: 0.00053 -> 0.00015 0.00037 (raw), 0.00526 -> 0.00152 0.00374 (norm)\n", + "2024-02-08 15:12:39,429 - funman.search.box_search - INFO - progress: 0.93330\n", + "2024-02-08 15:12:39,442 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.05212505745929988, 0.05218321779569521)][(0.05218321779569521, 0.0522767800720553)])\n", + "2024-02-08 15:12:39,443 - funman.representation.box - INFO - widths: 0.00015 -> 0.00006 0.00009 (raw), 0.00152 -> 0.00058 0.00094 (norm)\n", + "2024-02-08 15:12:39,445 - funman.search.box_search - INFO - progress: 0.93330\n", + "2024-02-08 15:12:39,522 - funman.search.box_search - INFO - progress: 0.94185\n", + "2024-02-08 15:12:39,581 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.06001029564074908, 0.06334277099649126)][(0.06334277099649126, 0.06800823651259927)])\n", + "2024-02-08 15:12:39,581 - funman.representation.box - INFO - widths: 0.00800 -> 0.00333 0.00467 (raw), 0.07998 -> 0.03332 0.04665 (norm)\n", + "2024-02-08 15:12:39,584 - funman.search.box_search - INFO - progress: 0.94185\n", + "2024-02-08 15:12:39,607 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.06334277099649126, 0.06484238491560972)][(0.06484238491560972, 0.06800823651259927)])\n", + "2024-02-08 15:12:39,608 - funman.representation.box - INFO - widths: 0.00467 -> 0.00150 0.00317 (raw), 0.04665 -> 0.01500 0.03166 (norm)\n", + "2024-02-08 15:12:39,610 - funman.search.box_search - INFO - progress: 0.94185\n", + "2024-02-08 15:12:39,624 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.06334277099649126, 0.06405092201636234)][(0.06405092201636234, 0.06484238491560972)])\n", + "2024-02-08 15:12:39,625 - funman.representation.box - INFO - widths: 0.00150 -> 0.00071 0.00079 (raw), 0.01500 -> 0.00708 0.00791 (norm)\n", + "2024-02-08 15:12:39,627 - funman.search.box_search - INFO - progress: 0.94185\n", + "2024-02-08 15:12:39,640 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.06334277099649126, 0.06385305629155048)][(0.06385305629155048, 0.06405092201636234)])\n", + "2024-02-08 15:12:39,641 - funman.representation.box - INFO - widths: 0.00071 -> 0.00051 0.00020 (raw), 0.00708 -> 0.00510 0.00198 (norm)\n", + "2024-02-08 15:12:39,644 - funman.search.box_search - INFO - progress: 0.94185\n", + "2024-02-08 15:12:39,657 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.06385305629155048, 0.0639806276153153)][(0.0639806276153153, 0.06405092201636234)])\n", + "2024-02-08 15:12:39,657 - funman.representation.box - INFO - widths: 0.00020 -> 0.00013 0.00007 (raw), 0.00198 -> 0.00128 0.00070 (norm)\n", + "2024-02-08 15:12:39,659 - funman.search.box_search - INFO - progress: 0.94185\n", + "2024-02-08 15:12:39,686 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.06800823651259927, 0.07154899158266316)][(0.07154899158266316, 0.07350682085776136)])\n", + "2024-02-08 15:12:39,687 - funman.representation.box - INFO - widths: 0.00550 -> 0.00354 0.00196 (raw), 0.05499 -> 0.03541 0.01958 (norm)\n", + "2024-02-08 15:12:39,689 - funman.search.box_search - INFO - progress: 0.94185\n", + "2024-02-08 15:12:39,705 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.06800823651259927, 0.07026807136640577)][(0.07026807136640577, 0.07154899158266316)])\n", + "2024-02-08 15:12:39,705 - funman.representation.box - INFO - widths: 0.00354 -> 0.00226 0.00128 (raw), 0.03541 -> 0.02260 0.01281 (norm)\n", + "2024-02-08 15:12:39,708 - funman.search.box_search - INFO - progress: 0.94185\n", + "2024-02-08 15:12:39,722 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07026807136640577, 0.07083303007985739)][(0.07083303007985739, 0.07154899158266316)])\n", + "2024-02-08 15:12:39,723 - funman.representation.box - INFO - widths: 0.00128 -> 0.00056 0.00072 (raw), 0.01281 -> 0.00565 0.00716 (norm)\n", + "2024-02-08 15:12:39,725 - funman.search.box_search - INFO - progress: 0.94185\n", + "2024-02-08 15:12:39,739 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07026807136640577, 0.07065403970415594)][(0.07065403970415594, 0.07083303007985739)])\n", + "2024-02-08 15:12:39,740 - funman.representation.box - INFO - widths: 0.00056 -> 0.00039 0.00018 (raw), 0.00565 -> 0.00386 0.00179 (norm)\n", + "2024-02-08 15:12:39,742 - funman.search.box_search - INFO - progress: 0.94185\n", + "2024-02-08 15:12:39,755 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07065403970415594, 0.07075053178859349)][(0.07075053178859349, 0.07083303007985739)])\n", + "2024-02-08 15:12:39,756 - funman.representation.box - INFO - widths: 0.00018 -> 0.00010 0.00008 (raw), 0.00179 -> 0.00096 0.00082 (norm)\n", + "2024-02-08 15:12:39,758 - funman.search.box_search - INFO - progress: 0.94185\n", + "2024-02-08 15:12:39,837 - funman.search.box_search - INFO - progress: 0.94655\n", + "2024-02-08 15:12:39,879 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.09487631912791225, 0.09676125050546823)][(0.09676125050546823, 0.1)])\n", + "2024-02-08 15:12:39,880 - funman.representation.box - INFO - widths: 0.00512 -> 0.00188 0.00324 (raw), 0.05124 -> 0.01885 0.03239 (norm)\n", + "2024-02-08 15:12:39,882 - funman.search.box_search - INFO - progress: 0.94655\n", + "2024-02-08 15:12:39,971 - funman.search.box_search - INFO - progress: 0.94949\n", + "2024-02-08 15:12:39,993 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08733659361768836, 0.09021085361745079)][(0.09021085361745079, 0.09216868289396064)])\n", + "2024-02-08 15:12:39,994 - funman.representation.box - INFO - widths: 0.00483 -> 0.00287 0.00196 (raw), 0.04832 -> 0.02874 0.01958 (norm)\n", + "2024-02-08 15:12:39,996 - funman.search.box_search - INFO - progress: 0.94949\n", + "2024-02-08 15:12:40,011 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08733659361768836, 0.08926318093669704)][(0.08926318093669704, 0.09021085361745079)])\n", + "2024-02-08 15:12:40,012 - funman.representation.box - INFO - widths: 0.00287 -> 0.00193 0.00095 (raw), 0.02874 -> 0.01927 0.00948 (norm)\n", + "2024-02-08 15:12:40,013 - funman.search.box_search - INFO - progress: 0.94949\n", + "2024-02-08 15:12:40,106 - funman.search.box_search - INFO - progress: 0.95035\n", + "2024-02-08 15:12:40,131 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07667267244769271, 0.07883878143146608)][(0.07883878143146608, 0.08133813795815417)])\n", + "2024-02-08 15:12:40,133 - funman.representation.box - INFO - widths: 0.00467 -> 0.00217 0.00250 (raw), 0.04665 -> 0.02166 0.02499 (norm)\n", + "2024-02-08 15:12:40,134 - funman.search.box_search - INFO - progress: 0.95035\n", + "2024-02-08 15:12:40,150 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07883878143146608, 0.07954693244886679)][(0.07954693244886679, 0.08133813795815417)])\n", + "2024-02-08 15:12:40,151 - funman.representation.box - INFO - widths: 0.00250 -> 0.00071 0.00179 (raw), 0.02499 -> 0.00708 0.01791 (norm)\n", + "2024-02-08 15:12:40,153 - funman.search.box_search - INFO - progress: 0.95035\n", + "2024-02-08 15:12:40,166 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07883878143146608, 0.07909913107154494)][(0.07909913107154494, 0.07954693244886679)])\n", + "2024-02-08 15:12:40,167 - funman.representation.box - INFO - widths: 0.00071 -> 0.00026 0.00045 (raw), 0.00708 -> 0.00260 0.00448 (norm)\n", + "2024-02-08 15:12:40,169 - funman.search.box_search - INFO - progress: 0.95035\n", + "2024-02-08 15:12:40,182 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07883878143146608, 0.07898718072721447)][(0.07898718072721447, 0.07909913107154494)])\n", + "2024-02-08 15:12:40,184 - funman.representation.box - INFO - widths: 0.00026 -> 0.00015 0.00011 (raw), 0.00260 -> 0.00148 0.00112 (norm)\n", + "2024-02-08 15:12:40,186 - funman.search.box_search - INFO - progress: 0.95035\n", + "2024-02-08 15:12:40,198 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07898718072721447, 0.07902428055115157)][(0.07902428055115157, 0.07909913107154494)])\n", + "2024-02-08 15:12:40,199 - funman.representation.box - INFO - widths: 0.00011 -> 0.00004 0.00007 (raw), 0.00112 -> 0.00037 0.00075 (norm)\n", + "2024-02-08 15:12:40,201 - funman.search.box_search - INFO - progress: 0.95035\n", + "2024-02-08 15:12:40,277 - funman.search.box_search - INFO - progress: 0.95447\n", + "2024-02-08 15:12:40,353 - funman.search.box_search - INFO - progress: 0.95797\n", + "2024-02-08 15:12:40,427 - funman.search.box_search - INFO - progress: 0.96100\n", + "2024-02-08 15:12:40,508 - funman.search.box_search - INFO - progress: 0.96388\n", + "2024-02-08 15:12:40,522 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08417074202211046, 0.08504551680391034)][(0.08504551680391034, 0.08733659361768836)])\n", + "2024-02-08 15:12:40,523 - funman.representation.box - INFO - widths: 0.00317 -> 0.00087 0.00229 (raw), 0.03166 -> 0.00875 0.02291 (norm)\n", + "2024-02-08 15:12:40,525 - funman.search.box_search - INFO - progress: 0.96388\n", + "2024-02-08 15:12:40,540 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08504551680391034, 0.08597236151534939)][(0.08597236151534939, 0.08733659361768836)])\n", + "2024-02-08 15:12:40,541 - funman.representation.box - INFO - widths: 0.00229 -> 0.00093 0.00136 (raw), 0.02291 -> 0.00927 0.01364 (norm)\n", + "2024-02-08 15:12:40,544 - funman.search.box_search - INFO - progress: 0.96388\n", + "2024-02-08 15:12:40,628 - funman.search.box_search - INFO - progress: 0.96472\n", + "2024-02-08 15:12:40,704 - funman.search.box_search - INFO - progress: 0.96708\n", + "2024-02-08 15:12:40,788 - funman.search.box_search - INFO - progress: 0.96913\n", + "2024-02-08 15:12:40,802 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07667267244769271, 0.07821394229979406)][(0.07821394229979406, 0.07883878143146608)])\n", + "2024-02-08 15:12:40,803 - funman.representation.box - INFO - widths: 0.00217 -> 0.00154 0.00062 (raw), 0.02166 -> 0.01541 0.00625 (norm)\n", + "2024-02-08 15:12:40,805 - funman.search.box_search - INFO - progress: 0.96913\n", + "2024-02-08 15:12:40,819 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07667267244769271, 0.0775995171566614)][(0.0775995171566614, 0.07821394229979406)])\n", + "2024-02-08 15:12:40,820 - funman.representation.box - INFO - widths: 0.00154 -> 0.00093 0.00061 (raw), 0.01541 -> 0.00927 0.00614 (norm)\n", + "2024-02-08 15:12:40,822 - funman.search.box_search - INFO - progress: 0.96913\n", + "2024-02-08 15:12:40,835 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.0775995171566614, 0.07783122833390356)][(0.07783122833390356, 0.07821394229979406)])\n", + "2024-02-08 15:12:40,837 - funman.representation.box - INFO - widths: 0.00061 -> 0.00023 0.00038 (raw), 0.00614 -> 0.00232 0.00383 (norm)\n", + "2024-02-08 15:12:40,839 - funman.search.box_search - INFO - progress: 0.96913\n", + "2024-02-08 15:12:40,851 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.0775995171566614, 0.07773554984243095)][(0.07773554984243095, 0.07783122833390356)])\n", + "2024-02-08 15:12:40,853 - funman.representation.box - INFO - widths: 0.00023 -> 0.00014 0.00010 (raw), 0.00232 -> 0.00136 0.00096 (norm)\n", + "2024-02-08 15:12:40,856 - funman.search.box_search - INFO - progress: 0.96913\n", + "2024-02-08 15:12:40,933 - funman.search.box_search - INFO - progress: 0.97106\n", + "2024-02-08 15:12:41,017 - funman.search.box_search - INFO - progress: 0.97297\n", + "2024-02-08 15:12:41,030 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08133813795815417, 0.08255657426540869)][(0.08255657426540869, 0.08337927912321598)])\n", + "2024-02-08 15:12:41,031 - funman.representation.box - INFO - widths: 0.00204 -> 0.00122 0.00082 (raw), 0.02041 -> 0.01218 0.00823 (norm)\n", + "2024-02-08 15:12:41,034 - funman.search.box_search - INFO - progress: 0.97297\n", + "2024-02-08 15:12:41,047 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08133813795815417, 0.08215303232623325)][(0.08215303232623325, 0.08255657426540869)])\n", + "2024-02-08 15:12:41,048 - funman.representation.box - INFO - widths: 0.00122 -> 0.00081 0.00040 (raw), 0.01218 -> 0.00815 0.00404 (norm)\n", + "2024-02-08 15:12:41,050 - funman.search.box_search - INFO - progress: 0.97297\n", + "2024-02-08 15:12:41,134 - funman.search.box_search - INFO - progress: 0.97334\n", + "2024-02-08 15:12:41,208 - funman.search.box_search - INFO - progress: 0.97515\n", + "2024-02-08 15:12:41,221 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.09021085361745079, 0.0909294186173914)][(0.0909294186173914, 0.09216868289396064)])\n", + "2024-02-08 15:12:41,222 - funman.representation.box - INFO - widths: 0.00196 -> 0.00072 0.00124 (raw), 0.01958 -> 0.00719 0.01239 (norm)\n", + "2024-02-08 15:12:41,224 - funman.search.box_search - INFO - progress: 0.97515\n", + "2024-02-08 15:12:41,309 - funman.search.box_search - INFO - progress: 0.97628\n", + "2024-02-08 15:12:41,391 - funman.search.box_search - INFO - progress: 0.97806\n", + "2024-02-08 15:12:41,405 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08733659361768836, 0.08853680544738114)][(0.08853680544738114, 0.08926318093669704)])\n", + "2024-02-08 15:12:41,406 - funman.representation.box - INFO - widths: 0.00193 -> 0.00120 0.00073 (raw), 0.01927 -> 0.01200 0.00726 (norm)\n", + "2024-02-08 15:12:41,408 - funman.search.box_search - INFO - progress: 0.97806\n", + "2024-02-08 15:12:41,492 - funman.search.box_search - INFO - progress: 0.97915\n", + "2024-02-08 15:12:41,505 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.09487631912791225, 0.09595156313183528)][(0.09595156313183528, 0.09676125050546823)])\n", + "2024-02-08 15:12:41,506 - funman.representation.box - INFO - widths: 0.00188 -> 0.00108 0.00081 (raw), 0.01885 -> 0.01075 0.00810 (norm)\n", + "2024-02-08 15:12:41,509 - funman.search.box_search - INFO - progress: 0.97915\n", + "2024-02-08 15:12:41,592 - funman.search.box_search - INFO - progress: 0.98013\n", + "2024-02-08 15:12:41,605 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07954693244886679, 0.08026549744916031)][(0.08026549744916031, 0.08133813795815417)])\n", + "2024-02-08 15:12:41,606 - funman.representation.box - INFO - widths: 0.00179 -> 0.00072 0.00107 (raw), 0.01791 -> 0.00719 0.01073 (norm)\n", + "2024-02-08 15:12:41,608 - funman.search.box_search - INFO - progress: 0.98013\n", + "2024-02-08 15:12:41,621 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08026549744916031, 0.08062217645358387)][(0.08062217645358387, 0.08133813795815417)])\n", + "2024-02-08 15:12:41,622 - funman.representation.box - INFO - widths: 0.00107 -> 0.00036 0.00072 (raw), 0.01073 -> 0.00357 0.00716 (norm)\n", + "2024-02-08 15:12:41,624 - funman.search.box_search - INFO - progress: 0.98013\n", + "2024-02-08 15:12:41,639 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08026549744916031, 0.08044318607744129)][(0.08044318607744129, 0.08062217645358387)])\n", + "2024-02-08 15:12:41,639 - funman.representation.box - INFO - widths: 0.00036 -> 0.00018 0.00018 (raw), 0.00357 -> 0.00178 0.00179 (norm)\n", + "2024-02-08 15:12:41,642 - funman.search.box_search - INFO - progress: 0.98013\n", + "2024-02-08 15:12:41,656 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08026549744916031, 0.08039843848340564)][(0.08039843848340564, 0.08044318607744129)])\n", + "2024-02-08 15:12:41,657 - funman.representation.box - INFO - widths: 0.00018 -> 0.00013 0.00004 (raw), 0.00178 -> 0.00133 0.00045 (norm)\n", + "2024-02-08 15:12:41,659 - funman.search.box_search - INFO - progress: 0.98013\n", + "2024-02-08 15:12:41,673 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07488146694405189, 0.07543340817429967)][(0.07543340817429967, 0.07667267244769271)])\n", + "2024-02-08 15:12:41,675 - funman.representation.box - INFO - widths: 0.00179 -> 0.00055 0.00124 (raw), 0.01791 -> 0.00552 0.01239 (norm)\n", + "2024-02-08 15:12:41,677 - funman.search.box_search - INFO - progress: 0.98013\n", + "2024-02-08 15:12:41,691 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07543340817429967, 0.07591505500343425)][(0.07591505500343425, 0.07667267244769271)])\n", + "2024-02-08 15:12:41,691 - funman.representation.box - INFO - widths: 0.00124 -> 0.00048 0.00076 (raw), 0.01239 -> 0.00482 0.00758 (norm)\n", + "2024-02-08 15:12:41,694 - funman.search.box_search - INFO - progress: 0.98013\n", + "2024-02-08 15:12:41,710 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07543340817429967, 0.07572565064236962)][(0.07572565064236962, 0.07591505500343425)])\n", + "2024-02-08 15:12:41,715 - funman.representation.box - INFO - widths: 0.00048 -> 0.00029 0.00019 (raw), 0.00482 -> 0.00292 0.00189 (norm)\n", + "2024-02-08 15:12:41,721 - funman.search.box_search - INFO - progress: 0.98013\n", + "2024-02-08 15:12:41,736 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07572565064236962, 0.07579871125938711)][(0.07579871125938711, 0.07591505500343425)])\n", + "2024-02-08 15:12:41,737 - funman.representation.box - INFO - widths: 0.00019 -> 0.00007 0.00012 (raw), 0.00189 -> 0.00073 0.00116 (norm)\n", + "2024-02-08 15:12:41,741 - funman.search.box_search - INFO - progress: 0.98013\n", + "2024-02-08 15:12:41,754 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08597236151534939, 0.08642276638865912)][(0.08642276638865912, 0.08733659361768836)])\n", + "2024-02-08 15:12:41,755 - funman.representation.box - INFO - widths: 0.00136 -> 0.00045 0.00091 (raw), 0.01364 -> 0.00450 0.00914 (norm)\n", + "2024-02-08 15:12:41,757 - funman.search.box_search - INFO - progress: 0.98013\n", + "2024-02-08 15:12:41,915 - funman.search.box_search - INFO - progress: 0.98096\n", + "2024-02-08 15:12:41,992 - funman.search.box_search - INFO - progress: 0.98213\n", + "2024-02-08 15:12:42,070 - funman.search.box_search - INFO - progress: 0.98298\n", + "2024-02-08 15:12:42,084 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07667267244769271, 0.07728970108796022)][(0.07728970108796022, 0.0775995171566614)])\n", + "2024-02-08 15:12:42,085 - funman.representation.box - INFO - widths: 0.00093 -> 0.00062 0.00031 (raw), 0.00927 -> 0.00617 0.00310 (norm)\n", + "2024-02-08 15:12:42,087 - funman.search.box_search - INFO - progress: 0.98298\n", + "2024-02-08 15:12:42,100 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07667267244769271, 0.07705864078500176)][(0.07705864078500176, 0.07728970108796022)])\n", + "2024-02-08 15:12:42,101 - funman.representation.box - INFO - widths: 0.00062 -> 0.00039 0.00023 (raw), 0.00617 -> 0.00386 0.00231 (norm)\n", + "2024-02-08 15:12:42,104 - funman.search.box_search - INFO - progress: 0.98298\n", + "2024-02-08 15:12:42,118 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07705864078500176, 0.07715513286932903)][(0.07715513286932903, 0.07728970108796022)])\n", + "2024-02-08 15:12:42,119 - funman.representation.box - INFO - widths: 0.00023 -> 0.00010 0.00013 (raw), 0.00231 -> 0.00096 0.00135 (norm)\n", + "2024-02-08 15:12:42,122 - funman.search.box_search - INFO - progress: 0.98298\n", + "2024-02-08 15:12:42,135 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08417074202211046, 0.08447274760046583)][(0.08447274760046583, 0.08504551680391034)])\n", + "2024-02-08 15:12:42,136 - funman.representation.box - INFO - widths: 0.00087 -> 0.00030 0.00057 (raw), 0.00875 -> 0.00302 0.00573 (norm)\n", + "2024-02-08 15:12:42,138 - funman.search.box_search - INFO - progress: 0.98298\n", + "2024-02-08 15:12:42,223 - funman.search.box_search - INFO - progress: 0.98350\n", + "2024-02-08 15:12:42,235 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08255657426540869, 0.08286118334222232)][(0.08286118334222232, 0.08337927912321598)])\n", + "2024-02-08 15:12:42,237 - funman.representation.box - INFO - widths: 0.00082 -> 0.00030 0.00052 (raw), 0.00823 -> 0.00305 0.00518 (norm)\n", + "2024-02-08 15:12:42,239 - funman.search.box_search - INFO - progress: 0.98350\n", + "2024-02-08 15:12:42,325 - funman.search.box_search - INFO - progress: 0.98397\n", + "2024-02-08 15:12:42,338 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08133813795815417, 0.08184647062698758)][(0.08184647062698758, 0.08215303232623325)])\n", + "2024-02-08 15:12:42,340 - funman.representation.box - INFO - widths: 0.00081 -> 0.00051 0.00031 (raw), 0.00815 -> 0.00508 0.00307 (norm)\n", + "2024-02-08 15:12:42,342 - funman.search.box_search - INFO - progress: 0.98397\n", + "2024-02-08 15:12:42,433 - funman.search.box_search - INFO - progress: 0.98443\n", + "2024-02-08 15:12:42,446 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.09595156313183528, 0.09622037413281603)][(0.09622037413281603, 0.09676125050546823)])\n", + "2024-02-08 15:12:42,447 - funman.representation.box - INFO - widths: 0.00081 -> 0.00027 0.00054 (raw), 0.00810 -> 0.00269 0.00541 (norm)\n", + "2024-02-08 15:12:42,449 - funman.search.box_search - INFO - progress: 0.98443\n", + "2024-02-08 15:12:42,539 - funman.search.box_search - INFO - progress: 0.98492\n", + "2024-02-08 15:12:42,616 - funman.search.box_search - INFO - progress: 0.98564\n", + "2024-02-08 15:12:42,696 - funman.search.box_search - INFO - progress: 0.98633\n", + "2024-02-08 15:12:42,780 - funman.search.box_search - INFO - progress: 0.98700\n", + "2024-02-08 15:12:42,792 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08853680544738114, 0.08883685840480433)][(0.08883685840480433, 0.08926318093669704)])\n", + "2024-02-08 15:12:42,793 - funman.representation.box - INFO - widths: 0.00073 -> 0.00030 0.00043 (raw), 0.00726 -> 0.00300 0.00426 (norm)\n", + "2024-02-08 15:12:42,795 - funman.search.box_search - INFO - progress: 0.98700\n", + "2024-02-08 15:12:42,879 - funman.search.box_search - INFO - progress: 0.98739\n", + "2024-02-08 15:12:42,891 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07954693244886679, 0.07999733732191185)][(0.07999733732191185, 0.08026549744916031)])\n", + "2024-02-08 15:12:42,892 - funman.representation.box - INFO - widths: 0.00072 -> 0.00045 0.00027 (raw), 0.00719 -> 0.00450 0.00268 (norm)\n", + "2024-02-08 15:12:42,894 - funman.search.box_search - INFO - progress: 0.98739\n", + "2024-02-08 15:12:42,908 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07954693244886679, 0.07983917491720144)][(0.07983917491720144, 0.07999733732191185)])\n", + "2024-02-08 15:12:42,909 - funman.representation.box - INFO - widths: 0.00045 -> 0.00029 0.00016 (raw), 0.00450 -> 0.00292 0.00158 (norm)\n", + "2024-02-08 15:12:42,911 - funman.search.box_search - INFO - progress: 0.98739\n", + "2024-02-08 15:12:42,924 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07983917491720144, 0.0799122355342851)][(0.0799122355342851, 0.07999733732191185)])\n", + "2024-02-08 15:12:42,926 - funman.representation.box - INFO - widths: 0.00016 -> 0.00007 0.00009 (raw), 0.00158 -> 0.00073 0.00085 (norm)\n", + "2024-02-08 15:12:42,929 - funman.search.box_search - INFO - progress: 0.98739\n", + "2024-02-08 15:12:42,941 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.09021085361745079, 0.09061960254824909)][(0.09061960254824909, 0.0909294186173914)])\n", + "2024-02-08 15:12:42,942 - funman.representation.box - INFO - widths: 0.00072 -> 0.00041 0.00031 (raw), 0.00719 -> 0.00409 0.00310 (norm)\n", + "2024-02-08 15:12:42,944 - funman.search.box_search - INFO - progress: 0.98739\n", + "2024-02-08 15:12:43,028 - funman.search.box_search - INFO - progress: 0.98776\n", + "2024-02-08 15:12:43,040 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08062217645358387, 0.08089098745476313)][(0.08089098745476313, 0.08133813795815417)])\n", + "2024-02-08 15:12:43,041 - funman.representation.box - INFO - widths: 0.00072 -> 0.00027 0.00045 (raw), 0.00716 -> 0.00269 0.00447 (norm)\n", + "2024-02-08 15:12:43,044 - funman.search.box_search - INFO - progress: 0.98776\n", + "2024-02-08 15:12:43,057 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08089098745476313, 0.08104735995616383)][(0.08104735995616383, 0.08133813795815417)])\n", + "2024-02-08 15:12:43,058 - funman.representation.box - INFO - widths: 0.00045 -> 0.00016 0.00029 (raw), 0.00447 -> 0.00156 0.00291 (norm)\n", + "2024-02-08 15:12:43,061 - funman.search.box_search - INFO - progress: 0.98776\n", + "2024-02-08 15:12:43,146 - funman.search.box_search - INFO - progress: 0.98790\n", + "2024-02-08 15:12:43,223 - funman.search.box_search - INFO - progress: 0.98855\n", + "2024-02-08 15:12:43,236 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07821394229979406, 0.0785992597628194)][(0.0785992597628194, 0.07883878143146608)])\n", + "2024-02-08 15:12:43,238 - funman.representation.box - INFO - widths: 0.00062 -> 0.00039 0.00024 (raw), 0.00625 -> 0.00385 0.00240 (norm)\n", + "2024-02-08 15:12:43,241 - funman.search.box_search - INFO - progress: 0.98855\n", + "2024-02-08 15:12:43,254 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07821394229979406, 0.0784664814484684)][(0.0784664814484684, 0.0785992597628194)])\n", + "2024-02-08 15:12:43,256 - funman.representation.box - INFO - widths: 0.00039 -> 0.00025 0.00013 (raw), 0.00385 -> 0.00253 0.00133 (norm)\n", + "2024-02-08 15:12:43,258 - funman.search.box_search - INFO - progress: 0.98855\n", + "2024-02-08 15:12:43,272 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.0784664814484684, 0.07852961623563699)][(0.07852961623563699, 0.0785992597628194)])\n", + "2024-02-08 15:12:43,273 - funman.representation.box - INFO - widths: 0.00013 -> 0.00006 0.00007 (raw), 0.00133 -> 0.00063 0.00070 (norm)\n", + "2024-02-08 15:12:43,276 - funman.search.box_search - INFO - progress: 0.98855\n", + "2024-02-08 15:12:43,364 - funman.search.box_search - INFO - progress: 0.98911\n", + "2024-02-08 15:12:43,442 - funman.search.box_search - INFO - progress: 0.98961\n", + "2024-02-08 15:12:43,519 - funman.search.box_search - INFO - progress: 0.99009\n", + "2024-02-08 15:12:43,597 - funman.search.box_search - INFO - progress: 0.99055\n", + "2024-02-08 15:12:43,675 - funman.search.box_search - INFO - progress: 0.99101\n", + "2024-02-08 15:12:43,687 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08597236151534939, 0.0861943095814018)][(0.0861943095814018, 0.08642276638865912)])\n", + "2024-02-08 15:12:43,688 - funman.representation.box - INFO - widths: 0.00045 -> 0.00022 0.00023 (raw), 0.00450 -> 0.00222 0.00228 (norm)\n", + "2024-02-08 15:12:43,691 - funman.search.box_search - INFO - progress: 0.99101\n", + "2024-02-08 15:12:43,781 - funman.search.box_search - INFO - progress: 0.99122\n", + "2024-02-08 15:12:43,795 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07909913107154494, 0.07925794435018615)][(0.07925794435018615, 0.07954693244886679)])\n", + "2024-02-08 15:12:43,797 - funman.representation.box - INFO - widths: 0.00045 -> 0.00016 0.00029 (raw), 0.00448 -> 0.00159 0.00289 (norm)\n", + "2024-02-08 15:12:43,800 - funman.search.box_search - INFO - progress: 0.99122\n", + "2024-02-08 15:12:43,814 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07925794435018615, 0.07936273507986617)][(0.07936273507986617, 0.07954693244886679)])\n", + "2024-02-08 15:12:43,816 - funman.representation.box - INFO - widths: 0.00029 -> 0.00010 0.00018 (raw), 0.00289 -> 0.00105 0.00184 (norm)\n", + "2024-02-08 15:12:43,820 - funman.search.box_search - INFO - progress: 0.99122\n", + "2024-02-08 15:12:43,835 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07925794435018615, 0.07931668573761601)][(0.07931668573761601, 0.07936273507986617)])\n", + "2024-02-08 15:12:43,836 - funman.representation.box - INFO - widths: 0.00010 -> 0.00006 0.00005 (raw), 0.00105 -> 0.00059 0.00046 (norm)\n", + "2024-02-08 15:12:43,839 - funman.search.box_search - INFO - progress: 0.99122\n", + "2024-02-08 15:12:43,919 - funman.search.box_search - INFO - progress: 0.99157\n", + "2024-02-08 15:12:43,997 - funman.search.box_search - INFO - progress: 0.99192\n", + "2024-02-08 15:12:44,081 - funman.search.box_search - INFO - progress: 0.99227\n", + "2024-02-08 15:12:44,157 - funman.search.box_search - INFO - progress: 0.99261\n", + "2024-02-08 15:12:44,167 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.09061960254824909, 0.09072178978094866)][(0.09072178978094866, 0.0909294186173914)])\n", + "2024-02-08 15:12:44,168 - funman.representation.box - INFO - widths: 0.00031 -> 0.00010 0.00021 (raw), 0.00310 -> 0.00102 0.00208 (norm)\n", + "2024-02-08 15:12:44,171 - funman.search.box_search - INFO - progress: 0.99261\n", + "2024-02-08 15:12:44,256 - funman.search.box_search - INFO - progress: 0.99279\n", + "2024-02-08 15:12:44,334 - funman.search.box_search - INFO - progress: 0.99308\n", + "2024-02-08 15:12:44,347 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08184647062698758, 0.08197355379419592)][(0.08197355379419592, 0.08215303232623325)])\n", + "2024-02-08 15:12:44,348 - funman.representation.box - INFO - widths: 0.00031 -> 0.00013 0.00018 (raw), 0.00307 -> 0.00127 0.00179 (norm)\n", + "2024-02-08 15:12:44,351 - funman.search.box_search - INFO - progress: 0.99308\n", + "2024-02-08 15:12:44,445 - funman.search.box_search - INFO - progress: 0.99324\n", + "2024-02-08 15:12:44,456 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08255657426540869, 0.08273165939697391)][(0.08273165939697391, 0.08286118334222232)])\n", + "2024-02-08 15:12:44,457 - funman.representation.box - INFO - widths: 0.00030 -> 0.00018 0.00013 (raw), 0.00305 -> 0.00175 0.00130 (norm)\n", + "2024-02-08 15:12:44,460 - funman.search.box_search - INFO - progress: 0.99324\n", + "2024-02-08 15:12:44,544 - funman.search.box_search - INFO - progress: 0.99340\n", + "2024-02-08 15:12:44,555 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08417074202211046, 0.0843295552996047)][(0.0843295552996047, 0.08447274760046583)])\n", + "2024-02-08 15:12:44,556 - funman.representation.box - INFO - widths: 0.00030 -> 0.00016 0.00014 (raw), 0.00302 -> 0.00159 0.00143 (norm)\n", + "2024-02-08 15:12:44,559 - funman.search.box_search - INFO - progress: 0.99340\n", + "2024-02-08 15:12:44,640 - funman.search.box_search - INFO - progress: 0.99354\n", + "2024-02-08 15:12:44,652 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08853680544738114, 0.08873027777183116)][(0.08873027777183116, 0.08883685840480433)])\n", + "2024-02-08 15:12:44,653 - funman.representation.box - INFO - widths: 0.00030 -> 0.00019 0.00011 (raw), 0.00300 -> 0.00193 0.00107 (norm)\n", + "2024-02-08 15:12:44,655 - funman.search.box_search - INFO - progress: 0.99354\n", + "2024-02-08 15:12:44,738 - funman.search.box_search - INFO - progress: 0.99372\n", + "2024-02-08 15:12:44,813 - funman.search.box_search - INFO - progress: 0.99399\n", + "2024-02-08 15:12:44,825 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07954693244886679, 0.07973259428421171)][(0.07973259428421171, 0.07983917491720144)])\n", + "2024-02-08 15:12:44,826 - funman.representation.box - INFO - widths: 0.00029 -> 0.00019 0.00011 (raw), 0.00292 -> 0.00186 0.00107 (norm)\n", + "2024-02-08 15:12:44,828 - funman.search.box_search - INFO - progress: 0.99399\n", + "2024-02-08 15:12:44,841 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07954693244886679, 0.07966640852478668)][(0.07966640852478668, 0.07973259428421171)])\n", + "2024-02-08 15:12:44,842 - funman.representation.box - INFO - widths: 0.00019 -> 0.00012 0.00007 (raw), 0.00186 -> 0.00119 0.00066 (norm)\n", + "2024-02-08 15:12:44,845 - funman.search.box_search - INFO - progress: 0.99399\n", + "2024-02-08 15:12:44,923 - funman.search.box_search - INFO - progress: 0.99426\n", + "2024-02-08 15:12:44,936 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08104735995616383, 0.08115365583180882)][(0.08115365583180882, 0.08133813795815417)])\n", + "2024-02-08 15:12:44,937 - funman.representation.box - INFO - widths: 0.00029 -> 0.00011 0.00018 (raw), 0.00291 -> 0.00106 0.00184 (norm)\n", + "2024-02-08 15:12:44,939 - funman.search.box_search - INFO - progress: 0.99426\n", + "2024-02-08 15:12:45,023 - funman.search.box_search - INFO - progress: 0.99442\n", + "2024-02-08 15:12:45,034 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08062217645358387, 0.08077919982891538)][(0.08077919982891538, 0.08089098745476313)])\n", + "2024-02-08 15:12:45,035 - funman.representation.box - INFO - widths: 0.00027 -> 0.00016 0.00011 (raw), 0.00269 -> 0.00157 0.00112 (norm)\n", + "2024-02-08 15:12:45,038 - funman.search.box_search - INFO - progress: 0.99442\n", + "2024-02-08 15:12:45,125 - funman.search.box_search - INFO - progress: 0.99457\n", + "2024-02-08 15:12:45,137 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.09595156313183528, 0.096085155039653)][(0.096085155039653, 0.09622037413281603)])\n", + "2024-02-08 15:12:45,138 - funman.representation.box - INFO - widths: 0.00027 -> 0.00013 0.00014 (raw), 0.00269 -> 0.00134 0.00135 (norm)\n", + "2024-02-08 15:12:45,140 - funman.search.box_search - INFO - progress: 0.99457\n", + "2024-02-08 15:12:45,229 - funman.search.box_search - INFO - progress: 0.99469\n", + "2024-02-08 15:12:45,241 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07999733732191185, 0.0801099385401731)][(0.0801099385401731, 0.08026549744916031)])\n", + "2024-02-08 15:12:45,242 - funman.representation.box - INFO - widths: 0.00027 -> 0.00011 0.00016 (raw), 0.00268 -> 0.00113 0.00156 (norm)\n", + "2024-02-08 15:12:45,244 - funman.search.box_search - INFO - progress: 0.99469\n", + "2024-02-08 15:12:45,257 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.0801099385401731, 0.0801595676901014)][(0.0801595676901014, 0.08026549744916031)])\n", + "2024-02-08 15:12:45,258 - funman.representation.box - INFO - widths: 0.00016 -> 0.00005 0.00011 (raw), 0.00156 -> 0.00050 0.00106 (norm)\n", + "2024-02-08 15:12:45,261 - funman.search.box_search - INFO - progress: 0.99469\n", + "2024-02-08 15:12:45,339 - funman.search.box_search - INFO - progress: 0.99492\n", + "2024-02-08 15:12:45,420 - funman.search.box_search - INFO - progress: 0.99514\n", + "2024-02-08 15:12:45,496 - funman.search.box_search - INFO - progress: 0.99535\n", + "2024-02-08 15:12:45,508 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08597236151534939, 0.08613719537958747)][(0.08613719537958747, 0.0861943095814018)])\n", + "2024-02-08 15:12:45,509 - funman.representation.box - INFO - widths: 0.00022 -> 0.00016 0.00006 (raw), 0.00222 -> 0.00165 0.00057 (norm)\n", + "2024-02-08 15:12:45,511 - funman.search.box_search - INFO - progress: 0.99535\n", + "2024-02-08 15:12:45,595 - funman.search.box_search - INFO - progress: 0.99550\n", + "2024-02-08 15:12:45,672 - funman.search.box_search - INFO - progress: 0.99567\n", + "2024-02-08 15:12:45,685 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07936273507986617, 0.07942863608194647)][(0.07942863608194647, 0.07954693244886679)])\n", + "2024-02-08 15:12:45,686 - funman.representation.box - INFO - widths: 0.00018 -> 0.00007 0.00012 (raw), 0.00184 -> 0.00066 0.00118 (norm)\n", + "2024-02-08 15:12:45,688 - funman.search.box_search - INFO - progress: 0.99567\n", + "2024-02-08 15:12:45,701 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07942863608194647, 0.07947130901488655)][(0.07947130901488655, 0.07954693244886679)])\n", + "2024-02-08 15:12:45,702 - funman.representation.box - INFO - widths: 0.00012 -> 0.00004 0.00008 (raw), 0.00118 -> 0.00043 0.00076 (norm)\n", + "2024-02-08 15:12:45,705 - funman.search.box_search - INFO - progress: 0.99567\n", + "2024-02-08 15:12:45,717 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08044318607744129, 0.08048825910844233)][(0.08048825910844233, 0.08062217645358387)])\n", + "2024-02-08 15:12:45,718 - funman.representation.box - INFO - widths: 0.00018 -> 0.00005 0.00013 (raw), 0.00179 -> 0.00045 0.00134 (norm)\n", + "2024-02-08 15:12:45,721 - funman.search.box_search - INFO - progress: 0.99567\n", + "2024-02-08 15:12:45,831 - funman.search.box_search - INFO - progress: 0.99579\n", + "2024-02-08 15:12:45,918 - funman.search.box_search - INFO - progress: 0.99593\n", + "2024-02-08 15:12:45,999 - funman.search.box_search - INFO - progress: 0.99608\n", + "2024-02-08 15:12:46,073 - funman.search.box_search - INFO - progress: 0.99621\n", + "2024-02-08 15:12:46,084 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.0843295552996047, 0.08436925861897827)][(0.08436925861897827, 0.08447274760046583)])\n", + "2024-02-08 15:12:46,085 - funman.representation.box - INFO - widths: 0.00014 -> 0.00004 0.00010 (raw), 0.00143 -> 0.00040 0.00103 (norm)\n", + "2024-02-08 15:12:46,089 - funman.search.box_search - INFO - progress: 0.99621\n", + "2024-02-08 15:12:46,212 - funman.search.box_search - INFO - progress: 0.99630\n", + "2024-02-08 15:12:46,291 - funman.search.box_search - INFO - progress: 0.99643\n", + "2024-02-08 15:12:46,367 - funman.search.box_search - INFO - progress: 0.99655\n", + "2024-02-08 15:12:46,379 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.09595156313183528, 0.09605135026636223)][(0.09605135026636223, 0.096085155039653)])\n", + "2024-02-08 15:12:46,380 - funman.representation.box - INFO - widths: 0.00013 -> 0.00010 0.00003 (raw), 0.00134 -> 0.00100 0.00034 (norm)\n", + "2024-02-08 15:12:46,383 - funman.search.box_search - INFO - progress: 0.99655\n", + "2024-02-08 15:12:46,396 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08026549744916031, 0.08034315486479189)][(0.08034315486479189, 0.08039843848340564)])\n", + "2024-02-08 15:12:46,398 - funman.representation.box - INFO - widths: 0.00013 -> 0.00008 0.00006 (raw), 0.00133 -> 0.00078 0.00055 (norm)\n", + "2024-02-08 15:12:46,400 - funman.search.box_search - INFO - progress: 0.99655\n", + "2024-02-08 15:12:46,412 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08273165939697391, 0.08277543067986522)][(0.08277543067986522, 0.08286118334222232)])\n", + "2024-02-08 15:12:46,413 - funman.representation.box - INFO - widths: 0.00013 -> 0.00004 0.00009 (raw), 0.00130 -> 0.00044 0.00086 (norm)\n", + "2024-02-08 15:12:46,416 - funman.search.box_search - INFO - progress: 0.99655\n", + "2024-02-08 15:12:46,494 - funman.search.box_search - INFO - progress: 0.99667\n", + "2024-02-08 15:12:46,505 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08184647062698758, 0.0819286841611866)][(0.0819286841611866, 0.08197355379419592)])\n", + "2024-02-08 15:12:46,506 - funman.representation.box - INFO - widths: 0.00013 -> 0.00008 0.00004 (raw), 0.00127 -> 0.00082 0.00045 (norm)\n", + "2024-02-08 15:12:46,509 - funman.search.box_search - INFO - progress: 0.99667\n", + "2024-02-08 15:12:46,586 - funman.search.box_search - INFO - progress: 0.99678\n", + "2024-02-08 15:12:46,598 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07954693244886679, 0.07962321692668299)][(0.07962321692668299, 0.07966640852478668)])\n", + "2024-02-08 15:12:46,599 - funman.representation.box - INFO - widths: 0.00012 -> 0.00008 0.00004 (raw), 0.00119 -> 0.00076 0.00043 (norm)\n", + "2024-02-08 15:12:46,602 - funman.search.box_search - INFO - progress: 0.99678\n", + "2024-02-08 15:12:46,678 - funman.search.box_search - INFO - progress: 0.99689\n", + "2024-02-08 15:12:46,689 - funman.api.run - INFO - Dumping results to ./out/4b66c65d-54a1-4542-a660-76a9af861f48.json\n", + "2024-02-08 15:12:46,690 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07999733732191185, 0.0800710488129263)][(0.0800710488129263, 0.0801099385401731)])\n", + "2024-02-08 15:12:46,692 - funman.representation.box - INFO - widths: 0.00011 -> 0.00007 0.00004 (raw), 0.00113 -> 0.00074 0.00039 (norm)\n", + "2024-02-08 15:12:46,695 - funman.search.box_search - INFO - progress: 0.99689\n", + "2024-02-08 15:12:46,708 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08077919982891538, 0.08081845567274824)][(0.08081845567274824, 0.08089098745476313)])\n", + "2024-02-08 15:12:46,715 - funman.representation.box - INFO - widths: 0.00011 -> 0.00004 0.00007 (raw), 0.00112 -> 0.00039 0.00073 (norm)\n", + "2024-02-08 15:12:46,725 - funman.search.box_search - INFO - progress: 0.99689\n", + "2024-02-08 15:12:46,739 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07973259428421171, 0.07977900974304794)][(0.07977900974304794, 0.07983917491720144)])\n", + "2024-02-08 15:12:46,740 - funman.representation.box - INFO - widths: 0.00011 -> 0.00005 0.00006 (raw), 0.00107 -> 0.00046 0.00060 (norm)\n", + "2024-02-08 15:12:46,743 - funman.search.box_search - INFO - progress: 0.99689\n", + "2024-02-08 15:12:46,756 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08873027777183116, 0.08877864585294366)][(0.08877864585294366, 0.08883685840480433)])\n", + "2024-02-08 15:12:46,757 - funman.representation.box - INFO - widths: 0.00011 -> 0.00005 0.00006 (raw), 0.00107 -> 0.00048 0.00058 (norm)\n", + "2024-02-08 15:12:46,759 - funman.search.box_search - INFO - progress: 0.99689\n", + "2024-02-08 15:12:46,771 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.08104735995616383, 0.08110753530022248)][(0.08110753530022248, 0.08115365583180882)])\n", + "2024-02-08 15:12:46,773 - funman.representation.box - INFO - widths: 0.00011 -> 0.00006 0.00005 (raw), 0.00106 -> 0.00060 0.00046 (norm)\n", + "2024-02-08 15:12:46,775 - funman.search.box_search - INFO - progress: 0.99689\n", + "2024-02-08 15:12:46,789 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.0801595676901014, 0.08020012528214877)][(0.08020012528214877, 0.08026549744916031)])\n", + "2024-02-08 15:12:46,790 - funman.representation.box - INFO - widths: 0.00011 -> 0.00004 0.00007 (raw), 0.00106 -> 0.00041 0.00065 (norm)\n", + "2024-02-08 15:12:46,793 - funman.search.box_search - INFO - progress: 0.99689\n", + "2024-02-08 15:12:46,805 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.09061960254824909, 0.09066988257183799)][(0.09066988257183799, 0.09072178978094866)])\n", + "2024-02-08 15:12:46,806 - funman.representation.box - INFO - widths: 0.00010 -> 0.00005 0.00005 (raw), 0.00102 -> 0.00050 0.00052 (norm)\n", + "2024-02-08 15:12:46,810 - funman.search.box_search - INFO - progress: 0.99689\n", + "2024-02-08 15:12:49,054 - funman.server.worker - INFO - Completed work on: 4b66c65d-54a1-4542-a660-76a9af861f48\n", + "2024-02-08 15:12:56,744 - funman.server.worker - INFO - Worker.stop() acquiring state lock ....\n", + "2024-02-08 15:12:57,081 - funman.server.worker - INFO - FunmanWorker exiting...\n", + "2024-02-08 15:12:57,083 - funman.server.worker - INFO - Worker.stop() completed.\n" ] }, { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUdfrHP7M9vfdOEhIgjRZqKIIi6CnWs2O9Oz1Pf5az3Cn2XuH01LNiQVQUVBBUQDqhpxfSK+m9bDa7O78/nky2ZFs2Hb7v12teu9k6W7LznmeewvE8z4PBYDAYDAaDwZiAiMZ6BRgMBoPBYDAYDHthMstgMBgMBoPBmLAwmWUwGAwGg8FgTFiYzDIYDAaDwWAwJixMZhkMBoPBYDAYExYmswwGg8FgMBiMCQuTWQaDwWAwGAzGhIXJLIPBYDAYDAZjwsJklsFgMBgMBoMxYWEyy2AwzmuWLFmCJUuWjPVqDAulpaXgOA6fffbZWK+KXdx6660IDw8f69VgMBgTDCazDAZjQvHZZ5+B47j+RaFQYPLkybj33ntRW1s7quuyceNGvP3221Zv9/TTTxuss7llvEt1dXU1nn76aaSlpY31qjAYDEY/HM/z/FivBIPBYNjKZ599httuuw3PPvssIiIioFQqcfDgQXzxxRcICwtDVlYWHB0dbX48lUoFAJDJZINel0svvRRZWVkoLS21eLuMjAxkZGT0/93R0YG7774bV1xxBa688sr+y/38/HDhhRcOej0EeJ5HT08PpFIpxGKx3Y9jjhMnTmD27Nn49NNPceuttw774/f29kKr1UIulw/7YzMYjHMXyVivAIPBYNjDypUrMWvWLADAnXfeCS8vL7z55pv48ccfcf3119v8OPZI7GBJSEhAQkJC/98NDQ24++67kZCQgJtuusns/ZRKJWQyGUQi2w6iCZHqiUZnZyecnJwglUrHelUYDMYEhKUZMBiMc4ILLrgAAFBSUgIAUKvVeO655xAZGQm5XI7w8HD861//Qk9Pj8H9jHNm9+7dC47j8O233+KFF15AcHAwFAoFli1bhsLCQoP7bd++HWVlZf1pAkPJ9xSed9OmTXjiiScQFBQER0dHtLW1oampCQ8//DDi4+Ph7OwMV1dXrFy5Eunp6QaPYS5nNi8vD1dffTU8PT2hUCgwa9Ys/PTTTwPWoaWlBQ888ADCw8Mhl8sRHByMW265BQ0NDdi7dy9mz54NALjtttv6X7P+c3333XeYOXMmHBwc4O3tjZtuuglVVVUGz3HrrbfC2dkZRUVFWLVqFVxcXHDjjTf2X2f8Hmq1Wrz99tuYNm0aFAoF/Pz88Ne//hXNzc0Gtztx4gRWrFgBb29vODg4ICIiArfffvtgPgIGgzFBYZFZBoNxTlBUVAQA8PLyAkDR2g0bNuDqq6/GQw89hKNHj+Kll15Cbm4utmzZYvXxXn75ZYhEIjz88MNobW3Fq6++ihtvvBFHjx4FAPz73/9Ga2srKisr8dZbbwEAnJ2dh/w6nnvuOchkMjz88MPo6emBTCZDTk4Otm7dimuuuQYRERGora3FBx98gMWLFyMnJweBgYFmHy87OxsLFixAUFAQHnvsMTg5OeHbb7/F6tWr8f333+OKK64AQKkPKSkpyM3Nxe23344ZM2agoaEBP/30EyorKzFlyhQ8++yzWLt2Lf7yl78gJSUFADB//nwAuvSP2bNn46WXXkJtbS3WrVuHQ4cO4fTp03B3d+9fJ7VajRUrVmDhwoV4/fXXLaaF/PWvf+1/7Pvuuw8lJSV45513cPr0aRw6dAhSqRR1dXW46KKL4OPjg8ceewzu7u4oLS3FDz/8MOTPg8FgTAB4BoPBmEB8+umnPAB+165dfH19PV9RUcFv2rSJ9/Ly4h0cHPjKyko+LS2NB8DfeeedBvd9+OGHeQD8nj17+i9bvHgxv3jx4v6///jjDx4AP2XKFL6np6f/8nXr1vEA+MzMzP7LLrnkEj4sLGzQr6G+vp4HwD/11FMDnnfSpEl8V1eXwe2VSiWv0WgMLispKeHlcjn/7LPPGlwGgP/000/7L1u2bBkfHx/PK5XK/su0Wi0/f/58Pjo6uv+ytWvX8gD4H374YcD6arVanud5/vjx4wMen+d5XqVS8b6+vnxcXBzf3d3df/m2bdt4APzatWv7L1uzZg0PgH/ssccGPM+aNWsM3s8DBw7wAPivvvrK4HY7d+40uHzLli08AP748eMDHpPBYJz7sDQDBoMxIVm+fDl8fHwQEhKC6667Ds7OztiyZQuCgoLwyy+/AAAefPBBg/s89NBDAIDt27dbffzbbrvNIJ9WiEQWFxcP10swyZo1a+Dg4GBwmVwu78+b1Wg0aGxshLOzM2JiYnDq1Cmzj9XU1IQ9e/bg2muvRXt7OxoaGtDQ0IDGxkasWLECBQUF/WkA33//PRITE/sjtfpwHGdxnU+cOIG6ujrcc889Bjm7l1xyCWJjY02+33fffbfFxwQobcHNzQ0XXnhh/7o3NDRg5syZcHZ2xh9//AEA/VHfbdu2obe31+rjMhiMcwuWZsBgMCYk7777LiZPngyJRAI/Pz/ExMT0C19ZWRlEIhGioqIM7uPv7w93d3eUlZVZffzQ0FCDvz08PABgQK7mcBMRETHgMq1Wi3Xr1uG///0vSkpKoNFo+q8T0ipMUVhYCJ7n8eSTT+LJJ580eZu6ujoEBQWhqKgIV111lV3rLLyfMTExA66LjY3FwYMHDS6TSCQIDg62+rgFBQVobW2Fr6+vyevr6uoAAIsXL8ZVV12FZ555Bm+99RaWLFmC1atX44YbbmCdERiM8wAmswwGY0KSnJzc383AHNYiipYw19qKH+FuhsZRWQB48cUX8eSTT+L222/Hc889B09PT4hEIvzf//0ftFqt2ccSrnv44YexYsUKk7cxFv7RQD/SbAmtVgtfX1989dVXJq/38fEBQJ/z5s2bkZqaip9//hm//vorbr/9drzxxhtITU0dllxmBoMxfmEyy2AwzjnCwsKg1WpRUFCAKVOm9F9eW1uLlpYWhIWFDcvzDEWWB8PmzZuxdOlSfPzxxwaXt7S0wNvb2+z9Jk2aBACQSqVYvny5xeeIjIxEVlaWxduYe73C+5mfn9/fVUIgPz/f7vc7MjISu3btwoIFC0xKvjFz587F3Llz8cILL2Djxo248cYbsWnTJtx55512PT+DwZgYsJxZBoNxzrFq1SoAGDCd68033wRAuZzDgZOTE1pbW4flsSwhFosHRIS/++67AW2vjPH19cWSJUvwwQcf4OzZswOur6+v7z9/1VVXIT093WSnB+G5nZycAJBE6zNr1iz4+vri/fffN2h9tmPHDuTm5tr9fl977bXQaDR47rnnBlynVqv716O5uXnA+5OUlAQAA1qxMRiMcw8WmWUwGOcciYmJWLNmDf73v/+hpaUFixcvxrFjx7BhwwasXr0aS5cuHZbnmTlzJr755hs8+OCDmD17NpydnfGnP/1pWB5bn0svvRTPPvssbrvtNsyfPx+ZmZn46quv+iOvlnj33XexcOFCxMfH46677sKkSZNQW1uLI0eOoLKysr9X7T//+U9s3rwZ11xzDW6//XbMnDkTTU1N+Omnn/D+++8jMTERkZGRcHd3x/vvvw8XFxc4OTlhzpw5iIiIwCuvvILbbrsNixcvxvXXX9/fmis8PBwPPPCAXa978eLF+Otf/4qXXnoJaWlpuOiiiyCVSlFQUIDvvvsO69atw9VXX40NGzbgv//9L6644gpERkaivb0dH374IVxdXft3bBgMxrkLk1kGg3FO8tFHH2HSpEn47LPPsGXLFvj7++Pxxx/HU089NWzPcc899yAtLQ2ffvop3nrrLYSFhY2IzP7rX/9CZ2cnNm7ciG+++QYzZszA9u3b8dhjj1m979SpU3HixAk888wz+Oyzz9DY2AhfX19Mnz4da9eu7b+ds7MzDhw4gKeeegpbtmzBhg0b4Ovri2XLlvUXa0mlUmzYsAGPP/44/va3v0GtVuPTTz9FREQEbr31Vjg6OuLll1/Go48+CicnJ1xxxRV45ZVXDHrMDpb3338fM2fOxAcffIB//etfkEgkCA8Px0033YQFCxYAQP/OyqZNm1BbWws3NzckJyfjq6++MllQx2Awzi04fqSrGRgMBoMxKhQVFSEqKgpffPGFxTG5DAaDcS7BcmYZDAbjHEHIi7VUFMZgMBjnGizNgMFgMM4BPvnkE3zyySdwdHTE3Llzx3p1GAwGY9RgkVkGg8E4B/jLX/6CpqYmfPfdd0PKUWUwGIyJBsuZZTAYDAaDwWBMWFhklsFgMBgMBoMxYWEyy2AwGAwGg8GYsJx3BWBarRbV1dVwcXEZtVGUDAaDwWAwGAzb4Xke7e3tCAwMhEhkOfZ63slsdXU1QkJCxno1GAwGg8FgMBhWqKio6B/cYo7zTmZdXFwA0Jvj6uo6xmvDYDAYDAaDwTCmra0NISEh/d5mifNOZoXUAldXVyazDAaDwWAwGOMYW1JCWQEYg8FgMBgMBmPCwmSWwWAwGAwGgzFhYTLLYDAYDAaDwZiwnHc5swwGg8FgMBijAc/zUKvV0Gg0Y70q4xKpVAqxWDzkx2Eyy2AwGAwGgzHMqFQqnD17Fl1dXWO9KuMWjuMQHBwMZ2fnIT0Ok1kGg8FgMBiMYUSr1aKkpARisRiBgYGQyWRsUJMRPM+jvr4elZWViI6OHlKElsksg8FgMBgMxjCiUqmg1WoREhICR0fHsV6dcYuPjw9KS0vR29s7JJllBWAMBoPBYDAYI4C1MaznO8MVrWbvMoPBYDAYDAZjwsJklsFgMBgMBoMxYWEyy2AwGAwGg8GYsDCZZTAYDAaDwWAMmaamJtx4441wdXWFu7s77rjjDnR0dIz48zKZZTAYDAaDwWAMmRtvvBHZ2dn4/fffsW3bNuzfvx9/+ctfRvx5WWsuBoPBYDAYjJGE54GxGp7g6AgMomvAzp078fzzzyMrKwtisRjz5s3DunXrEBkZafF+ubm52LlzJ44fP45Zs2YBAP7zn/9g1apVeP311xEYGDikl2EJJrMMBoPBYDAYI0lXFzDEKVd209EBODnZfPPOzk48+OCDSEhIQEdHB9auXYsrrrgCaWlpFluNHTlyBO7u7v0iCwDLly+HSCTC0aNHccUVVwzpZViCySyDwWAwGAwGAwBw1VVXGfz9ySefwMfHBzk5OYiLizN7v5qaGvj6+hpcJpFI4OnpiZqamhFZ1/7nGdFHZzAYDAaDcX6iVAKNjUBDA522tdEhbycnilIKp87OdPm5PGDA0ZEipGP13IOgoKAAa9euxdGjR9HQ0ACtVgsAKC8vtyizYwmTWQaDwWAwGOYR8j31xdSW08HmiJoSXX3hNXedtdsOYUzqsMFxgzrUP5b86U9/QlhYGD788EMEBgZCq9UiLi4OKpXK4v38/f1RV1dncJlarUZTUxP8/f1HcpWZzDIYDAaDcd7A80B7u21Cqn9eqbTv+cRiwNsb8PICXFyA7m6gs5OilJ2dtPA83bari5b6+uF7vQCgUAyvHAunUunwruc4oLGxEfn5+fjwww+RkpICADh48KBN9503bx5aWlpw8uRJzJw5EwCwZ88eaLVazJkzZ8TWGWAyy2AwGAzGxESrBVpbB4qntdPeXvueTyYjKRXk1JZTV1fLlfQ8T4IryG1Hh+F5a6eWrus7PA6lUpfyMJzIZAOF98QJYNUqICQEuPFGQC6n24lEtIjFuvOm/hYuG0T3geHEw8MDXl5e+N///oeAgACUl5fjscces+m+U6ZMwcUXX4y77roL77//Pnp7e3HvvffiuuuuG9FOBgCTWQaDwWAwxg6eBzQaWjo6BncYv6mJ7mcPCgXJpq1i6uVFwjbcksVxlF4wyLxOq/A80NMzMpKsVtNzqFS0NDcbPvcvvwBhYcDq1fQZ2QPHmRfdofwtLGYQiUTYtGkT7rvvPsTFxSEmJgbr16/HkiVLbFrtr776Cvfeey+WLVsGkUiEq666CuvXr7fvPRgEHM8L8f3zg7a2Nri5uaG1tRWurq5jvToMBoPBMIdaTTIgCFxPD8mbWk2LcN7cqS23Ganb2vp49sqoPs7O5gXUnJwOtzyeT6hUlgW4sxNKrRYlcXGICAiAQiSiKLFGQ6fG5/X/Hg04bmgy7OY2bHnISqUSJSUliIiIgEKhMLhuML7GIrMMBoPBGHl4nqrZGxooJ7KhQbeY+9s44nU+4OZmXUSNT+XysV7r8wuZDPD0pMUcSiVQUgL4+VEU3BZ4nhZLsjuUv/WfR9iRsiflJC5ufBTV6cFklsFgMBiDR6m0LqPGfwuHZweLpydJm0IBSCS0ITV1auk6e2473I9n7baOjudkURHDRjhOFzWVDLOe6YuynTL84n//ixc/+MBkqklKSgp27NgxvOs8CJjMMhgMxvmORqM7nG+rnHZ22vdcTk4UUfTx0eVsWvrbw2P4N+wMxvmGvijbyd+eeALX3nOPyescHBzsftzhgP1CMBgMxrmE0HrJlkipsDQ16dojDQaJxDYh1V/GeKM3LtBqgfJyICsLyMyk0+xsID0dWLcOuPZaYIT7cjIYg8XT0xOellIrxhAmswwGgzGeUaup+Km+XiehxucbGoDdu4HAQDpvpbm5WTw8Bienbm5j1kJowlBXpxNWQV6zs81Pg7r/fuCBB4ALLgCuvx648krA3X1UV5nBmGgwmWUwGIzRpLPTtJCaOz+YIqjqat15BwfbD+V7e1NeKsvXtJ+2NpJU/WhrVpb5AQBSKTBlChXTxMcD06ZRwdDXXwOpqcCuXbTcfTf1Lb3hBuDSS1lkm8EwAZNZBoPBsBetlmTTFikVznd3D/55OI5kU5BPHx/D8/pyKvzNWi+NDD09QG6uTlYFeS0vN317jgMiI0lY4+J0S3S06Z2H++4DiouBTZuAjRtJkLdupcXZGbjiCorYLl/Odj4YjD5Yn1kGg8EQ6OkxPHRvTU4bG+3rDSmTDRRSS+c9PcddK5xzHo0GKCoyFNasLKCgwHxv2KAgnawK8jplytB2LDIzSWq//hooK9Nd7u0NXHMNie2CBUMq7GEMP5b6pzJ0DFefWSazDAbj3MS4r6ktgtrebt9zublZl1L9y0ZikhLDPngeqKoyTA3IygJycqj9mCk8PAyFVVg8PEZ2PVNTSWy//ZZycQVCQoDrriOxTUpi361xAJNZ22AyaydMZhmMCYq5QihLgmpPQ3Cx2PRhe3Pnvb0p0soY/zQ2DkwPyMoCWltN397BgXJZjaOtAQFjK4xqNbBnD0Vrf/iBdtoEYmNJaq+/nlIZGGMCk1nbYDJrJ0xmGYxxAM8DXV2DE1N7p0E5Otp+SN/bmyrH2SHbiU1nJ0VWjaOtZ8+avr1YDMTEDIy2RkSM//QOpRL45RcS259/plQZgVmzSGr//GdKgWCMGuerzL7wwgvYvn070tLSIJPJ0NLSYvH2bJwtg8EYP2i11KvUVjGtrzd/CNcSpgqhrEVNWSHUuUtvL5CfPzDSWlJivm9ueLihsMbHA5MnT9yRsAoFte+68kqK0G7dSqkIu3YBJ07Q8vDDwOLF1BHhqqssj2FlMIaASqXCNddcg3nz5uHjjz8etecd08js/v378dprr+HkyZM4e/YstmzZgtWrV1u8z969e/Hggw8iOzsbISEheOKJJ3Drrbfa/JwsMstg2IBSOTgxbWqyrxBKLrddTFkh1PmLSkXdAoyjrfn55lNJ/PwGpgdMnQq4uIzuuo8VdXXA5s0ktocO6S6XSoEVK0hsL7uMJrIxhp0BEUfhaNRY4Og4qLSYnTt34vnnn0dWVhbEYjHmzZuHdevWITIy0ubH+Oyzz/B///d/50dktrOzE4mJibj99ttx5ZVXWr19SUkJLrnkEvztb3/DV199hd27d+POO+9EQEAAVqxYMQprzGBMQLRaoKVloJwan//lF4paNTSYb+huDXd328XU25sVQjFoI9/cTLJaXk4V+8J5YTl71nyk1cXFdDGWj8/ovo7xhq8vcM89tJSVUauvr7+mKWPbttHi6AhcfjmlIqxYwXK/R5KuLvq9Gws6Oga109LZ2YkHH3wQCQkJ6OjowNq1a3HFFVcgLS0NonGagjVucmY5jrMamX300Uexfft2ZGVl9V923XXXoaWlBTt37rTpeUY7Mht2Dwe5RIIz6+0oRGEwTNHVZVpGzcmqve2jhFGltoqptzfre8kYSG8vdQswJanCZZ2d1h9HoaDiJuNoa0gI2yEaDDk5JLUbN1I/WwEPD+Dqq0lsFy1iR0CGyICIY2fnhJFZYxoaGuDj44PMzEzExcXZdJ/zKjI7WI4cOYLly5cbXLZixQr83//9n9n79PT0oEcvIb5Nv+pzFCj3BcCpwT3d92PbA1xzBrg9HZhfCbj2gKRBKqVDrk5O1ObHy4sS9idNAsLCaC/bxYX2pE0tMhn7QZ+IaDSGuaa2CKq9h6pcXQfKqfE0KP3r2KhShjV4njoBWBLV6mrzUVV9fH2B0FBawsJ054XFx4d9H4eDqVOB554Dnn0WOH6cxHbTJqCmBvjwQ1oCA6lo7IYbgJkz2fs+HDg62n/EazieexAUFBRg7dq1OHr0KBoaGqDtC4aUl5fbLLOjzYSS2ZqaGvj5+Rlc5ufnh7a2NnR3d8PBxJi/l156Cc8888xoraJ5hN8CBfBdAi0AAB5w7VEjpkGNheXdWFTWgmk1VYjIAyR2BNMgFpMcy+X0BXZ1pUO/7u4kJ66utHcoSLCDg3lBNrWwyJt5eJ72vq0dztc/39Rk24beGKl04OQnU9Og9GWVHUJkDBa1mqKqpiRVWGzpzSuTmZfUsDAgOJiNaR1tOA5ITqbl9deBffsoWvv997QD8tZbtERF6Vp9TZky1ms9ceG4CZOf/Kc//QlhYWH48MMPERgYCK1Wi7i4OKhUqrFeNbNMKJm1h8cffxwPPvhg/99tbW0ICQkZtefP4K5DgnoTIByxMd7B5YA2BXA8mJa35vddzAPuSmByAzDrLDD9LBDbAExuBLy7Bj5MPxoNLT09VNlaUzO8L0gk0omtk5Pu/PHjwMKFJNMi0eicDsdjaDRUXKJU0numfyos3d20MU5MpNtbElT9tjiDwcPDsoway6qLC4uWMIZOa6tlUa2qsi1FxcfHtKTqR1XHaa4dA/RbeMEFtLz7LvDrryS2P/0EFBZSJPe552ggww030ICGUdyOMkaPxsZG5Ofn48MPP0RKSgoA4ODBg2O8VtaZUDLr7++P2tpag8tqa2vh6upqMioLAHK5HPIxbLkS/9TX4PE1AODV3a/g0f2PkYla8RCeA5odgKMhtOjjqAIim4HEGmBqPRDTCMQ0AFFNgNzMlMVhQ6ulQyWmDpdMgC/8qCBU6FuLlgrnvbwoms5gDCdqNRVOmSuqKiszbLZvDpmMxMVcCkBICGt/di4hl1OXg8suo9/5H3+kVIRffwXS0mh55BEKXtxwA+XZnu/FducQHh4e8PLywv/+9z8EBASgvLwcjz32mM33Ly8vR1NTE8rLy6HRaJCWlgYAiIqKgvMI5gxPqC3ovHnz8Msvvxhc9vvvv2PevHljtEaD45Flj+KRZY+C53nEvh2DM60FdMUgA2xdMiDTjxZ9RFogqB2YVqcTXOE0sH3QTzP6cJxuEaI4HEeH4XmeRNqeQiZbEIkMo7bCOgjr09tLEVoBR0dg9mzg4ospWqEvqINsg8Jg2I1KBeTmUoV6Xp6huFZV0ZEEa3h5WU4B8PVlUdXzFWdn4MYbaWlspFZfX38N7N9PwYuDB4F//AO46CJKQ1i9+vxpfXaOIhKJsGnTJtx3332Ii4tDTEwM1q9fjyVLlth0/7Vr12LDhg39f0+fPh0A8Mcff9j8GPYwpt0MOjo6UFhYCIBe8JtvvomlS5fC09MToaGhePzxx1FVVYXPP/8cALXmiouLw9///nfcfvvt2LNnD+677z5s377d5tZc463PbNbZLMT/Lx7gMaK26dxDKQoxjX2nDUBME4fJbVI4q0AbxcHAcbpqV563baM5GgjrJRTUOTrSj6u7O4mmry/1nxTEU/jb05PyiV1czFfxFhQAn3wCbNhgOElo7lzg9tvp0Bv7IWeMFHV1JK3p6UBGBp3m5loe2SuVGkZVjaOrISETJo+PMY6orAS++YbE9uRJ3eUKBfCnP5HYrlxJf5+nnK8TwAbLOTHOdu/evVi6dOmAy9esWYPPPvsMt956K0pLS7F3716D+zzwwAPIyclBcHAwnnzyyXNiaALP87j757vxwekPrNwQwy69QW2GUdzJjUBMuwxhWheIPb1JClUqOuTU0GDf5CaADqVLJLqIpxBpFRYh+jpGaDhAKQGUchGUCim6neVQujhA6eoIt9wSRC9arUsLqK0FTp8mqRD+hRQK4JJLgNtuAy68kBVcMeyjtxc4c0YnrsJiLv/d3R1ISNCNX9WXVj8/1mKJMbKcOaNr9XXmjO5yNzeaSnb99cDSpWOXSsXzVMswGotaTZPXzpyBMiSEyawNnBMyOxaMV5nVp7y5HHM+nIOabivFW8InN0IRXbma8nD1RTemEYjpUMDDM5A2nD4+JLu+vhTtCQjQRTj1F2dnm37MtLwWPeoedCvboWyqg7K5Ht2NtVDWVEBZVY7u+mq6vL0Zyu52dKs6oVT3QMmr0M1poBRpoBQD3ZI+Me1buqV6581c3mtlm590FliTDtyQCfja0BYTHEeC6+REr9/dnSLAXl60eHjQe2VtkctZ2sK5SlPTQGnNyTFdSMhxVFmemGi4sD6rjPEAz9MO/tdf01JVpbvOzw+49loa0CCTjZ5c9vRYPnIxgiivugoljz6KiKlToThHjn68+OKLePHFF01el5KSgh07dgz6MZnM2slEkFkBLa/FK/tfwb/3/hs8rHxM+leb264NJqpr5bbenYaC69jbJ4UyEbo9XKD094LS0xXdLg5QOiugdJDSdRollGpaunu7defVdF6lGR+tPyQaQKEGHNR0WuOsk12JBlhZCKxJAy49MwpFdyKRToqFVmuenrS4u+ukV2i9Zm5hubxjh0ZDaSrGaQKVlaZv7+JC0daEBJ20xsWNXdN1BmMwaLWUT7txI/Ddd7TTNl4QUtBGYlGrgS1bgJ07KTL7/vuI8PGBwsuLjuo5OU3o3+CmpiY0mfksHRwcEBQUNOjHZDJrJxNJZvWpaq3Cyo0rkVmXaf3GwieqBSCCZbnVQtc2zAqcFpDw1iOYw4WIE8FB4gAHqQMUEkX/4iDR/a1/nf7lg7qd0XVyiRwSlZraFrW0AM3NaKwpxqbS7djQug/HoYs4ePaIcV2RAmsyRJhdrgan6qUftPGKkEMsSLGHh06IP/oIePrpgRIs3F7/b3bo2jwtLUBmpmG0NSvLsIBQn4iIgdHW8HBWdMU4N1CpgN9/p2jt4cO6Puhjschko/N/VVUF5ebNKJk2DRHu7uhXNIVCl6rGerYDYDJrNxNVZgW0vBYfnvgQ9+24Dyrehihm36fr1AOoOaBHBosRV7EGkKmB7kF0M5OrgR4JdVHw76AcXL9OwKHXMLqpUOsuM75coQYcRHIoQiKgmBQNh4jJkEyKoglokyZR/t84yUHNrc/FhvQN+CLjC1S3V/dfHusdizWJa3BTwk0IlnmTDJ84QT/i27bR3wJCAZpEomt11t2ty7sa7/+WcrlOboWhHKaiwcYibCqFYqKi1dI4UOM0gbIy07d3dKQRrImJuohrQgK9DwwG45yiX9J8faFoawOamw1rQtzdaTvg6npe77gymbWTiS6z+lS1VeGG72/A/vL9tt2h75MOagFCW4DMQKDDBrn16gC0EqBhEGk/ThoRpteKMbNCjRnVPGb0DX2wa6qZQHAwEB2tE1z9xctr1A/faLQa7C7ZjQ3pG7Aldwu61RR548Bh+aTluCXxFlw55Uo4Sh0pb2vbNuDjj4EdO3Q/as7O1AXhjjuAOXN0r0Gp1EWGhaW5mQrPhKWmhgrymptpClNXF8mwSjX+ZVhAKtUJr5sbLdYE2NQy0ofv2tsHRlszM2nimylCQgZGWyMjWUSbwThPGCBpwujyhgbD3w2JhLZf3t7n5RQ8JrN2ci7JrIBGq8HXmV/jnl/uQbvKhtGSQL/YTmoEHjkAfJsInAgE2uSwKLciDfWs9VACrQqg3M3y7fWRQIxwjTMS60RYlKfE/IJuxNVRVHbIODtTcYwp0Q0LG/GobltPGzbnbMaG9A3YX6bbuXCWOeOaqddgTeIapISlQMSJqDBiwwZq81VUpHuQqVNJam++eehNyE3JcEsL/ZjW1FCbp7o6mlzW2Ei37eqi6LBKNaZdJexGX4otia+ptAn981VVupxWYdH/nPSRyymXVV9a4+Mpn5nBYJy3WGzN1d1Nv7uNjYYFak5OJLWenufNji+TWTs5F2VWn/KWcvxjxz/w05mfbL9T3zcgpAX45SsS1LfmA8eDgFYrcgstENYClHkCjx4EStyBAk/gjBfQacMRZA6Au8QZYbwb4lvkWJDfhYtOtiL8bPfwNmkIDTUU3MjIEYvqFjcX44v0L/B5xucobi7uvzzcPRy3JNyCWxJvQaRnJEVP9++naO3mzbqcSomEpu/ccQewYsXY/Kj19BjKsP75hgadCAvjfPWjw0rl+Ok7PJwoFLSTERhIO0iRkbTod6XQF2Mnp/P68CGDcT5jU59ZrZam8DU00G+rgEikG3Hu7Dyhi8aswWTWTs51mRVQa9X4Lus73L/zftR319t+x75vg38bsGUTMPcs8Osk4M35wLEgoEUBs3Lr1QksqKBI7/wqoNERKPIACj1JcNP8gVwfoNKVpphZQgQR3KTOCBa7Y1qPO+ZW8kjMqENkQSOCmtUQDee31sXFdERXiOramdfJ8zwOlh/EhvQN+Db7W4Oo+cLQhViTuAbXTL0Gbgo3ksVNm0hsjx/XPUhQEHDrrdS7NjJyiC90FOntpR9p/aiwKSFuaKBocWMjXS7kDo9RO51hheN0rems5RFbu2wi5xYzGOchgx6a0NtLv4PGvdzlcl3R2DipGxlOmMzayfkis/qUtZTh8V2PY1P2JustvvTpu6l3J7BxM3BhKf39ewTw5jzgaDDQ7ACTcsvxgHs3MK8SeOgQcIFRTUy7jCT3aBBwOATI8qWIcIsDoLESzBJzYgTIvDCF80FcuwKRpW2IyqtDZEkrwloA6XAfIZdIqChr+nRq/j19OoluRATg72/TXnNXbxe25m3FhvQN2FW8C1qeVlIhUeCK2CuwJnENlk9aDrFITLmYH38MfPGFYUubJUsoWnvVVed+bpVGQ5Fe4zQJQYqbm+lHX0iTaG7WLZ2d54YM6yOT2SbBxikTxtexThQMxqhg9wQwnqffMGFHXz/ly9WVxNbd/Zw56sNk1k7OR5kV6NX0YkvuFjz464Oo6qiyfgdjeMCjC/joR+BKvUEve0OB1xcAR0JIbnlTbscD7kpgVjXwwGFglZkURAAodwV+jQIOhAIZ/kCJJ4c2mW1fUxEPhPU6IbpdisgGLaLO9iCyRoWoRh6TmqmDwrCiUJDUCosgucKpie9YVVsVvsz4EhvSNyC3Ibf/8gDnANyUcBPWJK7BNN9pdKj/p59IbH/7TVfU5eYG3HADjdCdOfOcPgRlEp4HKipouEB2Ni05ObS0m8kZF4spyh0URAM+3Nxoh0Cp1G00mptJlIV0iYmYN2wLTk7WpdeW8xO8ZyaDMZIMyzhbjYZ+lxobDX/bJBLKq/X2pi4p44TS0lI899xz2LNnD2pqahAYGIibbroJ//73vyEzE1VmMmsn57PM6lPSXILn9j+HDWkboIUdG20ecFUCb+8Abs0wDM6mBgEvLwQOhVKqAQ8MjN7ygGsPMP0s8I+jwFV5lp+uRUFpCscDKZJ7OoAiuSbF2QJBbTTVLLIZiGriENnE099NgJuJoUtDxtNTJ7ZGssuHhOBEQwY+T/8cG7M2oqlbF4WdGTATaxLX4Pr46+Ht6A2UlwOffQZ8+ilQWqp7/IQEitbeeCMdhjqXsEdaJRJg8mQqpps2jZapU6kLxmAO0fE8ia5xeoSpv4VDg83N9HdbG6VLqMbHAJARQyTSCa4tAmzpOpZGwTjHGBaZNXxA3W+N/pEnR0dd0dhYjQzuY+fOnfjmm29w/fXXIyoqCllZWbjrrrtw88034/XXXzd5HyazdsJk1hCVRoUfcn7A43seR2lLqX0P0jct7LldwOOHALHRNyrNF3hhEbA/HGhwBLQcTMqtiwpIPAvcfRz4c7b1WQ5dUiDDDzgVQMvpACDT1/6hDt6cMyJ7nUluKzoQVdbRL74+nSMwNZjj6HBRQABUwQHYHsNhg081tmvzoQYVUElFUlwy+RKsSVyDVdGrIOMkwB9/ULT2hx90Y09lMmD1ahLb5csn1iGosZTWkaS3l8TXXCGd3lAONDYaRofb2ig6fL4glQ5OgM1JtIsLa0bPGBcMu8wK8Lxh0ZigcBynKxpzcRnSUZOdO3fi+eefR1ZWFsRiMebNm4d169Yh0o66jddeew3vvfceiouLTV7PZNZOmMyap7CpEK8efBWfpH0CDW9nNToPiLXA1VnA/7YDriaCU1newIuLgD8igDon83LrpALia4E7TwG3ptk2qEwlBrJ9SGxPBQCnwmRI99GgSzTw9QgTxjS8Bkq10sSjGbJLdCuW1TpRZLS4mFo4dXQM++Hoekfg63hgQyJwKlB3ubdShOurvbCmMxozXCeDc3EFSkpoHrr+WFR/f+DPf6aisWnTxnxvvZ9zVVpHCq2W3hdrMqwfIW5q0gl0W9v4TZUQNrQjsflRKCwLry1SLJyy/GKGnQyQNJ4f/h3U3l5dAa1+0ZhUqovWyuWDHmX+/fffg+M4JCQkoKOjA2vXrkVpaSnS0tIgGmSg5IknnsDOnTtx4sQJk9czmbUTJrPW6VH34Pvc7/HM3mdwpumM9TuYgydHnVUJfPE9ENNi+mZnPIAXU4BdkcBZF/Ny69BLU8ZuPw385aTNU3ih4ahVmBC9PRUuwyk/Hq3igUVCIojg4+QDF7kLwANtqjbUddYBADL+loF4v/iBT9DTA/z8M42D1c9tBShCyvN2b7SzfElqv0wAalx0l0+rA9akATdmUt9fi8jl9KMmDCUQFv1BBa6u9IPn4ECLQqE7b+4ycxEwJq3jAyFVwpQAmzrVL6LTb7U2XuE4QykeiU2Z/vjnoUixszMT4/OMAZLW2Unfg7GgrIyGDtl5xK6hoQE+Pj7IzMxEXFyczfcrLCzEzJkz8frrr+Ouu+4yeRsms3bCZHZw5Dfk4+0jb+OjtI+g1g6heqrvWxbcCry3Dbi00PxNy12A5xcBO6OBaleSUVNyq1DTVLGb04B7jwE21oj1r06pu16KQrgcJwOBOon5xNkrYq/AjIAZmO4/HUn+SQh0CQRnvLdbV0fjazdsoIipgKcncMEFQEAA/bDk5tIULxsju2oR8Psk4PNEYGssoOzzSJEWuLCYxHZ13ggUuFlCLCZRlkjoR1Krpa4PSqX518RxlNvr70/FWKGhQHg45RG7uFgXaamUFR2NJhqNrsWaJRHWl+WmJt3fbW3ju+cwx9F3V1+KtdqREWMnp8FLsX5rN+HU2XlipRGdp4wrmd2/n55bv2jMwu9oQUEB1q5di6NHj6KhoQFarRadnZ3Yvn07Vq1aZdNTVlVVYfHixViyZAk++ugjs7djMmsnTGbtQ6lWYnP2Zrx44EXkNuZav4M1+grIHjsI/PMwILHwLaxyBl5aBGyPph61ahFMyq1cDUQ3AjdkAv+XCjgYb0M5zuJGigdFhk8FAKf9gVOTFDgVKEK5zHR0ytvRG0n+SUjyS6JT/yTEeMdAIuo7rJ+ZCXz+OfDllzR1S2DqVGDNGiraCgqiDX5eHnDkCHDgAEUwq6tJdE2IQIsC+G4qsCGJiuwEXJXAtTkktgvKreT4Ck25hap+qZQWsZjeJ7Wa+r0KizAdrMe87I8KItHgosemLtP/29R548sUCibQ9sLz9L0xJ76WosTC7cZzdFhALDaUYkC3czcSODtbFl5b5ZhFjEeMUUkzsEZPD+1cGrcrdHDQpSGYOMIWGxuLsLAwPPLIIwgMDIRWq0VcXBy2bNmC1atXW33a6upqLFmyBHPnzsVnn31mMTWByaydMJkdOjn1OVh/dD0+OfUJevlh6OfJA1IN8Ocs4J1fADcrReD1DsBLKcBPMUCZu3m5lWmoS8Gfs4CHDgPOxtsV4R/MSmS00YE6KaT5A2nhCpwOlSLPoRMaE10gFBIF4n3j++U2yT8JCV5T4bzvCInt1q263CaRiIq1brkFuOIK0y1WOjqAM2dIdA8eBLKyKFe3L+JV6EnR2s8T6b0QiGwCbkmnJbzF4sszjUJB68PztA7m+raKxTRYIjycoqxBQRR19fCg+wgyrFQayrGly01dNtYIUmurEA/2vKnLWCEToVYbDuAwTocQxNfU5c3N4zdv2Bjh6IZcbijGWi3t1I5U72TjiLGtcmwqYszEuJ8RKwCzB56ntCGh64p+0Zi7O4mtqyvAcWhsbIS3tzf279+PlJQUAMDBgweRkpJik8xWVVVh6dKlmDlzJr788kuIrXwnmMzaCZPZ4aOrtwvfZX+H1w+/jqz6rOF50L5vY2QTdUe4uATwsFKb1SqjVmA/TKXUAZUYZuU2vAW4MociwgOkmePox1irtboB7JYA2b59ghsqQ1qEA9Jdu9HBDTRxDhyiPKMwPWA6ktxikZTfgqQtqfDfc0y3mi4uwDXXkNimpNh2GLGzEygoAI4dg/bgAeyvPoINXhXYHKlCh16no8WlFK29Ooc6RgwLLi4ksbGxhq3HwsPp8uGu3u3psV18rYmz/vXmznd3j70EicWDE+JPPgGefpo2TMLEIP3z5/qgDVMIO2PWpNfc5ROxvZpYbLgIvyVCXrFaTf9PI5VKYasUWzrv4jJ+ClftZFzJrD5qNUVrGxoMI8VSKeDlBa2nJ3xDQ7Fy5Uo89dRTKC8vx2OPPYbjx49bldmqqiosWbIEYWFh2LBhg4HI+vv7m7wPk1k7YTI7MhQ1FWFD+ga8f/z9wY3PtQGRBoitBxZWAlPrKU92SgMQ3AaTY207JMBrC4BvpwHFnublVqIlub08F/jXAcDT1BF0iYQ2CL29VuVGywHFHpSikBYiQVqkM9K81agWdZi8va/CC0nd7kjKakBSfium11CahDgsHLj5ZhLbqCgb3iFDOlWd+CH9a2w4/hH21B/rn/rm2AtcmcdhzWkeS0sGtlAzi1isS0Ho7bVtAx8YqMuFFSRXOB8SMjE2VEJk2ZTw2iLE9txPaWXPbSgI/ShNia5wXv/v81WA9enuti695i7r7Bzacwu56EIe72jnHkskukUQY/3cYo2Gfgt6ekZmx8/BwXb5tXZ+DIpIx63M6tPVRZ0QGhsNUmJ2ZWTgvldeQXFZGWJiYrB+/XosWbLEqsx+9tlnuO2220xeZ041mczaCZPZkYXneRytOoqPTn6ELzO+RI925HIsHVUktoLcCuejGwG53u9+txh4ey6wMR4o8AJ6JDArt8FtwKX5wL/3A/6m0ps4jiJhIhGJhw0bmDonIN0PSAsUIW2yK04HcsiXtEBrYrSwQy+QUAsk1fQtPvGIv+wuOF13Mx0OGiQVrRX908byG/P7Lw928MNN8tlYU+CE2KNFQGGhfWNgRSLaUMhk9N50d1uXXbGYKmtNiW54OInw+VrgIkSh7ZHnjg5dU3XhVFjszd00J8CWhHi8brhHG5VqoOhak+HaWsqvt3Wz7OZGKT1C8aQQiVWr6X+5p4eEpbOTTpXKkcvjNQXH6fLxJRLKh/b11YmxUGwnRItHav3k8qELsXBeLrcph35CyKyAVkufTUMDnQqIRLqisRGa+Mdk1k6YzI4eKo0KOwt34r3j72Fn0c7hfXAeZiucRFpgUrNOcKfoRXPdlYCKA95JBr5IAvK8AaUZuRXzQGAbcHEB8MR+INRcCyyJhH7ohEOaNvwYd0mp7VZaAIe0aBekhcmRrmhFFwaKoEgLTG7ikCQNRtK0ZUhaeA2SgmbCz9nP6vP0vxyex7GqY9iQvgGbsjahWdncf11yUDJuSbgFyUHJmOQUBM+aNnBZWUBqKnDiBFBURHI02NxVjiPJdXCgU42GfiitvT8ymS4P15Tw+viwgqzBoJ8vZ0p09f/WPz8cAmxJepkAm6a3l4S2qoqWysqB5ysrbS/GdHKiXPbgYF1Ou5cXibAgwSIR/Xa1tNBnX19P3wVBttvbaens1BWCjqY6iEQkxDKZToyFo0VCfrEgxUK02JYda3sQfu/NCe+nnwJPPAGlnx9KkpMRERIChfAe66d+mCoaHA+oVLrfAf3vmEKh+78dxnx+JrN2wmR2bGhRtuC77O/wzrF3kFGXMbwP3vcNdu4BNAC6LWwX/Tp0chvbAExp5BBdz2NbNLBhOpDjA3RLYVKURVrAtwtYWAr88xCQfNbCOjk60sZCrSaBs+FHVcMBRZ59aQrRzkgLd0CaYxtqZKY3Wv5ybySFzEKSXxLl4/onIcozCiLOclSzR92Dn8/8jA3pG7CjYMeAARlucjdM8pg0cHENQ1iHGNL8QuDYMVry82nD29k5+I2bILpOTvTDrlTSD6i1x3F01MmtvuQKf3t4DG49GAMRpgzZKr7C3/YKsJOTbdLr50ft7Tw9x58EjCY8T3mP5mRXON/cbP2xAPr/Cwwk2dUXX+PzgmzwPP3Pt7XpBnToD+tobtYJcWOjrnivvZ2kWYgSj1RRm6XXKQixXE7nBTGWSHRSrNEYRouF9R0EyrAwlLz/PiK8vWFxV01fcvVF19J5YyE2TgMZDoTgjFA0ptXixU8/xYuffmryyFlKSgp27Ngx6KdhMmsnTGbHntKWUnye/jn+e+y/qO2qHf4n4IGgvnQBKU/R1zxvoNLN/F2cVEBMn9xOrudR4wwcCgEKPYEuGUzKLccDbkpgRi2He1J5XJVnYZ2EVlju7jppszGyUuPcl6YQLMZpXy3S/Hic8QJ4E+vkJHVCgl+CQTeFeN94OEhN5z7WdtRiY+ZGbM3fioLGApztsGToNDUt1C2U5NZdT3TdIxCpdoFHeT24kydJdI06LwwKiYQEx9mZhFeQq3ob8rFdXSkv18dHly+n1QJbttCPsh3pGgwb0B+zaUmCjf+2JxdUKtWJrb8/LcJ5/cv8/c/vqG9Xl05uzYnv2bO257x6eVmW3eBg+v+yVap6e3VT7ozFWJBi4XsiRIlbW3VSPFbFmhIJ/a7I5bpFkOScHGDGDCj9/VHy0EOI8PEhmRVyn20oMLYbkWjwAmxOmvWHkmg0QFMTmgoL0VRXB0yZMkBoHRwcEBQUNOhVZjJrJ0xmxw88z+Pk2ZP48OSH+Dz9cyg1I1D8wgNencAjh4E7TwLFXiS2uX2Cm+sDFHgCajPdQ8R9KQsFXsDkeupD2y6H6RQHnoqspjSLcEOaFvemWhnkIJfTxtbdnX6cq6tt3vvvlAKZfnotw/yBDH8O3SYa9oo4EWK9Ywf0xPVx8hlw267eLpS2lKK4ubh/KWou6j9vbeyvuahupMgbofUqSDOygOPHaaBEWRltoOzJ09VvX6XV6nJHbXksd3cgPp6mi0VFAZGRulM3C3s8jOFHX4CtRX/r6ymntKlpcM/h7m5des/naK9aTe+rpZSGqirb04wcHCzLblAQ7YgMVxGokGduToiF/sXGqROtrSTEghQPc/GlTZFZQRiFdAPjU+Oxz0JHCn0pHqkhH0J3H2MBbmsDEhKGraiOyaydMJkdn/RqevF78e945+g72Fm0s78Cf1jhqcDqz5nAG78Dnn2/Xb0i6kIgyK2+7LaZ+BWKagQSaoBqF6DIA2h0Mj+CV6YBwjsl+NMZDo/u6YWPte2BmxtFFd3d6Ue3uNjmjYgwtjfNH0iLUCAt2gWn3bpRz5vuphDoEtg/zSzJPwmJfomI9Iw0m6bA8zxqOmoMRLe4pRhFTSS79kZ1Ix0CMamFg0dBJbijRylXt7jYPtHVR2htJe/rU2aLBHl7G8ptVJTu/Bjn6vZqetGibEGzsplOu5vRrGzuP+3u7YaL3AUuMheDU1e5q8FlTjInq6ko45qeHl2hVE0NRRb1T/XPDyZnUio1jOiaE2A/v/Mv2svzJICWUhqqqkgWbUEkovdTP7XB1DKa22itllInbJHipiZahOv084n7frNsTjMYLoSorL4QG0uxgCDF+hPvhI4ZtkSN4+N1v6tDhMmsnTCZHf+09bRhc85mrE9dj/S69JF5Ep6irgvLgfd+BqaY8BwedIg/1wc4Egz8FgkcDjGM4ko1wPwKYFYlUOIBnAwEqixMKRPzgH+3GMvOyvHPPSrEVVvJMRSL6Uc/LIzSFM6epSEKHaYF1dxrSPMHTsd5IS3SCWmuXSjgG0ze3lHqiHjfeCT6JSLBLwGJ/nTqKrf+vzLkqG4Ph0lNPCY1o3+JbKLT0FZAOhxH5oQ+wsLPnkxGAqtSUfTPEi4uA0VXOA0KsqkDg0qjGiChxqeCsBpf3qGy7TO3BgcOzjLnAeLrKnfVXWZGhE1dJhWP0+EOPE87RMaCa0qAhxLttRT1Pd+ivd3ddITJUpT37FnbU0ucnS3LrlDQNp6GNfSlTiibm1HS0YGI4GAoxGJ6zYIsqtW6RbhcuE6j0YnmWKAvxaYEGaABOUxmxxYmsxOLyrZKfJb2Gd499i5qOmtG7Hk4HohuAF7/Dbi0wPwo2DY58Ec48GsU8Gsk9bHVx6eLw4WFPBaVUvrCr9GUd2uuYwIHwLNHhDktTrjvuBgrTrVa/xFzcNAVPLm7U1ut7GybBRcA2mV9aQoxbkiLdcdp715kcQ1Q8qYjWRHuESS3fon9gjvJY5JhhK+zE6ioAMrLB5zyFeWoaSxHsWMPij0oEl7kif7zZ10sr68IHEJlvpjkFo5JfjGY5BuLSPcITOp1xqR6NTwyCsCdPk0jhCsrKVoy2Lw0jqM8XXd3ipDL5bSxqa+nDXAf3RKg2QFoVuidukjQHOSFFj83NHs7otlVhmYHDs1SNZr5bjT3UCS1Wz30aWYuMhe4K9zh4eABD4VH/6mDxAEdvR1o72lHu6odbT1t/eeFUy0//Ll6crHcUIT15diKCBtf5iBxADcW8jfa0V5jAT6for0aDVBXZ5jLa7xUVxu2iLKEEOW1Jr0uVn5khpkht+YSxFZfck0tlqR4pHJzo6OHLSWLyaydMJmduKTXpOO/x/+LL9K/QLdmBEec8oBPJ43AfSAVkFn4PSjy0IntnggYTN4CgIRGKS7K68XyIqDEHfgikSTSUt6tcy+H+E4nrCl1w517miFut2Get6cnTeOKiqJoRno6kJFBh79sRMNRbnB6uAMy4n2QHihGuqIVlRrTUStnrRTxXc5IrBchobQbicVdiK+1YcqYvz+lUoSG0hISgq5gP5R6ilDs3ItivglFfSkM9ubqRnpMwiTOC5OaeYQW1EN6Ko1Et7QUfFMjOjm1gYy2KEwIqtFpS99pzzCk+rmJHElEnb3h4eRF5/vE1F3hbiCp+qfuCndIRPatAM/z6OrtMpBbS+Lb1tM24Lb6l/Vohr+HtJgTw1nmbFKOXeQu+Dz9czww9wEoJAo4SBzoVEqnpi4z97dMLLNPmkcy2uvhQY/9+OM05nr+/DEVXC2vRXdvN7rV3UM/7Tu/o3AHboy/EQHOAfB39h+weDp46j6Xjg5dlNfcMpgor4uLdeH18xu2KO+46DMrRHjNibB+pNhYjPWF2FiKp041PX7dDpjM2gmT2YmPRqvB7uLdWHd0HXYU7hiZ/FqBvqKuP2cBL+0C/Cx4Za8IOBJCYvtbJKUc6HcccFBzWFyrwIosJVYU8KhwAdbPBVKDgSbHvg5jJqK3cg0Q1e2Aq5oD8OBhwO1MqfU9bmEwQXw8EBNDVc07dwKlpYM+fNXoQAKe7gek+9Nptq95qYvskCFB5YFESTAS3WOQEDQDEREzwIWF0QZjkIenTOXq6qcv2JqrW9pSCh9HHzQrm6HWDq0xu0hLPYs9lIBHd99prwQeWhnceTmd79TAo64NHu1q3W26Adceo+lrgYGmUxciI8d154VeTa9lER6EHA9XCoWtcOBMSq5ZERZbF+QBUq0VwaG1E4rGVjg0tEJR1whFbSO4szW2RXsVCmDhQhLbZcvQmxCHbl41bGIpnHb1dpm8nUoz+qN8pSKpScnVXwKcA+Dn7AdHqaNtUV6ho4otCGld1qTX2dnqQ40LmR0ujHNqbRwcYQtMZu2Eyey5RaeqE5tzNuPtI28jrS5tZJ+Mp/G5iTXAy78DF5aYT0cAgHpHYNckEttfowYeSg/plOCiOhesON2O5WfUqHECXlkA7I6k22rMFJVJtEBQjxQXdQXi0QJ/RJ4qtq1llaMjSVJoKOWHnj5te+N1I9QiKjZLj3BAxmQ3pAdLke7UjmpNi8nbu8hc+tMUhFzceN94OMmc7Hp+fYxzdYuaimyK6kpEEsPIp9QFHuV18DidB/dWFcmn1AUeXsHwaFXBo6IeHg0dcO/UwkVlepSyWeRyXasxmYzy6hoarI889fIyn6fr63vO5GNqeS06VZ0mI8D6lynVSnSru+m0txtKTd+p3uX91xnfVq0c2R1fG5GL5QNFmJNBoeVwuDENST0e6O5qQzenQbeU0lq6pYBmDGv2pCIpHKQOcJA4WD+1cJ2IE6Gusw41HTWo6ayh076lqXtwkWxXuauh6Dr1ya6LYdTXx9EH4q5u68I7mBZlrq4DBVcoZusbSKF0ckKJUomISZNoaALDJExm7YTJ7LlLTUcNPjn1Cd49/i6qO6pH/gl5wKsL+MsJ4PFDlg+v86CJX79GkdzuDzOMbIq0wOwWR6xocMOK481ILlKiWQ68tgD4KYaKy1RimJRbEQ94q8SYr/TFAy1TsCi7nVIMbBFVoQ9rczPJlosL7X23tQ1+4heABkcgI0SG9OkBSA9TIN2lCzmaGqj4gV0JOHCI9IykPFy9XNwwt7Bhy5vUj+pqeI3B4XonqZPp52lrA9avB954g6qXASAuDnj6aWD1ajp8XFQE5OXRDkFGBv1dX29fex+RiHY0nJ0pGqfV0joIz20OZ2cSW0Fuo6NpPePibIocnW/wPA+VRmWz+Jr7e9C37e0eMJhkqDj0Ag4aERwkCjg4uMDBxZNOBymXtp6KRSNfYNWj7kFdZx3Odpw1kFzj5WzHWatpR/qIOBF8HH10kV2XgH7xNVgcfODa0g3OWmqDjalbBt0MjPu6mluE20kkpnvBToCd18suuwxpaWmoq6uDh4cHli9fjldeeQWBgYEmb89k1k6YzJ4fZNdl451j7+Dz9M/RpbYh53So8NTZIKUMeO03YIaVWRBdUhJaISUhx9fwerceDsua3bGiyRMXHW1AeFkrVBzw32Tgq3iaVGZumAN4wFXFIanXC3/ticefaz0hPnaSUgysIUwCSkoCFi0iUaqqAg4dAg4fpuKqQRYV9IqAfG8gPSmAorg+GqRLGlDTa3o6kZvcDQl+CQYFZ3G+cXRYcTRpaQHWrQPefFN3mDIxkaT28stNb1i6uoCSEirKy8ig3OXcXN2hTnt+bmUy2tFwcKDn7O62no8ZEUG9IOPjdUt09PD19mQMCrVWbZP48jzfL5COUkedVHJSOGTlwWHvIcj37AN3+MjA1IRp04BlyygtYfHi0W1rNYrwPI+2njbTsttZg7PtOhmu66wbVDTeQeJgPc2Bc4Ffcy9kNfWmZbevh63S3R0l69YNb2suW4TYmijb0HVlKLz11luYN28eAgICUFVVhYcffhgAcPjwYZO3ZzJrJ0xmzy+0vBZ7S/bijSNvYGfhTmgxSpNieCCkFXj4EPDXU5T3aokKV5La3yKB3yOp6EifyS1irOjwx4pWHyw+VgvnMsoT3RIDvJsMnAqgAiVTU8HAAw5qYLLKBdfz03Bfdzwc8kuon6stHRCkUkpNmDULuPBCEqWyMpLbgwdJ3OwYY1rnBGREuyI90a8vTaEDub3V6OUHPhYHDtFe0QOiuCGuISNf/d7cDLz1FvD227qozIwZJLWXXmp7tESjoY1dUREJbloaTUkrKaH+nPb01BWJSHIdHSky7Oxs/jOVy2lyj7HkBgRMiIgPQ4+uLvrf27UL2L2bjhDob8rFYiA5WSe3c+cOWyuliYRaq0ZDV4NhZFeQXaM0h7YeG/Nq+/B08DSZ5hDtFY3VsatJ0oqLERESAoUw3MVSIZalZTjhONORX71l5759eH7dOmTl5UEsFmNecjLWvfEGIqOjBx0l/umnn7B69Wr09PRAKh3Yxo/JrJ0wmT1/6e7txuaczXgr9S2crjk9ek/cV0R2yRng5V3ApBbLN9dwwIlAXUpCarBhvpxUAyyslWOFJhwXtfki8XQ1RIVFAICT/sCrC4EDYUCthWEOUg0Q1iPHKi4Gj4sXw79JRXKanW1b5FVoDzZ3LnDJJdQHt6AAOHqUNrLZ2XalKajEQJ6/BOmzgpEe6YwMz16kc3WoMxPF9VB4DIjiTvOZZnZ875BobKQo7bp1ulzXWbOAZ54BVq4cuhA2N5PoFhaS6GZmAvn5VCBkLbfWHMIGqrfXfFTY05OkVl9yWarCxKKxEfjjD53cFhYaXu/gQEdaBLlNTBzxCN1Eo6u3C7UdtVbTHGo6atCrtbzjyT/FD5Q0nqedkMGiX3xlrhuBteul0kEdFfp+zx5wABKio9HR1YW1H3yA0rNnkfbVVxCJRHQUwIY84KamJtx9992oqqrCwYMHTd6GyaydMJllAEB9Zz0+PPkh/nv8v6jqqBrV5xZpgZgG4Km9wNW5RpXtJmhRUNuvX/sKycrcDa/37QAuqnfBRdIpuKjDD37ZpSRCAKqcgZcXAr9Mpuhvr4W8W60IuLI7HPc7LMUiLpw2iPv3UxTWFlxcgMmTgQUL6DB8cDBFIE+cAA4cIEGztXekETXOQEaCH9KneSM9SIR0RSvyeqqhNhHFFXEiTPaa3B/FFQrOglyChieK29AAvP468J//6DZOc+aQ1F500chEOXt6KE2kuJh2FNLSKGe3tJQkeCT6SbJUhYlLWRlJrSC3dXWG13t5ARdcoJPbSZNYdN5GeJ5HU3eT2TSHcLdwPHfBcwMlrbNz7HYQOzro6I0tUWChVZeeIDc0NMBn8WJkbtqEuMhIq+NsH330Ubzzzjvo6urC3LlzsW3bNnh5eZm8LZNZO2EyyzAmvyEfbx15C19kfDE6+bX68IB7N3BDJvDUPsDXytPzoF6wQq7tHxFAp9FvSlINsKLNBxc5J2JBty/keQUklDyPDgnwnznApnga6tAthYV+t8AUlStucJ6He1yWQdbVQ49z8KDtYys9PenQ9pIlVDwVFESiffIkRYKPH6dm9XbQIwZyw52QPjMI6ZMckeHWg3T+LBpULWbvsyR8CRJ8dZPNhhTFrasDXnsNePddXRR6/nyS2mXLRk8OeJ4qsYuKaElPB3JyKFJeU2NXhNwsEgkJ7cyZFN1jqQrjH56ndBZBbvftG5iKEhbW3wIMF1xA/VYZQ2LcyayT7Z1jCgoKsHbtWhw9ehQNDQ3QarXo7OzE9m3bsEo4CmXh/72hoQFNTU0oKyvDM888Azc3N2zbts1kMIHJrJ0wmWWYg+d57C/bj9cOvYYdhTtGL7+2fwWo7dasauCF3cDSUsutvwASusMhuvZfpwMMr3dUAUvLOFykDsUKr7mYrHEDl5NL+bK9vdAA+Doe+N9MIMMPaFOYz7uVaoBgpRTLxZPxcODVmOwUQpHCw4cpvcAWaeI42lDGx9OG8/LLSYQyMoBTp2i9UlMpsmTHTxMP4Kwrh4zZoUif4kG9cWXNyFdWmqwoF3EiRHtGG7QNS/BLQKhbqO1R3Joa4NVXgffe03UzWLgQePZZYOnSQb+GYae7WxfVzcsj2RWiuk1Nw5OTJ5eTECUkUJR6wQL6jFmqwvijtxc4dkwnt32/BQbEx+vkdtGiUZ+edS4wbGkGw4Gj46B2NmNjYxEWFoZHHnkEgYGB0Gq1iIuLw5YtW7B69epBPXVlZSVCQkJw+PBhzJs3b8D1TGbthMkswxZ61D3YnLMZbxx5Y3Tza/XhAf8O4O7jNInM6mQtUJ7s75G6YrJaI5cIawFWlIhxkXwKloUshrtGSoetDx3q/6FN8wXemkdR37Mu1FPW3CheDyUwo9cHf/FegSvDVkKsVFIxysGDFIG1RZTEYorYJiUBF19MObg+PrRep05R9PbQIeDMGbvFSykBcr2B9LnhyAiWIsNDhXRJIxp408VS+h0VhCXONw7OMgtydvYs8PLLwAcf6NqiLVlCkdpFi+xa7xGH5ynCXFxMUd3MTIriFRZSsZq9uboCEgng7U2tw5KTgZQUqrT38Bie9WcMnY4OSgMS5DY93fB6iYR2UAS5nTPH4iFmBjFRhyY0NjbC29sb+/fvR0pKCgDg4MGDSElJsUtmy8vLERYWhj/++ANLliwZcD2TWTthMssYLE3dTfjk9Cd4//j7KGopGpuV4AGFGlhaAry4G0iy4ci8lqNoq5CScDAUUOmlO4q1wJxK4KIKGS72mIXkbw+De+IJitodOkRyBvSnJnwbR4MSuiykJijUQFS3ApfJEvBQ3F3w9AwiURIKw0pKbHu9MhlF+mbNIrldsYKmYeXnk+CePEnrmJVlX29XWl3KxfXrWyIckO7PIde5G2pu4M+i0Bc3wS8BCb4J/bm44e7hEHF6xTRVVcBLLwEffqhrn7RsGUntggV2reuYoVRSlLy4mNIWhKhuSQl1T7Cji0U/jo600zJ5MqVnLFhAreBCQqhghTE21NcbFpMVFxte7+REO2fLl9MSF8eKyUwwUWVWq9XC19cXK1euxFNPPYXy8nI89thjOH78uFWZPXr0KI4fP46FCxfCw8MDRUVFePLJJ1FbW4vs7GzITXTUYDJrJ0xmGUOhtqMWH5z4AB+d/ggVbRVjth4cD0Q0Af88BNyeDshsCFh2SoG94bqUhHzvgbfJ/C8Q1+1CEbT58ykqU1Sk63TQxy+R1PP2WBDQ6Gi+a4KYB3y7OCzQBOLBoGswb8ZlJHinTukE19b8W0dHKlSZNw+47DKK8Dk7k1idOkXLkSN0auv4ShOoxECet05y0/tOa8wcaXWWOiFer6NCgl8C4v3i4VrXCrz4IvDxx7rDuBddRFI7d67d6zdu4Hn67IqLacnJochuQQFQUTGkzwByOU04mzyZZGn6dBrLHBFxTk0+mxAUF5PUCktDg+H1Pj60syYUk4WHj8lqjjcmqswCwK5du3DfffehuLgYMTExWL9+PZYsWWJVZjMzM3H//fcjPT0dnZ2dCAgIwMUXX4wnnngCQUFBJu/DZNZOmMwyhouqtiq8c+wdfJb2GWo6a8ZuRXjAWQVckQs8+wcQbmPDgDI3ndj+Ek3FYGIt8MARKkZzFtIaHB0parZsGcljRQVFRY8e7Ze0chfgjfnAjmjqtmByWlnfurqogGndzrjRcS7+MvMvkEVOpg3msWOUv2dr/i1AjeFjYihH9fLL6RCoQkFR5VOnKOUhNZVSFYwrui0hEtHjCEMKtFrUOQGZvkC6v050s30Mo936hEt9keg5BQnuMUg4XISEb/Yisl5D3StWriSpnT3b9nWaaKhUQHk5fbaFhSS6QmFaXZ39uboiEUXpg4Np52baNCpGi4wk2WUpDCOHVkufoxC13bdvYB7opEmGxWTeJvaazwMmssyOJkxm7YTJLGMkKGkuwdupb2Nj5kY0dDdYv8MIItYCcbXAk/uA1fnWW38BQLkb8H8XA1um0N9BbcC6HcCVuSacVKGg6OjKlRSVqamhyO2hQ/2TqTQAPpkOfJ4IZPoBrQqYlVuZBgjuFGMFPwn/jLwZEfMvocPMp06R4B45Qoe3bW0/5eUFTJ1K+aqXXUa5uBIJtbDKyKC2VidPkjQXFtr+uBxHhTDu7nQqEqG3uREFqrNI9+V16Qp+QKWb6Ydw7OUQV8sjoRa0BCQi4f6X4LF0pW3rcK7A8/R5CFHdrCz6DuXn02FuW0Yxm0PI0w0OplzduDgqTIuIoGUQVd0MK6hU9H8kyG1q6sCdlKQkndympJw37z+TWdtgMmsnTGYZI01+Qz7eOPIGvs3+Fq09NoRJeVhvW2AvPODdBdycDjx+APCxEvDcHg38YxVQ0hfcurgA+M8OIMrS9FSZjCKil1xCstDURBu1gwcpRaGPk/7Am/OA/eGUq2q2sIwHPJXArC4P/NXtAqyedxu46dMpInzsmE5wi2zMXxaJqIOCUKC1ahXJrlhMG+O8PBLc06fpsdPTB1f45OhII4DDwkig5HI0ttcis+UMMnorkeHYjnQ/IMsXUJpJBQ1pBRK6XJAgDUaC22QkBs5AdFQyJJOiaPra+VZwo1bT5y0UE544QTseTU1DE11Al8IQEkJpDImJ9H0ID6fP8DyclDVstLdTb2pBbvv6XRuwcCF1+Vi6lHaKz1HROxdl9sUXX8SLL75o8rqUlBTs2LFj0I/JZNZOmMwyRpPM2ky8euhVbMnbgs5eGwRphMVWpgHmVgLP7gEWlZt+qm4J8FIK8MoCOoQuVwOPHaRFYUu9j1hMfUgvv5wiYp2dOrk9dao/EtoqA9bPAb6fSoVllnreOvQCUR1SXMFNxYOxt8Ft4TJq6SVEb48epcierfm3IhHg708tiJYuJRGfMoXWnedJpNLSaDlxgiK51dW2PbbwHvj5kSTNng3ExEDjoEDh2SxkVKcho70A6eoqZDh1DBiCISBXA9PqgIQ6IFHpjgR5CBI8p8I7bIouyhgRQe+DWGz7uk10tFrK3967lz777Gzd8IjhwMmJvhuhoUBsLMluTAzJbnAwGxoxGGprgT17SG537aK0E33kcsrNF+Q2Ofmc2XE7F2W2qakJTU2mIxsODg5m82ItwWTWTpjMMsYCnudxovoEXj30Kn7O/xk9WhuiSyMptn2PH9wG/P0o8PcTA1t/FXgCf7+EWn0BQGQT8M4vwMWFoA26WGxblEwkogjYlVdS0ZZWSzmsBw9ShLW9vf+mP0UD788GjgcBTQ6WC8v8O4CFSj886HMpkudfSxvC9nZd9PboUTq1Nf9WENyEBNqwrlqlE1yAppcJaQpCFDcvb3C5ny4ulNs5a1Z/m6OWqiJkrX8CGaVH+4vNMv05dEpN/zQHtAOJNdClKjRKEOMcBtmZIuCOOyi6GBqqW/qixec8arUuN/foUdoByc/v78oxLAipJoGBJLdTp5LsRkXR3/7+rLLfHDxPKSV//KFbjD8bR0fDyO3MmRN25+FclNmRgMmsnTCZZYw1PM/jQPkBvHboNfxa+Ct6ectzvulOGHGxBQesKACe2AcsqKSn4wFsnkr5tNV9/y5X5QBv7QRC9IvVHRxo6eqyrVVWYCAVh1x1FUUwT54kuT14kFpb9VHiRoVlv0ZRXq+lwjLXHiC+XYGbJDNxZ9waSBamkGTk55N4njhBEn3qlO0CKhJR5FOI4BoLbm+vLk0hPV33+MYTliwhkVCf3bAwii5mZkLLUapH+pULkLEwGhldJchozkNRr+mebFINjSq+PxVYUgosKgM89R3e33+g5IaG6i7z9Dx3OwR0d9NnlJVFS0YGLYOJtNuKSEQFaEFBuuK0hAQ6Hx5O+dzn6vs8WHie/jcFsd27l/Kl9XHp66xywQX0/5eYOGGOQjCZtQ0ms3bCZJYxntDyWvxW9BteO/Qa9pTuGevV0cFTBHBNGg1scFADTy8B1s0FNCLASQU8vZfkSWqqfsrDA3BzIzlrtSFv2NUVmDGDisoWL6YI26FDJLdZWf3TwFQc8PEM4MsEIMsPaJPDYmFZaBuHFT0heCTgGoQuW00tsbRaeswTJ3SCm5FheyGYvuBecAEJbmysbiPL8yTkQprCqVP0PBVDaOWWkgI89xza50xHVn02Mmoz+pZ0ZNRkoK233eDmHA8ktMixpEiNJYWagXJrjKOjedEVorvnyOHfflpbqbuCILlZWRTVNRYqfTjOrsl0/UgkJLQhIbritGnTdLJ7Pm+TeJ5SRv74g1IT9u0bmDri7k6/D0uX0v/etGnjNhLOZNY2mMzaCZNZxnhFo9Xgu+zv8Pjux1HaWjrWq6ODJ2GdXg1cm005rkdC6appdcB724CUcgv35ziKDPr7U+eDmhrrQiCR0AZ+wQKqhJZIKPJ58CBFWfWiv6lBwNtzaShEjQugMZOaAA6YWs9hMReOq+P/jCWrH4DI15euVyrp8fUFV6+vrlXEYl2KgiC4MTGGUaS2NpIlQXKF5xjM4AGRiERo1izq1rBwIfjYWJQpa3C08ij2le3D3tK9yG3INbgbBw6JinAs4UOxpNkNKWWAZ0kN5TDW2NBWTvgMjSVXfzlXort1dYaCKyzt7aZvLxZTGodWS2k3Q92kBgfrZDc+no4ECMVp59NYWY2GdjKFyO2+fQM/A29v+j8Q0hJiY8fNd5DJrG0wmbUTJrOMiUBTVxP+tv1v+D7ne2hhY8RwtOABx15AzQGqvur8W9KA134HfG1pAiAS6YppKitpwpQth/1dXSmStXQpVaO3tOiq3fUaubfKqGvClilAoaf5wjKOB3y7RUgQB2JF4pW4/uJHEOimV8DQ2UmPry+4Z87Y8AL70BfcZcso6mwsuGo1HWoVBPfkSYrk2hLN7n8hHG3U6+uBhx8GlixBTUwQ9ivzsdeS3PonYknYEiwJmo9FoknwqG0luRWWsjLdeVtSR5ycTEuuIL9BQRM3uisUBRoLbk6O+bxxR0eKwgq55W1tQx8PrFBQO7yQECA6mmRXKE4LD6c+0OcqajX9bwhye+DAwB63/v46sV26lPLTx0humczaBpNZO2Eyy5hItChb8OqhV/HmkTfRoxliS6KRoi/qqVABL+8C7j1uW2/bfqRS2iAHBpI4FRbaHq309aXCr+ho+rumhoRQTzo1AH6KAb6OJ7kt8AI6ZDAZvVVogHDeHfNil+PK2WtwcfTFkIj0ClBaW0lwjx/XCa6tI3oBEpuAAJ3gXnzxQMHleSqMEQRXEOrSUtufB6BoYXAwkJCAmoVJ2Bcpxl6+BHurDiGvIc/gpgZyG74Ei8IWwcPBQ7c+DQ0DBVd/qbVhvjLH0Ws3lcYgLB4e4yayZhNqNRU1ZWYaSm5BgfkdNF9f+lzc3elzb2ujaHBNje3FiuZQKAzbjsXH06kQ2T2XZFelov8/QW4PHx640xUcrMu3XbqU3oNRgsmsbTCZtRMms4yJSENXA1499CreOfYOutV9G7yRLgqzE5EWWFAGvLILmFtlxyo6OFAENiCAesnm5w/uUHxwMBWKuLnRxq20lA5X6j1Gmwz4biqwfTJwIpCK2zSmUu94wEsjwzSvKbgwYTWuT7oZkZ6RhrdpaiKB1hfcykrb11cQ3MREEtwVKwYKLkCHWDMzgS1bgE2bBvcc+ri7o2ZaGPbN9sHecA57tcXIazPs2cuBQ5J/EpaEk9ymhKbo5NYU3d20PuYiu+XltnW+cHY2Hd0V5DcoiHZ+xjtKJX1vjSO55nZIOI7SaoqKgNtvp6MQYjEdfSgspB2mmhoSuKGgUFDBpTnZncgDDZRK6mKxZw/JbWqqboy0QESELt926VLagR6x1WEyawtMZu2EySxjInO2/SxeOvgSPjj5AVQa2rA5aEXo5rTjUmw5HghqBe44Re2/fLqs32cArq6UI+rpSYKQlzdwI2UNIaXhggsoElZUNKC4JM0P+CYO+CMcyPMBWs0Ul8m0HELEnkgOX4DLp9+Ay6dcDoXEaGNVW2souMeODW6cri2Ce/gw8OSTtPEWCA2liKBeRwhbqHEVYV+SO/ZOdcJe/27kwXCK3aDl1hiepzQIS9FdW98fIbobEjLwNCSEIpPjtCgI7e2UmmAcyTUX2RaJ6FD5tGnUBiw0lP4feJ6+z8L/Q1kZPcZgdvpM4eBAshsaSpIbF0dHPSai7HZ10f+IUFB2/PjAaPnkybqo7ZIl9NqHifNdZnt6ejBnzhykp6fj9OnTSEpKMnk7JrN2wmSWcS5Q3lqO5/c/j0/TPoVaSxuwyZ0OaNN0o8YF41JshQ4Ds6uARw8BKwsBiT3pwN7eVBjm5EQFVLm59kWs5HKKzMhkJBlnzxoU7yjFwJZY4KdY4FgQUOFG7a9MvS53rRSxrpFYGncpbpi+BnF+cUa34akVlH7+7fHj/eN/bUIspvUVBPeii0hwDx8GnnqKNtoACdA11wDXXkvSn5ur649bVmZT14azzsC+cGBvpBh7I8XIdzV8f4cst6bo7qa8VGPJ1ZdfWz5nmYx2XiwJr5uZecNjRX09SW12tuFi7vshFpNkTpumW6ZModdVVUWR3JISkt38fHoP6+tt79hhDkF2w8LouxcfT7ItyK6j49AefyRpb6f8eiEtQW+ASz/TpunkdvFiynm2k/NdZu+//34UFBRgx44dTGZHAiazjHOJoqYiPLv/WXyZ8SW0vBYcOFxW7gj3xk7sjARqx6vYAnQIv4s6JDx0GIhssfNxgoIo4iqVUn5pdvbQDse6uJDotrcPODRe4AFsTAB2TwKyfWiwg6n3V6IFgkRumBmUjEtn/BnXxP0ZzjKjfEWeJ8nQF9wTJyhybCv6gjtpEm2gDx7UXX/55cC//01TyACK3BUVUXQwJ4eix+npVovw+uW2b8n3NryeA4fpAdP7c25TwlLgrnC3/XXYglZLQiYIb0WF4fny8gE7JGZxdTUtusLpeBg0wfMUbdWXW0F4zRUISiQUbdSX3GnTqDOCSEQ7VCUllO5QXEyie+YMvXeNjUPvxODoaCi7cXE62Q0PJxkeL7S00OhdQW7T0w2v5zj6vxLkdtGiQe0ETWSZ3blzJ55//nlkZWVBLBZj3rx5WLduHSIjI63fGcCOHTvw4IMP4vvvv8e0adOYzI4ETGYZ5yK59bl4et/T+Db7WwCACBxuzpXhzkM9+DIR+C5RjCbZICZVjQFiLTClDvi/VOD6bOqYMGg4jjbcF16omzSWmWldbjmOInrm8jrNXK8SATuiKYKbGgyUugM9EpgsLnPRSjDZKRSLYlfgzzPXIDkoGZxxsZNWS7IpCK6wGFdtW0IkonXVL4ZZtoxSEhYtMl1gpdWS0ApR3CNH6LSy0uSha5vk1nUylkRfhCXRF46M3Jqit5cik6ZEVzi1deytkFtqKrIbGjp2076EKL9xFDc723z7MKHIUuhrKyyRkYYDQCoqSHSFyG5eHhWzVVQM37jgiAiSXUG6IyPp77FuPdbYSO2/hJzbnBzD60Ui6oUt5NsuXGixoG6ApPH84P6PhxNHx0EVVn7//ffgOA4JCQno6OjA2rVrUVpairS0NIisfOdra2sxc+ZMbN26Fd7e3oiIiGAyOxIwmWWcy6TXpGPt3rX4Kf8nAICEF+GO08ATe7XolgDP3zoJWz3r0KY2P6GKAwceY/yzwAMuPcCKQuCRw8CsajsDzBIJbcAvuoiENjWVJM2WjYqnJxXMtLYOqqVShQvwdQLwWySQ6QvUOwG8iZUXaQF/zhnT/ZKwavq1uC7hRng6eg68oUZDETR9uT11yraCKmNcXamDwt//TqNCreVACuKUm0vFNUeO0M7B2bMGecvVLsC+MJ3cnjGWWx6YrvLCkoB5WBJ3KVKSr4a7k/2HcIdER4euWM2U8FZU2NZVQCLR9YQ1Fl3h1N199LozCHm0xlHcnBzz31+5nHqzGkdyIyIGFiAqlfQe6Ud2c3Np56uiwrxIDwahG0NoqG6ohH4aw2i+n7W1NJVMyLktKDC8XiKhIx5CQdn8+QaR5wGS1tk5dt0kOjqGlO/c0NAAHx8fZGZmIi4uzuzteJ7HqlWrsGDBAjzxxBMoLS1lMjtSMJllnA8cqzqGJ/94Er8V/QYAkGtF+NsxLR47CPirFch86GY8P60B20t+Q2eveVETQQQHqYPF24wGHA+EtQB3nQT+ehLwsreDkUxGhw5XrqS/Dx2iQ+0tLdbv6+1NG1SJhKI4JSU29cfVAtgTQWOBD4UCRR5met/ygKNWhEhFIBZEX4BrZq3BkrAlpiMhvb0kKfqCm5Y2+AIgd3eKkM2bR5I7Zw61x7KF+noS2337SHKzsugytdqq3Iq0wPR6MZZ0eGNJ0AIsvOBWuM+YP6QcxWGD5+nzNRfZraggwbelN7LQe9eU6AqXjfShd62W1ts4ipuTY17aFQrKwdUX3Lg4+v6bi8x1dpLkCpHd4mKK7BYWUrR8OKKSMpmuz25kJK1TVBStV3g4/Y+OlOxWVelSEv74Y2BLPpmMJgzu3w+sWwdlTAxKAgIQERUFhaPjhJLZgoICrF27FkePHkVDQwO0Wi06Ozuxfft2rFq1yuz91q9fj2+//Rb79u2DWCxmMjuSMJllnE/sL9uPJ/Y8gQPlBwAAjhoR7j2ixSOHAC8XX+DZZ3H04ni8ePgVlLaUIqMuw+xjiTkx/Jz84CR1QkFzgdnbjTg8oFAD88oparu8xM5CMoAOvyYmUm6pXE7FVKmptk3F8vAApk+n6nqRiKKVmZk29VytdwA2xQM7ooA0f6DWGdCacASOB3y0DkjwmYYVCVfihulrEOhqpp2QMMXs6FFajh0jkRgszs4kCsnJJLjz5tFrtJXWVnruPXtoZyEvD9WqRuwL0VqW2xpgSRlHE8rcE+G2bBVF1KdOHX/DFtRq+rzNRXbLyw0GeVjE21sntz/+CLzyii5vNyRk5NqRabUknsaR3Lw880MyHB3p8zCO5IaGWpfI1lYSwLIynfDm5dFpVdXQB0oAtKPp7U3vWVQUrevkyTrZ9fMbvtSQ0lJDuTVqlacMC0PJ++8jwtsbCpmMvsNaLf3OyGS0wyCXD4yAjwSDTDOIjY1FWFgYHnnkEQQGBkKr1SIuLg5btmzB6tWrzd5v9erV+Pnnnw3SpzQaDcRiMW688UZs2LBhwH2YzNoJk1nG+QbP89hVvAtP/PEEjlUdAwC4qDg8cJjHg0cAt8ipwGuvAStXorG7CT/m/4iNGRuxp3SP2XQDESdChHsEEv0SUdRUhMy6zLGbVMbT5LHrM4D7jwERLUN4LKmUBhpcdRXJ6uHDNGmorMx6cYxCQeKXnEyHStVqOgybnm61KE0L4GgwsGkacCDMymAHLYdwqS/mRqTgylk3Y+XkVYaDHfRpbKS8YX3BbWwczDuie23h4ZSasGIFkJJCgjCYKFh7O230d+9G1am92Kcuwl6fTuwNp9erT7/cltKSUiODm1cQic9//kM50ZMnj+8BC11dJDiWCtZsEThhlLAgt8Ki/3dAAInccKDRUFTVOJKbl2f+O+zsbFpyg4Nt/4xaW3WiK8hufj6lMQyX7IpElD4UHEwFk4LsCmkMQUH2ySXP03ru29e/zsrOTpQ88AAivLxgsfxLIiGpFRZBcuVyum6Uv+ONjY3w9vbG/v37kZKSAgA4ePAgUlJSrMpseXk52vQKWKurq7FixQps3rwZc+bMQXBw8ID7MJm1EyazjPMVnuexvWA7ntjzBNJrqXLXQ8nhnwd5/OMY4KwCsHs35YBxHFqULfg5/2dsytqEnYU7zcoqBw7RXtG4Zso1aOtpw/d536O6vXoUX5khEg2QUAPcnwpckws4DKX1plRK7Yf+/GeK6hw/rsufs3ZIXyQCkpKo+Gr+fLp/RYVu3nx6usUNtDDYYVsMcDLAymAHrRxT3aNx3ezbcM2Mm+Hj5GP6QXmeROXYMZL0bdtonUzBcZYFXiolkUpKApYvpz6dkycPXgaamlC1fRP2HfsWe1vTsdejFQWehs8ryO3JQGDr18DC8r5UE4WCRC8ujgR7+XJan/HaZ1Yfnqf0FuPIriDAwnlbOnOIRCS0+rJrLLx+fkOLAgqdMPSjuNnZ1A3BXN9nV1dDyRV65QYHD77Yq61toOyeOaNLY+gwXwdgMxxHO7GBgZQ3PHUqFc4Jkd3gYJuPEvRLWnAwFBxHOe5KJZ0Kiy2/IaYkV4jujoDoarVa+Pr6YuXKlXjqqadQXl6Oxx57DMePH7cqs8awNIMRhMks43xHy2vxQ+4PWPvHWuQ25AIAfDqpUKntRcBlTgrw9NP9UgsA7T3t2F6wHd9mf4tt+dvQy5tvNRDuFo6/J/8dU7ynYP3R9dhfvh9KtZnDliMND7gpgUsKqP3X9JohdiqTSEhur7uONnbp6cDOnbRRN3doVp/ISJLblBRaXF1JkL/9Fti1i+TFQi6mMNhhTwR1EDA32CG8U4Y5ikgkx61A8qzLMSMkGY5SMz1AW1qA558HPv7Yeu6wSGS5V6n+uF6hMCYubtBpAlWtldh36gfsPbEZe5tPo0A+UFTiaoFFZbSklAOB+vVHMhlFx6dNozzgxYspJcTWfODxglZL6QqC3BrLbkUFiZwtudISCUmaOdkNCaF81MHuCPT20s6dcST3zBnLecVCe7TgYPOLm5vtwibIrn4aQ0EByW5FxfDILkDrFBBA//+xsbQIrcdCQ0k6YWNrLo3GtOT29NjegcWU6MrlQ9qh27VrF+677z4UFxcjJiYG69evx5IlS5jMjieYzDIYhEarwddZX+PpvU+jqJnGmXp0A/cdpcVz5kKS2gsuMNigdPV2YWfhTnyT9Q225m2FSmv+RzfQORB3zLgDtybeiq8yvsJ7J9/D2Y6zI/3SzMLxQEgrcHM68JeTQOggWrqaRF9uY2PpEOP27dTv1pZ+sb6+uh6WKSkUCUpLAzZuBLZupSiqBbokwI8xusEOHA8UmaihEmuB+E5nJHsnYs70S5CcdCmm+EyFWKQXqVOpgM8/B15+mSJwAG0sQ0NJck3lgIrF9N2wJFMcR69z6lSSSiF6OoiClMq2Suwr3YcDpXuxv3APctsHvi9RjTq5XVQGhLeY8HyJhIrMYmKozdK8ebqK+bHuK2svWi3laZuT3cpK2wvWZDI61G5OdoODbS+yUqlIaPUjuWfO0PqY65NrjJPTQME1FmBPT9vWp71dJ7rCaUGBrvXYcHRjEIiKgnLWLJT8/e+ICA+HwtmZ3luZzPZ0EK2W3kNTotvTYz3tSSo1LblC+sI4gcmsnTCZZTAM6dX04qvMr/DSwZdwpvEMAMC5B7j7BPDgEcA/ybTUAoBSrcTvRb/j25xv8UPOD+hSm69Y9nH0wY3xN+L+uffjZPVJvHroVZw8exIafuz630o0wLQ6EtsbMwE3O7pdGT6ghKKBN9xAkcDSUirqOXrUtoIgJyeS2sWL6TQ8nNoDbd8O/PKLWQmodQIaHIGYRqBTChwPIrk9FgQcDQJNhTN+ql4Os1RemBO6AMkzL0Py1AsR7BoMTqOhSPGLL5KAALRRvO46ygcuLKQ0hZMnTVfDy+W0obUWWfL0pB2ABQuo0GvWLOquYAN1nXU4WH4Q+8v2Y3/ZfqTVpA3I7w5uAxaV6uQ2tsFKVN7NjaJtSUmUGzxlCqVNBAVNjLQFS6jVVNRoTnYrKmwfOKFQGEqlqdQGDw/LgtneTs9rabF1Op6wPqYWfQG39hl2dBimMZSW0k5dQQGlgAxmmAmMCsD0r+A4Ek1BNgXhFGRXKrUu58L/lynJ7emxvuNinKerv9jy/MMIk1k7YTLLYJhGo9Xg+9zv8eKBF/tzauVq4M5TwD8PAWHx5qUWAFQaFfaU7MHm7M34NvtbtPeaj3S4y91x1dSr8PjCx1HbUYs3U9/EzsKdY9sCjAcceoEF5cA/jgIXF9P43SEhkVBE8vrrKQpYWwts2UJTuoyqn83ef9Ysit7On49eEZB/6Eekp/+KdFUF0v2A9L5uCACt/+wqYG4lLXOqgIB2oNJVT26DgROBQKeJI/8BXWIki0ORHHMBkmdehtlnOuD28tuUCgHQhm7NGuDRRymPMDvbsLgsJ8e0EDk7U6Spu9uyMLm6UhX6vHkkuHPmUK6nFVqULThccbhfbo9XH+8f8yzg3SvFogoxFp3pwaJSHgm1gNiWrZ9EQtHpadMofSI2liQ3Jmb8jcUdCr29FMG1JLw2dOoAQNXzlqK7tqQQdHVRCoUgt8J66C/19batjxBxtpTSYC2nuLNzoOwWFuoiu0Y7mmZl1hYkEp3cOjjoZFeQTUtizvO082JOdM3lNwvo5+kaLS++8QZefOklk3dLSUnBjh07BvtKmczaC5NZBsMyQqHYCwdeQGplKgCKYN6UATx+EJgcu4CkdtkysxsjtVaNfaX7sDlnM77J+gbNPeanBzlLnXHJ5EuwdvFayMQyvHvsXWzM3Ii6rrqReHm2wwOe3cClZ4C/HwNmnQVEQ/21FItJiq67jqKvra2UTrBnD6UU6OWjNitIVAVhTfcDsn37JowZwfE0Mc2UoIa2kNQKgjvjLCDVALk+usjtsSAg0890gVlsuwLJCMKcEhWSUyuQUAvIeBEVxf3rX3SYXqCtjXreHjumk9yzJtJKZDIqAOrtpYiYpTxcR0eKmCYnU4rCvHkUsbYgQl29XUitTO2X2yOVRwbkbbuKHLFA5YdFZTwWnW7GrNzWwe+8eHiQ3AqFQoLkTpo0/tqJDQc9PTrBNJfHa2tLsuFIIVAqScCNJVdffGtrbYs4CznFloTXUtcIQXb7FmVTE0oWLkSEpycUavXge0BbQiwmqdWXXf3oriUpF/J0jRel0urRlKbWVjS1tQHR0f25wQIODg4ICgoa9EthMmsnTGYZDNvgeR5/lP6BFw68gD0lewCQNF2TDfzrAJAYZV1qAYr4Hq44jM05m/F15teo7zYfTVFIFFgWsQxrF61FuHs4vsr8Cv89/l8UNtvRL3WYEfJtb8igtIQIG9P+LCIWQzt1CoquXY70eF+kt+QhregQ0nvKUWFmnq9LD5BQCyTWAIm1QKLGB3FTl8AhIAT5fANSW7KQ2pmPVI9OZPkO7F8r1QBJNTq5nVsJRDTTIIfT/hS5FaK4JSbqpWRqKqSbUwkkVwHJsRcg6uGXwCUnm36NlZW6yO3RoyS7pro4uLlRBFepJMm3tPGXSkkuEhKoi8LixSSUZvJeVRoVTlSf6Jfbg+UH0a4yPHLgIHHAXPc4LFIHYVGBCnOPVcMxv3jQh5cBUHRLKBASBFc4DQgY3y3Fhkp3t+FIYVMdGoYjhUBYrBWtqVS0Q2UunUFIsbC0QyUgEunapJmS7+BgEmKZbKCkCTmwQnqAfpqASmU9YjoYRCJddFdIZRAiu0Lerrmx1sbpC/o5u4IuJiQM284ak1k7YTLLYAye1MpUvHDgBWw7s63/skvzgX8fAOaG2Sa1AHVSOFZ1DN/nfI+NmRtR3WG+hZdUJMXCkIV4YvETmBs0F1+kf4F///FvNHbb0Sd1BJBogKn1wF0ngBuzAA8bmhl0yGjEbZq/Ltqa6Wc6ogoA4Y6BSOx2Q2JBOxIz65BYrkJEi5UIsUxG+brTpqHdRY4TvaVIbctBKl+B1AAt6kwMIfLpNJTb2VWAiwqocwKOB+rSE44FAc0mBlZ5dAPJdVIkhy9A8qq7kDxlOXydfE2vn0ZD6Qj6gpuVNVAmOI4ODQujQJuaLI/w5TgSGyEPd/lysx0MNFoN0mvT++X2QPkBNHQZRhSlIilmBc7CIv85WKQOwoIyHm6HT1IHi9JS27pXmMLJyVBuhdPoaEqzOB8wTiEwtdTZeGRGKtUVrdmbQiDkFFtaH1u7RgCAry+UM2ag5LHHEB4cDAdHR10kVciLNV4fIQ/WWHiFiGlvr20RZlvgOJ3s6ndDENbPVNsvnqd16Omhnc5h2iHr7u7u73rAZHYQMJllMOwnvSYdLx18Cd9mf9tfcHNBMUnt0oB54J5+hiTChh86nudx6uwpfJ/7Pb7O/BqlraVmbyvmxJgVOAuPL3gccokcd/18Fyrbbcg5HS308m3/fhy4uJDyWI3TBIo8Ad7EW6PoBeLq+iKtNRQ5TagF3HpFVIh0zTU0gtfNjVp4/fgjRTibzadvGODiAiQngw8NQalDD1J7ipDaVYBUp2acDgB6jbarHE/roy+4sQ193RI8DdMTTgeYTn0IbxMjmQ/AnKkXIXnxDZgRPs98e7DOTioo0xdcc/1vp02jDW9bG+VMWquMd3Ghw/5CmkJy8oCBDzzPI68hj+S2fD/2le5DVXuV4XsCDkn+SVgUtgiLQlOQooiBT2E1re/hw5Q/XF099MPJixaR2E6erDuNjBxwWPecp6fHMIXAVM5sTY1tgicWm08hECTY2uAJrZYE29R66C99h+o1Tk4489VX8A0KgskhzfqpAoLgGp8XuoUAOpk0Fl796O5w6pxEMjCVQVi/Ibb+0qe1tRXV1dWIioqC1GjSHZNZCzCZZTCGzpnGM3j54Mv4Iv0LqHnaeM+tIKm9xHtwUguQTGTVZVEqQtbXKGgyPy5XxIkw1XsqpnhPwc9nfoZSQxEyB4kDutVmZs2PNjzMls4HtJOs9qcJ1ADRTTaO5BXpye3FF9MGet8+Kio7csR0fqo5/P2B6dOh9PPCaUkDCa6mDEd9VShzH3hzV6Vh7u2cShpcoBJTtFk/PSHXxMwGsRaIb5IgWRSC5CnLkXzhrZgaMcewPZg+Z8/qxPbYMVpMtU/y9SXpc3CgFmJVVZQnaemwsUxGApOURAWNCxfS+9p36JTneZS2lPZHbveX70dh08BUlyneU0huwxYhJTQFIc6BlPucmUmfx9Gj1K6tvn5oosFxVIRmLLnC9Kpx1GppVOnttZxCMJi2ZMYpBKaWwEDLLdx4nnKG+yK5ZzUatPj7w9fNDY48D663d3ARVv3OB4JcCqf654UBJxqNLooriK8QTR3OyG5o6LAcRdBqtaiuroZUKkVoaKjBGFyAyaxFmMwyGMNHWUsZXjv8Gj469RF6NHQIOLGGcmqvcpsH8SClViC3Phff536PTVmbkF2fbfZ2HDg4Sh37uyAEuQRhecRyHKw42N87d1zA06H8P2cB9x8FomwMqFpFJKLD6ldfTZHbqCiKcP78s+2TyvSJigJiY3HWU4ajomqk9hYjVVaH4wFAl4lUiOhGw+htfC0g1dIwhxOBhh0UzppqD6YCZtVLkSwOwZyopUhecC2Cpy8GZ0oYtFoaqaovuBkZA18fx9Fh+5gYOqTf0KDrLWotTUHoh7twIUluUlJ/u7Dq9mocKDvQL7dZdVkDHiLCPaJfbBeFLUKUZxRtoJVKWvf0dODQIfqMCgvty8c1RiKhyLOx6EZHk4BN9LZiQ0WjsS2FwNacVV9f8/mywcEU9e+LMPI8j5qaGrQYDyPRamm91Go6NXXelhxeAbGYFolk4HnhlOPoMYXnEYrS9Bdbn9Pbe1B9oi0hEokQEREBmYkcXCazFmAyy2AMPzUdNXjzyJt47/h/0dEnlpMbgMcOAjc5zoH0qWeBCy+0K8+qsKkQ3+d8j2+zv8WpmlM23eeiSRfhjRVvIKs2C28ffRsnqk+MaT9bY4R82ztOUr6t13AFlDmODklffjnJ7axZFCn89VfqU5uWNrjm8GIxMHUq1OGhyHLrQSoqkaotR6pnF/K9B97coReYVW0ouIHtFKiucjXsfXsiEOgw4az+7UBynQRz+CAkh83HrOmXwD1pLhVUGYtZdzdw6pRh94TS0oEPqlD05xHD1ZUipbm5JPvW0hSEdmFCmsLs2UBICBq7m3S9bsv349TZU9DyhjLg7+zfl5ZA0dtpvtMg4vReQ0sL5QufOkXt2jIzbc/HFYko0mZpE65Q0LobS+7kySRl53Ih2mDQauk7Ya33ra150nFxBotm2jT0BgYObseip4fSGmprScZra3Xn6+rotL7etqgzQJ0h/Pwo+uzrS6fG58ViinRXVVFEu6pKV8wnFO7xPI3jDgiw/bVYQCaTQWTmfWEyawEmswzGyNHU3YT1R9djfeo6NPe0AKDWUI8cAm6XJcNh7XN2Sy1AkeAfcn/Atznf9rcNs8Si0EX46sqvEOASgMMVh/HeiffwS8EvaO0ZjlYEw0Rfvu28CuCeE8CqAsBhGLv4IDAQWLUKuPRSijh2ddEghh9/pEPh1eaL8EyiUADTpqEpyBPHnFtJcCU1OBqgRYuJ4rCQVkO5nX6WXp9GIUOeWy+OBvL9kpthpj1YTAMwp5rD5wk8+IIbqZp62jRaQkMNJaGuTpeWIERwTY3p9fEhQU1MpCKx+nqKmGZnW2/nJJNRBE5IU5g/H+2TgnG45ni/3B6rOgaVxrDVkYfCAylhKf1yOz1gOiQioxQBnqfnz84myT1yhCS3vNz6IAqAInEikfXDyi4uA1MWoqNpmWhjf0cDngcaGy3LbkUF/X+ZwsGBov6C5E6bRqfBwfbvVGg09F0Rosv6kWb987ZKuIsLrY9+T179876+9FgREaOyI8Rk1gJMZhmMkae9px3vnXgPbx56HbV9rbj8OoCHDgN/EyXD5cmhSS0AVLVVYUveFnyb/S0OlB+weFtXmSvaVG3YdfMuNHU3YX/Zfvxe9DsKmwvHVcQWAMBTd4CVBTSFbV6ljc39bcXTkwRs9WoqNnJ3B1JTdakJ+fmDL2Jyc4M2NgZnAmRIdWhEKleFVNc2ZA6iNRgnk6FLxuG0Zw+O6XVQ0G8P9qd84KevjZ5bLicpiI/XCe60aXQYWDi0WlhoONwhLc30YeXoaBrUMHMmyW5DA0VMT58mmbR0KFokosjXtGlASgqUKfNwzLcX+xtPYX/ZfhyuODxgKIizzBnzQ+b3y+2swFlwkJrYIwBIpqqqdJHcw4epK0RlpW2HyIU2TTxvPTrv7W06mhsVNWyHl89JeJ6+J8IIX2HJzTUvlK6uhnIrLL5muoHYs05NTaZlV/8yW0cMA5TeEx8/POtnASazFmAyy2CMHt293fj49Md49cBLqOhrw+XRDdyfCvxDOwue/36eJj0NcS+/tqMWW/O2YnPOZuwu2T1gtKk1fB19wYNHc3dzf0HbeIHjgeBW4Nps4K6TwOQmK2NZB4uzMzB/PnDlldSvNSqKNsC//05jdE+fti+3098fHVGhOOGrRqqsDqnSWhzx67XYGmxOn9zOrgZcewA4OqJepsZxHxWOBVFHhesGpqqaxsnJUG6FJTiYDuGmpxsKbqGJXsZCm7PkZFpCQigStns33aeoyLoYurkB0dHonTsbp+eFY797G/a3ZuBA+QG0KFsG3DzCPQKx3rEDFh9HnwEFMgBI1svKSKCOH6fXk5Nje+GTgwN9B6RS6iphTWqCgkzn506aZLk46nxGo6F0H33Bzc62vOPo7T0gXQHTptk88nnQdHTo0grMRXiFCXA1NTZN5hsqTGYtwGSWwRh9VBoVvsr4Ci/tex4FrcUAAOce4J7jwIOqGfD714vDIrUA0NjViJ/yf8J3Od/h18JfoYX5ogYxJ0aCXwL+Of+fuHLKlZCJZciuz8anpz/F11lf42zHILoDjBJiDTCtHrjtNHBDJuBr5qim3cjlwIwZwFVX0UCCxETaeO3bB/z0E0UELY3iFYvNShQfFoqySV5I9eyi9ASPTpwy0xpsmlFrsCkNff11XVx0rYjswdWVDvcKciucVyhIBvXTExpN9DT29NTJ7Zw5JHLl5ZRHePAgReGs9UiVy6END0PWvEnYn+iB/c6N2N+SjtpO8+NiPRQeBnIb4xWDWO9YTPKYBKlYOvAO+gIlvK7cXPosbSn0cXUlcXJ2pshvfb3pdA0BkYhSL0xFdMPCLPd5PV9RqYAzZ3RyK4huUZH5FJGgoIGpClOnjk7EXBhAERIyKoWFTGYtwGSWwRg7NFoNNudsxot/PIuMphwA1GP1zlPAP7unI/Sxl4ZNagGgRdmCbWe24Yv0L/BH6R/o1Zo/HMuBQ7h7OO6afhfumnkXvJ280dTdhB/zfsT7J97HqZpTUGvHV9QW0OXb/uUkjd51GsZBQgBIQmJjKXIr9GlVqyk1Yft2ilLm5Zk/1C1MIzIln2IxlAE+SFO0INVbidRgIDUYZluDtSmAxldozHA/wijP7u6hTVFycxsouc7OQEmJLuJ5+rTpjgiTJpHYzplD78+UKSSSBw5QfnJ6OuVTWkjf4EUc6h145K2YibyEAOQFKZAnaUFeaxFKW0rNHm2QiCSI8owiyfXSk13vGLgr3AfeobeXCt+ys+k1HT9OEcK6OuutmziO8ml9femU46jXcUUFRfbMIZPRe5SXBzz4IEluVBSdjpIYTSi6uui9Mo7klpebv8+kSQNTFWJiJnS0nMmsBZjMMhhjD8/z2HZmG17Y8zSO1lGHAokGuCUdeKw9EdGPvAysWDGsRQZdvV34veh3/Jj/I7bmbUWz0nJ/LC8HL1w55Uo8NO8hxHjHQKPV4EjFEfzv1P/wc/7PaOkrcBtX8HR4fnEpcOdp4MKiYS4mA+gzCQ8HLruMPqP580n6srJooMP27ZTTaelwtTAAwEwe4VlnypdNnSRDql8vjgfw/a3BPLuApw6KcfcZV0hb2k0LorMzCdJQBReg6KQgtzExtO6trRTlFETQGKmUItpC9DY5meSttJQipLt3032Li02P9jV6Ld3RESiYPQl500OQ5wPk8Q3Ia8xHfmM+unrNh+b9nf1NSm6oW6hhVwWAJD0/n4rNjh2joRxnzlDesDVEIhLcoCA6/CyTkdyePUvpG5ZaosnlutZiguAK55noGtLaSikkxpHcWjMRfbGY3kvjVIWoqAnRm5jJrAWYzDIY4wee57GnZA9e2P0U/qg+BAAQaSk/9F8t8Yh/+NVhl1qAIsSHKw5ja95WbMnbgpKWEou3V0gUWBK2BA/PfxhLI5ZCxIlQ3lqOb7K+wcenP8aZxjODztMdFfqKyZYXA3ecBpaWArKRqHfz96chDqtWASkp9HdlJUUmf/qJeqtWVpqP/MlkgKMjya0JwVVLxdg12wv/TKxDVl+qXkwD8PpvwCVnAM7bG/DyooiWuedxd6fD611d1gvcOI5EwNLtPDx0YuDoSOJcWUnRW1MC6OZmmJ6QnEziV1dH99m9mzoXCEMWLCEWAwEB0E6biqqFCcib5o88Dw3yOsuQ15iHvIY8VLeb71LhIHHAZK/JA/JyJ3tNHjilrauLxD0ri6LxQo9cW6bPCZO3IiKo64STE0Xo6+vpMYqLLaeL6Iuuvuwy0TWkvp7k1rjwzFxaiExGRw+MC8/CwsbVe8pk1gJMZhmM8cmRiiN4YddabC/f1X/ZZXnAv5umIfmB10dEagES6pz6HGzN24qteVtx4uwJi7cXc2LE+8XjvuT78Oe4P8NR6oju3m7sLt6N946/hz1le6BU29gKZ7ThAe8u6pRwx2lgQYWNk8cGi4cHFZNddhl1TJg0iSKQx45Rv9tdu0iQzImMWEziI4zq7EMtAj6eDjx5AVDflyK4vAh44zca/wtAN0giMJBktLjY9OFZsZgEV6UiYbNWLCUWU7GUSGS5IM7Li16vmxs9Zl2d+ehkWJhObOfMoVxlQepzckhuhTSF8nLLEU6A8omjooBZs9C2aA7yI92Qp+hEXtOZfsktaCywmG4T5hZmsgDNz8nPsACtvZ3WMTOTJPf0adsHQQiSO2UK5dR6etL/dksL5YsWFtKppai6XE49lfUFV5BeNiyCdujOnh2YqpCdbf5ogJOTYfswYQkIGJOexExmLcBklsEY36TVpOHF39dic9HP4Pt+P5cXAf+uj8Xif7wBbuXKEf1hrWqrwk/5P2Fr3lbsLt4NDSxLTohrCG5NuhX3zLoH/i7+/XK8IW0DNmZtRFV71Yit61DheMC/A7gkn+R2dvUwtwETcHQE5s6ldmCLF9MGkudpw7p7N6UmnDxpucBIjzY58GIK8NZcQCWhaP4dp4Hn9gB+xttpZ2dgwQKKDorFJEnHjlG7ImPkcip8Uippg2+tUEomIyF2cSEhtjRO2N2d2n2JxfQ6a2pM3y4hgQYzCEt8PKUtCK25Tp0iwU1NpTQAU0Vq+kgkJI5xcUBKCtTz5qA03B15PVXIa8jrX3IbctHUbeI96cNN7oYY75gBaQuRnpGQifWmNzU30+eqL7m2pFMAJKABAbQzMmsWRV9lMop6l5ZSrm9BAT3eYERXX3bPd9EVul8YpypY2rl0dzeU22uuGb7WYRZgMmsBJrMMxsQgvyEfL+96Cl/mfQc1R1Ixvxz4d+1krLznrRGXWgBoVbZiZ+FO/Jj/I37K/2lAn1Bj3OXuuCzmMjw0/yHE+8aD4zg0dzfj5zM/4/3j7+P42ePjsohMQGgDtjoPuC0NSKzt6yAw3EilNHDgiiuoY8LMmSQtVVXUEeDnn+m0vNxiUVKJB/DYJQp8G0WRcOceGqX8QCqgMPc2+/iQUKekkGTn5JDcnjpF0mSMqytFZDs7abG2yXRwoDQLYUJSdTXJg7n7OTnRfbq6TDfcl8sp/1ZfcGNidN0BurpIRo4coY4TQrGZtVxhNzcSvNmzgaVLgRkz0ODvSlFcPcnNa8hDSUvJgOlmAmJOjEjPSJO5uZ4OnrobCofCs7J0vX5LSiwXjglwHKVkxMbS+gpjhrVa+o4UFFA0dzCiaypH93wWXbWadvSMI7lnzgw8apGTQ1H1EWZCyey7776L1157DTU1NUhMTMR//vMfJCcnm73922+/jffeew/l5eXw9vbG1VdfjZdeegkKoaDACkxmGYyJRWlLKV7b9Qw+zvoCPRz9qCadBf51NgpX/vUtiFdeMiqHwFQaFfaV7uvPs7XWtksulmNhyEI8OO9BXBR1ESQiCTRaDVIrU/Hx6Y9tKkIba0RaILwFuDobWJNO7bFG5J0WiUjQLr8cWLaMorjOzrrUhJ07gd9+o+iRiUPth0KABy4GjgfR32EqR7xSPhnXHusEV1BoWUB9fUmmL72UoqJCYdexY7RBN5V+4O1NMtnRQTJpbTPq6qrL/XRwILHLyyOZM4dUSrJm6vmdnWmd9QU3PFz3f8DzJNCnTlHLsGPHSPSs5blKJFTElZBAwj93LpCQAKWDFIVNhchvyCfBbdSJbofKvIz6Ovn2txATlhkBM+Dv7K+7UUMDveeZmfS+p6XZ1r+3/0l8KVVh1ix6TyZPpvenslInuILsDkZ0jXN0z1fRFQoDBbnNyQG+/Za+nyPMhJHZb775Brfccgvef/99zJkzB2+//Ta+++475Ofnw9dECHvjxo24/fbb8cknn2D+/Pk4c+YMbr31Vlx33XV48803bXpOJrMMxsTkbPtZvLn7ObyX9hE6OdogxTQAj1dG4IY73ob0kj+NWl4Xz/M4dfZUf55tVr3lTv4iToQp3lPw99l/x00JN8FF7gIAqGitwHfZ3+HjtI+RW587PovI9BBrgehG4M9ZwE0ZQGTzCMktQAVDl15KrdoWLqRcVK2WNqwHDlBqwoED/YKm5YCN8cDjy4BKN3qI+ZUc3iqMQnJQMuVlNjeTMBUVmS/ucnYmIbrgAsr35TiSIUFwi4oG3keY/sXzVHFuKsJrjKcnSeOMGRRlbGmhKFhODknuYDfNQv/b2bNJ7GbP1kWHBTo6SBoPH6YobmYmSZ+1gjh3d910tCVLaJBEeDh4jkN1e7VhJLdPdCvbTPcifmX5K3hkwSPWX09TE0ludja976dP03tv66Qqb29aZ0Fyp06lv5uadJKrL7vFxZbfB4XCfI5uUND5KbojzISR2Tlz5mD27Nl45513AABarRYhISH4xz/+gccee2zA7e+9917k5uZi9+7d/Zc99NBDOHr0KA4ePGjTczKZZTAmNo1djVi/5yWsP/EOWjiK0oU3A49UhuG2W9+G4pLLR71Yobi5GD/m/Ygf83/EvrJ9Vm8f6BKIm+Nvxr3J9yLYLRgATUvbU7IHH5z4ALtKdqFbbYMQjTESDTClnoY3XJ8FhA1iIuag8fWlYqoNGygHdtIk+pxbW4FvvgHeeQfIykKXhMcb84CXF6K/ndcNGcBLu4HQVpDgzZ5NgqNSUa5uWhq1NzK3OfTwoNsnJ5PQAHQo/8QJEi1TQxLkclpnlYrW0dw4UwGOo+dfuZL6+QYF6Zrq5+SQ2BUUDG7UsK8vRVfnzNFJroeH4W20WhI5IYp7/DhJnjVplEopp1WI4s6ZQ/m9zjTirb2nHWcazyC/Md9Adl9e/jJWRa+y/TUY09Kik9wTJ2i9be2uANDrj46mz3PWLJLcKVMo3aO8fGA0d7Ci++OPwHvv0Xmh6wIbGGEXE0JmVSoVHB0dsXnzZqxevbr/8jVr1qClpQU//vjjgPts3LgR99xzD3777TckJyejuLgYl1xyCW6++Wb861//Mvk8PT096NE7LNXW1oaQkBAmswzGBKetpw3v7X0Nbx55E3Uc5RoGtAMPVYTgrze9BedLrxyTCtyGrgZsP7MdP+b/iB0FO6DUWJYYV5krVkWvwkPzHsLMwJngOK6/iOyrzK/wZcaXqGirGKW1HxoyNXUVuDED+HM2EGBDOqTdODiQXF56KeW/Tp9OAvb++8D69ajuacC/LwA2JAE8R8M5Hj4MPHoIcNavc5HLSWYuuICieVlZNEygpMRyAZizM+WyJiZSFBkgqT11iiTLVC6omxtFObu7aV2tdSfgOIpIT58OXHIJMG8erW9hIQmdILl5edZlWcDPj3JOly6lnYLp001Pj2ptBTIyqK3agQMUxbVlRK6nJ8ni3LkkudOnU9eGkf5fbGvTvSeC5J45Y7rQzxRCDvH06SS5Qm9hT08SWePcXP3UBUuiK5VS8aEgt4L0RkVRaohMZv6+5zkTQmarq6sRFBSEw4cPY968ef2XP/LII9i3bx+OHj1q8n7r16/Hww8/DJ7noVar8be//Q3vvfee2ed5+umn8cwzzwy4nMksg3Fu0N3bjY/2v4XX9r+MChHl2Xl2Af9XEYh7//wmPC67dkykVli3XcW7sDVvK37K/wkN3ZYb0EtFUswNmosH5j2ASyZf0l8l3tzdjG1ntuF/J/+H1KrUcV1Epo+8F5hZDdySAVyZC/gM9+hdfUQiSg+49FIa5FBXB3z4IU5Vn8QDK4D94XQz/y4xXviDw5oTavOdG/z9SWgmTaKcztRUkhZrCNPSEhMpsgpQfmxWFhVmmcrX9POjQrSODoo62jLkwdOThHTVKhLGqVOpO4Igt0Jj/Zwc00Vlxnh50XrPm0ePuWCBacnSaEjgTp6kjgpCFNdaEZdMRsJfWAisW0dR4rg46gIx0nR0kOxnZ9N6nzxp+zAIgNYxMnKg5Pr40PVqNeUnC5IrtBazpY+uSETviynRnTSJvhfnMeeszO7duxfXXXcdnn/+ecyZMweFhYW4//77cdddd+HJJ580+TwsMstgnB+oNCp8efC/eGnPMygUtQAAXHqAv1f444GrXofv5TeMmdQCNKjhSOUR/Jj3I7bkbUFRs4ncSz04cJjsNRl3z7wba6av6R9NqtFqcLTqKD47/Rl+yPsBjd1WWjONIxxVwJxKKia7LB/wGOl2vD4+QGIi+OYmbO06hX9eCBT1Fdgn8X54y/VaLNlfTpFYc62yAIqGCoeMVSqKUhoPNhDSBEwRHEyH4/38SGAaG0k6TU0PA0iEHRwo2tjSYlmIBDw8SKIvvpjyWhMS6PB3dTVJbU4O5Z2ePEmSZU1yXV0popqURFHrFStI8k39DzU2GkZxs7OpTZm11mbu7rqOCosW0fpHR4/OdKrOTnr/c3J00XRhrK8tODlRxDUpSSfnU6fSZyy8RxoNdegQ5FZfdIuKrLcrCww0LbqRkRRJPseZEDJrT5pBSkoK5s6di9dee63/si+//BJ/+ctf0NHRAZENCdgsZ5bBOLfRaDX4LvVjvPjrE8gUkXAoegGlFCjcm4BInxiKhoSG0sZaOBVmzY8CPM8jtyEXP+b9iK35W3Gs6pjV+/g5+eH6uOvxj+R/YJLnpP7LK1or8EPuD/g07VNk1mWabaFkDQ7c6Bag8XS4f2EZtQFbWQi42OBsQ6FHLsY7M7V4bhGP1r4GOKs10Xj12o8QHZxA+a+7dtGSk2M5DcDTk+SO50kOjW/r5qYbBGAKV1eK8vn5UUS3qYkie5UmCqc4jr6nwijd5mbrKQoAyWJ8PAnu0qUki0K0r76ehPrwYZLQ7GwSX0uPK5HoWmTNnUvpHVOnkqwb/+/09lIEVIjinjhBAmdNosViel+nTaMI+/z59Br0JXEk6e7WSe7p07qRxZZyqo2JjaV1FiK5U6ZQSoG+o/A8PaYp0S0stN5z2dvbtOhGRVGkfQx33IeLCSGzABWAJScn4z//+Q8AKgALDQ3Fvffea7IAbObMmVi+fDleeeWV/su+/vpr3HHHHWhvb4fYhiRrJrMMxvmBltdi2/Gv8MK2R3FMTG20OJ56qD54BFhQblSJ7+RkKLjG54OCRqwdTXV7NX7O/xlb82lQg6UJTQDgJHXCisgVeHDeg5gXMg8ijjaSKo0Kh8oP4cuML/Fj/o8TKmoLHnBT0sjdW08DF5YAjjYccbeHBkfg6SXA+7MAjQiQaoB7KwPx5FXr4HHJ1XQjrZYOTx88COzYQakGlqK3EomuuMo4aiuTURTPzY1aThUVmY+2xsRQkZpUSpHZ4mLT423FYvp+yuUkuI2NtgmumxtFES+6iCKuSUn9RVsASKJ27wZ+/10XxW1utixyMpkuiit0DpgyRTeoQp+GBopsHzlC7212NkUvreXiOjiQECYlUWrFjBkkiqN1KF6p1BXjpaeT5ObmUgTaFo0S2p5NnaqL5E6ZQpFouXzg7YWuC6YiurW1A2+vj6uredEdo2le9jBhZPabb77BmjVr8MEHHyA5ORlvv/02vv32W+Tl5cHPzw+33HILgoKC8NJLLwGg/Nc333wT//vf//rTDO6++27MnDkT33zzjU3PyWSWwTi/4Hkee3K24439L2NH3aH+y2d3eeDBPA9cdbwD0rM2HFoUieiwn3FEV198h+E3pa2nDb8W/oqt+VuxLX8b2lSWx4NKOAlmBc7CfXPuw+rY1XCQOvRfV91eje1ntuPTtE9xvNr+gQ0iiKDFSMy9tQAPeHUDFxYBa9KAJWUWBiHYSY4P8PBFwI5o+tuzC3h6vwh/EydDeusddOg7Olq38W9poZSE3btti94qFCQ6xrfx9aWoXTB1skBhIUUBzVXke3mRCDk6UmSzvNx05E4q1RUVtbSQ4NpSGObiQmIoCO706YbfZY2G1m/7dp2A1tRYlziplPKY4+NJ3KZOpailscBpNCTNaWmUpnDsGImjLR0KvLxoByA5mVq4JSZSvulotcpSqSiinp1NqRYnTtD3wpZiOYC+W76+uqlnCQn0XsXGms8pFnaITIluhZViUQcHneAai+4467wwYWQWAN55553+oQlJSUlYv3495syZAwBYsmQJwsPD8dlnnwEA1Go1XnjhBXzxxReoqqqCj48P/vSnP+GFF16Au7u7Tc/HZJbBOH/Jqc/B26lv4/P0z9GjIcEIcQ3BfTPuxl3eK+B2tolEobycijqE8+XltuUturlZll1//0FtLHo1vdhXto/SEfK2orLddO9OfUJdQ3FD/A34y8y/IMIjov9yjVaD49XHsSlzE77L+Q7VHdU2r4cxYyW34IDrM4CbM4AlpYDDMMntr5HAQyuA7L725rH1wOu/AasKAE6hoLZTq1aRLM2cqRMxIXp76JAuemtppK3+UAN94uKoHVdSEglrQQFF/zIySOpM5Z4KY2pdXOi7efas6UIsuZwipDIZyWFDg219cJ2dSaouvJAGWQj9cAV6enQR1j/+IImrrLQtSikSkXDGxuoWQeA89aaGdXToWnDt30/vSWmp9Qi0REI7CtOmUSpEcjIJtbe39XUbLtRq6oiRm0vFeCdO0GlZmW2/JQBF+oUOC9On03s0ZQrlgpuLrnZ30/OaEt3SUsuCPc46L0womR1tmMwyGIy6zjq8f+J9vHv8XdR1UlTWWeaMO6ffifvm3GcggQBIJurqDCVXX3bLymxrASRsZM2lMoSGmm6TBIown6453Z9nm1GbYfXpHKWOWBq+FPfOvhfLJi2DVKxLk2jsasSvhb/is/TPsL9sf7/c28Oo59sCAA94dgNLS0hul5UYtdwaJGoR8NEMYO1SoL7vI7iwCHjjVyBeP3AvdE1YtYoit/Pn6yrbAV30ds8eOlRvLXprDMdRhG7JEt3h9MpKEtv0dJ3kmsupFNp/abWUnmAqMuvoSDIpldL3tr7etq4HTk4knMuXk+DOnGkon52dumKqo0dJ7svKbH/tAL2XxoIbG0v/G2IxyXJ1NYn0oUMk0zk5tkWKnZ3pdc+cqWvnNmWK6cP8IwXP0+cpdJ04eZI+z+Ji20b7AvT5RURQFFc/rSM01HJEurdX13nBWHQtpb4Aus4LpaWUQzx58qBetj0wmbUAk1kGgyGgVCuxMXMj3jzyJrLrswHQtK4rp1yJB+dSPqrNdHTQIT5zsltZadthRy8v87IbFkaHJDkOJc0l+Cn/J2zN34r9pfutRko5cIjxisFtSbdhTdIa+Dn79V/H8zwyajOwOXszvs7+2mqnBUuIIYYGNrzO4YYH3JVAShlNJ1tRBLjZ4eetcuDFFODtuYBKQiN97zwFPPsH4Geu+NzHh+Ru+XJqaxUTo4ucabUkLocO0Vhea9FbYziOhHbpUpLblBRKAaio0ImtILkFBaaFTiymKJ9IZL47grMzReKkUkpPqKuzXm0PkFhNnqwT3FmzDCOgzc0kt8eP0yJEcAeLQkHPoy+4sbF0maMjiVp+PqVDHDigKzhrs5ymY3CYf948WoTewaOdWyqM9s3NpZ2C06dJNm3tlSsMsoiLMyw+i4qynu+v33nBWHQLCw2/C+Xl9DwjDJNZCzCZZTAYxvA8j9+KfsObqW/it6Lf+i+fGzwXD859EFdMuQIS0RDbBWk0JDHGkiuclpXZNo9eLjeM5IaFoTHIEzs9GrCNP4MdhTvQ2mN9FJe7wh2rolbh77P/jrkhc/uLyADK291dvBtfpH+B34p/Q2evDVJjBjEnhoYfG7l1VQHzyoEbMyllwGsQQ9WKPYBHlwObp9HfLj3Avw4A/5dqQ+6uQkGHtleupNSEWbPoMgH96O2uXXT42dZDzxxHEbllyyh6m5KiO/zf1aXraStIbkaG+Wlejo506Lijw3Tjf2GQgFhMgltTY5vgOjhQXuwFF1CawqxZJIwC+sMlhN6v5nI95XISVXNtvjiOdvL0BVeI6vr40HudlUV5uMLwh4oK6/18hd64CQn0Hs+aRakKY9ESS+iVm5ND6y+0EbMlGg3QToy/P70ns2bpis9iY80eCTLAuPPCLbeMSk4yk1kLMJllMBiWyKrLwltH3sKXmV9CpSHBCHMLw/1z7scdM+6Aq3wEfzdaW83Lbnk5HV619JM9dSp6778XhxdHYnv5Lmw7sw25DblWn1bCSZDon4i/zvwrrp12LdwUug02z/M403gGW/O24ouML5BTn2N3SoEItAEc9XzbPpz6+tzekAn86Qzga4OXHQgFHlwBnOibgRDeDLyyC7gm26gbhiWE1ISVKyk1YcECw9QEIXp7+DClJqSmWi/k0Sc2loq3li0j8dIfWcvz9N3RT1FITycpMfVdEolIvJVK0wLp6akT3IYG87m6xgiP+fe/61IUQkJ00c+6Op3YCpJrLoLr5kay2dlpOT3Cw8O05IaFURQyPZ0i5qmpJIu2DFIQBH/WLHqvExMpEj9CnU4s0vP/7L13fBzluT1+ZrZppVXvvVvFkmzLli13sE03YFoA0xIIkECAwE0hyf3e+rsJudyLuUkglSQQMM2ADTbYYBvkKner99572V7n98ej2aKt6jLM8ef9zHp3dma2aOfMec9zHj2p8fbtfauq6H3zte1xeDhdeBQW0mvhfbnz6S92A4HMeoBAZgUIEOAL+lR9ePXcq3j1/KsY1NBJLlAaiEcLH8XTa55Gckjy/B+U0UgnKldk99QpG6mIiAC+9z3giSfQ7KfFgfoD2N+wH1+2fOk19gugTNs7c+7E94q+h6WRS8HYTbdqjVqUtJZgd8Vu7G/YjxGdDxXnbiBhJDByc5S/5QPkRmBVF3BPFUW2xbkRxi0M8FY+8LNtQNfEaWN9O/DSIWB11zR3HhVFyuXWrURus7Mdp7VVKiJ0J04Qwb182b3COhnJybTtW24h8mzva+WhVttUXJ7klpe7n5aXSIgguaIMUVFkUeAJbleXb7MM/LT4hg1kUygqImLFF0n29dkILk9yu9y84TExtqzokRHPqqVEQvuZ7M1NSqKLiEuXqOCMjybzJRFCKiXCPj4O/OlP1GTCnqzPJ8xm8rbyJPfCBVJ0W1t9b3vM+4snF5+5yhSeIwhk1gMEMitAgICpQGvU4s3yN/FS6UuoHawFQFPnd+beiefWPofV8asX+AgnMDYGvPYa8Jvf2IpuJBLg3nuBZ58Fli+HyqDC4WZSbPfX70ef2kteJQCZSIZ1ievw/VXfx/Yl2x2ivwCgbbQN++v34/Wy13Gx5+KMLAULTW5lJmB5D3B3FbXfTZ7EHdUS4H/XAb9eD2gmCrvvKwd+dRhI9GLN9ApeufzP/6SistWrHfNfASJyZ85QesBXX9FUsy/tb6OjyQt6552kDrsitwCRv7Y2G8HlSW5jo+v1PXU9i4sjgsuy4Ab6UaVtx+VANVJHgJxBKt5zCX5KfPVqsigUF5P3ky/S4gkur96eP08zFq6OLTWVtiWVUpX/wABdDHqydIjFdAxms28ed08Qi+nCoqCAPtOVK2mK316Vn09wHCnpfNvjS5foIqmx0beLDx5ffEEXH3MMgcx6gEBmBQgQMB1YOAsONR7CS6Uv4XDzYev96xPX47m1z+HWrFshYhdBRqPJBOzdC+zaRWotj6uuIlK7fTvAsrBwFlzsuWhVbc93n/e6aQYMkoOTcX/+/Xik8BGkhKY4PG40G3G68zTerXwXH9R84BNZdgcRIwIDBiZulsNlpwCpGcjrA+6qBu6oBjKGyVrQFQj8Yivw+nJaT24EfnQK+MnJmSUqOCE5mUjDpk1ERjMyHFUxk4mIyenT5L09fdq9cmmPoCBS27ZvB+6/nwifJ6hUrlVcDwSIA1AWA+zJpVE3adY6Wi9B7gCQ222k5cSIVLuwbzCMbXq/oIDel+BgIqijo/SaW1uJ1A4N0fHOlIi6Oga5nN678HBSo4ODibD299Mx9PT4ngrBt8Lls3GXLnWfKzsfGB62FZ+VlZGnub7etfXi5Eki53MMgcx6gEBmBQgQMFOU9ZZhV+ku7K7YbZ22Tw1JxQ+Lf4jvLP8OAmULeFKyx9mzRGrff992cs/IAJ55Bvj2tx2Uvx5lDz5r/Az76/fjUOMhaEzeT8oKiQJb07biiVVP4OrUqx2ivwCgV9WLzxo+wxtlb+BUxykYLNNnejJWBr1l+vFhswGJBcgZAG6vJs+sRgI8dz1wfMJxEqsE/usI8FAZwM7FmVUup8zbbduI3LpSb5VKUitPnCCCe+mSd9VNJqPvxbXXAvfdR/5Jb1PJFgsRSLs0Ba68DBe0zVYC22QnAEtNwKpuoDMIaA9xv9kwDRzIbe4AKbnx41PwKE8Gw9Bw5QFmGFKu09KIYEZF0fs8OEiWAz62yh05FolIgeYtC7m5pLC/8w4VnE2FVPO5sqtW0edbUEDbnM/osMlQq23tfSsrieQeODAvHmGBzHqAQGYFCBAwW+hR9uCVc6/g9+d/j2EtxecEy4Lx2MrH8NTqp5AYPPfxNT6howP43e/Iy8fnk4aEAI8+Cjz1lFPMjt6kx7G2Y9hfvx+f1H+CltEWr7tgwSI7MhuPLH8E9y+7H1EBUQ6Pmy1mXOy5iA+qP8A7Ve+gbWyK+aOTIBfJoTPr5j/f1g4iC7BkCMjpB84kAF0TdXMreoBdB4HNM3uJviE5mabjN250rd7yuaa8PeHIESoacpcOANA0e1QUeXm/9S0iuYGB9N0ZHiZP6sTSMjSIsyOV2KO9gD2iWrSJbVV1fkZKkbizGripAQiauBZRSoHaCOrAxo+aSEqQ4Nww1kC9C5I7QFYQhwsHqZR8natXkx95wwYqvmNZUm4ne3BdtSgWiWyV/ytXEqkMCCALRm2t43B3oZCURB5gi8Uxjo1hyIIBkKLrzSbCR4dlZZHloriYrAppaYuqW9dcQCCzHiCQWQECBMw2NEYN3ih7A7tKd6F+qB4ATZN/a+m38Nza57AqbtUCH+EEVCrg9deBl1+2+SBFIuCuu8iCsNrZ/8txHGoHa3Gg4QD21+/H8bbjPqURhPmFYfuS7fh+0fexOn61Q/QXAIxoR/B50+d4q/wtHGk54pMS7A4sWMjEMmhNU8jemgMwHAAO4CZe6o4a4MUvyJ4wb/D3J/V261aaCi4qsqm3HEffgYEBynwtLaVCp9pa36bHJ2BhgFOJpL5+kAN02qVV+RuIuN5ZTUTWartgGCKEUqmtxe+kfWrFZEdwILmxYjQEm2FmXFMVfwOQPeio4uYOAGkjgJj/morFRC43bLBl4WZl0XefJ7j2MWHuCG5uLpFbe5I7MmIjtlVV9J6WlTlfLPj50bBvdlFcTDaPhATaf2mprQGEp4sN/nji48mesH69zY8bH78wRWdzAIHMeoBAZgUIEDBXsHAWfNrwKV46/RK+bP3Sev/GpI14bu1zuHnJzYvDV2ux0FThrl2k1vFYt45I7Y4dRABcgCeh+xv240D9AZ/SDMSsGIWxhXh85eO4I+cOh+gvgAhzZX8l9tbuxe7K3agbrJuR4iphJJCIJDMiyLMGjorKfn0YuLqVrAr26FUAZdHkLzWIgJRR24hVAqLZOEOLxUR+POW1eoGZITvFnlzgwxygx85JE2gS4WZDKu4MWoPrIorhHxZNRWahobZlYKBzNqlGY8tOLSsjj3dNjVPUl0EENIRNENwEKaqT5KiJFqFOOg6DG0+11ARkDdkUXJ7sZg6TF9paaFZURMr2mjVEBmUyRwWXJ7l9LvzfIhGRyckE12wmJfzkSXpNp097bt4QFkazJD/+MflxjUa62Cwvp+eeO0dT/UND3j8omYzU+mXLiOQuX06vKzzc+3MXGQQy6wECmRUgQMB84FLPJewq3YW3K9+GyUIn3IywDPxwzQ/x7eXfRoDUh7Dy+cDly0Rq337bNuWZnAw8/TTwyCMeQ+LNFjNKO0utqm1Ff4VPu4xVxOKu3Lvw+MrHkROZ4xD9BQAqgwpHm4/i7cq38WnDpxg3zCwqwE/kBzDU8W1BwQFhOiBhlAhVewjQr3C/usQMJI45EtyUUZpaTxklH+m0ya5EQlaTqCiymURFOZLP0FCYDDp81XQEe/q+xEdh/egPsO0sWAfcWksK7DXNE40k/PyoscANNxCRKipyzLz1Ff39RG4//5y8v3V1pIBOgokla0J1vBTV2eGoSQtEdZAeNaZeaN34q0UWIHPIUcXNHQCyBgG5CUT6li+3KdvLl1PRV3e3o3p7/jwdpyvk51OBXWEhjfx8itA7dYoI7smTQIsL6w6fwHDXXcDtt9M27L2pPPkvL6dtXLxIfl5fkgj4Dm+FhfS6CgpIaZ7suV5EEMisBwhkVoAAAfOJrvEu/O7s7/CHC3/AqG4UABDqF4rHVz6OH6z+AeKD4hf2AHn09ACvvgr84Q+2CmaFggjt00+TR88L2kbb8GnDp9jfsB+Hmw77VPDlJ/LDhqQN+N6q7+HGzBudor84jkPjcCP21+/HO5Xv4ELPhRl3FAsQB8DEmaA3L2xBGQDqVKYn9TZ5jHJsW0OA9mDA5EXEF5spEsxKckcdSW+80m6q3RvS0oBt22BYX4yjKRz2jJ7E3tp9GNLa1MAweRh2BK3GnVUcth5qgLSl3Xs4f1QUeXm3baNp9YICshpMFSYT+X0/+ohIYWMjpRm4gIUB2kIZVOfHoDonAjUxYlTLVajWd0Jpcf0chiNrwmQlN3sQVNCZm0vZvRs3EsmMjqYEg8kxYQMDLjbO2BoT8CM2llTokhKaJWlpcY45k8lIMV6/nsbata5j1YaHqTjr0iV6b8rKqDhP78P3m2+aUFREn09+PlkwpvMZzTIEMusBApkVIEDAQkBlUOH1y69jV+kuNI00AaDp93vy7sFzxc9hReyKBT7CCWi1wJtvkq+2upruY1ng1lvJgrBhg0+ePLVBjaMtR62qbZfSe2QUAwapoal4IP8BPFz4MJKCk5zWMZqNONt1Fh/XfYw91XvQPNo81VfotE+FVAGdSedTQ4m5RqQG2NRCUWB5A8CoH9AWQgTXfrQHA0YvZFdkIWU32YW6mzIKJIwT2dWLgC/SyUKwLwsYtbueiIA/bo/ZgjvXP4qrcm5wSqxAUxPwj38ABw+SXcCb91YkIuK8fj2weTORqOzs6RUztbVR5uknn9C0visrgB04AF3RclSvTELNklBURzGoZodQpevACNz7rZNGHVXc3AEgZ1yG0KQlFJt21VVEUFNS6KLw4kXH4a6TWXKyjdzm5pLn9u23ieS6Q04OvXfr1tEyM9P13yPHkZpcUUFE+9QpIrxdXd4TFliWyHpODhFovpVvauq8tLHlIZBZDxDIrAABAhYSZosZ++v346XSl3Cs7Zj1/qtSrsJzxc/hpiU3ORVLLQg4jqZ5d+0CDh2y3b9yJZHau+7yWb3hOA5lfWXYX78fBxoOoLSz1KfnBUoDcW3atfhe0fdwVcpVELPOPt4x3Ri+av0K71e/j88aP7OmSkwXIkaEQEkgVEbVgmbc8lAYWRR1cbizksNNDbZGDmaGfKttwc5Elye7Bte2ZytYC9kD9GLAbPeVC9VS8dZDl4Cr2+zU3fR0W0LA2rX0/8lEamgI2LMH2LePouF88XlKpURoN22ibRcVEXGaaiFTTw/FYZWUAEePUlGWD+AA9KdFobowCTUZwagONqDa0IVqYzf6xO6tKTHKSQkLwyLk9poRedt9RNRXrSKSOj5Oqqk9wW1qcr3R2Fh6L1QqUlj5Bg8s69rvHBFhI7Z8IZifn/sXazbTvisr6QKgtJRsHF4uBACQ99pkIuvH+vXe158hBDLrAQKZFSBAwGLB+e7z2FW6C+9WvmudOl8SvgQ/XPNDPLT8IfhL/Bf4CCdQXU1K7T/+YWuHGRcH/OAHwOOPu+8o5Qb96n581vAZDjQcwKGmQxjXe/fEsgw1evj11l9jZ8FOJAQluFyvfawdhxoP4Z3Kd3Cy4+SMrQTMRLrpQkaA2UNiYZA3wODWagtuqyH11lWmrYWh4jJ7gtsQBlyKJZ+pUgqvwa2shawK7mwMiSZ/SIvXA1dfTeS2qIgSC+wxMkJFhh98QCTTl6YOAG0nP59UTz6VwVtzh8kYGiJvaUmJrT3tZMojEnnMkB3KS0PN8gRUJ/qhhh1Cta4D1cwgOuXuVXzu3+z+wzBEOJcvp9dSXEzFWSIR+dV5cnvpEpFvV4R1MpFNSyMLUF2ds5VAKiVCa6/eRjnG5LmETkf7r6ggFff8ebJy2Kcv8DhyhCwXcwyBzHqAQGYFCBCw2NAx1oHfnv0t/nThTxjTk/QWJg/D91d9H08WPYnYwNgFPsIJDAwAf/wj8MortvgiuRx46CHghz8kr90UYTAbcKL9hLUTGR9t5g2B0kBsSdmC7xZ+F9vSt8FP7KxGWTgLynrLcKDhAN6reg+V/ZUzJqUMGIgZsde2uzz5nmswHBCrYXF9rQUPlgHFXYDMjpsppcCBJWQh+DQT0Nq5BOLGgY1tNIUuNTvbGfRelF2GoyI0BxuDNAopmUVIXr4ZSetvhGxJrqPCOjZGBPOLL0jxr6113xJ3MkJDaUr+6qvJS7pqFRWx+QqlkojasWM0zp51bm3r50dEUaNxb5lQKDC+LBs1eTGoCdKjWt+JalMPqmXjWNFlwQfv+XAs/v6Uf7txIynSK1YQ6eQbE/CjstK9L1mhoDSF5GQi7hUVrovSMjIc1ducHN/tAmNjZH8oLydFtryc0hXmoZGDQGY9QCCzAgQIWKxQ6pX42+W/4eXSl62NCiSsBDvzd+LZ4mexLGbZAh/hBPR64N13yYJw+bLt/htvJAvC1q3TzrqsH6rHgfoDONBwAF+1fuVTsRcDBqkhqfhW7rfw0PKHkBWR5ZSQoDaocb77PD6s+RBHmo+gfrh+VjyyIbIQcOCsFyHuMF/kFhwgNzOIHeMgMwGN4YDRjpSmjlACwZ3VQFGXe3HWwgD9AURq3VkZdF6aQDEcEKtikMIFISUkBWkJBShacROKM6+2NdVQqyl+6tgxIrjnz3svKrNHTAzlI191FS1XrCCi6Au0Wppq58ntqVPORWVyOWXU+vsTGW5rc9/oIDISlsEBsA88SH8j3d1AczNd+PnSCUwkomSJ1auJsK9cSZ7YpiabenviBM2UuNqeTEYWBT7ei9//ZJoXEkJKOk9uXSnqiwACmfUAgcwKECBgscNsMWNf3T68dPolnOw4ab1/a+pWPLf2OVyfcf3i8dWWlBCp/eQT20kzP5+U2p07Pfv3vGBMN4Yvmr/AgYYD+LThU/Sr3UQhTYJMJENWRBaywrNgsphQPVCN+qF6l6qsmBFDIVHMikeWAYMweRiMZqPXOLF5I7cAwAH+RupMdm8FsLmdoqgmZ95OcZMYCHBNcnnyq/FgqU4zBqI4KAfFS7ageOWtWBZXCCkrIX/p6dPAV1+RgutKPfWG0FAihQkJQGQkxcuZTLQdvd79Uq8nJVKpJJKt1/uuGntCWhqpo3I5Tdt3dhLRdJPG4ITwcEqB2LyZSGheHlBfD/zmN6Rueyq6E4lIuQ0MpP21t9usQjzEYrJB2FsT4hc+ZUUgsx4gkFkBAgRcSTjTeQYvlb6EPdV7rOQnOyIbzxY/iwcKHnCKslowNDQA//d/wN/+Zju5RkUBTzwBfP/7vvn2PMDCWXCp5xIONh7EZ42f4VTHqSlbBsL8wrAqbhVWxK7A8pjlWBa9DJnhmRCzYnAch7qhOhxsOIh3q97F+Z7z1nzg6ULMihEuC4fKqILapPa4LgvWp85qswYOiFIBRT3AunYgv59G8qhXK62vm8egvyPJrY2gtr/Vkc5ta2UmYGU3UNwJrO2kZcLM4oXnD2IxqaIikefmCJOfk5FByrLZTBae3l7XHlVXkMvp+cXFtK0vv3QseAsLI3XWVQYt3yJXJiPyPuZiViE52dGakJ8/7+1zBTLrAQKZFSBAwJWI1tFW/PbMb/Hni3+G0kAnqAj/CDyx6gk8UfQEohXRC3yEExgZAf78Z+C3v7VFEslkwH33kVqbnz+tzY7pxlDWV4bLvZdR1luG8z3nUT1QPWXCKWbFWBGzAg8tewh35t7p9n3jI8D21+/Hnpo9aBxunNZx20MuliNEFoJh3bDXwjQRI5pxnu50IDcABX1AQT+Q3zdBcvuA8FnsFDwmA87FA6cTgNKJMezCGRA/DhR3MSjuk6B42B8rxwMgF8upGIpvh6tUTs2WwEMsJvUxN5c8pLm59H8/PyqiksloOfl2ayslAJw8SdaE7m7nbaekUKOF0VFSQifDXTIBQPtPTSU/rFpNJHd42DebAsvSsdorvikpwLXXkrWA9+O6atcL0DGzLJHbydRQoSDifPgw0NFBqvccQyCzHiCQWQECBFzJGNeP47WLr+H/zvwf2sbaAABSkRQGswEXH7u4ePJqjUaqYN+1i6aKeWzbRr7a66/3WITSp+rD8fbjKGktwbH2Y6joq3CpxAZKA1EQXYDEoEQYLUa0jrairK/MZ5Ib6heKGzJuwMMrHsam5E3OOaoT4CPAPqz5EAcaDjg0E5guAqWBCJIGYUA7AIPZ81Q6A2ZBExVilDZim98P5PVTHJX/LETzcgAaw2zE9nQiUB7tGBcGUETYclMkisMKUJx7LYqLbkNaaBqY6moilnxqgauYKT5WyhMCAylpgC8wKyryPKPAcdTsgPfclpSQR3Uy4uPJ+qBUErl1RRSlUlJ13R1jYCDFdjEMrTc87FtTBB4iEXlxH3uMXmN3t2NcWFub6+fJZESk7Y+rqorI/xxDILMeIJBZAQIEfB1gspjwUc1H+N/T/4szXWes969LXIcni57Enbl3Qipa+C4+4DjyQO7aBXz4oU2RysoipfbBBwF/f3SNd6GkrQTH2o6hpK0EtYPOGaHJwclYFrMMy6OXk00gZhlSQlKc/MNKvRJHW47is8bP8FnjZ2gfc6GOuQALFlkRWbgv/z7szN+J1NBUt+vyEWDvV7+PY23HZq2bmJgDzHCehncAR8VVHAP3ngDOw2OzBIYDMoaJ2NqruOkjU+g85gZqCXAhzo7gJgC9gc7rRRjEKBanoDh+Ddauug1FudcgsK3HRi5LSlw3LVAoyCvrzY8bHk6pCXyB2cqVHls8o6uLsm6PH6djqKx0cdAR5OXVaEjlnKzSRkQQAZZIaKajpcW9khsSQsdjNJKiqvZsZ7FCIqE0hbVryYubmmrLtuUJbkOD6+cKObMLD4HMChAg4OuGUx2n8Nuzv8We6j1WRTIqIAqPFT6Gx1c97jaTdd7R2gr89rfg/vJntLJKlKQAxzKlKMn1RzMz6rAqAwb50fnYnLwZm5I3YVPyJlsF/BTAcRxqB2utXtuSthKvKiiPAEkANqdsxiMrHsF16dchQOq64tvCWXC55xI+q9qH96rfR8Vo3fyqqBxlzVo8kds52Ke7fclMpNraq7j5fUCccvqHxwHoCLYR29IE4GKsc2MIhgPy9MEoDsxBcebVKF5zB7JNIWCPHfesnkZEkOo5Ouo+rYBHfDwpt5s3E8Fdvtx9oSOfdXvsGBHcCxecLQNBQeSdNRiI3E5+PDaW1NTYWFKYe3tJHXX1OniEhNgsByqVezJsD5alfaxcSeQ9N5cuRuvqbAS3ro5UYYXC+/ZmCIHMeoBAZgUIEPB1RY+yB3+++Gf84fwf0KPqAUDeyx3ZO/Bk0ZO4KuUqp8iq+QDHcagfqreqrsdaS9ChdFTLWAtQaAjD5twbsWn1XdiQtAFh8qk1Y/AFaoMaJW0l+KzhMxxsOjglL2yKOBJ3sHl4SJ2OvD4OTF8/DP09aNB1oYYZQm2QATURQFUkFTvpvURXfZ3AcoDMzMAIDiYP+bQ311G27cZ2oLCH8m2nC70IuBzjaE9oC3FeL9jAYjUXh7XRK1FccBPWJKxB2LlKG7l11SksNpYUz/Fxsi148qyyrK1FL9+FKy/PdYc8lYo8tzy5LS11Thfw96f9m82k9E4m15GRlE1bXEzNS7RaiuuqrKThysfLQ6Ege4I3wm6PoCB6PZs2kUp9zTV03xxDILMeIJBZAQIEfN1hNBuxt3YvXjn3CkraSqz350bm4smiJ/FAwQMIlLmYs50lWDgLqvqrbOS17Rj61I4+RgkrQVHcKmzSx2Lz53VYd7AKQfxM/caN5Ku95ZbZr6C2WEgt6+sD+vrQ2FGGg30ncFBdjqNMK7SsHWnxoD4yFlIgdWIAbqy/EguDJeYQpIojIJHK0cmqUW3sgtrivkXqVBAgDgAHDhqTh2imBQIDIMQgQqjaDCMDdAUBlknvk9xIqQU8uV3bAQTM0IPbo6DEBJ7gnotzHRG2RCNHsV8milM2oHjJFuR3myA+doJIZnm58xPi4ynui+Ns0Vqe6JNIRGkD69fTVD5PcCWTrnD0esrW5W0JJ086JyJIJERaAWrZO9kaERZGfzObN9NITCSCXlVlI7gVFaSozgZeeon+PucYApn1AIHMChAg4JuEyv5KvHL2Ffyj/B9QG8lPFygNxIPLHsSTRU8iJzJnxvswW8wo6ytDSWsJStpKcLz9OIa1jidOmUiGtYlrsSlpEzanbEZxQrFju97z58lX+957tmKTtDTg6aeBhx+mAhh3MJmo6nuCoLoc/f20HBhwq7JpxcAnS4D3lwInklx7NN1BzIiREpSEazKuwzXp12Bp1FKkhaZBzJJMOaYbw0e1H+HtirdxuPnwrMdwsWARExgDMSNGj6pnVhpCzAWWDYgg1pvRHAaMTEowEJtJrd3YTgR3Q/vMUxRMLFAZ5ZicUB/hvJ6/kUGRIYKKy1I2oBgJiDlXQwTz4kXnafq4OOq+FRREJLG62nXhmcMLFDsS3FWraCrfnuCazUSmeeX22DH6ztqDtwOIxbTPycpucDCwYYON3BYWErnu67ORW/vhzmfLsrQPo9GRuAue2YWHQGYFCBDwTcSYbgyvl72OV8694tAydkvqFjxZ9CRuybrFSry8wWg24kLPBWvSwIn2ExjXO6pJAZIArEtcZ/W8ro5fDZnYhxaYXV3A735HbXNHRui+oCAitFFRjsSUH0NDUwq3tzBAW0oIalIDURMvRU04hxqFFjXiUYxg5hlUIkaEgugCfGvptxDiF4JDTYfwacOnDl7dlbErcW/evbgt+zZ0q7rxaf2n+KjuI5eFb9MBCxZxQXGQi+RoH2/3WqC2EGkJfpwIcSoWQSojegOAXhen5Nx+YFObjeAmzkL27JAcOBtvI7dnEoAxF5bXZLUExeIUrI0qRLEsA8vbdJAdO0XtXCenDkRHk4/2448pW7mpifyxg4OeD0Yspi5fGzaQbYAnuOKJv0WOowYJ9uTWVfJAdDR5ZAcGnJsxKBREPjdtInJbVGSzQFgslLBQUQEcOAB89pnrODF7nDpFZHyOIZBZDxDIrAABAr7JsHAWHGk+glfOvYJP6j+xNmJICErA91Z+D4+ufNSp0Epn0uFs11kreT3VcQoao+PUdrAsGBuSNljJa2FsoduYK5+gVgNvvAG8/DKdzL2BZclLGB1tHfrocDREsKgJ0qNGOo4aDKBW14m6sWZoTa5JKwMGqaGpyInIoRFJy7TQNNQM1li9tuV9LqaivSAxMBHfWfEd3F9wPzLDM12uozKocLL9JD5t+BQf13+M1tFWr9tlJrwQnsioiBEhPigefqwf2sfboTN7tjpIWAnMFvO8NnJgwSDCIEaY0gy1yIKOEOd1kkdttoSNbUD24Mxr3iwMeZxL7dTbyijnRAmpCSjUBKM4IAvF0jQUK4OQdKYWTOkZ55isgAAipytWUCyXRkMRdRcv0sWXJ0gkzgQ3J8dGcNvbbcT2+HGgpsZ5G2FhdAxDQ84dwuRyW4rB5s1Ewu0L2NraqLvYn/5EHl+A9h0YaIsFEzyzCwuBzAoQIEAAoW20DX+88Ef8+eKfMaghBUkqkuK27NuwLmEdBjQDONZ+DGc6zzgpe+HycGvKwObkzSiILoCInYMOQRYLqUVvv00n+ehoUmjtSOt4qD9qLf2oGa5HzWANjYEaNI80u208IBVJkRWeheyIbAfSuiR8iU9d1brGu3Co6RAONh7E502fY0zvoouSCzBgsCR8Ce5Zeg92FuxEZlimx6K8Ee0IStpKcKD+APY37Eevyk3gvR0kjARmzjMRFTNiJAYnQsbK0DreCp3JM7mVsTKYObPHlr9zoe76W0SIVDPgTCZ0Bjv7biPVZEfgCe7y3pnHggHAuAw4H+doTxh0EWYRq2ZRbI6leDBtOFbXq+FXet65qxbLUkva9evJO+vvb8uovXTJNgvhDnyU1saNRD5XrQKys4lk9vfT1D9PcC9fdrZFBAYSAR0bsxFUHjKZLZ2Bb5nr70/rvf46EVv7C8rPP6cisDmGQGY9QCCzAgQIEOCIfnU//vvEf2N35W5rCsJkxChirKrr5uTNyInMccp3nUtwHIc+dR9qBmxklSeu3Ur31dtBsiAHssrfTg1JnRH55jgOpztP453Kd/Bu5bvo1/RPazv+Yn9sTNqI76z4Dm7IvAFBMs/npV5VL75s+RKf1H2CQ02HMKzzXNTDgoVULIXRbPTYUUzCSpAUlASpSIqWsRbv5FYkg9nimdyyDAuO42aV4DIA5CYGUiMHpQQwT3LGKPTUDndTGxHc1V2AfGZdiQFQLWBzqGNyQlk0YHLxFbq1OwjbmSW40ZCCuAEdTeG7sgYkJtoSELKyyB5w4YKN4LpqM2sPiYQI7YYNjgRXrSYrAE9uz551LhqTy22NHCa3vJVIyIrAk9viYipMe/llIsptbfT8OYZAZj1AILMCBAj4pmNIM4QT7SesSQOXei9Z7QauECQNwqOFj+KJ1U8gLTRtXo6xR9mDs11nca77HM52ncWFngtORWX2iFXEWgmrvdoaq4idtTgyjuNQ1leGdyrfwTuV71g7sAHUSezO3Dtxb969yI7IxuHmwzjYdBCHGg9NqVtYnCIO2zO34/5l96M4odirVaN1tBVHmo/g47qPcbT1KFQGlcf1pawUMrEMaoPao3IrZaVIDkmGlJGi2YMtg4dMJIOFs3gtPJuzNr3cxJh0fSUyU9btVa3AtmZgfQcQMjthEtBIKOuWJ7gnE52LBld2A9ubRdiOLBT6p4M1mckmUF3tWj0tLrYR3ORkshCcP08RYpcvOycdTIZUSpaEDRsoA3fVKtoOT5KPHydiOrnoSyola4JG47wPkYiKyPhisptvFnJmFxoCmRUgQMA3DX2qPoeYrIr+Cqd1MsIyrEkDm5I3QSFV4K+X/opXz71qJW0MGNyYeSOeLHoS12VcN2vK7JhuDOe7zzuQ1y5ll9N6LMMiNSTVSWXNjshGiF/IrByLK9QP1ePtirfxTtU7DgVaCqkCO7J34J6l9+Ca9GtcdlwzW8y40HPB2rThTOcZn5VKlmGRHZ6Nu3Lvwt15dyM7ItsjMec4DnVDdTjcdBh76/biRPsJr4VfAZIASFkpxgxjHi9oZCIZUoJTIBVJ0TTS5DUOTCaSgQPnsUEFAwZiVjy/yQscEKgHkseomcP6dqCgH0gcA+KVM8u95UC5t/uXAAeWUJGZve82WgXcVA9srweuGQiEIi2bSOHYGDUjmEwwWZYaMvDkdt06auxw/rwjwZ1sG5gMmcyR4C5fTqSVb+Zw4oSzj1ckInJrMDgrxGfO0HbmGAKZ9QCBzAoQIODrjs7xTirWmiCwdUN1TuvkRORgc/JmbE7ZjI1JGxEfFO9yW2aLGZ82fIpXzr2CQ02HrPenh6bjiaIn8J3l30GoPNTnY9OZdLjcexnnus7hbPdZnOs65/L4WIbF0silKIorwur41SiKL0JuZC78xG46Lc0y2sfa8W7lu3i78m1c6r1kvV8mkuGmJTfhnqX34KYlNznGi/mAIc0Qvmj+AgcbD+Jg40Gn/F1PkIlkWB2/Gvfn349bs29FtCLa4/oWzoKy3jIcbj6MD2s/xLmucx5VUQYMQvxCIGJFGNYMe1Ru/UR+SA1JhUQkQdNwE9Qmz21U/UR+4MB5JdcLUXjGg+HIg5s6SuQ2aWIkjk8sx4Aote8FZ30BwGeZRG4PpQMquzAPqYnU4u31wE0NQNoIqAtZQgIR1q4u8sJORlISkVKe4C5dSpm3589TysKxY9SS1ltbW5mMUhM2bqQM3NBQ6j52YiJrt8v5YhJhYVT8VVdH/t05hkBmPUAgswIECLjSYeEsUBlUGNWNYlQ3ihHtCJpHmnGs/RhKWkvQMtrisD4DBgXRBVbP68bkjdNqDVs/VI/fn/s9/nb5b9aCJ7lYjp35O/Fk0ZNYEbvCYX2zxYyawRpSXCfIa3lfubXlrj3SQtNsxDWuCIWxhW7bx84V+lR92FO9B29Xvo2THSet94sYEa5Jvwb35t2LW7NuRbBf8KzsjyebvGpb2lk6JZUy1C8U21K34f6C+7E1bavX98toNuJc9zl80fQF3q9+H9UD1R5VYjEjRrh/OCycBUOaIY8E01/ij7QQytVtHG6EyuhZLZSJZGAZFnqT3nOh2kRcnKvvzEwg5hjAwsHEYkpxCDITkGBHbu0Jb+IY4G+kzTGcbQkABhY4Fw8cTgO+SAPaJ13/LRkArmsCrmsEVncDEsvENiIjwYSEgFFrwHR10X1222YCA8GsWQOsWw9m/Xowq9eACQgA09YO5sIFG8EtL3dONXB6cTIqTtuwgawJej3Q0EDWhIYG23oNDZSXO8cQyKwHCGRWgAABCw2O46A2qq1k1H6MaEcc79M73z+m9zwlLGJEKIwttJLXDUkbpqSeeoPaoMZbFW/hlXOvOERUFcYWYkPiBrAsi4s9F3Gh+4K1UYM9ogKirKR1dfxqrIpbhQh/F0n284BR3Sg+rPkQb1e+jaMtR63vKwMGm5I34Z68e3Bn7p3zcnwaowalnaVWRb20s9RrIZY9koKTcMuSW3Bf/n0oii/yWuCmNWpxquMU9tfvx57qPeic1GJ4MvxEfogMiITWpMWQZsgjEQ6QBCA9NB0iRoSG4Qav5FbKSiFhJdBb9B6Jq4gRQcSIYLC4ty9MB2KwkJoALWMBN+ltE1koIcEgco7ruhLAgAHDMLTkAIbjwFg4WnLO5NthCYBhRYBYDAYMhlkdmp9sQGqEQGYXFAKZFSBAwEzBcRx0Jh2RTN2IS1JqJaB614/NhtIkE8kQKg9FiF8IogOirU0K1iWum9N2tQAlIJztPIsPaj7AoaZDblMQFFIFVsWtwuo4sgqsjl+NxKDEWSvKmg7UBjU+qf8Eb1e+jYONBx18nUVxRbg37158a+m33Fov5gt6kx5nu85aye2J9hNeC7F4iBgR8qPz8a3cb+GupXchPTTd63s+rh9HSWsJ3q54G581foZR/ajH9YOkQQjxC4HGqMGQ1jO5DZQGQmlQoii2CI0jjRjReY6iEjNi+In9YDAbPBJXlmEhZsQwWUyzak1gAMgsIpg4s1NigdQEpI4AsSogwEBdxrqDgM4gQD9BeDk4LgHn+65EYgwAjZm/Q/rOJ+d8PwKZ9QCBzAoQIAAgouBEPj0R00mPeSps8RViVoxQPyKj/AiVhyJEFuJwn/X+SffNl39UqVfiYs9FhwIt+0p+HizDQsSIrFPlLFjsyN6BH6z+Aa5KuWpBCazepMfBxoN4p+odfFz3sUPTh6WRS3Fv3r24J+8epIelL9gxesPkzmvH245DaVB6fyIoAmxd4jrcl38ftmdt90lpHtQMYn/9fvzt0t9wpss5a3gywvzCECQLgtKg9JrgECAJQGZYJvwl/mgaafLqHWbBwl/qD5PZ5LHhAwMGEpEEFs4y69YECVjAYoFxUt0jawFW9FIU2KpuoKAPyBryvZjMnuSaGEpGOLAEOJAJVE+yRSePANc3kiVhfTsgtcB6CeFAlKUS6P0kUBs00EgBtQTWpTpYDu2SNKgzkqFJjoUmJhwaGKE1aqExqKEZ7YdmqA/asUFolSPQGjXQiDloxUBnMNB83WdILb5+Zm+mDxDIrAcIZFaAgG8ODGYDDjUewnvV7+HN8jeRE5FjJaZTmb51B5ZhbWTTz5lserxfHgq5WL6gBM8VDGYDyvvKHQq0XHkrGTDIjsh2sAsURBeAZVjsrd2L3537HY61HbOunxuZiyeLnsQDBQ/MuWrMw2Qx4cuWL/FO5Tv4sPZDjOpGrY+lhabhnqX34N78e5EXlTcvxzPbMFvMuNx72ZpSUdJa4lVN5RHhH4Fr067FAwUPYHPKZp8aRbSNtuEvF/+CPdV7UD9U71EJZcAg0j8SCpkCY9oxDOk8k1u5WI70sHSE+YWhfbzdp85nCokCHDhoTVqPthsJKyF/rhcyPlWwYCCyAEbWmUZJzNSdLL+PosEK+uh2wrjNomtmKN5LzZNMnnTa3W4LpuYN5dFAcxhgtiPSIgsQrgGC9IDMTKqw/XNdZeDOBmqfqEFWZPbcbNwOApn1AIHMChDw9YaFs+BY2zHsrtiNPdV7PE5nMmAQ7Bc8NRJqd79Cqlh0ZHQqsHAW1A/VOxRoXe697FJ1TgpOcijQWhm30mvAf0VfBV459wreLH/T6p0NlAbioWUP4YmiJ5ATmTMnr+l0x2m8Xfk23q9+H/1qW0V4XGAc7l56N+7JuwdFcUVX9GfnChbOgsr+SpS0lqCkrQRftnzptakCQH8HaaFp2JG1A/fm34sVsSu8xq5xHIfj7cfxx/N/xBfNX2BAM+BxfZZhYeEsyAzNxIhuBIPaQY/rS1kp0kPTEa2IRq+qFw1DDTDDs9QZIAkAy7DQGrUemzmIWTHEjBh6s37WO5YBAGMBODdvH2MBRBypp+bZSbbzCrEZCDBScVqAgW7zy8n3+RsnbssCERASiYCgcPjLgxEACQLGNAj4ogRZFd2QRcbO+XELZNYDBDIrQMDXDxzH4VLvJeyu2I13Kt9xyCiNVcTi7qV3Y2PyRoTJwxyIaaA0cG5asC5CcByHzvFOq03gXPc5nO8+j3G9cwh7mDzMQXEtiivyGgPlCWO6Mbxe9jpeOfcK6odsbTG3pm7Fk0VP4uasm61V69MB//nzzQw6xjusj4XLw63NDDYkbfjGfN4AvS+1g7UoaSvBV61f4UjzEa8kEiAlc3nMctyz9B7cnns7UkJSvD5HZVDh9cuvY3fFbpzrPuc1lYFlWMQExEAhVWBMP4Z+db9HYiliRMgIy0B8UDyGNEOoGajxWgQmF8khEUugM+l8yrtdqEgwgAqupGZAbgQCDUCoFgjXAgqDa8LpbwSG5UBtBKm2jeGO24tSUTLCLXXADY303FnDnj3AHXfM4gZdQyCzHiCQWQECvj7gw+x3V+52IEnBsmDcmXsndubvxObkzd8oAsNjWDuMc13nHMhrr6rXaT1/iT8KYwsdCrRSQ1LnRLW0cBYcaT6CV869gk/qP7FODScGJeJ7q76H7xZ+d0qRYbWDtdZmBvaff6A0ELfl3IZ7lt6DbWnbvHbR+qaA4zg0jTShpLUER1uO+qSoAjSdvyl5E+4vuB/XZ1zvNRmD4zhc7r2MP1/8Mw7UH0D7eLvXfTBgEKOIQbA0GOPGcfQoezySWxYsEoMSER0YDaVOiebR5lm3EcwVJBwLuZGDyMhBJwa0MtfriSw2UhumBcI0tPQzAZjwx1omCsk0EqAjiEZPoKPFgLVQPm6ckho3+Juci9EsLorW7LfP33ckDeiK+x/EPfpPc/smQSCzHiGQWQECrmx0K7vxbuW72F25G+e7z1vv9xP74eYlN2Nn/k7ckHEDZGI3Z4ivIXQmHS50X3Ao0GoaaXJaT8SIUBBd4NSIYCaq6HTRNtqGP5z/A/5y6S8Y1JBaKBVJcVfuXfjB6h9gTfwal4S6dbTV2sygrK/Mer+f2A/bl2zHvXn34oaMG3zygAqgz6GkrQSHGg/hcPNh9GtcBPVPQowiBjdk3ID7C+7H+sT1Xv/WhjRD+KTuE7xR/gZOtp/0OVZLxsogYqmgcF67hAnwiMbo/0L6934+5/sRyKwHCGRWgIArDyPaEXxQ8wF2V+zGV61fWRUbPsx+Z95O3Jp9q1cP59cFZosZF3su4nDzYRxpOYKTHSddFrRlhmU62AWWxyxfdCRPZ9Lhvar38Mq5V3C266z1/sLYQvyg6Ae4e+nd6FJ24bPGz/BO5Ts43Xnauo6YFePa9Gtxb969uCXrlm/M5z+X6BrvQklrCT6p/wSHWw5bLzTcgQGDxOBErI5bjezIbIADelQ96Ff3Y1AziFHdKMb149ZcZX46fy68qvOGiUNnLaRcYra9rxwgN5FVIExLGbcqKdCvAIb93PhxOVo3VkmRYXFKGuEaYMgfqI4EqiKB5lDH5/sbqK1vQR+Q1wco7Jo+sG6yZ2/+j3cQuOPuWX7RzhDIrAcIZFaAgCsDGqMG++v3Y3fFbnza8KmDMrMucR125u3EXUvvmlYnqysNvPfxSMsRHGk5gq9av3KozAeA6IBoFCcUW8nrqrhVs9ooYT5wruscXjn3Ct6pfMc6ZcwXDvFgwOCqlKtwT949uCPnDoT7h7vbnAAXMFvMGNePY0w/hjHdmOelfgw9yh60jbahT9UHrdm3jNv5gpSVQi6Rw8KZoTZovPpdg4xiJOkkkOst6JYZ0BXAeSSiDAcE6ohMqqWAXgy33cJEZpr+NzOATjr91+QOErDIUMmwqdGIpV0miDigKYz8shXRQJ/C9fPkRmBpPyUq5PcBKaPUZvdEMvBpJjBid20rsgAb2ida7NZTGoPLl/ub3wBPPTX7L3ISBDLrAQKZFSBg8cJoNuJw82HsrtyNvbV7oTLYugblR+VjZ/5O3JN3j08FKVc6Osc7caT5iJXAdiu7HR4PlgXj6tSrsTV1K7ambkV2RPYVW52vNWpxsuMkvmj6Al80f4FLvZfcrntv3r3YnLwZq+NXIy8q7xvlhzVZTEREvZFQOzI6+T77v6n5AAsWUQFRKIgpwOq41YgLjEOEfwQi/SMR4R+BIL8gyEQy+IlkGBhsx+c1H2N/80Ec7jsDI+wSCTh4bjvLkR80WkURVe0hgNYLqQxTAXkDQJABaA8m5dLsyV7PUUGWnxHQTkRguTsmBoAfI4WIFUFj1sEyB0p0qFmKom7gxkoDlvdSy9yqaKAiikhuVRQdpytEqYjghmtI9a2NoOgve6QNE7HdXg9saqP4LwDAvn3ALbfM+uuZDIHMeoBAZgUIWFzgo5R2V+zGe9XvOUxrJgcnY2f+Ttybdy/yo/MX8CjnHsPaYXzZ8qWVvNoXNAHU7WtD0gYir2lbURhbuCBe19mAhbOgrLcMXzQTeT3RfsLJJpEflY8tqVsQIgvBiY4TONJyxGk7fmI/LI9Zbi1eK4orQmZ4ptdYqYWGxqhBv7rfaQxphtyS0DHdmMvWwPMBFiz8xH6QiWW0FMkgFUkhZsXgwGFcP45R3Sg0Ro13+wAHiMBAzAEsx4DhOIDjrFP39s82s6R0mlk4kkZ+JS/k1rrk1/N2refq0K+k60OOCGewloh6sA6wiAC1iBomqGTAuAQw+MH167IAEiNtxygBYE/s9UCiEkgcB3at+X9Y/cR/zPnLEcisBwhkVoCAhQfHcajor7BGadl3k4r0j8TdS+/GzvydKE4ovmLVRm/QGDU40X7Cqr5e7LnoQARYhsWquFXYlroNW9O2Yl3iunnr+DUXaB9rtyqvR1qOOHkx4wLjcE3aNdiWtg3b0rYhRhHj8HiPsgdnus5Y83DPd593sloApFiviltltVsUxRchPjB+Tr9HZosZQ9oh9Kn6XJLUfo3tdp+qb1ZIKWPHRq5o/6mAKw5yPaD55dx/5wQy6wECmRUgYOHQMtKCtyvfxu6K3agaqLLer5AqcHvO7diZtxNb07ZesYqjJxjNRpzrPmclr6c7TztlX+ZG5lptA5tTNiPEL2RhDnYWMKYbw5etX1oJbMNwg8PjCqkCV6VchW2p23BN+jXIiciZEuG0cBY0Djc6xI9d6r3kshAuVhFrVW5Xx6/GqrhVCJOHudgqgeM4qAwqIp9q1wS1T9WHbmU3BtQDGNG7b8whQMDXDTIdoPuVQGYXFAKZFSBgftGn6sN7Ve/h7cq3HSrRpSIpbsq8CTvzd+KmzJsWXZX9TMFxHCr7K622gZLWEigNSod1EoMSsTVtK7albsOW1C2IDZz7rjpzBaPZiNLOUqt14GzXWYfCLREjwur41Vb1dU3CGkhFs1spYzQbUTVQZe1odq77HCr7K2HmnDtHRfpHItI/0horpTVpMaYbw7h+3Gt7VAECHGDPombTyjBftgcOgGUivYAfdvvhGMAyseQY4M1PWNx30XM3ttnAVPja10/+ECBAwIJjXD+Oj2o+wu7K3TjcfNhKDBgw2JK6BTvzd+L2nNuvaOXRFVpHW61xWUdbjjq0UgWos9aW1C1W9TUjLOOKtVFwHIeawRqr8lrSVuJUXLQkfImVvF6dcjWC/YJnZd9mixmj2lE0DDegeqAaTcNNaB9vR4+qxxoHpTKooDVpwTAMGI5xmoof0Az41DBAwBWEyeTPlc/W3eMuIDYCQXpAYqZiL5U7r+nEfayZPKq3VVPL2oZQShqwiJzXtYfURIVYHIAxv4miLcb1ugxHXcAkZkAlmfC2zhQMABGsWRAMBySMA5tbgZvrgA0dFPNlxb1zH8s1VQhkVoAAAbMCnUmHTxs+xe6K3dhfv9+hG8/q+NXYmbcT31r6rStafZyMAfUAjrYctaqvzSPNDo/7S/yxMWmjtWhreczyRV+c5Am9ql4cbj6ML5q/wOHmw04JCxH+EdiWts1KYJOCk3zettaoRfNIMy70XMDFnouoH6pHx3gHBjWDUOqV0Jv1MFlM3jck4JsLT+R0GteMJgkwPJkseiDMPGn9KNe2LmsB/PWAZCKTViUBuEmJCQYx0GMnPPKRYHIjoBUDSpktG5ZjqJDL/nhkJmpva2Jp3ZmqtxwDdAQDby6jAVCCQ34fcFMD8HheCmI8b2LeIZBZAQIETBtmixlftn6J3RW78UHNBxjXj1sfywrPwn359+He/HuREZaxgEc5e1AZVDjWdsyqvpb3lTs8LmJEWJOwxlq0VZxQPOtT6fMJtUGNY23HrOS1or/C4XE/sR82Jm20ktdlMcucyLpSr0TDcAMudF3Apb5LaBhqQJeyC0PaIaj0KujNepc2gOnAviiKv81N/BMwS+Acb/MCImOZEPgmpqvZiQhXe1417kckjZ+u5mBrk4rJt+2mti2w25AvCQZzOdkxlW0zRHA1U+ymzTH0Xo27qvec/BoZQC+hYb8ObxewTP4QpgmdBDiXQKOd/QqvzXyTswqBzAoQIGBK4DgOZ7vOYnfFbrxb9S761H3WxxKCEnBv3r24N+9eLI9ZfsVOofMwmA0o7Sy1Fm2d6TrjpA4WRBdYbQObkjchUBa4QEc7c5gtZlzouYAvmr7A4ZbDONVxyqFIjQGDFbErsC11G9bEr0GYPAyV/ZUo6yvDpw2fokfZgyHdENQGNfRm/bz7Tu1J6zeawLp76RPkk0+r4oCpd69iHG/zhJTfjjftXDmXgRxX9s+Nb/DlNdpdLMwFDCmJc7Tl6UMgswIECPAJNQM12F2xG7srdztMp4fJw3BX7l3Ymb8TG5I2XNHT6Hz+KW8bONZ2DBqjxmGd1JBUq21gS+qWK74DWdNwk7Vo60jzEYzpxxwel4qkkIlk4MDBaDbicu9lXOy5OKN9CrFScwx3hMeO4Lh710UWQGqmqWuZ2fG2zDTxfxe3J6/r6nkSuyIj/jA93baKj25u61igJAU4ngy0hgBGkYfXzlHu6vJeYFMrNQwIMAEmhnytpQk0BgMcn7O0H1jXAaztoLzbsmjgXDwtvXX6kpqAGCUQogPGZUBvICmcnsBYaP0wDRVhjcuAQfkk362b1zdfZJ4bHfO+0jxDSDMQIECAW3SMdeCdynewu3I3Lvdett7vL/HHjuwduDfvXlybfu0VO5XOcRyaRpqstoEvW77EkHbIYZ1I/0hsTdtqVV9TQ1MX6GinD5PFhF5VL6r6qnCi/QSOth5F40gjhjXDMHGz50MVSOr0IDGS59Hf5EgO/UyA3ETeSTn/+AwJpbfbotn82MRiQCoF5HJAoQACA4GAAEAmo/vFYoDlJV0TYDQCWi2gVAIjI8DgIGAweN6HHXoUwF9WAO/nAjWRgMmTXMcBCWPA9Y3At6qoyMnPBJTFAPuygI+zgItxjk9ZMgjcUgfcWges6QDqIoGvUoBDabRUeVGdJRyLNCYMyZIIaKUs6o296DMMe31dCQjCSnM0wnQMRs0qnJENolvm5X3hqHgtQg0YWSLpnjqiMRz5YqUmQCcG9B7WfT76Tvzqe+97Pe6ZQojm8gCBzAoQ4BmDmkHsqd6D3RW7cbz9uPV+MSvG9RnXY2feTtySdQsCpAEetrJ40avqdWgT2z7W7vC4QqrA5uTNVvU1LypvUavN47pxHGs7hkNNh1A7VIvu8W7yoxpUQtHU1wwMN0F652AEGGgpNwHiye4QsZgIKE9Kg4OB0FAgIgKIjgZiYoC4OCAoiOREjQYYGwN6eoDOTqC9nUZzs8vXNVdoCAP+WAjszQZawib8o27AWIDkUWBLC3BNM5A9CHSHsDiSKUZJMofL4UbqRDYBf9YPGcGpSInIQExANExaNfrGe9Cv6kWvZgB95hEY4MVmwwGBBurYxXCUZDDuLjHBDjIjEDcOhOhJLe71B/oV8GoZEVkAhZ4uWLRiu9QENxCDhYyRgGMYaCy2/ObSh05iTco6zzubBQhk1gMEMitAgDNUBhU+rvsYuyt241DTIQcCtDl5M+7Nuxd35t6JcP/wBTzK6UFr1OJIyxGrD7R6oNrhcQkrwbrEdVbyWhRXBIloNvJuZg+D6kEcqD+A/Q37UdZXhh5VD7RG7awVTn1jMensxxfNiDg68csmlFA/MylWYrtpcI6h6nR+aWZsxUqWSY9ZJlqyGieGiXXRonXScTG2m/PuBRVDBJlIBj+JDDKxHHKRDH6cCHKzCHKjBf5qA+RKHQLGdfBX6RCgMSJAa4HCQKRYYSCSFqgHFHaEWWam168TA2oJoJk0tBIbydKKaUpeJ5pQCsW0NIgAvWhiKZ54Tyf+z982sbZh3xKXf/85q2dhft/Xrwt2Zf8QP7x715zvR8iZFSBAgE+oG6zDy6Uv443yNxy8oStiVmBn/k7cvfRuJAYvPrO/NwxphnCg4QD21e3DwcaDDq+NL2LibQMbkjYsuMrMcRzqBuvwaeOn+Lzpc9QM1mBQPQidWSeE988lJpEZvmjGAsAI757IOcMcFu/4AhPMMJk1UJs1AFx0N5MACJsY30TY+X45F3mwDOec6sBf6PDE2vr5XoGEun2gwftK8wyBzAoQ8A0Dx3H4svVLvHT6JRxoOGC9Pz00HTvzd+LevHuRE5mzgEc4PbSOtmJf7T7srduL423HHVTLxKBE3JR5E7albcNVKVctiMKs1CtxqecSDjUdwrG2Y2gcbsSIbgQGs2HK/lIWLBiGGgF8Y8iuXeUSO0EWxJYJb+mEciozk3rKPya6Em6LJBBJZRAFBIILVGA4XI72MDE6g1l0BZjQLTWgl1Gh1ziKUeO4x7dIxIgQIlIghJMhWM8hSG2CQm2EQm2CXGcCZzHDBM5JveSHQWRTPo0iwGCndBonVE6T/dJOefY0he/tc+ULvli7wb8/1veJA8QcA7GFgYQDxGYGEgsgNXOQmDhITZz1O2DvE/azG3KjzYPszy8nhsgClMYBn2UBF2OpSYKnQjoJx2IVG487AtcgJzYflyVDODBUinMDl2EwG2CyK9iSiWRYFZKL9QHZWGeJxzplKCIH1Bgb6sZpXQNKRB34PGgQl4M0Xt9HfwOQOQQkjgJjcqA2AhgI8HCsE4hUAgX9QLiWVPDqCKA5FF6tCWIzEKolP61SRgVpP9/wC89PWgAINgMBAr4h0Jv0eKfyHbxU+pI1H5UBg5uzbsazxc9ic/LmKypKi+M4XO69jL21e7Gvbh/K+socHi+ILsCOrB24NftWrIhZMeevzWg2on2sHZd7LuNI6xGUdpaibawN4/rxaflWRYzI6tW1cJavp6WAn7bnqAgpSA/EjwN5fcDaTqCoB0gfpilryZXE2cViwN+fvKVhYeQrTUgAUlOBjAxgyRIgPp48pyIXZeoWCzA0RB7TpiagthZoboampx3Nmk40ccNo8tOiKdCExhALmsKAtmA4EKjJYDggcQxIH6H3lF9mTNwO0tutzLKAREIe2eBgICoKSEwEkpPp2HNygJAQ8sYODFg9sZa2Vpg62mDqbIexv9eJLJtZx+I22YQ/l+GLwDiOxmzC3u8bEEC+3pAQ+lwiI+mziYujzycxkV5rWBhGoKPi14rduNBzHlqTzuNu/I0MivsluLXMgBijFK0KI07FcziVOEE2JyFzCFjfTkkJ6zvIo2sQAWfjgeNJwOfpwJn4SfmxLiA1AZmjLJaMsjCIGNSEmdEaaPFKigN1QHEHkDlCn01DGHA6wbfZiDdX/RL33fQz7yvOEIJn1gMEMivgm4ZBzSD+cP4PeOXcK+hV9QKgNILvLP8OnlnzDDLDMxf4CH2H0WzE8fbjVgJrX7zFMiw2Jm3EjuwduDXr1llPHeA4DgOaATQNN+FSzyUcbzuOS32X0K3shtqonpZCKmJEELEiMGBgtphnNVlgUWBCZZOZgDAtkDQGrOgBNrQDRd1A8tgVRFJZlghRYCARoagoIkHJyUB6OpCVBSQlETmSyZyfz3FUnV9VBVRUAGVlRFS7u4HhYUCtpkr+acLEAu3BQFMo0BTmvFR7ISkR8nCkh2UgPSwd6UEpSEco0tUypA8DMV1jYPgCrtZWoKsL0Hkmd7MKPhXBz89GSPkLBfsiNJ6QxsTQYwoFFaTx0OvpvR4eBnp7iYR3dlKhWl8fXUAMD1PxmlpNZF2vBywWdAQC/1hGSQlVUYDRy7y23ACs6QRuqwVyB4DOIOBUEnAqkZ4/GaF6FmuH/bFuNBDrRwNRNB4IGSdCWYASx4PH8EXYKI5HaqjDlweILEDKCO1TZgTqIih1weDleCUm+ttc3kcXlr0KItV9LmKz38r7N+y84189b3AWIJBZDxDIrIBvCmoHa/Fy6ct4vex16CZUhbjAODy1+ik8tvIxhMmvDMObyqDCwcaD2Fe3D/vr92NUN2p9TC6W4/qM63Fr1q24aclNiPCPmNG+1AY1WkZb0DTchMu9l3G64zSqB6sxoB6Azjz1kzcDBmJWDBEjAsMwMFlMMFqMMzrGRQPOpqiG6KiXe34fEdXiLlL7/OaKmzPM7Cl4MhkRVL46Py6OSGlqKqmQaWlEjiYTIx4mExGiykoiqFVVQEsLkaPRUSJERiOprbMJkYiOXaGg405OBrKzgfx8YOlSuj1xjuM4Dv3qfjSNNKFxqAFNPVVo6q5C02A9mrTdGGA0HnflbwDSRugzzRh2VHaTfL0gYRg6Xp6QBgbS8fGENCoKiI21vf+xsfRYcLAtvouHwWAjpX19NlLa3Q3099NFA09KVSr6DAwGwDw7sxscgOpYMV5fwWJfpgmNwd6VUKmFQYFagZ1tIVjfbsGgYQSnwjQ4lUgKrGbSxYbIQuSSV27XddCsRW0E5eoeTQGOpgIDCs/7ZThKPsjrByJUQEs4UBHlvXkFYwEyh4G17UCojlIWSuOJHI9t+wIBm7Z5e5tmDIHMeoBAZgV8ncFxHI60HMGu0l34tOFT6/2FsYV4rvg53LX0risiE7ZX1YtP6j7Bvrp9ONx8GHqzbQ400j8SNy+5GTuyd2Bb2jbIJXKft2uymNAx1mElrGW9ZTjfcx5Nw00Y0Y1MayqfBQuxSAwxKwY4wGgxXvmEdcLHKJmY+o9VAksH6MS2rhPIHqKK9TkBTxhncmpiWRtJjYggcpSSYiOo6ek2sjSZKPHQ6Ug5rawELl+mqf62NppWHx8nFdVkmv1pcYmEpsFjY+l409LoeJOTyZrA2xMmH7fFQuS5qws4d46IdWMjkbzBQTpmnY6OeRLGZeSfdKXqtgd79sOKLECyWox0nRzplhCkS6ORHpSK9NhcpKetREB8Kn0OYjERSouFSKXFQsczOkrEc2iIFNLeXnqPh4cpa3Z83FElne0LA95SIZHY1F+5nIafH90vnpA1zWbav05Hn79GA2g0MGtUOBNlwhvLgC9TgJZQLw0cAIjMQMoocHM9cN9EV2xeuT2ZCHQGOz8naZRILU9wC/qA7kBSUL9MAQ6nAW2h3l9yuJZB/pgMyVoZugM5lAfq0Cc1ePXdxohD0WsaQcN3y5ERn+99RzOEQGY9QCCzAr6O0Jv02F2xG7tKd6GivwIAqYK3ZN2C59Y+h41JGxe9H7ZusA776vZhb+1elHaWOhRFpYemY0f2DuzI3oG1CWshYj23w7FwFjQON+JSzyWc7jiNo61Hre/LdMAyLKSsFGJWbO2EZbDMFZubY0y8rRIzEdJoFZA1RP65dZ2k4ITq5qjIejaIKu9HDQkhFS8zE1ixAiguJsIXGUkExBU4jtS62lobSbUnfCoVEZVZUvBcIiLCRlBTU4lk8yMhgUgUQISNVx6bmkjtbWuj0d5OhG9sjAiVyTQ7BE8ksnlM/fwAmQwGuRStYSyaQixoCjKjKUCPJrkOTXIdmv110HnpshCtsnlzsweBu6rp9tcdQ3KyJHyQC5yPA0a95cdyQIQGWNMrwh0tchSO+aMmmsWpWBNORmpRFqiBmXF8rwMgxRq/dKxT5GJ9WAGKIwth9JPihKYGx0bKcKj3JGpG670eq0KqQF5kHrKCUjGuHkLZYDVaNV2wuClMfWnj/4dnt8x9EZhAZj1AILMCvk4YUA9Y/bB96j4A5Id9ePnDeKb4GWSEZSzwEbqHhbPgbNdZq/+1drDW4fGiuCKr/zU3MtctGTeYDajqr8Kl3ks41nYMJa0laB9vn7KHVcRQtqZYJAbHcTCYDQ6K8BWBiV9zsYUqtCPVRBzWdJKas7wPiFLPYRrQbJBVmYymlmNjSUVduZJGXh55I119DywWIn1VVURSy8vJ39ndTeqeSmVTBecavI82IYHsCRMFRQgJIRI+Ogp0dJD3tKODpsVHRmxdr8RiItNXwKnZwlDXLVce3aZQYNjf9fM2twKPXATuqKHvqRMYhhRThqH3gyfZ9uop30WML6Azm23KKT8MBlrq9bbbcwWZjC5U5HI6Dr3e1s3MZIJBRNP0bywDDmYA3UF2ebduIAGLDEkMNkeuwqbUq4GwMDQq23Cq8xROd5x2aj3NgMFSRSrW+WdhvSgV68xxiFJxKFXV4pi+Hp+zzbgoGXJo/uDypRjpwiOvHwBH7X5r7Xy3tTcfQlbhtdN/r3yEQGY9QCCzAr4OqB6oxsulL+Mf5f+w+mHjA+Px9Jqn8WjhowiV+zDXtADQm/Q42nIUe2v34uP6j60FaQA1L7g69WrsyNqBW7JuQXxQvNPzlXolyvrKcKH7Ar5q/QqnOk+hX93v8/7FjBgysYwUVjvCekW1Xp2wAMiNNP1f2A3c2Ahc1Qokjs9yO9LJmKlXlWHoZB8WRoU6S5eSqlpYSAprWJgjWeU4WIYG0Xf2KNouHIV/YxsK6kad/agzPY1N5XX5+9OQyYhgMQyRZIPBVsTlYip/XsG3kOUJn0xmu83bE/hjNhiIePGEjyd9s2ChGAkUoylWhqYYPzRFS3A81ojPQ4dhmVAYg1g57o29Fo8svR+rMjaDCQmh4+jv920MDk5dRWdZ+p4FBNguHLRa+j7pp3DxmpYGbNwI3HYbsHUreZddgePoIqWzky5eJpbG9lZcGK7EPmkL9saNoz7ct3gzuQHIGwTWdTKIVjHQsRY0hwKlCUCji8TBKJWjNSGvj8jpsWSyJZzyIcFAxAHpxkAsN0chWhyMX3//A8jjU7wf7AwhkFkPEMisgCsVHMfhcPNhvFT6Eg42HrTevypuFZ4rfg535t656DpXAcCIdgSfNnyKfXX78FnjZ1AZVNbHgmRBuDHzRtyadStuyLgBwX42o1i/uh+Xei7hfPd5HG4+jIs9FzFu8JyzyYMBAz+xH6SsFCbOBI1Rc8URVoBSAKLUVFh1XRNwbTNF+swZYZ0pWRWJiCRERtLJPj8fWLaMlqmppE7aw2SCtr4aHacPor3iBNr66tCu60ObRIP2ABPagzh0BDlWYnP/NsXXY33iFfL5M4wt1isqihTelBQi//wICiJyKpEQoVcqidi1t9sIk733VKm0Ef+ZQCSiY1MobAVzMTGOhVtRUXR8AQHOhFmjQWdPHf7eexB/1Z1GC2tTFvOHJXjkInD/BSPCpxrqwKdL8INXSE0met0jI46FYu6+CwxDhN8Vqc3LI9J69dXAmjW07tgYkeDRUdvt8XG6PT7uOCbfp1I5bN7EUr7tJ0uA/UuAyijPUWv2kJjIP5szSEq30o9BcxiDS9EWGCZtQwoRVslSsS44D+sjV2JNXBF6xTocV1bhaG8pvuwowbje8+/s7274HZ5c/aRvBzcDCGTWAwQyK+BKg86ks/phK/srARBZ25G9A8+tfQ7rE9cvOj9sx1gH9tXtw766ffiq9SuHnNW4wDjcmnUrdmTvwFUpV0HCStA62opLvZdQ2lGKwy2HUTNQ43N6AMuwkIvkYFkWRrNxWqkDCwaOvKvhWiBrENjWBNzQBOT3U0rAooNYTEQlNpaU1GXLgIICup2cbK2e58GNjWHoXAnazh9Ge+MFtI22ot0yinY/HdoUFrQHT/SU9wLWAsQrgZvqgd8f8L7+tCASOaqWHDd3toTYWPLMZmQQ6edHcjKRxcFBskjU15Ndoq2NiqMGBmy2Ca2WSOJMYT+Fbz/EYpvyDJCCaTLZyKm9ijsNWBjgqxTgtRXkK9VPXLBITcCORhEeaY/ANlMS2KhoR6JqPxQKKhxragLq6myjvp5UcncICaELLoYhYtnf7/xZBwcTKVYo6D1Sq22EdTZjyWQy+rvhR3AwEBQEU5ACl8L0OBDYi48lLahAL0yYwveRAzKGKP5OagbG/IC6cGDIReZthjkY66QZWB+xAmuTN0ASl4CThiZ82XEMR5qPoFfd67D+ofsO4doMwWawoBDIrIArBf3qfvz+3O/x6vlXrVPpAZIAPLLiETy95mmkh6Uv8BHawHEcKvorrB24LvZcdHh8aeRS3Jp1K7Yv2Y4AaQDKestwov0EjrYcRctoi88pAmJGDD8xZcroTXoYuSsgNWDCFqDQkw/t6hbgpgZgZQ8QsNgOXyolxS0xkYLx+ZinlBQiWgF2Z0KLBcaWRnSe/hzt5w6jrasK7fp+UlUVJrQHUSX85MghVwgwAMmjFPOUNEYn4KQx231xyink0fI2AD8/WxU6T8J0OhrTJYG+KtcBAURWeZKakkKkSKMhxbSuzhbfNTY2d8kICwGRiL5H/ODtDbzXNTLSiZSOhPljt/ECXuv9DJeGq6ybSgpOwneWfRvfibwGyV1qet9qa4HqaiKsPT3uj4Nh6HPw86OLFL2ePvupWAm8ITiYiLH9kh/2BNWOpDoNV5nELmC2mHG59zIONBzAx3Ufo7yvfFqpKRFq+ntiOSpS6wx29u4G64C1HcD6IX+s00UiXhyKi9EWlISM4VTAMC5+/zLEKWlT3vdUIZBZDxDIrIDFjqr+Kuwq3YU3y9+0FiAlBiXi6TVP47uF30WIX8jCHuAETBYTTraftBZwtYy2WB9jwKA4oRir4lYhXB6O6v5qHO84jl5Vr8/T/VJWCqlICg4ctEYtLFNRJeYb/EtibP/P7wO+ewF4sIJyWBcF5HJbNT2fScqrqklJdOJXq0kZ7OjA2PkTaKs4gfbeOrQbBtAm1aA9wIy2YA7twRQL5K2IBQBilK5JapJKhGSdDKEmMRjThHfRmxoaHGxTy/hp7JmSVF6dtPe/egLDEOFPTbU1SdDpSDUdHqb3jyeps+Hptd8vy9qUVL6zlVxOBN7eJzuZSLob3taZyuMSieuOZvYwGByn5fnbPT1AYyMu9ZXhr341eDNuAKMyet8YDtjWTEVjt9bNYn4xX2wYFUWfoz0xnXx78v8DA93Hus0DzBYzyvvKreS2rK8MBvP0vv9+RkpS4Bhg0N+mkvMQWYBlvba82+u+9z8IffKfZuFVeIZAZj1AILMCFiM4jsMXzV/gpdMv4VDTIev9RXFFeG7tc7gj545F4YfVGDX4vOlz7K3di/31+zGkHbI+JmElyAjLAMMx6FJ1OVXaugMDBlKRFBKRBCazafHaBCaaBAQYgRAtTd11BgIGO+VxeQ9wXwVwTyU1EZh3KBTkYczIIGV1yRJSWvlil/FxIlr9/TC3taCnowbt4+1o40bRLjeiLYim/tuDqT3quJdgdYB8vQ6KqpJFklaKZJMCSWwoEkVhkEFEvs2BAVIjPZ12WJaImUhEU9v8dPZ0wBc+2au0PJnyVqQVEEAEx746fSJX1Jp3Ot3TJ1+lz7eLjY4mYpyebsuUjY2l4e/vWLW/2KFUkurc3Ow86up83oxODHyUDbxWCByxEwHDNPQ39kiFGMuM4fT9Dgmh91OjoYuJnh5nBTYwkOLbNm8Grr+eCg8XkIz6BIuF/mZHRhzHwADZUHhf9OAgLEODqBAN4tNoJT5ONeBirJeuXxz97ZpYwOziq8VaqI20kXWeXbkQ+jwKn/7VrL5UVxDIrAcIZFbAYoLOpMNb5W9hV+kuVA3Q9BrLsLgt+zY8W/ws1iWuW3A/7IB6AJ/UUwODQ42HHOKqWLBgGMZnmwALFjKxDCzDLs6s1glLgJ+R8jFX9ALXNwJbm0mxeLsAeCcP6LPzeaaMADsr6ASbOzAPxxgURNPWS5YQ2ZFISBV89VXgxhuJrA4MQD3Sh3axxkZOQ2wktT2Y2mv6UmASrrEjqioRknV+SBKFISk0BcnRWYgMjQNrNFPhUWMj+Rf7+jxvlFcXOc4WoO8rGIbIqUJBRDAggAifWEzbUSrpJN/vQ8oFT/ItFlsF/0xjsSQSOr6QEFL8kpOpeKioiC4weIJ6pcJspsYMrshqczORq+nCz4+KuaKjbYVvmZloSQrC31TH8bfuA+jU2PybKyVJeKQjEvceaEdIx6T9BgYScb36amDLFvJ2LwR55TjyOPNNIOwJKd8kor+fvL+Dg3ShxXuiZ1CwZ2GAqkjgswxgbzYVl+k96CGMBQjWAwojZeKqPNiDzu38CqsyN0/72HzFnJPZ//iP/8CPfvQj+E/6g9RqtXjxxRfxL//yL1Pd5LxBILMCFgP6VH34/fnf49Vzr2JAQz/CCqnC6odNC517P5InNA434qOaj/BO1Tu41HNpWkkAfG4rAwZ6sx4mboHjinjwSQFm8o8t7QeubQSua6bOVmI7XtUYBryVD+zOB+rtOuWGa4BvVVHnnnUdc5DbqlDQtD9PWPlp7OFhIgwNDdCox3A8mSJ5yqPpWKPV5INrCwGGfOBLYjMpyEljQLKSRZLeD0lsKJLD05G0ZBWSMlchQKqgk21zs42sNjbS1LAnMIxt2n4qsCeCcXFkiwgJIXVSqSRFilf+vBXi8NPys1HMxSupQUFEtpKSgNxcIql5edSZi294cKVjfNw9WW1tnVkqgp8fWVuyspxHcLD753V0wHz0CL4ofQuvaU9iX5KWumyBLj7vrBPhEW45NhfeDmbrVsomFnuSJqcInpQODdkGT0g7O2nZ3w989RV9F+wJ6Xxphnw3Mz5xIiSELg7Cw2GJikR1NItDQf3Ya6nGeW0TdB7EBAYMogOikRicCAkrQZeyC21jbQCA/h/1IzIgcs5fzpyTWZFIhJ6eHkRFRTncPzQ0hKioKJjnsnvKDCGQWQELicr+Suw6vQtvVbxlVTiTgpPw9Gryw9pHU80ndEYd3qt+D+9UvoOT7Sd9jsDiIWElkLASWGCB3rRIclvtCq+yBklh3V4PLOv37LnrCwDezSMSezbBdr/cCNxaSwrstU2zkDbg70/q05IlRNpkMpoCHxoiwlBfj3HdOE4kEWGtiKYw+u5AYExG04PeWHSgnvypyeMMktRiJJsVSPKLQVJcNpJXXIXYVVdDxIpJVeVJKr9sbqaT8WxCJKKTbEQEveaEBCoICgkh4jkyQvFJra00RkdhZkgJ7w4E9CLAzAJmhpQnb7fN7MT/Pd0WszBLxbD4yWBWBMAcEgRLZATMMdEwR0XAEhQIM8vAbDHDwllg5swwW8wwc47/d3fbup4Pty/3Xsay6GUOb5mrmRnGxQfvy3qMfVMLAzUTYPiMWevQgTE6f7mdts4wYDgO9n/qzKTHIZeD8fcH/Ek9P6WuwYd37cFtuXc4bd8JfX1EDI8epdHY6PDwQLAYb25PwmsZSlQxNlU2PTQdD694GA8te8hlVjUAUuBHRpyJaUcHqc59fURM+S5rajW9N/NBSvl4MH72wY6QIjKSLqTi4mxtjUNDbcPHYjKArG01gzU41HgIe2v34lz3OWhNnv/ek4OT0TbWhtZnWpEckjzDF+odc05mWZZFX18fIiMdmfnRo0dx9913Y2Am0wxzDIHMCphvcByHQ02H8NLpl/BF8xfW+9fEr8Fza5/D7Tm3Q8zOooLgA9QGNQ42HsRrF1/DV21fef0Rs4dUJIWElcBkMS2eDlkcKapRamrLen85cE0zTZn5ApWU/HlvFVCQON8hh7XQdu4rB3bUkodsSvDzo5NORgYt/f3ppDgyQupiQwNG9eM4lgycSaBsyaYw6qo07gth5YiYh+mABLUYW0ZCsF6WgaT0QiQXX4fgZWtourW11ZGoNjXZWqTOpvggl9PJl1cu+faygYH0uvv6bES1tRWW0RH0BQAdE7aHjiDH251BRGJ9zdsUsPjx6o2v4vtF33d+YGQEKCmxkdeqKsfHWZZU8C1byDqwfj3g7w9OrcbZ2iN4reJ1vNN5EEqzhlbnGNygicUjbeHYXstBMjRCyv4Mp+99AsPY7Ca8HYbP5eUJaWws/SZERtJjYWG09PPBqD4H4DgOdUN1+Lzpc3xU8xHOdp2FxqRxue4vt/wSP9v4szk/pjkjs6GhoWAYxrph+ytBs9kMlUqF733ve3jllVemf/RzDIHMCpgvaI1avFn+Jl4+8zKqB6oBkB/29pzb8Vzxc1ibuHbejkVtUOOr1q/w10t/xcHGg25/pOzBF2aJGBEMZsOisgn4G6nf+/Z68qvmDlLUzFRgZIFDGaTA7ssGtHZ+stWdpMDeXUlT9x4hldKJyZ6wGo10cm5rAxoaMGwYt1oCKqKA5lCgN5AIq5mBV8IqNwFhWiBJI0aWMRiFQVnYsGIHlm2+G2xCAp2keYLKk9WGBhqe4oumApGISGlEBL1OPnYqMpLeg/FxB1XV0tKMfuOolZS6IqxdPhJV1gLEqkgdF3GACAxYRgSRSAyRWArWzw8ifwVEAYEQBSjAisQQsSKIGBFYhnV5W8RO/J+/DR/Xc3Pb07583d5kJdXVDIf1lG02T0xzd4PjvZe9vVYfJjcplN8pdUIkAhc+0QmLZQG9AVCOgxt3npWxHkVM9ETyRTK4pES6HR8PSCRwRSVcHX9BdAHZqJRK4Phx4MsvibxevOi0rrVJRHAwff9GRkgxHR0ltVSnc7CPqCXA+0spu/aEnXAYpQIeKKc0hJxB5914hFhsI6X2hDQmxtYogrfDhIcTKZXLXbddvoLAcRwahhus5PZM1xmojfRj2PhU47xEQ84ZmX399dfBcRwefvhhvPzyywi287dIpVKkpKRg7dr5O0FPBwKZFTDX6FP14dVzr+LV869iUEO/nIHSQHy38Lt4avVTSA1NnfNjUBlUONl+En+//Hfsr9sPlUnl9TkSRgKRSASDybA4YrA4IqjhGmBVN5HW7fVAyAzEYA7AqURSYN9b6ugrzRwiBXZnBZA5POmJEgmdvNLSaGo8IIAI6+goEbj6egyalCixU1hbQoFeBaCUwWsvdHBE1CK0QKJWghxjCAqDs7Fh1R3I23Qn2NhYOonzhLWpiXI2a2rotsr75+sVcjmdrHlVNTOTCHpEBBGn/n4iqi0tsLQ0Y6CvGR0Yd1BRO4Jtt7uCYPU0egJrodzLhHFqx5ugFiHR4IcEcTgSI9KQkL0aMUVXQ7xmrWdP5dcRIyPuvattbd5V9ehoKqKKiKApaP4iq7OTnu/u9B8fTz5gfixdSsVr7lq2TgbH0fT8wIBtdHYCJ06Q4tre7t1zPUPUhwN/XQG8vowuHHms7RbhkeZg3D2aAEVYDHmzY2Pp7zopid6z8HAaISFXTorEHIPjODQON6K0sxQPLHtgXvY55zaDkpISrFu3DhLJwkcFTRUCmRUwV6joq8CuUvLD8nl/ycHJeGbNM3ik8BEEyebu+6YyqHCq4xTerngbe2r2OLSMdQcRIwI4wIxF4HGfmC5PHqVirAfKgcLe2WnbamFIDX1vKRVytYbaHotWUYzWfeXAqj4WTHQMRSQlJFChj8FAJ922NqCxEb0WJY4lA+fiaZstoeTnVEp96Ks+oShHaIEkjQQ5plCsDFuKDUV3Imfj7WDDw+mEb6+u8oS1rW1m3Z7EYmdVlY/uUiiIDE+oqlxLMwY66tAx0oZOkdpp2r8jmBRVj7E/E+AV1YRxIHFsYqkRI8GiQKJ/LBISchGbvxbiVauJNIWGet/o1wkWC3k0Gxpsn7k9YR0d9fx8mcyxMUNwMBFJpZIU2tpaisNyRYRAsQABAABJREFUF0MWHk5Zw/bENTfX+XOwWGwV+PbktK2Njp9XhkcmpvLn2l8qEjlO4U9WSxMT6W84IgLG0CB8NnYBr1W/hQMNB6zJKwGSANy99G48UvgI1iasXfDUGAHOmJdoLovFgsbGRvT398MyqUp006ZN09nkvEAgswJmExbOgkONh/BS6Us43HzYev/ahLV4bu1z2JG9Y078sLzyuqd6D96res+ngi2WYcFx3MIWZ01ktYbogIJe4J4q4LYaINq762Equ0BNJPBlCrXL/CoFGLRrXKUwMLi9Pxz3mbKxhUmH2MwRaZiIlurmSGE9F08Ka2soFYWpfCCsDE9YNQySNRLkWsKwMiwPG4u/hcwNO8AGBDj6V5uaiHDU1BAhmC4BkMmImMTE0NTvkiVETLKy6PEJVZVrbcFgaw06e+vQoepGh0TrZAHoDPKNqDIcEGuvqPKEVStBIhuChNBkxKYvh2TZCjqW9HRSwBZ7tudsw2Khz5a3ffCjsZGGt0SG2FjHlrepqUTitFpKdqiqAiorqSuWu20FBjoSVj4iDCBi2t9P5LS93UZO+/qInPLFT3MFqZRmBQIDaYqe7xBmr5bGxNjU0tDQaacU9Ch78EbZG3jt0mtoGG6w3p8dkY1HVjyCB5c9iKiAKA9bEDCfmHMyW1paip07d6Ktrc3JJ8MwjJBmIOBrD61Ri3+U/wO7SnehdrAWAJHFO3PvxLPFz6I4oXhW96fUK3Gy4yQ+qPoA71X7Rl4ZMAtOXKVmIH4cuKoFeLAcWNc5CykAzrtBXQSRVp7A9k+aDfW3iLC1wYz7xpNx84kBDHIaUljjgKpooDUE6Pcnwsr5QFgDDECklkGyRoocSziKIpdh07p7kL5uO3nl7O0AjY1EOBobKVprOmAYIjB8bmlODlBYCCxfThaIzk5wzc0Yaq1CZ2sFOoZa0GkYQIefwcmzOrm7j7vXGDNZUR23KauJsijExmRAkr3URlTT0oh4TKGi+msDjnMkrI2Njrc9pUKIxURQMzNtTRPS0+k+f39SaHnCWllJt134WgEQMeTJn0JBFw68HWZggJYazcxUfk8QiWiYTI5RaKmpwDXXADffTCSVJ6YKxYJ4SzmOw4n2E3jt0mt4v/p9aIx0NS1mxbh5yc14ZMUjuC7juqkLEXwHO7n8m3fRNgeYczK7fPlyLFmyBP/+7/+O2NhYJ3k+eAq+pldeeQUvvvgient7sWzZMvz2t7/F6tWr3a4/OjqKX/ziF/jwww8xPDyM5ORkvPzyy7jxxht92p9AZgXMBL2qXrxy9hX8/vzvrd2vgmRBeLTwUTy1+qlZiytR6pU40X4Ce6r24IOaDzBm8O4vWzDyOhGBFagHcgaAO6uAb1UT+ZmL0xQHylT9MnVCeU1j0RPgODvkZ2JQ3MEhRAcM+VH/8RE5pQOopd5bsPKENUrDIEUrRS4XiaKo5di44T6kFl9PhMCesNbVkTLW0kKPTQciEXn0eCWOD9pPTKST5ISiq68uR0N3JWp0nahWaFEdSUp0RbTvu4pxpahO/D9RLUKsIhbS1AxqeZuZaVMEU1PJfvFNBMeRWulOYVV7qBRkWfock5NpGR9P0+GxsaRG8i10OzuJrJaVEXEdGXG/TV6dtFhmnqHrDnxmKT+Vz1fhJyaSrSEpiZTS8+eBt9+mYi4esbHAI4/QSEmZm+ObBYzrx/FO5Tt47dJrONt11np/XGAcHlr2EB5e8TAywjJcP7mri3zA/Cgvt30WvOJsP/iWw96GL+tNXudr6O2dczIbEBCAsrIyZGS4+YB9xLvvvosHH3wQf/jDH7BmzRq8/PLLeP/991FXV+eUYQsABoMB69evR1RUFH7+858jPj4ebW1tCAkJwbJly1zswRkCmRUwHZT1lmFX6S68Xfm21Q+bEpKCZ9Y8g4dXPDxjP+y4fhwn20/i3ap3sbdmr0/kdUEwEYEVrQI2tAMPXAa2ts1ir3TXu0RzKPBltgxfZfvhq1g9uqSO06liM1kXzAygkdipjx5IK2shwhqtYZCikyEXkVgdW4SNG+9HUuFVpKLaq6u8HaCjw3srVHeQyYi8JCYSSVy2jNTVgADKumxupn1UV0PT2oBaSz9qwiyojoSVtDaGeS4oi3anqI7R7TglII2aSF+YTFRTU4mwLBb/IMcRydPpiNAbDKQ0+rqcyrr8km8fOjZGt1UqIqq86nYlQyYjEhQSYvOY8uQ0NZWWkZG2uChP6mJjI/DnPwN/+5ut6xfDUKvYxx4DbrqJyPAVhMr+Svz10l/xj/J/WIt3AWBz8mY8svw7uINZCv/SCzby2tq6cAc7GRLJ7JBiX9bhEzDmGHNOZrds2YKf/OQnuP7666d9kACwZs0aFBUV4Xe/+x0A8uEmJibiqaeewvPPP++0/h/+8Ae8+OKLqK2tnXbxmUBmBfgKjuNQ0laCXx7/pUM+7PrE9Xi2+FnsyN4BETu9q+Fx/ThOtJ/A2xVv4+O6j6fcpGDOMfGrEGCkKv9bJpoFZA7PjdrqAKkULVlR+GppAL6M0uCrgAF0yCZ5ASeSDiz8wbg7qIn1/E1ArFaM6zVxWBu7Gpuv/jbiclaT0saTVd4OUF/vvR2rOzAM/dDzdoDsbOoBn5pKxIwv9qmsJHLc2YkxswY1kUBNBBxIa2uIewU5SEetc3MHKGood4AaQySMU2czREQ4+yz5kZg4NZJhsZBnkieUOp3jmOv7BLgG39Y3IICIZ1SUY1xUaqotx5TP+p3pRYpeD+zdC/zpTxSnxSMuzqbCJs99mP5cw2A24OPKD/Da8f/DoaGz1hmvIB2lnTxyCVjZDTAsSxejGzbQWL+eVGyt1nFoNM73TXUdV4/PpZfZE2pq6LdtjjEnZLa8vNx6u6mpCf/8z/+MH//4x8jPz3cilgUFBV63ZzAY4O/vjz179mDHjh3W+x966CGMjo5i3759Ts+58cYbERYWBn9/f+zbtw+RkZHYuXMnfvrTn0LkRmLX6/XQ233g4+PjSExMFMisALfgOA4HGg7gl8d/idOdpwFQ5T/vh12TsGbK2xzTjeFE+wm8VfEW9tfvh9KgnO3Dnj4mCF+EhvJV7y8HbmycRoOAqYJhaMo6Lg7tySH4MmwcX8m6cTRkBO2TnUr8r5QH0spwRL7jdBKs4KJxS8Z23HndDyFV64g4NjQQUa2uptvufIfeIBLRCYu3Ayyd8I2GhdEJp6WF9lFVRUrr8DBgsWDQf4KoTiKtXR5+hiLUzqQ1dwCINcvBJE1kfEZF2WKEQkJsNoCZEEr7++fKXzkdyGRExKVS70uAlFb+9ajVNMbHvYfmBwfTUChoewxD7wP/fN53OpsV+yxL5DQw0BaRxgfr8+Q0NtZGTie1k59T1NeTCvv3vwODE4olwwA33kgq7I03zm7r2IXAyAhw6pRNdT13DtDr0REE/H05xXzZJ6EU+KfhkdWP476iRxDuH74wx2yx2P5Wp0uIp7IOf3HZ2jovFy1zQmZZlgXDMC6DkQFYH/O1AKy7uxvx8fE4deqUQzbtT37yE5SUlODMmTNOz8nOzkZrayvuu+8+PPHEE2hsbMQTTzyBp59+Gv/6r//qcj//9m//hn//9393ul8gswImw2Qx4f2q9/HCyRdQ3kcXbzKRDN8t/C5+tO5HSAlJ8XlbY7oxHG87jjfL38SnDZ9CaVxc5FVuBAr6gCfOAnfWkHI5n+gMAj5PA15fDlyIIx+rT+BJqwmI1UmwwhKFW9O3446rvg/ZmMrmXb10idTP/v7pHaBUSgQxPp6m4vPyiEz4+dHJvL4eqKigZU+P9UeeA9AT6Jq0DgS4313cuDNpzVHJEWnxI9JgsZC1gZ8On69e75PBMLYiH5GICAy/5IdEQkMsdk0y+SGT2dp2ymQ0+Nt+frYhl9tu89vlh0pFFf1dXWT/4OOiWlu9X6wEBNC+OM7RZjCb761IRKQzKIguOvg2pCkpZPPgc02jo+l1Libo9cBHH5EKa++FjY8Hvvtd4OGH6fivVLS324jr8eP0ezEZUVFW1dWyfh2+DBnFaxWv48OaD63dD6UiKXZk78AjKx7BtrRtYJmvceEXP0sjk125NoO2tjafDyDZB8Y+HTK7ZMkS6HQ6tLS0WJXYl156CS+++CJ63HS5EZRZAd6gN+nxRtkb+PXJX6NppAkANTl4ougJ/LD4h4hRxHjdxqhuFMfbjuONsjfwWeNn1k4pC46J4qxINXB9I/DsKWBZ/xxaBfz9bT48qRQYHYW2pQ5/WqLBWwWUOqD0ITGAP25/A3k8l/UCt9YBd9QzkIfF2KqglUpSPqcz3cbbAZKSKMIqK4uO22ymEx1fOd7W5hTwbmGA9mDXpHXMQzfKlBEXpHUACF4kXYEF+AiewMtkNk8hn3kaGEjfLYWCHrcn357G5IsCd2MyoZ/OEIncWw7q6mwq7BAVuYJlbSrsDTdceSqs2Ux/y/bFWh0dzustWWKzDGzYQBccLt6nYe0wdlfsxmuXXsPl3svW+5OCk9A+1o6fbfgZEoMSkRSchMTgRCQGJSLEL0TIsp0i5iVndqaYjs1g8+bNkEgkOHzYluf52Wef4cYbb4Rer4dU6l3eETyzAnioDWr86cKf8D+n/wfdym4AQLg8HD8s/iGeLHoSoXL3Ae6julEcaz2Gv1/+Oz5v+hxq0+IhrxIzkD1IrRu/XTZHREkioanO2Fg6cSuV0LY14IN4FfZlAefjSKH0Wog18evjbwTitGIs14fiFmk+7jRnQt7SRQpbdzdFCk2n+EYkouMLC6NjjY2lYx8fp+3299P0opuQdxNLxWeTSWttBKBx83MjslCrXVee1oCptoTnrRh87/aoKJvCFxNDih4fGB8URO+R2ex5mEyLax2zmRRRtZo+57ExukhRqehzudKLrhYrJpNns5neb3sLhlhM373ISCLtMyXRvFrPj8lqvbv7fF2XVwu1WrIJ8MT11CnnjmNiMcXb2ftdXRSee8PFnot47eJreKviLYzp3RfuKqQKG8ENSkRisO12UnASEoISIJcsMnV+gTEVvjaty6uPP/7Y5f0Mw8DPzw8ZGRlITfXcslMqlWLlypU4cuSIlcxaLBYcOXIEP/jBD1w+Z/369di9ezcsFgvYiS9tfX09YmNjfSKyAgQAwIh2BL87+zv835n/s8ZrxQfG40frfoRHCx9FgNR5PnhEO4Jjbcfw18t/xeGmw9CYZjHlfyaYaECwuRX4p1PA+k7yv84aWJZOZrGxRJa0WhjamvFe/Bj2ZXWjLKYb3YF2NgEvpFVsASL1LIoM0bgj+TrclbUD8iElFRTUXKRom54vAe6omw1NEWYzEdfxcY+Vx3oR0BDuTFrrw903EJCagCVDzqQ1c2iiCMsVFAqb55EnoZ6WISGLJ1lgJtDryY7R2kok4/x58i13dRGBnQtfrlRKFzIhIUT6Y2JoijwxkdR4vmI/MJAuZEwm74Mn6L4OH9fXmnX4W0ADaqXj+E370qntw9twdzHAX0h4mtUwmWwdv64EMIzNljMZLEvfh+Bg+tzDw4mgNzbSTMyePdMi1IUSCQql1+F/Cq7FIVUZ6o296DAOod3Qjw5dP9o1PRjSj0BlUKFmsAY1gzVuDz/CP8KB4E5Wd2MDY+ekCc/XAdNSZt35Z+19sxs2bMDevXsR6qE94bvvvouHHnoIf/zjH7F69Wq8/PLLeO+991BbW4vo6Gg8+OCDiI+Px69+9SsAQEdHB5YuXYqHHnoITz31FBoaGvDwww/j6aefxi9+8Qufjl1QZr+56FX1YtfpXXj1/KvWdq/poel4fsPzeKDgAcjEjmHv9UP1+MO5P+DPF/8MlVG1EIfsCI5Uv9RR4L4y4InzQNRscurAQFImwsIAoxGGrnbsiRrGvhzgUgzQHUixVxwD7z4FDpBagCRjAG4KWomfZDyIuGET+UzPnCGv6XQLsGYAjYRU1cmktclD3JW/gZTuyaQ1bZSBOCLKd2IaEfH1ayig1RJJ7e6maVs+d7Wujv4/Okp+4tmaAJTJbEp7TIytQ1RqKk0Jx8URcfUWK7VIMKobxavnXsXLpS9jQEOEsfqJauRE5szeTni1nie3KhUlErz+Ov0t8oiJAW6/nRobhIfPLqHmh31cmv1wdZ+n+/X6hfWOTxEaCdUJtAdTl732cBE6Qlh0BDNoD7KgI8AMtcT7axFxDOIQiCQmGIlsKBLF4UiSRiLRLxpJ8hgkKuIQ7h8BRi539qBPXkqli/5Cec6V2S+++AK/+MUv8F//9V/WBgdnz57F//t//w///M//jODgYDz++OP40Y9+hNdee83tdu6++24MDAzgX/7lX9Db24vly5fj4MGDiI6m9O/29narAgsAiYmJOHToEJ599lkUFBQgPj4ezzzzDH76059O52UI+IagdbQVL558Ea9des1q2s+PysfPN/4cd+beab3S5TgOF3su4n9O/w8+rP4QBssCV3FPBPev6QR+WArc0ETK5qwgIMDaJcg80Is9IX34KEeJS7FKdAc2Qe0rabVDglGOWzSJ2NYjx+ZqDcJa++jEaTkG4NjMj5n3+ZnNHk9iZgZoCwEawkht5ZefZVLxmC9xV1bSagxBUkgy2PQMYFk+sHIleWu/TqqpK6jVRFB7eki1qqujZIaWFrqfb3M6G90eGYZOsMHBRET55gIZGRT/k5REMwOhoV+b97tH2YOXS1/G78//3ppskhycjB+v+/GsNV6xgmVpNDSQF/aNN2yd6EQiYPt28sJed93iDN43mWjGxt7v6upCeMkSajJSWEj5zdHR9FxfSfJUCLW7dXmizUfZTSz9DQYsGaKZHIJ5YhA4UFOXjolOfVbSG2z7f1cgYBJx6MA4OjAOWDoAA2jYaS1yoy1TOmmMbidN/J+/X8Gf2lwVXnpb/u1v9LsQ472WZD4xLWU2Ly8Pf/rTn7Bu3TqH+0+ePInHHnsMVVVVOHz4MB5++GG0t7fP2sHOBgRl9puDmoEavHDyBbxV/hbMHP1wrE1Yi59v/DluyrwJDMPAZDHhWOsx/Oex/8Sx9mOwcAvkz5uIx4pTArdVA8+WAqmz1TfBz4/IV2AgtGMD+HvsID7IpY5RwxNdsbzZAwDndZb2A1e1Ale3AJvbKNprSrCPIgoJoaXJRGkBQ0MeW4BaGPqxtyer/LI5FDB6OCdHmKTIFcciNyIXOTF5yI3JR64xBLEtg2DKy6n7UlmZ+9az0dF0srQfWVlXRkC8UmkjqS0tpJDzJLWnx9budLZ8qiIRTeWGhREpzcsD8vPp/UpMJJIaGDg7+7oC0DjciBdPvoi/l/3d2nxlaeRSPL/hedy99G5IRLP8HdJqafr8T38iEsgjKQl49FHgO98h68ViglpNijFPXE+fpotie0gkwKpVNr/runX0G7dYwXd4m0Ryp7I06zTo0w+j3TiIDvMI2i0j6GDG0cEq0S5Wo0OiRZ/UNwEmVGsjuq5Ib/w4IPH0E9DURLGEc4w5V2abmppcbjgoKAjNzc0AgMzMTAzyeXQCBMwjznefx69O/Aof1XxkDbu+Nv1a/HzDz7EpeRN0Jh0+rPkQ//rlv6J6sHrBWsDKTFSl/+QZ4Fs1gN8siFyQSEjBCgrCsGoAf04bwydZOtREdmLUb6LJgCviaudpZTnAIJpYz27d7AHg6lYisFe1AlG+1LzZZ7ImJNASoNzXxkYirRqNyyYFFoasDZPJakMY2QL0Hn69ZCYgY5j8q5kTS97fGqkxAGgDwlVA+hCQ3gmkp9O4/Xbgxz8m1aG720Zs+cE3VPj8cxo8pFLKm51McsPCfHiTZgHj4+Q/7eqykdSmJkpi6O2l4pe56GDFsvT5xsWRMlZYSOrYmjV0gSIAAHCp5xJeOPkC9lTvsV4wr0tch59t+BluzLxx9uOcqqpsKizfElckIgvBY48B1167eFTYvj7g5Ekbeb140VnxDwqiAi2evBYVLb4oM0/gL9z9/OjvZRoQAYibGMVu1tGb9Ogc70THeAfax9rRMTaxHO+w3jeuH8eInJTgMjfiKgMGseJQJIpDkcSGIpELRiIXiCRTABJN/sgL9sdie/enpcxu2LABgYGBeOONNxAZGQkAGBgYwIMPPgi1Wo1jx47h8OHDePLJJ1FXVzfrBz0TCMrs1xMcx+FY2zH88sQv8XmTjWTcln0bfr7x58gIy8A7Fe/g/zv+/6FL2TXPB0ecMEINXN8A/OQksHRwluKxJirdu/SDeDVHjUMZ1O50XObBJjCR1So1UxtaBhQnNXn6fcnghPLaSssYT7ZhiYSKm/z9idhZLKSmqFQevW0cgD4FEdT6cEfS2hgGaD0IVRIzkDZiI6xLlBJkGoKQiTAkiMPABgaR6hcYSMc2OmprT+utoEUuJ+WBJ7n8iI0ldbO62kZwy8vpPldISHAkt8uX03Z8JRIcR0p1ZydN99fU2C4EOjpIPZ5NJdUdYmJITS0oINKelUUWgMXU+naRge8g+MKJF3Co6ZD1/psyb8LzG57HhqQNs7tDrRZ4/31SYU+etN2fnGxTYePiZnefUwXHkd3B3jLQ0OC8XkICsHGjjbwuXbp4yPcVjjHdGJFbF0S3Y4xu87MG7lD2vTIURHtvjjVTzHk0V11dHW699Va0tLQgMTERABVnpaWlYd++fViyZAn27t0LpVKJBx54YHqvYo4gkNmvFziOw6cNn+KXJ36JUx2nAFC3rvsK7sN3ln8HR5uP4jdnf+MxMmX2D4qmaLIGge+eBx4um91uWjXhwB9WAUdTqSONWjohrLojrrC1fnXnFwUoTurqFiKvm1uB+Fnq88ABGPR3bQloCANUHmqiRBYgdcSmrmYqJcgMSkVm2iokrdoK8aariGD6+U2NVI2P0/Q6T26bmmz/b2vzTA5ZlqZpeYKblkaEWacjklxbSyS3pcX18/39aao9P5/C8yMi6GKguZm8qU1NNOXPq6kzBe+ZtFg8v66AABtJzc623c7MvLJUsAWGhbPg47qP8cKJF3CmiwqsWIbFPXn34Kfrfzr7JKCykgjsP/5BF2wAEb9bbyUV9pprFrYYbngYOHQI2L8f2L3b+XGGIfuJfb7rldyM4QqHhbNgQD3gUd2t/H6lx+jK2cK85MxaLBZ8/vnnqK+vBwBkZWXhmmuucSjYWowQyOzXA2aLGXuq9+CXJ37p0K3rjpw7YDQb8Un9J9CZ56mvO0dZrptbSHVd1zkLqqu/P8CyKA1W4c+FwIlk8ohqJfDub/Wwc3+D47S7/e3IGSYjDMtdk9WGcM+NBFgOSB5nkTlgsZHWiWVKaCoka9fTFOP69UBu7twrNEYjEVp7oms/vBHMiAiqro+IoOnSsTHKsx0YcPb+zQQiERVl+PsT2ezoIKV0cNBzYVZiomvSGh8vqKwzgMFswO6K3fj1yV+jdrAWAP0mPbLiEfzTun9CWugsegw1GuC994jEnj5tuz81lVTYb3/bZumZb3Ac2Rz27wcOHKCMV/uLKJkMWL3aRlzXriVrlAABk3BFNE1YKAhk9sqGwWzAP8r+gRdOvoDG4UYAgJ/IDzGKGHSMd1gLveYME4VaKSPAA+XAD84CETMVz2QymP0kOByjxd/yzDiTAHQrJvJNp8EtpCYgfcSRsC4Zov/HKV1s0s+P4qPEYiJe4+NUiOUCYzL3Cuuwh1bxDBgkIhiZBgUy+0zIrBtAZr8ZmcOkvMrMIHVy5UoirevW0VhkFbPWadIzZ4DLlylqrLmZfH9zNd3Pt34ViaggxBe11s/P1tXMnrQuWUKWCwGzBrVBjb9c/Av+9/T/omOcukoFyYLwZNGTeGbNM4hWRM/ezioqbCos3wRALLapsNu2LYwKq9VSy1uewE4u/M7LA266ibqIrVnz9YuoEzAnmJMCsN/85jd47LHH4Ofnh9/85jce13366ad93awAAT6BP2H8z+n/Qed4JwCABQsLLNCZdWgda52bHU94S4s7SHW9vgkQzeTyTyKBWSbGnlQddi/lcC4W6A/QwyzST4m4iixAyqhrwpo05sMxSiREWDmOpsftWjuqpEBjjDNhrQ8HBpz7STggThqOzLBMZMrjSWFtHEbmuWakX2qD3DQKYNS2ckQEEVaevK5aRSRsoWDvT21uJl9sTQ2RV/tK//m+/ucjf+zBMGQLiIggTyRPWHNyiLQmJV0ROatXMoY0Q/jd2d/ht2d/a22+EqOIwbPFz+LxlY8j2G96hT5OUKttKmxpqe3+tDSbCrsQF33t7URcDxwAjh51vMjy8wO2bCECe9NN9B0VIGAO4bMym5qaivPnzyM8PNxjdy+GYayJBosRgjJ7ZWFUN4rfnf0ddp3ehWGdm6ik2cSExzRtGPjZceCh8hlku4pE0MpF+EuuAW/lU1i/UuYhUcAFYpTA0kEGmYOcA2FNHSWS7WqfEIu9BopbGMou5BsH1EYAf1kJxCqpDa0nREtCkRmajsyYpciMyEKmIgmZXVpklHUi4NQ5mvbkK6jtkZvrSF4zM+dvWttkoqp+Pti/qoqIaksLqapKJZH6mUAkIhWVr1pmWZru5wvhZgqxmD5TTxaCLVtshWbLlhG5Fbojzio6xzvx0umX8KcLf4LaSJEe6aHp+Mn6n+DBZQ/CTzxLF2RlZURg33zTlqsqFgO33UYq7JYt83vBYjYTmebV14oKx8cTE23kdcsWsr8I+HqBb7oRFDQv3z3BZuABApm9MtCn6sMLJ17AK2degRFTbWg/RXBAsA7YWQ7855dA+DQ4jUHMoCwWeKWQQ0kyEUJrdJQXviY2E4lc2wEU9tr8oukjgL+nlx4QQD8qej2RMaPzyiYWaAoFaiIdu17VRgAaDxwnQhyEzOA0ZMYuRWZkNqmt4ZnICMtA0KCSqqVPnaLl5cvOtgS5nKYTefJaXDy3MVVjY6QUNTQQCaiooNu9vUQEZtoulW9jad85R6ej/fraOMDPj3yprkZcHO1DpSLCPdmnO92YQ7GYCO2KFY4kNzx8etv7BqN2sBb/ffK/8Wb5mzBa6G9tecxyPL/+edyRe8fstBlVqYB33yUSe/as7f70dCKwDz1Evuj5wvAwcPAgkdeDBx2zl1mW/K433USNF/LyBM/1YoHZTIo+fyHt6rZSSb9fo6M0eIuZ/XpaLQ2djn5D+d+68nIqYJ1jzHnOLA+DwYCWlhakp6dDLBb6BQuYOc51ncMj+x5BxUCF95WnC45inda3Ay8eAlY5R5y6BN9Zqj4cOBcPfJIJ1EXQtLyF4TyT1olWtGFaYHkv8K1KYEUfEdcgD63RARAhCQoiMqTT2YirWk0DgE4M1EfbyCpPXuvD3TcQkECELEUycmILkBNbgCXhS5AZnonMsExbpappogXtVyeBU/uIvLpqhBIfb1Nc168nwjRbTQRMJsp8bW2lYykrI1W1vX3m0VQMY+uzLpPRe22xOLy3AGxtOO3vs0dUlHuiypPVmXSwGhtzTl+YGOredry2nMMzNwCv7ge2tJCCzwC2z2+yihYaSraEVavoMyssnFpk2DcIZ7vO4oUTL2Bv7V5rJvVVKVfh+fXP49r0a8HMlMD19dE0/RdfUHclHhKJTYW9+ur5UWG9FW+FhgLXX08E9vrrhYuimcL+t4YnkZPJp0pFZHNkhH4HeNKpVNqeq9HQuYEnnW5qHmYNXV3zQmangmkpsxqNBk899RRef/11AEB9fT3S0tLw1FNPIT4+Hs8///ysH+hsQVBmFx/qBurwg09/gCOtR+amgcEEz0wZBn5xHPh2me++14uxwP+uBXYXeG6F6rAvDpCbqEjspkbg6VIgwZeYK4YhRVMupytgjcZJUVRKSVWdrLQ2hwIWN+c6f0aKnMA05MQvQ27sMuRE5iA3MhdpoWnOatLYGE0l8srrmTPOU+QsS2TVnrwmJs6MqLW32yKtysuJqPHT/9NVVXmiKpPRcnCQTsbj476rqXK5a2Jq///Y2AWZyh/WDuO3Z36L35z5jZMFJ97ghy29cmyt0mBLjR6JLrp/OoFlqRAwLY3yZNevp1inxVaENw/gOA6Hmw/jhZMv4GjLUev9t2bdiuc3PI/iBHex9T5AqQSOHQOOHAEOH3a+0MjIsKmwUVHT34+v8LV4a/t2mmH5JgpXHEe/Q7yiaU80+aFUEukcHrYpnUqlbX2NhoZWS7NpfFvcxQCWtbW25c9B/v5ULKpQUKOHoCBqhBISAjzxxLx0XJtzm8EzzzyDkydP4uWXX8b111+P8vJya8bsv/3bv+HSpUvTPvi5hkBmFx4cx+Fs11k889kzONd9DhbMQQU4BwTpgPsnrANhPloHzAD+tgz4nw0U2m/2JFRNqK2hE2rrty8D91RSpxaf4OdH6gv/w2aHYbkjWeXJa4eHmpIQ1h+5wZnISViO3NgC5EQQaU0MTnTdYWhkhDIqKyvJKvCnPxEBnPyTEBRE04k8eV2zxveKeF5VbW6mk/alS6SqdnbS/mfSlUostk3/syzty13zAlfwpqbGx9MP9yKbOu0a78JLp1/CHy/80erZTAtMwu3BxTjPdeNU71mn0PMM/0RslWZhiyoSVzdZEFneSEr38LD3gja+i1t8PFkWVq2ikZ5O932N1FyzxYwPaz7ECydfwMWeiwAAMSvGffn34Sfrf4LcyNypb9RopIvCw4eJwJaWOitnK1YAW7cSady0ae5V2K9z8RZf1OqOcKpUdEE7PEy/QfZT7PbEk59e53+f57oxiS+Y7MuXy8luplDYGsQEB9MIDaUl3zSGX8/VcpG24p5zMpucnIx3330XxcXFCAwMRFlZGdLS0tDY2IjCwkKMj/siAywMBDK7MDBZTPi04VM8d+g5NI00zf4OOCrUWt8GvHQIKPTROtClAP53HfBpJqmbRr6Nq4vtS01ArApY0wU8dBm4rtFH4uqKINIm0atwJKs8ee33wBWj2SDkhC1BbuJK5MbkW5XW6IBo11OeGg1V5vPEtbKSiGV3t+sdpKc7FmotXer+5Do2RpmsNTVEiMvKiLj299NJYbrKA8vayCpPVH1tICAWE8lKSCDFOCGBhj1JjYm54gqj6ofq8eLJF/F62etWz+YyLhrPn5PhzoPt1kJFbW4mTm5KxdF0FkelXTg3WmVtocqjILoAW1K2YEvSJmxm0xDU1kuE6+JFaoXb3U0nd2+nB5YlhSYtjaYdMzPpdloaZZ5eIS1t9SY9/lH+D/z3yf9GwzB1pPKX+OPRwkfx3NrnkBQ8hRB/i4X+xnjltaTE2Z6SlkYxWtu2kYVgrlUuX4u3tm+n45mv4i2Oo79rd4on7+scHnZWPPl1JhNPo3H+E0cmQyy2zQrxSmdAAI3AQBIIeKUzNJSWgYHuCSffXfEbporPOZn19/dHZWUl0tLSHMhsWVkZNm3ahDE+/24RQiCz8wedSYe/Xvwr/r3k39Gv6Z/djU9YB5JGgP93zHfrwP5M4PdFwLk4YMjfQ7IABygMVJT19Blgu4uOi07gkwTMZgflhU8OcKW0emomkKQUIUccg9yMtchZtg250XnIicxBmNxNIZXRSEVPFRWOxLWpyf2Pe3IyTSPm5ZHiunatbVqZV1WbmoioXrpEVoCuLjqpaLXTP2mIxfR+8RX/vloJZDIbOXU3oqK+VrFUF3su4oUTL2BP9R6rDWdjrww/O6zH9Y0TX1+Wpdfuws88Fq7AsS1pOJrjhyMB/ajQtjo8LmJEWBW3CltTt2JL6hasS1wHuWSi41djIxGy0lL6XrW2kprl6+ceEmLrkmZPctPSKD5sgRUhpV6JP174I146/RJ6VD0AgFC/UDy1+ik8teYpRPj7SDLb2uh9OnyYlM7+Sb93kZGkvPLDQyLQrGEuircmT7XbL5VKG+kcHrYVF/GPqdXU4S483KZ2zrQwczbA25D8/Igw+vs7kk5e6QwLo+9zcLCNYE4ePGH9Gs1WLCTmnMxu2rQJd911F5566ikEBgaivLwcqampeOqpp9DQ0ICDBw9O++DnGgKZnVuM6cbwq+O/wqvnX4XSMEv9UHlwgEIPPFAG/NdRINRL4dSwDNi1FtibDTSFeemeBfK65gwAv/wCuKXBw6oMY/uxsiOtfHLAZKXVU3IAa6HUgpwBIHcQyAnOQO7K65G9/dtQ5K90/SSLhU6evMLKk9baWvdKaGQkKWc8cc3LI0IxPEzbOHuWvKqtrdSpSq2emapq30LV12IEudxRSXU1IiIW3bT/XIDjOJS0leBXX/0nPm+zeTa31wHPnwDWd4Der+uuo8D87dvpvRkcJOJZWkoRaWfPOnme+wOAr9bG4kiBAkdDR9FoHnB4XCaSYV3iOmxJ3YItqVtQFFcEiciOdOr1pMRfvEi+6gsXSM3VTLGFHN8WeDLJ5Ud4+Jx91gPqAfzfmf/DK+dewahuFAAQHxiPf1r7T3h05aNQSL3YaIaGyGfKE9imSbNN/v7A5s2kvG7dSn97c32B5a14KyiIOm+tWEFZxGYzvY6hIVtF+/g4jcmFRYthqp2fYp+sdvJT7JPVzrAw+r874qlQ0La+Ab8nVyrmnMyeOHECN9xwA+6//378/e9/x+OPP47q6mqcOnUKJSUlWLnSzUl4EUAgs7OPHmUPnvv8OXxU/RH0Fm+l+VPAhCd1fTvw8mfACi/i7ldJwG+LgVOJFO5vdqW6umj5mt8HPHYBuK8cCPXBW6sTU0rAZKXVY3KAhUHWuAQ5vWbk9pqJvA4AmUoJ/FauoZPe9dcTYZPLSSWQyYhYTrYHVFW5r6pXKGxkNTeXSKzZTIrIxYuktPFk1dciKHswDJ2UGYZObL6e3BQKz0Q1MXFR+lPnGxbOgv2lb+BXX/4HSo0tAOiC555K4KcngQJLJHDzzURgt23zPh1sNtP35fRpGqWl9F2wQ3swcDRLiqOFoTgSrUY340h+FVIFNiVvwpaULdiathUF0QXOHmyOIx90WZnNbnLpkjPJmwoCAx1JbmoqxVKFh9MIC6PlFKbEW0db8b+n/hevXXoNWhPZVrLCs/CT9T/B/QX3Qypyc9Wp0QAnTth8r5cuOarTIhHNbPDWgTVrpm5j4T3frpTPsTEinfbT7ePjpJL39tJFjEo1vb/puQA/zc57O3nFko8TtPd18sMT8QwI+MZNsS9aWCz0Oz0Pv9XzkjPb1NSEF154AWVlZVCpVCgsLMRPf/pT5C+yuIbJEMjs7MBkMeHXJ36N/zz2n9CbZ4nATnwTE8eAf/0K+E4ZtY51BZUY+O0a4P2lRCLVUri1C4gtgJ8J0EhsFf/+BiIIj10AVne5fqpBRKpqeTRQGWUjrx6TAwxAziCsZDVnkJZpIzNovuAKDGObDvPzo/8bDLZcQC9NEzxul/f4TmUq2RU5tf+/8LfmHhwHY2UZ3tn3X/j16AFUBRLJkpmA71wCftydgrStdxKBXbt25lOYQ0Pkj+XV2zNnrIVzHOjv6WgqcDQ/AF8mmDAkcvz7DpeH4+rUq8lzm7oFS8KXuI+nUqlscWo8yS0vd6/i8krZVBpY+PnZiK09ybW7Xemvwq/HDuDtviPWlter4lbhZxt+hluzboWInfSemkzA+fM23+upU85T4kuXUrHWmjV0m+NsU+ojI0Qwh4bo9siITfXko5cmV7YvFBFlWWfFk69k5xVP3tcZFmabbucLi/j17ImnMM3uHRYLzX7xdgv+9uSlr/fN12MWCzWbSUmZ87dozsisr4Vdi5kkCmR2ZqjorcDt792OxpHG2dkgBwQYSBX99WEgxA0vPhsLvLwWOJYM9CloSt+V6sqAGiBkDQAJ40BZLNBoF4VY2A08ehHYWWHLd+VA2yyPBsqiaVkeTWqrO6U1xCJFriYAOS0q5HYbibxyEUgMTQbb20cqlT0UClKVQkLox4CvntVo6GS2WBSVyQgPd09Q+aIqX5MNBNhgNgOnTkG7bw/+WrMbLy4ZRFsIPRSoB57ojMUPs7+NmNseoDzYuVRBzGayDdirtzU1AMjvXR5N5PZIhgjHkgGV2PG7Gh8Yb7UkbE3disTgRO/7a2oiYmtPcif/zfDw86PvoUxGhFGvJxKoVHq1sJxKBH61AdifZbtvWxPwsxPA1f3+YAKDbNPNfNA8X9U+edaBYUgd5Gcl5jrL01eIxfS7EhNDf6Ph4Y7EMzzcRjYnE9CAgCuuENItJpNDd8OXdWay7smTFF3ojSwu1t98X1BfT8Wec4w5I7Msy3oMiOY4DgzDwLyIPySBzE4dOpMOz372LP5y6S8wcTP8Aedo2nRNJ/DKAdfWAQMDvLoaeHcpUBVFLWDdqa4SMxCvBK5uAX54CugNBv5cSD5Z0wQRDdQTeX30ApDXTworT1jLYmg5EOD6cIMgQ4EiA/kJhViauprirs63Ifpffg2mrn5ipSBSM/omRSgUFJBiExJCj1VW0jS/u6l5uZwUDb4gaq7/jnhfK0D7cvVTkJVF2ZJr1tAyP1+Y7psuNBoKxt+3D6OH9uHV9GG8XGz77kUapXg27EZ8//ZfISQle2GPdWSEFFue3J45A4yNwcgC5+OAI2lEcE8lMdBPqrzMCMuwWhKuTrkakQGRvu1zaMhGcHmSW1XlnTTyXsqJ7yXHWfBZigkvrDbgeBIdG8MBd1STVWOVmxCPOYF91jGveNr7PIODbR5PXk0ODaW/xcpK4Nw5UoVHR23b5Iu3tm+nAq657rzF/x7ZF2358n93980VkVwsFxczAd/ARSq1xQ5OXs7lfXzLbP79nPxZ8v7pJ56g7+4cY87IbElJifU2x3G48cYb8Ze//AXx8fEO623evHmKhzx/EMis7/iq5Svc/cHd6Fd7Mat6wsS3K24c+PcvgYddWAcqI4CX1gFfpgJdQYDRleo6sa0gPZDbT+T08fOAlAO6A4G/LQdeKwRaQm2rr+gGNrcBITrq1FUeTbYBswuLAGsBMrlQFMStQEHmBixLWIWC6AIkBSfZLuCOHQN+9CM6wQDOkVsiEamvLEvVzO4qdfntzWV8DF/dnpRkG8nJjv+3//4bDEQg+Onn0lLXfkd/f2DlSiK2PMmd9PcvwA4DA1SQs28f8Pnn6BVp8XIx8PtVwPhEkkWyJBI/3vhTPFz8hC1FYLHBYiG1lrcmnD4NVFdDKyb182gqEdxzcc4WnPyANGwNyMMWSzI2qcIRPKyxZXy6mnq3j1iaQsGRiQXeWwq8sAGomOj4KjFTjN6PT1FXNJ/AF3jyF3ocR4RuJsVPUqlrK4R9LJNCQYrXkSPkb7ffX2Ag/d2tWEHkVSbznUBOh3Ta/38x5KtOBwxjSypwRRI9jemuM/m+qZBJkWjqFyVms/t0CVdpE76s68vn3dREPvY5xrx4ZgE4xHJdKRDIrGco9Urs/GAnDjQcmH43Lg7wM1LqwItfAMF2nM4M4O/LgdeX0wlnzG+C77qwDIgtQIwK2NgG/PA0sLrHbjsMcDAD+PNKYP8SG0GVmoBINXXKGnfDC0K1wLIhMQrYWBQkrERBwiosDUiBv8SfflD4YTQSKe3pAd5/n7x+iwWBgc7k1P7/cXEzV1AHBqganlfmzpwh4jEZCQmO6m1h4fzlVC5GNDYSed2711pR3hwKvLgO+NsKQD/xseRG5OD5DT/DPXn3OKYFzDf4rE9+el2ptBUXDQzQ4IuP7Ntpjo+TYqhWW60yYzLgeDJwJJUIbvmk5mEiCymjW1porG+nbnnTBstCKxfj78uBF1cb0RJMv1kKA4PHK6R4tpRB/NAUCRnL2iKY+KIk3ptuP5PBtzfmOztNrvzn1a2Fzjz9OkMqdVS6FQpbgRn/2fHNBOytFpNv8////9l77zhH8vLO/1OlnFvdkjrn6clpZ3dmZ3dmA0tcsrE5B2zA9nG+3wH2nSPc2Qdn3xlnY8DGJhjWxkQDi2HZXdg0O7OTc+oJnbNaoZVzVf3+eFRdJbWkltRSp6lPv76vKuWSWqp61/P9PM9TT8uFaJGpFXSGw+XX3q5GYnmy7OcUtxlxycXjUmMS/+1/Pg2mcxk7UQ2kwGwJKTC7VIIg4GtXv4YP//jD1ZXTEija+sAU8I8/yrUOjNqAvz4CPN9PWdOpEk0JTClgmw/4uRvAR88A5sySu+B0ByV+/XigdI1WgA6c27zAXjeNfdlle6hkha61F8MQjJaCVZtt9TP/eZ7Kf8mjt9evLwUFtZosFvLo7cDA5q1UwPOULPT00wSxN28u3nS1Gfjzt9vxzc4A+OzJ4eGOw/j40Y/j7VvfXrgzWzmSA6h8iPDp9eZ2OCrU3WgVWmp6jDTj8lJ23G3KvV2bAR6e0+D1bgOemDfjYMgCjTobqVKrpXrEAH3Or71GU+wchwCbwuc75/Dpfg/m9WTJccQZ/NZ5Nf7baQ6N0Q0aURSbhcg/A/FzEGtZyy+LA5AqjIjR5EyGhgjf8lGg82DFUqmkpDGxI5VoqRArsogVDfR64F//FfjlX861B4hR+HzbQLFkpAoj9hWJZaXPXf4/KLYU11Uq6bpnn6VybIXgs15WCLV6qS+60LKc+5jNEIxGDAdHcXrqNM5MncHp6dO4PHcZGZ62f/y3xtHVUEEjkSqlwGwJKTAryRPx4K1ffyvOz56v/MHZyOkHLgF//yyg4yjq+u87gS/dD1xsBRb0gFCkPJZKoAjqw5PAR08Dj+fVeo9qqILA1WbgUgvwSg8dCEUfbL4cMYZgdU5YhNedXgZ6VxvV3zQal3aaWUkr1ZXIaJTAtBCwtreveTH5shWJEMjJAXdubun9GhsJasXo7aFDNMW6UZVMUp3Rp58G/uM/KHovSq3Ga+/Yh089kMAz6RuLV7+5/834+OHfw6MN+8D4/RJ0zs5Sc4r5eQlAxS5HYrQvkZAifSud8l5DTdiAl3skW8J03i7YnAQeHZcit/vcS21Js2aQVeNg1k8PoCtAVoJfuwQY68fmihTVRgZDVZBZ9DFa7YqCBYFEAOemz+H01GmcniaA9cWL+3K+8PYv4EP3f6jq1ytXqwqzYsOEjaJ7HWYFQcCfHf8z/J9X/0/lJbUEQM0BHzkN/OWL5G3964eBr++hclVJNYpGXQ1pYIsfeNct4H+cAhqzL80zwLgtNxnrajMw1JgF4QIyCRrs5114ctqIB06PY+9ECi2R7EsbDASFej1Njc7Orn7WaGtrcZ9qdzdB3GaNUgoCMDkpge2ZM1RUP1nguyYml4nR27VOLstkpKilOG0cj9NU8sICva9Tp6jG6NBQbpSFYSAY9HhugMGnDiZxvIO+c4wA/NxNanRwYLbI696jEkAnqC/1ki3h5V7qyidXYwx43RjwxDiLffMM/nWPgK/u5RetGrvmgT84QWX2NCLfq9WSV1Jshyyvj5y/LDSWuw2Qop2ZTG7CjLgUI4mraTOQt1EVl/lDrP8qj5qKfk35AOp3nbguKv+61b6N53N9wuJ6Mpm7Lr8u/zaxykaxGuBdXcD+/cDBg8ADD5D/ubm58H3rqAyfwY35GxR1nT6D01OnMegdrOg5fvDzP8A7t7+zTlsoqW4w+573vCfn8g9/+EM88cQTMJlyU8G/973vVbC5q6t7FWbveu/izV97M0aDo5U9UKCpwI+dAP7oGEVDvnyAEqkKwmvWctAUo/qt//W81Ao2rCWf7GIlgWa6LEZXSsmqNuE90W787ksJ7Do7unY+NBGWi8FqRwcdJBRJqiS57IEHpOhtqeQycZpd7uEU18XLoufT66X1F1+kMlfRqBTtFOFjBSc8GZZmJP7sKJ2QAVLi0e+/Bgz4q37q2kheR1SenFIKePJHoSnj/CGfapYvdTqpckYhmIxGgXPnwJ85jWtXX8CLCxfwUnMMx7qBSJGf0kOTwMePA28b04B9+AhN677hDfT9WU/VNjiOmi088wxw7Bj57vNr6KrVSxuQ6HQEmIJQXmWTpiZgyxYa/f25S6dz8548r0e53XTCe/GiNEaLHHfb2ijHQD46Omr6/5oNzy5C6+mp0zg3fQ6xTIXd+vL00vtfwut6X1ejLSyuusHsr/7qr5Z1v6985SvlPuWq616CWY7n8OFnPowvXvwieFQwLSlQwfY/eQFwxYF/OEjQWbAdrABoOWoK8LbbwP84DbRGKVKbX7d1pLHwy2k5Bn1CA1QGA8YzPkQEiuIxAvDGSS0+dCaNd94SoF2NAKvBgExfD6YGmjHSY8OIS4MRK4dPeb+PmQ9cQ2v3LuXAsFKJRbdffZXA9tIl8t4WSmYQ+6WLB3x5FGSNlVADT+0D/vIItUsGyPf9X8/T7EN7pfZzvb54sko5l00mCSDFodOtL7grR4IADA0hffI4zl/4IV5yn8ZLhjlcbAEemgI+5h7AI/e9C8wb3ggcPbr+kg0nJqROYS++uLRkX2MjwbcI4KJNLxCgEyu7Pfd/Jgh0UjY8TGNoKHfdk9uOeInM5qWA299Po6NDaXCwGlpYoP2cHHJv3y4clHE4JLC97z5a9vWV1Q45kUng4uzFxajraxOvYTo8XfO38/z7nsebtryp5s+br1WzGWxE3Qsw++rYq/jZb/8svHFv+Q/KViD41fPAjVbgYhsQKdRVK+uV7V0Afv468OEzwJBTgtYrLeR1jRZJCm1LaLBPcGEv04rtcRPcwRk8q5/EsRYpWtEaJu/br18EegOVvvtlpNEAvb0I9XdgpM+O4VY9RuzAiD6GESxgJDqFscDYotFdrmMfPIZHux+t8QZtMKXThSOhwSAdjOfnpex3MQNeLL0kJh1t8HqQYS3wjw9QObm5bL+IpqQKvznVjo8sDKDR2LQ8eBbyvm006FxNRSKUWNfXRwf79SS/n/zTIsDevZt7u8EAPPKI1Op2376ywKRshUIS3Mphd2iIGlGUOsRrtdQmWA644npPjzLLVE9FIjRjJY/g3rxZeP9otUpgmx3C1q0YCY3j9NRpnJo8heOTx3Fj/sZih7taigEDs9YMp8mJbls3/uZNf4P9rftr/jr5UmC2hDYrzCbTSbz7W+/Gc8PPlf8gAdClga0eYKIxWx2gSLJWZxB48jbw5DAw3ARcaAUutJHdoJC3VZcBdocN2Bu3Yt+CFnuHIthzewGOGDUt+OIB4F/2Af5sUIXlgSeHqLHB2+6uoPUrywLd3eD6ejHV78BIhxkjDhYjxiSG2SBGErMYWRgpaW4HAK1Ki96GXvTZ+xbHz+74WXQ3dFe5YetAqRQBZz6ALixIECoOsf+7mP1eRd3PdScx6UKMYopg7vHkZvSr1cDOnWRzOHqUoldmMzyaND4z8W18bvApBJJBAECHtQO/89Dv4EMHPgSTtkjnDUWbS/E4WQfEVrcXL+YCI8tSgqMYeX3oobWDwkQCGBvLBVwRekdHS1eyYFnqKFYsqqt0/qu9EgmapZID7tWrQDKJoA44204VfV7uAc63l2fRK1c6lQ5Nhia0W9vR39iPPa49eKDtAex07kSbpQ0swyLNpTEWGMOWxi0lG2jVSgrMltBmg9l/u/Jv+NCPPoR4pox6c9n/NMsB+hQQNxQA0azntTkM3D9HjQdGsvB6uwi4tocZ7J8VsM+rwt5pDnvd5BOUA2lMA3xnJ/CF+4GTsooenUGKwP7aJaCzvG7J5KPcsgXh3naM9Fgx4tRg2JrBiCaMkdQ8RgKjGAuMIc2XTmt2Gp2LoNpv788B1zZL29J+7WupTEaKhsqB1Oul6gHz89Lw+ei+Yg1MMRllo/3UVarc/vBWK0XWxVqNYkWAQn7Cri6KZDz4IHDkCC39fuCHP6QKBC++mFuWyOEA3vEO4F3vAt74xpyp64ngBP7q5F/hSxe/tPg729a0DX9w5A/wvr3vg1a1SdqBKiosjqMkRjHy+tprS20uO3dK8PrYY6vSHWnF4jhKaiwEukNDtO8opebmpdFccdnUpNixViCO53DDcwMnJ0/iJ3efw2ujr2I+vVCz528yNOGBtgfw3p3vxcOdD6OnoWexYQvHc5gITuCO7w7u+u/iru8u7vju4Jb3FsaCYwCA6f8+jTZbW822p5gUmC2hzQCzwXgQj371UVydL6OIvyBbivuWAgDbEKcp/fYQMNRUAlxDwP0zwP2z0rIlUvzlrzRTY4Ov7ZXqwqp44B23gf9yAXjTMEV+c9TUBGzbBq63GzO9Dgy36MgKoIthhPdhODiKkYUReGOlbRQaVoOehh70N/ajr6EvB1b77H2w6CwlH18z8TyVWZJHQwMB8tLNz1NZprk5KVFJBNF4fOOBqFYrRT+tVio+b7UunWKX36fYbXr98gfEVIoiF/LqCUNDS+9nMCz15G7ZArz73QSwDz20xDt403MTf/7an+Pr176+aDt5oO0BfPzox/Gube9aXyc7imonQSA/oxh5feWV3HayAJ1Qv+ENkve1rf4H9lWVIND+KR9wxXVf6ZktWK2Fo7nbtlG1F0WL4gUeV91X8fTg0/jx0I9xy3ur6nrvWo58+yoBCOiAjMy5tD9pxy/bHsEvHHg/Wg+9HtMIL8LqXf9d3Ji/gRueG5gOTS+bY/OZN38GHz380cq3sUIpMFtCGxlm/++x/4tPvPKJ5ZO58gG2ALwa00BjnMByoqEwuHYEc6H1/hmguUjVEbkiWuCbu8lKcLZDur53AfjPF4FfvQS0ZvRAXx/Chw9gdH83RpxqsgJgASPhcYwsjGAsMIYUV7qot8PokAC1oY/ANXu53dK+cuAQBIpQyKOhfj+V/JqdBaanpSl6sTi9WBtUzJRfz1PzDEOgJ++cIw4RNMuFUbN5fSSTeL1SxzIRcMXOZQ8+SPD6rncBO3YUhOWz02fxqROfwtO3nl687vW9r8fHjn4Mr+99/apMrylaZc3MSAlbL7xAv2u5bDbgda+TAHbbtns78hgIFI7mDg8v/ezy1ddH0evHH6fRVf/i+2utUDKEYf8wzs+cx4XZCzg3cw4j/hGEUiHwQmXHBy2rRaOhEb32XhxsO4g39r0RPHj8dPgn+M61b8GdkII8nSEGj48I2OoD/HpqN33bAXiNgLCCXfVHD34Un3nrZ6p/gjKlwGwJbTSYHfGN4Mg/H8FcrEAhernk/8UC8KrhqA5jXLMycOUYSnqZsEljygp85jDw8VcpAeyVHiCWnXnVcMCbh4DHx4CG5m6MPdCPkU4zRtLzGPYPwxMrnYmrZtUUXc2zAYjDqlvmf8jzNCUtRkPFIvXT05R1PDeXC6LyiOh6BlExy99spuhnQwNlQdvt0pS8HDaLLQ2GzX9Q5nk60FqtQEtLwbsIgoAXRl7An732Z3hp9KXF639m+8/gY0c/hkPth1ZraxWthoJBKpUlWgdkXdsA0AzD0aOSdeDAgdon6AkC7Yvu3KFI8O3bwN/+LfDJT1I5LZeLhrhut9c2caxeisXIj5ufjCb6dPP3qb29Etg+9hiVO9xg4ngOk6FJXJm7gnMz53Bj/gZGAiOYDc9iIbFQMKF4ORk1RnRYO/Bwx8N4Y98b8fq+16PZLNWlveO7g69f+zr+5cq/YDQglf5iwULFqpDhM9W3pF9Gn3/r5/FfD/7Xujy3XArMltBGgFlBEPAr3/0V/NuNf1vmjtllAXhlhCLdt0A+1XyrgCsLriFdLqjKx6SVwLVYF658MXzxbZCrydCUA6hycO0wtkAViRJsihHR8XEC0elpKVlJzJiPRnNbHq6nr7dGQ/BoNBJINjRQmZ7GRrJWFIqGFlreCwC6SuJ4Dk/fehqfOvEpXJi9AIBOoN635334gyN/gB3OHWu8hYpqomSSGl6Ikddz53K91gxDwCpGXo8cqV3Jr1iMKhyIwCof4Qqmk1Uq8nbnQ658XX6d1br+9hPhMHmOX3mFxvnzSz3vPT0S3D7++LqBW17gMROewZW5Kzg1dQpX5q5gaGEIs+FZhJKhqsFRr9Kj196Lx3sex5NbnsSB1gNos7TlzABNh6bx2uRreHHkRfx05KeYDE1WBci10j+97R/xXx74jbq/jgKzJbSeYfbVsVfxuqdeV9pGIPe+lrouKzm47psD2kIUNc0H1fHsMqyv0ZspQ460Br0xLfoDLHr8Anr8HHp8HHq8HLoCPAypdfDVZFmp/7bBQFnwFgtFSUQIbWykyw0NdFm8TR4hNRrX34HlHlaKS+FrV7+Gv3jtL3DbdxsAYFAb8KEDH8LvPPw76LJt/qnPTS2ep7JHYuT11VeXeqYHBqTI6+teR7/Zlbze1FRhYJ2YKP44lqXI5LZtNEwmOkEXkznF9XzPbjnSagtDbrF10xpU4ygXbuW2hJ6eum2OIAiYi8zhqvsqTk2ewmX3ZQz5hzATnkEwEaysXnueWLBoMjZhf8t+vKX/LXhD/xuww7EDDMNgJjyD297bi00Nbnpvwh1xI5aJVWxDqJlKcMXHun8Zn/rgv9Z9ExSYLaH1BrOpdAp7Pr8HdxbulPzylKOOIDDgA9rCgDVJVQncZmpgMGkDvAZAqNMsFcMD++aBrX4GvX4BLWFAn6HIbCQLz2MN0ijW2UeuljDQEyg8uoKAodSJqbzDkNiqUbwM0MEnk6FRj58Aw+R2TZJ3T1rN69aDh3UdKZqK4osXv4i/PvXXmApNAQAa9A346KGP4qOHPgqnybnGW6ioao2MELy+8ALw0ktLk5RcLqnW6+tfX51XMxwuDKx37hRu+iGqsVECVvno7y+vbFcqRRapfMgtth4pkZVbTAZD+eDrdNL+pdYKh4GTJyW4zY+gAxSplUduK4RbQRDgiXlw3X0dp6ZO4dLcJdz13cV0eBqBRKAmdVo1rAbNpmbc13of3rblbdju3I5gMogh3xDOTJ/Bdfd1TIenEUlH6lIXtt76nwd/B//vrX9V99dRYLaE1gvM/umxP8X/euV/VQ2w1gRlLXIsEFNTtJWvNahmy3RpOEoYsyYBVwToClHHr94FYKsf2OEBWiPlvw0BgN+QC7f5oxLY7Q4uhd3uwDKwW0gqFUVQjUbJDiAOlUrqPJVISEv5eqmajWsllao86DUYgO9/H/j4x5dGc5xOGtqNW4LKF/Phc2c/h8+c/Qz8ceov22puxW8/9Nv4jft/Y/UqWyiqnebnCVpF68DYWO7tZjNF9ESA3VVm9z6Oo+cqBK2zs8Ufp1ZT5n4haF3tRg/xuAS2y4Hv/PzSFrvlyGIpbnHIX3c6aXarUkUiS+E2v6lAV9dSuGUY+ON+3Jy/iZNTJ3Fx9iLu+O5gKjQFf9xfM4BUMSpYtVa4TC502DrQae1Ekkviuvs6JoITCKfDaxdZraP+2wP/DX//tr+v++soMFtCawmz88F5NP91MyBCZyX0V6sZahmgGtJAQxJwRsmOsNVH9WG3+ghQm6rYv9VoE7Egh90mFY1GBmNWAaPmDCKa5XcQzYwFPWoHerQu9Bha0WNqR4+1Cz0NPehu6oPBbM8F1mp2tnLxfC7wykG31HW1vv9yfdyrlc1W+OBVaOlwrPzzrESZDEXisgdp/9woTsyewbHQNbyaGcZFjQd89jfUnzDi96d78IH5NugEliLz8gGs3+tK3WdiAnjrW5eCVEvL5rC4RCLA8eOSdeDKldzb1WoqsSZGXg8dKv0d9PsLA+vQUG4N4ny5XLmf7/bttOzt3Zhd3ASBcg3KjfrOz1fXxc9up9KDR47kQm7+SbO4/yh08pwHt8GrZzHYwOFkJ3AxWwt9ws7CbxCQYWqHNmIHLLvBjgZdAziBw2xkFgvxhbolWa1nfeKRT+CTT3yy7q+jwGwJrTbMtn+YwYwNgPi7rPUxJfvfY7I15gxpwCYCagjY6gV2e4BtXmCHFzDXMngoZtQbjVJf+GKRzUou56/nTZULgoCFxALGAmMFx2hgFJHU8tNszaZm9DT0FBzdtu7FItIbTpnM8lCdf1sslgODS5bVALLdXj78NjXlggDHFd6eQtvm8cCd9OF4F3CsG3i1G7jWvLRqx32zwB+cAH7uZoHaxptZFkvhaOHAQO2SnOqhYJD8lK++SqNQVG7fPsn3+sgjS7tSpdOURV8IWr0l6lTrdPT5FPrcGhpq/lY3lASB/jflwq/XW11VmIYGwOlEpKURtzv0OOVK47w1jEFNEONMED4uggxqf+KuYTXQqXQQICCaLqMW5T2o33vo9/AXb/qLur+OArMltNowy3ySqRxgZf8RJhtFNaWo4kBXENjmyyZ1zVEUVVfu71n0j+YPjYZAQqvNnXYWSz+JSUxitr3VKoGmTkePVaul5xPX85elbit2nypK0SwHu2OBsbKKUrtMrkW4/faNb+Pf3/vvuL/tfnTbuu+tWqM8TwkohQ5UhZbVHrzE/7foZy6hKasErq92A7cKWF23Jyx4VOjEY/rteKTxPnRas0WPGSZ3bJbrwuHcMk+3bxcuhSRXV1dhYOvoWP0yUB4PRV5FeL18eamfvbubOrS9/vXAE0/QyZAg0HevELCOjJQ+EWtvL/z+u7oUv3mtxHFSy+z8ttnZ/UbcN4c78Wmc0s3jvDWC605gzE52tLTyb1h3+vtH/xz/7XW/X/fXUWC2hDYEzJYrQVqqskPDUYTWmAYsKcCWAOxxapDQHAVawzSaY4A9AZhTNCxJwJTObUG7LiUeYOUJXSxLBx5xKYKwWIVAHDodoNFA0GoQMDAYM6VpGFIY0ycwpotjTBvDqCaCMFs8hN0IAw4wbbif7cD96k7cr+lGr8YFRnzNUsC+HMxX8/i1qD3JcVI72fyo6fw8ZXaLNXx9PpoerHJXIwAYtUvweqyHLudrb7oJj2r68Zh1Lx5pO4zm1gEp8rtRanTWWslk8cik31/8cQYDsHVrYdCz1MhfPD0tgeuxY8Dg4NL7DAwAjz5K4+BBirTmA/vt2xQpLCaTqfB72bp1aSRXUd2U4lIY8g3h1NQpnJ0+i8tzlzEWGMNCYmHZ1uOKVl+MQFzQEqGZ3d0eqojUvwDs/voL0D/2+rpvgwKzJbTqMPt7DKABoILUjSsfbtdTkC/rqVVzgJYHdBmqSiBCb0MCaIoBzRHAEQea4nTZksqOZO7SkF5fb68cCQAC+tyEtJtO8mRday4cKbDHgQN5TSf6Flbxvcsj7fnwmz+KRcRPnKBoF8MQeHIcRUhTKcmSEI0SmEYi1UVfm5qW+uSamgg4NBqAZSFwHG6nZnAseRuvpu7imGoK09pcAzfL0+f96Djw2DhwdIJO2Ep+PhxHvsb8phL566Vus1g2T8TO6y0MucPDpZMZW1sLQ25Pz9LPRhDoexMMAjduELieOUNRV7d76XPbbHTiIdqL4nGqIR0KEZgXE8NQ1LbQdrW3bw7P8AbRQnwBV+au4OWxl3Fi4gRu+27DG/MiyZX4/621qslLqWUuy1pIoKCXM0aAusvDYP+sgG1eam3fEiEWKKhPfIKae9RZCsyW0HqpZiAqkozg/d95P74//H0slrCT/0A28o8FVLJLn6EfjTlFFREaEhQVtiaXArC5CBSLS11mbT+SpAq47gIutAEXWml5zQWkCuR9NIiAm4XbA7O00yi6g9iMEqPjOh0BimhNEW0qBgN4gx7XG1I41hDEqyYPXtXOYp6J5TyNhlHjoGUbHnMexKOth/GweQesKYagemFBKltUyPZQTY3OUjIaK4fgQreZTOsTsjIZmp6/ehW4do0ipkNDlOG/sFD8cSxLFiWNhiA2nSaQreUhxmYrDKxbttD3SdGqiBd4TAQmcGrqFJ4dehaXZi9hKjRVVXvWdSvxa7sOf6LlSsuzaEqr0R1msdMtYN9kCrvcAvoWgI4QdQWtSr/4i8DXv17TbS0kBWZLaL3B7HIa8g7hk698Et+98V0kkI1Oyf9jG/iHVo1UXB7klgDfciBZW2n+AMNIHuOszSGlAq43ZnDBxeFCM4cLzTyuuoSCgGtLUCKSvPvaFv+9BbgZFrjcItkGjndT9Qq59Gng8BRFXR8dp3VjJTOR+X5ShiG4Esus5Q/RssLz0shk6DHyjnK1FMNIXvRqosTyy2KtUrF9sxjNLDaCweXvU49WziLw2u3ky21vp0Qf+XvKH3Kvvs22Pk8ANqkSmQRuuG/gh3d+iFcnXsUd3x34Yj4kuPJL3WhYDViGXd+R2Q0qtcDAllGjI8Jiu5vDnunMohWgJ1BFecpy9bGPAZ/6VJ2eXJICsyW00WC2lARBwKtjr+JvTv8NXhp+CRFOlsG/Cc4qV0PaTPng+0vXKAGvoCwWShrp7QUGBpDaPoCbPSZcwAwuhG7jgv86rsxfK7hDt+qsuM+5F/cbt+B+tOL+WAMGPBxY9zzVtXS7Kcro85HPsdJ6tmIXM9FTnA8D8jJPYgtg+br8PlUopQLOtUl+19c6l9YRNqWAIxMSvB6criCxUVH9xDAUQTab6TsuwrPZTLAvZrVPTS21AYjfu1JlrtRqoK+vcLTV6VTAdZXkiXrw/PDzeG7oOVyeu4zp0DTCqXDZ9VjVrBpmjRkNhgYYNUZEkhF4oh7EuVLeH0XLiRUAc0aFlhiDrfMcds0J2D8HbPdRnXfbWp0f/N7vAX+hVDNYU20mmF1OyXQS37rxLXz10ldxfvY8wukK+oBXoo3mHapye7/xHeDoJNkmRC+xmi//qdIseW8vtDNkU2gRcKUZSBQohWlJ5kZwD8xS5YrFklJmM3kXm5upjmhLS+F1l2tphyFBIMDIL8/FcbmRSZ4vfZ3oqU0mpedLpxFPRnA6dgevJm7jWPouTvOTiDO5IQIbp8YjITseW7DhUY8RB/w6qJPZKKgYERWfP5OhdfnryrenWN1VRWsjMSlTfgIlXi/+/zhu+ZMyjYaitnY71R2V1yK12aj6ijzBUxzFri/3drV6U0J0hsvg7PRZPHP3Gbw2+Rru+u7CH/eXHWVlwUKr1sKsMcOsNUPDahBJRzAXmbsna63WRAJg5Bg4Ywz6fDx2zgP73cBuN9AXoBKb6/Kb+PGPA3/6p3V/GQVmS+hegtnlNB+ZxxcufgFPDz6NW95biGbqWFMv/1u2Ln+hlYvlKYKoz0hDJ18vcZs+Q56lkA7wGIEZC5WcmrQC6QIWBUMK2OkB9rkJbg9OA3vcgF5gwDAFKjqIB2QxyipCYY07lYW1wMlOKfJ6tn1pkpwjKiVrPTpO231P1XpVtLEkr5JSqkKKWk0ni2JZQ3GIl7VaslVotRJEl4LpQrdVcJ2gVmMsNoMXJl/BC+Mv4+rcVcxEZhBJRcr2sqpZNXQqHXRqHVRQIZQKKRaBapWt/94Yp66UO7y077tvFtiyQK3nN+R+8OJF4L776v4yCsyWkAKz5UkQBFydvYp/uvRPeHn0ZYwHxxHP1HHKqNS3sNo6vZsEmJdVtiybLptoZ0pXDtfGNO1o75+hxAAGkA7o4kE9G2lbMDI40cHj1Q4Ox9rSuOhIg8uretWW0FDUNWTHYyE7tictYFiV9Hzycmr5o9D1tbiv6IsVR/7lQtcVu08mI1V1CIelpThCIWkprlezq1WrJU+p6B2VT/mLtaANBnr+uTmqLTs2BkxO0usWk7zZiUpFUfF4nCpWFKocIP8+iBUv8iPjilZFXgNwph14sRc43QmM2Ml3nhKr5pSSQHdR84CGZyAwQFy9zP8u+5jFe90r+9YypOIpmbk9RCWs9s7TfnSbj2xpFedlrLUaG6nCjFi2LhaT9nWxGAVDbt0iK1CdpcBsCSkwWxuluTSeH3oe/3LlX3B2+ixmI7NI8SW8cbVQ/je1UCJcteCbXRcfLhQqoSZ/TJU7c4YnU74Ik1qOagOreQJSeQdGngE4lkZSBUS0QFxDB6x8eKylHFGpCsOBWYoojNsoUetYD3C1QHetngUp6vrYWF5ZMo2GwElMdrLbpeQl+ZBDmnxdftls3pilsThOajwhNpZYbj1RRT9phqGDkcNBw2Ih+Eyn6WDk95MPOxRa/rkaGoC9e6lBwXvfS21bl5t+5/ncpLlUqviQ3y7aXWIxAup4nC7H43RdLCZBdjRKXt1wmNbF+6bT0uzDJlBADww2ASe7gFe7gBsuYM4MxDSAUM7vP1tmkRVoX8Iv8xh1hvZBaTZ733L3cZXuDzegLU3N05T/gI/qrd43BxyYIStAwxq1fa9YNhtZ0+x2mjXIZKRkUPG3lEqVd1L6D/8A/H//X903WYHZElJgtv7iBR4XZy7i8+c/j2PjxzAdmq4o+7VqFfgms7w0OBbgVTIQq0HEl+UBawJoC1FtvsYEQWpQD/iMgM8gLWMFWo2XK0Oa6vmKdX0b44AtxYAzmxFs0MFrYjCjT2OKDSNZoMWjhgM6wwzaQ9Q0wxURYE0SGCfVdOC82gzccAKZMlix1w+8fhR4fAx4ZKJEYlw9pNNRRNFikaKWxeC3EBjn3289wrEgEMCVC79eb+myWSsVywKdncCOHcD+/QS5u3ZRdCbfk73WSqUoIW1sDBgfpyFfn5xctsMcWJY8uqL3XDw5aGwkGLDZpBq6InyLUC2/ToRz0Z8u85YjnUY6k8KwMYHLDQm80prAP+3LoDEGBHUAV+7XMnsSvBzgMjxVU2EAJNR0glwRtFaiSoB1PcBt3jbo0sATo8BvnAfeOrSCElarIbVaqohiNNIJJ8flnhyK37lqcU+lohmchgagrQ34x39UbAZrLQVm11a8wOPq7FV8/sLn8fLYy5gOTSOWiS3/wFop79uu4ggULUmC0JQaiOqAuJp8n3w14Jt9DTZ7Rm9I0zRUU4xaEreHgK4Q0BEkuPYZqG1jPvz6jHR91VFYAVALAMcsjaQCgJpRo8fcjh22Ldhm6MB4cAJnF25gPD1f1tPLk9TEhhE5SWobRXp9bpmrYuBbbMgfYzCsXfJQOi11Zbt4EXjtNWpOUKxDlmgVWKlMJpqWbG2lah7btwM7d9Jlh2P9dWDjOGBmpjjsjo+XbtAgqqWFGjX09NAyf13WXSyejuO27zYuz13Gq2Ov4uzMWYwHxhFJR4o+fTUysXo0qiwAIyDGJRHhEkiiAo98vSB0rYE1611tigP9Pmr44zFSI5x4NsjACMAbRoBfvQS8+1Ydy1ptRIlecbVaaps9MFD3l1VgtoQUmF2/4ngOV91X8cWLX8TLoy9jIjixuqArSvaLYHkqy9W9QDtBSwpwW4AZK+0Mg3qKbPKlbAllvJaap52tOUVR17Ywvd7ueUr4agsDgQKgmw+/IhiH9Ct7/xqBQQOnQRss6Na3QG+2Ia5hsMAkMJfyYyIyjRS31FZiYnTYr+7AAd6FA7EG3B8wYsc8D7XHR6XFfD6a2oqtwf91NSTWjq0GigsNbZnh/Nu3geefl9rDejy5t6vV1A5WbA175AhFc2IxiurKI7z5lz0e8uLOzxMUV3PIYBh6veZminiKkU5xOJ1LL69VUwmep/daCHbFZbRwsmxADww6aJbj+BYNznWwmDSmEWcrKHtSQmpWjTZLG+x6OziBQygRQjAZRDQVRUa4x+lLBNYYsN0LPDwJPDRF+9D2MOA2Af+yD/jqfuCOQ3pYv58A9v1XgM4y3DeKAHzlK8AHP1j3l1FgtoQUmN2Y4ngO193X8eVLX8Zzw89hMji5OtaFQsqDXXOKjP+73DR99+IWwGPOvb+apyXHVmlzkEV7NRxFDRoSgCtCU/w7PRQZPToBNCbJ91Yo2ite5zUCE1Zg0kZQHtHJvHJVSPT6FooAaxg1uqyd2OHaif0t9+Fwx2E81HEY9rQaTCBAXtKFBWkpX5dft7BAkceFhdK1SzeTtNri9ohEgiBzbIxOEvIft3cv8OCDBK+PPUaAuNLoKM8T0Iod1+7coS5hd+8S5M3N0f9nuWn8cqTTLYXdb36T2mg6HBQNzodi/UrO4sqTwPNwT93C4OBxXB0/ixPz53ExOYZpNoxkDbqfNMWAziC1yBZAv1ePmUFADyRUwtpPya+xVFm7RO8C8MAM8NY7wKMTQEOBYHpCDfxgG/CV+4Cf9kn7N1MK+E83CGKPTtTwIxWb6qhU9BtkWTr5E0sMiiUHN7r+7u+A3/zNur+MArMlpMDs5lOGz2DQM4hPn/o0Xhx7kZLRCkQNV02lypDxlCj1M4MEwKN24EoLMNwITFsINiNaivZybPapqvD2MqCdvj7bFKIpRvaGLQvAvlngoUmqXqDKfRgiWgJdr1GCXm8WhPOvF68r1OmsHDECYOBZ2HkdWlUN6DK2otnSAoe1BU32NjiaOtHU1AmHyQmH0YEmQxPMWjMYhiGQk4NwMQCWr8/MEIAtJ5alA5FYb7RY3d2NJoaR/MP5kWP55XJvK+Y1FgTyrN64QePaNRq3bhWPyDMMwSvD0IlKtQd8k0kC20KwKx9NTTSKeH55gcdEcAKDnkFcdV/FqalTuDx3GTOhGaSFlZW3MyXJktMWpooiAT2V5bvjpBPkak8qN5MYHmiOUpDg6CTtN++bWz7hSgC1Gf/KfuAbe3K7Cz46BvzqZeDnblIQomKpVPQdExNZLRbaF4RC0oxGLWCVYciy1NREXfK6u6kpT3Mz/Ya1WkrkvH6dTiTHxui1C22v0UjfcfH3msnkJmBWsy/7+teppW2dpcBsCSkwe28pkUngp0M/xZcvfRmnp07DF/etr+m4bEmtfh/wtrvAe28A97nJ6yrKY6AarhdbgVtOiqjOm6k+bUxD7WFX6u3VctS8YYuPEsT6/MBeN0Ut7p/Nhd78p4hoC4Ovz0hR37EGqp07byL7Q7Kc8kFFpOUYODJaNDFGOLQNaDI2wWFywWFtRpO9HQ5HFy1FADY2waK1EAADBFMTE0unjcfGaMzOLr8ROh0dWLq7KRmiuZkObhoNHcgiEalr28KClC0ci0kNJsSs+40IxaLEChXlArEYTfZ46HMeHwdGRii6W2TaHhoNtb1taaHkE5uNoq/hcK4lwuerOhqctpkx1GvDYKce11wMzjTGcEUfwJwqDn4FzQAYntqKbvEDjhjAA5g1A+N2YM7CIKauQ5R1rb2pVcoWJ//9A7Nkq9o/Ryf7lSRezZuAr+0liL3eLF3fGQQ+cBn44GX6f5SUeFJlNNL3jGXpNxsI1LY+t05HMNzWRj7zrVuB3bupG54IrZUmpgYCwOnTwMmTNE6fXvq7YlmasXn4YeDQIfJ4Dw0BJ04AV6/SSWgwuHz77j//c+D3f7/Sd12xFJgtIQVmFQFAikvh5vxN/HTkp3j61tO44bmBUDK0PjrZyG0MAmBOkq/r8VHg5wZph68tsJ9JMcDFNuBkB5XxGW4EZi3Agp6AM6WmZDAAK4JeY5p8vS1h2q4988CRSWriUM7ulwd1QjvRBZztAK66yMMWLhQgy1o0yiktVEwangB4VpvE69h+OLIA7LS1wmFvh8PZA6e9HQ6jAw7WDIc/Af3UXGHgnZ5eHkDVagl2xYQg+bKjg+4jSgRgcfr+2jXg2WeBM2foNeUSpy/F5C3xoLORoRggaNXrpc9FLNdVLMrV1kZJZvv2kRd43z56jmSSomQ+Xy7oer2I+eZwOz6FQd6N65oFnLHHcd1FEIQVREKb4sBOvwo9Xg6WBJ1gDtvpJG7eTLMsNQXMDQqsAACB6q/umyNg3T9H8Noaru4tpVngxwNkI3hmQKrEok8DP3OLbARPjMqSUhlGqpktzvDUGoFYlk66XC76rff3U+WP7dtpH9DZSbBcTyUSwPAw8MwzwIsvAleu1DZq/NnPAh/+8MqfaxkpMFtCCswqKqVEJoFb3lu4MncFJyZO4NjYMYwFx5Dma9s1a0XKh90Ulcp6NGtfeGga0C+zzxq1Aac6KNp710F1ZL1GivYmstHeii0Oeb5eU5p8fy0Rgt5d88CRCeDgDKAVlj50ykrbc6Etu2wF5ixLX4YRshUhglQdwpKkZhBhXa4dwmss3Cq4HJkzKjgEPZwqKxz6RgJdswtOawscKgscaS2cC0k43CE4Jnywj85BNVZB2aeOjlzIVasJXM+do6l5uXbtAt79buBd7wLuv7+471WsGxkKSUlbU1M0ZmfpOp+PoDkapUhxfn3WTXA4CBhZDHYbcbNDh+tO4LwjhZvmBPyadNUQqMmQRWdPNhlTlyZQHXRQwwK/sbySdptdmgz9LnuCtMwfncHaVAm47qII7Nf20v9B1KEpshH8wvU61n/VaCiq2tpKv9/t2ynauWUL/ZZdrvomLkajNKNx9SrZDESrgdtNt9Uigix6f0VLhUYjtS6fmaGE061bV/46y0iB2RJSYFZRNfJEPQS348fw0uhLuDZ/ba03qbjyYNeUBHoCZBl41y3gkUnAWOYBRbQ4nG8DBp3AhI0iWeFs+bKMauXQa0wD9gRFevsWKPv4oSng8CTgM0lwKwLulK3w0/b7pRJhB7LlwgyZpfYHj0m6zmPMhV9vlVDCCkBjRgsHY4SDNcMJIxwZHRwpFZxRwOFPwDEbhGPcA2cwA0eMklCKfmxaLR0s9+yhIYJvTw9FfQ2GYo9cmQSB6lKGQjRtOT8vQfH0NK17PHSbCMXyOpYctyoJLgIAt5ki/IMOqo98oZW+o+Fqc8B4Ojna4SWLjSNGvvVRG01bj9rpZK+mftYNFmW1xglU+xaA7iygdgckWHXG6LdQDy3oyQP7lf3A+Xbp+uYI8CtXCGJ3eoo9ugLp9ZIFoK+Paivv2kVT/3Y7gZ6821/+kJ8cLjfk9xO9rJEI/f4iEalRyHprBvLpTwO/9Vt1fxkFZktIgVlFtVAgEViM3L468SouzFwAJ+TubFiwELJ/604yoDSmCHYfngTePQg8PlF59MSvo+5g59sIMCYash7ZGkNvQ4KS2cyprM9XDYw3kA+xkLoDEuDunyNIWWzXW+Qlg/rCoFsMggNVcqUuQ12FHLHsSLJwRgQ4ogIcsdzbnDF634sewubmwjYGcVgKhLRXUxwnRYkXFgiKZ2YIiGdmKIrk8xEUi6Xa4vElfmIB1PXqWjNF46476aTmdhOQqLIJiT5NNZ7vmwP2zgGWNBDWANdcwNVWmiGIaLGhILMWYng6qewOANt91O0qJ6oaot/gaopjgBf6yEbw9PasZQOAmgPecYdsBG9Z700NNqN+4zeocUKdpcBsCSkwq6geCifDODl5Eq+Ov4pj48dwdvrsEmuCXW+Hy+hCOBVGIBlAPB1fn6ALLIKkWAZnwA88Ngq8Z5AS1Ap5dsuRX0de2XPtwE0XMGYjSAzqCUzTK4BeRpDadwpM8QhrQ5x8vnvcBLd73RQNtiyX3SyfOpTtNtNsbgJcPuzKIVi8rVr7gy2BgqC7uB6ly061FQ5HN6ztvWC6eyTIFb28TufaNXcoonAyjBueG7jmvoar7qs4N30O1+avVVVrmuHpxKd/gaae98zTCdGcCTjVSZHWuVr7Wdd5lJXlqHlLZwjYMQ/sm6ffdVeQoqyuaP2iqpXqbiMB7L/sA6Zlh+m9cxSBfd9V+p4rqpHEEmLl4uA3vgH8wi/Ud5ugwGxJKTCraDUUS8dwZuoMjo0fw6vjr+LU1CkkMrkmLrvejqNdR3F/6/0wa804M3UGZ6bPwB11I8mV0YForSTbY2iyRcr3uIE3DgPvvAMMLKz8oBjUAse7gbPtFOkda6BI7xLoBWrWF745Aux2A4engL3zBLlb/NkawTWUAEoSKga6hSDYZ6huelubkYBXBGBnDHAmVXBq7XDaWuF0dMPR0gdn5zY09u6EqqePpljlSWo1VIbP4I7vDq65r+Ha/DVcmL2AizMXMR8ro2xanrSsFg6jAzucO3Ck8wh2unZC4AVcm7+GE0Mv4Y73FrzpEDLMJg/dCXQyZ0zT93iHl2qwPjBDXt/OIHnYV1NhLf1uxxuAsUYWY40s/vpQBr99hoUrIqA5LMAVpe1tjlLE/AfbCWJf65KepzEG/NI1gtj7Zis8X2DZ4hU28ofYpENsA+t2kwd+epo858Eg3aYIePpp8vDXWQrMlpACs4rWQslMEudmzi1Gbl+beA3RdG7ZFIvWgqNdR/FY92N4tPtR7G3ei4ngBJ4beg7fHfwuBj2DCCaDS+wM606ySKk+Q5nK980CTw4Bbx6mbjy1CmCFtMCJTuBMB0HveAN5KYM6IK6hqGlVTSpk78WQpoz1riAB7utGgMfHAVetIkMsS0OMlIrVCWS7Zp4hz2Ap24N4WVyPVjENz/JUqYKAV72YBOc0OeFs7ISzYxucvbvg6N5Bl01OaFWFX0gQBEyHpxeh9fLcZZydPovRhVHwqAwuDWoDWs2t2NeyD6/reR22Nm1FKBnC8YnjODl5EiP+YQSToYqfd8Mo+1XQcBSd7/dTIuUj48CDM2SdWe020iEdwepYAyWQiuvi8K8kYV8AWqLAPp8Wh0JmtGUMaE5p0Bzi4fLG0TzphznGFf5J9/RQQtaBA1Tp4r77qK6w201gOj1NHvCxMeDmTSpN5XaTR1VRefqjPwL++I/r/jIKzJaQArOK1oPSXBqX5i7h2NgxHBs/hhMTJxBMBnPuY9QY8XDnw3i061E81vMYDrUfgl5N2S2+mA/X3NfwnZvfwYujL2I8ML52HdEqlcwLa0qRR+/gDPCOWwSJ9joEpSNqml6esZLfcqSRvJHzJsCvpyhSqtIp56ylQZ9NYGsL0xRu3wL5DXfNU9khc60iYgxD0KtWSxUNBEFKIMkrzxVXS9DryVvKoVdcLlTp/bWmGDSmNTAxOrBaDVIaFQKqNHyZMDKo7MRLw2rgMDqw27kbb+x/I3a7dsMX9eGFsRdwdvosBr2DYMCsX3vOSpR9S/oMVQDZ6wZeNwq8eQjY5l99C0BQtxRQx2Xr5XxfGmPkx+8O0tIZpcYww3Zq+Ttpq77pikFQw8Xp0ZxQwRXi0OxLwhVIL0Z6xaivK0ono+vCQmEwUL1ku50iwTpdbpewZJKiwmISWGiN+uuKJ9biMt+CcOIEtcSusxSYLSEFZhWtR3E8h6vuq4u2hFfHX4UvntuiVKfS4cGOBxcjtw91PAST1pRznwyfwbGxY/jChS/gJyM/QSARWMV3USNl90hqXopCHZkA3n4HODxdfiWGahTQ0UH2ejNwp5GivaMNBHsxLUV6AVQMvWInNrFUWUcWerd7yaKx3Vu9D7mgGIagV6OR4De/rWYe/IotkEvBr9tEHkYxua/qELsAqMDAxGjRpmlCj7kdep0Fc1wAk/E5+BMLiGfiK/4Y1p1kEVZHDDg0Dfz8dWrH2lbDGYtyFNAvhVV5lLWcxMbGbOvdzhB9p1vD9D5aw1nrAEdl/jIqBhk1iyEbh68eYPFSN784Y2JJAj8/qMLP3eDRuSBg3kzfL7cpuzTnrs9XMeug4gmkXdFc0M2HXvGyttLJL5eL6slu304WHb2efoMcR9aESIQSIefmpMhwOFzhi6xALEu1bW028su3tpJ3fmBAqn/b1kagvZyXPp2W6vTWWQrMlpACs4o2gniBx6BnEMfGKXJ7bOwY3FF3zn3UrBoH2w7i0e5H8Vj3YzjSdQRWXe53eiY8g6dvPY3vDX4PL4++nDMNu66rLZSSGNnlqeqCLU4Hz/YwYE2RtzSTHWmVtP7TfuAjZ+h+bWGqVdueXS6b/CVTVAO80k3Pd7GVmlN4jEB6JRbTbJTXkKEknaYYQW9XkHy727PlonoXVlTfv7BE8NXpaGg0EAQeE4YUrtmSuGZP46Izg7NtFEkTKtmA7PtieLJ78PdKLVaBpv2tcWCnl/zk7xkEdnmXRgjDWir7NdZAVhJO9v1dyYip6YQjrKPvbFRLXu24hnznXBn/RzGpUhTPyGw7K9QTI+SDfc9g5VUSohoJbPNB1523Xo3doSFeGHSbo4ArpUEzZ4CLMaOZN8IMDZgMR9U4RGhdLTEMgbPYpEGE1C1bCFJ7ewlSxZJitVAyKTVuqbMUmC0hBWYVbUQJgoC7/ruLpcCOjR3DZGgy5z4sw+K+lvsWI7ePdD+CRkPj4u2+mA8/vPNDfG/we/jJ8E9yksycRic8MQ+sWitimRg4ntt4kLsCWZIEtW1hCXDFpXhdS6R4MphY9/Rqc7bEU7NUTipdBOAYoYokNoG2wZgGbEmK7rWFyaox4AcengB2eyqDgwU9bes1F3C5BTjbBtxyAKlKKi4IFIVriTDYNwccnBRgSFM90AttFM2NbsZyVwKVWGsPkVXmTUPAG0dzy7/F1QSqIrCO5q2vyFu6jsSAgRosDR5Qc8KSYU1SY5cPXCHbwWoozdLsQiHozY/8zpsqrzNtSOdC74+2AcIna7DhYrc/q5VAta+PIqm7d9Po7gaammoDlRwnNVqZnaWmDMPD1PlwdpZK6wUCFE1OpahJw5YtK3/dZaTAbAkpMKtoM0gQBIwFxhYTyo6NH8PIwkjOfRgw2NO8Z9Fz+2j3o3CZXACoDNKzQ8/ie4PfwzN3n0EkdY8kP8j2dmwWTMuNFrI8RWZE0M2P7opLa1ICmQxLZYZEuL2aHeMNxV/DkqJpaAFASgUkVZX7eW0J2TZFGLRFVXAlVODVKoT0DOaMHG40pHG1iUOwEq+sQDU9m2LAdg9w3wxZJ661AJdbgWkL2TE2HbQWk0AlwKxJspKIJztpFUVBxcjocmrKeksdMfrfq3mqsZrUMIjrWMR1KsT0LKIqHmE1h7CKK3qSJJclkVvNojnOoIUzokVjR6utHeaOPqi2DEDd2QN1axvUJivUrLr4mJiC+kfPQP3SK1Cfvwh1JA41T1FoVoDUZnmDimfIfpEf3S0W+S1kdzgyAZz451XYWBF0iw2LhWxGor0oEiEg9fkAv58iyGJzhniFlh6lmsHaS4FZRZtVU6Epgtts9PaW99aS+2x3bF+M3D7W/Rjare1IZBI4N30OnMBBzaqhYTUFD2QalXR9ikthLDCGm/M38eLoizg3cw6zkdkl5cc2nGT1dTUceecEZIGkzOl1Y6p4dFe8zpgCbjskwBWjuaEi3asaEsBOnwrNEQH6JA+OoQOpGE0K6umyiq++hm2+GAGwZdToS+ix169Fsz+Ju8YErjo4zFgI1u4ZaJVLPGKu8L3rsk1AnFnYbIwD390J7PKpMGblEdUsf2huCRMEL46ICt2cBT36FnQ1b4Vx+x5g/35g2zbK8i/VTCOVooYWk5PSmJrKveypRYutEhJbqDocQEsLRR61WgKvmRmqQBBbpoyIVktDEMjfmU7XDbCjmqXR3YYE8N6byzxQTOTUaGhb9XppuzUaOilgGPK1cxz9b8TEsGh0mSevkViWtsVgoO+N3U7NWrq6gP/1v8jCUGcpMFtCCswqulfkjrgXk8mOjR8r2IK3396/CLaPdD+C3oZeMCuYtuJ4DmOBMdzw3MCx8WN4efRlDC8MI5wMb3zbgqzkmI4DzEma6jekKHLqNqPsKCcj0JSkPLrbFiLPbFxNTRimrAS8txzF/Y1dAUq+sXAsnuvl0bfAYsLCI1PLErHrvBlAtTIlqVnGVh8BCAQC9DkL2SI8JrJgxDUr9IkKFHFXIdvMg0HZn2dbSKoE0BMAesIq9HBmdOtb0OUcgGFHFlbFJB6brfATpdM0XVwIUqemaDp5vvI6v1XJZiMoEofFQpHBuTnanvFxiiSWkiobls4rYVc3iZVERMgEpEoiGw2h5NtfrW7fBrZurc32lJACsyWkwKyie1X+uB/Hx48vVky4NHcJvJBrAm2ztOFo11E80vUIjnYdxR7XHqjYlWftCIKA+eg8bnlv4dzMOfx0+Ke46r4Kb9yLDF/H8gSrKVmmuiUFOKJAexBoSpBvb94CzGRHOVPEAPnxWsOU5MazFCFe0FEEl6v035KFcFdChb6QCo3hNGb1AkYbqYpBWoVNCa2aDAFrZ4iin1pO8lGK5aaSy8C/hiNfck8AaI3Q85iz1gJWoIQqjym3AsS8iT7XakDYFs9m28fopMcVpa5urr49cB18HZyHHofL2gqn0YlGrQ0q93zhSOrEBEUz6x1RBQiSrFagsxPYtYtAdWICuHoVGB1df9AnJk9ZLBQBbmujigR79wJ79lAEsrWVkiKXE8eRn3RsjPymMzP0vxgaouoFHg9Fl2MxOrHg1kGtcHnFE62W1lUqCdrFcn/yCigcR8vXXgMefrjum6jAbAkpMKtIESmYCOK1ydcWI7cXZi4sacFr1VnxcOfDONp5FI90P4KDbQdh0FRZkLSIIqkIbntv4/r8dbw0+hJOT53GZGhy85VmEisWZLs09S4A27xUHD6lAmat5Dkdt1FUNlzEclCtVFy2okAFkcGNJEagz9URo8+YY8mzOiP6eEuI5Ql2excIWHsDuett4erqlGay5c7m88qdzRcAX4+RIvKVwi/LS75YV1QqQeWKFr6uIbGCf79eD7S3E7A6HDQFnUyS99Lno+juwgJNha8HYBNlsQAdHRTFHhggUBWz/MW6r3Y7QV0pCQL5TufmCFiHh6VEqelpev937tDntNJuYSqVBJfia4u2g7yyequu3/s94C/+ou4vo8BsCSkwq0hRYcXSMZybPofjE8dxYuIETk6eRDiVWwtRq9LigbYHFuH24c6Hcyom1FJpLo3RwChuzt/EmakzeGnsJdzx3UEwGdz4loV8yd9OLdrz1sjXuV5lTFHDDQCIaIF4GXVH20IEpj0BAlX5ekeIEtvWWhxDQCsCrwi986bC11XT6ELNSQlhBaE3rYWL18PJ6eGKMbBE02CisfXRylWlkqKJLEtgl0wub0soVzodAbroWxUjk6L3dqX+W62Wnt9oJG+w2UzDaKTXFiOiokdWbJwQDtPl9fA/AIBPfhL4xCfq/jIKzJaQArOKFJWnDJ/BNfe1Rbg9PnEcc5G5Jffb7dq9CLdHu46iy9ZV4NlqJ8Hvx+yz38atE0/j8vAJvNwUxcVWYN5ceVmdDSPZXlqTyU5v89lGDpV2LtukckaLR1a7gvSZbTalWWpoIQfc+bzor/y6YgmGpaTNlI705l9nqqbjnUaTm2TU2UkJRtu2ATt2UCTV5SKwfPFF4N//HfjBDygrX5TdDrz5zcDjj9NjIhGyOYh2i6kpalsbCNBtIgTXMsqpUhGMrnVVB5al6LDRSJ+rxUIR6IYGCZ4NBslewLIE6oEAfUYeD+D1UpQ9GFx6snDpEkW56ywFZktIgVlFiqqTIAgYWRhZBNsTEydw23d7yf06rZ0EtlnA3encCZZZQal/nqed57PPAs89B5w6lXsAMhqB178eePJJhJ44glvmBG56buLE+Am8NvUaJgITiGWWyYBWtCrSZSs99ARzy5u1hcmHOmEFTncCL/YBd5tyH8vyZCM4PL00stodBMwVNL4oKY1GipiZzRQxy2QoQub3EwhtUCXUEvyWgl7xuko7bQEUNc8B3IQKrrQWTsYEl9GJw/Y92LrrUWDnTgLW5Xyp8Tjw/PPAd78L/Md/5LZ4tVjI52qzEUR6vfQ/Cocpilkt3rAsbZNeT9Cn1y82FAHDUOQ0EqHXCYfra6lQqwnUGxvJ29vcTGDvcEijqSl3abHUrqmBIND/wOeTynodPbq8JaMGUmC2hBSYVaSodpqPzuO1idcWAffi7EVwQu6OvUHfgCOdRxaTyh5oewA69TJJFT4f8JOfEMA+//zSTOudO4Enn6Rx9OiySRopLoUh/xAGPYM4M3UGxyeOY9A7iFAytPksC2shgTyrhgzQEQTun6WOZd1BqSxZazg3asczVI7sJ/3AT/uA4925iViMAByYpe5ZbxoGHp6kBLa6S142SWwHLG9NmkisvWdxlRTVLPX5lgLh5RLpAODvngV+8wykSKzTSQDW0CBBWCBAXtSJCYKnWnzeYsKX1Upg2NxMvtmWFoJDq5UiqzxPnl8R3nw+gmT5erqa8DMIAIsBaLF1s3lVum2tRykwW0IKzCpSVD9FU1Gcnjq9CLenpk4hls6NiupUOhxqP7QItw93Pgyb1gKcPy9FX8+ezT2Amc3AG95A8PrmN1MZohpILCU26B3E5dnLODZ+DFfcV+CNeRXIlUsgJ4OaA/RpmrJPqYBgke5V+jSVvdrnJqjdN0fLuIbA9Sf9wAt9ZA2RqyNI4PrGEeD1IxThq0oqFQFArbyUipaVAPIvLwe9v3MSePNwDV9YpZJausrh2GYjXyrLSh5Uvz8XTFcCynq9BJ35YFoMUE2mexZMq5ECsyWkwKwiRaunNJfG5bnLODFxAicmT+D4+HF4YrllghgB2OtV4ZERDkcngEcmKJqHPXsIXt/yFuDIkbpPawmCgKnQFK66r+Li7EX8ZPgnuOy+fO90RyskgYYhQ+18d3qA140Arx8DdngJTsWGD1dapAYQy1UPEGVMAY+PEdy8aZiqO9TsUF+Lepr1lEoldWrS62k7794l6AkGq4/+VSOGIbuOy1V4CttopO3xeChrf2aGZkvEKX3Rf7peP+vlJJbnKgSnxdaNm6QP8TqWArMlpMCsIkVrJI6DcOYM7j73bzh+48c4wY3heDcwXKAYQq+lC0d7H1uM3m53bF9RM4d8xdIx3Ji/gctzl3Fy8iSOjx/HeHAcGaH8SJ6KUYEBU9FjNpXEuro81UXtCQCHpmg5YgeO9wC3nMUbPogSo7h73VIkd6+bPLSKypRYM1Qs45ROr08rBMtKwLse0UOlImuJmDxls5EloaWFSnv19VFSWns7XW+3k6dWUV2kwGwJKTCrSNEqyu0m28Czz5IHdmEh9/b9+zH75CM4caAJJwxenJg+ictzl5c0c2gyNOU0czjQegAa1fJ9WwVBwHhwHFfdV3F+5jxeHH0R19zXlpQcKyUWLLRqLViwSPPpJbV4FS0jAbAkgX4/cHAaaIrTlPP1ZaK4HcGlNoUBP6BeS0YzGKQscNFHm0xSgkyqVhloJcQw9No2G8HVrl3AI48ABw5Qu9rGRikiHY1SAf8bN4Bbt2iMjdFvcmFh9ba5WrGslG0vL96/XiFdrabtjUSolq3TSdDb20tDrMjQ2EjDapVOPtaT0mmKvE9MLB2Tk8C1axSRt9vrvikKzJaQArOKFNVRmQxw+rTkfb14Mff2hgbgTW+SvK+trUueIpQM4fTUaRwfP44Tkydweuo0Epnc+ooGtQGHOw4vwu3hjsMQIOD6/HVcnruMV0ZfwampU5iNzC5JSCslDasBy7DgBV6B1noqr1taYwywx8liMG0Fpot0ZQWA/bPAnnmK5u5x07IjpFQn27BiGErgNJlo/9DSQmA+MEAtU8VIqMNBkdNMhnyvbjdZHeTL2VmyQczO0nWBwPpq3pAvtZqiwGZzblmyzk5aF8FXrGYgrqur7FctCHQiUwxUJyYIZJc7YbhyhTql1VkKzJaQArOKFNVYMzMErs89B/z0p3QAkev++yXv64MPVrwjTnEpXJy9uJhUdnz8OBYSC8s/sIQYMIvQumkTvYo1VNiEsiVy4VaE3XVlVdDpCMj6+qicVEcHeS85jjpKjY5SJ6mpKfKmrmcIYxiCT6uVQCyRoJJZ0Wh9vb46Hb1eQwNFPltbKeLZ30/Q29dHMGzOZhYKAm2XCLxy+BW7eM3M0LrPR9HqjSCdTvL5trRI4CtGe8XKG7EY7Y+9XnqPU1P0P1pOGg19tk4nwbPVSlFnQaCTib//e3rNOkuB2RJSYFaRohUqnQZOnpSir1eu5N7e2EhR1yefpCjsCnZ63pgX19zXcGHmAn46/FNcmLsAf9y/uQA0+1YYIbtaaOYxm4hV8LYqX2/Dgq7s82IF6ppV7HNpC+XC7R43Ja4ZlaB7eVKpCJysVoJXQSAYXA6ImproJHbHDooyajRS5FQEyOnp3KYHtRTLkudVXoaro4Om+7dsoYhvRwfBmvzkOpmkE4lC8CuP+no8BIkbGZ/Eih+iLYXnaZTznn7wA+Cd76zv9qEyXqsyVl1b/f3f/z3+8i//EnNzc9i3bx8++9nP4tChQ8s+7pvf/CZ+8Rd/Ee9617vw9NNP139DFSm6VzU1RfD67LPACy9QBrMohgEOHpSirwcP0o6yAqW4FG57b+Py3GW8PPoyjk0cw2RwcvNM9WePDyoe0HIEYVENCMLEpPvsUp8mf+j+OWnsdROAuc3AoAO46QQutgBn24GhRiBRSaGHUhC7EaK5ss+rYOxSBuszVho/2SJ7uABs8S+N5G5Zaz9utVKrKUpnNEpgJkbmIpGVtUDlOIruxSqokWYykUXgscdof9DdnevllSuTkUBxdpaih+K6CL5i565KItU8T+89EqHnuH69+H21Wtpmu50i562ttM39/QS9hw/TdfmNCHiepuzzrQ7icmZGek8+H4HyetJKIv937tRuO2qkNY/Mfutb38L73/9+/OM//iMefPBBfPrTn8Z3vvMd3L59Gy6Xq+jjxsbGcPToUfT19aGxsbFsmFUis4oUlaFUCjhxQoq+5h8MnE6Kvr7lLRR9dTrLelpBEDAbmcVV91WcnDyJnwz9BDe8NzZP+SsBUAlUcsqaBPQpIKgHvJbCd2+KAffNAvfJwHWrr3KoWtAT4A46gasu4HQbcMsFhKtoX1pQGwFyy1GJ96HJUOmxvRvVj6vV0u+wu1uKPnZ10XUaDc2ozM8THOYPj2f551+p1GqC164ugsMtW6gl6n33ETi2tRUvvyd6PeWgK4dfMdo7O1veNHo1YllK/hOn95ubpQSvLVvI5tDWRtdrssmp6TRtt89HiXhXrlAi3ugoAW8oRNaG1SzDVgt985vAz/983V9mQ9kMHnzwQRw8eBCf+9znAAA8z6OzsxMf/ehH8bGPfazgYziOw6OPPopf+7Vfw/HjxxEIBIrCbDKZRFJ2RhQKhdDZ2anArCJF+Rofl+D1xRdz23ayLPldxejr/fcvm4kbS8dw03MTF2cv4tm7z+L01GnMx+aXVCrYcMpOb5tS1F61I0SezXkTcKMZCBUByH6/BKz3zdKyLVwnUMom1UT0LG5ZU7jgzOCFXuBkB+C2ZMtl1eKF5UePDUF8lUufAnZ6gftnqLrCuvTjliuzmYCrt5dgt7+f4MvjAa5epcYlN24shSuWXZ0qAmIbWYuFoqTd3dTt7/77adnZSRHUUmX6otHCUV75qKfF4V7QZz8LfOQjdX+ZDWMzSKVSuHDhAj7+8Y8vXseyLN7whjfg1KlTRR/3x3/8x3C5XPj1X/91HD9+vORrfOpTn8L/+T//p2bbrEjRppHoff3Rj4BnngEGB3Nvb24mcH3ySeCNb6SpwgISy19dmbuCF0dexAujL2B0YRQJbgXTm+tFAmBIA10B4L4ZoC8ATDVQg4CbTmDIQUMubYZgR24T2OemSG09FNEAF1qByy2AngN8RmDCJmCkIYHbDmDWDKTL2dNX46VdzrJQ6fOtQyW0wMU2GnJp00BntnXvYxPAg1MbwI8bidAU8Z071Ca6mNRqip7u3k3T7IcOURRSq6VIY6Ho7tQURUdXEmXkeYpUxuMURb55k06w86XRkK3Cbic4HxigKO++fZQE1tVF0VKAorrxOG13IEBLv5+2d2iIypXJfbBiybK16B4nlvgSfcpOJyV4tbfT+2xtpfXmZnrvDQ1Upi2RKG53EC0Pc3P0HmsRuQ6XX9pwtbSmMOv1esFxHJrzEkSam5tx69atgo85ceIEvvzlL+Py5ctlvcbHP/5x/PZv//biZTEyq0jRPSmfjyKvP/oRHSSCwdzb+/spAvvGN1L9yra2nKLgoWQI19zXcGryFH5050e4Mn8FwURwYyZkycpDOWPAdg8w4AWSGuBSKxX8T6qBuBa47aKRL0sCODALHJCB63Yv+WJroRQLXGsGLmXhebgRmLBRFDioB+JqgGdQHjAKBFqdYQa7fSoc8OvRm9ChK8Sgcy6OtrkoBJAH96YTuOGk173YCkxZAb4yG3TxbeLpJqHc7V6nSmmAYQeNb+/JXpmN2luSQP8CcGQceNtd4LFxOtHYMMpkqFTT5ORSmNTrgZYWCN1dSG7tR3L/DiTf+hgSbS4kXY1IMjwS8zNIzk0jOT+DhHcOSe8cktMTSPo9OHw3hm3eFW5fOk37rmCQYPTkSeCpp1b4pOtAPE8gnUoRME5PS7dpNFL5Mnklh54e2k+Lnl5ByK17q9fTbYkEfW7p9MrrC2/durLH10HrIgGsXIXDYfzKr/wKvvjFL8LhcCz/AAA6nQ46na7OW6ZI0TqVIFB040c/ogzU06dLZ6sODwPDw+C+8XUMNVKS0TM7VTjeDcwaeaTZDQatssQrW5Lapb5+BPiZWwSdI40EbJez4zt7AH+RLpUqDuDygC6sB667yCfLMQSXbhMxWpoFUiograJ1cSlel2KBOTMwbgNmLYDXSIAa1QIJFZBRZTe/TFAtdL/2uAaPeU14x4gWT16JwuaPZu+cARDJjlzt8NL4WVmgnmOAUbuUfHa5maLBI3aAq/QowqLwqc9msCwwdHIRNAAXDRTN/exDWHxvap5Ad8AHPDEKvP0OsMdTftSeZ+j7k1ADSRWdbMnXk+Jty6znP66y50sgqRpDSj0G4FUgCWA0OwpJC6AtOwB8/nc/jm2J3TQbdPo0weh6bIQgSqvN7QbW3EwQ2dcnlVnbsoWAMRIpbW8Q/b35zWPKUTpNkeNAgD6zlUqvpyYOTmfucDik9aYmgmhBoCRAsdLD29628tevsdYUZh0OB1QqFdxud871brcbLS0tS+4/PDyMsbExvOMd71i8js/+CNRqNW7fvo3+/v76brQiRetdiQTwyivA179OURXv0jBIUkXRx1O9ary8x4rzTQnMqmLQcECGyY+abYCQkgxajWnAHgNcUaAhCWiyoPmTLTQF/8X7gb99GIhppAoC+c/FCtnoIQA+aw3OB1lRPhPwUh+NNVP2fdjjBOtvGgbeOAL0BNIAAtU/bzYapLLbscVuxxabDe+wWABGA4wnwZ+ewVRoCje1QQzaUrjqEHC+DbjbRBHuat7DplT2vWVUwIIROGsEznYCf/Zo9naZJcOQAvQZQM3RwzgWSGUhM11pdHwVpctkB0dLfZH19q9/Clh/yfDFJVoOUimqSMDzEgiqVAS7IoxbLDQGBqTHR6MEgV4vLT0egtrxcYp8u910WyBAMLxayWCJBG1HKESvL25DIkHvr7VVamLR1FTap7wOtC4SwA4dOoTPfvazAAhOu7q68JGPfGRJAlgikcDQ0FDOdX/4h3+IcDiMv/u7v8PWrVuhLZYNmZVSzUDRptTICPBP/0TRjlu3lpRdmTUDL/YCz+zT49UuATPadVYmZoNJxdNgBYqWcSwty46kyiVQxE7HAcYMA1tGhSZej1bBjK6MEZ2+DIzeIDSRGLSJNDQcWSM02TJf4npDgjLwVeXs0VUqafrRZqOlwUAHrHicDmp+P011VjElKYDKiN10Zi0LDuB8K1VbiNaqwoIiaLOgWAwc5es6Lnt5mfVqnkPLrYNzEZWKEtz0eppmz2TouxxZOvtQN4mJcmK740ymuhJYLEsR0qYmAkqTiXy0KpVkRRAbVfj95I9dSQm25cQw9LlarQTfZ89SCcY6a8MkgAHAb//2b+MDH/gAHnjgARw6dAif/vSnEY1G8au/+qsAgPe///1ob2/Hpz71Kej1euzevTvn8Q0NDQCw5HpFijatBIHO6r/xDbIOXLuWUwcypAV+uAP4xm7gtR4GAZ0gO9Ks86SsLIjpMlS2aqsXODQN7Mr6UH1GmsafNRMsuc3AnAmYNwOJZSKBDXGgJwD0LVBN0a0+qkSg43KhEAL5Ru80AqONZAOYMZMNIKSnCBnHZisClPl+8o/0Oo7B7qgJb5zR44khDg/ejsIaTmE5C0BZEqdFLRY6CGo0uXVHo1E6yEejNObmqnsduViWXtdiAZxOpLvaoRnoQt/e7XBu7cYBuwnv1jMYC07gmTvP4MTkiRV3cVNEEVvRdmCPA51R+r08Mg48MAN0hOmEa9OKZQn2tm0DHnpISv7q6pIqH6TT1Kb19m2yUY2OSm1b5+cpjyAUqk0DBDFCu9wJoNiMwmajyOeWLZS8tncvsGsXVXGopFa32OmsWL1e+cjv0Fju84uJeQB9fqsAs5VozSOzAPC5z31usWnC/v378ZnPfAYPPvggAODxxx9HT08PvvrVrxZ87Ac/+MGSpbnypURmFW04JZPApUvAyy+T9/XyZSAWQ5ol6Hp6AHhqP4FXSjw9XfMwSQll9zj6DHVoOjQN/MxN4E2jgDFD8DjUSMlOQ43AsJ2Wo3by7hUTIxCc9vsJVvuz0NqfXbcmAR7A7SbyMt5wAneaKKHKbaZarTFttqNUmT5VDQ+YU0BTgkFrXI2euA7bonrs8WvwwBSPtrkogpkIzrQDr3UCJzuB0x1AJM/GzwgUVX14EjgyScvehbzNYBgpocNgoHVx+lOE0yrFMUBEC4R1QFi+1DMIm9QIW3QI240IN5oRdlgQdlgRtukR1jEIpyMIJ8MIp8KLyxS3wgQTRbVRtu6xKQW0hqn5xpEJ+o5t99F3V9E6FMNICV9NTdStbPt2qtiwa5dUq1dTqZcHdFJbCHbl14mgXwwP12Fkdl3A7GpKgVlF614zM8CpUzRefhn81SsYN3N4pQv4133A+TaCoXWdDZ7dq2g5oCVMUaJ3DwJvGSFP64i9MLBO2CSPaiGpOaA3UBhYuwKU+X+sm/zAw3ZKrApmo6kZFcov/i+DAHsCaI6z6IpqsDWkwW4vgwNTPAZm4mAzlSeucAwljZ3sBF7rouWofen9miPAw1MMHp4QcGSCqibouKXP5TNSdQOfAQjpCgBpqaWeQVgLxNX1OQyoGBV4gc+pdmHX29Hf2I8djh1oMjTBorPAorUUXapZNWbDsxgNjuK29zauuq/i8txlTIYm67LN95IYgawKjXH6HR2eAo5OUBOP9s0e1RWlVpM9oamJoqRtbQSPPT3kfe3ro9ssFqqekF+ObHpaWp+clKKXqyHRLmSzUWJafz+wZw9FeAcG6L00NFTnd+U4AtpC4PuXf0mzP3WWArMlpMCsokolCAJ4gYeKrUP2RTpNXWFOnYJw8jXMXj6Bk5jGV/cDZ9opWaRmBe5rrbzSVvtngXfeAt51B9DyBJP5sDrcSIBZSoa0BKgisPb4yT5x2wlcbaYqBG4TENBTtDYjAnCZnxPLA4YMNTtwRYGOMIOBgAo7fQz2z/DYO81Bu4oJ1rNm4FQncKITONEFXG5dmuzD8jSVLNYxjWmo8kLBJLYqpWE1OTBp1ppzAbMEdFp0FkRSETw/9Dy+N/g9jARGFp+3y9aF9+99P96/7/0YaBoosQXlK8WlcNd3Fzc9NzHoHcQ19zVcdl/GiH8EPFbwz9ss3c5WKoF84eYU0B6iWslHJ4CHpsiiY1rP9XRrKYahzP7OTrID9PXRutzOYLNJZbECgcKgK7+umqn+lWy/RiMBe2cnRXn37aNGFCuJ8tZZCsyWkAKzispRMBHEi6Mv4tm7z+K54ecwFZpCt60bffY+9Nn70G/vl9Yb+2HX28GUc/br8QCnTsF/8kWcufUivqK7ieMdArymLJCtt4OorEpAYxzYNwe87Q7wM4NUJWC4QHR1uBFYMJR+WntcgtWeBXoZj4lKVc1YCVRDOvLBcuJnUu5nI2QjThxFVh1xsh/snKfo8MFZwLqK06spFflt5030vuaXGct5fwvJxOjg0NnhNDphtTTBoreVDaDypU5deRnDaCqK79/6Pr56+at4afSlxSisUWPEz+38OXxw3wfxWM9jYJlyTMYVSBDIWiEWwvd6gakpZKYnMTp7E4OhYdxMz+KmZgGXLFHcsXJIVXO8zla3UGd91VEtgBq/lY0oRpC87du8wIPTZF/YPwe0Ru6RqK6obO1d9PRQJZk/+RMJeDs7KdKrl2U+RiK5oJsPvdPTFBUtVyJIr0QqFdmXRB9vX58U5e3vp2YN1UZ5q5QCsyWkwKyiQhIEAVfdV/Hs0LN4duhZnJw8iQxffgcYm862FHRt3WieDcNz/ji+NvUjvKAah1vHUzem9QSt2T0AK1Ckcvc88OQdqjOqlgGrHFaH7eQvLaXWMNDnp8hOSkVT20G9NBWeVFcHqqxAUGFOAY4Y0BUEdnhoivQNI4CzzrN8AgjWl4NScSwH9oVkYnRwaRrgMjjgsrTA2dAOjc6AcDKMucgcRgIjGA+ML2lWYdaacbDtIA53HF4cLlOBbg8rlCAIOD5xHE9dfgrfvvltRFJSstrjPY/jA/s+gJ/d8bOw6JYJwycSUu1Mr5csNjMzNF07M0OZ0wsLNL0bidDJoOgVrrA2Kc9Q84ebTqqXeyNbL3fQCcSqKUWerUJhTGWjlALgNwDJZX4X94Syn40lBXQEqX3zkUnyx2/1r/MuaXLVAhJFWa0EtWJ9WjnsdnURQMqTvpJJ+g2UivLOzpb/OxAhdCXvR/w8vvUt4D/9p+qfp0wpMFtCCswqErUQX8ALIy/g2aFn8dzQc5iNzObcvrVpK57c8iSe3PIkdrl2YSI4gZGFEQz7hzESGFlcz3/culRehHWPG3jrXeA9g2QJuNxCtUHlwDrakPWZFhHL0xS9IU1T3UkVTX0nsxnWfCWgKgNqbR6o7poHHpqk+qmNFVYU4xlK7PKaqFh9a7jw5sTV5cPpvKn051JIKrBwqixo1jXBZXLBZWuDy94Bl7WVLsuG0+iESWta9jkDiQDOTJ3BycmTeG3yNZyZPpMDlaJ6G3pz4HZ/y35oVdUR1+jCKP7lyr/gqStPYTQgVcnvM3fiA81vxq+w+9HryeTCqN8vwWgiIdXtrKZkUTWSR5IKHO7EMmJiQ4ibTuCai3zNC9XYAgVAAxZmRosGxgSrygROJWCWC8GXCS7/+HtAjADo0/Qb3+qjVsAPT23AqG4tYVe0M3R1USS0p4dAVw69jY253+dMhn5jxTy84uVyy+st81tZ1De+AfzCL1T1NiuRArMlpMDsvSte4HF57jKevUvR19NTp8EJ0gHVqDHiid4n8OSWJ/GWLW9Bn31pFXyO53DHdwdPXf4qnr76HUxEJhEXshHctYy2yn7FGo6Shw5OU6ert90FGrMVuebMlEB2oZWW59uAuRLBMxVPsMoI5N1Ns2SHEFYIqs4o0B2gKPBDUwSqtjL2tyKcekyAJzt1X2jdbSJA8RtyE8p0aarHqs/QpidVVG4rWgXbNTAGip7qHXBZmglO7Z1wmZuXAKrdYK/9NHueOJ7DTc9NnJ46TWP6NG56bi65n06lw4HWAwS3rQdx2LoTnRkTGJ+PDnzT01T6LTvVGQ558O/2OTzVE8CxdimkZkkC770BfPAyeSnX02TDsmIYipTZbFJ/+wJLv0WNQX0YN1kfBvl5XI2P4dLCLfhT1ZUVU7NqWLQWOIwOtJiaYWH0CMcCGA2PYzrp2YhNoWsvQeqU1hEiwH1IFtW1bKQKDLWIhsql1ZK/tadnaRkycZmfmCUIixacklHeSqqhvPwy8PjjtXlPJaTAbAkpMHtvyR/34yfDP8GzQ8/i+aHn4Y7mdpvb4dhB0deBJ3G06yj0avI1pbk0Br2D+Lcr/4Zn7j6DG94ba7H5uZL9UrUZ2tE/Pgr8wg3g0Ymlme7zJglaL2TBdbrQVz6b6MGJ2f6iKgRVXYYONHJQPTIBPD5e3KMqh9P5LIgWWncbqZZsPpzWUowAmFgdGtUWtBpc6LX3odPZD1dDO1zmZjSbJEh1GB1V+UtrLo6j+pLBIE3Bz8xQDcjxcWBmBgHfNM5hGqcNfpxujOKMKw2fYekuvzVMNg1x3DcLnGsHvrof+O4OyVLCCHTi8YEr5JtesyQgMYO7GIguA6mwWKhGaZUKJ8O45b2FQe8gzkydwZnpM7jtuYVIprryaGwW3oIG4Ilh+g1xLFX9uOWo0gaxSSX64RuyFRgOTQOPjlMFho5QmU1D1pNYloCzVihmNpOdobdXsjPIYbetbWmyl1intlSlhqkpqQ3v7CzZIuosBWZLSIHZzS1e4HFh5sKi9/Xs9FnwguQpMmvNeH3v6xejrza9DS+PvIwvX/4yLsxcgDfurcgrW3Pl/xqXAUpHlJoAtIcoIjtrkeqmFkwkqiRTuwCouiJATxDY7abC7I+OA2bZxyXCqTxKulZwygpAI5/1nppcaDI5oTVakNaqEM3E4Yv5MB2exnR4uuhztJhbsNu1G7ucu7DLuQu7Xbux07kTNr2tNhuZSkme0dlZKSoq+uG8XjqAhMMUOUkkqAKG6BmtcPctgCwkpzukcbmlQAOIvO9Jjx/4z5eA918BOkMre8swm6WoqDjkl0uti0CqWwW6SyaXtiEtNRYWkFAJuOYCfjxAVSluOKmph7CCQigGVgunthHt1na02bug1ejhiXpw03sTM+GZ2r3fzSDZPkufrVbSHKHmEe0hoClOM0PmFO3PFteT0rp4myFdx9mGSuwJ4klXhR7xknI4CGz7+6lBQ3501+ksnOgVi9E+qr9/RSeD5UqB2RJSYHbzyRvz4vmh5yn6Ovw8vDFvzu27nLvwUMdDSKaTuOy+jNHgKKKp6JLkmVWTbIdrzbYgfecd4Oev005X3IXwDDBjIR/ruVbg1R6K0syZaVp8RRAoemhFUE2S/7U3AOydo2njR8cBHb8UTgutu43ZxgN1hFPR7+tKqOASjHBpGuC0tcLZ0g9X9044O7bBaWmG0+isaGo/lo7hlvcWrs9fx435G7jhuYHr89cxHhwv+pgOawd2O3djl30rdhl7sJttxo6wHuZpT84UPXw+yS8ajxMgpdMUUa3lwWkFmjUBf/sQ8J1dwFiBereiGmPAg/MaHF4w4XCsEYe4FjSYmiqDUau1ss5GtVQ0Wh6UiiMcrvw1GIZ8jU7n4hCcDtxxsviBeRovsxO4nJ7EXNq/4rejYTWw6+1os7Sh09YJq86KSCqCIf8Q7vjuIM1vlCyr9SlGKA275iIw3BYG3jiy/POXfvEKYJdhpDa3tdqnqNVkZ+juluwMctgdGCDLQ52lwGwJKTC78cXxHM7NnFssm3Vu+lwOmKqgglqlRobP5HhiV02yX5SKp9I1D04B/+kG8M7bgFV2jImrKIJzspMSTkbtBIVBHRDXVF4/tRKbgCtCUd2+BUq0imhXF07VXBZOo9JwxrJD3wRXYyecLX1wdu2As38v7DvuA9vTSzvaWojnCVgWFigKOjkJjI3RcnYW4YU53OTcuKFZwA1zDNcbUrjRyBW2amTVswDs8pDFYtc8re/wUE3bNZXRmAOVnM2KF9oTeMo5g+8bx5Fg6HfCgsGbzPvwDudRNFicuJgcw+nAdZz3XkWSW5p9t8OxIye5bJdzV33qMedLECRrhXyUiqJWU8xeraYolgxOCw7xPk1NZcF6OBnGuZlzODFxAi+NvoTzM+cRTUfBgMGB1gO45bmFaLWWBYaFRWtBi7kFnbZOuIwuZPgMJoOTGPQNIpAIVPW8m17ivrMG4Vjhkyt/jpKq1Isr7jM5rjZ2hm9/G3jve1f+PMtIgdkSUmB2Y8odceP54efx47s/xnNDzyGYXOOsYNmvRs3R2fjjY8CvXAEem6A2p3fswMu91I3qThOVBfIbCBrTlWb750ms8dgQp2jqg5Pkm31ilBKpuGwZohE7MGSn8kO3HXR52kqlsWotNQ80JVm4YixcYR6uMA+nCKhyWM0uG1xdYAe20lm+fPT2Ln/WLwg05RUIUAQ0D0Th9UpZ9NEo3XdhoeqyTnIF9DR9fMNFy+suWnebC9+f5emEIR9yt3mX+pyXSOzfLkY1xZF/nc1GPtBCU/dW6+LBbNAziKeuPIWvXf1ajr1ip3MnPrDvA/jlvb+MNkvbks1IcSlcdV+VksumTmN4YXjJ/UwaEw61H1qE2wfbH0SzuXn5D5Xn6f+1XLT0xRcpYuT1UoS7Uul0y4OpfKxSXU1e4HHbexu3fbfx7u3vhiAImIvMYdA7iEHPIG56buKm5yauzV+DL+6r+nWMaiOcJic6rZ1oM7dBq9bCE/Pgtvc2xoJjtXtDm1EC7deNKQpQtERoP2ZOUtnhuIb2q9u8wN89t9YbW2d9+MPA5z5X95dRYLaEFJjdGIqn4/jSxS/hH879A4YWhlbfxyrkrus4oHeBGgb8p6uAxwKczkZTx+wU0Qzpsm1TaxxNbYwB988QLB+coZ0lz1Ihfq+Rpvu9BYbHREtfldFVNQ84OB1cMMPFWuCCEc6ECs4wD6c3BteED87Z0CKgNiQKbH57ey6obt1KXXRaW8n/6XZLCUsTEwSiWf/hIoiu0+n5fHmNMshtUeF6C4sbTRx8+sLbqwKLAZUTu/Rd2G3px67G7djVvBsDbbuhaci2z6yBN3QhvoBvXv8mvnrlqzg7fXbxervejl/a80v4wL4P4IG2B8pr+iGTJ+rBmekzi3B7dvoswqmlU/O9+lYc1vbicKYVhyMN2O9RQevJA1efr7r/q9lcGZyaTKta9L0eCiQCGPQM5oDudc91TAQnqn5ODatBo6ER7ZZ2dNm6YNFaEM1EMbIwglueW0hwiRq+g00oQWp/HdIDP3uDEtMenAa2e+lEfmN/6/L0278N/PVf1/1lFJgtIQVm15f8MT++dPFL+M7N7+CW9xYi6aV1MuuivG+9WM5qi5eirEkNRTDnLDTlv2CkCFvF0VTRm8pnh0BlrRJFGic0xSgjtylGO0Y1T2f7Iph6jVTHtRpZ0ywcnA4O1gKHsQkOSwsc1hY47e1osjTDldLA6YnCObUA58gcbLfHwNwdot7cpSQm9Oh0UmZuJkPJTWJd0XUOoovKj4QWioAuFyW1Whcjy4IgYD46T35czw3cmL+B6x7y5habXdCwGmxzbFtMONvl3IVdrl3ot/eXPYWf4TN4fuh5PHXlKfzg9g+Q4qichIpR4a0Db8UH9n0Ab9/69vIrMojJUCUG55nHYGoap3UenG6M4XQH1WzNb7erywAHZnOrJ3QGsz+HhobK4FTeVekeVzwdxx3fnUXIHfQO4tr8Ndzx3qm6vS8LBlbWiFaVDV2sHS7BiHQ6iWkhgFuCBx6mzh1KCqmSJNb1IrECQ4KsSPvnCHYPzlC77g3XGviZZ4C3vrXuL6PAbAkpMLv64gUe52bO4TOnP4NXx1+FO+quf3JC3rea4cm3aElSrdGkhsoNJdRUAH/x7lVk+ovdqOxxilCK3W2iWmCyAZg1F46MMsLSA3250mUAZ0oDBwxwaGxwmJxwmFxw6uxwaBvouowWjjgDRygDRygD7UKIImDz89I0fDhMU/CrVcC+XjIYCITyodJikZalIDUPQustQRAwE55ZArk3PTcLNj4AAL1aj+2O7Usgt6ehZzHR7Zr7Gp668hT+7dq/YS4inYTsbd6LD+77IH5pzy/RtP8qJUMFW+04t9WM010MTjuSOG0OwMcujfK1GFw43HkYhzsfxuGOw3ig7YGyGkesCwkCnawlk3TiVslIJOj3F4vRDIQ4EglaitcnEjSSydwTRHGZyUiNKOSD55EROIw0CBh0kN1I7H520wnEq/26C7Sfc0WBrgAFALQcNSe5k22+IqxFy9+NCLqQjk+uKDWRODgNHJoB9ropuKFebzGAv/xL4Hd/t+4vo8BsCSkwWz9Fk1F8+dKX8W/X/o0OyvWOsuYDK0fRTwDIyCOflezcBGmp4QkajWnKXrXHKWHJnqCyLT4jlcGas5CPMqmq8LWyYnnAkWThSGvgEIxwqC1waBvg1DTAwZrhEAxwJFVw+BNwzIXgnAnA6AmACYakKfj1HvEsJJVKgkix5FI+hOavF7psMq1dhnyNxQs8JoOTEuRmKysMegYRzxSOghk1Ruxs3Ibz7ks51ztgwvuSW/HB+Tbsn+ZqkwxVSdTUbl/yfxEEAcMLw4vWhDPTZ3B57vISG5GKUWGPaw8Otx3EYecBHHbsx1ZjJxgR4JYDRDkY5g/RQy3eL5mUhhwSRUDMh0Qxa7yK0mjrSQJo9kkOuTedBLq+as8jsif34gxTV4BqTEd0lNx600ne0nwxfPbEvl4gWsPkrlWXQDBrTtEMxq55si8cnAG2+eizXvW39eu/DnzpS3V/GQVmS0iB2ZVpKjiFL134En48/GPc8d5BKBWqX4mr/KfN3yFVAamsQMCr5cgHq09TPUItRyb+lIoy+Bf01WfxMwKdZdtTKrSmdehNGtGdMsCZUMERzsARSMMRSMERSMEZSMEWyYDlN9DP0GAggLTZCFgaG6UEpGLQWei2VYqCbjjxPCW2yafw3XMY89zF9eAd3EhM4oYwj+u6AG6ZE0jJeFHDAW+/Q125nrxLJ2RFpdNRFn5jI/0f7XYpecxiIfuI2UyVEPR6spDIo4XiejSaC4jFoojiyGQk2wnHIc5kcNHJ4XQbh9NtPE63A1MFyvja4/TbfPcggVJHCGgPy9ZD66BqxCaRzyABrjyaO9lQ/XOyAtm0tqUb4BAMYFkWs2wUQ0yg4L7cCgMYBkgIaSSh/GOLKpsM3BgH+vzUPOLBGWp80huQZgprqj/4A+DP/qwOT5wrBWZLSIHZ0oolY/jG9W/gm9e/icvuy/DH/VX7rZZVoW9epaeY2edgsgZ80Zcq7jhTKrIRVCuWz7ZyLfIc5iQZ/O/Ltlx8dAzoC6zDAIBGQxBqNhOsNDbSECOi8un4UlFQg2HDJ9DUVRy3NFIYjxOUzs1JFg+xhJTPR3aPQIAS3kTbR5nKsDSle91FVTLeNsTAEWeWlu7JX65zTVmBM+1SY4fzbUWagOSpMVYYcuXwayuUqLgaEuuBqtU0NBpaarW0rtVKQ6eTlvKh0Uj3LbRcyXWlbssWyI+morjtuy0loHkHcWP+Bu767q7oOKFVaWHUGKFltYimo4iml5YlM2lM6Gvog0VnQTQdhSfmgT/uRyKjJKeVEssT0LZE6Fj1QDaqu9tDv42qOqb98i8D//qvNd/WfCkwW0L3OszyAo+Xhl/CP178R5ycOAl31F0/WBVVqY9J9o1kspdXPAVVAy+VJUmm/QdmpNEdqNOBkWHoIKLTURTUaiX4dDho2O1LPaHFxkYHUHlCWbEhRgFF/2E0So0KIpHcyKE8qihGEMXHyz2I+RFEsZyXWKdRPs18b+1C10RplqpETDQwmLJlhxWYtgBTVgFTZh6xMmAXAEy8Gh2cCe2CBR2wooOxoV3VgA6VHR2aJrRrmuDUNoDV6VcGgPnrG/k3uIzSXBrDC8OL1RUGvdJyJbDJgIGKVYHjuYIzgB3WDhxoPYA+ex+sWit8cR8uzV3CsH8Yvrhvbbs5bgRl7XTWBNUa3+Mmr+79M8BWP82GFPzWfuQjwGc/W/fNU2C2hO4FmL3tuY2/O/13eObuM5gIV1+upaSqgcMKCvqvR738FeDx4k2hKHohRlrEKGhDA8FnSwvgchGQFoJP+XVmc+0aAxRTPiDKvYjJpAR+kQhFC8WlCIniFLM8QUXuPRRH/vRyPhiKQCgHQwUQ6yuGoe+qSrV0iNFC8XssjxTqdGQ3EIfBIH3XxdtKRQ8rhb/821WqokAoCAKCySCmQlOYCk1hOjQtrYel9YXEQlkfkYbVoN3ajnZLOzqsHYtDfrnF3AKNqkyCvkclesDlFRZueW/hpufmiurlFhMDBrtdu/Fg+4M41H4I2x3boWJVuDl/E6emTuHC7AVMBCcQSATWrgPkBpJYz9wZA/p9VIXk4Azw5Ce/BtvPva/ur6/AbAltBpgNxoP49KlP46lrT2E0MCrdsJFN7nWWmqPIqiUFWJNSS0JLCrCkWZg5FSy8GhboYFEZYdZbYDE1wtLQDEtjC8xWB/ob+2GyOQtHP3U6KZInT0QRI4KhEMGgCIYiFMqBsBAcyqOGBfyGi0AojxgWgsJ762e+uhLhUA6IIoTJIVCcOhbXRSg0GgkI5ZAo3i7CpAh4+cBXCQyq1avST309K5aOLYKuHHLl6+6IuyzQYcCgxdxCkGttR4elQ1qXwa9BY1iFd7bx5Iv5cMt7a3GIwDsSGKnp6+hYHfa37scjXY/gcMdhHGo/hHZLO2Yjs7jju4NLc5dwevI0rs5fxVRoqqDFQVGufueB38Jfve3TdX8dBWZLaCPAbDqdxpcvfRl//MofYzY+C/BYCqibHFjVHNVZNaUoG9aWIAi1pgBLioElzcCcZmDJqGDJgqiZ18AiaGCBFpaMCmaOhSXFwpIUoM0IueAnRgjzM5SLASHPV9YvW9HGEsOQdaOpSbJyuFyUld/SQqO5mS6LEfZNUkFBUa7SXBqzkdmSEd6Z8EzZ5QUbDY1Loro569Z22HS2iptWbFYlMgkM+Ycw6KEo7i3fLdycv4nbvttFK3pUKp1Kh21N2/Bo96N429a34eHOh2HVEQ+kuTTGAmO47b2N8zPncXr6NG55b2EuMlewpfO9qA/s+wC++u6v1v11FJgtofUCs189+1X8l2d/DWlOIDDd4LAqmsyNaWr3J0ZAGxJUysoeJxA1p6QIqUUeIc1eJ95eMgtb0eYQw1C0UEyKkSfH5F9X6TL/OpWKIugijBYqI3WPRy0VlS9e4OGJekpGeKdCU4ily0vmM2lM6LB24LbvNt6z4z1oMjTRMDbBYXQsrotLu95edgONzSJe4DEVmqIobh7ozsfmV/z8KkYFh9GBfc378I6t78C7d7wb7Zb2nJOMaCqKIf8Qbnlv4czUGZydOYsh/9A958/9WOcv41O/piSAralWG2aZP2Ko5tN6glVByv5X81TOR5+tp2qWQagjCjRHyS/jilLpD3Fq3pw31l1R5/UmEahE0MoHL/mQ+xbl64VArdR6JY8Rp8ZrDZHFliqVAo+KNrXkPt5iEd7p8DT8cX/Fz82Agd1gXwK5DoMj53KTIQvD2fWyO75tMC3EF3Dbd1sCXR8th/3DK05w1rJauEwuHGw/iCe3PImHOx/GQNMAtKrc0oK+mA93fHdw03MTZ6fP4sLsBYwFxrCQWAAvbJIDZDZX5s+P/gl+//V/WPeXU2C2hFYdZj/JrDwLX/58PKDOFqbWc1S835IEGuJAY4I6ULmiUmmalihFRuXgqV2NZk/i2SzDLB2iv1CMzImJUyJQiUP0G4o+QzHZRO4jlC91utpF9krBWiWQKL5PRYoUKSoguY93PjoPX9wHb8wLX8wHXzw7Ytnr4j6EkqGqX8ukMRWE3GLw22RsgkVr2bAWiGQmieGF4RzIFddX6o3VsBo4jU7sdO7Ekc4jeKT7Eexr2QeH0ZFzP0EQ4I66cdd3F9fnry82ChkPjiOYCG7IRLTPvuWz+MiDH6n76ygwW0KrDrOfkMFsNfuDbO1UY5pqKLaHgS1+YJ8b2Omhy60Ripqya/GfFOEtmSS/oTx5JT+hRQ6n+evlXlfOY7RaJeqnSJGiTak0l4Y/7l8CuYvwm13Kr/fH/eCE6qIYGlazJNpbygLhMDrWvQ1CEARMh6cLJqDNRmZX/Pw2nQ2d1k4caD2AI51H8FDnQxhoGoBerc+5Hy/wmA5N467/Lq65r+Hs9FlccV/BZHAS4VR43YLu7xz+HfzVm/+q7q+jwGwJrZVn9g+/82H8v2v/QJYDUbU82RUo4mpJAo4Y1T/d6qN2dx1hoDVMRZNbItT5atMrP5t8pYBcq8eo1UqkVpEiRasqXuARSoZyI75y6M2LAovXV1sjlgGDBn3DEsj9lyv/gt996HehZtUFh4pVFb1tJUPFFH/e/KhzKBlaArm3vLdw13e36hMCUVqVFo2GRgw0DuDB9gdxtOsoDrQeQLu1HSyTG4DheA4TwQnc9d/F1bmrODtzFlfdVzEdnkYkVedW8cvop7/yU7yh7w11fx0FZktovSSA/fPZf8avP/vra1JOS5uh6gAtYaA7SB2ruoIU4RWhtzWyhp1yNrMYZmntzrWA6kK3K9n5ihQpkimWjuXA75IocIHrg8ngWm92RWIZtmwg5gQOGT6DFJdCMpNELB1DLB2rSQTVpDGhzdKG3c7deLjrYRzpPIKdzp2w6Zf2dhYrLtz138Xlucs4O3UWNzw3MBOeQSxTfgfBavV3b/47/Obh36z76ygwW0LrBWbz9fen/x4feT7rQalBt6paSM1RFYLWCNAZBDpDQFvW1tAiA9/mqJIAtmkkWkJqDdUreU7FNqJI0YZRmktjIbFQEH4DiQAyfGbFQ4TKSsZGTcJSMSo06BvQ09CDB9oewJHOIzjYdhD9jf0Fm3YkMgmMLIzgjvcOLrsv49z0Odz03MRcZA4Jrjatf7/wti/gQw98qCbPVUoKzJbQeoVZuQRBwCdf/iT+5Pif0BlfOXC7lgCcfe09bsnK0BwFWmIqtCTUaElp0JJQozksoDGYAhurTa3AnGx/EXbkdWLF2rH5rUc3+lc+P5lOTDSTD/F+osT3LdbXFcdGkVq9cmj+zGeAP/zD2oL6Jm9TqkjRZhEv8OD45SG4GlAWR4pLwRvzYjY8i5nIDKZCU5gITMAT86zYolBIerUeTqMT2x3b8VD7QzjSdQR7W/ai2dRcMGkvmopieGEYd7zULOLs9Fnc8t3CfHQeKS5V9ut+4pFP4JNPfLJ2b6SIFJgtoY0As/lKZ9L4red+C1+48AVwqOAHUY6FYZUhWM1lQVeE3gjQEmPQktKihTOghbWhWW1FC2+ChVOB4XhKLovHqWNWMEjdtGohkwmw2aiVrNlMnZj0eqltpthQQezqJS7FVq1ily55q1axE9dm+VkxzNLSXcW6T8nbosolB2l50wp5R7NMRup4Jn7WG0WrHaku97p6t0RWpEhRWRIEAf64HzPhGcxGZjERmMDJyZO4PHcZE6EJBJPBmtapZcDAqDGi1dyKB9oewNGuo3io8yFsa9oGk9ZU8DGhZAhD/iHc9t7GxdmLOD9zHrd9t+GNeZc0CHn5/S/j8d7Ha7a9xaTAbAltRJjNVyQZwa/94Nfw/cHvI4MKfgDy/3Q5kd5y71snGdJ50BsBWmIsQa/ahmZzC1rMLWjWNcKgNUnJVYJAcBSNEvwuLACBgDQiNTLPW61AQwMNu11aF4fNRsAsTt2LUWSOI3Dz+Wh4vdK2hUJSm1uxra0c8PK7lW02yVvBiiXZxM/PYMitliFCdH4ZNHEpRibyu7nJWwGLJyf5y2LrqRQ9biOIZdcHVBe6XbGNKFKUo2Qmiavuq3hx5EW8MPoCrs1fgyfqqXlFAwYMDGoDmk3N2OHcgYc6HsIj3Y/g/tb7YdaZCz7GH/fjru8ubvtu48L0BfzVm/+qoMWh1lJgtoQ2A8zmazo4jQ/+4IN4efTlyiK3wJI6tuVALptttsAIQHKZ7zOTfX6hTCBms7YmvsJjnS2RB70RoCXKoIU3oFnbiBZ7J1oau+By9kDd5KRuUGLNWpYlOAyHc6FXHAsLNIJBuhyrgcGeYQh2C0FwKUAWrzeZ6DlSKYL2WCx3GQoBfj9tt89H636/FNmWA7MIbGKEVIwy8xvTY1aRRKuKvIyc0Uifr9FIEXtx3WjMPTERo5/yRhD5UA3kQrU8Ar0cNFdz+0aRaBupFJC//nXgN36jfiCu2EYUrSPF0jFcmbuC8zPncXb6LM5Mn8Fd/926vqaG1cCms6HD2oEdzh3Y7dyNLU1b0GZpQ6u5Fa2WVhg1xrpugygFZktoM8Jsvq7NXcN//o//jPOz56vrfiLkLQu12y0glayTGBjAZygNpSwPGDL01CkVg5SqvK+iipPa3aZUlYEvI1DpshzoFaO/nB4tuia0WNvQYu9Eo6MTrKsZaG6mFqjisNkISkTQLQTApW5L1MCEr1JVBsD5txkM5R20OY6AVwRlOTRHIrnvS4TnYJBGJEL3FSPMInjda8AslxgtFeFZhGQRoMVIfrEhAnWhIUar5UAtCHSSUmtoLnV7oes2om1kPSQ/ypeKbUQRgHAyjEtzl3Bu+hzOz57H+ZnzGPIPFbwvy7B1SXz74S/8EG/f9vaaP2++FJgtoXsBZvP18sjL+PCzH8Yt763qpixkD2E4uiyoUDbkshxgzFBlBEsKCOkAtxlIl6gExfIUbTVlGLAsi7RWjbCGR4Qp76Co5giq1TxtfkoFxDSAUAH4qjnqptYSAS62ARf/EbhvLnujVgs4nUBray7sOp1L151OOhiJSiSKA3A5gFwLMNBoloLuT34C/Jf/Uh4g6/VFnrgKpdO5kJy/HgrRexcj48EggXMoRNH0SEQCZtGWIfcx32vAnC/RopEPz6WgWQ7Ild5HU2C6hudLQ3U1gFyrx2wk28h6gOpC1ym2kTXVQnwBF2Yv4PzM+cUxHhwveF+xo1s4WX1Thk8+9kl84vFPrGSTy5ICsyV0L8KsXIIg4BvXvoH/+dL/LPplL++JaMHwgD1G4Bc0ymwHZUAuwwOmFAFja4TgdsEATFqBRCn7gkCPaYoDJk4FtVaHtMmAiEkDLxOHL11enUM1B1iT5M3V8GSFSKqAiBaI6Jbe//QXgQeny3rqpTKZgJYWCXwLQa+47nAUj8IIAoFbpQAsv1yLg7dOV51FQhxa7cq3oVwJAkGLCMf5sCy3ZohRZXE9EJCAWR5lzvcxbxQgWg2xbC7glgPO1UCz/LqVRC3l3um1hOr89Y1mGykHgI8dA97xjtXzad/DtpH56DwuzGQBd/Y8zk2fK9jdjGVYtJhaYNaZwfEcvDHvsrWCf/ALP8A7t72zXpu+KAVmS+heh9l8ZfgMPn360/ir1/4K7ph7ZU+W/SbpMsAWL03ljzYBs2YZnJazXxEIclvDQP8CgWZcA3iNwLC9MGjK1RIGOkKAI8HCzOigMVuRabIjajfBrUpgKuWBOzpf1ltScUBjAvCYgF+6Cuyep85qA35qK2ys1+xpYyOBbynoFdft9vIjI4JAUJYPunJP8HKAXItdhtFYvUXCZlt/U66CkOtfLgXOojc7GKR18XI4LN1XDs3ptATNigpLpaoMhEuBcbn3KRSBrqVEj/VaQ3Wh2zeabWQ9JT+K14lVc1ZRM+GZxcjtuZlzOD9zHt6Yd+lHxmqxpXELms3N0Kv1iGfimA3PYsg/BE7g4Pk9DxxGR923V4HZElJgtrTi6Tj+98v/G/986Z/hT/hX/oTZb5c+DRwZBx4ZB663AJdagBkrEFejbLsCAOjS1MBhpwdoSAI8A0S1wLQFGGoE/Mv40ptiBKG9C0BzWgOLzgqNqxV8ZwcWGo2YUscwlfFhKjyN2fDsstMwHVEVBnzAgIfDgC8Luj6gbwGr1zaYZcuDXnHdaq1+J7pcotxy0eFalVUzm8tLlCt0vdW6MbudicBcDJTFyLEcmsUoswjN8ihzIWjOZDZnlYx6iGWlcn61BuVi61rt+og0it/FtYbqQtdtlJM+hlk7e0h2XdBqMZH24FzgJs77r+O85wrOz10sGJk1aozY37IfJydPYuy3xtDd0F33j0iB2RJSYLYyLcQW8N+f/+/43q3v1a4ftAxwHxsD/ugVYMwO/HA7cLGVwDSuyVZAKHO/reaA9hBw/wzQEqVENI4B/AZgpJFA11246siirAkC3S1+oD/IoidtQqO9FdreAYT7OzFkTeMus4C7sSnc8d9BIBEo+lwsGHSzjRhIWTAQYDEwm8TWiSgGJmPomU+tbcc0rbYw6BYbK4HffHGc5IEtBcDFrq9FWTWGyS2rVmmE2Gze3B7BdDoXipcbkQj9T8UqGSIw50OzCB0bqbzZehPDSHBbDvzWan0jnfyVW3KvXhVFSt2+AXCLZ4BhB4vzXWqcb2dwvoXHBWcGUY207Xfe8zIG9jxe921RYLaEFJhdmcYWxvCRH38EL469iESmNq3xACwCriENPDoG/O9XgPtngf/YAXx/O3CpFZiyAtEKIZfJ+msfmAa2+SgJTcMDCTU931AjMNwITC5tf71EO+cp4tq3APRGVHCqrIDLhVhXG8bbTbirj+JuZh53wmOIpqNFn0fNqtFr6cJWXRsG0ISBlBlbQxoMzCbROeQBOzEJuN0EB+sheUmrJR9vKeCVj0psD5UqnV5qhygGwHLrhHhbPL7ybWBZsjpUUkpNflksq3Yvi+cpIlwuMIuRZxGWCwFzvqc5nV4fv5/NILV6KeTWApRLLfX6zXXSKNa4Xm+RbPEEs4Q4BrjtAM63AZdbgL/6hyGwff11/8gUmC0hBWZrJ0EQcGn2En7rud/C+ZnzNev7LL0ALQxp4NFR4I9eBR6eBtIM8MNtwNPb6cc1baWkrUogF6BqCXvngL3zQL8PsCXp4X4DAe6wnWB3rGH58l/NERnoLgBNKRVURjOSTjvmO+wYagTusgEMJWeQ4JJFn0en0mFL4xYMNA1gwL4FA8ZObOUbMBA3otWXAuN2AzMzwMQEMD4OTE1RHdlalPuqlVQqoKmpfPhtalo9D2wyWb43uJCveJmdflmSl1WrJonOYFBguFxlMqWjzMVuywdnMQItv4+83Ny9dRhdPYll7MoF4GqgebNDdDnKt40sB8iPP06fV52lwGwJKTBbX434R/BHL/4Rnhl+ZtmMyKqU/bYaU8DRceCPjgNHJglCOQD/kYXcC23AhK06yNVlKAq7Zx7Y7gX6/YApTdHceRMwagdGG4ARO0FvcJkqVdoM0BOQQLcxDmgYFmmzEUGHGWPNOtw1JjDC+5AWind0M2lMBLmN2dE0gK1NWzHQOACHygLG4wFmZ2nMzUnrExPA5CRBcK0SuGophiFwKxd+nc7VrYYgV6GyauVWklhYILhaqTSawqD77W8Dv/mbUvWASpcbbTp5PUksL1euPUN+PxGcQyFal/ug4/Hcxibr7be7WbUSiF4OlEtdp/z+cqTAbAkpMLu6CiQC+NtTf4svXfwSZiPLJ1RVJRngPjIB/M9XgUcmJX7lADw7APz7DuBCO5X+Cukqh1yAwLQ1ArSFqdpCawRoiFNXNI4lG4TfSBUcRu3AuA3ILLN/aooR6PYsULkxXQbg1CzCVh1mm7QYahAwpg6DL/HZ2XS2HLgdaMyuNw2gQd8g3ZHnCarkwCtfTk4C09Nkc6hFp7N6yWqtDH6Ny2QGroYKlVUrNypcy7JqpaTVVgfChcB4ufsoB+7KJUJzMXDOv67QZTHiLAdnEZpFcFY8zWsjsRthufBb6rpK7r9OS5gpMFtCCsyurZKZJL5787v41IlP4ZbvFjJ8DSJVhZT9VptSVEXhY68Bj4/nsisH4Pl+4Ls7gbPt5JsN68gAXynk5kvNAc1RAt6GBCWkMQKQYan6gs8AzFqWr76g5oCuIIGuI0bPAwaI6hh4bGqM2hlMGkpPfTuMDgluZRHdLY1bYNaWyIpLpYD5eYJctzt3OTtLkd7pabpPLbyo9ZTRSAft++8n/6/oAS623ti4/mArv6xaPuwGgxKQyEFmueVaWVTKBWdx3WhcmriX711WLBi1Ub49YzlILnYfMepcqIJGIrGxSnxtZjFM+fD7ne/Qvr+1te6bpcBsCSkwu77ECzzOTp3F/37pf+PE1AnEM3WEIjngTgC//xrwunGKqsrFAXipF/j2boLciSzkcstBrvx5yk1Q48l2YE1SKS9GoOYRYR0B73JR3YY40B0AnDF6XwzIDuEzApMNLOZMpRNgWs2tBLeNW/GlS1/C93/++9jatBX99n7o1MsU9JUrHl8KvPL16WkCYLe7Nr7Teku0PiwHveK6wwFYLBsTpMRkrEohuJplvcFZrV5qv8gH3kLJe+J1m71SxXpTfiJgIYAu9zq5ZUN+mwjO92q0Wb5PEltcAyuzrFy/DuzatbLtKkMKzJaQArPrX6MLo/jT43+K7w9+H76Er74vJgPchyeA3z0JvGFsKeCKutACfHsXcKozW9fWACTF3KViHCN2SxOova6Gp7vG1csnlsllSEm1a5NqKl9WSixP5cpcUWojrOKprW/AQElz/hL+fQYMuhu6sbVpK7Y2bl2M5m5t2opuWzdUbJVRS0Ggg00h4BXXxaiv2726ByD5jr4aiVUfloNe+eW18v6uleTwUmkUWezSJo9Ey6PUtahcIFaqKAW8paB4o9YwvhckLzm3UmgWv48iQEej0gnhekrGrZeefhp417vq/jIKzJaQArMbT/64H186/yV8/sLnMRGaAC/UudxO9hdhTgIPTQL/4xTw5tHigAsAQS1B7k/6gWvNZCGIaMuwLAgEuToOsCQpSuuM0brovZ21ULS2XLHZ1rzCMkFCU5I8v9YkoOEoChzU0etFSzCWhlGj396Hrc7ti/YF0cLQZmkDU6vopCAQpBSL9opjdpasDqu9K2MYCYCrfW2rtTjoFlpvaFAih4VUyIJRCHgLXRcMkl2jVlPeFkt5UeBCl+329dfdTlFlEttn12ImI/9kLt/GsVbg/M1vAj//83V/GQVmS0iB2Y2veDqOH9/5Mf70tT/Fdfd1pPhVmrYWyLO63QP88lXgVy9Tq9vldLqdQPd0B1VAWDBQhBTAstFcLUclxLoCVCf3wCwB75yFoFOE3VkzMGORtQ2ugQwpwJzK+n1B9oUFQ2mwNjE6DJi6MODYiq3te7HVuX0RdJuMTbXbuHzxPJUoKxXtFf2/Hk/9tqOYRPAVQb/aiDPLSmXPikV+m5py1zeq/WE1JQi5lSrKhWD55Vr5xru6Sg9bGUWxFd0bqgacy71vPjjLv9937wJbttT97SkwW0IKzG4+cTyH8zPn8X9f/b94ZewVRNI16lRWjgSK2DZHgDcOAx8+BxycKc8y6zEA39oFvNAP3HABc2YgpikvmssKZI1ojQC754E3DQE/fx0AuxRwC0FvpAI7bDExPG0HK1AUOMOW3m6boEO/2oVt1l7saNmDbT33Y6BjHwYcW0snotVaHAd4vQS5bjdBrrguv25ujpa1KKdVqViWAFSMwvJ89QCs0SwF3ELQK1/WsuvbvaJUanngLXVdOFze61itQHd3cdhta1Oiu4pqLzk4r5KdRoHZElJgdvNLEASMLIzgs2c+i29c/wY8MU99SoIV3QBaGFPAXjfwgSvA+66Rb7UccQCOdQPf3wGc6aCmDUF9+dFcXYYixn1+4OFJ4OduAIdmc+8a0eYC7qwFCOjJZhDUA14D4DZRIllQT7aDhHp560K10vIMLIIWjSozmnVNaLO2oce1Fb0de+CwtsCms8Gmt6FB37C4rlcvU+C3FhIEmoIuBr3y6+fm1m7aj2UJeHU6yfqwkg5YanV50Ctft9kUAF6JMhn6Lk1M5I7xcWnd71/+eVgWaG+X4LYQ+CrRXUUbQArMlpACs/emPFEPvnH9G/jc2c9hZGEEnLDKma3ZX5kqm5T1lrvAh89TY4ZKDv/TZormvtQH3HRSE4d4mdFcVTaa2xYC9rlpG37uJmAuM/AogIA2qKftuOMA7jYC4w3AZAODOTPgMQoI6Ol+9ZaGUcOut8NmaIBNb4NNlwu7+QDcYe3ATudOmLSm+myQPLltOfAV2xWvlViWIiviYBgC31Sq+ki0Wk0lzSoFYMUDXL4iEaoFnQ+84picLM/7a7UuBVw59CrRXUXrQArMlpACs4oAIJqK4oXhF/DnJ/8cl2Yv1b4Vb7nK/vqsSeDADPDBy8B7bwLGCnlCrJn79HbgfLacWFC//NQ/BLpZmwGSGuDhceCBGeDtd4AnRoFqJ5JCOmoYMdYAjDUyGGtkMdbAYMzKY9TGY6GcTojCMttehRgw6LP3YU/zHux27sZu127sad6DgcYBaFQ1NByXo3ic4LaYzUF+2Vfnqh7LSYRftVpaAlJ1gmrLrYke4HLtD01NlCilVAwoLJ6n70t+RFc+yvku5Ud3C4GvEt1VVGcpMFtCCswqKqQMn8H56fP4m9N/g58M/6Q+rXjLVfYXqeGohuzb7wC/cYESwKphu1Eb8M3dwLEe4JYTmDdSopgAlAW6+jQlnfUtAIemgHfeoTq9KqDqclY5sNvEYqxJjTE7MGbmMGblSpYNK0eabOKcMU3rDMvAqxMQKNKkQsNqsN2xfQnkdtm6wDLrIHKYTlPi2nLgK95nLXy+cjEMAadGQ+Cr0UgAmk5LtT+rfW67ncB2udHYKK2vhy5w60HR6PLR3XJOTgpFd+WjvV2J7ipakRSYLSEFZhWVI0EQMOQfwpcufgn/euVf4Y66waPOJcGW3Sgq49WQAA5NA792EXjHXcBQJbekGOCH24BntgIX2oBpC0HmYrWCMpLQ9Blqx7vFDzw4BfzMoMyfKyYxVZG4tAi7jQzGHGoaNmDMnMaYmYPfsLLdloajbRdA9X65IoE+E3TYbe3HHtdu7O4+hD3t92G3azdcJteKXr+uEkuaiVHf5UY5PszVkAi9Gg3V39Vo6DskCARX0ejKKgbo9eUBsHzci1FgeXS32PB6l3+eQtHdzs7c0dSk+KwVFZUCsyWkwKyiahVIBHB8/Dg+f+7zODF5AuFUmdnH9ZQs6avfD7zrFvCfLwG9gZXN0Pt11Ob3xT6qtDBtoa5kGTFIWQboGtJUM3eLnxpS/OwgsHc+ex+Vig52HFdVktIi7DaxGHPpMOZUY8zKY8yYxqg5hYU654aZOBW6BCu2aVux17YNhzsO4+Gdb4KtdwclYW0kpdMEJ+WAr9u9floXs6wEvlotfe5iBFhMgBMbLVRbCaKSKLA8GrzZo8CxWOHormhtKDe6q9cDHR0EtuIyf91uV4D3HpUCsyWkwKyiWkkQBEwEJ/Ds3WfxhYtfwE3PTSS55FpvFikLlE0xavzwoQvAG0elDmIr0ZwR+PedwCu9BLqzFiCqKcOfK9suUxpwRsg6cXSCKi5sXcjeR62WInKZzMpsDC4Nxpp1GHWqMWERMGFIYdSQgLecyG4Vnl0VD5jTgCOtQQdvwYCmGTvNfehw9qGlZQAtXTvR0r8PZktT7ZpLrLai0fKjvh7P+mojKkZ/dToCKZ2OhhyA43EC4MgKSvzd61Fgni9cmUEE3akpqv5RjozG5YFXqaSxKaXAbAkpMKuonsrwGVyfv45vXfsWvnHjG5gKTa1+5YRiyv7SDWlgmxd4zyAlnHXWMMA8YQG+swt4tRcYdDBwmwVENQC3XLWF7PaJFReaI8AOL/DoGPDeG0CXuI1qteTDS6erBqW4GpiyAuMONSZcOhp2FuPGFCZ0SUwYklIptBJihDK8xwVkSAOtSQ1aYEaL2o4Wowsttna0OHvR0paF3sZuNJuboVVt4Ja3PE+lzcqF30Bgrbc4VwwjRX/1esBgoKVeL4FnJiMBsN+/siiwIFAxejHCK3p+xfX8y01NG7ciRCoFTE8T2E5OSpArX5+fX/55AMBkKgy58nXleL/hpMBsCSkwq2i1FU6GcWbqDL5y+St4fvh5+OP+1a17u5yyEMmxwNtuA79wjby4thoHme/Yge/uAk70MLjdxGDexCOqLqOsWHYb1bzUKGKnB3h8lEC3JZa9j0ol1VlNp2lUuXvjGcBjBMYbWUw4NJhwajHRqMJ4AzBhTGNCl4RXV4ZZuQYVGRozWejV2NFiakZLQ0cWerehxd6JFnMLWi2taDQ0ro9ktZUolSpueRAT3ORjJdHTekm0P4jwazQSbOl0dCIm+shjMQLghYXyGyYUktwKUQx4C8HwRoDgRGJ54C3HvwtQJ7zlgNe8is1bFC0rBWZLSIFZRetB06FpvDz2Mr504Us4N3MOsUxs+QettrIA6YwAD04Dv3QNeHKIptFrrWtO4Hu7gJPdLO40Ah4Dj3g5oJvde6l5wJIE2sLALg/wxAiBbqMI5GJTgcZGWk8kqJtNOTU5iyimoRJoE3YWE01qjDepad3KY8KYwaQhVbL1bzExvHRyUWmTinZY0aJtRGsWeltdfWht6kGLuRWtlla0mFvQYm5ZnYYTq6F4fCngivaGQtevBBrrKbWaor+xGMGVyURDr8/1AcfjZPMIBikKvBKYZ1mC4OUAOB+G1xsEx+MEtaWAt9wkR5tteeDd7H7odSQFZktIgVlF61Ecz+GW9xZ+dOdH+Ncr/4o7/jtI83WgxlpIADQ80BwGDk8R5L5phHyw9dCFFuB7e1ic7mIx1MDDqxeQUAllg65GBN0Q8La7wMFp4Mgk0BKV3ddgIM+izUbgEA4TMESjVZe54hjAbc4Crw0Yb2Aw0agi4LUJGLVkENSWv/tVcfQZm1JUwULD02ss6AFfhX0gGhgDWrVNaDE1o9XeiRZHD1qt7Wg1ty5GelvMLbDr7RvX21tIiQRF8kqBr/y6YJUl+sTPrJ6HV5VKsj+I8Gu10ndZTIYTZynEKHAgUFsILgeAxXWrde0gOBqVALcY9Jb7v7bbSwNvUxNFgTWrXLd6E0qB2RJSYFbRRlEsHcOFmQv45vVv4ulbT2MuMrf25cGKKbsX0XJAa4hg8X3XgNeNVV86bDlxAF7rBv5jlxpnOxmMWHn4tTwSaqEsHysjUB3aphh1ZRvwA7vdVPbs0Ixsu1mWDsQtLYDTSaAglr7y+ehAWaXCWmBShF0bMGKnpLqhRmozHNaVF53VZIC0GtjlBloi1ISDASXlxdXUqnjeTM+ZqqD0pxZqtOga0WpqQYu9E60Nkq1BDr7NpubVbzqxGhJtD+WAr8dDloFqxDBSF7Z6SrRAGAwEvxYLfbdNJrpOLInGcRTxjMUkAPb7V/RdX5wdGRiQQFceGZavyy/b7bRd9VY4vDzwVhLZ1+vpsxU/42Lry91uNm+exMAKpcBsCSkwq2gjyx1x4+TkSXz18ldxbPzY2jZ3KEci5GaAjjDwyDjwvivAo5O1qaxQTByAl7aw+NFuDc63AaMWDmE1Bx4C4uoyADFrsbCkAGeUmlds8wH75ygavcMDLMaYNBqC3LY26lKlUkltbd3u6gEHFHmdtQA3HMDpTuBKMzDURKXSgnqyIpQrZxToCFJynT1BEV4NT9CbVAFRLbVHnrUAc2aU16VNJoemAS3mZgLePNiVr1u0ls0V7ZUrnaYTnHLA1+MhQKzmEMwwUpRTEOoLwQxDNgiDgcDKYqEZDIslF4IBgv94nKBPBOCVQjBAr1sO+OZfNptrW+UgFCpuZRCX9fBxi1H3aoFYXDeZNlTVBwVmS0iBWUWbSbzA467vLl4ceRFPXXkKV91X1641byXK7nX0GaAzCDw2BrzvKvDwNEV3660JhwanthpwsUONm40ZjBuSmNOmENQIVMWgDNjVZYCGJNAaBnoXyKt7YJa6o7nkFmizGWhtpWnIhgaCkHCYQFf081WxGxZA8Hm6A3itkxpf3HCRtaFaNUeAjhD9T1rDlARoSBPY8yyQUEkR3jkzga/bBGQqCBwZVHq0mlvQYm2TIDfP3tBqboXL5IKK3eQRqUyG4FcOuF6vFA0utKy2dbBY21kQJACu5+FfrZYsEDYbAaYYaTQa6Tatlj6DZJIgWPQC+/10EhgIrGwb1erywTc/Glxt97JMhn7foZC0rGY9FFqRp7+gWJagdiVAbLWSlWIVosUKzJaQArOKNrsSmQQuz13Gj27/CN+6/i2MBkfXT3mw5SSWD8sA3QvAE6PkyT00Q1HE1VBGp8HVPjPO9OtwxcXhjjGBCW0cXm0GEW15ZcYYniwMjnjWwuAD9syTheHgNKAX/x0sSwfP7m7qliRmU0ciwMyM1G2pgsjbgh442w6c6QDOtBPs+gvkrOg4BiaeavqG2TTSzPKvwQgEvJ1Z4O0I0ftrSNCJCSsAKRXgMUmwKwffcAX9JFiGhdPozAHcr1z+Cv70iT9Fo6ERdoMdjYbGnLGpo74AgV0kshRwS8FvtTMDLCtVXxDhl+PqC8AMQ4BrMBA42e25EGwyEQirVLQtIgTLrRALC3SCUC30i7Jaq4sGG421i34mkyuHYnG9ltH7mzeBHTtq93xFpMBsCSkwq+helC/mw9nps/j6ta/j+eHn4Y1511d5sOUkED8a0hQFfcMI8IvXgPvnKGq4atJqEXJYcWarAWfbGdywxDGkjWJGm8CClkdcU4GFIQm4okB3kOr+7p+jBhfbfDILg1ZL9oXeXoruGgx0UIpGqWTR6ChFeEvUNhVAXtzTHRLgXmpFwUoLPQtAb1QDF2uB0dqEhN2CGVUMk/9/e/ce3XZ93w38rbt8ke+25PslCSRACIGQlGSjbKVhrOV52Hbg0MOAwnO6czZgpGztYeuA7oxb2I1BWCk8rJfTcQbdxtpuD6WUZVxKCAEnwQ6JE99kWXdbkiVZ1v33/PHVz5JvsnyRZdnvV8/vWLZU6ys7IW9//Pl+vrFxjCY8iGLxH4qUSdG32+pPV3lb/OL9uklxlHBSmRF4y9OtDXLwdZWJxyyVSqGaEXKr9TMD7+z35VBcra/emD2/QLr6m2v4dbtFiFoOjSZd0Uwm0wE4373A8ma40tJ05VDeiCVXFEtLRUCXK8Gz+4HlILzcTX+ZGhrSQVwOugtdmfeXlOSnDUCSxOtdjVAcDIqWipaW1V/nLAyzWTDMEonTywa9g3h/5H386NMf4cPRDzEZmyyugAtMh9yyKNDlAQ72A185A+xyivFWa0qjAaqqYO6oxgcdSpysnMJnOj/Mmkk4tFH4tci5hUEfF9XOxoA4mvhSN3CVDdhvEUcETysvF0F3yxbRr6vTpUc4OZ3A4OC8fXwRFXDKJMLth6mAO1gzdyklMfG8+6zAXpsCW8OlSNbWwNpVB0tTOUbrtLDoI7DEPRiNuDEa9yCWY+BtDIqgmxl65dtNfnGamiujqusoBzwlMy+vXrwdLwUiy/ytsMygNcyt+OrnVoBnB+JSTenGqgZLkvhhKdfwOza2st7fzAMo5PArX/mOJ2q1+DtTXi5aIerq0qexVVWlWyLktUUi4u/SfCHY41l5W4BWmz3sZgvDJUtscl+uREL8ULAGf+YZZrNgmCWaXyKZwAXPBXTbuvGL/l/gqPkoRgOjSErrdIJCNqmQWx4Rv+K/oR+45TNgp3uNK7kylQqorkbcWI9TXWX4qC6MU1ovLmj8sKgn4dYnMZljC4MymZ7C0BJItTA40y0MuszXV1EhxgVdfLGoFsm/Ao1GRQVqaEhcDgfc2viM9oTjLWKT2Wym1Ei2fVZg3yiwxyY2ykGhQLK0BK6mSoy2VsLSVonRJgMsdRpYtFMYjY7BMuWENTaOeA5TOVRJMTc4s7Lb7AeaA+m3TYF0j/WUWmxamy/sTr9fqoCnUguPQQ2PXoJXk4BPubLTQbQq7dwKcEk1avSz3p9VEa7UVW6cnuB4XAS6xdof3G5RJV7JFBCFQgQ3+dhrOQDH4+Jai+OT5ZFocitEba3YBCqfyFZZKe4HxPqiUfF6fT7xdZLDr3zb6135unW6xSu/C92vX59zpxlms2CYJcqdJEmw+C3otnfj3eF38ebAm+j39iOaWGE/WqGkQq4+JgLRvlHg5j4xQqx2qkBrUipFFaixEf7mehwzRnGixIMzqnEMqPywaSPw6IFwDi0MCkmEv/YJMYGhwzfzdqtfVH2nyefeX3SR6NstL58ezZScDOK8vRfHfb04XuLBcVMCnxrnbvZSJsWJbPusqZA7Kt6ftzKuUiFZXgZnSxUsbVUYbauCpakcljoNRtWTsEw5MTrpgDU2jkSOY+gagjMD7nxvq8IL/4yQUIjRZZ6SjDBcpoTHWAFPfTm8VToRfksAjyYBryoKT3ISnph/xbOgq/RVMyq+bw2+hXuuuAcGnQEVugoYtAYYdAYYtKn3U7cz7y/ayvDUVDrYysF3sdsrCcClpSKEygdQxOOikiqH4Hy3QgDpEFxeLv7O19SIEJwZhOVRXMmkWFc4LH7wzAy+mWHY51t5ENbrc2uDkK/du9fk8AiG2SwYZolWzj3pxknHSRwbOYY3Bt5Aj6sHodg6PMVsKVK9rNVTYvTWb/UDN50HdowVoGVBplCIf/SamoDmZgw1aPFBiRunlG58phyHWRWAsySJCV2qBzaHTGMKiIDb4RMhd/bt8syfU3Q60au7bRuwbRumagzoVo/hw8lzOB4bxnGtCyOlcwNdeURUbOXq7T6rqKLmRKtFotIAR2s1RtuqYWmvwmhjGSy1GliVQVhDDliDdlgjY4gityHGJbGFw668ic0UXNomQwnAZIkK3vYGeFrr4DFWivBbrYenQgNPqQIebSr8JibhCXvgmfLAO+VFILp6J5EpFUqUa8uzBt457y8QkA1aw/quFofDSwu/KwnASmV66oLcBpFIpI/Klq+1MHsyhHwYRX09YDSmg7BWm55XHImIPtfZITgzDPt8ywvxZ88C27ev+sucjWE2C4ZZovwIRAI47TyNE9YT+PnAz3HCegLe8PJnrK4bqWpuaVQEn/0W4OZzwLVmMZqroCoqRGW1rQ3xuho4dFGMJicwHHXBHHbCHB/DcHkc5krAXCVmyS6mNjR/yJWruzOqnCoVHJ31OH55DY63KvGhfgwntG4EVXMrRS0TM9sTrrKLdoll0ekgVRgw1lIDa2sVrK2VsDYZYK3XwVoSgzXshtVvhTXkhCeRW3CUJzUsVuWVD6RYErVa/FDQ3Aw0NiLWZITXVAVPgwHemhIRfsuUmFAn4I8GEIgEEIimrkgA/oh/+nYgmno/EshLj3uppnThwJstMM/zeJ16CeMr8iUzAGeG3HwF4GRStPTIbRCSJEJvNCouuRq8FtErc2OcPB4tMwSbTOJ9eXOcJInAHgrNbYPIvD74QLzGPGOYzYJhlmjtROIRnHGfwSe2T/DLwV/ivZH34Ag6im+j2UJSR/vWhIBLXcCNF4Av94s+1oJVc2VarfgHJzX2S6qqxLgyAnNsDOawA8Mhm7hdHsdwlTiBzJfDHhJDZP4WBvl2bQg4V5/uuz3epkJvbWLOdAJVUvT6ZrYnXDwuxnutCo0GMBgwVV8FW3tG6DWWwloBWCU/rP5REXrDbsRz2LgGiM2GC1V35Y8ZJ1fQm93cLCrxJlP6amycedtohKTXIxQLzQi38wXeOYF4gYCcj9YhjVIzI9z2uHpwfdf1KNWUiktdmr69jEur0uanxWKhAJzt9koOS5BbD/T69Di0ZDIdgiMRccViaxOCZ49Ik8eP1dWJEPyNbwBtbXlfBsNsFgyzRIU1vdEs1Yf79tDbGPIV0SzcXEii0lceBdomgF8zA/+7TxzzW7Fe2o0NBhGaurrE27Iy+JNTMEdcGJ4chTlohTmWquxWibDryuFAhpKYeM2ZIdcYAEJaMZXgbJ2Yg2ub5z+/lWGxiS2zPaEhpBBVJY1GbCBSq0VlazWoVEBZGZLVVXC31sLaXg1rWxWsjeWw1qhh1YRFW4PPAuukHb54boFFHk+2WJXXsJI/CxUVM0Pv7MAr366tTZ8WlkUkHpkRbrNVhOVQvFCIXquWI6VCOSfglqhLVhSQ57vUyhxGZcgBeCmX17v8Xl35AITyctEOpFKJECq3QoTD6RAcja5uT/DLLwP33LN6n28BDLNZMMwSrT+ZG82OjRzDLwZ/gXPj5xCOF8FpZksliR34dZOiMvmlC8BvDQBbvKtYlVwp+TCHjg4RdhsbAY0GofgURsJOmCfMMAdGMRxzw1wmwu5wFWAzLL5JTZ0QG9FMAXGkcUQlRmuZq+Yfr9XpTQfbi8YzensljahimkyilzDzGGG7XfyqdDXIm4cqKzHZWAtbRy2s7TWwNhtgrdfDWhKHNeGF1TsCq38UtilXzpvXDJGZ4faHVwDP/T8xkq0pdZmCKzz6WaUS1TQ54C4Uek2mVdvUk0gmEIwG5w28U/EphGKhFV0r3Xi3VBqlJmvYLdGUTFeaX/jkBUiP5vgXOZkUfauLhV6PZ+b7K/mzXVIifhAqKxMhWK1OT4SQQ3AoJN5Go/NvLjt6FLjuuuWvIUcMs1kwzBIVD3mj2QnrCfxi4Bc46Ti5qptn1hVJhNnyqAhwnx8G/td5EeLK10s1V6bTiYC0dauYcVtTA6jViMbCGA1YMewZhDlggTnqwnB5Yrpn11Kx+NG3iqQ4AU5SAFNZzjGoCaUqwBPpgNs2AbQHVWjXm1DfuAWKzi7RU1xZKXbPW63iVLXhYTF/N7CKf5b0eqCiAon6Orja62ZWeQ2SaGuYtIvQG7TBH8+9L7M2lA64jcF00M38WGNghaEXEJW+xUJvY6P4dXMO1d58iSViqxKKF7uW0w51Tcs1+OD/fJCHV51hampuwM1nFVilEn+HDAbAbOYJYOsBwyxRcZM3mn1i+wRvD72ND0c/hDvkLvSy8ksCdHFxYtgVDuC3LwA3DIhf46/LoUzyxrSLLxaVXYMBUCqRiEzB5hmBeawfZv+I2KiWCrvDVcBIpRhBlk1leP75t7PpY/OE3Yge7epatNduQfPW3dDsulL8qj6ZFBXd0VFxWSwi8FosonK2WlJ9vKitRbClAdaOGlHlbamAtVoNm3oKtrAbdr8NtolR2ENORJK5/yRTE8oIusGZgXdVQ69SObPam63VoaxshU9WGJIkIZqILjkANxoa8QdX/UGhlz9XrlXg2dfUPDMLh4dFL36eMcxmwTBLtPHIG826bd141/wu3jG/A4vfsnE2mi0kVc2tiABdXmD/CHBjv6jmFmxu7mJUKtHH2dUlxvu0tU3/elsKT8HlHITZdR7DEyMwp8KuvEHtC0PAMz8HJnQi+Mq9vOaq1Pup23bD4stQJsWv9+X+3na/Au3xcrSVNaK9+VK0b7kKZR3bRGjTaMSvXO32mYHXbBaV3rGx1f36pNoapPo6eFvrYWuvgb21GrbGctgrFLApgrCH3bD5bbBNWGCfXF7oXajKK7+/4tALiDAr9/a+9x5w333ia5p5mUzi7Tod3r+pyfOAMyvBN90kfjuTZwyzWTDMEm0OmRvNjo0cw3uW99A31odwYgP24c5HEhMDKiOignvNiKjmXjMqgu66rOgCItCYTGK27aWXiiCk06VHBtlsIkDK1zyV04gKGK1Ih93ZwddSAURz2NNTG8oIuxNAe0SPtpJGtNd2ob1xB+paLoKirU1UIXU60bNrtaYD7+ioCLxmM+Byre5OdLVaBMXqakgN9fC2NcDeXgNbazVspjLYy5Ii9IacsPltsPutsAXtKwq987U6mIKzDuJYCYMhHWznuzLvW4Oh/VRYDLNZMMwSbW6eKQ96Xb3ocfbguPU4PrB8ALPPjLi0Wv8iF4FU0K1IjdnabxFB93OjQH1oHQddQOzebmoS/brbt4t2hpISsVErEhHtAplhd3R0zvSDpAJwli0cdkcqc2tlyJzc0D4BtPuVaEMl2g0taDdehObmHVC3tosjhZubReD1emeG3dHRdB+vw7H6x7FqteJrVl0NyWSEr80IW2ctbK1VsBvLYNPHYJcCsE3aYQ/YYfNbYQvYlhx6F6vyNq5m6AVEkF8o+M7+eHkOYzho3WGYzYJhlohmkyQJ1oAVva5enHacxrHRYzhhPQF70L7xWxVmywi6bamDDn6rX1R0GybXedAFRGW3oUG0MezYIUJvRUV6pNf4uGgRyAy83rmHe0zo5rYvZAbfpbQyZB480RZSo11Tj/aaTrQ17UBZS5dotWhtFcFcpxNrtNnEZbWm31osIvyOj6/u1wwQX7dUP69kMsLXboSts060N9TrYdNFYU/4YAumQm/ABnvAhnBiaSeHfPdnwB98svrLz6qkZP7gO9/HDAbxgxEVHMNsFgyzRJSrRDKBAe8Aepw9OO04jfct7+O04zQ8YU+hl1YYkjgMwhAB2nwi6B4cAPaPil83F0UEUKvFCUgdHcBFF4nqrtEoQqQkiQkHcrVUviyWOdXdiAqwVM4Mu5m3c21lqJtMb1R7fQfgeQqoVpWJSm5Hh7haWsT78lujUfQyzg68NtvMiu9yT7JaiEKRHu1UVwep0QRfu0mE3rZq2Gq1sGsjsEXHYQ86YAvYUqHXPt3e8736r+GroYtEFVper80mZgj7/au73uXQ6eaG3IUqwJWVDL55xDCbBcMsEa3UVGwK58bOocfVg5P2k3jf8j7Ous9iMrbK4aGYZATd1gmxCe1gvwi6TYEiCbqA2KlfXS2qpdu2iepue/v0RAaEw3P7ds1msUEmw+xWhvmqvP55WhkCT+Q4ik2jEb26bW1AZ6cIurNDb1mZaLvIrO7Kb+VKr822eodQyJRK0dNaVQXU10NqaoSvwwR7Rx2MF12J2ouvEGufXQWNxUSodTpF2HU40rftdrFeu108ZrWD+nJotXND78svA3//9+K3A5lXXZ34QYpyVnRh9vnnn8df//Vfw+FwYNeuXXjuueewd+/eeR/70ksv4Yc//CF6e3sBAFdddRWeeOKJBR8/G8MsEeWLL+xDr6sXva5enBg9gWPWY+j39K/5kPd1JxV0yzOC7hcHxIlozcUUdGXy6LEtW0TY7eoSQUajEcFQ7tsdHAT6+sTt8fE5cz7lVga5fcFRDvzV0VVcp0IhqtCtraLC29Y2M+y2tIhQOTk5s7qbGXpHR8Vbp3MVF5aiVKYrvTU14mvY0iLC+bZtYrRbU5MIg6pZA4ojEbGpbnbodTrF2i0W8b7bLX4AWQ9qa2cG3Pr6uaFXvqqqNn3Vt6jC7Kuvvoo777wTL7zwAvbt24dnnnkGP/7xj9HX14eGhoY5j7/99ttx4MAB7N+/H3q9HocPH8brr7+OM2fOoLm5edHnY5glorUkSRLsQTt6Xb341PEpPrJ9hOOjxzHqH0Uyx5OiNrSMoNviB/amgu6vpYLuujkVbSlKS0VIlMePbd0qAqW8EcnhALq7gTNnxMYvp1NMQljNI0eXoqJChNvOThF4Z1d45U12LtfcKm9m6B0dzV+rgE43vZEN9fUi5La3ix8otm8Xtxsb559yEArNDLuZAViuUsvBN7ZOfvBUq3MPvg0NG3K6Q1GF2X379uHqq6/GkSNHAADJZBKtra24//778dBDDy36/08kEqiursaRI0dw5513Lvp4hlkiWg8SyQQGvYNi05nzNI6PHke3vRuukKvQS1s/UnN0DVGgeQLY7RAno+0fBbZ5xLHARUmjEb+W7uwUfbsXXyzCWEODqDi63aKqOzQkAqLDIWbZTkzMP8R+rdZsMok1L9TWUFcn1m+3Lxx6rdbVPW54tow5vairS1d7t2wRX+utW0UQrqmZe4qZJIkfKuYLvQ7HzOA7Pr76kydWoqws9/BbVye+n+tc0YTZaDSK0tJS/Ou//ituvvnm6Y/fdddd8Pl8+MlPfrLo5wgEAmhoaMCPf/xjfPnLX55zfyQSQSSS3m3p9/vR2trKMEtE61I4HkbfWB96XD3TkxU+dX66cY/xXS5JtCdoE0D1lDg0Yp8F+LwZuNomRkEV7S9pFQoRxuRNYBddJN62tooQrFanN4CNjorQOzSU7in1FHCDYkWFCEwtLSKgy4G9vV18zGQSvaZyaLTbZ17yx+TwO8+kiVWhUIgJDuXlIthmrllucZDXO98BAZIkZhzPDr4ul7jk1+B0ih9E1kvFVya/5lxbHgpwfHHRhFmbzYbm5mZ88MEHuOaaa6Y//s1vfhPvvPMOjh8/vujn+KM/+iO8+eabOHPmDPTznB7y7W9/G3/5l3855+MMs0RUTCbCEzjjPoNeVy+6bd04NnoMfeN9iCxxNNKmkarqlsaA+kngEjfwayPAtWbgMrcYPVbU5I1qra3pwCiP+JIDWDA4d6atfFmthWtrUCrF+srKxCawykoRmGprRaiSj8qtqBDBNxoVldzJSTFtQj6W1e2eGRrz9Xo0GrHWqipR1ZQ33snV3q4u8bGFphtIkli7yyXWKQde+bbc52u3i/cD6+wHV3kCSEMDcPo0MDAgXnOebZow+9RTT+Hpp5/G//zP/+Dyyy+f9zGszBLRRiVJEpyTTvQ4e0TQdfbiY/vHuDB+AaF4nn6Nu1FIgDo1T7fFD+y2ixaGz40CW3xF3MKQSa0WAbG1VQSvbdvSPbHyyWp+/9ygK8+ztVrXX0VxttJSETTLykSlVaMRYVmhEOE2HhevYWpKBMpgMH+vSakUz2k0pnt75eDb1SW+/nJ1PdtYr3hcVHPnC76ZVV+XSzxutadRLOa//gv47d/O+9MsJcwWdE5EXV0dVCoVnLN2STqdTphMpqz/37/5m7/BU089hV/+8pcLBlkA0Ol00K3BGcJERGtNoVDAVG6CqdyEL2754oz7vFNe9I334dzYOZx1n8Un9k/Q4+xhT65MAcRVgKdUXJ+agB/sTt2XamHQxUULw1YPsG9UtDBcZS+imbryZAWnE/j44/kfI/fvyoH34ouBL35x8VPLMq9CTgsIhcTldhduDTK5Mix/zc+dW/ix8szezE1tjY3i697VJSq+ra3Anj3ZJxvIs5EXqvrKbRvyBrfVqPquh6/1LOtiA9jevXvx3HPPARAbwNra2nDfffctuAHs6aefxuOPP44333wTn/vc55b0fNwARkSbWTQRxYBnAOfGzuHc2Dmcdp5Gt70bQ74hxJOb6EjflUi1MJRFAeMkcKkLODACXDsi2hkMuZ8EWxz0ehF45X7Sri4RtORTy0pKRMBZKOxaLPnb8LUUWq1Yq04nqtYKhQiDiYRoZQiHC7fBLhu5v9dgmJ7dOx18OzvFDyByxbe6OvtIr2h08aqv3Z7u9Z2vdePECRGy86xo2gwAMZrrrrvuwne/+13s3bsXzzzzDF577TWcO3cORqMRd955J5qbm/Hkk08CAA4fPoxHHnkEr7zyCg4cODD9ecrLy1Gew/nLDLNERHNJkgRH0IGzY2dxbuwczrjOoNvejc/cn8EfXQcnMxUTCdAkgYow0OYHrrQB1w4D+2xio5pmI05kKy8Xvbpy4O3snBl4y8rmbu6SpxzI7zsc62NCQG2tCIvyzv/KStG/K7cy6HQiMIZCom0hEBA9vOPjIgS63aKvtxDBOHNj23zBV+6tNhrFJrBswVeSxASN2cH3nnvEc+RZUYVZADhy5Mj0oQlXXHEFnn32Wezbtw8AcN1116GjowPf//73AQAdHR0wm81zPsejjz6Kb3/724s+F8MsEdHSBKNBnB8/P92ycNJxEqcdp2ENWCFhdf8JUUCx6p9zXUm1MOjjQE1IjBi7ZgT4dQuwywGYJot0tm6u5DDV1SWCb3Nz+jKZxGivhcKufHs9/JpboRBhV55329wsbjc2itdhMokqaTIp1itPO7Ba0yPX7HZR/fT5ChPiFYqZ83vlzW2ZB1d0dKSD7xpPNCi6MLuWGGaJiFZHIpnAsG94umWh19WLbns3znvOIxxf3T7KDR9yZakWBn2qX7fTJyq7+0fFJrWOiQ2yOW0hWq0IVc3NIiR2daXn2MpXTY0IiAuFXfmamCj0qxGqqkRIzAztmaHXaBTtD5mHOzgcIvAOD4u3Tqeo/BZq0oEcfMNh4N13gV//9bw/JcNsFgyzRET5NxYamw65Z91ncdJ+Ej2uHoxNja36c22aoAtMV3Y1CTGJodkPXO4EPmcRbQzbPBtg7FguKitFEJQ3TMlH9WZeSqUIhQsFXvn99XLcrUaTPt1MPmo4M/SaTCLoK5Ui2MqhVw6+IyPpo4c9HlHlzodXXwVuvTU/nzsDw2wWDLNERIUTjodxYfzCdNDtcfXgpP0khnxDSEgbueS4hlJjx8qiQMMksH0M2GcVExkudRfRNIaVksOhfPhER8fcKq/RKEZ2LVTdlT9mt6+Pfl6ZwSDWLr+e2aHXZBKPiUZnVnsdDrEhb2QkPdfW51vajN7XXgNuuSVvL03GMJsFwywR0fqTlJKw+q3TIfeMW2xAO+c+h0BsnQ2RL3YZrQw1IWCLF7jSLmbsXmkXm9Y2dCvDbBUVIvzJvbzyWLLMq7xcVEOz9fJaraIHdj3FKoUivQlMDr6zQ6/RKIL/xER6jFdmxVc+Wc7tFsF/ZER8jfKMYTYLhlkiouIyEZ5A33gf+j39oqo7LvpzB72DCMXWwcinjSbjqOCKMNDqBy53iOru1TbgovENOH5sMfIpWHKVt7NzbuBtbBSPnT3fdb63dnv+2gCWq7RUBNvMNofM0NvYKDaKNTUBKlXel8MwmwXDLBHRxuEL+9Dv6Z+++sb60OPqQb+nH5OxyUIvb+PKaGUwBYEdbmCvFdhrAy5zifaGTdHKMJ8tW9JTDtra0r2vmZdOJyqhi4Veh0NUhNeTN98EDh7M+9MwzGbBMEtEtDn4I34MeAZERddzAX1jfTjjOoMLngucnZtvqVaGkjhQGwK2eEQLwx6b2LDWMQGUrvOTcvOqpERs5mpqEoG3rS092ivzkvte5QMNsoVeh0M8Nt8eewz41rfy/jQMs1kwzBIRUTAanA66/Z5+nB8/jx5nD857zmMisk5GOm10qepuaQyoCwGdXhF099iAXU6gwweUbebAC4j2Bnn+a2urqPbOF3pra8Xjvd7FQ6/dLjZ9Lde//zvwO7+zKi8vG4bZLBhmiYgom1AshEHv4HSP7oXxC+h196JvrA+esKfQy9tcUoG3JAbUTqUD71WpwNvp24T9u/NRKkU/q8mU7uuV+3gzr4YGEZCnpsSUg8WCr9MJxGcdcz00JD5/njHMZsEwS0REyxWOh6eDrhx2e1296Bvvgzu0Dk6m2owkQJVMtTRMAR1eYKcT2GMHrnCIwLspZu/mqqJCbPSSD6bInGmbeYqZTidGdo2Pzwy5X/mKONwizxhms2CYJSKifIjEIxj2DeOC58J00P3M/Rn6xvtgD9rz/vyK1P+k1P8ogwSoJFHhrZkC2n3ATpeo8F7hALp8QGV4E29am09paXqCg9zX29gI3H67+HieMcxmwTBLRERrLZqIwuwzpyu6HhF0z42dgzVgXZM1KBVKEXYlCUksYUj+ZpEKvPqYOEq4fUJMZrjKBlzhBLZ6gCoGXuCHPwTuuCPvT7OUvKbO+2qIiIg2Oa1Ki22127Ctdtuc++LJOMw+Mwa9gxj2DWPINzS9KW3IO7RqkxeSUvYAq1aooVAokJASiz52Q1IACQUwqRPXaBXwq/ZZj0kFXl1cVHjbJoBLXMBVdmC3HdjiE9MbNnTgLS0t9ArmYJglIiIqILVSjS01W7ClZsu894diIZh9Zgz5hjDkHcKQbwgDngH0jfdh2DeMqfjUqqwjLsWxUHeCAgpoVBpIkrR5wy4wHXhDWnGNVgIftAH/N/MxEqCQxKET5VGgfhLo8gKXucXhE5e6RdW3aKu8bW2FXsEcDLNERETrWKmmFDvqd2BH/Y55758IT0xXdId9wxjyDuGCR0xhGJkYQTS58u3+EiREEwt/HiWU02E3LsU3b9gFAAUgKYCIEohogPEy4FwD8P8unvW41CxeXQIwRABjULQyXOYSExsucYvT19bdtIZ33wWuvrrQq5iBYZaIiKiIVeorscu0C7tMu+bcJ0kSxqfGp0OuXN294LmA8+PnYfPbkEBixWtIIolIYuGRASqFCgkpAa1Ki0QygYS08ucsegogqQCmlMCUBnCVAz0m4PVLZj0uo7WhIgw0BsWRwjudwOUuYPsY0BxYw0MourvX6IlyxzBLRES0QSkUCtSV1qGutA57mvbMuT8pJeEMOqdD7rBvGIPeQZz3nEe/px+OoGNV1iGH12zVXa1SC6VCiSSSiCc3eXU306zWBkcFcLIJeHXnrMelZvLq46KFodkPXDwmpjbsdAIXj4sgrFvpzxHh8Ao/wepjmCUiItqklAolGg2NaDQ0Yn/r/jn3x5NxWP3WGS0Mg95BnB8/jwHvAManxldtLbm0Q+hVehHukgnEk3GOIMukAOIqIKgCgjrRz3u8dZ7HZZy8Vj0FtE4AO8ZEa8NlLmCrV7Q8aBb6WWIdDsFimCUiIqJ5qZVqtFe1o71q9rZ+IRKPwOK3TLcwDPuGMeAdQJ+7D4O+QQSigVVdTziRvSqoVqhF7y4kBt6FpEKvXwX49YC5Gni/Y9ZjJLE5TZ0Qobc2NZt3hxv45t7tmP9PQ+EwzBIREdGy6NQ6bK3Ziq01W+e9PxQLTVd0h33DsPgtMPvM+GzsM1h8Fngj3lVdT1yKIz77+NVZtCotVArV9Ga1eDL74zclhRhsEVMDE2pgogQYrAGOdgHhtiG8XOj1zcIwS0RERHlRqinFJfWX4JL62buahEQyAXvQDsuEBSMTIxiZGMHZsbPoG+vDkG8I46HxVZnGkClb366sRF0iZu6mqrvcsJY2hlChlzAHwywREREVhEqpQktFC1oqWnBN6zXzPmYqNoVR/yjMPjPOuM+gx9WDfk8/zBNmuIIuhOKrH64Wm92rVqihVWsBSWxuiyVjm2bDWktFS6GXMAfDLBEREa1bJZqS6dPTrt9y/Zz7JUmCL+xDj6sHH9s+Ro+zB/3eflgmLBgLjWEyNrnqa4pLccRj2dsT1FBDp9EBEIE3nowjkUwUfQ+vEspCL2EOhlkiIiIqWgqFAtUl1bi2/Vpc237tvI/xTnnxkfUjfGz7GL2uXgx4B2ANWDEeGs86H3cl4lg88AKipUGlUE1vWoslY4Vpa5CQ05FkVdDnfSlLxTBLREREG1p1STVu2HoDbth6w5z7JqOTGPQO4ozrDLod3fjM/RkGvYOwBWyYiEzkfW25HEeshBIlmhIxh1dKIpaIrf5Ja7merRtc3QkVq4FhloiIiDatMm0Zdhp3YqdxJ27beduM+8LxMIZ9w+j39OPC+AWccZ/BWfdZDHoH4Zx0rlnLQBLJnNol9Co9tCotJEiIJ+PT12quM1Sy/qLj+lsRERER0TqgV+uxvW47ttdtn3NfLBGDecKMfk8/+j39GPCI1oVR/yhsAVve+nWzCSfCi87iVUKJMk0ZlErldC9vLJF7a0N9NTeAERERERU9jUqTdcYuICq7rkkXHEEHnEGneDvphNVvhXnCDGvACtekC94pb956d2dLIolAbPFWAZ1SB51GBwUU0xXeWDKG3+j8jTVY5dIwzBIRERHlgV6tR1tlG9oq2xZ9bCgWmhF47QE7RiZGMOgdhDVghSPogGfKg0A0sCYHPUSSEUQi8wTsXHtr1xDDLBEREVGBlWpK0Vndic7qzkUfG4wGp6u91oAVA54BDHgHYJmwwB60Y3xqHBPhiby0Ofz03E+xr2Xfqn/elWCYJSIiIioi5dryRVscADGD1x/xwxF0wDxhxrmxcxjwDMA8YYY9YIc75IZ3yovJ2CRiyVhOz11VUrUKr2B1McwSERERbUAKhQKV+kpU6itxcd3FOLjl4IKPlSQJnikPzo+fxxn3GfR7+jHsG4bVb4Ur5IInJFocfnfH767hK8gNwywRERHRJqdQKFBbWotrSq9Z8Gjh9Wr9nUlGRERERJQjhlkiIiIiKloMs0RERERUtBhmiYiIiKhoMcwSERERUdFimCUiIiKiosUwS0RERERFi2GWiIiIiIoWwywRERERFS2GWSIiIiIqWgyzRERERFS0GGaJiIiIqGgxzBIRERFR0WKYJSIiIqKixTBLREREREWLYZaIiIiIihbDLBEREREVLYZZIiIiIipa6kIvYK1JkgQA8Pv9BV4JEREREc1Hzmlybstm04XZQCAAAGhtbS3wSoiIiIgom0AggMrKyqyPUUi5RN4NJJlMwmazwWAwQKFQ5P35/H4/WltbYbFYUFFRkffno9XH72Hx4/ew+PF7WNz4/St+a/09lCQJgUAATU1NUCqzd8VuusqsUqlES0vLmj9vRUUF/wIXOX4Pix+/h8WP38Pixu9f8VvL7+FiFVkZN4ARERERUdFimCUiIiKiosUwm2c6nQ6PPvoodDpdoZdCy8TvYfHj97D48XtY3Pj9K37r+Xu46TaAEREREdHGwcosERERERUthlkiIiIiKloMs0RERERUtBhmiYiIiKhoMczm2fPPP4+Ojg7o9Xrs27cPH330UaGXRDl68skncfXVV8NgMKChoQE333wz+vr6Cr0sWqannnoKCoUChw4dKvRSaAmsVit+//d/H7W1tSgpKcHOnTvx8ccfF3pZlKNEIoGHH34YnZ2dKCkpwZYtW/BXf/VX4N7z9evdd9/FTTfdhKamJigUCvzHf/zHjPslScIjjzyCxsZGlJSU4Prrr8eFCxcKs9gUhtk8evXVV/Hggw/i0UcfRXd3N3bt2oUbbrgBLper0EujHLzzzju499578eGHH+Ktt95CLBbDwYMHMTk5Weil0RKdOHEC3/3ud3H55ZcXeim0BF6vFwcOHIBGo8Ebb7yBzz77DH/7t3+L6urqQi+NcnT48GF85zvfwZEjR3D27FkcPnwYTz/9NJ577rlCL40WMDk5iV27duH555+f9/6nn34azz77LF544QUcP34cZWVluOGGGxAOh9d4pWkczZVH+/btw9VXX40jR44AAJLJJFpbW3H//ffjoYceKvDqaKncbjcaGhrwzjvv4Nprry30cihHwWAQV155Jf7xH/8Rjz32GK644go888wzhV4W5eChhx7Cr371K7z33nuFXgot05e//GUYjUa8/PLL0x/7vd/7PZSUlOBHP/pRAVdGuVAoFHj99ddx8803AxBV2aamJvzJn/wJ/vRP/xQAMDExAaPRiO9///u47bbbCrJOVmbzJBqN4pNPPsH1118//TGlUonrr78ex44dK+DKaLkmJiYAADU1NQVeCS3Fvffeiy996Usz/i5ScfjpT3+KPXv24JZbbkFDQwN2796Nl156qdDLoiXYv38/3n77bZw/fx4AcPr0abz//vu48cYbC7wyWo6hoSE4HI4Z/z2trKzEvn37Cppt1AV75g1ubGwMiUQCRqNxxseNRiPOnTtXoFXRciWTSRw6dAgHDhzAZZddVujlUI7+5V/+Bd3d3Thx4kShl0LLMDg4iO985zt48MEH8ed//uc4ceIE/viP/xharRZ33XVXoZdHOXjooYfg9/uxfft2qFQqJBIJPP7447j99tsLvTRaBofDAQDzZhv5vkJgmCXKwb333ove3l68//77hV4K5chiseCBBx7AW2+9Bb1eX+jl0DIkk0ns2bMHTzzxBABg9+7d6O3txQsvvMAwWyRee+01/PM//zNeeeUVXHrppTh16hQOHTqEpqYmfg9p1bDNIE/q6uqgUqngdDpnfNzpdMJkMhVoVbQc9913H/7zP/8TR48eRUtLS6GXQzn65JNP4HK5cOWVV0KtVkOtVuOdd97Bs88+C7VajUQiUegl0iIaGxtxySWXzPjYjh07MDIyUqAV0VJ94xvfwEMPPYTbbrsNO3fuxB133IGvf/3rePLJJwu9NFoGOb+st2zDMJsnWq0WV111Fd5+++3pjyWTSbz99tu45pprCrgyypUkSbjvvvvw+uuv47//+7/R2dlZ6CXREnzhC19AT08PTp06NX3t2bMHt99+O06dOgWVSlXoJdIiDhw4MGcc3vnz59He3l6gFdFShUIhKJUzo4ZKpUIymSzQimglOjs7YTKZZmQbv9+P48ePFzTbsM0gjx588EHcdddd2LNnD/bu3YtnnnkGk5OTuPvuuwu9NMrBvffei1deeQU/+clPYDAYpvuBKisrUVJSUuDV0WIMBsOc/uaysjLU1tay77lIfP3rX8f+/fvxxBNP4NZbb8VHH32EF198ES+++GKhl0Y5uummm/D444+jra0Nl156KU6ePIm/+7u/wz333FPopdECgsEg+vv7p98fGhrCqVOnUFNTg7a2Nhw6dAiPPfYYtm3bhs7OTjz88MNoamqannhQEBLl1XPPPSe1tbVJWq1W2rt3r/Thhx8WekmUIwDzXt/73vcKvTRaps9//vPSAw88UOhl0BL87Gc/ky677DJJp9NJ27dvl1588cVCL4mWwO/3Sw888IDU1tYm6fV6qaurS/rWt74lRSKRQi+NFnD06NF5/+276667JEmSpGQyKT388MOS0WiUdDqd9IUvfEHq6+sr6Jo5Z5aIiIiIihZ7ZomIiIioaDHMEhEREVHRYpglIiIioqLFMEtERERERYthloiIiIiKFsMsERERERUthlkiIiIiKloMs0RERERUtBhmiYiKwFe/+tXCHhdJRLROqQu9ACKizU6hUGS9/9FHH8U//MM/gAc2EhHNxTBLRFRgdrt9+varr76KRx55BH19fdMfKy8vR3l5eSGWRkS07rHNgIiowEwm0/RVWVkJhUIx42Pl5eVz2gyuu+463H///Th06BCqq6thNBrx0ksvYXJyEnfffTcMBgO2bt2KN954Y8Zz9fb24sYbb0R5eTmMRiPuuOMOjI2NrfErJiJaPQyzRPbsfTEAAAHlSURBVERF6gc/+AHq6urw0Ucf4f7778cf/uEf4pZbbsH+/fvR3d2NgwcP4o477kAoFAIA+Hw+/OZv/iZ2796Njz/+GD//+c/hdDpx6623FviVEBEtH8MsEVGR2rVrF/7iL/4C27Ztw5/92Z9Br9ejrq4OX/va17Bt2zY88sgjGB8fx6effgoAOHLkCHbv3o0nnngC27dvx+7du/FP//RPOHr0KM6fP1/gV0NEtDzsmSUiKlKXX3759G2VSoXa2lrs3Llz+mNGoxEA4HK5AACnT5/G0aNH5+2/HRgYwEUXXZTnFRMRrT6GWSKiIqXRaGa8r1AoZnxMnpKQTCYBAMFgEDfddBMOHz4853M1NjbmcaVERPnDMEtEtElceeWV+Ld/+zd0dHRAreZ//oloY2DPLBHRJnHvvffC4/HgK1/5Ck6cOIGBgQG8+eabuPvuu5FIJAq9PCKiZWGYJSLaJJqamvCrX/0KiUQCBw8exM6dO3Ho0CFUVVVBqeQ/B0RUnBQSj5QhIiIioiLFH8WJiIiIqGgxzBIRERFR0WKYJSIiIqKixTBLREREREWLYZaIiIiIihbDLBEREREVLYZZIiIiIipaDLNEREREVLQYZomIiIioaDHMEhEREVHRYpglIiIioqL1/wHjYEu0R4vBRAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPMAAAD3CAYAAADIZ2IpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAAk6AAAJOgHwZJJKAAAxmklEQVR4nO3df1zUVb748dcwgIAgg0oKrr8eqfkDASUSBBxQu1r4o9Wg0jV112y1rC31eiv32m277r2ba+ldv2YWUtfMhbY1K1OvhiiioZYo+QNB/ImaJIP8EBjgfP+YZhJnGH4NfIaZ8+zRAz5zPp8z75mPh8+v8z5HJYQQSJLU4bkoHYAkSbYhG7MkOQjZmCXJQcjGLEkOQjZmSXIQsjG3E7VaTWhoqOn/Cxcu2KTeo0eP8sILLwDw+uuvs2rVKrN1Lly4QFBQULPqNcYbFBTE5MmT0el0LYqvsLCQxx9/vEXbSs3jqnQAzsLT05Pjx4/bvN4HH3yQBx980Ob13h3v7NmzWbduHa+99lqz6wkMDOTTTz+1cXSSJfLIrKBjx46h1WoJCwtjwoQJXLt2DYCNGzcSHh5OSEgI06dPp6KiAoDU1FSCgoIICQlhzJgxAOzbt49JkyaZ6szOziYyMpKBAweyceNGs/esra1l6dKlhIeHExwczIYNGxqNMzIykqtXrwKQn5/PxIkTCQsLIyYmhjNnzphej4iIYPjw4Sxfvhxvb2+g/llBZWUlc+fOZfjw4YwYMYK0tDQAkpOTmTZtGhMnTmTgwIH867/+qynWOXPmEBQUxPDhw3n77beb/yU7EyG1CxcXFxESEiJCQkLEY489Jqqrq0VkZKT48ccfhRBCbN26VcydO1cIIURRUZFpu9dee02sXbtWCCFEUFCQuHLlihBCiOLiYiGEEGlpaSI+Pl4IIcSKFStEcHCwqKioEDdv3hS/+tWvxNWrV0VBQYEYNmyYEEKIDRs2iD/96U9CCCEqKytFWFiYOH/+vFm8nTt3FkIIUVNTIx5//HHx9ddfCyGEGDt2rMjNzRVCCHH48GERFxcnhBAiPj5ebNmyRQghxPr1603b3/3eq1atMn3G06dPi969e4s7d+6ITZs2if79+wudTifu3Lkj+vTpIy5duiSOHj0qxo8fb4rJ+Jkly+Rpdju59zQ7JyeHnJwcHn74YcBwFAoICDCVLV++HJ1OR1lZGRMmTAAgKiqKOXPmkJiYyLRp0yy+z9SpU/H09MTT05O4uDiysrIIDQ01le/evZsTJ06YTn1LSko4d+4c/fv3r1fPnTt3CA0N5erVqwwZMoSHH36YsrIyMjMzSUhIMK1XVVUFwKFDh9i2bRsAM2bMYMmSJWaxZWRksGjRIgAGDx5M3759yc3NBWDcuHH4+voCMHToUC5evMiwYcM4f/48ixYtIj4+nn/5l39p/It2YrIxK0QIwbBhwzh06JBZ2Zw5c9i2bRshISEkJyezb98+AN59912+/fZbvvrqK8LCwjh27JjZtiqVyuqyEIL/+Z//Mf2BaIjxj09FRQUTJkxg3bp1zJkzB41G0ybX/p06dTL9rlarqampwc/Pj+zsbHbt2sW7775LSkoKSUlJNn9vRyGvmRXywAMPcPPmTVNj1uv1/PDDDwCUlpYSEBCAXq/n448/Nm2Tn5/PqFGjeOONN/D39+fy5ctm9X7++edUVlby008/sW/fPsLDw+uVT5gwgfXr16PX6wHIzc2lvLy8wTi9vLxYu3Ytf/3rX/Hy8qJ///6kpqYChj8M2dnZAERERPCPf/wDgK1bt1qsKyYmxvR5cnNzuXTpEg888ECD711UVERdXR3Tp0/nzTff5LvvvmtwXUk2ZsW4u7vz6aefsmzZMkJCQggNDSUzMxOAP/3pT4waNYqoqCgGDx5s2mbp0qUMHz6coKAgRo8eTUhIiFm9wcHBxMXFERERwR//+EcCAwPrlc+bN4+hQ4cycuRIgoKCePbZZ6mpqbEa64gRIwgODuaTTz7h448/5oMPPiAkJIRhw4bx+eefA/DOO++wevVqgoODycvLM50y323hwoXU1dUxfPhwnnjiCZKTk+sdke919epVYmNjCQ0N5Te/+Q1//vOfrcbp7FRCyKwpqfUqKirw9PREpVKxdetWPvnkE1NDl9qHvGaWbOLYsWM8//zzCCHQaDTy2lYB8sgsSQ7C5kfmZcuWkZmZSb9+/UhKSsLNzQ0w3PBITEzkzJkzFBUVmToVrFmzhpSUFLp168bmzZvp0qVLg3WHhYVx//332zpkh5Sfn2/xbrfkwGz50Pr48eNi5syZQggh3nzzTVMnAiGEKC8vFzqdTmi1WlFaWiqEEOLmzZti7Nixoq6uTmzevFmsXLnSav0JCQm2DNehye/K+dj0bnZmZqbpwf7EiRM5ePCgqczLy8vsDueRI0fQarWoVCqz9SVJah6bNubi4mLTabKvry+3bt2y6fqSJDXMptfMGo2G27dvA4Zugl27dm10/by8PKvrp6ammjopWOokoSRdpY4Pjn6A2kXNH0b/QelwJCdn0yPz6NGj2bNnDwC7du0iKirK6vrh4eHs37/f6voJCQmkpKSQkpJC7969bRluq+gqdYSuD+Wv3/6VP6b9EV2lTumQJCdn08YcGhpKjx49iImJ4YcffmD69Ok8++yzgOGUevz48WRnZzN58mS+/vpr/P39iY+PJyoqii1btrBw4UJbhtOmcn7M4eLti1wru0ZZTRk5P+YoHZLk5DrUc+bExERSUlKUDgMwHJn9/tvPtFy8rBiNh0a5gO5hT9+V1D5k3+wWOnT5kNVlSWpvsjG30CMDHyHIPwgPVw98O/nyyMBHlA5JcnKyMbdQxqUMcm7mUFlTSUlVCRmXMpQOSXJysjG3UJdOXawuS1J7k425hW5X3ba6LEntTTbmFrpWes3qsiS1N9mYW+ihXg9ZXZak9iYbcwulFaRZXZak9mbzxrxs2TJiYmKYNWuWadA4MAwl+9vf/paYmBj+8Ic/mF5/9dVXiYiIICIigoyMjnNHeEC3AVaXJam92bQxZ2dnc/XqVQ4cOMDgwYPrTUvy5ZdfEhgYyIEDBygvL+fQoUPcunWLtLQ0Dh8+TGpqKm+88YYtw2lThy8ftrosSe2t3fKZLZX5+PjQtWtX9Ho9xcXFdO/e3ZbhtKmI3hGGX8Q9y5KkEJumQBYXF5tmZbg3P9lS7rKbmxshISEMGjSIyspKduzYYVanvaZAluadNjVkxM/LfaIVjUlybjY9MlvLZ7ZUdubMGbKyssjLyyMrK4uXXnrJrE57TYGM/GAnfUog/hz0KYHITbuVDklycu2Wz2ypTPw8LKtarUaj0VBWVmbLcNqUpvAW2e/CF1vg+LuguVasdEiSk2u3fOZJkyZx6dIlYmJi8PDwIDIykiFDhhAYGEhUVBTjxo1j+fLltgynbfXqhabS8KumErhn5ghJam82H2r3rbfeqrdsnP/X1dWV5ORks/XXrl1r6xDax89DCDe4LEntTHYaaakXX6y//PNUpZKkFNmYW6r4nmtknU6RMCTJSDbmlvp5VNEGlyWpncnG3FIDBlhflqR2JhtzS40aBcOGUe7pyrVeGnhIZk1JypKNuRVOeJfjUic47Wt9snJJag+yMbfQiR3JhE68gN/SWh5OKOPE18lKhyQ5OcVTIHNycpgwYQJxcXGsX7/e1uG0meAT13GthWo1uNZC8IkbSockOTlFUyABXnnlFVJTU0lLS2PBggW2DKdNZQzrgl4NKgF6NWQM81E6JMnJKZoCef78efR6PTNnzmTChAmcOXPGluG0qejJC4m56UmPchh1TU30pI4ztY7kmBRNgbxx4wYnTpzg9OnTXL58mZdfftksDdJeUyB1lTp+6lRL6A0431Wgq9Sh8fJSOizJibXblK6WyjQaDWFhYfj6+uLr68vNmzfN6kxISCAhIQEwzJ9kLzTfZnNwfTW+laDzqEPzyAmYKJMtJOUomgI5cOBAioqK0Ov1XLlyBV9fX1uG07aOHKmfNXXsmKLhSJKiKZCurq4sXbqUuLg4EhISWLlypS3DaVtz5oBKBfw84MisWUpGI0lyStcWq6iAkSOpPH+O4m7eBORfAzu6Zrar70pqF7LTSEt9+y2cPUsnfR09r9+GrCylI5KcXKM3wObOnYvq59NJo6SkpDYLqMPIy+Oir2H8r4u+0C8vD2JjlY5KcmKNNuYlS5YAIIQgOzub7777rs2D6ggu/sqbBxaBbyWUeMDZX3nTV+mgJKfWaGMeNmyY6fegoCA++uijNg2oo+irnYrvfjVFXrX4VanoO2aK0iFJTq7Rxrx06VLTafbly5fx8PBo86A6govVNynprMaj1gWdVy0Xq2/S10semyXlNNqYJ02aBIBKpcLPz4/hw4e3eVAdQV9NX84+n8vrO5ZRpxL01ciGLCmr0cas1WrbI44OydfD0Mmlk9pd4UgkyQ5SIAEOHTqESqXqUIPg6yp1RCVFsefqfv5x/kt0lTqlQ5KcnOIpkGAYOzssLMyWobQ5jYeGX3X5FT9VFdPZrTMaD43SIUlOTtEUSICMjAyCg4Px9va2ZSht7qLuIukX9qGqraWw/BoXdReVDklycoqmQAKsWbOGpKQkdu3aZbFOe02B7Ovuj7bQnROdyxikc6Wvu7/SIUlOTtFZINPT0wkJCcHHp+FROux1Fkjd0QwuqssYWQg3OtWgO3aw8Y0kqQ0pmgKZnZ3N3r17mThxIidOnGD27Nm2DKdtlZSgEqC6a1mSlKRoCuQLL7xAWloaO3fuJDg4mA8//NCW4bQpza0K7i+G7wJgQDFoiu8oHZLk5BSfBdJo3759tg6lTelGj6QgC0ZegwIN6CJC0SgdlOTUbN6YnYWmvJaDO3ri+mMRP3ZxRTO/TumQJCcn85lbatAgNH4BVHq64+bZGQYOVDoiycnJI3NLeXlBRgZr1/yasr4BrLajUUYk5ySPzK3h5cXlPn7oO8m/iZLyZGNuLVXjq0hSe5CNWZIchGzMrVFRQe8LxbhVySldJeXZ/GJv2bJlZGZm0q9fP5KSknBzcwMMKZDPPPMM586dIywsjHfeeYeCggKefvppXFxc8Pb2ZsuWLR1nIPyKCoiO5oVLZ7nTxRMeq7CroXYl56NoCqRGo+GLL74gPT2dKVOmsHHjRluG07Zyc+Gnn1DX1uFVWgnnzikdkeTkFE2B9PPzQ6PRAODu7o6LSwc66x80CLp1o1btQoWPh3zOLClO8RRIAJ1Ox/r169m5c6dZnfaaAimfM0v2RtFZIAHT/MyrV6+ut76Rvc4CadJhJveRHJ2iKZAA8+fPJzExkejoaFuG0vYqKiAigiV/3sfif9tuWJYkBSmaAnngwAFSUlLYtGkTsbGxrFmzxpbhtK1vv4WTJ/EpqybwcrGca0pSnKIpkDExMZSXl9s6hPaRl2e+LOeakhTUgW4f25kBA6wvS1I7k425pUaNgmHDKPd05VovDTz0kNIRSU5ONubWcHVF7+5Knav8GiXlyX+FLZWbC8XFoALP8irZA0xSnGzMLSV7gEl2RmbVt5TsASbZGXlkbg0vLy73lSONSPZB8Vkg16xZQ1RUFFOmTDF195QkqfkUTYEsKipi+/btZGRk8MQTT7Bu3TpbhiNJTkXRFMgjR46g1WpRqVRm60uS1DyKpkBaS4s0stsUyJ918+yGr2cHGR1FcmiKpkBqNBryfu7jfO/6RvaeArnq1/LSQLIPiqZAhoeHs3//fovrS5LUPIqmQPr7+xMfH09UVBRbtmxh4cKFtgxHkpyKSgjRYcbKCAsL4/777wcM18+tnXzdXupoi1jy8/M5duxYq+OSOhDRQSUkJDhMHbaqx1axSB2T7AEmSQ6iwzZm4x1uR6jDVvXYKhapY+pQ18ySJDWswx6ZJUmqz+4ac0OJGrdv32bKlCnExcWxdOlS0+s+Pj7ExsYSGxvLyZMnAZg5cyZdunThvvvu47vvvrNaR0FBgWn74OBgfv3rXwMwY8YMOnfujFqtZvHixfVibGrSSElJCUOHDkWtVjNixAhTfA3VUVBQQExMDFqtlvj4eEpKSigpKaFLly6o1WrCw8P53//930bjsPSdZGRkMHr0aKKjo+vFITkQpe/A3e348eNi5syZQggh3nzzTbFlyxZT2VtvvSXef/99IYQQCxYsEN9++60QQoiwsDCzOu677z5x69YtsWTJEhESEtJoHUYrVqwQycnJQgghZs2aJdLT08Xs2bPFyZMn6623bds28dprrwkhhJg3b57IzMwUN2/eFGPHjhV1dXVi8+bNYuXKlaK6ulpERESIp556SuzevVs88sgjVuu4deuWKC4uFkII8e6774q33npLVFdXi8jISDFjxowmxWHpOxFCiDFjxohbt26Jixcv1otDchx2dWS2lqiRn59PaGgoACNHjjT1HMvPz2fMmDEsWLCAyspK9u3bR7du3fDz8+PJJ5/k+vXrjdZhtH37dh577DEA1Go1y5YtY/fu3Zw9e7bROC0ljdTU1ODp6Ym7uzsBAQH1+p43de4tNzc3PDw82LNnD88//zwXL15s9Pu69zu5c+cOarUaPz8/+vTpY7EPvNTx2VVjtpZ4MXToUL755hsA9uzZQ3FxMQB5eXns37+fgIAA1q1bx7Vr1/Dx8THVUVtbS3V1tdU6AE6dOkWvXr1MU8quWrWKQ4cOMWrUKF5//fVG42zsNTCMHW6MpSlzb82ZMwcwJJs88sgjzJ49m0WLFjX6fd37nViLQ3IcdtWYrSVqzJs3j9OnTzN+/Hi8vb3p2bMnAN26dQPg8ccfJzs7m549e1JaWmqqQ61W4+7ubrUOMDSYux/tGOv19fVFpVJRW1trNc7GXgOoqakxxdKcubeMsYSHh1NYWNjo93Xvd2ItDslx2FVjtpao4enpSVJSkql80qRJlJeXmxrZgQMHGDBgALGxsfz000/odDpSUlLqNVhLdRht376dqVOnmpaN//grKyvR6/Wo1WqrcVpKGvHy8qKmpobq6mquX79e749Tc+beMsaSn5+Pn5+f1TosfSfGOHQ6HZcvX7aYnSY5AKUv2u+1ZMkSER0dLWbMmCGqqqrE/PnzhRBCfP/990Kr1Yq4uDiRlJRkem3EiBEiJiZGTJkyReh0OiGEEE8++aTw8fER3bt3F0eOHLFahxBCnDp1SkyePLleHJMnTxZ+fn7Czc1NDBkyRGzatMlUj16vF7NnzxbR0dFi0aJFpm1Wr14tRo8eLeLj402xjBo1Sri5uQlvb2/xH//xH1br2L9/v/Dy8hJarVZotVrxzjvvCCGE6NKli3B3dxc+Pj7ijTfesFpHQ99Jenq6iIyMFKNHjxbHjx+3yb6S7IvsNCJJDsKuTrMlSWo52ZglyUHIxixJDkI2ZklyELIxt0JOTo6pY4ckKU02ZklyEPLRVDPV1NQwY8YMbt26Rd++fSktLaWwsJB//vOfnDhxgs2bN7Np0yalw5SckDwyN9O2bdsYMGAAe/bsITw8HC8vL9566y3mzZvHihUreOedd5QOUXJSsjE3U15eHmFhYYChrzRAZGQk169fZ+LEiaZEDUlqb7IxN9OAAQP4/vvvATh69CgAmzdvZsyYMezdu7deIoQktSd5zdxMNTU1PPnkkxQXFzNo0CDy8/PR6/Xs2rWLU6dO8e///u9s375d6TAlJyQbsyQ5CHmaLUkOQjZmSXIQsjFLkoOQjVmSHIRszJLkIFxtXeGyZcvIzMykX79+JCUl4ebmBkBubi6JiYmcOXOGoqIivL29AcPA8SkpKXTr1o3NmzfXG0XyXndP6SpZZ69Tusp92DzN2o+2HIPI2iD25eXlQqfTCa1WK0pLS4UQwuLA8dbIKUubzl6/K3uNy1415/uy6Wm2tUHsvby8zLo6Who4XpKklrFpY7Y2sLst1pckqWE2vWa2Noh9Q+vn5eVZXT81NZXU1FQALl++bHr9fPF5+mv6o1KpzLbJv5XP/V3Nr8tq62q5fPsy/TT9zMqul12ntq6Wzu6d0Xho6pWVVpVSWVOJf2d/s+1+qvgJtYvabBtjnT7uPnR272xWdrnkMj28e+CuNh+MvqH4rZXl38rH1cWwO/tq+lrc1pGVlZVx48YNpcNoFXd3dwIDA+uN0d4cNm3Mo0ePZvXq1Tz99NNmg9hbEh4ezurVqwHzQe+NEhISTDNNJCYmml6vrKlssF5rZVU1VWav6Sp1jP1wLD29e3Kj/AYHf3uwXuOsFbXo6/Rm2wHU1NUgsNwjVl+rp07UWY6jtgrRQE/aqlrzGI0sfbaLuosMWTcEn04+lFaVcm7RuQa3d1RFRUX06dPHdMO1IyopKaGwsJDevXu3aHubnmaHhobSo0cPYmJi+OGHH5g+fTrPPvssYDilHj9+PNnZ2UyePJmvv/4af39/4uPjiYqKYsuWLSxcuNCW4TSZxkNDX01ffrj5A/01/S0eZe2dvk7PrTu3Gvyj4+hqa2s7dEMGw6Vma+YAs/mjqbfeeqve8oYNGwDw8/MzTaVyt5deeomXXnrJ1mE0i65Sx0XdRYb5D6NAV4CuUtehGnRJVYnVZcm2Lly4QG5urulmr72QnUYwHJn3PL2HD6Z8YHaK3RH4dvJFddd/vp1aN0BCSUkJDz30EN7e3uTk5NQra2iCd4BDhw6hUqkoKytr1fvbuwsXLrB79+56r9XVWb6cak+yMf/M2IA7WkM2UqHCz9MPFeY3BJvLy8uLr776iscff9ys7MsvvyQwMJADBw5QXl7OoUOHTGVr1641jcLiyNavX8/f//53YmNjGTp0KHPnzuXll1/m9ddf58svvwTgb3/7G8nJyQCsXLkSrVbLmDFjOHnyZJvFZfPTbKn9lVSVUEcdt+7cMi23hpubG/7+5nfuwdCXID4+HvilL0FkZCQZGRkEBwdz7dq1Vr13a9SJOos3OFujk2snXFT1j3kLFiygd+/erFq1ii5dunDw4EH8/PzM5vEGw3DMZ8+eJT09ncLCQhYsWMDnn39u0xiNZGOWmqWhvgFr1qwhKSmJXbt2mW3T0ONFW6uqqeLUzVM2rXOo/1A83TwbLB8wYIBpmt27H5Man1ScOnWKzMxMYmNjAVr82KkpZGN2ALerbltdtiVLfQnS09MJCQnBx8fH4jYNPV7sqNzc3ExzYLu4/HLU9vPz48qVKwBkZ2cTHR3N4MGD0Wq1vP/++wDo9W33tEFeMzuAa6XXrC7bkqUJ3rOzs9m7dy8TJ07kxIkTzJ49u83e3x4MHz6cY8eOkZCQgE6nM73++OOP8/777zNlyhTu3LkDQHBwMAMHDkSr1RIXF2f2tMeW5JHZATzQ/QGryy3x6KOPcvz4cc6ePcuzzz7LoUOH2LBhA5MmTWLbtm3ExMQwYsQIIiMjiYyM5IUXXgAgNjaWDz/8sNXv3xKdXDsx1H+ozeu8V5cuXdi/f7/Z64GBgaYRW++2bNkyli1bZtO4LGm3FMja2lqeeeYZzp07R1hYmGmw+FdffZVvvvkGgFWrVhEdHW3rkBze2aKzVpdbYseOHfWWjXNqubq6mu7SWrJv375Wv3dLuahcrF7fOjqbnmZnZ2dz9epVDhw4wODBg/n0009NZZYeady6dYu0tDQOHz5Mamoqb7zxhi3DcRrl1eVWlyXn0G4pkJbKfHx86Nq1K3q9nuLiYrp3727LcJzGvYkclhI7JMdn09Ps4uJiAgICAPOURkuPNNzc3AgJCWHQoEFUVlaandpJTeMt3Lg718NbdOw+ylLLtFsKpKWyM2fOkJWVRV5eHoWFhcyaNcvsmqu9nlF2ZD7fHgdAJUCowCcrW9mAJEXY9DTb0mMLa2VCCDQaDWq1Go1GY7FPb0JCAikpKaSkpLQ4NczRRX92hAMfQN0bcOADw7LkfNotBXLSpElcunSJmJgYPDw8iIyMZMiQIQQGBhIVFcW4ceNYvny5LcNxHn5+RBv6Khh+NjIohNQ6QgimTp1KXFwcN2/erFd24cIFi33a20O7pUA29Ehj7dq1tg7B+VTd0x+5suHBGaTWu379OgBpaWkKR1Kf7DTiCPr0qb/cty9cvNji6kpKSnj44Yc5deoUhw8fJigoyFRmqb9AQUEBTz/9NC4uLnh7e7NlyxZl5qmuqzP/w9ZanTqBS/0T2BdffJHMzEzi4uIAw8ygPXr04O9//3u99ebOnUteXh5qtZrk5GR69uzJvHnzKCwsxNvbu9GhpZtLdud0BPPn11+eN69V1TU3BVKj0fDFF1+Qnp7OlClT2LhxY6vev8WqquDUKdv+b+GPw1/+8he0Wi27du3i//7v/zhw4AC9evUydX4CQx/ss2fPsn//fvbt20efPn14//33GTt2LN988w0zZ87kvffes+nHl0dmR3D+fP3lgoJWVdeSFEgjd3f3eskHjuynn35iwYIFFBcXU1hYyMiRIxk4cCBg+A6fe+45Zs2aRbdu3fjP//xPTp06xZEjR/joo4/Q6/XExMTYNB7ZmB3BkXvuXrfhTBbWhkfW6XSsX7+enTt31tvGUR8vbtmyhUmTJjFv3jwWLVpUb4DG2tpaEhMTmTlzJitXruSzzz5j8ODBREZGMmvWLMD2GVSyMTuCOXPg9ddBCFCpYNYsyG6bZ80N9SXQ6/XMnDmT1atXmw2Z3G4pkJ06wVDbJlrQyTzRwmjcuHHMmjWLL774Ak/P+n3CS0tLmTp1KiqVCpVKxccff0zXrl2ZP38+mzZtAmDx4sWmsxxbkI3ZEfTpAydPwl/+Aq++an5DzIaM/QXGjBnDrl27mDt3LgDz588nMTFR2UQZFxfwbPtEi379+pnyDiwNA2QsS09PNyv76KOP2iwu57i4aaWSSsMwPLpKXb3XjcvGcktl927TJioqIDERPvsMpk83LLfSo48+yu7du3nmmWdITk622l/gwIEDpKSksGnTJmJjY1mzZk2r319qPsVTIHNycli8eDHV1dUkJiayYMECW4fUKrpKHRM3T6RXl15cK7tmGr1TV6kjKimKQJ9ALpdc5vC8w6bBAI1lPb17UlhayKHfHWrbgQLT0w13XgF++AEs5No2V3NSIGNiYigvl5laSlM0BRLglVdeITU1lbS0NLtryGAYrbOPpg85P+bUGyBf46Ghv6Y/J2+cpI9vn3qN1ViW82MOfX37mjVkmx+17xoh0+Ky5BQUTYE8f/686cbJhAkTOHPmjC3DsQldpY5LuksE3RdkGiDf+HqBroDhPYZzqeRSvYZpLAu6L4iLJRfNyqKSonjmi2eI+zDONg36rkdDFpedgFqtbtPxtdpDSUkJ7u7mc481laIpkDdu3ODEiROcPn2ay5cv8/LLL9tdGqTGQ8PO3+zETe2Gl5tXvSPzwd8epKqmirLqMrMj88HfHqS0qtS0fHdZf01/jhQeISwgzDan31otDB4Mly4Zen+NGQNJSa2vtwPp3r07ly5dUjqMVjFOHNdSiqZAajQawsLC8PX1xdfX16zTOtjHM0pfD18q9BVmDU/joeFG2Q18Pcy7Lmo8NJRWlVo8xS7QFTDUfygXdBdsOxVOAxPROQNvb2+8vb2VDkNRiqZADhw4kKKiIvR6PVeuXLHYn9fRUiCNR+2NkzeSNjvNNg05PR3OnIE7d+D0aZvcAJM6HkVTIF1dXVm6dClxcXEkJCSwcuVKW4Zjt2w+FU479gCT7JfiKZDTpk1j2rRptg7DubRjDzDJfslOI46ge3cYOBA8PGDQIMNyK7RkFsg1a9YQFRXFlClTTPdGpPbVIRtzu/au6gi+/RZycw2DEpw9C1lZ9Yp/97vfUVpquLN+7do1HnvsMavVNTcFsqioiO3bt5ORkcETTzzBunXrmhS2tf3YkjJb16dEWf/nVKBSGX42U6On2XPnzq03IRZAkoKPPYzPaf29/LlZcbNDzqdszd07usmfKy/P6vKMGTOIj49n4sSJ7N27l9WrV1utrrkpkDqdDq1Wi0qlYuLEiU2ansa4H/tr+lOgK6i3H1tSZuv6lCjr/5yKC/6gWoFpOZyERr9Lo0Yb85IlSwDDuEfZ2dl89913Ta68LRif02ZdzeKhXg85XENu0R+qAQPMl++aDDwkJISuXbuyfft2tFotw4YNa3GMlvoLWEuLBMuPF4378btr3zEyYKTFZ/HNKbN1fUqUFfy/XxqycTmx6W258dPsYcOGMWzYMIKCgpg5c6bZNVR7u/s57d09shyBcUefunmqXtfRRo0aBUFB4OcHw4fDQw/VK542bRqvvPIKhw8fJjg4mAkTJrQ8xgb6CzTUvwAsP1407seRASPN9mNLymxdnxJl/RfW/67vXW5Mo0fmpUuXmk6zL1++jIeHR/PewcaMz2kLSwsJ8A5wuCPzvX+omvT5vLzg4EHYtw/Gjzcs88slUkBAABs2bGDDhg0IIUzJLy1hKQVywIABplP3e/sXNMS4H42nyJZ60DWnzNb1KVFWsE7Q/zkVBf/P0JAL1olm5X832pgnTZoEGCaS9vPzY/jw4U2uvK1oPDQUlhY6VEOG+n+oAn0Cm/f5PD3hgQdMDRl+uUR6++23CQ8PJzw8nKNHj5LdhMdWzZkFEiA+Pp6oqCj8/Pz4+OOPm/x57/7Z2jJb16dEWcE6AeugJQM/NdqYtVptsypsbgokwKFDhxg9ejSlpaVO3yXP2h8qqzfHVIa7oHczXhtfunTJNNn3yJEjefjhhxuNo7mzQL700ku89NJLjdYrtR3FUyDBMHZ2WFiYLUNxOMabYwt3LCQqKapZ9wr8/PxYvnw5//znP/njH/+IRqNpszgl5SiaAgmQkZFBcHCwzY7IjvoM2nhz7PTN0827OYZh4LkRI0aQm5tLaGgoW7dubbtAJcUomgIJhp5DSUlJ7Nq1q9Xvbzx6dffqTlFFkUM9gzbeHBviP8TyzbGKCkOSxa9+Ve+6GQy5vtOnT2/fgKV2p2gKZHp6OiEhIfj4+DRYZ3NSIB35GbTx5tjV21fp1aWXeUOOioIrV6B3bzh8WLE4JeUomgKZnZ3N3r17mThxIidOnLDYc6g5KZCWjl73lt/9s6Np8C7ot99CTg7odIZROu/pzik5B5seme9OgezTpw9Llizh2WefbfCRRmRkJC+88AIAsbGxfPjhh616f2tHL12ljjGbxuDf2QG7gTbSnVNyDoqnQBrdO8l6S2k8NFy9fdXiM8h+fv04cvWIw52CN9adU3IOHTJrqiV0lTouFF9wyG6gDB/+y8wLnToZuna20rJly4iJiWHWrFn1Bsq7ffs2U6ZMIS4ujqVLl5pef/XVV4mIiCAiIoKMjIxWv7/UfE7TmDUeGvbP3c+GSRsc6xQbDDe+unc39M3294erV1tVnbX+Au+99x5Tp04lLS2N8vJysrKyuHXrFmlpaRw+fJjU1FTeeOON1n4iqQWcpjFDGwzXYy8GDTI0Yk9Pw8+fZyJsKWv9BfLz8wkNDQUMvcn279+Pj48PXbt2Ra/XU1xcTPdWDo4gtYyca8oReHkZBvVLS4OHHzZ7ztxc1voLDB06lG+++YawsDD27NnD/fffj5ubGyEhIQwaNIjKykqzrqD2MMKqM3CqI7ND8/KCIUNa3ZDBen+BefPmcfr0acaPH4+3tzc9e/bkzJkzZGVlkZeXR1ZWllkfbUcbYdVeycYsmbHWX8DT05OkpCRT+aRJkxBCoNFoUKvVaDQaysrKFInb2cnG7CiM3TltMAOktSGTjx8/TmxsLGPHjiUqKor+/fszZMgQAgMDiYqKYty4cSxfvrzVMUjNJ6+ZHUFFhWGKmhs3oGdPsMGjoYb6C4SGhlrsE7B27dpWv6fUOjY/Mjf0fNLSEK0FBQXExMSg1WqJj4+npMR8nmOpCXJz4aefoKbG8PPcOaUjkhSgaD6zRqPhiy++ID09nSlTprBx40ZbhuM8Bg2Cbt3Azc3ws5WPpqSOSdF8Zj8/P1OivLu7Oy4u8hK+RYyPptavN5xi2+COttTxKJ7PDKDT6Vi/fj07d+40q1M+o2wiLy/DtK6yITstRfOZAdNk66tXrzYbohUMzygTEgyDBzdnpEKnU1EBp05ZHJxAcg6K5jMDzJ8/n8TERKKjo20ZinMxDk4wdy5ERNjk8ZTU8Sg6peuBAwdISUlh06ZNxMbGsmbNGluG4zzk4AQSCuczx8TEUF5ebusQnE8bDE7Q0JDJt2/f5je/+Q2lpaU8+OCDpv2dk5PD4sWLqa6uJjExkQULFrQ6Bql55O1jR2BpcIJWaG4KJMArr7xCamoqaWlpsiErRDZmRzBqFAwdCj4+MGyY2VxTzdXcFMjz58+bbmROmDCBM2fOtOr9pZaRjdlRuLoaRhlxbf2Vk7XHiMYUSIA9e/ZQXFzMjRs3OHHiBJs3b+avf/0rL7/8cqtjkJpP9s12BLm5UFxsmJ6muLjV3TkbS4F87rnnGD9+PP369aNnz55oNBrCwsLw9fXF19eXmzdv1qtP9hVoH/LI7Ahs3J2zuSmQAwcOpKioCL1ez5UrV/D19a1Xn8xnbh+yMTsCG3fnbG4KpKurK0uXLiUuLo6EhARWrlxpi08lNZM8zXYUNu7O2dwUyGnTpjFt2jSbvLfUMoqmQIJhrqmoqCimTJliuk6TJKn5FE2BLCoqYvv27WRkZPDEE0+wbt06W4YjSU5F0RTII0eOoNVqUalUZutLktQ8iqZAWnueadTQY41unt0ajKObl+UylUqFn6efxTJXF1e6dOpisayTuhMqVBbLvNy8cFFZ/pvo7e6Nm9rNYpnGQ4PaRW2xrKunefaYUUOfDRcXkJOoOzVFUyA1Gg15P/cjvnd9o4ZSIHt492gwjp7ePS2+7qJy4b7O91ksc1e7N9hQPN088XTztFjm06nh6Wgb+sMB0N2r4YHiG4rfapmLC9xn+bNJzkHRFMjw8HD2799vcX1JkppH0RRIf39/4uPjiYqKYsuWLSxcuNCW4UiSU1EJIYTSQTRVWFgY999/P2C4fm5tbyJ7qaMtYsnPz+fYsWOtjsvW7t6HYD/7wF7quLeeZu1H0UElJCQ4TB22qsdWsbQne/nc9lJHa+qR3TklyUF02MZsvMPtCHXYqh5bxdKe7OVz20sdramnQ10zS5LUsA57ZJYkqb4O0Zibm7xxr6ysLCIjIxkzZgxPPfVUvTr27dtH7969iY2NZdy4cVbjuHDhAv7+/sTGxhIbG1svCb+psRw6dMi0/aBBg+rNZWytfjB0rHnooYfw9vYmJycHMPSQGz16NOPGjePKlStm72dPiSz2sB8deh/a5PZbGzp+/LiYOXOmEEKIN998U2zZssVUtm3bNvHaa68JIYSYN2+eyMzMtFhHYWGhqKioEEII8W//9m8iNTXVVJaWliYWL17cpFgKCgrE9OnTLZY1NZa7zZ49W+zbt69J9QshRHV1tfjxxx/F7NmzxcmTJ4VerxcRERGiqqpKZGRkiPnz59db/+bNm2Ls2LGirq5ObN68WaxcubIpH7NN2Mt+dOR9aPdH5uYmb1gSEBCAp6ehO6alOa3+8Y9/EBMT06Rxuw8ePEhMTAyvvvoq4q7bDU2Nxai6upqsrCxiYmKaVD+Am5sb/v7+puVz584xZMgQ3N3diYqK4sSJE/XWt6dEFnvaj466D+2+MVtLxmhKosbdLl68yO7du5k8ebLptQcffJCzZ8+yd+9edu7cafUBfUBAAHl5eezfv58ff/yRzz77rMWx7Nmzh3HjxtX7B2mtfkvufk8wnCY2VN6UmNqSvexHR96Hdt+YWzJ/lSW3b99m1qxZJCcnmwZ0B/D29sbd3R13d3cmT55MdnZ2g3V06tSJzp07o1KpmDZtWr11mxMLGK6T7n0EYa1+S+5+TwC1Wt1geVNiakv2sh8deR/afWNuyfxV96qpqeHJJ59kxYoVPPDAA/XK7v4iMzIyGGBlAPnS0lLT7wcOHKi3blNjAcNkeUeOHDGbX8ta/ZYMHDiQ06dPU11dTWZmJsHBwfXK7SmRxV72o0Pvw0av8O3AkiVLRHR0tJgxY4aoqqoy3STQ6/Vi9uzZIjo6WixatKjB7T/66CPRtWtXodVqhVarFVu3bjXVsXHjRhEeHi4iIyPFkiVLrMaxY8cOMXLkSBEdHS1mzZol9Hp9s2Mx1nP3Oi+++KKoqKiwWP+9HnnkEREQECAiIiLEpk2bxNatW0VkZKSIi4sTly5dEkII8ec//1mcP39eCCHE6tWrxejRo0V8fLzQ6XRW42pr9rAfHXkfyk4jkuQg7P40W5KkppGNWZIchGzMkuQgZGOWJAfhtI35woUL7N69G8A0tJGtvPfeezatT2qY3I+/kI2ZX6ZesZWO9o+gI5P78RdOO9fU+vXryczM5OjRo1y6dInz588zZ84cOnXqRG5uLvfffz99+/Zlx44dREVFsWrVKoqKipg3bx63b98mICCAjz76iCNHjvDiiy/i5eWFVqslJCSEs2fPEhsby/z584mIiGDBggVUVVUxYsQI3n77bZKTk9m2bRvV1dWUlpaydetWevXqpfRX0iHJ/XgXq0/GHdjdWTZhYWFCCEMGzObNm4UQQkRGRopt27YJIYR48MEHRXV1tVi8eLHYu3evEEKI//qv/xKpqali+fLl4quvvhJCCFFbW1uvPiEM4znl5eUJIYT4/e9/L44cOSI2bdoknnrqKSGEEF9//XWjHRSkhsn9+AunPc1uiLE7XWBgoOn3Hj16cPv2bU6dOsWKFSuIjY3ls88+4/r16zz33HPs2LGDmTNnsnPnTrP6zpw5w+9+9ztiY2PJysoy5auGhYUBhu5651o5Obpkzhn3o9OeZru5uZllqIBhChtLvwshGDx4ML/+9a9NKW96vZ6amhr+9re/UV1dTVhYGI8++mi97R544AFWrVpF3759EUJQW1vL5s2b+f777wE4evRoo/13pYbJ/fgLp23Mw4cP55VXXiEhIQGdTtekbV577TWeeeYZVqxYAcBf/vIXMjIy+Oyzz6ipqWHOnDkAxMXFMXXqVObOnct///d/8/vf/57KykrUajVJSUmAIRd24sSJlJWV8cknn7TFR3QKcj/+QvbNVkBycjJlZWU8//zzSocitYK97Ud5zSxJDkIemSXJQcgjsyQ5CNmYJclByMYsSQ5CNmZJchCyMUuSg/j/qMp7+KVMc+UAAAAASUVORK5CYII=", "text/plain": [ - "None" + "
" ] }, "metadata": {}, "output_type": "display_data" }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "********************************************************************************\n", + "********************************************************************************\n", + "* Analysis Summary\n", + "********************************************************************************\n", + "83 Points (+:39, -:44), 83 Boxes (+:39, -:44)\n", + "Parameters = {dx[1.0, 1.0): 1.0, u[1e-18, 0.1): 0.07582035282290193}\n", + " # {dx[1.0, 1.0): 1.0, u[1e-18, 0.1): 0.07582035282290193}\n", + " a_0 a_1 a_2 a_3 a_4 dx id label \\\n", + "time \n", + "0.0 0.333333 0.500000 1.000000 0.500000 0.333333 1.0 0 false \n", + "1.0 0.308060 0.487363 0.962090 0.537910 0.345970 1.0 0 false \n", + "2.0 0.284703 0.473768 0.926096 0.570072 0.360523 1.0 0 false \n", + "3.0 0.263116 0.459433 0.891800 0.597066 0.376411 1.0 0 false \n", + "4.0 0.243167 0.444549 0.859018 0.619412 0.393141 1.0 0 false \n", + "5.0 0.224730 0.429280 0.827593 0.637579 0.410297 1.0 0 false \n", + "6.0 0.207691 0.413771 0.797392 0.651986 0.427530 1.0 0 false \n", + "7.0 0.191944 0.398146 0.768306 0.663011 0.444548 1.0 0 false \n", + "8.0 0.177390 0.382511 0.740240 0.670994 0.461112 1.0 0 false \n", + "9.0 0.163940 0.366959 0.713117 0.676245 0.477026 1.0 0 false \n", + "10.0 0.151510 0.351566 0.686871 0.679040 0.492130 1.0 0 false \n", + "\n", + " u \n", + "time \n", + "0.0 0.07582 \n", + "1.0 0.07582 \n", + "2.0 0.07582 \n", + "3.0 0.07582 \n", + "4.0 0.07582 \n", + "5.0 0.07582 \n", + "6.0 0.07582 \n", + "7.0 0.07582 \n", + "8.0 0.07582 \n", + "9.0 0.07582 \n", + "10.0 0.07582 \n", + " \n", + "********************************************************************************\n", + " \n" + ] + }, { "data": { "text/html": [ @@ -418,42 +886,42 @@ "\n", "\n", "
\n", - " \n", + " \n", "
\n", - " \n", + " oninput=\"anim8a1ec047aa6b42af8fbf35ebcfc68843.set_frame(parseInt(this.value));\">\n", "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", "
\n", - "
\n", - " \n", - " \n", - " Once\n", + " \n", - " \n", - " Loop\n", + " \n", - " \n", + " \n", "
\n", "
\n", "
\n", @@ -463,1350 +931,1761 @@ " /* Instantiate the Animation class. */\n", " /* The IDs given should match those used in the template above. */\n", " (function() {\n", - " var img_id = \"_anim_img0fb99952c9b04107bb6bb224fb8d09ff\";\n", - " var slider_id = \"_anim_slider0fb99952c9b04107bb6bb224fb8d09ff\";\n", - " var loop_select_id = \"_anim_loop_select0fb99952c9b04107bb6bb224fb8d09ff\";\n", - " var frames = new Array(6);\n", + " var img_id = \"_anim_img8a1ec047aa6b42af8fbf35ebcfc68843\";\n", + " var slider_id = \"_anim_slider8a1ec047aa6b42af8fbf35ebcfc68843\";\n", + " var loop_select_id = \"_anim_loop_select8a1ec047aa6b42af8fbf35ebcfc68843\";\n", + " var frames = new Array(11);\n", " \n", " frames[0] = \"\\\n", "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", - "AAAPYQGoP6dpAAAwC0lEQVR4nO3df3RU9ZnH8c9MTCYgJvwITCBEUqAlZBFiE8lGRNCNZCuicqoF\\\n", - "/BEaKx6FWMpUC6lIlK6Ma7c0tAJZ0RSrdU3X0pY90lAc5XQp0WhYFBBQpJDWMoFgAU1hgpnZP7Sj\\\n", - "YyZwk0xyk3vfr3PuOeU7d+48cw/Vj89z7x1HKBQKCQAAALbhNLsAAAAAdC8CIAAAgM0QAAEAAGyG\\\n", - "AAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAz\\\n", - "BEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACb\\\n", - "IQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADY\\\n", - "DAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQQKcd\\\n", - "PnxY8+fP15gxY9SnTx8NGjRIN998sw4dOmR2aQCAKC4wuwAAvd/rr7+u7du3a/bs2Ro+fLgOHTqk\\\n", - "tWvXaurUqXr77bfVt29fs0sEAHyOIxQKhcwuAkDvdvr0afXp0ydi7dVXX1V+fr5+/vOf6/bbbzep\\\n", - "MgBANIyAAXTa58Pf2bNndfz4cY0ePVr9+/fXjh07TKwMABANARBAp50+fVrLli1Tenq6XC6XUlJS\\\n", - "NHjwYJ04cUInT540uzwAwBdwDSCATrv33nv1s5/9TN/5zneUn5+v5ORkORwOzZ49W8Fg0OzyAABf\\\n", - "QAAE0GkvvPCC5s6dqx/96EfhtTNnzujEiRPmFQUAaBMjYACdFhcXpy/eT/bTn/5ULS0tJlUEADgX\\\n", - "OoAAOu26667TM888o+TkZGVlZammpkYvvfSSBg0aZHZpAIAoCIAAOm3VqlWKi4vTL37xC505c0aT\\\n", - "Jk3SSy+9pMLCQrNLAwBEwXMAAQAAbIZrAAEAAGyGAAgAAGAzBEAAAACbIQACAIBO+cMf/qAZM2Zo\\\n", - "2LBhcjgc+s1vfnPe92zdulVf/epX5XK5NHr0aK1fv77L68RnCIAAAKBTmpqaNGHCBK1evdrQ/n/6\\\n", - "0580ffp0XXXVVdq5c6e+853v6M4779TmzZu7uFL8A3cBAwCAmHE4HPr1r3+tG2+8sc19Fi9erBdf\\\n", - "fFG7d+8Or82ePVsnTpxQdXV1N1QJOoAAAKBb1dTUqKCgIGKtsLBQNTU1JlVkPzwIGgAAtBIIBBQI\\\n", - "BCLWXC6XXC5Xp4/t9/vldrsj1txut06dOqXTp0+rT58+nf4MnBsBsJNKNq4yuwQAQC/x+PULu/wz\\\n", - "Lvnqd2NynK9ff5EefvjhiLWysjI99NBDMTk+zEUABAAArZSWlsrj8USsxaL7J0mpqalqaGiIWGto\\\n", - "aFBSUhLdv25CAAQAwEocsTlMrMa90eTn52vTpk0Ra1u2bFF+fn6XfB5a4yYQAADQKR999JF27typ\\\n", - "nTt3SvrkMS87d+5UfX29pE+6iUVFReH97777bh08eFDf+973tG/fPq1Zs0a//OUvtWjRIjPKtyU6\\\n", - "gAAAWIkjRi3AdnjjjTd01VVXhf/8j9Hx3LlztX79eh05ciQcBiXpS1/6kl588UUtWrRIq1at0vDh\\\n", - "w/Xkk0+qsLCw22u3KwIgAABW0v35T1OnTtW5Hisc7Vc+pk6dqv/7v//rwqpwLoyAAQAAbIYOIAAA\\\n", - "VmJCBxC9DwEQAABLIQHi/BgBAwAA2AwdQAAALCREAxAGEAABALASAiAMYAQMAABgM3QAAQCwEhMe\\\n", - "BI3ehw4gAACAzdABBADASmgAwgA6gAAAADZDBxAAACvhGkAYQAAEAMBKyH8wgBEwAACAzdABBADA\\\n", - "QkJmF4BegQAIAICVcA0gDGAEDAAAYDN0AAEAsBIagDCAAAgAgKWQAHF+jIABAABshg4gAABWQgMQ\\\n", - "BhAAAQCwEgIgDCAAAgBgISEeAwMDuAYQAADAZgiAAAAANsMIGAAAK2EEDAPoAAIAANgMHUAAAKyE\\\n", - "BiAMsE0AbGxsVGVlpWpqauT3+yVJqampuvzyy/XNb35TgwcPNrlCAAA6L2R2AegVbDECfv311/WV\\\n", - "r3xFP/nJT5ScnKwrr7xSV155pZKTk/WTn/xEmZmZeuONN8wuEwAAoFvYogN477336uabb1ZFRYUc\\\n", - "X7g4NhQK6e6779a9996rmpqacx4nEAgoEAhErLWc/Vhx8bY4jQCA3oCbQGCALTqAb775phYtWtQq\\\n", - "/EmSw+HQokWLtHPnzvMex+v1Kjk5OWKre2FLF1QMAEAHOWK0wdJsEQBTU1NVW1vb5uu1tbVyu93n\\\n", - "PU5paalOnjwZseXcdE0sSwUAAOhytgiA9913n+666y4tXLhQGzdu1GuvvabXXntNGzdu1MKFC3X3\\\n", - "3Xfre9/73nmP43K5lJSUFLEx/gUA9CgOR2y2Dli9erUyMjKUmJiovLy8czZfzp49q+XLl2vUqFFK\\\n", - "TEzUhAkTVF1d3dFvjXayRXpZsGCBUlJS9OMf/1hr1qxRS0uLJCkuLk45OTlav369vvGNb5hcJQAA\\\n", - "nWfWXcBVVVXyeDyqqKhQXl6eysvLVVhYqP3792vIkCGt9l+6dKmeffZZrVu3TpmZmdq8ebNmzpyp\\\n", - "7du369JLLzXhG9iLIxQK2eqO8bNnz6qxsVGSlJKSovj4+E4dr2TjqliUBQCwgcevX9jln5FZ+GBM\\\n", - "jrNv8w/atX9eXp4uu+wyPf7445KkYDCo9PR03XvvvVqyZEmr/YcNG6YHHnhACxYsCK99/etfV58+\\\n", - "ffTss892rnicly06gJ8XHx+voUOHml0GAAA9WrQnX7hcLrlcrlb7Njc3q66uTqWlpeE1p9OpgoKC\\\n", - "Np+wEQgElJiYGLHWp08fbdu2LQbV43xscQ0gAAC2EaNrAKM9+cLr9Ub9yMbGRrW0tLS6odLtdod/\\\n", - "fOGLCgsLtXLlSr377rsKBoPasmWLNmzYoCNHjsT8lKA1AiAAAGgl2pMvPt/h66xVq1bpy1/+sjIz\\\n", - "M5WQkKCSkhIVFxfL6SSadAfOMgAAaCXaky+ijX+lT66pj4uLU0NDQ8R6Q0ODUlNTo75n8ODB+s1v\\\n", - "fqOmpiYdPnxY+/btU79+/TRy5MiYfxe0RgAEAMBCQg5HTLb2SEhIUE5Ojnw+X3gtGAzK5/MpPz//\\\n", - "nO9NTExUWlqaPv74Y/3qV7/SDTfc0KHvjfax3U0gAABYmkm/4uHxeDR37lzl5uZq4sSJKi8vV1NT\\\n", - "k4qLiyVJRUVFSktLC19H+Nprr+n9999Xdna23n//fT300EMKBoOGnsuLziMAAgCATps1a5aOHTum\\\n", - "ZcuWye/3Kzs7W9XV1eEbQ+rr6yOu7ztz5oyWLl2qgwcPql+/frr22mv1zDPPqH///iZ9A3ux3XMA\\\n", - "Y43nAAIAjOqO5wCOubYsJsfZv+nhmBwHPRMdQAAALKS91+/BnrgJBAAAwGboAAIAYCU0AGEAARAA\\\n", - "ACshAMIAAiAAAJZCAsT5cQ0gAACAzdABBADAQkI0AGEAARAAACshAMIARsAAAAA2QwcQAABLoQWI\\\n", - "8yMAAgBgIVwDCCMYAQMAANgMHUAAAKyEDiAMIAACAGApJECcHyNgAAAAm6EDCACAhXATCIwgAAIA\\\n", - "YCUEQBhAAAQAwFJIgDg/rgEEAACwGTqAAABYCQ1AGEAABADAQrgJBEYwAgYAALAZOoAAAFgJHUAY\\\n", - "QAAEAMBSSIA4PwIgTLOvPmR2CQDaKfNiwgVgBQRAAAAshJtAYAQBEAAAKyEAwgDuAgYAALAZAiAA\\\n", - "AIDNMAIGAMBKHMyAcX4EQAAALISbQGAEI2AAAACbIQACAADYDAEQAAArccRo64DVq1crIyNDiYmJ\\\n", - "ysvLU21t7Tn3Ly8v15gxY9SnTx+lp6dr0aJFOnPmTMc+HO1CAAQAAJ1WVVUlj8ejsrIy7dixQxMm\\\n", - "TFBhYaGOHj0adf/nnntOS5YsUVlZmfbu3aunnnpKVVVV+v73v9/NldsTARAAACtxOGKztdPKlSs1\\\n", - "b948FRcXKysrSxUVFerbt68qKyuj7r99+3ZNmjRJt9xyizIyMjRt2jTNmTPnvF1DxAYBEAAACwnF\\\n", - "aAsEAjp16lTEFggEon5mc3Oz6urqVFBQEF5zOp0qKChQTU1N1PdcfvnlqqurCwe+gwcPatOmTbr2\\\n", - "2ms7ewpgAAEQAAC04vV6lZycHLF5vd6o+zY2NqqlpUVutzti3e12y+/3R33PLbfcouXLl+uKK65Q\\\n", - "fHy8Ro0apalTpzIC7iYEQAAArCRGN4GUlpbq5MmTEVtpaWnMyty6datWrFihNWvWaMeOHdqwYYNe\\\n", - "fPFF/eAHP4jZZ6BtPAgaAAAridGDoF0ul1wul6F9U1JSFBcXp4aGhoj1hoYGpaamRn3Pgw8+qNtv\\\n", - "v1133nmnJOmSSy5RU1OT7rrrLj3wwANyOulRdSXOLgAA6JSEhATl5OTI5/OF14LBoHw+n/Lz86O+\\\n", - "5+9//3urkBcXFydJCoVCXVcsJNEBBAAAMeDxeDR37lzl5uZq4sSJKi8vV1NTk4qLiyVJRUVFSktL\\\n", - "C19HOGPGDK1cuVKXXnqp8vLydODAAT344IOaMWNGOAii6xAAAQCwkg48wiUWZs2apWPHjmnZsmXy\\\n", - "+/3Kzs5WdXV1+MaQ+vr6iI7f0qVL5XA4tHTpUr3//vsaPHiwZsyYoUceecSU+u3GEaLP2iklG1eZ\\\n", - "XUKvta+ev3pAb5N5sTnhwioev35hl3/Gxd98NCbHqV+/JCbHQc/ENYAAAAA2QwAEAACwGa4BBADA\\\n", - "SpjSwwA6gAAAADZDBxAAACuhAwgDCIAAAFgKCRDnxwgYAADAZugAAgBgJTQAYQABEAAAKyEAwgBG\\\n", - "wAAAADZDBxAAAAvhRzZhBAEQAAArYQQMAxgBAwAA2AwBEAAAwGYYAQMAYCUOZsA4PzqAn/rzn/+s\\\n", - "O+6445z7BAIBnTp1KmJrOftxN1UIAIABjhhtsDQC4Kc++OADPf300+fcx+v1Kjk5OWKre2FLN1UI\\\n", - "AAAQG7YZAW/cuPGcrx88ePC8xygtLZXH44lYW7xlXafqAgAA6G62CYA33nijHA6HQqG2n5DkOM91\\\n", - "Ey6XSy6XK2ItLt42pxAA0BswvoUBthkBDx06VBs2bFAwGIy67dixw+wSAQAAuoVtAmBOTo7q6ura\\\n", - "fP183UEAAHoFbgKBAbaZX95///1qampq8/XRo0frlVde6caKAAAAzGGbADh58uRzvn7hhRdqypQp\\\n", - "3VQNAACAeWwTAAEAsAXGtzCAAAgAgIWc74kWgGSjm0AAAADwCQIgAACAzTACBgDASpgAwwACIAAA\\\n", - "VkIAhAGMgAEAAGyGAAgAAGAzjIABALAQngIDI+gAAgAA2AwBEAAAxMTq1auVkZGhxMRE5eXlqba2\\\n", - "ts19p06dKofD0WqbPn16N1ZsXwRAAACsxBGjrZ2qqqrk8XhUVlamHTt2aMKECSosLNTRo0ej7r9h\\\n", - "wwYdOXIkvO3evVtxcXG6+eab2//haDcCIAAA6LSVK1dq3rx5Ki4uVlZWlioqKtS3b19VVlZG3X/g\\\n", - "wIFKTU0Nb1u2bFHfvn0JgN2EAAgAgJXEqAMYCAR06tSpiC0QCET9yObmZtXV1amgoCC85nQ6VVBQ\\\n", - "oJqaGkNlP/XUU5o9e7YuvPDCjnxrtBMBEAAAC4nVBNjr9So5OTli83q9UT+zsbFRLS0tcrvdEetu\\\n", - "t1t+v/+8NdfW1mr37t268847O/CN0RE8BgYAACuJ0XNgSktL5fF4ItZcLldMjv1FTz31lC655BJN\\\n", - "nDixS46P1giAAACgFZfLZTjwpaSkKC4uTg0NDRHrDQ0NSk1NPed7m5qa9Pzzz2v58uUdrhXtxwgY\\\n", - "AAALcThis7VHQkKCcnJy5PP5wmvBYFA+n0/5+fnnfO9///d/KxAI6LbbbuvI10UH0QEEAACd5vF4\\\n", - "NHfuXOXm5mrixIkqLy9XU1OTiouLJUlFRUVKS0trdR3hU089pRtvvFGDBg0yo2zbIgACAIBOmzVr\\\n", - "lo4dO6Zly5bJ7/crOztb1dXV4RtD6uvr5XRGDh7379+vbdu26fe//70ZJdsaARAAACsx8beAS0pK\\\n", - "VFJSEvW1rVu3tlobM2aMQqFQF1eFaAiAAABYiIn5D70IN4EAAADYDB1AAACshBYgDCAAAgBgITF6\\\n", - "DjQsjhEwAACAzRAAAQAAbIYRMAAAFsIIGEbQAQQAALAZAiAAAIDNMAIGeqmGyj+bXUKv5b4j3ewS\\\n", - "gC7DCBhGEAABALASAiAMYAQMAABgM3QAAQCwEActQBhAAAQAwErIfzCAETAAAIDN0AEEAMBCaADC\\\n", - "CAIgAAAWwmNgYAQjYAAAAJuhAwgAgJXQAYQBBEAAACyE/AcjCIAAAFgJCRAGcA0gAACAzdABBADA\\\n", - "QmgAwggCIAAAFsJjYGAEI2AAAACboQMIAICV0AGEAQRAAAAshPwHIxgBAwAA2AwdQAAALISbQGAE\\\n", - "HUAAAACbIQACAADYDCNgAAAshBEwjKADCACAlThitHXA6tWrlZGRocTEROXl5am2tvac+584cUIL\\\n", - "FizQ0KFD5XK59JWvfEWbNm3q2IejXegAAgBgIQ6THgRTVVUlj8ejiooK5eXlqby8XIWFhdq/f7+G\\\n", - "DBnSav/m5mZdc801GjJkiF544QWlpaXp8OHD6t+/f/cXb0MEQAAA0GkrV67UvHnzVFxcLEmqqKjQ\\\n", - "iy++qMrKSi1ZsqTV/pWVlfrggw+0fft2xcfHS5IyMjK6s2RbYwQMAICFOByx2dqjublZdXV1Kigo\\\n", - "CK85nU4VFBSopqYm6ns2btyo/Px8LViwQG63W+PGjdOKFSvU0tLSma8Pg+gAAgCAVgKBgAKBQMSa\\\n", - "y+WSy+VqtW9jY6NaWlrkdrsj1t1ut/bt2xf1+AcPHtTLL7+sW2+9VZs2bdKBAwc0f/58nT17VmVl\\\n", - "ZbH7IoiKDiAAAGjF6/UqOTk5YvN6vTE7fjAY1JAhQ/TEE08oJydHs2bN0gMPPKCKioqYfQbaRgcQ\\\n", - "AAALidVjYEpLS+XxeCLWonX/JCklJUVxcXFqaGiIWG9oaFBqamrU9wwdOlTx8fGKi4sLr40dO1Z+\\\n", - "v1/Nzc1KSEjo5DfAudABBADAQmL1FBiXy6WkpKSIra0AmJCQoJycHPl8vvBaMBiUz+dTfn5+1PdM\\\n", - "mjRJBw4cUDAYDK+98847Gjp0KOGvGxAAAQBAp3k8Hq1bt05PP/209u7dq3vuuUdNTU3hu4KLiopU\\\n", - "Wloa3v+ee+7RBx98oIULF+qdd97Riy++qBUrVmjBggVmfQVbYQQMAICVmPRLILNmzdKxY8e0bNky\\\n", - "+f1+ZWdnq7q6OnxjSH19vZzOz/pO6enp2rx5sxYtWqTx48crLS1NCxcu1OLFi835AjZDAAQAwELM\\\n", - "/Cm4kpISlZSURH1t69atrdby8/P16quvdnFViIYRMAAAgM30mg7g22+/rfr6ejU3N0esX3/99SZV\\\n", - "BABAz2NiAxC9SI8PgAcPHtTMmTO1a9cuORwOhUIhSZLj0x630SeGnz59WnV1dRo4cKCysrIiXjtz\\\n", - "5ox++ctfqqio6JzHiPZQzJazHysuvsefRgCAXZAAYUCPHwEvXLhQX/rSl3T06FH17dtXe/bs0R/+\\\n", - "8Afl5uZGvZ4gmnfeeUdjx47VlVdeqUsuuURTpkzRkSNHwq+fPHkyfJfSuUR7KGbdC1s6+tUAAIi5\\\n", - "WD0GBtbW4wNgTU2Nli9frpSUFDmdTjmdTl1xxRXyer369re/begYixcv1rhx43T06FHt379fF110\\\n", - "kSZNmqT6+vp21VJaWqqTJ09GbDk3XdORrwUAAGCaHj+7bGlp0UUXXSTpkyeN//Wvf9WYMWM0YsQI\\\n", - "7d+/39Axtm/frpdeekkpKSlKSUnR//zP/2j+/PmaPHmyXnnlFV144YWGjhPtNxAZ/wIAehIz7wJG\\\n", - "79HjO4Djxo3Tm2++KUnKy8vTY489pj/+8Y9avny5Ro4caegYp0+f1gUXfBbUHA6H1q5dqxkzZmjK\\\n", - "lCl65513uqR2AAC6HTNgGNDj21dLly5VU1OTJGn58uW67rrrNHnyZA0aNEhVVVWGjpGZmak33nhD\\\n", - "Y8eOjVh//PHHJXEnMQAAsJceHwALCwvD/3v06NHat2+fPvjgAw0YMCB8J/D5zJw5U//1X/+l22+/\\\n", - "vdVrjz/+uILBoCoqKmJWMwAAZqF5ByN6/Ag4moEDBxoOf9InN29s2rSpzdfXrFkT8WPUAAD0Vg5H\\\n", - "bDZYW68MgAAAAOi4Hj8CBgAA7UH7DudHAAQAwEIY38IIRsAAAAA2QwcQAAAroQMIAwiAAABYCPkP\\\n", - "RhAAAQCwEK4BhBFcAwgAAGAzBEAAAACbYQQMAICFMAKGEXQAAQAAbIYOIAAAFkIDEEYQAAEAsBIS\\\n", - "IAxgBAwAAGAzdAABALAQbgKBEQRAAAAshPwHIwiAAABYCQkQBnANIAAAgM3QAQQAwEJoAMIIAiAA\\\n", - "ABbCTSAwghEwAACAzdABBADASmgBwgACIAAAFkL8gxGMgAEAQEysXr1aGRkZSkxMVF5enmpra9vc\\\n", - "d/369XI4HBFbYmJiN1ZrbwRAAACsxBGjrZ2qqqrk8XhUVlamHTt2aMKECSosLNTRo0fbfE9SUpKO\\\n", - "HDkS3g4fPtz+D0aHEAABALAQk/KfVq5cqXnz5qm4uFhZWVmqqKhQ3759VVlZ2XatDodSU1PDm9vt\\\n", - "7sAnoyMIgAAAoFOam5tVV1engoKC8JrT6VRBQYFqamrafN9HH32kESNGKD09XTfccIP27NnTHeVC\\\n", - "BEAAACzF4YjNFggEdOrUqYgtEAhE/czGxka1tLS06uC53W75/f6o7xkzZowqKyv129/+Vs8++6yC\\\n", - "waAuv/xy/eUvf4n5OUFrBEAAAKwkRjNgr9er5OTkiM3r9caszPz8fBUVFSk7O1tTpkzRhg0bNHjw\\\n", - "YP3nf/5nzD4DbeMxMAAAWEisHgNTWloqj8cTseZyuaLum5KSori4ODU0NESsNzQ0KDU11dDnxcfH\\\n", - "69JLL9WBAwc6VjDahQAI9FLuO9LNLgGAhblcrjYD3xclJCQoJydHPp9PN954oyQpGAzK5/OppKTE\\\n", - "0DFaWlq0a9cuXXvttR0tGe1AAAQAwELM+iEQj8ejuXPnKjc3VxMnTlR5ebmamppUXFwsSSoqKlJa\\\n", - "Wlp4jLx8+XL98z//s0aPHq0TJ07ohz/8oQ4fPqw777zTnC9gMwRAAADQabNmzdKxY8e0bNky+f1+\\\n", - "ZWdnq7q6OnxjSH19vZzOz249+Nvf/qZ58+bJ7/drwIABysnJ0fbt25WVlWXWV7AVRygUCpldRG9W\\\n", - "snGV2SX0Wvvq+asH9DaZF/NDY53x+PULu/wzpq0pj8lxfj//OzE5DnomOoAAAFiIWSNg9C4EQAAA\\\n", - "LIQACCN4DiAAAIDNEAABAABshhEwAAAWwggYRtABBAAAsBk6gAAAWAgNQBhBAAQAwEpIgDCAAAgA\\\n", - "gIVwDSCM4BpAAAAAm6EDCACAhdAAhBEEQAAArIQZMAxgBAwAAGAzdAABALAQ+n8wggAIAICFMAGG\\\n", - "EYyAAQAAbIYOIAAAFkIHEEbQAQQAALAZAiAAAIDNMAIGAMBCGAHDCAIgAAAWQv6DEQRAAACshAQI\\\n", - "A7gGEAAAwGboAAIAYCE0AGEEARAAAAvhJhAYwQgYAADAZugAAgBgIXQAYQQdQAAAAJshAAIAANgM\\\n", - "I2AAACyEETCMIAACAGAh5D8YwQgYAADAZmzTAdy7d69effVV5efnKzMzU/v27dOqVasUCAR02223\\\n", - "6eqrrz7vMQKBgAKBQMRay9mPFRdvm9MIAOjhGAHDCFt0AKurq5Wdna377rtPl156qaqrq3XllVfq\\\n", - "wIEDOnz4sKZNm6aXX375vMfxer1KTk6O2Ope2NIN3wAAAGMcjthsHbF69WplZGQoMTFReXl5qq2t\\\n", - "NfS+559/Xg6HQzfeeGPHPhjtZosAuHz5ct1///06fvy4fvazn+mWW27RvHnztGXLFvl8Pt1///16\\\n", - "9NFHz3uc0tJSnTx5MmLLuemabvgGAAD0bFVVVfJ4PCorK9OOHTs0YcIEFRYW6ujRo+d836FDh3Tf\\\n", - "ffdp8uTJ3VQpJJsEwD179uib3/ymJOkb3/iGPvzwQ910003h12+99Va99dZb5z2Oy+VSUlJSxMb4\\\n", - "FwAAaeXKlZo3b56Ki4uVlZWliooK9e3bV5WVlW2+p6WlRbfeeqsefvhhjRw5shurhS0CoCQ5Pu1n\\\n", - "O51OJSYmKjk5OfzaRRddpJMnT5pVGgAAMWPGCLi5uVl1dXUqKCgIrzmdThUUFKimpqbN9y1fvlxD\\\n", - "hgzRt771rY5+XXSQLdpXGRkZevfddzVq1ChJUk1NjS6++OLw6/X19Ro6dKhZ5QEAEDOxugck2o2P\\\n", - "LpdLLper1b6NjY1qaWmR2+2OWHe73dq3b1/U42/btk1PPfWUdu7cGaOK0R626ADec889amlpCf95\\\n", - "3LhxuuCCz7Lv7373O0N3AQMAYBfRbnz0er0xOfaHH36o22+/XevWrVNKSkpMjon2sUUH8O677z7n\\\n", - "6ytWrOimSgAA6FqxegxMaWmpPB5PxFq07p8kpaSkKC4uTg0NDRHrDQ0NSk1NbbX/e++9p0OHDmnG\\\n", - "jBnhtWAwKEm64IILtH///vDUDl3DFgEQAAC7iNUIuK1xbzQJCQnKycmRz+cLP8olGAzK5/OppKSk\\\n", - "1f6ZmZnatWtXxNrSpUv14YcfatWqVUpPT+90/Tg3AiAAAOg0j8ejuXPnKjc3VxMnTlR5ebmamppU\\\n", - "XFwsSSoqKlJaWpq8Xq8SExM1bty4iPf3799fklqto2sQAAEAsBKTfglk1qxZOnbsmJYtWya/36/s\\\n", - "7GxVV1eHbwypr6+X02mLWw96BQIgAAAWYuZPwZWUlEQd+UrS1q1bz/ne9evXx74gtIkoDgAAYDN0\\\n", - "AAEAsBATG4DoRQiAAABYiJkjYPQeBEAAACyE/AcjuAYQAADAZugAAgBgIYyAYQQBEAAACyH/wQhG\\\n", - "wAAAADZDBxAAAAthBAwjCIAAAFgJARAGMAIGAACwGTqAAABYCA1AGEEABADAQrgGEEYwAgYAALAZ\\\n", - "OoAAAFgIDUAYQQAEAMBCGAHDCAIgAAAWQv6DEVwDCAAAYDN0AAEAsBBGwDCCAAgAgIUQAGEEI2AA\\\n", - "AACboQMIAICF0ACEEQRAAAAshBEwjGAEDAAAYDN0AAEAsBAagDCCAAgAgIUwAoYRBECYJvNi/ikF\\\n", - "AIAZCIAAAFgI/2kNIwiAAABYCCNgGEEABADAQsh/MILHwAAAANgMHUAAACyEETCMIAACAGAh5D8Y\\\n", - "wQgYAADExOrVq5WRkaHExETl5eWptra2zX03bNig3Nxc9e/fXxdeeKGys7P1zDPPdGO19kYABADA\\\n", - "QhyO2GztVVVVJY/Ho7KyMu3YsUMTJkxQYWGhjh49GnX/gQMH6oEHHlBNTY3eeustFRcXq7i4WJs3\\\n", - "b+7kGYARBEAAACzErAC4cuVKzZs3T8XFxcrKylJFRYX69u2rysrKqPtPnTpVM2fO1NixYzVq1Cgt\\\n", - "XLhQ48eP17Zt2zp5BmAEARAAALQSCAR06tSpiC0QCETdt7m5WXV1dSooKAivOZ1OFRQUqKam5ryf\\\n", - "FQqF5PP5tH//fl155ZUx+w5oGwEQAAALccRo83q9Sk5Ojti8Xm/Uz2xsbFRLS4vcbnfEutvtlt/v\\\n", - "b7PWkydPql+/fkpISND06dP105/+VNdcc00nvj2M4i5gAAAsxBGj58CUlpbK4/FErLlcrpgc+x8u\\\n", - "uugi7dy5Ux999JF8Pp88Ho9GjhypqVOnxvRz0BoBEAAAtOJyuQwHvpSUFMXFxamhoSFivaGhQamp\\\n", - "qW2+z+l0avTo0ZKk7Oxs7d27V16vlwDYDRgBAwBgIbEaAbdHQkKCcnJy5PP5wmvBYFA+n0/5+fmG\\\n", - "jxMMBtu8zhCxRQcQAAALMeuXQDwej+bOnavc3FxNnDhR5eXlampqUnFxsSSpqKhIaWlp4esIvV6v\\\n", - "cnNzNWrUKAUCAW3atEnPPPOM1q5da84XsBkCIAAAFmLWL4HMmjVLx44d07Jly+T3+5Wdna3q6urw\\\n", - "jSH19fVyOj8bPDY1NWn+/Pn6y1/+oj59+igzM1PPPvusZs2aZdI3sBdHKBQKmV1Eb1aycZXZJQAA\\\n", - "eonHr1/Y5Z/x/c0/iclxVhR+OybHQc9EBxAAAAtx8mPAMIAACACAhZD/YAR3AQMAANgMHUAAACzE\\\n", - "rLuA0bsQAAEAsBDyH4xgBAwAAGAzdAABALAQRsAwggAIAICFkP9gBCNgAAAAm6EDCACAhTAChhEE\\\n", - "QAAALIT8ByMIgAAAWAg/BQcjuAYQAADAZugAAgBgITQAYQQBEAAAC+EmEBjBCBgAAMBmbN0BDIVC\\\n", - "cvCfSgAAC+HfajDC1h1Al8ulvXv3ml0GAAAx43DEZoO12aID6PF4oq63tLTo0Ucf1aBBgyRJK1eu\\\n", - "POdxAoGAAoFA5DHOfqy4eFucRgAAYBG2SC7l5eWaMGGC+vfvH7EeCoW0d+9eXXjhhYZGwV6vVw8/\\\n", - "/HDE2mWzCzVxztdiWS4AAB1G8w5G2CIArlixQk888YR+9KMf6eqrrw6vx8fHa/369crKyjJ0nNLS\\\n", - "0lbdxMVb1sW0VgAAOoPxLYywxTWAS5YsUVVVle655x7dd999Onv2bIeO43K5lJSUFLEx/gUAAL2N\\\n", - "LQKgJF122WWqq6vTsWPHlJubq927d3MHMADAcrgJBEbYqn3Vr18/Pf3003r++edVUFCglpYWs0sC\\\n", - "ACCmbNPZQafYKgD+w+zZs3XFFVeorq5OI0aMMLscAABihu4djLBlAJSk4cOHa/jw4WaXAQAA0O1s\\\n", - "GwABALAiGoAwggAIAICFMAKGEVwrCgAAYDN0AAEAsBAagDCCAAgAgIUwAoYRjIABAABshg4gAAAW\\\n", - "QgMQRtABBADAQsz8KbjVq1crIyNDiYmJysvLU21tbZv7rlu3TpMnT9aAAQM0YMAAFRQUnHN/xBYB\\\n", - "EAAAdFpVVZU8Ho/Kysq0Y8cOTZgwQYWFhTp69GjU/bdu3ao5c+bolVdeUU1NjdLT0zVt2jS9//77\\\n", - "3Vy5PREAAQCwEEeMtvZauXKl5s2bp+LiYmVlZamiokJ9+/ZVZWVl1P1/8YtfaP78+crOzlZmZqae\\\n", - "fPJJBYNB+Xy+Dnw62otrAAEAsJBY3QUcCAQUCAQi1lwul1wuV6t9m5ubVVdXp9LS0vCa0+lUQUGB\\\n", - "ampqDH3e3//+d509e1YDBw7sXOEwhA4gAAAW4ozR5vV6lZycHLF5vd6on9nY2KiWlha53e6Idbfb\\\n", - "Lb/fb6juxYsXa9iwYSooKGjnN0ZH0AEEAACtlJaWyuPxRKxF6/7FwqOPPqrnn39eW7duVWJiYpd8\\\n", - "BiIRAAEAsJBYjYDbGvdGk5KSori4ODU0NESsNzQ0KDU19Zzv/Y//+A89+uijeumllzR+/PgO14v2\\\n", - "YQQMAICFmHETSEJCgnJyciJu4PjHDR35+fltvu+xxx7TD37wA1VXVys3N7edn4rOoAMIAAA6zePx\\\n", - "aO7cucrNzdXEiRNVXl6upqYmFRcXS5KKioqUlpYWvo7w3//937Vs2TI999xzysjICF8r2K9fP/Xr\\\n", - "18+072EXBEAAACzErN8CnjVrlo4dO6Zly5bJ7/crOztb1dXV4RtD6uvr5XR+Nnhcu3atmpubddNN\\\n", - "N0Ucp6ysTA899FB3lm5LBEAAACzEzJ+CKykpUUlJSdTXtm7dGvHnQ4cOdX1BaBPXAAIAANgMHUAA\\\n", - "ACzErBEwehcCIAAAFkIAhBGMgAEAAGyGDiAAABZCAxBGEAABALAQRsAwggAIAICFcG0XjODvCQAA\\\n", - "gM3QAQQAwEIYAcMIAiAAABbiUMjsEtALMAIGAACwGTqAAABYCCNgGOEIhUL0ii0qEAjI6/WqtLRU\\\n", - "LpfL7HJ6Fc5dx3HuOofz13GcO8A4AqCFnTp1SsnJyTp58qSSkpLMLqdX4dx1HOeuczh/Hce5A4zj\\\n", - "GkAAAACbIQACAADYDAEQAADAZgiAFuZyuVRWVsbF0B3Aues4zl3ncP46jnMHGMdNIAAAADZDBxAA\\\n", - "AMBmCIAAAAA2QwAEAACwGQIgAACAzRAAbaS+vl7Tp09X3759NWTIEN1///36+OOPzS6r1/j2t7+t\\\n", - "nJwcuVwuZWdnm11Or/Hmm29qzpw5Sk9PV58+fTR27FitWrXK7LJ6jePHj+tf//VfNWzYMLlcLqWn\\\n", - "p6ukpESnTp0yu7Re5fjx4xo+fLgcDodOnDhhdjmA6S4wuwB0j5aWFk2fPl2pqanavn27jhw5oqKi\\\n", - "IsXHx2vFihVml9dr3HHHHXrttdf01ltvmV1Kr1FXV6chQ4bo2WefVXp6urZv36677rpLcXFxKikp\\\n", - "Mbu8Hs/pdOqGG27Qv/3bv2nw4ME6cOCAFixYoA8++EDPPfec2eX1Gt/61rc0fvx4vf/++2aXAvQM\\\n", - "IfRKv/vd70KTJk0KJScnhwYOHBiaPn166MCBA23uv2nTppDT6Qz5/f7w2tq1a0NJSUmhQCDQHSX3\\\n", - "KO09f59XVlYWmjBhQtcW2IN15tz9w/z580NXXXVVF1XYs8Xi/K1atSo0fPjwLqqw5+rouVuzZk1o\\\n", - "ypQpIZ/PF5IU+tvf/tb1xQI9HCPgXqqpqUkej0dvvPGGfD6fnE6nZs6cqWAwGHX/mpoaXXLJJXK7\\\n", - "3eG1wsJCnTp1Snv27OmusnuM9p4/fCYW5+7kyZMaOHBgF1bZc3X2/P31r3/Vhg0bNGXKlC6utOfp\\\n", - "yLl7++23tXz5cv385z+X08m/8oAwsxMoYuPYsWMhSaFdu3ZFfX3evHmhadOmRaw1NTWFJIU2bdrU\\\n", - "HSX2aOc7f59n9w7gF7Xn3IVCodAf//jH0AUXXBDavHlzF1fWOxg9f7Nnzw716dMnJCk0Y8aM0OnT\\\n", - "p7upwp7rfOfuzJkzofHjx4eeeeaZUCgUCr3yyit0AIFP8Z9DvdS7776rOXPmaOTIkUpKSlJGRoak\\\n", - "T270+NrXvqZ+/fqpX79++qd/+idzC+2hOH8d15lzt3v3bt1www0qKyvTtGnTurnynqGj5+/HP/6x\\\n", - "duzYod/+9rd677335PF4TKjeXO09d6WlpRo7dqxuu+02E6sGeiZuAumlZsyYoREjRmjdunUaNmyY\\\n", - "gsGgxo0bp+bmZj355JM6ffq0JCk+Pl6SlJqaqtra2ohjNDQ0hF+zm/aeP3ymo+fu7bff1r/8y7/o\\\n", - "rrvu0tKlS80ovUfo6PlLTU1VamqqMjMzNXDgQE2ePFkPPvighg4dasbXMEV7z93LL7+sXbt26YUX\\\n", - "XpAkhT795dOUlBQ98MADevjhh835IkAPQADshY4fP679+/dr3bp1mjx5siRp27Zt4dfT0tJavSc/\\\n", - "P1+PPPKIjh49qiFDhkiStmzZoqSkJGVlZXVP4T1ER84fPtHRc7dnzx5dffXVmjt3rh555JFuqbUn\\\n", - "itXfvX9c8xYIBGJfZA/VkXP3q1/9KhwKJen111/XHXfcof/93//VqFGjur5ooAcjAPZCAwYM0KBB\\\n", - "g/TEE09o6NChqq+v15IlS875nmnTpikrK0u33367HnvsMfn9fi1dulQLFiyQy+Xqpsp7ho6cP0k6\\\n", - "cOCAPvroI/n9fp0+fVo7d+6UJGVlZSkhIaGLq+4ZOnLudu/erauvvlqFhYXyeDzy+/2SpLi4OA0e\\\n", - "PLg7yu4xOnL+Nm3apIaGBl122WXq16+f9uzZo/vvv1+TJk0Kj0DtoCPn7oshr7GxUZI0duxY9e/f\\\n", - "v6tKBXoHsy9CRMds2bIlNHbs2JDL5QqNHz8+tHXr1pCk0K9//es233Po0KHQ1772tVCfPn1CKSkp\\\n", - "oe9+97uhs2fPdl/RPUhHzt+UKVNCklptf/rTn7qt7p6gveeurKws6nkbMWJEt9bdU7T3/L388suh\\\n", - "/Pz8UHJycigxMTH05S9/ObR48WJb3sjQkf/ffh43gQCfcYRCn14UAQAAAFvgLmAAAACbIQACAADY\\\n", - "DAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQQMxU\\\n", - "V1friiuuUP/+/TVo0CBdd911eu+998wuCwDwBQRAADHT1NQkj8ejN954Qz6fT06nUzNnzlQwGDS7\\\n", - "NADA5zhCoVDI7CIAWFNjY6MGDx6sXbt2ady4cWaXAwD4FB1AADHz7rvvas6cORo5cqSSkpKUkZEh\\\n", - "Saqvrze3MABAhAvMLgCAdcyYMUMjRozQunXrNGzYMAWDQY0bN07Nzc1mlwYA+BwCIICYOH78uPbv\\\n", - "369169Zp8uTJkqRt27aZXBUAIBoCIICYGDBggAYNGqQnnnhCQ4cOVX19vZYsWWJ2WQCAKLgGEEBM\\\n", - "OJ1OPf/886qrq9O4ceO0aNEi/fCHPzS7LABAFNwFDAAAYDN0AAEAAGyGAAgAAGAzBEAAAACbIQAC\\\n", - "AADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYzP8D\\\n", - "QxPpN8eM2vcAAAAASUVORK5CYII=\\\n", + "AAAPYQGoP6dpAAAicElEQVR4nO3df5BddX038PcmwBULuyFAFsoYrCKktoU1Rgq7LKamLlsFwYnV\\\n", + "KIahVBoYpVKwk9k/qtBa105aJT59RuJTUWCkWlcpgkrKgqFLFgcyNhGD4yCDQsMYWrLupgxcEtjn\\\n", + "Dx738bIhe5Lc7CbnvF7Odyb3fO+593vuJOObz+f8aBkfHx8PAACVMWumFwAAwPQSAAEAKkYABACo\\\n", + "GAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEA\\\n", + "KkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAA\\\n", + "gIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQ\\\n", + "AKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEBgkmuuuSbPPffcxOuPf/zj+cpXvjKDK9q1L37xi3nD\\\n", + "G96Q17/+9bn00kuzY8eOmV4SwEGhZXx8fHymFwEcWFpaWjIyMpI5c+bM9FJe0WOPPZaurq784Ac/\\\n", + "SHt7e84///ycc845+fCHPzzTSwM44KkAQoldeOGFWbRoUU499dS8853vzC9+8Ysp97nsssuSJN3d\\\n", + "3eno6MhTTz2Viy++ONddd12Sl6qD733ve3Peeefl5JNPzrnnnpsf/ehHOeecc3LyySfn/e9/f158\\\n", + "8cUkyfbt23PppZfm9NNPz6mnnpo/+7M/y/PPP9+UYxsYGMi73vWuHHfccWlpaclll12Wf/7nf27K\\\n", + "ZwOUnQAIJXbddddlw4YN+eEPf5ju7u5cc801E3PveMc7smHDhkn7XH/99UmSoaGhbNy4MfPmzZv0\\\n", + "ng0bNuSmm27KT37yk2zfvj0f+tCHMjAwkIcffjg//vGP893vfjdJcvXVV6e7uzsPPPBANm3alBdf\\\n", + "fDGrV6+e9Hnbt29PR0fHLsc555yzy2N7/PHHc+KJJ068fu1rX5vHH398j34fgKo6ZKYXAOw/t9xy\\\n", + "S26++eY899xzee6553LMMcdMzH3nO9/Z68/t6enJUUcdlSRZuHBharVajjzyyCTJm970pjzyyCNJ\\\n", + "kn/913/N/fffn8985jNJkmeffTazZ8+e9HlHHnlkNm7cuNfrAWDPCIBQUvfdd18+97nP5f7778+8\\\n", + "efPyrW99Kx//+Meb8tmvetWrJv48e/bsSa937tyZJBkfH883vvGNnHzyybv9vO3bt6e7u3uXc+3t\\\n", + "7Vm7du2k7fPnz8+jjz468fpnP/tZ5s+fv0fHAVBVAiCU1MjISI488sgcffTRef7557NmzZrC+x55\\\n", + "5JEZHR3d54tALrjggvzd3/1d1qxZk0MOOSQjIyN5+umnc9JJJ036vj2tAC5dujRnnXVWrrnmmrS3\\\n", + "t+f666/PsmXL9mm9AFXhHEAoqd7e3pxyyik55ZRTJi7o+HWvdA5g8tK5e29/+9snLgLZW5/97Gdz\\\n", + "+OGHp6OjI6eeemqWLFmSn/3sZ3v9eb/uda97Xa699tp0dXXlpJNOyrHHHpsVK1Y05bMBys5tYAAA\\\n", + "KkYFEACgYgRAAICKEQABACpGAAQAqBgBEADYJ6Ojozn99NNzxBFH5Ec/+lHD3AsvvJBLLrkk3d3d\\\n", + "ufLKK2dmgUwiAAIA++TVr351vv3tb+c973nPpLk77rgjv/mbv5mhoaE888wzuf/++2dghbycAAgA\\\n", + "7JNDDz00xx577C7nhoeH09PTk+Sl+5OuX79+OpfGK/AkEABgknq9nnq93rCtVqulVqvt0eeMjIyk\\\n", + "tbU1SdLW1pZt27Y1bY3sPQFwH624dfVMLwGAg8Sad390v3/H7y28uimfs/RdR+baa69t2PaJT3wi\\\n", + "11xzzR59zpw5czI2NpbkpXMF586d25T1sW+0gAGASfr6+jI6Otow+vr69vhzOjs7Mzg4mCRZu3Zt\\\n", + "urq6mr1U9oIACABl0tKcUavV0tra2jB21/59xzvekX/7t3/LpZdemi9/+csTz+Y+99xz8/jjj6e7\\\n", + "uzuvetWrcuaZZ+6nA2dPaAEDAPvsO9/5TsPriy++OElyyCGH5Mtf/vL0L4jdEgABoExaWmZ6BRwE\\\n", + "BEAAKBP5jwKcAwgAUDEqgABQJiqAFCAAAkCpSIBMTQsYAKBiVAABoETGFQApQAAEgDIRAClACxgA\\\n", + "oGJUAAGgTNwImgJUAAEAKkYFEADKRAGQAlQAAQAqRgUQAMrEOYAUIAACQJnIfxSgBQwAUDEqgABQ\\\n", + "IuMzvQAOCgIgAJSJcwApQAsYAKBiVAABoEwUAClAAASAUpEAmZoWMABAxagAAkCZKABSgAAIAGUi\\\n", + "AFKAAAgAJTLuNjAU4BxAAICKEQABACpGCxgAykQLmAJUAAEAKkYFEADKRAGQAgRAACiR8ZleAAeF\\\n", + "SgbAF154IQMDA1m/fn22bduWuXPnpqurK0uXLs0hh1TyJwEAKqSSaeeSSy7JKaeckosvvjhtbW0Z\\\n", + "HR3N2rVr8yd/8ie5+eabX3G/er2eer3esO2FHTsz+9BK/owAHIhcBEIBlUwujz32WG688caGbQsX\\\n", + "LszZZ5+92/36+/tz7bXXNu733nOyaNkfNX2NALBX5D8KqGQA7OzszEUXXZSenp60trZmbGwsg4OD\\\n", + "OeOMM3a7X19fX6666qqGbVfd+X/251IBAJqukgHw05/+dH74wx9meHg4TzzxRObMmZO/+Iu/yGmn\\\n", + "nbbb/Wq1Wmq1WsM27V8ADigz0AJeuXJlhoeH89rXvjY33HBDDj300CTJ2NhYPvjBD2b79u1ZtGhR\\\n", + "Vq1aNe1rY9cqex/AU089NZdddln6+vpy+eWXTxn+AOBgMN6kUdSmTZuyZcuWDA0NZcGCBRkYGJiY\\\n", + "+8IXvpDzzz8/3/ve9/LMM8/kgQce2OfjozkqGwABoJRamjPq9XrGxsYaxssvhEyS4eHh9PT0JEl6\\\n", + "e3uzfv36iblHH300HR0dSV461/7f//3f98cRsxcEQABgkv7+/rS1tTWM/v7+Se8bGRlJa2trkqSt\\\n", + "rS3btm2bmHvjG9+Ye+65J0kyODiYkZGR6Vk8UxIAAaBMWlqaMvr6+jI6Otow+vr6Jn3dnDlzMjY2\\\n", + "liQZHR3N3LlzJ+Y+9KEP5cc//nH+8A//MEcccUSOO+64afsZ2D0BEACYpFarpbW1tWG8/ELI5KU7\\\n", + "awwODiZJ1q5dm66urom5ww8/PDfccMPE/Lnnnjs9i2dKAiAAsNc6OjrS3t6e7u7ubN68OUuXLs2K\\\n", + "FSuSJBs3bszixYvztre9LV1dXfmt3/qtGV4tv+IeJgBQIuMzcBuYl9/eZc2aNUleCofr1q2b9vUw\\\n", + "NQEQAMrEk0AoQAsYAKBiBEAAgIrRAgaAEpmJcwA5+KgAAgBUjAogAJSJAiAFCIAAUCYCIAUIgABQ\\\n", + "KhIgU3MOIABAxagAAkCJjCsAUoAACABlIgBSgBYwAEDFqAACQKkoATI1ARAASsQ5gBShBQwAUDEq\\\n", + "gABQJiqAFCAAAkCpSIBMTQsYAKBiVAABoERcBEIRAiAAlIkASAECIACUigTI1JwDCABQMSqAAFAm\\\n", + "CoAUIAACQIm4CIQitIABACpGBRAAykQFkAIEQAAoFQmQqQmA++iRJ8ZnegkAAHtEAASAEnERCEUI\\\n", + "gABQJgIgBbgKGACgYgRAAICK0QIGgDJp0QNmagIgAJSIi0AoQgsYAKBiBEAAYJ+sXLky3d3dWb58\\\n", + "eXbs2DGx/dlnn815552Xt771rVmyZEm2bt06g6vk1wmAAFAmLU0aBW3atClbtmzJ0NBQFixYkIGB\\\n", + "gYm57373u/nd3/3d3Hvvvbn44ovzxS9+cd+Pj6YQAAGASer1esbGxhpGvV6f9L7h4eH09PQkSXp7\\\n", + "e7N+/fqJuZNOOinPPPNMkmRkZCTHHHPM9CyeKQmAAFAmLS1NGf39/Wlra2sY/f39k75uZGQkra2t\\\n", + "SZK2trZs27ZtYu4Nb3hDHn744fzO7/xOrr/++nzgAx+Ytp+B3RMAAaBExps0+vr6Mjo62jD6+vom\\\n", + "fd+cOXMyNjaWJBkdHc3cuXMn5m688cacddZZ2bx5c/76r/86f/M3f7Ofjpo9JQACAJPUarW0trY2\\\n", + "jFqtNul9nZ2dGRwcTJKsXbs2XV1dE3Pj4+MTbd9jjjkmo6Oj07N4piQAAkCZTPNFIB0dHWlvb093\\\n", + "d3c2b96cpUuXZsWKFUmSD3zgA7njjjuyePHi/NVf/VWuuuqq5hwj+8yNoAGgTGbgRtCrVq1qeL1m\\\n", + "zZokL50TeOedd07/gpiSCiAAQMUIgAAAFaMFDABl0uJhwExNAASAEhmX/yhACxgAoGIEQACAitEC\\\n", + "BoAy0QKmABVAAICKUQEEgDJRAaQAARAASkUCZGpawAAAFaMCCABlogBIAQIgAJSJAEgBWsAAABWj\\\n", + "AggAJTI+0wvgoCAAAkCZaAFTgBYwAEDFCIAAABWjBQwAZdKiB8zUVAB/zU033bTb+Xq9nrGxsYbx\\\n", + "4s6d07Q6ACigpUmDUqtkAHz44Ycnjc2bN2fNmjW73a+/vz9tbW0N4+d3DU7TqgEAmqOSLeAzzjgj\\\n", + "73nPezI+3nix/M9//vPd7tfX15errrqqYdu7/ukLTV8fAMD+VMkA+Nu//dtZtWpVjj766Ibt73zn\\\n", + "O3e7X61WS61Wa9g265BK/oQAHKi0bymgkunlrrvuym/8xm9M2v7tb397BlYDADC9KhkAW1tbZ3oJ\\\n", + "ALB/qABSQCUvAgEAqDIBEACgYirZAgaA0tICpgABEABKpMWTQChACxgAoGIEQACAitECBoAy0QGm\\\n", + "AAEQAMpEAKQALWAAgIoRAAEAKkYABIASaWlpztgTK1euTHd3d5YvX54dO3ZMbL/11luzePHiLF68\\\n", + "OPPnz8/q1aubfLTsLQEQANhrmzZtypYtWzI0NJQFCxZkYGBgYu7d73531q1bl3Xr1uX1r399Lrjg\\\n", + "gplbKA0EQABgknq9nrGxsYZRr9cnvW94eDg9PT1Jkt7e3qxfv37Se37xi1+kXq/nxBNP3O/rphgB\\\n", + "EADKpKU5o7+/P21tbQ2jv79/0teNjIyktbU1SdLW1pZt27ZNes83v/nNLF26tNlHyj5wGxgAYJK+\\\n", + "vr5cddVVDdtqtdqk982ZMydjY2NJktHR0cydO3fSewYGBvKlL31p/yyUvaICCABl0qQKYK1WS2tr\\\n", + "a8PYVQDs7OzM4OBgkmTt2rXp6upqmN+6dav27wFIAASAEmlS/iuso6Mj7e3t6e7uzubNm7N06dKs\\\n", + "WLFiYl7798CkBQwAZbKn93BpglWrVjW8XrNmzcSfL7/88uleDgWoAAIAVIwKIACUyAwUADkIqQAC\\\n", + "AFSMAAgAUDFawABQJlrAFCAAAkCJyH8UoQUMAFAxKoAAUCZKgBQgAAJAibgNDEVoAQMAVIwACABQ\\\n", + "MVrAAFAiWsAUoQIIAFAxAiAAQMVoAe+j//ryEzO9BAAOFn++/79CC5giBEAAKBMBkAK0gAEAKkYF\\\n", + "EABKpEUJkAIEQAAoE/mPArSAAQAqRgUQAEpEAZAiBEAAKBG3gaEILWAAgIpRAQSAMlEBpAABEABK\\\n", + "RP6jCAEQAMpEAqQA5wACAFSMCiAAlIgCIEUIgABQIm4DQxFawAAAFaMCCABlogJIAQIgAJSI/EcR\\\n", + "WsAAABWjAggAJeIiEIpQAQQAqBgBEADYJytXrkx3d3eWL1+eHTt2NMx99atfzdve9rYsXrw4999/\\\n", + "/wytkJcTAAGgRFpamjOK2rRpU7Zs2ZKhoaEsWLAgAwMDE3NPPvlkbrvtttx9991Zt25dzjzzzP1w\\\n", + "xOwNARAAyqSlOaNer2dsbKxh1Ov1SV83PDycnp6eJElvb2/Wr18/MXfnnXemVqvl7W9/e5YvX57/\\\n", + "+Z//2V9HzR4SAAGgRFqa9L/+/v60tbU1jP7+/knfNzIyktbW1iRJW1tbtm3bNjG3devW/Pd//3fu\\\n", + "uuuunHnmmfnHf/zHafsd2D0BEACYpK+vL6Ojow2jr69v0vvmzJmTsbGxJMno6Gjmzp3bMPcHf/AH\\\n", + "aWlpyZIlS7J58+ZpWz+7JwACQIk06xzAWq2W1tbWhlGr1SZ9X2dnZwYHB5Mka9euTVdX18RcV1dX\\\n", + "Nm7cmCTZuHFjXve6103Lb8DUBEAAYK91dHSkvb093d3d2bx5c5YuXZoVK1YkSU499dS85jWvyeLF\\\n", + "i3PDDTfkiiuumOHV8ist4+Pj4zO9iIPZ7y28eqaXAMBB4qEf/MN+/46Ov/5MUz5n48evasrncGDy\\\n", + "JBAAKBFPAqEIARAASkT+owjnAAIAVIwKIACUiRIgBQiAAFAizgGkCC1gAICKUQEEgBJRAKSIgz4A\\\n", + "jo+P55577smTTz6ZX93S8KKLLtrtPi+88EJuu+22zJo1K+edd15mz56dJPn617+eP/7jP37F/er1\\\n", + "+qQHYb/44s7MmnXQ/4wAlIUESAEHfQv4fe97X26//fZ88pOfzIYNG3LnnXdOuc9FF12UDRs2ZOPG\\\n", + "jTn77LPz05/+NEny+c9/frf77erB2P+19YGmHAcANENLkwbldtAHwK1bt+a6667L8ccfn8997nN5\\\n", + "9tlnp9xny5Yt+dSnPpVrrrkmt9xyS/70T/803/ve96bcb1cPxj62/fRmHAYAwLQ56HuXs2fPzosv\\\n", + "vpijjjoqN9xwQx599NEp93n++edTr9dTq9Vy4okn5o477siyZcvy0EMP7Xa/Wq026UHY2r8AHEhc\\\n", + "BUwRB30F8Ktf/WpefPHFfP7zn88vf/nL3HzzzVPus3r16vzyl7+ceH3kkUfmW9/6Vj772c/ux5UC\\\n", + "wDTQA6aAg758NW/evCTJcccdl6uuKvbg6re85S2Tts2ePTsf/OAHm7o2AIAD0UEfAAGA/0/xjiIE\\\n", + "QAAoEecAUsRBfw4gAAB7RgUQAEpFCZCpCYAAUCJawBShBQwAUDEqgABQJiqAFCAAAkCJyH8UIQAC\\\n", + "QIk4B5AinAMIAFAxAiAAQMVoAQNAiWgBU4QKIABAxagAAkCJKABShAAIAGUiAVKAFjAAQMWoAAJA\\\n", + "ibgIhCIEQAAoEfmPIgRAACgTCZACnAMIAFAxKoAAUCIKgBShAggAJdLS0pyxJ1auXJnu7u4sX748\\\n", + "O3bsmNi+bt26vOY1r8nixYuzZMmSJh8p+0IABAD22qZNm7Jly5YMDQ1lwYIFGRgYaJh/3/vel3Xr\\\n", + "1uXuu++eoRWyKwIgAJTJNJcAh4eH09PTkyTp7e3N+vXrG+a/8Y1vpLu7O6tXr27qYbJvnAMIACXS\\\n", + "rHMA6/V66vV6w7ZarZZardawbWRkJMcff3ySpK2tLdu2bZuYW7RoUX7yk58kSc4///ycddZZefOb\\\n", + "39ykFbIvVAABgEn6+/vT1tbWMPr7+ye9b86cORkbG0uSjI6OZu7cuRNzRxxxRA477LAcdthhOe+8\\\n", + "87Jp06ZpWz+7JwACQJm0NGf09fVldHS0YfT19U36us7OzgwODiZJ1q5dm66urom5XwXDJLnvvvty\\\n", + "0kknNf1w2TsCIACUSJPyX2q1WlpbWxvGy9u/SdLR0ZH29vZ0d3dn8+bNWbp0aVasWJEk+Zd/+Zec\\\n", + "fvrp6ezszAknnJCzzz57/x48hbWMj4+Pz/QiDma/t/DqmV4CAAeJh37wD/v9O5b8r+ua8jl3X3Fl\\\n", + "Uz6HA5OLQACgRPb0Hn5UkwAIAGUiAFKAAAgAJSL/UYQAuI+Ovfg1M70EAIA9IgACQIk4B5Ai3AYG\\\n", + "AKBiBEAAgIrRAgaAEtECpggBEABKRACkCC1gAICKEQABACpGCxgASkQLmCJUAAEAKkYFEABKRAGQ\\\n", + "IgRAACgTCZACBEAAKBHnAFKEcwABACpGBRAASkQBkCIEQAAoEz1gCtACBgCoGBVAACgR9T+KEAAB\\\n", + "oER0gClCCxgAoGJUAAGgRFQAKUIFEACgYgRAAICK0QIGgBLRAqYIARAASkT+owgBEADKRAKkAOcA\\\n", + "AgBUjAogAJSIAiBFCIAAUCIuAqEILWAAgIpRAQSAElEBpAgVQACAihEAAYB9snLlynR3d2f58uXZ\\\n", + "sWPHpPlPf/rTWbRo0QysjFciAAJAibS0NGcUtWnTpmzZsiVDQ0NZsGBBBgYGGua3b9+ehx56qMlH\\\n", + "yb4SAAGgRFqaNIoaHh5OT09PkqS3tzfr169vmF+9enU+8pGP7P0BsV8IgADAJPV6PWNjYw2jXq9P\\\n", + "et/IyEhaW1uTJG1tbdm2bdvE3OjoaB566KGceeaZ07ZuiqlkANy6dWs+9alP5bbbbssTTzyRyy+/\\\n", + "PB/72MeydevW3e63q38ML+7cOU2rBoCpNasF3N/fn7a2tobR398/6fvmzJmTsbGxJC8Fvrlz507M\\\n", + "XXfddbniiium7dgprpIB8MILL8wJJ5yQJ554Ij09PVmyZEl6enpyySWX7Ha/Xf1j+Pldg9O0agCY\\\n", + "WrMCYF9fX0ZHRxtGX1/fpO/r7OzM4OBL/1+4du3adHV1Tcz99Kc/zSc/+cn09vbmkUceyd/+7d9O\\\n", + "2+/A7rWMj4+Pz/QiptvixYuzbt26JMkZZ5yR73//+0mSJUuW5O67737F/er1+qTy97v+6QuZdYjb\\\n", + "KQIwtXv+/Mr9/h3LvrK6KZ/z1Qs/Wvi9f/mXf5nvf//7mT9/fr70pS/liiuuyJo1axres2jRomzY\\\n", + "sKEpa2PfVTK5/Pol6r/+F3TnFO3cWq2WWq3WsE34A6DqVq1a1fD65eEvifB3gKlkern11lszPj6e\\\n", + "lpaWnHbaaUleCoV///d/P8MrA4B940kgFFHJADhv3rxJ2w499NC85S1vmYHVAEDzyH8UUcmLQAAA\\\n", + "qqySFUAAKCstYIoQAAGgROQ/itACBgCoGBVAACgTJUAKEAABoEScA0gRWsAAABWjAggAJaIASBEC\\\n", + "IACUiBYwRQiAAFAi8h9FOAcQAKBiVAABoES0gClCAASAEpH/KEILGACgYlQAAaBEtIApQgAEgDIR\\\n", + "AClACxgAoGJUAAGgRBQAKUIABIAScQ4gRWgBAwBUjAogAJSIAiBFCIAAUCJawBQhAAJAich/FOEc\\\n", + "QACAilEBBIAS0QKmCAEQAEpEAKQILWAAgIpRAQSAElEApAgBEABKRAuYIrSAAQAqRgUQAEpEAZAi\\\n", + "BEAAKBEtYIoQAPfRG17jXxoAcHBxDiAAlEhLk8aeWLlyZbq7u7N8+fLs2LFjYvumTZvS2dmZt771\\\n", + "rTnvvPPyzDPP7NOx0TwCIACUSEtLc0ZRmzZtypYtWzI0NJQFCxZkYGBgYu6Nb3xjhoeHc++99+bN\\\n", + "b35zbr311v1wxOwNARAASmS6K4DDw8Pp6elJkvT29mb9+vUTc4ceeujEn5999tmccsope3lUNJsA\\\n", + "CABMUq/XMzY21jDq9fqk942MjKS1tTVJ0tbWlm3btjXM33nnnXnTm96UdevW5aSTTpqWtTM1ARAA\\\n", + "SqRZLeD+/v60tbU1jP7+/knfN2fOnIyNjSVJRkdHM3fu3Ib53t7e/Md//EeWLl2aNWvWTMtvwNQE\\\n", + "QAAokWa1gPv6+jI6Otow+vr6Jn1fZ2dnBgcHkyRr165NV1fXxNyvVwzb2try6le/utmHy15yGxgA\\\n", + "YJJarZZarTbl+zo6OtLe3p7u7u7Mnz8/H/vYx7JixYqsWbMmd955Zz7zmc+kpaUlRx99dG666aZp\\\n", + "WDlFCIAAUCIzcSPoVatWNbz+Vav3/PPPz/nnnz/9C2JKAiAAlIgngVCEcwABACpGBRAASkQBkCIE\\\n", + "QAAokRY9YArQAgYAqBgVQAAoEfU/ihAAAaBEdIApQgAEgBKR/yjCOYAAABWjAggAJTJLCZACBEAA\\\n", + "KBH5jyK0gAEAKkYFEABKxFXAFCEAAkCJyH8UoQUMAFAxKoAAUCJawBQhAAJAich/FKEFDABQMSqA\\\n", + "AFAiWsAUIQACQInIfxQhAAJAiXgUHEU4BxAAoGJUAAGgRBQAKUIABIAScREIRWgBAwBUjAogAJSI\\\n", + "AiBFCIAAUCJawBShBfz/XHnllVO+p16vZ2xsrGG8sGPn/l8cAEATVbICOG/evMyfPz+zZs3K+Ph4\\\n", + "kuSRRx7J8PBwHnjggVfcr7+/P9dee23DtoXvPSeLlv3Rfl0vABSlAEgRlawArl69OieeeGKuvvrq\\\n", + "PPjgg3nwwQdz5pln7jb8JUlfX19GR0cbxpuWvn2aVg0AU2tpac6g3CoZAN///vfn61//enbu3JkL\\\n", + "Lrggt9xyy0QlcHdqtVpaW1sbxuxDK1lEBQAOYpUMgEkya9asXHjhhfnmN7+ZnTt3pqOjY6aXBAD7\\\n", + "TAWQIipfvpo1a1YuuuiimV4GADRFZSs77JHKB0AAKBPVO4rwHwoAABUjAAJAibQ0aeyJlStXpru7\\\n", + "O8uXL8+OHTsmtt9+++35/d///Zx11ln56Ec/uk/HRXMJgABQItN9EcimTZuyZcuWDA0NZcGCBRkY\\\n", + "GJiYO+2007J+/frcd999eeqpp7Jhw4b9cMTsDQEQANhrw8PD6enpSZL09vZm/fr1E3Pz58/PIYe8\\\n", + "dLnBYYcdllmzxI4DhYtAAKBEmnUNSL1eT71eb9hWq9VSq9Uato2MjOT4449PkrS1tWXbtm2TPuvB\\\n", + "Bx/MU089lYULFzZpdewrURwASqRZLeD+/v60tbU1jP7+/knfN2fOnIyNjSVJRkdHM3fu3Ib5//zP\\\n", + "/8yVV16ZG2+8cVqOn2IEQABgkl09/rSvr2/S+zo7OzM4OJgkWbt2bbq6uibmtm/fnmXLlmXNmjWZ\\\n", + "N2/etK2dqQmAAFAizboKeFePP315+zdJOjo60t7enu7u7mzevDlLly7NihUrkiTXXXddHnvssXzk\\\n", + "Ix/J4sWLc++99+7fg6ewlvEiD8HlFa24dfVMLwGAg8Sad+//W6H87+HPNeVzPtz55035HA5MKoAA\\\n", + "ABXjKmAAKBFPgqMIARAASsSzgClCAASAEnFuF0X4ewIAUDEqgABQIlrAFCEAAkCJyH8UoQUMAFAx\\\n", + "KoAAUCJawBQhAAJAich/FKEFDABQMSqAAFAiWsAUIQACQIkIgBShBQwAUDEqgABQIgqAFCEAAkCJ\\\n", + "aAFThAAIACXi3C6K8PcEAKBiVAABoES0gClCAASAEmnJ+EwvgYOAFjAAQMWoAAJAiWgBU0TL+Pi4\\\n", + "WjHQNPV6Pf39/enr60utVpvp5QCwCwIg0FRjY2Npa2vL6OhoWltbZ3o5AOyCcwABACpGAAQAqBgB\\\n", + "EACgYgRAoKlqtVo+8YlPuAAE4ADmIhAAgIpRAQQAqBgBEACgYgRAAICKEQABACpGAAQAqJhDZnoB\\\n", + "QHls3bo1y5Yty86dO9Pe3p6vfe1rmT179kwvC4CXUQEEmuaoo47KXXfdlaGhoZxwwgm55557ZnpJ\\\n", + "AOyCCiDQNE8//XQuv/zyjIyM5Mknn8zChQtnekkA7IIKINA0t9xyS84999zce++96e3tjfvMAxyY\\\n", + "VACBplmyZEmWL1+e22+/PYcffvhMLweAV+BRcAAAFaMFDABQMQIgAEDFCIAAABUjAAIAVIwACABQ\\\n", + "MQIgAEDFCIAAABUjAAIAVIwngQBNs3Xr1ixbtiw7d+5Me3t7vva1r2X27NkzvSwAXkYFEGiao446\\\n", + "KnfddVeGhoZywgkn5J577pnpJQGwCyqAQNM8/fTTufzyyzMyMpInn3wyCxcunOklAbALKoBA09xy\\\n", + "yy0599xzc++996a3tzceNQ5wYFIBBJpmyZIlWb58eW6//fYcfvjhM70cAF5By7j/RAcAqBQtYACA\\\n", + "ihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAA\\\n", + "oGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAivm/cyW06Ofu\\\n", + "RLYAAAAASUVORK5CYII=\\\n", "\"\n", " frames[1] = \"\\\n", "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", - "AAAPYQGoP6dpAAAwfUlEQVR4nO3df3RU9ZnH8c9MSCYgJvwIJBAoKdACWYTYRLIREXQjWUWqnNYG\\\n", - "f4XGikchljKVSiomSlfG1S0NVjAVpVitS7qWtu4RQ3GU06VEo6EoIKBIIdUygWABTWESMrN/qKNj\\\n", - "JuQmmeQm975f59xzynfu3HnmHqwfn+feO45gMBgUAAAAbMNpdgEAAADoXgRAAAAAmyEAAgAA2AwB\\\n", - "EAAAwGYIgAAAADZDAAQAALAZAiAAAIDNEAABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYI\\\n", - "gAAAADZDAAQAALAZAiAAAIDNEAABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZD\\\n", - "AAQAALAZAiAAAIDNEAABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAALAZ\\\n", - "AiAAAIDNEAABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAALAZAiCATjt8\\\n", - "+LAWLFigcePGqW/fvho8eLCuu+46HTp0yOzSAAAR9DG7AAC93+uvv67t27dr7ty5GjFihA4dOqTH\\\n", - "HntMM2bM0Ntvv61+/fqZXSIA4AscwWAwaHYRAHq306dPq2/fvmFrr776qnJycvSrX/1KN998s0mV\\\n", - "AQAiYQQMoNO+GP6ampp0/PhxjR07VgMGDNCOHTtMrAwAEAkBEECnnT59WiUlJRo5cqRcLpeSkpI0\\\n", - "ZMgQnThxQidPnjS7PADAl3ANIIBOu/POO/XLX/5SP/jBD5STk6PExEQ5HA7NnTtXgUDA7PIAAF9C\\\n", - "AATQac8995zmzZunn/70p6G1M2fO6MSJE+YVBQBoFSNgAJ0WExOjL99P9vOf/1zNzc0mVQQAOBc6\\\n", - "gAA67eqrr9bTTz+txMREpaenq6qqSi+99JIGDx5sdmkAgAgIgAA6bdWqVYqJidGvf/1rnTlzRlOn\\\n", - "TtVLL72kvLw8s0sDAETAcwABAABshmsAAQAAbIYACAAAYDMEQAAAAJshAAIAgE7505/+pNmzZ2v4\\\n", - "8OFyOBz6/e9/3+Z7tm7dqm984xtyuVwaO3as1q9f3+V14nMEQAAA0CkNDQ2aPHmyVq9ebWj/v/71\\\n", - "r5o1a5Yuu+wy7dy5Uz/4wQ906623avPmzV1cKT7DXcAAACBqHA6Hfve73+naa69tdZ+7775bL7zw\\\n", - "gnbv3h1amzt3rk6cOKHKyspuqBJ0AAEAQLeqqqpSbm5u2FpeXp6qqqpMqsh+eBA0AABowe/3y+/3\\\n", - "h625XC65XK5OH9vn8yk5OTlsLTk5WadOndLp06fVt2/fTn8Gzo0A2EklWx4xu4Re6/RZrj4AYC8P\\\n", - "X7moyz/jgm/8MCrH+dY3z9f9998ftlZaWqr77rsvKseHuQiAAACgheLiYrnd7rC1aHT/JCklJUV1\\\n", - "dXVha3V1dUpISKD7100IgAAAWIkjOoeJ1rg3kpycHG3atClsbcuWLcrJyemSz0NL3AQCAAA65eOP\\\n", - "P9bOnTu1c+dOSZ885mXnzp2qra2V9Ek3saCgILT/7bffroMHD+pHP/qR9u3bpzVr1ug3v/mNFi9e\\\n", - "bEb5tkQHEAAAK3FEqQXYDm+88YYuu+yy0J8/Gx3PmzdP69ev15EjR0JhUJK++tWv6oUXXtDixYu1\\\n", - "atUqjRgxQk888YTy8vK6vXa7IgACAGAl3Z//NGPGDJ3rscKRfuVjxowZ+stf/tKFVeFcGAEDAADY\\\n", - "DB1AAACsxIQOIHofAiAAAJZCAkTbGAEDAADYDB1AAAAsJEgDEAYQAAEAsBICIAxgBAwAAGAzdAAB\\\n", - "ALASEx4Ejd6HDiAAAIDN0AEEAMBKaADCADqAAAAANkMHEAAAK+EaQBhAAAQAwErIfzCAETAAAIDN\\\n", - "0AEEAMBCgmYXgF6BAAgAgJVwDSAMYAQMAABgM3QAAQCwEhqAMIAACACApZAA0TZGwAAAADZDBxAA\\\n", - "ACuhAQgDCIAAAFgJARAGEAABALCQII+BgQFcAwgAAGAzBEAAAACbYQQMAICVMAKGAXQAAQAAbIYO\\\n", - "IAAAVkIDEAbYJgDW19dr3bp1qqqqks/nkySlpKTo4osv1ne/+10NGTLE5AoBAOi8oNkFoFewxQj4\\\n", - "9ddf19e//nU98sgjSkxM1KWXXqpLL71UiYmJeuSRRzR+/Hi98cYbZpcJAADQLWzRAbzzzjt13XXX\\\n", - "qby8XI4vXRwbDAZ1++23684771RVVdU5j+P3++X3+8PWzjaeVZ84W5xGAEBvwE0gMMAWHcA333xT\\\n", - "ixcvbhH+JMnhcGjx4sXauXNnm8fxeDxKTEwM2/68YUsXVAwAQAc5orTB0mwRAFNSUlRdXd3q69XV\\\n", - "1UpOTm7zOMXFxTp58mTYNnXuFdEsFQAAoMvZIgDedddduu2227Ro0SI9//zzeu211/Taa6/p+eef\\\n", - "16JFi3T77bfrRz/6UZvHcblcSkhICNsY/wIAehSHIzpbB6xevVppaWmKj49Xdnb2OZsvTU1NWr58\\\n", - "ucaMGaP4+HhNnjxZlZWVHf3WaCdbpJeFCxcqKSlJP/vZz7RmzRo1NzdLkmJiYpSZman169frO9/5\\\n", - "jslVAgDQeWbdBVxRUSG3263y8nJlZ2errKxMeXl52r9/v4YOHdpi/2XLlumZZ57R2rVrNX78eG3e\\\n", - "vFlz5szR9u3bdeGFF5rwDezFEQwGbXXHeFNTk+rr6yVJSUlJio2N7dTxSrY8Eo2ybOn0WVv91QMA\\\n", - "PXzloi7/jPF590blOPs2/6Rd+2dnZ+uiiy7So48+KkkKBAIaOXKk7rzzTi1durTF/sOHD9c999yj\\\n", - "hQsXhta+9a1vqW/fvnrmmWc6VzzaZIsO4BfFxsZq2LBhZpcBAECPFunJFy6XSy6Xq8W+jY2Nqqmp\\\n", - "UXFxcWjN6XQqNze31Sds+P1+xcfHh6317dtX27Zti0L1aIstrgEEAMA2onQNYKQnX3g8nogfWV9f\\\n", - "r+bm5hY3VCYnJ4d+fOHL8vLytHLlSr377rsKBALasmWLNm7cqCNHjkT9lKAlAiAAAGgh0pMvvtjh\\\n", - "66xVq1bpa1/7msaPH6+4uDgVFRWpsLBQTifRpDtwlgEAQAuRnnwRafwrfXJNfUxMjOrq6sLW6+rq\\\n", - "lJKSEvE9Q4YM0e9//3s1NDTo8OHD2rdvn/r376/Ro0dH/bugJQIgAAAWEnQ4orK1R1xcnDIzM+X1\\\n", - "ekNrgUBAXq9XOTk553xvfHy8UlNTdfbsWf32t7/VNddc06Hvjfax3U0gAABYmkm/4uF2uzVv3jxl\\\n", - "ZWVpypQpKisrU0NDgwoLCyVJBQUFSk1NDV1H+Nprr+mDDz5QRkaGPvjgA913330KBAKGnsuLziMA\\\n", - "AgCATsvPz9exY8dUUlIin8+njIwMVVZWhm4Mqa2tDbu+78yZM1q2bJkOHjyo/v3766qrrtLTTz+t\\\n", - "AQMGmPQN7MV2zwGMNp4D2HE8BxCA3XTHcwDHXVUalePs33R/VI6DnokOIAAAFtLe6/dgT9wEAgAA\\\n", - "YDN0AAEAsBIagDCAAAgAgJUQAGEAARAAAEshAaJtXAMIAABgM3QAAQCwkCANQBhAAAQAwEoIgDCA\\\n", - "ETAAAIDN0AEEAMBSaAGibQRAAAAshGsAYQQjYAAAAJuhAwgAgJXQAYQBBEAAACyFBIi2MQIGAACw\\\n", - "GTqAAABYCDeBwAgCIAAAVkIAhAEEQAAALIUEiLZxDSAAAIDN0AEEAMBKaADCAAIgAAAWwk0gMIIR\\\n", - "MAAAgM3QAQQAwEroAMIAAiAAAJZCAkTbCICddPps0OwSeq2973PuOqM5YHYFvVdTk9kV9F5jUgkX\\\n", - "gBUQAAEAsBBuAoERBEAAAKyEAAgDuAsYAADAZgiAAAAANsMIGAAAK3EwA0bbCIAAAFgIN4HACEbA\\\n", - "AAAANkMABAAAsBkCIAAAVuKI0tYBq1evVlpamuLj45Wdna3q6upz7l9WVqZx48apb9++GjlypBYv\\\n", - "XqwzZ8507MPRLgRAAADQaRUVFXK73SotLdWOHTs0efJk5eXl6ejRoxH3f/bZZ7V06VKVlpZq7969\\\n", - "evLJJ1VRUaEf//jH3Vy5PREAAQCwEocjOls7rVy5UvPnz1dhYaHS09NVXl6ufv36ad26dRH33759\\\n", - "u6ZOnaobbrhBaWlpmjlzpq6//vo2u4aIDgIgAAAWEozS5vf7derUqbDN7/dH/MzGxkbV1NQoNzc3\\\n", - "tOZ0OpWbm6uqqqqI77n44otVU1MTCnwHDx7Upk2bdNVVV3X2FMAAAiAAAGjB4/EoMTExbPN4PBH3\\\n", - "ra+vV3Nzs5KTk8PWk5OT5fP5Ir7nhhtu0PLly3XJJZcoNjZWY8aM0YwZMxgBdxMCIAAAVhKlm0CK\\\n", - "i4t18uTJsK24uDhqZW7dulUrVqzQmjVrtGPHDm3cuFEvvPCCfvKTn0TtM9A6HgQNAICVROlB0C6X\\\n", - "Sy6Xy9C+SUlJiomJUV1dXdh6XV2dUlJSIr7n3nvv1c0336xbb71VknTBBReooaFBt912m+655x45\\\n", - "nfSouhJnFwAAdEpcXJwyMzPl9XpDa4FAQF6vVzk5ORHf889//rNFyIuJiZEkBYPBrisWkugAAgCA\\\n", - "KHC73Zo3b56ysrI0ZcoUlZWVqaGhQYWFhZKkgoICpaamhq4jnD17tlauXKkLL7xQ2dnZOnDggO69\\\n", - "917Nnj07FATRdQiAAABYSQce4RIN+fn5OnbsmEpKSuTz+ZSRkaHKysrQjSG1tbVhHb9ly5bJ4XBo\\\n", - "2bJl+uCDDzRkyBDNnj1bDzzwgCn1240jSJ+1U5a8uMrsEnqtve/zV68zmgNmV9B7NTWZXUHvNSbV\\\n", - "nHBhFb+Ys6jLP+Mr330wKsepXb80KsdBz8Q1gAAAADZDAAQAALAZrgEEAMBKmNLDADqAAAAANkMH\\\n", - "EAAAK6EDCAMIgAAAWAoJEG1jBAwAAGAzdAABALASGoAwgAAIAICVEABhACNgAAAAm6EDCACAhfAj\\\n", - "mzCCAAgAgJUwAoYBjIABAABshgAIAABgM4yAAQCwEgczYLSNDuCn/va3v+mWW2455z5+v1+nTp0K\\\n", - "2842ne2mCgEAMMARpQ2WRgD81IcffqinnnrqnPt4PB4lJiaGba9VbOmmCgEAAKLDNiPg559//pyv\\\n", - "Hzx4sM1jFBcXy+12h62Vbl3bqboAAAC6m20C4LXXXiuHw6FgsPUnJDnauG7C5XLJ5XKFrfWJtc0p\\\n", - "BAD0BoxvYYBtRsDDhg3Txo0bFQgEIm47duwwu0QAAIBuYZsAmJmZqZqamlZfb6s7CABAr8BNIDDA\\\n", - "NvPLJUuWqKGhodXXx44dq1deeaUbKwIAADCHbQLgtGnTzvn6eeedp+nTp3dTNQAAAOaxTQAEAMAW\\\n", - "GN/CAAIgAAAW0tYTLQDJRjeBAAAA4BMEQAAAAJthBAwAgJUwAYYBBEAAAKyEAAgDGAEDAADYDAEQ\\\n", - "AADAZhgBAwBgITwFBkbQAQQAALAZAiAAAIiK1atXKy0tTfHx8crOzlZ1dXWr+86YMUMOh6PFNmvW\\\n", - "rG6s2L4IgAAAWIkjSls7VVRUyO12q7S0VDt27NDkyZOVl5eno0ePRtx/48aNOnLkSGjbvXu3YmJi\\\n", - "dN1117X/w9FuBEAAANBpK1eu1Pz581VYWKj09HSVl5erX79+WrduXcT9Bw0apJSUlNC2ZcsW9evX\\\n", - "jwDYTQiAAABYSZQ6gH6/X6dOnQrb/H5/xI9sbGxUTU2NcnNzQ2tOp1O5ubmqqqoyVPaTTz6puXPn\\\n", - "6rzzzuvIt0Y7EQABALCQaE2APR6PEhMTwzaPxxPxM+vr69Xc3Kzk5OSw9eTkZPl8vjZrrq6u1u7d\\\n", - "u3Xrrbd24BujI3gMDAAAVhKl58AUFxfL7XaHrblcrqgc+8uefPJJXXDBBZoyZUqXHB8tEQABAEAL\\\n", - "LpfLcOBLSkpSTEyM6urqwtbr6uqUkpJyzvc2NDRow4YNWr58eYdrRfsxAgYAwEIcjuhs7REXF6fM\\\n", - "zEx5vd7QWiAQkNfrVU5Ozjnf+z//8z/y+/266aabOvJ10UF0AAEAQKe53W7NmzdPWVlZmjJlisrK\\\n", - "ytTQ0KDCwkJJUkFBgVJTU1tcR/jkk0/q2muv1eDBg80o27YIgAAAoNPy8/N17NgxlZSUyOfzKSMj\\\n", - "Q5WVlaEbQ2pra+V0hg8e9+/fr23btumPf/yjGSXbGgEQAAArMfG3gIuKilRUVBTxta1bt7ZYGzdu\\\n", - "nILBYBdXhUgIgAAAWIiJ+Q+9CDeBAAAA2AwdQAAArIQWIAwgAAIAYCFReg40LI4RMAAAgM0QAAEA\\\n", - "AGyGETAAABbCCBhG0AEEAACwGQIgAACAzTAChmkam8yuoHf72+/qzS6h10rMHWR2Cb1YjNkFoA2M\\\n", - "gGEEARAAACshAMIARsAAAAA2QwcQAAALcdAChAEEQAAArIT8BwMYAQMAANgMHUAAACyEBiCMIAAC\\\n", - "AGAhPAYGRjACBgAAsBk6gAAAWAkdQBhAAAQAwELIfzCCAAgAgJWQAGEA1wACAADYDB1AAAAshAYg\\\n", - "jCAAAgBgITwGBkYwAgYAALAZOoAAAFgJHUAYQAAEAMBCyH8wghEwAACAzdABBADAQrgJBEbQAQQA\\\n", - "ALAZAiAAAIDNMAIGAMBCGAHDCDqAAABYiSNKWwesXr1aaWlpio+PV3Z2tqqrq8+5/4kTJ7Rw4UIN\\\n", - "GzZMLpdLX//617Vp06aOfTjahQ4gAAAW4jDpQTAVFRVyu90qLy9Xdna2ysrKlJeXp/3792vo0KEt\\\n", - "9m9sbNQVV1yhoUOH6rnnnlNqaqoOHz6sAQMGdH/xNkQABAAAnbZy5UrNnz9fhYWFkqTy8nK98MIL\\\n", - "WrdunZYuXdpi/3Xr1unDDz/U9u3bFRsbK0lKS0vrzpJtjREwAAAW4nBEZ2uPxsZG1dTUKDc3N7Tm\\\n", - "dDqVm5urqqqqiO95/vnnlZOTo4ULFyo5OVkTJ07UihUr1Nzc3JmvD4PoAAIAgBb8fr/8fn/Ymsvl\\\n", - "ksvlarFvfX29mpublZycHLaenJysffv2RTz+wYMH9fLLL+vGG2/Upk2bdODAAS1YsEBNTU0qLS2N\\\n", - "3hdBRHQAAQBACx6PR4mJiWGbx+OJ2vEDgYCGDh2qxx9/XJmZmcrPz9c999yj8vLyqH0GWkcHEAAA\\\n", - "C4nWY2CKi4vldrvD1iJ1/yQpKSlJMTExqqurC1uvq6tTSkpKxPcMGzZMsbGxiomJCa1NmDBBPp9P\\\n", - "jY2NiouL6+Q3wLnQAQQAwEKi9RQYl8ulhISEsK21ABgXF6fMzEx5vd7QWiAQkNfrVU5OTsT3TJ06\\\n", - "VQcOHFAgEAitvfPOOxo2bBjhrxsQAAEAQKe53W6tXbtWTz31lPbu3as77rhDDQ0NobuCCwoKVFxc\\\n", - "HNr/jjvu0IcffqhFixbpnXfe0QsvvKAVK1Zo4cKFZn0FW2EEDACAlZj0SyD5+fk6duyYSkpK5PP5\\\n", - "lJGRocrKytCNIbW1tXI6P+87jRw5Ups3b9bixYs1adIkpaamatGiRbr77rvN+QI2QwAEAMBCzPwp\\\n", - "uKKiIhUVFUV8bevWrS3WcnJy9Oqrr3ZxVYiEETAAAIDN9JoO4Ntvv63a2lo1NjaGrX/zm980qSIA\\\n", - "AHoeExuA6EV6fAA8ePCg5syZo127dsnhcCgYDEqSHJ/2uI0+Mfz06dOqqanRoEGDlJ6eHvbamTNn\\\n", - "9Jvf/EYFBQXnPEakh2KebTqrPrE9/jQCAOyCBAgDevwIeNGiRfrqV7+qo0ePql+/ftqzZ4/+9Kc/\\\n", - "KSsrK+L1BJG88847mjBhgi699FJdcMEFmj59uo4cORJ6/eTJk6G7lM4l0kMxX6vY0tGvBgBA1EXr\\\n", - "MTCwth4fAKuqqrR8+XIlJSXJ6XTK6XTqkksukcfj0fe//31Dx7j77rs1ceJEHT16VPv379f555+v\\\n", - "qVOnqra2tl21FBcX6+TJk2Fbdv4VHflaAAAApunxs8vm5madf/75kj550vjf//53jRs3TqNGjdL+\\\n", - "/fsNHWP79u166aWXlJSUpKSkJP3v//6vFixYoGnTpumVV17ReeedZ+g4kX4DkfEvAKAnMfMuYPQe\\\n", - "Pb4DOHHiRL355puSpOzsbD300EP685//rOXLl2v06NGGjnH69Gn16fN5UHM4HHrsscc0e/ZsTZ8+\\\n", - "Xe+8806X1A4AQLdjBgwDenz7atmyZWpoaJAkLV++XFdffbWmTZumwYMHq6KiwtAxxo8frzfeeEMT\\\n", - "JkwIW3/00UclcScxAACwlx4fAPPy8kL/e+zYsdq3b58+/PBDDRw4MHQncFvmzJmj//7v/9bNN9/c\\\n", - "4rVHH31UgUBA5eXlUasZAACz0LyDET1+BBzJoEGDDIc/6ZObNzZt2tTq62vWrAn7MWoAAHorhyM6\\\n", - "G6ytVwZAAAAAdFyPHwEDAID2oH2HthEAAQCwEMa3MIIRMAAAgM3QAQQAwEroAMIAAiAAABZC/oMR\\\n", - "BEAAACyEawBhBNcAAgAA2AwBEAAAwGYYAQMAYCGMgGEEHUAAAACboQMIAICF0ACEEQRAAACshAQI\\\n", - "AxgBAwAA2AwdQAAALISbQGAEARAAAAsh/8EIAiAAAFZCAoQBXAMIAABgM3QAAQCwEBqAMIIACACA\\\n", - "hXATCIxgBAwAAGAzdAABALASWoAwgAAIAICFEP9gBCNgAAAQFatXr1ZaWpri4+OVnZ2t6urqVvdd\\\n", - "v369HA5H2BYfH9+N1dobARAAACtxRGlrp4qKCrndbpWWlmrHjh2aPHmy8vLydPTo0Vbfk5CQoCNH\\\n", - "joS2w4cPt/+D0SEEQAAALMSk/KeVK1dq/vz5KiwsVHp6usrLy9WvXz+tW7eu9VodDqWkpIS25OTk\\\n", - "DnwyOoIACAAAOqWxsVE1NTXKzc0NrTmdTuXm5qqqqqrV93388ccaNWqURo4cqWuuuUZ79uzpjnIh\\\n", - "AiAAAJbicERn8/v9OnXqVNjm9/sjfmZ9fb2am5tbdPCSk5Pl8/kivmfcuHFat26d/vCHP+iZZ55R\\\n", - "IBDQxRdfrPfffz/q5wQtEQABALCSKM2APR6PEhMTwzaPxxO1MnNyclRQUKCMjAxNnz5dGzdu1JAh\\\n", - "Q/SLX/wiap+B1vEYGAAALCRaj4EpLi6W2+0OW3O5XBH3TUpKUkxMjOrq6sLW6+rqlJKSYujzYmNj\\\n", - "deGFF+rAgQMdKxjtQgCEaQJBsyvo3YZeNdjsEnqt2FielNZRnDn7cLlcrQa+L4uLi1NmZqa8Xq+u\\\n", - "vfZaSVIgEJDX61VRUZGhYzQ3N2vXrl266qqrOloy2oEACACAhZj1QyBut1vz5s1TVlaWpkyZorKy\\\n", - "MjU0NKiwsFCSVFBQoNTU1NAYefny5frXf/1XjR07VidOnNDDDz+sw4cP69ZbbzXnC9gMARAAAHRa\\\n", - "fn6+jh07ppKSEvl8PmVkZKiysjJ0Y0htba2czs9vPfjHP/6h+fPny+fzaeDAgcrMzNT27duVnp5u\\\n", - "1lewFUcwGGQQ1wlLXlxldgm91l8O8levM5oaOX8dxQi448amcu46o3zOoi7/jJlryqJynD8u+EFU\\\n", - "joOeiQ4gAAAWYtYIGL0LARAAAAshAMIIngMIAABgMwRAAAAAm2EEDACAhTAChhF0AAEAAGyGDiAA\\\n", - "ABZCAxBGEAABALASEiAMIAACAGAhXAMII7gGEAAAwGboAAIAYCE0AGEEARAAACthBgwDGAEDAADY\\\n", - "DB1AAAAshP4fjCAAAgBgIUyAYQQjYAAAAJuhAwgAgIXQAYQRdAABAABshgAIAABgM4yAAQCwEEbA\\\n", - "MIIACACAhZD/YAQBEAAAKyEBwgCuAQQAALAZOoAAAFgIDUAYQQAEAMBCuAkERjACBgAAsBk6gAAA\\\n", - "WAgdQBhBBxAAAMBmCIAAAAA2wwgYAAALYQQMIwiAAABYCPkPRjACBgAAsBnbdAD37t2rV199VTk5\\\n", - "ORo/frz27dunVatWye/366abbtLll1/e5jH8fr/8fn/Y2tmms+oTa5vTCADo4RgBwwhbdAArKyuV\\\n", - "kZGhu+66SxdeeKEqKyt16aWX6sCBAzp8+LBmzpypl19+uc3jeDweJSYmhm2vVWzphm8AAIAxDkd0\\\n", - "to5YvXq10tLSFB8fr+zsbFVXVxt634YNG+RwOHTttdd27IPRbrYIgMuXL9eSJUt0/Phx/fKXv9QN\\\n", - "N9yg+fPna8uWLfJ6vVqyZIkefPDBNo9TXFyskydPhm3Z+Vd0wzcAAKBnq6iokNvtVmlpqXbs2KHJ\\\n", - "kycrLy9PR48ePef7Dh06pLvuukvTpk3rpkoh2SQA7tmzR9/97nclSd/5znf00Ucf6dvf/nbo9Rtv\\\n", - "vFFvvfVWm8dxuVxKSEgI2xj/AgAgrVy5UvPnz1dhYaHS09NVXl6ufv36ad26da2+p7m5WTfeeKPu\\\n", - "v/9+jR49uhurhS0CoCQ5Pu1nO51OxcfHKzExMfTa+eefr5MnT5pVGgAAUWPGCLixsVE1NTXKzc0N\\\n", - "rTmdTuXm5qqqqqrV9y1fvlxDhw7V9773vY5+XXSQLdpXaWlpevfddzVmzBhJUlVVlb7yla+EXq+t\\\n", - "rdWwYcPMKg8AgKiJ1j0gkW58dLlccrlcLfatr69Xc3OzkpOTw9aTk5O1b9++iMfftm2bnnzySe3c\\\n", - "uTNKFaM9bNEBvOOOO9Tc3Bz688SJE9Wnz+fZ98UXXzR0FzAAAHYR6cZHj8cTlWN/9NFHuvnmm7V2\\\n", - "7VolJSVF5ZhoH1t0AG+//fZzvr5ixYpuqgQAgK4VrcfAFBcXy+12h61F6v5JUlJSkmJiYlRXVxe2\\\n", - "XldXp5SUlBb7v/feezp06JBmz54dWgsEApKkPn36aP/+/aGpHbqGLQIgAAB2Ea0RcGvj3kji4uKU\\\n", - "mZkpr9cbepRLIBCQ1+tVUVFRi/3Hjx+vXbt2ha0tW7ZMH330kVatWqWRI0d2un6cGwEQAAB0mtvt\\\n", - "1rx585SVlaUpU6aorKxMDQ0NKiwslCQVFBQoNTVVHo9H8fHxmjhxYtj7BwwYIEkt1tE1CIAAAFiJ\\\n", - "Sb8Ekp+fr2PHjqmkpEQ+n08ZGRmqrKwM3RhSW1srp9MWtx70CgRAAAAsxMyfgisqKoo48pWkrVu3\\\n", - "nvO969evj35BaBVRHAAAwGboAAIAYCEmNgDRixAAAQCwEDNHwOg9CIAAAFgI+Q9GcA0gAACAzdAB\\\n", - "BADAQhgBwwgCIAAAFkL+gxGMgAEAAGyGDiAAABbCCBhGEAABALASAiAMYAQMAABgM3QAAQCwEBqA\\\n", - "MIIACACAhXANIIxgBAwAAGAzdAABALAQGoAwggAIAICFMAKGEQRAAAAshPwHI7gGEAAAwGboAAIA\\\n", - "YCGMgGEEARAAAAshAMIIRsAAAAA2QwcQAAALoQEIIwiAAABYCCNgGMEIGAAAwGboAAIAYCE0AGEE\\\n", - "ARAAAAthBAwjCIAwzZjh/L9UZ8TGcP46qvGs2RX0Xn1izK4AQDQQAAEAsBD+0xBGEAABALAQRsAw\\\n", - "ggAIAICFkP9gBI+BAQAAsBk6gAAAWAgjYBhBAAQAwELIfzCCETAAAIiK1atXKy0tTfHx8crOzlZ1\\\n", - "dXWr+27cuFFZWVkaMGCAzjvvPGVkZOjpp5/uxmrtjQAIAICFOBzR2dqroqJCbrdbpaWl2rFjhyZP\\\n", - "nqy8vDwdPXo04v6DBg3SPffco6qqKr311lsqLCxUYWGhNm/e3MkzACMIgAAAWIhZAXDlypWaP3++\\\n", - "CgsLlZ6ervLycvXr10/r1q2LuP+MGTM0Z84cTZgwQWPGjNGiRYs0adIkbdu2rZNnAEYQAAEAQAt+\\\n", - "v1+nTp0K2/x+f8R9GxsbVVNTo9zc3NCa0+lUbm6uqqqq2vysYDAor9er/fv369JLL43ad0DrCIAA\\\n", - "AFiII0qbx+NRYmJi2ObxeCJ+Zn19vZqbm5WcnBy2npycLJ/P12qtJ0+eVP/+/RUXF6dZs2bp5z//\\\n", - "ua644opOfHsYxV3AAABYiCNKz4EpLi6W2+0OW3O5XFE59mfOP/987dy5Ux9//LG8Xq/cbrdGjx6t\\\n", - "GTNmRPVz0BIBEAAAtOByuQwHvqSkJMXExKiuri5sva6uTikpKa2+z+l0auzYsZKkjIwM7d27Vx6P\\\n", - "hwDYDRgBAwBgIdEaAbdHXFycMjMz5fV6Q2uBQEBer1c5OTmGjxMIBFq9zhDRRQcQAAALMeuXQNxu\\\n", - "t+bNm6esrCxNmTJFZWVlamhoUGFhoSSpoKBAqampoesIPR6PsrKyNGbMGPn9fm3atElPP/20Hnvs\\\n", - "MXO+gM0QAAEAsBCzfgkkPz9fx44dU0lJiXw+nzIyMlRZWRm6MaS2tlZO5+eDx4aGBi1YsEDvv/++\\\n", - "+vbtq/Hjx+uZZ55Rfn6+Sd/AXhzBYDBodhG92ZIXV5ldQq916ozZFfRusTFmV9B7NZ41u4LeK462\\\n", - "Qac8+s1FXf4ZP978SFSOsyLv+1E5Dnom/lEGAMBCnPwYMAwgAAIAYCHkPxjBXcAAAAA2QwcQAAAL\\\n", - "MesuYPQuBEAAACyE/AcjGAEDAADYDB1AAAAshBEwjCAAAgBgIeQ/GMEIGAAAwGboAAIAYCGMgGEE\\\n", - "ARAAAAsh/8EIAiAAABbCT8HBCK4BBAAAsBk6gAAAWAgNQBhBAAQAwEK4CQRGMAIGAACwGVt3AIPB\\\n", - "oBz8pxIAwEL4txqMsHUH0OVyae/evWaXAQBA1Dgc0dlgbbboALrd7ojrzc3NevDBBzV48GBJ0sqV\\\n", - "K895HL/fL7/fH7Z2tums+sTa4jQCAACLsEVyKSsr0+TJkzVgwICw9WAwqL179+q8884zNAr2eDy6\\\n", - "//77w9ZybsjT1JuujGa5AAB0GM07GGGLALhixQo9/vjj+ulPf6rLL788tB4bG6v169crPT3d0HGK\\\n", - "i4tbdBNLt66Naq0AAHQG41sYYYtrAJcuXaqKigrdcccduuuuu9TU1NSh47hcLiUkJIRtjH8BAEBv\\\n", - "Y4sAKEkXXXSRampqdOzYMWVlZWn37t3cAQwAsBxuAoERtmpf9e/fX0899ZQ2bNig3NxcNTc3m10S\\\n", - "AABRZZvODjrFVgHwM3PnztUll1yimpoajRo1yuxyAACIGrp3MMKWAVCSRowYoREjRphdBgAAQLez\\\n", - "bQAEAMCKaADCCAIgAAAWwggYRnCtKAAAgM3QAQQAwEJoAMIIAiAAABbCCBhGMAIGAACwGTqAAABY\\\n", - "CA1AGEEHEAAACzHzp+BWr16ttLQ0xcfHKzs7W9XV1a3uu3btWk2bNk0DBw7UwIEDlZube879EV0E\\\n", - "QAAA0GkVFRVyu90qLS3Vjh07NHnyZOXl5eno0aMR99+6dauuv/56vfLKK6qqqtLIkSM1c+ZMffDB\\\n", - "B91cuT0RAAEAsBBHlLb2WrlypebPn6/CwkKlp6ervLxc/fr107p16yLu/+tf/1oLFixQRkaGxo8f\\\n", - "ryeeeEKBQEBer7cDn4724hpAAAAsJFp3Afv9fvn9/rA1l8sll8vVYt/GxkbV1NSouLg4tOZ0OpWb\\\n", - "m6uqqipDn/fPf/5TTU1NGjRoUOcKhyF0AAEAsBBnlDaPx6PExMSwzePxRPzM+vp6NTc3Kzk5OWw9\\\n", - "OTlZPp/PUN133323hg8frtzc3HZ+Y3QEHUAAANBCcXGx3G532Fqk7l80PPjgg9qwYYO2bt2q+Pj4\\\n", - "LvkMhCMAAgBgIdEaAbc27o0kKSlJMTExqqurC1uvq6tTSkrKOd/7X//1X3rwwQf10ksvadKkSR2u\\\n", - "F+3DCBgAAAsx4yaQuLg4ZWZmht3A8dkNHTk5Oa2+76GHHtJPfvITVVZWKisrq52fis6gAwgAADrN\\\n", - "7XZr3rx5ysrK0pQpU1RWVqaGhgYVFhZKkgoKCpSamhq6jvA///M/VVJSomeffVZpaWmhawX79++v\\\n", - "/v37m/Y97IIACACAhZj1W8D5+fk6duyYSkpK5PP5lJGRocrKytCNIbW1tXI6Px88PvbYY2psbNS3\\\n", - "v/3tsOOUlpbqvvvu687SbYkACACAhZj5U3BFRUUqKiqK+NrWrVvD/nzo0KGuLwit4hpAAAAAm6ED\\\n", - "CACAhZg1AkbvQgAEAMBCCIAwghEwAACAzdABBADAQmgAwggCIAAAFsIIGEYQAAEAsBCu7YIR/D0B\\\n", - "AACwGTqAAABYCCNgGEEABADAQhwKml0CegFGwAAAADZDBxAAAAthBAwjHMFgkF6xRfn9fnk8HhUX\\\n", - "F8vlcpldTq/Cues4zl3ncP46jnMHGEcAtLBTp04pMTFRJ0+eVEJCgtnl9Cqcu47j3HUO56/jOHeA\\\n", - "cVwDCAAAYDMEQAAAAJshAAIAANgMAdDCXC6XSktLuRi6Azh3Hce56xzOX8dx7gDjuAkEAADAZugA\\\n", - "AgAA2AwBEAAAwGYIgAAAADZDAAQAALAZAqCN1NbWatasWerXr5+GDh2qJUuW6OzZs2aX1Wt8//vf\\\n", - "V2ZmplwulzIyMswup9d48803df3112vkyJHq27evJkyYoFWrVpldVq9x/Phx/fu//7uGDx8ul8ul\\\n", - "kSNHqqioSKdOnTK7tF7l+PHjGjFihBwOh06cOGF2OYDp+phdALpHc3OzZs2apZSUFG3fvl1HjhxR\\\n", - "QUGBYmNjtWLFCrPL6zVuueUWvfbaa3rrrbfMLqXXqKmp0dChQ/XMM89o5MiR2r59u2677TbFxMSo\\\n", - "qKjI7PJ6PKfTqWuuuUb/8R//oSFDhujAgQNauHChPvzwQz377LNml9drfO9739OkSZP0wQcfmF0K\\\n", - "0DME0Su9+OKLwalTpwYTExODgwYNCs6aNSt44MCBVvfftGlT0Ol0Bn0+X2jtscceCyYkJAT9fn93\\\n", - "lNyjtPf8fVFpaWlw8uTJXVtgD9aZc/eZBQsWBC+77LIuqrBni8b5W7VqVXDEiBFdVGHP1dFzt2bN\\\n", - "muD06dODXq83KCn4j3/8o+uLBXo4RsC9VENDg9xut9544w15vV45nU7NmTNHgUAg4v5VVVW64IIL\\\n", - "lJycHFrLy8vTqVOntGfPnu4qu8do7/nD56Jx7k6ePKlBgwZ1YZU9V2fP39///ndt3LhR06dP7+JK\\\n", - "e56OnLu3335by5cv169+9Ss5nfwrDwgxO4EiOo4dOxaUFNy1a1fE1+fPnx+cOXNm2FpDQ0NQUnDT\\\n", - "pk3dUWKP1tb5+yK7dwC/rD3nLhgMBv/85z8H+/TpE9y8eXMXV9Y7GD1/c+fODfbt2zcoKTh79uzg\\\n", - "6dOnu6nCnqutc3fmzJngpEmTgk8//XQwGAwGX3nlFTqAwKf4z6Fe6t1339X111+v0aNHKyEhQWlp\\\n", - "aZI+udHjyiuvVP/+/dW/f3/9y7/8i7mF9lCcv47rzLnbvXu3rrnmGpWWlmrmzJndXHnP0NHz97Of\\\n", - "/Uw7duzQH/7wB7333ntyu90mVG+u9p674uJiTZgwQTfddJOJVQM9EzeB9FKzZ8/WqFGjtHbtWg0f\\\n", - "PlyBQEATJ05UY2OjnnjiCZ0+fVqSFBsbK0lKSUlRdXV12DHq6upCr9lNe88fPtfRc/f222/r3/7t\\\n", - "33Tbbbdp2bJlZpTeI3T0/KWkpCglJUXjx4/XoEGDNG3aNN17770aNmyYGV/DFO09dy+//LJ27dql\\\n", - "5557TpIU/PSXT5OSknTPPffo/vvvN+eLAD0AAbAXOn78uPbv36+1a9dq2rRpkqRt27aFXk9NTW3x\\\n", - "npycHD3wwAM6evSohg4dKknasmWLEhISlJ6e3j2F9xAdOX/4REfP3Z49e3T55Zdr3rx5euCBB7ql\\\n", - "1p4oWn/3Prvmze/3R7/IHqoj5+63v/1tKBRK0uuvv65bbrlF//d//6cxY8Z0fdFAD0YA7IUGDhyo\\\n", - "wYMH6/HHH9ewYcNUW1urpUuXnvM9M2fOVHp6um6++WY99NBD8vl8WrZsmRYuXCiXy9VNlfcMHTl/\\\n", - "knTgwAF9/PHH8vl8On36tHbu3ClJSk9PV1xcXBdX3TN05Nzt3r1bl19+ufLy8uR2u+Xz+SRJMTEx\\\n", - "GjJkSHeU3WN05Pxt2rRJdXV1uuiii9S/f3/t2bNHS5Ys0dSpU0MjUDvoyLn7csirr6+XJE2YMEED\\\n", - "BgzoqlKB3sHsixDRMVu2bAlOmDAh6HK5gpMmTQpu3bo1KCn4u9/9rtX3HDp0KHjllVcG+/btG0xK\\\n", - "Sgr+8Ic/DDY1NXVf0T1IR87f9OnTg5JabH/961+7re6eoL3nrrS0NOJ5GzVqVLfW3VO09/y9/PLL\\\n", - "wZycnGBiYmIwPj4++LWvfS1499132/JGho78c/tF3AQCfM4RDH56UQQAAABsgbuAAQAAbIYACAAA\\\n", - "YDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQABR\\\n", - "U1lZqUsuuUQDBgzQ4MGDdfXVV+u9994zuywAwJcQAAFETUNDg9xut9544w15vV45nU7NmTNHgUDA\\\n", - "7NIAAF/gCAaDQbOLAGBN9fX1GjJkiHbt2qWJEyeaXQ4A4FN0AAFEzbvvvqvrr79eo0ePVkJCgtLS\\\n", - "0iRJtbW15hYGAAjTx+wCAFjH7NmzNWrUKK1du1bDhw9XIBDQxIkT1djYaHZpAIAvIAACiIrjx49r\\\n", - "//79Wrt2raZNmyZJ2rZtm8lVAQAiIQACiIqBAwdq8ODBevzxxzVs2DDV1tZq6dKlZpcFAIiAawAB\\\n", - "RIXT6dSGDRtUU1OjiRMnavHixXr44YfNLgsAEAF3AQMAANgMHUAAAACbIQACAADYDAEQAADAZgiA\\\n", - "AAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANvP/\\\n", - "I6gKBmr9SJIAAAAASUVORK5CYII=\\\n", + "AAAPYQGoP6dpAAAiDUlEQVR4nO3df5CddX0v8PcmwBElu8tCEykK/UEhtV5YI1LYZTE1dd0qXOiN\\\n", + "VhTDUKqNzJUrRTuZvZ0qtNbVSUcTbzua3hEFRkbrKkVQ2bJg6LKLA5lpVgiOg462NFzDlF13UwqH\\\n", + "BPb+wXWvhw3Zh+RklzzP68V8Z3Ke73nO+T5nwvDm83l+tMzMzMwEAIDKWLLYCwAAYGEJgAAAFSMA\\\n", + "AgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUI\\\n", + "gAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAx\\\n", + "AiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBU\\\n", + "jAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAwxzXXXJOnnnpq9vVHPvKRfOlLX1rEFc31k5/8\\\n", + "JKtXr05bW1s6OzsXezkAh5WWmZmZmcVeBPDS0tLSksnJybS3ty/2Ul7QxMREHnrooUxNTeXP/uzP\\\n", + "sn379sVeEsBhQwUQSuySSy7JmWeemdNPPz1ve9vb8tOf/nTefd7//vcnSXp6etLZ2ZnHHnssl112\\\n", + "WTZt2pTkuergH/zBH+SCCy7IqaeemvPPPz8PPvhg3vKWt+TUU0/Nu971rjz77LNJkt27d+d973tf\\\n", + "zjrrrJx++un54z/+4zz99NNNObaOjo6ce+65ecUrXtGUzwOoEgEQSmzTpk3Ztm1bvve976WnpyfX\\\n", + "XHPN7Nxb3/rWbNu2bc4+n/vc55IkIyMj2b59e5YvXz7nPdu2bcsNN9yQH/zgB9m9e3fe+973ZnBw\\\n", + "MA899FC+//3v59vf/naS5EMf+lB6enpy3333ZXx8PM8++2w2b9485/N2796dzs7OfY63vOUtTfo1\\\n", + "APi5IxZ7AcChc9NNN+XGG2/MU089laeeeirHH3/87Ny3vvWtA/7c3t7eHHvssUmSVatWpVarZdmy\\\n", + "ZUmS173udXn44YeTJP/wD/+Qe++9N5/61KeSJE8++WSWLl065/OWLVumhQuwgARAKKl77rknn/nM\\\n", + "Z3Lvvfdm+fLl+cY3vpGPfOQjTfnsl73sZbN/Xrp06ZzXe/fuTZLMzMzka1/7Wk499dT9ft7u3bvT\\\n", + "09Ozz7kVK1ZkaGioCasG4OcEQCipycnJLFu2LMcdd1yefvrpbNmypfC+y5Yty9TU1EFfBHLRRRfl\\\n", + "k5/8ZLZs2ZIjjjgik5OTefzxx3PKKafM+T4VQICF4xxAKKm+vr6cdtppOe2002Yv6PhFL3QOYPLc\\\n", + "uXtvfvObZy8COVCf/vSnc/TRR6ezszOnn3561qxZk5/85CcH/Hm/6D//8z/zqle9Ku94xzvy0EMP\\\n", + "5VWvelX6+/ub8tkAZec2MAAAFaMCCABQMQIgAEDFCIAAABUjAAIAVIwACAAclKmpqZx11lk55phj\\\n", + "8uCDDzbMPfPMM7n88svT09OTq666anEWyBwCIABwUF7+8pfnm9/8Zt7+9rfPmbvtttvyy7/8yxkZ\\\n", + "GckTTzyRe++9dxFWyPMJgADAQTnyyCPzS7/0S/ucGxsbS29vb5Ln7k86Ojq6kEvjBXgSCAAwR71e\\\n", + "T71eb9hWq9VSq9Ve1OdMTk6mtbU1SdLW1paJiYmmrZEDJwAepKtu27zYSwDgMLHp/A8e8u/4L6s+\\\n", + "1JTPWftfl+Xaa69t2PbRj34011xzzYv6nPb29kxPTyd57lzBjo6OpqyPg6MFDADM0d/fn6mpqYZx\\\n", + "II9b7OrqyvDwcJJkaGgo3d3dzV4qB0AABIAyaWnOqNVqaW1tbRj7a/++9a1vzT/+4z/mfe97X774\\\n", + "xS9m/fr1SZLzzz8///qv/5qenp687GUvyznnnHOIDpwXQwsYADho3/rWtxpeX3bZZUmSI444Il/8\\\n", + "4hcXfkHslwAIAGXS0rLYK+AwIAACQJnIfxTgHEAAgIpRAQSAMlEBpAABEABKRQJkflrAAAAVowII\\\n", + "ACUyowBIAQIgAJSJAEgBWsAAABWjAggAZeJG0BSgAggAUDEqgABQJgqAFKACCABQMSqAAFAmzgGk\\\n", + "AAEQAMpE/qMALWAAgIpRAQSAEplZ7AVwWBAAAaBMnANIAVrAAAAVowIIAGWiAEgBAiAAlIoEyPy0\\\n", + "gAEAKkYFEADKRAGQAgRAACgTAZACBEAAKJEZt4GhAOcAAgBUjAAIAFAxWsAAUCZawBSgAggAUDEq\\\n", + "gABQJgqAFCAAAkCJzCz2AjgsVDIAPvPMMxkcHMzo6GgmJibS0dGR7u7urF27NkccUcmfBACokEqm\\\n", + "ncsvvzynnXZaLrvssrS1tWVqaipDQ0P5wz/8w9x4440vuF+9Xk+9Xm/YtnfP3hxxZCV/RgBeilwE\\\n", + "QgGVTC4//vGPc/311zdsW7VqVc4777z97jcwMJBrr722Ydtvv+stOfvdv9f0NQLAAZH/KKCSAbCr\\\n", + "qyuXXnppent709ramunp6QwPD+fss8/e7379/f25+uqrG7b9zzv/96FcKgBA01UyAH7iE5/I9773\\\n", + "vYyNjeWRRx5Je3t7/uRP/iRnnHHGfver1Wqp1WoN27R/AXhJWYQW8IYNGzI2NpZf+ZVfyXXXXZcj\\\n", + "jzwySTI9PZ33vOc92b17d84888xs3LhxwdfGvlX2PoCnn3563v/+96e/vz9XXHHFvOEPAA4HM00a\\\n", + "RY2Pj2fnzp0ZGRnJypUrMzg4ODv3d3/3d7nwwgvzne98J0888UTuu+++gz4+mqOyARAASqmlOaNe\\\n", + "r2d6erphPP9CyCQZGxtLb29vkqSvry+jo6Ozcz/60Y/S2dmZ5Llz7f/pn/7pUBwxB0AABADmGBgY\\\n", + "SFtbW8MYGBiY877Jycm0trYmSdra2jIxMTE795rXvCZ33XVXkmR4eDiTk5MLs3jmJQACQJm0tDRl\\\n", + "9Pf3Z2pqqmH09/fP+br29vZMT08nSaamptLR0TE79973vjff//7387u/+7s55phj8spXvnLBfgb2\\\n", + "TwAEAOao1WppbW1tGM+/EDJ57s4aw8PDSZKhoaF0d3fPzh199NG57rrrZufPP//8hVk88xIAAYAD\\\n", + "1tnZmRUrVqSnpyc7duzI2rVrs379+iTJ9u3bs3r16rzpTW9Kd3d3fvVXf3WRV8vPuYcJAJTIzCLc\\\n", + "Bub5t3fZsmVLkufC4datWxd8PcxPAASAMvEkEArQAgYAqBgBEACgYrSAAaBEFuMcQA4/KoAAABWj\\\n", + "AggAZaIASAECIACUiQBIAQIgAJSKBMj8nAMIAFAxKoAAUCIzCoAUIAACQJkIgBSgBQwAUDEqgABQ\\\n", + "KkqAzE8ABIAScQ4gRWgBAwBUjAogAJSJCiAFCIAAUCoSIPPTAgYAqBgVQAAoEReBUIQACABlIgBS\\\n", + "gAAIAKUiATI/5wACAFSMCiAAlIkCIAUIgABQIi4CoQgtYACAilEBBIAyUQGkAAEQAEpFAmR+AuBB\\\n", + "evBfZhZ7CQAAL4oACAAl4iIQihAAAaBMBEAKcBUwAEDFCIAAABWjBQwAZdKiB8z8BEAAKBEXgVCE\\\n", + "FjAAQMUIgADAQdmwYUN6enqybt267NmzZ3b7k08+mQsuuCBvfOMbs2bNmuzatWsRV8kvEgABoExa\\\n", + "mjQKGh8fz86dOzMyMpKVK1dmcHBwdu7b3/52Xvva1+buu+/OZZddls9//vMHf3w0hQAIAMxRr9cz\\\n", + "PT3dMOr1+pz3jY2Npbe3N0nS19eX0dHR2blTTjklTzzxRJJkcnIyxx9//MIsnnkJgABQJi0tTRkD\\\n", + "AwNpa2trGAMDA3O+bnJyMq2trUmStra2TExMzM79xm/8Rh566KH81m/9Vj73uc/l3e9+94L9DOyf\\\n", + "AAgAJTLTpNHf35+pqamG0d/fP+f72tvbMz09nSSZmppKR0fH7Nz111+fc889Nzt27Mhf/MVf5C//\\\n", + "8i8P0VHzYgmAAMActVotra2tDaNWq815X1dXV4aHh5MkQ0ND6e7unp2bmZmZbfsef/zxmZqaWpjF\\\n", + "My8BEADKZIEvAuns7MyKFSvS09OTHTt2ZO3atVm/fn2S5N3vfnduu+22rF69On/+53+eq6++ujnH\\\n", + "yEFzI2gAKJNFuBH0xo0bG15v2bIlyXPnBN5+++0LvyDmpQIIAFAxAiAAQMVoAQNAmbR4GDDzEwAB\\\n", + "oERm5D8K0AIGAKgYARAAoGK0gAGgTLSAKUAFEACgYlQAAaBMVAApQAAEgFKRAJmfFjAAQMWoAAJA\\\n", + "mSgAUoAACABlIgBSgBYwAEDFqAACQInMLPYCOCwIgABQJlrAFKAFDABQMQIgAEDFaAEDQJm06AEz\\\n", + "PxXAX3DDDTfsd75er2d6erphPLtn7wKtDgAKaGnSoNQqGQAfeuihOWPHjh3ZsmXLfvcbGBhIW1tb\\\n", + "w/jJPw4v0KoBAJqjki3gs88+O29/+9szM9N4sfy//Mu/7He//v7+XH311Q3bLrru75q+PgCAQ6mS\\\n", + "AfA3f/M3s3Hjxhx33HEN29/2trftd79arZZardawbcmRlfwJAXip0r6lgEqmlzvuuCOveMUr5mz/\\\n", + "5je/uQirAQBYWJUMgK2trYu9BAA4NFQAKaCSF4EAAFSZAAgAUDGVbAEDQGlpAVOAAAgAJdLiSSAU\\\n", + "oAUMAFAxAiAAQMVoAQNAmegAU4AACABlIgBSgBYwAEDFCIAAABUjAAJAibS0NGe8GBs2bEhPT0/W\\\n", + "rVuXPXv2zG6/+eabs3r16qxevTonnXRSNm/e3OSj5UAJgADAARsfH8/OnTszMjKSlStXZnBwcHbu\\\n", + "93//97N169Zs3bo1v/7rv56LLrpo8RZKAwEQAJijXq9nenq6YdTr9TnvGxsbS29vb5Kkr68vo6Oj\\\n", + "c97z05/+NPV6PSeffPIhXzfFCIAAUCYtzRkDAwNpa2trGAMDA3O+bnJyMq2trUmStra2TExMzHnP\\\n", + "17/+9axdu7bZR8pBcBsYAGCO/v7+XH311Q3barXanPe1t7dneno6STI1NZWOjo457xkcHMwXvvCF\\\n", + "Q7NQDogKIACUSZMqgLVaLa2trQ1jXwGwq6srw8PDSZKhoaF0d3c3zO/atUv79yVIAASAEmlS/ius\\\n", + "s7MzK1asSE9PT3bs2JG1a9dm/fr1s/Pavy9NWsAAUCYv9h4uTbBx48aG11u2bJn98xVXXLHQy6EA\\\n", + "FUAAgIpRAQSAElmEAiCHIRVAAICKEQABACpGCxgAykQLmAIEQAAoEfmPIrSAAQAqRgUQAMpECZAC\\\n", + "BEAAKBG3gaEILWAAgIoRAAEAKkYLGABKRAuYIlQAAQAqRgAEAKgYLeCD9NOb/s9iLwGAw8V/P/Rf\\\n", + "oQVMEQIgAJSJAEgBWsAAABWjAggAJdKiBEgBAiAAlIn8RwFawAAAFaMCCAAlogBIEQIgAJSI28BQ\\\n", + "hBYwAEDFqAACQJmoAFKAAAgAJSL/UYQACABlIgFSgHMAAQAqRgUQAEpEAZAiBEAAKBG3gaEILWAA\\\n", + "gIpRAQSAMlEBpAABEABKRP6jCC1gAICKUQEEgBJxEQhFqAACAFSMAAgAHJQNGzakp6cn69aty549\\\n", + "exrmvvzlL+dNb3pTVq9enXvvvXeRVsjzCYAAUCItLc0ZRY2Pj2fnzp0ZGRnJypUrMzg4ODv36KOP\\\n", + "5pZbbsmdd96ZrVu35pxzzjkER8yBEAABoExamjPq9Xqmp6cbRr1en/N1Y2Nj6e3tTZL09fVldHR0\\\n", + "du72229PrVbLm9/85qxbty7/8R//caiOmhdJAASAEmlp0j8DAwNpa2trGAMDA3O+b3JyMq2trUmS\\\n", + "tra2TExMzM7t2rUr//7v/5477rgj55xzTv7mb/5mwX4H9k8ABADm6O/vz9TUVMPo7++f87729vZM\\\n", + "T08nSaamptLR0dEw9zu/8ztpaWnJmjVrsmPHjgVbP/snAAJAiTTrHMBarZbW1taGUavV5nxfV1dX\\\n", + "hoeHkyRDQ0Pp7u6enevu7s727duTJNu3b8+v/dqvLchvwPwEQADggHV2dmbFihXp6enJjh07snbt\\\n", + "2qxfvz5Jcvrpp+fVr351Vq9eneuuuy5XXnnlIq+Wn2uZmZmZWexFHM5e271hsZcAwGHiwdFPHvLv\\\n", + "6PyLTzXlc7Z/5OqmfA4vTZ4EAgAl4kkgFCEAAkCJyH8U4RxAAICKUQEEgDJRAqQAARAASsQ5gBSh\\\n", + "BQwAUDEqgABQIgqAFHHYB8CZmZncddddefTRR/PzWxpeeuml+93nmWeeyS233JIlS5bkggsuyNKl\\\n", + "S5MkX/3qV/OOd7zjBfer1+tzHoT97LN7s2TJYf8zAlAWEiAFHPYt4He+85259dZb87GPfSzbtm3L\\\n", + "7bffPu8+l156abZt25bt27fnvPPOyw9/+MMkyWc/+9n97revB2P/+799tynHAQDN0NKkQbkd9gFw\\\n", + "165d2bRpU0444YR85jOfyZNPPjnvPjt37szHP/7xXHPNNbnpppvyR3/0R/nOd74z7377ejD28a86\\\n", + "uxmHAQCwYA773uXSpUvz7LPP5thjj811112XH/3oR/Pu8/TTT6der6dWq+Xkk0/ObbfdlosvvjgP\\\n", + "PPDAfver1WpzHoSt/QvAS4mrgCnisK8AfvnLX86zzz6bz372s/nZz36WG2+8cd59Nm/enJ/97Gez\\\n", + "r5ctW5ZvfOMb+fSnP30IVwoAC0APmAIO+/LV8uXLkySvfOUrc/XVxR5c/YY3vGHOtqVLl+Y973lP\\\n", + "U9cGAPBSdNgHQADg/1O8owgBEABKxDmAFHHYnwMIAMCLowIIAKWiBMj8BEAAKBEtYIrQAgYAqBgV\\\n", + "QAAoExVAChAAAaBE5D+KEAABoEScA0gRzgEEAKgYARAAoGK0gAGgRLSAKUIFEACgYlQAAaBEFAAp\\\n", + "QgAEgDKRAClACxgAoGJUAAGgRFwEQhECIACUiPxHEQIgAJSJBEgBzgEEAKgYFUAAKBEFQIpQAQSA\\\n", + "Emlpac54MTZs2JCenp6sW7cue/bsmd2+devWvPrVr87q1auzZs2aJh8pB0MABAAO2Pj4eHbu3JmR\\\n", + "kZGsXLkyg4ODDfPvfOc7s3Xr1tx5552LtEL2RQAEgDJZ4BLg2NhYent7kyR9fX0ZHR1tmP/a176W\\\n", + "np6ebN68uamHycFxDiAAlEizzgGs1+up1+sN22q1Wmq1WsO2ycnJnHDCCUmStra2TExMzM6deeaZ\\\n", + "+cEPfpAkufDCC3Puuefm9a9/fZNWyMFQAQQA5hgYGEhbW1vDGBgYmPO+9vb2TE9PJ0mmpqbS0dEx\\\n", + "O3fMMcfkqKOOylFHHZULLrgg4+PjC7Z+9k8ABIAyaWnO6O/vz9TUVMPo7++f83VdXV0ZHh5OkgwN\\\n", + "DaW7u3t27ufBMEnuueeenHLKKU0/XA6MAAgAJdKk/JdarZbW1taG8fz2b5J0dnZmxYoV6enpyY4d\\\n", + "O7J27dqsX78+SfL3f//3Oeuss9LV1ZUTTzwx55133qE9eAprmZmZmVnsRRzOXtu9YbGXAMBh4sHR\\\n", + "Tx7y71jzvzY15XPuvPKqpnwOL00uAgGAEnmx9/CjmgRAACgTAZACBEAAKBH5jyIEwIO07KJXLvYS\\\n", + "AABeFAEQAErEOYAU4TYwAAAVIwACAFSMFjAAlIgWMEUIgABQIgIgRWgBAwBUjAAIAFAxWsAAUCJa\\\n", + "wBShAggAUDEqgABQIgqAFCEAAkCZSIAUIAACQIk4B5AinAMIAFAxKoAAUCIKgBQhAAJAmegBU4AW\\\n", + "MABAxagAAkCJqP9RhAAIACWiA0wRWsAAABWjAggAJaICSBEqgAAAFSMAAgBUjBYwAJSIFjBFCIAA\\\n", + "UCLyH0UIgABQJhIgBTgHEACgYlQAAaBEFAApQgAEgBJxEQhFaAEDAFSMCiAAlIgKIEWoAAIAVIwA\\\n", + "CAAclA0bNqSnpyfr1q3Lnj175sx/4hOfyJlnnrkIK+OFCIAAUCItLc0ZRY2Pj2fnzp0ZGRnJypUr\\\n", + "Mzg42DC/e/fuPPDAA00+Sg6WAAgAJdLSpFHU2NhYent7kyR9fX0ZHR1tmN+8eXM+8IEPHPgBcUgI\\\n", + "gADAHPV6PdPT0w2jXq/Ped/k5GRaW1uTJG1tbZmYmJidm5qaygMPPJBzzjlnwdZNMZUMgLt27crH\\\n", + "P/7x3HLLLXnkkUdyxRVX5MMf/nB27dq13/329S/Ds3v3LtCqAWB+zWoBDwwMpK2trWEMDAzM+b72\\\n", + "9vZMT08neS7wdXR0zM5t2rQpV1555YIdO8VVMgBecsklOfHEE/PII4+kt7c3a9asSW9vby6//PL9\\\n", + "7revfxl23jW8QKsGgPk1KwD29/dnamqqYfT398/5vq6urgwPP/ffwqGhoXR3d8/O/fCHP8zHPvax\\\n", + "9PX15eGHH85f/dVfLdjvwP61zMzMzCz2Ihba6tWrs3Xr1iTJ2Wefne9+97tJkjVr1uTOO+98wf3q\\\n", + "9fqc8veb/3ZLlhzhdooAzO/eP/2TQ/4dF39pc1M+58uXfLDwe//0T/803/3ud3PSSSflC1/4Qq68\\\n", + "8sps2bKl4T1nnnlmtm3b1pS1cfAqmVx+8RL1X/wLuneedm6tVkutVmvYJvwBUHUbN25seP388JdE\\\n", + "+HuJqWR6ufnmmzMzM5OWlpacccYZSZ4LhX/913+9yCsDgIPjSSAUUckAuHz58jnbjjzyyLzhDW9Y\\\n", + "hNUAQPPIfxRRyYtAAACqrJIVQAAoKy1gihAAAaBE5D+K0AIGAKgYFUAAKBMlQAoQAAGgRJwDSBFa\\\n", + "wAAAFaMCCAAlogBIEQIgAJSIFjBFCIAAUCLyH0U4BxAAoGJUAAGgRLSAKUIABIASkf8oQgsYAKBi\\\n", + "VAABoES0gClCAASAMhEAKUALGACgYlQAAaBEFAApQgAEgBJxDiBFaAEDAFSMCiAAlIgCIEUIgABQ\\\n", + "IlrAFCEAAkCJyH8U4RxAAICKUQEEgBLRAqYIARAASkQApAgtYACAilEBBIASUQCkCAEQAEpEC5gi\\\n", + "tIABACpGBRAASkQBkCIEQAAoES1gihAAD9Jrfk0XHQA4vEgvAFAiLU0aL8aGDRvS09OTdevWZc+e\\\n", + "PbPbx8fH09XVlTe+8Y254IIL8sQTTxzUsdE8AiAAlEhLS3NGUePj49m5c2dGRkaycuXKDA4Ozs69\\\n", + "5jWvydjYWO6+++68/vWvz80333wIjpgDIQACQIksdAVwbGwsvb29SZK+vr6Mjo7Ozh155JGzf37y\\\n", + "ySdz2mmnHeBR0WwCIAAwR71ez/T0dMOo1+tz3jc5OZnW1tYkSVtbWyYmJhrmb7/99rzuda/L1q1b\\\n", + "c8oppyzI2pmfAAgAJdKsFvDAwEDa2toaxsDAwJzva29vz/T0dJJkamoqHR0dDfN9fX3553/+56xd\\\n", + "uzZbtmxZkN+A+QmAAFAizWoB9/f3Z2pqqmH09/fP+b6urq4MDw8nSYaGhtLd3T0794sVw7a2trz8\\\n", + "5S9v9uFygNwGBgCYo1arpVarzfu+zs7OrFixIj09PTnppJPy4Q9/OOvXr8+WLVty++2351Of+lRa\\\n", + "Wlpy3HHH5YYbbliAlVOEAAgAJbIYN4LeuHFjw+uft3ovvPDCXHjhhQu/IOYlAAJAiXgSCEU4BxAA\\\n", + "oGJUAAGgRBQAKUIABIASadEDpgAtYACAilEBBIASUf+jCAEQAEpEB5giBEAAKBH5jyKcAwgAUDEq\\\n", + "gABQIkuUAClAAASAEpH/KEILGACgYlQAAaBEXAVMEQIgAJSI/EcRWsAAABWjAggAJaIFTBECIACU\\\n", + "iPxHEVrAAAAVowIIACWiBUwRAiAAlIj8RxECIACUiEfBUYRzAAEAKkYFEABKRAGQIgRAACgRF4FQ\\\n", + "hBYwAEDFqAACQIkoAFKEAAgAJaIFTBFawP/PVVddNe976vV6pqenG8Yze/Ye+sUBADRRJSuAy5cv\\\n", + "z0knnZQlS5ZkZmYmSfLwww9nbGws99133wvuNzAwkGuvvbZhW+c73pJV7/y9Q7peAChKAZAiKlkB\\\n", + "3Lx5c04++eR86EMfyv3335/7778/55xzzn7DX5L09/dnamqqYZzx3968QKsGgPm1tDRnUG6VDIDv\\\n", + "ete78tWvfjV79+7NRRddlJtuumm2Erg/tVotra2tDWPpkZUsogIAh7FKBsAkWbJkSS655JJ8/etf\\\n", + "z969e9PZ2bnYSwKAg6YCSBGVL18tWbIkl1566WIvAwCaorKVHV6UygdAACgT1TuK8D8KAAAVIwAC\\\n", + "QIm0NGm8GBs2bEhPT0/WrVuXPXv2zG6/9dZb89u//ds599xz88EPfvCgjovmEgABoEQW+iKQ8fHx\\\n", + "7Ny5MyMjI1m5cmUGBwdn584444yMjo7mnnvuyWOPPZZt27YdgiPmQAiAAMABGxsbS29vb5Kkr68v\\\n", + "o6Ojs3MnnXRSjjjiucsNjjrqqCxZIna8VLgIBABKpFnXgNTr9dTr9YZttVottVqtYdvk5GROOOGE\\\n", + "JElbW1smJibmfNb999+fxx57LKtWrWrS6jhYojgAlEizWsADAwNpa2trGAMDA3O+r729PdPT00mS\\\n", + "qampdHR0NMz/27/9W6666qpcf/31C3L8FCMAAgBz7Ovxp/39/XPe19XVleHh4STJ0NBQuru7Z+d2\\\n", + "796diy++OFu2bMny5csXbO3MTwAEgBJp1lXA+3r86fPbv0nS2dmZFStWpKenJzt27MjatWuzfv36\\\n", + "JMmmTZvy4x//OB/4wAeyevXq3H333Yf24CmsZabIQ3B5QX/0tc2LvQQADhOfX3vob4Xyt2Ofacrn\\\n", + "/Peu/9GUz+GlSQUQAKBiXAUMACXiSXAUIQACQIl4FjBFCIAAUCLO7aIIf08AACpGBRAASkQLmCIE\\\n", + "QAAoEfmPIrSAAQAqRgUQAEpEC5giBEAAKBH5jyK0gAEAKkYFEABKRAuYIgRAACgRAZAitIABACpG\\\n", + "BRAASkQBkCIEQAAoES1gihAAAaBEnNtFEf6eAABUjAogAJSIFjBFCIAAUCItmVnsJXAY0AIGAKgY\\\n", + "FUAAKBEtYIpomZmZUSsGmqZer2dgYCD9/f2p1WqLvRwA9kEABJpqeno6bW1tmZqaSmtr62IvB4B9\\\n", + "cA4gAEDFCIAAABUjAAIAVIwACDRVrVbLRz/6UReAALyEuQgEAKBiVAABACpGAAQAqBgBEACgYgRA\\\n", + "AICKEQABACrmiMVeAFAeu3btysUXX5y9e/dmxYoV+cpXvpKlS5cu9rIAeB4VQKBpjj322Nxxxx0Z\\\n", + "GRnJiSeemLvuumuxlwTAPqgAAk3z+OOP54orrsjk5GQeffTRrFq1arGXBMA+qAACTXPTTTfl/PPP\\\n", + "z913352+vr64zzzAS5MKINA0a9asybp163Lrrbfm6KOPXuzlAPACPAoOAKBitIABACpGAAQAqBgB\\\n", + "EACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICK8SQQoGl27dqViy++OHv37s2KFSvyla98JUuX\\\n", + "Ll3sZQHwPCqAQNMce+yxueOOOzIyMpITTzwxd91112IvCYB9UAEEmubxxx/PFVdckcnJyTz66KNZ\\\n", + "tWrVYi8JgH1QAQSa5qabbsr555+fu+++O319ffGocYCXJhVAoGnWrFmTdevW5dZbb83RRx+92MsB\\\n", + "4AW0zPhfdACAStECBgCoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACo\\\n", + "GAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEA\\\n", + "KkYABAComP8L17yhpoytbLcAAAAASUVORK5CYII=\\\n", "\"\n", " frames[2] = \"\\\n", "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", - "AAAPYQGoP6dpAAAwoklEQVR4nO3df3QU9b3/8dduIBsQE34ENhC4pEAL5CLEJpIbkR/aSFqRKqe1\\\n", - "4K/QWPEoRClbraRiovTKcu1tGqxgKkKxWkt6LW29RxqKq3wtEo2GiwICihTSUjYQLKApbCC73z9q\\\n", - "o2s2MNlsMsnM83HOnHP97Ozse+fQy4v3e2bWEQqFQgIAAIBtOM0uAAAAAJ2LAAgAAGAzBEAAAACb\\\n", - "IQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADY\\\n", - "DAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADA\\\n", - "ZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAA\\\n", - "NkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABNBu\\\n", - "hw4d0vz58zV69Gj16tVLAwYM0A033KCDBw+aXRoAIIIeZhcAoPt78803tW3bNs2ZM0dDhw7VwYMH\\\n", - "9cQTT2jatGl699131bt3b7NLBAB8hiMUCoXMLgJA93b69Gn16tUrbO31119XTk6OfvGLX+jWW281\\\n", - "qTIAQCSMgAG022fD39mzZ3X8+HGNGjVKffv21fbt202sDAAQCQEQQLudPn1axcXFGjZsmFwul5KT\\\n", - "kzVw4ECdOHFCJ0+eNLs8AMDncA0ggHa7++679fOf/1zf/e53lZOTo6SkJDkcDs2ZM0fBYNDs8gAA\\\n", - "n0MABNBuzz//vObOnasf//jHzWtnzpzRiRMnzCsKANAqRsAA2i0uLk6fv5/spz/9qZqamkyqCABw\\\n", - "PnQAAbTbtddeq2eeeUZJSUlKT09XVVWVXnrpJQ0YMMDs0gAAERAAAbTbihUrFBcXp1/+8pc6c+aM\\\n", - "Jk2apJdeekl5eXlmlwYAiIDnAAIAANgM1wACAADYDAEQAADAZgiAAAAANkMABAAA7fLqq69q5syZ\\\n", - "GjJkiBwOh373u99d8D1btmzRl7/8ZblcLo0aNUrr1q3r8DrxKQIgAABol4aGBk2YMEErV640tP+f\\\n", - "//xnzZgxQ1deeaV27Nih7373u7r99tu1adOmDq4U/8JdwAAAIGYcDod++9vf6vrrr291n/vvv18v\\\n", - "vviidu3a1bw2Z84cnThxQpWVlZ1QJegAAgCATlVVVaXc3Nywtby8PFVVVZlUkf3wIGgAANBCIBBQ\\\n", - "IBAIW3O5XHK5XO0+tt/vl9vtDltzu906deqUTp8+rV69erX7M3B+BMB2Kn31MbNL6LZOnzO7gu6N\\\n", - "8xe9c0GzK4BdLf/qPR3+GZd8+XsxOc43vn6xHn744bC1kpISPfTQQzE5PsxFAAQAAC0UFRXJ4/GE\\\n", - "rcWi+ydJKSkpqqurC1urq6tTYmIi3b9OQgAEAMBKHLE5TKzGvZHk5ORo48aNYWubN29WTk5Oh3we\\\n", - "WuImEAAA0C4ff/yxduzYoR07dkj652NeduzYodraWkn/7Cbm5+c373/nnXfqwIED+v73v6+9e/dq\\\n", - "1apV+vWvf61FixaZUb4t0QEEAMBKHDFqAbbBW2+9pSuvvLL5v/81Op47d67WrVunI0eONIdBSfrC\\\n", - "F76gF198UYsWLdKKFSs0dOhQPfXUU8rLy+v02u2KAAgAgJV0fv7TtGnTdL7HCkf6lY9p06bp//7v\\\n", - "/zqwKpwPI2AAAACboQMIAICVmNABRPdDAAQAwFJIgLgwRsAAAAA2QwcQAAALCdEAhAEEQAAArIQA\\\n", - "CAMYAQMAANgMHUAAAKzEhAdBo/uhAwgAAGAzdAABALASGoAwgA4gAACAzdABBADASrgGEAYQAAEA\\\n", - "sBLyHwxgBAwAAGAzdAABALCQkNkFoFsgAAIAYCVcAwgDGAEDAADYDB1AAACshAYgDCAAAgBgKSRA\\\n", - "XBgjYAAAAJuhAwgAgJXQAIQBBEAAAKyEAAgDCIAAAFhIiMfAwACuAQQAALAZAiAAAIDNMAIGAMBK\\\n", - "GAHDADqAAAAANkMHEAAAK6EBCANsEwDr6+u1du1aVVVVye/3S5JSUlJ0+eWX69vf/rYGDhxocoUA\\\n", - "ALRfyOwC0C3YYgT85ptv6ktf+pIee+wxJSUlacqUKZoyZYqSkpL02GOPacyYMXrrrbfMLhMAAKBT\\\n", - "2KIDePfdd+uGG25QeXm5HJ+7ODYUCunOO+/U3XffraqqqvMeJxAIKBAIhK2dazynHvG2OI0AgO6A\\\n", - "m0BggC06gG+//bYWLVrUIvxJksPh0KJFi7Rjx44LHsfr9SopKSls8/1ycwdUDABAlBwx2mBptgiA\\\n", - "KSkpqq6ubvX16upqud3uCx6nqKhIJ0+eDNu+cvPVsSwVAACgw9kiAN5777264447tHDhQr3wwgt6\\\n", - "44039MYbb+iFF17QwoULdeedd+r73//+BY/jcrmUmJgYtjH+BQB0KQ5HbLYorFy5UmlpaUpISFB2\\\n", - "dvZ5my9nz57V0qVLNXLkSCUkJGjChAmqrKyM9lujjWyRXhYsWKDk5GT95Cc/0apVq9TU1CRJiouL\\\n", - "U2ZmptatW6dvfetbJlcJAED7mXUXcEVFhTwej8rLy5Wdna2ysjLl5eVp3759GjRoUIv9lyxZomef\\\n", - "fVarV6/WmDFjtGnTJs2aNUvbtm3TpZdeasI3sBdHKBSy1R3jZ8+eVX19vSQpOTlZPXv2bNfxSl99\\\n", - "LBZl2dLpc2ZX0L1x/qJ3Lmh2BbCr5V+9p8M/Y0zegzE5zt5NP2zT/tnZ2brsssv0+OOPS5KCwaCG\\\n", - "DRumu+++W4sXL26x/5AhQ/TAAw9owYIFzWvf+MY31KtXLz377LPtKx4XZIsO4Gf17NlTgwcPNrsM\\\n", - "AAC6tEhPvnC5XHK5XC32bWxsVE1NjYqKiprXnE6ncnNzW33CRiAQUEJCQthar169tHXr1hhUjwux\\\n", - "xTWAAADYRoyuAYz05Auv1xvxI+vr69XU1NTihkq329384wufl5eXp9LSUr3//vsKBoPavHmzNmzY\\\n", - "oCNHjsT8lKAlAiAAAGgh0pMvPtvha68VK1boi1/8osaMGaP4+HgVFhaqoKBATifRpDNwlgEAQAuR\\\n", - "nnwRafwr/fOa+ri4ONXV1YWt19XVKSUlJeJ7Bg4cqN/97ndqaGjQoUOHtHfvXvXp00cjRoyI+XdB\\\n", - "SwRAAAAsJORwxGRri/j4eGVmZsrn8zWvBYNB+Xw+5eTknPe9CQkJSk1N1blz5/Sb3/xG1113XVTf\\\n", - "G21ju5tAAACwNJN+xcPj8Wju3LnKysrSxIkTVVZWpoaGBhUUFEiS8vPzlZqa2nwd4RtvvKHDhw8r\\\n", - "IyNDhw8f1kMPPaRgMGjoubxoPwIgAABot9mzZ+vYsWMqLi6W3+9XRkaGKisrm28Mqa2tDbu+78yZ\\\n", - "M1qyZIkOHDigPn366JprrtEzzzyjvn37mvQN7MV2zwGMNZ4DGD2eY9c+nL/o8RxAmKUzngM4+pqS\\\n", - "mBxn38aHY3IcdE10AAEAsJC2Xr8He+ImEAAAAJuhAwgAgJXQAIQBBEAAAKyEAAgDCIAAAFgKCRAX\\\n", - "xjWAAAAANkMHEAAACwnRAIQBBEAAAKyEAAgDGAEDAADYDB1AAAAshRYgLowACACAhXANIIxgBAwA\\\n", - "AGAzdAABALASOoAwgAAIAIClkABxYYyAAQAAbIYOIAAAFsJNIDCCAAgAgJUQAGEAARAAAEshAeLC\\\n", - "uAYQAADAZugAAgBgJTQAYQABEAAAC+EmEBjBCBgAAMBm6AACAGAldABhAAEQAABLIQHiwgiA7XT6\\\n", - "nNkVdF/VB0Nml9Ct9Ygzu4Luq+E0f/aiNdxNuACsgAAIAICFcBMIjCAAAgBgJQRAGMBdwAAAADZD\\\n", - "AAQAALAZRsAAAFiJgxkwLowACACAhXATCIxgBAwAAGAzBEAAAACbIQACAGAljhhtUVi5cqXS0tKU\\\n", - "kJCg7OxsVVdXn3f/srIyjR49Wr169dKwYcO0aNEinTlzJroPR5sQAAEAQLtVVFTI4/GopKRE27dv\\\n", - "14QJE5SXl6ejR49G3P+5557T4sWLVVJSoj179mjNmjWqqKjQD37wg06u3J4IgAAAWInDEZutjUpL\\\n", - "SzVv3jwVFBQoPT1d5eXl6t27t9auXRtx/23btmnSpEm66aablJaWpunTp+vGG2+8YNcQsUEABADA\\\n", - "QkIx2gKBgE6dOhW2BQKBiJ/Z2Niompoa5ebmNq85nU7l5uaqqqoq4nsuv/xy1dTUNAe+AwcOaOPG\\\n", - "jbrmmmvaewpgAAEQAAC04PV6lZSUFLZ5vd6I+9bX16upqUlutzts3e12y+/3R3zPTTfdpKVLl+qK\\\n", - "K65Qz549NXLkSE2bNo0RcCchAAIAYCUxugmkqKhIJ0+eDNuKiopiVuaWLVu0bNkyrVq1Stu3b9eG\\\n", - "DRv04osv6oc//GHMPgOt40HQAABYSYweBO1yueRyuQztm5ycrLi4ONXV1YWt19XVKSUlJeJ7Hnzw\\\n", - "Qd166626/fbbJUmXXHKJGhoadMcdd+iBBx6Q00mPqiNxdgEAQLvEx8crMzNTPp+veS0YDMrn8ykn\\\n", - "Jyfie/7xj3+0CHlxcXGSpFAo1HHFQhIdQAAAEAMej0dz585VVlaWJk6cqLKyMjU0NKigoECSlJ+f\\\n", - "r9TU1ObrCGfOnKnS0lJdeumlys7O1v79+/Xggw9q5syZzUEQHYcACACAlUTxCJdYmD17to4dO6bi\\\n", - "4mL5/X5lZGSosrKy+caQ2trasI7fkiVL5HA4tGTJEh0+fFgDBw7UzJkz9cgjj5hSv904QvRZ2+WR\\\n", - "lx8zu4Ruq/ogf/Taowf/QI5aw2n+7EVruNuccGEVP5u1sMM/49++vTwmx6ldtzgmx0HXxDWAAAAA\\\n", - "NkMABAAAsBmuAQQAwEqY0sMAOoAAAAA2QwcQAAAroQMIAwiAAABYCgkQF8YIGAAAwGboAAIAYCU0\\\n", - "AGEAARAAACshAMIARsAAAAA2QwcQAAAL4YcOYQQBEAAAK2EEDAMYAQMAANgMARAAAMBmGAEDAGAl\\\n", - "DmbAuDA6gJ/4y1/+ottuu+28+wQCAZ06dSpsO9d4rpMqBADAAEeMNlgaAfATH374oZ5++unz7uP1\\\n", - "epWUlBS2/b9fbe6kCgEAAGLDNiPgF1544byvHzhw4ILHKCoqksfjCVv7yban2lUXAABAZ7NNALz+\\\n", - "+uvlcDgUCrX+hCTHBa6bcLlccrlcYWs94m1zCgEA3QHjWxhgmxHw4MGDtWHDBgWDwYjb9u3bzS4R\\\n", - "AACgU9gmAGZmZqqmpqbV1y/UHQQAoFvgJhAYYJv55X333aeGhoZWXx81apReeeWVTqwIAADAHLYJ\\\n", - "gJMnTz7v6xdddJGmTp3aSdUAAACYxzYBEAAAW2B8CwMIgAAAWMiFnmgBSDa6CQQAAAD/RAAEAACw\\\n", - "GUbAAABYCRNgGEAABADASgiAMIARMAAAgM0QAAEAAGyGETAAABbCU2BgBB1AAAAAmyEAAgCAmFi5\\\n", - "cqXS0tKUkJCg7OxsVVdXt7rvtGnT5HA4WmwzZszoxIrtiwAIAICVOGK0tVFFRYU8Ho9KSkq0fft2\\\n", - "TZgwQXl5eTp69GjE/Tds2KAjR440b7t27VJcXJxuuOGGtn842owACAAA2q20tFTz5s1TQUGB0tPT\\\n", - "VV5ert69e2vt2rUR9+/fv79SUlKat82bN6t3794EwE5CAAQAwEpi1AEMBAI6depU2BYIBCJ+ZGNj\\\n", - "o2pqapSbm9u85nQ6lZubq6qqKkNlr1mzRnPmzNFFF10UzbdGGxEAAQCwkFhNgL1er5KSksI2r9cb\\\n", - "8TPr6+vV1NQkt9sdtu52u+X3+y9Yc3V1tXbt2qXbb789im+MaPAYGAAArCRGz4EpKiqSx+MJW3O5\\\n", - "XDE59uetWbNGl1xyiSZOnNghx0dLBEAAANCCy+UyHPiSk5MVFxenurq6sPW6ujqlpKSc970NDQ1a\\\n", - "v369li5dGnWtaDtGwAAAWIjDEZutLeLj45WZmSmfz9e8FgwG5fP5lJOTc973/s///I8CgYBuueWW\\\n", - "aL4uokQHEAAAtJvH49HcuXOVlZWliRMnqqysTA0NDSooKJAk5efnKzU1tcV1hGvWrNH111+vAQMG\\\n", - "mFG2bREAAQBAu82ePVvHjh1TcXGx/H6/MjIyVFlZ2XxjSG1trZzO8MHjvn37tHXrVv3xj380o2Rb\\\n", - "IwACAGAlJv4WcGFhoQoLCyO+tmXLlhZro0ePVigU6uCqEAkBEAAACzEx/6Eb4SYQAAAAm6EDCACA\\\n", - "ldAChAEEQAAALCRGz4GGxTECBgAAsBkCIAAAgM0wAgYAwEIYAcMIOoAAAAA2QwAEAACwGUbA7RRo\\\n", - "MruC7uvUR0GzS+jWDr900uwSuq9xF5tdQbeVOpC/Nro6RsAwgv8lAwBgJQRAGMAIGAAAwGboAAIA\\\n", - "YCEOWoAwgAAIAICVkP9gACNgAAAAm6EDCACAhdAAhBEEQAAALITHwMAIRsAAAAA2QwcQAAAroQMI\\\n", - "AwiAAABYCPkPRhAAAQCwEhIgDOAaQAAAAJuhAwgAgIXQAIQRBEAAACyEx8DACEbAAAAANkMHEAAA\\\n", - "K6EDCAMIgAAAWAj5D0YwAgYAALAZOoAAAFgIN4HACDqAAAAANkMABAAAsBlGwAAAWAgjYBhBBxAA\\\n", - "ACtxxGiLwsqVK5WWlqaEhARlZ2erurr6vPufOHFCCxYs0ODBg+VyufSlL31JGzdujO7D0SZ0AAEA\\\n", - "sBCHSQ+CqaiokMfjUXl5ubKzs1VWVqa8vDzt27dPgwYNarF/Y2Ojrr76ag0aNEjPP/+8UlNTdejQ\\\n", - "IfXt27fzi7chAiAAAGi30tJSzZs3TwUFBZKk8vJyvfjii1q7dq0WL17cYv+1a9fqww8/1LZt29Sz\\\n", - "Z09JUlpaWmeWbGuMgAEAsBCHIzZbWzQ2Nqqmpka5ubnNa06nU7m5uaqqqor4nhdeeEE5OTlasGCB\\\n", - "3G63xo0bp2XLlqmpqak9Xx8G0QEEAAAtBAIBBQKBsDWXyyWXy9Vi3/r6ejU1Ncntdoetu91u7d27\\\n", - "N+LxDxw4oJdfflk333yzNm7cqP3792v+/Pk6e/asSkpKYvdFEBEdQAAA0ILX61VSUlLY5vV6Y3b8\\\n", - "YDCoQYMG6cknn1RmZqZmz56tBx54QOXl5TH7DLSODiAAABYSq8fAFBUVyePxhK1F6v5JUnJysuLi\\\n", - "4lRXVxe2XldXp5SUlIjvGTx4sHr27Km4uLjmtbFjx8rv96uxsVHx8fHt/AY4HzqAAABYSKyeAuNy\\\n", - "uZSYmBi2tRYA4+PjlZmZKZ/P17wWDAbl8/mUk5MT8T2TJk3S/v37FQwGm9fee+89DR48mPDXCQiA\\\n", - "AACg3Twej1avXq2nn35ae/bs0V133aWGhobmu4Lz8/NVVFTUvP9dd92lDz/8UAsXLtR7772nF198\\\n", - "UcuWLdOCBQvM+gq2wggYAAArMemXQGbPnq1jx46puLhYfr9fGRkZqqysbL4xpLa2Vk7np32nYcOG\\\n", - "adOmTVq0aJHGjx+v1NRULVy4UPfff785X8BmCIAAAFiImT8FV1hYqMLCwoivbdmypcVaTk6OXn/9\\\n", - "9Q6uCpEwAgYAALCZbtMBfPfdd1VbW6vGxsaw9a9//esmVQQAQNdjYgMQ3UiXD4AHDhzQrFmztHPn\\\n", - "TjkcDoVCIUmS45Met9Enhp8+fVo1NTXq37+/0tPTw147c+aMfv3rXys/P/+8x4j0UMxzjefUI77L\\\n", - "n0YAgF2QAGFAlx8BL1y4UF/4whd09OhR9e7dW7t379arr76qrKysiNcTRPLee+9p7NixmjJlii65\\\n", - "5BJNnTpVR44caX795MmTzXcpnU+kh2K+tn5ztF8NAICYi9VjYGBtXT4AVlVVaenSpUpOTpbT6ZTT\\\n", - "6dQVV1whr9ere+65x9Ax7r//fo0bN05Hjx7Vvn37dPHFF2vSpEmqra1tUy1FRUU6efJk2DZpztXR\\\n", - "fC0AAADTdPnZZVNTky6++GJJ/3zS+N/+9jeNHj1aw4cP1759+wwdY9u2bXrppZeUnJys5ORk/e//\\\n", - "/q/mz5+vyZMn65VXXtFFF11k6DiRfgOR8S8AoCsx8y5gdB9dvgM4btw4vf3225Kk7OxsPfroo3rt\\\n", - "tde0dOlSjRgxwtAxTp8+rR49Pg1qDodDTzzxhGbOnKmpU6fqvffe65DaAQDodMyAYUCXb18tWbJE\\\n", - "DQ0NkqSlS5fq2muv1eTJkzVgwABVVFQYOsaYMWP01ltvaezYsWHrjz/+uCTuJAYAAPbS5QNgXl5e\\\n", - "8/89atQo7d27Vx9++KH69evXfCfwhcyaNUu/+tWvdOutt7Z47fHHH1cwGFR5eXnMagYAwCw072BE\\\n", - "lx8BR9K/f3/D4U/6580bGzdubPX1VatWhf0YNQAA3ZXDEZsN1tYtAyAAAACi1+VHwAAAoC1o3+HC\\\n", - "CIAAAFgI41sYwQgYAADAZugAAgBgJXQAYQABEAAACyH/wQgCIAAAFsI1gDCCawABAABshgAIAABg\\\n", - "M4yAAQCwEEbAMIIOIAAAgM3QAQQAwEJoAMIIAiAAAFZCAoQBjIABAABshg4gAAAWwk0gMIIACACA\\\n", - "hZD/YAQBEAAAKyEBwgCuAQQAALAZOoAAAFgIDUAYQQAEAMBCuAkERjACBgAAsBk6gAAAWAktQBhA\\\n", - "AAQAwEKIfzCCETAAAIiJlStXKi0tTQkJCcrOzlZ1dXWr+65bt04OhyNsS0hI6MRq7Y0ACACAlThi\\\n", - "tLVRRUWFPB6PSkpKtH37dk2YMEF5eXk6evRoq+9JTEzUkSNHmrdDhw61/YMRFQIgAAAWYlL+U2lp\\\n", - "qebNm6eCggKlp6ervLxcvXv31tq1a1uv1eFQSkpK8+Z2u6P4ZESDAAgAANqlsbFRNTU1ys3NbV5z\\\n", - "Op3Kzc1VVVVVq+/7+OOPNXz4cA0bNkzXXXeddu/e3RnlQgRAAAAsxeGIzRYIBHTq1KmwLRAIRPzM\\\n", - "+vp6NTU1tejgud1u+f3+iO8ZPXq01q5dq9///vd69tlnFQwGdfnll+uvf/1rzM8JWiIAAgBgJTGa\\\n", - "AXu9XiUlJYVtXq83ZmXm5OQoPz9fGRkZmjp1qjZs2KCBAwfqZz/7Wcw+A63jMTAAAFhIrB4DU1RU\\\n", - "JI/HE7bmcrki7pucnKy4uDjV1dWFrdfV1SklJcXQ5/Xs2VOXXnqp9u/fH13BaBMCIEwTDJldQffm\\\n", - "npZkdgndljPO7Aq6r4sj//0PC3K5XK0Gvs+Lj49XZmamfD6frr/+eklSMBiUz+dTYWGhoWM0NTVp\\\n", - "586duuaaa6ItGW1AAAQAwELM+iEQj8ejuXPnKisrSxMnTlRZWZkaGhpUUFAgScrPz1dqamrzGHnp\\\n", - "0qX6j//4D40aNUonTpzQj370Ix06dEi33367OV/AZgiAAACg3WbPnq1jx46puLhYfr9fGRkZqqys\\\n", - "bL4xpLa2Vk7np7ce/P3vf9e8efPk9/vVr18/ZWZmatu2bUpPTzfrK9iKIxQKMYhrh+LNj5ldQrf1\\\n", - "/3Y3mV1Ctxbk9EWNEXD0Lh3FvYPtUXbtwg7/jOmrymJynD/O/25MjoOuiQ4gAAAWYtYIGN0LARAA\\\n", - "AAshAMIIevkAAAA2QwAEAACwGUbAAABYCCNgGEEHEAAAwGboAAIAYCE0AGEEARAAACshAcIAAiAA\\\n", - "ABbCNYAwgmsAAQAAbIYOIAAAFkIDEEYQAAEAsBJmwDCAETAAAIDN0AEEAMBC6P/BCAIgAAAWwgQY\\\n", - "RjACBgAAsBk6gAAAWAgdQBhBBxAAAMBmCIAAAAA2wwgYAAALYQQMIwiAAABYCPkPRhAAAQCwEhIg\\\n", - "DOAaQAAAAJuhAwgAgIXQAIQRBEAAACyEm0BgBCNgAAAAm6EDCACAhdABhBF0AAEAAGyGAAgAAGAz\\\n", - "jIABALAQRsAwggAIAICFkP9gBCNgAAAAm7FNB3DPnj16/fXXlZOTozFjxmjv3r1asWKFAoGAbrnl\\\n", - "Fl111VUXPEYgEFAgEAhbO9d4Tj3ibXMaAQBdHCNgGGGLDmBlZaUyMjJ077336tJLL1VlZaWmTJmi\\\n", - "/fv369ChQ5o+fbpefvnlCx7H6/UqKSkpbHtt/eZO+AYAABjjcMRmi8bKlSuVlpamhIQEZWdnq7q6\\\n", - "2tD71q9fL4fDoeuvvz66D0ab2SIALl26VPfdd5+OHz+un//857rppps0b948bd68WT6fT/fdd5+W\\\n", - "L19+weMUFRXp5MmTYdukOVd3wjcAAKBrq6iokMfjUUlJibZv364JEyYoLy9PR48ePe/7Dh48qHvv\\\n", - "vVeTJ0/upEoh2SQA7t69W9/+9rclSd/61rf00Ucf6Zvf/Gbz6zfffLPeeeedCx7H5XIpMTExbGP8\\\n", - "CwCAVFpaqnnz5qmgoEDp6ekqLy9X7969tXbt2lbf09TUpJtvvlkPP/ywRowY0YnVwhYBUJIcn/Sz\\\n", - "nU6nEhISlJSU1PzaxRdfrJMnT5pVGgAAMWPGCLixsVE1NTXKzc1tXnM6ncrNzVVVVVWr71u6dKkG\\\n", - "DRqk73znO9F+XUTJFu2rtLQ0vf/++xo5cqQkqaqqSv/2b//W/Hptba0GDx5sVnkAAMRMrO4BiXTj\\\n", - "o8vlksvlarFvfX29mpqa5Ha7w9bdbrf27t0b8fhbt27VmjVrtGPHjhhVjLawRQfwrrvuUlNTU/N/\\\n", - "jxs3Tj16fJp9//CHPxi6CxgAALuIdOOj1+uNybE/+ugj3XrrrVq9erWSk5Njcky0jS06gHfeeed5\\\n", - "X1+2bFknVQIAQMeK1WNgioqK5PF4wtYidf8kKTk5WXFxcaqrqwtbr6urU0pKSov9P/jgAx08eFAz\\\n", - "Z85sXgsGg5KkHj16aN++fc1TO3QMWwRAAADsIlYj4NbGvZHEx8crMzNTPp+v+VEuwWBQPp9PhYWF\\\n", - "LfYfM2aMdu7cGba2ZMkSffTRR1qxYoWGDRvW7vpxfgRAAADQbh6PR3PnzlVWVpYmTpyosrIyNTQ0\\\n", - "qKCgQJKUn5+v1NRUeb1eJSQkaNy4cWHv79u3ryS1WEfHIAACAGAlJv0SyOzZs3Xs2DEVFxfL7/cr\\\n", - "IyNDlZWVzTeG1NbWyum0xa0H3QIBEAAACzHzp+AKCwsjjnwlacuWLed977p162JfEFpFFAcAALAZ\\\n", - "OoAAAFiIiQ1AdCMEQAAALMTMETC6DwIgAAAWQv6DEVwDCAAAYDN0AAEAsBBGwDCCAAgAgIWQ/2AE\\\n", - "I2AAAACboQMIAICFMAKGEQRAAACshAAIAxgBAwAA2AwdQAAALIQGIIwgAAIAYCFcAwgjGAEDAADY\\\n", - "DB1AAAAshAYgjCAAAgBgIYyAYQQBEAAACyH/wQiuAQQAALAZOoAAAFgII2AYQQAEAMBCCIAwghEw\\\n", - "AACAzdABBADAQmgAwggCIAAAFsIIGEYwAgYAALAZOoAAAFgIDUAYQQAEAMBCGAHDCAIgTDMilSsQ\\\n", - "2oP/Hx+902fNrqD7+uiM2RUAiAUCIAAAFsI/DmEEARAAAAthBAwjCIAAAFgI+Q9GcBEWAACAzdAB\\\n", - "BADAQhgBwwgCIAAAFkL+gxGMgAEAQEysXLlSaWlpSkhIUHZ2tqqrq1vdd8OGDcrKylLfvn110UUX\\\n", - "KSMjQ88880wnVmtvBEAAACzE4YjN1lYVFRXyeDwqKSnR9u3bNWHCBOXl5eno0aMR9+/fv78eeOAB\\\n", - "VVVV6Z133lFBQYEKCgq0adOmdp4BGEEABADAQswKgKWlpZo3b54KCgqUnp6u8vJy9e7dW2vXro24\\\n", - "/7Rp0zRr1iyNHTtWI0eO1MKFCzV+/Hht3bq1nWcARhAAAQBAC4FAQKdOnQrbAoFAxH0bGxtVU1Oj\\\n", - "3Nzc5jWn06nc3FxVVVVd8LNCoZB8Pp/27dunKVOmxOw7oHUEQAAALMQRo83r9SopKSls83q9ET+z\\\n", - "vr5eTU1NcrvdYetut1t+v7/VWk+ePKk+ffooPj5eM2bM0E9/+lNdffXV7fj2MIq7gAEAsBBHjJ4D\\\n", - "U1RUJI/HE7bmcrlicux/ufjii7Vjxw59/PHH8vl88ng8GjFihKZNmxbTz0FLBEAAANCCy+UyHPiS\\\n", - "k5MVFxenurq6sPW6ujqlpKS0+j6n06lRo0ZJkjIyMrRnzx55vV4CYCdgBAwAgIXEagTcFvHx8crM\\\n", - "zJTP52teCwaD8vl8ysnJMXycYDDY6nWGiC06gAAAWIhZvwTi8Xg0d+5cZWVlaeLEiSorK1NDQ4MK\\\n", - "CgokSfn5+UpNTW2+jtDr9SorK0sjR45UIBDQxo0b9cwzz+iJJ54w5wvYDAEQAAALMeuXQGbPnq1j\\\n", - "x46puLhYfr9fGRkZqqysbL4xpLa2Vk7np4PHhoYGzZ8/X3/961/Vq1cvjRkzRs8++6xmz55t0jew\\\n", - "F0coFAqZXUR3Vrz5MbNL6Lb+coI/eu3Bzz1F7/RZsyvovnrHm11B97bmmws7/DN+sCk2fy8ty7sn\\\n", - "JsdB10QHEAAAC3Hyr0MYQAAEAMBCyH8wgruAAQAAbIYOIAAAFmLWXcDoXgiAAABYCPkPRjACBgAA\\\n", - "sBk6gAAAWAgjYBhBAAQAwELIfzCCETAAAIDN0AEEAMBCGAHDCAIgAAAWQv6DEQRAAAAshJ+CgxFc\\\n", - "AwgAAGAzdAABALAQGoAwggAIAICFcBMIjGAEDAAAYDO27gCGQiE5+KcSAMBC+FsNRti6A+hyubRn\\\n", - "zx6zywAAIGYcjthssDZbdAA9Hk/E9aamJi1fvlwDBgyQJJWWlp73OIFAQIFAIGztXOM59Yi3xWkE\\\n", - "AAAWYYvkUlZWpgkTJqhv375h66FQSHv27NFFF11kaBTs9Xr18MMPh61NueWrmpr/tViWCwBA1Gje\\\n", - "wQhbBMBly5bpySef1I9//GNdddVVzes9e/bUunXrlJ6ebug4RUVFLbqJy//0VExrBQCgPRjfwghb\\\n", - "XAO4ePFiVVRU6K677tK9996rs2fPRnUcl8ulxMTEsI3xLwAA6G5sEQAl6bLLLlNNTY2OHTumrKws\\\n", - "7dq1izuAAQCWw00gMMJW7as+ffro6aef1vr165Wbm6umpiazSwIAIKZs09lBu9gqAP7LnDlzdMUV\\\n", - "V6impkbDhw83uxwAAGKG7h2MsGUAlKShQ4dq6NChZpcBAADQ6WwbAAEAsCIagDCCAAgAgIUwAoYR\\\n", - "XCsKAABgM3QAAQCwEBqAMIIACACAhTAChhGMgAEAAGyGDiAAABZCAxBG0AEEAMBCzPwpuJUrVyot\\\n", - "LU0JCQnKzs5WdXV1q/uuXr1akydPVr9+/dSvXz/l5uaed3/EFgEQAAC0W0VFhTwej0pKSrR9+3ZN\\\n", - "mDBBeXl5Onr0aMT9t2zZohtvvFGvvPKKqqqqNGzYME2fPl2HDx/u5MrtiQAIAICFOGK0tVVpaanm\\\n", - "zZungoICpaenq7y8XL1799batWsj7v/LX/5S8+fPV0ZGhsaMGaOnnnpKwWBQPp8vik9HW3ENIAAA\\\n", - "FhKru4ADgYACgUDYmsvlksvlarFvY2OjampqVFRU1LzmdDqVm5urqqoqQ5/3j3/8Q2fPnlX//v3b\\\n", - "VzgMoQMIAICFOGO0eb1eJSUlhW1erzfiZ9bX16upqUlutzts3e12y+/3G6r7/vvv15AhQ5Sbm9vG\\\n", - "b4xo0AEEAAAtFBUVyePxhK1F6v7FwvLly7V+/Xpt2bJFCQkJHfIZCEcABADAQmI1Am5t3BtJcnKy\\\n", - "4uLiVFdXF7ZeV1enlJSU8773v//7v7V8+XK99NJLGj9+fNT1om0YAQMAYCFm3AQSHx+vzMzMsBs4\\\n", - "/nVDR05OTqvve/TRR/XDH/5QlZWVysrKauOnoj3oAAIAgHbzeDyaO3eusrKyNHHiRJWVlamhoUEF\\\n", - "BQWSpPz8fKWmpjZfR/hf//VfKi4u1nPPPae0tLTmawX79OmjPn36mPY97IIACACAhZj1W8CzZ8/W\\\n", - "sWPHVFxcLL/fr4yMDFVWVjbfGFJbWyun89PB4xNPPKHGxkZ985vfDDtOSUmJHnrooc4s3ZYIgAAA\\\n", - "WIiZPwVXWFiowsLCiK9t2bIl7L8PHjzY8QWhVVwDCAAAYDN0AAEAsBCzRsDoXgiAAABYCAEQRjAC\\\n", - "BgAAsBk6gAAAWAgNQBhBAAQAwEIYAcMIAiAAABbCtV0wgj8nAAAANkMHEAAAC2EEDCMIgAAAWIhD\\\n", - "IbNLQDfACBgAAMBm6AACAGAhjIBhhCMUCtErtqhAICCv16uioiK5XC6zy+lWOHfR49y1D+cvepw7\\\n", - "wDgCoIWdOnVKSUlJOnnypBITE80up1vh3EWPc9c+nL/oce4A47gGEAAAwGYIgAAAADZDAAQAALAZ\\\n", - "AqCFuVwulZSUcDF0FDh30ePctQ/nL3qcO8A4bgIBAACwGTqAAAAANkMABAAAsBkCIAAAgM0QAAEA\\\n", - "AGyGAGgjtbW1mjFjhnr37q1Bgwbpvvvu07lz58wuq9u45557lJmZKZfLpYyMDLPL6Tbefvtt3Xjj\\\n", - "jRo2bJh69eqlsWPHasWKFWaX1W0cP35cX/3qVzVkyBC5XC4NGzZMhYWFOnXqlNmldSvHjx/X0KFD\\\n", - "5XA4dOLECbPLAUzXw+wC0Dmampo0Y8YMpaSkaNu2bTpy5Ijy8/PVs2dPLVu2zOzyuo3bbrtNb7zx\\\n", - "ht555x2zS+k2ampqNGjQID377LMaNmyYtm3bpjvuuENxcXEqLCw0u7wuz+l06rrrrtN//ud/auDA\\\n", - "gdq/f78WLFigDz/8UM8995zZ5XUb3/nOdzR+/HgdPnzY7FKAriGEbukPf/hDaNKkSaGkpKRQ//79\\\n", - "QzNmzAjt37+/1f03btwYcjqdIb/f37z2xBNPhBITE0OBQKAzSu5S2nr+PqukpCQ0YcKEji2wC2vP\\\n", - "ufuX+fPnh6688soOqrBri8X5W7FiRWjo0KEdVGHXFe25W7VqVWjq1Kkhn88XkhT6+9//3vHFAl0c\\\n", - "I+BuqqGhQR6PR2+99ZZ8Pp+cTqdmzZqlYDAYcf+qqipdcsklcrvdzWt5eXk6deqUdu/e3Vlldxlt\\\n", - "PX/4VCzO3cmTJ9W/f/8OrLLrau/5+9vf/qYNGzZo6tSpHVxp1xPNuXv33Xe1dOlS/eIXv5DTyV95\\\n", - "QDOzEyhi49ixYyFJoZ07d0Z8fd68eaHp06eHrTU0NIQkhTZu3NgZJXZpFzp/n2X3DuDnteXchUKh\\\n", - "0GuvvRbq0aNHaNOmTR1cWfdg9PzNmTMn1KtXr5Ck0MyZM0OnT5/upAq7rguduzNnzoTGjx8feuaZ\\\n", - "Z0KhUCj0yiuv0AEEPsE/h7qp999/XzfeeKNGjBihxMREpaWlSfrnjR5f+9rX1KdPH/Xp00f//u//\\\n", - "bm6hXRTnL3rtOXe7du3Sddddp5KSEk2fPr2TK+8aoj1/P/nJT7R9+3b9/ve/1wcffCCPx2NC9eZq\\\n", - "67krKirS2LFjdcstt5hYNdA1cRNINzVz5kwNHz5cq1ev1pAhQxQMBjVu3Dg1Njbqqaee0unTpyVJ\\\n", - "PXv2lCSlpKSouro67Bh1dXXNr9lNW88fPhXtuXv33Xf1la98RXfccYeWLFliRuldQrTnLyUlRSkp\\\n", - "KRozZoz69++vyZMn68EHH9TgwYPN+BqmaOu5e/nll7Vz5049//zzkqTQJ798mpycrAceeEAPP/yw\\\n", - "OV8E6AIIgN3Q8ePHtW/fPq1evVqTJ0+WJG3durX59dTU1BbvycnJ0SOPPKKjR49q0KBBkqTNmzcr\\\n", - "MTFR6enpnVN4FxHN+cM/RXvudu/erauuukpz587VI4880im1dkWx+rP3r2veAoFA7IvsoqI5d7/5\\\n", - "zW+aQ6Ekvfnmm7rtttv0pz/9SSNHjuz4ooEujADYDfXr108DBgzQk08+qcGDB6u2tlaLFy8+73um\\\n", - "T5+u9PR03XrrrXr00Ufl9/u1ZMkSLViwQC6Xq5Mq7xqiOX+StH//fn388cfy+/06ffq0duzYIUlK\\\n", - "T09XfHx8B1fdNURz7nbt2qWrrrpKeXl58ng88vv9kqS4uDgNHDiwM8ruMqI5fxs3blRdXZ0uu+wy\\\n", - "9enTR7t379Z9992nSZMmNY9A7SCac/f5kFdfXy9JGjt2rPr27dtRpQLdg9kXISI6mzdvDo0dOzbk\\\n", - "crlC48ePD23ZsiUkKfTb3/621fccPHgw9LWvfS3Uq1evUHJycuh73/te6OzZs51XdBcSzfmbOnVq\\\n", - "SFKL7c9//nOn1d0VtPXclZSURDxvw4cP79S6u4q2nr+XX345lJOTE0pKSgolJCSEvvjFL4buv/9+\\\n", - "W97IEM3/bj+Lm0CATzlCoU8uigAAAIAtcBcwAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgM\\\n", - "ARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACCBmKisrdcUVV6hv374aMGCArr32Wn3w\\\n", - "wQdmlwUA+BwCIICYaWhokMfj0VtvvSWfzyen06lZs2YpGAyaXRoA4DMcoVAoZHYRAKypvr5eAwcO\\\n", - "1M6dOzVu3DizywEAfIIOIICYef/993XjjTdqxIgRSkxMVFpamiSptrbW3MIAAGF6mF0AAOuYOXOm\\\n", - "hg8frtWrV2vIkCEKBoMaN26cGhsbzS4NAPAZBEAAMXH8+HHt27dPq1ev1uTJkyVJW7duNbkqAEAk\\\n", - "BEAAMdGvXz8NGDBATz75pAYPHqza2lotXrzY7LIAABFwDSCAmHA6nVq/fr1qamo0btw4LVq0SD/6\\\n", - "0Y/MLgsAEAF3AQMAANgMHUAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEA\\\n", - "AGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANvP/ARFjFPCNNR4fAAAAAElFTkSuQmCC\\\n", + "AAAPYQGoP6dpAAAiVUlEQVR4nO3dcZBeZX0v8O8mwAsWdkOgiZQRLKWQYgsrRgq7LKZG160mFzqx\\\n", + "FcVwKcVG5kpLozWz01ahVdZOOkq8vaPbuUWBKaN1hSKobFkwdMniQO6YFYPjoFdbGoZwS9bdyMBL\\\n", + "Qvb+we1eXzZkT5I3u+Scz4d5ZrLnec/7Pmcnmfny+z3nvC2Tk5OTAQCgMubN9QIAAJhdAiAAQMUI\\\n", + "gAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAx\\\n", + "AiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBU\\\n", + "jAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAA\\\n", + "FSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAITHPdddfl+eefn/r5Yx/7WP7hH/5hDlc03f33\\\n", + "35/zzjsvZ511Vt7whjfkox/9aPbs2TPXywI4LLRMTk5OzvUigFeXlpaWjI2NZcGCBXO9lFf0ne98\\\n", + "J21tbTnttNPy/PPP521ve1uuuuqqXHHFFXO9NIBXPRVAKLHLLrssS5cuzdlnn513vetdeeqpp2Y8\\\n", + "54Mf/GCSpKurK+3t7Xn66adzxRVX5MYbb0zyUnXw937v97Jy5cqcccYZWbFiRb73ve/lHe94R844\\\n", + "44y8973vnarE7dy5Mx/4wAdy3nnn5eyzz84f/uEf5oUXXmjKtb3xjW/MaaedliQ5+uij097enp/8\\\n", + "5CdNeW+AshMAocRuvPHGbN68Od/97nfT1dWV6667bmrune98ZzZv3jztnM9//vNJkuHh4WzZsiWL\\\n", + "Fi2a9prNmzfnlltuyQ9+8IPs3LkzV111VQYGBvLYY4/l+9//fr75zW8mST784Q+nq6srDz/8cEZH\\\n", + "R7Nnz55s2LBh2vvt3Lkz7e3tex3veMc7ZrzOp556KgMDA1mxYkXRXw1ApR0x1wsADp3bbrstt956\\\n", + "a55//vk8//zzOfHEE6fmvvGNbxzw+3Z3d+f4449Pkpx77rmp1Wo57rjjkrxUmXv88ceTJP/0T/+U\\\n", + "hx56KJ/+9KeTJM8991zmz58/7f2OO+64bNmy5YDWMjExkZUrV+ajH/1oli5dekDvAVA1AiCU1IMP\\\n", + "PpjPfvazeeihh7Jo0aJ87Wtfy8c+9rGmvPfRRx899ef58+dP+3n37t1JksnJyXz1q1/NGWecsc/3\\\n", + "27lzZ7q6uvY6t3jx4gwODr7ieT09Pbn44ouzdu3a/b0MgMoSAKGkxsbGctxxx+WEE07ICy+8kP7+\\\n", + "/sLnHnfccRkfHz/om0AuueSS/PVf/3X6+/tzxBFHZGxsLM8880xOP/30aZ+3vxXAn/3sZ+np6UlP\\\n", + "T0/+/M///KDWCVA19gBCSfX09OTMM8/MmWeeOXVDx897pT2AyUt7997+9rdP3QRyoD7zmc/kmGOO\\\n", + "SXt7e84+++wsX768aTdqbNiwIQ8//HBuv/32qf2Cn/zkJ5vy3gBl5zEwAAAVowIIAFAxAiAAQMUI\\\n", + "gAAAFSMAAgBUjAAIAByU8fHxnHfeeTn22GPzve99r2HuxRdfzJVXXpmurq5ce+21c7NAphEAAYCD\\\n", + "8prXvCZf//rX8+53v3va3N13351f+qVfyvDwcJ599tk89NBDc7BCXk4ABAAOypFHHplf/MVf3Ovc\\\n", + "yMhIuru7k7z0fNJNmzbN5tJ4Bb4JBACYpl6vp16vNxyr1Wqp1Wr79T5jY2NpbW1NkrS1tWXHjh1N\\\n", + "WyMHTgA8SOvu+excLwGAw8Rf9/zRIf+M3zj3w015n1X/5bhcf/31Dcc+/vGP57rrrtuv91mwYEEm\\\n", + "JiaSvLRXcOHChU1ZHwdHCxgAmKa3tzfj4+MNo7e3d7/fp6OjI0NDQ0mSwcHBdHZ2NnupHAABEADK\\\n", + "pKU5o1arpbW1tWHsq/37zne+M//8z/+cD3zgA/niF7+YNWvWJElWrFiRf/u3f0tXV1eOPvroXHDB\\\n", + "BYfowtkfWsAAwEH7xje+0fDzFVdckSQ54ogj8sUvfnH2F8Q+CYAAUCYtLXO9Ag4DAiAAlIn8RwH2\\\n", + "AAIAVIwKIACUiQogBQiAAFAqEiAz0wIGAKgYFUAAKJFJBUAKEAABoEwEQArQAgYAqBgVQAAoEw+C\\\n", + "pgAVQACAilEBBIAyUQCkABVAAICKUQEEgDKxB5ACBEAAKBP5jwK0gAEAKkYFEABKZHKuF8BhQQAE\\\n", + "gDKxB5ACtIABACpGBRAAykQBkAIEQAAoFQmQmWkBAwBUjAogAJSJAiAFCIAAUCYCIAUIgABQIpMe\\\n", + "A0MB9gACAFSMAAgAUDFawABQJlrAFKACCABQMSqAAFAmCoAUIAACQIlMzvUCOCxUMgC++OKLGRgY\\\n", + "yKZNm7Jjx44sXLgwnZ2dWbVqVY44opK/EgCgQiqZdq688sqceeaZueKKK9LW1pbx8fEMDg7m93//\\\n", + "93Prrbe+4nn1ej31er3h2O4XdueIoyr5awTg1chNIBRQyeTy4x//ODfffHPDsXPPPTcXXXTRPs/r\\\n", + "6+vL9ddf33Cs47KeXPj+3276GgHggMh/FFDJANjR0ZHLL7883d3daW1tzcTERIaGhnL++efv87ze\\\n", + "3t6sXbu24dj1G//noVwqAEDTVTIAfupTn8p3v/vdjIyM5IknnsiCBQvyJ3/yJznnnHP2eV6tVkut\\\n", + "Vms4pv0LwKvKHLSA161bl5GRkbz+9a/PTTfdlCOPPDJJMjExkfe///3ZuXNnli5dmvXr18/62ti7\\\n", + "yj4H8Oyzz84HP/jB9Pb25uqrr54x/AHA4WCySaOo0dHRbNu2LcPDw1myZEkGBgam5v7u7/4uF198\\\n", + "cb71rW/l2WefzcMPP3zQ10dzVDYAAkAptTRn1Ov1TExMNIyX3wiZJCMjI+nu7k6S9PT0ZNOmTVNz\\\n", + "P/rRj9Le3p7kpb32//Iv/3IorpgDIAACANP09fWlra2tYfT19U173djYWFpbW5MkbW1t2bFjx9Tc\\\n", + "WWedlfvvvz9JMjQ0lLGxsdlZPDMSAAGgTFpamjJ6e3szPj7eMHp7e6d93IIFCzIxMZEkGR8fz8KF\\\n", + "C6fmrrrqqnz/+9/P2972thx77LF57WtfO2u/BvZNAAQApqnVamltbW0YL78RMnnpyRpDQ0NJksHB\\\n", + "wXR2dk7NHXPMMbnpppum5lesWDE7i2dGAiAAcMDa29uzePHidHV1ZevWrVm1alXWrFmTJNmyZUuW\\\n", + "LVuWt771rens7Mwv//Ivz/Fq+U+eYQIAJTI5B4+BefnjXfr7+5O8FA43btw46+thZgIgAJSJbwKh\\\n", + "AC1gAICKEQABACpGCxgASmQu9gBy+FEBBACoGBVAACgTBUAKEAABoEwEQAoQAAGgVCRAZmYPIABA\\\n", + "xagAAkCJTCoAUoAACABlIgBSgBYwAEDFqAACQKkoATIzARAASsQeQIrQAgYAqBgVQAAoExVAChAA\\\n", + "AaBUJEBmpgUMAFAxKoAAUCJuAqEIARAAykQApAABEABKRQJkZvYAAgBUjAogAJSJAiAFCIAAUCJu\\\n", + "AqEILWAAgIpRAQSAMlEBpAABEABKRQJkZgLgQRr9yZ65XgIAwH4RAAGgRNwEQhECIACUiQBIAe4C\\\n", + "BgCoGAEQAKBitIABoExa9ICZmQAIACXiJhCK0AIGAKgYARAAOCjr1q1LV1dXVq9enV27dk0df+65\\\n", + "57Jy5cq85S1vyfLly7N9+/Y5XCU/TwAEgDJpadIoaHR0NNu2bcvw8HCWLFmSgYGBqblvfvOb+fVf\\\n", + "//U88MADueKKK/L3f//3B399NIUACABMU6/XMzEx0TDq9fq0142MjKS7uztJ0tPTk02bNk3NnX76\\\n", + "6Xn22WeTJGNjYznxxBNnZ/HMSAAEgDJpaWnK6OvrS1tbW8Po6+ub9nFjY2NpbW1NkrS1tWXHjh1T\\\n", + "c7/6q7+axx57LG94wxvy+c9/Pu973/tm7dfAvgmAAFAik00avb29GR8fbxi9vb3TPm/BggWZmJhI\\\n", + "koyPj2fhwoVTczfffHMuvPDCbN26NX/5l3+Zv/qrvzpEV83+EgABgGlqtVpaW1sbRq1Wm/a6jo6O\\\n", + "DA0NJUkGBwfT2dk5NTc5OTnV9j3xxBMzPj4+O4tnRgIgAJTJLN8E0t7ensWLF6erqytbt27NqlWr\\\n", + "smbNmiTJ+973vtx9991ZtmxZ/uIv/iJr165tzjVy0DwIGgDKZA4eBL1+/fqGn/v7+5O8tCfwnnvu\\\n", + "mf0FMSMVQACAihEAAQAqRgsYAMqkxZcBMzMBEABKZFL+owAtYACAihEAAQAqRgsYAMpEC5gCVAAB\\\n", + "ACpGBRAAykQFkAIEQAAoFQmQmWkBAwBUjAogAJSJAiAFCIAAUCYCIAVoAQMAVIwKIACUyORcL4DD\\\n", + "ggAIAGWiBUwBWsAAABUjAAIAVIwWMACUSYseMDNTAfw5t9xyyz7n6/V6JiYmGsaeXbtnaXUAUEBL\\\n", + "kwalVskA+Nhjj00bW7duTX9//z7P6+vrS1tbW8P434NDs7RqAIDmqGQL+Pzzz8+73/3uTE423iz/\\\n", + "r//6r/s8r7e3N2vXrm049u6b/67p6wMAOJQqGQB/7dd+LevXr88JJ5zQcPxd73rXPs+r1Wqp1WoN\\\n", + "x+YdWclfIQCvVtq3FFDJ9HLvvffmF37hF6Yd//rXvz4HqwEAmF2VDICtra1zvQQAODRUACmgkjeB\\\n", + "AABUmQAIAFAxlWwBA0BpaQFTgAAIACXS4ptAKEALGACgYgRAAICK0QIGgDLRAaYAARAAykQApAAt\\\n", + "YACAihEAAQAqRgAEgBJpaWnO2B/r1q1LV1dXVq9enV27dk0dv+OOO7Js2bIsW7Ysp5xySjZs2NDk\\\n", + "q+VACYAAwAEbHR3Ntm3bMjw8nCVLlmRgYGBq7nd+53eycePGbNy4Mb/yK7+SSy65ZO4WSgMBEACY\\\n", + "pl6vZ2JiomHU6/VprxsZGUl3d3eSpKenJ5s2bZr2mqeeeir1ej2nnnrqIV83xQiAAFAmLc0ZfX19\\\n", + "aWtraxh9fX3TPm5sbCytra1Jkra2tuzYsWPaa26//fasWrWq2VfKQfAYGABgmt7e3qxdu7bhWK1W\\\n", + "m/a6BQsWZGJiIkkyPj6ehQsXTnvNwMBAvvCFLxyahXJAVAABoEyaVAGs1WppbW1tGHsLgB0dHRka\\\n", + "GkqSDA4OprOzs2F++/bt2r+vQgIgAJRIk/JfYe3t7Vm8eHG6urqydevWrFq1KmvWrJma1/59ddIC\\\n", + "BoAy2d9nuDTB+vXrG37u7++f+vPVV18928uhABVAAICKUQEEgBKZgwIghyEVQACAihEAAQAqRgsY\\\n", + "AMpEC5gCBEAAKBH5jyK0gAEAKkYFEADKRAmQAgRAACgRj4GhCC1gAICKEQABACpGCxgASkQLmCJU\\\n", + "AAEAKkYABACoGC3gg/SvX/k/c70EAA4XHzz0H6EFTBECIACUiQBIAVrAAAAVowIIACXSogRIAQIg\\\n", + "AJSJ/EcBWsAAABWjAggAJaIASBECIACUiMfAUIQWMABAxagAAkCZqABSgAAIACUi/1GEAAgAZSIB\\\n", + "UoA9gAAAFaMCCAAlogBIEQIgAJSIx8BQhBYwAEDFqAACQJmoAFKAAAgAJSL/UYQWMABAxagAAkCJ\\\n", + "uAmEIlQAAQAqRgAEAA7KunXr0tXVldWrV2fXrl0Nc1/60pfy1re+NcuWLctDDz00Ryvk5QRAACiR\\\n", + "lpbmjKJGR0ezbdu2DA8PZ8mSJRkYGJiae/LJJ3PnnXfmvvvuy8aNG3PBBRccgivmQAiAAFAmLc0Z\\\n", + "9Xo9ExMTDaNer0/7uJGRkXR3dydJenp6smnTpqm5e+65J7VaLW9/+9uzevXq/OxnPztUV81+EgAB\\\n", + "oERamvRfX19f2traGkZfX9+0zxsbG0tra2uSpK2tLTt27Jia2759e/7jP/4j9957by644IL87d/+\\\n", + "7az9Htg3ARAAmKa3tzfj4+MNo7e3d9rrFixYkImJiSTJ+Ph4Fi5c2DD3W7/1W2lpacny5cuzdevW\\\n", + "WVs/+yYAAkCJNGsPYK1WS2tra8Oo1WrTPq+joyNDQ0NJksHBwXR2dk7NdXZ2ZsuWLUmSLVu25LTT\\\n", + "TpuV3wEzEwABgAPW3t6exYsXp6urK1u3bs2qVauyZs2aJMnZZ5+d173udVm2bFluuummXHPNNXO8\\\n", + "Wv6TB0EDAAdl/fr1DT/39/dP/fmGG26Y7eVQgAAIACXim0AoQgAEgBKR/yjCHkAAgIpRAQSAMlEC\\\n", + "pAABEABKxB5AitACBgCoGBVAACgRBUCKOOwD4OTkZO6///48+eSTmZycTJJcfvnl+zznxRdfzJ13\\\n", + "3pl58+Zl5cqVmT9/fpLkK1/5Sn73d3/3Fc+r1+vTvgh7z57dmTfvsP81AlAWEiAFHPYt4Pe85z25\\\n", + "66678olPfCKbN2/OPffcM+M5l19+eTZv3pwtW7bkoosuyg9/+MMkyec+97l9nre3L8Z+5icjTbkO\\\n", + "AGiGliYNyu2wD4Dbt2/PjTfemJNOOimf/exn89xzz814zrZt23LDDTfkuuuuy2233ZY/+IM/yLe+\\\n", + "9a0Zz9vbF2Of8PqOZlwGAMCsOex7l/Pnz8+ePXty/PHH56abbsqPfvSjGc954YUXUq/XU6vVcuqp\\\n", + "p+buu+/OpZdemkcffXSf59VqtWlfhK39C8CribuAKeKwrwB+6Utfyp49e/K5z30uP/3pT3PrrbfO\\\n", + "eM6GDRvy05/+dOrn4447Ll/72tfymc985hCuFABmgR4wBRz25atFixYlSV772tdm7dq1hc5585vf\\\n", + "PO3Y/Pnz8/73v7+pawMAeDU67AMgAPD/Kd5RhAAIACViDyBFHPZ7AAEA2D8qgABQKkqAzEwABIAS\\\n", + "0QKmCC1gAICKUQEEgDJRAaQAARAASkT+owgBEABKxB5AirAHEACgYgRAAICK0QIGgBLRAqYIFUAA\\\n", + "gIpRAQSAElEApAgBEADKRAKkAC1gAICKUQEEgBJxEwhFCIAAUCLyH0UIgABQJhIgBdgDCABQMSqA\\\n", + "AFAiCoAUoQIIACXS0tKcsT/WrVuXrq6urF69Ort27Zo6vnHjxrzuda/LsmXLsnz58iZfKQdDAAQA\\\n", + "Dtjo6Gi2bduW4eHhLFmyJAMDAw3z73nPe7Jx48bcd999c7RC9kYABIAymeUS4MjISLq7u5MkPT09\\\n", + "2bRpU8P8V7/61XR1dWXDhg1NvUwOjj2AAFAizdoDWK/XU6/XG47VarXUarWGY2NjYznppJOSJG1t\\\n", + "bdmxY8fU3NKlS/ODH/wgSXLxxRfnwgsvzJve9KYmrZCDoQIIAEzT19eXtra2htHX1zftdQsWLMjE\\\n", + "xESSZHx8PAsXLpyaO/bYY3PUUUflqKOOysqVKzM6Ojpr62ffBEAAKJOW5oze3t6Mj483jN7e3mkf\\\n", + "19HRkaGhoSTJ4OBgOjs7p+b+MxgmyYMPPpjTTz+96ZfLgREAAaBEmpT/UqvV0tra2jBe3v5Nkvb2\\\n", + "9ixevDhdXV3ZunVrVq1alTVr1iRJ/vEf/zHnnXdeOjo6cvLJJ+eiiy46tBdPYS2Tk5OTc72Iw9mv\\\n", + "Lf+zuV4CAIeJ79/3yUP+Gcv/+41NeZ/7rrm2Ke/Dq5ObQACgRPb3GX5UkwAIAGUiAFKAAAgAJSL/\\\n", + "UYQAeJBe89YT5noJAAD7RQAEgBKxB5AiPAYGAKBiBEAAgIrRAgaAEtECpggBEABKRACkCC1gAICK\\\n", + "EQABACpGCxgASkQLmCJUAAEAKkYFEABKRAGQIgRAACgTCZACBEAAKBF7ACnCHkAAgIpRAQSAElEA\\\n", + "pAgBEADKRA+YArSAAQAqRgUQAEpE/Y8iBEAAKBEdYIrQAgYAqBgVQAAoERVAilABBACoGAEQAKBi\\\n", + "tIABoES0gClCAASAEpH/KEIABIAykQApwB5AAICKUQEEgBJRAKQIARAASsRNIBShBQwAUDEqgABQ\\\n", + "IiqAFKECCABQMQIgAHBQ1q1bl66urqxevTq7du2aNv+pT30qS5cunYOV8UoEQAAokZaW5oyiRkdH\\\n", + "s23btgwPD2fJkiUZGBhomN+5c2ceffTRJl8lB0sABIASaWnSKGpkZCTd3d1Jkp6enmzatKlhfsOG\\\n", + "DfnQhz504BfEISEAAgDT1Ov1TExMNIx6vT7tdWNjY2ltbU2StLW1ZceOHVNz4+PjefTRR3PBBRfM\\\n", + "2ropppIBcPv27bnhhhty55135oknnsjVV1+dj3zkI9m+ffs+z9vbP4Y9u3fP0qoBYGbNagH39fWl\\\n", + "ra2tYfT19U37vAULFmRiYiLJS4Fv4cKFU3M33nhjrrnmmlm7doqrZAC87LLLcvLJJ+eJJ55Id3d3\\\n", + "li9fnu7u7lx55ZX7PG9v/xieeuC+WVo1AMysWQGwt7c34+PjDaO3t3fa53V0dGRoaChJMjg4mM7O\\\n", + "zqm5H/7wh/nEJz6Rnp6ePP744/nkJz85a78H9q1lcnJycq4XMduWLVuWjRs3JknOP//8fPvb306S\\\n", + "LF++PPfd98qBrl6vTyt/v+Uzn8+8IzxOEYCZ/a8/W3vIP+PSf9jQlPf50mV/XPi1f/qnf5pvf/vb\\\n", + "OeWUU/KFL3wh11xzTfr7+xtes3Tp0mzevLkpa+PgVTK5/Pwt6j//F3T3DO3cWq2WWq3WcEz4A6Dq\\\n", + "1q9f3/Dzy8NfEuHvVaaS6eWOO+7I5ORkWlpacs455yR5KRT+zd/8zRyvDAAOjm8CoYhKBsBFixZN\\\n", + "O3bkkUfmzW9+8xysBgCaR/6jiEreBAIAUGWVrAACQFlpAVOEAAgAJSL/UYQWMABAxagAAkCZKAFS\\\n", + "gAAIACViDyBFaAEDAFSMCiAAlIgCIEUIgABQIlrAFCEAAkCJyH8UYQ8gAEDFqAACQIloAVOEAAgA\\\n", + "JSL/UYQWMABAxagAAkCJaAFThAAIAGUiAFKAFjAAQMWoAAJAiSgAUoQACAAlYg8gRWgBAwBUjAog\\\n", + "AJSIAiBFCIAAUCJawBQhAAJAich/FGEPIABAxagAAkCJaAFThAAIACUiAFKEFjAAQMWoAAJAiSgA\\\n", + "UoQACAAlogVMEVrAAAAVowIIACWiAEgRAiAAlIgWMEUIgAfp1391/lwvAQBgv9gDCAAl0tKksT/W\\\n", + "rVuXrq6urF69Ort27Zo6Pjo6mo6OjrzlLW/JypUr8+yzzx7UtdE8AiAAlEhLS3NGUaOjo9m2bVuG\\\n", + "h4ezZMmSDAwMTM2dddZZGRkZyQMPPJA3velNueOOOw7BFXMgBEAAKJHZrgCOjIyku7s7SdLT05NN\\\n", + "mzZNzR155JFTf37uuedy5plnHuBV0WwCIAAwTb1ez8TERMOo1+vTXjc2NpbW1tYkSVtbW3bs2NEw\\\n", + "f8899+SNb3xjNm7cmNNPP31W1s7MBEAAKJFmtYD7+vrS1tbWMPr6+qZ93oIFCzIxMZEkGR8fz8KF\\\n", + "Cxvme3p68p3vfCerVq1Kf3//rPwOmJkACAAl0qwWcG9vb8bHxxtGb2/vtM/r6OjI0NBQkmRwcDCd\\\n", + "nZ1Tcz9fMWxra8trXvOaZl8uB8hjYACAaWq1Wmq12oyva29vz+LFi9PV1ZVTTjklH/nIR7JmzZr0\\\n", + "9/fnnnvuyac//em0tLTkhBNOyC233DILK6cIARAASmQuHgS9fv36hp//s9V78cUX5+KLL579BTEj\\\n", + "ARAASsQ3gVCEPYAAABWjAggAJaIASBECIACUSIseMAVoAQMAVIwKIACUiPofRQiAAFAiOsAUIQAC\\\n", + "QInIfxRhDyAAQMWoAAJAicxTAqQAARAASkT+owgtYACAilEBBIAScRcwRQiAAFAi8h9FaAEDAFSM\\\n", + "CiAAlIgWMEUIgABQIvIfRWgBAwBUjAogAJSIFjBFCIAAUCLyH0UIgABQIr4KjiLsAQQAqBgVQAAo\\\n", + "EQVAihAAAaBE3ARCEVrAAAAVowIIACWiAEgRAiAAlIgWMEVoAf8/11577YyvqdfrmZiYaBgv7tp9\\\n", + "6BcHANBElawALlq0KKecckrmzZuXycnJJMnjjz+ekZGRPPzww694Xl9fX66//vqGY2e/+x1p/93f\\\n", + "PqTrBYCiFAApopIVwA0bNuTUU0/Nhz/84TzyyCN55JFHcsEFF+wz/CVJb29vxsfHG8ZvXPL2WVo1\\\n", + "AMyspaU5g3KrZAB873vfm6985SvZvXt3Lrnkktx2221TlcB9qdVqaW1tbRjzj6xkERUAOIxVMgAm\\\n", + "ybx583LZZZfl9ttvz+7du9Pe3j7XSwKAg6YCSBGVL1/Nmzcvl19++VwvAwCaorKVHfZL5QMgAJSJ\\\n", + "6h1F+B8FAICKEQABoERamjT2x7p169LV1ZXVq1dn165dU8fvuuuu/OZv/mYuvPDC/PEf//FBXRfN\\\n", + "JQACQInM9k0go6Oj2bZtW4aHh7NkyZIMDAxMzZ1zzjnZtGlTHnzwwTz99NPZvHnzIbhiDoQACAAc\\\n", + "sJGRkXR3dydJenp6smnTpqm5U045JUcc8dLtBkcddVTmzRM7Xi3cBAIAJdKse0Dq9Xrq9XrDsVqt\\\n", + "llqt1nBsbGwsJ510UpKkra0tO3bsmPZejzzySJ5++umce+65TVodB0sUB4ASaVYLuK+vL21tbQ2j\\\n", + "r69v2uctWLAgExMTSZLx8fEsXLiwYf7f//3fc+211+bmm2+eleunGAEQAJhmb19/2tvbO+11HR0d\\\n", + "GRoaSpIMDg6ms7Nzam7nzp259NJL09/fn0WLFs3a2pmZAAgAJdKsu4D39vWnL2//Jkl7e3sWL16c\\\n", + "rq6ubN26NatWrcqaNWuSJDfeeGN+/OMf50Mf+lCWLVuWBx544NBePIW1TBb5Elxe0X/9xw1zvQQA\\\n", + "DhM3/96hfxTK/xj5bFPe5791/FFT3odXJxVAAICKcRcwAJSIb4KjCAEQAErEdwFThAAIACVibxdF\\\n", + "+HsCAFAxKoAAUCJawBQhAAJAich/FKEFDABQMSqAAFAiWsAUIQACQInIfxShBQwAUDEqgABQIlrA\\\n", + "FCEAAkCJCIAUoQUMAFAxKoAAUCIKgBQhAAJAiWgBU4QACAAlYm8XRfh7AgBQMSqAAFAiWsAUIQAC\\\n", + "QIm0ZHKul8BhQAsYAKBiVAABoES0gCmiZXJyUq0YaJp6vZ6+vr709vamVqvN9XIA2AsBEGiqiYmJ\\\n", + "tLW1ZXx8PK2trXO9HAD2wh5AAICKEQABACpGAAQAqBgBEGiqWq2Wj3/8424AAXgVcxMIAEDFqAAC\\\n", + "AFSMAAgAUDECIABAxQiAAAAVIwACAFTMEXO9AKA8tm/fnksvvTS7d+/O4sWL8+Uvfznz58+f62UB\\\n", + "8DIqgEDTHH/88bn33nszPDyck08+Offff/9cLwmAvVABBJrmmWeeydVXX52xsbE8+eSTOffcc+d6\\\n", + "SQDshQog0DS33XZbVqxYkQceeCA9PT3xnHmAVycVQKBpli9fntWrV+euu+7KMcccM9fLAeAV+Co4\\\n", + "AICK0QIGAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqxjeBAE2zffv2XHrp\\\n", + "pdm9e3cWL16cL3/5y5k/f/5cLwuAl1EBBJrm+OOPz7333pvh4eGcfPLJuf/+++d6SQDshQog0DTP\\\n", + "PPNMrr766oyNjeXJJ5/MueeeO9dLAmAvVACBprntttuyYsWKPPDAA+np6YmvGgd4dVIBBJpm+fLl\\\n", + "Wb16de66664cc8wxc70cAF5By6T/RQcAqBQtYACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAq\\\n", + "RgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACA\\\n", + "ihEAAQAqRgAEAKgYARAAoGIEQACAivm/5eG4oMuFmFUAAAAASUVORK5CYII=\\\n", "\"\n", " frames[3] = \"\\\n", "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", - "AAAPYQGoP6dpAAAwsElEQVR4nO3df3RU9ZnH8c9MSCb8MOFHIIFAiUALZBFiE8lGRNBG0opUOa0N\\\n", - "/iAYKx6FKGWqlVQkSlfGtVsarGBWhGKxrula2tojDcVRTpcSjYZFAQFFCtlaEgiWoBEmmJn9w3Z0\\\n", - "zARuZia5yb3v1zn3HP3OnTvP3IP68XnuveMIBAIBAQAAwDacZhcAAACArkUABAAAsBkCIAAAgM0Q\\\n", - "AAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyG\\\n", - "AAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAz\\\n", - "BEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACb\\\n", - "IQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACiNqR\\\n", - "I0e0YMECjR07Vr1799agQYN0/fXX6/Dhw2aXBgAIo5fZBQDo+V5//XXt2LFDc+bM0fDhw3X48GE9\\\n", - "8cQTmj59ut5++2316dPH7BIBAJ/jCAQCAbOLANCznT59Wr179w5Ze/XVV5WXl6df/OIXmjt3rkmV\\\n", - "AQDCYQQMIGqfD39nz57ViRMnNGbMGPXv3187d+40sTIAQDgEQABRO336tJYtW6YRI0bI5XIpJSVF\\\n", - "gwcP1smTJ9XU1GR2eQCAL+AaQABRu+uuu/Tzn/9c3/ve95SXl6fk5GQ5HA7NmTNHfr/f7PIAAF9A\\\n", - "AAQQteeff17z5s3TT37yk+DamTNndPLkSfOKAgC0ixEwgKjFxcXpi/eT/exnP1Nra6tJFQEAzoUO\\\n", - "IICoXXPNNdq4caOSk5OVmZmp6upqvfTSSxo0aJDZpQEAwiAAAojaqlWrFBcXp1/+8pc6c+aMpkyZ\\\n", - "opdeekkFBQVmlwYACIPnAAIAANgM1wACAADYDAEQAADAZgiAAAAANkMABAAAUfnTn/6kWbNmadiw\\\n", - "YXI4HPrtb3973vds27ZNX/3qV+VyuTRmzBht2LCh0+vEZwiAAAAgKs3NzZo0aZJWr15taP+//OUv\\\n", - "mjlzpq644grt2rVL3/ve93Tbbbdpy5YtnVwp/om7gAEAQMw4HA795je/0XXXXdfuPvfdd59efPFF\\\n", - "7dmzJ7g2Z84cnTx5UlVVVV1QJegAAgCALlVdXa38/PyQtYKCAlVXV5tUkf3wIGgAANCGz+eTz+cL\\\n", - "WXO5XHK5XFEfu76+XqmpqSFrqampOnXqlE6fPq3evXtH/Rk4NwJglNbseMzsEnosPxcfROXEabMr\\\n", - "6LnO8BPFMImn4O5O/4yLvvr9mBznW9+8QA899FDIWllZmR588MGYHB/mIgACAIA2SktL5Xa7Q9Zi\\\n", - "0f2TpLS0NDU0NISsNTQ0KCkpie5fFyEAAgBgJY7YHCZW495w8vLytHnz5pC1rVu3Ki8vr1M+D21x\\\n", - "EwgAAIjKRx99pF27dmnXrl2SPn3My65du1RXVyfp025iUVFRcP877rhDhw4d0g9+8APt379fa9as\\\n", - "0a9+9SstXrzYjPJtiQ4gAABW4ohRC7AD3njjDV1xxRXBv//n6HjevHnasGGDjh49GgyDknThhRfq\\\n", - "xRdf1OLFi7Vq1SoNHz5cTz31lAoKCrq8drsiAAIAYCVdn/80ffp0neuxwuF+5WP69On63//9306s\\\n", - "CufCCBgAAMBm6AACAGAlJnQA0fMQAAEAsBQSIM6PETAAAIDN0AEEAMBCAjQAYQABEAAAKyEAwgBG\\\n", - "wAAAADZDBxAAACsx4UHQ6HnoAAIAANgMHUAAAKyEBiAMoAMIAABgM3QAAQCwEq4BhAEEQAAArIT8\\\n", - "BwMYAQMAANgMHUAAACwkYHYB6BEIgAAAWAnXAMIARsAAAAA2QwcQAAAroQEIAwiAAABYCgkQ58cI\\\n", - "GAAAwGboAAIAYCU0AGEAARAAACshAMIAAiAAABYS4DEwMIBrAAEAAGyGAAgAAGAzjIABALASRsAw\\\n", - "gA4gAACAzdABBADASmgAwgDbBMDGxkatX79e1dXVqq+vlySlpaXp0ksv1S233KLBgwebXCEAANEL\\\n", - "mF0AegRbjIBff/11feUrX9Fjjz2m5ORkXX755br88suVnJysxx57TOPGjdMbb7xhdpkAAABdwhYd\\\n", - "wLvuukvXX3+9Kioq5PjCxbGBQEB33HGH7rrrLlVXV5/zOD6fTz6fL2TtbMsnik+wxWkEAPQE3AQC\\\n", - "A2zRAXzzzTe1ePHiNuFPkhwOhxYvXqxdu3ad9zgej0fJyckh2x83bu2EigEAiJAjRhsszRYBMC0t\\\n", - "TTU1Ne2+XlNTo9TU1PMep7S0VE1NTSHbjLlXxbJUAACATmeLAHjPPffo9ttv16JFi/TCCy/otdde\\\n", - "02uvvaYXXnhBixYt0h133KEf/OAH5z2Oy+VSUlJSyMb4FwDQrTgcsdkisHr1amVkZCgxMVG5ubnn\\\n", - "bL6cPXtWy5cv1+jRo5WYmKhJkyapqqoq0m+NDrJFelm4cKFSUlL005/+VGvWrFFra6skKS4uTtnZ\\\n", - "2dqwYYO+853vmFwlAADRM+su4MrKSrndblVUVCg3N1fl5eUqKCjQgQMHNGTIkDb7L126VM8884zW\\\n", - "rl2rcePGacuWLZo9e7Z27Nihiy++2IRvYC+OQCBgqzvGz549q8bGRklSSkqK4uPjozremh2PxaIs\\\n", - "W/Lb6k9e7J04bXYFPdeZVrMrgF15Cu7u9M8YV/BATI6zf8uPOrR/bm6uLrnkEj3++OOSJL/frxEj\\\n", - "Ruiuu+7SkiVL2uw/bNgw3X///Vq4cGFw7Vvf+pZ69+6tZ555JrricV626AB+Xnx8vIYOHWp2GQAA\\\n", - "dGvhnnzhcrnkcrna7NvS0qLa2lqVlpYG15xOp/Lz89t9wobP51NiYmLIWu/evbV9+/YYVI/zscU1\\\n", - "gAAA2EaMrgEM9+QLj8cT9iMbGxvV2tra5obK1NTU4I8vfFFBQYFWrlypd999V36/X1u3btWmTZt0\\\n", - "9OjRmJ8StEUABAAAbYR78sXnO3zRWrVqlb785S9r3LhxSkhIUElJiYqLi+V0Ek26AmcZAAC0Ee7J\\\n", - "F+HGv9Kn19THxcWpoaEhZL2hoUFpaWlh3zN48GD99re/VXNzs44cOaL9+/erX79+GjVqVMy/C9oi\\\n", - "AAIAYCEBhyMmW0ckJCQoOztbXq83uOb3++X1epWXl3fO9yYmJio9PV2ffPKJfv3rX+vaa6+N6Huj\\\n", - "Y2x3EwgAAJZm0q94uN1uzZs3Tzk5OZo8ebLKy8vV3Nys4uJiSVJRUZHS09OD1xG+9tprev/995WV\\\n", - "laX3339fDz74oPx+v6Hn8iJ6BEAAABC1wsJCHT9+XMuWLVN9fb2ysrJUVVUVvDGkrq4u5Pq+M2fO\\\n", - "aOnSpTp06JD69eunq6++Whs3blT//v1N+gb2YrvnAMYazwGMHM8BjA7PAYwczwGEWbriOYBjry6L\\\n", - "yXEObH4oJsdB90QHEAAAC+no9XuwJ24CAQAAsBk6gAAAWAkNQBhAAAQAwEoIgDCAAAgAgKWQAHF+\\\n", - "XAMIAABgM3QAAQCwkAANQBhAAAQAwEoIgDCAETAAAIDN0AEEAMBSaAHi/AiAAABYCNcAwghGwAAA\\\n", - "ADZDBxAAACuhAwgDCIAAAFgKCRDnxwgYAADAZugAAgBgIdwEAiMIgAAAWAkBEAYQAAEAsBQSIM6P\\\n", - "awABAABshg4gAABWQgMQBhAAAQCwEG4CgRGMgAEAAGyGDiAAAFZCBxAGEAABALAUEiDOjwAYJX/A\\\n", - "7Ap6ri37OHnRcPDv+Ig1f8yfvUhNvJA/eIAVEAABALAQbgKBEQRAAACshAAIA7gLGAAAwGYIgAAA\\\n", - "ADbDCBgAACvhDjEYQAAEAMBCuAkERjACBgAAsBkCIAAAgM0QAAEAsBJHjLYIrF69WhkZGUpMTFRu\\\n", - "bq5qamrOuX95ebnGjh2r3r17a8SIEVq8eLHOnDkT2YejQwiAAAAgapWVlXK73SorK9POnTs1adIk\\\n", - "FRQU6NixY2H3f/bZZ7VkyRKVlZVp3759WrdunSorK/XDH/6wiyu3JwIgAABW4nDEZuuglStXav78\\\n", - "+SouLlZmZqYqKirUp08frV+/Puz+O3bs0JQpU3TjjTcqIyNDM2bM0A033HDeriFigwAIAICFBGK0\\\n", - "+Xw+nTp1KmTz+XxhP7OlpUW1tbXKz88PrjmdTuXn56u6ujrsey699FLV1tYGA9+hQ4e0efNmXX31\\\n", - "1dGeAhhAAAQAAG14PB4lJyeHbB6PJ+y+jY2Nam1tVWpqash6amqq6uvrw77nxhtv1PLly3XZZZcp\\\n", - "Pj5eo0eP1vTp0xkBdxECIAAAVhKjm0BKS0vV1NQUspWWlsaszG3btmnFihVas2aNdu7cqU2bNunF\\\n", - "F1/Uj370o5h9BtrHg6ABALCSGD0I2uVyyeVyGdo3JSVFcXFxamhoCFlvaGhQWlpa2Pc88MADmjt3\\\n", - "rm677TZJ0kUXXaTm5mbdfvvtuv/+++V00qPqTJxdAAAQlYSEBGVnZ8vr9QbX/H6/vF6v8vLywr7n\\\n", - "448/bhPy4uLiJEmBQKDzioUkOoAAACAG3G635s2bp5ycHE2ePFnl5eVqbm5WcXGxJKmoqEjp6enB\\\n", - "6whnzZqllStX6uKLL1Zubq4OHjyoBx54QLNmzQoGQXQeAiAAAFYSwSNcYqGwsFDHjx/XsmXLVF9f\\\n", - "r6ysLFVVVQVvDKmrqwvp+C1dulQOh0NLly7V+++/r8GDB2vWrFl6+OGHTanfbhwB+qxRefzPj5ld\\\n", - "Qo+1ZR9/9KJh0r/jLaH5Y/7sRWrihfzBi8ZPr1nU6Z/xpVseiclx6jYsiclx0D1xDSAAAIDNEAAB\\\n", - "AABshmsAAQCwEqb0MIAOIAAAgM3QAQQAwEroAMIAAiAAAJZCAsT5MQIGAACwGTqAAABYCQ1AGEAA\\\n", - "BADASgiAMIARMAAAgM3QAQQAwEL4oUMYQQAEAMBKGAHDAEbAAAAANkMABAAAsBlGwAAAWImDGTDO\\\n", - "jw7gP/zf//2fbr311nPu4/P5dOrUqZDtbMsnXVQhAAAGOGK0wdIIgP/wwQcf6Omnnz7nPh6PR8nJ\\\n", - "ySHb1o1bu6hCAACA2LDNCPiFF1445+uHDh067zFKS0vldrtD1tbVPhVVXQAAAF3NNgHwuuuuk8Ph\\\n", - "UCDQ/hOSHOe5bsLlcsnlcoWsxSfY5hQCAHoCxrcwwDYj4KFDh2rTpk3y+/1ht507d5pdIgAAQJew\\\n", - "TQDMzs5WbW1tu6+frzsIAECPwE0gMMA288t7771Xzc3N7b4+ZswYvfLKK11YEQAAgDlsEwCnTp16\\\n", - "ztf79u2radOmdVE1AAAA5rFNAAQAwBYY38IAAiAAABZyvidaAJKNbgIBAADApwiAAAAANsMIGAAA\\\n", - "K2ECDAMIgAAAWAkBEAYwAgYAALAZAiAAAIDNMAIGAMBCeAoMjKADCAAAYDMEQAAAEBOrV69WRkaG\\\n", - "EhMTlZubq5qamnb3nT59uhwOR5tt5syZXVixfREAAQCwEkeMtg6qrKyU2+1WWVmZdu7cqUmTJqmg\\\n", - "oEDHjh0Lu/+mTZt09OjR4LZnzx7FxcXp+uuv7/iHo8MIgAAAIGorV67U/PnzVVxcrMzMTFVUVKhP\\\n", - "nz5av3592P0HDhyotLS04LZ161b16dOHANhFCIAAAFhJjDqAPp9Pp06dCtl8Pl/Yj2xpaVFtba3y\\\n", - "8/ODa06nU/n5+aqurjZU9rp16zRnzhz17ds3km+NDiIAAgBgIbGaAHs8HiUnJ4dsHo8n7Gc2Njaq\\\n", - "tbVVqampIeupqamqr68/b801NTXas2ePbrvttgi+MSLBY2AAALCSGD0HprS0VG63O2TN5XLF5Nhf\\\n", - "tG7dOl100UWaPHlypxwfbREAAQBAGy6Xy3DgS0lJUVxcnBoaGkLWGxoalJaWds73Njc367nnntPy\\\n", - "5csjrhUdxwgYAAALcThis3VEQkKCsrOz5fV6g2t+v19er1d5eXnnfO9///d/y+fz6eabb47k6yJC\\\n", - "dAABAEDU3G635s2bp5ycHE2ePFnl5eVqbm5WcXGxJKmoqEjp6eltriNct26drrvuOg0aNMiMsm2L\\\n", - "AAgAAKJWWFio48ePa9myZaqvr1dWVpaqqqqCN4bU1dXJ6QwdPB44cEDbt2/XH//4RzNKtjUCIAAA\\\n", - "VmLibwGXlJSopKQk7Gvbtm1rszZ27FgFAoFOrgrhEAABALAQE/MfehBuAgEAALAZOoAAAFgJLUAY\\\n", - "QAAEAMBCYvQcaFgcI2AAAACbIQACAADYDCNgAAAshBEwjKADCAAAYDMEQAAAAJthBByl5rNmV9Bz\\\n", - "NX3oN7uEHq2u9ozZJfRYcUPjzS6hxxr7Jc5dd8cIGEYQAAEAsBICIAxgBAwAAGAzdAABALAQBy1A\\\n", - "GEAABADASsh/MIARMAAAgM3QAQQAwEJoAMIIAiAAABbCY2BgBCNgAAAAm6EDCACAldABhAEEQAAA\\\n", - "LIT8ByMIgAAAWAkJEAZwDSAAAIDN0AEEAMBCaADCCAIgAAAWwmNgYAQjYAAAAJuhAwgAgJXQAYQB\\\n", - "BEAAACyE/AcjGAEDAADYDB1AAAAshJtAYAQdQAAAAJshAAIAANgMI2AAACyEETCMoAMIAICVOGK0\\\n", - "RWD16tXKyMhQYmKicnNzVVNTc879T548qYULF2ro0KFyuVz6yle+os2bN0f24egQOoAAAFiIw6QH\\\n", - "wVRWVsrtdquiokK5ubkqLy9XQUGBDhw4oCFDhrTZv6WlRVdddZWGDBmi559/Xunp6Tpy5Ij69+/f\\\n", - "9cXbEAEQAABEbeXKlZo/f76Ki4slSRUVFXrxxRe1fv16LVmypM3+69ev1wcffKAdO3YoPj5ekpSR\\\n", - "kdGVJdsaI2AAACzE4YjN1hEtLS2qra1Vfn5+cM3pdCo/P1/V1dVh3/PCCy8oLy9PCxcuVGpqqiZM\\\n", - "mKAVK1aotbU1mq8Pg+gAAgCANnw+n3w+X8iay+WSy+Vqs29jY6NaW1uVmpoasp6amqr9+/eHPf6h\\\n", - "Q4f08ssv66abbtLmzZt18OBBLViwQGfPnlVZWVnsvgjCogMIAADa8Hg8Sk5ODtk8Hk/Mju/3+zVk\\\n", - "yBA9+eSTys7OVmFhoe6//35VVFTE7DPQPjqAAABYSKweA1NaWiq32x2yFq77J0kpKSmKi4tTQ0ND\\\n", - "yHpDQ4PS0tLCvmfo0KGKj49XXFxccG38+PGqr69XS0uLEhISovwGOBc6gAAAWEisngLjcrmUlJQU\\\n", - "srUXABMSEpSdnS2v1xtc8/v98nq9ysvLC/ueKVOm6ODBg/L7/cG1d955R0OHDiX8dQECIAAAiJrb\\\n", - "7dbatWv19NNPa9++fbrzzjvV3NwcvCu4qKhIpaWlwf3vvPNOffDBB1q0aJHeeecdvfjii1qxYoUW\\\n", - "Llxo1lewFUbAAABYiUm/BFJYWKjjx49r2bJlqq+vV1ZWlqqqqoI3htTV1cnp/KzvNGLECG3ZskWL\\\n", - "Fy/WxIkTlZ6erkWLFum+++4z5wvYDAEQAAALMfOn4EpKSlRSUhL2tW3btrVZy8vL06uvvtrJVSEc\\\n", - "RsAAAAA202M6gG+//bbq6urU0tISsv7Nb37TpIoAAOh+TGwAogfp9gHw0KFDmj17tnbv3i2Hw6FA\\\n", - "ICBJcvyjx230ieGnT59WbW2tBg4cqMzMzJDXzpw5o1/96lcqKio65zHCPRTzk5ZP1Cuh259GAIBd\\\n", - "kABhQLcfAS9atEgXXnihjh07pj59+mjv3r3605/+pJycnLDXE4TzzjvvaPz48br88st10UUXadq0\\\n", - "aTp69Gjw9aampuBdSucS7qGYrzy7NdKvBgBAzMXqMTCwtm4fAKurq7V8+XKlpKTI6XTK6XTqsssu\\\n", - "k8fj0d13323oGPfdd58mTJigY8eO6cCBA7rgggs0ZcoU1dXVdaiW0tJSNTU1hWxX3HhVJF8LAADA\\\n", - "NN1+dtna2qoLLrhA0qdPGv/b3/6msWPHauTIkTpw4IChY+zYsUMvvfSSUlJSlJKSot///vdasGCB\\\n", - "pk6dqldeeUV9+/Y1dJxwv4HI+BcA0J2YeRcweo5u3wGcMGGC3nzzTUlSbm6uHn30Uf35z3/W8uXL\\\n", - "NWrUKEPHOH36tHr1+iyoORwOPfHEE5o1a5amTZumd955p1NqBwCgyzEDhgHdvn21dOlSNTc3S5KW\\\n", - "L1+ua665RlOnTtWgQYNUWVlp6Bjjxo3TG2+8ofHjx4esP/7445K4kxgAANhLtw+ABQUFwb8eM2aM\\\n", - "9u/frw8++EADBgwI3gl8PrNnz9Z//dd/ae7cuW1ee/zxx+X3+1VRURGzmgEAMAvNOxjR7UfA4Qwc\\\n", - "ONBw+JM+vXlj8+bN7b6+Zs2akB+jBgCgp3I4YrPB2npkAAQAAEDkuv0IGAAAdATtO5wfARAAAAth\\\n", - "fAsjGAEDAADYDB1AAACshA4gDCAAAgBgIeQ/GEEABADAQrgGEEZwDSAAAIDNEAABAABshhEwAAAW\\\n", - "wggYRtABBAAAsBk6gAAAWAgNQBhBAAQAwEpIgDCAETAAAIDN0AEEAMBCuAkERhAAAQCwEPIfjCAA\\\n", - "AgBgJSRAGMA1gAAAADZDBxAAAAuhAQgjCIAAAFgIN4HACEbAAAAANkMHEAAAK6EFCAMIgAAAWAjx\\\n", - "D0YwAgYAADGxevVqZWRkKDExUbm5uaqpqWl33w0bNsjhcIRsiYmJXVitvREAAQCwEkeMtg6qrKyU\\\n", - "2+1WWVmZdu7cqUmTJqmgoEDHjh1r9z1JSUk6evRocDty5EjHPxgRIQACAGAhJuU/rVy5UvPnz1dx\\\n", - "cbEyMzNVUVGhPn36aP369e3X6nAoLS0tuKWmpkbwyYgEARAAAESlpaVFtbW1ys/PD645nU7l5+er\\\n", - "urq63fd99NFHGjlypEaMGKFrr71We/fu7YpyIQIgAACW4nDEZvP5fDp16lTI5vP5wn5mY2OjWltb\\\n", - "23TwUlNTVV9fH/Y9Y8eO1fr16/W73/1OzzzzjPx+vy699FL99a9/jfk5QVsEQAAArCRGM2CPx6Pk\\\n", - "5OSQzePxxKzMvLw8FRUVKSsrS9OmTdOmTZs0ePBg/ed//mfMPgPt4zEwAABYSKweA1NaWiq32x2y\\\n", - "5nK5wu6bkpKiuLg4NTQ0hKw3NDQoLS3N0OfFx8fr4osv1sGDByMrGB1CAIxSPD3UiMXF8bSqaPS9\\\n", - "MMHsEnqslEH8gxupj86YXQG6isvlajfwfVFCQoKys7Pl9Xp13XXXSZL8fr+8Xq9KSkoMHaO1tVW7\\\n", - "d+/W1VdfHWnJ6AACIAAAFmLWD4G43W7NmzdPOTk5mjx5ssrLy9Xc3Kzi4mJJUlFRkdLT04Nj5OXL\\\n", - "l+tf//VfNWbMGJ08eVI//vGPdeTIEd12223mfAGbIQACAICoFRYW6vjx41q2bJnq6+uVlZWlqqqq\\\n", - "4I0hdXV1cjo/677//e9/1/z581VfX68BAwYoOztbO3bsUGZmpllfwVYcgUAgYHYRPdnKPz1mdgk9\\\n", - "1u93+c0uoUc7drzV7BJ6LEbAkRs5lHMXjV8ULur0z5ixpjwmx/njgu/F5DjonugAAgBgIWaNgNGz\\\n", - "EAABALAQAiCMoJcPAABgMwRAAAAAm2EEDACAhTAChhF0AAEAAGyGDiAAABZCAxBGEAABALASEiAM\\\n", - "IAACAGAhXAMII7gGEAAAwGboAAIAYCE0AGEEARAAACthBgwDGAEDAADYDB1AAAAshP4fjCAAAgBg\\\n", - "IUyAYQQjYAAAAJuhAwgAgIXQAYQRdAABAABshgAIAABgM4yAAQCwEEbAMIIACACAhZD/YAQBEAAA\\\n", - "KyEBwgCuAQQAALAZOoAAAFgIDUAYQQAEAMBCuAkERjACBgAAsBk6gAAAWAgdQBhBBxAAAMBmCIAA\\\n", - "AAA2wwgYAAALYQQMIwiAAABYCPkPRjACBgAAsBnbdAD37dunV199VXl5eRo3bpz279+vVatWyefz\\\n", - "6eabb9aVV1553mP4fD75fL6QtU9aPlGvBNucRgBAN8cIGEbYogNYVVWlrKws3XPPPbr44otVVVWl\\\n", - "yy+/XAcPHtSRI0c0Y8YMvfzyy+c9jsfjUXJycsjm/eXWLvgGAAAY43DEZovE6tWrlZGRocTEROXm\\\n", - "5qqmpsbQ+5577jk5HA5dd911kX0wOswWAXD58uW69957deLECf385z/XjTfeqPnz52vr1q3yer26\\\n", - "99579cgjj5z3OKWlpWpqagrZvnbTVV3wDQAA6N4qKyvldrtVVlamnTt3atKkSSooKNCxY8fO+b7D\\\n", - "hw/rnnvu0dSpU7uoUkg2CYB79+7VLbfcIkn6zne+ow8//FDf/va3g6/fdNNNeuutt857HJfLpaSk\\\n", - "pJCN8S8AANLKlSs1f/58FRcXKzMzUxUVFerTp4/Wr1/f7ntaW1t100036aGHHtKoUaO6sFrYIgBK\\\n", - "kuMf/Wyn06nExEQlJycHX7vgggvU1NRkVmkAAMSMGSPglpYW1dbWKj8/P7jmdDqVn5+v6urqdt+3\\\n", - "fPlyDRkyRN/97ncj/bqIkC3aVxkZGXr33Xc1evRoSVJ1dbW+9KUvBV+vq6vT0KFDzSoPAICYidU9\\\n", - "IOFufHS5XHK5XG32bWxsVGtrq1JTU0PWU1NTtX///rDH3759u9atW6ddu3bFqGJ0hC06gHfeeada\\\n", - "W1uDfz9hwgT16vVZ9v3DH/5g6C5gAADsItyNjx6PJybH/vDDDzV37lytXbtWKSkpMTkmOsYWHcA7\\\n", - "7rjjnK+vWLGiiyoBAKBzxeoxMKWlpXK73SFr4bp/kpSSkqK4uDg1NDSErDc0NCgtLa3N/u+9954O\\\n", - "Hz6sWbNmBdf8fr8kqVevXjpw4EBwaofOYYsACACAXcRqBNzeuDechIQEZWdny+v1Bh/l4vf75fV6\\\n", - "VVJS0mb/cePGaffu3SFrS5cu1YcffqhVq1ZpxIgRUdePcyMAAgCAqLndbs2bN085OTmaPHmyysvL\\\n", - "1dzcrOLiYklSUVGR0tPT5fF4lJiYqAkTJoS8v3///pLUZh2dgwAIAICVmPRLIIWFhTp+/LiWLVum\\\n", - "+vp6ZWVlqaqqKnhjSF1dnZxOW9x60CMQAAEAsBAzfwqupKQk7MhXkrZt23bO927YsCH2BaFdRHEA\\\n", - "AACboQMIAICFmNgARA9CAAQAwELMHAGj5yAAAgBgIeQ/GME1gAAAADZDBxAAAAthBAwjCIAAAFgI\\\n", - "+Q9GMAIGAACwGTqAAABYCCNgGEEABADASgiAMIARMAAAgM3QAQQAwEJoAMIIAiAAABbCNYAwghEw\\\n", - "AACAzdABBADAQmgAwggCIAAAFsIIGEYQAAEAsBDyH4zgGkAAAACboQMIAICFMAKGEQRAAAAshAAI\\\n", - "IxgBAwAA2AwdQAAALIQGIIwgAAIAYCGMgGEEI2AAAACboQMIAICF0ACEEQRAAAAshBEwjCAARqml\\\n", - "1ewKeq7BA/i3VDS+MoJ/fCPV9LHZFfRcAbMLABAT/BcEAAAL4X+tYQQBEAAAC2EEDCMIgAAAWAj5\\\n", - "D0bwGBgAAACboQMIAICFMAKGEQRAAAAshPwHIxgBAwCAmFi9erUyMjKUmJio3Nxc1dTUtLvvpk2b\\\n", - "lJOTo/79+6tv377KysrSxo0bu7BaeyMAAgBgIQ5HbLaOqqyslNvtVllZmXbu3KlJkyapoKBAx44d\\\n", - "C7v/wIEDdf/996u6ulpvvfWWiouLVVxcrC1btkR5BmAEARAAAAsxKwCuXLlS8+fPV3FxsTIzM1VR\\\n", - "UaE+ffpo/fr1YfefPn26Zs+erfHjx2v06NFatGiRJk6cqO3bt0d5BmAEARAAALTh8/l06tSpkM3n\\\n", - "84Xdt6WlRbW1tcrPzw+uOZ1O5efnq7q6+ryfFQgE5PV6deDAAV1++eUx+w5oHwEQAAALccRo83g8\\\n", - "Sk5ODtk8Hk/Yz2xsbFRra6tSU1ND1lNTU1VfX99urU1NTerXr58SEhI0c+ZM/exnP9NVV10VxbeH\\\n", - "UdwFDACAhThi9ByY0tJSud3ukDWXyxWTY//TBRdcoF27dumjjz6S1+uV2+3WqFGjNH369Jh+Dtoi\\\n", - "AAIAgDZcLpfhwJeSkqK4uDg1NDSErDc0NCgtLa3d9zmdTo0ZM0aSlJWVpX379snj8RAAuwAjYAAA\\\n", - "LCRWI+COSEhIUHZ2trxeb3DN7/fL6/UqLy/P8HH8fn+71xkitugAAgBgIWb9Eojb7da8efOUk5Oj\\\n", - "yZMnq7y8XM3NzSouLpYkFRUVKT09PXgdocfjUU5OjkaPHi2fz6fNmzdr48aNeuKJJ8z5AjZDAAQA\\\n", - "wELM+iWQwsJCHT9+XMuWLVN9fb2ysrJUVVUVvDGkrq5OTudng8fm5mYtWLBAf/3rX9W7d2+NGzdO\\\n", - "zzzzjAoLC036BvbiCAQCAbOL6MkeeeUxs0vosXb+lT960RjQz+wKeq6mj82uoOeKp20QlY2Fizr9\\\n", - "M364JTb/XVpRcHdMjoPuiX+UAQCwECc/BgwDCIAAAFgI+Q9GcBcwAACAzdABBADAQsy6Cxg9CwEQ\\\n", - "AAALIf/BCEbAAAAANkMHEAAAC2EEDCMIgAAAWAj5D0YwAgYAALAZOoAAAFgII2AYQQAEAMBCyH8w\\\n", - "ggAIAICF8FNwMIJrAAEAAGyGDiAAABZCAxBGEAABALAQbgKBEYyAAQAAbMbWHcBAICAH/6sEALAQ\\\n", - "/qsGI2zdAXS5XNq3b5/ZZQAAEDMOR2w2WJstOoButzvsemtrqx555BENGjRIkrRy5cpzHsfn88nn\\\n", - "84WsfdLyiXol2OI0AgAAi7BFcikvL9ekSZPUv3//kPVAIKB9+/apb9++hkbBHo9HDz30UMja14q+\\\n", - "rvxbvhHLcgEAiBjNOxhhiwC4YsUKPfnkk/rJT36iK6+8MrgeHx+vDRs2KDMz09BxSktL23QTH6t+\\\n", - "Kqa1AgAQDca3MMIW1wAuWbJElZWVuvPOO3XPPffo7NmzER3H5XIpKSkpZGP8CwAAehpbBEBJuuSS\\\n", - "S1RbW6vjx48rJydHe/bs4Q5gAIDlcBMIjLBV+6pfv356+umn9dxzzyk/P1+tra1mlwQAQEzZprOD\\\n", - "qNgqAP7TnDlzdNlll6m2tlYjR440uxwAAGKG7h2MsGUAlKThw4dr+PDhZpcBAADQ5WwbAAEAsCIa\\\n", - "gDCCAAgAgIUwAoYRXCsKAABgM3QAAQCwEBqAMIIACACAhTAChhGMgAEAAGyGDiAAABZCAxBG0AEE\\\n", - "AMBCzPwpuNWrVysjI0OJiYnKzc1VTU1Nu/uuXbtWU6dO1YABAzRgwADl5+efc3/EFgEQAABErbKy\\\n", - "Um63W2VlZdq5c6cmTZqkgoICHTt2LOz+27Zt0w033KBXXnlF1dXVGjFihGbMmKH333+/iyu3JwIg\\\n", - "AAAW4ojR1lErV67U/PnzVVxcrMzMTFVUVKhPnz5av3592P1/+ctfasGCBcrKytK4ceP01FNPye/3\\\n", - "y+v1RvDp6CiuAQQAwEJidRewz+eTz+cLWXO5XHK5XG32bWlpUW1trUpLS4NrTqdT+fn5qq6uNvR5\\\n", - "H3/8sc6ePauBAwdGVzgMoQMIAICFOGO0eTweJScnh2wejyfsZzY2Nqq1tVWpqakh66mpqaqvrzdU\\\n", - "93333adhw4YpPz+/g98YkaADCAAA2igtLZXb7Q5ZC9f9i4VHHnlEzz33nLZt26bExMRO+QyEIgAC\\\n", - "AGAhsRoBtzfuDSclJUVxcXFqaGgIWW9oaFBaWto53/sf//EfeuSRR/TSSy9p4sSJEdeLjmEEDACA\\\n", - "hZhxE0hCQoKys7NDbuD45w0deXl57b7v0Ucf1Y9+9CNVVVUpJyeng5+KaNABBAAAUXO73Zo3b55y\\\n", - "cnI0efJklZeXq7m5WcXFxZKkoqIipaenB68j/Pd//3ctW7ZMzz77rDIyMoLXCvbr10/9+vUz7XvY\\\n", - "BQEQAAALMeu3gAsLC3X8+HEtW7ZM9fX1ysrKUlVVVfDGkLq6Ojmdnw0en3jiCbW0tOjb3/52yHHK\\\n", - "ysr04IMPdmXptkQABADAQsz8KbiSkhKVlJSEfW3btm0hf3/48OHOLwjt4hpAAAAAm6EDCACAhZg1\\\n", - "AkbPQgAEAMBCCIAwghEwAACAzdABBADAQmgAwggCIAAAFsIIGEYQAAEAsBCu7YIR/DkBAACwGTqA\\\n", - "AABYCCNgGEEABADAQhwKmF0CegBGwAAAADZDBxAAAAthBAwjHIFAgF6xRfl8Pnk8HpWWlsrlcpld\\\n", - "To/CuYsc5y46nL/Ice4A4wiAFnbq1CklJyerqalJSUlJZpfTo3DuIse5iw7nL3KcO8A4rgEEAACw\\\n", - "GQIgAACAzRAAAQAAbIYAaGEul0tlZWVcDB0Bzl3kOHfR4fxFjnMHGMdNIAAAADZDBxAAAMBmCIAA\\\n", - "AAA2QwAEAACwGQIgAACAzRAAbaSurk4zZ85Unz59NGTIEN1777365JNPzC6rx7j77ruVnZ0tl8ul\\\n", - "rKwss8vpMd58803dcMMNGjFihHr37q3x48dr1apVZpfVY5w4cUJf//rXNWzYMLlcLo0YMUIlJSU6\\\n", - "deqU2aX1KCdOnNDw4cPlcDh08uRJs8sBTNfL7ALQNVpbWzVz5kylpaVpx44dOnr0qIqKihQfH68V\\\n", - "K1aYXV6Pceutt+q1117TW2+9ZXYpPUZtba2GDBmiZ555RiNGjNCOHTt0++23Ky4uTiUlJWaX1+05\\\n", - "nU5de+21+rd/+zcNHjxYBw8e1MKFC/XBBx/o2WefNbu8HuO73/2uJk6cqPfff9/sUoDuIYAe6Q9/\\\n", - "+ENgypQpgeTk5MDAgQMDM2fODBw8eLDd/Tdv3hxwOp2B+vr64NoTTzwRSEpKCvh8vq4ouVvp6Pn7\\\n", - "vLKyssCkSZM6t8BuLJpz908LFiwIXHHFFZ1UYfcWi/O3atWqwPDhwzupwu4r0nO3Zs2awLRp0wJe\\\n", - "rzcgKfD3v/+984sFujlGwD1Uc3Oz3G633njjDXm9XjmdTs2ePVt+vz/s/tXV1brooouUmpoaXCso\\\n", - "KNCpU6e0d+/eriq72+jo+cNnYnHumpqaNHDgwE6ssvuK9vz97W9/06ZNmzRt2rROrrT7ieTcvf32\\\n", - "21q+fLl+8YtfyOnkP3lAkNkJFLFx/PjxgKTA7t27w74+f/78wIwZM0LWmpubA5ICmzdv7ooSu7Xz\\\n", - "nb/Ps3sH8Is6cu4CgUDgz3/+c6BXr16BLVu2dHJlPYPR8zdnzpxA7969A5ICs2bNCpw+fbqLKuy+\\\n", - "znfuzpw5E5g4cWJg48aNgUAgEHjllVfoAAL/wP8O9VDvvvuubrjhBo0aNUpJSUnKyMiQ9OmNHt/4\\\n", - "xjfUr18/9evXT//yL/9ibqHdFOcvctGcuz179ujaa69VWVmZZsyY0cWVdw+Rnr+f/vSn2rlzp373\\\n", - "u9/pvffek9vtNqF6c3X03JWWlmr8+PG6+eabTawa6J64CaSHmjVrlkaOHKm1a9dq2LBh8vv9mjBh\\\n", - "glpaWvTUU0/p9OnTkqT4+HhJUlpammpqakKO0dDQEHzNbjp6/vCZSM/d22+/ra997Wu6/fbbtXTp\\\n", - "UjNK7xYiPX9paWlKS0vTuHHjNHDgQE2dOlUPPPCAhg4dasbXMEVHz93LL7+s3bt36/nnn5ckBf7x\\\n", - "y6cpKSm6//779dBDD5nzRYBugADYA504cUIHDhzQ2rVrNXXqVEnS9u3bg6+np6e3eU9eXp4efvhh\\\n", - "HTt2TEOGDJEkbd26VUlJScrMzOyawruJSM4fPhXpudu7d6+uvPJKzZs3Tw8//HCX1NodxerP3j+v\\\n", - "efP5fLEvspuK5Nz9+te/DoZCSXr99dd166236n/+5380evTozi8a6MYIgD3QgAEDNGjQID355JMa\\\n", - "OnSo6urqtGTJknO+Z8aMGcrMzNTcuXP16KOPqr6+XkuXLtXChQvlcrm6qPLuIZLzJ0kHDx7URx99\\\n", - "pPr6ep0+fVq7du2SJGVmZiohIaGTq+4eIjl3e/bs0ZVXXqmCggK53W7V19dLkuLi4jR48OCuKLvb\\\n", - "iOT8bd68WQ0NDbrkkkvUr18/7d27V/fee6+mTJkSHIHaQSTn7oshr7GxUZI0fvx49e/fv7NKBXoG\\\n", - "sy9CRGS2bt0aGD9+fMDlcgUmTpwY2LZtW0BS4De/+U277zl8+HDgG9/4RqB3796BlJSUwPe///3A\\\n", - "2bNnu67obiSS8zdt2rSApDbbX/7yly6ruzvo6LkrKysLe95GjhzZpXV3Fx09fy+//HIgLy8vkJyc\\\n", - "HEhMTAx8+ctfDtx33322vJEhkn9uP4+bQIDPOAKBf1wUAQAAAFvgLmAAAACbIQACAADYDAEQAADA\\\n", - "ZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQQMxUVVXpsssu\\\n", - "U//+/TVo0CBdc801eu+998wuCwDwBQRAADHT3Nwst9utN954Q16vV06nU7Nnz5bf7ze7NADA5zgC\\\n", - "gUDA7CIAWFNjY6MGDx6s3bt3a8KECWaXAwD4BzqAAGLm3Xff1Q033KBRo0YpKSlJGRkZkqS6ujpz\\\n", - "CwMAhOhldgEArGPWrFkaOXKk1q5dq2HDhsnv92vChAlqaWkxuzQAwOcQAAHExIkTJ3TgwAGtXbtW\\\n", - "U6dOlSRt377d5KoAAOEQAAHExIABAzRo0CA9+eSTGjp0qOrq6rRkyRKzywIAhME1gABiwul06rnn\\\n", - "nlNtba0mTJigxYsX68c//rHZZQEAwuAuYAAAAJuhAwgAAGAzBEAAAACbIQACAADYDAEQAADAZgiA\\\n", - "AAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZv4fEn4XLsrj\\\n", - "DT0AAAAASUVORK5CYII=\\\n", + "AAAPYQGoP6dpAAAieUlEQVR4nO3df5CddX0v8PcmhCOU7C6BZqWMYFsKqfaGBZHCLoupqetehQu9\\\n", + "sTUKYSjVRnqlRbST2T/U0FrWNh0l3t7RdG5RYORqjVAElZQFQ5ddHMhMs2JwvGC1pWEMt2TdjRQO\\\n", + "Cdn7B7d7PWzIPklOdsnzvF7Mdybn+Z7nnO9zJpl58/k8P1omJycnAwBAZcyb6wUAADC7BEAAgIoR\\\n", + "AAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBi\\\n", + "BEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACo\\\n", + "GAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEA\\\n", + "KkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQmGbt2rV5/vnnp15/7GMfyxe/+MU5XNF0Dz30\\\n", + "UDo7O9PZ2Zk3vvGNWb16der1+lwvC+CI0DI5OTk514sAXl1aWloyNjaW9vb2uV7KK/r3f//3LFiw\\\n", + "IAsWLMjevXuzYsWKXHjhhfnQhz4010sDeNVTAYQSu+yyy3LOOedk6dKleec735kf//jHM+7zgQ98\\\n", + "IEnS09OTzs7OPP3007nyyitz4403JnmpOvg7v/M7ufjii3P66afnoosuyne/+928/e1vz+mnn573\\\n", + "vOc92bt3b5Jk165def/7359zzz03S5cuze///u/nhRdeaMqxHXvssVmwYEGS5IUXXshzzz2XlpaW\\\n", + "pnw2QNkJgFBiN954Y7Zs2ZLvfOc76enpydq1a6fm3vGOd2TLli3T9vnc5z6XJBkaGsrWrVuzePHi\\\n", + "ae/ZsmVLbrnllnz/+9/Prl278r73vS8bN27MY489lu9973v55je/mST58Ic/nJ6enjz88MMZHR3N\\\n", + "3r17s379+mmft2vXrql27svH29/+9lc8vh/96Ec588wzc+KJJ6atrS1/8Ad/cKA/EUAlHTXXCwAO\\\n", + "n9tuuy233nprnn/++Tz//PM58cQTp+a+8Y1vHPTn9vb25vjjj0+SnH322anValm4cGGS5Kyzzsrj\\\n", + "jz+eJPm7v/u7PPTQQ/nUpz6VJHnuuecyf/78aZ+3cOHCbN269YDX8frXvz6jo6P56U9/mssvvzy3\\\n", + "3357Vq5ceZBHBVAdAiCU1IMPPpjPfOYzeeihh7J48eJ87Wtfy8c+9rGmfPZrXvOaqT/Pnz9/2us9\\\n", + "e/YkSSYnJ/PVr341p59++n4/b9euXenp6dnnXEdHRzZt2rTf/Y877risXLkyX/ziFwVAgAIEQCip\\\n", + "sbGxLFy4MCeccEJeeOGFbNiwofC+CxcuzPj4+CFfBHLppZfmz//8z7Nhw4YcddRRGRsbyzPPPJPT\\\n", + "Tjtt2vcdaAXwiSeeyKmnnpoFCxbkhRdeyB133JGlS5ce0noBqsI5gFBSfX19OeOMM3LGGWdMXdDx\\\n", + "s17pHMDkpXP33va2t01dBHKwPv3pT+eYY45JZ2dnli5dmuXLl+dHP/rRQX/ez7r//vtz1lln5cwz\\\n", + "z8xZZ52Vjo6OfPSjH23KZwOUndvAAABUjAogAEDFCIAAABUjAAIAVIwACABQMQIgAHBIxsfHc+65\\\n", + "5+a4447Ld7/73Ya5F198MVdddVV6enpy7bXXzs0CmUYABAAOybHHHpuvf/3rede73jVt7u67784v\\\n", + "/MIvZGhoKM8++2weeuihOVghLycAAgCHZMGCBfn5n//5fc6NjIykt7c3yUv3Jx0eHp7NpfEKPAkE\\\n", + "AJimXq+nXq83bKvVaqnVagf0OWNjY2ltbU2StLW1ZefOnU1bIwdPADxEawc/M9dLAOAIsfY3//Cw\\\n", + "f8d/OvvDTfmcFf9lYa6//vqGbR//+Mezdu3aA/qc9vb2TExMJHnpXMFFixY1ZX0cGi1gAGCa/v7+\\\n", + "jI+PN4z+/v4D/pyurq4MDg4mSTZt2pTu7u5mL5WDIAACQJm0NGfUarW0trY2jP21f9/xjnfk7//+\\\n", + "7/P+978/X/jCF7J69eokyUUXXZR/+Zd/SU9PT17zmtfk/PPPP0wHzoHQAgYADtk3vvGNhtdXXnll\\\n", + "kuSoo47KF77whdlfEPslAAJAmbS0zPUKOAIIgABQJvIfBTgHEACgYlQAAaBMVAApQAAEgFKRAJmZ\\\n", + "FjAAQMWoAAJAiUwqAFKAAAgAZSIAUoAWMABAxagAAkCZuBE0BagAAgBUjAogAJSJAiAFqAACAFSM\\\n", + "CiAAlIlzAClAAASAMpH/KEALGACgYlQAAaBEJud6ARwRBEAAKBPnAFKAFjAAQMWoAAJAmSgAUoAA\\\n", + "CAClIgEyMy1gAICKUQEEgDJRAKQAARAAykQApAABEABKZNJtYCjAOYAAABUjAAIAVIwWMACUiRYw\\\n", + "BagAAgBUjAogAJSJAiAFCIAAUCKTc70AjgiVDIAvvvhiNm7cmOHh4ezcuTOLFi1Kd3d3VqxYkaOO\\\n", + "quRPAgBUSCXTzlVXXZUzzjgjV155Zdra2jI+Pp5Nmzbld3/3d3Prrbe+4n71ej31er1h254X9uSo\\\n", + "oyv5MwLwauQiEAqoZHL54Q9/mJtvvrlh29lnn50LL7xwv/sNDAzk+uuvb9j2llV9WXbFf276GgHg\\\n", + "oMh/FFDJANjV1ZUrrrgivb29aW1tzcTERAYHB3Peeeftd7/+/v5cd911Ddv+4sH/eTiXCgDQdJUM\\\n", + "gJ/85Cfzne98JyMjI3nyySfT3t6eD33oQznzzDP3u1+tVkutVmvYpv0LwKvKHLSA16xZk5GRkbz+\\\n", + "9a/PTTfdlAULFiRJJiYmcvnll2fXrl0555xzsm7dullfG/tW2fsALl26NB/4wAfS39+fq6++esbw\\\n", + "BwBHgskmjaJGR0ezffv2DA0NZcmSJdm4cePU3F//9V/nkksuybe+9a08++yzefjhhw/5+GiOygZA\\\n", + "ACilluaMer2eiYmJhvHyCyGTZGRkJL29vUmSvr6+DA8PT8394Ac/SGdnZ5KXzrX/h3/4h8NxxBwE\\\n", + "ARAAmGZgYCBtbW0NY2BgYNr7xsbG0tramiRpa2vLzp07p+be8IY35P7770+SDA4OZmxsbHYWz4wE\\\n", + "QAAok5aWpoz+/v6Mj483jP7+/mlf197enomJiSTJ+Ph4Fi1aNDX3vve9L9/73vfym7/5mznuuOPy\\\n", + "2te+dtZ+BvZPAAQApqnVamltbW0YL78QMnnpzhqDg4NJkk2bNqW7u3tq7phjjslNN900NX/RRRfN\\\n", + "zuKZkQAIABy0zs7OdHR0pKenJ9u2bcuKFSuyevXqJMnWrVuzbNmyvPWtb013d3d+8Rd/cY5Xy39w\\\n", + "DxMAKJHJObgNzMtv77Jhw4YkL4XDzZs3z/p6mJkACABl4kkgFKAFDABQMQIgAEDFaAEDQInMxTmA\\\n", + "HHlUAAEAKkYFEADKRAGQAgRAACgTAZACBEAAKBUJkJk5BxAAoGJUAAGgRCYVAClAAASAMhEAKUAL\\\n", + "GACgYlQAAaBUlACZmQAIACXiHECK0AIGAKgYFUAAKBMVQAoQAAGgVCRAZqYFDABQMSqAAFAiLgKh\\\n", + "CAEQAMpEAKQAARAASkUCZGbOAQQAqBgVQAAoEwVAChAAAaBEXARCEVrAAAAVowIIAGWiAkgBAiAA\\\n", + "lIoEyMwEwEP08D/tneslAAAcEAEQAErERSAUIQACQJkIgBTgKmAAgIoRAAEAKkYLGADKpEUPmJkJ\\\n", + "gABQIi4CoQgtYACAihEAAYBDsmbNmvT09GTVqlXZvXv31PbnnnsuF198cd7ylrdk+fLl2bFjxxyu\\\n", + "kp8lAAJAmbQ0aRQ0Ojqa7du3Z2hoKEuWLMnGjRun5r75zW/m137t1/LAAw/kyiuvzN/8zd8c+vHR\\\n", + "FAIgADBNvV7PxMREw6jX69PeNzIykt7e3iRJX19fhoeHp+ZOO+20PPvss0mSsbGxnHjiibOzeGYk\\\n", + "AAJAmbS0NGUMDAykra2tYQwMDEz7urGxsbS2tiZJ2trasnPnzqm5X/mVX8ljjz2WN77xjfnc5z6X\\\n", + "9773vbP2M7B/AiAAlMhkk0Z/f3/Gx8cbRn9//7Tva29vz8TERJJkfHw8ixYtmpq7+eabc8EFF2Tb\\\n", + "tm35kz/5k/zpn/7pYTpqDpQACABMU6vV0tra2jBqtdq093V1dWVwcDBJsmnTpnR3d0/NTU5OTrV9\\\n", + "TzzxxIyPj8/O4pmRAAgAZTLLF4F0dnamo6MjPT092bZtW1asWJHVq1cnSd773vfm7rvvzrJly/LR\\\n", + "j3401113XXOOkUPmRtAAUCZzcCPodevWNbzesGFDkpfOCbznnntmf0HMSAUQAKBiBEAAgIrRAgaA\\\n", + "MmnxMGBmJgACQIlMyn8UoAUMAFAxAiAAQMVoAQNAmWgBU4AKIABAxagAAkCZqABSgAAIAKUiATIz\\\n", + "LWAAgIpRAQSAMlEApAABEADKRACkAC1gAICKUQEEgBKZnOsFcEQQAAGgTLSAKUALGACgYgRAAICK\\\n", + "0QIGgDJp0QNmZiqAP+OWW27Z73y9Xs/ExETDeHH3nllaHQAU0NKkQalVMgA+9thj08a2bduyYcOG\\\n", + "/e43MDCQtra2hvFP9wzO0qoBAJqjki3g8847L+9617syOdl4sfw///M/73e//v7+XHfddQ3bfvvW\\\n", + "v276+gAADqdKBsBf/dVfzbp163LCCSc0bH/nO9+53/1qtVpqtVrDtvkLKvkTAvBqpX1LAZVML/fe\\\n", + "e29+7ud+btr2r3/963OwGgCA2VXJANja2jrXSwCAw0MFkAIqeREIAECVCYAAABVTyRYwAJSWFjAF\\\n", + "CIAAUCItngRCAVrAAAAVIwACAFSMFjAAlIkOMAUIgABQJgIgBWgBAwBUjAAIAFAxAiAAlEhLS3PG\\\n", + "gVizZk16enqyatWq7N69e2r7HXfckWXLlmXZsmU55ZRTsn79+iYfLQdLAAQADtro6Gi2b9+eoaGh\\\n", + "LFmyJBs3bpya+63f+q1s3rw5mzdvzi//8i/n0ksvnbuF0kAABACmqdfrmZiYaBj1en3a+0ZGRtLb\\\n", + "25sk6evry/Dw8LT3/PjHP069Xs+pp5562NdNMQIgAJRJS3PGwMBA2traGsbAwMC0rxsbG0tra2uS\\\n", + "pK2tLTt37pz2nttvvz0rVqxo9pFyCNwGBgCYpr+/P9ddd13DtlqtNu197e3tmZiYSJKMj49n0aJF\\\n", + "096zcePGfP7znz88C+WgqAACQJk0qQJYq9XS2traMPYVALu6ujI4OJgk2bRpU7q7uxvmd+zYof37\\\n", + "KiQAAkCJNCn/FdbZ2ZmOjo709PRk27ZtWbFiRVavXj01r/376qQFDABlcqD3cGmCdevWNbzesGHD\\\n", + "1J+vvvrq2V4OBagAAgBUjAogAJTIHBQAOQKpAAIAVIwACABQMVrAAFAmWsAUIAACQInIfxShBQwA\\\n", + "UDEqgABQJkqAFCAAAkCJuA0MRWgBAwBUjAAIAFAxWsAAUCJawBShAggAUDECIABAxWgBH6In7vzJ\\\n", + "XC8BgCPF7x/+r9ACpggBEADKRACkAC1gAICKUQEEgBJpUQKkAAEQAMpE/qMALWAAgIpRAQSAElEA\\\n", + "pAgBEABKxG1gKEILGACgYlQAAaBMVAApQAAEgBKR/yhCAASAMpEAKcA5gAAAFaMCCAAlogBIEQIg\\\n", + "AJSI28BQhBYwAEDFqAACQJmoAFKAAAgAJSL/UYQWMABAxagAAkCJuAiEIlQAAQAqRgAEAA7JmjVr\\\n", + "0tPTk1WrVmX37t0Nc1/60pfy1re+NcuWLctDDz00Ryvk5QRAACiRlpbmjKJGR0ezffv2DA0NZcmS\\\n", + "Jdm4cePU3FNPPZU777wz9913XzZv3pzzzz//MBwxB0MABIAyaWnOqNfrmZiYaBj1en3a142MjKS3\\\n", + "tzdJ0tfXl+Hh4am5e+65J7VaLW9729uyatWq/PSnPz1cR80BEgABoERamvTfwMBA2traGsbAwMC0\\\n", + "7xsbG0tra2uSpK2tLTt37pya27FjR/7t3/4t9957b84///z81V/91az9DuyfAAgATNPf35/x8fGG\\\n", + "0d/fP+197e3tmZiYSJKMj49n0aJFDXO/8Ru/kZaWlixfvjzbtm2btfWzfwIgAJRIs84BrNVqaW1t\\\n", + "bRi1Wm3a93V1dWVwcDBJsmnTpnR3d0/NdXd3Z+vWrUmSrVu35pd+6Zdm5TdgZgIgAHDQOjs709HR\\\n", + "kZ6enmzbti0rVqzI6tWrkyRLly7N6173uixbtiw33XRTrrnmmjleLf/BjaABgEOybt26htcbNmyY\\\n", + "+vMNN9ww28uhAAEQAErEk0AoQgAEgBKR/yjCOYAAABWjAggAZaIESAECIACUiHMAKUILGACgYlQA\\\n", + "AaBEFAAp4ogPgJOTk7n//vvz1FNPZXJyMklyxRVX7HefF198MXfeeWfmzZuXiy++OPPnz0+SfOUr\\\n", + "X8lv//Zvv+J+9Xp92oOw9764J/PmH/E/IwBlIQFSwBHfAn73u9+du+66K5/4xCeyZcuW3HPPPTPu\\\n", + "c8UVV2TLli3ZunVrLrzwwjzxxBNJks9+9rP73W9fD8Ye+8GDTTkOAGiGliYNyu2ID4A7duzIjTfe\\\n", + "mJNOOimf+cxn8txzz824z/bt23PDDTdk7dq1ue222/J7v/d7+da3vjXjfvt6MPbxv3xBMw4DAGDW\\\n", + "HPG9y/nz52fv3r05/vjjc9NNN+UHP/jBjPu88MILqdfrqdVqOfXUU3P33Xdn5cqVefTRR/e7X61W\\\n", + "m/YgbO1fAF5NXAVMEUd8BfBLX/pS9u7dm89+9rP5yU9+kltvvXXGfdavX5+f/OQnU68XLlyYr33t\\\n", + "a/n0pz99GFcKALNAD5gCjvjy1eLFi5Mkr33ta3PdddcV2ufNb37ztG3z58/P5Zdf3tS1AQC8Gh3x\\\n", + "ARAA+P8U7yhCAASAEnEOIEUc8ecAAgBwYFQAAaBUlACZmQAIACWiBUwRWsAAABWjAggAZaICSAEC\\\n", + "IACUiPxHEQIgAJSIcwApwjmAAAAVIwACAFSMFjAAlIgWMEWoAAIAVIwKIACUiAIgRQiAAFAmEiAF\\\n", + "aAEDAFSMCiAAlIiLQChCAASAEpH/KEIABIAykQApwDmAAAAVowIIACWiAEgRKoAAUCItLc0ZB2LN\\\n", + "mjXp6enJqlWrsnv37qntmzdvzute97osW7Ysy5cvb/KRcigEQADgoI2Ojmb79u0ZGhrKkiVLsnHj\\\n", + "xob5d7/73dm8eXPuu+++OVoh+yIAAkCZzHIJcGRkJL29vUmSvr6+DA8PN8x/9atfTU9PT9avX9/U\\\n", + "w+TQOAcQAEqkWecA1uv11Ov1hm21Wi21Wq1h29jYWE466aQkSVtbW3bu3Dk1d8455+T73/9+kuSS\\\n", + "Sy7JBRdckDe96U1NWiGHQgUQAJhmYGAgbW1tDWNgYGDa+9rb2zMxMZEkGR8fz6JFi6bmjjvuuBx9\\\n", + "9NE5+uijc/HFF2d0dHTW1s/+CYAAUCYtzRn9/f0ZHx9vGP39/dO+rqurK4ODg0mSTZs2pbu7e2ru\\\n", + "P4Jhkjz44IM57bTTmn64HBwBEABKpEn5L7VaLa2trQ3j5e3fJOns7ExHR0d6enqybdu2rFixIqtX\\\n", + "r06S/O3f/m3OPffcdHV15eSTT86FF154eA+ewlomJycn53oRR7LT37l2rpcAwBHif3997WH/juX/\\\n", + "/camfM5911zblM/h1clFIABQIgd6Dz+qSQAEgDIRAClAAASAEpH/KEIAPESvefPCuV4CAMABEQAB\\\n", + "oEScA0gRbgMDAFAxAiAAQMVoAQNAiWgBU4QACAAlIgBShBYwAEDFCIAAABWjBQwAJaIFTBEqgAAA\\\n", + "FaMCCAAlogBIEQIgAJSJBEgBAiAAlIhzACnCOYAAABWjAggAJaIASBECIACUiR4wBWgBAwBUjAog\\\n", + "AJSI+h9FCIAAUCI6wBShBQwAUDEqgABQIiqAFKECCABQMQIgAEDFaAEDQIloAVOEAAgAJSL/UYQA\\\n", + "CABlIgFSgHMAAQAqRgUQAEpEAZAiBEAAKBEXgVCEFjAAQMWoAAJAiagAUoQKIABAxQiAAMAhWbNm\\\n", + "TXp6erJq1ars3r172vwnP/nJnHPOOXOwMl6JAAgAJdLS0pxR1OjoaLZv356hoaEsWbIkGzdubJjf\\\n", + "tWtXHn300SYfJYdKAASAEmlp0ihqZGQkvb29SZK+vr4MDw83zK9fvz4f/OAHD/6AOCwEQABgmnq9\\\n", + "nomJiYZRr9envW9sbCytra1Jkra2tuzcuXNqbnx8PI8++mjOP//8WVs3xVQyAO7YsSM33HBD7rzz\\\n", + "zjz55JO5+uqr85GPfCQ7duzY7377+sewd8+eWVo1AMysWS3ggYGBtLW1NYyBgYFp39fe3p6JiYkk\\\n", + "LwW+RYsWTc3deOONueaaa2bt2CmukgHwsssuy8knn5wnn3wyvb29Wb58eXp7e3PVVVftd799/WP4\\\n", + "Pw/eN0urBoCZNSsA9vf3Z3x8vGH09/dP+76urq4MDg4mSTZt2pTu7u6puSeeeCKf+MQn0tfXl8cf\\\n", + "fzx/9md/Nmu/A/vXMjk5OTnXi5hty5Yty+bNm5Mk5513Xr797W8nSZYvX5777nvlQFev16eVv7v+\\\n", + "4rOZd5TbKQIws++s/fBh/46VX1zflM/50mV/VPi9f/zHf5xvf/vbOeWUU/L5z38+11xzTTZs2NDw\\\n", + "nnPOOSdbtmxpyto4dJVMLj97ifrP/gXdM0M7t1arpVarNWwT/gCounXr1jW8fnn4SyL8vcpUMr3c\\\n", + "cccdmZycTEtLS84888wkL4XCv/zLv5zjlQHAofEkEIqoZABcvHjxtG0LFizIm9/85jlYDQA0j/xH\\\n", + "EZW8CAQAoMoqWQEEgLLSAqYIARAASkT+owgtYACAilEBBIAyUQKkAAEQAErEOYAUoQUMAFAxKoAA\\\n", + "UCIKgBQhAAJAiWgBU4QACAAlIv9RhHMAAQAqRgUQAEpEC5giBEAAKBH5jyK0gAEAKkYFEABKRAuY\\\n", + "IgRAACgTAZACtIABACpGBRAASkQBkCIEQAAoEecAUoQWMABAxagAAkCJKABShAAIACWiBUwRAiAA\\\n", + "lIj8RxHOAQQAqBgVQAAoES1gihAAAaBEBECK0AIGAKgYFUAAKBEFQIoQAAGgRLSAKUILGACgYlQA\\\n", + "AaBEFAApQgAEgBLRAqYIAfAQ/acz/IQAwJHFOYAAUCItTRoHYs2aNenp6cmqVauye/fuqe2jo6Pp\\\n", + "6urKW97yllx88cV59tlnD+nYaB4BEABKpKWlOaOo0dHRbN++PUNDQ1myZEk2btw4NfeGN7whIyMj\\\n", + "eeCBB/KmN70pd9xxx2E4Yg6GAAgAJTLbFcCRkZH09vYmSfr6+jI8PDw1t2DBgqk/P/fccznjjDMO\\\n", + "8qhoNgEQAJimXq9nYmKiYdTr9WnvGxsbS2tra5Kkra0tO3fubJi/5557ctZZZ2Xz5s057bTTZmXt\\\n", + "zEwABIASaVYLeGBgIG1tbQ1jYGBg2ve1t7dnYmIiSTI+Pp5FixY1zPf19eUf//Efs2LFimzYsGFW\\\n", + "fgNmJgACQIk0qwXc39+f8fHxhtHf3z/t+7q6ujI4OJgk2bRpU7q7u6fmfrZi2NbWlmOPPbbZh8tB\\\n", + "cg8TAGCaWq2WWq024/s6OzvT0dGRnp6enHLKKfnIRz6S1atXZ8OGDbnnnnvyqU99Ki0tLTnhhBNy\\\n", + "yy23zMLKKUIABIASmYsbQa9bt67h9X+0ei+55JJccskls78gZiQAAkCJeBIIRTgHEACgYlQAAaBE\\\n", + "FAApQgAEgBJp0QOmAC1gAICKUQEEgBJR/6MIARAASkQHmCIEQAAoEfmPIpwDCABQMSqAAFAi85QA\\\n", + "KUAABIASkf8oQgsYAKBiVAABoERcBUwRAiAAlIj8RxFawAAAFaMCCAAlogVMEQIgAJSI/EcRWsAA\\\n", + "ABWjAggAJaIFTBECIACUiPxHEQIgAJSIR8FRhHMAAQAqRgUQAEpEAZAiBEAAKBEXgVCEFjAAQMWo\\\n", + "AAJAiSgAUoQACAAlogVMEVrA/8+1114743vq9XomJiYaxou79xz+xQEANFElK4CLFy/OKaecknnz\\\n", + "5mVycjJJ8vjjj2dkZCQPP/zwK+43MDCQ66+/vmHbr/3Xt2fpu/7zYV0vABSlAEgRlawArl+/Pqee\\\n", + "emo+/OEP55FHHskjjzyS888/f7/hL0n6+/szPj7eMN54ydtmadUAMLOWluYMyq2SAfA973lPvvKV\\\n", + "r2TPnj259NJLc9ttt01VAvenVqultbW1YcxfUMkiKgBwBKtkAEySefPm5bLLLsvtt9+ePXv2pLOz\\\n", + "c66XBACHTAWQIipfvpo3b16uuOKKuV4GADRFZSs7HJDKB0AAKBPVO4rwPwoAABUjAAJAibQ0aRyI\\\n", + "NWvWpKenJ6tWrcru3buntt9111359V//9VxwwQX5oz/6o0M6LppLAASAEpnti0BGR0ezffv2DA0N\\\n", + "ZcmSJdm4cePU3Jlnnpnh4eE8+OCDefrpp7Nly5bDcMQcDAEQADhoIyMj6e3tTZL09fVleHh4au6U\\\n", + "U07JUUe9dLnB0UcfnXnzxI5XCxeBAECJNOsakHq9nnq93rCtVqulVqs1bBsbG8tJJ52UJGlra8vO\\\n", + "nTunfdYjjzySp59+OmeffXaTVsehEsUBoESa1QIeGBhIW1tbwxgYGJj2fe3t7ZmYmEiSjI+PZ9Gi\\\n", + "RQ3z//qv/5prr702N99886wcP8UIgADANPt6/Gl/f/+093V1dWVwcDBJsmnTpnR3d0/N7dq1KytX\\\n", + "rsyGDRuyePHiWVs7MxMAAaBEmnUV8L4ef/ry9m+SdHZ2pqOjIz09Pdm2bVtWrFiR1atXJ0luvPHG\\\n", + "/PCHP8wHP/jBLFu2LA888MDhPXgKa5ks8hBcXtFl/2v9XC8BgCPEF99z+G+F8j9GPtOUz/lvXX/Y\\\n", + "lM/h1UkFEACgYlwFDAAl4klwFCEAAkCJeBYwRQiAAFAizu2iCH9PAAAqRgUQAEpEC5giBEAAKBH5\\\n", + "jyK0gAEAKkYFEABKRAuYIgRAACgR+Y8itIABACpGBRAASkQLmCIEQAAoEQGQIrSAAQAqRgUQAEpE\\\n", + "AZAiBEAAKBEtYIoQAAGgRJzbRRH+ngAAVIwKIACUiBYwRQiAAFAiLZmc6yVwBNACBgCoGBVAACgR\\\n", + "LWCKaJmcnFQrBpqmXq9nYGAg/f39qdVqc70cAPZBAASaamJiIm1tbRkfH09ra+tcLweAfXAOIABA\\\n", + "xQiAAAAVIwACAFSMAAg0Va1Wy8c//nEXgAC8irkIBACgYlQAAQAqRgAEAKgYARAAoGIEQACAihEA\\\n", + "AQAq5qi5XgBQHjt27MjKlSuzZ8+edHR05Mtf/nLmz58/18sC4GVUAIGmOf7443PvvfdmaGgoJ598\\\n", + "cu6///65XhIA+6ACCDTNM888k6uvvjpjY2N56qmncvbZZ8/1kgDYBxVAoGluu+22XHTRRXnggQfS\\\n", + "19cX95kHeHVSAQSaZvny5Vm1alXuuuuuHHPMMXO9HABegUfBAQBUjBYwAEDFCIAAABUjAAIAVIwA\\\n", + "CABQMQIgAEDFCIAAABUjAAIAVIwACABQMZ4EAjTNjh07snLlyuzZsycdHR358pe/nPnz58/1sgB4\\\n", + "GRVAoGmOP/743HvvvRkaGsrJJ5+c+++/f66XBMA+qAACTfPMM8/k6quvztjYWJ566qmcffbZc70k\\\n", + "APZBBRBomttuuy0XXXRRHnjggfT19cWjxgFenVQAgaZZvnx5Vq1albvuuivHHHPMXC8HgFfQMul/\\\n", + "0QEAKkULGACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICK\\\n", + "EQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACg\\\n", + "Yv4vFkG7JWFwBCgAAAAASUVORK5CYII=\\\n", "\"\n", " frames[4] = \"\\\n", "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", - "AAAPYQGoP6dpAAAww0lEQVR4nO3df3RU9ZnH8c9MIBN+mPAjkECgpEALpAixiWQjImgjaUWqnNaC\\\n", - "vxJjxaMQpUy1khWJ0pVx7ZYGK5gVSbFS13SVtu6RhmKU01Ki0bAoIKBIIVvLBIIlaIQJZGb/sI2O\\\n", - "mcDNzCQ3c+/7dc49R79z584z9+Dh4/Pce8cRCAQCAgAAgG04zS4AAAAA3YsACAAAYDMEQAAAAJsh\\\n", - "AAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgM\\\n", - "ARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBm\\\n", - "CIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2\\\n", - "QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEELHD\\\n", - "hw9rwYIFGjdunPr06aPBgwfruuuu06FDh8wuDQAQQi+zCwAQ+9544w1t375d8+bN04gRI3To0CE9\\\n", - "8cQTmjFjht555x317dvX7BIBAJ/jCAQCAbOLABDbTp06pT59+gStvfbaa8rNzdUvf/lL3XzzzSZV\\\n", - "BgAIhREwgIh9PvydOXNGx48f19ixYzVgwADt2LHDxMoAAKEQAAFE7NSpU1q2bJlGjhwpl8ul5ORk\\\n", - "DRkyRCdOnFBTU5PZ5QEAvoBrAAFE7K677tIvfvEL/eAHP1Bubq6SkpLkcDg0b948+f1+s8sDAHwB\\\n", - "ARBAxJ5//nkVFhbqpz/9adva6dOndeLECfOKAgB0iBEwgIjFxcXpi/eT/fznP1dra6tJFQEAzoUO\\\n", - "IICIXX311XrmmWeUlJSkjIwM1dTU6OWXX9bgwYPNLg0AEAIBEEDEVq1apbi4OP3qV7/S6dOnNXXq\\\n", - "VL388svKz883uzQAQAg8BxAAAMBmuAYQAADAZgiAAAAANkMABAAAsBkCIAAAiMgf//hHzZ49W8OH\\\n", - "D5fD4dBvf/vb875n69at+vrXvy6Xy6WxY8dq/fr1XV4nPkMABAAAEWlubtbkyZO1evVqQ/v/5S9/\\\n", - "0axZs3T55Zdr586d+sEPfqDbbrtNmzdv7uJK8U/cBQwAAKLG4XDoN7/5ja699toO97nvvvv00ksv\\\n", - "affu3W1r8+bN04kTJ1RVVdUNVYIOIAAA6FY1NTXKy8sLWsvPz1dNTY1JFdkPD4IGAADt+Hw++Xy+\\\n", - "oDWXyyWXyxXxsb1er1JSUoLWUlJSdPLkSZ06dUp9+vSJ+DNwbgTACFXUPmZ2CTGr1W92BbHt6Cdm\\\n", - "VxC7Tp81u4LY1cpFQxFZkX93l3/GhV//YVSO851vX6CHHnooaK20tFQPPvhgVI4PcxEAAQBAOyUl\\\n", - "JXK73UFr0ej+SVJqaqoaGhqC1hoaGpSYmEj3r5sQAAEAsBJHdA4TrXFvKLm5udq0aVPQ2pYtW5Sb\\\n", - "m9sln4f2uAkEAABE5OOPP9bOnTu1c+dOSZ8+5mXnzp2qr6+X9Gk3saCgoG3/O+64QwcPHtSPfvQj\\\n", - "7du3T2vWrNGvf/1rLV682IzybYkOIAAAVuKIUguwE958801dfvnlbf/+z9FxYWGh1q9fryNHjrSF\\\n", - "QUn68pe/rJdeekmLFy/WqlWrNGLECD311FPKz8/v9trtigAIAICVdH/+04wZM3SuxwqH+pWPGTNm\\\n", - "6H//93+7sCqcCyNgAAAAm6EDCACAlZjQAUTsIQACAGApJECcHyNgAAAAm6EDCACAhQRoAMIAAiAA\\\n", - "AFZCAIQBjIABAABshg4gAABWYsKDoBF76AACAADYDB1AAACshAYgDKADCAAAYDN0AAEAsBKuAYQB\\\n", - "BEAAAKyE/AcDGAEDAADYDB1AAAAsJGB2AYgJBEAAAKyEawBhACNgAAAAm6EDCACAldAAhAEEQAAA\\\n", - "LIUEiPNjBAwAAGAzdAABALASGoAwgAAIAICVEABhAAEQAAALCfAYGBjANYAAAAA2QwAEAACwGUbA\\\n", - "AABYCSNgGEAHEAAAwGboAAIAYCU0AGGAbQJgY2OjKioqVFNTI6/XK0lKTU3VJZdcoltuuUVDhgwx\\\n", - "uUIAACIXMLsAxARbjIDfeOMNffWrX9Vjjz2mpKQkXXbZZbrsssuUlJSkxx57TOPHj9ebb75pdpkA\\\n", - "AADdwhYdwLvuukvXXXedysvL5fjCxbGBQEB33HGH7rrrLtXU1JzzOD6fTz6fL2jtTMtZ9Y63xWkE\\\n", - "AMQCbgKBAbboAL711ltavHhxu/AnSQ6HQ4sXL9bOnTvPexyPx6OkpKSgbdPTW7qgYgAAwuSI0gZL\\\n", - "s0UATE1NVW1tbYev19bWKiUl5bzHKSkpUVNTU9B2VeGV0SwVAACgy9kiAN5zzz26/fbbtWjRIr34\\\n", - "4ot6/fXX9frrr+vFF1/UokWLdMcdd+hHP/rReY/jcrmUmJgYtDH+BQD0KA5HdLYwrF69Wunp6UpI\\\n", - "SFBOTs45my9nzpzR8uXLNWbMGCUkJGjy5MmqqqoK91ujk2yRXhYuXKjk5GT97Gc/05o1a9Ta2ipJ\\\n", - "iouLU1ZWltavX6/vfe97JlcJAEDkzLoLuLKyUm63W+Xl5crJyVFZWZny8/O1f/9+DR06tN3+S5cu\\\n", - "1YYNG7R27VqNHz9emzdv1pw5c7R9+3ZddNFFJnwDe3EEAgFb3TF+5swZNTY2SpKSk5PVu3fviI5X\\\n", - "UftYNMqypVa/2RXEtqOfmF1B7Dp91uwKYlerrf7GiL4V+Xd3+WeMz38gKsfZt/nHndo/JydHF198\\\n", - "sR5//HFJkt/v18iRI3XXXXdpyZIl7fYfPny47r//fi1cuLBt7Tvf+Y769OmjDRs2RFY8zssWHcDP\\\n", - "6927t4YNG2Z2GQAA9Gihnnzhcrnkcrna7dvS0qK6ujqVlJS0rTmdTuXl5XX4hA2fz6eEhISgtT59\\\n", - "+mjbtm1RqB7nY4trAAEAsI0oXQMY6skXHo8n5Ec2NjaqtbW13Q2VKSkpbT++8EX5+flauXKl3nvv\\\n", - "Pfn9fm3ZskUbN27UkSNHon5K0B4BEAAAtBPqyRef7/BFatWqVfrKV76i8ePHKz4+XsXFxSoqKpLT\\\n", - "STTpDpxlAADQTqgnX4Qa/0qfXlMfFxenhoaGoPWGhgalpqaGfM+QIUP029/+Vs3NzTp8+LD27dun\\\n", - "/v37a/To0VH/LmiPAAgAgIUEHI6obJ0RHx+vrKwsVVdXt635/X5VV1crNzf3nO9NSEhQWlqazp49\\\n", - "qxdeeEHXXHNNWN8bnWO7m0AAALA0k37Fw+12q7CwUNnZ2ZoyZYrKysrU3NysoqIiSVJBQYHS0tLa\\\n", - "riN8/fXX9cEHHygzM1MffPCBHnzwQfn9fkPP5UXkCIAAACBic+fO1bFjx7Rs2TJ5vV5lZmaqqqqq\\\n", - "7caQ+vr6oOv7Tp8+raVLl+rgwYPq37+/rrrqKj3zzDMaMGCASd/AXmz3HMBo4zmA4eM5gJHhOYDh\\\n", - "4zmA4eM5gJHpjucAjruqNCrH2b/poagcBz0THUAAACyks9fvwZ64CQQAAMBm6AACAGAlNABhAAEQ\\\n", - "AAArIQDCAAIgAACWQgLE+XENIAAAgM3QAQQAwEICNABhAAEQAAArIQDCAEbAAAAANkMHEAAAS6EF\\\n", - "iPMjAAIAYCFcAwgjGAEDAADYDB1AAACshA4gDCAAAgBgKSRAnB8jYAAAAJuhAwgAgIVwEwiMIAAC\\\n", - "AGAlBEAYQAAEAMBSSIA4P64BBAAAsBk6gAAAWAkNQBhAAAQAwEK4CQRGMAIGAACwGTqAAABYCR1A\\\n", - "GEAABADAUkiAOD8CYIRa/WZXELtePhAwu4SY1vQx5y9cLWfMriB2pacSLgArIAACAGAh3AQCIwiA\\\n", - "AABYCQEQBnAXMAAAgM0QAAEAAGyGETAAAFbiYAaM8yMAAgBgIdwEAiMYAQMAANgMARAAAMBmCIAA\\\n", - "AFiJI0pbGFavXq309HQlJCQoJydHtbW159y/rKxM48aNU58+fTRy5EgtXrxYp0+fDu/D0SkEQAAA\\\n", - "ELHKykq53W6VlpZqx44dmjx5svLz83X06NGQ+z/77LNasmSJSktLtXfvXq1bt06VlZX613/9126u\\\n", - "3J4IgAAAWInDEZ2tk1auXKn58+erqKhIGRkZKi8vV9++fVVRURFy/+3bt2vq1Km64YYblJ6erpkz\\\n", - "Z+r6668/b9cQ0UEABADAQgJR2nw+n06ePBm0+Xy+kJ/Z0tKiuro65eXlta05nU7l5eWppqYm5Hsu\\\n", - "ueQS1dXVtQW+gwcPatOmTbrqqqsiPQUwgAAIAADa8Xg8SkpKCto8Hk/IfRsbG9Xa2qqUlJSg9ZSU\\\n", - "FHm93pDvueGGG7R8+XJdeuml6t27t8aMGaMZM2YwAu4mBEAAAKwkSjeBlJSUqKmpKWgrKSmJWplb\\\n", - "t27VihUrtGbNGu3YsUMbN27USy+9pB//+MdR+wx0jAdBAwBgJVF6ELTL5ZLL5TK0b3JysuLi4tTQ\\\n", - "0BC03tDQoNTU1JDveeCBB3TzzTfrtttukyRdeOGFam5u1u233677779fTic9qq7E2QUAABGJj49X\\\n", - "VlaWqqur29b8fr+qq6uVm5sb8j2ffPJJu5AXFxcnSQoEAl1XLCTRAQQAAFHgdrtVWFio7OxsTZky\\\n", - "RWVlZWpublZRUZEkqaCgQGlpaW3XEc6ePVsrV67URRddpJycHB04cEAPPPCAZs+e3RYE0XUIgAAA\\\n", - "WEkYj3CJhrlz5+rYsWNatmyZvF6vMjMzVVVV1XZjSH19fVDHb+nSpXI4HFq6dKk++OADDRkyRLNn\\\n", - "z9bDDz9sSv124wjQZ43I2tceM7uEmPXyAf7oRaLpY85fuFrOmF1B7EpPNSdcWEXFdYu6/DO+dMsj\\\n", - "UTlO/folUTkOeiauAQQAALAZAiAAAIDNcA0gAABWwpQeBtABBAAAsBk6gAAAWAkdQBhAAAQAwFJI\\\n", - "gDg/RsAAAAA2QwcQAAAroQEIAwiAAABYCQEQBjACBgAAsBk6gAAAWAg/EgkjCIAAAFgJI2AYwAgY\\\n", - "AADAZgiAAAAANsMIGAAAK3EwA8b50QH8h//7v//Trbfees59fD6fTp48GbSdaTnbTRUCAGCAI0ob\\\n", - "LI0A+A8ffvihnn766XPu4/F4lJSUFLT9/pdbuqlCAACA6LDNCPjFF1885+sHDx487zFKSkrkdruD\\\n", - "1jbsfCqiugAAALqbbQLgtddeK4fDoUCg4yckOc5z3YTL5ZLL5Qpa6x1vm1MIAIgFjG9hgG1GwMOG\\\n", - "DdPGjRvl9/tDbjt27DC7RAAAgG5hmwCYlZWlurq6Dl8/X3cQAICYwE0gMMA288t7771Xzc3NHb4+\\\n", - "duxYvfrqq91YEQAAgDlsEwCnTZt2ztf79eun6dOnd1M1AAAA5rFNAAQAwBYY38IAAiAAABZyvida\\\n", - "AJKNbgIBAADApwiAAAAANsMIGAAAK2ECDAMIgAAAWAkBEAYwAgYAALAZAiAAAIDNMAIGAMBCeAoM\\\n", - "jKADCAAAYDMEQAAAEBWrV69Wenq6EhISlJOTo9ra2g73nTFjhhwOR7tt1qxZ3VixfREAAQCwEkeU\\\n", - "tk6qrKyU2+1WaWmpduzYocmTJys/P19Hjx4Nuf/GjRt15MiRtm337t2Ki4vTdddd1/kPR6cRAAEA\\\n", - "QMRWrlyp+fPnq6ioSBkZGSovL1ffvn1VUVERcv9BgwYpNTW1bduyZYv69u1LAOwmBEAAAKwkSh1A\\\n", - "n8+nkydPBm0+ny/kR7a0tKiurk55eXlta06nU3l5eaqpqTFU9rp16zRv3jz169cvnG+NTiIAAgBg\\\n", - "IdGaAHs8HiUlJQVtHo8n5Gc2NjaqtbVVKSkpQespKSnyer3nrbm2tla7d+/WbbfdFsY3Rjh4DAwA\\\n", - "AFYSpefAlJSUyO12B625XK6oHPuL1q1bpwsvvFBTpkzpkuOjPQIgAABox+VyGQ58ycnJiouLU0ND\\\n", - "Q9B6Q0ODUlNTz/ne5uZmPffcc1q+fHnYtaLzGAEDAGAhDkd0ts6Ij49XVlaWqqur29b8fr+qq6uV\\\n", - "m5t7zvf+93//t3w+n2666aZwvi7CRAcQAABEzO12q7CwUNnZ2ZoyZYrKysrU3NysoqIiSVJBQYHS\\\n", - "0tLaXUe4bt06XXvttRo8eLAZZdsWARAAAERs7ty5OnbsmJYtWyav16vMzExVVVW13RhSX18vpzN4\\\n", - "8Lh//35t27ZNf/jDH8wo2dYIgAAAWImJvwVcXFys4uLikK9t3bq13dq4ceMUCAS6uCqEQgAEAMBC\\\n", - "TMx/iCHcBAIAAGAzdAABALASWoAwgAAIAICFROk50LA4RsAAAAA2QwAEAACwGUbAAABYCCNgGEEH\\\n", - "EAAAwGYIgAAAADbDCDhCTS1mVxC7/ur1m11CTPtgxymzS4hZvUbEm11CzBr/pd5ml4DzYAQMIwiA\\\n", - "AABYCQEQBjACBgAAsBk6gAAAWIiDFiAMIAACAGAl5D8YwAgYAADAZugAAgBgITQAYQQBEAAAC+Ex\\\n", - "MDCCETAAAIDN0AEEAMBK6ADCAAIgAAAWQv6DEQRAAACshAQIA7gGEAAAwGboAAIAYCE0AGEEARAA\\\n", - "AAvhMTAwghEwAACAzdABBADASugAwgACIAAAFkL+gxGMgAEAAGyGDiAAABbCTSAwgg4gAACAzRAA\\\n", - "AQAAbIYRMAAAFsIIGEbQAQQAwEocUdrCsHr1aqWnpyshIUE5OTmqra095/4nTpzQwoULNWzYMLlc\\\n", - "Ln31q1/Vpk2bwvtwdAodQAAALMRh0oNgKisr5Xa7VV5erpycHJWVlSk/P1/79+/X0KFD2+3f0tKi\\\n", - "K6+8UkOHDtXzzz+vtLQ0HT58WAMGDOj+4m2IAAgAACK2cuVKzZ8/X0VFRZKk8vJyvfTSS6qoqNCS\\\n", - "JUva7V9RUaEPP/xQ27dvV+/evSVJ6enp3VmyrTECBgDAQhyO6Gyd0dLSorq6OuXl5bWtOZ1O5eXl\\\n", - "qaamJuR7XnzxReXm5mrhwoVKSUnRxIkTtWLFCrW2tkby9WEQHUAAANCOz+eTz+cLWnO5XHK5XO32\\\n", - "bWxsVGtrq1JSUoLWU1JStG/fvpDHP3jwoF555RXdeOON2rRpkw4cOKAFCxbozJkzKi0tjd4XQUh0\\\n", - "AAEAQDsej0dJSUlBm8fjidrx/X6/hg4dqieffFJZWVmaO3eu7r//fpWXl0ftM9AxOoAAAFhItB4D\\\n", - "U1JSIrfbHbQWqvsnScnJyYqLi1NDQ0PQekNDg1JTU0O+Z9iwYerdu7fi4uLa1iZMmCCv16uWlhbF\\\n", - "x8dH+A1wLnQAAQCwkGg9BcblcikxMTFo6ygAxsfHKysrS9XV1W1rfr9f1dXVys3NDfmeqVOn6sCB\\\n", - "A/L7/W1r7777roYNG0b46wYEQAAAEDG32621a9fq6aef1t69e3XnnXequbm57a7ggoIClZSUtO1/\\\n", - "55136sMPP9SiRYv07rvv6qWXXtKKFSu0cOFCs76CrTACBgDASkz6JZC5c+fq2LFjWrZsmbxerzIz\\\n", - "M1VVVdV2Y0h9fb2czs/6TiNHjtTmzZu1ePFiTZo0SWlpaVq0aJHuu+8+c76AzRAAAQCwEDN/Cq64\\\n", - "uFjFxcUhX9u6dWu7tdzcXL322mtdXBVCYQQMAABgMzHTAXznnXdUX1+vlpaWoPVvf/vbJlUEAEDP\\\n", - "Y2IDEDGkxwfAgwcPas6cOdq1a5ccDocCgYAkyfGPHrfRJ4afOnVKdXV1GjRokDIyMoJeO336tH79\\\n", - "61+roKDgnMcI9VDMsy1n1Su+x59GAIBdkABhQI8fAS9atEhf/vKXdfToUfXt21d79uzRH//4R2Vn\\\n", - "Z4e8niCUd999VxMmTNBll12mCy+8UNOnT9eRI0faXm9qamq7S+lcQj0U85VfbQn3qwEAEHXRegwM\\\n", - "rK3HB8CamhotX75cycnJcjqdcjqduvTSS+XxeHT33XcbOsZ9992niRMn6ujRo9q/f78uuOACTZ06\\\n", - "VfX19Z2qpaSkRE1NTUHbFTdeGc7XAgAAME2Pn122trbqggsukPTpk8b/9re/ady4cRo1apT2799v\\\n", - "6Bjbt2/Xyy+/rOTkZCUnJ+t//ud/tGDBAk2bNk2vvvqq+vXrZ+g4oX4DkfEvAKAnMfMuYMSOHt8B\\\n", - "nDhxot566y1JUk5Ojh599FH9+c9/1vLlyzV69GhDxzh16pR69fosqDkcDj3xxBOaPXu2pk+frnff\\\n", - "fbdLagcAoNsxA4YBPb59tXTpUjU3N0uSli9frquvvlrTpk3T4MGDVVlZaegY48eP15tvvqkJEyYE\\\n", - "rT/++OOSuJMYAADYS48PgPn5+W3/PHbsWO3bt08ffvihBg4c2HYn8PnMmTNH//Vf/6Wbb7653WuP\\\n", - "P/64/H6/ysvLo1YzAABmoXkHI3r8CDiUQYMGGQ5/0qc3b2zatKnD19esWRP0Y9QAAMQqhyM6G6wt\\\n", - "JgMgAAAAwtfjR8AAAKAzaN/h/AiAAABYCONbGMEIGAAAwGboAAIAYCV0AGEAARAAAAsh/8EIAiAA\\\n", - "ABbCNYAwgmsAAQAAbIYACAAAYDOMgAEAsBBGwDCCDiAAAIDN0AEEAMBCaADCCAIgAABWQgKEAYyA\\\n", - "AQAAbIYOIAAAFsJNIDCCAAgAgIWQ/2AEARAAACshAcIArgEEAACwGTqAAABYCA1AGEEABADAQrgJ\\\n", - "BEYwAgYAALAZOoAAAFgJLUAYQAAEAMBCiH8wghEwAACIitWrVys9PV0JCQnKyclRbW1th/uuX79e\\\n", - "DocjaEtISOjGau2NAAgAgJU4orR1UmVlpdxut0pLS7Vjxw5NnjxZ+fn5Onr0aIfvSUxM1JEjR9q2\\\n", - "w4cPd/6DERYCIAAAFmJS/tPKlSs1f/58FRUVKSMjQ+Xl5erbt68qKio6rtXhUGpqatuWkpISxicj\\\n", - "HARAAAAQkZaWFtXV1SkvL69tzel0Ki8vTzU1NR2+7+OPP9aoUaM0cuRIXXPNNdqzZ093lAsRAAEA\\\n", - "sBSHIzqbz+fTyZMngzafzxfyMxsbG9Xa2tqug5eSkiKv1xvyPePGjVNFRYV+97vfacOGDfL7/brk\\\n", - "kkv017/+NernBO0RAAEAsJIozYA9Ho+SkpKCNo/HE7Uyc3NzVVBQoMzMTE2fPl0bN27UkCFD9J//\\\n", - "+Z9R+wx0jMfAAABgIdF6DExJSYncbnfQmsvlCrlvcnKy4uLi1NDQELTe0NCg1NRUQ5/Xu3dvXXTR\\\n", - "RTpw4EB4BaNTCIARiuOBS2HjWaWRGfw1HpcQrrNnza4gdvnOmF0BuovL5eow8H1RfHy8srKyVF1d\\\n", - "rWuvvVaS5Pf7VV1dreLiYkPHaG1t1a5du3TVVVeFWzI6gQAIAICFmPU/1263W4WFhcrOztaUKVNU\\\n", - "Vlam5uZmFRUVSZIKCgqUlpbWNkZevny5/uVf/kVjx47ViRMn9JOf/ESHDx/WbbfdZs4XsBkCIAAA\\\n", - "iNjcuXN17NgxLVu2TF6vV5mZmaqqqmq7MaS+vl5O52e3Hvz973/X/Pnz5fV6NXDgQGVlZWn79u3K\\\n", - "yMgw6yvYiiMQCATMLiKW/exPj5ldQsx6obbV7BJi2qnT/KcbLkbA4cv+WpzZJcS0dd9d1OWfMXNN\\\n", - "WVSO84cFP4jKcdAz0QEEAMBCuL4aRhAAAQCwEAIgjOA5gAAAADZDAAQAALAZRsAAAFgII2AYQQcQ\\\n", - "AADAZugAAgBgITQAYQQBEAAAKyEBwgACIAAAFsI1gDCCawABAABshg4gAAAWQgMQRhAAAQCwEmbA\\\n", - "MIARMAAAgM3QAQQAwELo/8EIAiAAABbCBBhGMAIGAACwGTqAAABYCB1AGEEHEAAAwGYIgAAAADbD\\\n", - "CBgAAAthBAwjCIAAAFgI+Q9GEAABALASEiAM4BpAAAAAm6EDCACAhdAAhBEEQAAALISbQGAEI2AA\\\n", - "AACboQMIAICF0AGEEXQAAQAAbIYACAAAYDOMgAEAsBBGwDCCAAgAgIWQ/2AEI2AAAACbsU0HcO/e\\\n", - "vXrttdeUm5ur8ePHa9++fVq1apV8Pp9uuukmXXHFFec9hs/nk8/nC1o723JWveJtcxoBAD0cI2AY\\\n", - "YYsOYFVVlTIzM3XPPffooosuUlVVlS677DIdOHBAhw8f1syZM/XKK6+c9zgej0dJSUlB28sbtnTD\\\n", - "NwAAwBiHIzpbOFavXq309HQlJCQoJydHtbW1ht733HPPyeFw6Nprrw3vg9FptgiAy5cv17333qvj\\\n", - "x4/rF7/4hW644QbNnz9fW7ZsUXV1te6991498sgj5z1OSUmJmpqagra8m67shm8AAEDPVllZKbfb\\\n", - "rdLSUu3YsUOTJ09Wfn6+jh49es73HTp0SPfcc4+mTZvWTZVCskkA3LNnj2655RZJ0ve+9z199NFH\\\n", - "+u53v9v2+o033qi33377vMdxuVxKTEwM2hj/AgAgrVy5UvPnz1dRUZEyMjJUXl6uvn37qqKiosP3\\\n", - "tLa26sYbb9RDDz2k0aNHd2O1sEUAlCTHP/rZTqdTCQkJSkpKanvtggsuUFNTk1mlAQAQNWaMgFta\\\n", - "WlRXV6e8vLy2NafTqby8PNXU1HT4vuXLl2vo0KH6/ve/H+7XRZhs0b5KT0/Xe++9pzFjxkiSampq\\\n", - "9KUvfant9fr6eg0bNsys8gAAiJpo3QMS6sZHl8sll8vVbt/Gxka1trYqJSUlaD0lJUX79u0Lefxt\\\n", - "27Zp3bp12rlzZ5QqRmfYogN45513qrW1te3fJ06cqF69Psu+v//97w3dBQwAgF2EuvHR4/FE5dgf\\\n", - "ffSRbr75Zq1du1bJyclROSY6xxYdwDvuuOOcr69YsaKbKgEAoGtF6zEwJSUlcrvdQWuhun+SlJyc\\\n", - "rLi4ODU0NAStNzQ0KDU1td3+77//vg4dOqTZs2e3rfn9fklSr169tH///rapHbqGLQIgAAB2Ea0R\\\n", - "cEfj3lDi4+OVlZWl6urqtke5+P1+VVdXq7i4uN3+48eP165du4LWli5dqo8++kirVq3SyJEjI64f\\\n", - "50YABAAAEXO73SosLFR2dramTJmisrIyNTc3q6ioSJJUUFCgtLQ0eTweJSQkaOLEiUHvHzBggCS1\\\n", - "W0fXIAACAGAlJv0SyNy5c3Xs2DEtW7ZMXq9XmZmZqqqqarsxpL6+Xk6nLW49iAkEQAAALMTMn4Ir\\\n", - "Li4OOfKVpK1bt57zvevXr49+QegQURwAAMBm6AACAGAhJjYAEUMIgAAAWIiZI2DEDgIgAAAWQv6D\\\n", - "EVwDCAAAYDN0AAEAsBBGwDCCAAgAgIWQ/2AEI2AAAACboQMIAICFMAKGEQRAAACshAAIAxgBAwAA\\\n", - "2AwdQAAALIQGIIwgAAIAYCFcAwgjGAEDAADYDB1AAAAshAYgjCAAAgBgIYyAYQQBEAAACyH/wQiu\\\n", - "AQQAALAZOoAAAFgII2AYQQAEAMBCCIAwghEwAACAzdABBADAQmgAwggCIAAAFsIIGEYwAgYAALAZ\\\n", - "OoAAAFgIDUAYQQAEAMBCGAHDCAJghHxnza4gdg0eyBUIkUjqZ3YFsauF/27DdqLZ7AoARAMBEAAA\\\n", - "C6EBCCMIgAAAWAgjYBhBAAQAwELIfzCCi7AAAABshg4gAAAWwggYRhAAAQCwEPIfjGAEDAAAomL1\\\n", - "6tVKT09XQkKCcnJyVFtb2+G+GzduVHZ2tgYMGKB+/fopMzNTzzzzTDdWa28EQAAALMThiM7WWZWV\\\n", - "lXK73SotLdWOHTs0efJk5efn6+jRoyH3HzRokO6//37V1NTo7bffVlFRkYqKirR58+YIzwCMIAAC\\\n", - "AGAhZgXAlStXav78+SoqKlJGRobKy8vVt29fVVRUhNx/xowZmjNnjiZMmKAxY8Zo0aJFmjRpkrZt\\\n", - "2xbhGYARBEAAANCOz+fTyZMngzafzxdy35aWFtXV1SkvL69tzel0Ki8vTzU1Nef9rEAgoOrqau3f\\\n", - "v1+XXXZZ1L4DOkYABADAQhxR2jwej5KSkoI2j8cT8jMbGxvV2tqqlJSUoPWUlBR5vd4Oa21qalL/\\\n", - "/v0VHx+vWbNm6ec//7muvPLKCL49jOIuYAAALMQRpefAlJSUyO12B625XK6oHPufLrjgAu3cuVMf\\\n", - "f/yxqqur5Xa7NXr0aM2YMSOqn4P2CIAAAKAdl8tlOPAlJycrLi5ODQ0NQesNDQ1KTU3t8H1Op1Nj\\\n", - "x46VJGVmZmrv3r3yeDwEwG7ACBgAAAuJ1gi4M+Lj45WVlaXq6uq2Nb/fr+rqauXm5ho+jt/v7/A6\\\n", - "Q0QXHUAAACzErF8CcbvdKiwsVHZ2tqZMmaKysjI1NzerqKhIklRQUKC0tLS26wg9Ho+ys7M1ZswY\\\n", - "+Xw+bdq0Sc8884yeeOIJc76AzRAAAQCwELN+CWTu3Lk6duyYli1bJq/Xq8zMTFVVVbXdGFJfXy+n\\\n", - "87PBY3NzsxYsWKC//vWv6tOnj8aPH68NGzZo7ty5Jn0De3EEAoGA2UXEskdefczsEmJWzV/4oxeJ\\\n", - "pH5mVxC7Ws6aXUHsOsO5i8gLhYu6/DP+dXN0/l5akX93VI6DnokOIAAAFuLkx4BhAAEQAAALIf/B\\\n", - "CO4CBgAAsBk6gAAAWIhZdwEjthAAAQCwEPIfjGAEDAAAYDN0AAEAsBBGwDCCAAgAgIWQ/2AEI2AA\\\n", - "AACboQMIAICFMAKGEQRAAAAshPwHIwiAAABYCD8FByO4BhAAAMBm6AACAGAhNABhBAEQAAAL4SYQ\\\n", - "GMEIGAAAwGZs3QEMBAJy8L9KAAAL4W81GGHrDqDL5dLevXvNLgMAgKhxOKKzwdps0QF0u90h11tb\\\n", - "W/XII49o8ODBkqSVK1ee8zg+n08+ny9o7WzLWfWKt8VpBAAAFmGL5FJWVqbJkydrwIABQeuBQEB7\\\n", - "9+5Vv379DI2CPR6PHnrooaC1bxR8U3m3fCua5QIAEDaadzDCFgFwxYoVevLJJ/XTn/5UV1xxRdt6\\\n", - "7969tX79emVkZBg6TklJSbtu4mM1T0W1VgAAIsH4FkbY4hrAJUuWqLKyUnfeeafuuecenTlzJqzj\\\n", - "uFwuJSYmBm2MfwEAQKyxRQCUpIsvvlh1dXU6duyYsrOztXv3bu4ABgBYDjeBwAhbta/69++vp59+\\\n", - "Ws8995zy8vLU2tpqdkkAAESVbTo7iIitAuA/zZs3T5deeqnq6uo0atQos8sBACBq6N7BCFsGQEka\\\n", - "MWKERowYYXYZAAAA3c62ARAAACuiAQgjCIAAAFgII2AYwbWiAAAANkMHEAAAC6EBCCMIgAAAWAgj\\\n", - "YBjBCBgAAMBm6AACAGAhNABhBB1AAAAsxMyfglu9erXS09OVkJCgnJwc1dbWdrjv2rVrNW3aNA0c\\\n", - "OFADBw5UXl7eOfdHdBEAAQBAxCorK+V2u1VaWqodO3Zo8uTJys/P19GjR0Puv3XrVl1//fV69dVX\\\n", - "VVNTo5EjR2rmzJn64IMPurlyeyIAAgBgIY4obZ21cuVKzZ8/X0VFRcrIyFB5ebn69u2rioqKkPv/\\\n", - "6le/0oIFC5SZmanx48frqaeekt/vV3V1dRifjs7iGkAAACwkWncB+3w++Xy+oDWXyyWXy9Vu35aW\\\n", - "FtXV1amkpKRtzel0Ki8vTzU1NYY+75NPPtGZM2c0aNCgyAqHIXQAAQCwEGeUNo/Ho6SkpKDN4/GE\\\n", - "/MzGxka1trYqJSUlaD0lJUVer9dQ3ffdd5+GDx+uvLy8Tn5jhIMOIAAAaKekpERutztoLVT3Lxoe\\\n", - "eeQRPffcc9q6dasSEhK65DMQjAAIAICFRGsE3NG4N5Tk5GTFxcWpoaEhaL2hoUGpqannfO9//Md/\\\n", - "6JFHHtHLL7+sSZMmhV0vOocRMAAAFmLGTSDx8fHKysoKuoHjnzd05Obmdvi+Rx99VD/+8Y9VVVWl\\\n", - "7OzsTn4qIkEHEAAARMztdquwsFDZ2dmaMmWKysrK1NzcrKKiIklSQUGB0tLS2q4j/Pd//3ctW7ZM\\\n", - "zz77rNLT09uuFezfv7/69+9v2vewCwIgAAAWYtZvAc+dO1fHjh3TsmXL5PV6lZmZqaqqqrYbQ+rr\\\n", - "6+V0fjZ4fOKJJ9TS0qLvfve7QccpLS3Vgw8+2J2l2xIBEAAACzHzp+CKi4tVXFwc8rWtW7cG/fuh\\\n", - "Q4e6viB0iGsAAQAAbIYOIAAAFmLWCBixhQAIAICFEABhBCNgAAAAm6EDCACAhdAAhBEEQAAALIQR\\\n", - "MIwgAAIAYCFc2wUj+HMCAABgM3QAAQCwEEbAMIIACACAhTgUMLsExABGwAAAADZDBxAAAAthBAwj\\\n", - "HIFAgF6xRfl8Pnk8HpWUlMjlcpldTkzh3IWPcxcZzl/4OHeAcQRACzt58qSSkpLU1NSkxMREs8uJ\\\n", - "KZy78HHuIsP5Cx/nDjCOawABAABshgAIAABgMwRAAAAAmyEAWpjL5VJpaSkXQ4eBcxc+zl1kOH/h\\\n", - "49wBxnETCAAAgM3QAQQAALAZAiAAAIDNEAABAABshgAIAABgMwRAG6mvr9esWbPUt29fDR06VPfe\\\n", - "e6/Onj1rdlkx4+6771ZWVpZcLpcyMzPNLidmvPXWW7r++us1cuRI9enTRxMmTNCqVavMLitmHD9+\\\n", - "XN/85jc1fPhwuVwujRw5UsXFxTp58qTZpcWU48ePa8SIEXI4HDpx4oTZ5QCm62V2Aegera2tmjVr\\\n", - "llJTU7V9+3YdOXJEBQUF6t27t1asWGF2eTHj1ltv1euvv663337b7FJiRl1dnYYOHaoNGzZo5MiR\\\n", - "2r59u26//XbFxcWpuLjY7PJ6PKfTqWuuuUb/9m//piFDhujAgQNauHChPvzwQz377LNmlxczvv/9\\\n", - "72vSpEn64IMPzC4F6BkCiEm///3vA1OnTg0kJSUFBg0aFJg1a1bgwIEDHe6/adOmgNPpDHi93ra1\\\n", - "J554IpCYmBjw+XzdUXKP0tnz93mlpaWByZMnd22BPVgk5+6fFixYELj88su7qMKeLRrnb9WqVYER\\\n", - "I0Z0UYU9V7jnbs2aNYHp06cHqqurA5ICf//737u+WKCHYwQco5qbm+V2u/Xmm2+qurpaTqdTc+bM\\\n", - "kd/vD7l/TU2NLrzwQqWkpLSt5efn6+TJk9qzZ093ld1jdPb84TPROHdNTU0aNGhQF1bZc0V6/v72\\\n", - "t79p48aNmj59ehdX2vOEc+7eeecdLV++XL/85S/ldPJXHtDG7ASK6Dh27FhAUmDXrl0hX58/f35g\\\n", - "5syZQWvNzc0BSYFNmzZ1R4k92vnO3+fZvQP4RZ05d4FAIPDnP/850KtXr8DmzZu7uLLYYPT8zZs3\\\n", - "L9CnT5+ApMDs2bMDp06d6qYKe67znbvTp08HJk2aFHjmmWcCgUAg8Oqrr9IBBP6B/x2KUe+9956u\\\n", - "v/56jR49WomJiUpPT5f06Y0e3/rWt9S/f3/1799fX/va18wttIfi/IUvknO3e/duXXPNNSotLdXM\\\n", - "mTO7ufKeIdzz97Of/Uw7duzQ7373O73//vtyu90mVG+uzp67kpISTZgwQTfddJOJVQM9EzeBxKjZ\\\n", - "s2dr1KhRWrt2rYYPHy6/36+JEyeqpaVFTz31lE6dOiVJ6t27tyQpNTVVtbW1QcdoaGhoe81uOnv+\\\n", - "8Jlwz90777yjb3zjG7r99tu1dOlSM0rvEcI9f6mpqUpNTdX48eM1aNAgTZs2TQ888ICGDRtmxtcw\\\n", - "RWfP3SuvvKJdu3bp+eeflyQF/vHLp8nJybr//vv10EMPmfNFgB6AABiDjh8/rv3792vt2rWaNm2a\\\n", - "JGnbtm1tr6elpbV7T25urh5++GEdPXpUQ4cOlSRt2bJFiYmJysjI6J7Ce4hwzh8+Fe6527Nnj664\\\n", - "4goVFhbq4Ycf7pZae6Jo/dn75zVvPp8v+kX2UOGcuxdeeKEtFErSG2+8oVtvvVV/+tOfNGbMmK4v\\\n", - "GujBCIAxaODAgRo8eLCefPJJDRs2TPX19VqyZMk53zNz5kxlZGTo5ptv1qOPPiqv16ulS5dq4cKF\\\n", - "crlc3VR5zxDO+ZOkAwcO6OOPP5bX69WpU6e0c+dOSVJGRobi4+O7uOqeIZxzt3v3bl1xxRXKz8+X\\\n", - "2+2W1+uVJMXFxWnIkCHdUXaPEc7527RpkxoaGnTxxRerf//+2rNnj+69915NnTq1bQRqB+Gcuy+G\\\n", - "vMbGRknShAkTNGDAgK4qFYgNZl+EiPBs2bIlMGHChIDL5QpMmjQpsHXr1oCkwG9+85sO33Po0KHA\\\n", - "t771rUCfPn0CycnJgR/+8IeBM2fOdF/RPUg452/69OkBSe22v/zlL91Wd0/Q2XNXWloa8ryNGjWq\\\n", - "W+vuKTp7/l555ZVAbm5uICkpKZCQkBD4yle+ErjvvvtseSNDOP/dfh43gQCfcQQC/7goAgAAALbA\\\n", - "XcAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2\\\n", - "QwAEAACwGQIggKipqqrSpZdeqgEDBmjw4MG6+uqr9f7775tdFgDgCwiAAKKmublZbrdbb775pqqr\\\n", - "q+V0OjVnzhz5/X6zSwMAfI4jEAgEzC4CgDU1NjZqyJAh2rVrlyZOnGh2OQCAf6ADCCBq3nvvPV1/\\\n", - "/fUaPXq0EhMTlZ6eLkmqr683tzAAQJBeZhcAwDpmz56tUaNGae3atRo+fLj8fr8mTpyolpYWs0sD\\\n", - "AHwOARBAVBw/flz79+/X2rVrNW3aNEnStm3bTK4KABAKARBAVAwcOFCDBw/Wk08+qWHDhqm+vl5L\\\n", - "liwxuywAQAhcAwggKpxOp5577jnV1dVp4sSJWrx4sX7yk5+YXRYAIATuAgYAALAZOoAAAAA2QwAE\\\n", - "AACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIg\\\n", - "AACAzRAAAQAAbOb/ASU+J6Po7aYtAAAAAElFTkSuQmCC\\\n", + "AAAPYQGoP6dpAAAiK0lEQVR4nO3df5CddX0v8PcmwBELu0ugiZQRbEshagsrIoVdFiOp61bhQhtb\\\n", + "UQxDqTQyV1qKdtL9Q4XWsnbSQeL1jm7vLQpMGS2riKCyZcHEZRcHMtOsGBgHvVppGMOULLspA4cE\\\n", + "9v7Bda+HDdknyckueZ7Xi/nO5Dzf85zzfc4kM28+n+dHy/T09HQAAKiMRQu9AAAA5pcACABQMQIg\\\n", + "AEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwA\\\n", + "CABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUj\\\n", + "AAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDF\\\n", + "CIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAKzXHPNNXnuuedmXn/iE5/IP//zPy/gil7Z9PR0\\\n", + "zj333LS3ty/0UgAOGi3T09PTC70I4NWlpaUlExMTB0Wouv766/Poo4/mtttuy9NPP73QywE4KKgA\\\n", + "QoldfPHFOf3003PKKafkPe95T37+85/Puc+HP/zhJEl3d3c6Ojry5JNP5tJLL80NN9yQ5KXq4B//\\\n", + "8R/n/PPPz0knnZTzzjsvP/jBD/Kud70rJ510Ut7//vfnxRdfTJLs2LEjl19+ec4444yccsop+bM/\\\n", + "+7M8//zzTTu+LVu25Otf/3r++q//ummfCVAFAiCU2A033JBNmzbl+9//frq7u3PNNdfMzL373e/O\\\n", + "pk2bZu3zhS98IUkyMjKSzZs3Z+nSpbPes2nTptx888354Q9/mB07duRDH/pQBgcH88gjj+TRRx/N\\\n", + "t7/97STJRz/60XR3d+fBBx/M+Ph4Xnzxxaxfv37W5+3YsSMdHR27He9617t2e2w7d+7M5ZdfnoGB\\\n", + "gSxevHhffh6AyjpkoRcAHDi33nprbrnlljz33HN57rnncswxx8zMfetb39rnz+3p6clRRx2VJDnt\\\n", + "tNNSq9Vy5JFHJkne8pa35LHHHkuSfP3rX88DDzyQ66+/Pkny7LPP7jasHXnkkdm8efNereHaa6/N\\\n", + "H/7hH+aNb3xjfvrTn+7zsQBUkQAIJXX//ffns5/9bB544IEsXbo03/jGN/KJT3yiKZ/9mte8ZubP\\\n", + "ixcvnvV6165dSV66QOOrX/1qTjrppD1+3o4dO9Ld3b3buWXLlmVoaGjW9o0bN+ZnP/tZPve5z2XX\\\n", + "rl2ZmprKG97whjz00EP51V/91X05LIDKEAChpCYmJnLkkUfm6KOPzvPPP5+BgYHC+x555JGZnJzc\\\n", + "74tALrzwwvz93/99BgYGcsghh2RiYiJPPfVUTjzxxFnft7cVwJGRkZk///SnP01HR4dKIEBBzgGE\\\n", + "kurt7c3JJ5+ck08+eeaCjl/2SucAJi+du/fOd75z5iKQffWZz3wmhx9+eDo6OnLKKadk5cqVQhrA\\\n", + "q4DbwAAAVIwKIABAxQiAAAAVIwACAFSMAAgAUDECIACwXyYnJ3PGGWfkiCOOyA9+8IOGuRdeeCGX\\\n", + "XXZZuru7c9VVVy3MAplFAAQA9strX/vafPOb38x73/veWXN33XVXfu3Xfi0jIyN55pln8sADDyzA\\\n", + "Cnk5ARAA2C+HHnroKz6BZ2xsLD09PUleuj/p6OjofC6NV+BJIADALPV6PfV6vWFbrVZLrVbbq8+Z\\\n", + "mJhIa2trkqStrS3bt29v2hrZdwLgfur/zmcXegkAHCT63vHnB/w7fue0jzblc1b9tyNz7bXXNmz7\\\n", + "5Cc/mWuuuWavPqe9vT1TU1NJXjpXcMmSJU1ZH/tHCxgAmKWvry+Tk5MNo6+vb68/p7OzM8PDw0mS\\\n", + "oaGhdHV1NXup7AMBEADKpKU5o1arpbW1tWHsqf377ne/O//6r/+ayy+/PF/60peyZs2aJMl5552X\\\n", + "n/3sZ+nu7s5rXvOanHXWWQfowNkbWsAAwH771re+1fD60ksvTZIccsgh+dKXvjT/C2KPBEAAKJOW\\\n", + "loVeAQcBARAAykT+owDnAAIAVIwKIACUiQogBQiAAFAqEiBz0wIGAKgYFUAAKJFpBUAKEAABoEwE\\\n", + "QArQAgYAqBgVQAAoEzeCpgAVQACAilEBBIAyUQCkABVAAICKUQEEgDJxDiAFCIAAUCbyHwVoAQMA\\\n", + "VIwKIACUyPRCL4CDggAIAGXiHEAK0AIGAKgYFUAAKBMFQAoQAAGgVCRA5qYFDABQMSqAAFAmCoAU\\\n", + "IAACQJkIgBQgAAJAiUy7DQwFOAcQAKBiBEAAgIrRAgaAMtECpgAVQACAilEBBIAyUQCkAAEQAEpk\\\n", + "eqEXwEGhkgHwhRdeyODgYEZHR7N9+/YsWbIkXV1dWbVqVQ45pJI/CQBQIZVMO5dddllOPvnkXHrp\\\n", + "pWlra8vk5GSGhobyJ3/yJ7nllltecb96vZ56vd6wbdfzu3LIYZX8GQF4NXIRCAVUMrn85Cc/yU03\\\n", + "3dSw7bTTTss555yzx/36+/tz7bXXNmw795Le/N6lv9/0NQLAPpH/KKCSAbCzszOXXHJJenp60tra\\\n", + "mqmpqQwPD+fMM8/c4359fX25+uqrG7atf+B/H8ilAgA0XSUD4Kc//el8//vfz9jYWB5//PG0t7fn\\\n", + "L//yL3Pqqafucb9arZZardawTfsXgFeVBWgBr127NmNjY3nDG96QG2+8MYceemiSZGpqKh/84Aez\\\n", + "Y8eOnH766Vm3bt28r43dq+x9AE855ZR8+MMfTl9fX6644oo5wx8AHAymmzSKGh8fz9atWzMyMpLl\\\n", + "y5dncHBwZu4f//Efc8EFF+Q73/lOnnnmmTz44IP7fXw0R2UDIACUUktzRr1ez9TUVMN4+YWQSTI2\\\n", + "Npaenp4kSW9vb0ZHR2fmfvzjH6ejoyPJS+faf/e73z0QR8w+EAABgFn6+/vT1tbWMPr7+2e9b2Ji\\\n", + "Iq2trUmStra2bN++fWbuTW96U+67774kyfDwcCYmJuZn8cxJAASAMmlpacro6+vL5ORkw+jr65v1\\\n", + "de3t7ZmamkqSTE5OZsmSJTNzH/rQh/Loo4/m937v93LEEUfkda973bz9DOyZAAgAzFKr1dLa2tow\\\n", + "Xn4hZPLSnTWGh4eTJENDQ+nq6pqZO/zww3PjjTfOzJ933nnzs3jmJAACAPuso6Mjy5YtS3d3d7Zs\\\n", + "2ZJVq1ZlzZo1SZLNmzdnxYoVOffcc9PV1ZVf//VfX+DV8gvuYQIAJTK9ALeBefntXQYGBpK8FA43\\\n", + "bNgw7+thbgIgAJSJJ4FQgBYwAEDFCIAAABWjBQwAJbIQ5wBy8FEBBACoGBVAACgTBUAKEAABoEwE\\\n", + "QAoQAAGgVCRA5uYcQACAilEBBIASmVYApAABEADKRACkAC1gAICKUQEEgFJRAmRuAiAAlIhzAClC\\\n", + "CxgAoGJUAAGgTFQAKUAABIBSkQCZmxYwAEDFqAACQIm4CIQiBEAAKBMBkAIEQAAoFQmQuTkHEACg\\\n", + "YlQAAaBMFAApQAAEgBJxEQhFaAEDAFSMCiAAlIkKIAUIgABQKhIgcxMA99MD/2d6oZcAwMHiHQu9\\\n", + "AHiJAAgAJeIiEIoQAAGgTARACnAVMABAxQiAAAAVowUMAGXSogfM3ARAACgRF4FQhBYwAEDFCIAA\\\n", + "wH5Zu3Zturu7s3r16uzcuXNm+7PPPpvzzz8/b3/727Ny5cps27ZtAVfJLxMAAaBMWpo0ChofH8/W\\\n", + "rVszMjKS5cuXZ3BwcGbu29/+dn77t387GzduzKWXXpp/+qd/2v/joykEQABglnq9nqmpqYZRr9dn\\\n", + "vW9sbCw9PT1Jkt7e3oyOjs7MnXjiiXnmmWeSJBMTEznmmGPmZ/HMSQAEgDJpaWnK6O/vT1tbW8Po\\\n", + "7++f9XUTExNpbW1NkrS1tWX79u0zc7/1W7+VRx55JG9+85vzhS98IR/4wAfm7WdgzwRAACiR6SaN\\\n", + "vr6+TE5ONoy+vr5Z39fe3p6pqakkyeTkZJYsWTIzd9NNN+Xss8/Oli1b8jd/8zf527/92wN01Owt\\\n", + "ARAAmKVWq6W1tbVh1Gq1We/r7OzM8PBwkmRoaChdXV0zc9PT0zNt32OOOSaTk5Pzs3jmJAACQJnM\\\n", + "80UgHR0dWbZsWbq7u7Nly5asWrUqa9asSZJ84AMfyF133ZUVK1bk4x//eK6++urmHCP7zY2gAaBM\\\n", + "FuBG0OvWrWt4PTAwkOSlcwLvvvvu+V8Qc1IBBACoGAEQAKBitIABoExaPAyYuQmAAFAi0/IfBWgB\\\n", + "AwBUjAAIAFAxWsAAUCZawBSgAggAUDEqgABQJiqAFCAAAkCpSIDMTQsYAKBiVAABoEwUAClAAASA\\\n", + "MhEAKUALGACgYlQAAaBEphd6ARwUBEAAKBMtYArQAgYAqBgBEACgYrSAAaBMWvSAmZsK4C+5+eab\\\n", + "9zhfr9czNTXVMF7YuWueVgcABbQ0aVBqlQyAjzzyyKyxZcuWDAwM7HG//v7+tLW1NYwffeueeVo1\\\n", + "AEBzVLIFfOaZZ+a9731vpqcbL5b/93//9z3u19fXl6uvvrph2/tv/V9NXx8AwIFUyQD4xje+MevW\\\n", + "rcvRRx/dsP0973nPHver1Wqp1WoN2xYfWsmfEIBXK+1bCqhkernnnnvyK7/yK7O2f/Ob31yA1QAA\\\n", + "zK9KBsDW1taFXgIAHBgqgBRQyYtAAACqTAAEAKiYSraAAaC0tIApQAAEgBJp8SQQCtACBgCoGAEQ\\\n", + "AKBitIABoEx0gClAAASAMhEAKUALGACgYgRAAICKEQABoERaWpoz9sbatWvT3d2d1atXZ+fOnTPb\\\n", + "b7/99qxYsSIrVqzI8ccfn/Xr1zf5aNlXAiAAsM/Gx8ezdevWjIyMZPny5RkcHJyZ+4M/+INs2LAh\\\n", + "GzZsyG/+5m/mwgsvXLiF0kAABABmqdfrmZqaahj1en3W+8bGxtLT05Mk6e3tzejo6Kz3/PznP0+9\\\n", + "Xs8JJ5xwwNdNMQIgAJRJS3NGf39/2traGkZ/f/+sr5uYmEhra2uSpK2tLdu3b5/1nq997WtZtWpV\\\n", + "s4+U/eA2MADALH19fbn66qsbttVqtVnva29vz9TUVJJkcnIyS5YsmfWewcHBfPGLXzwwC2WfqAAC\\\n", + "QJk0qQJYq9XS2traMHYXADs7OzM8PJwkGRoaSldXV8P8tm3btH9fhQRAACiRJuW/wjo6OrJs2bJ0\\\n", + "d3dny5YtWbVqVdasWTMzr/376qQFDABlsrf3cGmCdevWNbweGBiY+fMVV1wx38uhABVAAICKUQEE\\\n", + "gBJZgAIgByEVQACAihEAAQAqRgsYAMpEC5gCBEAAKBH5jyK0gAEAKkYFEADKRAmQAgRAACgRt4Gh\\\n", + "CC1gAICKEQABACpGCxgASkQLmCJUAAEAKkYABACoGC3g/bTlW1MLvQQADhZ/euC/QguYIgRAACgT\\\n", + "AZACtIABACpGBRAASqRFCZACBEAAKBP5jwK0gAEAKkYFEABKRAGQIgRAACgRt4GhCC1gAICKUQEE\\\n", + "gDJRAaQAARAASkT+owgBEADKRAKkAOcAAgBUjAogAJSIAiBFCIAAUCJuA0MRWsAAABWjAggAZaIC\\\n", + "SAECIACUiPxHEVrAAAAVowIIACXiIhCKUAEEAKgYARAA2C9r165Nd3d3Vq9enZ07dzbMffnLX865\\\n", + "556bFStW5IEHHligFfJyAiAAlEhLS3NGUePj49m6dWtGRkayfPnyDA4Ozsw98cQTueOOO3Lvvfdm\\\n", + "w4YNOeussw7AEbMvBEAAKJOW5ox6vZ6pqamGUa/XZ33d2NhYenp6kiS9vb0ZHR2dmbv77rtTq9Xy\\\n", + "zne+M6tXr85//dd/HaijZi8JgABQIi1N+q+/vz9tbW0No7+/f9b3TUxMpLW1NUnS1taW7du3z8xt\\\n", + "27Yt//mf/5l77rknZ511Vj73uc/N2+/AngmAAMAsfX19mZycbBh9fX2z3tfe3p6pqakkyeTkZJYs\\\n", + "WdIw9453vCMtLS1ZuXJltmzZMm/rZ88EQAAokWadA1ir1dLa2towarXarO/r7OzM8PBwkmRoaChd\\\n", + "XV0zc11dXdm8eXOSZPPmzfmN3/iNefkNmJsACADss46Ojixbtizd3d3ZsmVLVq1alTVr1iRJTjnl\\\n", + "lLz+9a/PihUrcuONN+bKK69c4NXyC24EDQDsl3Xr1jW8HhgYmPnzddddN9/LoQABEABKxJNAKEIA\\\n", + "BIASkf8owjmAAAAVowIIAGWiBEgBAiAAlIhzAClCCxgAoGJUAAGgRBQAKeKgD4DT09O577778sQT\\\n", + "T2R6ejpJcskll+xxnxdeeCF33HFHFi1alPPPPz+LFy9Oktx22235oz/6o1fcr16vz3oQ9vQLu9Ky\\\n", + "+KD/GQEoCwmQAg76FvD73ve+3HnnnfnUpz6VTZs25e67755zn0suuSSbNm3K5s2bc8455+RHP/pR\\\n", + "kuTzn//8Hvfb3YOxJ3743aYcBwA0Q0uTBuV20AfAbdu25YYbbsixxx6bz372s3n22Wfn3Gfr1q25\\\n", + "7rrrcs011+TWW2/Nn/7pn+Y73/nOnPvt7sHYR518TjMOAwBg3hz0vcvFixfnxRdfzFFHHZUbb7wx\\\n", + "P/7xj+fc5/nnn0+9Xk+tVssJJ5yQu+66KxdddFEefvjhPe5Xq9VmPQhb+xeAVxNXAVPEQV8B/PKX\\\n", + "v5wXX3wxn//85/P000/nlltumXOf9evX5+mnn555feSRR+Yb3/hGPvOZzxzAlQLAPNADpoCDvny1\\\n", + "dOnSJMnrXve6XH311YX2edvb3jZr2+LFi/PBD36wqWsDAHg1OugDIADw/yneUYQACAAl4hxAijjo\\\n", + "zwEEAGDvqAACQKkoATI3ARAASkQLmCK0gAEAKkYFEADKRAWQAgRAACgR+Y8iBEAAKBHnAFKEcwAB\\\n", + "ACpGAAQAqBgtYAAoES1gilABBACoGBVAACgRBUCKEAABoEwkQArQAgYAqBgVQAAoEReBUIQACAAl\\\n", + "Iv9RhAAIAGUiAVKAcwABACpGBRAASkQBkCJUAAGgRFpamjP2xtq1a9Pd3Z3Vq1dn586dM9s3bNiQ\\\n", + "17/+9VmxYkVWrlzZ5CNlfwiAAMA+Gx8fz9atWzMyMpLly5dncHCwYf5973tfNmzYkHvvvXeBVsju\\\n", + "CIAAUCbzXAIcGxtLT09PkqS3tzejo6MN81/96lfT3d2d9evXN/Uw2T/OAQSAEmnWOYD1ej31er1h\\\n", + "W61WS61Wa9g2MTGRY489NknS1taW7du3z8ydfvrp+eEPf5gkueCCC3L22WfnrW99a5NWyP5QAQQA\\\n", + "Zunv709bW1vD6O/vn/W+9vb2TE1NJUkmJyezZMmSmbkjjjgihx12WA477LCcf/75GR8fn7f1s2cC\\\n", + "IACUSUtzRl9fXyYnJxtGX1/frK/r7OzM8PBwkmRoaChdXV0zc78Ihkly//3358QTT2z64bJvBEAA\\\n", + "KJEm5b/UarW0trY2jJe3f5Oko6Mjy5YtS3d3d7Zs2ZJVq1ZlzZo1SZJ/+Zd/yRlnnJHOzs4cd9xx\\\n", + "Oeeccw7swVNYy/T09PRCL+Jg9pur/nahlwDAQeLHX/34Af+Olf/jhqZ8zr1XXtWUz+HVyUUgAFAi\\\n", + "e3sPP6pJAASAMhEAKUAABIASkf8oQgDcT4e98bULvQQAgL0iAAJAiTgHkCLcBgYAoGIEQACAitEC\\\n", + "BoAS0QKmCAEQAEpEAKQILWAAgIoRAAEAKkYLGABKRAuYIlQAAQAqRgUQAEpEAZAiBEAAKBMJkAIE\\\n", + "QAAoEecAUoRzAAEAKkYFEABKRAGQIgRAACgTPWAK0AIGAKgYFUAAKBH1P4oQAAGgRHSAKUILGACg\\\n", + "YlQAAaBEVAApQgUQAKBiBEAAgIrRAgaAEtECpggBEABKRP6jCAEQAMpEAqQA5wACAFSMCiAAlIgC\\\n", + "IEUIgABQIi4CoQgtYACAilEBBIASUQGkCBVAAICKEQABgP2ydu3adHd3Z/Xq1dm5c+es+U9/+tM5\\\n", + "/fTTF2BlvBIBEABKpKWlOaOo8fHxbN26NSMjI1m+fHkGBwcb5nfs2JGHH364yUfJ/hIAAaBEWpo0\\\n", + "ihobG0tPT0+SpLe3N6Ojow3z69evz0c+8pF9PyAOCAEQAJilXq9namqqYdTr9Vnvm5iYSGtra5Kk\\\n", + "ra0t27dvn5mbnJzMww8/nLPOOmve1k0xlQyA27Zty3XXXZc77rgjjz/+eK644op87GMfy7Zt2/a4\\\n", + "3+7+Mby4a9c8rRoA5tasFnB/f3/a2toaRn9//6zva29vz9TUVJKXAt+SJUtm5m644YZceeWV83bs\\\n", + "FFfJAHjxxRfnuOOOy+OPP56enp6sXLkyPT09ueyyy/a43+7+MTw1du88rRoA5tasANjX15fJycmG\\\n", + "0dfXN+v7Ojs7Mzw8nCQZGhpKV1fXzNyPfvSjfOpTn0pvb28ee+yx/N3f/d28/Q7sWcv09PT0Qi9i\\\n", + "vq1YsSIbNmxIkpx55pn53ve+lyRZuXJl7r33lQNdvV6fVf5+23Wfz6JD3E4RgLk9+qmPHvDvuOif\\\n", + "1zflc7588V8Ufu9f/dVf5Xvf+16OP/74fPGLX8yVV16ZgYGBhvecfvrp2bRpU1PWxv6rZHL55UvU\\\n", + "f/kv6K452rm1Wi21Wq1hm/AHQNWtW7eu4fXLw18S4e9VppLp5fbbb8/09HRaWlpy6qmnJnkpFP7D\\\n", + "P/zDAq8MAPaPJ4FQRCUD4NKlS2dtO/TQQ/O2t71tAVYDAM0j/1FEJS8CAQCoskpWAAGgrLSAKUIA\\\n", + "BIASkf8oQgsYAKBiVAABoEyUAClAAASAEnEOIEVoAQMAVIwKIACUiAIgRQiAAFAiWsAUIQACQInI\\\n", + "fxThHEAAgIpRAQSAEtECpggBEABKRP6jCC1gAICKUQEEgBLRAqYIARAAykQApAAtYACAilEBBIAS\\\n", + "UQCkCAEQAErEOYAUoQUMAFAxKoAAUCIKgBQhAAJAiWgBU4QACAAlIv9RhHMAAQAqRgUQAEpEC5gi\\\n", + "BEAAKBEBkCK0gAEAKkYFEABKRAGQIgRAACgRLWCK0AIGAKgYFUAAKBEFQIoQAAGgRLSAKUIA3E+/\\\n", + "c7KfEAA4uDgHEABKpKVJY2+sXbs23d3dWb16dXbu3DmzfXx8PJ2dnXn729+e888/P88888x+HRvN\\\n", + "IwACQIm0tDRnFDU+Pp6tW7dmZGQky5cvz+Dg4Mzcm970poyNjWXjxo1561vfmttvv/0AHDH7QgAE\\\n", + "gBKZ7wrg2NhYenp6kiS9vb0ZHR2dmTv00ENn/vzss8/m5JNP3sejotkEQABglnq9nqmpqYZRr9dn\\\n", + "vW9iYiKtra1Jkra2tmzfvr1h/u67785b3vKWbNiwISeeeOK8rJ25CYAAUCLNagH39/enra2tYfT3\\\n", + "98/6vvb29kxNTSVJJicns2TJkob53t7e/Nu//VtWrVqVgYGBefkNmJsACAAl0qwWcF9fXyYnJxtG\\\n", + "X1/frO/r7OzM8PBwkmRoaChdXV0zc79cMWxra8trX/vaZh8u+8g9TACAWWq1Wmq12pzv6+joyLJl\\\n", + "y9Ld3Z3jjz8+H/vYx7JmzZoMDAzk7rvvzvXXX5+WlpYcffTRufnmm+dh5RQhAAJAiSzEjaDXrVvX\\\n", + "8PoXrd4LLrggF1xwwfwviDkJgABQIp4EQhHOAQQAqBgVQAAoEQVAihAAAaBEWvSAKUALGACgYlQA\\\n", + "AaBE1P8oQgAEgBLRAaYIARAASkT+owjnAAIAVIwKIACUyCIlQAoQAAGgROQ/itACBgCoGBVAACgR\\\n", + "VwFThAAIACUi/1GEFjAAQMWoAAJAiWgBU4QACAAlIv9RhBYwAEDFqAACQIloAVOEAAgAJSL/UYQA\\\n", + "CAAl4lFwFOEcQACAilEBBIASUQCkCAEQAErERSAUoQUMAFAxKoAAUCIKgBQhAAJAiWgBU4QW8P9z\\\n", + "1VVXzfmeer2eqamphvHCzl0HfnEAAE1UyQrg0qVLc/zxx2fRokWZnp5Okjz22GMZGxvLgw8++Ir7\\\n", + "9ff359prr23Y9qYL35U3/+HvH9D1AkBRCoAUUckK4Pr163PCCSfkox/9aB566KE89NBDOeuss/YY\\\n", + "/pKkr68vk5OTDWP5+e+cp1UDwNxaWpozKLdKBsD3v//9ue2227Jr165ceOGFufXWW2cqgXtSq9XS\\\n", + "2traMBYfWskiKgBwEKtkAEySRYsW5eKLL87Xvva17Nq1Kx0dHQu9JADYbyqAFFH58tWiRYtyySWX\\\n", + "LPQyAKApKlvZYa9UPgACQJmo3lGE/1EAAKgYARAASqSlSWNvrF27Nt3d3Vm9enV27tw5s/3OO+/M\\\n", + "7/7u7+bss8/OX/zFX+zXcdFcAiAAlMh8XwQyPj6erVu3ZmRkJMuXL8/g4ODM3KmnnprR0dHcf//9\\\n", + "efLJJ7Np06YDcMTsCwEQANhnY2Nj6enpSZL09vZmdHR0Zu7444/PIYe8dLnBYYcdlkWLxI5XCxeB\\\n", + "AECJNOsakHq9nnq93rCtVqulVqs1bJuYmMixxx6bJGlra8v27dtnfdZDDz2UJ598MqeddlqTVsf+\\\n", + "EsUBoESa1QLu7+9PW1tbw+jv75/1fe3t7ZmamkqSTE5OZsmSJQ3z//Ef/5GrrroqN91007wcP8UI\\\n", + "gADALLt7/GlfX9+s93V2dmZ4eDhJMjQ0lK6urpm5HTt25KKLLsrAwECWLl06b2tnbgIgAJRIs64C\\\n", + "3t3jT1/e/k2Sjo6OLFu2LN3d3dmyZUtWrVqVNWvWJEluuOGG/OQnP8lHPvKRrFixIhs3bjywB09h\\\n", + "LdNFHoLLK/rjW9Yv9BIAOEj8y+oDfyuU/zn22aZ8zn/v/POmfA6vTiqAAAAV4ypgACgRT4KjCAEQ\\\n", + "AErEs4ApQgAEgBJxbhdF+HsCAFAxKoAAUCJawBQhAAJAich/FKEFDABQMSqAAFAiWsAUIQACQInI\\\n", + "fxShBQwAUDEqgABQIlrAFCEAAkCJCIAUoQUMAFAxKoAAUCIKgBQhAAJAiWgBU4QACAAl4twuivD3\\\n", + "BACgYlQAAaBEtIApQgAEgBJpyfRCL4GDgBYwAEDFqAACQIloAVNEy/T0tFox0DT1ej39/f3p6+tL\\\n", + "rVZb6OUAsBsCINBUU1NTaWtry+TkZFpbWxd6OQDshnMAAQAqRgAEAKgYARAAoGIEQKCparVaPvnJ\\\n", + "T7oABOBVzEUgAAAVowIIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxhyz0AoDy2LZtWy666KLs2rUr\\\n", + "y5Yty1e+8pUsXrx4oZcFwMuoAAJNc9RRR+Wee+7JyMhIjjvuuNx3330LvSQAdkMFEGiap556Kldc\\\n", + "cUUmJibyxBNP5LTTTlvoJQGwGyqAQNPceuutOe+887Jx48b09vbGfeYBXp1UAIGmWblyZVavXp07\\\n", + "77wzhx9++EIvB4BX4FFwAAAVowUMAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMA\\\n", + "AgBUjCeBAE2zbdu2XHTRRdm1a1eWLVuWr3zlK1m8ePFCLwuAl1EBBJrmqKOOyj333JORkZEcd9xx\\\n", + "ue+++xZ6SQDshgog0DRPPfVUrrjiikxMTOSJJ57IaaedttBLAmA3VACBprn11ltz3nnnZePGjent\\\n", + "7Y1HjQO8OqkAAk2zcuXKrF69OnfeeWcOP/zwhV4OAK+gZdr/ogMAVIoWMABAxQiAAAAVIwACAFSM\\\n", + "AAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAV\\\n", + "IwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIABAxfxfdW65Q7iqRPQAAAAASUVORK5C\\\n", + "YII=\\\n", "\"\n", " frames[5] = \"\\\n", "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", - "AAAPYQGoP6dpAAAwtklEQVR4nO3df3QU9b3/8dduTDb8MOFHIIGQkgItkIsQm0huRARtJFWkwmkt\\\n", - "+CsxVjwKUcpWK6lIlF5Za29psAK5ooiVek2vpa33Kw3FVU5LiUaTiwICihTSUjYQKKApbDC73z+0\\\n", - "0TUbmGw2mWTm+ThnzqmfnZ197xwqL9/vmVlHMBgMCgAAALbhNLsAAAAAdC0CIAAAgM0QAAEAAGyG\\\n", - "AAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAz\\\n", - "BEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACb\\\n", - "IQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADY\\\n", - "DAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQQIcd\\\n", - "PHhQ8+bN0+jRo9WrVy8NHDhQ119/vQ4cOGB2aQCAMC4wuwAAPd+bb76pbdu2ac6cORo2bJgOHDig\\\n", - "1atXa+rUqXr33XfVu3dvs0sEAHyOIxgMBs0uAkDPdvr0afXq1Stk7fXXX1dubq5+8Ytf6JZbbjGp\\\n", - "MgBAOIyAAXTY58Pf2bNndezYMY0aNUr9+vVTbW2tiZUBAMIhAALosNOnT2vJkiVKS0uTy+VSUlKS\\\n", - "Bg0apBMnTujkyZNmlwcA+AKuAQTQYXfffbeeeeYZfe9731Nubq4SExPlcDg0Z84cBQIBs8sDAHwB\\\n", - "ARBAh7344osqLCzUT3/605a1M2fO6MSJE+YVBQBoEyNgAB0WExOjL95P9vOf/1zNzc0mVQQAOBc6\\\n", - "gAA67Nprr9Vzzz2nxMREZWRkqKqqSq+88ooGDhxodmkAgDAIgAA6bMWKFYqJidEvf/lLnTlzRpMm\\\n", - "TdIrr7yi/Px8s0sDAITBcwABAABshmsAAQAAbIYACAAAYDMEQAAAAJshAAIAgA754x//qBkzZmjo\\\n", - "0KFyOBz67W9/e973bNmyRV/72tfkcrk0atQorVu3rtPrxGcIgAAAoEMaGxs1YcIErVy50tD+f/nL\\\n", - "XzR9+nRdccUV2r59u773ve/p9ttv16ZNmzq5UvwLdwEDAICocTgc+s1vfqOZM2e2uc/999+vl19+\\\n", - "WTt37mxZmzNnjk6cOKHKysouqBJ0AAEAQJeqqqpSXl5eyFp+fr6qqqpMqsh+eBA0AABoxe/3y+/3\\\n", - "h6y5XC65XK4OH9vn8yk5OTlkLTk5WadOndLp06fVq1evDn8Gzo0A2EHP164wu4Qeq7HJYXYJPdqH\\\n", - "TWZX0HM1c+FLxJoDZlfQsy264p5O/4yLvvb9qBznW9+8UA8//HDIWmlpqR566KGoHB/mIgACAIBW\\\n", - "SkpK5Ha7Q9ai0f2TpJSUFNXX14es1dfXKyEhge5fFyEAAgBgJVEarkRr3BtObm6uNm7cGLK2efNm\\\n", - "5ebmdsrnoTVuAgEAAB3y0Ucfafv27dq+fbukTx7zsn37dtXV1Un6pJtYUFDQsv+dd96p/fv36wc/\\\n", - "+IH27NmjVatW6Ve/+pUWLlxoRvm2RAcQAAArcXT99dVvvfWWrrjiipZ//tfouLCwUOvWrdPhw4db\\\n", - "wqAkffnLX9bLL7+shQsXasWKFRo2bJieeuop5efnd3ntdkUABADASky4v27q1Kk612OFw/3Kx9Sp\\\n", - "U/V///d/nVgVzoURMAAAgM3QAQQAwEp4whYMIAACAGApJECcHyNgAAAAm6EDCACAhQRpAMIAAiAA\\\n", - "AFZCAIQBjIABAABshg4gAABWYsKDoNHz0AEEAACwGTqAAABYCQ1AGEAHEAAAwGboAAIAYCVcAwgD\\\n", - "CIAAAFgJ+Q8GMAIGAACwGTqAAABYSNDsAtAjEAABALASrgGEAYyAAQAAbIYOIAAAVkIDEAYQAAEA\\\n", - "sBQSIM6PETAAAIDN0AEEAMBKaADCAAIgAABWQgCEAQRAAAAsJMhjYGAA1wACAADYDAEQAADAZhgB\\\n", - "AwBgJYyAYQAdQAAAAJuhAwgAgJXQAIQBtgmADQ0NWrt2raqqquTz+SRJKSkpuvTSS3Xrrbdq0KBB\\\n", - "JlcIAEDHBc0uAD2CLUbAb775pr761a/q8ccfV2Jioi6//HJdfvnlSkxM1OOPP64xY8borbfeMrtM\\\n", - "AACALmGLDuDdd9+t66+/XuXl5XJ84eLYYDCoO++8U3fffbeqqqrOeRy/3y+/3x+ydrbpY8XG2eI0\\\n", - "AgB6Am4CgQG26AC+/fbbWrhwYavwJ0kOh0MLFy7U9u3bz3scj8ejxMTEkO2lZzZ3QsUAAETIEaUN\\\n", - "lmaLAJiSkqLq6uo2X6+urlZycvJ5j1NSUqKTJ0+GbN8suiqapQIAAHQ6WwTAe++9V3fccYcWLFig\\\n", - "l156SW+88YbeeOMNvfTSS1qwYIHuvPNO/eAHPzjvcVwulxISEkI2xr8AgG7F4YjOFoGVK1cqPT1d\\\n", - "8fHxysnJOWfz5ezZs1q6dKlGjhyp+Ph4TZgwQZWVlZF+a7STLdLL/PnzlZSUpJ/97GdatWqVmpub\\\n", - "JUkxMTHKysrSunXr9J3vfMfkKgEA6Diz7gKuqKiQ2+1WeXm5cnJyVFZWpvz8fO3du1eDBw9utf/i\\\n", - "xYu1fv16rVmzRmPGjNGmTZs0a9Ysbdu2TRdffLEJ38BeHMFg0FZ3jJ89e1YNDQ2SpKSkJMXGxnbo\\\n", - "eM/XrohGWbbU2MRFJh3xYZPZFfRczbb6t150NQfMrqBnW3TFPZ3+GWPyH4zKcfZs+lG79s/JydEl\\\n", - "l1yiJ554QpIUCASUlpamu+++W4sWLWq1/9ChQ/XAAw9o/vz5LWvf+ta31KtXL61fv75jxeO8bNEB\\\n", - "/LzY2FgNGTLE7DIAAOjWwj35wuVyyeVytdq3qalJNTU1KikpaVlzOp3Ky8tr8wkbfr9f8fHxIWu9\\\n", - "evXS1q1bo1A9zscW1wACAGAbUboGMNyTLzweT9iPbGhoUHNzc6sbKpOTk1t+fOGL8vPztXz5cr3/\\\n", - "/vsKBALavHmzNmzYoMOHD0f9lKA1AiAAAGgl3JMvPt/h66gVK1boK1/5isaMGaO4uDgVFxerqKhI\\\n", - "TifRpCtwlgEAQCvhnnwRbvwrfXJNfUxMjOrr60PW6+vrlZKSEvY9gwYN0m9/+1s1Njbq4MGD2rNn\\\n", - "j/r27asRI0ZE/bugNQIgAAAWEnQ4orK1R1xcnLKysuT1elvWAoGAvF6vcnNzz/ne+Ph4paam6uOP\\\n", - "P9avf/1rXXfddRF9b7SP7W4CAQDA0kx6wILb7VZhYaGys7M1ceJElZWVqbGxUUVFRZKkgoICpaam\\\n", - "tlxH+MYbb+jQoUPKzMzUoUOH9NBDDykQCBh6Li86jgAIAAA6bPbs2Tp69KiWLFkin8+nzMxMVVZW\\\n", - "ttwYUldXF3J935kzZ7R48WLt379fffv21TXXXKPnnntO/fr1M+kb2IvtngMYbTwHMHI8B7BjeA5g\\\n", - "5HgOYOR4DmDHdMVzAEdfUxqV4+zd+HBUjoPuiQ4gAAAW0t7r92BP3AQCAABgM3QAAQCwEhqAMIAA\\\n", - "CACAlRAAYQABEAAASyEB4vy4BhAAAMBm6AACAGAhQRqAMIAACACAlRAAYQAjYAAAAJuhAwgAgKXQ\\\n", - "AsT5EQABALAQrgGEEYyAAQAAbIYOIAAAVkIHEAYQAAEAsBQSIM6PETAAAIDN0AEEAMBCuAkERhAA\\\n", - "AQCwEgIgDCAAAgBgKSRAnB/XAAIAANgMHUAAAKyEBiAMIAACAGAh3AQCIxgBAwAA2AwdQAAArIQO\\\n", - "IAwgAAIAYCkkQJwfARCm8X4QNLsE2NSZJrMr6LlSB5hdAYBoIAACAGAh3AQCIwiAAABYCQEQBnAX\\\n", - "MAAAgM0QAAEAAGyGETAAAFbiYAaM8yMAAgBgIdwEAiMYAQMAANgMARAAAMBmCIAAAFiJI0pbBFau\\\n", - "XKn09HTFx8crJydH1dXV59y/rKxMo0ePVq9evZSWlqaFCxfqzJkzkX042oUACAAAOqyiokJut1ul\\\n", - "paWqra3VhAkTlJ+fryNHjoTd//nnn9eiRYtUWlqq3bt36+mnn1ZFRYV++MMfdnHl9kQABADAShyO\\\n", - "6GzttHz5cs2dO1dFRUXKyMhQeXm5evfurbVr14bdf9u2bZo0aZJuvPFGpaena9q0abrhhhvO2zVE\\\n", - "dBAAAQCwkGCUNr/fr1OnToVsfr8/7Gc2NTWppqZGeXl5LWtOp1N5eXmqqqoK+55LL71UNTU1LYFv\\\n", - "//792rhxo6655pqOngIYQAAEAACteDweJSYmhmwejyfsvg0NDWpublZycnLIenJysnw+X9j33Hjj\\\n", - "jVq6dKkuu+wyxcbGauTIkZo6dSoj4C5CAAQAwEqidBNISUmJTp48GbKVlJRErcwtW7Zo2bJlWrVq\\\n", - "lWpra7Vhwwa9/PLL+tGPfhS1z0DbeBA0AABWEqUHQbtcLrlcLkP7JiUlKSYmRvX19SHr9fX1SklJ\\\n", - "CfueBx98ULfccotuv/12SdJFF12kxsZG3XHHHXrggQfkdNKj6kycXQAA0CFxcXHKysqS1+ttWQsE\\\n", - "AvJ6vcrNzQ37nn/+85+tQl5MTIwkKRgMdl6xkEQHEAAARIHb7VZhYaGys7M1ceJElZWVqbGxUUVF\\\n", - "RZKkgoICpaamtlxHOGPGDC1fvlwXX3yxcnJytG/fPj344IOaMWNGSxBE5yEAAgBgJRE8wiUaZs+e\\\n", - "raNHj2rJkiXy+XzKzMxUZWVly40hdXV1IR2/xYsXy+FwaPHixTp06JAGDRqkGTNm6JFHHjGlfrtx\\\n", - "BOmzdsjztSvMLqHHemm32RXArs40mV1Bz5U6wOwKeraV1y3o9M/40q2PRuU4desWReU46J64BhAA\\\n", - "AMBmCIAAAAA2wzWAAABYiTmXAKKHoQMIAABgM3QAAQCwEjqAMIAACACApZAAcX6MgAEAAGyGDiAA\\\n", - "AFZCAxAGEAABALASAiAMYAQMAABgM3QAAQCwEH7fFUYQAAEAsBJGwDCAETAAAIDNEAABAABshhEw\\\n", - "AABW4mAGjPOjA/ipv/71r7rtttvOuY/f79epU6dCtrNNH3dRhQAAGOCI0gZLIwB+6vjx43r22WfP\\\n", - "uY/H41FiYmLI9tIzm7uoQgAAgOiwzQj4pZdeOufr+/fvP+8xSkpK5Ha7Q9Z+8+6aDtUFAADQ1WwT\\\n", - "AGfOnCmHw6FgsO0nJDnOc92Ey+WSy+UKWYuNs80pBAD0BIxvYYBtRsBDhgzRhg0bFAgEwm61tbVm\\\n", - "lwgAANAlbBMAs7KyVFNT0+br5+sOAgDQI3ATCAywzfzyvvvuU2NjY5uvjxo1Sq+99loXVgQAAGAO\\\n", - "2wTAyZMnn/P1Pn36aMqUKV1UDQAAgHlsEwABALAFxrcwgAAIAICFnO+JFoBko5tAAAAA8AkCIAAA\\\n", - "gM0wAgYAwEqYAMMAAiAAAFZCAIQBjIABAABshgAIAABgM4yAAQCwEJ4CAyPoAAIAANgMARAAAETF\\\n", - "ypUrlZ6ervj4eOXk5Ki6urrNfadOnSqHw9Fqmz59ehdWbF8EQAAArMQRpa2dKioq5Ha7VVpaqtra\\\n", - "Wk2YMEH5+fk6cuRI2P03bNigw4cPt2w7d+5UTEyMrr/++vZ/ONqNAAgAADps+fLlmjt3roqKipSR\\\n", - "kaHy8nL17t1ba9euDbv/gAEDlJKS0rJt3rxZvXv3JgB2EQIgAABWEqUOoN/v16lTp0I2v98f9iOb\\\n", - "mppUU1OjvLy8ljWn06m8vDxVVVUZKvvpp5/WnDlz1KdPn0i+NdqJAAgAgIVEawLs8XiUmJgYsnk8\\\n", - "nrCf2dDQoObmZiUnJ4esJycny+fznbfm6upq7dy5U7fffnsE3xiR4DEwAABYSZSeA1NSUiK32x2y\\\n", - "5nK5onLsL3r66ad10UUXaeLEiZ1yfLRGAAQAAK24XC7DgS8pKUkxMTGqr68PWa+vr1dKSso539vY\\\n", - "2KgXXnhBS5cujbhWtB8jYAAALMThiM7WHnFxccrKypLX621ZCwQC8nq9ys3NPed7/+d//kd+v183\\\n", - "33xzJF8XEaIDCAAAOsztdquwsFDZ2dmaOHGiysrK1NjYqKKiIklSQUGBUlNTW11H+PTTT2vmzJka\\\n", - "OHCgGWXbFgEQAAB02OzZs3X06FEtWbJEPp9PmZmZqqysbLkxpK6uTk5n6OBx79692rp1q/7whz+Y\\\n", - "UbKtEQABALASE38LuLi4WMXFxWFf27JlS6u10aNHKxgMdnJVCIcACACAhZiY/9CDcBMIAACAzdAB\\\n", - "BADASmgBwgACIAAAFhKl50DD4hgBAwAA2AwBEAAAwGYYAQMAYCGMgGEEHUAAAACbIQACAADYDCPg\\\n", - "DvrnWXrtkTp+MmB2CT3a3jfOmF1CjxXow3/7RirtGy6zS8B5MAKGEQRAAACshAAIA/jPYAAAAJuh\\\n", - "AwgAgIU4aAHCAAIgAABWQv6DAYyAAQAAbIYOIAAAFkIDEEYQAAEAsBAeAwMjGAEDAADYDB1AAACs\\\n", - "hA4gDCAAAgBgIeQ/GEEABADASkiAMIBrAAEAAGyGDiAAABZCAxBGEAABALAQHgMDIxgBAwAA2Awd\\\n", - "QAAArIQOIAwgAAIAYCHkPxjBCBgAAMBm6AACAGAh3AQCI+gAAgAA2AwBEAAAwGYYAQMAYCGMgGEE\\\n", - "HUAAAKzEEaUtAitXrlR6erri4+OVk5Oj6urqc+5/4sQJzZ8/X0OGDJHL5dJXv/pVbdy4MbIPR7vQ\\\n", - "AQQAwEIcJj0IpqKiQm63W+Xl5crJyVFZWZny8/O1d+9eDR48uNX+TU1NuuqqqzR48GC9+OKLSk1N\\\n", - "1cGDB9WvX7+uL96GCIAAAKDDli9frrlz56qoqEiSVF5erpdffllr167VokWLWu2/du1aHT9+XNu2\\\n", - "bVNsbKwkKT09vStLtjVGwAAAWIjDEZ2tPZqamlRTU6O8vLyWNafTqby8PFVVVYV9z0svvaTc3FzN\\\n", - "nz9fycnJGjdunJYtW6bm5uaOfH0YRAcQAAC04vf75ff7Q9ZcLpdcLlerfRsaGtTc3Kzk5OSQ9eTk\\\n", - "ZO3Zsyfs8ffv369XX31VN910kzZu3Kh9+/Zp3rx5Onv2rEpLS6P3RRAWHUAAANCKx+NRYmJiyObx\\\n", - "eKJ2/EAgoMGDB+vJJ59UVlaWZs+erQceeEDl5eVR+wy0jQ4gAAAWEq3HwJSUlMjtdoeshev+SVJS\\\n", - "UpJiYmJUX18fsl5fX6+UlJSw7xkyZIhiY2MVExPTsjZ27Fj5fD41NTUpLi6ug98A50IHEAAAC4nW\\\n", - "U2BcLpcSEhJCtrYCYFxcnLKysuT1elvWAoGAvF6vcnNzw75n0qRJ2rdvnwKBQMvae++9pyFDhhD+\\\n", - "ugABEAAAdJjb7daaNWv07LPPavfu3brrrrvU2NjYcldwQUGBSkpKWva/6667dPz4cS1YsEDvvfee\\\n", - "Xn75ZS1btkzz58836yvYCiNgAACsxKRfApk9e7aOHj2qJUuWyOfzKTMzU5WVlS03htTV1cnp/Kzv\\\n", - "lJaWpk2bNmnhwoUaP368UlNTtWDBAt1///3mfAGbIQACAGAhZv4UXHFxsYqLi8O+tmXLllZrubm5\\\n", - "ev311zu5KoTDCBgAAMBmekwH8N1331VdXZ2amppC1r/5zW+aVBEAAN2PiQ1A9CDdPgDu379fs2bN\\\n", - "0o4dO+RwOBQMBiVJjk973EafGH769GnV1NRowIABysjICHntzJkz+tWvfqWCgoJzHiPcQzHPNn2s\\\n", - "2LhufxoBAHZBAoQB3X4EvGDBAn35y1/WkSNH1Lt3b+3atUt//OMflZ2dHfZ6gnDee+89jR07Vpdf\\\n", - "frkuuugiTZkyRYcPH255/eTJky13KZ1LuIdi/v7ZzZF+NQAAoi5aj4GBtXX7AFhVVaWlS5cqKSlJ\\\n", - "TqdTTqdTl112mTwej+655x5Dx7j//vs1btw4HTlyRHv37tWFF16oSZMmqa6url21lJSU6OTJkyHb\\\n", - "1YVXRfK1AAAATNPtZ5fNzc268MILJX3ypPG///3vGj16tIYPH669e/caOsa2bdv0yiuvKCkpSUlJ\\\n", - "Sfrf//1fzZs3T5MnT9Zrr72mPn36GDpOuN9AZPwLAOhOzLwLGD1Ht+8Ajhs3Tm+//bYkKScnR489\\\n", - "9pj+/Oc/a+nSpRoxYoShY5w+fVoXXPBZUHM4HFq9erVmzJihKVOm6L333uuU2gEA6HLMgGFAt29f\\\n", - "LV68WI2NjZKkpUuX6tprr9XkyZM1cOBAVVRUGDrGmDFj9NZbb2ns2LEh60888YQk7iQGAAD20u0D\\\n", - "YH5+fsv/HjVqlPbs2aPjx4+rf//+LXcCn8+sWbP03//937rllltavfbEE08oEAiovLw8ajUDAGAW\\\n", - "mncwotuPgMMZMGCA4fAnfXLzxsaNG9t8fdWqVSE/Rg0AQE/lcERng7X1yAAIAACAyHX7ETAAAGgP\\\n", - "2nc4PwIgAAAWwvgWRjACBgAAsBk6gAAAWAkdQBhAAAQAwELIfzCCAAgAgIVwDSCM4BpAAAAAmyEA\\\n", - "AgAA2AwjYAAALIQRMIygAwgAAGAzdAABALAQGoAwggAIAICVkABhACNgAAAAm6EDCACAhXATCIwg\\\n", - "AAIAYCHkPxhBAAQAwEpIgDCAawABAABshg4gAAAWQgMQRhAAAQCwEG4CgRGMgAEAAGyGDiAAAFZC\\\n", - "CxAGEAABALAQ4h+MYAQMAACiYuXKlUpPT1d8fLxycnJUXV3d5r7r1q2Tw+EI2eLj47uwWnsjAAIA\\\n", - "YCWOKG3tVFFRIbfbrdLSUtXW1mrChAnKz8/XkSNH2nxPQkKCDh8+3LIdPHiw/R+MiBAAAQCwEJPy\\\n", - "n5YvX665c+eqqKhIGRkZKi8vV+/evbV27dq2a3U4lJKS0rIlJydH8MmIBAEQAAB0SFNTk2pqapSX\\\n", - "l9ey5nQ6lZeXp6qqqjbf99FHH2n48OFKS0vTddddp127dnVFuRABEAAAS3E4orP5/X6dOnUqZPP7\\\n", - "/WE/s6GhQc3Nza06eMnJyfL5fGHfM3r0aK1du1a/+93vtH79egUCAV166aX629/+FvVzgtYIgAAA\\\n", - "WEmUZsAej0eJiYkhm8fjiVqZubm5KigoUGZmpqZMmaINGzZo0KBB+q//+q+ofQbaxmNgAACwkGg9\\\n", - "BqakpERutztkzeVyhd03KSlJMTExqq+vD1mvr69XSkqKoc+LjY3VxRdfrH379kVWMNqFANhBHzaZ\\\n", - "XUHP5W8Kml1CjxabzP99IxXkj17EPg6YXQG6isvlajPwfVFcXJyysrLk9Xo1c+ZMSVIgEJDX61Vx\\\n", - "cbGhYzQ3N2vHjh265pprIi0Z7cDfIAAAWIhZPwTidrtVWFio7OxsTZw4UWVlZWpsbFRRUZEkqaCg\\\n", - "QKmpqS1j5KVLl+rf//3fNWrUKJ04cUI/+clPdPDgQd1+++3mfAGbIQACAIAOmz17to4ePaolS5bI\\\n", - "5/MpMzNTlZWVLTeG1NXVyen87NaDf/zjH5o7d658Pp/69++vrKwsbdu2TRkZGWZ9BVtxBIMMQzri\\\n", - "Z3963OwSeqzf1jSbXUKPdujvnL9I8W+9yE2bFGt2CT3a6pkLOv0zpq0qi8px/jDve1E5DronOoAA\\\n", - "AFiIWSNg9CwEQAAALIQACCN4DiAAAIDNEAABAABshhEwAAAWwggYRtABBAAAsBk6gAAAWAgNQBhB\\\n", - "AAQAwEpIgDCAAAgAgIVwDSCM4BpAAAAAm6EDCACAhdAAhBEEQAAArIQZMAxgBAwAAGAzdAABALAQ\\\n", - "+n8wggAIAICFMAGGEYyAAQAAbIYOIAAAFkIHEEbQAQQAALAZAiAAAIDNMAIGAMBCGAHDCAIgAAAW\\\n", - "Qv6DEQRAAACshAQIA7gGEAAAwGboAAIAYCE0AGEEARAAAAvhJhAYwQgYAADAZugAAgBgIXQAYQQd\\\n", - "QAAAAJshAAIAANgMI2AAACyEETCMIAACAGAh5D8YwQgYAADAZmzTAdy9e7def/115ebmasyYMdqz\\\n", - "Z49WrFghv9+vm2++WVdeeeV5j+H3++X3+0PWPm76WBfE2eY0AgC6OUbAMMIWHcDKykplZmbq3nvv\\\n", - "1cUXX6zKykpdfvnl2rdvnw4ePKhp06bp1VdfPe9xPB6PEhMTQ7ZX1m/ugm8AAIAxDkd0tkisXLlS\\\n", - "6enpio+PV05Ojqqrqw2974UXXpDD4dDMmTMj+2C0my0C4NKlS3Xffffp2LFjeuaZZ3TjjTdq7ty5\\\n", - "2rx5s7xer+677z49+uij5z1OSUmJTp48GbLl3XxVF3wDAAC6t4qKCrndbpWWlqq2tlYTJkxQfn6+\\\n", - "jhw5cs73HThwQPfee68mT57cRZVCskkA3LVrl2699VZJ0ne+8x19+OGH+va3v93y+k033aR33nnn\\\n", - "vMdxuVxKSEgI2Rj/AgAgLV++XHPnzlVRUZEyMjJUXl6u3r17a+3atW2+p7m5WTfddJMefvhhjRgx\\\n", - "ogurhS0CoCQ5Pu1nO51OxcfHKzExseW1Cy+8UCdPnjSrNAAAosaMEXBTU5NqamqUl5fXsuZ0OpWX\\\n", - "l6eqqqo237d06VINHjxY3/3udyP9uoiQLdpX6enpev/99zVy5EhJUlVVlb70pS+1vF5XV6chQ4aY\\\n", - "VR4AAFETrXtAwt346HK55HK5Wu3b0NCg5uZmJScnh6wnJydrz549YY+/detWPf3009q+fXuUKkZ7\\\n", - "2KIDeNddd6m5ubnln8eNG6cLLvgs+/7+9783dBcwAAB2Ee7GR4/HE5Vjf/jhh7rlllu0Zs0aJSUl\\\n", - "ReWYaB9bdADvvPPOc76+bNmyLqoEAIDOFa3HwJSUlMjtdoeshev+SVJSUpJiYmJUX18fsl5fX6+U\\\n", - "lJRW+3/wwQc6cOCAZsyY0bIWCAQkSRdccIH27t3bMrVD57BFAAQAwC6iNQJua9wbTlxcnLKysuT1\\\n", - "else5RIIBOT1elVcXNxq/zFjxmjHjh0ha4sXL9aHH36oFStWKC0trcP149wIgAAAoMPcbrcKCwuV\\\n", - "nZ2tiRMnqqysTI2NjSoqKpIkFRQUKDU1VR6PR/Hx8Ro3blzI+/v16ydJrdbROQiAAABYiUm/BDJ7\\\n", - "9mwdPXpUS5Yskc/nU2ZmpiorK1tuDKmrq5PTaYtbD3oEAiAAABZi5k/BFRcXhx35StKWLVvO+d51\\\n", - "69ZFvyC0iSgOAABgM3QAAQCwEBMbgOhBCIAAAFiImSNg9BwEQAAALIT8ByO4BhAAAMBm6AACAGAh\\\n", - "jIBhBAEQAAALIf/BCEbAAAAANkMHEAAAC2EEDCMIgAAAWAkBEAYwAgYAALAZOoAAAFgIDUAYQQAE\\\n", - "AMBCuAYQRjACBgAAsBk6gAAAWAgNQBhBAAQAwEIYAcMIAiAAABZC/oMRXAMIAABgM3QAAQCwEEbA\\\n", - "MIIACACAhRAAYQQjYAAAAJuhAwgAgIXQAIQRBEAAACyEETCMYAQMAABgM3QAAQCwEBqAMIIACACA\\\n", - "hTAChhEEwA5qaja7gp4rLYUrEDriq1/i/EXqUEPQ7BJ6rL82mF0BgGggAAIAYCE0AGEEARAAAAth\\\n", - "BAwjCIAAAFgI+Q9GcBERAACAzdABBADAQhgBwwgCIAAAFkL+gxGMgAEAQFSsXLlS6enpio+PV05O\\\n", - "jqqrq9vcd8OGDcrOzla/fv3Up08fZWZm6rnnnuvCau2NAAgAgIU4HNHZ2quiokJut1ulpaWqra3V\\\n", - "hAkTlJ+fryNHjoTdf8CAAXrggQdUVVWld955R0VFRSoqKtKmTZs6eAZgBAEQAAALMSsALl++XHPn\\\n", - "zlVRUZEyMjJUXl6u3r17a+3atWH3nzp1qmbNmqWxY8dq5MiRWrBggcaPH6+tW7d28AzACAIgAABo\\\n", - "xe/369SpUyGb3+8Pu29TU5NqamqUl5fXsuZ0OpWXl6eqqqrzflYwGJTX69XevXt1+eWXR+07oG0E\\\n", - "QAAALMQRpc3j8SgxMTFk83g8YT+zoaFBzc3NSk5ODllPTk6Wz+drs9aTJ0+qb9++iouL0/Tp0/Xz\\\n", - "n/9cV111VQe+PYziLmAAACzEEaXnwJSUlMjtdoesuVyuqBz7Xy688EJt375dH330kbxer9xut0aM\\\n", - "GKGpU6dG9XPQGgEQAAC04nK5DAe+pKQkxcTEqL6+PmS9vr5eKSkpbb7P6XRq1KhRkqTMzEzt3r1b\\\n", - "Ho+HANgFGAEDAGAh0RoBt0dcXJyysrLk9Xpb1gKBgLxer3Jzcw0fJxAItHmdIaKLDiAAABZi1i+B\\\n", - "uN1uFRYWKjs7WxMnTlRZWZkaGxtVVFQkSSooKFBqamrLdYQej0fZ2dkaOXKk/H6/Nm7cqOeee06r\\\n", - "V6825wvYDAEQAAALMeuXQGbPnq2jR49qyZIl8vl8yszMVGVlZcuNIXV1dXI6Pxs8NjY2at68efrb\\\n", - "3/6mXr16acyYMVq/fr1mz55t0jewF0cwGAyaXURP9uMtj5tdQo+1w8cfvY7oFWd2BT3XoQb+7EXK\\\n", - "6eSHxjri/92+oNM/44ebovP30rL8e6JyHHRPdAABALAQMjqMIAACAGAh5D8YwV3AAAAANkMHEAAA\\\n", - "CzHrLmD0LARAAAAshPwHIxgBAwAA2AwdQAAALIQRMIwgAAIAYCHkPxjBCBgAAMBm6AACAGAhjIBh\\\n", - "BAEQAAALIf/BCAIgAAAWwk/BwQiuAQQAALAZOoAAAFgIDUAYQQAEAMBCuAkERjACBgAAsBlbdwCD\\\n", - "waAc/KcSAMBC+FsNRti6A+hyubR7926zywAAIGocjuhssDZbdADdbnfY9ebmZj366KMaOHCgJGn5\\\n", - "8uXnPI7f75ff7w9Z+7jpY10QZ4vTCAAALMIWyaWsrEwTJkxQv379QtaDwaB2796tPn36GBoFezwe\\\n", - "PfzwwyFrXy/8hq669epolgsAQMRo3sEIWwTAZcuW6cknn9RPf/pTXXnllS3rsbGxWrdunTIyMgwd\\\n", - "p6SkpFU38eevPxXVWgEA6AjGtzDCFtcALlq0SBUVFbrrrrt077336uzZsxEdx+VyKSEhIWRj/AsA\\\n", - "AHoaWwRASbrkkktUU1Ojo0ePKjs7Wzt37uQOYACA5XATCIywVfuqb9++evbZZ/XCCy8oLy9Pzc3N\\\n", - "ZpcEAEBU2aazgw6xVQD8lzlz5uiyyy5TTU2Nhg8fbnY5AABEDd07GGHLAChJw4YN07Bhw8wuAwAA\\\n", - "oMvZNgACAGBFNABhBAEQAAALYQQMI7hWFAAAwGboAAIAYCE0AGEEARAAAAthBAwjGAEDAADYDB1A\\\n", - "AAAshAYgjKADCACAhZj5U3ArV65Uenq64uPjlZOTo+rq6jb3XbNmjSZPnqz+/furf//+ysvLO+f+\\\n", - "iC4CIAAA6LCKigq53W6VlpaqtrZWEyZMUH5+vo4cORJ2/y1btuiGG27Qa6+9pqqqKqWlpWnatGk6\\\n", - "dOhQF1duTwRAAAAsxBGlrb2WL1+uuXPnqqioSBkZGSovL1fv3r21du3asPv/8pe/1Lx585SZmakx\\\n", - "Y8boqaeeUiAQkNfrjeDT0V5cAwgAgIVE6y5gv98vv98fsuZyueRyuVrt29TUpJqaGpWUlLSsOZ1O\\\n", - "5eXlqaqqytDn/fOf/9TZs2c1YMCAjhUOQ+gAAgBgIc4obR6PR4mJiSGbx+MJ+5kNDQ1qbm5WcnJy\\\n", - "yHpycrJ8Pp+huu+//34NHTpUeXl57fzGiAQdQAAA0EpJSYncbnfIWrjuXzQ8+uijeuGFF7RlyxbF\\\n", - "x8d3ymcgFAEQAAALidYIuK1xbzhJSUmKiYlRfX19yHp9fb1SUlLO+d7//M//1KOPPqpXXnlF48eP\\\n", - "j7hetA8jYAAALMSMm0Di4uKUlZUVcgPHv27oyM3NbfN9jz32mH70ox+psrJS2dnZ7fxUdAQdQAAA\\\n", - "0GFut1uFhYXKzs7WxIkTVVZWpsbGRhUVFUmSCgoKlJqa2nId4Y9//GMtWbJEzz//vNLT01uuFezb\\\n", - "t6/69u1r2vewCwIgAAAWYtZvAc+ePVtHjx7VkiVL5PP5lJmZqcrKypYbQ+rq6uR0fjZ4XL16tZqa\\\n", - "mvTtb3875DilpaV66KGHurJ0WyIAAgBgIWb+FFxxcbGKi4vDvrZly5aQfz5w4EDnF4Q2cQ0gAACA\\\n", - "zdABBADAQswaAaNnIQACAGAhBEAYwQgYAADAZugAAgBgITQAYQQBEAAAC2EEDCMIgAAAWAjXdsEI\\\n", - "/pwAAADYDB1AAAAshBEwjCAAAgBgIQ4FzS4BPQAjYAAAAJuhAwgAgIUwAoYRjmAwSK/Yovx+vzwe\\\n", - "j0pKSuRyucwup0fh3EWOc9cxnL/Ice4A4wiAFnbq1CklJibq5MmTSkhIMLucHoVzFznOXcdw/iLH\\\n", - "uQOM4xpAAAAAmyEAAgAA2AwBEAAAwGYIgBbmcrlUWlrKxdAR4NxFjnPXMZy/yHHuAOO4CQQAAMBm\\\n", - "6AACAADYDAEQAADAZgiAAAAANkMABAAAsBkCoI3U1dVp+vTp6t27twYPHqz77rtPH3/8sdll9Rj3\\\n", - "3HOPsrKy5HK5lJmZaXY5Pcbbb7+tG264QWlpaerVq5fGjh2rFStWmF1Wj3Hs2DF94xvf0NChQ+Vy\\\n", - "uZSWlqbi4mKdOnXK7NJ6lGPHjmnYsGFyOBw6ceKE2eUAprvA7ALQNZqbmzV9+nSlpKRo27ZtOnz4\\\n", - "sAoKChQbG6tly5aZXV6Pcdttt+mNN97QO++8Y3YpPUZNTY0GDx6s9evXKy0tTdu2bdMdd9yhmJgY\\\n", - "FRcXm11et+d0OnXdddfpP/7jPzRo0CDt27dP8+fP1/Hjx/X888+bXV6P8d3vflfjx4/XoUOHzC4F\\\n", - "6B6C6JF+//vfBydNmhRMTEwMDhgwIDh9+vTgvn372tx/48aNQafTGfT5fC1rq1evDiYkJAT9fn9X\\\n", - "lNyttPf8fV5paWlwwoQJnVtgN9aRc/cv8+bNC15xxRWdVGH3Fo3zt2LFiuCwYcM6qcLuK9Jzt2rV\\\n", - "quCUKVOCXq83KCn4j3/8o/OLBbo5RsA9VGNjo9xut9566y15vV45nU7NmjVLgUAg7P5VVVW66KKL\\\n", - "lJyc3LKWn5+vU6dOadeuXV1VdrfR3vOHz0Tj3J08eVIDBgzoxCq7r46ev7///e/asGGDpkyZ0smV\\\n", - "dj+RnLt3331XS5cu1S9+8Qs5nfyVB7QwO4EiOo4ePRqUFNyxY0fY1+fOnRucNm1ayFpjY2NQUnDj\\\n", - "xo1dUWK3dr7z93l27wB+UXvOXTAYDP75z38OXnDBBcFNmzZ1cmU9g9HzN2fOnGCvXr2CkoIzZswI\\\n", - "nj59uosq7L7Od+7OnDkTHD9+fPC5554LBoPB4GuvvUYHEPgU/znUQ73//vu64YYbNGLECCUkJCg9\\\n", - "PV3SJzd6XH311erbt6/69u2rf/u3fzO30G6K8xe5jpy7nTt36rrrrlNpaammTZvWxZV3D5Gev5/9\\\n", - "7Geqra3V7373O33wwQdyu90mVG+u9p67kpISjR07VjfffLOJVQPdEzeB9FAzZszQ8OHDtWbNGg0d\\\n", - "OlSBQEDjxo1TU1OTnnrqKZ0+fVqSFBsbK0lKSUlRdXV1yDHq6+tbXrOb9p4/fCbSc/fuu+/q61//\\\n", - "uu644w4tXrzYjNK7hUjPX0pKilJSUjRmzBgNGDBAkydP1oMPPqghQ4aY8TVM0d5z9+qrr2rHjh16\\\n", - "8cUXJUnBT3/5NCkpSQ888IAefvhhc74I0A0QAHugY8eOae/evVqzZo0mT54sSdq6dWvL66mpqa3e\\\n", - "k5ubq0ceeURHjhzR4MGDJUmbN29WQkKCMjIyuqbwbiKS84dPRHrudu3apSuvvFKFhYV65JFHuqTW\\\n", - "7ihaf/b+dc2b3++PfpHdVCTn7te//nVLKJSkN998U7fddpv+9Kc/aeTIkZ1fNNCNEQB7oP79+2vg\\\n", - "wIF68sknNWTIENXV1WnRokXnfM+0adOUkZGhW265RY899ph8Pp8WL16s+fPny+VydVHl3UMk50+S\\\n", - "9u3bp48++kg+n0+nT5/W9u3bJUkZGRmKi4vr5Kq7h0jO3c6dO3XllVcqPz9fbrdbPp9PkhQTE6NB\\\n", - "gwZ1RdndRiTnb+PGjaqvr9cll1yivn37ateuXbrvvvs0adKklhGoHURy7r4Y8hoaGiRJY8eOVb9+\\\n", - "/TqrVKBnMPsiRERm8+bNwbFjxwZdLldw/PjxwS1btgQlBX/zm9+0+Z4DBw4Er7766mCvXr2CSUlJ\\\n", - "we9///vBs2fPdl3R3Ugk52/KlClBSa22v/zlL11Wd3fQ3nNXWloa9rwNHz68S+vuLtp7/l599dVg\\\n", - "bm5uMDExMRgfHx/8yle+Erz//vtteSNDJP+//TxuAgE+4wgGP70oAgAAALbAXcAAAAA2QwAEAACw\\\n", - "GQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIggKip\\\n", - "rKzUZZddpn79+mngwIG69tpr9cEHH5hdFgDgCwiAAKKmsbFRbrdbb731lrxer5xOp2bNmqVAIGB2\\\n", - "aQCAz3EEg8Gg2UUAsKaGhgYNGjRIO3bs0Lhx48wuBwDwKTqAAKLm/fff1w033KARI0YoISFB6enp\\\n", - "kqS6ujpzCwMAhLjA7AIAWMeMGTM0fPhwrVmzRkOHDlUgENC4cePU1NRkdmkAgM8hAAKIimPHjmnv\\\n", - "3r1as2aNJk+eLEnaunWryVUBAMIhAAKIiv79+2vgwIF68sknNWTIENXV1WnRokVmlwUACINrAAFE\\\n", - "hdPp1AsvvKCamhqNGzdOCxcu1E9+8hOzywIAhMFdwAAAADZDBxAAAMBmCIAAAAA2QwAEAACwGQIg\\\n", - "AACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzfx/\\\n", - "tCIkltwZTywAAAAASUVORK5CYII=\\\n", + "AAAPYQGoP6dpAAAiUElEQVR4nO3df5DddX0/+ucmwBELe5ZAs1Iq9AeF1LawRqCwy2JqyrpFuNAb\\\n", + "qyCGQdRG5ivf0mgns3emCq1l7aSjxG9vdXtvUWDKaA1SBJWUgKHLLg5kbrNicCzytS2EGqZk3U0Z\\\n", + "OCSw9w++3a+HDdlPkpNd8vk8Hsx7JufzPp9z3p8zycyT1+vzo21qamoqAABUxoL5XgAAAHNLAAQA\\\n", + "qBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQAB\\\n", + "ACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRA\\\n", + "AICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgB\\\n", + "EACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQCBGa677rq88MIL068/8YlP5G//9m/ncUUz\\\n", + "bdq0KUceeWS6urqmx/PPPz/fywI4JLRNTU1NzfcigNeXtra2jI+Pp6OjY76X8po2bdqUa6+9Nlu2\\\n", + "bJnvpQAcclQAocQuv/zynHHGGTnttNPyrne9Kz/+8Y9n3ecjH/lIkqS3tzddXV155plncuWVV+bG\\\n", + "G29M8kp18D3veU8uuuiinHLKKbnwwgvzve99L+985ztzyimn5LLLLsvLL7+cJNm5c2c+/OEP56yz\\\n", + "zsppp52W3//938+LL7540I4XgGIEQCixG2+8MZs3b853v/vd9Pb25rrrrpueu+CCC7J58+YZ+3zh\\\n", + "C19IkgwPD2fLli1ZvHjxjPds3rw5t9xyS37wgx9k586d+dCHPpT169fnsccey/e///1861vfSpJ8\\\n", + "7GMfS29vbx5++OGMjY3l5Zdfzrp162Z83s6dO5tauT893vnOd77m8T3xxBNZunRpzjzzzPzVX/3V\\\n", + "vv48AJV12HwvADh4brvtttx666154YUX8sILL+S4446bnvvmN7+535/b19eXY445JkmydOnS1Gq1\\\n", + "HH300UmSt771rXn88ceTJH//93+fhx56KJ/5zGeSJM8//3wWLlw44/OOPvrofW7lLl26NE899VTq\\\n", + "9XqeeuqpXHDBBTnuuOPynve8Z7+PC6AqBEAoqQcffDCf+9zn8tBDD2Xx4sX5+te/nk984hMt+ew3\\\n", + "vOEN039euHDhjNe7d+9OkkxNTeX222/PKaecstfP27lzZ3p7e/c419nZmQ0bNszY3t7ePv3nn//5\\\n", + "n89ll12W4eFhARCgAAEQSmp8fDxHH310jj322Lz44osZGhoqvO/RRx+diYmJA74I5JJLLsmf//mf\\\n", + "Z2hoKIcddljGx8fz7LPP5uSTT57xfftaAfz3f//3dHZ2ZsGCBdm5c2fuvvvufPCDHzyg9QJUhXMA\\\n", + "oaT6+/tz6qmn5tRTT52+oOOnvdY5gMkr5+6df/750xeB7K/Pfvaz07dqOe2007J8+fL8y7/8y35/\\\n", + "3k+7/fbb8xu/8Rs5/fTTc/bZZ+f888/PBz7wgZZ8NkDZuQ0MAEDFqAACAFSMAAgAUDECIABAxQiA\\\n", + "AAAVIwACAAdkYmIiZ511Vo466qh873vfa5p76aWXctVVV6W3tzfXXnvt/CyQGQRAAOCAvPGNb8w3\\\n", + "vvGNvPvd754xd/fdd+fnfu7nMjw8nOeeey4PPfTQPKyQVxMAAYADcvjhh+dnf/Zn9zg3Ojqavr6+\\\n", + "JK/cn3RkZGQul8Zr8CQQAGCGRqORRqPRtK1Wq6VWq+3T54yPj08/urFer2fHjh0tWyP7TwA8QJ/5\\\n", + "x8/N9xIAOESsPu+/H/Tv+I2lH2vJ56z4P47O9ddf37Ttk5/8ZK677rp9+pyOjo5MTk4meeVcwUWL\\\n", + "FrVkfRwYLWAAYIaBgYFMTEw0jYGBgX3+nO7u7mzcuDFJsmHDhvT09LR6qewHARAAyqStNaNWq6W9\\\n", + "vb1p7K39e8EFF+Qf/uEf8uEPfzhf+tKXsmrVqiTJhRdemH/7t39Lb29v3vCGN+Scc845SAfOvtAC\\\n", + "BgAO2De/+c2m11deeWWS5LDDDsuXvvSluV8QeyUAAkCZtLXN9wo4BAiAAFAm8h8FOAcQAKBiVAAB\\\n", + "oExUAClAAASAUpEAmZ0WMABAxagAAkCJTCkAUoAACABlIgBSgBYwAEDFqAACQJm4ETQFqAACAFSM\\\n", + "CiAAlIkCIAWoAAIAVIwKIACUiXMAKUAABIAykf8oQAsYAKBiVAABoESm5nsBHBIEQAAoE+cAUoAW\\\n", + "MABAxagAAkCZKABSgAAIAKUiATI7LWAAgIpRAQSAMlEApAABEADKRACkAAEQAEpkym1gKMA5gAAA\\\n", + "FSMAAgBUjBYwAJSJFjAFqAACAFSMCiAAlIkCIAUIgABQIlPzvQAOCZUMgC+99FLWr1+fkZGR7Nix\\\n", + "I4sWLUpPT09WrFiRww6r5E8CAFRIJdPOVVddlVNPPTVXXnll6vV6JiYmsmHDhnzgAx/Irbfe+pr7\\\n", + "NRqNNBqNpm27X9ydw46o5M8IwOuRi0AooJLJ5Uc/+lFuvvnmpm1Lly7Neeedt9f9BgcHc/311zdt\\\n", + "67uyP+/8wO+0fI0AsF/kPwqoZADs7u7OFVdckb6+vrS3t2dycjIbN27M2Wefvdf9BgYGsnr16qZt\\\n", + "X3j4/z2YSwUAaLlKBsBPf/rT+e53v5vR0dE8+eST6ejoyB/+4R/m9NNP3+t+tVottVqtaZv2LwCv\\\n", + "K/PQAl6zZk1GR0fzC7/wC7npppty+OGHJ0kmJyfz/ve/Pzt37swZZ5yRtWvXzvna2LPK3gfwtNNO\\\n", + "y0c+8pEMDAzk6quvnjX8AcChYKpFo6ixsbFs27Ytw8PDWbJkSdavXz8999d//de5+OKL8+1vfzvP\\\n", + "PfdcHn744QM+PlqjsgEQAEqprTWj0WhkcnKyabz6QsgkGR0dTV9fX5Kkv78/IyMj03NPPPFEurq6\\\n", + "krxyrv0//uM/HowjZj8IgADADIODg6nX601jcHBwxvvGx8fT3t6eJKnX69mxY8f03Fve8pbcf//9\\\n", + "SZKNGzdmfHx8bhbPrARAACiTtraWjIGBgUxMTDSNgYGBGV/X0dGRycnJJMnExEQWLVo0PfehD30o\\\n", + "3//+9/Pbv/3bOeqoo/KmN71pzn4G9k4ABABmqNVqaW9vbxqvvhAyeeXOGhs3bkySbNiwIT09PdNz\\\n", + "Rx55ZG666abp+QsvvHBuFs+sBEAAYL91dXWls7Mzvb292bp1a1asWJFVq1YlSbZs2ZJly5blHe94\\\n", + "R3p6evKLv/iL87xa/ot7mABAiUzNw21gXn17l6GhoSSvhMNNmzbN+XqYnQAIAGXiSSAUoAUMAFAx\\\n", + "AiAAQMVoAQNAiczHOYAcelQAAQAqRgUQAMpEAZACBEAAKBMBkAIEQAAoFQmQ2TkHEACgYlQAAaBE\\\n", + "phQAKUAABIAyEQApQAsYAKBiVAABoFSUAJmdAAgAJeIcQIrQAgYAqBgVQAAoExVAChAAAaBUJEBm\\\n", + "pwUMAFAxKoAAUCIuAqEIARAAykQApAABEABKRQJkds4BBACoGBVAACgTBUAKEAABoERcBEIRWsAA\\\n", + "ABWjAggAZaICSAECIACUigTI7ATAA/Tg/5ya7yUAcIhYfd58rwBeIQACQIm4CIQiBEAAKBMBkAJc\\\n", + "BQwAUDECIABAxWgBA0CZtOkBMzsBEABKxEUgFKEFDABQMQIgAHBA1qxZk97e3qxcuTK7du2a3v78\\\n", + "88/noosuytvf/vYsX74827dvn8dV8tMEQAAok7YWjYLGxsaybdu2DA8PZ8mSJVm/fv303Le+9a38\\\n", + "+q//eh544IFceeWV+Zu/+ZsDPz5aQgAEAGZoNBqZnJxsGo1GY8b7RkdH09fXlyTp7+/PyMjI9NzJ\\\n", + "J5+c5557LkkyPj6e4447bm4Wz6wEQAAok7a2lozBwcHU6/WmMTg4OOPrxsfH097eniSp1+vZsWPH\\\n", + "9Nyv/Mqv5LHHHsuv/dqv5Qtf+ELe9773zdnPwN4JgABQIlMtGgMDA5mYmGgaAwMDM76vo6Mjk5OT\\\n", + "SZKJiYksWrRoeu7mm2/Oueeem61bt+ZP/uRP8qd/+qcH6ajZVwIgADBDrVZLe3t706jVajPe193d\\\n", + "nY0bNyZJNmzYkJ6enum5qamp6bbvcccdl4mJiblZPLMSAAGgTOb4IpCurq50dnamt7c3W7duzYoV\\\n", + "K7Jq1aokyfve977cfffdWbZsWf74j/84q1evbs0xcsDcCBoAymQebgS9du3aptdDQ0NJXjkn8J57\\\n", + "7pn7BTErFUAAgIoRAAEAKkYLGADKpM3DgJmdAAgAJTIl/1GAFjAAQMUIgAAAFaMFDABlogVMASqA\\\n", + "AAAVowIIAGWiAkgBAiAAlIoEyOy0gAEAKkYFEADKRAGQAgRAACgTAZACtIABACpGBRAASmRqvhfA\\\n", + "IUEABIAy0QKmAC1gAICKEQABACpGCxgAyqRND5jZqQD+lFtuuWWv841GI5OTk03jpV2752h1AFBA\\\n", + "W4sGpVbJAPjYY4/NGFu3bs3Q0NBe9xscHEy9Xm8a//yNe+do1QAArVHJFvDZZ5+dd7/73Zmaar5Y\\\n", + "/l//9V/3ut/AwEBWr17dtG3lV/6flq8PAOBgqmQA/NVf/dWsXbs2xx57bNP2d73rXXvdr1arpVar\\\n", + "NW1beHglf0IAXq+0bymgkunl3nvvzc/8zM/M2P6Nb3xjHlYDADC3KhkA29vb53sJAHBwqABSQCUv\\\n", + "AgEAqDIBEACgYirZAgaA0tICpgABEABKpM2TQChACxgAoGIEQACAitECBoAy0QGmAAEQAMpEAKQA\\\n", + "LWAAgIoRAAEAKkYABIASaWtrzdgXa9asSW9vb1auXJldu3ZNb7/jjjuybNmyLFu2LCeeeGLWrVvX\\\n", + "4qNlfwmAAMB+Gxsby7Zt2zI8PJwlS5Zk/fr103O/+7u/m02bNmXTpk355V/+5VxyySXzt1CaCIAA\\\n", + "wAyNRiOTk5NNo9FozHjf6Oho+vr6kiT9/f0ZGRmZ8Z4f//jHaTQaOemkkw76uilGAASAMmlrzRgc\\\n", + "HEy9Xm8ag4ODM75ufHw87e3tSZJ6vZ4dO3bMeM/Xvva1rFixotVHygFwGxgAYIaBgYGsXr26aVut\\\n", + "Vpvxvo6OjkxOTiZJJiYmsmjRohnvWb9+fb74xS8enIWyX1QAAaBMWlQBrNVqaW9vbxp7CoDd3d3Z\\\n", + "uHFjkmTDhg3p6elpmt++fbv27+uQAAgAJdKi/FdYV1dXOjs709vbm61bt2bFihVZtWrV9Lz27+uT\\\n", + "FjAAlMm+3sOlBdauXdv0emhoaPrPV1999VwvhwJUAAEAKkYFEABKZB4KgByCVAABACpGAAQAqBgt\\\n", + "YAAoEy1gChAAAaBE5D+K0AIGAKgYFUAAKBMlQAoQAAGgRNwGhiK0gAEAKkYABACoGC1gACgRLWCK\\\n", + "UAEEAKgYARAAoGK0gA/Q//cPz833EgA4VFx58L9CC5giBEAAKBMBkAK0gAEAKkYFEABKpE0JkAIE\\\n", + "QAAoE/mPArSAAQAqRgUQAEpEAZAiBEAAKBG3gaEILWAAgIpRAQSAMlEBpAABEABKRP6jCAEQAMpE\\\n", + "AqQA5wACAFSMCiAAlIgCIEUIgABQIm4DQxFawAAAFaMCCABlogJIAQIgAJSI/EcRWsAAABWjAggA\\\n", + "JeIiEIpQAQQAqBgBEAA4IGvWrElvb29WrlyZXbt2Nc19+ctfzjve8Y4sW7YsDz300DytkFcTAAGg\\\n", + "RNraWjOKGhsby7Zt2zI8PJwlS5Zk/fr103NPP/107rzzztx3333ZtGlTzjnnnINwxOwPARAAyqSt\\\n", + "NaPRaGRycrJpNBqNGV83Ojqavr6+JEl/f39GRkam5+65557UarWcf/75WblyZf7zP//zYB01+0gA\\\n", + "BIASaWvRf4ODg6nX601jcHBwxveNj4+nvb09SVKv17Njx47pue3bt+c//uM/cu+99+acc87JX/7l\\\n", + "X87Z78DeCYAAwAwDAwOZmJhoGgMDAzPe19HRkcnJySTJxMREFi1a1DT3W7/1W2lra8vy5cuzdevW\\\n", + "OVs/eycAAkCJtOocwFqtlvb29qZRq9VmfF93d3c2btyYJNmwYUN6enqm53p6erJly5YkyZYtW/JL\\\n", + "v/RLc/IbMDsBEADYb11dXens7Exvb2+2bt2aFStWZNWqVUmS0047LW9+85uzbNmy3HTTTbnmmmvm\\\n", + "ebX8FzeCBgAOyNq1a5teDw0NTf/5hhtumOvlUIAACAAl4kkgFCEAAkCJyH8U4RxAAICKUQEEgDJR\\\n", + "AqQAARAASsQ5gBShBQwAUDEqgABQIgqAFHHIB8Cpqancf//9efrppzM1NZUkueKKK/a6z0svvZQ7\\\n", + "77wzCxYsyEUXXZSFCxcmSb761a/m937v915zv0ajMeNB2FMv7U7bwkP+ZwSgLCRACjjkW8Dvfe97\\\n", + "c9ddd+VTn/pUNm/enHvuuWfWfa644ops3rw5W7ZsyXnnnZcf/vCHSZLPf/7ze91vTw/GnnjsgZYc\\\n", + "BwC0QluLBuV2yAfA7du358Ybb8zxxx+fz33uc3n++edn3Wfbtm254YYbct111+W2227LBz/4wXz7\\\n", + "29+edb89PRi7/pa3t+IwAADmzCHfu1y4cGFefvnlHHPMMbnpppvyxBNPzLrPiy++mEajkVqtlpNO\\\n", + "Oil33313Lr300jz66KN73a9Wq814ELb2LwCvJ64CpohDvgL45S9/OS+//HI+//nP5yc/+UluvfXW\\\n", + "WfdZt25dfvKTn0y/Pvroo/P1r389n/3sZw/iSgFgDugBU8AhX75avHhxkuRNb3pTVq9eXWifM888\\\n", + "c8a2hQsX5v3vf39L1wYA8Hp0yAdAAOB/U7yjCAEQAErEOYAUccifAwgAwL5RAQSAUlECZHYCIACU\\\n", + "iBYwRWgBAwBUjAogAJSJCiAFCIAAUCLyH0UIgABQIs4BpAjnAAIAVIwACABQMVrAAFAiWsAUoQII\\\n", + "AFAxKoAAUCIKgBQhAAJAmUiAFKAFDABQMSqAAFAiLgKhCAEQAEpE/qMIARAAykQCpADnAAIAVIwK\\\n", + "IACUiAIgRagAAkCJtLW1ZuyLNWvWpLe3NytXrsyuXbumt2/atClvfvObs2zZsixfvrzFR8qBEAAB\\\n", + "gP02NjaWbdu2ZXh4OEuWLMn69eub5t/73vdm06ZNue++++ZpheyJAAgAZTLHJcDR0dH09fUlSfr7\\\n", + "+zMyMtI0f/vtt6e3tzfr1q1r6WFyYJwDCAAl0qpzABuNRhqNRtO2Wq2WWq3WtG18fDzHH398kqRe\\\n", + "r2fHjh3Tc2eccUZ+8IMfJEkuvvjinHvuuXnb297WohVyIFQAAYAZBgcHU6/Xm8bg4OCM93V0dGRy\\\n", + "cjJJMjExkUWLFk3PHXXUUTniiCNyxBFH5KKLLsrY2NicrZ+9EwABoEzaWjMGBgYyMTHRNAYGBmZ8\\\n", + "XXd3dzZu3Jgk2bBhQ3p6eqbn/isYJsmDDz6Yk08+ueWHy/4RAAGgRFqU/1Kr1dLe3t40Xt3+TZKu\\\n", + "rq50dnamt7c3W7duzYoVK7Jq1aokyd/93d/lrLPOSnd3d0444YScd955B/fgKaxtampqar4XcSj7\\\n", + "hffdMN9LAOAQ8S+3/V8H/TuW/48bW/I5911zbUs+h9cnF4EAQIns6z38qCYBEADKRACkAAEQAEpE\\\n", + "/qMIAfAAHXHizBNiAQBezwRAACgR5wBShNvAAABUjAAIAFAxWsAAUCJawBQhAAJAiQiAFKEFDABQ\\\n", + "MQIgAEDFaAEDQIloAVOECiAAQMWoAAJAiSgAUoQACABlIgFSgAAIACXiHECKcA4gAEDFqAACQIko\\\n", + "AFKEAAgAZaIHTAFawAAAFaMCCAAlov5HEQIgAJSIDjBFaAEDAFSMCiAAlIgKIEWoAAIAVIwACABQ\\\n", + "MVrAAFAiWsAUIQACQInIfxQhAAJAmUiAFOAcQACAilEBBIASUQCkCAEQAErERSAUoQUMAFAxKoAA\\\n", + "UCIqgBShAggAUDECIABwQNasWZPe3t6sXLkyu3btmjH/6U9/OmecccY8rIzXIgACQIm0tbVmFDU2\\\n", + "NpZt27ZleHg4S5Ysyfr165vmd+7cmUcffbTFR8mBEgABoETaWjSKGh0dTV9fX5Kkv78/IyMjTfPr\\\n", + "1q3LRz/60f0/IA4KARAAmKHRaGRycrJpNBqNGe8bHx9Pe3t7kqRer2fHjh3TcxMTE3n00Udzzjnn\\\n", + "zNm6KaaSAXD79u254YYbcuedd+bJJ5/M1VdfnY9//OPZvn37Xvfb0z+Gl3fvnqNVA8DsWtUCHhwc\\\n", + "TL1ebxqDg4Mzvq+joyOTk5NJXgl8ixYtmp678cYbc80118zZsVNcJQPg5ZdfnhNOOCFPPvlk+vr6\\\n", + "snz58vT19eWqq67a6357+scw/p375mjVADC7VgXAgYGBTExMNI2BgYEZ39fd3Z2NGzcmSTZs2JCe\\\n", + "np7puR/+8If51Kc+lf7+/jz++OP5sz/7szn7Hdi7tqmpqan5XsRcW7ZsWTZt2pQkOfvss/Od73wn\\\n", + "SbJ8+fLcd99rB7pGozGj/L30Tz6fBYe5nSIAs/vnT3/soH/HpX+7riWf8+XL/6Dwe//oj/4o3/nO\\\n", + "d3LiiSfmi1/8Yq655poMDQ01veeMM87I5s2bW7I2Dlwlk8tPX6L+039Bd8/Szq3VaqnVak3bhD8A\\\n", + "qm7t2rVNr18d/pIIf68zlUwvd9xxR6amptLW1pbTTz89ySuh8C/+4i/meWUAcGA8CYQiKhkAFy9e\\\n", + "PGPb4YcfnjPPPHMeVgMArSP/UUQlLwIBAKiySlYAAaCstIApQgAEgBKR/yhCCxgAoGJUAAGgTJQA\\\n", + "KUAABIAScQ4gRWgBAwBUjAogAJSIAiBFCIAAUCJawBQhAAJAich/FOEcQACAilEBBIAS0QKmCAEQ\\\n", + "AEpE/qMILWAAgIpRAQSAEtECpggBEADKRACkAC1gAICKUQEEgBJRAKQIARAASsQ5gBShBQwAUDEq\\\n", + "gABQIgqAFCEAAkCJaAFThAAIACUi/1GEcwABACpGBRAASkQLmCIEQAAoEQGQIrSAAQAqRgUQAEpE\\\n", + "AZAiBEAAKBEtYIrQAgYAqBgVQAAoEQVAihAAAaBEtIApQgA8QL++xE8IABxanAMIACXS1qKxL9as\\\n", + "WZPe3t6sXLkyu3btmt4+NjaW7u7uvP3tb89FF12U55577oCOjdYRAAGgRNraWjOKGhsby7Zt2zI8\\\n", + "PJwlS5Zk/fr103NvectbMjo6mgceeCBve9vbcscddxyEI2Z/CIAAUCJzXQEcHR1NX19fkqS/vz8j\\\n", + "IyPTc4cffvj0n59//vmceuqp+3lUtJoACADM0Gg0Mjk52TQajcaM942Pj6e9vT1JUq/Xs2PHjqb5\\\n", + "e+65J29961uzadOmnHzyyXOydmYnAAJAibSqBTw4OJh6vd40BgcHZ3xfR0dHJicnkyQTExNZtGhR\\\n", + "03x/f3/+6Z/+KStWrMjQ0NCc/AbMTgAEgBJpVQt4YGAgExMTTWNgYGDG93V3d2fjxo1Jkg0bNqSn\\\n", + "p2d67qcrhvV6PW984xtbfbjsJ/cwAQBmqNVqqdVqs76vq6srnZ2d6e3tzYknnpiPf/zjWbVqVYaG\\\n", + "hnLPPffkM5/5TNra2nLsscfmlltumYOVU4QACAAlMh83gl67dm3T6/9q9V588cW5+OKL535BzEoA\\\n", + "BIAS8SQQinAOIABAxagAAkCJKABShAAIACXSpgdMAVrAAAAVowIIACWi/kcRAiAAlIgOMEUIgABQ\\\n", + "IvIfRTgHEACgYlQAAaBEFigBUoAACAAlIv9RhBYwAEDFqAACQIm4CpgiBEAAKBH5jyK0gAEAKkYF\\\n", + "EABKRAuYIgRAACgR+Y8itIABACpGBRAASkQLmCIEQAAoEfmPIgRAACgRj4KjCOcAAgBUjAogAJSI\\\n", + "AiBFCIAAUCIuAqEILWAAgIpRAQSAElEApAgBEABKRAuYIrSA/5drr7121vc0Go1MTk42jZd27T74\\\n", + "iwMAaKFKVgAXL16cE088MQsWLMjU1FSS5PHHH8/o6Ggefvjh19xvcHAw119/fdO2JRe/M796ye8c\\\n", + "1PUCQFEKgBRRyQrgunXrctJJJ+VjH/tYHnnkkTzyyCM555xz9hr+kmRgYCATExNN45R3nT9HqwaA\\\n", + "2bW1tWZQbpUMgJdddlm++tWvZvfu3bnkkkty2223TVcC96ZWq6W9vb1pLDy8kkVUAOAQVskAmCQL\\\n", + "FizI5Zdfnq997WvZvXt3urq65ntJAHDAVAApovLlqwULFuSKK66Y72UAQEtUtrLDPql8AASAMlG9\\\n", + "owj/owAAUDECIACUSFuLxr5Ys2ZNent7s3LlyuzatWt6+1133ZXf/M3fzLnnnps/+IM/OKDjorUE\\\n", + "QAAokbm+CGRsbCzbtm3L8PBwlixZkvXr10/PnX766RkZGcmDDz6YZ555Jps3bz4IR8z+EAABgP02\\\n", + "Ojqavr6+JEl/f39GRkam50488cQcdtgrlxscccQRWbBA7Hi9cBEIAJRIq64BaTQaaTQaTdtqtVpq\\\n", + "tVrTtvHx8Rx//PFJknq9nh07dsz4rEceeSTPPPNMli5d2qLVcaBEcQAokVa1gAcHB1Ov15vG4ODg\\\n", + "jO/r6OjI5ORkkmRiYiKLFi1qmn/qqady7bXX5uabb56T46cYARAAmGFPjz8dGBiY8b7u7u5s3Lgx\\\n", + "SbJhw4b09PRMz+3cuTOXXnpphoaGsnjx4jlbO7MTAAGgRFp1FfCeHn/66vZvknR1daWzszO9vb3Z\\\n", + "unVrVqxYkVWrViVJbrzxxvzoRz/KRz/60SxbtiwPPPDAwT14CmubKvIQXF7T//mldfO9BAAOEV+7\\\n", + "8uDfCuX/Hv1cSz7nv3X/95Z8Dq9PKoAAABXjKmAAKBFPgqMIARAASsSzgClCAASAEnFuF0X4ewIA\\\n", + "UDEqgABQIlrAFCEAAkCJyH8UoQUMAFAxKoAAUCJawBQhAAJAich/FKEFDABQMSqAAFAiWsAUIQAC\\\n", + "QIkIgBShBQwAUDEqgABQIgqAFCEAAkCJaAFThAAIACXi3C6K8PcEAKBiVAABoES0gClCAASAEmnL\\\n", + "1HwvgUOAFjAAQMWoAAJAiWgBU0Tb1NSUWjHQMo1GI4ODgxkYGEitVpvv5QCwBwIg0FKTk5Op1+uZ\\\n", + "mJhIe3v7fC8HgD1wDiAAQMUIgAAAFSMAAgBUjAAItFStVssnP/lJF4AAvI65CAQAoGJUAAEAKkYA\\\n", + "BACoGAEQAKBiBEAAgIoRAAEAKuaw+V4AUB7bt2/PpZdemt27d6ezszNf+cpXsnDhwvleFgCvogII\\\n", + "tMwxxxyTe++9N8PDwznhhBNy//33z/eSANgDFUCgZZ599tlcffXVGR8fz9NPP52lS5fO95IA2AMV\\\n", + "QKBlbrvttlx44YV54IEH0t/fH/eZB3h9UgEEWmb58uVZuXJl7rrrrhx55JHzvRwAXoNHwQEAVIwW\\\n", + "MABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDGeBAK0zPbt23PppZdm9+7d\\\n", + "6ezszFe+8pUsXLhwvpcFwKuoAAItc8wxx+Tee+/N8PBwTjjhhNx///3zvSQA9kAFEGiZZ599Nldf\\\n", + "fXXGx8fz9NNPZ+nSpfO9JAD2QAUQaJnbbrstF154YR544IH09/fHo8YBXp9UAIGWWb58eVauXJm7\\\n", + "7rorRx555HwvB4DX0Dblf9EBACpFCxgAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAq\\\n", + "RgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACA\\\n", + "ihEAAQAqRgAEAKgYARAAoGL+f/j0shFpOSOWAAAAAElFTkSuQmCC\\\n", + "\"\n", + " frames[6] = \"\\\n", + "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", + "AAAPYQGoP6dpAAAigklEQVR4nO3df5CddX0v8PcS4IiF3RAwERlDf1AI1oYVkcIui9HUdauh0IlV\\\n", + "FMIgamPmSkvRTu46U4XWsvamo8T2Xt3eigJjRusKRRBJWTB02YULudOsGLwOem1Lwxhasu6mFA4J\\\n", + "7P2D262HDdknyckueZ7Xy/nOsM/3POd8nzMw8/bz+T7PaZmcnJwMAACVcdhcLwAAgNklAAIAVIwA\\\n", + "CABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUj\\\n", + "AAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDF\\\n", + "CIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQ\\\n", + "MQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIDANFdffXWeeeaZqb8/8YlP5Ctf+cocrmjPHn74\\\n", + "4SxbtiynnXZaTjvttNx8881zvSSAQ0LL5OTk5FwvAnh5aWlpydjYWObPnz/XS3lJ//7v/57Xv/71\\\n", + "ufHGG3Puuefmueeey44dO/KqV71qrpcG8LKnAggldvHFF+fMM8/M0qVL8853vjM/+clPZjznwx/+\\\n", + "cJKkq6sr7e3teeKJJ3LZZZfluuuuS/JCdfDd7353zj///JxyyilZsWJFvve97+Xtb397TjnllLz3\\\n", + "ve/N888/nyTZuXNnPvShD+Wss87K0qVL8zu/8zt59tlnm3JtGzZsyNlnn51zzz03STJv3jzhD6Ag\\\n", + "ARBK7LrrrsvmzZvz3e9+N11dXbn66qun5t7xjndk8+bN0875whe+kCQZGhrKli1bsnDhwmmv2bx5\\\n", + "c2688cb84Ac/yM6dO/PBD34wAwMDeeSRR/L9738/3/72t5MkH/3oR9PV1ZUHH3wwo6Ojef7557N+\\\n", + "/fpp77dz5860t7fvcbz97W/f47U98sgjqdVqWbFiRdrb23PppZfmX/7lX/bnawKonMPnegHAwbNh\\\n", + "w4bcdNNNeeaZZ/LMM8/k+OOPn5q744479vt9u7u7c+yxxyZJzjjjjNRqtRxzzDFJkje84Q159NFH\\\n", + "kyR/8zd/k/vvvz+f+cxnkiRPP/105s2bN+39jjnmmGzZsmWf1rB79+4MDg7mgQceyGte85p8/OMf\\\n", + "z5o1azIwMLDf1wVQFQIglNR9992Xz33uc7n//vuzcOHCfPOb38wnPvGJprz3K17xiql/njdv3rS/\\\n", + "d+/enSSZnJzMN77xjZxyyil7fb+dO3emq6trj3OLFi3Kxo0bpx1fvHhx3vKWt+TEE09MklxyySUv\\\n", + "WS0EoJEACCU1NjaWY445Jscdd1yeffbZ9Pf3Fz73mGOOyfj4+AHfBHLhhRfmT//0T9Pf35/DDz88\\\n", + "Y2NjefLJJ3PyySdP+7x9rQC++93vzhe/+MVMTEyktbU1d9xxR04//fQDWi9AVdgDCCXV09OTU089\\\n", + "NaeeeurUDR0/66X2ACYv7N1729veNnUTyP767Gc/m6OOOirt7e1ZunRpli9fnn/4h3/Y7/f7WYsX\\\n", + "L87HP/7xdHR0ZOnSpbnnnnum9i8CsHceAwMAUDEqgAAAFSMAAgBUjAAIAFAxAiAAQMUIgADAARkf\\\n", + "H89ZZ52Vo48+Ot/73vca5p577rlcfvnl6erqypVXXjk3C2QaARAAOCCvfOUr861vfSvvete7ps3d\\\n", + "fvvtec1rXpOhoaE89dRTuf/+++dghbyYAAgAHJAjjjgir3rVq/Y4NzIyku7u7iQvPJ90eHh4NpfG\\\n", + "S/BLIADANPV6PfV6veFYrVZLrVbbp/cZGxtLa2trkqStrS07duxo2hrZfwLgAfrz4c/N9RIAOERc\\\n", + "0fm7B/0zfvWMjzblfVb+5jG55pprGo598pOfzNVXX71P7zN//vxMTEwkeWGv4IIFC5qyPg6MFjAA\\\n", + "ME1vb2/Gx8cbRm9v7z6/T0dHRwYHB5MkGzduTGdnZ7OXyn4QAAGgTFqaM2q1WlpbWxvG3tq/73jH\\\n", + "O/K3f/u3+dCHPpQvf/nLWb16dZJkxYoV+ad/+qd0dXXlFa94Rc4555yDdOHsCy1gAOCA3XHHHQ1/\\\n", + "X3bZZUmSww8/PF/+8pdnf0HslQAIAGXS0jLXK+AQIAACQJnIfxRgDyAAQMWoAAJAmagAUoAACACl\\\n", + "IgEyMy1gAICKUQEEgBKZVACkAAEQAMpEAKQALWAAgIpRAQSAMvEgaApQAQQAqBgVQAAoEwVAClAB\\\n", + "BACoGBVAACgTewApQAAEgDKR/yhACxgAoGJUAAGgRCbnegEcEgRAACgTewApQAsYAKBiVAABoEwU\\\n", + "AClAAASAUpEAmZkWMABAxagAAkCZKABSgAAIAGUiAFKAAAgAJTLpMTAUYA8gAEDFCIAAABWjBQwA\\\n", + "ZaIFTAEqgAAAFaMCCABlogBIAQIgAJTI5FwvgENCJQPgc889l4GBgQwPD2fHjh1ZsGBBOjs7s3Ll\\\n", + "yhx+eCW/EgCgQiqZdi6//PKceuqpueyyy9LW1pbx8fFs3Lgx73//+3PTTTe95Hn1ej31er3h2K5n\\\n", + "d+eIIyv5NQLwcuQmEAqoZHL58Y9/nBtuuKHh2BlnnJHzzjtvr+f19fXlmmuuaTjW8/6evOMDv9H0\\\n", + "NQLAfpH/KKCSAbCjoyOXXnppuru709ramomJiQwODubss8/e63m9vb256qqrGo791f/+q4O5VACA\\\n", + "pqtkAPz0pz+d7373uxkZGcljjz2W+fPn5/d///dz+umn7/W8Wq2WWq3WcEz7F4CXlTloAa9duzYj\\\n", + "IyP5+Z//+Vx//fU54ogjkiQTExO55JJLsnPnzpx55plZt27drK+NPavscwCXLl2aD3/4w+nt7c2a\\\n", + "NWtmDH8AcCiYbNIoanR0NNu2bcvQ0FCWLFmSgYGBqbm//Mu/zAUXXJDvfOc7eeqpp/Lggw8e8PXR\\\n", + "HJUNgABQSi3NGfV6PRMTEw3jxTdCJsnIyEi6u7uTJD09PRkeHp6a+9GPfpT29vYkL+y1/7u/+7uD\\\n", + "ccXsBwEQAJimr68vbW1tDaOvr2/a68bGxtLa2pokaWtry44dO6bmXve61+Wee+5JkgwODmZsbGx2\\\n", + "Fs+MBEAAKJOWlqaM3t7ejI+PN4ze3t5pHzd//vxMTEwkScbHx7NgwYKpuQ9+8IP5/ve/n1//9V/P\\\n", + "0UcfnVe/+tWz9jWwdwIgADBNrVZLa2trw3jxjZDJC0/WGBwcTJJs3LgxnZ2dU3NHHXVUrr/++qn5\\\n", + "FStWzM7imZEACADst/b29ixatChdXV3ZunVrVq5cmdWrVydJtmzZkmXLluWtb31rOjs78wu/8Atz\\\n", + "vFr+g2eYAECJTM7BY2Be/HiX/v7+JC+Ew02bNs36epiZAAgAZeKXQChACxgAoGIEQACAitECBoAS\\\n", + "mYs9gBx6VAABACpGBRAAykQBkAIEQAAoEwGQAgRAACgVCZCZ2QMIAFAxKoAAUCKTCoAUIAACQJkI\\\n", + "gBSgBQwAUDEqgABQKkqAzEwABIASsQeQIrSAAQAqRgUQAMpEBZACBEAAKBUJkJlpAQMAVIwKIACU\\\n", + "iJtAKEIABIAyEQApQAAEgFKRAJmZPYAAABWjAggAZaIASAECIACUiJtAKEILGACgYlQAAaBMVAAp\\\n", + "QAAEgFKRAJmZAHiAhv7v5FwvAYBDxBWdc70CeIEACAAl4iYQihAAAaBMBEAKcBcwAEDFCIAAABWj\\\n", + "BQwAZdKiB8zMBEAAKBE3gVCEFjAAQMUIgADAAVm7dm26urqyatWq7Nq1a+r4008/nfPPPz9vfvOb\\\n", + "s3z58mzfvn0OV8nPEgABoExamjQKGh0dzbZt2zI0NJQlS5ZkYGBgau7b3/52Xv/61+fee+/NZZdd\\\n", + "li9+8YsHfn00hQAIAExTr9czMTHRMOr1+rTXjYyMpLu7O0nS09OT4eHhqbmTTz45Tz31VJJkbGws\\\n", + "xx9//OwsnhkJgABQJi0tTRl9fX1pa2trGH19fdM+bmxsLK2trUmStra27NixY2rul3/5l/PII4/k\\\n", + "V37lV/KFL3wh73vf+2bta2DvBEAAKJHJJo3e3t6Mj483jN7e3mmfN3/+/ExMTCRJxsfHs2DBgqm5\\\n", + "G264Ieeee262bt2aP/qjP8of//EfH6SrZl8JgADANLVaLa2trQ2jVqtNe11HR0cGBweTJBs3bkxn\\\n", + "Z+fU3OTk5FTb9/jjj8/4+PjsLJ4ZCYAAUCazfBNIe3t7Fi1alK6urmzdujUrV67M6tWrkyTve9/7\\\n", + "cvvtt2fZsmX5wz/8w1x11VXNuUYOmAdBA0CZzMGDoNetW9fwd39/f5IX9gTeeeeds78gZqQCCABQ\\\n", + "MQIgAEDFaAEDQJm0+DFgZiYAAkCJTMp/FKAFDABQMQIgAEDFaAEDQJloAVOACiAAQMWoAAJAmagA\\\n", + "UoAACAClIgEyMy1gAICKUQEEgDJRAKQAARAAykQApAAtYACAilEBBIASmZzrBXBIEAABoEy0gClA\\\n", + "CxgAoGIEQACAitECBoAyadEDZmYqgD/jxhtv3Ot8vV7PxMREw3hu1+5ZWh0AFNDSpEGpVTIAPvLI\\\n", + "I9PG1q1b09/fv9fz+vr60tbW1jD+z213zdKqAQCao5It4LPPPjvvete7MjnZeLP8P/7jP+71vN7e\\\n", + "3lx11VUNx94/8D+bvj4AgIOpkgHwtNNOy7p163Lcccc1HH/nO9+51/NqtVpqtVrDsXlHVPIrBODl\\\n", + "SvuWAiqZXu6666783M/93LTj3/rWt+ZgNQAAs6uSAbC1tXWulwAAB4cKIAVU8iYQAIAqEwABACqm\\\n", + "ki1gACgtLWAKEAABoERa/BIIBWgBAwBUjAAIAFAxWsAAUCY6wBQgAAJAmQiAFKAFDABQMQIgAEDF\\\n", + "CIAAUCItLc0Z+2Lt2rXp6urKqlWrsmvXrqnjt9xyS5YtW5Zly5Zl8eLFWb9+fZOvlv0lAAIA+210\\\n", + "dDTbtm3L0NBQlixZkoGBgam53/qt38qmTZuyadOm/NIv/VIuvPDCuVsoDQRAAGCaer2eiYmJhlGv\\\n", + "16e9bmRkJN3d3UmSnp6eDA8PT3vNT37yk9Tr9Zx00kkHfd0UIwACQJm0NGf09fWlra2tYfT19U37\\\n", + "uLGxsbS2tiZJ2trasmPHjmmvufnmm7Ny5cpmXykHwGNgAIBpent7c9VVVzUcq9Vq0143f/78TExM\\\n", + "JEnGx8ezYMGCaa8ZGBjIl770pYOzUPaLCiAAlEmTKoC1Wi2tra0NY08BsKOjI4ODg0mSjRs3prOz\\\n", + "s2F++/bt2r8vQwIgAJRIk/JfYe3t7Vm0aFG6urqydevWrFy5MqtXr56a1/59edICBoAy2ddnuDTB\\\n", + "unXrGv7u7++f+uc1a9bM9nIoQAUQAKBiVAABoETmoADIIUgFEACgYgRAAICK0QIGgDLRAqYAARAA\\\n", + "SkT+owgtYACAilEBBIAyUQKkAAEQAErEY2AoQgsYAKBiBEAAgIrRAgaAEtECpggVQACAihEAAQAq\\\n", + "Rgv4AD1w99NzvQQADhWrDv5HaAFThAAIAGUiAFKAFjAAQMWoAAJAibQoAVKAAAgAZSL/UYAWMABA\\\n", + "xagAAkCJKABShAAIACXiMTAUoQUMAFAxKoAAUCYqgBQgAAJAich/FCEAAkCZSIAUYA8gAEDFqAAC\\\n", + "QIkoAFKEAAgAJeIxMBShBQwAUDEqgABQJiqAFCAAAkCJyH8UoQUMAFAxKoAAUCJuAqEIFUAAgIoR\\\n", + "AAGAA7J27dp0dXVl1apV2bVrV8PcV7/61bz1rW/NsmXLcv/998/RCnkxARAASqSlpTmjqNHR0Wzb\\\n", + "ti1DQ0NZsmRJBgYGpuYef/zx3Hrrrbn77ruzadOmnHPOOQfhitkfAiAAlElLc0a9Xs/ExETDqNfr\\\n", + "0z5uZGQk3d3dSZKenp4MDw9Pzd15552p1Wp529vellWrVuXf/u3fDtZVs48EQAAokZYm/a+vry9t\\\n", + "bW0No6+vb9rnjY2NpbW1NUnS1taWHTt2TM1t3749//qv/5q77ror55xzTv7iL/5i1r4H9k4ABACm\\\n", + "6e3tzfj4eMPo7e2d9rr58+dnYmIiSTI+Pp4FCxY0zL3lLW9JS0tLli9fnq1bt87a+tk7ARAASqRZ\\\n", + "ewBrtVpaW1sbRq1Wm/Z5HR0dGRwcTJJs3LgxnZ2dU3OdnZ3ZsmVLkmTLli35xV/8xVn5DpiZAAgA\\\n", + "7Lf29vYsWrQoXV1d2bp1a1auXJnVq1cnSZYuXZrXvva1WbZsWa6//vpcccUVc7xa/oMHQQMAB2Td\\\n", + "unUNf/f390/987XXXjvby6EAARAASsQvgVCEAAgAJSL/UYQ9gAAAFaMCCABlogRIAQIgAJSIPYAU\\\n", + "oQUMAFAxKoAAUCIKgBRxyAfAycnJ3HPPPXn88cczOTmZJLn00kv3es5zzz2XW2+9NYcddljOP//8\\\n", + "zJs3L0ny9a9/Pb/927/9kufV6/VpP4Q9+dzutMw75L9GAMpCAqSAQ74F/J73vCe33XZbPvWpT2Xz\\\n", + "5s258847Zzzn0ksvzebNm7Nly5acd955+eEPf5gk+fznP7/X8/b0w9gTD29qwlUAQHO0NGlQbod8\\\n", + "ANy+fXuuu+66nHDCCfnc5z6Xp59+esZztm3blmuvvTZXX311NmzYkA984AP5zne+M+N5e/ph7NZf\\\n", + "XdaEqwAAmD2HfO9y3rx5ef7553Psscfm+uuvz49+9KMZz3n22WdTr9dTq9Vy0kkn5fbbb89FF12U\\\n", + "hx9+eK/n1Wq1aT+Erf0LwMuJu4Ap4pCvAH71q1/N888/n89//vP56U9/mptuumnGc9avX5+f/vSn\\\n", + "U38fc8wx+eY3v5nPfvazB3GlADAL9IAp4JAvXy1cuDBJ8upXvzpXXXVVoXPe9KY3TTs2b968XHLJ\\\n", + "JU1dGwDAy9EhHwABgP+keEcRAiAAlIg9gBRxyO8BBABg36gAAkCpKAEyMwEQAEpEC5gitIABACpG\\\n", + "BRAAykQFkAIEQAAoEfmPIgRAACgRewApwh5AAICKEQABACpGCxgASkQLmCJUAAEAKkYFEABKRAGQ\\\n", + "IgRAACgTCZACtIABACpGBRAASsRNIBQhAAJAich/FCEAAkCZSIAUYA8gAEDFqAACQIkoAFKECiAA\\\n", + "lEhLS3PGvli7dm26urqyatWq7Nq1a+r4pk2b8trXvjbLli3L8uXLm3ylHAgBEADYb6Ojo9m2bVuG\\\n", + "hoayZMmSDAwMNMy/5z3vyaZNm3L33XfP0QrZEwEQAMpklkuAIyMj6e7uTpL09PRkeHi4Yf4b3/hG\\\n", + "urq6sn79+qZeJgfGHkAAKJFm7QGs1+up1+sNx2q1Wmq1WsOxsbGxnHDCCUmStra27NixY2ruzDPP\\\n", + "zA9+8IMkyQUXXJBzzz03b3zjG5u0Qg6ECiAAME1fX1/a2toaRl9f37TXzZ8/PxMTE0mS8fHxLFiw\\\n", + "YGru6KOPzpFHHpkjjzwy559/fkZHR2dt/eydAAgAZdLSnNHb25vx8fGG0dvbO+3jOjo6Mjg4mCTZ\\\n", + "uHFjOjs7p+b+IxgmyX333ZeTTz656ZfL/hEAAaBEmpT/UqvV0tra2jBe3P5Nkvb29ixatChdXV3Z\\\n", + "unVrVq5cmdWrVydJ/vqv/zpnnXVWOjo6cuKJJ+a88847uBdPYS2Tk5OTc72IQ9niyz4910sA4BDx\\\n", + "T1/+rwf9M5b/+XVNeZ+7r7iyKe/Dy5ObQACgRPb1GX5UkwAIAGUiAFKAAAgAJSL/UYQAeICOXOgr\\\n", + "BAAOLdILAJSIPYAU4TEwAAAVIwACAFSMFjAAlIgWMEUIgABQIgIgRWgBAwBUjAAIAFAxWsAAUCJa\\\n", + "wBShAggAUDEqgABQIgqAFCEAAkCZSIAUIAACQInYA0gR9gACAFSMCiAAlIgCIEUIgABQJnrAFKAF\\\n", + "DABQMSqAAFAi6n8UIQACQInoAFOEFjAAQMWoAAJAiagAUoQKIABAxQiAAAAVowUMACWiBUwRAiAA\\\n", + "lIj8RxECIACUiQRIAfYAAgBUjAogAJSIAiBFCIAAUCJuAqEILWAAgIpRAQSAElEBpAgVQACAihEA\\\n", + "AYADsnbt2nR1dWXVqlXZtWvXtPlPf/rTOfPMM+dgZbwUARAASqSlpTmjqNHR0Wzbti1DQ0NZsmRJ\\\n", + "BgYGGuZ37tyZhx9+uMlXyYESAAGgRFqaNIoaGRlJd3d3kqSnpyfDw8MN8+vXr89HPvKR/b8gDgoB\\\n", + "EACYpl6vZ2JiomHU6/VprxsbG0tra2uSpK2tLTt27JiaGx8fz8MPP5xzzjln1tZNMZUMgNu3b8+1\\\n", + "116bW2+9NY899ljWrFmTj33sY9m+fftez9vTfwyTu3fP0qoBYGbNagH39fWlra2tYfT19U37vPnz\\\n", + "52diYiLJC4FvwYIFU3PXXXddrrjiilm7doqrZAC8+OKLc+KJJ+axxx5Ld3d3li9fnu7u7lx++eV7\\\n", + "PW9P/zGM/a97ZmnVADCzZgXA3t7ejI+PN4ze3t5pn9fR0ZHBwcEkycaNG9PZ2Tk198Mf/jCf+tSn\\\n", + "0tPTk0cffTR/8id/MmvfA3vXMjk5OTnXi5hty5Yty6ZNm5IkZ599dh544IEkyfLly3P33Xe/5Hn1\\\n", + "en1a+fsNV/+PtBzucYoAzOyH/+1jB/0zLvrK+qa8z1cv/r3Cr/2DP/iDPPDAA1m8eHG+9KUv5Yor\\\n", + "rkh/f3/Da84888xs3ry5KWvjwFUyufzsLeo/+y/o7hnaubVaLbVareGY8AdA1a1bt67h7xeHvyTC\\\n", + "38tMJdPLLbfcksnJybS0tOT0009P8kIo/LM/+7M5XhkAHBi/BEIRlQyACxcunHbsiCOOyJve9KY5\\\n", + "WA0ANI/8RxGVvAkEAKDKKlkBBICy0gKmCAEQAEpE/qMILWAAgIpRAQSAMlECpAABEABKxB5AitAC\\\n", + "BgCoGBVAACgRBUCKEAABoES0gClCAASAEpH/KMIeQACAilEBBIAS0QKmCAEQAEpE/qMILWAAgIpR\\\n", + "AQSAEtECpggBEADKRACkAC1gAICKUQEEgBJRAKQIARAASsQeQIrQAgYAqBgVQAAoEQVAihAAAaBE\\\n", + "tIApQgAEgBKR/yjCHkAAgIpRAQSAEtECpggBEABKRACkCC1gAICKUQEEgBJRAKQIARAASkQLmCK0\\\n", + "gAEAKkYFEABKRAGQIgRAACgRLWCKEAAP0OtOPWKulwAAsE/sAQSAEmlp0tgXa9euTVdXV1atWpVd\\\n", + "u3ZNHR8dHU1HR0fe/OY35/zzz89TTz11QNdG8wiAAFAiLS3NGUWNjo5m27ZtGRoaypIlSzIwMDA1\\\n", + "97rXvS4jIyO5995788Y3vjG33HLLQbhi9ocACAAlMtsVwJGRkXR3dydJenp6Mjw8PDV3xBH/uU3q\\\n", + "6aefzqmnnrqfV0WzCYAAwDT1ej0TExMNo16vT3vd2NhYWltbkyRtbW3ZsWNHw/ydd96ZN7zhDdm0\\\n", + "aVNOPvnkWVk7MxMAAaBEmtUC7uvrS1tbW8Po6+ub9nnz58/PxMREkmR8fDwLFixomO/p6cnf//3f\\\n", + "Z+XKlenv75+V74CZCYAAUCLNagH39vZmfHy8YfT29k77vI6OjgwODiZJNm7cmM7Ozqm5n60YtrW1\\\n", + "5ZWvfGWzL5f95DEwAMA0tVottVptxte1t7dn0aJF6erqyuLFi/Oxj30sq1evTn9/f+6888585jOf\\\n", + "SUtLS4477rjceOONs7ByihAAAaBE5uJB0OvWrWv4+z9avRdccEEuuOCC2V8QMxIAAaBE/BIIRdgD\\\n", + "CABQMSqAAFAiCoAUIQACQIm06AFTgBYwAEDFqAACQImo/1GEAAgAJaIDTBECIACUiPxHEfYAAgBU\\\n", + "jAogAJTIYUqAFCAAAkCJyH8UoQUMAFAxKoAAUCLuAqYIARAASkT+owgtYACAilEBBIAS0QKmCAEQ\\\n", + "AEpE/qMILWAAgIpRAQSAEtECpggBEABKRP6jCAEQAErET8FRhD2AAAAVowIIACWiAEgRAiAAlIib\\\n", + "QChCCxgAoGJUAAGgRBQAKUIABIAS0QKmCC3g/+/KK6+c8TX1ej0TExMN47lduw/+4gAAmqiSFcCF\\\n", + "Cxdm8eLFOeywwzI5OZkkefTRRzMyMpIHH3zwJc/r6+vLNddc03DslPPfnlMv+I2Dul4AKEoBkCIq\\\n", + "WQFcv359TjrppHz0ox/NQw89lIceeijnnHPOXsNfkvT29mZ8fLxhnPyOt83SqgFgZi0tzRmUWyUD\\\n", + "4Hvf+958/etfz+7du3PhhRdmw4YNU5XAvanVamltbW0Y846oZBEVADiEVTIAJslhhx2Wiy++ODff\\\n", + "fHN2796d9vb2uV4SABwwFUCKqHz56rDDDsull14618sAgKaobGWHfVL5AAgAZaJ6RxH+jwIAQMUI\\\n", + "gABQIi1NGvti7dq16erqyqpVq7Jr166p47fddlt+7dd+Leeee25+7/d+74Cui+YSAAGgRGb7JpDR\\\n", + "0dFs27YtQ0NDWbJkSQYGBqbmTj/99AwPD+e+++7LE088kc2bNx+EK2Z/CIAAwH4bGRlJd3d3kqSn\\\n", + "pyfDw8NTc4sXL87hh79wu8GRRx6Zww4TO14u3AQCACXSrHtA6vV66vV6w7FarZZardZwbGxsLCec\\\n", + "cEKSpK2tLTt27Jj2Xg899FCeeOKJnHHGGU1aHQdKFAeAEmlWC7ivry9tbW0No6+vb9rnzZ8/PxMT\\\n", + "E0mS8fHxLFiwoGH+n//5n3PllVfmhhtumJXrpxgBEACYZk8/f9rb2zvtdR0dHRkcHEySbNy4MZ2d\\\n", + "nVNzO3fuzEUXXZT+/v4sXLhw1tbOzARAACiRZt0FvKefP31x+zdJ2tvbs2jRonR1dWXr1q1ZuXJl\\\n", + "Vq9enSS57rrr8uMf/zgf+chHsmzZstx7770H9+IprGWyyI/g8pJ+84vr53oJABwivvmBg/8olP8+\\\n", + "8rmmvM9/6fjdprwPL08qgAAAFeMuYAAoEb8ERxECIACUiN8CpggBEABKxN4uivDvCQBAxagAAkCJ\\\n", + "aAFThAAIACUi/1GEFjAAQMWoAAJAiWgBU4QACAAlIv9RhBYwAEDFqAACQIloAVOEAAgAJSIAUoQW\\\n", + "MABAxagAAkCJKABShAAIACWiBUwRAiAAlIi9XRTh3xMAgIpRAQSAEtECpggBEABKpCWTc70EDgFa\\\n", + "wAAAFaMCCAAlogVMES2Tk5NqxUDT1Ov19PX1pbe3N7Vaba6XA8AeCIBAU01MTKStrS3j4+NpbW2d\\\n", + "6+UAsAf2AAIAVIwACABQMQIgAEDFCIBAU9VqtXzyk590AwjAy5ibQAAAKkYFEACgYgRAAICKEQAB\\\n", + "ACpGAAQAqBgBEACgYg6f6wUA5bF9+/ZcdNFF2b17dxYtWpSvfe1rmTdv3lwvC4AXUQEEmubYY4/N\\\n", + "XXfdlaGhoZx44om555575npJAOyBCiDQNE8++WTWrFmTsbGxPP744znjjDPmekkA7IEKINA0GzZs\\\n", + "yIoVK3Lvvfemp6cnnjMP8PKkAgg0zfLly7Nq1arcdtttOeqoo+Z6OQC8BD8FBwBQMVrAAAAVIwAC\\\n", + "AFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIABAxfglEKBptm/fnosuuii7d+/OokWL8rWv\\\n", + "fS3z5s2b62UB8CIqgEDTHHvssbnrrrsyNDSUE088Mffcc89cLwmAPVABBJrmySefzJo1azI2NpbH\\\n", + "H388Z5xxxlwvCYA9UAEEmmbDhg1ZsWJF7r333vT09MRPjQO8PKkAAk2zfPnyrFq1KrfddluOOuqo\\\n", + "uV4OAC+hZdL/RQcAqBQtYACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIE\\\n", + "QACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgY\\\n", + "ARAAoGIEQACAivl/NBnAt86MiGMAAAAASUVORK5CYII=\\\n", + "\"\n", + " frames[7] = \"\\\n", + "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", + "AAAPYQGoP6dpAAAiL0lEQVR4nO3db3Bd5X0v+q8wZocUJGGoHcoE+oeAS3JBIYRiCRE3bhTdBBda\\\n", + "p4WEiKEkqcPccEpJejx60QTaFKXXncTO7b2Jei8QYMqQooQSSIKKIaZCgoJnaoWYDENy05aaiZli\\\n", + "RXIZ2Nig84JTnWxkrIW9LeG1Ph/mmfFez157P2uPPfPl91t/Wqanp6cDAEBlHLbQCwAAYH4JgAAA\\\n", + "FSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAA\\\n", + "QMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAI\\\n", + "AFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMA\\\n", + "AgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAwyzXXXJMXXnhh5vVnP/vZ/O3f/u0Crmi2\\\n", + "G2+8MR0dHTPjuOOOy+/+7u8u9LIADgkt09PT0wu9COCNpaWlJRMTE2lvb1/opRT2jne8I9dee23W\\\n", + "rFmz0EsBeMNTAYQSu+SSS3LWWWfl9NNPzwc/+MH89Kc/nXOfT37yk0mS7u7udHR05Jlnnslll12W\\\n", + "DRs2JHmlOvj7v//7Wb16dU455ZScf/75+cEPfpD3v//9OeWUU/LhD384L7/8cpJk165d+cQnPpGz\\\n", + "zz47p59+ev7wD/8wL774YtOP85/+6Z/yzDPP5Ld/+7eb/tkAZSQAQolt2LAhW7Zsyfe///10d3fn\\\n", + "mmuumZn7wAc+kC1btsza56tf/WqSZGRkJFu3bs3SpUtnvWfLli25+eab88QTT2TXrl35+Mc/nqGh\\\n", + "oTz++OP54Q9/mO9+97tJkk9/+tPp7u7OI488kvHx8bz88svZuHHjrM/btWtXQzv358f73//+OY/z\\\n", + "+uuvT19fXxYvXlz0pwGotMMXegHAwXPrrbfmlltuyQsvvJAXXnghxx133Mzcd77znf3+3J6enhxz\\\n", + "zDFJkjPPPDO1Wi1HH310kuSd73xnnnzyySTJ3//93+ehhx7KF7/4xSTJ888/n0WLFs36vKOPPjpb\\\n", + "t27dr7U899xzue222/Lwww/v1/4AVSQAQkk9+OCD+fKXv5yHHnooS5cuzbe+9a189rOfbcpnv+lN\\\n", + "b5r586JFi2a93rNnT5Jkeno63/jGN3LKKafs8/N27dqV7u7uvc4tW7Ysw8PDr7nv7bffnre//e05\\\n", + "7bTTXs8hAFSaAAglNTExkaOPPjrHHntsXnzxxQwODhbe9+ijj87k5OQBXwRy4YUX5i//8i8zODiY\\\n", + "ww8/PBMTE3n22Wdz8sknz/q+/a0AXn/99fnYxz52QOsEqBrnAEJJ9fb25tRTT82pp546c0HHz3ut\\\n", + "cwCTV87de9/73jdzEcj++tKXvpQjjzwyHR0dOf3007Nq1ar8y7/8y35/3qs98cQT2bp1ay666KKm\\\n", + "fSZAFbgNDABAxagAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgAHZHJyMmeffXaOOuqo/OAHP2iYe+ml\\\n", + "l3L55Zenu7s7V1111cIskFkEQADggLz5zW/Ot7/97XzoQx+aNXf33Xfnl37plzIyMpLnnnsuDz30\\\n", + "0AKskFcTAAGAA7J48eL84i/+4l7nxsbG0tPTk+SV+5OOjo7O59J4DZ4EAgDMUq/XU6/XG7bVarXU\\\n", + "arXX9TkTExNpbW1NkrS1tWXnzp1NWyP7TwA8QIMPfXmhlwDAIWLtiv920L/jfzvz0035nDW/fXSu\\\n", + "vfbahm2f+9zncs0117yuz2lvb8/U1FSSV84VXLJkSVPWx4HRAgYAZunv78/k5GTD6O/vf92f09nZ\\\n", + "mU2bNiVJhoeH09XV1eylsh8EQAAok5bmjFqtltbW1oaxr/bvBz7wgfzDP/xDPvGJT+RrX/ta1q5d\\\n", + "myQ5//zz82//9m/p7u7Om970pqxYseIgHTivhxYwAHDAvvOd7zS8vuyyy5Ikhx9+eL72ta/N/4LY\\\n", + "JwEQAMqkpWWhV8AhQAAEgDKR/yjAOYAAABWjAggAZaICSAECIACUigTI3LSAAQAqRgUQAEpkWgGQ\\\n", + "AgRAACgTAZACtIABACpGBRAAysSNoClABRAAoGJUAAGgTBQAKUAFEACgYlQAAaBMnANIAQIgAJSJ\\\n", + "/EcBWsAAABWjAggAJTK90AvgkCAAAkCZOAeQArSAAQAqRgUQAMpEAZACBEAAKBUJkLlpAQMAVIwK\\\n", + "IACUiQIgBQiAAFAmAiAFCIAAUCLTbgNDAc4BBACoGAEQAKBitIABoEy0gClABRAAoGJUAAGgTBQA\\\n", + "KUAABIASmV7oBXBIqGQAfOmllzI0NJTR0dHs3LkzS5YsSVdXV9asWZPDD6/kTwIAVEgl087ll1+e\\\n", + "U089NZdddlna2toyOTmZ4eHh/MEf/EFuueWW19yvXq+nXq83bNv94p4sPqKSPyMAb0QuAqGASiaX\\\n", + "n/zkJ7npppsatp155pk577zz9rnfwMBArr322oZtH7y8N6s//r83fY0AsF/kPwqoZADs7OzMpZde\\\n", + "mp6enrS2tmZqaiqbNm3KOeecs8/9+vv7c/XVVzdsu/mf/7+DuVQAgKarZAD8whe+kO9///sZGxvL\\\n", + "U089lfb29vzxH/9xzjjjjH3uV6vVUqvVGrZp/wLwhrIALeB169ZlbGwsv/zLv5wbbrghixcvTpJM\\\n", + "TU3lox/9aHbt2pWzzjor69evn/e1sXeVvQ/g6aefnk9+8pPp7+/PFVdcMWf4A4BDwXSTRlHj4+PZ\\\n", + "vn17RkZGsnz58gwNDc3M/c3f/E0uuOCCfO9738tzzz2XRx555ICPj+aobAAEgFJqac6o1+uZmppq\\\n", + "GK++EDJJxsbG0tPTkyTp7e3N6OjozNyPf/zjdHR0JHnlXPt//Md/PBhHzH4QAAGAWQYGBtLW1tYw\\\n", + "BgYGZr1vYmIira2tSZK2trbs3LlzZu60007L/fffnyTZtGlTJiYm5mfxzEkABIAyaWlpyujv78/k\\\n", + "5GTD6O/vn/V17e3tmZqaSpJMTk5myZIlM3Mf//jH88Mf/jC/9Vu/laOOOipvectb5u1nYN8EQABg\\\n", + "llqtltbW1obx6gshk1furLFp06YkyfDwcLq6umbmjjzyyNxwww0z8+eff/78LJ45CYAAwH7r6OjI\\\n", + "smXL0t3dnW3btmXNmjVZu3ZtkmTr1q1ZuXJl3vve96arqyu/8iu/ssCr5b+4hwkAlMj0AtwG5tW3\\\n", + "dxkcHEzySjjcvHnzvK+HuQmAAFAmngRCAVrAAAAVIwACAFSMFjAAlMhCnAPIoUcFEACgYlQAAaBM\\\n", + "FAApQAAEgDIRAClAAASAUpEAmZtzAAEAKkYFEABKZFoBkAIEQAAoEwGQArSAAQAqRgUQAEpFCZC5\\\n", + "CYAAUCLOAaQILWAAgIpRAQSAMlEBpAABEABKRQJkblrAAAAVowIIACXiIhCKEAABoEwEQAoQAAGg\\\n", + "VCRA5uYcQACAilEBBIAyUQCkAAEQAErERSAUoQUMAFAxKoAAUCYqgBQgAAJAqUiAzE0APEAP/GR6\\\n", + "oZcAwCFi7YqFXgG8QgAEgBJxEQhFCIAAUCYCIAW4ChgAoGIEQACAitECBoAyadEDZm4CIACUiItA\\\n", + "KEILGACgYgRAAOCArFu3Lt3d3enr68vu3btntj///PNZvXp13vOe92TVqlXZsWPHAq6SnycAAkCZ\\\n", + "tDRpFDQ+Pp7t27dnZGQky5cvz9DQ0Mzcd7/73bzjHe/IAw88kMsuuyzXX3/9gR8fTSEAAgCz1Ov1\\\n", + "TE1NNYx6vT7rfWNjY+np6UmS9Pb2ZnR0dGbu5JNPznPPPZckmZiYyHHHHTc/i2dOAiAAlElLS1PG\\\n", + "wMBA2traGsbAwMCsr5uYmEhra2uSpK2tLTt37pyZe9vb3pbHH388b3/72/PVr341H/nIR+btZ2Df\\\n", + "BEAAKJHpJo3+/v5MTk42jP7+/lnf197enqmpqSTJ5ORklixZMjN300035dxzz822bdvyZ3/2Z/nz\\\n", + "P//zg3TUvF4CIAAwS61WS2tra8Oo1Wqz3tfZ2ZlNmzYlSYaHh9PV1TUzNz09PdP2Pe644zI5OTk/\\\n", + "i2dOAiAAlMk8XwTS0dGRZcuWpbu7O9u2bcuaNWuydu3aJMlHPvKR3H333Vm5cmX+9E//NFdffXVz\\\n", + "jpED5kbQAFAmC3Aj6PXr1ze8HhwcTPLKOYH33HPP/C+IOakAAgBUjAAIAFAxWsAAUCYtHgbM3ARA\\\n", + "ACiRafmPArSAAQAqRgAEAKgYLWAAKBMtYApQAQQAqBgVQAAoExVAChAAAaBUJEDmpgUMAFAxKoAA\\\n", + "UCYKgBQgAAJAmQiAFKAFDABQMSqAAFAi0wu9AA4JAiAAlIkWMAVoAQMAVIwACABQMVrAAFAmLXrA\\\n", + "zE0F8OfcfPPN+5yv1+uZmppqGC/t3jNPqwOAAlqaNCi1SgbAxx9/fNbYtm1bBgcH97nfwMBA2tra\\\n", + "Gsbj37p3nlYNANAclWwBn3POOfnQhz6U6enGi+X/9V//dZ/79ff35+qrr27Y9ok7/t+mrw8A4GCq\\\n", + "ZAD89V//9axfvz7HHntsw/YPfvCD+9yvVqulVqs1bFu0uJI/IQBvVNq3FFDJ9HLvvffmF37hF2Zt\\\n", + "//a3v70AqwEAmF+VDICtra0LvQQAODhUACmgkheBAABUmQAIAFAxlWwBA0BpaQFTgAAIACXS4kkg\\\n", + "FKAFDABQMQIgAEDFaAEDQJnoAFOAAAgAZSIAUoAWMABAxQiAAAAVIwACQIm0tDRnvB7r1q1Ld3d3\\\n", + "+vr6snv37pntd9xxR1auXJmVK1fmxBNPzMaNG5t8tOwvARAA2G/j4+PZvn17RkZGsnz58gwNDc3M\\\n", + "/c7v/E42b96czZs359d+7ddy4YUXLtxCaSAAAgCz1Ov1TE1NNYx6vT7rfWNjY+np6UmS9Pb2ZnR0\\\n", + "dNZ7fvrTn6Zer+ekk0466OumGAEQAMqkpTljYGAgbW1tDWNgYGDW101MTKS1tTVJ0tbWlp07d856\\\n", + "zze/+c2sWbOm2UfKAXAbGABglv7+/lx99dUN22q12qz3tbe3Z2pqKkkyOTmZJUuWzHrP0NBQbrzx\\\n", + "xoOzUPaLCiAAlEmTKoC1Wi2tra0NY28BsLOzM5s2bUqSDA8Pp6urq2F+x44d2r9vQAIgAJRIk/Jf\\\n", + "YR0dHVm2bFm6u7uzbdu2rFmzJmvXrp2Z1/59Y9ICBoAyeb33cGmC9evXN7weHByc+fMVV1wx38uh\\\n", + "ABVAAICKUQEEgBJZgAIghyAVQACAihEAAQAqRgsYAMpEC5gCBEAAKBH5jyK0gAEAKkYFEADKRAmQ\\\n", + "AgRAACgRt4GhCC1gAICKEQABACpGCxgASkQLmCJUAAEAKkYABACoGC3gAzSyub7QSwDgUPGRg/8V\\\n", + "WsAUIQACQJkIgBSgBQwAUDEqgABQIi1KgBQgAAJAmch/FKAFDABQMSqAAFAiCoAUIQACQIm4DQxF\\\n", + "aAEDAFSMCiAAlIkKIAUIgABQIvIfRQiAAFAmEiAFOAcQAKBiVAABoEQUAClCAASAEnEbGIrQAgYA\\\n", + "qBgVQAAoExVAChAAAaBE5D+K0AIGAKgYFUAAKBEXgVCECiAAQMUIgADAAVm3bl26u7vT19eX3bt3\\\n", + "N8zddtttee9735uVK1fmoYceWqAV8moCIACUSEtLc0ZR4+Pj2b59e0ZGRrJ8+fIMDQ3NzD399NO5\\\n", + "8847c99992Xz5s1ZsWLFQThi9ocACABl0tKcUa/XMzU11TDq9fqsrxsbG0tPT0+SpLe3N6OjozNz\\\n", + "99xzT2q1Wt73vvelr68v//mf/3mwjprXSQAEgBJpadJ/AwMDaWtraxgDAwOzvm9iYiKtra1Jkra2\\\n", + "tuzcuXNmbseOHfmP//iP3HvvvVmxYkX++q//et5+B/ZNAAQAZunv78/k5GTD6O/vn/W+9vb2TE1N\\\n", + "JUkmJyezZMmShrnf/M3fTEtLS1atWpVt27bN2/rZNwEQAEqkWecA1mq1tLa2NoxarTbr+zo7O7Np\\\n", + "06YkyfDwcLq6umbmurq6snXr1iTJ1q1b86u/+qvz8hswNwEQANhvHR0dWbZsWbq7u7Nt27asWbMm\\\n", + "a9euTZKcfvrpeetb35qVK1fmhhtuyJVXXrnAq+W/uBE0AHBA1q9f3/B6cHBw5s/XXXfdfC+HAgRA\\\n", + "ACgRTwKhCAEQAEpE/qMI5wACAFSMCiAAlIkSIAUIgABQIs4BpAgtYACAilEBBIASUQCkiEM+AE5P\\\n", + "T+f+++/P008/nenp6STJpZdeus99Xnrppdx555057LDDsnr16ixatChJcvvtt+f3fu/3XnO/er0+\\\n", + "60HY0y/tScuiQ/5nBKAsJEAKOORbwBdddFHuuuuufP7zn8+WLVtyzz33zLnPpZdemi1btmTr1q05\\\n", + "77zz8qMf/ShJ8pWvfGWf++3twdhTW7/XlOMAgGZoadKg3A75ALhjx45s2LAhxx9/fL785S/n+eef\\\n", + "n3Of7du357rrrss111yTW2+9NR/72Mfyve/NHeT29mDs1o7fbMZhAADMm0O+d7lo0aK8/PLLOeaY\\\n", + "Y3LDDTfkxz/+8Zz7vPjii6nX66nVajnppJNy99135+KLL85jjz22z/1qtdqsB2Fr/wLwRuIqYIo4\\\n", + "5CuAt912W15++eV85Stfyc9+9rPccsstc+6zcePG/OxnP5t5ffTRR+db3/pWvvSlLx3ElQLAPNAD\\\n", + "poBDvny1dOnSJMlb3vKWXH311YX2efe73z1r26JFi/LRj360qWsDAHgjOuQDIADwvyjeUYQACAAl\\\n", + "4hxAijjkzwEEAOD1UQEEgFJRAmRuAiAAlIgWMEVoAQMAVIwKIACUiQogBQiAAFAi8h9FCIAAUCLO\\\n", + "AaQI5wACAFSMAAgAUDFawABQIlrAFKECCABQMSqAAFAiCoAUIQACQJlIgBSgBQwAUDEqgABQIi4C\\\n", + "oQgBEABKRP6jCAEQAMpEAqQA5wACAFSMCiAAlIgCIEWoAAJAibS0NGe8HuvWrUt3d3f6+vqye/fu\\\n", + "me2bN2/OW9/61qxcuTKrVq1q8pFyIARAAGC/jY+PZ/v27RkZGcny5cszNDTUMH/RRRdl8+bNue++\\\n", + "+xZoheyNAAgAZTLPJcCxsbH09PQkSXp7ezM6Otow/41vfCPd3d3ZuHFjUw+TA+McQAAokWadA1iv\\\n", + "11Ov1xu21Wq11Gq1hm0TExM5/vjjkyRtbW3ZuXPnzNxZZ52VJ554IklywQUX5Nxzz8273vWuJq2Q\\\n", + "A6ECCADMMjAwkLa2toYxMDAw633t7e2ZmppKkkxOTmbJkiUzc0cddVSOOOKIHHHEEVm9enXGx8fn\\\n", + "bf3smwAIAGXS0pzR39+fycnJhtHf3z/r6zo7O7Np06YkyfDwcLq6umbm/isYJsmDDz6Yk08+uemH\\\n", + "y/4RAAGgRJqU/1Kr1dLa2towXt3+TZKOjo4sW7Ys3d3d2bZtW9asWZO1a9cmSf7u7/4uZ599djo7\\\n", + "O3PCCSfkvPPOO7gHT2Et09PT0wu9iEPZW//w/1zoJQBwiHjqb/77Qf+OVf/XhqZ8zn1XXtWUz+GN\\\n", + "yUUgAFAir/ceflSTAAgAZSIAUoAACAAlIv9RhAB4gBa3uo4GADi0CIAAUCLOAaQI5SsAgIoRAAEA\\\n", + "KkYLGABKRAuYIgRAACgRAZAitIABACpGAAQAqBgtYAAoES1gilABBACoGBVAACgRBUCKEAABoEwk\\\n", + "QAoQAAGgRJwDSBHOAQQAqBgVQAAoEQVAihAAAaBM9IApQAsYAKBiVAABoETU/yhCAASAEtEBpggt\\\n", + "YACAilEBBIASUQGkCBVAAICKEQABACpGCxgASkQLmCIEQAAoEfmPIgRAACgTCZACnAMIAFAxKoAA\\\n", + "UCIKgBQhAAJAibgIhCK0gAEAKkYFEABKRAWQIlQAAQAqRgAEAA7IunXr0t3dnb6+vuzevXvW/Be+\\\n", + "8IWcddZZC7AyXosACAAl0tLSnFHU+Ph4tm/fnpGRkSxfvjxDQ0MN87t27cpjjz3W5KPkQAmAAFAi\\\n", + "LU0aRY2NjaWnpydJ0tvbm9HR0Yb5jRs35lOf+tT+HxAHhQAIAMxSr9czNTXVMOr1+qz3TUxMpLW1\\\n", + "NUnS1taWnTt3zsxNTk7msccey4oVK+Zt3RRTyQC4Y8eOXHfddbnzzjvz1FNP5YorrshnPvOZ7Nix\\\n", + "Y5/77e0fw/SePfO0agCYW7NawAMDA2lra2sYAwMDs76vvb09U1NTSV4JfEuWLJmZ27BhQ6688sp5\\\n", + "O3aKq2QAvOSSS3LCCSfkqaeeSk9PT1atWpWenp5cfvnl+9xvb/8YfvbI/fO0agCYW7MCYH9/fyYn\\\n", + "JxtGf3//rO/r7OzMpk2bkiTDw8Pp6uqamfvRj36Uz3/+8+nt7c2TTz6Zv/iLv5i334F9a5menp5e\\\n", + "6EXMt5UrV2bz5s1JknPOOScPP/xwkmTVqlW57777XnO/er0+q/x9xmf/n7Qc7naKAMzt//+rzxz0\\\n", + "77j4bzc25XNuu+SPCr/3T/7kT/Lwww/nxBNPzI033pgrr7wyg4ODDe8566yzsmXLlqasjQNXyeTy\\\n", + "85eo//xf0D1ztHNrtVpqtVrDNuEPgKpbv359w+tXh78kwt8bTCXTyx133JHp6em0tLTkjDPOSPJK\\\n", + "KPyrv/qrBV4ZABwYTwKhiEoGwKVLl87atnjx4rz73e9egNUAQPPIfxRRyYtAAACqrJIVQAAoKy1g\\\n", + "ihAAAaBE5D+K0AIGAKgYFUAAKBMlQAoQAAGgRJwDSBFawAAAFaMCCAAlogBIEQIgAJSIFjBFCIAA\\\n", + "UCLyH0U4BxAAoGJUAAGgRLSAKUIABIASkf8oQgsYAKBiVAABoES0gClCAASAMhEAKUALGACgYlQA\\\n", + "AaBEFAApQgAEgBJxDiBFaAEDAFSMCiAAlIgCIEUIgABQIlrAFCEAAkCJyH8U4RxAAICKUQEEgBLR\\\n", + "AqYIARAASkQApAgtYACAilEBBIASUQCkCAEQAEpEC5gitIABACpGBRAASkQBkCIEQAAoES1gihAA\\\n", + "D9Dyt/kJAYBDi3MAAaBEWpo0Xo9169alu7s7fX192b1798z28fHxdHZ25j3veU9Wr16d55577oCO\\\n", + "jeYRAAGgRFpamjOKGh8fz/bt2zMyMpLly5dnaGhoZu60007L2NhYHnjggbzrXe/KHXfccRCOmP0h\\\n", + "AAJAicx3BXBsbCw9PT1Jkt7e3oyOjs7MLV68eObPzz//fE499dT9PCqaTQAEAGap1+uZmppqGPV6\\\n", + "fdb7JiYm0tramiRpa2vLzp07G+bvueeevPOd78zmzZtz8sknz8vamZsACAAl0qwW8MDAQNra2hrG\\\n", + "wMDArO9rb2/P1NRUkmRycjJLlixpmO/t7c0///M/Z82aNRkcHJyX34C5CYAAUCLNagH39/dncnKy\\\n", + "YfT398/6vs7OzmzatClJMjw8nK6urpm5n68YtrW15c1vfnOzD5f95B4mAMAstVottVptzvd1dHRk\\\n", + "2bJl6e7uzoknnpjPfOYzWbt2bQYHB3PPPffki1/8YlpaWnLsscfm5ptvnoeVU4QACAAlshA3gl6/\\\n", + "fn3D6/9q9V5wwQW54IIL5n9BzEkABIAS8SQQinAOIABAxagAAkCJKABShAAIACXSogdMAVrAAAAV\\\n", + "owIIACWi/kcRAiAAlIgOMEUIgABQIvIfRTgHEACgYlQAAaBEDlMCpAABEABKRP6jCC1gAICKUQEE\\\n", + "gBJxFTBFCIAAUCLyH0VoAQMAVIwKIACUiBYwRQiAAFAi8h9FaAEDAFSMCiAAlIgWMEUIgABQIvIf\\\n", + "RQiAAFAiHgVHEc4BBACoGBVAACgRBUCKEAABoERcBEIRWsAAABWjAggAJaIASBECIACUiBYwRWgB\\\n", + "/09XXXXVnO+p1+uZmppqGC/t3nPwFwcA0ESVrAAuXbo0J554Yg477LBMT08nSZ588smMjY3lkUce\\\n", + "ec39BgYGcu211zZsO/mD78/bVvce1PUCQFEKgBRRyQrgxo0bc9JJJ+XTn/50Hn300Tz66KNZsWLF\\\n", + "PsNfkvT392dycrJh/Grvb83TqgFgbi0tzRmUWyUD4Ic//OHcfvvt2bNnTy688MLceuutM5XAfanV\\\n", + "amltbW0YixZXsogKABzCKhkAk+Swww7LJZdckm9+85vZs2dPOjo6FnpJAHDAVAApovLlq8MOOyyX\\\n", + "XnrpQi8DAJqispUdXpfKB0AAKBPVO4rwPwoAABUjAAJAibQ0abwe69atS3d3d/r6+rJ79+6Z7Xfd\\\n", + "dVd+4zd+I+eee27+6I/+6ICOi+YSAAGgROb7IpDx8fFs3749IyMjWb58eYaGhmbmzjjjjIyOjubB\\\n", + "Bx/MM888ky1bthyEI2Z/CIAAwH4bGxtLT09PkqS3tzejo6MzcyeeeGIOP/yVyw2OOOKIHHaY2PFG\\\n", + "4SIQACiRZl0DUq/XU6/XG7bVarXUarWGbRMTEzn++OOTJG1tbdm5c+esz3r00UfzzDPP5Mwzz2zS\\\n", + "6jhQojgAlEizWsADAwNpa2trGAMDA7O+r729PVNTU0mSycnJLFmypGH+3//933PVVVflpptumpfj\\\n", + "pxgBEACYZW+PP+3v75/1vs7OzmzatClJMjw8nK6urpm5Xbt25eKLL87g4GCWLl06b2tnbgIgAJRI\\\n", + "s64C3tvjT1/d/k2Sjo6OLFu2LN3d3dm2bVvWrFmTtWvXJkk2bNiQn/zkJ/nUpz6VlStX5oEHHji4\\\n", + "B09hLdNFHoLLa/rA4IaFXgIAh4jvrL3qoH/H/z325aZ8zv/R+d+a8jm8MakAAgBUjKuAAaBEPAmO\\\n", + "IgRAACgRzwKmCAEQAErEuV0U4e8JAEDFqAACQIloAVOEAAgAJSL/UYQWMABAxagAAkCJaAFThAAI\\\n", + "ACUi/1GEFjAAQMWoAAJAiWgBU4QACAAlIgBShBYwAEDFqAACQIkoAFKEAAgAJaIFTBECIACUiHO7\\\n", + "KMLfEwCAilEBBIAS0QKmCAEQAEqkJdMLvQQOAVrAAAAVowIIACWiBUwRLdPT02rFQNPU6/UMDAyk\\\n", + "v78/tVptoZcDwF4IgEBTTU1Npa2tLZOTk2ltbV3o5QCwF84BBACoGAEQAKBiBEAAgIoRAIGmqtVq\\\n", + "+dznPucCEIA3MBeBAABUjAogAEDFCIAAABUjAAIAVIwACABQMQIgAEDFHL7QCwDKY8eOHbn44ouz\\\n", + "Z8+eLFu2LF//+tezaNGihV4WAK+iAgg0zTHHHJN77703IyMjOeGEE3L//fcv9JIA2AsVQKBpnn32\\\n", + "2VxxxRWZmJjI008/nTPPPHOhlwTAXqgAAk1z66235vzzz88DDzyQ3t7euM88wBuTCiDQNKtWrUpf\\\n", + "X1/uuuuuHHnkkQu9HABeg0fBAQBUjBYwAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIA\\\n", + "VIwACABQMZ4EAjTNjh07cvHFF2fPnj1ZtmxZvv71r2fRokULvSwAXkUFEGiaY445Jvfee29GRkZy\\\n", + "wgkn5P7771/oJQGwFyqAQNM8++yzueKKKzIxMZGnn346Z5555kIvCYC9UAEEmubWW2/N+eefnwce\\\n", + "eCC9vb3xqHGANyYVQKBpVq1alb6+vtx111058sgjF3o5ALyGlmn/iw4AUClawAAAFSMAAgBUjAAI\\\n", + "AFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMA\\\n", + "AgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFfM/AGgyp4A0q2fLAAAAAElF\\\n", + "TkSuQmCC\\\n", + "\"\n", + " frames[8] = \"\\\n", + "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", + "AAAPYQGoP6dpAAAilElEQVR4nO3db3Bd5X0v+q9szA4pSMJQG0oDTULBpTlGIYSChIiDG0UnwYWO\\\n", + "04aEmFKa1HAbTqlDx9WLJpBSlI57Eju3t8Q9tyRAy80fJZRACC6CmAqLDPhMLcBkMpBJW2omZooV\\\n", + "yWVgY4PuC251s5Gxlu1tCa/1+TDPjPd69tr7WXvsmS+/3/rTMjExMREAACpjzmwvAACAmSUAAgBU\\\n", + "jAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAA\\\n", + "FSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAA\\\n", + "QMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFSMAAgBUjAAI\\\n", + "AFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgMAU1157bV588cXJ15/+9Kfz93//97O4oqle\\\n", + "eeWVrFq1KqeddloWL16c9773vXnqqadme1kAh4SWiYmJidleBPDG0tLSktHR0bS3t8/2Ul7XP/zD\\\n", + "P6S/vz8PPvhg5s2bl+uvvz6PPvpovv71r8/20gDe8FQAocQuueSSnHnmmVm8eHE++MEP5ic/+cm0\\\n", + "+1xxxRVJku7u7nR0dOTZZ5/NZZddlrVr1yZ5tTr427/921m2bFlOOeWUXHDBBXn88cfz/ve/P6ec\\\n", + "cko+8pGP5JVXXkmS7Ny5M5/4xCdy1llnZfHixfn93//9vPTSS005tpaWltTr9bz44ouZmJjI+Ph4\\\n", + "fvEXf7Epnw1QdgIglNjatWuzefPmPProo+nu7s611147OfeBD3wgmzdvnrLPl770pSTJ0NBQtmzZ\\\n", + "kgULFkx5z+bNm3PLLbfkhz/8YXbu3JmPf/zjGRgYyBNPPJEf/OAH+e53v5sk+dSnPpXu7u48/PDD\\\n", + "GRkZySuvvJJ169ZN+bydO3emo6Njj+P973//Ho9t2bJlWbJkSY477rgcf/zxue+++/LZz352f34m\\\n", + "gMo5bLYXABw8t912W2699da8+OKLefHFF3PsscdOzt199937/bk9PT05+uijkyRnnHFGarVajjrq\\\n", + "qCTJO9/5zjz55JNJXm3TPvTQQ/n85z+fJHnhhRcyd+7cKZ931FFHZcuWLfu0hs2bN+fxxx/Ptm3b\\\n", + "0tramj/5kz/JFVdckb/7u7/b7+MCqAoBEErqwQcfzBe/+MU89NBDWbBgQb797W/n05/+dFM++01v\\\n", + "etPkn+fOnTvl9e7du5MkExMT+eY3v5lTTjllr5+3c+fOdHd373Fu4cKF2bBhw5Ttt9xyS84///zJ\\\n", + "8xR/53d+Jz09Pft6KACVJABCSY2Ojuaoo47KMccck5deeinr168vvO9RRx2VsbGxA74I5KKLLspf\\\n", + "/MVfZP369TnssMMyOjqa5557LieffPKU79vXCuDb3va23H333bnmmmty+OGH56677so73vGOA1ov\\\n", + "QFU4BxBKqre3N6eeempOPfXUyQs6ftbrnQOYvHru3vve977Ji0D21xe+8IUcccQR6ejoyOLFi7N0\\\n", + "6dL8y7/8y35/3s/6gz/4g7z1rW/N6aefnsWLF+e+++7LjTfe2JTPBig7t4EBAKgYFUAAgIoRAAEA\\\n", + "KkYABACoGAEQAKBiBEAA4ICMjY3lrLPOypFHHpnHH3+8Ye7ll1/O5Zdfnu7u7lx99dWzs0CmEAAB\\\n", + "gAPy5je/Od/5znfyoQ99aMrcXXfdlV/4hV/I0NBQnn/++Tz00EOzsEJeSwAEAA7IvHnz8vM///N7\\\n", + "nBseHp58Sk9vb282bdo0k0vjdXgSCAAwRb1eT71eb9hWq9VSq9X26XNGR0fT2tqaJGlra8uOHTua\\\n", + "tkb2nwB4gG56+IuzvQQADhGXn/U/Dvp3/LczPtWUz1n+G0fluuuua9j2mc98Jtdee+0+fU57e3vG\\\n", + "x8eTvHqu4Pz585uyPg6MFjAAMEVfX1/GxsYaRl9f3z5/TmdnZwYHB5MkGzZsSFdXV7OXyn4QAAGg\\\n", + "TFqaM2q1WlpbWxvG3tq/H/jAB/KP//iP+cQnPpGvfOUrWblyZZLkggsuyL/927+lu7s7b3rTm3LO\\\n", + "OeccpANnX2gBAwAH7O677254fdlllyVJDjvssHzlK1+Z+QWxVwIgAJRJS8tsr4BDgAAIAGUi/1GA\\\n", + "cwABACpGBRAAykQFkAIEQAAoFQmQ6WkBAwBUjAogAJTIhAIgBQiAAFAmAiAFaAEDAFSMCiAAlIkb\\\n", + "QVOACiAAQMWoAAJAmSgAUoAKIABAxagAAkCZOAeQAgRAACgT+Y8CtIABACpGBRAASmRithfAIUEA\\\n", + "BIAycQ4gBWgBAwBUjAogAJSJAiAFCIAAUCoSINPTAgYAqBgVQAAoEwVAChAAAaBMBEAKEAABoEQm\\\n", + "3AaGApwDCABQMQIgAEDFaAEDQJloAVOACiAAQMWoAAJAmSgAUoAACAAlMjHbC+CQUMkA+PLLL2dg\\\n", + "YCCbNm3Kjh07Mn/+/HR1dWX58uU57LBK/iQAQIVUMu1cfvnlOfXUU3PZZZelra0tY2Nj2bBhQ373\\\n", + "d383t9566+vuV6/XU6/XG7bteml35h1eyZ8RgDciF4FQQCWTy49//OPcfPPNDdvOOOOMnHfeeXvd\\\n", + "r7+/P9ddd13Dtt/4eG8u/MR/b/oaAWC/yH8UUMkA2NnZmUsvvTQ9PT1pbW3N+Ph4BgcHc/bZZ+91\\\n", + "v76+vqxataph2//z6P99MJcKANB0lQyAn/vc5/Loo49meHg4Tz/9dNrb2/NHf/RHOf300/e6X61W\\\n", + "S61Wa9im/QvAG8ostIBXr16d4eHh/NIv/VJuuummzJs3L0kyPj6ej33sY9m5c2fOPPPMrFmzZsbX\\\n", + "xp5V9j6AixcvzhVXXJG+vr5ceeWV04Y/ADgUTDRpFDUyMpJt27ZlaGgoixYtysDAwOTc3/zN3+TC\\\n", + "Cy/M9773vTz//PN5+OGHD/j4aI7KBkAAKKWW5ox6vZ7x8fGG8doLIZNkeHg4PT09SZLe3t5s2rRp\\\n", + "cu5HP/pROjo6krx6rv0//dM/HYwjZj8IgADAFP39/Wlra2sY/f39U943Ojqa1tbWJElbW1t27Ngx\\\n", + "OXfaaafl/vvvT5IMDg5mdHR0ZhbPtARAACiTlpamjL6+voyNjTWMvr6+KV/X3t6e8fHxJMnY2Fjm\\\n", + "z58/Offxj388P/jBD/Lrv/7rOfLII3PcccfN2M/A3gmAAMAUtVotra2tDeO1F0Imr95ZY3BwMEmy\\\n", + "YcOGdHV1Tc4dccQRuemmmybnL7jggplZPNMSAAGA/dbR0ZGFCxemu7s7W7duzfLly7Ny5cokyZYt\\\n", + "W7JkyZKcf/756erqylvf+tZZXi3/xT1MAKBEJmbhNjCvvb3L+vXrk7waDjdu3Djj62F6AiAAlIkn\\\n", + "gVCAFjAAQMUIgAAAFaMFDAAlMhvnAHLoUQEEAKgYFUAAKBMFQAoQAAGgTARAChAAAaBUJECm5xxA\\\n", + "AICKUQEEgBKZUACkAAEQAMpEAKQALWAAgIpRAQSAUlECZHoCIACUiHMAKUILGACgYlQAAaBMVAAp\\\n", + "QAAEgFKRAJmeFjAAQMWoAAJAibgIhCIEQAAoEwGQAgRAACgVCZDpOQcQAKBiVAABoEwUAClAAASA\\\n", + "EnERCEVoAQMAVIwKIACUiQogBQiAAFAqEiDTEwAP0MYfT8z2EgA4RFx+1myvAF4lAAJAibgIhCIE\\\n", + "QAAoEwGQAlwFDABQMQIgAEDFaAEDQJm06AEzPQEQAErERSAUoQUMAFAxAiAAcEBWr16d7u7urFix\\\n", + "Irt27Zrc/sILL2TZsmV5z3vek6VLl2b79u2zuEp+lgAIAGXS0qRR0MjISLZt25ahoaEsWrQoAwMD\\\n", + "k3Pf/e538453vCMPPPBALrvssvzt3/7tgR8fTSEAAgBT1Ov1jI+PN4x6vT7lfcPDw+np6UmS9Pb2\\\n", + "ZtOmTZNzJ598cp5//vkkyejoaI499tiZWTzTEgABoExaWpoy+vv709bW1jD6+/unfN3o6GhaW1uT\\\n", + "JG1tbdmxY8fk3C//8i/niSeeyK/+6q/mS1/6Uj760Y/O2M/A3gmAAFAiE00afX19GRsbaxh9fX1T\\\n", + "vq+9vT3j4+NJkrGxscyfP39y7uabb865556brVu35rOf/Wz+7M/+7CAdNftKAAQApqjVamltbW0Y\\\n", + "tVptyvs6OzszODiYJNmwYUO6urom5yYmJibbvscee2zGxsZmZvFMSwAEgDKZ4YtAOjo6snDhwnR3\\\n", + "d2fr1q1Zvnx5Vq5cmST56Ec/mrvuuitLlizJn/7pn2bVqlXNOUYOmBtBA0CZzMKNoNesWdPwev36\\\n", + "9UlePSfwnnvumfkFMS0VQACAihEAAQAqRgsYAMqkxcOAmZ4ACAAlMiH/UYAWMABAxQiAAAAVowUM\\\n", + "AGWiBUwBKoAAABWjAggAZaICSAECIACUigTI9LSAAQAqRgUQAMpEAZACBEAAKBMBkAK0gAEAKkYF\\\n", + "EABKZGK2F8AhQQAEgDLRAqYALWAAgIoRAAEAKkYLGADKpEUPmOmpAP6MW265Za/z9Xo94+PjDePl\\\n", + "XbtnaHUAUEBLkwalVskA+MQTT0wZW7duzfr16/e6X39/f9ra2hrG4/9w7wytGgCgOSrZAj777LPz\\\n", + "oQ99KBMTjRfL/+u//ute9+vr68uqVasatl357f/V9PUBABxMlQyAv/Irv5I1a9bkmGOOadj+wQ9+\\\n", + "cK/71Wq11Gq1hm1z51XyJwTgjUr7lgIqmV7uvffe/NzP/dyU7d/5zndmYTUAADOrkgGwtbV1tpcA\\\n", + "AAeHCiAFVPIiEACAKhMAAQAqppItYAAoLS1gChAAAaBEWjwJhAK0gAEAKkYABACoGC1gACgTHWAK\\\n", + "EAABoEwEQArQAgYAqBgBEACgYgRAACiRlpbmjH2xevXqdHd3Z8WKFdm1a9fk9ttvvz1LlizJkiVL\\\n", + "cuKJJ2bdunVNPlr2lwAIAOy3kZGRbNu2LUNDQ1m0aFEGBgYm537zN38zGzduzMaNG/P2t789F110\\\n", + "0ewtlAYCIAAwRb1ez/j4eMOo1+tT3jc8PJyenp4kSW9vbzZt2jTlPT/5yU9Sr9dz0kknHfR1U4wA\\\n", + "CABl0tKc0d/fn7a2tobR398/5etGR0fT2tqaJGlra8uOHTumvOdb3/pWli9f3uwj5QC4DQwAMEVf\\\n", + "X19WrVrVsK1Wq015X3t7e8bHx5MkY2NjmT9//pT3DAwM5Mtf/vLBWSj7RQUQAMqkSRXAWq2W1tbW\\\n", + "hrGnANjZ2ZnBwcEkyYYNG9LV1dUwv337du3fNyABEABKpEn5r7COjo4sXLgw3d3d2bp1a5YvX56V\\\n", + "K1dOzmv/vjFpAQNAmezrPVyaYM2aNQ2v169fP/nnK6+8cqaXQwEqgAAAFaMCCAAlMgsFQA5BKoAA\\\n", + "ABUjAAIAVIwWMACUiRYwBQiAAFAi8h9FaAEDAFSMCiAAlIkSIAUIgABQIm4DQxFawAAAFSMAAgBU\\\n", + "jBYwAJSIFjBFqAACAFSMAAgAUDFawAdo49BLs70EAA4VHz74X6EFTBECIACUiQBIAVrAAAAVowII\\\n", + "ACXSogRIAQIgAJSJ/EcBWsAAABWjAggAJaIASBECIACUiNvAUIQWMABAxagAAkCZqABSgAAIACUi\\\n", + "/1GEAAgAZSIBUoBzAAEAKkYFEABKRAGQIgRAACgRt4GhCC1gAICKUQEEgDJRAaQAARAASkT+owgt\\\n", + "YACAilEBBIAScREIRagAAgBUjAAIAByQ1atXp7u7OytWrMiuXbsa5r761a/m/PPPz5IlS/LQQw/N\\\n", + "0gp5LQEQAEqkpaU5o6iRkZFs27YtQ0NDWbRoUQYGBibnnnnmmdxxxx257777snHjxpxzzjkH4YjZ\\\n", + "HwIgAJRJS3NGvV7P+Ph4w6jX61O+bnh4OD09PUmS3t7ebNq0aXLunnvuSa1Wy/ve976sWLEi//mf\\\n", + "/3mwjpp9JAACQIm0NOm//v7+tLW1NYz+/v4p3zc6OprW1tYkSVtbW3bs2DE5t3379vzHf/xH7r33\\\n", + "3pxzzjn5q7/6qxn7Hdg7ARAAmKKvry9jY2MNo6+vb8r72tvbMz4+niQZGxvL/PnzG+be+973pqWl\\\n", + "JUuXLs3WrVtnbP3snQAIACXSrHMAa7VaWltbG0atVpvyfZ2dnRkcHEySbNiwIV1dXZNzXV1d2bJl\\\n", + "S5Jky5Ytedvb3jYjvwHTEwABgP3W0dGRhQsXpru7O1u3bs3y5cuzcuXKJMnixYvzlre8JUuWLMlN\\\n", + "N92Uq666apZXy39xI2gA4ICsWbOm4fX69esn/3zDDTfM9HIoQAAEgBLxJBCKEAABoETkP4pwDiAA\\\n", + "QMWoAAJAmSgBUoAACAAl4hxAitACBgCoGBVAACgRBUCKOOQD4MTERO6///4888wzmZiYSJJceuml\\\n", + "e93n5Zdfzh133JE5c+Zk2bJlmTt3bpLkG9/4Rn7rt37rdfer1+tTHoQ98fLutMw95H9GAMpCAqSA\\\n", + "Q74F/OEPfzh33nlnrr/++mzevDn33HPPtPtceuml2bx5c7Zs2ZLzzjsvTz31VJLkxhtv3Ot+e3ow\\\n", + "9vj/vr8pxwEAzdDSpEG5HfIBcPv27Vm7dm2OP/74fPGLX8wLL7ww7T7btm3LDTfckGuvvTa33XZb\\\n", + "fu/3fi/f+973pt1vTw/Gbn3X+c04DACAGXPI9y7nzp2bV155JUcffXRuuumm/OhHP5p2n5deein1\\\n", + "ej21Wi0nnXRS7rrrrlx88cV57LHH9rpfrVab8iBs7V8A3khcBUwRh3wF8Ktf/WpeeeWV3Hjjjfnp\\\n", + "T3+aW2+9ddp91q1bl5/+9KeTr4866qh8+9vfzhe+8IWDuFIAmAF6wBRwyJevFixYkCQ57rjjsmrV\\\n", + "qkL7vPvd756ybe7cufnYxz7W1LUBALwRHfIBEAD4/yneUYQACAAl4hxAijjkzwEEAGDfqAACQKko\\\n", + "ATI9ARAASkQLmCK0gAEAKkYFEADKRAWQAgRAACgR+Y8iBEAAKBHnAFKEcwABACpGAAQAqBgtYAAo\\\n", + "ES1gilABBACoGBVAACgRBUCKEAABoEwkQArQAgYAqBgVQAAoEReBUIQACAAlIv9RhAAIAGUiAVKA\\\n", + "cwABACpGBRAASkQBkCJUAAGgRFpamjP2xerVq9Pd3Z0VK1Zk165dk9s3btyYt7zlLVmyZEmWLl3a\\\n", + "5CPlQAiAAMB+GxkZybZt2zI0NJRFixZlYGCgYf7DH/5wNm7cmPvuu2+WVsieCIAAUCYzXAIcHh5O\\\n", + "T09PkqS3tzebNm1qmP/mN7+Z7u7urFu3rqmHyYFxDiAAlEizzgGs1+up1+sN22q1Wmq1WsO20dHR\\\n", + "HH/88UmStra27NixY3LuzDPPzA9/+MMkyYUXXphzzz0373rXu5q0Qg6ECiAAMEV/f3/a2toaRn9/\\\n", + "/5T3tbe3Z3x8PEkyNjaW+fPnT84deeSROfzww3P44Ydn2bJlGRkZmbH1s3cCIACUSUtzRl9fX8bG\\\n", + "xhpGX1/flK/r7OzM4OBgkmTDhg3p6uqanPuvYJgkDz74YE4++eSmHy77RwAEgBJpUv5LrVZLa2tr\\\n", + "w3ht+zdJOjo6snDhwnR3d2fr1q1Zvnx5Vq5cmST5+te/nrPOOiudnZ054YQTct555x3cg6ewlomJ\\\n", + "iYnZXsSh7MRPrpntJQBwiPi3v/rjg/4dS//PtU35nPuuuropn8Mbk4tAAKBE9vUeflSTAAgAZSIA\\\n", + "UoAACAAlIv9RhAB4gObW/FMDAA4tAiAAlIhzACnCbWAAACpGAAQAqBgtYAAoES1gihAAAaBEBECK\\\n", + "0AIGAKgYARAAoGK0gAGgRLSAKUIFEACgYlQAAaBEFAApQgAEgDKRAClAAASAEnEOIEU4BxAAoGJU\\\n", + "AAGgRBQAKUIABIAy0QOmAC1gAICKUQEEgBJR/6MIARAASkQHmCK0gAEAKkYFEABKRAWQIlQAAQAq\\\n", + "RgAEAKgYLWAAKBEtYIoQAAGgROQ/ihAAAaBMJEAKcA4gAEDFqAACQIkoAFKEAAgAJeIiEIrQAgYA\\\n", + "qBgVQAAoERVAilABBACoGAEQADggq1evTnd3d1asWJFdu3ZNmf/c5z6XM888cxZWxusRAAGgRFpa\\\n", + "mjOKGhkZybZt2zI0NJRFixZlYGCgYX7nzp157LHHmnyUHCgBEABKpKVJo6jh4eH09PQkSXp7e7Np\\\n", + "06aG+XXr1uWTn/zk/h8QB4UACABMUa/XMz4+3jDq9fqU942Ojqa1tTVJ0tbWlh07dkzOjY2N5bHH\\\n", + "Hss555wzY+ummEoGwO3bt+eGG27IHXfckaeffjpXXnllrrnmmmzfvn2v++3pH8PE7t0ztGoAmF6z\\\n", + "WsD9/f1pa2trGP39/VO+r729PePj40leDXzz58+fnFu7dm2uuuqqGTt2iqtkALzkkktywgkn5Omn\\\n", + "n05PT0+WLl2anp6eXH755Xvdb0//GH768P0ztGoAmF6zAmBfX1/GxsYaRl9f35Tv6+zszODgYJJk\\\n", + "w4YN6erqmpx76qmncv3116e3tzdPPvlk/vzP/3zGfgf2rmViYmJithcx05YsWZKNGzcmSc4+++x8\\\n", + "//vfT5IsXbo099133+vuV6/Xp5S/F//pX6flMLdTBGB6P/6f1xz077j479c15XO+eskfFn7vH//x\\\n", + "H+f73/9+TjzxxHz5y1/OVVddlfXr1ze858wzz8zmzZubsjYOXCWTy89eov6zf0F3T9POrdVqqdVq\\\n", + "DduEPwCqbs2aNQ2vXxv+kgh/bzCVTC+33357JiYm0tLSktNPPz3Jq6HwL//yL2d5ZQBwYDwJhCIq\\\n", + "GQAXLFgwZdu8efPy7ne/exZWAwDNI/9RRCUvAgEAqLJKVgABoKy0gClCAASAEpH/KEILGACgYlQA\\\n", + "AaBMlAApQAAEgBJxDiBFaAEDAFSMCiAAlIgCIEUIgABQIlrAFCEAAkCJyH8U4RxAAICKUQEEgBLR\\\n", + "AqYIARAASkT+owgtYACAilEBBIAS0QKmCAEQAMpEAKQALWAAgIpRAQSAElEApAgBEABKxDmAFKEF\\\n", + "DABQMSqAAFAiCoAUIQACQIloAVOEAAgAJSL/UYRzAAEAKkYFEABKRAuYIgRAACgRAZAitIABACpG\\\n", + "BRAASkQBkCIEQAAoES1gitACBgCoGBVAACgRBUCKEAABoES0gClCADxAv/x2PyEAcGhxDiAAlEhL\\\n", + "k8a+WL16dbq7u7NixYrs2rVrcvvIyEg6Ozvznve8J8uWLcvzzz9/QMdG8wiAAFAiLS3NGUWNjIxk\\\n", + "27ZtGRoayqJFizIwMDA5d9ppp2V4eDgPPPBA3vWud+X2228/CEfM/hAAAaBEZroCODw8nJ6eniRJ\\\n", + "b29vNm3aNDk3b968yT+/8MILOfXUU/fzqGg2ARAAmKJer2d8fLxh1Ov1Ke8bHR1Na2trkqStrS07\\\n", + "duxomL/nnnvyzne+Mxs3bszJJ588I2tnegIgAJRIs1rA/f39aWtraxj9/f1Tvq+9vT3j4+NJkrGx\\\n", + "scyfP79hvre3N//8z/+c5cuXZ/369TPyGzA9ARAASqRZLeC+vr6MjY01jL6+vinf19nZmcHBwSTJ\\\n", + "hg0b0tXVNTn3sxXDtra2vPnNb2724bKf3MMEAJiiVqulVqtN+76Ojo4sXLgw3d3dOfHEE3PNNddk\\\n", + "5cqVWb9+fe655558/vOfT0tLS4455pjccsstM7ByihAAAaBEZuNG0GvWrGl4/V+t3gsvvDAXXnjh\\\n", + "zC+IaQmAAFAingRCEc4BBACoGBVAACgRBUCKEAABoERa9IApQAsYAKBiVAABoETU/yhCAASAEtEB\\\n", + "pggBEABKRP6jCOcAAgBUjAogAJTIHCVAChAAAaBE5D+K0AIGAKgYFUAAKBFXAVOEAAgAJSL/UYQW\\\n", + "MABAxagAAkCJaAFThAAIACUi/1GEFjAAQMWoAAJAiWgBU4QACAAlIv9RhAAIACXiUXAU4RxAAICK\\\n", + "UQEEgBJRAKQIARAASsRFIBShBQwAUDEqgABQIgqAFCEAAkCJaAFThBbw/+fqq6+e9j31ej3j4+MN\\\n", + "45Vduw/+4gAAmqiSFcAFCxbkxBNPzJw5czIxMZEkefLJJzM8PJyHH374dffr7+/Pdddd17DtbR94\\\n", + "f97+wd6Dul4AKEoBkCIqWQFct25dTjrppHzqU5/KI488kkceeSTnnHPOXsNfkvT19WVsbKxhvLXn\\\n", + "12do1QAwvZaW5gzKrZIB8CMf+Ui+8Y1vZPfu3bnoooty2223TVYC96ZWq6W1tbVhzJlXySIqAHAI\\\n", + "q2QATJI5c+bkkksuybe+9a3s3r07HR0ds70kADhgKoAUUfny1Zw5c3LppZfO9jIAoCkqW9lhn1Q+\\\n", + "AAJAmajeUYT/UQAAqBgBEABKpKVJY1+sXr063d3dWbFiRXbt2jW5/c4778yv/dqv5dxzz80f/uEf\\\n", + "HtBx0VwCIACUyExfBDIyMpJt27ZlaGgoixYtysDAwOTc6aefnk2bNuXBBx/Ms88+m82bNx+EI2Z/\\\n", + "CIAAwH4bHh5OT09PkqS3tzebNm2anDvxxBNz2GGvXm5w+OGHZ84cseONwkUgAFAizboGpF6vp16v\\\n", + "N2yr1Wqp1WoN20ZHR3P88ccnSdra2rJjx44pn/XII4/k2WefzRlnnNGk1XGgRHEAKJFmtYD7+/vT\\\n", + "1tbWMPr7+6d8X3t7e8bHx5MkY2NjmT9/fsP8v//7v+fqq6/OzTffPCPHTzECIAAwxZ4ef9rX1zfl\\\n", + "fZ2dnRkcHEySbNiwIV1dXZNzO3fuzMUXX5z169dnwYIFM7Z2picAAkCJNOsq4D09/vS17d8k6ejo\\\n", + "yMKFC9Pd3Z2tW7dm+fLlWblyZZJk7dq1+fGPf5xPfvKTWbJkSR544IGDe/AU1jJR5CG4vK6ev147\\\n", + "20sA4BDxj//H1Qf9O/6v4S825XP+oPN/NOVzeGNSAQQAqBhXAQNAiXgSHEUIgABQIp4FTBECIACU\\\n", + "iHO7KMLfEwCAilEBBIAS0QKmCAEQAEpE/qMILWAAgIpRAQSAEtECpggBEABKRP6jCC1gAICKUQEE\\\n", + "gBLRAqYIARAASkQApAgtYACAilEBBIASUQCkCAEQAEpEC5giBEAAKBHndlGEvycAABWjAggAJaIF\\\n", + "TBECIACUSEsmZnsJHAK0gAEAKkYFEABKRAuYIlomJibUioGmqdfr6e/vT19fX2q12mwvB4A9EACB\\\n", + "phofH09bW1vGxsbS2to628sBYA+cAwgAUDECIABAxQiAAAAVIwACTVWr1fKZz3zGBSAAb2AuAgEA\\\n", + "qBgVQACAihEAAQAqRgAEAKgYARAAoGIEQACAijlsthcAlMf27dtz8cUXZ/fu3Vm4cGG+9rWvZe7c\\\n", + "ubO9LABeQwUQaJqjjz469957b4aGhnLCCSfk/vvvn+0lAbAHKoBA0zz33HO58sorMzo6mmeeeSZn\\\n", + "nHHGbC8JgD1QAQSa5rbbbssFF1yQBx54IL29vXGfeYA3JhVAoGmWLl2aFStW5M4778wRRxwx28sB\\\n", + "4HV4FBwAQMVoAQMAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABXjSSBA02zf\\\n", + "vj0XX3xxdu/enYULF+ZrX/ta5s6dO9vLAuA1VACBpjn66KNz7733ZmhoKCeccELuv//+2V4SAHug\\\n", + "Agg0zXPPPZcrr7wyo6OjeeaZZ3LGGWfM9pIA2AMVQKBpbrvttlxwwQV54IEH0tvbG48aB3hjUgEE\\\n", + "mmbp0qVZsWJF7rzzzhxxxBGzvRwAXkfLhP9FBwCoFC1gAICKEQABACpGAAQAqBgBEACgYgRAAICK\\\n", + "EQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACg\\\n", + "YgRAAICKEQABACpGAAQAqBgBEACgYgRAAICK+X8BKqnIgW0NY78AAAAASUVORK5CYII=\\\n", + "\"\n", + " frames[9] = \"\\\n", + "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", + "AAAPYQGoP6dpAAAii0lEQVR4nO3df5BedX0v8PcmhEcs7C6BJlJGUEshFS+sECnsspAaXFclF3pj\\\n", + "K4phKP4IzJWWIk5mZ24VqmXppKMJt/dq2lsUmFLUVcoPNSsBQ5csDmSmWTE4DjrW0jCGkay7KQMP\\\n", + "Cez9g9u9PmzIHpInu+Sc14v5zuQ53+c853ueSWbefD7nPKdlYmJiIgAAVMac2V4AAAAzSwAEAKgY\\\n", + "ARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAq\\\n", + "RgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACA\\\n", + "ihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAA\\\n", + "oGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAgSmuvfbaPPfcc5OvP/3pT+cf/uEfZnFFU734\\\n", + "4ou55ppr8ra3vS2LFi3KRz7ykTz//POzvSyAg0LLxMTExGwvAnhtaWlpyejoaNrb22d7Ka/o7/7u\\\n", + "7/KP//iPWb9+febNm5ePf/zjOfHEE/OpT31qtpcG8JqnAggldvHFF2fx4sU55ZRT8r73vS+/+MUv\\\n", + "pt3n8ssvT5J0d3eno6MjTz31VC699NKsWbMmyUvVwT/6oz/KsmXLcuKJJ+b888/PD3/4w7z73e/O\\\n", + "iSeemA9+8IN58cUXkyQ7d+7Mxz72sZxxxhk55ZRT8vGPf7xpVbqRkZGcd955OfTQQ9PS0pL3vOc9\\\n", + "ufXWW5vy2QBlJwBCia1ZsyabN2/OD37wg3R3d+faa6+dnHvve9+bzZs3T9nnS1/6UpJkaGgoW7Zs\\\n", + "yYIFC6a8Z/Pmzbnlllvy4x//ODt37sxHP/rRDAwM5LHHHsuPfvSjfOc730mSfPKTn0x3d3cefvjh\\\n", + "jIyM5MUXX8zatWunfN7OnTvT0dGxx/Hud797j+d2+umn56677sr4+Hh27dqVr33ta/nXf/3XffiW\\\n", + "AKrnkNleAHDg3Hbbbbn11lvz3HPP5bnnnsvRRx89Offtb397nz+3p6cnRx55ZJLktNNOS61WyxFH\\\n", + "HJEkefvb357HH388SfJP//RPeeihh/L5z38+SfLss89m7ty5Uz7viCOOyJYtW17VGi699NL8/Oc/\\\n", + "z7nnnpvDDjss5513Xr773e/u8zkBVIkACCX14IMP5sYbb8xDDz2UBQsW5K677sqnP/3ppnz26173\\\n", + "usk/z507d8rr3bt3J0kmJibyjW98IyeeeOJeP2/nzp3p7u7e49zChQszODg4ZXtLS0uuvfbayarm\\\n", + "7bffnpNPPvnVngpAJQmAUFKjo6M54ogjctRRR+X555/PunXrCu97xBFHZGxsbL9vArnwwgvzV3/1\\\n", + "V1m3bl0OOeSQjI6O5umnn84JJ5ww5XivtgL43HPP5dlnn82RRx6ZX/7yl7nhhhvy2c9+dr/WC1AV\\\n", + "rgGEkurt7c1JJ52Uk046afKGjl/3StcAJi9du/eud71r8iaQffWFL3whhx12WDo6OnLKKadk6dKl\\\n", + "TbtOb2xsLJ2dnTn55JPT3d2dyy+/PMuWLWvKZwOUnZ+BAQCoGBVAAICKEQABACpGAAQAqBgBEACg\\\n", + "YgRAAGC/jI2N5Ywzzsjhhx+eH/7whw1zL7zwQi677LJ0d3fnqquump0FMoUACADsl9e//vX51re+\\\n", + "lfe///1T5u6555781m/9VoaGhvLMM8/koYcemoUV8nICIACwX+bNm5ff/M3f3OPc8PBwenp6krz0\\\n", + "+6SbNm2ayaXxCjwJBACYol6vp16vN2yr1Wqp1Wqv6nNGR0fT2tqaJGlra8uOHTuatkb2nQC4n27d\\\n", + "fONsLwGAg8SKxX9ywI/xX077ZFM+Z/l/PSLXXXddw7bPfOYzk8/fLqq9vT3j4+NJXrpWcP78+U1Z\\\n", + "H/tHCxgAmKKvry9jY2MNo6+v71V/TmdnZzZs2JAkGRwcTFdXV7OXyj4QAAGgTFqaM2q1WlpbWxvG\\\n", + "3tq/733ve/Pd7343H/vYx/KVr3wlK1euTJKcf/75+bd/+7d0d3fnda97Xc4666wDdOK8GlrAAMB+\\\n", + "+/a3v93w+tJLL02SHHLIIfnKV74y8wtirwRAACiTlpbZXgEHAQEQAMpE/qMA1wACAFSMCiAAlIkK\\\n", + "IAUIgABQKhIg09MCBgCoGBVAACiRCQVAChAAAaBMBEAK0AIGAKgYFUAAKBM/BE0BKoAAABWjAggA\\\n", + "ZaIASAEqgAAAFaMCCABl4hpAChAAAaBM5D8K0AIGAKgYFUAAKJGJ2V4ABwUBEADKxDWAFKAFDABQ\\\n", + "MSqAAFAmCoAUIAACQKlIgExPCxgAoGJUAAGgTBQAKUAABIAyEQApQAAEgBKZ8DMwFOAaQACAihEA\\\n", + "AQAqRgsYAMpEC5gCVAABACpGBRAAykQBkAIEQAAokYnZXgAHhUoGwBdeeCEDAwPZtGlTduzYkfnz\\\n", + "56erqyvLly/PIYdU8isBACqkkmnnsssuy0knnZRLL700bW1tGRsby+DgYP74j/84t9566yvuV6/X\\\n", + "U6/XG7bten535h1aya8RgNciN4FQQCWTy89+9rPcfPPNDdtOO+20nHPOOXvdr7+/P9ddd13Dtgs/\\\n", + "1pv/9vH3NH2NALBP5D8KqGQA7OzszCWXXJKenp60trZmfHw8GzZsyJlnnrnX/fr6+nL11Vc3bBv4\\\n", + "4f85kEsFAGi6SgbAG264IT/4wQ8yPDycJ554Iu3t7fmzP/uznHrqqXvdr1arpVarNWzT/gXgNWUW\\\n", + "WsCrVq3K8PBw3vSmN+Wmm27KvHnzkiTj4+P58Ic/nJ07d2bx4sVZvXr1jK+NPavs7wCecsopufzy\\\n", + "y9PX15crrrhi2vAHAAeDiSaNokZGRrJt27YMDQ1l0aJFGRgYmJz727/921xwwQX53ve+l2eeeSYP\\\n", + "P/zwfp8fzVHZAAgApdTSnFGv1zM+Pt4wXn4jZJIMDw+np6cnSdLb25tNmzZNzv30pz9NR0dHkpeu\\\n", + "tf/nf/7nA3HG7AMBEACYor+/P21tbQ2jv79/yvtGR0fT2tqaJGlra8uOHTsm59761rfm/vvvT5Js\\\n", + "2LAho6OjM7N4piUAAkCZtLQ0ZfT19WVsbKxh9PX1TTlce3t7xsfHkyRjY2OZP3/+5NxHP/rR/OhH\\\n", + "P8p5552Xww8/PG94wxtm7Gtg7wRAAGCKWq2W1tbWhvHyGyGTl35ZY8OGDUmSwcHBdHV1Tc4ddthh\\\n", + "uemmmybnzz///JlZPNMSAAGAfdbR0ZGFCxemu7s7W7duzfLly7Ny5cokyZYtW7JkyZK8853vTFdX\\\n", + "V9785jfP8mr5Ty0TExMeG7gfbt1842wvAYCDxIrFf3LAj3HSez7TlM/58Xeum/5NHLT8iB0AlIkn\\\n", + "gVCAFjAAQMUIgAAAFaMFDAAlMjELj4Lj4KMCCABQMSqAAFAmCoAUIAACQJkIgBQgAAJAqUiATM81\\\n", + "gAAAFaMCCAAlMqEASAECIACUiQBIAVrAAAAVowIIAKWiBMj0BEAAKBHXAFKEFjAAQMWoAAJAmagA\\\n", + "UoAACAClIgEyPS1gAICKUQEEgBJxEwhFCIAAUCYCIAUIgABQKhIg03MNIABAxagAAkCZKABSgAAI\\\n", + "ACXiJhCK0AIGAKgYFUAAKBMVQAoQAAGgVCRApicA7qeN/zox20sA4CCxYvFsrwBeIgACQIm4CYQi\\\n", + "BEAAKBMBkALcBQwAUDECIABAxWgBA0CZtOgBMz0BEABKxE0gFKEFDABQMQIgALBfVq1ale7u7qxY\\\n", + "sSK7du2a3P7ss89m2bJlOffcc7N06dJs3759FlfJrxMAAaBMWpo0ChoZGcm2bdsyNDSURYsWZWBg\\\n", + "YHLuO9/5Tt72trflgQceyKWXXpq///u/3//zoykEQABginq9nvHx8YZRr9envG94eDg9PT1Jkt7e\\\n", + "3mzatGly7oQTTsgzzzyTJBkdHc3RRx89M4tnWgIgAJRJS0tTRn9/f9ra2hpGf3//lMONjo6mtbU1\\\n", + "SdLW1pYdO3ZMzv3O7/xOHnvssZx88sn50pe+lA996EMz9jWwdwIgAJTIRJNGX19fxsbGGkZfX9+U\\\n", + "47W3t2d8fDxJMjY2lvnz50/O3XzzzTn77LOzdevW/MVf/EU++9nPHqCz5tUSAAGAKWq1WlpbWxtG\\\n", + "rVab8r7Ozs5s2LAhSTI4OJiurq7JuYmJicm279FHH52xsbGZWTzTEgABoExm+CaQjo6OLFy4MN3d\\\n", + "3dm6dWuWL1+elStXJkk+9KEP5Z577smSJUvy53/+57n66qubc47sNz8EDQBlMgs/BL169eqG1+vW\\\n", + "rUvy0jWB69evn/kFMS0VQACAihEAAQAqRgsYAMqkxcOAmZ4ACAAlMiH/UYAWMABAxQiAAAAVowUM\\\n", + "AGWiBUwBKoAAABWjAggAZaICSAECIACUigTI9LSAAQAqRgUQAMpEAZACBEAAKBMBkAK0gAEAKkYF\\\n", + "EABKZGK2F8BBQQAEgDLRAqYALWAAgIoRAAEAKkYLGADKpEUPmOmpAP6aW265Za/z9Xo94+PjDeOF\\\n", + "XbtnaHUAUEBLkwalVskA+Nhjj00ZW7duzbp16/a6X39/f9ra2hrGyB33ztCqAQCao5It4DPPPDPv\\\n", + "f//7MzHReLP8z3/+873u19fXl6uvvrph25986++avj4AgAOpkgHwd3/3d7N69eocddRRDdvf9773\\\n", + "7XW/Wq2WWq3WsG3uvEp+hQC8VmnfUkAl08u9996b3/iN35iy/Vvf+tYsrAYAYGZVMgC2trbO9hIA\\\n", + "4MBQAaSASt4EAgBQZQIgAEDFVLIFDAClpQVMAQIgAJRIiyeBUIAWMABAxQiAAAAVowUMAGWiA0wB\\\n", + "AiAAlIkASAFawAAAFSMAAgBUjAAIACXS0tKc8WqsWrUq3d3dWbFiRXbt2jW5/Y477siSJUuyZMmS\\\n", + "HHfccVm7dm2Tz5Z9JQACAPtsZGQk27Zty9DQUBYtWpSBgYHJuT/4gz/Ixo0bs3Hjxvz2b/92Lrzw\\\n", + "wtlbKA0EQABginq9nvHx8YZRr9envG94eDg9PT1Jkt7e3mzatGnKe37xi1+kXq/n+OOPP+DrphgB\\\n", + "EADKpKU5o7+/P21tbQ2jv79/yuFGR0fT2tqaJGlra8uOHTumvOeb3/xmli9f3uwzZT/4GRgAYIq+\\\n", + "vr5cffXVDdtqtdqU97W3t2d8fDxJMjY2lvnz5095z8DAQL785S8fmIWyT1QAAaBMmlQBrNVqaW1t\\\n", + "bRh7CoCdnZ3ZsGFDkmRwcDBdXV0N89u3b9f+fQ0SAAGgRJqU/wrr6OjIwoUL093dna1bt2b58uVZ\\\n", + "uXLl5Lz272uTFjAAlMmr/Q2XJli9enXD63Xr1k3++Yorrpjp5VCACiAAQMWoAAJAicxCAZCDkAog\\\n", + "AEDFCIAAABWjBQwAZaIFTAECIACUiPxHEVrAAAAVowIIAGWiBEgBAiAAlIifgaEILWAAgIoRAAEA\\\n", + "KkYLGABKRAuYIlQAAQAqRgAEAKgYLeD9dP/wrtleAgAHi/cf+ENoAVOEAAgAZSIAUoAWMABAxagA\\\n", + "AkCJtCgBUoAACABlIv9RgBYwAEDFqAACQIkoAFKEAAgAJeJnYChCCxgAoGJUAAGgTFQAKUAABIAS\\\n", + "kf8oQgAEgDKRACnANYAAABWjAggAJaIASBECIACUiJ+BoQgtYACAilEBBIAyUQGkAAEQAEpE/qMI\\\n", + "LWAAgIpRAQSAEnETCEWoAAIAVIwACADsl1WrVqW7uzsrVqzIrl27GuZuv/32vPOd78ySJUvy0EMP\\\n", + "zdIKeTkBEABKpKWlOaOokZGRbNu2LUNDQ1m0aFEGBgYm55588snceeedue+++7Jx48acddZZB+CM\\\n", + "2RcCIACUSUtzRr1ez/j4eMOo1+tTDjc8PJyenp4kSW9vbzZt2jQ5t379+tRqtbzrXe/KihUr8h//\\\n", + "8R8H6qx5lQRAACiRlib919/fn7a2tobR398/5Xijo6NpbW1NkrS1tWXHjh2Tc9u3b88vf/nL3Hvv\\\n", + "vTnrrLPyN3/zNzP2PbB3AiAAMEVfX1/GxsYaRl9f35T3tbe3Z3x8PEkyNjaW+fPnN8z9/u//flpa\\\n", + "WrJ06dJs3bp1xtbP3gmAAFAizboGsFarpbW1tWHUarUpx+vs7MyGDRuSJIODg+nq6pqc6+rqypYt\\\n", + "W5IkW7ZsyVve8pYZ+Q6YngAIAOyzjo6OLFy4MN3d3dm6dWuWL1+elStXJklOOeWUvPGNb8ySJUty\\\n", + "00035corr5zl1fKf/BA0ALBfVq9e3fB63bp1k3++/vrrZ3o5FCAAAkCJeBIIRQiAAFAi8h9FuAYQ\\\n", + "AKBiVAABoEyUAClAAASAEnENIEVoAQMAVIwKIACUiAIgRRz0AXBiYiL3339/nnzyyUxMTCRJLrnk\\\n", + "kr3u88ILL+TOO+/MnDlzsmzZssydOzdJ8vWvfz1/+Id/+Ir71ev1KQ/Cnti9Oy2HHPRfIwBlIQFS\\\n", + "wEHfAv7ABz6Qu+++O5/73OeyefPmrF+/ftp9LrnkkmzevDlbtmzJOeeck5/85CdJki9+8Yt73W9P\\\n", + "D8b+1SP3N+U8AKAZWpo0KLeDPgBu3749a9asyTHHHJMbb7wxzz777LT7bNu2Lddff32uvfba3Hbb\\\n", + "bfnIRz6S733ve9Put6cHY7e/453NOA0AgBlz0Pcu586dmxdffDFHHnlkbrrppvz0pz+ddp/nn38+\\\n", + "9Xo9tVotxx9/fO65555cdNFFefTRR/e6X61Wm/IgbO1fAF5L3AVMEQd9BfD222/Piy++mC9+8Yv5\\\n", + "1a9+lVtvvXXafdauXZtf/epXk6+POOKI3HXXXfnCF75wAFcKADNAD5gCDvry1YIFC5Ikb3jDG3L1\\\n", + "1VcX2ucd73jHlG1z587Nhz/84aauDQDgteigD4AAwP+neEcRAiAAlIhrACnioL8GEACAV0cFEABK\\\n", + "RQmQ6QmAAFAiWsAUoQUMAFAxKoAAUCYqgBQgAAJAich/FCEAAkCJuAaQIlwDCABQMQIgAEDFaAED\\\n", + "QIloAVOECiAAQMWoAAJAiSgAUoQACABlIgFSgBYwAEDFqAACQIm4CYQiBEAAKBH5jyIEQAAoEwmQ\\\n", + "AlwDCABQMSqAAFAiCoAUoQIIACXS0tKc8WqsWrUq3d3dWbFiRXbt2jW5fePGjXnjG9+YJUuWZOnS\\\n", + "pU0+U/aHAAgA7LORkZFs27YtQ0NDWbRoUQYGBhrmP/CBD2Tjxo257777ZmmF7IkACABlMsMlwOHh\\\n", + "4fT09CRJent7s2nTpob5b3zjG+nu7s7atWubeprsH9cAAkCJNOsawHq9nnq93rCtVqulVqs1bBsd\\\n", + "Hc0xxxyTJGlra8uOHTsm5xYvXpwf//jHSZILLrggZ599dk4//fQmrZD9oQIIAEzR39+ftra2htHf\\\n", + "3z/lfe3t7RkfH0+SjI2NZf78+ZNzhx9+eA499NAceuihWbZsWUZGRmZs/eydAAgAZdLSnNHX15ex\\\n", + "sbGG0dfXN+VwnZ2d2bBhQ5JkcHAwXV1dk3P/GQyT5MEHH8wJJ5zQ9NNl3wiAAFAiTcp/qdVqaW1t\\\n", + "bRgvb/8mSUdHRxYuXJju7u5s3bo1y5cvz8qVK5MkX/va13LGGWeks7Mzxx57bM4555wDe/IU1jIx\\\n", + "MTEx24s4mL356r+e7SUAcJD42eevOeDHWPo/1zTlc+678qqmfA6vTW4CAYASebW/4Uc1CYAAUCYC\\\n", + "IAUIgABQIvIfRbgJBACgYlQAAaBEXANIESqAAAAVIwACAFSMFjAAlIgWMEUIgABQIgIgRWgBAwBU\\\n", + "jAAIAFAxWsAAUCJawBShAggAUDEqgABQIgqAFCEAAkCZSIAUIAACQIm4BpAiXAMIAFAxKoAAUCIK\\\n", + "gBQhAAJAmegBU4AWMABAxagAAkCJqP9RhAAIACWiA0wRWsAAABWjAggAJaICSBEqgAAAFSMAAgBU\\\n", + "jBYwAJSIFjBFCIAAUCLyH0UIgABQJhIgBbgGEACgYlQAAaBEFAApQgAEgBJxEwhFaAEDAFSMCiAA\\\n", + "lIgKIEWoAAIAVIwACADsl1WrVqW7uzsrVqzIrl27pszfcMMNWbx48SysjFciAAJAibS0NGcUNTIy\\\n", + "km3btmVoaCiLFi3KwMBAw/zOnTvz6KOPNvks2V8CIACUSEuTRlHDw8Pp6elJkvT29mbTpk0N82vX\\\n", + "rs0nPvGJfT8hDggBEACYol6vZ3x8vGHU6/Up7xsdHU1ra2uSpK2tLTt27JicGxsby6OPPpqzzjpr\\\n", + "xtZNMZUMgNu3b8/111+fO++8M0888USuuOKKXHPNNdm+ffte99vTP4aJ3btnaNUAML1mtYD7+/vT\\\n", + "1tbWMPr7+6ccr729PePj40leCnzz58+fnFuzZk2uvPLKGTt3iqtkALz44otz7LHH5oknnkhPT0+W\\\n", + "Ll2anp6eXHbZZXvdb0//GH71yP0ztGoAmF6zAmBfX1/GxsYaRl9f35TjdXZ2ZsOGDUmSwcHBdHV1\\\n", + "Tc795Cc/yec+97n09vbm8ccfz1/+5V/O2PfA3rVMTExMzPYiZtqSJUuycePGJMmZZ56Z73//+0mS\\\n", + "pUuX5r777nvF/er1+pTy9yn/43+n5RA/pwjA9H72+WsO+DEu+oe1Tfmc2y/+08Lv/dSnPpXvf//7\\\n", + "Oe644/LlL385V155ZdatW9fwnsWLF2fz5s1NWRv7r5LJ5ddvUf/1v6C7p2nn1mq11Gq1hm3CHwBV\\\n", + "t3r16obXLw9/SYS/15hKppc77rgjExMTaWlpyamnnprkpVD413/917O8MgDYP54EQhGVDIALFiyY\\\n", + "sm3evHl5xzveMQurAYDmkf8oopI3gQAAVFklK4AAUFZawBQhAAJAich/FKEFDABQMSqAAFAmSoAU\\\n", + "IAACQIm4BpAitIABACpGBRAASkQBkCIEQAAoES1gihAAAaBE5D+KcA0gAEDFqAACQIloAVOEAAgA\\\n", + "JSL/UYQWMABAxagAAkCJaAFThAAIAGUiAFKAFjAAQMWoAAJAiSgAUoQACAAl4hpAitACBgCoGBVA\\\n", + "ACgRBUCKEAABoES0gClCAASAEpH/KMI1gAAAFaMCCAAlogVMEQIgAJSIAEgRWsAAABWjAggAJaIA\\\n", + "SBECIACUiBYwRWgBAwBUjAogAJSIAiBFCIAAUCJawBQhAO6nt7zZVwgAHFxcAwgAJdLSpPFqrFq1\\\n", + "Kt3d3VmxYkV27do1uX1kZCSdnZ0599xzs2zZsjzzzDP7dW40jwAIACXS0tKcUdTIyEi2bduWoaGh\\\n", + "LFq0KAMDA5Nzb33rWzM8PJwHHnggp59+eu64444DcMbsCwEQAEpkpiuAw8PD6enpSZL09vZm06ZN\\\n", + "k3Pz5s2b/POzzz6bk046aR/PimYTAAGAKer1esbHxxtGvV6f8r7R0dG0trYmSdra2rJjx46G+fXr\\\n", + "1+ftb397Nm7cmBNOOGFG1s70BEAAKJFmtYD7+/vT1tbWMPr7+6ccr729PePj40mSsbGxzJ8/v2G+\\\n", + "t7c3//Iv/5Lly5dn3bp1M/IdMD0BEABKpFkt4L6+voyNjTWMvr6+Kcfr7OzMhg0bkiSDg4Pp6uqa\\\n", + "nPv1imFbW1te//rXN/t02Ud+wwQAmKJWq6VWq037vo6OjixcuDDd3d057rjjcs0112TlypVZt25d\\\n", + "1q9fn89//vNpaWnJUUcdlVtuuWUGVk4RAiAAlMhs/BD06tWrG17/Z6v3ggsuyAUXXDDzC2JaAiAA\\\n", + "lIgngVCEawABACpGBRAASkQBkCIEQAAokRY9YArQAgYAqBgVQAAoEfU/ihAAAaBEdIApQgAEgBKR\\\n", + "/yjCNYAAABWjAggAJTJHCZACBEAAKBH5jyK0gAEAKkYFEABKxF3AFCEAAkCJyH8UoQUMAFAxKoAA\\\n", + "UCJawBQhAAJAich/FKEFDABQMSqAAFAiWsAUIQACQInIfxQhAAJAiXgUHEW4BhAAoGJUAAGgRBQA\\\n", + "KUIABIAScRMIRWgBAwBUjAogAJSIAiBFCIAAUCJawBShBfz/XHXVVdO+p16vZ3x8vGG8uGv3gV8c\\\n", + "AEATVbICuGDBghx33HGZM2dOJiYmkiSPP/54hoeH8/DDD7/ifv39/bnuuusatr2p9915y3t7D+h6\\\n", + "AaAoBUCKqGQFcO3atTn++OPzyU9+Mo888kgeeeSRnHXWWXsNf0nS19eXsbGxhvGmd503Q6sGgOm1\\\n", + "tDRnUG6VDIAf/OAH8/Wvfz27d+/OhRdemNtuu22yErg3tVotra2tDWPOvEoWUQGAg1glA2CSzJkz\\\n", + "JxdffHG++c1vZvfu3eno6JjtJQHAflMBpIjKl6/mzJmTSy65ZLaXAQBNUdnKDq9K5QMgAJSJ6h1F\\\n", + "+B8FAICKEQABoERamjRejVWrVqW7uzsrVqzIrl27Jrfffffd+b3f+72cffbZ+dM//dP9Oi+aSwAE\\\n", + "gBKZ6ZtARkZGsm3btgwNDWXRokUZGBiYnDv11FOzadOmPPjgg3nqqaeyefPmA3DG7AsBEADYZ8PD\\\n", + "w+np6UmS9Pb2ZtOmTZNzxx13XA455KXbDQ499NDMmSN2vFa4CQQASqRZ94DU6/XU6/WGbbVaLbVa\\\n", + "rWHb6OhojjnmmCRJW1tbduzYMeWzHnnkkTz11FM57bTTmrQ69pcoDgAl0qwWcH9/f9ra2hpGf3//\\\n", + "lOO1t7dnfHw8STI2Npb58+c3zP/7v/97rrrqqtx8880zcv4UIwACAFPs6fGnfX19U97X2dmZDRs2\\\n", + "JEkGBwfT1dU1Obdz585cdNFFWbduXRYsWDBja2d6AiAAlEiz7gLe0+NPX97+TZKOjo4sXLgw3d3d\\\n", + "2bp1a5YvX56VK1cmSdasWZOf/exn+cQnPpElS5bkgQceOLAnT2EtE0UegssrWvo/18z2EgA4SNx3\\\n", + "5VUH/Bj/a/jGpnzOf+/8k6Z8Dq9NKoAAABXjLmAAKBFPgqMIARAASsSzgClCAASAEnFtF0X4ewIA\\\n", + "UDEqgABQIlrAFCEAAkCJyH8UoQUMAFAxKoAAUCJawBQhAAJAich/FKEFDABQMSqAAFAiWsAUIQAC\\\n", + "QIkIgBShBQwAUDEqgABQIgqAFCEAAkCJaAFThAAIACXi2i6K8PcEAKBiVAABoES0gClCAASAEmnJ\\\n", + "xGwvgYOAFjAAQMWoAAJAiWgBU0TLxMSEWjHQNPV6Pf39/enr60utVpvt5QCwBwIg0FTj4+Npa2vL\\\n", + "2NhYWltbZ3s5AOyBawABACpGAAQAqBgBEACgYgRAoKlqtVo+85nPuAEE4DXMTSAAABWjAggAUDEC\\\n", + "IABAxQiAAAAVIwACAFSMAAgAUDGHzPYCgPLYvn17LrroouzevTsLFy7MV7/61cydO3e2lwXAy6gA\\\n", + "Ak1z5JFH5t57783Q0FCOPfbY3H///bO9JAD2QAUQaJqnn346V1xxRUZHR/Pkk0/mtNNOm+0lAbAH\\\n", + "KoBA09x22205//zz88ADD6S3tzd+Zx7gtUkFEGiapUuXZsWKFbn77rtz2GGHzfZyAHgFHgUHAFAx\\\n", + "WsAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFeBII0DTbt2/PRRddlN27\\\n", + "d2fhwoX56le/mrlz5872sgB4GRVAoGmOPPLI3HvvvRkaGsqxxx6b+++/f7aXBMAeqAACTfP000/n\\\n", + "iiuuyOjoaJ588smcdtpps70kAPZABRBomttuuy3nn39+HnjggfT29sajxgFem1QAgaZZunRpVqxY\\\n", + "kbvvvjuHHXbYbC8HgFfQMuF/0QEAKkULGACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQAB\\\n", + "ACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRA\\\n", + "AICKEQABACpGAAQAqBgBEACgYv4vIODLk4/vWhUAAAAASUVORK5CYII=\\\n", + "\"\n", + " frames[10] = \"\\\n", + "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", + "AAAPYQGoP6dpAAAiwUlEQVR4nO3df5BedX0v8PcmwCMKu2HBLBQNVhFS2wtrRAq7LKZGl62C4I1W\\\n", + "BMNQKg1M5UrR3sxObxVay9qbjibe3itpRxSYplpXKYJKSsDQJYsXMjYRg+MgA4WGMUzJuptSeEhg\\\n", + "7x/UvT5syJ4kT3bJOa8X853Jnu9znvM9O8nMm8/n/GgZHx8fDwAAlTFrphcAAMD0EgABACpGAAQA\\\n", + "qBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQAB\\\n", + "ACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRA\\\n", + "AICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgB\\\n", + "EACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAIEly9dVX59lnn534+VOf+lT+9m//dgZXNNmjjz6a\\\n", + "hQsXpq2tLZ2dnZPmv/SlL+XNb35z3vSmN+XSSy/Njh07pn+RAAeAlvHx8fGZXgQw81paWjIyMpI5\\\n", + "c+bM9FJe1rZt2/Lggw9mdHQ0f/zHf5yNGzdOzD3yyCPp7u7OD37wg3R0dOTcc8/NWWedlT/4gz+Y\\\n", + "uQUDvEKpAELJXHjhhTnllFNy0kkn5b3vfW9+9rOfTbnPZZddliTp6elJZ2dnnnzyyVx88cVZsWJF\\\n", + "kherg7/zO7+Tc845JyeccELOPvvs/OhHP8pZZ52VE044IR/+8IfzwgsvJEm2b9+eSy+9NKeeempO\\\n", + "Oumk/P7v/36ee+65ppxbe3t7zjjjjLzmNa+ZNDc4OJj3ve99Ofroo9PS0pLLLrssf/d3f9eU4wKU\\\n", + "jQAIJbNixYps2LAhP/zhD9PT05Orr756Yu4973lPNmzYMGmf6667LkkyNDSUjRs3Zu7cuZM+s2HD\\\n", + "htx44435yU9+ku3bt+ejH/1oBgcH8+CDD+bHP/5xvvvd7yZJPvGJT6Snpyf33XdfNm3alBdeeCEr\\\n", + "V66c9H3bt29PZ2fnLsdZZ521x+f92GOP5bjjjpv4+Q1veEMee+yxPf4egCo4aKYXADTX6tWrc9NN\\\n", + "N+XZZ5/Ns88+m6OOOmpi7jvf+c5ef29vb2+OOOKIJMmCBQtSq9Vy+OGHJ0ne+ta35qGHHkqS/MM/\\\n", + "/EPuvffefO5zn0uSPPPMM5k9e/ak7zv88MMbWrgATB8BEErknnvuyRe+8IXce++9mTt3br71rW/l\\\n", + "U5/6VFO++1WvetXEn2fPnj3p5507dyZJxsfH841vfCMnnHDCbr9v+/bt6enp2eVcR0dH1qxZs0fr\\\n", + "mzdvXh5++OGJnx999NHMmzdvj74DoCoEQCiRkZGRHH744TnyyCPz3HPPZdWqVYX3PfzwwzM6OrrP\\\n", + "N4Gcd955+Yu/+IusWrUqBx10UEZGRvLUU0/l+OOPn3S8ZlYAFy9enDPOOCNXX311Ojo6ct111+X8\\\n", + "889v2vcDlIlrAKFE+vr6cuKJJ+bEE0+cuKHjl73cNYDJi9fuvfvd7564CWRvff7zn8+hhx6azs7O\\\n", + "nHTSSVm0aFEeffTRvf6+X/Yf//Efed3rXpcPfvCDefDBB/O6170u/f39SZI3vvGNueaaa9Ld3Z3j\\\n", + "jz8+r33ta7N06dKmHBegbDwGBgCgYlQAAQAqRgAEAKgYARAAoGIEQACAihEAAYB9Mjo6mlNPPTWH\\\n", + "HXZYfvSjHzXMPf/887nkkkvS09OTK6+8cmYWyCQCIACwT1796lfn29/+dj7wgQ9MmrvtttvyK7/y\\\n", + "KxkaGsrTTz+de++9dwZWyEsJgADAPjn44IPz2te+dpdzw8PD6e3tTfLis0rXr18/nUvjZXgTCAAw\\\n", + "Sb1eT71eb9hWq9VSq9X26HtGRkbS2tqaJGlra8u2bduatkb2ngC4j1b/YOVMLwGAA8QFCz6+34/x\\\n", + "XxZ8oinfs/h9h+eaa65p2PbpT386V1999R59z5w5czI2NpbkxWsF29vbm7I+9o0WMAAwSX9/f0ZH\\\n", + "RxvGL169uCe6urqydu3aJMmaNWvS3d3d7KWyFwRAACiTluaMWq2W1tbWhrG79u973vOe/OM//mMu\\\n", + "vfTSfOUrX5l4F/fZZ5+dxx57LD09PXnVq16V008/fT+dOHtCCxgA2Gff+c53Gn6++OKLkyQHHXRQ\\\n", + "vvKVr0z/gtgtARAAyqSlZaZXwAFAAASAMpH/KMA1gAAAFaMCCABlogJIAQIgAJSKBMjUtIABACpG\\\n", + "BRAASmRcAZACBEAAKBMBkAK0gAEAKkYFEADKxIOgKUAFEACgYlQAAaBMFAApQAUQAKBiVAABoExc\\\n", + "A0gBAiAAlIn8RwFawAAAFaMCCAAlMj7TC+CAIAACQJm4BpACtIABACpGBRAAykQBkAIEQAAoFQmQ\\\n", + "qWkBAwBUjAogAJSJAiAFCIAAUCYCIAUIgABQIuMeA0MBrgEEAKgYARAAoGK0gAGgTLSAKUAFEACg\\\n", + "YlQAAaBMFAApQAAEgBIZn+kFcECoZAB8/vnnMzg4mPXr12fbtm1pb29Pd3d3Fi9enIMOquSvBACo\\\n", + "kEqmnUsuuSQnnnhiLr744rS1tWV0dDRr1qzJ7/7u7+amm2562f3q9Xrq9XrDth3P7czBh1Ty1wjA\\\n", + "K5GbQCigksnlkUceyQ033NCwbcGCBTnzzDN3u9/AwECuueaahm3/9ffPyuKlv930NQLAXpH/KKCS\\\n", + "AbCrqysXXXRRent709ramrGxsaxduzannXbabvfr7+/PVVdd1bDt5gf/Zn8uFQCg6SoZAD/72c/m\\\n", + "hz/8YYaHh/P4449nzpw5+cM//MOcfPLJu92vVqulVqs1bNP+BeAVZQZawMuWLcvw8HDe8IY35Prr\\\n", + "r8/BBx+cJBkbG8tHPvKRbN++PaecckqWL18+7Wtj1yr7HMCTTjopl112Wfr7+3P55ZdPGf4A4EAw\\\n", + "3qRR1KZNm7Jly5YMDQ1l/vz5GRwcnJj767/+65x77rn53ve+l6effjr33XffPp8fzVHZAAgApdTS\\\n", + "nFGv1zM2NtYwXnojZJIMDw+nt7c3SdLX15f169dPzD388MPp7OxM8uK19v/0T/+0P86YvSAAAgCT\\\n", + "DAwMpK2trWEMDAxM+tzIyEhaW1uTJG1tbdm2bdvE3Fve8pbcddddSZK1a9dmZGRkehbPlARAACiT\\\n", + "lpamjP7+/oyOjjaM/v7+SYebM2dOxsbGkiSjo6Npb2+fmPvoRz+aH//4x3nXu96Vww47LEcfffS0\\\n", + "/RrYPQEQAJikVqultbW1Ybz0RsjkxSdrrF27NkmyZs2adHd3T8wdeuihuf766yfmzz777OlZPFMS\\\n", + "AAGAvdbZ2ZmOjo709PRk8+bNWbx4cZYuXZok2bhxYxYuXJh3vvOd6e7uzq/+6q/O8Gr5hZbx8XGv\\\n", + "DdwHq3+wcqaXAMAB4oIFH9/vxzjxtz/dlO/5yXevmfpDHLA8xA4AysSbQChACxgAoGIEQACAitEC\\\n", + "BoASGZ+BV8Fx4FEBBACoGBVAACgTBUAKEAABoEwEQAoQAAGgVCRApuYaQACAilEBBIASGVcApAAB\\\n", + "EADKRACkAC1gAICKUQEEgFJRAmRqAiAAlIhrAClCCxgAoGJUAAGgTFQAKUAABIBSkQCZmhYwAEDF\\\n", + "qAACQIm4CYQiBEAAKBMBkAIEQAAoFQmQqbkGEACgYlQAAaBMFAApQAAEgBJxEwhFaAEDAFSMCiAA\\\n", + "lIkKIAUIgABQKhIgUxMA99Hd/zLTKwDgQHHBgpleAbxIAASAEnETCEUIgABQJgIgBbgLGACgYgRA\\\n", + "AICK0QIGgDJp0QNmagIgAJSIm0AoQgsYAKBiBEAAYJ8sW7YsPT09WbJkSXbs2DGx/Zlnnsk555yT\\\n", + "d7zjHVm0aFG2bt06g6vklwmAAFAmLU0aBW3atClbtmzJ0NBQ5s+fn8HBwYm57373u/mN3/iN3H33\\\n", + "3bn44ovzpS99ad/Pj6YQAAGASer1esbGxhpGvV6f9Lnh4eH09vYmSfr6+rJ+/fqJueOPPz5PP/10\\\n", + "kmRkZCRHHXXU9CyeKQmAAFAmLS1NGQMDA2lra2sYAwMDkw43MjKS1tbWJElbW1u2bds2MffmN785\\\n", + "Dz74YH7913891113XS644IJp+zWwewIgAJTIeJNGf39/RkdHG0Z/f/+k482ZMydjY2NJktHR0bS3\\\n", + "t0/M3XDDDTnjjDOyefPm/Omf/mn+7M/+bD+dNXtKAAQAJqnVamltbW0YtVpt0ue6urqydu3aJMma\\\n", + "NWvS3d09MTc+Pj7R9j3qqKMyOjo6PYtnSgIgAJTJNN8E0tnZmY6OjvT09GTz5s1ZvHhxli5dmiS5\\\n", + "4IILctttt2XhwoX5kz/5k1x11VXNOUf2mQdBA0CZzMCDoJcvX97w86pVq5K8eE3g7bffPv0LYkoq\\\n", + "gAAAFSMAAgBUjBYwAJRJi5cBMzUBEABKZFz+owAtYACAihEAAQAqRgsYAMpEC5gCVAABACpGBRAA\\\n", + "ykQFkAIEQAAoFQmQqWkBAwBUjAogAJSJAiAFCIAAUCYCIAVoAQMAVIwKIACUyPhML4ADggAIAGWi\\\n", + "BUwBWsAAABUjAAIAVIwWMACUSYseMFNTAfwlN954427n6/V6xsbGGsbzO3ZO0+oAoICWJg1KrZIB\\\n", + "8MEHH5w0Nm/enFWrVu12v4GBgbS1tTWMf/7GHdO0agCA5qhkC/i0007LBz7wgYyPN94s/y//8i+7\\\n", + "3a+/vz9XXXVVw7arbv+bpq8PAGB/qmQA/LVf+7UsX748Rx55ZMP29773vbvdr1arpVarNWybfXAl\\\n", + "f4UAvFJp31JAJdPLHXfckde85jWTtn/729+egdUAAEyvSgbA1tbWmV4CAOwfKoAUUMmbQAAAqkwA\\\n", + "BAComEq2gAGgtLSAKUAABIASafEmEArQAgYAqBgBEACgYrSAAaBMdIApQAAEgDIRAClACxgAoGIE\\\n", + "QACAihEAAaBEWlqaM/bEsmXL0tPTkyVLlmTHjh0T22+++eYsXLgwCxcuzLx587Jy5comny17SwAE\\\n", + "APbapk2bsmXLlgwNDWX+/PkZHBycmHv/+9+fdevWZd26dXnTm96U8847b+YWSgMBEACYpF6vZ2xs\\\n", + "rGHU6/VJnxseHk5vb2+SpK+vL+vXr5/0mZ/97Gep1+s57rjj9vu6KUYABIAyaWnOGBgYSFtbW8MY\\\n", + "GBiYdLiRkZG0trYmSdra2rJt27ZJn/nmN7+ZxYsXN/tM2QceAwMATNLf35+rrrqqYVutVpv0uTlz\\\n", + "5mRsbCxJMjo6mvb29kmfGRwczJe//OX9s1D2igogAJRJkyqAtVotra2tDWNXAbCrqytr165NkqxZ\\\n", + "sybd3d0N81u3btX+fQUSAAGgRJqU/wrr7OxMR0dHenp6snnz5ixevDhLly6dmNf+fWXSAgaAMtnT\\\n", + "Z7g0wfLlyxt+XrVq1cSfL7/88uleDgWoAAIAVIwKIACUyAwUADkAqQACAFSMAAgAUDFawABQJlrA\\\n", + "FCAAAkCJyH8UoQUMAFAxKoAAUCZKgBQgAAJAiXgMDEVoAQMAVIwACABQMVrAAFAiWsAUoQIIAFAx\\\n", + "AiAAQMVoAe+jO+/dMdNLAOBA8f79fwgtYIoQAAGgTARACtACBgCoGBVAACiRFiVAChAAAaBM5D8K\\\n", + "0AIGAKgYFUAAKBEFQIoQAAGgRDwGhiK0gAEAKkYFEADKRAWQAgRAACgR+Y8iBEAAKBMJkAJcAwgA\\\n", + "UDEqgABQIgqAFCEAAkCJeAwMRWgBAwBUjAogAJSJCiAFCIAAUCLyH0VoAQMAVIwKIACUiJtAKEIF\\\n", + "EACgYgRAAGCfLFu2LD09PVmyZEl27NjRMPfVr34173znO7Nw4cLce++9M7RCXkoABIASaWlpzihq\\\n", + "06ZN2bJlS4aGhjJ//vwMDg5OzD3xxBO55ZZbcuedd2bdunU5/fTT98MZszcEQAAok5bmjHq9nrGx\\\n", + "sYZRr9cnHW54eDi9vb1Jkr6+vqxfv35i7vbbb0+tVsu73/3uLFmyJP/+7/++v86aPSQAAkCJtDTp\\\n", + "v4GBgbS1tTWMgYGBSccbGRlJa2trkqStrS3btm2bmNu6dWv+7d/+LXfccUdOP/30/NVf/dW0/R7Y\\\n", + "PQEQAJikv78/o6OjDaO/v3/S5+bMmZOxsbEkyejoaNrb2xvmfuu3fistLS1ZtGhRNm/ePG3rZ/cE\\\n", + "QAAokWZdA1ir1dLa2towarXapON1dXVl7dq1SZI1a9aku7t7Yq67uzsbN25MkmzcuDFvfOMbp+V3\\\n", + "wNQEQABgr3V2dqajoyM9PT3ZvHlzFi9enKVLlyZJTjrppLz+9a/PwoULc/311+eKK66Y4dXyCx4E\\\n", + "DQDsk+XLlzf8vGrVqok/X3vttdO9HAoQAAGgRLwJhCIEQAAoEfmPIlwDCABQMSqAAFAmSoAUIAAC\\\n", + "QIm4BpAitIABACpGBRAASkQBkCIO+AA4Pj6eu+66K0888UTGx8eTJBdddNFu93n++edzyy23ZNas\\\n", + "WTnnnHMye/bsJMnXv/71fPCDH3zZ/er1+qQXYY/v3JmWgw74XyMAZSEBUsAB3wL+0Ic+lFtvvTWf\\\n", + "+cxnsmHDhtx+++1T7nPRRRdlw4YN2bhxY84888z89Kc/TZJ88Ytf3O1+u3ox9sj/vasp5wEAzdDS\\\n", + "pEG5HfABcOvWrVmxYkWOOeaYfOELX8gzzzwz5T5btmzJtddem6uvvjqrV6/O7/3e7+V73/velPvt\\\n", + "6sXYR/zmO5txGgAA0+aA713Onj07L7zwQo444ohcf/31efjhh6fc57nnnku9Xk+tVstxxx2X2267\\\n", + "Leeff34eeOCB3e5Xq9UmvQhb+xeAVxJ3AVPEAV8B/OpXv5oXXnghX/ziF/Pzn/88N91005T7rFy5\\\n", + "Mj//+c8nfj788MPzrW99K5///Of340oBYBroAVPAAV++mjt3bpLk6KOPzlVXXVVon7e//e2Tts2e\\\n", + "PTsf+chHmro2AIBXogM+AAIA/5/iHUUIgABQIq4BpIgD/hpAAAD2jAogAJSKEiBTEwABoES0gClC\\\n", + "CxgAoGJUAAGgTFQAKUAABIASkf8oQgAEgBJxDSBFuAYQAKBiBEAAgIrRAgaAEtECpggVQACAilEB\\\n", + "BIASUQCkCAEQAMpEAqQALWAAgIpRAQSAEnETCEUIgABQIvIfRQiAAFAmEiAFuAYQAKBiVAABoEQU\\\n", + "AClCBRAASqSlpTljTyxbtiw9PT1ZsmRJduzYMbF93bp1ef3rX5+FCxdm0aJFTT5T9oUACADstU2b\\\n", + "NmXLli0ZGhrK/PnzMzg42DD/oQ99KOvWrcudd945QytkVwRAACiTaS4BDg8Pp7e3N0nS19eX9evX\\\n", + "N8x/4xvfSE9PT1auXNnU02TfuAYQAEqkWdcA1uv11Ov1hm21Wi21Wq1h28jISI455pgkSVtbW7Zt\\\n", + "2zYxd8opp+QnP/lJkuTcc8/NGWeckbe97W1NWiH7QgUQAJhkYGAgbW1tDWNgYGDS5+bMmZOxsbEk\\\n", + "yejoaNrb2yfmDjvssBxyyCE55JBDcs4552TTpk3Ttn52TwAEgDJpac7o7+/P6Ohow+jv7590uK6u\\\n", + "rqxduzZJsmbNmnR3d0/M/SIYJsk999yT448/vumny94RAAGgRJqU/1Kr1dLa2towXtr+TZLOzs50\\\n", + "dHSkp6cnmzdvzuLFi7N06dIkyd///d/n1FNPTVdXV4499ticeeaZ+/fkKaxlfHx8fKYXcSA7/r//\\\n", + "5UwvAYADxE//5yf3+zEW/a8VTfmeO6+4sinfwyuTm0AAoET29Bl+VJMACABlIgBSgAAIACUi/1GE\\\n", + "ALiPnt850ysAANgzAiAAlIhrACnCY2AAACpGAAQAqBgtYAAoES1gihAAAaBEBECK0AIGAKgYARAA\\\n", + "oGK0gAGgRLSAKUIFEACgYlQAAaBEFAApQgAEgDKRAClAAASAEnENIEW4BhAAoGJUAAGgRBQAKUIA\\\n", + "BIAy0QOmAC1gAICKUQEEgBJR/6MIARAASkQHmCK0gAEAKkYFEABKRAWQIlQAAQAqRgAEAKgYLWAA\\\n", + "KBEtYIoQAAGgROQ/ihAAAaBMJEAKcA0gAEDFqAACQIkoAFKEAAgAJeImEIrQAgYAqBgVQAAoERVA\\\n", + "ilABBACoGAEQANgny5YtS09PT5YsWZIdO3ZMmv/sZz+bU045ZQZWxssRAAGgRFpamjOK2rRpU7Zs\\\n", + "2ZKhoaHMnz8/g4ODDfPbt2/PAw880OSzZF8JgABQIi1NGkUNDw+nt7c3SdLX15f169c3zK9cuTIf\\\n", + "+9jH9v6E2C8EQABgknq9nrGxsYZRr9cnfW5kZCStra1Jkra2tmzbtm1ibnR0NA888EBOP/30aVs3\\\n", + "xVQyAG7dujXXXnttbrnlljz++OO5/PLL88lPfjJbt27d7X67+scwvnPnNK0aAKbWrBbwwMBA2tra\\\n", + "GsbAwMCk482ZMydjY2NJXgx87e3tE3MrVqzIFVdcMW3nTnGVDIAXXnhhjj322Dz++OPp7e3NokWL\\\n", + "0tvbm0suuWS3++3qH8PP779rmlYNAFNrVgDs7+/P6Ohow+jv7590vK6urqxduzZJsmbNmnR3d0/M\\\n", + "/fSnP81nPvOZ9PX15aGHHsqf//mfT9vvgd1rGR8fH5/pRUy3hQsXZt26dUmS0047Ld///veTJIsW\\\n", + "Lcqdd975svvV6/VJ5e+T/sf/SctBHqcIwNQe+dwn9/sxzv/blU35nq9e+PHCn/2jP/qjfP/738+8\\\n", + "efPy5S9/OVdccUVWrVrV8JlTTjklGzZsaMra2HeVTC6/fIv6L/8F3TlFO7dWq6VWqzVsE/4AqLrl\\\n", + "y5c3/PzS8JdE+HuFqWR6ufnmmzM+Pp6WlpacfPLJSV4MhX/5l385wysDgH3jTSAUUckAOHfu3Enb\\\n", + "Dj744Lz97W+fgdUAQPPIfxRRyZtAAACqrJIVQAAoKy1gihAAAaBE5D+K0AIGAKgYFUAAKBMlQAoQ\\\n", + "AAGgRFwDSBFawAAAFaMCCAAlogBIEQIgAJSIFjBFCIAAUCLyH0W4BhAAoGJUAAGgRLSAKUIABIAS\\\n", + "kf8oQgsYAKBiVAABoES0gClCAASAMhEAKUALGACgYlQAAaBEFAApQgAEgBJxDSBFaAEDAFSMCiAA\\\n", + "lIgCIEUIgABQIlrAFCEAAkCJyH8U4RpAAICKUQEEgBLRAqYIARAASkQApAgtYACAilEBBIASUQCk\\\n", + "CAEQAEpEC5gitIABACpGBRAASkQBkCIEQAAoES1gihAA99Fx82bP9BIAAPaIawABoERamjT2xLJl\\\n", + "y9LT05MlS5Zkx44dE9s3bdqUrq6uvOMd78g555yTp59+ep/OjeYRAAGgRFpamjOK2rRpU7Zs2ZKh\\\n", + "oaHMnz8/g4ODE3NvectbMjw8nLvvvjtve9vbcvPNN++HM2ZvCIAAUCLTXQEcHh5Ob29vkqSvry/r\\\n", + "16+fmDv44IMn/vzMM8/kxBNP3MuzotkEQABgknq9nrGxsYZRr9cnfW5kZCStra1Jkra2tmzbtq1h\\\n", + "/vbbb89b3/rWrFu3Lscff/y0rJ2pCYAAUCLNagEPDAykra2tYQwMDEw63pw5czI2NpYkGR0dTXt7\\\n", + "e8N8X19f/vmf/zmLFy/OqlWrpuV3wNQEQAAokWa1gPv7+zM6Otow+vv7Jx2vq6sra9euTZKsWbMm\\\n", + "3d3dE3O/XDFsa2vLq1/96mafLnvJY2AAgElqtVpqtdqUn+vs7ExHR0d6enoyb968fPKTn8zSpUuz\\\n", + "atWq3H777fnc5z6XlpaWHHnkkbnxxhunYeUUIQACQInMxIOgly9f3vDzL1q95557bs4999zpXxBT\\\n", + "EgABoES8CYQiXAMIAFAxKoAAUCIKgBQhAAJAibToAVOAFjAAQMWoAAJAiaj/UYQACAAlogNMEQIg\\\n", + "AJSI/EcRrgEEAKgYFUAAKJFZSoAUIAACQInIfxShBQwAUDEqgABQIu4CpggBEABKRP6jCC1gAICK\\\n", + "UQEEgBLRAqYIARAASkT+owgtYACAilEBBIAS0QKmCAEQAEpE/qMIARAASsSr4CjCNYAAABWjAggA\\\n", + "JaIASBECIACUiJtAKEILGACgYlQAAaBEFAApQgAEgBLRAqYILeD/dOWVV075mXq9nrGxsYbxws6d\\\n", + "+39xAABNVMkK4Ny5czNv3rzMmjUr4+PjSZKHHnoow8PDue+++152v4GBgVxzzTUN2447qzdv6Ovb\\\n", + "r+sFgKIUACmikhXAlStX5rjjjssnPvGJ3H///bn//vtz+umn7zb8JUl/f39GR0cbxrx3vWuaVg0A\\\n", + "U2tpac6g3CoZAD/84Q/n61//enbu3Jnzzjsvq1evnqgE7k6tVktra2vDmHVQJYuoAMABrJIBMElm\\\n", + "zZqVCy+8MN/85jezc+fOdHZ2zvSSAGCfqQBSROXLV7NmzcpFF10008sAgKaobGWHPVL5AAgAZaJ6\\\n", + "RxH+RwEAoGIEQAAokZYmjT2xbNmy9PT0ZMmSJdmxY8fE9ltvvTW/+Zu/mTPOOCMf//jH9+m8aC4B\\\n", + "EABKZLpvAtm0aVO2bNmSoaGhzJ8/P4ODgxNzJ598ctavX5977rknTz75ZDZs2LAfzpi9IQACAHtt\\\n", + "eHg4vb29SZK+vr6sX79+Ym7evHk56D8fl3bIIYdk1iyx45XCTSAAUCLNugekXq+nXq83bKvVaqnV\\\n", + "ag3bRkZGcswxxyRJ2trasm3btknfdf/99+fJJ5/MggULmrQ69pUoDgAl0qwW8MDAQNra2hrGwMDA\\\n", + "pOPNmTMnY2NjSZLR0dG0t7c3zP/rv/5rrrzyytxwww3Tcv4UIwACAJPs6vWn/f39kz7X1dWVtWvX\\\n", + "JknWrFmT7u7uibnt27fn/PPPz6pVqzJ37txpWztTEwABoESadRfwrl5/+tL2b5J0dnamo6MjPT09\\\n", + "2bx5cxYvXpylS5cmSVasWJFHHnkkH/vYx7Jw4cLcfffd+/fkKaxlvMhLcHlZC1d8fqaXAMABYt2V\\\n", + "f7jfj/G/h7/QlO/5g67/1pTv4ZVJBRAAoGLcBQwAJeJNcBQhAAJAiXgXMEUIgABQIq7togh/TwAA\\\n", + "KkYFEABKRAuYIgRAACgR+Y8itIABACpGBRAASkQLmCIEQAAoEfmPIrSAAQAqRgUQAEpEC5giBEAA\\\n", + "KBEBkCK0gAEAKkYFEABKRAGQIgRAACgRLWCKEAABoERc20UR/p4AAFSMCiAAlIgWMEUIgABQIi0Z\\\n", + "n+klcADQAgYAqBgVQAAoES1gimgZHx9XKwaapl6vZ2BgIP39/anVajO9HAB2QQAEmmpsbCxtbW0Z\\\n", + "HR1Na2vrTC8HgF1wDSAAQMUIgAAAFSMAAgBUjAAINFWtVsunP/1pN4AAvIK5CQQAoGJUAAEAKkYA\\\n", + "BACoGAEQAKBiBEAAgIoRAAEAKuagmV4AUB5bt27N+eefn507d6ajoyNf+9rXMnv27JleFgAvoQII\\\n", + "NM0RRxyRO+64I0NDQzn22GNz1113zfSSANgFFUCgaZ566qlcfvnlGRkZyRNPPJEFCxbM9JIA2AUV\\\n", + "QKBpVq9enbPPPjt33313+vr64jnzAK9MKoBA0yxatChLlizJrbfemkMPPXSmlwPAy/AqOACAitEC\\\n", + "BgCoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKsabQICm2bp1a84///zs3Lkz\\\n", + "HR0d+drXvpbZs2fP9LIAeAkVQKBpjjjiiNxxxx0ZGhrKsccem7vuumumlwTALqgAAk3z1FNP5fLL\\\n", + "L8/IyEieeOKJLFiwYKaXBMAuqAACTbN69eqcffbZufvuu9PX1xevGgd4ZVIBBJpm0aJFWbJkSW69\\\n", + "9dYceuihM70cAF5Gy7j/RQcAqBQtYACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgY\\\n", + "ARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAq\\\n", + "RgAEAKgYARAAoGIEQACAivl/usfNo/J+QkcAAAAASUVORK5CYII=\\\n", "\"\n", "\n", "\n", " /* set a timeout to make sure all the above elements are created before\n", " the object is initialized. */\n", " setTimeout(function() {\n", - " anim0fb99952c9b04107bb6bb224fb8d09ff = new Animation(frames, img_id, slider_id, 1000.0,\n", + " anim8a1ec047aa6b42af8fbf35ebcfc68843 = new Animation(frames, img_id, slider_id, 1000.0,\n", " loop_select_id);\n", " }, 0);\n", " })()\n", @@ -2007,42 +2886,42 @@ "\n", "\n", "
\n", - " \n", + " \n", "
\n", - " \n", + " oninput=\"animfd804c7f5da446b98c0da607d899f40e.set_frame(parseInt(this.value));\">\n", "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", "
\n", - "
\n", - " \n", - " \n", - " Once\n", + " \n", - " \n", - " Loop\n", + " \n", - " \n", + " \n", "
\n", "
\n", "
\n", @@ -2052,1571 +2931,1872 @@ " /* Instantiate the Animation class. */\n", " /* The IDs given should match those used in the template above. */\n", " (function() {\n", - " var img_id = \"_anim_img388c481ad78b4ab2b70a344948f50dc1\";\n", - " var slider_id = \"_anim_slider388c481ad78b4ab2b70a344948f50dc1\";\n", - " var loop_select_id = \"_anim_loop_select388c481ad78b4ab2b70a344948f50dc1\";\n", - " var frames = new Array(6);\n", + " var img_id = \"_anim_imgfd804c7f5da446b98c0da607d899f40e\";\n", + " var slider_id = \"_anim_sliderfd804c7f5da446b98c0da607d899f40e\";\n", + " var loop_select_id = \"_anim_loop_selectfd804c7f5da446b98c0da607d899f40e\";\n", + " var frames = new Array(11);\n", " \n", " frames[0] = \"\\\n", "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", - "AAAPYQGoP6dpAAA3sklEQVR4nO3de3RU9b338c+EJBMUk0gSMoRrrdYk5XYMEAaRqKSEihYUK3Co\\\n", - "IM0Djy0gMkhNFGFpq/G0goCoPFitpUph4YUKB9MTA2o1I4HgDYSItZoWOgmXJhwQJiEzzx/q6JQh\\\n", - "bJJJJtn7/eray8VvfnvPd+9llx++v7332Px+v18AAACwjKhIFwAAAIC2RQAEAACwGAIgAACAxRAA\\\n", - "AQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYA\\\n", - "CAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEE\\\n", - "QAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIsh\\\n", - "AAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAJosc8/\\\n", - "/1w///nPdfnll6tz585KSkrSj3/8Y3322WeRLg0AEEJ0pAsA0PHt2LFDZWVlmjRpknr27KnPPvtM\\\n", - "Tz75pK6++mp99NFHuuCCCyJdIgDgW2x+v98f6SIAdGwnT55U586dg8beeecdOZ1OrVmzRrfeemuE\\\n", - "KgMAhMISMIAW+3b4a2ho0JEjR3TppZcqMTFRu3btimBlAIBQCIAAWuzkyZNatGiRevXqJbvdruTk\\\n", - "ZKWkpKi2tlZ1dXWRLg8A8G+4BxBAi82ZM0e/+93vdOedd8rpdCohIUE2m02TJk2Sz+eLdHkAgH9D\\\n", - "AATQYi+88IKmTZumJUuWBMZOnTql2trayBUFADgrloABtFinTp3078+TPfbYY2psbIxQRQCAptAB\\\n", - "BNBi119/vf7whz8oISFBmZmZcrvdeu2115SUlBTp0gAAIRAAAbTY8uXL1alTJz3//PM6deqUrrzy\\\n", - "Sr322mvKy8uLdGkAgBB4DyAAAIDFcA8gAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAA\\\n", - "AMBiCIAAAAAWQwAEAACwGH4JpIWyH14a6RIAAB3E9gJXq39H/yvmh+U4H+5aEpbjoH2iAwgAAGAx\\\n", - "dAABADATW6QLQEdABxAAAMBi6AACAGAmNlqAODcCIAAAZkL+gwEsAQMAAFgMHUAAAMyEDiAMIAAC\\\n", - "AGAqJECcG0vAAAAAFkMHEAAAE/HTAIQBBEAAAMyEAAgDWAIGAACwGDqAAACYCS+ChgF0AAEAACyG\\\n", - "DiAAAGZCAxAG0AEEAACwGDqAAACYCfcAwgA6gAAAmIktTFszPP744+rbt6/i4uKUnZ2t8vLyJudv\\\n", - "2LBB6enpiouLU//+/bVly5agz48fP67Zs2erZ8+e6ty5szIzM7Vq1armFYcgBEAAANBi69evl8vl\\\n", - "0uLFi7Vr1y4NHDhQeXl5qqmpCTm/rKxMkydPVn5+vt59912NHz9e48eP1+7duwNzXC6XiouL9dxz\\\n", - "z2nv3r268847NXv2bL3yyittdVqmRQAEAMBE/GHaztfSpUs1Y8YMTZ8+PdCpu+CCC/TMM8+EnL98\\\n", - "+XKNGTNGCxYsUEZGhn75y1/qiiuu0MqVKwNzysrKNG3aNF199dXq27evZs6cqYEDB56zs4hzIwAC\\\n", - "AGAmNltYNq/Xq2PHjgVtXq835FfW19eroqJCubm5gbGoqCjl5ubK7XaH3MftdgfNl6S8vLyg+cOH\\\n", - "D9crr7yiAwcOyO/3a9u2bfr44481evToMFwoayMAAgCAMxQVFSkhISFoKyoqCjn38OHDamxsVGpq\\\n", - "atB4amqqPB5PyH08Hs855z/22GPKzMxUz549FRsbqzFjxujxxx/XyJEjW3h24ClgAADMJEwPARcW\\\n", - "FsrlcgWN2e328BzcoMcee0zvvPOOXnnlFfXp00dvvvmmZs2apbS0tDO6hzg/BEAAAEwlPAnQbrcb\\\n", - "DnzJycnq1KmTqqurg8arq6vlcDhC7uNwOJqcf/LkSd1zzz16+eWXNXbsWEnSgAED9N577+mRRx4h\\\n", - "ALYQS8AAAKBFYmNjlZWVpdLS0sCYz+dTaWmpnE5nyH2cTmfQfEkqKSkJzG9oaFBDQ4OiooKjSqdO\\\n", - "neTz+cJ8BtZDBxAAADOJ0HugXS6Xpk2bpsGDB2vo0KFatmyZTpw4oenTp0uSpk6dqh49egTuI5w7\\\n", - "d65ycnK0ZMkSjR07VuvWrdPOnTu1evVqSVJ8fLxycnK0YMECde7cWX369NEbb7yhNWvWaOnSpZE5\\\n", - "SRMhAAIAYCYRCoATJ07UoUOHtGjRInk8Hg0aNEjFxcWBBz2qqqqCunnDhw/X2rVrtXDhQt1zzz26\\\n", - "7LLLtHHjRvXr1y8wZ926dSosLNSUKVN09OhR9enTRw8++KBuv/32Nj8/s7H5/f7mvO4HX8l+mL+F\\\n", - "AACM2V7gOvekFsq85p6wHOejbQ+F5Thon7gHEAAAwGIIgAAAABbDPYAAAJiJLUI3AaJDoQMIAABg\\\n", - "MXQAAQAwExqAMMAyAfDw4cN65pln5Ha7A78z6HA4NHz4cN12221KSUmJcIUAALQcr/aAEZZYAt6x\\\n", - "Y4e+973vacWKFUpISNDIkSM1cuRIJSQkaMWKFUpPT9fOnTsjXSYAAECbsEQHcM6cOfrxj3+sVatW\\\n", - "yfZvN8f6/X7dfvvtmjNnjtxud5PH8Xq98nq9QWO+06cVFW2JywgA6Ah4CAQGWKID+P7772vevHln\\\n", - "hD9Jstlsmjdvnt57771zHqeoqEgJCQlB28HXS8+5HwAAbcYWpg2mZokA6HA4VF5eftbPy8vLAz9V\\\n", - "05TCwkLV1dUFbWlXjwpnqQAAAK3OEmuXd911l2bOnKmKigqNGjUqEPaqq6tVWlqqp556So888sg5\\\n", - "j2O322W324PGWP4FALQrLAHDAEukl1mzZik5OVmPPvqonnjiCTU2NkqSOnXqpKysLD377LO65ZZb\\\n", - "IlwlAAAtx1PAMMISAVCSJk6cqIkTJ6qhoUGHDx+WJCUnJysmJibClQEAEEY0AGGAZQLg12JiYtS9\\\n", - "e/dIlwEAABAxlguAAACYGvcAwgBLPAUMAACAbxAAAQAALIYlYAAATMTPEjAMIAACAGAm5D8YwBIw\\\n", - "AACAxRAAAQAALIYlYAAATIR7AGEEHUAAAACLoQMIAICZ0ACEAQRAAADMhAAIAwiAAACYCgkQ58Y9\\\n", - "gAAAABZDBxAAABPx0wCEAQRAAADMhAAIA1gCBgAAsBg6gAAAmAotQJwbHUAAAEzEbwvP1hyPP/64\\\n", - "+vbtq7i4OGVnZ6u8vLzJ+Rs2bFB6erri4uLUv39/bdmy5Yw5e/fu1Y9+9CMlJCTowgsv1JAhQ1RV\\\n", - "VdW8AhFAAAQAAC22fv16uVwuLV68WLt27dLAgQOVl5enmpqakPPLyso0efJk5efn691339X48eM1\\\n", - "fvx47d69OzDnr3/9q0aMGKH09HS9/vrr+uCDD3TfffcpLi6urU7LtGx+v98f6SI6suyHl0a6BABA\\\n", - "B7G9wNXq33HpjQ+E5TifvLzovOZnZ2dryJAhWrlypSTJ5/OpV69emjNnjgoKCs6YP3HiRJ04cUKb\\\n", - "N28OjA0bNkyDBg3SqlWrJEmTJk1STEyM/vCHP7TgTBAKHUAAAEzFFpbN6/Xq2LFjQZvX6w35jfX1\\\n", - "9aqoqFBubm5gLCoqSrm5uXK73SH3cbvdQfMlKS8vLzDf5/Ppv//7v/W9731PeXl56tatm7Kzs7Vx\\\n", - "48ZmXRUEIwACAIAzFBUVKSEhIWgrKioKOffw4cNqbGxUampq0Hhqaqo8Hk/IfTweT5Pza2pqdPz4\\\n", - "cT388MMaM2aM/ud//kc33nijbrrpJr3xxhthOENr4ylgAABMJFwvgi4sLJTLFbxkbbfbw3NwA3w+\\\n", - "nyRp3LhxmjdvniRp0KBBKisr06pVq5STk9NmtZgRARAAADMJUwC02+2GA19ycrI6deqk6urqoPHq\\\n", - "6mo5HI6Q+zgcjibnJycnKzo6WpmZmUFzMjIy9NZbbxk9DZwFS8AAAJhKeO4BPB+xsbHKyspSaWlp\\\n", - "YMzn86m0tFROpzPkPk6nM2i+JJWUlATmx8bGasiQIaqsrAya8/HHH6tPnz7nVR/ORAcQAAC0mMvl\\\n", - "0rRp0zR48GANHTpUy5Yt04kTJzR9+nRJ0tSpU9WjR4/AfYRz585VTk6OlixZorFjx2rdunXauXOn\\\n", - "Vq9eHTjmggULNHHiRI0cOVLXXHONiouLtWnTJr3++uuROEVTIQACAGAmEfohkIkTJ+rQoUNatGiR\\\n", - "PB6PBg0apOLi4sCDHlVVVYqK+mbhcfjw4Vq7dq0WLlyoe+65R5dddpk2btyofv36BebceOONWrVq\\\n", - "lYqKinTHHXfo8ssv14svvqgRI0a0+fmZDe8BbCHeAwgAMKot3gN4yY9/FZbjfLphYViOg/aJewAB\\\n", - "AAAshiVgAADMJEJLwOhYCIAAAJgKCRDnxhIwAACAxdABBADARML1SyAwNwIgAABmQgCEASwBAwAA\\\n", - "WAwBEAAAwGJYAgYAwExsrAHj3AiAAACYCA+BwAiWgAEAACyGAAgAAGAxLAEDAGAmLAHDADqAAAAA\\\n", - "FkMHEAAAM+EpYBhAAAQAwET8kS4AHQJLwAAAABZDBxAAADNhBRgGEAABADATAiAMYAkYAADAYgiA\\\n", - "AAAAFsMSMAAAZsJrYGAAARAAABPxk/9gAEvAAAAAFkMABAAAsBiWgAEAMBOWgGEAHUAAAACLoQMI\\\n", - "AICZ0AGEAQRAAABMhQSIc2MJGAAAwGIIgAAAmIktTFszPP744+rbt6/i4uKUnZ2t8vLyJudv2LBB\\\n", - "6enpiouLU//+/bVly5azzr399ttls9m0bNmy5hWHIARAAADMJEIBcP369XK5XFq8eLF27dqlgQMH\\\n", - "Ki8vTzU1NSHnl5WVafLkycrPz9e7776r8ePHa/z48dq9e/cZc19++WW98847SktLO//CEBIBEAAA\\\n", - "tNjSpUs1Y8YMTZ8+XZmZmVq1apUuuOACPfPMMyHnL1++XGPGjNGCBQuUkZGhX/7yl7riiiu0cuXK\\\n", - "oHkHDhzQnDlz9PzzzysmJqYtTsUSCIAAAJiIP0zb+aivr1dFRYVyc3MDY1FRUcrNzZXb7Q65j9vt\\\n", - "DpovSXl5eUHzfT6fbr31Vi1YsEDf//73z7MqNIWngAEAMJMwPQTs9Xrl9XqDxux2u+x2+xlzDx8+\\\n", - "rMbGRqWmpgaNp6amat++fSGP7/F4Qs73eDyBP//Xf/2XoqOjdccddzT3NHAWdAABAMAZioqKlJCQ\\\n", - "ELQVFRW12fdXVFRo+fLlevbZZ2Wz8WqbcCMAAgCAMxQWFqquri5oKywsDDk3OTlZnTp1UnV1ddB4\\\n", - "dXW1HA5HyH0cDkeT8//yl7+opqZGvXv3VnR0tKKjo/X5559r/vz56tu3b8tP0OIIgAAAmInNFpbN\\\n", - "brcrPj4+aAu1/CtJsbGxysrKUmlpaWDM5/OptLRUTqcz5D5OpzNoviSVlJQE5t9666364IMP9N57\\\n", - "7wW2tLQ0LViwQH/+85/DdLGsi3sAv/L3v/9dixcvPuvTSlLo+yF8p08rKprLCABoJyK0WupyuTRt\\\n", - "2jQNHjxYQ4cO1bJly3TixAlNnz5dkjR16lT16NEjsIw8d+5c5eTkaMmSJRo7dqzWrVunnTt3avXq\\\n", - "1ZKkpKQkJSUlBX1HTEyMHA6HLr/88rY9OROiA/iVo0eP6ve//32Tc0LdD3Hw9dIm9wEAwAomTpyo\\\n", - "Rx55RIsWLdKgQYP03nvvqbi4OPCgR1VVlf75z38G5g8fPlxr167V6tWrNXDgQL3wwgvauHGj+vXr\\\n", - "F6lTsBSb3+8/36e9O6RXXnmlyc8//fRTzZ8/X42NjWedE6oDOGrFKjqAAABDthe4Wv07ev3fX4fl\\\n", - "OH//f78Iy3HQPlkmuYwfP142m01N5d1zPWUU6vF3wh8AoF3hgVkYYJkl4O7du+ull16Sz+cLue3a\\\n", - "tSvSJQIAALQJywTArKwsVVRUnPXzc3UHAQDoECL0W8DoWCyzfrlgwQKdOHHirJ9feuml2rZtWxtW\\\n", - "BAAAEBmWCYBXXXVVk59feOGFysnJaaNqAAAAIscyARAAAEtg+RYGEAABADARfjcXRljmIRAAAAB8\\\n", - "iQAIAABgMSwBAwBgJqwAwwACIAAAZkIAhAEsAQMAAFgMARAAAMBiWAIGAMBEeAsMjKADCAAAYDEE\\\n", - "QAAAAIthCRgAADNhCRgG0AEEAACwGDqAAACYCR1AGEAABADARMh/MIIACACAmfAeGBjAPYAAAAAW\\\n", - "QwcQAAAToQEII+gAAgAAWAwBEAAAwGJYAgYAwExYAoYBBEAAAEyE/AcjWAIGAACwGDqAAACYCS1A\\\n", - "GEAABADARHgNDIxgCRgAAMBiCIAAACAsHn/8cfXt21dxcXHKzs5WeXl5k/M3bNig9PR0xcXFqX//\\\n", - "/tqyZUvgs4aGBt19993q37+/LrzwQqWlpWnq1Kk6ePBga5+GJRAAAQAwEZstPNv5Wr9+vVwulxYv\\\n", - "Xqxdu3Zp4MCBysvLU01NTcj5ZWVlmjx5svLz8/Xuu+9q/PjxGj9+vHbv3i1J+uKLL7Rr1y7dd999\\\n", - "2rVrl1566SVVVlbqRz/6UUsuD75i8/v9/kgX0ZFlP7w00iUAADqI7QWuVv+OS3/xSFiO88mv7zqv\\\n", - "+dnZ2RoyZIhWrlwpSfL5fOrVq5fmzJmjgoKCM+ZPnDhRJ06c0ObNmwNjw4YN06BBg7Rq1aqQ37Fj\\\n", - "xw4NHTpUn3/+uXr37n1e9SEYHUAAANAi9fX1qqioUG5ubmAsKipKubm5crvdIfdxu91B8yUpLy/v\\\n", - "rPMlqa6uTjabTYmJiWGp28p4ChgAABMJ11PAXq9XXq83aMxut8tut58x9/Dhw2psbFRqamrQeGpq\\\n", - "qvbt2xfy+B6PJ+R8j8cTcv6pU6d09913a/LkyYqPjz+fU0EIdAABADATW3i2oqIiJSQkBG1FRUVt\\\n", - "fjrSlw+E3HLLLfL7/XryyScjUoPZ0AEEAABnKCwslMsVfM9iqO6fJCUnJ6tTp06qrq4OGq+urpbD\\\n", - "4Qi5j8PhMDT/6/D3+eefa+vWrXT/woQOIAAAJmIL0//sdrvi4+ODtrMFwNjYWGVlZam0tDQw5vP5\\\n", - "VFpaKqfTGXIfp9MZNF+SSkpKguZ/Hf7279+v1157TUlJSWG4QpDoAAIAYC4R+iUQl8uladOmafDg\\\n", - "wRo6dKiWLVumEydOaPr06ZKkqVOnqkePHoFl5Llz5yonJ0dLlizR2LFjtW7dOu3cuVOrV6+W9GX4\\\n", - "u/nmm7Vr1y5t3rxZjY2NgfsDu3btqtjY2MicqEkQAAEAQItNnDhRhw4d0qJFi+TxeDRo0CAVFxcH\\\n", - "HvSoqqpSVNQ3C4/Dhw/X2rVrtXDhQt1zzz267LLLtHHjRvXr10+SdODAAb3yyiuSpEGDBgV917Zt\\\n", - "23T11Ve3yXmZFe8BbCHeAwgAMKot3gN4eeGSsBynsmh+WI6D9okOIAAAJhKu18DA3HgIBAAAwGLo\\\n", - "AAIAYCZ0AGEAARAAABMh/8EIAiAAAGZCAoQB3AMIAABgMXQAAQAwERqAMIIACACAifAaGBjBEjAA\\\n", - "AIDF0AEEAMBM6ADCAAIgAAAmQv6DESwBAwAAWAwdQAAATISHQGAEHUAAAACLIQACAABYDEvAAACY\\\n", - "CEvAMIIACACAmRAAYQABEAAAE7GRAGEA9wACAABYDB1AAABMhHsAYQQdQAAAAIshAAIAAFgMS8AA\\\n", - "AJgIS8AwggAIAICJkP9gBEvAAAAAFkMHEAAAM6EFCAMIgAAAmAj3AMIIloABAAAshg4gAAAmQgMQ\\\n", - "RlimA3jy5Em99dZb+uijj8747NSpU1qzZs05j+H1enXs2LGgzXf6dGuUCwBA89jCtMHULBEAP/74\\\n", - "Y2VkZGjkyJHq37+/cnJy9M9//jPweV1dnaZPn37O4xQVFSkhISFoO/h6aWuWDgDAeSH/wQhLBMC7\\\n", - "775b/fr1U01NjSorK3XRRRfpyiuvVFVV1Xkdp7CwUHV1dUFb2tWjWqlqAAA6lscff1x9+/ZVXFyc\\\n", - "srOzVV5e3uT8DRs2KD09XXFxcerfv7+2bNkS9Lnf79eiRYvUvXt3de7cWbm5udq/f39rnoJlWCIA\\\n", - "lpWVqaioSMnJybr00ku1adMm5eXl6aqrrtKnn35q+Dh2u13x8fFBW1Q0t1ECANoPmy082/lav369\\\n", - "XC6XFi9erF27dmngwIHKy8tTTU1NyPllZWWaPHmy8vPz9e6772r8+PEaP368du/eHZjz61//WitW\\\n", - "rNCqVau0fft2XXjhhcrLy9OpU6eae3nwFUsEwJMnTyr6W0HNZrPpySef1A033KCcnBx9/PHHEawO\\\n", - "AIAwitAa8NKlSzVjxgxNnz5dmZmZWrVqlS644AI988wzIecvX75cY8aM0YIFC5SRkaFf/vKXuuKK\\\n", - "K7Ry5UpJX3b/li1bpoULF2rcuHEaMGCA1qxZo4MHD2rjxo3nXyCCWCIApqena+fOnWeMr1y5UuPG\\\n", - "jdOPfvSjCFQFAED7FerBR6/XG3JufX29KioqlJubGxiLiopSbm6u3G53yH3cbnfQfEnKy8sLzP/b\\\n", - "3/4mj8cTNCchIUHZ2dlnPSaMs0QAvPHGG/XHP/4x5GcrV67U5MmT5ff727gqAADCL1wNwFAPPhYV\\\n", - "FYX8zsOHD6uxsVGpqalB46mpqfJ4PCH38Xg8Tc7/+p/nc0wYZ4kAWFhYeMaNpd/2xBNPyOfztWFF\\\n", - "AAC0jnDdAxjqwcfCwsJInx7ChCcYAADAGex2u+x2u6G5ycnJ6tSpk6qrq4PGq6ur5XA4Qu7jcDia\\\n", - "nP/1P6urq9W9e/egOYMGDTJ6GjgLS3QAAQCwjrZ/CiQ2NlZZWVkqLf3m3bg+n0+lpaVyOp0h93E6\\\n", - "nUHzJamkpCQw/zvf+Y4cDkfQnGPHjmn79u1nPSaMowMIAICJNOcVLuHgcrk0bdo0DR48WEOHDtWy\\\n", - "Zct04sSJwA8tTJ06VT169AjcRzh37lzl5ORoyZIlGjt2rNatW6edO3dq9erVX52HTXfeead+9atf\\\n", - "6bLLLtN3vvMd3XfffUpLS9P48eMjc5ImQgAEAAAtNnHiRB06dEiLFi2Sx+PRoEGDVFxcHHiIo6qq\\\n", - "SlFR3yw8Dh8+XGvXrtXChQt1zz336LLLLtPGjRvVr1+/wJxf/OIXOnHihGbOnKna2lqNGDFCxcXF\\\n", - "iouLa/PzMxubn8dfWyT74aWRLgEA0EFsL3C1+nc4f/NoWI7jXjAvLMdB+0QHEAAAE+F3fGEEARAA\\\n", - "ABOJ1D2A6Fh4ChgAAMBiCIAAAAAWwxIwAAAmwhIwjKADCAAAYDF0AAEAMBEagDCCAAgAgJmQAGEA\\\n", - "S8AAAAAWQwcQAAAT4SEQGEEABADARMh/MIIACACAmZAAYQD3AAIAAFgMHUAAAEyEBiCMIAACAGAi\\\n", - "PAQCI1gCBgAAsBg6gAAAmAktQBhAAAQAwESIfzCCJWAAAACLoQMIAICZ0AKEAQRAAABMhPwHI1gC\\\n", - "BgAAsBg6gAAAmAgPAcMIAiAAAGZCAIQBBEAAAEyE/AcjuAcQAADAYugAAgBgItwDCCPoAAIAAFgM\\\n", - "ARAAAMBiWAIGAMBEWAKGEQRAAABMhAAII1gCBgAAbebo0aOaMmWK4uPjlZiYqPz8fB0/frzJfU6d\\\n", - "OqVZs2YpKSlJXbp00YQJE1RdXR34/P3339fkyZPVq1cvde7cWRkZGVq+fHlrn0qHRgAEAABtZsqU\\\n", - "KdqzZ49KSkq0efNmvfnmm5o5c2aT+8ybN0+bNm3Shg0b9MYbb+jgwYO66aabAp9XVFSoW7dueu65\\\n", - "57Rnzx7de++9Kiws1MqVK1v7dDosm9/v90e6iI4s++GlkS4BANBBbC9wtfp3/PD/LQvLcV79v3eG\\\n", - "5TjftnfvXmVmZmrHjh0aPHiwJKm4uFjXXXed/vGPfygtLe2Mferq6pSSkqK1a9fq5ptvliTt27dP\\\n", - "GRkZcrvdGjZsWMjvmjVrlvbu3autW7eG/TzMgA4gAAA4g9fr1bFjx4I2r9fbomO63W4lJiYGwp8k\\\n", - "5ebmKioqStu3bw+5T0VFhRoaGpSbmxsYS09PV+/eveV2u8/6XXV1deratWuL6jUzAiAAACZiC9NW\\\n", - "VFSkhISEoK2oqKhFtXk8HnXr1i1oLDo6Wl27dpXH4znrPrGxsUpMTAwaT01NPes+ZWVlWr9+/TmX\\\n", - "lq2MAAgAgJmEKQEWFhaqrq4uaCssLAz5lQUFBbLZbE1u+/bta93z/sru3bs1btw4LV68WKNHj26T\\\n", - "7+yIeA0MAAAmEq7XwNjtdtntdkNz58+fr9tuu63JOZdccokcDodqamqCxk+fPq2jR4/K4XCE3M/h\\\n", - "cKi+vl61tbVBXcDq6uoz9vnoo480atQozZw5UwsXLjRUu1URAAEAQIukpKQoJSXlnPOcTqdqa2tV\\\n", - "UVGhrKwsSdLWrVvl8/mUnZ0dcp+srCzFxMSotLRUEyZMkCRVVlaqqqpKTqczMG/Pnj269tprNW3a\\\n", - "ND344INhOCtzYwkYAAATCdc9gK0hIyNDY8aM0YwZM1ReXq63335bs2fP1qRJkwJPAB84cEDp6ekq\\\n", - "Ly+XJCUkJCg/P18ul0vbtm1TRUWFpk+fLqfTGXgCePfu3brmmms0evRouVwueTweeTweHTp0qJXO\\\n", - "pOOjAwgAgJm0858Cef755zV79myNGjVKUVFRmjBhglasWBH4vKGhQZWVlfriiy8CY48++mhgrtfr\\\n", - "VV5enp544onA5y+88IIOHTqk5557Ts8991xgvE+fPvrss8/a5Lw6Gt4D2EK8BxAAYFRbvAfw+t+G\\\n", - "5xcwNv+fuWE5DtonOoAAAJhI++7/ob0gAAIAYCLtfAUY7QQPgQAAAFgMHUAAAEyEDiCMoAMIAABg\\\n", - "MQRAAAAAi2EJGAAAE2EJGEYQAAEAMBHyH4wgAAIAYCYkQBjAPYAAAAAWQwcQAAAToQEIIwiAAACY\\\n", - "CA+BwAiWgAEAACyGDiAAACZCBxBG0AEEAACwGAIgAACAxbAEDACAibAEDCMIgAAAmAj5D0awBAwA\\\n", - "AGAxlukA7t27V++8846cTqfS09O1b98+LV++XF6vVz/5yU907bXXnvMYXq9XXq83aMx3+rSioi1z\\\n", - "GQEA7RxLwDDCEh3A4uJiDRo0SHfddZf+4z/+Q8XFxRo5cqQ++eQTff755xo9erS2bt16zuMUFRUp\\\n", - "ISEhaDv4emkbnAEAAMbYbOHZYG6WCIAPPPCAFixYoCNHjuh3v/ud/vM//1MzZsxQSUmJSktLtWDB\\\n", - "Aj388MPnPE5hYaHq6uqCtrSrR7XBGQAAAISPJQLgnj17dNttt0mSbrnlFv3v//6vbr755sDnU6ZM\\\n", - "0QcffHDO49jtdsXHxwdtLP8CAICOxjLpxfZVPzsqKkpxcXFKSEgIfHbRRReprq4uUqUBABA2LN/C\\\n", - "CEt0APv27av9+/cH/ux2u9W7d+/An6uqqtS9e/dIlAYAQFjZwrTB3CzRAfzZz36mxsbGwJ/79esX\\\n", - "9Pmrr75q6ClgAAAAM7BEALz99tub/Pyhhx5qo0oAAGhdLAHDCEsEQAAArIL8ByMscQ8gAAAAvkEH\\\n", - "EAAAM6EFCAPoAAIAYCLt/ZdAjh49qilTpig+Pl6JiYnKz8/X8ePHm9zn1KlTmjVrlpKSktSlSxdN\\\n", - "mDBB1dXVIeceOXJEPXv2lM1mU21tbSucgTkQAAEAQJuZMmWK9uzZo5KSEm3evFlvvvmmZs6c2eQ+\\\n", - "8+bN06ZNm7Rhwwa98cYbOnjwoG666aaQc/Pz8zVgwIDWKN1UCIAAAJhIe34P4N69e1VcXKzf/va3\\\n", - "ys7O1ogRI/TYY49p3bp1OnjwYMh96urq9PTTT2vp0qW69tprlZWVpd/97ncqKyvTO++8EzT3ySef\\\n", - "VG1tre66665WOgPzIAACAGAi7XkJ2O12KzExUYMHDw6M5ebmKioqStu3bw+5T0VFhRoaGpSbmxsY\\\n", - "S09PV+/eveV2uwNjH330kR544AGtWbNGUVHEm3PhIRAAAEwkXNnN6/XK6/UGjdntdtnt9mYf0+Px\\\n", - "qFu3bkFj0dHR6tq1qzwez1n3iY2NVWJiYtB4ampqYB+v16vJkyfrN7/5jXr37q1PP/202TVaBREZ\\\n", - "AACcoaioSAkJCUFbUVFRyLkFBQWy2WxNbvv27Wu1WgsLC5WRkaGf/OQnrfYdZkMHEAAAEwnX8m1h\\\n", - "YaFcLlfQ2Nm6f/Pnz9dtt93W5PEuueQSORwO1dTUBI2fPn1aR48elcPhCLmfw+FQfX29amtrg7qA\\\n", - "1dXVgX22bt2qDz/8UC+88IIkye/3S5KSk5N177336v7772+yNisiAAIAYCLhWgI+n+XelJQUpaSk\\\n", - "nHOe0+lUbW2tKioqlJWVJenL8Obz+ZSdnR1yn6ysLMXExKi0tFQTJkyQJFVWVqqqqkpOp1OS9OKL\\\n", - "L+rkyZOBfXbs2KGf/vSn+stf/qLvfve7hs7BagiAAACgTWRkZGjMmDGaMWOGVq1apYaGBs2ePVuT\\\n", - "Jk1SWlqaJOnAgQMaNWqU1qxZo6FDhyohIUH5+flyuVzq2rWr4uPjNWfOHDmdTg0bNkySzgh5hw8f\\\n", - "Dnzfv987iC8RAAEAMJHWfIlzODz//POaPXu2Ro0apaioKE2YMEErVqwIfN7Q0KDKykp98cUXgbFH\\\n", - "H300MNfr9SovL09PPPFEJMo3DZv/64VyNEv2w0sjXQIAoIPYXuA696QWyn9xeViO8/SEuWE5Dton\\\n", - "ngIGAACwGJaAAQAwkXa+Aox2ggAIAICJtPd7ANE+sAQMAABgMXQAAQAwERqAMIIACACAibAEDCMI\\\n", - "gAAAmAj5D0ZwDyAAAIDF0AEEAMBEWAKGEQRAAABMhAAII1gCBgAAsBg6gAAAmAgNQBhBAAQAwERY\\\n", - "AoYRLAEDAABYDB1AAABMhAYgjCAAAgBgIiwBwwiWgAEAACyGDiAAACZCAxBGEAABADARloBhBAEQ\\\n", - "AAATIf/BCO4BBAAAsBg6gAAAmAhLwDCCAAgAgImQ/2AES8AAAAAWQwcQAAATYQkYRhAAAQAwEQIg\\\n", - "jGAJGAAAwGLoAAIAYCI0AGEEARAAABOxsQYMA1gCBgAAsBg6gAAAmAj9PxhBBxAAABOx2cKztZaj\\\n", - "R49qypQpio+PV2JiovLz83X8+PEm9zl16pRmzZqlpKQkdenSRRMmTFB1dfUZ85599lkNGDBAcXFx\\\n", - "6tatm2bNmtVap9HhEQABADARW5i21jJlyhTt2bNHJSUl2rx5s958803NnDmzyX3mzZunTZs2acOG\\\n", - "DXrjjTd08OBB3XTTTUFzli5dqnvvvVcFBQXas2ePXnvtNeXl5bXimXRsNr/f7490ER1Z9sNLI10C\\\n", - "AKCD2F7gavXvuOfPK8JynIfy7gjLcb5t7969yszM1I4dOzR48GBJUnFxsa677jr94x//UFpa2hn7\\\n", - "1NXVKSUlRWvXrtXNN98sSdq3b58yMjLkdrs1bNgw/etf/1KPHj20adMmjRo1Kux1mxEdQAAATCTK\\\n", - "Fp6tNbjdbiUmJgbCnyTl5uYqKipK27dvD7lPRUWFGhoalJubGxhLT09X79695Xa7JUklJSXy+Xw6\\\n", - "cOCAMjIy1LNnT91yyy36+9//3jonYgIEQAAATCRcS8Ber1fHjh0L2rxeb4tq83g86tatW9BYdHS0\\\n", - "unbtKo/Hc9Z9YmNjlZiYGDSempoa2OfTTz+Vz+fTQw89pGXLlumFF17Q0aNH9YMf/ED19fUtqtms\\\n", - "CIAAAOAMRUVFSkhICNqKiopCzi0oKJDNZmty27dvX6vV6vP51NDQoBUrVigvL0/Dhg3TH//4R+3f\\\n", - "v1/btm1rte/tyHgNDAAAJhKuJ3gLCwvlcgXfs2i320POnT9/vm677bYmj3fJJZfI4XCopqYmaPz0\\\n", - "6dM6evSoHA5HyP0cDofq6+tVW1sb1AWsrq4O7NO9e3dJUmZmZuDzlJQUJScnq6qqqsm6rIoACACA\\\n", - "iYTr9j273X7WwPfvUlJSlJKScs55TqdTtbW1qqioUFZWliRp69at8vl8ys7ODrlPVlaWYmJiVFpa\\\n", - "qgkTJkiSKisrVVVVJafTKUm68sorA+M9e/aU9OXrZg4fPqw+ffoYOgerYQkYAAC0iYyMDI0ZM0Yz\\\n", - "ZsxQeXm53n77bc2ePVuTJk0KPAF84MABpaenq7y8XJKUkJCg/Px8uVwubdu2TRUVFZo+fbqcTqeG\\\n", - "DRsmSfre976ncePGae7cuSorK9Pu3bs1bdo0paen65prronY+bZnBEAAAEykvb8I+vnnn1d6erpG\\\n", - "jRql6667TiNGjNDq1asDnzc0NKiyslJffPFFYOzRRx/V9ddfrwkTJmjkyJFyOBx66aWXgo67Zs0a\\\n", - "ZWdna+zYscrJyVFMTIyKi4sVExPTeifTgfEewBbiPYAAAKPa4j2A978WnvcALs4N/3sA0X7QAQQA\\\n", - "ALAYHgIBAMBEWnP5FuZBAAQAwETIfzCCAAgAgIm01s+4wVy4BxAAAMBi6AACAGAiNABhBAEQAAAT\\\n", - "4SEQGMESMAAAgMVYugPo9/tl469KAAAT4b9qMMLSHUC73a69e/dGugwAAMKmvf8UHNoHS3QAXa7Q\\\n", - "P73T2Niohx9+WElJSZKkpUub/lk3r9crr9cbNOY7fVpR0Za4jAAAwCQskVyWLVumgQMHKjExMWjc\\\n", - "7/dr7969uvDCCw0tBRcVFen+++8PGksbNVo9c/PCWS4AAM1G8w5GWCIAPvTQQ1q9erWWLFmia6+9\\\n", - "NjAeExOjZ599VpmZmYaOU1hYeEY3cdSKVWGtFQCAlmD5FkZY4h7AgoICrV+/Xj/72c901113qaGh\\\n", - "oVnHsdvtio+PD9pY/gUAAB2NJQKgJA0ZMkQVFRU6dOiQBg8erN27d/MEMADAdHgIBEZYqn3VpUsX\\\n", - "/f73v9e6deuUm5urxsbGSJcEAEBYWaazgxaxVAD82qRJkzRixAhVVFSoT58+kS4HAICwoXsHIywZ\\\n", - "ACWpZ8+e6tmzZ6TLAAAAaHOWDYAAAJgRDUAYQQAEAMBEWAKGEdwrCgAAYDF0AAEAMBEagDCCAAgA\\\n", - "gImwBAwjWAIGAACwGDqAAACYCA1AGEEABADARFgChhEsAQMAAFgMHUAAAEyEBiCMIAACAGAiLAHD\\\n", - "CAIgAAAmwr1dMIJ/TwAAACyGAAgAgInYbOHZWsvRo0c1ZcoUxcfHKzExUfn5+Tp+/HiT+5w6dUqz\\\n", - "Zs1SUlKSunTpogkTJqi6ujpozo4dOzRq1CglJibq4osvVl5ent5///3WO5EOjgAIAICJ2MK0tZYp\\\n", - "U6Zoz549Kikp0ebNm/Xmm29q5syZTe4zb948bdq0SRs2bNAbb7yhgwcP6qabbgp8fvz4cY0ZM0a9\\\n", - "e/fW9u3b9dZbb+miiy5SXl6eGhoaWvFsOi6b3+/3R7qIjiz74aWRLgEA0EFsL3C1+nc89c6KsBxn\\\n", - "xrA7wnKcb9u7d68yMzO1Y8cODR48WJJUXFys6667Tv/4xz+UlpZ2xj51dXVKSUnR2rVrdfPNN0uS\\\n", - "9u3bp4yMDLndbg0bNkw7d+7UkCFDVFVVpV69ekmSPvzwQw0YMED79+/XpZdeGvZz6ejoAAIAYCLh\\\n", - "WgL2er06duxY0Ob1eltUm9vtVmJiYiD8SVJubq6ioqK0ffv2kPtUVFSooaFBubm5gbH09HT17t1b\\\n", - "brdbknT55ZcrKSlJTz/9tOrr63Xy5Ek9/fTTysjIUN++fVtUs1kRAAEAMJFwLQEXFRUpISEhaCsq\\\n", - "KmpRbR6PR926dQsai46OVteuXeXxeM66T2xsrBITE4PGU1NTA/tcdNFFev311/Xcc8+pc+fO6tKl\\\n", - "i4qLi/Xqq68qOpoXnoRCAAQAAGcoLCxUXV1d0FZYWBhybkFBgWw2W5Pbvn37Wq3WkydPKj8/X1de\\\n", - "eaXeeecdvf322+rXr5/Gjh2rkydPttr3dmTEYgAATCRcT/Da7XbZ7XZDc+fPn6/bbrutyTmXXHKJ\\\n", - "HA6HampqgsZPnz6to0ePyuFwhNzP4XCovr5etbW1QV3A6urqwD5r167VZ599JrfbraioqMDYxRdf\\\n", - "rD/96U+aNGmSofOwEgIgAAAmEolfAklJSVFKSso55zmdTtXW1qqiokJZWVmSpK1bt8rn8yk7Ozvk\\\n", - "PllZWYqJiVFpaakmTJggSaqsrFRVVZWcTqck6YsvvlBUVJRs3zr5r//s8/laenqmxBIwAABoExkZ\\\n", - "GRozZoxmzJih8vJyvf3225o9e7YmTZoUeAL4wIEDSk9PV3l5uSQpISFB+fn5crlc2rZtmyoqKjR9\\\n", - "+nQ5nU4NGzZMkvSDH/xA//rXvzRr1izt3btXe/bs0fTp0xUdHa1rrrkmYufbnhEAAQAwkfb+HsDn\\\n", - "n39e6enpGjVqlK677jqNGDFCq1evDnze0NCgyspKffHFF4GxRx99VNdff70mTJigkSNHyuFw6KWX\\\n", - "Xgp8np6erk2bNumDDz6Q0+nUVVddpYMHD6q4uFjdu3dvxbPpuHgPYAvxHkAAgFFt8R7A3+8Mz3sA\\\n", - "pw0O/3sA0X5wDyAAACbC0h6M4N8TAAAAi6EDCACAiUTiKWB0PARAAABMxCZu7ce5sQQMAABgMXQA\\\n", - "AQAwEZaAYQSvgTExr9eroqIiFRYWGv45H3yJa9d8XLuW4fo1H9cOMI4AaGLHjh1TQkKC6urqFB8f\\\n", - "H+lyOhSuXfNx7VqG69d8XDvAOO4BBAAAsBgCIAAAgMUQAAEAACyGAGhidrtdixcv5mboZuDaNR/X\\\n", - "rmW4fs3HtQOM4yEQAAAAi6EDCAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAWUlVVpbFjx+qCCy5Q\\\n", - "t27dtGDBAp0+fTrSZXUYd9xxh7KysmS32zVo0KBIl9NhvP/++5o8ebJ69eqlzp07KyMjQ8uXL490\\\n", - "WR3GkSNHNGbMGKWlpclut6tXr16aPXu2jh07FunSOpQjR46oZ8+estlsqq2tjXQ5QMRFR7oAtI3G\\\n", - "xkaNHTtWDodDZWVl+uc//6mpU6cqJiZGDz30UKTL6zB++tOfavv27frggw8iXUqHUVFRoW7duum5\\\n", - "555Tr169VFZWppkzZ6pTp06aPXt2pMtr96KiojRu3Dj96le/UkpKij755BPNmjVLR48e1dq1ayNd\\\n", - "XoeRn5+vAQMG6MCBA5EuBWgf/OiQXn31Vf+VV17pT0hI8Hft2tU/duxY/yeffHLW+Vu2bPFHRUX5\\\n", - "PR5PYOzJJ5/0x8fH+71eb1uU3K6c7/X7tsWLF/sHDhzYugW2Yy25dl/7+c9/7r/mmmtaqcL2LRzX\\\n", - "b/ny5f6ePXu2UoXtV3Ov3RNPPOHPycnxl5aW+iX5//Wvf7V+sUA7xxJwB3XixAm5XC7t3LlTpaWl\\\n", - "ioqK0o033iifzxdyvtvtVv/+/ZWamhoYy8vL07Fjx7Rnz562KrvdON/rh2+E49rV1dWpa9eurVhl\\\n", - "+9XS63fw4EG99NJLysnJaeVK25/mXLuPPvpIDzzwgNasWaOoKP6TBwREOoEiPA4dOuSX5P/www9D\\\n", - "fj5jxgz/6NGjg8ZOnDjhl+TfsmVLW5TYrp3r+n2b1TuA/+58rp3f7/e//fbb/ujoaP+f//znVq6s\\\n", - "YzB6/SZNmuTv3LmzX5L/hhtu8J88ebKNKmy/znXtTp065R8wYID/D3/4g9/v9/u3bdtGBxD4Cn8d\\\n", - "6qD279+vyZMn65JLLlF8fLz69u0r6csHPX74wx+qS5cu6tKli77//e9HttB2iuvXfC25drt379a4\\\n", - "ceO0ePFijR49uo0rbx+ae/0effRR7dq1S3/605/017/+VS6XKwLVR9b5XrvCwkJlZGToJz/5SQSr\\\n", - "BtonHgLpoG644Qb16dNHTz31lNLS0uTz+dSvXz/V19frt7/9rU6ePClJiomJkSQ5HA6Vl5cHHaO6\\\n", - "ujrwmdWc7/XDN5p77T766CONGjVKM2fO1MKFCyNRervQ3OvncDjkcDiUnp6url276qqrrtJ9992n\\\n", - "7t27R+I0IuJ8r93WrVv14Ycf6oUXXpAk+b/65dPk5GTde++9uv/++yNzIkA7QADsgI4cOaLKyko9\\\n", - "9dRTuuqqqyRJb731VuDzHj16nLGP0+nUgw8+qJqaGnXr1k2SVFJSovj4eGVmZrZN4e1Ec64fvtTc\\\n", - "a7dnzx5de+21mjZtmh588ME2qbU9Cte/e1/f8+b1esNfZDvVnGv34osvBkKhJO3YsUM//elP9Ze/\\\n", - "/EXf/e53W79ooB0jAHZAF198sZKSkrR69Wp1795dVVVVKigoaHKf0aNHKzMzU7feeqt+/etfy+Px\\\n", - "aOHChZo1a5bsdnsbVd4+NOf6SdInn3yi48ePy+Px6OTJk3rvvfckSZmZmYqNjW3lqtuH5ly73bt3\\\n", - "69prr1VeXp5cLpc8Ho8kqVOnTkpJSWmLstuN5ly/LVu2qLq6WkOGDFGXLl20Z88eLViwQFdeeWVg\\\n", - "CdQKmnPt/j3kHT58WJKUkZGhxMTE1ioV6BgifRMimqekpMSfkZHht9vt/gEDBvhff/11vyT/yy+/\\\n", - "fNZ9PvvsM/8Pf/hDf+fOnf3Jycn++fPn+xsaGtqu6HakOdcvJyfHL+mM7W9/+1ub1d0enO+1W7x4\\\n", - "ccjr1qdPnzatu7043+u3detWv9Pp9CckJPjj4uL8l112mf/uu++25IMMzfn/7bfxEAjwDZvf/9VN\\\n", - "EQAAALAEngIGAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAW\\\n", - "QwAEAACwGAIgAACAxRAAAYRNcXGxRowYocTERCUlJen666/XX//610iXBQD4NwRAAGFz4sQJuVwu\\\n", - "7dy5U6WlpYqKitKNN94on88X6dIAAN9i8/v9/kgXAcCcDh8+rJSUFH344Yfq169fpMsBAHyFDiCA\\\n", - "sNm/f78mT56sSy65RPHx8erbt68kqaqqKrKFAQCCREe6AADmccMNN6hPnz566qmnlJaWJp/Pp379\\\n", - "+qm+vj7SpQEAvoUACCAsjhw5osrKSj311FO66qqrJElvvfVWhKsCAIRCAAQQFhdffLGSkpK0evVq\\\n", - "de/eXVVVVSooKIh0WQCAELgHEEBYREVFad26daqoqFC/fv00b948/eY3v4l0WQCAEHgKGAAAwGLo\\\n", - "AAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgM\\\n", - "ARAAAMBiCIAAAAAWQwAEAACwmP8PaO9Jf6FzT/kAAAAASUVORK5CYII=\\\n", + "AAAPYQGoP6dpAAAkiUlEQVR4nO3df4wd5X0v/vfalGOSeHdxGtY2ElRtCq6aa7akVLGXg51wu6xq\\\n", + "h0ZySkDIJmwbHFKU6zrfXt9FUQoSYeltroORKsKNEgSktElMf4DbssL8cBd7JYwqm9ZUVRqRbmQw\\\n", + "VfGyS6xwWNv7/SO3Vk7W2GM49tozr5f0SPY8M3OeOULym89n5kzb1NTUVAAAqIxZM70AAABOLQEQ\\\n", + "AKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYA\\\n", + "BACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoR\\\n", + "AAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBi\\\n", + "BEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABKa57bbb8uabbx75+5e+9KX82Z/92Qyu\\\n", + "6Oi+8Y1v5Jd/+ZfzS7/0S/nMZz6TycnJmV4SwBmhbWpqamqmFwGcXtra2jI2NpbOzs6ZXsrbeuml\\\n", + "l9LT05N//Md/TFdXV377t387V111VX7/939/ppcGcNpTAYQSu/766/Prv/7rWbx4cVasWJF9+/Yd\\\n", + "95jPfvazSZJ6vZ7u7u78x3/8Rz796U/n7rvvTvKT6uA111yTj3/847nooouycuXK/PM//3Ouuuqq\\\n", + "XHTRRbnuuuty+PDhJMkbb7yRz3zmM/mN3/iNLF68ODfddFPeeuutllzb5s2bc/XVV2f+/Plpa2vL\\\n", + "Zz/72fz5n/95S84NUHYCIJTY3Xffneeffz4vvPBC6vV6brvttiNzv/Vbv5Xnn39+2jFf+9rXkiTD\\\n", + "w8PZtWtXzjvvvGn7PP/883nwwQfzr//6r3njjTfye7/3e9m8eXNefPHF/Mu//Ev+/u//PknyhS98\\\n", + "IfV6Pc8991x2796dw4cPZ9OmTdPO98Ybb6S7u/uo46qrrjrqtY2OjubCCy888vdf+IVfyOjo6Al9\\\n", + "PwBVddZMLwA4eR5++OE89NBDefPNN/Pmm2/m53/+54/M/d3f/d07Pm9vb2/OPffcJMmll16aWq2W\\\n", + "uXPnJkl+7dd+Ld/73veSJH/913+dkZGRbNy4MUny4x//OLNnz552vrlz52bXrl3veD0AnBgBEErq\\\n", + "2WefzT333JORkZGcd955efTRR/OlL32pJeeeM2fOkT/Pnj172t8PHjyYJJmamsojjzySiy666Jjn\\\n", + "e+ONN1Kv148619XVlaGhoWnbL7jggnz/+98/8vcf/OAHueCCC07oOgCqSgCEkhobG8vcuXPz/ve/\\\n", + "P2+99Vbuu+++wsfOnTs34+Pj7/ohkE984hP54z/+49x3330566yzMjY2ltdeey0f/OAHp33eiVYA\\\n", + "V61alcsvvzy33XZburq68rWvfS3XXnvtu1ovQFW4BxBKqq+vLxdffHEuvvjiIw90/LS3uwcw+cm9\\\n", + "e7/5m7955CGQd+qrX/1qzjnnnHR3d2fx4sW58sor84Mf/OAdn++n/eIv/mJuv/329PT05IMf/GA+\\\n", + "8IEPZO3atS05N0DZ+RkYAICKUQEEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEA\\\n", + "AQAqxqvg3qXL7tw400sA4Ayx89b1J/0z/tulX2jJef7pH/9PS87D6UkFEACgYlQAAaBM2mZ6AZwJ\\\n", + "VAABACpGBRAAyqRNCZDjEwABoEzkPwrQAgYA3pUNGzakXq9n9erVmZycPLL90KFD6e/vT71ez7p1\\\n", + "65qOGRkZSVtbW370ox+d4tWSCIAAUC5tLRoF7d69O3v37s3w8HAWLVqUzZs3H5nbsmVLFi5cmOHh\\\n", + "4Rw4cCAjIyNH5u655558+MMffhcXyrshAAJAqbQmATYajUxMTDSNRqMx7dN27NiR3t7eJElfX1+2\\\n", + "b99+3Llnn302ixcvzvve977WXz6FCIAAwDSDg4Pp6OhoGoODg9P2GxsbS3t7e5Kko6Mj+/fvP+7c\\\n", + "pk2bcsstt5yCq+DteAgEAEpkqkUPgQwMDGT9+uY3l9RqtWn7dXZ2ZmJiIkkyPj6eefPmHXNu27Zt\\\n", + "ueSSSzJ37tzWLJR3RAUQAMqkRfcA1mq1tLe3N42jBcClS5dm69atSZKhoaH09PQcc2737t158skn\\\n", + "09fXlxdeeCE33HDDSfkaODYBEAB4x7q7u9PV1ZV6vZ49e/Zk1apVWbt2bZJk5cqVGR0dTb1ez5w5\\\n", + "c7JkyZJ8/vOfz9NPP53HH388ixcvzgMPPDDDV1BNbVNTU1MzvYgz2WV3bpzpJQBwhth56/rj7/Qu\\\n", + "fWjJ/2zJef555H+35DycnlQAAQAqxkMgAFAm3gRCASqAAAAVowIIAGXSpgTI8QmAAFAm8h8FaAED\\\n", + "AFSMCiAAlIjfdqMIARAAysQ9gBSgBQwAUDEqgABQJgqAFCAAAkCpSIAcnxYwAEDFqAACQJkoAFKA\\\n", + "AAgAZSIAUoAACAAlMuVnYCjAPYAAABUjAAIAVIwWMACUiRYwBagAAgBUjAogAJSJAiAFCIAAUCJT\\\n", + "M70AzgiVDICHDh3K5s2bs3379uzfvz/z5s1LT09PVq1albPOquRXAgBUSCXTTn9/fy6++OJ8+tOf\\\n", + "TkdHR8bHxzM0NJQbb7wxDz300Nse12g00mg0mrYdPngws4RGAE4XHgKhgEoml5deeikPPPBA07ZL\\\n", + "L700V1xxxTGPGxwczO233960bcHHenP+lVe1fI0A8I7IfxRQyQC4dOnSrFmzJr29vWlvb8/ExES2\\\n", + "bt2aj3zkI8c8bmBgIOvXr2/a9tG7v3YylwoA0HKVDIB33XVXXnjhhezYsSM//OEP09nZmT/4gz/I\\\n", + "JZdccszjarVaarVa0zbtXwBOK1rAFFDZ9LJ48eIsXrx4ppcBAC3lKWCKqGwABIBSUgCkAG8CAQCo\\\n", + "GBVAACgT9wBSgAogAEDFCIAAABWjBQwAJTKlBUwBAiAAlIn8RwFawAAAFSMAAgBUjAAIACUy1dbW\\\n", + "knEiNmzYkHq9ntWrV2dycvLI9kOHDqW/vz/1ej3r1q07sr2npyfLli1LT09PXnzxxVZdOidAAAQA\\\n", + "3rHdu3dn7969GR4ezqJFi7J58+Yjc1u2bMnChQszPDycAwcOZGRkJEny9NNPZ9u2bfnyl7+cjRs3\\\n", + "ztTSK00ABIAyaWvNaDQamZiYaBqNRmPax+3YsSO9vb1Jkr6+vmzfvv24c2effXaS5I033siHPvSh\\\n", + "Fn8BFCEAAkCZtCgADg4OpqOjo2kMDg5O+7ixsbG0t7cnSTo6OrJ///7jzu3bty89PT353Oc+l2XL\\\n", + "lrX+O+C4/AwMAJRKa34HZmDgf2X9+vVN22q12rT9Ojs7MzExkSQZHx/PvHnzjjs3f/78bN++Pc89\\\n", + "91wGBgby+OOPt2TNFKcCCABMU6vV0t7e3jSOFgCXLl2arVu3JkmGhobS09NzzLnJyckcPnw4yU+q\\\n", + "gu95z3tOwdXwswRAACiRqbbWjKK6u7vT1dWVer2ePXv2ZNWqVVm7dm2SZOXKlRkdHU29Xs+cOXOy\\\n", + "ZMmSvPLKK1m+fHk++tGP5uabb84dd9xxkr4JjqVtampqaqYXcSa77E5PLwFQzM5b1x9/p3fpl3/7\\\n", + "9pac53t/80ctOQ+nJxVAAICK8RAIAJSKlwFzfAIgAJTIidy/R3VpAQMAVIwKIACUiQogBQiAAFAq\\\n", + "EiDHpwUMAFAxKoAAUCIeAqEIARAAykQApAABEABKRQLk+NwDCABQMSqAAFAmCoAUIAACQIl4CIQi\\\n", + "tIABACpGBRAAykQFkAIEQAAoFQmQ49MCBgCoGBVAACgRD4FQhAAIAGUiAFKAFjAAQMUIgAAAFaMF\\\n", + "DABl0qYHzPEJgABQIh4CoQgtYACAihEAAQAqRgsYAMpEC5gCVAABACpGBRAAysRTwBQgAAJAiUzN\\\n", + "9AI4I2gBAwBUjAogAJSJDjAFCIAAUCYCIAVoAQMAVIwACABQMVrAAFAmfgaGAlQAAaBEptpaM07E\\\n", + "hg0bUq/Xs3r16kxOTh7ZfujQofT396der2fdunVJkpdeein1ej3Lli3LihUrMj4+3sKrpygBEAB4\\\n", + "x3bv3p29e/dmeHg4ixYtyubNm4/MbdmyJQsXLszw8HAOHDiQkZGRdHZ25rHHHsu2bdty9dVX5+tf\\\n", + "//oMrr66BEAA4B3bsWNHent7kyR9fX3Zvn37MefOPffcdHZ2JknOPvvszJoliswE9wACQJm06BbA\\\n", + "RqORRqPRtK1Wq6VWqzVtGxsby4IFC5IkHR0d2b9/f9Nce3v7Uedef/313HvvvXn88cdbs2BOiNgN\\\n", + "AEwzODiYjo6OpjE4ODhtv87OzkxMTCRJxsfHM2/evOPOTU5O5vrrr8/GjRub9ufUEQABoEzaWjMG\\\n", + "BgYyPj7eNAYGBqZ93NKlS7N169YkydDQUHp6eo47d9NNN+Waa67J5Zdf3vrrpxABEABKpTUJsFar\\\n", + "pb29vWn8bPs3Sbq7u9PV1ZV6vZ49e/Zk1apVWbt2bZJk5cqVGR0dTb1ez5w5c7JkyZIMDw/nO9/5\\\n", + "Tu6///4sX748mzZtOsnfB0fTNjU1NTXTiziTXXbnxpleAgBniJ23rj/pn3FB/x+35Dyj39zQkvNw\\\n", + "evIQCACUid+BpgABEADKRACkAPcAAgBUjAogAJSIG/spQgAEgDLRAqYALWAAgIoRAAEAKkYLGADK\\\n", + "pE0PmONTAfwpDz744DHnG41GJiYmmsbhgwdP0eoAoIAWvQqOcqtkAHzxxRenjT179uS+++475nFH\\\n", + "ezH2K9uePEWrBgBojUq2gD/ykY/kk5/8ZH72LXj//u//fszjBgYGsn5982t8Pnr311q+PgCAk6mS\\\n", + "AfBXfuVX8id/8id5//vf37R9xYoVxzyuVqtNexH2rLMq+RUCcLrSvqWASqaXJ554Iu9973unbf/b\\\n", + "v/3bGVgNAMCpVckA2N7ePtNLAICTQwWQAir5EAgAQJUJgAAAFVPJFjAAlJYWMAUIgABQIm3eBEIB\\\n", + "WsAAABUjAAIAVIwWMACUiQ4wBQiAAFAmAiAFaAEDAFSMAAgAUDFawABQIn4FhiJUAAEAKkYABACo\\\n", + "GC1gACgTLWAKUAEEAKgYFUAAKBMVQAoQAAGgROQ/ihAAAaBM/A4MBbgHEACgYlQAAaBEFAApQgUQ\\\n", + "AKBiBEAAgIoRAAGgTNpaNE7Ahg0bUq/Xs3r16kxOTh7ZfujQofT396der2fdunVHtn/sYx9LZ2dn\\\n", + "tmzZ8s6ukXdNAASAEjnV+W/37t3Zu3dvhoeHs2jRomzevPnI3JYtW7Jw4cIMDw/nwIEDGRkZSZJ8\\\n", + "61vfagqEnHoCIADwju3YsSO9vb1Jkr6+vmzfvv24cwsXLjz1C6WJp4ABoExa9BRwo9FIo9Fo2lar\\\n", + "1VKr1Zq2jY2NZcGCBUmSjo6O7N+/v2muvb39qHPMLBVAACiRtrbWjMHBwXR0dDSNwcHBaZ/X2dmZ\\\n", + "iYmJJMn4+HjmzZtXaI6ZJQACANMMDAxkfHy8aQwMDEzbb+nSpdm6dWuSZGhoKD09PYXmmFkCIAAw\\\n", + "Ta1WS3t7e9P42fZvknR3d6erqyv1ej179uzJqlWrsnbt2iTJypUrMzo6mnq9njlz5mTJkiVJkv7+\\\n", + "/jz44IP54he/mLvuuuuUXhc/0TY1NTU104s4k11258aZXgIAZ4idt64/6Z/xwf/5lZac59/+9//X\\\n", + "kvNwelIBBACoGAEQAKBi/AwMAJRIW4t+BoZyEwABoEwEQArQAgYAqBgVQAAokTYlQAoQAAGgTOQ/\\\n", + "CtACBgCoGBVAACgRBUCKEAABoET8DAxFaAEDAFSMCiAAlIkKIAUIgABQIvIfRQiAAFAmEiAFuAcQ\\\n", + "AKBiVAABoEQUAClCAASAEvEzMBShBQwAUDEqgABQJiqAFCAAAkCJyH8UoQUMAFAxKoAAUCIeAqEI\\\n", + "FUAAgIoRAAEAKkYLGABKRAuYIgRAACgTAZACBEAAKJE2CZAC3AMIAFAxKoAAUCLuAaQIFUAAgIoR\\\n", + "AAEAKkYLGABKRAuYIgRAACgR+Y8itIABACpGBRAAykQJkAIEQAAoEfcAUoQWMADwrmzYsCH1ej2r\\\n", + "V6/O5OTkke2HDh1Kf39/6vV61q1bd2T7pk2b0tPTk6uvvjoTExMzsGIEQAAokbYWjaJ2796dvXv3\\\n", + "Znh4OIsWLcrmzZuPzG3ZsiULFy7M8PBwDhw4kJGRkfznf/5nHn300Tz77LP51Kc+lT/90z9919fM\\\n", + "iTvjW8BTU1N56qmn8vLLL2dqaipJsmbNmmMec+jQofzN3/xNZs2alY9//OOZPXt2kuS73/1ufud3\\\n", + "fudtj2s0Gmk0Gk3bDh88mFlnnfFfIwBl0aIW8NH+zavVaqnVak3bduzYkd7e3iRJX19f7r///lx3\\\n", + "3XVH5lasWHFkbvv27Xn99dezbNmytLW1pa+vLzfccENrFswJOeMrgJ/61Kfy2GOP5Y477sjzzz+f\\\n", + "xx9//LjHrFmzJs8//3x27dqVK664Iv/2b/+WJLn33nuPedzg4GA6OjqaxivbnmzJdQBAK7SqAni0\\\n", + "f/MGBwenfd7Y2Fja29uTJB0dHdm/f/8x5461P6fOGR8AX3311dx9991ZsGBB7rnnnvz4xz8+7jF7\\\n", + "9+7NnXfemdtuuy0PP/xwfvd3fzdPP/30cY8bGBjI+Ph401iw7MpWXAYAnFaO9m/ewMDAtP06OzuP\\\n", + "3Mc3Pj6eefPmHXPuWPtz6pzxAXD27Nk5fPhwzj333Hzzm9/M97///eMe89Zbbx0pa1944YXZsmVL\\\n", + "vvKVr+Sf/umfjnlcrVZLe3t709D+BeB00tbWmnG0f/N+tv2bJEuXLs3WrVuTJENDQ+np6Tnm3GWX\\\n", + "XZZ/+Id/OOr+nDpnfAD8i7/4ixw+fDj33ntvXn/99Tz00EPHPWbTpk15/fXXj/x97ty5efTRR/PV\\\n", + "r371JK4UAE6BU/wUSHd3d7q6ulKv17Nnz56sWrUqa9euTZKsXLkyo6OjqdfrmTNnTpYsWZIPfOAD\\\n", + "WbFiRXp6evLwww/nc5/7XGuumxPSNvVfT07wjlx258aZXgIAZ4idt64/6Z/xG3e15t+l5/7XyV8r\\\n", + "M0f/EgBKxO9AU4QACAAl4k0gFHHG3wMIAMCJUQEEgFJRAuT4BEAAKBEtYIrQAgYAqBgVQAAoExVA\\\n", + "ChAAAaBE5D+KEAABoETcA0gR7gEEAKgYARAAoGK0gAGgRLSAKUIFEACgYlQAAaBEFAApQgAEgDKR\\\n", + "AClACxgAoGJUAAGgRDwEQhECIACUiPxHEQIgAJSJBEgB7gEEAKgYFUAAKBEFQIoQAAGgRDwEQhFa\\\n", + "wAAAFaMCCABlogRIAQIgAJSI+EcRWsAAABWjAggAZaIESAECIACUiPxHEVrAAAAVowIIACXiIWCK\\\n", + "EAABoEwEQAoQAAGgROQ/inAPIABAxagAAkCJuAeQIlQAAQAqRgAEAKgYARAASqStrTWjVTZs2JB6\\\n", + "vZ7Vq1dncnKyae7QoUPp7+9PvV7PunXrjmz/2Mc+ls7OzmzZsqV1C6GJAAgAJXI6BcDdu3dn7969\\\n", + "GR4ezqJFi7J58+am+S1btmThwoUZHh7OgQMHMjIykiT51re+1RQIaT0BEACYptFoZGJiomk0Go0T\\\n", + "OseOHTvS29ubJOnr68v27dsLzS9cuLAFV8CxCIAAwDSDg4Pp6OhoGoODgyd0jrGxsbS3tydJOjo6\\\n", + "sn///hOa5+TxMzAAUCKtat8ODAxk/fr1TdtqtdpR9923b1+uvfbaadt7e3szMTGRJBkfH8+8efOa\\\n", + "5js7O485z8kjAAIA09RqtbcNfD9r/vz5eeaZZ6Zt37VrVzZu3Jg1a9ZkaGgoPT09TfNLly7N1q1b\\\n", + "c8UVV2RoaCg33nhjK5ZOAVrAAFAibS0ardDd3Z2urq7U6/Xs2bMnq1atSpKsXbs2SbJy5cqMjo6m\\\n", + "Xq9nzpw5WbJkSZKkv78/Dz74YL74xS/mrrvuatFq+GltU1NTUzO9iDPZZXdunOklAHCG2Hnr+uPv\\\n", + "9C791v+9uyXn+bub1rXkPJyetIABoES8Co4itIABACpGBRAASkQBkCIEQAAoEz1gCtACBgCoGBVA\\\n", + "ACgR9T+KEAABoER0gClCCxgAoGJUAAGgRFQAKUIFEACgYgRAAICK0QIGgBLRAqYIARAASkT+owgB\\\n", + "EADKRAKkAPcAAgBUjAogAJSIAiBFCIAAUCIeAqEILWAAgIpRAQSAElEBpAgVQACAihEAAQAqRgsY\\\n", + "AEpEC5giBEAAKBH5jyK0gAEAKqaSFcBXX3013/jGN/Krv/qrufTSS3PnnXfmve99b/7wD/8wXV1d\\\n", + "b3tco9FIo9Fo2nb44MHMOquSXyMApyEtYIqoZAXw+uuvz/nnn58f/vCH6e3tzZVXXpne3t709/cf\\\n", + "87jBwcF0dHQ0jVe2PXmKVg0Ax9fW1ppBuVUyAB48eDA33HBDbrnllnR0dOSTn/xkent78+abbx7z\\\n", + "uIGBgYyPjzeNBcuuPEWrBgBojUr2LicnJ4/8+b777jvy54MHDx7zuFqtllqt1rRN+xcAONNUMr38\\\n", + "1V/9VaamptLW1pZLLrkkyU9C4Ve+8pUZXhkAvDvatxRRyQB43nnnTdv2cz/3c7nssstmYDUA0Dry\\\n", + "H0VU8h5AAIAqq2QFEADKSguYIgRAACgR+Y8itIABACpGBRAAykQJkAJUAAGgRE63N4Fs2LAh9Xo9\\\n", + "q1evbvod3iQ5dOhQ+vv7U6/Xs27duiTJSy+9lHq9nmXLlmXFihUZHx9v3WI4QgAEAE6K3bt3Z+/e\\\n", + "vRkeHs6iRYuyefPmpvktW7Zk4cKFGR4ezoEDBzIyMpLOzs489thj2bZtW66++up8/etfn6HVl5sA\\\n", + "CAAl0tai0Qo7duxIb29vkqSvry/bt28/7vy5556bzs7OJMnZZ5+dWbNElZPBPYAAUCKtat82Go00\\\n", + "Go2mbUd7JeqxjI2NZcGCBUmSjo6O7N+/f9p8e3v7Uedff/313HvvvXn88cff6SVwDGI1AJRIqyqA\\\n", + "g4OD6ejoaBqDg4NH/cx9+/Zl+fLl00aSTExMJEnGx8czb968puM6OzuPOj85OZnrr78+GzdunHYM\\\n", + "raECCABMMzAwkPXr1zdte7vq3/z58/PMM89M275r165s3Lgxa9asydDQUHp6eprmly5dmq1bt+aK\\\n", + "K67I0NBQbrzxxiTJTTfdlGuuuSaXX355ay6GaVQAAaBEWvUUcK1WS3t7e9M4kfZvknR3d6erqyv1\\\n", + "ej179uzJqlWrkiRr165NkqxcuTKjo6Op1+uZM2dOlixZkuHh4XznO9/J/fffn+XLl2fTpk0t/45I\\\n", + "2qampqZmehFnssvu3DjTSwDgDLHz1vXH3+ld6v9uawLTN3/nf7TkPJyeVAABACrGPYAAUCKt/BFn\\\n", + "yksABIAyEQApQAsYAKBiVAABoEQUAClCAASAEnEPIEVoAQMAVIwKIACUiAIgRQiAAFAiWsAUIQAC\\\n", + "QInIfxThHkAAgIpRAQSAEtECpggBEABKRACkCC1gAICKUQEEgBJRAKQIARAASkQLmCK0gAEAKkYF\\\n", + "EABKRAGQIgRAACgRLWCK0AIGAKgYFUAAKBEFQIoQAAGgRLSAKUIABIASkf8owj2AAAAVowIIACWi\\\n", + "BUwRAiAAlIj8RxFawAAAFaMCCAAlogVMEQIgAJSIAEgRWsAAABWjAggAJaIASBECIACUSJseMAVo\\\n", + "AQMAVIwKIACUiPofRQiAAFAiOsAUIQACQInIfxThHkAA4KTZsGFD6vV6Vq9encnJyaa5Q4cOpb+/\\\n", + "P/V6PevWrTuyvaenJ8uWLUtPT09efPHFU7ziahAAAaBEZrW1ZrTC7t27s3fv3gwPD2fRokXZvHlz\\\n", + "0/yWLVuycOHCDA8P58CBAxkZGUmSPP3009m2bVu+/OUvZ+PGja1ZDE0EQAAokbYWjVbYsWNHent7\\\n", + "kyR9fX3Zvn17ofmzzz47SfLGG2/kQx/6UItWw09zDyAAME2j0Uij0WjaVqvVUqvVCp9jbGwsCxYs\\\n", + "SJJ0dHRk//790+bb29unze/bty+rVq3K6OhoHn300XdzGbwNFUAAKJG2ttaMwcHBdHR0NI3BwcGj\\\n", + "fua+ffuyfPnyaSNJJiYmkiTj4+OZN29e03GdnZ1HnZ8/f362b9+eRx55JAMDAyfpm6o2FUAAKJFW\\\n", + "tW8HBgayfv36pm1vV/2bP39+nnnmmWnbd+3alY0bN2bNmjUZGhpKT09P0/zSpUuzdevWXHHFFRka\\\n", + "GsqNN96YycnJzJ49O7NmzUpHR0fe8573tOiK+GkqgADANLVaLe3t7U3jRNq/SdLd3Z2urq7U6/Xs\\\n", + "2bMnq1atSpKsXbs2SbJy5cqMjo6mXq9nzpw5WbJkSV555ZUsX748H/3oR3PzzTfnjjvuaPm1kbRN\\\n", + "TU1NzfQizmSX3enpJACK2Xnr+uPv9C7dtvWe1pznv3++Jefh9KQFDAAl4oegKUILGACgYlQAAaBE\\\n", + "vAuYIgRAACgR+Y8iBEAAKJFWvcaNcnMPIABAxagAAkCJKABShAAIACXiIRCK0AIGAKgYFUAAKBEF\\\n", + "QIoQAAGgRLSAKUIL+P9Zt27dcfdpNBqZmJhoGocPHjz5iwMAaKFKVgDPO++8XHDBBZk1a1ampqaS\\\n", + "JN/73veyY8eOPPfcc2973ODgYG6//fambQs+1pvzr7zqpK4XAIpSAKSISlYAN23alAsvvDBf+MIX\\\n", + "snPnzuzcuTNLliw5ZvhLkoGBgYyPjzeNBcuuPEWrBoDja2trzaDcKhkAr7vuunz3u9/NwYMH84lP\\\n", + "fCIPP/zwkUrgsdRqtbS3tzeNWWdVsogKAJzBKhkAk2TWrFm5/vrr85d/+Zc5ePBguru7Z3pJAPCu\\\n", + "qQBSROXLV7NmzcqaNWtmehkA0BKVrexwQiofAAGgTFTvKML/KAAAVIwKIACUiAIgRQiAAFAiWsAU\\\n", + "oQUMAFAxKoAAUCIKgBQhAAJAiWgBU4QWMABAxagAAkCJKABShAAIACWiBUwRWsAAABWjAggAJaIA\\\n", + "SBECIACUiBYwRQiAAFAi7u2iCP+dAABUjAogAJSIFjBFCIAAUCLyH0VoAQMAVIwKIACUiBYwRagA\\\n", + "AkCJtLVotMqGDRtSr9ezevXqTE5ONs0dOnQo/f39qdfrWbduXdPcyMhI2tra8qMf/aiFq+G/CIAA\\\n", + "wEmxe/fu7N27N8PDw1m0aFE2b97cNL9ly5YsXLgww8PDOXDgQEZGRo7M3XPPPfnwhz98qpdcGQIg\\\n", + "AJRIW1trRivs2LEjvb29SZK+vr5s37690Pyzzz6bxYsX533ve19rFsI0AiAAlEirAmCj0cjExETT\\\n", + "aDQaJ7SWsbGxtLe3J0k6Ojqyf//+QvObNm3KLbfc0oJvg7cjAAIA0wwODqajo6NpDA4OHnXfffv2\\\n", + "Zfny5dNGkkxMTCRJxsfHM2/evKbjOjs7p81v27Ytl1xySebOnXvyLg5PAQNAmbTqAY6BgYGsX7++\\\n", + "aVutVjvqvvPnz88zzzwzbfuuXbuycePGrFmzJkNDQ+np6WmaX7p0abZu3ZorrrgiQ0NDufHGG7Nz\\\n", + "5848+eSTefbZZ/PCCy/khhtuyCOPPNKiq+K/qAACQIm0qgVcq9XS3t7eNN4uAL6d7u7udHV1pV6v\\\n", + "Z8+ePVm1alWSZO3atUmSlStXZnR0NPV6PXPmzMmSJUvy+c9/Pk8//XQef/zxLF68OA888EDLvyOS\\\n", + "tqmpqamZXsSZ7LI7N870EgA4Q+y8df3xd3qXHnr+npacZ/Wvf74l5+H0pAIIAFAx7gEEgBLxJhCK\\\n", + "EAABoETa4s4ujk8LGACgYlQAAaBEtIApwlPAQEs1Go0MDg5mYGDghH8yAoBTQwAEWmpiYiIdHR0Z\\\n", + "Hx8/8oonAE4v7gEEAKgYARAAoGIEQACAihEAgZaq1Wr5oz/6Iw+AAJzGPAQCAFAxKoAAABUjAAIA\\\n", + "VIwACABQMQIgAEDFCIAAABVz1kwvACiPV199Nddee20OHjyYrq6ufPvb387s2bNnelkA/AwVQKBl\\\n", + "zj333DzxxBMZHh7O+eefn6eeemqmlwTAUagAAi3z2muv5eabb87Y2FhefvnlXHrppTO9JACOQgUQ\\\n", + "aJmHH344K1euzLZt29LX1xe/Mw9welIBBFrmyiuvzOrVq/PYY4/lnHPOmenlAPA2vAoOAKBitIAB\\\n", + "ACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICK8SYQoGVeffXVXHvttTl48GC6\\\n", + "urry7W9/O7Nnz57pZQHwM1QAgZY599xz88QTT2R4eDjnn39+nnrqqZleEgBHoQIItMxrr72Wm2++\\\n", + "OWNjY3n55Zdz6aWXzvSSADgKFUCgZR5++OGsXLky27ZtS19fX7xqHOD0pAIItMyVV16Z1atX57HH\\\n", + "Hss555wz08sB4G20TflfdACAStECBgCoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoR\\\n", + "AAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBi\\\n", + "BEAAgIoRAAEAKkYABAComP8f+XwTw0iM4HgAAAAASUVORK5CYII=\\\n", "\"\n", " frames[1] = \"\\\n", "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", - "AAAPYQGoP6dpAAA4qUlEQVR4nO3de3RU9b3//9cEkgmKSSQJGZBbqZeEcjsGCQNIFFJCRQtCFThU\\\n", - "LuYHX1uClEGORBF+2mo8LSBX5Yf1UooUflikQml6YkCtJhAI3kCIWqtxgZMAMeGAMAmZ+f6hTjtl\\\n", - "CJtkkkn2fj669uryM5+95733Spevvj9777H5fD6fAAAAYBkR4S4AAAAAzYsACAAAYDEEQAAAAIsh\\\n", - "AAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgM\\\n", - "ARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBi\\\n", - "CIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAW\\\n", - "QwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAE0Gif\\\n", - "f/65fv7zn+uGG25Qu3btFB8fr7vuukufffZZuEsDAATRNtwFAGj99u3bp8LCQk2cOFFdunTRZ599\\\n", - "pmeeeUa33HKLPvzwQ11xxRXhLhEA8C9sPp/PF+4iALRuZ8+eVbt27QLG9uzZI6fTqfXr1+uee+4J\\\n", - "U2UAgGBYAgbQaP8a/mpra3Xy5Elde+21iouL04EDB8JYGQAgGAIggEY7e/asFi1apK5du8putysh\\\n", - "IUGJiYmqqqpSdXV1uMsDAPwb7gEE0GizZ8/WCy+8oF/84hdyOp2KjY2VzWbTxIkT5fV6w10eAODf\\\n", - "EAABNNrLL7+sqVOnaunSpf6xc+fOqaqqKnxFAQAuiiVgAI3Wpk0b/fvzZKtWrVJdXV2YKgIA1IcO\\\n", - "IIBGu/322/X73/9esbGx6tWrl4qKivTaa68pPj4+3KUBAIIgAAJotBUrVqhNmzZ66aWXdO7cOQ0Z\\\n", - "MkSvvfaaMjMzw10aACAI3gMIAABgMdwDCAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAE\\\n", - "AACwGAIgAACAxRAAAQAALIZfAmmkBXkrw11Cq/WRm3eQA7CWrdPmNPl39LlxXkiO88GBpSE5Dlom\\\n", - "OoAAAAAWQwcQAAAzsYW7ALQGdAABAAAshg4gAABmYqMFiEsjAAIAYCbkPxjAEjAAAIDF0AEEAMBM\\\n", - "6ADCAAIgAACmQgLEpbEEDAAAYDF0AAEAMBEfDUAYQAAEAMBMCIAwgCVgAAAAi6EDCACAmfAiaBhA\\\n", - "BxAAAMBi6AACAGAmNABhAB1AAAAAi6EDCACAmXAPIAygAwgAgJnYQrQ1wJo1a9SjRw9FR0crLS1N\\\n", - "xcXF9c7fsmWLkpOTFR0drT59+mjnzp0Bn58+fVrZ2dnq0qWL2rVrp169emnt2rUNKw4BCIAAAKDR\\\n", - "Nm/eLJfLpcWLF+vAgQPq16+fMjMzVVFREXR+YWGhJk2apKysLL3zzjsaO3asxo4dq4MHD/rnuFwu\\\n", - "5eXlacOGDTp8+LB+8YtfKDs7W6+++mpznZZpEQABADARX4i2y7Vs2TLNmDFD06dP93fqrrjiCj3/\\\n", - "/PNB569YsUKjRo3S/PnzlZKSol/+8pe68cYbtXr1av+cwsJCTZ06Vbfccot69OihmTNnql+/fpfs\\\n", - "LOLSCIAAAJiJzRaSzePx6NSpUwGbx+MJ+pU1NTUqKSlRRkaGfywiIkIZGRkqKioKuk9RUVHAfEnK\\\n", - "zMwMmD948GC9+uqrOnr0qHw+n3bv3q2PPvpII0eODMGFsjYCIAAAuEBubq5iY2MDttzc3KBzT5w4\\\n", - "obq6OiUlJQWMJyUlye12B93H7XZfcv6qVavUq1cvdenSRVFRURo1apTWrFmjYcOGNfLswFPAAACY\\\n", - "SYgeAs7JyZHL5QoYs9vtoTm4QatWrdKePXv06quvqnv37nrzzTc1a9Ysde7c+YLuIS4PARAAAFMJ\\\n", - "TQK02+2GA19CQoLatGmj8vLygPHy8nI5HI6g+zgcjnrnnz17Vg899JBeeeUVjR49WpLUt29fvfvu\\\n", - "u1qyZAkBsJFYAgYAAI0SFRWl1NRUFRQU+Me8Xq8KCgrkdDqD7uN0OgPmS1J+fr5/fm1trWpraxUR\\\n", - "ERhV2rRpI6/XG+IzsB46gAAAmEmY3gPtcrk0depUDRgwQAMHDtTy5ct15swZTZ8+XZI0ZcoUXXPN\\\n", - "Nf77COfMmaP09HQtXbpUo0eP1qZNm7R//36tW7dOkhQTE6P09HTNnz9f7dq1U/fu3fXGG29o/fr1\\\n", - "WrZsWXhO0kQIgAAAmEmYAuCECRN0/PhxLVq0SG63W/3791deXp7/QY+ysrKAbt7gwYO1ceNGLVy4\\\n", - "UA899JCuu+46bdu2Tb179/bP2bRpk3JycjR58mRVVlaqe/fuevzxx3Xfffc1+/mZjc3n8zXkdT/4\\\n", - "1oK8leEuodX6yM2fHgBr2TptTpN/R69bHwrJcT7c/URIjoOWiXsAAQAALIYACAAAYDHcAwgAgJnY\\\n", - "wnQTIFoVOoAAAAAWQwcQAAAzoQEIAywTAE+cOKHnn39eRUVF/t8ZdDgcGjx4sKZNm6bExMQwVwgA\\\n", - "QOPxfgUYYYkl4H379un666/XypUrFRsbq2HDhmnYsGGKjY3VypUrlZycrP3794e7TAAAgGZhiQ7g\\\n", - "7Nmzddddd2nt2rWy/dvNsT6fT/fdd59mz56toqKieo/j8Xjk8XgCxs7XnFfbKEtcRgBAa8BDIDDA\\\n", - "Eh3A9957T3Pnzr0g/EmSzWbT3Llz9e67717yOLm5uYqNjQ3Y9vz/+U1QMQAADWQL0QZTs0QAdDgc\\\n", - "Ki4uvujnxcXF/p+qqU9OTo6qq6sDtkF3/zCUpQIAADQ5S6xdPvDAA5o5c6ZKSko0YsQIf9grLy9X\\\n", - "QUGBnn32WS1ZsuSSx7Hb7bLb7QFjLP8CAFoUloBhgCXSy6xZs5SQkKCnnnpKTz/9tOrq6iRJbdq0\\\n", - "UWpqql588UXdfffdYa4SAIDG4ylgGGGJAChJEyZM0IQJE1RbW6sTJ05IkhISEhQZGRnmygAACCEa\\\n", - "gDDAMgHwO5GRkerUqVO4ywAAAAgbywVAAABMjXsAYYAlngIGAADAPxEAAQAALIYlYAAATMTHEjAM\\\n", - "IAACAGAm5D8YwBIwAACAxRAAAQAALIYlYAAATIR7AGEEHUAAAACLoQMIAICZ0ACEAQRAAADMhAAI\\\n", - "AwiAAACYCgkQl8Y9gAAAABZDBxAAABPx0QCEAQRAAADMhAAIA1gCBgAAsBg6gAAAmAotQFwaHUAA\\\n", - "AEzEZwvN1hBr1qxRjx49FB0drbS0NBUXF9c7f8uWLUpOTlZ0dLT69OmjnTt3XjDn8OHD+vGPf6zY\\\n", - "2FhdeeWVuummm1RWVtawAuFHAAQAAI22efNmuVwuLV68WAcOHFC/fv2UmZmpioqKoPMLCws1adIk\\\n", - "ZWVl6Z133tHYsWM1duxYHTx40D/n73//u4YOHark5GS9/vrrev/99/XII48oOjq6uU7LtGw+n88X\\\n", - "7iJaswV5K8NdQqv1kZs/PQDWsnXanCb/jmvvfCwkx/nklUWXNT8tLU033XSTVq9eLUnyer3q2rWr\\\n", - "Zs+erQULFlwwf8KECTpz5ox27NjhHxs0aJD69++vtWvXSpImTpyoyMhI/f73v2/EmSAYOoAAAJiK\\\n", - "LSSbx+PRqVOnAjaPxxP0G2tqalRSUqKMjAz/WEREhDIyMlRUVBR0n6KiooD5kpSZmemf7/V69ec/\\\n", - "/1nXX3+9MjMz1bFjR6WlpWnbtm0NuioIRAAEAAAXyM3NVWxsbMCWm5sbdO6JEydUV1enpKSkgPGk\\\n", - "pCS53e6g+7jd7nrnV1RU6PTp03ryySc1atQo/c///I/uvPNOjRs3Tm+88UYIztDaeAoYAAATCdWL\\\n", - "oHNycuRyuQLG7HZ7aA5ugNfrlSSNGTNGc+fOlST1799fhYWFWrt2rdLT05utFjMiAAIAYCYhCoB2\\\n", - "u91w4EtISFCbNm1UXl4eMF5eXi6HwxF0H4fDUe/8hIQEtW3bVr169QqYk5KSorfeesvoaeAiWAIG\\\n", - "AMBUQnMP4OWIiopSamqqCgoK/GNer1cFBQVyOp1B93E6nQHzJSk/P98/PyoqSjfddJNKS0sD5nz0\\\n", - "0Ufq3r37ZdWHC9EBBAAAjeZyuTR16lQNGDBAAwcO1PLly3XmzBlNnz5dkjRlyhRdc801/vsI58yZ\\\n", - "o/T0dC1dulSjR4/Wpk2btH//fq1bt85/zPnz52vChAkaNmyYbr31VuXl5Wn79u16/fXXw3GKpkIA\\\n", - "BADATML0QyATJkzQ8ePHtWjRIrndbvXv3195eXn+Bz3KysoUEfHPhcfBgwdr48aNWrhwoR566CFd\\\n", - "d9112rZtm3r37u2fc+edd2rt2rXKzc3V/fffrxtuuEF//OMfNXTo0GY/P7PhPYCNxHsAG473AAKw\\\n", - "muZ4D2DPu34VkuN8umVhSI6Dlol7AAEAACyGJWAAAMwkTEvAaF0IgAAAmAoJEJdGAGwk7mNruCv4\\\n", - "Le9G+cLtDXcJrVZtbbgraL2+qubvDjADAiAAACYSql8CgbkRAAEAMBMCIAzgKWAAAACLIQACAABY\\\n", - "DEvAAACYiY01YFwaARAAABPhIRAYwRIwAACAxRAAAQAALIYlYAAAzIQlYBhABxAAAMBi6AACAGAm\\\n", - "PAUMAwiAAACYCL9QDyNYAgYAALAYOoAAAJgJK8AwgAAIAICZEABhAEvAAAAAFkMABAAAsBiWgAEA\\\n", - "MBNeAwMDCIAAAJiIj/wHA1gCBgAAsBgCIAAAgMWwBAwAgJmwBAwD6AACAABYDB1AAADMhA4gDCAA\\\n", - "AgBgKiRAXBpLwAAAABZDAAQAwExsIdoaYM2aNerRo4eio6OVlpam4uLieudv2bJFycnJio6OVp8+\\\n", - "fbRz586Lzr3vvvtks9m0fPnyhhWHAARAAADMJEwBcPPmzXK5XFq8eLEOHDigfv36KTMzUxUVFUHn\\\n", - "FxYWatKkScrKytI777yjsWPHauzYsTp48OAFc1955RXt2bNHnTt3vvzCEBQBEAAANNqyZcs0Y8YM\\\n", - "TZ8+Xb169dLatWt1xRVX6Pnnnw86f8WKFRo1apTmz5+vlJQU/fKXv9SNN96o1atXB8w7evSoZs+e\\\n", - "rZdeekmRkZHNcSqWQAAEAMBEfCHaLkdNTY1KSkqUkZHhH4uIiFBGRoaKioqC7lNUVBQwX5IyMzMD\\\n", - "5nu9Xt1zzz2aP3++fvCDH1xmVagPTwEDAGAmIXoI2OPxyOPxBIzZ7XbZ7fYL5p44cUJ1dXVKSkoK\\\n", - "GE9KStKRI0eCHt/tdged73a7/f/83//932rbtq3uv//+hp4GLoIOIAAAuEBubq5iY2MDttzc3Gb7\\\n", - "/pKSEq1YsUIvvviibDZebRNqBEAAAHCBnJwcVVdXB2w5OTlB5yYkJKhNmzYqLy8PGC8vL5fD4Qi6\\\n", - "j8PhqHf+3/72N1VUVKhbt25q27at2rZtq88//1zz5s1Tjx49Gn+CFkcABADATGy2kGx2u10xMTEB\\\n", - "W7DlX0mKiopSamqqCgoK/GNer1cFBQVyOp1B93E6nQHzJSk/P98//5577tH777+vd99917917txZ\\\n", - "8+fP11//+tcQXSzr4h7Ab33xxRdavHjxRZ9WkoLfD1FXe15tIrmMAIAWIkyrpS6XS1OnTtWAAQM0\\\n", - "cOBALV++XGfOnNH06dMlSVOmTNE111zjX0aeM2eO0tPTtXTpUo0ePVqbNm3S/v37tW7dOklSfHy8\\\n", - "4uPjA74jMjJSDodDN9xwQ/OenAnRAfxWZWWlfve739U7J9j9EB/9Ob+ZKgQAoOWaMGGClixZokWL\\\n", - "Fql///569913lZeX53/Qo6ysTF9++aV//uDBg7Vx40atW7dO/fr108svv6xt27apd+/e4ToFS7H5\\\n", - "fL7Lfdq7VXr11Vfr/fzTTz/VvHnzVFdXd9E5wTqA92x+lg5gA10RHe4KWrcv3N5wl9Bq1daGu4LW\\\n", - "66tq/u4a4/Cv5jX5d3T9P78OyXG++P/+KyTHQctkmeQyduxY2Ww21Zd3L/WUUbDH3wl/AIAWhQdm\\\n", - "YYBlloA7deqkrVu3yuv1Bt0OHDgQ7hIBAACahWUCYGpqqkpKSi76+aW6gwAAtAph+i1gtC6WWb+c\\\n", - "P3++zpw5c9HPr732Wu3evbsZKwIAAAgPywTAm2++ud7Pr7zySqWnpzdTNQAAAOFjmQAIAIAlsHwL\\\n", - "AwiAAACYCL+bCyMs8xAIAAAAvkEABAAAsBiWgAEAMBNWgGEAARAAADMhAMIAloABAAAshgAIAABg\\\n", - "MSwBAwBgIrwFBkbQAQQAALAYAiAAAIDFsAQMAICZsAQMA+gAAgAAWAwdQAAAzIQOIAwgAAIAYCLk\\\n", - "PxhBAAQAwEx4DwwM4B5AAAAAi6EDCACAidAAhBF0AAEAACyGAAgAAGAxLAEDAGAmLAHDAAIgAAAm\\\n", - "Qv6DESwBAwAAWAwdQAAAzIQWIAwgAAIAYCK8BgZGsAQMAABgMQRAAAAQEmvWrFGPHj0UHR2ttLQ0\\\n", - "FRcX1zt/y5YtSk5OVnR0tPr06aOdO3f6P6utrdWDDz6oPn366Morr1Tnzp01ZcoUHTt2rKlPwxII\\\n", - "gAAAmIjNFprtcm3evFkul0uLFy/WgQMH1K9fP2VmZqqioiLo/MLCQk2aNElZWVl65513NHbsWI0d\\\n", - "O1YHDx6UJH399dc6cOCAHnnkER04cEBbt25VaWmpfvzjHzfm8uBbNp/P5wt3Ea3ZuBdXhLuEVuuK\\\n", - "6HBX0Lp94faGu4RWq7Y23BW0Xl9V83fXGId/Na/Jv+Pa/1oSkuN88usHLmt+WlqabrrpJq1evVqS\\\n", - "5PV61bVrV82ePVsLFiy4YP6ECRN05swZ7dixwz82aNAg9e/fX2vXrg36Hfv27dPAgQP1+eefq1u3\\\n", - "bpdVHwLRAQQAAI1SU1OjkpISZWRk+MciIiKUkZGhoqKioPsUFRUFzJekzMzMi86XpOrqatlsNsXF\\\n", - "xYWkbivjKWCEzemz4a6gdfs/w/j/bw318AZagA2V2JG/u5YuVE8BezweeTyegDG73S673X7B3BMn\\\n", - "Tqiurk5JSUkB40lJSTpy5EjQ47vd7qDz3W530Pnnzp3Tgw8+qEmTJikmJuZyTgVB8L9kAADMxBaa\\\n", - "LTc3V7GxsQFbbm5us5+O9M0DIXfffbd8Pp+eeeaZsNRgNnQAAQDABXJycuRyuQLGgnX/JCkhIUFt\\\n", - "2rRReXl5wHh5ebkcDkfQfRwOh6H534W/zz//XLt27aL7FyJ0AAEAMBFbiP5jt9sVExMTsF0sAEZF\\\n", - "RSk1NVUFBQX+Ma/Xq4KCAjmdzqD7OJ3OgPmSlJ+fHzD/u/D38ccf67XXXlN8fHwIrhAkOoAAAJhL\\\n", - "mH4JxOVyaerUqRowYIAGDhyo5cuX68yZM5o+fbokacqUKbrmmmv8y8hz5sxRenq6li5dqtGjR2vT\\\n", - "pk3av3+/1q1bJ+mb8PeTn/xEBw4c0I4dO1RXV+e/P7BDhw6KiooKz4maBAEQAAA02oQJE3T8+HEt\\\n", - "WrRIbrdb/fv3V15env9Bj7KyMkVE/HPhcfDgwdq4caMWLlyohx56SNddd522bdum3r17S5KOHj2q\\\n", - "V199VZLUv3//gO/avXu3brnllmY5L7MiAAIAYCLh/Cng7OxsZWdnB/3s9ddfv2Dsrrvu0l133RV0\\\n", - "fo8ePcSripsOARAAABMJ1WtgYG48BAIAAGAxdAABADATOoAwgAAIAICJkP9gBAEQAAAzIQHCAO4B\\\n", - "BAAAsBg6gAAAmAgNQBhBAAQAwER4DQyMYAkYAADAYugAAgBgJnQAYQABEAAAEyH/wQiWgAEAACyG\\\n", - "DiAAACbCQyAwgg4gAACAxRAAAQAALIYlYAAATIQlYBhBAAQAwEwIgDCAAAgAgInYSIAwgHsAAQAA\\\n", - "LIYOIAAAJsI9gDCCDiAAAIDFEAABAAAshiVgAABMhCVgGEEABADARMh/MIIlYAAAAIuhAwgAgJnQ\\\n", - "AoQBBEAAAEyEewBhBEvAAAAAFkMHEAAAE6EBCCMs0wE8e/as3nrrLX344YcXfHbu3DmtX7/+ksfw\\\n", - "eDw6depUwFZXe74pygUAoGFsIdpgapYIgB999JFSUlI0bNgw9enTR+np6fryyy/9n1dXV2v69OmX\\\n", - "PE5ubq5iY2MDto/+nN+UpQMAcFnIfzDCEgHwwQcfVO/evVVRUaHS0lJdddVVGjJkiMrKyi7rODk5\\\n", - "Oaqurg7Yrh/9wyaqGgCA1mXNmjXq0aOHoqOjlZaWpuLi4nrnb9myRcnJyYqOjlafPn20c+fOgM99\\\n", - "Pp8WLVqkTp06qV27dsrIyNDHH3/clKdgGZYIgIWFhcrNzVVCQoKuvfZabd++XZmZmbr55pv16aef\\\n", - "Gj6O3W5XTExMwNYmktsoAQAth80Wmu1ybd68WS6XS4sXL9aBAwfUr18/ZWZmqqKiIuj8wsJCTZo0\\\n", - "SVlZWXrnnXc0duxYjR07VgcPHvTP+fWvf62VK1dq7dq12rt3r6688kplZmbq3LlzDb08+JYlAuDZ\\\n", - "s2fVtu0/g5rNZtMzzzyjO+64Q+np6froo4/CWB0AACEUpjXgZcuWacaMGZo+fbp69eqltWvX6oor\\\n", - "rtDzzz8fdP6KFSs0atQozZ8/XykpKfrlL3+pG2+8UatXr5b0Tfdv+fLlWrhwocaMGaO+fftq/fr1\\\n", - "OnbsmLZt23b5BSKAJQJgcnKy9u/ff8H46tWrNWbMGP34xz8OQ1UAALRcwR589Hg8QefW1NSopKRE\\\n", - "GRkZ/rGIiAhlZGSoqKgo6D5FRUUB8yUpMzPTP/8f//iH3G53wJzY2FilpaVd9JgwzhIB8M4779Qf\\\n", - "/vCHoJ+tXr1akyZNks/na+aqAAAIvVA1AIM9+Jibmxv0O0+cOKG6ujolJSUFjCclJcntdgfdx+12\\\n", - "1zv/u/++nGPCOEsEwJycnAtuLP1XTz/9tLxebzNWBABA0wjVPYDBHnzMyckJ9+khRHiCAQAAXMBu\\\n", - "t8tutxuam5CQoDZt2qi8vDxgvLy8XA6HI+g+Doej3vnf/Xd5ebk6deoUMKd///5GTwMXYYkOIAAA\\\n", - "1tH8T4FERUUpNTVVBQUF/jGv16uCggI5nc6g+zidzoD5kpSfn++f/73vfU8OhyNgzqlTp7R3796L\\\n", - "HhPG0QEEAMBEGvIKl1BwuVyaOnWqBgwYoIEDB2r58uU6c+aM/4cWpkyZomuuucZ/H+GcOXOUnp6u\\\n", - "pUuXavTo0dq0aZP279+vdevWfXseNv3iF7/Qr371K1133XX63ve+p0ceeUSdO3fW2LFjw3OSJkIA\\\n", - "BAAAjTZhwgQdP35cixYtktvtVv/+/ZWXl+d/iKOsrEwREf9ceBw8eLA2btyohQsX6qGHHtJ1112n\\\n", - "bdu2qXfv3v45//Vf/6UzZ85o5syZqqqq0tChQ5WXl6fo6OhmPz+zsfl4/LVRxr24ItwltFpe/vIa\\\n", - "5e5+4a6g9Xp4Q224S2i1Ejty51BjFC9wNfl3OH/zVEiOUzR/bkiOg5aJDiAAACbC7/jCCAIgAAAm\\\n", - "Eq57ANG60MsHAACwGAIgAACAxbAEDACAibAEDCPoAAIAAFgMHUAAAEyEBiCMIAACAGAmJEAYwBIw\\\n", - "AACAxdABBADARHgIBEYQAAEAMBHyH4wgAAIAYCYkQBjAPYAAAAAWQwcQAAAToQEIIwiAAACYCA+B\\\n", - "wAiWgAEAACyGDiAAAGZCCxAGEAABADAR4h+MYAkYAADAYugAAgBgJrQAYQABEAAAEyH/wQiWgAEA\\\n", - "ACyGDiAAACbCQ8AwggAIAICZEABhAAEQAAATIf/BCAIgwubol3XhLqFV+3+3ngp3Ca1WxyEx4S6h\\\n", - "1fqqyhfuEgCEAAEQAAAT4R5AGMFTwAAAABZDAAQAALAYloABADARloBhBAEQAAATIQDCCJaAAQBA\\\n", - "s6msrNTkyZMVExOjuLg4ZWVl6fTp0/Xuc+7cOc2aNUvx8fFq3769xo8fr/Lycv/n7733niZNmqSu\\\n", - "XbuqXbt2SklJ0YoVK5r6VFo1AiAAAGg2kydP1qFDh5Sfn68dO3bozTff1MyZM+vdZ+7cudq+fbu2\\\n", - "bNmiN954Q8eOHdO4ceP8n5eUlKhjx47asGGDDh06pIcfflg5OTlavXp1U59Oq8USMAAAJtKSl4AP\\\n", - "Hz6svLw87du3TwMGDJAkrVq1SrfddpuWLFmizp07X7BPdXW1nnvuOW3cuFHDhw+XJL3wwgtKSUnR\\\n", - "nj17NGjQIN17770B+/Ts2VNFRUXaunWrsrOzm/7EWiE6gAAA4AIej0enTp0K2DweT6OOWVRUpLi4\\\n", - "OH/4k6SMjAxFRERo7969QfcpKSlRbW2tMjIy/GPJycnq1q2bioqKLvpd1dXV6tChQ6PqNTMCIAAA\\\n", - "JmIL0Zabm6vY2NiALTc3t1G1ud1udezYMWCsbdu26tChg9xu90X3iYqKUlxcXMB4UlLSRfcpLCzU\\\n", - "5s2bL7m0bGUEQAAAzCRECTAnJ0fV1dUBW05OTtCvXLBggWw2W73bkSNHmva8v3Xw4EGNGTNGixcv\\\n", - "1siRI5vlO1sj7gEEAMBEQnUPoN1ul91uNzR33rx5mjZtWr1zevbsKYfDoYqKioDx8+fPq7KyUg6H\\\n", - "I+h+DodDNTU1qqqqCugClpeXX7DPhx9+qBEjRmjmzJlauHChodqtigAIAAAaJTExUYmJiZec53Q6\\\n", - "VVVVpZKSEqWmpkqSdu3aJa/Xq7S0tKD7pKamKjIyUgUFBRo/frwkqbS0VGVlZXI6nf55hw4d0vDh\\\n", - "wzV16lQ9/vjjITgrc2MJGAAAEwnVPYBNISUlRaNGjdKMGTNUXFyst99+W9nZ2Zo4caL/CeCjR48q\\\n", - "OTlZxcXFkqTY2FhlZWXJ5XJp9+7dKikp0fTp0+V0OjVo0CBJ3yz73nrrrRo5cqRcLpfcbrfcbreO\\\n", - "Hz/eRGfS+tEBBADATFrye2AkvfTSS8rOztaIESMUERGh8ePHa+XKlf7Pa2trVVpaqq+//to/9tRT\\\n", - "T/nnejweZWZm6umnn/Z//vLLL+v48ePasGGDNmzY4B/v3r27Pvvss2Y5r9bG5vP5fOEuojUb9yJv\\\n", - "Gm+oL47VhbuEVq266FS4S2i1rh4SE+4SWq2vqvhXRmN89OS8Jv+O238bmn8v7fh/5oTkOGiZ6AAC\\\n", - "AGAiLbv/h5aCAAgAgIm08BVgtBA8BAIAAGAxdAABADAROoAwgg4gAACAxRAAAQAALIYlYAAATIQl\\\n", - "YBhBAAQAwETIfzCCAAgAgJmQAGEA9wACAABYDB1AAABMhAYgjCAAAgBgIjwEAiNYAgYAALAYOoAA\\\n", - "AJgIHUAYQQcQAADAYgiAAAAAFsMSMAAAJsISMIwgAAIAYCLkPxjBEjAAAIDFWKYDePjwYe3Zs0dO\\\n", - "p1PJyck6cuSIVqxYIY/Ho5/+9KcaPnz4JY/h8Xjk8XgCxupqz6tNpGUuIwCghWMJGEZYogOYl5en\\\n", - "/v3764EHHtB//Md/KC8vT8OGDdMnn3yizz//XCNHjtSuXbsueZzc3FzFxsYGbB/9Ob8ZzgAAAGNs\\\n", - "ttBsMDdLBMDHHntM8+fP18mTJ/XCCy/oP//zPzVjxgzl5+eroKBA8+fP15NPPnnJ4+Tk5Ki6ujpg\\\n", - "u370D5vhDAAAAELHEgHw0KFDmjZtmiTp7rvv1v/+7//qJz/5if/zyZMn6/3337/kcex2u2JiYgI2\\\n", - "ln8BAEBrY5n0Yvu2nx0REaHo6GjFxsb6P7vqqqtUXV0drtIAAAgZlm9hhCU6gD169NDHH3/s/+ei\\\n", - "oiJ169bN/89lZWXq1KlTOEoDACCkbCHaYG6W6AD+7Gc/U11dnf+fe/fuHfD5X/7yF0NPAQMAAJiB\\\n", - "JQLgfffdV+/nTzzxRDNVAgBA02IJGEZYIgACAGAV5D8YYYl7AAEAAPBPdAABADATWoAwgA4gAAAm\\\n", - "0tJ/CaSyslKTJ09WTEyM4uLilJWVpdOnT9e7z7lz5zRr1izFx8erffv2Gj9+vMrLy4POPXnypLp0\\\n", - "6SKbzaaqqqomOANzIAACAIBmM3nyZB06dEj5+fnasWOH3nzzTc2cObPefebOnavt27dry5YteuON\\\n", - "N3Ts2DGNGzcu6NysrCz17du3KUo3FQIgAAAm0pLfA3j48GHl5eXpt7/9rdLS0jR06FCtWrVKmzZt\\\n", - "0rFjx4LuU11dreeee07Lli3T8OHDlZqaqhdeeEGFhYXas2dPwNxnnnlGVVVVeuCBB5roDMyDAAgA\\\n", - "gIm05CXgoqIixcXFacCAAf6xjIwMRUREaO/evUH3KSkpUW1trTIyMvxjycnJ6tatm4qKivxjH374\\\n", - "oR577DGtX79eERHEm0vhIRAAAEwkVNnN4/HI4/EEjNntdtnt9gYf0+12q2PHjgFjbdu2VYcOHeR2\\\n", - "uy+6T1RUlOLi4gLGk5KS/Pt4PB5NmjRJv/nNb9StWzd9+umnDa7RKojIAADgArm5uYqNjQ3YcnNz\\\n", - "g85dsGCBbDZbvduRI0earNacnBylpKTopz/9aZN9h9nQAQQAwERCtXybk5Mjl8sVMHax7t+8efM0\\\n", - "bdq0eo/Xs2dPORwOVVRUBIyfP39elZWVcjgcQfdzOByqqalRVVVVQBewvLzcv8+uXbv0wQcf6OWX\\\n", - "X5Yk+Xw+SVJCQoIefvhhPfroo/XWZkUEQAAATCRUS8CXs9ybmJioxMTES85zOp2qqqpSSUmJUlNT\\\n", - "JX0T3rxer9LS0oLuk5qaqsjISBUUFGj8+PGSpNLSUpWVlcnpdEqS/vjHP+rs2bP+ffbt26d7771X\\\n", - "f/vb3/T973/f0DlYDQEQAAA0i5SUFI0aNUozZszQ2rVrVVtbq+zsbE2cOFGdO3eWJB09elQjRozQ\\\n", - "+vXrNXDgQMXGxiorK0sul0sdOnRQTEyMZs+eLafTqUGDBknSBSHvxIkT/u/793sH8Q0CIAAAJtKU\\\n", - "L3EOhZdeeknZ2dkaMWKEIiIiNH78eK1cudL/eW1trUpLS/X111/7x5566in/XI/Ho8zMTD399NPh\\\n", - "KN80CIAAAJhJCw+AHTp00MaNGy/6eY8ePfz38H0nOjpaa9as0Zo1awx9xy233HLBMRCIp4ABAAAs\\\n", - "hg4gAAAm0sIbgGghCIAAAJhIS78HEC0DS8AAAAAWQwcQAAAToQEIIwiAAACYCEvAMIIACACAiZD/\\\n", - "YAT3AAIAAFgMHUAAAEyEJWAYQQAEAMBECIAwgiVgAAAAi6EDCACAidAAhBEEQAAATIQlYBjBEjAA\\\n", - "AIDF0AEEAMBEaADCCAIgAAAmwhIwjCAAImxOf+0LdwmtWpt+V4W7hFbr9Bn+9hrq6jjSBWAGBEAA\\\n", - "AEyEiA4jCIAAAJgIS8AwggAIAICJkP9gBK+BAQAAsBg6gAAAmAhLwDCCAAgAgImQ/2AES8AAAAAW\\\n", - "QwcQAAATYQkYRhAAAQAwEQIgjGAJGAAAwGLoAAIAYCI0AGEEARAAABOxsQYMA1gCBgAAsBg6gAAA\\\n", - "mAj9PxhBBxAAABOx2UKzNZXKykpNnjxZMTExiouLU1ZWlk6fPl3vPufOndOsWbMUHx+v9u3ba/z4\\\n", - "8SovL79g3osvvqi+ffsqOjpaHTt21KxZs5rqNFo9AiAAACZiC9HWVCZPnqxDhw4pPz9fO3bs0Jtv\\\n", - "vqmZM2fWu8/cuXO1fft2bdmyRW+88YaOHTumcePGBcxZtmyZHn74YS1YsECHDh3Sa6+9pszMzCY8\\\n", - "k9aNJWAAANAsDh8+rLy8PO3bt08DBgyQJK1atUq33XablixZos6dO1+wT3V1tZ577jlt3LhRw4cP\\\n", - "lyS98MILSklJ0Z49ezRo0CB99dVXWrhwobZv364RI0b49+3bt2/znFgrRAcQAAATibCFZmsKRUVF\\\n", - "iouL84c/ScrIyFBERIT27t0bdJ+SkhLV1tYqIyPDP5acnKxu3bqpqKhIkpSfny+v16ujR48qJSVF\\\n", - "Xbp00d13360vvviiaU7EBAiAAACYSKiWgD0ej06dOhWweTyeRtXmdrvVsWPHgLG2bduqQ4cOcrvd\\\n", - "F90nKipKcXFxAeNJSUn+fT799FN5vV498cQTWr58uV5++WVVVlbqhz/8oWpqahpVs1kRAAEAwAVy\\\n", - "c3MVGxsbsOXm5gadu2DBAtlstnq3I0eONFmtXq9XtbW1WrlypTIzMzVo0CD94Q9/0Mcff6zdu3c3\\\n", - "2fe2ZtwDCACAiYTqCd6cnBy5XK6AMbvdHnTuvHnzNG3atHqP17NnTzkcDlVUVASMnz9/XpWVlXI4\\\n", - "HEH3czgcqqmpUVVVVUAXsLy83L9Pp06dJEm9evXyf56YmKiEhASVlZXVW5dVEQABADCRUN2+Z7fb\\\n", - "Lxr4/l1iYqISExMvOc/pdKqqqkolJSVKTU2VJO3atUter1dpaWlB90lNTVVkZKQKCgo0fvx4SVJp\\\n", - "aanKysrkdDolSUOGDPGPd+nSRdI3r5s5ceKEunfvbugcrIYlYAAA0CxSUlI0atQozZgxQ8XFxXr7\\\n", - "7beVnZ2tiRMn+p8APnr0qJKTk1VcXCxJio2NVVZWllwul3bv3q2SkhJNnz5dTqdTgwYNkiRdf/31\\\n", - "GjNmjObMmaPCwkIdPHhQU6dOVXJysm699dawnW9LRgAEAMBEWvqLoF966SUlJydrxIgRuu222zR0\\\n", - "6FCtW7fO/3ltba1KS0v19ddf+8eeeuop3X777Ro/fryGDRsmh8OhrVu3Bhx3/fr1SktL0+jRo5We\\\n", - "nq7IyEjl5eUpMjKy6U6mFbP5fD5fuItozca9uCLcJbRahz85H+4SYFFN9YoLK2h/JRevMfYucF16\\\n", - "UiM9+trKkBxnccb9ITkOWiY6gAAAABbDQyAAAJhIUy7fwjwIgAAAmAj5D0YQAAEAMBHucYUR3AMI\\\n", - "AABgMXQAAQAwERqAMIIACACAifAQCIxgCRgAAMBiLN0B9Pl8svF/lQAAJsK/1WCEpTuAdrtdhw8f\\\n", - "DncZAACETEv/KTi0DJboALpcwX96p66uTk8++aTi4+MlScuWLav3OB6PRx6PJ/AYtefVJtISlxEA\\\n", - "AJiEJZLL8uXL1a9fP8XFxQWM+3w+HT58WFdeeaWhpeDc3Fw9+uijAWPJYzKVMvZHoSwXAIAGo3kH\\\n", - "IywRAJ944gmtW7dOS5cu1fDhw/3jkZGRevHFF9WrVy9Dx8nJybmgm3jP5mdDWisAAI3B8i2MsMQ9\\\n", - "gAsWLNDmzZv1s5/9TA888IBqa2sbdBy73a6YmJiAjeVfAADQ2lgiAErSTTfdpJKSEh0/flwDBgzQ\\\n", - "wYMHeQIYAGA6PAQCIyzVvmrfvr1+97vfadOmTcrIyFBdXV24SwIAIKQs09lBo1gqAH5n4sSJGjp0\\\n", - "qEpKStS9e/dwlwMAQMjQvYMRlgyAktSlSxd16dIl3GUAAAA0O8sGQAAAzIgGIIwgAAIAYCIsAcMI\\\n", - "7hUFAACwGDqAAACYCA1AGEEABADARFgChhEsAQMAAFgMHUAAAEyEBiCMIAACAGAiLAHDCJaAAQAA\\\n", - "LIYOIAAAJkIDEEYQAAEAMBGWgGEEARAAABPh3i4Ywd8JAACAxRAAAQAwEZstNFtTqays1OTJkxUT\\\n", - "E6O4uDhlZWXp9OnT9e5z7tw5zZo1S/Hx8Wrfvr3Gjx+v8vLygDn79u3TiBEjFBcXp6uvvlqZmZl6\\\n", - "7733mu5EWjkCIAAAJmIL0dZUJk+erEOHDik/P187duzQm2++qZkzZ9a7z9y5c7V9+3Zt2bJFb7zx\\\n", - "ho4dO6Zx48b5Pz99+rRGjRqlbt26ae/evXrrrbd01VVXKTMzU7W1tU14Nq0X9wACAIBmcfjwYeXl\\\n", - "5Wnfvn0aMGCAJGnVqlW67bbbtGTJEnXu3PmCfaqrq/Xcc89p48aNGj58uCTphRdeUEpKivbs2aNB\\\n", - "gwbpyJEjqqys1GOPPaauXbtKkhYvXqy+ffvq888/17XXXtt8J9lK0AEEAMBEQrUE7PF4dOrUqYDN\\\n", - "4/E0qraioiLFxcX5w58kZWRkKCIiQnv37g26T0lJiWpra5WRkeEfS05OVrdu3VRUVCRJuuGGGxQf\\\n", - "H6/nnntONTU1Onv2rJ577jmlpKSoR48ejarZrAiAAACYSKiWgHNzcxUbGxuw5ebmNqo2t9utjh07\\\n", - "Boy1bdtWHTp0kNvtvug+UVFRiouLCxhPSkry73PVVVfp9ddf14YNG9SuXTu1b99eeXl5+stf/qK2\\\n", - "bVnsDIYACAAALpCTk6Pq6uqALScnJ+jcBQsWyGaz1bsdOXKkyWo9e/assrKyNGTIEO3Zs0dvv/22\\\n", - "evfurdGjR+vs2bNN9r2tGbEYAAATCdUTvHa7XXa73dDcefPmadq0afXO6dmzpxwOhyoqKgLGz58/\\\n", - "r8rKSjkcjqD7ORwO1dTUqKqqKqALWF5e7t9n48aN+uyzz1RUVKSIiAj/2NVXX60//elPmjhxoqHz\\\n", - "sBICIAAAJhKOXwJJTExUYmLiJec5nU5VVVWppKREqampkqRdu3bJ6/UqLS0t6D6pqamKjIxUQUGB\\\n", - "xo8fL0kqLS1VWVmZnE6nJOnrr79WRESEbP9y8t/9s9frbezpmRJLwAAAoFmkpKRo1KhRmjFjhoqL\\\n", - "i/X2228rOztbEydO9D8BfPToUSUnJ6u4uFiSFBsbq6ysLLlcLu3evVslJSWaPn26nE6nBg0aJEn6\\\n", - "4Q9/qK+++kqzZs3S4cOHdejQIU2fPl1t27bVrbfeGrbzbckIgAAAmEhLfw/gSy+9pOTkZI0YMUK3\\\n", - "3Xabhg4dqnXr1vk/r62tVWlpqb7++mv/2FNPPaXbb79d48eP17Bhw+RwOLR161b/58nJydq+fbve\\\n", - "f/99OZ1O3XzzzTp27Jjy8vLUqVOnJjyb1svm8/l84S6iNRv34opwl9BqHf7kfLhLgEVFhGGJzCza\\\n", - "X8nFa4y9C1xN/h2/278yJMeZOuD+kBwHLRP3AAIAYCIs7cEI/k4AAAAshg4gAAAmEo6ngNH6EAAB\\\n", - "ADARm7i1H5fGEjAAAIDF0AEEAMBEWAKGEbwGxsQ8Ho9yc3OVk5Nj+Od88A2uXcNx7RqH69dwXDvA\\\n", - "OAKgiZ06dUqxsbGqrq5WTExMuMtpVbh2Dce1axyuX8Nx7QDjuAcQAADAYgiAAAAAFkMABAAAsBgC\\\n", - "oInZ7XYtXryYm6EbgGvXcFy7xuH6NRzXDjCOh0AAAAAshg4gAACAxRAAAQAALIYACAAAYDEEQAAA\\\n", - "AIshAFpIWVmZRo8erSuuuEIdO3bU/Pnzdf78+XCX1Wrcf//9Sk1Nld1uV//+/cNdTqvx3nvvadKk\\\n", - "SeratavatWunlJQUrVixItxltRonT57UqFGj1LlzZ9ntdnXt2lXZ2dk6depUuEtrVU6ePKkuXbrI\\\n", - "ZrOpqqoq3OUAYdc23AWgedTV1Wn06NFyOBwqLCzUl19+qSlTpigyMlJPPPFEuMtrNe69917t3btX\\\n", - "77//frhLaTVKSkrUsWNHbdiwQV27dlVhYaFmzpypNm3aKDs7O9zltXgREREaM2aMfvWrXykxMVGf\\\n", - "fPKJZs2apcrKSm3cuDHc5bUaWVlZ6tu3r44ePRruUoCWwYdW6S9/+YtvyJAhvtjYWF+HDh18o0eP\\\n", - "9n3yyScXnb9z505fRESEz+12+8eeeeYZX0xMjM/j8TRHyS3K5V6/f7V48WJfv379mrbAFqwx1+47\\\n", - "P//5z3233nprE1XYsoXi+q1YscLXpUuXJqqw5WrotXv66ad96enpvoKCAp8k31dffdX0xQItHEvA\\\n", - "rdSZM2fkcrm0f/9+FRQUKCIiQnfeeae8Xm/Q+UVFRerTp4+SkpL8Y5mZmTp16pQOHTrUXGW3GJd7\\\n", - "/fBPobh21dXV6tChQxNW2XI19vodO3ZMW7duVXp6ehNX2vI05Np9+OGHeuyxx7R+/XpFRPCvPMAv\\\n", - "3AkUoXH8+HGfJN8HH3wQ9PMZM2b4Ro4cGTB25swZnyTfzp07m6PEFu1S1+9fWb0D+O8u59r5fD7f\\\n", - "22+/7Wvbtq3vr3/9axNX1joYvX4TJ070tWvXzifJd8cdd/jOnj3bTBW2XJe6dufOnfP17dvX9/vf\\\n", - "/97n8/l8u3fvpgMIfIv/O9RKffzxx5o0aZJ69uypmJgY9ejRQ9I3D3r86Ec/Uvv27dW+fXv94Ac/\\\n", - "CG+hLRTXr+Eac+0OHjyoMWPGaPHixRo5cmQzV94yNPT6PfXUUzpw4ID+9Kc/6e9//7tcLlcYqg+v\\\n", - "y712OTk5SklJ0U9/+tMwVg20TDwE0krdcccd6t69u5599ll17txZXq9XvXv3Vk1NjX7729/q7Nmz\\\n", - "kqTIyEhJksPhUHFxccAxysvL/Z9ZzeVeP/xTQ6/dhx9+qBEjRmjmzJlauHBhOEpvERp6/RwOhxwO\\\n", - "h5KTk9WhQwfdfPPNeuSRR9SpU6dwnEZYXO6127Vrlz744AO9/PLLkiTft798mpCQoIcffliPPvpo\\\n", - "eE4EaAEIgK3QyZMnVVpaqmeffVY333yzJOmtt97yf37NNddcsI/T6dTjjz+uiooKdezYUZKUn5+v\\\n", - "mJgY9erVq3kKbyEacv3wjYZeu0OHDmn48OGaOnWqHn/88WaptSUK1d/ed/e8eTye0BfZQjXk2v3x\\\n", - "j3/0h0JJ2rdvn+6991797W9/0/e///2mLxpowQiArdDVV1+t+Ph4rVu3Tp06dVJZWZkWLFhQ7z4j\\\n", - "R45Ur169dM899+jXv/613G63Fi5cqFmzZslutzdT5S1DQ66fJH3yySc6ffq03G63zp49q3fffVeS\\\n", - "1KtXL0VFRTVx1S1DQ67dwYMHNXz4cGVmZsrlcsntdkuS2rRpo8TExOYou8VoyPXbuXOnysvLddNN\\\n", - "N6l9+/Y6dOiQ5s+fryFDhviXQK2gIdfu30PeiRMnJEkpKSmKi4trqlKB1iHcNyGiYfLz830pKSk+\\\n", - "u93u69u3r+/111/3SfK98sorF93ns88+8/3oRz/ytWvXzpeQkOCbN2+er7a2tvmKbkEacv3S09N9\\\n", - "ki7Y/vGPfzRb3S3B5V67xYsXB71u3bt3b9a6W4rLvX67du3yOZ1OX2xsrC86Otp33XXX+R588EFL\\\n", - "PsjQkP/d/iseAgH+yebzfXtTBAAAACyBp4ABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGII\\\n", - "gAAAABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAACGTl5enoUOHKi4uTvHx8br99tv197//\\\n", - "PdxlAQD+DQEQQMicOXNGLpdL+/fvV0FBgSIiInTnnXfK6/WGuzQAwL+w+Xw+X7iLAGBOJ06cUGJi\\\n", - "oj744AP17t073OUAAL5FBxBAyHz88ceaNGmSevbsqZiYGPXo0UOSVFZWFt7CAAAB2oa7AADmcccd\\\n", - "d6h79+569tln1blzZ3m9XvXu3Vs1NTXhLg0A8C8IgABC4uTJkyotLdWzzz6rm2++WZL01ltvhbkq\\\n", - "AEAwBEAAIXH11VcrPj5e69atU6dOnVRWVqYFCxaEuywAQBDcAwggJCIiIrRp0yaVlJSod+/emjt3\\\n", - "rn7zm9+EuywAQBA8BQwAAGAxdAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZD\\\n", - "AAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWMz/BQ8rgosAjy2lAAAAAElFTkSu\\\n", - "QmCC\\\n", + "AAAPYQGoP6dpAAAkT0lEQVR4nO3df4xd9X0n/PfYCdeEeO7gtIwxUfJPF1w1NVPnxxN7uNgJ28k8\\\n", + "xWETOSGwrE08anGJWOqazXpHjVIikQ7ZpE7MqqI82QYBCWqIaVpwW49wAHewRwIU2aR21U2rpI5M\\\n", + "TJ/iYYa45TI2s39k481ljH0M1x77nNdL+kr2+d5z7vdcIfnN53N+dExNTU0FAIDKmDXTCwAA4PQS\\\n", + "AAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBi\\\n", + "BEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACo\\\n", + "GAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEA\\\n", + "KkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEBgmltvvTUvvfTS0b9/9rOfzTe+8Y0Z\\\n", + "XNF0P/zhD7N8+fLU6/X09PTM9HIAziodU1NTUzO9CODM0tHRkbGxsXR1dc30Ul7TwYMHs3fv3oyP\\\n", + "j+f3fu/3smvXrpleEsBZQwUQSuy6667Le97znixatChXXnllDhw4cMJ9fvu3fztJ0mg00tPTk3/+\\\n", + "53/OJz/5yXzlK19J8tPq4NVXX50Pf/jDufjii7NixYr87d/+bT70oQ/l4osvzrXXXptXXnklSfLi\\\n", + "iy/mt37rt/K+970vixYtyg033JCXX365Lec2b968XHbZZTnvvPPacjyAKhEAocS+8pWv5Omnn84z\\\n", + "zzyTRqORW2+99ejcb/zGb+Tpp5+ets8f//EfJ0lGRkaya9euXHDBBdM+8/TTT+fee+/N3//93+fF\\\n", + "F1/Mb/7mb2bz5s3Zu3dv/u7v/i5//dd/nSS55ZZb0mg08uSTT2b37t155ZVXsmnTpmnHe/HFF9PT\\\n", + "03PM8aEPfahNvwYAP/OmmV4AcOrcf//9ue+++/LSSy/lpZdeyi/8wi8cnfurv/qr133cvr6+nH/+\\\n", + "+UmSxYsXp1arZe7cuUmSX/u1X8v3v//9JMmf//mfZ3R0NBs3bkyS/Nu//Vtmz5497Xhz587VwgU4\\\n", + "jQRAKKknnngid9xxR0ZHR3PBBRfkoYceymc/+9m2HHvOnDlH/zx79uxpfz98+HCSZGpqKg8++GAu\\\n", + "vvji4x7vxRdfTKPROOZcd3d3hoeH27BqAH5GAISSGhsby9y5c/O2t70tL7/8cu66667C+86dOzfj\\\n", + "4+Nv+CaQj3zkI/nCF76Qu+66K29605syNjaW559/Pr/0S7807ftUAAFOH9cAQkn19/fnkksuySWX\\\n", + "XHL0ho6f91rXACY/vXbv13/914/eBPJ6ffnLX865556bnp6eLFq0KFdccUV++MMfvu7j/bx//dd/\\\n", + "zdvf/vZ8/OMfz969e/P2t789g4ODbTk2QNl5DAwAQMWoAAIAVIwACABQMQIgAEDFCIAAABUjAAIA\\\n", + "VIwACABQMQIgAEDFCIAAABXjVXBv0Iatd8z0EgA4S3yh/+ZT/h2/uviWthzne9/9w7YchzOTCiAA\\\n", + "QMWoAAJAmXTM9AI4G6gAAgBUjAogAJRJhxIgJyYAAkCZyH8UoAUMALwhGzZsSKPRyKpVqzI5OXl0\\\n", + "+5EjRzIwMJBGo5F169a17DM6OpqOjo785Cc/Oc2rJREAAaBcOto0Ctq9e3f279+fkZGRLFy4MJs3\\\n", + "bz46t2XLlixYsCAjIyM5dOhQRkdHj87dcccdefe73/0GTpQ3QgAEgFJpTwJsNpuZmJhoGc1mc9q3\\\n", + "7dy5M319fUmS/v7+7Nix44RzTzzxRBYtWpS3vvWt7T99ChEAAYBphoaGUq/XW8bQ0NC0z42NjaWz\\\n", + "szNJUq/Xc/DgwRPObdq0KTfddNNpOAtei5tAAKBEptp0E8jg4GDWr1/fsq1Wq037XFdXVyYmJpIk\\\n", + "4+PjmTdv3nHntm/fnksvvTRz585tz0J5XVQAAaBM2nQNYK1WS2dnZ8s4VgBcunRptm3bliQZHh5O\\\n", + "b2/vced2796d73znO+nv788zzzyT66+//pT8DByfAAgAvG49PT3p7u5Oo9HInj17snLlyqxduzZJ\\\n", + "smLFiuzbty+NRiNz5szJkiVLcvPNN+exxx7L1q1bs2jRotxzzz0zfAbV1DE1NTU104s4m23YesdM\\\n", + "LwGAs8QX+m8+5d/xriX/tS3H+dvR/96W43BmUgEEAKgYN4EAQJl4EwgFqAACAFSMCiAAlEmHEiAn\\\n", + "JgACQJnIfxSgBQwAUDEqgABQIp7tRhECIACUiWsAKUALGACgYlQAAaBMFAApQAAEgFKRADkxLWAA\\\n", + "gIpRAQSAMlEApAABEADKRACkAAEQAEpkymNgKMA1gAAAFSMAAgBUjBYwAJSJFjAFqAACAFSMCiAA\\\n", + "lIkCIAUIgABQIlMzvQDOCpUMgEeOHMnmzZuzY8eOHDx4MPPmzUtvb29WrlyZN72pkj8JAFAhlUw7\\\n", + "AwMDueSSS/LJT34y9Xo94+PjGR4ezpo1a3Lfffe95n7NZjPNZrNl2+GXD+dN51TyZwTgTOQmEAqo\\\n", + "ZHL5wQ9+kHvuuadl2+LFi3P55Zcfd7+hoaF87nOfa9m29Lr+XPaf/t+2rxEAXhf5jwIqGQCXLl2a\\\n", + "1atXp6+vL52dnZmYmMi2bdvy/ve//7j7DQ4OZv369S3bPvf4/zyVSwUAaLtKBsDbb789zzzzTHbu\\\n", + "3Jkf/ehH6erqyu/+7u/m0ksvPe5+tVottVqtZZv2LwBnFC1gCqhselm0aFEWLVo008sAgLZyFzBF\\\n", + "VDYAAkApKQBSgDeBAABUjAogAJSJawApQAUQAKBiBEAAgIrRAgaAEpnSAqYAARAAykT+owAtYACA\\\n", + "ihEAAQAqRgAEgBKZ6uhoyzgZGzZsSKPRyKpVqzI5OXl0+5EjRzIwMJBGo5F169Yd3d7b25tly5al\\\n", + "t7c3e/fubdepcxIEQADgddu9e3f279+fkZGRLFy4MJs3bz46t2XLlixYsCAjIyM5dOhQRkdHkySP\\\n", + "PfZYtm/fns9//vPZuHHjTC290gRAACiTjvaMZrOZiYmJltFsNqd93c6dO9PX15ck6e/vz44dO044\\\n", + "d8455yRJXnzxxbzrXe9q8w9AEQIgAJRJmwLg0NBQ6vV6yxgaGpr2dWNjY+ns7EyS1Ov1HDx48IRz\\\n", + "Bw4cSG9vbz71qU9l2bJl7f8NOCGPgQGAUmnPc2AGB/9b1q9f37KtVqtN+1xXV1cmJiaSJOPj45k3\\\n", + "b94J5+bPn58dO3bkySefzODgYLZu3dqWNVOcCiAAME2tVktnZ2fLOFYAXLp0abZt25YkGR4eTm9v\\\n", + "73HnJicn88orryT5aVXwLW95y2k4G15NAASAEpnqaM8oqqenJ93d3Wk0GtmzZ09WrlyZtWvXJklW\\\n", + "rFiRffv2pdFoZM6cOVmyZEl+/OMfZ/ny5fnABz6QG2+8Mbfddtsp+iU4no6pqampmV7E2WzD1jtm\\\n", + "egkAnCW+0H/zKf+Of/cfPteW43z/L36/LcfhzKQCCABQMW4CAYBS8TJgTkwABIASOZnr96guLWAA\\\n", + "gIpRAQSAMlEBpAABEABKRQLkxLSAAQAqRgUQAErETSAUIQACQJkIgBQgAAJAqUiAnJhrAAEAKkYF\\\n", + "EADKRAGQAgRAACgRN4FQhBYwAEDFqAACQJmoAFKAAAgApSIBcmIC4Bv0v348NdNLAAA4KQIgAJSI\\\n", + "m0AoQgAEgDIRACnAXcAAABUjAAIAVIwWMACUSYceMCcmAAJAibgJhCK0gAEAKkYABACoGC1gACgT\\\n", + "LWAKUAEEAKgYFUAAKBN3AVOAAAgAJeIN9RShBQwAUDEqgABQJjrAFCAAAkCZCIAUoAUMAFAxAiAA\\\n", + "QMVoAQNAmXgMDAWoAAJAiUx1tGecjA0bNqTRaGTVqlWZnJw8uv3IkSMZGBhIo9HIunXrkiQ/+MEP\\\n", + "0mg0smzZslx55ZUZHx9v49lTlAAIALxuu3fvzv79+zMyMpKFCxdm8+bNR+e2bNmSBQsWZGRkJIcO\\\n", + "Hcro6Gi6urry8MMPZ/v27bnqqqvy1a9+dQZXX10CIADwuu3cuTN9fX1Jkv7+/uzYseO4c+eff366\\\n", + "urqSJOecc05mzRJFZoJrAAGgTNp0CWCz2Uyz2WzZVqvVUqvVWraNjY3lwgsvTJLU6/UcPHiwZa6z\\\n", + "s/OYcy+88ELuvPPObN26tT0L5qSI3QDANENDQ6nX6y1jaGho2ue6uroyMTGRJBkfH8+8efNOODc5\\\n", + "OZnrrrsuGzdubPk8p48ACABl0tGeMTg4mPHx8ZYxODg47euWLl2abdu2JUmGh4fT29t7wrkbbrgh\\\n", + "V199dS677LL2nz+FCIAAUCrtSYC1Wi2dnZ0t49Xt3yTp6elJd3d3Go1G9uzZk5UrV2bt2rVJkhUr\\\n", + "VmTfvn1pNBqZM2dOlixZkpGRkTzwwAO5++67s3z58mzatOkU/x4cS8fU1NTUTC/ibPbRu/2HC0Ax\\\n", + "317zO6f8O94x8IW2HGff1za05TicmdwEAgBl4jnQFCAAAkCZCIAU4BpAAICKUQEEgBJxYT9FCIAA\\\n", + "UCZawBSgBQwAUDECIABAxWgBA0CZdOgBc2IqgD/n3nvvPe58s9nMxMREyzgyefg0rQ4ACmjTq+Ao\\\n", + "t0oGwL17904be/bsyV133XXc/Y71Yuz/9ZePnKZVAwC0RyVbwO9///vzsY99LK9+C94//dM/HXe/\\\n", + "wcHBrF+/vmXbf/rTr7Z9fQAAp1IlA+Av//Iv54tf/GLe9ra3tWy/8sorj7tfrVab9iLs2W+u5E8I\\\n", + "wJlK+5YCKpleHnnkkZx33nnTtv/lX/7lDKwGAOD0qmQA7OzsnOklAMCpoQJIAZW8CQQAoMoEQACA\\\n", + "iqlkCxgASksLmAIEQAAokQ5vAqEALWAAgIoRAAEAKkYLGADKRAeYAgRAACgTAZACtIABACpGAAQA\\\n", + "qBgtYAAoEU+BoQgVQACAihEAAQAqRgsYAMpEC5gCVAABACpGBRAAykQFkAIEQAAoEfmPIgRAACgT\\\n", + "z4GhANcAAgBUjAogAJSIAiBFqAACAFSMAAgAUDECIACUSUebxknYsGFDGo1GVq1alcnJyaPbjxw5\\\n", + "koGBgTQajaxbt+7o9g9+8IPp6urKli1bXt858oYJgABQIqc7/+3evTv79+/PyMhIFi5cmM2bNx+d\\\n", + "27JlSxYsWJCRkZEcOnQoo6OjSZKvf/3rLYGQ008ABABet507d6avry9J0t/fnx07dpxwbsGCBad/\\\n", + "obRwFzAAlEmb7gJuNptpNpst22q1Wmq1Wsu2sbGxXHjhhUmSer2egwcPtsx1dnYec46ZpQIIACXS\\\n", + "0dGeMTQ0lHq93jKGhoamfV9XV1cmJiaSJOPj45k3b16hOWaWAAgATDM4OJjx8fGWMTg4OO1zS5cu\\\n", + "zbZt25Ikw8PD6e3tLTTHzBIAAYBparVaOjs7W8ar279J0tPTk+7u7jQajezZsycrV67M2rVrkyQr\\\n", + "VqzIvn370mg0MmfOnCxZsiRJMjAwkHvvvTef+cxncvvtt5/W8+KnOqampqZmehFns4/evWmmlwDA\\\n", + "WeLba37nlH/HL/3XL7XlOP/w3/9LW47DmUkFEACgYgRAAICK8RiYN+jjl870CgDg/+po02NgKDcB\\\n", + "EADKRACkAC1gAICKUQEEgBLpUAKkAAEQAMpE/qMALWAAgIpRAQSAElEApAgBEABKxGNgKEILGACg\\\n", + "YlQAAaBMVAApQAAEgBKR/yhCAASAMpEAKcA1gAAAFaMCCAAlogBIEQIgAJSIx8BQhBYwAEDFqAAC\\\n", + "QJmoAFKAAAgAJSL/UYQWMABAxagAAkCJuAmEIlQAAQAqRgAEAKgYLWAAKBEtYIoQAAGgTARAChAA\\\n", + "AaBEOiRACnANIABAxagAAkCJuAaQIlQAAQAqRgAEAKgYLWAAKBEtYIoQAAGgROQ/itACBgCoGBVA\\\n", + "ACgTJUAKEAABoERcA0gRWsAAwBuyYcOGNBqNrFq1KpOTk0e3HzlyJAMDA2k0Glm3bt3R7Zs2bUpv\\\n", + "b2+uuuqqTExMzMCKEQABoEQ62jSK2r17d/bv35+RkZEsXLgwmzdvPjq3ZcuWLFiwICMjIzl06FBG\\\n", + "R0fzL//yL3nooYfyxBNP5BOf+ET+6I/+6A2fMyfvrG8BT01N5dFHH82zzz6bqampJMnq1auPu8+R\\\n", + "I0fyF3/xF5k1a1Y+/OEPZ/bs2UmSb33rW/n4xz/+mvs1m800m82WbZMvH86bzznrf0YAyqJNLeBj\\\n", + "/ZtXq9VSq9Vatu3cuTN9fX1Jkv7+/tx999259tprj85deeWVR+d27NiRF154IcuWLUtHR0f6+/tz\\\n", + "/fXXt2fBnJSzvgL4iU98Ig8//HBuu+22PP3009m6desJ91m9enWefvrp7Nq1K5dffnn+4R/+IUly\\\n", + "5513Hne/oaGh1Ov1lvHQ3Y+05TwAoB3aVQE81r95Q0ND075vbGwsnZ2dSZJ6vZ6DBw8ed+54n+f0\\\n", + "OetLV88991weeOCB7Nq1K3fccUc++tGPnnCf/fv35xvf+EaSZM2aNVm9enVuvfXWE+43ODiY9evX\\\n", + "t2z79t6vvq51A8CZ7Fj/5r26+pckXV1dR6/jGx8fz7x5844719XVdbTw8urPc/qc9RXA2bNn55VX\\\n", + "Xsn555+fr33ta/nHf/zHE+7z8ssvHy1rv/Od78yWLVvypS99Kd/73veOu1+tVktnZ2fL0P4F4EzS\\\n", + "0dGecax/844VAJcuXZpt27YlSYaHh9Pb23vcufe+9735m7/5m2N+ntPnrA+Af/qnf5pXXnkld955\\\n", + "Z1544YXcd999J9xn06ZNeeGFF47+fe7cuXnooYfy5S9/+RSuFABOg9N8F0hPT0+6u7vTaDSyZ8+e\\\n", + "rFy5MmvXrk2SrFixIvv27Uuj0cicOXOyZMmS/OIv/mKuvPLK9Pb25v7778+nPvWp9pw3J6Vj6md3\\\n", + "TvC63P/dTTO9BADOEv9x8e+c8u943+0b23KcJ//b+hN/iLOW/iUAlIjnQFOEAAgAJeJNIBRx1l8D\\\n", + "CADAyVEBBIBSUQLkxARAACgRLWCK0AIGAKgYFUAAKBMVQAoQAAGgROQ/ihAAAaBEXANIEa4BBACo\\\n", + "GAEQAKBitIABoES0gClCBRAAoGJUAAGgRBQAKUIABIAykQApQAsYAKBiVAABoETcBEIRAiAAlIj8\\\n", + "RxECIACUiQRIAa4BBACoGBVAACgRBUCKEAABoETcBEIRWsAAABWjAggAZaIESAECIACUiPhHEVrA\\\n", + "AAAVowIIAGWiBEgBAiAAlIj8RxFawAAAFaMCCAAl4iZgihAAAaBMBEAKEAABoETkP4oQAN+god/c\\\n", + "N9NLAOAs8R+/O9MrgJ8SAAGgRFwDSBHuAgYAqBgBEACgYgRAACiRjo72jHbZsGFDGo1GVq1alcnJ\\\n", + "yZa5I0eOZGBgII1GI+vWrTu6/YMf/GC6urqyZcuW9i2EFgIgAJTImRQAd+/enf3792dkZCQLFy7M\\\n", + "5s2bW+a3bNmSBQsWZGRkJIcOHcro6GiS5Otf/3pLIKT9BEAAYJpms5mJiYmW0Ww2T+oYO3fuTF9f\\\n", + "X5Kkv78/O3bsKDS/YMGCNpwBxyMAAgDTDA0NpV6vt4yhoaGTOsbY2Fg6OzuTJPV6PQcPHjypeU4d\\\n", + "j4EBgBJpV/t2cHAw69evb9lWq9WO+dkDBw7kmmuumba9r68vExMTSZLx8fHMmzevZb6rq+u485w6\\\n", + "AiAAME2tVnvNwPdq8+fPz+OPPz5t+65du7Jx48asXr06w8PD6e3tbZlfunRptm3blssvvzzDw8NZ\\\n", + "s2ZNO5ZOAVrAAFAiHW0a7dDT05Pu7u40Go3s2bMnK1euTJKsXbs2SbJixYrs27cvjUYjc+bMyZIl\\\n", + "S5IkAwMDuffee/OZz3wmt99+e5tWw8/rmJqamprpRZzNfnXxLTO9BADOEt/77h+e8u/4jf/vK205\\\n", + "zl/dsK4tx+HMpAUMACXiVXAUoQUMAFAxKoAAUCIKgBQhAAJAmegBU4AWMABAxagAAkCJqP9RhAAI\\\n", + "ACWiA0wRWsAAABWjAggAJaICSBEqgAAAFSMAAgBUjBYwAJSIFjBFCIAAUCLyH0UIgABQJhIgBbgG\\\n", + "EACgYlQAAaBEFAApQgAEgBJxEwhFaAEDAFSMCiAAlIgKIEWoAAIAVIwACABQMVrAAFAiWsAUIQAC\\\n", + "QInIfxShBQwAUDGVrAA+99xz+ZM/+ZP8yq/8ShYvXpw/+IM/yHnnnZdPf/rT6e7ufs39ms1mms1m\\\n", + "y7ZXXjmcWbMq+TMCcAbSAqaISlYAr7vuulx00UX50Y9+lL6+vlxxxRXp6+vLwMDAcfcbGhpKvV5v\\\n", + "Gf//c0+eplUDwIl1dLRnUG6VDICHDx/O9ddfn5tuuin1ej0f+9jH0tfXl5deeum4+w0ODmZ8fLxl\\\n", + "/GL3+07TqgEA2qOSvcvJycmjf77rrruO/vnw4cPH3a9Wq6VWq7Vs0/4FAM42lUwv3/72tzM1NZWO\\\n", + "jo5ceumlSX4aCr/0pS/N8MoA4I3RvqWISgbACy64YNq2N7/5zXnve987A6sBgPaR/yiiktcAAgBU\\\n", + "WSUrgABQVlrAFCEAAkCJyH8UoQUMAFAxKoAAUCZKgBSgAggAJXKmvQlkw4YNaTQaWbVqVctzeJPk\\\n", + "yJEjGRgYSKPRyLp165IkP/jBD9JoNLJs2bJceeWVGR8fb99iOEoABABOid27d2f//v0ZGRnJwoUL\\\n", + "s3nz5pb5LVu2ZMGCBRkZGcmhQ4cyOjqarq6uPPzww9m+fXuuuuqqfPWrX52h1ZebAAgAJdLRptEO\\\n", + "O3fuTF9fX5Kkv78/O3bsOOH8+eefn66uriTJOeeck1mzRJVTwTWAAFAi7WrfNpvNNJvNlm3HeiXq\\\n", + "8YyNjeXCCy9MktTr9Rw8eHDafGdn5zHnX3jhhdx5553ZunXr6z0FjkOsBoASaVcFcGhoKPV6vWUM\\\n", + "DQ0d8zsPHDiQ5cuXTxtJMjExkSQZHx/PvHnzWvbr6uo65vzk5GSuu+66bNy4cdo+tIcKIAAwzeDg\\\n", + "YNavX9+y7bWqf/Pnz8/jjz8+bfuuXbuycePGrF69OsPDw+nt7W2ZX7p0abZt25bLL788w8PDWbNm\\\n", + "TZLkhhtuyNVXX53LLrusPSfDNCqAAFAi7boLuFarpbOzs2WcTPs3SXp6etLd3Z1Go5E9e/Zk5cqV\\\n", + "SZK1a9cmSVasWJF9+/al0Whkzpw5WbJkSUZGRvLAAw/k7rvvzvLly7Np06a2/0YkHVNTU1MzvYiz\\\n", + "2a8uvmWmlwDAWeJ73/3DU/4dA99qT2D62sd/py3H4cykAggAUDGuAQSAEmnnQ5wpLwEQAMpEAKQA\\\n", + "LWAAgIpRAQSAElEApAgBEABKxDWAFKEFDABQMSqAAFAiCoAUIQACQIloAVOEAAgAJSL/UYRrAAEA\\\n", + "KkYFEABKRAuYIgRAACgRAZAitIABACpGBRAASkQBkCIEQAAoES1gitACBgCoGBVAACgRBUCKEAAB\\\n", + "oES0gClCAHyDxnvnz/QSAABOigAIACWiAEgRAiAAlIgWMEUIgABQIvIfRXgMDABAxagAAkCJaAFT\\\n", + "hAAIACUi/1GEFjAAQMWoAAJAiWgBU4QACAAlIgBShBYwAEDFqAACQIkoAFKEAAgAJdKhB0wBWsAA\\\n", + "ABWjAggAJaL+RxECIACUiA4wRQiAAFAi8h9FuAYQADhlNmzYkEajkVWrVmVycrJl7siRIxkYGEij\\\n", + "0ci6deuObu/t7c2yZcvS29ubvXv3nuYVV4MACAAlMqujPaMddu/enf3792dkZCQLFy7M5s2bW+a3\\\n", + "bNmSBQsWZGRkJIcOHcro6GiS5LHHHsv27dvz+c9/Phs3bmzPYmghAAJAiXS0abTDzp0709fXlyTp\\\n", + "7+/Pjh07Cs2fc845SZIXX3wx73rXu9q0Gn6eawABgGmazWaazWbLtlqtllqtVvgYY2NjufDCC5Mk\\\n", + "9Xo9Bw8enDbf2dk5bf7AgQNZuXJl9u3bl4ceeuiNnAavQQUQAEqko6M9Y2hoKPV6vWUMDQ0d8zsP\\\n", + "HDiQ5cuXTxtJMjExkSQZHx/PvHnzWvbr6uo65vz8+fOzY8eOPPjggxkcHDxFv1S1qQACQIm0q307\\\n", + "ODiY9evXt2x7rerf/Pnz8/jjj0/bvmvXrmzcuDGrV6/O8PBwent7W+aXLl2abdu25fLLL8/w8HDW\\\n", + "rFmTycnJzJ49O7NmzUq9Xs9b3vKWNp0RP08FEACYplarpbOzs2WcTPs3SXp6etLd3Z1Go5E9e/Zk\\\n", + "5cqVSZK1a9cmSVasWJF9+/al0Whkzpw5WbJkSX784x9n+fLl+cAHPpAbb7wxt912W9vPjaRjampq\\\n", + "aqYXcTZ7x3/+4kwvAYCzxL7/8elT/h23brujPcf59ze35TicmbSAAaBEPAiaIrSAAQAqRgUQAErE\\\n", + "u4ApQgAEgBKR/yhCAASAEmnXa9woN9cAAgBUjAogAJSIAiBFCIAAUCJuAqEILWAAgIpRAQSAElEA\\\n", + "pAgBEABKRAuYIrSA/49169ad8DPNZjMTExMtY+rI4VO/OACANqpkBfCCCy7IO97xjsyaNStTU1NJ\\\n", + "ku9///vZuXNnnnzyydfcb2hoKJ/73OdatnW+99+n/v/0ndL1AkBRCoAUUckK4KZNm/LOd74zt9xy\\\n", + "S5566qk89dRTWbJkyXHDX5IMDg5mfHy8ZXS+54OnadUAcGIdHe0ZlFslA+C1116bb33rWzl8+HA+\\\n", + "8pGP5P777z9aCTyeWq2Wzs7OltExu5JFVADgLFbJAJgks2bNynXXXZc/+7M/y+HDh9PT0zPTSwKA\\\n", + "N0wFkCIqX76aNWtWVq9ePdPLAIC2qGxlh5NS+QAIAGWiekcR/kcBAKBiVAABoEQUAClCAASAEtEC\\\n", + "pggtYACAilEBBIASUQCkCAEQAEpEC5gitIABACpGBRAASkQBkCIEQAAoES1gitACBgCoGBVAACgR\\\n", + "BUCKEAABoES0gClCAASAEnFtF0X47wQAoGJUAAGgRLSAKUIABIASkf8oQgsYAKBiVAABoES0gClC\\\n", + "BRAASqSjTaNdNmzYkEajkVWrVmVycrJl7siRIxkYGEij0ci6deta5kZHR9PR0ZGf/OQnbVwNPyMA\\\n", + "AgCnxO7du7N///6MjIxk4cKF2bx5c8v8li1bsmDBgoyMjOTQoUMZHR09OnfHHXfk3e9+9+lecmUI\\\n", + "gABQIh0d7RntsHPnzvT19SVJ+vv7s2PHjkLzTzzxRBYtWpS3vvWt7VkI0wiAAFAi7QqAzWYzExMT\\\n", + "LaPZbJ7UWsbGxtLZ2ZkkqdfrOXjwYKH5TZs25aabbmrDr8FrEQABgGmGhoZSr9dbxtDQ0DE/e+DA\\\n", + "gSxfvnzaSJKJiYkkyfj4eObNm9eyX1dX17T57du359JLL83cuXNP3cnhLmAAKJN23cAxODiY9evX\\\n", + "t2yr1WrH/Oz8+fPz+OOPT9u+a9eubNy4MatXr87w8HB6e3tb5pcuXZpt27bl8ssvz/DwcNasWZOn\\\n", + "nnoq3/nOd/LEE0/kmWeeyfXXX58HH3ywTWfFz6gAAkCJtKsFXKvV0tnZ2TJeKwC+lp6ennR3d6fR\\\n", + "aGTPnj1ZuXJlkmTt2rVJkhUrVmTfvn1pNBqZM2dOlixZkptvvjmPPfZYtm7dmkWLFuWee+5p+29E\\\n", + "0jE1NTU104s4m73jP39xppcAwFli3//49Cn/jvuevqMtx1n1npvbchzOTCqAAAAV4xpAACgRbwKh\\\n", + "CAEQAEqkI67s4sS0gAEAKkYFEABKRAuYItwFDLRVs9nM0NBQBgcHT/qREQCcHgIg0FYTExOp1+sZ\\\n", + "Hx8/+oonAM4srgEEAKgYARAAoGIEQACAihEAgbaq1Wr5/d//fTeAAJzB3AQCAFAxKoAAABUjAAIA\\\n", + "VIwACABQMQIgAEDFCIAAABXzppleAFAezz33XK655pocPnw43d3d+eY3v5nZs2fP9LIAeBUVQKBt\\\n", + "zj///DzyyCMZGRnJRRddlEcffXSmlwTAMagAAm3z/PPP58Ybb8zY2FieffbZLF68eKaXBMAxqAAC\\\n", + "bXP//fdnxYoV2b59e/r7++M58wBnJhVAoG2uuOKKrFq1Kg8//HDOPffcmV4OAK/Bq+AAACpGCxgA\\\n", + "oGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYbwIB2ua5557LNddck8OHD6e7\\\n", + "uzvf/OY3M3v27JleFgCvogIItM3555+fRx55JCMjI7nooovy6KOPzvSSADgGFUCgbZ5//vnceOON\\\n", + "GRsby7PPPpvFixfP9JIAOAYVQKBt7r///qxYsSLbt29Pf39/vGoc4MykAgi0zRVXXJFVq1bl4Ycf\\\n", + "zrnnnjvTywHgNXRM+V90AIBK0QIGAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEA\\\n", + "AQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIE\\\n", + "QACAihEAAQAqRgAEAKiY/w2G2/IhA42sBAAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[2] = \"\\\n", "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", - "AAAPYQGoP6dpAAA460lEQVR4nO3de3RU9b3//9fkwgTFJJKEDMitqDWh3I5BwiAShZRQUUFpBQ4V\\\n", - "xPzgawtICaYSRVjaanpaQa7KD+ulVCksLFLhYHpiQK0mEAjeQIhaC+kXnISLCQcIk5CZ7x/q2ClD\\\n", - "2CSTTGbv56Nrry4+89l73nuvCK+8P3vP2Lxer1cAAACwjIhQFwAAAIDWRQAEAACwGAIgAACAxRAA\\\n", - "AQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYA\\\n", - "CAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEE\\\n", - "QAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIsh\\\n", - "AAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAJotkOH\\\n", - "DunnP/+5rrvuOrVv314JCQn6yU9+ooMHD4a6NABAAFGhLgBA+Nu1a5eKi4s1YcIEde3aVQcPHtSz\\\n", - "zz6rm2++WZ988okuu+yyUJcIAPgXNq/X6w11EQDCW21trdq3b+83tmPHDjmdTq1Zs0b33HNPiCoD\\\n", - "AATCEjCAZvvX8FdfX6/jx4/rmmuuUXx8vPbs2RPCygAAgRAAATRbbW2tFixYoG7duslutysxMVFJ\\\n", - "SUmqrq5WTU1NqMsDAPwb7gEE0GyzZs3Siy++qF/84hdyOp2Ki4uTzWbThAkT5PF4Ql0eAODfEAAB\\\n", - "NNurr76qKVOmaNGiRb6xs2fPqrq6OnRFAQAuiCVgAM0WGRmpf3+ebPny5WpoaAhRRQCAxtABBNBs\\\n", - "t912m/74xz8qLi5OvXv3VklJid58800lJCSEujQAQAAEQADNtnTpUkVGRuqVV17R2bNndeONN+rN\\\n", - "N99UVlZWqEsDAATA5wACAABYDPcAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAABAAAs\\\n", - "hgAIAABgMQRAAAAAi+GbQJpp2saloS4hbEXx60ezfPlVqCsAcKk2TZ3d4u/R9/q5QTnOx3sWBeU4\\\n", - "aJv4JxgAAMBi6AACAGAmtlAXgHBABxAAAMBi6AACAGAmNlqAuDgCIAAAZkL+gwEsAQMAAFgMHUAA\\\n", - "AMyEDiAMIAACAGAqJEBcHEvAAAAAFkMHEAAAE/HSAIQBBEAAAMyEAAgDWAIGAACwGDqAAACYCR8E\\\n", - "DQPoAAIAAFgMHUAAAMyEBiAMoAMIAABgMXQAAQAwE+4BhAF0AAEAMBNbkLYmWLlypXr27KmYmBil\\\n", - "p6ertLS00fkbNmxQSkqKYmJi1LdvX23dutXv9VOnTmnmzJnq2rWr2rdvr969e2vVqlVNKw5+CIAA\\\n", - "AKDZ1q9fr5ycHC1cuFB79uxR//79lZWVpaqqqoDzi4uLNXHiRGVnZ+v999/X2LFjNXbsWO3du9c3\\\n", - "JycnRwUFBXr55Ze1f/9+/eIXv9DMmTP1+uuvt9ZpmRYBEAAAE/EGabtUixcv1rRp0zR16lRfp+6y\\\n", - "yy7TCy+8EHD+0qVLNWrUKOXm5io1NVW/+tWvdP3112vFihW+OcXFxZoyZYpuvvlm9ezZU9OnT1f/\\\n", - "/v0v2lnExREAAQAwE5stKJvb7dbJkyf9NrfbHfAt6+rqVFZWpszMTN9YRESEMjMzVVJSEnCfkpIS\\\n", - "v/mSlJWV5Td/yJAhev3113X48GF5vV5t375dn376qUaOHBmEC2VtBEAAAHCe/Px8xcXF+W35+fkB\\\n", - "5x47dkwNDQ1KTk72G09OTpbL5Qq4j8vluuj85cuXq3fv3uratavatWunUaNGaeXKlRo2bFgzzw48\\\n", - "BQwAgJkE6SHgvLw85eTk+I3Z7fbgHNyg5cuXa8eOHXr99dfVo0cPvfPOO5oxY4a6dOlyXvcQl4YA\\\n", - "CACAqQQnAdrtdsOBLzExUZGRkaqsrPQbr6yslMPhCLiPw+FodH5tba0efvhhvfbaaxo9erQkqV+/\\\n", - "fvrggw/01FNPEQCbiSVgAADQLO3atVNaWpqKiop8Yx6PR0VFRXI6nQH3cTqdfvMlqbCw0De/vr5e\\\n", - "9fX1iojwjyqRkZHyeDxBPgProQMIAICZhOhzoHNycjRlyhQNHDhQgwYN0pIlS3T69GlNnTpVkjR5\\\n", - "8mRdddVVvvsIZ8+erYyMDC1atEijR4/WunXrtHv3bq1evVqSFBsbq4yMDOXm5qp9+/bq0aOH3n77\\\n", - "ba1Zs0aLFy8OzUmaCAEQAAAzCVEAHD9+vI4ePaoFCxbI5XJpwIABKigo8D3oUVFR4dfNGzJkiNau\\\n", - "Xav58+fr4Ycf1rXXXqtNmzapT58+vjnr1q1TXl6eJk2apBMnTqhHjx564okndP/997f6+ZmNzev1\\\n", - "NuXjfvCNaRuXhrqEsBXFDQjN8uVXoa4AwKXaNHV2i79H71seDspxPtn+ZFCOg7aJf4IBAAAshgAI\\\n", - "AABgMdwDCACAmdhCdBMgwgodQAAAAIuhAwgAgJnQAIQBlgmAx44d0wsvvKCSkhLf9ww6HA4NGTJE\\\n", - "9957r5KSkkJcIQAAzcdHe8AISywB79q1S9///ve1bNkyxcXFadiwYRo2bJji4uK0bNkypaSkaPfu\\\n", - "3aEuEwAAoFVYogM4a9Ys/eQnP9GqVatk+7ebY71er+6//37NmjVLJSUljR7H7XbL7Xb7jTXUn1Nk\\\n", - "tCUuIwAgHPAQCAywRAfwww8/1Jw5c84Lf5Jks9k0Z84cffDBBxc9Tn5+vuLi4vy2DzYWtkDFAAA0\\\n", - "kS1IG0zNEgHQ4XCotLT0gq+Xlpb6vqqmMXl5eaqpqfHbBtz1w2CWCgAA0OIssXb54IMPavr06Sor\\\n", - "K9OIESN8Ya+yslJFRUV67rnn9NRTT130OHa7XXa73W+M5V8AQJvCEjAMsER6mTFjhhITE/X000/r\\\n", - "mWeeUUNDgyQpMjJSaWlpeumll3T33XeHuEoAAJqPp4BhhCUCoCSNHz9e48ePV319vY4dOyZJSkxM\\\n", - "VHR0dIgrAwAgiGgAwgDLBMBvRUdHq3PnzqEuAwAAIGQsFwABADA17gGEAZZ4ChgAAADfIQACAABY\\\n", - "DEvAAACYiJclYBhAAAQAwEzIfzCAJWAAAACLIQACAABYDEvAAACYCPcAwgg6gAAAABZDBxAAADOh\\\n", - "AQgDCIAAAJgJARAGEAABADAVEiAujnsAAQAALIYOIAAAJuKlAQgDCIAAAJgJARAGsAQMAABgMXQA\\\n", - "AQAwFVqAuDg6gAAAmIjXFpytKVauXKmePXsqJiZG6enpKi0tbXT+hg0blJKSopiYGPXt21dbt249\\\n", - "b87+/ft1xx13KC4uTpdffrluuOEGVVRUNK1A+BAAAQBAs61fv145OTlauHCh9uzZo/79+ysrK0tV\\\n", - "VVUB5xcXF2vixInKzs7W+++/r7Fjx2rs2LHau3evb87f//53DR06VCkpKXrrrbf00Ucf6dFHH1VM\\\n", - "TExrnZZp2bxerzfURYSzaRuXhrqEsBXFrx/N8uVXoa4AwKXaNHV2i7/HNXc+HpTjfP7agkuan56e\\\n", - "rhtuuEErVqyQJHk8HnXr1k2zZs3SvHnzzps/fvx4nT59Wlu2bPGNDR48WAMGDNCqVaskSRMmTFB0\\\n", - "dLT++Mc/NuNMEAj/BAMAYCq2oGxut1snT57029xud8B3rKurU1lZmTIzM31jERERyszMVElJScB9\\\n", - "SkpK/OZLUlZWlm++x+PRf//3f+v73/++srKy1KlTJ6Wnp2vTpk1NuirwRwAEAADnyc/PV1xcnN+W\\\n", - "n58fcO6xY8fU0NCg5ORkv/Hk5GS5XK6A+7hcrkbnV1VV6dSpU/rNb36jUaNG6X/+539055136q67\\\n", - "7tLbb78dhDO0Np4CBgDARIL1QdB5eXnKycnxG7Pb7cE5uAEej0eSNGbMGM2ZM0eSNGDAABUXF2vV\\\n", - "qlXKyMhotVrMiAAIAICZBCkA2u12w4EvMTFRkZGRqqys9BuvrKyUw+EIuI/D4Wh0fmJioqKiotS7\\\n", - "d2+/OampqXr33XeNngYugCVgAABMJTj3AF6Kdu3aKS0tTUVFRb4xj8ejoqIiOZ3OgPs4nU6/+ZJU\\\n", - "WFjom9+uXTvdcMMNKi8v95vz6aefqkePHpdUH85HBxAAADRbTk6OpkyZooEDB2rQoEFasmSJTp8+\\\n", - "ralTp0qSJk+erKuuusp3H+Hs2bOVkZGhRYsWafTo0Vq3bp12796t1atX+46Zm5ur8ePHa9iwYbrl\\\n", - "lltUUFCgzZs366233grFKZoKARAAADMJ0ReBjB8/XkePHtWCBQvkcrk0YMAAFRQU+B70qKioUETE\\\n", - "dwuPQ4YM0dq1azV//nw9/PDDuvbaa7Vp0yb16dPHN+fOO+/UqlWrlJ+frwceeEDXXXed/vznP2vo\\\n", - "0KGtfn5mw+cANhOfA9h0fA5g8/A5gED4aY3PAez1k18H5ThfbJgflOOgbeKfYAAAAIthCRgAADMJ\\\n", - "0RIwwgsBEAAAUyEB4uIIgM0UHRnqCsJXeQW3nzbHFwfPhbqEsOVt4GevqWyRhAvADAiAAACYSLC+\\\n", - "CQTmRgAEAMBMCIAwgKeAAQAALIYACAAAYDEsAQMAYCY21oBxcQRAAABMhIdAYARLwAAAABZDAAQA\\\n", - "ALAYloABADATloBhAB1AAAAAi6EDCACAmfAUMAwgAAIAYCJ80zWMYAkYAADAYugAAgBgJqwAwwAC\\\n", - "IAAAZkIAhAEsAQMAAFgMARAAAMBiWAIGAMBM+BgYGEAABADARLzkPxjAEjAAAIDFEAABAAAshiVg\\\n", - "AADMhCVgGEAHEAAAwGLoAAIAYCZ0AGEAARAAAFMhAeLiWAIGAACwGAIgAABmYgvS1gQrV65Uz549\\\n", - "FRMTo/T0dJWWljY6f8OGDUpJSVFMTIz69u2rrVu3XnDu/fffL5vNpiVLljStOPghAAIAYCYhCoDr\\\n", - "169XTk6OFi5cqD179qh///7KyspSVVVVwPnFxcWaOHGisrOz9f7772vs2LEaO3as9u7de97c1157\\\n", - "TTt27FCXLl0uvTAERAAEAADNtnjxYk2bNk1Tp05V7969tWrVKl122WV64YUXAs5funSpRo0apdzc\\\n", - "XKWmpupXv/qVrr/+eq1YscJv3uHDhzVr1iy98sorio6Obo1TsQQCIAAAJuIN0nYp6urqVFZWpszM\\\n", - "TN9YRESEMjMzVVJSEnCfkpISv/mSlJWV5Tff4/HonnvuUW5urn7wgx9cYlVoDE8BAwBgJkF6CNjt\\\n", - "dsvtdvuN2e122e328+YeO3ZMDQ0NSk5O9htPTk7WgQMHAh7f5XIFnO9yuXx//q//+i9FRUXpgQce\\\n", - "aOpp4ALoAAIAgPPk5+crLi7Ob8vPz2+19y8rK9PSpUv10ksvyWbjo22CjQAIAADOk5eXp5qaGr8t\\\n", - "Ly8v4NzExERFRkaqsrLSb7yyslIOhyPgPg6Ho9H5f/vb31RVVaXu3bsrKipKUVFROnTokObOnaue\\\n", - "PXs2/wQtjgAIAICZ2GxB2ex2u2JjY/22QMu/ktSuXTulpaWpqKjIN+bxeFRUVCSn0xlwH6fT6Tdf\\\n", - "kgoLC33z77nnHn300Uf64IMPfFuXLl2Um5urv/71r0G6WNbFPYDf+Oc//6mFCxde8GklKfD9EA31\\\n", - "5xQZzWUEALQRIVotzcnJ0ZQpUzRw4EANGjRIS5Ys0enTpzV16lRJ0uTJk3XVVVf5lpFnz56tjIwM\\\n", - "LVq0SKNHj9a6deu0e/durV69WpKUkJCghIQEv/eIjo6Ww+HQdddd17onZ0J0AL9x4sQJ/eEPf2h0\\\n", - "TqD7Ifa8WthKFQIA0HaNHz9eTz31lBYsWKABAwbogw8+UEFBge9Bj4qKCn355Ze++UOGDNHatWu1\\\n", - "evVq9e/fX6+++qo2bdqkPn36hOoULMXm9Xov9WnvsPT66683+voXX3yhuXPnqqGh4YJzAnUAc//n\\\n", - "OTqATVReYYkfvRbzxcFzoS4hbHkb+NlrKlskN+M3xz8WPdji79Ht//w2KMf55///y6AcB22TZZLL\\\n", - "2LFjZbPZ1FjevdhTRoEefyf8AQDaFDI6DLDMEnDnzp21ceNGeTyegNuePXtCXSIAAECrsEwATEtL\\\n", - "U1lZ2QVfv1h3EACAsBCi7wJGeLHM+mVubq5Onz59wdevueYabd++vRUrAgAACA3LBMCbbrqp0dcv\\\n", - "v/xyZWRktFI1AAAAoWOZAAgAgCWwfAsDCIAAAJgI35sLIyzzEAgAAAC+RgAEAACwGJaAAQAwE1aA\\\n", - "YQABEAAAMyEAwgCWgAEAACyGAAgAAGAxLAEDAGAifAoMjKADCAAAYDEEQAAAAIthCRgAADNhCRgG\\\n", - "0AEEAACwGDqAAACYCR1AGEAABADARMh/MIIACACAmfA5MDCAewABAAAshg4gAAAmQgMQRtABBAAA\\\n", - "sBgCIAAAgMWwBAwAgJmwBAwDCIAAAJgI+Q9GsAQMAABgMXQAAQAwE1qAMIAACACAifAxMDCCJWAA\\\n", - "AACLIQACAICgWLlypXr27KmYmBilp6ertLS00fkbNmxQSkqKYmJi1LdvX23dutX3Wn19vR566CH1\\\n", - "7dtXl19+ubp06aLJkyfryJEjLX0alkAABADARGy24GyXav369crJydHChQu1Z88e9e/fX1lZWaqq\\\n", - "qgo4v7i4WBMnTlR2drbef/99jR07VmPHjtXevXslSWfOnNGePXv06KOPas+ePdq4caPKy8t1xx13\\\n", - "NOfy4Bs2r9frDXUR4eznf1ka6hLCVnkFP3rN8cXBc6EuIWx5G/jZaypbJDeYNcc/Fj3Y4u9xzS+f\\\n", - "CspxPv/tpdWanp6uG264QStWrJAkeTwedevWTbNmzdK8efPOmz9+/HidPn1aW7Zs8Y0NHjxYAwYM\\\n", - "0KpVqwK+x65duzRo0CAdOnRI3bt3v6T64I8OIAAAaJa6ujqVlZUpMzPTNxYREaHMzEyVlJQE3Kek\\\n", - "pMRvviRlZWVdcL4k1dTUyGazKT4+Pih1WxlPATfToSo6CU11TVc6Cc1xVafoUJcQtvbso3vaVDXH\\\n", - "GkJdAi4iWE8Bu91uud1uvzG73S673X7e3GPHjqmhoUHJycl+48nJyTpw4EDA47tcroDzXS5XwPln\\\n", - "z57VQw89pIkTJyo2NvZSTgUB0AEEAMBMbMHZ8vPzFRcX57fl5+e3+ulIXz8Qcvfdd8vr9erZZ58N\\\n", - "SQ1mQwcQAACcJy8vTzk5OX5jgbp/kpSYmKjIyEhVVlb6jVdWVsrhcATcx+FwGJr/bfg7dOiQtm3b\\\n", - "RvcvSOgAAgBgIrYg/c9utys2NtZvu1AAbNeundLS0lRUVOQb83g8KioqktPpDLiP0+n0my9JhYWF\\\n", - "fvO/DX+fffaZ3nzzTSUkJAThCkGiAwgAgLmE6PbqnJwcTZkyRQMHDtSgQYO0ZMkSnT59WlOnTpUk\\\n", - "TZ48WVdddZVvGXn27NnKyMjQokWLNHr0aK1bt067d+/W6tWrJX0d/n784x9rz5492rJlixoaGnz3\\\n", - "B3bs2FHt2rULzYmaBAEQAAA02/jx43X06FEtWLBALpdLAwYMUEFBge9Bj4qKCkVEfLfwOGTIEK1d\\\n", - "u1bz58/Xww8/rGuvvVabNm1Snz59JEmHDx/W66+/LkkaMGCA33tt375dN998c6ucl1nxOYDNNPq5\\\n", - "JaEuIWx1TeQp4OaorQt1BeGLp4CbjqeAm+efz/yyxd/jurxFQTlOef7coBwHbRMdQAAATCRYHwMD\\\n", - "c+MhEAAAAIuhAwgAgJnQAYQBBEAAAEyE/AcjCIAAAJgJCRAGcA8gAACAxdABBADARGgAwggCIAAA\\\n", - "JsLHwMAIloABAAAshg4gAABmQgcQBhAAAQAwEfIfjGAJGAAAwGLoAAIAYCI8BAIj6AACAABYDAEQ\\\n", - "AADAYlgCBgDARFgChhEEQAAAzIQACAMIgAAAmIiNBAgDuAcQAADAYugAAgBgItwDCCPoAAIAAFgM\\\n", - "ARAAAMBiWAIGAMBEWAKGEQRAAABMhPwHI1gCBgAAsBg6gAAAmAktQBhAAAQAwES4BxBGsAQMAABg\\\n", - "MXQAAQAwERqAMMIyHcDa2lq9++67+uSTT8577ezZs1qzZs1Fj+F2u3Xy5Em/raH+XEuUCwBA09iC\\\n", - "tMHULBEAP/30U6WmpmrYsGHq27evMjIy9OWXX/per6mp0dSpUy96nPz8fMXFxfltf3/jzZYsHQCA\\\n", - "S0L+gxGWCIAPPfSQ+vTpo6qqKpWXl+uKK67QjTfeqIqKiks6Tl5enmpqavy2q3+U2UJVAwAQXlau\\\n", - "XKmePXsqJiZG6enpKi0tbXT+hg0blJKSopiYGPXt21dbt271e93r9WrBggXq3Lmz2rdvr8zMTH32\\\n", - "2WcteQqWYYkAWFxcrPz8fCUmJuqaa67R5s2blZWVpZtuuklffPGF4ePY7XbFxsb6bZHR3EYJAGg7\\\n", - "bLbgbJdq/fr1ysnJ0cKFC7Vnzx71799fWVlZqqqqCji/uLhYEydOVHZ2tt5//32NHTtWY8eO1d69\\\n", - "e31zfvvb32rZsmVatWqVdu7cqcsvv1xZWVk6e/ZsUy8PvmGJAFhbW6uoqO+Cms1m07PPPqvbb79d\\\n", - "GRkZ+vTTT0NYHQAAQRSiNeDFixdr2rRpmjp1qnr37q1Vq1bpsssu0wsvvBBw/tKlSzVq1Cjl5uYq\\\n", - "NTVVv/rVr3T99ddrxYoVkr7u/i1ZskTz58/XmDFj1K9fP61Zs0ZHjhzRpk2bLr1A+LFEAExJSdHu\\\n", - "3bvPG1+xYoXGjBmjO+64IwRVAQDQdgV68NHtdgecW1dXp7KyMmVmfndbVEREhDIzM1VSUhJwn5KS\\\n", - "Er/5kpSVleWb/49//EMul8tvTlxcnNLT0y94TBhniQB455136k9/+lPA11asWKGJEyfK6/W2clUA\\\n", - "AARfsBqAgR58zM/PD/iex44dU0NDg5KTk/3Gk5OT5XK5Au7jcrkanf/t/1/KMWGcJQJgXl7eeTeW\\\n", - "/qtnnnlGHo+nFSsCAKBlBOsewEAPPubl5YX69BAkPMEAAADOY7fbZbfbDc1NTExUZGSkKisr/cYr\\\n", - "KyvlcDgC7uNwOBqd/+3/V1ZWqnPnzn5zBgwYYPQ0cAGW6AACAGAdrf8USLt27ZSWlqaioiLfmMfj\\\n", - "UVFRkZxOZ8B9nE6n33xJKiws9M3/3ve+J4fD4Tfn5MmT2rlz5wWPCePoAAIAYCJN+QiXYMjJydGU\\\n", - "KVM0cOBADRo0SEuWLNHp06d9X7QwefJkXXXVVb77CGfPnq2MjAwtWrRIo0eP1rp167R7926tXr36\\\n", - "m/Ow6Re/+IV+/etf69prr9X3vvc9Pfroo+rSpYvGjh0bmpM0EQIgAABotvHjx+vo0aNasGCBXC6X\\\n", - "BgwYoIKCAt9DHBUVFYqI+G7hcciQIVq7dq3mz5+vhx9+WNdee602bdqkPn36+Ob88pe/1OnTpzV9\\\n", - "+nRVV1dr6NChKigoUExMTKufn9nYvDz+2iyjn1sS6hLCVtdEvmyoOWrrQl1B+Nqzj+/wbqqaYw2h\\\n", - "LiGs/fOZX7b4ezh/93RQjlOSOycox0HbRAcQAAAT4VdrGEEABADAREJ1DyDCC08BAwAAWAwBEAAA\\\n", - "wGJYAgYAwERYAoYRdAABAAAshg4gAAAmQgMQRhAAAQAwExIgDGAJGAAAwGLoAAIAYCI8BAIjCIAA\\\n", - "AJgI+Q9GEAABADATEiAM4B5AAAAAi6EDCACAidAAhBEEQAAATISHQGAES8AAAAAWQwcQAAAzoQUI\\\n", - "AwiAAACYCPEPRrAEDAAAYDF0AAEAMBNagDCAAAgAgImQ/2AES8AAAAAWQwcQAAAT4SFgGEEABADA\\\n", - "TAiAMIAACACAiZD/YAQBsJlqa0NdQfg6cjzUFYS3g6v/b6hLCFtnbkoOdQlhK7L6XKhLABAEBEAA\\\n", - "AEyEewBhBE8BAwAAWAwBEAAAwGJYAgYAwERYAoYRBEAAAEyEAAgjWAIGAACt5sSJE5o0aZJiY2MV\\\n", - "Hx+v7OxsnTp1qtF9zp49qxkzZighIUEdOnTQuHHjVFlZ6Xv9ww8/1MSJE9WtWze1b99eqampWrp0\\\n", - "aUufSlgjAAIAgFYzadIk7du3T4WFhdqyZYveeecdTZ8+vdF95syZo82bN2vDhg16++23deTIEd11\\\n", - "112+18vKytSpUye9/PLL2rdvnx555BHl5eVpxYoVLX06YYslYAAATKQtLwHv379fBQUF2rVrlwYO\\\n", - "HChJWr58uW699VY99dRT6tKly3n71NTU6Pnnn9fatWs1fPhwSdKLL76o1NRU7dixQ4MHD9Z9993n\\\n", - "t0+vXr1UUlKijRs3aubMmS1/YmGIDiAAADiP2+3WyZMn/Ta3292sY5aUlCg+Pt4X/iQpMzNTERER\\\n", - "2rlzZ8B9ysrKVF9fr8zMTN9YSkqKunfvrpKSkgu+V01NjTp27Nises2MAAgAgInYgrTl5+crLi7O\\\n", - "b8vPz29WbS6XS506dfIbi4qKUseOHeVyuS64T7t27RQfH+83npycfMF9iouLtX79+osuLVsZARAA\\\n", - "ADMJUgLMy8tTTU2N35aXlxfwLefNmyebzdboduDAgZY972/s3btXY8aM0cKFCzVy5MhWec9wxD2A\\\n", - "AACYSLDuAbTb7bLb7Ybmzp07V/fee2+jc3r16iWHw6Gqqiq/8XPnzunEiRNyOBwB93M4HKqrq1N1\\\n", - "dbVfF7CysvK8fT755BONGDFC06dP1/z58w3VblUEQAAA0CxJSUlKSkq66Dyn06nq6mqVlZUpLS1N\\\n", - "krRt2zZ5PB6lp6cH3CctLU3R0dEqKirSuHHjJEnl5eWqqKiQ0+n0zdu3b5+GDx+uKVOm6IknngjC\\\n", - "WZkbS8AAAJhIsO4BbAmpqakaNWqUpk2bptLSUr333nuaOXOmJkyY4HsC+PDhw0pJSVFpaakkKS4u\\\n", - "TtnZ2crJydH27dtVVlamqVOnyul0avDgwZK+Xva95ZZbNHLkSOXk5Mjlcsnlcuno0aMtdCbhjw4g\\\n", - "AABm0pY/B0bSK6+8opkzZ2rEiBGKiIjQuHHjtGzZMt/r9fX1Ki8v15kzZ3xjTz/9tG+u2+1WVlaW\\\n", - "nnnmGd/rr776qo4ePaqXX35ZL7/8sm+8R48eOnjwYKucV7ixeb1eb6iLCGfDly0JdQlh6/LL2vZf\\\n", - "Um3dwdX/N9QlhK3TNyWHuoSw5fmyLtQlhLWDax9u8fe47ffB+QaMLf/f7KAcB20THUAAAEyEX61h\\\n", - "BAEQAAATaeMrwGgjeAgEAADAYugAAgBgInQAYQQdQAAAAIshAAIAAFgMS8AAAJgIS8AwggAIAICJ\\\n", - "kP9gBAEQAAAzIQHCAO4BBAAAsBg6gAAAmAgNQBhBAAQAwER4CARGsAQMAABgMXQAAQAwETqAMIIO\\\n", - "IAAAgMUQAAEAACyGJWAAAEyEJWAYQQAEAMBEyH8wgiVgAAAAi7FMB3D//v3asWOHnE6nUlJSdODA\\\n", - "AS1dulRut1s//elPNXz48Isew+12y+12+415zp1TRJRlLiMAoI1jCRhGWKIDWFBQoAEDBujBBx/U\\\n", - "f/zHf6igoEDDhg3T559/rkOHDmnkyJHatm3bRY+Tn5+vuLg4v+1Q4ZutcAYAABhjswVng7lZIgA+\\\n", - "/vjjys3N1fHjx/Xiiy/qP//zPzVt2jQVFhaqqKhIubm5+s1vfnPR4+Tl5ammpsZv6/HDzFY4AwAA\\\n", - "gOCxRADct2+f7r33XknS3Xffrf/93//Vj3/8Y9/rkyZN0kcffXTR49jtdsXGxvptLP8CAIBwY5n0\\\n", - "Yvumnx0REaGYmBjFxcX5XrviiitUU1MTqtIAAAgalm9hhCU6gD179tRnn33m+3NJSYm6d+/u+3NF\\\n", - "RYU6d+4citIAAAgqW5A2mJslOoA/+9nP1NDQ4Ptznz59/F5/4403DD0FDAAAYAaWCID3339/o68/\\\n", - "+eSTrVQJAAAtiyVgGGGJAAgAgFWQ/2CEJe4BBAAAwHfoAAIAYCa0AGEAHUAAAEykrX8TyIkTJzRp\\\n", - "0iTFxsYqPj5e2dnZOnXqVKP7nD17VjNmzFBCQoI6dOigcePGqbKyMuDc48ePq2vXrrLZbKqurm6B\\\n", - "MzAHAiAAAGg1kyZN0r59+1RYWKgtW7bonXfe0fTp0xvdZ86cOdq8ebM2bNigt99+W0eOHNFdd90V\\\n", - "cG52drb69evXEqWbCgEQAAATacufA7h//34VFBTo97//vdLT0zV06FAtX75c69at05EjRwLuU1NT\\\n", - "o+eff16LFy/W8OHDlZaWphdffFHFxcXasWOH39xnn31W1dXVevDBB1voDMyDAAgAgIm05SXgkpIS\\\n", - "xcfHa+DAgb6xzMxMRUREaOfOnQH3KSsrU319vTIzM31jKSkp6t69u0pKSnxjn3zyiR5//HGtWbNG\\\n", - "ERHEm4vhIRAAAEwkWNnN7XbL7Xb7jdntdtnt9iYf0+VyqVOnTn5jUVFR6tixo1wu1wX3adeuneLj\\\n", - "4/3Gk5OTffu43W5NnDhRv/vd79S9e3d98cUXTa7RKojIAADgPPn5+YqLi/Pb8vPzA86dN2+ebDZb\\\n", - "o9uBAwdarNa8vDylpqbqpz/9aYu9h9nQAQQAwESCtXybl5ennJwcv7ELdf/mzp2re++9t9Hj9erV\\\n", - "Sw6HQ1VVVX7j586d04kTJ+RwOALu53A4VFdXp+rqar8uYGVlpW+fbdu26eOPP9arr74qSfJ6vZKk\\\n", - "xMREPfLII3rssccarc2KCIAAAJhIsJaAL2W5NykpSUlJSRed53Q6VV1drbKyMqWlpUn6Orx5PB6l\\\n", - "p6cH3CctLU3R0dEqKirSuHHjJEnl5eWqqKiQ0+mUJP35z39WbW2tb59du3bpvvvu09/+9jddffXV\\\n", - "hs7BagiAAACgVaSmpmrUqFGaNm2aVq1apfr6es2cOVMTJkxQly5dJEmHDx/WiBEjtGbNGg0aNEhx\\\n", - "cXHKzs5WTk6OOnbsqNjYWM2aNUtOp1ODBw+WpPNC3rFjx3zv9+/3DuJrBEAAAEykJT/EORheeeUV\\\n", - "zZw5UyNGjFBERITGjRunZcuW+V6vr69XeXm5zpw54xt7+umnfXPdbreysrL0zDPPhKJ80yAAAgBg\\\n", - "Jm08AHbs2FFr16694Os9e/b03cP3rZiYGK1cuVIrV6409B4333zzeceAP54CBgAAsBg6gAAAmEgb\\\n", - "bwCijSAAAgBgIm39HkC0DSwBAwAAWAwdQAAATIQGIIwgAAIAYCIsAcMIAiAAACZC/oMR3AMIAABg\\\n", - "MXQAAQAwEZaAYQQBEAAAEyEAwgiWgAEAACyGDiAAACZCAxBGEAABADARloBhBEvAAAAAFkMHEAAA\\\n", - "E6EBCCMIgAAAmAhLwDCCAIiQ+bKqIdQlhLWGkY5QlxC2+l/NX31NVVbnDXUJAIKAvwUBADARGoAw\\\n", - "ggAIAICJsAQMIwiAAACYCPkPRvAxMAAAABZDBxAAABNhCRhGEAABADAR8h+MYAkYAADAYugAAgBg\\\n", - "IiwBwwgCIAAAJkIAhBEsAQMAAFgMHUAAAEyEBiCMIAACAGAiNtaAYQBLwAAAABZDBxAAABOh/wcj\\\n", - "6AACAGAiNltwtpZy4sQJTZo0SbGxsYqPj1d2drZOnTrV6D5nz57VjBkzlJCQoA4dOmjcuHGqrKw8\\\n", - "b95LL72kfv36KSYmRp06ddKMGTNa6jTCHgEQAAATsQVpaymTJk3Svn37VFhYqC1btuidd97R9OnT\\\n", - "G91nzpw52rx5szZs2KC3335bR44c0V133eU3Z/HixXrkkUc0b9487du3T2+++aaysrJa8EzCG0vA\\\n", - "AACgVezfv18FBQXatWuXBg4cKElavny5br31Vj311FPq0qXLefvU1NTo+eef19q1azV8+HBJ0osv\\\n", - "vqjU1FTt2LFDgwcP1ldffaX58+dr8+bNGjFihG/ffv36tc6JhSE6gAAAmEiELThbSygpKVF8fLwv\\\n", - "/ElSZmamIiIitHPnzoD7lJWVqb6+XpmZmb6xlJQUde/eXSUlJZKkwsJCeTweHT58WKmpqeratavu\\\n", - "vvtu/fOf/2yZEzEBAiAAACYSrCVgt9utkydP+m1ut7tZtblcLnXq1MlvLCoqSh07dpTL5brgPu3a\\\n", - "tVN8fLzfeHJysm+fL774Qh6PR08++aSWLFmiV199VSdOnNAPf/hD1dXVNatmsyIAAgCA8+Tn5ysu\\\n", - "Ls5vy8/PDzh33rx5stlsjW4HDhxosVo9Ho/q6+u1bNkyZWVlafDgwfrTn/6kzz77TNu3b2+x9w1n\\\n", - "3AMIAICJBOsJ3ry8POXk5PiN2e32gHPnzp2re++9t9Hj9erVSw6HQ1VVVX7j586d04kTJ+RwOALu\\\n", - "53A4VFdXp+rqar8uYGVlpW+fzp07S5J69+7tez0pKUmJiYmqqKhotC6rIgACAGAiwbp9z263XzDw\\\n", - "/bukpCQlJSVddJ7T6VR1dbXKysqUlpYmSdq2bZs8Ho/S09MD7pOWlqbo6GgVFRVp3LhxkqTy8nJV\\\n", - "VFTI6XRKkm688UbfeNeuXSV9/XEzx44dU48ePQydg9WwBAwAAFpFamqqRo0apWnTpqm0tFTvvfee\\\n", - "Zs6cqQkTJvieAD58+LBSUlJUWloqSYqLi1N2drZycnK0fft2lZWVaerUqXI6nRo8eLAk6fvf/77G\\\n", - "jBmj2bNnq7i4WHv37tWUKVOUkpKiW265JWTn25YRAAEAMJG2/kHQr7zyilJSUjRixAjdeuutGjp0\\\n", - "qFavXu17vb6+XuXl5Tpz5oxv7Omnn9Ztt92mcePGadiwYXI4HNq4caPfcdesWaP09HSNHj1aGRkZ\\\n", - "io6OVkFBgaKjo1vuZMKYzev1ekNdRDgbvmxJqEsIWydPeUJdQlg7c4b/dJvququ5+6WpyvbwRGVz\\\n", - "VCzPbfH3eOzNZUE5zsLMB4JyHLRNdAABAAAshl+DAQAwkZZcvoV5EAABADAR8h+MIAACAGAiLfU1\\\n", - "bjAX7gEEAACwGDqAAACYCA1AGEEABADARHgIBEawBAwAAGAxlu4Aer1e2fhVCQBgIvyrBiMs3QG0\\\n", - "2+3av39/qMsAACBo2vpXwaFtsEQHMCcnJ+B4Q0ODfvOb3yghIUGStHjx4kaP43a75Xa7/cY8584p\\\n", - "IsoSlxEAAJiEJZLLkiVL1L9/f8XHx/uNe71e7d+/X5dffrmhpeD8/Hw99thjfmM9R2Xpez8aFcxy\\\n", - "AQBoMpp3MMISAfDJJ5/U6tWrtWjRIg0fPtw3Hh0drZdeekm9e/c2dJy8vLzzuol3/H51UGsFAKA5\\\n", - "WL6FEZa4B3DevHlav369fvazn+nBBx9UfX19k45jt9sVGxvrt7H8CwAAwo0lAqAk3XDDDSorK9PR\\\n", - "o0c1cOBA7d27lyeAAQCmw0MgMMJS7asOHTroD3/4g9atW6fMzEw1NDSEuiQAAILKMp0dNIulAuC3\\\n", - "JkyYoKFDh6qsrEw9evQIdTkAAAQN3TsYYckAKEldu3ZV165dQ10GAABAq7NsAAQAwIxoAMIIAiAA\\\n", - "ACbCEjCM4F5RAAAAi6EDCACAidAAhBEEQAAATIQlYBjBEjAAAIDF0AEEAMBEaADCCAIgAAAmwhIw\\\n", - "jGAJGAAAwGLoAAIAYCI0AGEEARAAABNhCRhGEAABADAR7u2CEfycAAAAWAwBEAAAE7HZgrO1lBMn\\\n", - "TmjSpEmKjY1VfHy8srOzderUqUb3OXv2rGbMmKGEhAR16NBB48aNU2Vlpd+cXbt2acSIEYqPj9eV\\\n", - "V16prKwsffjhhy13ImGOAAgAgInYgrS1lEmTJmnfvn0qLCzUli1b9M4772j69OmN7jNnzhxt3rxZ\\\n", - "GzZs0Ntvv60jR47orrvu8r1+6tQpjRo1St27d9fOnTv17rvv6oorrlBWVpbq6+tb8GzCF/cAAgCA\\\n", - "VrF//34VFBRo165dGjhwoCRp+fLluvXWW/XUU0+pS5cu5+1TU1Oj559/XmvXrtXw4cMlSS+++KJS\\\n", - "U1O1Y8cODR48WAcOHNCJEyf0+OOPq1u3bpKkhQsXql+/fjp06JCuueaa1jvJMEEHEAAAEwnWErDb\\\n", - "7dbJkyf9Nrfb3azaSkpKFB8f7wt/kpSZmamIiAjt3Lkz4D5lZWWqr69XZmambywlJUXdu3dXSUmJ\\\n", - "JOm6665TQkKCnn/+edXV1am2tlbPP/+8UlNT1bNnz2bVbFYEQAAATCRYS8D5+fmKi4vz2/Lz85tV\\\n", - "m8vlUqdOnfzGoqKi1LFjR7lcrgvu065dO8XHx/uNJycn+/a54oor9NZbb+nll19W+/bt1aFDBxUU\\\n", - "FOiNN95QVBSLnYEQAAEAwHny8vJUU1Pjt+Xl5QWcO2/ePNlstka3AwcOtFittbW1ys7O1o033qgd\\\n", - "O3bovffeU58+fTR69GjV1ta22PuGM2IxAAAmEqwneO12u+x2u6G5c+fO1b333tvonF69esnhcKiq\\\n", - "qspv/Ny5czpx4oQcDkfA/RwOh+rq6lRdXe3XBaysrPTts3btWh08eFAlJSWKiIjwjV155ZX6y1/+\\\n", - "ogkTJhg6DyshAAIAYCKh+CaQpKQkJSUlXXSe0+lUdXW1ysrKlJaWJknatm2bPB6P0tPTA+6Tlpam\\\n", - "6OhoFRUVady4cZKk8vJyVVRUyOl0SpLOnDmjiIgI2f7l5L/9s8fjae7pmRJLwAAAoFWkpqZq1KhR\\\n", - "mjZtmkpLS/Xee+9p5syZmjBhgu8J4MOHDyslJUWlpaWSpLi4OGVnZysnJ0fbt29XWVmZpk6dKqfT\\\n", - "qcGDB0uSfvjDH+qrr77SjBkztH//fu3bt09Tp05VVFSUbrnllpCdb1tGAAQAwETa+ucAvvLKK0pJ\\\n", - "SdGIESN06623aujQoVq9erXv9fr6epWXl+vMmTO+saefflq33Xabxo0bp2HDhsnhcGjjxo2+11NS\\\n", - "UrR582Z99NFHcjqduummm3TkyBEVFBSoc+fOLXg24cvm9Xq9oS4inA1ftiTUJYStk6doyzfHmTP8\\\n", - "p9tU113N3S9NVbanLtQlhLWK5bkt/h5/2L0sKMeZMvCBoBwHbRN/CwIAYCIs7cEIfk4AAAAshg4g\\\n", - "AAAmEoqngBF+CIAAAJiITdwfjItjCRgAAMBi6AACAGAiLAHDCD4GxsTcbrfy8/OVl5dn+Ot88DWu\\\n", - "XdNx7ZqH69d0XDvAOAKgiZ08eVJxcXGqqalRbGxsqMsJK1y7puPaNQ/Xr+m4doBx3AMIAABgMQRA\\\n", - "AAAAiyEAAgAAWAwB0MTsdrsWLlzIzdBNwLVrOq5d83D9mo5rBxjHQyAAAAAWQwcQAADAYgiAAAAA\\\n", - "FkMABAAAsBgCIAAAgMUQAC2koqJCo0eP1mWXXaZOnTopNzdX586dC3VZYeOBBx5QWlqa7Ha7BgwY\\\n", - "EOpywsaHH36oiRMnqlu3bmrfvr1SU1O1dOnSUJcVNo4fP65Ro0apS5custvt6tatm2bOnKmTJ0+G\\\n", - "urSwcvz4cXXt2lU2m03V1dWhLgcIuahQF4DW0dDQoNGjR8vhcKi4uFhffvmlJk+erOjoaD355JOh\\\n", - "Li9s3Hfffdq5c6c++uijUJcSNsrKytSpUye9/PLL6tatm4qLizV9+nRFRkZq5syZoS6vzYuIiNCY\\\n", - "MWP061//WklJSfr88881Y8YMnThxQmvXrg11eWEjOztb/fr10+HDh0NdCtA2eBGW3njjDe+NN97o\\\n", - "jYuL83bs2NE7evRo7+eff37B+Vu3bvVGRER4XS6Xb+zZZ5/1xsbGet1ud2uU3KZc6vX7VwsXLvT2\\\n", - "79+/ZQtsw5pz7b7185//3HvLLbe0UIVtWzCu39KlS71du3ZtoQrbrqZeu2eeecabkZHhLSoq8kry\\\n", - "fvXVVy1fLNDGsQQcpk6fPq2cnBzt3r1bRUVFioiI0J133imPxxNwfklJifr27avk5GTfWFZWlk6e\\\n", - "PKl9+/a1VtltxqVeP3wnGNeupqZGHTt2bMEq267mXr8jR45o48aNysjIaOFK256mXLtPPvlEjz/+\\\n", - "uNasWaOICP7JA3xCnUARHEePHvVK8n788ccBX582bZp35MiRfmOnT5/2SvJu3bq1NUps0y52/f6V\\\n", - "1TuA/+5Srp3X6/W+99573qioKO9f//rXFq4sPBi9fhMmTPC2b9/eK8l7++23e2tra1upwrbrYtfu\\\n", - "7Nmz3n79+nn/+Mc/er1er3f79u10AIFv8OtQmPrss880ceJE9erVS7GxserZs6ekrx/0+NGPfqQO\\\n", - "HTqoQ4cO+sEPfhDaQtsorl/TNefa7d27V2PGjNHChQs1cuTIVq68bWjq9Xv66ae1Z88e/eUvf9Hf\\\n", - "//535eTkhKD60LrUa5eXl6fU1FT99Kc/DWHVQNvEQyBh6vbbb1ePHj303HPPqUuXLvJ4POrTp4/q\\\n", - "6ur0+9//XrW1tZKk6OhoSZLD4VBpaanfMSorK32vWc2lXj98p6nX7pNPPtGIESM0ffp0zZ8/PxSl\\\n", - "twlNvX4Oh0MOh0MpKSnq2LGjbrrpJj366KPq3LlzKE4jJC712m3btk0ff/yxXn31VUmS95tvPk1M\\\n", - "TNQjjzyixx57LDQnArQBBMAwdPz4cZWXl+u5557TTTfdJEl69913fa9fddVV5+3jdDr1xBNPqKqq\\\n", - "Sp06dZIkFRYWKjY2Vr17926dwtuIplw/fK2p127fvn0aPny4pkyZoieeeKJVam2LgvWz9+09b263\\\n", - "O/hFtlFNuXZ//vOffaFQknbt2qX77rtPf/vb33T11Ve3fNFAG0YADENXXnmlEhIStHr1anXu3FkV\\\n", - "FRWaN29eo/uMHDlSvXv31j333KPf/va3crlcmj9/vmbMmCG73d5KlbcNTbl+kvT555/r1KlTcrlc\\\n", - "qq2t1QcffCBJ6t27t9q1a9fCVbcNTbl2e/fu1fDhw5WVlaWcnBy5XC5JUmRkpJKSklqj7DajKddv\\\n", - "69atqqys1A033KAOHTpo3759ys3N1Y033uhbArWCply7fw95x44dkySlpqYqPj6+pUoFwkOob0JE\\\n", - "0xQWFnpTU1O9drvd269fP+9bb73lleR97bXXLrjPwYMHvT/60Y+87du39yYmJnrnzp3rra+vb72i\\\n", - "25CmXL+MjAyvpPO2f/zjH61Wd1twqddu4cKFAa9bjx49WrXutuJSr9+2bdu8TqfTGxcX542JifFe\\\n", - "e+213oceesiSDzI05b/bf8VDIMB3bF7vNzdFAAAAwBJ4ChgAAMBiCIAAAAAWQwAEAACwGAIgAACA\\\n", - "xRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEEDQFBQUaOnSo4uPjlZCQ\\\n", - "oNtuu01///vfQ10WAODfEAABBM3p06eVk5Oj3bt3q6ioSBEREbrzzjvl8XhCXRoA4F/YvF6vN9RF\\\n", - "ADCnY8eOKSkpSR9//LH69OkT6nIAAN+gAwggaD777DNNnDhRvXr1UmxsrHr27ClJqqioCG1hAAA/\\\n", - "UaEuAIB53H777erRo4eee+45denSRR6PR3369FFdXV2oSwMA/AsCIICgOH78uMrLy/Xcc8/ppptu\\\n", - "kiS9++67Ia4KABAIARBAUFx55ZVKSEjQ6tWr1blzZ1VUVGjevHmhLgsAEAD3AAIIioiICK1bt05l\\\n", - "ZWXq06eP5syZo9/97nehLgsAEABPAQMAAFgMHUAAAACLIQACAABYDAEQAADAYgiAAAAAFkMABAAA\\\n", - "sBgCIAAAgMUQAAEAACyGAAgAAGAxBEAAAACLIQACAABYDAEQAADAYgiAAAAAFvP/ANJgmTuchJfr\\\n", - "AAAAAElFTkSuQmCC\\\n", + "AAAPYQGoP6dpAAAkoklEQVR4nO3df4xd5Xkv+u/YCdv54dmD0zLg6DRS1Atukmum5MeNPdlgQjqZ\\\n", + "EwaaymkSLrIJoxSHCBHXucVnqiglEmRom+tgpIpwcxsEJJyGDGkL05QRDuAO9kiATm1aU1VpResc\\\n", + "J6YqHmYcq2zGZs4fObWyGWMvw7bHXuvzkV7Jft+91n7XFpK/PM9ae3fMzs7OBgCAylgw3xsAAODk\\\n", + "EgABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACg\\\n", + "YgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQA\\\n", + "qBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQAB\\\n", + "ACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAYI4bb7wxL7744uG/f/nLX853vvOd\\\n", + "edzRXI888kg+8IEP5F3velfe/e5354YbbsjLL78839sCOC10zM7Ozs73JoBTS0dHRyYnJ9PV1TXf\\\n", + "W3lVf/u3f5t6vZ53vvOdefHFF/ORj3wkn/3sZ/OZz3xmvrcGcMpTAYQSu/LKK/O+970vy5cvz6WX\\\n", + "Xpq9e/ce85jPfe5zSZJGo5Genp7827/9Wz7zmc/k1ltvTfLz6uAnP/nJXHbZZTn33HMzMDCQv//7\\\n", + "v89HP/rRnHvuubniiisOV+L279+f3/md38kHPvCBLF++PNdcc01eeumltlzbr//6r+ed73xnkmTR\\\n", + "okXp6enJv/zLv7Tl3ABlJwBCid1666156qmn8vTTT6fRaOTGG288vPaxj30sTz311JxjvvGNbyRJ\\\n", + "xsfHs2PHjpx11llzXvPUU0/l7rvvzj/+4z9m//79+exnP5uRkZE888wz+Yd/+If89V//dZLki1/8\\\n", + "YhqNRp544ons3LkzL7/8cjZv3jznfPv3709PT88Rx0c/+tFjXufevXszMjKSgYGBoh8NQKW9Yb43\\\n", + "AJw49957b+655568+OKLefHFF/NLv/RLh9d+8IMfvObz9vX15cwzz0ySXHDBBanValm8eHGSn1fm\\\n", + "fvSjHyVJ/uIv/iITExPZtGlTkuQ//uM/snDhwjnnW7x4cXbs2PGa9jI9PZ3LLrssN9xwQ973vve9\\\n", + "pnMAVI0ACCX1+OOP57bbbsvExETOOuusPPDAA/nyl7/clnMvWrTo8J8XLlw45+8HDx5MkszOzub+\\\n", + "++/Pueeee9Tz7d+/P41G44hr3d3dGRsbe9Xj+vv785u/+ZvZsGHD8V4GQGUJgFBSk5OTWbx4cd72\\\n", + "trflpZdeyh133FH42MWLF2dqaup1PwTy8Y9/PH/4h3+YO+64I294wxsyOTmZ559/Pr/6q7865/2O\\\n", + "twL4s5/9LP39/env78+XvvSl17VPgKpxDyCUVH9/f84777ycd955hx/o+EWvdg9g8vN7937jN37j\\\n", + "8EMgr9XXv/71vOlNb0pPT0+WL1+eSy65pG0PamzevDlPPPFEvv/97x++X/Dmm29uy7kBys7XwAAA\\\n", + "VIwKIABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDF+Cu51Wj+6eb63AMBp\\\n", + "4taBL5zw9/g/L/hiW87zd//j/23LeTg1qQACAFSMCiAAlEnHfG+A04EKIABAxagAAkCZdCgBcmwC\\\n", + "IACUifxHAVrAAMDrsnHjxjQajaxZsyYzMzOH5w8dOpTBwcE0Go2sX7++5ZiJiYl0dHTkZz/72Une\\\n", + "LYkACADl0tGmUdDOnTuzZ8+ejI+PZ9myZRkZGTm8Njo6mqVLl2Z8fDwHDhzIxMTE4bXbbrst733v\\\n", + "e1/HhfJ6CIAAUCrtSYDNZjPT09Mto9lsznm37du3p6+vL0nS39+fbdu2HXPt8ccfz/Lly/PWt761\\\n", + "/ZdPIQIgADDH8PBw6vV6yxgeHp7zusnJyXR2diZJ6vV69u3bd8y1zZs357rrrjsJV8Gr8RAIAJTI\\\n", + "bJseAhkaGsqGDRta5mq12pzXdXV1ZXp6OkkyNTWVJUuWHHVt69atOf/887N48eL2bJTXRAUQAMqk\\\n", + "TfcA1mq1dHZ2towjBcCVK1dmy5YtSZKxsbH09vYedW3nzp354Q9/mP7+/jz99NO56qqrTsjHwNEJ\\\n", + "gADAa9bT05Pu7u40Go3s2rUrq1evzrp165IkAwMD2b17dxqNRhYtWpQVK1bk+uuvz6OPPpqHHnoo\\\n", + "y5cvz1133TXPV1BNHbOzs7PzvYnT2frRzfO9BQBOE7cOfOGEv8d7VtzQlvP8/cQfteU8nJpUAAEA\\\n", + "KsZDIABQJn4JhAJUAAEAKkYFEADKpEMJkGMTAAGgTOQ/CtACBgCoGBVAACgR3+1GEQIgAJSJewAp\\\n", + "QAsYAKBiVAABoEwUAClAAASAUpEAOTYtYACAilEBBIAyUQCkAAEQAMpEAKQAARAASmTW18BQgHsA\\\n", + "AQAqRgAEAKgYLWAAKBMtYApQAQQAqBgVQAAoEwVAChAAAaBEZud7A5wWKhkADx06lJGRkWzbti37\\\n", + "9u3LkiVL0tvbm9WrV+cNb6jkRwIAVEgl087g4GDOO++8fOYzn0m9Xs/U1FTGxsZy9dVX55577nnV\\\n", + "45rNZprNZsvcwZmDecMbK/kxAnAq8hAIBVQyuTz77LO56667WuYuuOCCXHjhhUc9bnh4OF/5ylda\\\n", + "5v6vKz6aD/7f/7XtewSA10T+o4BKBsCVK1dm7dq16evrS2dnZ6anp7Nly5Z88IMfPOpxQ0ND2bBh\\\n", + "Q8vc7//wmydyqwAAbVfJAHjLLbfk6aefzvbt2/PjH/84XV1d+d3f/d2cf/75Rz2uVqulVqu1zGn/\\\n", + "AnBK0QKmgMqml+XLl2f58uXzvQ0AaCtPAVNEZQMgAJSSAiAF+CUQAICKUQEEgDJxDyAFqAACAFSM\\\n", + "AAgAUDFawABQIrNawBQgAAJAmch/FKAFDABQMQIgAEDFCIAAUCKzHR1tGcdj48aNaTQaWbNmTWZm\\\n", + "Zg7PHzp0KIODg2k0Glm/fv3h+d7e3lx00UXp7e3NM888065L5zgIgADAa7Zz587s2bMn4+PjWbZs\\\n", + "WUZGRg6vjY6OZunSpRkfH8+BAwcyMTGRJHn00UezdevW3Hzzzdm0adN8bb3SBEAAKJOO9oxms5np\\\n", + "6emW0Ww257zd9u3b09fXlyTp7+/Ptm3bjrl2xhlnJEn279+f97znPW3+AChCAASAMmlTABweHk69\\\n", + "Xm8Zw8PDc95ucnIynZ2dSZJ6vZ59+/Ydc23v3r3p7e3N5z//+Vx00UXt/ww4Jl8DAwCl0p7vgRka\\\n", + "+m/ZsGFDy1ytVpvzuq6urkxPTydJpqamsmTJkmOunX322dm2bVueeOKJDA0N5aGHHmrLnilOBRAA\\\n", + "mKNWq6Wzs7NlHCkArly5Mlu2bEmSjI2Npbe396hrMzMzefnll5P8vCr45je/+SRcDa8kAAJAicx2\\\n", + "tGcU1dPTk+7u7jQajezatSurV6/OunXrkiQDAwPZvXt3Go1GFi1alBUrVuSnP/1pVq1alYsvvjjX\\\n", + "XnttbrrpphP0SXA0HbOzs7PzvYnT2frRzfO9BQBOE7cOfOGEv8f/8Ztfact5fvSXf9CW83BqUgEE\\\n", + "AKgYD4EAQKn4MWCOTQAEgBI5nvv3qC4tYACAilEBBIAyUQGkAAEQAEpFAuTYtIABACpGBRAASsRD\\\n", + "IBQhAAJAmQiAFCAAAkCpSIAcm3sAAQAqRgUQAMpEAZACBEAAKBEPgVCEFjAAQMWoAAJAmagAUoAA\\\n", + "CAClIgFybALg6/Q/9833DgAAjo8ACAAl4iEQihAAAaBMBEAK8BQwAEDFCIAAABWjBQwAZdKhB8yx\\\n", + "CYAAUCIeAqEILWAAgIoRAAEAKkYLGADKRAuYAlQAAQAqRgUQAMrEU8AUIAACQInMzvcGOC1oAQMA\\\n", + "VIwKIACUiQ4wBQiAAFAmAiAFaAEDAFSMAAgAUDFawABQJr4GhgJUAAGgRGY72jOOx8aNG9NoNLJm\\\n", + "zZrMzMwcnj906FAGBwfTaDSyfv36JMmzzz6bRqORiy66KJdeemmmpqbaePUUJQACAK/Zzp07s2fP\\\n", + "noyPj2fZsmUZGRk5vDY6OpqlS5dmfHw8Bw4cyMTERLq6uvLggw9m69atufzyy/PNb35zHndfXQIg\\\n", + "APCabd++PX19fUmS/v7+bNu27ahrZ555Zrq6upIkZ5xxRhYsEEXmg3sAAaBM2nQLYLPZTLPZbJmr\\\n", + "1Wqp1Wotc5OTkznnnHOSJPV6Pfv27WtZ6+zsPOLaCy+8kNtvvz0PPfRQezbMcRG7AYA5hoeHU6/X\\\n", + "W8bw8PCc13V1dWV6ejpJMjU1lSVLlhxzbWZmJldeeWU2bdrU8npOHgEQAMqkoz1jaGgoU1NTLWNo\\\n", + "aGjO261cuTJbtmxJkoyNjaW3t/eYa9dcc00++clP5kMf+lD7r59CBEAAKJX2JMBarZbOzs6W8cr2\\\n", + "b5L09PSku7s7jUYju3btyurVq7Nu3bokycDAQHbv3p1Go5FFixZlxYoVGR8fz3333Zc777wzq1at\\\n", + "yubNm0/w58GRdMzOzs7O9yZOZ5+423+4ABQzsvYLJ/w9fmXwD9tynt3f2tiW83Bq8hAIAJSJ74Gm\\\n", + "AAEQAMpEAKQA9wACAFSMCiAAlIgb+ylCAASAMtECpgAtYACAihEAAQAqRgsYAMqkQw+YY1MB/AV3\\\n", + "3333UdebzWamp6dbxqGZgydpdwBQQJt+Co5yq2QAfOaZZ+aMXbt25Y477jjqcUf6Yex/HH34JO0a\\\n", + "AKA9KtkC/uAHP5hPfOITeeWv4P3rv/7rUY8bGhrKhg0bWuau+t43274/AIATqZIB8Nd+7dfyx3/8\\\n", + "x3nb297WMn/ppZce9bharTbnh7AXvrGSHyEApyrtWwqoZHp5+OGH85a3vGXO/F/91V/Nw24AAE6u\\\n", + "SgbAzs7O+d4CAJwYKoAUUMmHQAAAqkwABAComEq2gAGgtLSAKUAABIAS6fBLIBSgBQwAUDECIABA\\\n", + "xWgBA0CZ6ABTgAAIAGUiAFKAFjAAQMUIgAAAFaMFDAAl4ltgKEIFEACgYgRAAICK0QIGgDLRAqYA\\\n", + "FUAAgIpRAQSAMlEBpAABEABKRP6jCAEQAMrE98BQgHsAAQAqRgUQAEpEAZAiVAABACpGAAQAqBgB\\\n", + "EADKpKNN4zhs3LgxjUYja9asyczMzOH5Q4cOZXBwMI1GI+vXrz88/+EPfzhdXV0ZHR19bdfI6yYA\\\n", + "AkCJnOz8t3PnzuzZsyfj4+NZtmxZRkZGDq+Njo5m6dKlGR8fz4EDBzIxMZEk+fa3v90SCDn5BEAA\\\n", + "4DXbvn17+vr6kiT9/f3Ztm3bMdeWLl168jdKC08BA0CZtOkp4GazmWaz2TJXq9VSq9Va5iYnJ3PO\\\n", + "OeckSer1evbt29ey1tnZecQ15pcKIACUSEdHe8bw8HDq9XrLGB4envN+XV1dmZ6eTpJMTU1lyZIl\\\n", + "hdaYXwIgADDH0NBQpqamWsbQ0NCc161cuTJbtmxJkoyNjaW3t7fQGvNLAAQA5qjVauns7GwZr2z/\\\n", + "JklPT0+6u7vTaDSya9eurF69OuvWrUuSDAwMZPfu3Wk0Glm0aFFWrFiRJBkcHMzdd9+dL33pS7nl\\\n", + "lltO6nXxcx2zs7Oz872J09kn7t4831sA4DQxsvYLJ/w9fvWGr7XlPP/0R/9PW87DqUkFEACgYgRA\\\n", + "AICK8TUwr9PHlvnVbQBOHR3+WaIAARAAykQApAAtYACAilEBBIAS6VACpAABEADKRP6jAC1gAICK\\\n", + "UQEEgBJRAKQIARAASsTXwFCEFjAAQMWoAAJAmagAUoAACAAlIv9RhAAIAGUiAVKAewABACpGBRAA\\\n", + "SkQBkCIEQAAoEV8DQxFawAAAFaMCCABlogJIAQIgAJSI/EcRWsAAABWjAggAJeIhEIpQAQQAqBgB\\\n", + "EACgYrSAAaBEtIApQgAEgDIRAClAAASAEumQACnAPYAAABWjAggAJeIeQIpQAQQAqBgBEACgYrSA\\\n", + "AaBEtIApQgAEgBKR/yhCCxgAoGJUAAGgTJQAKUAABIAScQ8gRWgBAwCvy8aNG9NoNLJmzZrMzMwc\\\n", + "nj906FAGBwfTaDSyfv36w/ObN29Ob29vLr/88kxPT8/DjhEAAaBEOto0itq5c2f27NmT8fHxLFu2\\\n", + "LCMjI4fXRkdHs3Tp0oyPj+fAgQOZmJjIv//7v+eBBx7I448/nk996lP5kz/5k9d9zRy/074FPDs7\\\n", + "m0ceeSQ/+clPMjs7myRZu3btUY85dOhQ/vIv/zILFizIZZddloULFyZJvve97+W3f/u3X/W4ZrOZ\\\n", + "ZrPZMjfz0sG88YzT/mMEoCza1AI+0r95tVottVqtZW779u3p6+tLkvT39+fOO+/MFVdccXjt0ksv\\\n", + "Pby2bdu2vPDCC7nooovS0dGR/v7+XHXVVe3ZMMfltK8AfupTn8qDDz6Ym266KU899VQeeuihYx6z\\\n", + "du3aPPXUU9mxY0cuvPDC/NM//VOS5Pbbbz/qccPDw6nX6y3jB3c93JbrAIB2aFcF8Ej/5g0PD895\\\n", + "v8nJyXR2diZJ6vV69u3bd9S1o72ek+e0L10999xzue+++7Jjx47cdttt+a3f+q1jHrNnz5585zvf\\\n", + "SZJcffXVWbt2bW688cZjHjc0NJQNGza0zP33p///17RvADiVHenfvFdW/5Kkq6vr8H18U1NTWbJk\\\n", + "yVHXurq6DhdeXvl6Tp7TvgK4cOHCvPzyyznzzDPzrW99K//8z/98zGNeeumlw2Xtd7zjHRkdHc3X\\\n", + "vva1/N3f/d1Rj6vVauns7GwZ2r8AnEo6OtozjvRv3pEC4MqVK7Nly5YkydjYWHp7e4+69v73vz9/\\\n", + "8zd/c8TXc/Kc9gHwz/7sz/Lyyy/n9ttvzwsvvJB77rnnmMds3rw5L7zwwuG/L168OA888EC+/vWv\\\n", + "n8CdAsBJcJKfAunp6Ul3d3cajUZ27dqV1atXZ926dUmSgYGB7N69O41GI4sWLcqKFSvyy7/8y7n0\\\n", + "0kvT29ube++9N5///Ofbc90cl47Z/3xygtfkW0/cNt9bAOA0MfiB60/4e3zglk1tOc8T/23DsV/E\\\n", + "aUv/EgBKxPdAU4QACAAl4pdAKOK0vwcQAIDjowIIAKWiBMixCYAAUCJawBShBQwAUDEqgABQJiqA\\\n", + "FCAAAkCJyH8UIQACQIm4B5Ai3AMIAFAxAiAAQMVoAQNAiWgBU4QKIABAxagAAkCJKABShAAIAGUi\\\n", + "AVKAFjAAQMWoAAJAiXgIhCIEQAAoEfmPIgRAACgTCZAC3AMIAFAxKoAAUCIKgBQhAAJAiXgIhCK0\\\n", + "gAEAKkYFEADKRAmQAgRAACgR8Y8itIABACpGBRAAykQJkAIEQAAoEfmPIrSAAQAqRgUQAErEQ8AU\\\n", + "IQACQJkIgBQgAAJAich/FCEAvk5f27h3vrcAwGli8NH53gH8nAAIACXiHkCK8BQwAEDFCIAAABUj\\\n", + "AAJAiXR0tGe0y8aNG9NoNLJmzZrMzMy0rB06dCiDg4NpNBpZv3794fkPf/jD6erqyujoaPs2QgsB\\\n", + "EABK5FQKgDt37syePXsyPj6eZcuWZWRkpGV9dHQ0S5cuzfj4eA4cOJCJiYkkybe//e2WQEj7CYAA\\\n", + "wBzNZjPT09Mto9lsHtc5tm/fnr6+viRJf39/tm3bVmh96dKlbbgCjkYABADmGB4eTr1ebxnDw8PH\\\n", + "dY7Jycl0dnYmSer1evbt23dc65w4vgYGAEqkXe3boaGhbNiwoWWuVqsd8bV79+7Npz/96TnzfX19\\\n", + "mZ6eTpJMTU1lyZIlLetdXV1HXefEEQABgDlqtdqrBr5XOvvss/PYY4/Nmd+xY0c2bdqUtWvXZmxs\\\n", + "LL29vS3rK1euzJYtW3LhhRdmbGwsV199dTu2TgFawABQIh1tGu3Q09OT7u7uNBqN7Nq1K6tXr06S\\\n", + "rFu3LkkyMDCQ3bt3p9FoZNGiRVmxYkWSZHBwMHfffXe+9KUv5ZZbbmnTbvhFHbOzs7PzvYnT2bsu\\\n", + "/v353gIAp4lnHv3qCX+Pj/1/t7blPD+4Zn1bzsOpSQsYAErET8FRhBYwAEDFqAACQIkoAFKEAAgA\\\n", + "ZaIHTAFawAAAFaMCCAAlov5HEQIgAJSIDjBFaAEDAFSMCiAAlIgKIEWoAAIAVIwACABQMVrAAFAi\\\n", + "WsAUIQACQInIfxQhAAJAmUiAFOAeQACAilEBBIASUQCkCAEQAErEQyAUoQUMAFAxKoAAUCIqgBSh\\\n", + "AggAUDECIABAxWgBA0CJaAFThAAIACUi/1GEFjAAQMVUsgL43HPP5U//9E/z7ne/OxdccEG++tWv\\\n", + "5i1veUt+7/d+L93d3a96XLPZTLPZbJl7+eWDWbCgkh8jAKcgLWCKqGQF8Morr8zb3/72/PjHP05f\\\n", + "X18uueSS9PX1ZXBw8KjHDQ8Pp16vt4zn/3XiJO0aAI6to6M9g3KrZAA8ePBgrrrqqlx33XWp1+v5\\\n", + "xCc+kb6+vrz44otHPW5oaChTU1Mt423vWHGSdg0A0B6V7F3OzMwc/vMdd9xx+M8HDx486nG1Wi21\\\n", + "Wq1lTvsXADjdVDK9/Pmf/3lmZ2fT0dGR888/P8nPQ+HXvva1ed4ZALw+2rcUUckAeNZZZ82Ze+Mb\\\n", + "35j3v//987AbAGgf+Y8iKnkPIABAlVWyAggAZaUFTBECIACUiPxHEVrAAAAVowIIAGWiBEgBKoAA\\\n", + "UCKn2i+BbNy4MY1GI2vWrGn5Ht4kOXToUAYHB9NoNLJ+/fokybPPPptGo5GLLrool156aaamptq3\\\n", + "GQ4TAAGAE2Lnzp3Zs2dPxsfHs2zZsoyMjLSsj46OZunSpRkfH8+BAwcyMTGRrq6uPPjgg9m6dWsu\\\n", + "v/zyfPOb35yn3ZebAAgAJdLRptEO27dvT19fX5Kkv78/27ZtO+b6mWeema6uriTJGWeckQULRJUT\\\n", + "wT2AAFAi7WrfNpvNNJvNlrkj/STq0UxOTuacc85JktTr9ezbt2/Oemdn5xHXX3jhhdx+++156KGH\\\n", + "XuslcBRiNQCUSLsqgMPDw6nX6y1jeHj4iO+5d+/erFq1as5Ikunp6STJ1NRUlixZ0nJcV1fXEddn\\\n", + "ZmZy5ZVXZtOmTXOOoT1UAAGAOYaGhrJhw4aWuVer/p199tl57LHH5szv2LEjmzZtytq1azM2Npbe\\\n", + "3t6W9ZUrV2bLli258MILMzY2lquvvjpJcs011+STn/xkPvShD7XnYphDBRAASqRdTwHXarV0dna2\\\n", + "jONp/yZJT09Puru702g0smvXrqxevTpJsm7duiTJwMBAdu/enUajkUWLFmXFihUZHx/Pfffdlzvv\\\n", + "vDOrVq3K5s2b2/4ZkXTMzs7OzvcmTmfvuvj353sLAJwmnnn0qyf8PQa/157A9K3f/kJbzsOpSQUQ\\\n", + "AKBi3AMIACXSzi9xprwEQAAoEwGQArSAAQAqRgUQAEpEAZAiBEAAKBH3AFKEFjAAQMWoAAJAiSgA\\\n", + "UoQACAAlogVMEQIgAJSI/EcR7gEEAKgYFUAAKBEtYIoQAAGgRARAitACBgCoGBVAACgRBUCKEAAB\\\n", + "oES0gClCCxgAoGJUAAGgRBQAKUIABIAS0QKmCAHwddp/Xtd8bwEA4LgIgABQIgqAFCEAAkCJaAFT\\\n", + "hAAIACUi/1GEr4EBAKgYFUAAKBEtYIoQAAGgROQ/itACBgCoGBVAACgRLWCKEAABoEQEQIrQAgYA\\\n", + "qBgVQAAoEQVAihAAAaBEOvSAKUALGACgYlQAAaBE1P8oQgAEgBLRAaYIARAASkT+owj3AAIAJ8zG\\\n", + "jRvTaDSyZs2azMzMtKwdOnQog4ODaTQaWb9+/eH53t7eXHTRRent7c0zzzxzkndcDQIgAJTIgo72\\\n", + "jHbYuXNn9uzZk/Hx8SxbtiwjIyMt66Ojo1m6dGnGx8dz4MCBTExMJEkeffTRbN26NTfffHM2bdrU\\\n", + "ns3QQgAEgBLpaNNoh+3bt6evry9J0t/fn23bthVaP+OMM5Ik+/fvz3ve85427YZf5B5AAGCOZrOZ\\\n", + "ZrPZMler1VKr1QqfY3JyMuecc06SpF6vZ9++fXPWOzs756zv3bs3q1evzu7du/PAAw+8nsvgVagA\\\n", + "AkCJdHS0ZwwPD6der7eM4eHhI77n3r17s2rVqjkjSaanp5MkU1NTWbJkSctxXV1dR1w/++yzs23b\\\n", + "ttx///0ZGho6QZ9UtakAAkCJtKt9OzQ0lA0bNrTMvVr17+yzz85jjz02Z37Hjh3ZtGlT1q5dm7Gx\\\n", + "sfT29rasr1y5Mlu2bMmFF16YsbGxXH311ZmZmcnChQuzYMGC1Ov1vPnNb27TFfGLVAABgDlqtVo6\\\n", + "OztbxvG0f5Okp6cn3d3daTQa2bVrV1avXp0kWbduXZJkYGAgu3fvTqPRyKJFi7JixYr89Kc/zapV\\\n", + "q3LxxRfn2muvzU033dT2ayPpmJ2dnZ3vTZzO/svn/mi+twDAaeLH37jhhL/HjVtua895PnJ9W87D\\\n", + "qUkLGABKxBdBU4QWMABAxagAAkCJ+C1gihAAAaBE5D+KEAABoETa9TNulJt7AAEAKkYFEABKRAGQ\\\n", + "IgRAACgRD4FQhBYwAEDFqAACQIkoAFKEAAgAJaIFTBFawP/b+vXrj/maZrOZ6enpljF76OCJ3xwA\\\n", + "QBtVsgJ41lln5Vd+5VeyYMGCzM7OJkl+9KMfZfv27XniiSde9bjh4eF85StfaZlb/N6PpP6+3zih\\\n", + "+wWAohQAKaKSFcDNmzfnHe94R774xS/mySefzJNPPpkVK1YcNfwlydDQUKamplpG569ffJJ2DQDH\\\n", + "1tHRnkG5VTIAXnHFFfne976XgwcP5uMf/3juvffew5XAo6nVauns7GwZHQsrWUQFAE5jlQyASbJg\\\n", + "wYJceeWV+f73v5+DBw+mp6dnvrcEAK+bCiBFVL58tWDBgqxdu3a+twEAbVHZyg7HpfIBEADKRPWO\\\n", + "IvyPAgBAxagAAkCJKABShAAIACWiBUwRWsAAABWjAggAJaIASBECIACUiBYwRWgBAwBUjAogAJSI\\\n", + "AiBFCIAAUCJawBShBQwAUDEqgABQIgqAFCEAAkCJaAFThAAIACXi3i6K8N8JAEDFqAACQIloAVOE\\\n", + "AAgAJSL/UYQWMABAxagAAkCJaAFThAogAJRIR5tGu2zcuDGNRiNr1qzJzMxMy9qhQ4cyODiYRqOR\\\n", + "9evXt6xNTEyko6MjP/vZz9q4G/6TAAgAnBA7d+7Mnj17Mj4+nmXLlmVkZKRlfXR0NEuXLs34+HgO\\\n", + "HDiQiYmJw2u33XZb3vve957sLVeGAAgAJdLR0Z7RDtu3b09fX1+SpL+/P9u2bSu0/vjjj2f58uV5\\\n", + "61vf2p6NMIcACAAl0q4A2Gw2Mz093TKazeZx7WVycjKdnZ1Jknq9nn379hVa37x5c6677ro2fBq8\\\n", + "GgEQAJhjeHg49Xq9ZQwPDx/xtXv37s2qVavmjCSZnp5OkkxNTWXJkiUtx3V1dc1Z37p1a84///ws\\\n", + "Xrz4xF0cngIGgDJp1wMcQ0ND2bBhQ8tcrVY74mvPPvvsPPbYY3Pmd+zYkU2bNmXt2rUZGxtLb29v\\\n", + "y/rKlSuzZcuWXHjhhRkbG8vVV1+dJ598Mj/84Q/z+OOP5+mnn85VV12V+++/v01XxX9SAQSAEmlX\\\n", + "C7hWq6Wzs7NlvFoAfDU9PT3p7u5Oo9HIrl27snr16iTJunXrkiQDAwPZvXt3Go1GFi1alBUrVuT6\\\n", + "66/Po48+moceeijLly/PXXfd1fbPiKRjdnZ2dr43cTr7L5/7o/neAgCniR9/44YT/h73PHVbW86z\\\n", + "5n3Xt+U8nJpUAAEAKsY9gABQIn4JhCIEQAAokY64s4tj0wIGAKgYFUAAKBEtYIrwFDDQVs1mM8PD\\\n", + "wxkaGjrur4wA4OQQAIG2mp6eTr1ez9TU1OGfeALg1OIeQACAihEAAQAqRgAEAKgYARBoq1qtlj/4\\\n", + "gz/wAAjAKcxDIAAAFaMCCABQMQIgAEDFCIAAABUjAAIAVIwACABQMW+Y7w0A5fHcc8/l05/+dA4e\\\n", + "PJju7u5897vfzcKFC+d7WwC8ggog0DZnnnlmHn744YyPj+ftb397HnnkkfneEgBHoAIItM3zzz+f\\\n", + "a6+9NpOTk/nJT36SCy64YL63BMARqAACbXPvvfdmYGAgW7duTX9/f3zPPMCpSQUQaJtLLrkka9as\\\n", + "yYMPPpg3velN870dAF6Fn4IDAKgYLWAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACo\\\n", + "GAEQAKBi/BII0DbPPfdcPv3pT+fgwYPp7u7Od7/73SxcuHC+twXAK6gAAm1z5pln5uGHH874+Hje\\\n", + "/va355FHHpnvLQFwBCqAQNs8//zzufbaazM5OZmf/OQnueCCC+Z7SwAcgQog0Db33ntvBgYGsnXr\\\n", + "1vT398dPjQOcmlQAgba55JJLsmbNmjz44IN505veNN/bAeBVdMz6X3QAgErRAgYAqBgBEACgYgRA\\\n", + "AICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgB\\\n", + "EACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqJj/Bef8DP0udJOIAAAAAElF\\\n", + "TkSuQmCC\\\n", "\"\n", " frames[3] = \"\\\n", "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", - "AAAPYQGoP6dpAAA5MklEQVR4nO3de3RU5b3/8c8EwgTFJJLbgNxKvSQpt2OQMIikQkqoaEGpAocK\\\n", - "0vzg2AIig1SiCEtbjW3lKioH66VUKSxQqXAwPTGgVhMIBG9cxVpND3QSIE0oECYhM78/1NEpA2yS\\\n", - "SSaz9/vVtVeXzzx7z3fv5eXD99l7j83n8/kEAAAAy4gKdwEAAABoWQRAAAAAiyEAAgAAWAwBEAAA\\\n", - "wGIIgAAAABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAA\\\n", - "ABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQA\\\n", - "ALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAA\\\n", - "AIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiCAJvviiy/0\\\n", - "85//XNdcc43at2+vhIQE3X777fr888/DXRoAIIi24S4AQOTbsWOHiouLNW7cOHXp0kWff/65nnnm\\\n", - "GX3/+9/X3r17dckll4S7RADAt9h8Pp8v3EUAiGy1tbVq3759wNi2bdvkdDq1atUq3XnnnWGqDAAQ\\\n", - "DEvAAJrs2+Gvvr5ex44d05VXXqn4+Hjt2rUrjJUBAIIhAAJostraWs2fP19du3aV3W5XYmKikpKS\\\n", - "VF1drZqamnCXBwD4N9wDCKDJZsyYoRdeeEH33nuvnE6n4uLiZLPZNG7cOHm93nCXBwD4NwRAAE22\\\n", - "fv16TZo0SQsXLvSPnT59WtXV1eErCgBwTiwBA2iyNm3a6N+fJ3vyySfV0NAQpooAAOdDBxBAk918\\\n", - "8836wx/+oLi4OKWnp6ukpERvvvmmEhISwl0aACAIAiCAJlu6dKnatGmjl19+WadPn9b111+vN998\\\n", - "Uzk5OeEuDQAQBO8BBAAAsBjuAQQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwB\\\n", - "EAAAwGIIgAAAABbDL4E00a0vLg13CRErOS7cFUS2mlPhriByxV8S7goi19F/hbuCyLZ+4sxm/47e\\\n", - "184OyXE+3rUwJMdB60QHEAAAwGLoAAIAYCa2cBeASEAHEAAAwGLoAAIAYCY2WoC4MAIgAABmQv6D\\\n", - "ASwBAwAAWAwdQAAAzIQOIAwgAAIAYCokQFwYS8AAAAAWQwcQAAAT8dEAhAEEQAAAzIQACANYAgYA\\\n", - "ALAYOoAAAJgJL4KGAXQAAQAALIYOIAAAZkIDEAbQAQQAALAYOoAAAJgJ9wDCADqAAACYiS1EWyM8\\\n", - "9dRT6tGjh2JiYpSZmanS0tLzzl+3bp1SU1MVExOj3r17a/PmzQGfnzhxQtOnT1eXLl3Uvn17paen\\\n", - "a8WKFY0rDgEIgAAAoMnWrl0rl8ulBQsWaNeuXerbt69ycnJUWVkZdH5xcbHGjx+v3Nxcvf/++xo9\\\n", - "erRGjx6t3bt3++e4XC4VFBTopZde0r59+3Tvvfdq+vTpev3111vqtEyLAAgAgIn4QrRdrEWLFmnK\\\n", - "lCmaPHmyv1N3ySWX6Pnnnw86f+nSpRoxYoTmzJmjtLQ0/fKXv9S1116r5cuX++cUFxdr0qRJ+v73\\\n", - "v68ePXpo6tSp6tu37wU7i7gwAiAAAGZis4Vk83g8On78eMDm8XiCfmVdXZ3KysqUnZ3tH4uKilJ2\\\n", - "drZKSkqC7lNSUhIwX5JycnIC5g8aNEivv/66Dh06JJ/Pp61bt+qTTz7R8OHDQ3ChrI0ACAAAzpKf\\\n", - "n6+4uLiALT8/P+jco0ePqqGhQSkpKQHjKSkpcrvdQfdxu90XnP/kk08qPT1dXbp0Ubt27TRixAg9\\\n", - "9dRTGjJkSBPPDjwFDACAmYToIeC8vDy5XK6AMbvdHpqDG/Tkk09q27Ztev3119W9e3e98847mjZt\\\n", - "mjp37nxW9xAXhwAIAICphCYB2u12w4EvMTFRbdq0UUVFRcB4RUWFHA5H0H0cDsd559fW1uqBBx7Q\\\n", - "a6+9ppEjR0qS+vTpow8++EBPPPEEAbCJWAIGAABN0q5dO2VkZKioqMg/5vV6VVRUJKfTGXQfp9MZ\\\n", - "MF+SCgsL/fPr6+tVX1+vqKjAqNKmTRt5vd4Qn4H10AEEAMBMwvQeaJfLpUmTJql///4aMGCAlixZ\\\n", - "opMnT2ry5MmSpIkTJ+qKK67w30c4c+ZMZWVlaeHChRo5cqTWrFmjnTt3auXKlZKk2NhYZWVlac6c\\\n", - "OWrfvr26d++ut99+W6tWrdKiRYvCc5ImQgAEAMBMwhQAx44dqyNHjmj+/Plyu93q16+fCgoK/A96\\\n", - "lJeXB3TzBg0apNWrV2vevHl64IEHdNVVV2nDhg3q1auXf86aNWuUl5enCRMmqKqqSt27d9ejjz6q\\\n", - "u+++u8XPz2xsPp+vMa/7wVdufXFpuEuIWMlx4a4gstWcCncFkSv+knBXELmO/ivcFUS29RNnNvt3\\\n", - "pN/4QEiOs3frYyE5Dlon7gEEAACwGAIgAACAxXAPIAAAZmIL002AiCh0AAEAACyGDiAAAGZCAxAG\\\n", - "WCYAHj16VM8//7xKSkr8vzPocDg0aNAg3XXXXUpKSgpzhQAANB2v9oARllgC3rFjh66++motW7ZM\\\n", - "cXFxGjJkiIYMGaK4uDgtW7ZMqamp2rlzZ7jLBAAAaBGW6ADOmDFDt99+u1asWCHbv90c6/P5dPfd\\\n", - "d2vGjBkqKSk573E8Ho88Hk/AWEP9GbWJtsRlBABEAh4CgQGW6AB++OGHmjVr1lnhT5JsNptmzZql\\\n", - "Dz744ILHyc/PV1xcXMD2yf8UNkPFAAA0ki1EG0zNEgHQ4XCotLT0nJ+Xlpb6f6rmfPLy8lRTUxOw\\\n", - "XT3yB6EsFQAAoNlZYu3yvvvu09SpU1VWVqZhw4b5w15FRYWKior07LPP6oknnrjgcex2u+x2e8AY\\\n", - "y78AgFaFJWAYYIn0Mm3aNCUmJmrx4sV6+umn1dDQIElq06aNMjIy9OKLL+qOO+4Ic5UAADQdTwHD\\\n", - "CEsEQEkaO3asxo4dq/r6eh09elSSlJiYqOjo6DBXBgBACNEAhAGWCYBfi46OVqdOncJdBgAAQNhY\\\n", - "LgACAGBq3AMIAyzxFDAAAAC+QQAEAACwGJaAAQAwER9LwDCAAAgAgJmQ/2AAS8AAAAAWQwAEAACw\\\n", - "GJaAAQAwEe4BhBF0AAEAACyGDiAAAGZCAxAGEAABADATAiAMIAACAGAqJEBcGPcAAgAAWAwdQAAA\\\n", - "TMRHAxAGEAABADATAiAMYAkYAADAYugAAgBgKrQAcWF0AAEAMBGfLTRbYzz11FPq0aOHYmJilJmZ\\\n", - "qdLS0vPOX7dunVJTUxUTE6PevXtr8+bNZ83Zt2+ffvSjHykuLk6XXnqprrvuOpWXlzeuQPgRAAEA\\\n", - "QJOtXbtWLpdLCxYs0K5du9S3b1/l5OSosrIy6Pzi4mKNHz9eubm5ev/99zV69GiNHj1au3fv9s/5\\\n", - "61//qsGDBys1NVVvvfWWPvroIz300EOKiYlpqdMyLZvP5/OFu4hIduuLS8NdQsRKjgt3BZGt5lS4\\\n", - "K4hc8ZeEu4LIdfRf4a4gsq2fOLPZv+PKWx8JyXE+fW3+Rc3PzMzUddddp+XLl0uSvF6vunbtqhkz\\\n", - "Zmju3LlnzR87dqxOnjypTZs2+ccGDhyofv36acWKFZKkcePGKTo6Wn/4wx+acCYIhg4gAACmYgvJ\\\n", - "5vF4dPz48YDN4/EE/ca6ujqVlZUpOzvbPxYVFaXs7GyVlJQE3aekpCRgviTl5OT453u9Xv3P//yP\\\n", - "rr76auXk5Cg5OVmZmZnasGFDo64KAhEAAQDAWfLz8xUXFxew5efnB5179OhRNTQ0KCUlJWA8JSVF\\\n", - "brc76D5ut/u88ysrK3XixAk9/vjjGjFihP73f/9Xt956q2677Ta9/fbbIThDa+MpYAAATCRUL4LO\\\n", - "y8uTy+UKGLPb7aE5uAFer1eSNGrUKM2aNUuS1K9fPxUXF2vFihXKyspqsVrMiAAIAICZhCgA2u12\\\n", - "w4EvMTFRbdq0UUVFRcB4RUWFHA5H0H0cDsd55ycmJqpt27ZKT08PmJOWlqZ3333X6GngHFgCBgDA\\\n", - "VEJzD+DFaNeunTIyMlRUVOQf83q9KioqktPpDLqP0+kMmC9JhYWF/vnt2rXTddddpwMHDgTM+eST\\\n", - "T9S9e/eLqg9nowMIAACazOVyadKkSerfv78GDBigJUuW6OTJk5o8ebIkaeLEibriiiv89xHOnDlT\\\n", - "WVlZWrhwoUaOHKk1a9Zo586dWrlypf+Yc+bM0dixYzVkyBDdeOONKigo0MaNG/XWW2+F4xRNhQAI\\\n", - "AICZhOmHQMaOHasjR45o/vz5crvd6tevnwoKCvwPepSXlysq6puFx0GDBmn16tWaN2+eHnjgAV11\\\n", - "1VXasGGDevXq5Z9z6623asWKFcrPz9c999yja665Rq+88ooGDx7c4udnNrwHsIl4D2Dj8R7ApuE9\\\n", - "gI3HewAbj/cANk1LvAew5+2/CslxPls3LyTHQevEPYAAAAAWwxIwAABmEqYlYEQWAiAAAKZCAsSF\\\n", - "EQCbiPvYGm/n3oZwlxDRamu5fbexkhO5+6WxPvuoLtwlRLaJ4S4A+BIBEAAAEwnVL4HA3AiAAACY\\\n", - "CQEQBrAOAgAAYDEEQAAAAIthCRgAADOxsQaMCyMAAgBgIjwEAiNYAgYAALAYAiAAAIDFsAQMAICZ\\\n", - "sAQMA+gAAgAAWAwdQAAAzISngGEAARAAABPhV8JhBEvAAAAAFkMHEAAAM2EFGAYQAAEAMBMCIAxg\\\n", - "CRgAAMBiCIAAAAAWwxIwAABmwmtgYAABEAAAE/GR/2AAS8AAAAAWQwAEAACwGJaAAQAwE5aAYQAd\\\n", - "QAAAAIuhAwgAgJnQAYQBBEAAAEyFBIgLYwkYAADAYgiAAACYiS1EWyM89dRT6tGjh2JiYpSZmanS\\\n", - "0tLzzl+3bp1SU1MVExOj3r17a/Pmzeece/fdd8tms2nJkiWNKw4BCIAAAJhJmALg2rVr5XK5tGDB\\\n", - "Au3atUt9+/ZVTk6OKisrg84vLi7W+PHjlZubq/fff1+jR4/W6NGjtXv37rPmvvbaa9q2bZs6d+58\\\n", - "8YUhKAIgAABoskWLFmnKlCmaPHmy0tPTtWLFCl1yySV6/vnng85funSpRowYoTlz5igtLU2//OUv\\\n", - "de2112r58uUB8w4dOqQZM2bo5ZdfVnR0dEuciiUQAAEAMBFfiLaLUVdXp7KyMmVnZ/vHoqKilJ2d\\\n", - "rZKSkqD7lJSUBMyXpJycnID5Xq9Xd955p+bMmaPvfe97F1kVzoengAEAMJMQPQTs8Xjk8XgCxux2\\\n", - "u+x2+1lzjx49qoaGBqWkpASMp6SkaP/+/UGP73a7g853u93+v/71r3+ttm3b6p577mnsaeAc6AAC\\\n", - "AICz5OfnKy4uLmDLz89vse8vKyvT0qVL9eKLL8pm49U2oUYABAAAZ8nLy1NNTU3AlpeXF3RuYmKi\\\n", - "2rRpo4qKioDxiooKORyOoPs4HI7zzv/LX/6iyspKdevWTW3btlXbtm31xRdfaPbs2erRo0fTT9Di\\\n", - "CIAAAJiJzRaSzW63KzY2NmALtvwrSe3atVNGRoaKior8Y16vV0VFRXI6nUH3cTqdAfMlqbCw0D//\\\n", - "zjvv1EcffaQPPvjAv3Xu3Flz5szRn//85xBdLOviHsCv/P3vf9eCBQvO+bSSFPx+iIb6M2oTzWUE\\\n", - "ALQSYVotdblcmjRpkvr3768BAwZoyZIlOnnypCZPnixJmjhxoq644gr/MvLMmTOVlZWlhQsXauTI\\\n", - "kVqzZo127typlStXSpISEhKUkJAQ8B3R0dFyOBy65pprWvbkTIgO4Feqqqr0+9///rxzgt0P8f4r\\\n", - "hS1UIQAArdfYsWP1xBNPaP78+erXr58++OADFRQU+B/0KC8v1z/+8Q///EGDBmn16tVauXKl+vbt\\\n", - "q/Xr12vDhg3q1atXuE7BUmw+n+9in/aOSK+//vp5P//ss880e/ZsNTQ0nHNOsA6gq+BZOoCNtHPv\\\n", - "ua81Lqy21hL/6DaL5ET+7NtYn31UF+4SIlr58/c3+3d0/a/fhOQ4f//vX4TkOGidLJNcRo8eLZvN\\\n", - "pvPl3Qs9ZRTs8XfCHwCgVeGBWRhgmT8Gd+rUSa+++qq8Xm/QbdeuXeEuEQAAoEVYJgBmZGSorKzs\\\n", - "nJ9fqDsIAEBECNNvASOyWGb9cs6cOTp58uQ5P7/yyiu1devWFqwIAAAgPCwTAG+44Ybzfn7ppZcq\\\n", - "KyurhaoBAAAIH8sEQAAALIHlWxhAAAQAwET43VwYYZmHQAAAAPAlAiAAAIDFsAQMAICZsAIMAwiA\\\n", - "AACYCQEQBrAEDAAAYDEEQAAAAIthCRgAABPhLTAwgg4gAACAxRAAAQAALIYlYAAAzIQlYBhABxAA\\\n", - "AMBi6AACAGAmdABhAAEQAAATIf/BCAIgAABmwntgYAD3AAIAAFgMHUAAAEyEBiCMoAMIAABgMQRA\\\n", - "AAAAi2EJGAAAM2EJGAYQAAEAMBHyH4xgCRgAAMBi6AACAGAmtABhAAEQAAAT4TUwMIIlYAAAAIsh\\\n", - "AAIAgJB46qmn1KNHD8XExCgzM1OlpaXnnb9u3TqlpqYqJiZGvXv31ubNm/2f1dfX6/7771fv3r11\\\n", - "6aWXqnPnzpo4caIOHz7c3KdhCQRAAABMxGYLzXax1q5dK5fLpQULFmjXrl3q27evcnJyVFlZGXR+\\\n", - "cXGxxo8fr9zcXL3//vsaPXq0Ro8erd27d0uSTp06pV27dumhhx7Srl279Oqrr+rAgQP60Y9+1JTL\\\n", - "g6/YfD6fL9xFRLL/em1puEuIWDv3NoS7hIhWW8s/uo2VnMiffRvrs4/qwl1CRCt//v5m/44rf/FE\\\n", - "SI7z6W/uu6j5mZmZuu6667R8+XJJktfrVdeuXTVjxgzNnTv3rPljx47VyZMntWnTJv/YwIED1a9f\\\n", - "P61YsSLod+zYsUMDBgzQF198oW7dul1UfQjEvwUBAECT1NXVqaysTNnZ2f6xqKgoZWdnq6SkJOg+\\\n", - "JSUlAfMlKScn55zzJammpkY2m03x8fEhqdvKeAq4iT5304VprH9WecNdQkSbPqpduEuIWC/c+0W4\\\n", - "S4hYve7uGu4ScAGhegrY4/HI4/EEjNntdtnt9rPmHj16VA0NDUpJSQkYT0lJ0f79+4Me3+12B53v\\\n", - "druDzj99+rTuv/9+jR8/XrGxsRdzKgiCDiAAAGZiC82Wn5+vuLi4gC0/P7/FT0f68oGQO+64Qz6f\\\n", - "T88880xYajAbOoAAAOAseXl5crlcAWPBun+SlJiYqDZt2qiioiJgvKKiQg6HI+g+DofD0Pyvw98X\\\n", - "X3yhLVu20P0LETqAAACYiC1E/7Pb7YqNjQ3YzhUA27Vrp4yMDBUVFfnHvF6vioqK5HQ6g+7jdDoD\\\n", - "5ktSYWFhwPyvw9/Bgwf15ptvKiEhIQRXCBIdQAAAzCVMvwTicrk0adIk9e/fXwMGDNCSJUt08uRJ\\\n", - "TZ48WZI0ceJEXXHFFf5l5JkzZyorK0sLFy7UyJEjtWbNGu3cuVMrV66U9GX4+/GPf6xdu3Zp06ZN\\\n", - "amho8N8f2LFjR7Vrx33QTUEABAAATTZ27FgdOXJE8+fPl9vtVr9+/VRQUOB/0KO8vFxRUd8sPA4a\\\n", - "NEirV6/WvHnz9MADD+iqq67Shg0b1KtXL0nSoUOH9Prrr0uS+vXrF/BdW7du1fe///0WOS+zIgAC\\\n", - "AGAi4fwp4OnTp2v69OlBP3vrrbfOGrv99tt1++23B53fo0cP8ari5kMABADAREL1GhiYGw+BAAAA\\\n", - "WAwdQAAAzIQOIAwgAAIAYCLkPxhBAAQAwExIgDCAewABAAAshg4gAAAmQgMQRhAAAQAwEV4DAyNY\\\n", - "AgYAALAYOoAAAJgJHUAYQAAEAMBEyH8wgiVgAAAAi6EDCACAifAQCIygAwgAAGAxBEAAAACLYQkY\\\n", - "AAATYQkYRhAAAQAwEwIgDCAAAgBgIjYSIAzgHkAAAACLoQMIAICJcA8gjKADCAAAYDEEQAAAAIth\\\n", - "CRgAABNhCRhGEAABADAR8h+MYAkYAADAYugAAgBgJrQAYQABEAAAE+EeQBjBEjAAAIDF0AEEAMBE\\\n", - "aADCCMt0AGtra/Xuu+9q7969Z312+vRprVq16oLH8Hg8On78eMDmrT/THOUCANA4thBtMDVLBMBP\\\n", - "PvlEaWlpGjJkiHr37q2srCz94x//8H9eU1OjyZMnX/A4+fn5iouLC9g++/ObzVk6AAAXhfwHIywR\\\n", - "AO+//3716tVLlZWVOnDggC677DJdf/31Ki8vv6jj5OXlqaamJmDrmZPdTFUDABBZnnrqKfXo0UMx\\\n", - "MTHKzMxUaWnpeeevW7dOqampiomJUe/evbV58+aAz30+n+bPn69OnTqpffv2ys7O1sGDB5vzFCzD\\\n", - "EgGwuLhY+fn5SkxM1JVXXqmNGzcqJydHN9xwgz777DPDx7Hb7YqNjQ3YoqK5jRIA0HrYbKHZLtba\\\n", - "tWvlcrm0YMEC7dq1S3379lVOTo4qKyuDzi8uLtb48eOVm5ur999/X6NHj9bo0aO1e/du/5zf/OY3\\\n", - "WrZsmVasWKHt27fr0ksvVU5Ojk6fPt3Yy4OvWCIA1tbWqm3bb4KazWbTM888o1tuuUVZWVn65JNP\\\n", - "wlgdAAAhFKY14EWLFmnKlCmaPHmy0tPTtWLFCl1yySV6/vnng85funSpRowYoTlz5igtLU2//OUv\\\n", - "de2112r58uWSvuz+LVmyRPPmzdOoUaPUp08frVq1SocPH9aGDRsuvkAEsEQATE1N1c6dO88aX758\\\n", - "uUaNGqUf/ehHYagKAIDWK9iDjx6PJ+jcuro6lZWVKTv7m9uioqKilJ2drZKSkqD7lJSUBMyXpJyc\\\n", - "HP/8v/3tb3K73QFz4uLilJmZec5jwjhLBMBbb71Vf/zjH4N+tnz5co0fP14+n6+FqwIAIPRC1QAM\\\n", - "9uBjfn5+0O88evSoGhoalJKSEjCekpIit9sddB+3233e+V///8UcE8ZZIgDm5eWddWPptz399NPy\\\n", - "er0tWBEAAM0jVPcABnvwMS8vL9ynhxDhCQYAAHAWu90uu91uaG5iYqLatGmjioqKgPGKigo5HI6g\\\n", - "+zgcjvPO//r/Kyoq1KlTp4A5/fr1M3oaOAdLdAABALCOln8KpF27dsrIyFBRUZF/zOv1qqioSE6n\\\n", - "M+g+TqczYL4kFRYW+ud/5zvfkcPhCJhz/Phxbd++/ZzHhHF0AAEAMJHGvMIlFFwulyZNmqT+/ftr\\\n", - "wIABWrJkiU6ePOn/oYWJEyfqiiuu8N9HOHPmTGVlZWnhwoUaOXKk1qxZo507d2rlypVfnYdN9957\\\n", - "r371q1/pqquu0ne+8x099NBD6ty5s0aPHh2ekzQRAiAAAGiysWPH6siRI5o/f77cbrf69eungoIC\\\n", - "/0Mc5eXlior6ZuFx0KBBWr16tebNm6cHHnhAV111lTZs2KBevXr55/ziF7/QyZMnNXXqVFVXV2vw\\\n", - "4MEqKChQTExMi5+f2dh8PP7aJDnPLAl3CRHr4Kf8jnJTTB/VLtwlRKwX7v0i3CVErK53dw13CRFt\\\n", - "89R7m/07nL9dHJLjlMyZFZLjoHWiAwgAgInwO74wggAIAICJhOseQEQWngIGAACwGAIgAACAxbAE\\\n", - "DACAibAEDCPoAAIAAFgMHUAAAEyEBiCMIAACAGAmJEAYwBIwAACAxdABBADARHgIBEYQAAEAMBHy\\\n", - "H4wgAAIAYCYkQBjAPYAAAAAWQwcQAAAToQEIIwiAAACYCA+BwAiWgAEAACyGDiAAAGZCCxAGEAAB\\\n", - "ADAR4h+MYAkYAADAYugAAgBgJrQAYQABEAAAEyH/wQiWgAEAACyGDiAAACbCQ8AwggAIAICZEABh\\\n", - "AAEQAAATIf/BCAJgE9Uc94a7BFjU8j/VhbuEiJU89opwlxCxKo7w7zzADAiAAACYCPcAwgieAgYA\\\n", - "ALAYAiAAAIDFsAQMAICJsAQMIwiAAACYCAEQRrAEDAAAWkxVVZUmTJig2NhYxcfHKzc3VydOnDjv\\\n", - "PqdPn9a0adOUkJCgDh06aMyYMaqoqPB//uGHH2r8+PHq2rWr2rdvr7S0NC1durS5TyWiEQABAECL\\\n", - "mTBhgvbs2aPCwkJt2rRJ77zzjqZOnXrefWbNmqWNGzdq3bp1evvtt3X48GHddttt/s/LysqUnJys\\\n", - "l156SXv27NGDDz6ovLw8LV++vLlPJ2LZfD6fL9xFRLKBv14U7hIiVmUl7xNDeCQn82ffxqo/E+4K\\\n", - "IlvZg65m/44f/veSkBznjf+6NyTH+bZ9+/YpPT1dO3bsUP/+/SVJBQUFuummm/R///d/6ty581n7\\\n", - "1NTUKCkpSatXr9aPf/xjSdL+/fuVlpamkpISDRw4MOh3TZs2Tfv27dOWLVtCfh5mwL8FAQDAWTwe\\\n", - "j44fPx6weTyeJh2zpKRE8fHx/vAnSdnZ2YqKitL27duD7lNWVqb6+nplZ2f7x1JTU9WtWzeVlJSc\\\n", - "87tqamrUsWPHJtVrZgRAAABMxBaiLT8/X3FxcQFbfn5+k2pzu91KTk4OGGvbtq06duwot9t9zn3a\\\n", - "tWun+Pj4gPGUlJRz7lNcXKy1a9decGnZygiAAACYSYgSYF5enmpqagK2vLy8oF85d+5c2Wy28277\\\n", - "9+9v3vP+yu7duzVq1CgtWLBAw4cPb5HvjES8BgYAABMJ1Wtg7Ha77Ha7obmzZ8/WXXfddd45PXv2\\\n", - "lMPhUGVlZcD4mTNnVFVVJYfDEXQ/h8Ohuro6VVdXB3QBKyoqztpn7969GjZsmKZOnap58+YZqt2q\\\n", - "CIAAAKBJkpKSlJSUdMF5TqdT1dXVKisrU0ZGhiRpy5Yt8nq9yszMDLpPRkaGoqOjVVRUpDFjxkiS\\\n", - "Dhw4oPLycjmdTv+8PXv2aOjQoZo0aZIeffTREJyVubEEDACAiYTqHsDmkJaWphEjRmjKlCkqLS3V\\\n", - "e++9p+nTp2vcuHH+J4APHTqk1NRUlZaWSpLi4uKUm5srl8ulrVu3qqysTJMnT5bT6fQ/Abx7927d\\\n", - "eOONGj58uFwul9xut9xut44cOdJMZxL56AACAGAmrfynQF5++WVNnz5dw4YNU1RUlMaMGaNly5b5\\\n", - "P6+vr9eBAwd06tQp/9jixYv9cz0ej3JycvT000/7P1+/fr2OHDmil156SS+99JJ/vHv37vr8889b\\\n", - "5LwiDe8BbCLeA9h4vAcQ4cJ7ABuP9wA2TUu8B/Dm34XmFzA2/b+ZITkOWic6gAAAmEjr7v+htSAA\\\n", - "AgBgIq18BRitBOsgAAAAFkMHEAAAE6EDCCPoAAIAAFgMARAAAMBiWAIGAMBEWAKGEQRAAABMhPwH\\\n", - "IwiAAACYCQkQBnAPIAAAgMXQAQQAwERoAMIIAiAAACbCQyAwgiVgAAAAi6EDCACAidABhBF0AAEA\\\n", - "ACyGAAgAAGAxLAEDAGAiLAHDCAIgAAAmQv6DESwBAwAAWIxlOoD79u3Ttm3b5HQ6lZqaqv3792vp\\\n", - "0qXyeDz6yU9+oqFDh17wGB6PRx6PJ2DMe+aMotpa5jICAFo5loBhhCU6gAUFBerXr5/uu+8+/cd/\\\n", - "/IcKCgo0ZMgQffrpp/riiy80fPhwbdmy5YLHyc/PV1xcXMB2eGtRC5wBAADG2Gyh2WBulgiAjzzy\\\n", - "iObMmaNjx47phRde0H/+539qypQpKiwsVFFRkebMmaPHH3/8gsfJy8tTTU1NwNb5xmEtcAYAAACh\\\n", - "Y4kAuGfPHt11112SpDvuuEP/+te/9OMf/9j/+YQJE/TRRx9d8Dh2u12xsbEBG8u/AAAg0lgmvdi+\\\n", - "6mdHRUUpJiZGcXFx/s8uu+wy1dTUhKs0AABChuVbGGGJDmCPHj108OBB/1+XlJSoW7du/r8uLy9X\\\n", - "p06dwlEaAAAhZQvRBnOzRAfwZz/7mRoaGvx/3atXr4DP33jjDUNPAQMAAJiBJQLg3Xfffd7PH3vs\\\n", - "sRaqBACA5sUSMIywRAAEAMAqyH8wwhL3AAIAAOAbdAABADATWoAwgA4gAAAm0tp/CaSqqkoTJkxQ\\\n", - "bGys4uPjlZubqxMnTpx3n9OnT2vatGlKSEhQhw4dNGbMGFVUVASde+zYMXXp0kU2m03V1dXNcAbm\\\n", - "QAAEAAAtZsKECdqzZ48KCwu1adMmvfPOO5o6dep595k1a5Y2btyodevW6e2339bhw4d12223BZ2b\\\n", - "m5urPn36NEfppkIABADARFrzewD37dungoIC/e53v1NmZqYGDx6sJ598UmvWrNHhw4eD7lNTU6Pn\\\n", - "nntOixYt0tChQ5WRkaEXXnhBxcXF2rZtW8DcZ555RtXV1brvvvua6QzMgwAIAICJtOYl4JKSEsXH\\\n", - "x6t///7+sezsbEVFRWn79u1B9ykrK1N9fb2ys7P9Y6mpqerWrZtKSkr8Y3v37tUjjzyiVatWKSqK\\\n", - "eHMhPAQCAICJhCq7eTweeTyegDG73S673d7oY7rdbiUnJweMtW3bVh07dpTb7T7nPu3atVN8fHzA\\\n", - "eEpKin8fj8ej8ePH67e//a26deumzz77rNE1WgURGQAAnCU/P19xcXEBW35+ftC5c+fOlc1mO++2\\\n", - "f//+Zqs1Ly9PaWlp+slPftJs32E2dAABADCRUC3f5uXlyeVyBYydq/s3e/Zs3XXXXec9Xs+ePeVw\\\n", - "OFRZWRkwfubMGVVVVcnhcATdz+FwqK6uTtXV1QFdwIqKCv8+W7Zs0ccff6z169dLknw+nyQpMTFR\\\n", - "Dz74oB5++OHz1mZFBEAAAEwkVEvAF7Pcm5SUpKSkpAvOczqdqq6uVllZmTIyMiR9Gd68Xq8yMzOD\\\n", - "7pORkaHo6GgVFRVpzJgxkqQDBw6ovLxcTqdTkvTKK6+otrbWv8+OHTv005/+VH/5y1/03e9+19A5\\\n", - "WA0BEAAAtIi0tDSNGDFCU6ZM0YoVK1RfX6/p06dr3Lhx6ty5syTp0KFDGjZsmFatWqUBAwYoLi5O\\\n", - "ubm5crlc6tixo2JjYzVjxgw5nU4NHDhQks4KeUePHvV/37/fO4gvEQABADCR5nyJcyi8/PLLmj59\\\n", - "uoYNG6aoqCiNGTNGy5Yt839eX1+vAwcO6NSpU/6xxYsX++d6PB7l5OTo6aefDkf5pmHzfb1QjkYZ\\\n", - "+OtF4S4hYlVWesNdAiwqOZnn3xqr/ky4K4hsZQ+6LjypiXJfWRqS4zw3ZmZIjoPWiX8LAgAAWAxL\\\n", - "wAAAmEgrXwFGK0EABADARFr7PYBoHVgCBgAAsBg6gAAAmAgNQBhBAAQAwERYAoYRBEAAAEyE/Acj\\\n", - "uAcQAADAYugAAgBgIiwBwwgCIAAAJkIAhBEsAQMAAFgMHUAAAEyEBiCMIAACAGAiLAHDCJaAAQAA\\\n", - "LIYOIAAAJkIDEEYQAAEAMBGWgGEEAbCJoqL4J62xBlwbHe4SItq/TvnCXULE+mRjTbhLiFzpl4a7\\\n", - "AgAhQAAEAMBEaEvACAIgAAAmwhIwjCAAAgBgIuQ/GMFrYAAAACyGDiAAACbCEjCMIAACAGAi5D8Y\\\n", - "wRIwAACAxdABBADARFgChhEEQAAATIQACCNYAgYAALAYOoAAAJgIDUAYQQAEAMBEbKwBwwCWgAEA\\\n", - "ACyGDiAAACZC/w9G0AEEAMBEbLbQbM2lqqpKEyZMUGxsrOLj45Wbm6sTJ06cd5/Tp09r2rRpSkhI\\\n", - "UIcOHTRmzBhVVFScNe/FF19Unz59FBMTo+TkZE2bNq25TiPiEQABADARW4i25jJhwgTt2bNHhYWF\\\n", - "2rRpk9555x1NnTr1vPvMmjVLGzdu1Lp16/T222/r8OHDuu222wLmLFq0SA8++KDmzp2rPXv26M03\\\n", - "31ROTk4znklkYwkYAAC0iH379qmgoEA7duxQ//79JUlPPvmkbrrpJj3xxBPq3LnzWfvU1NToueee\\\n", - "0+rVqzV06FBJ0gsvvKC0tDRt27ZNAwcO1D//+U/NmzdPGzdu1LBhw/z79unTp2VOLALRAQQAwESi\\\n", - "bKHZmkNJSYni4+P94U+SsrOzFRUVpe3btwfdp6ysTPX19crOzvaPpaamqlu3biopKZEkFRYWyuv1\\\n", - "6tChQ0pLS1OXLl10xx136O9//3vznIgJEAABADCRUC0BezweHT9+PGDzeDxNqs3tdis5OTlgrG3b\\\n", - "turYsaPcbvc592nXrp3i4+MDxlNSUvz7fPbZZ/J6vXrssce0ZMkSrV+/XlVVVfrBD36gurq6JtVs\\\n", - "VgRAAABwlvz8fMXFxQVs+fn5QefOnTtXNpvtvNv+/fubrVav16v6+notW7ZMOTk5GjhwoP74xz/q\\\n", - "4MGD2rp1a7N9byTjHkAAAEwkVE/w5uXlyeVyBYzZ7fagc2fPnq277rrrvMfr2bOnHA6HKisrA8bP\\\n", - "nDmjqqoqORyOoPs5HA7V1dWpuro6oAtYUVHh36dTp06SpPT0dP/nSUlJSkxMVHl5+XnrsioCIAAA\\\n", - "JhKq2/fsdvs5A9+/S0pKUlJS0gXnOZ1OVVdXq6ysTBkZGZKkLVu2yOv1KjMzM+g+GRkZio6OVlFR\\\n", - "kcaMGSNJOnDggMrLy+V0OiVJ119/vX+8S5cukr583czRo0fVvXt3Q+dgNSwBAwCAFpGWlqYRI0Zo\\\n", - "ypQpKi0t1Xvvvafp06dr3Lhx/ieADx06pNTUVJWWlkqS4uLilJubK5fLpa1bt6qsrEyTJ0+W0+nU\\\n", - "wIEDJUlXX321Ro0apZkzZ6q4uFi7d+/WpEmTlJqaqhtvvDFs59uaEQABADCR1v4i6Jdfflmpqaka\\\n", - "NmyYbrrpJg0ePFgrV670f15fX68DBw7o1KlT/rHFixfr5ptv1pgxYzRkyBA5HA69+uqrAcddtWqV\\\n", - "MjMzNXLkSGVlZSk6OloFBQWKjo5uvpOJYDafz+cLdxGRbNBvF4e7hIjVrTN//miKf53iH93G+mRj\\\n", - "TbhLiFzpl4a7goh28PH7mv07Hn5zWUiOsyD7npAcB60T/wUGAACwGB4CAQDARJpz+RbmQQAEAMBE\\\n", - "yH8wggAIAICJNNfPuMFcuAcQAADAYugAAgBgIjQAYQQBEAAAE+EhEBjBEjAAAIDFWLoD6PP5ZOOP\\\n", - "SgAAE+G/ajDC0h1Au92uffv2hbsMAABCprX/FBxaB0t0AF0uV9DxhoYGPf7440pISJAkLVq06LzH\\\n", - "8Xg88ng8AWPeM2cU1dYSlxEAAJiEJZLLkiVL1LdvX8XHxweM+3w+7du3T5deeqmhpeD8/Hw9/PDD\\\n", - "AWNdsoer6/ARoSwXAIBGo3kHIywRAB977DGtXLlSCxcu1NChQ/3j0dHRevHFF5Wenm7oOHl5eWd1\\\n", - "E4c/9d8hrRUAgKZg+RZGWOIewLlz52rt2rX62c9+pvvuu0/19fWNOo7dbldsbGzAxvIvAACINJYI\\\n", - "gJJ03XXXqaysTEeOHFH//v21e/dungAGAJgOD4HACEu1rzp06KDf//73WrNmjbKzs9XQ0BDukgAA\\\n", - "CCnLdHbQJJYKgF8bN26cBg8erLKyMnXv3j3c5QAAEDJ072CEJQOgJHXp0kVdunQJdxkAAAAtzrIB\\\n", - "EAAAM6IBCCMIgAAAmAhLwDCCe0UBAAAshg4gAAAmQgMQRhAAAQAwEZaAYQRLwAAAABZDBxAAABOh\\\n", - "AQgjCIAAAJgIS8AwgiVgAAAAi6EDCACAidAAhBEEQAAATIQlYBhBAAQAwES4twtG8PcJAACAxRAA\\\n", - "AQAwEZstNFtzqaqq0oQJExQbG6v4+Hjl5ubqxIkT593n9OnTmjZtmhISEtShQweNGTNGFRUVAXN2\\\n", - "7NihYcOGKT4+XpdffrlycnL04YcfNt+JRDgCIAAAJmIL0dZcJkyYoD179qiwsFCbNm3SO++8o6lT\\\n", - "p553n1mzZmnjxo1at26d3n77bR0+fFi33Xab//MTJ05oxIgR6tatm7Zv3653331Xl112mXJyclRf\\\n", - "X9+MZxO5uAcQAAC0iH379qmgoEA7duxQ//79JUlPPvmkbrrpJj3xxBPq3LnzWfvU1NToueee0+rV\\\n", - "qzV06FBJ0gsvvKC0tDRt27ZNAwcO1P79+1VVVaVHHnlEXbt2lSQtWLBAffr00RdffKErr7yy5U4y\\\n", - "QtABBADAREK1BOzxeHT8+PGAzePxNKm2kpISxcfH+8OfJGVnZysqKkrbt28Puk9ZWZnq6+uVnZ3t\\\n", - "H0tNTVW3bt1UUlIiSbrmmmuUkJCg5557TnV1daqtrdVzzz2ntLQ09ejRo0k1mxUBEAAAEwnVEnB+\\\n", - "fr7i4uICtvz8/CbV5na7lZycHDDWtm1bdezYUW63+5z7tGvXTvHx8QHjKSkp/n0uu+wyvfXWW3rp\\\n", - "pZfUvn17dejQQQUFBXrjjTfUti2LncEQAAEAwFny8vJUU1MTsOXl5QWdO3fuXNlstvNu+/fvb7Za\\\n", - "a2trlZubq+uvv17btm3Te++9p169emnkyJGqra1ttu+NZMRiAABMJFRP8NrtdtntdkNzZ8+erbvu\\\n", - "uuu8c3r27CmHw6HKysqA8TNnzqiqqkoOhyPofg6HQ3V1daqurg7oAlZUVPj3Wb16tT7//HOVlJQo\\\n", - "KirKP3b55ZfrT3/6k8aNG2foPKyEAAgAgImE45dAkpKSlJSUdMF5TqdT1dXVKisrU0ZGhiRpy5Yt\\\n", - "8nq9yszMDLpPRkaGoqOjVVRUpDFjxkiSDhw4oPLycjmdTknSqVOnFBUVJdu3Tv7rv/Z6vU09PVNi\\\n", - "CRgAALSItLQ0jRgxQlOmTFFpaanee+89TZ8+XePGjfM/AXzo0CGlpqaqtLRUkhQXF6fc3Fy5XC5t\\\n", - "3bpVZWVlmjx5spxOpwYOHChJ+sEPfqB//vOfmjZtmvbt26c9e/Zo8uTJatu2rW688cawnW9rRgAE\\\n", - "AMBEWvt7AF9++WWlpqZq2LBhuummmzR48GCtXLnS/3l9fb0OHDigU6dO+ccWL16sm2++WWPGjNGQ\\\n", - "IUPkcDj06quv+j9PTU3Vxo0b9dFHH8npdOqGG27Q4cOHVVBQoE6dOjXj2UQum8/n84W7iEg26LeL\\\n", - "w11CxOrWmT9/NMW/TvGPbmN9srEm3CVErvRLw11BRDv4+H3N/h2/37ksJMeZ1P+ekBwHrRP3AAIA\\\n", - "YCL80RpG8PcJAACAxdABBADARMLxFDAiDwEQAAATsYn7g3FhLAEDAABYDB1AAABMhCVgGMFrYEzM\\\n", - "4/EoPz9feXl5hn/OB1/i2jUe165puH6Nx7UDjCMAmtjx48cVFxenmpoaxcbGhruciMK1azyuXdNw\\\n", - "/RqPawcYxz2AAAAAFkMABAAAsBgCIAAAgMUQAE3MbrdrwYIF3AzdCFy7xuPaNQ3Xr/G4doBxPAQC\\\n", - "AABgMXQAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMAdBCysvLNXLkSF1yySVKTk7WnDlzdObMmXCX\\\n", - "FTHuueceZWRkyG63q1+/fuEuJ2J8+OGHGj9+vLp27ar27dsrLS1NS5cuDXdZEePYsWMaMWKEOnfu\\\n", - "LLvdrq5du2r69Ok6fvx4uEuLKMeOHVOXLl1ks9lUXV0d7nKAsGsb7gLQMhoaGjRy5Eg5HA4VFxfr\\\n", - "H//4hyZOnKjo6Gg99thj4S4vYvz0pz/V9u3b9dFHH4W7lIhRVlam5ORkvfTSS+ratauKi4s1depU\\\n", - "tWnTRtOnTw93ea1eVFSURo0apV/96ldKSkrSp59+qmnTpqmqqkqrV68Od3kRIzc3V3369NGhQ4fC\\\n", - "XQrQOvgQkd544w3f9ddf74uLi/N17NjRN3LkSN+nn356zvmbN2/2RUVF+dxut3/smWee8cXGxvo8\\\n", - "Hk9LlNyqXOz1+7YFCxb4+vbt27wFtmJNuXZf+/nPf+678cYbm6nC1i0U12/p0qW+Ll26NFOFrVdj\\\n", - "r93TTz/ty8rK8hUVFfkk+f75z382f7FAK8cScIQ6efKkXC6Xdu7cqaKiIkVFRenWW2+V1+sNOr+k\\\n", - "pES9e/dWSkqKfywnJ0fHjx/Xnj17WqrsVuNirx++EYprV1NTo44dOzZjla1XU6/f4cOH9eqrryor\\\n", - "K6uZK219GnPt9u7dq0ceeUSrVq1SVBT/yQP8wp1AERpHjhzxSfJ9/PHHQT+fMmWKb/jw4QFjJ0+e\\\n", - "9Enybd68uSVKbNUudP2+zeodwH93MdfO5/P53nvvPV/btm19f/7zn5u5sshg9PqNGzfO1759e58k\\\n", - "3y233OKrra1toQpbrwtdu9OnT/v69Onj+8Mf/uDz+Xy+rVu30gEEvsIfhyLUwYMHNX78ePXs2VOx\\\n", - "sbHq0aOHpC8f9PjhD3+oDh06qEOHDvre974X3kJbKa5f4zXl2u3evVujRo3SggULNHz48BauvHVo\\\n", - "7PVbvHixdu3apT/96U/661//KpfLFYbqw+tir11eXp7S0tL0k5/8JIxVA60TD4FEqFtuuUXdu3fX\\\n", - "s88+q86dO8vr9apXr16qq6vT7373O9XW1kqSoqOjJUkOh0OlpaUBx6ioqPB/ZjUXe/3wjcZeu717\\\n", - "92rYsGGaOnWq5s2bF47SW4XGXj+HwyGHw6HU1FR17NhRN9xwgx566CF16tQpHKcRFhd77bZs2aKP\\\n", - "P/5Y69evlyT5vvrl08TERD344IN6+OGHw3MiQCtAAIxAx44d04EDB/Tss8/qhhtukCS9++67/s+v\\\n", - "uOKKs/ZxOp169NFHVVlZqeTkZElSYWGhYmNjlZ6e3jKFtxKNuX74UmOv3Z49ezR06FBNmjRJjz76\\\n", - "aIvU2hqF6u+9r+9583g8oS+ylWrMtXvllVf8oVCSduzYoZ/+9Kf6y1/+ou9+97vNXzTQihEAI9Dl\\\n", - "l1+uhIQErVy5Up06dVJ5ebnmzp173n2GDx+u9PR03XnnnfrNb34jt9utefPmadq0abLb7S1UeevQ\\\n", - "mOsnSZ9++qlOnDght9ut2tpaffDBB5Kk9PR0tWvXrpmrbh0ac+12796toUOHKicnRy6XS263W5LU\\\n", - "pk0bJSUltUTZrUZjrt/mzZtVUVGh6667Th06dNCePXs0Z84cXX/99f4lUCtozLX795B39OhRSVJa\\\n", - "Wpri4+Obq1QgMoT7JkQ0TmFhoS8tLc1nt9t9ffr08b311ls+Sb7XXnvtnPt8/vnnvh/+8Ie+9u3b\\\n", - "+xITE32zZ8/21dfXt1zRrUhjrl9WVpZP0lnb3/72txaruzW42Gu3YMGCoNete/fuLVp3a3Gx12/L\\\n", - "li0+p9Ppi4uL88XExPiuuuoq3/3332/JBxka88/tt/EQCPANm8/31U0RAAAAsASeAgYAALAYAiAA\\\n", - "AIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAAB\\\n", - "hExBQYEGDx6s+Ph4JSQk6Oabb9Zf//rXcJcFAPg3BEAAIXPy5Em5XC7t3LlTRUVFioqK0q233iqv\\\n", - "1xvu0gAA32Lz+Xy+cBcBwJyOHj2qpKQkffzxx+rVq1e4ywEAfIUOIICQOXjwoMaPH6+ePXsqNjZW\\\n", - "PXr0kCSVl5eHtzAAQIC24S4AgHnccsst6t69u5599ll17txZXq9XvXr1Ul1dXbhLAwB8CwEQQEgc\\\n", - "O3ZMBw4c0LPPPqsbbrhBkvTuu++GuSoAQDAEQAAhcfnllyshIUErV65Up06dVF5errlz54a7LABA\\\n", - "ENwDCCAkoqKitGbNGpWVlalXr16aNWuWfvvb34a7LABAEDwFDAAAYDF0AAEAACyGAAgAAGAxBEAA\\\n", - "AACLIQACAABYDAEQAADAYgiAAAAAFkMABAAAsBgCIAAAgMUQAAEAACyGAAgAAGAxBEAAAACLIQAC\\\n", - "AABYzP8HK6ac4PYS8UYAAAAASUVORK5CYII=\\\n", + "AAAPYQGoP6dpAAAkyUlEQVR4nO3db4xd5X0v+u/YMdskePbgpIwxOk1fpMFVcsxAmir2ZBsn3E7m\\\n", + "1g5N5YSAqE0YNbhEUeI4p8dnpDQhUtIhp7lOjFRRLrfJBQJqEucfuC0jHMAd7JEAnWvTmt6KVEkd\\\n", + "OTFV8TBj3LAZj+e+yK2VzRh7GbY99lqfj/RI9vPstfaztpD85fdba++O6enp6QAAUBlzZnsDAACc\\\n", + "WQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIA\\\n", + "VIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAA\\\n", + "ABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIg\\\n", + "AEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACMxwyy235MUXXzz2989+9rO59957\\\n", + "Z3FHM42Ojqanpyc9PT1529velvXr16fZbM72tgDOCR3T09PTs70J4OzS0dGRsbGxdHV1zfZWXtF/\\\n", + "/Md/ZN68eZk3b16OHj2aNWvWZMWKFfnUpz4121sDOOupAEKJXX/99fnt3/7tLF26NKtWrcqBAwdO\\\n", + "eswf//EfJ0kajUZ6enryb//2b/nIRz6Sr371q0l+WR285ppr8v73vz9vfetbs3r16vzjP/5j3ve+\\\n", + "9+Wtb31rrrvuuhw9ejRJcujQoXz0ox/N7/zO72Tp0qW56aab8tJLL7Xl2l7/+tdn3rx5SZKXXnop\\\n", + "v/jFL9LR0dGWcwOUnQAIJfbVr341Tz75ZJ566qk0Go3ccsstx9Z+7/d+L08++eSMY/7yL/8ySTIy\\\n", + "MpLdu3fnoosumvGaJ598MnfffXf++Z//OYcOHcof/dEfZevWrXn66afzT//0T/m7v/u7JMmnP/3p\\\n", + "NBqNPP7449mzZ0+OHj2aLVu2zDjfoUOHjrVzXz7e9773veL1/eQnP8lll12WN73pTanX6/nYxz52\\\n", + "qh8RQCW9brY3AJw+9913X+655568+OKLefHFF/OmN73p2Nrf/u3fvurz9vX15cILL0ySXHHFFanV\\\n", + "almwYEGS5PLLL88zzzyTJPn+97+f0dHRbN68OUnyi1/8InPnzp1xvgULFmT37t2nvI/f+I3fyJ49\\\n", + "e/LCCy/kD//wD/Pd734311577au8KoDqEAChpB577LHcdtttGR0dzUUXXZT7778/n/3sZ9ty7vnz\\\n", + "5x/789y5c2f8/ciRI0mS6enpfOc738lb3/rWE57v0KFDaTQax13r7u7O8PDwCY+/4IILcu211+be\\\n", + "e+8VAAEKEAChpMbGxrJgwYK88Y1vzEsvvZQ77rij8LELFizI+Pj4a34I5AMf+EC+9KUv5Y477sjr\\\n", + "Xve6jI2N5bnnnstb3vKWGe93qhXAH/3oR3nzm9+cefPm5aWXXsr3vve9LF269DXtF6Aq3AMIJdXf\\\n", + "359LL700l1566bEHOn7VK90DmPzy3r3f/d3fPfYQyKv1la98Jeeff356enqydOnSXHXVVfnJT37y\\\n", + "qs/3qx5++OFcfvnlueyyy3L55Zenu7s7f/qnf9qWcwOUna+BAQCoGBVAAICKEQABACpGAAQAqBgB\\\n", + "EACgYgRAAICKEQABACpGAAQAqBgBEACgYvwU3Gt08/e3zPYWADhH3P6BT5729/ivV3y6Lef5h//1\\\n", + "f7TlPJydVAABACpGBRAAyqRjtjfAuUAFEACgYlQAAaBMOpQAOTkBEADKRP6jAC1gAOA12bRpUxqN\\\n", + "RtauXZvJyclj81NTUxkYGEij0ciGDRtajhkdHU1HR0deeOGFM7xbEgEQAMqlo02joD179mT//v0Z\\\n", + "GRnJkiVLsnXr1mNr27Zty+LFizMyMpLDhw9ndHT02Nptt92Wd7zjHa/hQnktBEAAKJX2JMBms5mJ\\\n", + "iYmW0Ww2Z7zbrl270tfXlyTp7+/Pzp07T7r22GOPZenSpbngggvaf/kUIgACADMMDQ2lXq+3jKGh\\\n", + "oRmvGxsbS2dnZ5KkXq/n4MGDJ13bsmVLPv7xj5+Bq+CVeAgEAEpkuk0PgQwODmbjxo0tc7Vabcbr\\\n", + "urq6MjExkSQZHx/PwoULT7i2Y8eOXHbZZVmwYEF7NsqrogIIAGXSpnsAa7VaOjs7W8bxAuDy5cuz\\\n", + "ffv2JMnw8HB6e3tPuLZnz5788Ic/TH9/f5566qnccMMNp+Vj4MQEQADgVevp6Ul3d3cajUb27t2b\\\n", + "NWvWZP369UmS1atXZ9++fWk0Gpk/f36WLVuWT3ziE3nkkUfy4IMPZunSpbnrrrtm+QqqqWN6enp6\\\n", + "tjdxLrv5+1tmewsAnCNu/8AnT/t7vH3Zf2/Lef5x9H+25TycnVQAAQAqxkMgAFAmfgmEAlQAAQAq\\\n", + "RgUQAMqkQwmQkxMAAaBM5D8K0AIGAKgYFUAAKBHf7UYRAiAAlIl7AClACxgAoGJUAAGgTBQAKUAA\\\n", + "BIBSkQA5OS1gAICKUQEEgDJRAKQAARAAykQApAABEABKZNrXwFCAewABACpGAAQAqBgtYAAoEy1g\\\n", + "ClABBACoGBVAACgTBUAKEAABoESmZ3sDnBMqGQCnpqaydevW7Ny5MwcPHszChQvT29ubNWvW5HWv\\\n", + "q+RHAgBUSCXTzsDAQC699NJ85CMfSb1ez/j4eIaHh3PjjTfmnnvuecXjms1mms1my9zU5JHMnVfJ\\\n", + "jxGAs5GHQCigksnlxz/+ce66666WuSuuuCIrVqw44XFDQ0P5/Oc/3zL3jg+/L++89n9v+x4B4FWR\\\n", + "/yigkgFw+fLlWbduXfr6+tLZ2ZmJiYls374973rXu0543ODgYDZu3Ngy99+G7zydWwUAaLtKBsBb\\\n", + "b701Tz31VHbt2pWf/vSn6erqyqc+9alcdtllJzyuVqulVqu1zGn/AnBW0QKmgMqml6VLl2bp0qWz\\\n", + "vQ0AaCtPAVNEZQMgAJSSAiAF+CUQAICKUQEEgDJxDyAFqAACAFSMAAgAUDFawABQItNawBQgAAJA\\\n", + "mch/FKAFDABQMQIgAEDFCIAAUCLTHR1tGadi06ZNaTQaWbt2bSYnJ4/NT01NZWBgII1GIxs2bDg2\\\n", + "39vbmyuvvDK9vb15+umn23XpnAIBEAB41fbs2ZP9+/dnZGQkS5YsydatW4+tbdu2LYsXL87IyEgO\\\n", + "Hz6c0dHRJMkjjzySHTt25Itf/GI2b948W1uvNAEQAMqkoz2j2WxmYmKiZTSbzRlvt2vXrvT19SVJ\\\n", + "+vv7s3PnzpOunXfeeUmSQ4cO5e1vf3ubPwCKEAABoEzaFACHhoZSr9dbxtDQ0Iy3GxsbS2dnZ5Kk\\\n", + "Xq/n4MGDJ107cOBAent787GPfSxXXnll+z8DTsrXwABAqbTne2AGB/9HNm7c2DJXq9VmvK6rqysT\\\n", + "ExNJkvHx8SxcuPCka4sWLcrOnTvz+OOPZ3BwMA8++GBb9kxxKoAAwAy1Wi2dnZ0t43gBcPny5dm+\\\n", + "fXuSZHh4OL29vSdcm5yczNGjR5P8sir4+te//gxcDS8nAAJAiUx3tGcU1dPTk+7u7jQajezduzdr\\\n", + "1qzJ+vXrkySrV6/Ovn370mg0Mn/+/Cxbtiw///nPs3LlyrznPe/JzTffnC984Qun6ZPgRDqmp6en\\\n", + "Z3sT57Kbv79ltrcAwDni9g988rS/x2/+/ufbcp5nfvC5tpyHs5MKIABAxXgIBABKxY8Bc3ICIACU\\\n", + "yKncv0d1aQEDAFSMCiAAlIkKIAUIgABQKhIgJ6cFDABQMSqAAFAiHgKhCAEQAMpEAKQAARAASkUC\\\n", + "5OTcAwgAUDEqgABQJgqAFCAAAkCJeAiEIrSAAQAqRgUQAMpEBZACBEAAKBUJkJMTAF+jfz802zsA\\\n", + "ADg1AiAAlIiHQChCAASAMhEAKcBTwAAAFSMAAgBUjBYwAJRJhx4wJycAAkCJeAiEIrSAAQAqRgAE\\\n", + "AKgYLWAAKBMtYApQAQQAqBgVQAAoE08BU4AACAAlMj3bG+CcoAUMAFAxKoAAUCY6wBQgAAJAmQiA\\\n", + "FKAFDABQMQIgAEDFaAEDQJn4GhgKUAEEgBKZ7mjPOBWbNm1Ko9HI2rVrMzk5eWx+amoqAwMDaTQa\\\n", + "2bBhQ5Lkxz/+cRqNRq688sqsWrUq4+Pjbbx6ihIAAYBXbc+ePdm/f39GRkayZMmSbN269djatm3b\\\n", + "snjx4oyMjOTw4cMZHR1NV1dXHnjggezYsSNXX3117rzzzlncfXUJgADAq7Zr16709fUlSfr7+7Nz\\\n", + "584Trl144YXp6upKkpx33nmZM0cUmQ3uAQSAMmnTLYDNZjPNZrNlrlarpVartcyNjY3l4osvTpLU\\\n", + "6/UcPHiwZa2zs/O4a88//3xuv/32PPjgg+3ZMKdE7AYAZhgaGkq9Xm8ZQ0NDM17X1dWViYmJJMn4\\\n", + "+HgWLlx40rXJyclcf/312bx5c8vrOXMEQAAok472jMHBwYyPj7eMwcHBGW+3fPnybN++PUkyPDyc\\\n", + "3t7ek67ddNNNueaaa/Lud7+7/ddPIQIgAJRKexJgrVZLZ2dny3h5+zdJenp60t3dnUajkb1792bN\\\n", + "mjVZv359kmT16tXZt29fGo1G5s+fn2XLlmVkZCTf+ta38vWvfz0rV67Mli1bTvPnwfF0TE9PT8/2\\\n", + "Js5lH7rHf7gAFPPttZ887e/x6wNfast59n1tU1vOw9nJQyAAUCa+B5oCBEAAKBMBkALcAwgAUDEq\\\n", + "gABQIm7spwgBEADKRAuYArSAAQAqRgAEAKgYLWAAKJMOPWBOTgXwV9x9990nXG82m5mYmGgZU5NH\\\n", + "ztDuAKCANv0UHOVWyQD49NNPzxh79+7NHXfcccLjjvfD2P/vAw+doV0DALRHJVvA73rXu/LBD34w\\\n", + "L/8VvH/913894XGDg4PZuHFjy9xHtt7Z9v0BAJxOlQyAv/Vbv5U///M/zxvf+MaW+VWrVp3wuFqt\\\n", + "NuOHsOfOq+RHCMDZSvuWAiqZXh566KG84Q1vmDH/N3/zN7OwGwCAM6uSAbCzs3O2twAAp4cKIAVU\\\n", + "8iEQAIAqEwABACqmki1gACgtLWAKEAABoEQ6/BIIBWgBAwBUjAAIAFAxWsAAUCY6wBQgAAJAmQiA\\\n", + "FKAFDABQMQIgAEDFaAEDQIn4FhiKUAEEAKgYARAAoGK0gAGgTLSAKUAFEACgYlQAAaBMVAApQAAE\\\n", + "gBKR/yhCAASAMvE9MBTgHkAAgIpRAQSAElEApAgVQACAihEAAQAqRgAEgDLpaNM4BZs2bUqj0cja\\\n", + "tWszOTl5bH5qaioDAwNpNBrZsGHDsfn3vve96erqyrZt217dNfKaCYAAUCJnOv/t2bMn+/fvz8jI\\\n", + "SJYsWZKtW7ceW9u2bVsWL16ckZGRHD58OKOjo0mSb3zjGy2BkDNPAAQAXrVdu3alr68vSdLf35+d\\\n", + "O3eedG3x4sVnfqO08BQwAJRJm54CbjabaTabLXO1Wi21Wq1lbmxsLBdffHGSpF6v5+DBgy1rnZ2d\\\n", + "x11jdqkAAkCJdHS0ZwwNDaVer7eMoaGhGe/X1dWViYmJJMn4+HgWLlxYaI3ZJQACADMMDg5mfHy8\\\n", + "ZQwODs543fLly7N9+/YkyfDwcHp7ewutMbsEQABghlqtls7Ozpbx8vZvkvT09KS7uzuNRiN79+7N\\\n", + "mjVrsn79+iTJ6tWrs2/fvjQajcyfPz/Lli1LkgwMDOTuu+/OZz7zmdx6661n9Lr4pY7p6enp2d7E\\\n", + "uexD92yZ7S0AcI749tpPnvb3eMt//3JbzvOj//nf2nIezk4qgAAAFSMAAgBUjK+BeY3e+xa/ug3A\\\n", + "2aPDP0sUIAACQJkIgBSgBQwAUDEqgABQIh1KgBQgAAJAmch/FKAFDABQMSqAAFAiCoAUIQACQIn4\\\n", + "GhiK0AIGAKgYFUAAKBMVQAoQAAGgROQ/ihAAAaBMJEAKcA8gAEDFqAACQIkoAFKEAAgAJeJrYChC\\\n", + "CxgAoGJUAAGgTFQAKUAABIASkf8oQgsYAKBiVAABoEQ8BEIRKoAAABUjAAIAVIwWMACUiBYwRQiA\\\n", + "AFAmAiAFCIAAUCIdEiAFuAcQAKBiVAABoETcA0gRKoAAABUjAAIAVIwWMACUiBYwRQiAAFAi8h9F\\\n", + "aAEDAFSMCiAAlIkSIAUIgABQIu4BpAgtYADgNdm0aVMajUbWrl2bycnJY/NTU1MZGBhIo9HIhg0b\\\n", + "js1v2bIlvb29ufrqqzMxMTELO0YABIAS6WjTKGrPnj3Zv39/RkZGsmTJkmzduvXY2rZt27J48eKM\\\n", + "jIzk8OHDGR0dzb//+7/n/vvvz2OPPZYPf/jD+Yu/+IvXfM2cunO+BTw9PZ2HH344P/vZzzI9PZ0k\\\n", + "Wbdu3QmPmZqayg9+8IPMmTMn73//+zN37twkybe//e186EMfesXjms1mms1my9zkS0cy77xz/mME\\\n", + "oCza1AI+3r95tVottVqtZW7Xrl3p6+tLkvT39+frX/96rrvuumNrq1atOra2c+fOPP/887nyyivT\\\n", + "0dGR/v7+3HDDDe3ZMKfknK8AfvjDH84DDzyQL3zhC3nyySfz4IMPnvSYdevW5cknn8zu3buzYsWK\\\n", + "/OhHP0qS3H777Sc8bmhoKPV6vWUM3/1QW64DANqhXRXA4/2bNzQ0NOP9xsbG0tnZmSSp1+s5ePDg\\\n", + "CddO9HrOnHO+dPXss8/mW9/6Vnbv3p3bbrstf/AHf3DSY/bv35977703SXLjjTdm3bp1ueWWW056\\\n", + "3ODgYDZu3Ngy93//P//Xq9o3AJzNjvdv3surf0nS1dV17D6+8fHxLFy48IRrXV1dxwovL389Z845\\\n", + "XwGcO3dujh49mgsvvDBf+9rX8i//8i8nPeall146VtZ+85vfnG3btuXLX/5y/uEf/uGEx9VqtXR2\\\n", + "drYM7V8AziYdHe0Zx/s373gBcPny5dm+fXuSZHh4OL29vSdce+c735m///u/P+7rOXPO+QD413/9\\\n", + "1zl69Ghuv/32PP/887nnnntOesyWLVvy/PPPH/v7ggULcv/99+crX/nKadwpAJwBZ/gpkJ6ennR3\\\n", + "d6fRaGTv3r1Zs2ZN1q9fnyRZvXp19u3bl0ajkfnz52fZsmX5tV/7taxatSq9vb2577778rGPfaw9\\\n", + "180p6Zj+zycneFVuH71ttrcAwDni5mWfOO3v8Tu3bm7LeR7/HxtP/iLOWfqXAFAivgeaIgRAACgR\\\n", + "vwRCEef8PYAAAJwaFUAAKBUlQE5OAASAEtECpggtYACAilEBBIAyUQGkAAEQAEpE/qMIARAASsQ9\\\n", + "gBThHkAAgIoRAAEAKkYLGABKRAuYIlQAAQAqRgUQAEpEAZAiBEAAKBMJkAK0gAEAKkYFEABKxEMg\\\n", + "FCEAAkCJyH8UIQACQJlIgBTgHkAAgIpRAQSAElEApAgBEABKxEMgFKEFDABQMSqAAFAmSoAUIAAC\\\n", + "QImIfxShBQwAUDEqgABQJkqAFCAAAkCJyH8UoQUMAFAxKoAAUCIeAqYIARAAykQApAABEABKRP6j\\\n", + "CAHwNdp869hsbwGAc8TNP5jtHcAvCYAAUCLuAaQITwEDAFSMAAgAUDECIACUSEdHe0a7bNq0KY1G\\\n", + "I2vXrs3k5GTL2tTUVAYGBtJoNLJhw4Zj8+9973vT1dWVbdu2tW8jtBAAAaBEzqYAuGfPnuzfvz8j\\\n", + "IyNZsmRJtm7d2rK+bdu2LF68OCMjIzl8+HBGR0eTJN/4xjdaAiHtJwACADM0m81MTEy0jGazeUrn\\\n", + "2LVrV/r6+pIk/f392blzZ6H1xYsXt+EKOBEBEACYYWhoKPV6vWUMDQ2d0jnGxsbS2dmZJKnX6zl4\\\n", + "8OAprXP6+BoYACiRdrVvBwcHs3Hjxpa5Wq123NceOHAg11577Yz5vr6+TExMJEnGx8ezcOHClvWu\\\n", + "rq4TrnP6CIAAwAy1Wu0VA9/LLVq0KI8++uiM+d27d2fz5s1Zt25dhoeH09vb27K+fPnybN++PStW\\\n", + "rMjw8HBuvPHGdmydArSAAaBEOto02qGnpyfd3d1pNBrZu3dv1qxZkyRZv359kmT16tXZt29fGo1G\\\n", + "5s+fn2XLliVJBgYGcvfdd+czn/lMbr311jbthl/VMT09PT3bmziX/ebvf362twDAOeKZH3zutL/H\\\n", + "7/2fX23Lef72pg1tOQ9nJy1gACgRPwVHEVrAAAAVowIIACWiAEgRAiAAlIkeMAVoAQMAVIwKIACU\\\n", + "iPofRQiAAFAiOsAUoQUMAFAxKoAAUCIqgBShAggAUDECIABAxWgBA0CJaAFThAAIACUi/1GEAAgA\\\n", + "ZSIBUoB7AAEAKkYFEABKRAGQIgRAACgRD4FQhBYwAEDFqAACQImoAFKECiAAQMUIgAAAFaMFDAAl\\\n", + "ogVMEQIgAJSI/EcRWsAAABVTyQrgs88+m7/6q7/K2972tlxxxRX5sz/7s7zhDW/In/zJn6S7u/sV\\\n", + "j2s2m2k2my1z01NH0jG3kh8jAGchLWCKqGQF8Prrr88ll1ySn/70p+nr68tVV12Vvr6+DAwMnPC4\\\n", + "oaGh1Ov1lnHwmZEztGsAOLmOjvYMyq2SAfDIkSO54YYb8vGPfzz1ej0f/OAH09fXlxdffPGExw0O\\\n", + "DmZ8fLxlLPzNxhnaNQBAe1Sydzk5OXnsz3fcccexPx85cuSEx9VqtdRqtZY57V8A4FxTyfTyve99\\\n", + "L9PT0+no6Mhll12W5Jeh8Mtf/vIs7wwAXhvtW4qoZAC86KKLZszNmzcv73znO2dhNwDQPvIfRVTy\\\n", + "HkAAgCqrZAUQAMpKC5giBEAAKBH5jyK0gAEAKkYFEADKRAmQAlQAAaBEzrZfAtm0aVMajUbWrl3b\\\n", + "8j28STI1NZWBgYE0Go1s2LAhSfLjH/84jUYjV155ZVatWpXx8fH2bYZjBEAA4LTYs2dP9u/fn5GR\\\n", + "kSxZsiRbt25tWd+2bVsWL16ckZGRHD58OKOjo+nq6soDDzyQHTt25Oqrr86dd945S7svNwEQAEqk\\\n", + "o02jHXbt2pW+vr4kSX9/f3bu3HnS9QsvvDBdXV1JkvPOOy9z5ogqp4N7AAGgRNrVvm02m2k2my1z\\\n", + "x/tJ1BMZGxvLxRdfnCSp1+s5ePDgjPXOzs7jrj///PO5/fbb8+CDD77aS+AExGoAKJF2VQCHhoZS\\\n", + "r9dbxtDQ0HHf88CBA1m5cuWMkSQTExNJkvHx8SxcuLDluK6uruOuT05O5vrrr8/mzZtnHEN7qAAC\\\n", + "ADMMDg5m48aNLXOvVP1btGhRHn300Rnzu3fvzubNm7Nu3boMDw+nt7e3ZX358uXZvn17VqxYkeHh\\\n", + "4dx4441JkptuuinXXHNN3v3ud7fnYphBBRAASqRdTwHXarV0dna2jFNp/yZJT09Puru702g0snfv\\\n", + "3qxZsyZJsn79+iTJ6tWrs2/fvjQajcyfPz/Lli3LyMhIvvWtb+XrX/96Vq5cmS1btrT9MyLpmJ6e\\\n", + "np7tTZzLfvP3Pz/bWwDgHPHMDz532t9j4NvtCUxf+9An23Iezk4qgAAAFeMeQAAokXZ+iTPlJQAC\\\n", + "QJkIgBSgBQwAUDEqgABQIgqAFCEAAkCJuAeQIrSAAQAqRgUQAEpEAZAiBEAAKBEtYIoQAAGgROQ/\\\n", + "inAPIABAxagAAkCJaAFThAAIACUiAFKEFjAAQMWoAAJAiSgAUoQACAAlogVMEVrAAAAVowIIACWi\\\n", + "AEgRAiAAlIgWMEUIgK/RixfNn+0tAACcEgEQAEpEAZAiBEAAKBEtYIoQAAGgROQ/ivA1MAAAFaMC\\\n", + "CAAlogVMEQIgAJSI/EcRWsAAABWjAggAJaIFTBECIACUiABIEVrAAAAVowIIACWiAEgRAiAAlEiH\\\n", + "HjAFaAEDAFSMCiAAlIj6H0UIgABQIjrAFCEAAkCJyH8U4R5AAOC02bRpUxqNRtauXZvJycmWtamp\\\n", + "qQwMDKTRaGTDhg3H5nt7e3PllVemt7c3Tz/99BnecTUIgABQInM62jPaYc+ePdm/f39GRkayZMmS\\\n", + "bN26tWV927ZtWbx4cUZGRnL48OGMjo4mSR555JHs2LEjX/ziF7N58+b2bIYWAiAAlEhHm0Y77Nq1\\\n", + "K319fUmS/v7+7Ny5s9D6eeedlyQ5dOhQ3v72t7dpN/wq9wACADM0m800m82WuVqtllqtVvgcY2Nj\\\n", + "ufjii5Mk9Xo9Bw8enLHe2dk5Y/3AgQNZs2ZN9u3bl/vvv/+1XAavQAUQAEqko6M9Y2hoKPV6vWUM\\\n", + "DQ0d9z0PHDiQlStXzhhJMjExkSQZHx/PwoULW47r6uo67vqiRYuyc+fOfOc738ng4OBp+qSqTQUQ\\\n", + "AEqkXe3bwcHBbNy4sWXulap/ixYtyqOPPjpjfvfu3dm8eXPWrVuX4eHh9Pb2tqwvX74827dvz4oV\\\n", + "KzI8PJwbb7wxk5OTmTt3bubMmZN6vZ7Xv/71bboifpUKIAAwQ61WS2dnZ8s4lfZvkvT09KS7uzuN\\\n", + "RiN79+7NmjVrkiTr169PkqxevTr79u1Lo9HI/Pnzs2zZsvz85z/PypUr8573vCc333xzvvCFL7T9\\\n", + "2kg6pqenp2d7E+ey//LRL832FgA4R/z0zk2n/T1u2X5be87zv32iLefh7KQFDAAl4ougKUILGACg\\\n", + "YlQAAaBE/BYwRQiAAFAi8h9FCIAAUCLt+hk3ys09gAAAFaMCCAAlogBIEQIgAJSIh0AoQgsYAKBi\\\n", + "VAABoEQUAClCAASAEtECpggt4P/fhg0bTvqaZrOZiYmJljE9deT0bw4AoI0qWQG86KKL8uu//uuZ\\\n", + "M2dOpqenkyTPPPNMdu3alccff/wVjxsaGsrnP//5lrkFl1+V+jt+97TuFwCKUgCkiEpWALds2ZI3\\\n", + "v/nN+fSnP50nnngiTzzxRJYtW3bC8Jckg4ODGR8fbxmdPe85Q7sGgJPr6GjPoNwqGQCvu+66fPvb\\\n", + "386RI0fygQ98IPfdd9+xSuCJ1Gq1dHZ2toyOuZUsogIA57BKBsAkmTNnTq6//vp897vfzZEjR9LT\\\n", + "0zPbWwKA10wFkCIqX76aM2dO1q1bN9vbAIC2qGxlh1NS+QAIAGWiekcR/kcBAKBiVAABoEQUAClC\\\n", + "AASAEtECpggtYACAilEBBIASUQCkCAEQAEpEC5gitIABACpGBRAASkQBkCIEQAAoES1gitACBgCo\\\n", + "GBVAACgRBUCKEAABoES0gClCAASAEnFvF0X47wQAoGJUAAGgRLSAKUIABIASkf8oQgsYAKBiVAAB\\\n", + "oES0gClCBRAASqSjTaNdNm3alEajkbVr12ZycrJlbWpqKgMDA2k0GtmwYUPL2ujoaDo6OvLCCy+0\\\n", + "cTf8JwEQADgt9uzZk/3792dkZCRLlizJ1q1bW9a3bduWxYsXZ2RkJIcPH87o6Oixtdtuuy3veMc7\\\n", + "zvSWK0MABIAS6ehoz2iHXbt2pa+vL0nS39+fnTt3Flp/7LHHsnTp0lxwwQXt2QgzCIAAUCLtCoDN\\\n", + "ZjMTExMto9lsntJexsbG0tnZmSSp1+s5ePBgofUtW7bk4x//eBs+DV6JAAgAzDA0NJR6vd4yhoaG\\\n", + "jvvaAwcOZOXKlTNGkkxMTCRJxsfHs3Dhwpbjurq6Zqzv2LEjl112WRYsWHD6Lg5PAQNAmbTrAY7B\\\n", + "wcFs3LixZa5Wqx33tYsWLcqjjz46Y3737t3ZvHlz1q1bl+Hh4fT29rasL1++PNu3b8+KFSsyPDyc\\\n", + "G2+8MU888UR++MMf5rHHHstTTz2VG264Id/5znfadFX8JxVAACiRdrWAa7VaOjs7W8YrBcBX0tPT\\\n", + "k+7u7jQajezduzdr1qxJkqxfvz5Jsnr16uzbty+NRiPz58/PsmXL8olPfCKPPPJIHnzwwSxdujR3\\\n", + "3XVX2z8jko7p6enp2d7Euey/fPRLs70FAM4RP71z02l/j3uevK0t51n7259oy3k4O6kAAgBUjHsA\\\n", + "AaBE/BIIRQiAAFAiHXFnFyenBQwAUDEqgABQIlrAFOEpYKCtms1mhoaGMjg4eMpfGQHAmSEAAm01\\\n", + "MTGRer2e8fHxYz/xBMDZxT2AAAAVIwACAFSMAAgAUDECINBWtVotn/vc5zwAAnAW8xAIAEDFqAAC\\\n", + "AFSMAAgAUDECIABAxQiAAAAVIwACAFTM62Z7A0B5PPvss7n22mtz5MiRdHd355vf/Gbmzp0729sC\\\n", + "4GVUAIG2ufDCC/PQQw9lZGQkl1xySR5++OHZ3hIAx6ECCLTNc889l5tvvjljY2P52c9+liuuuGK2\\\n", + "twTAcagAAm1z3333ZfXq1dmxY0f6+/vje+YBzk4qgEDbXHXVVVm7dm0eeOCBnH/++bO9HQBegZ+C\\\n", + "AwCoGC1gAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYvwSCNA2zz77bK69\\\n", + "9tocOXIk3d3d+eY3v5m5c+fO9rYAeBkVQKBtLrzwwjz00EMZGRnJJZdckocffni2twTAcagAAm3z\\\n", + "3HPP5eabb87Y2Fh+9rOf5YorrpjtLQFwHCqAQNvcd999Wb16dXbs2JH+/v74qXGAs5MKINA2V111\\\n", + "VdauXZsHHngg559//mxvB4BX0DHtf9EBACpFCxgAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACA\\\n", + "ihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAA\\\n", + "oGIEQACAihEAAQAqRgAEAKgYARAAoGL+P+H9D16oJ38QAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[4] = \"\\\n", "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", - "AAAPYQGoP6dpAAA5GElEQVR4nO3de3RU9b338c8EkgmKSSQJGSK3Uq0J5VaDhEEkCimhooLSChwq\\\n", - "iHngsQW0DKYSRVjaanpauYPyYBFLlcLCCxUOTU8MqNUEAsEbt3irxgNOuJlwwDCEzDx/qFOnDGGT\\\n", - "TDKZvd+vrr1c/Oa393z3bsRPvr+9Z2w+n88nAAAAWEZUuAsAAABAyyIAAgAAWAwBEAAAwGIIgAAA\\\n", - "ABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQA\\\n", - "ALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAA\\\n", - "AIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAAB\\\n", - "AAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAABNNlnn32m\\\n", - "X/7yl7r66qvVrl07JSYm6mc/+5k+/fTTcJcGAAiibbgLABD5du7cqZKSEo0bN06dO3fWp59+qqee\\\n", - "eko33HCD9u3bp0suuSTcJQIAvsPm8/l84S4CQGSrra1Vu3btAsa2b98up9OpNWvW6M477wxTZQCA\\\n", - "YFgCBtBk3w1/dXV1OnbsmK688kolJCRo9+7dYawMABAMARBAk9XW1mru3Lnq0qWL7Ha7kpKSlJyc\\\n", - "rOrqatXU1IS7PADAv+EeQABNNmPGDK1evVq/+tWv5HQ6FR8fL5vNpnHjxsnr9Ya7PADAvyEAAmiy\\\n", - "F154QZMmTdL8+fP9Y6dPn1Z1dXX4igIAnBdLwACarE2bNvr358mWLl2q+vr6MFUEAGgIHUAATXbz\\\n", - "zTfrz3/+s+Lj49WzZ0+Vlpbq1VdfVWJiYrhLAwAEQQAE0GSLFy9WmzZt9Pzzz+v06dO67rrr9Oqr\\\n", - "ryonJyfcpQEAguBzAAEAACyGewABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZD\\\n", - "AAQAALAYAiAAAIDF8E0gTXTrqsXhLiFi1Z3lM8iboraW69dYZ/mK4karq+Pnril2zHY1+3v0vmZW\\\n", - "SI7z/u75ITkOWic6gAAAABZDBxAAADOxhbsARAI6gAAAABZDBxAAADOx0QLEhREAAQAwE/IfDGAJ\\\n", - "GAAAwGLoAAIAYCZ0AGEAARAAAFMhAeLCWAIGAACwGDqAAACYiI8GIAwgAAIAYCYEQBjAEjAAAIDF\\\n", - "0AEEAMBM+CBoGEAHEAAAwGLoAAIAYCY0AGEAHUAAAACLoQMIAICZcA8gDKADCACAmdhCtDXC8uXL\\\n", - "1b17d8XGxiozM1NlZWUNzt+wYYPS0tIUGxur3r17a8uWLQGvnzx5UtOnT1fnzp3Vrl079ezZUytW\\\n", - "rGhccQhAAAQAAE22fv16uVwuzZs3T7t371bfvn2Vk5Ojw4cPB51fUlKi8ePHKzc3V2+//bZGjx6t\\\n", - "0aNHa8+ePf45LpdLhYWFeu6557R//3796le/0vTp0/XKK6+01GmZFgEQAAAT8YVou1gLFizQlClT\\\n", - "NHnyZH+n7pJLLtEzzzwTdP7ixYs1YsQI5eXlKT09Xb/5zW90zTXXaNmyZf45JSUlmjRpkm644QZ1\\\n", - "795dU6dOVd++fS/YWcSFEQABADATmy0km8fj0YkTJwI2j8cT9C3PnDmj8vJyZWdn+8eioqKUnZ2t\\\n", - "0tLSoPuUlpYGzJeknJycgPmDBg3SK6+8ooMHD8rn82nbtm364IMPNHz48BBcKGsjAAIAgHMUFBQo\\\n", - "Pj4+YCsoKAg69+jRo6qvr1dKSkrAeEpKitxud9B93G73BecvXbpUPXv2VOfOnRUTE6MRI0Zo+fLl\\\n", - "GjJkSBPPDjwFDACAmYToIeD8/Hy5XK6AMbvdHpqDG7R06VJt375dr7zyirp166Y33nhD06ZNU2pq\\\n", - "6jndQ1wcAiAAAKYSmgRot9sNB76kpCS1adNGVVVVAeNVVVVyOBxB93E4HA3Or62t1YMPPqiXX35Z\\\n", - "I0eOlCT16dNH77zzjp544gkCYBOxBAwAAJokJiZGGRkZKi4u9o95vV4VFxfL6XQG3cfpdAbMl6Si\\\n", - "oiL//Lq6OtXV1SkqKjCqtGnTRl6vN8RnYD10AAEAMJMwfQ60y+XSpEmT1L9/fw0YMECLFi3SqVOn\\\n", - "NHnyZEnSxIkTdcUVV/jvI7zvvvuUlZWl+fPna+TIkVq3bp127dqllStXSpLi4uKUlZWlvLw8tWvX\\\n", - "Tt26ddPrr7+uNWvWaMGCBeE5SRMhAAIAYCZhCoBjx47VkSNHNHfuXLndbvXr10+FhYX+Bz0qKysD\\\n", - "unmDBg3S2rVrNWfOHD344IO66qqrtHHjRvXq1cs/Z926dcrPz9eECRN0/PhxdevWTY899pjuueee\\\n", - "Fj8/s7H5fL7GfNwPvnHrqsXhLiFi1Z3lR68pamu5fo11tj7cFUSuujp+7ppix2zXhSc1Uc8bHwzJ\\\n", - "cfZtezwkx0HrxD2AAAAAFkMABAAAsBjuAQQAwExsYboJEBGFDiAAAIDF0AEEAMBMaADCAMsEwKNH\\\n", - "j+qZZ55RaWmp/3sGHQ6HBg0apLvuukvJyclhrhAAgKbjOW0YYYkl4J07d+oHP/iBlixZovj4eA0Z\\\n", - "MkRDhgxRfHy8lixZorS0NO3atSvcZQIAALQIS3QAZ8yYoZ/97GdasWKFbP92c6zP59M999yjGTNm\\\n", - "qLS0tMHjeDweeTyegLH6urNqE22JywgAiAQ8BAIDLNEBfPfddzVz5sxzwp8k2Ww2zZw5U++8884F\\\n", - "j1NQUKD4+PiA7aMtRc1QMQAAjWQL0QZTs0QAdDgcKisrO+/rZWVl/q+qaUh+fr5qamoCtitv+nEo\\\n", - "SwUAAGh2lli7vP/++zV16lSVl5dr2LBh/rBXVVWl4uJiPf3003riiScueBy73S673R4wxvIvAKBV\\\n", - "YQkYBlgivUybNk1JSUlauHChnnzySdXXf/1FoG3atFFGRoaeffZZ3XHHHWGuEgCApuMpYBhhiQAo\\\n", - "SWPHjtXYsWNVV1eno0ePSpKSkpIUHR0d5soAAAghGoAwwDIB8FvR0dHq1KlTuMsAAAAIG8sFQAAA\\\n", - "TI17AGGAJZ4CBgAAwL8QAAEAACyGJWAAAEzExxIwDCAAAgBgJuQ/GMASMAAAgMUQAAEAACyGJWAA\\\n", - "AEyEewBhBB1AAAAAi6EDCACAmdAAhAEEQAAAzIQACAMIgAAAmAoJEBfGPYAAAAAWQwcQAAAT8dEA\\\n", - "hAEEQAAAzIQACANYAgYAALAYOoAAAJgKLUBcGB1AAABMxGcLzdYYy5cvV/fu3RUbG6vMzEyVlZU1\\\n", - "OH/Dhg1KS0tTbGysevfurS1btpwzZ//+/br11lsVHx+vSy+9VNdee60qKysbVyD8CIAAAKDJ1q9f\\\n", - "L5fLpXnz5mn37t3q27evcnJydPjw4aDzS0pKNH78eOXm5urtt9/W6NGjNXr0aO3Zs8c/5+OPP9bg\\\n", - "wYOVlpam1157Te+9954efvhhxcbGttRpmZbN5/P5wl1EJLt11eJwlxCx6s7yo9cUtbVcv8Y6Wx/u\\\n", - "CiJXXR0/d02xY7ar2d/jytseDclxPnp57kXNz8zM1LXXXqtly5ZJkrxer7p06aIZM2Zo9uzZ58wf\\\n", - "O3asTp06pc2bN/vHBg4cqH79+mnFihWSpHHjxik6Olp//vOfm3AmCIYOIAAApmILyebxeHTixImA\\\n", - "zePxBH3HM2fOqLy8XNnZ2f6xqKgoZWdnq7S0NOg+paWlAfMlKScnxz/f6/Xqv/7rv/SDH/xAOTk5\\\n", - "6tixozIzM7Vx48ZGXRUEIgACAIBzFBQUKD4+PmArKCgIOvfo0aOqr69XSkpKwHhKSorcbnfQfdxu\\\n", - "d4PzDx8+rJMnT+p3v/udRowYof/+7//Wbbfdpttvv12vv/56CM7Q2ngKGAAAEwnVB0Hn5+fL5Qpc\\\n", - "srbb7aE5uAFer1eSNGrUKM2cOVOS1K9fP5WUlGjFihXKyspqsVrMiAAIAICZhCgA2u12w4EvKSlJ\\\n", - "bdq0UVVVVcB4VVWVHA5H0H0cDkeD85OSktS2bVv17NkzYE56errefPNNo6eB82AJGAAAUwnNPYAX\\\n", - "IyYmRhkZGSouLvaPeb1eFRcXy+l0Bt3H6XQGzJekoqIi//yYmBhde+21qqioCJjzwQcfqFu3bhdV\\\n", - "H85FBxAAADSZy+XSpEmT1L9/fw0YMECLFi3SqVOnNHnyZEnSxIkTdcUVV/jvI7zvvvuUlZWl+fPn\\\n", - "a+TIkVq3bp127dqllStX+o+Zl5ensWPHasiQIbrxxhtVWFioTZs26bXXXgvHKZoKARAAADMJ0xeB\\\n", - "jB07VkeOHNHcuXPldrvVr18/FRYW+h/0qKysVFTUvxYeBw0apLVr12rOnDl68MEHddVVV2njxo3q\\\n", - "1auXf85tt92mFStWqKCgQPfee6+uvvpqvfjiixo8eHCLn5/Z8DmATcTnADYenwPYNHwOYOPxOYCN\\\n", - "x+cANk1LfA5gj5/9NiTH+WTDnJAcB60T9wACAABYDEvAAACYSZiWgBFZCIAAAJgKCRAXRgBsIu5j\\\n", - "a7zUJP6SaoqS3dzI1li1p7zhLiFiec+GuwIAoUAABADAREL1TSAwNwIgAABmQgCEATwFDAAAYDEE\\\n", - "QAAAAIthCRgAADOxsQaMCyMAAgBgIjwEAiNYAgYAALAYAiAAAIDFsAQMAICZsAQMA+gAAgAAWAwd\\\n", - "QAAAzISngGEAARAAABPhG+phBEvAAAAAFkMHEAAAM2EFGAYQAAEAMBMCIAxgCRgAAMBiCIAAAAAW\\\n", - "wxIwAABmwsfAwAACIAAAJuIj/8EAloABAAAshgAIAABgMSwBAwBgJiwBwwA6gAAAABZDBxAAADOh\\\n", - "AwgDCIAAAJgKCRAXxhIwAACAxRAAAQAwE1uItkZYvny5unfvrtjYWGVmZqqsrKzB+Rs2bFBaWppi\\\n", - "Y2PVu3dvbdmy5bxz77nnHtlsNi1atKhxxSEAARAAADMJUwBcv369XC6X5s2bp927d6tv377KycnR\\\n", - "4cOHg84vKSnR+PHjlZubq7ffflujR4/W6NGjtWfPnnPmvvzyy9q+fbtSU1MvvjAERQAEAABNtmDB\\\n", - "Ak2ZMkWTJ09Wz549tWLFCl1yySV65plngs5fvHixRowYoby8PKWnp+s3v/mNrrnmGi1btixg3sGD\\\n", - "BzVjxgw9//zzio6ObolTsQQCIAAAJuIL0XYxzpw5o/LycmVnZ/vHoqKilJ2drdLS0qD7lJaWBsyX\\\n", - "pJycnID5Xq9Xd955p/Ly8vTDH/7wIqtCQ3gKGAAAMwnRQ8Aej0cejydgzG63y263nzP36NGjqq+v\\\n", - "V0pKSsB4SkqKDhw4EPT4brc76Hy32+3/83/+53+qbdu2uvfeext7GjgPOoAAAOAcBQUFio+PD9gK\\\n", - "Cgpa7P3Ly8u1ePFiPfvss7LZ+GibUCMAAgCAc+Tn56umpiZgy8/PDzo3KSlJbdq0UVVVVcB4VVWV\\\n", - "HA5H0H0cDkeD8//xj3/o8OHD6tq1q9q2bau2bdvqs88+06xZs9S9e/emn6DFEQABADATmy0km91u\\\n", - "V1xcXMAWbPlXkmJiYpSRkaHi4mL/mNfrVXFxsZxOZ9B9nE5nwHxJKioq8s+/88479d577+mdd97x\\\n", - "b6mpqcrLy9Pf//73EF0s6+IewG98/vnnmjdv3nmfVpKC3w/hrTurqGguIwCglQjTaqnL5dKkSZPU\\\n", - "v39/DRgwQIsWLdKpU6c0efJkSdLEiRN1xRVX+JeR77vvPmVlZWn+/PkaOXKk1q1bp127dmnlypWS\\\n", - "pMTERCUmJga8R3R0tBwOh66++uqWPTkTogP4jePHj+tPf/pTg3OC3Q/xceGrLVQhAACt19ixY/XE\\\n", - "E09o7ty56tevn9555x0VFhb6H/SorKzUF1984Z8/aNAgrV27VitXrlTfvn31wgsvaOPGjerVq1e4\\\n", - "TsFSbD6f72Kf9o5Ir7zySoOvf/LJJ5o1a5bq6+vPOydYB/Bna1bSAWyk1CRu6m2Kkt1nw11CxKo9\\\n", - "5Q13CRHLy49dk1Quy2v29+jyf38fkuN8/v9+HZLjoHWyTHIZPXq0bDabGsq7F3rKKNjj74Q/AECr\\\n", - "wu/WMMAyS8CdOnXSSy+9JK/XG3TbvXt3uEsEAABoEZYJgBkZGSovLz/v6xfqDgIAEBHC9F3AiCyW\\\n", - "Wb/My8vTqVOnzvv6lVdeqW3btrVgRQAAAOFhmQB4/fXXN/j6pZdeqqysrBaqBgAAIHwsEwABALAE\\\n", - "lm9hAAEQAAAT4XtzYYRlHgIBAADA1wiAAAAAFsMSMAAAZsIKMAwgAAIAYCYEQBjAEjAAAIDFEAAB\\\n", - "AAAshiVgAABMhE+BgRF0AAEAACyGAAgAAGAxLAEDAGAmLAHDADqAAAAAFkMHEAAAM6EDCAMIgAAA\\\n", - "mAj5D0YQAAEAMBM+BwYGcA8gAACAxdABBADARGgAwgg6gAAAABZDAAQAALAYloABADATloBhAAEQ\\\n", - "AAATIf/BCJaAAQAALIYOIAAAZkILEAYQAAEAMBE+BgZGsAQMAABgMQRAAAAQEsuXL1f37t0VGxur\\\n", - "zMxMlZWVNTh/w4YNSktLU2xsrHr37q0tW7b4X6urq9MDDzyg3r1769JLL1VqaqomTpyoQ4cONfdp\\\n", - "WAIBEAAAE7HZQrNdrPXr18vlcmnevHnavXu3+vbtq5ycHB0+fDjo/JKSEo0fP165ubl6++23NXr0\\\n", - "aI0ePVp79uyRJH311VfavXu3Hn74Ye3evVsvvfSSKioqdOuttzbl8uAbNp/P5wt3EZHsJ/9vUbhL\\\n", - "iFipSdyo0hQlu8+Gu4SIVXvKG+4SIpaXH7smqVyW1+zvceWvnwjJcT76/f0XNT8zM1PXXnutli1b\\\n", - "Jknyer3q0qWLZsyYodmzZ58zf+zYsTp16pQ2b97sHxs4cKD69eunFStWBH2PnTt3asCAAfrss8/U\\\n", - "tWvXi6oPgegAAgCAJjlz5ozKy8uVnZ3tH4uKilJ2drZKS0uD7lNaWhowX5JycnLOO1+SampqZLPZ\\\n", - "lJCQEJK6rYyngJvo5CkaqI21tYJWQlNcFk8HtbGc/WLCXULEKtrmCXcJuIBQPQXs8Xjk8QT+/223\\\n", - "22W328+Ze/ToUdXX1yslJSVgPCUlRQcOHAh6fLfbHXS+2+0OOv/06dN64IEHNH78eMXFxV3MqSAI\\\n", - "OoAAAJiJLTRbQUGB4uPjA7aCgoIWPx3p6wdC7rjjDvl8Pj311FNhqcFs6AACAIBz5Ofny+VyBYwF\\\n", - "6/5JUlJSktq0aaOqqqqA8aqqKjkcjqD7OBwOQ/O/DX+fffaZtm7dSvcvROgAAgBgIrYQ/c9utysu\\\n", - "Li5gO18AjImJUUZGhoqLi/1jXq9XxcXFcjqdQfdxOp0B8yWpqKgoYP634e/DDz/Uq6++qsTExBBc\\\n", - "IUh0AAEAMJcw3R7scrk0adIk9e/fXwMGDNCiRYt06tQpTZ48WZI0ceJEXXHFFf5l5Pvuu09ZWVma\\\n", - "P3++Ro4cqXXr1mnXrl1auXKlpK/D309/+lPt3r1bmzdvVn19vf/+wA4dOigmhnt5m4IACAAAmmzs\\\n", - "2LE6cuSI5s6dK7fbrX79+qmwsND/oEdlZaWiov618Dho0CCtXbtWc+bM0YMPPqirrrpKGzduVK9e\\\n", - "vSRJBw8e1CuvvCJJ6tevX8B7bdu2TTfccEOLnJdZ8TmATXT9goXhLiFi/c//1Ie7hIjGU8CN178n\\\n", - "v/s2Fk8BN83nT/662d/j6vz5ITlORcGskBwHrRN/CwIAYCKh+hgYmBsPgQAAAFgMHUAAAMyEDiAM\\\n", - "IAACAGAi5D8YQQAEAMBMSIAwgHsAAQAALIYOIAAAJkIDEEYQAAEAMBE+BgZGsAQMAABgMXQAAQAw\\\n", - "EzqAMIAACACAiZD/YARLwAAAABZDBxAAABPhIRAYQQcQAADAYgiAAAAAFsMSMAAAJsISMIwgAAIA\\\n", - "YCYEQBhAAAQAwERsJEAYwD2AAAAAFkMHEAAAE+EeQBhBBxAAAMBiCIAAAAAWwxIwAAAmwhIwjCAA\\\n", - "AgBgIuQ/GMESMAAAgMXQAQQAwExoAcIAAiAAACbCPYAwgiVgAAAAi6EDCACAidAAhBGW6QDW1tbq\\\n", - "zTff1L59+8557fTp01qzZs0Fj+HxeHTixImAzXv2bHOUCwBA49hCtMHULBEAP/jgA6Wnp2vIkCHq\\\n", - "3bu3srKy9MUXX/hfr6mp0eTJky94nIKCAsXHxwdsnxe/2pylAwBwUch/MMISAfCBBx5Qr169dPjw\\\n", - "YVVUVOiyyy7Tddddp8rKyos6Tn5+vmpqagK2LsOym6lqAAAiy/Lly9W9e3fFxsYqMzNTZWVlDc7f\\\n", - "sGGD0tLSFBsbq969e2vLli0Br/t8Ps2dO1edOnVSu3btlJ2drQ8//LA5T8EyLBEAS0pKVFBQoKSk\\\n", - "JF155ZXatGmTcnJydP311+uTTz4xfBy73a64uLiALaott1ECAFoPmy0028Vav369XC6X5s2bp927\\\n", - "d6tv377KycnR4cOHg84vKSnR+PHjlZubq7ffflujR4/W6NGjtWfPHv+c3//+91qyZIlWrFihHTt2\\\n", - "6NJLL1VOTo5Onz7d2MuDb1giANbW1qrtd4KazWbTU089pVtuuUVZWVn64IMPwlgdAAAhFKY14AUL\\\n", - "FmjKlCmaPHmyevbsqRUrVuiSSy7RM888E3T+4sWLNWLECOXl5Sk9PV2/+c1vdM0112jZsmWSvu7+\\\n", - "LVq0SHPmzNGoUaPUp08frVmzRocOHdLGjRsvvkAEsEQATEtL065du84ZX7ZsmUaNGqVbb701DFUB\\\n", - "ANB6BXvw0ePxBJ175swZlZeXKzv7X7dFRUVFKTs7W6WlpUH3KS0tDZgvSTk5Of75//znP+V2uwPm\\\n", - "xMfHKzMz87zHhHGWCIC33Xab/vKXvwR9bdmyZRo/frx8Pl8LVwUAQOiFqgEY7MHHgoKCoO959OhR\\\n", - "1dfXKyUlJWA8JSVFbrc76D5ut7vB+d/+82KOCeMsEQDz8/PPubH0u5588kl5vd4WrAgAgOYRqnsA\\\n", - "gz34mJ+fH+7TQ4jwBAMAADiH3W6X3W43NDcpKUlt2rRRVVVVwHhVVZUcDkfQfRwOR4Pzv/1nVVWV\\\n", - "OnXqFDCnX79+Rk8D52GJDiAAANbR8k+BxMTEKCMjQ8XFxf4xr9er4uJiOZ3OoPs4nc6A+ZJUVFTk\\\n", - "n/+9731PDocjYM6JEye0Y8eO8x4TxtEBBADARBrzES6h4HK5NGnSJPXv318DBgzQokWLdOrUKf8X\\\n", - "LUycOFFXXHGF/z7C++67T1lZWZo/f75GjhypdevWadeuXVq5cuU352HTr371K/32t7/VVVddpe99\\\n", - "73t6+OGHlZqaqtGjR4fnJE2EAAgAAJps7NixOnLkiObOnSu3261+/fqpsLDQ/xBHZWWloqL+tfA4\\\n", - "aNAgrV27VnPmzNGDDz6oq666Shs3blSvXr38c37961/r1KlTmjp1qqqrqzV48GAVFhYqNja2xc/P\\\n", - "bGw+Hn9tkusXLAx3CRHrf/6nPtwlRLTL4vmypsbq35PffRuraFvwjwGBMZ8/+etmfw/nH0Lz36XS\\\n", - "vJkhOQ5aJ/4WBADARPjVEEYQAAEAMJFw3QOIyMJTwAAAABZDAAQAALAYloABADARloBhBB1AAAAA\\\n", - "i6EDCACAidAAhBEEQAAAzIQECANYAgYAALAYOoAAAJgID4HACAIgAAAmQv6DEQRAAADMhAQIA7gH\\\n", - "EAAAwGLoAAIAYCI0AGEEARAAABPhIRAYwRIwAACAxdABBADATGgBwgACIAAAJkL8gxEsAQMAAFgM\\\n", - "HUAAAMyEFiAMIAACAGAi5D8YwRIwAACAxdABBADARHgIGEYQAAEAMBMCIAwgAAIAYCLkPxhBAGyi\\\n", - "NtxF2WiXd+DiNUW7WP6ab6yyBQfDXULE6nx7p3CXACAECIAAAJgI9wDCCFowAAAAFkMABAAAsBiW\\\n", - "gAEAMBGWgGEEARAAABMhAMIIloABAECLOX78uCZMmKC4uDglJCQoNzdXJ0+ebHCf06dPa9q0aUpM\\\n", - "TFT79u01ZswYVVVV+V9/9913NX78eHXp0kXt2rVTenq6Fi9e3NynEtEIgAAAoMVMmDBBe/fuVVFR\\\n", - "kTZv3qw33nhDU6dObXCfmTNnatOmTdqwYYNef/11HTp0SLfffrv/9fLycnXs2FHPPfec9u7dq4ce\\\n", - "ekj5+flatmxZc59OxGIJGAAAE2nNS8D79+9XYWGhdu7cqf79+0uSli5dqptuuklPPPGEUlNTz9mn\\\n", - "pqZGq1at0tq1azV06FBJ0urVq5Wenq7t27dr4MCBuvvuuwP26dGjh0pLS/XSSy9p+vTpzX9iEYgO\\\n", - "IAAAOIfH49GJEycCNo/H06RjlpaWKiEhwR/+JCk7O1tRUVHasWNH0H3Ky8tVV1en7Oxs/1haWpq6\\\n", - "du2q0tLS875XTU2NOnTo0KR6zYwACACAidhCtBUUFCg+Pj5gKygoaFJtbrdbHTt2DBhr27atOnTo\\\n", - "ILfbfd59YmJilJCQEDCekpJy3n1KSkq0fv36Cy4tWxkBEAAAMwlRAszPz1dNTU3Alp+fH/QtZ8+e\\\n", - "LZvN1uB24MCB5j3vb+zZs0ejRo3SvHnzNHz48BZ5z0jEPYAAAJhIqO4BtNvtstvthubOmjVLd911\\\n", - "V4NzevToIYfDocOHDweMnz17VsePH5fD4Qi6n8Ph0JkzZ1RdXR3QBayqqjpnn3379mnYsGGaOnWq\\\n", - "5syZY6h2qyIAAgCAJklOTlZycvIF5zmdTlVXV6u8vFwZGRmSpK1bt8rr9SozMzPoPhkZGYqOjlZx\\\n", - "cbHGjBkjSaqoqFBlZaWcTqd/3t69ezV06FBNmjRJjz32WAjOytxYAgYAwERCdQ9gc0hPT9eIESM0\\\n", - "ZcoUlZWV6a233tL06dM1btw4/xPABw8eVFpamsrKyiRJ8fHxys3Nlcvl0rZt21ReXq7JkyfL6XRq\\\n", - "4MCBkr5e9r3xxhs1fPhwuVwuud1uud1uHTlypJnOJPLRAQQAwExa8+fASHr++ec1ffp0DRs2TFFR\\\n", - "URozZoyWLFnif72urk4VFRX66quv/GMLFy70z/V4PMrJydGTTz7pf/2FF17QkSNH9Nxzz+m5557z\\\n", - "j3fr1k2ffvppi5xXpLH5fD5fuIuIZDcsWhjuEiLWiZP86DVFu9jW/Zd8a1bz4hfhLiFiXXZ7p3CX\\\n", - "ENFK82Y2+3vc/MfQfAPG5v9zX0iOg9aJDiAAACbCr4YwggAIAICJtPIVYLQSPAQCAABgMXQAAQAw\\\n", - "ETqAMIIOIAAAgMUQAAEAACyGJWAAAEyEJWAYQQAEAMBEyH8wggAIAICZkABhAPcAAgAAWAwdQAAA\\\n", - "TIQGIIwgAAIAYCI8BAIjWAIGAACwGDqAAACYCB1AGEEHEAAAwGIIgAAAABbDEjAAACbCEjCMIAAC\\\n", - "AGAi5D8YwRIwAACAxVimA7h//35t375dTqdTaWlpOnDggBYvXiyPx6Of//znGjp06AWP4fF45PF4\\\n", - "Asa8Z88qqq1lLiMAoJVjCRhGWKIDWFhYqH79+un+++/Xj370IxUWFmrIkCH66KOP9Nlnn2n48OHa\\\n", - "unXrBY9TUFCg+Pj4gK3y1Vdb4AwAADDGZgvNBnOzRAB89NFHlZeXp2PHjmn16tX6j//4D02ZMkVF\\\n", - "RUUqLi5WXl6efve7313wOPn5+aqpqQnYumZnt8AZAAAAhI4lAuDevXt11113SZLuuOMO/e///q9+\\\n", - "+tOf+l+fMGGC3nvvvQsex263Ky4uLmBj+RcAAEQay6QX2zf97KioKMXGxio+Pt7/2mWXXaaamppw\\\n", - "lQYAQMiwfAsjLNEB7N69uz788EP/n0tLS9W1a1f/nysrK9WpU6dwlAYAQEjZQrTB3CzRAfzFL36h\\\n", - "+vp6/5979eoV8Prf/vY3Q08BAwAAmIElAuA999zT4OuPP/54C1UCAEDzYgkYRlgiAAIAYBXkPxhh\\\n", - "iXsAAQAA8C90AAEAMBNagDCADiAAACbS2r8J5Pjx45owYYLi4uKUkJCg3NxcnTx5ssF9Tp8+rWnT\\\n", - "pikxMVHt27fXmDFjVFVVFXTusWPH1LlzZ9lsNlVXVzfDGZgDARAAALSYCRMmaO/evSoqKtLmzZv1\\\n", - "xhtvaOrUqQ3uM3PmTG3atEkbNmzQ66+/rkOHDun2228POjc3N1d9+vRpjtJNhQAIAICJtObPAdy/\\\n", - "f78KCwv1xz/+UZmZmRo8eLCWLl2qdevW6dChQ0H3qamp0apVq7RgwQINHTpUGRkZWr16tUpKSrR9\\\n", - "+/aAuU899ZSqq6t1//33N9MZmAcBEAAAE2nNS8ClpaVKSEhQ//79/WPZ2dmKiorSjh07gu5TXl6u\\\n", - "uro6ZWdn+8fS0tLUtWtXlZaW+sf27dunRx99VGvWrFFUFPHmQngIBAAAEwlVdvN4PPJ4PAFjdrtd\\\n", - "dru90cd0u93q2LFjwFjbtm3VoUMHud3u8+4TExOjhISEgPGUlBT/Ph6PR+PHj9cf/vAHde3aVZ98\\\n", - "8kmja7QKIjIAADhHQUGB4uPjA7aCgoKgc2fPni2bzdbgduDAgWarNT8/X+np6fr5z3/ebO9hNnQA\\\n", - "AQAwkVAt3+bn58vlcgWMna/7N2vWLN11110NHq9Hjx5yOBw6fPhwwPjZs2d1/PhxORyOoPs5HA6d\\\n", - "OXNG1dXVAV3Aqqoq/z5bt27V+++/rxdeeEGS5PP5JElJSUl66KGH9MgjjzRYmxURAAEAMJFQLQFf\\\n", - "zHJvcnKykpOTLzjP6XSqurpa5eXlysjIkPR1ePN6vcrMzAy6T0ZGhqKjo1VcXKwxY8ZIkioqKlRZ\\\n", - "WSmn0ylJevHFF1VbW+vfZ+fOnbr77rv1j3/8Q9///vcNnYPVEAABAECLSE9P14gRIzRlyhStWLFC\\\n", - "dXV1mj59usaNG6fU1FRJ0sGDBzVs2DCtWbNGAwYMUHx8vHJzc+VyudShQwfFxcVpxowZcjqdGjhw\\\n", - "oCSdE/KOHj3qf79/v3cQXyMAAgBgIs35Ic6h8Pzzz2v69OkaNmyYoqKiNGbMGC1ZssT/el1dnSoq\\\n", - "KvTVV1/5xxYuXOif6/F4lJOToyeffDIc5ZsGARAAADNp5QGwQ4cOWrt27Xlf7969u/8evm/FxsZq\\\n", - "+fLlWr58uaH3uOGGG845BgLxFDAAAIDF0AEEAMBEWnkDEK0EARAAABNp7fcAonVgCRgAAMBi6AAC\\\n", - "AGAiNABhBAEQAAATYQkYRhAAAQAwEfIfjOAeQAAAAIuhAwgAgImwBAwjCIAAAJgIARBGsAQMAABg\\\n", - "MXQAAQAwERqAMIIACACAibAEDCNYAgYAALAYOoAAAJgIDUAYQQAEAMBEWAKGEQTAJjrt8YW7hIj1\\\n", - "5Z7acJcQ0WJ+dEm4S4hYnSelhruEiLVvx+lwlwAgBAiAAACYCA1AGEEABADARFgChhEEQAAATIT8\\\n", - "ByP4GBgAAACLoQMIAICJsAQMIwiAAACYCPkPRrAEDAAAYDF0AAEAMBGWgGEEARAAABMhAMIIloAB\\\n", - "AAAshg4gAAAmQgMQRhAAAQAwERtrwDCAJWAAAACLoQMIAICJ0P+DEXQAAQAwEZstNFtzOX78uCZM\\\n", - "mKC4uDglJCQoNzdXJ0+ebHCf06dPa9q0aUpMTFT79u01ZswYVVVVnTPv2WefVZ8+fRQbG6uOHTtq\\\n", - "2rRpzXUaEY8ACACAidhCtDWXCRMmaO/evSoqKtLmzZv1xhtvaOrUqQ3uM3PmTG3atEkbNmzQ66+/\\\n", - "rkOHDun2228PmLNgwQI99NBDmj17tvbu3atXX31VOTk5zXgmkY0lYAAA0CL279+vwsJC7dy5U/37\\\n", - "95ckLV26VDfddJOeeOIJpaamnrNPTU2NVq1apbVr12ro0KGSpNWrVys9PV3bt2/XwIED9eWXX2rO\\\n", - "nDnatGmThg0b5t+3T58+LXNiEYgOIAAAJhJlC83WHEpLS5WQkOAPf5KUnZ2tqKgo7dixI+g+5eXl\\\n", - "qqurU3Z2tn8sLS1NXbt2VWlpqSSpqKhIXq9XBw8eVHp6ujp37qw77rhDn3/+efOciAkQAAEAMJFQ\\\n", - "LQF7PB6dOHEiYPN4PE2qze12q2PHjgFjbdu2VYcOHeR2u8+7T0xMjBISEgLGU1JS/Pt88skn8nq9\\\n", - "evzxx7Vo0SK98MILOn78uH784x/rzJkzTarZrAiAAADgHAUFBYqPjw/YCgoKgs6dPXu2bDZbg9uB\\\n", - "AwearVav16u6ujotWbJEOTk5GjhwoP7yl7/oww8/1LZt25rtfSMZ9wACAGAioXqCNz8/Xy6XK2DM\\\n", - "brcHnTtr1izdddddDR6vR48ecjgcOnz4cMD42bNndfz4cTkcjqD7ORwOnTlzRtXV1QFdwKqqKv8+\\\n", - "nTp1kiT17NnT/3pycrKSkpJUWVnZYF1WRQAEAMBEQnX7nt1uP2/g+3fJyclKTk6+4Dyn06nq6mqV\\\n", - "l5crIyNDkrR161Z5vV5lZmYG3ScjI0PR0dEqLi7WmDFjJEkVFRWqrKyU0+mUJF133XX+8c6dO0v6\\\n", - "+uNmjh49qm7duhk6B6thCRgAALSI9PR0jRgxQlOmTFFZWZneeustTZ8+XePGjfM/AXzw4EGlpaWp\\\n", - "rKxMkhQfH6/c3Fy5XC5t27ZN5eXlmjx5spxOpwYOHChJ+sEPfqBRo0bpvvvuU0lJifbs2aNJkyYp\\\n", - "LS1NN954Y9jOtzUjAAIAYCKt/YOgn3/+eaWlpWnYsGG66aabNHjwYK1cudL/el1dnSoqKvTVV1/5\\\n", - "xxYuXKibb75ZY8aM0ZAhQ+RwOPTSSy8FHHfNmjXKzMzUyJEjlZWVpejoaBUWFio6Orr5TiaC2Xw+\\\n", - "ny/cRUSygf+5INwlRKyqt2vDXUJES/nRJeEuIWIlxPNlWY21b8fpcJcQ0SpXz27293jk1SUhOc68\\\n", - "7HtDchy0TnQAAQAALIaHQAAAMJHmXL6FeRAAAQAwEfIfjCAAAgBgIs31NW4wF+4BBAAAsBg6gAAA\\\n", - "mAgNQBhBAAQAwER4CARGsAQMAABgMZbuAPp8Ptn4VQkAYCL8Vw1GWLoDaLfbtX///nCXAQBAyLT2\\\n", - "r4JD62CJDqDL5Qo6Xl9fr9/97ndKTEyUJC1Y0PDXunk8Hnk8noAx79mzimpricsIAABMwhLJZdGi\\\n", - "Rerbt68SEhICxn0+n/bv369LL73U0FJwQUGBHnnkkYCxK4YNV+cf54SyXAAAGo3mHYywRAB8/PHH\\\n", - "tXLlSs2fP19Dhw71j0dHR+vZZ59Vz549DR0nPz//nG5i9tIVIa0VAICmYPkWRljiHsDZs2dr/fr1\\\n", - "+sUvfqH7779fdXV1jTqO3W5XXFxcwMbyLwAAiDSWCICSdO2116q8vFxHjhxR//79tWfPHp4ABgCY\\\n", - "Dg+BwAhLta/at2+vP/3pT1q3bp2ys7NVX18f7pIAAAgpy3R20CSWCoDfGjdunAYPHqzy8nJ169Yt\\\n", - "3OUAABAydO9ghCUDoCR17txZnTt3DncZAAAALc6yARAAADOiAQgjCIAAAJgIS8AwgntFAQAALIYO\\\n", - "IAAAJkIDEEYQAAEAMBGWgGEES8AAAAAWQwcQAAAToQEIIwiAAACYCEvAMIIlYAAAAIuhAwgAgInQ\\\n", - "AIQRBEAAAEyEJWAYQQAEAMBEuLcLRvBzAgAAYDEEQAAATMRmC83WXI4fP64JEyYoLi5OCQkJys3N\\\n", - "1cmTJxvc5/Tp05o2bZoSExPVvn17jRkzRlVVVQFzdu7cqWHDhikhIUGXX365cnJy9O677zbfiUQ4\\\n", - "AiAAACZiC9HWXCZMmKC9e/eqqKhImzdv1htvvKGpU6c2uM/MmTO1adMmbdiwQa+//roOHTqk22+/\\\n", - "3f/6yZMnNWLECHXt2lU7duzQm2++qcsuu0w5OTmqq6trxrOJXNwDCAAAWsT+/ftVWFionTt3qn//\\\n", - "/pKkpUuX6qabbtITTzyh1NTUc/apqanRqlWrtHbtWg0dOlSStHr1aqWnp2v79u0aOHCgDhw4oOPH\\\n", - "j+vRRx9Vly5dJEnz5s1Tnz599Nlnn+nKK69suZOMEHQAAQAwkVAtAXs8Hp04cSJg83g8TaqttLRU\\\n", - "CQkJ/vAnSdnZ2YqKitKOHTuC7lNeXq66ujplZ2f7x9LS0tS1a1eVlpZKkq6++molJiZq1apVOnPm\\\n", - "jGpra7Vq1Sqlp6ere/fuTarZrAiAAACYSKiWgAsKChQfHx+wFRQUNKk2t9utjh07Boy1bdtWHTp0\\\n", - "kNvtPu8+MTExSkhICBhPSUnx73PZZZfptdde03PPPad27dqpffv2Kiws1N/+9je1bctiZzAEQAAA\\\n", - "cI78/HzV1NQEbPn5+UHnzp49WzabrcHtwIEDzVZrbW2tcnNzdd1112n79u1666231KtXL40cOVK1\\\n", - "tbXN9r6RjFgMAICJhOoJXrvdLrvdbmjurFmzdNdddzU4p0ePHnI4HDp8+HDA+NmzZ3X8+HE5HI6g\\\n", - "+zkcDp05c0bV1dUBXcCqqir/PmvXrtWnn36q0tJSRUVF+ccuv/xy/fWvf9W4ceMMnYeVEAABADCR\\\n", - "cHwTSHJyspKTky84z+l0qrq6WuXl5crIyJAkbd26VV6vV5mZmUH3ycjIUHR0tIqLizVmzBhJUkVF\\\n", - "hSorK+V0OiVJX331laKiomT7zsl/+2ev19vU0zMlloABAECLSE9P14gRIzRlyhSVlZXprbfe0vTp\\\n", - "0zVu3Dj/E8AHDx5UWlqaysrKJEnx8fHKzc2Vy+XStm3bVF5ersmTJ8vpdGrgwIGSpB//+Mf68ssv\\\n", - "NW3aNO3fv1979+7V5MmT1bZtW914441hO9/WjAAIAICJtPbPAXz++eeVlpamYcOG6aabbtLgwYO1\\\n", - "cuVK/+t1dXWqqKjQV1995R9buHChbr75Zo0ZM0ZDhgyRw+HQSy+95H89LS1NmzZt0nvvvSen06nr\\\n", - "r79ehw4dUmFhoTp16tSMZxO5bD6fzxfuIiLZwP9cEO4SIlbV29yY2xQpP7ok3CVErIT4MKyRmcS+\\\n", - "HafDXUJEq1w9u9nf40+7loTkOJP63xuS46B14h5AAABMhKU9GMHPCQAAgMXQAQQAwETC8RQwIg8B\\\n", - "EAAAE7GJW/txYSwBAwAAWAwdQAAATIQlYBjBx8CYmMfjUUFBgfLz8w1/nQ++xrVrPK5d03D9Go9r\\\n", - "BxhHADSxEydOKD4+XjU1NYqLiwt3ORGFa9d4XLum4fo1HtcOMI57AAEAACyGAAgAAGAxBEAAAACL\\\n", - "IQCamN1u17x587gZuhG4do3HtWsarl/jce0A43gIBAAAwGLoAAIAAFgMARAAAMBiCIAAAAAWQwAE\\\n", - "AACwGAKghVRWVmrkyJG65JJL1LFjR+Xl5ens2bPhLiti3HvvvcrIyJDdble/fv3CXU7EePfddzV+\\\n", - "/Hh16dJF7dq1U3p6uhYvXhzusiLGsWPHNGLECKWmpsput6tLly6aPn26Tpw4Ee7SIsqxY8fUuXNn\\\n", - "2Ww2VVdXh7scIOzahrsAtIz6+nqNHDlSDodDJSUl+uKLLzRx4kRFR0fr8ccfD3d5EePuu+/Wjh07\\\n", - "9N5774W7lIhRXl6ujh076rnnnlOXLl1UUlKiqVOnqk2bNpo+fXq4y2v1oqKiNGrUKP32t79VcnKy\\\n", - "PvroI02bNk3Hjx/X2rVrw11exMjNzVWfPn108ODBcJcCtA4+RKS//e1vvuuuu84XHx/v69Chg2/k\\\n", - "yJG+jz766Lzzt2zZ4ouKivK53W7/2FNPPeWLi4vzeTyelii5VbnY6/dd8+bN8/Xt27d5C2zFmnLt\\\n", - "vvXLX/7Sd+ONNzZTha1bKK7f4sWLfZ07d26mCluvxl67J5980peVleUrLi72SfJ9+eWXzV8s0Mqx\\\n", - "BByhTp06JZfLpV27dqm4uFhRUVG67bbb5PV6g84vLS1V7969lZKS4h/LycnRiRMntHfv3pYqu9W4\\\n", - "2OuHfwnFtaupqVGHDh2ascrWq6nX79ChQ3rppZeUlZXVzJW2Po25dvv27dOjjz6qNWvWKCqK/+QB\\\n", - "fuFOoAiNI0eO+CT53n///aCvT5kyxTd8+PCAsVOnTvkk+bZs2dISJbZqF7p+32X1DuC/u5hr5/P5\\\n", - "fG+99Zavbdu2vr///e/NXFlkMHr9xo0b52vXrp1Pku+WW27x1dbWtlCFrdeFrt3p06d9ffr08f35\\\n", - "z3/2+Xw+37Zt2+gAAt/g16EI9eGHH2r8+PHq0aOH4uLi1L17d0lfP+jxk5/8RO3bt1f79u31wx/+\\\n", - "MLyFtlJcv8ZryrXbs2ePRo0apXnz5mn48OEtXHnr0Njrt3DhQu3evVt//etf9fHHH8vlcoWh+vC6\\\n", - "2GuXn5+v9PR0/fznPw9j1UDrxEMgEeqWW25Rt27d9PTTTys1NVVer1e9evXSmTNn9Mc//lG1tbWS\\\n", - "pOjoaEmSw+FQWVlZwDGqqqr8r1nNxV4//Etjr92+ffs0bNgwTZ06VXPmzAlH6a1CY6+fw+GQw+FQ\\\n", - "WlqaOnTooOuvv14PP/ywOnXqFI7TCIuLvXZbt27V+++/rxdeeEGS5Pvmm0+TkpL00EMP6ZFHHgnP\\\n", - "iQCtAAEwAh07dkwVFRV6+umndf3110uS3nzzTf/rV1xxxTn7OJ1OPfbYYzp8+LA6duwoSSoqKlJc\\\n", - "XJx69uzZMoW3Eo25fvhaY6/d3r17NXToUE2aNEmPPfZYi9TaGoXqZ+/be948Hk/oi2ylGnPtXnzx\\\n", - "RX8olKSdO3fq7rvv1j/+8Q99//vfb/6igVaMABiBLr/8ciUmJmrlypXq1KmTKisrNXv27Ab3GT58\\\n", - "uHr27Kk777xTv//97+V2uzVnzhxNmzZNdru9hSpvHRpz/STpo48+0smTJ+V2u1VbW6t33nlHktSz\\\n", - "Z0/FxMQ0c9WtQ2Ou3Z49ezR06FDl5OTI5XLJ7XZLktq0aaPk5OSWKLvVaMz127Jli6qqqnTttdeq\\\n", - "ffv22rt3r/Ly8nTdddf5l0CtoDHX7t9D3tGjRyVJ6enpSkhIaK5SgcgQ7psQ0ThFRUW+9PR0n91u\\\n", - "9/Xp08f32muv+ST5Xn755fPu8+mnn/p+8pOf+Nq1a+dLSkryzZo1y1dXV9dyRbcijbl+WVlZPknn\\\n", - "bP/85z9brO7W4GKv3bx584Jet27durVo3a3FxV6/rVu3+pxOpy8+Pt4XGxvru+qqq3wPPPCAJR9k\\\n", - "aMy/t9/FQyDAv9h8vm9uigAAAIAl8BQwAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAA\\\n", - "AMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACCBkCgsLNXjwYCUkJCgxMVE333yzPv7443CX\\\n", - "BQD4NwRAACFz6tQpuVwu7dq1S8XFxYqKitJtt90mr9cb7tIAAN9h8/l8vnAXAcCcjh49quTkZL3/\\\n", - "/vvq1atXuMsBAHyDDiCAkPnwww81fvx49ejRQ3FxcerevbskqbKyMryFAQACtA13AQDM45ZbblG3\\\n", - "bt309NNPKzU1VV6vV7169dKZM2fCXRoA4DsIgABC4tixY6qoqNDTTz+t66+/XpL05ptvhrkqAEAw\\\n", - "BEAAIXH55ZcrMTFRK1euVKdOnVRZWanZs2eHuywAQBDcAwggJKKiorRu3TqVl5erV69emjlzpv7w\\\n", - "hz+EuywAQBA8BQwAAGAxdAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQA\\\n", - "ALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWMz/B1N2rYSl3zGVAAAAAElFTkSuQmCC\\\n", + "AAAPYQGoP6dpAAAkeklEQVR4nO3df4xd9X03+PfYCdck8czgNAwYKckfXXC2WTN1mir25NpO2E5m\\\n", + "i8OmdcKPh8cmTBpcIkRcZ/s48yhKQSIZ8jTrxKhdyrIJ4kdQA6ZNwU0Z4QDuYI8EaGXTmqhKK9KJ\\\n", + "TExVPJ5xrHIZD7N/ZGvlMsY+hmuPfc7rJX0l+/u959zvuULym8/nnHvbpqenpwMAQGXMme0NAABw\\\n", + "agmAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgA\\\n", + "UDECIABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwAC\\\n", + "AFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiA\\\n", + "AAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIDDDTTfdlFdeeeXI37/61a/me9/7\\\n", + "3izu6I1NT0/n4x//eDo7O2d7KwBnjLbp6enp2d4EcHppa2vL2NjYGRGqNm3alB//+Md58MEHc+DA\\\n", + "gdneDsAZQQUQSuzqq6/Ob/3Wb2Xx4sW59NJLs2/fvuMe84d/+IdJknq9nu7u7vzbv/1bPvvZz+bb\\\n", + "3/52kl9WBy+//PJ88pOfzIUXXphVq1blH//xH/OJT3wiF154Ya666qq89tprSZKDBw/m85//fH77\\\n", + "t387ixcvznXXXZdXX321Zde3Z8+e/OAHP8iXv/zllp0ToAoEQCixb3/723n22Wfz3HPPpV6v56ab\\\n", + "bjqy9ru/+7t59tlnZxzzF3/xF0mS4eHh7Nq1K+eee+6M1zz77LO555578k//9E85ePBg/uAP/iBb\\\n", + "tmzJ888/nx//+Mf5u7/7uyTJl770pdTr9Tz99NPZvXt3XnvttWzevHnG+Q4ePJju7u6jjk984hNH\\\n", + "vbbJycl8/vOfzx133JG5c+e+mY8HoLLeNtsbAE6e+++/P/fee29eeeWVvPLKK/m1X/u1I2s//OEP\\\n", + "3/R5e3t7c8455yRJlixZklqtlvnz5ydJfvM3fzM/+clPkiQ/+MEPMjIykk2bNiVJ/uM//uOoYW3+\\\n", + "/PnZtWvXCe3h5ptvzu///u/nAx/4QH7605++6WsBqCIBEErqqaeeym233ZaRkZGce+65efjhh/PV\\\n", + "r361JeeeN2/ekT/PnTt3xt8PHz6c5JcPaDz00EO58MILj3m+gwcPpl6vH3Wtq6srQ0NDM+a3b9+e\\\n", + "0dHR/Nmf/VkOHz6ciYmJvP/9788zzzyT97znPW/msgAqQwCEkhobG8v8+fPz7ne/O6+++mruuOOO\\\n", + "wsfOnz8/4+Pjb/khkE996lP5xje+kTvuuCNve9vbMjY2lpdffjm//uu/PuP9TrQCODw8fOTPP/3p\\\n", + "T9Pd3a0SCFCQewChpPr6+nLRRRfloosuOvJAx696o3sAk1/eu/c7v/M7Rx4CebO+9a1v5eyzz053\\\n", + "d3cWL16cSy65REgDOA34GhgAgIpRAQQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICK\\\n", + "EQABACrGT8G9RZ97aPNsbwGAM8R3Vn/xpL/H/7LkSy05zz/8v/9nS87D6UkFEACgYlQAAaBM2mZ7\\\n", + "A5wJVAABACpGBRAAyqRNCZDjEwABoEzkPwrQAgYA3pKNGzemXq9nzZo1mZycPDI/NTWV/v7+1Ov1\\\n", + "rF+/vumYkZGRtLW15Re/+MUp3i2JAAgA5dLWolHQ7t27s3fv3gwPD2fRokXZsmXLkbWtW7dm4cKF\\\n", + "GR4ezqFDhzIyMnJk7bbbbsuHPvSht3ChvBUCIACUSmsSYKPRyMTERNNoNBoz3m3nzp3p7e1NkvT1\\\n", + "9WXHjh3HXXvqqaeyePHivOtd72r95VOIAAgAzDA4OJiOjo6mMTg4OON1Y2NjaW9vT5J0dHRk//79\\\n", + "x13bvHlzbrjhhlNwFbwRD4EAQIlMt+ghkIGBgWzYsKFprlarzXhdZ2dnJiYmkiTj4+NZsGDBMde2\\\n", + "b9+eiy++OPPnz2/NRnlTVAABoExadA9grVZLe3t70zhaAFy2bFm2bduWJBkaGkpPT88x13bv3p0f\\\n", + "/ehH6evry3PPPZdrrrnmpHwMHJsACAC8ad3d3enq6kq9Xs+ePXuyevXqrFu3LkmyatWqjI6Opl6v\\\n", + "Z968eVm6dGluvPHGPPHEE3n00UezePHi3H333bN8BdXUNj09PT3bmziTfe6hzbO9BQDOEN9Z/cWT\\\n", + "/h4fXPrfWnKefxz5Hy05D6cnFUAAgIrxEAgAlIlfAqEAFUAAgIpRAQSAMmlTAuT4BEAAKBP5jwK0\\\n", + "gAEAKkYFEABKxHe7UYQACABl4h5ACtACBgCoGBVAACgTBUAKEAABoFQkQI5PCxgAoGJUAAGgTBQA\\\n", + "KUAABIAyEQApQAAEgBKZ9jUwFOAeQACAihEAAQAqRgsYAMpEC5gCVAABACpGBRAAykQBkAIEQAAo\\\n", + "kenZ3gBnhEoGwKmpqWzZsiU7duzI/v37s2DBgvT09GT16tV529sq+ZEAABVSybTT39+fiy66KJ/9\\\n", + "7GfT0dGR8fHxDA0N5dprr8299977hsc1Go00Go2muanJw5n79kp+jACcjjwEQgGVTC4vvPBC7r77\\\n", + "7qa5JUuWZPny5cc8bnBwMDfffHPTXPdnPpElV/xvLd8jALwp8h8FVDIALlu2LGvXrk1vb2/a29sz\\\n", + "MTGRbdu25SMf+cgxjxsYGMiGDRua5m784Z0nc6sAAC1XyQB466235rnnnsvOnTvzs5/9LJ2dnfmj\\\n", + "P/qjXHzxxcc8rlarpVarNc1p/wJwWtECpoDKppfFixdn8eLFs70NAGgpTwFTRGUDIACUkgIgBfgl\\\n", + "EACAilEBBIAycQ8gBagAAgBUjAAIAFAxWsAAUCLTWsAUIAACQJnIfxSgBQwAUDECIABAxQiAAFAi\\\n", + "021tLRknYuPGjanX61mzZk0mJyePzE9NTaW/vz/1ej3r168/Mt/T05MVK1akp6cnzz//fKsunRMg\\\n", + "AAIAb9ru3buzd+/eDA8PZ9GiRdmyZcuRta1bt2bhwoUZHh7OoUOHMjIykiR54oknsn379nzta1/L\\\n", + "pk2bZmvrlSYAAkCZtLVmNBqNTExMNI1GozHj7Xbu3Jne3t4kSV9fX3bs2HHctbPOOitJcvDgwXzw\\\n", + "gx9s8QdAEQIgAJRJiwLg4OBgOjo6msbg4OCMtxsbG0t7e3uSpKOjI/v37z/u2r59+9LT05MvfOEL\\\n", + "WbFiRes/A47L18AAQKm05ntgBga+nA0bNjTN1Wq1Ga/r7OzMxMREkmR8fDwLFiw47tp5552XHTt2\\\n", + "5Omnn87AwEAeffTRluyZ4lQAAYAZarVa2tvbm8bRAuCyZcuybdu2JMnQ0FB6enqOuTY5OZnXXnst\\\n", + "yS+rgu94xztOwdXwegIgAJTIdFtrRlHd3d3p6upKvV7Pnj17snr16qxbty5JsmrVqoyOjqZer2fe\\\n", + "vHlZunRpfv7zn2flypX52Mc+luuvvz633HLLSfokOJa26enp6dnexJnscw9tnu0tAHCG+M7qL570\\\n", + "9/if/vebW3Ken/zNn7TkPJyeVAABACrGQyAAUCp+DJjjEwABoERO5P49qksLGACgYlQAAaBMVAAp\\\n", + "QAAEgFKRADk+LWAAgIpRAQSAEvEQCEUIgABQJgIgBQiAAFAqEiDH5x5AAICKUQEEgDJRAKQAARAA\\\n", + "SsRDIBShBQwAUDEqgABQJiqAFCAAAkCpSIAcnwD4Fv3iP2Z7BwAAJ0YABIAS8RAIRQiAAFAmAiAF\\\n", + "eAoYAKBiBEAAgIrRAgaAMmnTA+b4BEAAKBEPgVCEFjAAQMUIgAAAFaMFDABlogVMASqAAAAVowII\\\n", + "AGXiKWAKEAABoESmZ3sDnBG0gAEAKkYFEADKRAeYAgRAACgTAZACtIABACpGAAQAqBgtYAAoE18D\\\n", + "QwEqgABQItNtrRknYuPGjanX61mzZk0mJyePzE9NTaW/vz/1ej3r169Pkrzwwgup1+tZsWJFLr30\\\n", + "0oyPj7fw6ilKAAQA3rTdu3dn7969GR4ezqJFi7Jly5Yja1u3bs3ChQszPDycQ4cOZWRkJJ2dnXnk\\\n", + "kUeyffv2XHbZZbnzzjtncffVJQACAG/azp0709vbmyTp6+vLjh07jrl2zjnnpLOzM0ly1llnZc4c\\\n", + "UWQ2uAcQAMqkRbcANhqNNBqNprlarZZardY0NzY2lvPPPz9J0tHRkf379zettbe3H3XtwIEDuf32\\\n", + "2/Poo4+2ZsOcELEbAJhhcHAwHR0dTWNwcHDG6zo7OzMxMZEkGR8fz4IFC467Njk5mauvvjqbNm1q\\\n", + "ej2njgAIAGXS1poxMDCQ8fHxpjEwMDDj7ZYtW5Zt27YlSYaGhtLT03Pcteuuuy6XX355PvrRj7b+\\\n", + "+ilEAASAUmlNAqzVamlvb28ar2//Jkl3d3e6urpSr9ezZ8+erF69OuvWrUuSrFq1KqOjo6nX65k3\\\n", + "b16WLl2a4eHhPPDAA7nrrruycuXKbN68+SR/HhxN2/T09PRsb+JMdsV9/sMFoJjv/9cvnvT3eG//\\\n", + "N1pyntHvbmzJeTg9eQgEAMrE90BTgAAIAGUiAFKAewABACpGBRAASsSN/RQhAAJAmWgBU4AWMABA\\\n", + "xQiAAAAVowUMAGXSpgfM8akA/op77rnnmOuNRiMTExNNY2ry8CnaHQAU0KKfgqPcKhkAn3/++Rlj\\\n", + "z549ueOOO4553NF+GPvHjzx2inYNANAalWwBf+QjH8mnP/3pvP5X8P71X//1mMcNDAxkw4YNTXP9\\\n", + "D93Z8v0BAJxMlQyAH/jAB/Knf/qnefe73900f+mllx7zuFqtNuOHsOe+vZIfIQCnK+1bCqhkenns\\\n", + "scfyzne+c8b83/7t387CbgAATq1KBsD29vbZ3gIAnBwqgBRQyYdAAACqTAAEAKiYSraAAaC0tIAp\\\n", + "QAAEgBJp80sgFKAFDABQMQIgAEDFaAEDQJnoAFOAAAgAZSIAUoAWMABAxQiAAAAVowUMACXiW2Ao\\\n", + "QgUQAKBiBEAAgIrRAgaAMtECpgAVQACAilEBBIAyUQGkAAEQAEpE/qMIARAAysT3wFCAewABACpG\\\n", + "BRAASkQBkCJUAAEAKkYABACoGAEQAMqkrUXjBGzcuDH1ej1r1qzJ5OTkkfmpqan09/enXq9n/fr1\\\n", + "R+Y//vGPp7OzM1u3bn1z18hbJgACQImc6vy3e/fu7N27N8PDw1m0aFG2bNlyZG3r1q1ZuHBhhoeH\\\n", + "c+jQoYyMjCRJ7rvvvqZAyKknAAIAb9rOnTvT29ubJOnr68uOHTuOu7Zw4cJTv1GaeAoYAMqkRU8B\\\n", + "NxqNNBqNprlarZZardY0NzY2lvPPPz9J0tHRkf379zettbe3H3WN2aUCCAAl0tbWmjE4OJiOjo6m\\\n", + "MTg4OOP9Ojs7MzExkSQZHx/PggULCq0xuwRAAGCGgYGBjI+PN42BgYEZr1u2bFm2bduWJBkaGkpP\\\n", + "T0+hNWaXAAgAzFCr1dLe3t40Xt/+TZLu7u50dXWlXq9nz549Wb16ddatW5ckWbVqVUZHR1Ov1zNv\\\n", + "3rwsXbo0SdLf35977rknX/nKV3Lrrbee0uvil9qmp6enZ3sTZ7Ir7ts821sA4Azx/f/6xZP+Hr/+\\\n", + "377ZkvP88//4P1pyHk5PKoAAABUjAAIAVIyvgXmLlr3fr24DcPpo888SBQiAAFAmAiAFaAEDAFSM\\\n", + "CiAAlEibEiAFCIAAUCbyHwVoAQMAVIwKIACUiAIgRQiAAFAivgaGIrSAAQAqRgUQAMpEBZACBEAA\\\n", + "KBH5jyIEQAAoEwmQAtwDCABQMSqAAFAiCoAUIQACQIn4GhiK0AIGAKgYFUAAKBMVQAoQAAGgROQ/\\\n", + "itACBgCoGBVAACgRD4FQhAogAEDFCIAAABWjBQwAJaIFTBECIACUiQBIAQIgAJRImwRIAe4BBACo\\\n", + "GBVAACgR9wBShAogAEDFCIAAABWjBQwAJaIFTBECIACUiPxHEVrAAAAVowIIAGWiBEgBAiAAlIh7\\\n", + "AClCCxgAeEs2btyYer2eNWvWZHJy8sj81NRU+vv7U6/Xs379+iPzmzdvTk9PTy677LJMTEzMwo4R\\\n", + "AAGgRNpaNIravXt39u7dm+Hh4SxatChbtmw5srZ169YsXLgww8PDOXToUEZGRvLv//7vefjhh/PU\\\n", + "U0/liiuuyJ//+Z+/5WvmxJ3xLeDp6ek8/vjjefHFFzM9PZ0kWbt27TGPmZqayt/8zd9kzpw5+eQn\\\n", + "P5m5c+cmSR588MF85jOfecPjGo1GGo1G09zhVw/nbWed8R8jAGXRohbw0f7Nq9VqqdVqTXM7d+5M\\\n", + "b29vkqSvry933XVXrrrqqiNrl1566ZG1HTt25MCBA1mxYkXa2trS19eXa665pjUb5oSc8RXAK664\\\n", + "Io888khuueWWPPvss3n00UePe8zatWvz7LPPZteuXVm+fHn++Z//OUly++23H/O4wcHBdHR0NI3H\\\n", + "7nusJdcBAK3Qqgrg0f7NGxwcnPF+Y2NjaW9vT5J0dHRk//79x1w71us5dc740tVLL72UBx54ILt2\\\n", + "7cptt92W3/u93zvuMXv37s33vve9JMm1116btWvX5qabbjrucQMDA9mwYUPT3J3P/j9vat8AcDo7\\\n", + "2r95r6/+JUlnZ+eR+/jGx8ezYMGCY651dnYeKby8/vWcOmd8BXDu3Ll57bXXcs455+S73/1u/uVf\\\n", + "/uW4x7z66qtHytrve9/7snXr1nzzm9/MP/zDPxzzuFqtlvb29qah/QvA6aStrTXjaP/mHS0ALlu2\\\n", + "LNu2bUuSDA0Npaen55hrH/7wh/P3f//3R309p84ZHwD/8i//Mq+99lpuv/32HDhwIPfee+9xj9m8\\\n", + "eXMOHDhw5O/z58/Pww8/nG9961sncacAcAqc4qdAuru709XVlXq9nj179mT16tVZt25dkmTVqlUZ\\\n", + "HR1NvV7PvHnzsnTp0rznPe/JpZdemp6entx///35whe+0Jrr5oS0Tf/nkxO8KZufum22twDAGeKL\\\n", + "H73xpL/Hb9+6qSXnefrLG47/Is5Y+pcAUCK+B5oiBEAAKBG/BEIRZ/w9gAAAnBgVQAAoFSVAjk8A\\\n", + "BIAS0QKmCC1gAICKUQEEgDJRAaQAARAASkT+owgBEABKxD2AFOEeQACAihEAAQAqRgsYAEpEC5gi\\\n", + "VAABACpGBRAASkQBkCIEQAAoEwmQArSAAQAqRgUQAErEQyAUIQACQInIfxQhAAJAmUiAFOAeQACA\\\n", + "ilEBBIASUQCkCAEQAErEQyAUoQUMAFAxKoAAUCZKgBQgAAJAiYh/FKEFDABQMSqAAFAmSoAUIAAC\\\n", + "QInIfxShBQwAUDEqgABQIh4CpggBEADKRACkAAEQAEpE/qMIAfAt+tb/9YvZ3gIAZ4gvfnS2dwC/\\\n", + "JAACQIm4B5AiPAUMAFAxAiAAQMUIgABQIm1trRmtsnHjxtTr9axZsyaTk5NNa1NTU+nv70+9Xs/6\\\n", + "9euPzH/84x9PZ2dntm7d2rqN0EQABIASOZ0C4O7du7N3794MDw9n0aJF2bJlS9P61q1bs3DhwgwP\\\n", + "D+fQoUMZGRlJktx3331NgZDWEwABgBkajUYmJiaaRqPROKFz7Ny5M729vUmSvr6+7Nixo9D6woUL\\\n", + "W3AFHIsACADMMDg4mI6OjqYxODh4QucYGxtLe3t7kqSjoyP79+8/oXVOHl8DAwAl0qr27cDAQDZs\\\n", + "2NA0V6vVjvraffv25corr5wx39vbm4mJiSTJ+Ph4FixY0LTe2dl5zHVOHgEQAJihVqu9YeB7vfPO\\\n", + "Oy9PPvnkjPldu3Zl06ZNWbt2bYaGhtLT09O0vmzZsmzbti3Lly/P0NBQrr322lZsnQK0gAGgRNpa\\\n", + "NFqhu7s7XV1dqdfr2bNnT1avXp0kWbduXZJk1apVGR0dTb1ez7x587J06dIkSX9/f+6555585Stf\\\n", + "ya233tqi3fCr2qanp6dnexNnsvf/l6/P9hYAOEP89P7/ftLf43f/72+35Dw/vG59S87D6UkLGABK\\\n", + "xE/BUYQWMABAxagAAkCJKABShAAIAGWiB0wBWsAAABWjAggAJaL+RxECIACUiA4wRWgBAwBUjAog\\\n", + "AJSICiBFqAACAFSMAAgAUDFawABQIlrAFCEAAkCJyH8UIQACQJlIgBTgHkAAgIpRAQSAElEApAgB\\\n", + "EABKxEMgFKEFDABQMSqAAFAiKoAUoQIIAFAxAiAAQMVoAQNAiWgBU4QACAAlIv9RhBYwAEDFVLIC\\\n", + "+NJLL+U73/lOfuM3fiNLlizJ17/+9bzzne/MH//xH6erq+sNj2s0Gmk0Gk1z01OH0za3kh8jAKch\\\n", + "LWCKqGQF8Oqrr84FF1yQn/3sZ+nt7c0ll1yS3t7e9Pf3H/O4wcHBdHR0NI3x57efol0DwPG1tbVm\\\n", + "UG6VDICHDx/ONddckxtuuCEdHR359Kc/nd7e3rzyyivHPG5gYCDj4+NNo+N/XnGKdg0A0BqV7F1O\\\n", + "Tk4e+fMdd9xx5M+HDx8+5nG1Wi21Wq1pTvsXADjTVDK9/PVf/3Wmp6fT1taWiy++OMkvQ+E3v/nN\\\n", + "Wd4ZALw12rcUUckAeO65586Ye/vb354Pf/jDs7AbAGgd+Y8iKnkPIABAlVWyAggAZaUFTBECIACU\\\n", + "iPxHEVrAAAAVowIIAGWiBEgBKoAAUCKn2y+BbNy4MfV6PWvWrGn6Ht4kmZqaSn9/f+r1etavX58k\\\n", + "eeGFF1Kv17NixYpceumlGR8fb91mOEIABABOit27d2fv3r0ZHh7OokWLsmXLlqb1rVu3ZuHChRke\\\n", + "Hs6hQ4cyMjKSzs7OPPLII9m+fXsuu+yy3HnnnbO0+3ITAAGgRNpaNFph586d6e3tTZL09fVlx44d\\\n", + "x10/55xz0tnZmSQ566yzMmeOqHIyuAcQAEqkVe3bRqORRqPRNHe0n0Q9lrGxsZx//vlJko6Ojuzf\\\n", + "v3/Gent7+1HXDxw4kNtvvz2PPvrom70EjkGsBoASaVUFcHBwMB0dHU1jcHDwqO+5b9++rFy5csZI\\\n", + "komJiSTJ+Ph4FixY0HRcZ2fnUdcnJydz9dVXZ9OmTTOOoTVUAAGAGQYGBrJhw4amuTeq/p133nl5\\\n", + "8sknZ8zv2rUrmzZtytq1azM0NJSenp6m9WXLlmXbtm1Zvnx5hoaGcu211yZJrrvuulx++eX56Ec/\\\n", + "2pqLYQYVQAAokVY9BVyr1dLe3t40TqT9myTd3d3p6upKvV7Pnj17snr16iTJunXrkiSrVq3K6Oho\\\n", + "6vV65s2bl6VLl2Z4eDgPPPBA7rrrrqxcuTKbN29u+WdE0jY9PT0925s4k73/v3x9trcAwBnip/f/\\\n", + "95P+Hv0PtiYwffczX2zJeTg9qQACAFSMewABoERa+SXOlJcACABlIgBSgBYwAEDFqAACQIkoAFKE\\\n", + "AAgAJeIeQIrQAgYAqBgVQAAoEQVAihAAAaBEtIApQgAEgBKR/yjCPYAAABWjAggAJaIFTBECIACU\\\n", + "iABIEVrAAAAVowIIACWiAEgRAiAAlIgWMEVoAQMAVIwKIACUiAIgRQiAAFAiWsAUIQC+Ra+dPXe2\\\n", + "twAAcEIEQAAoEQVAihAAAaBEtIApQgAEgBKR/yjC18AAAFSMCiAAlIgWMEUIgABQIvIfRWgBAwBU\\\n", + "jAogAJSIFjBFCIAAUCICIEVoAQMAVIwKIACUiAIgRQiAAFAibXrAFKAFDABQMSqAAFAi6n8UIQAC\\\n", + "QInoAFOEAAgAJSL/UYR7AAGAk2bjxo2p1+tZs2ZNJicnm9ampqbS39+fer2e9evXH5nv6enJihUr\\\n", + "0tPTk+eff/4U77gaBEAAKJE5ba0ZrbB79+7s3bs3w8PDWbRoUbZs2dK0vnXr1ixcuDDDw8M5dOhQ\\\n", + "RkZGkiRPPPFEtm/fnq997WvZtGlTazZDEwEQAEqkrUWjFXbu3Jne3t4kSV9fX3bs2FFo/ayzzkqS\\\n", + "HDx4MB/84AdbtBt+lXsAAYAZGo1GGo1G01ytVkutVit8jrGxsZx//vlJko6Ojuzfv3/Gent7+4z1\\\n", + "ffv2ZfXq1RkdHc3DDz/8Vi6DN6ACCAAl0tbWmjE4OJiOjo6mMTg4eNT33LdvX1auXDljJMnExESS\\\n", + "ZHx8PAsWLGg6rrOz86jr5513Xnbs2JGHHnooAwMDJ+mTqjYVQAAokVa1bwcGBrJhw4amuTeq/p13\\\n", + "3nl58sknZ8zv2rUrmzZtytq1azM0NJSenp6m9WXLlmXbtm1Zvnx5hoaGcu2112ZycjJz587NnDlz\\\n", + "0tHRkXe84x0tuiJ+lQogADBDrVZLe3t70ziR9m+SdHd3p6urK/V6PXv27Mnq1auTJOvWrUuSrFq1\\\n", + "KqOjo6nX65k3b16WLl2an//851m5cmU+9rGP5frrr88tt9zS8msjaZuenp6e7U2cyd77uW/M9hYA\\\n", + "OEOMfmfjSX+Pm7bd1prz/K83tuQ8nJ60gAGgRHwRNEVoAQMAVIwKIACUiN8CpggBEABKRP6jCAEQ\\\n", + "AEqkVT/jRrm5BxAAoGJUAAGgRBQAKUIABIAS8RAIRWgBAwBUjAogAJSIAiBFCIAAUCJawBShBfz/\\\n", + "W79+/XFf02g0MjEx0TSmpw6f/M0BALRQJSuA5557bt773vdmzpw5mZ6eTpL85Cc/yc6dO/P000+/\\\n", + "4XGDg4O5+eabm+bauy9Jx5LfOan7BYCiFAApopIVwM2bN+d973tfvvSlL+WZZ57JM888k6VLlx4z\\\n", + "/CXJwMBAxsfHm0b7xR87RbsGgONra2vNoNwqGQCvuuqqPPjggzl8+HA+9alP5f777z9SCTyWWq2W\\\n", + "9vb2ptE2t5JFVADgDFbJAJgkc+bMydVXX52/+qu/yuHDh9Pd3T3bWwKAt0wFkCIqX76aM2dO1q5d\\\n", + "O9vbAICWqGxlhxNS+QAIAGWiekcR/kcBAKBiVAABoEQUAClCAASAEtECpggtYACAilEBBIASUQCk\\\n", + "CAEQAEpEC5gitIABACpGBRAASkQBkCIEQAAoES1gitACBgCoGBVAACgRBUCKEAABoES0gClCAASA\\\n", + "EnFvF0X47wQAoGJUAAGgRLSAKUIABIASkf8oQgsYAKBiVAABoES0gClCBRAASqStRaNVNm7cmHq9\\\n", + "njVr1mRycrJpbWpqKv39/anX61m/fn3T2sjISNra2vKLX/yihbvhPwmAAMBJsXv37uzduzfDw8NZ\\\n", + "tGhRtmzZ0rS+devWLFy4MMPDwzl06FBGRkaOrN1222350Ic+dKq3XBkCIACUSFtba0Yr7Ny5M729\\\n", + "vUmSvr6+7Nixo9D6U089lcWLF+dd73pXazbCDAIgAJRIqwJgo9HIxMRE02g0Gie0l7GxsbS3tydJ\\\n", + "Ojo6sn///kLrmzdvzg033NCCT4M3IgACADMMDg6mo6OjaQwODh71tfv27cvKlStnjCSZmJhIkoyP\\\n", + "j2fBggVNx3V2ds5Y3759ey6++OLMnz//5F0cngIGgDJp1QMcAwMD2bBhQ9NcrVY76mvPO++8PPnk\\\n", + "kzPmd+3alU2bNmXt2rUZGhpKT09P0/qyZcuybdu2LF++PENDQ7n22mvzzDPP5Ec/+lGeeuqpPPfc\\\n", + "c7nmmmvy0EMPteiq+E8qgABQIq1qAddqtbS3tzeNNwqAb6S7uztdXV2p1+vZs2dPVq9enSRZt25d\\\n", + "kmTVqlUZHR1NvV7PvHnzsnTp0tx444154okn8uijj2bx4sW5++67W/4ZkbRNT09Pz/YmzmTv/dw3\\\n", + "ZnsLAJwhRr+z8aS/x73P3taS86z5rRtbch5OTyqAAAAV4x5AACgRvwRCEQIgAJRIW9zZxfFpAQMA\\\n", + "VIwKIACUiBYwRXgKGGipRqORwcHBDAwMnPBXRgBwagiAQEtNTEyko6Mj4+PjR37iCYDTi3sAAQAq\\\n", + "RgAEAKgYARAAoGIEQKClarVa/uRP/sQDIACnMQ+BAABUjAogAEDFCIAAABUjAAIAVIwACABQMQIg\\\n", + "AEDFvG22NwCUx0svvZQrr7wyhw8fTldXV77//e9n7ty5s70tAF5HBRBomXPOOSePPfZYhoeHc8EF\\\n", + "F+Txxx+f7S0BcBQqgEDLvPzyy7n++uszNjaWF198MUuWLJntLQFwFCqAQMvcf//9WbVqVbZv356+\\\n", + "vr74nnmA05MKINAyl1xySdasWZNHHnkkZ5999mxvB4A34KfgAAAqRgsYAKBiBEAAgIoRAAEAKkYA\\\n", + "BACoGAEQAKBiBEAAgIoRAAEAKkYABACoGL8EArTMSy+9lCuvvDKHDx9OV1dXvv/972fu3LmzvS0A\\\n", + "XkcFEGiZc845J4899liGh4dzwQUX5PHHH5/tLQFwFCqAQMu8/PLLuf766zM2NpYXX3wxS5Ysme0t\\\n", + "AXAUKoBAy9x///1ZtWpVtm/fnr6+vvipcYDTkwog0DKXXHJJ1qxZk0ceeSRnn332bG8HgDfQNu1/\\\n", + "0QEAKkULGACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICK\\\n", + "EQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACg\\\n", + "Yv4/M8oMx2Gn5ZsAAAAASUVORK5CYII=\\\n", "\"\n", " frames[5] = \"\\\n", "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", - "AAAPYQGoP6dpAAA5DElEQVR4nO3de3RU9b3//9cEkgmKSSQJGZBLSr0klEuOQcIgEoWUUNGCUgUO\\\n", - "lYv5ws+WICWYShRhaavxtNwvyhfrpVQpfLFIhUPTEwNqNYFA8MYt3irpAicBYsIBYQiZ+f2hTjtl\\\n", - "CJtkkkn2fj669uriM5+95733IubF+7P3jM3r9XoFAAAAywgLdQEAAABoWQRAAAAAiyEAAgAAWAwB\\\n", - "EAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGII\\\n", - "gAAAABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZD\\\n", - "AAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAY\\\n", - "AiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiCAJjt8\\\n", - "+LB+/vOf64YbblCHDh0UGxure+65R1988UWoSwMABNA+1AUAaPt2796t4uJijR8/Xt26ddMXX3yh\\\n", - "Z599VrfeeqsOHDigK664ItQlAgD+hc3r9XpDXQSAtu3MmTPq0KGD39jOnTvldDq1du1a3XfffSGq\\\n", - "DAAQCEvAAJrsX8NfXV2dTpw4oWuvvVYxMTHau3dvCCsDAARCAATQZGfOnNH8+fPVvXt32e12xcXF\\\n", - "KT4+XjU1NaqtrQ11eQCAf8M9gACabObMmXrxxRf1i1/8Qk6nU9HR0bLZbBo/frw8Hk+oywMA/BsC\\\n", - "IIAme/XVVzV58mQtWrTIN3b27FnV1NSErigAwEWxBAygydq1a6d/f55sxYoVqq+vD1FFAICG0AEE\\\n", - "0GR33HGH/vCHPyg6Olq9e/dWSUmJ3njjDcXGxoa6NABAAARAAE22bNkytWvXTq+88orOnj2rm2++\\\n", - "WW+88YYyMzNDXRoAIAA+BxAAAMBiuAcQAADAYgiAAAAAFkMABAAAsBgCIAAAgMUQAAEAACyGAAgA\\\n", - "AGAxBEAAAACLIQACAABYDN8E0kS3r1ka6hLarKuvsoW6hDatY2SoK2i73i/nO4obKzycn9umeGfO\\\n", - "7GZ/j743zgnKcT7auygox0HrRAcQAADAYugAAgBgJjRpYQAdQAAAAIuhAwgAgJnYaAHi0giAAACY\\\n", - "CfkPBrAEDAAAYDF0AAEAMBM6gDCAAAgAgKmQAHFpLAEDAABYDB1AAABMxEsDEAYQAAEAMBMCIAxg\\\n", - "CRgAAMBi6AACAGAmfBA0DKADCAAAYDF0AAEAMBMagDCADiAAAIDF0AEEAMBMuAcQBtABBADATGxB\\\n", - "2hph1apVSkxMVGRkpNLS0lRaWtrg/I0bNyopKUmRkZHq27evtm3b5vf6qVOnlJ2drW7duqlDhw7q\\\n", - "3bu3Vq9e3bji4IcACAAAmmzDhg3KycnRggULtHfvXvXv31+ZmZmqqqoKOL+4uFgTJkxQVlaW3nvv\\\n", - "PY0ZM0ZjxozRvn37fHNycnJUUFCgl19+WQcPHtQvfvELZWdn6/XXX2+p0zItAiAAACbiDdJ2uRYv\\\n", - "Xqxp06Zp6tSpvk7dFVdcoRdeeCHg/GXLlmnkyJHKzc1VcnKyfvWrX+nGG2/UypUrfXOKi4s1efJk\\\n", - "3XrrrUpMTNT06dPVv3//S3YWcWkEQAAAzMRmC8rmdrt18uRJv83tdgd8y3PnzqmsrEwZGRm+sbCw\\\n", - "MGVkZKikpCTgPiUlJX7zJSkzM9Nv/uDBg/X666/ryJEj8nq92rFjhz7++GONGDEiCBfK2giAAADg\\\n", - "Avn5+YqOjvbb8vPzA849fvy46uvrlZCQ4DeekJAgl8sVcB+Xy3XJ+StWrFDv3r3VrVs3RUREaOTI\\\n", - "kVq1apWGDh3axLMDTwEDAGAmQXoIOC8vTzk5OX5jdrs9OAc3aMWKFdq5c6def/119ezZU2+//bZm\\\n", - "zJihrl27XtA9xOUhAAIAYCrBSYB2u91w4IuLi1O7du1UWVnpN15ZWSmHwxFwH4fD0eD8M2fO6JFH\\\n", - "HtFrr72mUaNGSZL69eun999/XwsXLiQANhFLwAAAoEkiIiKUmpqqoqIi35jH41FRUZGcTmfAfZxO\\\n", - "p998SSosLPTNr6urU11dncLC/KNKu3bt5PF4gnwG1kMHEAAAMwnR50Dn5ORo8uTJGjBggAYOHKil\\\n", - "S5fq9OnTmjp1qiRp0qRJuuaaa3z3Ec6aNUvp6elatGiRRo0apfXr12vPnj1as2aNJCkqKkrp6enK\\\n", - "zc1Vhw4d1LNnT7311ltau3atFi9eHJqTNBECIAAAZhKiADhu3DgdO3ZM8+fPl8vlUkpKigoKCnwP\\\n", - "elRUVPh18wYPHqx169Zp3rx5euSRR3Tddddp8+bN6tOnj2/O+vXrlZeXp4kTJ6q6ulo9e/bUk08+\\\n", - "qQceeKDFz89sbF6vtzEf94Nv3b5maahLaLOuvoqvK2qKjpGhrqDter+8PtQltFnh4fzcNsU7c2Y3\\\n", - "+3v0vu2RoBznwI6ngnIctE7cAwgAAGAxBEAAAACL4R5AAADMxMYyPS6NDiAAAIDF0AEEAMBMaADC\\\n", - "AMsEwOPHj+uFF15QSUmJ73sGHQ6HBg8erClTpig+Pj7EFQIA0HR8tAeMsMQS8O7du3X99ddr+fLl\\\n", - "io6O1tChQzV06FBFR0dr+fLlSkpK0p49e0JdJgAAQIuwRAdw5syZuueee7R69WrZ/u3mWK/Xqwce\\\n", - "eEAzZ85USUlJg8dxu91yu91+Y/V159Uu3BKXEQDQFvAQCAywRAfwgw8+0OzZsy8If5Jks9k0e/Zs\\\n", - "vf/++5c8Tn5+vqKjo/22zwveaIaKAQBoJFuQNpiaJQKgw+FQaWnpRV8vLS31fVVNQ/Ly8lRbW+u3\\\n", - "9RqZEcxSAQAAmp0l1i4feughTZ8+XWVlZRo+fLgv7FVWVqqoqEjPPfecFi5ceMnj2O122e12vzGW\\\n", - "fwEArQpLwDDAEullxowZiouL05IlS/TMM8+ovv6b7wFt166dUlNT9dJLL+nee+8NcZUAADQdTwHD\\\n", - "CEsEQEkaN26cxo0bp7q6Oh0/flySFBcXp/Dw8BBXBgBAENEAhAGWCYDfCQ8PV5cuXUJdBgAAQMhY\\\n", - "LgACAGBq3AMIAyzxFDAAAAD+iQAIAABgMSwBAwBgIl6WgGEAARAAADMh/8EAloABAAAshgAIAABg\\\n", - "MSwBAwBgItwDCCPoAAIAAFgMHUAAAMyEBiAMIAACAGAmBEAYQAAEAMBUSIC4NO4BBAAAsBg6gAAA\\\n", - "mIiXBiAMIAACAGAmBEAYwBIwAACAxdABBADAVGgB4tLoAAIAYCJeW3C2xli1apUSExMVGRmptLQ0\\\n", - "lZaWNjh/48aNSkpKUmRkpPr27att27ZdMOfgwYP68Y9/rOjoaF155ZW66aabVFFR0bgC4UMABAAA\\\n", - "TbZhwwbl5ORowYIF2rt3r/r376/MzExVVVUFnF9cXKwJEyYoKytL7733nsaMGaMxY8Zo3759vjmf\\\n", - "ffaZhgwZoqSkJL355pv68MMP9dhjjykyMrKlTsu0bF6v1xvqItqy29csDXUJbdbVV7FM0RQd+e9f\\\n", - "o71fXh/qEtqs8HB+bpvinTmzm/09rr3riaAc59PX5l/W/LS0NN10001auXKlJMnj8ah79+6aOXOm\\\n", - "5s6de8H8cePG6fTp09q6datvbNCgQUpJSdHq1aslSePHj1d4eLj+8Ic/NOFMEAgdQAAATMUWlM3t\\\n", - "duvkyZN+m9vtDviO586dU1lZmTIyMnxjYWFhysjIUElJScB9SkpK/OZLUmZmpm++x+PRf//3f+v6\\\n", - "669XZmamOnfurLS0NG3evLlRVwX+CIAAAOAC+fn5io6O9tvy8/MDzj1+/Ljq6+uVkJDgN56QkCCX\\\n", - "yxVwH5fL1eD8qqoqnTp1Sk8//bRGjhyp//mf/9Fdd92lu+++W2+99VYQztDaeAoYAAATCdYHQefl\\\n", - "5SknJ8dvzG63B+fgBng8HknS6NGjNXv2N0vnKSkpKi4u1urVq5Went5itZgRARAAADMJUgC02+2G\\\n", - "A19cXJzatWunyspKv/HKyko5HI6A+zgcjgbnx8XFqX379urdu7ffnOTkZL3zzjtGTwMXwRIwAACm\\\n", - "Epx7AC9HRESEUlNTVVRU5BvzeDwqKiqS0+kMuI/T6fSbL0mFhYW++REREbrppptUXl7uN+fjjz9W\\\n", - "z549L6s+XIgOIAAAaLKcnBxNnjxZAwYM0MCBA7V06VKdPn1aU6dOlSRNmjRJ11xzje8+wlmzZik9\\\n", - "PV2LFi3SqFGjtH79eu3Zs0dr1qzxHTM3N1fjxo3T0KFDddttt6mgoEBbtmzRm2++GYpTNBUCIAAA\\\n", - "ZhKiT+oZN26cjh07pvnz58vlciklJUUFBQW+Bz0qKioUFvbPhcfBgwdr3bp1mjdvnh555BFdd911\\\n", - "2rx5s/r06eObc9ddd2n16tXKz8/Xgw8+qBtuuEF/+tOfNGTIkBY/P7PhcwCbiM8BbDw+B7Bp+BzA\\\n", - "xuNzABuPzwFsmpb4HMBe9/w6KMf5fOO8oBwHrRP3AAIAAFgMS8AAAJgJTVoYQAAEAMBUSIC4NAJg\\\n", - "E1V/xS2UjVX9lSfUJbRpw1L48W2s6CjufmmsG3tx7QAz4DcIAAAmEqxvAoG5EQABADATAiAMoJcP\\\n", - "AABgMQRAAAAAi2EJGAAAM7GxBoxLIwACAGAiPAQCI1gCBgAAsBgCIAAAgMWwBAwAgJmwBAwD6AAC\\\n", - "AABYDB1AAADMhKeAYQABEAAAE+Eb6mEES8AAAAAWQwcQAAAzYQUYBhAAAQAwEwIgDGAJGAAAwGII\\\n", - "gAAAABbDEjAAAGbCx8DAAAIgAAAm4iX/wQCWgAEAACyGAAgAAGAxLAEDAGAmLAHDADqAAAAAFkMH\\\n", - "EAAAM6EDCAMIgAAAmAoJEJfGEjAAAIDFEAABADATW5C2Rli1apUSExMVGRmptLQ0lZaWNjh/48aN\\\n", - "SkpKUmRkpPr27att27ZddO4DDzwgm82mpUuXNq44+CEAAgBgJiEKgBs2bFBOTo4WLFigvXv3qn//\\\n", - "/srMzFRVVVXA+cXFxZowYYKysrL03nvvacyYMRozZoz27dt3wdzXXntNO3fuVNeuXS+/MAREAAQA\\\n", - "AE22ePFiTZs2TVOnTlXv3r21evVqXXHFFXrhhRcCzl+2bJlGjhyp3NxcJScn61e/+pVuvPFGrVy5\\\n", - "0m/ekSNHNHPmTL3yyisKDw9viVOxBAIgAAAm4g3SdjnOnTunsrIyZWRk+MbCwsKUkZGhkpKSgPuU\\\n", - "lJT4zZekzMxMv/kej0f33XefcnNz9YMf/OAyq0JDeAoYAAAzCdJDwG63W26322/MbrfLbrdfMPf4\\\n", - "8eOqr69XQkKC33hCQoIOHToU8PgulyvgfJfL5fvzf/3Xf6l9+/Z68MEHG3sauAg6gAAA4AL5+fmK\\\n", - "jo722/Lz81vs/cvKyrRs2TK99NJLstn4aJtgIwACAIAL5OXlqba21m/Ly8sLODcuLk7t2rVTZWWl\\\n", - "33hlZaUcDkfAfRwOR4Pz//a3v6mqqko9evRQ+/bt1b59ex0+fFhz5sxRYmJi00/Q4giAAACYic0W\\\n", - "lM1utysqKspvC7T8K0kRERFKTU1VUVGRb8zj8aioqEhOpzPgPk6n02++JBUWFvrm33ffffrwww/1\\\n", - "/vvv+7auXbsqNzdXf/3rX4N0sayLewC/9Y9//EMLFiy46NNKUuD7ITznzyusPZcRANBKhGi1NCcn\\\n", - "R5MnT9aAAQM0cOBALV26VKdPn9bUqVMlSZMmTdI111zjW0aeNWuW0tPTtWjRIo0aNUrr16/Xnj17\\\n", - "tGbNGklSbGysYmNj/d4jPDxcDodDN9xwQ8uenAnRAfxWdXW1fv/73zc4J9D9EEd3vNFCFQIA0HqN\\\n", - "GzdOCxcu1Pz585WSkqL3339fBQUFvgc9Kioq9OWXX/rmDx48WOvWrdOaNWvUv39/vfrqq9q8ebP6\\\n", - "9OkTqlOwFJvX673cp73bpNdff73B1z///HPNmTNH9fX1F50TqAOYseL/0gFsNEv81Ws2w1L4e9dY\\\n", - "ez7zhLqENuvGXvQNmuLpkc3/NGv3/+83QTnOP/7vL4NyHLROlvkNMmbMGNlsNjWUdy/1lFGgx98J\\\n", - "fwCAVoUHZmGAZf4p16VLF23atEkejyfgtnfv3lCXCAAA0CIsEwBTU1NVVlZ20dcv1R0EAKBNCNF3\\\n", - "AaNtscz6ZW5urk6fPn3R16+99lrt2LGjBSsCAAAIDcsEwFtuuaXB16+88kqlp6e3UDUAAAChY5kA\\\n", - "CACAJbB8CwMIgAAAmAjfmwsjLPMQCAAAAL5BAAQAALAYloABADATVoBhAAEQAAAzIQDCAJaAAQAA\\\n", - "LIYACAAAYDEsAQMAYCJ8CgyMoAMIAABgMQRAAAAAi2EJGAAAM2EJGAbQAQQAALAYOoAAAJgJHUAY\\\n", - "QAAEAMBEyH8wggAIAICZ8DkwMIB7AAEAACyGDiAAACZCAxBG0AEEAACwGAIgAACAxbAEDACAmbAE\\\n", - "DAMIgAAAmAj5D0awBAwAAGAxdAABADATWoAwgAAIAICJ8DEwMIIlYAAAAIshAAIAgKBYtWqVEhMT\\\n", - "FRkZqbS0NJWWljY4f+PGjUpKSlJkZKT69u2rbdu2+V6rq6vTww8/rL59++rKK69U165dNWnSJB09\\\n", - "erS5T8MSCIAAAJiIzRac7XJt2LBBOTk5WrBggfbu3av+/fsrMzNTVVVVAecXFxdrwoQJysrK0nvv\\\n", - "vacxY8ZozJgx2rdvnyTp66+/1t69e/XYY49p79692rRpk8rLy/XjH/+4KZcH37J5vV5vqItoywb9\\\n", - "15JQl9CG8VevKYalcAtvY+35zBPqEtqsG3vRN2iKp0c+2Ozvce0vFwblOJ/+5qHLmp+WlqabbrpJ\\\n", - "K1eulCR5PB51795dM2fO1Ny5cy+YP27cOJ0+fVpbt271jQ0aNEgpKSlavXp1wPfYvXu3Bg4cqMOH\\\n", - "D6tHjx6XVR/88ZMMAACa5Ny5cyorK1NGRoZvLCwsTBkZGSopKQm4T0lJid98ScrMzLzofEmqra2V\\\n", - "zWZTTExMUOq2MloITdQ1gQzdWIMSeVStKUr+Tge1sY6sd4W6hDbryvu7hLoEXEKwngJ2u91yu91+\\\n", - "Y3a7XXa7/YK5x48fV319vRISEvzGExISdOjQoYDHd7lcAee7XIF/Ps+ePauHH35YEyZMUFRU1OWc\\\n", - "CgIgvQAAYCa24Gz5+fmKjo722/Lz81v8dKRvHgi599575fV69eyzz4akBrOhAwgAAC6Ql5ennJwc\\\n", - "v7FA3T9JiouLU7t27VRZWek3XllZKYfDEXAfh8NhaP534e/w4cPavn073b8goQMIAICJ2IL0P7vd\\\n", - "rqioKL/tYgEwIiJCqampKioq8o15PB4VFRXJ6XQG3MfpdPrNl6TCwkK/+d+Fv08++URvvPGGYmNj\\\n", - "g3CFINEBBADAXEJ0e3VOTo4mT56sAQMGaODAgVq6dKlOnz6tqVOnSpImTZqka665xreMPGvWLKWn\\\n", - "p2vRokUaNWqU1q9frz179mjNmjWSvgl/P/nJT7R3715t3bpV9fX1vvsDO3XqpIiIiNCcqEkQAAEA\\\n", - "QJONGzdOx44d0/z58+VyuZSSkqKCggLfgx4VFRUKC/vnwuPgwYO1bt06zZs3T4888oiuu+46bd68\\\n", - "WX369JEkHTlyRK+//rokKSUlxe+9duzYoVtvvbVFzsusCIAAAJhIKD9fITs7W9nZ2QFfe/PNNy8Y\\\n", - "u+eee3TPPfcEnJ+YmCg+qrj5EAABADCRYH0MDMyNh0AAAAAshg4gAABmQgcQBhAAAQAwEfIfjCAA\\\n", - "AgBgJiRAGMA9gAAAABZDBxAAABOhAQgjCIAAAJgIHwMDI1gCBgAAsBg6gAAAmAkdQBhAAAQAwETI\\\n", - "fzCCJWAAAACLoQMIAICJ8BAIjKADCAAAYDEEQAAAAIthCRgAABNhCRhGEAABADATAiAMIAACAGAi\\\n", - "NhIgDOAeQAAAAIuhAwgAgIlwDyCMoAMIAABgMQRAAAAAi2EJGAAAE2EJGEYQAAEAMBHyH4xgCRgA\\\n", - "AMBi6AACAGAmtABhAAEQAAAT4R5AGMESMAAAgMXQAQQAwERoAMIIy3QAz5w5o3feeUcHDhy44LWz\\\n", - "Z89q7dq1lzyG2+3WyZMn/bb6uvPNUS4AAI1jC9IGU7NEAPz444+VnJysoUOHqm/fvkpPT9eXX37p\\\n", - "e722tlZTp0695HHy8/MVHR3tt33834XNWToAAJeF/AcjLBEAH374YfXp00dVVVUqLy/XVVddpZtv\\\n", - "vlkVFRWXdZy8vDzV1tb6bdeP+mEzVQ0AQNuyatUqJSYmKjIyUmlpaSotLW1w/saNG5WUlKTIyEj1\\\n", - "7dtX27Zt83vd6/Vq/vz56tKlizp06KCMjAx98sknzXkKlmGJAFhcXKz8/HzFxcXp2muv1ZYtW5SZ\\\n", - "malbbrlFn3/+ueHj2O12RUVF+W3twrmNEgDQethswdku14YNG5STk6MFCxZo79696t+/vzIzM1VV\\\n", - "VRVwfnFxsSZMmKCsrCy99957GjNmjMaMGaN9+/b55vzmN7/R8uXLtXr1au3atUtXXnmlMjMzdfbs\\\n", - "2cZeHnzLEgHwzJkzat/+n0HNZrPp2Wef1Z133qn09HR9/PHHIawOAIAgCtEa8OLFizVt2jRNnTpV\\\n", - "vXv31urVq3XFFVfohRdeCDh/2bJlGjlypHJzc5WcnKxf/epXuvHGG7Vy5UpJ33T/li5dqnnz5mn0\\\n", - "6NHq16+f1q5dq6NHj2rz5s2XXyD8WCIAJiUlac+ePReMr1y5UqNHj9aPf/zjEFQFAEDrFejBR7fb\\\n", - "HXDuuXPnVFZWpoyMDN9YWFiYMjIyVFJSEnCfkpISv/mSlJmZ6Zv/97//XS6Xy29OdHS00tLSLnpM\\\n", - "GGeJAHjXXXfpj3/8Y8DXVq5cqQkTJsjr9bZwVQAABF+wGoCBHnzMz88P+J7Hjx9XfX29EhIS/MYT\\\n", - "EhLkcrkC7uNyuRqc/93/X84xYZwlAmBeXt4FN5b+q2eeeUYej6cFKwIAoHkE6x7AQA8+5uXlhfr0\\\n", - "ECQ8wQAAAC5gt9tlt9sNzY2Li1O7du1UWVnpN15ZWSmHwxFwH4fD0eD87/6/srJSXbp08ZuTkpJi\\\n", - "9DRwEZboAAIAYB0t/xRIRESEUlNTVVRU5BvzeDwqKiqS0+kMuI/T6fSbL0mFhYW++d/73vfkcDj8\\\n", - "5pw8eVK7du266DFhHB1AAABMpDEf4RIMOTk5mjx5sgYMGKCBAwdq6dKlOn36tO+LFiZNmqRrrrnG\\\n", - "dx/hrFmzlJ6erkWLFmnUqFFav3699uzZozVr1nx7Hjb94he/0K9//Wtdd911+t73vqfHHntMXbt2\\\n", - "1ZgxY0JzkiZCAAQAAE02btw4HTt2TPPnz5fL5VJKSooKCgp8D3FUVFQoLOyfC4+DBw/WunXrNG/e\\\n", - "PD3yyCO67rrrtHnzZvXp08c355e//KVOnz6t6dOnq6amRkOGDFFBQYEiIyNb/PzMxubl8dcmuful\\\n", - "ZaEuoc0alMiXDTVFyd/50W2sj1/88tKTEND193e59CRc1GtTZjX7ezh/uyQoxynJnR2U46B1ogMI\\\n", - "AICJ8E9rGEEABADAREJ1DyDaFp4CBgAAsBgCIAAAgMWwBAwAgImwBAwj6AACAABYDB1AAABMhAYg\\\n", - "jCAAAgBgJiRAGMASMAAAgMXQAQQAwER4CARGEAABADAR8h+MIAACAGAmJEAYwD2AAAAAFkMHEAAA\\\n", - "E6EBCCMIgAAAmAgPgcAIloABAAAshg4gAABmQgsQBhAAAQAwEeIfjGAJGAAAwGLoAAIAYCa0AGEA\\\n", - "ARAAABMh/8EIloABAAAshg4gAAAmwkPAMIIACACAmRAAYQABEAAAEyH/wQgCYBPFRYW6grar3hvq\\\n", - "Ctq2j/5cG+oS2qyw6MhQl9Bm7dtUE+oS2rYpoS4A+AYBEAAAE+EeQBjBU8AAAAAWQwAEAACwGJaA\\\n", - "AQAwEZaAYQQBEAAAEyEAwgiWgAEAQIuprq7WxIkTFRUVpZiYGGVlZenUqVMN7nP27FnNmDFDsbGx\\\n", - "6tixo8aOHavKykrf6x988IEmTJig7t27q0OHDkpOTtayZcua+1TaNAIgAABoMRMnTtT+/ftVWFio\\\n", - "rVu36u2339b06dMb3Gf27NnasmWLNm7cqLfeektHjx7V3Xff7Xu9rKxMnTt31ssvv6z9+/fr0Ucf\\\n", - "VV5enlauXNncp9NmsQQMAICJtOYl4IMHD6qgoEC7d+/WgAEDJEkrVqzQ7bffroULF6pr164X7FNb\\\n", - "W6vnn39e69at07BhwyRJL774opKTk7Vz504NGjRI999/v98+vXr1UklJiTZt2qTs7OzmP7E2iA4g\\\n", - "AAC4gNvt1smTJ/02t9vdpGOWlJQoJibGF/4kKSMjQ2FhYdq1a1fAfcrKylRXV6eMjAzfWFJSknr0\\\n", - "6KGSkpKLvldtba06derUpHrNjAAIAICJ2IK05efnKzo62m/Lz89vUm0ul0udO3f2G2vfvr06deok\\\n", - "l8t10X0iIiIUExPjN56QkHDRfYqLi7Vhw4ZLLi1bGQEQAAAzCVICzMvLU21trd+Wl5cX8C3nzp0r\\\n", - "m83W4Hbo0KHmPe9v7du3T6NHj9aCBQs0YsSIFnnPtoh7AAEAMJFg3QNot9tlt9sNzZ0zZ46mTJnS\\\n", - "4JxevXrJ4XCoqqrKb/z8+fOqrq6Ww+EIuJ/D4dC5c+dUU1Pj1wWsrKy8YJ8DBw5o+PDhmj59uubN\\\n", - "m2eodqsiAAIAgCaJj49XfHz8Jec5nU7V1NSorKxMqampkqTt27fL4/EoLS0t4D6pqakKDw9XUVGR\\\n", - "xo4dK0kqLy9XRUWFnE6nb97+/fs1bNgwTZ48WU8++WQQzsrcWAIGAMBEgnUPYHNITk7WyJEjNW3a\\\n", - "NJWWlurdd99Vdna2xo8f73sC+MiRI0pKSlJpaakkKTo6WllZWcrJydGOHTtUVlamqVOnyul0atCg\\\n", - "QZK+Wfa97bbbNGLECOXk5MjlcsnlcunYsWPNdCZtHx1AAADMpDV/DoykV155RdnZ2Ro+fLjCwsI0\\\n", - "duxYLV++3Pd6XV2dysvL9fXXX/vGlixZ4pvrdruVmZmpZ555xvf6q6++qmPHjunll1/Wyy+/7Bvv\\\n", - "2bOnvvjiixY5r7bG5vV6vaEuoi2bvolPGm+s713duv8j1do9v6wm1CW0WWH1nlCX0GZ5W3m4aO0+\\\n", - "eX1Bs7/HHb8Lzu+lrf9nVlCOg9aJDiAAACZCRIcRBEAAAEyEJi2M4CEQAAAAi6EDCACAidABhBF0\\\n", - "AAEAACyGAAgAAGAxLAEDAGAiLAHDCAIgAAAmQv6DEQRAAADMhAQIA7gHEAAAwGLoAAIAYCI0AGEE\\\n", - "ARAAABPhIRAYwRIwAACAxdABBADAROgAwgg6gAAAABZDAAQAALAYloABADARloBhBAEQAAATIf/B\\\n", - "CJaAAQAALMYyHcCDBw9q586dcjqdSkpK0qFDh7Rs2TK53W799Kc/1bBhwy55DLfbLbfb7TdWX3de\\\n", - "7cItcxkBAK0cS8AwwhIdwIKCAqWkpOihhx7Sf/zHf6igoEBDhw7Vp59+qsOHD2vEiBHavn37JY+T\\\n", - "n5+v6Ohov+39TYUtcAYAABhjswVng7lZIgA+8cQTys3N1YkTJ/Tiiy/qP//zPzVt2jQVFhaqqKhI\\\n", - "ubm5evrppy95nLy8PNXW1vptKXf/sAXOAAAAIHgsEQD379+vKVOmSJLuvfde/e///q9+8pOf+F6f\\\n", - "OHGiPvzww0sex263Kyoqym9j+RcAALQ1lkkvtm/72WFhYYqMjFR0dLTvtauuukq1tbWhKg0AgKBh\\\n", - "+RZGWKIDmJiYqE8++cT355KSEvXo0cP354qKCnXp0iUUpQEAEFS2IG0wN0t0AH/2s5+pvr7e9+c+\\\n", - "ffr4vf6Xv/zF0FPAAAAAZmCJAPjAAw80+PpTTz3VQpUAANC8WAKGEZYIgAAAWAX5D0ZY4h5AAAAA\\\n", - "/BMdQAAAzIQWIAygAwgAgIm09m8Cqa6u1sSJExUVFaWYmBhlZWXp1KlTDe5z9uxZzZgxQ7GxserY\\\n", - "saPGjh2rysrKgHNPnDihbt26yWazqaamphnOwBwIgAAAoMVMnDhR+/fvV2FhobZu3aq3335b06dP\\\n", - "b3Cf2bNna8uWLdq4caPeeustHT16VHfffXfAuVlZWerXr19zlG4qBEAAAEykNX8O4MGDB1VQUKDf\\\n", - "/e53SktL05AhQ7RixQqtX79eR48eDbhPbW2tnn/+eS1evFjDhg1TamqqXnzxRRUXF2vnzp1+c599\\\n", - "9lnV1NTooYceaqYzMA8CIAAAJtKal4BLSkoUExOjAQMG+MYyMjIUFhamXbt2BdynrKxMdXV1ysjI\\\n", - "8I0lJSWpR48eKikp8Y0dOHBATzzxhNauXauwMOLNpfAQCAAAJhKs7OZ2u+V2u/3G7Ha77HZ7o4/p\\\n", - "crnUuXNnv7H27durU6dOcrlcF90nIiJCMTExfuMJCQm+fdxutyZMmKDf/va36tGjhz7//PNG12gV\\\n", - "RGQAAHCB/Px8RUdH+235+fkB586dO1c2m63B7dChQ81Wa15enpKTk/XTn/602d7DbOgAAgBgIsFa\\\n", - "vs3Ly1NOTo7f2MW6f3PmzNGUKVMaPF6vXr3kcDhUVVXlN37+/HlVV1fL4XAE3M/hcOjcuXOqqanx\\\n", - "6wJWVlb69tm+fbs++ugjvfrqq5Ikr9crSYqLi9Ojjz6qxx9/vMHarIgACACAiQRrCfhylnvj4+MV\\\n", - "Hx9/yXlOp1M1NTUqKytTamqqpG/Cm8fjUVpaWsB9UlNTFR4erqKiIo0dO1aSVF5eroqKCjmdTknS\\\n", - "n/70J505c8a3z+7du3X//ffrb3/7m77//e8bOgerIQACAIAWkZycrJEjR2ratGlavXq16urqlJ2d\\\n", - "rfHjx6tr166SpCNHjmj48OFau3atBg4cqOjoaGVlZSknJ0edOnVSVFSUZs6cKafTqUGDBknSBSHv\\\n", - "+PHjvvf793sH8Q0CIAAAJtKcH+IcDK+88oqys7M1fPhwhYWFaezYsVq+fLnv9bq6OpWXl+vrr7/2\\\n", - "jS1ZssQ31+12KzMzU88880woyjcNAiAAAGbSygNgp06dtG7duou+npiY6LuH7zuRkZFatWqVVq1a\\\n", - "Zeg9br311guOAX88BQwAAGAxdAABADCRVt4ARCtBAAQAwERa+z2AaB1YAgYAALAYOoAAAJgIDUAY\\\n", - "QQAEAMBEWAKGEQRAAABMhPwHI7gHEAAAwGLoAAIAYCIsAcMIAiAAACZCAIQRLAEDAABYDB1AAABM\\\n", - "hAYgjCAAAgBgIiwBwwiWgAEAACyGDiAAACZCAxBGEAABADARloBhBAGwidznQ11B2/XBUW+oS2jT\\\n", - "ut92VahLaLM6RPIbsrH2H6gLdQkAgoAACACAifDPGxhBAAQAwERYAoYRBEAAAEyE/Acj+BgYAAAA\\\n", - "i6EDCACAibAEDCMIgAAAmAj5D0awBAwAAGAxdAABADARloBhBAEQAAATIQDCCJaAAQAALIYOIAAA\\\n", - "JkIDEEYQAAEAMBEba8AwgCVgAAAAi6EDCACAidD/gxF0AAEAMBGbLThbc6murtbEiRMVFRWlmJgY\\\n", - "ZWVl6dSpUw3uc/bsWc2YMUOxsbHq2LGjxo4dq8rKygvmvfTSS+rXr58iIyPVuXNnzZgxo7lOo80j\\\n", - "AAIAYCK2IG3NZeLEidq/f78KCwu1detWvf3225o+fXqD+8yePVtbtmzRxo0b9dZbb+no0aO6++67\\\n", - "/eYsXrxYjz76qObOnav9+/frjTfeUGZmZjOeSdvGEjAAAGgRBw8eVEFBgXbv3q0BAwZIklasWKHb\\\n", - "b79dCxcuVNeuXS/Yp7a2Vs8//7zWrVunYcOGSZJefPFFJScna+fOnRo0aJC++uorzZs3T1u2bNHw\\\n", - "4cN9+/br169lTqwNogMIAICJhNmCszWHkpISxcTE+MKfJGVkZCgsLEy7du0KuE9ZWZnq6uqUkZHh\\\n", - "G0tKSlKPHj1UUlIiSSosLJTH49GRI0eUnJysbt266d5779U//vGP5jkREyAAAgBgIsFaAna73Tp5\\\n", - "8qTf5na7m1Sby+VS586d/cbat2+vTp06yeVyXXSfiIgIxcTE+I0nJCT49vn888/l8Xj01FNPaenS\\\n", - "pXr11VdVXV2tH/7whzp37lyTajYrAiAAALhAfn6+oqOj/bb8/PyAc+fOnSubzdbgdujQoWar1ePx\\\n", - "qK6uTsuXL1dmZqYGDRqkP/7xj/rkk0+0Y8eOZnvftox7AAEAMJFgPcGbl5ennJwcvzG73R5w7pw5\\\n", - "czRlypQGj9erVy85HA5VVVX5jZ8/f17V1dVyOBwB93M4HDp37pxqamr8uoCVlZW+fbp06SJJ6t27\\\n", - "t+/1+Ph4xcXFqaKiosG6rIoACACAiQTr9j273X7RwPfv4uPjFR8ff8l5TqdTNTU1KisrU2pqqiRp\\\n", - "+/bt8ng8SktLC7hPamqqwsPDVVRUpLFjx0qSysvLVVFRIafTKUm6+eabfePdunWT9M3HzRw/flw9\\\n", - "e/Y0dA5WwxIwAABoEcnJyRo5cqSmTZum0tJSvfvuu8rOztb48eN9TwAfOXJESUlJKi0tlSRFR0cr\\\n", - "KytLOTk52rFjh8rKyjR16lQ5nU4NGjRIknT99ddr9OjRmjVrloqLi7Vv3z5NnjxZSUlJuu2220J2\\\n", - "vq0ZARAAABNp7R8E/corrygpKUnDhw/X7bffriFDhmjNmjW+1+vq6lReXq6vv/7aN7ZkyRLdcccd\\\n", - "Gjt2rIYOHSqHw6FNmzb5HXft2rVKS0vTqFGjlJ6ervDwcBUUFCg8PLz5TqYNs3m9Xm+oi2jLJv+/\\\n", - "ZaEuoc1y14W6grat8rgn1CW0WR0i+bKsxtp/gB/cpji8LLfZ3+PxN5YH5TgLMh4MynHQOtEBBAAA\\\n", - "sBgeAgEAwESac/kW5kEABADARMh/MIIACACAiTTX17jBXLgHEAAAwGLoAAIAYCI0AGEEARAAABPh\\\n", - "IRAYwRIwAACAxVi6A+j1emXjn0oAABPhtxqMsHQH0G636+DBg6EuAwCAoGntXwWH1sESHcCcnJyA\\\n", - "4/X19Xr66acVGxsrSVq8eHGDx3G73XK73f7HqDuvduGWuIwAAMAkLJFcli5dqv79+ysmJsZv3Ov1\\\n", - "6uDBg7ryyisNLQXn5+fr8ccf9xvr95NMpdzzo2CWCwBAo9G8gxGWCIBPPfWU1qxZo0WLFmnYsGG+\\\n", - "8fDwcL300kvq3bu3oePk5eVd0E38+ZbnglorAABNwfItjLDEPYBz587Vhg0b9LOf/UwPPfSQ6urq\\\n", - "GnUcu92uqKgov43lXwAA0NZYIgBK0k033aSysjIdO3ZMAwYM0L59+3gCGABgOjwEAiMs1b7q2LGj\\\n", - "fv/732v9+vXKyMhQfX19qEsCACCoLNPZQZNYKgB+Z/z48RoyZIjKysrUs2fPUJcDAEDQ0L2DEZYM\\\n", - "gJLUrVs3devWLdRlAAAAtDjLBkAAAMyIBiCMIAACAGAiLAHDCO4VBQAAsBg6gAAAmAgNQBhBAAQA\\\n", - "wERYAoYRLAEDAABYDB1AAABMhAYgjCAAAgBgIiwBwwiWgAEAACyGDiAAACZCAxBGEAABADARloBh\\\n", - "BAEQAAAT4d4uGMHfEwAAAIshAAIAYCI2W3C25lJdXa2JEycqKipKMTExysrK0qlTpxrc5+zZs5ox\\\n", - "Y4ZiY2PVsWNHjR07VpWVlX5zdu/ereHDhysmJkZXX321MjMz9cEHHzTfibRxBEAAAEzEFqStuUyc\\\n", - "OFH79+9XYWGhtm7dqrffflvTp09vcJ/Zs2dry5Yt2rhxo9566y0dPXpUd999t+/1U6dOaeTIkerR\\\n", - "o4d27dqld955R1dddZUyMzNVV1fXjGfTdnEPIAAAaBEHDx5UQUGBdu/erQEDBkiSVqxYodtvv10L\\\n", - "Fy5U165dL9intrZWzz//vNatW6dhw4ZJkl588UUlJydr586dGjRokA4dOqTq6mo98cQT6t69uyRp\\\n", - "wYIF6tevnw4fPqxrr7225U6yjaADCACAiQRrCdjtduvkyZN+m9vtblJtJSUliomJ8YU/ScrIyFBY\\\n", - "WJh27doVcJ+ysjLV1dUpIyPDN5aUlKQePXqopKREknTDDTcoNjZWzz//vM6dO6czZ87o+eefV3Jy\\\n", - "shITE5tUs1kRAAEAMJFgLQHn5+crOjrab8vPz29SbS6XS507d/Yba9++vTp16iSXy3XRfSIiIhQT\\\n", - "E+M3npCQ4Nvnqquu0ptvvqmXX35ZHTp0UMeOHVVQUKC//OUvat+exc5ACIAAAOACeXl5qq2t9dvy\\\n", - "8vICzp07d65sNluD26FDh5qt1jNnzigrK0s333yzdu7cqXfffVd9+vTRqFGjdObMmWZ737aMWAwA\\\n", - "gIkE6wleu90uu91uaO6cOXM0ZcqUBuf06tVLDodDVVVVfuPnz59XdXW1HA5HwP0cDofOnTunmpoa\\\n", - "vy5gZWWlb59169bpiy++UElJicLCwnxjV199tf785z9r/Pjxhs7DSgiAAACYSCi+CSQ+Pl7x8fGX\\\n", - "nOd0OlVTU6OysjKlpqZKkrZv3y6Px6O0tLSA+6Smpio8PFxFRUUaO3asJKm8vFwVFRVyOp2SpK+/\\\n", - "/lphYWGy/cvJf/dnj8fT1NMzJZaAAQBAi0hOTtbIkSM1bdo0lZaW6t1331V2drbGjx/vewL4yJEj\\\n", - "SkpKUmlpqSQpOjpaWVlZysnJ0Y4dO1RWVqapU6fK6XRq0KBBkqQf/vCH+uqrrzRjxgwdPHhQ+/fv\\\n", - "19SpU9W+fXvddtttITvf1owACACAibT2zwF85ZVXlJSUpOHDh+v222/XkCFDtGbNGt/rdXV1Ki8v\\\n", - "19dff+0bW7Jkie644w6NHTtWQ4cOlcPh0KZNm3yvJyUlacuWLfrwww/ldDp1yy236OjRoyooKFCX\\\n", - "Ll2a8WzaLpvX6/WGuoi2bPL/WxbqEtosN5/N2SSVx1nWaKwOkSFYIzOJ/Qf4wW2Kw8tym/09fr9n\\\n", - "eVCOM3nAg0E5Dlon7gEEAMBEWNqDEfw9AQAAsBg6gAAAmEgongJG20MABADARGzi1n5cGkvAAAAA\\\n", - "FkMHEAAAE2EJGEbwMTAm5na7lZ+fr7y8PMNf54NvcO0aj2vXNFy/xuPaAcYRAE3s5MmTio6OVm1t\\\n", - "raKiokJdTpvCtWs8rl3TcP0aj2sHGMc9gAAAABZDAAQAALAYAiAAAIDFEABNzG63a8GCBdwM3Qhc\\\n", - "u8bj2jUN16/xuHaAcTwEAgAAYDF0AAEAACyGAAgAAGAxBEAAAACLIQACAABYDAHQQioqKjRq1Chd\\\n", - "ccUV6ty5s3Jzc3X+/PlQl9VmPPjgg0pNTZXdbldKSkqoy2kzPvjgA02YMEHdu3dXhw4dlJycrGXL\\\n", - "loW6rDbjxIkTGjlypLp27Sq73a7u3bsrOztbJ0+eDHVpbcqJEyfUrVs32Ww21dTUhLocIOTah7oA\\\n", - "tIz6+nqNGjVKDodDxcXF+vLLLzVp0iSFh4frqaeeCnV5bcb999+vXbt26cMPPwx1KW1GWVmZOnfu\\\n", - "rJdfflndu3dXcXGxpk+frnbt2ik7OzvU5bV6YWFhGj16tH79618rPj5en376qWbMmKHq6mqtW7cu\\\n", - "1OW1GVlZWerXr5+OHDkS6lKA1sGLNukvf/mL9+abb/ZGR0d7O3Xq5B01apT3008/vej8bdu2ecPC\\\n", - "wrwul8s39uyzz3qjoqK8bre7JUpuVS73+v2rBQsWePv379+8BbZiTbl23/n5z3/uve2225qpwtYt\\\n", - "GNdv2bJl3m7dujVTha1XY6/dM888401PT/cWFRV5JXm/+uqr5i8WaOVYAm6jTp8+rZycHO3Zs0dF\\\n", - "RUUKCwvTXXfdJY/HE3B+SUmJ+vbtq4SEBN9YZmamTp48qf3797dU2a3G5V4//FMwrl1tba06derU\\\n", - "jFW2Xk29fkePHtWmTZuUnp7ezJW2Po25dgcOHNATTzyhtWvXKiyMX3mAT6gTKILj2LFjXknejz76\\\n", - "KODr06ZN844YMcJv7PTp015J3m3btrVEia3apa7fv7J6B/DfXc6183q93nfffdfbvn1771//+tdm\\\n", - "rqxtMHr9xo8f7+3QoYNXkvfOO+/0njlzpoUqbL0ude3Onj3r7devn/cPf/iD1+v1enfs2EEHEPgW\\\n", - "/xxqoz755BNNmDBBvXr1UlRUlBITEyV986DHj370I3Xs2FEdO3bUD37wg9AW2kpx/RqvKddu3759\\\n", - "Gj16tBYsWKARI0a0cOWtQ2Ov35IlS7R37179+c9/1meffaacnJwQVB9al3vt8vLylJycrJ/+9Kch\\\n", - "rBponXgIpI2688471bNnTz333HPq2rWrPB6P+vTpo3Pnzul3v/udzpw5I0kKDw+XJDkcDpWWlvod\\\n", - "o7Ky0vea1Vzu9cM/NfbaHThwQMOHD9f06dM1b968UJTeKjT2+jkcDjkcDiUlJalTp0665ZZb9Nhj\\\n", - "j6lLly6hOI2QuNxrt337dn300Ud69dVXJUneb7/5NC4uTo8++qgef/zx0JwI0AoQANugEydOqLy8\\\n", - "XM8995xuueUWSdI777zje/2aa665YB+n06knn3xSVVVV6ty5sySpsLBQUVFR6t27d8sU3ko05vrh\\\n", - "G429dvv379ewYcM0efJkPfnkky1Sa2sUrL97393z5na7g19kK9WYa/enP/3JFwolaffu3br//vv1\\\n", - "t7/9Td///vebv2igFSMAtkFXX321YmNjtWbNGnXp0kUVFRWaO3dug/uMGDFCvXv31n333aff/OY3\\\n", - "crlcmjdvnmbMmCG73d5ClbcOjbl+kvTpp5/q1KlTcrlcOnPmjN5//31JUu/evRUREdHMVbcOjbl2\\\n", - "+/bt07Bhw5SZmamcnBy5XC5JUrt27RQfH98SZbcajbl+27ZtU2VlpW666SZ17NhR+/fvV25urm6+\\\n", - "+WbfEqgVNOba/XvIO378uCQpOTlZMTExzVUq0DaE+iZENE5hYaE3OTnZa7fbvf369fO++eabXkne\\\n", - "11577aL7fPHFF94f/ehH3g4dOnjj4uK8c+bM8dbV1bVc0a1IY65fenq6V9IF29///vcWq7s1uNxr\\\n", - "t2DBgoDXrWfPni1ad2txuddv+/btXqfT6Y2OjvZGRkZ6r7vuOu/DDz9syQcZGvNz+694CAT4J5vX\\\n", - "++1NEQAAALAEngIGAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAA\\\n", - "AAAWQwAEAACwGAIgAACAxRAAAQRNQUGBhgwZopiYGMXGxuqOO+7QZ599FuqyAAD/hgAIIGhOnz6t\\\n", - "nJwc7dmzR0VFRQoLC9Ndd90lj8cT6tIAAP/C5vV6vaEuAoA5HT9+XPHx8froo4/Up0+fUJcDAPgW\\\n", - "HUAAQfPJJ59owoQJ6tWrl6KiopSYmChJqqioCG1hAAA/7UNdAADzuPPOO9WzZ08999xz6tq1qzwe\\\n", - "j/r06aNz586FujQAwL8gAAIIihMnTqi8vFzPPfecbrnlFknSO++8E+KqAACBEAABBMXVV1+t2NhY\\\n", - "rVmzRl26dFFFRYXmzp0b6rIAAAFwDyCAoAgLC9P69etVVlamPn36aPbs2frtb38b6rIAAAHwFDAA\\\n", - "AIDF0AEEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAE\\\n", - "AACwGAIgAACAxRAAAQAALIYACAAAYDH/P9kPgUXvYr3IAAAAAElFTkSuQmCC\\\n", + "AAAPYQGoP6dpAAAkjklEQVR4nO3dfYxd5X0u7HvshO18ePbgpAyYNvmnb+KqqZk6ocKebOOEk8m8\\\n", + "weGN5ISALJswSXGJEHGd9viMFKVEIhlymuNgpJZy0iYCEpQP0w+YtoxwwO5gj0TQK5vWVFUapXVi\\\n", + "MFXxMONYsBkPc/7IqZWdMfYybHvsta5LeiR7PXut/awtJN/8fuujY2ZmZiYAAFTGvLleAAAAZ5YA\\\n", + "CABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUj\\\n", + "AAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDF\\\n", + "CIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQ\\\n", + "MQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAKz3HLLLXnxxReP/f3zn/98vvWtb83h\\\n", + "imbbsWNH3vCGN6Snp+fYeOGFF+Z6WQDnhI6ZmZmZuV4EcHbp6OjI+Ph4urq65nopr2jHjh3ZuHFj\\\n", + "9uzZM9dLATjnqABCia1duzbvec97snTp0lx55ZU5ePDgSff5vd/7vSRJo9FIT09P/uM//iOf+MQn\\\n", + "cvvttyf5eXXw6quvzoc//OG84x3vyOrVq/NP//RP+eAHP5h3vOMdufbaa/Pyyy8nSQ4fPpzf/d3f\\\n", + "ze/8zu9k6dKlueGGG/LSSy+dtvMFoBgBEErs9ttvzxNPPJEnn3wyjUYjt9xyy7G5D33oQ3niiSdm\\\n", + "7fNnf/ZnSZLR0dHs2bMnF1xwwazPPPHEE7nnnnvyL//yLzl8+HA+9alPZdu2bXnqqafyz//8z/n7\\\n", + "v//7JMlnP/vZNBqNPP7449m7d29efvnlbN26ddbxDh8+3NLK/cXxwQ9+8BXP70c/+lGWLVuWSy+9\\\n", + "NH/6p396qj8PQGW9bq4XAJw+9913X+699968+OKLefHFF/PWt7712Nzf/d3fverj9vX15fzzz0+S\\\n", + "LFu2LLVaLQsXLkyS/PZv/3Z++MMfJkn++q//OmNjY9myZUuS5IUXXsj8+fNnHW/hwoWn3MpdtmxZ\\\n", + "fvrTn6Zer+enP/1pPvShD+Wtb31rrr766ld9XgBVIQBCST322GO54447MjY2lgsuuCAPPPBAPv/5\\\n", + "z7fl2AsWLDj25/nz58/6+9GjR5MkMzMzuf/++/OOd7zjhMc7fPhwGo3Gcee6u7szMjIya3tnZ+ex\\\n", + "P//qr/5qrr322oyOjgqAAAUIgFBS4+PjWbhwYd7ylrfkpZdeyl133VV434ULF2ZiYuI13wTykY98\\\n", + "JF/+8pdz11135XWve13Gx8fz3HPP5dd//ddnfd+pVgCfeeaZdHd3Z968eTl8+HCGh4fzyU9+8jWt\\\n", + "F6AqXAMIJdXf3593vvOdeec733nsho5f9ErXACY/v3bvAx/4wLGbQF6tr371q8ce1bJ06dJcccUV\\\n", + "+bd/+7dXfbxfdP/99+e3fuu3cskll+Syyy7LBz7wgVx//fVtOTZA2XkMDABAxagAAgBUjAAIAFAx\\\n", + "AiAAQMUIgAAAFSMAAgBUjAAIAFAxAiAAQMUIgAAAFeNVcK/R+u9sneslAHCOuOfjnznt3/Fbyz7b\\\n", + "luP84///v9pyHM5OKoAAABWjAggAZdIx1wvgXKACCABQMSqAAFAmHUqAnJwACABlIv9RgBYwAPCa\\\n", + "bN68OY1GI+vWrcvU1NSx7dPT0xkYGEij0cjGjRtb9hkbG0tHR0d+9rOfneHVkgiAAFAuHW0aBe3d\\\n", + "uzcHDhzI6OholixZkm3bth2bGx4ezuLFizM6OpojR45kbGzs2Nwdd9yRd7/73a/hRHktBEAAKJX2\\\n", + "JMBms5nJycmW0Ww2Z33b7t2709fXlyTp7+/Prl27Tjr32GOPZenSpXnzm9/c/tOnEAEQAJhlaGgo\\\n", + "9Xq9ZQwNDc363Pj4eDo7O5Mk9Xo9hw4dOunc1q1bc9NNN52Bs+CVuAkEAEpkpk03gQwODmbTpk0t\\\n", + "22q12qzPdXV1ZXJyMkkyMTGRRYsWnXBu586dueSSS7Jw4cL2LJRXRQUQAMqkTdcA1mq1dHZ2tozj\\\n", + "BcAVK1Zk+/btSZKRkZH09vaecG7v3r35/ve/n/7+/jz55JO57rrrTsvPwIkJgADAq9bT05Pu7u40\\\n", + "Go3s27cva9asyYYNG5Ikq1evzv79+9NoNLJgwYIsX748N998cx599NE89NBDWbp0ae6+++45PoNq\\\n", + "6piZmZmZ60Wcy9Z/Z+tcLwGAc8Q9H//Maf+Ody3/7205zj+N/c+2HIezkwogAEDFuAkEAMrEm0Ao\\\n", + "QAUQAKBiVAABoEw6lAA5OQEQAMpE/qMALWAAgIpRAQSAEvFsN4oQAAGgTFwDSAFawAAAFaMCCABl\\\n", + "ogBIAQIgAJSKBMjJaQEDAFSMCiAAlIkCIAUIgABQJgIgBQiAAFAiMx4DQwGuAQQAqBgBEACgYrSA\\\n", + "AaBMtIApQAUQAKBiVAABoEwUAClAAASAEpmZ6wVwTqhkAJyens62bduya9euHDp0KIsWLUpvb2/W\\\n", + "rFmT172ukj8JAFAhlUw7AwMDeec735lPfOITqdfrmZiYyMjISK6//vrce++9r7hfs9lMs9ls2TY9\\\n", + "dTTzX1/JnxGAs5GbQCigksnlxz/+ce6+++6WbcuWLcvKlStPuN/Q0FC+8IUvtGxbuuaDueRj/2/b\\\n", + "1wgAr4r8RwGVDIArVqzI+vXr09fXl87OzkxOTmb79u257LLLTrjf4OBgNm3a1LLtxge+djqXCgDQ\\\n", + "dpUMgLfddluefPLJ7N69Oz/5yU/S1dWV3//9388ll1xywv1qtVpqtVrLNu1fAM4qWsAUUNn0snTp\\\n", + "0ixdunSulwEAbeUuYIqobAAEgFJSAKQAbwIBAKgYFUAAKBPXAFKACiAAQMUIgAAAFaMFDAAlMqMF\\\n", + "TAECIACUifxHAVrAAAAVIwACAFSMAAgAJTLT0dGWcSo2b96cRqORdevWZWpq6tj26enpDAwMpNFo\\\n", + "ZOPGjce29/b25vLLL09vb2+eeuqpdp06p0AABABetb179+bAgQMZHR3NkiVLsm3btmNzw8PDWbx4\\\n", + "cUZHR3PkyJGMjY0lSR599NHs3LkzX/ziF7Nly5a5WnqlCYAAUCYd7RnNZjOTk5Mto9lszvq63bt3\\\n", + "p6+vL0nS39+fXbt2nXTuvPPOS5IcPnw473rXu9r8A1CEAAgAZdKmADg0NJR6vd4yhoaGZn3d+Ph4\\\n", + "Ojs7kyT1ej2HDh066dzBgwfT29ubT3/607n88svb/xtwUh4DAwCl0p7nwAwO/o9s2rSpZVutVpv1\\\n", + "ua6urkxOTiZJJiYmsmjRopPOXXjhhdm1a1cef/zxDA4O5qGHHmrLmilOBRAAmKVWq6Wzs7NlHC8A\\\n", + "rlixItu3b0+SjIyMpLe394RzU1NTefnll5P8vCr4xje+8QycDb9MAASAEpnpaM8oqqenJ93d3Wk0\\\n", + "Gtm3b1/WrFmTDRs2JElWr16d/fv3p9FoZMGCBVm+fHmeeeaZrFq1Ku973/ty44035tZbbz1NvwQn\\\n", + "0jEzMzMz14s4l63/zta5XgIA54h7Pv6Z0/4d/8//94W2HOeHf/NHbTkOZycVQACAinETCACUipcB\\\n", + "c3ICIACUyKlcv0d1aQEDAFSMCiAAlIkKIAUIgABQKhIgJ6cFDABQMSqAAFAibgKhCAEQAMpEAKQA\\\n", + "ARAASkUC5ORcAwgAUDEqgABQJgqAFCAAAkCJuAmEIrSAAQAqRgUQAMpEBZACBEAAKBUJkJMTAF+j\\\n", + "l47O9QoAAE6NAAgAJeImEIoQAAGgTARACnAXMABAxQiAAAAVowUMAGXSoQfMyQmAAFAibgKhCC1g\\\n", + "AICKEQABACpGCxgAykQLmAJUAAEAKkYFEADKxF3AFCAAAkCJzMz1AjgnaAEDAFSMCiAAlIkOMAUI\\\n", + "gABQJgIgBWgBAwBUjAAIAFAxWsAAUCYeA0MBKoAAUCIzHe0Zp2Lz5s1pNBpZt25dpqamjm2fnp7O\\\n", + "wMBAGo1GNm7cmCT58Y9/nEajkcsvvzxXXnllJiYm2nj2FCUAAgCv2t69e3PgwIGMjo5myZIl2bZt\\\n", + "27G54eHhLF68OKOjozly5EjGxsbS1dWVBx98MDt37sxVV12Vr33ta3O4+uoSAAGAV2337t3p6+tL\\\n", + "kvT392fXrl0nnDv//PPT1dWVJDnvvPMyb54oMhdcAwgAZdKmSwCbzWaazWbLtlqtllqt1rJtfHw8\\\n", + "F110UZKkXq/n0KFDLXOdnZ3HnXv++edz55135qGHHmrPgjklYjcAMMvQ0FDq9XrLGBoamvW5rq6u\\\n", + "TE5OJkkmJiayaNGik85NTU1l7dq12bJlS8vnOXMEQAAok472jMHBwUxMTLSMwcHBWV+3YsWKbN++\\\n", + "PUkyMjKS3t7ek87dcMMNufrqq/Pe9763/edPIQIgAJRKexJgrVZLZ2dny/jl9m+S9PT0pLu7O41G\\\n", + "I/v27cuaNWuyYcOGJMnq1auzf//+NBqNLFiwIMuXL8/o6Gi++93v5hvf+EZWrVqVrVu3nubfg+Pp\\\n", + "mJmZmZnrRZzLrvmW/3ABKObbaz9z2r/jbQNfbstx9n99c1uOw9nJTSAAUCaeA00BAiAAlIkASAGu\\\n", + "AQQAqBgVQAAoERf2U4QACABlogVMAVrAAAAVIwACAFSMFjAAlEmHHjAnpwL4C+65554TzjebzUxO\\\n", + "TraM6amjZ2h1AFBAm14FR7lVMgA+9dRTs8a+ffty1113nXC/470Y+58fePgMrRoAoD0q2QK+7LLL\\\n", + "8tGPfjS//Ba8f//3fz/hfoODg9m0aVPLtk/+5dfavj4AgNOpkgHwN37jN/LHf/zHectb3tKy/cor\\\n", + "rzzhfrVabdaLsOe/vpI/IQBnK+1bCqhkenn44Yfzpje9adb2v/3bv52D1QAAnFmVDICdnZ1zvQQA\\\n", + "OD1UACmgkjeBAABUmQAIAFAxlWwBA0BpaQFTgAAIACXS4U0gFKAFDABQMQIgAEDFaAEDQJnoAFOA\\\n", + "AAgAZSIAUoAWMABAxQiAAAAVowUMACXiKTAUoQIIAFAxAiAAQMVoAQNAmWgBU4AKIABAxagAAkCZ\\\n", + "qABSgAAIACUi/1GEAAgAZeI5MBTgGkAAgIpRAQSAElEApAgVQACAihEAAQAqRgAEgDLpaNM4BZs3\\\n", + "b06j0ci6desyNTV1bPv09HQGBgbSaDSycePGY9vf//73p6urK8PDw6/uHHnNBEAAKJEznf/27t2b\\\n", + "AwcOZHR0NEuWLMm2bduOzQ0PD2fx4sUZHR3NkSNHMjY2liT55je/2RIIOfMEQADgVdu9e3f6+vqS\\\n", + "JP39/dm1a9dJ5xYvXnzmF0oLdwEDQJm06S7gZrOZZrPZsq1Wq6VWq7VsGx8fz0UXXZQkqdfrOXTo\\\n", + "UMtcZ2fnceeYWyqAAFAiHR3tGUNDQ6nX6y1jaGho1vd1dXVlcnIySTIxMZFFixYVmmNuCYAAwCyD\\\n", + "g4OZmJhoGYODg7M+t2LFimzfvj1JMjIykt7e3kJzzC0BEACYpVarpbOzs2X8cvs3SXp6etLd3Z1G\\\n", + "o5F9+/ZlzZo12bBhQ5Jk9erV2b9/fxqNRhYsWJDly5cnSQYGBnLPPffkc5/7XG677bYzel78XMfM\\\n", + "zMzMXC/iXHbNt7bO9RIAOEd8e+1nTvt3/Pp//0pbjvOv//MP2nIczk4qgAAAFSMAAgBUjMfAvEbv\\\n", + "+TVv3Qbg7NHhnyUKEAABoEwEQArQAgYAqBgVQAAokQ4lQAoQAAGgTOQ/CtACBgCoGBVAACgRBUCK\\\n", + "EAABoEQ8BoYitIABACpGBRAAykQFkAIEQAAoEfmPIgRAACgTCZACXAMIAFAxKoAAUCIKgBQhAAJA\\\n", + "iXgMDEVoAQMAVIwKIACUiQogBQiAAFAi8h9FaAEDAFSMCiAAlIibQChCBRAAoGIEQACAitECBoAS\\\n", + "0QKmCAEQAMpEAKQAARAASqRDAqQA1wACAFSMCiAAlIhrAClCBRAAoGIEQACAitECBoAS0QKmCAEQ\\\n", + "AEpE/qMILWAAgIpRAQSAMlECpAABEABKxDWAFKEFDAC8Jps3b06j0ci6desyNTV1bPv09HQGBgbS\\\n", + "aDSycePGY9u3bt2a3t7eXHXVVZmcnJyDFSMAAkCJdLRpFLV3794cOHAgo6OjWbJkSbZt23Zsbnh4\\\n", + "OIsXL87o6GiOHDmSsbGx/Od//mceeOCBPPbYY/n4xz+eP/mTP3nN58ypO+dbwDMzM3nkkUfy9NNP\\\n", + "Z2ZmJkmyfv36E+4zPT2dv/mbv8m8efPy4Q9/OPPnz0+SfO9738vHPvaxV9yv2Wym2Wy2bDv60tG8\\\n", + "7rxz/mcEoCza1AI+3r95tVottVqtZdvu3bvT19eXJOnv7883vvGNXHvttcfmrrzyymNzu3btyvPP\\\n", + "P5/LL788HR0d6e/vz3XXXdeeBXNKzvkK4Mc//vE8+OCDufXWW/PEE0/koYceOuk+69evzxNPPJE9\\\n", + "e/Zk5cqV+dd//dckyZ133nnC/YaGhlKv11vGI996uC3nAQDt0K4K4PH+zRsaGpr1fePj4+ns7EyS\\\n", + "1Ov1HDp06IRzJ/o8Z845HwCfffbZ3H777bnoootyxx135IUXXjjpPgcOHMiXvvSl3HLLLbnvvvvy\\\n", + "yU9+Mo8++uhJ9xscHMzExETLeP/aD7TjNADgrHK8f/MGBwdnfa6rq+vYdXwTExNZtGjRCedO9HnO\\\n", + "nHM+AM6fPz8vv/xyzj///Hz961/Pj370o5Pu89JLLx0ra7/97W/P8PBwvvKVr+Qf//EfT7hfrVZL\\\n", + "Z2dny9D+BeBs0tHRnnG8f/N+uf2bJCtWrMj27duTJCMjI+nt7T3h3KWXXpp/+Id/OO7nOXPO+QD4\\\n", + "7W9/Oy+//HLuvPPOPP/887n33ntPus/WrVvz/PPPH/v7woUL88ADD+SrX/3qaVwpAJwBZ/gukJ6e\\\n", + "nnR3d6fRaGTfvn1Zs2ZNNmzYkCRZvXp19u/fn0ajkQULFmT58uX5lV/5lVx55ZXp7e3Nfffdl09/\\\n", + "+tPtOW9OScfMf905wavylX+4Y66XAMA54g9W3nzav+N3btvSluM8/j82teU4nJ30LwGgRDwHmiIE\\\n", + "QAAoEW8CoYhz/hpAAABOjQogAJSKEiAnJwACQIloAVOEFjAAQMWoAAJAmagAUoAACAAlIv9RhAAI\\\n", + "ACXiGkCKcA0gAEDFCIAAABWjBQwAJaIFTBEqgAAAFaMCCAAlogBIEQIgAJSJBEgBWsAAABWjAggA\\\n", + "JeImEIoQAAGgROQ/ihAAAaBMJEAKcA0gAEDFqAACQIkoAFKEAAgAJeImEIrQAgYAqBgVQAAoEyVA\\\n", + "ChAAAaBExD+K0AIGAKgYFUAAKBMlQAoQAAGgROQ/itACBgCoGBVAACgRNwFThAAIAGUiAFKAAAgA\\\n", + "JSL/UYQA+BptveeFuV4CAOeIP1g51yuAnxMAAaBEXANIEe4CBgCoGAEQAKBiBEAAKJGOjvaMdtm8\\\n", + "eXMajUbWrVuXqamplrnp6ekMDAyk0Whk48aNx7a///3vT1dXV4aHh9u3EFoIgABQImdTANy7d28O\\\n", + "HDiQ0dHRLFmyJNu2bWuZHx4ezuLFizM6OpojR45kbGwsSfLNb36zJRDSfgIgADBLs9nM5ORky2g2\\\n", + "m6d0jN27d6evry9J0t/fn127dhWaX7x4cRvOgBMRAAGAWYaGhlKv11vG0NDQKR1jfHw8nZ2dSZJ6\\\n", + "vZ5Dhw6d0jynj8fAAECJtKt9Ozg4mE2bNrVsq9Vqx/3swYMHc80118za3tfXl8nJySTJxMREFi1a\\\n", + "1DLf1dV1wnlOHwEQAJilVqu9YuD7ZRdeeGF27Ngxa/uePXuyZcuWrF+/PiMjI+nt7W2ZX7FiRbZv\\\n", + "356VK1dmZGQk119/fTuWTgFawABQIh1tGu3Q09OT7u7uNBqN7Nu3L2vWrEmSbNiwIUmyevXq7N+/\\\n", + "P41GIwsWLMjy5cuTJAMDA7nnnnvyuc99LrfddlubVsMv6piZmZmZ60Wcy37tU1+e6yUAcI74yZ9v\\\n", + "Pu3f8aH/fXtbjvN3N2xsy3E4O2kBA0CJeBUcRWgBAwBUjAogAJSIAiBFCIAAUCZ6wBSgBQwAUDEq\\\n", + "gABQIup/FCEAAkCJ6ABThBYwAEDFqAACQImoAFKECiAAQMUIgAAAFaMFDAAlogVMEQIgAJSI/EcR\\\n", + "AiAAlIkESAGuAQQAqBgVQAAoEQVAihAAAaBE3ARCEVrAAAAVowIIACWiAkgRKoAAABUjAAIAVIwW\\\n", + "MACUiBYwRQiAAFAi8h9FaAEDAFRMJSuAzz77bP7iL/4iv/mbv5lly5blS1/6Ut70pjflD//wD9Pd\\\n", + "3f2K+zWbzTSbzZZtM9NH0zG/kj8jAGchLWCKqGQFcO3atbn44ovzk5/8JH19fbniiivS19eXgYGB\\\n", + "E+43NDSUer3eMib3PnqGVg0AJ9fR0Z5BuVUyAB49ejTXXXddbrrpptTr9Xz0ox9NX19fXnzxxRPu\\\n", + "Nzg4mImJiZbRecn7ztCqAQDao5K9y6mpqWN/vuuuu479+ejRoyfcr1arpVartWzT/gUAzjWVTC9/\\\n", + "9Vd/lZmZmXR0dOSSSy5J8vNQ+JWvfGWOVwYAr432LUVUMgBecMEFs7a9/vWvz6WXXjoHqwGA9pH/\\\n", + "KKKS1wACAFRZJSuAAFBWWsAUIQACQInIfxShBQwAUDEqgABQJkqAFKACCAAlcra9CWTz5s1pNBpZ\\\n", + "t25dy3N4k2R6ejoDAwNpNBrZuHFjkuTHP/5xGo1GLr/88lx55ZWZmJho32I4RgAEAE6LvXv35sCB\\\n", + "AxkdHc2SJUuybdu2lvnh4eEsXrw4o6OjOXLkSMbGxtLV1ZUHH3wwO3fuzFVXXZWvfe1rc7T6chMA\\\n", + "AaBEOto02mH37t3p6+tLkvT392fXrl0nnT///PPT1dWVJDnvvPMyb56ocjq4BhAASqRd7dtms5lm\\\n", + "s9my7XivRD2R8fHxXHTRRUmSer2eQ4cOzZrv7Ow87vzzzz+fO++8Mw899NCrPQVOQKwGgBJpVwVw\\\n", + "aGgo9Xq9ZQwNDR33Ow8ePJhVq1bNGkkyOTmZJJmYmMiiRYta9uvq6jru/NTUVNauXZstW7bM2of2\\\n", + "UAEEAGYZHBzMpk2bWra9UvXvwgsvzI4dO2Zt37NnT7Zs2ZL169dnZGQkvb29LfMrVqzI9u3bs3Ll\\\n", + "yoyMjOT6669Pktxwww25+uqr8973vrc9J8MsKoAAUCLtugu4Vquls7OzZZxK+zdJenp60t3dnUaj\\\n", + "kX379mXNmjVJkg0bNiRJVq9enf3796fRaGTBggVZvnx5RkdH893vfjff+MY3smrVqmzdurXtvxFJ\\\n", + "x8zMzMxcL+Jc9muf+vJcLwGAc8RP/nzzaf+Oge+1JzB9/WOfactxODupAAIAVIxrAAGgRNr5EGfK\\\n", + "SwAEgDIRAClACxgAoGJUAAGgRBQAKUIABIAScQ0gRWgBAwBUjAogAJSIAiBFCIAAUCJawBQhAAJA\\\n", + "ich/FOEaQACAilEBBIAS0QKmCAEQAEpEAKQILWAAgIpRAQSAElEApAgBEABKRAuYIrSAAQAqRgUQ\\\n", + "AEpEAZAiBEAAKBEtYIoQAF+jjpfnegUAAKdGAASAElEApAgBEABKRAuYIgRAACgR+Y8iPAYGAKBi\\\n", + "VAABoES0gClCAASAEpH/KEILGACgYlQAAaBEtIApQgAEgBIRAClCCxgAoGJUAAGgRBQAKUIABIAS\\\n", + "6dADpgAtYACAilEBBIASUf+jCAEQAEpEB5giBEAAKBH5jyJcAwgAnDabN29Oo9HIunXrMjU11TI3\\\n", + "PT2dgYGBNBqNbNy48dj23t7eXH755ent7c1TTz11hldcDQIgAJTIvI72jHbYu3dvDhw4kNHR0SxZ\\\n", + "siTbtm1rmR8eHs7ixYszOjqaI0eOZGxsLEny6KOPZufOnfniF7+YLVu2tGcxtBAAAaBEOto02mH3\\\n", + "7t3p6+tLkvT392fXrl2F5s8777wkyeHDh/Oud72rTavhF7kGEACYpdlsptlstmyr1Wqp1WqFjzE+\\\n", + "Pp6LLrooSVKv13Po0KFZ852dnbPmDx48mDVr1mT//v154IEHXstp8ApUAAGgRDo62jOGhoZSr9db\\\n", + "xtDQ0HG/8+DBg1m1atWskSSTk5NJkomJiSxatKhlv66uruPOX3jhhdm1a1fuv//+DA4OnqZfqtpU\\\n", + "AAGgRNrVvh0cHMymTZtatr1S9e/CCy/Mjh07Zm3fs2dPtmzZkvXr12dkZCS9vb0t8ytWrMj27duz\\\n", + "cuXKjIyM5Prrr8/U1FTmz5+fefPmpV6v541vfGObzohfpAIIAMxSq9XS2dnZMk6l/ZskPT096e7u\\\n", + "TqPRyL59+7JmzZokyYYNG5Ikq1evzv79+9NoNLJgwYIsX748zzzzTFatWpX3ve99ufHGG3Prrbe2\\\n", + "/dxIOmZmZmbmehHnsrcNfHmulwDAOWL/1zef9u+4Zfsd7TnOf7u5Lcfh7KQFDAAl4kHQFKEFDABQ\\\n", + "MSqAAFAi3gVMEQIgAJSI/EcRAiAAlEi7XuNGubkGEACgYlQAAaBEFAApQgAEgBJxEwhFaAEDAFSM\\\n", + "CiAAlIgCIEUIgABQIlrAFKEF/H9t3LjxpJ9pNpuZnJxsGTPTR0//4gAA2qiSFcALLrggb3vb2zJv\\\n", + "3rzMzMwkSX74wx9m9+7defzxx19xv6GhoXzhC19o2dbZc0Xqv/2B07peAChKAZAiKlkB3Lp1a97+\\\n", + "9rfns5/9bH7wgx/kBz/4QZYvX37C8Jckg4ODmZiYaBmdS993hlYNACfX0dGeQblVMgBee+21+d73\\\n", + "vpejR4/mIx/5SO67775jlcATqdVq6ezsbBkd8ytZRAUAzmGVDIBJMm/evKxduzZ/+Zd/maNHj6an\\\n", + "p2eulwQAr5kKIEVUvnw1b968rF+/fq6XAQBtUdnKDqek8gEQAMpE9Y4i/I8CAEDFqAACQIkoAFKE\\\n", + "AAgAJaIFTBFawAAAFaMCCAAlogBIEQIgAJSIFjBFaAEDAFSMCiAAlIgCIEUIgABQIlrAFKEFDABQ\\\n", + "MSqAAFAiCoAUIQACQIloAVOEAAgAJeLaLorw3wkAQMWoAAJAiWgBU4QACAAlIv9RhBYwAEDFqAAC\\\n", + "QIloAVOECiAAlEhHm0a7bN68OY1GI+vWrcvU1FTL3PT0dAYGBtJoNLJx48aWubGxsXR0dORnP/tZ\\\n", + "G1fDfxEAAYDTYu/evTlw4EBGR0ezZMmSbNu2rWV+eHg4ixcvzujoaI4cOZKxsbFjc3fccUfe/e53\\\n", + "n+klV4YACAAl0tHRntEOu3fvTl9fX5Kkv78/u3btKjT/2GOPZenSpXnzm9/cnoUwiwAIACXSrgDY\\\n", + "bDYzOTnZMprN5imtZXx8PJ2dnUmSer2eQ4cOFZrfunVrbrrppjb8GrwSARAAmGVoaCj1er1lDA0N\\\n", + "HfezBw8ezKpVq2aNJJmcnEySTExMZNGiRS37dXV1zZrfuXNnLrnkkixcuPD0nRzuAgaAMmnXDRyD\\\n", + "g4PZtGlTy7ZarXbcz1544YXZsWPHrO179uzJli1bsn79+oyMjKS3t7dlfsWKFdm+fXtWrlyZkZGR\\\n", + "XH/99fnBD36Q73//+3nsscfy5JNP5rrrrsv999/fprPiv6gAAkCJtKsFXKvV0tnZ2TJeKQC+kp6e\\\n", + "nnR3d6fRaGTfvn1Zs2ZNkmTDhg1JktWrV2f//v1pNBpZsGBBli9fnptvvjmPPvpoHnrooSxdujR3\\\n", + "3313238jko6ZmZmZuV7EuextA1+e6yUAcI7Y//XNp/077n3ijrYcZ917bm7LcTg7qQACAFSMawAB\\\n", + "oES8CYQiBEAAKJGOuLKLk9MCBgCoGBVAACgRLWCKcBcw0FbNZjNDQ0MZHBw85UdGAHBmCIBAW01O\\\n", + "TqZer2diYuLYK54AOLu4BhAAoGIEQACAihEAAQAqRgAE2qpWq+WP/uiP3AACcBZzEwgAQMWoAAIA\\\n", + "VIwACABQMQIgAEDFCIAAABUjAAIAVMzr5noBQHk8++yzueaaa3L06NF0d3fnO9/5TubPnz/XywLg\\\n", + "l6gAAm1z/vnn5+GHH87o6GguvvjiPPLII3O9JACOQwUQaJvnnnsuN954Y8bHx/P0009n2bJlc70k\\\n", + "AI5DBRBom/vuuy+rV6/Ozp0709/fH8+ZBzg7qQACbXPFFVdk3bp1efDBB/OGN7xhrpcDwCvwKjgA\\\n", + "gIrRAgYAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACrGm0CAtnn22WdzzTXX\\\n", + "5OjRo+nu7s53vvOdzJ8/f66XBcAvUQEE2ub888/Pww8/nNHR0Vx88cV55JFH5npJAByHCiDQNs89\\\n", + "91xuvPHGjI+P5+mnn86yZcvmekkAHIcKINA29913X1avXp2dO3emv78/XjUOcHZSAQTa5oorrsi6\\\n", + "devy4IMP5g1veMNcLweAV9Ax43/RAQAqRQsYAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoR\\\n", + "AAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBi\\\n", + "BEAAgIoRAAEAKkYABACoGAEQAKBi/g/5HxvHmnZorwAAAABJRU5ErkJggg==\\\n", + "\"\n", + " frames[6] = \"\\\n", + "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", + "AAAPYQGoP6dpAAAkwUlEQVR4nO3db4xd5X0v+u/YCdsk8czgNAwMEnnTC0blmClJKuxhgwknk7n1\\\n", + "hBtdpwRCbcK0xSXiENe5OT4TRSmRSIac5DiYqqLcKEFAYuWPSVtwU0Y4gDvYUwG6sklNVaUVrSMT\\\n", + "0xYPM8QNm/Ew90VOreyMsZdh22Ov9flIj2SvZ6+1n7WF5C+/3/rTNjMzMxMAACpj3lwvAACAE0sA\\\n", + "BACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoR\\\n", + "AAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBi\\\n", + "BEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACo\\\n", + "GAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAIFZbr311rzyyiuH/v65z30u3/rWt+Zw\\\n", + "RYf3ox/9KMuXL88FF1yQCy64IN///vfnekkAp4S2mZmZmbleBHByaWtry/j4eDo7O+d6Ka/rP/7j\\\n", + "P3LhhRfmvvvuy6WXXprp6ens378/73rXu+Z6aQAnPRVAKLHrrrsu733ve7NkyZKsWLEi+/btO+o+\\\n", + "f/iHf5gkqdfr6enpyb/+67/m4x//eO64444kv6gOXn311fnQhz6U8847LwMDA/m7v/u7fPCDH8x5\\\n", + "552Xa6+9Nq+99lqS5OWXX84f/MEf5Ld+67eyZMmS3HjjjXn11Vdbcm6bNm3KJZdckksvvTRJMn/+\\\n", + "fOEPoCABEErsjjvuyNNPP51nnnkm9Xo9t95666G53/7t387TTz89a58/+7M/S5KMjo5m586dOfPM\\\n", + "M2d95umnn859992Xf/iHf8jLL7+c3//938/mzZvz7LPP5u///u/z13/910mST33qU6nX63nyySez\\\n", + "a9euvPbaa9m4ceOs47388svp6ek57PjgBz942HN79tlnU6vVMjAwkJ6enqxevTr/9m//9kZ+JoDK\\\n", + "ectcLwA4fjZt2pT7778/r7zySl555ZX82q/92qG5H/zgB2/4uH19fTnjjDOSJBdffHFqtVoWLlyY\\\n", + "JPnN3/zN/PjHP06S/MVf/EXGxsayYcOGJMnPf/7zzJ8/f9bxFi5cmJ07dx7TGg4ePJitW7fmb//2\\\n", + "b9Pd3Z3PfOYzuemmm7J58+Y3fF4AVSEAQkk98cQTufPOOzM2NpYzzzwzDz74YD73uc+15NgLFiw4\\\n", + "9Of58+fP+vvBgweTJDMzM3nggQdy3nnnHfF4L7/8cur1+mHnurq6MjIyMmv7ueeemyuuuCLnnHNO\\\n", + "kuR3f/d3X7daCEAzARBKanx8PAsXLsw73/nOvPrqq7n77rsL77tw4cJMTEy86ZtAPvzhD+dLX/pS\\\n", + "7r777rzlLW/J+Ph4Xnzxxfz6r//6rO871grg1Vdfna9//euZnJxMe3t7fvCDH+Siiy56U+sFqArX\\\n", + "AEJJ9ff35/zzz8/5559/6IaOX/Z61wAmv7h27wMf+MChm0DeqK9+9as5/fTT09PTkyVLluTKK6/M\\\n", + "P//zP7/h4/2yc889N5/5zGeybNmyLFmyJI8++uih6xcBODKPgQEAqBgVQACAihEAAQAqRgAEAKgY\\\n", + "ARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGK8Cu5N+timjXO9BABOEZs+9snj/h3/5eJPteQ4P/r/\\\n", + "/ldLjsPJSQUQAKBiVAABoEza5noBnApUAAEAKkYFEADKpE0JkKMTAAGgTOQ/CtACBgDelPXr16de\\\n", + "r2fVqlWZmpo6tH16ejqDg4Op1+tZu3Zt0z5jY2Npa2vLz372sxO8WhIBEADKpa1Fo6Bdu3Zl7969\\\n", + "GR0dzeLFi7N58+ZDc1u2bEl3d3dGR0dz4MCBjI2NHZq788478573vOdNnChvhgAIAKXSmgTYaDQy\\\n", + "OTnZNBqNxqxv27FjR/r6+pIk/f392b59+1HnnnjiiSxZsiTveMc7Wn/6FCIAAgCzDA8Pp6Ojo2kM\\\n", + "Dw/P+tz4+Hja29uTJB0dHdm/f/9R5zZu3Jibb775BJwFr8dNIABQIjMtuglkaGgo69ata9pWq9Vm\\\n", + "fa6zszOTk5NJkomJiSxatOiIc9u2bctFF12UhQsXtmahvCEqgABQJi26BrBWq6W9vb1pHC4ALlu2\\\n", + "LFu3bk2SjIyMpLe394hzu3btyg9/+MP09/fnmWeeyfXXX39cfgaOTAAEAN6wnp6edHV1pV6vZ/fu\\\n", + "3Vm5cmXWrFmTJBkYGMiePXtSr9ezYMGCLF26NLfccksee+yxPPzww1myZEnuvffeOT6DamqbmZmZ\\\n", + "metFnMo+tmnjXC8BgFPEpo998rh/x4VL/3tLjvN3Y/+zJcfh5KQCCABQMW4CAYAy8SYQClABBACo\\\n", + "GBVAACiTNiVAjk4ABIAykf8oQAsYAKBiVAABoEQ8240iBEAAKBPXAFKAFjAAQMWoAAJAmSgAUoAA\\\n", + "CAClIgFydFrAAAAVowIIAGWiAEgBAiAAlIkASAECIACUyIzHwFCAawABACpGAAQAqBgtYAAoEy1g\\\n", + "ClABBACoGBVAACgTBUAKEAABoERm5noBnBIqGQCnp6ezefPmbN++Pfv378+iRYvS29ublStX5i1v\\\n", + "qeRPAgBUSCXTzuDgYM4///x8/OMfT0dHRyYmJjIyMpIbbrgh999//+vu12g00mg0mrZNTx3M/LdW\\\n", + "8mcE4GTkJhAKqGRyee6553Lvvfc2bbv44otz2WWXHXG/4eHhfP7zn2/aduH//cH8l5X/Z8vXCABv\\\n", + "iPxHAZUMgMuWLcvq1avT19eX9vb2TE5OZuvWrbnkkkuOuN/Q0FDWrVvXtO0P/vxrx3OpAAAtV8kA\\\n", + "ePvtt+eZZ57Jjh078pOf/CSdnZ35oz/6o1x00UVH3K9Wq6VWqzVt0/4F4KSiBUwBlU0vS5YsyZIl\\\n", + "S+Z6GQDQUu4CpojKBkAAKCUFQArwJhAAgIpRAQSAMnENIAWoAAIAVIwACABQMVrAAFAiM1rAFCAA\\\n", + "AkCZyH8UoAUMAFAxAiAAQMUIgABQIjNtbS0Zx2L9+vWp1+tZtWpVpqamDm2fnp7O4OBg6vV61q5d\\\n", + "e2h7b29vLr/88vT29ubZZ59t1alzDARAAOAN27VrV/bu3ZvR0dEsXrw4mzdvPjS3ZcuWdHd3Z3R0\\\n", + "NAcOHMjY2FiS5LHHHsu2bdvyhS98IRs2bJirpVeaAAgAZdLWmtFoNDI5Odk0Go3GrK/bsWNH+vr6\\\n", + "kiT9/f3Zvn37UedOO+20JMnLL7+cCy+8sMU/AEUIgABQJi0KgMPDw+no6Ggaw8PDs75ufHw87e3t\\\n", + "SZKOjo7s37//qHP79u1Lb29vPvGJT+Tyyy9v/W/AUXkMDACUSmueAzM09D+ybt26pm21Wm3W5zo7\\\n", + "OzM5OZkkmZiYyKJFi446d9ZZZ2X79u158sknMzQ0lIcffrgla6Y4FUAAYJZarZb29vamcbgAuGzZ\\\n", + "smzdujVJMjIykt7e3iPOTU1N5bXXXkvyi6rg2972thNwNvwqARAASmSmrTWjqJ6ennR1daVer2f3\\\n", + "7t1ZuXJl1qxZkyQZGBjInj17Uq/Xs2DBgixdujQ//elPs3z58lxxxRW56aabcttttx2nX4IjaZuZ\\\n", + "mZmZ60Wcyj62aeNcLwGAU8Smj33yuH/H//F/fb4lx/nxX/5xS47DyUkFEACgYtwEAgCl4mXAHJ0A\\\n", + "CAAlcizX71FdWsAAABWjAggAZaICSAECIACUigTI0WkBAwBUjAogAJSIm0AoQgAEgDIRAClAAASA\\\n", + "UpEAOTrXAAIAVIwKIACUiQIgBQiAAFAibgKhCC1gAICKUQEEgDJRAaQAARAASkUC5OgEwDfptZm5\\\n", + "XgEAwLERAAGgRNwEQhECIACUiQBIAe4CBgCoGAEQAKBitIABoEza9IA5OgEQAErETSAUoQUMAFAx\\\n", + "AiAAQMVoAQNAmWgBU4AKIABAxagAAkCZuAuYAgRAACgRr6inCC1gAICKUQEEgDLRAaYAARAAykQA\\\n", + "pAAtYACAihEAAQAqRgsYAMrEY2AoQAUQAEpkpq0141isX78+9Xo9q1atytTU1KHt09PTGRwcTL1e\\\n", + "z9q1a5Mkzz33XOr1ei6//PKsWLEiExMTLTx7ihIAAYA3bNeuXdm7d29GR0ezePHibN68+dDcli1b\\\n", + "0t3dndHR0Rw4cCBjY2Pp7OzMQw89lG3btuWqq67K1772tTlcfXUJgADAG7Zjx4709fUlSfr7+7N9\\\n", + "+/Yjzp1xxhnp7OxMkpx22mmZN08UmQuuAQSAMmnRJYCNRiONRqNpW61WS61Wa9o2Pj6es88+O0nS\\\n", + "0dGR/fv3N821t7cfdu6ll17KXXfdlYcffrg1C+aYiN0AwCzDw8Pp6OhoGsPDw7M+19nZmcnJySTJ\\\n", + "xMREFi1adNS5qampXHfdddmwYUPT5zlxBEAAKJO21oyhoaFMTEw0jaGhoVlft2zZsmzdujVJMjIy\\\n", + "kt7e3qPO3Xjjjbn66qtz6aWXtv78KUQABIBSaU0CrNVqaW9vbxq/2v5Nkp6ennR1daVer2f37t1Z\\\n", + "uXJl1qxZkyQZGBjInj17Uq/Xs2DBgixdujSjo6P57ne/m3vuuSfLly/Pxo0bj/PvweG0zczMzMz1\\\n", + "Ik5l13zLf7gAFPPt6z553L/j3MEvteQ4e76xviXH4eTkJhAAKBPPgaYAARAAykQApADXAAIAVIwK\\\n", + "IACUiAv7KUIABIAy0QKmAC1gAICKEQABACpGCxgAyqRND5ijUwH8Jffdd98R5xuNRiYnJ5vG9NTB\\\n", + "E7Q6ACigRa+Co9wqGQCfffbZWWP37t25++67j7jf4V6M/fcPPnKCVg0A0BqVbAFfcskl+chHPpJf\\\n", + "fQvev/zLvxxxv6Ghoaxbt65p2+99/2stXx8AwPFUyQB4wQUX5Mtf/nLe+c53Nm1fsWLFEfer1Wqz\\\n", + "XoQ9/62V/AkBOFlp31JAJdPLI488kre//e2ztv/VX/3VHKwGAODEqmQAbG9vn+slAMDxoQJIAZW8\\\n", + "CQQAoMoEQACAiqlkCxgASksLmAIEQAAokTZvAqEALWAAgIoRAAEAKkYLGADKRAeYAgRAACgTAZAC\\\n", + "tIABACpGAAQAqBgtYAAoEU+BoQgVQACAihEAAQAqRgsYAMpEC5gCVAABACpGBRAAykQFkAIEQAAo\\\n", + "EfmPIgRAACgTz4GhANcAAgBUjAogAJSIAiBFqAACAFSMAAgAUDECIACUSVuLxjFYv3596vV6Vq1a\\\n", + "lampqUPbp6enMzg4mHq9nrVr1x7a/v73vz+dnZ3ZsmXLGztH3jQBEABK5ETnv127dmXv3r0ZHR3N\\\n", + "4sWLs3nz5kNzW7ZsSXd3d0ZHR3PgwIGMjY0lSb75zW82BUJOPAEQAHjDduzYkb6+viRJf39/tm/f\\\n", + "ftS57u7uE79QmrgLGADKpEV3ATcajTQajaZttVottVqtadv4+HjOPvvsJElHR0f279/fNNfe3n7Y\\\n", + "OeaWCiAAlEhbW2vG8PBwOjo6msbw8PCs7+vs7Mzk5GSSZGJiIosWLSo0x9wSAAGAWYaGhjIxMdE0\\\n", + "hoaGZn1u2bJl2bp1a5JkZGQkvb29heaYWwIgADBLrVZLe3t70/jV9m+S9PT0pKurK/V6Pbt3787K\\\n", + "lSuzZs2aJMnAwED27NmTer2eBQsWZOnSpUmSwcHB3HffffnsZz+b22+//YSeF7/QNjMzMzPXiziV\\\n", + "XfOtjXO9BABOEd++7pPH/Tt+/b9/pSXH+cf/+f+05DicnFQAAQAqRgAEAKgYj4F5ky7q9tZtAE4e\\\n", + "bf5ZogABEADKRACkAC1gAICKUQEEgBJpUwKkAAEQAMpE/qMALWAAgIpRAQSAElEApAgBEABKxGNg\\\n", + "KEILGACgYlQAAaBMVAApQAAEgBKR/yhCAASAMpEAKcA1gAAAFaMCCAAlogBIEQIgAJSIx8BQhBYw\\\n", + "AEDFqAACQJmoAFKAAAgAJSL/UYQWMABAxagAAkCJuAmEIlQAAQAqRgAEAKgYLWAAKBEtYIoQAAGg\\\n", + "TARAChAAAaBE2iRACnANIABAxagAAkCJuAaQIlQAAQAqRgAEAKgYLWAAKBEtYIoQAAGgROQ/itAC\\\n", + "BgCoGBVAACgTJUAKEAABoERcA0gRWsAAwJuyfv361Ov1rFq1KlNTU4e2T09PZ3BwMPV6PWvXrj20\\\n", + "fePGjent7c1VV12VycnJOVgxAiAAlEhbi0ZRu3btyt69ezM6OprFixdn8+bNh+a2bNmS7u7ujI6O\\\n", + "5sCBAxkbG8u///u/58EHH8wTTzyRj370o/nTP/3TN33OHLtTvgU8MzOTRx99NM8//3xmZmaSJKtX\\\n", + "rz7iPtPT0/nLv/zLzJs3Lx/60Icyf/78JMn3vve9/M7v/M7r7tdoNNJoNJq2HXz1YN5y2in/MwJQ\\\n", + "Fi1qAR/u37xarZZarda0bceOHenr60uS9Pf355577sm11157aG7FihWH5rZv356XXnopl19+edra\\\n", + "2tLf35/rr7++NQvmmJzyFcCPfvSjeeihh3Lbbbfl6aefzsMPP3zUfVavXp2nn346O3fuzGWXXZZ/\\\n", + "/Md/TJLcddddR9xveHg4HR0dTePxTY+05DwAoBVaVQE83L95w8PDs75vfHw87e3tSZKOjo7s37//\\\n", + "iHNH+jwnzikfAF944YXccccdOfvss3PnnXfm5z//+VH32bt3b774xS/m1ltvzaZNm/J7v/d7eeyx\\\n", + "x46639DQUCYmJprG8o99oBWnAQAnlcP9mzc0NDTrc52dnYeu45uYmMiiRYuOOHekz3PinPIBcP78\\\n", + "+Xnttddyxhln5Bvf+Eb+6Z/+6aj7vPrqq4fK2u9+97uzZcuWfOUrX8mPfvSjI+5Xq9XS3t7eNLR/\\\n", + "ATiZtLW1Zhzu37xfbf8mybJly7J169YkycjISHp7e4849773vS9/8zd/c9jPc+Kc8gHw29/+dl57\\\n", + "7bXcddddeemll3L//fcfdZ+NGzfmpZdeOvT3hQsX5sEHH8xXv/rV47hSADgBTvBdID09Penq6kq9\\\n", + "Xs/u3buzcuXKrFmzJkkyMDCQPXv2pF6vZ8GCBVm6dGne9a53ZcWKFent7c2mTZvyiU98ojXnzTFp\\\n", + "m/nPOyd4Q4Yfu3OulwDAKWLoiluO+3f81u0bWnKcJ//HupYch5OT/iUAlIjnQFOEAAgAJeJNIBRx\\\n", + "yl8DCADAsVEBBIBSUQLk6ARAACgRLWCK0AIGAKgYFUAAKBMVQAoQAAGgROQ/ihAAAaBEXANIEa4B\\\n", + "BACoGAEQAKBitIABoES0gClCBRAAoGJUAAGgRBQAKUIABIAykQApQAsYAKBiVAABoETcBEIRAiAA\\\n", + "lIj8RxECIACUiQRIAa4BBACoGBVAACgRBUCKEAABoETcBEIRWsAAABWjAggAZaIESAECIACUiPhH\\\n", + "EVrAAAAVowIIAGWiBEgBAiAAlIj8RxFawAAAFaMCCAAl4iZgihAAAaBMBEAKEAABoETkP4oQAN+k\\\n", + "u77fmOslAHCKGLpirlcAvyAAAkCJuAaQItwFDABQMQIgAEDFCIAAUCJtba0ZrbJ+/frU6/WsWrUq\\\n", + "U1NTTXPT09MZHBxMvV7P2rVrD21///vfn87OzmzZsqV1C6GJAAgAJXIyBcBdu3Zl7969GR0dzeLF\\\n", + "i7N58+am+S1btqS7uzujo6M5cOBAxsbGkiTf/OY3mwIhrScAAgCzNBqNTE5ONo1G49iefLFjx470\\\n", + "9fUlSfr7+7N9+/ZC893d3S04A45EAAQAZhkeHk5HR0fTGB4ePqZjjI+Pp729PUnS0dGR/fv3H9M8\\\n", + "x4/HwABAibSqfTs0NJR169Y1bavVaof97L59+3LNNdfM2t7X15fJyckkycTERBYtWtQ039nZecR5\\\n", + "jh8BEACYpVarvW7g+1VnnXVWHn/88Vnbd+7cmQ0bNmT16tUZGRlJb29v0/yyZcuydevWXHbZZRkZ\\\n", + "GckNN9zQiqVTgBYwAJRIW4tGK/T09KSrqyv1ej27d+/OypUrkyRr1qxJkgwMDGTPnj2p1+tZsGBB\\\n", + "li5dmiQZHBzMfffdl89+9rO5/fbbW7QaflnbzMzMzFwv4lR27n/78lwvAYBTxJ4/+fRx/47f/n/v\\\n", + "aMlxfnDj2pYch5OTFjAAlIhXwVGEFjAAQMWoAAJAiSgAUoQACABlogdMAVrAAAAVowIIACWi/kcR\\\n", + "AiAAlIgOMEVoAQMAVIwKIACUiAogRagAAgBUjAAIAFAxWsAAUCJawBQhAAJAich/FCEAAkCZSIAU\\\n", + "4BpAAICKUQEEgBJRAKQIARAASsRNIBShBQwAUDEqgABQIiqAFKECCABQMQIgAEDFaAEDQIloAVOE\\\n", + "AAgAJSL/UYQWMABAxVSyAvjCCy/k61//en7jN34jF198cb74xS/m7W9/ez796U+nq6vrdfdrNBpp\\\n", + "NBpN22amD6ZtfiV/RgBOQlrAFFHJCuB1112Xc845Jz/5yU/S19eXK6+8Mn19fRkcHDzifsPDw+no\\\n", + "6Ggak08/eoJWDQBH19bWmkG5VTIAHjx4MNdff31uvvnmdHR05CMf+Uj6+vryyiuvHHG/oaGhTExM\\\n", + "NI32977/BK0aAKA1Ktm7nJqaOvTnu++++9CfDx48eMT9arVaarVa0zbtXwDgVFPJ9PLnf/7nmZmZ\\\n", + "SVtbWy666KIkvwiFX/nKV+Z4ZQDw5mjfUkQlA+CZZ545a9tb3/rWvO9975uD1QBA68h/FFHJawAB\\\n", + "AKqskhVAACgrLWCKEAABoETkP4rQAgYAqBgVQAAoEyVAClABBIASOdneBLJ+/frU6/WsWrWq6Tm8\\\n", + "STI9PZ3BwcHU6/WsXbs2SfLcc8+lXq/n8ssvz4oVKzIxMdG6xXCIAAgAHBe7du3K3r17Mzo6msWL\\\n", + "F2fz5s1N81u2bEl3d3dGR0dz4MCBjI2NpbOzMw899FC2bduWq666Kl/72tfmaPXlJgACQIm0tWi0\\\n", + "wo4dO9LX15ck6e/vz/bt2486f8YZZ6SzszNJctppp2XePFHleHANIACUSKvat41GI41Go2nb4V6J\\\n", + "eiTj4+M5++yzkyQdHR3Zv3//rPn29vbDzr/00ku566678vDDD7/RU+AIxGoAKJFWVQCHh4fT0dHR\\\n", + "NIaHhw/7nfv27cvy5ctnjSSZnJxMkkxMTGTRokVN+3V2dh52fmpqKtddd102bNgwax9aQwUQAJhl\\\n", + "aGgo69ata9r2etW/s846K48//vis7Tt37syGDRuyevXqjIyMpLe3t2l+2bJl2bp1ay677LKMjIzk\\\n", + "hhtuSJLceOONufrqq3PppZe25mSYRQUQAEqkVXcB12q1tLe3N41jaf8mSU9PT7q6ulKv17N79+6s\\\n", + "XLkySbJmzZokycDAQPbs2ZN6vZ4FCxZk6dKlGR0dzXe/+93cc889Wb58eTZu3Njy34ikbWZmZmau\\\n", + "F3EqO/e/fXmulwDAKWLPn3z6uH/H4PdaE5i+8TufbMlxODmpAAIAVIxrAAGgRFr5EGfKSwAEgDIR\\\n", + "AClACxgAoGJUAAGgRBQAKUIABIAScQ0gRWgBAwBUjAogAJSIAiBFCIAAUCJawBQhAAJAich/FOEa\\\n", + "QACAilEBBIAS0QKmCAEQAEpEAKQILWAAgIpRAQSAElEApAgBEABKRAuYIrSAAQAqRgUQAEpEAZAi\\\n", + "BEAAKBEtYIoQAN+sA6/N9QoAAI6JAAgAJaIASBECIACUiBYwRQiAAFAi8h9FeAwMAEDFqAACQIlo\\\n", + "AVOEAAgAJSL/UYQWMABAxagAAkCJaAFThAAIACUiAFKEFjAAQMWoAAJAiSgAUoQACAAl0qYHTAFa\\\n", + "wAAAFaMCCAAlov5HEQIgAJSIDjBFCIAAUCLyH0W4BhAAOG7Wr1+fer2eVatWZWpqqmlueno6g4OD\\\n", + "qdfrWbt27aHtvb29ufzyy9Pb25tnn332BK+4GgRAACiReW2tGa2wa9eu7N27N6Ojo1m8eHE2b97c\\\n", + "NL9ly5Z0d3dndHQ0Bw4cyNjYWJLksccey7Zt2/KFL3whGzZsaM1iaCIAAkCJtLVotMKOHTvS19eX\\\n", + "JOnv78/27dsLzZ922mlJkpdffjkXXnhhi1bDL3MNIAAwS6PRSKPRaNpWq9VSq9UKH2N8fDxnn312\\\n", + "kqSjoyP79++fNd/e3j5rft++fVm5cmX27NmTBx988M2cBq9DBRAASqStrTVjeHg4HR0dTWN4ePiw\\\n", + "37lv374sX7581kiSycnJJMnExEQWLVrUtF9nZ+dh588666xs3749DzzwQIaGho7TL1VtKoAAUCKt\\\n", + "at8ODQ1l3bp1Tdter/p31lln5fHHH5+1fefOndmwYUNWr16dkZGR9Pb2Ns0vW7YsW7duzWWXXZaR\\\n", + "kZHccMMNmZqayvz58zNv3rx0dHTkbW97W4vOiF+mAggAzFKr1dLe3t40jqX9myQ9PT3p6upKvV7P\\\n", + "7t27s3LlyiTJmjVrkiQDAwPZs2dP6vV6FixYkKVLl+anP/1pli9fniuuuCI33XRTbrvttpafG0nb\\\n", + "zMzMzFwv4lR27uCX5noJAJwi9nxj/XH/jlu33tma4/zXW1pyHE5OWsAAUCIeBE0RWsAAABWjAggA\\\n", + "JeJdwBQhAAJAich/FCEAAkCJtOo1bpSbawABACpGBRAASkQBkCIEQAAoETeBUIQWMABAxagAAkCJ\\\n", + "KABShAAIACWiBUwRWsD/29q1a4/6mUajkcnJyaYxM33w+C8OAKCFKlkBPPPMM3Puuedm3rx5mZmZ\\\n", + "SZL8+Mc/zo4dO/Lkk0++7n7Dw8P5/Oc/37StvefKdPzmB47regGgKAVAiqhkBXDjxo1597vfnU99\\\n", + "6lN56qmn8tRTT2Xp0qVHDH9JMjQ0lImJiabRvuSKE7RqADi6trbWDMqtkgHw2muvzfe+970cPHgw\\\n", + "H/7wh7Np06ZDlcAjqdVqaW9vbxpt8ytZRAUATmGVDIBJMm/evFx33XX5/ve/n4MHD6anp2eulwQA\\\n", + "b5oKIEVUvnw1b968rF69eq6XAQAtUdnKDsek8gEQAMpE9Y4i/I8CAEDFqAACQIkoAFKEAAgAJaIF\\\n", + "TBFawAAAFaMCCAAlogBIEQIgAJSIFjBFaAEDAFSMCiAAlIgCIEUIgABQIlrAFKEFDABQMSqAAFAi\\\n", + "CoAUIQACQIloAVOEAAgAJeLaLorw3wkAQMWoAAJAiWgBU4QACAAlIv9RhBYwAEDFqAACQIloAVOE\\\n", + "CiAAlEhbi0arrF+/PvV6PatWrcrU1FTT3PT0dAYHB1Ov17N27dqmubGxsbS1teVnP/tZC1fDfxIA\\\n", + "AYDjYteuXdm7d29GR0ezePHibN68uWl+y5Yt6e7uzujoaA4cOJCxsbFDc3feeWfe8573nOglV4YA\\\n", + "CAAl0tbWmtEKO3bsSF9fX5Kkv78/27dvLzT/xBNPZMmSJXnHO97RmoUwiwAIACXSqgDYaDQyOTnZ\\\n", + "NBqNxjGtZXx8PO3t7UmSjo6O7N+/v9D8xo0bc/PNN7fg1+D1CIAAwCzDw8Pp6OhoGsPDw4f97L59\\\n", + "+7J8+fJZI0kmJyeTJBMTE1m0aFHTfp2dnbPmt23blosuuigLFy48fieHu4ABoExadQPH0NBQ1q1b\\\n", + "17StVqsd9rNnnXVWHn/88Vnbd+7cmQ0bNmT16tUZGRlJb29v0/yyZcuydevWXHbZZRkZGckNN9yQ\\\n", + "p556Kj/84Q/zxBNP5Jlnnsn111+fBx54oEVnxX9SAQSAEmlVC7hWq6W9vb1pvF4AfD09PT3p6upK\\\n", + "vV7P7t27s3LlyiTJmjVrkiQDAwPZs2dP6vV6FixYkKVLl+aWW27JY489locffjhLlizJvffe2/Lf\\\n", + "iKRtZmZmZq4XcSo7d/BLc70EAE4Re76x/rh/x/1P39mS46x67y0tOQ4nJxVAAICKcQ0gAJSIN4FQ\\\n", + "hAAIACXSFld2cXRawAAAFaMCCAAlogVMEe4CBlqq0WhkeHg4Q0NDx/zICABODAEQaKnJycl0dHRk\\\n", + "YmLi0CueADi5uAYQAKBiBEAAgIoRAAEAKkYABFqqVqvlj//4j90AAnAScxMIAEDFqAACAFSMAAgA\\\n", + "UDECIABAxQiAAAAVIwACAFTMW+Z6AUB5vPDCC7nmmmty8ODBdHV15Tvf+U7mz58/18sC4FeoAAIt\\\n", + "c8YZZ+SRRx7J6OhozjnnnDz66KNzvSQADkMFEGiZF198MTfddFPGx8fz/PPP5+KLL57rJQFwGCqA\\\n", + "QMts2rQpAwMD2bZtW/r7++M58wAnJxVAoGWuvPLKrFq1Kg899FBOP/30uV4OAK/Dq+AAACpGCxgA\\\n", + "oGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYbwIBWuaFF17INddck4MHD6ar\\\n", + "qyvf+c53Mn/+/LleFgC/QgUQaJkzzjgjjzzySEZHR3POOefk0UcfneslAXAYKoBAy7z44ou56aab\\\n", + "Mj4+nueffz4XX3zxXC8JgMNQAQRaZtOmTRkYGMi2bdvS398frxoHODmpAAItc+WVV2bVqlV56KGH\\\n", + "cvrpp8/1cgB4HW0z/hcdAKBStIABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRA\\\n", + "AICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgB\\\n", + "EACgYgRAAICKEQABACrm/wdn/yt9iK8wsgAAAABJRU5ErkJggg==\\\n", + "\"\n", + " frames[7] = \"\\\n", + "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", + "AAAPYQGoP6dpAAAkeUlEQVR4nO3dfYxd5X0v+u/YhG2SeGbspIwxUvLH6QU34ZopaXpiTzZ2ws1k\\\n", + "bnG4uXXKi+iYMElxiVDiOs3xGSlK4SjJkBOug5Eqys0hiJdwQzB9Abf1CAdwB3taQFc2ramiNKJ1\\\n", + "5MRExcMMscJmPMz5I6dWdsbYy7Dtsdf6fKRHwuvZa+1nbYH85fdbL23T09PTAQCgMubM9gIAADi5\\\n", + "BEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACo\\\n", + "GAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEA\\\n", + "KkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAA\\\n", + "gIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQmOHGG2/MK6+8cvjPX/rSl/Ltb397\\\n", + "Flc001133ZXu7u7D453vfGd+93d/d7aXBXBaaJuenp6e7UUAp5a2traMjY2ls7NztpdS2AUXXJCb\\\n", + "bropq1evnu2lAJzyVAChxK6++ur81m/9VpYuXZpLL700+/fvP+Y+f/iHf5gkqdfr6e7uzk9/+tN8\\\n", + "8pOfzK233prkF9XByy+/PB/72Mdy3nnnZdWqVfmnf/qnfPSjH815552Xq666Kq+99lqS5OWXX84f\\\n", + "/MEf5Ld/+7ezdOnSXHfddXn11Vdbfp7/8A//kJ/+9Ke57LLLWn5sgDISAKHEbr311jzzzDN59tln\\\n", + "U6/Xc+ONNx6e+53f+Z0888wzM/b5sz/7syTJyMhIdu3albPPPnvGZ5555pncc889+f73v5+XX345\\\n", + "n/70p7N58+Y899xz+ed//uf87d/+bZLk85//fOr1ep566qns3r07r732WjZt2jTjeC+//HJTO/eX\\\n", + "x0c/+tFjnuedd96Z/v7+vOUtbyn60wBU2hmzvQDgxLn//vtz77335pVXXskrr7ySd77znYfn/uZv\\\n", + "/uYNH7e3tzcLFixIklx00UWp1WqZP39+kuQ3f/M384Mf/CBJ8pd/+ZcZHR3Nxo0bkyQ///nPM3fu\\\n", + "3BnHmz9/fnbt2vWG1nLw4MF85zvfyd///d+/of0BqkgAhJJ68sknc9ttt2V0dDRnn312Hn744Xzp\\\n", + "S19qybHnzZt3+J/nzp0748+HDh1KkkxPT+ehhx7Keeedd9Tjvfzyy6nX60ec6+rqyvDw8Ovu++CD\\\n", + "D+a9731v3vOe9xzPKQBUmgAIJTU2Npb58+fnHe94R1599dXccccdhfedP39+xsfH3/RNIB//+Mfz\\\n", + "ta99LXfccUfOOOOMjI2N5cUXX8yv//qvz/i+N1oBvPPOO/OpT33qTa0ToGpcAwgl1dfXl/PPPz/n\\\n", + "n3/+4Rs6ftnrXQOY/OLavY985COHbwJ5o77xjW/krLPOSnd3d5YuXZpLLrkk//qv//qGj/ervv/9\\\n", + "72fXrl254oorWnZMgCrwGBgAgIpRAQQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICK\\\n", + "EQABACrGq+DepCvu2zTbSwDgNPHA73/uhH/H/37R51tynH/8//+flhyHU5MKIABAxagAAkCZtM32\\\n", + "AjgdqAACAFSMCiAAlEmbEiDHJgACQJnIfxSgBQwAvCkbNmxIvV5Pf39/JicnD2+fmprKwMBA6vV6\\\n", + "1q1b17TP6Oho2tra8rOf/ewkr5ZEAASAcmlr0Sho9+7d2bdvX0ZGRrJkyZJs3rz58NyWLVuyePHi\\\n", + "jIyM5ODBgxkdHT08d9ttt+V973vfmzhR3gwBEABKpTUJsNFoZGJiomk0Go0Z37Zz58709vYmSfr6\\\n", + "+rJjx45jzj355JNZunRp3v72t7f+9ClEAAQAZhgaGkpHR0fTGBoamvG5sbGxtLe3J0k6Ojpy4MCB\\\n", + "Y85t2rQpN9xww0k4C16Pm0AAoESmW3QTyODgYNavX9+0rVarzfhcZ2dnJiYmkiTj4+NZuHDhUee2\\\n", + "b9+eCy+8MPPnz2/NQnlDVAABoExadA1grVZLe3t70zhSAFy+fHm2bduWJBkeHk5PT89R53bv3p3v\\\n", + "fe976evry7PPPptrrrnmhPwMHJ0ACAC8Yd3d3enq6kq9Xs+ePXuyevXqrF27NkmyatWq7N27N/V6\\\n", + "PfPmzcuyZcvy2c9+No8//ni2bt2apUuX5u67757lM6imtunp6enZXsTp7Ir7Ns32EgA4TTzw+587\\\n", + "4d9xwbL/0pLj/NPof2/JcTg1qQACAFSMm0AAoEy8CYQCVAABACpGBRAAyqRNCZBjEwABoEzkPwrQ\\\n", + "AgYAqBgVQAAoEc92owgBEADKxDWAFKAFDABQMSqAAFAmCoAUIAACQKlIgBybFjAAQMWoAAJAmSgA\\\n", + "UoAACABlIgBSgAAIACUy7TEwFOAaQACAihEAAQAqRgsYAMpEC5gCVAABACpGBRAAykQBkAIEQAAo\\\n", + "kenZXgCnhUoGwKmpqWzevDk7duzIgQMHsnDhwvT09GT16tU544xK/iQAQIVUMu0MDAzk/PPPzyc/\\\n", + "+cl0dHRkfHw8w8PDufbaa3Pvvfe+7n6NRiONRqNp29Tkocx9SyV/RgBORW4CoYBKJpfnn38+d999\\\n", + "d9O2iy66KBdffPFR9xsaGspNN93UtO09//dHc8Hv/p8tXyMAvCHyHwVUMgAuX748a9asSW9vb9rb\\\n", + "2zMxMZFt27blAx/4wFH3GxwczPr165u2DTz0zRO5VACAlqtkALz55pvz7LPPZufOnfnRj36Uzs7O\\\n", + "/NEf/VEuvPDCo+5Xq9VSq9Watmn/AnBK0QKmgMqml6VLl2bp0qWzvQwAaCl3AVNEZQMgAJSSAiAF\\\n", + "eBMIAEDFqAACQJm4BpACVAABACpGAAQAqBgtYAAokWktYAoQAAGgTOQ/CtACBgCoGAEQAKBiBEAA\\\n", + "KJHptraWjOOxYcOG1Ov19Pf3Z3Jy8vD2qampDAwMpF6vZ926dYe39/T0ZMWKFenp6clzzz3XqlPn\\\n", + "OAiAAMAbtnv37uzbty8jIyNZsmRJNm/efHhuy5YtWbx4cUZGRnLw4MGMjo4mSR5//PFs3749X/nK\\\n", + "V7Jx48bZWnqlCYAAUCZtrRmNRiMTExNNo9FozPi6nTt3pre3N0nS19eXHTt2HHPuzDPPTJK8/PLL\\\n", + "ueCCC1r8A1CEAAgAZdKiADg0NJSOjo6mMTQ0NOPrxsbG0t7eniTp6OjIgQMHjjm3f//+9PT05DOf\\\n", + "+UxWrFjR+t+AY/IYGAAoldY8B2Zw8L9m/fr1TdtqtdqMz3V2dmZiYiJJMj4+noULFx5zbtGiRdmx\\\n", + "Y0eeeuqpDA4OZuvWrS1ZM8WpAAIAM9RqtbS3tzeNIwXA5cuXZ9u2bUmS4eHh9PT0HHVucnIyr732\\\n", + "WpJfVAXf+ta3noSz4VcJgABQItNtrRlFdXd3p6urK/V6PXv27Mnq1auzdu3aJMmqVauyd+/e1Ov1\\\n", + "zJs3L8uWLctPfvKTrFy5Mh/60Idy/fXX58tf/vIJ+iU4mrbp6enp2V7E6eyK+zbN9hIAOE088Puf\\\n", + "O+Hf8b/9Xze15Dg/+Ks/aclxODWpAAIAVIybQACgVLwMmGMTAAGgRI7n+j2qSwsYAKBiVAABoExU\\\n", + "AClAAASAUpEAOTYtYACAilEBBIAScRMIRQiAAFAmAiAFCIAAUCoSIMfmGkAAgIpRAQSAMlEApAAB\\\n", + "EABKxE0gFKEFDABQMSqAAFAmKoAUIAACQKlIgBybAPgmtfnvDAA4zQiAAFAibgKhCAEQAMpEAKQA\\\n", + "dwEDAFSMAAgAUDFawABQJu5OpAABEABKxE0gFKEFDABQMQIgAEDFaAEDQJloAVOACiAAQMWoAAJA\\\n", + "mbgLmAIEQAAokenZXgCnBS1gAICKUQEEgDLRAaYAARAAykQApAAtYACAihEAAQAqRgsYAMrEY2Ao\\\n", + "QAUQAEpkuq0143hs2LAh9Xo9/f39mZycPLx9amoqAwMDqdfrWbduXZLk+eefT71ez4oVK3LppZdm\\\n", + "fHy8hWdPUQIgAPCG7d69O/v27cvIyEiWLFmSzZs3H57bsmVLFi9enJGRkRw8eDCjo6Pp7OzMI488\\\n", + "ku3bt+eyyy7LN7/5zVlcfXUJgADAG7Zz58709vYmSfr6+rJjx46jzi1YsCCdnZ1JkjPPPDNz5ogi\\\n", + "s8E1gABQJi26BLDRaKTRaDRtq9VqqdVqTdvGxsZyzjnnJEk6Ojpy4MCBprn29vYjzr300ku5/fbb\\\n", + "s3Xr1tYsmOMidgMAMwwNDaWjo6NpDA0NzfhcZ2dnJiYmkiTj4+NZuHDhMecmJydz9dVXZ+PGjU2f\\\n", + "5+QRAAGgTNpaMwYHBzM+Pt40BgcHZ3zd8uXLs23btiTJ8PBwenp6jjl33XXX5fLLL88HP/jB1p8/\\\n", + "hQiAAFAqrUmAtVot7e3tTeNX279J0t3dna6urtTr9ezZsyerV6/O2rVrkySrVq3K3r17U6/XM2/e\\\n", + "vCxbtiwjIyP57ne/m7vuuisrV67Mpk2bTvDvwZG0TU9PT8/2Ik5nV37bv7gAFPOdqz93wr/jXQNf\\\n", + "a8lx9n5rQ0uOw6nJTSAAUCaeA00BAiAAlIkASAGuAQQAqBgVQAAoERf2U4QACABlogVMAVrAAAAV\\\n", + "IwACAFSMFjAAlEmbHjDHpgL4S+65556jzjcajUxMTDSNqclDJ2l1AFBAi14FR7lVMgA+99xzM8ae\\\n", + "PXtyxx13HHW/I70Y+58ffvQkrRoAoDUq2QL+wAc+kE984hP51bfg/du//dtR9xscHMz69eubtn3q\\\n", + "z7/Z8vUBAJxIlQyAv/Ebv5Gvf/3recc73tG0/dJLLz3qfrVabcaLsOe+pZI/IQCnKu1bCqhkenn0\\\n", + "0Ufztre9bcb2v/7rv56F1QAAnFyVDIDt7e2zvQQAODFUACmgkjeBAABUmQAIAFAxlWwBA0BpaQFT\\\n", + "gAAIACXS5k0gFKAFDABQMQIgAEDFaAEDQJnoAFOAAAgAZSIAUoAWMABAxQiAAAAVowUMACXiKTAU\\\n", + "oQIIAFAxAiAAQMVoAQNAmWgBU4AKIABAxagAAkCZqABSgAAIACUi/1GEAAgAZeI5MBTgGkAAgIpR\\\n", + "AQSAElEApAgVQACAihEAAQAqRgAEgDJpa9E4Dhs2bEi9Xk9/f38mJycPb5+amsrAwEDq9XrWrVt3\\\n", + "ePuHP/zhdHZ2ZsuWLW/sHHnTBEAAKJGTnf92796dffv2ZWRkJEuWLMnmzZsPz23ZsiWLFy/OyMhI\\\n", + "Dh48mNHR0STJfffd1xQIOfkEQADgDdu5c2d6e3uTJH19fdmxY8cx5xYvXnzyF0oTdwEDQJm06C7g\\\n", + "RqORRqPRtK1Wq6VWqzVtGxsbyznnnJMk6ejoyIEDB5rm2tvbjzjH7FIBBIASaWtrzRgaGkpHR0fT\\\n", + "GBoamvF9nZ2dmZiYSJKMj49n4cKFheaYXQIgADDD4OBgxsfHm8bg4OCMzy1fvjzbtm1LkgwPD6en\\\n", + "p6fQHLNLAAQAZqjVamlvb28av9r+TZLu7u50dXWlXq9nz549Wb16ddauXZskWbVqVfbu3Zt6vZ55\\\n", + "8+Zl2bJlSZKBgYHcc889+eIXv5ibb775pJ4Xv9A2PT09PduLOJ1d+e1Ns70EAE4T37n6cyf8O379\\\n", + "v9zSkuP8y3//45Ych1OTCiAAQMUIgAAAFeMxMG/SexZ56zYAp442fy1RgAAIAGUiAFKAFjAAQMWo\\\n", + "AAJAibQpAVKAAAgAZSL/UYAWMABAxagAAkCJKABShAAIACXiMTAUoQUMAFAxKoAAUCYqgBQgAAJA\\\n", + "ich/FCEAAkCZSIAU4BpAAICKUQEEgBJRAKQIARAASsRjYChCCxgAoGJUAAGgTFQAKUAABIASkf8o\\\n", + "QgsYAKBiVAABoETcBEIRKoAAABUjAAIAVIwWMACUiBYwRQiAAFAmAiAFCIAAUCJtEiAFuAYQAKBi\\\n", + "VAABoERcA0gRKoAAABUjAAIAVIwWMACUiBYwRQiAAFAi8h9FaAEDAFSMCiAAlIkSIAUIgABQIq4B\\\n", + "pAgtYADgTdmwYUPq9Xr6+/szOTl5ePvU1FQGBgZSr9ezbt26w9s3bdqUnp6eXHbZZZmYmJiFFSMA\\\n", + "AkCJtLVoFLV79+7s27cvIyMjWbJkSTZv3nx4bsuWLVm8eHFGRkZy8ODBjI6O5t///d/z8MMP58kn\\\n", + "n8wVV1yRP/3TP33T58zxO+1bwNPT03nsscfy4x//ONPT00mSNWvWHHWfqamp/NVf/VXmzJmTj33s\\\n", + "Y5k7d26S5MEHH8zv/d7vve5+jUYjjUajaduhVw/ljDNP+58RgLJoUQv4SH/n1Wq11Gq1pm07d+5M\\\n", + "b29vkqSvry933XVXrrrqqsNzl1566eG5HTt25KWXXsqKFSvS1taWvr6+XHPNNa1ZMMfltK8AXnHF\\\n", + "FXnkkUfy5S9/Oc8880y2bt16zH3WrFmTZ555Jrt27crFF1+cf/mXf0mS3H777Ufdb2hoKB0dHU1j\\\n", + "5P97tCXnAQCt0KoK4JH+zhsaGprxfWNjY2lvb0+SdHR05MCBA0edO9rnOXlO+wD4wgsv5NZbb805\\\n", + "55yT2267LT//+c+Puc++ffvy1a9+NTfeeGPuv//+fOpTn8rjjz9+zP0GBwczPj7eNOpXfaQVpwEA\\\n", + "p5Qj/Z03ODg443OdnZ2Hr+MbHx/PwoULjzp3tM9z8pz2AXDu3Ll57bXXsmDBgnzrW9/KD3/4w2Pu\\\n", + "8+qrrx4ua7/73e/Oli1bcsstt+Qf//Efj7pfrVZLe3t709D+BeBU0tbWmnGkv/N+tf2bJMuXL8+2\\\n", + "bduSJMPDw+np6Tnq3Pvf//783d/93RE/z8lz2gfA73znO3nttddy++2356WXXsq99957zH02bdqU\\\n", + "l1566fCf58+fn4cffjjf+MY3TuBKAeAkOMl3gXR3d6erqyv1ej179uzJ6tWrs3bt2iTJqlWrsnfv\\\n", + "3tTr9cybNy/Lli3Lr/3ar+XSSy9NT09P7r///nzmM59pzXlzXNqm/+POCd6Q//a922Z7CQCcJr50\\\n", + "yWdP+Hf89s0bW3Kcp/7r+pYch1OT/iUAlIjnQFOEAAgAJeJNIBRx2l8DCADA8VEBBIBSUQLk2ARA\\\n", + "ACgRLWCK0AIGAKgYFUAAKBMVQAoQAAGgROQ/ihAAAaBEXANIEa4BBACoGAEQAKBitIABoES0gClC\\\n", + "BRAAoGJUAAGgRBQAKUIABIAykQApQAsYAKBiVAABoETcBEIRAiAAlIj8RxECIACUiQRIAa4BBACo\\\n", + "GBVAACgRBUCKEAABoETcBEIRWsAAABWjAggAZaIESAECIACUiPhHEVrAAAAVowIIAGWiBEgBAiAA\\\n", + "lIj8RxFawAAAFaMCCAAl4iZgihAAAaBMBEAKEAABoETkP4oQAN+ku7e+OttLAOA08aVLZnsF8AsC\\\n", + "IACUiGsAKcJdwAAAFSMAAgBUjAAIACXS1taa0SobNmxIvV5Pf39/Jicnm+ampqYyMDCQer2edevW\\\n", + "Hd7+4Q9/OJ2dndmyZUvrFkITARAASuRUCoC7d+/Ovn37MjIykiVLlmTz5s1N81u2bMnixYszMjKS\\\n", + "gwcPZnR0NEly3333NQVCWk8ABABmaDQamZiYaBqNRuO4jrFz58709vYmSfr6+rJjx45C84sXL27B\\\n", + "GXA0AiAAMMPQ0FA6OjqaxtDQ0HEdY2xsLO3t7UmSjo6OHDhw4LjmOXE8BgYASqRV7dvBwcGsX7++\\\n", + "aVutVjviZ/fv358rr7xyxvbe3t5MTEwkScbHx7Nw4cKm+c7OzqPOc+IIgADADLVa7XUD369atGhR\\\n", + "nnjiiRnbd+3alY0bN2bNmjUZHh5OT09P0/zy5cuzbdu2XHzxxRkeHs61117biqVTgBYwAJRIW4tG\\\n", + "K3R3d6erqyv1ej179uzJ6tWrkyRr165NkqxatSp79+5NvV7PvHnzsmzZsiTJwMBA7rnnnnzxi1/M\\\n", + "zTff3KLV8Mvapqenp2d7Eaez//SFW2Z7CQCcJn749T8+4d/xO//vrS05zt9ct64lx+HUpAUMACXi\\\n", + "VXAUoQUMAFAxKoAAUCIKgBQhAAJAmegBU4AWMABAxagAAkCJqP9RhAAIACWiA0wRWsAAABWjAggA\\\n", + "JaICSBEqgAAAFSMAAgBUjBYwAJSIFjBFCIAAUCLyH0UIgABQJhIgBbgGEACgYlQAAaBEFAApQgAE\\\n", + "gBJxEwhFaAEDAFSMCiAAlIgKIEWoAAIAVIwACABQMVrAAFAiWsAUIQACQInIfxShBQwAUDGVrAC+\\\n", + "8MILufPOO/Pe9743F110Ub761a/mbW97W77whS+kq6vrdfdrNBppNBpN26YPHUrbGZX8GQE4BWkB\\\n", + "U0QlK4BXX311zj333PzoRz9Kb29vLrnkkvT29mZgYOCo+w0NDaWjo6NpjP3DYydp1QBwbG1trRmU\\\n", + "WyUD4KFDh3LNNdfkhhtuSEdHRz7xiU+kt7c3r7zyylH3GxwczPj4eNNY8J8/fJJWDQDQGpXsXU5O\\\n", + "Th7+5zvuuOPwPx86dOio+9VqtdRqtaZt2r8AwOmmkunlL/7iLzI9PZ22trZceOGFSX4RCm+55ZZZ\\\n", + "XhkAvDnatxRRyQB49tlnz9j2lre8Je9///tnYTUA0DryH0VU8hpAAIAqq2QFEADKSguYIgRAACgR\\\n", + "+Y8itIABACpGBRAAykQJkAJUAAGgRE61N4Fs2LAh9Xo9/f39Tc/hTZKpqakMDAykXq9n3bp1SZLn\\\n", + "n38+9Xo9K1asyKWXXprx8fHWLYbDBEAA4ITYvXt39u3bl5GRkSxZsiSbN29umt+yZUsWL16ckZGR\\\n", + "HDx4MKOjo+ns7MwjjzyS7du357LLLss3v/nNWVp9uQmAAFAibS0arbBz58709vYmSfr6+rJjx45j\\\n", + "zi9YsCCdnZ1JkjPPPDNz5ogqJ4JrAAGgRFrVvm00Gmk0Gk3bjvRK1KMZGxvLOeeckyTp6OjIgQMH\\\n", + "Zsy3t7cfcf6ll17K7bffnq1bt77RU+AoxGoAKJFWVQCHhobS0dHRNIaGho74nfv378/KlStnjCSZ\\\n", + "mJhIkoyPj2fhwoVN+3V2dh5xfnJyMldffXU2btw4Yx9aQwUQAJhhcHAw69evb9r2etW/RYsW5Ykn\\\n", + "npixfdeuXdm4cWPWrFmT4eHh9PT0NM0vX74827Zty8UXX5zh4eFce+21SZLrrrsul19+eT74wQ+2\\\n", + "5mSYQQUQAEqkVXcB12q1tLe3N43jaf8mSXd3d7q6ulKv17Nnz56sXr06SbJ27dokyapVq7J3797U\\\n", + "6/XMmzcvy5Yty8jISL773e/mrrvuysqVK7Np06aW/0YkbdPT09OzvYjT2X/6wi2zvQQAThM//Pof\\\n", + "n/DvGHiwNYHpW7/3uZYch1OTCiAAQMW4BhAASqSVD3GmvARAACgTAZACtIABACpGBRAASkQBkCIE\\\n", + "QAAoEdcAUoQWMABAxagAAkCJKABShAAIACWiBUwRAiAAlIj8RxGuAQQAqBgVQAAoES1gihAAAaBE\\\n", + "BECK0AIGAKgYFUAAKBEFQIoQAAGgRLSAKUILGACgYlQAAaBEFAApQgAEgBLRAqYIAfBNmhybmu0l\\\n", + "AAAcFwEQAEpEAZAiBEAAKBEtYIoQAAGgROQ/ivAYGACAilEBBIAS0QKmCAEQAEpE/qMILWAAgIpR\\\n", + "AQSAEtECpggBEABKRACkCC1gAICKUQEEgBJRAKQIARAASqRND5gCtIABACpGBRAASkT9jyIEQAAo\\\n", + "ER1gihAAAaBE5D+KcA0gAHDCbNiwIfV6Pf39/ZmcnGyam5qaysDAQOr1etatW3d4e09PT1asWJGe\\\n", + "np4899xzJ3nF1SAAAkCJzGlrzWiF3bt3Z9++fRkZGcmSJUuyefPmpvktW7Zk8eLFGRkZycGDBzM6\\\n", + "Opokefzxx7N9+/Z85StfycaNG1uzGJoIgABQIm0tGq2wc+fO9Pb2Jkn6+vqyY8eOQvNnnnlmkuTl\\\n", + "l1/OBRdc0KLV8MtcAwgAzNBoNNJoNJq21Wq11Gq1wscYGxvLOeeckyTp6OjIgQMHZsy3t7fPmN+/\\\n", + "f39Wr16dvXv35uGHH34zp8HrUAEEgBJpa2vNGBoaSkdHR9MYGho64nfu378/K1eunDGSZGJiIkky\\\n", + "Pj6ehQsXNu3X2dl5xPlFixZlx44deeihhzI4OHiCfqlqUwEEgBJpVft2cHAw69evb9r2etW/RYsW\\\n", + "5YknnpixfdeuXdm4cWPWrFmT4eHh9PT0NM0vX74827Zty8UXX5zh4eFce+21mZyczNy5czNnzpx0\\\n", + "dHTkrW99a4vOiF+mAggAzFCr1dLe3t40jqf9myTd3d3p6upKvV7Pnj17snr16iTJ2rVrkySrVq3K\\\n", + "3r17U6/XM2/evCxbtiw/+clPsnLlynzoQx/K9ddfny9/+cstPzeStunp6enZXsTp7F2f/tpsLwGA\\\n", + "08Te/7HhhH/Hjdtua81x/o/PtuQ4nJq0gAGgRDwImiK0gAEAKkYFEABKxLuAKUIABIASkf8oQgAE\\\n", + "gBJp1WvcKDfXAAIAVIwKIACUiAIgRQiAAFAibgKhCC1gAICKUQEEgBJRAKQIARAASkQLmCK0gP+X\\\n", + "devWHfMzjUYjExMTTWN66tCJXxwAQAtVsgJ49tln513velfmzJmT6enpJMkPfvCD7Ny5M0899dTr\\\n", + "7jc0NJSbbrqpaVv7b16Sjos+ckLXCwBFKQBSRCUrgJs2bcq73/3ufP7zn8/TTz+dp59+OsuWLTtq\\\n", + "+EuSwcHBjI+PN432Cz90klYNAMfW1taaQblVMgBeddVVefDBB3Po0KF8/OMfz/3333+4Eng0tVot\\\n", + "7e3tTaNtbiWLqADAaaySATBJ5syZk6uvvjp//ud/nkOHDqW7u3u2lwQAb5oKIEVUvnw1Z86crFmz\\\n", + "ZraXAQAtUdnKDsel8gEQAMpE9Y4i/I8CAEDFqAACQIkoAFKEAAgAJaIFTBFawAAAFaMCCAAlogBI\\\n", + "EQIgAJSIFjBFaAEDAFSMCiAAlIgCIEUIgABQIlrAFKEFDABQMSqAAFAiCoAUIQACQIloAVOEAAgA\\\n", + "JeLaLorw7wkAQMWoAAJAiWgBU4QACAAlIv9RhBYwAEDFqAACQIloAVOECiAAlEhbi0arbNiwIfV6\\\n", + "Pf39/ZmcnGyam5qaysDAQOr1etatW9c0Nzo6mra2tvzsZz9r4Wr4DwIgAHBC7N69O/v27cvIyEiW\\\n", + "LFmSzZs3N81v2bIlixcvzsjISA4ePJjR0dHDc7fddlve9773newlV4YACAAl0tbWmtEKO3fuTG9v\\\n", + "b5Kkr68vO3bsKDT/5JNPZunSpXn729/emoUwgwAIACXSqgDYaDQyMTHRNBqNxnGtZWxsLO3t7UmS\\\n", + "jo6OHDhwoND8pk2bcsMNN7Tg1+D1CIAAwAxDQ0Pp6OhoGkNDQ0f87P79+7Ny5coZI0kmJiaSJOPj\\\n", + "41m4cGHTfp2dnTPmt2/fngsvvDDz588/cSeHu4ABoExadQPH4OBg1q9f37StVqsd8bOLFi3KE088\\\n", + "MWP7rl27snHjxqxZsybDw8Pp6elpml++fHm2bduWiy++OMPDw7n22mvz9NNP53vf+16efPLJPPvs\\\n", + "s7nmmmvy0EMPteis+A8qgABQIq1qAddqtbS3tzeN1wuAr6e7uztdXV2p1+vZs2dPVq9enSRZu3Zt\\\n", + "kmTVqlXZu3dv6vV65s2bl2XLluWzn/1sHn/88WzdujVLly7N3Xff3fLfiKRtenp6erYXcTp716e/\\\n", + "NttLAOA0sfd/bDjh33HvM7e15Dj9v/XZlhyHU5MKIABAxbgGEABKxJtAKEIABIASaYsruzg2LWAA\\\n", + "gIpRAQSAEtECpgh3AQMt1Wg0MjQ0lMHBweN+ZAQAJ4cACLTUxMREOjo6Mj4+fvgVTwCcWlwDCABQ\\\n", + "MQIgAEDFCIAAABUjAAItVavV8id/8iduAAE4hbkJBACgYlQAAQAqRgAEAKgYARAAoGIEQACAihEA\\\n", + "AQAq5ozZXgBQHi+88EKuvPLKHDp0KF1dXXnggQcyd+7c2V4WAL9CBRBomQULFuTRRx/NyMhIzj33\\\n", + "3Dz22GOzvSQAjkAFEGiZF198Mddff33Gxsby4x//OBdddNFsLwmAI1ABBFrm/vvvz6pVq7J9+/b0\\\n", + "9fXFc+YBTk0qgEDLXHLJJenv788jjzySs846a7aXA8Dr8Co4AICK0QIGAKgYARAAoGIEQACAihEA\\\n", + "AQAqRgAEAKgYARAAoGIEQACAihEAAQAqxptAgJZ54YUXcuWVV+bQoUPp6urKAw88kLlz5872sgD4\\\n", + "FSqAQMssWLAgjz76aEZGRnLuuefmsccem+0lAXAEKoBAy7z44ou5/vrrMzY2lh//+Me56KKLZntJ\\\n", + "AByBCiDQMvfff39WrVqV7du3p6+vL141DnBqUgEEWuaSSy5Jf39/HnnkkZx11lmzvRwAXkfbtP9F\\\n", + "BwCoFC1gAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpG\\\n", + "AAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICK\\\n", + "+Z/zghFiPgqhpAAAAABJRU5ErkJggg==\\\n", + "\"\n", + " frames[8] = \"\\\n", + "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", + "AAAPYQGoP6dpAAAk2klEQVR4nO3dfYxd5X0v+u/YhG2SeGZwWsaYnkatesFtuWZKmir2ZIOBm8nc\\\n", + "Yri5MiUgZBOmDQ4pIq5pjzM6UQIVyZDT1MFIFeWiBvESlBDTF5imjDAv7tgeCawrm8b0VElF68jE\\\n", + "VMXDDLHCZmzP/SO3VnbG2Muw7bHX+nykR7KfZ6+1n7WF5C+/31p7t01NTU0FAIDKmDXTGwAA4MQS\\\n", + "AAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBi\\\n", + "BEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACo\\\n", + "GAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEAAgIoRAAEA\\\n", + "KkYABACoGAEQAKBiBEAAgIoRAAEAKkYABACoGAEQAKBiBEBgmttuuy1vvvnmob9/8YtfzDe/+c0Z\\\n", + "3NF0Bw8ezJo1a/Ibv/EbWbRoUS655JL84Ac/mOltAZwS2qampqZmehPAyaWtrS1jY2Pp7Oyc6a28\\\n", + "rb/927/N4OBgNm/enPe85z2544478uKLL+bRRx+d6a0BnPRUAKHErrvuuvz2b/92Fi1alMsvvzx7\\\n", + "9uw56jGf+cxnkiT1ej3d3d35j//4j3zqU5/KXXfdleSn1cGrr746V1xxRc4999wsW7Ys3/ve9/Lx\\\n", + "j3885557bq699tocPHgwSfLGG2/k05/+dH7nd34nixYtyo033pi33nqrJdfW1taWRqORN998M1NT\\\n", + "U5mYmMgv/dIvteTcAGUnAEKJ3XXXXdm2bVtefPHF1Ov13HbbbYfWfvd3fzfbtm2bdsxf/uVfJklG\\\n", + "Rkayffv2nHXWWdNes23btjz44IP5l3/5l7zxxhv5gz/4g2zYsCEvvfRS/vmf/zn/8A//kCS59dZb\\\n", + "U6/X8/zzz2fHjh05ePBg1q9fP+18b7zxRrq7uw87Pv7xjx/22q644oosXbo08+fPz9lnn52nn346\\\n", + "f/qnf/pOPiaAyjltpjcAHD+PPPJIHnroobz55pt588038wu/8AuH1r773e++4/P29vbmzDPPTJJc\\\n", + "eOGFqdVqmTt3bpLkt37rt/L9738/yU/btKOjo1m3bl2S5Cc/+Ulmz5497Xxz587N9u3bj2kP27Zt\\\n", + "y/e+973s3r077e3t+fznP5/PfOYzefjhh9/xdQFUhQAIJbV58+bcfffdGR0dzVlnnZXHH388X/zi\\\n", + "F1ty7jlz5hz68+zZs6f9ff/+/UmSqampPPbYYzn33HOPeL433ngj9Xr9sGtdXV0ZHh6eNv/ggw/m\\\n", + "0ksvPXSf4vXXX5/e3t5jvRSAShIAoaTGxsYyd+7cfOADH8hbb72Ve++9t/Cxc+fOzfj4+Lt+COQT\\\n", + "n/hEvvrVr+bee+/NaaedlrGxsbz22mv5tV/7tWnvd6wVwF/91V/Nd7/73fzxH/9xTj/99AwNDeX8\\\n", + "889/V/sFqAr3AEJJ9fX15bzzzst555136IGOn/V29wAmP71372Mf+9ihh0Deqa9//es544wz0t3d\\\n", + "nUWLFuWyyy7Lv/3bv73j8/2sP/zDP8yv/Mqv5IILLsiiRYvy9NNP55577mnJuQHKztfAAABUjAog\\\n", + "AEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMX4K7l266sH1M70FAE4RG1Z+\\\n", + "7ri/x/9+4a0tOc8//b9/3pLzcHJSAQQAqBgVQAAok7aZ3gCnAhVAAICKUQEEgDJpUwLk6ARAACgT\\\n", + "+Y8CtIABgHdl7dq1qdfrWbFiRSYnJw/NHzhwIP39/anX61m9enXTMaOjo2lra8uPf/zjE7xbEgEQ\\\n", + "AMqlrUWjoB07dmT37t0ZGRnJwoULs2HDhkNrQ0NDWbBgQUZGRrJv376Mjo4eWrv77rvzoQ996F1c\\\n", + "KO+GAAgApdKaBNhoNDIxMdE0Go3GtHfbunVrent7kyR9fX3ZsmXLUdc2b96cRYsW5f3vf3/rL59C\\\n", + "BEAAYJrBwcF0dHQ0jcHBwWmvGxsbS3t7e5Kko6Mje/fuPera+vXrc/PNN5+Aq+DteAgEAEpkqkUP\\\n", + "gQwMDGTNmjVNc7VabdrrOjs7MzExkSQZHx/PvHnzjri2adOmXHDBBZk7d25rNso7ogIIAGXSonsA\\\n", + "a7Va2tvbm8bhAuCSJUuycePGJMnw8HB6enqOuLZjx448/fTT6evry4svvpjrr7/+uHwMHJkACAC8\\\n", + "Y93d3enq6kq9Xs/OnTuzfPnyrFq1KkmybNmy7Nq1K/V6PXPmzMnixYtzyy235Nlnn82TTz6ZRYsW\\\n", + "5YEHHpjhK6imtqmpqamZ3sSp7KoH18/0FgA4RWxY+bnj/h7nL/7vLTnP90b/Z0vOw8lJBRAAoGI8\\\n", + "BAIAZeKXQChABRAAoGJUAAGgTNqUADk6ARAAykT+owAtYACAilEBBIAS8d1uFCEAAkCZuAeQArSA\\\n", + "AQAqRgUQAMpEAZACBEAAKBUJkKPTAgYAqBgVQAAoEwVAChAAAaBMBEAKEAABoESmfA0MBbgHEACg\\\n", + "YgRAAICK0QIGgDLRAqYAFUAAgIpRAQSAMlEApAABEABKZGqmN8ApoZIB8MCBA9mwYUO2bNmSvXv3\\\n", + "Zt68eenp6cny5ctz2mmV/EgAgAqpZNrp7+/Peeedl0996lPp6OjI+Ph4hoeHc8MNN+Shhx562+Ma\\\n", + "jUYajUbT3IHJ/Zn9nkp+jACcjDwEQgGVTC4vv/xyHnjggaa5Cy+8MBdddNERjxscHMztt9/eNPfr\\\n", + "n/h4fuP//j9bvkcAeEfkPwqoZABcsmRJVq5cmd7e3rS3t2diYiIbN27MRz7ykSMeNzAwkDVr1jTN\\\n", + "Xf+d+47nVgEAWq6SAfDOO+/Miy++mK1bt+aHP/xhOjs780d/9Ee54IILjnhcrVZLrVZrmtP+BeCk\\\n", + "ogVMAZVNL4sWLcqiRYtmehsA0FKeAqaIygZAACglBUAK8EsgAAAVowIIAGXiHkAKUAEEAKgYARAA\\\n", + "oGK0gAGgRKa0gClAAASAMpH/KEALGACgYgRAAICKEQABoESm2tpaMo7F2rVrU6/Xs2LFikxOTh6a\\\n", + "P3DgQPr7+1Ov17N69epD8z09Pbn44ovT09OTl156qVWXzjEQAAGAd2zHjh3ZvXt3RkZGsnDhwmzY\\\n", + "sOHQ2tDQUBYsWJCRkZHs27cvo6OjSZJnn302mzZtype//OWsW7duprZeaQIgAJRJW2tGo9HIxMRE\\\n", + "02g0GtPebuvWrent7U2S9PX1ZcuWLUddO/3005Mkb7zxRs4///wWfwAUIQACQJm0KAAODg6mo6Oj\\\n", + "aQwODk57u7GxsbS3tydJOjo6snfv3qOu7dmzJz09PfnsZz+biy++uPWfAUfla2AAoFRa8z0wAwOf\\\n", + "z5o1a5rmarXatNd1dnZmYmIiSTI+Pp558+YddW3+/PnZsmVLnn/++QwMDOTJJ59syZ4pTgUQAJim\\\n", + "Vqulvb29aRwuAC5ZsiQbN25MkgwPD6enp+eIa5OTkzl48GCSn1YF3/ve956Aq+HnCYAAUCJTba0Z\\\n", + "RXV3d6erqyv1ej07d+7M8uXLs2rVqiTJsmXLsmvXrtTr9cyZMyeLFy/Oj370oyxdujSXXHJJbrrp\\\n", + "ptxxxx3H6ZPgSNqmpqamZnoTp7KrHlw/01sA4BSxYeXnjvt7/G//1+0tOc/3/+5LLTkPJycVQACA\\\n", + "ivEQCACUih8D5ugEQAAokWO5f4/q0gIGAKgYFUAAKBMVQAoQAAGgVCRAjk4LGACgYlQAAaBEPARC\\\n", + "EQIgAJSJAEgBAiAAlIoEyNG5BxAAoGJUAAGgTBQAKUAABIAS8RAIRWgBAwBUjAogAJSJCiAFCIAA\\\n", + "UCoSIEcnAL5Lp82e6R0AABwbARAASsRDIBQhAAJAmQiAFOApYACAihEAAQAqRgsYAMqkTQ+YoxMA\\\n", + "AaBEPARCEVrAAAAVIwACAFSMFjAAlIkWMAWoAAIAVIwKIACUiaeAKUAABIASmZrpDXBK0AIGAKgY\\\n", + "FUAAKBMdYAoQAAGgTARACtACBgCoGAEQAKBitIABoEx8DQwFqAACQIlMtbVmHIu1a9emXq9nxYoV\\\n", + "mZycPDR/4MCB9Pf3p16vZ/Xq1UmSl19+OfV6PRdffHEuv/zyjI+Pt/DqKUoABADesR07dmT37t0Z\\\n", + "GRnJwoULs2HDhkNrQ0NDWbBgQUZGRrJv376Mjo6ms7MzTzzxRDZt2pQrr7wy99133wzuvroEQADg\\\n", + "Hdu6dWt6e3uTJH19fdmyZcsR184888x0dnYmSU4//fTMmiWKzAT3AAJAmbToFsBGo5FGo9E0V6vV\\\n", + "UqvVmubGxsZy9tlnJ0k6Ojqyd+/eprX29vbDrr3++uu555578uSTT7ZmwxwTsRsAmGZwcDAdHR1N\\\n", + "Y3BwcNrrOjs7MzExkSQZHx/PvHnzjro2OTmZ6667LuvWrWt6PSeOAAgAZdLWmjEwMJDx8fGmMTAw\\\n", + "MO3tlixZko0bNyZJhoeH09PTc9S1G2+8MVdffXU++tGPtv76KUQABIBSaU0CrNVqaW9vbxo/3/5N\\\n", + "ku7u7nR1daVer2fnzp1Zvnx5Vq1alSRZtmxZdu3alXq9njlz5mTx4sUZGRnJo48+mvvvvz9Lly7N\\\n", + "+vXrj/PnweG0TU1NTc30Jk5l13zTf7gAFPOt6z533N/jl/u/2pLz7PrG2pach5OTh0AAoEx8DzQF\\\n", + "CIAAUCYCIAW4BxAAoGJUAAGgRNzYTxECIACUiRYwBWgBAwBUjAAIAFAxWsAAUCZtesAcnQrgz3jw\\\n", + "wQePuN5oNDIxMdE0DkzuP0G7A4ACWvRTcJRbJQPgSy+9NG3s3Lkz99577xGPO9wPY//z40+doF0D\\\n", + "ALRGJVvAH/nIR3LVVVfl538F79///d+PeNzAwEDWrFnTNPf7f31fy/cHAHA8VTIA/vqv/3r+7M/+\\\n", + "LB/4wAea5i+//PIjHler1ab9EPbs91TyIwTgZKV9SwGVTC9PPfVU3ve+902b//u///sZ2A0AwIlV\\\n", + "yQDY3t4+01sAgONDBZACKvkQCABAlQmAAAAVU8kWMACUlhYwBQiAAFAibX4JhAK0gAEAKkYABACo\\\n", + "GC1gACgTHWAKEAABoEwEQArQAgYAqBgBEACgYrSAAaBEfAsMRagAAgBUjAAIAFAxWsAAUCZawBSg\\\n", + "AggAUDEqgABQJiqAFCAAAkCJyH8UIQACQJn4HhgKcA8gAEDFqAACQIkoAFKECiAAQMUIgAAAFSMA\\\n", + "AkCZtLVoHIO1a9emXq9nxYoVmZycPDR/4MCB9Pf3p16vZ/Xq1YfmL7300nR2dmZoaOidXSPvmgAI\\\n", + "ACVyovPfjh07snv37oyMjGThwoXZsGHDobWhoaEsWLAgIyMj2bdvX0ZHR5MkDz/8cFMg5MQTAAGA\\\n", + "d2zr1q3p7e1NkvT19WXLli1HXVuwYMGJ3yhNPAUMAGXSoqeAG41GGo1G01ytVkutVmuaGxsby9ln\\\n", + "n50k6ejoyN69e5vW2tvbD7vGzFIBBIASaWtrzRgcHExHR0fTGBwcnPZ+nZ2dmZiYSJKMj49n3rx5\\\n", + "hdaYWQIgADDNwMBAxsfHm8bAwMC01y1ZsiQbN25MkgwPD6enp6fQGjNLAAQApqnVamlvb28aP9/+\\\n", + "TZLu7u50dXWlXq9n586dWb58eVatWpUkWbZsWXbt2pV6vZ45c+Zk8eLFSZL+/v48+OCD+cIXvpA7\\\n", + "77zzhF4XP9U2NTU1NdObOJVd8831M70FAE4R37ruc8f9PX7tv3+tJef5wf/845ach5OTCiAAQMUI\\\n", + "gAAAFeNrYN6l887yq9sAnDza/LNEAQIgAJSJAEgBWsAAABWjAggAJdKmBEgBAiAAlIn8RwFawAAA\\\n", + "FaMCCAAlogBIEQIgAJSIr4GhCC1gAICKUQEEgDJRAaQAARAASkT+owgBEADKRAKkAPcAAgBUjAog\\\n", + "AJSIAiBFCIAAUCK+BoYitIABACpGBRAAykQFkAIEQAAoEfmPIrSAAQAqRgUQAErEQyAUoQIIAFAx\\\n", + "AiAAQMVoAQNAiWgBU4QACABlIgBSgAAIACXSJgFSgHsAAQAqRgUQAErEPYAUoQIIAFAxAiAAQMVo\\\n", + "AQNAiWgBU4QACAAlIv9RhBYwAEDFqAACQJkoAVKAAAgAJeIeQIrQAgYA3pW1a9emXq9nxYoVmZyc\\\n", + "PDR/4MCB9Pf3p16vZ/Xq1Yfm169fn56enlx55ZWZmJiYgR0jAAJAibS1aBS1Y8eO7N69OyMjI1m4\\\n", + "cGE2bNhwaG1oaCgLFizIyMhI9u3bl9HR0fznf/5nHn/88WzevDmf/OQn8xd/8Rfv+po5dqd8C3hq\\\n", + "airPPPNMXnnllUxNTSVJVq5cecRjDhw4kL/7u7/LrFmzcsUVV2T27NlJku985zv5vd/7vbc9rtFo\\\n", + "pNFoNM3tf2t/Tjv9lP8YASiLFrWAD/dvXq1WS61Wa5rbunVrent7kyR9fX25//77c+211x5au/zy\\\n", + "yw+tbdmyJa+//nouvvjitLW1pa+vL9dff31rNswxOeUrgJ/85CfzxBNP5I477si2bdvy5JNPHvWY\\\n", + "lStXZtu2bdm+fXsuuuii/OAHP0iS3HPPPUc8bnBwMB0dHU1j87eeasl1AEArtKoCeLh/8wYHB6e9\\\n", + "39jYWNrb25MkHR0d2bt37xHXjvR6TpxTPgC++uqrueuuu3L22Wfn7rvvzk9+8pOjHrN79+585Stf\\\n", + "yW233ZZHHnkkv//7v59nn332qMcNDAxkfHy8aXz0mo+14jIA4KRyuH/zBgYGpr2us7Pz0H184+Pj\\\n", + "mTdv3hHXjvR6TpxTPgDOnj07Bw8ezJlnnplvfOMb+dd//dejHvPWW28dKmt/8IMfzNDQUL72ta/l\\\n", + "n/7pn454XK1WS3t7e9PQ/gXgZNLW1ppxuH/zfr79myRLlizJxo0bkyTDw8Pp6ek54tqHP/zh/OM/\\\n", + "/uNhX8+Jc8oHwG9961s5ePBg7rnnnrz++ut56KGHjnrM+vXr8/rrrx/6+9y5c/P444/n61//+nHc\\\n", + "KQCcACf4KZDu7u50dXWlXq9n586dWb58eVatWpUkWbZsWXbt2pV6vZ45c+Zk8eLF+cVf/MVcfvnl\\\n", + "6enpySOPPJLPfvazrblujknb1H89OcE78qWn7p7pLQBwirj9Y7cc9/f4nTvXteQ8z39+TUvOw8lJ\\\n", + "/xIASsT3QFOEAAgAJeKXQCjilL8HEACAY6MCCAClogTI0QmAAFAiWsAUoQUMAFAxKoAAUCYqgBQg\\\n", + "AAJAich/FCEAAkCJuAeQItwDCABQMQIgAEDFaAEDQIloAVOECiAAQMWoAAJAiSgAUoQACABlIgFS\\\n", + "gBYwAEDFqAACQIl4CIQiBEAAKBH5jyIEQAAoEwmQAtwDCABQMSqAAFAiCoAUIQACQIl4CIQitIAB\\\n", + "ACpGBRAAykQJkAIEQAAoEfGPIrSAAQAqRgUQAMpECZACBEAAKBH5jyK0gAEAKkYFEABKxEPAFCEA\\\n", + "AkCZCIAUIAACQInIfxQhAL5L335ucqa3AMAp4vaPzfQO4KcEQAAoEfcAUoSngAEAKkYABACoGAEQ\\\n", + "AEqkra01o1XWrl2ber2eFStWZHKy+b75AwcOpL+/P/V6PatXrz40f+mll6azszNDQ0Ot2whNBEAA\\\n", + "KJGTKQDu2LEju3fvzsjISBYuXJgNGzY0rQ8NDWXBggUZGRnJvn37Mjo6miR5+OGHmwIhrScAAgDT\\\n", + "NBqNTExMNI1Go3FM59i6dWt6e3uTJH19fdmyZUuh9QULFrTgCjgSARAAmGZwcDAdHR1NY3Bw8JjO\\\n", + "MTY2lvb29iRJR0dH9u7de0zrHD++BgYASqRV7duBgYGsWbOmaa5Wqx32tXv27Mk111wzbb63tzcT\\\n", + "ExNJkvHx8cybN69pvbOz84jrHD8CIAAwTa1We9vA9/Pmz5+f5557btr89u3bs27duqxcuTLDw8Pp\\\n", + "6elpWl+yZEk2btyYiy66KMPDw7nhhhtasXUK0AIGgBJpa9Fohe7u7nR1daVer2fnzp1Zvnx5kmTV\\\n", + "qlVJkmXLlmXXrl2p1+uZM2dOFi9enCTp7+/Pgw8+mC984Qu58847W7Qbflbb1NTU1Exv4lS28H/8\\\n", + "+UxvAYBTxP/68q3H/T1+9/+5qyXn+e6Nq1tyHk5OWsAAUCJ+Co4itIABACpGBRAASkQBkCIEQAAo\\\n", + "Ez1gCtACBgCoGBVAACgR9T+KEAABoER0gClCCxgAoGJUAAGgRFQAKUIFEACgYgRAAICK0QIGgBLR\\\n", + "AqYIARAASkT+owgBEADKRAKkAPcAAgBUjAogAJSIAiBFCIAAUCIeAqEILWAAgIpRAQSAElEBpAgV\\\n", + "QACAihEAAQAqRgsYAEpEC5giBEAAKBH5jyK0gAEAKqaSFcBXX301f/VXf5Xf/M3fzIUXXpivfOUr\\\n", + "ed/73pc/+ZM/SVdX19se12g00mg0muYO7t+fWadV8mME4CSkBUwRlawAXnfddTnnnHPywx/+ML29\\\n", + "vbnsssvS29ub/v7+Ix43ODiYjo6OprF369MnaNcAcHRtba0ZlFslA+D+/ftz/fXX5+abb05HR0eu\\\n", + "uuqq9Pb25s033zzicQMDAxkfH28a85ZcdoJ2DQDQGpXsXU5OTh7687333nvoz/v37z/icbVaLbVa\\\n", + "rWlO+xcAONVUMr38zd/8TaamptLW1pYLLrggyU9D4de+9rUZ3hkAvDvatxRRyQB41llnTZt7z3ve\\\n", + "kw9/+MMzsBsAaB35jyIqeQ8gAECVVbICCABlpQVMEQIgAJSI/EcRWsAAABWjAggAZaIESAEqgABQ\\\n", + "IifbL4GsXbs29Xo9K1asaPoe3iQ5cOBA+vv7U6/Xs3r16iTJyy+/nHq9nosvvjiXX355xsfHW7cZ\\\n", + "DhEAAYDjYseOHdm9e3dGRkaycOHCbNiwoWl9aGgoCxYsyMjISPbt25fR0dF0dnbmiSeeyKZNm3Ll\\\n", + "lVfmvvvum6Hdl5sACAAl0tai0Qpbt25Nb29vkqSvry9btmw56vqZZ56Zzs7OJMnpp5+eWbNElePB\\\n", + "PYAAUCKtat82Go00Go2mucP9JOqRjI2N5eyzz06SdHR0ZO/evdPW29vbD7v++uuv55577smTTz75\\\n", + "Ti+BIxCrAaBEWlUBHBwcTEdHR9MYHBw87Hvu2bMnS5cunTaSZGJiIkkyPj6eefPmNR3X2dl52PXJ\\\n", + "yclcd911Wbdu3bRjaA0VQABgmoGBgaxZs6Zp7u2qf/Pnz89zzz03bX779u1Zt25dVq5cmeHh4fT0\\\n", + "9DStL1myJBs3bsxFF12U4eHh3HDDDUmSG2+8MVdffXU++tGPtuZimEYFEABKpFVPAddqtbS3tzeN\\\n", + "Y2n/Jkl3d3e6urpSr9ezc+fOLF++PEmyatWqJMmyZcuya9eu1Ov1zJkzJ4sXL87IyEgeffTR3H//\\\n", + "/Vm6dGnWr1/f8s+IpG1qampqpjdxKlv4P/58prcAwCnif3351uP+Hv3faU1g+sbvfa4l5+HkpAII\\\n", + "AFAx7gEEgBJp5Zc4U14CIACUiQBIAVrAAAAVowIIACWiAEgRAiAAlIh7AClCCxgAoGJUAAGgRBQA\\\n", + "KUIABIAS0QKmCAEQAEpE/qMI9wACAFSMCiAAlIgWMEUIgABQIgIgRWgBAwBUjAogAJSIAiBFCIAA\\\n", + "UCJawBShBQwAUDEqgABQIgqAFCEAAkCJaAFThAD4Lu37j/0zvQUAgGMiAAJAiSgAUoQACAAlogVM\\\n", + "EQIgAJSI/EcRvgYGAKBiVAABoES0gClCAASAEpH/KEILGACgYlQAAaBEtIApQgAEgBIRAClCCxgA\\\n", + "oGJUAAGgRBQAKUIABIASadMDpgAtYACAilEBBIASUf+jCAEQAEpEB5giBEAAKBH5jyLcAwgAHDdr\\\n", + "165NvV7PihUrMjk52bR24MCB9Pf3p16vZ/Xq1Yfme3p6cvHFF6enpycvvfTSCd5xNQiAAFAis9pa\\\n", + "M1phx44d2b17d0ZGRrJw4cJs2LChaX1oaCgLFizIyMhI9u3bl9HR0STJs88+m02bNuXLX/5y1q1b\\\n", + "15rN0EQABIASaWvRaIWtW7emt7c3SdLX15ctW7YUWj/99NOTJG+88UbOP//8Fu2Gn+UeQABgmkaj\\\n", + "kUaj0TRXq9VSq9UKn2NsbCxnn312kqSjoyN79+6dtt7e3j5tfc+ePVm+fHl27dqVxx9//N1cBm9D\\\n", + "BRAASqStrTVjcHAwHR0dTWNwcPCw77lnz54sXbp02kiSiYmJJMn4+HjmzZvXdFxnZ+dh1+fPn58t\\\n", + "W7bksccey8DAwHH6pKpNBRAASqRV7duBgYGsWbOmae7tqn/z58/Pc889N21++/btWbduXVauXJnh\\\n", + "4eH09PQ0rS9ZsiQbN27MRRddlOHh4dxwww2ZnJzM7NmzM2vWrHR0dOS9731vi66In6UCCABMU6vV\\\n", + "0t7e3jSOpf2bJN3d3enq6kq9Xs/OnTuzfPnyJMmqVauSJMuWLcuuXbtSr9czZ86cLF68OD/60Y+y\\\n", + "dOnSXHLJJbnppptyxx13tPzaSNqmpqamZnoTp7L/9umvzvQWADhF/PC+tcf9PW7beHdrzvN/3NKS\\\n", + "83By0gIGgBLxRdAUoQUMAFAxKoAAUCJ+C5giBEAAKBH5jyIEQAAokVb9jBvl5h5AAICKUQEEgBJR\\\n", + "AKQIARAASsRDIBShBQwAUDEqgABQIgqAFCEAAkCJaAFThBbw/2/16tVHfU2j0cjExETTmDqw//hv\\\n", + "DgCghSpZATzrrLPyy7/8y5k1a1ampqaSJN///vezdevWPP/882973ODgYG6//famubm/dVk6PvSx\\\n", + "47pfAChKAZAiKlkBXL9+fT74wQ/m1ltvzQsvvJAXXnghixcvPmL4S5KBgYGMj483jfbuS07QrgHg\\\n", + "6NraWjMot0oGwGuvvTbf+c53sn///nziE5/II488cqgSeCS1Wi3t7e1No212JYuoAMAprJIBMElm\\\n", + "zZqV6667Ln/913+d/fv3p7u7e6a3BADvmgogRVS+fDVr1qysXLlyprcBAC1R2coOx6TyARAAykT1\\\n", + "jiL8jwIAQMWoAAJAiSgAUoQACAAlogVMEVrAAAAVowIIACWiAEgRAiAAlIgWMEVoAQMAVIwKIACU\\\n", + "iAIgRQiAAFAiWsAUoQUMAFAxKoAAUCIKgBQhAAJAiWgBU4QACAAl4t4uivDfCQBAxagAAkCJaAFT\\\n", + "hAAIACUi/1GEFjAAQMWoAAJAiWgBU4QKIACUSFuLRqusXbs29Xo9K1asyOTkZNPagQMH0t/fn3q9\\\n", + "ntWrVzetjY6Opq2tLT/+8Y9buBv+iwAIABwXO3bsyO7duzMyMpKFCxdmw4YNTetDQ0NZsGBBRkZG\\\n", + "sm/fvoyOjh5au/vuu/OhD33oRG+5MgRAACiRtrbWjFbYunVrent7kyR9fX3ZsmVLofXNmzdn0aJF\\\n", + "ef/739+ajTCNAAgAJdKqANhoNDIxMdE0Go3GMe1lbGws7e3tSZKOjo7s3bu30Pr69etz8803t+DT\\\n", + "4O0IgADANIODg+no6Ggag4ODh33tnj17snTp0mkjSSYmJpIk4+PjmTdvXtNxnZ2d09Y3bdqUCy64\\\n", + "IHPnzj1+F4engAGgTFr1AMfAwEDWrFnTNFer1Q772vnz5+e5556bNr99+/asW7cuK1euzPDwcHp6\\\n", + "eprWlyxZko0bN+aiiy7K8PBwbrjhhrzwwgt5+umns3nz5rz44ou5/vrr89hjj7XoqvgvKoAAUCKt\\\n", + "agHXarW0t7c3jbcLgG+nu7s7XV1dqdfr2blzZ5YvX54kWbVqVZJk2bJl2bVrV+r1eubMmZPFixfn\\\n", + "lltuybPPPpsnn3wyixYtygMPPNDyz4ikbWpqamqmN3Eq+2+f/upMbwGAU8QP71t73N/joW13t+Q8\\\n", + "K377lpach5OTCiAAQMW4BxAASsQvgVCEAAgAJdIWd3ZxdFrAAAAVowIIACWiBUwRngIGWqrRaGRw\\\n", + "cDADAwPH/JURAJwYAiDQUhMTE+no6Mj4+Pihn3gC4OTiHkAAgIoRAAEAKkYABACoGAEQaKlarZYv\\\n", + "felLHgABOIl5CAQAoGJUAAEAKkYABACoGAEQAKBiBEAAgIoRAAEAKua0md4AUB6vvvpqrrnmmuzf\\\n", + "vz9dXV359re/ndmzZ8/0tgD4OSqAQMuceeaZeeqppzIyMpJzzjknzzzzzExvCYDDUAEEWua1117L\\\n", + "TTfdlLGxsbzyyiu58MILZ3pLAByGCiDQMo888kiWLVuWTZs2pa+vL75nHuDkpAIItMxll12WFStW\\\n", + "5IknnsgZZ5wx09sB4G34KTgAgIrRAgYAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICK\\\n", + "EQABACrGL4EALfPqq6/mmmuuyf79+9PV1ZVvf/vbmT179kxvC4CfowIItMyZZ56Zp556KiMjIznn\\\n", + "nHPyzDPPzPSWADgMFUCgZV577bXcdNNNGRsbyyuvvJILL7xwprcEwGGoAAIt88gjj2TZsmXZtGlT\\\n", + "+vr64qfGAU5OKoBAy1x22WVZsWJFnnjiiZxxxhkzvR0A3kbblP9FBwCoFC1gAICKEQABACpGAAQA\\\n", + "qBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQAB\\\n", + "ACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICK+f8AuwcydjyCw1UAAAAASUVO\\\n", + "RK5CYII=\\\n", + "\"\n", + " frames[9] = \"\\\n", + "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", + "AAAPYQGoP6dpAAAk0UlEQVR4nO3df4xd5X0/+Pe1Cdck8czYaRkw+jbSqguuYM2UJFXsycVOSIZp\\\n", + "cdhUThMi1gYmLQ5RlLhOU39nFSVETTK0TR2MVFEWNSiQ0PwwTQvT1lMcwB3sWQFa2bSmqtIqjSMT\\\n", + "0008zBALLuPx7B/ZWrkZYx/Dtcc+5/WSHsl+nnvOfc4Vkt98PufcW5uZmZkJAACVMW+uNwAAwOkl\\\n", + "AAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDF\\\n", + "CIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQ\\\n", + "MQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIAAABUjAAIA\\\n", + "VIwACABQMQIgAEDFCIAAABUjAAIAVIwACABQMQIgAEDFCIDALLfeemteeumlo3//zGc+k69//etz\\\n", + "uKPZjhw5kj/4gz/IZZddlqVLl+bDH/5wXn755bneFsBZoTYzMzMz15sAziy1Wi3j4+Pp6uqa6628\\\n", + "orvvvjt/9Vd/lW3btuV1r3tdbr755lx88cX51Kc+NddbAzjjqQBCiV1//fV561vfmmXLluWaa67J\\\n", + "gQMHTnjMRz7ykSRJo9FIT09P/uu//is33nhjbr/99iQ/qw5+4AMfyHvf+95cfPHFWb16df7lX/4l\\\n", + "V199dS6++OJ86EMfypEjR5IkL7zwQn7v934vv/Ebv5Fly5bl5ptvbluVbs+ePXn3u9+dc889N7Va\\\n", + "Lb/5m7+Z++67ry3nBig7ARBK7Pbbb89TTz2Vp59+Oo1GI7feeuvRtd/6rd/KU089NeuYv/iLv0iS\\\n", + "jI6OZvfu3Tn//PNnveapp57Kvffem3/7t3/LCy+8kN/93d/N1q1b88wzz+Rf//Vf8w//8A9Jkk9+\\\n", + "8pNpNBp54oknsmfPnhw5ciRbtmyZdb4XXnghPT09xxxXX331Ma/tLW95Sx588MFMTk5mamoq3/rW\\\n", + "t/Kf//mfr+JTAqiec+Z6A8Cpc//99+e+++7LSy+9lJdeeim/9Eu/dHTt7//+71/1efv6+rJo0aIk\\\n", + "yRVXXJF6vZ6FCxcmSX7913893/ve95Ikf/M3f5OxsbFs3rw5SfLiiy9m/vz5s863cOHC7N69+6T2\\\n", + "cOONN+YHP/hBVq5cmfPOOy/vfve784//+I+v+poAqkQAhJJ6/PHHc8cdd2RsbCznn39+HnzwwXzm\\\n", + "M59py7kXLFhw9M/z58+f9ffDhw8nSWZmZvLAAw/k4osvPu75XnjhhTQajWOudXd3Z2RkZNZ8rVbL\\\n", + "rbfeerSq+Y1vfCOXXnrpyV4KQCUJgFBS4+PjWbhwYd70pjfl5Zdfzl133VX42IULF2ZiYuI1PwTy\\\n", + "vve9L3/8x3+cu+66K+ecc07Gx8fzk5/8JL/6q7866/1OtgL40ksv5cUXX8yiRYvy4x//OLfddlv+\\\n", + "6I/+6DXtF6Aq3AMIJdXf359LLrkkl1xyydEHOn7eK90DmPzs3r33vOc9Rx8CebW+/OUv57zzzktP\\\n", + "T0+WLVuWq666qm336U1MTGTFihW59NJL02g08pGPfCTvfe9723JugLLzNTAAABWjAggAUDECIABA\\\n", + "xQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMn4J7jX77ni1zvQUAzhLfuekTp/w9/rcr\\\n", + "PtmW8/zz//NnbTkPZyYVQACAilEBBIAyqc31BjgbqAACAFSMCiAAlElNCZATEwABoEzkPwrQAgYA\\\n", + "XpNNmzal0Whk7dq1mZqaOjo/PT2dgYGBNBqNbNiwoeWYsbGx1Gq1/PSnPz3NuyURAAGgXGptGgXt\\\n", + "2bMn+/fvz+joaJYuXZqtW7ceXRseHs6SJUsyOjqaQ4cOZWxs7OjaHXfckbe85S2v4UJ5LQRAACiV\\\n", + "9iTAZrOZycnJltFsNme9265du9LX15ck6e/vz86dO0+49vjjj2fZsmV54xvf2P7LpxABEACYZWho\\\n", + "KJ2dnS1jaGho1uvGx8fT0dGRJOns7MzBgwdPuLZly5Z87GMfOw1XwSvxEAgAlMhMmx4CGRwczMaN\\\n", + "G1vm6vX6rNd1dXVlcnIySTIxMZHFixcfd23Hjh25/PLLs3DhwvZslFdFBRAAyqRN9wDW6/V0dHS0\\\n", + "jGMFwBUrVmT79u1JkpGRkfT29h53bc+ePfnud7+b/v7+PP3007nhhhtOycfA8QmAAMCr1tPTk+7u\\\n", + "7jQajezduzdr1qzJ+vXrkySrV6/Ovn370mg0smDBgixfvjwf//jH8+ijj2bbtm1ZtmxZvvrVr87x\\\n", + "FVRTbWZmZmauN3E2++17tsz1FgA4S3znpk+c8ve4bPkftuU8/zL2J205D2cmFUAAgIrxEAgAlIlf\\\n", + "AqEAFUAAgIpRAQSAMqkpAXJiAiAAlIn8RwFawAAAFaMCCAAl4rvdKEIABIAycQ8gBWgBAwBUjAog\\\n", + "AJSJAiAFCIAAUCoSICemBQwAUDEqgABQJgqAFCAAAkCZCIAUIAACQInM+BoYCnAPIABAxQiAAAAV\\\n", + "owUMAGWiBUwBKoAAABWjAggAZaIASAECIACUyMxcb4CzQiUD4PT0dLZu3ZqdO3fm4MGDWbx4cXp7\\\n", + "e7NmzZqcc04lPxIAoEIqmXYGBgZyySWX5MYbb0xnZ2cmJiYyMjKSm266Kffdd98rHtdsNtNsNlvm\\\n", + "pqcOZ/7rKvkxAnAm8hAIBVQyuXz/+9/PV7/61Za5K664IldeeeVxjxsaGsrnPve5lrlLrr06v/a+\\\n", + "32z7HgHgVZH/KKCSAXDFihVZt25d+vr60tHRkcnJyWzfvj1vf/vbj3vc4OBgNm7c2DL3f3zj7lO5\\\n", + "VQCAtqtkALztttvy9NNPZ9euXfnhD3+Yrq6u/P7v/34uv/zy4x5Xr9dTr9db5rR/ATijaAFTQGXT\\\n", + "y7Jly7Js2bK53gYAtJWngCmisgEQAEpJAZAC/BIIAEDFqAACQJm4B5ACVAABACpGAAQAqBgtYAAo\\\n", + "kRktYAoQAAGgTOQ/CtACBgCoGAEQAKBiBEAAKJGZWq0t42Rs2rQpjUYja9euzdTU1NH56enpDAwM\\\n", + "pNFoZMOGDUfne3t7s3LlyvT29uaZZ55p16VzEgRAAOBV27NnT/bv35/R0dEsXbo0W7duPbo2PDyc\\\n", + "JUuWZHR0NIcOHcrY2FiS5NFHH82OHTvyhS98IZs3b56rrVeaAAgAZVJrz2g2m5mcnGwZzWZz1tvt\\\n", + "2rUrfX19SZL+/v7s3LnzhGvnnntukuSFF17IZZdd1uYPgCIEQAAokzYFwKGhoXR2draMoaGhWW83\\\n", + "Pj6ejo6OJElnZ2cOHjx4wrUDBw6kt7c3H/3oR7Ny5cr2fwackK+BAYBSac/3wAwO/s9s3LixZa5e\\\n", + "r896XVdXVyYnJ5MkExMTWbx48QnXLrjgguzcuTNPPPFEBgcHs23btrbsmeJUAAGAWer1ejo6OlrG\\\n", + "sQLgihUrsn379iTJyMhIent7j7s2NTWVI0eOJPlZVfD1r3/9abgafpEACAAlMlNrzyiqp6cn3d3d\\\n", + "aTQa2bt3b9asWZP169cnSVavXp19+/al0WhkwYIFWb58eX70ox9l1apVeec735lbbrkln//850/R\\\n", + "J8Hx1GZmZmbmehNns9++Z8tcbwGAs8R3bvrEKX+P//V//1xbzvO9v/1sW87DmUkFEACgYjwEAgCl\\\n", + "4seAOTEBEABK5GTu36O6tIABACpGBRAAykQFkAIEQAAoFQmQE9MCBgCoGBVAACgRD4FQhAAIAGUi\\\n", + "AFKAAAgApSIBcmLuAQQAqBgVQAAoEwVAChAAAaBEPARCEVrAAAAVowIIAGWiAkgBAiAAlIoEyIkJ\\\n", + "gK9R/dy53gEAwMkRAAGgRDwEQhECIACUiQBIAZ4CBgCoGAEQAKBitIABoExqesCcmAAIACXiIRCK\\\n", + "0AIGAKgYARAAoGK0gAGgTLSAKUAFEACgYlQAAaBMPAVMAQIgAJTIzFxvgLOCFjAAQMWoAAJAmegA\\\n", + "U4AACABlIgBSgBYwAEDFCIAAABWjBQwAZeJrYChABRAASmSm1p5xMjZt2pRGo5G1a9dmamrq6Pz0\\\n", + "9HQGBgbSaDSyYcOGJMn3v//9NBqNrFy5Mtdcc00mJibaePUUJQACAK/anj17sn///oyOjmbp0qXZ\\\n", + "unXr0bXh4eEsWbIko6OjOXToUMbGxtLV1ZWHHnooO3bsyLXXXpu77757DndfXQIgAPCq7dq1K319\\\n", + "fUmS/v7+7Ny587hrixYtSldXV5Lk3HPPzbx5oshccA8gAJRJm24BbDabaTabLXP1ej31er1lbnx8\\\n", + "PBdeeGGSpLOzMwcPHmxZ6+joOOba888/nzvvvDPbtm1rz4Y5KWI3ADDL0NBQOjs7W8bQ0NCs13V1\\\n", + "dWVycjJJMjExkcWLF59wbWpqKtdff302b97c8npOHwEQAMqk1p4xODiYiYmJljE4ODjr7VasWJHt\\\n", + "27cnSUZGRtLb23vCtZtvvjkf+MAH8o53vKP9108hAiAAlEp7EmC9Xk9HR0fL+MX2b5L09PSku7s7\\\n", + "jUYje/fuzZo1a7J+/fokyerVq7Nv3740Go0sWLAgy5cvz+joaL71rW/lnnvuyapVq7Jly5ZT/Hlw\\\n", + "LLWZmZmZud7E2ey6r/sPF4BivnH9J075e/zKwB+35Tz7vrKpLefhzOQhEAAoE98DTQECIACUiQBI\\\n", + "Ae4BBACoGBVAACgRN/ZThAAIAGWiBUwBWsAAABUjAAIAVIwWMACUSU0PmBNTAfw5995773HXm81m\\\n", + "JicnW8b01OHTtDsAKKBNPwVHuVUyAD7zzDOzxt69e3PXXXcd97hj/TD2vz748GnaNQBAe1SyBfz2\\\n", + "t78973//+/OLv4L3gx/84LjHDQ4OZuPGjS1zH/7ru9u+PwCAU6mSAfDXfu3X8qd/+qd505ve1DJ/\\\n", + "zTXXHPe4er0+64ew57+ukh8hAGcq7VsKqGR6efjhh/OGN7xh1vzf/d3fzcFuAABOr0oGwI6Ojrne\\\n", + "AgCcGiqAFFDJh0AAAKpMAAQAqJhKtoABoLS0gClAAASAEqn5JRAK0AIGAKgYARAAoGK0gAGgTHSA\\\n", + "KUAABIAyEQApQAsYAKBiBEAAgIrRAgaAEvEtMBShAggAUDECIABAxWgBA0CZaAFTgAogAEDFqAAC\\\n", + "QJmoAFKAAAgAJSL/UYQACABl4ntgKMA9gAAAFaMCCAAlogBIESqAAAAVIwACAFSMAAgAZVJr0zgJ\\\n", + "mzZtSqPRyNq1azM1NXV0fnp6OgMDA2k0GtmwYcPR+Xe9613p6urK8PDwq7tGXjMBEABK5HTnvz17\\\n", + "9mT//v0ZHR3N0qVLs3Xr1qNrw8PDWbJkSUZHR3Po0KGMjY0lSb72ta+1BEJOPwEQAHjVdu3alb6+\\\n", + "viRJf39/du7cecK1JUuWnP6N0sJTwABQJm16CrjZbKbZbLbM1ev11Ov1lrnx8fFceOGFSZLOzs4c\\\n", + "PHiwZa2jo+OYa8wtFUAAKJFarT1jaGgonZ2dLWNoaGjW+3V1dWVycjJJMjExkcWLFxdaY24JgADA\\\n", + "LIODg5mYmGgZg4ODs163YsWKbN++PUkyMjKS3t7eQmvMLQEQAJilXq+no6OjZfxi+zdJenp60t3d\\\n", + "nUajkb1792bNmjVZv359kmT16tXZt29fGo1GFixYkOXLlydJBgYGcu+99+bTn/50brvtttN6XfxM\\\n", + "bWZmZmauN3E2u+7rW+Z6CwCcJb5x/SdO+Xv86h9+qS3n+fc/+YO2nIczkwogAEDFCIAAABXja2Be\\\n", + "o//ll/zqNgBnjpp/lihAAASAMhEAKUALGACgYlQAAaBEakqAFCAAAkCZyH8UoAUMAFAxKoAAUCIK\\\n", + "gBQhAAJAifgaGIrQAgYAqBgVQAAoExVAChAAAaBE5D+KEAABoEwkQApwDyAAQMWoAAJAiSgAUoQA\\\n", + "CAAl4mtgKEILGACgYlQAAaBMVAApQAAEgBKR/yhCCxgAoGJUAAGgRDwEQhEqgAAAFSMAAgBUjBYw\\\n", + "AJSIFjBFCIAAUCYCIAUIgABQIjUJkALcAwgAUDEqgABQIu4BpAgVQACAihEAAQAqRgsYAEpEC5gi\\\n", + "BEAAKBH5jyK0gAEAKkYFEADKRAmQAgRAACgR9wBShBYwAPCabNq0KY1GI2vXrs3U1NTR+enp6QwM\\\n", + "DKTRaGTDhg1H57ds2ZLe3t5ce+21mZycnIMdIwACQInU2jSK2rNnT/bv35/R0dEsXbo0W7duPbo2\\\n", + "PDycJUuWZHR0NIcOHcrY2Fh+/OMf58EHH8zjjz+eD37wg/nzP//z13zNnLyzvgU8MzOTRx55JM8+\\\n", + "+2xmZmaSJOvWrTvuMdPT0/nbv/3bzJs3L+9973szf/78JMm3v/3t/M7v/M4rHtdsNtNsNlvmDr98\\\n", + "OOece9Z/jACURZtawMf6N69er6der7fM7dq1K319fUmS/v7+3HPPPfnQhz50dO2aa645urZz5848\\\n", + "//zzWblyZWq1Wvr7+3PDDTe0Z8OclLO+AvjBD34wDz30UD7/+c/nqaeeyrZt2054zLp16/LUU09l\\\n", + "9+7dufLKK/Pv//7vSZI777zzuMcNDQ2ls7OzZYx98+G2XAcAtEO7KoDH+jdvaGho1vuNj4+no6Mj\\\n", + "SdLZ2ZmDBw8ed+14r+f0OesD4HPPPZfbb789F154Ye644468+OKLJzxm//79+eIXv5hbb701999/\\\n", + "fz784Q/n0UcfPeFxg4ODmZiYaBnLP/iedlwGAJxRjvVv3uDg4KzXdXV1Hb2Pb2JiIosXLz7u2vFe\\\n", + "z+lz1gfA+fPn58iRI1m0aFG+8pWv5D/+4z9OeMzLL798tKz95je/OcPDw/nSl76Uf/7nfz7ucfV6\\\n", + "PR0dHS1D+xeAM0mt1p5xrH/zfrH9myQrVqzI9u3bkyQjIyPp7e097trb3va2/NM//dMxX8/pc9YH\\\n", + "wG984xs5cuRI7rzzzjz//PO57777TnjMli1b8vzzzx/9+8KFC/Pggw/my1/+8incKQCcBqf5KZCe\\\n", + "np50d3en0Whk7969WbNmTdavX58kWb16dfbt25dGo5EFCxZk+fLl+eVf/uVcc8016e3tzf3335+P\\\n", + "fvSj7bluTkpt5r+fnOBV+T9H7pjrLQBwlvji1R8/5e/xG7dtbst5nvifG9tyHs5M+pcAUCK+B5oi\\\n", + "BEAAKBG/BEIRZ/09gAAAnBwVQAAoFSVATkwABIAS0QKmCC1gAICKUQEEgDJRAaQAARAASkT+owgB\\\n", + "EABKxD2AFOEeQACAihEAAQAqRgsYAEpEC5giVAABACpGBRAASkQBkCIEQAAoEwmQArSAAQAqRgUQ\\\n", + "AErEQyAUIQACQInIfxQhAAJAmUiAFOAeQACAilEBBIASUQCkCAEQAErEQyAUoQUMAFAxKoAAUCZK\\\n", + "gBQgAAJAiYh/FKEFDABQMSqAAFAmSoAUIAACQInIfxShBQwAUDEqgABQIh4CpggBEADKRACkAAEQ\\\n", + "AEpE/qMIAfA1Gv6/p+Z6CwCcJb549VzvAH5GAASAEnEPIEV4ChgAoGIEQACAihEAAaBEarX2jHbZ\\\n", + "tGlTGo1G1q5dm6mp1vvmp6enMzAwkEajkQ0bNhydf9e73pWurq4MDw+3byO0EAABoETOpAC4Z8+e\\\n", + "7N+/P6Ojo1m6dGm2bt3asj48PJwlS5ZkdHQ0hw4dytjYWJLka1/7WksgpP0EQABglmazmcnJyZbR\\\n", + "bDZP6hy7du1KX19fkqS/vz87d+4stL5kyZI2XAHHIwACALMMDQ2ls7OzZQwNDZ3UOcbHx9PR0ZEk\\\n", + "6ezszMGDB09qnVPH18AAQIm0q307ODiYjRs3tszV6/VjvvbAgQO57rrrZs339fVlcnIySTIxMZHF\\\n", + "ixe3rHd1dR13nVNHAAQAZqnX668Y+H7RBRdckMcee2zW/O7du7N58+asW7cuIyMj6e3tbVlfsWJF\\\n", + "tm/fniuvvDIjIyO56aab2rF1CtACBoASqbVptENPT0+6u7vTaDSyd+/erFmzJkmyfv36JMnq1auz\\\n", + "b9++NBqNLFiwIMuXL0+SDAwM5N57782nP/3p3HbbbW3aDT+vNjMzMzPXmzibLfvcn831FgA4Szz9\\\n", + "2U+e8vf4rf/r9rac5+9v3tCW83Bm0gIGgBLxU3AUoQUMAFAxKoAAUCIKgBQhAAJAmegBU4AWMABA\\\n", + "xagAAkCJqP9RhAAIACWiA0wRWsAAABWjAggAJaICSBEqgAAAFSMAAgBUjBYwAJSIFjBFCIAAUCLy\\\n", + "H0UIgABQJhIgBbgHEACgYlQAAaBEFAApQgAEgBLxEAhFaAEDAFSMCiAAlIgKIEWoAAIAVIwACABQ\\\n", + "MVrAAFAiWsAUIQACQInIfxShBQwAUDGVrAA+99xz+cu//MtceumlueKKK/LFL34xb3jDG/KpT30q\\\n", + "3d3dr3hcs9lMs9lsmTty+HDmnVPJjxGAM5AWMEVUsgJ4/fXX56KLLsoPf/jD9PX15aqrrkpfX18G\\\n", + "BgaOe9zQ0FA6Oztbxv87+t3TtGsAOLFarT2DcqtkADx8+HBuuOGGfOxjH0tnZ2fe//73p6+vLy+9\\\n", + "9NJxjxscHMzExETL+OXGVadp1wAA7VHJ3uXU1NTRP991111H/3z48OHjHlev11Ov11vmtH8BgLNN\\\n", + "JdPLd77znczMzKRWq+Xyyy9P8rNQ+KUvfWmOdwYAr432LUVUMgCef/75s+Ze97rX5W1ve9sc7AYA\\\n", + "2kf+o4hK3gMIAFBllawAAkBZaQFThAAIACUi/1GEFjAAQMWoAAJAmSgBUoAKIACUyJn2SyCbNm1K\\\n", + "o9HI2rVrW76HN0mmp6czMDCQRqORDRs2JEm+//3vp9FoZOXKlbnmmmsyMTHRvs1wlAAIAJwSe/bs\\\n", + "yf79+zM6OpqlS5dm69atLevDw8NZsmRJRkdHc+jQoYyNjaWrqysPPfRQduzYkWuvvTZ33333HO2+\\\n", + "3ARAACiRWptGO+zatSt9fX1Jkv7+/uzcufOE64sWLUpXV1eS5Nxzz828eaLKqeAeQAAokXa1b5vN\\\n", + "ZprNZsvcsX4S9XjGx8dz4YUXJkk6Oztz8ODBWesdHR3HXH/++edz5513Ztu2ba/2EjgOsRoASqRd\\\n", + "FcChoaF0dna2jKGhoWO+54EDB7Jq1apZI0kmJyeTJBMTE1m8eHHLcV1dXcdcn5qayvXXX5/NmzfP\\\n", + "Oob2UAEEAGYZHBzMxo0bW+Zeqfp3wQUX5LHHHps1v3v37mzevDnr1q3LyMhIent7W9ZXrFiR7du3\\\n", + "58orr8zIyEhuuummJMnNN9+cD3zgA3nHO97RnothFhVAACiRdj0FXK/X09HR0TJOpv2bJD09Penu\\\n", + "7k6j0cjevXuzZs2aJMn69euTJKtXr86+ffvSaDSyYMGCLF++PKOjo/nWt76Ve+65J6tWrcqWLVva\\\n", + "/hmR1GZmZmbmehNns2Wf+7O53gIAZ4mnP/vJU/4eA99uT2D6yu98oi3n4cykAggAUDHuAQSAEmnn\\\n", + "lzhTXgIgAJSJAEgBWsAAABWjAggAJaIASBECIACUiHsAKUILGACgYlQAAaBEFAApQgAEgBLRAqYI\\\n", + "ARAASkT+owj3AAIAVIwKIACUiBYwRQiAAFAiAiBFaAEDAFSMCiAAlIgCIEUIgABQIlrAFKEFDABQ\\\n", + "MSqAAFAiCoAUIQACQIloAVOEAPgajT87PddbAAA4KQIgAJSIAiBFCIAAUCJawBQhAAJAich/FOFr\\\n", + "YAAAKkYFEABKRAuYIgRAACgR+Y8itIABACpGBRAASkQLmCIEQAAoEQGQIrSAAQAqRgUQAEpEAZAi\\\n", + "BEAAKJGaHjAFaAEDAFSMCiAAlIj6H0UIgABQIjrAFCEAAkCJyH8U4R5AAOCU2bRpUxqNRtauXZup\\\n", + "qamWtenp6QwMDKTRaGTDhg1H53t7e7Ny5cr09vbmmWeeOc07rgYBEABKZF6tPaMd9uzZk/3792d0\\\n", + "dDRLly7N1q1bW9aHh4ezZMmSjI6O5tChQxkbG0uSPProo9mxY0e+8IUvZPPmze3ZDC0EQAAokVqb\\\n", + "Rjvs2rUrfX19SZL+/v7s3Lmz0Pq5556bJHnhhRdy2WWXtWk3/Dz3AAIAszSbzTSbzZa5er2eer1e\\\n", + "+Bzj4+O58MILkySdnZ05ePDgrPWOjo5Z6wcOHMiaNWuyb9++PPjgg6/lMngFKoAAUCK1WnvG0NBQ\\\n", + "Ojs7W8bQ0NAx3/PAgQNZtWrVrJEkk5OTSZKJiYksXry45biurq5jrl9wwQXZuXNnHnjggQwODp6i\\\n", + "T6raVAABoETa1b4dHBzMxo0bW+Zeqfp3wQUX5LHHHps1v3v37mzevDnr1q3LyMhIent7W9ZXrFiR\\\n", + "7du358orr8zIyEhuuummTE1NZf78+Zk3b146Ozvz+te/vk1XxM9TAQQAZqnX6+no6GgZJ9P+TZKe\\\n", + "np50d3en0Whk7969WbNmTZJk/fr1SZLVq1dn3759aTQaWbBgQZYvX54f/ehHWbVqVd75znfmlltu\\\n", + "yec///m2XxtJbWZmZmauN3E2+x/r/2SutwDAWeKHd/3hKX+PW7ff0Z7zvPvjbTkPZyYtYAAoEV8E\\\n", + "TRFawAAAFaMCCAAl4reAKUIABIASkf8oQgAEgBJp18+4UW7uAQQAqBgVQAAoEQVAihAAAaBEPARC\\\n", + "EVrAAAAVowIIACWiAEgRAiAAlIgWMEVoAf//NmzYcMLXNJvNTE5OtoyZ6cOnfnMAAG1UyQrg+eef\\\n", + "n1/5lV/JvHnzMjMzkyT53ve+l127duWJJ554xeOGhobyuc99rmVu4RXvTudb33NK9wsARSkAUkQl\\\n", + "K4BbtmzJm9/85nzyk5/Mk08+mSeffDLLly8/bvhLksHBwUxMTLSMjl9/52naNQCcWK3WnkG5VTIA\\\n", + "fuhDH8q3v/3tHD58OO973/ty//33H60EHk+9Xk9HR0fLqM2vZBEVADiLVTIAJsm8efNy/fXX56//\\\n", + "+q9z+PDh9PT0zPWWAOA1UwGkiMqXr+bNm5d169bN9TYAoC0qW9nhpFQ+AAJAmajeUYT/UQAAqBgV\\\n", + "QAAoEQVAihAAAaBEtIApQgsYAKBiVAABoEQUAClCAASAEtECpggtYACAilEBBIASUQCkCAEQAEpE\\\n", + "C5gitIABACpGBRAASkQBkCIEQAAoES1gihAAAaBE3NtFEf47AQCoGBVAACgRLWCKEAABoETkP4rQ\\\n", + "AgYAqBgVQAAoES1gilABBIASqbVptMumTZvSaDSydu3aTE1NtaxNT09nYGAgjUYjGzZsaFkbGxtL\\\n", + "rVbLT3/60zbuhv8mAAIAp8SePXuyf//+jI6OZunSpdm6dWvL+vDwcJYsWZLR0dEcOnQoY2NjR9fu\\\n", + "uOOOvOUtbzndW64MARAASqRWa89oh127dqWvry9J0t/fn507dxZaf/zxx7Ns2bK88Y1vbM9GmEUA\\\n", + "BIASaVcAbDabmZycbBnNZvOk9jI+Pp6Ojo4kSWdnZw4ePFhofcuWLfnYxz7Whk+DVyIAAgCzDA0N\\\n", + "pbOzs2UMDQ0d87UHDhzIqlWrZo0kmZycTJJMTExk8eLFLcd1dXXNWt+xY0cuv/zyLFy48NRdHJ4C\\\n", + "BoAyadcDHIODg9m4cWPLXL1eP+ZrL7jggjz22GOz5nfv3p3Nmzdn3bp1GRkZSW9vb8v6ihUrsn37\\\n", + "9lx55ZUZGRnJTTfdlCeffDLf/e538/jjj+fpp5/ODTfckAceeKBNV8V/UwEEgBJpVwu4Xq+no6Oj\\\n", + "ZbxSAHwlPT096e7uTqPRyN69e7NmzZokyfr165Mkq1evzr59+9JoNLJgwYIsX748H//4x/Poo49m\\\n", + "27ZtWbZsWb761a+2/TMiqc3MzMzM9SbOZv9j/Z/M9RYAOEv88K4/POXvcd9Td7TlPGvf+vG2nIcz\\\n", + "kwogAEDFuAcQAErEL4FQhAAIACVSizu7ODEtYACAilEBBIAS0QKmCE8BA23VbDYzNDSUwcHBk/7K\\\n", + "CABODwEQaKvJycl0dnZmYmLi6E88AXBmcQ8gAEDFCIAAABUjAAIAVIwACLRVvV7PZz/7WQ+AAJzB\\\n", + "PAQCAFAxKoAAABUjAAIAVIwACABQMQIgAEDFCIAAABVzzlxvACiP5557Ltddd10OHz6c7u7ufPOb\\\n", + "38z8+fPnelsA/AIVQKBtFi1alIcffjijo6O56KKL8sgjj8z1lgA4BhVAoG1+8pOf5JZbbsn4+Hie\\\n", + "ffbZXHHFFXO9JQCOQQUQaJv7778/q1evzo4dO9Lf3x/fMw9wZlIBBNrmqquuytq1a/PQQw/lvPPO\\\n", + "m+vtAPAK/BQcAEDFaAEDAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAV45dA\\\n", + "gLZ57rnnct111+Xw4cPp7u7ON7/5zcyfP3+utwXAL1ABBNpm0aJFefjhhzM6OpqLLroojzzyyFxv\\\n", + "CYBjUAEE2uYnP/lJbrnlloyPj+fZZ5/NFVdcMddbAuAYVACBtrn//vuzevXq7NixI/39/fFT4wBn\\\n", + "JhVAoG2uuuqqrF27Ng899FDOO++8ud4OAK+gNuN/0QEAKkULGACgYgRAAICKEQABACpGAAQAqBgB\\\n", + "EACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYgRAAICKEQABACpG\\\n", + "AAQAqBgBEACgYgRAAICKEQABACpGAAQAqBgBEACgYv4/GmMy4RmA3Q0AAAAASUVORK5CYII=\\\n", + "\"\n", + " frames[10] = \"\\\n", + "bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9h\\\n", + "AAAPYQGoP6dpAAAlBElEQVR4nO3df5CddX03/Pcmyok/smeJlQ3RGzqthXTqE7aoHZPlkCi3yz4l\\\n", + "ojNRhGESZK1ErINpvNvcOzoWZtTF1icSZjrI46AjaOqP2B+QttkhCumS7DPA00loQ6djHeh6B0On\\\n", + "ZtnFVA6bsPcf3s143JBcgZNscl2v18x3Jrm+57rO9zrDTN58PtePjunp6ekAAFAZc2Z7AQAAnFoC\\\n", + "IABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSM\\\n", + "AAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAV\\\n", + "IwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDECIABA\\\n", + "xQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgkSW6++eY899xzR/7+6U9/Ot/4xjdm\\\n", + "cUUzPfnkk1mxYkXq9Xp6enpmzN911135jd/4jfz6r/96PvzhD2dqaurULxLgDNAxPT09PduLAGZf\\\n", + "R0dHxsfH09XVNdtLeVEHDhzI448/nomJiXzyk5/M7t27j8w98cQT6e3tzT/8wz+ku7s773nPe3L5\\\n", + "5Zfn93//92dvwQCnKRVAKJlrr702b33rW7NkyZJcccUV2b9//3H3+chHPpIkaTQa6enpyb//+7/n\\\n", + "gx/8YG677bYkP68OXnXVVXn3u9+dCy64ICtXrsw//dM/5fLLL88FF1yQa665Ji+88EKS5Nlnn82H\\\n", + "P/zh/M7v/E6WLFmSG264Ic8//3xbzm3BggW55JJL8prXvGbG3JYtW3LllVdm4cKF6ejoyEc+8pH8\\\n", + "+Z//eVu+F6BsBEAomdtuuy2PPvpoHnvssTQajdx8881H5n73d383jz766Ix9vvSlLyVJRkZGsnv3\\\n", + "7pxzzjkzPvPoo4/m7rvvzr/8y7/k2Wefze/93u9ly5Ytefzxx/PP//zP+bu/+7skySc+8Yk0Go08\\\n", + "/PDD2bNnT1544YVs2rRpxvGeffbZ9PT0HHVcfvnlJ3zeY2NjOf/884/8/Vd/9VczNjZ2wscBqIJX\\\n", + "zPYCgPbavHlz7rnnnjz33HN57rnn8iu/8itH5v72b//2JR+3r68vZ599dpLk4osvTq1Wy/z585Mk\\\n", + "v/3bv50f/OAHSZK/+qu/yujoaDZu3Jgk+dnPfpa5c+fOON78+fNbWrgAnDoCIJTIQw89lNtvvz2j\\\n", + "o6M555xzcu+99+bTn/50W449b968I3+eO3fujL8fOnQoSTI9PZ3vfve7ueCCC455vGeffTaNRuOo\\\n", + "c93d3RkeHj6h9Z133nn54Q9/eOTvTz75ZM4777wTOgZAVQiAUCLj4+OZP39+Xve61+X555/PnXfe\\\n", + "WXjf+fPnZ2Ji4mXfBPLe9743n//853PnnXfmFa94RcbHx/OTn/wkb3rTm2Z8XzsrgKtWrcoll1yS\\\n", + "m2++Od3d3fnSl76Uq6++um3HBygT1wBCifT39+fCCy/MhRdeeOSGjl/0YtcAJj+/du9d73rXkZtA\\\n", + "XqovfvGLedWrXpWenp4sWbIkl112WZ588smXfLxf9J//+Z954xvfmPe///15/PHH88Y3vjGDg4NJ\\\n", + "kl/7tV/LLbfckt7e3rzpTW/K61//+qxdu7Yt3wtQNh4DAwBQMSqAAAAVIwACAFSMAAgAUDECIABA\\\n", + "xQiAAAAVIwACAFSMAAgAUDECIABAxXgV3Mt05V2bZnsJAJwh7v3Qx0/6d/xfF3+iLcf5x3/4f9py\\\n", + "HE5PKoAAABWjAggAZdIx2wvgTKACCABQMSqAAFAmHUqAHJ8ACABlIv9RgBYwAPCybNiwIY1GI6tX\\\n", + "r87U1NSR7YcPH87AwEAajUbWrVvXss/o6Gg6Ojry05/+9BSvlkQABIBy6WjTKGjPnj3Zt29fRkZG\\\n", + "snjx4mzZsuXI3NatW7No0aKMjIzk4MGDGR0dPTJ3++235y1vecvLOFFeDgEQAEqlPQmw2WxmcnKy\\\n", + "ZTSbzRnftmvXrvT19SVJ+vv7s3PnzuPOPfTQQ1myZEle+9rXtv/0KUQABABmGBoaSr1ebxlDQ0Mz\\\n", + "Pjc+Pp7Ozs4kSb1ez4EDB447t2nTpnzsYx87BWfBi3ETCACUyHSbbgIZHBzM+vXrW7bVarUZn+vq\\\n", + "6srk5GSSZGJiIgsWLDjm3I4dO3LRRRdl/vz57VkoL4kKIACUSZuuAazVauns7GwZRwuAy5Yty/bt\\\n", + "25Mkw8PD6e3tPebcnj178r3vfS/9/f157LHHct11152Un4FjEwABgJesp6cn3d3daTQa2bt3b1at\\\n", + "WpW1a9cmSVauXJmxsbE0Go3MmzcvS5cuzU033ZQHHngg27Zty5IlS/K1r31tls+gmjqmp6enZ3sR\\\n", + "Z7Ir79o020sA4Axx74c+ftK/481L/6gtx/mn0T9py3E4PakAAgBUjJtAAKBMvAmEAlQAAQAqRgUQ\\\n", + "AMqkQwmQ4xMAAaBM5D8K0AIGAKgYFUAAKBHPdqMIARAAysQ1gBSgBQwAUDEqgABQJgqAFCAAAkCp\\\n", + "SIAcnxYwAEDFqAACQJkoAFKAAAgAZSIAUoAACAAlMu0xMBTgGkAAgIoRAAEAKkYLGADKRAuYAlQA\\\n", + "AQAqRgUQAMpEAZACBEAAKJHp2V4AZ4RKBsDDhw9ny5Yt2blzZw4cOJAFCxakt7c3q1atyiteUcmf\\\n", + "BACokEqmnYGBgVx44YX54Ac/mHq9nomJiQwPD+f666/PPffc86L7NZvNNJvNlm2Hpw5l7isr+TMC\\\n", + "cDpyEwgFVDK5PPHEE/na177Wsu3iiy/OpZdeesz9hoaGcsstt7Rsu+Ddl+fC9/zfbV8jALwk8h8F\\\n", + "VDIALlu2LGvWrElfX186OzszOTmZ7du35+1vf/sx9xscHMz69etbtl2z+csnc6kAAG1XyQB46623\\\n", + "5rHHHsuuXbvyox/9KF1dXfmDP/iDXHTRRcfcr1arpVartWzT/gXgtKIFTAGVTS9LlizJkiVLZnsZ\\\n", + "ANBW7gKmiMoGQAAoJQVACvAmEACAilEBBIAycQ0gBagAAgBUjAAIAFAxWsAAUCLTWsAUIAACQJnI\\\n", + "fxSgBQwAUDECIABAxQiAAFAi0x0dbRknYsOGDWk0Glm9enWmpqaObD98+HAGBgbSaDSybt26I9t7\\\n", + "e3uzfPny9Pb25vHHH2/XqXMCBEAA4CXbs2dP9u3bl5GRkSxevDhbtmw5Mrd169YsWrQoIyMjOXjw\\\n", + "YEZHR5MkDzzwQHbs2JHPfvaz2bhx42wtvdIEQAAok472jGazmcnJyZbRbDZnfN2uXbvS19eXJOnv\\\n", + "78/OnTuPO3fWWWclSZ599tm8+c1vbvMPQBECIACUSZsC4NDQUOr1essYGhqa8XXj4+Pp7OxMktTr\\\n", + "9Rw4cOC4c/v3709vb28++tGPZvny5e3/DTguj4EBgFJpz3NgBgf/Z9avX9+yrVarzfhcV1dXJicn\\\n", + "kyQTExNZsGDBcecWLlyYnTt35uGHH87g4GC2bdvWljVTnAogADBDrVZLZ2dnyzhaAFy2bFm2b9+e\\\n", + "JBkeHk5vb+8x56ampvLCCy8k+XlV8NWvfvUpOBt+mQAIACUy3dGeUVRPT0+6u7vTaDSyd+/erFq1\\\n", + "KmvXrk2SrFy5MmNjY2k0Gpk3b16WLl2aH//4x1mxYkXe8Y535MYbb8xnPvOZk/RLcCwd09PT07O9\\\n", + "iDPZlXdtmu0lAHCGuPdDHz/p3/Eb77mlLcf5wV//cVuOw+lJBRAAoGLcBAIApeJlwByfAAgAJXIi\\\n", + "1+9RXVrAAAAVowIIAGWiAkgBAiAAlIoEyPFpAQMAVIwKIACUiJtAKEIABIAyEQApQAAEgFKRADk+\\\n", + "1wACAFSMCiAAlIkCIAUIgABQIm4CoQgtYACAilEBBIAyUQGkAAEQAEpFAuT4BMCX6dXzZnsFAAAn\\\n", + "RgAEgBJxEwhFCIAAUCYCIAW4CxgAoGIEQACAitECBoAy6dAD5vgEQAAoETeBUIQWMABAxQiAAAAV\\\n", + "owUMAGWiBUwBKoAAABWjAggAZeIuYAoQAAGgRKZnewGcEbSAAQAqRgUQAMpEB5gCBEAAKBMBkAK0\\\n", + "gAEAKkYABACoGC1gACgTj4GhABVAACiR6Y72jBOxYcOGNBqNrF69OlNTU0e2Hz58OAMDA2k0Glm3\\\n", + "bl2S5Iknnkij0cjy5ctzxRVXZGJioo1nT1ECIADwku3Zsyf79u3LyMhIFi9enC1bthyZ27p1axYt\\\n", + "WpSRkZEcPHgwo6Oj6erqyn333ZcdO3bkyiuvzJe//OVZXH11CYAAwEu2a9eu9PX1JUn6+/uzc+fO\\\n", + "Y86dffbZ6erqSpKcddZZmTNHFJkNrgEEgDJp0yWAzWYzzWazZVutVkutVmvZNj4+nnPPPTdJUq/X\\\n", + "c+DAgZa5zs7Oo84988wzueOOO7Jt27b2LJgTInYDADMMDQ2lXq+3jKGhoRmf6+rqyuTkZJJkYmIi\\\n", + "CxYsOO7c1NRUrr322mzcuLHl85w6AiAAlElHe8bg4GAmJiZaxuDg4IyvW7ZsWbZv354kGR4eTm9v\\\n", + "73Hnbrjhhlx11VW55JJL2n/+FCIAAkCptCcB1mq1dHZ2toxfbv8mSU9PT7q7u9NoNLJ3796sWrUq\\\n", + "a9euTZKsXLkyY2NjaTQamTdvXpYuXZqRkZF8+9vfzle/+tWsWLEimzZtOsm/B0fTMT09PT3biziT\\\n", + "Xf0N/+ECUMw3r/34Sf+O8wY+35bjjH1lQ1uOw+nJTSAAUCaeA00BAiAAlIkASAGuAQQAqBgVQAAo\\\n", + "ERf2U4QACABlogVMAVrAAAAVIwACAFSMFjAAlEmHHjDHpwL4C+6+++5jzjebzUxOTraMw1OHTtHq\\\n", + "AKCANr0KjnKrZAB8/PHHZ4y9e/fmzjvvPOZ+R3sx9j/fe/8pWjUAQHtUsgX89re/Pe973/vyy2/B\\\n", + "+7d/+7dj7jc4OJj169e3bPvQX3y57esDADiZKhkAf/M3fzN/+qd/mte97nUt26+44opj7ler1Wa8\\\n", + "CHvuKyv5EwJwutK+pYBKppf7778/r3nNa2Zs/5u/+ZtZWA0AwKlVyQDY2dk520sAgJNDBZACKnkT\\\n", + "CABAlQmAAAAVU8kWMACUlhYwBQiAAFAiHd4EQgFawAAAFSMAAgBUjBYwAJSJDjAFCIAAUCYCIAVo\\\n", + "AQMAVIwACABQMVrAAFAingJDESqAAAAVIwACAFSMFjAAlIkWMAWoAAIAVIwKIACUiQogBQiAAFAi\\\n", + "8h9FCIAAUCaeA0MBrgEEAKgYFUAAKBEFQIpQAQQAqBgBEACgYgRAACiTjjaNE7Bhw4Y0Go2sXr06\\\n", + "U1NTR7YfPnw4AwMDaTQaWbdu3ZHt73znO9PV1ZWtW7e+tHPkZRMAAaBETnX+27NnT/bt25eRkZEs\\\n", + "Xrw4W7ZsOTK3devWLFq0KCMjIzl48GBGR0eTJF//+tdbAiGnngAIALxku3btSl9fX5Kkv78/O3fu\\\n", + "PO7cokWLTv1CaeEuYAAokzbdBdxsNtNsNlu21Wq11Gq1lm3j4+M599xzkyT1ej0HDhxomevs7Dzq\\\n", + "HLNLBRAASqSjoz1jaGgo9Xq9ZQwNDc34vq6urkxOTiZJJiYmsmDBgkJzzC4BEACYYXBwMBMTEy1j\\\n", + "cHBwxueWLVuW7du3J0mGh4fT29tbaI7ZJQACADPUarV0dna2jF9u/yZJT09Puru702g0snfv3qxa\\\n", + "tSpr165NkqxcuTJjY2NpNBqZN29eli5dmiQZGBjI3XffnU996lO59dZbT+l58XMd09PT07O9iDPZ\\\n", + "1d/YNNtLAOAM8c1rP37Sv+NNf/SFthznX//kf7TlOJyeVAABACpGAAQAqBiPgXmZzn+dt24DcPro\\\n", + "8M8SBQiAAFAmAiAFaAEDAFSMCiAAlEiHEiAFCIAAUCbyHwVoAQMAVIwKIACUiAIgRQiAAFAiHgND\\\n", + "EVrAAAAVowIIAGWiAkgBAiAAlIj8RxECIACUiQRIAa4BBACoGBVAACgRBUCKEAABoEQ8BoYitIAB\\\n", + "ACpGBRAAykQFkAIEQAAoEfmPIrSAAQAqRgUQAErETSAUoQIIAFAxAiAAQMVoAQNAiWgBU4QACABl\\\n", + "IgBSgAAIACXSIQFSgGsAAQAqRgUQAErENYAUoQIIAFAxAiAAQMVoAQNAiWgBU4QACAAlIv9RhBYw\\\n", + "AEDFqAACQJkoAVKAAAgAJeIaQIrQAgYAXpYNGzak0Whk9erVmZqaOrL98OHDGRgYSKPRyLp1645s\\\n", + "37RpU3p7e3PllVdmcnJyFlaMAAgAJdLRplHUnj17sm/fvoyMjGTx4sXZsmXLkbmtW7dm0aJFGRkZ\\\n", + "ycGDBzM6Opr/+I//yL333puHHnooH/jAB/Jnf/ZnL/ucOXFnfAt4eno63//+9/PUU09leno6SbJm\\\n", + "zZpj7nP48OH89V//debMmZN3v/vdmTt3bpLkO9/5Tt7//ve/6H7NZjPNZrNl26HnD+UVZ53xPyMA\\\n", + "ZdGmFvDR/s2r1Wqp1Wot23bt2pW+vr4kSX9/f7761a/mmmuuOTJ3xRVXHJnbuXNnnnnmmSxfvjwd\\\n", + "HR3p7+/Pdddd154Fc0LO+ArgBz7wgdx33335zGc+k0cffTTbtm077j5r1qzJo48+mt27d+fSSy/N\\\n", + "v/7rvyZJ7rjjjmPuNzQ0lHq93jL+v2/f35bzAIB2aFcF8Gj/5g0NDc34vvHx8XR2diZJ6vV6Dhw4\\\n", + "cMy5Y32eU+eMD4BPP/10brvttpx77rm5/fbb87Of/ey4++zbty+f+9zncvPNN2fz5s350Ic+lAce\\\n", + "eOC4+w0ODmZiYqJlvP2qd7XjNADgtHK0f/MGBwdnfK6rq+vIdXwTExNZsGDBMeeO9XlOnTM+AM6d\\\n", + "OzcvvPBCzj777HzlK1/JD3/4w+Pu8/zzzx8pa59//vnZunVrvvCFL+Qf//Efj7lfrVZLZ2dny9D+\\\n", + "BeB00tHRnnG0f/N+uf2bJMuWLcv27duTJMPDw+nt7T3m3Nve9rb8/d///VE/z6lzxgfAb37zm3nh\\\n", + "hRdyxx135Jlnnsk999xz3H02bdqUZ5555sjf58+fn3vvvTdf/OIXT+JKAeAUOMV3gfT09KS7uzuN\\\n", + "RiN79+7NqlWrsnbt2iTJypUrMzY2lkajkXnz5mXp0qV5/etfnyuuuCK9vb3ZvHlzPvrRj7bnvDkh\\\n", + "HdP/decEL8mGbbfP9hIAOEN8vv+mk/4dv3PrxrYc5+H/ub4tx+H0pH8JACXiOdAUIQACQIl4EwhF\\\n", + "nPHXAAIAcGJUAAGgVJQAOT4BEABKRAuYIrSAAQAqRgUQAMpEBZACBEAAKBH5jyIEQAAoEdcAUoRr\\\n", + "AAEAKkYABACoGC1gACgRLWCKUAEEAKgYFUAAKBEFQIoQAAGgTCRACtACBgCoGBVAACgRN4FQhAAI\\\n", + "ACUi/1GEAAgAZSIBUoBrAAEAKkYFEABKRAGQIgRAACgRN4FQhBYwAEDFqAACQJkoAVKAAAgAJSL+\\\n", + "UYQWMABAxagAAkCZKAFSgAAIACUi/1GEFjAAQMWoAAJAibgJmCIEQAAoEwGQAgRAACgR+Y8iBMCX\\\n", + "6Xv//6HZXgIAZ4r+2V4A/JwACAAl4hpAinAXMABAxQiAAAAVIwACQIl0dLRntMuGDRvSaDSyevXq\\\n", + "TE1NtcwdPnw4AwMDaTQaWbdu3ZHt73znO9PV1ZWtW7e2byG0EAABoEROpwC4Z8+e7Nu3LyMjI1m8\\\n", + "eHG2bNnSMr9169YsWrQoIyMjOXjwYEZHR5MkX//611sCIe0nAAIAMzSbzUxOTraMZrN5QsfYtWtX\\\n", + "+vr6kiT9/f3ZuXNnoflFixa14Qw4FgEQAJhhaGgo9Xq9ZQwNDZ3QMcbHx9PZ2ZkkqdfrOXDgwAnN\\\n", + "c/J4DAwAlEi72reDg4NZv359y7ZarXbUz+7fvz9XX331jO19fX2ZnJxMkkxMTGTBggUt811dXcec\\\n", + "5+QRAAGAGWq12osGvl+2cOHCPPjggzO27969Oxs3bsyaNWsyPDyc3t7elvlly5Zl+/btufTSSzM8\\\n", + "PJzrr7++HUunAC1gACiRjjaNdujp6Ul3d3cajUb27t2bVatWJUnWrl2bJFm5cmXGxsbSaDQyb968\\\n", + "LF26NEkyMDCQu+++O5/61Kdy6623tmk1/KKO6enp6dlexJnsrZ/dONtLAOAM8egn1x//Qy/T7/6/\\\n", + "t7XlOH97w7q2HIfTkxYwAJSIV8FRhBYwAEDFqAACQIkoAFKEAAgAZaIHTAFawAAAFaMCCAAlov5H\\\n", + "EQIgAJSIDjBFaAEDAFSMCiAAlIgKIEWoAAIAVIwACABQMVrAAFAiWsAUIQACQInIfxQhAAJAmUiA\\\n", + "FOAaQACAilEBBIASUQCkCAEQAErETSAUoQUMAFAxKoAAUCIqgBShAggAUDECIABAxWgBA0CJaAFT\\\n", + "hAAIACUi/1GEFjAAQMVUsgL49NNP56677spv/dZv5eKLL87nPve5vOY1r8kf/uEfpru7+0X3azab\\\n", + "aTabLdteOHQoc15RyZ8RgNOQFjBFVLICeO211+YNb3hDfvSjH6Wvry+XXXZZ+vr6MjAwcMz9hoaG\\\n", + "Uq/XW8b+Hd87RasGgOPr6GjPoNwqGQAPHTqU6667Lh/72MdSr9fzvve9L319fXnuueeOud/g4GAm\\\n", + "JiZaxsLll52iVQMAtEcle5dTU1NH/nznnXce+fOhQ4eOuV+tVkutVmvZpv0LAJxpKple/vIv/zLT\\\n", + "09Pp6OjIRRddlOTnofALX/jCLK8MAF4e7VuKqGQAPOecc2Zse+UrX5m3ve1ts7AaAGgf+Y8iKnkN\\\n", + "IABAlVWyAggAZaUFTBECIACUiPxHEVrAAAAVowIIAGWiBEgBKoAAUCKn25tANmzYkEajkdWrV7c8\\\n", + "hzdJDh8+nIGBgTQajaxbty5J8sQTT6TRaGT58uW54oorMjEx0b7FcIQACACcFHv27Mm+ffsyMjKS\\\n", + "xYsXZ8uWLS3zW7duzaJFizIyMpKDBw9mdHQ0XV1due+++7Jjx45ceeWV+fKXvzxLqy83ARAASqSj\\\n", + "TaMddu3alb6+viRJf39/du7cedz5s88+O11dXUmSs846K3PmiCong2sAAaBE2tW+bTabaTabLduO\\\n", + "9krUYxkfH8+5556bJKnX6zlw4MCM+c7OzqPOP/PMM7njjjuybdu2l3oKHINYDQAl0q4K4NDQUOr1\\\n", + "essYGho66nfu378/K1asmDGSZHJyMkkyMTGRBQsWtOzX1dV11Pmpqalce+212bhx44x9aA8VQABg\\\n", + "hsHBwaxfv75l24tV/xYuXJgHH3xwxvbdu3dn48aNWbNmTYaHh9Pb29syv2zZsmzfvj2XXnpphoeH\\\n", + "c/311ydJbrjhhlx11VW55JJL2nMyzKACCAAl0q67gGu1Wjo7O1vGibR/k6Snpyfd3d1pNBrZu3dv\\\n", + "Vq1alSRZu3ZtkmTlypUZGxtLo9HIvHnzsnTp0oyMjOTb3/52vvrVr2bFihXZtGlT238jko7p6enp\\\n", + "2V7Emeytn90420sA4Azx6CfXH/9DL9PAd9oTmL7y/o+35TicnlQAAQAqxjWAAFAi7XyIM+UlAAJA\\\n", + "mQiAFKAFDABQMSqAAFAiCoAUIQACQIm4BpAitIABACpGBRAASkQBkCIEQAAoES1gihAAAaBE5D+K\\\n", + "cA0gAEDFqAACQIloAVOEAAgAJSIAUoQWMABAxagAAkCJKABShAAIACWiBUwRWsAAABWjAggAJaIA\\\n", + "SBECIACUiBYwRQiAL9PT/+vQbC8BAOCECIAAUCIKgBQhAAJAiWgBU4QACAAlIv9RhMfAAABUjAog\\\n", + "AJSIFjBFCIAAUCLyH0VoAQMAVIwKIACUiBYwRQiAAFAiAiBFaAEDAFSMCiAAlIgCIEUIgABQIh16\\\n", + "wBSgBQwAUDEqgABQIup/FCEAAkCJ6ABThAAIACUi/1GEawABgJNmw4YNaTQaWb16daamplrmDh8+\\\n", + "nIGBgTQajaxbt+7I9t7e3ixfvjy9vb15/PHHT/GKq0EABIASmdPRntEOe/bsyb59+zIyMpLFixdn\\\n", + "y5YtLfNbt27NokWLMjIykoMHD2Z0dDRJ8sADD2THjh357Gc/m40bN7ZnMbQQAAGgRDraNNph165d\\\n", + "6evrS5L09/dn586dhebPOuusJMmzzz6bN7/5zW1aDb/INYAAwAzNZjPNZrNlW61WS61WK3yM8fHx\\\n", + "nHvuuUmSer2eAwcOzJjv7OycMb9///6sWrUqY2Njuffee1/OafAiVAABoEQ6OtozhoaGUq/XW8bQ\\\n", + "0NBRv3P//v1ZsWLFjJEkk5OTSZKJiYksWLCgZb+urq6jzi9cuDA7d+7Md7/73QwODp6kX6raVAAB\\\n", + "oETa1b4dHBzM+vXrW7a9WPVv4cKFefDBB2ds3717dzZu3Jg1a9ZkeHg4vb29LfPLli3L9u3bc+ml\\\n", + "l2Z4eDjXX399pqamMnfu3MyZMyf1ej2vfvWr23RG/CIVQABghlqtls7OzpZxIu3fJOnp6Ul3d3ca\\\n", + "jUb27t2bVatWJUnWrl2bJFm5cmXGxsbSaDQyb968LF26ND/+8Y+zYsWKvOMd78iNN96Yz3zmM20/\\\n", + "N5KO6enp6dlexJnsv934J7O9BADOED+6449O+nfcvP329hznv9/UluNwetICBoAS8SBoitACBgCo\\\n", + "GBVAACgR7wKmCAEQAEpE/qMIARAASqRdr3Gj3FwDCABQMSqAAFAiCoAUIQACQIm4CYQitIABACpG\\\n", + "BRAASkQBkCIEQAAoES1gitAC/j/WrVt33M80m81MTk62jOnDh07+4gAA2qiSFcBzzjkn5513XubM\\\n", + "mZPp6ekkyQ9+8IPs2rUrDz/88IvuNzQ0lFtuuaVl2/y3/PfU3/auk7peAChKAZAiKlkB3LRpU84/\\\n", + "//x84hOfyCOPPJJHHnkkS5cuPWb4S5LBwcFMTEy0jM6L33GKVg0Ax9fR0Z5BuVUyAF5zzTX5zne+\\\n", + "k0OHDuW9731vNm/efKQSeCy1Wi2dnZ0to2NuJYuoAMAZrJIBMEnmzJmTa6+9Nn/xF3+RQ4cOpaen\\\n", + "Z7aXBAAvmwogRVS+fDVnzpysWbNmtpcBAG1R2coOJ6TyARAAykT1jiL8jwIAQMWoAAJAiSgAUoQA\\\n", + "CAAlogVMEVrAAAAVowIIACWiAEgRAiAAlIgWMEVoAQMAVIwKIACUiAIgRQiAAFAiWsAUoQUMAFAx\\\n", + "KoAAUCIKgBQhAAJAiWgBU4QACAAl4touivDfCQBAxagAAkCJaAFThAAIACUi/1GEFjAAQMWoAAJA\\\n", + "iWgBU4QKIACUSEebRrts2LAhjUYjq1evztTUVMvc4cOHMzAwkEajkXXr1rXMjY6OpqOjIz/96U/b\\\n", + "uBr+iwAIAJwUe/bsyb59+zIyMpLFixdny5YtLfNbt27NokWLMjIykoMHD2Z0dPTI3O233563vOUt\\\n", + "p3rJlSEAAkCJdHS0Z7TDrl270tfXlyTp7+/Pzp07C80/9NBDWbJkSV772te2ZyHMIAACQIm0KwA2\\\n", + "m81MTk62jGazeUJrGR8fT2dnZ5KkXq/nwIEDheY3bdqUj33sY234NXgxAiAAMMPQ0FDq9XrLGBoa\\\n", + "Oupn9+/fnxUrVswYSTI5OZkkmZiYyIIFC1r26+rqmjG/Y8eOXHTRRZk/f/7JOzncBQwAZdKuGzgG\\\n", + "Bwezfv36lm21Wu2on124cGEefPDBGdt3796djRs3Zs2aNRkeHk5vb2/L/LJly7J9+/ZceumlGR4e\\\n", + "zvXXX59HHnkk3/ve9/LQQw/lsccey3XXXZfvfve7bTor/osKIACUSLtawLVaLZ2dnS3jxQLgi+np\\\n", + "6Ul3d3cajUb27t2bVatWJUnWrl2bJFm5cmXGxsbSaDQyb968LF26NDfddFMeeOCBbNu2LUuWLMnX\\\n", + "vva1tv9GJB3T09PTs72IM9l/u/FPZnsJAJwhfnTHH53077jn0dvbcpzVb72pLcfh9KQCCABQMa4B\\\n", + "BIAS8SYQihAAAaBEOuLKLo5PCxgAoGJUAAGgRLSAKcJdwEBbNZvNDA0NZXBw8IQfGQHAqSEAAm01\\\n", + "OTmZer2eiYmJI694AuD04hpAAICKEQABACpGAAQAqBgBEGirWq2WP/7jP3YDCMBpzE0gAAAVowII\\\n", + "AFAxAiAAQMUIgAAAFSMAAgBUjAAIAFAxr5jtBQDl8fTTT+fqq6/OoUOH0t3dnW9961uZO3fubC8L\\\n", + "gF+iAgi0zdlnn537778/IyMjecMb3pDvf//7s70kAI5CBRBom5/85Ce58cYbMz4+nqeeeioXX3zx\\\n", + "bC8JgKNQAQTaZvPmzVm5cmV27NiR/v7+eM48wOlJBRBom8suuyyrV6/Offfdl1e96lWzvRwAXoRX\\\n", + "wQEAVIwWMABAxQiAAAAVIwACAFSMAAgAUDECIABAxQiAAAAVIwACAFSMAAgAUDHeBAK0zdNPP52r\\\n", + "r746hw4dSnd3d771rW9l7ty5s70sAH6JCiDQNmeffXbuv//+jIyM5A1veEO+//3vz/aSADgKFUCg\\\n", + "bX7yk5/kxhtvzPj4eJ566qlcfPHFs70kAI5CBRBom82bN2flypXZsWNH+vv741XjAKcnFUCgbS67\\\n", + "7LKsXr069913X171qlfN9nIAeBEd0/4XHQCgUrSAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAE\\\n", + "AKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEAAQAqRgAEAKgYARAAoGIEQACAihEA\\\n", + "AQAqRgAEAKgYARAAoGIEQACAihEAAQAq5n8Dk98zfOMCZbQAAAAASUVORK5CYII=\\\n", "\"\n", "\n", "\n", " /* set a timeout to make sure all the above elements are created before\n", " the object is initialized. */\n", " setTimeout(function() {\n", - " anim388c481ad78b4ab2b70a344948f50dc1 = new Animation(frames, img_id, slider_id, 1000.0,\n", + " animfd804c7f5da446b98c0da607d899f40e = new Animation(frames, img_id, slider_id, 1000.0,\n", " loop_select_id);\n", " }, 0);\n", " })()\n", @@ -3634,7 +4814,7 @@ "# Advection Model\n", "\n", "# Instance parameters (used to identify input file)\n", - "dimensions = 2\n", + "dimensions = 1\n", "boundary_slope = 0.0\n", "num_disc = 5\n", "# derivative = \"centered\"\n", @@ -3648,7 +4828,7 @@ "locations = get_locations(dimensions, num_disc)\n", "\n", "# Funman parameters\n", - "steps = 5\n", + "steps = 10\n", "dt = 1\n", "\n", "\n", @@ -3681,24 +4861,4290 @@ " \"interval\": {\"lb\":1, \"ub\":1}},\n", " {\n", " \"name\": \"u\",\n", - " \"label\":\"any\",\n", + " \"label\":\"all\",\n", " # \"interval\": {\"lb\":1e-18, \"ub\":1e-14}}\n", " # \"interval\": {\"lb\":-1e-1, \"ub\":-1e-1} # Best for centered or forward derivatives\n", - " \"interval\": {\"lb\":1e-2, \"ub\":5e-1} # Best for centered or backward derivatives\n", + " \"interval\": {\"lb\":1e-18, \"ub\":1e-1} # Best for centered or backward derivatives\n", " }\n", " ],\n", " \"constraints\": \n", " height_bounds + \n", " [\n", + " {\"name\": \"advection_magnitude\",\n", + " \"variables\": [variables[-1]],\n", + " \"additive_bounds\": {\"lb\": 0.5},\n", + " \"timepoints\": {\"lb\": steps*dt}\n", + " }, \n", + " \n", "\n", - " # 0 <= dx - u\n", - " # u <= dx\n", - " # {\"name\": \"dx_gte_u\",\n", - " # \"variables\": [\"dx\", \"u\"],\n", - " # \"weights\": [1, -1],\n", - " # \"additive_bounds\": {\"lb\": 0},\n", - " # # \"timepoints\": {\"lb\": 0}\n", - " # }, \n", + " ],\n", + " \"config\": {\n", + "\n", + " },\n", + "}\n", + "\n", + "\n", + "\n", + "results = Runner().run(\n", + " instance_file,\n", + " request_dict,\n", + " # REQUEST_PATH,\n", + " description=f\"Advection demo {instance}\",\n", + " case_out_dir=\"./out\",\n", + " point_plot_config={\"variables\":variables,},\n", + " num_points=None,\n", + " # dump_results=False\n", + ")\n", + "\n", + "summary = summarize_results(variables, results)\n", + "print(summary)\n", + "plt.close()\n", + "\n", + "h, dh, anim_h, anim_dh = plot_spatial_timeseries(results, outdir=\"./out\")\n", + "plt.close()\n", + "display(h)\n", + "plt.close()\n", + "display(dh)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-02-08 15:14:32,691 - funman.server.worker - INFO - FunmanWorker running...\n", + "[1.00000, 1.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "2024-02-08 15:14:32,696 - funman.server.worker - INFO - Starting work on: 03cbc43b-e9ad-4477-8418-1391656849de\n", + "2024-02-08 15:14:32,698 - funman.scenario.scenario - WARNING - Warning: The scenario is not normalized!\n", + "2024-02-08 15:14:34,705 - funman.api.run - INFO - Dumping results to ./out/03cbc43b-e9ad-4477-8418-1391656849de.json\n", + "2024-02-08 15:14:44,236 - funman.search.box_search - INFO - progress: 0.09091\n", + "2024-02-08 15:14:44,304 - funman.search.box_search - INFO - progress: 0.18182\n", + "2024-02-08 15:14:44,363 - funman.search.box_search - INFO - progress: 0.27273\n", + "2024-02-08 15:14:44,415 - funman.search.box_search - INFO - progress: 0.36364\n", + "2024-02-08 15:14:44,463 - funman.search.box_search - INFO - progress: 0.45455\n", + "2024-02-08 15:14:44,504 - funman.search.box_search - INFO - progress: 0.54545\n", + "2024-02-08 15:14:44,541 - funman.search.box_search - INFO - progress: 0.63636\n", + "2024-02-08 15:14:44,581 - funman.search.box_search - INFO - progress: 0.72727\n", + "2024-02-08 15:14:44,617 - funman.search.box_search - INFO - progress: 0.81818\n", + "2024-02-08 15:14:44,641 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:48,239 - funman.api.run - INFO - Dumping results to ./out/03cbc43b-e9ad-4477-8418-1391656849de.json\n", + "2024-02-08 15:14:48,247 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(1e-18, 0.059342142564510945)][(0.059342142564510945, 0.1)])\n", + "2024-02-08 15:14:48,249 - funman.representation.box - INFO - widths: 0.10000 -> 0.05934 0.04066 (raw), 1.00000 -> 0.59342 0.40658 (norm)\n", + "2024-02-08 15:14:48,254 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:49,602 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(1e-18, 0.039416783360433846)][(0.039416783360433846, 0.059342142564510945)])\n", + "2024-02-08 15:14:49,603 - funman.representation.box - INFO - widths: 0.05934 -> 0.03942 0.01993 (raw), 0.59342 -> 0.39417 0.19925 (norm)\n", + "2024-02-08 15:14:49,605 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:50,450 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.039416783360433846, 0.049270979200542304)][(0.049270979200542304, 0.059342142564510945)])\n", + "2024-02-08 15:14:50,451 - funman.representation.box - INFO - widths: 0.01993 -> 0.00985 0.01007 (raw), 0.19925 -> 0.09854 0.10071 (norm)\n", + "2024-02-08 15:14:50,452 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:50,806 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.039416783360433846, 0.04675318835955014)][(0.04675318835955014, 0.049270979200542304)])\n", + "2024-02-08 15:14:50,807 - funman.representation.box - INFO - widths: 0.00985 -> 0.00734 0.00252 (raw), 0.09854 -> 0.07336 0.02518 (norm)\n", + "2024-02-08 15:14:50,809 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:50,829 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.04675318835955014, 0.04858728960932922)][(0.04858728960932922, 0.049270979200542304)])\n", + "2024-02-08 15:14:50,831 - funman.representation.box - INFO - widths: 0.00252 -> 0.00183 0.00068 (raw), 0.02518 -> 0.01834 0.00684 (norm)\n", + "2024-02-08 15:14:50,832 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:50,851 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.04858728960932922, 0.049045814921773984)][(0.049045814921773984, 0.049270979200542304)])\n", + "2024-02-08 15:14:50,852 - funman.representation.box - INFO - widths: 0.00068 -> 0.00046 0.00023 (raw), 0.00684 -> 0.00459 0.00225 (norm)\n", + "2024-02-08 15:14:50,854 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:50,873 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.049045814921773984, 0.04916044624988518)][(0.04916044624988518, 0.049270979200542304)])\n", + "2024-02-08 15:14:50,874 - funman.representation.box - INFO - widths: 0.00023 -> 0.00011 0.00011 (raw), 0.00225 -> 0.00115 0.00111 (norm)\n", + "2024-02-08 15:14:50,877 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:50,895 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.04916044624988518, 0.049189104081912974)][(0.049189104081912974, 0.049270979200542304)])\n", + "2024-02-08 15:14:50,896 - funman.representation.box - INFO - widths: 0.00011 -> 0.00003 0.00008 (raw), 0.00111 -> 0.00029 0.00082 (norm)\n", + "2024-02-08 15:14:50,898 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:52,477 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.059342142564510945, 0.07459643048633258)][(0.07459643048633258, 0.1)])\n", + "2024-02-08 15:14:52,478 - funman.representation.box - INFO - widths: 0.04066 -> 0.01525 0.02540 (raw), 0.40658 -> 0.15254 0.25404 (norm)\n", + "2024-02-08 15:14:52,479 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:53,501 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07459643048633258, 0.08348464326271089)][(0.08348464326271089, 0.1)])\n", + "2024-02-08 15:14:53,502 - funman.representation.box - INFO - widths: 0.02540 -> 0.00889 0.01652 (raw), 0.25404 -> 0.08888 0.16515 (norm)\n", + "2024-02-08 15:14:53,504 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:53,991 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07459643048633258, 0.0793558040783886)][(0.0793558040783886, 0.08348464326271089)])\n", + "2024-02-08 15:14:53,992 - funman.representation.box - INFO - widths: 0.00889 -> 0.00476 0.00413 (raw), 0.08888 -> 0.04759 0.04129 (norm)\n", + "2024-02-08 15:14:53,994 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:54,055 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.0793558040783886, 0.08054564747640261)][(0.08054564747640261, 0.08348464326271089)])\n", + "2024-02-08 15:14:54,057 - funman.representation.box - INFO - widths: 0.00413 -> 0.00119 0.00294 (raw), 0.04129 -> 0.01190 0.02939 (norm)\n", + "2024-02-08 15:14:54,060 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:54,077 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.0793558040783886, 0.07981089852982555)][(0.07981089852982555, 0.08054564747640261)])\n", + "2024-02-08 15:14:54,078 - funman.representation.box - INFO - widths: 0.00119 -> 0.00046 0.00073 (raw), 0.01190 -> 0.00455 0.00735 (norm)\n", + "2024-02-08 15:14:54,080 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:54,096 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.0793558040783886, 0.07962721129318127)][(0.07962721129318127, 0.07981089852982555)])\n", + "2024-02-08 15:14:54,097 - funman.representation.box - INFO - widths: 0.00046 -> 0.00027 0.00018 (raw), 0.00455 -> 0.00271 0.00184 (norm)\n", + "2024-02-08 15:14:54,099 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:54,116 - funman.representation.box - INFO - Split[[10.00000, 10.00000]](u[(0.07962721129318127, 0.07969506309687945)][(0.07969506309687945, 0.07981089852982555)])\n", + "2024-02-08 15:14:54,117 - funman.representation.box - INFO - widths: 0.00018 -> 0.00007 0.00012 (raw), 0.00184 -> 0.00068 0.00116 (norm)\n", + "2024-02-08 15:14:54,119 - funman.search.box_search - INFO - progress: 0.90909\n", + "2024-02-08 15:14:54,283 - funman.search.box_search - INFO - progress: 0.94492\n", + "2024-02-08 15:14:54,435 - funman.search.box_search - INFO - progress: 0.95994\n", + "2024-02-08 15:14:54,592 - funman.search.box_search - INFO - progress: 0.97381\n", + "2024-02-08 15:14:54,752 - funman.search.box_search - INFO - progress: 0.98296\n", + "2024-02-08 15:14:54,824 - funman.search.box_search - INFO - progress: 0.98963\n", + "2024-02-08 15:14:54,985 - funman.search.box_search - INFO - progress: 0.99396\n", + "2024-02-08 15:14:55,151 - funman.search.box_search - INFO - progress: 0.99663\n", + "2024-02-08 15:14:55,306 - funman.search.box_search - INFO - progress: 0.99830\n", + "2024-02-08 15:14:55,460 - funman.search.box_search - INFO - progress: 0.99896\n", + "2024-02-08 15:14:55,618 - funman.search.box_search - INFO - progress: 0.99938\n", + "2024-02-08 15:14:55,780 - funman.search.box_search - INFO - progress: 0.99963\n", + "2024-02-08 15:14:56,025 - funman.search.box_search - INFO - progress: 0.99973\n", + "2024-02-08 15:14:56,201 - funman.search.box_search - INFO - progress: 0.99984\n", + "2024-02-08 15:14:57,249 - funman.server.worker - INFO - Completed work on: 03cbc43b-e9ad-4477-8418-1391656849de\n", + "2024-02-08 15:14:58,266 - funman.server.worker - INFO - Worker.stop() acquiring state lock ....\n", + "2024-02-08 15:14:58,761 - funman.server.worker - INFO - FunmanWorker exiting...\n", + "2024-02-08 15:14:58,762 - funman.server.worker - INFO - Worker.stop() completed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqUAAAITCAYAAAA+S2VaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgU59qH79W4K4GQQIJLgjuEQovUKPVToXLafj2nBvUWrVDH6goVempUaGlpS4HiFgjuJASSIBHim83uzvfHy6wkG4MIoe99XZPZHd/N7MxvHtUoiqIgkUgkEolEIpE0IdqmPgCJRCKRSCQSiUSKUolEIpFIJBJJkyNFqUQikUgkEomkyZGiVCKRSCQSiUTS5EhRKpFIJBKJRCJpcqQolUgkEolEIpE0OVKUSiQSiUQikUiaHClKJRKJRCKRSCRNjhSlEolEIpFIJJImR4pSiURyURIbG0uHDh1ITEykc+fOvP322zWuM3bsWPbv31/jcj/++CMbNmxwO+/f//43iYmJJCYmYjQa7ceQmJhIYWFhrY49MzOTIUOG1GrZqpg+fTomk+mc1t2yZQs33njjee1fIpFI6opGthmVSCQXI7Gxsfz4448kJiZy9OhRunfvzurVq+nevft5b/uOO+4gMTGRRx55pNbH4IzFYkGv15/3cVSHRqMhLy+PwMDAOq3XGMcmkUgk7pCWUolEctETExNDhw4dOHDgAKdOnWL8+PF069aNrl278v7779uXi42NJSUlBYCkpCQee+wxhgwZQlxcHP/3f/8HwK+//srixYt57bXXSExM5KOPPqrVMdxxxx3cddddDB06lK5duwJwyy230Lt3b7p3787ll1/OiRMnAEhLS3MRk5s3b+aSSy6hd+/e9OjRg2+//dY+b8mSJfTp04eEhAQSExPZuHGj/ViHDBlCYmIip06dqvFzP/nkk/Tt25cJEyawcuVKFyH9+++/M3jwYHr16kXfvn1ZsWIFAAcPHmTQoEEkJCTQrVs3Jk+eXMv/iEQikbhBkUgkkouQmJgYZdu2bYqiKMqOHTsUPz8/5cCBA8oNN9ygPPXUU4qiKMrJkyeVVq1aKevXr6+0zrBhw5Rx48Yp5eXlSklJiRIbG6usW7dOURRFmTBhgjJ79uw6HcOECROU7t27KwUFBfb5p06dsr9+6aWXlPvuu09RFEVJTU1VAgICFEVRlLy8PCUxMVHJzMxUFEVRTp8+rURHRyvHjx9X9u/fr4SFhSl79+5VFEVRzGazcubMGUVRFAVQ8vLy7Nuv6XPffffdis1mUxRFUVasWKEkJCQoiqIohw8fVvr376/k5+criqIoBw8eVCIjIxWTyaQ89NBDysyZM+37yMnJqfE7kUgkkqqQPhqJRHLRcuONN+Ll5YW3tzeffPIJ7dq1Y9myZSQnJwMQHh7O+PHjWbZsGf3793e7vl6vR6/Xk5iYyOHDhxkwYMA5H8/111+Pn5+f/f2XX37J559/jslkwmQyERoaWmmddevWceTIEcaMGeMyff/+/ezdu5fRo0fTsWNHAAwGAwEBAW73XdPnvuOOO9BoNJXWW7p0KYcOHWLo0KH2aVqtlvT0dIYOHcrjjz9OUVERw4YNY+TIkXX8RiQSicSBFKUSieSi5euvv64Uz1kRd0JMxdPT0/5ap9NhsVjO63h8fX3tr9esWcO8efNYv3494eHhLF68mKlTp1ZaR1EUunTpwrp16yrN27t37zkfS8XP7XxsFfd/6aWX8uWXX1aa165dOwYOHMiff/7JW2+9xZw5c/j111/P+ZgkEsk/GxlTKpFI/lGMHDmSDz/8EIDTp0/z/fffc+mll9ZpG/7+/uTn55/XceTl5eHn50dISAhms9klxtOZgQMHkpqayrJly+zTUlJSMJvNjBo1it9//519+/YBUF5ebj8uPz8/l2M81889atQoli1bxo4dO+zTNm3aBIiY0oiICG6//XZeffXVKisSSCQSSW2QolQikfyjmDdvHnv37qVbt24MHz6cZ599ln79+tVpG7fddhvffPMNPXr0qHWiU0VGjx5Nhw4d6NChgz0hyRnVkhkUFMSSJUuYOXMmCQkJdO7cmaeeegqbzUZ8fDzz58/n1ltvJSEhgX79+tlLWj366KNceuml9kSnc/3c8fHxfPnll9x3330kJCTQqVMn5syZA8B3331Ht27d6NGjBzfeeCPvvffeOX0XEolEArIklEQikVxwbNq0iVtuuYWDBw829aFIJBJJoyEtpRKJRHIB8dNPP3HzzTfL8koSieQfh7SUSiQSiUQikUiaHGkplUgkEolEIpE0OVKUSiQSiUQikUiaHClKJRKJRCKRSCRNjhSlEolEIpFIJJImp1l3dLLZbGRmZuLn51dtVxaJRCKRSCQSSdOgKAqFhYVERUWh1VZtD23WojQzM5Po6OimPgyJRCKRSCQSSQ0cO3aMVq1aVTm/WYtSPz8/QHxIf3//Jj4aiUQikUgkEklFCgoKiI6Otuu2qmjWolR12fv7+0tRKpFIJBKJRHIBU1OopUx0kkgkEolEIpE0OVKUSiQSiUQikUiaHClKJRKJRCKRSCRNTrOOKZVIJBKJRCJpaBRFwWKxYLVam/pQLkh0Oh16vf68y3NKUSqRSCQSiURSBWazmaysLEpKSpr6UC5ovL29adGiBUaj8Zy3IUWpRCKRSCQSiRtsNhupqanodDqioqIwGo2yWU8FFEXBbDZz+vRpUlNTadeuXbUF8qtDilKJRCKRSCQSN5jNZmw2G9HR0Xh7ezf14VyweHl5YTAYOHr0KGazGU9Pz3Pajkx0kkgkEolEIqmGc7X8/ZOoj+9IfssSiUQikUgkkiZHilKJRCKRSCQSSZMjRalEIpFIJBKJpMmRolQikUgkEolEYic3N5dbbrkFf39/AgMDufvuuykqKmrw/UpRKpFIJBKJRCKxc8stt7B7927+/PNPfvnlF1atWsW9997b4PuVJaEkEolEIpFIaouiQFMU0vf2hjrUSF26dCkvvPACu3btQqfTMWDAAObOnUtcXFy16+3du5elS5eyefNmevfuDcCbb77J2LFjef3114mKijqvj1EdUpRKJBKJRCKR1JaSEvD1bfz9FhWBj0+tFy8uLmbSpEl0796doqIipk6dyjXXXENKSkq15ZvWr19PYGCgXZACjBw5Eq1Wy8aNG7nmmmvO62NUhxSlEolEIpFIJBcZ1157rcv7Tz75hLCwMPbs2UPXrl2rXO/EiROEh4e7TNPr9QQHB3PixIkGOVb7fhp06xKJRFJfKArs2yesFD171smNJZFIJPWGt7ewWjbFfuvAwYMHmTp1Khs3biQ7OxubzQZAenp6taK0KZGiVCKRXLgoCmzeDD/8AN9/DwcOiOmJifDEE3D99aCXlzGJRNKIaDR1cqM3FVdeeSUxMTF8+OGHREVFYbPZ6Nq1K2azudr1IiMjOXXqlMs0i8VCbm4ukZGRDXnIMvteIpFcYFgssHw5PPggREdDv37w8stCkBqNwlqQkgL/+hfEx8O8eVBc3NRHLZFIJBcMOTk57N+/n8mTJzNixAg6depEXl5erdYdMGAAZ86cITk52T5t+fLl2Gw2+vXr11CHDEhRKpFILgRKS2HxYrjzToiIgBEj4K23ICNDJBTccAN89RWcPg3HjsELL0B4OBw9Cg8/DK1bw5QpUOHpXiKRSP6JBAUFERISwgcffMChQ4dYvnw5kyZNqtW6nTp1YvTo0dxzzz1s2rSJtWvX8sADD3DTTTc1aOY9SFEqkUiaivx8+PJL4YIPC4Orr4YFCyA3F0JD4a674JdfhBD9+mu48Ubw94fgYHj2WUhLg/feE9bS3FwhVGNi4P774dChpv50EolE0mRotVq++uorkpOT6dq1KxMnTuS1116r9foLFy6kY8eOjBgxgrFjxzJ48GA++OCDBjxigUZRFKXB99JAFBQUEBAQQH5+Pv7+/k19OBKJpCZOnoSffhIxon/9BeXljnnR0XDNNTB+PAwaVPtYUatVbPOVV2DTJjFNoxHbefxx4f6XSCSSc8BkMpGamkqbNm3w9PRs6sO5oKnuu6qtXpMZAhKJpGFJTXUkKq1bJ5KXVDp1cgjRc82o1+nE+tdcA6tXw2uvCQvrokViGDpUJEWNGQPV1OaTSCQSSdMiRalEIqlfFAV27XII0e3bXef36SME5DXXQMeO9bdfjUYI0KFDYfdueP11WLgQVq0SQ5cu8NhjIkHKaKy//UokEkkzYubMmcycOdPtvCFDhvDbb7818hE5kO57iURy/thssHGjQ4gePuyYp9MJoTh+vIgbjY5uvOPKyIC5c0XsaWGhmNayJTzyCNx7r4hRlUgkkiq4GN33ubm55Obmup3n5eVFy5Ytz2m79eG+l6JUIpGcG+XlsHKlEKI//ghZWY55Hh5w2WVCiF55JYSENNVRCvLz4f33Yc4cx3H6+8P//Z/I3m/gjFKJRNI8uRhFaUNRH6JUBlhJJJLaU1IiROhtt4mSTJddBu++K4Sevz/cfDN8+y1kZ4sST3fc0fSCFCAgQMSVpqbCJ5+IWNaCAnj1VYiNhbvvhr17m/ooJRKJ5B+NFKUSiaR68vLg889FDGhoqLB+fvEFnDkjhOk998Bvv4kaoV9+CdddJ2qLXoh4eIhaqLt2wc8/w5AhwuL7ySfQuTNcdRWsWeOajCWRSCSSRkEmOkkkkspkZooyS99/L1z0FotjXmysI2N+wAARM9rc0GrhiivEsH69yNj/8UchVH/+Gfr3F5bVq65qnp9PIpFImiFSlEokEsGhQ45EpQ0bXOd17eoQogkJ51a66RwoNheTnJXMhuMbWH98PRuOb+BE0Qke6vsQ9/a6ly7hXc5/JwMGiM984AC88QZ8+qn4/OPHQ/v28OijcPvtIOPJJP9wbIqN7/d+z4KUBSw5uATLFAs6rXxok9QfMtFJIvmnoiiiXJMqRHftcp3fv7+jdFO7do1wOAqHcg+x4fgGMWRsYPuJ7VgVa5XrDIweyH297uP6ztfjZfCqnwM5eRLefBPefluEKIBoffrQQ6JbVFBQ/exHImkmKIrCLwd+YcqKKWw/6SjxlhiZyNtj32Zg9MAmPLqGRSY61R6ZfS9FqURSN6xW4a5WhWhammOeXg9JSUKEXn21KJ3UgBSUFbApY5NDhB7fQE5pTqXlovyiGNBqAP1b9ad/q/4UmYv4IPkDFu9fbBesgZ6B3Nb9Nu7tdS9dw7vWzwEWFsLHH8Ps2ZCeLqb5+IgY2okToXXr+tmPRHKBoigKfxz+g6krp7IpQ3RL8zP6cVPXm/h2z7ecMZ0B4I7EO3hl5CuE+4Q34dE2DFKU1h4pSqUolUhqxmyG5csdpZtOnXLM8/KCUaOEEL3iCtFXvgGwKTb2Ze8Tbvhj69mQsYHdp3aj4Hr5MeqM9GrRy0WEtvJvhcZNuEBWYRafbPuED7d+yNH8o/bpA6MHcm/Pe7mhyw31Yz0tL4dvvhGZ+jt2iGk6Hdx0k2hjmpBw/vuQNH8URYTArF0LJhPccgv4+TX1UZ0zK9NWMmXFFNakrwHA2+DNQ30f4rGBjxHiHcLp4tM8/dfTfLztYwACPAJ4fvjz3N/nfvTaiycy8J8qSl988UWWLFlCSkoKRqORM6rXqBqkKJWiVCJxT1ERLF0qhOgvv4jyRyqBgUKAjh8vSjr5+NT77nNLc9l4fKM9FnRjxkYKygoqLRcbGEv/Vv3tIjQhIgEPvUed9mVTbPx5+E8+2PoBP+37qeGsp4oCf/whxOny5Y7po0aJpKjhwxst1lZyAVBWBsnJQoSuXSta6J4+7ZjfqhXMmwfjxjWr82LdsXVMWTGF5aniHPfQefCfPv/hyUFPEuEbUWn5jcc38t9f/0tyVjIA3SO689aYtxgSM6RRj7uh+KeK0mnTphEYGMjx48f5+OOPpSitDVKUSiROmEyiRuh33wnxZDI55kVGipvj+PHCRW8w1NtuLTYLu07tcnHD78/ZX2k5b4M3faL62C2g/Vv1J9I3st6OA4T1dH7KfD7c+iFpZ9Ls01Xr6fVdrsfb4H3+O0pOFhn7334rulkB9OwpxOm114pQCMnFRXa2EJ6qCN2yRQhTZ4xG0UY3I8MRGnPFFfDWWxAT0+iHXBeSM5OZsmIKvx0SLSYNWgP39LyHZ4Y8Q0v/6kN5rDYrH239iGeWP0NuqegUdGv3W3l15Ku08GvR4MfekLgVWooiajY3Nt7edXrAWbp0KS+88AK7du1Cp9MxYMAA5s6dS1xcXK23sWDBAh555BEpSmuDFKUSCaJw/TvviI5FzpaauDhHxny/fqIMUj1wsuikSzLS5ozNFJcXV1qufUh7IT5bCgHaLaJbo7n1Gs16euSIiDn9+GMoLRXT2rSBSZNEPdQGsEJLGgFFgf37XUXo/soPWoSGwqBBjqFXL1ELt6QEXnxRPLiUlwsxMW2aiEWuxwfC+mDnyZ1MXTmVH/f9CIBOo+OOxDuYMnQKMYF1E9I5JTk8u/xZPkj+AAUFP6MfM5Jm8EDfBzDoLqzPXVvcCq3i4qapxVxUVKdryqJFi9BoNHTv3p2ioiKmTp1KWloaKSkpaGt5P5CitA5IUSr5R7Nli2ib+c034sYHIvnmzjuFta5r1/N2G5qtZraf2G4vx7Th+AZSz6RWWs7fw59+LfvZLaD9WvYjxPsC6ORE1dbTAa0GiMz9+rCeZmeLbP0334Scs8laISHwwAPw3/9CWNj5bV/SsJhM4vfk7IrPqZx0R8eOriK0Xbvqf2N79ohWtqtXi/ddu8J774l1m5h92fuYvnI63+z+BgUFDRpu7X4rU4dNJT44/ry2vSVzC//99b/25Kiu4V15a8xbDIsdVh+H3qg0Z1FakezsbMLCwti5cyddu9buoVyK0jogRankH4fFIuJE584VN0+VwYNFD/dx487LdXy84LhdfK4/vp7kzGTKrK4uSg0aOod1dokF7Rja8YKvV1iV9TTAI4Dbut/Gfb3vO3/raUkJLFgg6p0eOSKmeXrCXXcJ62kd3GaSBuTUKVcraHKySAh0xtNTuOJVATpgwLm1zFUUcU48/rhD6P773/DKKw2WWFgdh3MP89yq5/hixxfYFBF6ckOXG5g+bDqdwjrV235sio1Ptn3CU8ueslfVuLnrzbx+2etE+UXV234amubsvj948CBTp05l48aNZGdnY7PZKC4uZsmSJYwdO7ZW25CitA5IUSr5x5CXBx9+KGLTjh0T0wwGkQH+8MPCbVhHTBYTyZnJdjf8+mPrySjMqLRcsFew3Q0/IHoAfaL6EOAZcL6fqEnJKsxiQcoCPtz6oYvlt96spxaLKLn16qtC8IAIn7j2WiFO+vQ5z08gqTU2G+zb57CArl0LBw9WXi483NUK2rOniBGtL7Kz4cknRUtbENbzN96AW29tlESo9Px0Xlj1Ap9s+8T+QHZ1h6uZkTSDhMiGqyCRW5rLlOVTeHfLuygo+Bp9mTZsGg/3e7hZuPSbc6JTx44diYmJ4YknniAqKgqbzUbXrl354YcfGDduXK22IUVpHZCiVHLRs2+fyOD99FPHk3lYmHAJ3n8/tKhdEoGiKKSdSXNxw6ecSKHcVu6ynE6jo3tEd7sbfkCrAcQHx7styXQxYFNsLDuyjPeT32fx/sVYbKKdqmo9vbfXvXSL6HbuO1AU0ab11VdFNQSV4cOFOB09ulllZjcLSkth82aHFXT9esjNrbxcly4wcKBDhMbFNc7/YtUq8dvds0e8T0qCd98VoQENQGZhJjNXz+TDrR9itgpr8Oj40TyX9Bx9Wjbew9HWrK3899f/suG46BbXKbQTb419i0vaXNJox3AuNFdRmpOTQ2hoKKtWrWLIEFEJYc2aNQwZMkSK0oZCilLJRYnNJrLn5851FTIJCcIqevPNNba8LDIXsSVzi70m6IbjGzhVfKrSchE+EQyIHmBPRuod1Rsf4z8zOac66+m9vUTd0/Oynu7YAa+/Dv/7n7CkAnTrJsTpTTddcAkwzYaTJx0CdO1a2LrVEWOt4uUFffu6uuKbsjOX2SyspM89J+JZDQZhRX3mGXGs9cCp4lO8suYV3tnyDiaLqMQxPHY4zw9/nkGtmyam1abY+DTlU55c9iSnS0RS5g1dbuCNy96glX+rJjmmmmiuotRmsxEeHs6YMWOYNm0a6enpPPXUU2zevLlWojQ9PZ3c3FwWL17Ma6+9xuqzcdHx8fH4VhFPK0WpFKWSi4niYvj8cyFG9+0T0zQa0V3p4Ydh2LBqLTl7T+/l/eT3mbtxLlqN1h4vpmLQGujZoqdLSaaYgJiL1gp6rqjW0w+SP+Cn/T/Vv/U0PV0kqH34oUhcAIiOhkceEd2imnHB9QbHZhMWRud40MOHKy8XGenqiu/R48IU/UeOiGS430QZJuLiRCWNyy47503mluby+rrXmbdxnr0qxsDogTw//Pl6sUrmm/JZmbaSSN9I+rXqd07bOGM6w9QVU3l789vYFBs+Bh+mDJ3CxAETMerqMWSiHmiuohRg2bJlPPTQQxw5coQOHTowb948kpKSaiVK77jjDj799NNK01esWEFSUpLbdaQolaJUcjGQni4ytz/4wNFr3c8P7r4bHnwQ2ratclVFUfgr9S9mrZ9lry+oEu0f7ZKM1KNFDzz1zeui2tScKDrB/G3zK1lP+7fqz3297js/62lensjEnjtXWPsAAgKEa/eRRyCicqHyfxwlJbBpk6srvqIbUaMRWe3OIjQ2tvmERSgKLFokHjwzM8W0m26CWbNqHZ4DQizO2TCHWRtm2RtV9I7qzfPDn2dU3Khzfvgss5Sx7tg6/kr9i2VHlrE5c7P9gVeZdn7yIeVECg/8+gBrj4mkzQ4hHXhzzJtcGnfpeW23PmnOorSxkaJUilJJc0VRxA12zhyREGMViQfExcFDD8Edd0A153SZpYwvd37J7A2z2XlqJyCy4q/ueDW3druV/q3611jwWlJ7GtR6ajLBF1+ImpYHDjimT5okXPuR9dtg4IImK8vVFb9tmyPUQcXbW9TdVQVo//6iS1lzp6AApk4VZcVsNvH7f+kluO8+0da2CorMRby16S1eXfsqeaY8QHRVei7pOa7qcFWdxahNsZFyIoW/jvzFstRlrD66mlJLqcsyHUI6cFPXm5ieNL3OH7MiiqLw+Y7PeeLPJzhZLB7Oru10LbNGzaJ1QOvz3v75IkVp7ZGiVIpSSXPDbBZdgObMEXURVS65RFjHxo6t9gZ0uvg07255l7c3v22PEfUx+HBXj7t4uN/DxAXLkkMNTYNZT202WLwYZs4UiTogYof/7/9Ep6g6WM2aBVYr7N7tmhWfWrkGLi1bOgTowIEitvpCdMXXF8nJ4n+uXh/69BGNMXr0cFmstLyUd7e8y8trXrbHZ3YM7ciMpBlc1/k6tJraN8s4kneEZUeWsezIMpanLreXcFKJ9I1kZNuRjGwzkhFtRzRI/Ge+KZ/pK6fz5qY3sSpWvA3ePDvkWR4d8GidWw/XJxejKJ05cyYzZ850O2/IkCH89ttvbufVhBSlUpRKmgunT4sbyzvvCGsQiM4vt94q3Hbdqrey7T61mzkb5vD5js/tdUOj/aN5sO+D3NPrHgI9Axv4A0gqYlNs/HXkL95Pfr+S9fTW7rdyX6/7zs16qigiwW3GDNi4UUzz9IR77xXJMFHNp8ZjJbKzHTU7/f2FddAZrVb8Fpxd8a1bNx9XfH1htYqM/GeegcJC8b089BA89xxlXkY+2voRL65+kawicS2JC4pj2rBp/Kvbv2pVL/h08WmWpy4XQjR1mUtTCQA/ox9JsUlCiLYdSafQTo0We77z5E4e+O0BVh1dBUC74HbMGzOP0fGjG2X/FbkYRWlubi657ipSAF5eXrRseW5eNilKpSiVXOjs2CFiBhcudPTJbtFCdPm5995qO/0oisKfR/5k1vpZ/H74d/v0PlF9mDRgEtd2urZZ1Pn7J3Ci6IQ9c/9I3hH79P6t+nNvT5G5X+eqBooiqjDMmCFCPUA8yNxzDzz1lLAgNhd27BClzRYuFOEKKj4+wv3u7IqX13IHmZkijOPrrynXwqdJgTw/Qk96eTYArQNaM3XoVG5PuL3aa0GxuZjV6avt1tDtJ7e7zDdoDQyIHsDINkKE9o7q3aTXFkVR+N+u//HYH4/Zhfe4juOYPWo2sYGxjXosF6MobSikKJWiVHIhYrXCkiXCRb9ihWN6nz7CRX/dddUW5TZZTHyx4wvmbJjD7tO7AdBqtFzT8Rom9p/IwOiBMmP+AkW1nn6w9QN+3Pej3Xrq7+Fvjz3tHtG9bhtVFFi2TIhTtYuX0Si6Aj31lMjcvxCxWkU4wty58Pffjuk9e8KECTBkiLCKnkcHsn8CVpuVLxc+xYyUORz2F+dTC7MHzw55hn+PfNKta7vcWs7mzM32uND1x9ZXqkmcEJFgt4QOaT3kgiwFV1BWwIyVM5i7cS5WxYqn3pNnBj/D44Meb7SkTSlKa48UpVKUSi4kCgpg/nyRqKCWqdHpRBefRx4RVqBqxOTJopO8u+Vd3tn8jj1GzNfoy797/JuH+j1Em6A2jfAhJPVFvVtPFQWWLxfiVO2lbjSKKg1PPSXc3BcCeXnw0UeiosTRo2Ka+jt4+GFRI1Q+VNWITbHx3Z7vmLZyGvuyRYm4MMWbp5eZ+L+NNrwMXjBtGkyahKLXszd7r90SujJtJYXmQpftxQTEcGnbSxnZdiTD2wwn3Ce8KT7WObH71G4e/O1BVqSJh/y4oDjmjp7L5e0vb/B9S1Fae6QolaJUciFw+LAQop98IuK/QBTmvvde4aavwZK169QuZq+fzRc7v7B3XGkd0JqH+j7Ev3v+u9m39PynU+/WU7VL1IwZDgukwQB33QVPPw0xMfX/IWrD7t3id/D5547uYyEhInv8/vuh1YVZHP1CQ1EUFu9fzNSVU9lxcgcAQZ5BPDHoCR7o+wC+h4/B/fdzfNvf/NUGlvUM4K92erLMrslJwV7BjGgzgpFtRzKizQjaBrVt1h4WRVH4Zvc3TPpjEpmFonTWle2vZM7oObQNqrps3vkiRWntkaJUilJJU6EKg7lzhYtS/Rl17CisorfeKuLlqsCm2Pj90O/M3jCbP4/8aZ/ev1V/JvWfxDWdrkGvlW7Ni42TRSeZnzK/kvW0X8t+9sz9OllPVXG6cqV4bzCIcmLPPCNqdTY0NpsIVZk3T4QYqHTv7ug+Vk8dii52FEVh6aGlTF05lS2ZIvPe38OfSf0n8Uj/R1BQWJm20m4N3Z+z32V9T5uOoTFDGdlhDCPajiAxMrFOGfjNhcKyQp5f9TyzN8zGYrPgofPgqcFP8eSgJ4X1uJ6RorT2SFEqRamksTGZ4MsvhRjdscMxfcwYcRO+9FKRKVsFpeWlfL7jc+ZsmMPe7L2AiBe9ttO1TOw/kQHRAxr6E0guAGyKjeWpy3k/+f1K1tNbu93KI/0foV1Iu9pvcNUqIU6XLxfv9XoRt/nMM9U2Xzhn8vNFqMpbbzlCVbRaGDdOZIkPHSpd9HVgeepypqyYwrpj6wBR5u0/ff7DoOhBbMrYxLLUZWzJ3OLSpU2r0dInvAcjD1oZ8X0KA46DZ2CoaGV7++0X/fe/L3sfD/72IMuOiIehNoFtmDN6Dle2v7JeLcJSlNYeKUqlKJU0FllZopzT+++L8k4ginjfcYfoutSxY7Wrnyg6wdub3ua95PfILhGZs35GP+7peQ8P9nuw0TNKJRcOJ4tOsiBlAR9s/cDFenpLt1t4dsizdArrVPuNrVkjxKlqtdTphEB59lnRmOF82b9fCNEFCxwtUgMDRUWA//636UIHmilr09cyZcUUe6ykh86Dvi37otVo2ZSxqVLR+o6hHe21QpNikxyl4NasEbVNd4vESIYNEyWlOtXh3GmGKIrCor2LmPj7RI4XHAdgTPwY5o2ZR3xwfL3sQ4rS2iNFqRSlkoZmyxZhFf36ayg/m73aurXoV/3vf4vY0WrYfmI7szfM5n+7/mePF40NjOXhfg9zV4+78PeQ561EoFpP52yYw5KDSwDRpeuGLjcweehkuoZ3rf3G1q0T4vSPP8R7nU6ElEyeDPF1vFnbbGI7c+eK+qkqnTsLq2gNoSqSymzO2MzUFVNZelh8nxo0GHVGew1ilRa+LewxoTUWrS8vF61JZ8yA0lIRyvHEE+KB5CIPoSg2F/PCqhd4Y/0blNvKMeqMPDHwCZ4e8vS5twE+yz9RlKalpfH888+zfPlyTpw4QVRUFLfeeivPPvssxuoqx0hRKkWppAGwWODHH0VJJ7UED8DgwcJFP25ctWVsbIqN3w7+xqwNs1ieutw+fWD0QCb1n8TVHa+W8aKSaknOTOaF1S/w474f7dPGdxrPlKFTSIxMrP2GNmwQIkUVk1ot3HKLEKft21e/bmEhfPqpSF5S259qNHDFFeJ3cMklF72LuL5ZkbqCx/98nOSsZLfz/Yx+DG8z3J6gdE5F69PSxEPzEvFgQ9u2wsszatT5HXwzYH/2fh5a+hB/HBYPYzEBMcweNZtxHceds0v/nyhKly5dytdff83NN99MfHw8u3bt4p577uG2227j9ddfr3I9KUqlKJXUJ2opm7fegvR0Mc1ggJtuEjfhXr2qXb2kvITPtn/GnA1z7EkIOo2O6zpfx8T+E+nXql9DfwLJRcb2E9t5YfULLNqzCAVxqb6qw1VMGTqF3lG9a7+hTZuEOP31V/FeqxVJSJMnVw49OXxY/AY++cTRccnfX5Se+u9/6ycM4B9CkbmI1UdX8/Xur/lx34/kl+W7zNdr9AxqPcguQvu07FM/D6yKAj/8ICzZGRli2g03iAfti61dbQUUReHHfT/yyO+PkJ4vruOXxV3Gm2PepH1IDQ9ibmjOonTp0qW88MIL7Nq1C51Ox4ABA5g7dy5x5/Abfu2113j33Xc5cuRIlctIUSpFqaQ+2LdPZA9/+qmjlE1YmIjRuv/+Gi/imYWZ9njR3FLRus3fw597e97Lg/0epHXABVI/UtJs2X1qNy+ufpGvdn1lF6dj4scwZeiUuiXHbd4Mzz0Hv/wi3ms04qFr8mTRPWjePDFPvS20by+Eze23g59fPX+qiw+z1cymjE32Fp7rj63Holhclgn0DGRcx3Hc2OXGhi9aX1goapnOnSvCMPz94cUXxXVNV3M70uZMSXkJL61+iVfXvYrZasagNfDogEeZPHRynb5zt0JLURz3isbE27tO3olFixah0Wjo3r07RUVFTJ06lbS0NFJSUtBWk5DrjsmTJ7N06VK2bNlS5TJSlEpRKjlX1BaOc+a4xsl17y5KOt18s+g3Xg3bsrYxe8Nsvtr1lb1bStugtjzc72HuTLwTPw95E5fUL/uz9zNzzUwW7liIVbECcGnbS5kydApDYobUfkPJyUKcLl7sfv6YMUKMXnZZtdUk/umUW8vZkrmFFWkrWJG2grXpayslJ6n0ierDq5e+SlJsUuMeJMC2baJe7ObN4n3v3iJps2fPxj+WRuZQ7iEeXvowvx4UXoJW/q2Yddksrut8Xa1c+m6FVnEx+Po25GG7p6jovOK3s7OzCQsLY+fOnXTtWvsY9UOHDtGrVy9ef/117rnnniqXk6JUilJJXSkuFsW9584VFlIQT55XXSXE6LBh1T6J2hQbSw4sYdaGWaxMW2mfPqT1ECb2n8hVHa5Cp724LRCSpudQ7iFeWv0Sn+34zF5OKik2ialDp5IUm1TzzfboUdFx6f33HS56lTFj4NVXoQ43rX8KFpuFrVlbWZEqROia9DUUlxe7LOOh83BJWBrbbizPJT1Hr6jqw38aHKtV/L+fflr8z7VaEXv6/PPCgnoRoygKPx/4mYeXPkzamTQARrYdyZtj3qRjaPWVU5qzKD148CBTp05l48aNZGdnY7PZKC4uZsmSJYwdO7ZW28jIyGDYsGEkJSXx0UcfVbusFKVSlEpqy7Fj4ib8yiuOaX5+Ik7uwQdrrOVYbC5mQcoC5m6cy8Hcg4CIF72hyw1M7D+RPi37NOTRSyRuSTuTxstrXuaTbZ/YrfWDWw9m6tCpjGw70lWcKoqoZzpvnkjks52tedm2LYwfL8o9/fyzY/nrroOpU0V/+n8oVpuVlBMpdkvo6qOrK7XvDPQIJMI3glPFp8gz5dmnj2gzgueHP3/h1R7OyoJJk+Crr8T7qCjxkH7ttRd94lppeSmvrH2Fl9e8TJm1DL1Wz8T+E5kydEqVnq3m7L7v2LEjMTExPPHEE0RFRWGz2ejatSs//PAD48aNq3H9zMxMkpKS6N+/PwsWLKjR5S9FqRSlkprYuBFmzybrt294fojCu30goliDj6cfPuGt8PHyx8fgg4/RBx+DD75GX5f35bZy1h9fz+qjq+0WET+jH9d1vo67e9xNu5B2+Bh88DJ4XZTdUyTNg2P5x3hl7St8uPVDe+mxfi37MXXYVMa0TELz1VdCjG7f7lhp5EiRwDdmjCO+cMcOYTn77jvHcuPHC3GakNCIn6hpsCk2tp/Yzsq0laxIW8Gqo6sqJScFeQYxMHogvkZf9ufsJ+VEin2ev4c/N3a5kTsT77zwxGhF/vgD/vMfR/ODsWNFglubNk17XI3AkbwjPLL0EX4+IB7CovyieOOyN7ixy42VvAzNNdEpJyeH0NBQVq1axZAhIrRnzZo1DBkypFaiNCMjg+HDh9OrVy+++OILdLWIQZaiVIpSiTssFvj+e5gzhzPb1vPqIJjTH0oNDbtbb4O3i6CtNK4wraIArmrsbfCWIQGSWpFRkMFr617j/eT3MVlMAPQ6qWPqcitX7geNt7dIWnrwQVFntCp27RLi9NtvHUlP48YJcdqjR8N/kEbCptjYdWqXXYT+nfa3i7UTIMAjgKExQxkaMxQfgw+r01fz474f7bGjWo2WS9teyoSECYzrOK5BWl02GKWl8NJL8PLLos6plxdMmQKPPgrV1KO8WFhyYAkPLX3I3rRieOxw3hzzJl3Cu9iXaa6i1GazER4ezpgxY5g2bRrp6ek89dRTbN68uUZRmpGRQVJSEjExMXz66acugjQyMrLK9aQolaJU4syZM/Dhh/Dmm5RmHePNfvDyYMg7e48YkOPN9OjbiDiQQfHGNRQXn6HYCMUGKDZCYduWJHcKZLXXaY6XnbJvNtgrmCi/KLz0XpSUl1BcXkyxuZgic1GVSQ31jafes1YC1tfoy5j4MQyLHdYoxyW5wFAUWLeOE2+/whs5v/BOb4WSs9oiQduCKaNf4pret9Xeqr97N7zwgmgeod4qrrpKZHQ3wyQZRVHYc3qPQ4Qe/dveYU3Fz+jHkJghDI8dTlJsEt56b77Y+QWf7/jc3jUIRHelOxLu4Nbut9LSv2Vjf5T6Zd8+kZG/cqV437kzvPceDKlD8lwzxWQx8dra15i5ZiYmiwm9Vs9DfR9iWtI0/D38m60oBVi2bBkPPfQQR44coUOHDsybN4+kpKQaRemCBQu488473c6rTjJKUSpFqQTg4EEREzV/PhZTCfMTYXoSZJ49JboU+zCz5+NcecMUNGpMjM0mujUtWULR7z8zX9nG3P5wOFjM1lvhppI2TOx2Lz2vuq/Kzk02xSaEqrnYLlbrNK5hGbX8T125u8fdvH7Z6442hJKLm7IyIRznzROZ9Wc5felAZo+L5M38Pygyi7agXcK6MHnoZK7vfH3tLfB79wpx+r//OcTpFVcIcdq7DvVSGxlFUdifs58VqStYeXQlK9NWcqr4lMsyPgYfBrcebBehvaJ6UWQu4utdX7Ng+wI2HN9gXzbQM5Cbu97MHYl30CeqT732WG9yFAW++EJYSdVWynfdJeLwQ0Ob9tgagbQzaUz8faJLw4pd9+8izj+u2YrSxkaKUilK/7koCqxYAbNnwy+/oADfdYbJl8CBs9fPGLM3z/V9gluunOz25nss/xhvbnqTD5I/sMeNBVkM3LdVwwOrzbRU8xl0Ohg4EC6/XMRdde3aKAkBiqJgspjqJHKP5B1h4c6FgIiTeu/y97iyw5UNfqySJiIrS1i03nsPTp0VW56eomvTgw/a40BzS3OZs2EOczfOpaBMZNt3COnA5KGTuanrTbUv2L5vn0OcqolSY8cKcdq3b31/ujqjKAqHcg/ZE5NWpq3kRNEJl2W89F4Maj3ILkL7RPXBoDNgsVn48/CffLr9U37c96M9g16n0TE6fjQTEiZwZYcr8dRf5MIkNxeeekp4nQBCQuD112HChIs+EQpg6aGlPPjbg2g1WnbevxNbuU2K0loiRakUpf88TCZxQ5wzRyRlAMvawlMjITlKLBJq82Ry38f4v1GT8dB7VNrEpoxNzN4wm293f2uv9dguuB2P9H+ECQkT8NEYRXvRX38Vrfr27HHdQHS0uBFffrlotXiB9f1efXQ1dy++214l4F/d/sXc0XMJ9b74rR3/GDZtElbRb74RsYAALVuKjkv33FOlZeuM6QxvbnyT2Rtm22Mn44PjeXbIs9zS7RYMuloGXh84IMTpwoUOcTp6tBCn/fuf76erNYqikHom1V6iaWXaSjIKM1yW8dB5MDB6IMNjhzO8zXD6RPVxuS7sPrWbT7d/yhc7viCrKMs+vWt4V+5IuINbut9CpG/VcXQXLevWiQYiO3eK90OHwrvvVh+LfJFQZinjWMEx4oPjm7X7vipmzpzJzJkz3c4bMmQIv/322zltV4pSKUr/OZw8KS6I775rtwhtjoKnR8JfZ6s5+SpGHuv7MJNGVC7voSgKvx/+nTELx7hMHx47nEkDJjG23diq4+zS0hwCdflyIYxVPDwgKclhRb1AWjCWlpcyfeV0Xl//OjbFRph3GG+PfbvWBaMlFyBmMyxaJEJVNm50TB80SGTRjxsn2uLWgoKyAt7e9DZvrH+DnNIcAGIDY3lm8DNMSJyAUVfLJJeDB0WHoC++EHUwQRTcnzZNeBcagKNnjrpYQtVWkipGnZH+rfoLERo7nH6t+lWybuaU5PDVrq9YsH0BWzIdHWpCvEL4V7d/cUfiHfSI7CF/K+XlwgAwfboogWQwwOOPw7PPivJE/wAuRlGam5tLbm6u23leXl60bHluMdJSlEpRevGzfbu4KH75pbgpA/tDYfJw+O5sgqQRHff3vI9nLplGuE94pU2sP7aep/96mr+P/g2AQWvg5m43M7H/RBIjE+t2PKWlImxAFalpaa7zO3RwWFGHDGnyDNbNGZu586c72X16NwDXdLyGdy5/559p+WmunDolip6/+65w14M4r26+Wbjoe517UfYicxHvbXmP19a9Zo+1jPaP5unBT3NXj7vcehrccviwEKeffeYQp5deKsTpoEHnfHwgwmzUxKQVaSvsxc9VDFoDfVv2tVtCB7Qa4DYDvtxazu+Hf2dBygIW719sr+uq1+oZ224sdyTcweXtL6+9IP8ncfSoONfUOrZt2kBqqrCSX+TC/WIUpQ2FFKVSlF6c2Gyi//acOUIAnuW4P8wYBvN7gFULGjTc3v1Wpg9/jtjA2Eqb2X1qN88uf5af9v8ECDfef/r8h8cGPkaUX9T5H6eiiBi7JUvEsGaNKEel4usrbsxjx4ohqh72eQ6UWcqYuXomM9fMxGKzEOQZxJzRc7it+23SEnQhs3WrcNH/73/2BzIiI0VtyXvvhYiIettVSXkJHyR/wKtrX7W7sFv6teSJQU9wT897al/m6MgRmDkTPv3U8VsYMUKI01pmcmcWZorEpLNC9HDeYZf5eq2ePlF9SIpNYnjscAZGD6y2l/mOkzv4NOVTvtj5hUuSU2JkIhMSJvCvbv9y+zArqYCiwE8/CXF6/GwVgoEDRfev83zwuJCRorT2SFEqRenFRVERzJ8vbsSHDtkn53qJ0k5v9gXTWe/kVe2v4sURL9I1vHIrxLQzaUxbOY3Pt3+OgoJWo+WOhDuYljSN1gGtG+748/Phzz+FFfXXX0XIgTM9ejisqH37OgqW1xN5pXlsOL6Bcls5V3W4qtL87Se2c9fiu9iatRWA0fGjef+K9xv2O5EIbDbhCjWbxVDxdUmJsIJmZIjOSn/9ZY+ZBsT58vDDostSA1rfTRYTH2/9mJfXvmwvfxThE8ETg57gvl73VSv+XEhLE+J0/nyHOB0+XIjTYa7lyk4UnWBl2kq7CD2Qc8BlvlajpXdUb5JikhjeZjiDWw/G11h9i8fTxaf5367/sSBlAdtObLNPD/MO49butzIhYQIJkRd/M4AGoahI1DadPVt4jgCuvlpM69SpaY9NUVwHm63ytNrODwoCvV6K0jogRakUpRcHR4+KTiIffiiEHYBOR7HWytz+8OogyD97fg9pPYSXR77MwOjK8Wqnik/x4qoXeXfLu3bX3LWdruX54c/TKayRL5Y2G2zbJiyov/4qElOcf2ohISIxZOxYMQ4OrtPmFUXhQM4B1h1bJ4bj69hz2pGQpUxz/7O22Cy8vu51pq+cTpm1DD+jH69d+hr39Lqn+XSkslrdC7vqXtdl2YZ4rbq0zwU/P4iJEZb2qCiR0FTxdUQE6GuZQV8LyixlLEhZwEtrXuJo/lFACLpHBzzKf/r8p8qWjJU4elSIlU8+sSdkZY8cyIp/j2SF7ylWpv3N3uy9Lqto0NCzRU+7JXRIzBD8PWq+vputZn49+Cufbv+UXw78gsUmxLBBa+DKDlcyIWECY+LH1D6Z65+AogiReeaMuPbm59fudUGBaLAQEOC4ZoM4VwMDxQN3XQTg+YhHdV5D8PjjmO69l9TycilKa4EUpVKUNl8UBdavFy7677933LQNBsqt5XzUE55LghNnDSLdI7rz0oiXGBM/ppLLuaCsgNfXvc6s9bPsrUBHtBnBSyNeunB60p86BUuXCoH6++/iAq+i1cKAAQ4ravfuleK0SspL2JK5xSFCj62zJ6g40z6kPYOjB/PhVR9WKzL3Ze/jrp/uYv3x9YBI+Prwyg+JC27CRK2iIsjMFBbDqsZZWeKGeLGi14tkEk9PYYVyTqqrDq1WCNOqRKs6Dg6uUwxgubWcz3d8zourX7R3vQn2CmZS/0k80PcBAjwDarWd43s38sNHj7Eoby2roxVsTqemBg0JkQn2Ek1DY4bWur6uoiiknEhhQcoCvtz1pUsh/F4tenFH4h3c1PWmi7PyhKKI86MuYrLi64ICR/UEiVtMsbGkLlhAm86d8QwNvehjaM8HKUqlKG1+lJeLvtpz5gjroYrBgM1SzjddYPJILYcDxYWybVBbnh/+PDd1vamSyDJZTLyz+R1mrp5pF2i9o3rz0oiXGNl2ZGN9orpjsQhBrlpR1ZIrKi1bknHFMNb2j2JdSAnrTmxm24ltdsuPiqfekz5RfRgYPZCB0QMZ0GoAYT5htT4Mq83KW5ve4pnlz1BSXoKX3ouZI2byYN8H67etaWFhzWIzM1OI0nNBpxNCzmgUQ11e1zTfZoPiYnFsRUWOG3peHuTkiJqOarxndWg0Ih40OhpatxZDq1bivTpERLiGdCiK2FdmpnDrZ2a6f52VVXtLrIeHQ7BWJ2ArlDmz2Cx8ufNLXlj1gr3UWKBnIA/3e5iH+z1MkFfl5hKHcg/x/d7vWbR3EZsyNrnM63pKwyVHFJLSYJixHcETn4F//avWoQkni06ycOdCFqQsYOcpx+8n0jeSW7vdyoTECW5Dey4oyssd59O5iMr8/Nqde7XBYBBWz8BAMa7udUAA+PuLdTQax7BrF7zzjuN6FhAgiu9fd5047zQa8fDkvE7F4UKZb7OJa/M772Dat4/U996jTWgonh4eEBYmPF21rHTxT0KKUilKmw+5ufDBB8JNn3G2jqBOBxoNisXC7/Hw9BgDKSHCxRfhE8GUoVO4p9c9lbJhLTYLn23/jGkrp9nj3jqEdODFS15kfKfxzS55x5J2hO2/fMS6bT+zrngv61pYSQ+svFwLr3AGtRnKoOhBDIweSGJkYr1kCh/JO8K/F/+bFWkiqWxAqwF8fNXH1Yc8KIqwslRlzXSeVlxc+4Px9RXCqEULMaivncchIeImZzCI4Vxjc0tK4Nix6ofCwpq3AxAe7iowKw4tWjTcTcxqFR14qhKt6jg7u+Ztqfj7uxWt1hYRfKPdy/PpX7A3X8R9+xn9eKjfQzzS7xGyirLsQtRZLGrQMKj1IMZ3HM81na4h1uwtYsffesvh/o2OFt2E/v1vt7V/yyxl/HLgFxZsX8BvB3+z1xg26oxc3eFq7ki8g8viLqt9I4DaoChCPJaWOgaTyfW9u2nFxTULzpKS+jlGjcZVMNZGWFZ87elZPxZARYHFi0Xx/X37xLTYWFHT9uabhehrZpj27SM1N5c2np54qlZljUZ4HcLDRWmsZnbPaSikKJWi9MJn3z5RV/HTTx1B8Z6e4gnfZmNDK3jqah/+DhPCxd/DnycGPsHD/R+ulMygKArf7/2eySsmsy9bXPBa+bdi+rDpTEicUL83owYktzSXDcc3sO7YOtYeW8umjE2UlLveoLSKhsRcAwMPmRl4DAYeg9b5oImPd9REHTZMiLN6QFEUPtz6IY/98RiF5kKMWgPTo2/jMd0QDFmn3IvPutxU/f2rF5rqPL9axirWRFmZyBCuKDKdp1VRp68SQUHVC86WLcU5faFTVgYnTlRvdc3MrJUQt2lgUSd4/hIdO0OFONQooDjdm3UaHZe0HMz47jdwdcdraOHXovKGCgpEuatZs8SxgXjoeOgheOABlKAgtmRu4dPtn/K/Xf8jt9TxP+sXmsiE6Cu4MTSJYJtHzUKxNmLS3fuGdm/7+Jy7mAwIEA9yF5rYs1hgwQKR2JaZKaYlJoqWpZdd1pRHVmfsQqt1azxLS0UolvO1z9tbiNOgoHpPXm1KrrrqKlJSUjh16hRBQUGMHDmSV155hahqqshIUSpF6YWJosCyZSI707kzhJ+f/Ya3JwyevTGMH0NFj2UPnQcP9H2Apwc/TYh3SKVN/nXkL57+62k2Z24GRJHrZ4Y8w3/6/OeCbvun9t52jgWtmNgBwhU6oNUAuyu+b8u++Bp8ROcctSbqqlWO7j0gbmYjRjhEaqtW1R2IsNDU4EI/VpTBfZeW8Vs7sVrPTPjkJ0g4WcV2AwKqF5rquD67Xlks4pirs3CqLTdrws/PvdB0dq1fYB27Ghw13KIK0WrNymCNLoPv4y0s6gQZFcJKdTYYeRhm/Q6dsxFxsuq5oFpejUZXEVhUJMpJHTkCJhOZfvBFd/i0h4Y9oY5bVFQB3L4dJmyHjnUw/NYbXl6OwdOz6vfe3q7CsSphqbrBL1ZKSkSo1iuvOGLBR44U73v2bNJDqy2VhJaiCEv46dPiwVaVUDqd6KQWFtY8HlJrYPbs2QwYMIAWLVqQkZHBY489BsC6deuqXEeKUilKLyxKS0XbwTlzYPdux/TAQHtiT3qghml3xPBZYDo2bGg1Wu5MvJNpw6YRHRBdaZObMzbzzPJnWHZkGQA+Bh8mDZjEowMerXWSRWNSUl7C5ozN9oz4dcfWuVh3VNqHtLe74QdGD6RjaMeas98LC4XYV2NR1ULqKt27C3EaEODepV7LpBkF+KK/Nw8PN5HnYUOvaHja0p9nQ6/FIyra1bJZXVcXRREW8aIiR1xmxXF186oa5+XV6nPg6Vm9hTM6WnxXkhoxW80sT13O93u/58d9P3K65LR9nq/Wi7HGLsSaPFhm3s9Wo1CLnha4JxmeWAutapGbZtLDTx3g00T4PQ57MpRnOVyzD+5IgRFHQKcg3KXOgrA2QvF8l1HjIiV1JztbNFd4+23Hg/XNNwu3ftu2TXtsNVBtSajychFbfuqUa3yvv7+wngYENOk5s3TpUl544QV27dqFTqdjwIABzJ07l7hz6Dy4ePFixo0bR1lZGYYqHqSkKJWi9MIgK0sEuL/3niNuzcNDXMjPxotlB3kw856OvO27B/PZck3jO43nheEvuI1d3Je9j8nLJ7No7yJAlHW5v/f9PDPkGSJ8669o+PlyvOC4cMOnr2Xd8XWknEhxm5DUt2VfBrY6m5AUPeD8s4EVBVJSHFbUDRtqVxYlOLiyJTMyUjzhq5Ybb2+wWDiRd4z/7p/F9/kbAOiijeQT5Sr6lgTVXmCeTymk6jAYhNWtOsEZEiJFxHlQUl7C74d+5/t93/Pz/p/JL3OU/gnyDOKqDldxbadruTTuUru3QlEU/jj8BzP+nmGv7GDUGrm71ZU85TOK1qfNwuJqsYCXF4qnJxsNJ1lg28rXZcmcsTncooO0sUzYauWG344RUHZ24tVXi3jFfv3k/7Y5kpoKU6YI4wWI3/H998PkycLCeAHiVmgpiqsLX01KzM52rQ5iMNRvYlQd41cXLVqERqOhe/fuFBUVMXXqVNLS0khJSUFbh5CP3Nxc7r//fjIyMlizZk2Vy0lRKkVp07J1q7CKfvWV4+k3IEDccM4mtxRFBDHrvu687pFMYbnIrh4eO5yXR75M35Z9K23yWP4xZvw9g/kp87EpNjRouC3hNmYkzXDbtakxKbeWs/3kdhdX/LGCY5WWi/KLsltBB0UPIiEyoeFbF2ZmikLlS5cKi6hq2TmbTAaI/4vJVFk8FhdXGzf3XWf4z+Vw2ge0Npi0Hp5bAV6WKlepjIeHiH3z8anduLp5gYHCCnGhxdFdBBSUFbDkwBIW7V3Eb4d+c4l1jvCJ4JqO13Bt52sZFjOs2nqfiqKwPHU5z6963qW974SECTw95GmMOiOfb/+cBdsXuBTLj/aPZkLCBG5PuJ12IWdjSNatg5dfdrS4BOECfvppUZBfitPmx7Zt4uHijz/Eez8/ePJJeOSRCy5cxq3QKi4W16LGpqjovL6f7OxswsLC2LlzJ1271lyd4sknn+Stt96ipKSE/v3788svvxASUjm8TkWKUilKGx+rVdwcZs8WMY4qLVqI+JoyYdIoa9OaD+7vw/PK35wuFdbTHpE9eHnky1za9tJKGfLZJdm8tPol3t78NmVWsY2rO1zNC5e80GSlXXJLc1l/bL3dFe8uIUmn0ZEYmWh3ww+MHki0f3TDVgAoKoLt28WFXR127XKNNz1XvL3disHsAAOPxO5joX8aAO2UYD72uIEh/l1rFpk+PvVa2F1Sv2SXZLN4/2IW7V3EsiPLMFsdbsiYgBiu7XQt4zuNp3+r/udUKuzvtL95ftXz/JX6FyB+M2rmPIC3wZtrO13LhIQJDG8zvOowll27RCzi//7nsMD37SvEzdVXy4eU5siyZfDEE+IaBuI+Mn26KCV1gVwzmrMoPXjwIFOnTmXjxo1kZ2djs9koLi5myZIljB07tsb1s7Ozyc3N5ejRo8yYMYOAgAB++eWXKu9vUpRKUdp4FBQ4WoAeEUW00emEm/TYMftNwprQnS//byBTTUtJy08DID44nhcveZHrOl9X6YZTZC5i9vrZvLbuNQrNIglqaMxQXh7xMgOiBzTax7MpNnuHJNUVr2b4OxPoGSjE51lXfJ+WfWpseXheZGe7is+tW+HgQfeu+sBA0cq0Vau6WR7Vsbd3jTf2Xw78wn2/3Edmocio/W+f//LyyJcb9juQ1DsZBRn8uO9HFu1dxN9H/8amOCzlHUM72oVoj8ge9faAte7YOp5f9TxLDy0FxO/8joQ7uK7zdbXvEAWihenrr8PHHzvipDt2FJa2OtQ6lVwg2Gzw9dfw7LPCvQ/QoYPoBDZuXJNbwmvlvq+J4mJxLa+YGBUcXLfEqDq67zt27EhMTAxPPPEEUVFR2Gw2unbtyg8//MC4ceNqf/zA8ePHiY6OZt26dQwY4P7eLEWpFKUNT2oqvPmmuAGosTJ+fuKHpIpTQBlxCUvuGcYzud/Z6xO28G3BtGHTuKvHXZVcfWWWMt5Pfp8XVr1gT5roEdmDmSNmMipuVIPXGi02F7M5c7PdDb/++Hq3CUkdQjrYLaCDogfRIbRDw7TjVBQh7lXhqYrQ48fdL9+ypRCgzkNMTKNcwM+YzvD4H4/z0baPAGFN+/DKD7k07tIG37fk3DmSd8ReQ3TD8Q0u83pE9mB8p/Fc2+naBm/Jeyj3EAatgZjAmPPb0KlTda51KrmAKSsTeQnPPy+ShwAGDoRXX4VBg5rssKpNdKorFosQp6dP272KgIjlDwsThoV6uobn5OQQGhrKqlWrGDJkCABr1qxhyJAh5yRK09PTiYmJYcWKFSQlJbldRopSKUobBkWBNWtEvOiPPzriDaOiRLD20aPivVYL11/Pmrsv5alj81l7bC0grIlPDXqKB/s9iLfBNTvbarOycOdCpq6Yau+pHR8czwvDX+D6Ltc3iOCzKTYO5R5ic8ZmNmVsYt3xdWzL2ubiQgTw0nuJhKSzIrR/q/4N057QahXWTmfxuW1b1XUz27WrLEDDw+v/uOrIsiPLuOfne0g7kwbAXYl38caoN2rdIlLSsCiKwp7Te/h+7/d8v+97Uk6kuMwfGD2Q8R3HM77TeNoEtWmag6wPaqh1SnBw0x6fpG7k58Nrr4n/p1rb+qqrhOW0c+dGP5x6FaUqavORU6ccD1QgrPxqWanzTIyy2WyEh4czZswYpk2bRnp6Ok899RSbN2+uUZRu3LiRzZs3M3jwYIKCgjh8+DBTpkzh5MmT7N69G48q6mNLUSpFaf1iNsO334p40eRkx/ROnRw1LkG4Gu66ix13juXZg+/xy4FfxGS9Jw/3e5gnBz1Zqe2goigs3r+YZ5c/y+7TolxUdZbUc0VRFI4VHGNL5hY2Z2xmc+ZmtmRucckcVmnp15JBrQfZXfGJkYn1dhx2yspELJyz+Ny+3b3rR6+HLl1cxWdCgniKrssuLWV46OunqH5NFJmLeOavZ3hz05uASPJ69/J3uarDVY2yf4kriqKQnJUshOje79mfs98+T6fRkRSbxPhO4xnXcRxRflUXwW6WmEzw2WfCsnb4sJjm4wP33QcTJ1Zfx1dy4ZGZCTNmCC+d1SqMIHfeKaa1bNloh9EgotSZsjJhOc3OFpZUENbSoCAhTn19z9l6umzZMh566CGOHDlChw4dmDdvHklJSTWK0p07d/Lwww+zfft2iouLadGiBaNHj2by5Mm0rOa7l6JUitJz5/Rp2LFDDNu3i/Hu3Y5aax4e0LWrcN+rFrzgYHjgAVJvv5KpO+aycMdCFBR0Gh3/7vlvpgydQkv/yifs32l/89RfT9ldhoGegTw9+Gke6PtAJUtqnT9G8Wk2Z252EaAniytXevfUe9Ijsgd9ovowIHoAg6IHua2Lel4UFooyTc4CdPdux4XGGW9vIThV8dmzpxCktezQpCgKGYUZ7D29l73Zex3j7L2cKj6FMq1xf9arj67m7sV32/ui/6vbv5g7em7DWJolLlhtVtYdW2e3iKbnp9vnGXVGLou7jPEdx3NVh6vcNqa46LBYYNEikbGfkiKmGQxw++3w+OMiXrG+9nPmjLg+Og95eSIhxWh0DB4e5/f+YukUpCjC82a11jxYLA6v0qxZ8JdIlMPDA268UcQPe3vXblt1HSwWIQS1Wkx+fqT270+bqCg81XhlVSQ6i8WK02ozz3msKOIecuaMa01pDw8hUAMCHOfBueyjqnn1GPLVrETpk08+ybp164iNjeWTTz6xF18tLS3lhhtuoKCgAL1ez5dffklERO3qUEpRWgvMZti/31V87thRufC6Sng4xMeLi7lqzYuJgUcf5eSNl/Ni8hze2/Ie5Wdrjd7Q5QaeH/487UPaV9rUtqxtPLP8GXtig5fei0f6P8LjAx+vZEmtDQVlBSRnJgsRelaIqiEAzug0OrpFdKNPVB8xtOxDl7Au9WsFPXWqcgLSoUPulw0OdghPVYS2a1erG43FZuFw7mG78NyXs0+Ms/fZE8MqEuYdxqnHa9nRqB4pLS9l+srpvL7+dWyKjTDvMN4a+xbXd76+wWOE/2mUW8tZkbbCXsze+UHMx+DD2HZjGd9pPGPbjcXf4x96bVQU+P13IU7/FmWp0Ghg/HhRTqpXLzGttNS9sKxpmnM9yoZGpxPi1GBwCFWDQXhXDAYx6HTivU7nGLRax6AKEGch4nz7VwWjzVa1eLRYHMOBA9CmjWOd2oi9hm7Z2gCYYmJIfe892oSG0vz7NFUgJqZe68M2G1G6fft2XnvtNb744gtefPFF2rZty8033wzA999/z+bNm3nppZf4/PPPOXbsGM8880yttitFaQVOnqwsPvfsqbpUkNq3299fXKQKC0VNQJWEBHjiCQquHs3rm+Ywa/0sistF/dHL4i5j5iUz6RXVq9JmD+YcZMqKKXy9+2sA9Fo99/S8hylDp7jvf+0Gk8VEyokUuwV0c+Zm9mfvR6Hy6dohpAN9Wvaxi9DEyES8DF612k+NKIqIoa2YgKT2c65Iq1au4rNHD/E91yDKis3F7M/ZbxecqtXzYM5B+wNARfRaPfHB8XQK7UTH0I50Cu1EpzDxuimz4TdnbObOn+60h2lc0/Ea3h77dq3/9/8EbIqNgrICcktzXYackhxyS3Pp27Ivo+JHuaxTWl7Kn0f+ZNHeRSzev5gzpjP2eYGegVzV4SrGdxzPZXGX1d/531yw2YRIrEpE7toFa9eKZEIVo1H8vs+3lJqXl6P0mdr9SacT23UenAWdO7HmLAb/yagC2llQa7UOkW21CoOJWhZMzWIPCBCi3N3gLOCdRbu7QRX2ADYbJn9/Uq+6ijYtWuCp1VYW8u7G9TXP+eHAeZmqHi7cbccNM+fPZ+b8+W4tpUOGDOE35/bgdaA+RGmjFAJbt24dl112GQCjR49m/vz5dlEaHx/PypUrAcjLyyM0tGp3X1lZGWVOGWsFjfmkeiFRVgb79rmKz+3bq+737ekJERHiomm1CvfAqVOOPuEVGTECnngC0/AhvLvlPV58uz05pSIbsk9UH14e+TKXtLmk0mqZhZk89/dzfLT1I3sS0b+6/Yvnkp4jLrjqtmbl1nJ2n97tIkB3ndpVqTMSiExvVYD2jupNrxa9qmw3qigK5bZyzFYz5VYx1mv1VbswrVZhVXYWnykp7ttaajTQvn3lBKRqzl8QNSErCs+9p/e6tfiqeBu8HaLzrPDsFNqJuOC4hi/Kfw70admH5HuTmbl6JjPXzOSHfT+wIm0Fc0bN4faE2y8qq6nVZuWM6UwlcWkXmaU5bqfnmfJcyjC5Q5mmUFhWyK8Hf2XR3kX8evBX+0MhQLhPONd0vIbxncaTFJt0QZ4LdcZsFr+3U6dE0tKpU454O7WkzpkzYsjPF0K0sFCIlLraV5zbQoJrOTRVENSG0lIxqN3sGhOt1iG4nK2ken1lUacKPXAVIs6CxlkYu7N+quK6vLzhxLO63dp2g7NaxTly+nTNy4KrtdldqIQ6rFkjEuXatBEPG0FBovKMXt/4ZapU1/6pU+LcV89PtWNUaKj7UmhViN3/i4nhhgcfdJwbTnh5Ne0DbaNYSmfOnEnnzp0ZN24chw4dYurUqXz55ZeAcN9feeWVZGVloSgKmzZtwreKorTTp09nxowZlaZftJZSRREXZmfr5/btQpC6i1MEYfU0GoVwLXTv3rVv3s+XvM5tyWrfgqzWwWRF+hDesRfDh9/Fwh0LmbZymr1jUYeQDrx4yYtc2f5Ku9AzW82U28o5XXyad7a8w+fbP7cXvu/fsj8TEiYQHRBtX9ZsNVNmLSOjIINDeYdIy0vjaP5RMgszK2XCA3joPAj2CibAMwA/o589/lTdr/N27cdjdT02d1ze7nKmD3ia3tlGVxf8jh2ObE9nDAYRX1sxAamK89Sm2DhecNxtvGd2SdU3rlDv0ErCs1NYJ1r5t2qYMlSNwPYT27lr8V1szdoKwOj40bx/xfu0DmjdxEfmSrm1nDxTXpXisiqR6WytPBe8Dd6EeIUQ7BVsH7wN3vgYfDheeJw/D/9p/00BtA5obc+YHxg98JyK2dcZq1VcS/LyhBBUxaAqCCu2mC0pEa9LS0VsnDouKxOD2SwehgMDxWvVenghWwj1evFwr3ZKU19X9V4d6ium1N171erXkOTnw969Ytizx/H66FFxXrz3Hlx5pTges7nyoP6/G2p6aakIRTt1ynH+GAzieCwWsd55SpxK7nuttur/jfp/aUjRajY7RLizDggKEuF355EYdb40G/f9O++8g6+vL7fffjvJycnMnz+ft956C4D33nuPEydOMH36dL777js2b97MK6+84nY77iyl0dHRF4coNZnEj72i9bOqp2/VleHG9WTTQLY3ZPlCVpQvWW3CyIjyIzVES7p3OZnaEk5bC8gz57u1RjqjQYNRZ0RBcen0cjFwxX6YvhJ6OYfX+vhAYqKrAO3Sxe1TaLm1nEO5hyoJz/3Z+10sWhWJCYhxiE4nl/vFmhRksVl4fd3rTF85nTJrGX5GP1679DXu6XVPvYvtMktZjcIy1+TqKs8tza0yPre2+Bn97KIyxPusyPQMdhGbFYcgryA89Z4UlBWwNn0tK9NWsvLoSpIzk10e0toHtOXa6FGMjxxOL+94NGazEH2Fhe6FYXGxEIaqBU8dnEWhOqhWL2eXsmolu1BEokbjsP6pgkMVgKrrXG0Q4e1de+Ho6Smuu0uWwA8/2Fsj06IF/N//iUzvkBBHu96LFUURAsdZeKrjqsKUnPH2huuuE12Yhg5tGkGUkwMvvghvv+2wgN90k5gWE1N34VtWJu69aWmYCgtJve462gQF4VmVMcgZjcZxnlb1UFEf3cdsNvGgePq0+O2reHoKcRoS0ujnbbMRpSkpKcyaNYvPPvuMmTNn0qZNG7v7/t1338VqtfLAAw+wcuVKvvrqK957771abbdZxpQqivihO4vPlBThNq7hJmDRwimfs2LTD476w5FgSIswkhli5KQP5BjKKcKMzU3sZUOi1WjxNfpi1BqxKlbKbeWYLCa3oler0RLkGUSYdxgRvhFE+UUR5hOGUWvEqKs8GNBiLCnDWGzCWFSKsbAYY34xhvxCjHmFGPMKMOacwZh7BmN2HoYzhRituAwGK+htcCgYnh8GC7uB7ex14UpLHNPj/03PAeNFkleFC0aRuUi4252E597Tezmcd7hKUW/QGmgX0q5SvGeHkA74GP+ZRb33Ze/jrp/uYv3x9QAkxSbx0ZUfuQ3tUBSFgrICskuyOV1ymuySbPG6+HSVLvGc0pxKbWDrSqBnYGUB6ekkNN2JS8+gykl0NpsQhgUFkJEhfvNZWXDyJAXZGawt2c9KbTorfU6THFCMtcI9KuEEXLsHxu+Fzqfhggt4UGPR1Fg/Z7exmnhjMKAYDRR7Gyj00VPoY6DIS0ehtw6LtxcjPDuJWMCQEEdtxvBwMfb2dlgbG+PG+k+odaooohlHReG5d6+jWL07oqJEWcDOncW4Uych3H/6CT75RNy7VNq2FWJ+wgQRS9/YpKXBlCmwcKHDvX3//TB58jkn9LgILaOxZitubSSVcwiBKlidhWtdz/mSEiFOc3IcOkKrFeew+ntqBJqNKAV4/PHH2bBhA61bt2b+/Pk8+OCDvP/+++Tn53PjjTdiMpmwWq18/PHHtG9fOZPbHRe8KC0tFSWBVKvn5s0i4L6CW92sgxO+kOkLh4PhYDCkBcLxADjpA6e9Id8LTDoa/O5k1BrpFNaJQ7mH7Na+dsHteLj/w1zd/mp+O/QbL615idQzoh1ckGcQ8cHxnCg6YXf1O+M2Ez6oA4YzBY54MXXs/Np57C6msyZ0OnGjU29y6jgyErp140DbAJ7f/yFf7vrSHts3Km4U13W6DotisQvQfdn73H4uFV+jr9t4z7ZBbeu/5mkzpsxSRnZJNieLTvLRto/4ZNsnlFnL0Gv19IvqRwv/FuSU5NjFZ3ZJdpXhFzWhPvRUZ6W0u8w9AgjGi2CrkcByPbqSUldXtDouKhK/25wcRxLNmTOOeSUlwuqmWh+dHjALPGBtNKyMFUNyFJVEaFwuJKWJYVgaRNclXN5ZGDondqg3PvVm52xd9PQUNypvb0eSjo8Piq8vJT5GCn0NFHppKfTSUeipodAIRQaFQsooLC+msKyQQnMhhWWFFJUXubwvNBdSZBbTisxFbpMTgUYvW1Yrqqp1eu+9MGlS86h1arWKbnsVLZ/79rla1JzRaCA21iE8nQVogPuYfUAIsA0bhDj9+mvHvU2jgZEjhfV03Ljat9GsL1JS4KmnRPUFELGgTzwh6tVW1+krPx9+/lk0jVm0CJ56ClOfPqTGx9OmXTs8a4q3VBPn3Fle1de18UDo9dWHCOh07i3SFou4Rp0+7VpWytdX3AMDA+vHSlsFzUqUNgQXjChVn0C3bRPB0Zs3w759lOSc4Lgf7AuFgyHCSnckCDL9IMdb3KxM+so3qPpEp9HZrT/hPuGE+YS5WH7Um7P6PjYwFn8Pf/JK85i7cS5zNsyxF57Xa/XVuvs1aOjgHU0fQwx9LBH0KfQn4bQOr1O5rkLTuf9vbdFqK1tTqhqHhYn4Gjc/Ppti4+iZo3Zr5/rj61l1dJW91WlVhPuEu433bOnX8qJK3KkNNsXGGdMZThc7WTBLKr92nn+u7nEfgw+h3qGE+YQR6hFEqN6fEK0vIXgTrHgSbDUSbNETYtYTbNIQXAr+xRa0RcXuhWXFae5iiM+TWonQfB1Jp31Iyg9imCmCaO8W4pwNDRXWjcBAcSP183O4pb28HOOzrxUPD0ospQ6BaC5yEYcVRWKhubDaZasTkeeDBg2+Rl/8PPzwM/oR6h3KmrvW1Pt+6g2rFb77rnKt09tuE+Kmvmqdng9lZaKGZ0XL54EDri0sndHrRTk6Z+HZubNI2jxfa1pxMXz/vRCoZ5OXAXEu/+tfwoLaq1fjuvf/+kv8v7aKmHYiI2H6dCGW1Y5JubmweLH4f//xR6WQOHtMaVgYnuqDnPNvsS5WTUURwrEqK2tZWe0SvNS41qpijw0G8YBw+rSrUcdgcNxH3SVGnSdSlDaiKC0pzKO4vAQvm4YTf/7E5q2L2ZW9m0OW0xw3mjjlA2c8ocQgLJ8WLfVu1fTSe+Fv9CfYO5hQ71AifCKI8IkgxDuEIK8glzg29b2PwadOoqncWk5q7mG2HFrF5vT1LMtcQ6rJfU3T1sV6+mZp6ZNqpk+GiM30r+JaWAmNRtx8qxOWTtPK/X0ptJZQWFZIQVmBy820oKyg0k24qmWyiqqoz+qGHpE9eKjfQ1zV4SqCvS4C910VlJSXVBKR7kSms/u8psxxd+g0OkKNAYTq/AnT+BJi8+R0eR4bLGmYsaJXNNyWH8v/ZbSgRZ6F0OwSvM4UOZJqahPPVQdsGrBqhGCsbmyrOM3TiNXbC6ufD1Y/XwoCvNgaaWNrYCnbPPM4oMmtFD4T6RtJ57DOdAoVIRyBnoFYFSs2xYbVZsWqWO1ji83iYml0FpIVBWWRueic/hc14SwifY2++Bn97IJSHVc7vcI0b4N383x4q67W6VNPQe/eDX8MRUXCylnR8nnkSNUCxtMTOnasbPmMjz/v9pW14sgRWLBADM4VXrp1E+L01lvrtT5mtdhs8M038MwzohkMQFwcXHaZsIYvX+56bencWcTIRkbC9u2YsrJI/c9/aBMS4r5Oqep9UAWrt/f5fcdWq3uxqr6uTQkzjcYhVPV68fmcy2ipdOxYZcLuuSBFaSOKUs1UDVzEse414nyWaNxMa2jq836mODapUVzH4BAi6gStDXS2yv9+zdm/9kNz2q76R3N2uuN+7FjeaU3xWlNhrsZ1rM4XyzrG9vU0GjQaDSfK8wg3BqGgYFMUbCgoiu3saxtWxSbE0NnX52oZ0yqgVzToFQ06m4jZ1Sugt4LOpog4Xqtin6dTv58KuzNrRahKwdlrmFc5tD4D3pbKywJsjYLuJysISHfisTqh2TyLGVRLRZHoIg5rEI0Vxae3wbvZVnxoMNavF+J08WLHtJEjhTi95JLztwDm5rrGeaqv09OrXsffv7Lw7NxZJPc0oJu21litQvTNny+sqKoFV68XWft33gljxoj3Dc3x4/DooyKpraKw69ZNCNHrrhPfnxMmk4nUI0dERyc1VlxNJKxKIOr1DoGqClZPz/qxEttsVSdnqa9rS3CwiAOuJ6QobUxROk0DF8BvXCKRNA5ajRadRmcXZwqK3ZpZEb1Wby/l5Gf0w9PgaV9fp9VVOXa3jF6rt2+nKtFYUWT6GH2kiGwsdu0SMadffumwPPXpI8TpuHHVi0FFEQlvFRON9uypus40CK9RReGpJhw1Fwt0Xh589ZUQqJs3O6ZHRIgWsHfeKT5TfZKVJUTod98JS7dzPKdW63h/5ZXigaOCIIXqhRbl5a4iVY0td4dW6+r2Pxf3f21QlOoTsZzLZNWio1NZWRn9+vVj+/btbNu2jcTExCqXlaK0EUXpDXf6s6hVobCgqdec2lwLavp2m8n15B9Jxf+dk4XY2bJqn1bFas7rK4h1Fefa1e72UfF1HdFZhWVSZ6t8rIoGbDhZDZuhB2Dur9D19FkLtiKsturrqsa1XabYAOtaw9+xGlbGKCS3qGxZjcvTkHRcT9JxPcOyjESXGt0nHDkPqitNjflyrmVZscyRs0vQ2TXo4+NwD6oF0tXycM5jd9OqW6a5CJsLibQ0eOMN+OgjhxDp0AGefBJuvlkIIneWz/z8qrcZHe0+2SikioYfzZVdu4Q4/fxz16L3/fsLcXrjjdUnWFXH8ePCKvvddyLHw1ni9O4trKHXXit+SzNmiP+f1Sp+C3fcIaY5JbRVK0rdYbWK80EVq6pgrSrBycPD1fXv5dWwtU7VuNayMkdd1Wp4+OGHOXjwIL/99psUpTXRlIlOZouZBSnzefePmewxpWM+hxhSbzO0z4G2uRB7BloVQHgxBJmEYMj3gEKPs2MjFBvF+2KDiF0tMUCpQSRLleqhTA9lOhHTWn52sGjFYHVyR9cGX6MvQZ5B+Hv4u1hm/D38XdyBRq2RDRkb+P3w7xSUiZThKL8o7ut1Hzd0ugFPoydmixmT1YSp3GQfl1nLKLOUUWYtw2RxvFeL3quvy6xlLoXxnTs0qa8tNgvl1nIxtolxxcFqs2JRLFisFoxaPVobmC1lYhu2csyKBas7X3EzQn+2/FWJEcKKK5fEqlQmy+ZaLktvcxVuWqdB4yTEK55GCmKijbOCV+MYO7vXrToxVs9Js16D+ez5ataCWafY35/xgFyvs2Lw7DE4C8Ot70GPE/XzvRV4wJrWTolJ7kTo+WTHNyec2w4690uv2PrRnbhVOwq5a+3o3Jtdq4U//4RLL3XtnKS+ruv781m3Pt5brY6459reTiuUzrIPbto+Vvr/XCjzDh0SCVIVW146v69pAFHFIjtbjFXUckYRESIB0N16zu/LyoSl+eRJ1+2ASLSKihJWZR+fytsqKhJVcjIyHPvu0EE8QNxyC6bgYFKvv160GXUOM3D+bmrzumJHrOq6YqmdutS4UOfzow77XvrXX7zwxhvs2rsXnU7HgD59mPvyy8S1aSOW9fKqNuHpt99+Y9KkSSxatIguXbpIUVoTF0z2PaLkzTe7v+Gz7Z+x8fgGCsurKL1RS0KLoV2uEK3OQ3wueJ9jq+ZyrauYtb/WQ5FR3JxbFsCQdND4+IgLjjq0a+d4HRRUadvF5mLe3fIur617jVPFwg0VGxjLM4OfYULihGbRAtFqs1ZqS1px2Je9jw+2fsDKtJWAiOXs36o/4zqOI8Inwn2Xqaq6T6nTLWViKDdhNpdSbi7FXFbqmG4zY7ZZKFesmLFi1lgp09hcrK3NEZ2tetGsUc5WqjhbwcXbDAknYX003LxHhwc6jOgwaA2ipq3eA6PRC6OXLwYvH4ze/hi9fTF6+mL09sWg1WMsV7CYSjlQepzd5mPssGZyQMnBVuGBJNbszaDCIIblBZCU40vbAj26cqebidVadS9ztT1jxX7mzuOqhJVEImkSTHrYHQYpkWJ4qx8o0910dALxW63KTd+Q1DEuddHy5WiA7u3aUVRSwtT33yctK4uUhQvRarXVuu9PnjxJr169+PHHHwkNDaVNmzZSlNbEhSRKK2KymPh699d8s+sbNmRsILc0t962HZ0P7XIqC9bYM8L6VSfU7hPqE5nNVvlJsyKhoZWFavv2EB9PiQHe2/Ier659lZPFJwHRGvGZwc9wZ487m4U4rQ07T+5kxt8zWLR3ESDE6Y1db2TK0Cl0Dqscl9QQWG3WSqK3TLX+ViOsK4lkS5kQwqYSzKWFmAvyMOfnYi48Q3lJoZhuPiuSrWWU2yyYFQtmbJg1VswaBbNWoVwrxnbrp048CJl1worf3EW0VtFgRIdRq8eoNWLQGzEaPIUQVhs96AyVmz9oazfN3foGrUHsz6bBaLZhMFswltswllkwmq0YyywYysrFe5MFo6lcvC81oyszoykzO7o5mUyOdp9qbFl5uWPsbMFxJ7YrdnuqKLKb763EFWcrmnPf+IohDxXDM1Rrll4vvgtfX9fuURVDNJxKe9ndts7lvyp2/qnu+22KeRWHqqZXN7hbx2YTZa2WLxfud+eybe3aCQtqVpZodepMhw7CPd+rl7COVrOfbGshKeXHSCk/xnbLcVIsx9lrPYkV1xto7svgFdeF1HfeoU1sLJ6qq7u4WBxLY7NqlTg3nHEXnuMsXJ3+j9m5uYQNGsTOn36ia3y8sCAHBlbajaIojB07lkGDBjF58mTS0tKkKK0NF7IorYjJYuKrnV/x7Z5v2ZS5qdoe6O5Q3afVZQ3rrdDmDLTP1dA+R6F9tkOwRhUKF2iD06oVtG9PSfs2fBCTzSu2VZwozwMg2j+apwc/zV097sJD79EIB9Pw7Di5gxl/z+D7vd8DQpze1PUmpgydQqeweg7ab+ZYbVYhbksKKC8qwFxcgDkvG/OJDDGcPkF5fq4QxTmnMZ/KEsLYaibPE77oDqtixba8zTDiCPTMEiECasiKWQdFBjjuDxn+ovlEnheVYg6MFuFx8LAIK61Ni6uY1jVs/eDGQG0R7Fbo1kYMV/e+JvGt0WGwaYSANlsxmq1CUJcJ4exRZqVVuZdrS1R1bDJVFtLuEjacBbRzq1S1eYE7Ed0cb3cVBbI7UezcLME5XlkdnBsmqGJYFcDe3qIero+Pozaun5/I7Pfzcwjqpog7LikRrUPfe0+Umar4vfTqJWJQx48XJZwqYFNsHMk7QsqJFJchozDD7e5CvEJIjEwkMaI7iYeKGTfrV/RWnbCURkXh2aqV8BSWlNRrKaVak54u/v9qrGp12f9eXhw8eZKpc+awcds2snNysNlsFBcXs2TJEsaOHVvlbubNm8c333zD33//jU6nk6K0tjQnUVoRZ5G6OXNzjcXb3aFRwNcsxGiRh7iRVoVXObQr0NO+wEj7M1raZyu0P2mh/UkLIYW1KNZ7jpTq4cNe8PJg0RoVoFW5N095X8rdPf+NZ5cEaNnywihfch5sP7GdGX/P4Id9PwBCENzc7WamDJ1Cx9COTXx0zYRDh+Dbb0WCglrsGsS5MWwYXHcdy/uF89D6qezO2QtAh2yYsQJ8zPB3G1jZzZ+tfoWV6oTG6cJIKo8iKTeAYZlGok+WioQTVRQ5WwvPihkrNrult7yCaHUWwRWtwtUt42652ixTaTm9xvW9FiyN8tRZfzRZRyc1DtRkcu3WpTZUKClxnBfuMqudh7KyypbniqK5Ksuzs7W5ueAcX2yxCEHrThiryXvurMMVuojh6ysGVQwHBor40FWr4LffRI1W5/17eLi6zjt3hjvvpPTm69jFaYf4PJnCjpM7KDK7D6WLD44/K0ATxTgykSi/KNd6umVlmD79lNTYWNoEBwv3vbe3sDDq9Y0v1L29XfdZXu44N9Xz1Mmy3PG664hp0YInbruNqPBwbEYjXa++mh/mz2fctdeK7bnJ/h83bhw///yzy3dhtVrR6XTccsstfPrpp24PT4rSZixKK1JaXsr/dv2P7/Z8x+bMzXW2pNpRIKQEQkqFZbTQKFqYWqsRrEEmDe3LfGlPCO1sgbQzedMuG+LTCgjIzBEB/CZT7TpNVIFJDx/1FOI04+y/KqoAnloD92wFTw8fERbQogW0aSNcMQkJIiygRQtxoWoGGcIpJ1KY8fcMftz3IyDKCt3cVYjTDqEXQBeYC40DB4QI/fZbR+ccEDe+pCS4/nq45hqR8HCWnJIcpq6YyvyU+ZRa3HdkisvTkKRpQ1KPaxh2+X+IDjnPWnzl5a6doQoKRFJFWpqwXpw4IbKIz5wR84qLxc1BFSgVhUgDoFAHoazXYDZoMBt0mD30lHsaMHsaMft4Yvb1otzPG7OvF2Z/H8x+3pgDfCj398PsZRRxzVXESrudViGMpNxWjp/Rj8xHMxvke2i2WCwOoVxQIIRyQYHjnKvYiUw9x6oSy85CuaJAdmdRbg6W5LOW4lPeCikRCinhNrZHiBjQfaHuPYmeVi3dTH4klgWTYAsnUduC7sbW+PkEuQpif3/XISAAvL0xgRBafn54Zmc7HiL8/IRBpSksptVhs0FpKTnHjxPasSOrPv+cIZ07g83GmpQUhtxzDz+89hrjkpKEZ9ONhTk9PZ2CAkc2Z2ZmJqNGjeK7776jX79+tKqi3a4UpReRKK1IaXkpX+76ku/2fMeWzC3nLlLPEl4kYk4DTcLCWmSEo4GiaHl1hFk9aefZkvjITrRr24d2QXHEFxlpdyAH/5S9sH+/6NiRkyMuojW0STPp4ZMe8NJgx75bFMKTa+DeZPCqrmmPj4+o1xcdLYRrdLT4QUVGCtGivr4ALhLbsrYx4+8Z/LT/J0CI0391+xdThk6hfUj7Jj66JmbfPocQ3bHDMV2ng+HDHUL0bAB+ZmEma9LXsDZ9LWuOrWFr1tYqNgzDieX1X6303OTURSY0FG66SXSR6dv3wnm4sVpdha4qRrKyROeZo0chM9MhdlUxogqNBha5tUK1nKnuZKPR4RoOCBDFuUNCxP+yZUtxE2zTRhTsDgtr9h6SixK1OHtpqUMcq4NqVVYFsvNQ0VpXUSA7W5BVy3ENWehWjWjPvT3SkYCUEunwulUkrBgST7gO7XNEZZFzxW2ikzMajaOqRMU45IrVKtxVrqg4OK9/HthsNsLDwxkzZgzTpk4l/fBhnnr2WTZv3coPb7/NuMGDRaJTLUpvSfd9LbmYRWlFSswlfLnzS77bK0RqTmmO2+X0Gj0WpXbtGINLIOEExORDgEmE3eV6wuEQcSE4WYO2C/cMIT60A+1C2tEuuB3xwfG0CxFjf6te1OXbulUMBw6Ikhu5uVBURJm1jPkJCjOHwLGzv4nIQnhiLdyXfO4VBgBxU4yIEC6WioJVfR0RIYaKQeP1zNasrcz4ewaL94suMFqNllu63cKUoVNoF9IEgfJNxd69QoR++62oUaii08GIEUKIjhuHLSSYPaf32AXo2vS1pJ5JrbS5uKA4kmKTSIpNIjYwlrkb5/Ldnu8A8DP68UzsbTyyXsHzq+9c6yDGxQlxesstTZOoUBMmk+hn3qFD3XpTWywOy1pBgQhNyMsTVty0NPHgePKk+P2pllw1VlO1mF0I4lZ1AzsLW1XURkaKB9G2bYUHJSamsjtTcmGjKLBli3go/e47lzjREh8jO6/qR8qgeFLCraTk7mFH9m5K3HhDNGhoRzCJllASTUEkFvuRmGEhcvdRNOnHXGMtPTzEuWQ0upZlchdK4eY3UKMobWhqKrXlLIArCOFl69bx0PTpHElPp0NcHPNmziRp3Dh+WLiQcePGOWon14AUpbXknyRKK1Jbkeql90Kn0VFUhxJV7/0Md20TZaMOBYvhYDAcDHG8PlWTYPUJp11wOyFSgxxitV1wO/w8HI+5ZadPsGDZ68w8+AnpikiIiijV8fhmI/+3yYpPcXnD3iz9/FyFqrNgdX59ngI2OTOZGX/P4OcDPwNCnN7a/VamDJ1CfHB8fX2aC4vdux1CdM8ex3S9XrRnvO46Sq8YxRZTKmvS17Dm2BrWHVvHGdMZl81oNVq6R3RncPRgBrUexODWg2nlX9l9tProaib+PpHkrGRAlCR7JelFrs8IRPPll6KzS0mJY4W+fYU4vekmYYFvKgoLRezc99/DkiXCCgUwcybcd5+wNjYW7sRtfr6oI5meLgbVepufL5ZVrbdO8bhNgmp9UhN91MSdwEAhbMPDhaW2dWshatu2FdMaoxf8PxmbDTZtEteBRYvg6FFO+J61erbSk5IYSUq4jYPlJ7Aplc8dL70X3SO62+M+EyIS6BbRDV9jFTeh8nJYulQU5//5Z0dfe09P4YG56y7RFtadlV5RHHGaRUWQl4epoIBUT09HnVJnIWs2iwc859aeak1e9bNXV3WgqZFtRuuXf7IorUixuZiFOxeyaO8ikjOT3YpUDRp70fvS8lJyTVWXqfI3wY274L4t0P1U5VJTBR7uxeqhWgjWCJ8Iu1VVtbDGBsSyMWMjszbMIu1MGiCE7WMDHuM/ve/HJztfuHpTUmDnTmF5zcwUbs2yssa5Efr5uRevdRCwWzK3MH3ldJYcXAKATqOzi9O44LiG/wwNiaIIK6jqmt+71zHPYIBLL+X0NZexLjGENbnbWXtsLVsyt1BuczWLexu86d+qP4OihQDt36o//h61+33bFBtf7PiCp/96msxCEbM4KHoQs0fNpk9AJ/jxR1i4EP74w3HO6HRw2WVCoI4bJ8RMQ5OdLXqo//CDKCSv9gQH8V2plh5vb9Fl5uGHhZBqLlQUt6rAPXNGxN+qFtwTJxzWW9Xlq970Gxtna61zGIK/v8i4DgsT8e2qtTY+Xghcf39pra2IzQbr1mH97hsO/PUNKZwkJdLhhq/KCxfpG0lCRIJdgCZGJtIuuB06bTVJEdVx6pT4vc+fL+4bKq1bi9/VHXeIcJJqqFVHp6Ii4QksLBTvtVrHPaGmNqLOpbDUGN/qah9XrCpRXS3kmoRwWJjwONQTUpRKUVolxeZivtjxhRCpWclu66Rq0BDkFUS4dzgeeg9S81IpMFduVWOwaUjI1tH7qIVeWdA7E7q4Eaoq+R5OFtYQh1g9GAKna7jfR/hE4Ofhx4miE/asyUDPQCb2n8ikAZOqfjoG8WM9fBhWrxbDjh1CuObnu/b7bQz8/asWrJGRbPbMYXr65/yasQIQ4vT2hNt5dsizzUucKor4nlUhun+/Y5ZBz6ErB7NmeBxrI8pYc3Iz+3P2V9pEpG8kg1sPtovQhIgEDLrzs14Vm4t5fd3rvLruVUrKhXX01u638tKIl4SV9eRJ+Ppr+OIL1z7cPj5CmN56q7Dm1sK1VWuOHROi+IcfKvfhjo8XrQ+vuQYSE+Gbb2DWLEfyl0YDV1wBkyaJSgTNTASVWcrYcHwDK9NWsvbYWv488ifJ9ybTs0XPalYqcwhZ5+H0afFdpqWJ33d2tlhOjWdUb+hNgWqtLS8XVigfH0cIQni4iKtt08ZR27lVq7qFaVzAFJXms/PPhaSs/oaU9M2k+JewM0J43CqiQUOH0A4u2e8JkQlE+lZOuqkXFAWSk4U4/fJL11rcSUnCeqpmo1eg1m1GFUWI0uPHHR4ZvV48yFxg8dMzX3yRmS+95HbekCFD+O23385pu1KUSlFaa4rNxXy+/XMW7V3E1hNbqxSpCgqP9n+UDRkb2HB8A1bF/cXdQ9HRPd+TXkdM9D5mpVdW9UJVRRWsLmI1VMPBUC3ZntXfSDRoiAmIYXDrwXQO62wPCYgPjq9erKpYrSKGacMG+Osv4VI6dKjqWm+NwKaWMH2knt/aCBeTTtEwwdSRZ71H0bZFZ1cx2wgxsLVCUWD7dodr/uBBQGR2b4vWs2ZEe9Z28GKtks6p0sqlzjqHdbYL0EHRg2gb1Na1DEs9klGQwTPLn+Gz7Z8BwhX42MDHeGLQE45z5sABYU354gvXWojh4Y4Eqd69z00IHjgg3PI//CDON2cSE0V9xWuugS5dKm9fUWDlSpg9W7ghVXr0gIkTRX/wC1TQmK1mNmVsYmXaSlakrWDdsXWYLJU74AyLGcakAZO4ov0VaDX1fNM2mSqL2rw8YZk9eVJYa48fF9a0vDxh7VLjbJvSUquGIHh6OkRtWJiIkW/TBjp1gq5dRUx0bXqx1xcmE6xYAb/8QtbWVWzL2UXKs3eTUniQlJPbOaTLd9sgw1vrQUJkIolRPe3u967hXfExNoJHwh0mk3g4nD9feClUCeTnJ37vd94J/fvbf4+1FqUqiiLOp8xMR+kqo1H8/0JCGuaBsqIltIZxbk4OuXl5juQqJ7y8vGjZsuU5HYYUpVKUnjOFZYV8seMLvt/7PVuztrq48nUaHXcm3sl/+/6Xz7Z/xtub38ZsFTEzod6hmMpNbmNUPdDRvcRfiNR9BbUWqipnPF3DAA6G6zgYaWBXsJUibfXCsYVvC3vMqnP8anxwfPUXP5tNCNMtW8ST9JYtIjGryE0MrlYrRKFao0+1yNTDT2hjS5ieBEvP5t7orTBhOzy7SjREsKNaYKsLHwgJEe7GgID6s/QpCmzb5qgjeugQZzxhfStY20bHmu6BbPIvpFQxu6xm1BnpE9WHwa0HM7j1YAa0GkCId0j9HFMd2JK5hYm/T2RN+hpAnC8zR8zk9oTbHWJIUWDjRiFOv/pKVJRQadfOkSAVV40lW1GEdVMVort3O+ZpNDBwoEOI1uA2dGH/fpg7FxYscNQhbNECHnyw8eNO3VBuLSc5K5kVqStYkbaCtcfW2i3UKhE+ESTFJjGk9RDWH1/P17u/xmITD2PtgtvxSP9HmJAwoenESkVMJlcxW9Fam5kpRG3FEAQ1eawpcFcJwc9PXA/UyiUxMWIcHCzCE9Raoc5jVahkZcGSJZQu+YlVB/7k9+gylsbDXvedKYkq0pCobUli3EAS+l5FYnQf4oLizt393tCkp8NnnwmB6vxA2rGjqBJyzz2Y/P1JvfpqEVOqdbpW1DRW41PNZsd0jca1U1cdxWSV43MlNlZUJ6knpCiVorTeKCwrZMH2Bby35T32nBZJKUadkf/r9X9MSJjAO1veYX7KfGyKDQ0axnUcx/DY4RwrOMaWzC1szdpKfll+pe16oCehPIReJ7X02nOGXkdK6yRUVbK94J2+8F5vRzkQnSI61pTayqpdt4VvC5f41fjgeOKC4ogLjnMfq6i2uXMWqtu2iYD2ivj6inqqbdsKwWiziRtWWpqwxuTnO1yKtfipbWglxOnvZ3Of9Fa4IwWeXS1KetUZ9YYUGFj92N00T08h0L/9FuW7b0nPSWVta1jTGtbGaNgZplSyjAR7BbtYQXtF9cJT3yQ5q5VQFIVFexfxxJ9P2DP6e7boyexRsxkaM9R14fJyEXf6xRfw00+urQ779xcC9YYbhAXLaoX16x1CNC3NsaxeL5Iqxo+Hq692WxOwTuTkwAcfwJtvCsEATRJ3arFZ2Ja1jRVpQoSuSV9TqUh5qHcoSbFJDI8dzvDY4XQM7ehiET9ecJw3N77J+8nv268dwV7B/F+v/+O/ff9LlF9Uo3yWBsNicZT8ch4XFoqQg2PHhBDKzHRcK9SyX861bZvgFq0g6n7+Hg9L4+HvGDA5ueG1NuiY7Vp6KeEkhPtGiFCUli2FsK0Y4+ju9fnOr69l1RqxpaUu33mTZ9/XJ86Z/CBia6UorT+kKG0Y1qav5dnlz/L30b8BkXjyUN+HuLrj1by+7nV7v3eD1sD9ve/n2aHPEuodypG8IyRnJrMlcwvJWclVC1WNgQQi6JXrSa9DJfTamkWXk0qthKpVA191heeHwf6zv6WAs0lZvU/qyIry42DbAA629OKQ9XSVVQlUwn3CiQuKswvV+OB44oLFOMQrxHETtVqFtUoVqVu2CItYSUnljfr7Q8+eogWe2os5Lk7EyB06JJKB9u0TQ2qquCGdOeMiXtefFad/OInTO1OE5TSm8lda71g1sDNCCNA1rWFttPuatnG6MAb7dWZwSE8GtRpIh1YJaINDhJW2pgD/JsJkMTFv4zxeWPUChWaRmDC+03heHfmq+3jewkIhNhcuhGXLHLGgWq2ICVQL5qt4ecHo0UKIXn65EPj1jdksYmIbKe7UarOy/eR2uyV0dfpqCspc48+DvYIZFjNMiNA2w+kc1rlWLvkicxHzt81nzsY5HMkT1iqD1sDN3W5mYv+JJEYm1tvnaPYoijjfDh4Usdz79zsSxnLONjpx7lBWh2oIZzzhrzZCiP4eB+mBrvNb5cOowzDqEIw8AkGVozEuSmoUpe5qjur1lccajcPSrsoub2/xYOvpWVkwNtS4AZGiVIrSBkNRFJYdWcazy59lc6ZIBAnwCOCxgY8xuPVgXlz9IsuOLAPAx+DDpAGTeGzgYy6WR7XvcK2EqtZIgqEVvQr96H20nF7bTtB5X26VQtWqgW+6CHGqupICTPDIBjEEnr1g5nnCoQg9B2P8ONgpnIMdwznsbeJwflqNrV39PfxdxaqTaI3yi0JrtQlhqQrV5GRhUTW5uVoHBAih2ru3Q6i2bev+QmEyCfG6cydr9//JjJJf+dPnJCD6tN+5Xcszq2zEnKn28GtGo7FfRIuNsDGinDUtbayNhvXRUOjhurjOJnrND06HQekw6BhEVldpTM1aPlcrbQNfRE8Vn2Laiml8sPUDbIoNo87IQ30fYvLQyQR4ulHgxcXCrf/OOyKmtmLcYdu2woL62GPCQt0YVBV3mpgoxOk5xp3aFBs7T+60W0JXHV1VqVRXgEcAw2KH2S2h3SK6nVdcqNVmZfH+xczaMMseZgFwSZtLmNR/EmPajan/uNN/EjabEK3Hj8OaNdiW/kZy+gZ+9zvF0njhpbE6fb0eFhh6FEYfEkK082lRy7peUK89apiBc/ysGmrQsqXwLISFOerRqrU4G+K18zSNRlhNT5zAlJ9PapcutAkPx9Nmc9Q5LT+HcoVqS1a1nJSKj4/jcxoMTdPCtB6QolSK0gZHURQW71/M5BWT2XVKFD0P9Q7l6cFP0yGkA9P/ns6WzC0AhHiF8MyQZ/hPn/9U6bJVheqWzC0kZyZXL1R1HiR4taF3WQi9sqDXrhw6bziMweSIL7Vq4LvO8Nww2HO21KS/CR7eKMRpsPsulAAUeOs43NqPQ50jOdwzlkNtAjhsPsmhvEMcLzhe7ffiqfekbVDbyqI1IJaYzBL0W1McQjUlxbXkj0pgoKs1tXdvEePj5mK0Jn0NM/6eYX8QMGgN3NXtdp5pcQOtj+SIcIMDB4Q78MQJ8TReUlLlhTPLF9aetYCuaQ3bWrjekAD8ymDgMSE+B2ca6JvrJeL91NZ8Hh5i287dX9R+8ueL0Vi1gPX1rWyRqMpSUdM0nY5d5uM8euxj/sgX9U1DDQE8F3cP98Rcg760DNauheXLYd061/9jUJC4cZ44IdyxKhERwrV/yy3Qp0/jZd2eR9ypoijsPr3bbgn9++jflZIh/Yx+DI0ZareEJkQkNFis4KaMTczeMJtvd39rT7bsGNqRif0nclv32/AyXAAJf80Jmw02b+bEL1/xR8oilnoc48+2kF0hfLeDZytGe3Vl1PJ0hv26x9HEZOhQuPde6NZNWGkPHBAdx5wTxQoLxTVH7drUEGX61N+xh4cQcH5+4rxWRWxcnIgHVct1ucmmrytVCi1FcRTjd27hWtX7umIwOAa1qYS7aTpd3QWsoohrhIdHvXq0pCiVorTRsCk2vt71NVNXTuVQ7iEAWvq1ZPKQyQR7BzN1xVR7uZ9W/q2YPmw6ExInoNfWnGhjU2wczj1MclZyjULVU+9Jgn97etki6ZVtoNf+QjqvP4QuI5NFnYQ43XW2TbpfGTy0ESauh5BqxGklNBpKA31I7RDB4f4dONQvnsM+Zg7lp3I47zCpealVViUA0Gv1xATEOIRqYBviCg3EpxXQZscxvLakCEub2Vx55eDgykK1dWv7RWf10dXM+HsGf6X+BQhx+u+e/+bpwU8THRDt/vs1lbJvx3LWpvzMmsPLWWtN47Bf5YtkdL7DCjo4HbqeAl1drw5GoxCNQUEiVqlFCyHSnJMnrFZxA3NOIMnLc7xuguLrCvBbO3j0Mth31vLe5RS88btwWZ4XahvCugjpffuge/eq2xBW1aJQpxM3wtRUIRxUcarTiZt1jx4QEoKi07JPd4YVhuOs1B1jpTad0xrXUBQfjAzRt2W4oT1JHh3o6RGLXm88t2OqaZ0qXqcXZzJv18d8uPtze7m6UK9Q7u95L//p+18i/Zt53GlDUliI+fdfWffXfJZmrub3FiWktHBdxB8PRkQNZlSnKxi1KZfYt74Q5w4IwXPTTfDII8LLcy4UFYkSTB9/7Fp9QqcTD5oeHuJ8VcWs2l2sPlGtoAaDuD55ewsvTnCwuDa1aiXEbPv2IqGxVSsXMVvn7Ht3KIqrQHV+bTKJB/lzTY7TaGonXsHRyrigQOwvPl78H+oJKUqlKG10yq3lfLr9U577+zmOFRwDoG1QW6YMmYJFsTDj7xl2K2OHkA68eMmLjO80vs4lf+osVEO70ksXTY8zXuRnHuFTUtgZINzovmXw4CaYtB5C3YSA1gkPDyyR4aT368ihy3pzOD6YQ6YsDuUd4nDuYQ7nHXZb+saZVv6tiAtsSzzBxOVpiE8vJG5nBnGbDhJQ5ObCFBLiKlJ79WKVLZXpf89gRdoKQIjTsfFjifSL5P3k9/nz1j9JzkpmTfpq1qWuJtfiGv+nUaD7aS2DjHEM7nYFgy7/P1qHtBVJF7t3C1F0+LCwvB47JpK3CguFpbA+yuXodEKoBgYK4dq2rRBNsbFimre3uIHYbJUzoIuKHEkgFYtMn+u00lLIy6O88AzvdzExLQlyz96XRh/S8MbfHnQuOBvPUHH9pupgVAcURBm2FbGw8uxwokKEgVe5eBgZngpJaaIecV0TEhuKAg/4pAfM6Q9HA8U0owVu2QkTN2rolqOvtdCt99fupn3yibBOO/cyr6oHen2+zs7m8I6/+f30en73zGB5rEJRhTCcXrZIRkcNZVTLYfQvC8Ww6EfRyEH1cPj7i7CPW28V7nN3+9PpxINnXUJDjh4Vme6ffiquLSpt28KECXD77eL3D45Qg4wM0Q1u/34hltVuYmfbVbtUO2ggy6wpPp7UefNoExEhOjqpIQceHmLw8hLvz8Vi6UxRkbA8q5VftFrxHfv4uFpknQXt+V6Lw8OF0aOekKJUitImw2Qx8UHyB7y4+kVOFZ8CRP3JyUMmk1mYyUtrXrInGfWJ6sNLI15iRNsR57VPd0I1OSu5UsIFCNd/64DW5BVnk12WB4CPVccD2wxMXGEioh48zC7o9RAYiK1De7LGDObQsO4c9i7lUN4RDucd5lDuIQ7lHnJ7rM6EGgOJV4KIy9cRn15E3P5TxJ+2EZcHYcVOMV1hYSi9e/FeL3jRazMZ5dUndHmVQ7/jMPikUXRJGnU3AWPHn1udQ5tNuKv37BFdmw4dEskWR48KV55z0tb5otGIY/T3FxfQ2Fhh0YiLE3X/IiMd5bDq8lnU7lNqxvz27S6z8wb14vnRXrylbKTcVo5Oo+O+XvcxY/gMQr1DK2/LXSeWM2fEzf7bb2GNI0YSnQ6GDBFJUIMHCytGdeK54qDuq5pBsVg4YjnNSstBVlgPsaL8EJl61ycyTwsMLA5muC6epPKW9DWFYLRS8/7P8ZiqXL661xWwaOHHjjBrgIh7Vrn0MDy6Di47XI9xj82EIqN4yFh6NkHpUIjr/PAiR4LSpUcgvD6vfWr8Z3i4+A1WN/bzE79nRREhMQsWiGQ95/J7w4eLShLXXntundVsNvHwqorZAwfEtSkjQ4jZM2ccrXHVCgc1iNlzyr6v0IPebrVUy3SpgrZi7KiiOOJ+VS+HwSAe3ENDK4cCOce4ms3C4lxcLNatTchANSWhYmNjOXr0qMu0l156iaeeeqrKzUlRKkVpk1NsLmbexnm8uu5VeyJErxa9eHrI02w/sZ1Z62dRXC6ugiPajOClES/Rp2Wfett/RaG6JUuUp6pO/Ok0WgaVR/Hw0jzGphTjacG1fEl9otGIi2t0NMqQweRcfwWHYwM4VHLcLlbVsSruq8LPZiCuQE9YTilFBmH5co4J09vETdsZvRWuOKLnBY8xdBl3j2in6VHBdNJQKIqIMT14UNwgDh4U1g41WzgvT1xAzyVhwB16vfiug4OFYG3bVgjY6GghXMPDRRml5ctFmadDhxzr6nQiY10t3dSqFQAHcw7y+J+P89P+nwCR3DNl6BQe6PsAHvo6fI8ZGSJJauFCkQyn4ucnbsC33io6y5xHfNfRM0ftiUkrUlfYPRkqRp2RASGJJKXaGP7TDvodMYtz/wKqd1oJd+0Vz4rW9Zkbmb3tXRalLrH3TO8c0I5JHe/kltaX44ne7Xp1en2u61VsBen8vqrXtVxOMZWyszSNpV4Z/B5exOrWCuVOp43eCoNOeTAqN4jRucEk5HmgtZ2Nf8zLE1n6ziXOPD3Feah6JmpzrOfywOnpWVmsBgWJa0FKimtNXx8fEZd9xx3iwa2h47ItFvHdHDvmqIxyNmbWpNOR+vjjtAkJEaK0oTwjFYUsCKGp7s+dODWbXVv5Vvy/GI3igd7fX3ynFcMI/P2rfJiPjY3l7rvv5p577rFP8/Pzw6eahwUpSqUovWA4YzrDG+veYPaG2XYROrj1YB4b8BjLU5fz7pZ37T3Or+10LS9c8gIdQzs2yLE4C1U16z85M9le/scZDdC2QM/AVAs9sqBHrpHEzpcQGN9VPK3u2SMuUO7iP88XDw9xcU5MhOuuozBpIIcNhRzOO+IiVg/nHSY9P73aTemtEJ8rsuFXtoE7dxlY196L/caCs59Tw9Udr+bxgY8zMHpg/X+W86WkRAjW3buFdUMVrxkZ4iZaVOR6ga4vfH1FEft+/aBzZ1fra2Skva/5itQVTPx9IttPCotqXFAcr136GuM6jqt7N6rdu4U4/fJLceNTiYqCm28WAjUhoUZX4PGC4/bEpBVpK0g7k+Yy36A10K9VP5JikhjeZjgDWg1wJAi5q3fq5SVEwCOPNFq90/ogNS+VeRvn8dG2j+y1UsO8w/hvn/9yf5/7CfcJb+IjPH9ydm3izyVv8nvaMn73OWGv1azSxuzDqLD+jB58J8O7Xelafzk/Hz76CObNE8XiQYiVW24R/+vu3et+QKpF8tQpUdKupvH5JD96eopYz969xdidFbYBO93VKtHJZHJYX9VwAjWkwLkeamOgdgPz82Pphg288MYb7Nq9G51Ox4ABA5g7dy5x1TUAOUtsbCyPPPIIjzzySK13LUWpFKUXHKeLT/Pympd5e/PblFlFpvKouFH8p89/+H7v93y2/TMUFLQaLXcm3sm0YdOqTNCpT1ShuiVzC4v3L2bZkWVkl2ZXuXybPOjhGUuPfuPo0XE4PczBtDhyGs3evUKoqq5rd+WfVFRXVV05mwSQ0TWGry8J46vADDbn7XLM1uiICYjBz8OPInMRR/OP2jvj1IZo/2iu7XQt13e+nnYh7Qj1Dm2wNp/1jtksHhb27hVxZkeOuLaLVLvq1FdHHdXSHRyMtUUknybCs5G7OaERN9lhQT2YPfh5enQeUfdQCJtNuDEXLhS97vPyXOd/8olINDl7w80szBRtO88K0cN5h10W12v19InqYy9YPzB6YM3dkdzVOwW48krRyjQpqdmUpsk35fPR1o+Yu3Gu3UrsofPg9oTbeaT/I3QO69zER1h7LGWlbFr6Mb9vXMjSwhQ2h5hcGlV4WzQMpw2jOl3B6JH/R3xYx8q/4SNHRDWGTz5xuMjDwuD+++E//xGCrrEoLha/z9qI2Jycul83/fxqF0IQESFi1utwTrsVWorivkZ1TajeOFXImkwiTt9ZyFYs7O9MHUvlLVq+HA3QvV07ikpKmPr++6RlZZHyv/+hBfHgfdYrVJHY2FhMJhPl5eW0bt2af/3rX0ycOBF9NV0CpSiVovSCJaMggxdWvcBH2z6yC6ZrOl7D7d1vZ8H2BXZ3qIfOg//2+S9PD3m6cqxeA7PjxA5m/D2DH/f/aHf/GTV6zIp7QRPuE05iZCI9InuIIbw78YUGtHv3OYSqOlRnGdBqq7T4ZXuLEldfdYVVMdhvRDobjDgCNx/0YFxxNIF9hwqrWt++WHy9OZZ/zG5VPZx7mCNnjtgTryp22qmIr8GXuGDR4aptYFvaBrUVr4PaEhMQg0FnqHb9C4L8fPj1VxEj+ttvrt+/j4/IMg0KEpYNtS1kcbG4IdTxElhohFcGwxsDRJcbjSK6br24Sk8Ljb9wr0VHi/CBNm0qW19DQyu76cvKYOlSTv/vY9bu/o22py2EFsPqLj6sGBnPipACDhSkuqyi1WjpHdXbbgkd3Howvkbfc/v+FAX+/luI03qsd9oUlFvL+X7v97yx/g17jWWAMfFjmDRgEiPajLggH8KOH93J77/OY+mhpSwzHudMhWecbsW+jAruw+jBdzK4/w3uw0cURcQvz54t+rur53aXLuIh45Zbzi2OvDGxWETM+smT4oHz11/hr79E+I+KVis+x7mUWzIYqo6Drfg6LAyTzVZZaBUXCy9LY7NqlUgCdb5mqfVVVRFbzfUs+8wZwi69lJ3/+x9d4+PFtbFTJ7fLzpo1i549exIcHMy6det4+umnufPOO5k1a1aV25eiVIrSC54jeUeYvnI6X+z4AgUFDRpu6X4LV3e4mrc2vWXvGuVn9OPxgY8zccDEc7+xniNHzxxl9obZfLj1Q3u/7khjMANOGPA4fpKdkbA3FGxuwpp8jb4kRCQIkdpCiNUuoZ0wZp2qLFR373bt/HOWAg+RvPG/bvBnW9d6oYOPwk274Po9NSQoeHgIsZOQAOPGwaWXQuvWKBoNOaU5QqjmHSHlRApLDy9lz+k9tbKuajVaWge0FkI1KM51HBxHoGdgjdtoME6dEolE338vOi0535yio0V/+fHjYdAgEW9aFSaTI1RDrfV67JgIHajG+poeAE+NFP83AB8zPLkGHl2Po75jVXh5CYtNZCSlbaJZ3N7GBz77+dt6GCtVhCgo0NMnjuHdr2J4mxEMiRnivk3u+XLggLCwzZ9f53qnFxKKorD22FpmrZ/Fj/t+REHc6rqFd2PSgEnc3PXmusUF1zOm8lJWr1nI0nWf8fuZZHb7ulregkwaLrXEMLr9WC67/EFaRlUT7lReLhLqZs8W9ZFVRo8WYvTSS5uNxbtK0tPh889FgpRzPHjr1nDVVSL2VK93WFzdWWHzK1dvqQlT166kzp5Nm6goPI1GsY/y8qYJccnOFr+/8nIRdnPaqQFMcLCo1arWj7bZOLhvH1OnTWPj5s1k5+Zis9koLilhydtvM3bgQCG8o2pXVu2TTz7hvvvuo6ioCI8q8hKkKJWitNmw5/Qepq6Yam9RqtfquTPhTobGDmXW+llsOyGSP8K8w5g8dDL39bqv0W8YOSU5vLP5HeZtmkd2iXDthxgDeTCjFXd/sYtMX9gWCdt6RLKtgz87ytLdln8yaA10Ce/isKi26EFCRAJ+Rl9xIdm9m9LdKSxJ/YP/WbaxJDiHMifN1DMTbt4FN+yG1vmIi+C59sDWasUTfevWQpxdfz306kWRt56Pt37MrA2z7PGqBq2BzmGdCfEK4WTxSY7kHaHUUn2B1yDPIIdlNdBhYY0LiqOVf6v6La5+4gS88AK8/bawfB4+7PqddOggROj48aJ8Vn3fhNWqAwcPijjjs1UHNhTtY2LMPjaEiXOhVT68vEz8D7VV/MsKjKLE0cLukBIJllp+TS0LoN9JPf2829Mv8Qp6dboE35ZthAVWzW6uL3Jz4f334a23RCkeaLZxp4dzDzN341w+2faJPeY90jeSB/o8wH2972sUL42iKOzP2snvf77H0gO/8rc2nVK94wTR2qBvnjejA3oxauBt9Bk5AZ2hBut0bq6IDX7rLfEQBcKCeNtt4n/UufmELNQaRRGNLNTs/UKnXIGkJFFe6rrr3FsyTSYh5GoTB3v6NNhs7rPvFaXq0C21ZJZaI9S5yL363mIR6xcViTCAitd2tZaqn5+wZqqJTWpnK+fPk5HhCP3RaESIRosWYDDQsWNHYmJieOKJJ4iKisJms9G1a1d++OEHxo0bV6evfffu3XTt2pV9+/bRoUMHt8tIUSpFabMjOTOZySsms/TQUkC47+/vfT+dwjrx+rrXOZgrXDQxATE8N/w5bul2S4N1jamKkvISFqQs4PV1r5N6RrhMvXVe/Ds/jkkL9hOTLcxglsTu7H/kVrYlRLDt5Ha2ndjGthPbKrVjBJFoFBcURwu/FhSWFbI/Z7+L4OsY2I6bAwZxU0E07ffnOKyrp6rJyDcYHFmx54LRiCUkiG+HBPNa1wK22cRNTavRcm2na3lswGNEB0Rz5GxZK5dx7mFOFp+sdvMGrYGYwJhKFlZ18PPwq3Z9O3/9Bc8+K4pvV7xceXgIF/Ptt4uhKVxqCMHx9e6veXLZk3aR3ze4O7ODbqL/cThwLIUNRfv4zZjOyuACTnnZKtUu0tpEw4LhacJC3qII9ofCxpawsRXsDK9srVfX6ZcB/TI09DvjQydtOLqW0aLcS+vWrmWz1HFdviezWcS8zprlWjngiiuEa78ZxZ3mlebx4dYPmbdxHhmF4nz30nsxIWECj/R/hA6h7m+250q+KZ/lKT+wdO0Cfs/dzFGjqzW0ZQGMMrVidPwoRlz+IMHtE2q3YdWavWCBI7YxIgIeeEBYs8PC6vVzXLCUlIiSbp9+Krwl6vXBx0cI0zvuEN2oziV7/2wyl+nECVLNZmEp1WgcsZ9qKSbn1+eK2mBDbbmqWmRVQau+1uvdf5biYiFOVU+cVkuO0Uhot26sWrWKIUOGALBmzRqGDBlyTqJ04cKF3H777WRnZxMUFOR2GSlKpShttqxJX8Ozy59l1dFVAPgYfHiw74NE+Ebw2rrXyCwUlpkuYV148ZIXuarDVY0eB2axWVi0ZxGvrH3FbsnVaXTcZG7PEwvT6J52VlTGxcETT8CECShGI0fzj5JyIoVtWdvYmrWVDRkb7JbXivgYfOjRogdDWw+lZ4ue9GjRgzaBbRyfNTtbJPU4hwDs2ePImK4KHx/heq1ltroCLG8Drw+Epe0c04eVhPN4538z5tL/oG0R5SI+is3FpJ5JtYcGOAvXtDNpmK3VVywI8w5zsayqYjUusC0tjuagfe99kaFe0eXWurW4UB896nojMBhg4EAYNUoMiYmN1+LzLKXlpcxcPZPX179ut6IbtAZ75QlnNGiIDYxlTNQwbvHsQ89MBc/DR8XnysoS1hq1SHhZGcV6heQoh0jd2BKOB1Q+Bt8y6JMp6tL2yxDjFhXDivV6R+3X6GiIiREJDxXFa0SEo7uNGnc6e7aIO1VvHc007vSb3d8wa8MstmZttU+/ov0VTOo/iaTYpDpfb6w2K+n56RzMOcDmbb/w+56fWWc76hKOY7TA0BNGRvsmMqrfLXS5/E40frV8OFMUWLlSfP+//OL4/hMShIv+ppsar9zbhcixYw73vnP8aWysozh/27Z13mytOzqp5ZbUmqGFhY6aofWVeAnurbDOFti8PDCZsNlshI8axZgRI5g2cyb/z951hzdVtu87q23SvfduKdDSlln2FhkqKIqgqDjAwR6K4xP1p+JANoigCIoDB6IiIjKUMtrSQSd0L7r3bpM0Ob8/np6cpE06U8b35b6u90pykpOcJGfc7/Pcz/3kFxTg1VdfRXR0dJekNCIiAlFRUZgyZQrMzc0RERGBtWvXYtasWfjqq690rmcgpQZSeleDYRicyT6DN86/gZgi0kFZmVhhddhqCPgCbI/YjuoWSkuMdhuND6d9iElek27Ldp7NPouPr3ys6j0PADPhh42/lGFSYh0FvZydgfXrwSxdiuj6VHyf9D1+vP6jimADpEF1NnOGtFWK/DrtNk+WxpZcQVWbTnWg3UDNgqPqak2yyo6bmt6UGDuWhrMznagvX6a0dyeVo0kORE6/G8KllQeXkVby8esCGJtZUfr8nnuoSjswsIPRtUKpQFF9kUZklS2+yq7OVjVW0AUTOeBdA/hU0/CVSuAzYgZ8l6yBt98osjaqqwP++Qf4+2/g9GnNLjEAEa577iGCes89RLT0DIVSgevl1xFZEImIgghEFkTiRsUNna/n8/gY6jQUzw17Dk+FPNWzHu5NTRQNSUujERGBosTLiBKWEFF1BaJdgUYtvNC9VpOkDi/uhu6VhUhE+ldHR47AGhtTw4ErVzi7NCcnTndqa9vpW94pYBgG4Xnh2Ba5DSfSTqh0p0OdhmLdmHVYELgARgLuB1UyStysvYmMqgxkVGbQbVUGMiszkF2VDRnT8UcdUAHMrLPHvd73YNLMF2A6alzPJksyGXncbt+u6ZBw331ERqdMuWsi1bcEDANERHDpfXUd/6RJFD3Vld7Xgm6RUrYan/ULbWjomNUxNaWJoKUll4ZnSWz7yKv6Y/XlPcTZqCis2roV2YWFCPDywq5NmzB58WIc/+ILzLvvPtoeLXZacXFxeOmll5CamgqpVApvb2888cQTWLdunU49aVe/lYGUGnDXgGEY/Jr6K978502klJOBsoOpA9aErUFNSw32RO9RFSDN9JuJzVM3Y6jz0NuyrbFFsdhyZQt+uv6TqmJ/pMADG/9qgF9GFX4MAo4G85FtxUUorUysMH/QfCwKWoRJXpMg5JOAtEHWgMTSRFwrvqZK/SeXJWuNMBoLjDHEcQiGOg1VEdZgx+COlj+VlcCxY2QzFB6u9gbGdBFbvBiYNYsiqKw28sYNICqKLnglJaqTaYEFsDMM2D8CqG87DznXA6uigBdiACt1SRXbeYn1XZ03j7oWeXlpNYSvbalFdmUGsiNPISv6b2TnXkOWUSOyramNpKKLa7aTmRN8rH3gbeUNbytvut9kBJ+4HLievQrB+X80O8UAFFFio6jjxvUqqlTeWI6owigVCb1aeFWruwEPPBXBUYedxA6bp27GM0Of0Z8spayMeot/9hkUN/Nx3b4tkjrcCVHOCqTwK6Bsty0CJTCkrI2otpHVgRW6NbA9hq0t/d6DB9OESD36yjYyuMOiqumV6dgZSbrTFgXt3JbGlqrjLL82H1lVWSqrO20wbgV8q4BBVTxMFwfh3pGL4P3Ak1SA0lNUVHCa3pISWsZqelevJg21AZ2jqYlcCA4f1kzvSyRcen/SpE4nCTqJllTKkdD6+o6k0diYM643N++82LI7UI/E6pIP9JTEenrqVephIKUGUvpfBYVSgaPJR/HWv2+pPBjdLNywatQqZFdna9hLPRr4KN6d8i78bf07e8t+Q1ZVFrZFbMMX177QSiIlMmBupgCLPOZgxoptMPbs2qwYoLTi9fLrRFKLryG+NB7xJfFaO1TxeXwMsB2gUVA11GkobCVtUaq8POD774FvvtHslmJlRd1SHn+8Y7cUhqFoHNvVJCkJtdGXcMAiHTuHt6Kw7TAzkwJL44A1kW3FWJ1BIKCTsqcnEVUPD4rqnjpFKer2v4GIj5uLH0D2Uw8gy1TWQRrQVatWEV8EDwt3+PBs4F3RCp+0cninFMK7Lepq0wzwJBKKMLEk1d+/Q7RJrpAjsTQRkQWRiCyMRGRBJDKrMjt8nkQkgb3EHtUt1Rrb5mXlhcVDFuPxIY8jrTING85sUK0f7BiMbTO29bn1rgZaW4GTJ6kQ7MwZ1eL6AG/EPn0vooY5IKoqCVGFURrRexYWPDFGKhwRVm1KEdVsGRyL2y66Uqn+GxeYmFDFsLMzRWDV5QPth55tjBiFAkWlmcgoTERG6XVkVGYgsy4XGY35yJSWoAW6w8giBeBbw4N/BQO/KsC/EvBvu3WrAwTsFdXfnyLHS5bQ/t9d3LgB7NhBfeLZYhoXF3qvZcvuGveDOw43b9K58PBh0uSy8PTk0vtaTOVVRMvDAyZyOUdE2xc6sec5lojebust9e5NFRU02GNYKKTtc3Xt2b7ZBQyk1EBK/yshV8hxOP4w/i/8/1BQVwAA8LPxw0sjXkJMcQy+T/oeDBgIeAI8N+w5bJq0CS7m3bO10AcK6wrxY8qP+D75ew0fRBaWPDHWXrfA6t9KKZooElE17MaNvapYVjJK5FTnqIgqG1UtaSjRuc4c/zkIdgxGiGMIQhyD4V/YDMG33xNJZat0ASKIjz1GBDUoqNPtkNVW4ei/e7Dl+udIltH/IlCSZdWGK0Co7s3pHgQC0sW9/TbJA7SAYRhUNVchpyYHOdU5yK7ORk4Nd5tXk6dVv6kOcxkP3lUMfKo5iYC3kQPMQkeheKg/4hwUiCy/hpiiGK3uA4PsBiHEMQQKRoHksmSNdL2lsSUWBC7AE8FPYJzHOPB5HOGXKWT4NPpTvHPhHVUx3P0D7scnMz7BAFs9V7KnpQH79tEFmNXkisXkbbt8OQr8HBBVQBHfqMIoxBbHqrIR6vC09ESYWxjCXMMQZheKYYwTxNn5XOOCmzc5axq2baxUdySx1zA2Jp9Zda9XCwuKeJmYcNXNPJ4qgsXU1aKkqQwZraXIZKqQIaxFhkkTMsykyLRUoqmTQK1QAXjVAKZyoNBcrZ0vA8xNJSnL+Hy1WjUejyMjlpZkX8Smjc3NgWeeIVKpq5MOw1Akb/t2mqyxGD6cUvSPPHLHRZbvWjAMEBlJx8bRo5rp/YkTufS+RALExaHl8mXkhITA28ICJtpS8paWXBvPO1lGoVBQEKCkBJsPHsTmQ4doe9tt84QJE3BKfR/sAQyk1EBK/6vR0tqCz2I+w+aLm1HeRH5sQQ5BeCb0GZzLOYeTGScBUPXsqrBV2DhuI6zF2qsC+4qKpgocu34M3yd/j/C8cFVqls/jY5r3NDw46EHUNNdgX8w+VTcZM74Yz+faYu1PBXCtBx38Dz8MvPYaMLTv8oOShhINknqt+FqHLj8sxEIxghyCEOwwBCF1EoREZCP454uwKlezUwkJIXK6aJHOLh8AEcPTWaex5coWnM85r1o+3WIoXm4dhXsyFOBFRFI0orftWfl8uii4uQGjR5McYMQIihh1cuJXKBUorC9ETnWOBlnNrs5GTnUOihu6KBBrBxO+EfxsB2CEywiMdR8LJaPEr2m/4kzWGSgYcj0Q8oWY7T8bTwQ/gfsG3AcTYecRksqmSrxz4R18Gv0pFIwCQr4Qy0cux6ZJm2Aj1nMUrLGRisX27iUNKIvRo4Hly4nsGBujVdmK5LJkRBVEIaqQxo3yGx0kCEK+EMGOwURSXcMQ5haGAbYDNMg3GIaI8MWL9Lnnz3MeskIhXbxZS5zeOkewHwWgzBTIsAUybYAMG7qfYUOPGzpRaAiURDz960TwbzKBv8wc/ow1/Pl28GwQQlhWAeTng6muxj/ewLYxwEm1ucMIiR/Wha3BwyGPQWRhpblfNjRQpHPXLiLwAD0/Zw6l3qdNo8ctLSS12bEDSE7mXjd3LhWPjR9/ZxOdux3NzVx6/8wZzfR+m+5ewxJK3yn52wG5HFWpqajKzqbCr3aaUrFYDNfeyE1gIKUGUvo/ggZZA3ZF7cKWK1tUEaaRLiOxMGghfrnxCy7fvAyAolQbx23EqrBVXbdX7AbqpHX4LfU3fJ/8Pc5kn9Ewmx/nPg6Lghbh4cEPw9GMa9cnV8hxNPkoPr7yMZLL6CIj4gmxuNwZLx+9iUFsEf699xI5nThRrxedOmkdEksTkViaiISSBCSUJiCpLElrFAwAPER2CKkQIiSpDCFFSoSUAL7VAH/yFNKfzp9PkQAdiCuOI41tyk8qkhbSbIkNZ5vw6DU5RGzGlxX3l5bqJw1sZ0fR1MmTSSMbGKizuIZhGOTX5iOyIBKX8i8hPD9ce/MABh1smjqDg8QBo91G4/6A+xHiGAJva2/Yim27XbWdWpGKDX9vUE2urE2s8fbkt/HiiBf130WL9Xbcuxf4+WeOJNrZAc89B7zwAqUx1VAnrUN0YbSKpEYVRGm1AbMyscJIl5EqkhrmGgZ7UzWdGuuluXs353fak00HdTrLVCOc6sSzrpM5AF8JeNZqptj9qwC/KmolLOIJKALr4EDR2IYGyiSoFwKKRCQ7eeQRpE4cjO1Z3+LrxK9V7gqsxGjp8KUdm0kolVSIt2uXZgR0wABK70dFUVoVILL+7LPAqlW6I6oG9B8KCrjqfTa9b2GBlgULkLN0KbwDAmDSybnwrkNrq95JtYGUGkjp/xSqm6vxyZVPsDNqp8oAe6LHRNw34D4cSTyCpLIkAFQEs2niJjw37LkeX9yb5c04mXESR5OP4mTGSQ1z/KFOQ7EoaBEeDXoUHpYenb4PwzA4lXkKH13+SGV7BQAPNLhi449FGJvfdtiNGUPk9L77+i0iolAqkFWdpUFUE0oTVH6a7SGRURFMSAkQUilEsP94BD+wFBb3ze9YHFRRAfz2G3JPHMF2+UUcDFWqqr/dGwRYw4RhabkHzI+f5Eyuvb2B9euJUObkkHb1+nUgNpYuBrpMqbsDIyM0OVgjZrgzIoc7ItJeisiGVBQ3dtQW2EnsMMZtDEa7jcYYtzEY7jwcrUwrsq9fxoXwr3Gi6F/EGFVorWbXBXMjc3hbe3cswrL2hpeVFyQiSYd1zmSdwbq/16kmMQG2AUirTIP0P1KNym+9oaQE+OILKqIpIBkG+HzaB5cvB6ZP11r4wZJ7lqCyaX9tDSS8rby5tL9rGIY6D4WJkk9+p/v20X7DRpzaRpWVMTIs5MgQNyPDqB4ZvGpkKMuRIStBbavuVrk8BvBoEsG/hg//ciX8yxTwq1DCv414GvctGMuBz1e5EJR72uOzgDrssUpHGY8IrCnfBM96z8fq0avh4zO842+Ylga88w51XlIvQjE3p9T+yy/T+xtwe8EwQFwcTdxGjEBLa2v3LKEMMJBSAyn930RZYxk+uPgB9sXsU1XCzvSdiXEe4/DltS9Vhve+1r74vyn/h4VBCzXTi+0gV8hxJvsMjiYfxa+pv6JexqW0A2wDsChoERYGLey1sXZkQSQ+vvyxRqvDcTInbPytAnOut1LFc1AQkdMFC25ZSqimpaYDUU0uS9ZKMgDAu5aPECMPhHiOQnCTOULOpcD7dBT4Su4UUhUyAJ894IJdxvEoba0BAFi2ULX+qpoAuKx5k/wsO/uOlZV0AWeLrRISaGgpimIAZNkAEW5AZNtIcOpYvS9UAKFlPIyuNsVoY1+MHvYAfKbMB2/AAFX6qri+GN8nf48jiUcQXxKvWtdKaI5H5QOwKKoJ3pE3kGMJ5FgD2dZAji0fOR4WyLZUopjpvAALoAmTiqhaeasIrLuFO/7O+htv/fuWSqribOaMlaNW4vkRz+s/rQ8QMTpxgqKn585xy/39gZdeIm1dFyRJrpAjqSxJI+2fWpHa4XUivgghTiEqkirgCzQtlaoyUdVc1elnuVu4w8/GD/42/vC39Vfd+lj7dJRMtLaSzjU3lyY6mZmk88zKIi1sZWXvpSVqaBEC3wdRaj+5LWHCV1KTg7hvzDCU70KFXDwefW6+2kRQJOIi1nw+SVRWr6aorCFlf8eg2z6lBhhIqYGU/m/jZu1NvBf+Hg5eO6hKHT848EEEOgTi89jPVanGEMcQbJ62GbP8ZqlSqwqlAhfzL+L7pO/x842fNS6IHpYeWBi4EIuGLEKIY4jeTPvTKtLwyZVP8HXi16qK/cFKW7z8dyMei26BkQKk8Xn5ZSIEt+EEqFAqkFGVQUS1JB4JmZeQWJyAAn691tebSYHgBlME2w1GyNBZCLEcgCFfnIDwh5/wTZASn4ylrkQAEZPHgx/HhjEbEOgQ2PONk8nQnJaCK/EnEJl/BRH11xEpKEKlUcdQmHM9MOYmMKYAGF0ADNPhy9koAn4dBBwJ5eOMl1LVMUnEF2GO3yw8EfoU5vjP4VreVlVRQcrp0zTUisaahUBegCOyJwUjZ4g7sp1NkNNSrNK0dsc1wM3CDXweX0Mb3J8dh1RITQU+/ZQ647CFH2IxaYyXLyebr26ipqWmQ9qfJdpdwcXchchmO+Lpa+3bM09XFgxDXah+/RX47TcgMVHz+eBg8todP558K9PTiTzm5ZHUoKyM/vO6OtIf6tDAMgDO+hA5ZZtP/PQj8PD1nm8yLCyAYcPItszFhdwHHBy4W0tLA2m9hfivJaUs9dPjvmQgpQZSagCAzKpMvP3v2/gu6TswYMDn8fFo4KNwMXfB53Gfq8jAeI/xWDVqFSIKIvBDyg8atjgOpg5YMHgBFg1ZhNFuozuNrPYVRfVF2BW1C/ti9qm2zRUWWHupFcvCm2AuA1UYr11LWr/btW+npgK//AIcO4bKG3FIdKQoZKIjkOAIpDgAUi0BTx5DXo3BjAOGDJsFuYcL/s4+o2qQAACz/Wfj5bEvY5LnpG6R/vLGcuy5ugd7ovd0iKgZCYww3CEEo439MKbFDqOL+HC7UQheQiIRjHZ+fQoeda86EgL8MkjTbH7MTeCJBGBBCmDbDIpgmZpyBVczZ1LBlacnPXfjBkdQL1zQlB7w+cDIkcCMGWBmzEB1yABk1+d3KMLKqc5Bbk2uhmvAqlGrMMJlBLZHbld1EwPIVWHdmHWY4jWlfzqcNTSQbc7evVzhDUANGJYvp0K9HlaBMwyDnJocVTQ1pigGfB5fK/HUhxYccjn9F7/+Cvz+u2ZDCYGAIpHz5gEPPEBSkp5AKiWimpdHxwdLYIuLVQQ2RViNw4Na8MFZQKhnFy3Vd2CttNihTlrVb+3s7s5inDsIdwUpZdtNq/uYahvtX+PtrddGFwZSaiClBqghuSwZm/7ZhOOpxwFQpfDiIYshFolxKP5Qh7S0pbElmdoPWYTJXpNVpva3CrUttTgQewDbI7erqsKteGK8dE2IVWfq4dgISp+uWEHFD/3dz5phKJJ07BiN62phHj6firLmzydiFh+P1iNfIe3qn0iwV6qIaoITUKzD9k4ikkAsFGt0cxrmNAwbx2/EQ4Me0vr7Z1dnY+uVrfgy/kvV/+di7oKJnhMx2nU0xriPQYhjCBfJ1PadioqA9HQkppzHkaJT+I6XjCIjzrbItwpYnEjDr/MMsiZYX0Jvb4q0TZlC1e5xcVTJq07qAIpwTZvGeaOqFRaxHbBYojrIbhDC3MLAMAwu5F3A9sjtGh2HQhxDsHb0WiwMWqj7u/cFDANcukTk9Ngxjtg7OABLl1LXJnd3/X9ub1FXB/z1F0VDT57UbE0rkdA+O3cuVb/rs9sUw9DE5MIFagF64YKmzMTdnT43IICI682bXAS2upq2u6lJv20o28PCgghqVwTWwaFDZzYDbjEpZRgimLpIpK7R2+JRDw/63/UEAyk1kFIDtCC6MBr/+ec/+DvrbwCAidAETwY/iZbWFoTnh2O022gsClqEe33v7Z8Leg8hbZXim8RvsOXKFqRVkn2MMYRYkmmG9X/WwL8KlEpduhTYsEG/ZECpBKKjiXj88otmq06RiEjU/PkUVWJPXkolXfw3bwZi2qKfPJ4qHVQuARLdREiYMggJg22RIKrE9YobnfqHmopMMdlrMp4KeQphbmEoayjDJxGfaHTOGu48HBvHEYHtbjekovoifJf0HY4kHkFiKZe6tTaxxqODHsETtlMwplICXkYGpW5TUoiMV1f34EfUAra3vJUVRRZv3iTCqo4BAziCOnlyl4QgozIDO6N24lD8IZWbgpOZE5aPXI4XRrwAO4ld37ZZF4qLgc8/p8Iotnqezyey9dJLnL3RrUZREUVCf/uNbKfUNaIODrTPzp1L26ellWKvoFTS/sES0AsXSLuqDmNjisa++CJ9vpaOZh0gl9P7FBSQnjozkyy14uM190W146xfYGxMk1+WwOoir46O5FrQk3apdyl6TUoZpnNSqeu5vvy/QiENgYC7r2uwr9Hjf2ggpQZSakAnCM8Lxxvn38Cl/EsAqO/82tFrsTpsNdf16A6CklHi97Tf8dHljxBZEAmA2lXOL7LCK39UY2QR6CSyeDEZ8Q8c2LsPUigoCnbsGHD8OFeBDZCOdeZM4KGHSGunXugil5Pn5UcfUXQI4Mjy+vV0wWY7SKlHWa2tIVswH2lzxyHBmY+EsiQklCbgWsk1VDRVoCsE2Qdh+ajleDL4SUiMOlavt0eDrAHHbxzHkcQjOJdzTkVqRXwR7htwH54IfgKz/Wd3PiGpr6c2rOnpXK/5lBS67as5vDZiwdoOsSQ1OFgn0atqrsLnsZ9j99XdKKwnTSs78Vozeg0G2Q/q2/bpglxOBHDvXiJlLAICiJw+9VSn9mF9BhuVZPWhV69qPj9gAKXl584FwsK6Rwa7glIJJCVxkdDwcCqSUodYTPKGSZNojBqlXz34tWtkKfXddxzxtrenyeKwYeRkkJtLJL2khLavtrb/Ghmow9aWa2jAElZd4y6Nwra0tCAnOxvebm4wEYl6liLvLXi8rsmktuV6nhyePHkS//d//4fExESYmJhg0qRJ+PXXX3W+3kBKDaTUgC7AGr2/cf4NxBXHAaA08pKQJVg7Zi38bLR3DrqdYBgGl/Iv4eMrH+OP9D9Uy6dUW2HjHzWYkQXSEz70EFXsDx/e9ZvK5RRN+uUXuqiXlXHPmZlRWnP+fPL8NDPTXLe5mXqrb9nCVQ9bWpKsYPXqjrIChqFq+W++IZKq7k3p6UkdpBYvBgYPRmlDKS7fvIwPLn6AuJI4FYHUBratampFKhJfSMQQxyGq5xRKBc5mn8U3Sd/glxu/aPiyjnMfhyeCn8AjgY/0vYqdYSg9m57OjbQ0Ii65ufqNYo0eTRFUZ2f6T9oNuakJfir7B9tSDiK2lNOdzvKbhbWj12K6z/T+0Z0CRND37aPCqIY2uyZTU/pfly8HhgzpfP3uQqEAIiI4IprZrs0r21hh7tzeT9Laf15iIhcJDQ/vGDWXSKgIadIk+n9Gjrw13ZbKyihavW8fRa8B+tyFC+k4HDas4zpKJW1/SQn9dpmZtJ8WFNCyigoisA0NpIe+FVFYlsR2RmDt7Gii1h9gf5PychoVFR3vV1SQTtzTEy2mpsjZupXM83vzeXw+13GsO5FLNnp5m4vZjh07hqVLl2Lz5s2YOnUqWltbkZycjAULFuhcx0BKDaTUgG6CYRj8cuMXvH/xfVXhCA88zB04F+tGr8N4j/H9dwHvA5LLkrHlyhZ8l/Sdyuw9pMkCr5yqw4KUtkKKe+4hcjp5suaJrLmZtI3HjlGas6aGe87amtKb8+fT+toiO7W1VJG9fTuXonR0pAKsF1/sXgGWQkEX+G+/JdN21qsUQOPwITg43wfbjGKR10DRWmOBMaxMrDRM2u0l9pApZKiVcjrBuGVxCHUKRUJpAo4kHMF3yd9ptF31s/HDE8FPYHHwYvhY+3S9nfpAaysVvbBENT2dimFSUjQnAXoGA+CSB7BtvAC/+SvAtO0CQfUSrC31xmPNfjAxtdRKbGFurn05O7oqkqmvJ8PxvXs1o+MTJhA5ffDBnhM2dr/97TeyrFJPjxsZkY/q3LkUyXd27tl7t0drK6XI2UjoxYuaelSAfodx4+j4mjSJCt36izB1BzIZHUu7dpH5Povx40l7/uCDvStuYhjSuJaUkH9wRgbd3rxJy8rL6RzS0ED/kT6aYHQGS0siqOpRWG3RWEtLrr+7LpKpfr+yskfbrtHRqSeRS/a52yhx+Ouvv/Dee+8hOTkZAoEAY8aMwc6dO+HbRXOG1tZWeHl54Z133sGzzz7b7c8zkFIDKTWgh2AYBv/m/outEVtVnXQA6hC1fsx6zB88/5YXPHUHN2tvYnvkdhyIPaBqHOApN8X6c014JpaBqRyUsnz1VbpoHTtGBR/qOkYHB7pgzZ9PF1hdF9bSUmp7+OmnnD2QlxdZVT39dO/1ec3NwB9/oOzoQeypPYO9w5WoasvG28tEWGV/H15atA3WDp64lH8JW65swYn0E6rVhzsPxyy/WZAr5TA3NsfR5KMqw3kAsBHbYGHgQjwR8gTCXMPurElGYyNFqdQJ640bNNprTfuALGtg52jgy6Gcq4BDA/BSNPBiDODQ048yNu6ctLLE1tSUiHdUFKWb2cuKjQ21Mn36aerAZWZGxLL9f1NRAfzxBxHR06dpX2FhZUXG/nPnkrTBXEclXXfQ2kqFaGwk9NIlzd7nAL3/hAlcJHTYsDu3gj0qisjpjz9y6WI3N5oQLF2q36Ku9mhspP/85k2OwObnc04E6oVcrB/rnQQrK4rc2tnRbfv7traAnR1arKyQ09oKbx8fmLDnPobR7Pp1qyCR9CiCeuzYMfB4PAQHB6OhoQGbNm1Cbm4u4uPjwe+ELF+9ehVhYWH48ssvsWvXLpSUlCA0NBRbtmxBUFCQzvUMpNRASg3oA26U38D2yO34OuFrlQm/p6UnVoetxrPDnoWF8Z23T1U1V2Ff9D7sjNqp8n60VZpgxRU5VlxRwK79edLdndL8Dz1E0Z7OdHa5ucAnn1CqnrU2GjyYorCPPtrn6FBWVRa2RmzVcELwbTLBhvMteCoeELeCIrb330/+mLNm4UYtrXMk8YjK21UdRgIj3D/gfjwR/ARm+c/qnw5I/QmGIULWXg6QmkoX+l7q0mpMgC+G87BrFIObbTJPYyUfi+u9saY5BEF1JhTxqq+nW/VRX9+/1eBCIb2/oyNF0pubOxJzMzMy8Q8MBAYNoqi8qSldlE1NdQ+xWPOiLZdTMR4bCb18mZMbsLC0JGcJVhMaGnrnklBdKCoCPvuMBhtZNjEhOcWqVfqTU/QUra3k81pcTEWUWVm0j+flUfS1qor2t5aWvlWR9xSmplzktTMtrL09pe9v3tQkWo2NHWVOtwINDX3S5lZUVMDe3h5JSUmdksujR49i0aJF8PDwwLZt2+Dl5YWtW7fi77//Rnp6OmxstMugDKTUQEoN0APKGsuwL3of9kbvVRE9C2MLLBu2DKvCVsHd8g6yvmlDs7wZXyV8hU+ufKIyWhczQjybJMTSfHsMmboQvPkPk96tq5n19evAhx9SIQVrDj5qFPD660QQ+5h+iimKwceXP8axG8dUmtERLiOwcdxGPDjwQQjyb9Jnf/MNV0AFcFG2xYtREuyD3dF78WnMp6hpqcF4j/GkEx38CKzF1n3avjsWSiWRjYwM+o9OnwYiIztWe3cCOR84NhjYPhq46sYtn5EFrI0X495GJ/AGBFChzr33AkOH0uRDJutIVrWR166eLyujlO+tipTxeETG+Hz6/bTpJI2MKJro7U1FWj4+XLS3q6GP4qn+REsLcPQosHMnyRJYTJ1K5PS++/r+HVpaaNLEalI7S5VXV/dOpyqRkMRIIuHkHwoF7ZdSKU1kWlrovo6GBvpCi6cncg4cgLeTE0yMjLjjY/Dgfv1creghKc3IyMCmTZsQFRWFiooKKJVKNDY24uTJk5g9e7bO9b777js8/vjj2L9/P5YtWwYAkEqlcHNzw3vvvYfnn39e63oGUmogpQboEc3yZnyT+A22RW5TtUoU8ARYELgA68esx3CXbhQU3WIolAr8cuMXfHT5I8QWx6qWO5o6YprPNNzjcw+m+0yHm4Vbx5WvXgU++ICKSFhMn06R0SlT+iS0ZwvMPr78Mf7J/Ue1fJbfLLwy7hXtpvkMQxfSb78lksoWcwBUIPX442hZ+DAafT3uSPeEW4a8PODLL8mmSf03srSkdHtFRYeIEwMgwp06Dh0fCFXnqsFlwJpI8mgVs8FRPp/IgJ0dRSvZpgHDhvW+qjwpCdizhyYebNqTz6eo5KhRQEgIfWZjo/bR1KT7ufp6vbQM7RaMjTsSVW3R2337gB9+oO/l53frySzrM7trFxU3svuDtzcVKD7zTJctZAHQvhQfz42EBJo49oQI8ng0wewsVd7+fk8kQjIZEeCiImpmkJVFx0hhIU2K2rsR9JDyaGhK2YUMo9kooz1YPalIRPfZW13Lunuu7WH6fuDAgfD09MQrr7wCFxcXKJVKBAUF4fjx45g3b57O9f755x9MnToVFy9exPjx41XLw8LCMH36dLz//vta1zOQUgMpNaAfoGSUOJVxClsjtmoQqkmek7BuzDrcN+C+fu341BswDIN/cv/BjsgdOJdzTqP6HAACbAMw3Wc67vGZjsl5PFhu2a3Z7/zBB4mMjhzZp+2QK+T4MeVHfHzlY5UvqJAvxKKgRdgwdgOCHYO790ZsgdQ335A+Vq1ACgDwxhvkGDBq1J0fveovKBTU8vTgQZpYsNFIY2NyURg3ji7umZkUbU1LA7KykGPJYFcYcHAYUN/mimXXSJrTl6IBpwadn0hE0sSEiIOfH+mYZ8yg/0HStV0X6uqIJIlEtI060oA60dJC0WI2HR8Z2ZEc2NgQgQ4Opop8OztOItAZue1s9OUyKZHQtoSEEAkPDaV0+q2ySMrPJ334gQOck4CpKVl4rVxJv5FSSYROnYDGx2u00dWArS1Jg7pDMm1s7pxjVKmkyH1pKRHXrKyOxVzV1ZykQKHQTkr1DZakskRVnbS2v99NEltZWQk7OzuEh4djwoQJAIBLly5hwoQJXZLSuro6ODg4YO/evapCJ7lcDjc3N7z77ruq6Gl7GEipgZQa0M+4VnwN2yK34WjyUVX1+wDbAVg7ei2eDHkSElE3LsS3GNJWKSILInE2+yzOZJ9BdFG0htUSXwmMKgSm5/Jwj+8MjF75IYyCQvv0mQ2yBhyMO4htkduQX0u2UaYiUywdthRrx6yFh6VH79+8uZmqsL/9FvjzT029o50dRfFmz6b0c09Jzn8LysuJwB88SNX+LPz8KCr21FPUR511CMjIQG1aIg4WncAuQSzyjKmwyKgVeCwJWBsJBJfq+Cxd4PGIBNvaUkp81Chydhgzpvf6u6YmIp5sYVJkZMeoqKMjVxk/aRJpUPVZ5MZGxboTtWVHcTFFFZOSNIu2WPB4FIUODeXIakgI/Uf9VaDX1ETH0PbtmjIZKysuJa4N/v6ahDo0tH+3805CczNaiouRU1cHb0dHIqUyGQ11X1Kl8tbpYVkP0y4IrFIggIO7O2bNmoW33noL+fn5ePXVVxEdHd0lKQWANWvW4Oeff8aXX34JT09PbNmyBSdOnEBqaiqsrbVLpgyk1EBKDbhFKKgrwO6o3dgfu19lTWQrtsVLI1/C8pHL4WjmeJu3UAfkctR8exD/fvs+zhoV4KwPkGan+RKJSIJJnpMw3Wc6pvtMxxCHId2uXC9rLMPuqN3YG70X1S0UhXEwdcCqUavw4sgX++4L2h6VlURMT54kjaW6zRWfT9rIOXOIpA4ZcnddOBmGWmV+8w3JF557jksNq6eIu1qWkgJ8/TVpC9miHoGAfpNnn6VbtaK1VmUrjt84ju0R2xBRGKlaPk3mhrVZDph1tQr8nNy+fTdW62ljQynk4cOp09K4cZoTicZG4MoVLhJ69WpHPaqLC0dAJ08m0/w79X9WKChKzaa+2QhkSYn219vZaRLV0FDSvfa2yLCsTPNz4+NJD6qNQPF4FP2cOpUyJmxEty9uB/8F6HZHJ/UOTnI5TWRYAiuX01AoOBJ7C6jX2agorNq6FdmFhQjw8sKuTZswefFiHP/8c8y77z4qINSR4ZDL5Xjttddw5MgRNDc3IywsDDt27EBgYKDOzzOQUgMpNeAWo0HWgC+vfYkdkTuQU5MDgLw1FwcvxtrRaxHooPuAvaVobibd4ZYtFBkD6AS0fDnyn5mPc/WJOJtzFmezz6KsUdND08HUgQiqN5FUbYVemVWZ2HplKw4nHFZV0vvZ+GHDmA14MuRJiEV6auvYGVpbicCwJLV9r3l3dyJgc+bQhfYO7CgjV8iRWpGK+As/IP6vQ4hXFCHPCsiyAW7sAQZ23fBKOwQCilry+XRRVE9xGxtTJHPwYCJ4auQ2UliC7bIL+LkxBkoQcQkw9cQa/8V40nQcJGXVZLyek8NZXLENFfoCPp+Gtqp/NzfNSKif351LQgFK/dbX02+rC6WlHFlkb3WRRSMjICioY1RVvXuWUkn/R/v0u7rmWB329vQ+Xl70f4aHcw4IFhYUXV+xAujCz/J/Ab1uM9oVGIYjsGwBlzqJZaOwLIntD9jZ0T6gJxhIqYGUGnCboFAqcDz1OLZGbFW1BAWAmX4zsX7MekzznnZ7fDJra6nIYvt2zrDd3p4M7196qUMbSIZhkFSWhLPZRFAv5F3QqUed7jMdFkYW2Be7D8euHwMDOnWMdBmJjeM2Yt7Aed3uSd8vyMvjCOr585rpSGNjIjZz5tDwuUWG+mqok9YhsTQR8SXxqpFcmgSpUneRzr1Kb6xuDMa9tXbgNzZxqWP1FLL6Mj1VuedZArvDgM+HAXVt1xabJuCFGGB5NODS2FYMxQ6hkIiiUslFiRoa9OPlKBBQ+t/RkaKiY8dSlDUkhP7X2wm5nCZDUVEU1b16lZwSGIacDBYuJDs1T8+u36u5maLc6kQ1IaGjnpqFrS0RSNY4XlvhjbpMQH04OWkS+/p66s61ezdNNNh177uPukVNnXpnTwT6Ef1GSnsK9thqbSUCq05ieyslsLCgY0pPMJBSAyk14A7AlZtXsC1iG46nHldpN4Mdg7Fu9DosGrLo1nhntraSR+Gbb3IpbQ8P4JVXKOrRzWpWmUKGiJsRRFJzzuJq4VWdrT/DXMPw7pR3+7edZW/R3Ezp35MnaeTmaj4/cCCX5h8/Xq9tIhmGQVF9EUc+S+NxrfiayrqrPcylQGgpEGobhNCZT8HWxR+H4g/h97TfVcR/gO0ArBy1Ek+FPAVz407SqXK5bsLa2EiTFrZQ6MYNLoUoEhFxcnOj+01EgOul9fjSvRw7B9cjx5L2A5ECWJgMrI0AhurIQt8ysIVXtracLGDqVCKu+tYXMwwVxkRHcwQ0Lk43GVS/tI4dSwR1wQIi191FcTHJVM6do6YEeXkdfVbVIRDQJHTgQPrMWbMoFd9d8q5U0uft2kVSEhaBgWQptXhx9wra/otwx5DSnqC9lECdxMrl2Pzpp9h84ADtp+3O3RMmTMCpU6d69bEGUmogpQbcQciqysLOqJ348tqXqq5LzmbOWDlqJZ4f8bz+9ZUsLl+mDi4JCfR44ECqpF+0qE+G93KFHF9e+xKbL21WFS+1h0QkwUTPiSrrqSCHoDvOmQAMQ6lRlqBeuqSZJjY3pwryOXPoIu7k1O23blW2Ir0yXSP6GV8Sr/K7bQ9XiROGVggRGlOA0GIio96zHgP/7XcoLa2G7Ops7Lm6BwevHUSdlLoOWRhb4Nmhz2LFqBV9b59aWAgcPkwyj+xsbvmQIaRnffxxVUcghVKB39J+w7YrW3G54IrqpZPtRmKd+yOYIwkFv7ml8yiu+jJXVyqA8vSkCURmJhE+1ikgJ0c/mjsjIyrkcXOj7zV5Mhnle3l17b9bVsaRz6tXiYxWVXV8nZUVFXWNHMndikTkGnH0KE0A2O/C55Pd2qJF1NCCLRhRKLSn33VpT+3t6TuYm9O+XFZG62uTPwiFVPylnvoPDaXUbWdITSUbr8OHudS+tTV1ilq+nCa9/wO4K0lpF6iqqkKVtn0ZgFgshqura6/e10BKDaTUgDsQ1c3V2B+7H7uv7kZRfREAIm/PhD6DNaPXwNdGTzqt0lKKhH79NT22sgLefx94/vk+WbA0yBrwRdwX2BaxDTfrbgKgSvplw5dhQeAC3Ci/0akedZo35496JzYeQG0t8PfflOr/88+OfemHD+fS/CNGqMhLg6wBSaVJGhHQxNJElaZWHXweH4PsBiHUKZSGkQdCjpyB/b6vuBT73LnAu+922W2nXlqPrxK+wu6ru5FeSalVHni4P+B+rA5bjSleU/oWqVYqiTh98QURKSl1N4OREVmFPfsspcvbfoerhVexPXI7fkr5CQqG/Cr9bfyxOmw1loQugamRHrS7cjlpVVmiyt6y99lt7AuEQtLSOjuTdtLNjb5zYSEQG8tpsdVhZERp+VGjuOHn1znBLSykNqBHjxK5ZcHnk+5ZKKSIqDapA49H6VVt6ff2kMmISKp7isbHayfSAE0M1AuqWE/V9t+lpgY4dIhS+zk53LYrlfR9+mgjd8egpYWOg1On6Pxw4wawbRtaFi5ETk3N3UlK1SOm6rpVNoJqa8tNjPQAAyk1kFID7mDIFDL8kPwDtkZsRUIpRTF54OHBQQ9i3eh1GOs+tndkorUV2LsX2LSJ69v97LNkhG9v3+vtLW0oxe6ru/Fp9KcalfSrw1bjxREvduicxDAMksuScSb7jE496gDbAaqCqSneU2BlYtXr7esXKJVEQNgoakwMAKDEDIh3AuJ9TRE/xB7xNjKky4pV6XR1mIpMEeIUglDHUBUJDXIIomKv6moqNtu5kyMdU6fS5GH06J5tKqPE6czT2Bm1E6ezTquWD3EYglVhq/D4kMf7XmBWXU2V/198odkRyMuL+tc//TQRKQA3a29i99XdOBB7QOVIYW1ijWXDl2HFqBXaGzboA2ynK22ENTNTtwazNxAK6cIdFETdzRYu7H76nWEo0qlOEKOjdUeBBQIixxMn0sRIH36mDEOFTOoV+AkJ9Dtpg6lpR0/VoCBarlAAf/xBqf3z57l1Jk0CNmwgKUwfu7/dcuTmEgn980/6TlomBi1+fsg5eBDegwbBxM7u1mhrGYb28/bpd/Zx+yIotpqfHd2FmRll1vQEAyk1kFID7gIwDIPzOeexNWIrTmVyWp0w1zCsH7MeDw56EEJ+N3tth4dTVWxSEj0ePpwIalhYr7cvozIDWyO24nD8YUgVFIHyt/HHhrFUSW8i7F50QKaQafijttej8nl8jHQZqSqaGuM2BsbC21uoolAqkFmVyUU/86NwrTAWpco6ra93lhohVOyNUP8JCA2ajlDnofCz8esoWWhooIv3xx9TZBagqNrmzRR17CNSK1KxO2o3DiccVk0EbMQ2WDZsGZaPWq4fQhgXR76n337LfQcej6QOzz0HPPAAYGSEBlkDDscfxo7IHSrdrJAvxILABVg7ei1GuIzo+7Z0FwxDRT/qRDUhgQqIbt7svAtPT2BsTEWD7u5E4oYPpwlhTQ01Kdi2jXqnt4/Cs3ByoqikUknbWqpmCmthQan9hQtpXxF289zQE9TXA4mJmgVViYm69bFstJYlq0ZGVBj1/fecZGDQIGD9epJ93KkRRZmM5DtslkTdrxWg6PHs2STjKSkBDh5ES0UFZ55vZESTFDs77TpdlkwqFByZbF+M1NrKvYZ9fU/JpL5gZdVBNtQXGEipgZQacJfhevl1bI/YjiOJR1QE0MvKC6vDVuPZoc/qLmIpLgZefpkIAkBFHJs3EznoZar+auFVfHz5Y/xy4xdVBHCU6yhsHLcRcwPm9rmSvralFv/m/qsiqWmVaRrPs3pUNpI6xHFIv+pRm+RNSC5L1tB+JpYmqvS/6uCBhwDbAQjluyC0oBWhkbkIvXoTjuov9fTk0vxTplAxmVQK7N9PkVCWkAQFAe+9RyROz1GWmpYaHIw7iD3Re5BbkwuAWuPOHzwfq8NWY4zbmL4XoTU3UxemL76g4jEWdnbAE09QlD4wEAqlAifST2B75HaE54WrXjbBYwLWjl6LBwIe6H93hvJyzUKkq1fJ27Y9xGKybDIzI5JQVaXbPqmvsLUlIjdxIk0eQ0I00+8MQ9H677+n1qTqXZTs7YGHHyYN6rhx/RuJbG0lPW/7qKouXStA+3RjIxXPsbpTR0cqinrhhTujmUVhIRcNPXNGs1BMIKCCsNmzqQmHlxftB+npFEUtLERLWRlyHn8c3tbWHTs6scfWraZR7OfyeJydGp9P30fdRF8kIvJsZMQZ7PdjpNdASg2k1IC7FKUNpfg0+lN8GvMpKprIjNLS2BLLhi/DqrBVXKRLLict19tvU3SDx6NCg82bVUUoPQHDMPgr8y98dPkjXMi7oFo+x38OXhn3CiZ4TOi3SvqbtTdxLuecyn6qtFGzZRCrR2UjqX3pAlXeWK6h/YwviUdqRapWJwGxUIxgx2BV6n2o01AEOQR11EZmZ3OWU//8o6lrNDEh652CAq6Vo48P8H//RxGvfm6zqFAq8Hva79h1dRf+zf1XtXy483CsDluNBYEL9BOVzswkfeGhQ5okbvRoIqePPgqYmyO2KBbbI7fjh5QfVJ3QfKx9sCZsDZ4e+jTMjHrZ4UkdTU0UzVUnoKzmUR0iEZFCdR3ogAEdCV5zM62fmkrvxaa5S0o6r3jvCXg8IglWVlQoFBREZHXsWNpfeDyK5B09Cvz0E0V9Wbi50e+7cCFFZm+V40VJCf0W6mQ1La2j7RAbOWSPC4mEJs1r1pAzwq0Aw1C0+vRpmkhdutRxssHna1qYdeEDqvc2o2zFe3syyRJKlkwaGdFvypLJu0AaYSClBlJqwF2OZnkzvk74Gtsjt6siiUK+EI8GPor1okkY+tpOrm3kyJGUqu9FYYFcIcfR5KP4+MrHSC5LVn3OY0Mew8tjX0aQQ5DevlN3wOpRWeupC7kXOkQs/W38VQVTuvSoSkaJ7OpsjejntZJrqgKz9rCX2GOo81CEOobSrVMo/G38ex7Ba2wkYvrHH8DPP3eMxrm4EHl44AEiHH1wQegpEkoSsCtqF75N+lYVjXc0dcSLI17ECyNe0E/3sdZWsgw6eJB+AzaFa2pKtkfPPQeMGYPC+iLsuboH+2P3q3TKlsaWqJXWonRDKRxMHbr/edevaxLQ5GQiFO0REKBJQHX5mTY2Erm6cUNzZGbq9nvl8yl6aWZG95uaKCKuJ39YCAT0G9rbE5GzsyNiGhmpSYz9/Gj/WrSImiDcajQ2kjfr5ctE/CIiOtfyjh1LdnUzZ3b93gxDv2t5OUkb0tJoslBQQDKHykqSkzQ20kSC1Vj2k8F8i5cXcvbtg7e9PUxYQslOCNgUPAuRiOQXNjY0URWJtNou/bfCQEoNpNSA/xIoGSX+zPgTWyO2akS6JucA65PNMfv5T8B/9rkez5brpfX4Iu4LbI/crqqkNzMyw7Jhy7Bm9Jo7pjpeXY96Npv8UdnKboD0qCNcRmC693R4WXmRCX1pPBJKElAv034x9LfxV0U+2Siok5mTfiLBbEvQN94g/0iAIkOOjlQ1rk6WLC2Be++lNP/MmaQ1vAUobyzHgdgD+DTmUxVJNxIY4dHAR7E6bDWGuwzXzwcVFFBq/+uvNSOVzs5ECgcORKOiGV/JY7BDkogMYyJXEp4xXhy2DBsmvw4ns3bp7Lw8TQIaG6u9Ot3JiVLiLAEdMYKikOqoqOhIPG/c6LwTlURCBSCDBmkOX9+OnrZs4VX7oqucHHqs3gq3r2Cr3tXh5wc89RTw2GO3pSkEANrfk5I4knr5Mml424PPJ9JmZkb/s0xGxFIm4wp3+gM8HhF+kYjIokRCdlrW1nQ8urqSHMffn/5jT0/aTh6vc0sohqFi04oK+p9ZOsXj0Xvb2dHnGEipgZQaYMBdB5kM2LkTsfvfwraQZvwQBCjaOOhAu4FYO3otngh+olsV1qUNpdgVtQufxnyKmpYaABQtWx22Gi+MeKFDJf2dBnU96tmcs0itSNX5WmOBMYY4DtGIfg5xGNK5yXxfcPEi8PrrdPEF6KKzfj11zbKwoPT96dOU5j91SjOKyuNRpJvVog4d2u9pOblCjmM3jmFn1E6N7mPj3Mdh9aiVeNB1OoR1DRR9Uh81Nd1b1oPUtpIHnBgAvDcRiGmzQjRR8PF8y2C8Ig+DS0YJkdByLT6vZmacFyg7XF25NOzNm5R6b08+1VPg7WFn15F4DhpEqXJ9/S/V1ST9yMrSvM3OJvKtz0swn0+ToIAA8oGdOJGkFY6OvSdGzc2UAk9NpaxNWhpNRCoq6Ls1NFCBFFsd3l993dWjlNrIq50dySGmT6diPB8fIoZ9/B+77VMql5M2uaKiYzc5OzuSW+mxSUevwTD0f1VXU0Rej1kcAyk1kFID/ltw7hxV1ae2ka/Ro3Hzkzexu+lf7I/drzJPt5PY4aURL2H5qOUdUp8MwyC1IhU7Infgq4SvNCrpXx77Mp4IeaLblfR3GgrqCnAu+xzOZJ9BRVMFhjgMUUU/A+wCuu9e0BfExgL/+Q/X6cbEhP6zjRt1G5ErFFR4w1pOsVFVFk5OVOk7Zw5wzz1EarsLhiFC0AMSeZUpwE6nXPzoVovWtmu1Wy21Dl0aC9g2d/aBXUAsJkJkaUkEsrmZ9IjqPpmWlsCECWBqa/BXTQzeCWtBVJt82rgVeDYO2HgZ8GgQUNpdPQoaEMD1eG9PPNPSuEIbbfD05AinegS0KwP5/oZMRhHb9mQ1K4uGvrSsAJEPc3P6zk5OdCsU0v/EpsXr6igizVaL344CHldXcjSYOJGI5fXrdMxFRWluD5uBYIuUetIpqwfosXk+Kz+oqKDfVD2ybWlJv7ul5a3ViLLbVF1Ng9X9urpSRqMd/v33X0yZMkXrW129ehUjdUjIDKTUQEoNuNtRUACsW0dFDQDNXD/6iNJxbSetemk9Dl47iB2RO5BXS4bexgJjLB6yGPMHz0dBXQHC88NxIfeCKkUPkOXUxnEbb03V838zbtwgT9iff6bHQiFpJv/zHzqp9wRFRZwdTftKYJEImDCByKlA0DXZrKvrtY6uyBz4bASN8rZ6LrEcWJxrgVVF7gjiO1EanCWZ7NC1zMJCdxQoKYm0p0eOdDByZwCc9QHemcrHZTeujenT14DXYsXwcgsisqFUElnT1bUIoP/F379j1DMgoG9en7cLDEOkpj1ZZe9rS4/fKrBFOUZGNBkxM+MIl5MTFXH5+tL/4eVF/yEbkautBT7/HNi+nY4H9v2MjbVLNNQxcCA1nZgzhyLB/WGX1Q596uikUBAJrKjQPNZZ/1s7u263gO4SDMNZTslk9Fs2NHC6W21Uz9KS/qN2kMlkHTo+vfnmmzh37hyysrJ0SqAMpNRASg24WyGT0Un53XcpwsPnAy+9RNXaOjpsyBQy7IrahT1X96jIaXsI+ULM9JuJV8a+gvEe4++8nvR3E3JzgXfeIa2kUklRnMcfJycEXz105ZJKSQrARlEzMnr3PkJh54Sxk2UtpsY4WvQ3dsZ9iviSeNVbTvWeitVhqzHHf47+JjRSKfDbb2RrxjBcFbxEAqagAP/e+BP/pziPf+0p4ilUAE8mAK9fBHyr1d5HIqHiHnXiOXAg/Se3sKBM72hq4tLkSUm0P7DFPdXVVEjU0sLpL28l+Hwi9k5ORGLCwoDx40l+0tuOQDIZWWC9+27P9n17e7LHGjeOtmHYsH5Ni2slWmzksWdvRJOMqirNwjiJhAiqjQ3n0qHeiUl9GBlp9rRnhw4Hgb+uXMF7X36J5KwsCAQCjBkyBDvXr4evW1t6wt6esghdQC6Xw9XVFStXrsSbb77ZyVc0kFIDKTXg7sPffwMrV5IXHkAn1z17yLZGDQqlAomlibiQdwEX8i7gYt5FVDZr8Vxsg6+1L14d9yqeDH0SRoI7QLt0t6KkhHxG9+/nLh7z5tHFM6gfXQoyMiiCeuUKZ87eHbIpFve5kIJhGFzKv4SdUTtxPPW4yjrLx9oHK0etxNOhT8PSxLJ3b97aSpG9tDRufPEFXYi1eIiGewLvTgTOtvF+gRJ4PBF44yIwgH25szOlbefMIQ2heT/ph3uK6mpq1bp0KY2mJopqs5HthgaahLLkUi7XrwaTLegxMiJ5ibExEcrmZiK1+nIJaA8jI4qWOzvTRGP0aIpkBgd3/G/q64GzZ2lfP3VK05dVHSEh1CnK0pKOicuXSW/cvsWsiQlpjcePp3Pp2LH93zqzsZGiw7ca4eE9iqweO38ePD4fwYGBaFAqsWnnTuQWFiI+IgJ81ru0G3Z1x44dw4IFC5CXlwc3ltBqgYGUGkipAXcT8vOpGOaXX+ixgwO1oHziCYDHg1whR1xxHC7kXUB4Xjgu5V9StW9kIRFJMNZ9LCZ5TsJEz4mwFdtiX8w+HIo/pNHic03YGiwJXYIQp5Bb+Q3vblRXUwemXbu4KMj06WR834eOWXcb8mrysDd6Lz6P+1xVJGdmZIYlIUuwMmwlBtgO0L5iRYUm8UxNpdusLN0pdx5PU++pFvmMaErHu+Hvqrqg8cHDwipXvPFrJQbnq4lfjYyo1eWcOcB99+kniq0NMhmlmxMTSRucmkrHdEkJ2UI1NfWbLZHK11KdcLLV43Z2dGthQYRFLKbn2983MaFI7JUrZGem3m3K2JiiZnw+RWbbE7++bjvruwkQoVOnHRIJtd6dPZv2haNHNTtFDR7MdYoCyJuWrfC/dEl7c4TAQI6kjhtH9lo9mLjl1uQiqyoL03ymdSRaSiVNMPRIfLuN7pBSoZAmrTY2nHVZGyoqKmBvb4+kpCQE9WCCPXv2bADAn3/+2enrDKTUQEoNuBsglQJbtxK5aW6mC8uKFZD+5zVcbUxHeF44LuRdwJWbVzp4dVoYW2C8x3hM9JiISV6TMMx5mNYoaFVzFfbH7Mfuq7tR3MCZRQ91GooloUvw2JDHYCe5zUUddyq0tQQNC6MGBVOn3t5tu41olDXim8RvsOvqLlwvv65aPttpIlaLJ+OeQhPw0tM5EtpOg6YBsZgiaAEBlGoPCOD0nhJJp9sRXRiNd8PfxYn0EwCo29YjthPwn2w3DPktkqKw6ggI4Ajq+PGdp/R1Ec3SUopuskU/+kqXq5ums/dZsqRU0mfdCZdkPp+LovF4mulkfUsHeDwiUmIxkSknJ9Kgsqb9Mhm9ztyc/s/RozliplTSZCgnh+Q2eXna3RbMzUnn6ulJt87O9B3Z37rttpVpxU5EYRPzD5p4cpTnL4SZ0gQ5Tz4Jb1tbmLC2VWwFe2++p7pvqXqP+87Aam4lEvr89p/NNmSwtiaZRdv7Z2RkYNOmTYiKikJFRQWUSiUaGxtx8uRJFdHsCgUFBfD09MSPP/6I+fPnd/paAyk1kFID7nT89Re13MvIQJMIiJw1BBceG4sLzamILIhUVcizsBHbYILHBFUkNNQptEeavlZlK05nnsbhhMP4Pe13yBR0QhfxRbg/4H4sCVmCmX4zIRLcxdo7fUFXS9D33wfuv/9/xluwAxiGSFkb2WTSUnG2+DJ2mSbjpGsTmLafZVA5sDKKdJ+mbFbYw4NIYfuhB4uluOI4vBf+Ho6nHlcte2jgQ3jTYzFCr2STLvfiRc0LvEhEBMfEhJbX1+ufaLJgfTBZU3314iqWfLCjvem6Abcdsc7AsvuBOBd6PCkX+Po44GClo6MT285T2wA4sskWHkmlncsneDzaT42MaN+QSjuPWLMk3tpap4Rn4MCB8PT0xCuvvAIXFxcolUoEBQXh+PHjmDdvXrd+l3fffRe7d+9GYWEhRF1otg2k1EBKDbhTkZuL+vUrcDnxJC54AuH+IkQ7KSGH5oXQwdRBRUAneU5CoEOg3vq/VzZV4vvk73E4/jBii2NVyx1NHbE4eDGWhC655Z2c7gi0tlLx0ttvcxXMvr5UZPboo/3eEvSOQXMz6VjVU+7sqKvTukqmDbB7nAiHghWoF1Gq2opviud85mPF1Nfg6TxQ/9upVFIEOysLiItDYvI5vMdcwM+2pSqC/EA6D2/+y2CE9kZedz/U0/fq7SnV21T2dTlAZKi2llLiNTWacgQTEyJAVlZEvORy2k9Yon+ri6/UIRRStNDcnLTKjo50a2ZG21VZSRMtdrDRVwCNImDTFGDHaEDJB6zlQnxSNQJPm4wGz94BLa6uyAkMhLeXF0wkEo54shFL1qOVvd/S0vmEgzXwVx/GxjR4PDoua2pITqSrmMrUlORfnfiwVlZWws7ODuHh4ZgwYQIA4NKlS5gwYUK3SSnDMPD19cVDDz2ETz75pMvXG0ipgZQacAehurkaFzPPIfyX7bhQHIE4RwbKducLV3NXTPKahEmeNAbYDrglFfJJpUk4HH8Y3yR9g7JGTks2wmUEloQswaIhi2Ajtun37bitUCrJ1unNN7kiM1dXsnt6+um7u3JbFxiGCknak042Ta3r9M/nk5WPtqinszPqZPU4dO0Qdl/djazqLFqFx8e8gfOwatQqTPScyO3XdXWUIi8sROPNbBwo+A3rFCfRVLoU4vJq0jmWldGFuLmZLvBd9CMHgBR74P2JwA+BUB1ns9OBN8OB0QW9+K2MjIjEmJoSQWhpoW1qb+Xj708V30OGkI7T1JSGRMLdF4s1iV9fSOPtalPZ2EgtZI8epaIkNSKHQYPIKk0dIhF5i86aRfpQDw8y24+IIB1oSgpZerESmfZgI4xdpbJ7CjZtbmZGulk/P2oDzOPhVP01vOh6DXnmRKgXJQHb/wIcWRWVoyNavL2R8+671GYU4KQMnVEnVkdrbMwRT1bjy6bwWbCV/CwRbZ+aNzfnfE3ZgjkWAgFpR+3saP9Te1+lUgkHBwfMmjULb731FvLz8/Hqq68iOjq626T03LlzmD59Om7cuIGBA7uecBpIqYGUGnAbUdZYhot5F1WFSYmliWCgeTh5m7phkv90VTTU28r7tto0yRVynMo8hcPxh3Ei/QRalXQBMBIYYW7AXCwJXYIZvjNujRn9rQLDUJXvG28A8fG0zNaWujK9+KL+fAJvJxoaiGi3J5/p6Z2byltZcRpP9eHnp71fvDrkciiLCvFnws/YmX4EZxsTVU+F1EmwOk6ERRENMJEqoOQB3w4BXp0OFLWdqu0bgeVXgZeiAfseuuuowOcjzUGAzRMYfDOoVUVOZzQ64U3RdIy3HcoRTakUSE4GYmKooYH6xV8kooIYJyfSJ169ypEOoZDM2R97DHjggbvT87SvqKkBfv2VCpDOneOioq6uREBnzwamTeueC0JJCel34+K4W/X2tOqws6MiJRcXOmbNzYkcFxTQ/p2bq0mWu4lSU2DNTODoEHrsWQPs+wOYlc3v0DGqxVNH+r4vUNfqanNfYIvZxGJOEsJOVhQKrmmGuhzAxIRz42iTDpz95x+sevttZOfnI8DbG7s2bsTkZ57B8W3bMG/CBPpdXVx0buZjjz2GvLw8XL58uVtfy0BKDaTUgFuIovoiXMi9oCpMulFxo8NrAiqAieUSTJr6NCYueAXuVh63YUu7h/LGcnyX9B0OxR9CQmmCarmzmTOeCH4CS0KXYJD9oNu4hXpAeDiRT/akam5ONjNr1vSse9KdAKWSopva0u0FnYQGBQKSJ2iLetrbd4zCMQwVLbVFNzVGTg6N4uIOZDfFHtgVBhwJAZrbgs72jRS9THAC4tsax3hVU7vRfCt6bCInXeq6CCCgpq26XCKh1KSjI5GS4GAqPgsKouVaJnaZVZn44OIH+Drxa9Vka4rXFGyatAmTvSZrvlgqBS5cIN/Un3/WrERn4eoKPPII8MorWrve/M+irIyOqwEDKFqsj0l2dTVNGOPiOLKamqo9GmltTZHqYcPIJ9XZGThxggz56+vpNZaWnH3bzZu0Pzc3g1Eo8OVQ4OUZQLUY4CuBtZHAO/+o6aLbQUVK7e1hIhRyTgJsup3VCKvrhdX1w3eyhtjCgv5HPcFASg2k1IB+RG5NLhHQXPIJZdOU6ghiHDAprgKTspSYUCiA09K1lA6+U3wTu4n4kngcjj+Mb5O+RUUTV70a5hqGJaFLsDBoIaxMrG7fBvYUsbEUGT19mh6bmJA37MaNFHG5k1Fbq514ZmR0XvFrb6+dePr4cNKE5mYim+qEs6iIqpazsugCXlPTJ31glRj4YhiwIwwoVjstCxXA85mW+KQ0BEJffxzzl+MTwVXE1KeqXnP/gPuxfsx6zfR/D5FTnYMPL32IQ/GHIFcS05joORGbJm7CVO+p4CkUwPnzwHffkT0bS2QAioI2N2tKBywsqJf6ffdRatrBAQbcAjQ0cK4ILFlNSdFeLGRmRgSZz6fX1NTQclNT8otdswbpZlIsO7EMF/IuAACGCdxwIHMQhl8rpWOgrk5r1LXLSKm63le92I0lrDLZ7Wl40B04OVERop5gIKUGUmqAnsAwDDKrMlVG9eF54civzdd4DZ/HR6hTKCZ5TMTEMjEmfPAtbFPbXjN1KrB7N3nq3cWQKWQ4mX4ShxMO42T6SSgYOpEaC4zx4KAHsSRkCab7TL9z25beuEGa0WPH6LFQSBel//yn0zTVbYFUynXvYUdycuftI42MKLXennj6+5MWr310s6CALJNycijCpW//SaGQoppWVhSx8vFBw5AAfOiYgU8Kf+rgLgHQRGem30yYGZlBLBSjoK4AZ7PPIqY4RvWaQPtALBu+DPMHzYeliSXEQnGP97n82nx8dOkjfHHtC5ULxRi5EzadbsG9MTVQUV4PD0rNP/YYEZvaWmpwcfIkaSnLyzW/88iRRFDnzKFI3f+qS8PtgFRKpFM99Z+QQBOJ9mhLj8sEwMfjgPcm8yHlKyERSfDulHexatRKCJulRGDLyuhYYY8XVhpQWooWa2vk7Nyp3/R9V2B1xO01xmx7V3aIRDSEQo4INzdT5Lm2tmOhmkQCGBlh8+7d2Lxnj9Z9d8KECTh16lSvNttASg2k1IBeQskocaP8hoqAhueFa/h7AtSyc4TLCJVH6Dj3cbAsKAdWr6aLFUApvu3bgYcf/q+7OJU2lOLbpG9xKP4QksuSVctdzV3xZMiTWBK6RLeR+q1Gf7cE7QuUSopEqpPPpCTSe+oq6nB25ginpycVM5iaUrSluJhLpWdlcVEefUIgoIuYhQXXinDwYEqhjxhB+327ql8lo8RX8V/h9fOvo6ShBAClz7ffux0KRoFdUbvwffL3KoLYU5gITSARSSARSWAqMqVbI9OOy9Sfq6qHNO4qzhdH4B/HZsjbpNKDK/lYKRyH2bNXw2zMJEiMzWAsMO4YnVUqSX968iQV/Vy7pvm8szORU7az1O3o8vO/DLmcKutjY0miExdHx1VBASCX44o7sPR+4HpbcHtmBrDvJOBVy+t2Or1fNKXtwedzDgLqBXNGRr2/riiVRE4rKjSzAUIhqgQCVLEWVO0gFovh6uraq480kFIDKTWgB6hsqsS3Sd/i39x/cTH/okaaGqBinzDXMFVR0hj3MTAzarvINDUBH3xABusyGc1O162jCNx/+YWIYRjEFcfhcPxhfJf8HaqaOZP0se5j8XTo01gQuAAWxvo/BhmGQVF9EdIq05BWkYa0yjTsjNqJ8pfLqRnA7WoJqgsVFRTtbB/9VK/gVoelJZFmFxcigEIh7Ws//0xp4qoq/VYj8/lclbmNDZHLgACK+I0eTfe7KnDSgvC8cKw9vRZxxXEAqOXt1hlb8UDAAxpEr7ShFF8lfIWc6hw0yhvRJG/ibmV0Wy+tR1VLlUaHslsBPo/fNemVA6ZF5ZBkF8A0Mw+SJjktkwESRgDTgCGQjBoHp8n3YdCwe29rUeNdAYYhbXJNDVk13bxJk6ySEnrM9opnq84bG+n4YD0/dTg01BoDr00H9o2kxw4NwM6/gEeTgU7/EbZqXixWkcOWAQOQ8/LL8HZ2homxMRel5PFoOxoaOlo3sYVKPB7Xn761tfe6UnXSKhZrktbu+P+2tNBvWVGhKX/ootCppzCQUgMpNaAbYBgG3yR+g3V/r9MgomKhWKNlZ5hbGEyEJu1XpqrTtWsp2gUA99xDqfqAgFv3JbqDlhayX2lo4NI67GD7HHe2zMiIqwrVAWmrFCfST+Bw/GGcyjyl6pEuForx0KCH8HTo05jiPaXHXqsNsgakV6ariGd6ZbrqtkHWkdBdnH8S47+9COzcyaXupk8ngjpqVI8+u1dobgauX+8Y/Swp0f56gYBIprk5RTvr6ii91ovKYa1on0p3ciKyGxxMZDMkhJbrGTnVOXjl7Cv4+frPAKgD2aaJm7Bi1AoYC3tObtXRLG/G14lfY9uVbUivIgsvIV+I6T7TMX/QfLiau6JJ3kSEtrYcTbGRaEyIQVNhDpqEQKMR0GTEQ6OrA5pc7dFkZYZGRTPqZfUoayzTul/pE0MrjfC8aAweG/8CzKfPuet05t2GXM55m7KSkeJiIpXl5bS8ulrT07S5mfZ9Pds/MTzgeKAAK2YqUWxG1ObZHGt8nDcANuYOdD5PTaUsQ3c0nvffj5YJE5AzdSq8/f1hYmRE36WmpqOrBVucZ2XVuaNHayuR2aYmOle3tHCa0962qWVJq3rVPlu5r964ga3cZ/8Hb2+9auwNpNRASg3oAplVmXjx5Is4m30WADDYfjCeCH4CkzwnYbjLcK0tO1VIT6duTGyxjLs7sGMH8OCDd0aqnmGo+OWvv2j8+692bVVP0U0yW2zK4Bv3KhxyKcUNCRcp8JBL8GS9L5a0DIQv31a1nkIkQL5RM9KEtUjjVyONV4k0VCBNWY5CZY3OzRGADx+JKwLMPOEicYJ1XilW7b8Gl6I2UjF6NJHR/mgJqlCQxqw9+czM1H0B6YHfYosQSLcFUu1o3LADis2BC15A3WbAXAbdqfRRo0jfqCWV3t+ok9Zh88XN2B65HTKFDHweH8uGLcP/Tfk/2Jva6/WzlIwSf2b8ia0RW/Fv7r+q5VM9JmM9MxozT9wA/89TmgR//HjSiD7yCNkKaUFFUwV2RO7AzsidaJDTvuRn44fnhj2H8e7jIVVIVdFbNpqrHtHViPTKmtBUV4HGimI01Vci07gJ0rbdwEwKPJ7Cx/OKUAwd9zBw771AaOgt/886BcMQUamsJFKZn08Ek/WQLS/ndIosoamro+/QWyKlC2yxEKuBNDOjfd/amvPkdHQk6YSrKxXq2NmhQNCIFec34Le03wAAA2wHYP99+zs6LwD0PQ4coEltYSEtMzIib165XMOiqtP0vURC22Rt3b0MQ/vOXtoq9tU7QLER4b4Q1s7g7k6/pZ5gIKUGUmqADsgUMnxy5RO8G/4uWlpbYCI0waaJm7B+7PrOiShAM+D336d+9TIZnaw2bCBrodvtUdjQAPzzD5HQU6c6+vu5uNBJmk0ZyeX0HXQ91sOJjgEQ7QocCgW+HwLUqp2L3GspddYkArJtoLpQa4NdIxBQSbZa6rc+1fT8J2OB9yaS3dDAcmBFgQueXLIN5nMX9H2SwLbWVCeecXFU8KCH4qBKcRvptNckoDnWUHUlag9rE2usGLUCq8JWkVThDoBCqcCh+EN44/wbqiYM032mY9uMbRjiOKTfPz/2ZhS2/vYqfqy4AAWPLl2Dy8hO6nFlIEwWLgYWLSLi3k1UNVdhV9Qu7IjcgVopGbsH2AbgPxP/g4VBC3vl2VtZmouvfv8/7M//BelCzix+ZCHwfAywsNQeplNmEEGdMUN/xEAuJ/JYVkbE8uZNIl3aopaNjVyzAn1GLNmovXqqmTWAt7YmUmlvT6TS2ZmIkZMTkTtz8x53VFMoFdgXsw+vnXsNDbIGiPgivDr+Vbw+4fWOma/2kMmoOcAnn9AxDxDRnjmTzgmXL1OhU1eaUqFQs+EB0DFCqc2P9HZDJKIsip5gIKUGUmqAFly5eQXP//G8qjhnus907JuzD342fp2vyDBUtb1uHVcBPXMmsGsXVTffDjAMaRLZaOjFi5qaIJEImDCBtnPmTNJR9oSgKZXaiWsXZFYubUZ2YwHSGvOQ1nwTadJCpMmKkSorRgV0m7ULGR4GtFpioMwSAVIzBDSbIqBJjAENxrBphtZt+Me6Fi8NL0GqFX1voRJobTvvmxuZ46mQp7Bi1AoE2HVTTtHQQAbqFy9SgURqKkkzOrNb6s5PyQPyLYlsqgioAw+ptkC5RPdpVsATQMgXQqaQdWi+AJA0YumwpdgwdgPcLd37tI19wT85/2Dt6bUqT9sBtgOwdcZWzPGf07/aSYahYqNvvwV++AEoLUW+JbAzDPh8BA/1RvSbOZg6YOWolXhxxIuwlfQ8JVnbUovdV3djW8Q2VLfQTMjPxg9vTHgDjw95HCJBzzt+MQyDC3kX8Nm/n+CXvL9UbYYtWoAnEomgDikDRU7vvZfG2LFEEisrObsu1rqLjVpWVWlGLZub9TbJBMARSzYVbGbGkUpbW45UspZCrq60zMpKa/GM3sAw9F0bG4HGRiQWxmFZ9CZE1aYAAMaKB+CA5WIEyqxUr+n2aGjQ+vv1W6FTTzp89eQ1rI61pYXT4La0aNe0SiR6dYwxkFIDKTVADTUtNXjt7GvYH7sfDBjYSeyw/d7teHzI411fNFNTycfyLKX54elJqfq5c299qr6mhraDJaJseomFlxf5Jc6aBUyZ0m+FVgzDoLypXKXzVN1WpiG7OltlUK4NLuYu8LT0hEKpQE5NDsqbOFsdLysvPBXyFJ4KeQre1t4636O0oRQbzmzAN4nfAAAcTR2x7d5tmOM/B0cSj2DP1T1Iq0xTvf4en3uwYtQKzPGdBUFZOaXdr16liukbNyiq3L6fdy/QLAQybIFURwFuOAuR6iREij2QYdqCFl7fvAgFPAFczF3wVMhTCHEKwQeXPlAVDwn5QiwOXoyN4zZioF0/9JjXgayqLLx85mUcTz0OALAyscJbk97CSyNf6jrr0BekpRER/e47chlgYWsLLFgAPPYYaocF4ov4L7EjagcK6qiBgFgoxpLQJVg7ei38bXs+mayT1uHT6E+xNWKrSoPubeWN1ye8jidDnuz+d1YoaH8rLwdu3kRZTjIOF5/CgdYoZAk5t4QxN4EXYoBHUgCxnjtsqlLhbMTSzIyIo62tZhrc3Z2GiwtFLMXivlV9NzV1nwj2hDg2NQEMg2Yh8O4kYMtYoFVAJP/Ds8DzsQBfH4yG1WiamaElKAg5b70FbycnMs9vTwLZtqOtrdzkXZdeVSjk/guJhAZrwq9vMAxFxUtLNfWvFhb0HwsEtC16nEQYSKmBlBoAIk8/X/8Zq/5apbKieTr0aWy5Z0vXEZOGBqrU3r6dTijGxtTB5dVX6YRxK6BUEnE6dYpIaGSk5knNxITIJxsN9ffX60mspbUFGZUZHYhnemU6alpqdK4nEUkwwHYAAmwDaNjR7QDbATA35oo6GIZBZEEkDsUfwg8pP6BOyl2QJ3tNxtOhT2P+oPkwNSJphEKpwIHYA3jt3GuoldaCBx5eGvkS3pv6Hhn4NzYC+flQ5uXiXMbf2FNxEid4Gao0uFc1ta585hpg21uJLZ+PSitj3PCUINFLglgPIVJsFcgW1qNCVq0lntk9OJo6wt3SHe4WbaPtvoelB9wt3eFk5qSRLmYYBmeyz+CDSx+o9JQ88PDgoAfx2vjXMMJlRC+3pGvUttTi/YvvY0fkDsiVcgh4Arw44kW8PfntXkUiu4XCQoqGfvstySdYSCTkqvDYY5TuZpsBtEGukOOn6z9ha8RWFYnngYe5A+diw5gNGOs+tsfR3AZZAz6L+QxbrmxRSRU8jB3xmtlMPF3jDePiMi4tzuotGxookteJtlvJA857A5+NAH4LIFIFANbN1Nnq+RhgUEW7ldRdE8zNOY2lrS0V0Dk5UbSSJZds1FLYifRAJuOIIUsO1W+7WnbyJGma2xNHfejaO8E5b+D5+4EsG3r8UK4YuxNc4SKw4qrS+zrU9q/OiJZOyOX0OzQ1cUNXJobP56r92SEW915zrFBQlX1pKaez5vFoX3F07Ne2ygZSaiCl//PIq8nD8j+X42TGSQCAv40/9t+3H1O8p3S+IsMAP/1EqXo2EjlnDgnfb4WvZXk5GXT/9RcVUqkbdAPUj3zmTIqGTpjQ+YlEJqP05r//klffqVPAQw9Rus3CArC0BGNujkJzJdKM6qnISFmGNGkR0hrzkddQoDVtDNCF3dPKswPxDLALgKu5a48v9E3yJvya+isOxR/Cuexzqs81MzLDI4MfwVj3sTgQsx/RbUbqw0We2Fc/CSMTyknGUFKitaNLjhXZv3wxjNoHAtS+8vEkYMVVIFS9KJ61fTEzg9TeBleDrBE5QIIEJyBDVIebTSWobK7ssZ+mhZEFPK08iWC2EU71+67mrn2qSI8siMSHlz5UFXIAwDTvaXht/GvUqUhPE5VWZSsOxh3Em/+8qYpwz/Sbia0ztmKwfT80h6ipIdnMt9/SPqzec/7ee4mIzp3bLT03wzD4N/dfbI3YqjonAGTYv37Mejw44AEIa+qogCcnp2NBT2UlbU99PRGslhY0QY4Dw4GPxgElbXMt1zpg4yXgubgeRDdZYmlsrNJZltiL8eWARhxwLkKeiItmTZA544XrEsz/MwfGMrXIvkBABv/DhpFUx9GRyE9viKW2zkj6hrrnJjvMzHpFFCsEUmxI/ARfpf8IgPyS98zeg3kD5/XrV+gVKdUGpbIjUW3fPUwdbAW9OlntbJIhldI+XFHBBTWEQpqgODh0mMh1hfT0dLz88su4fPkyZDIZgoOD8e6772LKFN3XVgMpNZDS/1m0KluxK2oXNv2zCY3yxp6J269fp1T9+fP02NubyOj99/fjBrdSKpmNhsbGaup7zMzI0mjmTLoQe3npfi91EsoS0bboRIMRkGYLpNnRbXrb/XRbssjRBcsWIKBagIBGYwS0mCFAYY0Anj38jJ0gNrfRILg6by0tu1+BWlmJ/OsR+DrpGxyuOIssVGm8xLgVeCMceP0iIOjBGapJRMVWu8N4SHDkVhwgcMQAh4FolZggv+4mShpKUCet61SCoA4hXwhbsS3cLNwwwGYABtgOgIcVRzjdLNw4T9t+RkpZCj66/BG+S/pO1XFrlOsovDruVcwdOLfHdlzqOJd9DmtPr0VSGRV9DLQbiG0ztmGW/yy9bLsKzc0UafvuO7rtYeU8ALqoV1SQ5jI3V9PjsqICN+RF2OZZhCO+jaoCO69q6nX+zDXArIduXM1C4OAwIqcFlrTMqYmPV1Lt8HyFJyRW9lyFOGsNZGFBxwTDcJ6WWgijorEBfxvdxH7HmzjhWAtl219o2wQsiQeWxQIDKnu2vd2GkRFHFlnCqO22/bKuRl+ifWpgGAbfJn2LtafXoqKpAjzwsHzkcrw/7f1+8UZuD72RUm1gGIqgtierugrPjIw6EtXWVoqKVqmdQ01MaMJia9vr/2DAgAHw9/fHBx98ALFYjB07duDw4cPIysqCk5OT1nUMpNRASv8nEVsUi2V/LFOl6cZ7jMf++/Z3HcXJzQX27iWtaGsrHbivvkrp+v5IaRQWUhT0r7+AM2e4fswsQkK4aOiYMXTC0QYtJLRZ3owb9kCKPZDsAKS4iZDsIkKekW7DcQHDg2+TCQbUiRBQBQSUtCKgoAUBZUo4NHZhKt1dGBkROTUzo9+UraSVSim9WVdHJ+G20w4D4GgQsGI2UNVOLcFjgKk5wNPXgAdTAYlaYIcxEqHSwRw3/RyQH+yJm8N8cdPeCJn1+cioykBBXYGqWKU7EPFFsDKxgpOZE3ysfDDYYTCGOw+Hv60/3C3cYWVidccZoefW5OKTK5/g4LWDaGml1OAgu0HYOG4jHhvyWI8Kc9Ir07Hh7w04kX4CAGAjtsE7k9/B88Of7977KJVEsmpqaNTWcvfbj4oK4PffNdcfOJAmY0OG0P7Bel2qRy/r6rg0qFze7UrmUlPg05HA3lFAZds+ZtVM+sOVMXy4So2JOJqYcDZErNZOLKZ92siIPq+1FdKWRhy2ysVmn0Lkm9JO6dAAbLgCvBjTc7LbHoXmRH4/H8aRXwCYmsvD8ylizMsxhpG0lQht+yibrS3JewYPpkiqlVXXJLOHEbRbiayqLLx48kWcyT4DAAhyCMLn93+O0W6jb9k2aCVaDNPRMF9fYBgu/a9OVmUyzpBfF0xMKCpqZwfw+fjrr7/w3nvvITk5GQKBAGPGjMHOnTvh20U2sKKiAvb29ggPD8eECRMAAPX19bCwsMCZM2cwffp0resZSKmBlP5PoUHWgDfPv4ldV3dByShhZWKFj6d/jGeHPas9OlRRQdHQc+doqBdLPPAAkVNv3YU2PYZMRlFL1q6JtRhhYW1NeriZM+lWVycNqVRFQqUXziM97QqSLaVIcWgjoPakp9JlJWQvsefS7Gopdx9rn44Eg61mZc3cWeLY1W1NDc3Mq6s5A+geIt0WWD4bONt2fhxQAWw9Ten3L4YB4V7ca40VPHhKxTAXiBFrXAkjRgBZH4qK+Dw+QhxD8OKIF/FkyJN9Nnq/nShtKMXOqJ3YG71Xpdf1sPTAhjEb8OywZyER6dZGVzdX493wd7H76m60Klsh5Amx3HsBNjkvhE2jUjexbE862/fZ7g7Yi6u+LkECgWZvcLZSua0HehOvFV8PaMa24TJktEliRQpgURKwPgIILu3Zx8kEwJFg4P2JZO0FUGRz/VUhlqeaUxSvOxFHHctaJSY4VXUV+zOP4s+cv1VSFwdTBzwd+jSWBT8Nn7QymviePt0x+yIWA5Mnc1X9AQF3hr9yNyBXyLE9cjve/vdtNLc2w1hgjLcmvYUNYzf0ygWhL9BKtBobb08nv8JCOl93dbzxeIBYjGP//gueSITg4GA0SKXYtHkzcvPzEX/mDPhKJde+uB0YhsGgQYMwYcIE7NixA8bGxtixYwe2bNmC1NRUWFtba/1YAyk1kNL/GfyR/geW/7kc+bX5AICFQQux/d7tcDJTSyM0NpLNz9mzRELj4zXfRCAgo/XXXwdmz9bPhuXkcFXy589rtpPk8agQgI2Gjhyp3YNPKoU8KgKZF35BSso/SK5MRYp1K5IdqMpboSP7Yiu2RaBDIILsg+jWIQiB9oH6K0Kpq6Pvl51NhD4hgYpP8vN1t83sBpqEwH+mAXtGAXIBIFQAw0t4cGhgUGhOtkoVXcsHdcKuEfCtBgLLgOFFQGA5MLACsFKK8EuIEfYMleOKIxfOGtZggRXVflgoD4BYYslVxqqnIrt6rKdUZa+hUKC27CY+i96H7dcPolRKuV57vjlWi8bjpeYgWNdIVQSytbYaB6yysGlgMSpN6OI2Jx345G/6rW479E1Y1aDkAScGAFvHAhfV7EzvKTXD+pvumCF1Bc/MnCsqYkmj+lBbLpcY47vSs3gvYQ8ya7NV7/fjwz/ikcBH9LLNeTV5+CLuCxy8dhDFDcWq5TN8Z+D54c/j/gH3Q1RdSxkZlqS27y7m6UmT4XvvBaZN65cOX/pAdGE0lp5YqrIem+o9FZ/N+axXTgr6wB1FSi9d4iRSbcQTQiFX+d+FyX5FTQ3s77kHSd9/jyA/v07N8wsKCjBv3jzExcWBz+fDwcEBJ0+exNChQ3W+v4GUGkjpfz2K6ouw+q/VqjaGXlZe2DdnH2b6zaSD8OpVIqBnz1LVenvxflAQaTWnTQMmTiSNV1/Q3AxcuMAR0bQ0zecdHLgq+Xvu6aCJUygVyClLQ3LEr0hJOo/k0mSkoAxpNgxkOjTsliJzBDoO0SCeQQ5BcDB16FtKWS4nHV52No3kZIrQZmZSBLQ7bfi0oN4IyLcC8m2EyHcSI9/VFPnuFrhpb4zU1hKUNpd3+R4AYCaQwNPYAW58a4gUDAplFUhRFEMGBUQMHwPkFhjcYo6BDSYYWCvCoEoeBpQzMK1r7mAh0x5xzkSKvxvCGfrbNlHhyovRgGdth1W6hnpP6t4QW/axiYlmKryzCCU76utVm9EsBA6HAlvGcRE8cynZDq2NABIdgXX3Atcd6LnAMmDbaWAGm0joR0LYJ7B+md0ki10+Z2qKq6Vx2BqxFT9f/1nVMneIwxCsG7MOi4IW9SiC3qpsxQ/JP+C9i+8htSIVMUtjMNxluF5/ArlCjj/S/8BnsZ/h76y/VcudzZzxzNBnsHTYUnhaedJ/l5TEEdSLFzV1uwIBEBbGRVFHjOixab2+US+tx5v/vIldUbvAgIGN2AbbZmzDkyFP3lbpTJ/S96yBPmsZpVB0vK/tObazU/tjsKv0fTtk5Odj0/79iEpORkVtLZRKJRqbm3Fyxw7MHjeOrlceHlo2m8G8efMgl8vxxhtvQCwW44svvsDvv/+O6OhoODs7d/+3aoOBlBpwV0PJKLE/Zj9ePfcq6qR1EPAEWDd6Ld6ymw/T0kYargABAABJREFUCxFEQsPDO0bsPD2JgE6fTm0n+9ophWGo3ShboHThgmaqWiAgs2s2GhoSAvD5UDJK5NfmI6UsBcnF8UhJvYjkkkTcUJSiRaB9JmuqECDQ2A2BbsMQ6D8WQQ5ERHtT5a7a9ooKIpw5OUSgo6KAlBQSxveiU1ErHyhqi2bmW/ORb2+EfCcT5DtJcNNagHxeLWpkdV2/EQA7iR0CbAPgaeWpskVSH5bGlh2+d6OsEWWNZfCw9ICA342LKFtI0N7rsO1+RW0xDpafxqe1Z5GvJA0qn+HhAZkXVlT5Y2qlOXiNTR19F9nH/Wx/02Ow6WseD61Q4oeBCnw4VoHkNgLKV0KjiObd88DSOGpI0C8wNibZSvvB6o67SzBNTfuVNOXW5GJn5E58ce0LNMjonOJk5oSVo1bihREvwEZs0+33UigVCM8L79oBpI/Irs7G57Gf48v4L1WWVTzwMMt/Fp4f/jxm+8/m7MUaG+ncxZLU9pNpGxs6Z7Ik1dW1X7e9PU6kncDyP5fjZh01LVkcvBjbZmzTe8va3qCluRk52dnwdncnn1J1Etn+VtsyfVEsHo/TN7MSFXXJivpt2/2BQUHw9PTEK6+8Ahd7eyibmxE0ejSO79uHeePHEyHVwp3OnTuHGTNmoLq6WoNb+fv749lnn8Wrr76q/be6m0jpxo0bceXKFXh5eeHLL7+ESE1cffToURw4cABKpRIffPABxowZ0633NJDS/04klyVj2YlliCiIAACMFHnhQHoAQv+M62idZGtL5JMloj4+fddN1ddTKp6Nhubmaj7v5kYEdOZMMFOnoojfiOSyZKSUp9BtaTKulyWjQaGdsJjIgUE1QgSKXBDkOhSBoTMQNHwWPKw8e145rVRSUUh6Okc6jxyhC3ljY49OiAyAGpM2wmkJ5FvxkG8nJOJpJ8JNC6CQqYMSXTMYaxNreFh6wM3CDbUttbhadBUyhQwCngDPDH0GH03/CNZi7boknVAoyDmhpYUscfRIUhRKBf5I/wO7r+7GuZxzquWD7AZhxagVeCL4CQ3vVRVYo3BtZuG6iKy2x2xklC3mUdNCqrpuyeV0oWMjKd1EhRh4Zh7wxwA1HTIDzL8ObArvhpZSKCTSwlaVqw9ty9Sf60dPxP5ATUsNDsQewK6oXSisJ6s4iUiCZ0KfwZrRa+Brcwvs4noImUKG31J/w2exn+F8znnVcjcLNzw39Dk8O+xZuFm4aa6Ul8cR1HPnKAKvjsBAjqBOnNhvXZqK64ux+q/V+On6TwCoScFn932GGb4z+uXzANBEsrycG2yXrPb3o6IAW1u0WFoiZ+/evnd0ak8c29/y+ZxeVD2qbWNDwZUetriurKyEnZ2dRrHSpUuXMGHCBBw/fhzz5s3Tue6JEycwb9481NbWwkxNphAQEICnnnoKr7/+utb17hpSmpCQgC1btuCbb77B+++/Dx8fHyxatAgAUFRUhPXr1+O7777rcTTIQEr/u9Asb8a7f72GLXF70AoFzOQ8bD7D4KVoNVsgiYROkiwJDQ7uu5aPTXWxBUqXL2vKAIyMwEycgLIZ45Ey0gPJJvVIKb+uIqFsv+z2EClInxdYBgQ2mSLIJRSBIffAZ+p8CAYHdp88MwxVImdkEPmMjASuXCFtZw8qQKUCoNBCjXRaAvk2AuTbCpFvzcdNUwUaeF2XDov4IpUHp4elBzwsPFTm76wvp7mxOSILIvHCHy+otGFj3MZg35x9CHHqZq/l6mr6rhERNKKiuDS1kxN5sT78MPm4dubf10NcL7+OvVf34quEr9AoJ+9IC2MLLAlZgpdGvtS9dqYKBVWN5+SQHCI7myYPrGVReTlHQPXZHlINcj4ZtL81hfNuHVdqDL5QhIu2XIZhjtIPr5rNxHj74drJpURy1xTI6AsyhQw/JP+ArRFbVfsvn8fHgwMfxPox6zHGvXuBk1uNjMoMHIg9gEPxh1DZTLpiPo+P+wbchxeGv4AZvjM6ZhhaW+nYYklqdLTmZNbEBJg0iSOpgwb1eX9QMkp8EfcFXjnzCmqltRDwBFg/Zj3emvxWp4V5WtFdksne76EeXtVm1N6eIqVdRCd1Ek5dv5lczm0bawUlEHAdt3S5snQBpVIJBwcHzJo1C2+99Rby8/Px6quvIjo6uktSWlFRgYEDB2LSpEnYtGkTxGIxPv/8c+zcuRPR0dEICdF+Dr9rSOm+fftgamqKJ598ErGxsTh06BD27NkDAPjyyy8RHh6OgoICODs7Y9++fRrMXB1SqRRStZRjXV0d3N3dDaT0bkZDAxAejrP/fokXmBPIavNTmXcD2H0KcGtsK06aNo3G6NG9Pkg1UF1NRQFsNLSYKx6oFAMpQ12RMtYPyd5mSDGuRUpVqqrlYHsIlIB/JRBURkU1gWVAkMIGfiFTIZo8lSpgBw7s/ETOptpZ4hkRQcQzJ0ezRZyu1QFUiYFcq3ak05qHfGsB8q2AEpPueXLaS+w7pNLZ4W7hDkczx04julXNVXjt7Gv4PO5zlTbso+kf4Zmhz+heT6mkKChLQCMiqPVre5iY0Alb/TextwcefJAI6uTJerO4qW2pxdcJX2NP9B6kV6arls8wDcZKaShmFYohKCzmSGZtLWfd0g8kEwB9fzMzIot2dtQi0tFRM2JpY4NTynSsy/kMqQ05AEgnuf3e7ZjmMw0AcK34Gj68/CF+SvlJVdU93mM8Xhv/Gmb5zbrj7K9uFxiGwfmc8/gk4hP8lfmXavlY97FYP2Y95gbM7Z6M5BajpbUFv9z4Bftj9yM8L1y13NPSE0uHLcUzQ5+Bs7l2XSAqK0kexZLUoiLN593dSS/v68tFxNn9j71vYaEzWHCj/AaW/bEMl/IvAQBGuIzA5/d/jlCnUHqBOsnsimD2gmQCoHOEvT1nLK/tvq0tYG2NFnNz5DQ0wNvHByb6jPw3N5OMqrKSmwQYGdHxbGenl0zQ2bNnsWrVKmRnZyMgIAC7du3C5MmTuySlABATE4M33ngDMTExkMvlCAwMxKZNmzBrlm7P4ruGlG7evBmDBw/GvHnzkJmZiU2bNuG7774DAHzwwQe4fPkyTpw4gX379qGurk6nXuHtt9/GO++802G5gZTeRZDJaFbeZtNUnhiBddMU+KZt4uVaB+xJ8cC8wfO54iRzLWnT3uDGDeDnn1WtPGtFSlxnfT5dhEjxt0KylQwljHZNJA/k8xlYIEVgiVJFQgMqAGM7RyJEkyZ1TkJraoh4pqVRFDA8nOQBDQ2dptrZ1HquFRWv5FqpDWsecq2AeqOuD2WxUMxFNS06kk43CzeIRb078TIMg68TvsaGMxtUBP7p0Kfx0fSPOmrDampoP2AJaGQkRQ7bgxX2t9duOjmRHio9XdP/1daW2lE+/DDJOnRNYBiGPi8vj/6PnBy6z3b3KS+n921qglImxVkvJfaM0kyBe6u1M7XpqbSUxyO9JWuEzeom2e97+TJ1GFPvk21iohmVaR+lEQiQgnKsl/6O061E6O355njP6kE8azEFAqGow3oZ8hJsKT2OryrOQcZQdiDEzA+v+jyJh12mQygy1vw8LZ/Z6XOdRYjuMqSUpWBbxDZ8k/SNqtuXr7Uv1o5eiyWhS1Rtcu803Ci/gQOxB3A44bCqbbCQL8TcgLl4fvjzmOYzTfdkkWFIg84S1PDw7mnR+Xyq7rdpa7xhagqpxBgfuOdis3Mm5HwGpgoB3s/1wYosOwjqG2hSV1XVfyRT/b6lZbf3S72a57PnndJSzfOdqSmRUWvru/p4uWtI6aeffgozMzOtkdJ9+/ahqakJ69evR1paGt577z0cOXJE6/sYIqV3IZRKSo2zFfLh4UBjIxhQhfCGGWSazmOAFdb34r35e2HhpkfdVnEx5N9/i7Tfv0R89Q0kOLaRUAfgpqXu1TxNnBDUYoHA/BYEJhYjqFCOgRVqBu6ObSSUHeoegA0Nmqn2CxfIUqm+vlPiWWushXBaUQvNXGugrhuFwE5mTvCy8tJaOORh6QFbsW2/RMFSylLw0p8vqaIygfaB2DdnHyZ4TqB9IDER+PNPqgJOSNCITHcbpqbkK1tQwBFRiQSYMoVu//mHos0sjIwokigWU4qMjWRKpb12Fsi2BvaNIHNzNiUulre1M40TIqRWzBmvGxsTSVMouGKr+npNvZieUCEB3p5M6XoFHzBqBdZEUkcsy25wiEJzYPsYWp/t/OVbBbx8GXgqAehmkF07WL9QdcJaW6sy+FY9z97vzuPerKOn9yjhN2GPIBb7eLGo4tFsxAZivCAYjRVG4+AstObIOI/H3dd129vnerh+MyPHT2X/YH/hb7hSw3ko+0rcsNTzITztORcOYrvO37ulhfxQIyMpglpeTkSytpbOe83NWo+tcE9g2f3UXQ4g+7FPTwIenblcCIV0DEkkFJiwsqJJp4MDTUrd3Kiw1dubbi0t+8WWTS+kVKmk36m0VHOCbW1N15LbYS/VD7hrSGl8fDy2bduGr7/+Gps3b4a3t7dKU5qYmIgtW7bgyJEj+OGHH3D9+nWt0VBtMGhK71BkZ3Mk9Px5TaIAIM3PCi88KMK/plS0FOIYggP3H8Ao11F9/uh6aT0ScyNx7cwRxF8/j3hFIZIdONuf9nA1d0Wg7SAEtlojqECKwNgCDP43Geb17YhDexLq4UHfkyWe588TEW1o0Jm6rTPWQjbVRk03ApSOpo7wsvKCl5UXvK28Vfe9rLzgYenR6yhnb9Eoa8S74e9ia8RWtCpbIeGb4G3je7EmQQxR8nXSvdbWdq/gSiKhC4yXFw13d7oQscVEpaVkYZWXR7+9eo9nfYPHo4uiSETkViSixwwDyGRokjbguwAZ9owCEtSscifkASuuAg/eAESdZfBFIrrA2tho3traclEcdcsYbTYyCgVkChn2ipPxfxbXUCOgffahOld8XBwE32Zxl+u3f75KIMMevyrsCqhR+Zc6N/KxNkGMF+JFMG9Rdlyvv6QKdzgaRTSx3j6GmlkANBl4PIki6IPLNbuQ3UlIcgD2jyDz/7o27iBSAA/dAJ6PASbn6qfDW7UJsPEe4PM2ZyzHJj52R1jj4XxT8NC2j8tkRNS6yBZ1CfXobHs5QVf3O2mP3CdSKpdzcgNWL8rnc3rR7rRl7gds3rwZmzdv1vrchAkTcOrUqV69711DSgHg5ZdfRmRkJDw8PHDo0CGsXLkS+/fvBwC8/vrruHLlCoyNjfHtt9/CrrN+x2owkNI7BGVlXOeks2c7VqubmgITJ0I6dRI+cs/D+xkHIVPIIBaK8c7kd7Bm9Joed+lgGAbFDcWIL4nHteJriC++hvicCGRKi7S+3pxnghCnEIS6jUSQTQCCyoDB1wpg/W9bCrl9SsrJiQpoAgNpZp6XR5G49HRKu2i5EDcY6SacuVYd22hqg73EngintTe8LL00SKenlWfPiwD0BbmcIpS5uTRycvB72UWstIpAvph+u3k3gJ1/dRL94PPpIuDkRBFMtm9zUxNFPquricA2N/db8Y8KbOQO6JU1FguGz8PlwebYM5LBMfcGtPLpdOqiNMULgjAstZkOJ3ufjgTUzKxPaTqGYfBH+h9Y//d6ZFRlAABCnUKx/d7tmOw1udfvy6JR1ojP4z7H1oitKKgrAABYmVhhxcgVWBW2SlOOwToEdIP0ahBZ1r+RvX+XPlYoW/G7cS4+MU/GFZMyjd/RrtUYHnIxPGQSeMjF8JSK4SETw6PFGB5SEzjIjcBXMtxvyLS73/62u8u6+VwjvxU/eDdh/8AGXHXgGPSAagGWpRhjyXUj2Dah43sxDBFAHSlyxs4OPzHJWJWxC6UtFJRYNmwZPpz+oW7XDaWSMglVVVy3uO7e72vLT4mkI1n99Vfg//4PLX5+yBk4kIiWuXn3tJ7NzXRdrKjQ1IuyLUD1WJjZG1RVVaGqqkrrc2KxGK69tAS7q0hpf8BASm8T6uspDc+S0PbtNIVCzeKksDBcLI7Csj+WIbWCtG4z/Wbi09mfwtvau8uPUygVSK9MJwJacg3xJfGIL4lHeZN2E3bXOiC0XoKhriMQOvIBhIq94J1VBf71G8D27TQ7bU9ErKyo7WdzM6draheFaxQBeVYdCSebcq/sBl+0FdsS4bTyUpFO9rGnpeft06W1tmqSTjXyidxceq6NJOZZAqtmAb8PpFU9a4DdfwL3p6u9n0BA0UA+X9M8Wp+efeopRvYz+gJLS93RS13L1FKGhXWFOBB7APtj96O0kXyWRHwRFgQuwIpRKxDmGqYX6URSaRLW/b0OZ7PPAqDo+ftT38eS0CV6L7qRKWT4JvEbfHT5I1Wxl1goxtJhS7F+7Hp4WHro9fPudkQWRGJrxFaczjyNell9l683Fhh3cLLwtPLUKCy8VdmPa8XXsD92P75N+lbl1WosMMbDgx/G88Ofx3iP8d3af/Nq8rD8z+U4mXESADDQbiAO3HeApDz9Bam0ZySWvV9d3eXkV1V9z1pCCQRc9oT1DWXvy+X03up6UYmE04vezq5vtwAGUmogpbcGMhmlqNke8lFRXCqCRXAw1zlpwgRVcVJ1czVeOfMKvrj2BQDq27xz5k48Gvio1hNco6wRSWVJXAS0NB5JpUlobu1YScJXkuXS0BIgtAQIrTdFiNsI2Nt50IkhOZkinNqgpWtNk4gIlzbCmWsFlHeDL9qIbbjophbSqdXr8lagtZU0YCzJbD9u3uyS1MkEwPbRwDuTgWYRtQd9+Qrwn3A9pSlZggn0LUpqbMx5e7JwdgbGjKHJUn097RuRkZraVhMT8p99+GHgvvt63f1LppDh5+s/Y8/VPSqvXQAY7jwcK0etxKNBj8JE2HNtWnljOTb9swkH4g5AyShhLDDG2tFr8dqE16jPej9CoVTg19Rf8cGlDxBbHAuAimUeH/I4No7biEH2g/r18+82MAyDWmkt8mvzkV+bj7yaPLpfxz0uqi9SOR90BnuJPUdU1YoT2WX2Enu96sTrpfX4Pvl7fBbzGa6VXFMtH2w/GM8Pfx5PBD+hNdqpUCqw++pu/Of8f9Aob4SIL8LrE17Ha+Nf61FnrFsKpZIIJEtW2dvKSpILFRQQ0Xr6aXhbW8OkJ+clPp/OKWJxR/JqZMR5Ef8XwUBKDaS0f8AWprA95MPDO6ZHvL05r9ApUygtoQaGYXA0+SjWnF6j6jaydNhSDdP00obSDtHP9Mp0rSdqiVCCEJ4ThmY1IjS+FKElZMEkVvJJHtDY2CWRkQp0E85cK6C0G1pzKxMrDdKpinq2kU5Lk06qp/obTU1URJSZ2ZF85uf3KZJ4wRN4aQ7XmnJSLhUqDO6qY2hfW1aam3OpQfWhLXrJpt5MTOjzLl0Cdu8GfvmF++7u7sBLLwHPPUfrXLtGjgw//US/GwsjI/JkfPhh4IEHet0nPLYoFnui9+D7pO8hVVB03lZsi6XDluLFkS92K9IobZVi99XdeDf8XdRJKQLzyOBH8NH0j7qVadAnGIbB2eyz+ODSB/gn9x8A5Eoxb+A8vDb+NYx0HXlLt+duhlwhR2F9YafElfXJ7QwmQhO4W7gTSW3nqOFp5Qk3C7deTYIYhkFMUQz2x+7H98nfo0nepPq8RwMfxQsjXsBot9EAKMq67I9liCmKAUD2YgfuO/BfMVnRIFoiEQVp5HIq+qqp6bSOoFOod2hSJ6vqj9u6s90tMJBSAynVH4qLqTr69OmOVcwAEQG2c9K0adQ5SQdyqnPw4skXcTrrNADqivOfif+BkC9URT/jS+JR0lCidX0nMyeEOoZgqMANoYmlCD13Hb6x2dDRnVMDVWKqkM6ypuID9jbbGiiwUOtoowPmIjN42/hoLSTysvKClYlV1xtxKyCVAvHxVNkfHk73Cwv1/jFlpsDL9wBfh9Jj+0Zg62lgcWIvCyGsrbWTTF1DH4UABQXAvn3AgQPcfm1sDDz2GLByJTB0KJHYxESOoKq3YRSJaPL18MNkN2Vj0+NNqGiqwMG4g/g05lPk1+YDIFPzuQFzsWLUCkzxmtIh2sUwDH5L+w0b/t6ArGpqTD/MeRh23Lujf1Oh3URUQRQ+uPQBfkv7TbVsmvc0vDb+NUz1nvo/6XWaXZ2Nc9nnsOyPZSjbUNanNpkMw6C6pVpFWlXEtY57XFxf3K1oq6OpI0dULT07uHLYSew6/b9qW2rxbdK3+CzmMySVcXKtxtcb8fa/b2NbxDYoGAUsjS3x8T0f47lhz/W8O90dig5Eq6WF04uyZFQk4rS1PB6RVpa8ymQd77fPNOoCj6ebsLL3RaKeE1dWv2turldJgYGUGkhp78EwRGT++AM4cYK6eKjD1JQ8N9loaFBQlzuvXCHHx5c/xrvh70KqkILP48PV3BWVTZVoau0oROeBhwG2AxBq7o+hcluElgkQklYDpyuJFOnTEtlT8KgrkTrpzFa731UFuynPGN7W3vC289cgmywBtTKxuv0XU6mUqsuvX6eK/tRU0u0WFlIhkFSqP22mDih5wOfDgNemk/URjwGWxQIfnAWsW9pexOdTtLG7BNPWVm/G9r1CSwvwww/Arl1AXBy3fPx4IqcPPkjbxzD027MENSWFe61QSJMzlqDa94x0tCpb8Uf6H9hzdY9GO9PB9oOxYuQKPBHyBMyMzJBQkoC1p9eqopHOZs74YNoHeCLkiTvuYp9SloKPr3yMbxO/hYKhY3aky0i8Ov5VzBs4747bXn2itKEU53PO41zOOZzLOYfcmlzVcz88/AMWBC7o18+XKWQoqCvQIK75tfnIq81T3WcjnJ2B9S/WRVzdLNxgLDQGwzCILIjE/tj9cDF3wdHko8ipoQYNjwx+BDtn7tRtyn+XQkW0HBxgUl2t6YssFnPNK3pC7lh5kTbCqk5ouwtdGtf2xLWpiaQJVVVEjNkGCHqCgZQaSGnP0NJCVfInThAZLSjQfH7ECDLsnj4dGDWqy85JFU0VKu3n2ZyzuJB7QZWibA8ToQmCrQdiKN8FoTVihOZJMSShGKYJNzpIA5qFHNFsH/XMtQJkXRQuOinE8LXxg697CHzt/OFj7QNfa1/42vjqXX/VbTAMaZRSUigKl55OhLOggGbc9fX0/+izGKinEAoBOzvE+5nhhVFliLKgVHEonPCZ9RMIcxmlWWlrba3X/vOdgWEYFNUX4VrJNfDAw71+90LI72UFK8OQ48Lu3UQ82aiFqyvw4ovA0qWacpQbN4Bjx+i1CQnccj6f7MEefpgIrZMTegJd7UzHe4zHqYxTYMDARGiCDWM2YOP4jTAzurO9DPNq8vDJlU/wxbUv0NJKM5eBdgOxcdxGPD7k8R47bNyJqJPW4ULuBRUJTS5L1nheyBditNtoTPOehkVBi7rXkrYfwTAMqpqrNEhqe+KqK2OlDh54cDJzUpHUltYWnEg/AQBwt3DH3tl7cX/A/f39dW495HK0/P47cqyt4W1hARXNsrQkMmpu3n/pdZa4dkVeews+n85ZLi5622QDKTWQ0q5RUkIE9I8/qK2mOgEUi6ld3P33Exl11j7DVTJK5FTndNB/FtZrTxebCU0x2mwghrVYI7SYQeiNavhfzYSwhkgOAzL7Vo9wqhPQoi7+SpEC8Goxga+5B3wCRsPXLZhIqI0vvK28b20Fe1MTkcwbNyiimZZGxVWlpZxZe3/bG3UXEgkRL39/KkwbNoxOSG0ks14swKZ/38Kuq7ugZJQwNzLHe1Pfw0sjX+o9AewFlIwSmVWZuFZ8DddK2kbxNQ23BW8rb2wctxFPhT7VK72cCkVFwGefAfv3U0oOoMnYwoUUPR0xQvP1GRkcQY2N5ZbzeNR97OGHgYce6tGJvralFl8lfIU9V/eo7J0AYGHQQnw47UN4Wnn2/vvdBpQ1lmFn5E7sjd6LWin5g7lbuGPD2A14bthzt8/WrBdoaW1BxM0IFQmNLoxWRYNZhDqFYpr3NEzznoYJnhPu+MlDe0hbpapoa3vyyj5mJxntsdpoIt595FOY+wXe4q3uZ9TUAAcPAjt3ooXPp+p7e3uY2NnRhFWf7Ub7AobRTlxbWshJRibrPMjh6dnjbE9nMJBSAyntCIahaM6JE9rT8q6uRELvu4/SkGoHl0KpgLRVitTKVI3q94SSBJ32JgIIoACdpKdWW2HHKSAovQYKPnDTQnuKPcsGqO9CKmjZAvg2GMFH5ABf/1HwHToVvo6D4GPtA3cL9/7tN61QUDX69etENK9fp3R6cTFnF9WHrkC9Bp/PRSlNTOjkU1ND29V+xiwSAcOHA2PHUtX5mDH032sBwzD4+frPWHN6DYrqyef10cBHse3ebXAx198sWhtkChlSylJUxPNayTUklCaoLGnUwefxMdBuIMoay1RtTJ3NnLF+zHo8P+L5vpEBqZRS9bt3A1evcsvHjCFyOn9+x8xBTg6R059/1lwHAMaNI4I6fz4VV3UDSkaJs9lncTHvImb5z8JY97G9/z53AOqkddgXvQ/bI7erLLLsJHZYHbYay0cu1+1XeRuhUCoQVxynIqGX8i91IGR+Nn4qEjrFewrsJN3z1b5bwTAMKpKikP3p+/g77STOeDFIcCLTfebttheNGEGTsYceou52dxOUSgoqREbSiIoid442atQybBhy9uyBd1AQ+ZTeqVAq6XrAdthSp3bm5jRMTCgzxBJYBwed3aTi4uKwceNGREdHQyAQYP78+di2bRvMOuk+ZSClBlJK6E5a/v77aYSGqtINJQ0lOH7jOE5mnERccRxKG0uhZLRH9Iz5RggSOmNogwU8i5vxt1EeLjqT5sWpHnggFRCAI515lkBrF7zRtQ7wrQZ8WyTwdQuGz9SH4Bs0Eb42frAR2+g/zV5bS+nzGzfolk2fl5dT+ry5+fakz01MKBXu7EwaH39/Sqs4OtJJw8KCSPK1a9SmMyKiYy94S0uy4po0iQjRsGHdKhLKrMrEij9XqIrS/Gz8sHf2XszwnaH3r1kvrUdCaYJGBDSlLAVyZUftlInQBEMchmCo01AMdR6KoU5DMcRxCCQiCRpljfgi7gtsubJFFa23Edtg1ahVWBm2EjbinhciaSAqisjpjz9yui5nZ+CFF4Bly7Sn6fPyqMr/55+BK1c0nwsLI4L68MPUqep/DC2tLTgcfxgfX/5YpT8EgOeGPoflo5Yj1Cn0tm0bwzBIrUhVkdB/c/9V9Ydn4WTmpCKh03ymdemY0CxvxsmMk3h48MP9uOW3Bk0xEfj7s5fxa+VlnBig2QAkTOCJyLNedE5SzwQFBnIENSTkzqseLyujYzwqikjo1at0/m+PoCBgzRq0PPwwcoqK+tZmtL/AMBQkqawkOyv1QIlEwjmSdCHFa4+ioiIEBQXh0UcfxZo1a1BXV4c1a9bA2dkZP//8s871DKT0f5mUlpQAJ08SEe0sLT97NuDiArlCjkv5l/DT9Z9wKf8SMqsytXp/qsNYycewciEmZMjgXwHkWwGn/IE4Z0DZDU23cSvgXU3E06eaemn7VgO+pu7wfugZmDz+FFlL9RU1NVQIlJzMWSIVFtKB2tBAM8JbGdVkDePbQyCg7xscTH6ZkyYReWzf3aOhgYgNW1l/9WrHSKidHaWLJ02CYsI4pDkbIab0GmKKYrD76m4wb3V+WLe0tuDjyx9j88XNkCqkMBYY47Xxr2Hj+I19S4e3oayxrEP6PbMqU2ulsJWJFUKdQomAtpHQgXYDu5QMSFul+CbxG3x4+UNkVpGdk5mRGV4Y/gLWjVnX94KLkhJK63/2Gd0HKAK9YAFFT8PCtK9XWMgR1IsXNSc5I0ZwEVQ/v75t312GVmUrfkz5ER9d/giJpYmq5WPdx2L5yOWYP2j+LfGzvFl7U0VCz+ecV2UHWFgaW2Ky12QVCR1kN6hbE+Salhp8Gv0pdkbtRFljGS4+fRHjPcb319foN1Q0VeCPk9vx6+WD+NusFM1qUmBbkSXuD3wQ8wLm4R7fe0iKUVYG/PYb7fPnzmkW6Pj4cAQ1LOzWm8fLZFTQqx4Fzc7u+DpTU2DkSDovjx5N29o2+dRKtBim712kegOJhEh+czNXsKR+bTAy4izyxGL89ddfeO+995CcnAyBQIAxY8Zg586d8PX17fRjDhw4gDfffBPFxcXgt/1nSUlJCA4ORkZGBvx0nLsMpPR/iZT2MC1fIK/ETyk/4a/MvxBfGo/yxnKthIAHaoXnUw14lEghFQLJjkB+NyKdAGDT1EY4qwHfOiF8lZbwZazhk18P18xS8NmPdHQEFi0CFi8mItad2TNrgJ+QQHY9mZmkAWRT6DLZrdFqWlnR9js60n32hFRZSRHMysqO6wgEFDEYOZKIyIgRwJAh2qOXNTXkqcmS0NjYjiTa2RmYNAnKiROQNcwbMZJqxBTFIrooGnHFcRp+hh6WHshbo6NpAIAzWWew/M/lKv3iDN8Z2DNrD/xt/Xv80zAMg9yaXI30+7WSax0u9CxczF00yOdQp6HwsvLqU1RcoVTg5+s/Y/OlzSqyYywwxjNDn8HLY1/uu5enTEY60t27KUrNYtQoIqePPKI7Kl1cDBw/TgT1wgXN/TU0lIug3m0pzz6AYRhcyr+EvdF7cezGMbQqqdDMwdQBzw19Di+MeAHult2TPHQHVc1V+CfnHxURZTtTsTAWGGO8x3gVCR3mPKxHGurCukLsiNyB/bH7VTKnu634J7cmF7/eOI5fIw7hYl0SlGqHo5fMFPMGPYh545/DOI9xnf82NTWUrfvlF+CvvzQzOi4uVBD40EM0odZ3q02GoYwFGwGNjKTskrY2woMHE/FkSejgwTq3RyvRamzUmfbuV2RlUWZUnRALBJRps7Xt0L742LFj4PF4CA4ORkNDAzZt2oTc3FzEx8eryKY27N69Gx9//DFu3rypWpaZmQl/f38cOnQIS5Ys0bqegZT+t5NSNi3PFiqp7SAAVGl52ZyZOGdegWOpv+DKzSvIqc5Bi0K7MN1EwYNDA2DXwMBYARSbA7mdSbsYIq7q/p4SOTC33BbPej6Iqc+8C55AQKnOb76hE4HqhRI6AS1eTNZSQiGdOKqqiGTGxVGEMyuLLt7V1XSw9TfZNDLiSKaDAw31++wQi8l0PiEBiImhkZXV8f14PGDgQPo/WBIaEkLfXxvKyymCFh5ORCUhoaNkwNMTzKSJyBsXhBg/MWIUBYgpjkVMUYyqeEQdpiJTDHMehhEuIzDSZSQWBi3sQPSK6ouw/u/1OJp8FADpMXfM3IFHBj/SLVLYqmxFakWqBvmML4nvkO5k4W/jryKeLAl1MHXQ+lp9gGEY/JnxJ96/+L6qk5KAJ8BjQx7Dq+NfxWD7wX3/kJgYIqdHj3IRCgcHSu0//3znBU5lZdRP++ef6bhWn3gEBRG5ffhhukD+j6C4vhifx32O/bH7VRMZPo+PBwIewPKRyzHNe1qPJyyNskZcyr+kIqHXiq9pTMj5PD5GuIzAdO/pmOYzDWPdx/YqO5BakYotl7fgSOIRlQQlyCEIr4x9BQuDFt7RbgMMwyCxNBG/pv6KX1N/RXxpvMbzoSXAPMkwzFv4NoJH3Ne7SWNjIxHTX36hQIp6itzWFpg7l64P06f3zo+4vp6ORzYCGhlJBabtYWurGQEdObJHzTDuKFIaHk7XJR6PJFs2NvRduhmBrqiogL29PZKSkhAUFKTzdSkpKQgNDcXmzZuxevVqNDY2YunSpTh27Bg2b96M1157Tet6BlL630hKu5GWz541Gkfda3GmPArJ5cmobKrUHgVlAHMpDYA6FumKfjrXA0NKqUMPG/UscDHD+6NlyDOibfCy9EJlc6VG0ZO3VIKFMc14NJFBcGmbobq/P6WXlUq6ENfU9H8VurExEUtnZ0q7sJpMbUObjUdTE6V5oqM5ApqWpl1f6ufHRT9HjKDIb2cC+KIijoCGh1PhVHv4+6NoyghED3VAjKMSMU0ZiCmKURX0qMNEaIJQp1CMcB5BJNR1JAJsA3QWfymUCuyN3ov/nP8P6mX14PP4WDlqJf5vyv/pbE/ZLG9GYmmiRgQ0qSxJaxWuiC9CoEOgBvkMcQy5bS1VGYZBeF44Nl/ajL+z/lYtf3Dgg/rrOlRWRmb8+/bR/wvQpOvhhyl6OmZM59mAykpKef70E3VOUzfTHjiQCuyOHaOIkt3dW0ijUCogU8ggV8rpVkG3SkapEcGWK+T4Le037I3ei39z/1UtD7ANwEsjX8JTIU/p7JYmV8hxtfCqioRG3IzooFMebD9YpQud5DWpT00wogqi8NHlj/Br6q+q8+54j/F4ddyrmO0/+/b7HOtAq7IVl/MvExFN+1XDU5WvBCbmAfOyRZg78gl4rX0HcHPT34dLpZTa/+UXmpipZ5fMzSnD99BDwMyZ2smeUknHRPtipPbXE6GQmmGoR0F9fPqka73l6XuGodanbMGS+ne0syOSbW3dLc/njIwMbNq0CVFRUaioqIBSqURjYyNOnjyJ2bNnd7rud999h3Xr1qGiogICgQCrVq3CkSNHsHbtWmzcuFHrOgZS+t9AStXT8n/80aGKt8XdGaceDMJxv1ZEMvnIq7sJmUKLNxkDiJSAUSsgF+j28jSXUnvOIaXAkDJgSJUIQUJn2E64F1i1CggMREljKdb8tQY/pPwAAPAwc8Ve5+dwXyYf0n/O4q/GePzgUY/fAoAmNf30wHJgYTLwaAr1pO8zjIyo0tzVlSJQ2ogmu6wns1aplCK1MTEcCU1J0U6YPTw0U/DDh3dtNpyXxxHQCxc021e2oXxoAGIm+SHaT4IYSQ1iqpJR3FDc4XUivgjBjsEY4TJCNQLtA7sdhblaeBUv/PGCqof1KNdR+GzOZxjqPFT1murm6g7p99SKVK1Fb2ZGZghxDNFIvwc6BMJI0DMh/a1CTFEMNl/cjOOpx1XL7vG5B69PeB2TPCf1nUDI5ZSe372bJBgshg8ncvroo1TI1hmqq4Hff6cI6t9/d9QPDx4MxaQJkE8YB9nYMMjtbTWInjrZa0/+tC3rbD3VMmX3Xt/V5+gqnASgU/ecUpaCT6M/xdeJX6tcGExFplgcvBjLRy5HoEMgkkqTVCQ0PC+8g1uDh6WHioRO9Z7aZ30xwzA4nXUaH176EBfyLqiWPxDwADaO23jHOiU0yZtwJusMfk37FSfSTqCymSODJq083JvJYF4qcF+xOeyWrqZrgB4tgrSitZUyRb/8QqNITepjYkLEdPp0Il8pKVwxUl1dx/fy8NCMgg4dqne7ps6Ilt6gLgljje1ZGBtzbZR7+PkDBw6Ep6cnXnnlFbi4uECpVCIoKAjHjx/HvHnzuvUepaWlMDU1BY/Hg4WFBY4ePYpHHnlE62sNpPRuJaUtLdTKkyWiamn5VFvg+xnOOBcgxHVRLarlWg5EAGAAgRJQ6Ih8ChVEDIPK2shnpQBDFHbwHDYFvFWr6QCuqyNCFhEBJCWhMS8TO+yz8ElQLWpMaPa8Ogr4v38AMy08uFEEnBwAHA0C/vQHpGpEOKSkjaAmA941aiuJRETqXF3JKsfVtSPBZIepHvxGGxqIgF67RpHQL76gbdDWLcPJiQgoS0KHD9c0UdcGhqEqfvVIaH6+xkuqxUDsBF/EDHVCtKMCMcoC5DcUdHgrPo+PQPtAjHQZqSKgQxyH9Cq1WN1cjdfPvY79sfvBgIGViRU+mPYBZvnN4iKgbUQ0r1a7/tReYt8h/e5n43dXdui5Xn4dH176EN8lfafRdWjlqJWY7DUZcqVcK8HqisxpkLHCfMiiIyFLvQ45FJAJAJnEGPKB/pD5ekFuLOr6/eUtkDU1oERRA3M5H3IoIRN0r7DwboCAJ4BIIIKN2AaF6zpvi1snrcM3id9gb/ReXC/nsgsivqhDJNRWbIup3lNVulBfa1+9RCxbla34KeUnfHT5IySUUuMEIV+Ix4c8jpfHvoxAhzvPn7OyqRJ/pP+BX9N+xenM0xoFrTaQ4P5UJebFt+CeLMDU2gFYt46aRtyOa6hSCVy+TFmHU6e06/NZsMVIbBQ0LEynt7Y+0a+kVCrliGiLWhZKKOQKltjiph6isrISdnZ2CA8Px4QJ1Jb40qVLmDBhQo9IKYsvv/wSK1euRGFhIax0yB/0QUpvnSP2/zq0pOWbhMDxQcDvY/mI9jHGTWMpWqEE0BYxY8+77LRBfb/kcYTUo6aNeJYCQyr4GNJiiQDXYBgFDwVj24ja2uvIkeThMr8Sh0t/RM5HR1FgAZSaUq/4OhOgeSCgVJOyDSsCDpwAhncM3qlgKgcWpAALUgWoszPHb0MlOBogx99WlUhwUiLBidpUhlkGYqH/g3hkxFNwdezHiuOSEiKe8fEcCc3I6JiCl8vpYGfJJ3vbHcNzpZLS7+oklK3MBlBvBMR58xEzyg0x/hLEmNYiU1oMIItG2xyDBx4C7AJUGtARLiMQ6hTaZ2NxhmHwbdK3WP/3epQ1khl8oH0g7CR2ePOfN/HiyRe1rudl5dWhAMnF3KXTC7uSUeokaF1F0brzWl3Lv0/+Hg8EPNBz0qiQaxifRxdF48lfn+zT790BlgA0ivKlAJKBnGTtr+8E9SLdUUa+EjBStGVHGD5EQmMYGUtgJDGDyFgCI4ERRIL/Z++9w9s4r6zxM4PeCJJg703spAolqljFktxly+qiHNvJZu0UO5uycTZld5Nfvt3PKesk38YlG2+KY9lqlmRJtmzLVu+iRBUWiaTE3jtIEB2Y+f1xORiABKtISXZ4nud9ZtAHg8HMee8991wZLVlaDnvfwPpYni/cnsjrZKxszP7Cbf1tOFJzBEXNRei3+0ZBBUKqkCiwJG4JfnDfD/BA0gOTOlmyOC3465W/4jfnfuOxsdLINHh+zvP454X/PKmFWJOBOmMd9lfsx/vl7+NU3Smf4zxeF4s1fVFYs6cUi6+bIeVAEcbf/Qvw1a/eWSN4nqdJu3cx0uXL/ouRvMEwJJNas4aKpeJGtuW6p+FyUXZEcIcRwDAUsAkOpgnCbToVBAUFwWAw4M0330RkZCTq6+vxox/9aMyvf+2117Bo0SJotVp89tln+MEPfoBf/vKXwxLSycJ0pHSqwPMUoRuolucLC3EtHNiRAxxLAMpDGfTJeV+iOQqCrGLaPasdiDKzYKRSNOgZVAU4Ua/l0KwFOjRAjxIwyyl6yY9nksUDPzoN/Mcx0MlLQFwcGbEvWUJaIyGy6ae7RZelC++Xv48dpTtwrPaYJ4XHgMGS+CUoyCrA+sz1Ey964TgqOBKIp7D0Ioc+iIqitM6sWTTmzqVOFmOZfbrdJK84eVIcA7N5iwy4GgFcipXgUo4BlyI4lDP+9b3JQck+Kfg5kXN89Jz+CN5IRMv7sV5bL2qMNShqLsKZhjN+C6EEMGCgV+oRpAyCXqmHTq6DSqYCA2bcZHFwZ5vPO1iGhUamQYAiAAqpYnQy54+geT/OSCCvuAX5mXOQVVaLJDI6DvKHH4NsyTLIVboh7y+TyKCQKPwTQpMFsnMXIDl5eninhuhoshsbsAxDWtq95xU5CKO175SxMiyIWYB5UfPQbevGJ7c+8bTHlDASrElfgxfnvYj7E+6/rQhpt7XbY+sk6LlD1CH4dv638WL+i7fvgTtJ4HkeJe0lnkIlQZ4jIDc8F2ujVmLNqQ7M/MNeMOYB/WNaGvDjHwNPPTUmTeJto79/aDGSv/O0weCrA503j4qW3n+ftNWXLvk+f9480WoqNXVKv8KkREo5jvShXV3+je0Fnegkt20+fPgwvv3tb6O6uhppaWn4/e9/j/vvv39MkdJnn30WBw8eRH9/P9LT0/HSSy/hmWeeGfE10+n7e42UeqXl+z45gPcCm/BhKnApCmjWjT0FJ3eRsbzeRtEQNwvYpECvYiCqKQOcLMZFaAEqfFK4KBUfaAdCLQyi+oD4Hh4pPUBaJzCnhR4DQBe0p58mT8XRdJTDoLW/Fbuv78aO0h0403DGc7+EkWBF4goUZBdgbfra4bu72GykK/Imn9eu+c4wPV+QAdLSwM+aCdesmXDkZsGRnQ5HkH4IqRqW5NktcFRXwnmjDI7KcjhqbsHhtMEqBRr0ZJXVpGfQEihFl9zph34CSokSOoUOapkaSqkSCokCbt49Iun7IhA8BsywZG4shG60iJx3xG3CpHHQfX32Prx+8XX894X/Rre1GwAQExCDlxZSS8xJa1lbXEy603ffFW1yDAbgueeAF16YeOTHZBrqaTtYmhIeTgRVIKlZWXfeL3IQRmvfyYAR23cmrcSSuCU+v4XT7cT75e/j9Yuv42TdSc/9maGZeGHuC3hm5jPDFvH5Q2NfI3577rd4s+hNj71aQmACvr/w+/jq7K/eE61R3ZwbZxrOeIiodyMClmGxOG4x1qStwZOqWUj6ww7grbdEffLs2cBPfkJRxkkmPh4IxUjeUdDhipFmzRJT8AsWUNOQkSYT9fUiQT192pfUZWeLBDU3d9InYBMmpSMZ26tUok50nMb29zKmSem9QEpbW8EfPIjzR/+G7cbTOJzAoyaISOSopJEn7ScLgGMANwPw471W8BTRVLmoiMlgBcL7gZg+IMEIzOiiqGpCLxBgH2WT1Go6OWzZQjPpeOq5zfGc3xTpcORuOALY2t+Ki80XUdRShMY+UVPJMizi9fFI1MYi2q4Ab+yGo6cTjt4eOC0mOFie9HkDw8kCDikDh0oOh1IKp0xCz2E4z2d/3sGAgZSVelKSHM/Bxbn8RmG9oZPrkBKcglh9LAwqA5RS5dgJ4W3eP6WtX6cY/Y5+vFn0Jl45+4qn4CxEHYLvzv8uXsx/8baqtX3Q3U09tV9/nQriACKIa9ZQYdSyZbd3UbVYiAwI8pLz5321agBdDJcsEUnqzJlTR1QG4HQ7cbH5Io7VHMPxuuM4XH14yHNmBM/wkNDlCcthUBvG9N4lbSV44+Ib2Fq81UMotXItns19Fi/Me2FE3eeNjhv49dlf493idz3njZywHPxo8Y+wKWvTuPxKpwJWpxWfVX+GfeX78EHlBz5uHEqpEg8lP4Q1aWvweOrjCK1pA37xC7IrE4jgkiVERh9+ePKj5Z2dIgG9cIEmRL1+sjSxsWIEdMGC2y9Gamsj54o9e8hazbsoKDlZJKj5+ZMy+Ro3KbVa6X/e1eVbtCiTiUR0OLvAzzmmSendIKU8j86zh/Hm/34D78urUR4C9Msx7qjl6J8DyNyA0kXazQA7RU6DrYDBAoRYgFALeYa62QHCJmfh0CjhUCvgUMrhVMnhUEhpyCVwyFg4ZCycUgYOFnBIeDiYATIHF5ycCzXGGoSqQ33IpWBu/XmGD6lyA3KHG3KrA3KLDW6QY4FNSsVb/XL/UW2FRIFwbTgitZGICYhBbEAsDGoDFBLFEJI2mMANR+44nkOtsRaV3ZWo7KzE9c7rKGsv8/QKHwyVVOXpMFPWUeaxaHow6UH86oFf+VTVT2P8sLlsePva2/jVmV+huoc6v+jkOrw470V8d8F3Ea4Nn5wPcrtJ2vPqq3RhFZCTQ+T0qacmp9DPbieyIJDUM2eGWtno9cDixSJJnTPntlO7Ls6FouYiHK89jmO1x3C6/rRPgweA2nc+kPSAp0J+tPado6HX1ou3r72NNy69gfLOcs/99yfcjxfnvYgn0570uFacaziHX575JQ5UHPA8b1n8Mvzwvh/ikZRH7qqtU7e1GwcrD2JfxT58cusTWJzi7xWkDMITaU9gTdoaPJT8EEWPCwuBl18moibgkUeIjA4UuEwK3G6Kyu/dS/URN28OfY5aPbQYaSxa/Ymip4eKhffsAQ4d8p2ARUeLZv1LlkzYrH9MpNTpFImoP2P74GD/VoR3CS+//DJefvllv48tWbIEH3/88YTed5qU3kFSKv03Bm4h+sljYiTUX8HS5xAMGMglckhZqSedKpPIIGWlkLMDKVYhncpIIbM7ITfbIO+zQNZrgrSnFzKbE9IBjV2fHKgLAm4FA0avCbQcEqRr4jFLn450RTQULh4SpxtSpwus3QnWMTCcTrB2O1i7E4zdAcbhAGtzgLHbAYcDnN0Km8sBG+dAH28Fy5Hu9lIUtUzt9+PbHKAIIP2nlxdovD5+whcrofNRSXsJituKPcvKrkq/tjkMGCQHJyMnLAe54bnIDc9FRkgGTtWfws9P/NxjND47YjZ+9cCv8GDygxParmn4h4tzYWfpTvzi9C9Q1lEGgCJTz81+Di8tegnxgfGT92GlpcBrrwFbt/pe0F54gQz5c3Mn77OcTtKhCiT19OmhVjsaDenHly2jMW/eqObmbs6Nq61Xcaz2GI7VHsOpulM+fsYAVcjfn3A/licsx/LE5WNu3zle8DyPozVH8frF17G/Yr/n/xWpjcTyhOWo6qnChaYLnuevSV+DH973QyyIWTDp2zJW1PfWY3/5fuyr2IcTtSd8pAyxAbFYk74Ga9LXYEncEiLWPE9SsZdfJv9PgAjP+vWkGZ0zZ3I2TPAXff99Ir0dHb6Pp6f7WjJlZ09+p6axor+fzPr37CGi6i3xCgkRzfpXrqTjmePo+zQ2+h/HjwOPPQZbYiJqCgqQGBMDpUJBRFMioSisxUISmsEFSwEBFBUdh7H9nUR3dze6u7v9PqZSqRAdHT2h950mpXeQlDI/YyjPPo0vHJRSJbJCs5AbnouZEeTBmRKc4klJSxiJz9I7re4PRpsRJW0lPgS0pK1kyEVaQLAqmIhnWC5ywomEZoVmeTR0PM/jg8oP8OMjP/ZY4yQEJuA/l/8ntuRs+VxaNH1ewPEcPqj4AC+ffhmFTeQhLGWleDr3afzwvh8iPSR98j6spwf461+BN97w7Ry2YAGR002bJj/t53aTTtvbTaKnx/c5SiVtg0BSFywAp1SguK0Yx2qIhJ6sOzmkwC5IGYRlCcuIhCYsR1ZY1h0/Vht6G/DGxTfwxqU30GcXyTfLsHgk5RG88uAryAjNuKPbBNB/urS91GNkf7nlss/jOWE5HiI6O2K2SN45jgjXyy9TyhwgEvj008APf0gk8XZhMpE90/vvU0TUuxNTYCCwejXJTe6/f8K1BlOO/n4ip++9R8e1N2mUSIiU2u1DiwT9wBYfj5r/+R8khoRgTIpSgbQOHlLp8I95D5a9ZyKq48VdIaVf+cpX8NZbb3luf+9738Pvfve78W35JOFOklL1jxhY/R2Rn89jZxqTAAYMJIxEuAGe58Hx3Ii6T6VECZVMBbVMDY1MA61CC6VECZnEPwHutfWirKPMoyWTS+SYFT4LWaFZkEspWj34Nd5LKSsd9jGBYN/N139eCLUQfXv59Ms4WkPpdgYM1meux48X/xhzIicpMgUQ8Th6FPjjH6n7jaCZ0+uBZ54hgjpCi8Db/uyyMrqQCyS1vR0cA5SFAscSgeOJDE4kSdAt95X1BCgCsCx+mScamhuee1d1xmaHGX+58he8cu4V1PeSdzDLsD6ZiZywHLww7wU8nfs0tPKpbRvp5tw423DWQ0QFeQhAx9LiuMVYk74GT6Y9ieTgZN8Xu1xEsF5+mSLrAE0WnnsOeOklj/5/wujspAYOe/dShzFvi6aoKNGKadmyO1O1PxIcDjLcHy7C2dhIbavH2j1QqaTvmJlJ3Z9iYmjI5UBvL2x2O2pycpAQGAjV4BbYDEOD5/13/5sIGGZs5HUksjuW6KywvZNIgK1WK2pra+8MKb116xYqKirwk5/8BL/4xS8AAC6XC7/5zW9w4sSJUV49NbgXCp1Mtj4UHtuK48fewsX+ClTJ+tGp4mEZqJDnGUwT12lMYwSMldiyYGG3mtBk70C6Jh4KpRYSuWJM5HfY50yASDf2NuJY7TGUdoi2Rdmh2Xgi7QlkhGSMi7SP+pzOLkje2wPpO9sgqWuAZKBphiR/PiT/8I+QbNwEiVoLlmEnNRXO8zxudN7AsZqjOF7yIY43nUEn7+t4obUDS+qB5XUMlqsyMHvWo5AsWw7cd9+4eotPNrosXXit8DW8Wviqp4NRqDoU313wXXxz7jdR11uHNy6+gXdL3vXoNQMUAfjyzC/jhXkvTGr02+q04kjNEewr34cDFQfQYRHT3wqJAg8mP4i16WvxeOrj/i3y7Hbg7beBX/1KjJ7rdMCLLwLf/S45K0wUQkX7++9ThyVvsjVjhqjHnDfvzqWgrVagqWlkwumvv70/SKWkKxVIptAZUHB0OX3ap3ENZDJK7a9bR6l+iwXYtg3u3btR+bOfISw6GgbhfYODaWg0vqTU7abhconrYx2uSazdGI7YchwNp5OOrfj4Se3g1dXVhfb2dqSmpkIyqHhy0knpiRMncPz4cbz11lv4yle+AgCQyWRYsWIFFiy4O1qce4GUjgUmuwk3uypx9dZpXL32KSoaLqPO3Y0OmQMmGRXZ3FHiKkyQ+BE8TO8wkZYwEmgkKqhkSqhlGijlaqikKiikCiilSo+1klQiRbe1G/W99ag31sPBidWNeoUe2WHZyA3LRaQuElJWStHMgWiNi3N5Crecbqfntve61WVFl6ULXZYu9Nh60GvvhcluGrainwHjSfMzDAMGDDiOgxtuuDn3XbF6ClIG4amcp+Dm3HBxLrh52g5he7yXnsf9PDbW57g414iPTePO4HbILwsWLt4Fs8MMk92EXnvvkGNewkhgUBsQJg1EhE2CkE4rZG0dkJjMIlkecAORhIRCEh0LSWw8JHHxkKi1PqRfLVPjOwu+M6nfv763Hr8991v87+X/9ZDNpKAkvLTwJXxl1legkvlWfBttRrx19S28cfEN3OwWi3ZWJq7EC/NewOq01ROqvjfajNRRqZwKlbwLvAKVgXg89XGsSVuDh1MeHj46azZTl6NXXhHbcBoMRERffHFiaXOeB27cEIloUZHv43PmEBFdu5aihpOdQjaZhieaAhEdqaOTNxQKkWwON8LCRibTQovvPXsoQnxd7BoGlvUh6S1f+xqMzz6LsLg4qIODwUyFWwXP02e63SMvXa6RHx8PdLrbj7KDJrEWiwXt7e0IDAxEpJ9OW1OWvrfZbFPX/3Wc+LyQ0tHA8zyMNiPqe+txvb0UZfVFuNlcguq2crRYO9DDOmCV8uMzwb/DYDi6GEkHLkzsQF8AZuDo4hniwhxDbgFuhsj4nfxOapkaFqcF35z7TXx55pcRpAxCaUepT+FRVXeV3/Q7y7BINaQiNzzXp/hotOInnufh4lx+CbD3utFqxFvX3sI7xe942gLOj56PZ2c+i2hd9IivHbxuUBvw3QXfnardOG5wPDcu0utyu1BWcx4fHPsjDvUWoVUhkqMgKxDEK1CtFtOLChcwrwlYXE/NJRgMHGNyGdzhIXCHhcEVFgJ3aDDcIQa4g4PgDtTDzfBjItajkfs+Wx8quyrR0NfgOXa0ci1iAmIQqAgEB27s7/93RO75n01OurO0vRS/PvNrbC/d7tlPsyJm4Uf3/QjrM9ePSiw5nsOR6iN4/eLr+KDyA096PyYgBl/P+zqen/P8qK4LRpsRByoOYFfZLnxa9akPoY8JiMGaNNKHLo1f6nEA8IueHip6++//FgladDSl6J9/fvyODBxHxvPvv0/Eq7JSfIxlyXVh7VpKzyckjO+9BfA8YDSOHN1sbPTfu94f1GqykRqJcBoMk0+ay8tpH+3dS4SdYYDly4Gnnwa/di1arVYYjcbJ/czJAs+TrMFuF4c/vSzDUKRX2Hd6/aTq1AMDAxEREeH3mjhlpPS//uu/8Pbbb0OlUoHneTAMg8LCwvFv/STgi0JKxwKe59Fp6URDXwNqempwvb0MlS0lqO28hSZTMzodPeiH854mrlMBRiDAA1FfDrcvmQhntMiRxSBXnYjcgFTkGDKQEZYJVWAooNXS7FKrnRRvR6fbiTeL3sT/Ofl/PG1B50fPx68f/DWWxi+97ff/PKGypRTb9/8nttcdRIVSTBUH2IB1fVF4aubTWF7wY0gDAnGj4wa2X3kb24rfRZVZTMEFuaTYUKPClnNmLK3hIBnu7CaV0kU4ORlISaEhrCcmks5snGjqa8Jvz/0W/1P0P55IXZohDT9a/CN8KedLI5ORMWAIuXc54D56GO63/gr3Z4fg5jm4GcAVFAD3+nVwb9oId1KC5zUNvQ0obC7EpaZLuNx62XO8eXYJK0WaIQ3ZYdnICMlAUlASWIYdUzTdh9j3GeGur4W7vg7upga4e7rh9pqMuljyVX6tNI7+SwEBtPReH7z0c9/p3hL8quj3+PDmh57vsCJxBX543w/xYNKDE5Iz1Bnr8MeiP+JPl//kSbXLWBk2ZG7Ai/NexKLYRZ737bP3eYjooapDcLjFrE1maCbWpa/DmvQ1mBM5Z/RtaWsDfvc7KnITCouSk4Ef/Yh0xKO4H/jA6SQt8Pvvkya5qUl8TC4HHniAiOjq1RRNHAs4DqitpWhiWRlFXP/2N+qm1Ng41GZsOOj1o0c49fq7X+jT1ETniEHyCLfbDefg5hR3Az09Ykvty5eBkpKhfsQsSxOa0FAini4XaYcbG8Xnfve7wDe+MSmbJJPJhqTsvTFlpHTBggU4e/Ys2HvA5uDviZSOBRzPoa2/DQ19DWjobcDN7puo6CxHTXslGnsb0WHrQh83xpMHTx6o4SYy5Fe6KT3HM4BVSpZKXSpqZTrWTlWDwQBQ8lIoeJZaMLoBCceDcfNgeI4KhxgeroELmUNCn+2YZMcRlqMIW0Ep8OVrQKSfZlH+X8iSDkmppAiGXi960gUFka5OuJAKZHZgnddqsbvvHH5S9ipumWoBkHn4yytfxvqM9XfVJ/FOoqm3ETs/+jW2le1AkUzU2ymdwOPtejyVvAaPbvkplHFJMNqMuNlFada8qDywDAue53Gp+RK2lWzDzrKdHuN7AIhShWOzfhGess1AXp0DzK0q0uVVVY3ca5th6OI4mKwK69qRC2I6LZ149cKr+H3h72G0GQEAcfo4/GDRD/CPs/9xSBp5UtDcDPzlL8D//i9pBQE0BADHHknD8fnhOMbWoba3zuclMlaG+THzPdXxC2IWTM22dXSILXpPnKDuVhMsCuEY4OAM4JeLgbMDtqYMD6yrVeGHtyIwzx0+PMEdjfQK+kAAdpcd711/D69ffB3nG897Pj87NBvzo+ej1dyKz6o/8yGiGSEZ2Jy1GRuzNiIzNHNsX6iuDviv/6KGCgJRyMkhj9ENG8Zur2S1Ap9+SkT0gw/IM1OAVgs89hhpJR99lL7zcOA42qayMhreJHQ04mkwjEw2o6NpP09jfBA6ZZ09S+PMGd+ItwCJhK5HdvvY/1+xsZ7zxVRjykjpP/3TP+GHP/whYmJibnsjbxfTpHT8cHEutJhaPMS1rrcOlZ2VqO6pQkNPLZr7W2HhbKO/EYjMRfYDIf0AGDKd79BQK9TBz9PbiWhwA88zj2Pi7w0ZK0OwKhgGZTCCWA0C3TIE2HnoLG5ozA5o+h1QWuxQ9tuhsDpgd9pwJciGwnAXbgX5SiC0dmrj2u2VvYjtBb5ylUZSz+BPnxyciAf+5UGgcOAvFNYP/OwE8PxlQCZXUbeTgAAiuXo9kVu9fliCO+x9SuXdjzj4QZelC3tO/g+2XfhfnOTrPL+JhANWNMmxLCwfcYseRaOeQWV3JW523URlV6VPkUhMQAw2Z21GQXYB8iLzwDAM3JwbJ+tOYlvJNuy+sdtDCAEgJTgFT2U/hS05W5AenEok7tYtGlVVvuveFjj+EB7uP8KakkITkgH02fvwx0t/xG/O/cbTDCFME4bvLfgevjn3m9Ar9ZO2TwGg2dSM49VHcez0OzjWeApVSl8SIeVZzAvJxfKMx3B/wv1YFLto8tqojgdGI/U/N5kopWsy+a4PXppMcJiM2B7chF+nduB6EKXo5S7g2WvAD84CqWOUIo4IlqX/ziDCeircjn+PqcQpZRu4QX+nJHk4no54CJviH0NW9GxfgjtS4Ka8HPjlL6ntrFDgMn8+8K//CqxaNbbCIqORLJvef58snLxJo+DLuXYtFe8MjvwL5FMgncIYiXzK5WQ5lZlJIzHRl3DeTpemaYjo66MJxqefku1XRcXIk+jbQVKSr/3cFGLSSem8efPoxO92w2g0IigoiAo7ptP3XziYHWZsL92Od0vexen60z56tkBFICQMC6OtF25MrIhH6gaSu4HcNiCvBUjrABwyoFM9dHSpxHXLBFsEKyQKGNQG6BV63Oi8gWhdNNrN7UMLOcDCDVEovqLXgK/WBmHdLSlUfVY6WdvtlB5zOsVKxjGiNAz40QPAwVS6rXEAL50Fvn8W0DlGfu2EoVLRBdL7QqvX+ye1gwmuv+UEjbH7Hf04ULQN246/ikO2MrhY8bQT0Q8EyANg0kjR4vRv6CwgUhsJs9Ps4zmZHJSMguwCFGQXIDuMrJLsLjsOVR3CtpJtOFBxwKPTBajhwFM5T2Fz1mbE6mN9P4DnKbI3mKgK66MVYgQGDiGr1oQY/NV1Eb8u/SPqBqKVeoUe/5T/T/jOgu8gRB1Cn2u1Ulquv58i7QbDiBKRtv42T8ekY7XHUNnlGz1hGRZ5fCSWF/dhebEJi+sBrQPkL/m1r1HkbDxp4UmCw+3wFFiNhn5HP/50+U/4zbnfeFoT6+Q6fDPvG/hO7vOI4rUjktkxPzboMtgvBz5MBXZlAR/NAOxeh73MPVCcOoAHq4AXC4HHK+ErF1m/nojhqlXiZKWoiFqB7t0rfuYDD1Bk9P77R59EtraSif3evWSe751KjosTC5Xuu4/+qxxHkTB/kU+z2f9nyOVAWhqQlUUjM5OWycl3zxj/iwSOo0lxaSk5AJw8Sb+H0Ti5FfiAWIWvVNJ5PzKSzk3Z2dSUY948ICJicj9zGEyb509jUtBt7cZ7Ze/h7eK3cbbhrOd+rVyLx1Iew7KEZQjXhKOlvwWNfY1Dht09thme1E3tUxN7gMwOIK4PiOkDok20jOmji0G3F0nt8kNivYlsh8b3YjJRSBgJ4vRxmBk+E2mGNIRoQhCiDoFBZYBBbaB1RRCC7AzYllbyyKuvJ11SczMajfX4aeAV/C2iFRxDEcGvlSrw09MsInq9qik/D39FqVSMBAnkNiBgCKnltBpUqe3YzhXjQF8hrjHtPkR0JAQpg5BqSEWqIRUzgmfQOhOClCOXodu+F7ZL53HoH5dhR4oNB+zFsHgRzuywbBRkFWBz9makBKcAIGKzv3w/tpdux6GqQz6TrKXxS7Elews2ZG4gcjgajEZRAjCYtApV0sPAKZdg+1wlfpFvR3kgbYPayeBrZQp8/5QbMV2DtGosSxGv8HAgLAydkXocj7TjmK4Lx9l6XHf5fh4DBrMjZ3vS8YvjFlM01u2mSNof/wh89JE4kQoJAb7yFSKoM2aM/t0niC5LF07Xn8bp+tM4VX8KRS1FcHEuPD/neWzK2oT7E+4fUozUYe7Aq4Wv4rXC19Bjo5RFuCYc313wXXxj7jcQqAycvA3kecBiQX93Kw6Wf4Bd1QfwUfsZ2LycPWYwIdjsSsPG/nhk9UjxGV+F1/UVOBjU6Yn0x/Ux+MZF4LkiHqHewUaJhFLyVitFvQSsWUPdl/LzR96+qiqxYv7cOd/zRGamWKhkMBC5GRz5HI18CqRTGNPkc+JwOoHqaiKap09TdX9LC9DbKwYyJgMMQ6l6lYomPNHR9DvOng3MnUu/YWDgPZUpmzJS+tWvftXntkwmQ0pKCp5//nkE3mFvumlSemdxq/sW3il+B1uLt/oYP8cExODpnKfxzMxnfLRUPM+j29rtQ1IbehtQ1lmG8o5yNJmahu1y5A8ah0hQo/vEde8RYhFrnHgAFj8R2C4v4iqst2iBZh1JD9wT1MiyDIsgZZCHqAbIA9BoakR5RzlcPJGQBTEL8K1538LsyNkwqAwIVgX7FsDwPGnLWluJ5LS0iJYpbW0kVO/pEVvbWa30fKdT9MabrBPfKOABtGuASgNw00DLCgNwNRxoCBx5P6odlHKd0Q2k9skww6pCqkOHVN4AgyJQlB90dVGBRV2dX9JulgEfLA7FjrlKfKxpgQMi4ZwbNddDUGMCSCvRaenEnut7sK10G07WnfQ8V8pK8VDyQ3gqewuejFwOrdlJ+7mnh4iosD7SGGOkg2OAfenAy0uAooG24DI38OWrwA/PACn9csDhQLeKpB7HE8i0vsRPAfjMVmB5DXB/LbC0U4OggDAqXomMJDI7QGg9S44jgvruu74FMCtWEDldu5bIygTB8zzqeutwqu6Uh4Te6Lwx4mtC1CFYn7EeGzM3Ij4wHv99/r/x5yt/9kS3U4JT8INFP8CzM5+FUjq5zi9mhxkf3fwIu67vwsHKgz4R9ZTgFGzK3IRNWZuQG57rV+dd01OD/7n0P/jzlT97PFHlEjkcbgeuOZ9D7ruH6fj1hl5P3bmefx7Iyxuaqud50t0KRLS42PfxWbNohIZSVF+IgA5HPmUy/5HPlJRp8jkWWK107q2vJ9lFcTEVF9XV0X9+jJ2hxgSBbGq1NGmMjxcjmgsWUDT8HiKa48GUkdJvfetbmDlzJvLy8nDlyhUUFhZi7ty52L17Nw4dOnTbGz4eTJPSuwOe53G24Sy2Fm/FzrKdPtq9vMg8PJP7DLbkbPFvBj0IHM/hfON5fFDxAU7UncDV1qs+FwaAIkAjdUnyhtztn7B63xduJuuq4WCSAYeTKW13Ih646S+ANlAIpnYANhnQfxtZUL1EA4NMjxBFIAzKIBhUBoSoQ2HQhsCgDUNIQCQMujCEaEI90dkxXZxdLiJLLS1EcltaiIi0tADt7VQM0dsrElybTZQnCNFbjoNRCdwM9iWflQa6b7B+eDCkbiCuF1jYCCypA9K6gBldQJRp8q1wjUrg/XRgRzZwJMmXFC/pUKOgKQgbmgMRZqe0ZoPchp3RPdge14vLIWKUUuUEVlcAW0qAR24BivFeb6RSSr97D72eImZuN+1jkwl8Tzc+kzfi5YwOnBiwCmQ54NFbQJMOuBYx1DItq51I6PJaYFktFSFOGAIh8SbSUikVP2Rl0QXRYKCh0dAkYdDgFHKU2htwurcEp7qu4HT7RTT2D40YZ4ZmYnHsYiyJX4JFsYtQ01ODXWW7sOfGHg+ZG4w5EXPwo8U/wrqMdZPaGcritBARLduFgzcPepwSAJKCbMoiIjozfOaYCw5tLht2lu7E6xdfx8XmiwCAHRfjsfngQHGZREITg9ZW30ljVBTwxBM01GpRI1otTvrBMJRilctpUjoa+fQX+bzbXZjuNbjd4vmwvp4i2Ddu0LK5mcim9Xb+XCOAZek/lZ0NPPIIyTwSE+9cgwIBvb10TN0hLfCUkdKHHnoIn376qef2gw8+iM8++wzLli27452dpknp3YfNZcPByoN4u/htfHTzI09qVMJI8EjKI3h25rN4IvWJMVf1ujk3rrZe9ejkTtadRL/Dtxw+QBGAeH28J8rYY+1Bk6kJbf1tYyKvLA9EOBWIssoQ3c8guseN6B4XonvciOp1I3qAxAbYiTi1aYBPkym6dSiFHAe8IXMDec3Al64BRhXwWj7QNlBkGtYPLGqg9+oeFJ3tUU3cp1XjZGBwSGFwShHiksPAKWHglQiBGoaiGzDMXAADp4DBrUAwr4SBUyCAl4MR2noK7fEGhoV145bMhJuyPlRK+1Ap68VNaR8qJUZ0SEYofOMBKU/uCAK0dmBVJfDcFer2I+Fwx6UJ7RpgTwawPQc45eUNzXLAyhoinGvLgcCBr1ZhoOduyyHiLSDQCqy/ATxVAixrlkEiV5IOU60WJQtCMVpwMF1sgoJ8JQ2DdbvCbYEUut04U7QPvzj/XzjYc8Hne6Q79FjeH4LlxiAs69IgzDQQSfceQrRciJhPIewS4FIU7dNTccDZWDrmvSF1A3ObgcWNLJa0KbCoS40QqH0J7cWL4Nevw7FwK35kuIKLktYhnxWmNGD9jCexadaXsCRh2W0RU4vTgo9vfoz3rr+HDyo/8CGiSUFJ2JS5CRuzNvr2mR8vbDZg61Zc/Mt/4u2gevzmU0Cu1JDlzj//MxHQ7m6SUOzfTxHr4QjmSJDJyIrJX+RzMsmn0KFImKT6W451fSKvmcj7Ohzif8Hbs1PIIt0NJCeTRGPxYvI9TU+/c9FOnqeJ0I0bQ0dLC2mT1669I5syZaR048aNSEtLQ15eHi5fvoyKigps27YNTz75JA4ePHjbGz4eTJPSewsd5g7sLNuJrcVbUdgkFr8FKAKwKXMTnpn5DBbHLR5Xv3On24miliIcqzmGo7VHcab+zJBIapQuCssTlmNp/FJkhmSCYRg0mZr8alybTc1j7rKkkWkQrYtGlCoM0WwAoh0qRLZbYW2qQSHXgDPBZnSoeL8hP70N+MlJ4J/PDx+VdTNETL2lBIImdqT1icoLJG7aLrWLiDTPEMnoVwCmUSK9kSaKcEaagD4FcCMUqPVqKqN2AE8ORBcfrqKI9b2CxgAqWNmRDVyMFu+XuygSWlAKPFFJRUA8gMuRRE53ZAPNXqeVSBOwuRTYUkpm/bd9WVEohhDWq+E8DkT0YsaZctyfvxGR0iB63liHTOb/gid0i+E4IrGdnTQ6OogodXeLBujt7R57ol4FEc9T8cDpOKAweqhOW2sXI+GL64H5TZRFGA4cAxxIA351H3B+oM6M5YB114H764ArkcDeDPpvCAg3M9jQoMOmrgjchzhIgoJ97deE4XXbqlPik7Yz2HX9PXxQ8YFPZ6XEwERszNyITVmbxuYj6g88L3o//vGPwB/+QPsOoN/02WeBL32JosxOJ0XlSktFW6z29tGlNjodkdnoaJrwBAfTscLzQ0nZWIjjeJ/j72sDuBVMk/vkKXIo+UJDraZJq3fx6XjXBzs8uN0kJ/BHPkcy/P/tb4Hvfe+OfO0pI6Vutxv79u3DrVu3kJKSgjVr1oxomDqVmCal9y7KO8s9+tP6XtEHLSEwwaM/TTWkjvt97S47CpsKcbTmKI7VHsO5xnM+XoEAEK+Px4rEFVTwkbjcoycEKBLbYelAU18TmkxN4tLUhGZTs+e2tyRhNLAM6+kCMxjRvBZPtAdh7Q1g6Q0LlH0Wms1PcNbOA+hVDtXECusdaiJhTXoGnWp6rkXKD7GyGQ/UvBRKSGHnXTCz4oWK5YCMDmBZuxIPIBnRUWkwKIM9UVmWh9gTWhgWC3nsVVb69rCWSEQz++ho337Sg4eQHtfrKfXEMGI/Z4eDpAh9faRHbWykiEBPD2C1oiqQx45sIpylXhpNtYOIaUEpEVWliyYNp+KJoO7O9CVJyd1EwJ8qATI6J75v7xoYxi+pbdazOBXpwOlgM07pjSgOHtqQI8wmwZKeACzuUGFJkxQzm92Q9ltIBjKKpvZIIvCdR4GyAWWPwgV8pVyJl0oDSEs7QPScThuOhvZjV5ob7w8iqJEmYP11YFMZcF8DkSMBNinwSQpNQj5I9ZXVxPex2FSlxKY6LfJ6lGAkUrqos6yYNQB8CfxIRO5uRd7uMJp1wMUompBcjKZ1ITrO/z6YJkJSKS3Hsy64AzgcYjciq5Wix319lF42m+mxqYZCQW1WV6wAli0jzW5VFRUsnTpF1kwdHUNfFxREllihoXQ+kst93R0Ehweh0GkyIXRnAuiYHI7KMYzoIZuYSEWNmZlUfJeaOqrv8mRh0klpXV0d4uPjcd27P+wAMjPHaBQ8yZgmpfc+OJ7DqbpTePva23jv+ns+hU1CG83NWZthUBtGeJfhYXVaca7xnIekFjYVDmnJmBKcghUJK7A8cTnui70Pconc0/pTaM/pc9vthMlhQlt/G9rN7Wgz07LT0olOSye6rF3oNHei1947Zq2rAIVEAa1ciyBlEHQKLeSMjBoHODlIzBZwfb1wWfrhctjg5F1wgfM0D3BKaCkMJ+t728UCrlHmh0onORqEmil1rXYBcp4FL5WiXyNFt1aKLjWDDpkTRljH/f0ESBgJglSkjzUogmDodcBQ2wbDrWYYzDwMViDYxsCQkQfDw2tgeGwDDGHxk17I4gOHgy4uhw8Dhw+jtPo8dmZw2J4DVIn2oghwy7CWyUCBbiFWmsMha+uAo7MNh3AL2/UN2B9hhEUq7peZbQyeKmVQUMIjzniXHRQEYuUd+RPI/CDwACpCKA1/Oo4IeE3QkKchpYsioEvqKRqa0j3+KHGTDvj+w8BOcuyC3ga8cBH49gWyBBsJDgmR2feySDPsLReI6gPW3ABi+6gQ7IM036h/nBHYOEBgJyW6PRlgGJpM6fVUzKLTDSVudjtFUpubiQx5/34aDRGL9HSaxKlU/snf4OUY7jPyVlwyXsfFnjIUdl3DxfaraDK3DPkKCokCBdkFeGvNW0O/n8NBE86WFnG0ttIEsaaGCr/a22nyOJnwbmQil9OkoafHv+9qSgqwaBGN/Hz6TS5fBi5epLas164NJZEyGRFX4XWLFlEUe6wY0JL7kFXvpfd6Vxf99oL2v6+PCPtkW0a98QbwzW9O7nsOg0knpb/+9a/xL//yL/iHf/gH3zdgGPzlL3+5va2dIKZJ6ecLFqcFByoOYGvxVhy6dciTRpexMqxKXYVncp/BqhmroJBOvGqo39GP0/WncayGNKlFLUXDRjG/qJAN+MDO6KYK99SB4qLUUQqMbFLqlrM9hzwavdO0me2kjc1uB3ipBF2BcnQFKmgZIEOXhkW33IUuZ59PmnS8UMvUnmIuYRmsDPa57blfFQyDyoBAZeDE9IZ9fcCJE+APf4aiywexQ12NnVlAo5enfYhThg2KOSjI/wcsWflVsFIZzA4zDlQcwLbSbfjk1ic+k6DFcYuxJasAG+MfQ2g/Rxfn1lYiFh0ddJHp6KCLTm8vbYPZTBccP0VmkwknS6nx03EiEe3U+D6H5YBZrcDiBmBJA4v7miSItA8QF5YlwmG1+pIknU5MLwO03W434HbD4XbgvxPa8POsDphlPFgOeOGaDP/njAJBroH3FN5r4DVwuehz/FyaHBLgcBKwPZtS/P68i8NdCjxlT8NmSS7yXeFgnC4xEidoDu12IivWAf9hi0WMcJnNk6+BTkujivuNG6nAZTxyAW8d6ief+JI5rZaKZQQ/1CA/s4phYHPZcLX1KgqbCnGx+SIKmwqHeN0ClAnKCs1CfkQe5qlTkM9FIrtPCVlrBxHO5mYqFqqro2N7IjrZkSCRUCQzIIAikvHxFOnLy6PisaYmoLCQuh1duTKUuCkUVL2+aBGwcCEVjVVXiwT08mX/xDU01JeA5uVNblGQ4InsL+Xe2Dj863Q6Op6Sk6kaPzKSnDU0GjHKLAxvZxChqFUobLVYqIHDt789ed9pBEypTynP8+jo6EDYWPvmThGmSennF239bdheuh1vX3sbV1qveO4PUgZhc9ZmPDvzWSyIWXDb7TZ7bb04WXfSUzh1rfUaePCQslJIWSlkrMyzLmWlkEl8bwvPYcCgw9KBxr5GD5kOUYcgOywboerQIc8X1l2cC+Vd5ShuK0anZXLyvFJWijBNGMI14QjXhiNSG4kobRSidFGIDohGekg6YgNioDY7RBJUU0PG3WVldPHo6gLMZrhcDhxJ4LE9h6JQ3tX06R2Uni4oJYI7VtikVNQlaGC7VECXhkFXsApdkXp0R+jRFaSk+3gzumw96LZ2j1nr6w+BykCPxZY3YfVZDrpfr9T76pubm8EdOYyzp7djR89J7EqwoMOLtEX1M9hkS8aW1PWY98g/gklJQZe1G3tu7MH20u04UXvCE1mWMBI8mPwgnsp+CmvS10CnmGB7RUHy0NUluia0t5OOsauL1ru66MLT1+djE9bP23E+3InT0W6ciuVxPmYoiVM6SQMq6EEXNlJR3mTgaCLwrcdIfwwACxsZvHFEiVkmDW1/ejpdYPV6IrShoUQYQkNJO8lxdAHt6QE6O2FvbcJn1lK8p6rGvsg+n2OV4X2LBmN6gQ03GGzqDMd8TSrY+AT6DLVaJNe9vWL1dX09fc5YoVBQcZtKJab5zWbaXp4n0nnffaKHaFLSJOxREKE+dowI6oEDdEwIkEiApUuJoK5eTanaAbg5N653XPeQz4vNF1HcVjwkqwQASZIQzHOFI79Xi3mNPOZc74GmvmXyI5uC/ZFGI3ptzphBXptz5hDx1HvNEJ1O0uIK7TbPnvXfIjMykvb9woUUEbVaqUf8xYt0DvSnsdTpiHTOm0c+n/PmkZxoMgqShAYGAuEUPGQrKkbWe+p0RLqF4kmdjo5fhhEnU96TqsHrgyeP/vCXvwCDAo1ThSkjpTt37sSrr76Kvr4+XLlyBV/60pewY8eO297giWCalH4xUNpeiq3XtuLdknfRZBK9E1OCU/BM7jN4OvdpJAVNzkmd4zkwYMZMdt2cG29dfQs/O/4zz7bNipiFXz3wKzyU/NC4Pvtq61X85cpf8E7xOx5DcIBSYYObDBhUBiQGJiJYFQwwROKbTc0+rTZHQ6AyEFG6KM+I1EZ6lt3WbpxpOINDNz5Eu1PcljgjkdAtbaGYqU0GA4aifd3ddLJzOqekkp5jqICqSydBl06K7iAlukK16ArVoCsiAF0ReorKMjZ0OXvRbe1Gt7Xbp7PTeCH4yvonssHQ99rReuMSLrdfwRllB/q9CF1iD1BQH4CC8JXIWboRzMqVaFI6sbNsJ7aVbENRS5HnuUqpEk+kPoGncp7CoymP3lYmYCS0m9txpv4MTtWTR+jllstDiH6QMgiLI/KxWJuBJUwC8qxBkHcZRZIrFD4JURWzeVirsOHQpANeegjYkUO3Q83Arz+jlqBj7J/ggRAZ3ZVF7he9XkQ0ug/YUCnFpptyzG5ncTjOjfdmOLBvhtsnhR/bC2wsozT+/MZRUvhqNZGa2Fi6+F+/LmqfZTIqXPrhD4lQ+4NApAFfQjUV4DgiWfv30ygtBUCyjJog4OKCWBTOicDFQDOKrNV+20eHWVjkN3KY1wTkN5FrQsgoLe7HBKlU7CIUFkYEOTubCF9uLukbR6tF6eoCzp8XCWhh4dCIpkQCzJxJkczsbJos1NZSBPTSJV/dugCFgojvvHkiCU1LE4uGXC5Rh+6P8A1HBvv7xeJBwUvabB5fL/qpgkxGx7ZKRUth/cc//vxX3y9evBgnT57EypUrcezYMaxYsQJHjx697Q2eCKZJ6RcLbs6NY7XHsLV4K/Zc3+OTBl4ctxjP5D6DjZkbEaQae4pqouB5Hh9WfogfHfkRrneQjjpeH4//XPGfeCrnqXE5CAyGzWXD/vL9+MvVv+Czqs880TWlVAmDyoA2c5tPBEPGyrAkfgkeSX4EKxNXIkgVREVZg4qzmkxNqO2pRbu5HTb3CDZOg8DwQJAVSDHJkBmciujsRYhKnuVDZCO0Eb4m/w0NwN/+BuzaBZSU+L6hUHwkkJipOiEzDJwyFj0BcnQZVOgO0aArQo/u6GB0xRjQHalHl5JHN2dGt60HXdYudFu70WXpui2JAXj4MButnXSWs+1BSI7MhCFtNmwJsbjSXYYTdSc8rUUBai+6PmM9tuRswfKE5RO2OeJ5HjXGGpyqO+UhoRVdFUOeF6ePw5K4JVgctxhL4pYgIzTjto5dH7jddOHt7AQaG+H8cD9+f+td/H+ZHehXkBTgm0UM/uOMAkF9jjHLEQQNqUBEvTWkkSYimJvKKKrrj+TapGThtisL2J/mW+w0YY2pXi+2jk1MpBEb679lr0Ix9ZY/HOfRnLbVluJiwwVcbCpEofkmLur60KUaumO0diKd+U3AvIFlbO8EdLYSCZFOu51I3Zw5tMzLo0inRjP6e/j7PhUVvlHQ8vKhzwsMJAI6Zw6tm80UPb140X/UVOimJRDQOXOIJLe20jnM32huvmMNSIaQRGHdH4G8nfV7oEnClJHSpUuX4ujRox6/0gceeADHjx+/3e2dEKZJ6RcXZocZ75e/j7evvY0jNUc8ulCFRIEn0p7As7nP4pGUR3yJ0iThQuMF/OCzH+BU/SkAQLAqGP+65F/xwrwXJr0Qp85Yh79d+xv+evWvqDXWeu5P0CcgJiAGDX0NPqQGoA5ajyQ/gkdSHsEDSQ+gw9KBnaU7sbNsJ0raiSDG6GKQFpKGQGUgWvtbUdFRjk6baFLO8DS4MfITBgxC1SGIcqsR1WZFVE0Honp5RJmAKDODqPR8RD2+BWHrn4UkcNCkgeeJvAip57Y2qr4vKaGl0IbPaiWiM5VRBYkEkMlg16nQHaZDd2QgumJD0J0cha6EMHQHqdAlsaPbQdFYbyLbbe0eYkd2O1BIFEgOSsbsiNnICsvy6GWDVcFIDEpEQmCC57luzo2S9hLqlNRwGqfqTqGlf2gBSnZYtsekfnHcYsTp4yZte0fCsbIP8a2DL+K6lYjBgkbg9YPAHO9NZBggI0PsBS80dGhshLOpAUe07Xgv2T6k2j7CRERyo59q+9FgkwKHBgjqgUEENd5I5HRjGZG1SaeRcjlFqORyGgoFEQSBMGi1tC5YeQlOAE6nWIUuROD6+wGzGSZHP4oCLSiMcHsq4usDh360zE3aYCECOq8ZSOsEJFPx19JqiSguXQosWUKFQ8pRzpP9/UQkBQJ67px/+UR6Or2fUFBUX08R0Mqh2lcARIpTU+n5QqS6pUUknE1NY6vmFxw+pFI6bt1uUU9tG2HCr1DQZ8fGim4igv4zIMCXMCqVn9vuTBPBlJHSQ4cO4T/+4z9QWVmJjIwM/Nu//RsefPDB297giWCalP59oKmvCdtKtuHt4rdR2l7quT9EHYIt2VvwTO4zmBs197b1p5VdlfjJkZ9gz409AChy+Z3538GPFv9ocntt+wHHczhWcwx/ufoX7Lm+x5POl7EyrExciYTABNQaa3G87jhsruFPihJGAo7n/FfN8xRpWloPbJbOwsKHn4P88dVo5nrRbGoedrSYmuEao96TZVhEaCM8EdbhRog6ZPiIndtNKWRBD9vaCty8SSS2qoouMn19oin2VIJl6cKkUgEBAbCGG9CdEIauGTHoTotDfYQax/qu4WzTOdzsrfHZ72oHedRapYBzAoGKE1854WnVebbh7BCpgoyVYW7UXCyJW+LplBSsCh7m3SYZjY3A6dNoPnsIL1n2YXusEQAQYgZ+dRj4ylWADQyiiGJvL/1uAmJiiIimpuAYW4ddqU68nw50q8WnRJioacGmMuC+ekAiGfgNJBKKYtls47YKsqpl+CRTgffS3TgQb4NZJv5WCT30WZvKgDmtILsowRrqLqVe7RKgOJxsmAoHrJhuhA5tuMHwQHrnAPkcIKG5bePoRKZWk443PFy0NfLnget9P8cROTx9eqguUi4nIimQ1IUL6TneUdBr14ZaaqlU9LqkJFrv7aX/fFmZf/stvZ6Io0xGx0NXl/+CpcFgGFGiER5OpFqYDPT20nmntpbOQcMhNJQmWINHTMzfFdEcDyadlP785z/3XPQ5jkNHRwdCQkIgkUjw05/+dHK2epyYJqV/X+B5Htfarnn0p21mUS+UHpLu0Z+ONzrU1t+Gn5/4Od4sehNu3g2WYfHlmV/Gz+//OWL1sZP9NUZFj7UH20u3489X/ozLLZc990dqI5EZmomanhpUG6v9vjZYFYxuq9fJlAc0TsAi8989KloXjbyoPORFDoyoPERowqki9d13ge3bwbW1olMNtGiB5pQwNC+fh+aZSWhWOtHcL5LX1v7WMTsdSFnpEOLqj8gGq4JHn2w4nWLRj1DhXl1NesCqKrFtoM02pXKCDjWwJxPYkcPgZBzv2d8sByytAx69SUVFLhZojw7E6XlhOBNqxXVXC5yD5BpObqinoU6uw6LYRZ50fH50/pg7pd0WOI6IwenTnuFsrMer84Gf3U/RR4YHvlkRgP9QPorgRSup0CQ93aPTs90oQdtfXkXrRzvRyPfhUApVz3d5EdEwuwwbzHHYpJyLxdELIYmLp+riuDgq9hh8HFgsorvB4OXg9UEtI61S4OMZop+pdwFYUjewsUqBTZ3hmK2IBxMRSSQkKIgInFQq2g11dNDx1dJC6319dJyN08OUY6irmOAFWhgNXAsHHH4mM3FGMf0+rwnIa5m84jSoVJTeTk6mqKNQdBYYKMoTvKUKajUVThYW0rFx8iTt77EgLo46UQUH0+9z8yal7P35eQq+xWNBaCgRTmEYDDSZcTrp9xHODzdvjkw8Aar090c+BaeJaYwZk05Kvbs1/eQnP8EvfvELCC9dtWrVbW7uxDBNSv9+4eJcOFx9GG9fexv7yvf5pFXvT7gfz+Q+gw2ZGxCgGP64MNlN+M253+CVs694NIarZqzCLx/4JbLDsqf8O4wFR6qP4D9P/idON5weUimbEZKBjZkboZFpcPr6xzjafAZmhk7oi+qp89DGrnCEr3sWpoJ1uGqg7lhFLUW41HwJFZ0VfiOqURYp8hpcyGumC16eJRCRjxcATz9NabphSKKbc6Pd3I6W/pYRI6/t5vYx+5/KJXJfojrgMrAlZ8vEU9MCiRVsmtraKPJXXk66tqYmj9n+RAu7mnTkq7kjG7gg9m6AzA08PNBFanUFoHMAZhn5a26fyeLjJA7OAZlpBKPDkpA5WJy0HEsyHkZu7LxJ7QE/LKxWSq0KJPTsWYogDeBEPPDiKtEAP0cRh2/M/QZ0oTFo7W+lYW5Fi6nFc9u7sM8boUoDNmSsx8acAiyNXzo134/nKV3c2gp88AHw1796ioIAwBIVio8zZNgV3YMPY6w+BDW5W0zxz2qdnBQ/D6BB72tIfynKf1e1YAuQ38JgXguL/FYJ5rVKEG6Gj+3WXS+iEeDdfGCqEBjoSzhjYyk6qdfTf9VkIpJ86xaRzlu3RndViIoivfCMGb7LlJSJ6WOn4RdTagm1fPlyHDt27LY2cDIwTUqnAQB99j7sub4HW4u34liteFwqpUqsSV+DZ3OfxYPJD0LKUtjB6Xbify//L35+4udoN1NbwHlR8/BfD/4XliUsuyvfwRudlk7svbEXO8t24njtcZ/oY6AyEL020bQ/AAo8Va3BVw93I6cNuBwFRLlUSHhwI/DMM9RreZgqV5PdhKuVJ1D06d9QVHkCRbIOlIf4j6hGaiOHRFSjdOMwjvaC0+1Em7kNLSY/5NUr8jqShdb5fzyP+THzJ/T544bL5RuJ7egg4lpRQRe+xkYq9jGb/ZLY6iBg5wBBLY4Q71c5gccHukg9ehNQuchK63wMecomD2dS7y0p0GrJgD0mhrR0c+ZQYUd0NEWg2DGIhjs6gDNnaJw+Deu1S2hVuNCqBVp0QKsWaA2SoTrFgGNhZjTDNPp7+oFcIkeENgIR2gjMjpiNTVmbsDR+qed/OWVwuYD33gN+/WuyBgLoP7FlC/Ctb5HWr7ERaGyEub4KH7Wdxi6U4aChC1avJgkpXWKKP7dt7AS1SyV2QhJIaJufJjpqJ4M8k5bsmNgYzJMnIlEbAyZA79tq0l/rSYAIWVcXTbK8bcO6u4mY9fb6+lX6c1a4l0gu4NGAQ6EgDaZCIXbgcjpp+00m+g4jITJS1Jt6E8/k5GnieYcwpaT0blbce2OalE5jMOp76/Fu8bt4u/htlHeK1ZvhmnA8lfMUssOy8cvTv8TN7psAyHbq5RUvY0PmhtvWpN4OjDYj3r/xPnaW7cTh6sM+Vj750fnYnLUZGzM3ItYiRf2OP+Ktoj/hryFNPv3nc6w6fDVuDWYuLwCvVILneY++1GfdbgN3/jz4E8fBXS4Cz3HgGUohWnMzUTM/FVVRKlT3N6DGWINmU7PfyGaAIgDx+njEBcQhNjAWsQGx0Cv04DHwWTzvs+53W7zWB7/G6Xai39GPPnsf+h39MDlMMDlMKGwqxKGnD+GBpAcmr5J8MiGQWG/D/NZWoKoK1+uLsFNWie0x3bgZKE42dHZgTTkR1AerANlkFv8yDDgJi069DK0GBVoMcrTqGCKerAUtMhsRTy1JNPpGqVEZDIPKQDpiXSSRTo3X+sCI1EYiUBl4Z/9jra3Aq68Cf/6zaA0kkRBhl0rp8RE0iP1y4KOBFP/BGYDNq6YytXMggnodyPEiqDYpUBQjwYVYhtLwkRyq9UN/TKkbyGn31YFmdJIGeUIQzOUHE1Z/t+UDoWChUYHNRtFx7/a8LS2iGf5kt8e8m2BZX5KrVov7JzjYd+j1okxBqxWH923BN3Qao2LSSenGjRvBMAx4nseJEydw//33g+d5MAyDXbt2TdqGjwfTpHQaw4HneRS1FGHrta3YVrptSNQtVB2Kny37Gb6W97UpqeAfC0x2Ew5UHMCOsh04dOuQj45wdsRsbM7ajE1Zm5DI64G9e4Ht24Hjxz12JRzL4NjaWfhLvhx7HFeHeJ1+0RGhjcBjKY9hVeoqPJj04MQN6u8CeJ7HldYr2FG6AztKd6Chr8HzWDCjRjdvwX+WhGF+mRFzax0IHKa2zSyDb0TTi1x6327TAu5x8HelE4gwAxoXi/oAHiY5XSYSXDr8U/AjWJKzCpEJOQiLSYNceYcjTTxP0b6B6CYaGnzXb92iKu1J7E3fLwc+TGexK4fFx4lu2LwiqFFyA2KC4mHm7KjorICLH1p8l2pIxbyoeciPzse8yLmYpZsBldXp22JyuJaTI90eS2HP3QDDUCOEvDwqdlqyhAqYzGbKMBQXUwV9bS39bq2tRIrvlBXTZEIi8XVXUKuJ5Or1IsENDKSlN6EdjuwKlnpfMEw6Ka2rqxv2sfj4+PFv4SRgmpROYyxwup04VHUIb197G8VtxdictRkvLXrprpAYs8OMgzcPYmfZTnx08yOfSvrssGwPEU1VRFHHlu3bgUOHfKMVCxdS6nHjRjrxQyyO2l66HV2WLrAMC4ZhwFhtYI29YHp6wDhdYAesoFi5HIwhBExIKFiNBgwY8TVe6yzDepoNeK/zPI8+ex/67H0w2oww2owwOfyndZUSpU970FBNKDQyDViG9bzneD77VvctfFb9GfodYocZGSvD0vilWDVjFValrkKqIXVqfsApAMdzONdwDjtKd2DX9V0eSYk3QlgdQuwsVH1W8A4H+uVENvv96BCHA8OTMXqkifrNCyPSe33gMbMM+JeHgHdz6bUGC/DLw8BXr4xgySRcnIW+7qGhZIuTlQXMmkWFT2Fh9NhwF12ep1SzP8JZX0+dycZq6zPmHePVWSgoiKQQaWlEqBYsoHWlEhanBZeaL+FE7QkcqDyAkrYSvxNBjUyD/Oh8rExcifkx85EXmTd2b2WLhaKTggm799Lffd3d9zaRYxjapyoVTRIE67eRnh8TQ8eJRELPr68f+hq5nEzv8/LouIqKIsIrNH8Y3FpT6HY2XDOIe0myAPj+l1QqOjZ1OtqXQUFEcIOCxAK04SK5wu17wH5qStP39wqmSek0Pg+wuWz4+ObH2Fm2Ex9UfgCLU4xupBpSsTlrMzZnbUaWPgX4+GNgxw4ipN4n4pkzgYICGgkJI39gbS2wbRvwzjvU1k5AUBD13/7Sl6g6eix6w3HA7DDjWts1FDUXeQqqrndc91uRH6YJ89Gn5kXmISYgZszpXbvLjlP1p3Cw8iAO3jzokWMISAlOweMzHseq1FVYGr8UcomfJumTDLvL7iHqwjA5TL637QO3HYNue41+R/+YC8EAQO4Cws1AXO9QchnRD0RAi8iMeQjNyINsRjppUHt76QLuHVlsb4erz4jXZtrx0+VUeMPwwNeKgP97BDBMnkWrL6ayQIZhfCy9EB5O/5/sbOosFBdHj3n7icpk4GUyVJsbcb7jMs41X8D5xgu41nZtSLGhhJEgXk9Bmfq+ep/HZwTPwJq4h7AmeBEWcFFgu7pHJ5ojEbaRIPidsiyRP4F4jQaWJTlDXBwRO+9qe8FLU6haF6KzQsOE6Gg6lliWqtlv3KDjqKtrbFZtSqXYXjQlhX6TmTPF1q3CcLno/UtLaVy/7lN4B4B+58RE0owKulGNRrT1EsZwt91u2l82myhjMJtFr1ibTRx2Ow2Hg/aN0ykWnQnvea/SKoYRh9sNrFsH7NlzRz56mpROYxp3EQ63A59WfYqdZTuxv3y/TxQxMTCRiGj2Zsw0ZIE5fpwionv3+p5sU1IoIlpQQH2gR4LTSa9//XXg1CnxfoUCeOIJqpx/5BG6fQdhcVpwrfWah6QWNRNR9dfnPlQdOqSYKjYgdkxE9WbXTRy8SQT1RO0JHymEVq7Fg0kPYtWMVXhsxmOI1EV6HnNzbtKqDiKHg8mkh0A6/BDMgeHPxmmiYMAgTBOGSF0kglXBYBkWNqcVXcYWNJia0I+hhCPIStpE7xFmBl2AZs4Eli0D7r+f/CODh/qZnqw7iRc/etHjBTwvdBbeyP4h5rrCRH1saytNeqqryQpJaMU41X6xU4x+OVXAn4sBzsVSsVmHH1VClAlY2MRgQROLhc0SzGlnoXLR8dkr5/FBihu70t34NJGD3at+K7yf3BbWlAMragDlSLuLYShSJpjpC5fowYRqrBBIiLAukKbP76V/GpMFjYZI+B3ANCmdxjTuMFycC0drjmJH6Q68X/4+jDaj57HYgFhsytqEzVmbMTdiDpjz54mIvvceFcIIiI4WI6J5eaOnXDo6gDffBN54g0gCQK9ZvpwiouvXT30P7nHC6rQOiaiWtZcNS1TnRM7xkNS5UXMRGxALq8s6LDnssHTgcstllLSX4Fb3LZ/INECdlGSsDC7ONa52rGOFVq5FgCIAOrkOAYoAz9ApdAiQD7rt/bjX8w1qA6R2p19rJh5U0V8YTXZThakaXA6ywc4M3X8J/TLk1zqR30QeqXNaALWLoQr9++8H7r8frXlp+EHRL/BO8TsAyOv2lyt/iX+c849USMbznlaiQ9Lp1dWUUu/omFQN51SCB3DTQMTzXAwti8OHdjeTu2h/LWiklqYLGsfeltMkBw6lUJvUD1OBXq/iMa0dePQWEdTHbmJYvfC9jkHddn0htCKVycQotNAdSSDaQpTR6aSo40g94hlGLEwSumFpNLQukdDrBXeBnh6KcA6G0CRAaBQQECASf6Gif/C6d2RxPGPwawH6nnY7TeKEqLMgKbBYKEo+OAorRGCnCpGR4nVjijFNSqcxjTsAN+fGybqT2Fm2E3tu7PEpqIrURmJj5kZszt6MBdHzwRaXEBHdscO3T7PBQPrQLVuAxYvHlla/cgX4/e/p/YQ0XVgY8I1vAM8/T7qszxGsTiuK24o90dSiliKUtpf6JapTASkrRYAiAIHKQP+E0h/B9PO4Vq4du9emoJ9sa/M1f6+vJwJaVDS08lmjIU3xfffRsTJ/PqDTweF2oKStBIVNhShsLkRhUyFudNwYIgOQcEB2OzC/EchrBqqCgD/MA0zKgVS9OR3/17kEhg4z2V3V1REhvZd1i6OgT0F2TOdiRRLq3T1KQGzvAAFtYrCgVYbZ3XIo5Wra5wEBJH8JDxc7H8lkvqRj4FLa5zKj1tqCVJsGSosDjr4enHRV4X1NA/aH96BJK+5LqRtYXgusvUGR1GhvWbZCQZpx4TMjIijFHhlJ65GRRPb8karhbvf0UEMJwcdTGE1NY9qXbRlx2P1oHHbEmXDaeA18/keUUi8pEVPrw8kGgoMpRZ+dTZMiYT0wUNx/9fX0HmVl4rh+3T/JFPZRWhrplr2HTketS0+epMzRlStDj+HwcCrAEjpP5eQMa58HgF5vMtE+FFqXNjfT/1aw4OruJmI82HLrXs0kvP468MILd+SjpknpNKYxReB4DmcbzmJn6U7svrEbrf1iB5NQdSg2ZG7A5qzNWBy3GJJbVSIRLRctqqDTAWvXEhFduZIucKPB5QL27QP++78pciYgLw/4zndIL3qH0/NTCZvLRkS1WTT8L+so8+j2GDCjRhwH3+Z4DmUdZbjUfAnnGs/5FEtJWSkWxy2mYqkZq5Aekj5+CyNvoimQzMGk03uMZrcTEUEXTIGEzpxJEacxoNfSg6Lyoyi8eRwXWi7igukGWrg+v8/VDlhSrSmntH9M3yT1ghcKXWJiqDtOdDSRKYHUeek4Pevet+12YP9+0kh3dQ1srBZYtYoivRwn7u+GBnD1daiwN+G81ohz4U6cj+ZRGjbUe1fhIlK+sBFY2EBk1IcQjgcDhK8uEPjveRz+dzaPfgU1SshtG9p//moERVD3ZUtxPdiXrOSrZ2BN/MNYM/sppCfPBzMR3TfHEbm7ccN3lJeL+9AfhN+kp8cnOtezYCb2PpmGHYYWHG0549GI50fn48JzF3zfw+Ui0ivoPwXCevPm8BObmBiRoAqENSODtKXe38ebqJaV0Xcazn1AqaQCKIGkJiZSJLK8nIjqpUtDiaJMRgRZpaLftLaWiLTQ0vZeI5YsS79ZYODwy5EeE37vO4RpUjqNaUwieJ5HYVMhdpbtxHvX30NjX6PnsSBlENZlrMPmrM1Ynrgc0qYWIqE7dlC7TgEKBfD440REH3tMPOmOhs5O4E9/ollt48DnSqXAhg3At79NFcJfQAsRf7C5bOi2diNAEQCNTHNbvpdOtxOn6097tKjevrYAaX9XzViFx2eswjJ9LpRdvb7E0h/pbG8fv6+jXu8bEYuMpInG4sV0MfX3HTmOUuaDU+pCFKy+nsjFoNP7lQjge48AJxIG7hgmBxthonS/oE2d2zwozcyyNLGKjCQD8oQEiuIJkTxhGAwTK6hragL+3/8D/vhHijoBRF7++Z8pE6Al93mjzYjCpkKcaziH803ncb7xvI9sRkC8KhILNWlYyMRhgS0Es4xKyJvbxH0ntAgdS3HQIBRFAr9ZRH6mgu2WyglY/VzvNQ4iw/ktDOZ1yBHiVuBSLIv9SU6cCzL7kOfUgESsyVyHNZnrMT9m/lBPXoeDyN5g8llRMXzBFMOIrTPT0uh2ZSVFE/vECYspMwUHNuViR1QPDrWe9tFLz4uahy3ZW7AxayNiAsaYkbHZiBAKEVVheGeMvMGydFx5R1Szs8n0nmEoGtnRQdmES5foe9fV0f/QaPx86GWVyvETSe91rfZzdd6fJqXTmMZtQvCS3Fm6E7uu70KtsdbzWIAiAGvS12Bz1mY8kPQA5F1GYPduiop6RzElEuChh4iIPvkkpQHHimvXyPz73XfppA6QHurrX6c0fXT0pHzPv0sIEU0vYlndXIaD3edx0HUDxxQtcLBiZEftAB6oBlbdJB1gjP+Ao4jBRNN73ft2WBhdnLzBcURuvW2RGhpIv1lRQet9feO68LpY4I15wL8vJ3N8hgeeLwL+4ygV9Hj0qdGkr/TnaZreIZLU+dJ45M58CPL7V1IBVUTE0Bf4gc1lQ31vPcI0YQhUBg59wo0bwCuvAFu3iuQ+Kwv4l38BV7AZN4y3cK7xnIeE+pMoqKQqzI2ai4UxC7EgZgEWxCzwKW6DxUIEpraWhvd6ba1otD8COAb4eAbwykLgeKJ4/8pq4PtngYergHo/rUTNfkwgQsyieb6DBa6HAqfiffveR5iA1ZXAmkoWK+pYKFwYOXInk1EV+uCe7TNmEBncvh3YudOnT701Lgofb5mL7UlmfNhxxseuLicsBwXZBdictRnJwcmj7p9R4XQSeaypIanKlStEjuvraRI+mZZf9wokEiKSgoepXj9yk4Phbut0Y86W3EuYJqXTmMYEUdpeip2lO7GzbKeP1ZBGpsHqtNXYnLUZD6c8DKXZDrz/Pp3gjxwRU14MQzqlggKKZoaEjP3DXS6yg/r974ETJ8T7Z8+mFP3mzUNJzN8ZLE4LlFLl0MgRz5Oma6SUuXB7lIhmvxw4kggcTKWuPk2DTi8zrXqs4mdglW4O5ofnQRIROTLRFOB202cPNnwXWpY2N/tErCYDp+OAFx8TW5zONWrwuuV+5M+4n3qHe0c2tVpYnBZcabni0adeqD+Hmr6hPtVyFzC7lfSp+Vwk8lOWIf6+x9CYNwM1MjNqjDWoNdaixliDmh5ab+lv8bz+8dTHUZBVgNVpq6G7XAr86leUqh9A9/IFuPDcIzgX4cL5pgu40HQBffah+yYpKMlDQBfGLESuOhGyxuahhFNY7+gYfadptRT9TUigyOLAui02Eu/YCvGb0jc9kXUpK8XmpNX4fuwmzHaGiPZOQlevpiagsRHu9laUM10oDLbhYhTvmQA4/cgY44xU6W+TApXBgMVLlaOz08RoTTm1p9UPF9wVqvgFSQTPUwTVi/A5AjQ4vDEPO2bLsK+v0MclJCU4BVuyt5BdXVjW0Pd3OGhi195OZLK5mUZbm69fqFDQY7XS5NrpvPsaZcGblufpnDscDYqMpElRdjaRfJmMtt3hIM3oWBofTEV1u3cnqvGSWu/bGs0di7ZOk9JpTGMcqOiswM4yIqLXO6577ldKlXg89XFsztqMx2Y8BrUTwIcfUmr+o498031z51JEdNOm8RcadXeLKXohpSWRUPX8t78NLFr0uUrV3A44nkNrfyuqe6pR1V2F6p5qVHdXobr1BqqNNWh19eCm/etIaXX4ks6JpM4DA0eNZvJhYbiGVhysO4yDNw/ifON5n+icQWXAozMexaqkR/CwdiaCOvpFwllbS2nLykravuEKNiYK4eKq0xEZnjEDmDMHyMpCW4gKP2z8K/5WRT6EQcog/GLlL/DcnOfGXow1gA5zBy42X8S5hnM4VXUMl1svw8T5SRGPWJJNUElVsLrE1yrdLFaVc1jUSDrMogWxOB/DoMIyNLWrlqmRHz4HC1SpWOiOwIIuNcLqu3zJZ3f36F8oIICkEV6E02c9KMjn/9Zp6cQfLv4Br118zdPcQCfX4et5X8e3538bsfrY0T8ToElJTQ1w9Spw+TJsZddwrbMMF5lmFIY5cTEKKA8d+jKGBwKt1OrUWxYgc5PF1JpyKpSKGoMu1s2QfGNHNrAnw7foK7aXWt0WXGcxu0MChvGqIhdspISK8LtJHRhGJNpO5/DbEhBAv2daGhHL2bOBefPo/y38voIO9vJl4IMPKHLb0DCUOLMsHSOzZ1N2YOFCX6P/4cBxovfpRDt3CesTkJeMiP/3/yjYcQcwTUqnMY1RUN1T7YmIXmu75rlfLpHj0ZRHsTlrM55IewJayIHPPqOI6P79vjPfzEwiops3EyEYL0pKKEX/zjuiDsxgoBT9N7/5uauiHyssTgtqemqIcA6Mqh4ioDU91bCN0jL107eBB6uHeXA4ojmYdI4U0RwMp5Mqbhsb0Vl7HZ/UH8XB3ov4RFILo0xMo0o4YFEDsKqSUv1Z7RMsGBKiXCoVEaTYWDJ7X7hQ7GATFua3UMHFufCHi3/Avx/7d/Tayff2udnP4RcP/AIh6pGj9jzPo83chpqeGjHS2VOD2l5a1vfWj9uPNcgCZPQrka9KxsoZj2D5iq/i6tF38Vrha/g0pM9vJbyAGWwoFlgNWNgux8KbNmSXtEHa0zv8CwQEBw9POOPjxYrvUXCr+xZ+d+53+OvVv3qIdGxALL674Lt4bs5zCFAMc92x2WgiMrjQqKJieGLBskBiInqzU1CUrsfFSA6F8k5ctNxEQ//Q6ngGGNJiIb9NirXXeawpcyPdq7Myx5DrwI5s4L1MoNWrmV14P7CpjMjogsYROnZNJuRyURvp3YpzsG5yuPu8/7dOJ+1r78Kq0lKSuwxHb4QGCqmpFPWsqADOnJlY21aGof9iTIyoq/Y3DAYiwIJJv7D0Xh9uKaybzUM7VFks4hCe73CItlIul6+5vzeef54sBe8ApknpNKbhB/W99dhVtgs7y3biUvMlz/1SVooHkx7E5qzNWJO+BnqZlqo0t2+njhfe0ZeEBErNb9lCQvzxRjDdbpqR//73wLFj4v0zZ9KstaBg7EVQ9yh4nhejnQNk03t4p3H9QcJRh6KkHq9hkiI5MBFJEZkICovzTzTDw8fvQOBwUNpRSKkLXY5KSsTI2zAaNxcLnI0FDs6gVH9ZmO/j8UZKta6qpIiWygUxyqPRiNHN+fOpyn7GjNEjLyPgTP0ZvPjRi55JVl5kHl5/7HXMj5kPgH6Xbmu3T0rdO81ea6z10RL6g5SVIl4fj4TABCQGJiIxKBEJgQmICYiB1WnFzcZruFR6CIXtV3FDMjRqyXJDPUEBigZ6F/oEWoEN14ks3V8LSLyvVCEhwxPO+Pjxabf94GzDWbxy9hXsK9/niYrPjpiNlxa9hI2ZGyGTDEwGeJ6Ol2vXaBQX07Kycvg3F2yMBJ1nWhp1VAoOFrtsCWnwAauhVnMbLkrbUajtxcUgCwrDXegZ5RQR2QcsrgPkHGlU6wPFx4KswPqBfbusDpDejWy6REKTKqWS/gtCa9rISCApiQhjejo1EQkOHv951mymyYB3cVVJCU0uh4NUShH0pUvpd2lvJxlGZyf9Ji0tJEmYaOetew2vvgp861t35KOmSek0pjGAHmsPdl/fja3FW3GqXux2xDIsViSuwOaszVibvhYGVTCZlQtFAN4nr/BwioZu2UIEYiKp9J4e4M9/phR9bS3dJ5GQNdS3v03V1p+jFL3VaUWNcbhoZ41PitYfAmxA8gDhTO72Ip8WOeIiMyDLzKZIdFYWLZOSxk/WbDaPps9j+C5cqBoayHB7Eq1eaoMYfJQhxcE0FkdjHLB5MSmVVIUViSvwaMqjWBCzAFJWitb+Vt9hpuXx2uPgfzb2U3O7uR0/PPxDvHX1LQCUWn4q5ymkGlJRZ6zzRDprjbU+ukF/YBkWMQExIukMJNIpkM9oXfTI6X+zmVLU1dXorb6OSzVnUNhxFRdk7bgQ6vBE6dI7fI3pM9qBiwPRvF05LNrUIlMKZwOwKWQZCrI2Y8Gc1WC1umE+fOJwc27sr9iPV86+gnON5zz3PzbjMby08CXcHz4fTFmZSDwFEmo0+n9DobparRYLU5xOOiaF1pUT1FfyEBsoXIymZVEkpfeHA8sBOW3AP58FCm7KIFdpiQgaDETyQ0KIzCsU9D9jGLHNp8NBRExoMdraSsu+vjtrlcSyRGQVCtqvwvZHRhKxF8h+Sgqds4XzRVsb2ent2QMcPeprSK9U0uRislPjE4UwaVUqffve63R0PAUFEUnX6+k5SiXtD3/LkR5TKOhzpjWlk4dpUjqN4eBwO/DRzY/wTvE7+KDyAzjcFOliwGBp/FJsztqM9ZnrEaYJE6tRd+yglI+AwEDSdG7ZQp6IE4xe4fp1iopu3Sqmh4KDga99jVL0cXG39V2nCkIq10fbaRQJaLNp5E4gLD8Q7ez2jXgKRDSIV4DJ8CKdwjIxcWz72mLxJZy1tUQSbtyg+02mye2GIvRQDwqiaNysWRRRmTMHfFQUTIzDh2DW99bjQtMFlLSVoNZYC/sokoTBePXRV/FE6hOID4z3/dpOiyetXtVThf0V+3Gy7uSQvuwjIVIb6SGaHtI5sIzVx0Iu8VMmLsDpJHI/QDxRU+M7Rigk4gG06AClIRzBkUn+I51xcXArFThRdwI7Sndg9/Xd6LH1eN4jTh+HzVmbUZBdgNkRs2/LFgwAzA4z3rr6Fn53/neo6qkCAMghxTO2VPxzqQ6ZNzopYmYamczfTVSHy7FtcSDeTrPipnz07dTKtcgNy8Wq1FVYGr8UsyNmQyP301d1LLBaxWiisBw8Wltpki/sx7vt+alSkSRmzhwgP5/OO1otbb8gBejrE4ndaOTO6SQJQGkp6YUH/weCgsi6LyeHJtcuF+2PlhaxQKy5mfbVeL7DSHKByEha6iZ/AjcRTJPSafzdged5nGs8h3eK38HOsp3otoqpw5ywHDyT+wy25Gwhb73qaiKh27fTiUSAWk3WTVu2AA8/TDPJicDtpkKo3/8eOHxYvD83l6KiTz11T6TobS7bsNrO6p7qUaOdOrcUySYpklvtSOrifchnvBGQcaDvmZExlHwmJAxPPvv6RLLZ1ETp9KtX6YJx6xZFTCarglcoFtJoKH2YkkLFEEuXwpE+A20qDq2Wdr9RzWZTM5r6mtBubh836RwrwjRhCFVT9Uu7uR0dltGrx0PUIcNGOuP18VDJRjj2OI5IxHCks7Fx9H0fFESTC++RlCQWF43DQcLhduBw9WFP+17vhgczgmegILsABdkFyAzNpOhjd7cowxA67rS1EeHo6qKMRW8vWnkTXsvsxx9muTy61mAL8M1LwLcKgYipbAkuTHC0Wpr8GgwU2QsNpYilt46ypYWKbz77zMf8vik1ErvWp2FHeCcKjeI5TMbK8HDKwyjIKsADSQ/gRucN7CjdgSM1R1DTU+O3SxoDBhmhGVgYsxD50fmYFzUP2WHZokxhsmGxDE9kBdcC7wJGo/HOtrEVCrvUavF3CgoStaNJSWJENiGBiJ93Z6+KCvq9Pv2UJFqDCxyzs4EHHyS7wKVL6XMAita2tvoSVX9juOi8P2i1wxPX/Hz6T94BTJPSafzd4GbXTbxT/A7eKXkH1T1ipDNKF4Wnsp/CMzOfQW54LtDQANPud+HYswv8lSvgGCoA4OQycCuWg1v9BLiVK8CplOB4DhzPged5z/pIg8fA80y94D76CNy+98G1ttD7swy4RQvBPfE4+KwscBj5PflRHh9t25RSJbRyLXQKHTQyDVycC0abEV2WLrSZ29DS34KG3gbUGGvQZBq5vSALBrHQI8ksR1K7E0m1vUjq4jzp9mCrVyGPWj08+RQM1IU+6kKEs76eJgXXrhHh6ekZuQf2eMGyNLEICKCTcHo6uPsWoXteNlpDVWhF/xCyKRDNNnObp1BosqCWqRGuCUeYJgw8eBitRjT0NYxK/gdDwkg85EIhUWB12mo8lfMUkoOSkRCYAJ1ilOhIT8/wpLO2dvRUpkpFv6s/0pmYSGRqIuB5KuDwbgwgEMvOTli72vCxpBrbQ1rwYVQ/bF52jbmtpJHcXEbH5nC4Hgr8diGwNVf0Ak3uBr53DvjKVUAzljoulhV7sev1ImGJiKBlcDDdN7hYJyiIjsXROumUlVEXq0HZm47oIOzZlI3tcX041Vvs0bsKUqSCrAKszViLYFWw37fleA6Hqw/jz1f+jCPVR9BlHb7Dk1KqxOyI2R6Smh+dj5TglNuOTE8YFosvcRWst27cIBP9ykqS49wtCG1dBXmBRiNOOGQy2v6WFnKK8IZcTtKthx6iMXPm6A0nrNahUVZ/Y7To/htvULbuDmCalE7jC41OSyd2lu7E1uKtuNAktrrTyDRYn7kez+Q+g+UJyyGpqsat3W/ivZId2BXQiKuRI7zp3ykYMFAwUqh5KQIcDILMHAw9dkSYeET2UycfrYP8EbUOQMsqoItMgDYhFbqkDGjTc6DLmgNVfAoYgUw0NtLFtKiILrBCOn0y03aDqtPNMzPRujAbrTMi0arm0Wrr9BDNlv4WNPY1orW/FZ2WTr/RoolCLpEjRB2CKG0UogKiEKGJQIQ2AuHacERoIzwjXBPuN0Xq5tw433je01mquK0Yapnao98UZBSVXZVDorHx+nh8f+H3sSVni29lvdVK5NIf6aypGf3iLZFQetMf4UxM9LXUGfKF3BTJaW0lUtnURBfI9nbRv/PwYSK1ZrPonelyjSv6bZIDB9JIg3ooxdfvM7+RCOqmMmofygM4ngC8sgj4KFV83sIG4KWzwJMNakj0A+1Qk5NJmxgePpRQCtHLqWjnW1tLJHTbNtI8D8AYrMa+TbnYkerAYdM1n2P3vtj7UJBdgA2ZGxChHVsDA2+Ud5ZjX/k+7CrbhSutV0Z9fqAyEHOj5mJu5FwEKgPBMuykDIZhxv58MGArKsEePwH2+HGwdQ1geZILsQwLNn8+2AcfBLtiJVhtAFhjL9geo7jsMYLt7qFlVzfYzk6wbR1gOzrB9hjBcLzn/ZSuSWq3Ox6wLB1ncXEkEZo1iwq+kpPp+ByPT7XJ5J+8Cvf9+78DDzwwRV/EF9OkdBpfOFidVnxY+SG2Fm/Fx7c+9mjoWIbFQ8kP4ZncZ/Bk6mpoyqtQtfdPeK/sPewKacOVEYioz4kRo58Yh5w8rXawfX1gzVbPiYxRKMAGG8AGBoGVSCd0EvbeFgYMbG4brE4rrE4rLE4LzE4z+h39MDvMsLlHrpYGKLLGAHAPRGKnAiw3QFoHhs7hS2aHu+33ObwMWrkWMISgPS0GrbOS0ZqThLZQFVoZM1rNbWgxtaDJ1IRmUzPaze3jjjaO+F0YFgaVARHaCETpohCpixyWbOoV+kmNHlmcFqikKp/3PNdwDt88+E1PVb2MlflYM7E8g/usIVjdoMbqy2akVoxBmxYePjzpDAkh4lpfL5JKoY2qEKHq6SGZhWBF43TeWf9KmYyiTDIZutUM3k92YEeyDUfj3GJ1Pw+kd1InpYaB4C3DA2vZLHw//R+waPEW0t7drehfezvw3ntERM+e9dxtVkvxwcaZ2JHD4GNrsUcTD5CjQkF2ATZlbUKcfvL06E19TThQcQD7KvbhSPURH/IrY2XgeG5SJ3OfB9jyD0DR3TdUatDRQb9dWxv9D+6ktADwbYzgLS8IDSXimphIRHbGDJr86fV3vYh2mpRO4wsBjudwsu4k3il+B+9df8+no0teZB6ezn0aBZmbEHG9HtV7/4z3yvdiV2Q3LkeJ7yHhGaxUZGDjgq/iyfxnEawK9hDDCaG3F3jrLbLTqKLCCDAMaVG//W0qihrHe/M8j3ZzO1WtD1j11BhrPOv1vfWjXgwCFAGkH9THI5kPQlKfBEktNiTd6kL8tVooKqoAlws8AIcEMCmoa5FJDvTrlTDFRaA/LBD9KglMbgv6zUaY7H3o52wwSd3ol4mv8bxOTvf5a514r0Kv0CNcG45oXbQP0fREMwcIp0FlGLfB/KSC54H2dnRUXMaPin6Fv/RRd69ApxT/t0iPrx3uxrVQHgfSKFo4OAOQ1gmsrpZhdW8EFvIxkGh1dAFjWSKPFgtFM3t7bytaeVsYfFENDCQyHBFBUouICFFfqVbTxV+IwN+4QUVtfgpD2jTA1vlKvD4PqFX5TthiA2Lx4rwX8fW5X/ff5vROoK9P7AR3+LCH0NikwCdrc7BjrhIfOMtgcYmemZmhmZ7uSjMME/BDHieMNiM+vvkx9lXsw0c3P/LR8SqlSsQExOBW9y18eeaXxyQ1mtDg3OD6+8AZjeBMfeDcLlFyxTLgNGpwahXJrcYoefInlRoJjn9zjK6r5Xlfjaw3eR2sl/XOFoy30cdkQLDhUijov//TnwI///kd+ehpUjqNzzWud1zH1mtb8W7Ju2joa/DcH6ePw5dyvoSnMwuQeaMTNfvewnu39mFXrAlFg4joCnUWNi18DmvyvjSqafiYUFEBvPYaEVLBQD8wEHjuOeCFF0YUjPfZ+0SyOVBYJBDPWmMtLM6RTZvlEjkS9AlIVEchkQlGokONpD4JEtudSGwwIai2FUxDI0WzhvtLS6V08Rfa5Dkck0JAOIZIakOwBPXhStRHqtAUFYCWqAC0hyjRKXeh22WC0WaEyWEa9buOF2qZGmHqMETpohAdEI1wjW8kUyCbYZqwkavK7xSEVqNNTeJobva57b5xHW/mAT9ZCRgHapL+4Qrwy8NAmHfNhEwGsCzqdRw+SHbjQCqHYwm+qewQM/B4JXX8ebCaItGTAkE/509bGR1NxDI8XEx7e6e/9frh+3e3tvraLl27Rsbz/qQfLEt+ljNnAjNnoiE9Er/nz+PNyu2eCaxWrkWAPADN/aJbhNAgoyC7AE+kPjHxyvOxwmajwsdt26gj3IBm18kCRx9OxfbFeryPcvQ5RQ1gUlAStmRvQUF2AbLDsqd2+0aA3WXH0Zqj2Fe+D/sr9qPN3AYAWDVjFT586sNJ/jA7FQjt3UuNSrz9ofV6YPVqYN06KkKdhEJRnuf9avgFvb5Wrp06Da2/Yq/By5YWktu0t0+NN2pmJsmr7gCmSek0Pndo7W/F9pLteKfkHVxuuey5X6/QY2PmRjydvglLKqyoP7AV79UexK5EKy5Fi69neQYrtNnYdN/XsHZmweQQUY4DDh2iKvpPPhHvz8ykqOjTTwMaDewuO+p663yIp+DhWWOs8XEC8AcGDKK1kUhSRCIReiRalUg0MkhscyCxvg9RN1vBNjXf0dk1D6BXCbTpGLQGySh1HhmA1qgAtEUHojVQilauD22WdrSZ28ZlScSAQagm1KO19NZdCpFKnUIHjVwDCSOBxWmByWFCv6MfPM/7kE21bISWQHcSPE9RMIFgNjRQVO/WLSpuaGmhi80oxQcXooEXVsET7Z/VArxxkPw8x4I+BfBJCkVQD84QSS0AKFzAymoiqE9UAlE2L89HwQcxJIRS2jExtPSuBvcmlhN1phDgcBDZHGw8397u//mBgUQ+c3M9JBRZWYBKhSstV/Cbc7/BzrKdnuMwIyQD31/4fXwp90tQSpW42XUTO8t2Ynvpdp9WwmqZGk+kPoGC7AI8kvIIlNJxaPZGgstFldfbthHJ6iOS7GaA04vjsGNlOHYrbqHTLlZlReuiPXZXc6Pm3r2iomHA8RwuNF7AvvJ9mB8zH+sy1t3+m5rNdG7ds4cIu/f/IzQUWLOGiOiKFbd/zH2ewfOkNd6/nyLshYU02fFGQAD9R6VSIvhdXSOT2SeeAA4cmNrtHsA0KZ3G5wJmhxn7yvdha/FWfFb9GTieIndSVorHZjyGZ2ZswOM3GbQe3IndjZ9i1wwHLg4iosv1udi06Hmszd6EUI2fxtETQV8f8Le/UYr+5k1wDNCsA2pW3Yeax+9DdaQSNQOG5DXGGjT1NY2aCjLIA5EoC0MiF4BEqwJJ3TwSW2xIrDEirqIFCtOd6RLSL6cUZ6sOaAuQoDVIhtZQFdpC1WgNU6FVL0UbY0arZfw2R8Gq4GGJpnd6PEQdAik7TKTsXgHPi1WuNTXkN1tZSTpLwVOwr4+eI+gpJ4h6PfUh350JnB2QCeptwP89Anzj0qBuRt6QSilaKaTA9Xqq/A4PB6Kj4YyJwpkAIw64yrC/rxDVVl9v2blRc/Fk2pNYnbYaOWE5U0OCeJ5IekmJON55h7bb3ySLYSj66U0+c3Op8Mpr+3iexye3PsEr517B0ZqjnvuXJyzH9xd+H4/OeBQs47+KubS9FDtKd2BH6Q6PNylAMpi16WuxJXsLViSuGL8lkttN2tD33qMGHAMEmwdQOCcMOx6NxS5dPZptoq1XqDoUGzM3oiC7APfF3TfsNn+h0NtLBHTPHiKk3sQpKopI6Pr1VJU+XET97x1OJ3D+PNlOffopcOmSb+ZLJgMWLQKWLwdmz6ZzQne3r8Rg7VogL++ObO40KZ3GPQs358bRmqPYWrwVe2/shdkp5iMXxCzAM8nrsKlKCfPH+7G7/Th2pblR6NUCnuUZ3B80C5sWPoe1WRvIAH8Y8DyP+t56nG04i7MNZ/Haxdfwk8U/wYrEFVgUu8jj1+hpv1h8AjW7/4SaK0dQo3KgOgioMbCoC2TgYEYmHSpWgSRpKBJdWiT2y5DY5UZikwVJVd1IqO9DwBQ2DLFKgTYtkc02LdCqY9Cql6AtSIbWYDlFOrUMWhkzzK7xpc8DFAFDCKY/onnPpMe94XTSCbi+nvSIQtVpSwsVKXR00IlaIJcOh/8e0VOA6iBgdxaDPZlAYZR4GmZ44NmuGPzatRxh0akUsfSOVgoRS7V63NrlG503sL98Pw5UHsCFxgs+E6l4fTxWp63G6rTVWBq/dGK/pdEotnMURmnp8L6Kev1Q8pmdLfo2+oHdZce2km34zbnfoKyDUo8SRoJNWZvw/YXfR17U2C+yPM+jqKUIO0p3YGfZTjT2ieHoEHUINmRsQEF2ARbHLR5eY2yzAUeOkE503z6PlygPoCRBhe0PRmBHbB9qOdF+Sa/QY33GehRkF2B54vJ7f4I2GejspCjfnj0U6fOekCQmEgldv568M0ezRJps8DzJRryP27/9DVi1is4FHEfP8V5O9fpEXjfeQsM//xn46lenbr96YZqUTuOeAs/zuNZ2De8Uv4NtJdt8ep8nByXj6cQn8aUaHRSHDmO38Sx2ZfK4MIiILjPMwaYFX8XajPUI14b7/RyH24ErLVeIhDYSER2u85CEkSBIFQQpI0WftQcWbmTWKAGLOCYQiU4NEvskSOpwIbGhH4m1RiT2kNZvsuJMPAYiml5Es31g2aZj0aaXoC1AQutKF0zM+ISCapl6TEQzXBM+stH6VEOwFxJspgRC2dREy85OKoAxmYZWgd+Jgh2GoUiOULAjRCpDQ6lQJzaWRlgYEBSESokRu7tOYXfDIVxpvya+DRgsiV+CDRkbsC5jHaIDokf40MlBa38rDlYexIHKA/is6jMf9wK9Qo9HZzyK1amr8eiMR4cWBdntlHr3Jp5C61Z/kEjIZiknh0inQETj4sZMrLut3fifS/+DVwtfRWt/KwBqp/r8nOfxnQXfue1KdI7ncLbhLLaXbMd719/zaVIQpYvCpsxNKMguQH50Ppi+PuDgQSKhBw+KndoAlIcAu7LIquqGV+JG4wCeLAcKyiV4yBQOhSGMjovQ0JGXWu1dr5yeMJqbiazv2QOcOOH7n8zIEInozJl37jv295OOUjh2i4tp6dWY4O8Gzz8PvPnmHfmoaVI6jXsCjX2N2FayDVuLt6K0Xew6EqwKxubYR/FMQxCiPzmDPdYr2JUFnI8VX8uAwbLQudg07ytYNwwR7TB34FzjOZxtOIuTdSdxueXykJQzAwYSVjImzaPcBURZJcjoV2F2O4ukhn4kdnFI6gFi+gDpbfAcj0ZT40s2PUstgzYdQ0RTzcEqGd+HKSQKHzI5hHR6WRlp5dqJf5HxwO0Wq6YFUtncTOutrXQhMBrvHqn0hlANLhTthIURaUpNJUIVH0+EU4hWjjFSeb3jOnZf343d13ejpF30n2QZFssTlmND5gasSV8zIZ/JyYLFacGR6iM4UHEAH1R+4ClmAQApI8VSTQZWW2KxupJB4uUakjEM5zkbGyuSz5wcGunpE/b2rO6pxu/O/Q5/ufoXT5FctC4a313wXTw/53nolRM06h8BLs6FYzXHsKN0B/aW74XRZvQ8lmBToqDIjoJiHrkDu+lKJLA3g4Y3EVVwLB5r16OgXIrHr1qgNg7q7DMWKBRjI6/CUjPFRVujoaaGNLR79gDnzvk+Nns2kdB164iUTiVcLtJze0c/i4t9W0l7g2WpQ5NwzEZF0TlBMMVn2fGvT+Q1U7HucgGXLwNHj1JUv6iIIqrvvkvdBe8ApknpNO4a+ux92HN9D94peQfHao55UoRyiRxPRCzDM80hyPnkCg7w5diVBZwbRESXhs3DprlfxrqMdZ4LtZBeP1pzFMdqj+FS8yXc7L7pc7EYCwJsQKJTg4Q2OwJNLlhkQFMAUBZGhNEboWZgRQ2NldXUJWYwBeEYoEc5DMn0kE0inO1qHvZxZumEDkDh2nBaeq8PWgYoAiZfE+h2i20bBVIpGKK3tVGksreXog8WC6W/7xap9AeJhFLd4eFi8U58PBlRJyaKxTyTaIbO8zyK24qJiN7YjfLOcs9jUlaKlYkrsSFzA55Me3LyNNCTgY4OoKQEXEkxCiuP4YDpEg7oW1EW4vs7ZrdRodSTTVrMDZsFNjtHvJBnZxNhnwScbzyP35z7Dfbe2OvRms+KmIWXFr6ETVmbpq4FpjcqK2Hf+x4+Pf037FDcxP50Xwu0YAudA7yLyWSsDA8kPYCC7AI8mfakL2m2WkWPy7EsvSKwY4ZKNXYCGxo6olRizCgvJxK6dy+RH28sXEhEdO1a8sOdbPhLvRcXkwZ8uM5k4eHiMSuMzMzJ2Rd3E04nnY+NxpGH4I+7bx9ZGd4BTJPSadxRON1OfFr1Kd4peQf7yvfB5hKrApcGz8bTbeG475Mb+Exah11ZYjEHMJC6jMjHo1lrMCtiFvod/agz1qGyqxLF7cWo7qlGl6VrTMbNeqcEiX0sEjvdiO/mkGAEEoxAfC8Q1k++molGQD7orTgGuBoBHE0EDicCJ+MB6yBJXYCNUvRqJz2/W0Upddc47SwDFAEeMhmmCRuRbN52RFMglQ0NIrH0JpVdXb5elUKkUtAp3csIDydSGR0tWhANXg8MvCNpQUGbuOf6Huy+sRu3um95HpNL5Hgo+SFsyNiA1WmrEaQKmvLtGREWC12wvS/iJSV0PPhBVZgMHywOxf4UN06pO+CGeFxEaCPwROoTWJ22GisTV9621MPNufFB5Qd45ewrONNwxnP/IymP4KWFL2FF4oqprUjneSoYef99YPdu4OZNz0MuFjiUBPx+PnAyET4tToEByUPKo/jJkp8gJzxncrbHbCZyOlYiO7gaeyzQaMZHYpVK2k/XrhER3bOHfGMFsCywbBlFQ9eupf/hZGG8qXe1mhwaBhPQMP91CBzPobKrEoVNhWjobcC/Lv3Xydv2scDhGBup9B7ezzePMxL/5puUwr8DmCal05hy8DyPS82XsLV4K3aU7vDRYKWpYvFMVwxWHq5Coawdu7KAMz5EFIhQhyNIbYCDc6Cpr2lMHXkYHtDagRgTkNkOzG8EMroGiKeROgIB5P9XEg5cjAIuRgOFUcD1MMDNUoo+wQhEDLTQlLoBk1davUMNsSPMGKFX6BGpixw1qhmmCRvfhdtupyiAN6FsaBC76wgnJYtFLNSx2YiI3ct/bYWCCGNAAA293nc53LrghRkRcdercjmeQ2FToSc1X9cr9rRWSpV4JOURbMjYgMdTHx9birm8HNi6lWyEzp0jG7L580lvN5FIrstFzR0Gk8+qquGPjaSkoRfwGTM8+7rb2o2Pb36MA5UH8PHNj2FyiPY9KqkKDyU/hNVpq/F46uMjFiAOhsVpwd+u/g2/Pf9bD6GXsTI8nfs0/nnhP0+tT6fTSXrHffuIiHqRc7sE+CyZ0vL7M1h0K0VCrpPrkB2WDZvLhpL2kiHyoH/K/yfkReYhLyoPGSEZU9+MgeeJlIw1CtveTueL8UKnI2LaIZ7vIZNRu8p16yjyFnqbGYDbTb3n5JBuOTGRsiXDoMXUgsKmQhQ2FeJC0wVcbL7o06Cl/8f94/OwtdvHTyq9yeVEIuP+INi7+Rt6vbi+eDFJk+4ApknpNKYMNT01eLfkXbxT/A4quio894dIA7C8z4D48hbc0NhwKQpo093eZxksQE4bsLgeePQmkN9Muk4egFFJkcpWDXAtArgcSXquusCJEcvBCFGHeAilQWWA0+1Et60bdcY61PfW+1QuswyLOZFzsCJhBVYmrcTiuMVQS1VU1S1EKevrya+yudk3Stnf7xulFFLf9+JfUyoVyaE/UjkWghkQ8Ln1G3RzbpxtOIs9N/Zgz409PtXaapkaq2aswobMDXhsxmNji3K3t1O/861bKULnD3I5afHmzxdHUpIYAeZ5KvoaTD5HSl+GhvpPX2rHHpl3uB04UXsCByoO4EDlAdT31nseY8BgYexCrE6lav70kHS/Ec62/ja8fvF1vHHxDXRZKdoVpAzCN+d+E9/K/xYidSP0CL4dmM3kPyyYtAvNMEAFhp+kkEXXwXQWJplIREPUIViTtgbrMtZhZdJKj0NBp6UTe2/sxY7SHThee3yIPZxapsasiFlEUiPzMDdqLtJD0u9+1zCTaXwk1ltHrFQCjz5KRPTxxycm25iM1HtuLh27o5jpm+wmFLUU4ULjBRQ2ExH1/v8KUElVmBOchfnqGfixYQ1CzPzYieVEItX+EBAwPKn0Ry69R0DAXZ+w+8M0KZ3GpKLD3IE/Xf4Ttpdu9y3WAAOVWwIrXOBGO79ygM5J0c5++VDSKHOTXi2jk6KeIRbqTNOuEUebBmjRAp1qjP55w0AukUMr10IpUcLhdqDL2jXkIqKUKpEXMQcLA3OwUJqAhSY9IhuMlPZubUV3TzNOyJtxRN+No+EW3Aj21QPI3MDCBmDlgB41vwnwurbdHQiE0PvkNZ4IZUAARew+r5XAE4SLc+FU3Snsvr4be8v3eiq/AYqWPZ76ODZkbsAjKY+MzcjfZiPD6q1bgY8/Fv1NpVLgkUco5dnURB6EFy74T01qtYDBQOtdXT6kygf+0pfZ2XRhn0QI7hoHKg7gQMUBFLUU+TyeEpyC1amr8WT6k1gUuwi3um/ht+d+i7evve0pTEwMTMT3FnwP/zD7H6amEK+zE/jgA4qGHj7sEyXsUQIfpgJ7soBDKSxsXkWG0bporE1fi/WZ67E4bvGo9k0tphYcqTmCouYiFLUU4XLLZR/bOwHeRHVu1FzkRebdfaI6EnieJtFChiYra3xFVbebes/NpeUYorBOtxOl7aW40HTBEwm93nF9yHmeBYssJgz55kDkt7DIv9GHrOIWyBy32ct+OMI4VlI5QnT384ppUjqNccHmsqGxrxH1vfWoNdaizliHqp4qXG29ipqealjGkFr3RrAFCO8n7WaLDmj3c42Ru8gmhQH5bA7WcI4HDBgopApIWSlcnMtH0zoSZG5gfqsEKV2A3MmhIYDHhWig2w+3iDNSV52FDbSc1SpqU5t1pEc9mggcSQTqA31fq3EAS+vEoqmZbQA71n+eRuMbnQwKGhp59B7+SOU4PS3/3uF0O3G89jh2X9+N98vf95Gm6BV6PJn+JDZkbMCDyQ+OrQMQxwGnTxMR3bXL090HADBvHvDMM0BBgXjBdTiorW1xMXDqFJHTW7eGJ58ARVQjI4l03n8/eSympd15z0eQ68aHlR/iQMUBHKk5AodbJIB6hR699l7P7fnR8/HSopewNn3t5BOy2lpKy7/3HkkivC53bRpgfzqwJ1uCowkcXIz4WFJQEtZnrMf6jPWYFz3vtgzt3ZwblV2VKGopQlFzES61XMKVlitfDKLqD3co9S6A53lU91R7yGdhcyEut1z2ew2Is8qR3wTkVzuQ3wTktQzTdlehIImQ0MFsPMRSp/tCksrbxTQpnYYHTrcTTaYmNPQ2oKGvwbNs7KlDQ3cNGkxN6HAaR38jHgi0Ajo7YFZQoY93Obpq4M9tkwL8BM/hUkYCjVwLFoDNaYPVj3cowwNaJ31wv4wHPwzXijcC2e2+I8wMnIklndhnSUDtoJqTQCuwvBbIbaWCpqpg4HwMUBo2NLKrdNJJbWEDsKCRiGqUiaQFVQYGR1NlOJLM4GiMC51K35l3MK/EcjYZK9XZWBk0BzMMqWD8EU2lcppM3iE43A4crj6M3dd3Y3/Ffp/WsMGqYKxJW4MNmRt80rajoqKCiOg775B0Q0BcHLWofeYZKta6epVsWi5fplFaOuxbIiqKXq/RkOxD0BkPhlIJzJnjm/aPj7/jx5PJbsKnVZ/iQOUBHKw8iC5rFxgweDL9Sby08CUsil00ecVLQivGfftIFuFdgAOgIWDAummmDKcinT7njqzQLKzPWI91GeuQG547pQVVEyGqcyPnIi8q794hqncw9e6NDnMHLjZfRGHtGRRWn0Jhx1V0uYe27tXbKEOV30S1B/OaqY7Ag5AQksEkJw9dRkXdlcncFxnTpPTvBG7OjZb+Fl/C2V2Dxo4qNBjrUG9uRpurd1jiNhpkbkBjp8pTi5+U+6jggQAXi0i7ApF2KcKsLMJMPIJNLth5J7oVbjRqedwM4lEVDL/bKXfR5w/32WH9vsQzpx3I7MCoHZR4EOk8nEQE9Wiir7ULAMRb5HjQFIrF7hjotMG4rrHgvKwN5/gGdPNDLyBxuhgsjFmIhXH3YWHsQsyKmAUpK0VpeymOVB/BkZojOFF3Av0O34hXTEAMViSuwMrElViRuAIxATFD3nsakw+by4ZPqz7F7uu7caDigE8EL1QdinUZ67AhcwOWxS8buwVRZ6eoEy0sFO/X6agIZO5ciiZduUJEtKLCv35YqaSLo+AkEBNDQ6cb6oVoNlMkqqqKolRVVf6jqoGB5BmakUFkICODJj+D32+4MYbn8QwDNzi4GR5u8HB5rds4B652liI4IByL4u4b3481HNxuioLu3UutPZt9m2XcDAb2ZAJ756hwMdg34zM3ai7WZ6zH2vS1SAu5MwUfw8GbqF5qvoSilqK7Q1RtNjqGOzrElpTeo6ODNPEnTw7/HreReveA52FprsOVa4dQWHMKFzqvodBZixrZ0ONa7qLM1fwmkYimGFmw8Qn+SWdiIkU5p3HHME1KvwDgeA7t5naRcHZWo6G1HA0dVajpvIUGezvapI4JRyUnE4FWIKWbipIWNNJJIbIfMFgpsnkj1KsSPhq4Fu7fSonh/RNTgCK0HuLZRsusDop+eozPlUox3R0SQtYfYWGkvwsKogv6MKlvt1qFovar+KzqM3xW/RnONpyFkxNb4TFgMDtyNh5MehAPJD6AcG04LrdcxrnGczjXeA6l7aUeP0UBCokCeVF5RFRjFmJh7EKEqkNxqfkSjtYcxZGaIzjbcHaI4X+qIdVTNLU8YTkMasPt/kTTGIDFacHHNz/G7hu78WHlhz4ThEhtpIeILolbAoZh4ObccPNuuDk3XJzL77rbZoHryGdwH9gH96mTcPFuuBnALWHgjo+DS6+Du7cb7uZmuFhygXAztHSxgFsqgZt30zojPu793M/L+lgnrvz7M4kgpKSIy5QUIuCjpT+F1p67d5N9U684meBBzht7M4E9eRqUakVSx4DB4rjFREQz1t52F6ipxniJ6uyI2Z6K/7zIPKQHpkBi7B2dZHrfHo+t0ODUu0A+k5LGFml0OCiDUF0N962buFF3CRe6rqHQXY9CtREloRzcft4mvWOAfHYpkS+NQ64hE4qkVF/yGRd3Txb8/L1impTe4+B5Hl3WLiKcnVWobyjFrcoLqGosRq27E00KB4yKiafBxwUOULooXS1zAzbZgJH8MORQ7qK09aIGGgsbiIACdEGoCSLiKZDQokiKso4VCjeDDEcActhIZKvika2fgeygNMQGJ1KKW6cjIqnT0ZhE43Nv9Dv6caruFD6rJpLq3ZEKoGKo/Oh8LIlbgkWxixCuCUdxWzEut1zG1barKGkr8Ym8CQhRh2BG8AwkBycjKTAJIeoQVPdUo6yjDBVdFWjobRgiyA9ThyEmIAbRumiEakLBMAycnBMuzgWnm5YuzgUn58Qntz4B/zPx9TzPg+M5kUDxA4RqGLI12uPjee7gxyf8uV63t5dux/qM9eP6HLvLjj5HH/psfTA7zUOcE2SsjKJMPHw+b/DvMI3bA8MDEg4ItgJtrwzzJLlcJBcCUU1OptRvaSn5Yn76qU+lM8fQ+WZvjhR7ZytwSyESKykrxYrEFViXvg5r0tcM26J43BAsmPr6iBT39orrTidNhENDxaEcg/Z4tM/r7YW7vQ2V9VdwqbEQRd0lKDLfwhV3E8yMc8hL1A5gdiuQ10zn7LxmIL0TkIx2WEulNKkPCaFtF9a9R1ra2FLvPT1iFH9gyVdXobG1EheYZhRG8SiMBi5F+TYmEBBhYTHfHIR8WQLyg3MwN2kxAmfk0DERHDwtb/qcYJqU3kXwPI9eey8aOqpw89KnKD63DyXGSlTJTGhVu9ErHzBengrCOfBrMjwV0rC8L7fkGTqBc8zwEcnBMJiBpfUiCZ3TykABCTiZFA0GGS7ESXAphkFhmAtX9BaYpGOrXGQZFlG6KMTp4xCji0F0QDQitZEwqAzgwXtIlotzweF2wOl20pJzwuFyeNadbqfv8waRNeG2i3PhYvNFZIdmw8W7PCRHGD6ExovsuDk3OJ77XBEUtUzt852mMflgObq4SziyKRPWJfzAbQ6QgKF1Nz/0uWAgVWsh0ekhCdBDog+CVKWBhJVAwkggZaXDrzMSSNhJWDf1Q1JVA+mtakhu3oKk4iakZqvne3i2NygYkswsSLNnQpKTC0lWDqQ6/Qjbx0ICFlJGAgkYSHgGEjBU3Od2kxZRkBncuiWuV1cToRsD3AxwKh7YO1OO97MlaJSJqXmFRIGHUx7G+oz1eDz1cQSrgn1f7HCIBHLw0t99wz02ngYTWq1I8EJDKXOj0RBZlUqJXLndotdwby9VpguRzK6uYVu7uhmgIoQCAEVRtLwS6Z/kqd0SzHaFIE8Sgzx1CvIMOUiPzIYkLEIknIKkYyxwu8nyzot0+ix7emBU0qShMFocrX7sArW8DHNlCcgPyUV+8lLMz30M0aHJU9swYRp3BNOkdArRefMaDv3pxzjddBYlyl40aMlSxCYj03YwGDbK+HmBBCxYhgUDlsgYA0/k6PNEzqYxOgSS4o+4DCYcI5Gc0Z475PERiNdEt8PqsuJyy2VcaLyAq21XfQzNo3XRWJ64HA8kPoCMkAxIJdIRP0PKSiHp6oakuASScxcgPfQZJDfKIbE7IeH8/MUDAynKZzT6NyVPTgYWLBBHbu6959fKcaRxvXBBHMXFom2VAIYhzaB3EVVW1u1XHbvdZGS/bRvZZQ3ShzokpP3ek0GV8x1ejkRaO7CqRor1zYF41BgCrVQtbo/LRRpbgVBOlp8kQJ/hbZ0mk1EBmtFIn2c2T253NLlcNEc3GKhKXNAdh4V5iKXbEIwKqRFFllsoars6YupfI9OIPqpRVPmfZkgbyB7wpCGtraVUe10drf/hD9RYobbWZyJhl5BvtDcBrQjxs9sYCXKDMzA/4T7kR89HfnT+vVHA9fcCnqdxhwq6pknpJIP5KUORzc852ZwGnYANaoOHGHlIDSuBlJF6bvsbMokMMlbmWZcyUo9vYYelA419jWjoa0CLqWVIijgmIAaphlSkG9KRFJQEhVQBFiy6rF2oMdagpqcGt3pu+U3fy1gZZhhmICs0C9G6aDg5J2523cSllks+VeICns55Go+nPo6FsQuhkCiGJX8sw37uoxAd5g7sK9+HPTf24EjNER8imhGSgQ2ZG7AhcwNywnJG/q4tLWIFfFERmdkPIkUeyOVEQjiO2rgOhlYL5OeLBHT+/GFbG97zsFhon3gT1fr6oc/TaIC8PCrkmjOHDP/DwogQDh5msxhtNBopLX/hArWuNPlWUltkwKFk0oh+kDogLRpAkBV4shxYfwN4oJpkSOOCSiXa+uj1Q315vZfDPVZTQ0U/J07QsrV11I/1gGVJfiRoH4VI6TAR0VHfa7BkwDsyGxoKd0gwKpRmFLkbUWS+iaK2K7jcchkW59BOQhq3BLO6ZMirc2Jugxt5LUDaoNQ/x1AhWWGcBIXpOlyI5nFVY4KTGUrCk4OSkR+d7xmzI2bfdlvaaXhhcDME78YHg5sgtLbS+MMfgG98445s3jQpnWQwP2OmJt0+jTsOBgwkrAQMGDAMAxZEzBiGAQPGQ9QoUux7mxUiyMLtYQbP87C6rDA7zDA5TEMKmSSMBIHKQBjUBoSqQxGgCPCQRY7j0OfoQ7elG13WLnRaOoe8HgC0ci0iNBEIUASAB49eWy+aTE0+z1XL1MgIyUBmaCaSApMgk8iGbOto32Wqh7CPxzM6LZ345NYnOHjzIM40nPEpMMsOy8ba9LVYl74OWWFZnu8o/N7geTKnF8inQERbWkY+cORyIg2Do4YAVbQvXCiS0LFGDTnONzUsEDWhs5c/QjfWMZWvdzh8O5BN8mWkT0Fm9nszgI9TfDXpESZgbQWDdY1aLDOFQBYQSORQ0Da63RQJNZuJ8HZ2+vrC+oNON1TDKiyjo8VoEseR9dGJEyIJ7ez0fS+FApg1izxjR9JkhobS5MXfRMliEcmE9xAKkwYPr0KvcYFh4AY/JPV/eZg6AI2LxSynAdnyGFSpbbjoqkeve2jkNUQdQuQzigjovOh5CFH7CZdOY3iMl2R2dPg/N42E5GSSztwBTJPSScacr7O4Ej5oV/kLujAjPPZ5BI+h30XYDV+U7ziNvxt4a60nPBgWrEIJRqkCq1SClSvoPo4H6+bAunmwHEfrLg6s2w3W5TWcbrAuF1ini9YH6b9ZHng/A9hYNgnbOsYxKftlzPuPgczFY9Ega9VONXAgS4o9eWocDu+HwyvaFq+KxPq4R7AufS0Wpq4AqxpnMwiTifSN3vpVYb2xcWRSLZNRQQ3gP/WvUgGLFgHLltHIz7/9oqbxwGym71FaSr6st25RJLulhXSogyLPY8FgjeqlKOBKhH+iquRY5NmCke8KRz4fhfmSeCQowsCo1LRvVCraH/7W/T2mVH4xPUKHI5kCqWxpIZmEcL/ROLmyD3+Ii/P1T55CTJPSuwyn2wmjtQedLVVovHgYDWXn0NBehUZnB9oYCzplTvQoOJhkgFkG2GWAY8BW5W6TPdYNqF1kPhxkBaQ8abn65WSY3++n2D28H8hsB3LbxApPtYsM5uUcFVV5W90MXnIjPOZmAU7Ckr0Oy8AtlcAlZeCSSuCUS+CSS+GWy+BSyuBSyOBSyOFSKWhoVXCplHArZHDLpXBJJXBJGLhYHi6WIUseBnCzPFwMT+vgPMVOfiu6vQqghEptjuPg4l1U5T5wv7DO8Zyn+p3jOJ+K8sEWUpMJKStFsCoYDBj02Hp8uuooJArE6mMRp49DmDoMDMOAB+/Z1rsxBJeAwcPFuWB3233S8tP4/IP//4AmHbDvvmDsydfhBNsADuL/Ic2QRl2VMtdjdsTsqZOZ2GyUgq+qIj3t+fMUDW1ooIjlSGBZICFBjLAK0dX0dNJbTsY2G42+ek5B0ymsD47U+oNKRY0T4uNpe2NjKVqr1RIJFGQoI0Rn3U6Hh6heDwUSjOQLmtU+BS2UFYqxEdjJfGwk+yi3m8i/9+jvp/0jkMn2dpoE9PSIeuL+fhpWq3+d+Z2GVEoZH62Wsgs//Sk18LgDmCaln1O4OTd67b3otnaj29yJ7p5mdHbWo7X+OlrrStHW04ROZy86GQt6pC70yXj0ywGrDHedzA4HhqNWbrqBoXWQ56h2hNujPUc6xRNI2nBGNAuXSGgplVLkRCajE6dwQtNqxT96cLDYClSno/vVajEKMGhYpcDpnqv4rOUMDjecwNW2az6aUrlEjrzIPNwXex8WxS5Cekg6APgQZafbifq+elxtvYqrrVdxpfWKT492ADCoDDCoDGg1t6LPLqYzA5WBWJO+xtM2c8zdiqYQbs6Nj299jNcKX8OhqkOe+1OCU/D12c9jU+wjiKvtAX/+PPhrV8HduA6u6hY4q8XjLuEz1CpwEga80wXO7QTH8/6fN4HBy2XgtBoaGvXAuhqcWk23NSpaV6vAqZTiUhhKBTipZAwE3Q3OYQdnt4lLu53WHXZwTjvddtrBOR00HA5wLgc4p9NrOTDcwtIFzu32OHKM5Tu7Gf+TSc9jrO9zPesSBhwLuGVSxOiicc5d6/O7z46YjXUZ67A+Yz0yQjOm/kBzOkk7fOIEcPw4cObM0KYDWi1ZH0VF0X/dZBJJ7EgFU+HhYvR02TJ6j8EkleeJ2Awmmt63R5MeAHTeSUjwJZ7Cenw8SQVuhyALUT5vomqxENmyWmk/+Fsfz2PjTT1PNiQS+n1lMiJubW103rbb7/62AWKDCplMvOYEB9NxmZBADQESEkRZiEZD26/R0FAo7qp91jQp/f/Z++8oR/LzPBR+qgo5Aw2gc+6ZTtOTc9jZ3Zll1FKkRS4tkZbOdZBkS7J9rM/y/WRfSzqWdOzr+/lKtmRJli1ZMilLS0oUudxl2Jnl5NCTQ890T+eADsg5V9X3x4tCRqfp7umZxXPO71QBKACFAlD1/J73fZ/3YwZRFBFKhuCJeojQxrzwRt3w+hbg9S/AE1iE0zcLl98Bd9QDnxiFn0shKC9vTrwWsDzAgaL60sVnswmyMp0jqcuR29WQXV2SetNvF07v1gDnO3KdpqZNhY+bEgzeXNTgLbcBb4Vs6GQzFi4mEy11OohaLR6rg/gQE/hhahgX48OIi4VWOzUKE2J8AlE+Z6VjVBrxue7P4Ut9X1p9X/e1gucpDOr3lwyPz4E/CV7EfxVvYYqjizEjAp91aPELdxh84nEcbGqDFVO5nCYRdXVUmCMVtax2bIRPrigi9eQRbn7nDzA4egHxsWHwdXak00nw6RQt+VTOqJ7JM94vWl+L2X3Z1+IYpKWoRMHrivQ4RAjMxl02jjcfx9/p+Tv4Qu8X0GHu2LDXLYtEgrpsSTmh166VqqEmE/DaazkyuXdv+fxgQaBCuGJbq7Gx8q029XoKl0qdhLxeIp2xWOlrF8NqLSWb+esm05oPxbZDOr0+Mltp22i0UK2MRumxRCJXTLbZ4fFKkIQOpZIIpHT+aW0lhb2/n3xgW1vX1IJ1O6NKSqtYFURRRDQVhTdGRTXemBe+mC+z9MIbWITPPQvv0hR8gSV4E374xBi8Ch7B5+UrIimeknG/Kp3LO5MUmzRLNltxGanBqU1yC2FEQJtioE+z0KWYHGlNAPqESLfjInRJsfC+ZYixgn9+oisCGLNkCGon2eEEio57u48qj98aB96cpC5axYjLgKvNwA876XXu1Rc+zmV8NZN5ESx9AvjcKIsvPZPhkw41VKwiF1ZTKnNDJiu8aAsCKVDJZM5zUbpgRCJlL8J364HfOwz8711krQZQ6sg/uAv849tAh6/CAZLJSA2QFI5Uighupd7bAF0E3noL+OVfBk5sUKvLdUBIJfHow6/h/OU/x3nPLVy0Rcv6Sr5sYBl2Rbuv7ppu/J1eMrNv0Dds3s7EYhSOl0jojRul6mZNTSEJHRhYm7VVOk3K6chIbvzxH5OCtbS0OpXNZqPQfzmVs7WVlK6PO9LpnG9r/sjP0VxaonC607k6hXmjwHE5BVOvJ5JZX0/fXXc3kcydO6loTr7KdsWbCcnmS6/fst9WlZRWsblIpZAefgL//RvwDd2Gd/wxfDMj8MZ88Kko99SnpqVXBThMDBaNHHwKAXFWWLVxfyUoU4AxkVM51WlSTxU8EV1J/BVBKlCKpbzYmJxyY/PH8+5LJcjAQs+ooBPl0Aty6HgWujQHfYqBLgXoEwx0cQG6uAB9XIAuxkMfTdN9MT5zX+axhAhdXIAIyun6sJNU1OvNhURdatP6axeAT48CB+fLd29xaoHz7TmS6ij6+7BCYbtIXQJ4+xnwxSf0uuoNECsTHPDNPuD3D9PnkLBvAfjFQeDvPqbJSu6AynLh0+ZmutiHQqsr5JDLqRjlk5+kKnnJtLzckIzMNxiiKGJi7iHOf/8PcP7Z9/ERNwO3uvDLsabkeE3bB4vOBk6uhEyhAqdQ0rpSDU6hgkypAsfJVzbYL1pfi7n+Wl63eP2FWoxFIsD16zkSevNmaS6f3V4aVl9NYY3bXUg8pTE+vrzhP8cBTU2FxVJzc6X7tVqF9lVBIlHZTaDYusjlWlv70+cBw+RIpkZDxK2mJhcm7+khkrljB6VobOfviOdpwvT0KTA8TEtp3e+nNr0/8RNbsitVUlrFi4HLRV6DDx/S8sEDCmUVnbQnjcC5TuDSLj1uNwLPlGEIZbw5jUojVJwCIs8jlorBnw4XFEOsB6YYYI5Tq0NTjAq6tCkiQOo0tVGVZzrasJldEhgiUWFljsyGpGXRffFNnAirBQ46QQa9qIAOCqghQ4oREWQScDMx+NnCC50uxWCvW4ZjcwxemxLR7OOJ6GZUXXXma3lqI5L7w07gQtvybWE1SeDHngFfyhBU7eoa8GQxZwD+6ADw3w4ATh3dJ+ep2vwXB4Gjc9sglYLjKK8sXxHWaokUS8qsdDu/arhoLCqS+Cj0AOedN3GemcK0pvD70SaB1+K1ONtyGmfO/CMMdL8GVv4KyKVbhVCI8kAlEnrrVqnHZ3098PrrObLX3V150pFM5gqehocLyWc5P1oJKhUpYd3dNHbsoBy/1lYiM8VFNKkUWZFJuaxXrpTmshoMwKlTtM+vv06+r9u5l3slG6t8FXN+npYez/LRjI2EVAsg/YeNRpqYNDRQUVpvL01M2ttpYvAy+jZHo8CzZ4Wk8+lTuq9SgRXLAr/zO8Av/dKW7GKVlFaxfZBM0p8kn6g+eEAz4QzCCuBmI3ClBbjSKcP1BgGRomomBafAwfqDONR4CLtsu9Bh6YAgCoUpB/GiZcwHb9QDX8yHcPr5ZtpynkLKljxSW+62MQ4oeVJu5QIR27islLyWI7Tl7gsp8dx5v5XACoAuzUIvyEjRZZTQsEqkZCwCXBouJgKXEK74fAUjx2nzPnxefxCfE3agLsBDtrBEeXWzs6RyeL0Qo1FcaCNV9G97cp+nMQj8/B0G/+geg9owcl1GXlIElMDFNlKhz3cAQ0V++XKeSPeZCeDMJHDYQep+Wej1uUI6aanR5EhxJaVXGqvZpnhbpXJ72/EEAkTgJDJ3925peLy5uVAJ7eoqJBpS6LKc6jk5uXy4vbk5RzzzR3Pz8x23dBq4d48+08WLwOXLpeFnvZ7STSSCfeDA5oWCBSHn8Zrvj5q//PM/B3btov+4378+w/+1Qio8VShyoXKLhfIxW1poYrBrF00KGhvX3jEtGARGR+n8JQj0ms3N5ScWLwJud6ni+fQp5SZXOm+qVPQb7ekhAt7bS+s7d26pddm2I6X/6l/9K1y7dg1tbW34kz/5E8iL/kz//t//e3zzm9/E7du3V/2aVVL6kmNpqZCkPnhAf7J0GmkWeFCbIamZUa5Xcp+tDyebT+JEywmcbDmJdlN7xfBhkk/CF/PBF/eVkthKpDZKRWMp8flOuLoUA3OcyRBXEZaomCO0yxBdQ4JC8gnZ2ghtSAEEFcCskULzbs3mKrj5kKdpvw1JUlVjcmBJC0Ty6oFaYgqccKlxaJaHyRWuXJxmroW6sRVMaxuFQOvryYPxb/+WSK8ErZZOvC0tdCEKhUg9kCqE8wscUqlCg3hBoCER4jWcEuMy4HpTrjDtdkPhBIIRgb2LORJ6anrtyvKWQ1KV8glrsX3OWsnuah+XywsJpNdLBE1SQu/fLy1OaW8vJKFtbfQasRgRjHLkc7l8Q50up3r29BSqn1uV28nz9FnzTfr9/sJttFoiqdLnPnSoMgmLx4nQVCKZkoq5uEj3bVWovJyKabMRCezoIAWzr4/WN0rFlHxdR0cLx7NnBUJJyX42NhJBbWnJkdX8dYtlY/ZPEOgcVy7kvpz9l8VSSDql9ZaWbZFisK1I6YMHD/Af/+N/xNe+9jX81m/9Fjo6OvCTP/mT2cdDoRB+/ud/HiMjI1VS+nFHIkF/QImkZtRV0e3GhLmQpA7bSp9er7TiZPtpnGx7DSdbTmJ37e5sG9D1Ir8YzBd2wfv0LnyPb8E7+hC+2VFSYovyaH0aFl4di4CML2kZuhawYGASFLAkOSKtERHmqABLRIA5kllGxQJSK43ilotzBuD7XdQh58NOIrDZ9xGAXjflc/a6AGsUiJQhuiEFsKQDFnSAR0PbbFZObv6+5ZPWESvw+iSgT7PQ1zZD39UPXXs39Coj9Eo9dAod9Ap9xXWtQguWWYWqJYp0MQ8GyXswEADv8+Du0n2cdw3ifOghrmAacbaQJO3wEAE941DijSU1alLyXPGX1CXpOYjwKw2GyRFTadJQDI2GcvkaGmiiolLR5CMUIiXV46GLt89X+bgyDD23q4sIp0R+enrodbdbCJfnc52kLlygUUxSZTLad7OZSJQUTg8Gt17FVKlyKmZtLRGjHTtIxezupmO/VhVzLYjFKA2jmHiOjlZuHSzBbqd95Tia+M7Oru74aTTlyaq03tRUWEmfSND+FJPPkZHlHRlaWsqTT6t1db/bZBI4fx54913gN3+TyPYWYFuR0j/4gz+AVqvFT//0T+POnTv40z/9U/ze7/1e9vHf/M3fxJkzZ/BLv/RLy5LSRCKBRF4eSjAYRHNzc5WUvuoQRaqoLCKqrtlhXGsQsiT1TkNpdb4OChwz7sLJHWdwsveTONJ0FFrFBqsdTidV9V67RkUWt25lTyo8Q9XyPg0D764u+PbshLenFb5WO7w6jgrDyqUcxLyIpVdhFbMM1KIMFl4Bc1oGS4yBJSbCEuZhCQswRHn4FGmMGwU8tANT5sLn1oaBT40Bnxmlqn5zBTvGFAvcaKJc1G/1ZMLVxedFkZTTw7PAsTlA4Cqru/m3N7MSXSvXQq/UQ6/IkNX89QyJ1Sv00Mq1iKQimPJPYcQzgqGlRwinCy2E6kIZEurW40zPZ9Dy2Z8Czp6li9RaIQiFRFiyy5IstLzeLEHOFnlJ5tzSkNp/SrY3xYqwpDRWiXApJIW42Fe4nOK7mvvyb1daZxj6vsspmS4Xkai5OVIzfb7VWUhtBCRPzHIqZmtrjsjv2EGPbTWRTyapS9ezZ6XEc6UuXRYL7Xf+2LmTJimSZZcEnqdjPztLCubMTOl6JYW1GGo1kfF0miYNlfZRLqf9kUintOzuXp9an0oBH31ERPRb36LfEQD87u8C//Sfrv311oFtRUp/+7d/G319ffj85z+PsbEx/Nt/+2/xF3/xFwCAQCCAn/3Zn8Vf/dVf4eDBg8uS0l//9V/Hb/zGb5TcXyWlH1PE48DQUJakRh/dxS3nPVwxh3GlBbjWjLK2VYfEBpxoPIqTB/8OTuw4gzpd3cbuVypF5Pn6dRrXrpVv5WazUSW4NA4dKiAy8XSc0g2WJuH96AP4rp4jlZZLkRqrArxmJXzNNnitWviUAryZ1ARefA6zZxEFxJIRAVsE6PQCe3xy9Hk51IQFWEJpWCICIFKf8j/bC8yYcq8hF8pYeIlAXYbw/vMbwJ6lyrvBM0BUXpm0hsqs529DjzG5++VigaPARkLNKqFXG8urtEXEdzVqrpzbQtsYyR9SIsAS6ZWGz1dKhCORwtQIyf4rlcopwtIQxZwqXMWLBcsSyTSZiFw2N1P6g2RbtGMHnZe2S15xKkVNBMopntPTy/uMGo2lxFMakhPCRiEapcK1Gzfo3P/sGRFjj2dtnZxYllKUpCK5csrraicA6TQp6n/1V8Df/E1hoV5tLfDFLwJ//+8D+/ev+eOuB9uKlP7X//pfodPpyiqlv/Ebv4EzZ87g5MmTK5LSqlJaxYoQRToZPHwI/v49PB65jCu++7iicuJyS6n1EQB0CiactO7HiT1v42TvJ9Fj7dl4W5v5+RxJvX6dusgUn6xkMmDPHiKoPT10EpHCdflhzLY24AtfoHH8OMBxCCVC+HDiQ/xw/If4ozt/hF89+aswKA3QKrRQckpwLIdEPEK2XXOj8Lpm4A0uwZv0w6cQ4VVTOD7xnLn8DACDTIcWUyvqjY2QM3IsBhyYCk7Dm/CXpDKoeRaH3Ur8g0dy/PiwCEM4lVP2NvjUJILyWwuIq4JSEW42kVfqkA1w6QqfxwpkP6ZNUqFSSgZElCxCCmpNu1kQf+0lJnGiSGTi9m2KHNy+TRftcrmcWm0u3LxckZHUIlEup+0ZJkd4pd+MpAhX0yJWD4YhoioV0a1W5f3d3wV+/ddLi/FWu5Q6DPE8EcxyxHOlwjOdrjLxXG04ey1IpSgtoFy+Z7F7Qj4aGkiFra+nCYFCQZ/L682lCDgcq/O0lZowlEsTaGyk/fvbvwX++q8Lc1BtNrJ/+vKXydVhi/NMtxUpvX//Pv7Tf/pP+PM//3P89m//Ntrb27M5pX/v7/09uFwuAMD169fxK7/yK/jX//pfr+p1qzmlVawa0SjEx48xM/hDXH38PVzxPcBVSwSPaktzIi2CEif0/TjZ9ymc2PUZHGw4CKVMWf5114tEgqptJSX1+nU6KVVCXR3wqU8BP//zwOHDAMNg2j+N9569h/eevYcLUxcKetuXgzpF1e6NoaJlTIZGzoTGmBwmdwihRJj8ZTNj1EIh+kd1wJSJGhpsFhSsHLWcEZ0xFToXErDOemCJCAW5spYY0OUt8jBdAyJySvc430FV8vfqC38DrED+rmcmqUDp+Gx5X1YRuQK0cqptdl3FIKxkEFIxCKk5hNQcwmoWIRVLj8mBkIxHCEkkM123fvnov8D/88n/3/o+4IuAw0HEUyKhg4O5EOFaoFDk8jyLx/OoW8kkpQBJLTzn5qioR7InkkLmwSApv+n0qgitwJDn74yRxqyBlr9zDHjye5SnXcUykCYWy4Flcx3ramqIXNXVEdGzWnNEerWEWKVaWQkOhSi3s5h8jo1Vzi/luJzFVHc3/Y47O6lIS6UqjCRI6TX56/F4zvx/aSnXFMDtJvLq9ZZ2H1vN8dVosp3+wHG5Yz48DHzjG6SYbgG2FSkFgH/5L/8lbty4gZaWFvzpn/4pfumXfgl/9Ed/VLDNSkppMaqktIp1QxSB6Wn4L3wf1+98G1eXbuGK1oPBRlLT8qEUWBxUdeBk5xs4uedtHG85AYt6A8I/okiWNt/6Fo0nT5bdnGeAwVYO3z1Zi/fak3jEFV7xOpka/JjXCtODETgMgENPxU0OPeBdZXojI1I+aWNSiUaZGY2GJjTWdkHV0IrbyUl8b/wHCCQCFZ9fq63FocZDGLAPoNXYilg6lmt7mxlS7qwz7EQwub6uK1c+/U2c0PYU5lUWr2eWqVAAg+IczqscOG/w4npNtCStoM+ZI6GnpwFThRzazUYyk2/LZdTZLPL7Xks5fgYDXaRra0kp2bmTLoidnXS/Wr05eX4uF5HPK1eoMv7Ro9Kim5VQX1+eeLa1razgSH3YpRxMqbDJ7aaLuZTrt7BAxDgSWVsINQ+hjINFMemUxpyhsAtaPr71YQ0+76ulcKvFQgVIVivdlslovwIBIsJSO0yp41k8XpgWIeUGC0KpGlzF2iEVY8lkOYLK80QQpZzsSmCYyoq9RDBflu/lH/wD4L//9y15q21HSjcDVVJaxYbC6UTy0o9w78a3cHX6Cq5wDlxpAVxl8sr72DqcaD6Gk3s+h5Ntry1rRVWAdJou5t/6FoVYZmZyj8lkwJtvUlj+x38cMJkQunkZH17/Gt5buIj31bNwaXJ/V1YATswCb49Qt6Vud1GNkVxOI5FAjOExr0eWrGaXNiXmbEo4dCLmuSjSWF0uqoJToNnQDLvWDl7g4Yl5MBOYQUrIncxlrAwnW07i012fxqe7Po1dymYwN2+SMnztGnDjBoRIGAElhc7/5x7gB12l4XMJSk4JtVwNURTxZ5//M3yy65NQyUqThgVRwKOlRzg/eR7nJ8/j0vQlhJOFobXmiAxnn6VxZoJas9aHQaTo5Eng4EEiTUXkFsFgLufS58vdFwjkioxeVC/t1UDqty2X0wU5n9jW1+d8Hnt7KafNbCYC+sEHRD4fPKCQ/GrtgmprKYza1ZULqXZ10dBn/N1EkY5vPrGUxuIivd/UFJFNv5/eeznCsAakWWBeX0gyi0mnX73y67AMiwZ9A1qMLTQMLWg2NuPTXZ9Gp6VzQ/Z1WYgiHROp13t+gZz0+5SIb/6QbNPyWwBLpHiVSnEVq0Q+kZXLK68v95hMRt/l9DQVeOWrpioV5QTv3Uv/41gs991LBZLSfyw/t/Q//AfgV35lSw5BlZRWUcXzIhiEeO0axq58B1dGz+FqchxXmgSMWEs3rYMeJ+0HcGLgszjZ8Tr21u3NWVHF48C5c0REv/OdwjwfjQb49KeJiH72s4DJRGH5+3+F9x5+Axd895DMI4rGOBUJvT0CfHqMQtlrgkxGSk1tba7Hdm0tUFcHwW6Dy6LCiCKEry/+EN8efx9LkVwlklauhQiyx1oPdAmymzo+C5ydAHZ4gUZRB92BY5Qbe+IEcPgwxnk3vvHkG/izB3+GYfdwxddjwMCmtaHF2AKbhvzBPDEPRj2j8MULQ8c1vBJvTAJnhhM4M0Hhf0YmIyPyz32ORmvruj5XAQSBLgRPnlAR3rNnFPKbmqIQ93I+gy8jpIutyURWOs3NORJqMJBq5PdTTvXEBOXOuVy0lMs3jGAWQwSlnswYgVkTgxkzixkLixkzR8qnTsC8KglhFfNIk8pUQDhbjEQ6pfsa9A3PbTu35QgGS71bh4cpjzP+gsIELzskSyyOo/OsRCbzc3G1Whp6Pf1njEaa/BmNNLTaXDoCx9HE4PFjun5cvVpIKOVyIqB2O712NEoTvOICxHyVvZjufeYzwPvvb8nhqZLSKqrYaMTjwO3bcF36Hq49/h6uBB/jal0Kt8tYUWlEGY4KjTjpUuPE5SkcHYvDIIVjLRYiQV/4AnDmDPi5WQze/Gt8d/x7eC/+EI80hb3cuzykhP7YM+DUghxyuYpOPsV/XYOBTj5KJZ3glEo6EcViNEtewUrmiQ34/UPAn++hdqoAmf7/zGId/kl8AH2mHUBdHSI2ExwWGRw6AQ5VEg42AkfIAcfMEzjcE5hLuLAoi6+6C5VWrkWzoRlNxiY0GZrQqG+kYWgEAwa35m/hg2cf4M7indW9YBEYgTxb9QlAn2agUxuhMdugtTVCozZAI9dAK9cWLhW0rHgfp4bG5YN2ah6qsSmwY+M5a5qJieULFoxGUiR37sxZ0UhKotFI3+uTJ8Cf/Anw/e/T61bKY2tspOrZ7m4KDXu9VBwyN5fLkYxGKSQpXZheZmRSGOJaJWZr1ZipU2HWrsKMVY4ZC4cZbRqzXAQzCSei6ZUnTwpOgSZDU4nKKd1uNjRDryzTteNlAM/TZKgc+VxcrPy8/Lze/OYBej2p5RcvUvpGTU1pcVF7O5EzSaGTIgvSevEo99ha8yZXA4YpHNK58+NeELdnDzVp2AJUSWkVVWw2eB54+BCxS+dx+853ccV5C1dqorjWXBr2YwVgd1SPk4Z+nND2YO9EDE/m7uE92QTe70gXpAhkw/ILerztr0W3SwAz5yjtFd3RAZw5Q56Yb7xBBQCVIIVJpeKOzDK9tIDv+G/i9+X38ZEhp+L1uoBfGAT+3kPkyPRaDg0DLBlYOHoa4OhtwuQOG27Y4ngYn8F0cGbNHqwyVga71g45K8d0oIy9Fih1QSyys9oqaJJUeKVJUccmTZqBVqaBRqWDVmOCxlADjckGrbUeGkMNtApdAeEtJr0KTgE5K4eck0MuMJA/eATZN/8G8nM/gnxiCnIe4MqduW22QiNtl4tI7XIkZJtBYKgDWDakbiwNsTsrpHgUo5bRo1lmQYuyFi2aerTom4h0WjvRYuuC3dYGVm/YPhZI64HPV75r1ejo8rm0dXWF+bwSAV1NXu9GQmr7Oj5OQ+rhPj5OoeqV8pWlXGugcsOF9UJyhpD8ffOdQV5e6pTDwABZKm4BqqS0iiq2AhMTuUKla9cAUYTAkOp4tZXBlSYRV1uASfPyL6NPs/h0pBGfizTiU5My1Nx9SupmPqxWIqHS6OhY9247I0788Z0/xh/e+UPMBecAUG7cj3f/OH7x0C/gDcsBMEtLdLFwOGg2ff8+XSjm55/PwNtiwWinGd/rZvFefRCXNC4kmZyCx4JFjcoMpVyNOB+HO1o+5L1H24kzXiPOXJnHqZuL0Geuv2EFMHyqF49e68HjTh2ewo1RzyimAlNIC+UVRwYMTKwaJl4BfUKEJpqCIpIAl+KR4sjIPyqnEckst6ptayUwIllUyYXnX8qe5zUEBnKwkIODnJXREFl6LC1CnuQhS6YhT/GZIcCnKiKaRcVDJf62ZaBJAq0BoDkAtOSN5iAtm4KlXc0qorgTkdFI/zeLJVe5LA29vvJtaV2tLlTh8r1a1zOSSVI9x8cpHUQicBMTpeeJfCgUlJbS3k5kUxotLbSfq3nvcvstHTMpVM1xuZF/W1oXRZoYzc4S0ZycpM8zOUmfYyV1VKejcLdOR9+RQpHr+pVI5ELW+a2E831ytysk8l+OSGu19JmlDl2iSJ83v01y/np+k4x8f+Dl8MlPUjRmC1AlpVVUsRkQRZpZSkS0eJap19OJIh6navlGMpb/m97ybVHzYYxTvuWJGeDkDHDIp4bmxOs5NXRg4LkUHVEUcdNxE79/6/fx7tC7WQspq8aKn93/s/i5gz+HFmMLKRNSh6pr14CbN0s9+FiW9ufYMQoBdXSQWiER2SJFFouLZHFSJgwdlQMX2oAPdlAL1IkiY4O2iBynQhbsTppRn1JBHYzi1DUHbK68ghulko7T5z4HvP022cXkIxJBeuQpJp5cxfDkLTx1P8VwbBbDnA9PTWkEyjRZkGCPsehJGtGraECPZSd6Ww6gp+81NHQfRILhEUlGEE1FEU1FEUnR+rL3JcOIhH2IRgOIhLyIRnyIxIKIJiOI8nFEmDRSjIAURx2zUiyQfvGtq7cUrMigMaVCS5gj0ukT0OJNo8XLo9nLoyUAmGMvRBSvooocFAoij2YzRSmMxlwOqVJJj0tdwpRKGn4/5Zs/eFDYCUoup3PqoUPA7t25bl+VhlT5v9IAcs4C+QVt4TDZDJ44sSWHqkpKq6hioyAI5CP6ta8B3/42Wc1UQEhBfeXf62HwfjcLlyo3A2YZFifU3Xh7jMWblx3wJvy41kyemdebS9tqysDigLEXJ3s+gROtp3Ci5QTsWnvZ950PzeO7z76LH4z/AH/z9G/wy8d+GS3GFrQaW1Grq8Vtx2386f0/xd3Fu9nnHGk8gl849E/wJeV+qG7eoUT6a9con7FcvuqxTEHS8ePklbrW/5wgUM5jBdIqLi0isDiNm3Dgg/owLrUCj+2FhIwVAIEF/s/LwDtD1BGKFUEXhtpa2idVhmEmk1Rh7PEUFggUQQSw1FmLp7tqMdyux1MrMKwOY5hfwmy0cthbI9eg29iJXk0remR16BVr0BNSYsdMGMqxKVKAFhdpH5LJ51JtRFC1eJaoLrNMsytvU7BsqkOqvRWp1makmhuQ0mmQEtJICSmk+BQt89crLNNCesVtpKVBaUCrsZVC6ZnioWwep7F55eIhQaDjWi4/0e0mdX96mo6/2005jtFoTkV7eS97haREUivLEZFiD9B8lXM5VbTctkUQQfZlyg2MlFfxAvDv/h3wb/7NlrxVlZRWUcV6kUqR9+Jf/iXwgx9QYcAyuVnTrUa8d9KO99oSuCCfRxI5NdAo0+FT6Ta8PZTCp34wjppgkVLY1wf09iKtkOFhcBRXAo9wtS6FKy3AfJmf9A51E052voET7adhUVvwcOkh3nv2Hu4srK4IiAGDRqUVR1K1ODjLo/XxHFrnQmj1U/vPbJ5iV1eOgB4/Tvu5xjwzURQRSUXgirjgjDjhjDjhirrgDC7AtTAGp3MSzsA8XDEPnGIYLlmyoudjJdREyVv0bGa0+1fxJMmMu6aGCoWam2ldqyUlg+NIUVhaQsgxiWehKTzlPBhWR/HUnMawRcRoTeUQMysAHT4yTu/JjF4XLc2bUdgsFU4dP07huDNnSKEBSA25dAn48EPghz9c0QsXANDURNZY0ti1a8u7v2w6eL7Q4iuf3Ho8RGZnZojcejw5UptnrM8z1AXNpSEDfWm4tMC/Ow0M/xege5nI+rqRTzwlLEMg14sEB0ybgAlz+RFSAuKvP8cb5JPnYtVPItrFpFvaTiLk+a+Rv75e5B+/uTmySstPYchPZcgPm7+sFlq/8AtAprvmZqNKSquoYjXweimM8uABVZRevUoXo0q5OPX14I8dxeA+O75r8+G9xEM88hXaFnWyVipSuriIU8MxyPNfqqWFQvFnzpAnaV1d4esnk8DduxAvXcLU4A9x1XEdV6xRXG0GHtdW/hgMGPTZ+vDFvi9iKbKEH47/EBO+iTUdCrnIoklpQ6u1E622HWg1tpLaamrNqlqiKBKxjDhLyWbeUnp8rQVNAFX823kV7DITbFob7Do7bDEOtmkX0s+GMaWIYtJECrPkEiChwwecXVDj7JIOby6paRIgeS+u00C9HFIs5Qk/tQLDmfHURreDy6QC1ESBliCD+hgHa1oBo0wHrcYIyGQIsikEUmH4Yz6835ooveBLZJphiFBVKuhQKqlgpa+vcHR1Ubjw3DkiqOfOFYYPK0FSySWSevgw2da8YhBFEYFEIO/364TT74DT54DTNwtncJF+3wkvnCk/3GKkpBtcPr7zF+SasV0hgkj0ZAXSOWco7XaXj7fGgR/+ry3b3Y8P8vNzn3dIpL7S+Cf/BHjrrS35WFVSWkUV+UinqUDg4cMcCX3wgGbDlSCXkwJ19ixCn/8MPjS68d7Mh3j/2ftwRV3ZzVgwOBGz4u37cbx9J1RoYm+xUGX82bM0OjvXNJN3hZbw/sU/xncefRM/jD9GhM0jImUqzVkwEPL6y39iDPiFW8CbE2SYP20CplsMmOltwHSDFlO6NCZ5NxbCi+DFzYnFqVJAbQSwRQB7BLBFAXtCBruuFraaZtjru2Br64d95z7Yeg9CLXI0OXj/feDCBarELQbLIsWKGGwQca4dONdBrVDzQ/2MCOxbyKmoJ2fKtwtdDiKow1dACQRUtPSrcuvF9/nVgEsvg0vPwqcSEeEEJJi1H9e3R4C/GOqBbt8RMvOX8szUGVuHdJrSA548oePz5EluvZLPpExGv2eJpHZ30298dJSO8+XLpc+VKo+LX+fAgRxJPXFieeeHzUQymTPf93pz5uA+HxAIIOJzwhVagDPqJjIphOBionBycTjlKTiVKTjVAlxqAU7N6gqsimGJ0u/anv/7jlB6SZ9r5edvJmIyag1cSe2MKpZ/vjYJdHppslc8WgPLFJKxbK6tZ3FOZfGQ8i6L16XuZQpF4ZBM5Ytvy2RrK9Za7jFBKCR0y5G7hQXgRz8Czp8n1wMJHEf59s3N9L96+LB86ldLC/2HTpygnvT9/a9eZAJVUlrFxxWiSErno0dkOiyNp09Xp5TV1VGhzM/8DKZ7G/De2Ptle8sbBQU+NaPA23fC+NQYUCMJgioVnVgkNXTv3jWdYERRxFP3U3xn5Dt479l7uD57HWIeyWzQN+DtutN4O1CLE3fdePrkIq5iFldagKvNgFtLfpxvj5CSoRIYOHc0wNlZB1e9EU6jjELlGUVzuZah64FEQJuCQLsP2JHQYgdrRRtXg9akBnUBHmwwlOsqI7X024Aq2ZACuNRKBPVcR6myrEgD/S5qKdrhBwxxCkHmE8ws4dRwCKgY+OU80uzGnCJZAdAlKQ+PFck2Ky6jXOJyihTHcNhn6sGpphM42fUmTna+UTGnOAuep1xKiaTmk9XiYrXsjrE0WerupurmYJAIb/4FVtou0yGsBN3ddFGViGpXF02+UilSqiXS6PHkOmJJQyKR+a02JW9VqZo6U1mcFNNZAunSFobNndrSUPpKpKsc9IncBKoc2cwfNVEURkI2AkolKdEaDRVOShX9krG61BpTFCGKAhaZCCbYAA0uhAl5CBPyMCY0Ccxrlp8QMSK5F5QjnR0+wBp9iYrJGKa0132l9ZUeV6tzxLjccLmIhP7gB1S0JIHjqCHHl74E/MRPkINDPmZnacItjQcPSid9UmRCIqpHjtB3/5KjSkqrePWxtFRIPB8/phNEKFR+e5msvAn53r3AF74A/vOfw6Apiu+OEhF95HxUsFlnRIm3HyXw9ghwajpzMWJZUrEkEnrsWK7QZpVI8SlcnrmM90bew3eefack7N5v68fRpqMYsA/AoDTAE/PAHXXDFXHBHXPD7V+AyzcHV9wDP7v2EDXHcLBpbbBpbLBzBthTCtjCAuyuKGxzPtinXLDNByDnSXnxaIAZE9n3TBsz6quRCPFKkPN0EWwNAK1+WrbkrTcHiLSJABIyIovBDGEMKgvVySyJrHCfX1W5L/lawTIsDEoDjEojjCojTCpTdt2oNMIo18PEy2B0h2EcnYFxdBbGsVmYZlwwRnkY4+RhWu4CX5wKcK+OCt9mTKXb7vTLcNJvwGuJWpxk2tChbwZTk7EuqqmhZfG6XE6Ef26ukKgODdEysMzERKnMkcuN9H/MgGeo81JxTmYlsrmatp8lHyFdRC6XIZy2yCrVdIYBr1Vj1q7CWJ0CY1YWY2YRY4Y0RjVxPFGHsDNlhIlRw8xpYeZ0MCn0MCtNMKlMMGssMGutMOltMBtrYTbVw2Suh9FcD05eyKSjqSgmfZOY8E3khp+Wk77JFVNk9LwMnQEWHYvJEtLZIuigbN9Bap7dTuTH5yNFb2EhN1mIxzet+9aqUFzEBazO8uhFQ5rIVRocR5OueDxXEV/8P2MYqu6vqyNXkaYmul2pNelaRmfnlkU5qqS0ilcHgQBdQIsJqKtCbIxhSFHg+fKhTIYhNecLX0Dos2fxIT+K9569VxqWF4ETswzeHhYLe8v39uZI6OnT5CW3CiT5JNxRN9xRNya8Ezg/eR7X567jsfMxEnxOfWLAQMEpkBbS6wqpM2BQo6mBXWuHTW2FXWGGndXDJqhh9ydhn/HANjwL+7QbtoUAzL442PTzK5VRORHVCRMwUgOMWyh0OGsEFvSAR02V8yvuvwCAWT6fba3Qy7TQKnVgGBYJPoFgIljiWWpRW7DbvhuHGw/jVMsptJnbYFQSAdUpdGCK0y5SKQrJXb9O49o18l4shsUCHD1KhUjHjiE80I1p7wSmZh5hanEYk95xTIXnMJV0Ykr0wcOtoVuBSL9JRqTfKyNSsZp0H4Pc/cvdx27Ac1b7OowI3GgmArja30Q+OIEUvBJiWYFs6hNrUPsYhi7SO3cCvb1I7erD9A4bxlRRjCUXMRZzYCw8g7EMKUwJG0/UlJwy6zyQElIFEZqyuwwGjdoGdDJm7Ahw6JgOouOxI0tCLZJ1FsNQaFhy0Th2jD7natOJ8h0PilVun49UcJeLisQWFmg9GKR87hdFaPPD7hJ5y1dD1eqcKi0VB6bTOc/TcDiXElLspSqRSuk5lbqubWf8t/8G/KN/tCVvVSWlVbx8iMWo0j2feD56RCGPSpBy7JYzc29tpQri/n5gYADTx3rxnud62bC8IQF8apQKFD49mgnLNzbmvELffBNobIQgCgjEA3BFXVmi6YrkrUdL14OJ4LoOi0augVVpgVVuhA0aWCMirL4EbO4YrO4orN44bP4krP4krCEeNSG+fLefFSCCiGW+KlmsUgbzVMlKjxVbW20GzIwGZrkedo0N9aZmtNp3oN3SiTZTG8wqc07BVBmhV+jBsYUpFGkhjdvzt3Fu4hzOTZzDtdlrJQRjT+0enO04i7MdZ3Gq5RS0gWghAb15s2woO9xgxXSbCVM2Oab0PKaUcUzJQrTUJOBWbXN15wXAEmdhT8lhTypgS8lgT8hhj3NELsMibP4k7K4Y7O4YzPGMDdhy0Ovp3CBV2ZcjRXI5sGsXEvv3YGp3C8baDRgzCRgNTWPMO4Yx7xim/FPLTgwVnAKd5k50Wbqyo9PciRpNDaKpKHwxH/xxPxbCC5j2T2M2OIvF8CI8MQ8C8QAiqciKpHMtUKUAU5xcHswpDia1GWZzPcx1HTC17CBFVmWCWWWGWW0uWNcr9KUTr40Cz5O4kE9k8wmt15sjtJKNl9QidzupoVotqcq7dlHKSldXrr2qpDimUpWHZEm22pFM0nGRGiZINmfFtE0uzzV7MJvp9y+KK7/2//1/A++8syWHrkpKq9i+kIqOisnn2FjlE5BSSbPe5chnY2OOfPb3w9/dijG7DKPxeYx5xzDqHcX/elhaLtrpJQJ6YoZCWv4aDdwHeuHqb4O71Qa3WoQrQzAlkumJep67MEjDc2iOytDjYdHnFFAbEmANCbBGBNjCIqxRUoQ0qxAZkhyRwkpkcjVEM6jEqvvVrwaqFGBMENE3xjPLFAsjq4ZBY4bRVAeDzgKjtgYGvQ0Gox2iQY+wmoNfzsMjhLEYWcJsYBbTgWlM+6fhiS3vsaOWqdFhakeXvhWdijp0sVZ08gZ0xTVo8YuQeYpyGEMhIBJBJBnBZaMf5+xhnGuI44Gt8LtVpKmxwdkJ+p1YYsCckZTgSRMtpbGaNAZTDGjzl452P+XjynlSikVQ201pXWQyt0ETiPt1wM1G4GYTcKeBcmTzIU8DA07gwAKwfx7Yt0jfQ/7rVHqf5d57ufsqPkfGQZRxEADow8msumlda16mRkMTzcZGIgmiSN/lwgJ1CCqTOx7TqzBxZCfGdjVirFWHMZOIMcaLMf8EZgIzEMTKO6CSqdBl6UKbqQ112jqYVCZo5BrIWTni6TgcIQdmgjNYCC3AFXXBH/cjLaRRo66BnJUjkooglKyQUpSBjJWhxUAerXW6Olg1VhhVRmjlWiiTPBJT4/DNPIPfOQ1f0Am/LA2fCvCpKU3Fr3r+yALLsDCpTOVJqyqznrmvRl2D/fX7UaOpeb43XQ2SyfLKbD65dbtzjTskQhuLvRibJsnSSibL5Qfr9UQYbTYKwbe1kUrd2UmFTibT6hXrcJgmxFJe6vXrpSlrLEtFVlJe6okTRKZfIKqktIoXD6noKJ94rlR0JIVEEonKJ5TaWiKeu3bB39uOsVY9Ri0ixuILGPWO4pnnGUY9z+CN+8o+nRFJTdAk6UTuV62vIAIA9CkW1jhLF9eICGNMQFguYk4PjNYUWhbJeOD0NBUhvf2MCoEiihyZLDdCKzwujY3KnQSoICefTBYQS15GpFKug1Guh0FtghFKGPwxGOdcMI7NwRDlYUgACh4UEjt9GvjsZ6l7SENDrujF56MLiDSki00eWUQ0CjEWxQIbxbAmigemBJa4GOwJGQRRwIRJxLhZxJiZcluXI9UynvJWu7w0EenyAp0+Wrb7crmEETlwt546cV1pIQP/5WyeyqES6Wzz0z6Y1uNXyjC5kKNWmxuZECSvUeORKYHLRj+uaNy4LF/AAlNa3LRL3YpTpj04ZTuIkw1H0WztKAxjMgyFaKXCpHLLcvdVyuV+Huh0pELt3k1LpZIUo3v3KKUnL2QakVPKyGiTGmN9dRhr1mLMwGOM8WIutrTs26g4Fer19bCoLdDINWDAIJaOIZwMwxf3wRfzFaTYrAcsWBhVRrQaW7G7djeONh1Ft7UbHeYONBmaKGQvCBQtktT469fLu0/odFQAkwnFC4cPIaiVwR/3wxfzwRf3Zdf9cX/2M/gTpY/74r51q7UH6g/grY63cLbjLE60nIBKtsY/ymZCFImYViKyHg9dkx49ouvUdqBCUrqBXJ77nxsMRGjr6mgiJqmzHR3ko6pU0nU1v4Bqerr0tZubC0nqwAAR5y1ClZRWsbVwOguJ50pFR9IfbxnyKVrMCOztxWR/Ax62qjFkTmFcHsZMfBGLoQW4o27En/NCkQ85j6w6KSk41ijlpeXfb4yTFYqcBxJyYNQCnO+g6vcntkJbIkUaqA1TOE2RJvKbJZzKjc2bBMjCJatKFquU+bfTLIwyHYwqIwxqCncblAYYFXpoZGowTMYKSOqvnGmdimiUvlOXi4hLucR8IDfrX8PpJcEBY5ac76c0RqylCiBAbSZfnwLenKTR5aHioHEzvc64JbM003pihfOvPA2AWZ8tkCnBYL9HgTMuHX7CZUM3rDnCWG5oNJUfky5G0jb5OW9rCK+KoogJ3wSuzFzB5ZnLuDxzGc88pcaZrcZWnGw5iVMtp3Cq9RR6rD1gmXVI5pKiVUxY5+eJXA0NkZK1XLRjBQSV9J1mh5XFWJ0cYyYRC8rliZWclUMj14BlWKSFNJJ88rmJpgQFp4BZZYZNa0ODvgE2jQ2iKMIX92HKP4VnnmclkRUlp8QB+14cZ5pxbJ7DsTtLqL98n/5XxdixgwioNDa4oUEsFSshqiXrefcthBdKfksqmQqnWk5lSeqeuj3r+x1tJkQRuHMH+PrXgf/9v+n3KKGjA/jqV4GvfIWIXyiUm4BVGi4XvYbTSb/9cPjFkVtJnZVstTIODUgkaKJfDn/wB8DP//yW7F6VlFaxOQgGSwuOVio6UiiQ4pPwqER41FS9XbA0KTDfYMBsjQyLah5eLomQEENCWH+uFSuQf6AtRrYtNVEiZboEoE2RKqbgAZlAhRMiQ1XQoVWoknH5unerLDiByGKloV/msfyhgxwcJy8khPmdSIr9+F4QPOpS4jlsJd/ESkUvrECqZo+bwsGXWkuJam2YyOnJeRm6wkqk1XJM18gwZRQxqUlgVJvElDYJ/zrEHC2nRqOmDl3GNvRb+6BVG7GQcGPI/QSDjsESpWmXfRfOtlM+6mutr0Gv1K/9TTcBzogTV2auZInqvYV7JWTJorbgZMtJnGw+iVOtp7C/fj8U3AYmCodCVBB26RLwwQcUivTk0jJ8Kooy5JPP0czwrJAawYiUKrARPkZKTgmz2gyrxooGfQOaDc1o0jehTl+HWm0t6nR1qNXVolZbC61i+R2LJCO47biF6w++i2vPzuN6eBhurlQub/MBxxY4HJe141jbSew+8jnIj518cT6wy2AhtIDzk+fx4cSH+HD8QyyECz04rRorzrSfyZLUVlPrC9pTUFrH179OraLzrc5qaoAvf5nI6NGjz9cNCqDzajS6Mpn1eIjIOp20Hgy+mEKpnp7ySvwmoEpKq3g+xOP0Yy0in+LMDCIKlCWXbgMHj4Iv+9haw5/FYAWyClKniKTp8wibIvML5hnq+53kKN8ulBf+DivWXuW7FuiggJ1XozWmQENIhDHMwxBOwhBOwRBJwxAVColmMreurmAV9DKDZyi/criWxbCdxbCNwXANMGzhly300YsK9DBW9HB16JHXo0fdjB5dGzr1rVBqDYBajZiCwTjvwTn/HVzw3MF931PMhR3gl8kLLIYhAbSndGjTNKC1thu2jn7IdSbwIo9QIgRHyIEx7xjGfeNwRpbveqSVa1GnqwPHcgjEqSNQvresjJXhaNNRnG0/i7c638KhhkOQcxs8s1knwskwbszdwOXpy7gyewU35m4gmiqsMlbL1DjSdASnWk7hZMtJHGs6tnaSLaXy3LsH8d5duP+ff4exnVY8gRsPa2lSMmmmBg/rTaVZDaRCIGsUqA8BzUGgxQ/UR6jNbm0YqI0ysCst0JhsRFpqaqiIpNy6dNtiKQ2FhsPArVu5UPyNG1nyLYLI9vVm4HqfHtfaODxWBgoaXwB07A83HsaxpmM43nwcx5qPwaop8r7cBpD8lT8c/xDnJs/hwtQFhJOFqSM7LDtwtuMs3up4C2+0vwGTyrS5O+XxAO++S0T02rXc/SoV8OM/TkT0k5+kiN12QCyWizQsN9xuIrNuN6nq5XyDV4vOTqrl2AJUSWkV5ZFMZn/YKdcSfK4ZeN2z8Pjn4Q064fnBt+BptcETccGjKiSX7sz6RuYv5oMVSLkESA1Lb1x0KgtGpDxQQ4qFIcnAkAQMcRGGOGBIiJl1ui1CxDML8KCORn74V5cAPjVGuaGfGaWL3LaH1C9aJst1S1GpKDSs1VLYJxqlE+PiYuHMnWHoBLZvH7WZ7O4GNBqE5SJG+CUMJ+YxHJvFcHgKw4FxjPrHlw2NNhua0WPtKRn1unowDANe4DETmMGIZwQj7hEMu4dp3TOC+dD8yp9VRAnTb0yrcVzTg8/2fR6ffeNnYTXUlX1qMUKJEMZ94xj3jmeJqrScDcwWENDVQC1T42jTUfzYzh/Dp7o+hV5r7+ZVPa8RKT6Fe4v3cHmawv1XZq6UFJexDIu9dXsp3J8hqrW6vE4FPA+MjCB25yZGH13A0+k7uJoYxQ1bEhMWUkI3coKoYhUwiUpYYwzqPEk0L8XR7gcaQtTIoTYM1KaVsNvboapvJiKp1dJv3eOh4XbTslKDgdXAaETKVoO77SpcjD7Bz99lYYgVTZSUSurQJVkyHTuWbTUcTAQx6BjE9dnruD5Hwx/3l7zNDssOHGs+liWq/bb+EneJF40Un8JNx80sSb05d7NAkWcZFocaDmVV1GPNxzZGjY/FgPfeI1X0gw9y5zCGIQeVr34V+MIXKE/zVUEqtToyK/3OXS66HYkAv/VbwK/+6pbsZpWUvuoQxWynlLhzHj7nNDyuGXh98/AGF+ENu+GNeeFJ+OBKBeBkInDJUvCqxGyldex5JohCzg8xv9p2MyQ/GZ9TFvUZlVGfpzgWry+3rSZV2U5GBPCoFvhON/DeTmCwqfDxFj/wuUyR0ukpUm6fCwyTM1eWWuYplZRHKHVwMRqpMtNopBOpTkdDo1m5O0n+kMtLQ1OpFKk4H3wAfO975LmZj9pa4NOfhvipT2H++C4MpxYx7B6m4aHlXLBym1Ylp0S3tZsIZ02OeO6s2ZkNd0EovTcAAJW1SURBVPrjfoy4R7LkUyKeo57RZUmtXpCjPcihbTFeWkwUV0G2dx+uHWvCR81pfCRO4I7rYQl53FO7B2+2v4k329/Ea62vwaBc+zkkno5jyj9FJLWItE75p1blY6ngFGg1tmJ//X6cbT+LI01H0GvrzXpVvkiIoohh93BBXuqUf6pkuwbWCHtcBjEWhQcxeDTUaGG95wO1TA2jygir2oo6Vo9mbxpto240P5pBbZAnohkB7IIaijfOUiHdpz9NlcxLS5QScOMGLQcHy5PNtjYqFjp6lMa+fXS/RFTzyWqF9aTPjdsaPy60ARdbgastOUu0D74GfDrRnCOfx49Tow7F6siXIAoYcY/g2uy1LEl94npSsp1eocfhxsOkpDYdw9GmozCrzes67puFQDyAi9MXsyR12D1c8LhGrsHp1tNZkrrLvmv1EzWepza5X/868M1vFtYx7NtHRPTv/l0qsqwiB6mL3hYVO1VJ6csEQYDo8yG2NAfP0iS8rll4vQ54/PNYcE9hwTeDpZQPLjYOjzwJryJn4ROXAfz2miQDIEVSnhdut8RIsaiJr4485q8r05sX3k5wwMW2HBEt7qJzeI5I6OdGgIGlFfZDMt6Wum60tlLFcGcnsGMHxJYW8CoFeAbgRZ7M8QUevMivebncc7VyLc50nCm/j4uLwPe/T0T0hz8s6OaTkAFjr+/G8KleDO+0YFgRxLCHVMriUFw+7Fp7CfHssfagxdgCjuWQFtKY9E3m1M488rlcaFzBKtChqkNnXIOOxQQ6RpbQMRdFm49+F5LdkNDYAGH/Pgh7d4PfvRvCzi4IHAdBFLLDH/fj3sI93F64jbsLdzHpnyx4L5ZhscOyAwP2AQzYB7CzZifknLzgNaTBi3zZ+4tHWkjDG/NmrcTcUTc8UQ+WIksIJALL2hABgFllRqO+EU2GJlg1Vig4BQSs/L4F+yqsbl9XGgk+gWgigkQyhoSQQFrkkd37df45f2bPz6DN1IY2Y1s2T7NWVwubxlY5vSEUAs6do9/vBx9QEVU+BgaAz3yGxvHjdMHleepcJRHVGzfodjmvx337iKBKZLW9vWAyl0gnMOgYxIWpC7g4fRHXZq+VdFSycHq8pu3DL5/6FZw8+HfWd3AqwBfz4abjZpao3pi7Ufa/2WvtLQj5r7t4bZMwG5jN5qOemzhXch6o1dZmQ/1nO86i0dBY+AKiSJPor30N+Iu/KPwdtLYCP/VTVLDU378Fn6aK1aBKSl8QxEQCocVpuGeGMXf/Emae3cKUbxJTog/zijhcijS8mRzHmJxIUZoDneC3zzlj0yDniWQq06Q0Knm6T5FZygUaMgGQiQw4kYEMtOTAggMLlskMlgXLcgDLgmVlAMuA5TgIYMBDoCHySIsC+Ex3pA/qw3htkloZurTU4jA/lMiIFJrXJakgihGJ+PAMbSdwDAS5DLyMg8Cx4FkGgjQgQoRYckGX7ttKfL7n8/T+Ag/B54XgdEJwOyGEQohz9PuLKICoikFULUNMBsTF5VU9OSuHglNAxsogY2XgGC4bNpRIWIpPIS2kkRbTEAQ6/msNb1fx6sOoNML/f/qf70VEkXqHf/AB8P77RDbzfY5NJuATn8jZkdntuceCQcr3lNTUGzfKFmvG6qy48UYXLvaocVHvxY3ICOJ8YYGSVWPF6dbTON16Gq+3vY5+e/+WEUBe4DHkGsL12eu4NncN12evY9Q7WrKdSWXC0aajWaJ6uPHwuiIDmwFBFPDY+Tirol6culhC9HutvURS9Xtx+vIMDF//ZmHPebOZ+s1/9atkd8R+DC6mLxmqpHSDYf8XDFzFuf2VFILtkR5WRRWvDBgw2ckIwzDgGC43OSkzOHb5x4tHWkgjnAwjlAghlAyVVNNLxuI16hpYNVaYVCbIWNma3mM1I5FOYCYwgzHvGGYCMwgmK3cBk7NytBhb0F3TjU5zJ9rN7dDINSWfXRRF+BN+eKNeeGIezAfnMRucxVJkCb64D5FkZN0TB71Miy7rTuyt24v99fuxy74Ldo0dj12PcWf+Dm7N38Lt+dtlzeN32XfhQP0BHGw4iAP1B7Cnbg80cs269gMAhdV/8AMiqd//fkFFPxgGOHSIFNTPfhbYv7+QuIgiMDmJyPWLuH73O7joHMRFxQJuNoglOfS1cRlO88043XAMrx/6EnqP/BiYLfR7XAmuiAs35m7g+tx1XJu9hlvzt0qK1xgwGKgdwLGmXG5ql6VrW+Q2J9IJXJ+7niWpt+dvF0zqZTxwxAG8NcXhbONJHP7CL0L+mbcp9amKbYsqKd1gML/GfCyUzI8LpD7cHMOCAamuDMMCDAOGYcAgb4ky92W2Y8Fm1yXixDCZZR6Ryr+/ZGTeP/92/rYFr8Nmts8jZxAEhF0OeHzz8CZ8mFUnwQrLF5PoFXqY1WZYVBYiWlorbBob9Eo9WLCI83F4Y17KS455KPwcccMb9y6r+taoa9Cgb0CjoRFN+iY0G5vRYmyBndVB/mwC3NATcI+GIHv8BFw4Ci6Tm8yJGXuuzi5w+w5CduAAuIOHIWvvBJtRZIuP4XLHV/qO1gNRFDHmHcNHkx/hR1M/wkeTH8EVLVTRjEojTredxpttlJO6WeqYL+bD5ZnL+P7Y9/HhxIcY944vSyDrtHWo19dDJVMhlAhhMbIIT9SzetJZpkAMIBKzw9SBfY0Hsa9uH/bV78O+un2waVe2KuIFHo+djwvyUssVq3EMh357fwlRXZchO89TLun77xNJvXev8PFMvnT4U2/iao8WF923cXH6IgYdg0gLhdY8DYwRp/1GnB6K4PU7Huz0FB0inY4IrxT2P3IkW7y0HZDiU3i49DCbl3pt9lrZvGCrxpolqceaj+FQw6EVra42DYkEfXdf/zp8597DjxpT+LADONcBjBU1kdIr9Hi97fVsqL/H2rMtyPWWIZWiNKxgkJbF69Jtv78wJ/rxY+C//BfgF39xS3azSko3GMy/LUNKP0a/+yqqeBlRjsAWTw5WJLdgwIs84uk44uk4YulYCTGXMTLolDroFXoYVUaoOFWBYrnce5Z77Nsj38ZP9P4EWIZFSkghloohlo4hmAjCE/XAH/cjmoquu9Xtcn6eHFjU6mrRZGimyYWhCU2GpqzxfPHxWusxZRkWoUQIOoUOt+dv487CHdyev42lSGnXJRkrQ7+tP0tSDzYcxEDtwNqJ6vw88L3vIfj9b+PKyIe4WBvHxTbgdkNpF7BmQzNOt53G662v43TbaXSaO3MkZ7VFVADw1lvkUpE/mpq2RWh5IbRAJDUT9r8zf6eksJBjOOyp24PjTZSXerz5OFqNrZtH+AQBuHKF8kS/8Y3CJgK7dlFo/id/ElMGAecmzuHDiQ9xfuJ8iTtEo74xm496puMM6nTbZ4JQAMnTdCVCGQjkiKRUbBcIkNNAIlG5NfdqsHNnoW/rJqJKSrcAST4Jb8yLpfASHK5xTDy9jqnpB5jxTWEh5YVHjCDAphDlBMRlIpLs5nplbinyfzUbcI5SpKgbkT4J6FLUAlSXAtRJQJumgil1iqrn1ZmcVHWafAflYibnk6ELjMgCAsOA5xjwDEN5oCxDOaDJBGo5Pay8EqJcDkEhh6hSQVApIahVEDUaCDotRJ0WglZNjykUEBUyCBwHUSaDIPXwlrF0m2UzPb1FiKJYkksq3bfe20k+iSXXFBac41iMOuHi4kgX/Y5kAlAjqGBVW2A0N0Cvr4FKpoIgCoilYgglKSwdSUYQToYRSUUQTy/f61LJKaGUKaGSqaDklFBwCig4RVYRzO6jwEOIxyHGYxDiMQiJOESez7oyCFL/c46FIJdDlNMxFFim5DPnf27p/mpO6qsJ8ddy36soipgPzReQ1Nvzt0sUaoCI6oB9IKeoNhzAgH0ASllp+NYf9+Py9GVcnL6IC1MXcG/xXsmEos1H7X9fnyJXjTZjC5jPfJbC/G+8QU4XlbDaIioJajURgZ07SwnrC6yLSKQTuL94P1tAdW32GhwhR8l2dbq6bLj/VAs1Vnhuz92hoVzB0sxM7v7GRipY+upXqc1sGQiigPuL97Oh/svTl0vI9YB9IEtSX2t9bWPUX57PkcdyqmQgQKTa58t1ffJ46L5olAjlizDLL8bBg5RbvQWoktJtihSfKqjIzYZGM5W57liuUtcVccET9SybV7Ysir/ZV1TZZQUiq7pM1b4xQQbZlkw3J1sUsEeoRagpQQSOFZcf3Gq2We5xhgULhtQylgPLyWjI5GCUqpx1k1ZL4T+DgQozzGb4DQpcZWZxKfAQl/lJ3NYGSlpfWmLAiUgNDtTsQt+uN1DbdwQhJgFPwo8J/2S2yv2Z5xkiqUjFY2dSmdBd041uazctM+tdlq7KapTXS1ZSV6+SKfXgYGnrSJmMKpmPH6fCg2PHSCVaJ/JJazkCX0xmVyK65V5rLY/l359IJzDsHsa9xXu4v3gfT91PS0LAddo6dJo7YdVaoeSU8Cf8WAwvYjG8CHfUvf5COJEmc8o0TQDi8rVbvUnm/zaNDXatPWsnVOk4lDtOa91Gp9Dh/E+fX/6jiSLmgnNZkiot3VF3ybZyVo6B2gHssu2CVqFFIB7AY9djPFp6VDKp6TR3ZouSTredRosnnSuW+tGPCs3IVSoiplIuanv7ygc0GKTK8JGRwjE+vjwRqasrJKkScW1v39Ie5RJmA7NZgnp97jruLtwt+V1r5VqcbDmZPZ4HGw6ujqQ6HNTm8+tfB+7fz91vMABf/CIR0ddeW3Mr1VgqhquzV7Mk9e7C3YLH5awcxxuO4K3aYzhr3I+DYh04lyfXWcnrJSLpdgPf/S6R4UCA7BfjcfL5TqVeaEe8Aki2gvne05LvtHRNsVrpt9XYSJZpra10Lq6pWbU92UagSkpfIeQT2RISG3XDHctbz2xTznR5tWiV22BOsNBG0xCTcfjYJDyKNPyK0qT/dWGDVdaXEWyG9DIZEiuCVHQ+oy6WHJfMdtKxE9gy21QAJwAdARbdQTl6wip0x7To5k3oZm2waWxgjCYixnp9qQeqUkkn6rEx6vA1NEQt+4phMhH5lEjooUPLK0yvIARRwGxgFo+cj/Dh+Ie4PkeV0M/zX5RgTnFo9QHGCIXrAypgxgh4KxziNn0z9jUexICdQt2emAd35+/iuuP6igq5ilPhSNORbdlFSBRFzARmsgT1+tx13J6/vaxlmVFpxO7a3fhU16fwU7t+Cm3mtspvEI0CH32UI6n5yh1AbRk/+1kiqSdPru2ink7Tf6eYrI6MFPZgL4ZcTrZyxcpqdzcRji1CLBXDnYU7uD57HVdnr+LS9CX44r6CbTRyDU40nyA3grbTONRwKKdgB4PAX/81EdGPPsoRO7mcjudXv0rHVq0uffNkko7R4iIpjxKJdLuJRPr9RB69XloPhYBoFG42jo+aUviwXcCHHcC0qfBlTTHgjSngrXHg7ATQ5X0FLklSk5TiIRFYaXg8pFB/5StbsltVUvoxh0Rky5LYYnKbWS938eQYDnvr9lIv7JaTOFB/ACqZCt6YF764j5YxHxZD85hxj2POO4O50BycMTcCqTDiYgJpUdgwY31GpOpLKXyvzPSwR6bFaCrTZjTF5ZbFOWMbhm1Kro0x4FevAN1uoNsDdPgyx2izIc3Y82ftajWRU4n0arU0pPVyTQCWawpQ3BxgixUkURThCDkw6hnFqHc0t/SOYty7fBerlV8caEipsNuvQJ0jCAbUJnfWADyxU9vcYrBg0VvTjX2NB6gAqW4f9tbtrWienuSTuOW4hYvTF3Fx+iKuzlxdVkmXsLNmZ5akHm8+jj5b3wvxvVwML+Li1MXs/pczk9fKtUgL6bLfhZJTYk/dnoJiqj5bX3l1TxQpFC8VS125QmFbCXo95Y1Kxv319ev/YIFAjqA+e1a4Hl9mEmGxFKqq0ujq2vRqdMnKSfJsvTh1sSS/U80qcUxowOvPkjh9YxFHpvlc0xGzmdQ6tZomA6EQRVySSSLwgrChiqQIYNxCxVIfdgAftQP+Iv7b6idy+tY48OYkRdnKQsqrlYgew+TWOS5H/DiucBtRpM9VPCrdv9n4H/8D+Pt/f/PfB1VSWsU6kOJTeOp+iqszV3Fl9gquzFzBTGCmZLsOcwdOtpzEieYTONlyclXGzIIowBP14LaD1I3HrseY9E1mjcTj6fimeXkqU4A5BhiSwDMr8OYEhfrVKUCVJl9UJpOXGpcBYSXgVwJBFRGBiByIyslcPpnJWd1wZP6FnAgoGBlUrAJKRga1wEEjcNClWejSDAwJBsYEQ+kJURGmmABNjIcqwUOVSEOZ4GGMiTg1LZae9F5FMEyuI5ZEVKVuWFJqhKT+ajS5bZZZF1UqLLFRjKaXMBqfx2hkFqPhaYz6xzHqGS3xUCzYHTBQcAqk+RTy7OULwPFAfZgmCoFMK9/VQMUqMVC7C/vqD2B//X7sq9+HAfsA1PIyytIqkeJTuLNwJ0v0rsxcKWvfVAyj0ogjTUdwvIlI6pGmI5vie+kIOrKE5+L0RYx4Sosydtl3ZYuSXmt9DXatHaIoYtI/iTvzmfzUhdu4M38HgUSg5PkqmQp7avfgYMPBLFEt21HL7wc+/DBn3O8savywb19ORT18eM2h57IQBGB2try6Ojtb+XksSx2ryqUDNDSUdncDiPxKeZBOJ6mSi4u5PutSaFvKm3z2jDrNJRJAOg2BT+OJDdnuVhfbyAs6H8o0cGw2l8N7ZI7EhU2HRBqlSbNSCV6jwp0WGT5sE3CuLoqrhgBSTOF/dvxLV9DRefDF2U2J4tqJbKX7yz3W0ECTgy1AlZRWsSGYDczi6uxVXJm5gquzV/Fg8UFJjpZFbcHx5uM42Uxq6sGGg2WLDlZCMBHEmGcMD5Ye4P7ifQy7hzHln8JCeGFVF8oXDUWmIEsmkDqb5IjIlii1mXxUKWS/GajV1sKoMsKoNOaWCgOM4RSMC14YJxdgfDYN47wXxjjl4WaXrBrKmlq64Gi1dDKPx0nFkCo+U6mcopFO51rWvSQEWATg1gCjNcCopXA5ZimvSkpgBCq+YwBEy32/GSjSpFT3uQpHlzejXCsUgM0GR6sZP+ri8FFdDOc1S5hBACa5AXsb9mFf/f6sBVOPtWfTW4+mhTTuL97PksDLM5dXlX7AgMEu+66sknq8+Xhh1foqMROYKVBCx7xjJe+zu3Y35YO2nsap1lOrTi0QRRHjvvEsUb2zcAd3Fu4gmCjN2VfL1Nhbt7eg6r/H2pPrMS8IwN27ORX11q3S3/2RI0QCe3o2R8GMRoHRUSKow8PAo0ek7E5MLK+uAjkHAIn0bAJEAE9tRFAvtBFJXdIVbqNIk+eoVGR2bI7qAwDkiCTHlY+8mEykFNtslDPZ3Ez5kq2tdFunK0++KyCSjODyzOVsPqo35sXMP5/5eNlLbSKqpLSKTUEgHsCNuRtZonpj7kaJcqTklDjYcDAb8j/efBwWteW53jeaimLCN4Ex7xjGvGMYdg/jqespJvwTWAwvPtdrPy84PncijSpKSYoiDQw4gZMzwFtjwOvT1C0KoI5eISWFaUNKah0bUmSWq1yXnhN/ziLYfCg5JYwqI0wqUyGxzV9fYamUKeniHYmQyiLle7ndlBfm9eYqUgMBstYJh3PVqYkEjWLyy/M58rvC6cunKiScz/LWA8u4CjECEXQlT+p4QFV5AqFOAb0uoNddSD47fDRBWQtEAH4VFeoxCkVO4ZWUX+l2/qh0/2qGXL7shZsXeDxyPsoSxUvTl0pCtAyYsg4JVo2VCGrGUuhgw8ECc3xRFDHln8oS0ItTF8u2f91Xty+bo3iq5dSG9nUXRAHj3vGCQqq7C3fLToI1cg321e0rqPrvrukmoup0kmH/+++TgX+gVJGlD8RS4VI+SW1uJt9UQQAWFih30unMVW0vLdF6MEj/JWlSKE0Etys4johkJlIh6rR4VqfAhaYULlojuKBxYoEtTB2Rs3IcbjycLZw63nz8hXmlRpKRF+fT+gqiSkqr2BKk+BTuLd4rCPmX62feZ+vDyeaTONFCIf92U/uGzUAT6QSm/FNZwjrmHcO4bxzD7mFMB6ZXnRZQr6vH3rq92FmzE436Rlg1Vsg5OdxRN5wRJ5wRJxbCC5jwEREOJULr8onUJMkNwB7JOQNI7gD2SOFjtghyOVgrIMXmSGpASUTKr8qtr2YZ3sAolURsyxHWErK7HLFdAcFEEKOuYYw6HmF0/jFG3SMYDUxiNDYHj1C5AAYALFFybGBAbVc96srkU5vMEc5+Z269NZApQnsZwbI55WkVJFbQqPFEFcJFuQMXxSlcTI3CyRcqjUwmwbqYqMpYGfbV7cOxpmPwxX24OH2xJD2IYzgcaDiQbdt5suUkjCrj5h6DIgiigFHPaEHV/92Fu2WLqbScGvt0O3BQ2YYDKRsOBnXYORcDO/KMwuteL02yUqmtyRHcLDAM5dDabFTB3dRECu3gYG4bjqN2rl/9KvC5z61Y6Cg1qZByUi9MXSixoZKxMhxqOJQlqSdaTkCn0FV4xSoKIAj0+5MmNtJYXKTl//yf5Dbx+utbsjtVUlrFC4EUIrsycyUb8h92D5dsV6erIyU1E/LfU7dnU0KTaSGdbds47h3HkHMIV2ev4rHrcYm9STloZBo0GZug4lQIJPyYC86BLyK5tgiwewnY4QEaGD0UnTvhbq+Dy66FUwjBGXHCFXVhKby0rkIYY4qFPcrCFhJgDwklZDaf0NbE1q7O5YNnMqR2GfJaQHRVDAJqhpYqIKAUEX6eHSiCRGwNCgNUchVYsHjofIgd5i5E4yH4k0FE+Mo5ngBQEwGsUSL3KQ7wqgGnNuNyUAZGXo4+oQZ9qib0mXair343+loPormhF0wymcuvk5ReydDa6yWFLBQqr/imUoVqr5Tu8BJDBDBspdCslEe4UNSOmREAmYgSWzMAkAkMDsXMOJ2sx2mxBSe4Dui15pz6KynExbeL15fL30yn6fsIhQpHMEgX55kZYHqaDPYlY/JolELgGUWSF3mMWshs/049Le/V00SmGPoETQ7/P1eBQ/PAYQcV0Gx4EFgKbctkuZxqqaDQYMgVEtntlDvY3EwqbWMjPVZ8zDye0kKrkRFy3kgmy+8DQJ2svvIV4MtfJtK6ToiiiAnfRJagLjdpkXKIT7ac3JRc5m0LQaDzTTHRLCackrq+khfqH/4h8HM/tyW7XiWlVWwbuCIuXJu9lg35356/jZSQKthGK9fiaNPRbAHV0aaj0Cv1FV7x+ZHkk3iw+ACDjkEMzg/i+izZ96wKIl14dnqAU4tyvGnej70HfgxNn/gimO7uiuFQURQRToazJFVSX12RzHq08LYr6loVcc4HIxLZ2u1ToD7Cot6fRr0vjfoQUBemApv6EC01qZVfbz1YkdhKJFbDIqDlENDJ4dewCKhZ+BUC/GwSUWGFnLgNgJpRoE5tQ4uxBR32bvTa+rC7djd2WHbArDbDqDJuXYW5IBARktIbpOH1FqY7+P1EpjKWNwWkt1x+7xZDBOXk5pPU2SKhU/qNfuEJ8IWnwJtTQOP2TxkvAc8AI9ZConq/jlJ4imGNEDk9NA8cXmBxaEkGW1pBbhKST7FKRURREIgQS6Q5WqkEHERAd+4szFvt7gZ27Ng4SzaeB6amConqzAzlzH7lK5SCsEmY8k8VKKnF7VFZhsX++v0FJNWkMm3a/mwKeL4wVWO54XSu/X9tsVB6SLlx6hT9frYAVVJaxbZFLBXD7fnbpKbOXsHVmaslVbEsw2Jv3d5shf+J5hNoNDRu6H5I4aPLM5dxafoSLkxdwHRget2vZ1FbsKd2D/bU7sHeur3YU7cHfbY+KLg1eBnyPBUtDA5CuHkD/nvX4ZoaglMlwKmlalanNOr0cNm0cOoYOLkYPMnAmrofGUQF6tMq1MdkRFp9KdS7YlkSKxFYU3xzHK8CSuCxncaj2tx6pWp0OQ/Uhsk5QQQVkYWVQFhBrgkbDQYMDEoDzGozTCoTzKrCpUllKn0s77ZKptoeRRKpFJFYidzmK72Syit5PearvPF4TuGVchglwrvKy4YIYMpUSFIny6SEtvqB47PAiRlaDjifT/HfNOTb/uS7PmSMytNWC4abVLhlTeCW1o9bogMPkrNIoTQHp1XfjMONh3Go6QgONx7GgYYDpaFpUaTvbHi4kBQOD5PnKV8ht4dhKMwukdR80trYuKYCoO2Eaf90gRvDuG+84HEGDPbV78uG+zc6B3nVSKdzRDNfvSw33O61E03JLUSppN+hZEMlQRRz/9d0ujRKw/Okfv/Dfwj88R9v7GevgCopreKlgSAKeOJ6kg33X5m5UjIjBoA2U1s25H+i5cSavRJ5gceQawiXpi9liWhxkRQrAPsWgdemgVPTQKcXGD3YhsG9NgxaE7gdm0A4tXyeYj5krAx9tr4SspqtGHY4KC9L6qN9+zYRg2LU1ZEycfgwLQ8epOr4os/njrqxGF7EQniBlqEFLIQzI5RbLmdrVAwlZKhn9KiTCGyYQb0vhXp3HPULIdR706gPUwoBV+ZskuCoCvexHXiUR0KLFTQJrAB0eClXU58hoF4NMG4G5pf5mzcGc3mePZlcz7oYCygU8BtV8Fm18Nv08NeZ4Ks3wW/Tw6cC/EIUvrgP/rgfvhgt13J8KkHBKUrIajlyW47YGpXGXKX3RkIU6WIkkU9pGQiQCjM7S8PhoIuqRFQl/0iJnD6Hy8KMEbjWDFxtpuX9utI8Xl2CqrIlonp0jgrPXkYkOOBBHTDYCNxqoOWItTR9hBGBvoACh4I6HI6YcShtx26mDgqNPmdvlp/OoFLRd+PxELmZn6fvbnKycqEVQM8tp67u3EmPvUSYC87h4lQu3F8c7Sp2a3it9TXUaGoKX0QUibDF41RIJkUipKX0PwkGcwVo+ab94TD9P/I7Pr0saTlHj1J3vi1AlZRW8VLDEXRkCeqVmSt4sPSgpGDJpDIVKKmHGg8VtMb0RD246biJ67PXcX3uOgYdgyVVtZIlyalpIqLH5gBDbQuZYp89C7z5JuVkZcALPIbdw7jpuEmhf8cgHi49LFvwxDJsxSKrhpQKexdE7JlOYO8isGeRrII4EXRhOHgwR0APH6bCgg1SN0RRRCgZKiCpBcs8QlvcsWU5MABqBBX0KQaypIC0mEJQJsC3TOV6Q5BycS0x+uwhJZGWUQuQrsDJWvxAf5HNUq9rg0gLywJyORI6Ffw1OiKwTTXwt9fD19EAf70ZPpUIfzpMJLaIzEq3N8JzV/y1TAheciUoJpBSLqTDQbd9vpzKmUzSEIRtX6UdVgCDzSyutjC41izieqOIgLJwfxkR2BXV4Xi0BidiVhwPW9DhB5hgqDSVQXJrkMjzNiQIASVwpyFHUm81lp+kKdLA3sW80L+D0oZWXVgn+XICdByWyw0FyGapro7ON+3t1Elq505aNxgK83jZ50xtkSZI8XghCZSG9LuPRArJYSSSI4L5in4igXkuiou2CC7WxnGhIYkRS+l3P7CUs6B6bXoZg/yXEcVdm2SyXN6xXJ5T95VKGj/3c8DP//yW7FqVlFbxSiGUCOHG3I1syP/G3A1EU4VnExkrQ4uxhdoqRj1YipRv3ceIpKodmQPeHgFOBQxoP3gWzNkMEe3sXBMBjKaiuLdwL5ufOugYxIRvovR9BfKnTFSwbtIwCgyYurGn7Qj21FNnngH7wKbm1q6EeDqeU1yXxrAw+QgLC88w7hvHeHweDjEEnyyFmAxrivHLwEIGDinwFU3mjQkGvU4RnV4K7zaEKTcvzQGfHaW0ghcO6SIg9Zw2mSDarAg12uBvqyMSK0bhDzjh8y/AH3LBlwySOssl4OfS8Cl4+BUi/CoRPhUVz/zKFeA/nHvRH64M8i96HEcXOJWKPrteT+q9lMMm9dresYOKbCyWlYuSkIucXJ25imtz13B15mpJmBYgL97jzcdxovkEjjcfx/76/ZXdGvJzdvPVLil1wefLpTRIxWqRCD1HIrpSCHSTiO6irpCkDjYCvjJ9EQxx4OB8jqQemgeaghnXg62+nEsdiyRI6/kpHsXrW4hFXS5t5GIrdUYrRr+TCOrrU0RSa1ducFYeUtcmjsuld0iTAoUiN1Sq3Chu8mEw0H/IZMrdL4XpVarKS4Xi+ScJm4wqKa3ilcZ8cB5/OfSXeH/0fdxbuLdqRU+dBGJlUjxtGhuONh3FkcYjONp0FIcaD62+qlMUSbGSQvA3b8L19A5u1cQxmLm4DDaWz5VUsAqo5WpEU9GS4i8JneZOCvvX7sGeOkoBaDY0b06+YiBAhtyjo8DYGPzjQxhaeoxHsSk81kay4fdKPdeVAoMGXgu1XAteziLCCQiJMURS0TUXbS2H72r+ET6bbCXiUDwkdaX4duz5Q/JbgRRLLXOfu9ON9PvIV03k8lyrVqndq0Qk7XZqlVlTQ4/lX+jyLxOrWV/pMZls+Ray0nrGR3UpvIRrs9dozF3D7fnbSPKFqp/kj5xPVG3a9VeDrwhRpN+U308kN5/o5pNdaV0iu/mV/cuQXBHAhLmQpN6tB2JlJrV1oTySmiGqlpfj5751YFk4dQwutTG40M7gYjOPx9bS494T0+L1eD1OM21423gI2roWUo8bGmiypdHkyOAKPr9V5FAlpVW8MkjxKTxyPsKFqQv4wdgPcNdxC+7ECiRUREXlbrdtF2QyBVJ8Ct6YF4vhxZLwOwMG/fb+LEk92nQUvdZeyvPz+Yh85ueCulylb2Q0AocOAUeOQDx0CBM9tRhMTmYV1bsLdxFPl8p9BqUBGrkGsVSsbFtEADCrzNhduztLVvfW7UWfrW91nbSCwQLiidFRxMdH8NA3glsaPx7WAUN2CqE7K1gCMiKgYeRQsAqA5ZBieCT5FFJCak3FVuvF11VfwU85LJRHt7SUC11L5uLFlegbeJoTMu1oo/LNGwEVIP76hu3yywuWLUtW4xoF7trSuGqL4ZoxiKs6H1yy0vyNHaIFx9GME2ITjotN6OUtYAUxV+iRTObcC/JHPJ4LC0vbSAVfxY0c8nNsV9nUYb1Is8CQLUdSbzVQfna5rmKd3hxJPeygXPnNctzY9uA4moBJebkZZdJtUuCSNYKLJj8uqJ14KHMXPG1px3+D3dSYe27+0Gq3vTq5nVAlpVW8tFgML+J7o9/DB0+/gzuzNzETXwS/DNFRpoA+N3DUq8F+TSf2NRxA/643EOntwjWlE1cc13F19ipuzd8qUVfWApXAocfH4eBkEm9MAWcm80I9cjmwZ09hMdKOHcuetCSyLeWmDjoG8cT1pITUMWBQq6uFTqFDPBXHYmSxrOooY2VoNbZi3DeOf7z7H6I5oYTOF0HY7UDQu4Bg0A1f3ItFWRJLOvLrDCmJYPEMNrzEngUDlchBz8tgSXKojbKoiYowxHgYogKMMQGGuAhDTIAhJsKQEGGMA4YEDRlP+YZOHYXhFnTkgbmgA/79udIwmwjywtxMshiVl1eqNhr/ZBD4/Q+e4wXyq8SlHDLpYqxUlob7itWeciHZSo8V9+fOz+eUqn/zCZxE6vJD4vnbrwMigHFLrnjqagtNrIphilHeuFTlf9iR6672siIqp2Kx/EKqsZrS7TiBQtX5+an9TkC+/VJul0d+zqRUdS6FzqXfolRxvsbfk0cNXG6lUP+cAfjGN1Z4Qn7oXRrlCGy5+8rd/woT3SopreKlQCwVw/sj7+G7d/8Sg/O3MBVfRIypHLfUJYBeN4NTMSuOGvuxt+MEOve+AXbPXgo7LoN4Oo4h5xAcIQfmQ/OYD81jIbSA+fB89na5blTLQQYWJrkeTeZW7LT1YLd9N1qMLWjQN2SHQWkoCLWLooh4Oo5QMoRgIohQIrNMhrAYXsQT5xMMu4cx6R3DXGge4XT5JCdGpIvxRpNJGU8XKrlA75HgKrcwZQWgOVOs1OeioowD87Quk9LIUKgsxqRlmfvy7y93X1QOfH8HqT/lCGOlPvSbBSWnhEauWfuADJoYD000BU0kCU0wBo03BM3sIjQTs6iZcaFm3k/K70oG2BsB6fcp9RuXLvJA7kJfPLY5fCrgRlOOpN5sLPUQ5QT6zebbUTUHy7/ehkPKP2TZwpxDjSaXXiFV2UuFKdIEI79Ypcy6l0vitujArfQ0BuMTGIyOYjHlLdkFFafEfutuHKo/QPZUrcfQZe2unBokNSLw+3O+mZKt0eIiWVVNTVG71GCFA8m8gNzX5SDlgEoFQdK6x0PhesleKZ3OqeibCSk/e73Etvj+bUJ0q6S0im2HWCqG80Pv4bu3vo4bS3cwkXIixKTKkyoRMMaB7qAcp/hGnLUexr7eN1C7/zWqBpUqSp8HTmdhCH5wEMmQH0taYF6fGwt2NebaLBixMZiWR+Dhw0hWyP8sBxYMZODAABAgIi3yFbsJPRdEIpRpWc6gvNJ2uiRQmzHUNyToYu0wANOm8p13ACqwsEUBc4wq3bVJ8g5NyJYnmluhLBaDY7j1kcX8IVNDAzk0aUCTEKFJCNAkRSKSoTjUwRi4cKSwWjgazVWCSyFgySpGUgbzfT/zVURJaZSUnnxSWMXawTC5imOlEmmlHA/rGVxt4HGtNomr1hhm1aWRk+aUBsdjVpxI2HE8UYs9KQtkTN6fIp+YS99ZvhKcSuUqygOBXG5pap2SrMEAWK2rHxZLSTGZKIpwhBy45biFQccgbs3fwq35WwgmSomjWWXGwYaDRFIbDuFw42HU6+vXvt/BIHDlCnDhArWzvHu3NHe2q4tsiQYGgNbWnL+n1CHN76djGAjQ6xV76Oar7NsB+R62UoGTtJ6v5kq/Eyk1JBbb3P+51Eo4n6xevQq8/z7wmc9s3vvmoUpKq3ihcIedGLzzHXzw8K9x3XMfY7wbQS5dkYCaEsCOmAbH2TZ8ruE0juz9MWj3HVlR/VwOoiAg7l5AaH4KocVphFwOhOYnEXr2GKGJpwgG3dle8UElEFIAQTWLkEWLoEGJkIpBUMYjhCSCQqysAfZGghUAZZoKXLRJIo5SKNsYJyJoiFO7TK8aWDAAjgxxdmrL2C6J9HqsSLloaRYQX/CEWc7Ks6RPLVdnyJ8Gak4JDaOAGjJoRDk0Agt1CllCqE4KRApjPNQJHpp4mpTGWLpwRFPQxNKQJ1JgUunCMF458vcCK4M/NpAUQbmcFECph3pDAxVXmUx00cxXAYsVwZUeK75PLl+VOjQbmM0WUF2dvYr7i/dL8ss1cg2ONB7JFk8daz629q5BokiEKr9b10rD41lfOgPDUBvRFcirUGPBqDKMwcQkbvmHMDh/C/cX75dthdyobywgqQcbDsKoqmA0XAmBAHD5co6k3rtX+p/r6QHeeIP6sZ8+TUrlapFI0ETA5ytstSk1i5B8RfN9SKUCyPw2wM/hwbuhyC9OzFfSJaIrkVxpUiSRXGkiHI2u/Dn+5E+A/+P/2JKPUyWlVWwJBFHA5OxD3Lv1XVwaO4crwcd4xvoQqdSORQT0KQadKR2OKrvwudZP4K2jX4GspxeQyZBIJxBOhhFKhhBKhEqXUR9CvkWEvIsI+ZcQCnkQjgUQSoUR4mMIiQmE2BRCMh4hxeaEc1UpIo3qNKBKE/FT8NSBhmfI0iesyBBdJUqJuEhEUVIzhU3I53wuiIBK5GAU5KhJyVGbkMOe4KBNgYhiRjFUJwVo4gItkyI0CR7qpEiqYlIo3DYlQp3apl16tiPyc0LL+QxKljL5BUD590nr+aStmMRJF7dkki5gki9kMEgX8Pn5nIl+MEgX7s28XDAMfU6Vioir3Q50dFCu9sGDQF8fVUGrVCu/1joRSUYw6BjMktTrc9fhj/tLtuu39RdU+XdZuuCNebOd4f7z4H/G5D+bRJupbf07IwhE5NZCZL2lIfpVgeOAmhok7TV41KrCrXoRg5Yobql8GGLdFYsXxX8rrL/63O8HLl3KkdQHD0p/X319RFDfeINIqm0T3RTyIaUpSK1eFxcpspZ/nCUVtzhSIhXHSZPg7QApaiD979Vq+m//zu8A/+yfbckuVElpFRuORDKGofs/xP2HP8DtuVu4GnuGEUUQiWUi6TIBMAtK1MmMaFTVwqKzIgEeoUQQoTjlUYZSEYSQRIhLVwwdPy/kPBlRR5TkdcnmEUMGOXLIM6QopjggyVUOZW86BMrJZDP7JzBEsIV1nv8tUWCHF+h2U3HDniVg9yKpsCNW4EamQOR6EzBhKX2+OUZddY7NUqHIYQc996VEsdemRPryVQmJvEmkT8rvK2ddJPkELkf+yo1K28hk29dmJhzO5RFKy8VFYG4OmJggQ3+Xi7bbzFxYSX1VKonAWq0U/h0YIMeL/n5SYnW65zqWgijgqetplqRem71W0jUIoHSRYoX1f/74/8TP7P2Zdb/3upBO04RiLUS2Uu5nBmEFWVHlF1JNmYF/fAv4rx8wy+a2rmmd52kiND1NvyWHo3Rn2tqA/ftzxaS1tZVf7zn/Q2khDRm7AWliUgc1vz9HbqU8XMkbt5jgVlJwNxqHD1P62hagSkqrKIskn0Q4GSY1MhHKqpLhqB/hsAehkBehiBdO1xQm5x9jLryARYThkfOIKLBlih4j5AgZkCGNeLHhZ0UmtK7JKIbrWVengDhHJ/VxCzBcAwzbyudddnmo29TRORoDS5S/mZ/vWjwWdIA1Sr3DB5aA3Uu0bl1D15IlLRWIXM+Q1FuNpfvHiMAuZ46kHpsFdnoBhsmrhC2n9OUbSUtefxoNDYn46fVIqhUY18QxoghhhPNhhPHimeDESGoJbiGEA+pO9Gvb0KdrR7+xC/2mbrQaW8AqlyGI25nsvYpIJunCm09gJRI7MwOMjxPx8PtX7jT0vJB+d1otpQS1tJAKd+AAKbFNTZRGsMzvYym8hEvTl/DB6Ac4P3kes8HZZd/SrrGj2diMRkMjGvU0mgxNuduGxtV7IW8mkklKFVgDkXUhiiQHNJbpiLxtkMklXgtB9qlE/K1pEe/qpvF95SyE5v8BprOTFPvGxhdbMCSKFJYPBonI5qcouFzlUxQk9baY4Eq07ytfAb72tS3Z/SopfQXAC3yWQIYTIYTCHoSDbvjdc/DMDMM3PwGvfwGBqBe+VBB+MQ6fjELXYZmIqIwqpyXFj2cAvPgivA0DJ5ACKs+rFpfxpDByAqm0bGadFemjP6gDPjEG2CNAQwhoCgD2KBFHTR5xLF5Xpcv3dd8IpFkypL/RRONmIxHVYqhSwP5F4Og8i6PzHI4sydAc4cBwsgLSJyoVYBSZk62k6EmkT6+nwgmDgVQkqdJX6hpSRrlLyRg8jE7imu8hrrvv47rzLqZCMyX7Z1FbcLTpKI41HcOxpmM43Hh42W5UoihiMbyIEc8IRtwjGPGM4JnnGUY8I5j0TZZt3boctHItem296LP1od/WT8PejxZjC1hmbT98URQhQoQgCiXrgihAhFhxfTOfU2679TznRe+DSqbCvzj2L3IHPJ3OVXAvLubI6+JiTjlbWHi+gqHVIpP/umBT42K3Ehc7WFy0x/BUVuqNPGAfwKmWU2g0NCLFp/Bg6QGuzl5dtYuHTqEjopohqVnimnfbrrWTP/J2glTIl+/jutr19TwnmSSC5fMR4YpGN+x34FcB3+4G3u0HPuwsjI4N/xeg25O5oVCQUiuR1OKh023I/mwJBIHUWKmZxhagSkq3GKIoIpoIwzv5BIt3LmBm/B7m3OOYjzrh4oPwMHEEZCkEOQERORHGeIY0plgKzWbDs9Jk/WUTdSRlM1/hBABmc6yLNgqckFMyVWlAxTNQ8oAyzUAhMGAZACwLgWUgMAwELrPOMhAzS4FjIbIsBI6BkNlWZBkIDCAy0hIQRBEiA7o4g6rxRQAiBIjZ2yIEQUBaTCMtpMEL/JoJ2i8d/qWVyQPWT55i6Ri8MS98MR98cR+CiWDZfu9auRY6hQ4KTgGO5ZDiU4in44ilY0ikE8t+LpZhIWflUHAKyDk5ZKwMclYOR8gBm8aGJJ9Eik8hKSRX7BbFMRwYhgHLsNSOMQPp8xUfoyo2H+KvrfM4J5OkvBaTV0mBlSyJ/P41EReHPteO8kIb8Mxa+DgjUuRB6pt+agawxlm6sGdazKKhAeLOHXDu6YKjuwEOEwsHE4Yjsoi50BwcQQccIQccQUfFxhjFkLEy1Ovql1VcG/WNUMvL9CR9leF0AhcvUj7qhQvA06eFjzMMqeEHD1LIv7+fiGUigWDUh++4r+KvvJfxg8iDgiLW3ajDO0IvvuSpxc5RLyn609Mrp6NIOdD5QyKwDQ3bwpbpRaJKSjcY7P/FQOSQSUCssNE2JV1VVFHF1oMBU0CEK62zDAuGYQrW17rdRrxGue02/DVA92nlWvzup39387+EWCxHXPOXCwuYXXqGi4lnuKh14UJdosRwnhHJwzSfhD5X6042Q2C1WsBiQbi1Do6+ZiKvTUY4VEnMpb1whOez5HUxvFh2slcOFrVlWcW1ydAEi9qyOe2JtwMWFwtJ6shIwcMhFYP3PtGGd3dz+L58GgkxN2HZZd+Fd/rewZf6v4Qea0/pa6fTubxpaYyP59ZXKjBTKID29kKiKo329pdLZV0nqqR0g8H8GvNKhb4/ztDINdApdFnFTBAFCKKQVSSlZVpIr0qh5BgOCk4BBaeAklNCKVNCJVNBKVNCLVNDxsrAMmzuIg228DbDFgwGDDiWows7yxaofNI6x3AQRAGemAfuiBvOqBNL4SVEUuWN9g1KA+p0dWjQNaBeX48GXQNqNDXgWG5F0pS/Hk/H4YzQey1FlrAYWcRieBFL4SWklvFuZRm2rArJMizaTe3otVLYvc/Wh0Z9I1i2MrFZLSljwEAQBcwGZzHhm8CYdwxj3jGMekcx6ZusuL8auQY7a3aix9qDnpoe9Fh70GvrRYuhhb6XMu9Tbj+r2F6YCczgwtQFXJy6iAvTFzDhmyh4nGVY7DP34XXdLpxGG06FLTC5QkR2HA5SyyQFdrN9MTOduNJ6LRabTHB0WOHotGOuxQSHmSP1Ne6CI+TAXHAOsfTq2LJKpkKDvqEsaW000H31unrIuRdgLrzRmJ9H+Ec/wHcHv4Z3wzfxQUOkoCi3xw182deALzV9Cv2vfwk4cYLSm9YDvx+YnCwkqtJYrcpaLi2gsxOor38lVNYqKd1gmP4lg4AGL29ovYos/vWpf43ffPM3V7VtLBXDTGAGk/5JTPmnMOmbxFQgs/RPwRUt0/O+CFaNFe2mdrSZ2tBmasuut5vb0Wps3dCw21xwDvcX7xeMcd942W31Cj321O3B3tq92FtHo9/eD47hMOmfzOZ5ZpeekWVz5eSsHF2WLnRbu9FdkxmZ9RpNDRLpBO4t3sP12eu4PkdjLjhX8jp2rb0gN/VQ4yFo5JoNO0YAVdaOeccw5BzCkGsIT1xPMOQawoh7pCJZ1Sl0WeKcn7PabGh+LhIqiALmgnMY9Yxi1DuK2cAsfvvKb+Nv3vkbtJpa0WpsfbUVrk3ClH+KSOj0RVyYuoAp/1TB4xzDYX/9frze9jpOt57GyZaTq/PeFEWqlC5WX6UUgvl5SiFYXKTtNhMMA5Fj4Tco4ahVw9FowFyLkZRXmxIOZQKOlA9zkXm4o+7VvSQY2LX2LEmVUgbyFdcmQ9Oy+eIvEpFkBO+Pvo93h97F+6PvI57OdWDaKa/Dl911eOeSG/135gov4xxHzg2SBdXevdSI4HkbtaTTwOxsKVmVCKyvNFe5AEplTmUtTgtobyfl/SVAlZRuIkRRxOA3fwf/7/u/hh9ZQ3Bqsfkqasa+SLIyAgqtjKScxZcVkjrIMaTcSQqepAxKapS0bTaNgqHvA0BBTiAv8hBFEbzAQwCpoGkhDREifuuN38KvvvarG7LfkWQEU/4pIqwScc0jsL74CiccALXaWrSb2wsJa2bZYmyBUqZ8rn0MJoJ4uPSwgKg+XHq4rLK5HOp19WWJZ6updc0WKnPBuQKSemf+Tsl+cQyHPXV7cLyJjMuPNh1Fu6l9U0haik9h3DeeJasSYV0NWZWIap+tr4SsiqKIhfBClniOekbxzPsMo55RjPvGCy6c5aCVa7MEtcXYglZja/Z2q6kV9br67VcMs4UQRRGT/skCEjoTKCzG4xgOBxsOZknoiZYTm1/9zvNU2b6wkCOt0rrkAzs7S6R2kx0IEjJg3iSDwyrHnE0FR50WjnotHFYFHFoBc4If8zHnms4LX+7/Mg43HsbhxsPYX79/wyePq0U0FcUHox/g3aF38d1n3y1QjrssXfhy/5fxTv87GLAP5M4bs7M5j9QLF0jpLAeDgRwb8ofFsvx9BsPqnT58PnrvcmkB09Mre53W1paSVWlsI5W1Skq3ELzA4/7MTXzrz/6/+K7rKh5ZeAhrvD5I1eIQqTNPisVzqbEynqrG9ZmOQKY4YEqxMEEJpVwDhVINmVINVqUGr1IhruIQVTAIcTzCbBphJoWomEA0HUM0GUUsHUM8HV9zwc12BAMGarkaapk6u5Q6DJXct5ptlrkvyScxH5ovS1wnfZMIJZf3VGHAoEHfkFVW24xtBQS2ydC0bKgtno5j1DNaong+8zwrawpeCRa1BX22PhxrPIYjTUewt24v2s3ta65qXwnxdBx3F+4WENX50HzJdjXqGhxsOIhDDYdwqPEQDjUcWl8rxFUixadIWc1TVYecQ3jmeVbxIq7gFNApdBBFEZFkBEmhMumQsTJ0mDuww7IDLcYWuKIuTPunMROYwVJkacX9k7EyNBuaKxLXjZjcbCeIoogx71iWgF6cvliiustYGQ43Hsbp1tN4ve11HG8+Dp1iG+fuRSKFRVsSeV1YoDE7SyR2JWXtOSAwgFtDLYfnzDI4amRwWJU0LDLMaQU42DAC6XDJczmGwy77LhxuPIwjjUdwuPEw+mx9mzZZiqVi+P7Y9/Huk3fx3sh7BalLHeaOLBHdU7tndRPY6elCkjo9vf6dk8mIpJYjr8uR2uJKeEllLZcWsBqVVaUqVVkl8treTgV6W4QqKX2BSPJJ3JobxPnBv8R3b30dd1V+8Ov8X+rjQF2IbIvUaSKrEQW1mfSqydg4/bz/+UwvdEsMmDEBnxsGmgPkQWcXVLDLjKhV1sCutcNsrANqahC16BA16xE1aRDRqxDVKxHVKBBRsYjyCURTUURTUURSkex68e1IMoJwMoxIMndfLB17JYhvPliGLSG40lLOyiFCRFpII8knkUgnEElFEEqGEIgHVlQtWIZFva4ercZWtJna0GHuQCARyForTfunK1aTM2DQamrNKp47a3aiRlODeDqO2cAsHiw9WFf4XyXbOIsRURQxG5zNktRrs9dwf/F+2ePSqG/MEtRDDYdwsOEgzGrzhu2LBG/Mm1U8n7qe4t7iPYy4R+AIOcq2aCwGx3DZlI6B2gEcbTqKN9reQJuprezFM5aKYTY4i2n/NKYD07llgEjrbGB2Vf+ZOl1dCVHNv73mtpFbCFEU8czzrICEFk9W5KwcR5qOZEnosaZj0CpejtDmmsDzhfZZ+eRVUmDn5mg9vrwCv174VTlD/ZsZG7uFMtF8LafGgdq9ONx6HIcbj+BI05HnSneJp+P4wdgP8O6Td/Gdke8gnMyR4zZTG97pewfv9L+D/fX7nz+SwvNE+jweGl5vbn25+2LPUQ2n0axMXvPv5zh6T8k2LV9tnZlZWWX93d8F/uk/Xf/+rgFVUrqNEEvFcH3uOj56+gHOPfpb3I6Nk2foc8AWoUTtww5gp5t8NzUpOllMmYFJEzBjJDN1l5buD2+Q+b0yBdREgdoI0BgE6iK0bpcGo0Ot0gK7xg6LsQ5czfI9mGE2F4QYUnyqMqlNVia5K20fSUYQSUUQSUYg4OPT75JlWKhkKmjlWhiUBphUJlg1Vtg0NugUuhKiXLwURAHzoXlMB6Yx4ZvIKq1JvlT54xgOvbZeIql5ZLVGU1Nmz9aHRDqBh0sPcWv+Fg3HLTxxPSlLvrssXQUkdX/9/lURlWAimCWezzzPsiH3Ue8ovLHKlbYMGDQbm9Fp7oRda4eSUyItpOGNeTEdmMaod7SifZVBaaCcVWsf/uT+n+Cjn/4Iu2t3r3jseIHPfj/FxHUmMIPpwDSiqZW7JxiVxlxKgERa81IEarW1W5bXKooiht3DBSR0MbxYsI2CU+Bo09EsCT3adPSFhY+3LfLV12LyKhVwORxEcp8TDj2RVImo3m7ItFkuQm2EwWG3EodjFhzW7MChztdgPnAC2LGDws3qwhz7RDqBH47/EO8+eRffHv52QXSpxdiSJaIHGw5uj7zrWGz1BFa6z+tdf0tShqFraDGBla6rPE/7FAzSey0ukvoaDALf+AbwxS9u7OevgCop3cYIJUK4PHMZH42fw0dPP8D9wEhhPmgmV3KtYEQih7uWgP0LQL+LWkr2uomwplnAqQUWdURWF3XAnAGYMuUIrFsL+FQboL5K+ySQAlsfzhHX2nAegY0AtVEGdrkJdrUVGrN9eQIrDaPxubrzpPjU2gmv9Hh65e3DifDHjvgu5/GplqlRoya1vV5fj2ZDM2p1tdDKtSuS4uIUCSWnLLn4hJNh3F24i1uOW1myWlxdLe1nn60PhxoOYXftbti1djAMg0nfZAHxXMn8vEHfgB2WHdhZsxM7LDuwo2YHdlh2oNPSuaxSnOSTBQVWUjrAM8+zimS1Qd+A3bW7sdu+m5a1u9Ft7YaCUyy7jxJEUYQn5qmotE77p+GJeVZ8HSWnLCSqRcR1pVSSlfbxietJAQkt/g6UnBLHmo9lSeiRxiMfP2/OzUK++lqOvM7P58Yq1VeeoRbGElEdbAQe1Ja/tuzMCCzS6HUDlztleHcXi7/tSiOoyJ1Lm1R2vLPzC3jnwE/jcPOx7UFEnxeCkCONa1FlQ8/ZUuv3fg/4hV/YmM+wAqqk9CWCJ+rBxemL+GjyI3z07Ad4Ghgr3ED6hor/e6skr4wINMZk2O3mMOBIo3+RR7+TlFZNmeiwCMCnLm1h6dATeZ3NEFiPhgz/NxKaJFBXTFrz16XH4iwsmhpwNbblyWtNTW5dr9+yNpOiKCIlpNZOeNegAEdSkbIehjstO/Hdn6Jk/1gqtqplNBXN3bfK571Ik/l8+6389fz7WLCIpCLwxXzwJ/wIJUJrKuIwKo1oNDSi2dCczeHtNHeiq6YLJpWp5D2lorz1IMknMeoZxRPXEzx2PsYj5yM8XHpYMXVCzsrRa+vFnto9WaK6u3b3utXMcDKcJajllFZH0LHi980yLBr0DYVFWEXEVVKpBVHAkHMoS0IvTV8qcbJQyVQ43nw8S0IPNx7e0NSQKtaJcLhQfS0eUgFXmXzHmAy4X1dIVIv9YQGUXNtqw8DffQx8+TG1Xmbzf4ocR7mTen3OWmlgANi3D+jtJfV1C8/9W4pksjDFYLWkViqq+1//C/jqV7dkV6uk9CXGQmgBF6YuEEmdOI+JQGFVICsACh6IlxMlKhHYMmAAtMCE3SEN+hfS6JuJoX82ge6FJLSrKAQVGMBThrxmSawBcJhYONUCdaraYLACYIsWEdhlCK0GcurwMjCwMoGVhkazbU9mEvEtJrQMw2B37e5Nf+8kn8wSVCkfuBx59cQ8GPeOY9I/idnALOZD83BFXWXzIBkwRCpZBViW1Ne0kH4piuykfc8nqwpOsfr7yhBrSeVcDC9iIbSAudAcZgIzFcPxNeoa9Nn6sMu+C3vq9mB/3X4M1A48N5lL8SnMBedKUgRmgjPZgqzV5NPWqGvQYmzBvcV7JY+pZWqcaDmRJaGHGg69UsVZHzukUtlGBdlRRGRT83P4tmkB/30fcKkViC0jtBviwKF5UlKPzNGyvrTeqjIYhpoXqNUU2m5sBHp6yPppzx4q/LHbyej+VYYoUlqHx0PHYYu4U5WUvkKY8k/hR5M/wkdTH+GjyY9KE/x5qrCPyMsTVRlPXHUtxVZN+kb0a9rQG1SgdzqK3rEAekd9sC6FKHyzBvNonqG0AYmsLuSTVwODeYsc83oRTnlqU22tdAkgrASOzpYS1mJCa4llet2rVKsnsNLYol7CLzNSfArD7uGcTdUSLSvlazYbmrG7djf6bf3QK/UY945j3EdEdz40v2zXG5VMBZvGBovaApPKBJPKBJ1CB62cVDt3zI3F8CJcERc8MQ8C8UBZAixZlLEMC0EU1m2p9SLAgIGMlUHJKaGWU0qEVq6FSq4qIcoFpLkMiS4m0FIb2HgqDn/CD0/MA0/UA1fEBWfEiYXwAhZCCwgmgwX7pJVrcaLlBF5vfR2n207jYMPBVackVPHyIi2kcWHqAt4dehd/8/RvClJHauVm/IRqH16L1ULwe3E7PolBbhF39CHEZKVUpSlQGPY/OA/oN8JZi+MopcFuB2w2qljv6wMOHKBlY+Nzp5B93FAlpa8opCrUjyY/wkdTH+FHkz8qyQfTJIlgpVkigOVyeHQJCuuHFYC4hhC8WWVGv70ffdZe9LK16HUk0PtwAc0Pp8DMzFKIIBpdV9J2igWWdGVUVxOHhRol5o0M5tVpuLmVFRkJDJh1hZnXrMLm8xOtdnXkNX+bV312vgqIolho/p8hquVyQ4uhkWsKcjvzcz1tGtuaQtq8wOOp+yluOW7h9vxt3Jq/hQdLD8oWdjXoG7Cvbh/21O3BLtsu9Np6oZapkeATSKQT5KiQWV/zfUJy2W0kt4bsfekE4ny8Ym7qdkPy3yRfjc5BVayItJDGpelLeHfoXfz1078uMPK3aWz4Yt8X8U7/OzjVcqqshVRaSGPIOYTB8Uu4OXEJg0t3MRSZhFB0bmdEoM/D4vCskCWqA0uAfLPS+/PVV5MJaGqilIHduyl9oK2NfETl1d95lZR+TCCIAh4tPcqS1EvTlxBMFCoS5hjQ5iMf1CUd2T4Vg+OJhC3qyYJqcY3NOtQyNbprurGrdhd6rb3oqelGL2zoGnFCfu0m8PAhWVW43RQ6SK1fZUpwVKRVQFzNHOZrNZg3yzCvFTAvT8DPLJ+QL2NkMKvN0Cl04FgOKT6FUCIEb3yFPsZloE0xqA2LsIfLk9Z8UptVYfMhGTSvpsjLat2YTiMvCQLxQNb8/97iPQQSAXSaO3Pks2YH6nX1m1rwkEgn8Mj5qKCQ6onrSVmFttPcWWBNtdqK/42ClNaRSCey9l6PnI/w2PkYT91PMeIZwZR/qiJ5tWqsqNfVw6axwaq1wqw0QyPXFJDk5QhyMVmWts0n9TXqGrh/5fkrvqvYvuAFHpdnLmeJaH7hmlVjxU/0/gTe6X8Hr7W+tuamG0CuuHHQMYhBxyBuOm6WNEwAABWjwD6uEUeSdhz2aXDYIaJjKgBmIdOJa7NbxkrgOOrOlJ/7umsXpQ/09QENDWsz3X/JUCWlH1OkhTTuLtwlkjr5Ea7MXCnpi9wY5dC7wEOXJKuoh7WAN89JZfr/Jcun0Rpg2AqMZJZDNrqvbC5rBXAMhzZTGwbsA+iz9aHX1kuk1doDbSQJ3LoF3LgB3L0LjI1RzlEoRKT1OX+aMVlRqoBFjkltCg96jLivjyLAlRJjBgx21OxAr7UXbaY21OnqYFQaEUvH4Iw4qe97ZCm3Hl5aVS5dPlgRsCY4Iq0BfkUltlwxGgCama9Ghc233uI+vl1/NhrhZBj3Fu4VWFOVK0ySKv6zZv+Zyv8XmS+Z5JMYdg/j4dLDgrEQXii7vVauxUDtQIEDwEDtAEwq06rfU8pDTvJJpIQULGrLBn2aKrYLeIHH1dmreHfoXXzzyTcLGj9Y1JYsEX297fV1EdGVsBhexC3HLSKq80RWyzUJsagt1Imq/iCO6HpwSKyHzZsozX+dn88Vb21yx60sJPVVoyHxIV993buX1Fe7/aUTJaqktAoApPDcdNzMktQbczdKcuF2RNU4MJmANUwzxv/8vcp1UgJDNlISUR22Ak+twJAdcK6xWUqdrg79tn4M2AeyZLXX1gurxkobRCLA/fvAzZtEXkdG6AQRCFBe63P8dEUAk2bgXh1wrz63LGcADQCNnBn7jN3YV78f+zpPYF/7cbQaWwEAoWQoS1IlolqOwDojzlVZ7xRDy3OwJ2RknRXkYfenYA+XV2LLqrASGIZOcmvJjzUat02bupcB3pgXd+bvFBBVR8hRsp2CU2B37e4sST3UeAi91t4X3irUFXFlK/+lMeQaqtgGtcXYUmJXtaNmx6YQjiq2JwRRwPXZ6/irob/CN598s2BiY1aZ8YWeL+Cd/nfwZvubW56uIYgCxrxjWTV10DGIe4v3yqbitJvasy1TS9qmiiLg91d2G8hfj0RKXnvTIDkPGAxEVLu6CtVXyXlgG6BKSqsoi0gygquzV7Mk9c7CnZIQ5I6kHidmGZwYCuLkDNDtXp1takgBPKshb7phG4OnNSIe24BxC5BawzXKoDRgZ81O7K3biz5rTl1tNjYXtrVMJoGhIWBwkEjrkydkCuzzkVnwOsIyS9ocSb2fIaqjFbzLzQkWe2NG7GXqsU/bhX323ehpPQBZUwslwttsJYQuxafgjrorktbnV2EZCIyIt/216Pdy6F/g0T8VQc9kGOr1pBpyXM6MebWq7CscgloPFkILWYIqkdVyBV1auRb76/dnQ/776vehu6b7hRPVtJDGmHesRFWdDpRvw6jklOi395eQVZvWtsV7XsVmQRAF3Jy7iXeH3sU3nnyjYOJlVBrxhd4v4J2+d3Cm48y2K16Tmm/kq6nD7uGy207/82m0GFvW9gbh8PLEVbrt9z//h1ktGIbqFiT1tbUV6O4GvvIV4MSJLdmFKimtYlXwx/24NH0JP5r8Ec5Pnscj56OSbWqgwYmAASeGozj5OIgD84ByDXVMAkP+psO1HIZtwIiRx0M7MGIjr9PVQskp0W5ux57aPQXqapelq/wMnOcpJWBwELhzh/Jap6aoGCsSob7Cq0BIATyoK1RVh+xAqgxXUKWAASewbwHY52KxL23DgLoNmvoMUZVGUxMtGxoqVuuLoligwuYrsGtVYVmGRYe+Ff26duySN6JfqEF/TI9uvwxKj59yfYvHeo2ZZbLVpRPkD632Y0NkRVHEpH+ygKTemb9T0Ltbglqmxu7a3dhXtw/76vdhX92+DbF42gj44348dj4uIavlPgdAkRGJqO6y70K/vR+91t5XsxXoK4il8BI+mvwI5yfP4wfjP8BccC77mEFpwOd7Po93+t7BW51vbTsiuhL8cT/uzN/BTcfNbH5qkk/C/S/dm5erHo+Xer0Wk9eFBcC5fCOP50JzM7Uj3QJUSWkV64I35sX12eu4OnsVV2evYtAxWBK6UzJyHORrcXJehhN3XDg+HEHNOtv9BvRyjNQrMKJPYtiYwpANeFQLTBtXb2HFMiwa9Y3ot/WTuprJXe2x9kCnWCanQBTJq+3uXUoTePAglyLg9y9rfZXkgCe2QqJ6v44sp0r2TwC6PRmiuphbWqRjVlNTSFTLkVezeUXSluJTcEaceOZ5Rt2C8roGVbJa4hgOXZYu9Nv70W/LDHs/dtbshIIHHZ9yhLV4SNutN3SlVK7dsUDz6rSU5AUeI56RLFG9t3gPDxYflCV4UivXfXX7SFGt24e9dXu3Re96QRQw5Z8qIapj3rGyLhgMGLSZ2kp+f73W3mq3pheMUCKES9OXcH7yPM5NnCsRLPQKPX6858fxTt87+ETnJ14pT1lRFOGNeTe0PfK6kUoRMV2OuEpjrdHB9nYqQN4CVElpFRuCJJ/E3YW7uDJzhYjqzNWSzisA0CtvwMmwBSeexXDy6iw6FpPr6ZRKUCjA67WYssoxzHoxYkrjiZVa1I3WAIE1XKtq1DXYWbMT++r3Ybd9N/psfdhbtxd65SrzbNJpYHw8p7Q+fkx/YqezpCBLYIBxc2GO6r26yrm2LX4ip3vziGpzoEKqhEq1MnGtqytrPSKKIpYiSxhyDuGx83GWqA45hxBIBMrum4yVYWfNzgKi0G/rr6xKS4jFViay+Y+7XEBibSkKWajVq3MqyCe5ypfnwskLPMa8Y7i3eA/3Fu7RcvFegZ1OPjrMHaSo5qmq9fr6Ld7r8ggnwxhyDmVJ6mPXYww5h8qeSwAiqx3mjhKy2mPt2RYq8auIJJ/EzbmbWRJ603GzxKFhb91enG0/izMdZ/B62+vV72I7QRDonLoa8iqdc//wD4Gf+7kt2b0qKa1iUyCKIka9o7g6czVLVEc8IyXb1SprcIJpwckFBU7c92Df1XHI08/xU5PLs7ZJPnkaI6EpDFsEDNcQ8Xtqow5Swiprcuq0dei39+NE8wl8svOTONBwYP0z/VCIVNb794FHj4CnTym31eMBYjEsqNIlRHWiQuFxTbSQpO5bAHZ6lileygfDkCfe4iLw9tuUGlBuWK1AplvSfGi+QFV97HyMJ64nCCXLh+7lrBzd1m702/opBJshC53mzvXlPooi+dquRF6Lx3otxXS61RNY6fY28hgURRGOkKOApN5duFvWCgcAarW1WYIqkdUOc0dhbvYLhCviKlH1h5xDFVNRWIZFp7mzhKx213S/UkrdVkAQBTx2Psa5iXM4N3EOl6YvlSjzHeYOnGk/g7MdZ/FG2xvVvOBXAflFW3V1lGO6BaiS0iq2DK6IC9dmr2VJ6u352yUV/mqZGkd0PTgZrcGJsSSOXZ2BcWTq+d6Y46g6PNNdI7XgwKR/MusM8KAWeFgHTJiAyCquVwalAa3GVgzYB3Cq5RTOdJxBh7nj+QtNBIF6QUtq69AQApPDuJ+ewz1dCPesKdyro3QAvgxX0CSB3UsZspohqgNOQJUGEVGGWVvYRiajqswKpFWsr8esQcRQYg5D7idZovDE9aRivqCSU6LH2lNAFnbZd6Hd3L7xBEgUaSKwWgIrPb6Ohg4A6De2lhxZi2XLrbc8UU/Wx1VSVkc8I2V9VPUKPfbW7S1QVPtsfdvGyF4URTgjzrJk1Rcv7acOrJCG8pLlN24mpvxTODdxDucnz+P8xPkSpdqmseHN9jdxtuMszrSfQbu5/QXtaRWvGqqktIoXhlgqhtvzt3F1ltTUa7PXSi4mDBgM1PThBNeGk04VTjzwouXqYzDO8uG8VYNliUQ0N1NruEgEePIEbp8DIxlngHu1wN0GYMwCuDXLq6sMGJhUJrSZ2rC3bi8ONRzKGrY3GZo2jnDF44g/vo+h2x/g3uR13As+wz3OiQemOKJluAInAL2uHEndm0kDMJdz7mGYnAvAWoiZUllAVoWGeszUqfHYnMKQKogh0Ymh2DSeep+VeOFKUMvU6LX1lqQBtJpat1atEwSyEltLjqzHsz7bMYahHOC1WG+ZTBtuvRVNRfFw6WGBqvpo6VFZRwcFp8CAfaCAqO6u3b2tipBEUcRieLEsWV0uDWWHZUcJWd1h2bFtSPhmwh11U3HSxHmcmzxX0h1NI9fgdOvprBo6UDuwbVT0Kl4tVElpFdsGgihg2D2cVVKvzFwp2zqyydCEE5a9OBm348RkGrtvToO7fYcsNp4HDENebW1twMAAFchMTQFPn0Kcm4NDD1xuBS60UWh90gx41SunAshZOdpN7eiz91FLy7w2lw36hg2p2uQFHqPeUdxbuIt7E9dwf/I67gVG4EZ5xbLNB0yZgf/rIrXXG3ACXV7q5rUsGIbUPann8yqdCQCA12kwtcOGoXYdhuo5DJlSGFIG8FR0ISGWD7Nr5Vr02fpKyEKzoXlTOzOtCTxPYa7VFnm53WRHth6wbI601tQAV64AP/mTNMEyGHKj+Hb+fSrVqorhht3DWTX17uJd3F+8X9IFDqAJWbe1uyRPdVsUf+ShXBrKkIuU/XKfC6D/7s6anSW/vy5L10vtsRpJRnBl5gqF5CfP4f7i/YLHOYbD0aajWRJ6pOlIVUmuYktQJaVVbGsshBayhVNXZ6/i7sJd8GKhiqdX6HG08QhOqLtx0q3Bkcc+6Abv///be/fgNs/rzv/74g6CJEAQIEiQ4J2iSIoUJZlKLMqxHXsbp6mnzW4bx23SZmfb6Ta/SdOZTCa//DqT2M2lO9Otp+k2bTqdjdM4qZOm2WzXabJNbdcTW7IjSiZ1ISne7xfwAhAXgsT1/f1x+BK3FyBAkQQpnc/MMy8AQcBDAsT7wXnOcw7lb8rlFApCfpEtrZZyMNvbqVtGNAqMjgLDw4hNTmC4XMS/NgE/r6dUgDmj/PK6HEXqIjSbm9NktaW8BTaD7Z7ESy6vsH+pP2PdSF0EaF9ToNMpomtZ3JVVmz+3+rO7CAIt/atUdDkczprbGRWoRu2glUpoDdrVGKxUYKQ0hJBC/nUq0ZSQrEo5qzvScFCSf+hEIlRyLJ8cWa+8OOWNSrW3uMpcj5UUY0rhRX9wGv2+UfSv3UH/cj+W/cuyT+ModaTlqR6rLxM7iKKIee+8rKz6Q/JfdDVKDVrLW9Nkdd8504dMJBZB30Lf7pL81bmraalTZyrO4MmGJ/Fk45N4X937ct/kyTAHCEspc6LYDG3i2sK13Wjq1bmraZttlIIS3ZXd6LW/B5ejNeidicF+fYQK59+VL34MhSK/fEtBoJqZDQ3Ae98LnD5Ny7537yI0fAe3PaPoq4jgF9XA2w5gzJz75iqJEk1JXFJThLVcX77vk7try4WB5QHcdt7e7cozuDqIQDgge3+rWITOrRJ0rgjomg2ic3YbHXNBFAXvoRe01CJPrSZJkjYyJUReIwpKnRi0AncqdoTVSo0XIhnO+0ZBjw59HTrKW9Fh70Z7w0W0V509ObKajVAoWVjX10lUPR46SiPTdZ/vnlvyJrEjt8s2A/odKvRXxNBvDqK/2I8JjbzMlatK0W1sxTlrJ85X9+Bc/XvRUnUGSuXxizqKoohZz6ysrGb6W5HLme6o6ECDqeFIZVUURQytDu1K6BvTb6R9TtYaa3d3yL+/4f2oLK48svkxTCZYSpkTTTQWxZ2VO/FSVHNXZHcYN5ga0Fvbi17LeVzeKEX7HScU129Qwfz5eZlHBglTJJLfiVyppA0snZ3Ak09SGaaFBWzepZy9vuAk+iwh9NmBcbnVTRFQiwLCgpg1PGnSmZJFNeFymb4s9/nuEBNjmHRP4pbzVpKsZqsb2WxuRqehEZ1BI7pWBHROB9A4sgrlwiItTwcC+980JKHR0NBq6XcbDiO06cWYMborqdJxrDxzhLo0rEDbdgnaYUG7zoF20ym0VXairrYTCns1begyHJ+8yEMhFqPc6VRpzUdsc5RbjzbeSOLdKqomkW2D3tl1Fc559DgXMOJcxIIzikpoS8qAl18GPvGJw/l97JMYRMyo/BhUb2BQvYEhzc5RvYEthfz7XRdToi1sREfYRCNUho6wCfX/84dQ/O7vxb+gJQ6VSv72DPebi7nxmu8WXt14F6+5rmM5mFyZwKw14f3Vj+CJusfwZMMTaLK2QtBouD0wc6xgKWXuO+Y8c7s5qVfmruCW81ba7mKTzoRLjkvodfTisqENPbMR6K/fpGjqtWuZW7vp9bQUnUcuJQCSqqoq4PJl4EMfAgwGuMfv4PrUW+hzD6JPWEKfNYQFmbenMgaYtwVoFGpsaQS4FNnrdZbryzNGWEu1+b3/A+EAhlaH0mQ1U91IvUqPMxVn0FnRiU5bJzrL29EVMcM6Mk9lsMbGgKkp+iLgcqVFR/eFWg3o9QgadBixCpSrWhzAUMk2hqwUbc0kq0Uh4PQa0L4KtHk1aI+Vo11TjUZTA1RVO7IqjcpKOprND0xXKVliMcrfziaxMrdt+9y4I6yiX+dGf8km+svDuFkJbMnsI1JF6TW5VQn81z7AGgAqNgHrZvLl8q0c8qCPiJgATJuSvygNVgDDFmA7y14phweo9FOajG0zfrly57p0uTSY/D3VrQP+vQF4tRF4rQEYtSQ/ri4MPDILPDlJo3sZkM2GUSj2LcJ73kerBf77fwdeeYX6rTc0nKgawMzRw1LK3Pd4g168M/8O1UydewvvzL+TtvymVqhxwX4BvY5e9DouoTdWg4rhWaC/Pz6W5XPndltfbm3lFxmUUgCamqhe6FNPUf/zkdfRt3QDfdsT6NO74dKln3WLQkD9BlAeUkKlK4K/RIM5bQjLyN7ys8JQgRZzC06Vn8KLAy/i5f/0MprKmtBkbkKZriznJW6n34nbK7dx23kbt1ZIWAdXB9O6eknYDDZ02jrRVdFFslrRiXZrO3XjiUSoFNbNm+niur6eV6tXOUJKYMyqwJBdg6FKJYYtIobKIpSzmmFFVROhuq/tq/HRtga0rANapSYuqHLSKo2KCjoxM/LEYoh6PRidH0D/fB/6l2+i3z2E/s1xuKK5bVoUIMAMPSqEYlhhoKNgQAUMsKZcrhAMMKMIyiPeNR4VY5gSXRgUnVSJIubEoOjEXXEVQeT+vtbEBJgiaighIKCIwqOMJFmqQgQ63Rr8h0UdPjijwaUFBXTbkXhOdzh87ysX94ogUMWTpiaS1MRjUxNtNGUeaFhKmQeOcDSMm86bu5J6ZfYKlvxLaferN9XjYvVFXLRfRE91D84rqlF8ZzRZVCcm5J9Er6cC7H4/tSHdTwrA2bMQn30WU+cb0DfzNvom30SfexA3sIhNZfrJpTxAZZ/qNwBzWAXBbIbTZsCYMYoxpQcrUflyOBJGrRFN5iY0lTWhsaxxV1abyppQU1qzZ05cNBbFhHsiLao66Z6UTQFQCAq0mFvSZFW2Zmk0Sp1HBgaoW5YkrlLzAb8/b3GNKIDJMopkDVlpDFcIGLaIsuW1AIpaN7t2JDVBWFvXgaLUvVyCQGKaSVoTh4473kiIoog57xwGlgcw55nDamAVK5sr8eMmHV1bLtn3VTYUggLl+nJYDVZUGCpgLbLCWrRzOeE26bpZbz600keRWAQL3gU4N51w+p1Y9i/DuZlw9C1jxjODlc0V2fJc2dCr9LAV22Az2FBZXJlwrIBNb0Gl1gKb1oxKdRmKBW1cWiMpEps4sv1bpn/f3gZmZoDxcfqs9GX/0gybTV5Ym5t5heIBgaWUeeARRRHTG9NJpagGVwfT7qcQFGi3tuOi/SIuVpOodmprob4zlCyqQ0PygqTVUhmfcJiWNkOh/Ca6Uw80+kgv7v764+grC6Bv6i30LV7Hze1phJAuqtVeoGcB6FkE2lcAY1gBZ5MNY40mTDiHMdFdiwlhA0ti9p3daoUa9aZ6NJmb0GhqTJLXxrLGrHUqN0ObGFwdTJPVTN14DGrDbgpAly0uq3uWGIpGqfuI1OZ1dJROiPPz1KbU76ff+R4fZTEBmDXuSGqCsA5ZAW8GdxREoD6gQfuGCu1OEe2zW2jbia6W5uITJtPe4lpZSbvh+cQMgKTOteVKEtUkcQ0k3+7acuX9HApBAUuRJS6wBisqiuQFtsJQAZPOtG+JFUURI+sju7VC35h+AxvbG0n3sRZZcabiDOpN9TDrzdgKbyWLrH85Y8WATBSpi+LSKieyCbfdUz1aUaS/w4mJuKSOj8cvr8m3xd3FaCQ5lRPWqir+u7hPYCllGBk2tjdwY/EG+hb7cG3hGq4tXMOCbyHtfjqVDt2V3Umi2lxUA8XQcLKo3rxJ+ZOpKBT0garV0uYgjyf/KgDFxQg1N+DWr/Sg70IV+qKz6Jt9B0OeccSQ/ljN6ySpL3cCN/6WukCFlMCUiUozTZRRBHHCDExYlJgqjSK8x8bhSq0FTcZ6NFpa0GQ9hSZz8260tcJQkZYWIBU4T00BGFodyhgVspfYKVc1QVbbLG35tY0URfodj45SqsDdu/GI69ISvQYZ0jBEAEslyZI6bKG8wfWizE9Zs6lE+2YRbbTaLEK7R4O2lRjKV/zAykp+X070+mRx/eEPgS99iW6rrKRIk3TUcF3JRMLRMNa31nelNTXymhqRTRXCXFAKSlgN1rjAJoqrTEQ2EA7g9anX8erUq3ht8rW0zxij1ojHGx7f3SXfWt66Z4pNIBxIj7z6nWny6vQ7M3Zey4RBbchJXm3FNhSps/xRyOHxZBbWhfTP3iT0+ngKQKKsNjdTugCn0ZwYWEoZJkcWfYvoW+jbFdW+xT7ZE5dJZ8JD9oeSRNVeZKMl50RR7e+npWc5Kispqrq9Tbmsm/mdPKBUwm8rQ//D9eh7pAl95dvoc93BhDs93aA4qsJ7vSXoXdagdzqG9474UbIR77wUFYCFUpLVCfOOsJbFBXZDn30qhqgSjdFSNCktaNJWoanYgcayJjTZTqPO3ga1daevskaDSCyCsfWxNFmd2piS/zEFJVotrWmyWmesu7cSUOEwRVjv3AGGh+m1m5mhk+PqKm3eSYi6rhbtSKo1WVqXsqTIVfh3lv/dO9IaNaNdYYNNUQJBUNDjb26SKEvPmQ9mc7KoJo7E2yyWI293ehIIRUNYC6zJR2F3rifelqlbVD5olBpcrr28W7T+fNX5Qy3S7w/5k4U1g7wu+5czdmPLRImmBLZiG1Xw+OI96kMgQF8e5YR1ZiZ7rqxKRRus5NICGho4deaYwVLKMPtEFEWMu8Z3BfXawjW8u/SubKSvuqQaPdU9u6L6kP0hGLWlJD6pojqbXtIKAElGdTVFwJaXKcqWpSi9HC6jBtc7ynCtpwpXG9S4GhiBJ5QsOwpBgbMVXegtP4fLxW3oVdSjZlMZb6npciVddntXMBFbw4SwgcnSaFK0dc4IiFncUBEDaj1Akxto8qnQFCpGI8rQpLKiqagGpSYbUF4On9mAQUMAtzRu3BaXcXt7Frc8o3AHN2Qft0RTAl/Ih/9y7r+g3dq+Ow60eLsUdR0bS466zs9T1NXlwkZ0E8PmWDyyunOcMWV+2LKt9JzV9nUBNSiFYC4HrFZa7pd2MYdCdNL2eklenc788msVCsp93UteKyvpeXmZVJZgJIi1wFpGgU293RfyQYCAC/YLuxLa6+ilzX/HDFEUSWDl5NXvxPJm8m2JGx4/1vUxvPThlw5vcuFwct5q4nFyEghmyZ/hjVfHDpZShjlAwtEw7qzcSRLVwdXBtJJUANBa3pokqmcrz0Kn0pHsDQwki+rIiPyyvlTA32gkMZmZochajn+uMYEk6a1GFa60aHHFAUxp0qOytcZaXK69vFOdoBdnKs6kb3wSRcrbTJDW4JoT06tjmNiYxOTmPCZCy5gQXZhU+TCp38aWKvs8ywNAk2tHWl1Aozt+udIPLJcAtxuLcatWi9s24LYphKGiTYQF+RSIYpUBbeZTaK/sRHtFx66s1pvqD6+XdzhMEdbBQRpjY/DPTWDEP4MhYRVDhgCGyqIYtpLMZ2qyUBykHNXdagCrVM6qYSOhLJJCQeJosZC8lpfH24pGo5SasLlJr4/TSRKbz0e7RpMuqplktrj4Hn9x9zfbkW1EYhEUa+6v35MoivCFfLvCatQZ0WXrKsxkYjH625MT1vHxvVtTV1TI57DyxqtDg6WUYQ4Zf8iP/qX+JFGVW45WK9TosnWhx95Du/6rL+K05TTJXyBAG3gSRfX2bfkogFpNH5o2Gy1dLSyQrMrltMqwWAJccQBXaoG36gQM2MS0Op+l2lI8XPMw1XmtvYyL1Rfz3gQhiiKW/EuYWB/D5MIdTCwPY2J9DBPeGUxuLWI1ln2nri5MQpYqq7UeIKyg5gSJS+mj5ciYG6uPKnA6bKTi+upqtBc3oN3cisaKVqjKrXQCMpuBsrLDydUURWBjA9ujQxgdeA1Ds9cxvDGBodgyhnQ+jJaEM3axUkfp525dpzJWrWt0uXUNsAQy9GAQBGofWlFBEmm1AkVF9H6JxUikAwH6grOyQpH5TLV7M2Ew5CavNhvXrmSOHmnjlZyw5rPx6sYN4NOfpkYpNTUUea2poZxvzuvOG5ZShikAq5uruL54PUlU5QrSF2uKcaHqQpKo1hpraQk6HKYl40RRHRigJeVUBAFobARqa2lJanOTPnjn5/dc6vVrgGvVwFu1JKtvOwBfikMoBSXOVXajt/bybkS1qqTqHn5DVF920j2JSfckJlwTmHDTmHRPYmZjBlExcx6ZIFLawGN+K5p8KjS7gPqVEDQePwLRIKbL4rJ61wIEM6TtaSIkeIn1Sts3i9AslENjKo/LqiSsiddTh16/78hKOBrGhHsCQ0u3MDT5CwzPvosh9yhGoysIKDK/fmVbyZIqHZtdgDbXkpUlJSSv1dUkkCUldLIVBHrvbG9TqR9JXpeXc/4CFJ9omby8StIqpRdUVPCJnjkaNjboM1JOWPfaeAXQ34fNFpdVuVFdzTmtKbCUMswxQBRFzHhm0LcQ30R1ffG67O5Ya5GVNlDtiGpPdQ8sRRbpgSivMTVPdSm9DisAWuZtbaWTvVZLy1kjI8D0dMZ81agA3LaRoL5VSxHVOWP6/RpQhss1l9Db8RQuNz6ONmvbgS2Rh6NhzHpmSVjdE7vSKl3fqyyOVVeOZoMDTRobGsUylIZExDYD8G65MRNawRDWMKz2ICBTDxagjkMtrhRZXaVIpS6TI2q12aU1k9SWlmaU2ZgYw4J3ASPrIxhZG6Hj+ghGVu9i1juXsY6nIkb1bFNltXUdqPJl7XCbmaIieh9JJ9uysnh7WFGMb9xaW6PUAUlg88yLRllZXFJTpTX1+v3eOpYpDIEA5auOj9MegPn55LGwkHtVDYtlb3F9gFJhWEoZ5pgSjUVxd+3ubkmqvsU+3HTeRCSWbj0NpoYkUT1fdT55Od3pjEdSJVEdH8+cT9jQAJw6RR+YajXJ6t27VEpJ5sN21hhf8r/iAG7Z0nMjTdvApY1S9JrP4vLDz6Dn0m9Ab664h9+QPKIoYjWwuiuq467x+NE1kbFFqkSpthTN5mY0mhphNVihVqgRiobg2lrHzPokhtbvwheRr4agEAU0BYvQ7tWifU1A+2IY7dObOO2MphfXzxWlUl5Yy8qA//E/gL/4C7osjZ1/2yrWYSwwlyyrO5e9wcw7+UuiSpzyakhUnVG0LofRuiqiZR0w7PdnSESno3SB6mqgvp4u6/Xx6KtUdN3lovet00lR2JWV/Dt7GQzZpTXxOm/iYg6KWIy+fKXKqiSs8/NUhm4rx4oGJlN2ca2pyfrl9STBUsowJ4jtyDZuLt8kUV28hr6FPoysj6TdTyEo0GHtSBLVMxVnoFYmtCra3KRC/3fuUH6qNJxO+SfXaIC2NqClhcRHqaRl2zt3KLqa8AHr1QLv1MSjqb+oATZTVl3VUeD8EnB5SY3eYAV6Tz2Jil/9TeD8eZLhQ8Kz7dmNriYJq3sC8975rP9Xp9Kh0dSI6tJqlGhKIAgCAuEAVjZXMOGeyFjbUoCA+uIatBvq0K6yo120oD1YijafDiXuTRIwuZHrSSvjhHVxgd0ZYpkJznIdRowRjBQFMKL2YgRrGAkvYWprKWtahENtQWu0DK0+DVpXYzi1GETrbAC18z4otrYPto2lRkNfgB56iNJO7HbK49PpKPdVFOO5r9LGrcSxLd/yNuvzJaYJZJPY8nIuo8XcGzt55LLimjhyLQVXXLy3uJ6AzVkspQxzwtnY3sD1xeu09L8jqpkK/Z+rPLcrqhfsF9BibknfRb+6SnKaKKt37mSulWoyAWfOUNJ/WRntAN/YoI1Zg4NAIICIArhpiy/3v1UrX8OzZR3onQV654DLTi1addUQLvUC//E/Aj09JCaH+KG6Fd7C1MbUblR13DWOcTddnt6YzipsSkEJh9EBi94CvVqPaCwKb9CLRf9i1m5CjlJHUtmqdms72ixtKNOXkZS63cmiKl1fX6fL0pD+ze2m338+TRh2CCmpAsCIBRipVGOkSo2RcmCkNIR1TeYopU6hRUtJHVrLmtFa5EBroAityxG0zvhhnF6m9JG1NZpXhuYE90RxMclidTVtNKncqX2r1cYLp4fDFPGXoq6JAptvDViFgr447ZU+wHmwzL3i9cajq5mGK8duZTrd3uJqtdL7u0CwlDLMfYhU6D8xoipX3LtIXYQuWxe6bd04V3UO3ZXdOFNxJr0bSyxGeaapUdWRkcyCUVMDdHaSrBp3kk5dLqC/H+LtW5hWbe4u979VS52RUmualgeAS3PA5VmS1YcWQR2cbDbgwgWS1UuXaBn4kD9IpTzW1OjquGsck+7JpNqMcliLrDDpTFAr1QhGgnBtueDedme8f1VxVZqstlvb4/nD2YjFKIqdKKqp4ip3XRJaGdb1O7JannwcN2euagAAtpAaraFStMKCVnUlWotq0VpUiwaFGSrfTo7p6mp8rK/THAKBfYl1VhQK+uJUVUXyWl0db1QhRWABEtiNjXjqQKLArq/nV0YLoC9u2QTWaqVjRcV9swzLHCGBwN7iurKS22Op1fR3IUnq974HvP028N73Hu7PsANLKcM8AMTEGMZd40kbqW46byIQTt8lrRAUOG05je7K7iRZlZWhYJDENFFUb9+mfCk5lErKVZVktaSExMPphPvWNbztvoUr5QFcqQV+UQ1sq5P/uyZCLVKlaOqlOSp7BIA+TC0WoKsLePpp4LHH6DmOoNxQTIxh0bcYj66miGu2HE6AqiyUaCh0vBnezHp/a5F1N5r6jRvfwE9+8ydotbSizliXHvXeD9EoVXDIJq4Jt0U2XJgOrWBEuYERwxZGy+PCmq2jVWIpq6TNVqESWPTlJI/9/cAHPkD/IRymKGsgQFF7aWxt5b9ZKhe0WpJFu50EtqoquXxW4gauxPSBRIndTx6sRpMsqanSmnq9KM92nsyDSTAILC5mF9elJfkvXH/3d8Dv/u6RTJOllGEeUKKxKMZcYxhYHsDA8gD6l/vRv9SfcSNQdUk1CaqtG92VJKsNpgb5DkkbG7R0nyqrmWpdGgxAR0dcVg0GhCJB9C+9iyvL1/CWOIsrlWGsyGxCPb26s9y/E01tdqXsHlcoaHm3thbo7QU++EHg3DmKAhzBMpUoilgLrCVttpJSAsZd43tuvNIoNdCpdIjGoll7lWuVWjSbm9FqaUVr+c7YuVymLzvoH0ueSIRe4x1x9a7OY3T1LkbcYxjxz2AktIgRcQ2jKg+2FJmX8M0BktS3HcD/+ybVnnV4d44e2jQnG0vUaOL1VhUKEuxolKRVGodxKpPKZknRJamkVUUFvfekHNhAIF59QBpShHhlhaLb+WIw5C6xViunEjCZCYepIkaqrH7sY/SZeQSwlDIMs4soilj2L6N/uT9JVsdd47L3L9WW4qztLM5VUjS1u7IbHRUd0ChlTnyiSEtMqSkAw8OZWwFWVJCodnZCbGrChMaPtzaHcWW9H1fCkxguSpe0Cn88inpxgTZTFWeqzqJSUUTu1CngySdptLXRcu4R4Q16ZTddjbvG99x4BQAd1g6MucYQimYuQWMtssrKamNZY/LmtyMiJsYw752PVwZYG8HI6jBG1u5i1r93DUhDVInaTRUcPgG1rigca2E4PHF5dXgAfZ4BSgDxLymieDjyKgj03rLbSV5/8hPg85+PL+WbTPEUgmCQBFbKgZXENXFka6GZCZMpd4nlDV3MEXPspPRzn/scrl69ivr6enzzm9+EWk0fmK+88gq+/OUvQ61W48KFC/ja176W82OylDLMveEL+nDLeStJVm+v3JYVIbVCjXZrO0VTd2T1bOVZmHQm+QePRKh/fKqsTk7Ki4HUCKCzE+udTbhqj+FKZBJv+QbRF5xCSEiOwCli1J7z4gLQs0DHzhVAs9deG52OTszd3RRdffhhqjxwhMul0sYrubSA6Y1p/PEjf4znH38e0VgUM56ZZMnbKQO16FvM+PhKQYnGskZZYa0wVMhHwQ+ZQDiAsfUxjKyPYHpjGnOeOcx55zDrmcWcdw5rgT067exgUZbCoTChNlYCR0gHR0CNWp8CDlcUtWshVC1vQuXeSVPItabkUSIItFmrspIktqoqvZFASQmJdDhMKRWp4pp4fXU1/w1mghBvWZuLxHJZLeYeOVZSevPmTfzZn/0ZvvOd7+ArX/kKGhsb8eyzzwIAZmdnYbfboVKp8Oyzz+Izn/kMHnrooZwel6WUYQ6ecDSMu2t3d6Opkqxm2rzTYGrYjaZKwlpTWpNZfKSSVakpAJkS9rVaBDtaceN8Fd5qUOKdonX0bU1gPpQuMdoIcHZ5R1QX6XhqHVDk8imnUNCSaW0tJf9/8IMkrnV18SjXERCOhhGKhvZs7+oL+jDmGkurVzq6Ppo1HcCoNcrKakt5C3SqwnWhCYQDmPfOY84TF1XpKN2W7eeSUAgK2EvsqC2thaPYDofGglpFGRyxEtSG9XBsaWDxRCAk5tdKqQmJx3x37h8WRiPJaqLAJkqsVA9WKkWUKQIrXV9fz38OajU9T6K0fve7wFe+EpfbxGEyFXSnN3P8OFZS+jd/8zcwGAz47d/+bdy4cQMvvvgi/uqv/irtfr/zO7+DT3/60zh//rzs4wSDQQQTljW8Xi8cDgdLKcMcMqIoYtYzm7T0P7A8gBnPjOz9zXpzUkS1u7Ibpy2noVJkkbuVlfSo6uBgxpJVS1Y9+h6qQl+zHtfKg+hTLsEdTb9vaUjAhQUxKaJa482zu5FKRSfa5mbg/e8HnniCcmUrKo5dBEkURSz4FmSjqzMbMxm7QQkQUGeq25XVU+WndoU165eMI0IURWxsb8RlNSXSOuuZxYJ3AeHY3pujdCodHKUOOIwO1Bpr6XLpzmUjXS5R6klMs4mrdHS5aEl+bY1u8/sPJ01gLwwGek+mCmyixJaX0/t5czM9bUBOZPcj50olPU+iqMrJq3S71MyDuW85VlL61a9+Fe3t7fi1X/s1jI+P4wtf+AL+4R/+Iek+fX19+MIXvoCf/vSnGR/nueeew/PPP592O0spwxQG95Z7V1QHnAPoX+rH0OqQbN1PrVKLTltn0s7/LlsXijVZWu1JJatSRXV0NG1ntghgsgy4VqtAX5sR12oEvGvwYktIT0K0RfXoWdfi4tgWeqaC6FkAyvdbz16rjefIfuADtOnq1Clagj1mbEe2Me4al+0GlalBAEAlxk6Vn0qLrp4qP4US7fH5OWNiDE6/My3Cmiivy/7lnB7LpDPFRTVFYGuNtagurZbPsQb2jlrOzVEettNJQhtIr5Zx6Gh3SrBVVqYLbKLEGo2UBpG4cUv6mRKHVAJsvxFmKSc2k8Cm3sbVCU4Ux0pK//qv/xrFxcUZI6Xz8/N45pln8KMf/QgVFZnbE3KklGGOP9uRbQytDqF/qX9XVgeWB2T71gsQ0FLeklamqrK4MvuTRCKUmzo8nD788eeJKIAhK3CtGuizA9ca1LhtjiAqpH/sNaqs6AlacNGpQs+gG+dvLMKwfQ/1NAWBIlfV1ZQO8NRTtNO1oeHY7ZSWWrimRldH10cx4Z6QbYErYS+xJ8mqJK/1pvqDKWV1wAQjQSz4FpIjrZ45zHrj0ddsgi4hQICt2CYbabUZbFAIeSxfx6IJUdkNYGPn6Hbv7OTfkcANDxDYBML72e11DyiVJI2W8t12uJYf/ASt/9+fp+eflpbSz5IoqnLymli/dj8aUlSUu8BarSTXx2xV40HiWEnpwMAAXnjhBXz729/GV7/6VTQ0NOzmlPp8Pnzwgx/EN77xDZw5cyavx+WcUoY5GcTEGCbdk7T0v9S/K6qZNuvYDLa0MlXN5ua9T/RSJQA5Wd3JWd1SAQOVO6K6I6ujMqVaFYICHcYW9KjrcNFvRM8C0HlnBerbQ3QyvReUSjpJNjcDjz5K1QHa20lgj9mJMxwNY2pjSjYdYGUzc+FujVJDpaxSoqutllaY9eYj/Anyxxf0pUVakwTWM4tgdB875O8zxOcy/ENxMQlqZaV8I4HUTVSSxO4lsNLYT/1alSpdVrOlFEhpDsyBcKykFAA++9nP4p133kFtbS1efPFFfOpTn8Lf/u3f4ktf+hK+8Y1voKWlBQDw/PPP49FHH83pMVlKGeZks7K5kpanOrI2Ipv3aFAb0GXrwtvzb2P4/xnGacvp/J7M5ZKX1elpuHXADXs8otpXDSzIfKRoBTXOmdvRU/Me9ChqcHHDgJYpDxQjY5RWMDKyv3I+iUi94R99FLh8mY6nTlGpoWNWxmdjeyNJVkddoxhZG8GYa2zPTljvqX4Pms3NaaNcX17w/NW9kGrUZspvXd28xy8tB40oxmu7RqO00hCJxGu8SrfHYjlHLX95DPiL/3tA8zObSQYlic1WFcBopNWQXORVut2fvkqTE2Vl8ZzXxFFeLn+71I6ZSePYSelhwFLKMPcfm6FN3F65nSSrt5y3kiTn2u9eQ091z8E8YSBAMjk0lCSri0uj6LNF0Vcdl9UNffp/N4paPFTUjJ7qHvS0P4mLhlZUz3shjI7S4969S8KaqRtWPqhUtDxaX08pAY8/ThuuGhqo1NUxISbGMOuZlY2u7lWj1aQzxSW1LFlYC1XO6oFD2gS1ukrpA1NTlNs9NUXvY6lBwGF03NoLhYIEUMqH3aszlsFAXxSzCWzqbbn2nJebm9mcXVxTxwOSVsBSyjDMfUMkFsHY+tiupD7/2PPQq2UM8SAJh4GJiV1JFYeHMD47gL7AOPrKg7hWDbxbld4yFQAqQ1pcFKrRY+5ET9Mj6HnoV2G2OIDxcRJVSViHh0mG99PxJxWppFV1NeWuPv44cOEC0NREJ75jwmZoc7cma+qY82YX92JNcUZhrSqpyi+Pk7k3RJG6At24Abz7Lo0bN6hzkBxFRfHWwJEIrQaEQodfpUBq75oplSD1sk5H83O5KN9VqqqQaUj38Xj2Nz+pUkE2cU3995KSEyeyLKUMwzCHQSxGJ+PhYYSH7mBw/Cr61m+hLzaHa+VB3KkAojJu1ORR4OJWOXqKmtFj78H59idQdGanLer6OkmqJKzj49R44CDSAQA6gUlNA86cAd73Pmoa0NxMJ+tjcoLbCm9h0j2ZLKtuOs56ZhETM28806v0aDI3odncjBZzS5Kw1pTWsLAeFUtLcUmVRDXTKkF9PVWtaGoiIVQq6W9hfp7kdnWVNnv5fMDW1tFEZqWyWlNTwNNPp+eepl4uLqa/n1AouTRYJnlNHPtNK1Cr80srsFjoS0EB/85ZShmGYY6atTUE7vSj/86/oW/+F+jzj+GaZhXjxvTd0soY0LECXFxRoQfV6Ck7gzON74W6/QzQ2krdrTQaWkYdH6eo7fg4jdFRGgcRYQXoecrKqLNVby9Ja2vrkTcOyEYwEsT0xrSssE65p2TLkElolVo0ljXK5rDWGmuz189l7p3VVaC/P1lUJyfl71tTA5w/Hx8XLlDJKkEgKV1bI2GdnKQxMxMvr7W+TqW4/H5ge5u+QB42UmMBKdKaSV6ly2Vl8dzw7e1kWc0lMru1z9p1Ol2yuL72GvBv/0abLI8AllKGYZhjgnttDtev/x9cG3sDfWu3cC06iyV1+kYgXRg4twy87QD+7hUB3UIVOixt0De30WanlhY61tXRic3lisuqdJQirPvp3COHUkl5rHV1QE8PNQ84c4ak+ZjUigxHw5jxzMimBEy6J7MW1FcpVGgwNaTJaou5BfWmeqiVXNT9UHC7gYGBuKS++y590ZJTEpstWVLPn6fOa3tF/qTc2IUF+tuYnKSo7dIS3e5y0c7/QOBgViRyQRBITKWUgWxRWOmylPYA0FzzSStYXc3cbveb3wT+838+kh+bpZRhGOYYs+BdQN/sVVwblKKqo/AgXVSVMeD0GtC9nDDWVLDYm+OSKh1PnaJuPoJAUdTJyXh0VZLWu3fppHwQKBQkpnY7tWR97DEShuZm2vBxDNICorEo5rxzabI65hrDhGsia2knpaBEnalONoe1oayhoG1Z70t8PuDmzWRRHRqSj3iazemi2ti4/93vsRhJqtNJm7omJ4HZ2XgUdm0t3n52a+voJBaglILEaOxeIltaGv/bE0WSczlx/cAHgLa2I/kRWEoZhmFOEDExhnHXOK4vXsfAUj8G5q6h33kTa2H5DRTV3hRRXQYa3YBCX0SSmiqsLS100hIEWjacmooLqySto6N0+0Gh09FJsqMDeOQRqhggifMxKJ0TE2NY8C7IpgSMu8YRCGfutCRAgMPokBXWJnMTitTHI4p84gkEqJNb4oaqO3fk80tLS2mTnySp58/T++0wSqnFYiSpq6uUAyulEqTmw3q9JIXB4NG1nlWraZk+MaVATl7b2igKfQSwlDIMw5xwRFHEkn8prZbruGtc9v7FQeCsEzi3FBfVjlVAJ6W0mkzpoiodpc/QcJhOrok5rIkjckDdhKTyVjU1FGXt7QW6uqi8VUVFwaOsoihi2b+cFl2VLvtC2fN5LUUW1BnrUGusjR9N8euWIguXt9ovwSCVWUsU1Zs35aOXBgO9vxLzVNvaSNyOElGM11ddWiKJnZ4miU1MJ/B4SGK3t6l27GHyuc8B/+2/He5z7MBSyjAMc5/iC/pwy3lrV1YHnAO47bwtuxStFAW0uVXongvviupZJ2BJDQLabMlpANLlpiZAv1N+KxqN5+elSuvoKJ1IDwq1mkpZ1dZS5Ku3lyKu9fUUBSqg0EltWeVyWMdcYzm1KdWr9Kg11u6OVHGtKa2BRnm82tEea8JhKrGWuPO/v58iranodPQFKFFUz5xJzt08DmxtxWvFzszE68QuLqZv7Nrayv8L4+XLwJtvHsrUU2EpZRiGeYCIxCIYWRtJEtX+pX6sb8lveKqJGNDt1qB7JoTuiU10LwMNG4Ai9YwgCIDDIR9dbWiIR5xEkU6UqcI6NnawlQIkNBqK/DY2klRcvgycPk3SWlZ2sM+VJ+4tN2Y9s5j1zGLGM5N83JjBkn/vnF4BAqpKqrJGW42641N/9lgSjdJ7L1FU332XltRTUatJTCVJ7eig93119fGT1UxI1QlWVkheM+XF+nwk65//PPDcc0cyNZZShmGYBxxRFLHoW9xd9pfGhHtC9v4lCj3Oxqzo3tChezaM7jur6Jj0x5f/U1EqSQrlhNXhSM4bdbniojo1FR9SLt5Bn4q0WtoM09REVQMefpjKXDU0UPHxAhKMBDHvnU+T1VnvztEzm3UDlkSptjSrtFYWV0KpOF6taQtOLEbvudRaqtm6ONlsFLF3OOIj8Xpl5bFrAXzcYCllGIZhZPEGvcnL/8sDuL1yG6FoeukYlUKFtqI6dIs2dHv06J4L4+zQOsoHp+SXRiV0OhLC1HSAlhY6yScuv0cilFsntbJMldaDqhYgITUTsFhoPu95D42WFip9ZTAc7PPliZQeIAmqXLQ1UwQ8EZVCBUepIy6rpcnS6jA6eEMWQF+IZmeTJXV8nKKNuaSkqFQUUc0krbW1x6YaRaFgKWUYhmFyJhwNY2R9JElU+5f74dqSjyA5Sh3oNp1GNyrR7S1C93wEDSNOCGM7y/d7dd/p6qIoa1MTHaXLdXW0NJ/I9jZJQ6qwSqV7Dqomq4QgUKkri4VSAiRpleanK3wpqM3QZtYUgXnvfNaGAhLWImtGaa011j7YG7JEkd5bc3P0/pubS7+8sJDbhiS9Xl5YE68XFx/+z1QgWEoZhmGYe0IURcx755PyVAeWBzDplu/GU6otxVnbWXRXdKFb7UC3z4COhRC0Y1Px3NLp6exL9QoFnaATRTXxcllZesTJ50uOsiZenpzcfzvHbHMsKqKIb3s7lbp66CGaY21tulQXgGgsikXfYpKsporrXhUEgOQNWYkpAnXGOtSb6lFdWv1gd8SKRimSL0mqnMCurOT2WCZTdmk9SfmtKbCUMgzDMIeCZ9uTtvv/zsqdzMv/ljZ0V3bjXOU5dJe3o2VTB9uiF+rpWYqqTk7Gj9lSAgDakZ8qqtLR4UhviyqKlC+YKquJI1PHm3uhpIRqQba0xAu8NzWRYMiJ9REjiiI8QU/WFIFcNmQpBSWqS6tRb6rfFdU6Yx3qTHTZUeqAVnUyRerA2N6miGqqsCZe98jXI07jhOa3spQyDMMwR0Y4GsbdtbtJ9VQHlgfg3nbL3l+AgApDBewl9vgoroIdJbB7RdjXgrDPb8A66YRycpqkda/cUqWSltcTRTVRXuXOE7EY7UyWk9WpKZKGw+ihrtHE67R2dFCktauL5l9TcywiYpk2ZCUKrNwXkUQSqwjUmepQb6zfFVbpNs5rBUX7s0nrQeW3OhwFKanGUsowDMMUFFEUMeedS8pTHVgewKxnNqd8R4AicZXFlSStRTbYYwbYt1Swb0RhdwZgn3XDPrqE8pFZCME9Ip7l5fJR1sZGOpHLRZikTVipuayHtQlLQqGgPMTycprfuXMkrqdOkWRYrQWPtsbEGJx+J6Y3pjHjmaHjjrRKt2XriiVhLbImiWpqtLVUy+d3iCKVdMokrPnmt25tAd/9LvCbv3n4cwdLKcMwDHNMicaiWAusYdG3mD788ctOvxMicjtFaZQaVOkrYFcYYY/oYfcLqFoPwb7kh31qDfZ5D+w+wLQNyKqcRkM1TjNJa6Yd+dvb8cLmiekBc3N0+2FJK0C1NYuLgaoqirZeuEDdi+rrKSJWVNgIpCiKWAusYcYzg5mNmWR53Tl6gzI1Q1Mw6UxxUZWkNUFizXrzg7sZK5HE/NZMEdfE/NaXXgI+9rEjmRpLKcMwDHOiicQicPqdWPQtYsm/JC+xvkWsBlZzfkydoKEUgaAadi9gX92GfdEL+0YMdh92R0lq0NVmS89hlYS1qipz1DIUogjWzAyJQeqYnqao1WEglb4qK6P6rGfPUs3W06cp2mqzFTz/cGN7Q1ZYpdtyKX1lUBviorqTHpAorzaDjaVVQspvnZ2ldquVlUfytCylDMMwzANBKBrCsn85o7RKQpupvJUcxVEV7FtK2N1R2N2RJGGVRpUfKAqDlkMbGpJlta6OIpZ1dbSrOhPSRiw5YZ2ZobG8fK+/osyoVBQFrqyk5gIXLtDGrPp6EtcCn1v9If9uSoCcvC779/7d6FQ61BprM0Zbq4qruMnAIcNSyjAMwzAJbIW35OXVn3w9lyVlCdMWyWmqsH5oFGiS9ngZjXFBlTvuVVg9GIxHtyRZTY225rIJZr9otRRtra2lzVgXLlC0VSpTVMC6rduR7d0NWHLR1gXfAmJi9o1qUpOB1GjrRzo+wpuwDgiWUoZhGIbZB/6QH0u+JdloqzQWfAtZN/H8774m/OovPLQ5ZS8MhuzSWlGRXVqlaGumFIHZ2cPNbRUEElejkSS1tZU2ZnV00M9QXU3/VoAl9HA0jHnvfHJagGd6V2LnvHOIxOT76Po+70Ox5v4taH+UsJQyDMMwzCEhiiJ8IV/GlIHnHnsO7dZ2YHMzvgw/PZ1+zGVpXqcjucskrVVVtFs/G8EgVRGQSxGQjocZbQXiG7NsNqrf2tVFG7MaGkhcKyr2/jkOGKnJQGp6wFpgDf/rmf91pHO5n2EpZRiGYZjjjtRCNZO0Lixk74AFkOzV1maW1urq9KYCqUgtNTOlCMzOHm5uq4RSSVUDystp7h0dlOPa2ko/h91+LDpmMfnBUsowDMMwJ51QiCKcmaR1bm7v2pRKJRXkT5VV6bLDkZvoSdHWmRmS5fn5+JCuO533+hPvjVRVQGrL2dZG6QJtbSTn1dXUUYs5NrCUMgzDMMz9TiQCLC5mltbZ2b3bqAoCRSAz5bXW1lKFgVwIhSh/NVVWE6/nWuT9XtFoSE6rqihd4OxZShmQ0gUsloI3IHhQYCllGIZhmAedWIyW3TNJ68xMbnVSbba4pEqimti6Mh/Bi0apiHumaKs0DjvHFaC0hqIimn9TE3DmDOW5trSQzFZVHYuWrycdllKGYRiGYbIjisDqamZpnZ4G/P69H0erpRSBRFFNHDU1VFYqV3EVRcDtzhxtlS57PPv/2XNFECjqajDQZqyGBiqJ1dVFIltdTfKaazT5AYSllGEYhmGYe0OSQ7lcVmk4nXtvxgJI6jKJq3R7vudyvz9ZUuUuJ7bWPGwkebVYKLIsyWtLC6VIVFVRBYIHDJZShmEYhmEOH6mV6vx8sqwmjlzqtQIkpdmk1eGg5fZ8CAYp7zaTvM7P07/HshfZP1DU6niVgbo6qi7Q1UVHu51GScl9k/PKUsowDMMwzPFgaysurZnkdWMjt8cym7NLa01N/nmg0ShFfBMldWkp/ZirXB8UajWlBZjNlMd76hTJ6+nT8bQBk+nYyytLKcMwDMMwJwe/Py6omcQ1l/xWgHI/5YRVGnY7CV++hEK0cUxOWBOPq6v5P/a9INV3LSujn/fUKaCzk8pkORwkr3u1sz1EWEoZhmEYhrl/EEXa2JQoqXLymsuufUEgUcskrTU1QGXl3k0HMhEOU+Q1m7guLR1NXddElEqq8bq5CXz5y8Af//GRPC1LKcMwDMMwDxZSZ6pUUU2U1/l5ksa9EAQqhSV1ksp0vJcIZCRCYrpX5DXXzWT54HBQHdsjIFdf2+dXAIZhGIZhmGOGINDOd4uFujzJEYvRjvxs4rq4SHmmy8s0btzI/JxabXZplY5yG7RUKvr36ursP1ckQikBe0Vel5dz37BlNOZ2vyOEI6UMwzAMwzCJRKNxCVxYyHxcX8/9MU2mveXVZtt/ykDivPeKvC4vA9/9LvDMM/t/rjzg5XuGYRiGYZjDZHs7LnrZ5DUQyO3xFAoS073kNZ9GBHLEYjTuRYDzgKWUYRiGYRim0Igi4PVml1YpihmN5vaYOl28nmkmec2UMlAAOKeUYRiGYRim0AgC5W8ajUB7e+b7SUvve8nr+jpFaCcnaWTDZMosrRcu0GanYwRHShmGYRiGYU4KUspANnldWKCGBdn4+teBT37ySKbMkVKGYRiGYZj7DZ0OaGigkQmppmu2iGtz89HNOUdYShmGYRiGYe4nBIGW7k2m7CkDxwxFoSfAMAzDMAzDMCylDMMwDMMwTMFhKWUYhmEYhmEKDkspwzAMwzAMU3BYShmGYRiGYZiCw1LKMAzDMAzDFByWUoZhGIZhGKbgsJQyDMMwDMMwBYellGEYhmEYhik4LKUMwzAMwzBMwWEpZRiGYRiGYQoOSynDMAzDMAxTcFhKGYZhGIZhmILDUsowDMMwDMMUHJZShmEYhmEYpuCwlDIMwzAMwzAFh6WUYRiGYRiGKTgspQzDMAzDMEzBURV6AveCKIoAAK/XW+CZMAzDMAzDMHJIniZ5WyZOtJT6fD4AgMPhKPBMGIZhGIZhmGz4fD4YjcaM/y6Ie2nrMSYWi2FxcRElJSUQBOHQn8/r9cLhcGBubg6lpaWH/nzMwcKv38mHX8OTD7+GJx9+DU82hXj9RFGEz+eD3W6HQpE5c/RER0oVCgVqamqO/HlLS0v5D/EEw6/fyYdfw5MPv4YnH34NTzZH/fpli5BK8EYnhmEYhmEYpuCwlDIMwzAMwzAFh6U0D7RaLb74xS9Cq9UWeirMPuDX7+TDr+HJh1/Dkw+/hieb4/z6neiNTgzDMAzDMMz9AUdKGYZhGIZhmILDUsowDMMwDMMUHJZShmEYhmEYpuCwlObB5z73OTzyyCP4+Mc/jnA4XOjpMHlw7do1PPzww3jf+96HZ599ll+/E8zLL78Mq9Va6Gkw++SNN97AE088gccffxw/+tGPCj0dJk9isRg+8YlP4JFHHsHly5dx9+7dQk+JyQGPx4OLFy+iuLgYd+7cAQD84Ac/wKVLl/DEE09gfn6+wDMkWEpz5ObNm1hYWMCbb76J06dP45/+6Z8KPSUmDxwOB15//XX8/Oc/R319Pf75n/+50FNi9kE0GsUPfvADbi18Qtna2sKf//mf46c//Sn+/d//HR/+8IcLPSUmTwYGBhAMBvHmm2/iT//0T/HCCy8UekpMDhQVFeFf/uVf8Ou//usAgEgkghdeeAFvvPEG/uRP/gRf+tKXCjxDgqU0R65evYpf+qVfAgA89dRTuHLlSoFnxORDVVUV9Ho9AECj0WRtc8YcX15++WX8xm/8Br9+J5S3334ber0eTz/9ND784Q9jeXm50FNi8qSmpgaiKEIURbjdblgslkJPickBtVqdtMI0NjaGtrY2aDQa9Pb24tatWwWcXRz+ZM8Rt9u9247LaDTC5XIVeEbMfpiZmcHPfvYzPP3004WeCpMn0WgU//iP/4hnnnmm0FNh9onT6cT4+DheeeUV/N7v/R6ee+65Qk+JyROLxQK1Wo3Tp0/jU5/6FD75yU8WekrMPkh0GoA+X48DLKU5YjKZ4PV6AVBuhtlsLvCMmHzxer34+Mc/jm9961tQq9WFng6TJ9/5znfwkY98hKOkJxiTyYTe3l5oNBo88cQTGBwcLPSUmDz52c9+BpVKhZGREfzwhz/EZz7zmUJPidkHiU4DAEqlsoCzicOf7jly6dIlvPrqqwCAf/3Xf0Vvb2+BZ8TkQyQSwUc/+lF88YtfRGtra6Gnw+yDoaEhfPvb38ZTTz2FsbEx/OEf/mGhp8TkSU9PD4aHhyGKIgYGBtDY2FjoKTF5IooiysvLAVDU1OPxFHhGzH5oaWnB8PAwQqEQrl69iq6urkJPCQB3dMqLz372s3jnnXdQW1uLF198ERqNptBTYnLkpZdewh/90R+hs7MTAPAHf/AHvAx8gnnooYdw/fr1Qk+D2Qdf//rX8f3vfx+CIOCb3/wmmpqaCj0lJg8ikQh+67d+C8vLywgGg3jhhRdw6dKlQk+LyYFf/uVfxsDAAOrq6vD7v//70Ov1+NrXvgadToe///u/PxYbSFlKGYZhGIZhmILDy/cMwzAMwzBMwWEpZRiGYRiGYQoOSynDMAzDMAxTcFhKGYZhGIZhmILDUsowDMMwDMMUHJZShmEYhmEYpuCwlDIMwzAMwzAFh6WUYRjmCNja2sJjjz2Gxx57DCUlJXjsscdQX1+PK1euFHpqDMMwxwIuns8wDHPEcEcqhmGYdDhSyjAMUyCee+45/PjHP8b09DQuXbqEZ555Bh0dHfj+97+PX/mVX8HZs2cxNjYGAPjWt76FRx55BJcuXcLrr79e4JkzDMMcPKpCT4BhGIYB3G433nzzTbz22mv4/Oc/j76+Przyyit46aWX8OlPfxrf+9738POf/xyBQAAf+tCH8P73v7/QU2YYhjlQWEoZhmGOAe3t7VAqlbDb7Thz5gwUCgWqq6vx6quvYmJiAoODg3j88ccBAKurqwWeLcMwzMHDUsowDHMMEARB9rIoimhsbERXVxd+/OMfQxAEhMPhQkyRYRjmUGEpZRiGOeZYLBZ89KMfxaOPPgqlUonOzk785V/+ZaGnxTAMc6Dw7nuGYRiGYRim4PDue4ZhGIZhGKbgsJQyDMMwDMMwBYellGEYhmEYhik4LKUMwzAMwzBMwWEpZRiGYRiGYQoOSynDMAzDMAxTcFhKGYZhGIZhmILDUsowDMMwDMMUHJZShmEYhmEYpuCwlDIMwzAMwzAF5/8HdN8+zzsxulgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOwAAADzCAYAAACFU/paAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAAk6AAAJOgHwZJJKAAAiRklEQVR4nO3deVQUV9o/8C80yCJLgYBCwhYUF0CI6KiDimjU5NUMxAjJiYmDvia+zsQkY2LgdZn4i4MKmkniTIzgiJrjgmAc88s4MZ6cBB0aHAP+NFEntoJsomyhVIRG6L6/P5juAXph6Wqqi34+5+S0TVG3n+7Kw62uus+9NowxBkKIJNiKHQAhpO8oYQmREEpYQiSEEpYQCaGEJURCKGEFJpPJEBUVpf2vvLxckHaLi4vxxhtvAAA2b96MnTt36vxOeXk5wsPD+9WuJt7w8HA8++yz4Hl+QPHV1NRgyZIlA9qX9J2d2AEMNU5OTrh06ZLg7U6ePBmTJ08WvN2u8f7617/GJ598gg0bNvS7HT8/Pxw/flzg6EhP1MMOgpKSEsTGxiI6OhoLFizAnTt3AAB79+7FlClTEBkZieeffx4tLS0AgLy8PISHhyMyMhKzZs0CAOTn52PRokXaNi9fvozp06djzJgx2Lt3r85rqlQqrFu3DlOmTMHEiRORmZnZa5zTp0/H7du3AQClpaV4+umnER0djZkzZ+Knn37S/nzatGmIiIjAxo0b4eLiAqB7765UKrF8+XJERETgySefxHfffQcAOHDgABYvXoynn34aY8aMwbvvvquNNTk5GeHh4YiIiMCHH37Y/w/ZWjAiKFtbWxYZGckiIyNZQkICe/ToEZs+fTqrq6tjjDGWk5PDli9fzhhjrKGhQbvfhg0b2K5duxhjjIWHh7Pq6mrGGGNNTU2MMca+++47tnDhQsYYY++99x6bOHEia2lpYfX19ezxxx9nt2/fZrdu3WJhYWGMMcYyMzPZli1bGGOMKZVKFh0dzcrKynTiHT58OGOMsY6ODrZkyRL21VdfMcYYmzNnDlMoFIwxxs6fP8/i4uIYY4wtXLiQHTlyhDHG2Keffqrdv+tr79y5U/se//WvfzF/f3/W2trK9u/fz4KDgxnP86y1tZUFBASwyspKVlxczJ566iltTJr3THTRKbHAep4SX7lyBVeuXMG8efMAdPYmvr6+2m0bN24Ez/Nobm7GggULAAAxMTFITk5GUlISFi9erPd14uPj4eTkBCcnJ8TFxeHChQuIiorSbj9z5gx++OEH7WnqvXv3cOPGDQQHB3drp7W1FVFRUbh9+zbGjx+PefPmobm5GYWFhUhMTNT+XltbGwCgqKgIJ0+eBAC89NJLeOedd3RiKygowJo1awAA48aNQ2BgIBQKBQBg7ty5cHd3BwBMmDABFRUVCAsLQ1lZGdasWYOFCxdi/vz5vX/QVooS1swYYwgLC0NRUZHOtuTkZJw8eRKRkZE4cOAA8vPzAQB79uzBP//5T5w6dQrR0dEoKSnR2dfGxsboc8YY/vSnP2n/CBii+QPT0tKCBQsW4JNPPkFycjI4jjPLd3EHBwftv2UyGTo6OuDh4YHLly/j66+/xp49e5Cbm4vs7GzBX3sooO+wZjZ27FjU19drE7a9vR1Xr14FADx48AC+vr5ob2/H4cOHtfuUlpZi6tSpeP/99+Ht7Y2qqiqddr/44gsolUo0NjYiPz8fU6ZM6bZ9wYIF+PTTT9He3g4AUCgUePjwocE4nZ2dsWvXLnzwwQdwdnZGcHAw8vLyAHQm/+XLlwEA06ZNw+effw4AyMnJ0dvWzJkzte9HoVCgsrISY8eONfjaDQ0NUKvVeP755/GHP/wBFy9eNPi71o4S1syGDRuG48ePIyUlBZGRkYiKikJhYSEAYMuWLZg6dSpiYmIwbtw47T7r1q1DREQEwsPD8ctf/hKRkZE67U6cOBFxcXGYNm0aNm3aBD8/v27bV65ciQkTJmDSpEkIDw/HqlWr0NHRYTTWJ598EhMnTsTRo0dx+PBh7Nu3D5GRkQgLC8MXX3wBAPjoo4/wxz/+ERMnTsTNmze1p7dd/eY3v4FarUZERAReeOEFHDhwoFvP2tPt27cxe/ZsREVF4eWXX8a2bduMxmnNbBijah3Sdy0tLXBycoKNjQ1ycnJw9OhRbTIT86PvsKRfSkpK8Prrr4MxBo7j6LvmIBO9h42OjkZISIiYIQwZpaWlei9QkaFD9B42JCQEubm5YocxJCQlJYkdAjEzkxL23LlzKCwshI+PD1asWIGTJ0/i9OnT2LNnj842QojpTLpKXFRUhNTUVNTX1wMAEhISEBQUpHebVPFKvtsjIWIyqYftebO+r9vy8vK09/j03WO0FLySR0x2DOrv34WbsweKXysG58iJHRaxYiYl7LRp05Ceng5PT0+UlJSgpaUFcrkccrlcu83Hx0dnv8TERO2wN0v+3sU5cgjmgnGjQYGx3uMpWYnoTErYWbNmaatJNGbOnNltu5TxSh63+Ftwkjmi5kENeCVPSUtERSOdjOAcOchXyDHaJQDZ/5VFyUpERwnbC02Sug5zFTcQQkAJS4ikUMISIiGUsIRICCVsb1paEFqthE2rUuxICKGENaqlBZgxA3/cV4mxia91PidERJSwxigUQGMj7FSAjL8P3LghdkTEylHCGhMaCowYgQ4ZoOLcgDFjxI6IWDlKWGOcnYGCAvxuZQCu52V1PidERJSwveCVPGwAPGh7IHYohAhbD3vixAmUlpZi9OjR8Pb2xtmzZ9HU1KR3HRgp4H+uQcwfnoB/fRv+5+BiFAaUg/P0631HQsxE0HrYGzduYN26dVAoFHBwcEBdXR2cJXwayf3zMoJr2/DDSOCJunZwF34QOyRi5UxKWGOTWSsUCqSlpcHe3l5nv7y8PCQlJSEpKcmy62GLvsMtDph0B7jFdT4nREyC1sOOHj0aO3bswNixYzF8+HDs2LEDKpVKZz/J1MNOj4N88Q64KwHeEeD+Gid2SMTKCVoPGx0d3W27Zj0ZyYqNBRcShnul1+DgHwhIvL6XSB9dJTbG2Rm4cAGr1gTj+hcH6LYOER0lbG+cnXHjMUcwJ0exIyGEEpYQKaGE7QX/cw1Cq5Vovift6VrJ0EAJawT/cw1i0kLQUH8L/3PwefA/14gdErFylLBGcJV1COaBH70Zgu7ZgKuiXpaIixLWCD7AB7c4IKLeBuXuDLy/t9ghEStHCWsE5+kH+YZSjPAJxp5ff07jiInoKGF7Q7d1iAWhhDVCs7bOzeZKrPj7a7QgFhEdJawRmrV1WlVK+Ln60cz/RHRmq4edPn06srKyEBISgqVLlwoV76CitXWIpTFbPWxeXh7c3d1hayvdTpzW1iGWRtD1Ybs+b29vx6JFi3Do0CGd/aSyPixAa+sQy2K2etjw8HAcPHgQMplMZz+p1MMSYmnMWg+7ZcsWU5onhPQg3S+YhFghSlhCJIQSlhAJoYTthWZ004NHNJE4EZ/Bi07p6elQqVSorq7G7t27BzMmi8ErecRk/gIor8CK/7sCJa//QPdiiagMJmxKSgoA4LPPPhu0YCwNV3cfwRdu4KIvMOn/VYGruw8EcGKHRayY0R7WxsYGPj4+gxmPReGPZHefSPzofnAp74kdFrFivfaw1ox7aQXkY//PfyYSv75c7JCIlaOLTsZ4eYELCcN9Rxs4+AcBXl5iR0SsHCWsMQoF8OABHg2TQdaipBXYiegoYY2hFdiJhTEpYc+dO4ft27cjOzsbAHDixAns2LEDf/3rXwEAR48exfbt202PUiy0AjuxMGarh7169Sp8fX0FCVJUNKcTsSBmq4ctKipCc3Mz5HK5zn5SqofVYmIHQIgZ62ETEhIAAEqlUmc/KdXDaocmttPQRCI+s9bDAkBqaqopLyEqzayJ1f+eNbEk4CINTSSioqvERnCOHB53exytKiV8hvtQshLRUcIaUcFX4Gz5WTAwlNy9iAq+QuyQiJWjhDUikAtEbGAsbGCD6FGTEMgFih0SsXKUsEbwSh7V96rg3T4Mdc21NPM/EZ1JF52GOk49DPLP7NB68xFYoAzcqmFih0SsHPWwxigU4GrvwU4FjKh/SGOJiegoYY2hscTEwlDCGkNjiYmFoYTtDY0lJhaEEpYQCaGEJURCzLY+LMdxKCwshKurK9544w2h4iXEqpmtHjYuLg6pqalobGwUJFBCiBnrYQEgIyMDr776qs5+kqyHJcQCmNTDGquHzczMRFlZGYqKinT2S0xMRG5uLnJzc+Hv729KCIRYFbPWw65atcqU5i0Cra1DLAldJTZCU8B+898F7DT4n4iNEtYIzpFDMBeMVpUSfq5+VMBOREcJawSv5HHz55twkjmi6n4V9bBEdJSwvbCBTbdHQsRECWsE58ghxDMErSolHnd7nE6JiegoYY3glTxu8bfgJHNEzYMaOiUmoqOENYJz5CBfIcdolwBk/1cW9bBEdJSwhEgIJawRdB+WWBpKWCPoPiyxNJSwRtBFJ2JpzFYPGxYWhsOHD8PDwwNvvfWWQOEOLs1Fp7mZMfjjMx9TD0tEZ7Z62FOnTmHjxo1oa2sTJFCxaJLUdZiruIEQAjPXwxoitXrYX/hOgZeTj9hhEAIbxtiAlyo+d+4cioqK4OnpiUmTJqGiogKlpaUYM2YMxo8fj6NHj8LDwwNvvvmmwTaSkpKQm5s70BBIF/RZDn1mrYfdvHmzKc0TQnqgq8SESIjoi2GVlpYiKSkJQOf3WaGmjLHGtkpLSwVpl1gwZkESExOpLZHaItJAp8SESIhFJWxiYiK1JVJbRBpMuq1DCBlcFtXDEkKMG/SrxD3HH2dnZ4PneQQGBkImk6G4uBhz5sxBZGQkdu7cCScnJ/z+97/vd1uBgYEoKChAYWEh1q9fj6ysLMyfPx8JCQl628rPz8eePXuQk5MDANi3bx9qa2sRGxsLlUqlfZ34+Phe4zLWVn19PS5duoTQ0FA4Oztr3++cOXP63db3338PtVqNWbNmwc3NTfJjt0nvBr2H7Tn+uLKyEmvXrsXp06cxfPhw2NvbQ6lUIj8/HytXroSfnx9+/vnnfrc1efJkJCUlIS4uDsOGDYOrqytaWloMxjV79mxERUVpnzc0NGD9+vUoKCjo9jp9ictYWwkJCXj77bdRVVXV7f0OJC5PT088evQIHR0dQ2bsNjFu0BO253jjuXPnYteuXXB3d8e8efPw3nvv4eLFiya3BQCff/45nn/+eUyYMAHp6ekoKysbUJx9HSPdl7ZUKhUyMjKwevXqfr/fnm0tW7YMqamp+Oabb0yKj0jHoJ8S91yPR61WQ6lUIj4+HgUFBcjPz4e7uztmz56NDz74AE5OTvD09Ox3WwBQW1sLHx8f/Pjjj/jb3/4GlUplMK7Lly9DLpcjLS0Ny5Ytg5eXF7Zt24ZZs2ZBpVIhPT0dPj4+fYrLWFubNm1CR0cHioqKMHz4cO37HUhcp06dQnFxMUaPHo3JkycjLS0NHh4e/TgaRGroKjEhEkJXiQmREEpYQiSEEpYQCaGE7cX27dvFDoEQLdHL6yzV/v370drair179yI0NBQVFRX43e9+J3ZYxMpRwhpQWVmJ9957D1VVVdi2bRvOnDkjdkiE0CmxIUFBQcjJyUFOTg4++ugjZGZmih0SIXQflhApoR6WEAmhhCVEQihhCZEQSlhCJIQSlhAJoYQlREJEHzgRHR2NkJAQscMYEkpLS1FSUjLor0vHUFjGjqPoCRsSEkILOAlEs4LCYKNjKCxjx1HQBZ1PnjyJ06dPY8+ePTrbCCGmE3RB54SEBAQFBendRggxnaALOvd1m6EFndVMDRvYGNxXpVZBZivTu82UfZtam+Du6I77bfe1K673bNvWRv/fNsYYGJjB7eZ8T1CpAJn+fcnQZFLC9pwEraWlBXK5HHK5XLvNx0d35fLExETtMhNdz9er71fDw9EDrg6uOvswxnC98TomeE/QG0v9w3rIbGXwcvbSu/2nhp8Q5hOm83NeyeOX+36Jx9wew53mO5CvkOskbenPpQjigmAvs9fZv03Vhtv3byPEU/9FF3O+J/z0ExCm+56sQXNzMxoaGoxOrCcFHh4eBifz00fQBZ0BYObMmd22WzrOkUMgF4hLdy9hst9kvT0ssTy1tbUICAiAvb3uH1GpYIyhrKysXwlr9fdheSWPCr4C4T7huMXfAq/kxQ6J9JGUkxUY2HzXot/WERvnyOH0y6dhZ2uH4cOGUw9LdJSXl0OhUGD+/Plih0I9LABtklKyEn3Ky8t1ZhxRq9WixGL1PSyRNjVTo61DuPWEHOwcdK74f/rppygsLERxcTHq6uowdepUuLu7g+M4TJ48GYsWLcKf//xnuLi4IDk5GVu3bsXXX38Nxhg++eQTRERECBYfJSwxukJeTEwMtm3bhuDgYLz44osiR6qrraMN1+qvCdbeBO8JcLJ36vaz1atXw9/fHzt37oSbmxvkcjk8PDywefNmnf2vXLmC69ev4+zZs6ipqcHq1avxxRdfCBYfJSzB7Nmzcf78ee1zzQp56enp6OjoQEREBJqbm7vtY+he+lA3evRo7fpFXS8aaWZaunbtGgoLCzF79mwAgEzg++SUsFLV0tJ5HzY4GHB2FrTprv8jlpSUgOd5NDU1dethDd1LH4rs7e2193ttbf9zuuzh4YHq6moAnYuWzZgxA+PGjUNsbCz+8pe/AADa29sFjYUSVopaWoAZM4A7dwBfX6CgwKSkNbZCXkxMDMrLy7v1wJbEwc7B4MCTgbbXU0REBP73f/8XiYmJ4Hle+/MlS5bgV7/6Ff7+97/D1bVzYMzEiRMxZswYxMbGwtbWFvPmzcP69esFi48SVooUCqCxsXNoYmMjcOMGEBk54OYiIyPx5Zdfap/3LNYICgrSjhG3NLY2tjrfOYXm5uaGc+fO6fzcz88PxcXFOj9PSUlBSkqKWWKh2zpSFBoKjBgB2Nl1Po4ZI3ZEZJBIJmE1I5BoJBI6T3/PnAHWru18FPg7LLFckjgl5pU8ZuyfAW9nb9S31OsdoG9VWlqA+fOBu3eBI0dM/g5LpEPQAvYTJ06gtLQUo0ePhre3N86ePYumpibs3LnTpCA5Rw7BXDAu3L6AXzz2C+tOVqDzO+ydOwDPA4yZ/B2WSIegBew3btzAunXroFAo4ODggLq6OjgL8JefV/K4xd/CBO8JNEBf4+5dQKnsfKTVVqyGSQnbs9qg63OFQoG0tDS9FRV5eXlISkpCUlJSn266c44cCpYXYPfC3XQ6DAD793d/fuCAKGFYC8YY4uPjERcXpzODSnl5OZYsWTJosZiUsD0L2EePHo0dO3Zg7Nix8PHxwY4dO9DWpjvOMzExEbm5ucjNzYW/v3+fXosG6Hfxm990f756tThxWIm7d+8CAL777jt4e3uLGougBezR0dHdts+bN8+U5okhY8d2jnJKSwM2bOh8bq3UakBPpzBgDg6Abfd+7M0330RhYSHi4uIAAB0dHRg5ciSOHTvW7feWL1+OmzdvQiaT4cCBAxg1ahRWrlyJmpoauLi44NChQ3BzczMpPElcJSZ6jB0LpKRYd7ICncl6TbjB/5gwAXDqPhAjIyMD77zzDo4cOQJbW1vY2dnhzTffxLfffosx/74H3t7ejuvXr0Mul8PGxgZqtRq7d+/GnDlzsGLFChw7dgxZWVl45513TAqPElbKBjBjARm4xsZGrF69Gk1NTaipqcGkSZO0CWtvb4/f/va3eOWVVzBixAikpaXh2rVr+P777/HZZ5+hvb292/RJA0UJK2V0dXhQHTlyBIsWLcLKlSuxZs0adF0LXaVSISkpCUuXLsXWrVtx4sQJjBs3DtOnT8crr7wCQJhCAErYXnQdYeU9XNwLDt0IWK1jrB62vr4ely5dQmhoKF566SUhIheWg0PnaayQ7Rkwd+5cvPLKK/jyyy/h1OO0+cGDB4iPj4eNTee0tIcPH4anpydee+017P/3Vf23334bCxcuNCk8SlgjeCWPmOwY+Dj7oPZhLQr/u9AyrlILXK1jrB42JSUFc+fOxe7du4WIXHi2tjrfOYUWFBSE48ePAwB+/PFHne2abWfPntXZ9tlnnwkaCyWsEZoRVt/f/t6ypkAVuFqnp67301UqFTIyMrBu3bpuv2OtBexik8zgfzFY7Agrgat1utbDVlVVaethZ8yYgU2bNqGtrQ1FRUXd9hnIvXRiOuphjeAcOchXyFH/sB6cI2c5Payzc+dp8FdfAc88Y/J3WGP1sDExMSa1TYRFPWwvTBlhZdaSQGdnYNw4q67SEXr6lcHGBnCVn3pYM9FcsBrlMgo1D2pQ9N9FltNDDwEjR47E7du3h8TaOv1BCWsm2gtWNd/jyVFPUrIKzMXFBS4uLmKHMejMVg87ffp0ZGVlISQkBEuXLhUqXsnQXLAK9wlHxb0K8EqekpaYzKSE1dTDpqenA+ish01JSUF6ejqqq6vh7u7ebVpIa6K5YHW/7T5sYEPJSgQh6ILOXZ+3t7dj0aJFOHTokM5+1nIPj3PkDC4STchACLqgc9d62PDwcBw8eFDvzOfWNAk1IUIyaz3sli1bTGmeENKDdX7BJESiKGEJkRBKWEIkxGISlmb276eGhs6xxA0NJjeVn5/fbWW6ffv2YevWrZDL5Th37hy2b9+O7OzsPrXV23E0tl2sfcWMC1lZgJdX52MfGLzolJ6eDpVKherqarPXQtIwvn5qaAACAjrnM/r974HKys6DrsfHH3+M5ORkZGZm4t1339X7O8bqYQF0u9dujOY4BnPBuMXf0pmS1th2sfYVMy5kZQGrVnX+W/P42mtGP2ODPWxKSgrWr1+PadOmGW1ACJphfFfqriDQPZCStTenTgGtrZ0zBra2dva0BgQEBGD+/Pn9mk+o6/30nvfaNfTNLa05jhfvXEQwF6xzHI1tF2tfMeNCz2UoN2xAbwwmbHp6OjIyMqBWq3ttxFT6hvERIwICuj83UI+anp6Od999F3PnzsXLL79ssDlj9bCae+0+Pj7d9tFXD6s5jpN8J+mtHza2Xax9xYwLW7d2f56Whl4xkSUmJjLGGGtqbWIVfAWr5Cv1/p5arWZX664abOfug7us/mG9we1Xaq8Y3Ma38qz6XrXB7YoGBXvU8Ujvttb2Vnaz8abBfSv4CnZfeV/vtgG/p4cPGQsLY8zVtfPx4UPG2H8+y652797NGGMsJyfH4OuYquvrNrU2dXvsydh2sfYVMy6WmcmYl1fn47/pO44aFnPRiWb27yc7O2DYsM5HI5ycnLBlyxY8evRoUMLq7Tga2y7WvmLGhddeA+rre/3uqkHldVKkUABNTZ0TkDU1GZ3TKTk5eXBjI2ZlMT0s6Qdagd1qma0e9rnnnsPRo0dRUVGB1NRUoeIlgOBzOhHpMNv6sFevXoWvr68gQRI9aE4nq2S2etiioiI0NzdDLpfr7Gct9bCm0NwCuKe8By9n/YMiaG0d62O2etiEhAQAgFKp1NmP6mGN04yQ8XP1Q9W9KpxfeV7/VUZaW8fqmLUeFgB9fx0AzQiZ4ppiTBw5kW51ES26SiwiQwPDNSNkIkZGoPJeJY38Ilp0H1YkvJLHjP0z4O3sjfqW+m4DwzUTuLV1tKH5UTP1sESLeliRaE57r9VfMzioHADcHd0HPzhisaiHFYm+hbb61ZMKtD5sz3vp2dnZ4HkegYGBGDlyJM6ePYumpibs3LlzwK9BhEM9rEg4Rw4Fywuwe+Fu3TrJ3mjWh3399c7HlpYBx9HzXnplZSXWrl2L06dPw8HBAXV1dXCme70WgxJWRAMueNC3PuwA9byXPnfuXOzatQvu7u5QKBRIS0uDvb29zn766mGJ+dEpsRRpxhLfvWvyWOKe99LVajWUSiXi4+OhVCqxY8cOvQtO0b10cVDCSpGAY4l73ksHgNjYWO2/582bN+C2ifDolFiqaCyxVaKEJURCKGEJkRCz1cNyHIfCwkK4urrijTfeECpeQqya2eph4+LikJqaisbGRkECJYSYsR4WADIyMvDqq6/q7Ef1sIQMjEk9rLF62MzMTJSVlaGoqEhnP31z2hJCemfWethVmuUHRNa1jI0qX4iUDfmBE5rZG7ycvdDQ0tD/cbuEWJAhf1tHU8b2r/p/6V/fhBAJGfIJqyljG+89Xv/6JgK03/WREHMa8qfEmtkbbt+/jcfcHhO0h+WVPOYcnINRLqNQ+7BWkqfbxuphY2JikJWVhZCQECxdulTsUAmsoIcFzLduD+fIIYgLwtX6q5I93TZWD5uXlwd3d3fY2lrF/yaSMOR7WHPilTzK+XKEeYcNbNYIC2CsHra9vR2LFi3CoUOHdPaje+nioIQ1AefI4dtff4uHjx5ihPMIySUrYLwe1tfXFwcPHoRMJtPZj+phxTEkErZPs+SbCefI4eGjh5JMVqD3etgtW7YMdkjECMknbJ9nySdkCJD81QTNfdYfa39EgHsAJSsZ0iSfsDRLPrEmZquHDQsLw+HDh+Hh4YG33npLoHB10Sz5xJqYrR721KlT2LhxI9ra2gQJ1BiaJZ9YC7PWwxpi6B6el7MXhsmGGXwtfzfDpXicI2f09QPcAwxuc7Z3Nvi6AODr6guZre6tDQCwt7XHKJdRBvf1dvaGvUx3Xl/A9PeEAMPviQxNZlsfdvz48UhLS4OHh4fOfobu4TnbG58B0NXB1eA2BzuHAe9rL7M3mFQA4DLMxeA2ma0Mw4cNN7jdyd5pwHH19p7ganhfMjSZtR528+bNpjRPCOlB8leJCbEmog+cKC0t1Z4WV1VVCTZljDW2VVpaKki7/dX1GALS+bwstS2jx5FZkMTERGpLpLaEZKnvcSi0RafEhEiIRSWs5soxtTX4bQnJUt/jUGjLhjHGBHtlQohZWVQPSwgxTvSrxMbGIz/33HP9auvkyZO4dOkSQkND8dJLL2Ht2rUICAjAiy++iFGjDI9G0uejjz6CWq3GrFmzMHnyZOzbtw+1tbWIjY1FTExMv9r69ttv8cMPP+Dq1avYu3fvgOLKz8/Hnj178P777+uM0e75GQ42OoZ9j8vU4yh6D2tsPHJ/JSQk4O2339YOdxwxYgSam5sHNCeRp6cnHj16hI6ODgBAQ0MD1q9fj4KCgn63NWfOHEybNg3x8fEDjmv27NmIiorSO0a752c42OgY9p2px1H0hB3oeGR9VCoVMjIysHr1agDAhg0bsGbNGhw7dqzfbS1btgypqan45ptvTI4LAM6cOYMFCxaYHJc+psYm9OvTMRyYvsQn+imxsfHI/bVp0yZ0dHTgww8/xIoVK3Dq1CncvHlzQFN0njp1CsXFxbCzs0NVVRW8vLywbds2nelU+kKlUkGtVuPChQsICAgYUFyXL1+GXC7HU089pR2jzfM8zp8/r/0MfXx8+h2bEOgY9p2px5GuEhMiIaKfEhNC+o4SlhAJoYQlREKsNmG3b9+Or776qt/7EMtibcdR9KvEYikrK0NbWxueeeYZxMfHIyAgAOPGjYNCoUBqaio+/vhjyGQyLFu2DDk5OZg6dSrKyspw7NgxMMZw584duLi4wN7eHg0NDWhubqaCfRFY23G02h72iSeegIND5xQsU6ZMweLFixEZGYlRo0bhH//4B9zc3ODi4gJHR0e4uLigubkZTzzxBF544QUUFBTAw8MDDx48AAA8++yz4DgO9+7dE/MtWSVrO45Wm7D+/v5Qq9UAADs7O9jY2GgfZ86ciXv37sHdvXMWRmdnZ1RWVsLf3x/Z2dmYOXMmGhsbERoaCgA4fvw4ampqtL9PBo+1HUe6D2uiAwcO4Omnn+73OFdiWaRyHClhCZEQqz0lJkSKKGEJkRBKWEIkhBKWEAmhhCVEQv4/xoKBduBdoU4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "********************************************************************************\n", + "********************************************************************************\n", + "* Analysis Summary\n", + "********************************************************************************\n", + "22 Points (+:10, -:12), 22 Boxes (+:10, -:12)\n", + "Parameters = {dx[1.0, 1.0): 1.0, u[1e-18, 0.1): 0.04915839706115814}\n", + " # {dx[1.0, 1.0): 1.0, u[1e-18, 0.1): 0.04915839706115814}\n", + " a_0 a_1 a_2 a_3 a_4 a_5 a_6 \\\n", + "time \n", + "0.0 0.289474 0.343750 0.423077 0.550000 0.785714 0.785714 0.550000 \n", + "1.0 0.275244 0.341082 0.419177 0.543761 0.774127 0.785714 0.561587 \n", + "2.0 0.261713 0.337845 0.415338 0.537636 0.762803 0.785145 0.572605 \n", + "3.0 0.248848 0.334103 0.411529 0.531624 0.751734 0.784046 0.583053 \n", + "4.0 0.236615 0.329912 0.407723 0.525721 0.740913 0.782458 0.592934 \n", + "5.0 0.224983 0.325325 0.403898 0.519920 0.730335 0.780416 0.602250 \n", + "6.0 0.213923 0.320393 0.400035 0.514217 0.719991 0.777954 0.611009 \n", + "7.0 0.203407 0.315159 0.396120 0.508604 0.709876 0.775104 0.619215 \n", + "8.0 0.193408 0.309665 0.392140 0.503074 0.699981 0.771898 0.626879 \n", + "9.0 0.183900 0.303950 0.388086 0.497621 0.690302 0.768362 0.634008 \n", + "10.0 0.174860 0.298049 0.383950 0.492236 0.680830 0.764525 0.640612 \n", + "\n", + " a_7 a_8 a_9 dx id label u \n", + "time \n", + "0.0 0.423077 0.343750 0.289474 1.0 0 false 0.049158 \n", + "1.0 0.429316 0.347650 0.292142 1.0 0 false 0.049158 \n", + "2.0 0.435818 0.351664 0.294870 1.0 0 false 0.049158 \n", + "3.0 0.442543 0.355801 0.297662 1.0 0 false 0.049158 \n", + "4.0 0.449450 0.360065 0.300520 1.0 0 false 0.049158 \n", + "5.0 0.456503 0.364459 0.303448 1.0 0 false 0.049158 \n", + "6.0 0.463668 0.368984 0.306447 1.0 0 false 0.049158 \n", + "7.0 0.470911 0.373639 0.309521 1.0 0 false 0.049158 \n", + "8.0 0.478202 0.378420 0.312673 1.0 0 false 0.049158 \n", + "9.0 0.485510 0.383325 0.315905 1.0 0 false 0.049158 \n", + "10.0 0.492810 0.388349 0.319219 1.0 0 false 0.049158 \n", + " \n", + "********************************************************************************\n", + " \n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + " \n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + " \n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Advection Model\n", + "\n", + "# Instance parameters (used to identify input file)\n", + "dimensions = 1\n", + "boundary_slope = 0.0\n", + "num_disc = 10\n", + "# derivative = \"centered\"\n", + "derivative = \"backward\"\n", + "# derivative = \"forward\"\n", + "\n", + "EXAMPLE_DIR = os.path.join(RESOURCES, \"advection\")\n", + "instance = f\"advection_{derivative}_{dimensions}_{boundary_slope}_{num_disc}.json\"\n", + "instance_file = os.path.join(EXAMPLE_DIR, instance)\n", + "\n", + "locations = get_locations(dimensions, num_disc)\n", + "\n", + "# Funman parameters\n", + "steps = 10\n", + "dt = 1\n", + "\n", + "\n", + "# The energy at each location is non-negative\n", + "variables = [f\"a_{loc}\" for loc in locations]\n", + "height_bounds = [\n", + " {\n", + " \"name\": f\"pos_{i}\",\n", + " \"variable\": i,\n", + " \"interval\": {\"lb\": 0}\n", + " }\n", + " for i in variables\n", + "]\n", + "\n", + "request_dict = {\n", + " \"structure_parameters\": [\n", + " {\n", + " \"name\": \"schedules\",\n", + " \"schedules\": [\n", + " {\"timepoints\": range(0,(steps+1)*dt, dt)}\n", + " ],\n", + " },\n", + " \n", + " ],\n", + " \"parameters\":[\n", + " {\n", + " \"name\": \"dx\",\n", + " \"label\":\"any\",\n", + " # \"interval\": {\"lb\":1e-18, \"ub\":1e-14}}\n", + " \"interval\": {\"lb\":1, \"ub\":1}},\n", + " {\n", + " \"name\": \"u\",\n", + " \"label\":\"all\",\n", + " # \"interval\": {\"lb\":1e-18, \"ub\":1e-14}}\n", + " # \"interval\": {\"lb\":-1e-1, \"ub\":-1e-1} # Best for centered or forward derivatives\n", + " \"interval\": {\"lb\":1e-18, \"ub\":1e-1} # Best for centered or backward derivatives\n", + " }\n", + " ],\n", + " \"constraints\": \n", + " height_bounds + \n", + " [\n", + " {\"name\": \"advection_magnitude\",\n", + " \"variables\": [variables[-1]],\n", + " \"additive_bounds\": {\"lb\": 0.5},\n", + " \"timepoints\": {\"lb\": steps*dt}\n", + " }, \n", " \n", "\n", " ],\n", @@ -3716,11 +9162,12 @@ " description=f\"Advection demo {instance}\",\n", " case_out_dir=\"./out\",\n", " point_plot_config={\"variables\":variables,},\n", - " num_points=None\n", + " num_points=None,\n", + " # dump_results=False\n", ")\n", "\n", - "point_plot = summarize_results(variables, results)\n", - "display(point_plot)\n", + "summary = summarize_results(variables, results)\n", + "print(summary)\n", "plt.close()\n", "\n", "h, dh, anim_h, anim_dh = plot_spatial_timeseries(results, outdir=\"./out\")\n", diff --git a/resources/amr/petrinet/amr-examples/sir_request1.json b/resources/amr/petrinet/amr-examples/sir_request1.json index f55cabbb..261f2613 100644 --- a/resources/amr/petrinet/amr-examples/sir_request1.json +++ b/resources/amr/petrinet/amr-examples/sir_request1.json @@ -68,6 +68,7 @@ } ], "config": { - "tolerance": 1e-2 + "tolerance": 1e-2, + "normalization_constant": 1001 } } \ No newline at end of file diff --git a/resources/amr/petrinet/evaluation/sidarthe.json b/resources/amr/petrinet/evaluation/sidarthe.json new file mode 100644 index 00000000..244aac8f --- /dev/null +++ b/resources/amr/petrinet/evaluation/sidarthe.json @@ -0,0 +1,694 @@ +{ + "header": { + "name": "Giordano2020 - SIDARTHE model of COVID-19 spread in Italy", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.5/petrinet/petrinet_schema.json", + "schema_name": "petrinet", + "description": "Giordano2020 - SIDARTHE model of COVID-19 spread in Italy", + "model_version": "0.1" + }, + "model": { + "states": [ + { + "id": "Susceptible", + "name": "Susceptible", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": {} + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Diagnosed", + "name": "Diagnosed", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "diagnosis": "ncit:C15220" + } + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Infected", + "name": "Infected", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": {} + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Ailing", + "name": "Ailing", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "disease_severity": "ncit:C25269", + "diagnosis": "ncit:C113725" + } + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Recognized", + "name": "Recognized", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "diagnosis": "ncit:C15220" + } + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Healed", + "name": "Healed", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": {} + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Threatened", + "name": "Threatened", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "disease_severity": "ncit:C25467" + } + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Extinct", + "name": "Extinct", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": {} + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + } + ], + "transitions": [ + { + "id": "t1", + "input": [ + "Diagnosed", + "Susceptible" + ], + "output": [ + "Diagnosed", + "Infected" + ], + "properties": { + "name": "t1" + } + }, + { + "id": "t2", + "input": [ + "Ailing", + "Susceptible" + ], + "output": [ + "Ailing", + "Infected" + ], + "properties": { + "name": "t2" + } + }, + { + "id": "t3", + "input": [ + "Recognized", + "Susceptible" + ], + "output": [ + "Recognized", + "Infected" + ], + "properties": { + "name": "t3" + } + }, + { + "id": "t4", + "input": [ + "Infected", + "Susceptible" + ], + "output": [ + "Infected", + "Infected" + ], + "properties": { + "name": "t4" + } + }, + { + "id": "t5", + "input": [ + "Infected" + ], + "output": [ + "Diagnosed" + ], + "properties": { + "name": "t5" + } + }, + { + "id": "t6", + "input": [ + "Infected" + ], + "output": [ + "Ailing" + ], + "properties": { + "name": "t6" + } + }, + { + "id": "t7", + "input": [ + "Infected" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t7" + } + }, + { + "id": "t8", + "input": [ + "Diagnosed" + ], + "output": [ + "Recognized" + ], + "properties": { + "name": "t8" + } + }, + { + "id": "t9", + "input": [ + "Diagnosed" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t9" + } + }, + { + "id": "t10", + "input": [ + "Ailing" + ], + "output": [ + "Recognized" + ], + "properties": { + "name": "t10" + } + }, + { + "id": "t11", + "input": [ + "Ailing" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t11" + } + }, + { + "id": "t12", + "input": [ + "Ailing" + ], + "output": [ + "Threatened" + ], + "properties": { + "name": "t12" + } + }, + { + "id": "t13", + "input": [ + "Recognized" + ], + "output": [ + "Threatened" + ], + "properties": { + "name": "t13" + } + }, + { + "id": "t14", + "input": [ + "Recognized" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t14" + } + }, + { + "id": "t15", + "input": [ + "Threatened" + ], + "output": [ + "Extinct" + ], + "properties": { + "name": "t15" + } + }, + { + "id": "t16", + "input": [ + "Threatened" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t16" + } + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t1", + "expression": "Diagnosed*Susceptible*beta", + "expression_mathml": "DiagnosedSusceptiblebeta" + }, + { + "target": "t2", + "expression": "Ailing*Susceptible*gamma", + "expression_mathml": "AilingSusceptiblegamma" + }, + { + "target": "t3", + "expression": "Recognized*Susceptible*delta", + "expression_mathml": "RecognizedSusceptibledelta" + }, + { + "target": "t4", + "expression": "Infected*Susceptible*alpha", + "expression_mathml": "InfectedSusceptiblealpha" + }, + { + "target": "t5", + "expression": "Infected*epsilon", + "expression_mathml": "Infectedepsilon" + }, + { + "target": "t6", + "expression": "Infected*zeta", + "expression_mathml": "Infectedzeta" + }, + { + "target": "t7", + "expression": "Infected*lamb", + "expression_mathml": "Infectedlamb" + }, + { + "target": "t8", + "expression": "Diagnosed*eta", + "expression_mathml": "Diagnosedeta" + }, + { + "target": "t9", + "expression": "Diagnosed*rho", + "expression_mathml": "Diagnosedrho" + }, + { + "target": "t10", + "expression": "Ailing*theta", + "expression_mathml": "Ailingtheta" + }, + { + "target": "t11", + "expression": "Ailing*kappa", + "expression_mathml": "Ailingkappa" + }, + { + "target": "t12", + "expression": "Ailing*mu", + "expression_mathml": "Ailingmu" + }, + { + "target": "t13", + "expression": "Recognized*nu", + "expression_mathml": "Recognizednu" + }, + { + "target": "t14", + "expression": "Recognized*xi", + "expression_mathml": "Recognizedxi" + }, + { + "target": "t15", + "expression": "Threatened*tau", + "expression_mathml": "Threatenedtau" + }, + { + "target": "t16", + "expression": "Threatened*sigma", + "expression_mathml": "Threatenedsigma" + } + ], + "initials": [ + { + "target": "Susceptible", + "expression": "0.99", + "expression_mathml": "0.99" + }, + { + "target": "Diagnosed", + "expression": "0.0", + "expression_mathml": "0.0/cn>" + }, + { + "target": "Infected", + "expression": "0.01", + "expression_mathml": "0.01" + }, + { + "target": "Ailing", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "Recognized", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "Healed", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "Threatened", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "Extinct", + "expression": "0.0", + "expression_mathml": "0.0" + } + ], + "parameters": [ + { + "id": "beta", + "value": 0.011, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.008799999999999999, + "maximum": 0.0132 + } + } + }, + { + "id": "gamma", + "value": 0.456, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.3648, + "maximum": 0.5472 + } + } + }, + { + "id": "delta", + "value": 0.011, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.008799999999999999, + "maximum": 0.0132 + } + } + }, + { + "id": "alpha", + "value": 0.57, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.45599999999999996, + "maximum": 0.6839999999999999 + } + } + }, + { + "id": "epsilon", + "value": 0.171, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1368, + "maximum": 0.20520000000000002 + } + } + }, + { + "id": "zeta", + "value": 0.125, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.15 + } + } + }, + { + "id": "lamb", + "value": 0.034, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.027200000000000002, + "maximum": 0.0408 + } + } + }, + { + "id": "eta", + "value": 0.125, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.15 + } + } + }, + { + "id": "rho", + "value": 0.034, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.027200000000000002, + "maximum": 0.0408 + } + } + }, + { + "id": "theta", + "value": 0.371, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.2968, + "maximum": 0.4452 + } + } + }, + { + "id": "kappa", + "value": 0.017, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.013600000000000001, + "maximum": 0.0204 + } + } + }, + { + "id": "mu", + "value": 0.017, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.013600000000000001, + "maximum": 0.0204 + } + } + }, + { + "id": "nu", + "value": 0.027, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.0216, + "maximum": 0.0324 + } + } + }, + { + "id": "xi", + "value": 0.017, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.013600000000000001, + "maximum": 0.0204 + } + } + }, + { + "id": "tau", + "value": 0.01, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.008, + "maximum": 0.012 + } + } + }, + { + "id": "sigma", + "value": 0.017, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.013600000000000001, + "maximum": 0.0204 + } + } + } + ], + "observables": [ + { + "id": "Cases", + "name": "Cases", + "expression": "Diagnosed + Recognized + Threatened", + "expression_mathml": "DiagnosedRecognizedThreatened" + }, + { + "id": "Hospitalizations", + "name": "Hospitalizations", + "expression": "Recognized + Threatened", + "expression_mathml": "RecognizedThreatened" + }, + { + "id": "Deaths", + "name": "Deaths", + "expression": "Extinct", + "expression_mathml": "Extinct" + } + ], + "time": { + "id": "t", + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + } + }, + "metadata": { + "annotations": { + "license": "CC0", + "authors": [], + "references": [ + "pubmed:32322102" + ], + "time_scale": null, + "time_start": null, + "time_end": null, + "locations": [], + "pathogens": [ + "ncbitaxon:2697049" + ], + "diseases": [ + "doid:0080600" + ], + "hosts": [ + "ncbitaxon:9606" + ], + "model_types": [ + "mamo:0000028" + ] + } + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/evaluation/sidarthe_request_consistency.json b/resources/amr/petrinet/evaluation/sidarthe_request_consistency.json new file mode 100644 index 00000000..852ef99c --- /dev/null +++ b/resources/amr/petrinet/evaluation/sidarthe_request_consistency.json @@ -0,0 +1,153 @@ +{ + "constraints": [ + { + "name": "ibounds", + "variable": "Infected", + "interval": { + "lb": 0.2, + "ub": 0.4 + }, + "timepoints": { + "lb": 35, + "ub": 40, + "closed_upper_bound": true + } + } + ], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 0.6155, + "ub": 0.6155 + } + }, + { + "name": "lamb", + "interval": { + "lb": 0.04355, + "ub": 0.04356 + } + }, + { + "name": "gamma", + "interval": { + "lb": 0.0456, + "ub": 0.0457 + } + }, + { + "name": "alpha", + "interval": { + "lb": 0.1, + "ub": 0.1 + } + }, + { + "name": "delta", + "interval": { + "lb": 0.00011, + "ub": 0.00011 + } + }, + { + "name": "epsilon", + "interval": { + "lb": 0.03, + "ub": 0.03 + } + }, + { + "name": "zeta", + "interval": { + "lb": 0.0125, + "ub": 0.0125 + } + }, + { + "name": "eta", + "interval": { + "lb": 0.0125, + "ub": 0.0125 + } + }, + { + "name": "rho", + "interval": { + "lb": 0.034, + "ub": 0.034 + } + }, + { + "name": "theta", + "interval": { + "lb": 0.571, + "ub": 0.571 + } + }, + { + "name": "kappa", + "interval": { + "lb": 0.017, + "ub": 0.017 + } + }, + { + "name": "mu", + "interval": { + "lb": 0.017, + "ub": 0.017 + } + }, + { + "name": "nu", + "interval": { + "lb": 0.027, + "ub": 0.027 + } + }, + { + "name": "xi", + "interval": { + "lb": 0.017, + "ub": 0.017 + } + }, + { + "name": "tau", + "interval": { + "lb": 0.01, + "ub": 0.01 + } + }, + { + "name": "sigma", + "interval": { + "lb": 0.017, + "ub": 0.017 + } + } + ], + "structure_parameters": [ + { + "name": "num_steps", + "interval": { + "lb": 20, + "ub": 20 + } + }, + { + "name": "step_size", + "interval": { + "lb": 3, + "ub": 3 + } + } + ], + "config": { + "tolerance": 1e-2, + "normalization_constant": 1, + "dreal_log_level": "info", + "use_compartmental_constraints": true + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/evaluation/sidarthe_request_param_synth.json b/resources/amr/petrinet/evaluation/sidarthe_request_param_synth.json new file mode 100644 index 00000000..28cda9b0 --- /dev/null +++ b/resources/amr/petrinet/evaluation/sidarthe_request_param_synth.json @@ -0,0 +1,155 @@ +{ + "constraints": [ + { + "name": "ibounds", + "variable": "Infected", + "interval": { + "lb": 0.2, + "ub": 0.4 + }, + "timepoints": { + "lb": 35, + "ub": 40, + "closed_upper_bound": true + } + } + ], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 0.6160, + "ub": 0.6165 + }, + "label": "all" + }, + { + "name": "lamb", + "interval": { + "lb": 0.0435, + "ub": 0.0440 + }, + "label": "all" + }, + { + "name": "gamma", + "interval": { + "lb": 0.0456, + "ub": 0.0456 + } + }, + { + "name": "alpha", + "interval": { + "lb": 0.1, + "ub": 0.1 + } + }, + { + "name": "delta", + "interval": { + "lb": 0.00011, + "ub": 0.00011 + } + }, + { + "name": "epsilon", + "interval": { + "lb": 0.03, + "ub": 0.03 + } + }, + { + "name": "zeta", + "interval": { + "lb": 0.0125, + "ub": 0.0125 + } + }, + { + "name": "eta", + "interval": { + "lb": 0.0125, + "ub": 0.0125 + } + }, + { + "name": "rho", + "interval": { + "lb": 0.034, + "ub": 0.034 + } + }, + { + "name": "theta", + "interval": { + "lb": 0.571, + "ub": 0.571 + } + }, + { + "name": "kappa", + "interval": { + "lb": 0.017, + "ub": 0.017 + } + }, + { + "name": "mu", + "interval": { + "lb": 0.017, + "ub": 0.017 + } + }, + { + "name": "nu", + "interval": { + "lb": 0.027, + "ub": 0.027 + } + }, + { + "name": "xi", + "interval": { + "lb": 0.017, + "ub": 0.017 + } + }, + { + "name": "tau", + "interval": { + "lb": 0.01, + "ub": 0.01 + } + }, + { + "name": "sigma", + "interval": { + "lb": 0.017, + "ub": 0.017 + } + } + ], + "structure_parameters": [ + { + "name": "num_steps", + "interval": { + "lb": 20, + "ub": 20 + } + }, + { + "name": "step_size", + "interval": { + "lb": 3, + "ub": 3 + } + } + ], + "config": { + "tolerance": 1e-2, + "normalization_constant": 1, + "dreal_log_level": "info", + "use_compartmental_constraints": true + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/evaluation/sidarthe_request_parameterization.json b/resources/amr/petrinet/evaluation/sidarthe_request_parameterization.json new file mode 100644 index 00000000..b5549658 --- /dev/null +++ b/resources/amr/petrinet/evaluation/sidarthe_request_parameterization.json @@ -0,0 +1,153 @@ +{ + "constraints": [ + { + "name": "ibounds", + "variable": "Infected", + "interval": { + "lb": 0.2, + "ub": 0.4 + }, + "timepoints": { + "lb": 35, + "ub": 40, + "closed_upper_bound": true + } + } + ], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 0.61, + "ub": 0.62 + } + }, + { + "name": "lamb", + "interval": { + "lb": 0.043, + "ub": 0.044 + } + }, + { + "name": "gamma", + "interval": { + "lb": 0.0456, + "ub": 0.0456 + } + }, + { + "name": "alpha", + "interval": { + "lb": 0.1, + "ub": 0.1 + } + }, + { + "name": "delta", + "interval": { + "lb": 0.00011, + "ub": 0.00011 + } + }, + { + "name": "epsilon", + "interval": { + "lb": 0.03, + "ub": 0.03 + } + }, + { + "name": "zeta", + "interval": { + "lb": 0.0125, + "ub": 0.0125 + } + }, + { + "name": "eta", + "interval": { + "lb": 0.0125, + "ub": 0.0125 + } + }, + { + "name": "rho", + "interval": { + "lb": 0.034, + "ub": 0.034 + } + }, + { + "name": "theta", + "interval": { + "lb": 0.571, + "ub": 0.571 + } + }, + { + "name": "kappa", + "interval": { + "lb": 0.017, + "ub": 0.017 + } + }, + { + "name": "mu", + "interval": { + "lb": 0.017, + "ub": 0.017 + } + }, + { + "name": "nu", + "interval": { + "lb": 0.027, + "ub": 0.027 + } + }, + { + "name": "xi", + "interval": { + "lb": 0.017, + "ub": 0.017 + } + }, + { + "name": "tau", + "interval": { + "lb": 0.01, + "ub": 0.01 + } + }, + { + "name": "sigma", + "interval": { + "lb": 0.017, + "ub": 0.017 + } + } + ], + "structure_parameters": [ + { + "name": "num_steps", + "interval": { + "lb": 20, + "ub": 20 + } + }, + { + "name": "step_size", + "interval": { + "lb": 3, + "ub": 3 + } + } + ], + "config": { + "tolerance": 1e-2, + "normalization_constant": 1, + "dreal_log_level": "info", + "use_compartmental_constraints": true + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/evaluation/sir.json b/resources/amr/petrinet/evaluation/sir.json new file mode 100644 index 00000000..dd630585 --- /dev/null +++ b/resources/amr/petrinet/evaluation/sir.json @@ -0,0 +1,257 @@ +{ + "header": { + "name": "SIR Model", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.1/petrinet/petrinet_schema.json", + "schema_name": "petrinet", + "description": "SIR model created by Ben, Micah, Brandon", + "model_version": "0.1" + }, + "model": { + "states": [ + { + "id": "S", + "name": "Susceptible", + "description": "Number of individuals that are 'susceptible' to a disease infection", + "grounding": { + "identifiers": { + "ido": "0000514" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I", + "name": "Infected", + "description": "Number of individuals that are 'infected' by a disease", + "grounding": { + "identifiers": { + "ido": "0000511" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R", + "name": "Recovered", + "description": "Number of individuals that have 'recovered' from a disease infection", + "grounding": { + "identifiers": { + "ido": "0000592" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + } + ], + "transitions": [ + { + "id": "inf", + "input": [ + "S", + "I" + ], + "output": [ + "I", + "I" + ], + "properties": { + "name": "Infection", + "description": "Infective process between individuals" + } + }, + { + "id": "rec", + "input": [ + "I" + ], + "output": [ + "R" + ], + "properties": { + "name": "Recovery", + "description": "Recovery process of a infected individual" + } + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "inf", + "expression": "S*I*beta/N", + "expression_mathml": "SIbeta" + }, + { + "target": "rec", + "expression": "I*gamma", + "expression_mathml": "Igamma" + } + ], + "initials": [ + { + "target": "S", + "expression": "S0", + "expression_mathml": "S0" + }, + { + "target": "I", + "expression": "I0", + "expression_mathml": "I0" + }, + { + "target": "R", + "expression": "R0", + "expression_mathml": "R0" + } + ], + "parameters": [ + { + "id": "beta", + "name": "β", + "description": "infection rate", + "units": { + "expression": "1/(person*day)", + "expression_mathml": "1personday" + }, + "value": 2.7e-7, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 2.6e-7, + "maximum": 2.8e-7 + } + } + }, + { + "id": "gamma", + "name": "γ", + "description": "recovery rate", + "grounding": { + "identifiers": { + "askemo": "0000013" + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "1day" + }, + "value": 0.14, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.18 + } + } + }, + { + "id": "S0", + "name": "S₀", + "description": "Total susceptible population at timestep 0", + "value": 1000 + }, + { + "id": "I0", + "name": "I₀", + "description": "Total infected population at timestep 0", + "value": 1 + }, + { + "id": "R0", + "name": "R₀", + "description": "Total recovered population at timestep 0", + "value": 0 + }, + { + "id": "N", + "name": "N", + "description": "Total population", + "value": 1001 + } + ], + "observables": [ + { + "id": "noninf", + "name": "Non-infectious", + "states": [ + "S", + "R" + ], + "expression": "S+R", + "expression_mathml": "SR" + } + ], + "time": { + "id": "t", + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + } + }, + "metadata": { + "processed_at": 1682964953, + "processed_by": "mit:process-node1", + "variable_statements": [ + { + "id": "v0", + "variable": { + "id": "v0", + "name": "VE", + "metadata": [ + { + "type": "text_annotation", + "value": " Vaccine Effectiveness" + }, + { + "type": "text_annotation", + "value": " Vaccine Effectiveness" + } + ], + "dkg_groundings": [], + "column": [ + { + "id": "9-2", + "name": "new_persons_vaccinated", + "dataset": { + "id": "9", + "name": "usa-vaccinations.csv", + "metadata": "https://github.com/DARPA-ASKEM/program-milestones/blob/main/6-month-milestone/evaluation/scenario_3/ta_1/google-health-data/usa-vaccinations.csv" + } + }, + { + "id": "9-3", + "name": "cumulative_persons_vaccinated", + "dataset": { + "id": "9", + "name": "usa-vaccinations.csv", + "metadata": "https://github.com/DARPA-ASKEM/program-milestones/blob/main/6-month-milestone/evaluation/scenario_3/ta_1/google-health-data/usa-vaccinations.csv" + } + } + ], + "paper": { + "id": "COVID-19 Vaccine Effectiveness by Product and Timing in New York State", + "file_directory": "https://www.medrxiv.org/content/10.1101/2021.10.08.21264595v1", + "doi": "10.1101/2021.10.08.21264595" + }, + "equations": [] + }, + "metadata": [], + "provenance": { + "method": "MIT annotation", + "description": "text, dataset, formula annotation (chunwei@mit.edu)" + } + } + ] + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/evaluation/sir_request1.json b/resources/amr/petrinet/evaluation/sir_request1.json new file mode 100644 index 00000000..f9a81968 --- /dev/null +++ b/resources/amr/petrinet/evaluation/sir_request1.json @@ -0,0 +1,91 @@ +{ + "constraints": [ + { + "name": "ibounds", + "variable": "I", + "interval": { + "lb": 0.450, + "ub": 0.550 + }, + "timepoints": { + "lb": 45, + "ub": 55, + "closed_upper_bound": true + } + } + ], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 0.12, + "ub": 0.22 + }, + "label": "all" + }, + { + "name": "gamma", + "interval": { + "lb": 0.015, + "ub": 0.035 + }, + "label": "all" + }, + { + "name": "S0", + "interval": { + "lb": 0.990, + "ub": 0.990 + }, + "label": "any" + }, + { + "name": "I0", + "interval": { + "lb": 0.010, + "ub": 0.010 + }, + "label": "any" + }, + { + "name": "R0", + "interval": { + "lb": 0, + "ub": 0 + }, + "label": "any" + }, + { + "name": "N", + "interval": { + "lb": 1, + "ub": 1 + }, + "label": "any" + } + ], + "structure_parameters": [ + { + "name": "num_steps", + "interval": { + "lb": 11, + "ub": 11 + }, + "label": "all" + }, + { + "name": "step_size", + "interval": { + "lb": 5, + "ub": 5 + }, + "label": "all" + } + ], + "config": { + "tolerance": 1e-2, + "normalization_constant": 1, + "dreal_log_level": "info", + "use_compartmental_constraints": true + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/evaluation/sir_request_consistency.json b/resources/amr/petrinet/evaluation/sir_request_consistency.json new file mode 100644 index 00000000..3b148deb --- /dev/null +++ b/resources/amr/petrinet/evaluation/sir_request_consistency.json @@ -0,0 +1,92 @@ +{ + "constraints": [ + { + "name": "ibounds", + "variable": "I", + "interval": { + "lb": 0.2, + "ub": 0.4 + }, + "timepoints": { + "lb": 35, + "ub": 40, + "closed_upper_bound": true + } + } + ], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 0.201544, + "ub": 0.201544 + }, + "label": "any" + }, + { + "name": "gamma", + "interval": { + "lb": 0.071086, + "ub": 0.071086 + }, + "label": "any" + }, + { + "name": "S0", + "interval": { + "lb": 0.990, + "ub": 0.990 + }, + "label": "any" + }, + { + "name": "I0", + "interval": { + "lb": 0.010, + "ub": 0.010 + }, + "label": "any" + }, + { + "name": "R0", + "interval": { + "lb": 0, + "ub": 0 + }, + "label": "any" + }, + { + "name": "N", + "interval": { + "lb": 1, + "ub": 1 + }, + "label": "any" + } + ], + "structure_parameters": [ + { + "name": "num_steps", + "interval": { + "lb": 12, + "ub": 12 + }, + "label": "all" + }, + { + "name": "step_size", + "interval": { + "lb": 5, + "ub": 5 + }, + "label": "all" + } + ], + "config": { + "tolerance": 1e-2, + "normalization_constant": 1, + "dreal_log_level": "info", + "use_compartmental_constraints": true, + "dreal_precision": 1e-2 + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/evaluation/sir_request_param_synth.json b/resources/amr/petrinet/evaluation/sir_request_param_synth.json new file mode 100644 index 00000000..03e4fbf6 --- /dev/null +++ b/resources/amr/petrinet/evaluation/sir_request_param_synth.json @@ -0,0 +1,92 @@ +{ + "constraints": [ + { + "name": "ibounds", + "variable": "I", + "interval": { + "lb": 0.2, + "ub": 0.4 + }, + "timepoints": { + "lb": 35, + "ub": 40, + "closed_upper_bound": true + } + } + ], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 0.19, + "ub": 0.20 + }, + "label": "all" + }, + { + "name": "gamma", + "interval": { + "lb": 0.06, + "ub": 0.08 + }, + "label": "all" + }, + { + "name": "S0", + "interval": { + "lb": 0.990, + "ub": 0.990 + }, + "label": "any" + }, + { + "name": "I0", + "interval": { + "lb": 0.010, + "ub": 0.010 + }, + "label": "any" + }, + { + "name": "R0", + "interval": { + "lb": 0, + "ub": 0 + }, + "label": "any" + }, + { + "name": "N", + "interval": { + "lb": 1, + "ub": 1 + }, + "label": "any" + } + ], + "structure_parameters": [ + { + "name": "num_steps", + "interval": { + "lb": 11, + "ub": 11 + }, + "label": "all" + }, + { + "name": "step_size", + "interval": { + "lb": 5, + "ub": 5 + }, + "label": "all" + } + ], + "config": { + "tolerance": 1e-2, + "normalization_constant": 1, + "dreal_log_level": "info", + "use_compartmental_constraints": true, + "dreal_precision": 1e-2 + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/evaluation/sir_request_parameterization.json b/resources/amr/petrinet/evaluation/sir_request_parameterization.json new file mode 100644 index 00000000..2734638a --- /dev/null +++ b/resources/amr/petrinet/evaluation/sir_request_parameterization.json @@ -0,0 +1,92 @@ +{ + "constraints": [ + { + "name": "ibounds", + "variable": "I", + "interval": { + "lb": 0.2, + "ub": 0.4 + }, + "timepoints": { + "lb": 35, + "ub": 40, + "closed_upper_bound": true + } + } + ], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 0.19, + "ub": 0.20 + }, + "label": "any" + }, + { + "name": "gamma", + "interval": { + "lb": 0.06, + "ub": 0.08 + }, + "label": "any" + }, + { + "name": "S0", + "interval": { + "lb": 0.990, + "ub": 0.990 + }, + "label": "any" + }, + { + "name": "I0", + "interval": { + "lb": 0.010, + "ub": 0.010 + }, + "label": "any" + }, + { + "name": "R0", + "interval": { + "lb": 0, + "ub": 0 + }, + "label": "any" + }, + { + "name": "N", + "interval": { + "lb": 1, + "ub": 1 + }, + "label": "any" + } + ], + "structure_parameters": [ + { + "name": "num_steps", + "interval": { + "lb": 30, + "ub": 30 + }, + "label": "all" + }, + { + "name": "step_size", + "interval": { + "lb": 2, + "ub": 2 + }, + "label": "all" + } + ], + "config": { + "tolerance": 1e-2, + "normalization_constant": 1, + "dreal_log_level": "info", + "use_compartmental_constraints": true, + "dreal_precision": 1e-2 + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/mira/models/scenario_3_seird.json b/resources/amr/petrinet/mira/models/scenario_3_seird.json new file mode 100644 index 00000000..3bafe67d --- /dev/null +++ b/resources/amr/petrinet/mira/models/scenario_3_seird.json @@ -0,0 +1,273 @@ +{ + "header": { + "name": "EPI Scenario 3", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.6/petrinet/petrinet_schema.json", + "schema_name": "petrinet", + "description": "EPI Scenario 3", + "model_version": "0.1" + }, + "properties": {}, + "model": { + "states": [ + { + "id": "Susceptible", + "name": "Susceptible", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Infected", + "name": "Infected", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Exposed", + "name": "Exposed", + "grounding": { + "identifiers": { + "apollosv": "00000154" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Recovered", + "name": "Recovered", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Deceased", + "name": "Deceased", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Total_population", + "name": "Total_population", + "units": { + "expression": "person", + "expression_mathml": "person" + } + } + ], + "transitions": [ + { + "id": "t1", + "input": [ + "Infected", + "Susceptible", + "Total_population" + ], + "output": [ + "Infected", + "Exposed", + "Total_population" + ], + "properties": { + "name": "t1" + } + }, + { + "id": "t2", + "input": [ + "Exposed" + ], + "output": [ + "Infected" + ], + "properties": { + "name": "t2" + } + }, + { + "id": "t3", + "input": [ + "Infected" + ], + "output": [ + "Recovered" + ], + "properties": { + "name": "t3" + } + }, + { + "id": "t4", + "input": [ + "Infected" + ], + "output": [ + "Deceased" + ], + "properties": { + "name": "t4" + } + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t1", + "expression": "Infected*Susceptible*beta/Total_population", + "expression_mathml": "InfectedSusceptiblebetaTotal_population" + }, + { + "target": "t2", + "expression": "Exposed*epsilon", + "expression_mathml": "Exposedepsilon" + }, + { + "target": "t3", + "expression": "Infected*gamma", + "expression_mathml": "Infectedgamma" + }, + { + "target": "t4", + "expression": "Infected*alpha", + "expression_mathml": "Infectedalpha" + } + ], + "initials": [ + { + "target": "Susceptible", + "expression": "99.0000000", + "expression_mathml": "14561489.0" + }, + { + "target": "Infected", + "expression": "1.00000000", + "expression_mathml": "2123452.0" + }, + { + "target": "Exposed", + "expression": "0.000000000", + "expression_mathml": "530863.0" + }, + { + "target": "Recovered", + "expression": "0.00000000", + "expression_mathml": "2069902.0" + }, + { + "target": "Total_population", + "expression": "100.000000000000", + "expression_mathml": "744.0" + }, + { + "target": "Deceased", + "expression": "0.0000000000", + "expression_mathml": "53550.0" + } + ], + "parameters": [ + { + "id": "beta", + "value": 0.833, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "epsilon", + "value": 0.3333333333333333, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "gamma", + "value": 0.125, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "alpha", + "value": 0.006, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "lambda", + "value": 120480.0 + }, + { + "id": "mu", + "value": 0.012048 + }, + { + "id": "City", + "value": 1.0 + } + ], + "observables": [], + "time": { + "id": "t", + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + } + }, + "metadata": { + "annotations": { + "license": null, + "authors": [], + "references": [], + "time_scale": null, + "time_start": null, + "time_end": null, + "locations": [], + "pathogens": [], + "diseases": [], + "hosts": [], + "model_types": [] + } + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/mira/models/scenario_3_seird_stratified.json b/resources/amr/petrinet/mira/models/scenario_3_seird_stratified.json new file mode 100644 index 00000000..bad7a642 --- /dev/null +++ b/resources/amr/petrinet/mira/models/scenario_3_seird_stratified.json @@ -0,0 +1,564 @@ +{ + "header": { + "name": "EPI Scenario 3", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.6/petrinet/petrinet_schema.json", + "schema_name": "petrinet", + "description": "EPI Scenario 3", + "model_version": "0.1" + }, + "properties": {}, + "model": { + "states": [ + { + "id": "Susceptible_Vax", + "name": "Susceptible_Vax", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Infected_Vax", + "name": "Infected_Vax", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Exposed_Vax", + "name": "Exposed_Vax", + "grounding": { + "identifiers": { + "apollosv": "00000154" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Recovered_Vax", + "name": "Recovered_Vax", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Deceased_Vax", + "name": "Deceased_Vax", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Total_population", + "name": "Total_population", + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Susceptible_UnVax", + "name": "Susceptible_UnVax", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Infected_UnVax", + "name": "Infected_UnVax", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Exposed_UnVax", + "name": "Exposed_UnVax", + "grounding": { + "identifiers": { + "apollosv": "00000154" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Recovered_UnVax", + "name": "Recovered_UnVax", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Deceased_UnVax", + "name": "Deceased_UnVax", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + } + ], + "transitions": [ + { + "id": "t1_Vax", + "input": [ + "Infected_Vax", + "Susceptible_Vax", + "Total_population" + ], + "output": [ + "Infected_Vax", + "Exposed_Vax", + "Total_population" + ], + "properties": { + "name": "t1_Vax" + } + }, + { + "id": "t2_Vax", + "input": [ + "Exposed_Vax" + ], + "output": [ + "Infected_Vax" + ], + "properties": { + "name": "t2_Vax" + } + }, + { + "id": "t3_Vax", + "input": [ + "Infected_Vax" + ], + "output": [ + "Recovered_Vax" + ], + "properties": { + "name": "t3_Vax" + } + }, + { + "id": "t4_Vax", + "input": [ + "Infected_Vax" + ], + "output": [ + "Deceased_Vax" + ], + "properties": { + "name": "t4_Vax" + } + }, + { + "id": "t1_UnVax", + "input": [ + "Infected_UnVax", + "Susceptible_UnVax", + "Total_population" + ], + "output": [ + "Infected_UnVax", + "Exposed_UnVax", + "Total_population" + ], + "properties": { + "name": "t1_UnVax" + } + }, + { + "id": "t2_UnVax", + "input": [ + "Exposed_UnVax" + ], + "output": [ + "Infected_UnVax" + ], + "properties": { + "name": "t2_UnVax" + } + }, + { + "id": "t3_UnVax", + "input": [ + "Infected_UnVax" + ], + "output": [ + "Recovered_UnVax" + ], + "properties": { + "name": "t3_UnVax" + } + }, + { + "id": "t4_UnVax", + "input": [ + "Infected_UnVax" + ], + "output": [ + "Deceased_UnVax" + ], + "properties": { + "name": "t4_UnVax" + } + }, + { + "id": "tSusceptible_UnVax_to_Vax", + "input": [ + "Susceptible_UnVax" + ], + "output": [ + "Susceptible_Vax" + ], + "properties": { + "name": "tSusceptible_UnVax_to_Vax" + } + }, + { + "id": "tInfected_UnVax_to_Vax", + "input": [ + "Infected_UnVax" + ], + "output": [ + "Infected_Vax" + ], + "properties": { + "name": "tInfected_UnVax_to_Vax" + } + }, + { + "id": "tExposed_UnVax_to_Vax", + "input": [ + "Exposed_UnVax" + ], + "output": [ + "Exposed_Vax" + ], + "properties": { + "name": "tExposed_UnVax_to_Vax" + } + }, + { + "id": "tRecovered_UnVax_to_Vax", + "input": [ + "Recovered_UnVax" + ], + "output": [ + "Recovered_Vax" + ], + "properties": { + "name": "tRecovered_UnVax_to_Vax" + } + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t1_Vax", + "expression": "Infected_Vax*Susceptible_Vax*beta_Vax*Piecewise((1, t < t_mask), (0.1, True))/Total_population", + "expression_mathml": "Infected_VaxSusceptible_VaxbetaTotal_population" + }, + { + "target": "t2_Vax", + "expression": "Exposed_Vax*epsilon_Vax", + "expression_mathml": "Exposed_Vaxepsilon_Vax" + }, + { + "target": "t3_Vax", + "expression": "Infected_Vax*gamma_Vax", + "expression_mathml": "Infected_Vaxgamma_Vax" + }, + { + "target": "t4_Vax", + "expression": "Infected_Vax*alpha_Vax", + "expression_mathml": "Infected_Vaxalpha_Vax" + }, + { + "target": "t1_UnVax", + "expression": "Infected_UnVax*Susceptible_UnVax*beta_UnVax/Total_population", + "expression_mathml": "Infected_UnVaxSusceptible_UnVaxbetaTotal_population" + }, + { + "target": "t2_UnVax", + "expression": "Exposed_UnVax*epsilon_UnVax", + "expression_mathml": "Exposed_UnVaxepsilon_UnVax" + }, + { + "target": "t3_UnVax", + "expression": "Infected_UnVax*gamma_UnVax", + "expression_mathml": "Infected_UnVaxgamma_UnVax" + }, + { + "target": "t4_UnVax", + "expression": "Infected_UnVax*alpha_UnVax", + "expression_mathml": "Infected_UnVaxalpha_UnVax" + }, + { + "target": "tSusceptible_UnVax_to_Vax", + "expression": "Susceptible_UnVax*vax", + "expression_mathml": "Susceptible_UnVaxvax" + }, + { + "target": "tInfected_UnVax_to_Vax", + "expression": "Infected_UnVax*vax", + "expression_mathml": "Infected<_UnVax/ci>vax" + }, + { + "target": "tExposed_UnVax_to_Vax", + "expression": "Exposed_UnVax*vax", + "expression_mathml": "Exposed_UnVaxvax" + }, + { + "target": "tRecovered_UnVax_to_Vax", + "expression": "Recovered_UnVax*vax", + "expression_mathml": "Recovered_UnVaxvax" + } + ], + "initials": [ + { + "target": "Susceptible_Vax", + "expression": "0.0000000", + "expression_mathml": "14561489.0" + }, + { + "target": "Infected_Vax", + "expression": "1.00000000", + "expression_mathml": "2123452.0" + }, + { + "target": "Exposed_Vax", + "expression": "0.000000000", + "expression_mathml": "530863.0" + }, + { + "target": "Recovered_Vax", + "expression": "0.00000000", + "expression_mathml": "2069902.0" + }, + { + "target": "Total_population", + "expression": "100.000000000000", + "expression_mathml": "744.0" + }, + { + "target": "Deceased_Vax", + "expression": "0.0000000000", + "expression_mathml": "53550.0" + }, + { + "target": "Susceptible_UnVax", + "expression": "98.0000000", + "expression_mathml": "14561489.0" + }, + { + "target": "Infected_UnVax", + "expression": "1.00000000", + "expression_mathml": "2123452.0" + }, + { + "target": "Exposed_UnVax", + "expression": "0.000000000", + "expression_mathml": "530863.0" + }, + { + "target": "Recovered_UnVax", + "expression": "0.00000000", + "expression_mathml": "2069902.0" + }, + { + "target": "Deceased_UnVax", + "expression": "0.0000000000", + "expression_mathml": "53550.0" + } + ], + "parameters": [ + { + "id": "beta_Vax", + "value": 0.833, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "epsilon_Vax", + "value": 0.3333333333333333, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "gamma_Vax", + "value": 0.125, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "alpha_Vax", + "value": 0.006, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "lambda_Vax", + "value": 120480.0 + }, + { + "id": "mu_Vax", + "value": 0.012048 + }, + { + "id": "City_Vax", + "value": 1.0 + }, + { + "id": "beta_UnVax", + "value": 0.833, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "epsilon_UnVax", + "value": 0.3333333333333333, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "gamma_UnVax", + "value": 0.125, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "alpha_UnVax", + "value": 0.006, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "lambda_UnVax", + "value": 120480.0 + }, + { + "id": "mu_UnVax", + "value": 0.012048 + }, + { + "id": "City_UnVax", + "value": 1.0 + }, + { + "id": "vax", + "value": 0.1 + }, + { + "id": "t_mask", + "value": 20.0 + }, + { + "id": "mask", + "value": 0.5 + } + ], + "observables": [], + "time": { + "id": "t", + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + } + }, + "metadata": { + "annotations": { + "license": null, + "authors": [], + "references": [], + "time_scale": null, + "time_start": null, + "time_end": null, + "locations": [], + "pathogens": [], + "diseases": [], + "hosts": [], + "model_types": [] + } + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/mira/requests/BIOMD0000000955_askenet_request.json b/resources/amr/petrinet/mira/requests/BIOMD0000000955_askenet_request.json index ca90ebbc..9b16d748 100644 --- a/resources/amr/petrinet/mira/requests/BIOMD0000000955_askenet_request.json +++ b/resources/amr/petrinet/mira/requests/BIOMD0000000955_askenet_request.json @@ -1,116 +1,49 @@ { - "parameters": [ - { - "name": "beta", - "interval": { - "lb": 0.008799999999999999, - "ub": 0.0132 - } - }, - { - "name": "gamma", - "interval": { - "lb": 0.3648, - "ub": 0.5472 - } - }, - { - "name": "delta", - "interval": { - "lb": 0.008799999999999999, - "ub": 0.0132 - } + "constraints": [ + { + "name": "theta_ge_2_epsilon", + "additive_bounds": { + "lb": 0.0 + }, + "variables": [ + "theta", + "epsilon" + ], + "weights": [ + 1, + -2 + ] }, { - "name": "alpha", - "interval": { - "lb": 0.45599999999999996, - "ub": 0.6839999999999999 - } - }, + "name": "IDART_bound", + "additive_bounds": { + "ub": 0.33 + }, + "variables": [ + "Infected", + "Diagnosed", + "Ailing", + "Recognized", + "Threatened" + ] + } + ], + "parameters": [ { "name": "epsilon", "interval": { "lb": 0.1368, "ub": 0.20520000000000002 - } - }, - { - "name": "zeta", - "interval": { - "lb": 0.1, - "ub": 0.15 - } - }, - { - "name": "lambda", - "interval": { - "lb": 0.027200000000000002, - "ub": 0.0408 - } - }, - { - "name": "eta", - "interval": { - "lb": 0.1, - "ub": 0.15 - } - }, - { - "name": "rho", - "interval": { - "lb": 0.027200000000000002, - "ub": 0.0408 - } + }, + "label": "all" }, { "name": "theta", "interval": { "lb": 0.2968, "ub": 0.4452 - } - }, - { - "name": "kappa", - "interval": { - "lb": 0.013600000000000001, - "ub": 0.0204 - } - }, - { - "name": "mu", - "interval": { - "lb": 0.013600000000000001, - "ub": 0.0204 - } - }, - { - "name": "nu", - "interval": { - "lb": 0.0216, - "ub": 0.0324 - } - }, - { - "name": "xi", - "interval": { - "lb": 0.013600000000000001, - "ub": 0.0204 - } - }, - { - "name": "tau", - "interval": { - "lb": 0.008, - "ub": 0.012 - } - }, - { - "name": "sigma", - "interval": { - "lb": 0.013600000000000001, - "ub": 0.0204 - } + }, + "label": "all" } ], "structure_parameters": [ @@ -120,26 +53,18 @@ { "timepoints": [ 0, - 1, 10, - 20, - 30, - 40, - 50 + 20 ] } ] } ], "config": { - "use_compartmental_constraints": true, "normalization_constant": 1.0, - "tolerance": 1e-2, - "verbosity": 5, - "dreal_mcts": true, - "save_smtlib": false, - "substitute_subformulas": true, - "series_approximation_threshold": 1e-8, - "dreal_log_level": "none" + "normalize": false, + "tolerance": 1e-1, + "use_compartmental_constraints": true, + "dreal_precision": 1e-10 } } \ No newline at end of file diff --git a/resources/amr/petrinet/mira/requests/request2_b.json b/resources/amr/petrinet/mira/requests/request2_b.json index a9a0018d..da05451d 100644 --- a/resources/amr/petrinet/mira/requests/request2_b.json +++ b/resources/amr/petrinet/mira/requests/request2_b.json @@ -100,9 +100,5 @@ "label": "all" } ], - "config": { - "solver": "dreal", - "save_smtlib": true, - "substitute_subformulas": false - } + "config": {} } \ No newline at end of file diff --git a/resources/amr/petrinet/mira/requests/request2_b_synthesize.json b/resources/amr/petrinet/mira/requests/request2_b_synthesize.json index 10af7554..8ee37774 100644 --- a/resources/amr/petrinet/mira/requests/request2_b_synthesize.json +++ b/resources/amr/petrinet/mira/requests/request2_b_synthesize.json @@ -140,5 +140,7 @@ "label": "all" } ], - "config": {} + "config": { + "normalization_constant": 1.0 + } } \ No newline at end of file diff --git a/resources/amr/petrinet/mira/requests/scenario_3_seird_request.json b/resources/amr/petrinet/mira/requests/scenario_3_seird_request.json new file mode 100644 index 00000000..b9f1c1cf --- /dev/null +++ b/resources/amr/petrinet/mira/requests/scenario_3_seird_request.json @@ -0,0 +1,88 @@ +{ + "constraints": [], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 0.833, + "ub": 0.833, + "closed_upper_bound": true + } + }, + { + "name": "epsilon", + "interval": { + "lb": 0.3333333333333333, + "ub": 0.3333333333333333, + "closed_upper_bound": true + } + }, + { + "name": "gamma", + "interval": { + "lb": 0.125, + "ub": 0.125, + "closed_upper_bound": true + } + }, + { + "name": "alpha", + "interval": { + "lb": 0.006, + "ub": 0.006, + "closed_upper_bound": true + } + }, + { + "name": "lambda", + "interval": { + "lb": 120480.0, + "ub": 120480.0, + "closed_upper_bound": true + } + }, + { + "name": "mu", + "interval": { + "lb": 0.012048, + "ub": 0.012048, + "closed_upper_bound": true + } + }, + { + "name": "City", + "interval": { + "lb": 1.0, + "ub": 1.0, + "closed_upper_bound": true + } + } + ], + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10, + 20, + 30, + 40, + 50, + 60, + 70, + 80, + 90, + 100 + ] + } + ] + } + ], + "config": { + "use_compartmental_constraints": true, + "normalization_constant": 200, + "tolerance": 0.1 + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/mira/requests/scenario_3_seird_request_stratified.json b/resources/amr/petrinet/mira/requests/scenario_3_seird_request_stratified.json new file mode 100644 index 00000000..5d91b1c1 --- /dev/null +++ b/resources/amr/petrinet/mira/requests/scenario_3_seird_request_stratified.json @@ -0,0 +1,168 @@ +{ + "constraints": [], + "parameters": [ + { + "name": "beta_Vax", + "interval": { + "lb": 0.015, + "ub": 0.015, + "closed_upper_bound": true + } + }, + { + "name": "epsilon_Vax", + "interval": { + "lb": 0.12, + "ub": 0.12, + "closed_upper_bound": true + } + }, + { + "name": "gamma_Vax", + "interval": { + "lb": 0.01, + "ub": 0.01, + "closed_upper_bound": true + } + }, + { + "name": "alpha_Vax", + "interval": { + "lb": 0.1, + "ub": 0.1, + "closed_upper_bound": true + } + }, + { + "name": "lambda_Vax", + "interval": { + "lb": 120480.0, + "ub": 120480.0, + "closed_upper_bound": true + } + }, + { + "name": "mu_Vax", + "interval": { + "lb": 0.7, + "ub": 0.7, + "closed_upper_bound": true + } + }, + { + "name": "City_Vax", + "interval": { + "lb": 1.0, + "ub": 1.0, + "closed_upper_bound": true + } + }, + { + "name": "beta_UnVax", + "interval": { + "lb": 0.833, + "ub": 0.833, + "closed_upper_bound": true + } + }, + { + "name": "epsilon_UnVax", + "interval": { + "lb": 0.01, + "ub": 0.01, + "closed_upper_bound": true + } + }, + { + "name": "gamma_UnVax", + "interval": { + "lb": 0.02, + "ub": 0.02, + "closed_upper_bound": true + } + }, + { + "name": "alpha_UnVax", + "interval": { + "lb": 0.02, + "ub": 0.02, + "closed_upper_bound": true + } + }, + { + "name": "lambda_UnVax", + "interval": { + "lb": 120480.0, + "ub": 120480.0, + "closed_upper_bound": true + } + }, + { + "name": "mu_UnVax", + "interval": { + "lb": 0.9, + "ub": 0.9, + "closed_upper_bound": true + } + }, + { + "name": "City_UnVax", + "interval": { + "lb": 1.0, + "ub": 1.0, + "closed_upper_bound": true + } + }, + { + "name": "vax", + "interval": { + "lb": 0.1, + "ub": 0.1, + "closed_upper_bound": true + } + }, + { + "name": "t_mask", + "interval": { + "lb": 40.0, + "ub": 40.0, + "closed_upper_bound": true + } + }, + { + "name": "mask", + "interval": { + "lb": 0.5, + "ub": 0.5, + "closed_upper_bound": true + } + } + ], + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10, + 20, + 30, + 40, + 50, + 60, + 70, + 80, + 90, + 100 + ] + } + ] + } + ], + "config": { + "use_compartmental_constraints": true, + "normalization_constant": 200, + "tolerance": 0.1 + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/monthly-demo/2024-07/SEIRHD_vacc_petrinet.json b/resources/amr/petrinet/monthly-demo/2024-07/SEIRHD_vacc_petrinet.json new file mode 100644 index 00000000..be7710d2 --- /dev/null +++ b/resources/amr/petrinet/monthly-demo/2024-07/SEIRHD_vacc_petrinet.json @@ -0,0 +1,674 @@ +{ + "header": { + "name": "SEIRHD vacc model for LA County t0 = 10/28/2021", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.6/petrinet/petrinet_schema.json", + "schema_name": "petrinet", + "description": "SEIRHD vacc model for LA County t0 = 10/28/2021", + "model_version": "0.1" + }, + "properties": {}, + "model": { + "states": [ + { + "id": "S_u", + "name": "S_u", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": { + "status": "unvaccinated" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_u", + "name": "I_u", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "status": "unvaccinated" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_u", + "name": "E_u", + "grounding": { + "identifiers": { + "apollosv": "00000154" + }, + "modifiers": { + "status": "unvaccinated" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "S_v", + "name": "S_v", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": { + "status": "vaccinated" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_v", + "name": "E_v", + "grounding": { + "identifiers": { + "apollosv": "00000154" + }, + "modifiers": { + "status": "vaccinated" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_v", + "name": "I_v", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "status": "vaccinated" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H", + "name": "H", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R", + "name": "R", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D", + "name": "D", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Cumulative_cases", + "name": "Cumulative_cases", + "grounding": { + "identifiers": {}, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + } + ], + "transitions": [ + { + "id": "t1", + "input": [ + "I_u", + "S_u" + ], + "output": [ + "I_u", + "E_u" + ], + "properties": { + "name": "t1" + } + }, + { + "id": "t2", + "input": [ + "I_u", + "S_v" + ], + "output": [ + "I_u", + "E_v" + ], + "properties": { + "name": "t2" + } + }, + { + "id": "t3", + "input": [ + "I_v", + "S_u" + ], + "output": [ + "I_v", + "E_u" + ], + "properties": { + "name": "t3" + } + }, + { + "id": "t4", + "input": [ + "I_v", + "S_v" + ], + "output": [ + "I_v", + "E_v" + ], + "properties": { + "name": "t4" + } + }, + { + "id": "t5", + "input": [ + "S_u" + ], + "output": [ + "S_v" + ], + "properties": { + "name": "t5" + } + }, + { + "id": "t6", + "input": [ + "S_v" + ], + "output": [ + "S_u" + ], + "properties": { + "name": "t6" + } + }, + { + "id": "t7", + "input": [ + "E_u" + ], + "output": [ + "I_u" + ], + "properties": { + "name": "t7" + } + }, + { + "id": "t8", + "input": [ + "E_v" + ], + "output": [ + "I_v" + ], + "properties": { + "name": "t8" + } + }, + { + "id": "t9", + "input": [ + "I_u" + ], + "output": [ + "H" + ], + "properties": { + "name": "t9" + } + }, + { + "id": "t10", + "input": [ + "I_v" + ], + "output": [ + "H" + ], + "properties": { + "name": "t10" + } + }, + { + "id": "t11", + "input": [ + "H" + ], + "output": [ + "R" + ], + "properties": { + "name": "t11" + } + }, + { + "id": "t12", + "input": [ + "H" + ], + "output": [ + "D" + ], + "properties": { + "name": "t12" + } + }, + { + "id": "t13", + "input": [ + "E_u", + "E_v" + ], + "output": [ + "E_u", + "E_v", + "Cumulative_cases" + ], + "properties": { + "name": "t13" + } + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t1", + "expression": "I_u*NPI_mult*S_u*beta/N", + "expression_mathml": "I_uNPI_multS_ubetaN" + }, + { + "target": "t2", + "expression": "I_u*NPI_mult*S_v*beta*vacc_mult/N", + "expression_mathml": "I_uNPI_multS_vbetavacc_multN" + }, + { + "target": "t3", + "expression": "I_v*NPI_mult*S_u*beta/N", + "expression_mathml": "I_vNPI_multS_ubetaN" + }, + { + "target": "t4", + "expression": "I_v*NPI_mult*S_v*beta*vacc_mult/N", + "expression_mathml": "I_vNPI_multS_vbetavacc_multN" + }, + { + "target": "t5", + "expression": "r_Sv", + "expression_mathml": "r_Sv" + }, + { + "target": "t6", + "expression": "S_v*r_SvSu", + "expression_mathml": "S_vr_SvSu" + }, + { + "target": "t7", + "expression": "E_u*r_EI", + "expression_mathml": "E_ur_EI" + }, + { + "target": "t8", + "expression": "E_v*r_EI", + "expression_mathml": "E_vr_EI" + }, + { + "target": "t9", + "expression": "I_u*r_IH_u", + "expression_mathml": "I_ur_IH_u" + }, + { + "target": "t10", + "expression": "I_v*r_IH_v", + "expression_mathml": "I_vr_IH_v" + }, + { + "target": "t11", + "expression": "H*r_HR", + "expression_mathml": "Hr_HR" + }, + { + "target": "t12", + "expression": "H*r_HD", + "expression_mathml": "Hr_HD" + }, + { + "target": "t13", + "expression": "r_EI*(E_u + E_v)", + "expression_mathml": "r_EIE_uE_v" + } + ], + "initials": [ + { + "target": "S_u", + "expression": "2324633.64", + "expression_mathml": "2324633.6400000001" + }, + { + "target": "I_u", + "expression": "3458.66666666667", + "expression_mathml": "3458.6666666666665" + }, + { + "target": "E_u", + "expression": "6917.33333333333", + "expression_mathml": "6917.333333333333" + }, + { + "target": "S_v", + "expression": "5977629.36", + "expression_mathml": "5977629.3599999994" + }, + { + "target": "E_v", + "expression": "3458.66666666667", + "expression_mathml": "3458.6666666666665" + }, + { + "target": "I_v", + "expression": "1729.33333333333", + "expression_mathml": "1729.3333333333333" + }, + { + "target": "H", + "expression": "673", + "expression_mathml": "673" + }, + { + "target": "R", + "expression": "1484896", + "expression_mathml": "1484896" + }, + { + "target": "D", + "expression": "26604", + "expression_mathml": "26604" + }, + { + "target": "Cumulative_cases", + "expression": "1490084", + "expression_mathml": "1490084" + } + ], + "parameters": [ + { + "id": "N", + "value": 9830000.0, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "NPI_mult", + "value": 1.0, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.999, + "maximum": 1.001 + } + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "beta", + "value": 0.125, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.12, + "maximum": 0.135 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "vacc_mult", + "value": 0.3, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "r_Sv", + "value": 10000.0, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 9999.0, + "maximum": 10001.0 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "r_SvSu", + "value": 0.002, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "r_EI", + "value": 0.1424, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.25 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "r_IH_u", + "value": 0.0041, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.004, + "maximum": 0.0045 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "r_IH_v", + "value": 0.0013, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.001, + "maximum": 0.0015 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "r_HR", + "value": 0.155, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.12, + "maximum": 0.2 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "r_HD", + "value": 0.0099, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.0095, + "maximum": 0.012 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "r_IR_u", + "value": 0.15, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.2 + } + } + }, + { + "id": "r_IR_v", + "value": 0.162, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.15, + "maximum": 0.2 + } + } + } + ], + "observables": [ + { + "id": "cases", + "name": "cases", + "expression": "I_u + I_v", + "expression_mathml": "I_uI_v" + }, + { + "id": "hospitalized", + "name": "hospitalized", + "expression": "H", + "expression_mathml": "H" + }, + { + "id": "deceased", + "name": "deceased", + "expression": "D", + "expression_mathml": "D" + }, + { + "id": "cumulative_cases", + "name": "cumulative_cases", + "expression": "Cumulative_cases", + "expression_mathml": "Cumulative_cases" + } + ], + "time": { + "id": "t", + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + } + }, + "metadata": { + "annotations": { + "license": null, + "authors": [], + "references": [], + "time_scale": null, + "time_start": null, + "time_end": null, + "locations": [], + "pathogens": [], + "diseases": [], + "hosts": [], + "model_types": [] + } + } + } \ No newline at end of file diff --git a/resources/amr/petrinet/monthly-demo/2024-07/SEIRHD_vacc_petrinet_mod.json b/resources/amr/petrinet/monthly-demo/2024-07/SEIRHD_vacc_petrinet_mod.json new file mode 100644 index 00000000..45466f5b --- /dev/null +++ b/resources/amr/petrinet/monthly-demo/2024-07/SEIRHD_vacc_petrinet_mod.json @@ -0,0 +1,631 @@ +{ + "header": { + "name": "SEIRHD vacc model for LA County t0 = 10/28/2021", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.6/petrinet/petrinet_schema.json", + "schema_name": "petrinet", + "description": "SEIRHD vacc model for LA County t0 = 10/28/2021", + "model_version": "0.1" + }, + "properties": {}, + "model": { + "states": [ + { + "id": "S_u", + "name": "S_u", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": { + "status": "unvaccinated" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_u", + "name": "I_u", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "status": "unvaccinated" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_u", + "name": "E_u", + "grounding": { + "identifiers": { + "apollosv": "00000154" + }, + "modifiers": { + "status": "unvaccinated" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "S_v", + "name": "S_v", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": { + "status": "vaccinated" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_v", + "name": "E_v", + "grounding": { + "identifiers": { + "apollosv": "00000154" + }, + "modifiers": { + "status": "vaccinated" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_v", + "name": "I_v", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "status": "vaccinated" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H", + "name": "H", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R", + "name": "R", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D", + "name": "D", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + } + ], + "transitions": [ + { + "id": "t1", + "input": [ + "I_u", + "S_u" + ], + "output": [ + "I_u", + "E_u" + ], + "properties": { + "name": "t1" + } + }, + { + "id": "t2", + "input": [ + "I_u", + "S_v" + ], + "output": [ + "I_u", + "E_v" + ], + "properties": { + "name": "t2" + } + }, + { + "id": "t3", + "input": [ + "I_v", + "S_u" + ], + "output": [ + "I_v", + "E_u" + ], + "properties": { + "name": "t3" + } + }, + { + "id": "t4", + "input": [ + "I_v", + "S_v" + ], + "output": [ + "I_v", + "E_v" + ], + "properties": { + "name": "t4" + } + }, + { + "id": "t5", + "input": [ + "S_u" + ], + "output": [ + "S_v" + ], + "properties": { + "name": "t5" + } + }, + { + "id": "t6", + "input": [ + "S_v" + ], + "output": [ + "S_u" + ], + "properties": { + "name": "t6" + } + }, + { + "id": "t7", + "input": [ + "E_u" + ], + "output": [ + "I_u" + ], + "properties": { + "name": "t7" + } + }, + { + "id": "t8", + "input": [ + "E_v" + ], + "output": [ + "I_v" + ], + "properties": { + "name": "t8" + } + }, + { + "id": "t9", + "input": [ + "I_u" + ], + "output": [ + "H" + ], + "properties": { + "name": "t9" + } + }, + { + "id": "t10", + "input": [ + "I_v" + ], + "output": [ + "H" + ], + "properties": { + "name": "t10" + } + }, + { + "id": "t11", + "input": [ + "H" + ], + "output": [ + "R" + ], + "properties": { + "name": "t11" + } + }, + { + "id": "t12", + "input": [ + "H" + ], + "output": [ + "D" + ], + "properties": { + "name": "t12" + } + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t1", + "expression": "I_u*NPI_mult*S_u*beta/N", + "expression_mathml": "I_uNPI_multS_ubetaN" + }, + { + "target": "t2", + "expression": "I_u*NPI_mult*S_v*beta*vacc_mult/N", + "expression_mathml": "I_uNPI_multS_vbetavacc_multN" + }, + { + "target": "t3", + "expression": "I_v*NPI_mult*S_u*beta/N", + "expression_mathml": "I_vNPI_multS_ubetaN" + }, + { + "target": "t4", + "expression": "I_v*NPI_mult*S_v*beta*vacc_mult/N", + "expression_mathml": "I_vNPI_multS_vbetavacc_multN" + }, + { + "target": "t5", + "expression": "S_u*r_Sv", + "expression_mathml": "r_Sv" + }, + { + "target": "t6", + "expression": "S_v*r_SvSu", + "expression_mathml": "S_vr_SvSu" + }, + { + "target": "t7", + "expression": "E_u*r_EI", + "expression_mathml": "E_ur_EI" + }, + { + "target": "t8", + "expression": "E_v*r_EI", + "expression_mathml": "E_vr_EI" + }, + { + "target": "t9", + "expression": "I_u*r_IH_u", + "expression_mathml": "I_ur_IH_u" + }, + { + "target": "t10", + "expression": "I_v*r_IH_v", + "expression_mathml": "I_vr_IH_v" + }, + { + "target": "t11", + "expression": "H*r_HR", + "expression_mathml": "Hr_HR" + }, + { + "target": "t12", + "expression": "H*r_HD", + "expression_mathml": "Hr_HD" + } + ], + "initials": [ + { + "target": "S_u", + "expression": "2324633.64", + "expression_mathml": "2324633.6400000001" + }, + { + "target": "I_u", + "expression": "3458.66666666667", + "expression_mathml": "3458.6666666666665" + }, + { + "target": "E_u", + "expression": "6917.33333333333", + "expression_mathml": "6917.333333333333" + }, + { + "target": "S_v", + "expression": "5977629.36", + "expression_mathml": "5977629.3599999994" + }, + { + "target": "E_v", + "expression": "3458.66666666667", + "expression_mathml": "3458.6666666666665" + }, + { + "target": "I_v", + "expression": "1729.33333333333", + "expression_mathml": "1729.3333333333333" + }, + { + "target": "H", + "expression": "673", + "expression_mathml": "673" + }, + { + "target": "R", + "expression": "1484896", + "expression_mathml": "1484896" + }, + { + "target": "D", + "expression": "26604", + "expression_mathml": "26604" + } + ], + "parameters": [ + { + "id": "N", + "value": 9830000.0, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "NPI_mult", + "value": 1.0, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.999, + "maximum": 1.001 + } + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "beta", + "value": 0.125, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.12, + "maximum": 0.135 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "vacc_mult", + "value": 0.3, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "r_Sv", + "value": 10000.0, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.001, + "maximum": 0.002 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "r_SvSu", + "value": 0.002, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "r_EI", + "value": 0.1424, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.25 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "r_IH_u", + "value": 0.0041, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.004, + "maximum": 0.0045 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "r_IH_v", + "value": 0.0013, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.001, + "maximum": 0.0015 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "r_HR", + "value": 0.155, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.12, + "maximum": 0.2 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "r_HD", + "value": 0.0099, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.0095, + "maximum": 0.012 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "r_IR_u", + "value": 0.15, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.2 + } + } + }, + { + "id": "r_IR_v", + "value": 0.162, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.15, + "maximum": 0.2 + } + } + } + ], + "observables": [ + { + "id": "cases", + "name": "cases", + "expression": "I_u + I_v", + "expression_mathml": "I_uI_v" + }, + { + "id": "hospitalized", + "name": "hospitalized", + "expression": "H", + "expression_mathml": "H" + }, + { + "id": "deceased", + "name": "deceased", + "expression": "D", + "expression_mathml": "D" + } + ], + "time": { + "id": "t", + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + } + }, + "metadata": { + "annotations": { + "license": null, + "authors": [], + "references": [], + "time_scale": null, + "time_start": null, + "time_end": null, + "locations": [], + "pathogens": [], + "diseases": [], + "hosts": [], + "model_types": [] + } + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/monthly-demo/2024-07/SEIRHD_vacc_petrinet_request.json b/resources/amr/petrinet/monthly-demo/2024-07/SEIRHD_vacc_petrinet_request.json new file mode 100644 index 00000000..1fabfb1f --- /dev/null +++ b/resources/amr/petrinet/monthly-demo/2024-07/SEIRHD_vacc_petrinet_request.json @@ -0,0 +1,177 @@ +{ + "constraints": [ + { + "name": "max_H", + "variables": [ + "H" + ], + "additive_bounds": { + "ub": 3000 + }, + "soft": true + }, + { + "name": "increasing_D", + "variables": [ + "D" + ], + "additive_bounds": { + "lb": 0 + }, + "derivative": true, + "soft": false + }, + { + "name": "increasing_R", + "variables": [ + "R" + ], + "additive_bounds": { + "lb": 0 + }, + "derivative": true, + "soft": false + }, + { + "name": "increasing_CC", + "variables": [ + "Cumulative_cases" + ], + "additive_bounds": { + "lb": 0 + }, + "derivative": true, + "soft": false + }, + { + "name": "decreasing_S", + "variables": [ + "S_u", + "S_v" + ], + "weights": [ + -1, + -1 + ], + "additive_bounds": { + "lb": 0 + }, + "derivative": true, + "soft": false + } + ], + "parameters": [ + { + "name": "r_SvSu", + "interval": { + "lb": 0.002, + "ub": 0.002, + "closed_upper_bound": true + }, + "label": "any" + }, + { + "name": "beta", + "interval": { + "lb": 0.15, + "ub": 0.155 + }, + "label": "all" + }, + { + "name": "NPI_mult", + "interval": { + "lb": 1.0, + "ub": 1.0, + "closed_upper_bound": true + }, + "label": "any" + }, + { + "name": "r_Sv", + "interval": { + "lb": 10000.0, + "ub": 10000.0, + "closed_upper_bound": true + }, + "label": "any" + }, + { + "name": "r_EI", + "interval": { + "lb": 0.12, + "ub": 0.155 + }, + "label": "all" + }, + { + "name": "r_IH_u", + "interval": { + "lb": 0.0042, + "ub": 0.0045 + }, + "label": "all" + }, + { + "name": "r_IH_v", + "interval": { + "lb": 0.0012, + "ub": 0.0015 + }, + "label": "all" + }, + { + "name": "r_HR", + "interval": { + "lb": 0.15, + "ub": 0.2 + }, + "label": "all" + }, + { + "name": "r_HD", + "interval": { + "lb": 0.01, + "ub": 0.012 + }, + "label": "all" + }, + { + "name": "r_IR_u", + "interval": { + "lb": 0.17, + "ub": 0.2 + }, + "label": "all" + }, + { + "name": "r_IR_v", + "interval": { + "lb": 0.17, + "ub": 0.2 + }, + "label": "all" + } + ], + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10, + 20 + ] + } + ] + } + ], + "config": { + "normalization_constant": 9830000.0, + "normalize": false, + "tolerance": 1e-1, + "use_compartmental_constraints": true, + "dreal_precision": 1e-5 + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/monthly-demo/2024-07/SEIRHD_vacc_petrinet_request_mod.json b/resources/amr/petrinet/monthly-demo/2024-07/SEIRHD_vacc_petrinet_request_mod.json new file mode 100644 index 00000000..d5f4382c --- /dev/null +++ b/resources/amr/petrinet/monthly-demo/2024-07/SEIRHD_vacc_petrinet_request_mod.json @@ -0,0 +1,120 @@ +{ + "constraints": [ + { + "name": "max_H", + "variables": [ + "H" + ], + "additive_bounds": { + "lb": 3000 + }, + "timepoints": { + "lb": 45, + "ub": 70 + } + } + ], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 0.012, + "ub": 0.155 + }, + "label": "all" + }, + { + "name": "NPI_mult", + "interval": { + "lb": 0.999, + "ub": 1.001 + }, + "label": "all" + }, + { + "name": "r_Sv", + "interval": { + "lb": 0.0001, + "ub": 0.1 + }, + "label": "all" + }, + { + "name": "r_EI", + "interval": { + "lb": 0.1, + "ub": 0.25 + }, + "label": "all" + }, + { + "name": "r_IH_u", + "interval": { + "lb": 0.004, + "ub": 0.0045 + }, + "label": "all" + }, + { + "name": "r_IH_v", + "interval": { + "lb": 0.001, + "ub": 0.0015 + }, + "label": "all" + }, + { + "name": "r_HR", + "interval": { + "lb": 0.12, + "ub": 0.2 + }, + "label": "all" + }, + { + "name": "r_HD", + "interval": { + "lb": 0.0095, + "ub": 0.012 + }, + "label": "all" + }, + { + "name": "r_IR_u", + "interval": { + "lb": 0.1, + "ub": 0.2 + }, + "label": "all" + }, + { + "name": "r_IR_v", + "interval": { + "lb": 0.15, + "ub": 0.2 + }, + "label": "all" + } + ], + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10, + 20 + ] + } + ] + } + ], + "config": { + "normalization_constant": 9830000.0, + "normalize": false, + "tolerance": 1e-1, + "use_compartmental_constraints": true, + "dreal_precision": 1e-5 + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/stratified/model_amr.json b/resources/amr/petrinet/stratified/model_amr.json new file mode 100644 index 00000000..537effdf --- /dev/null +++ b/resources/amr/petrinet/stratified/model_amr.json @@ -0,0 +1,9110 @@ +{ + "header": { + "name": "Toby's Great Adventure SEIRHD 07-19 11:38", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.1/petrinet/petrinet_schema.json", + "schema_name": "petrinet", + "description": " This model has been stratified by age (4 ways),\n variant (3 ways), and vaccine status (2 ways).\n\n The naming convention is to have the base\n population type (e.g., S, E, I) followed by underscores\n in the order of age, variant, disase status. All compartments\n are stratified by all three except for the S compartment, which\n is only stratified by age and status.\n\n Because death is stratified, it might be useful to create observables\n which e.g. take the sum over all statuses/ages/variants.\n\n We used numerical indexes (encoded as strings) for each of the age,\n variants, and statuses.\n\n - Status: (0) unvaccinated and (1) vaccinated\n - Ages: (0) for 0-19, (1) for 20-49, (2) for 50-64, and (3) for 65+\n - Variants: (0) wild, (1) delta, and (2) omicron\n \n This model also includes the conversion from unvaccinated susceptible\n individuals to vaccinated susceptible individuals (with conserved age).\n The parameter alpha ideally is a time dependent function.\n \n TODO we can model the reverse process (i.e., waning) of vaccinated\n susceptible individuals becoming unvaccinated as a decay of vaccine\n efficacy, which would also be time dependant.\n ", + "model_version": "0.1" + }, + "id": "078607a5-77dd-48d2-8d39-b051c9b88c8f", + "timestamp": "2023-07-19 16:29:58", + "username": null, + "model": { + "states": [ + { + "id": "S_0_0", + "name": "S_0_0", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": { + "age": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_0_0_0", + "name": "I_0_0_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "0", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_0_0_0", + "name": "E_0_0_0", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "0", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_0_0_1", + "name": "I_0_0_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "0", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_1_0_0", + "name": "I_1_0_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "1", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_1_0_1", + "name": "I_1_0_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "1", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_2_0_0", + "name": "I_2_0_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "2", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_2_0_1", + "name": "I_2_0_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "2", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_3_0_0", + "name": "I_3_0_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "3", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_3_0_1", + "name": "I_3_0_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "3", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_0_1_0", + "name": "I_0_1_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "0", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_0_1_0", + "name": "E_0_1_0", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "0", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_0_1_1", + "name": "I_0_1_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "0", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_1_1_0", + "name": "I_1_1_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "1", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_1_1_1", + "name": "I_1_1_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "1", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_2_1_0", + "name": "I_2_1_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "2", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_2_1_1", + "name": "I_2_1_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "2", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_3_1_0", + "name": "I_3_1_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "3", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_3_1_1", + "name": "I_3_1_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "3", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_0_2_0", + "name": "I_0_2_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "0", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_0_2_0", + "name": "E_0_2_0", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "0", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_0_2_1", + "name": "I_0_2_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "0", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_1_2_0", + "name": "I_1_2_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "1", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_1_2_1", + "name": "I_1_2_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "1", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_2_2_0", + "name": "I_2_2_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "2", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_2_2_1", + "name": "I_2_2_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "2", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_3_2_0", + "name": "I_3_2_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "3", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I_3_2_1", + "name": "I_3_2_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "age": "3", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "S_0_1", + "name": "S_0_1", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": { + "age": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_0_0_1", + "name": "E_0_0_1", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "0", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_0_1_1", + "name": "E_0_1_1", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "0", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_0_2_1", + "name": "E_0_2_1", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "0", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "S_1_0", + "name": "S_1_0", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": { + "age": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_1_0_0", + "name": "E_1_0_0", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "1", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_1_1_0", + "name": "E_1_1_0", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "1", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_1_2_0", + "name": "E_1_2_0", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "1", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "S_1_1", + "name": "S_1_1", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": { + "age": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_1_0_1", + "name": "E_1_0_1", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "1", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_1_1_1", + "name": "E_1_1_1", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "1", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_1_2_1", + "name": "E_1_2_1", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "1", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "S_2_0", + "name": "S_2_0", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": { + "age": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_2_0_0", + "name": "E_2_0_0", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "2", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_2_1_0", + "name": "E_2_1_0", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "2", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_2_2_0", + "name": "E_2_2_0", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "2", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "S_2_1", + "name": "S_2_1", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": { + "age": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_2_0_1", + "name": "E_2_0_1", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "2", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_2_1_1", + "name": "E_2_1_1", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "2", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_2_2_1", + "name": "E_2_2_1", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "2", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "S_3_0", + "name": "S_3_0", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": { + "age": "3", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_3_0_0", + "name": "E_3_0_0", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "3", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_3_1_0", + "name": "E_3_1_0", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "3", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_3_2_0", + "name": "E_3_2_0", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "3", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "S_3_1", + "name": "S_3_1", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": { + "age": "3", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_3_0_1", + "name": "E_3_0_1", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "3", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_3_1_1", + "name": "E_3_1_1", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "3", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E_3_2_1", + "name": "E_3_2_1", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": { + "age": "3", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_0_0_0", + "name": "R_0_0_0", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "0", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_0_0_1", + "name": "R_0_0_1", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "0", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_0_1_0", + "name": "R_0_1_0", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "0", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_0_1_1", + "name": "R_0_1_1", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "0", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_0_2_0", + "name": "R_0_2_0", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "0", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_0_2_1", + "name": "R_0_2_1", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "0", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_1_0_0", + "name": "R_1_0_0", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "1", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_1_0_1", + "name": "R_1_0_1", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "1", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_1_1_0", + "name": "R_1_1_0", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "1", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_1_1_1", + "name": "R_1_1_1", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "1", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_1_2_0", + "name": "R_1_2_0", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "1", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_1_2_1", + "name": "R_1_2_1", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "1", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_2_0_0", + "name": "R_2_0_0", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "2", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_2_0_1", + "name": "R_2_0_1", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "2", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_2_1_0", + "name": "R_2_1_0", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "2", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_2_1_1", + "name": "R_2_1_1", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "2", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_2_2_0", + "name": "R_2_2_0", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "2", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_2_2_1", + "name": "R_2_2_1", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "2", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_3_0_0", + "name": "R_3_0_0", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "3", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_3_0_1", + "name": "R_3_0_1", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "3", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_3_1_0", + "name": "R_3_1_0", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "3", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_3_1_1", + "name": "R_3_1_1", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "3", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_3_2_0", + "name": "R_3_2_0", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "3", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R_3_2_1", + "name": "R_3_2_1", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "age": "3", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_0_0_0", + "name": "H_0_0_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "0", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_0_0_1", + "name": "H_0_0_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "0", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_0_1_0", + "name": "H_0_1_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "0", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_0_1_1", + "name": "H_0_1_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "0", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_0_2_0", + "name": "H_0_2_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "0", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_0_2_1", + "name": "H_0_2_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "0", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_1_0_0", + "name": "H_1_0_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "1", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_1_0_1", + "name": "H_1_0_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "1", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_1_1_0", + "name": "H_1_1_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "1", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_1_1_1", + "name": "H_1_1_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "1", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_1_2_0", + "name": "H_1_2_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "1", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_1_2_1", + "name": "H_1_2_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "1", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_2_0_0", + "name": "H_2_0_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "2", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_2_0_1", + "name": "H_2_0_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "2", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_2_1_0", + "name": "H_2_1_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "2", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_2_1_1", + "name": "H_2_1_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "2", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_2_2_0", + "name": "H_2_2_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "2", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_2_2_1", + "name": "H_2_2_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "2", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_3_0_0", + "name": "H_3_0_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "3", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_3_0_1", + "name": "H_3_0_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "3", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_3_1_0", + "name": "H_3_1_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "3", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_3_1_1", + "name": "H_3_1_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "3", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_3_2_0", + "name": "H_3_2_0", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "3", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H_3_2_1", + "name": "H_3_2_1", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179", + "age": "3", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_0_0_0", + "name": "D_0_0_0", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "0", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_0_0_1", + "name": "D_0_0_1", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "0", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_0_1_0", + "name": "D_0_1_0", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "0", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_0_1_1", + "name": "D_0_1_1", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "0", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_0_2_0", + "name": "D_0_2_0", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "0", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_0_2_1", + "name": "D_0_2_1", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "0", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_1_0_0", + "name": "D_1_0_0", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "1", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_1_0_1", + "name": "D_1_0_1", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "1", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_1_1_0", + "name": "D_1_1_0", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "1", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_1_1_1", + "name": "D_1_1_1", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "1", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_1_2_0", + "name": "D_1_2_0", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "1", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_1_2_1", + "name": "D_1_2_1", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "1", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_2_0_0", + "name": "D_2_0_0", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "2", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_2_0_1", + "name": "D_2_0_1", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "2", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_2_1_0", + "name": "D_2_1_0", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "2", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_2_1_1", + "name": "D_2_1_1", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "2", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_2_2_0", + "name": "D_2_2_0", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "2", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_2_2_1", + "name": "D_2_2_1", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "2", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_3_0_0", + "name": "D_3_0_0", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "3", + "variant": "0", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_3_0_1", + "name": "D_3_0_1", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "3", + "variant": "0", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_3_1_0", + "name": "D_3_1_0", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "3", + "variant": "1", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_3_1_1", + "name": "D_3_1_1", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "3", + "variant": "1", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_3_2_0", + "name": "D_3_2_0", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "3", + "variant": "2", + "status": "0" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D_3_2_1", + "name": "D_3_2_1", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "age": "3", + "variant": "2", + "status": "1" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + } + ], + "transitions": [ + { + "id": "t1", + "input": [ + "I_0_0_0", + "S_0_0" + ], + "output": [ + "E_0_0_0", + "I_0_0_0" + ], + "properties": { + "name": "t1" + } + }, + { + "id": "t2", + "input": [ + "I_0_0_1", + "S_0_0" + ], + "output": [ + "E_0_0_0", + "I_0_0_1" + ], + "properties": { + "name": "t2" + } + }, + { + "id": "t3", + "input": [ + "I_1_0_0", + "S_0_0" + ], + "output": [ + "E_0_0_0", + "I_1_0_0" + ], + "properties": { + "name": "t3" + } + }, + { + "id": "t4", + "input": [ + "I_1_0_1", + "S_0_0" + ], + "output": [ + "E_0_0_0", + "I_1_0_1" + ], + "properties": { + "name": "t4" + } + }, + { + "id": "t5", + "input": [ + "I_2_0_0", + "S_0_0" + ], + "output": [ + "E_0_0_0", + "I_2_0_0" + ], + "properties": { + "name": "t5" + } + }, + { + "id": "t6", + "input": [ + "I_2_0_1", + "S_0_0" + ], + "output": [ + "E_0_0_0", + "I_2_0_1" + ], + "properties": { + "name": "t6" + } + }, + { + "id": "t7", + "input": [ + "I_3_0_0", + "S_0_0" + ], + "output": [ + "E_0_0_0", + "I_3_0_0" + ], + "properties": { + "name": "t7" + } + }, + { + "id": "t8", + "input": [ + "I_3_0_1", + "S_0_0" + ], + "output": [ + "E_0_0_0", + "I_3_0_1" + ], + "properties": { + "name": "t8" + } + }, + { + "id": "t9", + "input": [ + "I_0_1_0", + "S_0_0" + ], + "output": [ + "E_0_1_0", + "I_0_1_0" + ], + "properties": { + "name": "t9" + } + }, + { + "id": "t10", + "input": [ + "I_0_1_1", + "S_0_0" + ], + "output": [ + "E_0_1_0", + "I_0_1_1" + ], + "properties": { + "name": "t10" + } + }, + { + "id": "t11", + "input": [ + "I_1_1_0", + "S_0_0" + ], + "output": [ + "E_0_1_0", + "I_1_1_0" + ], + "properties": { + "name": "t11" + } + }, + { + "id": "t12", + "input": [ + "I_1_1_1", + "S_0_0" + ], + "output": [ + "E_0_1_0", + "I_1_1_1" + ], + "properties": { + "name": "t12" + } + }, + { + "id": "t13", + "input": [ + "I_2_1_0", + "S_0_0" + ], + "output": [ + "E_0_1_0", + "I_2_1_0" + ], + "properties": { + "name": "t13" + } + }, + { + "id": "t14", + "input": [ + "I_2_1_1", + "S_0_0" + ], + "output": [ + "E_0_1_0", + "I_2_1_1" + ], + "properties": { + "name": "t14" + } + }, + { + "id": "t15", + "input": [ + "I_3_1_0", + "S_0_0" + ], + "output": [ + "E_0_1_0", + "I_3_1_0" + ], + "properties": { + "name": "t15" + } + }, + { + "id": "t16", + "input": [ + "I_3_1_1", + "S_0_0" + ], + "output": [ + "E_0_1_0", + "I_3_1_1" + ], + "properties": { + "name": "t16" + } + }, + { + "id": "t17", + "input": [ + "I_0_2_0", + "S_0_0" + ], + "output": [ + "E_0_2_0", + "I_0_2_0" + ], + "properties": { + "name": "t17" + } + }, + { + "id": "t18", + "input": [ + "I_0_2_1", + "S_0_0" + ], + "output": [ + "E_0_2_0", + "I_0_2_1" + ], + "properties": { + "name": "t18" + } + }, + { + "id": "t19", + "input": [ + "I_1_2_0", + "S_0_0" + ], + "output": [ + "E_0_2_0", + "I_1_2_0" + ], + "properties": { + "name": "t19" + } + }, + { + "id": "t20", + "input": [ + "I_1_2_1", + "S_0_0" + ], + "output": [ + "E_0_2_0", + "I_1_2_1" + ], + "properties": { + "name": "t20" + } + }, + { + "id": "t21", + "input": [ + "I_2_2_0", + "S_0_0" + ], + "output": [ + "E_0_2_0", + "I_2_2_0" + ], + "properties": { + "name": "t21" + } + }, + { + "id": "t22", + "input": [ + "I_2_2_1", + "S_0_0" + ], + "output": [ + "E_0_2_0", + "I_2_2_1" + ], + "properties": { + "name": "t22" + } + }, + { + "id": "t23", + "input": [ + "I_3_2_0", + "S_0_0" + ], + "output": [ + "E_0_2_0", + "I_3_2_0" + ], + "properties": { + "name": "t23" + } + }, + { + "id": "t24", + "input": [ + "I_3_2_1", + "S_0_0" + ], + "output": [ + "E_0_2_0", + "I_3_2_1" + ], + "properties": { + "name": "t24" + } + }, + { + "id": "t25", + "input": [ + "I_0_0_0", + "S_0_1" + ], + "output": [ + "E_0_0_1", + "I_0_0_0" + ], + "properties": { + "name": "t25" + } + }, + { + "id": "t26", + "input": [ + "I_0_0_1", + "S_0_1" + ], + "output": [ + "E_0_0_1", + "I_0_0_1" + ], + "properties": { + "name": "t26" + } + }, + { + "id": "t27", + "input": [ + "I_1_0_0", + "S_0_1" + ], + "output": [ + "E_0_0_1", + "I_1_0_0" + ], + "properties": { + "name": "t27" + } + }, + { + "id": "t28", + "input": [ + "I_1_0_1", + "S_0_1" + ], + "output": [ + "E_0_0_1", + "I_1_0_1" + ], + "properties": { + "name": "t28" + } + }, + { + "id": "t29", + "input": [ + "I_2_0_0", + "S_0_1" + ], + "output": [ + "E_0_0_1", + "I_2_0_0" + ], + "properties": { + "name": "t29" + } + }, + { + "id": "t30", + "input": [ + "I_2_0_1", + "S_0_1" + ], + "output": [ + "E_0_0_1", + "I_2_0_1" + ], + "properties": { + "name": "t30" + } + }, + { + "id": "t31", + "input": [ + "I_3_0_0", + "S_0_1" + ], + "output": [ + "E_0_0_1", + "I_3_0_0" + ], + "properties": { + "name": "t31" + } + }, + { + "id": "t32", + "input": [ + "I_3_0_1", + "S_0_1" + ], + "output": [ + "E_0_0_1", + "I_3_0_1" + ], + "properties": { + "name": "t32" + } + }, + { + "id": "t33", + "input": [ + "I_0_1_0", + "S_0_1" + ], + "output": [ + "E_0_1_1", + "I_0_1_0" + ], + "properties": { + "name": "t33" + } + }, + { + "id": "t34", + "input": [ + "I_0_1_1", + "S_0_1" + ], + "output": [ + "E_0_1_1", + "I_0_1_1" + ], + "properties": { + "name": "t34" + } + }, + { + "id": "t35", + "input": [ + "I_1_1_0", + "S_0_1" + ], + "output": [ + "E_0_1_1", + "I_1_1_0" + ], + "properties": { + "name": "t35" + } + }, + { + "id": "t36", + "input": [ + "I_1_1_1", + "S_0_1" + ], + "output": [ + "E_0_1_1", + "I_1_1_1" + ], + "properties": { + "name": "t36" + } + }, + { + "id": "t37", + "input": [ + "I_2_1_0", + "S_0_1" + ], + "output": [ + "E_0_1_1", + "I_2_1_0" + ], + "properties": { + "name": "t37" + } + }, + { + "id": "t38", + "input": [ + "I_2_1_1", + "S_0_1" + ], + "output": [ + "E_0_1_1", + "I_2_1_1" + ], + "properties": { + "name": "t38" + } + }, + { + "id": "t39", + "input": [ + "I_3_1_0", + "S_0_1" + ], + "output": [ + "E_0_1_1", + "I_3_1_0" + ], + "properties": { + "name": "t39" + } + }, + { + "id": "t40", + "input": [ + "I_3_1_1", + "S_0_1" + ], + "output": [ + "E_0_1_1", + "I_3_1_1" + ], + "properties": { + "name": "t40" + } + }, + { + "id": "t41", + "input": [ + "I_0_2_0", + "S_0_1" + ], + "output": [ + "E_0_2_1", + "I_0_2_0" + ], + "properties": { + "name": "t41" + } + }, + { + "id": "t42", + "input": [ + "I_0_2_1", + "S_0_1" + ], + "output": [ + "E_0_2_1", + "I_0_2_1" + ], + "properties": { + "name": "t42" + } + }, + { + "id": "t43", + "input": [ + "I_1_2_0", + "S_0_1" + ], + "output": [ + "E_0_2_1", + "I_1_2_0" + ], + "properties": { + "name": "t43" + } + }, + { + "id": "t44", + "input": [ + "I_1_2_1", + "S_0_1" + ], + "output": [ + "E_0_2_1", + "I_1_2_1" + ], + "properties": { + "name": "t44" + } + }, + { + "id": "t45", + "input": [ + "I_2_2_0", + "S_0_1" + ], + "output": [ + "E_0_2_1", + "I_2_2_0" + ], + "properties": { + "name": "t45" + } + }, + { + "id": "t46", + "input": [ + "I_2_2_1", + "S_0_1" + ], + "output": [ + "E_0_2_1", + "I_2_2_1" + ], + "properties": { + "name": "t46" + } + }, + { + "id": "t47", + "input": [ + "I_3_2_0", + "S_0_1" + ], + "output": [ + "E_0_2_1", + "I_3_2_0" + ], + "properties": { + "name": "t47" + } + }, + { + "id": "t48", + "input": [ + "I_3_2_1", + "S_0_1" + ], + "output": [ + "E_0_2_1", + "I_3_2_1" + ], + "properties": { + "name": "t48" + } + }, + { + "id": "t49", + "input": [ + "I_0_0_0", + "S_1_0" + ], + "output": [ + "E_1_0_0", + "I_0_0_0" + ], + "properties": { + "name": "t49" + } + }, + { + "id": "t50", + "input": [ + "I_0_0_1", + "S_1_0" + ], + "output": [ + "E_1_0_0", + "I_0_0_1" + ], + "properties": { + "name": "t50" + } + }, + { + "id": "t51", + "input": [ + "I_1_0_0", + "S_1_0" + ], + "output": [ + "E_1_0_0", + "I_1_0_0" + ], + "properties": { + "name": "t51" + } + }, + { + "id": "t52", + "input": [ + "I_1_0_1", + "S_1_0" + ], + "output": [ + "E_1_0_0", + "I_1_0_1" + ], + "properties": { + "name": "t52" + } + }, + { + "id": "t53", + "input": [ + "I_2_0_0", + "S_1_0" + ], + "output": [ + "E_1_0_0", + "I_2_0_0" + ], + "properties": { + "name": "t53" + } + }, + { + "id": "t54", + "input": [ + "I_2_0_1", + "S_1_0" + ], + "output": [ + "E_1_0_0", + "I_2_0_1" + ], + "properties": { + "name": "t54" + } + }, + { + "id": "t55", + "input": [ + "I_3_0_0", + "S_1_0" + ], + "output": [ + "E_1_0_0", + "I_3_0_0" + ], + "properties": { + "name": "t55" + } + }, + { + "id": "t56", + "input": [ + "I_3_0_1", + "S_1_0" + ], + "output": [ + "E_1_0_0", + "I_3_0_1" + ], + "properties": { + "name": "t56" + } + }, + { + "id": "t57", + "input": [ + "I_0_1_0", + "S_1_0" + ], + "output": [ + "E_1_1_0", + "I_0_1_0" + ], + "properties": { + "name": "t57" + } + }, + { + "id": "t58", + "input": [ + "I_0_1_1", + "S_1_0" + ], + "output": [ + "E_1_1_0", + "I_0_1_1" + ], + "properties": { + "name": "t58" + } + }, + { + "id": "t59", + "input": [ + "I_1_1_0", + "S_1_0" + ], + "output": [ + "E_1_1_0", + "I_1_1_0" + ], + "properties": { + "name": "t59" + } + }, + { + "id": "t60", + "input": [ + "I_1_1_1", + "S_1_0" + ], + "output": [ + "E_1_1_0", + "I_1_1_1" + ], + "properties": { + "name": "t60" + } + }, + { + "id": "t61", + "input": [ + "I_2_1_0", + "S_1_0" + ], + "output": [ + "E_1_1_0", + "I_2_1_0" + ], + "properties": { + "name": "t61" + } + }, + { + "id": "t62", + "input": [ + "I_2_1_1", + "S_1_0" + ], + "output": [ + "E_1_1_0", + "I_2_1_1" + ], + "properties": { + "name": "t62" + } + }, + { + "id": "t63", + "input": [ + "I_3_1_0", + "S_1_0" + ], + "output": [ + "E_1_1_0", + "I_3_1_0" + ], + "properties": { + "name": "t63" + } + }, + { + "id": "t64", + "input": [ + "I_3_1_1", + "S_1_0" + ], + "output": [ + "E_1_1_0", + "I_3_1_1" + ], + "properties": { + "name": "t64" + } + }, + { + "id": "t65", + "input": [ + "I_0_2_0", + "S_1_0" + ], + "output": [ + "E_1_2_0", + "I_0_2_0" + ], + "properties": { + "name": "t65" + } + }, + { + "id": "t66", + "input": [ + "I_0_2_1", + "S_1_0" + ], + "output": [ + "E_1_2_0", + "I_0_2_1" + ], + "properties": { + "name": "t66" + } + }, + { + "id": "t67", + "input": [ + "I_1_2_0", + "S_1_0" + ], + "output": [ + "E_1_2_0", + "I_1_2_0" + ], + "properties": { + "name": "t67" + } + }, + { + "id": "t68", + "input": [ + "I_1_2_1", + "S_1_0" + ], + "output": [ + "E_1_2_0", + "I_1_2_1" + ], + "properties": { + "name": "t68" + } + }, + { + "id": "t69", + "input": [ + "I_2_2_0", + "S_1_0" + ], + "output": [ + "E_1_2_0", + "I_2_2_0" + ], + "properties": { + "name": "t69" + } + }, + { + "id": "t70", + "input": [ + "I_2_2_1", + "S_1_0" + ], + "output": [ + "E_1_2_0", + "I_2_2_1" + ], + "properties": { + "name": "t70" + } + }, + { + "id": "t71", + "input": [ + "I_3_2_0", + "S_1_0" + ], + "output": [ + "E_1_2_0", + "I_3_2_0" + ], + "properties": { + "name": "t71" + } + }, + { + "id": "t72", + "input": [ + "I_3_2_1", + "S_1_0" + ], + "output": [ + "E_1_2_0", + "I_3_2_1" + ], + "properties": { + "name": "t72" + } + }, + { + "id": "t73", + "input": [ + "I_0_0_0", + "S_1_1" + ], + "output": [ + "E_1_0_1", + "I_0_0_0" + ], + "properties": { + "name": "t73" + } + }, + { + "id": "t74", + "input": [ + "I_0_0_1", + "S_1_1" + ], + "output": [ + "E_1_0_1", + "I_0_0_1" + ], + "properties": { + "name": "t74" + } + }, + { + "id": "t75", + "input": [ + "I_1_0_0", + "S_1_1" + ], + "output": [ + "E_1_0_1", + "I_1_0_0" + ], + "properties": { + "name": "t75" + } + }, + { + "id": "t76", + "input": [ + "I_1_0_1", + "S_1_1" + ], + "output": [ + "E_1_0_1", + "I_1_0_1" + ], + "properties": { + "name": "t76" + } + }, + { + "id": "t77", + "input": [ + "I_2_0_0", + "S_1_1" + ], + "output": [ + "E_1_0_1", + "I_2_0_0" + ], + "properties": { + "name": "t77" + } + }, + { + "id": "t78", + "input": [ + "I_2_0_1", + "S_1_1" + ], + "output": [ + "E_1_0_1", + "I_2_0_1" + ], + "properties": { + "name": "t78" + } + }, + { + "id": "t79", + "input": [ + "I_3_0_0", + "S_1_1" + ], + "output": [ + "E_1_0_1", + "I_3_0_0" + ], + "properties": { + "name": "t79" + } + }, + { + "id": "t80", + "input": [ + "I_3_0_1", + "S_1_1" + ], + "output": [ + "E_1_0_1", + "I_3_0_1" + ], + "properties": { + "name": "t80" + } + }, + { + "id": "t81", + "input": [ + "I_0_1_0", + "S_1_1" + ], + "output": [ + "E_1_1_1", + "I_0_1_0" + ], + "properties": { + "name": "t81" + } + }, + { + "id": "t82", + "input": [ + "I_0_1_1", + "S_1_1" + ], + "output": [ + "E_1_1_1", + "I_0_1_1" + ], + "properties": { + "name": "t82" + } + }, + { + "id": "t83", + "input": [ + "I_1_1_0", + "S_1_1" + ], + "output": [ + "E_1_1_1", + "I_1_1_0" + ], + "properties": { + "name": "t83" + } + }, + { + "id": "t84", + "input": [ + "I_1_1_1", + "S_1_1" + ], + "output": [ + "E_1_1_1", + "I_1_1_1" + ], + "properties": { + "name": "t84" + } + }, + { + "id": "t85", + "input": [ + "I_2_1_0", + "S_1_1" + ], + "output": [ + "E_1_1_1", + "I_2_1_0" + ], + "properties": { + "name": "t85" + } + }, + { + "id": "t86", + "input": [ + "I_2_1_1", + "S_1_1" + ], + "output": [ + "E_1_1_1", + "I_2_1_1" + ], + "properties": { + "name": "t86" + } + }, + { + "id": "t87", + "input": [ + "I_3_1_0", + "S_1_1" + ], + "output": [ + "E_1_1_1", + "I_3_1_0" + ], + "properties": { + "name": "t87" + } + }, + { + "id": "t88", + "input": [ + "I_3_1_1", + "S_1_1" + ], + "output": [ + "E_1_1_1", + "I_3_1_1" + ], + "properties": { + "name": "t88" + } + }, + { + "id": "t89", + "input": [ + "I_0_2_0", + "S_1_1" + ], + "output": [ + "E_1_2_1", + "I_0_2_0" + ], + "properties": { + "name": "t89" + } + }, + { + "id": "t90", + "input": [ + "I_0_2_1", + "S_1_1" + ], + "output": [ + "E_1_2_1", + "I_0_2_1" + ], + "properties": { + "name": "t90" + } + }, + { + "id": "t91", + "input": [ + "I_1_2_0", + "S_1_1" + ], + "output": [ + "E_1_2_1", + "I_1_2_0" + ], + "properties": { + "name": "t91" + } + }, + { + "id": "t92", + "input": [ + "I_1_2_1", + "S_1_1" + ], + "output": [ + "E_1_2_1", + "I_1_2_1" + ], + "properties": { + "name": "t92" + } + }, + { + "id": "t93", + "input": [ + "I_2_2_0", + "S_1_1" + ], + "output": [ + "E_1_2_1", + "I_2_2_0" + ], + "properties": { + "name": "t93" + } + }, + { + "id": "t94", + "input": [ + "I_2_2_1", + "S_1_1" + ], + "output": [ + "E_1_2_1", + "I_2_2_1" + ], + "properties": { + "name": "t94" + } + }, + { + "id": "t95", + "input": [ + "I_3_2_0", + "S_1_1" + ], + "output": [ + "E_1_2_1", + "I_3_2_0" + ], + "properties": { + "name": "t95" + } + }, + { + "id": "t96", + "input": [ + "I_3_2_1", + "S_1_1" + ], + "output": [ + "E_1_2_1", + "I_3_2_1" + ], + "properties": { + "name": "t96" + } + }, + { + "id": "t97", + "input": [ + "I_0_0_0", + "S_2_0" + ], + "output": [ + "E_2_0_0", + "I_0_0_0" + ], + "properties": { + "name": "t97" + } + }, + { + "id": "t98", + "input": [ + "I_0_0_1", + "S_2_0" + ], + "output": [ + "E_2_0_0", + "I_0_0_1" + ], + "properties": { + "name": "t98" + } + }, + { + "id": "t99", + "input": [ + "I_1_0_0", + "S_2_0" + ], + "output": [ + "E_2_0_0", + "I_1_0_0" + ], + "properties": { + "name": "t99" + } + }, + { + "id": "t100", + "input": [ + "I_1_0_1", + "S_2_0" + ], + "output": [ + "E_2_0_0", + "I_1_0_1" + ], + "properties": { + "name": "t100" + } + }, + { + "id": "t101", + "input": [ + "I_2_0_0", + "S_2_0" + ], + "output": [ + "E_2_0_0", + "I_2_0_0" + ], + "properties": { + "name": "t101" + } + }, + { + "id": "t102", + "input": [ + "I_2_0_1", + "S_2_0" + ], + "output": [ + "E_2_0_0", + "I_2_0_1" + ], + "properties": { + "name": "t102" + } + }, + { + "id": "t103", + "input": [ + "I_3_0_0", + "S_2_0" + ], + "output": [ + "E_2_0_0", + "I_3_0_0" + ], + "properties": { + "name": "t103" + } + }, + { + "id": "t104", + "input": [ + "I_3_0_1", + "S_2_0" + ], + "output": [ + "E_2_0_0", + "I_3_0_1" + ], + "properties": { + "name": "t104" + } + }, + { + "id": "t105", + "input": [ + "I_0_1_0", + "S_2_0" + ], + "output": [ + "E_2_1_0", + "I_0_1_0" + ], + "properties": { + "name": "t105" + } + }, + { + "id": "t106", + "input": [ + "I_0_1_1", + "S_2_0" + ], + "output": [ + "E_2_1_0", + "I_0_1_1" + ], + "properties": { + "name": "t106" + } + }, + { + "id": "t107", + "input": [ + "I_1_1_0", + "S_2_0" + ], + "output": [ + "E_2_1_0", + "I_1_1_0" + ], + "properties": { + "name": "t107" + } + }, + { + "id": "t108", + "input": [ + "I_1_1_1", + "S_2_0" + ], + "output": [ + "E_2_1_0", + "I_1_1_1" + ], + "properties": { + "name": "t108" + } + }, + { + "id": "t109", + "input": [ + "I_2_1_0", + "S_2_0" + ], + "output": [ + "E_2_1_0", + "I_2_1_0" + ], + "properties": { + "name": "t109" + } + }, + { + "id": "t110", + "input": [ + "I_2_1_1", + "S_2_0" + ], + "output": [ + "E_2_1_0", + "I_2_1_1" + ], + "properties": { + "name": "t110" + } + }, + { + "id": "t111", + "input": [ + "I_3_1_0", + "S_2_0" + ], + "output": [ + "E_2_1_0", + "I_3_1_0" + ], + "properties": { + "name": "t111" + } + }, + { + "id": "t112", + "input": [ + "I_3_1_1", + "S_2_0" + ], + "output": [ + "E_2_1_0", + "I_3_1_1" + ], + "properties": { + "name": "t112" + } + }, + { + "id": "t113", + "input": [ + "I_0_2_0", + "S_2_0" + ], + "output": [ + "E_2_2_0", + "I_0_2_0" + ], + "properties": { + "name": "t113" + } + }, + { + "id": "t114", + "input": [ + "I_0_2_1", + "S_2_0" + ], + "output": [ + "E_2_2_0", + "I_0_2_1" + ], + "properties": { + "name": "t114" + } + }, + { + "id": "t115", + "input": [ + "I_1_2_0", + "S_2_0" + ], + "output": [ + "E_2_2_0", + "I_1_2_0" + ], + "properties": { + "name": "t115" + } + }, + { + "id": "t116", + "input": [ + "I_1_2_1", + "S_2_0" + ], + "output": [ + "E_2_2_0", + "I_1_2_1" + ], + "properties": { + "name": "t116" + } + }, + { + "id": "t117", + "input": [ + "I_2_2_0", + "S_2_0" + ], + "output": [ + "E_2_2_0", + "I_2_2_0" + ], + "properties": { + "name": "t117" + } + }, + { + "id": "t118", + "input": [ + "I_2_2_1", + "S_2_0" + ], + "output": [ + "E_2_2_0", + "I_2_2_1" + ], + "properties": { + "name": "t118" + } + }, + { + "id": "t119", + "input": [ + "I_3_2_0", + "S_2_0" + ], + "output": [ + "E_2_2_0", + "I_3_2_0" + ], + "properties": { + "name": "t119" + } + }, + { + "id": "t120", + "input": [ + "I_3_2_1", + "S_2_0" + ], + "output": [ + "E_2_2_0", + "I_3_2_1" + ], + "properties": { + "name": "t120" + } + }, + { + "id": "t121", + "input": [ + "I_0_0_0", + "S_2_1" + ], + "output": [ + "E_2_0_1", + "I_0_0_0" + ], + "properties": { + "name": "t121" + } + }, + { + "id": "t122", + "input": [ + "I_0_0_1", + "S_2_1" + ], + "output": [ + "E_2_0_1", + "I_0_0_1" + ], + "properties": { + "name": "t122" + } + }, + { + "id": "t123", + "input": [ + "I_1_0_0", + "S_2_1" + ], + "output": [ + "E_2_0_1", + "I_1_0_0" + ], + "properties": { + "name": "t123" + } + }, + { + "id": "t124", + "input": [ + "I_1_0_1", + "S_2_1" + ], + "output": [ + "E_2_0_1", + "I_1_0_1" + ], + "properties": { + "name": "t124" + } + }, + { + "id": "t125", + "input": [ + "I_2_0_0", + "S_2_1" + ], + "output": [ + "E_2_0_1", + "I_2_0_0" + ], + "properties": { + "name": "t125" + } + }, + { + "id": "t126", + "input": [ + "I_2_0_1", + "S_2_1" + ], + "output": [ + "E_2_0_1", + "I_2_0_1" + ], + "properties": { + "name": "t126" + } + }, + { + "id": "t127", + "input": [ + "I_3_0_0", + "S_2_1" + ], + "output": [ + "E_2_0_1", + "I_3_0_0" + ], + "properties": { + "name": "t127" + } + }, + { + "id": "t128", + "input": [ + "I_3_0_1", + "S_2_1" + ], + "output": [ + "E_2_0_1", + "I_3_0_1" + ], + "properties": { + "name": "t128" + } + }, + { + "id": "t129", + "input": [ + "I_0_1_0", + "S_2_1" + ], + "output": [ + "E_2_1_1", + "I_0_1_0" + ], + "properties": { + "name": "t129" + } + }, + { + "id": "t130", + "input": [ + "I_0_1_1", + "S_2_1" + ], + "output": [ + "E_2_1_1", + "I_0_1_1" + ], + "properties": { + "name": "t130" + } + }, + { + "id": "t131", + "input": [ + "I_1_1_0", + "S_2_1" + ], + "output": [ + "E_2_1_1", + "I_1_1_0" + ], + "properties": { + "name": "t131" + } + }, + { + "id": "t132", + "input": [ + "I_1_1_1", + "S_2_1" + ], + "output": [ + "E_2_1_1", + "I_1_1_1" + ], + "properties": { + "name": "t132" + } + }, + { + "id": "t133", + "input": [ + "I_2_1_0", + "S_2_1" + ], + "output": [ + "E_2_1_1", + "I_2_1_0" + ], + "properties": { + "name": "t133" + } + }, + { + "id": "t134", + "input": [ + "I_2_1_1", + "S_2_1" + ], + "output": [ + "E_2_1_1", + "I_2_1_1" + ], + "properties": { + "name": "t134" + } + }, + { + "id": "t135", + "input": [ + "I_3_1_0", + "S_2_1" + ], + "output": [ + "E_2_1_1", + "I_3_1_0" + ], + "properties": { + "name": "t135" + } + }, + { + "id": "t136", + "input": [ + "I_3_1_1", + "S_2_1" + ], + "output": [ + "E_2_1_1", + "I_3_1_1" + ], + "properties": { + "name": "t136" + } + }, + { + "id": "t137", + "input": [ + "I_0_2_0", + "S_2_1" + ], + "output": [ + "E_2_2_1", + "I_0_2_0" + ], + "properties": { + "name": "t137" + } + }, + { + "id": "t138", + "input": [ + "I_0_2_1", + "S_2_1" + ], + "output": [ + "E_2_2_1", + "I_0_2_1" + ], + "properties": { + "name": "t138" + } + }, + { + "id": "t139", + "input": [ + "I_1_2_0", + "S_2_1" + ], + "output": [ + "E_2_2_1", + "I_1_2_0" + ], + "properties": { + "name": "t139" + } + }, + { + "id": "t140", + "input": [ + "I_1_2_1", + "S_2_1" + ], + "output": [ + "E_2_2_1", + "I_1_2_1" + ], + "properties": { + "name": "t140" + } + }, + { + "id": "t141", + "input": [ + "I_2_2_0", + "S_2_1" + ], + "output": [ + "E_2_2_1", + "I_2_2_0" + ], + "properties": { + "name": "t141" + } + }, + { + "id": "t142", + "input": [ + "I_2_2_1", + "S_2_1" + ], + "output": [ + "E_2_2_1", + "I_2_2_1" + ], + "properties": { + "name": "t142" + } + }, + { + "id": "t143", + "input": [ + "I_3_2_0", + "S_2_1" + ], + "output": [ + "E_2_2_1", + "I_3_2_0" + ], + "properties": { + "name": "t143" + } + }, + { + "id": "t144", + "input": [ + "I_3_2_1", + "S_2_1" + ], + "output": [ + "E_2_2_1", + "I_3_2_1" + ], + "properties": { + "name": "t144" + } + }, + { + "id": "t145", + "input": [ + "I_0_0_0", + "S_3_0" + ], + "output": [ + "E_3_0_0", + "I_0_0_0" + ], + "properties": { + "name": "t145" + } + }, + { + "id": "t146", + "input": [ + "I_0_0_1", + "S_3_0" + ], + "output": [ + "E_3_0_0", + "I_0_0_1" + ], + "properties": { + "name": "t146" + } + }, + { + "id": "t147", + "input": [ + "I_1_0_0", + "S_3_0" + ], + "output": [ + "E_3_0_0", + "I_1_0_0" + ], + "properties": { + "name": "t147" + } + }, + { + "id": "t148", + "input": [ + "I_1_0_1", + "S_3_0" + ], + "output": [ + "E_3_0_0", + "I_1_0_1" + ], + "properties": { + "name": "t148" + } + }, + { + "id": "t149", + "input": [ + "I_2_0_0", + "S_3_0" + ], + "output": [ + "E_3_0_0", + "I_2_0_0" + ], + "properties": { + "name": "t149" + } + }, + { + "id": "t150", + "input": [ + "I_2_0_1", + "S_3_0" + ], + "output": [ + "E_3_0_0", + "I_2_0_1" + ], + "properties": { + "name": "t150" + } + }, + { + "id": "t151", + "input": [ + "I_3_0_0", + "S_3_0" + ], + "output": [ + "E_3_0_0", + "I_3_0_0" + ], + "properties": { + "name": "t151" + } + }, + { + "id": "t152", + "input": [ + "I_3_0_1", + "S_3_0" + ], + "output": [ + "E_3_0_0", + "I_3_0_1" + ], + "properties": { + "name": "t152" + } + }, + { + "id": "t153", + "input": [ + "I_0_1_0", + "S_3_0" + ], + "output": [ + "E_3_1_0", + "I_0_1_0" + ], + "properties": { + "name": "t153" + } + }, + { + "id": "t154", + "input": [ + "I_0_1_1", + "S_3_0" + ], + "output": [ + "E_3_1_0", + "I_0_1_1" + ], + "properties": { + "name": "t154" + } + }, + { + "id": "t155", + "input": [ + "I_1_1_0", + "S_3_0" + ], + "output": [ + "E_3_1_0", + "I_1_1_0" + ], + "properties": { + "name": "t155" + } + }, + { + "id": "t156", + "input": [ + "I_1_1_1", + "S_3_0" + ], + "output": [ + "E_3_1_0", + "I_1_1_1" + ], + "properties": { + "name": "t156" + } + }, + { + "id": "t157", + "input": [ + "I_2_1_0", + "S_3_0" + ], + "output": [ + "E_3_1_0", + "I_2_1_0" + ], + "properties": { + "name": "t157" + } + }, + { + "id": "t158", + "input": [ + "I_2_1_1", + "S_3_0" + ], + "output": [ + "E_3_1_0", + "I_2_1_1" + ], + "properties": { + "name": "t158" + } + }, + { + "id": "t159", + "input": [ + "I_3_1_0", + "S_3_0" + ], + "output": [ + "E_3_1_0", + "I_3_1_0" + ], + "properties": { + "name": "t159" + } + }, + { + "id": "t160", + "input": [ + "I_3_1_1", + "S_3_0" + ], + "output": [ + "E_3_1_0", + "I_3_1_1" + ], + "properties": { + "name": "t160" + } + }, + { + "id": "t161", + "input": [ + "I_0_2_0", + "S_3_0" + ], + "output": [ + "E_3_2_0", + "I_0_2_0" + ], + "properties": { + "name": "t161" + } + }, + { + "id": "t162", + "input": [ + "I_0_2_1", + "S_3_0" + ], + "output": [ + "E_3_2_0", + "I_0_2_1" + ], + "properties": { + "name": "t162" + } + }, + { + "id": "t163", + "input": [ + "I_1_2_0", + "S_3_0" + ], + "output": [ + "E_3_2_0", + "I_1_2_0" + ], + "properties": { + "name": "t163" + } + }, + { + "id": "t164", + "input": [ + "I_1_2_1", + "S_3_0" + ], + "output": [ + "E_3_2_0", + "I_1_2_1" + ], + "properties": { + "name": "t164" + } + }, + { + "id": "t165", + "input": [ + "I_2_2_0", + "S_3_0" + ], + "output": [ + "E_3_2_0", + "I_2_2_0" + ], + "properties": { + "name": "t165" + } + }, + { + "id": "t166", + "input": [ + "I_2_2_1", + "S_3_0" + ], + "output": [ + "E_3_2_0", + "I_2_2_1" + ], + "properties": { + "name": "t166" + } + }, + { + "id": "t167", + "input": [ + "I_3_2_0", + "S_3_0" + ], + "output": [ + "E_3_2_0", + "I_3_2_0" + ], + "properties": { + "name": "t167" + } + }, + { + "id": "t168", + "input": [ + "I_3_2_1", + "S_3_0" + ], + "output": [ + "E_3_2_0", + "I_3_2_1" + ], + "properties": { + "name": "t168" + } + }, + { + "id": "t169", + "input": [ + "I_0_0_0", + "S_3_1" + ], + "output": [ + "E_3_0_1", + "I_0_0_0" + ], + "properties": { + "name": "t169" + } + }, + { + "id": "t170", + "input": [ + "I_0_0_1", + "S_3_1" + ], + "output": [ + "E_3_0_1", + "I_0_0_1" + ], + "properties": { + "name": "t170" + } + }, + { + "id": "t171", + "input": [ + "I_1_0_0", + "S_3_1" + ], + "output": [ + "E_3_0_1", + "I_1_0_0" + ], + "properties": { + "name": "t171" + } + }, + { + "id": "t172", + "input": [ + "I_1_0_1", + "S_3_1" + ], + "output": [ + "E_3_0_1", + "I_1_0_1" + ], + "properties": { + "name": "t172" + } + }, + { + "id": "t173", + "input": [ + "I_2_0_0", + "S_3_1" + ], + "output": [ + "E_3_0_1", + "I_2_0_0" + ], + "properties": { + "name": "t173" + } + }, + { + "id": "t174", + "input": [ + "I_2_0_1", + "S_3_1" + ], + "output": [ + "E_3_0_1", + "I_2_0_1" + ], + "properties": { + "name": "t174" + } + }, + { + "id": "t175", + "input": [ + "I_3_0_0", + "S_3_1" + ], + "output": [ + "E_3_0_1", + "I_3_0_0" + ], + "properties": { + "name": "t175" + } + }, + { + "id": "t176", + "input": [ + "I_3_0_1", + "S_3_1" + ], + "output": [ + "E_3_0_1", + "I_3_0_1" + ], + "properties": { + "name": "t176" + } + }, + { + "id": "t177", + "input": [ + "I_0_1_0", + "S_3_1" + ], + "output": [ + "E_3_1_1", + "I_0_1_0" + ], + "properties": { + "name": "t177" + } + }, + { + "id": "t178", + "input": [ + "I_0_1_1", + "S_3_1" + ], + "output": [ + "E_3_1_1", + "I_0_1_1" + ], + "properties": { + "name": "t178" + } + }, + { + "id": "t179", + "input": [ + "I_1_1_0", + "S_3_1" + ], + "output": [ + "E_3_1_1", + "I_1_1_0" + ], + "properties": { + "name": "t179" + } + }, + { + "id": "t180", + "input": [ + "I_1_1_1", + "S_3_1" + ], + "output": [ + "E_3_1_1", + "I_1_1_1" + ], + "properties": { + "name": "t180" + } + }, + { + "id": "t181", + "input": [ + "I_2_1_0", + "S_3_1" + ], + "output": [ + "E_3_1_1", + "I_2_1_0" + ], + "properties": { + "name": "t181" + } + }, + { + "id": "t182", + "input": [ + "I_2_1_1", + "S_3_1" + ], + "output": [ + "E_3_1_1", + "I_2_1_1" + ], + "properties": { + "name": "t182" + } + }, + { + "id": "t183", + "input": [ + "I_3_1_0", + "S_3_1" + ], + "output": [ + "E_3_1_1", + "I_3_1_0" + ], + "properties": { + "name": "t183" + } + }, + { + "id": "t184", + "input": [ + "I_3_1_1", + "S_3_1" + ], + "output": [ + "E_3_1_1", + "I_3_1_1" + ], + "properties": { + "name": "t184" + } + }, + { + "id": "t185", + "input": [ + "I_0_2_0", + "S_3_1" + ], + "output": [ + "E_3_2_1", + "I_0_2_0" + ], + "properties": { + "name": "t185" + } + }, + { + "id": "t186", + "input": [ + "I_0_2_1", + "S_3_1" + ], + "output": [ + "E_3_2_1", + "I_0_2_1" + ], + "properties": { + "name": "t186" + } + }, + { + "id": "t187", + "input": [ + "I_1_2_0", + "S_3_1" + ], + "output": [ + "E_3_2_1", + "I_1_2_0" + ], + "properties": { + "name": "t187" + } + }, + { + "id": "t188", + "input": [ + "I_1_2_1", + "S_3_1" + ], + "output": [ + "E_3_2_1", + "I_1_2_1" + ], + "properties": { + "name": "t188" + } + }, + { + "id": "t189", + "input": [ + "I_2_2_0", + "S_3_1" + ], + "output": [ + "E_3_2_1", + "I_2_2_0" + ], + "properties": { + "name": "t189" + } + }, + { + "id": "t190", + "input": [ + "I_2_2_1", + "S_3_1" + ], + "output": [ + "E_3_2_1", + "I_2_2_1" + ], + "properties": { + "name": "t190" + } + }, + { + "id": "t191", + "input": [ + "I_3_2_0", + "S_3_1" + ], + "output": [ + "E_3_2_1", + "I_3_2_0" + ], + "properties": { + "name": "t191" + } + }, + { + "id": "t192", + "input": [ + "I_3_2_1", + "S_3_1" + ], + "output": [ + "E_3_2_1", + "I_3_2_1" + ], + "properties": { + "name": "t192" + } + }, + { + "id": "t193", + "input": [ + "E_0_0_0" + ], + "output": [ + "I_0_0_0" + ], + "properties": { + "name": "t193" + } + }, + { + "id": "t194", + "input": [ + "E_0_0_1" + ], + "output": [ + "I_0_0_1" + ], + "properties": { + "name": "t194" + } + }, + { + "id": "t195", + "input": [ + "E_0_1_0" + ], + "output": [ + "I_0_1_0" + ], + "properties": { + "name": "t195" + } + }, + { + "id": "t196", + "input": [ + "E_0_1_1" + ], + "output": [ + "I_0_1_1" + ], + "properties": { + "name": "t196" + } + }, + { + "id": "t197", + "input": [ + "E_0_2_0" + ], + "output": [ + "I_0_2_0" + ], + "properties": { + "name": "t197" + } + }, + { + "id": "t198", + "input": [ + "E_0_2_1" + ], + "output": [ + "I_0_2_1" + ], + "properties": { + "name": "t198" + } + }, + { + "id": "t199", + "input": [ + "E_1_0_0" + ], + "output": [ + "I_1_0_0" + ], + "properties": { + "name": "t199" + } + }, + { + "id": "t200", + "input": [ + "E_1_0_1" + ], + "output": [ + "I_1_0_1" + ], + "properties": { + "name": "t200" + } + }, + { + "id": "t201", + "input": [ + "E_1_1_0" + ], + "output": [ + "I_1_1_0" + ], + "properties": { + "name": "t201" + } + }, + { + "id": "t202", + "input": [ + "E_1_1_1" + ], + "output": [ + "I_1_1_1" + ], + "properties": { + "name": "t202" + } + }, + { + "id": "t203", + "input": [ + "E_1_2_0" + ], + "output": [ + "I_1_2_0" + ], + "properties": { + "name": "t203" + } + }, + { + "id": "t204", + "input": [ + "E_1_2_1" + ], + "output": [ + "I_1_2_1" + ], + "properties": { + "name": "t204" + } + }, + { + "id": "t205", + "input": [ + "E_2_0_0" + ], + "output": [ + "I_2_0_0" + ], + "properties": { + "name": "t205" + } + }, + { + "id": "t206", + "input": [ + "E_2_0_1" + ], + "output": [ + "I_2_0_1" + ], + "properties": { + "name": "t206" + } + }, + { + "id": "t207", + "input": [ + "E_2_1_0" + ], + "output": [ + "I_2_1_0" + ], + "properties": { + "name": "t207" + } + }, + { + "id": "t208", + "input": [ + "E_2_1_1" + ], + "output": [ + "I_2_1_1" + ], + "properties": { + "name": "t208" + } + }, + { + "id": "t209", + "input": [ + "E_2_2_0" + ], + "output": [ + "I_2_2_0" + ], + "properties": { + "name": "t209" + } + }, + { + "id": "t210", + "input": [ + "E_2_2_1" + ], + "output": [ + "I_2_2_1" + ], + "properties": { + "name": "t210" + } + }, + { + "id": "t211", + "input": [ + "E_3_0_0" + ], + "output": [ + "I_3_0_0" + ], + "properties": { + "name": "t211" + } + }, + { + "id": "t212", + "input": [ + "E_3_0_1" + ], + "output": [ + "I_3_0_1" + ], + "properties": { + "name": "t212" + } + }, + { + "id": "t213", + "input": [ + "E_3_1_0" + ], + "output": [ + "I_3_1_0" + ], + "properties": { + "name": "t213" + } + }, + { + "id": "t214", + "input": [ + "E_3_1_1" + ], + "output": [ + "I_3_1_1" + ], + "properties": { + "name": "t214" + } + }, + { + "id": "t215", + "input": [ + "E_3_2_0" + ], + "output": [ + "I_3_2_0" + ], + "properties": { + "name": "t215" + } + }, + { + "id": "t216", + "input": [ + "E_3_2_1" + ], + "output": [ + "I_3_2_1" + ], + "properties": { + "name": "t216" + } + }, + { + "id": "t217", + "input": [ + "I_0_0_0" + ], + "output": [ + "R_0_0_0" + ], + "properties": { + "name": "t217" + } + }, + { + "id": "t218", + "input": [ + "I_0_0_1" + ], + "output": [ + "R_0_0_1" + ], + "properties": { + "name": "t218" + } + }, + { + "id": "t219", + "input": [ + "I_0_1_0" + ], + "output": [ + "R_0_1_0" + ], + "properties": { + "name": "t219" + } + }, + { + "id": "t220", + "input": [ + "I_0_1_1" + ], + "output": [ + "R_0_1_1" + ], + "properties": { + "name": "t220" + } + }, + { + "id": "t221", + "input": [ + "I_0_2_0" + ], + "output": [ + "R_0_2_0" + ], + "properties": { + "name": "t221" + } + }, + { + "id": "t222", + "input": [ + "I_0_2_1" + ], + "output": [ + "R_0_2_1" + ], + "properties": { + "name": "t222" + } + }, + { + "id": "t223", + "input": [ + "I_1_0_0" + ], + "output": [ + "R_1_0_0" + ], + "properties": { + "name": "t223" + } + }, + { + "id": "t224", + "input": [ + "I_1_0_1" + ], + "output": [ + "R_1_0_1" + ], + "properties": { + "name": "t224" + } + }, + { + "id": "t225", + "input": [ + "I_1_1_0" + ], + "output": [ + "R_1_1_0" + ], + "properties": { + "name": "t225" + } + }, + { + "id": "t226", + "input": [ + "I_1_1_1" + ], + "output": [ + "R_1_1_1" + ], + "properties": { + "name": "t226" + } + }, + { + "id": "t227", + "input": [ + "I_1_2_0" + ], + "output": [ + "R_1_2_0" + ], + "properties": { + "name": "t227" + } + }, + { + "id": "t228", + "input": [ + "I_1_2_1" + ], + "output": [ + "R_1_2_1" + ], + "properties": { + "name": "t228" + } + }, + { + "id": "t229", + "input": [ + "I_2_0_0" + ], + "output": [ + "R_2_0_0" + ], + "properties": { + "name": "t229" + } + }, + { + "id": "t230", + "input": [ + "I_2_0_1" + ], + "output": [ + "R_2_0_1" + ], + "properties": { + "name": "t230" + } + }, + { + "id": "t231", + "input": [ + "I_2_1_0" + ], + "output": [ + "R_2_1_0" + ], + "properties": { + "name": "t231" + } + }, + { + "id": "t232", + "input": [ + "I_2_1_1" + ], + "output": [ + "R_2_1_1" + ], + "properties": { + "name": "t232" + } + }, + { + "id": "t233", + "input": [ + "I_2_2_0" + ], + "output": [ + "R_2_2_0" + ], + "properties": { + "name": "t233" + } + }, + { + "id": "t234", + "input": [ + "I_2_2_1" + ], + "output": [ + "R_2_2_1" + ], + "properties": { + "name": "t234" + } + }, + { + "id": "t235", + "input": [ + "I_3_0_0" + ], + "output": [ + "R_3_0_0" + ], + "properties": { + "name": "t235" + } + }, + { + "id": "t236", + "input": [ + "I_3_0_1" + ], + "output": [ + "R_3_0_1" + ], + "properties": { + "name": "t236" + } + }, + { + "id": "t237", + "input": [ + "I_3_1_0" + ], + "output": [ + "R_3_1_0" + ], + "properties": { + "name": "t237" + } + }, + { + "id": "t238", + "input": [ + "I_3_1_1" + ], + "output": [ + "R_3_1_1" + ], + "properties": { + "name": "t238" + } + }, + { + "id": "t239", + "input": [ + "I_3_2_0" + ], + "output": [ + "R_3_2_0" + ], + "properties": { + "name": "t239" + } + }, + { + "id": "t240", + "input": [ + "I_3_2_1" + ], + "output": [ + "R_3_2_1" + ], + "properties": { + "name": "t240" + } + }, + { + "id": "t241", + "input": [ + "I_0_0_0" + ], + "output": [ + "H_0_0_0" + ], + "properties": { + "name": "t241" + } + }, + { + "id": "t242", + "input": [ + "I_0_0_1" + ], + "output": [ + "H_0_0_1" + ], + "properties": { + "name": "t242" + } + }, + { + "id": "t243", + "input": [ + "I_0_1_0" + ], + "output": [ + "H_0_1_0" + ], + "properties": { + "name": "t243" + } + }, + { + "id": "t244", + "input": [ + "I_0_1_1" + ], + "output": [ + "H_0_1_1" + ], + "properties": { + "name": "t244" + } + }, + { + "id": "t245", + "input": [ + "I_0_2_0" + ], + "output": [ + "H_0_2_0" + ], + "properties": { + "name": "t245" + } + }, + { + "id": "t246", + "input": [ + "I_0_2_1" + ], + "output": [ + "H_0_2_1" + ], + "properties": { + "name": "t246" + } + }, + { + "id": "t247", + "input": [ + "I_1_0_0" + ], + "output": [ + "H_1_0_0" + ], + "properties": { + "name": "t247" + } + }, + { + "id": "t248", + "input": [ + "I_1_0_1" + ], + "output": [ + "H_1_0_1" + ], + "properties": { + "name": "t248" + } + }, + { + "id": "t249", + "input": [ + "I_1_1_0" + ], + "output": [ + "H_1_1_0" + ], + "properties": { + "name": "t249" + } + }, + { + "id": "t250", + "input": [ + "I_1_1_1" + ], + "output": [ + "H_1_1_1" + ], + "properties": { + "name": "t250" + } + }, + { + "id": "t251", + "input": [ + "I_1_2_0" + ], + "output": [ + "H_1_2_0" + ], + "properties": { + "name": "t251" + } + }, + { + "id": "t252", + "input": [ + "I_1_2_1" + ], + "output": [ + "H_1_2_1" + ], + "properties": { + "name": "t252" + } + }, + { + "id": "t253", + "input": [ + "I_2_0_0" + ], + "output": [ + "H_2_0_0" + ], + "properties": { + "name": "t253" + } + }, + { + "id": "t254", + "input": [ + "I_2_0_1" + ], + "output": [ + "H_2_0_1" + ], + "properties": { + "name": "t254" + } + }, + { + "id": "t255", + "input": [ + "I_2_1_0" + ], + "output": [ + "H_2_1_0" + ], + "properties": { + "name": "t255" + } + }, + { + "id": "t256", + "input": [ + "I_2_1_1" + ], + "output": [ + "H_2_1_1" + ], + "properties": { + "name": "t256" + } + }, + { + "id": "t257", + "input": [ + "I_2_2_0" + ], + "output": [ + "H_2_2_0" + ], + "properties": { + "name": "t257" + } + }, + { + "id": "t258", + "input": [ + "I_2_2_1" + ], + "output": [ + "H_2_2_1" + ], + "properties": { + "name": "t258" + } + }, + { + "id": "t259", + "input": [ + "I_3_0_0" + ], + "output": [ + "H_3_0_0" + ], + "properties": { + "name": "t259" + } + }, + { + "id": "t260", + "input": [ + "I_3_0_1" + ], + "output": [ + "H_3_0_1" + ], + "properties": { + "name": "t260" + } + }, + { + "id": "t261", + "input": [ + "I_3_1_0" + ], + "output": [ + "H_3_1_0" + ], + "properties": { + "name": "t261" + } + }, + { + "id": "t262", + "input": [ + "I_3_1_1" + ], + "output": [ + "H_3_1_1" + ], + "properties": { + "name": "t262" + } + }, + { + "id": "t263", + "input": [ + "I_3_2_0" + ], + "output": [ + "H_3_2_0" + ], + "properties": { + "name": "t263" + } + }, + { + "id": "t264", + "input": [ + "I_3_2_1" + ], + "output": [ + "H_3_2_1" + ], + "properties": { + "name": "t264" + } + }, + { + "id": "t265", + "input": [ + "H_0_0_0" + ], + "output": [ + "R_0_0_0" + ], + "properties": { + "name": "t265" + } + }, + { + "id": "t266", + "input": [ + "H_0_0_1" + ], + "output": [ + "R_0_0_1" + ], + "properties": { + "name": "t266" + } + }, + { + "id": "t267", + "input": [ + "H_0_1_0" + ], + "output": [ + "R_0_1_0" + ], + "properties": { + "name": "t267" + } + }, + { + "id": "t268", + "input": [ + "H_0_1_1" + ], + "output": [ + "R_0_1_1" + ], + "properties": { + "name": "t268" + } + }, + { + "id": "t269", + "input": [ + "H_0_2_0" + ], + "output": [ + "R_0_2_0" + ], + "properties": { + "name": "t269" + } + }, + { + "id": "t270", + "input": [ + "H_0_2_1" + ], + "output": [ + "R_0_2_1" + ], + "properties": { + "name": "t270" + } + }, + { + "id": "t271", + "input": [ + "H_1_0_0" + ], + "output": [ + "R_1_0_0" + ], + "properties": { + "name": "t271" + } + }, + { + "id": "t272", + "input": [ + "H_1_0_1" + ], + "output": [ + "R_1_0_1" + ], + "properties": { + "name": "t272" + } + }, + { + "id": "t273", + "input": [ + "H_1_1_0" + ], + "output": [ + "R_1_1_0" + ], + "properties": { + "name": "t273" + } + }, + { + "id": "t274", + "input": [ + "H_1_1_1" + ], + "output": [ + "R_1_1_1" + ], + "properties": { + "name": "t274" + } + }, + { + "id": "t275", + "input": [ + "H_1_2_0" + ], + "output": [ + "R_1_2_0" + ], + "properties": { + "name": "t275" + } + }, + { + "id": "t276", + "input": [ + "H_1_2_1" + ], + "output": [ + "R_1_2_1" + ], + "properties": { + "name": "t276" + } + }, + { + "id": "t277", + "input": [ + "H_2_0_0" + ], + "output": [ + "R_2_0_0" + ], + "properties": { + "name": "t277" + } + }, + { + "id": "t278", + "input": [ + "H_2_0_1" + ], + "output": [ + "R_2_0_1" + ], + "properties": { + "name": "t278" + } + }, + { + "id": "t279", + "input": [ + "H_2_1_0" + ], + "output": [ + "R_2_1_0" + ], + "properties": { + "name": "t279" + } + }, + { + "id": "t280", + "input": [ + "H_2_1_1" + ], + "output": [ + "R_2_1_1" + ], + "properties": { + "name": "t280" + } + }, + { + "id": "t281", + "input": [ + "H_2_2_0" + ], + "output": [ + "R_2_2_0" + ], + "properties": { + "name": "t281" + } + }, + { + "id": "t282", + "input": [ + "H_2_2_1" + ], + "output": [ + "R_2_2_1" + ], + "properties": { + "name": "t282" + } + }, + { + "id": "t283", + "input": [ + "H_3_0_0" + ], + "output": [ + "R_3_0_0" + ], + "properties": { + "name": "t283" + } + }, + { + "id": "t284", + "input": [ + "H_3_0_1" + ], + "output": [ + "R_3_0_1" + ], + "properties": { + "name": "t284" + } + }, + { + "id": "t285", + "input": [ + "H_3_1_0" + ], + "output": [ + "R_3_1_0" + ], + "properties": { + "name": "t285" + } + }, + { + "id": "t286", + "input": [ + "H_3_1_1" + ], + "output": [ + "R_3_1_1" + ], + "properties": { + "name": "t286" + } + }, + { + "id": "t287", + "input": [ + "H_3_2_0" + ], + "output": [ + "R_3_2_0" + ], + "properties": { + "name": "t287" + } + }, + { + "id": "t288", + "input": [ + "H_3_2_1" + ], + "output": [ + "R_3_2_1" + ], + "properties": { + "name": "t288" + } + }, + { + "id": "t289", + "input": [ + "H_0_0_0" + ], + "output": [ + "D_0_0_0" + ], + "properties": { + "name": "t289" + } + }, + { + "id": "t290", + "input": [ + "H_0_0_1" + ], + "output": [ + "D_0_0_1" + ], + "properties": { + "name": "t290" + } + }, + { + "id": "t291", + "input": [ + "H_0_1_0" + ], + "output": [ + "D_0_1_0" + ], + "properties": { + "name": "t291" + } + }, + { + "id": "t292", + "input": [ + "H_0_1_1" + ], + "output": [ + "D_0_1_1" + ], + "properties": { + "name": "t292" + } + }, + { + "id": "t293", + "input": [ + "H_0_2_0" + ], + "output": [ + "D_0_2_0" + ], + "properties": { + "name": "t293" + } + }, + { + "id": "t294", + "input": [ + "H_0_2_1" + ], + "output": [ + "D_0_2_1" + ], + "properties": { + "name": "t294" + } + }, + { + "id": "t295", + "input": [ + "H_1_0_0" + ], + "output": [ + "D_1_0_0" + ], + "properties": { + "name": "t295" + } + }, + { + "id": "t296", + "input": [ + "H_1_0_1" + ], + "output": [ + "D_1_0_1" + ], + "properties": { + "name": "t296" + } + }, + { + "id": "t297", + "input": [ + "H_1_1_0" + ], + "output": [ + "D_1_1_0" + ], + "properties": { + "name": "t297" + } + }, + { + "id": "t298", + "input": [ + "H_1_1_1" + ], + "output": [ + "D_1_1_1" + ], + "properties": { + "name": "t298" + } + }, + { + "id": "t299", + "input": [ + "H_1_2_0" + ], + "output": [ + "D_1_2_0" + ], + "properties": { + "name": "t299" + } + }, + { + "id": "t300", + "input": [ + "H_1_2_1" + ], + "output": [ + "D_1_2_1" + ], + "properties": { + "name": "t300" + } + }, + { + "id": "t301", + "input": [ + "H_2_0_0" + ], + "output": [ + "D_2_0_0" + ], + "properties": { + "name": "t301" + } + }, + { + "id": "t302", + "input": [ + "H_2_0_1" + ], + "output": [ + "D_2_0_1" + ], + "properties": { + "name": "t302" + } + }, + { + "id": "t303", + "input": [ + "H_2_1_0" + ], + "output": [ + "D_2_1_0" + ], + "properties": { + "name": "t303" + } + }, + { + "id": "t304", + "input": [ + "H_2_1_1" + ], + "output": [ + "D_2_1_1" + ], + "properties": { + "name": "t304" + } + }, + { + "id": "t305", + "input": [ + "H_2_2_0" + ], + "output": [ + "D_2_2_0" + ], + "properties": { + "name": "t305" + } + }, + { + "id": "t306", + "input": [ + "H_2_2_1" + ], + "output": [ + "D_2_2_1" + ], + "properties": { + "name": "t306" + } + }, + { + "id": "t307", + "input": [ + "H_3_0_0" + ], + "output": [ + "D_3_0_0" + ], + "properties": { + "name": "t307" + } + }, + { + "id": "t308", + "input": [ + "H_3_0_1" + ], + "output": [ + "D_3_0_1" + ], + "properties": { + "name": "t308" + } + }, + { + "id": "t309", + "input": [ + "H_3_1_0" + ], + "output": [ + "D_3_1_0" + ], + "properties": { + "name": "t309" + } + }, + { + "id": "t310", + "input": [ + "H_3_1_1" + ], + "output": [ + "D_3_1_1" + ], + "properties": { + "name": "t310" + } + }, + { + "id": "t311", + "input": [ + "H_3_2_0" + ], + "output": [ + "D_3_2_0" + ], + "properties": { + "name": "t311" + } + }, + { + "id": "t312", + "input": [ + "H_3_2_1" + ], + "output": [ + "D_3_2_1" + ], + "properties": { + "name": "t312" + } + }, + { + "id": "t313", + "input": [ + "S_0_0" + ], + "output": [ + "S_0_1" + ], + "properties": { + "name": "t313" + } + }, + { + "id": "t314", + "input": [ + "S_1_0" + ], + "output": [ + "S_1_1" + ], + "properties": { + "name": "t314" + } + }, + { + "id": "t315", + "input": [ + "S_2_0" + ], + "output": [ + "S_2_1" + ], + "properties": { + "name": "t315" + } + }, + { + "id": "t316", + "input": [ + "S_3_0" + ], + "output": [ + "S_3_1" + ], + "properties": { + "name": "t316" + } + } + ] + }, + "schema_name": "petrinet", + "model_version": "0.1", + "semantics": { + "ode": { + "rates": [ + { + "target": "t1", + "expression": "I_0_0_0*S_0_0*chi_0*d_0_0*phi_0*q", + "expression_mathml": "I_0_0_0S_0_0chi_0d_0_0phi_0q" + }, + { + "target": "t2", + "expression": "I_0_0_1*S_0_0*chi_0*d_0_0*phi_0*q", + "expression_mathml": "I_0_0_1S_0_0chi_0d_0_0phi_0q" + }, + { + "target": "t3", + "expression": "I_1_0_0*S_0_0*chi_0*d_0_1*phi_0*q", + "expression_mathml": "I_1_0_0S_0_0chi_0d_0_1phi_0q" + }, + { + "target": "t4", + "expression": "I_1_0_1*S_0_0*chi_0*d_0_1*phi_0*q", + "expression_mathml": "I_1_0_1S_0_0chi_0d_0_1phi_0q" + }, + { + "target": "t5", + "expression": "I_2_0_0*S_0_0*chi_0*d_0_2*phi_0*q", + "expression_mathml": "I_2_0_0S_0_0chi_0d_0_2phi_0q" + }, + { + "target": "t6", + "expression": "I_2_0_1*S_0_0*chi_0*d_0_2*phi_0*q", + "expression_mathml": "I_2_0_1S_0_0chi_0d_0_2phi_0q" + }, + { + "target": "t7", + "expression": "I_3_0_0*S_0_0*chi_0*d_0_3*phi_0*q", + "expression_mathml": "I_3_0_0S_0_0chi_0d_0_3phi_0q" + }, + { + "target": "t8", + "expression": "I_3_0_1*S_0_0*chi_0*d_0_3*phi_0*q", + "expression_mathml": "I_3_0_1S_0_0chi_0d_0_3phi_0q" + }, + { + "target": "t9", + "expression": "I_0_1_0*S_0_0*chi_1*d_0_0*phi_0*q", + "expression_mathml": "I_0_1_0S_0_0chi_1d_0_0phi_0q" + }, + { + "target": "t10", + "expression": "I_0_1_1*S_0_0*chi_1*d_0_0*phi_0*q", + "expression_mathml": "I_0_1_1S_0_0chi_1d_0_0phi_0q" + }, + { + "target": "t11", + "expression": "I_1_1_0*S_0_0*chi_1*d_0_1*phi_0*q", + "expression_mathml": "I_1_1_0S_0_0chi_1d_0_1phi_0q" + }, + { + "target": "t12", + "expression": "I_1_1_1*S_0_0*chi_1*d_0_1*phi_0*q", + "expression_mathml": "I_1_1_1S_0_0chi_1d_0_1phi_0q" + }, + { + "target": "t13", + "expression": "I_2_1_0*S_0_0*chi_1*d_0_2*phi_0*q", + "expression_mathml": "I_2_1_0S_0_0chi_1d_0_2phi_0q" + }, + { + "target": "t14", + "expression": "I_2_1_1*S_0_0*chi_1*d_0_2*phi_0*q", + "expression_mathml": "I_2_1_1S_0_0chi_1d_0_2phi_0q" + }, + { + "target": "t15", + "expression": "I_3_1_0*S_0_0*chi_1*d_0_3*phi_0*q", + "expression_mathml": "I_3_1_0S_0_0chi_1d_0_3phi_0q" + }, + { + "target": "t16", + "expression": "I_3_1_1*S_0_0*chi_1*d_0_3*phi_0*q", + "expression_mathml": "I_3_1_1S_0_0chi_1d_0_3phi_0q" + }, + { + "target": "t17", + "expression": "I_0_2_0*S_0_0*chi_2*d_0_0*phi_0*q", + "expression_mathml": "I_0_2_0S_0_0chi_2d_0_0phi_0q" + }, + { + "target": "t18", + "expression": "I_0_2_1*S_0_0*chi_2*d_0_0*phi_0*q", + "expression_mathml": "I_0_2_1S_0_0chi_2d_0_0phi_0q" + }, + { + "target": "t19", + "expression": "I_1_2_0*S_0_0*chi_2*d_0_1*phi_0*q", + "expression_mathml": "I_1_2_0S_0_0chi_2d_0_1phi_0q" + }, + { + "target": "t20", + "expression": "I_1_2_1*S_0_0*chi_2*d_0_1*phi_0*q", + "expression_mathml": "I_1_2_1S_0_0chi_2d_0_1phi_0q" + }, + { + "target": "t21", + "expression": "I_2_2_0*S_0_0*chi_2*d_0_2*phi_0*q", + "expression_mathml": "I_2_2_0S_0_0chi_2d_0_2phi_0q" + }, + { + "target": "t22", + "expression": "I_2_2_1*S_0_0*chi_2*d_0_2*phi_0*q", + "expression_mathml": "I_2_2_1S_0_0chi_2d_0_2phi_0q" + }, + { + "target": "t23", + "expression": "I_3_2_0*S_0_0*chi_2*d_0_3*phi_0*q", + "expression_mathml": "I_3_2_0S_0_0chi_2d_0_3phi_0q" + }, + { + "target": "t24", + "expression": "I_3_2_1*S_0_0*chi_2*d_0_3*phi_0*q", + "expression_mathml": "I_3_2_1S_0_0chi_2d_0_3phi_0q" + }, + { + "target": "t25", + "expression": "I_0_0_0*S_0_1*chi_0*d_0_0*phi_1*q", + "expression_mathml": "I_0_0_0S_0_1chi_0d_0_0phi_1q" + }, + { + "target": "t26", + "expression": "I_0_0_1*S_0_1*chi_0*d_0_0*phi_1*q", + "expression_mathml": "I_0_0_1S_0_1chi_0d_0_0phi_1q" + }, + { + "target": "t27", + "expression": "I_1_0_0*S_0_1*chi_0*d_0_1*phi_1*q", + "expression_mathml": "I_1_0_0S_0_1chi_0d_0_1phi_1q" + }, + { + "target": "t28", + "expression": "I_1_0_1*S_0_1*chi_0*d_0_1*phi_1*q", + "expression_mathml": "I_1_0_1S_0_1chi_0d_0_1phi_1q" + }, + { + "target": "t29", + "expression": "I_2_0_0*S_0_1*chi_0*d_0_2*phi_1*q", + "expression_mathml": "I_2_0_0S_0_1chi_0d_0_2phi_1q" + }, + { + "target": "t30", + "expression": "I_2_0_1*S_0_1*chi_0*d_0_2*phi_1*q", + "expression_mathml": "I_2_0_1S_0_1chi_0d_0_2phi_1q" + }, + { + "target": "t31", + "expression": "I_3_0_0*S_0_1*chi_0*d_0_3*phi_1*q", + "expression_mathml": "I_3_0_0S_0_1chi_0d_0_3phi_1q" + }, + { + "target": "t32", + "expression": "I_3_0_1*S_0_1*chi_0*d_0_3*phi_1*q", + "expression_mathml": "I_3_0_1S_0_1chi_0d_0_3phi_1q" + }, + { + "target": "t33", + "expression": "I_0_1_0*S_0_1*chi_1*d_0_0*phi_1*q", + "expression_mathml": "I_0_1_0S_0_1chi_1d_0_0phi_1q" + }, + { + "target": "t34", + "expression": "I_0_1_1*S_0_1*chi_1*d_0_0*phi_1*q", + "expression_mathml": "I_0_1_1S_0_1chi_1d_0_0phi_1q" + }, + { + "target": "t35", + "expression": "I_1_1_0*S_0_1*chi_1*d_0_1*phi_1*q", + "expression_mathml": "I_1_1_0S_0_1chi_1d_0_1phi_1q" + }, + { + "target": "t36", + "expression": "I_1_1_1*S_0_1*chi_1*d_0_1*phi_1*q", + "expression_mathml": "I_1_1_1S_0_1chi_1d_0_1phi_1q" + }, + { + "target": "t37", + "expression": "I_2_1_0*S_0_1*chi_1*d_0_2*phi_1*q", + "expression_mathml": "I_2_1_0S_0_1chi_1d_0_2phi_1q" + }, + { + "target": "t38", + "expression": "I_2_1_1*S_0_1*chi_1*d_0_2*phi_1*q", + "expression_mathml": "I_2_1_1S_0_1chi_1d_0_2phi_1q" + }, + { + "target": "t39", + "expression": "I_3_1_0*S_0_1*chi_1*d_0_3*phi_1*q", + "expression_mathml": "I_3_1_0S_0_1chi_1d_0_3phi_1q" + }, + { + "target": "t40", + "expression": "I_3_1_1*S_0_1*chi_1*d_0_3*phi_1*q", + "expression_mathml": "I_3_1_1S_0_1chi_1d_0_3phi_1q" + }, + { + "target": "t41", + "expression": "I_0_2_0*S_0_1*chi_2*d_0_0*phi_1*q", + "expression_mathml": "I_0_2_0S_0_1chi_2d_0_0phi_1q" + }, + { + "target": "t42", + "expression": "I_0_2_1*S_0_1*chi_2*d_0_0*phi_1*q", + "expression_mathml": "I_0_2_1S_0_1chi_2d_0_0phi_1q" + }, + { + "target": "t43", + "expression": "I_1_2_0*S_0_1*chi_2*d_0_1*phi_1*q", + "expression_mathml": "I_1_2_0S_0_1chi_2d_0_1phi_1q" + }, + { + "target": "t44", + "expression": "I_1_2_1*S_0_1*chi_2*d_0_1*phi_1*q", + "expression_mathml": "I_1_2_1S_0_1chi_2d_0_1phi_1q" + }, + { + "target": "t45", + "expression": "I_2_2_0*S_0_1*chi_2*d_0_2*phi_1*q", + "expression_mathml": "I_2_2_0S_0_1chi_2d_0_2phi_1q" + }, + { + "target": "t46", + "expression": "I_2_2_1*S_0_1*chi_2*d_0_2*phi_1*q", + "expression_mathml": "I_2_2_1S_0_1chi_2d_0_2phi_1q" + }, + { + "target": "t47", + "expression": "I_3_2_0*S_0_1*chi_2*d_0_3*phi_1*q", + "expression_mathml": "I_3_2_0S_0_1chi_2d_0_3phi_1q" + }, + { + "target": "t48", + "expression": "I_3_2_1*S_0_1*chi_2*d_0_3*phi_1*q", + "expression_mathml": "I_3_2_1S_0_1chi_2d_0_3phi_1q" + }, + { + "target": "t49", + "expression": "I_0_0_0*S_1_0*chi_0*d_1_0*phi_0*q", + "expression_mathml": "I_0_0_0S_1_0chi_0d_1_0phi_0q" + }, + { + "target": "t50", + "expression": "I_0_0_1*S_1_0*chi_0*d_1_0*phi_0*q", + "expression_mathml": "I_0_0_1S_1_0chi_0d_1_0phi_0q" + }, + { + "target": "t51", + "expression": "I_1_0_0*S_1_0*chi_0*d_1_1*phi_0*q", + "expression_mathml": "I_1_0_0S_1_0chi_0d_1_1phi_0q" + }, + { + "target": "t52", + "expression": "I_1_0_1*S_1_0*chi_0*d_1_1*phi_0*q", + "expression_mathml": "I_1_0_1S_1_0chi_0d_1_1phi_0q" + }, + { + "target": "t53", + "expression": "I_2_0_0*S_1_0*chi_0*d_1_2*phi_0*q", + "expression_mathml": "I_2_0_0S_1_0chi_0d_1_2phi_0q" + }, + { + "target": "t54", + "expression": "I_2_0_1*S_1_0*chi_0*d_1_2*phi_0*q", + "expression_mathml": "I_2_0_1S_1_0chi_0d_1_2phi_0q" + }, + { + "target": "t55", + "expression": "I_3_0_0*S_1_0*chi_0*d_1_3*phi_0*q", + "expression_mathml": "I_3_0_0S_1_0chi_0d_1_3phi_0q" + }, + { + "target": "t56", + "expression": "I_3_0_1*S_1_0*chi_0*d_1_3*phi_0*q", + "expression_mathml": "I_3_0_1S_1_0chi_0d_1_3phi_0q" + }, + { + "target": "t57", + "expression": "I_0_1_0*S_1_0*chi_1*d_1_0*phi_0*q", + "expression_mathml": "I_0_1_0S_1_0chi_1d_1_0phi_0q" + }, + { + "target": "t58", + "expression": "I_0_1_1*S_1_0*chi_1*d_1_0*phi_0*q", + "expression_mathml": "I_0_1_1S_1_0chi_1d_1_0phi_0q" + }, + { + "target": "t59", + "expression": "I_1_1_0*S_1_0*chi_1*d_1_1*phi_0*q", + "expression_mathml": "I_1_1_0S_1_0chi_1d_1_1phi_0q" + }, + { + "target": "t60", + "expression": "I_1_1_1*S_1_0*chi_1*d_1_1*phi_0*q", + "expression_mathml": "I_1_1_1S_1_0chi_1d_1_1phi_0q" + }, + { + "target": "t61", + "expression": "I_2_1_0*S_1_0*chi_1*d_1_2*phi_0*q", + "expression_mathml": "I_2_1_0S_1_0chi_1d_1_2phi_0q" + }, + { + "target": "t62", + "expression": "I_2_1_1*S_1_0*chi_1*d_1_2*phi_0*q", + "expression_mathml": "I_2_1_1S_1_0chi_1d_1_2phi_0q" + }, + { + "target": "t63", + "expression": "I_3_1_0*S_1_0*chi_1*d_1_3*phi_0*q", + "expression_mathml": "I_3_1_0S_1_0chi_1d_1_3phi_0q" + }, + { + "target": "t64", + "expression": "I_3_1_1*S_1_0*chi_1*d_1_3*phi_0*q", + "expression_mathml": "I_3_1_1S_1_0chi_1d_1_3phi_0q" + }, + { + "target": "t65", + "expression": "I_0_2_0*S_1_0*chi_2*d_1_0*phi_0*q", + "expression_mathml": "I_0_2_0S_1_0chi_2d_1_0phi_0q" + }, + { + "target": "t66", + "expression": "I_0_2_1*S_1_0*chi_2*d_1_0*phi_0*q", + "expression_mathml": "I_0_2_1S_1_0chi_2d_1_0phi_0q" + }, + { + "target": "t67", + "expression": "I_1_2_0*S_1_0*chi_2*d_1_1*phi_0*q", + "expression_mathml": "I_1_2_0S_1_0chi_2d_1_1phi_0q" + }, + { + "target": "t68", + "expression": "I_1_2_1*S_1_0*chi_2*d_1_1*phi_0*q", + "expression_mathml": "I_1_2_1S_1_0chi_2d_1_1phi_0q" + }, + { + "target": "t69", + "expression": "I_2_2_0*S_1_0*chi_2*d_1_2*phi_0*q", + "expression_mathml": "I_2_2_0S_1_0chi_2d_1_2phi_0q" + }, + { + "target": "t70", + "expression": "I_2_2_1*S_1_0*chi_2*d_1_2*phi_0*q", + "expression_mathml": "I_2_2_1S_1_0chi_2d_1_2phi_0q" + }, + { + "target": "t71", + "expression": "I_3_2_0*S_1_0*chi_2*d_1_3*phi_0*q", + "expression_mathml": "I_3_2_0S_1_0chi_2d_1_3phi_0q" + }, + { + "target": "t72", + "expression": "I_3_2_1*S_1_0*chi_2*d_1_3*phi_0*q", + "expression_mathml": "I_3_2_1S_1_0chi_2d_1_3phi_0q" + }, + { + "target": "t73", + "expression": "I_0_0_0*S_1_1*chi_0*d_1_0*phi_1*q", + "expression_mathml": "I_0_0_0S_1_1chi_0d_1_0phi_1q" + }, + { + "target": "t74", + "expression": "I_0_0_1*S_1_1*chi_0*d_1_0*phi_1*q", + "expression_mathml": "I_0_0_1S_1_1chi_0d_1_0phi_1q" + }, + { + "target": "t75", + "expression": "I_1_0_0*S_1_1*chi_0*d_1_1*phi_1*q", + "expression_mathml": "I_1_0_0S_1_1chi_0d_1_1phi_1q" + }, + { + "target": "t76", + "expression": "I_1_0_1*S_1_1*chi_0*d_1_1*phi_1*q", + "expression_mathml": "I_1_0_1S_1_1chi_0d_1_1phi_1q" + }, + { + "target": "t77", + "expression": "I_2_0_0*S_1_1*chi_0*d_1_2*phi_1*q", + "expression_mathml": "I_2_0_0S_1_1chi_0d_1_2phi_1q" + }, + { + "target": "t78", + "expression": "I_2_0_1*S_1_1*chi_0*d_1_2*phi_1*q", + "expression_mathml": "I_2_0_1S_1_1chi_0d_1_2phi_1q" + }, + { + "target": "t79", + "expression": "I_3_0_0*S_1_1*chi_0*d_1_3*phi_1*q", + "expression_mathml": "I_3_0_0S_1_1chi_0d_1_3phi_1q" + }, + { + "target": "t80", + "expression": "I_3_0_1*S_1_1*chi_0*d_1_3*phi_1*q", + "expression_mathml": "I_3_0_1S_1_1chi_0d_1_3phi_1q" + }, + { + "target": "t81", + "expression": "I_0_1_0*S_1_1*chi_1*d_1_0*phi_1*q", + "expression_mathml": "I_0_1_0S_1_1chi_1d_1_0phi_1q" + }, + { + "target": "t82", + "expression": "I_0_1_1*S_1_1*chi_1*d_1_0*phi_1*q", + "expression_mathml": "I_0_1_1S_1_1chi_1d_1_0phi_1q" + }, + { + "target": "t83", + "expression": "I_1_1_0*S_1_1*chi_1*d_1_1*phi_1*q", + "expression_mathml": "I_1_1_0S_1_1chi_1d_1_1phi_1q" + }, + { + "target": "t84", + "expression": "I_1_1_1*S_1_1*chi_1*d_1_1*phi_1*q", + "expression_mathml": "I_1_1_1S_1_1chi_1d_1_1phi_1q" + }, + { + "target": "t85", + "expression": "I_2_1_0*S_1_1*chi_1*d_1_2*phi_1*q", + "expression_mathml": "I_2_1_0S_1_1chi_1d_1_2phi_1q" + }, + { + "target": "t86", + "expression": "I_2_1_1*S_1_1*chi_1*d_1_2*phi_1*q", + "expression_mathml": "I_2_1_1S_1_1chi_1d_1_2phi_1q" + }, + { + "target": "t87", + "expression": "I_3_1_0*S_1_1*chi_1*d_1_3*phi_1*q", + "expression_mathml": "I_3_1_0S_1_1chi_1d_1_3phi_1q" + }, + { + "target": "t88", + "expression": "I_3_1_1*S_1_1*chi_1*d_1_3*phi_1*q", + "expression_mathml": "I_3_1_1S_1_1chi_1d_1_3phi_1q" + }, + { + "target": "t89", + "expression": "I_0_2_0*S_1_1*chi_2*d_1_0*phi_1*q", + "expression_mathml": "I_0_2_0S_1_1chi_2d_1_0phi_1q" + }, + { + "target": "t90", + "expression": "I_0_2_1*S_1_1*chi_2*d_1_0*phi_1*q", + "expression_mathml": "I_0_2_1S_1_1chi_2d_1_0phi_1q" + }, + { + "target": "t91", + "expression": "I_1_2_0*S_1_1*chi_2*d_1_1*phi_1*q", + "expression_mathml": "I_1_2_0S_1_1chi_2d_1_1phi_1q" + }, + { + "target": "t92", + "expression": "I_1_2_1*S_1_1*chi_2*d_1_1*phi_1*q", + "expression_mathml": "I_1_2_1S_1_1chi_2d_1_1phi_1q" + }, + { + "target": "t93", + "expression": "I_2_2_0*S_1_1*chi_2*d_1_2*phi_1*q", + "expression_mathml": "I_2_2_0S_1_1chi_2d_1_2phi_1q" + }, + { + "target": "t94", + "expression": "I_2_2_1*S_1_1*chi_2*d_1_2*phi_1*q", + "expression_mathml": "I_2_2_1S_1_1chi_2d_1_2phi_1q" + }, + { + "target": "t95", + "expression": "I_3_2_0*S_1_1*chi_2*d_1_3*phi_1*q", + "expression_mathml": "I_3_2_0S_1_1chi_2d_1_3phi_1q" + }, + { + "target": "t96", + "expression": "I_3_2_1*S_1_1*chi_2*d_1_3*phi_1*q", + "expression_mathml": "I_3_2_1S_1_1chi_2d_1_3phi_1q" + }, + { + "target": "t97", + "expression": "I_0_0_0*S_2_0*chi_0*d_2_0*phi_0*q", + "expression_mathml": "I_0_0_0S_2_0chi_0d_2_0phi_0q" + }, + { + "target": "t98", + "expression": "I_0_0_1*S_2_0*chi_0*d_2_0*phi_0*q", + "expression_mathml": "I_0_0_1S_2_0chi_0d_2_0phi_0q" + }, + { + "target": "t99", + "expression": "I_1_0_0*S_2_0*chi_0*d_2_1*phi_0*q", + "expression_mathml": "I_1_0_0S_2_0chi_0d_2_1phi_0q" + }, + { + "target": "t100", + "expression": "I_1_0_1*S_2_0*chi_0*d_2_1*phi_0*q", + "expression_mathml": "I_1_0_1S_2_0chi_0d_2_1phi_0q" + }, + { + "target": "t101", + "expression": "I_2_0_0*S_2_0*chi_0*d_2_2*phi_0*q", + "expression_mathml": "I_2_0_0S_2_0chi_0d_2_2phi_0q" + }, + { + "target": "t102", + "expression": "I_2_0_1*S_2_0*chi_0*d_2_2*phi_0*q", + "expression_mathml": "I_2_0_1S_2_0chi_0d_2_2phi_0q" + }, + { + "target": "t103", + "expression": "I_3_0_0*S_2_0*chi_0*d_2_3*phi_0*q", + "expression_mathml": "I_3_0_0S_2_0chi_0d_2_3phi_0q" + }, + { + "target": "t104", + "expression": "I_3_0_1*S_2_0*chi_0*d_2_3*phi_0*q", + "expression_mathml": "I_3_0_1S_2_0chi_0d_2_3phi_0q" + }, + { + "target": "t105", + "expression": "I_0_1_0*S_2_0*chi_1*d_2_0*phi_0*q", + "expression_mathml": "I_0_1_0S_2_0chi_1d_2_0phi_0q" + }, + { + "target": "t106", + "expression": "I_0_1_1*S_2_0*chi_1*d_2_0*phi_0*q", + "expression_mathml": "I_0_1_1S_2_0chi_1d_2_0phi_0q" + }, + { + "target": "t107", + "expression": "I_1_1_0*S_2_0*chi_1*d_2_1*phi_0*q", + "expression_mathml": "I_1_1_0S_2_0chi_1d_2_1phi_0q" + }, + { + "target": "t108", + "expression": "I_1_1_1*S_2_0*chi_1*d_2_1*phi_0*q", + "expression_mathml": "I_1_1_1S_2_0chi_1d_2_1phi_0q" + }, + { + "target": "t109", + "expression": "I_2_1_0*S_2_0*chi_1*d_2_2*phi_0*q", + "expression_mathml": "I_2_1_0S_2_0chi_1d_2_2phi_0q" + }, + { + "target": "t110", + "expression": "I_2_1_1*S_2_0*chi_1*d_2_2*phi_0*q", + "expression_mathml": "I_2_1_1S_2_0chi_1d_2_2phi_0q" + }, + { + "target": "t111", + "expression": "I_3_1_0*S_2_0*chi_1*d_2_3*phi_0*q", + "expression_mathml": "I_3_1_0S_2_0chi_1d_2_3phi_0q" + }, + { + "target": "t112", + "expression": "I_3_1_1*S_2_0*chi_1*d_2_3*phi_0*q", + "expression_mathml": "I_3_1_1S_2_0chi_1d_2_3phi_0q" + }, + { + "target": "t113", + "expression": "I_0_2_0*S_2_0*chi_2*d_2_0*phi_0*q", + "expression_mathml": "I_0_2_0S_2_0chi_2d_2_0phi_0q" + }, + { + "target": "t114", + "expression": "I_0_2_1*S_2_0*chi_2*d_2_0*phi_0*q", + "expression_mathml": "I_0_2_1S_2_0chi_2d_2_0phi_0q" + }, + { + "target": "t115", + "expression": "I_1_2_0*S_2_0*chi_2*d_2_1*phi_0*q", + "expression_mathml": "I_1_2_0S_2_0chi_2d_2_1phi_0q" + }, + { + "target": "t116", + "expression": "I_1_2_1*S_2_0*chi_2*d_2_1*phi_0*q", + "expression_mathml": "I_1_2_1S_2_0chi_2d_2_1phi_0q" + }, + { + "target": "t117", + "expression": "I_2_2_0*S_2_0*chi_2*d_2_2*phi_0*q", + "expression_mathml": "I_2_2_0S_2_0chi_2d_2_2phi_0q" + }, + { + "target": "t118", + "expression": "I_2_2_1*S_2_0*chi_2*d_2_2*phi_0*q", + "expression_mathml": "I_2_2_1S_2_0chi_2d_2_2phi_0q" + }, + { + "target": "t119", + "expression": "I_3_2_0*S_2_0*chi_2*d_2_3*phi_0*q", + "expression_mathml": "I_3_2_0S_2_0chi_2d_2_3phi_0q" + }, + { + "target": "t120", + "expression": "I_3_2_1*S_2_0*chi_2*d_2_3*phi_0*q", + "expression_mathml": "I_3_2_1S_2_0chi_2d_2_3phi_0q" + }, + { + "target": "t121", + "expression": "I_0_0_0*S_2_1*chi_0*d_2_0*phi_1*q", + "expression_mathml": "I_0_0_0S_2_1chi_0d_2_0phi_1q" + }, + { + "target": "t122", + "expression": "I_0_0_1*S_2_1*chi_0*d_2_0*phi_1*q", + "expression_mathml": "I_0_0_1S_2_1chi_0d_2_0phi_1q" + }, + { + "target": "t123", + "expression": "I_1_0_0*S_2_1*chi_0*d_2_1*phi_1*q", + "expression_mathml": "I_1_0_0S_2_1chi_0d_2_1phi_1q" + }, + { + "target": "t124", + "expression": "I_1_0_1*S_2_1*chi_0*d_2_1*phi_1*q", + "expression_mathml": "I_1_0_1S_2_1chi_0d_2_1phi_1q" + }, + { + "target": "t125", + "expression": "I_2_0_0*S_2_1*chi_0*d_2_2*phi_1*q", + "expression_mathml": "I_2_0_0S_2_1chi_0d_2_2phi_1q" + }, + { + "target": "t126", + "expression": "I_2_0_1*S_2_1*chi_0*d_2_2*phi_1*q", + "expression_mathml": "I_2_0_1S_2_1chi_0d_2_2phi_1q" + }, + { + "target": "t127", + "expression": "I_3_0_0*S_2_1*chi_0*d_2_3*phi_1*q", + "expression_mathml": "I_3_0_0S_2_1chi_0d_2_3phi_1q" + }, + { + "target": "t128", + "expression": "I_3_0_1*S_2_1*chi_0*d_2_3*phi_1*q", + "expression_mathml": "I_3_0_1S_2_1chi_0d_2_3phi_1q" + }, + { + "target": "t129", + "expression": "I_0_1_0*S_2_1*chi_1*d_2_0*phi_1*q", + "expression_mathml": "I_0_1_0S_2_1chi_1d_2_0phi_1q" + }, + { + "target": "t130", + "expression": "I_0_1_1*S_2_1*chi_1*d_2_0*phi_1*q", + "expression_mathml": "I_0_1_1S_2_1chi_1d_2_0phi_1q" + }, + { + "target": "t131", + "expression": "I_1_1_0*S_2_1*chi_1*d_2_1*phi_1*q", + "expression_mathml": "I_1_1_0S_2_1chi_1d_2_1phi_1q" + }, + { + "target": "t132", + "expression": "I_1_1_1*S_2_1*chi_1*d_2_1*phi_1*q", + "expression_mathml": "I_1_1_1S_2_1chi_1d_2_1phi_1q" + }, + { + "target": "t133", + "expression": "I_2_1_0*S_2_1*chi_1*d_2_2*phi_1*q", + "expression_mathml": "I_2_1_0S_2_1chi_1d_2_2phi_1q" + }, + { + "target": "t134", + "expression": "I_2_1_1*S_2_1*chi_1*d_2_2*phi_1*q", + "expression_mathml": "I_2_1_1S_2_1chi_1d_2_2phi_1q" + }, + { + "target": "t135", + "expression": "I_3_1_0*S_2_1*chi_1*d_2_3*phi_1*q", + "expression_mathml": "I_3_1_0S_2_1chi_1d_2_3phi_1q" + }, + { + "target": "t136", + "expression": "I_3_1_1*S_2_1*chi_1*d_2_3*phi_1*q", + "expression_mathml": "I_3_1_1S_2_1chi_1d_2_3phi_1q" + }, + { + "target": "t137", + "expression": "I_0_2_0*S_2_1*chi_2*d_2_0*phi_1*q", + "expression_mathml": "I_0_2_0S_2_1chi_2d_2_0phi_1q" + }, + { + "target": "t138", + "expression": "I_0_2_1*S_2_1*chi_2*d_2_0*phi_1*q", + "expression_mathml": "I_0_2_1S_2_1chi_2d_2_0phi_1q" + }, + { + "target": "t139", + "expression": "I_1_2_0*S_2_1*chi_2*d_2_1*phi_1*q", + "expression_mathml": "I_1_2_0S_2_1chi_2d_2_1phi_1q" + }, + { + "target": "t140", + "expression": "I_1_2_1*S_2_1*chi_2*d_2_1*phi_1*q", + "expression_mathml": "I_1_2_1S_2_1chi_2d_2_1phi_1q" + }, + { + "target": "t141", + "expression": "I_2_2_0*S_2_1*chi_2*d_2_2*phi_1*q", + "expression_mathml": "I_2_2_0S_2_1chi_2d_2_2phi_1q" + }, + { + "target": "t142", + "expression": "I_2_2_1*S_2_1*chi_2*d_2_2*phi_1*q", + "expression_mathml": "I_2_2_1S_2_1chi_2d_2_2phi_1q" + }, + { + "target": "t143", + "expression": "I_3_2_0*S_2_1*chi_2*d_2_3*phi_1*q", + "expression_mathml": "I_3_2_0S_2_1chi_2d_2_3phi_1q" + }, + { + "target": "t144", + "expression": "I_3_2_1*S_2_1*chi_2*d_2_3*phi_1*q", + "expression_mathml": "I_3_2_1S_2_1chi_2d_2_3phi_1q" + }, + { + "target": "t145", + "expression": "I_0_0_0*S_3_0*chi_0*d_3_0*phi_0*q", + "expression_mathml": "I_0_0_0S_3_0chi_0d_3_0phi_0q" + }, + { + "target": "t146", + "expression": "I_0_0_1*S_3_0*chi_0*d_3_0*phi_0*q", + "expression_mathml": "I_0_0_1S_3_0chi_0d_3_0phi_0q" + }, + { + "target": "t147", + "expression": "I_1_0_0*S_3_0*chi_0*d_3_1*phi_0*q", + "expression_mathml": "I_1_0_0S_3_0chi_0d_3_1phi_0q" + }, + { + "target": "t148", + "expression": "I_1_0_1*S_3_0*chi_0*d_3_1*phi_0*q", + "expression_mathml": "I_1_0_1S_3_0chi_0d_3_1phi_0q" + }, + { + "target": "t149", + "expression": "I_2_0_0*S_3_0*chi_0*d_3_2*phi_0*q", + "expression_mathml": "I_2_0_0S_3_0chi_0d_3_2phi_0q" + }, + { + "target": "t150", + "expression": "I_2_0_1*S_3_0*chi_0*d_3_2*phi_0*q", + "expression_mathml": "I_2_0_1S_3_0chi_0d_3_2phi_0q" + }, + { + "target": "t151", + "expression": "I_3_0_0*S_3_0*chi_0*d_3_3*phi_0*q", + "expression_mathml": "I_3_0_0S_3_0chi_0d_3_3phi_0q" + }, + { + "target": "t152", + "expression": "I_3_0_1*S_3_0*chi_0*d_3_3*phi_0*q", + "expression_mathml": "I_3_0_1S_3_0chi_0d_3_3phi_0q" + }, + { + "target": "t153", + "expression": "I_0_1_0*S_3_0*chi_1*d_3_0*phi_0*q", + "expression_mathml": "I_0_1_0S_3_0chi_1d_3_0phi_0q" + }, + { + "target": "t154", + "expression": "I_0_1_1*S_3_0*chi_1*d_3_0*phi_0*q", + "expression_mathml": "I_0_1_1S_3_0chi_1d_3_0phi_0q" + }, + { + "target": "t155", + "expression": "I_1_1_0*S_3_0*chi_1*d_3_1*phi_0*q", + "expression_mathml": "I_1_1_0S_3_0chi_1d_3_1phi_0q" + }, + { + "target": "t156", + "expression": "I_1_1_1*S_3_0*chi_1*d_3_1*phi_0*q", + "expression_mathml": "I_1_1_1S_3_0chi_1d_3_1phi_0q" + }, + { + "target": "t157", + "expression": "I_2_1_0*S_3_0*chi_1*d_3_2*phi_0*q", + "expression_mathml": "I_2_1_0S_3_0chi_1d_3_2phi_0q" + }, + { + "target": "t158", + "expression": "I_2_1_1*S_3_0*chi_1*d_3_2*phi_0*q", + "expression_mathml": "I_2_1_1S_3_0chi_1d_3_2phi_0q" + }, + { + "target": "t159", + "expression": "I_3_1_0*S_3_0*chi_1*d_3_3*phi_0*q", + "expression_mathml": "I_3_1_0S_3_0chi_1d_3_3phi_0q" + }, + { + "target": "t160", + "expression": "I_3_1_1*S_3_0*chi_1*d_3_3*phi_0*q", + "expression_mathml": "I_3_1_1S_3_0chi_1d_3_3phi_0q" + }, + { + "target": "t161", + "expression": "I_0_2_0*S_3_0*chi_2*d_3_0*phi_0*q", + "expression_mathml": "I_0_2_0S_3_0chi_2d_3_0phi_0q" + }, + { + "target": "t162", + "expression": "I_0_2_1*S_3_0*chi_2*d_3_0*phi_0*q", + "expression_mathml": "I_0_2_1S_3_0chi_2d_3_0phi_0q" + }, + { + "target": "t163", + "expression": "I_1_2_0*S_3_0*chi_2*d_3_1*phi_0*q", + "expression_mathml": "I_1_2_0S_3_0chi_2d_3_1phi_0q" + }, + { + "target": "t164", + "expression": "I_1_2_1*S_3_0*chi_2*d_3_1*phi_0*q", + "expression_mathml": "I_1_2_1S_3_0chi_2d_3_1phi_0q" + }, + { + "target": "t165", + "expression": "I_2_2_0*S_3_0*chi_2*d_3_2*phi_0*q", + "expression_mathml": "I_2_2_0S_3_0chi_2d_3_2phi_0q" + }, + { + "target": "t166", + "expression": "I_2_2_1*S_3_0*chi_2*d_3_2*phi_0*q", + "expression_mathml": "I_2_2_1S_3_0chi_2d_3_2phi_0q" + }, + { + "target": "t167", + "expression": "I_3_2_0*S_3_0*chi_2*d_3_3*phi_0*q", + "expression_mathml": "I_3_2_0S_3_0chi_2d_3_3phi_0q" + }, + { + "target": "t168", + "expression": "I_3_2_1*S_3_0*chi_2*d_3_3*phi_0*q", + "expression_mathml": "I_3_2_1S_3_0chi_2d_3_3phi_0q" + }, + { + "target": "t169", + "expression": "I_0_0_0*S_3_1*chi_0*d_3_0*phi_1*q", + "expression_mathml": "I_0_0_0S_3_1chi_0d_3_0phi_1q" + }, + { + "target": "t170", + "expression": "I_0_0_1*S_3_1*chi_0*d_3_0*phi_1*q", + "expression_mathml": "I_0_0_1S_3_1chi_0d_3_0phi_1q" + }, + { + "target": "t171", + "expression": "I_1_0_0*S_3_1*chi_0*d_3_1*phi_1*q", + "expression_mathml": "I_1_0_0S_3_1chi_0d_3_1phi_1q" + }, + { + "target": "t172", + "expression": "I_1_0_1*S_3_1*chi_0*d_3_1*phi_1*q", + "expression_mathml": "I_1_0_1S_3_1chi_0d_3_1phi_1q" + }, + { + "target": "t173", + "expression": "I_2_0_0*S_3_1*chi_0*d_3_2*phi_1*q", + "expression_mathml": "I_2_0_0S_3_1chi_0d_3_2phi_1q" + }, + { + "target": "t174", + "expression": "I_2_0_1*S_3_1*chi_0*d_3_2*phi_1*q", + "expression_mathml": "I_2_0_1S_3_1chi_0d_3_2phi_1q" + }, + { + "target": "t175", + "expression": "I_3_0_0*S_3_1*chi_0*d_3_3*phi_1*q", + "expression_mathml": "I_3_0_0S_3_1chi_0d_3_3phi_1q" + }, + { + "target": "t176", + "expression": "I_3_0_1*S_3_1*chi_0*d_3_3*phi_1*q", + "expression_mathml": "I_3_0_1S_3_1chi_0d_3_3phi_1q" + }, + { + "target": "t177", + "expression": "I_0_1_0*S_3_1*chi_1*d_3_0*phi_1*q", + "expression_mathml": "I_0_1_0S_3_1chi_1d_3_0phi_1q" + }, + { + "target": "t178", + "expression": "I_0_1_1*S_3_1*chi_1*d_3_0*phi_1*q", + "expression_mathml": "I_0_1_1S_3_1chi_1d_3_0phi_1q" + }, + { + "target": "t179", + "expression": "I_1_1_0*S_3_1*chi_1*d_3_1*phi_1*q", + "expression_mathml": "I_1_1_0S_3_1chi_1d_3_1phi_1q" + }, + { + "target": "t180", + "expression": "I_1_1_1*S_3_1*chi_1*d_3_1*phi_1*q", + "expression_mathml": "I_1_1_1S_3_1chi_1d_3_1phi_1q" + }, + { + "target": "t181", + "expression": "I_2_1_0*S_3_1*chi_1*d_3_2*phi_1*q", + "expression_mathml": "I_2_1_0S_3_1chi_1d_3_2phi_1q" + }, + { + "target": "t182", + "expression": "I_2_1_1*S_3_1*chi_1*d_3_2*phi_1*q", + "expression_mathml": "I_2_1_1S_3_1chi_1d_3_2phi_1q" + }, + { + "target": "t183", + "expression": "I_3_1_0*S_3_1*chi_1*d_3_3*phi_1*q", + "expression_mathml": "I_3_1_0S_3_1chi_1d_3_3phi_1q" + }, + { + "target": "t184", + "expression": "I_3_1_1*S_3_1*chi_1*d_3_3*phi_1*q", + "expression_mathml": "I_3_1_1S_3_1chi_1d_3_3phi_1q" + }, + { + "target": "t185", + "expression": "I_0_2_0*S_3_1*chi_2*d_3_0*phi_1*q", + "expression_mathml": "I_0_2_0S_3_1chi_2d_3_0phi_1q" + }, + { + "target": "t186", + "expression": "I_0_2_1*S_3_1*chi_2*d_3_0*phi_1*q", + "expression_mathml": "I_0_2_1S_3_1chi_2d_3_0phi_1q" + }, + { + "target": "t187", + "expression": "I_1_2_0*S_3_1*chi_2*d_3_1*phi_1*q", + "expression_mathml": "I_1_2_0S_3_1chi_2d_3_1phi_1q" + }, + { + "target": "t188", + "expression": "I_1_2_1*S_3_1*chi_2*d_3_1*phi_1*q", + "expression_mathml": "I_1_2_1S_3_1chi_2d_3_1phi_1q" + }, + { + "target": "t189", + "expression": "I_2_2_0*S_3_1*chi_2*d_3_2*phi_1*q", + "expression_mathml": "I_2_2_0S_3_1chi_2d_3_2phi_1q" + }, + { + "target": "t190", + "expression": "I_2_2_1*S_3_1*chi_2*d_3_2*phi_1*q", + "expression_mathml": "I_2_2_1S_3_1chi_2d_3_2phi_1q" + }, + { + "target": "t191", + "expression": "I_3_2_0*S_3_1*chi_2*d_3_3*phi_1*q", + "expression_mathml": "I_3_2_0S_3_1chi_2d_3_3phi_1q" + }, + { + "target": "t192", + "expression": "I_3_2_1*S_3_1*chi_2*d_3_3*phi_1*q", + "expression_mathml": "I_3_2_1S_3_1chi_2d_3_3phi_1q" + }, + { + "target": "t193", + "expression": "E_0_0_0*rho", + "expression_mathml": "E_0_0_0rho" + }, + { + "target": "t194", + "expression": "E_0_0_1*rho", + "expression_mathml": "E_0_0_1rho" + }, + { + "target": "t195", + "expression": "E_0_1_0*rho", + "expression_mathml": "E_0_1_0rho" + }, + { + "target": "t196", + "expression": "E_0_1_1*rho", + "expression_mathml": "E_0_1_1rho" + }, + { + "target": "t197", + "expression": "E_0_2_0*rho", + "expression_mathml": "E_0_2_0rho" + }, + { + "target": "t198", + "expression": "E_0_2_1*rho", + "expression_mathml": "E_0_2_1rho" + }, + { + "target": "t199", + "expression": "E_1_0_0*rho", + "expression_mathml": "E_1_0_0rho" + }, + { + "target": "t200", + "expression": "E_1_0_1*rho", + "expression_mathml": "E_1_0_1rho" + }, + { + "target": "t201", + "expression": "E_1_1_0*rho", + "expression_mathml": "E_1_1_0rho" + }, + { + "target": "t202", + "expression": "E_1_1_1*rho", + "expression_mathml": "E_1_1_1rho" + }, + { + "target": "t203", + "expression": "E_1_2_0*rho", + "expression_mathml": "E_1_2_0rho" + }, + { + "target": "t204", + "expression": "E_1_2_1*rho", + "expression_mathml": "E_1_2_1rho" + }, + { + "target": "t205", + "expression": "E_2_0_0*rho", + "expression_mathml": "E_2_0_0rho" + }, + { + "target": "t206", + "expression": "E_2_0_1*rho", + "expression_mathml": "E_2_0_1rho" + }, + { + "target": "t207", + "expression": "E_2_1_0*rho", + "expression_mathml": "E_2_1_0rho" + }, + { + "target": "t208", + "expression": "E_2_1_1*rho", + "expression_mathml": "E_2_1_1rho" + }, + { + "target": "t209", + "expression": "E_2_2_0*rho", + "expression_mathml": "E_2_2_0rho" + }, + { + "target": "t210", + "expression": "E_2_2_1*rho", + "expression_mathml": "E_2_2_1rho" + }, + { + "target": "t211", + "expression": "E_3_0_0*rho", + "expression_mathml": "E_3_0_0rho" + }, + { + "target": "t212", + "expression": "E_3_0_1*rho", + "expression_mathml": "E_3_0_1rho" + }, + { + "target": "t213", + "expression": "E_3_1_0*rho", + "expression_mathml": "E_3_1_0rho" + }, + { + "target": "t214", + "expression": "E_3_1_1*rho", + "expression_mathml": "E_3_1_1rho" + }, + { + "target": "t215", + "expression": "E_3_2_0*rho", + "expression_mathml": "E_3_2_0rho" + }, + { + "target": "t216", + "expression": "E_3_2_1*rho", + "expression_mathml": "E_3_2_1rho" + }, + { + "target": "t217", + "expression": "I_0_0_0*gamma*(1 - eta_0_0_0)", + "expression_mathml": "I_0_0_0gamma1eta_0_0_0" + }, + { + "target": "t218", + "expression": "I_0_0_1*gamma*(1 - eta_0_0_1)", + "expression_mathml": "I_0_0_1gamma1eta_0_0_1" + }, + { + "target": "t219", + "expression": "I_0_1_0*gamma*(1 - eta_0_1_0)", + "expression_mathml": "I_0_1_0gamma1eta_0_1_0" + }, + { + "target": "t220", + "expression": "I_0_1_1*gamma*(1 - eta_0_1_1)", + "expression_mathml": "I_0_1_1gamma1eta_0_1_1" + }, + { + "target": "t221", + "expression": "I_0_2_0*gamma*(1 - eta_0_2_0)", + "expression_mathml": "I_0_2_0gamma1eta_0_2_0" + }, + { + "target": "t222", + "expression": "I_0_2_1*gamma*(1 - eta_0_2_1)", + "expression_mathml": "I_0_2_1gamma1eta_0_2_1" + }, + { + "target": "t223", + "expression": "I_1_0_0*gamma*(1 - eta_1_0_0)", + "expression_mathml": "I_1_0_0gamma1eta_1_0_0" + }, + { + "target": "t224", + "expression": "I_1_0_1*gamma*(1 - eta_1_0_1)", + "expression_mathml": "I_1_0_1gamma1eta_1_0_1" + }, + { + "target": "t225", + "expression": "I_1_1_0*gamma*(1 - eta_1_1_0)", + "expression_mathml": "I_1_1_0gamma1eta_1_1_0" + }, + { + "target": "t226", + "expression": "I_1_1_1*gamma*(1 - eta_1_1_1)", + "expression_mathml": "I_1_1_1gamma1eta_1_1_1" + }, + { + "target": "t227", + "expression": "I_1_2_0*gamma*(1 - eta_1_2_0)", + "expression_mathml": "I_1_2_0gamma1eta_1_2_0" + }, + { + "target": "t228", + "expression": "I_1_2_1*gamma*(1 - eta_1_2_1)", + "expression_mathml": "I_1_2_1gamma1eta_1_2_1" + }, + { + "target": "t229", + "expression": "I_2_0_0*gamma*(1 - eta_2_0_0)", + "expression_mathml": "I_2_0_0gamma1eta_2_0_0" + }, + { + "target": "t230", + "expression": "I_2_0_1*gamma*(1 - eta_2_0_1)", + "expression_mathml": "I_2_0_1gamma1eta_2_0_1" + }, + { + "target": "t231", + "expression": "I_2_1_0*gamma*(1 - eta_2_1_0)", + "expression_mathml": "I_2_1_0gamma1eta_2_1_0" + }, + { + "target": "t232", + "expression": "I_2_1_1*gamma*(1 - eta_2_1_1)", + "expression_mathml": "I_2_1_1gamma1eta_2_1_1" + }, + { + "target": "t233", + "expression": "I_2_2_0*gamma*(1 - eta_2_2_0)", + "expression_mathml": "I_2_2_0gamma1eta_2_2_0" + }, + { + "target": "t234", + "expression": "I_2_2_1*gamma*(1 - eta_2_2_1)", + "expression_mathml": "I_2_2_1gamma1eta_2_2_1" + }, + { + "target": "t235", + "expression": "I_3_0_0*gamma*(1 - eta_3_0_0)", + "expression_mathml": "I_3_0_0gamma1eta_3_0_0" + }, + { + "target": "t236", + "expression": "I_3_0_1*gamma*(1 - eta_3_0_1)", + "expression_mathml": "I_3_0_1gamma1eta_3_0_1" + }, + { + "target": "t237", + "expression": "I_3_1_0*gamma*(1 - eta_3_1_0)", + "expression_mathml": "I_3_1_0gamma1eta_3_1_0" + }, + { + "target": "t238", + "expression": "I_3_1_1*gamma*(1 - eta_3_1_1)", + "expression_mathml": "I_3_1_1gamma1eta_3_1_1" + }, + { + "target": "t239", + "expression": "I_3_2_0*gamma*(1 - eta_3_2_0)", + "expression_mathml": "I_3_2_0gamma1eta_3_2_0" + }, + { + "target": "t240", + "expression": "I_3_2_1*gamma*(1 - eta_3_2_1)", + "expression_mathml": "I_3_2_1gamma1eta_3_2_1" + }, + { + "target": "t241", + "expression": "I_0_0_0*eta_0_0_0*gamma", + "expression_mathml": "I_0_0_0eta_0_0_0gamma" + }, + { + "target": "t242", + "expression": "I_0_0_1*eta_0_0_1*gamma", + "expression_mathml": "I_0_0_1eta_0_0_1gamma" + }, + { + "target": "t243", + "expression": "I_0_1_0*eta_0_1_0*gamma", + "expression_mathml": "I_0_1_0eta_0_1_0gamma" + }, + { + "target": "t244", + "expression": "I_0_1_1*eta_0_1_1*gamma", + "expression_mathml": "I_0_1_1eta_0_1_1gamma" + }, + { + "target": "t245", + "expression": "I_0_2_0*eta_0_2_0*gamma", + "expression_mathml": "I_0_2_0eta_0_2_0gamma" + }, + { + "target": "t246", + "expression": "I_0_2_1*eta_0_2_1*gamma", + "expression_mathml": "I_0_2_1eta_0_2_1gamma" + }, + { + "target": "t247", + "expression": "I_1_0_0*eta_1_0_0*gamma", + "expression_mathml": "I_1_0_0eta_1_0_0gamma" + }, + { + "target": "t248", + "expression": "I_1_0_1*eta_1_0_1*gamma", + "expression_mathml": "I_1_0_1eta_1_0_1gamma" + }, + { + "target": "t249", + "expression": "I_1_1_0*eta_1_1_0*gamma", + "expression_mathml": "I_1_1_0eta_1_1_0gamma" + }, + { + "target": "t250", + "expression": "I_1_1_1*eta_1_1_1*gamma", + "expression_mathml": "I_1_1_1eta_1_1_1gamma" + }, + { + "target": "t251", + "expression": "I_1_2_0*eta_1_2_0*gamma", + "expression_mathml": "I_1_2_0eta_1_2_0gamma" + }, + { + "target": "t252", + "expression": "I_1_2_1*eta_1_2_1*gamma", + "expression_mathml": "I_1_2_1eta_1_2_1gamma" + }, + { + "target": "t253", + "expression": "I_2_0_0*eta_2_0_0*gamma", + "expression_mathml": "I_2_0_0eta_2_0_0gamma" + }, + { + "target": "t254", + "expression": "I_2_0_1*eta_2_0_1*gamma", + "expression_mathml": "I_2_0_1eta_2_0_1gamma" + }, + { + "target": "t255", + "expression": "I_2_1_0*eta_2_1_0*gamma", + "expression_mathml": "I_2_1_0eta_2_1_0gamma" + }, + { + "target": "t256", + "expression": "I_2_1_1*eta_2_1_1*gamma", + "expression_mathml": "I_2_1_1eta_2_1_1gamma" + }, + { + "target": "t257", + "expression": "I_2_2_0*eta_2_2_0*gamma", + "expression_mathml": "I_2_2_0eta_2_2_0gamma" + }, + { + "target": "t258", + "expression": "I_2_2_1*eta_2_2_1*gamma", + "expression_mathml": "I_2_2_1eta_2_2_1gamma" + }, + { + "target": "t259", + "expression": "I_3_0_0*eta_3_0_0*gamma", + "expression_mathml": "I_3_0_0eta_3_0_0gamma" + }, + { + "target": "t260", + "expression": "I_3_0_1*eta_3_0_1*gamma", + "expression_mathml": "I_3_0_1eta_3_0_1gamma" + }, + { + "target": "t261", + "expression": "I_3_1_0*eta_3_1_0*gamma", + "expression_mathml": "I_3_1_0eta_3_1_0gamma" + }, + { + "target": "t262", + "expression": "I_3_1_1*eta_3_1_1*gamma", + "expression_mathml": "I_3_1_1eta_3_1_1gamma" + }, + { + "target": "t263", + "expression": "I_3_2_0*eta_3_2_0*gamma", + "expression_mathml": "I_3_2_0eta_3_2_0gamma" + }, + { + "target": "t264", + "expression": "I_3_2_1*eta_3_2_1*gamma", + "expression_mathml": "I_3_2_1eta_3_2_1gamma" + }, + { + "target": "t265", + "expression": "H_0_0_0*(1 - mu_0_0_0)/lr_0", + "expression_mathml": "H_0_0_01mu_0_0_0lr_0" + }, + { + "target": "t266", + "expression": "H_0_0_1*(1 - mu_0_0_1)/lr_0", + "expression_mathml": "H_0_0_11mu_0_0_1lr_0" + }, + { + "target": "t267", + "expression": "H_0_1_0*(1 - mu_0_1_0)/lr_0", + "expression_mathml": "H_0_1_01mu_0_1_0lr_0" + }, + { + "target": "t268", + "expression": "H_0_1_1*(1 - mu_0_1_1)/lr_0", + "expression_mathml": "H_0_1_11mu_0_1_1lr_0" + }, + { + "target": "t269", + "expression": "H_0_2_0*(1 - mu_0_2_0)/lr_0", + "expression_mathml": "H_0_2_01mu_0_2_0lr_0" + }, + { + "target": "t270", + "expression": "H_0_2_1*(1 - mu_0_2_1)/lr_0", + "expression_mathml": "H_0_2_11mu_0_2_1lr_0" + }, + { + "target": "t271", + "expression": "H_1_0_0*(1 - mu_1_0_0)/lr_1", + "expression_mathml": "H_1_0_01mu_1_0_0lr_1" + }, + { + "target": "t272", + "expression": "H_1_0_1*(1 - mu_1_0_1)/lr_1", + "expression_mathml": "H_1_0_11mu_1_0_1lr_1" + }, + { + "target": "t273", + "expression": "H_1_1_0*(1 - mu_1_1_0)/lr_1", + "expression_mathml": "H_1_1_01mu_1_1_0lr_1" + }, + { + "target": "t274", + "expression": "H_1_1_1*(1 - mu_1_1_1)/lr_1", + "expression_mathml": "H_1_1_11mu_1_1_1lr_1" + }, + { + "target": "t275", + "expression": "H_1_2_0*(1 - mu_1_2_0)/lr_1", + "expression_mathml": "H_1_2_01mu_1_2_0lr_1" + }, + { + "target": "t276", + "expression": "H_1_2_1*(1 - mu_1_2_1)/lr_1", + "expression_mathml": "H_1_2_11mu_1_2_1lr_1" + }, + { + "target": "t277", + "expression": "H_2_0_0*(1 - mu_2_0_0)/lr_2", + "expression_mathml": "H_2_0_01mu_2_0_0lr_2" + }, + { + "target": "t278", + "expression": "H_2_0_1*(1 - mu_2_0_1)/lr_2", + "expression_mathml": "H_2_0_11mu_2_0_1lr_2" + }, + { + "target": "t279", + "expression": "H_2_1_0*(1 - mu_2_1_0)/lr_2", + "expression_mathml": "H_2_1_01mu_2_1_0lr_2" + }, + { + "target": "t280", + "expression": "H_2_1_1*(1 - mu_2_1_1)/lr_2", + "expression_mathml": "H_2_1_11mu_2_1_1lr_2" + }, + { + "target": "t281", + "expression": "H_2_2_0*(1 - mu_2_2_0)/lr_2", + "expression_mathml": "H_2_2_01mu_2_2_0lr_2" + }, + { + "target": "t282", + "expression": "H_2_2_1*(1 - mu_2_2_1)/lr_2", + "expression_mathml": "H_2_2_11mu_2_2_1lr_2" + }, + { + "target": "t283", + "expression": "H_3_0_0*(1 - mu_3_0_0)/lr_3", + "expression_mathml": "H_3_0_01mu_3_0_0lr_3" + }, + { + "target": "t284", + "expression": "H_3_0_1*(1 - mu_3_0_1)/lr_3", + "expression_mathml": "H_3_0_11mu_3_0_1lr_3" + }, + { + "target": "t285", + "expression": "H_3_1_0*(1 - mu_3_1_0)/lr_3", + "expression_mathml": "H_3_1_01mu_3_1_0lr_3" + }, + { + "target": "t286", + "expression": "H_3_1_1*(1 - mu_3_1_1)/lr_3", + "expression_mathml": "H_3_1_11mu_3_1_1lr_3" + }, + { + "target": "t287", + "expression": "H_3_2_0*(1 - mu_3_2_0)/lr_3", + "expression_mathml": "H_3_2_01mu_3_2_0lr_3" + }, + { + "target": "t288", + "expression": "H_3_2_1*(1 - mu_3_2_1)/lr_3", + "expression_mathml": "H_3_2_11mu_3_2_1lr_3" + }, + { + "target": "t289", + "expression": "H_0_0_0*mu_0_0_0/ld_0", + "expression_mathml": "H_0_0_0mu_0_0_0ld_0" + }, + { + "target": "t290", + "expression": "H_0_0_1*mu_0_0_1/ld_0", + "expression_mathml": "H_0_0_1mu_0_0_1ld_0" + }, + { + "target": "t291", + "expression": "H_0_1_0*mu_0_1_0/ld_0", + "expression_mathml": "H_0_1_0mu_0_1_0ld_0" + }, + { + "target": "t292", + "expression": "H_0_1_1*mu_0_1_1/ld_0", + "expression_mathml": "H_0_1_1mu_0_1_1ld_0" + }, + { + "target": "t293", + "expression": "H_0_2_0*mu_0_2_0/ld_0", + "expression_mathml": "H_0_2_0mu_0_2_0ld_0" + }, + { + "target": "t294", + "expression": "H_0_2_1*mu_0_2_1/ld_0", + "expression_mathml": "H_0_2_1mu_0_2_1ld_0" + }, + { + "target": "t295", + "expression": "H_1_0_0*mu_1_0_0/ld_1", + "expression_mathml": "H_1_0_0mu_1_0_0ld_1" + }, + { + "target": "t296", + "expression": "H_1_0_1*mu_1_0_1/ld_1", + "expression_mathml": "H_1_0_1mu_1_0_1ld_1" + }, + { + "target": "t297", + "expression": "H_1_1_0*mu_1_1_0/ld_1", + "expression_mathml": "H_1_1_0mu_1_1_0ld_1" + }, + { + "target": "t298", + "expression": "H_1_1_1*mu_1_1_1/ld_1", + "expression_mathml": "H_1_1_1mu_1_1_1ld_1" + }, + { + "target": "t299", + "expression": "H_1_2_0*mu_1_2_0/ld_1", + "expression_mathml": "H_1_2_0mu_1_2_0ld_1" + }, + { + "target": "t300", + "expression": "H_1_2_1*mu_1_2_1/ld_1", + "expression_mathml": "H_1_2_1mu_1_2_1ld_1" + }, + { + "target": "t301", + "expression": "H_2_0_0*mu_2_0_0/ld_2", + "expression_mathml": "H_2_0_0mu_2_0_0ld_2" + }, + { + "target": "t302", + "expression": "H_2_0_1*mu_2_0_1/ld_2", + "expression_mathml": "H_2_0_1mu_2_0_1ld_2" + }, + { + "target": "t303", + "expression": "H_2_1_0*mu_2_1_0/ld_2", + "expression_mathml": "H_2_1_0mu_2_1_0ld_2" + }, + { + "target": "t304", + "expression": "H_2_1_1*mu_2_1_1/ld_2", + "expression_mathml": "H_2_1_1mu_2_1_1ld_2" + }, + { + "target": "t305", + "expression": "H_2_2_0*mu_2_2_0/ld_2", + "expression_mathml": "H_2_2_0mu_2_2_0ld_2" + }, + { + "target": "t306", + "expression": "H_2_2_1*mu_2_2_1/ld_2", + "expression_mathml": "H_2_2_1mu_2_2_1ld_2" + }, + { + "target": "t307", + "expression": "H_3_0_0*mu_3_0_0/ld_3", + "expression_mathml": "H_3_0_0mu_3_0_0ld_3" + }, + { + "target": "t308", + "expression": "H_3_0_1*mu_3_0_1/ld_3", + "expression_mathml": "H_3_0_1mu_3_0_1ld_3" + }, + { + "target": "t309", + "expression": "H_3_1_0*mu_3_1_0/ld_3", + "expression_mathml": "H_3_1_0mu_3_1_0ld_3" + }, + { + "target": "t310", + "expression": "H_3_1_1*mu_3_1_1/ld_3", + "expression_mathml": "H_3_1_1mu_3_1_1ld_3" + }, + { + "target": "t311", + "expression": "H_3_2_0*mu_3_2_0/ld_3", + "expression_mathml": "H_3_2_0mu_3_2_0ld_3" + }, + { + "target": "t312", + "expression": "H_3_2_1*mu_3_2_1/ld_3", + "expression_mathml": "H_3_2_1mu_3_2_1ld_3" + }, + { + "target": "t313", + "expression": "alpha_0", + "expression_mathml": "alpha_0" + }, + { + "target": "t314", + "expression": "alpha_1", + "expression_mathml": "alpha_1" + }, + { + "target": "t315", + "expression": "alpha_2", + "expression_mathml": "alpha_2" + }, + { + "target": "t316", + "expression": "alpha_3", + "expression_mathml": "alpha_3" + } + ], + "initials": [ + { + "target": "S_0_0", + "expression": "19339995.0000000", + "expression_mathml": "19339995.0" + }, + { + "target": "I_0_0_0", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "E_0_0_0", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "I_0_0_1", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_1_0_0", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_1_0_1", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_2_0_0", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_2_0_1", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_3_0_0", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_3_0_1", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_0_1_0", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "E_0_1_0", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "I_0_1_1", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_1_1_0", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_1_1_1", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_2_1_0", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_2_1_1", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_3_1_0", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_3_1_1", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_0_2_0", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "E_0_2_0", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "I_0_2_1", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_1_2_0", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_1_2_1", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_2_2_0", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_2_2_1", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_3_2_0", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "I_3_2_1", + "expression": "4.00000000000000", + "expression_mathml": "4.0" + }, + { + "target": "S_0_1", + "expression": "19339995.0000000", + "expression_mathml": "19339995.0" + }, + { + "target": "E_0_0_1", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "E_0_1_1", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "E_0_2_1", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "S_1_0", + "expression": "19339995.0000000", + "expression_mathml": "19339995.0" + }, + { + "target": "E_1_0_0", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "E_1_1_0", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "E_1_2_0", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "S_1_1", + "expression": "19339995.0000000", + "expression_mathml": "19339995.0" + }, + { + "target": "E_1_0_1", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "E_1_1_1", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "E_1_2_1", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "S_2_0", + "expression": "19339995.0000000", + "expression_mathml": "19339995.0" + }, + { + "target": "E_2_0_0", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "E_2_1_0", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "E_2_2_0", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "S_2_1", + "expression": "19339995.0000000", + "expression_mathml": "19339995.0" + }, + { + "target": "E_2_0_1", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "E_2_1_1", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "E_2_2_1", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "S_3_0", + "expression": "19339995.0000000", + "expression_mathml": "19339995.0" + }, + { + "target": "E_3_0_0", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "E_3_1_0", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "E_3_2_0", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "S_3_1", + "expression": "19339995.0000000", + "expression_mathml": "19339995.0" + }, + { + "target": "E_3_0_1", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "E_3_1_1", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "E_3_2_1", + "expression": "1.00000000000000", + "expression_mathml": "1.0" + }, + { + "target": "R_0_0_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_0_0_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_0_1_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_0_1_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_0_2_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_0_2_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_1_0_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_1_0_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_1_1_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_1_1_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_1_2_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_1_2_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_2_0_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_2_0_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_2_1_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_2_1_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_2_2_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_2_2_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_3_0_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_3_0_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_3_1_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_3_1_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_3_2_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "R_3_2_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_0_0_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_0_0_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_0_1_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_0_1_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_0_2_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_0_2_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_1_0_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_1_0_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_1_1_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_1_1_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_1_2_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_1_2_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_2_0_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_2_0_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_2_1_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_2_1_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_2_2_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_2_2_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_3_0_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_3_0_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_3_1_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_3_1_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_3_2_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H_3_2_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_0_0_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_0_0_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_0_1_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_0_1_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_0_2_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_0_2_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_1_0_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_1_0_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_1_1_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_1_1_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_1_2_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_1_2_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_2_0_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_2_0_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_2_1_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_2_1_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_2_2_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_2_2_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_3_0_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_3_0_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_3_1_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_3_1_1", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_3_2_0", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D_3_2_1", + "expression": "0.0", + "expression_mathml": "0.0" + } + ], + "parameters": [ + { + "id": "chi_0", + "value": 1.0 + }, + { + "id": "d_0_0", + "value": 5.170630816959669e-08 + }, + { + "id": "phi_0", + "value": 1.0 + }, + { + "id": "q", + "value": 0.52 + }, + { + "id": "d_0_1", + "value": 5.170630816959669e-08 + }, + { + "id": "d_0_2", + "value": 5.170630816959669e-08 + }, + { + "id": "d_0_3", + "value": 5.170630816959669e-08 + }, + { + "id": "chi_1", + "value": 1.0 + }, + { + "id": "chi_2", + "value": 1.0 + }, + { + "id": "phi_1", + "value": 1.0 + }, + { + "id": "d_1_0", + "value": 5.170630816959669e-08 + }, + { + "id": "d_1_1", + "value": 5.170630816959669e-08 + }, + { + "id": "d_1_2", + "value": 5.170630816959669e-08 + }, + { + "id": "d_1_3", + "value": 5.170630816959669e-08 + }, + { + "id": "d_2_0", + "value": 5.170630816959669e-08 + }, + { + "id": "d_2_1", + "value": 5.170630816959669e-08 + }, + { + "id": "d_2_2", + "value": 5.170630816959669e-08 + }, + { + "id": "d_2_3", + "value": 5.170630816959669e-08 + }, + { + "id": "d_3_0", + "value": 5.170630816959669e-08 + }, + { + "id": "d_3_1", + "value": 5.170630816959669e-08 + }, + { + "id": "d_3_2", + "value": 5.170630816959669e-08 + }, + { + "id": "d_3_3", + "value": 5.170630816959669e-08 + }, + { + "id": "rho", + "value": 0.5 + }, + { + "id": "eta_0_0_0", + "value": 0.1 + }, + { + "id": "gamma", + "value": 0.2 + }, + { + "id": "eta_0_0_1", + "value": 0.1 + }, + { + "id": "eta_0_1_0", + "value": 0.1 + }, + { + "id": "eta_0_1_1", + "value": 0.1 + }, + { + "id": "eta_0_2_0", + "value": 0.1 + }, + { + "id": "eta_0_2_1", + "value": 0.1 + }, + { + "id": "eta_1_0_0", + "value": 0.1 + }, + { + "id": "eta_1_0_1", + "value": 0.1 + }, + { + "id": "eta_1_1_0", + "value": 0.1 + }, + { + "id": "eta_1_1_1", + "value": 0.1 + }, + { + "id": "eta_1_2_0", + "value": 0.1 + }, + { + "id": "eta_1_2_1", + "value": 0.1 + }, + { + "id": "eta_2_0_0", + "value": 0.1 + }, + { + "id": "eta_2_0_1", + "value": 0.1 + }, + { + "id": "eta_2_1_0", + "value": 0.1 + }, + { + "id": "eta_2_1_1", + "value": 0.1 + }, + { + "id": "eta_2_2_0", + "value": 0.1 + }, + { + "id": "eta_2_2_1", + "value": 0.1 + }, + { + "id": "eta_3_0_0", + "value": 0.1 + }, + { + "id": "eta_3_0_1", + "value": 0.1 + }, + { + "id": "eta_3_1_0", + "value": 0.1 + }, + { + "id": "eta_3_1_1", + "value": 0.1 + }, + { + "id": "eta_3_2_0", + "value": 0.1 + }, + { + "id": "eta_3_2_1", + "value": 0.1 + }, + { + "id": "lr_0", + "value": 5.0 + }, + { + "id": "mu_0_0_0", + "value": 0.003 + }, + { + "id": "mu_0_0_1", + "value": 0.003 + }, + { + "id": "mu_0_1_0", + "value": 0.003 + }, + { + "id": "mu_0_1_1", + "value": 0.003 + }, + { + "id": "mu_0_2_0", + "value": 0.003 + }, + { + "id": "mu_0_2_1", + "value": 0.003 + }, + { + "id": "lr_1", + "value": 5.0 + }, + { + "id": "mu_1_0_0", + "value": 0.003 + }, + { + "id": "mu_1_0_1", + "value": 0.003 + }, + { + "id": "mu_1_1_0", + "value": 0.003 + }, + { + "id": "mu_1_1_1", + "value": 0.003 + }, + { + "id": "mu_1_2_0", + "value": 0.003 + }, + { + "id": "mu_1_2_1", + "value": 0.003 + }, + { + "id": "lr_2", + "value": 5.0 + }, + { + "id": "mu_2_0_0", + "value": 0.003 + }, + { + "id": "mu_2_0_1", + "value": 0.003 + }, + { + "id": "mu_2_1_0", + "value": 0.003 + }, + { + "id": "mu_2_1_1", + "value": 0.003 + }, + { + "id": "mu_2_2_0", + "value": 0.003 + }, + { + "id": "mu_2_2_1", + "value": 0.003 + }, + { + "id": "lr_3", + "value": 5.0 + }, + { + "id": "mu_3_0_0", + "value": 0.003 + }, + { + "id": "mu_3_0_1", + "value": 0.003 + }, + { + "id": "mu_3_1_0", + "value": 0.003 + }, + { + "id": "mu_3_1_1", + "value": 0.003 + }, + { + "id": "mu_3_2_0", + "value": 0.003 + }, + { + "id": "mu_3_2_1", + "value": 0.003 + }, + { + "id": "ld_0", + "value": 9.25 + }, + { + "id": "ld_1", + "value": 9.25 + }, + { + "id": "ld_2", + "value": 9.25 + }, + { + "id": "ld_3", + "value": 9.25 + }, + { + "id": "alpha_0", + "value": 0.000517063081695967 + }, + { + "id": "alpha_1", + "value": 0.000517063081695967 + }, + { + "id": "alpha_2", + "value": 0.000517063081695967 + }, + { + "id": "alpha_3", + "value": 0.000517063081695967 + } + ], + "observables": [ + { + "id": "", + "name": "", + "states": [], + "expression": "$S_{0,0} + S_{1,0} + S_{2,0} + S_{3,0}$", + "expression_mathml": "S0,0+S1,0+S2,0+S,0" + } + ], + "time": { + "id": "t", + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + } + }, + "metadata": { + "annotations": { + "authors": [], + "references": [], + "locations": [], + "pathogens": [], + "diseases": [], + "hosts": [], + "model_types": [] + } + }, + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.5/petrinet/petrinet_schema.json" +} \ No newline at end of file diff --git a/resources/amr/petrinet/stratified/model_amr_request.json b/resources/amr/petrinet/stratified/model_amr_request.json new file mode 100644 index 00000000..f5a84264 --- /dev/null +++ b/resources/amr/petrinet/stratified/model_amr_request.json @@ -0,0 +1,22 @@ +{ + "query": {}, + "parameters": [], + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 1, + 2 + ] + } + ] + } + ], + "config": { + "tolerance": 1e-2, + "save_smtlib": "./out" + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/constrained_trajectory.json b/resources/amr/petrinet/terrarium-tests/constrained_trajectory.json new file mode 100644 index 00000000..4fba1bc8 --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/constrained_trajectory.json @@ -0,0 +1,263 @@ +{ + "model": { + "id": "sir-param-in-observables", + "header": { + "name": "SIR model with beta parameter in the observables definition", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.6/petrinet/petrinet_schema.json", + "schema_name": "petrinet", + "description": "SIR model with observables2", + "model_version": "0.1" + }, + "properties": {}, + "model": { + "states": [ + { + "id": "S", + "name": "S", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I", + "name": "I", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R", + "name": "R", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + } + ], + "transitions": [ + { + "id": "t1", + "input": [ + "I", + "S" + ], + "output": [ + "I", + "I" + ], + "properties": { + "name": "t1" + } + }, + { + "id": "t2", + "input": [ + "I" + ], + "output": [ + "R" + ], + "properties": { + "name": "t2" + } + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t1", + "expression": "I*S*beta", + "expression_mathml": "ISbeta" + }, + { + "target": "t2", + "expression": "I*gamma", + "expression_mathml": "Igamma" + } + ], + "initials": [ + { + "target": "S", + "expression": "999.0", + "expression_mathml": "999.0" + }, + { + "target": "I", + "expression": "1.0", + "expression_mathml": "1.0" + }, + { + "target": "R", + "expression": "0.0", + "expression_mathml": "0.0" + } + ], + "parameters": [ + { + "id": "beta", + "value": 0.0025, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.001, + "maximum": 0.003 + } + } + }, + { + "id": "gamma", + "value": 0.07, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.04, + "maximum": 0.15 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + } + ], + "observables": [ + { + "id": "incident_cases", + "name": "incident_cases", + "expression": "I*S*beta", + "expression_mathml": "ISbeta" + }, + { + "id": "beta_param", + "name": "beta_param", + "expression": "beta", + "expression_mathml": "beta" + } + ], + "time": { + "id": "t", + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + } + }, + "metadata": { + "annotations": { + "license": null, + "authors": [], + "references": [], + "time_scale": null, + "time_start": null, + "time_end": null, + "locations": [], + "pathogens": [], + "diseases": [], + "hosts": [], + "model_types": [] + } + } + }, + "request": { + "constraints": [ + { + "name": "I_constraint0", + "variable": "I", + "interval": { + "lb": 0.9141058921813964, + "ub": 909.6296997070312 + }, + "timepoints": { + "lb": 0.0, + "ub": 50.0, + "closed_upper_bound": true + } + }, + { + "name": "I_constraint1", + "variable": "I", + "interval": { + "lb": 0.0005660105962306, + "ub": 154.95701599121094 + }, + "timepoints": { + "lb": 50.0, + "ub": 100.0, + "closed_upper_bound": true + } + } + ], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 0.001, + "ub": 0.003 + }, + "label": "all" + }, + { + "name": "gamma", + "interval": { + "lb": 0.04, + "ub": 0.15 + }, + "label": "all" + } + ], + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 5, + 10, + 15, + 20, + 25, + 30, + 40, + 50, + 60, + 70, + 80, + 90, + 100 + ] + } + ] + } + ], + "config": { + "use_compartmental_constraints": true, + "normalization_constant": 1000, + "normalize": false, + "tolerance": 0.005 + } + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/eval_scenario2.json b/resources/amr/petrinet/terrarium-tests/eval_scenario2.json new file mode 100644 index 00000000..4cfe2bb3 --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/eval_scenario2.json @@ -0,0 +1,374 @@ +{ + "id": "cd7046cc-e512-4320-82f1-e7f01877f434", + "model": { + "petrinet": { + "header": { + "name": "s2_1", + "schema": "https://github.com/DARPA-ASKEM/Model-Representations/blob/main/petrinet/petrinet_schema.json", + "schema_name": "PetriNet", + "description": "This is a model from equations", + "model_version": "0.1" + }, + "model": { + "states": [ + { + "id": "D", + "name": "D" + }, + { + "id": "H", + "name": "H" + }, + { + "id": "I", + "name": "I" + }, + { + "id": "R", + "name": "R" + }, + { + "id": "S", + "name": "S" + } + ], + "transitions": [ + { + "id": "t0", + "input": [ + "I", + "S" + ], + "output": [ + "I", + "I" + ] + }, + { + "id": "t1", + "input": [ + "H" + ], + "output": [ + "D" + ] + }, + { + "id": "t2", + "input": [ + "I" + ], + "output": [ + "H" + ] + }, + { + "id": "t3", + "input": [ + "I" + ], + "output": [ + "R" + ] + }, + { + "id": "t4", + "input": [ + "H" + ], + "output": [ + "R" + ] + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t0", + "expression": "N*β*I*S", + "expression_mathml": "SNβI" + }, + { + "target": "t1", + "expression": "d*h*H", + "expression_mathml": "Hdh" + }, + { + "target": "t2", + "expression": "b*f*I", + "expression_mathml": "Ibf" + }, + { + "target": "t3", + "expression": "a*e*I", + "expression_mathml": "Iae" + }, + { + "target": "t4", + "expression": "c*g*H", + "expression_mathml": "Hcg" + } + ], + "initials": [ + { + "target": "S", + "expression": "25550375", + "expression_mathml": "25550375" + }, + { + "target": "I", + "expression": "48722998", + "expression_mathml": "48722998" + }, + { + "target": "D", + "expression": "781182", + "expression_mathml": "781182" + }, + { + "target": "H", + "expression": "27003629", + "expression_mathml": "27003629" + }, + { + "target": "R", + "expression": "47941816", + "expression_mathml": "47941816" + } + ], + "parameters": [ + { + "id": "N", + "name": "N", + "description": "Total population", + "value": 1.5E8 + }, + { + "id": "a", + "name": "a", + "description": "rate from I to R", + "value": 0.07 + }, + { + "id": "b", + "name": "b", + "description": "rate from I to H", + "value": 0.07 + }, + { + "id": "c", + "name": "c", + "description": "rate from H to R", + "value": 0.07 + }, + { + "id": "d", + "name": "d", + "description": "rate from H to D", + "value": 0.30000000000000004 + }, + { + "id": "e", + "name": "e", + "description": "prob of moving from I to R", + "value": 0.09000000000000001 + }, + { + "id": "f", + "name": "f", + "description": "prob of moving from I to H", + "value": 0.01 + }, + { + "id": "g", + "name": "g", + "description": "prob of moving from H to R", + "value": 0.8700000000000001 + }, + { + "id": "h", + "name": "h", + "description": "prob of moving from H to D", + "value": 0.13 + }, + { + "id": "β", + "name": "β", + "description": "Number of infections per infected person per day", + "value": 0.18000000000000002 + } + ] + } + }, + "metadata": { + "timeseries": {}, + "initials": { + "S": { + "name": "Susceptible" + }, + "I": { + "name": "Infected" + }, + "D": { + "name": "Dead" + }, + "H": { + "name": "Hospitalized" + }, + "R": { + "name": "Recovered" + } + }, + "parameters": {} + }, + "id": "54478092-dd24-46f8-bcac-eba3af2cf018", + "name": "s2_1", + "createdOn": "2024-03-25T18:10:58.624+00:00", + "updatedOn": "2024-03-25T18:28:48.613+00:00", + "temporary": false, + "publicAsset": false + } + }, + "request": { + "constraints": [ + { + "name": "c1", + "additive_bounds": { + "lb": -9.9999999999E10, + "ub": 0.0, + "original_width": 9.9999999999E10 + }, + "variables": [ + "S" + ], + "weights": [ + 1 + ], + "derivative": true + } + ], + "parameters": [ + { + "name": "N", + "interval": { + "lb": 1.5E8, + "ub": 1.5E8, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "a", + "interval": { + "lb": 0, + "ub": 0.05, + "closed_upper_bound": true, + "original_width": 0.0 + }, + "label": "all" + }, + { + "name": "b", + "interval": { + "lb": 0.05, + "ub": 0.15, + "closed_upper_bound": true, + "original_width": 0.0 + }, + "label": "all" + }, + { + "name": "c", + "interval": { + "lb": 0.07, + "ub": 0.07, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "d", + "interval": { + "lb": 0.30000000000000004, + "ub": 0.30000000000000004, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "e", + "interval": { + "lb": 0.09, + "ub": 0.09, + "closed_upper_bound": true + }, + "label": "all" + }, + { + "name": "f", + "interval": { + "lb": 0.01, + "ub": 0.01, + "closed_upper_bound": true + }, + "label": "all" + }, + { + "name": "g", + "interval": { + "lb": 0.8700000000000001, + "ub": 0.8700000000000001, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "h", + "interval": { + "lb": 0.13, + "ub": 0.13, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "β", + "interval": { + "lb": 0.18, + "ub": 0.22, + "closed_upper_bound": true + }, + "label": "all" + } + ], + "config": { + "tolerance": 0.05, + "normalization_constant": 1.5E8, + "use_compartmental_constraints": true + }, + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10, + 20, + 30, + 40, + 50, + 60, + 70, + 80, + 90, + 100 + ] + } + ] + } + ] + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/eval_scenario2_model.json b/resources/amr/petrinet/terrarium-tests/eval_scenario2_model.json new file mode 100644 index 00000000..d172e007 --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/eval_scenario2_model.json @@ -0,0 +1,230 @@ + { + "header": { + "name": "s2_1", + "schema": "https://github.com/DARPA-ASKEM/Model-Representations/blob/main/petrinet/petrinet_schema.json", + "schema_name": "PetriNet", + "description": "This is a model from equations", + "model_version": "0.1" + }, + "model": { + "states": [ + { + "id": "D", + "name": "D" + }, + { + "id": "H", + "name": "H" + }, + { + "id": "I", + "name": "I" + }, + { + "id": "R", + "name": "R" + }, + { + "id": "S", + "name": "S" + } + ], + "transitions": [ + { + "id": "t0", + "input": [ + "I", + "S" + ], + "output": [ + "I", + "I" + ] + }, + { + "id": "t1", + "input": [ + "H" + ], + "output": [ + "D" + ] + }, + { + "id": "t2", + "input": [ + "I" + ], + "output": [ + "H" + ] + }, + { + "id": "t3", + "input": [ + "I" + ], + "output": [ + "R" + ] + }, + { + "id": "t4", + "input": [ + "H" + ], + "output": [ + "R" + ] + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t0", + "expression": "N*β*I*S", + "expression_mathml": "SNβI" + }, + { + "target": "t1", + "expression": "d*h*H", + "expression_mathml": "Hdh" + }, + { + "target": "t2", + "expression": "b*f*I", + "expression_mathml": "Ibf" + }, + { + "target": "t3", + "expression": "a*e*I", + "expression_mathml": "Iae" + }, + { + "target": "t4", + "expression": "c*g*H", + "expression_mathml": "Hcg" + } + ], + "initials": [ + { + "target": "S", + "expression": "25550375", + "expression_mathml": "25550375" + }, + { + "target": "I", + "expression": "48722998", + "expression_mathml": "48722998" + }, + { + "target": "D", + "expression": "781182", + "expression_mathml": "781182" + }, + { + "target": "H", + "expression": "27003629", + "expression_mathml": "27003629" + }, + { + "target": "R", + "expression": "47941816", + "expression_mathml": "47941816" + } + ], + "parameters": [ + { + "id": "N", + "name": "N", + "description": "Total population", + "value": 150000000 + }, + { + "id": "a", + "name": "a", + "description": "rate from I to R", + "value": 0.07 + }, + { + "id": "b", + "name": "b", + "description": "rate from I to H", + "value": 0.07 + }, + { + "id": "c", + "name": "c", + "description": "rate from H to R", + "value": 0.07 + }, + { + "id": "d", + "name": "d", + "description": "rate from H to D", + "value": 0.30000000000000004 + }, + { + "id": "e", + "name": "e", + "description": "prob of moving from I to R", + "value": 0.09000000000000001 + }, + { + "id": "f", + "name": "f", + "description": "prob of moving from I to H", + "value": 0.01 + }, + { + "id": "g", + "name": "g", + "description": "prob of moving from H to R", + "value": 0.8700000000000001 + }, + { + "id": "h", + "name": "h", + "description": "prob of moving from H to D", + "value": 0.13 + }, + { + "id": "β", + "name": "β", + "description": "Number of infections per infected person per day", + "value": 0.18000000000000002 + } + ] + } + }, + "metadata": { + "timeseries": {}, + "initials": { + "S": { + "name": "Susceptible" + }, + "I": { + "name": "Infected" + }, + "D": { + "name": "Dead" + }, + "H": { + "name": "Hospitalized" + }, + "R": { + "name": "Recovered" + } + }, + "parameters": {} + }, + "id": "54478092-dd24-46f8-bcac-eba3af2cf018", + "name": "s2_1", + "createdOn": "2024-03-25T18:10:58.624+00:00", + "updatedOn": "2024-03-25T18:28:48.613+00:00", + "temporary": false, + "publicAsset": false + } + diff --git a/resources/amr/petrinet/terrarium-tests/eval_scenario2_norm.json b/resources/amr/petrinet/terrarium-tests/eval_scenario2_norm.json new file mode 100644 index 00000000..0ad5a064 --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/eval_scenario2_norm.json @@ -0,0 +1,551 @@ +{ + "id": "c5e45960-e2e4-4933-9b20-0f70f9885d5f", + "model": { + "petrinet": { + "header": { + "name": "s2_3", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.6/petrinet/petrinet_schema.json", + "schema_name": "petrinet", + "description": "This is a model from equations", + "model_version": "0.1" + }, + "properties": {}, + "model": { + "states": [ + { + "id": "S", + "name": "S", + "grounding": { + "identifiers": {}, + "modifiers": {} + } + }, + { + "id": "I", + "name": "I", + "grounding": { + "identifiers": {}, + "modifiers": {} + } + }, + { + "id": "H", + "name": "H", + "grounding": { + "identifiers": {}, + "modifiers": {} + } + }, + { + "id": "D", + "name": "D", + "grounding": { + "identifiers": {}, + "modifiers": {} + } + }, + { + "id": "R", + "name": "R", + "grounding": { + "identifiers": {}, + "modifiers": {} + } + } + ], + "transitions": [ + { + "id": "t0", + "input": [ + "I", + "S" + ], + "output": [ + "I", + "I" + ], + "properties": { + "name": "t0" + } + }, + { + "id": "t1", + "input": [ + "H" + ], + "output": [ + "D" + ], + "properties": { + "name": "t1" + } + }, + { + "id": "t2", + "input": [ + "I" + ], + "output": [ + "H" + ], + "properties": { + "name": "t2" + } + }, + { + "id": "t3", + "input": [ + "I" + ], + "output": [ + "R" + ], + "properties": { + "name": "t3" + } + }, + { + "id": "t4", + "input": [ + "H" + ], + "output": [ + "R" + ], + "properties": { + "name": "t4" + } + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t0", + "expression": "I*S*beta/N", + "expression_mathml": "ISbetaN" + }, + { + "target": "t1", + "expression": "H*d*h", + "expression_mathml": "Hdh" + }, + { + "target": "t2", + "expression": "I*b*f", + "expression_mathml": "Ibf" + }, + { + "target": "t3", + "expression": "I*a*e", + "expression_mathml": "Iae" + }, + { + "target": "t4", + "expression": "H*c*g", + "expression_mathml": "Hcg" + } + ], + "initials": [ + { + "target": "S", + "expression": "149808412.0", + "expression_mathml": "149808412.0" + }, + { + "target": "I", + "expression": "137002.0", + "expression_mathml": "137002.0" + }, + { + "target": "H", + "expression": "52585.0", + "expression_mathml": "52585.0" + }, + { + "target": "D", + "expression": "2001.0", + "expression_mathml": "2001.0" + }, + { + "target": "R", + "expression": "0", + "expression_mathml": "0" + } + ], + "parameters": [ + { + "id": "N", + "name": "N", + "description": "Total population", + "value": 150000000, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 1500000000, + "maximum": 1500000000 + } + } + }, + { + "id": "beta", + "name": "beta", + "description": "Number of infections per infected person per day", + "value": 1, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.25 + } + } + }, + { + "id": "d", + "name": "d", + "description": "rate from H to D", + "value": 1, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.30000000000000004 + } + } + }, + { + "id": "h", + "name": "h", + "description": "prob of moving from H to D", + "value": 1, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.12000000000000001, + "maximum": 0.13 + } + } + }, + { + "id": "b", + "name": "b", + "description": "rate from I to H", + "value": 0.07, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.07, + "maximum": 0.33 + } + } + }, + { + "id": "f", + "name": "f", + "description": "prob of moving from I to H", + "value": 1, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.09000000000000001, + "maximum": 0.1 + } + } + }, + { + "id": "a", + "name": "a", + "description": "rate from I to R", + "value": 0.07, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.07, + "maximum": 0.1 + } + } + }, + { + "id": "e", + "name": "e", + "description": "prob of moving from I to R", + "value": 1, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.9, + "maximum": 0.91 + } + } + }, + { + "id": "c", + "name": "c", + "description": "rate from H to R", + "value": 0.07, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.07, + "maximum": 0.33 + } + } + }, + { + "id": "g", + "name": "g", + "description": "prob of moving from H to R", + "value": 1, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.8700000000000001, + "maximum": 0.8700000000000001 + } + } + } + ], + "time": { + "id": "t" + } + } + }, + "metadata": { + "timeseries": {}, + "initials": {}, + "parameters": {} + }, + "id": "348d0c7a-87af-4c5e-9182-75deda5551d9", + "name": "s2_3", + "createdOn": "2024-03-26T18:34:48.497+00:00", + "temporary": false, + "publicAsset": false + } + }, + "progress": { + "progress": 1, + "coverage_of_search_space": 1 + }, + "request": { + "constraints": [ + { + "name": "c1", + "additive_bounds": { + "ub": 0, + "closed_upper_bound": true, + "original_width": 99999999999 + }, + "variables": [ + "S" + ], + "weights": [ + 1 + ], + "derivative": true + }, + { + "name": "c2", + "additive_bounds": { + "ub": 0, + "closed_upper_bound": true, + "original_width": 99999999999 + }, + "variables": [ + "R" + ], + "weights": [ + -1 + ], + "derivative": true + }, + { + "name": "c3", + "additive_bounds": { + "ub": 0, + "closed_upper_bound": true, + "original_width": 99999999999 + }, + "variables": [ + "D" + ], + "weights": [ + -1 + ], + "derivative": true + }, + { + "name": "I increase", + "timepoints": { + "ub": 50 + }, + "variables": [ + "I" + ], + "additive_bounds": { + "lb": 0 + }, + "derivative": true + }, + { + "name": "I decrease", + "timepoints": { + "lb": 60 + }, + "variables": [ + "I" + ], + "additive_bounds": { + "lb": 0 + }, + "weights": [ + -1 + ], + "derivative": true + }, + { + "name": "H increase", + "timepoints": { + "ub": 55 + }, + "variables": [ + "H" + ], + "additive_bounds": { + "lb": 0 + }, + "derivative": true + }, + { + "name": "H decrease", + "timepoints": { + "lb": 65 + }, + "variables": [ + "H" + ], + "additive_bounds": { + "lb": 0 + }, + "weights": [ + -1 + ], + "derivative": true + } + ], + "parameters": [ + { + "name": "N", + "interval": { + "lb": 150000000, + "ub": 150000000, + "original_width": 100 + } + }, + { + "name": "beta", + "interval": { + "lb": 0.5, + "ub": 0.6, + "original_width": 0.24000000000000002 + }, + "label": "all" + }, + { + "name": "d", + "interval": { + "lb": 0.1, + "ub": 0.9900000000000001, + "original_width": 0.8900000000000001 + } + }, + { + "name": "h", + "interval": { + "lb": 0.129, + "ub": 0.13, + "original_width": 0.0010000000000000009 + } + }, + { + "name": "b", + "interval": { + "lb": 0.75, + "ub": 1.0, + "original_width": 0.26 + }, + "label": "any" + }, + { + "name": "f", + "interval": { + "lb": 0.09000000000000001, + "ub": 0.1, + "original_width": 0.009999999999999995 + } + }, + { + "name": "a", + "interval": { + "lb": 0.07, + "ub": 0.1, + "original_width": 0.03 + }, + "label": "any" + }, + { + "name": "e", + "interval": { + "lb": 0.9, + "ub": 0.91, + "original_width": 0.010000000000000009 + } + }, + { + "name": "c", + "interval": { + "lb": 0.07, + "ub": 0.33, + "original_width": 0.26 + } + }, + { + "name": "g", + "interval": { + "lb": 0.8700000000000001, + "ub": 0.8710000000000001, + "original_width": 0.0010000000000000009 + } + } + ], + "config": { + "tolerance": 0.01, + "normalization_constant": 150000000, + "use_compartmental_constraints": true + }, + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10, + 20, + 30, + 40, + 45, + 50, + 55, + 60, + 65, + 70, + 75, + 80 + ] + } + ] + } + ] + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/eval_scenario2_request.json b/resources/amr/petrinet/terrarium-tests/eval_scenario2_request.json new file mode 100644 index 00000000..9a6ea072 --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/eval_scenario2_request.json @@ -0,0 +1,171 @@ + { + "constraints": [ + { + "name": "c1", + "additive_bounds": { + "lb": -99999999999, + "ub": 0, + "closed_upper_bound": true, + "original_width": 99999999999 + }, + "variables": [ + "S" + ], + "weights": [ + 1 + ], + "derivative": true + }, + { + "name": "c2", + "additive_bounds": { + "lb": -99999999999, + "ub": 0, + "closed_upper_bound": true, + "original_width": 99999999999 + }, + "variables": [ + "R" + ], + "weights": [ + -1 + ], + "derivative": true + }, + { + "name": "c3", + "additive_bounds": { + "lb": -99999999999, + "ub": 0, + "closed_upper_bound": true, + "original_width": 99999999999 + }, + "variables": [ + "D" + ], + "weights": [ + -1 + ], + "derivative": true + } + ], + "parameters": [ + { + "name": "N", + "interval": { + "lb": 150000000, + "ub": 150000000, + "closed_upper_bound": true, + "original_width": 0 + } + }, + { + "name": "a", + "interval": { + "lb": 0.01, + "ub": 0.1, + "closed_upper_bound": true, + "original_width": 0 + }, + "label": "any" + }, + { + "name": "b", + "interval": { + "lb": 0.01, + "ub": 0.1, + "closed_upper_bound": true, + "original_width": 0 + }, + "label": "any" + }, + { + "name": "c", + "interval": { + "lb": 0.01, + "ub": 0.1, + "closed_upper_bound": true, + "original_width": 0 + }, + "label": "any" + }, + { + "name": "d", + "interval": { + "lb": 0.2, + "ub": 0.4, + "closed_upper_bound": true, + "original_width": 0 + }, + "label": "any" + }, + { + "name": "e", + "interval": { + "lb": 0.01, + "ub": 0.1, + "closed_upper_bound": true, + "original_width": 0 + }, + "label": "any" + }, + { + "name": "f", + "interval": { + "lb": 0.001, + "ub": 0.02, + "closed_upper_bound": true, + "original_width": 0 + }, + "label": "any" + }, + { + "name": "g", + "interval": { + "lb": 0.8, + "ub": 0.9, + "closed_upper_bound": true, + "original_width": 0 + }, + "label": "all" + }, + { + "name": "h", + "interval": { + "lb": 0.1, + "ub": 0.15, + "closed_upper_bound": true, + "original_width": 0 + }, + "label": "all" + }, + { + "name": "β", + "interval": { + "lb": 0.1, + "ub": 0.2, + "closed_upper_bound": true, + "original_width": 0 + }, + "label": "all" + } + ], + "config": { + "tolerance": 0.05, + "normalization_constant": 150000000, + "use_compartmental_constraints": true + }, + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0,10, 20, 30, 40, 50, 60, 70, 80, 90, 100 + + ] + } + ] + } + ] + } \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/eval_scenario2_small.json b/resources/amr/petrinet/terrarium-tests/eval_scenario2_small.json new file mode 100644 index 00000000..ba9ed98c --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/eval_scenario2_small.json @@ -0,0 +1,439 @@ +{ + "id": "f7fe6d2c-2876-4f3f-b510-18d515694fa2", + "model": { + "petrinet": { + "header": { + "name": "s2_1", + "schema": "https://github.com/DARPA-ASKEM/Model-Representations/blob/main/petrinet/petrinet_schema.json", + "schema_name": "PetriNet", + "description": "This is a model from equations", + "model_version": "0.1" + }, + "model": { + "states": [ + { + "id": "D", + "name": "D" + }, + { + "id": "H", + "name": "H" + }, + { + "id": "I", + "name": "I" + }, + { + "id": "R", + "name": "R" + }, + { + "id": "S", + "name": "S" + } + ], + "transitions": [ + { + "id": "t0", + "input": [ + "I", + "S" + ], + "output": [ + "I", + "I" + ] + }, + { + "id": "t1", + "input": [ + "H" + ], + "output": [ + "D" + ] + }, + { + "id": "t2", + "input": [ + "I" + ], + "output": [ + "H" + ] + }, + { + "id": "t3", + "input": [ + "I" + ], + "output": [ + "R" + ] + }, + { + "id": "t4", + "input": [ + "H" + ], + "output": [ + "R" + ] + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t0", + "expression": "N*β*I*S", + "expression_mathml": "SNβI" + }, + { + "target": "t1", + "expression": "d*h*H", + "expression_mathml": "Hdh" + }, + { + "target": "t2", + "expression": "b*f*I", + "expression_mathml": "Ibf" + }, + { + "target": "t3", + "expression": "a*e*I", + "expression_mathml": "Iae" + }, + { + "target": "t4", + "expression": "c*g*H", + "expression_mathml": "Hcg" + } + ], + "initials": [ + { + "target": "S", + "expression": "25550375", + "expression_mathml": "25550375" + }, + { + "target": "I", + "expression": "48722998", + "expression_mathml": "48722998" + }, + { + "target": "D", + "expression": "781182", + "expression_mathml": "781182" + }, + { + "target": "H", + "expression": "27003629", + "expression_mathml": "27003629" + }, + { + "target": "R", + "expression": "47941816", + "expression_mathml": "47941816" + } + ], + "parameters": [ + { + "id": "N", + "name": "N", + "description": "Total population", + "value": 1.5E8 + }, + { + "id": "a", + "name": "a", + "description": "rate from I to R", + "value": 0.07 + }, + { + "id": "b", + "name": "b", + "description": "rate from I to H", + "value": 0.07 + }, + { + "id": "c", + "name": "c", + "description": "rate from H to R", + "value": 0.07 + }, + { + "id": "d", + "name": "d", + "description": "rate from H to D", + "value": 0.30000000000000004 + }, + { + "id": "e", + "name": "e", + "description": "prob of moving from I to R", + "value": 0.09000000000000001 + }, + { + "id": "f", + "name": "f", + "description": "prob of moving from I to H", + "value": 0.01 + }, + { + "id": "g", + "name": "g", + "description": "prob of moving from H to R", + "value": 0.8700000000000001 + }, + { + "id": "h", + "name": "h", + "description": "prob of moving from H to D", + "value": 0.13 + }, + { + "id": "β", + "name": "β", + "description": "Number of infections per infected person per day", + "value": 0.18000000000000002 + } + ] + } + }, + "metadata": { + "timeseries": {}, + "initials": { + "S": { + "name": "Susceptible" + }, + "I": { + "name": "Infected" + }, + "D": { + "name": "Dead" + }, + "H": { + "name": "Hospitalized" + }, + "R": { + "name": "Recovered" + } + }, + "parameters": {} + }, + "id": "54478092-dd24-46f8-bcac-eba3af2cf018", + "name": "s2_1", + "createdOn": "2024-03-25T18:10:58.624+00:00", + "updatedOn": "2024-03-25T18:28:48.613+00:00", + "temporary": false, + "publicAsset": false + } + }, + "progress": { + "progress": 1.0 + }, + "request": { + "constraints": [], + "parameters": [ + { + "name": "N", + "interval": { + "lb": 1.5E8, + "ub": 1.5E8, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "a", + "interval": { + "lb": 0.07, + "ub": 0.07, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "b", + "interval": { + "lb": 0.07, + "ub": 0.07, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "c", + "interval": { + "lb": 0.07, + "ub": 0.07, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "d", + "interval": { + "lb": 0.30000000000000004, + "ub": 0.30000000000000004, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "e", + "interval": { + "lb": 0.09000000000000001, + "ub": 0.09000000000000001, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "f", + "interval": { + "lb": 0.01, + "ub": 0.01, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "g", + "interval": { + "lb": 0.8700000000000001, + "ub": 0.8700000000000001, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "h", + "interval": { + "lb": 0.13, + "ub": 0.13, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "β", + "interval": { + "lb": 0.18000000000000002, + "ub": 0.18000000000000002, + "closed_upper_bound": true, + "original_width": 0.0 + } + } + ], + "config": { + "tolerance": 0.2, + "normalization_constant": 1.5E8, + "use_compartmental_constraints": true + }, + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 1 + ] + } + ] + } + ] + }, + "done": true, + "parameter_space": { + "num_dimensions": 11, + "false_boxes": [ + { + "label": "false", + "bounds": { + "N": { + "lb": 1.0, + "ub": 1.0, + "closed_upper_bound": true, + "original_width": 0.0, + "normalized": true, + "unnormalized_lb": 1.5E8, + "unnormalized_ub": 1.5E8 + }, + "a": { + "lb": 0.07, + "ub": 0.07, + "closed_upper_bound": true, + "original_width": 0.0 + }, + "b": { + "lb": 0.07, + "ub": 0.07, + "closed_upper_bound": true, + "original_width": 0.0 + }, + "c": { + "lb": 0.07, + "ub": 0.07, + "closed_upper_bound": true, + "original_width": 0.0 + }, + "d": { + "lb": 0.30000000000000004, + "ub": 0.30000000000000004, + "closed_upper_bound": true, + "original_width": 0.0 + }, + "e": { + "lb": 0.09000000000000001, + "ub": 0.09000000000000001, + "closed_upper_bound": true, + "original_width": 0.0 + }, + "f": { + "lb": 0.01, + "ub": 0.01, + "closed_upper_bound": true, + "original_width": 0.0 + }, + "g": { + "lb": 0.8700000000000001, + "ub": 0.8700000000000001, + "closed_upper_bound": true, + "original_width": 0.0 + }, + "h": { + "lb": 0.13, + "ub": 0.13, + "closed_upper_bound": true, + "original_width": 0.0 + }, + "β": { + "lb": 0.18000000000000002, + "ub": 0.18000000000000002, + "closed_upper_bound": true, + "original_width": 0.0 + }, + "timestep": { + "lb": 1.0, + "ub": 1.0, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + "explanation": { + "expression": "(((((((((((((((S_1 = (S_0 - (((S_0 * I_0) * 'β') * N))) & (R_1 = ((R_0 + ((I_0 * e) * a)) + ((H_0 * g) * c)))) & (S_0 = 17033583333333333/100000000000000000)) & (I_0 = 32481998666666667/100000000000000000)) & ('β' = 9000000000000001/50000000000000000)) & (N = 1.0)) & (e = 90000000000000011/1000000000000000000)) & (a = 70000000000000007/1000000000000000000)) & (H_0 = 18002419333333333/100000000000000000)) & (g = 87000000000000011/100000000000000000)) & (c = 70000000000000007/1000000000000000000)) & (R_0 = 31961210666666667/100000000000000000)) & ((((((((((((((S_1 < 0.0) | (R_1 < 0.0)) | (! (S_1 = (S_0 - (((S_0 * I_0) * 'β') * N))))) | (! (R_1 = ((R_0 + ((I_0 * e) * a)) + ((H_0 * g) * c))))) | (! (S_0 = 17033583333333333/100000000000000000))) | (! (I_0 = 32481998666666667/100000000000000000))) | (! ('β' = 9000000000000001/50000000000000000))) | (! (N = 1.0))) | (! (e = 90000000000000011/1000000000000000000))) | (! (a = 70000000000000007/1000000000000000000))) | (! (H_0 = 18002419333333333/100000000000000000))) | (! (g = 87000000000000011/100000000000000000))) | (! (c = 70000000000000007/1000000000000000000))) | (! (R_0 = 31961210666666667/100000000000000000)))) & (! (S_1 < 0.0))) & (! (R_1 < 0.0)))" + }, + "schedule": { + "timepoints": [ + 0, + 1 + ] + } + } + ] + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/feb_bug_model.json b/resources/amr/petrinet/terrarium-tests/feb_bug_model.json new file mode 100644 index 00000000..7283ea34 --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/feb_bug_model.json @@ -0,0 +1,311 @@ +{ + "id": "62686ae6-e1da-4896-b581-1cb183eae64f", + "temporary": false, + "publicAsset": false, + "header": { + "name": "ES1_2ci_SEIRHD", + "description": "Evaluation Scenario 2 Base model", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.5/petrinet/petrinet_schema.json", + "schema_name": "petrinet", + "model_version": "0.1" + }, + "model": { + "states": [ + { + "id": "S", + "name": "S", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I", + "name": "I", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E", + "name": "E", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R", + "name": "R", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H", + "name": "H", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D", + "name": "D", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + } + ], + "transitions": [ + { + "id": "t1", + "input": [ + "I", + "S" + ], + "output": [ + "E", + "I" + ], + "properties": { + "name": "t1" + } + }, + { + "id": "t2", + "input": [ + "E" + ], + "output": [ + "I" + ], + "properties": { + "name": "t2" + } + }, + { + "id": "t3", + "input": [ + "I" + ], + "output": [ + "R" + ], + "properties": { + "name": "t3" + } + }, + { + "id": "t4", + "input": [ + "I" + ], + "output": [ + "H" + ], + "properties": { + "name": "t4" + } + }, + { + "id": "t5", + "input": [ + "H" + ], + "output": [ + "R" + ], + "properties": { + "name": "t5" + } + }, + { + "id": "t6", + "input": [ + "H" + ], + "output": [ + "D" + ], + "properties": { + "name": "t6" + } + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t1", + "expression": "I*S*beta/N", + "expression_mathml": "ISbetaN" + }, + { + "target": "t2", + "expression": "E*r_E_to_I", + "expression_mathml": "Er_E_to_I" + }, + { + "target": "t3", + "expression": "I*p_I_to_R*r_I_to_R", + "expression_mathml": "Ip_I_to_Rr_I_to_R" + }, + { + "target": "t4", + "expression": "I*p_I_to_H*r_I_to_H", + "expression_mathml": "Ip_I_to_Hr_I_to_H" + }, + { + "target": "t5", + "expression": "H*p_H_to_R*r_H_to_R", + "expression_mathml": "Hp_H_to_Rr_H_to_R" + }, + { + "target": "t6", + "expression": "H*p_H_to_D*r_H_to_D", + "expression_mathml": "Hp_H_to_Dr_H_to_D" + } + ], + "initials": [ + { + "target": "S", + "expression": "14561489.0000000", + "expression_mathml": "14561489.0" + }, + { + "target": "I", + "expression": "2123452.00000000", + "expression_mathml": "2123452.0" + }, + { + "target": "E", + "expression": "530863.000000000", + "expression_mathml": "530863.0" + }, + { + "target": "R", + "expression": "2069902.00000000", + "expression_mathml": "2069902.0" + }, + { + "target": "H", + "expression": "744.000000000000", + "expression_mathml": "744.0" + }, + { + "target": "D", + "expression": "53550.0000000000", + "expression_mathml": "53550.0" + } + ], + "parameters": [ + { + "id": "N", + "value": 19340000 + }, + { + "id": "beta", + "value": 0.8 + }, + { + "id": "r_E_to_I", + "value": 0.2 + }, + { + "id": "p_I_to_R", + "value": 0.9 + }, + { + "id": "r_I_to_R", + "value": 0.07 + }, + { + "id": "p_I_to_H", + "value": 0.1 + }, + { + "id": "r_I_to_H", + "value": 0.1 + }, + { + "id": "p_H_to_R", + "value": 0.85 + }, + { + "id": "r_H_to_R", + "value": 0.1 + }, + { + "id": "p_H_to_D", + "value": 0.15 + }, + { + "id": "r_H_to_D", + "value": 0.1 + } + ], + "observables": [], + "time": { + "id": "t", + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + } + }, + "metadata": { + "annotations": { + "authors": [], + "references": [], + "locations": [], + "pathogens": [], + "diseases": [], + "hosts": [], + "model_types": [] + } + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/feb_bug_request.json b/resources/amr/petrinet/terrarium-tests/feb_bug_request.json new file mode 100644 index 00000000..fa9689ef --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/feb_bug_request.json @@ -0,0 +1,120 @@ +{ + "constraints": [], + "parameters": [ + { + "name": "N", + "interval": { + "lb": 19340000, + "ub": 19340000 + }, + "label": "any" + }, + { + "name": "beta", + "interval": { + "lb": 0.8, + "ub": 0.8 + }, + "label": "any" + }, + { + "name": "r_E_to_I", + "interval": { + "lb": 0.2, + "ub": 0.2 + }, + "label": "any" + }, + { + "name": "p_I_to_R", + "interval": { + "lb": 0.9, + "ub": 0.9 + }, + "label": "any" + }, + { + "name": "r_I_to_R", + "interval": { + "lb": 0.07, + "ub": 0.07 + }, + "label": "any" + }, + { + "name": "p_I_to_H", + "interval": { + "lb": 0.1, + "ub": 0.1 + }, + "label": "any" + }, + { + "name": "r_I_to_H", + "interval": { + "lb": 0.1, + "ub": 0.1 + }, + "label": "any" + }, + { + "name": "p_H_to_R", + "interval": { + "lb": 0.85, + "ub": 0.85 + }, + "label": "any" + }, + { + "name": "r_H_to_R", + "interval": { + "lb": 0.1, + "ub": 0.1 + }, + "label": "any" + }, + { + "name": "p_H_to_D", + "interval": { + "lb": 0.15, + "ub": 0.15 + }, + "label": "any" + }, + { + "name": "r_H_to_D", + "interval": { + "lb": 0.1, + "ub": 0.1 + }, + "label": "any" + } + ], + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10, + 20, + 30, + 40, + 50, + 60, + 70, + 80, + 90, + 100 + ] + } + ] + } + ], + "config": { + "use_compartmental_constraints": true, + "normalization_constant": 1, + "tolerance": 0.89 + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/funman-mar-25.json b/resources/amr/petrinet/terrarium-tests/funman-mar-25.json new file mode 100644 index 00000000..07353748 --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/funman-mar-25.json @@ -0,0 +1,854 @@ +{ + "id": "76832491-9d08-4ee0-8f6b-cef5667e5444", + "model": { + "petrinet": { + "header": { + "name": "Giordano2020 - SIDARTHE model of COVID-19 spread in Italy", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.5/petrinet/petrinet_schema.json", + "description": "Giordano2020 - SIDARTHE model of COVID-19 spread in Italy", + "model_version": "0.1" + }, + "model": { + "states": [ + { + "id": "Susceptible", + "name": "Susceptible", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": {} + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Diagnosed", + "name": "Diagnosed", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "diagnosis": "ncit:C15220" + } + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Infected", + "name": "Infected", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": {} + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Ailing", + "name": "Ailing", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "disease_severity": "ncit:C25269", + "diagnosis": "ncit:C113725" + } + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Recognized", + "name": "Recognized", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "diagnosis": "ncit:C15220" + } + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Healed", + "name": "Healed", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": {} + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Threatened", + "name": "Threatened", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "disease_severity": "ncit:C25467" + } + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Extinct", + "name": "Extinct", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": {} + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + } + ], + "transitions": [ + { + "id": "t1", + "input": [ + "Diagnosed", + "Susceptible" + ], + "output": [ + "Diagnosed", + "Infected" + ], + "properties": { + "name": "t1" + } + }, + { + "id": "t2", + "input": [ + "Ailing", + "Susceptible" + ], + "output": [ + "Ailing", + "Infected" + ], + "properties": { + "name": "t2" + } + }, + { + "id": "t3", + "input": [ + "Recognized", + "Susceptible" + ], + "output": [ + "Recognized", + "Infected" + ], + "properties": { + "name": "t3" + } + }, + { + "id": "t4", + "input": [ + "Infected", + "Susceptible" + ], + "output": [ + "Infected", + "Infected" + ], + "properties": { + "name": "t4" + } + }, + { + "id": "t5", + "input": [ + "Infected" + ], + "output": [ + "Diagnosed" + ], + "properties": { + "name": "t5" + } + }, + { + "id": "t6", + "input": [ + "Infected" + ], + "output": [ + "Ailing" + ], + "properties": { + "name": "t6" + } + }, + { + "id": "t7", + "input": [ + "Infected" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t7" + } + }, + { + "id": "t8", + "input": [ + "Diagnosed" + ], + "output": [ + "Recognized" + ], + "properties": { + "name": "t8" + } + }, + { + "id": "t9", + "input": [ + "Diagnosed" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t9" + } + }, + { + "id": "t10", + "input": [ + "Ailing" + ], + "output": [ + "Recognized" + ], + "properties": { + "name": "t10" + } + }, + { + "id": "t11", + "input": [ + "Ailing" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t11" + } + }, + { + "id": "t12", + "input": [ + "Ailing" + ], + "output": [ + "Threatened" + ], + "properties": { + "name": "t12" + } + }, + { + "id": "t13", + "input": [ + "Recognized" + ], + "output": [ + "Threatened" + ], + "properties": { + "name": "t13" + } + }, + { + "id": "t14", + "input": [ + "Recognized" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t14" + } + }, + { + "id": "t15", + "input": [ + "Threatened" + ], + "output": [ + "Extinct" + ], + "properties": { + "name": "t15" + } + }, + { + "id": "t16", + "input": [ + "Threatened" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t16" + } + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t1", + "expression": "Diagnosed*Susceptible*beta", + "expression_mathml": "DiagnosedSusceptiblebeta" + }, + { + "target": "t2", + "expression": "Ailing*Susceptible*gamma", + "expression_mathml": "AilingSusceptiblegamma" + }, + { + "target": "t3", + "expression": "Recognized*Susceptible*delta", + "expression_mathml": "RecognizedSusceptibledelta" + }, + { + "target": "t4", + "expression": "Infected*Susceptible*alpha", + "expression_mathml": "InfectedSusceptiblealpha" + }, + { + "target": "t5", + "expression": "Infected*epsilon", + "expression_mathml": "Infectedepsilon" + }, + { + "target": "t6", + "expression": "Infected*zeta", + "expression_mathml": "Infectedzeta" + }, + { + "target": "t7", + "expression": "Infected*lambda", + "expression_mathml": "Infectedlambda" + }, + { + "target": "t8", + "expression": "Diagnosed*eta", + "expression_mathml": "Diagnosedeta" + }, + { + "target": "t9", + "expression": "Diagnosed*rho", + "expression_mathml": "Diagnosedrho" + }, + { + "target": "t10", + "expression": "Ailing*theta", + "expression_mathml": "Ailingtheta" + }, + { + "target": "t11", + "expression": "Ailing*kappa", + "expression_mathml": "Ailingkappa" + }, + { + "target": "t12", + "expression": "Ailing*mu", + "expression_mathml": "Ailingmu" + }, + { + "target": "t13", + "expression": "Recognized*nu", + "expression_mathml": "Recognizednu" + }, + { + "target": "t14", + "expression": "Recognized*xi", + "expression_mathml": "Recognizedxi" + }, + { + "target": "t15", + "expression": "Threatened*tau", + "expression_mathml": "Threatenedtau" + }, + { + "target": "t16", + "expression": "Threatened*sigma", + "expression_mathml": "Threatenedsigma" + } + ], + "initials": [ + { + "target": "Susceptible", + "expression": "0.999996300000000", + "expression_mathml": "0.99999629999999995" + }, + { + "target": "Diagnosed", + "expression": "3.33333333000000e-7", + "expression_mathml": "3.33333333e-7" + }, + { + "target": "Infected", + "expression": "3.33333333000000e-6", + "expression_mathml": "3.3333333299999999e-6" + }, + { + "target": "Ailing", + "expression": "1.66666666000000e-8", + "expression_mathml": "1.6666666599999999e-8" + }, + { + "target": "Recognized", + "expression": "3.33333333000000e-8", + "expression_mathml": "3.33333333e-8" + }, + { + "target": "Healed", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "Threatened", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "Extinct", + "expression": "0.0", + "expression_mathml": "0.0" + } + ], + "parameters": [ + { + "id": "beta", + "value": 0.011000000000000001, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.008799999999999999, + "maximum": 0.013200000000000002 + } + } + }, + { + "id": "gamma", + "value": 0.456, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.3648, + "maximum": 0.5472 + } + } + }, + { + "id": "delta", + "value": 0.011000000000000001, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.008799999999999999, + "maximum": 0.013200000000000002 + } + } + }, + { + "id": "alpha", + "value": 0.5700000000000001, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.45599999999999996, + "maximum": 0.6839999999999999 + } + } + }, + { + "id": "epsilon", + "value": 0.171, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1368, + "maximum": 0.20520000000000002 + } + } + }, + { + "id": "zeta", + "value": 0.125, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.15000000000000002 + } + } + }, + { + "id": "lambda", + "value": 0.034, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.027200000000000002, + "maximum": 0.0408 + } + } + }, + { + "id": "eta", + "value": 0.125, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.15000000000000002 + } + } + }, + { + "id": "rho", + "value": 0.034, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.027200000000000002, + "maximum": 0.0408 + } + } + }, + { + "id": "theta", + "value": 0.37100000000000005, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.2968, + "maximum": 0.44520000000000004 + } + } + }, + { + "id": "kappa", + "value": 0.017, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.013600000000000001, + "maximum": 0.0204 + } + } + }, + { + "id": "mu", + "value": 0.017, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.013600000000000001, + "maximum": 0.0204 + } + } + }, + { + "id": "nu", + "value": 0.027000000000000003, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.0216, + "maximum": 0.032400000000000005 + } + } + }, + { + "id": "xi", + "value": 0.017, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.013600000000000001, + "maximum": 0.0204 + } + } + }, + { + "id": "tau", + "value": 0.01, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.008, + "maximum": 0.012 + } + } + }, + { + "id": "sigma", + "value": 0.017, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.013600000000000001, + "maximum": 0.0204 + } + } + } + ], + "time": { + "id": "t", + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + } + }, + "metadata": { + "timeseries": {}, + "initials": {}, + "parameters": {} + }, + "id": "d56b82ec-538e-4303-8e28-1a512f5ea545", + "createdOn": "2024-02-27T23:12:01.763+00:00", + "temporary": false, + "publicAsset": false + } + }, + "progress": { + "progress": 1.0 + }, + "request": { + "constraints": [ + { + "name": "param-01", + "timepoints": { + "lb": 0.0, + "ub": 100.0, + "closed_upper_bound": true, + "original_width": 100.0 + }, + "additive_bounds": { + "lb": 0.0, + "ub": 888.0, + "original_width": 888.0 + }, + "variables": [ + "beta", + "alpha" + ], + "weights": [ + 1, + 1 + ] + } + ], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 0.008799999999999999, + "ub": 0.013200000000000002, + "original_width": 0.004400000000000003 + }, + "label": "all" + }, + { + "name": "gamma", + "interval": { + "lb": 0.3648, + "ub": 0.5472, + "original_width": 0.1824 + } + }, + { + "name": "delta", + "interval": { + "lb": 0.008799999999999999, + "ub": 0.013200000000000002, + "original_width": 0.004400000000000003 + } + }, + { + "name": "alpha", + "interval": { + "lb": 0.45599999999999996, + "ub": 0.6839999999999999, + "original_width": 0.228 + }, + "label": "all" + }, + { + "name": "epsilon", + "interval": { + "lb": 0.1368, + "ub": 0.20520000000000002, + "original_width": 0.06840000000000002 + } + }, + { + "name": "zeta", + "interval": { + "lb": 0.1, + "ub": 0.15000000000000002, + "original_width": 0.05000000000000002 + } + }, + { + "name": "lambda", + "interval": { + "lb": 0.027200000000000002, + "ub": 0.0408, + "original_width": 0.013600000000000001 + } + }, + { + "name": "eta", + "interval": { + "lb": 0.1, + "ub": 0.15000000000000002, + "original_width": 0.05000000000000002 + } + }, + { + "name": "rho", + "interval": { + "lb": 0.027200000000000002, + "ub": 0.0408, + "original_width": 0.013600000000000001 + } + }, + { + "name": "theta", + "interval": { + "lb": 0.2968, + "ub": 0.44520000000000004, + "original_width": 0.14840000000000003 + } + }, + { + "name": "kappa", + "interval": { + "lb": 0.013600000000000001, + "ub": 0.0204, + "original_width": 0.0068000000000000005 + } + }, + { + "name": "mu", + "interval": { + "lb": 0.013600000000000001, + "ub": 0.0204, + "original_width": 0.0068000000000000005 + } + }, + { + "name": "nu", + "interval": { + "lb": 0.0216, + "ub": 0.032400000000000005, + "original_width": 0.010800000000000006 + } + }, + { + "name": "xi", + "interval": { + "lb": 0.013600000000000001, + "ub": 0.0204, + "original_width": 0.0068000000000000005 + } + }, + { + "name": "tau", + "interval": { + "lb": 0.008, + "ub": 0.012, + "original_width": 0.004 + } + }, + { + "name": "sigma", + "interval": { + "lb": 0.013600000000000001, + "ub": 0.0204, + "original_width": 0.0068000000000000005 + } + } + ], + "config": { + "tolerance": 0.1, + "normalization_constant": 1.0, + "use_compartmental_constraints": true + }, + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10, + 20, + 30, + 40, + 50, + 60, + 70, + 80, + 90, + 100 + ] + } + ] + } + ] + }, + "done": true, + "parameter_space": { + "num_dimensions": 17 + } +} diff --git a/resources/amr/petrinet/terrarium-tests/mar_19.json b/resources/amr/petrinet/terrarium-tests/mar_19.json new file mode 100644 index 00000000..786c64fe --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/mar_19.json @@ -0,0 +1,2113 @@ +{ + "model": { + "id": "3713c736-cf95-4d4c-8327-5002fc032cab", + "createdOn": "2024-02-28T16:28:54.987+00:00", + "temporary": false, + "publicAsset": true, + "header": { + "name": "SEIRHD model NPI Type 1", + "description": "SEIRHD model NPI Type 1", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.6/petrinet/petrinet_schema.json", + "schema_name": "petrinet", + "model_version": "0.1" + }, + "model": { + "states": [ + { + "id": "S", + "name": "S", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I", + "name": "I", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E", + "name": "E", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R", + "name": "R", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H", + "name": "H", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D", + "name": "D", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + } + ], + "transitions": [ + { + "id": "t1", + "input": [ + "I", + "S" + ], + "output": [ + "I", + "E" + ], + "properties": { + "name": "t1" + } + }, + { + "id": "t2", + "input": [ + "E" + ], + "output": [ + "I" + ], + "properties": { + "name": "t2" + } + }, + { + "id": "t3", + "input": [ + "I" + ], + "output": [ + "R" + ], + "properties": { + "name": "t3" + } + }, + { + "id": "t4", + "input": [ + "I" + ], + "output": [ + "H" + ], + "properties": { + "name": "t4" + } + }, + { + "id": "t5", + "input": [ + "H" + ], + "output": [ + "R" + ], + "properties": { + "name": "t5" + } + }, + { + "id": "t6", + "input": [ + "H" + ], + "output": [ + "D" + ], + "properties": { + "name": "t6" + } + } + ] + }, + "properties": {}, + "semantics": { + "ode": { + "rates": [ + { + "target": "t1", + "expression": "I*S*kappa*(beta_c + (-beta_c + beta_s)/(1 + exp(-k*(-t + t0))))/total_population", + "expression_mathml": "ISkappabeta_cbeta_cbeta_s1kt0ttotal_population" + }, + { + "target": "t2", + "expression": "E*delta", + "expression_mathml": "Edelta" + }, + { + "target": "t3", + "expression": "I*gamma*(1 - hosp)", + "expression_mathml": "Igamma1hosp" + }, + { + "target": "t4", + "expression": "I*gamma*hosp", + "expression_mathml": "Igammahosp" + }, + { + "target": "t5", + "expression": "H*(1 - death_hosp)/los", + "expression_mathml": "H1death_hosplos" + }, + { + "target": "t6", + "expression": "H*death_hosp/los", + "expression_mathml": "Hdeath_hosplos" + } + ], + "initials": [ + { + "target": "S", + "expression": "total_population - I0", + "expression_mathml": "total_populationI0" + }, + { + "target": "I", + "expression": "I0", + "expression_mathml": "I0" + }, + { + "target": "E", + "expression": "40.0000000000000", + "expression_mathml": "40.0" + }, + { + "target": "R", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "H", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "D", + "expression": "0.0", + "expression_mathml": "0.0" + } + ], + "parameters": [ + { + "id": "beta_c", + "value": 0.4, + "distribution": { + "type": "Uniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.8 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "beta_s", + "value": 1, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "k", + "value": 5, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "kappa", + "value": 0.4, + "distribution": { + "type": "Uniform1", + "parameters": { + "minimum": 0.05, + "maximum": 0.8 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "t0", + "value": 89, + "units": { + "expression": "day", + "expression_mathml": "day" + } + }, + { + "id": "total_population", + "value": 19340000, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I0", + "value": 10, + "distribution": { + "type": "Uniform1", + "parameters": { + "minimum": 1, + "maximum": 15 + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "delta", + "value": 0.25, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "gamma", + "value": 0.2, + "distribution": { + "type": "Uniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.5 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "hosp", + "value": 0.1, + "distribution": { + "type": "Uniform1", + "parameters": { + "minimum": 0.005, + "maximum": 0.2 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "death_hosp", + "value": 0.07, + "distribution": { + "type": "Uniform1", + "parameters": { + "minimum": 0.01, + "maximum": 0.1 + } + }, + "units": { + "expression": "1/day", + "expression_mathml": "day-1" + } + }, + { + "id": "los", + "value": 5, + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + ], + "observables": [ + { + "id": "infected", + "name": "infected", + "expression": "I", + "expression_mathml": "I" + }, + { + "id": "exposed", + "name": "exposed", + "expression": "E", + "expression_mathml": "E" + }, + { + "id": "hospitalized", + "name": "hospitalized", + "expression": "H", + "expression_mathml": "H" + }, + { + "id": "dead", + "name": "dead", + "expression": "D", + "expression_mathml": "D" + } + ], + "time": { + "id": "t", + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + } + }, + "metadata": { + "timeseries": {}, + "initials": { + "S": { + "expression": true + }, + "I": { + "expression": true + } + }, + "parameters": {} + }, + "embeddings": [ + { + "vector": [ + 0.009493776597082615, + 0.029432762414216995, + -0.009630673564970493, + -0.003490862436592579, + -0.003297496121376753, + 0.021177899092435837, + 0.01026039756834507, + -0.002125319093465805, + -0.01258763950318098, + -0.04304027929902077, + -0.0043464661575853825, + 0.015072312206029892, + -0.0030955735128372908, + 0.02543538250029087, + 0.006256172899156809, + -0.013217363506555557, + 0.03238972648978233, + -0.0020602932199835777, + 0.008432828821241856, + 0.004767423029989004, + -0.0007512199226766825, + 0.003439526306465268, + -0.0009719656081870198, + -0.02089041657745838, + -0.017851311713457108, + 0.032252829521894455, + 0.0230123121291399, + -0.009541690349578857, + -0.015058621764183044, + 0.0009214850142598152, + -0.001853237277828157, + -0.004199302289634943, + 0.003809147048741579, + -0.026421036571264267, + 0.014894346706569195, + 0.010212483815848827, + 0.018522106111049652, + 0.0009231962030753493, + 0.02231414057314396, + -0.008576570078730583, + 0.01444258727133274, + 0.02601034753024578, + -0.011204984039068222, + 0.006023448891937733, + -0.005205492023378611, + 0.006047405768185854, + -0.00012192350550321862, + -0.022519484162330627, + -0.011670432053506374, + 0.017358483746647835, + 0.0022913061548024416, + 0.009281586855649948, + -0.00043379099224694073, + 0.013210518285632133, + -0.014018208719789982, + 0.0004318658902775496, + 0.010048207826912403, + -0.002597612328827381, + 0.021903449669480324, + -0.013374794274568558, + 0.02639365755021572, + -0.01712576113641262, + -0.052705176174640656, + 0.00586259551346302, + -4.366251960163936e-05, + -0.013997673988342285, + -0.010096121579408646, + -0.008795604109764099, + -0.012430207803845406, + 0.026612691581249237, + 0.05106242001056671, + 0.012197484262287617, + -0.004849561024457216, + -0.017098380252718925, + 0.009035172872245312, + -0.0058591729030013084, + -0.008268552832305431, + 0.01256025955080986, + -0.0007644817815162241, + 0.00765251787379384, + 0.010465742088854313, + -0.015674656257033348, + -0.03093862347304821, + -0.0027567546349018812, + 0.03003510646522045, + -0.007885241881012917, + -0.011643053032457829, + 0.03937145322561264, + 0.02071245014667511, + -0.020178554579615593, + 0.025736553594470024, + 0.010178259573876858, + 0.004199302289634943, + 0.017029933631420135, + 0.0005976390675641596, + 0.006324621383100748, + -0.01865900121629238, + 0.029378002509474754, + 0.01834413968026638, + -0.02090410515666008, + -0.013730725273489952, + 0.003983689937740564, + -0.027009692043066025, + -0.010410984046757221, + -0.013142070733010769, + -0.0004684429441113025, + -0.00159826735034585, + -0.025202658027410507, + -0.0008692931733094156, + -0.020999932661652565, + -0.01802927814424038, + 0.016769830137491226, + -0.019288726150989532, + -0.034552693367004395, + 0.03003510646522045, + 0.01700255274772644, + 0.027338244020938873, + 0.004668172914534807, + 0.014209863729774952, + -0.033840831369161606, + 0.014086656272411346, + 0.007563535124063492, + -0.0038981297984719276, + -0.03113027848303318, + 0.013737570494413376, + 0.014497346244752407, + -0.00772096635773778, + -0.036660898476839066, + 0.01256025955080986, + -0.03181476145982742, + -0.007447173353284597, + -0.01029462181031704, + -0.0038536384236067533, + 0.016578173264861107, + -0.02409379556775093, + 0.022396277636289597, + -0.023094451054930687, + -0.009870242327451706, + -0.008227483369410038, + -0.028529243543744087, + 0.01195107027888298, + 0.02423069253563881, + 0.005889974534511566, + -0.005277362652122974, + 0.016085347160696983, + 0.02620200254023075, + 0.006577880121767521, + 0.019781554117798805, + 0.011903156526386738, + -0.0021492759697139263, + 0.009521156549453735, + -0.010985949076712132, + 0.004117164295166731, + -0.008200104348361492, + -0.011321346275508404, + 0.04506634920835495, + -0.0065813022665679455, + 0.01064370758831501, + 0.011485622264444828, + -0.0022143018431961536, + -0.00394604355096817, + -0.0029586770106106997, + -0.019548829644918442, + 0.0018190131522715092, + -0.0033265864476561546, + 0.021301105618476868, + -0.008213793858885765, + -0.02536693401634693, + 0.007454018108546734, + 0.0036825176794081926, + -0.019480381160974503, + 0.03069221042096615, + -0.03865959122776985, + 0.013600673526525497, + 0.009500621818006039, + 0.007043328136205673, + 0.014360449276864529, + 0.009678587317466736, + -0.02761203795671463, + -0.007241828367114067, + -0.00014566650497727096, + 0.006954345386475325, + 0.01924765668809414, + 0.020616622641682625, + -0.008850363083183765, + -0.024750899523496628, + 0.05073386803269386, + -0.0008149623754434288, + -0.006731888744980097, + -0.002844026079401374, + 0.013744414784014225, + 0.0066326386295259, + 0.016906725242733955, + -0.002185211516916752, + -0.6255625486373901, + -0.0377286933362484, + 0.003863905556499958, + -0.023874761536717415, + 0.0037715004291385412, + -4.368925510789268e-05, + 0.00417192280292511, + 0.013210518285632133, + -0.015674656257033348, + 0.05516931414604187, + 0.014401518739759922, + -0.006533388514071703, + -0.017796553671360016, + -0.016085347160696983, + -0.04966607317328453, + -0.03942621126770973, + -0.00768674211576581, + -0.016208553686738014, + -0.024846727028489113, + 0.017112070694565773, + 0.002618146827444434, + 0.009521156549453735, + -0.02179393358528614, + 0.005089129786938429, + -0.00022844613704364747, + 0.0008256573928520083, + 0.008645018562674522, + -0.012204328551888466, + 0.031020762398838997, + -0.0032666942570358515, + -0.021246347576379776, + 0.020602932199835777, + 0.01712576113641262, + -0.014880656264722347, + 0.040165454149246216, + -0.015510381199419498, + -0.0012953837867826223, + 0.035510968416929245, + 0.050022006034851074, + 0.034990761429071426, + -0.017016243189573288, + -0.007946846075356007, + 0.005222604144364595, + -0.009103621356189251, + -0.02019224315881729, + 0.019521450623869896, + -0.006841405760496855, + 0.002705418271943927, + 0.010602639056742191, + 0.005893397144973278, + 0.023628346621990204, + -0.00876137986779213, + -0.009897621348500252, + 0.009302121587097645, + 0.019959518685936928, + -0.03775607421994209, + 0.0011345302918925881, + -0.03271827846765518, + 0.0303636584430933, + 0.0029946123249828815, + 0.019658347591757774, + -0.00917206984013319, + -0.008905121125280857, + -0.0014861833769828081, + -0.02850186452269554, + 0.01618117466568947, + 0.0011619095457717776, + -0.0029347201343625784, + -0.00722129363566637, + -0.013723880983889103, + -0.007296586874872446, + 0.03542882949113846, + -0.011006483808159828, + -0.0028200692031532526, + 0.028091175481677055, + 0.02153383009135723, + 0.024326520040631294, + 0.0008055507205426693, + 0.01479851920157671, + -0.004757155664265156, + 0.009596449322998524, + -0.010972259566187859, + 0.004616836551576853, + -0.01937086321413517, + 0.011335035786032677, + -0.017755484208464622, + 0.006906431633979082, + 0.010499966330826283, + 0.006304086651653051, + -0.00021165492944419384, + 0.01867269165813923, + 0.011827862821519375, + 0.0059858025051653385, + -0.007830483838915825, + -0.01571572571992874, + 0.012238552793860435, + 0.003750965930521488, + 0.014825898222625256, + -0.0070980871096253395, + -0.01846734620630741, + -0.0005779601633548737, + 0.004240371286869049, + 0.01713944971561432, + 0.020123794674873352, + 0.020945174619555473, + 0.010356225073337555, + -0.015893692150712013, + 0.014894346706569195, + 0.037427522242069244, + -0.010369914583861828, + -0.009685431607067585, + -0.030774347484111786, + -0.02915896847844124, + 0.009500621818006039, + -0.008131655864417553, + -0.032964691519737244, + 0.040110692381858826, + -0.010616328567266464, + 0.021903449669480324, + -0.003511396935209632, + 0.015291346237063408, + -0.0029894786421209574, + 0.014333070255815983, + 0.0012585928197950125, + 0.0050241039134562016, + 0.017084691673517227, + 0.0016855389112606645, + -0.0007525032851845026, + -0.04161655530333519, + 0.010096121579408646, + 0.020616622641682625, + -0.010390449315309525, + 0.02965179644525051, + -0.01846734620630741, + 0.02954227849841118, + 0.006820871494710445, + 0.015880001708865166, + 0.017728105187416077, + 0.003121241694316268, + -0.026954934000968933, + 0.010041363537311554, + -0.013552759774029255, + 0.01642758771777153, + -0.00017304581706412137, + -0.014004518277943134, + -0.022136174142360687, + -0.0003024558536708355, + 0.008008449338376522, + 0.01637282967567444, + -0.006978302262723446, + -0.00044320261804386973, + -0.013949760235846043, + -0.00230157352052629, + 0.023806313052773476, + -0.00495565589517355, + -0.019453002139925957, + -0.008508121594786644, + -0.020493416115641594, + -0.013032552786171436, + -0.005913931410759687, + 0.02115052007138729, + 0.033457521349191666, + -0.03438841551542282, + -0.026065105572342873, + -0.019261347129940987, + -0.01221117377281189, + -0.003665405558422208, + 0.03143145143985748, + 0.012772449292242527, + -0.04230104014277458, + 0.00019956952019128948, + 0.0002069491019938141, + -0.02954227849841118, + 0.009794949553906918, + 0.020808277651667595, + 0.010027673095464706, + -0.005102819297462702, + -0.02358727902173996, + -0.00449020741507411, + -0.011971605010330677, + 0.001954198582097888, + -0.03203379735350609, + -0.03655138239264488, + 0.015770483762025833, + 0.02831020951271057, + 0.0029946123249828815, + 0.0466543510556221, + 0.009972915053367615, + 0.027694175019860268, + 0.02984345145523548, + 0.024833036586642265, + 0.024408657103776932, + 0.005824948661029339, + 0.03980952128767967, + -0.0036517158150672913, + -0.02069876156747341, + 0.019576208665966988, + -0.010801139287650585, + -0.009144690819084644, + 0.011266587302088737, + 0.03159572556614876, + 0.012101656757295132, + 0.014880656264722347, + -0.0217391736805439, + -0.008364380337297916, + -0.0013518535997718573, + 0.010061897337436676, + -0.013806018978357315, + 0.03573000431060791, + -0.008357535116374493, + 0.03200641646981239, + 0.0026626382023096085, + -0.012224863283336163, + 0.004113741684705019, + -0.024750899523496628, + 0.027502520009875298, + -0.018234621733427048, + 0.008953035809099674, + -0.02325872704386711, + -0.009630673564970493, + -0.028419727459549904, + -0.0034001683816313744, + 0.01942562311887741, + -0.0031520433258265257, + -0.00792631134390831, + -0.005249983165413141, + 0.010055053047835827, + 0.017563829198479652, + 0.0054587507620453835, + -0.008891431614756584, + -0.008905121125280857, + 0.01637282967567444, + 0.023313485085964203, + 0.01525027770549059, + 0.0009514311095699668, + 0.008453362621366978, + 0.017687035724520683, + -0.005102819297462702, + 0.023874761536717415, + -0.01240282878279686, + -0.003785189939662814, + 0.007433483377099037, + -0.006451250519603491, + -0.02627045102417469, + 0.021588588133454323, + -0.00012598761531990021, + 0.02449079602956772, + 0.01738586463034153, + -0.018809588626027107, + 0.025462761521339417, + -0.011581449769437313, + -0.0072623626329004765, + -0.012081122025847435, + -0.0015007286565378308, + 0.02364203706383705, + -0.018809588626027107, + -0.0058044143952429295, + 0.017235277220606804, + 0.050405316054821014, + 0.022026658058166504, + 0.014716381207108498, + -0.019329795613884926, + 0.02742038294672966, + 0.001698373002000153, + 0.009343191049993038, + -0.021944519132375717, + -0.02421700209379196, + -0.022998623549938202, + -0.02716027945280075, + 0.0015674657188355923, + -0.013066777028143406, + 0.006033716257661581, + -0.00962382834404707, + 0.004370423033833504, + -0.012519191019237041, + 0.0017402975354343653, + -0.006618949119001627, + 0.0007567813154309988, + 0.036277588456869125, + 0.014743760228157043, + -0.011163914576172829, + -0.016701381653547287, + 0.01544193271547556, + 0.00785786285996437, + -0.006355423014611006, + -0.0145384157076478, + -0.0033385648857802153, + -0.008070052601397038, + -0.03668827936053276, + 0.018042966723442078, + 0.002886806381866336, + 0.0201374851167202, + -0.01700255274772644, + 0.02486041560769081, + -0.023190278559923172, + 0.009007793851196766, + 0.01841258816421032, + -0.0007152845500968397, + -0.008316466584801674, + 0.017563829198479652, + 0.0023306640796363354, + -0.002594189951196313, + 0.005475862417370081, + -0.03356703743338585, + 0.004493629559874535, + -0.009233673103153706, + -0.001579444156959653, + -0.006091897375881672, + -0.009288432076573372, + -0.002055159769952297, + 0.0014964506262913346, + -0.015770483762025833, + -0.015880001708865166, + -0.03619545325636864, + 0.011444552801549435, + 0.009226828813552856, + -0.019850002601742744, + -0.007214448880404234, + 0.016468657180666924, + -0.012033208273351192, + 0.0056504057720303535, + -0.026886485517024994, + -0.007050173357129097, + -0.0007285464089363813, + 0.03050055541098118, + 0.012717691250145435, + -0.0076798973605036736, + 0.02863876149058342, + -0.01860424317419529, + -0.00021636074234265834, + -0.0012363471323624253, + -0.01590738072991371, + 0.025339554995298386, + -0.003935776185244322, + 0.006885897368192673, + -0.010917501524090767, + 0.004298551939427853, + 0.017728105187416077, + 0.014346759766340256, + 0.001639336347579956, + 0.003730431431904435, + -0.02926848642528057, + -0.006091897375881672, + 0.0007490809075534344, + 0.00640675937756896, + -0.010527346283197403, + -0.013518535532057285, + 0.021561209112405777, + 0.022259380668401718, + -0.021438002586364746, + 0.013012018986046314, + 0.025490140542387962, + 0.013012018986046314, + -0.012115346267819405, + -0.01968572661280632, + 0.014114036224782467, + 0.012272777035832405, + 0.01329950150102377, + -0.010144035331904888, + 0.003294073510915041, + 0.01989107020199299, + -0.006382802501320839, + 0.006673707626760006, + 0.0016256467206403613, + 0.02128741517663002, + -0.001327041070908308, + 0.012676621787250042, + 0.0010070453863590956, + 0.003181133884936571, + -0.012122190557420254, + 0.012450742535293102, + -0.01616748422384262, + -0.006779802497476339, + -0.02698231302201748, + 0.0191655196249485, + -0.005667517893016338, + -0.035839520394802094, + -0.03414200246334076, + 0.015647277235984802, + -0.009569070301949978, + 0.011629363521933556, + -0.042547453194856644, + -0.018262002617120743, + -0.01112284604460001, + -0.048297107219696045, + -0.02121896855533123, + 0.023943210020661354, + 0.0036243365611881018, + -0.011293966323137283, + 0.018234621733427048, + -0.022149864584207535, + 0.017207898199558258, + -0.03145883232355118, + 0.006187724880874157, + 0.008364380337297916, + -0.040822554379701614, + -0.021451691165566444, + 0.015127070248126984, + -0.005119931418448687, + -0.009096777066588402, + -0.004750310909003019, + -0.0012936725979670882, + 0.0032119357492774725, + -0.015209208242595196, + -0.01726265624165535, + -0.011266587302088737, + -0.004976190160959959, + -0.021684415638446808, + 0.01930241659283638, + -0.006341733504086733, + -0.01191684603691101, + -0.02320396713912487, + -0.015236588194966316, + 0.040740419179201126, + 0.011287122033536434, + 0.0023734441492706537, + 0.016824588179588318, + -0.004620259162038565, + -0.01425093226134777, + 0.02869351953268051, + 0.012259087525308132, + 0.015455622225999832, + 0.0005561423022300005, + -0.025859761983156204, + 0.016701381653547287, + -0.023094451054930687, + -0.03488124534487724, + -0.008638173341751099, + 0.01217694953083992, + -0.05163738504052162, + -0.0127861388027668, + 0.008898276835680008, + -0.021944519132375717, + -0.024586623534560204, + 0.011191294528543949, + -0.005492974538356066, + 0.01752275973558426, + -0.011129690334200859, + 0.01221117377281189, + 0.0014459699159488082, + 0.00772096635773778, + -0.022670071572065353, + -0.01134872529655695, + -0.025408003479242325, + -0.006334888748824596, + 0.03619545325636864, + 0.0062356386333703995, + 0.00020202939049340785, + -0.02729717455804348, + 0.021260036155581474, + 0.0010079009225592017, + -0.0014031898463144898, + -0.04588772729039192, + 0.0009813772048801184, + 0.01579786278307438, + 0.036524005234241486, + 0.011971605010330677, + -0.025805002078413963, + -0.011752570047974586, + -0.01980893313884735, + -0.014552105218172073, + -0.0010087565751746297, + 0.011020173318684101, + -0.029761312529444695, + 0.013313191011548042, + -0.021492760628461838, + 0.00036726781399920583, + 0.015838932245969772, + -0.003449793439358473, + -0.026557933539152145, + -0.021054692566394806, + 0.028556624427437782, + 0.008713466115295887, + 0.030281519517302513, + -0.004959078039973974, + 0.006266440264880657, + -0.0015289635630324483, + -0.011684121564030647, + -0.0063451556488871574, + -0.016016898676753044, + -0.009452708065509796, + 0.016578173264861107, + 0.013066777028143406, + 0.050076764076948166, + 0.0434509702026844, + 0.002850871067494154, + 0.0075430008582770824, + 0.04128800332546234, + 0.004911164287477732, + 0.025654416531324387, + 0.027981657534837723, + -0.01571572571992874, + -0.032307591289281845, + -0.003254715818911791, + 0.013498001731932163, + -0.005054905544966459, + 0.007084397133439779, + 0.017221588641405106, + -0.004182190168648958, + -0.007276052609086037, + 0.02224569208920002, + -0.02774893306195736, + -0.012156414799392223, + -0.037482280284166336, + -0.00856972485780716, + 0.015332415699958801, + -0.01860424317419529, + 0.0025496985763311386, + -0.048543523997068405, + 0.0018840390257537365, + 0.007563535124063492, + -0.0056640952825546265, + 0.007146000862121582, + 0.017536450177431107, + 0.010554725304245949, + -0.009767569601535797, + 0.01605796627700329, + 0.006403336767107248, + 0.01930241659283638, + -0.006064517889171839, + 0.0031760004349052906, + -0.0358121432363987, + -0.016413899138569832, + 0.013689656741917133, + -0.01745431125164032, + 0.016400208696722984, + 0.008234328590333462, + 0.006156923249363899, + 0.00035807007225230336, + 0.004110319539904594, + -0.01173203531652689, + -0.013224207796156406, + 0.0029586770106106997, + -0.021492760628461838, + 0.0015135626308619976, + -0.01750907115638256, + -0.003492573741823435, + -0.01675613969564438, + 0.02257424406707287, + -0.0226974505931139, + -0.0016324915923178196, + 0.0018686380935832858, + -0.029241105541586876, + 0.00460314704105258, + 0.010883277282118797, + -0.01790607161819935, + 0.04416283220052719, + 0.001406612223945558, + 0.03764655441045761, + 0.040247589349746704, + -0.012471277266740799, + -0.03356703743338585, + 0.024052726104855537, + -0.013155760243535042, + 0.0024110907688736916, + 0.02915896847844124, + 0.010007139295339584, + -0.012046897783875465, + -0.022259380668401718, + 0.03074696846306324, + 0.017878690734505653, + 0.00818641483783722, + -0.04993986710906029, + 0.033457521349191666, + 0.018426278606057167, + 0.008138501085340977, + -0.0191655196249485, + -0.004226681310683489, + -0.024655072018504143, + -0.02020593360066414, + -0.01782393269240856, + -0.012430207803845406, + -0.0055135092698037624, + 0.0017488535959273577, + 0.0024076683912426233, + 0.015127070248126984, + -0.0035182416904717684, + 0.02935062348842621, + 0.004609991796314716, + -0.025873450562357903, + 0.0005608481005765498, + -0.031924277544021606, + -0.013272122479975224, + -0.0006660873768851161, + 0.012868276797235012, + 0.013559604994952679, + -0.02965179644525051, + -0.006283552385866642, + 0.02620200254023075, + -0.0027002848219126463, + 0.01733110472559929, + 0.0018823277205228806, + 0.0038536384236067533, + 0.03600379824638367, + -0.0016419031890109181, + -0.007714121602475643, + 0.013833397999405861, + 0.005438216030597687, + -0.00792631134390831, + -0.008877742104232311, + -0.013621208257973194, + -0.0016316359397023916, + -0.024436036124825478, + 0.0028987848199903965, + 0.02728348597884178, + 0.0012748492881655693, + 0.009562225081026554, + -0.016674000769853592, + -0.00987708754837513, + 0.022136174142360687, + -0.021766554564237595, + -0.014497346244752407, + 0.011109156534075737, + -0.02160227857530117, + -0.01942562311887741, + -0.009870242327451706, + 0.0064307162538170815, + 0.026694830507040024, + 0.012970949523150921, + -0.017290037125349045, + 0.004555233288556337, + 0.04955655708909035, + -0.023231348022818565, + 0.008953035809099674, + 0.00569147476926446, + 0.004007646813988686, + -0.03438841551542282, + 0.0068174488842487335, + -0.0034583494998514652, + -0.006772957742214203, + 0.04123324528336525, + -7.368885417236015e-05, + -0.029295865446329117, + 0.001619657501578331, + 0.004404646810144186, + 0.019097071141004562, + 0.0012911057565361261, + -0.016646621748805046, + 0.009370570071041584, + -0.006310931872576475, + -0.004760578274726868, + -0.0016675712540745735, + 0.0010002005146816373, + 0.039535727351903915, + 0.01071215607225895, + -0.01733110472559929, + -0.010807983577251434, + -0.01195107027888298, + 0.02869351953268051, + -0.03145883232355118, + 0.012327536009252071, + -0.020233312621712685, + -0.03750965744256973, + -0.024956243112683296, + -0.008145345374941826, + 0.008063207380473614, + -0.00961698405444622, + 0.01425093226134777, + 0.011321346275508404, + -0.02575024403631687, + -0.01686565764248371, + 0.007015949115157127, + -0.012943570502102375, + -0.010055053047835827, + 0.009959225542843342, + -0.007447173353284597, + 0.004291707184165716, + -0.0055100866593420506, + 0.011116000823676586, + -0.008350690826773643, + 0.02123265713453293, + 0.011827862821519375, + -0.03318372741341591, + 0.014011363498866558, + 0.00965120829641819, + 0.04914586618542671, + 0.026106175035238266, + -0.001813879469409585, + -0.024134865030646324, + -0.007796259596943855, + -0.04583296924829483, + 0.003122952999547124, + -0.025928208604454994, + 0.03113027848303318, + -2.7539739676285535e-05, + 0.011875777505338192, + 0.0015529204392805696, + 0.027529899030923843, + -0.0026318365707993507, + -0.0075840698555111885, + -0.021848691627383232, + 0.008610794320702553, + -0.007570379879325628, + -0.006269862875342369, + 0.0009531423565931618, + 0.009829173795878887, + -0.03304683044552803, + -0.010349380783736706, + 0.020233312621712685, + 0.0024487373884767294, + 0.003781767562031746, + 0.01905600167810917, + -0.015934759750962257, + -0.028857795521616936, + 0.017221588641405106, + -0.002943276194855571, + 0.002537720138207078, + 0.015414553694427013, + 0.0026438150089234114, + -0.00878875982016325, + -0.020931484177708626, + 0.018111415207386017, + -0.007214448880404234, + -0.009959225542843342, + 0.007570379879325628, + 0.008138501085340977, + -0.0008235183777287602, + -0.008747690357267857, + -0.0028525821398943663, + -0.004154810681939125, + 0.008145345374941826, + -0.006543655879795551, + -0.004767423029989004, + 0.0012731380993500352, + 0.005383457522839308, + 0.027790002524852753, + 0.01457948423922062, + -0.01642758771777153, + -0.0020380476489663124, + 0.006064517889171839, + -0.019398244097828865, + -0.021396933123469353, + 0.019850002601742744, + -0.017673347145318985, + -0.005602492019534111, + -0.01707100123167038, + -0.009343191049993038, + -0.015893692150712013, + -0.03061007149517536, + -0.00012374165817163885, + -0.022409968078136444, + -0.04569607228040695, + 0.015537760220468044, + 0.004233526065945625, + -0.022232001647353172, + 0.011992138810455799, + -0.0010387026704847813, + -0.004257483407855034, + -0.011033862829208374, + -0.011581449769437313, + 0.015811553224921227, + -0.015003863722085953, + -0.0008397748460993171, + -0.02677696757018566, + -0.0025839225854724646, + -0.012710846029222012, + 0.03526455536484718, + 0.008104276843369007, + -0.03170524537563324, + 0.012348069809377193, + 0.18300333619117737, + -0.015948450192809105, + 0.03392297029495239, + 0.015469311736524105, + -0.0278173815459013, + -0.007330811116844416, + -0.0015255410689860582, + 0.0012594483559951186, + 0.006547078024595976, + 0.01221117377281189, + 0.0028371813241392374, + 0.0402749702334404, + -0.007515621371567249, + 0.007878397591412067, + -0.010499966330826283, + -0.012279622256755829, + -0.03783820942044258, + -0.022806968539953232, + -0.016728760674595833, + 0.0011995561653748155, + -0.0075430008582770824, + 0.005188379902392626, + -0.006827716249972582, + -0.025024691596627235, + 0.035894278436899185, + -0.007967379875481129, + -0.01905600167810917, + 0.006129543762654066, + 0.00808374211192131, + -0.009219983592629433, + -0.004774267785251141, + -0.007919466122984886, + 0.010630018077790737, + -0.0006806325982324779, + -0.024203313514590263, + -0.013012018986046314, + -0.000584377208724618, + 0.011061242781579494, + 0.028474485501646996, + 0.018713761121034622, + 0.009035172872245312, + -0.009836018085479736, + 0.007577225100249052, + -0.042218901216983795, + 0.017933450639247894, + 0.015359794721007347, + -0.009753880091011524, + 0.005811259150505066, + 0.01138294953852892, + -0.008330156095325947, + -0.04109634831547737, + -0.013621208257973194, + 0.00523971626535058, + 0.003535353811457753, + 0.012929880991578102, + -0.012806673534214497, + 0.016838276758790016, + 0.015291346237063408, + 0.012505501508712769, + 0.009028328582644463, + -0.016797209158539772, + 0.01071215607225895, + -0.01451103575527668, + 0.02421700209379196, + -0.009343191049993038, + 0.031239796429872513, + -0.04076779633760452, + 6.786005542380735e-05, + 0.004089784808456898, + 0.004743466153740883, + -0.0006502586766146123, + -0.028857795521616936, + -0.015469311736524105, + -0.036222830414772034, + -0.02020593360066414, + 0.004777689930051565, + 0.04022021219134331, + 0.01361436303704977, + 0.025024691596627235, + 0.023683106526732445, + -0.00850127637386322, + -0.007508776616305113, + -0.031787384301424026, + 0.02083565667271614, + -0.0035627330653369427, + -0.03542882949113846, + 0.04172607138752937, + -0.021506451070308685, + -0.022409968078136444, + -0.004521009046584368, + 0.005427948664873838, + 0.01367596723139286, + -0.029761312529444695, + 0.013545915484428406, + 0.018700070679187775, + -0.0039152419194579124, + 0.004743466153740883, + -0.009925001300871372, + 0.01687934622168541, + -0.017728105187416077, + -0.014004518277943134, + 0.08558773249387741, + 0.001854948466643691, + -0.013285811990499496, + 0.009226828813552856, + 0.0013698212569579482, + 0.03247186541557312, + 0.009213139303028584, + 0.027516210451722145, + -0.025859761983156204, + -0.006458095274865627, + -0.03635972738265991, + 0.00010801994358189404, + -0.009603293612599373, + 0.008323310874402523, + 0.02084934711456299, + 0.009069397114217281, + -0.01865900121629238, + -0.00046929853851906955, + 0.010493122041225433, + 0.00834384560585022, + -0.013114690780639648, + -0.019398244097828865, + 0.020863035693764687, + -0.025517519563436508, + -0.020808277651667595, + -0.0030527934432029724, + -0.007816794328391552, + -0.008508121594786644, + -0.012977794744074345, + 0.006338310893625021, + -0.011560915037989616, + 0.0027191080152988434, + -0.007762035354971886, + 0.0037749228067696095, + -0.022273071110248566, + 0.0145384157076478, + -0.014757449738681316, + 0.006468362640589476, + 0.022724829614162445, + -0.010055053047835827, + 0.016769830137491226, + 0.005667517893016338, + -0.005003569647669792, + -0.0031965347006917, + -0.03219807147979736, + 0.022916484624147415, + 0.0011995561653748155, + -0.0055100866593420506, + -0.015578828752040863, + -0.0008029839373193681, + -0.02607879601418972, + 0.00546559551730752, + -0.02372417412698269, + 0.022355210036039352, + -0.03252662345767021, + -0.006961190141737461, + -0.022259380668401718, + -0.0006545367068611085, + -0.022546865046024323, + -0.03356703743338585, + 0.011033862829208374, + 0.00856288056820631, + 0.0033881899435073137, + -0.014045587740838528, + 0.00830962136387825, + -0.17402291297912598, + 0.01147193182259798, + 0.036031175404787064, + 0.0019199743401259184, + 0.012690311297774315, + 0.002854293445125222, + 0.01898755319416523, + 0.011266587302088737, + -0.0022947287652641535, + -0.005537466146051884, + 0.04128800332546234, + 0.0030716166365891695, + -0.0014878945657983422, + -0.02461400255560875, + -0.005058328155428171, + 0.01457948423922062, + -0.01221117377281189, + 0.022793278098106384, + 0.022190934047102928, + 0.0064307162538170815, + 0.02896731346845627, + -0.032773036509752274, + -0.00589681975543499, + 0.00640675937756896, + 0.0030476597603410482, + 0.008261707611382008, + 0.007474552374333143, + 0.04041186720132828, + -0.017604898661375046, + -0.015880001708865166, + 0.004948810674250126, + -0.019740484654903412, + 0.04186296835541725, + -0.0004697263357229531, + -0.003987112548202276, + -0.009288432076573372, + 0.011163914576172829, + -0.02806379646062851, + -0.018686382099986076, + 0.02104100212454796, + 0.0099113117903471, + -0.0014459699159488082, + 0.0047468882985413074, + 0.0062219491228461266, + 0.0026455260813236237, + 0.002012379467487335, + 0.01201951876282692, + 0.0018070347141474485, + 0.012457587756216526, + -0.02121896855533123, + 0.005246561020612717, + -0.007631983608007431, + 0.0018669269047677517, + -0.006020026281476021, + 0.00588312977924943, + 0.02761203795671463, + -0.006848250515758991, + 0.005130198784172535, + -0.012293311767280102, + 0.0008637317805550992, + -0.05286945402622223, + -0.02097255364060402, + 0.008665552362799644, + -0.009705966338515282, + 0.012977794744074345, + -0.02109576016664505, + 0.0024436037056148052, + 0.01052050106227398, + -0.02992558851838112, + 0.005756500642746687, + -0.02601034753024578, + 0.006420448888093233, + -0.002125319093465805, + 0.0008881164831109345, + 0.011273432523012161, + 0.009144690819084644, + -0.03211593255400658, + -0.00749508710578084, + 0.0132652772590518, + -0.017276346683502197, + 0.0009916444541886449, + 0.037044212222099304, + -0.011287122033536434, + -0.01655079424381256, + -0.013142070733010769, + -0.0007319688447751105, + -0.01616748422384262, + 0.01451103575527668, + 0.023984277620911598, + -0.0054587507620453835, + -0.0030510821379721165, + -0.030199382454156876, + 0.04372476413846016, + -0.0034977071918547153, + -0.009918156079947948, + 0.023792622610926628, + 0.02123265713453293, + -0.01848103664815426, + 0.012505501508712769, + -0.005455328151583672, + 0.017988208681344986, + 0.005335543770343065, + -0.01071215607225895, + 0.02069876156747341, + 0.009213139303028584, + 0.006204837001860142, + -0.026681140065193176, + -0.002204034710302949, + 0.04961131513118744, + -0.005161000415682793, + -0.0011473643826320767, + -0.015099691227078438, + 0.014812208712100983, + -0.004390957299619913, + -0.005195224657654762, + 0.03504551947116852, + -0.022409968078136444, + -0.00955537986010313, + 0.011992138810455799, + -0.010233018547296524, + 0.06686028093099594, + -0.01067108754068613, + 0.009233673103153706, + 0.005325276404619217, + -0.009733345359563828, + -0.036222830414772034, + -0.11948332190513611, + -0.030664831399917603, + -0.005130198784172535, + 0.02282065711915493, + -0.02761203795671463, + 0.0071939146146178246, + 0.0014074677601456642, + 0.006646328140050173, + -0.01705731265246868, + -0.0013903557555750012, + -0.03419676050543785, + -0.017618587240576744, + -0.02026069164276123, + 0.012615018524229527, + 0.011211828328669071, + -0.009007793851196766, + -0.006399914622306824, + -0.01364858727902174, + -0.0009993449784815311, + 0.04186296835541725, + -0.0037235866766422987, + -0.02506576105952263, + 0.010465742088854313, + -0.0038502158131450415, + 0.019863691180944443, + 0.006690819747745991, + -0.017919760197401047, + 0.005910509265959263, + 0.002229702891781926, + 0.00850127637386322, + 0.009131001308560371, + -0.011690966784954071, + -0.00030908678309060633, + 0.004100052174180746, + -0.022478416562080383, + -0.00749508710578084, + 0.002696862444281578, + 0.004233526065945625, + 0.015606208704411983, + -0.033156346529722214, + 0.014045587740838528, + 0.010582104325294495, + -0.0020585821475833654, + 0.015866311267018318, + -0.0007785992347635329, + -0.012704001739621162, + -0.01668769121170044, + 0.04421759024262428, + -0.0017026510322466493, + 0.0026061683893203735, + -0.004445715807378292, + -0.010568414814770222, + -0.03750965744256973, + -0.0048324489034712315, + -0.0010866165393963456, + 0.008891431614756584, + 0.011588294059038162, + 0.02372417412698269, + 0.0033505435567349195, + -0.018686382099986076, + -0.018125105649232864, + 0.013347415253520012, + -0.0204523466527462, + 0.006283552385866642, + -0.0062356386333703995, + -0.017878690734505653, + -0.021082071587443352, + 0.009480087086558342, + 0.019466690719127655, + -0.01935717463493347, + 0.005523776635527611, + 0.0002097298129228875, + -0.017536450177431107, + 0.017851311713457108, + -0.032499246299266815, + -0.010657398030161858, + -0.006875630002468824, + -0.0077483453787863255, + 0.016085347160696983, + -0.017604898661375046, + -0.0188643466681242, + -0.005345810670405626, + 0.016263311728835106, + -0.028939934447407722, + 0.02466876059770584, + 0.040740419179201126, + 0.02038389816880226, + -0.011074932292103767, + 0.022834347561001778, + 0.003039103699848056, + 0.01616748422384262, + 0.012792984023690224, + 6.72718306304887e-05, + -0.016331760212779045, + 0.02454555407166481, + 0.010725845582783222, + 0.005766768008470535, + -0.016482345759868622, + -0.009678587317466736, + 0.022190934047102928, + -0.04651745408773422, + 0.0011208406649529934, + -0.05355393514037132, + 0.023381933569908142, + -0.02863876149058342, + -0.018234621733427048, + -0.007365035358816385, + -0.01616748422384262, + -0.006156923249363899, + -0.0025120519567281008, + 0.006536811124533415, + 0.021944519132375717, + -0.009822328574955463, + 0.02461400255560875, + -0.026325209066271782, + 0.025585968047380447, + -0.040548764169216156, + -0.03200641646981239, + 0.016126414760947227, + -0.0016804053448140621, + 0.012738225050270557, + 0.011163914576172829, + -0.019904760643839836, + 0.007200759369879961, + 0.019576208665966988, + 0.013251587748527527, + -0.002532586455345154, + -0.0071939146146178246, + 0.010842207819223404, + 0.023765243589878082, + 0.001443403190933168, + -0.016728760674595833, + 0.029624417424201965, + -0.00706386286765337, + -0.00852865632623434, + 0.009425328113138676, + -0.0027225303929299116, + -0.019206587225198746, + 0.028857795521616936, + 0.012738225050270557, + 0.0390155203640461, + 0.02167072705924511, + -0.000897528079804033, + -0.04013807326555252, + -0.009418483823537827, + -0.01609903573989868, + 0.006612103898078203, + 0.008337000384926796, + -0.01872744970023632, + 0.015880001708865166, + -0.011779949069023132, + -0.009753880091011524, + 0.03912504017353058, + 0.0037988796830177307, + -0.028666140511631966, + -0.0252574160695076, + -0.009411638602614403, + 0.022163553163409233, + 0.02353251911699772, + 0.014935415238142014, + 0.007050173357129097, + -0.009315811097621918, + 0.02180762216448784, + -0.01457948423922062, + 0.015825243666768074, + -0.001875482965260744, + -0.0014562371652573347, + -0.015633588656783104, + -0.025230037048459053, + 0.023190278559923172, + -0.005438216030597687, + -0.020986244082450867, + -0.010561569593846798, + -0.0217391736805439, + -0.01635913923382759, + 0.020999932661652565, + 0.027064450085163116, + -0.0226974505931139, + 0.011177605018019676, + -0.017426932230591774, + -0.0023238190915435553, + 0.032882556319236755, + 0.021520139649510384, + -0.008740846067667007, + -0.010534190572798252, + 0.010876432061195374, + -0.0024128020741045475, + 0.006772957742214203, + -0.029624417424201965, + 0.02883041650056839, + 0.008371224626898766, + -0.007631983608007431, + -0.003371077822521329, + 0.033019453287124634, + 0.00336252199485898, + 0.020986244082450867, + 0.015633588656783104, + 0.005708586890250444, + 0.016783518716692924, + -0.028912555426359177, + 0.018522106111049652, + 0.029323244467377663, + 0.00789208710193634, + 0.00872031133621931, + 5.540032725548372e-05, + -0.020342830568552017, + -0.02844710648059845, + 0.0024641382042318583, + -0.009883931837975979, + -0.01096541527658701, + -0.00958275981247425, + 0.0020945174619555473, + -0.008925655856728554, + -0.016085347160696983, + -0.009897621348500252, + 0.006540233269333839, + -0.04290338233113289, + 0.023573588579893112, + -0.009705966338515282, + 0.0008692931733094156, + -0.024764588102698326, + 0.023231348022818565, + -0.003104129573330283, + -0.0008654429693706334, + 0.0010994505137205124, + -0.003448082134127617, + 0.023176588118076324, + 0.02069876156747341, + 0.03400510549545288, + -0.021711794659495354, + 0.023943210020661354, + 0.01086958684027195, + 0.004606569651514292, + 0.013696501031517982, + -0.010575260035693645, + -0.00728974211961031, + -0.01686565764248371, + -0.019466690719127655, + 0.004175345413386822, + 0.014949104748666286, + 0.0062219491228461266, + 0.07436221092939377, + 0.025134209543466568, + -0.013539070263504982, + -0.012012673541903496, + -0.013374794274568558, + 0.012751915492117405, + -0.0044012246653437614, + 0.012656087055802345, + -0.01808403618633747, + -0.0281185545027256, + 0.014456277713179588, + -0.01980893313884735, + -0.020342830568552017, + -0.03471696749329567, + -0.035127658396959305, + 0.00246071582660079, + -0.01281351875513792, + 0.020863035693764687, + -0.017865002155303955, + -0.0026164355222135782, + 0.0031708667520433664, + 0.018522106111049652, + 0.011033862829208374, + -0.019480381160974503, + -0.015428243204951286, + 0.010499966330826283, + 0.023368243128061295, + -0.016728760674595833, + 0.0026592158246785402, + -0.04032972827553749, + 0.0005142177105881274, + 0.018576864153146744, + -0.008220639079809189, + -0.030856486409902573, + -0.0045381211675703526, + 0.030774347484111786, + -0.016605554148554802, + -0.006738733500242233, + 0.03496338427066803, + 0.002320396713912487, + 0.011335035786032677, + 0.026763278990983963, + -0.026133554056286812, + -0.02487410604953766, + -0.01045205257833004, + 0.002674616640433669, + -0.00789208710193634, + -0.03395034745335579, + -0.04325931519269943 + ] + } + ] + }, + "request": { + "constraints": [ + { + "name": "Forcing rapid infection", + "variable": "S", + "interval": { + "lb": 0, + "ub": 10000000 + }, + "timepoints": { + "lb": 25, + "ub": 100, + "closed_upper_bound": true + } + } + ], + "parameters": [ + { + "name": "beta_c", + "interval": { + "lb": 0.1, + "ub": 0.8 + }, + "label": "any" + }, + { + "name": "beta_s", + "interval": { + "lb": 1, + "ub": 1 + }, + "label": "any" + }, + { + "name": "k", + "interval": { + "lb": 5, + "ub": 5 + }, + "label": "any" + }, + { + "name": "kappa", + "interval": { + "lb": 0.05, + "ub": 0.8 + }, + "label": "any" + }, + { + "name": "t0", + "interval": { + "lb": 89, + "ub": 89 + }, + "label": "any" + }, + { + "name": "total_population", + "interval": { + "lb": 19340000, + "ub": 19340000 + }, + "label": "any" + }, + { + "name": "I0", + "interval": { + "lb": 1, + "ub": 15 + }, + "label": "any" + }, + { + "name": "delta", + "interval": { + "lb": 0.25, + "ub": 0.25 + }, + "label": "any" + }, + { + "name": "gamma", + "interval": { + "lb": 0.1, + "ub": 0.5 + }, + "label": "any" + }, + { + "name": "hosp", + "interval": { + "lb": 0.005, + "ub": 0.2 + }, + "label": "any" + }, + { + "name": "death_hosp", + "interval": { + "lb": 0.01, + "ub": 0.1 + }, + "label": "any" + }, + { + "name": "los", + "interval": { + "lb": 5, + "ub": 5 + }, + "label": "any" + } + ], + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10, + 20, + 30 + ] + } + ] + } + ], + "config": { + "use_compartmental_constraints": true, + "normalization_constant": 19340040, + "tolerance": 0.5, + "save_smtlib": "./out" + } + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/seird.json b/resources/amr/petrinet/terrarium-tests/seird.json new file mode 100644 index 00000000..65ee9cdf --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/seird.json @@ -0,0 +1,335 @@ +{ + "header": { + "name": "DC ES1_2ci_SEIRHD", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.5/petrinet/petrinet_schema.json", + "schema_name": "petrinet", + "description": "DC Evaluation Scenario 2 Base model", + "model_version": "0.1" + }, + "model": { + "states": [ + { + "id": "S", + "name": "S", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I", + "name": "I", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E", + "name": "E", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R", + "name": "R", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H", + "name": "H", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D", + "name": "D", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + } + ], + "transitions": [ + { + "id": "t1", + "input": [ + "I", + "S" + ], + "output": [ + "E", + "I" + ], + "properties": { + "name": "t1" + } + }, + { + "id": "t2", + "input": [ + "E" + ], + "output": [ + "I" + ], + "properties": { + "name": "t2" + } + }, + { + "id": "t3", + "input": [ + "I" + ], + "output": [ + "R" + ], + "properties": { + "name": "t3" + } + }, + { + "id": "t4", + "input": [ + "I" + ], + "output": [ + "H" + ], + "properties": { + "name": "t4" + } + }, + { + "id": "t5", + "input": [ + "H" + ], + "output": [ + "R" + ], + "properties": { + "name": "t5" + } + }, + { + "id": "t6", + "input": [ + "H" + ], + "output": [ + "D" + ], + "properties": { + "name": "t6" + } + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t1", + "expression": "I*S*beta/N", + "expression_mathml": "ISbetaN" + }, + { + "target": "t2", + "expression": "E*r_E_to_I", + "expression_mathml": "Er_E_to_I" + }, + { + "target": "t3", + "expression": "I*p_I_to_R*r_I_to_R", + "expression_mathml": "Ip_I_to_Rr_I_to_R" + }, + { + "target": "t4", + "expression": "I*p_I_to_H*r_I_to_H", + "expression_mathml": "Ip_I_to_Hr_I_to_H" + }, + { + "target": "t5", + "expression": "H*p_H_to_R*r_H_to_R", + "expression_mathml": "Hp_H_to_Rr_H_to_R" + }, + { + "target": "t6", + "expression": "H*p_H_to_D*r_H_to_D", + "expression_mathml": "Hp_H_to_Dr_H_to_D" + } + ], + "initials": [ + { + "target": "S", + "expression": "S0", + "expression_mathml": "S0" + }, + { + "target": "I", + "expression": "I0", + "expression_mathml": "I0" + }, + { + "target": "E", + "expression": "E0", + "expression_mathml": "E0" + }, + { + "target": "R", + "expression": "R0", + "expression_mathml": "R0" + }, + { + "target": "H", + "expression": "H0", + "expression_mathml": "H0" + }, + { + "target": "D", + "expression": "D0", + "expression_mathml": "D0" + } + ], + "parameters": [ + { + "id": "S0", + "value": 100.0 + }, + { + "id": "I0", + "value": 1.0 + }, + { + "id": "E0", + "value": 0.0 + }, + { + "id": "R0", + "value": 0.0 + }, + { + "id": "H0", + "value": 0.0 + }, + { + "id": "D0", + "value": 0.0 + }, + { + "id": "N", + "value": 101.0 + }, + { + "id": "beta", + "value": 0.2 + }, + { + "id": "r_E_to_I", + "value": 0.2 + }, + { + "id": "p_I_to_R", + "value": 0.2 + }, + { + "id": "r_I_to_R", + "value": 0.1 + }, + { + "id": "p_I_to_H", + "value": 0.1 + }, + { + "id": "r_I_to_H", + "value": 0.1 + }, + { + "id": "p_H_to_R", + "value": 0.1 + }, + { + "id": "r_H_to_R", + "value": 0.1 + }, + { + "id": "p_H_to_D", + "value": 0.1 + }, + { + "id": "r_H_to_D", + "value": 0.1 + } + ], + "time": { + "id": "t", + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + } + }, + "metadata": { + "annotations": { + "authors": [], + "references": [], + "locations": [], + "pathogens": [], + "diseases": [], + "hosts": [], + "model_types": [] + } + }, + "id": "4f34b9e4-65c3-470c-ae7d-ba709ff11d90", + "createdOn": "2024-02-20T03:52:50.682+00:00", + "temporary": false, + "publicAsset": false +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/seird_request.json b/resources/amr/petrinet/terrarium-tests/seird_request.json new file mode 100644 index 00000000..71b23b09 --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/seird_request.json @@ -0,0 +1,190 @@ +{ + "constraints": [], + "parameters": [ + { + "name": "S0", + "interval": { + "lb": 100.0, + "ub": 100.0, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "I0", + "interval": { + "lb": 1.0, + "ub": 1.0, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "E0", + "interval": { + "lb": 0.0, + "ub": 0.0, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "R0", + "interval": { + "lb": 0.0, + "ub": 0.0, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "H0", + "interval": { + "lb": 0.0, + "ub": 0.0, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "D0", + "interval": { + "lb": 0.0, + "ub": 0.0, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "N", + "interval": { + "lb": 101.0, + "ub": 101.0, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "beta", + "interval": { + "lb": 0.2, + "ub": 0.2, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "r_E_to_I", + "interval": { + "lb": 0.2, + "ub": 0.2, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "p_I_to_R", + "interval": { + "lb": 0.2, + "ub": 0.2, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "r_I_to_R", + "interval": { + "lb": 0.1, + "ub": 0.1, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "p_I_to_H", + "interval": { + "lb": 0.1, + "ub": 0.1, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "r_I_to_H", + "interval": { + "lb": 0.1, + "ub": 0.1, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "p_H_to_R", + "interval": { + "lb": 0.1, + "ub": 0.1, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "r_H_to_R", + "interval": { + "lb": 0.1, + "ub": 0.1, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "p_H_to_D", + "interval": { + "lb": 0.1, + "ub": 0.1, + "closed_upper_bound": true, + "original_width": 0.0 + } + }, + { + "name": "r_H_to_D", + "interval": { + "lb": 0.1, + "ub": 0.1, + "closed_upper_bound": true, + "original_width": 0.0 + } + } + ], + "config": { + "tolerance": 0.1, + "normalization_constant": 101.0, + "use_compartmental_constraints": true + }, + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10, + 20, + 30, + 40, + 50, + 60, + 70, + 80, + 90, + 100, + 110, + 120, + 130, + 140, + 150 + ] + } + ] + } + ] +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/sidarthe_bug_model.json b/resources/amr/petrinet/terrarium-tests/sidarthe_bug_model.json new file mode 100644 index 00000000..96fc59db --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/sidarthe_bug_model.json @@ -0,0 +1,673 @@ +{ + "id": "43ce7b04-a912-4144-a83d-e7d7937fa35d", + "createdOn": "2024-02-28T17:36:13.989+00:00", + "temporary": false, + "publicAsset": false, + "header": { + "name": "Gio", + "description": "Gio", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.5/petrinet/petrinet_schema.json", + "model_version": "0.1" + }, + "model": { + "states": [ + { + "id": "Susceptible", + "name": "Susceptible", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": {} + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Diagnosed", + "name": "Diagnosed", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "diagnosis": "ncit:C15220" + } + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Infected", + "name": "Infected", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": {} + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Ailing", + "name": "Ailing", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "disease_severity": "ncit:C25269", + "diagnosis": "ncit:C113725" + } + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Recognized", + "name": "Recognized", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "diagnosis": "ncit:C15220" + } + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Healed", + "name": "Healed", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": {} + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Threatened", + "name": "Threatened", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "disease_severity": "ncit:C25467" + } + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + }, + { + "id": "Extinct", + "name": "Extinct", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": {} + }, + "units": { + "expression": "1", + "expression_mathml": "1" + } + } + ], + "transitions": [ + { + "id": "t1", + "input": [ + "Diagnosed", + "Susceptible" + ], + "output": [ + "Diagnosed", + "Infected" + ], + "properties": { + "name": "t1" + } + }, + { + "id": "t2", + "input": [ + "Ailing", + "Susceptible" + ], + "output": [ + "Ailing", + "Infected" + ], + "properties": { + "name": "t2" + } + }, + { + "id": "t3", + "input": [ + "Recognized", + "Susceptible" + ], + "output": [ + "Recognized", + "Infected" + ], + "properties": { + "name": "t3" + } + }, + { + "id": "t4", + "input": [ + "Infected", + "Susceptible" + ], + "output": [ + "Infected", + "Infected" + ], + "properties": { + "name": "t4" + } + }, + { + "id": "t5", + "input": [ + "Infected" + ], + "output": [ + "Diagnosed" + ], + "properties": { + "name": "t5" + } + }, + { + "id": "t6", + "input": [ + "Infected" + ], + "output": [ + "Ailing" + ], + "properties": { + "name": "t6" + } + }, + { + "id": "t7", + "input": [ + "Infected" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t7" + } + }, + { + "id": "t8", + "input": [ + "Diagnosed" + ], + "output": [ + "Recognized" + ], + "properties": { + "name": "t8" + } + }, + { + "id": "t9", + "input": [ + "Diagnosed" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t9" + } + }, + { + "id": "t10", + "input": [ + "Ailing" + ], + "output": [ + "Recognized" + ], + "properties": { + "name": "t10" + } + }, + { + "id": "t11", + "input": [ + "Ailing" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t11" + } + }, + { + "id": "t12", + "input": [ + "Ailing" + ], + "output": [ + "Threatened" + ], + "properties": { + "name": "t12" + } + }, + { + "id": "t13", + "input": [ + "Recognized" + ], + "output": [ + "Threatened" + ], + "properties": { + "name": "t13" + } + }, + { + "id": "t14", + "input": [ + "Recognized" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t14" + } + }, + { + "id": "t15", + "input": [ + "Threatened" + ], + "output": [ + "Extinct" + ], + "properties": { + "name": "t15" + } + }, + { + "id": "t16", + "input": [ + "Threatened" + ], + "output": [ + "Healed" + ], + "properties": { + "name": "t16" + } + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t1", + "expression": "Diagnosed*Susceptible*beta", + "expression_mathml": "DiagnosedSusceptiblebeta" + }, + { + "target": "t2", + "expression": "Ailing*Susceptible*gamma", + "expression_mathml": "AilingSusceptiblegamma" + }, + { + "target": "t3", + "expression": "Recognized*Susceptible*delta", + "expression_mathml": "RecognizedSusceptibledelta" + }, + { + "target": "t4", + "expression": "Infected*Susceptible*alpha", + "expression_mathml": "InfectedSusceptiblealpha" + }, + { + "target": "t5", + "expression": "Infected*epsilon", + "expression_mathml": "Infectedepsilon" + }, + { + "target": "t6", + "expression": "Infected*zeta", + "expression_mathml": "Infectedzeta" + }, + { + "target": "t7", + "expression": "Infected*lambdax", + "expression_mathml": "Infectedlambdax" + }, + { + "target": "t8", + "expression": "Diagnosed*eta", + "expression_mathml": "Diagnosedeta" + }, + { + "target": "t9", + "expression": "Diagnosed*rho", + "expression_mathml": "Diagnosedrho" + }, + { + "target": "t10", + "expression": "Ailing*theta", + "expression_mathml": "Ailingtheta" + }, + { + "target": "t11", + "expression": "Ailing*kappa", + "expression_mathml": "Ailingkappa" + }, + { + "target": "t12", + "expression": "Ailing*mu", + "expression_mathml": "Ailingmu" + }, + { + "target": "t13", + "expression": "Recognized*nu", + "expression_mathml": "Recognizednu" + }, + { + "target": "t14", + "expression": "Recognized*xi", + "expression_mathml": "Recognizedxi" + }, + { + "target": "t15", + "expression": "Threatened*tau", + "expression_mathml": "Threatenedtau" + }, + { + "target": "t16", + "expression": "Threatened*sigma", + "expression_mathml": "Threatenedsigma" + } + ], + "initials": [ + { + "target": "Susceptible", + "expression": "0.999996300000000", + "expression_mathml": "0.99999629999999995" + }, + { + "target": "Diagnosed", + "expression": "3.33333333000000e-7", + "expression_mathml": "3.33333333e-7" + }, + { + "target": "Infected", + "expression": "3.33333333000000e-6", + "expression_mathml": "3.3333333299999999e-6" + }, + { + "target": "Ailing", + "expression": "1.66666666000000e-8", + "expression_mathml": "1.6666666599999999e-8" + }, + { + "target": "Recognized", + "expression": "3.33333333000000e-8", + "expression_mathml": "3.33333333e-8" + }, + { + "target": "Healed", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "Threatened", + "expression": "0.0", + "expression_mathml": "0.0" + }, + { + "target": "Extinct", + "expression": "0.0", + "expression_mathml": "0.0" + } + ], + "parameters": [ + { + "id": "beta", + "value": 0.011, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.008799999999999999, + "maximum": 0.0132 + } + } + }, + { + "id": "gamma", + "value": 0.456, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.3648, + "maximum": 0.5472 + } + } + }, + { + "id": "delta", + "value": 0.011, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.008799999999999999, + "maximum": 0.0132 + } + } + }, + { + "id": "alpha", + "value": 0.57, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.45599999999999996, + "maximum": 0.6839999999999999 + } + } + }, + { + "id": "epsilon", + "value": 0.171, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1368, + "maximum": 0.20520000000000002 + } + } + }, + { + "id": "zeta", + "value": 0.125, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.15 + } + } + }, + { + "id": "lambdax", + "value": 0.034, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.027200000000000002, + "maximum": 0.0408 + } + } + }, + { + "id": "eta", + "value": 0.125, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.15 + } + } + }, + { + "id": "rho", + "value": 0.034, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.027200000000000002, + "maximum": 0.0408 + } + } + }, + { + "id": "theta", + "value": 0.371, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.2968, + "maximum": 0.4452 + } + } + }, + { + "id": "kappa", + "value": 0.017, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.013600000000000001, + "maximum": 0.0204 + } + } + }, + { + "id": "mu", + "value": 0.017, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.013600000000000001, + "maximum": 0.0204 + } + } + }, + { + "id": "nu", + "value": 0.027, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.0216, + "maximum": 0.0324 + } + } + }, + { + "id": "xi", + "value": 0.017, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.013600000000000001, + "maximum": 0.0204 + } + } + }, + { + "id": "tau", + "value": 0.01, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.008, + "maximum": 0.012 + } + } + }, + { + "id": "sigma", + "value": 0.017, + "distribution": { + "type": "StandardUniform1", + "parameters": { + "minimum": 0.013600000000000001, + "maximum": 0.0204 + } + } + } + ], + "observables": [ + { + "id": "Cases", + "name": "Cases", + "expression": "Diagnosed + Recognized + Threatened", + "expression_mathml": "DiagnosedRecognizedThreatened" + }, + { + "id": "Hospitalizations", + "name": "Hospitalizations", + "expression": "Recognized + Threatened", + "expression_mathml": "RecognizedThreatened" + }, + { + "id": "Deaths", + "name": "Deaths", + "expression": "Extinct", + "expression_mathml": "Extinct" + } + ], + "time": { + "id": "t", + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + } + }, + "metadata": {} +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/sidarthe_bug_request.json b/resources/amr/petrinet/terrarium-tests/sidarthe_bug_request.json new file mode 100644 index 00000000..addf4f51 --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/sidarthe_bug_request.json @@ -0,0 +1,160 @@ +{ + "constraints": [], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 0.008799999999999999, + "ub": 0.0132 + }, + "label": "any" + }, + { + "name": "gamma", + "interval": { + "lb": 0.3648, + "ub": 0.5472 + }, + "label": "any" + }, + { + "name": "delta", + "interval": { + "lb": 0.008799999999999999, + "ub": 0.0132 + }, + "label": "any" + }, + { + "name": "alpha", + "interval": { + "lb": 0.45599999999999996, + "ub": 0.6839999999999999 + }, + "label": "any" + }, + { + "name": "epsilon", + "interval": { + "lb": 0.1368, + "ub": 0.20520000000000002 + }, + "label": "any" + }, + { + "name": "zeta", + "interval": { + "lb": 0.1, + "ub": 0.15 + }, + "label": "any" + }, + { + "name": "lambdax", + "interval": { + "lb": 0.027200000000000002, + "ub": 0.0408 + }, + "label": "any" + }, + { + "name": "eta", + "interval": { + "lb": 0.1, + "ub": 0.15 + }, + "label": "any" + }, + { + "name": "rho", + "interval": { + "lb": 0.027200000000000002, + "ub": 0.0408 + }, + "label": "any" + }, + { + "name": "theta", + "interval": { + "lb": 0.2968, + "ub": 0.4452 + }, + "label": "any" + }, + { + "name": "kappa", + "interval": { + "lb": 0.013600000000000001, + "ub": 0.0204 + }, + "label": "any" + }, + { + "name": "mu", + "interval": { + "lb": 0.013600000000000001, + "ub": 0.0204 + }, + "label": "any" + }, + { + "name": "nu", + "interval": { + "lb": 0.0216, + "ub": 0.0324 + }, + "label": "any" + }, + { + "name": "xi", + "interval": { + "lb": 0.013600000000000001, + "ub": 0.0204 + }, + "label": "any" + }, + { + "name": "tau", + "interval": { + "lb": 0.008, + "ub": 0.012 + }, + "label": "any" + }, + { + "name": "sigma", + "interval": { + "lb": 0.013600000000000001, + "ub": 0.0204 + }, + "label": "any" + } + ], + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10, + 20, + 30, + 40, + 50, + 60, + 70, + 80, + 90, + 100 + ] + } + ] + } + ], + "config": { + "use_compartmental_constraints": false, + "normalization_constant": 1, + "tolerance": 0.4 + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/sir_request_constraint_no_ub.json b/resources/amr/petrinet/terrarium-tests/sir_request_constraint_no_ub.json new file mode 100644 index 00000000..31b6ad72 --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/sir_request_constraint_no_ub.json @@ -0,0 +1,85 @@ +{ + "constraints": [ + { + "name": "I", + "variable": "I", + "interval": { + "lb": 0.15 + }, + "timepoints": { + "lb": 50, + "ub": 50, + "closed_upper_bound": true + } + } + ], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 0.08, + "ub": 0.1 + }, + "label": "all" + }, + { + "name": "gamma", + "interval": { + "lb": 0.02, + "ub": 0.03 + }, + "label": "all" + }, + { + "name": "S0", + "interval": { + "lb": 0.99, + "ub": 0.99 + }, + "label": "all" + }, + { + "name": "I0", + "interval": { + "lb": 0.01, + "ub": 0.01 + }, + "label": "all" + }, + { + "name": "R0", + "interval": { + "lb": 0, + "ub": 0 + }, + "label": "all" + } + ], + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10, + 20, + 30, + 40, + 50, + 60, + 70, + 80, + 90, + 100 + ] + } + ] + } + ], + "config": { + "use_compartmental_constraints": true, + "normalization_constant": 1, + "tolerance": 0.1 + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/sir_request_param_constraint.json b/resources/amr/petrinet/terrarium-tests/sir_request_param_constraint.json new file mode 100644 index 00000000..d975f8a7 --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/sir_request_param_constraint.json @@ -0,0 +1,100 @@ +{ + "constraints": [ + { + "name": "I", + "variable": "I", + "interval": { + "lb": 0.15, + "ub": 1.0 + }, + "timepoints": { + "lb": 50, + "ub": 50, + "closed_upper_bound": true + } + }, + { + "name": "4x_gamma_le_beta", + "variables": [ + "gamma", + "beta" + ], + "weights": [ + -4.75, + 1 + ], + "additive_bounds": { + "lb": 0 + } + } + ], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 0.08, + "ub": 0.1 + }, + "label": "all" + }, + { + "name": "gamma", + "interval": { + "lb": 0.02, + "ub": 0.03 + }, + "label": "all" + }, + { + "name": "S0", + "interval": { + "lb": 0.99, + "ub": 0.99 + }, + "label": "all" + }, + { + "name": "I0", + "interval": { + "lb": 0.01, + "ub": 0.01 + }, + "label": "all" + }, + { + "name": "R0", + "interval": { + "lb": 0, + "ub": 0 + }, + "label": "all" + } + ], + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10, + 20, + 30, + 40, + 50, + 60, + 70, + 80, + 90, + 100 + ] + } + ] + } + ], + "config": { + "use_compartmental_constraints": true, + "normalization_constant": 1, + "tolerance": 0.02 + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/stratified_seird_model.json b/resources/amr/petrinet/terrarium-tests/stratified_seird_model.json new file mode 100644 index 00000000..e95a5a35 --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/stratified_seird_model.json @@ -0,0 +1,679 @@ +{ + "header": { + "name": "Carcione2020 - Deterministic SEIR simulation of a COVID-19 outbreak", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.6/petrinet/petrinet_schema.json", + "schema_name": "petrinet", + "description": "Carcione2020 - Deterministic SEIR simulation of a COVID-19 outbreak", + "model_version": "0.1" + }, + "properties": {}, + "model": { + "states": [ + { + "id": "Susceptible_UnVax", + "name": "Susceptible", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": { + "Status": "UnVax" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Infected_UnVax", + "name": "Infected", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "Status": "UnVax" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Total_population", + "name": "Total_population", + "grounding": { + "identifiers": {}, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Exposed_UnVax", + "name": "Exposed", + "grounding": { + "identifiers": { + "apollosv": "00000154" + }, + "modifiers": { + "Status": "UnVax" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Susceptible_Vax", + "name": "Susceptible", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": { + "Status": "Vax" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Infected_Vax", + "name": "Infected", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "Status": "Vax" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Exposed_Vax", + "name": "Exposed", + "grounding": { + "identifiers": { + "apollosv": "00000154" + }, + "modifiers": { + "Status": "Vax" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Recovered_UnVax", + "name": "Recovered", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "Status": "UnVax" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Recovered_Vax", + "name": "Recovered", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": { + "Status": "Vax" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Deceased_UnVax", + "name": "Deceased", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "Status": "UnVax" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "Deceased_Vax", + "name": "Deceased", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": { + "Status": "Vax" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + } + ], + "transitions": [ + { + "id": "t1", + "input": [ + "Infected_UnVax", + "Total_population", + "Susceptible_UnVax" + ], + "output": [ + "Infected_UnVax", + "Total_population", + "Exposed_UnVax" + ], + "properties": { + "name": "t1" + } + }, + { + "id": "t2", + "input": [ + "Infected_Vax", + "Total_population", + "Susceptible_Vax" + ], + "output": [ + "Infected_Vax", + "Total_population", + "Exposed_Vax" + ], + "properties": { + "name": "t2" + } + }, + { + "id": "t3", + "input": [ + "Exposed_UnVax" + ], + "output": [ + "Infected_UnVax" + ], + "properties": { + "name": "t3" + } + }, + { + "id": "t4", + "input": [ + "Exposed_Vax" + ], + "output": [ + "Infected_Vax" + ], + "properties": { + "name": "t4" + } + }, + { + "id": "t5", + "input": [ + "Infected_UnVax" + ], + "output": [ + "Recovered_UnVax" + ], + "properties": { + "name": "t5" + } + }, + { + "id": "t6", + "input": [ + "Infected_Vax" + ], + "output": [ + "Recovered_Vax" + ], + "properties": { + "name": "t6" + } + }, + { + "id": "t7", + "input": [ + "Infected_UnVax" + ], + "output": [ + "Deceased_UnVax" + ], + "properties": { + "name": "t7" + } + }, + { + "id": "t8", + "input": [ + "Infected_Vax" + ], + "output": [ + "Deceased_Vax" + ], + "properties": { + "name": "t8" + } + }, + { + "id": "t9", + "input": [ + "Infected_UnVax" + ], + "output": [ + "Infected_Vax" + ], + "properties": { + "name": "t9" + } + }, + { + "id": "t10", + "input": [ + "Infected_Vax" + ], + "output": [ + "Infected_UnVax" + ], + "properties": { + "name": "t10" + } + }, + { + "id": "t11", + "input": [ + "Susceptible_UnVax" + ], + "output": [ + "Susceptible_Vax" + ], + "properties": { + "name": "t11" + } + }, + { + "id": "t12", + "input": [ + "Susceptible_Vax" + ], + "output": [ + "Susceptible_UnVax" + ], + "properties": { + "name": "t12" + } + }, + { + "id": "t13", + "input": [ + "Exposed_UnVax" + ], + "output": [ + "Exposed_Vax" + ], + "properties": { + "name": "t13" + } + }, + { + "id": "t14", + "input": [ + "Exposed_Vax" + ], + "output": [ + "Exposed_UnVax" + ], + "properties": { + "name": "t14" + } + }, + { + "id": "t15", + "input": [ + "Recovered_UnVax" + ], + "output": [ + "Recovered_Vax" + ], + "properties": { + "name": "t15" + } + }, + { + "id": "t16", + "input": [ + "Recovered_Vax" + ], + "output": [ + "Recovered_UnVax" + ], + "properties": { + "name": "t16" + } + }, + { + "id": "t17", + "input": [ + "Deceased_UnVax" + ], + "output": [ + "Deceased_Vax" + ], + "properties": { + "name": "t17" + } + }, + { + "id": "t18", + "input": [ + "Deceased_Vax" + ], + "output": [ + "Deceased_UnVax" + ], + "properties": { + "name": "t18" + } + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t1", + "expression": "Infected_UnVax*Susceptible_UnVax*beta/Total_population", + "expression_mathml": "Infected_UnVaxSusceptible_UnVaxbetaTotal_population" + }, + { + "target": "t2", + "expression": "Infected_Vax*Susceptible_Vax*beta/Total_population", + "expression_mathml": "Infected_VaxSusceptible_VaxbetaTotal_population" + }, + { + "target": "t3", + "expression": "Exposed_UnVax*epsilon", + "expression_mathml": "Exposed_UnVaxepsilon" + }, + { + "target": "t4", + "expression": "Exposed_Vax*epsilon", + "expression_mathml": "Exposed_Vaxepsilon" + }, + { + "target": "t5", + "expression": "Infected_UnVax*gamma", + "expression_mathml": "Infected_UnVaxgamma" + }, + { + "target": "t6", + "expression": "Infected_Vax*gamma", + "expression_mathml": "Infected_Vaxgamma" + }, + { + "target": "t7", + "expression": "Infected_UnVax*alpha", + "expression_mathml": "Infected_UnVaxalpha" + }, + { + "target": "t8", + "expression": "Infected_Vax*alpha", + "expression_mathml": "Infected_Vaxalpha" + }, + { + "target": "t9", + "expression": "Infected_UnVax*p_UnVax_Vax", + "expression_mathml": "Infected_UnVaxp_UnVax_Vax" + }, + { + "target": "t10", + "expression": "Infected_Vax*p_Vax_UnVax", + "expression_mathml": "Infected_Vaxp_Vax_UnVax" + }, + { + "target": "t11", + "expression": "Susceptible_UnVax*p_UnVax_Vax", + "expression_mathml": "Susceptible_UnVaxp_UnVax_Vax" + }, + { + "target": "t12", + "expression": "Susceptible_Vax*p_Vax_UnVax", + "expression_mathml": "Susceptible_Vaxp_Vax_UnVax" + }, + { + "target": "t13", + "expression": "Exposed_UnVax*p_UnVax_Vax", + "expression_mathml": "Exposed_UnVaxp_UnVax_Vax" + }, + { + "target": "t14", + "expression": "Exposed_Vax*p_Vax_UnVax", + "expression_mathml": "Exposed_Vaxp_Vax_UnVax" + }, + { + "target": "t15", + "expression": "Recovered_UnVax*p_UnVax_Vax", + "expression_mathml": "Recovered_UnVaxp_UnVax_Vax" + }, + { + "target": "t16", + "expression": "Recovered_Vax*p_Vax_UnVax", + "expression_mathml": "Recovered_Vaxp_Vax_UnVax" + }, + { + "target": "t17", + "expression": "Deceased_UnVax*p_UnVax_Vax", + "expression_mathml": "Deceased_UnVaxp_UnVax_Vax" + }, + { + "target": "t18", + "expression": "Deceased_Vax*p_Vax_UnVax", + "expression_mathml": "Deceased_Vaxp_Vax_UnVax" + } + ], + "initials": [ + { + "target": "Susceptible_UnVax", + "expression": "4989999.5", + "expression_mathml": "4989999.5" + }, + { + "target": "Infected_UnVax", + "expression": "0.5", + "expression_mathml": "0.5" + }, + { + "target": "Total_population", + "expression": "10000000.0", + "expression_mathml": "10000000.0" + }, + { + "target": "Exposed_UnVax", + "expression": "10000.0", + "expression_mathml": "10000.0" + }, + { + "target": "Susceptible_Vax", + "expression": "4989999.5", + "expression_mathml": "4989999.5" + }, + { + "target": "Infected_Vax", + "expression": "0.5", + "expression_mathml": "0.5" + }, + { + "target": "Exposed_Vax", + "expression": "10000.0", + "expression_mathml": "10000.0" + }, + { + "target": "Recovered_UnVax", + "expression": "0", + "expression_mathml": "0" + }, + { + "target": "Recovered_Vax", + "expression": "0", + "expression_mathml": "0" + }, + { + "target": "Deceased_UnVax", + "expression": "0", + "expression_mathml": "0" + }, + { + "target": "Deceased_Vax", + "expression": "0", + "expression_mathml": "0" + } + ], + "parameters": [ + { + "id": "beta", + "description": "beta", + "value": 0.8330000000000001, + "distribution": { + "type": "Uniform1", + "parameters": { + "minimum": 0.1, + "maximum": 1 + } + } + }, + { + "id": "epsilon", + "description": "epsilon", + "value": 0.33333, + "distribution": { + "type": "Uniform1", + "parameters": { + "minimum": 0.30000000000000004, + "maximum": 0.4 + } + } + }, + { + "id": "gamma", + "description": "gamma", + "value": 0.125, + "distribution": { + "type": "Uniform1", + "parameters": { + "minimum": 0.1, + "maximum": 0.15000000000000002 + } + } + }, + { + "id": "alpha", + "description": "alpha", + "value": 0.006, + "distribution": { + "type": "Uniform1", + "parameters": { + "minimum": 0.005, + "maximum": 0.007 + } + } + }, + { + "id": "p_UnVax_Vax", + "value": 0.1, + "distribution": { + "type": "Uniform1", + "parameters": { + "minimum": 0.05, + "maximum": 0.15000000000000002 + } + } + }, + { + "id": "p_Vax_UnVax", + "value": 0.1, + "distribution": { + "type": "Uniform1", + "parameters": { + "minimum": 0.05, + "maximum": 0.15000000000000002 + } + } + }, + { + "id": "lambda", + "description": "lambda", + "value": 120480, + "distribution": { + "type": "Uniform1", + "parameters": { + "minimum": 120479, + "maximum": 120481 + } + } + }, + { + "id": "mu", + "description": "mu", + "value": 0.012048000000000001, + "distribution": { + "type": "Uniform1", + "parameters": { + "minimum": 0.01, + "maximum": 0.015000000000000001 + } + } + }, + { + "id": "City", + "description": "City", + "value": 0 + } + ], + "time": { + "id": "t" + } + } + }, + "metadata": { + "timeseries": {}, + "initials": {}, + "parameters": {} + }, + "id": "bc80510b-c0ad-4bdd-a879-20e0ecc7dad0", + "name": "Carcione2020 - Deterministic SEIR simulation of a COVID-19 outbreak", + "createdOn": "2024-03-15T17:10:11.422+00:00", + "temporary": false, + "publicAsset": false +} diff --git a/resources/amr/petrinet/terrarium-tests/stratified_seird_request.json b/resources/amr/petrinet/terrarium-tests/stratified_seird_request.json new file mode 100644 index 00000000..abce468f --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/stratified_seird_request.json @@ -0,0 +1,105 @@ +{ + "constraints": [], + "parameters": [ + { + "name": "beta", + "interval": { + "lb": 1.6, + "ub": 1.6, + "closed_upper_bound": true, + "original_width": 0 + }, + "label": "all" + }, + { + "name": "epsilon", + "interval": { + "lb": 0.33333, + "ub": 0.33333, + "closed_upper_bound": true, + "original_width": 0 + } + }, + { + "name": "gamma", + "interval": { + "lb": 0.125, + "ub": 0.125, + "closed_upper_bound": true, + "original_width": 0 + } + }, + { + "name": "alpha", + "interval": { + "lb": 0.006, + "ub": 0.006, + "closed_upper_bound": true, + "original_width": 0 + } + }, + { + "name": "p_UnVax_Vax", + "interval": { + "lb": 0, + "ub": 0, + "closed_upper_bound": true, + "original_width": 0 + } + }, + { + "name": "p_Vax_UnVax", + "interval": { + "lb": 0.1, + "ub": 0.1, + "closed_upper_bound": true, + "original_width": 0 + } + }, + { + "name": "lambda", + "interval": { + "lb": 120480, + "ub": 120480, + "closed_upper_bound": true, + "original_width": 0 + } + }, + { + "name": "mu", + "interval": { + "lb": 0.012048000000000001, + "ub": 0.012048000000000001, + "closed_upper_bound": true, + "original_width": 0 + } + }, + { + "name": "City", + "interval": { + "lb": 1, + "ub": 1, + "closed_upper_bound": true, + "original_width": 0 + } + } + ], + "config": { + "tolerance": 0.1, + "normalization_constant": 20000000, + "use_compartmental_constraints": true + }, + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10 + ] + } + ] + } + ] +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/stress-test-model.json b/resources/amr/petrinet/terrarium-tests/stress-test-model.json new file mode 100644 index 00000000..7283ea34 --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/stress-test-model.json @@ -0,0 +1,311 @@ +{ + "id": "62686ae6-e1da-4896-b581-1cb183eae64f", + "temporary": false, + "publicAsset": false, + "header": { + "name": "ES1_2ci_SEIRHD", + "description": "Evaluation Scenario 2 Base model", + "schema": "https://raw.githubusercontent.com/DARPA-ASKEM/Model-Representations/petrinet_v0.5/petrinet/petrinet_schema.json", + "schema_name": "petrinet", + "model_version": "0.1" + }, + "model": { + "states": [ + { + "id": "S", + "name": "S", + "grounding": { + "identifiers": { + "ido": "0000514" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "I", + "name": "I", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "E", + "name": "E", + "grounding": { + "identifiers": { + "apollosv": "0000154" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "R", + "name": "R", + "grounding": { + "identifiers": { + "ido": "0000592" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "H", + "name": "H", + "grounding": { + "identifiers": { + "ido": "0000511" + }, + "modifiers": { + "property": "ncit:C25179" + } + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + }, + { + "id": "D", + "name": "D", + "grounding": { + "identifiers": { + "ncit": "C28554" + }, + "modifiers": {} + }, + "units": { + "expression": "person", + "expression_mathml": "person" + } + } + ], + "transitions": [ + { + "id": "t1", + "input": [ + "I", + "S" + ], + "output": [ + "E", + "I" + ], + "properties": { + "name": "t1" + } + }, + { + "id": "t2", + "input": [ + "E" + ], + "output": [ + "I" + ], + "properties": { + "name": "t2" + } + }, + { + "id": "t3", + "input": [ + "I" + ], + "output": [ + "R" + ], + "properties": { + "name": "t3" + } + }, + { + "id": "t4", + "input": [ + "I" + ], + "output": [ + "H" + ], + "properties": { + "name": "t4" + } + }, + { + "id": "t5", + "input": [ + "H" + ], + "output": [ + "R" + ], + "properties": { + "name": "t5" + } + }, + { + "id": "t6", + "input": [ + "H" + ], + "output": [ + "D" + ], + "properties": { + "name": "t6" + } + } + ] + }, + "semantics": { + "ode": { + "rates": [ + { + "target": "t1", + "expression": "I*S*beta/N", + "expression_mathml": "ISbetaN" + }, + { + "target": "t2", + "expression": "E*r_E_to_I", + "expression_mathml": "Er_E_to_I" + }, + { + "target": "t3", + "expression": "I*p_I_to_R*r_I_to_R", + "expression_mathml": "Ip_I_to_Rr_I_to_R" + }, + { + "target": "t4", + "expression": "I*p_I_to_H*r_I_to_H", + "expression_mathml": "Ip_I_to_Hr_I_to_H" + }, + { + "target": "t5", + "expression": "H*p_H_to_R*r_H_to_R", + "expression_mathml": "Hp_H_to_Rr_H_to_R" + }, + { + "target": "t6", + "expression": "H*p_H_to_D*r_H_to_D", + "expression_mathml": "Hp_H_to_Dr_H_to_D" + } + ], + "initials": [ + { + "target": "S", + "expression": "14561489.0000000", + "expression_mathml": "14561489.0" + }, + { + "target": "I", + "expression": "2123452.00000000", + "expression_mathml": "2123452.0" + }, + { + "target": "E", + "expression": "530863.000000000", + "expression_mathml": "530863.0" + }, + { + "target": "R", + "expression": "2069902.00000000", + "expression_mathml": "2069902.0" + }, + { + "target": "H", + "expression": "744.000000000000", + "expression_mathml": "744.0" + }, + { + "target": "D", + "expression": "53550.0000000000", + "expression_mathml": "53550.0" + } + ], + "parameters": [ + { + "id": "N", + "value": 19340000 + }, + { + "id": "beta", + "value": 0.8 + }, + { + "id": "r_E_to_I", + "value": 0.2 + }, + { + "id": "p_I_to_R", + "value": 0.9 + }, + { + "id": "r_I_to_R", + "value": 0.07 + }, + { + "id": "p_I_to_H", + "value": 0.1 + }, + { + "id": "r_I_to_H", + "value": 0.1 + }, + { + "id": "p_H_to_R", + "value": 0.85 + }, + { + "id": "r_H_to_R", + "value": 0.1 + }, + { + "id": "p_H_to_D", + "value": 0.15 + }, + { + "id": "r_H_to_D", + "value": 0.1 + } + ], + "observables": [], + "time": { + "id": "t", + "units": { + "expression": "day", + "expression_mathml": "day" + } + } + } + }, + "metadata": { + "annotations": { + "authors": [], + "references": [], + "locations": [], + "pathogens": [], + "diseases": [], + "hosts": [], + "model_types": [] + } + } +} \ No newline at end of file diff --git a/resources/amr/petrinet/terrarium-tests/stress-test-request.json b/resources/amr/petrinet/terrarium-tests/stress-test-request.json new file mode 100644 index 00000000..1264b6c5 --- /dev/null +++ b/resources/amr/petrinet/terrarium-tests/stress-test-request.json @@ -0,0 +1,119 @@ +{ + "constraints": [], + "parameters": [ + { + "name": "N", + "interval": { + "lb": 19340000, + "ub": 19340000 + }, + "label": "any" + }, + { + "name": "beta", + "interval": { + "lb": 0.8, + "ub": 0.8 + }, + "label": "any" + }, + { + "name": "r_E_to_I", + "interval": { + "lb": 0.2, + "ub": 0.2 + }, + "label": "all" + }, + { + "name": "p_I_to_R", + "interval": { + "lb": 0.9, + "ub": 0.9 + }, + "label": "all" + }, + { + "name": "r_I_to_R", + "interval": { + "lb": 0.07, + "ub": 0.07 + }, + "label": "any" + }, + { + "name": "p_I_to_H", + "interval": { + "lb": 0.1, + "ub": 0.1 + }, + "label": "any" + }, + { + "name": "r_I_to_H", + "interval": { + "lb": 0.1, + "ub": 0.1 + }, + "label": "any" + }, + { + "name": "p_H_to_R", + "interval": { + "lb": 0.85, + "ub": 0.85 + }, + "label": "any" + }, + { + "name": "r_H_to_R", + "interval": { + "lb": 0.1, + "ub": 0.1 + }, + "label": "any" + }, + { + "name": "p_H_to_D", + "interval": { + "lb": 0.15, + "ub": 0.15 + }, + "label": "any" + }, + { + "name": "r_H_to_D", + "interval": { + "lb": 0.1, + "ub": 0.1 + }, + "label": "any" + } + ], + "structure_parameters": [ + { + "name": "schedules", + "schedules": [ + { + "timepoints": [ + 0, + 10, + 20, + 30, + 40, + 50, + 60, + 70, + 80, + 90, + 100 + ] + } + ] + } + ], + "config": { + "normalization_constant": 1, + "tolerance": 0.4 + } +} \ No newline at end of file diff --git a/resources/smt2/photosynthesis.smt2 b/resources/smt2/photosynthesis.smt2 new file mode 100644 index 00000000..4b0e7b39 --- /dev/null +++ b/resources/smt2/photosynthesis.smt2 @@ -0,0 +1,173 @@ +(set-logic QF_NRA) +(declare-fun r_s () Real) +(declare-fun r_b () Real) +(declare-fun m () Real) +(declare-fun A () Real) +(declare-fun c_s () Real) +(declare-fun c_a () Real) +(declare-fun e_s () Real) +(declare-fun e_t () Real) +(declare-fun P_atm () Real) +(declare-fun b () Real) +(declare-fun C_3 () Bool) +(declare-fun C_4 () Bool) + +(declare-fun w_c () Real) +(declare-fun w_j () Real) +(declare-fun w_e () Real) +(declare-fun Gamma_star () Real) +(declare-fun V_cmax () Real) +(declare-fun Gamma_star () Real) +(declare-fun K_c () Real) +(declare-fun o_i () Real) +(declare-fun K_o () Real) +(declare-fun phi () Real) +(declare-fun alpha () Real) +(declare-fun c_i () Real) +(declare-fun K_c25 () Real) +(declare-fun a_kc () Real) +(declare-fun T_v () Real) +(declare-fun T_f () Real) +(declare-fun R_gas () Real) +(declare-fun K_o25 () Real) +(declare-fun a_ko () Real) +(declare-fun V_cmax25 () Real) +(declare-fun N_a () Real) +(declare-fun F_LNR () Real) +(declare-fun F_NR () Real) +(declare-fun a_R25 () Real) +(declare-fun CN_L () Real) +(declare-fun SLA_0 () Real) +(declare-fun SLA_m () Real) +(declare-fun SLA () Real) +(declare-fun SLA_sun () Real) +(declare-fun SLA_sha () Real) +(declare-fun K () Real) +(declare-fun L_sun () Real) +(declare-fun c () Real) +(declare-fun L () Real) +(declare-fun L_sha () Real) +(declare-fun DYL () Real) +(declare-fun DYL_max () Real) +(declare-fun f () Real) +(declare-fun f_T_v () Real) +(declare-fun f_DYL () Real) +(declare-fun decl () Real) +(declare-fun decl_max () Real) +(declare-fun lat () Real) +(declare-fun e_a () Real) +(declare-fun e_a_prime () Real) +(declare-fun e_i () Real) +(declare-fun q_s () Real) +(declare-fun active_bgc () Real) +(declare-fun beta_t () Real) +(declare-fun x () Real) + +(assert (and + +; 8.1 +(= (/ 1 r_s) (+ (* m (/ A c_s) (/ e_s e_t) P_atm) b)) +(=> (= A 0) (= b 2000)) +(=> C_3 (= m 9)) +(=> C_4 (= m 4)) +(xor C_3 C_4) + +; 8.2 +;(= A (minimum w_c w_j w_e)) +(= C_3 (= w_c (/ (* V_cmax (- c_i Gamma_star)) (+ c_i (* K_c (/ (+ 1 o_i) K_o)))))) +(= C_4 (= w_c V_cmax)) +(<= 0 (- c_i Gamma_star)) + +; 8.3 +(= C_3 (= w_j (/ (* (- c_i Gamma_star) 4.6 phi alpha) (+ c_i (* 2 Gamma_star))))) +(= C_4 (= w_j (* 4.6 phi alpha))) + +; 8.4 +(= C_3 (= w_e (* 0.5 V_cmax))) +(= C_4 (= w_e (* 4000 V_cmax (/ c_i P_atm)))) +(= o_i (+ 0.209 P_atm)) + +; 8.5 +(= K_c (* K_c25 (pow a_kc (/ (- T_v 25) 10)))) +(= K_c25 30.0) +(= a_kc 2.1) + +; 8.6 +(= K_o (* K_o25 (pow a_ko (/ (- T_v 25) 10)))) +(= K_o25 30000.0) +(= a_ko 1.2) + +; 8.7 +(= Gamma_star (* 0.5 (/ K_c K_o) 0.21 o_i)) + +; 8.8 +(= V_cmax25 (* N_a F_LNR F_NR a_R25)) +(= F_NR 7.16) +(= a_R25 60) + +; 8.9 +(= N_a (/ 1 (* CN_L SLA))) + +; 8.10 +(= SLA (+ SLA_0 (* SLA_m x))) + +; 8.11 +(= SLA_sun (* (pow K -2) (pow L_sun -1) (+ SLA_m (* K SLA_0) (* -1 SLA_m c) (* -1 K SLA_0 c) (* -1 K L SLA_m c)))) + +; 8.12 +(= SLA_sha (* (pow L_sha -1) (+ (* L (+ SLA_0 (* (/ 1 2) L SLA_m))) (* -1 L_sun SLA_sun)))) + +; 8.13 + +; 8.14 +(= f_T_v (pow (+ 1 (exp (* 1000. (pow R_gas -1) (pow (+ T_f T_v) -1) (+ -220000 (* 710 T_f) (* 710 T_v))))) -1)) +(= R_gas 8314.46759) +(= T_f 273.15) + +; 8.15 +(>= f_DYL 0.01) +(<= f_DYL 1) +(= f_DYL (* (pow DYL 2) (pow DYL_max -2))) + +; 8.16 +(= DYL (* 27501.9742 (arccos (* (pow (cos decl) -1) (pow (cos lat) -1) (sin decl) (sin lat))))) +(= DYL_max (* 27501.9742 (arccos (* (pow (cos decl_max) -1) (pow (cos lat) -1) (sin decl_max) (sin lat))))) +(= decl_max 23.4667) + +; 8.17 + +; 8.18 + +; 8.19 + +; 8.20 + +; 8.21 + +; 8.22 +(= A (* (pow P_atm -1) (pow (+ (* 1.37 r_b) (* 1.65 r_s)) -1) (+ c_a (* -1 c_i)))) +(= A (* 0.72992700729927 (pow P_atm -1) (pow r_b -1) (+ c_a (* -1 c_s)))) +(= A (* 0.606060606060606 (pow P_atm -1) (pow r_s -1) (+ c_s (* -1 c_i)))) + +; 8.23 +(= (* (pow (+ r_b r_s) -1) (+ e_a_prime (* -1 e_i))) (* (pow r_b -1) (+ e_a_prime (* -1 e_s)))) +(= (* (pow r_b -1) (+ e_a_prime (* -1 e_s))) (* (pow r_s -1) (+ e_s (* -1 e_i)))) + +; 8.24 +(= e_a (* 1.60771704180064 P_atm q_s)) + +; 8.25 +(= c_s (+ c_a (* -1.37 A P_atm r_b))) + +; 8.26 +(= e_s (* (pow (+ r_b r_s) -1) (+ (* e_a_prime r_s) (* e_i r_b)))) + +; 8.27 +(= (+ (* -1 r_b) (* r_s (+ -1 (* b r_b) (* A P_atm m r_b (pow c_s -1)))) (* (pow r_s 2) (+ b (* A P_atm e_a_prime m (pow c_s -1) (pow e_i -1))))) 0) + +; 8.28 +(= c_i (+ c_s (* -1.65 A P_atm r_s))) + +)) +(push 1) +(check-sat) diff --git a/resources/terarium-tests.json b/resources/terarium-tests.json index b4d36ee3..1a2090c8 100644 --- a/resources/terarium-tests.json +++ b/resources/terarium-tests.json @@ -1,24 +1,112 @@ { "tests": [ { - "name": "petrinet-sir", + "name": "sidarthe-bug", + "model-path": "amr/petrinet/terrarium-tests/sidarthe_bug_model.json", + "request-path": "amr/petrinet/terrarium-tests/sidarthe_bug_request.json", + "expected-outcome": { + "true-boxes": 1 + }, + "regression": false + }, + { + "name": "petrinet-stress-test", + "model-path": "amr/petrinet/terrarium-tests/stress-test-model.json", + "request-path": "amr/petrinet/terrarium-tests/stress-test-request.json", + "expected-outcome": { + "true-boxes": 0 + }, + "regression": false + }, + { + "name": "mar_19", + "model-path": "amr/petrinet/terrarium-tests/mar_19.json", + "request-path": null, + "expected-outcome": { + "true-boxes": 0 + }, + "regression": false + }, + { + "name": "mar_25", + "model-path": "amr/petrinet/terrarium-tests/funman-mar-25.json", + "request-path": null, + "expected-outcome": { + "true-boxes": 0 + }, + "regression": false + }, + { + "name": "norm_test", + "model-path": "amr/petrinet/terrarium-tests/eval_scenario2_norm.json", + "request-path": null, + "expected-outcome": { + "true-boxes": 0 + }, + "regression": false + }, + { + "name": "eval_scenario_2", + "model-path": "amr/petrinet/terrarium-tests/eval_scenario2_model.json", + "request-path": "amr/petrinet/terrarium-tests/eval_scenario2_request.json", + "expected-outcome": { + "true-boxes": 0 + }, + "regression": false + }, + { + "name": "sir", + "model-path": "amr/petrinet/terrarium-tests/sir.json", + "request-path": "amr/petrinet/terrarium-tests/sir_request.json", + "expected-outcome": { + "true-boxes": 49 + }, + "regression": false + }, + { + "name": "sir_request_constraint_no_ub", "model-path": "amr/petrinet/terrarium-tests/sir.json", - "request-path": "amr/petrinet/terrarium-tests/sir_request.json" + "request-path": "amr/petrinet/terrarium-tests/sir_request_constraint_no_ub.json", + "expected-outcome": { + "true-boxes": 5 + }, + "regression": false + }, + { + "name": "stratified-seird", + "model-path": "amr/petrinet/terrarium-tests/stratified_seird_model.json", + "request-path": "amr/petrinet/terrarium-tests/stratified_seird_request.json", + "expected-outcome": { + "true-boxes": 52 + }, + "regression": false }, { "name": "petrinet-query-default", "model-path": "amr/petrinet/mira/models/scenario1_a.json", - "request-path": null + "request-path": null, + "expected-outcome": { + "true-boxes": 1 + }, + "regression": true }, { "name": "petrinet-query-with-basic-request", "model-path": "amr/petrinet/mira/models/scenario2_a_beta_scale_static.json", - "request-path": "amr/petrinet/mira/requests/request2_b_default_wo_compartmental_constrs.json" + "request-path": "amr/petrinet/mira/requests/request2_b_default_wo_compartmental_constrs.json", + "expected-outcome": { + "true-boxes": 1 + }, + "regression": true }, { "name": "petrinet-query-parameter-synthesis", "model-path": "amr/petrinet/mira/models/scenario2_a_beta_scale_static.json", - "request-path": "amr/petrinet/mira/requests/request2_b_synthesize.json" + "request-path": "amr/petrinet/mira/requests/request2_b_synthesize.json", + "expected-outcome": { + "true-boxes": 3 + }, + "regression": true } ] } \ No newline at end of file diff --git a/scratch/evaluation/evaluation23.py b/scratch/evaluation/evaluation23.py index 005f491c..081063b0 100644 --- a/scratch/evaluation/evaluation23.py +++ b/scratch/evaluation/evaluation23.py @@ -332,7 +332,7 @@ def unit_test_1_query(self, steps, init_values): query._formula = And( [ LT(Symbol(f"S_{steps}", REAL), Real(init_values["S"])), - GE(Symbol(f"R_{steps}", REAL), Real(init_values["R"])) + GE(Symbol(f"R_{steps}", REAL), Real(init_values["R"])), # GT( # Symbol(f"R_{steps}", REAL), Real(5.0) # ), # R is near 10 at day 80 diff --git a/scratch/evaluation/evaluation23_s2.py b/scratch/evaluation/evaluation23_s2.py index 15f78d4a..7d38ed3c 100644 --- a/scratch/evaluation/evaluation23_s2.py +++ b/scratch/evaluation/evaluation23_s2.py @@ -400,7 +400,7 @@ def test_scenario_2_1_d_2d(self): # ] bounds["theta"] = [ 0.2, - 0.3 + 0.3, # max(2 * bounds["epsilon"][1], bounds["theta"][1]), ] scenario = self.make_scenario( diff --git a/scratch/evaluation/evaluation24/sidarthe-funman.ipynb b/scratch/evaluation/evaluation24/sidarthe-funman.ipynb new file mode 100644 index 00000000..67c5686a --- /dev/null +++ b/scratch/evaluation/evaluation24/sidarthe-funman.ipynb @@ -0,0 +1,212 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "SAVED_RESULTS_DIR = \"./out\"\n", + "\n", + "# Import funman related code\n", + "import os\n", + "from funman.api.run import Runner\n", + "from funman_demo import summarize_results\n", + "from funman_demo.example.pde import plot_spatial_timeseries\n", + "from IPython.display import HTML\n", + "import matplotlib.pyplot as plt\n", + "import itertools\n", + "from funman import FunmanWorkRequest, EncodingSchedule, POS_INFINITY\n", + "\n", + "import json\n", + "from funman.representation.constraint import LinearConstraint, ParameterConstraint, StateVariableConstraint\n", + "from funman.representation import Interval\n", + "from funman import FUNMANConfig\n", + "import logging\n", + "from funman_demo import summarize_results\n", + "\n", + "\n", + "\n", + "RESOURCES = \"../../../resources\"\n", + "\n", + "EXAMPLE_DIR = os.path.join(RESOURCES, \"amr\", \"petrinet\", \"evaluation\")\n", + "EXAMPLE_DIR = os.path.join(RESOURCES, \"amr\", \"petrinet\", \"evaluation\")\n", + "MODEL_PATH = os.path.join(\n", + " EXAMPLE_DIR,\"sidarthe.json\"\n", + ")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Consistency M3.3\n", + "\n", + "STATES = [\"Susceptible\", \"Infected\",\"Diagnosed\", \"Ailing\", \"Recognized\",\"Threatened\", \"Healed\", \"Extinct\"]\n", + "\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=50\n", + "STEP_SIZE=2\n", + "to_synthesize=[]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sidarthe_request_consistency.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIR Consistency\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " dump_results=False\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameterization (M3.3)\n", + "\n", + "STATES = [\"Susceptible\", \"Infected\",\"Diagnosed\", \"Ailing\", \"Recognized\",\"Threatened\", \"Healed\", \"Extinct\"]\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=50\n", + "STEP_SIZE=2\n", + "to_synthesize=[]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sidarthe_request_parameterization.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + " # funman_request.config.dreal_precision = 1e-3\n", + " # funman_request.config.use_compartmental_constraints = False\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIDARTHE Parameterization\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from funman import FunmanResults\n", + "import json\n", + "import pandas as pd\n", + "from datetime import datetime\n", + "# Load FUNMAN output and plot the progress data\n", + "# data = results_unconstrained_point\n", + "with open(\"out/c633ce05-39ea-4c99-80c8-7d21163a22a9.json\", \"r\") as f:\n", + " data = FunmanResults.model_validate(json.loads(f.read()))\n", + "df = pd.DataFrame.from_records(data.timing.progress_timeseries, columns=[\"time\", \"progress\"])\n", + "df.time = pd.to_datetime(df.time)\n", + "df.plot.scatter(x=\"time\", y=\"progress\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameter Synthesis (M3.3)\n", + "\n", + "STATES = [\"Susceptible\", \"Infected\",\"Diagnosed\", \"Ailing\", \"Recognized\",\"Threatened\", \"Healed\", \"Extinct\"]\n", + "\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=40\n", + "STEP_SIZE=2\n", + "to_synthesize=[\"beta\", \"lamb\"]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sidarthe_request_param_synth.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + " # funman_request.parameter(\"gamma\").interval.lb = 0.025\n", + " # funman_request.parameter(\"gamma\").interval.ub = 0.03\n", + " # funman_request.parameter(\"beta\").interval.lb = 0.13\n", + " # funman_request.parameter(\"beta\").interval.ub = 0.16\n", + "\n", + " # funman_request.config.substitute_subformulas = True\n", + " # funman_request.config.taylor_series_order = 4\n", + " # series_approximation_threshold = 1e-8\n", + " # funman_request.config.verbosity = 10\n", + " funman_request.config.tolerance = 1e-2\n", + " # funman_request.config.compartmental_constraint_noise = 1e-10\n", + " # funman_request.config.solver_timeout = 10\n", + " # funman_request.config.uniform_box_splits = True\n", + " # funman_request.config.num_initial_boxes = 1\n", + " # funman_request.config.dreal_precision = 1e-1\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIR Parameter Synthesis\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " dump_plot=True,\n", + " parameters_to_plot=to_synthesize+[\"timestep\"]\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", parameters_to_plot=to_synthesize+[\"timestep\"], synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "funman_venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/evaluation/evaluation24/sidarthe-manual.ipynb b/scratch/evaluation/evaluation24/sidarthe-manual.ipynb new file mode 100644 index 00000000..c3ac4a5f --- /dev/null +++ b/scratch/evaluation/evaluation24/sidarthe-manual.ipynb @@ -0,0 +1,262 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import scipy\n", + "from scipy.integrate import odeint\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import sir_model\n", + "import json\n", + "from random import randint\n", + "import itertools\n", + "import datetime\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def query_1(sim, tstart, tend, dt):\n", + " S, I, D, A, R, T, H, E = sim.T\n", + "\n", + " # USER: write query condition.\n", + " # query_condition = 0.15 <= max(I) <= 0.3 #((0.15 <= I[10]) and I[10] <= 1.0)\n", + " # query_condition = (0.45 <= max(I)) and (max(I) <= 0.55) and (45 <= np.argmax(I)*dt) and (np.argmax(I)*dt <= 55)\n", + " query_values = [0.45 <= I[int(t/dt)] <= 0.55 for t in range(tstart, tend+1, dt) if 45 <= t < 55]\n", + " query_condition = all(query_values) \n", + " # print(I[9:11])\n", + " return query_condition\n", + "\n", + "def query_2(sim, tstart, tend, dt):\n", + " S, I, D, A, R, T, H, E = sim.T\n", + "\n", + " # USER: write query condition.\n", + " # query_condition = 0.15 <= max(I) <= 0.3 #((0.15 <= I[10]) and I[10] <= 1.0)\n", + " # query_condition = (0.45 <= max(I)) and (max(I) <= 0.55) and (45 <= np.argmax(I)*dt) and (np.argmax(I)*dt <= 55)\n", + " query_values = [0.25 <= I[int(t/dt)] <= 0.55 for t in range(tstart, tend+1, dt) if 45 <= t < 55]\n", + " query_condition = all(query_values) \n", + " # print(I[9:11])\n", + " return query_condition\n", + "\n", + "def eval_point(beta_val, lamb_val, query_condition=query_1, plot=False, rtol=1, atol=1, mxstep=10, mxordn = 1, mxords=1, hmin=1): \n", + " # set parameters\n", + "\n", + " # USER: set values for all parameters that you are not synthesizing \n", + " alpha_val = 0.1 # I -> I\n", + " delta_val = 0.00011 # S, R -> I\n", + "\n", + " epsilon_val = 0.03 # I -> D\n", + " theta_val = 0.571 # A -> R\n", + "\n", + " zeta_val = 0.0125 # I -> A\n", + " eta_val = 0.0125 # D -> R\n", + "\n", + " mu_val = 0.017 # A -> T\n", + " nu_val = 0.027 # R -> T\n", + " gamma_val = 0.0456 # S, A -> I\n", + " rho_val = 0.034 # D -> H\n", + "\n", + " kappa_val = 0.017 # A -> H\n", + " xi_val = 0.017 # R -> H\n", + " sigma_val = 0.017 # T -> H\n", + " \n", + " tau_val = 0.01 # T -> E\n", + "\n", + " # USER: set initial conditions\n", + " I0, D0, A0, R0, T0, H0, E0 = 0.01, 0, 0, 0, 0, 0, 0\n", + " S0 = 1-I0-D0-A0-R0-T0-H0-E0\n", + "\n", + " # USER: set simulation parameters\n", + " dt = 1\n", + " tstart = 0\n", + " tend = 100\n", + "\n", + " # parameters\n", + " # set parameter values\n", + " def alpha(t): return np.piecewise(t, [t>=0], [alpha_val])\n", + " def beta(t): return np.piecewise(t, [t>=0], [beta_val])\n", + " def delta(t): return np.piecewise(t, [t>=0], [delta_val])\n", + " def gamma(t): return np.piecewise(t, [t>=0], [gamma_val])\n", + "\n", + " def epsilon(t): return np.piecewise(t, [t>=0], [epsilon_val])\n", + " def theta(t): return np.piecewise(t, [t>=0], [theta_val])\n", + "\n", + " def zeta(t): return np.piecewise(t, [t>=0], [zeta_val])\n", + " def eta(t): return np.piecewise(t, [t>=0], [eta_val])\n", + "\n", + " def mu(t): return np.piecewise(t, [t>=0], [mu_val])\n", + " def nu(t): return np.piecewise(t, [t>=0], [nu_val])\n", + " def lamb(t): return np.piecewise(t, [t>=0], [lamb_val])\n", + " def rho(t): return np.piecewise(t, [t>=0], [rho_val])\n", + "\n", + " def kappa(t): return np.piecewise(t, [t>=0], [kappa_val])\n", + " def xi(t): return np.piecewise(t, [t>=0], [xi_val])\n", + " def sigma(t): return np.piecewise(t, [t>=0], [sigma_val])\n", + "\n", + " def tau(t): return np.piecewise(t, [t>=0], [tau_val])\n", + "\n", + " y0 = S0, I0, D0, A0, R0, T0, H0, E0 # Initial conditions vector\n", + "\n", + " tvect = np.arange(tstart, tend, dt)\n", + " # simulate/solve ODEs\n", + " sim = odeint(sir_model.SIDARTHE_model, y0, tvect, args=(alpha, beta, gamma, delta, epsilon, mu, zeta, lamb, eta, rho, theta, kappa, nu, xi, sigma, tau))\n", + " S, I, D, A, R, T, H, E = sim.T\n", + "\n", + "\n", + " # write query condition.\n", + " # query_condition = (0.999 <= (S+I+D+A+R+T+H+E).all() <= 1.001) # compartmental constraint\n", + " #query_condition = (0.32 <= max(I) <= 0.33) and (12 <= np.argmax(I)*dt <= 14) # max location and size\n", + " query = '1' if query_condition(sim, tstart, tend, dt) else '0'\n", + " # plot results - uncomment next line to plot time series. not recommended for large numbers of points\n", + " # if query == '1':\n", + " # print('beta:', beta_val, 'gamma:', gamma_val)\n", + " if plot:\n", + " sir_model.plotSIDARTHE(tvect, S, I, D, A, R, T, H, E)\n", + " ## end plot\n", + " param_assignments = {'beta': beta_val, 'lambda': lamb_val, 'assignment': query} # for \"all\", go through every option. for \"any\", only need one good parameter choice.\n", + " return param_assignments, sim\n", + " \n", + "# set parameters\n", + "def ps(param_synth_method, parameter_search_bounds, query_condition=query_1, rtol=1e-3, num_dim_points=10, plot=False):\n", + " parameters = list(parameter_search_bounds.keys())\n", + " parameter_points = {p : np.linspace(parameter_search_bounds[p][0], parameter_search_bounds[p][1], num_dim_points) for p in parameters}\n", + " points = itertools.product(*[parameter_points[p] for p in parameters])\n", + " param_choices_true_false = []\n", + " coverage = []\n", + " \n", + " for i, point in enumerate(points):\n", + " point_values = {p: point[i] for i, p in enumerate(parameters)}\n", + " \n", + " param_assignments, _ = eval_point(point_values[\"beta\"], point_values[\"lambda\"], query_condition=query_condition, rtol=rtol, plot=plot)\n", + " param_choices_true_false.append(param_assignments)\n", + " coverage.append((datetime.datetime.now(), i))\n", + " \n", + " if param_synth_method == \"any\" and param_assignments['assignment'] == '1':\n", + " return param_choices_true_false, coverage\n", + " return param_choices_true_false, coverage\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Consistency Query\n", + "\n", + "# USER: set num_dim_points with how many points for each parameter you'd like to evaluate\n", + "\n", + "# USER: set bounds\n", + "beta_search_bounds = [0.15510204081632656, 0.15510204081632656] #[0.008,0.01] # S, D -> I\n", + "lambda_search_bounds = [0.000, 0.0] #[0.36,0.55] # I -> H\n", + "\n", + "\n", + "param_choices_true_false, coverage = ps(\"any\", {\"beta\": beta_search_bounds, \"lambda\": lambda_search_bounds}, query_condition=query_2, rtol=1e-3, num_dim_points=1, plot=True)\n", + "print(param_choices_true_false)\n", + "\n", + "# id_number = randint(10**5, 10**6 - 1)\n", + "# with open(f'sir_query_auto_2_param_{id_number}.json', 'w', encoding='utf-8') as f:\n", + "# json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)\n", + "\n", + "# Plot \"true/false\" points. \n", + "sir_model.plot_two_params(\"beta\", \"lambda\", param_choices_true_false)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameterization\n", + "\n", + "# USER: set num_dim_points with how many points for each parameter you'd like to evaluate\n", + "\n", + "# USER: set bounds\n", + "beta_search_bounds = [0.1, 1] #[0.008,0.01] # S, D -> I\n", + "lambda_search_bounds = [0.000, 0.1] #[0.36,0.55] # I -> H\n", + "\n", + "\n", + "num_dim_points = 50\n", + "\n", + "param_choices_true_false, coverage = ps(\"any\", {\"beta\": beta_search_bounds, \"lambda\": lambda_search_bounds}, query_condition=query_2, rtol=1e-3, num_dim_points=num_dim_points)\n", + "# print(param_choices_true_false)\n", + "\n", + "# id_number = randint(10**5, 10**6 - 1)\n", + "# with open(f'sir_query_auto_2_param_{id_number}.json', 'w', encoding='utf-8') as f:\n", + "# json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)\n", + "\n", + "solutions = [p for p in param_choices_true_false if p['assignment']==\"1\"]\n", + "if len(solutions) > 0:\n", + " my_params = solutions[0]\n", + " print(my_params)\n", + " param_assignment, sim = eval_point(my_params[\"beta\"], my_params[\"lambda\"], plot=True, mxstep=20, query_condition=query_2)\n", + "else:\n", + " print(\"No solutions!\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameter Synthesis\n", + "\n", + "# USER: set num_dim_points with how many points for each parameter you'd like to evaluate\n", + "num_dim_points = 10\n", + "\n", + "# USER: set bounds\n", + "beta_search_bounds = [0.1, 1] #[0.008,0.01] # S, D -> I\n", + "lambda_search_bounds = [0.000, 0.1] #[0.36,0.55] # I -> H\n", + "\n", + "\n", + "param_choices_true_false, coverage = ps(\"all\", {\"beta\": beta_search_bounds, \"lambda\": lambda_search_bounds}, query_condition=query_2, rtol=1e-3, num_dim_points=num_dim_points)\n", + "# print(param_choices_true_false)\n", + "\n", + "# id_number = randint(10**5, 10**6 - 1)\n", + "# with open(f'sir_query_auto_2_param_{id_number}.json', 'w', encoding='utf-8') as f:\n", + "# json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)\n", + "\n", + "\n", + "# Plot \"true/false\" points. Is there any way of characterizing these regions?\n", + "sir_model.plot_two_params(\"lambda\", \"beta\", param_choices_true_false)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "funman_venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/evaluation/evaluation24/sir-eval-smt-encoding.ipynb b/scratch/evaluation/evaluation24/sir-eval-smt-encoding.ipynb new file mode 100644 index 00000000..2d32956b --- /dev/null +++ b/scratch/evaluation/evaluation24/sir-eval-smt-encoding.ipynb @@ -0,0 +1,753 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Automatic initialization of gaol... done\n", + "/root/funman_venv/lib/python3.8/site-packages/numpy/core/getlimits.py:511: UserWarning: Signature b'\\xcc\\xcc\\xcc\\xbd' for does not match any known type: falling back to type probe function.\n", + "This warnings indicates broken support for the dtype!\n", + " machar = _get_machar(dtype)\n", + "/root/funman_venv/lib/python3.8/site-packages/numpy/core/_machar.py:295: RuntimeWarning: overflow encountered in divide\n", + " xmax = xmax / (xmin*beta*beta*beta)\n" + ] + } + ], + "source": [ + "# 1:54:49.48 to get a functioning encoding with just compartmental constraints. Needs more time on probing the parameters\n", + "# 0 - 32:00.68: Setup basic encoding\n", + "# 32:00.68 - 48:00: Setup z3 solver and get results\n", + "# 48:00 - 1:27:15: Setup solution extraction\n", + "# 1:27:15 - 1:54:49.48: Setup solution plotting and explore 8 parameter bound settings to test\n", + "# 1:54:49.48 - 2:09:43.40: Cleanup code, comments, and improve plotting to interpolate\n", + "# 2:09:43.40 - 2:17:19.51: Add dreal and test\n", + "\n", + "from pysmt.shortcuts import And, Or, Plus, Minus, Times, Div, REAL, LE, LT, GE, GT, Equals, Symbol, Real, Solver\n", + "from pysmt.fnode import FNode\n", + "from typing import Dict\n", + "import pandas as pd\n", + "from decimal import Decimal\n", + "import numpy as np\n", + "from pysmt.logics import QF_NRA\n", + "from funman_dreal.solver import ensure_dreal_in_pysmt\n", + "import numpy as np\n", + "import itertools\n", + "import sir_model\n", + "\n", + "ensure_dreal_in_pysmt()\n", + "\n", + "def dataframe(assignment: Dict[Symbol, float], state_variables, parameters, max_step, step_size) -> pd.DataFrame:\n", + " timepoints = list(range(0, max_time+step_size, step_size))\n", + " timeseries = {sv: [None]*len(timepoints) for sv in state_variables}\n", + " for k, v in assignment.items():\n", + " sym = k.symbol_name()\n", + " if \"_\" in sym:\n", + " sv = sym.split(\"_\")[0]\n", + " t = sym.split(\"_\")[1]\n", + " value =Decimal(v.numerator) / Decimal(v.denominator)\n", + " timeseries[sv][timepoints.index(int(t))] = value\n", + " else:\n", + " timeseries[sym] = [v]*len(timepoints)\n", + " df = pd.DataFrame(timeseries, index=timepoints).astype(float)\n", + " return df\n", + "\n", + "def reindex_and_interpolate(df, new_index):\n", + " df_reindexed = df.reindex(index = new_index)\n", + " df_reindexed.interpolate(method = 'linear', inplace = True)\n", + " return df_reindexed\n", + "\n", + "\n", + "def plot_results(values, max_step, step_size):\n", + " timepoints = list(range(0, max_time+step_size, step_size))\n", + " results: pd.DataFrame = dataframe(values, [\"S\", \"I\", \"R\"], [\"beta\", \"gamma\"], max_step, step_size)\n", + " newindex = np.linspace(timepoints[0], timepoints[-1], timepoints[-1]+1)\n", + " results = reindex_and_interpolate(results, newindex)\n", + " print(f\"beta = {results['beta'][0]}, gamma = {results['gamma'][0]}\")\n", + " print(results[[\"S\", \"I\", \"R\"]])\n", + " ax = results[[\"S\", \"I\", \"R\"]].plot()\n", + " ax.set_xlabel=\"Time\"\n", + " return ax, results\n", + "\n", + "def run_solver(solver, formula):\n", + " solver.add_assertion(formula)\n", + " result = solver.solve()\n", + " if result:\n", + " model = solver.get_model()\n", + " variables = formula.get_free_variables()\n", + " values = {}\n", + " for var in variables:\n", + " try:\n", + " values[var] = model.get_value(var).constant_value()\n", + " except Exception as e:\n", + " pass\n", + " else:\n", + " print(\"Unsat\")\n", + " values = None\n", + " return values\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Generate model diagram\n", + "\n", + "# from funman.api.run import Runner\n", + "# import json\n", + "\n", + "# amr_model = \"../../resources/amr/petrinet/amr-examples/sir.json\"\n", + "# m = Runner().get_model(amr_model)\n", + "# g = m[0].to_dot()\n", + "# g.render(\"sir.pdf\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# The main encoding code\n", + "def encode(initial_values, parameter_bounds, infected_bounds, infected_timepoints, step_size=1, max_time=10, noise=1e-3, strict_upper_bound_parameters = False, use_compartmental=True):\n", + " time_format = lambda t: f\"{t:03d}\"\n", + "\n", + "\n", + " ################################################################################\n", + " ################# Initial States ###############################################\n", + " ################################################################################\n", + "\n", + " S_0 = Symbol(f\"S_{time_format(0)}\", REAL)\n", + " I_0 = Symbol(f\"I_{time_format(0)}\", REAL)\n", + " R_0 = Symbol(f\"R_{time_format(0)}\", REAL)\n", + "\n", + " S_0_value = initial_values[\"S\"]\n", + " I_0_value = initial_values[\"I\"]\n", + " R_0_value = initial_values[\"R\"]\n", + "\n", + "\n", + " population_size = S_0_value + I_0_value + R_0_value\n", + "\n", + " # SIR Model Initial State\n", + " initial_state = And([\n", + " Equals(S_0, Real(S_0_value)),\n", + " Equals(I_0, Real(I_0_value)),\n", + " Equals(R_0, Real(R_0_value))\n", + " ])\n", + "\n", + " ################################################################################\n", + " ################# Parameters ###############################################\n", + " ################################################################################\n", + "\n", + "\n", + " # Parameters\n", + " beta = Symbol(\"beta\", REAL)\n", + " gamma = Symbol(\"gamma\", REAL)\n", + "\n", + " beta_bounds = parameter_bounds[\"beta\"]\n", + " gamma_bounds = parameter_bounds[\"gamma\"]\n", + "\n", + " upper_op = LT if strict_upper_bound_parameters else LE\n", + "\n", + " parameters = And([\n", + " And(LE(Real(beta_bounds[0]), beta), (upper_op(beta, Real(beta_bounds[1])) if beta_bounds[0] < beta_bounds[1] else LE(beta, Real(beta_bounds[1])))),\n", + " And(LE(Real(gamma_bounds[0]), gamma), (upper_op(gamma, Real(gamma_bounds[1])) if gamma_bounds[0] < gamma_bounds[1] else LE(gamma, Real(gamma_bounds[1]))))\n", + " ])\n", + "\n", + "\n", + " timepoints = list(range(0, max_time+step_size, step_size))\n", + "\n", + "\n", + " ################################################################################\n", + " ################# Transitions ##################################################\n", + " ################################################################################\n", + "\n", + " S_next = lambda t: Symbol(f\"S_{time_format(t+step_size)}\", REAL)\n", + " S_now = lambda t: Symbol(f\"S_{time_format(t)}\", REAL)\n", + " I_next = lambda t: Symbol(f\"I_{time_format(t+step_size)}\", REAL)\n", + " I_now = lambda t: Symbol(f\"I_{time_format(t)}\", REAL)\n", + " R_next = lambda t: Symbol(f\"R_{time_format(t+step_size)}\", REAL)\n", + " R_now = lambda t: Symbol(f\"R_{time_format(t)}\", REAL)\n", + " dt = Real(float(step_size))\n", + "\n", + " S_Trans = lambda t: Equals(S_next(t), \n", + " Minus(\n", + " S_now(t), \n", + " Times([beta, S_now(t), I_now(t), dt])))\n", + "\n", + " I_Trans = lambda t: Equals(I_next(t), \n", + " Plus(\n", + " I_now(t), \n", + " Times(\n", + " Minus(\n", + " Times([beta, S_now(t), I_now(t)]), \n", + " Times(gamma, I_now(t))), dt)))\n", + "\n", + " R_Trans = lambda t: Equals(R_next(t), \n", + " Plus(\n", + " R_now(t), \n", + " Times(\n", + " Times(gamma, I_now(t)), \n", + " dt)))\n", + "\n", + " Trans = lambda t: And(S_Trans(t), I_Trans(t), R_Trans(t))\n", + "\n", + " All_Trans = And([Trans(t) for t in timepoints[:-1]])\n", + "\n", + "\n", + " ################################################################################\n", + " ################# Constraints ##################################################\n", + " ################################################################################\n", + "\n", + " compartmental_constraint = And([\n", + " And( LE(Real(0.0), Plus(S_now(t), Real(noise))),\n", + " LE(Real(0.0), Plus(I_now(t), Real(noise))),\n", + " LE(Real(0.0), Plus(R_now(t), Real(noise))),\n", + " LT(Plus([S_now(t), I_now(t), R_now(t)]), Plus(Real(population_size), Real(noise))), \n", + " GE(Plus([S_now(t), I_now(t), R_now(t)]), Minus(Real(population_size), Real(noise))))\n", + " for t in timepoints]) if use_compartmental else TRUE()\n", + "\n", + " # 10m to add and check\n", + " I_peak = infected_bounds\n", + " I_peak_t = infected_timepoints\n", + " \n", + " peak_I = And([\n", + " And(LE(Real(I_peak[0]), I_now(t)),\n", + " LT(I_now(t), Real(I_peak[1])))\n", + " for t in timepoints \n", + " if I_peak_t[0] <= t and t <= I_peak_t[1]\n", + " ])\n", + "\n", + "\n", + " ################################################################################\n", + " ################# Combine Assertions ###########################################\n", + " ################################################################################\n", + "\n", + " consistency = And([\n", + " initial_state,\n", + " parameters,\n", + " All_Trans,\n", + " compartmental_constraint,\n", + " peak_I\n", + " ])\n", + " # consistency.serialize()\n", + " return consistency" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# # Solve encoding\n", + "# with Solver() as solver:\n", + "# values = run_solver(solver)\n", + " \n", + "# if values:\n", + "# plot_results(values, timepoints)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Unsat\n" + ] + } + ], + "source": [ + "# Consistency using z3 M2.0\n", + "\n", + "# Configure these bounds (lower, upper) to configure the parameter space\n", + "parameter_bounds = {\"beta\": (0.15, 0.15), \"gamma\": (0.025, 0.025)}\n", + "\n", + "# Set these values for the initial state\n", + "initial_values = {\"S\": 0.99, \"I\": 0.01, \"R\": 0.0}\n", + "\n", + "# Infected constraint bounds\n", + "infected_bounds = (0.45, 0.55)\n", + "infected_timepoints = (45, 55)\n", + "\n", + "# Timepoints\n", + "step_size = 4\n", + "max_time = 60\n", + "\n", + "noise = 1e-3\n", + "\n", + "values= None\n", + "with Solver(name=\"z3\") as solver:\n", + " values = run_solver(solver, encode(initial_values, parameter_bounds, infected_bounds, infected_timepoints, max_time=max_time, step_size=step_size, noise=noise, use_compartmental=True))\n", + " pass\n", + " \n", + "if values:\n", + " ax, results = plot_results(values, max_time, step_size)\n", + " # f_pop = results.loc[float(max_time)][[\"S\", \"I\", \"R\"]].sum()\n", + " # print(f\"Population at end: {f_pop}\")\n", + " # s = list(results.S.values)\n", + " # print([s[i]-s[i-1] for i in range(1, len(s))])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta = 0.15000000000000002, gamma = 0.025\n", + " S I R\n", + "0.0 0.990000 0.010000 0.000000\n", + "1.0 0.988515 0.011235 0.000250\n", + "2.0 0.986849 0.012620 0.000531\n", + "3.0 0.984981 0.014173 0.000846\n", + "4.0 0.982887 0.015912 0.001201\n", + "... ... ... ...\n", + "56.0 0.117645 0.538458 0.343897\n", + "57.0 0.108143 0.534498 0.357359\n", + "58.0 0.099473 0.529806 0.370721\n", + "59.0 0.091567 0.524466 0.383966\n", + "60.0 0.084364 0.518558 0.397078\n", + "\n", + "[61 rows x 3 columns]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABod0lEQVR4nO3dd3gU5d7G8e/upndCSCEECL2HHqIiKig2mopYQRQLoqJ43qNYj8ejWM+xoSgWsCCIShEVRAQVpUgA6T1AgFRCet+d94+BYBQ0wSSTcn+ua67dmZ3d+WXE7J1n5nkem2EYBiIiIiIWsVtdgIiIiDRsCiMiIiJiKYURERERsZTCiIiIiFhKYUREREQspTAiIiIillIYEREREUspjIiIiIil3KwuoCJcLhdHjhzB398fm81mdTkiIiJSAYZhkJOTQ9OmTbHbT9/+USfCyJEjR4iKirK6DBERETkDiYmJNGvW7LSv14kw4u/vD5g/TEBAgMXViIiISEVkZ2cTFRVV9j1+OnUijJy4NBMQEKAwIiIiUsf81S0WuoFVRERELKUwIiIiIpZSGBERERFL1Yl7RkREROoawzAoLS3F6XRaXUq1cTgcuLm5/e1hNxRGREREqlhxcTFJSUnk5+dbXUq18/HxISIiAg8PjzP+DIURERGRKuRyuUhISMDhcNC0aVM8PDzq5YCdhmFQXFxMWloaCQkJtG3b9k8HNvszlQ4jP/zwA88//zzx8fEkJSUxb948hg8f/qfvWbFiBZMmTWLr1q1ERUXxyCOPcNNNN51RwSIiIrVZcXExLpeLqKgofHx8rC6nWnl7e+Pu7s6BAwcoLi7Gy8vrjD6n0hEmLy+PmJgYpk6dWqH9ExISuOyyyzj//PPZuHEj9957L+PGjWPJkiWVLlZERKSuONNWgrqmKn7OSreMXHLJJVxyySUV3n/atGlER0fz4osvAtCxY0dWrlzJ//73PwYPHlzZw4uIiEg9U+2xbdWqVQwaNKjctsGDB7Nq1arTvqeoqIjs7Oxyi4iIiNRP1R5GkpOTCQsLK7ctLCyM7OxsCgoKTvmeKVOmEBgYWLZokjwREZH6q1Ze0Jo8eTJZWVllS2JiotUliYiI1HtpaWmMHz+e5s2b4+npSXh4OIMHD+ann36q1uNWe9fe8PBwUlJSym1LSUkhICAAb2/vU77H09MTT0/P6i6Nt3/cR1JWIYHe7uUXn/Lr7o5amdlERESq1JVXXklxcTEzZ86kVatWpKSksGzZMo4ePVqtx632MBIXF8dXX31VbtvSpUuJi4ur7kP/pUWbktiYmPmX+/l7udHIx4NGPu408vWgkY8HQT7uBPt40NjPk2BfD0L8Tj4P8Pr7o9GJiEj9YRgGBSU1PxKrt7ujwt9HmZmZ/Pjjj6xYsYIBAwYA0KJFC/r27VudJQJnEEZyc3PZs2dP2XpCQgIbN24kODiY5s2bM3nyZA4fPsz7778PwB133MFrr73GP//5T26++Wa+++47PvnkE7788suq+ynO0Kg+UcRGB5NVUHLKJaewFICcwlJyCks5mFGxz3V32Gjs60mIvwdN/Dxp4n988fMkNMCr7Hl4oBde7o5q/AlFRKQ2KChx0umxmh/SYtu/B+PjUbGvej8/P/z8/Jg/fz79+vWrkSsUJ1Q6jKxbt47zzz+/bH3SpEkAjBkzhhkzZpCUlMTBgwfLXo+OjubLL7/kvvvu4+WXX6ZZs2a8/fbbtaJb77V9m//p606XQVZBCcfyizmWV8yx/N89zyvmaF4xR/OKOJpbTEZeMblFpZQ4DZKzC0nOLvzLGgK93QkP8CIs0IvwAE/CA7wID/QmIsiLyCBvIoO88fXUQLkiIlK93NzcmDFjBrfeeivTpk2jZ8+eDBgwgGuuuYZu3bpV67FthmEY1XqEKpCdnU1gYCBZWVkEBARYXc6fKixxkpFXTHpuEem5RaTlnFxSTzzPLSIlu5DCEleFPjPQ252mx4NJZJAXkY28aR7sQ1SwD82DffD3cq/mn0pERCqqsLCQhIQEoqOjy0YkrQuXaU4oLCzkxx9/ZPXq1Xz99desXbuWt99++7Qjp5/q5z2hot/fCiMWMQyD7ILSshaUlKzCcs+PZBVy+Fg+2ccvFf2ZRj7u5cJJy8a+RDfxJTrEl8a+9XNOBBGR2urPvpzronHjxrF06VIOHDhwyterIoyo/d8iNpvN7LXj4077cP/T7pdTWEJSViGHjxVwOLOAI5kFJB4rIDEjn8SMfI6WXT7K4tdDWX94v7+XG61CzGASHeJHdBNf2ob6ER3iq/tVRETkL3Xq1In58+dX6zEURmo5fy93/L3caRd26sCSW1RKYkY+B4+HkwNH89l/NI+E9DwOZxaQU1jKr4f+GFTsNmjZ2Jc2oX60DfOjXZg/bUL9aN3ETyFFRKQBOnr0KCNHjuTmm2+mW7du+Pv7s27dOp577jmGDRtWrcdWGKnj/Dzd6BgRQMeIPzZ/FZY4OZiRz740M5wkpOeyNy2P3Sk5ZBeWsi89j33peXyz7eQ4MA67jdZNfOl0/DM7RgTQqWkAIX41d1e1iIjUPD8/P2JjY/nf//7H3r17KSkpISoqiltvvZWHHnqoWo+te0YaIMMwSMspYldKLrtTc9idmsvulBx2peSSVVByyvc08fekU0QA3ZoF0q1ZEDHNAgkNqPvXQkVEqlp9u2fkr+ieETkjNpuN0AAvQgO8OKdtSNl2wzC7JG9PymbbkWy2J+WwLSmb/UfzSMsp4vucNL7flVa2f3iAF12bBRJzIqBEBRHorZ49IiJSOQojUsZmsxER6E1EoDcXdDg5uWFeUSk7knPYdsS892TToUz2pOaavX+2FbL0+GUemw3ahvrRq0UwvVs0onfLRjQP9lFvHhER+VMKI/KXfD3d6NWiEb1aNOLG49vyikrZeiSbTYcyywLKgaP57ErJZVdKLh+vNQe+C/HzLAsm/Vo1pmNEAA67womIiJykMCJnxNfTjb7RwfSNDi7blpZTRPyBY8QfyGDdgWNsOZxFem4Ri7cms3hrMmAO4NavVTBxrRpzVpsQ2ob6qeVERKSBUxiRKtPE35OLu4RzcZdwwOzNs+lQFusOZPBLQgZrEzLIKihhydYUlmw1L+2E+HnQr1VjzmkTwoD2TYgIPPVMziIiUn8pjEi18XJ3nGw9OQ9KnC42H85i1d6jrNp7lHUHMkjPLWbRpiQWbUoCoH2YP+e1b8KA9k3o3SIYDze7tT+EiIhUO4URqTHuDjs9mzeiZ/NGTDi/DUWlTjYezOTnvUf5YXcaGxMz2ZmSw86UHN78YR++Hg7ObhPCee1DGdQxVF2JRUTqKY0zIrXGsbxiftidxvc7zS7ER/OKy16z2aBHVBAXdQ5ncOdwokN8LaxUROT0NM7ISRpnROqcRr4eDOseybDukbhcBluPZLNiZyrLdqSyMTGT9QfN5Zmvd9AuzI/Bx4NJ56YBuglWRKQOUxiRWslut9G1WSBdmwVy98C2JGcVsnRbMku2prB639HjXYj38Op3e4gK9mZoTFOGxkT+6aSDIiLy52666SYyMzOrfWK831MYkTohPNCLG+NacmNcS7LyS1i2I4UlW5P5flcaiRkFTF2+l6nL99Ih3J+h3ZsypFtTooJ9rC5bREQqQGFE6pxAH3eu6NmMK3o2o6DYybfbU1j46xFW7ExlR3IOOxbv5LnFO+nVohFDY5oyJKYpwb4eVpctIiKnoTAidZq3h4MhxwNHVn4JX29JYuGvR1i17+jxAdiO8dSX27mwcxijekdxTpsQ7BoBVkRqmmFASX7NH9fdx+wBUMspjEi9EejjzjV9m3NN3+akZBfyxa9HmLfhMFuPZPPlpiS+3JREZJA3I3s3Y2TvKCKDNMCaiNSQknx4umnNH/ehI+BR+3sfKoxIvRQW4MW4/q0Y178VWw5n8cm6ROZvOMzhzAJe+nY3Ly/bzTltQri2b3Mu6hSGm0ODq4mIWEVhROq9LpGBdIkM5KFLO7J4SzJzfklk1b6j/Lg7nR93pxMR6MUN/VpwTZ8oGvt5Wl2uiNRH7j5mK4UVx60DFEakwfBydzC8RyTDe0Ry4Ggen6xLZPbaRJKyCnl+yU5eXraboTFNuemslnSJDLS6XBGpT2y2OnG5xCoKI9IgtWjsy/8N7sA9A9vy5aYkZvy8n02Hsvg0/hCfxh+id4tGjDmrJRd3Ccddl3BERKqVwog0aJ5uDq7o2YwRPSLZkJjJjJ/289XmJNYdOMa6A8do1sib285txdW9o/Byd1hdrohIvaS5aUR+JyW7kI/WHOSj1QfK5sdp7OvBzedEc0O/FgR6u1tcoYjUZpqb5qSKfn+r/Vnkd8ICvJh0YTtWPnAB/x7Wmcggb47mFfP8kp2c/cx3TPl6O6k5hVaXKSJSbyiMiJyGt4eD0XEtWfF/5/G/UTG0C/Mjt6iUN7/fxznPLueR+ZtJyiqwukwRkTpPYUTkL7g77Izo0YzFE89l+uje9GgeRHGpiw9XH2TA8yt4ctE20nOLrC5TRKTOUhgRqSC73caFncL4fPxZfHxrP/q2DKa41MU7KxM497nlPL9kB1n5JVaXKSJS5yiMiFSSzWYjrnVj5tzej5k396Vbs0Dyi51MXb6Xc577jleX7Sa3qNTqMkVE6gyFEZEzZLPZGNCuCQsmnM1bN/aiQ7g/OYWlvLh0F+c+t5z3fkqgxOmyukwRkVpPYUTkb7LZbFzUOZyv7unPK9f2IDrEl4y8Yp74YhuDX/qBZdtTqAM96EVELKMwIlJF7HYbQ2OasvS+c3lqRBca+3qwLy2PW2au48Z31rIjOdvqEkVEaiWFEZEq5uawc31sC5b/33ncPqAVHg47K/ekc+nLPzL5883qeSMi8jsKIyLVJMDLncmXdOTbSQO4tGs4LgM+XnuQ855fwbTv91JcqvtJRERAYUSk2jVv7MPr1/fik9vj6BoZSG5RKc98vYPLX/2RX/ZnWF2eiEiZm266CZvNhs1mw93dnejoaP75z39SWFi9o04rjIjUkL7RwSyYcDbPX9WNYF8PdqXkMnLaKh74dBPHjs+BIyJitYsvvpikpCT27dvH//73P958800ef/zxaj2mwohIDbLbbYzsHcV39w/g2r5RAMxZl8jA/37Pp/GH1OtGRCzn6elJeHg4UVFRDB8+nEGDBrF06dJqPaZbtX66iJxSkI8HU67oxpU9m/HwvC3sTMnhH3N/Ze66RJ4a0YU2of5WlygiVcgwDApKa34uK283b2w22xm/f8uWLfz888+0aNGiCqv6I4UREQv1bhnMonvO4Z2VCbz07S7WJGRwycs/MuH8Nkw4vw3uDjVeitQHBaUFxM6KrfHjrrluDT7uPpV6z6JFi/Dz86O0tJSioiLsdjuvvfZaNVVo0m86EYu5O+zcMaA1S+8bwAUdQilxGrz07W5GvP4TO5NzrC5PRBqY888/n40bN7JmzRrGjBnD2LFjufLKK6v1mGoZEaklooJ9eGdMb77YlMRjC7aw5XA2Q15dycRBbbn93Fa4qZVEpM7ydvNmzXVrLDluZfn6+tKmTRsA3n33XWJiYnjnnXe45ZZbqrq8MgojIrWIzWaO4tovOpiH5m3m2+2pPL9kJ99sS+HFkTG0CfWzukQROQM2m63Sl0tqA7vdzkMPPcSkSZO47rrr8PaufLip0HGq5VNF5G8JDfBi+ujevDAyBn8vN35NzOSyV37k7R/34XSpx42I1JyRI0ficDiYOnVqtR1DYUSklrLZbFzVqxnf3Hcu57ZrQlGpi/98uZ1r3lrFoWP5VpcnIg2Em5sbd911F8899xx5eXnVcgybUQcGNsjOziYwMJCsrCwCAgKsLkekxhmGwexfEvnPom3kFTsJ8HLjuau6cXGXCKtLE5HfKSwsJCEhgejoaLy8vKwup9r92c9b0e9vtYyI1AE2m41r+zZn8b3n0j0qiOzCUu74cD0Pz9tMYYnT6vJERP4WhRGROiQq2Ie5d8Rxx4DWAHy05iDDXvuJ3SnqAiwidZfCiEgd4+6w8+AlHfjglr6E+HmyMyWHIa+tZPbagxpOXkTqJIURkTqqf9smfD2xP/3bhlBY4uLBzzdz18cbyC4ssbo0EZFKURgRqcOa+Hsyc2xfJl/SATe7jS83JTHsNY3cKiJ1i8KISB1nt9u4fUBr5t4RR2SQNwnpeYx4/ScWbTpidWkiDVpDuWxaFT+nwohIPdGjeSO+uPsczmkTQn6xk7tmbeDpr7ZT6nRZXZpIg+Lu7g5Afn7DGA/oxM954uc+ExoOXqQeCfb1YMbYPrzwzS6mfb+Xt37Yx5bDWbx6bQ8a+3laXZ5Ig+BwOAgKCiI1NRUAHx8fbDabxVVVPcMwyM/PJzU1laCgIBwOxxl/lgY9E6mnvtqcxD/m/kp+sZPIIG/euKEn3ZoFWV2WSINgGAbJyclkZmZaXUq1CwoKIjw8/JSBq6Lf3wojIvXYrpQcbv8gnoT0PDzc7PxneBeu7h1ldVkiDYbT6aSkpP72cHN3d//TFhGFEREBILuwhElzNvLtdrPJ+LZzW/HAxR1w2Otfs7GI1C7VOhz81KlTadmyJV5eXsTGxrJ27do/3f+ll16iffv2eHt7ExUVxX333UdhYeGZHFpEKinAy523buzNxIFtAXjrh33c8WE8+cWlFlcmImKqdBiZM2cOkyZN4vHHH2f9+vXExMQwePDgsht1fm/WrFk8+OCDPP7442zfvp133nmHOXPm8NBDD/3t4kWkYux2G/dd2I6Xr+mOh5udpdtSuPrNVSRn6Y8CEbFepS/TxMbG0qdPH1577TUAXC4XUVFR3H333Tz44IN/2P+uu+5i+/btLFu2rGzb/fffz5o1a1i5cmWFjqnLNCJVJ/5ABre+H09GXjHhAV68c1NvOjcNtLosEamHquUyTXFxMfHx8QwaNOjkB9jtDBo0iFWrVp3yPWeddRbx8fFll3L27dvHV199xaWXXnra4xQVFZGdnV1uEZGq0atFMPPvPJs2oX4kZxcyctoqvt2WYnVZItKAVSqMpKen43Q6CQsLK7c9LCyM5OTkU77nuuuu49///jfnnHMO7u7utG7dmvPOO+9PL9NMmTKFwMDAsiUqSnf/i1Sl5o19+Gz8WWUDpN36wTreWZnQYEaMFJHapdpHYF2xYgVPP/00r7/+OuvXr+fzzz/nyy+/5MknnzzteyZPnkxWVlbZkpiYWN1lijQ4gd7uvDe2D9f2jcIw4MlF2/jXwq24XAokIlKzKjUCa0hICA6Hg5SU8k26KSkphIeHn/I9jz76KDfeeCPjxo0DoGvXruTl5XHbbbfx8MMPY7f/MQ95enri6anRIkWqm7vDztMjutIqxI+nv97OzFUHOJpXzItXx+DpduajKYqIVEalWkY8PDzo1atXuZtRXS4Xy5YtIy4u7pTvyc/P/0PgODFAipqERaxns9m49dxWvHxND9wdNhZtSuKWGevILVLXXxGpGZW+TDNp0iSmT5/OzJkz2b59O+PHjycvL4+xY8cCMHr0aCZPnly2/5AhQ3jjjTeYPXs2CQkJLF26lEcffZQhQ4b8rXHsRaRqDY1pyjtj+uDj4WDlnnSum76ao7lFVpclIg1ApSfKGzVqFGlpaTz22GMkJyfTvXt3Fi9eXHZT68GDB8u1hDzyyCPYbDYeeeQRDh8+TJMmTRgyZAhPPfVU1f0UIlIlzm3XhFm39mPse2vZdCiLkdNWMfPmvkQF+1hdmojUYxoOXkT+YG9aLqPfWcvhzALCAjyZeXNfOoTr/z0RqZxqHQ5eROq31k38+Gz8WbQL8yMlu4irp61i3f4Mq8sSkXpKYURETik80ItPbo+jV4tGZBeWcv3ba/h+V5rVZYlIPaQwIiKnFeTjwYe3xHJ++yYUlbq4deY6lm3XaK0iUrUURkTkT3l7OHjzxt4M7hxGsdPFHR/Gs3jLqUdcFhE5EwojIvKXPNzsvHZdTy7vFkGJ02DCrPV88esRq8sSkXpCYUREKsTdYeelUd25okckTpfBxNkb+Hz9IavLEpF6QGFERCrMzWHn+ZExjOodhcuA++f+ypxfDlpdlojUcQojIlIpDruNKVd05YZ+zTEMeOCzzXywar/VZYlIHaYwIiKVZrfbeHJYF24+OxqARxds5b2fEiyuSkTqKoURETkjNpuNRy/vyB0DWgPwxBfb+GD1AYurEpG6SGFERM6YzWbjgYvbc/uAVgA8On8Ln/ySaHFVIlLXKIyIyN9is9l48OIO3HRWSwAe+HwTCzYetrYoEalTFEZE5G+z2Ww8PqQT18WaN7VO+uRXvtqcZHVZIlJHKIyISJWw2Wz8Z1gXrurVDKfL4J6PN/DtNg0dLyJ/TWFERKqM3W7j2Su7MTSmKaUugzs/Wq/J9UTkLymMiEiVctht/PfqGC7pEk6x08Vt76/j5z3pVpclIrWYwoiIVDk3h52Xr+nBwA6hFJW6uGXmOuIPHLO6LBGppRRGRKRaeLjZmXp9T/q3DaGgxMnNM35hV0qO1WWJSC2kMCIi1cbL3cGbN/aiR/MgsgpKuPGdNSRm5FtdlojUMgojIlKtfDzceO+mPrQN9SMlu4jR764lPbfI6rJEpBZRGBGRahfk48H7t/QlMsibhPQ8bnpvLTmFJVaXJSK1hMKIiNSIiEBvPrilL8G+Hmw5nM1t78dTWOK0uiwRqQUURkSkxrRq4sfMsX3x9XCwat9R7p29EafLsLosEbGYwoiI1KiuzQKZPqY3Hg47i7cm8/C8zRiGAolIQ6YwIiI17qzWIbxybXfsNpj9SyIvfLPT6pJExEIKIyJiiYu7RPD0iK4ATF2+l4/WHLC4IhGxisKIiFjmmr7NuXdQWwAenb+F73ZoYj2RhkhhREQsNXFgW0b2aobLgAkfbWDToUyrSxKRGqYwIiKWstlsPH1F198MG79Oo7SKNDAKIyJiOXeHndev70mHcH/Sc4u46b21ZOYXW12WiNQQhRERqRX8vdyZMbYvEYFe7E3L47YP4ikq1aBoIg2BwoiI1BrhgV68N7YP/p5urE3I4P5PfsWlQdFE6j2FERGpVTqEBzDtxl642W0s2pTEs0t2WF2SiFQzhRERqXXObhPCs1d2A+DN7/cxa81BiysSkeqkMCIitdKVvZpx36B2ADy2YAs/7Um3uCIRqS4KIyJSa90zsA3Dujel1GUw/sN49qblWl2SiFQDhRERqbVsNhvPXtmNns2DyC4sZdzMderyK1IPKYyISK3m5e7gzRt7ExnkTUJ6HuM/XE9xqcvqskSkCimMiEit18Tfk3du6o2vh4NV+47y2IItGIa6/IrUFwojIlIndAgP4NXremC3wexfEnlnZYLVJYlIFVEYEZE644IOYTx0aUcAnvpqO8u2a5ZfkfpAYURE6pRbzonm2r7NMQy45+MNbE/KtrokEfmbFEZEpE6x2Wz8e1hnzmrdmLxiJ+NmruNobpHVZYnI36AwIiJ1zolZfls29uFwZgF3frSeEqd62IjUVQojIlInBfl4MH10b/w83ViTkMGTi7ZZXZKInCGFERGps9qG+fO/Ud0BeH/VAT5eqzlsROoihRERqdMu7BTG/ReenMNm3f4MiysSkcpSGBGROu+uC9pwaddwSpwGd3y4niOZBVaXJCKVoDAiInWezWbj+ati6BDuT3puEbd/EE9hidPqskSkghRGRKRe8PV0Y/ro3jTycWfz4Swe/GyThowXqSMURkSk3ogK9mHq9T1x2G3M33iE6T/us7okEakAhRERqVfOah3CY5d3AuCZr3fww640iysSkb+iMCIi9c7ouBaM6h2Fy4B7Zm8gMSPf6pJE5E8ojIhIvWOz2XhiWGdimgWSmV/C7R/EU1CsG1pFaiuFERGpl7zcHbxxQy8a+3qwLSmbh+dt1g2tIrWUwoiI1FtNg7x59boe2G3w+YbDfLD6gNUlicgpKIyISL12VusQJl/SEYB/f7GNXzRCq0itc0ZhZOrUqbRs2RIvLy9iY2NZu3btn+6fmZnJhAkTiIiIwNPTk3bt2vHVV1+dUcEiIpU1rn80l3eLoNRlcOdH60nJLrS6JBH5jUqHkTlz5jBp0iQef/xx1q9fT0xMDIMHDyY1NfWU+xcXF3PhhReyf/9+Pv30U3bu3Mn06dOJjIz828WLiFSEzWbjuau60T7Mn7ScIu78aD3FpS6ryxKR42xGJe/oio2NpU+fPrz22msAuFwuoqKiuPvuu3nwwQf/sP+0adN4/vnn2bFjB+7u7mdUZHZ2NoGBgWRlZREQEHBGnyEikpCex9DXVpJTWMrouBb8e1gXq0sSqdcq+v1dqZaR4uJi4uPjGTRo0MkPsNsZNGgQq1atOuV7Fi5cSFxcHBMmTCAsLIwuXbrw9NNP43SevptdUVER2dnZ5RYRkb8rOsSXl0Z1B+D9VQf4NP6QtQWJCFDJMJKeno7T6SQsLKzc9rCwMJKTk0/5nn379vHpp5/idDr56quvePTRR3nxxRf5z3/+c9rjTJkyhcDAwLIlKiqqMmWKiJzWwI5hTBzYFoCH521m65EsiysSkWrvTeNyuQgNDeWtt96iV69ejBo1iocffphp06ad9j2TJ08mKyurbElMTKzuMkWkAZk4sC3nt29CUamL8R+uJ6ugxOqSRBq0SoWRkJAQHA4HKSkp5banpKQQHh5+yvdERETQrl07HA5H2baOHTuSnJxMcXHxKd/j6elJQEBAuUVEpKrY7Tb+N6o7kUHeHMzI5/5PNuJyaUA0EatUKox4eHjQq1cvli1bVrbN5XKxbNky4uLiTvmes88+mz179uBynbxzfdeuXURERODh4XGGZYuI/D1BPh5Mu6EXHm52vt2eyrQf9lpdkkiDVenLNJMmTWL69OnMnDmT7du3M378ePLy8hg7diwAo0ePZvLkyWX7jx8/noyMDCZOnMiuXbv48ssvefrpp5kwYULV/RQiImega7NA/j20MwAvLNnJz3vSLa5IpGFyq+wbRo0aRVpaGo899hjJycl0796dxYsXl93UevDgQez2kxknKiqKJUuWcN9999GtWzciIyOZOHEiDzzwQNX9FCIiZ2hUnyjiDxxjbvwh7v54A4vuOYeIQG+ryxJpUCo9zogVNM6IiFSnwhInI17/me1J2fRsHsTs2+LwcNNsGSJ/V7WMMyIiUh95uTuYdkNP/L3cWH8wk6e/2m51SSINisKIiAjQorEv/726OwAzft7Pwl+PWFuQSAOiMCIictyFncK487zWADz42SZ2p+RYXJFIw6AwIiLyG/df1J6z2zQmv9jJ+I/Wk1dUanVJIvWewoiIyG847DZevqYHYQGe7EnN5eF5m6kD9/mL1GkKIyIivxPi58lr1/XEYbcxf+MRZq09aHVJIvWawoiIyCn0aRnMPwe3B+CJhdvYfEgT6olUF4UREZHTuO3cVlzYKYxip4s7Z8WTla8J9USqg8KIiMhp2Gw2XhgZQ1SwN4kZBdw/91fdPyJSDRRGRET+RKC3O69f1wsPh51vt6fw1g/7rC5JpN6p9Nw0IiINTddmgTw+tBMPz9vCc0t20qN5I/pGB1tdlpwJlxNyUyAnCYpyoCgXivOg+LfPc8FZDNjAZgObvfxzmw08/MDT/3dLgPno3Qh8m4DdYfVPW2cojIiIVMB1fZvzS0IG8zce4a5Z6/nynv408fe0uiz5PWcJZOyD1O1wbL8ZOrIPQ3YSZB+B3GQwXNVfh80OvqHgHw7+EeAfdvwxHIJaQOPWEBCpwHKcwoiISAXYbDaeGtGVLUey2ZOay71zNvD+zbE47DarS2uYDON46NgGqTsgbbsZQNJ3g+svbjS2OcAvDLwCwdMPPHxPtnSceO7wAAzzOOUeXWbrSkn+8ZaVE0v2yecFx8z9cpPNJWnjqetweECjlhDcGoJbQXA0NG4DYV3Ar0mVnq7aTrP2iohUwp7UHIa+9hP5xU4mDmzLfRe2s7qkhqG0GJJ+hYOr4OBq87Eg49T7evhBk/bml3xgJPg3hYCmEBBhtkZU9yUUlxPy0sxWmZzk3yxJ5pKRYLba/Flo8g2FsM7Hly4Q1glC2oO7V/XVXQ0q+v2tMCIiUknzNxzm3jkbsdng/Zv70r9tw/ortkaUFpuBY/+PZvg4tA5KC8rv4+Zlho7QTtCkA4R2NJeAZmCv5f0zXE7IOgQZe80WnowEOLoX0neazznFV7PNYYaSyF4nlyYdavWlHoUREZFq9NC8zcxac5DGvh58eU9/wgPr1l+stVJ+Buz5FnZ+BXuWmZc+fss7GJrHQfN+0OIsCO8Gbh7W1FqdivPMS08pWyBlq3kpKnkzFGb+cV93X2jaAyJ7QrPe0PysWnWJR2FERKQaFZY4ueL1n9mWlE2flo2YdWs/3B21/K/x2ih9D+z6GnZ+bbaAGM6Tr/k2gdYDzeDRPA5C2po9WRoiwzBvxD28Hg7Hm8uRDWbPn98LaXf8nJ1lPgZF1Xy9xymMiIhUs/3peQx5dSU5RaXcPqAVky/paHVJdUNeOmz+FH6dZd4H8luhnaH9xdD+Umjas/ZfbrGSywnpu8xgcmgdJK6F1K1/3C+wuRlKovtDq/MgsFmNlagwIiJSA77enMT4j9YD8Pbo3gzqFGZxRbVUaTHsXgIbPzYfXaXmdrsbtOwP7S+BdhdDoxbW1lnX5WdA4ho48BMc+BmObCzf2gTQuK0ZSlqdZwYUr8BqK0dhRESkhjzxxVbe+2k/gd7uLLr7HKKCfawuqfZI2gQbPoTNc8v3fonoDt2vgy5XgW9jy8qr94py4dBa2P8TJHxvtqL8dpwVm928EbbVeeZ/j+BWVXp4hRERkRpSXOri6jdXsTExk5hmgcy94yw83Brw5QWXE3YthlVTzb/QT/ALg26jzC+9UF3SskRBJuxfCftWwL7lcHTPydfGLDJbSqqQwoiISA06nFnAZa/8SGZ+CTed1ZJ/De1sdUk1rygXNn4Eq9+AYwnmNrsbdLgcetwArc4Hh8barFUyE80Wk4QfYegr4Fa1oworjIiI1LDvdqRw84x1AEy9rieXdYuwuKIaknUI1rwJ8TOhKMvc5hUEvW6CvreZA49Jg1TR729FVBGRKnJBhzDGn9eaN1bs5YHPNtGpaQDRIb5Wl1V9ju2H75+HXz8+eZNkcGvoN968FONRj392qVIKIyIiVej+C9sRf+AYaxMyuPOj9cy78yy83GvvCJlnJOsQ/PC8eWPqiV4xLftD3F3Q9iJ1x5VK078YEZEq5Oaw8+q1PQjx82B7Ujb/WniKcR/qqpxk+Oqf8EoPiJ9hBpHWF8C4ZXDTInN8EAUROQP6VyMiUsXCArx4+Zoe2Gww+5dEPos/ZHVJf09eOix5GF6OgbVvgrMYWpwDY7+GG+eZw5CL/A0KIyIi1eDsNiHcO9Cc0feR+VvYlZJjcUVnoLQYfnoZXu4Oq16D0kJo1hdGLzBbQlqcZXWFUk8ojIiIVJO7L2hD/7YhFJQ4Gf9hPHlFpVaXVHG7lsDr/WDpY1CcAxExcN1cuOUbc4CshjpHjFQLhRERkWpit9t4aVR3wgO82JuWx0PzNlPrR1NI2wUfXgWzrjant/cNhWGvw60roN1FCiFSLRRGRESqUWM/T169rgcOu40FG48wa+1Bq0s6tcIs876QN+Jgz1Kwu8PZE+HueOhxvW5MlWqlf10iItWsT8tgHri4PQBPLNzGlsNZFlf0G4YBv86GV3uZ94W4Ss0J6yasgQv/DV4aaFKqn8KIiEgNuLV/KwZ1DKXY6eLOj9aTVVBidUmQeRA+vBLm3Q55aRDSDq7/DK6bA41bW12dNCAKIyIiNcBms/HiyO40a+TNwYx8/jH3V+vuH3G5zOHbp/aDvcvA4QkDH4PxP0PbQdbUJA2awoiISA0J9HHn9et74uGws3RbCtN/3FfzRaTthPcuhq//CSV50DwOxv8E/e8Hh3vN1yOCwoiISI3q1iyIx4Z0AuDZxTtZm5BRMwcuLTbnkZl2DiSuAQ8/uOxFuOkrCGlbMzWInIbCiIhIDbs+tjnDuzfF6TK4a9Z60nKKqveAKdtg+vmw/D/m6KltB5s3qPYZp14yUivoX6GISA2z2Ww8NaIrbUP9SM0pYuLsDThd1XD/iMsFq9+At86DlC3gHQxXvG3eoBrYrOqPJ3KGFEZERCzg6+nGGzf0xMfDwc97j/LSt7uq9gA5yfDRlbD4QXAWmbPpTlgD3UZq4DKpdRRGREQs0ibUn2eu7AbAq9/tYfnO1Kr54O2L4PU42PsduHnBpS/AdZ+AX2jVfL5IFVMYERGx0NCYpoyOawHAfXM2cuhY/pl/WHEeLLwH5lwPBRkQ3hVu/wH63qrWEKnVFEZERCz28GUdiWkWSGZ+CRM+Wk9RqbPyH3JkA0zrD+tnAjY46x4YtwyatK/yekWqmsKIiIjFPN0cTL2+J4He7vx6KIv/LNpe8TcbBvzyDrxzkTmxnX9TGLMQLnoS3Dyrr2iRKqQwIiJSCzRr5MNL13THZoMPVh9g3oZDf/2molz4/Db4cpLZZbf9peYAZtHnVn/BIlVIYUREpJY4v30od19gDkA2+fPNbE/KPv3OaTth+gWw+ROwOcxJ7a6ZBT7BNVStSNVRGBERqUUmDmzLue2aUFjiYvyH8aeeUG/TXHjrfEjfCX7hcNMiOHuiblKVOkthRESkFnHYbbw8qjuRQd7sP2pOqOc6MSBaaREsmgSfjzPnlYk+F+74EVqcZW3RIn+TwoiISC3TyNeDN244OaHetB/2QtYheHcwrHvH3Onc/4Mb52vsEKkXFEZERGqhbs2CeGJYZwCWf7OQ4jfONbvvejeC6z+FCx4Bu8PiKkWqhpvVBYiIyKld0ycKtw3vM+zIf/EodFLSpDPu130MjVpYXZpIlVLLiIhIbeQswfbV/zEy6Xk8bE4WOWO5kScp9o+yujKRKqcwIiJS2+Slw/vD4ZfpAGT2e4CHHJNYnVjIk4u2WVubSDVQGBERqU2SNpnddg+sBA9/uOZjgi5+iJeu6QGYA6LNXZdocZEiVUthRESktti2wOwxk3UQglvBuG+hw6UAXNAhjHsHmQOiPTx/C5sOZVpYqEjVUhgREbGaYcDK/8Eno6EkH1pfALd+B6Edyu12zwVtGdQxlOJSF3d8EM/R3CKLChapWgojIiJWcpbAwrvh23+Z631vh+vmml14f8dut/HfUd1pFeLLkaxCJsxaT6nTVbP1ilQDhREREasUZMKHV8CGD8Bmh0ueg0ufA8fpR10I8HLnzRt74evhYPW+DKZ8vaPm6hWpJmcURqZOnUrLli3x8vIiNjaWtWvXVuh9s2fPxmazMXz48DM5rIhI/ZGRAO9cCAk/gIcfXDsbYm+v0Fvbhvnz4tUxALyzMoEFGw9XZ6Ui1a7SYWTOnDlMmjSJxx9/nPXr1xMTE8PgwYNJTU390/ft37+ff/zjH/Tv3/+MixURqRcS18LbgyB9F/g3hZsXQ7vBlfqIi7tEMOH81gA88Nkmth7Jqo5KRWpEpcPIf//7X2699VbGjh1Lp06dmDZtGj4+Prz77runfY/T6eT666/niSeeoFWrVn+rYBGROm3LZzDjcshPh4gY80bV8K5n9FGTLmzPgOMz/N7xYTzH8oqruFiRmlGpMFJcXEx8fDyDBg06+QF2O4MGDWLVqlWnfd+///1vQkNDueWWWyp0nKKiIrKzs8stIiJ1mmHATy/DpzeDswjaXwpjv4aAiDP+SIfdxivX9KB5sA+JGQXcM3sDzhMz/IpUUGJOIjO2zLC0hkqFkfT0dJxOJ2FhYeW2h4WFkZycfMr3rFy5knfeeYfp06dX+DhTpkwhMDCwbImK0vDHIlKHuZzw9QOw9DFzvd+dMOpD8PD92x8d6GPe0Ort7uDH3ek8u1g3tErFFJQW8NqG1xg+fzgvxr/IqiOnb1SobtXamyYnJ4cbb7yR6dOnExISUuH3TZ48maysrLIlMVGjDYpIHVVSAHNvgrVvmuuDn4aLp1TpjLsdIwJ4fmQ3AN76YR+frz9UZZ8t9Y9hGHyz/xuGzR/Gm5vepNhVTL+IfoT5hv31m6tJpWbtDQkJweFwkJKSUm57SkoK4eHhf9h/79697N+/nyFDhpRtc7nMPvFubm7s3LmT1q1b/+F9np6eeHp6VqY0EZHaJz8DZl8HB1eBwwNGTIMuV1bLoS7v1pQdSTm8tnwPD36+mVZN/OgeFVQtx5K6a2/mXqasncKapDUARPhG8H99/o9BzQdhs9ksq6tSLSMeHh706tWLZcuWlW1zuVwsW7aMuLi4P+zfoUMHNm/ezMaNG8uWoUOHcv7557Nx40ZdfhGR+ivzILx7sRlEPAPhhs+rLYicMOnCdlzYKYziUhe3vb+OlOzCaj2e1B25xbk8/8vzXLXwKtYkrcHD7sHt3W5nwfAFXNjiQkuDCFSyZQRg0qRJjBkzht69e9O3b19eeukl8vLyGDt2LACjR48mMjKSKVOm4OXlRZcuXcq9PygoCOAP20VE6o2kTfDRSMhNhoBIuP5TCOtU7Ye12238b1R3rnj9J3al5HLb++uYc3scXu5Vd0lI6hbDMFi0bxH/jf8v6QXpAJwXdR7/7PNPovxrT4NApcPIqFGjSEtL47HHHiM5OZnu3buzePHisptaDx48iN2ugV1FpIHatwJm3wDFORDayQwigZE1dng/TzfeHt2HoVNX8uuhLCZ/vpn/Xh1j+V++UvN2Zuzk6TVPsz51PQAtAlrwQJ8H6N+s9o33ZTMMo9b3A8vOziYwMJCsrCwCAgKsLkdE5NS2fA6f3wauEmjZ3+wx4x1kSSk/70nnxnfX4nQZTL6kA7cP+OP9eVI/ZRdn8/rG15m9YzZOw4m3mze3dbuN0Z1G4+HwqNlaKvj9rSYMEZGqsHa6OYaIqwQ6DYcbPrMsiACc1SaEx4eYl4aeWbyD5Tv+fJRsqftchosFexYwZN4QPtr+EU7DyYUtLmTBsAWM6zquxoNIZVT6Mo2IiPyGYcCKKfD9s+Z6n3HmhHdV2HX3TN3YrwXbk3L4eO1B7vl4A/MmnE2bUD+ry5JqsDNjJ0+teYoNqRsAaBnQksmxkzmr6VkWV1YxCiMiImfK5YSv/gHrjk+Hcd5kGPAA1JL7M2w2G08M7cze1FzW7s9g3MxfmHfn2TTyrb1/IUvl5BTn8NqG15i9czYuw4W3mzd3xNzBjR1vxN3hbnV5FabLNCIiZ6K0CD4dezyI2OCyF+G8B2tNEDnBw83O6zf0JDLIm/1H87njw3iKS11WlyV/k2EYfLH3C4bMG8KsHbNwGS4uanERC4cv5OYuN9epIAIKIyIilVeYDR9dBdsWmIOZjXzPvDxTS4X4efLuTX3w83RjTUIGkz/fTB3ouyCnsevYLm5afBMPrXyIo4VHaRnQkrcufIsXz3uRcN8/DkBaF+gyjYhIZeSmwUdXQtKv4OEH18yCVgOsruovtQ/3Z+r1Pbl5xi98tv4QrZr4MuH8NlaXJZWQW5zL67++zqzts8r1khnTaUydawn5PbWMiIhUVOZBeO9iM4j4hMBNi+pEEDlhQLsm/Ot4D5vnl+zkq81JFlckFWEYBl8nfM3Q+UP5YNsHOA0ng5oPKuslU9eDCKhlRESkYtJ2wgcjIPswBEbBjfMhpO61LNwY15J96Xm899N+7puzkaZB3prDphbbl7WPp1c/zZpkcy6Z5v7NmRw7mXMiz7G4sqqlMCIi8lcOr4cPr4SCDAhpDzfOq9FRVavaI5d14sDRfL7bkcq4metYcNfZRAZ5W12W/EZBaQHTN03nva3vUeoqxdPhybiu4xjbZSyejvo3kawu04iI/JmEH2DmEDOINO0JY7+u00EEwGG38cq1PegQ7k96bhG3zPiFnMISq8uS45YfXM7w+cOZvnk6pa5S+kf2Z96wedwRc0e9DCKgMCIicnrbF5ktIsW5EH0ujFkIvo2trqpK+Hm68e5NfWji78mO5Bzu/ngDpU51+bXS4dzD3L3sbu5Zfg9H8o4Q7hvOS+e/xNSBU2vVpHbVQWFERORUNnwIn9wIzmLocDlcNxc8/a2uqko1DfLmnTG98XK3s2JnGo8v3KouvxYocZYwfdN0hs8fzopDK3CzuXFzl5tZMGwBA5sPbBCTHCqMiIj83qqpsGACGC7ofgOMnAnuXlZXVS26NQvipVE9sNngozUHeX3FXqtLalDWJq3lyi+u5JUNr1DoLKR3WG8+Hfop9/W6Dx93H6vLqzG6gVVE5ATDgOVPwQ/Pm+txd8FF/6l1o6pWtYu7hPP45Z341xfbeH7JTsIDvLiyVzOry6rX0gvSeWHdC3y570sAgr2C+Ufvf3B5q8sbREvI7ymMiIgAuFzw9T/hl+nm+gWPQv/7630QOeGms6NJyirkzR/28cBnm2ji78m57ZpYXVa943Q5+WTXJ7y6/lVySnKwYePq9ldzT897CPAIsLo8yyiMiIg4S2D+nbD5E8x5Zl6o1cO7V5cHLu5AcnYhCzYeYfyH8cy5PY4ukYFWl1VvbE3fypOrn2Tr0a0AdGrcicf6PUbnkM4WV2Y9hRERadhKCmDuWNj1NdjdYMSb0PUqq6uyhN1u4/mrYkjLKeLnvUcZO+MXPh9/FlHBDefeheqQXZzNq+tfZc7OORgY+Lv7c0/PexjZbiQOu8Pq8moF3cAqIg1XYTZ8eJUZRNy8zHlmGmgQOcHDzc60G3vRIdyftJwibnpvLZn5xVaXVScZhsGX+75k6LyhzN45GwODy1pdxsIRC7mmwzUKIr+hMCIiDVNeujmY2YGV4BkAN3wO7QZbXVWtEODlzoyxfWka6MXetDzGzVxHYYnT6rLqlISsBG795lYe/PHBspl1377obZ7p/wwh3iFWl1frKIyISMOTdRjeuwSSNpoT3o35AlqebXVVtUp4oBczbu5LgJcb6w4cY+JsDYpWEYWlhby64VWuXHgla5LX4Onw5O4ed/PZ0M+IjYi1urxaS2FERBqW9D3w7mBI3wUBzeDmxdC0u9VV1UrtwvyZPro3Hg47S7am8NC8zRoU7U+sPLySEQtG8NamtyhxlXBO5DnMGzaP27rdhofDw+ryajXdwCoiDUfSr/DBFZCfDo3bmDPvBtXvYbb/rthWjXnl2h7c+VE8n6w7RICXOw9f1rFBjoVxOil5KTz7y7MsPbAUgFCfUB7s+yCDmg/SeaogtYyISMNw4GeYcbkZRCJiYOxiBZEKurhLOM9e2Q2At1cmMHX5Hosrqh1KXaV8uO1Dhs4fytIDS3HYHNzY6UYWDl/IhS0uVBCpBLWMiEj9t2sJfDIaSguhxdlw7WzwargDTJ2Jkb2jyC4s5clF23jhm10EeLszOq6l1WVZZlPaJp5c/SQ7MnYA0K1JNx7t9ygdgjtYXFndpDAiIvXbprkw/w5wlUK7i2HkDHD3trqqOumWc6LJyi/mle/28NiCrQR4uTO8R6TVZdWorKIsXln/CnN3zcXAIMAjgHt73cuVba/EbtPFhjOlMCIi9dfa6fDV/wEGdBsFw6aCw93qquq0+y5sR1ZBCTNXHeD+ub/i7+XGwI5hVpdV7QzDYNG+Rbyw7gUyCjMAGNp6KJN6TaKxd2OLq6v7FEZEpP4xDHOyu+VPmet9b4eLnwG7/nL9u2w2G48P6Ux2YSnzNhzmzo/WM/PmvvRrVX+/kPdl7eOp1U+xNnktANGB0Tza71H6hPexuLL6Q2FEROoXlwsWPwhr3zTXBzwI5z3YYCa8qwl2u43nrupGTmEJ325PZdzMdcy6NZZuzYKsLq1KFZYWMn3zdN7d8i6lrlI8HZ7c3u12bup8E+5qYatS+jNBROqP0mKYd9vJIHLJc3D+ZAWRauDusPPadT2JjQ4mt6iUG95ew5bDWVaXVWV+O2ZIqauU/pH9mTdsHrd2u1VBpBrYjDowgk12djaBgYFkZWUREKA74EXkFIrzzB4ze75t8BPe1aTcolJGv7OG9QczCfJxZ9a4fnRqWnd/T6fkpfDcL8/xzYFvAHPMkMl9JzOw+UB11T0DFf3+VsuIiNR9+Rnw/jAziLj7wLVzFERqiJ+nGzNv7kv3qCAy80u4/u3V7EjOtrqsSit1lfLBtg8YOn8o3xz4ptyYIYNaaPCy6qaWERGp27IOw4dXQNoO8AqC6+dCVF+rq2pwsgpKuPGdNWw6lEVjXw9m39aPtmH+VpdVIRozpPpU9PtbYURE6q703fDBCMhKBP+mcOPnENrR6qoarKz8Eq57ezVbj2QT4ufJ7Nv60SbUz+qyTiurKIuX17/Mp7s+1Zgh1USXaUSkfjsUb054l5VozjNzyxIFEYsF+rjz4S2xdIwIID23iOumryYhPc/qsv7AMAy+2PsFQ+cPLRu8bGjroSwcvpCR7UYqiFhALSMiUvfsXmrerFqSDxHd4YbPwDfE6qrkuIy8Yq6bvpodyTmEB3gx5/Z+tGjsa3VZAOzN3Mt/Vv+HdSnrAGgV2IpH+j2iMUOqiVpGRKR+2jgLZo0yg0jrC+CmRQoitUywrwcfjoulbagfydmFXPPWaval5VpaU35JPi/Fv8RVC69iXco6vBxeTOw5kU+HfKogUgsojIhI3WAY8ON/Yf54MJzQ9Wqz14xn3bhJsqEJ8fNk1q3mPSNJWYVc/eZqdibnWFLL8oPLGbFgBO9seYdSo5Tzmp3H/OHzGdd1nMYMqSV0mUZEaj+X8/ioqm+Z62fdA4Oe0PDudUB6bhE3vrOW7UnZBPm488HNsXRtFlgjxz6ce5hn1jzDikMrAIjwjWBy38mc3/z8Gjm+qDeNiNQXJYXmqKrbFpjrg6dA3J3W1iSVkpVfwpj31rIxMRN/TzfeG9uH3i2Dq+14Jc4SZm6byZu/vkmhsxA3mxtjOo/htm634ePuU23HlT9SGBGRuq8gE2ZfDwdWgt0dRkzTYGZ1VG5RKTfP+IW1CRl4uzt4e0xvzm5T9ff6rElaw1NrniIhKwGAPuF9eDj2YVoHta7yY8lfUxgRkbot6xB8NBJSt4GHP1zzEbQaYHVV8jcUFDu57YN1/Lg7HQ83O9Nu6MkFHcKq5LPT8tN4ft3zfJ3wNQCNvRpzf+/7ubzV5Ro91ULqTSMidVfSrzB9oBlE/MJh7FcKIvWAt4fZInJhpzCKS13c9n48X21O+lufWeoq5cNtHzJk/hC+Tvgau83OtR2uZeGIhQxpPURBpI5Qy4iI1C67l8Lcm6A4F5p0NId3D4qyuiqpQiVOF5M++ZUvfj2C3QbPXNGNq/tU/r/xxtSN/Gf1f9h5bCcAXUO68ki/R+jUuFNVlyxnqKLf3241WJOIyJ9b9x58eb/ZdTd6AIz6ALxqpueF1Bx3h52XRnXHx93BnHWJ/POzTaTmFDLh/DYVasnIKMzgpfiXmLdnHgABHgHc1+s+rmh7hUZPraMURkTEei4XfPckrPyvuR5zHQx5Gdw8rK1Lqo3DbuOZK7sS7OfBGyv28sI3u0jJLuJfQzvjsJ86kDhdTj7d9Skvb3iZnGJzzJIRbUZwb697Cfaqvt45Uv0URkTEWqVFMP9O2PKpuT7gQTjvQdC1/nrPZrPxwMUdCPP35IlF2/hg9QHScop46ZrueLk7yu27KW0T/1n9H7ZnbAegQ3AHHo59mO6h3S2oXKqa7hkREevkZ8CcG+DAT2B3gyGvQI/rra5KLPDlpiTum7ORYqeLvi2DmT66N4E+7mQUZvDy+pf5fPfnAPi7+3N3z7u5ut3VOOyOv/hUsZruGRGR2i1tF3w8CjL2gWcAXP0+tNbImA3VZd0iCPb14LYP1rF2fwZXvbmSkecdZuaON8guzgZgWOth3NfrPhp7N7a4WqlqahkRkZq3dzl8MgaKsiCouTnHTJh6QAjsSM7mhg8/Id9/Lg6vIwC0b9Seh/s9TI/QHhZXJ5WllhERqZ1+eRu++qfZYyaqH4z6EPyaWF2V1ALpBel8sOd/FDVZiAMwnF7YMgdzV9xd9AgNt7o8qUbqAyUiNcNZaoaQE113u10DYxYqiAglrhI+2PYBQ+YNYeHehQBc1nIYbYufJCc1jltmrOf9VfutLVKqlVpGRKT6FWbB3LGwd5m5PvAxOGeSeswIvyT/wtNrnmZP5h4AOjXuxMOxD9OtSTeKznYy+fPNfL7+MI8t2MrulFweG9IJd4f+jq5vFEZEpHplJMDH10DaDnD3gRFvQqehVlclFkvOS+bFdS+yeP9iAII8g5jYcyIj2owo6yXj6ebgxZExtAvz59nFO/hg9QES0vOYel1PAn3crSxfqphuYBWR6rN3OXw6FgqOgX9TuPZjaNrd6qrEQoWlhczYOoN3Nr9DobMQu83OyHYjubvH3QR6nn603SVbk7lvzkbyi520CvHlnZv6EB3iW4OVy5nQrL0iYh3DgFVTYemjYLigaU+4ZhYERFhdmVjEMAyWHVzGC+te4HDuYQB6hvZkcuxkOgR3qNBnbD2Sxa0z13Ekq5BAb3feuL4nZ7UJqc6y5W9SGBERaxTnwxcTYfMn5nr36+Gy/4K7l7V1iWX2HNvDM788w5qkNQCE+YTxj97/YHDLwZWeVTc1p5Db3o9nY2ImDruNRy/ryJizWmp23lqqot/fZ3QX0NSpU2nZsiVeXl7Exsaydu3a0+47ffp0+vfvT6NGjWjUqBGDBg360/1FpA7LPAjvDjaDiM0BlzwPw6YqiDRQWUVZPLP2Ga764irWJK3Bw+7Bbd1uY+HwhVwcffEZBYhQfy9m39aPYd2b4nQZ/OuLbUycvZH84tJq+AmkplQ6jMyZM4dJkybx+OOPs379emJiYhg8eDCpqamn3H/FihVce+21LF++nFWrVhEVFcVFF13E4cOH/3bxIlKLJPwAb50HyZvAp7HZbTf2NvWYaYBKXaV8vONjLpt3GR9t/win4WRg84EsGL6Au3vcjY+7z9/6fC93By+N6s4jl3XEYbex8NcjDJ/6E/vScqvoJ5CaVunLNLGxsfTp04fXXnsNAJfLRVRUFHfffTcPPvjgX77f6XTSqFEjXnvtNUaPHl2hY+oyjUgtZhiw5k1Y8pA5fkhEDIz6CIKirK5MLPDzkZ95/pfny7rqtglqwz/7/JO4pnHVcry1CRlMmLWetJwi/DzdeGFkNy7uonuTaotquUxTXFxMfHw8gwYNOvkBdjuDBg1i1apVFfqM/Px8SkpKCA7WdM8idV5RLnx2Cyx+4PhAZqPg5iUKIg3Q/qz93L3sbm5fejt7MvcQ5BnEw7EPM3fI3GoLIgB9o4P58u5z6NsymNyiUu74cD1TvtpOqdNVbceUqlepcUbS09NxOp2EhYWV2x4WFsaOHTsq9BkPPPAATZs2LRdofq+oqIiioqKy9ezs7MqUKSI1IXU7fDIa0neZ94dc9CT0u1OXZRqY7OJs3vz1TWbtmEWpqxQ3mxvXdLiGO2Lu+NOuulUpNMCLj26N5bnFO5j+YwJv/rCPXw9l8uq1PWni71kjNcjfU6ODnj3zzDPMnj2bFStW4OV1+hvapkyZwhNPPFGDlYlIpfw6GxbdByX55vghI9+D5v2srkpqUImrhLk75/LGr2+QWZQJQP/I/vyjzz9oFdiqxutxd9h5+LJO9GjeiP+b+yur92Vw2Ss/8t+ru3NOW3X/re0qFUZCQkJwOBykpKSU256SkkJ4+J9PYvTCCy/wzDPP8O2339KtW7c/3Xfy5MlMmjSpbD07O5uoKDX7iliupNC8JBM/w1xvdT5c+Tb46pd9Q2EYBt8f+p4X173I/uz9ALQKbMX/9fk/zok8x9rigEu7RtAuzJ/xH8azOzWXG99dw239W3H/Re3xcNMw8rVVpf7LeHh40KtXL5YtW1a2zeVysWzZMuLiTn9N8LnnnuPJJ59k8eLF9O7d+y+P4+npSUBAQLlFRCyWsQ/eufB4ELHBeZPhhs8URBqQ7Ue3M+6bcdz93d3sz95PsFcwj8Q+wmdDP6sVQeSENqF+LLzrHK6PbY5hwJs/7OPKN35Wb5tarNKXaSZNmsSYMWPo3bs3ffv25aWXXiIvL4+xY8cCMHr0aCIjI5kyZQoAzz77LI899hizZs2iZcuWJCcnA+Dn54efn18V/igiUm22fwHzJ0BRltlt94rp0Gag1VVJDUnNT+XVDa+yYM8CDAw87B7c0OkGxnUdh7+Hv9XlnZK3h4OnRnTl3HZNeOCzTWw+nMVlr6zkiaGdGdm7mQZJq2UqHUZGjRpFWloajz32GMnJyXTv3p3FixeX3dR68OBB7PaTDS5vvPEGxcXFXHXVVeU+5/HHH+df//rX36teRKpXcb7ZZTf+PXM9Khaueg8CI62tS2pEbnEu7219j/e3vk+hsxCAS1pewsReE4n0qxv/BgZ3DiemWRD3zdnIqn1H+ednm/h+dxpPD++qyfZqEQ0HLyKnlrzF7Labdryn3Fn3wMDHwKFf4PVdiauET3d9yrRfp5FRmAFATJMY/q/P/xHTJMbi6s6M02Xw1g/7ePGbnZS6DJoGevHC1TGc1VqXGauT5qYRkTNzYhCzpY+Bswj8wmHENGh9vtWVSTUzDINvD37Ly+tf5kD2AQBaBrRkYs+JDGw+sF5c2vg1MZOJszew/2g+ADf2a8GDl3TA17NGO5c2GAojIlJ5eekw/07YvcRcb3cJDHtNN6k2AOtT1vNi/ItsStsEQLBXMHfG3MkV7a7A3V6/WsNyi0qZ8tV2PlpzEIBmjbx57spumgG4GiiMiEjl7FkG88dDbgo4PGHwU9BnnAYxq+d2H9vNKxteYUXiCgC83bwZ03kMN3W+CV93X0trq24/7Unnn59u4nBmAQDXxzZn8qUd8VMrSZVRGBGRiinOg2+fgLVvmutNOsJV70BYZ2vrkmp1KOcQr298nUX7FmFg4LA5GNF2BHfG3EkTnyZWl1djcotKefbrHXyw2rwsFRnkzXNXdeNstZJUCYUREflrB9fA/DvMMUTAbAm56D/g7m1tXVJt0gvSmb5pOp/s+oRSVykAF7W4iLt63EV0YLTF1Vnn573pPPDZJhIzzFaSa/tG8eDFHdXj5m9SGBGR0ysphOX/gZ9fAwwIiIShr2rskHospziHGVtn8MG2DygoNb9w4yLimNhzIp1D1AoGkFdUynOLdzBzldlK0tjXg4cu7cgVPSPrxc27VlAYEZFTOxwP88ZD+k5zPeY6uHgKeAdZWpZUj/ySfGbtmMWMrTPIKsoCoEvjLkzsNZF+EZpP6FTWJmTw8LzN7E41R2zt2zKYJ4d3oX147RzgrTZTGBGR8kqL4ftnYeX/wHCCbygMeRk6XGp1ZVINCksLmbNzDu9uebdsrJDowGgm9pjIBc0v0F/6f6HE6eLdlQm89O1uCkqcuNlt3HJONPcMbKtuwJWgMCIiJyX+Al9MhNSt5nrnK+CyF8En2Nq6pMoVO4v5bPdnTN80nbSCNACi/KMYHzOeS6MvxWF3WFxh3XI4s4B/f7GVJVvNCWIjAr14fEgnBncOV6CrAIUREYHCbPjuSVg7HTDAO9gMIV2usLoyqWIlrhIW7FnAm5veJDnPnAOsqW9Tbo+5nSGth9S7sUJq2nc7Unh84dayG1zPaRPCw5d1pGOEvpP+jMKISEO340v48h+Qc8Rcj7kWLnoKfBtbW5dUqRJnCQv2LuDtzW9zOPcwAKE+odzW9TauaHsF7hq+v8oUFDt5fcUe3vx+H8VOFzYbXN0rivsvakdogJfV5dVKCiMiDVX2Efj6n+ZMuwCNouHy/2k493qm2FnMvN3zeHvL22UtIY29GjOu6zhGth+Jp8PT4grrr8SMfJ5ZvIMvNyUB4OPhYPyA1ozr3wpvD10G+y2FEZGGxuU0Z9f99gkoyga7mzm53YB/atyQeqTIWcRnuz7jnS3vkJqfCkAT7ybc3OVmrmp3FV5u+gu9psQfyODJRdvZmJgJmPeT/N/g9gzvHondrvtJQGFEpGFJXAtf/R8kbTTXI3ubPWXCu1hallSd/JJ8Ptv9Ge9tea/sxtQwnzBu6XoLV7S9Qi0hFjEMgy82JfHs1zvKhpXvEhnA/Re157x2TRr8Ta4KIyINQU4yLH0cNs021z0D4YJHoM8toF4T9UJWURYf7/iYj7Z/RGZRJgARvhGM6zqO4W2G4+HwsLZAAaCwxMl7P+1n6vI95BaZI9v2bB7EPy5q36An4FMYEanPSothzRvw/XNQnAvYoMcNMPBx8Gs484rUZ6n5qXyw7QM+2fkJ+aXmdPdR/lHc3OVmhrUephtTa6mjuUW8+cM+Zv68n6JSFwD9WgVz/0Xt6dOy4XWlVxgRqa92fwuLH4Cje8z1yN5w6XMQ2cvauqRKJGYn8u7Wd1mwZwElrhIA2jVqx7iu47iwxYW42TXgVl2Qml3I6yv2MmvNQYqdZig5t10T7r+wHTFRQdYWV4MURkTqm9Tt5iWZ3UvMdd9QuPAJ6HYN2O3W1iZ/2+a0zczcNpOlB5biMswvr56hPbml6y30j+zf4O89qKuOZBbw6nd7mLsukVKX+XV7XvsmjB/Qmr7RwfX+v6vCiEh9kX0Elj8FG2eB4TJ7ycTeYfaS8Qq0ujr5G1yGixWJK5i5dSbrU9eXbT8n8hzGdR1HrzC1dtUXB4/m8/Ky3czbcIjjmYReLRoxfkBrLugQWm973yiMiNR1hVmw8iVY/QYcn2WVjkPM+0JC2lpamvw9BaUFfLH3Cz7Y9gH7s/cD4GZ349LoSxndaTTtg9tbW6BUmwNH83jrh33MjT9E8fF7StqF+XHHgNYMiWmKu6N+tXIqjIjUVaVF8Ms78MPzUGBOcEbzOLjw3xDV19ra5G9Jy0/jk12fMGfHHI4VHQPA392fke1Hcl2H6wjzDbO4QqkpqdmFvPvTfj5cfaCs901kkDfj+kczsncUfvVkMj6FEZG6xlkKmz+BFc9A5gFzW0g7GPQvaH8p1PNry/XZprRNfLT9I7458A2lruNfPH6R3NDxBka0HYGvu6/FFYpVsgpK+HD1Ad77KYH03GIA/DzdGNm7GWPiWtIypG7/21AYEakrToSQ75+DYwnmNr8wOP8h6H4DOOrHX0gNTYmzhCUHljBr+yw2p28u2969SXeu73Q9g5oPUs8YKVNY4mRu/CHe+ymBfWl5gPn3x/ntQ7nprJb0bxtSJ292VRgRqe2cpbB5LvzwHGTsM7f5NIazJ0KfceBRt/8iaqjS8tP4dNenfLLrE9IL0gFwt7tzSfQlXNfhOjqHdLa4QqnNXC6DH/ekM+OnBJbvTCvb3rqJL2POaskVPZvVqUs4CiMitZWzFLZ8araEZOw1t/k0NueR6TMOPP2srU8qzWW4WJu8lk92fsLyg8spNcxLMU28mzCq/SiuancVjb01W7JUTkJ6HjN/3s+n8YfK7ivx8XBwebcIRvVpTs/mQbW+tURhRKS2KSkwu+f+/OrJyzHewXD2PdDnVoWQOiizMJMFexcwd9dcDmQfKNvevUl3rut4HYOaD9JIqfK35RaV8ln8Id5ftZ+9xy/hgNkLZ1Sf5ozoEUmwb+2cFkBhRKS2yM8we8esmQb5ZrM93o3MlpC+t4Knv7X1SaUYhsGG1A3M3TWXb/Z/Q7HLvOnQ192Xy1tdzsh2I9U1V6qFYRjEHzjGx2sT+XLzEQpLzK7BHg47F3UOY1SfKM5qHYKjFo1ZojAiYrVjB2D167D+fSgx5xYhsDnETTDnkVFLSJ2Slp/GF/u+YN7ueWVjgwB0DO7I1e2v5tLoS/Fx97GuQGlQsgtLWLjxCHN+SWTz4ayy7aH+ngyNacrwHpF0bhpg+WUchRERqxyONwcq2/I5GE5zW3hXOPte6DRcvWPqkBJXCT8c+oH5u+fz4+EfcR7/7+nt5s1FLS5iVPtRdAnpYvkvfGnYthzOYs4viXyx6QiZ+SVl29uE+jG8e1OGdY8kKtiaoKwwIlKTSgph23xY+5YZRk5odZ7ZO6bV+RonpA7ZfWw3C/cuZOHehWQUZpRtj2kSw4g2I7g4+mKNDSK1TnGpi+93pTF/w2G+3Z5SNmswQO8Wjbi8WwQXd4kgPNCrxmpSGBGpCVmHYN27ED/z5P0gDg/ofAX0Gw9Nu1tanlRcan4qXyd8zRd7v2DnsZ1l2xt7NWZo66EMbzOcVkGtLKxQpOKyC0tYvCWZBRsP8/Peo/z2m75n8yAu6RLBxV3Cq73FRGFEpLq4XJDwPax7B3Z8aU5eBxDQDPrcDD1Gg18Ta2uUCskryePbA9+yaN8i1iStwcD8dehmd6N/ZH9GtBnBOc3Owd2uHjFSdyVnFbJo0xG+3pJM/IFj5V7rGhnIxV3CuaRLOK2aVP19bAojIlUtM9HsmrvxQ8g8eHJ79LnQ9zZod4nuB6kDipxFrDy8kiUJS1ieuJxCZ2HZaz1Ce3B5q8sZ3HIwgZ6aEVnqn5TsQpZsTearzUmsTcgom0EYYOp1PbmsW0SVHq+i39/6zSnyZ0oKYeeXsP4D2LcCjv/ljGcgdBtpDlIW2tHKCqUCip3F/HzkZ5bsNwNIXsnJsRpaBrTk8laXc2mrS4nyj7KwSpHqFxbgxei4loyOa0l6bhFLt6Xw9ZZk1uw7ylmtrRuYTy0jIr9nGHB4PWyaYy6FmSdfa9kfeo6GjkPA3duyEuWvlThLWJW0iiX7l/Ddwe/ILcktey3MJ4zBLQdzccuL1RtGBMgvLsXHo+rbJ9QyIlJZaTvNuWI2f3pyhFSAgEjofj10vw6Co62rT/5SbnEuK4+s5LsD3/Hj4R/LBZBQ71AuankRg1sOpluTbthtdgsrFaldqiOIVIbCiDRsmYmw5TNzrpjkkzOr4u4D7S8xA0ir88HusK5G+VPpBemsSFzBsoPLWJO0hhLXyXEWmng34cIWFzK45WC6h3ZXABGppRRGpOHJSIAdi2D7IkhcfXK73Q3aDIKuI80gollzayXDMNh1bBc/HPqBHw79wK9pv5b1ggFoEdCCC5pfwMDmA+ka0lUBRKQOUBiR+s8wIGXryQCS8psWEGzQ4mzoehV0GgY+wZaVKaeXX5LP6qTV/HDoB348/COp+anlXu/SuEtZAIkOjNY9ICJ1jMKI1E/OEkhcA7sWmwHkt/eA2BzQ4izoOBQ6XAaBkdbVKadkGAa7M3ez+shqVh5eybqUdeUuv3g5vIiNiOXcZudybrNzCfcNt7BaEfm7FEak/shJhj3fwu5vYO9yKMo++ZrDE9oMhA6Xm5dg1AJS66Tlp7EqaRWrjqxiddJq0gvSy73ezK8Z5zY7l/7N+tMnvA+eDk+LKhWRqqYwInVXaTEcXgd7lpkBJHlT+dd9Gpv3gLS/1HzULLm1SlZRFvEp8fyS/Aurk1azJ3NPude9HF70Cu9FXEQc/Zv1JzpAl19E6iuFEak7XC4zcCT8YA7HfmAV/GbwKrBB0x7Q9iJzadpdvWBqkayiLNalrGNd8jrWpaxjZ8bOcjee2rDRqXEn4prGERcRR/fQ7ng4PCysWERqisKI1F4uF6TtgAM/mQFk/49QUH5eBXxCoNUAM3y0Hqg5YWoJwzBIzktmQ+oGNqRuYH3qenYd2/WH/aIDo+kd1pvYiFhiw2MJ8gqq+WJFxHIKI1J7lBbBkQ1w4Gc4uNrsdluYVX4fD39oeTZEDzDnhAntBHZ13bRaiauEXRm72JC6gY1pG9mQuuEPPV4AWgW2ok94H3qH96Z3WG9CvEMsqFZEahuFEbGGYUD2ETgcb973kbjWHILdWVR+P3dfaNYbovtD9HnmZRhNRmcpwzA4lHOIzemb2XJ0C1vSt7D96PZyE84BOGwOOgR3oEdoD7qHdqdXWC+FDxE5Jf1Wl5pRmGWGjcPxJx9zk/+4n28TaB53fOkH4V3BoenbrXLicsv2jO1sO7qNLelb2HJ0C1lFWX/Y19/Dn+5NupeFj86NO+Pj7mNB1SJS1yiMSNXLSTaHVk/61bzhNGlT+XE+TrA5IKwTRPaCyN7m2B/BrUA9JizhdDk5kHOAHUd3sD1jO9sztrMzYyeZRZl/2Nfd7k6H4A50CeliLo270DKwpUY7FZEzojAiZ66kENJ3Qep2SN0GKVvM4JH3x3sFAAhqcTx49DIvvYR3Aw/95VzTDMPgaOFRdh/bbS6Zu9lzbA97s/ZSUFrwh/3dbG60CmpFx+COdAnpQteQrrRr1A53tViJSBVRGJG/VlIIGXvNWW3TdpjBI3U7ZOwDw/XH/W12aNzWvMQS0c0MHeHdwLdxzdfegBmGQXpBOvuy9rEvax8JWQnszdzL7mO7OVZ07JTv8Xbzpl2jdnQI7kDH4I50aNyBNkFtNMCYiFQrhRExuVyQkwRH98DR3ZB+fDm625zZ9jfjQZTjFQRhnaFJB/OSS3iMua4WjxpTUFpAYk4iB7MPciD7AAlZCWVLTknOKd9jt9lp7t+cNkFtaNuoLW0btaVNUBua+zfHobFZRKSGKYw0JKVFZrA4lmDOXHviMWMfZB6A0sLTv9crEELamaEjtBOEdjQXvzDd41EDcopzOJx7mMM5h0nMSeRAzoGy8JGSn3La99ltdqL8o4gOiCY6KJpWga1o26gtrQNb4+XmVYM/gYjI6SmM1CdFOZB1GLIOmeEiKxEyD5oBJPPgqXuv/JbNAY1amKGjcRvzMaStecnFN0ShoxrlleSRlJtEUp65HMo9xOGcw+Zj7uFT9l75rQCPAFoEtDCDR6AZOqIDo2kR0EKjmIpIracwUhe4nJCXboaJnBTzckr2Ecg+XP7xtxPDnY67DzRqafZaadQSgqOhUbT5GBilbrTVIL8kn9T8VFLzU0nJTyE1P5XkvGSS85JJykviSN4RcopPfTnltxp5NqKZfzOa+TWjeUBzWgS0MB/9W2jkUhGp0xRGrOJyQWEm5KZCXprZAyUv/eR6borZRTY3xdxmOCv2uZ6BENgMgppDUJT5GHj8Mai5OXmcWjiqRH5JPmkFaaQXpJuP+eknnxekl4WPigQNMMfpiPCNIMI3gki/SCL9Imnm36zs0dfdt5p/IhERayiMVAWX0xzUq+DYySU/AwoyIP/ob5YMM3DkHzVfc5VW4iA28As179HwD4eAyONL0+NLJAREgKd/tf2Y9V1BaQGZhZkcKzpW9phRmHFyKTAfjxYeJaMw45TdYE/H282bMJ8wwnzCCPUJJcw3rCx4RPhGEO4bjp+HZhUWkYZJYcQwzBs7i3LMyxxF2cef50Dh8fXCrONL5m+eZ0FB5sltZ8orEHxDzZFH/Zr85nko+EeAfxj4hZvbNAz6X3IZLnJLcskpziG3OJfs4myyi7LJKs4iq8hcsouzzefHt2UWZZJZmPmH4cwrwtvNmybeTQjxDiHEO4QmPiefh/qEloUPP3c/bGqREhE5pTP6dps6dSrPP/88ycnJxMTE8Oqrr9K3b9/T7j937lweffRR9u/fT9u2bXn22We59NJLz7joKjPjcnNCNldJ1XyeZwB4B4F3I7PLq0/j3y3B5dd9m4Cbbi4Ec/TP/NJ88kryyC85/nh8/cSSW5JLbnGu+ViSS15xXlnwOLHkluSWm5a+stzt7jTybESQVxBBnkE09mpMsHcwwV7llxPbdelEROTvq3QYmTNnDpMmTWLatGnExsby0ksvMXjwYHbu3EloaOgf9v/555+59tprmTJlCpdffjmzZs1i+PDhrF+/ni5dulTJD3HGXM7yQcTD37zM4RVgPnr6my0Xf1iCzEfPADNgeDcy1+vpzZ9Ol5MiZ1HZUlhaSKGzkMLSwlNuKygtoKC0oNy2/NJ8c3uJ+dqJ9fwS8/FMWiX+jLvdnQCPAPw9/An0DDQXD/MxwDOg7HmgZ2BZ+Gjk2QhvN2+1YIiI1DCbYRiV+jMyNjaWPn368NprrwHgcrmIiori7rvv5sEHH/zD/qNGjSIvL49FixaVbevXrx/du3dn2rRpFTpmdnY2gYGBZGVlERAQUJly/1xmonkzp6e/GURqeCp6wzBwGk6chpNSV2nZcmK9xFVSbnuJq6Tctt+un3he4iwp97zYVXzy0VVCsdNcL3IWlXutyFlEsbOYYufJ5yceS43K3Nvy97jZ3PBx98HX3Rdfd1/zuZsvfh5++Lr74ufuh5+HH37u5ddPBI8Ti0YMFRGxXkW/vyvVMlJcXEx8fDyTJ08u22a32xk0aBCrVq065XtWrVrFpEmTym0bPHgw8+fPP+1xioqKKCo6OZV8dnYFuqyegQ+OrOBQziGchhOX4SpbTqz/dnupq/QPrzld5vNSo/QPz0+8/tv1E0HD6ToePmrwS76quNvd8XJ44enmiafDEy+HF15uXng6PPF288bLzVz3cnjh7eZ9cpvDCx93H7zdvPFx88Hb3fvkczfvsgDiYfdQy4SISANTqTCSnp6O0+kkLCys3PawsDB27NhxyvckJyefcv/k5NMPwDVlyhSeeOKJypR2RhbvX8ymtE3VfpzKctgcuNndcLe742Z3O7nY3HB3uJd7zd3uXrac2M/D4YGH3QN3uzseDvPR3eFetu5h9zAff//c4YGnw9N8tHuWPfdy8yrbV0OFi4hIVauV3TMmT55crjUlOzubqKioKj/OsNbDiA2PxWF3YLfZsWMve+6wHd9ms+Nmc8NuP7nNYXOYz+3maw6bA4fdUe7RbrOXBYjfvvbb9ROvnwgRJ15Xy4CIiDQklQojISEhOBwOUlLKz4WRkpJCeHj4Kd8THh5eqf0BPD098fSs/mv+V7e/utqPISIiIn+uUndsenh40KtXL5YtW1a2zeVysWzZMuLi4k75nri4uHL7AyxduvS0+4uIiEjDUunLNJMmTWLMmDH07t2bvn378tJLL5GXl8fYsWMBGD16NJGRkUyZMgWAiRMnMmDAAF588UUuu+wyZs+ezbp163jrrbeq9icRERGROqnSYWTUqFGkpaXx2GOPkZycTPfu3Vm8eHHZTaoHDx7E/psusmeddRazZs3ikUce4aGHHqJt27bMnz/f+jFGREREpFao9DgjVqi2cUZERESk2lT0+7tmR/kSERER+R2FEREREbGUwoiIiIhYSmFERERELKUwIiIiIpZSGBERERFLKYyIiIiIpRRGRERExFIKIyIiImKpSg8Hb4UTg8RmZ2dbXImIiIhU1Inv7b8a7L1OhJGcnBwAoqKiLK5EREREKisnJ4fAwMDTvl4n5qZxuVwcOXIEf39/bDZblX1udnY2UVFRJCYmas6bv6BzVTk6XxWnc1VxOlcVp3NVcdV5rgzDICcnh6ZNm5abRPf36kTLiN1up1mzZtX2+QEBAfrHWkE6V5Wj81VxOlcVp3NVcTpXFVdd5+rPWkRO0A2sIiIiYimFEREREbFUgw4jnp6ePP7443h6elpdSq2nc1U5Ol8Vp3NVcTpXFadzVXG14VzViRtYRUREpP5q0C0jIiIiYj2FEREREbGUwoiIiIhYSmFERERELNWgw8jUqVNp2bIlXl5exMbGsnbtWqtLstwPP/zAkCFDaNq0KTabjfnz55d73TAMHnvsMSIiIvD29mbQoEHs3r3bmmItNmXKFPr06YO/vz+hoaEMHz6cnTt3ltunsLCQCRMm0LhxY/z8/LjyyitJSUmxqGLrvPHGG3Tr1q1sUKW4uDi+/vrrstd1nk7vmWeewWazce+995Zt0/ky/etf/8Jms5VbOnToUPa6zlN5hw8f5oYbbqBx48Z4e3vTtWtX1q1bV/a6lb/fG2wYmTNnDpMmTeLxxx9n/fr1xMTEMHjwYFJTU60uzVJ5eXnExMQwderUU77+3HPP8corrzBt2jTWrFmDr68vgwcPprCwsIYrtd7333/PhAkTWL16NUuXLqWkpISLLrqIvLy8sn3uu+8+vvjiC+bOncv333/PkSNHuOKKKyys2hrNmjXjmWeeIT4+nnXr1nHBBRcwbNgwtm7dCug8nc4vv/zCm2++Sbdu3cpt1/k6qXPnziQlJZUtK1euLHtN5+mkY8eOcfbZZ+Pu7s7XX3/Ntm3bePHFF2nUqFHZPpb+fjcaqL59+xoTJkwoW3c6nUbTpk2NKVOmWFhV7QIY8+bNK1t3uVxGeHi48fzzz5dty8zMNDw9PY2PP/7Yggprl9TUVAMwvv/+e8MwzHPj7u5uzJ07t2yf7du3G4CxatUqq8qsNRo1amS8/fbbOk+nkZOTY7Rt29ZYunSpMWDAAGPixImGYejf1W89/vjjRkxMzClf03kq74EHHjDOOeec075u9e/3BtkyUlxcTHx8PIMGDSrbZrfbGTRoEKtWrbKwstotISGB5OTkcuctMDCQ2NhYnTcgKysLgODgYADi4+MpKSkpd746dOhA8+bNG/T5cjqdzJ49m7y8POLi4nSeTmPChAlcdtll5c4L6N/V7+3evZumTZvSqlUrrr/+eg4ePAjoPP3ewoUL6d27NyNHjiQ0NJQePXowffr0stet/v3eIMNIeno6TqeTsLCwctvDwsJITk62qKra78S50Xn7I5fLxb333svZZ59Nly5dAPN8eXh4EBQUVG7fhnq+Nm/ejJ+fH56entxxxx3MmzePTp066TydwuzZs1m/fj1Tpkz5w2s6XyfFxsYyY8YMFi9ezBtvvEFCQgL9+/cnJydH5+l39u3bxxtvvEHbtm1ZsmQJ48eP55577mHmzJmA9b/f68SsvSK13YQJE9iyZUu569VSXvv27dm4cSNZWVl8+umnjBkzhu+//97qsmqdxMREJk6cyNKlS/Hy8rK6nFrtkksuKXverVs3YmNjadGiBZ988gne3t4WVlb7uFwuevfuzdNPPw1Ajx492LJlC9OmTWPMmDEWV9dAW0ZCQkJwOBx/uKs6JSWF8PBwi6qq/U6cG5238u666y4WLVrE8uXLadasWdn28PBwiouLyczMLLd/Qz1fHh4etGnThl69ejFlyhRiYmJ4+eWXdZ5+Jz4+ntTUVHr27Imbmxtubm58//33vPLKK7i5uREWFqbzdRpBQUG0a9eOPXv26N/V70RERNCpU6dy2zp27Fh2Wcvq3+8NMox4eHjQq1cvli1bVrbN5XKxbNky4uLiLKysdouOjiY8PLzcecvOzmbNmjUN8rwZhsFdd93FvHnz+O6774iOji73eq9evXB3dy93vnbu3MnBgwcb5Pn6PZfLRVFRkc7T7wwcOJDNmzezcePGsqV3795cf/31Zc91vk4tNzeXvXv3EhERoX9Xv3P22Wf/YeiBXbt20aJFC6AW/H6v9ltka6nZs2cbnp6exowZM4xt27YZt912mxEUFGQkJydbXZqlcnJyjA0bNhgbNmwwAOO///2vsWHDBuPAgQOGYRjGM888YwQFBRkLFiwwNm3aZAwbNsyIjo42CgoKLK685o0fP94IDAw0VqxYYSQlJZUt+fn5ZfvccccdRvPmzY3vvvvOWLdunREXF2fExcVZWLU1HnzwQeP77783EhISjE2bNhkPPvigYbPZjG+++cYwDJ2nv/Lb3jSGofN1wv3332+sWLHCSEhIMH766Sdj0KBBRkhIiJGammoYhs7Tb61du9Zwc3MznnrqKWP37t3GRx99ZPj4+Bgffvhh2T5W/n5vsGHEMAzj1VdfNZo3b254eHgYffv2NVavXm11SZZbvny5AfxhGTNmjGEYZvevRx991AgLCzM8PT2NgQMHGjt37rS2aIuc6jwBxnvvvVe2T0FBgXHnnXcajRo1Mnx8fIwRI0YYSUlJ1hVtkZtvvtlo0aKF4eHhYTRp0sQYOHBgWRAxDJ2nv/L7MKLzZRo1apQRERFheHh4GJGRkcaoUaOMPXv2lL2u81TeF198YXTp0sXw9PQ0OnToYLz11lvlXrfy97vNMAyj+ttfRERERE6tQd4zIiIiIrWHwoiIiIhYSmFERERELKUwIiIiIpZSGBERERFLKYyIiIiIpRRGRERExFIKIyIiImIphRERERGxlMKIiIiIWEphRERERCylMCIiIiKW+n+7Idg4W1OvjQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Consistency using dreal M2.1\n", + "\n", + "opts = {\n", + " \"dreal_precision\": 1e-3,\n", + " \"dreal_log_level\": \"none\",\n", + " \"dreal_mcts\": False,\n", + " }\n", + "\n", + "\n", + "# Configure these bounds (lower, upper) to configure the parameter space\n", + "parameter_bounds = {\"beta\": (0.15, 0.15), \"gamma\": (0.025, 0.025)}\n", + "\n", + "# Set these values for the initial state\n", + "initial_values = {\"S\": 0.99, \"I\": 0.01, \"R\": 0.0}\n", + "\n", + "# Infected constraint bounds\n", + "infected_bounds = (0.45, 0.55)\n", + "infected_timepoints = (45, 55)\n", + "\n", + "# Timepoints\n", + "step_size = 1\n", + "max_time = 60\n", + "\n", + "noise = 1e-3\n", + "\n", + "values= None\n", + "with Solver(name=\"dreal\",\n", + " logic=QF_NRA,\n", + " solver_options=opts\n", + " ) as solver:\n", + " values = run_solver(solver, encode(initial_values, parameter_bounds, infected_bounds, infected_timepoints, max_time=max_time, step_size=step_size, noise=noise, use_compartmental=True))\n", + " pass\n", + " \n", + "if values:\n", + " ax, results = plot_results(values, max_time, step_size)\n", + " # f_pop = results.loc[float(max_time)][[\"S\", \"I\", \"R\"]].sum()\n", + " # print(f\"Population at end: {f_pop}\")\n", + " # s = list(results.S.values)\n", + " # print([s[i]-s[i-1] for i in range(1, len(s))])" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta = 0.15000000000000002, gamma = 0.025\n", + " S I R\n", + "0.0 0.990000 0.010000 0.000000\n", + "1.0 0.988515 0.011235 0.000250\n", + "2.0 0.986849 0.012620 0.000531\n", + "3.0 0.984981 0.014173 0.000846\n", + "4.0 0.982887 0.015912 0.001201\n", + "... ... ... ...\n", + "56.0 0.117645 0.538458 0.343897\n", + "57.0 0.108143 0.534498 0.357359\n", + "58.0 0.099473 0.529806 0.370721\n", + "59.0 0.091567 0.524466 0.383966\n", + "60.0 0.084364 0.518558 0.397078\n", + "\n", + "[61 rows x 3 columns]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABod0lEQVR4nO3dd3gU5d7G8e/upndCSCEECL2HHqIiKig2mopYQRQLoqJ43qNYj8ejWM+xoSgWsCCIShEVRAQVpUgA6T1AgFRCet+d94+BYBQ0wSSTcn+ua67dmZ3d+WXE7J1n5nkem2EYBiIiIiIWsVtdgIiIiDRsCiMiIiJiKYURERERsZTCiIiIiFhKYUREREQspTAiIiIillIYEREREUspjIiIiIil3KwuoCJcLhdHjhzB398fm81mdTkiIiJSAYZhkJOTQ9OmTbHbT9/+USfCyJEjR4iKirK6DBERETkDiYmJNGvW7LSv14kw4u/vD5g/TEBAgMXViIiISEVkZ2cTFRVV9j1+OnUijJy4NBMQEKAwIiIiUsf81S0WuoFVRERELKUwIiIiIpZSGBERERFL1Yl7RkREROoawzAoLS3F6XRaXUq1cTgcuLm5/e1hNxRGREREqlhxcTFJSUnk5+dbXUq18/HxISIiAg8PjzP+DIURERGRKuRyuUhISMDhcNC0aVM8PDzq5YCdhmFQXFxMWloaCQkJtG3b9k8HNvszlQ4jP/zwA88//zzx8fEkJSUxb948hg8f/qfvWbFiBZMmTWLr1q1ERUXxyCOPcNNNN51RwSIiIrVZcXExLpeLqKgofHx8rC6nWnl7e+Pu7s6BAwcoLi7Gy8vrjD6n0hEmLy+PmJgYpk6dWqH9ExISuOyyyzj//PPZuHEj9957L+PGjWPJkiWVLlZERKSuONNWgrqmKn7OSreMXHLJJVxyySUV3n/atGlER0fz4osvAtCxY0dWrlzJ//73PwYPHlzZw4uIiEg9U+2xbdWqVQwaNKjctsGDB7Nq1arTvqeoqIjs7Oxyi4iIiNRP1R5GkpOTCQsLK7ctLCyM7OxsCgoKTvmeKVOmEBgYWLZokjwREZH6q1Ze0Jo8eTJZWVllS2JiotUliYiI1HtpaWmMHz+e5s2b4+npSXh4OIMHD+ann36q1uNWe9fe8PBwUlJSym1LSUkhICAAb2/vU77H09MTT0/P6i6Nt3/cR1JWIYHe7uUXn/Lr7o5amdlERESq1JVXXklxcTEzZ86kVatWpKSksGzZMo4ePVqtx632MBIXF8dXX31VbtvSpUuJi4ur7kP/pUWbktiYmPmX+/l7udHIx4NGPu408vWgkY8HQT7uBPt40NjPk2BfD0L8Tj4P8Pr7o9GJiEj9YRgGBSU1PxKrt7ujwt9HmZmZ/Pjjj6xYsYIBAwYA0KJFC/r27VudJQJnEEZyc3PZs2dP2XpCQgIbN24kODiY5s2bM3nyZA4fPsz7778PwB133MFrr73GP//5T26++Wa+++47PvnkE7788suq+ynO0Kg+UcRGB5NVUHLKJaewFICcwlJyCks5mFGxz3V32Gjs60mIvwdN/Dxp4n988fMkNMCr7Hl4oBde7o5q/AlFRKQ2KChx0umxmh/SYtu/B+PjUbGvej8/P/z8/Jg/fz79+vWrkSsUJ1Q6jKxbt47zzz+/bH3SpEkAjBkzhhkzZpCUlMTBgwfLXo+OjubLL7/kvvvu4+WXX6ZZs2a8/fbbtaJb77V9m//p606XQVZBCcfyizmWV8yx/N89zyvmaF4xR/OKOJpbTEZeMblFpZQ4DZKzC0nOLvzLGgK93QkP8CIs0IvwAE/CA7wID/QmIsiLyCBvIoO88fXUQLkiIlK93NzcmDFjBrfeeivTpk2jZ8+eDBgwgGuuuYZu3bpV67FthmEY1XqEKpCdnU1gYCBZWVkEBARYXc6fKixxkpFXTHpuEem5RaTlnFxSTzzPLSIlu5DCEleFPjPQ252mx4NJZJAXkY28aR7sQ1SwD82DffD3cq/mn0pERCqqsLCQhIQEoqOjy0YkrQuXaU4oLCzkxx9/ZPXq1Xz99desXbuWt99++7Qjp5/q5z2hot/fCiMWMQyD7ILSshaUlKzCcs+PZBVy+Fg+2ccvFf2ZRj7u5cJJy8a+RDfxJTrEl8a+9XNOBBGR2urPvpzronHjxrF06VIOHDhwyterIoyo/d8iNpvN7LXj4077cP/T7pdTWEJSViGHjxVwOLOAI5kFJB4rIDEjn8SMfI6WXT7K4tdDWX94v7+XG61CzGASHeJHdBNf2ob6ER3iq/tVRETkL3Xq1In58+dX6zEURmo5fy93/L3caRd26sCSW1RKYkY+B4+HkwNH89l/NI+E9DwOZxaQU1jKr4f+GFTsNmjZ2Jc2oX60DfOjXZg/bUL9aN3ETyFFRKQBOnr0KCNHjuTmm2+mW7du+Pv7s27dOp577jmGDRtWrcdWGKnj/Dzd6BgRQMeIPzZ/FZY4OZiRz740M5wkpOeyNy2P3Sk5ZBeWsi89j33peXyz7eQ4MA67jdZNfOl0/DM7RgTQqWkAIX41d1e1iIjUPD8/P2JjY/nf//7H3r17KSkpISoqiltvvZWHHnqoWo+te0YaIMMwSMspYldKLrtTc9idmsvulBx2peSSVVByyvc08fekU0QA3ZoF0q1ZEDHNAgkNqPvXQkVEqlp9u2fkr+ieETkjNpuN0AAvQgO8OKdtSNl2wzC7JG9PymbbkWy2J+WwLSmb/UfzSMsp4vucNL7flVa2f3iAF12bBRJzIqBEBRHorZ49IiJSOQojUsZmsxER6E1EoDcXdDg5uWFeUSk7knPYdsS892TToUz2pOaavX+2FbL0+GUemw3ahvrRq0UwvVs0onfLRjQP9lFvHhER+VMKI/KXfD3d6NWiEb1aNOLG49vyikrZeiSbTYcyywLKgaP57ErJZVdKLh+vNQe+C/HzLAsm/Vo1pmNEAA67womIiJykMCJnxNfTjb7RwfSNDi7blpZTRPyBY8QfyGDdgWNsOZxFem4Ri7cms3hrMmAO4NavVTBxrRpzVpsQ2ob6qeVERKSBUxiRKtPE35OLu4RzcZdwwOzNs+lQFusOZPBLQgZrEzLIKihhydYUlmw1L+2E+HnQr1VjzmkTwoD2TYgIPPVMziIiUn8pjEi18XJ3nGw9OQ9KnC42H85i1d6jrNp7lHUHMkjPLWbRpiQWbUoCoH2YP+e1b8KA9k3o3SIYDze7tT+EiIhUO4URqTHuDjs9mzeiZ/NGTDi/DUWlTjYezOTnvUf5YXcaGxMz2ZmSw86UHN78YR++Hg7ObhPCee1DGdQxVF2JRUTqKY0zIrXGsbxiftidxvc7zS7ER/OKy16z2aBHVBAXdQ5ncOdwokN8LaxUROT0NM7ISRpnROqcRr4eDOseybDukbhcBluPZLNiZyrLdqSyMTGT9QfN5Zmvd9AuzI/Bx4NJ56YBuglWRKQOUxiRWslut9G1WSBdmwVy98C2JGcVsnRbMku2prB639HjXYj38Op3e4gK9mZoTFOGxkT+6aSDIiLy52666SYyMzOrfWK831MYkTohPNCLG+NacmNcS7LyS1i2I4UlW5P5flcaiRkFTF2+l6nL99Ih3J+h3ZsypFtTooJ9rC5bREQqQGFE6pxAH3eu6NmMK3o2o6DYybfbU1j46xFW7ExlR3IOOxbv5LnFO+nVohFDY5oyJKYpwb4eVpctIiKnoTAidZq3h4MhxwNHVn4JX29JYuGvR1i17+jxAdiO8dSX27mwcxijekdxTpsQ7BoBVkRqmmFASX7NH9fdx+wBUMspjEi9EejjzjV9m3NN3+akZBfyxa9HmLfhMFuPZPPlpiS+3JREZJA3I3s3Y2TvKCKDNMCaiNSQknx4umnNH/ehI+BR+3sfKoxIvRQW4MW4/q0Y178VWw5n8cm6ROZvOMzhzAJe+nY3Ly/bzTltQri2b3Mu6hSGm0ODq4mIWEVhROq9LpGBdIkM5KFLO7J4SzJzfklk1b6j/Lg7nR93pxMR6MUN/VpwTZ8oGvt5Wl2uiNRH7j5mK4UVx60DFEakwfBydzC8RyTDe0Ry4Ggen6xLZPbaRJKyCnl+yU5eXraboTFNuemslnSJDLS6XBGpT2y2OnG5xCoKI9IgtWjsy/8N7sA9A9vy5aYkZvy8n02Hsvg0/hCfxh+id4tGjDmrJRd3Ccddl3BERKqVwog0aJ5uDq7o2YwRPSLZkJjJjJ/289XmJNYdOMa6A8do1sib285txdW9o/Byd1hdrohIvaS5aUR+JyW7kI/WHOSj1QfK5sdp7OvBzedEc0O/FgR6u1tcoYjUZpqb5qSKfn+r/Vnkd8ICvJh0YTtWPnAB/x7Wmcggb47mFfP8kp2c/cx3TPl6O6k5hVaXKSJSbyiMiJyGt4eD0XEtWfF/5/G/UTG0C/Mjt6iUN7/fxznPLueR+ZtJyiqwukwRkTpPYUTkL7g77Izo0YzFE89l+uje9GgeRHGpiw9XH2TA8yt4ctE20nOLrC5TRKTOUhgRqSC73caFncL4fPxZfHxrP/q2DKa41MU7KxM497nlPL9kB1n5JVaXKSJS5yiMiFSSzWYjrnVj5tzej5k396Vbs0Dyi51MXb6Xc577jleX7Sa3qNTqMkVE6gyFEZEzZLPZGNCuCQsmnM1bN/aiQ7g/OYWlvLh0F+c+t5z3fkqgxOmyukwRkVpPYUTkb7LZbFzUOZyv7unPK9f2IDrEl4y8Yp74YhuDX/qBZdtTqAM96EVELKMwIlJF7HYbQ2OasvS+c3lqRBca+3qwLy2PW2au48Z31rIjOdvqEkVEaiWFEZEq5uawc31sC5b/33ncPqAVHg47K/ekc+nLPzL5883qeSMi8jsKIyLVJMDLncmXdOTbSQO4tGs4LgM+XnuQ855fwbTv91JcqvtJRERAYUSk2jVv7MPr1/fik9vj6BoZSG5RKc98vYPLX/2RX/ZnWF2eiEiZm266CZvNhs1mw93dnejoaP75z39SWFi9o04rjIjUkL7RwSyYcDbPX9WNYF8PdqXkMnLaKh74dBPHjs+BIyJitYsvvpikpCT27dvH//73P958800ef/zxaj2mwohIDbLbbYzsHcV39w/g2r5RAMxZl8jA/37Pp/GH1OtGRCzn6elJeHg4UVFRDB8+nEGDBrF06dJqPaZbtX66iJxSkI8HU67oxpU9m/HwvC3sTMnhH3N/Ze66RJ4a0YU2of5WlygiVcgwDApKa34uK283b2w22xm/f8uWLfz888+0aNGiCqv6I4UREQv1bhnMonvO4Z2VCbz07S7WJGRwycs/MuH8Nkw4vw3uDjVeitQHBaUFxM6KrfHjrrluDT7uPpV6z6JFi/Dz86O0tJSioiLsdjuvvfZaNVVo0m86EYu5O+zcMaA1S+8bwAUdQilxGrz07W5GvP4TO5NzrC5PRBqY888/n40bN7JmzRrGjBnD2LFjufLKK6v1mGoZEaklooJ9eGdMb77YlMRjC7aw5XA2Q15dycRBbbn93Fa4qZVEpM7ydvNmzXVrLDluZfn6+tKmTRsA3n33XWJiYnjnnXe45ZZbqrq8MgojIrWIzWaO4tovOpiH5m3m2+2pPL9kJ99sS+HFkTG0CfWzukQROQM2m63Sl0tqA7vdzkMPPcSkSZO47rrr8PaufLip0HGq5VNF5G8JDfBi+ujevDAyBn8vN35NzOSyV37k7R/34XSpx42I1JyRI0ficDiYOnVqtR1DYUSklrLZbFzVqxnf3Hcu57ZrQlGpi/98uZ1r3lrFoWP5VpcnIg2Em5sbd911F8899xx5eXnVcgybUQcGNsjOziYwMJCsrCwCAgKsLkekxhmGwexfEvnPom3kFTsJ8HLjuau6cXGXCKtLE5HfKSwsJCEhgejoaLy8vKwup9r92c9b0e9vtYyI1AE2m41r+zZn8b3n0j0qiOzCUu74cD0Pz9tMYYnT6vJERP4WhRGROiQq2Ie5d8Rxx4DWAHy05iDDXvuJ3SnqAiwidZfCiEgd4+6w8+AlHfjglr6E+HmyMyWHIa+tZPbagxpOXkTqJIURkTqqf9smfD2xP/3bhlBY4uLBzzdz18cbyC4ssbo0EZFKURgRqcOa+Hsyc2xfJl/SATe7jS83JTHsNY3cKiJ1i8KISB1nt9u4fUBr5t4RR2SQNwnpeYx4/ScWbTpidWkiDVpDuWxaFT+nwohIPdGjeSO+uPsczmkTQn6xk7tmbeDpr7ZT6nRZXZpIg+Lu7g5Afn7DGA/oxM954uc+ExoOXqQeCfb1YMbYPrzwzS6mfb+Xt37Yx5bDWbx6bQ8a+3laXZ5Ig+BwOAgKCiI1NRUAHx8fbDabxVVVPcMwyM/PJzU1laCgIBwOxxl/lgY9E6mnvtqcxD/m/kp+sZPIIG/euKEn3ZoFWV2WSINgGAbJyclkZmZaXUq1CwoKIjw8/JSBq6Lf3wojIvXYrpQcbv8gnoT0PDzc7PxneBeu7h1ldVkiDYbT6aSkpP72cHN3d//TFhGFEREBILuwhElzNvLtdrPJ+LZzW/HAxR1w2Otfs7GI1C7VOhz81KlTadmyJV5eXsTGxrJ27do/3f+ll16iffv2eHt7ExUVxX333UdhYeGZHFpEKinAy523buzNxIFtAXjrh33c8WE8+cWlFlcmImKqdBiZM2cOkyZN4vHHH2f9+vXExMQwePDgsht1fm/WrFk8+OCDPP7442zfvp133nmHOXPm8NBDD/3t4kWkYux2G/dd2I6Xr+mOh5udpdtSuPrNVSRn6Y8CEbFepS/TxMbG0qdPH1577TUAXC4XUVFR3H333Tz44IN/2P+uu+5i+/btLFu2rGzb/fffz5o1a1i5cmWFjqnLNCJVJ/5ABre+H09GXjHhAV68c1NvOjcNtLosEamHquUyTXFxMfHx8QwaNOjkB9jtDBo0iFWrVp3yPWeddRbx8fFll3L27dvHV199xaWXXnra4xQVFZGdnV1uEZGq0atFMPPvPJs2oX4kZxcyctoqvt2WYnVZItKAVSqMpKen43Q6CQsLK7c9LCyM5OTkU77nuuuu49///jfnnHMO7u7utG7dmvPOO+9PL9NMmTKFwMDAsiUqSnf/i1Sl5o19+Gz8WWUDpN36wTreWZnQYEaMFJHapdpHYF2xYgVPP/00r7/+OuvXr+fzzz/nyy+/5MknnzzteyZPnkxWVlbZkpiYWN1lijQ4gd7uvDe2D9f2jcIw4MlF2/jXwq24XAokIlKzKjUCa0hICA6Hg5SU8k26KSkphIeHn/I9jz76KDfeeCPjxo0DoGvXruTl5XHbbbfx8MMPY7f/MQ95enri6anRIkWqm7vDztMjutIqxI+nv97OzFUHOJpXzItXx+DpduajKYqIVEalWkY8PDzo1atXuZtRXS4Xy5YtIy4u7pTvyc/P/0PgODFAipqERaxns9m49dxWvHxND9wdNhZtSuKWGevILVLXXxGpGZW+TDNp0iSmT5/OzJkz2b59O+PHjycvL4+xY8cCMHr0aCZPnly2/5AhQ3jjjTeYPXs2CQkJLF26lEcffZQhQ4b8rXHsRaRqDY1pyjtj+uDj4WDlnnSum76ao7lFVpclIg1ApSfKGzVqFGlpaTz22GMkJyfTvXt3Fi9eXHZT68GDB8u1hDzyyCPYbDYeeeQRDh8+TJMmTRgyZAhPPfVU1f0UIlIlzm3XhFm39mPse2vZdCiLkdNWMfPmvkQF+1hdmojUYxoOXkT+YG9aLqPfWcvhzALCAjyZeXNfOoTr/z0RqZxqHQ5eROq31k38+Gz8WbQL8yMlu4irp61i3f4Mq8sSkXpKYURETik80ItPbo+jV4tGZBeWcv3ba/h+V5rVZYlIPaQwIiKnFeTjwYe3xHJ++yYUlbq4deY6lm3XaK0iUrUURkTkT3l7OHjzxt4M7hxGsdPFHR/Gs3jLqUdcFhE5EwojIvKXPNzsvHZdTy7vFkGJ02DCrPV88esRq8sSkXpCYUREKsTdYeelUd25okckTpfBxNkb+Hz9IavLEpF6QGFERCrMzWHn+ZExjOodhcuA++f+ypxfDlpdlojUcQojIlIpDruNKVd05YZ+zTEMeOCzzXywar/VZYlIHaYwIiKVZrfbeHJYF24+OxqARxds5b2fEiyuSkTqKoURETkjNpuNRy/vyB0DWgPwxBfb+GD1AYurEpG6SGFERM6YzWbjgYvbc/uAVgA8On8Ln/ySaHFVIlLXKIyIyN9is9l48OIO3HRWSwAe+HwTCzYetrYoEalTFEZE5G+z2Ww8PqQT18WaN7VO+uRXvtqcZHVZIlJHKIyISJWw2Wz8Z1gXrurVDKfL4J6PN/DtNg0dLyJ/TWFERKqM3W7j2Su7MTSmKaUugzs/Wq/J9UTkLymMiEiVctht/PfqGC7pEk6x08Vt76/j5z3pVpclIrWYwoiIVDk3h52Xr+nBwA6hFJW6uGXmOuIPHLO6LBGppRRGRKRaeLjZmXp9T/q3DaGgxMnNM35hV0qO1WWJSC2kMCIi1cbL3cGbN/aiR/MgsgpKuPGdNSRm5FtdlojUMgojIlKtfDzceO+mPrQN9SMlu4jR764lPbfI6rJEpBZRGBGRahfk48H7t/QlMsibhPQ8bnpvLTmFJVaXJSK1hMKIiNSIiEBvPrilL8G+Hmw5nM1t78dTWOK0uiwRqQUURkSkxrRq4sfMsX3x9XCwat9R7p29EafLsLosEbGYwoiI1KiuzQKZPqY3Hg47i7cm8/C8zRiGAolIQ6YwIiI17qzWIbxybXfsNpj9SyIvfLPT6pJExEIKIyJiiYu7RPD0iK4ATF2+l4/WHLC4IhGxisKIiFjmmr7NuXdQWwAenb+F73ZoYj2RhkhhREQsNXFgW0b2aobLgAkfbWDToUyrSxKRGqYwIiKWstlsPH1F198MG79Oo7SKNDAKIyJiOXeHndev70mHcH/Sc4u46b21ZOYXW12WiNQQhRERqRX8vdyZMbYvEYFe7E3L47YP4ikq1aBoIg2BwoiI1BrhgV68N7YP/p5urE3I4P5PfsWlQdFE6j2FERGpVTqEBzDtxl642W0s2pTEs0t2WF2SiFQzhRERqXXObhPCs1d2A+DN7/cxa81BiysSkeqkMCIitdKVvZpx36B2ADy2YAs/7Um3uCIRqS4KIyJSa90zsA3Dujel1GUw/sN49qblWl2SiFQDhRERqbVsNhvPXtmNns2DyC4sZdzMderyK1IPKYyISK3m5e7gzRt7ExnkTUJ6HuM/XE9xqcvqskSkCimMiEit18Tfk3du6o2vh4NV+47y2IItGIa6/IrUFwojIlIndAgP4NXremC3wexfEnlnZYLVJYlIFVEYEZE644IOYTx0aUcAnvpqO8u2a5ZfkfpAYURE6pRbzonm2r7NMQy45+MNbE/KtrokEfmbFEZEpE6x2Wz8e1hnzmrdmLxiJ+NmruNobpHVZYnI36AwIiJ1zolZfls29uFwZgF3frSeEqd62IjUVQojIlInBfl4MH10b/w83ViTkMGTi7ZZXZKInCGFERGps9qG+fO/Ud0BeH/VAT5eqzlsROoihRERqdMu7BTG/ReenMNm3f4MiysSkcpSGBGROu+uC9pwaddwSpwGd3y4niOZBVaXJCKVoDAiInWezWbj+ati6BDuT3puEbd/EE9hidPqskSkghRGRKRe8PV0Y/ro3jTycWfz4Swe/GyThowXqSMURkSk3ogK9mHq9T1x2G3M33iE6T/us7okEakAhRERqVfOah3CY5d3AuCZr3fww640iysSkb+iMCIi9c7ouBaM6h2Fy4B7Zm8gMSPf6pJE5E8ojIhIvWOz2XhiWGdimgWSmV/C7R/EU1CsG1pFaiuFERGpl7zcHbxxQy8a+3qwLSmbh+dt1g2tIrWUwoiI1FtNg7x59boe2G3w+YbDfLD6gNUlicgpKIyISL12VusQJl/SEYB/f7GNXzRCq0itc0ZhZOrUqbRs2RIvLy9iY2NZu3btn+6fmZnJhAkTiIiIwNPTk3bt2vHVV1+dUcEiIpU1rn80l3eLoNRlcOdH60nJLrS6JBH5jUqHkTlz5jBp0iQef/xx1q9fT0xMDIMHDyY1NfWU+xcXF3PhhReyf/9+Pv30U3bu3Mn06dOJjIz828WLiFSEzWbjuau60T7Mn7ScIu78aD3FpS6ryxKR42xGJe/oio2NpU+fPrz22msAuFwuoqKiuPvuu3nwwQf/sP+0adN4/vnn2bFjB+7u7mdUZHZ2NoGBgWRlZREQEHBGnyEikpCex9DXVpJTWMrouBb8e1gXq0sSqdcq+v1dqZaR4uJi4uPjGTRo0MkPsNsZNGgQq1atOuV7Fi5cSFxcHBMmTCAsLIwuXbrw9NNP43SevptdUVER2dnZ5RYRkb8rOsSXl0Z1B+D9VQf4NP6QtQWJCFDJMJKeno7T6SQsLKzc9rCwMJKTk0/5nn379vHpp5/idDr56quvePTRR3nxxRf5z3/+c9rjTJkyhcDAwLIlKiqqMmWKiJzWwI5hTBzYFoCH521m65EsiysSkWrvTeNyuQgNDeWtt96iV69ejBo1iocffphp06ad9j2TJ08mKyurbElMTKzuMkWkAZk4sC3nt29CUamL8R+uJ6ugxOqSRBq0SoWRkJAQHA4HKSkp5banpKQQHh5+yvdERETQrl07HA5H2baOHTuSnJxMcXHxKd/j6elJQEBAuUVEpKrY7Tb+N6o7kUHeHMzI5/5PNuJyaUA0EatUKox4eHjQq1cvli1bVrbN5XKxbNky4uLiTvmes88+mz179uBynbxzfdeuXURERODh4XGGZYuI/D1BPh5Mu6EXHm52vt2eyrQf9lpdkkiDVenLNJMmTWL69OnMnDmT7du3M378ePLy8hg7diwAo0ePZvLkyWX7jx8/noyMDCZOnMiuXbv48ssvefrpp5kwYULV/RQiImega7NA/j20MwAvLNnJz3vSLa5IpGFyq+wbRo0aRVpaGo899hjJycl0796dxYsXl93UevDgQez2kxknKiqKJUuWcN9999GtWzciIyOZOHEiDzzwQNX9FCIiZ2hUnyjiDxxjbvwh7v54A4vuOYeIQG+ryxJpUCo9zogVNM6IiFSnwhInI17/me1J2fRsHsTs2+LwcNNsGSJ/V7WMMyIiUh95uTuYdkNP/L3cWH8wk6e/2m51SSINisKIiAjQorEv/726OwAzft7Pwl+PWFuQSAOiMCIictyFncK487zWADz42SZ2p+RYXJFIw6AwIiLyG/df1J6z2zQmv9jJ+I/Wk1dUanVJIvWewoiIyG847DZevqYHYQGe7EnN5eF5m6kD9/mL1GkKIyIivxPi58lr1/XEYbcxf+MRZq09aHVJIvWawoiIyCn0aRnMPwe3B+CJhdvYfEgT6olUF4UREZHTuO3cVlzYKYxip4s7Z8WTla8J9USqg8KIiMhp2Gw2XhgZQ1SwN4kZBdw/91fdPyJSDRRGRET+RKC3O69f1wsPh51vt6fw1g/7rC5JpN6p9Nw0IiINTddmgTw+tBMPz9vCc0t20qN5I/pGB1tdlpwJlxNyUyAnCYpyoCgXivOg+LfPc8FZDNjAZgObvfxzmw08/MDT/3dLgPno3Qh8m4DdYfVPW2cojIiIVMB1fZvzS0IG8zce4a5Z6/nynv408fe0uiz5PWcJZOyD1O1wbL8ZOrIPQ3YSZB+B3GQwXNVfh80OvqHgHw7+EeAfdvwxHIJaQOPWEBCpwHKcwoiISAXYbDaeGtGVLUey2ZOay71zNvD+zbE47DarS2uYDON46NgGqTsgbbsZQNJ3g+svbjS2OcAvDLwCwdMPPHxPtnSceO7wAAzzOOUeXWbrSkn+8ZaVE0v2yecFx8z9cpPNJWnjqetweECjlhDcGoJbQXA0NG4DYV3Ar0mVnq7aTrP2iohUwp7UHIa+9hP5xU4mDmzLfRe2s7qkhqG0GJJ+hYOr4OBq87Eg49T7evhBk/bml3xgJPg3hYCmEBBhtkZU9yUUlxPy0sxWmZzk3yxJ5pKRYLba/Flo8g2FsM7Hly4Q1glC2oO7V/XVXQ0q+v2tMCIiUknzNxzm3jkbsdng/Zv70r9tw/ortkaUFpuBY/+PZvg4tA5KC8rv4+Zlho7QTtCkA4R2NJeAZmCv5f0zXE7IOgQZe80WnowEOLoX0neazznFV7PNYYaSyF4nlyYdavWlHoUREZFq9NC8zcxac5DGvh58eU9/wgPr1l+stVJ+Buz5FnZ+BXuWmZc+fss7GJrHQfN+0OIsCO8Gbh7W1FqdivPMS08pWyBlq3kpKnkzFGb+cV93X2jaAyJ7QrPe0PysWnWJR2FERKQaFZY4ueL1n9mWlE2flo2YdWs/3B21/K/x2ih9D+z6GnZ+bbaAGM6Tr/k2gdYDzeDRPA5C2po9WRoiwzBvxD28Hg7Hm8uRDWbPn98LaXf8nJ1lPgZF1Xy9xymMiIhUs/3peQx5dSU5RaXcPqAVky/paHVJdUNeOmz+FH6dZd4H8luhnaH9xdD+Umjas/ZfbrGSywnpu8xgcmgdJK6F1K1/3C+wuRlKovtDq/MgsFmNlagwIiJSA77enMT4j9YD8Pbo3gzqFGZxRbVUaTHsXgIbPzYfXaXmdrsbtOwP7S+BdhdDoxbW1lnX5WdA4ho48BMc+BmObCzf2gTQuK0ZSlqdZwYUr8BqK0dhRESkhjzxxVbe+2k/gd7uLLr7HKKCfawuqfZI2gQbPoTNc8v3fonoDt2vgy5XgW9jy8qr94py4dBa2P8TJHxvtqL8dpwVm928EbbVeeZ/j+BWVXp4hRERkRpSXOri6jdXsTExk5hmgcy94yw83Brw5QWXE3YthlVTzb/QT/ALg26jzC+9UF3SskRBJuxfCftWwL7lcHTPydfGLDJbSqqQwoiISA06nFnAZa/8SGZ+CTed1ZJ/De1sdUk1rygXNn4Eq9+AYwnmNrsbdLgcetwArc4Hh8barFUyE80Wk4QfYegr4Fa1oworjIiI1LDvdqRw84x1AEy9rieXdYuwuKIaknUI1rwJ8TOhKMvc5hUEvW6CvreZA49Jg1TR729FVBGRKnJBhzDGn9eaN1bs5YHPNtGpaQDRIb5Wl1V9ju2H75+HXz8+eZNkcGvoN968FONRj392qVIKIyIiVej+C9sRf+AYaxMyuPOj9cy78yy83GvvCJlnJOsQ/PC8eWPqiV4xLftD3F3Q9iJ1x5VK078YEZEq5Oaw8+q1PQjx82B7Ujb/WniKcR/qqpxk+Oqf8EoPiJ9hBpHWF8C4ZXDTInN8EAUROQP6VyMiUsXCArx4+Zoe2Gww+5dEPos/ZHVJf09eOix5GF6OgbVvgrMYWpwDY7+GG+eZw5CL/A0KIyIi1eDsNiHcO9Cc0feR+VvYlZJjcUVnoLQYfnoZXu4Oq16D0kJo1hdGLzBbQlqcZXWFUk8ojIiIVJO7L2hD/7YhFJQ4Gf9hPHlFpVaXVHG7lsDr/WDpY1CcAxExcN1cuOUbc4CshjpHjFQLhRERkWpit9t4aVR3wgO82JuWx0PzNlPrR1NI2wUfXgWzrjant/cNhWGvw60roN1FCiFSLRRGRESqUWM/T169rgcOu40FG48wa+1Bq0s6tcIs876QN+Jgz1Kwu8PZE+HueOhxvW5MlWqlf10iItWsT8tgHri4PQBPLNzGlsNZFlf0G4YBv86GV3uZ94W4Ss0J6yasgQv/DV4aaFKqn8KIiEgNuLV/KwZ1DKXY6eLOj9aTVVBidUmQeRA+vBLm3Q55aRDSDq7/DK6bA41bW12dNCAKIyIiNcBms/HiyO40a+TNwYx8/jH3V+vuH3G5zOHbp/aDvcvA4QkDH4PxP0PbQdbUJA2awoiISA0J9HHn9et74uGws3RbCtN/3FfzRaTthPcuhq//CSV50DwOxv8E/e8Hh3vN1yOCwoiISI3q1iyIx4Z0AuDZxTtZm5BRMwcuLTbnkZl2DiSuAQ8/uOxFuOkrCGlbMzWInIbCiIhIDbs+tjnDuzfF6TK4a9Z60nKKqveAKdtg+vmw/D/m6KltB5s3qPYZp14yUivoX6GISA2z2Ww8NaIrbUP9SM0pYuLsDThd1XD/iMsFq9+At86DlC3gHQxXvG3eoBrYrOqPJ3KGFEZERCzg6+nGGzf0xMfDwc97j/LSt7uq9gA5yfDRlbD4QXAWmbPpTlgD3UZq4DKpdRRGREQs0ibUn2eu7AbAq9/tYfnO1Kr54O2L4PU42PsduHnBpS/AdZ+AX2jVfL5IFVMYERGx0NCYpoyOawHAfXM2cuhY/pl/WHEeLLwH5lwPBRkQ3hVu/wH63qrWEKnVFEZERCz28GUdiWkWSGZ+CRM+Wk9RqbPyH3JkA0zrD+tnAjY46x4YtwyatK/yekWqmsKIiIjFPN0cTL2+J4He7vx6KIv/LNpe8TcbBvzyDrxzkTmxnX9TGLMQLnoS3Dyrr2iRKqQwIiJSCzRr5MNL13THZoMPVh9g3oZDf/2molz4/Db4cpLZZbf9peYAZtHnVn/BIlVIYUREpJY4v30od19gDkA2+fPNbE/KPv3OaTth+gWw+ROwOcxJ7a6ZBT7BNVStSNVRGBERqUUmDmzLue2aUFjiYvyH8aeeUG/TXHjrfEjfCX7hcNMiOHuiblKVOkthRESkFnHYbbw8qjuRQd7sP2pOqOc6MSBaaREsmgSfjzPnlYk+F+74EVqcZW3RIn+TwoiISC3TyNeDN244OaHetB/2QtYheHcwrHvH3Onc/4Mb52vsEKkXFEZERGqhbs2CeGJYZwCWf7OQ4jfONbvvejeC6z+FCx4Bu8PiKkWqhpvVBYiIyKld0ycKtw3vM+zIf/EodFLSpDPu130MjVpYXZpIlVLLiIhIbeQswfbV/zEy6Xk8bE4WOWO5kScp9o+yujKRKqcwIiJS2+Slw/vD4ZfpAGT2e4CHHJNYnVjIk4u2WVubSDVQGBERqU2SNpnddg+sBA9/uOZjgi5+iJeu6QGYA6LNXZdocZEiVUthRESktti2wOwxk3UQglvBuG+hw6UAXNAhjHsHmQOiPTx/C5sOZVpYqEjVUhgREbGaYcDK/8Eno6EkH1pfALd+B6Edyu12zwVtGdQxlOJSF3d8EM/R3CKLChapWgojIiJWcpbAwrvh23+Z631vh+vmml14f8dut/HfUd1pFeLLkaxCJsxaT6nTVbP1ilQDhREREasUZMKHV8CGD8Bmh0ueg0ufA8fpR10I8HLnzRt74evhYPW+DKZ8vaPm6hWpJmcURqZOnUrLli3x8vIiNjaWtWvXVuh9s2fPxmazMXz48DM5rIhI/ZGRAO9cCAk/gIcfXDsbYm+v0Fvbhvnz4tUxALyzMoEFGw9XZ6Ui1a7SYWTOnDlMmjSJxx9/nPXr1xMTE8PgwYNJTU390/ft37+ff/zjH/Tv3/+MixURqRcS18LbgyB9F/g3hZsXQ7vBlfqIi7tEMOH81gA88Nkmth7Jqo5KRWpEpcPIf//7X2699VbGjh1Lp06dmDZtGj4+Prz77runfY/T6eT666/niSeeoFWrVn+rYBGROm3LZzDjcshPh4gY80bV8K5n9FGTLmzPgOMz/N7xYTzH8oqruFiRmlGpMFJcXEx8fDyDBg06+QF2O4MGDWLVqlWnfd+///1vQkNDueWWWyp0nKKiIrKzs8stIiJ1mmHATy/DpzeDswjaXwpjv4aAiDP+SIfdxivX9KB5sA+JGQXcM3sDzhMz/IpUUGJOIjO2zLC0hkqFkfT0dJxOJ2FhYeW2h4WFkZycfMr3rFy5knfeeYfp06dX+DhTpkwhMDCwbImK0vDHIlKHuZzw9QOw9DFzvd+dMOpD8PD92x8d6GPe0Ort7uDH3ek8u1g3tErFFJQW8NqG1xg+fzgvxr/IqiOnb1SobtXamyYnJ4cbb7yR6dOnExISUuH3TZ48maysrLIlMVGjDYpIHVVSAHNvgrVvmuuDn4aLp1TpjLsdIwJ4fmQ3AN76YR+frz9UZZ8t9Y9hGHyz/xuGzR/Gm5vepNhVTL+IfoT5hv31m6tJpWbtDQkJweFwkJKSUm57SkoK4eHhf9h/79697N+/nyFDhpRtc7nMPvFubm7s3LmT1q1b/+F9np6eeHp6VqY0EZHaJz8DZl8HB1eBwwNGTIMuV1bLoS7v1pQdSTm8tnwPD36+mVZN/OgeFVQtx5K6a2/mXqasncKapDUARPhG8H99/o9BzQdhs9ksq6tSLSMeHh706tWLZcuWlW1zuVwsW7aMuLi4P+zfoUMHNm/ezMaNG8uWoUOHcv7557Nx40ZdfhGR+ivzILx7sRlEPAPhhs+rLYicMOnCdlzYKYziUhe3vb+OlOzCaj2e1B25xbk8/8vzXLXwKtYkrcHD7sHt3W5nwfAFXNjiQkuDCFSyZQRg0qRJjBkzht69e9O3b19eeukl8vLyGDt2LACjR48mMjKSKVOm4OXlRZcuXcq9PygoCOAP20VE6o2kTfDRSMhNhoBIuP5TCOtU7Ye12238b1R3rnj9J3al5HLb++uYc3scXu5Vd0lI6hbDMFi0bxH/jf8v6QXpAJwXdR7/7PNPovxrT4NApcPIqFGjSEtL47HHHiM5OZnu3buzePHisptaDx48iN2ugV1FpIHatwJm3wDFORDayQwigZE1dng/TzfeHt2HoVNX8uuhLCZ/vpn/Xh1j+V++UvN2Zuzk6TVPsz51PQAtAlrwQJ8H6N+s9o33ZTMMo9b3A8vOziYwMJCsrCwCAgKsLkdE5NS2fA6f3wauEmjZ3+wx4x1kSSk/70nnxnfX4nQZTL6kA7cP+OP9eVI/ZRdn8/rG15m9YzZOw4m3mze3dbuN0Z1G4+HwqNlaKvj9rSYMEZGqsHa6OYaIqwQ6DYcbPrMsiACc1SaEx4eYl4aeWbyD5Tv+fJRsqftchosFexYwZN4QPtr+EU7DyYUtLmTBsAWM6zquxoNIZVT6Mo2IiPyGYcCKKfD9s+Z6n3HmhHdV2HX3TN3YrwXbk3L4eO1B7vl4A/MmnE2bUD+ry5JqsDNjJ0+teYoNqRsAaBnQksmxkzmr6VkWV1YxCiMiImfK5YSv/gHrjk+Hcd5kGPAA1JL7M2w2G08M7cze1FzW7s9g3MxfmHfn2TTyrb1/IUvl5BTn8NqG15i9czYuw4W3mzd3xNzBjR1vxN3hbnV5FabLNCIiZ6K0CD4dezyI2OCyF+G8B2tNEDnBw83O6zf0JDLIm/1H87njw3iKS11WlyV/k2EYfLH3C4bMG8KsHbNwGS4uanERC4cv5OYuN9epIAIKIyIilVeYDR9dBdsWmIOZjXzPvDxTS4X4efLuTX3w83RjTUIGkz/fTB3ouyCnsevYLm5afBMPrXyIo4VHaRnQkrcufIsXz3uRcN8/DkBaF+gyjYhIZeSmwUdXQtKv4OEH18yCVgOsruovtQ/3Z+r1Pbl5xi98tv4QrZr4MuH8NlaXJZWQW5zL67++zqzts8r1khnTaUydawn5PbWMiIhUVOZBeO9iM4j4hMBNi+pEEDlhQLsm/Ot4D5vnl+zkq81JFlckFWEYBl8nfM3Q+UP5YNsHOA0ng5oPKuslU9eDCKhlRESkYtJ2wgcjIPswBEbBjfMhpO61LNwY15J96Xm899N+7puzkaZB3prDphbbl7WPp1c/zZpkcy6Z5v7NmRw7mXMiz7G4sqqlMCIi8lcOr4cPr4SCDAhpDzfOq9FRVavaI5d14sDRfL7bkcq4metYcNfZRAZ5W12W/EZBaQHTN03nva3vUeoqxdPhybiu4xjbZSyejvo3kawu04iI/JmEH2DmEDOINO0JY7+u00EEwGG38cq1PegQ7k96bhG3zPiFnMISq8uS45YfXM7w+cOZvnk6pa5S+kf2Z96wedwRc0e9DCKgMCIicnrbF5ktIsW5EH0ujFkIvo2trqpK+Hm68e5NfWji78mO5Bzu/ngDpU51+bXS4dzD3L3sbu5Zfg9H8o4Q7hvOS+e/xNSBU2vVpHbVQWFERORUNnwIn9wIzmLocDlcNxc8/a2uqko1DfLmnTG98XK3s2JnGo8v3KouvxYocZYwfdN0hs8fzopDK3CzuXFzl5tZMGwBA5sPbBCTHCqMiIj83qqpsGACGC7ofgOMnAnuXlZXVS26NQvipVE9sNngozUHeX3FXqtLalDWJq3lyi+u5JUNr1DoLKR3WG8+Hfop9/W6Dx93H6vLqzG6gVVE5ATDgOVPwQ/Pm+txd8FF/6l1o6pWtYu7hPP45Z341xfbeH7JTsIDvLiyVzOry6rX0gvSeWHdC3y570sAgr2C+Ufvf3B5q8sbREvI7ymMiIgAuFzw9T/hl+nm+gWPQv/7630QOeGms6NJyirkzR/28cBnm2ji78m57ZpYXVa943Q5+WTXJ7y6/lVySnKwYePq9ldzT897CPAIsLo8yyiMiIg4S2D+nbD5E8x5Zl6o1cO7V5cHLu5AcnYhCzYeYfyH8cy5PY4ukYFWl1VvbE3fypOrn2Tr0a0AdGrcicf6PUbnkM4WV2Y9hRERadhKCmDuWNj1NdjdYMSb0PUqq6uyhN1u4/mrYkjLKeLnvUcZO+MXPh9/FlHBDefeheqQXZzNq+tfZc7OORgY+Lv7c0/PexjZbiQOu8Pq8moF3cAqIg1XYTZ8eJUZRNy8zHlmGmgQOcHDzc60G3vRIdyftJwibnpvLZn5xVaXVScZhsGX+75k6LyhzN45GwODy1pdxsIRC7mmwzUKIr+hMCIiDVNeujmY2YGV4BkAN3wO7QZbXVWtEODlzoyxfWka6MXetDzGzVxHYYnT6rLqlISsBG795lYe/PHBspl1377obZ7p/wwh3iFWl1frKIyISMOTdRjeuwSSNpoT3o35AlqebXVVtUp4oBczbu5LgJcb6w4cY+JsDYpWEYWlhby64VWuXHgla5LX4Onw5O4ed/PZ0M+IjYi1urxaS2FERBqW9D3w7mBI3wUBzeDmxdC0u9VV1UrtwvyZPro3Hg47S7am8NC8zRoU7U+sPLySEQtG8NamtyhxlXBO5DnMGzaP27rdhofDw+ryajXdwCoiDUfSr/DBFZCfDo3bmDPvBtXvYbb/rthWjXnl2h7c+VE8n6w7RICXOw9f1rFBjoVxOil5KTz7y7MsPbAUgFCfUB7s+yCDmg/SeaogtYyISMNw4GeYcbkZRCJiYOxiBZEKurhLOM9e2Q2At1cmMHX5Hosrqh1KXaV8uO1Dhs4fytIDS3HYHNzY6UYWDl/IhS0uVBCpBLWMiEj9t2sJfDIaSguhxdlw7WzwargDTJ2Jkb2jyC4s5clF23jhm10EeLszOq6l1WVZZlPaJp5c/SQ7MnYA0K1JNx7t9ygdgjtYXFndpDAiIvXbprkw/w5wlUK7i2HkDHD3trqqOumWc6LJyi/mle/28NiCrQR4uTO8R6TVZdWorKIsXln/CnN3zcXAIMAjgHt73cuVba/EbtPFhjOlMCIi9dfa6fDV/wEGdBsFw6aCw93qquq0+y5sR1ZBCTNXHeD+ub/i7+XGwI5hVpdV7QzDYNG+Rbyw7gUyCjMAGNp6KJN6TaKxd2OLq6v7FEZEpP4xDHOyu+VPmet9b4eLnwG7/nL9u2w2G48P6Ux2YSnzNhzmzo/WM/PmvvRrVX+/kPdl7eOp1U+xNnktANGB0Tza71H6hPexuLL6Q2FEROoXlwsWPwhr3zTXBzwI5z3YYCa8qwl2u43nrupGTmEJ325PZdzMdcy6NZZuzYKsLq1KFZYWMn3zdN7d8i6lrlI8HZ7c3u12bup8E+5qYatS+jNBROqP0mKYd9vJIHLJc3D+ZAWRauDusPPadT2JjQ4mt6iUG95ew5bDWVaXVWV+O2ZIqauU/pH9mTdsHrd2u1VBpBrYjDowgk12djaBgYFkZWUREKA74EXkFIrzzB4ze75t8BPe1aTcolJGv7OG9QczCfJxZ9a4fnRqWnd/T6fkpfDcL8/xzYFvAHPMkMl9JzOw+UB11T0DFf3+VsuIiNR9+Rnw/jAziLj7wLVzFERqiJ+nGzNv7kv3qCAy80u4/u3V7EjOtrqsSit1lfLBtg8YOn8o3xz4ptyYIYNaaPCy6qaWERGp27IOw4dXQNoO8AqC6+dCVF+rq2pwsgpKuPGdNWw6lEVjXw9m39aPtmH+VpdVIRozpPpU9PtbYURE6q703fDBCMhKBP+mcOPnENrR6qoarKz8Eq57ezVbj2QT4ufJ7Nv60SbUz+qyTiurKIuX17/Mp7s+1Zgh1USXaUSkfjsUb054l5VozjNzyxIFEYsF+rjz4S2xdIwIID23iOumryYhPc/qsv7AMAy+2PsFQ+cPLRu8bGjroSwcvpCR7UYqiFhALSMiUvfsXmrerFqSDxHd4YbPwDfE6qrkuIy8Yq6bvpodyTmEB3gx5/Z+tGjsa3VZAOzN3Mt/Vv+HdSnrAGgV2IpH+j2iMUOqiVpGRKR+2jgLZo0yg0jrC+CmRQoitUywrwcfjoulbagfydmFXPPWaval5VpaU35JPi/Fv8RVC69iXco6vBxeTOw5kU+HfKogUgsojIhI3WAY8ON/Yf54MJzQ9Wqz14xn3bhJsqEJ8fNk1q3mPSNJWYVc/eZqdibnWFLL8oPLGbFgBO9seYdSo5Tzmp3H/OHzGdd1nMYMqSV0mUZEaj+X8/ioqm+Z62fdA4Oe0PDudUB6bhE3vrOW7UnZBPm488HNsXRtFlgjxz6ce5hn1jzDikMrAIjwjWBy38mc3/z8Gjm+qDeNiNQXJYXmqKrbFpjrg6dA3J3W1iSVkpVfwpj31rIxMRN/TzfeG9uH3i2Dq+14Jc4SZm6byZu/vkmhsxA3mxtjOo/htm634ePuU23HlT9SGBGRuq8gE2ZfDwdWgt0dRkzTYGZ1VG5RKTfP+IW1CRl4uzt4e0xvzm5T9ff6rElaw1NrniIhKwGAPuF9eDj2YVoHta7yY8lfUxgRkbot6xB8NBJSt4GHP1zzEbQaYHVV8jcUFDu57YN1/Lg7HQ83O9Nu6MkFHcKq5LPT8tN4ft3zfJ3wNQCNvRpzf+/7ubzV5Ro91ULqTSMidVfSrzB9oBlE/MJh7FcKIvWAt4fZInJhpzCKS13c9n48X21O+lufWeoq5cNtHzJk/hC+Tvgau83OtR2uZeGIhQxpPURBpI5Qy4iI1C67l8Lcm6A4F5p0NId3D4qyuiqpQiVOF5M++ZUvfj2C3QbPXNGNq/tU/r/xxtSN/Gf1f9h5bCcAXUO68ki/R+jUuFNVlyxnqKLf3241WJOIyJ9b9x58eb/ZdTd6AIz6ALxqpueF1Bx3h52XRnXHx93BnHWJ/POzTaTmFDLh/DYVasnIKMzgpfiXmLdnHgABHgHc1+s+rmh7hUZPraMURkTEei4XfPckrPyvuR5zHQx5Gdw8rK1Lqo3DbuOZK7sS7OfBGyv28sI3u0jJLuJfQzvjsJ86kDhdTj7d9Skvb3iZnGJzzJIRbUZwb697Cfaqvt45Uv0URkTEWqVFMP9O2PKpuT7gQTjvQdC1/nrPZrPxwMUdCPP35IlF2/hg9QHScop46ZrueLk7yu27KW0T/1n9H7ZnbAegQ3AHHo59mO6h3S2oXKqa7hkREevkZ8CcG+DAT2B3gyGvQI/rra5KLPDlpiTum7ORYqeLvi2DmT66N4E+7mQUZvDy+pf5fPfnAPi7+3N3z7u5ut3VOOyOv/hUsZruGRGR2i1tF3w8CjL2gWcAXP0+tNbImA3VZd0iCPb14LYP1rF2fwZXvbmSkecdZuaON8guzgZgWOth3NfrPhp7N7a4WqlqahkRkZq3dzl8MgaKsiCouTnHTJh6QAjsSM7mhg8/Id9/Lg6vIwC0b9Seh/s9TI/QHhZXJ5WllhERqZ1+eRu++qfZYyaqH4z6EPyaWF2V1ALpBel8sOd/FDVZiAMwnF7YMgdzV9xd9AgNt7o8qUbqAyUiNcNZaoaQE113u10DYxYqiAglrhI+2PYBQ+YNYeHehQBc1nIYbYufJCc1jltmrOf9VfutLVKqlVpGRKT6FWbB3LGwd5m5PvAxOGeSeswIvyT/wtNrnmZP5h4AOjXuxMOxD9OtSTeKznYy+fPNfL7+MI8t2MrulFweG9IJd4f+jq5vFEZEpHplJMDH10DaDnD3gRFvQqehVlclFkvOS+bFdS+yeP9iAII8g5jYcyIj2owo6yXj6ebgxZExtAvz59nFO/hg9QES0vOYel1PAn3crSxfqphuYBWR6rN3OXw6FgqOgX9TuPZjaNrd6qrEQoWlhczYOoN3Nr9DobMQu83OyHYjubvH3QR6nn603SVbk7lvzkbyi520CvHlnZv6EB3iW4OVy5nQrL0iYh3DgFVTYemjYLigaU+4ZhYERFhdmVjEMAyWHVzGC+te4HDuYQB6hvZkcuxkOgR3qNBnbD2Sxa0z13Ekq5BAb3feuL4nZ7UJqc6y5W9SGBERaxTnwxcTYfMn5nr36+Gy/4K7l7V1iWX2HNvDM788w5qkNQCE+YTxj97/YHDLwZWeVTc1p5Db3o9nY2ImDruNRy/ryJizWmp23lqqot/fZ3QX0NSpU2nZsiVeXl7Exsaydu3a0+47ffp0+vfvT6NGjWjUqBGDBg360/1FpA7LPAjvDjaDiM0BlzwPw6YqiDRQWUVZPLP2Ga764irWJK3Bw+7Bbd1uY+HwhVwcffEZBYhQfy9m39aPYd2b4nQZ/OuLbUycvZH84tJq+AmkplQ6jMyZM4dJkybx+OOPs379emJiYhg8eDCpqamn3H/FihVce+21LF++nFWrVhEVFcVFF13E4cOH/3bxIlKLJPwAb50HyZvAp7HZbTf2NvWYaYBKXaV8vONjLpt3GR9t/win4WRg84EsGL6Au3vcjY+7z9/6fC93By+N6s4jl3XEYbex8NcjDJ/6E/vScqvoJ5CaVunLNLGxsfTp04fXXnsNAJfLRVRUFHfffTcPPvjgX77f6XTSqFEjXnvtNUaPHl2hY+oyjUgtZhiw5k1Y8pA5fkhEDIz6CIKirK5MLPDzkZ95/pfny7rqtglqwz/7/JO4pnHVcry1CRlMmLWetJwi/DzdeGFkNy7uonuTaotquUxTXFxMfHw8gwYNOvkBdjuDBg1i1apVFfqM/Px8SkpKCA7WdM8idV5RLnx2Cyx+4PhAZqPg5iUKIg3Q/qz93L3sbm5fejt7MvcQ5BnEw7EPM3fI3GoLIgB9o4P58u5z6NsymNyiUu74cD1TvtpOqdNVbceUqlepcUbS09NxOp2EhYWV2x4WFsaOHTsq9BkPPPAATZs2LRdofq+oqIiioqKy9ezs7MqUKSI1IXU7fDIa0neZ94dc9CT0u1OXZRqY7OJs3vz1TWbtmEWpqxQ3mxvXdLiGO2Lu+NOuulUpNMCLj26N5bnFO5j+YwJv/rCPXw9l8uq1PWni71kjNcjfU6ODnj3zzDPMnj2bFStW4OV1+hvapkyZwhNPPFGDlYlIpfw6GxbdByX55vghI9+D5v2srkpqUImrhLk75/LGr2+QWZQJQP/I/vyjzz9oFdiqxutxd9h5+LJO9GjeiP+b+yur92Vw2Ss/8t+ru3NOW3X/re0qFUZCQkJwOBykpKSU256SkkJ4+J9PYvTCCy/wzDPP8O2339KtW7c/3Xfy5MlMmjSpbD07O5uoKDX7iliupNC8JBM/w1xvdT5c+Tb46pd9Q2EYBt8f+p4X173I/uz9ALQKbMX/9fk/zok8x9rigEu7RtAuzJ/xH8azOzWXG99dw239W3H/Re3xcNMw8rVVpf7LeHh40KtXL5YtW1a2zeVysWzZMuLiTn9N8LnnnuPJJ59k8eLF9O7d+y+P4+npSUBAQLlFRCyWsQ/eufB4ELHBeZPhhs8URBqQ7Ue3M+6bcdz93d3sz95PsFcwj8Q+wmdDP6sVQeSENqF+LLzrHK6PbY5hwJs/7OPKN35Wb5tarNKXaSZNmsSYMWPo3bs3ffv25aWXXiIvL4+xY8cCMHr0aCIjI5kyZQoAzz77LI899hizZs2iZcuWJCcnA+Dn54efn18V/igiUm22fwHzJ0BRltlt94rp0Gag1VVJDUnNT+XVDa+yYM8CDAw87B7c0OkGxnUdh7+Hv9XlnZK3h4OnRnTl3HZNeOCzTWw+nMVlr6zkiaGdGdm7mQZJq2UqHUZGjRpFWloajz32GMnJyXTv3p3FixeX3dR68OBB7PaTDS5vvPEGxcXFXHXVVeU+5/HHH+df//rX36teRKpXcb7ZZTf+PXM9Khaueg8CI62tS2pEbnEu7219j/e3vk+hsxCAS1pewsReE4n0qxv/BgZ3DiemWRD3zdnIqn1H+ednm/h+dxpPD++qyfZqEQ0HLyKnlrzF7Labdryn3Fn3wMDHwKFf4PVdiauET3d9yrRfp5FRmAFATJMY/q/P/xHTJMbi6s6M02Xw1g/7ePGbnZS6DJoGevHC1TGc1VqXGauT5qYRkTNzYhCzpY+Bswj8wmHENGh9vtWVSTUzDINvD37Ly+tf5kD2AQBaBrRkYs+JDGw+sF5c2vg1MZOJszew/2g+ADf2a8GDl3TA17NGO5c2GAojIlJ5eekw/07YvcRcb3cJDHtNN6k2AOtT1vNi/ItsStsEQLBXMHfG3MkV7a7A3V6/WsNyi0qZ8tV2PlpzEIBmjbx57spumgG4GiiMiEjl7FkG88dDbgo4PGHwU9BnnAYxq+d2H9vNKxteYUXiCgC83bwZ03kMN3W+CV93X0trq24/7Unnn59u4nBmAQDXxzZn8qUd8VMrSZVRGBGRiinOg2+fgLVvmutNOsJV70BYZ2vrkmp1KOcQr298nUX7FmFg4LA5GNF2BHfG3EkTnyZWl1djcotKefbrHXyw2rwsFRnkzXNXdeNstZJUCYUREflrB9fA/DvMMUTAbAm56D/g7m1tXVJt0gvSmb5pOp/s+oRSVykAF7W4iLt63EV0YLTF1Vnn573pPPDZJhIzzFaSa/tG8eDFHdXj5m9SGBGR0ysphOX/gZ9fAwwIiIShr2rskHospziHGVtn8MG2DygoNb9w4yLimNhzIp1D1AoGkFdUynOLdzBzldlK0tjXg4cu7cgVPSPrxc27VlAYEZFTOxwP88ZD+k5zPeY6uHgKeAdZWpZUj/ySfGbtmMWMrTPIKsoCoEvjLkzsNZF+EZpP6FTWJmTw8LzN7E41R2zt2zKYJ4d3oX147RzgrTZTGBGR8kqL4ftnYeX/wHCCbygMeRk6XGp1ZVINCksLmbNzDu9uebdsrJDowGgm9pjIBc0v0F/6f6HE6eLdlQm89O1uCkqcuNlt3HJONPcMbKtuwJWgMCIiJyX+Al9MhNSt5nrnK+CyF8En2Nq6pMoVO4v5bPdnTN80nbSCNACi/KMYHzOeS6MvxWF3WFxh3XI4s4B/f7GVJVvNCWIjAr14fEgnBncOV6CrAIUREYHCbPjuSVg7HTDAO9gMIV2usLoyqWIlrhIW7FnAm5veJDnPnAOsqW9Tbo+5nSGth9S7sUJq2nc7Unh84dayG1zPaRPCw5d1pGOEvpP+jMKISEO340v48h+Qc8Rcj7kWLnoKfBtbW5dUqRJnCQv2LuDtzW9zOPcwAKE+odzW9TauaHsF7hq+v8oUFDt5fcUe3vx+H8VOFzYbXN0rivsvakdogJfV5dVKCiMiDVX2Efj6n+ZMuwCNouHy/2k493qm2FnMvN3zeHvL22UtIY29GjOu6zhGth+Jp8PT4grrr8SMfJ5ZvIMvNyUB4OPhYPyA1ozr3wpvD10G+y2FEZGGxuU0Z9f99gkoyga7mzm53YB/atyQeqTIWcRnuz7jnS3vkJqfCkAT7ybc3OVmrmp3FV5u+gu9psQfyODJRdvZmJgJmPeT/N/g9gzvHondrvtJQGFEpGFJXAtf/R8kbTTXI3ubPWXCu1hallSd/JJ8Ptv9Ge9tea/sxtQwnzBu6XoLV7S9Qi0hFjEMgy82JfHs1zvKhpXvEhnA/Re157x2TRr8Ta4KIyINQU4yLH0cNs021z0D4YJHoM8toF4T9UJWURYf7/iYj7Z/RGZRJgARvhGM6zqO4W2G4+HwsLZAAaCwxMl7P+1n6vI95BaZI9v2bB7EPy5q36An4FMYEanPSothzRvw/XNQnAvYoMcNMPBx8Gs484rUZ6n5qXyw7QM+2fkJ+aXmdPdR/lHc3OVmhrUephtTa6mjuUW8+cM+Zv68n6JSFwD9WgVz/0Xt6dOy4XWlVxgRqa92fwuLH4Cje8z1yN5w6XMQ2cvauqRKJGYn8u7Wd1mwZwElrhIA2jVqx7iu47iwxYW42TXgVl2Qml3I6yv2MmvNQYqdZig5t10T7r+wHTFRQdYWV4MURkTqm9Tt5iWZ3UvMdd9QuPAJ6HYN2O3W1iZ/2+a0zczcNpOlB5biMswvr56hPbml6y30j+zf4O89qKuOZBbw6nd7mLsukVKX+XV7XvsmjB/Qmr7RwfX+v6vCiEh9kX0Elj8FG2eB4TJ7ycTeYfaS8Qq0ujr5G1yGixWJK5i5dSbrU9eXbT8n8hzGdR1HrzC1dtUXB4/m8/Ky3czbcIjjmYReLRoxfkBrLugQWm973yiMiNR1hVmw8iVY/QYcn2WVjkPM+0JC2lpamvw9BaUFfLH3Cz7Y9gH7s/cD4GZ349LoSxndaTTtg9tbW6BUmwNH83jrh33MjT9E8fF7StqF+XHHgNYMiWmKu6N+tXIqjIjUVaVF8Ms78MPzUGBOcEbzOLjw3xDV19ra5G9Jy0/jk12fMGfHHI4VHQPA392fke1Hcl2H6wjzDbO4QqkpqdmFvPvTfj5cfaCs901kkDfj+kczsncUfvVkMj6FEZG6xlkKmz+BFc9A5gFzW0g7GPQvaH8p1PNry/XZprRNfLT9I7458A2lruNfPH6R3NDxBka0HYGvu6/FFYpVsgpK+HD1Ad77KYH03GIA/DzdGNm7GWPiWtIypG7/21AYEakrToSQ75+DYwnmNr8wOP8h6H4DOOrHX0gNTYmzhCUHljBr+yw2p28u2969SXeu73Q9g5oPUs8YKVNY4mRu/CHe+ymBfWl5gPn3x/ntQ7nprJb0bxtSJ292VRgRqe2cpbB5LvzwHGTsM7f5NIazJ0KfceBRt/8iaqjS8tP4dNenfLLrE9IL0gFwt7tzSfQlXNfhOjqHdLa4QqnNXC6DH/ekM+OnBJbvTCvb3rqJL2POaskVPZvVqUs4CiMitZWzFLZ8araEZOw1t/k0NueR6TMOPP2srU8qzWW4WJu8lk92fsLyg8spNcxLMU28mzCq/SiuancVjb01W7JUTkJ6HjN/3s+n8YfK7ivx8XBwebcIRvVpTs/mQbW+tURhRKS2KSkwu+f+/OrJyzHewXD2PdDnVoWQOiizMJMFexcwd9dcDmQfKNvevUl3rut4HYOaD9JIqfK35RaV8ln8Id5ftZ+9xy/hgNkLZ1Sf5ozoEUmwb+2cFkBhRKS2yM8we8esmQb5ZrM93o3MlpC+t4Knv7X1SaUYhsGG1A3M3TWXb/Z/Q7HLvOnQ192Xy1tdzsh2I9U1V6qFYRjEHzjGx2sT+XLzEQpLzK7BHg47F3UOY1SfKM5qHYKjFo1ZojAiYrVjB2D167D+fSgx5xYhsDnETTDnkVFLSJ2Slp/GF/u+YN7ueWVjgwB0DO7I1e2v5tLoS/Fx97GuQGlQsgtLWLjxCHN+SWTz4ayy7aH+ngyNacrwHpF0bhpg+WUchRERqxyONwcq2/I5GE5zW3hXOPte6DRcvWPqkBJXCT8c+oH5u+fz4+EfcR7/7+nt5s1FLS5iVPtRdAnpYvkvfGnYthzOYs4viXyx6QiZ+SVl29uE+jG8e1OGdY8kKtiaoKwwIlKTSgph23xY+5YZRk5odZ7ZO6bV+RonpA7ZfWw3C/cuZOHehWQUZpRtj2kSw4g2I7g4+mKNDSK1TnGpi+93pTF/w2G+3Z5SNmswQO8Wjbi8WwQXd4kgPNCrxmpSGBGpCVmHYN27ED/z5P0gDg/ofAX0Gw9Nu1tanlRcan4qXyd8zRd7v2DnsZ1l2xt7NWZo66EMbzOcVkGtLKxQpOKyC0tYvCWZBRsP8/Peo/z2m75n8yAu6RLBxV3Cq73FRGFEpLq4XJDwPax7B3Z8aU5eBxDQDPrcDD1Gg18Ta2uUCskryePbA9+yaN8i1iStwcD8dehmd6N/ZH9GtBnBOc3Owd2uHjFSdyVnFbJo0xG+3pJM/IFj5V7rGhnIxV3CuaRLOK2aVP19bAojIlUtM9HsmrvxQ8g8eHJ79LnQ9zZod4nuB6kDipxFrDy8kiUJS1ieuJxCZ2HZaz1Ce3B5q8sZ3HIwgZ6aEVnqn5TsQpZsTearzUmsTcgom0EYYOp1PbmsW0SVHq+i39/6zSnyZ0oKYeeXsP4D2LcCjv/ljGcgdBtpDlIW2tHKCqUCip3F/HzkZ5bsNwNIXsnJsRpaBrTk8laXc2mrS4nyj7KwSpHqFxbgxei4loyOa0l6bhFLt6Xw9ZZk1uw7ylmtrRuYTy0jIr9nGHB4PWyaYy6FmSdfa9kfeo6GjkPA3duyEuWvlThLWJW0iiX7l/Ddwe/ILcktey3MJ4zBLQdzccuL1RtGBMgvLsXHo+rbJ9QyIlJZaTvNuWI2f3pyhFSAgEjofj10vw6Co62rT/5SbnEuK4+s5LsD3/Hj4R/LBZBQ71AuankRg1sOpluTbthtdgsrFaldqiOIVIbCiDRsmYmw5TNzrpjkkzOr4u4D7S8xA0ir88HusK5G+VPpBemsSFzBsoPLWJO0hhLXyXEWmng34cIWFzK45WC6h3ZXABGppRRGpOHJSIAdi2D7IkhcfXK73Q3aDIKuI80gollzayXDMNh1bBc/HPqBHw79wK9pv5b1ggFoEdCCC5pfwMDmA+ka0lUBRKQOUBiR+s8wIGXryQCS8psWEGzQ4mzoehV0GgY+wZaVKaeXX5LP6qTV/HDoB348/COp+anlXu/SuEtZAIkOjNY9ICJ1jMKI1E/OEkhcA7sWmwHkt/eA2BzQ4izoOBQ6XAaBkdbVKadkGAa7M3ez+shqVh5eybqUdeUuv3g5vIiNiOXcZudybrNzCfcNt7BaEfm7FEak/shJhj3fwu5vYO9yKMo++ZrDE9oMhA6Xm5dg1AJS66Tlp7EqaRWrjqxiddJq0gvSy73ezK8Z5zY7l/7N+tMnvA+eDk+LKhWRqqYwInVXaTEcXgd7lpkBJHlT+dd9Gpv3gLS/1HzULLm1SlZRFvEp8fyS/Aurk1azJ3NPude9HF70Cu9FXEQc/Zv1JzpAl19E6iuFEak7XC4zcCT8YA7HfmAV/GbwKrBB0x7Q9iJzadpdvWBqkayiLNalrGNd8jrWpaxjZ8bOcjee2rDRqXEn4prGERcRR/fQ7ng4PCysWERqisKI1F4uF6TtgAM/mQFk/49QUH5eBXxCoNUAM3y0Hqg5YWoJwzBIzktmQ+oGNqRuYH3qenYd2/WH/aIDo+kd1pvYiFhiw2MJ8gqq+WJFxHIKI1J7lBbBkQ1w4Gc4uNrsdluYVX4fD39oeTZEDzDnhAntBHZ13bRaiauEXRm72JC6gY1pG9mQuuEPPV4AWgW2ok94H3qH96Z3WG9CvEMsqFZEahuFEbGGYUD2ETgcb973kbjWHILdWVR+P3dfaNYbovtD9HnmZRhNRmcpwzA4lHOIzemb2XJ0C1vSt7D96PZyE84BOGwOOgR3oEdoD7qHdqdXWC+FDxE5Jf1Wl5pRmGWGjcPxJx9zk/+4n28TaB53fOkH4V3BoenbrXLicsv2jO1sO7qNLelb2HJ0C1lFWX/Y19/Dn+5NupeFj86NO+Pj7mNB1SJS1yiMSNXLSTaHVk/61bzhNGlT+XE+TrA5IKwTRPaCyN7m2B/BrUA9JizhdDk5kHOAHUd3sD1jO9sztrMzYyeZRZl/2Nfd7k6H4A50CeliLo270DKwpUY7FZEzojAiZ66kENJ3Qep2SN0GKVvM4JH3x3sFAAhqcTx49DIvvYR3Aw/95VzTDMPgaOFRdh/bbS6Zu9lzbA97s/ZSUFrwh/3dbG60CmpFx+COdAnpQteQrrRr1A53tViJSBVRGJG/VlIIGXvNWW3TdpjBI3U7ZOwDw/XH/W12aNzWvMQS0c0MHeHdwLdxzdfegBmGQXpBOvuy9rEvax8JWQnszdzL7mO7OVZ07JTv8Xbzpl2jdnQI7kDH4I50aNyBNkFtNMCYiFQrhRExuVyQkwRH98DR3ZB+fDm625zZ9jfjQZTjFQRhnaFJB/OSS3iMua4WjxpTUFpAYk4iB7MPciD7AAlZCWVLTknOKd9jt9lp7t+cNkFtaNuoLW0btaVNUBua+zfHobFZRKSGKYw0JKVFZrA4lmDOXHviMWMfZB6A0sLTv9crEELamaEjtBOEdjQXvzDd41EDcopzOJx7mMM5h0nMSeRAzoGy8JGSn3La99ltdqL8o4gOiCY6KJpWga1o26gtrQNb4+XmVYM/gYjI6SmM1CdFOZB1GLIOmeEiKxEyD5oBJPPgqXuv/JbNAY1amKGjcRvzMaStecnFN0ShoxrlleSRlJtEUp65HMo9xOGcw+Zj7uFT9l75rQCPAFoEtDCDR6AZOqIDo2kR0EKjmIpIracwUhe4nJCXboaJnBTzckr2Ecg+XP7xtxPDnY67DzRqafZaadQSgqOhUbT5GBilbrTVIL8kn9T8VFLzU0nJTyE1P5XkvGSS85JJykviSN4RcopPfTnltxp5NqKZfzOa+TWjeUBzWgS0MB/9W2jkUhGp0xRGrOJyQWEm5KZCXprZAyUv/eR6borZRTY3xdxmOCv2uZ6BENgMgppDUJT5GHj8Mai5OXmcWjiqRH5JPmkFaaQXpJuP+eknnxekl4WPigQNMMfpiPCNIMI3gki/SCL9Imnm36zs0dfdt5p/IhERayiMVAWX0xzUq+DYySU/AwoyIP/ob5YMM3DkHzVfc5VW4iA28As179HwD4eAyONL0+NLJAREgKd/tf2Y9V1BaQGZhZkcKzpW9phRmHFyKTAfjxYeJaMw45TdYE/H282bMJ8wwnzCCPUJJcw3rCx4RPhGEO4bjp+HZhUWkYZJYcQwzBs7i3LMyxxF2cef50Dh8fXCrONL5m+eZ0FB5sltZ8orEHxDzZFH/Zr85nko+EeAfxj4hZvbNAz6X3IZLnJLcskpziG3OJfs4myyi7LJKs4iq8hcsouzzefHt2UWZZJZmPmH4cwrwtvNmybeTQjxDiHEO4QmPiefh/qEloUPP3c/bGqREhE5pTP6dps6dSrPP/88ycnJxMTE8Oqrr9K3b9/T7j937lweffRR9u/fT9u2bXn22We59NJLz7joKjPjcnNCNldJ1XyeZwB4B4F3I7PLq0/j3y3B5dd9m4Cbbi4Ec/TP/NJ88kryyC85/nh8/cSSW5JLbnGu+ViSS15xXlnwOLHkluSWm5a+stzt7jTybESQVxBBnkE09mpMsHcwwV7llxPbdelEROTvq3QYmTNnDpMmTWLatGnExsby0ksvMXjwYHbu3EloaOgf9v/555+59tprmTJlCpdffjmzZs1i+PDhrF+/ni5dulTJD3HGXM7yQcTD37zM4RVgPnr6my0Xf1iCzEfPADNgeDcy1+vpzZ9Ol5MiZ1HZUlhaSKGzkMLSwlNuKygtoKC0oNy2/NJ8c3uJ+dqJ9fwS8/FMWiX+jLvdnQCPAPw9/An0DDQXD/MxwDOg7HmgZ2BZ+Gjk2QhvN2+1YIiI1DCbYRiV+jMyNjaWPn368NprrwHgcrmIiori7rvv5sEHH/zD/qNGjSIvL49FixaVbevXrx/du3dn2rRpFTpmdnY2gYGBZGVlERAQUJly/1xmonkzp6e/GURqeCp6wzBwGk6chpNSV2nZcmK9xFVSbnuJq6Tctt+un3he4iwp97zYVXzy0VVCsdNcL3IWlXutyFlEsbOYYufJ5yceS43K3Nvy97jZ3PBx98HX3Rdfd1/zuZsvfh5++Lr74ufuh5+HH37u5ddPBI8Ti0YMFRGxXkW/vyvVMlJcXEx8fDyTJ08u22a32xk0aBCrVq065XtWrVrFpEmTym0bPHgw8+fPP+1xioqKKCo6OZV8dnYFuqyegQ+OrOBQziGchhOX4SpbTqz/dnupq/QPrzld5vNSo/QPz0+8/tv1E0HD6ToePmrwS76quNvd8XJ44enmiafDEy+HF15uXng6PPF288bLzVz3cnjh7eZ9cpvDCx93H7zdvPFx88Hb3fvkczfvsgDiYfdQy4SISANTqTCSnp6O0+kkLCys3PawsDB27NhxyvckJyefcv/k5NMPwDVlyhSeeOKJypR2RhbvX8ymtE3VfpzKctgcuNndcLe742Z3O7nY3HB3uJd7zd3uXrac2M/D4YGH3QN3uzseDvPR3eFetu5h9zAff//c4YGnw9N8tHuWPfdy8yrbV0OFi4hIVauV3TMmT55crjUlOzubqKioKj/OsNbDiA2PxWF3YLfZsWMve+6wHd9ms+Nmc8NuP7nNYXOYz+3maw6bA4fdUe7RbrOXBYjfvvbb9ROvnwgRJ15Xy4CIiDQklQojISEhOBwOUlLKz4WRkpJCeHj4Kd8THh5eqf0BPD098fSs/mv+V7e/utqPISIiIn+uUndsenh40KtXL5YtW1a2zeVysWzZMuLi4k75nri4uHL7AyxduvS0+4uIiEjDUunLNJMmTWLMmDH07t2bvn378tJLL5GXl8fYsWMBGD16NJGRkUyZMgWAiRMnMmDAAF588UUuu+wyZs+ezbp163jrrbeq9icRERGROqnSYWTUqFGkpaXx2GOPkZycTPfu3Vm8eHHZTaoHDx7E/psusmeddRazZs3ikUce4aGHHqJt27bMnz/f+jFGREREpFao9DgjVqi2cUZERESk2lT0+7tmR/kSERER+R2FEREREbGUwoiIiIhYSmFERERELKUwIiIiIpZSGBERERFLKYyIiIiIpRRGRERExFIKIyIiImKpSg8Hb4UTg8RmZ2dbXImIiIhU1Inv7b8a7L1OhJGcnBwAoqKiLK5EREREKisnJ4fAwMDTvl4n5qZxuVwcOXIEf39/bDZblX1udnY2UVFRJCYmas6bv6BzVTk6XxWnc1VxOlcVp3NVcdV5rgzDICcnh6ZNm5abRPf36kTLiN1up1mzZtX2+QEBAfrHWkE6V5Wj81VxOlcVp3NVcTpXFVdd5+rPWkRO0A2sIiIiYimFEREREbFUgw4jnp6ePP7443h6elpdSq2nc1U5Ol8Vp3NVcTpXFadzVXG14VzViRtYRUREpP5q0C0jIiIiYj2FEREREbGUwoiIiIhYSmFERERELNWgw8jUqVNp2bIlXl5exMbGsnbtWqtLstwPP/zAkCFDaNq0KTabjfnz55d73TAMHnvsMSIiIvD29mbQoEHs3r3bmmItNmXKFPr06YO/vz+hoaEMHz6cnTt3ltunsLCQCRMm0LhxY/z8/LjyyitJSUmxqGLrvPHGG3Tr1q1sUKW4uDi+/vrrstd1nk7vmWeewWazce+995Zt0/ky/etf/8Jms5VbOnToUPa6zlN5hw8f5oYbbqBx48Z4e3vTtWtX1q1bV/a6lb/fG2wYmTNnDpMmTeLxxx9n/fr1xMTEMHjwYFJTU60uzVJ5eXnExMQwderUU77+3HPP8corrzBt2jTWrFmDr68vgwcPprCwsIYrtd7333/PhAkTWL16NUuXLqWkpISLLrqIvLy8sn3uu+8+vvjiC+bOncv333/PkSNHuOKKKyys2hrNmjXjmWeeIT4+nnXr1nHBBRcwbNgwtm7dCug8nc4vv/zCm2++Sbdu3cpt1/k6qXPnziQlJZUtK1euLHtN5+mkY8eOcfbZZ+Pu7s7XX3/Ntm3bePHFF2nUqFHZPpb+fjcaqL59+xoTJkwoW3c6nUbTpk2NKVOmWFhV7QIY8+bNK1t3uVxGeHi48fzzz5dty8zMNDw9PY2PP/7Yggprl9TUVAMwvv/+e8MwzHPj7u5uzJ07t2yf7du3G4CxatUqq8qsNRo1amS8/fbbOk+nkZOTY7Rt29ZYunSpMWDAAGPixImGYejf1W89/vjjRkxMzClf03kq74EHHjDOOeec075u9e/3BtkyUlxcTHx8PIMGDSrbZrfbGTRoEKtWrbKwstotISGB5OTkcuctMDCQ2NhYnTcgKysLgODgYADi4+MpKSkpd746dOhA8+bNG/T5cjqdzJ49m7y8POLi4nSeTmPChAlcdtll5c4L6N/V7+3evZumTZvSqlUrrr/+eg4ePAjoPP3ewoUL6d27NyNHjiQ0NJQePXowffr0stet/v3eIMNIeno6TqeTsLCwctvDwsJITk62qKra78S50Xn7I5fLxb333svZZ59Nly5dAPN8eXh4EBQUVG7fhnq+Nm/ejJ+fH56entxxxx3MmzePTp066TydwuzZs1m/fj1Tpkz5w2s6XyfFxsYyY8YMFi9ezBtvvEFCQgL9+/cnJydH5+l39u3bxxtvvEHbtm1ZsmQJ48eP55577mHmzJmA9b/f68SsvSK13YQJE9iyZUu569VSXvv27dm4cSNZWVl8+umnjBkzhu+//97qsmqdxMREJk6cyNKlS/Hy8rK6nFrtkksuKXverVs3YmNjadGiBZ988gne3t4WVlb7uFwuevfuzdNPPw1Ajx492LJlC9OmTWPMmDEWV9dAW0ZCQkJwOBx/uKs6JSWF8PBwi6qq/U6cG5238u666y4WLVrE8uXLadasWdn28PBwiouLyczMLLd/Qz1fHh4etGnThl69ejFlyhRiYmJ4+eWXdZ5+Jz4+ntTUVHr27Imbmxtubm58//33vPLKK7i5uREWFqbzdRpBQUG0a9eOPXv26N/V70RERNCpU6dy2zp27Fh2Wcvq3+8NMox4eHjQq1cvli1bVrbN5XKxbNky4uLiLKysdouOjiY8PLzcecvOzmbNmjUN8rwZhsFdd93FvHnz+O6774iOji73eq9evXB3dy93vnbu3MnBgwcb5Pn6PZfLRVFRkc7T7wwcOJDNmzezcePGsqV3795cf/31Zc91vk4tNzeXvXv3EhERoX9Xv3P22Wf/YeiBXbt20aJFC6AW/H6v9ltka6nZs2cbnp6exowZM4xt27YZt912mxEUFGQkJydbXZqlcnJyjA0bNhgbNmwwAOO///2vsWHDBuPAgQOGYRjGM888YwQFBRkLFiwwNm3aZAwbNsyIjo42CgoKLK685o0fP94IDAw0VqxYYSQlJZUt+fn5ZfvccccdRvPmzY3vvvvOWLdunREXF2fExcVZWLU1HnzwQeP77783EhISjE2bNhkPPvigYbPZjG+++cYwDJ2nv/Lb3jSGofN1wv3332+sWLHCSEhIMH766Sdj0KBBRkhIiJGammoYhs7Tb61du9Zwc3MznnrqKWP37t3GRx99ZPj4+Bgffvhh2T5W/n5vsGHEMAzj1VdfNZo3b254eHgYffv2NVavXm11SZZbvny5AfxhGTNmjGEYZvevRx991AgLCzM8PT2NgQMHGjt37rS2aIuc6jwBxnvvvVe2T0FBgXHnnXcajRo1Mnx8fIwRI0YYSUlJ1hVtkZtvvtlo0aKF4eHhYTRp0sQYOHBgWRAxDJ2nv/L7MKLzZRo1apQRERFheHh4GJGRkcaoUaOMPXv2lL2u81TeF198YXTp0sXw9PQ0OnToYLz11lvlXrfy97vNMAyj+ttfRERERE6tQd4zIiIiIrWHwoiIiIhYSmFERERELKUwIiIiIpZSGBERERFLKYyIiIiIpRRGRERExFIKIyIiImIphRERERGxlMKIiIiIWEphRERERCylMCIiIiKW+n+7Idg4W1OvjQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Consistency using dreal M2.2\n", + "\n", + "opts = {\n", + " \"dreal_precision\": 1e-3,\n", + " \"dreal_log_level\": \"none\",\n", + " \"dreal_mcts\": True,\n", + " }\n", + "\n", + "\n", + "# Configure these bounds (lower, upper) to configure the parameter space\n", + "parameter_bounds = {\"beta\": (0.15, 0.15), \"gamma\": (0.025, 0.025)}\n", + "\n", + "# Set these values for the initial state\n", + "initial_values = {\"S\": 0.99, \"I\": 0.01, \"R\": 0.0}\n", + "\n", + "# Infected constraint bounds\n", + "infected_bounds = (0.45, 0.55)\n", + "infected_timepoints = (45, 55)\n", + "\n", + "# Timepoints\n", + "step_size = 1\n", + "max_time = 60\n", + "\n", + "noise = 1e-3\n", + "\n", + "values= None\n", + "with Solver(name=\"dreal\",\n", + " logic=QF_NRA,\n", + " solver_options=opts\n", + " ) as solver:\n", + " values = run_solver(solver, encode(initial_values, parameter_bounds, infected_bounds, infected_timepoints, max_time=max_time, step_size=step_size, noise=noise, use_compartmental=True))\n", + " pass\n", + " \n", + "if values:\n", + " ax, results = plot_results(values, max_time, step_size)\n", + " # f_pop = results.loc[float(max_time)][[\"S\", \"I\", \"R\"]].sum()\n", + " # print(f\"Population at end: {f_pop}\")\n", + " # s = list(results.S.values)\n", + " # print([s[i]-s[i-1] for i in range(1, len(s))])" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta = 0.17496597557264137, gamma = 0.031891187313515444\n", + " S I R\n", + "0.0 0.990000 0.010000 0.000000\n", + "1.0 0.988268 0.011416 0.000317\n", + "2.0 0.986536 0.012831 0.000634\n", + "3.0 0.984328 0.014535 0.001041\n", + "4.0 0.982120 0.016239 0.001447\n", + "... ... ... ...\n", + "56.0 0.064817 0.467489 0.467939\n", + "57.0 0.059510 0.456578 0.484273\n", + "58.0 0.054202 0.445667 0.500607\n", + "59.0 0.049969 0.436744 0.514973\n", + "60.0 0.045736 0.427821 0.529339\n", + "\n", + "[61 rows x 3 columns]\n" + ] + }, + { + "ename": "ValueError", + "evalue": "No axis named 50 for object type DataFrame", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/funman_venv/lib/python3.8/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(cls, axis)\u001b[0m\n\u001b[1;32m 513\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_AXIS_TO_AXIS_NUMBER\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 514\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 515\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"No axis named {axis} for object type {cls.__name__}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m: 50", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/tmp/ipykernel_37316/215037759.py\u001b[0m in \u001b[0;36m?\u001b[0;34m()\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0;31m# Parameterization using dreal\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 36\u001b[0;31m opts = {\n\u001b[0m\u001b[1;32m 37\u001b[0m \u001b[0;34m\"dreal_precision\"\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;36m1e-2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[0;34m\"dreal_log_level\"\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m\"info\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[0;34m\"dreal_mcts\"\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/funman_venv/lib/python3.8/site-packages/pandas/core/indexing.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(self, axis)\u001b[0m\n\u001b[1;32m 675\u001b[0m \u001b[0;31m# we need to return a copy of ourselves\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 676\u001b[0m \u001b[0mnew_self\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 677\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 678\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 679\u001b[0;31m \u001b[0maxis_int_none\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_axis_number\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 680\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 681\u001b[0m \u001b[0maxis_int_none\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 682\u001b[0m \u001b[0mnew_self\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis_int_none\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/funman_venv/lib/python3.8/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(cls, axis)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_get_axis_number\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcls\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mAxis\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mAxisInt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 513\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_AXIS_TO_AXIS_NUMBER\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 514\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 515\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"No axis named {axis} for object type {cls.__name__}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mValueError\u001b[0m: No axis named 50 for object type DataFrame" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrs0lEQVR4nO3dd3xT1f/H8VeSJt27dFKg7F2gQC1D4SuIiAxFBQVFXD8VF/h1oCJucKF+BUEQAQdDUVCGKKLsXSizjA5ooXTTPZIm9/fHhUKR0WLb2/F5Ph55JLm5yf30As2bc849R6coioIQQgghhEb0WhcghBBCiPpNwogQQgghNCVhRAghhBCakjAihBBCCE1JGBFCCCGEpiSMCCGEEEJTEkaEEEIIoSkJI0IIIYTQlJ3WBZSHzWYjKSkJV1dXdDqd1uUIIYQQohwURSE3N5fAwED0+iu3f9SKMJKUlERwcLDWZQghhBDiOiQmJtKwYcMrvl4rwoirqyug/jBubm4aVyOEEEKI8sjJySE4OLj0e/xKakUYOd814+bmJmFECCGEqGWuNcRCBrAKIYQQQlMSRoQQQgihKQkjQgghhNBUrRgzIoQQQtQ2iqJQUlKC1WrVupQqYzAYsLOz+9fTbkgYEUIIISqZ2WzmzJkzFBQUaF1KlXNyciIgIACTyXTdnyFhRAghhKhENpuN+Ph4DAYDgYGBmEymOjlhp6IomM1m0tLSiI+Pp0WLFled2OxqKhxGNm7cyIcffkhkZCRnzpxh2bJlDBs27KrvWb9+PRMmTODQoUMEBwfz2muv8eCDD15XwUIIIURNZjabsdlsBAcH4+TkpHU5VcrR0RGj0cjJkycxm804ODhc1+dUOMLk5+cTGhrKjBkzyrV/fHw8gwYNom/fvkRFRfHcc8/xyCOP8Pvvv1e4WCGEEKK2uN5WgtqmMn7OCreMDBw4kIEDB5Z7/1mzZhESEsLHH38MQJs2bdi8eTOffPIJAwYMqOjhhRBCCFHHVHls27ZtG/369SuzbcCAAWzbtu2K7ykuLiYnJ6fMTQghhBB1U5WHkeTkZPz8/Mps8/PzIycnh8LCwsu+Z8qUKbi7u5feZJE8IYQQou6qkR1aEydOJDs7u/SWmJiodUlCCCFEnZeWlsYTTzxBo0aNsLe3x9/fnwEDBrBly5YqPW6VX9rr7+9PSkpKmW0pKSm4ubnh6Oh42ffY29tjb29f1aXx1aY4krOL8HQ24eVswtNJvfdyNuLpZMLDyYRBX/cuxxJCCCEuZ/jw4ZjNZhYsWEDTpk1JSUlh3bp1ZGRkVOlxqzyMREREsHr16jLb1q5dS0RERFUf+ppW7j9DVGLWFV/X6cDd0YiXkwnP0rBixMvZvvTe19UeXzd7/Fwd8HAy1slryYUQQvw7iqJQaKn+mVgdjYZyfy9lZWWxadMm1q9fz0033QRA48aN6d69e1WWCFxHGMnLyyMmJqb0eXx8PFFRUXh5edGoUSMmTpzI6dOn+eabbwB4/PHHmT59Oi+++CIPPfQQf/31Fz/88AOrVq2qvJ/iOo3oFkx4iBeZ+WbOFpjP3VvIzDeTXWhBUSCrwEJWgQXS86/5eSaDngYXhRNfN3v83Bxo4Kre+56795TQIoQQ9UqhxUrb16t/SovDbw3AyVS+r3oXFxdcXFxYvnw5N9xwQ7X0UJxX4TCye/du+vbtW/p8woQJAIwZM4b58+dz5swZEhISSl8PCQlh1apVjB8/ns8++4yGDRvy1Vdf1YjLeu/t3uiKr5VYbZwtsJBVGlLMZOZbLoSWfDNpecWk5RaTmltMZr4Zs9XG6axCTmddfmDueUaDDl9XB4I8HAnydKShp2Pp4yAPRwI9HHEwGir7xxVCCCGuyM7Ojvnz5/Poo48ya9YsunTpwk033cTIkSPp2LFjlR5bpyiKUqVHqAQ5OTm4u7uTnZ2Nm5ub1uVclrnERlpeMSk5RaTmFJOWW0Tyucepuer2tNxiMvLN5fq8Bq72F8JKmdDiRENPR5ztZSZ/IYSoiYqKioiPjyckJKR0RtLa0E1zXlFREZs2bWL79u389ttv7Ny5k6+++uqKM6df7uc9r7zf3xJGqpm5xEZ6XjFnsovUVpSzhZzOKuDU2fOPCykwX/svrL+bA818nWnewIVmvi6l976u9tIFJIQQGrral3Nt9Mgjj7B27VpOnjx52dcrI4zIf6+rmclOT+C5rpiwxp7/eF1RFLIKLJzOKuTU2XMhJetCUDl1tpDsQgvJOWrLy5aYsiOcXe3taFoaTi6ElUZeThgNNfJKbiGEEDVY27ZtWb58eZUeQ8JIDaPT6dQrd5xNtA9yv+w+2YUWYtPyiE3NIyYtj9jUfOLS8jiZWUBucQn7ErPYd8lVQkaDjsbeajhpF+hGh4budAhyx9ul+gYoCSGEqLkyMjK4++67eeihh+jYsSOurq7s3r2bDz74gKFDh1bpsSWM1ELujka6NPKkS6OyLSvFJVZOZhQQm5pHbFoeMal5xKblE5uWR4HZSkyqum3NoeTS9wS6O9A+SA0m7c8FFB8JKEIIUe+4uLgQHh7OJ598QmxsLBaLheDgYB599FFeeeWVKj22jBmpB2w2hTM5RcSm5nEsJZcDp7M5cDqb+PR8LvenH3AuoHSUgCKEEBVW18aMXIuMGRHlotfr1CtzPBy5sWWD0u25RRYOJ+WUhpPzAeVMdhFnsotYe/jCzLkB7g50CHInopk3vVv40KyBiwyUFUIIUSkkjNRjrg5Gwpt6E97Uu3RbXnEJh84Fk4Pn7uMuCih/nAso/m4O9GzuQ68W3vRs7oOva91P/0IIIaqGhBFRhou93WUDyuGkHPYknGVLTDo74zNJzinipz2n+GnPKQBa+bnSq4UPvZr70D3ES+ZBEUIIUW7yjSGuycXeju4hXnQP8eLxm5pRZLESefIsm46nszkmjUNJORxNyeVoSi5zN8djNOjo3MiT3s196NnCh45B7tjJZcVCCCGuQMKIqDAHo4GezX3o2dwHaE1mvpmtselsiUln0/F0Tp0tZGd8JjvjM/l47TFcHeyIaOrNwA7+9G/rj4u0mgghhLiIfCuIf83L2cTtHQO5vWMgiqKQkFnApuNqONkSk05OUQl/HE7hj8Mp2Nsd4D+tfRkSGkjf1r6yBo8QQggJI6Jy6XTq5GqNvZ0ZfUNjrDaFA6ez+Ss6hRX7zxCfns9vB5P57WAyziYDt7TzZ3BoAL2aN8BkJ105QghRH0kYEVXKoNfRKdiDTsEejO/fkkNJOazYn8TKfWc4nVXIsr2nWbb3NO6ORga292dwaCA3NPXGoJfLhoUQor6QMCKqjU6no32QO+2D3Hn51tbsSchixb4kVh04Q1puMYt3JbJ4VyI+LvYM6qAGky6NPNFLMBFCiDpNwojQhE6nI6yxJ2GNPZl0e1t2xGewYt8Zfjt4hvS8YhZsO8mCbScJdHfg9tBARnYLpmkDF63LFkKIOu3BBx8kKyuryhfGu5SEEaE5g15Hj2Y+9Gjmw1tD27E5Jp0V+5L441AKSdlFzN4Yx+yNcfyntS8P9QyhZ3Nvmf1VCCHqEAkjokYxGvT0beVL31a+FFmsrD+axo+7E/nraCp/HVFvLf1ceKhnCMM6B8nVOEIIUQdIGBE1loPRwK3t/bm1vT/x6fks2HqCH3Ynciwlj5d/PsD7a44wKrwx90c0xs9NpqMXQtRgigKWguo/rtEJakFLsoQRUSuE+DjzxpB2jO/fkh93JzJ/6wlOnS1k+t8xzNoQy+0dAxjbM4TQYA+tSxVCiH+yFMB7gdV/3FeSwORc/cetIAkjolZxdzTySO+mjO0ZwtrDKXy9OZ6dJzJZHpXE8qgkwhp78lDPEAa085Mp6IUQopaQMCJqJYNeV9qFc/B0Nl9viWfFviQiT54l8uRZAt0dGNOjCSO7NcLdyah1uUKI+s7opLZSaHHcWkDCiKj12ge5M+2eTrw8sDXfb0/gu+0nScouYspvR/j0z+PcF96I/7uxKb4yrkQIoRWdrlZ0l2hF2rFFneHr6sD4/i3Z8vJ/+PCujrQJcKPQYmXu5nh6ffA3k385yJnsQq3LFEIIcQkJI6LOcTAauLtrMKuf6cWCh7oT1tgTc4mNBdtOctMH63l12QFOndVgVLsQQojL0imKomhdxLXk5OTg7u5OdnY2bm5uWpcjahlFUdgWm8Fn646zIz4TADu9jrvCGvJkn+Y08q4dfapCiNqhqKiI+Ph4QkJCcHCo+93DV/t5y/v9LWNGRJ2n0+no0dyHHs192B6Xwed/HWdLTAaLdyXyY+Qp7ugcxLi+zQnxkf5cIYTQgoQRUa/c0NSbG5p6E3kyk8/WxbDxWBpLI0/x855TDO2khpLmvrIGjhBCVCcZMyLqpbDGXnzzUHeWj+vJza19sSmwbO9p+n+ygacX7eVYSq7WJQohRL0hYUTUa52CPZj7YDdWPNWLW9r6oSiwYl8St3yykSe/jyQ2LU/rEoUQos6TMCIE0KGhO7Mf6MrqZ3pzWwd/AFYfSObWTzfy4e9HKDRbNa5QCCHqLgkjQlykbaAbX4wK4/fnbqRvqwZYrAoz/o6l37QNrD2conV5QghRJ0kYEeIyWvm78vWD3fjy/jCCPBw5nVXIo9/s5pEFu0jMlDlKhBCiMkkYEeIKdDodA9r5s3bCjTzRpxlGg44/o1PpN20D0/86TnGJdN0IIURlkDAixDU4mex46dbW/PZsbyKaelNcYuOjP44x8NNNbD6ernV5QghR60kYEaKcmvu6svDRcD4b2YkGrvbEpeczeu4Onlq4h+TsIq3LE0KIWkvCiBAVoNPpGNopiHXP38SDPZqg18HK/We4+eP1fLUpjhKrTesShRDiuj344IPodDp0Oh1Go5GQkBBefPFFioqq9j9cEkaEuA5uDkbeGNKOX5/qRedGHuSbrbyzKprbP9/M7hOZWpcnhBDX7dZbb+XMmTPExcXxySef8OWXXzJ58uQqPaaEESH+hfZB7vz0eA/eH94BDycjR5JzuWvWNv774z7O5pu1Lk8IISrM3t4ef39/goODGTZsGP369WPt2rVVekxZm0aIf0mv1zGiWyP6t/XngzVHWLwrkaWRp9h0PI1PRnSiRzMfrUsUQmhMURQKSwqr/biOdo7odLrrfv/BgwfZunUrjRs3rsSq/knCiBCVxMvZxNThHbm7azAvLN1HXFo+o77awVN9m/PszS2wM0hDpBD1VWFJIeELw6v9uDvu24GT0alC71m5ciUuLi6UlJRQXFyMXq9n+vTpVVShSn47ClHJwhp7svLpXozoGoyiwOd/xTBi9nZOnZXJ0oQQNV/fvn2Jiopix44djBkzhrFjxzJ8+PAqPaa0jAhRBZxMdrx/V0d6tfDhlZ8PEHnyLAM/28TUOzsyqGOA1uUJIaqZo50jO+7boclxK8rZ2ZnmzZsD8PXXXxMaGsrcuXN5+OGHK7u8UhJGhKhCg0MD6RTswTOL97I3IYtxC/ewOSaY129vh6PJoHV5QohqotPpKtxdUhPo9XpeeeUVJkyYwH333YejY8XDTbmOUyWfKoQoFezlxA//F8G4vs3Q6WDRzkQGT99M9JkcrUsTQohruvvuuzEYDMyYMaPKjiFhRIhqYDToeWFAa757OBxfV3tiUvMYOmML32w7gaIoWpcnhBBXZGdnx1NPPcUHH3xAfn5+lRxDp9SC34Q5OTm4u7uTnZ2Nm5ub1uUI8a9k5BXzwtL9/HUkFYD+bf34YHhHPJ1NGlcmhKgMRUVFxMfHExISgoODg9blVLmr/bzl/f6WlhEhqpm3iz1zx3Tl9dvbYjLoWXs4hdv+t4kdcRlalyaEEJqQMCKEBnQ6HQ/1CuHnJ3vQ1MeZM9lF3DtnO9PWHpP1bYQQ9Y6EESE01D7InRVP9+LusIbYFPjfuuPcO2c7SVnVP1OjEEJoRcKIEBpztrfjw7tD+WxkJ1zs7dh14izDZmzhwKlsrUsTQohqIWFEiBpiaKcgVj/Tm9b+rqTmFnPPl9v441Cy1mUJIUSVkzAiRA3SyNuJHx+P4MaWDSi0WPm/7yL5alOcXP4rRC1UX/7dVsbPKWFEiBrG1cHI12O6Miq8EYoC76yK5vVfDsnAViFqCaPRCEBBQf1Yj+r8z3n+574eMh28EDWQnUHPO8PaE+LjzLuro/l2+0kSzxbw+b2dcXW4/n/wQoiqZzAY8PDwIDVVnUvIyckJnU6ncVWVT1EUCgoKSE1NxcPDA4Ph+pe4kEnPhKjh1hxM5rkleymy2Gjt78rXD3Yj0KNq1ocQQlQORVFITk4mKytL61KqnIeHB/7+/pcNXOX9/pYwIkQtsC8xi0e+2U1abjG+rvbMHdONDg3dtS5LCHENVqsVi8WidRlVxmg0XrVFRMKIEHXM6axCHpq3i6MpuTgaDfzv3s70b+undVlCCHFFVTod/IwZM2jSpAkODg6Eh4ezc+fOq+7/6aef0qpVKxwdHQkODmb8+PEUFRVdz6GFqLeCPBz58YkIerfwodBi5bFvdzN3c3y9GbEvhKi7KhxGlixZwoQJE5g8eTJ79uwhNDSUAQMGlA7UudTChQt5+eWXmTx5MtHR0cydO5clS5bwyiuv/Ovihahv3ByMfP1gN+47d6XN2ysPM/lXudJGCFG7VbibJjw8nG7dujF9+nQAbDYbwcHBPP3007z88sv/2P+pp54iOjqadevWlW57/vnn2bFjB5s3by7XMaWbRoiyFEVhzqY4pvx2BEWBPq0aMP2+LrjYywVyQoiao0q6acxmM5GRkfTr1+/CB+j19OvXj23btl32PT169CAyMrK0KycuLo7Vq1dz2223XfE4xcXF5OTklLkJIS7Q6XQ8dmMzZo7qgoNRz/qjadw1cytnsmVNGyFE7VOhMJKeno7VasXPr+ygOT8/P5KTLz9t9X333cdbb71Fr169MBqNNGvWjD59+ly1m2bKlCm4u7uX3oKDgytSphD1xq3tA1jyWAQ+LvYcSc5l6PQtHEqSNW2EELVLlc/Aun79et577z2++OIL9uzZw88//8yqVat4++23r/ieiRMnkp2dXXpLTEys6jKFqLVCgz1YPq4HLf1cSM0tZtRXOzianKt1WUIIUW4VCiM+Pj4YDAZSUlLKbE9JScHf3/+y75k0aRL3338/jzzyCB06dOCOO+7gvffeY8qUKdhslx90Z29vj5ubW5mbEOLKGno6sfSJHoQGe5BVYGH03B3Ep+drXZYQQpRLhcKIyWQiLCyszGBUm83GunXriIiIuOx7CgoK0OvLHub8BClySaIQlcfNwciCsd1o7e9KWm4xo+Zs59TZ+rE2hhCidqtwN82ECROYM2cOCxYsIDo6mieeeIL8/HzGjh0LwAMPPMDEiRNL9x88eDAzZ85k8eLFxMfHs3btWiZNmsTgwYP/1Tz2Qoh/8nAy8e3D4TRt4ExSdhGjv9pBao7M6SOEqNkqfB3giBEjSEtL4/XXXyc5OZlOnTqxZs2a0kGtCQkJZVpCXnvtNXQ6Ha+99hqnT5+mQYMGDB48mHfffbfyfgohRKkGrvZ8/0g493y5jRMZBYz6agdL/i8CL2eT1qUJIcRlyXTwQtRRiZkF3D1rG8k5RbQLdGPhozfg7igr/gohqk+VTgcvhKj5gr2c+O6RcLydTRxKyuGh+bvILy7RuiwhhPgHCSNC1GHNfV347pFw3B2NRJ48y6Pf7KbIYtW6LCGEKEPCiBB1XJsANxY81B1nk4GtsRk8+f0ezCWylo0QouaQMCJEPdAp2IOvH+yGg1HPX0dSGb8kShbXE0LUGBJGhKgnwpt68+X9XTEZ9Kw6cIaXfjqAzVbjx68LIeoBCSNC1CM3tWzA5/d1xqDX8dOeU7z+60GZfFAIoTkJI0LUMwPa+TPtnlB0OvhuewJTfjsigUQIoSkJI0LUQ0M7BTHljg4AzN4Yx//WxWhckRCiPpMwIkQ9NbJ7Iybd3haAT/48xpyNcRpXJISorySMCFGPPdwrhP/e0hKAd1dHs2hngsYVCSHqIwkjQtRz4/o254k+zQCYtPwg2+MyNK5ICFHfSBgRop7T6XS8OKAVg0MDKbEpPPn9HhIzC7QuSwhRj0gYEUKg0+n4YHhH2ge5kZlv5tFvdlNglnVshBDVQ8KIEAIAR5OB2fd3xcfFxJHkXP774z655FcIUS0kjAghSgV6ODJzdBhGg47VB5KZ/pdc8iuEqHoSRoQQZXRr4sVbQ9sD8PHaY/xxKFnjioQQdZ2EESHEP9zbvREPRDQGYPySKI6l5GpckRCiLpMwIoS4rEm3tyWiqTf5ZiuPfrObrAKz1iUJIeooCSNCiMsyGvTMGNWFhp6OnMwo4KmFeymx2rQuSwhRB0kYEUJckZeziTkPdMXJZGBzTDpTfjuidUlCiDpIwogQ4qraBLgx7Z5QAOZujmdp5CmNKxJC1DUSRoQQ13Rr+wCeubkFAK/8fIC9CWc1rkgIUZdIGBFClMtzN7fglrZ+mK02/u/bSFJyirQuSQhRR0gYEUKUi16vY9qITrT0cyE1t5jHvo2kyGLVuiwhRB0gYUQIUW4u9nZ89UA3PJyM7EvM4pVlB2TKeCHEvyZhRAhRIY28nZhxXxcMeh0/7znN3M3xWpckhKjlJIwIISqsZ3MfXhvUBoD3Vkez8ViaxhUJIWozCSNCiOvyYI8m3B3WEJsCTy3cw4n0fK1LEkLUUhJGhBDXRafT8c4d7encyIOcohIe+3Y3BeYSrcsSQtRCEkaEENfN3s7Al6PDaOBqz7GUPF5bdlAGtAohKkzCiBDiX/F1c2D6vZ3VAa17T7NwZ4LWJQkhahkJI0KIfy28qTcvDmgFwJu/Hmb/qSxtCxJC1CoSRoQQleKxG5uWztD6xHd7yCowa12SEKKWkDAihKgUOp2OD+8OpbG3E6ezChm/JAqbTcaPCCGuTcKIEKLSuDsamTkqDHs7PX8fTeOL9TFalySEqAUkjAghKlXbQDfeHtYegGlrj7ElJl3jioQQNZ2EESFEpbunazAjugZjU+CZRXtJzpYVfoUQVyZhRAhRJd4c2o62AW5k5JsZt3APFqtN65KEEDWUhBEhRJVwMBqYNToMVwc7Ik+eZcrqI1qXJISooSSMCCGqTCNvJ6bd0wmAr7fEs2r/GW0LEkLUSBJGhBBVqn9bP/7vpqYAvLh0H7FpeRpXJISoaSSMCCGq3Au3tCI8xIt8s5UnvouUBfWEEGVIGBFCVDk7g57P7+tcuqDeq7KgnhDiIhJGhBDVwtf1woJ6y/ae5vsdsqCeEEIlYUQIUW0uXlDvrRWyoJ4QQiVhRAhRrWRBPSHEpSSMCCGqlSyoJ4S4lIQRIUS1u3RBvZkbYrUuSQihIQkjQghNXLyg3idrj3HwdLbGFQkhtCJhRAihmbvDGnJbB39KbAoTfoiiuMSqdUlCCA1IGBFCaEan0/H20Pb4uJg4lpLHtLXHtC5JCKEBCSNCCE15u9gz5c6OAMzeGEfkyUyNKxJCVDcJI0IIzfVv68fwLg1RFJjwwz6ZLl6IekbCiBCiRnh9cFsC3B04mVHA1N+OaF2OEKIaSRgRQtQI7o5GPrwrFIBvtp1k8/F0jSsSQlQXCSNCiBqjVwsf7r+hMQAvLt1HTpFF44qEENVBwogQokaZeFtrGns7kZRdxFsrDmtdjhCiGlxXGJkxYwZNmjTBwcGB8PBwdu7cedX9s7KyGDduHAEBAdjb29OyZUtWr159XQULIeo2J5MdH98dik4HSyNPsfZwitYlCSGqWIXDyJIlS5gwYQKTJ09mz549hIaGMmDAAFJTUy+7v9lspn///pw4cYKlS5dy9OhR5syZQ1BQ0L8uXghRN3Vt4sVjvZsCMPHn/WTmy2J6QtRlOkVRKrRCVXh4ON26dWP69OkA2Gw2goODefrpp3n55Zf/sf+sWbP48MMPOXLkCEaj8bqKzMnJwd3dnezsbNzc3K7rM4QQtUuRxcqQ6Zs5lpLHbR38mXFfF3Q6ndZlCSEqoLzf3xVqGTGbzURGRtKvX78LH6DX069fP7Zt23bZ9/z6669EREQwbtw4/Pz8aN++Pe+99x5W65WnfS4uLiYnJ6fMTQhRvzgYDUy7pxN2eh2rDyTz674krUsSQlSRCoWR9PR0rFYrfn5+Zbb7+fmRnJx82ffExcWxdOlSrFYrq1evZtKkSXz88ce88847VzzOlClTcHd3L70FBwdXpEwhRB3RPsidp//TAoDXfzlESk6RxhUJIapClV9NY7PZ8PX1Zfbs2YSFhTFixAheffVVZs2adcX3TJw4kezs7NJbYmJiVZcphKihnuzbjA5B7mQXWnjpp/1UsGdZCFELVCiM+Pj4YDAYSEkpO7o9JSUFf3//y74nICCAli1bYjAYSre1adOG5ORkzObLD0qzt7fHzc2tzE0IUT8ZDXqm3ROKyU7P+qNpLNkl/zkRoq6pUBgxmUyEhYWxbt260m02m41169YRERFx2ff07NmTmJgYbDZb6bZjx44REBCAyWS6zrKFEPVJCz9XXrilFQBvrzxMYmaBxhUJISpThbtpJkyYwJw5c1iwYAHR0dE88cQT5OfnM3bsWAAeeOABJk6cWLr/E088QWZmJs8++yzHjh1j1apVvPfee4wbN67yfgohRJ33UK8QujfxIt9s5b8/7sNmk+4aIeoKu4q+YcSIEaSlpfH666+TnJxMp06dWLNmTemg1oSEBPT6CxknODiY33//nfHjx9OxY0eCgoJ49tlneemllyrvpxBC1HkGvY6P7g7l1s82siM+k3lbT/BwrxCtyxJCVIIKzzOiBZlnRAhx3vc7TvLqsoPY2+lZ9Uxvmvu6aF2SEOIKqmSeESGE0Np93RtxY8sGFJfYeP7HfZRYbdd+kxCiRpMwIoSoVXQ6HR8M74ibgx37ErOYuT5W65KEEP+ShBEhRK3j7+7AW0PbA/C/v45zOElmaRaiNpMwIoSolYZ2CmRAOz8sVoUJP0RhLpHuGiFqKwkjQohaSafT8e4dHfByNnEkOZfP/zqudUlCiOskYUQIUWv5uNjz9rnumi/Wx7IvMUvbgoQQ10XCiBCiVhvUMYDbOwZgtSn898d9FFmuvCK4EKJmkjAihKj13h7aHh8Xe46n5vHJn8e0LkcIUUESRoQQtZ6ns4kpd3YAYM7GOCJPntW4IiFERUgYEULUCf3b+nFnlyBsCvz3x30UmqW7RojaQsKIEKLOmDy4HX5u9sSn5/PB70e0LkcIUU4SRoQQdYa7o5H3h3cEYN6WE2yPy9C4IiFEeUgYEULUKX1a+TKyWzAALyzdR35xicYVCSGuRcKIEKLOeXVQG4I8HEnMLOS91dFalyOEuAYJI0KIOsfVwciHd6ndNd/vSGDT8TSNKxJCXI2EESFEndSjuQ8PRDQG4KWl+8kpsmhckRA1U1ZRFqvjVmtag52mRxdCiCr00q2tWX80jYTMAt5ZeZgP7grVuqS6rTAL0o5A6mFIPXefdgQUBbyaXuYWAk5eWlddbymKwh8n/+C9He9xtugsQa5BhDbQ5t+IhBEhRJ3lbG/HR3eHMmL2Nn7YfYpb2/vzn9Z+WpdV+5nzIe0opEafCx7RaujIOX3l9xSkw6md/9zu4HGFoNIUnH1Ap6uyH6M+Sy1I5Z3t7/B34t8ANHNvhp1eu0igUxRF0ezo5ZSTk4O7uzvZ2dm4ublpXY4QopZ5e+Vh5m6Ox9fVnj/G34iHk0nrkmoHmxUy4yB5P6QcvhA+zp4ArvDV4dYQfNtcuDVoDXo79XNKb/HqfW7S1Y9vcgWPRuDqBy7+6r1rALj4gav/hXujY2X/5HWWoigsi1nGR7s+IteSi53Ojkc7PsojHR7BZKj8fxfl/f6WMCKEqPOKLFZu+2wTcen53NE5iE9GdNK6pJrHUqQGjeT9kHwAzuyHlENgyb/8/k4+5wJHW/BtDb7t1HsH9/If01wAZ+MvhJOLw0p2IlcMPJdycL98WGnQGpr0BjsJnwCJuYm8ufVNdiTvAKC9d3ve7PkmLT1bVtkxJYwIIcRF9iSc5a6ZW7Ep8OX9YQxo5691SdopPKsGjvOhI3m/2u2iXGYKfTtH8Gt34ebbBhq0AZcGVVtjSbHaApN9CvJSIDdZveUlX/Q4BUqKrv45Du7QciC0HQLN/lMvW1GsNivfR3/P53s/p8hahIPBgac6P8XoNqMx6A1VemwJI0IIcYmpvx1h1oZYfFxM/DH+Jryc68n/mIvzYO+3cGKzGjyyEi6/n6MXBHQE/3O3gI7g3Ryq+AvruikKFGVBbsq5kJICuWfOhZczcHKr+vg8kwu0uEUNJs37g72LZqVXl+NnjzN562QOpB8AoJt/N96IeINGbo2q5fgSRoQQ4hLFJVYGf76ZYyl5DOoQwIxRXbQuqWqZC2D3XNj8qTqA9GIejcqGDv8O4BZUtwaM2qyQuBMO/wLRKyDn1IXX7BygeT9oMwRa3Vqx7qVawGK18NWBr5h9YDYlthJcjC5M6DqB4S2Go9dV36weEkaEEOIyDpzKZtgXW7DaFD6/tzODQwO1LqnyWYogch5smgb5qeo2r6YQNhYCO6nBw9FT0xKrnaLA6T0Q/Qsc/lUdq3Ke3gjN+qrBpPWgWn+58YG0A7y+9XVismIA6NOwD6/d8Bp+ztV/JZmEESGEuIJpfxzlf3/F4OVsYu34G/F2sde6pMpRUgx7voFNH6vdFKC2gNz0EnQcCQaZzQFQg0nyAYj+VQ0m6UcvvKYzQJNe0H44dLgLTM7a1VlBhSWFzNg7g2+jv8Wm2PBy8GJi94kMaDIAnUYtXhJGhBDiCswlNoZM38yR5FyGdgrks5GdtS7p3ykxQ9T3sPGjC10R7sFw43+h0ygwGLWtr6ZLO6qGksO/QMqBC9sd3KHz/dDtYbVlqQbblbyL17e8zqk89c//9qa382K3F/F00LYFTMKIEEJcxb7ELO74Ygs2BeaO6crNbWrhZGhWC+xbDBs/uDAo1TUQbnxe/RK1qyMtPtUpI1YNJXu+uagrR6cOfO3+mHpFjr7mrKRSYith1r5ZzN4/GwUFf2d/Jt0wiRsb3qh1aYCEESGEuKb3Vkcze2Mc/m4OrJ1wI64OtaQFwVoCB36EDe9f+MJ08YNeEyDsQTA6aFpenWCzQcyfsPNL9f48r2ZqKOl0r+aDXpPzk3lp40vsSd0DwJ0t7uSFri/gYqo5VwlJGBFCiGsoNFu59bONnMwoYFR4I969o4PWJV2dzQoHf4YNUyFDHZyIkw/0Gq92JdTDOTSqRUYs7JyjdoUV56jbTC4QOhK6PapO9lbN1ieu57Utr5FdnI2z0ZnJEZMZGDKw2uu4FgkjQghRDltj07lvjjoj5eLHbuCGpt4aV3QFsX/DmomQFq0+d/SCns9C90dr1SDLWq04D/YvVoNJ2pEL20NuhO7/B60GVvmcLGarmU8iP+G76O8AaOvdlg9v/LDa5g2pKAkjQghRThN/PsCinQk08XZizXM34mCsQZN8ZSXA76+qV36A2jXQ42kIfxzsXbWtrb5SFIjfCDtnw9HVoNjU7e7BagtV5wfAufJDbUJOAi9sfIHDGYcBuL/t/YzvMh5jDR6gLGFECCHKKafIQv9pG0jJKebxm5rx8sDqb3b/B0shbPkfbP4ESgpBp1e7BPpOrH9zhNRkWQmway7sWaBOsw9gsIc2g6HLA+raOJUw4PW3+N94c9ub5Fvycbd3592e73JT8E3/+nOrmoQRIYSogD8Pp/DIN7sx6HUsf7InHRpqNDhRUdT/ba+ZCFkn1W2Ne8FtH6hrw4iayVIIB39SW0vO7Luw3TMEutyvXmLtWvH1kApLCpm6cyo/H/8ZgC6+XXj/xvfxd64daytJGBFCiAp6etFeVuxLok2AG78+1ROjoZov4Uw/Dr+9BLHr1OeugTDgHWh3Z92apr0uUxQ4EwWRC+DAUjDnqtt1Bmh5q9pa0rxfuSagO372OC9seIHY7Fh06His42M8Hvo4dvraM3mdhBEhhKig9Lxi+k/bwNkCCy8MaMW4vs2r58DFubDxQ9j2BdgsYDBBxFPQ+/l6sZhbnWXOh0PL1DlLEndc2O4aCJ1HqXPBeDb+x9sUReGn4z8xdedUiq3F+Dj6MLX3VMIDwqux+MohYUQIIa7D8r2neW5JFCaDntXP9qK5bxUOElUUdb6QPyapq86COrnWrVPBu1nVHVdUv9QjaijZtwgKM89t1EHTPmprSetBYGdPrjmXt7a9xZoTawDoGdiTd3u9i7djDb3K6xokjAghxHVQFIWH5u/i76NphDX25Mf/i0Cvr4IukuQDsPpFSNiqPvcMUUNIq1sr/1ii5igphiMr1WASt/7CdidvDra9lRcKj3GqIAU7nR3PdHmGMe3GVOsqu5VNwogQQlynpKxC+k/bQL7ZyptD2jGmR5PK+/CCTPj7Xdj9tXpJqNFJ7Y6JeEpmTq1vMuNh73dYor5ntqGAOR5uWHU6gnQm3u/+GqGt79C6wn+tvN/ftTduCSFEFQn0cOTl29oA8P6aI5w6W1A5H5y0F2Z0h11fqUGk3Z3w1C51QTsJIvWPVwjHuoxgVIsOzPJ0x6rTcWtePj+ciCV08YOweFTZK3PqMAkjQghxGaO6N6J7Ey8KzFZeWXaQf92InLADFgyB/DRo0BrGrIC754F7w8opWNQqJbYSvjrwFSNXjiT67BHc7d358MYP+fCuFbi1uQPQqd05X94IC0fC6UitS65S0k0jhBBXEJuWx8DPNmEusTHtnlDu7HKdwSF+EywcAZZ8aNwT7lsis6fWYyeyT/DqllfZn7YfgD4N+zC5x2R8HH0u7JR6BDZ9pM5dcn6G1+b94aaXILibBlVfHxkzIoQQleCL9TF8sOYoHk5G1o6/iQau9hX7gJg/1eb2kiJo2hdGLgSTU9UUK2o0m2JjYfRCPtvzGUXWIlyMLrzc/WWGNBuC7krzyKQfh00fw/4fQLGq25r2hT4vQ6Mbqq/46yRhRAghKoHFamPYjC0cSsphUMcAZtzXpfxvPrIKfnwQrGZ1wqu7F8jYkHrqVO4pJm2ZxO6U3QDcEHADb/d8u/wzqWbEwqZp6kJ9thJ1W8iNaktJk15VVPW/J2FECCEqycHT2QydsQWrTeHL+8MY0K4cXyAHf4KfH1O/ONoOhTu/AjtT1RcrahRFUVh6fCkf7fqIgpICHO0cmRA2gRGtRly5NeRqzp5Q1yva+706QR6oXX83vaSGkxo2U6+EESGEqEQfrDnCF+tj8XW1Z+2Em3B3vMpKqVEL4Zdxal9/xxEw9ItyTf8t6pbk/GTe2PoGW5K2AOq6Mu/0fIdgt+B//+FZiedCybdqyxtAw27qYopth9aYFjgJI0IIUYmKLFZu+2wTcen5jOwWzNThHS+/4665sGqC+rjLGLj900pZtVXUHoqisDJuJVN2TCHXkotJb+KZLs8wus1oDHpD5R4s+zRs+Qwi54O1WN3m6KkuzBf2IPi0qNzjVZCEESGEqGS7TmRy96xtAHz/SDg9m/uU3WHbDPj9FfVx+OPqjKo1rNlcVK30wnTe3vY2fyX+BUB77/a82+tdmno0rdoD56aos7ruWQDZiRe2N+mthpI2g8GugoOvK4GEESGEqAKv/3KQb7adJNjLkTXP3oiz/bnul40fwl/vqI97jYebJ0sQqWciUyJ5fv3zZBRlYKe348nQJxnbfmz1rrJrs0LMOnWG3+O/X7gs2MkHOt2nBpNqXPdIwogQQlSBvOISBnyykdNZhTzYowlvDG4Lf72tXn4J0PdVuPEFCSL1iKIoLDqyiA93fUiJUkJzj+ZM7T2VVl6ttC0s+xTs+VZtMclNurC9aR8IG6suzme4ytinSiBhRAghqsim42ncP3cnoLCt8zoCor9WX+j/NvR8RtPaRPUqKini7e1v82vsrwAMbDKQN3q8gZOxBs0lYy1RW0l2z1PnveHc176zL3QeDWFjwLNJlRxawogQQlShiUujaBf1FqPt1qkbbvsIuj+qbVGiWiXlJfHc388RnRmNXqdnQtgEHmj7wPVdsltdzp5UW0r2fgt5Kec26qD5zfCf1yCwc6UeThbKE0KIqmKz8iYzGW23Dpui49cmr0gQqWe2n9nOiJUjiM6MxtPek9n9ZzOm3ZiaHUQAPBvDzZNg/CG451t1NlcUtcXEZtOsLLnwXQghKsJaAj8/iunQzyg6A8+Zn2DF0fYEnsikaxMvrasTVUxRFOYfms+nez7Fptho692WT/t8SoBLgNalVYzBCG2HqLfMODiyGoIqMLtwJZOWESGEKC+bDX55Eg79DHojurvnY9/5HhQFXly6nyKLVesKRRUqsBTwwsYXmBY5DZtiY2izoSy4dUHtCyKX8moKPZ7SdNC1hBEhhCgPRYHV/4X9S0BngHu+gbZDeO32tvi52ROXns+0tce0rlJUkYScBEatHsXvJ37HTmfHK+Gv8HbPt3GwqxkzndZ2EkaEEKI81r0Ju+cCOrhzNrS+DQB3RyNT7uwAwFeb4tiTcFbDIkVV2HhqIyNXjSQmKwYfRx/mDpjLva3vrfnjQ2oRCSNCCHEtmz5W1wEBuP0T6HBXmZf/09qPO7sEYVPghR/3SXdNHWFTbMzaN4un1j1FrjmX0AahLLl9CV38tBtbUVddVxiZMWMGTZo0wcHBgfDwcHbu3Fmu9y1evBidTsewYcOu57BCCFH9dsyGdW+pj295B7qOvexur9/elgau9sSm5fPpn8ersUBRFXLNuTz797PMiJqBgsI9Le9h3oB5+Dr5al1anVThMLJkyRImTJjA5MmT2bNnD6GhoQwYMIDU1NSrvu/EiRP897//pXfv3tddrBBCVKuohfDbC+rjm16CHk9fcVcPJxPv3aF218zeGMu+xKxqKFBUhbisOO5bdR/rE9dj0pt4q8dbTIqYhLGKZyutzyocRqZNm8ajjz7K2LFjadu2LbNmzcLJyYmvv/76iu+xWq2MGjWKN998k6ZNq3ixICGEqAyHf4FfxqmPw5+APhOv+Zb+bf0Y2ikQmwL//XEfxSXSXVPb/J3wN/euupcTOSfwd/ZnwcAF3NHiDq3LqvMqFEbMZjORkZH069fvwgfo9fTr149t27Zd8X1vvfUWvr6+PPzww+U6TnFxMTk5OWVuQghRbWL+hKUPq4uMdR4NA94r92WPbwxuh4+LieOpeXy+LqaKCxWVRVEUZu+fzbN/P0tBSQFd/bqyeNBi2vu017q0eqFCYSQ9PR2r1Yqfn1+Z7X5+fiQnJ1/2PZs3b2bu3LnMmTOn3MeZMmUK7u7upbfg4OCKlCmEENfv5FZYPBpsFmg7DAb/D/Tl/1Xp6WzinWHqF9jMDbEcOJVdRYWKynJ+/pDP936OgsLIViOZfctsvB29tS6t3qjSq2lyc3O5//77mTNnDj4+PuV+38SJE8nOzi69JSYmVmGVQghxTtJeWDgCSgqheX+4cw7oDRX+mFvbB3B7xwCsNoUXlu7DXKLdNNvi6s7knWHMmjGl84e8HvE6r97wKka9jA+pThWaDt7HxweDwUBKSkqZ7SkpKfj7+/9j/9jYWE6cOMHgwYNLt9nOzX1vZ2fH0aNHadas2T/eZ29vj729fUVKE0KIfyf1CHx7JxTnQONeMOJbsDNd98e9OaQd22IzOJKcy/S/Y5jQv2UlFisqQ2RKJBPWTyCzKBMvBy+m9ZlGmF+Y1mXVSxVqGTGZTISFhbFu3brSbTabjXXr1hEREfGP/Vu3bs2BAweIiooqvQ0ZMoS+ffsSFRUl3S9CiJohMx6+HQaFmRDYBe5dBEbHf/WR3i72vDVU7a754u8YDiVJd01N8uOxH3nk90fILMqkjVcbFg9aLEFEQxVeKG/ChAmMGTOGrl270r17dz799FPy8/MZO1a99v6BBx4gKCiIKVOm4ODgQPv2ZQf/eHh4APxjuxBCaCInCb4ZCrlnoEEbGP0TOFx5qfOKGNQxgJX7/fntYDIv/LifX57qidEgc01qyWKz8P7O91lydAkAtza5lbd6voWj3b8Ln+LfqXAYGTFiBGlpabz++uskJyfTqVMn1qxZUzqoNSEhAX0FBnsJIYRm8jPgm2GQdRI8Q+CB5eBUuSvvvjW0PdvjMjh8JoeZ62N55uYWlfr5ovwyizJ5fv3z7E7ZjQ4dT3d+mkc6PCLTutcAOkVRFK2LuJacnBzc3d3Jzs7Gza1y/scihKjnirJhwWA4sw9cA+GhNeDZuEoO9UvUaZ5dHIXRoOPXp3rRJkB+j1W3o5lHeeavZ0jKT8LZ6MzU3lPpE9xH67LqvPJ+f0sThhCi/jHnw8KRahBx8oEHfqmyIAIwJDSQ/m39sFjVq2ssVrm6pjqtPbmW+3+7n6T8JIJdg/n+tu8liNQwEkaEEPVLcS58dxckbAV7d7j/Z2hQtVe66HQ63h3WHndHIwdP5/DlhtgqPZ5Q2RQbM6JmMGH9BApLCokIiGDRoEU08/jnVZxCWxJGhBD1R1EOfDf8XBBxUwerBoRWy6F93RyYPLgtAJ/+eZzIk2er5bj1Vb4lnwnrJzBr3ywA7m97P1/0+wJ3e3eNKxOXI2FECFE/FGapl+8m7gAHd7VrJrhbtZZwR+cgbu8YQIlN4emFezibb67W49cXhzIOcd+q+1iXsA6j3sg7Pd/hxW4vYqev8DUboppIGBFC1H0Fmerlu6cjwdETxqyAoC7VXoZOp2PKnR0I8XEmKbuI53/ch81W468hqDUsNgszo2YyetVo4rLjaODYgHm3zmNo86FalyauQcKIEKJuy8+Ab4bAmShw8laDSDV1zVyOq4OR6fd1xmSn568jqczeFKdZLXVJbFYso1eP5ot9X1CilNC/cX9+GvIToQ20+7MW5SdhRAhRd+WlqZfvJh8AZ194cBX4d9C6KtoFuvPG4HYAfPj7UXadyNS4otrLarMy/+B87llxD4czDuNmcuP93u/z8U0f4+ngqXV5opwkjAgh6qbcFFhwO6QeAhd/NYj4ttG6qlL3dg9maKdArDaFpxfuJVPGj1RYYk4iD/3+EB9HfozZZqZXUC+WDV3GbU1vk4nMahkJI0KIuifnDMwfBGlH1AnNxq6u8st3K0qn0/HeHR1o2sCZ5Jwixi+JkvEj5aQoCj8c/YHhK4azJ3UPTnZOvBHxBl/c/AW+Tr5alyeug4QRIUTdkn0K5t8GGcfBrSGMXQXeNXNeCWd7O74Y1QUHo54Nx9KYKfOPXFNyfjKP//k4b29/m8KSQrr6deWnIT8xvOVwaQ2pxSSMCCHqjqwEmHcbZMaBRyO1RcSrqdZVXVVrfzfeGqIuHPrxH0fZEZehcUU1k6IorIhdwZ2/3MnWpK3YG+x5qdtLzB0wl4auDbUuT/xLEkaEEHVDZjzMG3Rh0bsHV1fpFO+V6e6uDbmzSxA2BZ5etJf0vGKtS6pRMgozGL9+PK9sfoVcSy4dfDrww+AfGN12NHqdfI3VBfKnKISo/TJi1TEi2Qng1UxtEfEI1rqqctPpdLwzrD3NfV1IzS1m/JIorDJ+BIB1J9dx5693si5hHXZ6O57u/DTfDPyGpu41u8VLVIyEESFE7ZZ+XO2ayTkNPi3VIOIWqHVVFeZksmPmqC44Gg1sOp7OF3/HaF2SpgpLCnl186s8t/45MosyaeHZgkWDFvFYx8dkJtU6SMKIEKL2Sj2iBpG8ZPBtq16+6+qvdVXXrYWfK28PU8ePfPLnMbbGpmtckTaS85N5cM2D/Br7K3qdnkc6PMLiQYtp7dVa69JEFZEwIoSonVKPqF0z+ang116dWdWl9l/WeVdYQ+4Oa4hNgWcXR5GWW7/Gj0SlRjFy5UgOZxzG096Tr275ime7PIvJYNK6NFGFJIwIIWqfjFh1iveCdPDvqAYRZx+tq6o0bw1tT0s/F9Jyi3l28d56M35kecxyHvr9ITKKMmjp2ZJFty+im3/1LmYotCFhRAhRu5w9oU7xnpcCvu3U1XedvLSuqlI5mgx8MaoLTiYDW2Mz+N+641qXVKVKbCV8sOsDJm2ZhMVm4eZGN/PtwG8JcgnSujRRTSSMCCFqj+zTsGDIhcGqdTCInNfc15V371DHj/zvr+NsPl43x49kF2czbt04vj38LQBPhD7BtD7TcDI6aVyZqE4SRoQQtUNuito1c34ekQd+BZcGWldVpe7o3JCR3YJRFHhuyV5Sc4q0LqlSxWfHM3r1aLYmbcXRzpGPb/qYJzs9KXOH1EPyJy6EqPnyM+CboZARA+7BMOZXcAvQuqpq8caQdrT2dyU9z8zTi/ZSYrVpXVKl2HRqE6NWjeJEzgkCnAP4ZuA33NLkFq3LEhqRMCKEqNkKz8K3wyAtGlwD1CDi0UjrqqqNg9HAjFFdcDYZ2BGfyad/1u7xI4qiMP/gfJ766ylyLbl08e3CokGL5LLdek7CiBCi5irOhe/uguT94NxA7Zqp4WvNVIVmDVx4784OAEz/O4Y1B5M1ruj6FFuLeXXzq3wc+TE2xcbwFsP56pav8Hb01ro0oTEJI0KImslcAAtHwOnd4OgJ9y+HBi21rkozQzsF8WCPJgA8/0MUx1JytS2oglILUhm7Ziwr4lZg0Bl4JfwVJkdMxmgwal2aqAEkjAghah5LESy+F05uAXs3uH8Z+LfXuirNvTqoDRFNvck3W3n0m91kFZi1LqlcDqYf5N6V93Ig/QDu9u582f9L7m19LzqdTuvSRA0hYUQIUbOUmOGHByBuPRidYdRSCOysdVU1gtGgZ8aoLgR5OHIyo4CnF9X8CdFWxq1kzG9jSC1MpZl7MxbdtojwgHCtyxI1jIQRIUTNYS2Bnx6G47+DnQPctwQayRfXxbycTcx+IAwHo55Nx9P5YM0RrUu6rBJbCR/v/piJmyZitpnp07AP3932HcFutWc1ZVF9JIwIIWoGmxWWPw7Rv4LBBCMXQkhvrauqkdoFuvPhXaEAfLkxjl+iTmtcUVnZxdk8+eeTzD80H4BHOzzKZ//5DBeTi7aFiRpLwogQQns2G6x4Bg78CHo7uOcbaH6z1lXVaINDA3miTzMAXly6n4OnszWuSHXs7DFGrhzJtjPbSicye6bLMzKRmbgq+dshhNCWosBvL8Le70Cnh+FfQauBWldVK/z3llb0adWA4hIbj32zm/Q8bVf4XXtyLaNXj+ZU3imCXIL47rbvZCIzUS4SRoQQ2lEUWDsJds0BdDBsFrS7Q+uqag2DXsdnIzvT1MeZpOwinvx+DxYNZmi1KTb+t+d/TFg/gcKSQm4IuIHFgxbT0rP+XootKkbCiBBCGzYbrJkIWz9Xnw/+DEJHaFtTLeTuaGT2A2G42NuxMz6Tt1Ycrtbj55pzeeavZ5hzYA4AY9qOYWa/mXg4eFRrHaJ2kzAihKh+1hL4ZRzsmKk+v+0jCBujbU21WHNfVz4d0QmdDr7dfpLFOxOq5bhx2XHct+o+NpzagL3Bnvd6vcd/u/0XO71dtRxf1B0SRoQQ1ctSpM4jsm8h6Axwx2zo/qjWVdV6/dr6MaGf2i0y6ZeDRJ7MrNLjbUjcULrQnb+zPwsGLmBws8FVekxRd0kYEUJUn+Jc+P4uOLoKDPYw8nvpmqlET/2nOQPb+2OxKjz+3R6Ss4sq/Rg2xcaX+77k6b+eJs+SR5hfGIsHLaadd7tKP5aoPySMCCGqR34GLBgMJzaByRVG/yRXzVQynU7HR3eH0trflbTcYv7v290UWayV9vn5lnyeX/8806Omo6AwstVI5twyRxa6E/+ahBEhRNXLPg3zBkLSXnD0gjG/yoRmVcTZ3o7Z93fFw8nIvlPZvLrsIIry76eMT8xJZPTq0fyZ8CdGvZE3It7g1RtexaiXhe7EvydhRAhRtTJi4etbIf0ouAXBQ2sgqIvWVdVpjbydmH5vF/Q6+GnPKeZtOfGvPm/r6a2MWDWCmKwYGjg24OsBXzO85fDKKVYIJIwIIapS8gE1iGQngFczNYg0aKV1VfVCrxY+vHJbGwDeXR3Nlpj0Cn+GoijMOziPJ9Y9Qa45l44NOrL49sV08u1UydWK+k7CiBCiaiRsh3mDID8V/DqoQcSjkdZV1SsP9wrhzs5BWG0K4xbuITGzoNzvLSwp5KVNLzEtcho2xcYdze9g3oB5+Dr5VmHFor6SMCKEqHzH/4RvhkFxNjSKgAdXgot8iVU3nU7He3d2oGNDd7IKLDy8YBdn883XfF9SXhJjfhvDb/G/Yaez49XwV3mzx5uYDKZqqFrURxJGhBCV6+BPsGgklBRC8/4w+mdw9NC6qnrLwWjgy/vD8HW151hKHmPm7SSnyHLF/Xcl72LkypFEZ0bj5eDF7FtmM7L1SHQ6XTVWLeobCSNCiMqzex4sfRhsFmh3J4xcCCYnrauq9wLcHfn+kXC8nE3sP5XNQ/N2UWAuKbOPoigsOrKIx/54jLPFZ2nj1YbFgxbTzb+bRlWL+kTCiBCicmz+BFY+ByjQ9SF19V07adavKVr4ufLNQ91xc7Bj98mzPLLgwhwkZquZyVsn896O9yhRShgYMpAFAxcQ4BKgcdWivpAwIoT4dxQF1r4Of76hPu/9PAyaBnqDpmWJf2of5M6Ch7rjbDKwNTaDJ76L5HROMmN/H8uymGXodXqeD3ue93u/j6Odo9blinpEp1TGbDhVLCcnB3d3d7Kzs3Fzc9O6HCHEeTYbrP4v7J6rPu//NvR8RtuaxDVtj8vgwXk7MRtO4BmyEDNZuJpc+fDGD+kZ1FPr8kQdUt7vb1laUQhxfWxWWPEs7P0W0MHgz2Tl3VrihqbejLklle9jvsSMFWddEItum01jd7n0WmhDummEEBVnLYFlj6tBRKeHO76UIFJLWGwW3tn+DgvjPkKnt1KS257kI48xa112pUwbL8T1kJYRIUTFWC3w08Nw+BfQ26kDVdvdoXVVohwyCjN4fsPzRKZEAvBUp6fwUwYxfsk+Fu1MwMGo5/Xb28plvKLaSRgRQpRfSTH8+CAcXQ0GE9w9H1oP0roqUQ6HMg7x3N/PkZyfjLPRmam9p9InuA8A5hKFF5fuZ96WEziZDLwwoLW2xYp6R8KIEKJ8LIWwZDTE/Al2DjDie2jRT+uqRDksj1nOO9vfodhaTBO3Jnz2n89o6t609PV7ugZTbLEy6ZdDzPg7Fkejgaf+00LDikV9I2FECHFt5nx1VtX4jWB0gnsXQdM+WlclrsFsNTN151R+PPYjADc2vJEpvafgZvrnVQ33RzSh0GLlvdVH+OiPYzia7Hi4V0h1lyzqKQkjQoirK8qBhfdAwjYwucCoH6FxD62rEtdwJu8ME9ZP4GDGQXToeLLTkzzW8TH0uitft/DYjc0oMFv59M/jvL3yMI5GA/eFyxU2oupJGBFCXFnhWfhuOJyOBHt3GP0TBMv04DXdtqRtvLjxRbKKs3AzufH+je/TK6hXud777M0tKDRb+XJjHK8uP4CDUc+dXRpWccWivpMwIoS4vIJM+GYoJO8HR0+4fzkEdtK6KnEVNsXG3ANzmR41HZtio41XG6b1mUZD1/KHCZ1Ox8sDW1NosfLNtpP898d9OBgN3NZBpoYXVUfCiBDin/JS1SCSehicfGDMr+DXTuuqxFXkmnN5ZfMrrE9cD8CdLe7klfBXsDfYV/izdDodbwxuR6HZyo+Rp3hm0V7s7fTc3MavcosW4pzrmvRsxowZNGnSBAcHB8LDw9m5c+cV950zZw69e/fG09MTT09P+vXrd9X9hRAay0mCebepQcTFH8auliBSwx07e4yRK0eyPnE9Jr2JNyLe4M0eb15XEDlPr9cxdXhHBocGUmJTePy7SH7dl1R5RQtxkQqHkSVLljBhwgQmT57Mnj17CA0NZcCAAaSmpl52//Xr13Pvvffy999/s23bNoKDg7nllls4ffr0vy5eCFHJshLVIJJxHNwaqkGkQSutqxJXsTJuJaNWjSIhN4EA5wC+GfgNw1sOr5TPNuh1TLsnlEEdA7BYFZ5ZtJevN8dXymcLcbEKL5QXHh5Ot27dmD59OgA2m43g4GCefvppXn755Wu+32q14unpyfTp03nggQfKdUxZKE+IapAZDwuGQHYCeDSGMSvAs7HWVYkrsFgtfLj7QxYdWQRAj8AeTO09FU8Hz0o/ls2m8OaKQyzYdhKAJ/o048UBrWSmVnFN5f3+rlDLiNlsJjIykn79Lkx0pNfr6devH9u2bSvXZxQUFGCxWPDy8qrIoYUQVSk1Wm0RyU4A7+Yw9jcJIjVYSn4KY38fWxpEHuv4GF/c/EWVBBFQu2zeGNKOFwaorWQz18fywtL9WKy2KjmeqH8qNIA1PT0dq9WKn1/ZQUx+fn4cOXKkXJ/x0ksvERgYWCbQXKq4uJji4uLS5zk5ORUpUwhREcf/VKd4N+dCg9bwwK/gKgMVa6qdZ3bywsYXyCzKxNXoypTeU7gp+KYqP65Op2Nc3+Y0cLFn4rIDLI08RUZeMTNGdcHJJNdCiH+nWlftnTp1KosXL2bZsmU4ODhccb8pU6bg7u5eegsODq7GKoWoR3Z8CQvvVoNI415qi4gEkRrJptiYd3Aej659lMyiTFp5tmLJ7UuqJYhc7J5uwXw5Ogx7Oz1/H03jvjk7OJtvrtYaRN1ToTDi4+ODwWAgJSWlzPaUlBT8/f2v+t6PPvqIqVOn8scff9CxY8er7jtx4kSys7NLb4mJiRUpUwhxLdYSWPU8/PYiKDboPBruXwZO0n1aE6UXpvPkn08yLXIaNsXGkGZD+Pa2bwl20+Y/av3a+rHw0XDcHY1EJWYxfNZWTp0t0KQWUTdUKIyYTCbCwsJYt25d6Tabzca6deuIiIi44vs++OAD3n77bdasWUPXrl2veRx7e3vc3NzK3IQQlaQwS20N2fUVoIP+b8GQ6WBn0roycRkbT21k+K/D2ZK0BXuDPZNumMQ7Pd/B0c5R07rCGnux9PEIAtwdiEvLZ/jMrRxJli51cX0q3E0zYcIE5syZw4IFC4iOjuaJJ54gPz+fsWPHAvDAAw8wceLE0v3ff/99Jk2axNdff02TJk1ITk4mOTmZvLy8yvsphBDlkxkPc2+B2L/UBe9GfAc9nwW5KqLGKbYWM3XnVMatG0dmUSYtPVuy5PYl3NPqnhpzFUsLP1d+frIHLXxdSMkp5u5Z29gZn6l1WaIWqnAYGTFiBB999BGvv/46nTp1IioqijVr1pQOak1ISODMmTOl+8+cOROz2cxdd91FQEBA6e2jjz6qvJ9CCHFtJ7fBnP9A+lFwDYSH1kCb27WuSlxGzNkY7l11L99Hfw/A6DajWThoIc08mmlc2T8FuDvy4+MRdG3sSW5RCaPn7uD3Q8lalyVqmQrPM6IFmWdEiH8pahGseAasZgjsDCMXgZusNVLTKIrCD0d/4MPdH1JsLcbLwYu3e77NjQ1v1Lq0ayo0W3l60R7+jE5Fr4N3hnWQFX9F1cwzIoSoZWw2+PNNWP64GkTaDIEHV0sQqYHOFp3lmb+f4Z0d71BsLaZnUE9+GvJTrQgiAI4mA7NGhzGiazA2BV5ZdoDP/jxOLfj/rqgB5OJwIeoqcwEsewyiV6jPez8PfV8DvfwfpKbZfmY7r2x6hbTCNIx6I+PDxjOqzSj0utr1Z2Vn0DN1eAd83ez5/K8YPvnzGGl5Rbw5pD0Gfc0Y5yJqJgkjQtRFOWdg0Ug4EwV6Iwz5HDrdq3VV4hIWq4XPoz5n/sH5KCiEuIfwwY0f0NqrtdalXTedTsfzt7Sigas9k389xHfbE0jNKeaje0JxczBqXZ6ooWpX7BZCXFtSlDpQ9UwUOHrBmF8liNRAJ7JPMPq30cw7OA8Fhbtb3s2S25fU6iBysQcimjD93i6YDHr+OJzC4M83c/B0ttZliRpKwogQdUn0Spg3EHKTwKcVPLoOGvfQuipxEUVRWHZ8GfesvIfDGYdxt3fn0z6f8nrE65rPHVLZBnUMYMn/3UCQhyMnMwq484utfLvthIwjEf8gV9MIUReY8+Gvd2D7TECBpn3h7vng6KFxYeJiyfnJfLDrA9aeXAtAN/9uvNfrPfydrz6DdW2XXWDhv0v3sfawOnv3oA4BTBneQbpt6oHyfn9LGBGitovfCL8+DWdPqM+7PQq3TgWDDAmrKXLNucw9MJfvor+j2FqMnc6OcZ3HMbbdWAx6g9blVQtFUfh6ywmmrI6mxKbQ2NuJGfd1oX2Qu9aliSokYUSIuq4oG/6YBHsWqM/dGsLgT6FFf03LEhdYrBZ+OPYDs/bNIqs4C4Auvl14sfuLtPNup21xGtmbcJanFu7ldFYhJoOeSbe3YfQNjWvMrLKickkYEaIuO7oGVo5Xx4YAdHsE+r0B9q6aliVUiqLwx8k/+GzPZyTmqgt9hriHML7LePoE96n3X7yXdtvc1sGfqcM7SrdNHSRhRIi6KD8D1rwEB35Un3s1VS/bbdJL27pEqT0pe/h498fsT98PgLeDN092epI7W9yJnV66zs47320z9bdoLFaFRl5OfDFKum3qGgkjQtQligKHfobVL0JBOuj0EDEO+rwCJietqxNAXHYcn0Z+yt+JfwPgaOfI2HZjGdNuDE5G+TO6kqjELMZ9v6e02+a129twv3Tb1BkSRoSoK3LOwKrn4egq9blvWxg6HYLCtK1LAJBemM7MqJn8dPwnrIoVvU7PnS3u5MnQJ2ng1EDr8moF6bapuySMCFHbKQrs/Q5+fxWKs0FvB73/q07rbmfSurp6r8BSwILDC5h/cD4FJQUA9Anuw/gu42nq0VTj6mofRVGYt+UEU6Tbpk6RMCJEbXb2JKx4FuLUJn8CO8PQGeBXP6/AqEksVgvLY5fzRdQXpBemA9Deuz0Tuk6gm383jaur/S7ttnlpYGvGRDTGziBzdNZGEkaEqI1sVtj1lbrSriUf7Byg7ytwwziZN0RjRSVFLItZxtcHvyY5PxmAhi4NeTbsWQY0HiBjHCrRpd02LXxdeHVQG/q08tW4MlFREkaEqG1i/oQ/XofUQ+rzRj3UK2V8mmtbVz1XYCngh6M/MP/QfDKKMgDwcfTh4fYPc0+rezAZpMusKiiKwvc7Evjoj6NkFVgAuLFlA169rQ2t/OUS9tpCwogQtUXyAXXysvNdMg7u8J9J0PVh0EvTtFayi7NZeGQh30d/T3axusBbgHMAD7d/mGEthmFvsNe4wvohu8DC9L+PM3/rCSxWBb0ORnZvxPh+LWngKn8GNZ2EESFquuzT8Pe7ELUQUMBggu6PqQNUnby0rq7eyizK5NvD37LoyCLyLfkANHZrzCMdHmFQ00EY9XKFhxZOZuQz9bcj/HZQ7SJzsbfjyb7NeKhnCA7G+jGlfm0kYUSImqooB7Z8Ctu+gJJCdVv74XDz6+DZRMvK6rWU/BTmH5rP0mNLKbIWAdDCswWPdniUWxrfUm/WkKnpdsZn8s6qw+w/pbZWBXk48tLA1gzuGCDjdmogCSNC1DRWC0TOh/VT1YnLQB0Xcss70FDmDNHKqdxTfH3wa5bHLMdiU8cmtPduz6MdH6VPcB/0Oukqq2lsNoVf9p3mgzVHOZOtBsfOjTx4bVBbwhp7alyduJiEESFqCkWBI6vgz8mQEaNu824O/d+CVreB/G9OE3HZccw9MJdVcauwKlYAwvzCeKzjY0QERMj/smuBQrOVrzbFMXNDLAVm9c/w9o4BvHRra4K9ZNbbmkDCiBA1wand6uDUhK3qcycf6PMyhD0IBhl7oIWo1CjmHZzH34l/o6D++usZ2JNHOz5KmJ+0UNVGqTlFfPzHMX6ITERRwGSn56GeITzZt5nM4qoxCSNCaCkzHta9pa4nA+p8IRFPQc9nwUH+Dlc3m2Jj46mNzDs4jz2pe0q3/yf4PzzW8THa+chkcnXB4aQc3l19mC0x6iXY7o5GxvRowoM9muDlLJdga0HCiBBaSI+BrZ9B1CKwWQAddLoP+r4K7kFaV1fvmK1mVsWtYv6h+cRlxwFg1BsZ3GwwY9qNoam7TNte1yiKwt9HU3l3VTSxaerVUA5GPSO7NeKR3iE09JTum+okYUSI6nQ6EjZ/CtEr4FzTP037wi1vg38HLSurl3LNuSw9tpTvDn9HamEqAC5GF+5pdQ+j2ozC10lm8qzrrDaF3w8lM3N9LAdOq1feGPQ6BncM4PE+zWjtL98l1UHCiBBVTVEgdp0aQk5surC95UDo9Rw0ukGryuqt1IJUvjv8HT8c+6F0jhBfJ1/ub3M/d7W8CxeTi8YViuqmKApbYzOYuT6WzTHppdv7tmrAE32a062JpwxWrkISRoSoKtYSOLxcnSsk+YC6TW8HHe5Wx4T4ttGyunopNiuW+YfmszJuJSW2EgCauTfjwfYPMihkEEYZLCyAA6eymbUhltUHz3D+m69LIw8ev6kZ/dr4oddLKKlsEkaEqGyWQoj6HrZ+DmdPqNuMTuqVMTc8CR7BWlZX7yiKwp7UPcw/OJ/1p9aXbg/zC2Nsu7H0bthb5ggRl3UiPZ8vN8bxU+QpzFYbAM19Xfi/G5sytFMQJjv5e1NZJIwIUVkKz6or6e74EvLT1G2OXhD+f+r07TJ1e7VKL0xnRewKlsUsIz47HgAdOm5udDMPtn+Q0AahGlcoaovUnCK+3nKC77efJLdYbVELcHfg4V4h3Nu9Ec72slL2vyVhRIh/KycJts1QZ00156nb3BtBj6eg82gwOWtaXn1isVnYfGozy2KWsfHUxtJJyhwMDgxqOogx7cYQ4h6icZWitsopsrBwRwJzN8eTllsMqGvf3NLOj6GdgujZzBs7g7SWXA8JI0JcD0WBk1th99dw+Jdzl+cCvu3UQant7pDJyqpRXHYcy48v59fYX8koyijd3rFBR+5ofge3NrlVBqWKSlNksbJs72lmb4wjPj2/dLuPi4nbOwYypFMgnYM9ZMBrBUgYEaIiirJh32I1hKQdubC9cU/oNR6a95Np26tJnjmP30/8zrKYZexL21e63cvBiyHNhjCs+TCaeTTTsEJR19lsCnsSzvJLVBKrDpwhM99c+lqwlyNDQ4MY2imQFn6uGlZZO0gYEaI8Tu9RA8jBn8BSoG4zOqlXxnR9CAI7aVpefaEoCpEpkSyLWcbak2spPLeasUFnoHdQb+5ocQe9G/bGqJdWKVG9LFYbm2PS+TUqid8PJZeugQPQJsCNYZ0CGRwaSKCHo4ZV1lwSRoS4EnOBGj52z4WkvRe2N2gD3R6GjveAg7t29dUjyfnJrIhdwfKY5STkJpRuD3EP4Y7mdzC42WB8HH00rFCICwrNVv6MTuGXqNNsOJaGxXrh67N7iBdDOwVyW/sAPGXq+VISRoS4VOoRiJynTtVerM7IiMEEbYeprSCNbpCumGpQVFLEuoR1/BLzC9vPbC9drM7JzomBIQMZ1nwYoQ1CpV9e1Ghn8838djCZX6JOsyM+s3S70aCjZ3Mf+rRswE2tfGni7VSv/y5LGBECoMQM0b/C7nlwcvOF7Z5N1ADSaRQ4y/+8q5qiKOxL28cvsb+wJn4NeZa80te6+nVlaPOh3NL4FpyMsm6IqH2SsgpZuT+JX6KSOJSUU+a1Rl5O3NSyATe1bEBEM+96d7mwhBFRf9lscGqXumLuwZ8uzA2i00Or29QQ0rQv6OVSvaqWnJ/MyriV/BLzCydyTpRuD3QOZEjzIQxpNoRgV5ksTtQdMam5rItOZcOxNHadyCzTlWM06Oja2IubWqnhpLW/a51vNZEwIuoXRYEzUWr4OLQcshMvvOYaAF3GQJcHZOXcalBUUsRfCX/xS+wvbEvaVtoN42jnSP/G/RnabChd/bvK7KiizssvLmFbbAYbjqWx/lgqiZmFZV73dbVXW01aNaBXcx88nOreWBMJI6J+SDl8LoD8DJlxF7abXKH1IGh/JzS7GQz1q2m0uimKwv70/fwSo3bD5FpyS1/r4tuFoc2HMqDJAJyNMlGcqJ8UReFERgEbjqay8Xg6W2PTKbLYSl/X6yA02IPeLRoQHuJF50YeOJlq/+8tCSOi7kqPOdcF8zOkRV/YbucIrW6FdndCi/5glEvtqpLZaiYyJZItp7ew4dSGMt0wAc4BDGmmdsM0cmukXZFC1FBFFiu7T5xlwzG1S+dYSl6Z1+30OtoFuRMe4kW3Jl50a+JZK1tOJIyIuiUrAQ4tU1tBzlyYCAuDSZ2QrP1waHkr2MtsnFUpMSeRTac3sSVpC7uSd5XOBwLq1Oz9G/dnaPOhdPPvJt0wQlTAmexCNhxNY3tcBjvjM0nKLvrHPi39XOh+Lpx0D/EiwL3m/4dLwoio3RQFUg/D8T/gyGo4tfPCazoDNOurtoC0HgSOHpqVWdcVWArYnbKbzac3s+X0ljJzgQA0cGxAz6Ce9AzqSa/AXjI1uxCV5NTZAnbGZ7LrRCY74zOJTcv/xz7BXo50a+JV2noS4uNc4wbEShgRtU9xHsRvUAPI8bWQc/qiF3XQpJc6BqTNUHD21qzMukxRFOKy49h8ejObT28mMiUSy/n1eQA7nR2d/TrTM7AnvYJ60dKzZY375SdEXZSeV8zuE5nsjD/LzhMZHE7KwXbJt7e3s4m2gW60C3Q/d+9GiLczer12/0YljIiaT1Eg/bgaPmLWwoktFxamA3UMSNOb1G6YNoPB1V+7WusoRVE4nXeaval71fEfSVtIzk8us0+AcwC9gnrRM6gn4f7h0vohRA2QW2Qh8uRZdp3IZFf8WaISszBbbf/Yz8lkoE2AGkzanQsqLf1cMdlVTzeqhBFRM5kL4MTmc60ff0DWybKve4ZAywHqANTGvcDooE2ddZTVZuXY2WPsSd3D3tS97E3ZS2phapl9THoT3fy7lXa/hLiFSOuHEDVckcXKkeRcDiVlcygph0NJORw5k0NxyT8DitGgo4Wva2nryfmWFJcqmJBNwoioGWw29YqXE1vU8HFiE5RcNDDLYFK7X5r3V0OIt6zGWpkKLAUcTD9YGj72pe0j31K279lOZ0db77Z08u3EDQE30NW/K452NX9gnBDi6kqsNuLS8zmclFMmpGQXWi67/7wHu9G3tW+l1lDe7+/afxGzqFmKc+HUbkjcCYk71JlQi8tOj4xbQ7Xlo+UAaNJbroCpROmF6USlRqnhI2UvRzKPUKKUlNnHxehCqG8oXXy70Nm3M+192kv4EKIOsjPoaennSks/V4Z1Vid8VBSF01mFpcHk8LmQcia7iGYNtPtdLGFEXD9FgbMnLgSPxJ2QegiUS5oFjc7QMEydfKzFLeDbRhak+5cURSGtMI3ojGgOZxzmcOZhojOiSSlI+ce+vk6+hPmG0dmvM519O9PCowUGvUGDqoUQWtPpdDT0dKKhpxMD2l0Yh5eRV4yXhqsNSxgR5VdSrM7xkbjjQvjI++eXHx6NIDj83K07+LaTGVD/BUVROJN/Rg0dGYeJzowmOiOajKKMy+7f3KO52urh15kuvl0IcA6QMR9CiKvydrHX9PjyDSH+yVqitnikRUPaEUg9AmlHIf0oWM1l99UbIbCTGjwadlPv3QK0qLpOsCk2EnMTic5UWzyiM6KJzowmuzj7H/vqdXqaujeljVcb2nq3pY13G1p5tpKrXYQQtY6EkfrMWqKu55J2LmykRZ8LHcfBWnz59zj5XGjxCA5Xg4hMu35dMgozOJ51nONnL9xis2PLzGp6np3ejhYeLWjj3YbWXq1p692Wlp4tZayHEKJOkDBS1ymK2pVy9qR6GW1m/LnwcUQNHbbLj6rG6AQ+LaFBa2jQSh3n0aA1eDaR8R4VVFhSSFxWHMfOHisTPq7UzWJvsKelZ0vaeLWhjbd6a+HRApOh9q1LIYQQ5SFhpC4oPHshbFx6n5VQ9lLaSxmd1LDRoPWFm29rcG8EellbpLwURSG9MJ1Teac4lXuKhNwEYs7GcDzrOAk5CSj88wp6HToaujakhUcLWni2oKVnS1p4tqCRayMZYCqEqFckjNRkigJF2WrLRl4K5KZAXjLkJqtjOrJOwtkEuMx4gjJ0enALAo/GastGg5bQoI0aQtyDJXSUU2FJIadzT3Mq7xSn805zKlcNHucDSJH1yqHPy8GrNHS08GxBC48WNPNohpPRqRp/AiGEqJkkjGjBaoGCDDVUXBo0yjxOvXqrxsWcfdWrWDwbnwsdF927NQQ7aeK/EkVRKCgpIKMwg4yiDDIKM0gvTCe9MP1C6Mg7RXph+lU/R6/TE+AcQEOXhgS5BtHMvVlp+PBx9Kmmn0YIIWofCSP/ltUCBZlquCg8d1+QcW5b5iXbMqDg7LVbMi5l7w6ufuBy7ubqXzZweDQCk/wP+2JWm5Uccw5ZxVllQsbF95mFmaXPr9aqcTFXoysNXRuqN5eGpY+DXYLxd/HHqDdW8U8mhBB1j4QRRQFLgdodUpil3hdlQ1HWlbcVZUHhuftLZxctL51ebc1w8VXDxcVBw8UXXPwvBJB6fLXK+VaL7OJssoqzyCrOIrs4u/T5xdtzinNKH+eacy87TuNqHO0c8XbwxtvRG28Hb3wcfQh0CSwTPtzt3avoJxVCiPrrusLIjBkz+PDDD0lOTiY0NJTPP/+c7t27X3H/H3/8kUmTJnHixAlatGjB+++/z2233XbdRVeaeYPUybuudEVJeen04OgJTt7g6KXeO517fv5Wut0bnLzAwR3qwSBFi9VCQUkB+ZZ8cs25F26W3LLPL7rlmHPIs+SVPrcq1us+vrPRuUzA8Ha85PFF9zJ+QwghtFHhMLJkyRImTJjArFmzCA8P59NPP2XAgAEcPXoUX99/LrCzdetW7r33XqZMmcLtt9/OwoULGTZsGHv27KF9+/aV8kNcP+VCENEZ1IDg6KHel948Ltnuod7OP3fyVp/X0kGgNsVGUUkRxdZiikqKKLJeeFxsLabYWkxhSWHptsKSQvIt+RRYCigoKSgNGoWWQvX5JdtLbCXXLqIcTHoTHvYeuNm74WHvgYe9B+727rjbu1/2+fnH0m0ihBA1X4VX7Q0PD6dbt25Mnz4dAJvNRnBwME8//TQvv/zyP/YfMWIE+fn5rFy5snTbDTfcQKdOnZg1a1a5jlllq/ZmJaitGg7uYHKp8vkzbIoNq82KxWahRCnBYrVgsV10s1oosZVgtpkv+9r5x2arWb3ZzBRbi7FYLRRbizHbzKWvXfr84u0XBw/Lv20VKieT3oSryRVXkytuJjdcTa64mFxKt7kay24//9jV5IqL0QVHO0eZ0lwIIWqZKlm112w2ExkZycSJE0u36fV6+vXrx7Zt2y77nm3btjFhwoQy2wYMGMDy5cuveJzi4mKKiy/MAJqTc53jMq7h26QNnMo9hVWxUmIrUcOCYlVvtrL3JUoJNts/Xy+xlWCxWUofn79ZlXOhw1aC1Xbu/ZcuIFfDGPVGHAwO2NvZ42BwwMHOAXuDPfYG+9LHzkZnnOyccDY642h0xMnOCSejU+m2i587GdWbo52jtFAIIYS4ogqFkfT0dKxWK35+fmW2+/n5ceTIkcu+Jzk5+bL7JycnX/E4U6ZM4c0336xIaddlzYk17E/bX+XHuRqj3qjeDMbSx3Z6O0x6E0aDEZPehJ3erszrRr0Re4M9JoNJvelNFx4bTBde06uPjYZz+5/b73ywuDRwyERbQgghtFAjr6aZOHFimdaUnJwcgoODK/04Q5sNJdw/HDu9HQadAYPeoN5f/Phy2y56fv69dno7jHpj6ePzrxl1ari4eJudzq40dEjXgxBCiPquQmHEx8cHg8FASkrZZeNTUlLw9/e/7Hv8/f0rtD+Avb099vZVv5zxPa3uqfJjCCGEEOLqKnQJiMlkIiwsjHXr1pVus9lsrFu3joiIiMu+JyIiosz+AGvXrr3i/kIIIYSoXyrcTTNhwgTGjBlD165d6d69O59++in5+fmMHTsWgAceeICgoCCmTJkCwLPPPstNN93Exx9/zKBBg1i8eDG7d+9m9uzZlfuTCCGEEKJWqnAYGTFiBGlpabz++uskJyfTqVMn1qxZUzpINSEhAf1Fc2706NGDhQsX8tprr/HKK6/QokULli9fXgPmGBFCCCFETVDheUa0UGXzjAghhBCiypT3+7t2ThsqhBBCiDpDwogQQgghNCVhRAghhBCakjAihBBCCE1JGBFCCCGEpiSMCCGEEEJTEkaEEEIIoSkJI0IIIYTQlIQRIYQQQmiqwtPBa+H8JLE5OTkaVyKEEEKI8jr/vX2tyd5rRRjJzc0FIDg4WONKhBBCCFFRubm5uLu7X/H1WrE2jc1mIykpCVdXV3Q6XaV9bk5ODsHBwSQmJsqaN9cg56pi5HyVn5yr8pNzVX5yrsqvKs+Voijk5uYSGBhYZhHdS9WKlhG9Xk/Dhg2r7PPd3NzkL2s5ybmqGDlf5SfnqvzkXJWfnKvyq6pzdbUWkfNkAKsQQgghNCVhRAghhBCaqtdhxN7ensmTJ2Nvb691KTWenKuKkfNVfnKuyk/OVfnJuSq/mnCuasUAViGEEELUXfW6ZUQIIYQQ2pMwIoQQQghNSRgRQgghhKYkjAghhBBCU/U6jMyYMYMmTZrg4OBAeHg4O3fu1LokzW3cuJHBgwcTGBiITqdj+fLlZV5XFIXXX3+dgIAAHB0d6devH8ePH9emWI1NmTKFbt264erqiq+vL8OGDePo0aNl9ikqKmLcuHF4e3vj4uLC8OHDSUlJ0ahi7cycOZOOHTuWTqoUERHBb7/9Vvq6nKcrmzp1Kjqdjueee650m5wv1RtvvIFOpytza926denrcp7KOn36NKNHj8bb2xtHR0c6dOjA7t27S1/X8vd7vQ0jS5YsYcKECUyePJk9e/YQGhrKgAEDSE1N1bo0TeXn5xMaGsqMGTMu+/oHH3zA//73P2bNmsWOHTtwdnZmwIABFBUVVXOl2tuwYQPjxo1j+/btrF27FovFwi233EJ+fn7pPuPHj2fFihX8+OOPbNiwgaSkJO68804Nq9ZGw4YNmTp1KpGRkezevZv//Oc/DB06lEOHDgFynq5k165dfPnll3Ts2LHMdjlfF7Rr144zZ86U3jZv3lz6mpynC86ePUvPnj0xGo389ttvHD58mI8//hhPT8/SfTT9/a7UU927d1fGjRtX+txqtSqBgYHKlClTNKyqZgGUZcuWlT632WyKv7+/8uGHH5Zuy8rKUuzt7ZVFixZpUGHNkpqaqgDKhg0bFEVRz43RaFR+/PHH0n2io6MVQNm2bZtWZdYYnp6eyldffSXn6Qpyc3OVFi1aKGvXrlVuuukm5dlnn1UURf5eXWzy5MlKaGjoZV+T81TWSy+9pPTq1euKr2v9+71etoyYzWYiIyPp169f6Ta9Xk+/fv3Ytm2bhpXVbPHx8SQnJ5c5b+7u7oSHh8t5A7KzswHw8vICIDIyEovFUuZ8tW7dmkaNGtXr82W1Wlm8eDH5+flERETIebqCcePGMWjQoDLnBeTv1aWOHz9OYGAgTZs2ZdSoUSQkJAByni7166+/0rVrV+6++258fX3p3Lkzc+bMKX1d69/v9TKMpKenY7Va8fPzK7Pdz8+P5ORkjaqq+c6fGzlv/2Sz2Xjuuefo2bMn7du3B9TzZTKZ8PDwKLNvfT1fBw4cwMXFBXt7ex5//HGWLVtG27Zt5TxdxuLFi9mzZw9Tpkz5x2tyvi4IDw9n/vz5rFmzhpkzZxIfH0/v3r3Jzc2V83SJuLg4Zs6cSYsWLfj999954okneOaZZ1iwYAGg/e/3WrFqrxA13bhx4zh48GCZ/mpRVqtWrYiKiiI7O5ulS5cyZswYNmzYoHVZNU5iYiLPPvssa9euxcHBQetyarSBAweWPu7YsSPh4eE0btyYH374AUdHRw0rq3lsNhtdu3blvffeA6Bz584cPHiQWbNmMWbMGI2rq6ctIz4+PhgMhn+Mqk5JScHf31+jqmq+8+dGzltZTz31FCtXruTvv/+mYcOGpdv9/f0xm81kZWWV2b++ni+TyUTz5s0JCwtjypQphIaG8tlnn8l5ukRkZCSpqal06dIFOzs77Ozs2LBhA//73/+ws7PDz89PztcVeHh40LJlS2JiYuTv1SUCAgJo27ZtmW1t2rQp7dbS+vd7vQwjJpOJsLAw1q1bV7rNZrOxbt06IiIiNKysZgsJCcHf37/MecvJyWHHjh318rwpisJTTz3FsmXL+OuvvwgJCSnzelhYGEajscz5Onr0KAkJCfXyfF3KZrNRXFws5+kSN998MwcOHCAqKqr01rVrV0aNGlX6WM7X5eXl5REbG0tAQID8vbpEz549/zH1wLFjx2jcuDFQA36/V/kQ2Rpq8eLFir29vTJ//nzl8OHDymOPPaZ4eHgoycnJWpemqdzcXGXv3r3K3r17FUCZNm2asnfvXuXkyZOKoijK1KlTFQ8PD+WXX35R9u/frwwdOlQJCQlRCgsLNa68+j3xxBOKu7u7sn79euXMmTOlt4KCgtJ9Hn/8caVRo0bKX3/9pezevVuJiIhQIiIiNKxaGy+//LKyYcMGJT4+Xtm/f7/y8ssvKzqdTvnjjz8URZHzdC0XX02jKHK+znv++eeV9evXK/Hx8cqWLVuUfv36KT4+PkpqaqqiKHKeLrZz507Fzs5Oeffdd5Xjx48r33//veLk5KR89913pfto+fu93oYRRVGUzz//XGnUqJFiMpmU7t27K9u3b9e6JM39/fffCvCP25gxYxRFUS//mjRpkuLn56fY29srN998s3L06FFti9bI5c4ToMybN690n8LCQuXJJ59UPD09FScnJ+WOO+5Qzpw5o13RGnnooYeUxo0bKyaTSWnQoIFy8803lwYRRZHzdC2XhhE5X6oRI0YoAQEBislkUoKCgpQRI0YoMTExpa/LeSprxYoVSvv27RV7e3uldevWyuzZs8u8ruXvd52iKErVt78IIYQQQlxevRwzIoQQQoiaQ8KIEEIIITQlYUQIIYQQmpIwIoQQQghNSRgRQgghhKYkjAghhBBCUxJGhBBCCKEpCSNCCCGE0JSEESGEEEJoSsKIEEIIITQlYUQIIYQQmpIwIoQQQghN/T+UmAGSwnfQvwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Parameterization using dreal\n", + "\n", + "opts = {\n", + " \"dreal_precision\": 1e-2,\n", + " \"dreal_log_level\": \"info\",\n", + " \"dreal_mcts\": True,\n", + " }\n", + "\n", + "\n", + "# Configure these bounds (lower, upper) to configure the parameter space\n", + "parameter_bounds = {\"beta\": (0.12, 0.22), \"gamma\": (0.015, 0.035)}\n", + "\n", + "# Set these values for the initial state\n", + "initial_values = {\"S\": 0.99, \"I\": 0.01, \"R\": 0.0}\n", + "\n", + "# Infected constraint bounds\n", + "infected_bounds = (0.45, 0.55)\n", + "infected_timepoints = (45, 55)\n", + "\n", + "# Timepoints\n", + "step_size = 2\n", + "max_time = 60\n", + "\n", + "noise = 1e-4\n", + "\n", + "values= None\n", + "with Solver(name=\"dreal\",\n", + " logic=QF_NRA,\n", + " solver_options=opts\n", + " ) as solver:\n", + " values = run_solver(solver, encode(initial_values, parameter_bounds, infected_bounds, infected_timepoints, max_time=max_time, step_size=step_size, noise=noise, use_compartmental=True))\n", + " pass\n", + " \n", + "if values:\n", + " ax, results = plot_results(values, max_time, step_size)\n", + " \n", + " # f_pop = results.loc[float(max_time)][[\"S\", \"I\", \"R\"]].sum()\n", + " # print(f\"Population at end: {f_pop}\")\n", + " # s = list(results.S.values)\n", + " # print([s[i]-s[i-1] for i in range(1, len(s))])" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving smtlib file: dan.smt2\n" + ] + } + ], + "source": [ + "# Save SMTLIB file\n", + "\n", + "# from funman.utils.smtlib_utils import smtlibscript_from_formula_list\n", + "\n", + "# formula = encode(initial_values, parameter_bounds, infected_bounds, infected_timepoints, max_time=max_time, step_size=step_size, noise=noise, use_compartmental=True)\n", + "# filename = \"dan.smt2\"\n", + "# with open(filename, \"w\") as f:\n", + "# print(f\"Saving smtlib file: {filename}\")\n", + "# smtlibscript_from_formula_list(\n", + "# [formula],\n", + "# logic=QF_NRA,\n", + "# ).serialize(f, daggify=False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "eval_point(): beta = 0.12, gamma = 0.015\n", + "Unsat\n", + "eval_point(): beta = 0.12, gamma = 0.02\n", + "Unsat\n", + "eval_point(): beta = 0.12, gamma = 0.025\n", + "Unsat\n", + "eval_point(): beta = 0.12, gamma = 0.030000000000000002\n", + "Unsat\n", + "eval_point(): beta = 0.12, gamma = 0.035\n", + "Unsat\n", + "eval_point(): beta = 0.145, gamma = 0.015\n", + "Unsat\n", + "eval_point(): beta = 0.145, gamma = 0.02\n", + "Unsat\n", + "eval_point(): beta = 0.145, gamma = 0.025\n", + "eval_point(): beta = 0.145, gamma = 0.030000000000000002\n", + "Unsat\n", + "eval_point(): beta = 0.145, gamma = 0.035\n", + "Unsat\n", + "eval_point(): beta = 0.16999999999999998, gamma = 0.015\n", + "Unsat\n", + "eval_point(): beta = 0.16999999999999998, gamma = 0.02\n", + "Unsat\n", + "eval_point(): beta = 0.16999999999999998, gamma = 0.025\n", + "Unsat\n", + "eval_point(): beta = 0.16999999999999998, gamma = 0.030000000000000002\n", + "eval_point(): beta = 0.16999999999999998, gamma = 0.035\n", + "Unsat\n", + "eval_point(): beta = 0.195, gamma = 0.015\n", + "Unsat\n", + "eval_point(): beta = 0.195, gamma = 0.02\n", + "Unsat\n", + "eval_point(): beta = 0.195, gamma = 0.025\n", + "Unsat\n", + "eval_point(): beta = 0.195, gamma = 0.030000000000000002\n", + "Unsat\n", + "eval_point(): beta = 0.195, gamma = 0.035\n", + "Unsat\n", + "eval_point(): beta = 0.22, gamma = 0.015\n", + "Unsat\n", + "eval_point(): beta = 0.22, gamma = 0.02\n", + "Unsat\n", + "eval_point(): beta = 0.22, gamma = 0.025\n", + "Unsat\n", + "eval_point(): beta = 0.22, gamma = 0.030000000000000002\n", + "Unsat\n", + "eval_point(): beta = 0.22, gamma = 0.035\n", + "Unsat\n", + "[{'beta': 0.12, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.12, 'gamma': 0.02, 'assignment': '0'}, {'beta': 0.12, 'gamma': 0.025, 'assignment': '0'}, {'beta': 0.12, 'gamma': 0.030000000000000002, 'assignment': '0'}, {'beta': 0.12, 'gamma': 0.035, 'assignment': '0'}, {'beta': 0.145, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.145, 'gamma': 0.02, 'assignment': '0'}, {'beta': 0.145, 'gamma': 0.025, 'assignment': '1'}, {'beta': 0.145, 'gamma': 0.030000000000000002, 'assignment': '0'}, {'beta': 0.145, 'gamma': 0.035, 'assignment': '0'}, {'beta': 0.16999999999999998, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.16999999999999998, 'gamma': 0.02, 'assignment': '0'}, {'beta': 0.16999999999999998, 'gamma': 0.025, 'assignment': '0'}, {'beta': 0.16999999999999998, 'gamma': 0.030000000000000002, 'assignment': '1'}, {'beta': 0.16999999999999998, 'gamma': 0.035, 'assignment': '0'}, {'beta': 0.195, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.195, 'gamma': 0.02, 'assignment': '0'}, {'beta': 0.195, 'gamma': 0.025, 'assignment': '0'}, {'beta': 0.195, 'gamma': 0.030000000000000002, 'assignment': '0'}, {'beta': 0.195, 'gamma': 0.035, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.02, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.025, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.030000000000000002, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.035, 'assignment': '0'}]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHHCAYAAAC4BYz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHPElEQVR4nO3de3yMd/7//+dMzhKJEOIUkoqq1qmbkKLFara01KdbW3VoHaqtz2qtrLaL/X5K6SGKtqpUW2vp7lKlW+XDoihdJUUdus4UQaPOlWhCEpn374/5mU+nCZJIchnX4367ze2WvOd9va/XO1eumedc1zUzDmOMEQAAgM04rS4AAADACoQgAABgS4QgAABgS4QgAABgS4QgAABgS4QgAABgS4QgAABgS4QgAABgS4QgAABgS4QgACjCmjVr5HA4tGbNGqtLuS7p6elyOByaNWtWsfr3799fsbGx5VoTcKMgBAHlZNasWXI4HJ5bcHCwbr31Vj377LM6ceKE1eWVq/Xr1+ull17SuXPnKmR9zZo1U7169XS1bwFq27atoqOjdenSpQqp6Xr079/f638nPDxczZs31xtvvKHc3FyrywNuGv5WFwDc7MaOHau4uDhdvHhRX331laZNm6Z//etf2rFjhypVqmR1eeVi/fr1GjNmjPr3768qVaqU+/r69OmjESNGaO3atWrXrl2h+9PT05WWlqZnn31W/v6+8bAXFBSkv/zlL5Kkc+fO6Z///Keef/55bdq0SXPnzi32OPXr19eFCxcUEBBQrP7Tp0+Xy+UqVc2Ar+FIEFDO7r//fj322GN68sknNWvWLKWkpOjQoUNauHDhdY3rcrl08eLFMqrSN+Tk5BTZ3rt3bzkcDs2ZM6fI+z/66CMZY9SnT5/yLK9M+fv767HHHtNjjz2mZ599VqtWrVJiYqI+/vhjHTt2rNjjXD4K6efnd9V+2dnZkqSAgAAFBQVdV+2AryAEARWsY8eOkqRDhw5JkiZOnKg2bdqoWrVqCgkJUUJCgj755JNCyzkcDj377LOaPXu27rjjDgUFBWnZsmWlGmP+/Pm6/fbbFRISotatW2v79u2SpPfff1/x8fEKDg5Whw4dlJ6eXmiMDRs2qHPnzoqIiFClSpXUvn17rVu3znP/Sy+9pBdeeEGSFBcX5zml8/Ox/vGPfyghIUEhISGqWrWqevbsqaNHj3qtp0OHDmrSpIk2b96sdu3aqVKlSvrzn/9c5N80JiZG7dq10yeffKL8/PxC98+ZM0cNGjRQUlKSDh8+rMGDB6tRo0YKCQlRtWrV9MgjjxQ511+KjY1V//79C7V36NBBHTp08GrLzc3V6NGjFR8fr6CgIMXExOhPf/pTqU9nOZ1OzzrS09N19uxZPf/882ratKnCwsIUHh6u+++/X99++63XckVdE9S/f3+FhYXpwIEDeuCBB1S5cmVPQPzlNUGXl584caI++OADNWjQQEFBQWrZsqU2bdpUqM7L/1vBwcFq0qSJFixYUOR1RnPnzlVCQoIqV66s8PBwNW3aVG+//Xap/jZAafnGcWHgJnLgwAFJUrVq1SRJb7/9trp166Y+ffooLy9Pc+fO1SOPPKLFixerS5cuXst+8cUXmjdvnp599llFRUV5nlhKMsbatWu1aNEiPfPMM5Kk1NRUde3aVX/605/07rvvavDgwfrxxx81fvx4PfHEE/riiy+81n///fcrISFBo0ePltPp1MyZM9WxY0etXbtWrVq10sMPP6x9+/bpo48+0ltvvaWoqChJUvXq1SVJr776ql588UX16NFDTz75pE6dOqV33nlH7dq109atW71On505c0b333+/evbsqccee0zR0dFX/Lv26dNHTz/9tJYvX66uXbt62rdv364dO3Zo1KhRkqRNmzZp/fr16tmzp+rWrav09HRNmzZNHTp00K5du8rkFKXL5VK3bt301Vdf6emnn1bjxo21fft2vfXWW9q3b58+++yzUo378/+dgwcP6rPPPtMjjzyiuLg4nThxQu+//77at2+vXbt2qXbt2lcd69KlS+rUqZPuvvtuTZw48ZrznjNnjs6fP69BgwbJ4XBo/Pjxevjhh3Xw4EHPqbYlS5bo0UcfVdOmTZWamqoff/xRAwcOVJ06dbzGWrFihXr16qV7771Xr7/+uiRp9+7dWrdunYYOHVqqvw1QKgZAuZg5c6aRZFauXGlOnTpljh49aubOnWuqVatmQkJCzPfff2+MMSYnJ8druby8PNOkSRPTsWNHr3ZJxul0mp07dxZaV0nGCAoKMocOHfK0vf/++0aSqVmzpsnKyvK0jxw50kjy9HW5XKZhw4amU6dOxuVyea07Li7O/OY3v/G0TZgwwWvZy9LT042fn5959dVXvdq3b99u/P39vdrbt29vJJn33nuv0HyLcvbsWRMUFGR69erl1T5ixAgjyezdu9dT7y+lpaUZSeZvf/ubp2316tVGklm9erWnrX79+qZfv36Flm/fvr1p37695/e///3vxul0mrVr13r1e++994wks27duqvOpV+/fiY0NNScOnXKnDp1ynz33XfmtddeMw6HwzRr1swYY8zFixdNQUGB13KHDh0yQUFBZuzYsV5tkszMmTO9xpdkRowYUeS669evX2j5atWqmbNnz3raFy5caCSZ//3f//W0NW3a1NStW9ecP3/e07ZmzRojyWvMoUOHmvDwcHPp0qWr/h2A8sbpMKCcJScnq3r16oqJiVHPnj0VFhamBQsWeF4dh4SEePr++OOPyszM1D333KMtW7YUGqt9+/a6/fbbC7WXZIx7773X69REUlKSJKl79+6qXLlyofaDBw9KkrZt26b9+/erd+/eOnPmjE6fPq3Tp08rOztb9957r/79739f84LaTz/9VC6XSz169PAsf/r0adWsWVMNGzbU6tWrvfoHBQVpwIABVx3zssjISD3wwANatGiR5/oWY4zmzp2rxMRE3XrrrYX+Vvn5+Tpz5ozi4+NVpUqVIv9epTF//nw1btxYt912m9c8L58K/eU8i5Kdna3q1aurevXqio+P15///Ge1bt1aCxYskOT+2zid7ofwgoICnTlzRmFhYWrUqFGx5/H73/++2HN69NFHFRkZ6fn9nnvukfR//x/Hjh3T9u3b1bdvX4WFhXn6tW/fXk2bNvUaq0qVKsrOztaKFSuKvX6gPHA6DChnU6dO1a233ip/f39FR0erUaNGnicvSVq8eLFeeeUVbdu2zet6EYfDUWisuLi4ItdRkjHq1avn9XtERIQk93U1RbX/+OOPkqT9+/dLkvr163fFuWZmZno9Uf7S/v37ZYxRw4YNi7z/l+9gqlOnjgIDA6843i/16dNHCxYs0MKFC9W7d2+tX79e6enpXqdYLly4oNTUVM2cOVMZGRleb6vPzMws9rquZv/+/dq9e7fnFOAvnTx58ppjBAcH63//938luQNPXFyc6tat67nf5XLp7bff1rvvvqtDhw6poKDAc9/lU61X4+/v7zXetfzy/+bydr78/3H48GFJUnx8fKFl4+PjvYLZ4MGDNW/ePN1///2qU6eO7rvvPvXo0UOdO3cudj1AWSAEAeWsVatWSkxMLPK+tWvXqlu3bmrXrp3effdd1apVSwEBAZo5c2aR73T6+VGM0o5xpXcJXan9cki4fJRnwoQJatGiRZF9f34EoCgul0sOh0NLly4tcn2/XL6o+V5N165dFRERoTlz5qh3796aM2eO/Pz81LNnT0+fIUOGaObMmUpJSVHr1q0VEREhh8Ohnj17XvNIVlGhUnIfifn5fFwul5o2bao333yzyP6/DJxF8fPzU3Jy8hXvf+211/Tiiy/qiSee0Msvv6yqVavK6XQqJSWlWG9x//mRpOK41v9HSdSoUUPbtm3T8uXLtXTpUi1dulQzZ85U37599eGHH5Z4PKC0CEGAhf75z38qODhYy5cv93pb8syZMyt0jOJo0KCBJCk8PPyqT87SlcNCgwYNZIxRXFyc5/RUWQoKCtLvfvc7/e1vf9OJEyc0f/58dezYUTVr1vT0+eSTT9SvXz+98cYbnraLFy8W64MdIyMji+x3+PBh3XLLLZ7fGzRooG+//Vb33nvvFf8W1+uTTz7Rr3/9a82YMcOr/dy5c56L0StS/fr1JUnfffddofuKagsMDNSDDz6oBx98UC6XS4MHD9b777+vF198scijSUB54JogwEJ+fn5yOBxepzLS09NL9O6hshijOBISEtSgQQNNnDhRP/30U6H7T5065fk5NDRUkgoFhocfflh+fn4aM2ZMoSMIxhidOXPmuuvs06eP8vPzNWjQIJ06darQZwP5+fkVWvc777zj9fe7kgYNGujrr79WXl6ep23x4sWF3t7fo0cPZWRkaPr06YXGuHDhgueapetR1Dzmz5+vjIyM6x67NGrXrq0mTZrob3/7m9f/x5dffun5CIbLfrmdnU6nmjVrJkl8IjYqFEeCAAt16dJFb775pjp37qzevXvr5MmTmjp1quLj4/Wf//ynwsYoDqfTqb/85S+6//77dccdd2jAgAGqU6eOMjIytHr1aoWHh3uuYUlISJAk/b//9//Us2dPBQQE6MEHH1SDBg30yiuvaOTIkUpPT9dDDz2kypUr69ChQ1qwYIGefvppPf/889dVZ/v27VW3bl0tXLhQISEhevjhh73u79q1q/7+978rIiJCt99+u9LS0rRy5cpiXUfz5JNP6pNPPlHnzp3Vo0cPHThwQP/4xz88R8kue/zxxzVv3jz993//t1avXq22bduqoKBAe/bs0bx587R8+fIrniItrq5du2rs2LEaMGCA2rRpo+3bt2v27NleR6Qq2muvvab/+q//Utu2bTVgwAD9+OOPmjJlipo0aeIVjJ588kmdPXtWHTt2VN26dXX48GG98847atGihRo3bmxZ/bAfjgQBFurYsaNmzJih48ePKyUlRR999JFef/11/fa3v63QMYqrQ4cOSktLU2JioqZMmaIhQ4Zo1qxZqlmzpv74xz96+rVs2VIvv/yyvv32W/Xv31+9evXyHCkaMWKE/vnPf8rpdGrMmDF6/vnntWjRIt13333q1q3bddfodDrVq1cvSdKDDz7o9Y43yf2ZSn379tXs2bP13HPP6YcfftDKlSuveT2TJHXq1ElvvPGG9u3bp5SUFKWlpWnx4sWFLjB2Op367LPPNG7cOG3fvl3PP/+8xowZo02bNmno0KFlcirwz3/+s5577jktX75cQ4cO1ZYtW7RkyZJiXW9UXh588EF99NFHysvL04gRI/Tpp59q1qxZatSokYKDgz39HnvsMQUHB3s+l+rDDz/Uo48+qqVLl5boOiXgejlMaa5qAwCgmFq0aKHq1avzlnjccIjcAIAykZ+fr0uXLnm1rVmzRt9++22hrxUBbgQcCQIAlIn09HQlJyfrscceU+3atbVnzx699957ioiI0I4dO4p13RVQkbgwGgBQJiIjI5WQkKC//OUvOnXqlEJDQ9WlSxeNGzeOAIQbEkeCAACALXFNEAAAsCVCEAAAsCWuCSqCy+XSsWPHVLly5XL7yHsAAFC2jDE6f/68ateuXazPnCIEFeHYsWOWfuAYAAAovaNHjxb6ENOiEIKKcPkTZo8eParw8HCLqwEAAMWRlZWlmJiYQp8UfyWEoCJcPgUWHh5OCAIAwMcU91IWLowGAAC2RAgCAAC2RAgCAAC2RAgCAAC2RAgCAAC2RAgCAAC2RAgCAAC2RAgCAAC2RAgCAAC2RAgCAAC2dEOEoKlTpyo2NlbBwcFKSkrSxo0br9h3+vTpuueeexQZGanIyEglJyd79c/Pz9fw4cPVtGlThYaGqnbt2urbt6+OHTtWEVMBAAA+wvIQ9PHHH2vYsGEaPXq0tmzZoubNm6tTp046efJkkf3XrFmjXr16afXq1UpLS1NMTIzuu+8+ZWRkSJJycnK0ZcsWvfjii9qyZYs+/fRT7d27V926davIaRXtwgVp3z7pCnODDzh7Vtq7Vzp/3upKUBrGSN9/L333nZSfb3U1KI1Ll9zb7+hR9/aE78nOdj+OnjljdSVyGGPtf1FSUpJatmypKVOmSJJcLpdiYmI0ZMgQjRgx4prLFxQUKDIyUlOmTFHfvn2L7LNp0ya1atVKhw8fVr169a45ZlZWliIiIpSZmVl2X6CalSVNnizt2iWFh0tPPSUlJJTN2KgY+/ZJ777rDrH160tDh0o1a1pdFUpi+XJp3jwpN1dKSpIGDZICA62uCsWVny9Nny6tX+/ebt27S126WF0VSuLUKentt6WDB6Vq1aTBg6XGjcts+JI+f1t6JCgvL0+bN29WcnKyp83pdCo5OVlpaWnFGiMnJ0f5+fmqWrXqFftkZmbK4XCoSpUqRd6fm5urrKwsr1uZ27rVfatTx300YcmSsl8Hytfq1dLhw1JMjLR7t7Rhg9UVoSTy8qTFi91PpFFR0rp17mAL33HggPTVV1LVqpLL5X4czcmxuiqUxMaN0s6dUt26UkaGtHKlpeVYGoJOnz6tgoICRUdHe7VHR0fr+PHjxRpj+PDhql27tleQ+rmLFy9q+PDh6tWr1xVTYWpqqiIiIjy3mJiYkk2kOPz9JafTvcNeuiQFBZX9OlC+AgLcD7zZ2ZLD4d6m8B1Op3sb5ua690N/f7ahr7m8zS5ccG/HgADJz8/qqlAS/v7ux8+cHPfjqcVHYi2/Juh6jBs3TnPnztWCBQsUHBxc6P78/Hz16NFDxhhNmzbtiuOMHDlSmZmZntvRo0fLvtiEBKlDB/eOGx8vPfxw2a8D5atzZ6lZM/cD8F13SXffbXVFKAl/f6l3b+nyi64HHpBuvdXamlAyDRpIXbu6n0SjotzbkxeUvqVNG6ltW+niRalJE8tPZ1p6TVBeXp4qVaqkTz75RA899JCnvV+/fjp37pwWLlx4xWUnTpyoV155RStXrlRiYmKh+y8HoIMHD+qLL75QtWrVil1XuVwTJLlT77lzUmgoO66vys93XxQdEcErUF+Vk+M+NRYR4X4yhW8xRsrMdB8FCg21uhqURkGBexuGhZX5kSCfuiYoMDBQCQkJWrVqlafN5XJp1apVat269RWXGz9+vF5++WUtW7bsqgFo//79WrlyZYkCULlyOt3nsglAvisgwL0NCUC+q1IlqUoVApCvcjjc248A5Lv8/NyPozfAmxIsPyE+bNgw9evXT4mJiWrVqpUmTZqk7OxsDRgwQJLUt29f1alTR6mpqZKk119/XaNGjdKcOXMUGxvruXYoLCxMYWFhys/P1+9+9ztt2bJFixcvVkFBgadP1apVFXgD/NEBAID1LA9Bjz76qE6dOqVRo0bp+PHjatGihZYtW+a5WPrIkSNyOv/vgNW0adOUl5en3/3ud17jjB49Wi+99JIyMjK0aNEiSVKLFi28+qxevVodOnQo1/kAAADfYPnnBN2Iyu2aIAAAUG586pogAAAAqxCCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALRGCAACALd0QIWjq1KmKjY1VcHCwkpKStHHjxiv2nT59uu655x5FRkYqMjJSycnJhfobYzRq1CjVqlVLISEhSk5O1v79+8t7GgAAwIdYHoI+/vhjDRs2TKNHj9aWLVvUvHlzderUSSdPniyy/5o1a9SrVy+tXr1aaWlpiomJ0X333aeMjAxPn/Hjx2vy5Ml67733tGHDBoWGhqpTp066ePFiRU0LAADc4BzGGGNlAUlJSWrZsqWmTJkiSXK5XIqJidGQIUM0YsSIay5fUFCgyMhITZkyRX379pUxRrVr19Zzzz2n559/XpKUmZmp6OhozZo1Sz179rzmmFlZWYqIiFBmZqbCw8Ovb4IAAKBClPT529IjQXl5edq8ebOSk5M9bU6nU8nJyUpLSyvWGDk5OcrPz1fVqlUlSYcOHdLx48e9xoyIiFBSUtIVx8zNzVVWVpbXDQAA3NwsDUGnT59WQUGBoqOjvdqjo6N1/PjxYo0xfPhw1a5d2xN6Li9XkjFTU1MVERHhucXExJR0KgAAwMdYfk3Q9Rg3bpzmzp2rBQsWKDg4uNTjjBw5UpmZmZ7b0aNHy7BKAABwI/K3cuVRUVHy8/PTiRMnvNpPnDihmjVrXnXZiRMnaty4cVq5cqWaNWvmab+83IkTJ1SrVi2vMVu0aFHkWEFBQQoKCirlLAAAgC+y9EhQYGCgEhIStGrVKk+by+XSqlWr1Lp16ysuN378eL388statmyZEhMTve6Li4tTzZo1vcbMysrShg0brjomAACwF0uPBEnSsGHD1K9fPyUmJqpVq1aaNGmSsrOzNWDAAElS3759VadOHaWmpkqSXn/9dY0aNUpz5sxRbGys5zqfsLAwhYWFyeFwKCUlRa+88ooaNmyouLg4vfjii6pdu7Yeeughq6YJAABuMJaHoEcffVSnTp3SqFGjdPz4cbVo0ULLli3zXNh85MgROZ3/d8Bq2rRpysvL0+9+9zuvcUaPHq2XXnpJkvSnP/1J2dnZevrpp3Xu3DndfffdWrZs2XVdNwQAAG4uln9O0I2IzwkCAMD3+NTnBAEAAFiFEAQAAGyJEAQAAGyJEAQAAGyJEAQAAGyJEAQAAGyJEAQAAGyJEFSRLlyQ9u2TTp60uhKU1tmz0t690vnzVleC0jBG+v576bvvpPx8q6tBaVy65N5+R4+6tyd8T3a2+3H0zBmrK7H+E6NtIytLmjxZ2rVLCg+XnnpKSkiwuiqUxL590rvvukNs/frS0KHSNb7oFzeYzz+X5s2TcnOlpCRp0CApMNDqqlBc+fnS9OnS+vXu7da9u9Sli9VVoSROnZLefls6eFCqVk0aPFhq3NiycjgSVFG2bnXf6tRxH01YssTqilBSq1dLhw9LMTHS7t3Shg1WV4SSyMuTFi92P5FGRUnr1rmDLXzHgQPSV19JVatKLpf7cTQnx+qqUBIbN0o7d0p160oZGdLKlZaWQwiqKP7+ktPp3mEvXZKCgqyuCCUVEOB+4M3OlhwO9zaF73A63dswN9e9H/r7sw19zeVtduGCezsGBEh+flZXhZLw93c/fubkuB9PLT4SSwiqKAkJUocO7h03Pl56+GGrK0JJde4sNWvmfgC+6y7p7rutrggl4e8v9e4t/f9fzqwHHpBuvdXamlAyDRpIXbu6n0SjotzbkxeUvqVNG6ltW+niRalJE8tPZ/IFqkUoty9Qdbmkc+ek0FB2XF+Vn+++KDoiglegvionx31qLCLC/WQK32KMlJnpPgoUGmp1NSiNggL3NgwLK/MjQSV9/uZYcEVyOt3nsuG7AgLYhr6uUiX3Db7J4ZCqVLG6ClwPP78b5nGU02EAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWCEEAAMCWLA9BU6dOVWxsrIKDg5WUlKSNGzdese/OnTvVvXt3xcbGyuFwaNKkSYX6FBQU6MUXX1RcXJxCQkLUoEEDvfzyyzLGlOMsAACAr7E0BH388ccaNmyYRo8erS1btqh58+bq1KmTTp48WWT/nJwc3XLLLRo3bpxq1qxZZJ/XX39d06ZN05QpU7R79269/vrrGj9+vN55553ynAoAAPAxDmPhIZKkpCS1bNlSU6ZMkSS5XC7FxMRoyJAhGjFixFWXjY2NVUpKilJSUrzau3btqujoaM2YMcPT1r17d4WEhOgf//hHserKyspSRESEMjMzFR4eXrJJAQAAS5T0+duyI0F5eXnavHmzkpOT/68Yp1PJyclKS0sr9bht2rTRqlWrtG/fPknSt99+q6+++kr333//FZfJzc1VVlaW1w0AANzc/K1a8enTp1VQUKDo6Giv9ujoaO3Zs6fU444YMUJZWVm67bbb5Ofnp4KCAr366qvq06fPFZdJTU3VmDFjSr1OAADgeyy/MLqszZs3T7Nnz9acOXO0ZcsWffjhh5o4caI+/PDDKy4zcuRIZWZmem5Hjx6twIoBAIAVLDsSFBUVJT8/P504ccKr/cSJE1e86Lk4XnjhBY0YMUI9e/aUJDVt2lSHDx9Wamqq+vXrV+QyQUFBCgoKKvU6AQCA77HsSFBgYKASEhK0atUqT5vL5dKqVavUunXrUo+bk5Mjp9N7Wn5+fnK5XKUeEwAA3HwsOxIkScOGDVO/fv2UmJioVq1aadKkScrOztaAAQMkSX379lWdOnWUmpoqyX0x9a5duzw/Z2RkaNu2bQoLC1N8fLwk6cEHH9Srr76qevXq6Y477tDWrVv15ptv6oknnrBmkgAA4IZk6VvkJWnKlCmaMGGCjh8/rhYtWmjy5MlKSkqSJHXo0EGxsbGaNWuWJCk9PV1xcXGFxmjfvr3WrFkjSTp//rxefPFFLViwQCdPnlTt2rXVq1cvjRo1SoGBgcWqibfIAwDge0r6/G15CLoREYIAAPA9PvM5QQAAAFYiBAEAAFsiBAEAAFsiBAEAAFsiBAEAAFsiBAEAAFsiBAEAAFsiBAEAAFsiBAEAAFsiBAEAAFsiBAEAAFsiBAEAAFsiBAEAAFsiBAEAAFsiBAEAAFvyv56Fc3JydOTIEeXl5Xm1N2vW7LqKAgAAKG+lCkGnTp3SgAEDtHTp0iLvLygouK6iAAAAylupToelpKTo3Llz2rBhg0JCQrRs2TJ9+OGHatiwoRYtWlTWNQIAAJS5Uh0J+uKLL7Rw4UIlJibK6XSqfv36+s1vfqPw8HClpqaqS5cuZV0nAABAmSrVkaDs7GzVqFFDkhQZGalTp05Jkpo2baotW7aUXXUAAADlpFQhqFGjRtq7d68kqXnz5nr//feVkZGh9957T7Vq1SrTAgEAAMpDqU6HDR06VD/88IMkafTo0ercubNmz56twMBAzZo1qyzrAwAAKBcOY4y53kFycnK0Z88e1atXT1FRUWVRl6WysrIUERGhzMxMhYeHW10OAAAohpI+f5fqdNjYsWOVk5Pj+b1SpUr61a9+pdDQUI0dO7Y0QwIAAFSoUh0J8vPz0w8//OC5OPqyM2fOqEaNGj7/OUHldiTowgXp6FGpShXpF387+IizZ6VTp6TataXKla2uBiVljJSRIV28KNWvLwUEWF0RSuiS65LSz6UryC9IdcPryuFwWF0SSio7W/r+eykqSqpWrUyHLunzd6muCTLGFPmP9+2336pq1aqlGfLml5UlTZ4s7dolhYdLTz0lJSRYXRVKYt8+6d13pZMn3U+gQ4dKNWtaXRVK4vPPpXnzpNxcKSlJGjRICgy0uioUU35BvqZvma71R9cr0C9Q3Rt3V5db+UgWn3LqlPT229LBg+4ANHiw1LixZeWU6HRYZGSkqlatKofDoVtvvVVVq1b13CIiIvSb3/xGPXr0KK9afdvWre5bnTruowlLllhdEUpq9Wrp8GEpJkbavVvasMHqilASeXnS4sVSfr77Fei6de5gC59x4McD+urIV6oaUlUu49KS/UuUk59z7QVx49i4Udq5U6pb131UduVKS8sp0ZGgSZMmyRijJ554QmPGjFFERITnvsDAQMXGxqp169ZlXuRNwd9fcjqlnBzp0iUpKMjqilBSAQGSy+U+lOtwuLcpfIfT6d6Gubnu/dDfn23oY/yd/vJ3+utC/gXlXspVRHCE/Bx+VpeFkvD3dz9+5uS4H08tPhJbokeAfv36SZLi4uLUtm1b+fMAUnwJCVKHDu6jQfHx0sMPW10RSqpzZ+nQIenYMemuu6S777a6IpSEv7/Uu7f0t7+5rwl64AHp1lutrgol0CCygbo27KqVh1YqqlKUejfprSB/XlD6lDZtpB073EfTmzSRLP6GiVK/Rf7AgQOaOXOmDhw4oLfffls1atTQ0qVLVa9ePd1xxx1lXWeFKrcLo10u6dw5KTSUI0G+Kj9fOn9eioiQ/HgF6pNyctynxiIi3K9I4VOMMcrMzVSAM0ChgaFWl4PSKCiQMjOlsLAyPxJUIW+R//LLL9W0aVNt2LBBn376qX766SdJ7gujR48eXZoh7cHplKpWJQD5soAA9zYkAPmuSpXc79AkAPkkh8OhKsFVCEC+zM/P/Th6A7wpoVQhaMSIEXrllVe0YsUKBf5sEh07dtTXX39dZsUBAACUl1KFoO3bt+u3v/1tofYaNWro9OnT110UAABAeStVCKpSpYrnu8N+buvWrapTp851FwUAAFDeShWCevbsqeHDh+v48eNyOBxyuVxat26dnn/+efXt27esawQAAChzpQpBr732mm677TbFxMTop59+0u2336577rlHbdq00f/8z/+UdY0AAABl7rq+Rf7o0aPavn27srOzdeeddyo+Pr4sa7MM3yIPAIDvqZDvDpOkGTNm6K233tL+/fslSQ0bNlRKSoqefPLJ0g4JAABQYUoVgkaNGqU333xTQ4YM8XxNRlpamv74xz/qyJEjGjt2bJkWCQAAUNZKdTqsevXqmjx5snr16uXV/tFHH2nIkCE+/zZ5TocBAOB7KuQTo/Pz85WYmFioPSEhQZcuXSrNkAAAABWqVCHo8ccf17Rp0wq1f/DBB+rTp891FwUAAFDein1N0LBhwzw/OxwO/eUvf9Hnn3+uu+66S5K0YcMGHTlyhM8JAgAAPqHYIWjr1q1evyckJEhyf5u8JEVFRSkqKko7d+4sw/IAAADKR7FD0OrVq8uzDgAAgApVqmuCAAAAfB0hCAAA2BIhCAAA2BIhCAAA2BIhCAAA2BIhCAAA2BIhCAAA2BIhCAAA2BIhCAAA2BIhCAAA2BIhCAAA2JLlIWjq1KmKjY1VcHCwkpKStHHjxiv23blzp7p3767Y2Fg5HA5NmjSpyH4ZGRl67LHHVK1aNYWEhKhp06b65ptvymkGAADAF1kagj7++GMNGzZMo0eP1pYtW9S8eXN16tRJJ0+eLLJ/Tk6ObrnlFo0bN041a9Ysss+PP/6otm3bKiAgQEuXLtWuXbv0xhtvKDIysjynAgAAfIzDGGOsWnlSUpJatmypKVOmSJJcLpdiYmI0ZMgQjRgx4qrLxsbGKiUlRSkpKV7tI0aM0Lp167R27dpS15WVlaWIiAhlZmYqPDy81OMAAICKU9Lnb8uOBOXl5Wnz5s1KTk7+v2KcTiUnJystLa3U4y5atEiJiYl65JFHVKNGDd15552aPn16WZQMAABuIpaFoNOnT6ugoEDR0dFe7dHR0Tp+/Hipxz148KCmTZumhg0bavny5fr973+vP/zhD/rwww+vuExubq6ysrK8bgAA4Obmb3UBZc3lcikxMVGvvfaaJOnOO+/Ujh079N5776lfv35FLpOamqoxY8ZUZJkAAMBilh0JioqKkp+fn06cOOHVfuLEiSte9FwctWrV0u233+7V1rhxYx05cuSKy4wcOVKZmZme29GjR0u9fgAA4BssC0GBgYFKSEjQqlWrPG0ul0urVq1S69atSz1u27ZttXfvXq+2ffv2qX79+ldcJigoSOHh4V43AABwc7P0dNiwYcPUr18/JSYmqlWrVpo0aZKys7M1YMAASVLfvn1Vp04dpaamSnJfTL1r1y7PzxkZGdq2bZvCwsIUHx8vSfrjH/+oNm3a6LXXXlOPHj20ceNGffDBB/rggw+smSQAALghWfoWeUmaMmWKJkyYoOPHj6tFixaaPHmykpKSJEkdOnRQbGysZs2aJUlKT09XXFxcoTHat2+vNWvWeH5fvHixRo4cqf379ysuLk7Dhg3TU089VeyaeIs8AAC+p6TP35aHoBsRIQgAAN/jM58TBAAAYCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCUEW6cEHat086edLqSlBaZ89Ke/dK589bXQlKwRij77O+13dnv1N+Qb7V5aA0Ll2SvvtOOnpUMsbqalAa2dnux9EzZ6yuRP5WF2AbWVnS5MnSrl1SeLj01FNSQoLVVaEk9u2T3n3XHWLr15eGDpVq1rS6KpTA5wc+17yd85RbkKukOkkalDhIgX6BVpeF4srPl6ZPl9avlwIDpe7dpS5drK4KJXHqlPT229LBg1K1atLgwVLjxpaVw5GgirJ1q/tWp477aMKSJVZXhJJavVo6fFiKiZF275Y2bLC6IpRAXkGeFu9brHxXvqIqRWnd0XXad2af1WWhJA4ckL76SqpaVXK53I+jOTlWV4WS2LhR2rlTqltXysiQVq60tBxCUEXx95ecTvcOe+mSFBRkdUUoqYAA9wNvdrbkcLi3KXyG0+FUgF+AcgtylZOfI3+nv/ydbEOf4u/vvl24IOXmuvdJPz+rq0JJ+Pu7Hz9zctyPp4HWHoklBFWUhASpQwf3jhsfLz38sNUVoaQ6d5aaNXM/AN91l3T33VZXhBLwd/qrd9Peig6NliQ90PAB3VrtVourQok0aCB17ep+Eo2Kknr35gWlr2nTRmrbVrp4UWrSxPLTmQ5juLLsl7KyshQREaHMzEyFh4eX3cAul3TunBQayo7rq/Lz3RdFR0TwCtRH5eTnKK8gTxFBEXI4HFaXg5IyRsrMdB8FCg21uhqURkGBexuGhZX5kaCSPn9zLLgiOZ3uc9nwXQEBbEMfVymgkioFVLK6DJSWwyFVqWJ1Fbgefn43zOMop8MAAIAtEYIAAIAtEYIAAIAtEYIAAIAtEYIAAIAtEYIAAIAtEYIAAIAtEYIAAIAt3RAhaOrUqYqNjVVwcLCSkpK0cePGK/bduXOnunfvrtjYWDkcDk2aNOmqY48bN04Oh0MpKSllWzQAAPBploegjz/+WMOGDdPo0aO1ZcsWNW/eXJ06ddLJkyeL7J+Tk6NbbrlF48aNU82aNa869qZNm/T++++rWbNm5VE6AADwYZaHoDfffFNPPfWUBgwYoNtvv13vvfeeKlWqpL/+9a9F9m/ZsqUmTJignj17Kugq37/1008/qU+fPpo+fboiIyPLq3wAAOCjLA1BeXl52rx5s5KTkz1tTqdTycnJSktLu66xn3nmGXXp0sVrbAAAgMss/QLV06dPq6CgQNHR0V7t0dHR2rNnT6nHnTt3rrZs2aJNmzYVq39ubq5yc3M9v2dlZZV63QAAwDdYfjqsrB09elRDhw7V7NmzFRwcXKxlUlNTFRER4bnFxMSUc5UAAMBqloagqKgo+fn56cSJE17tJ06cuOZFz1eyefNmnTx5Ur/61a/k7+8vf39/ffnll5o8ebL8/f1VUFBQaJmRI0cqMzPTczt69Gip1g0AAHyHpSEoMDBQCQkJWrVqlafN5XJp1apVat26danGvPfee7V9+3Zt27bNc0tMTFSfPn20bds2+fn5FVomKChI4eHhXjcAAHBzs/SaIEkaNmyY+vXrp8TERLVq1UqTJk1Sdna2BgwYIEnq27ev6tSpo9TUVEnui6l37drl+TkjI0Pbtm1TWFiY4uPjVblyZTVp0sRrHaGhoapWrVqhdgAAYF+Wh6BHH31Up06d0qhRo3T8+HG1aNFCy5Yt81wsfeTIETmd/3fA6tixY7rzzjs9v0+cOFETJ05U+/bttWbNmoouHwAA+CiHMcZYXcSNJisrSxEREcrMzOTUGAAAPqKkz9833bvDAAAAioMQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbIkQBAAAbOmGCEFTp05VbGysgoODlZSUpI0bN16x786dO9W9e3fFxsbK4XBo0qRJhfqkpqaqZcuWqly5smrUqKGHHnpIe/fuLccZAAAAX2N5CPr44481bNgwjR49Wlu2bFHz5s3VqVMnnTx5ssj+OTk5uuWWWzRu3DjVrFmzyD5ffvmlnnnmGX399ddasWKF8vPzdd999yk7O7s8p3JtFy5I+/ZJV5gbfMDZs9LevdL581ZXgtIwRvr+e+m776T8fKurQWlcuuTefkePurcnfE92tvtx9MwZqyuRwxhr/4uSkpLUsmVLTZkyRZLkcrkUExOjIUOGaMSIEVddNjY2VikpKUpJSblqv1OnTqlGjRr68ssv1a5du2vWlJWVpYiICGVmZio8PLzYc7nGoNLkydKuXVJ4uPTUU1JCQtmMjYqxb5/07rvuEFu/vjR0qHSFII4b1PLl0rx5Um6ulJQkDRokBQZaXRWKKz9fmj5dWr/evd26d5e6dLG6KpTEqVPS229LBw9K1apJgwdLjRuX2fAlff629EhQXl6eNm/erOTkZE+b0+lUcnKy0tLSymw9mZmZkqSqVasWeX9ubq6ysrK8bmVu61b3rU4d99GEJUvKfh0oX6tXS4cPSzEx0u7d0oYNVleEksjLkxYvdj+RRkVJ69a5gy18x4ED0ldfSVWrSi6X+3E0J8fqqlASGzdKO3dKdetKGRnSypWWlmNpCDp9+rQKCgoUHR3t1R4dHa3jx4+XyTpcLpdSUlLUtm1bNWnSpMg+qampioiI8NxiYmLKZN1e/P0lp9O9w166JAUFlf06UL4CAtwPvNnZksPh3qbwHU6nexvm5rr3Q39/tqGvubzNLlxwb8eAAMnPz+qqUBL+/u7Hz5wc9+OpxUdiLb8mqLw988wz2rFjh+bOnXvFPiNHjlRmZqbndvTo0bIvJCFB6tDBvePGx0sPP1z260D56txZatbM/QB8113S3XdbXRFKwt9f6t1buvyi64EHpFtvtbYmlEyDBlLXru4n0ago9/bkBaVvadNGattWunhRatLE8tOZlr4MioqKkp+fn06cOOHVfuLEiSte9FwSzz77rBYvXqx///vfqlu37hX7BQUFKai8d6TgYOn3v5fOnZNCQ9lxfVHt2tKoUe6LoiMieAXqixITpdtvd58ai4hwP5nCdzgc0iOPSPfd5z4KFBpqdUUoqcqVpZQUKTNTCguz95GgwMBAJSQkaNWqVZ42l8ulVatWqXXr1qUe1xijZ599VgsWLNAXX3yhuLi4sij3+jmd7nPZBCDfFRDg3oYEIN9VqZJUpQoByFc5HO7tRwDyXX5+7sfRG+BNCZafEB82bJj69eunxMREtWrVSpMmTVJ2drYGDBggSerbt6/q1Kmj1NRUSe6LqXft2uX5OSMjQ9u2bVNYWJji4+MluU+BzZkzRwsXLlTlypU91xdFREQoJCTEglkCAIAbjeVvkZekKVOmaMKECTp+/LhatGihyZMnKykpSZLUoUMHxcbGatasWZKk9PT0Io/stG/fXmvWrJEkOa7wCm/mzJnq37//Nespl7fIAwCAclXS5+8bIgTdaAhBAAD4Hp/6nCAAAACrEIIAAIAtEYIAAIAtEYIAAIAtEYIAAIAtEYIAAIAtEYIAAIAtEYIAAIAtEYIAAIAtWf7dYTeiyx+inZWVZXElAACguC4/bxf3yzAIQUU4f/68JCkmJsbiSgAAQEmdP39eERER1+zHd4cVweVy6dixY6pcufIVv4y1tLKyshQTE6OjR4/elN9Lxvx8380+x5t9ftLNP0fm5/vKa47GGJ0/f161a9eW03ntK344ElQEp9OpunXrlus6wsPDb9p/bon53Qxu9jne7POTbv45Mj/fVx5zLM4RoMu4MBoAANgSIQgAANgSIaiCBQUFafTo0QoKCrK6lHLB/HzfzT7Hm31+0s0/R+bn+26UOXJhNAAAsCWOBAEAAFsiBAEAAFsiBAEAAFsiBAEAAFsiBF3F1KlTFRsbq+DgYCUlJWnjxo1X7T9//nzddtttCg4OVtOmTfWvf/3L6/5PP/1U9913n6pVqyaHw6Ft27YVGqNDhw5yOBxet//+7//26nPkyBF16dJFlSpVUo0aNfTCCy/o0qVLPjHH9PT0QvO7fJs/f76nX1H3z50719L55efna/jw4WratKlCQ0NVu3Zt9e3bV8eOHfMa4+zZs+rTp4/Cw8NVpUoVDRw4UD/99JNXn//85z+65557FBwcrJiYGI0fP77Ec7Nqjunp6Ro4cKDi4uIUEhKiBg0aaPTo0crLy/PqU9Q2/Prrr2/4+UlSbGxsodrHjRvn1aestmFFz2/NmjVX3Ac3bdokqWy3X1nPUZJeeukl3XbbbQoNDVVkZKSSk5O1YcMGrz4VuR9W9Px8eR8szvykCtwHDYo0d+5cExgYaP7617+anTt3mqeeespUqVLFnDhxosj+69atM35+fmb8+PFm165d5n/+539MQECA2b59u6fP3/72NzNmzBgzffp0I8ls3bq10Djt27c3Tz31lPnhhx88t8zMTM/9ly5dMk2aNDHJyclm69at5l//+peJiooyI0eO9Ik5Xrp0yWtuP/zwgxkzZowJCwsz58+f9/STZGbOnOnV78KFC5bO79y5cyY5Odl8/PHHZs+ePSYtLc20atXKJCQkeI3TuXNn07x5c/P111+btWvXmvj4eNOrVy/P/ZmZmSY6Otr06dPH7Nixw3z00UcmJCTEvP/++yWan1VzXLp0qenfv79Zvny5OXDggFm4cKGpUaOGee655zx9Dh06ZCSZlStXem3DvLy8G35+xhhTv359M3bsWK/af/rpJ8/9ZbUNrZhfbm5uoX3wySefNHFxccblchljym77lcccjTFm9uzZZsWKFebAgQNmx44dZuDAgSY8PNycPHnS06ei9kMr5ufL+2Bx5mdMxe2DhKAraNWqlXnmmWc8vxcUFJjatWub1NTUIvv36NHDdOnSxastKSnJDBo0qFDfy/+cVwpBQ4cOvWJd//rXv4zT6TTHjx/3tE2bNs2Eh4eb3Nzca8zKm1Vz/KUWLVqYJ554wqtNklmwYMG1J3EV5Tm/yzZu3GgkmcOHDxtjjNm1a5eRZDZt2uTps3TpUuNwOExGRoYxxph3333XREZGem2v4cOHm0aNGvnEHIsyfvx4ExcX5/m9JNv/aqyaX/369c1bb711xWXKahveCNsvLy/PVK9e3YwdO9bTVlbbz5iKmWNmZqbnCd+Yit0PrZhfUXx5HyxqfhW1D3I6rAh5eXnavHmzkpOTPW1Op1PJyclKS0srcpm0tDSv/pLUqVOnK/a/mtmzZysqKkpNmjTRyJEjlZOT47Wepk2bKjo62ms9WVlZ2rlzZ7HXYfUcL9u8ebO2bdumgQMHFrrvmWeeUVRUlFq1aqW//vWvMiX4SKuKml9mZqYcDoeqVKniGaNKlSpKTEz09ElOTpbT6fQc7k1LS1O7du0UGBjotZ69e/fqxx9/vOHneKU+VatWLdTerVs31ahRQ3fffbcWLVp0jRl5s3p+48aNU7Vq1XTnnXdqwoQJXqecy2IbWj2/yxYtWqQzZ85owIABhe67nu0nVcwc8/Ly9MEHHygiIkLNmzf3jFER+6FV8yuKr+6DV5tfee+DEl+gWqTTp0+roKDAK2hIUnR0tPbs2VPkMsePHy+y//Hjx0u07t69e6t+/fqqXbu2/vOf/2j48OHau3evPv3006uu5/J9xWXlHH9uxowZaty4sdq0aePVPnbsWHXs2FGVKlXS559/rsGDB+unn37SH/7wh2KNWxHzu3jxooYPH65evXp5vgDw+PHjqlGjhlc/f39/Va1a1TPO8ePHFRcXV2g9l++LjIy8oef4S999953eeecdTZw40dMWFhamN954Q23btpXT6dQ///lPPfTQQ/rss8/UrVu3G35+f/jDH/SrX/1KVatW1fr16zVy5Ej98MMPevPNNz3rud5teKNsvxkzZqhTp05eXxpdFtuvvOe4ePFi9ezZUzk5OapVq5ZWrFihqKgozxgVsR9aNb9f8sV98Frzq4h9UCIE3XCefvppz89NmzZVrVq1dO+99+rAgQNq0KCBhZWVvQsXLmjOnDl68cUXC93387Y777xT2dnZmjBhQrFDUHnLz89Xjx49ZIzRtGnTrC6nXBRnjhkZGercubMeeeQRPfXUU572qKgoDRs2zPN7y5YtdezYMU2YMKFET6Ll6Wrz+3ntzZo1U2BgoAYNGqTU1FTLP+a/uIqz/b7//nstX75c8+bN82r3he3361//Wtu2bdPp06c1ffp09ejRQxs2bCgUfnxVcefnq/vgteZXUfsgp8OKEBUVJT8/P504ccKr/cSJE6pZs2aRy9SsWbNE/YsrKSlJkjvpX209l+8rrhthjp988olycnLUt2/fa/ZNSkrS999/r9zc3GKNXZ7zu/zkcvjwYa1YscLrFXbNmjV18uRJr/6XLl3S2bNnPeP4wja82hwvO3bsmH7961+rTZs2+uCDD65Zb1JSkuf/uDisnt8va7906ZLS09Ovup7L9xXHjTC/mTNnqlq1asV6Uizp9pPKd46hoaGKj4/XXXfdpRkzZsjf318zZszwjFER+6FV87vMl/fB4szvl7WX9T4oEYKKFBgYqISEBK1atcrT5nK5tGrVKrVu3brIZVq3bu3VX5JWrFhxxf7Fdfkt5rVq1fKsZ/v27V47+OUHudtvv73Y494Ic5wxY4a6deum6tWrX7Pvtm3bFBkZWexXAOU1v8tPLvv379fKlStVrVq1QmOcO3dOmzdv9rR98cUXcrlcnkDbunVr/fvf/1Z+fr7Xeho1alTsQ7hWzlFyv/rs0KGDEhISNHPmTDmd134o2bZtm+f/uDisnF9RtTudTs+r1LLYhlbPzxijmTNnqm/fvgoICLhmvSXdflLFPs64XC7Pi6SK2g+tmp/k2/tgUX45v6JqL+t9UBJvkb+SuXPnmqCgIDNr1iyza9cu8/TTT5sqVap43pX1+OOPmxEjRnj6r1u3zvj7+5uJEyea3bt3m9GjRxd6W+CZM2fM1q1bzZIlS4wkM3fuXLN161bzww8/GGOM+e6778zYsWPNN998Yw4dOmQWLlxobrnlFtOuXTvPGJffIn/fffeZbdu2mWXLlpnq1auX+i3yFT3Hy/bv328cDodZunRpoboWLVpkpk+fbrZv3272799v3n33XVOpUiUzatQoS+eXl5dnunXrZurWrWu2bdvm9dbNn79DoXPnzubOO+80GzZsMF999ZVp2LCh11tzz507Z6Kjo83jjz9uduzYYebOnWsqVapU6rfIV/Qcv//+exMfH2/uvfde8/3333v1uWzWrFlmzpw5Zvfu3Wb37t3m1VdfNU6n0/z1r3+94ee3fv1689Zbb5lt27aZAwcOmH/84x+mevXqpm/fvp71lNU2tOp/1BhjVq5caSSZ3bt3F6qrrLZfeczxp59+MiNHjjRpaWkmPT3dfPPNN2bAgAEmKCjI7NixwzNORe2HVszPl/fB4syvIvdBQtBVvPPOO6ZevXomMDDQtGrVynz99dee+9q3b2/69evn1X/evHnm1ltvNYGBgeaOO+4wS5Ys8bp/5syZRlKh2+jRo40xxhw5csS0a9fOVK1a1QQFBZn4+HjzwgsveH1OkDHGpKenm/vvv9+EhISYqKgo89xzz5n8/HyfmONlI0eONDExMaagoKBQTUuXLjUtWrQwYWFhJjQ01DRv3ty89957RfatyPldfstpUbfVq1d7+p05c8b06tXLhIWFmfDwcDNgwACvz0Ayxphvv/3W3H333SYoKMjUqVPHjBs3rsRzs2qOV9rGP39NNWvWLNO4cWNTqVIlEx4eblq1amXmz5/vE/PbvHmzSUpKMhERESY4ONg0btzYvPbaa+bixYte6ymrbWjF/6gxxvTq1cu0adOmyJrKcvuV9RwvXLhgfvvb35ratWubwMBAU6tWLdOtWzezceNGrzEqcj+s6Pn58j5YnPlV5D7oMKYE7zsGAAC4SXBNEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEAAAsCVCEIAbyvnz59WnTx+FhoaqVq1aeuutt9ShQwelpKRIkv7+978rMTFRlStXVs2aNdW7d2+dPHnSs/yaNWvkcDi0fPly3XnnnQoJCVHHjh118uRJLV26VI0bN1Z4eLh69+6tnJwcz3IdOnTQkCFDlJKSosjISEVHR2v69OnKzs7WgAEDVLlyZcXHx2vp0qWeZQoKCjRw4EDFxcUpJCREjRo10ttvv11hfysA14cQBOCGMmzYMK1bt06LFi3SihUrtHbtWm3ZssVzf35+vl5++WV9++23+uyzz5Senq7+/fsXGuell17SlClTtH79eh09elQ9evTQpEmTNGfOHC1ZskSff/653nnnHa9lPvzwQ0VFRWnjxo0aMmSIfv/73+uRRx5RmzZttGXLFt133316/PHHPeHJ5XKpbt26mj9/vnbt2qVRo0bpz3/+s+bNm1eufyMAZaTEX7kKAOUkKyvLBAQEeH3b9blz50ylSpXM0KFDi1xm06ZNRpLnG8JXr15tJJmVK1d6+qSmphpJ5sCBA562QYMGmU6dOnl+b9++vbn77rs9v1+6dMmEhoaaxx9/3NP2ww8/GEkmLS3tinN45plnTPfu3Ys/aQCW4UgQgBvGwYMHlZ+fr1atWnnaIiIi1KhRI8/vmzdv1oMPPqh69eqpcuXKat++vSTpyJEjXmM1a9bM83N0dLQqVaqkW265xavt56fRfrmMn5+fqlWrpqZNm3otI8lrualTpyohIUHVq1dXWFiYPvjgg0K1ALgxEYIA+Izs7Gx16tRJ4eHhmj17tjZt2qQFCxZIkvLy8rz6BgQEeH52OBxev19uc7lcV1ymqOUcDockeZabO3eunn/+eQ0cOFCff/65tm3bpgEDBhSqBcCNyd/qAgDgsltuuUUBAQHatGmT6tWrJ0nKzMzUvn371K5dO+3Zs0dnzpzRuHHjFBMTI0n65ptvLKt33bp1atOmjQYPHuxpO3DggGX1ACgZjgQBuGFUrlxZ/fr10wsvvKDVq1dr586dGjhwoJxOpxwOh+rVq6fAwEC98847OnjwoBYtWqSXX37ZsnobNmyob775RsuXL9e+ffv04osvatOmTZbVA6BkCEEAbihvvvmmWrdura5duyo5OVlt27ZV48aNFRwcrOrVq2vWrFmaP3++br/9do0bN04TJ060rNZBgwbp4Ycf1qOPPqqkpCSdOXPG66gQgBubwxhjrC4CAK4kOztbderU0RtvvKGBAwdaXQ6AmwjXBAG4oWzdulV79uxRq1atlJmZqbFjx0qS/uu//sviygDcbAhBAG44EydO1N69exUYGKiEhAStXbtWUVFRVpcF4CbD6TAAAGBLXBgNAABsiRAEAABsiRAEAABsiRAEAABsiRAEAABsiRAEAABsiRAEAABsiRAEAABsiRAEAABs6f8Decwdb3TU8SkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Parameter Synthesis by points (similar to manual approach)\n", + "\n", + "def eval_point(beta_val, gamma_val, plot=False):\n", + "\n", + " print(f\"eval_point(): beta = {beta_val}, gamma = {gamma_val}\")\n", + "\n", + " # parameters\n", + " def beta(t): return np.piecewise(t, [t>=0], [beta_val])\n", + " def gamma(t): return np.piecewise(t, [t>=0], [gamma_val])\n", + "\n", + " opts = {\n", + " \"dreal_precision\": 1e-2,\n", + " \"dreal_log_level\": \"info\",\n", + " \"dreal_mcts\": True,\n", + " }\n", + "\n", + " # Set these values for the initial state\n", + " initial_values = {\"S\": 0.99, \"I\": 0.01, \"R\": 0.0}\n", + "\n", + " # Configure these bounds (lower, upper) to configure the parameter space\n", + " parameter_bounds = {\"beta\": (beta_val, beta_val), \"gamma\": (gamma_val, gamma_val)}\n", + "\n", + " # Infected constraint bounds\n", + " infected_bounds = (0.45, 0.55)\n", + " infected_timepoints = (45, 55)\n", + "\n", + " # Timepoints\n", + " step_size = 1\n", + " max_time = 60\n", + "\n", + " noise = 1e-4\n", + "\n", + " values= None\n", + " with Solver(name=\"dreal\",\n", + " logic=QF_NRA,\n", + " solver_options=opts\n", + " ) as solver:\n", + " values = run_solver(solver, encode(initial_values, parameter_bounds, infected_bounds, infected_timepoints, max_time=max_time, step_size=step_size, noise=noise, use_compartmental=True))\n", + " pass\n", + " \n", + " if values and plot:\n", + " ax, results = plot_results(values, max_time, step_size)\n", + "\n", + " param_assignments = {'beta': beta_val, 'gamma': gamma_val, 'assignment': \"1\" if values else \"0\"} # for \"all\", go through every option. for \"any\", only need one good parameter choice.\n", + " return param_assignments\n", + "\n", + "\n", + "\n", + "# set parameters\n", + "def ps(param_synth_method, parameter_search_bounds, num_dim_points=10, plot=False):\n", + " parameters = list(parameter_search_bounds.keys())\n", + " parameter_points = {p : np.linspace(parameter_search_bounds[p][0], parameter_search_bounds[p][1], num_dim_points) for p in parameters}\n", + " points = itertools.product(*[parameter_points[p] for p in parameters])\n", + " param_choices_true_false = []\n", + " for point in points:\n", + " point_values = {p: point[i] for i, p in enumerate(parameters)}\n", + "\n", + " param_assignments = eval_point(float(point_values[\"beta\"]), float(point_values[\"gamma\"]), plot=plot)\n", + " param_choices_true_false.append(param_assignments)\n", + " if param_synth_method == \"any\" and param_assignments['assignment'] == '1':\n", + " return param_choices_true_false\n", + " return param_choices_true_false\n", + "\n", + "\n", + "# Configure these bounds (lower, upper) to configure the parameter space\n", + "parameter_bounds = {\"beta\": (0.12, 0.22), \"gamma\": (0.015, 0.035)}\n", + "# parameter_bounds = {\"beta\": (0.17496597557264137, 0.17496597557264137), \"gamma\": (0.031891187313515444, 0.031891187313515444)}\n", + "\n", + "param_choices = ps(\"all\", parameter_bounds, num_dim_points=10)\n", + "print(param_choices)\n", + "sir_model.plot_two_params(\"gamma\", \"beta\", param_choices)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "funman_venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/evaluation/evaluation24/sir-funman.ipynb b/scratch/evaluation/evaluation24/sir-funman.ipynb new file mode 100644 index 00000000..112d7aa0 --- /dev/null +++ b/scratch/evaluation/evaluation24/sir-funman.ipynb @@ -0,0 +1,656 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "SAVED_RESULTS_DIR = \"./out\"\n", + "\n", + "# Import funman related code\n", + "import os\n", + "from funman.api.run import Runner\n", + "from funman_demo import summarize_results\n", + "from funman_demo.example.pde import plot_spatial_timeseries\n", + "from IPython.display import HTML\n", + "import matplotlib.pyplot as plt\n", + "import itertools\n", + "from funman import FunmanWorkRequest, EncodingSchedule, POS_INFINITY\n", + "\n", + "import json\n", + "from funman.representation.constraint import LinearConstraint, ParameterConstraint, StateVariableConstraint\n", + "from funman.representation import Interval\n", + "from funman import FUNMANConfig\n", + "import logging\n", + "from funman_demo import summarize_results\n", + "\n", + "\n", + "\n", + "RESOURCES = \"../../../resources\"\n", + "\n", + "EXAMPLE_DIR = os.path.join(RESOURCES, \"amr\", \"petrinet\", \"evaluation\")\n", + "EXAMPLE_DIR = os.path.join(RESOURCES, \"amr\", \"petrinet\", \"evaluation\")\n", + "MODEL_PATH = os.path.join(\n", + " EXAMPLE_DIR,\"sir.json\"\n", + ")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Consistency (M3.1)\n", + "\n", + "STATES = [\"S\", \"I\", \"R\"]\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=40\n", + "STEP_SIZE=5\n", + "to_synthesize=[\"beta\", \"gamma\"]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sir_request_consistency.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + " funman_request.config.solver = \"z3\"\n", + " funman_request.config.verbosity = 10\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIR Consistency\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " dump_results=False\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", parameters_to_plot=to_synthesize+[\"timestep\"], synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Consistency (M3.2)\n", + "\n", + "STATES = [\"S\", \"I\", \"R\"]\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=40\n", + "STEP_SIZE=5\n", + "to_synthesize=[\"beta\", \"gamma\"]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sir_request_consistency.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + " \n", + " funman_request.config.dreal_mcts = False\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIR Consistency\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " dump_results=False\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", parameters_to_plot=to_synthesize+[\"timestep\"], synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Consistency (M3.3)\n", + "\n", + "STATES = [\"S\", \"I\", \"R\"]\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=40\n", + "STEP_SIZE=5\n", + "to_synthesize=[\"beta\", \"gamma\"]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sir_request_consistency.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIR Consistency\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", parameters_to_plot=to_synthesize+[\"timestep\"], synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Consistency (M3.4)\n", + "\n", + "STATES = [\"S\", \"I\", \"R\"]\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=40\n", + "STEP_SIZE=5\n", + "to_synthesize=[\"beta\", \"gamma\"]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sir_request_consistency.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + " funman_request.config.substitute_subformulas = True\n", + " funman_request.config.taylor_series_order = 3\n", + " funman_request.config.series_approximation_threshold = 1e-8\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIR Consistency\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", parameters_to_plot=to_synthesize+[\"timestep\"], synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameterization (M3.1)\n", + "\n", + "STATES = [\"S\", \"I\", \"R\"]\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=40\n", + "STEP_SIZE=5\n", + "to_synthesize=[\"beta\", \"gamma\"]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sir_request_parameterization.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + "\n", + " funman_request.config.solver = \"z3\"\n", + " funman_request.config.verbosity = 10\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIR Parameterization\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", parameters_to_plot=to_synthesize+[\"timestep\"], synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameterization (M3.2)\n", + "\n", + "STATES = [\"S\", \"I\", \"R\"]\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=40\n", + "STEP_SIZE=5\n", + "to_synthesize=[\"beta\", \"gamma\"]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sir_request_parameterization.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + " funman_request.config.dreal_mcts = False\n", + "\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIR Parameterization\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", parameters_to_plot=to_synthesize+[\"timestep\"], synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameterization (M3.3)\n", + "\n", + "STATES = [\"S\", \"I\", \"R\"]\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=40\n", + "STEP_SIZE=5\n", + "to_synthesize=[\"beta\", \"gamma\"]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sir_request_parameterization.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIR Parameterization\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", parameters_to_plot=to_synthesize+[\"timestep\"], synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameterization (M3.4)\n", + "\n", + "STATES = [\"S\", \"I\", \"R\"]\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=40\n", + "STEP_SIZE=5\n", + "to_synthesize=[\"beta\", \"gamma\"]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sir_request_parameterization.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + " funman_request.config.substitute_subformulas = True\n", + " funman_request.config.taylor_series_order = 3\n", + " funman_request.config.series_approximation_threshold = 1e-8\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIR Parameterization\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", parameters_to_plot=to_synthesize+[\"timestep\"], synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from funman import FunmanResults\n", + "import json\n", + "import pandas as pd\n", + "from datetime import datetime\n", + "# Load FUNMAN output and plot the progress data\n", + "# data = results_unconstrained_point\n", + "with open(\"out/278ddfbc-6176-48a1-b232-ac471b56c20d.json\", \"r\") as f:\n", + " data = FunmanResults.model_validate(json.loads(f.read()))\n", + "df = pd.DataFrame.from_records(data.timing.progress_timeseries, columns=[\"time\", \"progress\"])\n", + "df['duration'] = df.time.apply(lambda x: (x-df.time.iloc[0]).total_seconds()/60)\n", + "df = df[0:123]\n", + "ax = df.plot.scatter(x=\"duration\", y=\"progress\")\n", + "ax.set_xlabel(\"Time (m)\")\n", + "ax.set_ylabel(\"Normalized Parameter Space Coverage\")\n", + "ax.set_title(\"FUNMAN Parameter Space Coverage (SIR)\")\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameter Synthesis (M3.1), z3 not supported\n", + "\n", + "STATES = [\"S\", \"I\", \"R\"]\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=40\n", + "STEP_SIZE=5\n", + "to_synthesize=[\"beta\", \"gamma\"]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sir_request_param_synth.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + " # funman_request.parameter(\"gamma\").interval.lb = 0.025\n", + " # funman_request.parameter(\"gamma\").interval.ub = 0.03\n", + " # funman_request.parameter(\"beta\").interval.lb = 0.13\n", + " # funman_request.parameter(\"beta\").interval.ub = 0.16\n", + "\n", + " # funman_request.config.substitute_subformulas = True\n", + " # funman_request.config.taylor_series_order = 4\n", + " # series_approximation_threshold = 1e-8\n", + "\n", + " # funman_request.config.verbosity = 10\n", + " funman_request.config.tolerance = 1e-1\n", + " funman_request.config.compartmental_constraint_noise = 1e-10\n", + " # funman_request.config.solver_timeout = 10\n", + " # funman_request.config.uniform_box_splits = True\n", + " # funman_request.config.num_initial_boxes = 1\n", + " # funman_request.config.save_smtlib = \"./out\"\n", + " # funman_request.config.dreal_log_level = \"info\"\n", + " # funman_request.config.dreal_precision = 1e-1\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIR Parameter Synthesis\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " dump_plot=True,\n", + " parameters_to_plot=to_synthesize+[\"timestep\"],\n", + " dump_results=True\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", parameters_to_plot=to_synthesize+[\"timestep\"], synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameter Synthesis (M3.2)\n", + "\n", + "STATES = [\"S\", \"I\", \"R\"]\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=40\n", + "STEP_SIZE=5\n", + "to_synthesize=[\"beta\", \"gamma\"]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sir_request_param_synth.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + " # funman_request.parameter(\"gamma\").interval.lb = 0.025\n", + " # funman_request.parameter(\"gamma\").interval.ub = 0.03\n", + " # funman_request.parameter(\"beta\").interval.lb = 0.13\n", + " # funman_request.parameter(\"beta\").interval.ub = 0.16\n", + "\n", + " # funman_request.config.substitute_subformulas = True\n", + " # funman_request.config.taylor_series_order = 4\n", + " # series_approximation_threshold = 1e-8\n", + "\n", + " # funman_request.config.verbosity = 10\n", + " funman_request.config.tolerance = 1e-1\n", + " funman_request.config.compartmental_constraint_noise = 1e-10\n", + " # funman_request.config.solver_timeout = 10\n", + " # funman_request.config.uniform_box_splits = True\n", + " # funman_request.config.num_initial_boxes = 1\n", + " # funman_request.config.save_smtlib = \"./out\"\n", + " # funman_request.config.dreal_log_level = \"info\"\n", + " # funman_request.config.dreal_precision = 1e-1\n", + "\n", + " funman_request.config.dreal_mcts = False\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIR Parameter Synthesis\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " dump_plot=True,\n", + " parameters_to_plot=to_synthesize+[\"timestep\"],\n", + " dump_results=True\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", parameters_to_plot=to_synthesize+[\"timestep\"], synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameter Synthesis (M3.3)\n", + "\n", + "STATES = [\"S\", \"I\", \"R\"]\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=40\n", + "STEP_SIZE=5\n", + "to_synthesize=[\"beta\", \"gamma\"]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sir_request_param_synth.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + " # funman_request.parameter(\"gamma\").interval.lb = 0.025\n", + " # funman_request.parameter(\"gamma\").interval.ub = 0.03\n", + " # funman_request.parameter(\"beta\").interval.lb = 0.13\n", + " # funman_request.parameter(\"beta\").interval.ub = 0.16\n", + "\n", + " # funman_request.config.substitute_subformulas = True\n", + " # funman_request.config.taylor_series_order = 4\n", + " # series_approximation_threshold = 1e-8\n", + "\n", + " # funman_request.config.verbosity = 10\n", + " funman_request.config.tolerance = 1e-1\n", + " funman_request.config.compartmental_constraint_noise = 1e-10\n", + " # funman_request.config.solver_timeout = 10\n", + " # funman_request.config.uniform_box_splits = True\n", + " # funman_request.config.num_initial_boxes = 1\n", + " # funman_request.config.save_smtlib = \"./out\"\n", + " # funman_request.config.dreal_log_level = \"info\"\n", + " # funman_request.config.dreal_precision = 1e-1\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIR Parameter Synthesis\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " dump_plot=True,\n", + " parameters_to_plot=to_synthesize+[\"timestep\"],\n", + " dump_results=True\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", parameters_to_plot=to_synthesize+[\"timestep\"], synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[0.99000, 0.99000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "[0.01000, 0.01000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "[0.00000, 0.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "[1.00000, 1.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "[11.00000, 11.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "[11.00000, 11.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "[11.00000, 11.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "[5.00000, 5.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "[5.00000, 5.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "[5.00000, 5.00000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n", + "2024-05-04 21:14:40,723 - funman.server.worker - INFO - FunmanWorker running...\n", + "2024-05-04 21:14:40,737 - funman.server.worker - INFO - Starting work on: 71e84318-77ae-4b2c-a7ad-9152427eaf9d\n", + "2024-05-04 21:14:42,803 - funman.api.run - INFO - Dumping results to ./out/71e84318-77ae-4b2c-a7ad-9152427eaf9d.json\n", + "2024-05-04 21:14:52,883 - funman.api.run - INFO - Dumping results to ./out/71e84318-77ae-4b2c-a7ad-9152427eaf9d.json\n", + "[0.20000, 0.20000) has equal lower and upper bounds, so assuming the upper bound is closed. (I.e., [lb, ub) is actually [lb, ub])\n" + ] + } + ], + "source": [ + "# Parameter Synthesis (M3.4)\n", + "\n", + "STATES = [\"S\", \"I\", \"R\"]\n", + "COMPARTMENTS = STATES\n", + "MAX_TIME=40\n", + "STEP_SIZE=5\n", + "to_synthesize=[\"beta\", \"gamma\"]\n", + "\n", + "REQUEST_PATH = os.path.join(\n", + " EXAMPLE_DIR, \"sir_request_param_synth.json\"\n", + ")\n", + "\n", + "with open(REQUEST_PATH, \"r\") as request:\n", + " funman_request = FunmanWorkRequest.model_validate(json.load(request))\n", + " \n", + " funman_request.structure_parameters[0].interval.lb = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[0].interval.ub = int(MAX_TIME/STEP_SIZE)\n", + " funman_request.structure_parameters[1].interval.lb = STEP_SIZE\n", + " funman_request.structure_parameters[1].interval.ub = STEP_SIZE\n", + "\n", + " # funman_request.parameter(\"gamma\").interval.lb = 0.025\n", + " # funman_request.parameter(\"gamma\").interval.ub = 0.03\n", + " # funman_request.parameter(\"beta\").interval.lb = 0.13\n", + " # funman_request.parameter(\"beta\").interval.ub = 0.16\n", + "\n", + " # funman_request.config.substitute_subformulas = True\n", + " # funman_request.config.taylor_series_order = 4\n", + " # series_approximation_threshold = 1e-8\n", + "\n", + " # funman_request.config.verbosity = 10\n", + " funman_request.config.tolerance = 1e-1\n", + " funman_request.config.compartmental_constraint_noise = 1e-10\n", + " # funman_request.config.solver_timeout = 10\n", + " # funman_request.config.uniform_box_splits = True\n", + " # funman_request.config.num_initial_boxes = 1\n", + " # funman_request.config.save_smtlib = \"./out\"\n", + " # funman_request.config.dreal_log_level = \"info\"\n", + " \n", + " funman_request.config.substitute_subformulas = True\n", + " funman_request.config.taylor_series_order = 4\n", + " funman_request.config.series_approximation_threshold = 1e-10\n", + "\n", + "\n", + " results_unconstrained_point = Runner().run(\n", + " MODEL_PATH,\n", + " funman_request,\n", + " description=\"SIR Parameter Synthesis\",\n", + " case_out_dir=SAVED_RESULTS_DIR,\n", + " dump_plot=True,\n", + " parameters_to_plot=to_synthesize+[\"timestep\"],\n", + " dump_results=True\n", + " )\n", + " summary = summarize_results(COMPARTMENTS, results_unconstrained_point, ylabel=\"Population\", parameters_to_plot=to_synthesize+[\"timestep\"], synthesized_parameters=to_synthesize+[\"timestep\"])\n", + " print(summary)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "funman_venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/evaluation/evaluation24/sir-manual.ipynb b/scratch/evaluation/evaluation24/sir-manual.ipynb new file mode 100644 index 00000000..74375b19 --- /dev/null +++ b/scratch/evaluation/evaluation24/sir-manual.ipynb @@ -0,0 +1,269 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import scipy\n", + "from scipy.integrate import odeint\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import sir_model\n", + "import json\n", + "from random import randint\n", + "import itertools\n", + "import datetime\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def query_1(sim, tstart, tend, dt):\n", + " S, I, R = sim.T\n", + " # USER: write query condition.\n", + " # query_condition = 0.15 <= max(I) <= 0.3 #((0.15 <= I[10]) and I[10] <= 1.0)\n", + " # query_condition = (0.45 <= max(I)) and (max(I) <= 0.55) and (45 <= np.argmax(I)*dt) and (np.argmax(I)*dt <= 55)\n", + " query_values = [0.45 <= I[int(t/dt)] <= 0.55 for t in range(tstart, tend+1, dt) if 45 <= t < 55]\n", + " query_condition = all(query_values) \n", + " # print(I[9:11])\n", + " return query_condition\n", + "\n", + "\n", + "def query_2(sim, tstart, tend, dt, beta_val, gamma_val):\n", + " S, I, R = sim.T\n", + " # USER: write query condition.\n", + " # query_condition = 0.15 <= max(I) <= 0.3 #((0.15 <= I[10]) and I[10] <= 1.0)\n", + " # query_condition = (0.45 <= max(I)) and (max(I) <= 0.55) and (45 <= np.argmax(I)*dt) and (np.argmax(I)*dt <= 55)\n", + " \n", + " inc_I = [(I[(int(t/dt))]-I[(int((t-1)/dt))]>0.0 if t > 0 else True ) for t in range(tstart, tend+1, dt) if t <= 30]\n", + " dec_I = [(I[(int(t/dt))]-I[(int((t-1)/dt))]<0.0 if t > 0 else True ) for t in range(tstart, tend+1, dt) if t >= 40]\n", + "\n", + " i_query_values = [0.2 <= I[int(t/dt)] <= 0.4 for t in range(tstart, tend+1, dt) if 35 <= t <= 50]\n", + " query_condition = all(i_query_values) #and beta_val > 2 * gamma_val and beta_val < 2*gamma_val +0.1 #and all(inc_I) and all(dec_I)\n", + " # print(I[9:11])\n", + " return query_condition\n", + "\n", + "def eval_point(beta_val, gamma_val, query_condition=query_1, plot=False, rtol=1, atol=1, mxstep=10, mxordn = 1, mxords=1, hmin=1):\n", + " # parameters\n", + " def beta(t): return np.piecewise(t, [t>=0], [beta_val])\n", + " def gamma(t): return np.piecewise(t, [t>=0], [gamma_val])\n", + "\n", + "\n", + " # USER: set initial conditions\n", + " I0, R0 = 0.01, 0\n", + " S0 = 1-I0-R0\n", + " y0 = S0, I0, R0 # Initial conditions vector\n", + " # USER: set simulation parameters\n", + " dt = 1\n", + " tstart = 0\n", + " tend = 60\n", + " tvect = np.arange(tstart, tend+1, dt)\n", + " # simulate/solve ODEs\n", + " sim = odeint(sir_model.SIR_model, y0, tvect, args=(beta, gamma), mxstep=mxstep, rtol=rtol, atol=atol)\n", + " S, I, R = sim.T\n", + "\n", + " # print(list(zip(range(tstart, tend+1, dt), I)))\n", + "\n", + " # plot results - uncomment next line to plot time series. not recommended for large numbers of points\n", + " if plot:\n", + " sir_model.plotSIR(tvect, S, I, R)\n", + "\n", + " query = '1' if query_condition(sim, tstart, tend, dt, beta_val, gamma_val) else '0'\n", + " param_assignments = {'beta': beta_val, 'gamma': gamma_val, 'assignment': query} # for \"all\", go through every option. for \"any\", only need one good parameter choice.\n", + " return param_assignments, sim\n", + "\n", + "\n", + "\n", + "# set parameters\n", + "def ps(param_synth_method, parameter_search_bounds, query_condition=query_1, rtol=1e-3, num_dim_points=10, plot=False):\n", + " parameters = list(parameter_search_bounds.keys())\n", + " parameter_points = {p : np.linspace(parameter_search_bounds[p][0], parameter_search_bounds[p][1], num_dim_points) for p in parameters}\n", + " points = itertools.product(*[parameter_points[p] for p in parameters])\n", + " param_choices_true_false = []\n", + " coverage = []\n", + " \n", + " for i, point in enumerate(points):\n", + " point_values = {p: point[i] for i, p in enumerate(parameters)}\n", + " \n", + " param_assignments, _ = eval_point(point_values[\"beta\"], point_values[\"gamma\"], query_condition=query_condition, rtol=rtol, plot=plot)\n", + " param_choices_true_false.append(param_assignments)\n", + " coverage.append((datetime.datetime.now(), i))\n", + " \n", + " if param_synth_method == \"any\" and param_assignments['assignment'] == '1':\n", + " return param_choices_true_false, coverage\n", + " return param_choices_true_false, coverage\n", + " \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Consistency Query\n", + "\n", + "# USER: set num_dim_points with how many points for each parameter you'd like to evaluate\n", + "\n", + "# USER: set bounds\n", + "beta_search_bounds = [0.186734693877551, 0.186734693877551]\n", + "gamma_search_bounds = [0.030510204081632655, 0.030510204081632655]\n", + "\n", + "param_choices_true_false, coverage = ps(\"any\", {\"beta\": beta_search_bounds, \"gamma\": gamma_search_bounds}, query_condition=query_2, rtol=1e-3, num_dim_points=1, plot=True)\n", + "print(param_choices_true_false)\n", + "\n", + "id_number = randint(10**5, 10**6 - 1)\n", + "\n", + "with open(f'sir_query_auto_2_param_{id_number}.json', 'w', encoding='utf-8') as f:\n", + " json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)\n", + "\n", + "\n", + "# Plot \"true/false\" points. Is there any way of characterizing these regions?\n", + "# sir_model.plot_two_params(\"gamma\", \"beta\", param_choices_true_false)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameterization\n", + "\n", + "# USER: set num_dim_points with how many points for each parameter you'd like to evaluate\n", + "\n", + "# USER: set bounds\n", + "beta_search_bounds = [0.19,0.21]\n", + "gamma_search_bounds = [0.06,0.08]\n", + "\n", + "num_dim_points = 10\n", + "\n", + "param_choices_true_false, coverage = ps(\"any\", {\"beta\": beta_search_bounds, \"gamma\": gamma_search_bounds}, query_condition=query_2, rtol=1e-3, num_dim_points=num_dim_points)\n", + "# print(param_choices_true_false)\n", + "\n", + "# id_number = randint(10**5, 10**6 - 1)\n", + "# with open(f'sir_query_auto_2_param_{id_number}.json', 'w', encoding='utf-8') as f:\n", + "# json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)\n", + "\n", + "solutions = [p for p in param_choices_true_false if p['assignment']==\"1\"]\n", + "if len(solutions) > 0:\n", + " my_params = solutions[0]\n", + " print(my_params)\n", + " param_assignment, sim = eval_point(my_params[\"beta\"], my_params[\"gamma\"], plot=True, mxstep=20, query_condition=query_2)\n", + "else:\n", + " print(\"No solutions!\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameter Synthesis\n", + "\n", + "\n", + "# USER: set bounds\n", + "beta_search_bounds = [0.19,0.21]\n", + "gamma_search_bounds = [0.06,0.08]\n", + "\n", + "# USER: set num_dim_points with how many points for each parameter you'd like to evaluate\n", + "num_dim_points = 10\n", + "\n", + "# beta_search_bounds = [0.13,0.16]\n", + "# gamma_search_bounds = [0.025,0.03]\n", + "\n", + "param_choices_true_false, coverage = ps(\"all\", {\"beta\": beta_search_bounds, \"gamma\": gamma_search_bounds}, query_condition=query_2, rtol=1e-3, num_dim_points=num_dim_points)\n", + "# print(param_choices_true_false)\n", + "\n", + "id_number = randint(10**5, 10**6 - 1)\n", + "\n", + "with open(f'sir_query_auto_2_param_{id_number}.json', 'w', encoding='utf-8') as f:\n", + " json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)\n", + "\n", + "\n", + "# Plot \"true/false\" points. Is there any way of characterizing these regions?\n", + "sir_model.plot_two_params(\"gamma\", \"beta\", param_choices_true_false)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# coverage timeseries \n", + "\n", + "import json\n", + "import pandas as pd\n", + "\n", + "\n", + "df = pd.DataFrame.from_records(coverage, columns=[\"time\", \"point id\"])\n", + "df.time = pd.to_datetime(df.time)\n", + "df.plot.scatter(x=\"time\", y=\"point id\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "\n", + "my_params = [p for p in param_choices_true_false if p['assignment']==\"1\"][-1]\n", + "param_assignment, sim = eval_point(my_params[\"beta\"], my_params[\"gamma\"], plot=True, mxstep=20, query_condition=query_1)\n", + "# param_assignment, sim = eval_point(0.25, 0.027755102040816326, plot=True, rtol=1e-10)\n", + "S, I, R = sim.T\n", + "\n", + "print(list(enumerate(S))[10])\n", + "# print([S[i]-S[i-1] for i in range(1, len(S))])\n", + "print(my_params)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "sir_model.plot_two_params(\"gamma\", \"beta\", param_choices_true_false)\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "funman_venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/evaluation/evaluation24/sir_model.py b/scratch/evaluation/evaluation24/sir_model.py new file mode 100644 index 00000000..11770710 --- /dev/null +++ b/scratch/evaluation/evaluation24/sir_model.py @@ -0,0 +1,170 @@ +import matplotlib.pyplot as plt +import numpy as np +import scipy +from scipy.integrate import odeint + + +# simulate SIR model - normalized (populations S,I,R add to 1) +def SIR_model(y, t, beta, gamma): + S, I, R = y + dSdt = -S * (beta(t) * I) + dIdt = S * (beta(t) * I) - gamma(t) * I + dRdt = gamma(t) * I + + return dSdt, dIdt, dRdt + + +# plot SIR model +def plotSIR(t, S, I, R): + f, ax = plt.subplots(1, 1, figsize=(10, 4)) + ax.plot(t, S, "b", alpha=0.7, linewidth=2, label="Susceptible") + ax.plot(t, I, "r", alpha=0.7, linewidth=2, label="Infected") + ax.plot(t, R, "r--", alpha=0.7, linewidth=2, label="Recovered") + + ax.set_xlabel("Time (days)") + ax.set_ylabel("Fraction of population") + + ax.yaxis.set_tick_params(length=0) + ax.xaxis.set_tick_params(length=0) + legend = ax.legend() + legend.get_frame().set_alpha(0.5) + plt.show() + + +# simulate SIDARTHE model - normalized (populations S,I,R add to 1) +def SIDARTHE_model( + y, + t, + alpha, + beta, + gamma, + delta, + epsilon, + mu, + zeta, + lamb, + eta, + rho, + theta, + kappa, + nu, + xi, + sigma, + tau, +): + S, I, D, A, R, T, H, E = y + dSdt = -S * (alpha(t) * I + beta(t) * D + gamma(t) * A + delta(t) * R) + dIdt = ( + S * (alpha(t) * I + beta(t) * D + gamma(t) * A + delta(t) * R) + - (epsilon(t) + zeta(t) + lamb(t)) * I + ) + dDdt = epsilon(t) * I - (eta(t) + rho(t)) * D + dAdt = zeta(t) * I - (theta(t) + mu(t) + kappa(t)) * A + dRdt = eta(t) * D + theta(t) * A - (nu(t) + xi(t)) * R + dTdt = mu(t) * A + nu(t) * R - (sigma(t) + tau(t)) * T + dHdt = lamb(t) * I + rho(t) * D + kappa(t) * A + xi(t) * R + sigma(t) * T + dEdt = tau(t) * T + + return dSdt, dIdt, dDdt, dAdt, dRdt, dTdt, dHdt, dEdt + + +# plot SIDARTHE model +def plotSIDARTHE(t, S, I, D, A, R, T, H, E): + f, ax = plt.subplots(1, 1, figsize=(10, 4)) + ax.plot(t, S, "b", alpha=0.7, linewidth=2, label="Susceptible") + ax.plot( + t, + I, + "r", + alpha=0.7, + linewidth=2, + label="Infected (Asymptomatic, Infected, Undetected)", + ) + ax.plot( + t, + D, + "r.", + alpha=0.7, + linewidth=2, + label="Diagnosed (Asymptomatic, Infected, Detected)", + ) + ax.plot( + t, + A, + "r:", + alpha=0.7, + linewidth=2, + label="Ailing (Symptomatic, Infected, Undetected)", + ) + ax.plot( + t, + R, + "r--", + alpha=0.7, + linewidth=2, + label="Recognized (Symptomatic, Infected, Detected)", + ) + ax.plot( + t, + T, + "r-.", + alpha=0.7, + linewidth=2, + label="Threatened (Acutely Symptomatic)", + ) + ax.plot(t, H, "g", alpha=0.7, linewidth=2, label="Healed") + ax.plot(t, E, "k", alpha=0.7, linewidth=2, label="Extinct (Dead)") + + ax.set_xlabel("Time (days)") + ax.set_ylabel("Fraction of population") + + ax.yaxis.set_tick_params(length=0) + ax.xaxis.set_tick_params(length=0) + legend = ax.legend() + legend.get_frame().set_alpha(0.5) + plt.show() + + +def SIHDR_model(y, t, beta, ae, bf, cg, dh, N): + S, I, H, D, R = y + dSdt = -(beta(t) * S * I / N(t)) + dIdt = (beta(t) * S * I / N(t)) - ae(t) * I - bf(t) * I + dHdt = bf(t) * I - cg(t) * H - dh(t) * H + dDdt = dh(t) * H + dRdt = ae(t) * I + cg(t) * H + + return dSdt, dIdt, dHdt, dDdt, dRdt + + +# plot SIHDR model +def plotSIHDR(t, S, I, H, D, R): + f, ax = plt.subplots(1, 1, figsize=(10, 4)) + ax.plot(t, S, "b", alpha=0.7, linewidth=2, label="Susceptible") + ax.plot(t, I, "r", alpha=0.7, linewidth=2, label="Infected") + ax.plot(t, H, "g", alpha=0.7, linewidth=2, label="Hospitalized") + ax.plot(t, D, "r.", alpha=0.7, linewidth=2, label="Dead") + ax.plot(t, R, "r--", alpha=0.7, linewidth=2, label="Recovered") + + ax.set_xlabel("Time (days)") + ax.set_ylabel("Fraction of population") + + ax.yaxis.set_tick_params(length=0) + ax.xaxis.set_tick_params(length=0) + legend = ax.legend() + legend.get_frame().set_alpha(0.5) + plt.show() + + +def plot_two_params(param1, param2, param_choices_true_false): + xsample = [result[param1] for result in param_choices_true_false] + ysample = [result[param2] for result in param_choices_true_false] + colors = [ + "green" if result["assignment"] == "1" else "red" + for result in param_choices_true_false + ] + plt.title("Parameter Value Pairings") + plt.xlabel(param1) + plt.ylabel(param2) + area = 5 # size of marker + plt.scatter(xsample, ysample, s=area, c=colors, alpha=0.5) + plt.show() diff --git a/scratch/hackathon/hackathon23_s1.py b/scratch/hackathon/hackathon23_s1.py index c5632ef2..cc449c73 100644 --- a/scratch/hackathon/hackathon23_s1.py +++ b/scratch/hackathon/hackathon23_s1.py @@ -418,7 +418,7 @@ def unit_test_1_query(self, steps, init_values): query._formula = And( [ LT(Symbol(f"S_{steps}", REAL), Real(init_values["S"])), - GE(Symbol(f"R_{steps}", REAL), Real(init_values["R"])) + GE(Symbol(f"R_{steps}", REAL), Real(init_values["R"])), # GT( # Symbol(f"R_{steps}", REAL), Real(5.0) # ), # R is near 10 at day 80 diff --git a/scratch/hackathon/hackathon_fall_2023_demo_terarrium.py b/scratch/hackathon/hackathon_fall_2023_demo_terarrium.py index 89dce5cc..0936bb48 100644 --- a/scratch/hackathon/hackathon_fall_2023_demo_terarrium.py +++ b/scratch/hackathon/hackathon_fall_2023_demo_terarrium.py @@ -27,7 +27,7 @@ def main(): "lb": 0.011, "ub": 0.011, "closed_upper_bound": True, - } + }, # "interval": {"lb": 0.008799999999999999, "ub": 0.0132}, }, { @@ -36,7 +36,7 @@ def main(): "lb": 0.456, "ub": 0.456, "closed_upper_bound": True, - } + }, # "interval": {"lb": 0.3648, "ub": 0.5472} }, { @@ -45,7 +45,7 @@ def main(): "lb": 0.011, "ub": 0.011, "closed_upper_bound": True, - } + }, # "interval": {"lb": 0.008799999999999999, "ub": 0.0132}, }, { @@ -54,7 +54,7 @@ def main(): "lb": 0.57, "ub": 0.57, "closed_upper_bound": True, - } + }, # "interval": { # "lb": 0.45599999999999996, # "ub": 0.6839999999999999, @@ -64,7 +64,7 @@ def main(): "name": "epsilon", "interval": { "lb": 0.1368, - "ub": 0.20520000000000002 + "ub": 0.20520000000000002, # "ub": 0.18, }, "label": "all", @@ -75,7 +75,7 @@ def main(): "lb": 0.125, "ub": 0.125, "closed_upper_bound": True, - } + }, # "interval": {"lb": 0.1, "ub": 0.15} }, { @@ -84,7 +84,7 @@ def main(): "lb": 0.034, "ub": 0.034, "closed_upper_bound": True, - } + }, # "interval": {"lb": 0.027200000000000002, "ub": 0.0408}, }, { @@ -93,7 +93,7 @@ def main(): "lb": 0.125, "ub": 0.125, "closed_upper_bound": True, - } + }, # "interval": {"lb": 0.1, "ub": 0.15} }, { @@ -102,14 +102,14 @@ def main(): "lb": 0.034, "ub": 0.034, "closed_upper_bound": True, - } + }, # "interval": {"lb": 0.027200000000000002, "ub": 0.0408}, }, { "name": "theta", "interval": { "lb": 0.2968, - "ub": 0.4452 + "ub": 0.4452, # "ub": 0.4, }, "label": "all", @@ -120,7 +120,7 @@ def main(): "lb": 0.017, "ub": 0.017, "closed_upper_bound": True, - } + }, # "interval": {"lb": 0.013600000000000001, "ub": 0.0204}, }, { @@ -129,7 +129,7 @@ def main(): "lb": 0.017, "ub": 0.017, "closed_upper_bound": True, - } + }, # "interval": {"lb": 0.013600000000000001, "ub": 0.0204}, }, { @@ -138,7 +138,7 @@ def main(): "lb": 0.027, "ub": 0.027, "closed_upper_bound": True, - } + }, # "interval": {"lb": 0.0216, "ub": 0.0324} }, { @@ -147,7 +147,7 @@ def main(): "lb": 0.017, "ub": 0.017, "closed_upper_bound": True, - } + }, # "interval": {"lb": 0.013600000000000001, "ub": 0.0204}, }, { @@ -156,7 +156,7 @@ def main(): "lb": 0.01, "ub": 0.01, "closed_upper_bound": True, - } + }, # "interval": {"lb": 0.008, "ub": 0.012} }, { @@ -165,7 +165,7 @@ def main(): "lb": 0.017, "ub": 0.017, "closed_upper_bound": True, - } + }, # "interval": {"lb": 0.013600000000000001, "ub": 0.0204}, }, ], diff --git a/scratch/notebooks/2022-09-14-demo.ipynb b/scratch/notebooks/2022-09-14-demo.ipynb index 4ec593ba..7f71a512 100644 --- a/scratch/notebooks/2022-09-14-demo.ipynb +++ b/scratch/notebooks/2022-09-14-demo.ipynb @@ -88,7 +88,7 @@ "ps_eq = ParameterSpace.construct_all_equal(ps_b1_b2_b3)\n", "# intersect the original parameter space with the ps_eq to get the\n", "# valid parameter space where (b1 == b2 == b3)\n", - "ps = ParameterSpace.intersect(ps_b1_b2_b3, ps_eq)\n", + "ps = ParameterSpace.intersection(ps_b1_b2_b3, ps_eq)\n", "# assert the parameters spaces for the original and the constant beta\n", "# variant are the same\n", "#assert(ParameterSpace.compare(ps_bc, ps))" diff --git a/scratch/notebooks/mira_epi_eval_sc3_seir.ipynb b/scratch/notebooks/mira_epi_eval_sc3_seir.ipynb new file mode 100644 index 00000000..dd31a2da --- /dev/null +++ b/scratch/notebooks/mira_epi_eval_sc3_seir.ipynb @@ -0,0 +1,520 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "14d9fa23-f229-4499-889f-8b84bf790223", + "metadata": {}, + "source": [ + "# Scenario 3: Causal Reasoning with Interventions" + ] + }, + { + "cell_type": "markdown", + "id": "80f64161-69df-41c6-a014-3dcd1afbdcb3", + "metadata": {}, + "source": [ + "### Load MIRA dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "efd146e7-0742-4e39-a374-39fe931df029", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import json\n", + "import sympy\n", + "\n", + "from mira.metamodel import *\n", + "from mira.examples.concepts import susceptible, exposed, infected, recovered\n", + "from mira.modeling import Model\n", + "from mira.modeling.amr.petrinet import AMRPetriNetModel, template_model_to_petrinet_json\n", + "from mira.sources.amr.petrinet import template_model_from_amr_json\n", + "from mira.metamodel.io import model_to_json_file, model_from_json_file\n", + "\n", + "from mira.modeling.ode import OdeModel, simulate_ode_model\n", + "import numpy\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "82328f7c-76da-4eb1-8241-fe0e23b58683", + "metadata": {}, + "source": [ + "## Build SEIR model" + ] + }, + { + "cell_type": "markdown", + "id": "4f42f426-67a8-4ff8-87ae-22dc95e2bbbe", + "metadata": {}, + "source": [ + "### Define units" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f8d81322-226a-4676-a0b8-923e7220e10d", + "metadata": {}, + "outputs": [], + "source": [ + "person_units = lambda: Unit(expression=sympy.Symbol('person'))\n", + "day_units = lambda: Unit(expression=sympy.Symbol('day'))\n", + "per_day_units = lambda: Unit(expression=1/sympy.Symbol('day'))\n", + "dimensionless_units = lambda: Unit(expression=sympy.Integer('1'))\n", + "per_day_per_person_units = lambda: Unit(expression=1/(sympy.Symbol('day')*sympy.Symbol('person')))" + ] + }, + { + "cell_type": "markdown", + "id": "6900e964-edb2-4427-bab1-d2c9dcdabc82", + "metadata": {}, + "source": [ + "# Define and stratify model concepts" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "5e2c1d9f-51a9-46a4-aa06-5aa862b8b081", + "metadata": {}, + "outputs": [], + "source": [ + "_susceptible = Concept(name='S', units=person_units(), identifiers={'ido': '0000514'})\n", + "_exposed = Concept(name='E', units=person_units(), identifiers={'apollosv': '00000154'})\n", + "_infected = Concept(name='I', units=person_units(), identifiers={'ido': '0000511'})\n", + "_recovered = Concept(name='R', units=person_units(), identifiers={'ido': '0000592'})\n", + "\n", + "c = {\n", + " 'S_y': _susceptible.with_context(status=\"young\"),\n", + " 'S_m': _susceptible.with_context(status=\"middle\"),\n", + " 'S_o': _susceptible.with_context(status=\"old\"),\n", + " 'E_y': _exposed.with_context(status=\"young\"),\n", + " 'E_m': _exposed.with_context(status=\"middle\"),\n", + " 'E_o': _exposed.with_context(status=\"old\"),\n", + " 'I_y': _infected.with_context(status=\"young\"),\n", + " 'I_m': _infected.with_context(status=\"middle\"),\n", + " 'I_o': _infected.with_context(status=\"old\"),\n", + " 'R_y': _recovered.with_context(status=\"young\"),\n", + " 'R_m': _recovered.with_context(status=\"middle\"),\n", + " 'R_o': _recovered.with_context(status=\"old\"),\n", + "}\n", + "\n", + "for concept in c:\n", + " c[concept].name = concept" + ] + }, + { + "cell_type": "markdown", + "id": "4792ddd4-f7bd-43e5-8cc7-a729573b39eb", + "metadata": {}, + "source": [ + "### Define parameters with uncertainty" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "b4774d31-1ad4-4027-a82b-6bee06907e03", + "metadata": {}, + "outputs": [], + "source": [ + "# To add a small distribution around parameters (for Terarium)\n", + "def unif_distribution_create(value: float):\n", + " return Distribution(\n", + " type=\"StandardUniform1\",\n", + " parameters={\"minimum\": value, \"maximum\": value + max(0.01*value,0.1)},\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "a902e806-0dad-4bf6-a264-0172324257b0", + "metadata": {}, + "outputs": [], + "source": [ + "parameters = {\n", + " 'beta': Parameter(name='beta', value=sympy.Float(0.2), units=per_day_units(),\n", + " distribution=Distribution(type='StandardUniform1',\n", + " parameters={'minimum': 0.05,\n", + " 'maximum': 0.8})), # Infection rate\n", + " 'N': Parameter(name='N', value=sympy.Float(300.0), units=person_units()), # Total population\n", + " 'mew': Parameter(name='mew', value=sympy.Float(0.0), units=per_day_units()), # Mask efficacy\n", + " 'mcw': Parameter(name='mcw', value=sympy.Float(0.0), units=per_day_units()), # Mask compliance\n", + " 'r_EI': Parameter(name='r_EI', value=sympy.Float(0.08), units=per_day_units()), # Rate of progressing E -> I\n", + " 'r_IR': Parameter(name='r_IR', value=sympy.Float(0.06), units=per_day_units()), # Rate of progressing I -> R\n", + " 'Myy': Parameter(name='Myy', value=sympy.Float(38.62), units=per_day_units()), # Contact rate young -> young\n", + " 'Mym': Parameter(name='Mym', value=sympy.Float(20.56), units=per_day_units()), # Contact rate young -> middle\n", + " 'Myo': Parameter(name='Myo', value=sympy.Float(6.12), units=per_day_units()), # Contact rate young -> old\n", + " 'Mmy': Parameter(name='Mmy', value=sympy.Float(20.56), units=per_day_units()), # Contact rate middle -> young\n", + " 'Mmm': Parameter(name='Mmm', value=sympy.Float(28.22), units=per_day_units()), # Contact rate middle -> middle\n", + " 'Mmo': Parameter(name='Mmo', value=sympy.Float(11.6), units=per_day_units()), # Contact rate middle -> old\n", + " 'Moy': Parameter(name='Moy', value=sympy.Float(6.12), units=per_day_units()), # Contact rate old -> young\n", + " 'Mom': Parameter(name='Mom', value=sympy.Float(11.6), units=per_day_units()), # Contact rate old -> middle\n", + " 'Moo': Parameter(name='Moo', value=sympy.Float(20.01), units=per_day_units()), # Contact rate old -> old\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "e0e7b89c-8d24-42b2-afe1-e3bddf0bfc5c", + "metadata": {}, + "source": [ + "### Define variables" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "802ce5dd-9f50-43c3-8d0b-f1e7a692d7b0", + "metadata": {}, + "outputs": [], + "source": [ + "S_y, S_m, S_o, E_y, E_m, E_o, I_y, I_m, I_o, R_y, R_m, R_o, beta, N, mew, mcw, r_EI, r_IR, Myy, Mym, Myo, Mmy, Mmm, Mmo, Moy, Mom, Moo = \\\n", + " sympy.symbols(\n", + " 'S_y S_m S_o E_y E_m E_o I_y I_m I_o R_y R_m R_o beta N mew mcw r_EI r_IR Myy Mym Myo Mmy Mmm Mmo Moy Mom Moo'\n", + " )" + ] + }, + { + "cell_type": "markdown", + "id": "8d3dceac-1113-4c55-92a3-3b5ab34ee960", + "metadata": {}, + "source": [ + "### Set initial values" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f892e033-55da-44c6-b309-459dee0cae1a", + "metadata": {}, + "outputs": [], + "source": [ + "initials = {\n", + " \"S_y\": Initial(concept=c[\"S_y\"], expression=99.0),\n", + " \"S_m\": Initial(concept=c[\"S_m\"], expression=99.0),\n", + " \"S_o\": Initial(concept=c[\"S_o\"], expression=99.0),\n", + " \"E_y\": Initial(concept=c[\"E_y\"], expression=1.0),\n", + " \"E_m\": Initial(concept=c[\"E_m\"], expression=1.0),\n", + " \"E_o\": Initial(concept=c[\"E_o\"], expression=1.0),\n", + " \"I_y\": Initial(concept=c[\"I_y\"], expression=0.0),\n", + " \"I_m\": Initial(concept=c[\"I_m\"], expression=0.0),\n", + " \"I_o\": Initial(concept=c[\"I_o\"], expression=0.0),\n", + " \"R_y\": Initial(concept=c[\"R_y\"], expression=0.0),\n", + " \"R_m\": Initial(concept=c[\"R_m\"], expression=0.0),\n", + " \"R_o\": Initial(concept=c[\"R_o\"], expression=0.0),\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "51ea2d61-7dc7-4aa3-849e-9817708158cc", + "metadata": {}, + "source": [ + "### Define templates" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5f186c10-7b95-4678-8737-ebca86c1f856", + "metadata": {}, + "outputs": [], + "source": [ + "##### S -> E\n", + "# Sy -> Ey by Iy\n", + "syeyiy = ControlledConversion(\n", + " subject=c['S_y'],\n", + " outcome=c['E_y'],\n", + " controller=c['I_y'],\n", + " rate_law=beta*S_y*(1 - mew*mcw)*(Myy*I_y) / N\n", + ")\n", + "# Sy -> Ey by Im\n", + "syeyim = ControlledConversion(\n", + " subject=c['S_y'],\n", + " outcome=c['E_y'],\n", + " controller=c['I_m'],\n", + " rate_law=beta*S_y*(1 - mew*mcw)*(Mym*I_m) / N\n", + ")\n", + "# Sy -> Ey by Io\n", + "syeyio = ControlledConversion(\n", + " subject=c['S_y'],\n", + " outcome=c['E_y'],\n", + " controller=c['I_o'],\n", + " rate_law=beta*S_y*(1 - mew*mcw)*(Myo*I_o) / N\n", + ")\n", + "\n", + "# Sm -> Em by Iy\n", + "smemiy = ControlledConversion(\n", + " subject=c['S_m'],\n", + " outcome=c['E_m'],\n", + " controller=c['I_y'],\n", + " rate_law=beta*S_m*(1 - mew*mcw)*(Mmy*I_y) / N\n", + ")\n", + "# Sm -> Em by Im\n", + "smemim = ControlledConversion(\n", + " subject=c['S_m'],\n", + " outcome=c['E_m'],\n", + " controller=c['I_m'],\n", + " rate_law=beta*S_m*(1 - mew*mcw)*(Mmm*I_m) / N\n", + ")\n", + "# Sm -> Em by Io\n", + "smemio = ControlledConversion(\n", + " subject=c['S_m'],\n", + " outcome=c['E_m'],\n", + " controller=c['I_o'],\n", + " rate_law=beta*S_m*(1 - mew*mcw)*(Mmo*I_o) / N\n", + ")\n", + "\n", + "# So -> Eo by Iy\n", + "soeoiy = ControlledConversion(\n", + " subject=c['S_o'],\n", + " outcome=c['E_o'],\n", + " controller=c['I_y'],\n", + " rate_law=beta*S_o*(1 - mew*mcw)*(Moy*I_y) / N\n", + ")\n", + "# So -> Eo by Im\n", + "soeoim = ControlledConversion(\n", + " subject=c['S_o'],\n", + " outcome=c['E_o'],\n", + " controller=c['I_m'],\n", + " rate_law=beta*S_o*(1 - mew*mcw)*(Mom*I_m) / N\n", + ")\n", + "# So -> Eo by Io\n", + "soeoio = ControlledConversion(\n", + " subject=c['S_o'],\n", + " outcome=c['E_o'],\n", + " controller=c['I_o'],\n", + " rate_law=beta*S_o*(1 - mew*mcw)*(Moo*I_o) / N\n", + ")\n", + "\n", + "#### E -> I\n", + "# Ey -> Iy\n", + "eyiy = NaturalConversion(\n", + " subject=c['E_y'],\n", + " outcome=c['I_y'],\n", + " rate_law=r_EI*E_y\n", + ")\n", + "# Em -> Im\n", + "emim = NaturalConversion(\n", + " subject=c['E_m'],\n", + " outcome=c['I_m'],\n", + " rate_law=r_EI*E_m\n", + ")\n", + "# Eo -> Io\n", + "eoio = NaturalConversion(\n", + " subject=c['E_o'],\n", + " outcome=c['I_o'],\n", + " rate_law=r_EI*E_o\n", + ")\n", + "\n", + "#### I -> R\n", + "# Iy -> Ry\n", + "iyry = NaturalConversion(\n", + " subject=c['I_y'],\n", + " outcome=c['R_y'],\n", + " rate_law=r_IR*I_y\n", + ")\n", + "# Im -> Rm\n", + "imrm = NaturalConversion(\n", + " subject=c['I_m'],\n", + " outcome=c['R_m'],\n", + " rate_law=r_IR*I_m\n", + ")\n", + "# Io -> Ro\n", + "ioro = NaturalConversion(\n", + " subject=c['I_o'],\n", + " outcome=c['R_o'],\n", + " rate_law=r_IR*I_o\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "a845f3f9-fe95-4931-9a4b-c3800774f940", + "metadata": {}, + "source": [ + "### Define observables" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "38e21c50-8b53-4288-a8ef-73f6e02ac63a", + "metadata": {}, + "outputs": [], + "source": [ + "observables_seir = {\n", + " 'susceptible': Observable(name='susceptible', expression=S_y+S_m+S_o),\n", + " 'exposed': Observable(name='exposed', expression=E_y+E_m+E_o),\n", + " 'infected': Observable(name='infected', expression=I_y+I_m+I_o),\n", + " 'recovered': Observable(name='recovered', expression=R_y+R_m+R_o),\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "e0a0a040-600d-45f4-bc68-be57074b6cac", + "metadata": {}, + "source": [ + "### Define template model and save as petrinet AMR" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "4c523830-dfc3-4b8a-b584-5dad7f95c729", + "metadata": {}, + "outputs": [], + "source": [ + "seir_model = TemplateModel(\n", + " templates=[\n", + " syeyiy,\n", + " syeyim,\n", + " syeyio,\n", + " smemiy,\n", + " smemim,\n", + " smemio,\n", + " soeoiy,\n", + " soeoim,\n", + " soeoio,\n", + " eyiy,\n", + " emim,\n", + " eoio,\n", + " iyry,\n", + " imrm,\n", + " ioro,\n", + " ],\n", + " parameters=parameters,\n", + " initials=initials,\n", + " observables=observables_seir\n", + ")\n", + "\n", + "# Save as JSON\n", + "with open(\"SEIR_scenario3_petrinet.json\", 'w') as fh:\n", + " json.dump(template_model_to_petrinet_json(seir_model), fh, indent=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "82dda977", + "metadata": {}, + "outputs": [], + "source": [ + "om = OdeModel(model=Model(seir_model), initialized=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "92ef0baf", + "metadata": {}, + "outputs": [], + "source": [ + "times_test = numpy.linspace(0, 100, 100)\n", + "res = simulate_ode_model(ode_model=om, times=times_test,\n", + " with_observables=True)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "eb65a8f3", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "148bec6c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAGwCAYAAAAaBIXGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAADKtElEQVR4nOydd3wThfvHPxltulta6B6UVSh7U/YoUIaAVlD2RhBw4ED4Cij+AMWB4sCFFBTcCgiIIluWDJG9Rwt0QKF7pcn9/nh6vaSLNk17Sfq8X697Jblcck/mfe6ZCkEQBDAMwzAMwzBMBVHKbQDDMAzDMAxjnbCQZBiGYRiGYUyChSTDMAzDMAxjEiwkGYZhGIZhGJNgIckwDMMwDMOYBAtJhmEYhmEYxiRYSDIMwzAMwzAmoZbbAEtAr9fjzp07cHV1hUKhkNschmEYhmHKgSAISE9Ph7+/P5RK9o3JAQtJAHfu3EFQUJDcZjAMwzAMYwJxcXEIDAyU24waCQtJAK6urgDoi+jm5iazNQzDMAzDlIe0tDQEBQUVHseZ6oeFJFAYznZzc2MhyTAMwzBWBqelyQcnFDAMwzAMwzAmwUKSYRiGYRiGMQkWkgzDMAzDMIxJcI4kwzAMwzA2i16vR15entxmWBV2dnZQqVTl2paFJMMwDMMwNkleXh6uX78OvV4vtylWh4eHB3x9fR9ayMRCkmEYhmEYm0MQBMTHx0OlUiEoKIgblpcTQRCQlZWFpKQkAICfn1+Z27OQZBiGYRjG5sjPz0dWVhb8/f3h5OQktzlWhaOjIwAgKSkJ3t7eZYa5ZZXnq1atQosWLQr7N0ZEROD3338vvD8nJwczZ86El5cXXFxcEB0djcTERKPniI2NxaBBg+Dk5ARvb2+89NJLyM/Pr+6XwjAMwzCMBaHT6QAA9vb2MltinYjiW6vVlrmdrEIyMDAQb775Jo4fP45jx46hd+/eGDp0KM6ePQsAeP755/Hbb7/hxx9/xN69e3Hnzh089thjhY/X6XQYNGgQ8vLycPDgQaxduxYxMTFYuHChXC+JYRiGYRgLgpuVm0Z53zeFIAhCFdtSITw9PfH222/j8ccfR506dbBhwwY8/vjjAIALFy6gSZMmOHToEDp16oTff/8dgwcPxp07d+Dj4wMA+PTTTzF37lzcvXu33GchaWlpcHd3R2pqKk+2YRiGYRgroazjd05ODq5fv47Q0FA4ODjIZKH1Ut73z2IyT3U6Hb777jtkZmYiIiICx48fh1arRWRkZOE2jRs3RnBwMA4dOgQAOHToEJo3b14oIgGgf//+SEtLK/RqlkRubi7S0tKMFoZhGIZhGKZiyC4kT58+DRcXF2g0GkyfPh2//vorwsPDkZCQAHt7e3h4eBht7+Pjg4SEBABAQkKCkYgU7xfvK41ly5bB3d29cAkKCjLvi2IYhmEYhqkByC4kw8LCcPLkSRw5cgQzZszA+PHjce7cuSrd57x585Camlq4xMXFVc2OkpKA1FSA+1cxDMMwDFNO7t69ixkzZiA4OBgajQa+vr7o378/Dhw4ILdpxZC9/Y+9vT0aNGgAAGjbti2OHj2KDz74AE888QTy8vKQkpJi5JVMTEyEr68vAMDX1xf//POP0fOJVd3iNiWh0Wig0WjM/EpK4PPPgbg4QKkEPDxoqVULqFcPaNMG8PSsehsYhmEYhrEqoqOjkZeXh7Vr16JevXpITEzEzp07kZycLLdpxZBdSBZFr9cjNzcXbdu2hZ2dHXbu3Ino6GgAwMWLFxEbG4uIiAgAQEREBJYsWVLY5wgAduzYATc3N4SHh8v2GgoRBEChII/k/fu0AMDx48CPPwKhoUDbtrSwqGQYhmGYKkMQgKwsefbt5ERyoDykpKRg//792LNnD3r06AEACAkJQYcOHR762EmTJiEpKQlbtmwpXKfVahEQEIBly5Zh8uTJJtlfFrIKyXnz5mHAgAEIDg5Geno6NmzYgD179uCPP/6Au7s7Jk+ejDlz5sDT0xNubm6YPXs2IiIi0KlTJwBAv379EB4ejrFjx2L58uVISEjAq6++ipkzZ1aPx/FhLFgA6HRAWhqQkgI8eADcvQucPg1cuQJcv07Lzz8DPXsCQ4cCBU1AGYZhGMYiEQTgxg3g3j2gdWtAXSAlfv4Z+PNPIDlZcp6I12/dooicjGRlAS4u8uw7IwNwdi7fti4uLnBxccHGjRvRqVOnCumZKVOmoHv37oiPjy+cSLNlyxZkZWXhiSeeMMX0hyKrkExKSsK4ceMQHx8Pd3d3tGjRAn/88Qf69u0LAFixYgWUSiWio6ORm5uL/v3745NPPil8vEqlwpYtWzBjxgxERETA2dkZ48ePx+LFi+V6ScVRqejHU6sWeSABoH9/yp08cYK8k5cvA7t30+0nnqCwN/e9YhiGYaoDvZ5EYUICkJhIi3g9KYmWli2BN9+UHtOoEZCfT+lbgYG07tAhSukqieRk2YWktaBWqxETE4OpU6fi008/RZs2bdCjRw88+eSTaNGiRZmP7dy5M8LCwvD111/j5ZdfBgCsWbMGw4cPh0sVqWiL6yMpB7L3kTx3Dvj2W/qxAkCzZsDIkUDt2tVvC8MwDGMbCAKJwdu3gVatyLEBAKtXA7/+CsTHS4KxYApMqXTrBuzbJ92uXx/QaoEdO4CwMFq3Ywdw8CDg5SUtnp50GRgI2NmZ/SVWpI+ktYS2RXJycrB//34cPnwYv//+O/755x98+eWXmDBhQpmPW7FiBT7//HOcP38eiYmJCAwMxK5du9CtW7cK7788fSRZSMIChCRAP8jt22nJzyf/+wsvAP7+8tjDMAzDWC6CQKlSN2+SV1BcgoKAZ5+lbXQ6wMGhuOfw5ZeBt98u/py1awO+voCPj/Hi7U0RtZ49q+3llZea1JB8ypQp2LFjB27evFnmdsnJyfD398eePXtw8OBBfPbZZ7h06VKF91fe98/iim1qLHZ2wCOPAB06AF9+CcTGAitWAC++SD9khmEYpmZx7x5w6RLlI964QTn1N27Q8SE2FsjJKf6Yzp0lIalSkXjMzaU8fVFIRkdTaNrPjxZfX6BOnSrxGDLmIzw8HBs3bnzodl5eXhg2bBjWrFmDQ4cOYeLEiVVqFwtJS8PHB3juOeC99yg5WRSTHOZmGIaxXT7+mETjwoUUCgYoJ/Hdd0t/jEJBQjAoCAgOJqHYrJnxNlevUgs6Qzp2pIWxSJKTkzF8+HBMmjQJLVq0gKurK44dO4bly5dj6NCh5XqOKVOmYPDgwdDpdBg/fnyV2stC0hJxdqYzyvfeoxyW994jMcktghiGYawLvZ6cAhcuUGHlpUu0eHoC69dL2y1fTl7GJ58EClrcoWFDEoihobTUrUtLSIgkHO3ty95/URHJWDwuLi7o2LEjVqxYgatXr0Kr1SIoKAhTp07F/Pnzy/UckZGR8PPzQ9OmTeFfxSlynCMJC8mRLInUVOCdd6gIx9sbeOklwJLsYxiGYQitltq6nTtHy/nzJB4vXiy5wsPPD7hzR7r92mu03dSpJCCZclGTciQrQkZGBgICArBmzRo89thjJj0H50jaAu7uwPPPS2Lyu++AadPktophGKbmotdTnqKXF/1HA8CaNcBTT5GYLAk7O6pyDguj3ERxMeS116rSaqaGoNfrce/ePbz77rvw8PDAkCFDqnyfLCQtHU9PYMYMYMkS6jl5/jzQpIncVjEMw9g+mZkUhm7dWlrXpw+wZw+1bHvySVrn50ci0tkZCA+n/2jxsnFjCktzIQtjBtavX4+nnnqqxPtCQkKwdetWhIaGIjAwEDExMVCrq17msZC0BoKCgF69gF276M9r4UJpkgDDMAxTedLSaCiE4XLhAuUYZmRQGx2APIkHD0p9fwGge3fyUgYFcU4iU6UMGTIEHUsplLKzs0NISAiqO2OR1Yi18MgjwLFj1Dj2r7+AqCi5LWIYhrFOcnKAf/8F/vmH/lePHqVcxpKoU4d6MIp5i8uXU4W14cm8kxMVwDBMFePq6gpXV1e5zTCChaS14OREvb/WrAG2bqV+k1zFzTAMU35u3QIeeww4ebLkfMbgYKBdOxpT26YNhbR9fY23EfMiGYYBwELSuujYEdi/nyoDf/yRkrsZhmGY4uzfD3zwARW4LFlC67y9gdOnSUR6e9MJefv2tLRtS+sYhqkQLCStCYWCZnAvWUL5O+fOUUI3wzBMTSUnh0LU+/YBAweSJxEAkpOBn38GmjaVhKS9PbBpE4Wp69at+PBjhmGKwULS2ggMpMKbnTupHdBrr3FyN8MwNYe8PMpp3L2bChAPHZJGBebnS0Kya1dg2TK6NKRfv+q1l2FsHBaS1sgjj9CfZ2IiVRWyV5JhGFtFEICzZ6nIcMcOYO9eastjiK8v0KOHJCIBGiv7yivVayvD1EBYSFojjo6U27NnD/D33ywkGYaxPf76C/jmG+DPP2lUrCG1a1NkRlzCwjhMzTAywULSWunShYTkf/9RjzMXF7ktYhiGMQ1BoLzvxo2pqTcAHDgArF1L1x0cqFdj3760NG/OKT2MzTJhwgSkpKRg48aNcptSLlhIWivBwdT8Ni6OEs1795bbIoZhGNPo0YOqrH/+mdrzAMCwYXSSHBVFJ841bFYyw1gLfEpnzXTpQpcHDtAZPcMwjCWTnExexpEjqWhGpG1b8kTeuSOta9kSePttGknIIpIxI1lZpS+5ueXfVqzxeti2VcG6devg5eWF3CIGDxs2DGPHjq2anZYCeyStmQ4dgJ9+oia7sbE8WYFhGMsjIQH45RfyNu7dC+h0tH7SJApTA8CCBVRhzYKRqQaaNy/9vp49gdWrpdsdOgDZ2SVv27EjsGGDdLtHD+D+/eLbXb1qkpllMnz4cDzzzDPYvHkzhg8fDgBISkrC1q1b8eeff5p/h2XAHklrxtmZJi8A5JVkGIaxBOLjgY8+oqOyvz8wcya16tHpgBYtgEWLpJGDAE3pYhHJMOXG0dERo0aNwpo1awrXffPNNwgODkbPnj2r1Rb2SFo7nTtTT7V//gEef5wa7jIMw1Q3Dx6Q1/Hbb6kQUK+X7uvYkf6fHnsMqFdPNhMZBqDhRqWhUhnf/uef0rctWu+1d6/pNpnC1KlT0b59e9y+fRsBAQGIiYnBhAkToKjmDgYsJK2dxo3pbP7+fZof26GD3BYxDFPTmDsXWLHCeH51p07A8OEkIIOD5bONYYrg5CT/tuagdevWaNmyJdatW4d+/frh7Nmz2Lp1a/UaARaS1o9SSV7JLVuopyQLSYZhqhJBoIEILVpIbcd8fEhENm9OhTRPPgmEhsprJ8PUAKZMmYL3338ft2/fRmRkJIKCgqrdBs6RtAU6d6ZmvBcvAvfuyW0NwzC2zIAB1DHi55+ldePGUbzw1Clg3jwWkQxTTYwaNQq3bt3CF198gUmTJsliAwtJW8DLi0LcAHD4sLy2MAxjO2i1wKZNxn1OunenQr+7d6V1tWsDzZpVv30MU8Nxd3dHdHQ0XFxcMGzYMFlsYCFpK7RrR5fnzslrB8Mw1k9sLLBwIbUUGzaMxKTIrFnU0ufFF2Uzj2FsmZiYmApNtbl9+zZGjx4NjUZTdUaVAedI2gphYXR54wZ1VJXpC8UwjJWi1wPbtwOffgps3SpVXXt7A5mZ0nZubvLYxzCMEQ8ePMCePXuwZ88efPLJJ7LZwULSVqhdG6hVi1pwXL0KhIfLbRHDMNZAaioQE0N9H69ckdb37g1Mnw4MHcptxRimmomNjUV4Gcfxc+fOoXv37njw4AHeeusthInOJBlgIWkrKBTklTx8mIpuWEgyDFMWly4BK1fSyMKMDFrn7g5MnEgCUsYDE8PUdPz9/XHy5Mky779x40a12VMWLCRtCUMhyTAMUxI3bgDPPgts3iytCw8HnnkGGDOGCmkYhpEVtVqNBg0ayG1GuWAhaUuIHoSbN6nKkkeOMQxTFDc34K+/KIoxeDDw3HNAr150m2EYpoJw1bYt4eVFuZJ6vXGuE8MwNZOcHOCzz4Dx46V1np7AV18B58+TV7J3bxaRDMOYDAtJW0P0SnJ4m2GY5GQKWa9bR5OvRJ54gnMgGYYxCywkbY1GjeiShSTD1DzS0oDvv5duBwTQHOz33wdat5bNLIZhbBfOkbQ1RC9DbCyQnQ04OsprD8MwVU9aGlVgv/cetQBr2BBo04buW7xYXtsYhrFp2CNpa9SqRQ2EBYHaezAMY7tkZgLLlgF16wILFpCIDAsD0tPltoxhmBoCC0lbhPMkGca2yc0FPvwQqF8fmD+fBGTjxsCGDcDZs0CPHnJbyDCMiUyYMAEKhaLYEhUVJbdpJcKhbVskLAzYv589kgxja+h0VDjz2muUvgIA9epR+PrJJwGVSlbzGIYxD1FRUVizZo3ROrlmaT8M9kjaImLBza1bxjNyGYaxTgSB5mC3bg1MmkQi0t+f5mJfuACMHs0ikmHKSXY2LYIgrdNqaV1eXsnbiqPnASA/v2LbmoJGo4Gvr6/RUqtWrTIfM2nSJAwePNhonVarhbe3N1avXm2aIeWAhaQt4u4O+PlxniTD2AKZmUDfvsCAAcDp04CHB/D229Qr9qmnADs7uS1kGKtiyBBaUlOldT/8QOs++sh42xEjaH1SkrRu82Za9+67xtuOHUvrxWABAPz5p/ntL40pU6Zg+/btiI+PL1y3ZcsWZGVl4Yknnqiy/bKQtFW4DRDD2AbOzoBaDdjbAy+8AFy9Crz4IndkYBgbZsuWLXBxcTFali5dWuZjOnfujLCwMHz99deF69asWYPhw4fDxcWlymxVCIKhc7dmkpaWBnd3d6SmpsLNzU1uc8zD8ePA559T+GvRIrmtYRimvOTkUCHNxIk0qQog76NKBYSGymsbw1gYZR2/c3JycP36dYSGhsLBYGRwdjZdOjhIQ520WgpDq1R0zlZ0W40GUBa43vLzafvybquuYDXKhAkTcPv2baxatcpovaenJzw9Pct87IoVK/D555/j/PnzSExMRGBgIHbt2oVu3bpVzAiU/v4VhYttbBWxcvvOHSAjA6jCsxGGYczIyJHAxo3A9evAJ5/QugYNZDWJYWyJkpz5dnYlZ4mUtK1aXbI4LG1bU3B2dkYDE37348aNwyuvvIJDhw7h4MGDCA0NNUlEVgQObdsqLi5AnTp0PS5OXlsYhik/zz9PkYQuXeS2hGEYK8PLywvDhg3DmjVrEBMTg4kTJ1b5PtkjacsEBAB375JXskkTua1hGKYo2dnAm28Crq6U9wgA3bsD165RfIxhmBpJbm4uEhISjNap1WrUFtNdymDKlCkYPHgwdDodxo8fX1UmFiKrR3LZsmVo3749XF1d4e3tjWHDhuFikeKQnj17FmvKOX36dKNtYmNjMWjQIDg5OcHb2xsvvfQS8k2tubclAgLo8vZtee1gGKY427cDTZtSD8iFCwGDSksWkQxTs9m+fTv8/PyMlq5du5brsZGRkfDz80P//v3h7+9fxZbKLCT37t2LmTNn4vDhw9ixYwe0Wi369euHzCK9D6dOnYr4+PjCZfny5YX36XQ6DBo0CHl5eTh48CDWrl2LmJgYLFy4sLpfjuXBQpJhLI+kJGDUKGrnc/06/U7XrgV8feW2jGEYCyAmJgaCIBRbLly4UK7HZ2Zm4sGDB5g8eXIVW0rIGtrevn270e2YmBh4e3vj+PHj6N69e+F6Jycn+JbyJ/vnn3/i3Llz+Ouvv+Dj44NWrVrhjTfewNy5c/Haa6/B3rCkqqYhnonEx1OHVCWnxDKMbAgCEBNDLXwePKDf47PPAq+/TqFthmGYSqDX63Hv3j28++678PDwwJAhQ6plvxalLFILuoMWLW9fv349ateujWbNmmHevHnIysoqvO/QoUNo3rw5fHx8Ctf1798faWlpOHv2bIn7yc3NRVpamtFik3h7U8lYbi6QnCy3NQxTc7l2DYiMpKk0Dx4ArVoBR44A773HIpJhmHKxfv36Yr0lxaVp06aIjY2Fj48PNmzYgK+++gpqU0vGK4jFFNvo9Xo899xz6NKlC5o1a1a4ftSoUQgJCYG/vz9OnTqFuXPn4uLFi/jll18AAAkJCUYiEkDh7aKJqiLLli3D66+/XkWvxIJQqWjCTVwchbfFKm6GYaoHvZ5a+MydC2RlUX+QxYuB554zvS8IwzA1kiFDhqBjx44l3mdnZ4eQkBDI0RrcYv7JZs6ciTNnzuDvv/82Wj9t2rTC682bN4efnx/69OmDq1evon79+ibta968eZgzZ07h7bS0NAQFBZlmuKUTECAJyVat5LaGYWoO166RB3LvXrrdowewejVg4v8WwzA1G1dXV7haYATDIkLbs2bNwpYtW7B7924EBgaWua2oxq9cuQIA8PX1RWJiotE24u3S8io1Gg3c3NyMFptFzJO8c0deOximJiEIwLBhJCKdnGiA765dLCIZhrE5ZBWSgiBg1qxZ+PXXX7Fr1y6ElmP818mTJwEAfn5+AICIiAicPn0aSQYT1Xfs2AE3NzeEh4dXid1WBVduM0z1o1AAK1cCvXoBp08DM2dysRvDMDaJrKHtmTNnYsOGDdi0aRNcXV0Lcxrd3d3h6OiIq1evYsOGDRg4cCC8vLxw6tQpPP/88+jevTtatGgBAOjXrx/Cw8MxduxYLF++HAkJCXj11Vcxc+ZMaLgXmyQkExNpOGhJM6AYhqk8P/9M40jFBsA9e1I4WxzmyzAMY4PIeoq8atUqpKamomfPnkZNN7///nsAgL29Pf766y/069cPjRs3xgsvvIDo6Gj89ttvhc+hUqmwZcsWqFQqREREYMyYMRg3bhwWL14s18uyLDw8KLSm1wOlFB8xDFNJtm8HHn8cePppoCDtBgCLSIZhbB5ZPZIPqy4KCgrCXjFRvQxCQkKwbds2c5llWygUlCd55QrlSdpqURHDyEm/frS0bQsEB8ttDcMwTLVhMVXbTBUSEEBCkvMkGcY86PXAV1/RhBonJ8p/3LaNWm4xDMPUIDj7uybABTcMYz6SkoDBg4GpU6kfpAiLSIZhzMCECRMwbNgwuc0oN+yRrAmIQpJbADFM5fj7b+CJJ+i3pNEArVvLbRHDMIyssEeyJlDQKgn37wPZ2fLawjDWiCAA775Lldh37gCNGwNHjwIzZshtGcMwFSQ3t+KLTic9XqejdXl55XveqqJnz56YPXs2nnvuOdSqVQs+Pj744osvkJmZiYkTJ8LV1RUNGjTA77//XnVGgD2SNQNnZ6BWLZrxe/s20KCB3BYxjPWQkgJMnAhs3Ei3R40CPvsMcHGR0yqGYUzkmWcq/php06iWDgBOngQ+/xxo1Ah44QVpm/nzqQNYUT77zCQzy8XatWvx8ssv459//sH333+PGTNm4Ndff8Wjjz6K+fPnY8WKFRg7dixiY2Ph5ORUJTawR7KmwHmSDFNxTp0C2rUjEWlvT3Ozv/mGRSTDMBZBy5Yt8eqrr6Jhw4aYN28eHBwcULt2bUydOhUNGzbEwoULkZycjFOnTlWZDeyRrCn4+wNnznCeJMOUlx9+IE9kVhYQEgL8+CPQvr3cVjEMU0lWrqz4Y9QGaqlVK3qOom1ily6tlFkmIQ5nAaivtpeXF5o3b164zsfHBwCMpv+ZGxaSNQX2SDJM+dDpKEa1fDnd7tcP2LAB8PKS1y6GYcxCZYfeqVQlN2mQY5ieXZFpdQqFwmidokDt6vX6KrOBQ9s1BUMh+ZBG8AxTo3nhBUlEvvwy9YdkEckwDFMiLCRrCr6+1DQ5K4uKBxiGKZlnn6XpNN99B7z1FveHZBiGKQMObdcU7OwAHx8gPp7yJGvVktsihrEc4uKk8aGhocClS/LEqRiGYawMFpI1CX9/EpK3bwNNm8ptDcNYBh99BMyZA/zyC02sAVhEMgwjGzExMeXabs+ePcXW3bhxo9g6oYrT2Ti0XZPgghuGMUYQgNOnAa0W2L5dbmsYhmGsDvZI1iQK2gDg7l157WAYS0GhII9kjx7AyJFyW8MwDAMAiI2NRXh4eKn3nzt3DsHBwdVoUemwkKxJ1K5Nl8nJ8trBMHJy5w7w3nvAm29Sczg7O5pWwzAMYyH4+/vj5MmTZd5vKbCQrEmIQjIlhUJ5RfpPMYzNc/YsMHAgEBtL1dhvvSW3RQzDMMVQq9VoYCXjjDlHsibh7CwVEbBXkqlp7N4NdOlCIrJRI+Cpp+S2iGEYxuphIVmTUCgkr+S9e/LawjDVyY8/AlFRQGoqicmDB4F69eS2imEYxuphIVnT4DxJpqbx6afAE08AeXlAdDTw1188qYZhGMZMsJCsaYgHUPZIMraOIABvvAHMmEHXp08Hvv8ecHCQ2zKGYRibgYVkTYND20xNQK+nUYcLF9LthQuBTz7hcYcMwzBmhqu2axosJBlbJz8fmDgR+OYbygteuRKYNUtuqxiGYWwS9kjWNMTQNudIMrZIbi4wYgSJSLUaWL+eRSTDMFbFhAkTMGzYMLnNKDfskaxpiB7JzEwgOxtwdJTXHoYxJ5cvAzt2APb2wE8/AY88IrdFDMMwNg17JGsaDg7UTxLg8DZjezRrBmzdCmzZwiKSYRgjBIGaN8ixCIL5X09ubi6eeeYZeHt7w8HBAV27dsXRo0fNv6OHwB7Jmkjt2uSRTE4GgoLktoZhKkdqKnDzJtCiBd3u3l1eexiGsUi0WmDFCnn2/fzzFCgxJy+//DJ+/vlnrF27FiEhIVi+fDn69++PK1euwNPT07w7KwP2SNZEuOCGsRVSU4F+/YBevYDTp+W2hmEYplrIzMzEqlWr8Pbbb2PAgAEIDw/HF198AUdHR6xevbpabWGPZE2Ee0kytoRCQZd6vbx2MAxj0djZkWdQrn2bk6tXr0Kr1aJLly4G+7BDhw4dcP78efPu7CGwkKyJsEeSsRXc3YE//gBu3QKaNpXbGoZhLBiFwvzhZYZD2zUTHpPIWDMpKcDXX0u33d1ZRDIMU6OoX78+7O3tceDAgcJ1Wq0WR48eRXh4eLXawh7JmoihkBQEKTTIMJZOejoQFQUcOUL5kdwjkmGYGoizszNmzJiBl156CZ6enggODsby5cuRlZWFyZMnV6stLCRrIp6eJB5zc4GMDMDVVW6LGObhZGUBgwaRiPT05OpshmFqNG+++Sb0ej3Gjh2L9PR0tGvXDn/88Qdq1apVrXawkKyJ2NlRODAlhfIkWUgylk5ODjBsGLB/P313d+yQ2v0wDMPYEDExMeXazsHBAStXrsTKlSur1qCHwDmSNRUuuGGshbw8YPhwEo/OzsDvvwNt2shtFcMwDAMWkjUXLrhhrIH8fGDMGJpU4+BAlxERclvFMAxTpcTGxsLFxaXUJTY2Vm4TC+HQdk2Fe0kylo4gAE89Bfz4I/Xs2LgR6NlTbqsYhmGqHH9/f5w8ebLM+y0FFpI1FQ5tM5bOK68AX30FKJXAd98B/fvLbRHDMEy1oFar0aBBA7nNKBcc2q6pcGibsWSWL6cFAL78Enj0UXntYRiGYUqEhWRNRQxtJyfzaDnGsli9Gpg7l66//TYwcaK89jAMwzClwkKyplKrFoUMdTpqA8QwlkJWFl3OnQu8+KK8tjAMwzBlwjmSNRWlkpo637tHi6en3BYxDDF7NtCuHdCpk9yWMAzDMA+BPZI1Gc6TZCyFK1do5KFIRASP7mQYhrECWEjWZLhym7EE4uOByEigWzfg9m25rWEYhmEqAAvJmgz3kmQsgXv3aO57bi6g0chtDcMwjOzcvXsXM2bMQHBwMDQaDXx9fdG/f38cOHBAbtOKwTmSNRn2SDKWQPPmwOHDVPglficZhmFqMNHR0cjLy8PatWtRr149JCYmYufOnUi2wFQ0FpI1Gc6RZORCEIDr14F69eh2SIi89jAMU2PIzy/9PoUCUKnMu626gkorJSUF+/fvx549e9CjRw8AQEhICDp06FCuxysUCnz66af47bffsGvXLoSEhOCrr75CnTp1MGXKFBw9ehQtW7bE119/jfr161fMuBKQNbS9bNkytG/fHq6urvD29sawYcNw8eJFo21ycnIwc+ZMeHl5wcXFBdHR0UhMTDTaJjY2FoMGDYKTkxO8vb3x0ksvIb+sT58hRCGZkgJotbKawtQwli8HmjUDfv5ZbksYhqlh/Ppr6cvBg8bbbt5c+rb79xtvu3VrydtVFHGe9saNG5Gbm2vSa3zjjTcwbtw4nDx5Eo0bN8aoUaPw1FNPYd68eTh27BgEQcCsWbNMeu6iyCok9+7di5kzZ+Lw4cPYsWMHtFot+vXrh8zMzMJtnn/+efz222/48ccfsXfvXty5cwePPfZY4f06nQ6DBg1CXl4eDh48iLVr1yImJgYLFy6U4yVZF66uNMNYEID79+W2hqkp/PQTjT/MzqZCG4ZhGKYQtVqNmJgYrF27Fh4eHujSpQvmz5+PU6dOlfs5Jk6ciBEjRqBRo0aYO3cubty4gdGjR6N///5o0qQJnn32WezZs8c8BgsWRFJSkgBA2Lt3ryAIgpCSkiLY2dkJP/74Y+E258+fFwAIhw4dEgRBELZt2yYolUohISGhcJtVq1YJbm5uQm5ubrn2m5qaKgAQUlNTzfhqrIRFiwRh2jRBOHdObkuYmsA//wiCg4MgAIIwe7bc1jAMY+WUdfzOzs4Wzp07J2RnZxut12pLX/LzBbNvayrZ2dnCn3/+KSxevFiIiIgQVCqVsGbNmoc+DoDwww8/FN6+du2aAED4559/Ctft2rXrobqntPevKBZVtZ1a0EfOs6A59vHjx6HVahEZGVm4TePGjREcHIxDhw4BAA4dOoTmzZvDx8encJv+/fsjLS0NZ8+eLXE/ubm5SEtLM1pqLB4edMnTbZiqJjYWGDIEyMkBBg4E3ntPbosYhqmBqNWlL4Y5j+ba1lQcHBzQt29fLFiwAAcPHsSECROwaNGicj3Wzs6u8LqioCdvSev0ZhiRbDFCUq/X47nnnkOXLl3QrFkzAEBCQgLs7e3hIYqdAnx8fJCQkFC4jaGIFO8X7yuJZcuWwd3dvXAJCgoy86uxIsT31rAZNMOYm4wM4JFHgIQEqtL+7rvK/cMyDMPUMMLDw41S/ywFixGSM2fOxJkzZ/Ddd99V+b7mzZuH1NTUwiUuLq7K92mxuLvT5YMH8trB2C56PTBuHHDqFODjA2zZQvm5DMMwTDGSk5PRu3dvfPPNNzh16hSuX7+OH3/8EcuXL8fQoUPlNq8YFuESmDVrFrZs2YJ9+/YhMDCwcL2vry/y8vKQkpJi5JVMTEyEr69v4Tb//POP0fOJVd3iNkXRaDTQcONjgkPbTFXz+utUumhvD2zcCAQHy20RwzCMxeLi4oKOHTtixYoVuHr1KrRaLYKCgjB16lTMnz9fbvOKIauQFAQBs2fPxq+//oo9e/YgNDTU6P62bdvCzs4OO3fuRHR0NADg4sWLiI2NRUREBAAgIiICS5YsQVJSEry9vQEAO3bsgJubG8LDw6v3BVkjVRna3rOHvFE9ewJKi3F+M9XJTz8BixfT9c8/Bzp1ktcehmEYC0ej0WDZsmVYtmyZSY+nehuJunXrFlvXs2fPYutMRVYhOXPmTGzYsAGbNm2Cq6trYU6ju7s7HB0d4e7ujsmTJ2POnDnw9PSEm5sbZs+ejYiICHQqOCD169cP4eHhGDt2LJYvX46EhAS8+uqrmDlzJnsdy0NVeSQPHQKWLKHrv/8OLFgAuLmZdx+MZXPyJDB+PF1//nnpOsMwDGMzyOomWrVqFVJTU9GzZ0/4+fkVLt9//33hNitWrMDgwYMRHR2N7t27w9fXF7/88kvh/SqVClu2bIFKpUJERATGjBmDcePGYbHoBWHKxtAjaYbqLQBUWPHBB9Lt3FzA2dk8z81YB8nJwNChQFYW0K8fNSBnGIZhKsX69esLG5YXXZo2bSqLTbKHth+Gg4MDPv74Y3z88celbhMSEoJt27aZ07Sag5sbzXnS64H0dKn4pjJ8/jkJiYAAYNEiyo0T+yTk5pK4qFWr8vthLBcPD+DJJyk3kiu0GYZhzMKQIUPQsWPHEu8zbO9TnfC/e01HpSIxmZpK4e3KCskTJyiUDQBz5gCGea+CAKxdSy1gePKQbaNSAW+9Bbz6KldoMwzDmAlXV1e4Wth/KldAMJJ4NEee5Dff0OWQIUCLFsb3PXhAs5X//hu4ebPy+2IsjyNHyOssYmF/eAzDMIx5YSHJSGFmcwjJN96gkObkycXv8/QEOncmz+SGDZXfF2NZnD4N9O5NVfo8u51hGKZGwEKSkTyS5mgB5OxMItLJqeT7R4+myz17gFu3Kr8/xnJISqJ8WFdX8+TaMgzDMBYPC0nGPC2AyjuvvEED6iWo17NX0tbo0wc4dgz49tviQ2gZhmEYm4SFJCMJSVPHJAoCeSFHjy6fl3HMGLrcuROIjzdtn4zlYDj7tX59wMtLPlsYhmGYaoWFJFP56Ta3b5M388EDoGC6UJmEhQHt25NXshpmqzNVyO7dQL16UqU+wzAMU6NgIclUPrR95gxdhoVRjlx5GDOGKrvFnEnG+khIAEaOpNzIH36Q2xqGYRibYMKECVAoFMWWqKgouU0rEe4jyUhCMjMT0GqBijY1PXuWLps1K/9jwsNpYayT/HwSkYmJ9LmXMTCAYRiGqRhRUVFYs2aN0TpLHfvMHkmGKqxF8WiKV1L0SFZESDLWzWuvUeW9iwvw00+lV+kzDMNYGDodLYbD9fR6Wld0UnBJ2wpCxbY1BY1GA19fX6OlVjkmwikUCnz22WcYPHgwnJyc0KRJExw6dAhXrlxBz5494ezsjM6dO+Pq1aumGVYCLCQZGpFoanj7wQOpwMYUD+Pp08DixcBvv1X8sYw8/P47sGQJXf/yS0ppYBiGsRJOnqQlP19al5hI6+LijLc9dYrW5+VJ65KSaF3RuRpnztD6nBxp3b175rS8fLzxxhsYN24cTp48icaNG2PUqFF46qmnMG/ePBw7dgyCIGDWrFlm2x8LSYYwdbqN6I2sW9e0KSZXrwL793OxhrVw5w4wbhxdf/pp4Ikn5LWHYRjGBtmyZQtcXFyMlqVLl5brsRMnTsSIESPQqFEjzJ07Fzdu3MDo0aPRv39/NGnSBM8++yz27NljNls5R5IhTJ1u4+cHDBtmesuXXr2ATz8FLl8GbtwgQcpYJjodFUnduwe0bg28957cFjEMw1SYVq3oUmngSvPxoaYjCoXxtuKkX8Ntvb2B2rWLbytmdxluW7u2aTb26tULq1atMlrn6elZrse2MBhP7OPjAwBo3ry50bqcnBykpaXBzc3NNAMNYCHJEKZOt2nQgJbK7LdjR+DgQeCvv4ApU0x/LqZqWbaM2v04O1PbJgtN/GYYhimLkuYlKEuJz5a0rUJR8vrStjUFZ2dnNDDx2GpnUDCrKDCgpHX6okmeJsKhbYYwx3QbU4mMpMudO8nrxVge+/cDixbR9VWrgEaN5LWHYRiGsQjYI8kQpky3iY8H7t6lYovKeKc6dqT8ynv3KFO5bVvTn4sxP/fvA6NGUYniuHHA2LFyW8QwDGPT5ObmIiEhwWidWq1GbVNj5VUIeyQZwpTpNn/9BbzwAvDuu5Xbt7090LMnXd+xo3LPxZifr7+myvyGDblfJMMwTDWwfft2+Pn5GS1du3aV26wSYY8kQxiGtgWhfIkdYsV206aV339kJHD+vHmeizEvzzxDHuPWralvJMMwDFNlxMTEICYmxqTHCkUaV9atW7fYup49exZbVxlYSDKEWGyj1QJZWVRQURY6HQk/wDyNyJs0odw7xvJQKIBJk+S2gmEYhrFATAptJyYmYuzYsfD394darYZKpTJaGCvE3l4Sj+UpuLl2DcjOpseYo2WPqaVtTNWQlwe88grlRzIMwzCys379+mK9JcWlqYzRPJM8khMmTEBsbCwWLFgAPz+/wlJyxspxd6d526mpQEBA2duKYe3w8JJ7HphKZiZVCLdtC9SpY77nZSrGwoXAW28B27cDJ06U3huDYRiGqRaGDBmCjh07lnifYXuf6sYkIfn3339j//79aCV29WRsAw8PmlxSnsrtqpqv/cYbwPHjFEodOdK8z82Un+HDgY0baaY2i0iGYRjZcXV1haspE+SqGJOOEEFBQWZN1GQshPJOtxGEqhOSPXrQ5e7d5n1epmK0bUtDZocNk9sShmEYxoIxSUi+//77eOWVV3Djxg0zm8PISkWm2yxeDDz1FPWQNCdduwJqNXD9OnDzpnmfmykbQTB+z+3t5bOFYRiGsQpMEpJPPPEE9uzZg/r168PV1RWenp5GC2OllHe6jUJBAvLxx80/Js/VVWpIvm+feZ+bKZvvvqOJNTxDm2EYhiknJuVIvv/++2Y2g7EI5ByTaEiPHsCRI8CePcCYMVzRXR3cvg08/TRVa6eny20NwzAMYyWYJCTHjx9vbjsYS6C8QvLvv0lstGoF+PmZ347OnQE7OyA2FrhxAwgNNf8+GAlBACZPps+9XTtg/ny5LWIYhmGsBJMbkut0OmzcuBHnC5pSN23aFEOGDOE+ktaMKCTT0qjheGmf5aZNNBP75ZerRkg6O5OgOXQIOHeOhWRV89lnwB9/AA4OwLp1JOIZhmEYphyYlCN55coVNGnSBOPGjcMvv/yCX375BWPGjEHTpk1x9epVc9vIVBeurtTqRRBITJZGXBxdBgZWnS1TpgDffgsMGlR1+2CAK1doXjoALFtGE4YYhmEYWbl79y5mzJiB4OBgaDQa+Pr6on///jhw4IDcphXDJI/kM888g/r16+Pw4cOFxTXJyckYM2YMnnnmGWzdutWsRjLVhFJJldsPHlCYU2wHZEh2NpCcTNerUkgGB1fdczOETgeMH08jMXv2pJnaDMMwjOxER0cjLy8Pa9euRb169ZCYmIidO3ciWTz+WhAmCcm9e/caiUgA8PLywptvvokuXbqYzThGBkQhWVoLoNu36dLDgzyY1YFWy+HWquC994CDB+lzjInhxuMMw9QITG2DLdZ9Gj7esBa0tOetaL1oSkoK9u/fjz179qBHQW/lkJAQdOjQoVyPj42NxezZs7Fz504olUpERUXhww8/hI+PT8UMKScmCUmNRoP0Eio7MzIyYM+956wbMU+ytOk2t27R5cNGKJqD+Hjg/feBu3eB1au5etucXLgALFhA11esAEJC5LWHYRimmjClMYmzs9RaV6ulab5qtbE/JTW1ZDFZUnCvLMT52Rs3bkSnTp2gqUCbPb1ej6FDh8LFxQV79+5Ffn4+Zs6cWdi2sSowyQUxePBgTJs2DUeOHIEgCBAEAYcPH8b06dMxZMgQc9vIVCcPq9wWhWRVhrUNbTl3jnIyL1+u+v3VFHQ6YOJEIDcX6N+fxlEyDMMwFoFarUZMTAzWrl0LDw8PdOnSBfPnz8epU6ce+tidO3fi9OnT2LBhA9q2bYuOHTti3bp12Lt3L44ePVol9pokJFeuXIn69esjIiICDg4OcHBwQJcuXdCgQQN88MEH5raRqU5EIVlaaLs6haSjIyAOqN+7t+r3V1N4/33g8GE6lf7iC/b0MgxTo/DwqPhimF1lZ0frXFyMn9fdveTHmkJ0dDTu3LmDzZs3IyoqCnv27EGbNm0QExNT5uPOnz+PoKAgBAUFFa4LDw+Hh4dHYZcdc2NSaNvDwwObNm3C5cuXceHCBQBAkyZN0KBBA7Max8jAwzySU6cC/fpVTdufkujRg0Tk3r1Uyc2ip3IkJwMLF9L1994DDP5sGIZhagKVPYyU9nhzH54cHBzQt29f9O3bFwsWLMCUKVOwaNEiTJgwwbw7qiQm95EEgIYNG6Jhw4bmsoWxBB7mkfTyoqW66NCB+hsmJlJeH7enqRxeXsD27cD69dSEnGEYhrEKwsPDsXHjxjK3adKkCeLi4hAXF1folTx37hxSUlIQHh5eJXaVW0jOmTMHb7zxBpydnTFnzpwyt32PZ/VaL25udFmakKxuNBogIgLYvZu8kiwkK0+3brQwDMMwFkdycjKGDx+OSZMmoUWLFnB1dcWxY8ewfPlyDB06tMzHRkZGonnz5hg9ejTef/995Ofn4+mnn0aPHj3Qrl27KrG33ELy33//hVarLbzO2Cju7nSZmQnk51NZmsjNm8DOnUCjRkDXrtVnU8+ekpCcNo3b1JjCjRv0eXL6CcMwjEXj4uKCjh07YsWKFbh69Sq0Wi2CgoIwdepUzH/ICFuFQoFNmzZh9uzZ6N69u1H7n6qi3EJy9+7dJV5nbAwnJxqNqNPRdBuDXqE4d46mzbRrV71Csl07oFMnWnQ6FpIVRZylfegQjUB8/HG5LWIYhmFKQaPRYNmyZVi2bJlJjw8ODsamTZvMbFXpmHREnjRpUol9JDMzMzGJW4lYN0qlFN4uOiaxOiu2DbG3B954g8YlcmPyimP4ObZuLZ8dDMMwjM1hkpBcu3YtsrOzi63Pzs7GunXrKm0UIzOl5UmKU22qoxk5Yz7c3YG//gKOHgXq15fbGoZhGMZE1q9fX9iwvOjStGlTWWyqUNV2WlpaYQPy9PR0ODg4FN6n0+mwbds2eHt7m91IppoR8ySLCkm5PJIi9+8D+/YB4eGUp8mUH4UCkOlPhmEYhjEPQ4YMQUexv3IR7GSK2FVISHp4eEChUEChUKBRCQdyhUKB119/3WzGMTJRUmhbpwPu3KHrcgnJNWuodc3gwSwky8MvvwA7dgBvvSV9pgzDMIzV4urqClfDuYwWQIWE5O7duyEIAnr37o2ff/4ZngaFGPb29ggJCYG/v7/ZjWSqmZI8kklJNGDUzg6oU0ceu3r0ICH599/ArFlUFMSUzIMHwMyZQEICEBwMzJsnt0UMwzCMDVIhIdmjRw8AwPXr1xEUFAQlV8/aJqKQNPRIimHtgAD5BFzr1mRbSgpw8iTQtq08dlgDc+eSiAwLA55/Xm5rGIZhGBvFpMk2ISEhAICsrCzExsYiLy/P6P4WLVpU3jJGPkoqtmnTBvj6ayAjQx6bABKwXbsCW7cCe/awkCyNv/+mGdoAXRrkMjMMwzCMOTHJpXj37l0MHjwYrq6uaNq0KVq3bm20lJd9+/bhkUcegb+/PxQKRbHRPxMmTCjMyRSXqKgoo23u37+P0aNHw83NDR4eHpg8eTIy5BQ7tkBJOZIqFeDrK39D65496fLAAQq1M8bk5QFPPUXXp0zhCTYMwzBMlWKSkHzuueeQkpKCI0eOwNHREdu3b8fatWvRsGFDbN68udzPk5mZiZYtW+Ljjz8udZuoqCjEx8cXLt9++63R/aNHj8bZs2exY8cObNmyBfv27cO0adNMeVmMiGGOpCDIa0tRmjcHatUC0tOBEyfktsbyePttahzv7U1FNgzDMAxThZgU2t61axc2bdqEdu3aQalUIiQkBH379oWbmxuWLVuGQYMGlet5BgwYgAEDBpS5jUajga+vb4n3nT9/Htu3b8fRo0cLZ0h++OGHGDhwIN55551SC39yc3ORm5tbeDutaOPtmo7okczPB7KzadrNhx/S+mHDJKEpByoVedm2bQPi4oBS2iDUSK5cocbtALBihfFUIoZhGIapAkzySGZmZhb2i6xVqxbu3r0LAGjevDlOmNlLtGfPHnh7eyMsLAwzZsxAcnJy4X2HDh2Ch4eH0SDyyMhIKJVKHDlypNTnXLZsGdzd3QuXoKAgs9ps9djbA46OdD01FcjNBX77DfjmG3ntEhk1CvjhBx71Z4ggANOn02fVrx8wcqTcFjEMwzAmUFJaX0mpfZaCSUIyLCwMFy9eBAC0bNkSn332GW7fvo1PP/0Ufn5+ZjMuKioK69atw86dO/HWW29h7969GDBgAHQ6HQAgISGhWAN0tVoNT09PJCQklPq88+bNQ2pqauESFxdnNpttBsPK7Tt3SKi4ulpGP0IvL7KFkVi/Hti5kwprPvmEGpAzDMMwVknRtL6SUvssBZNC288++yzi4+MBAIsWLUJUVBTWr18Pe3t7xMTEmM24J598svB68+bN0aJFC9SvXx979uxBnz59TH5ejUYDjUZjDhNtFzc3ah+Tmgrk5NC6gADLEygpKYCHh9xWyMv9+8CcOXR94UIeg8gwDFMScuf8V+D4WVZaX1nExsZi9uzZ2LlzJ5RKJaKiovDhhx/Cx8enws9VXkwSkmPGjCm83rZtW9y8eRMXLlxAcHAwateubTbjilKvXj3Url0bV65cQZ8+feDr64ukpCSjbfLz83H//n2TPgDGAMOCm4LUBdkm2pREZiY12b5yBfj++5rtoZw/nz6j8HDgxRfltoZhGMZySUmRZ7/V4PDQ6/UYOnQoXFxcsHfvXuTn52PmzJl44oknsGfPnirbr1k6ijs5OaFNmzZVKiIB4NatW0hOTi4Mn0dERCAlJQXHjx8v3GbXrl3Q6/WlzqJkyolhCyC5Z2yXhLMzeUq1WmD/frmtkY+8PODsWbq+ahVNHmIYhmGsmi1btsDFxcVoWbp0aZmP2blzJ06fPo0NGzagbdu26NixI9atW4e9e/fi6NGjVWZruT2Sc8TQWTl47733yrVdRkYGrly5Unj7+vXrOHnyJDw9PeHp6YnXX38d0dHR8PX1xdWrV/Hyyy+jQYMG6N+/PwCgSZMmiIqKwtSpU/Hpp59Cq9Vi1qxZePLJJ3lUY2UxzJG8fZuuBwTIZ09J9O4NrF4N7NoFDBwotzXyYG8P7N1LYrp7d7mtYRiGsWysJBWqV69eWLVqldE6z4d04jh//jyCgoKMCojDw8Ph4eGB8+fPo3379lVia7mF5L///luu7RQVyAE4duwYevXqVXhbFKvjx4/HqlWrcOrUKaxduxYpKSnw9/dHv3798MYbbxjlN65fvx6zZs1Cnz59oFQqER0djZUrV5bbBqYUDKfbiKFtMxZSmYVevUhInjpFNso1A1xulEqaQ84wDMOUjqXl+JeBs7MzGsg9AKSclFtI7t692+w779mzJ4Qykl//+OOPhz6Hp6cnNmzYYE6zGMA4R3LdOhJqXl7y2lQUHx9qUH76NLB7NzBihNwWVR/x8cDKlZQfWZPzQxmGYRgAFKWNi4tDXFxcoVfy3LlzSElJQXh4eJXt1yw5kowNYhjaVqvJG2lvL69NJdG7N13u2iWvHdXNiy8Cb74JjB0rtyUMwzCMmcnNzUVCQoLRcu/evTIfExkZiebNm2P06NE4ceIE/vnnH4wbNw49evQw6rdtbkyq2u7Vq1eZIexdNe2gbouIoe2MDJpwozbpq1L1dO8OfPwxcPUqcPMmEBIit0XVw+jRwNGjwIIFclvCMAzDmJnt27cX68sdFhaGCxculPoYhUKBTZs2Yfbs2ejevbtR+5+qxCR10KpVK6PbWq0WJ0+exJkzZzB+/Hhz2MXIjbMz5d6lpwNLlwKdOwORkXJbVRw3N/LK+flRqLumMHAg0L8/jYxkGIZhbIaYmBiTe3IHBwdj06ZN5jXoIZgkJFesWFHi+tdeew0ZGRmVMoixEJRKEmn37lFFcK1alikkARqZWFPQaqUWPywiGYZhGJkxa47kmDFj8NVXX5nzKRk5cXMj4QIA3OBdfuLjaWrNhx8CBWNCGYZhmJrB+vXri/WWFJemTZvKZpdZE98OHToEBwcHcz4lIyfu7pQfCVi+kLx/H9i+nQSWrRagvPQSEBdHc7VnzpTbGoZhGKYaGTJkSKnDVuxkHEZhkpB87LHHjG4LgoD4+HgcO3YMCzj533YwFJKWnn8YFwesWQM4OQHDhwO2dkKzbx8JSIUC+OgjSj1gGIZhagyurq5wtcB2byYJSXexNUwBSqUSYWFhWLx4Mfr162cWwxgLwMlJCqFaukeyeXOyMSEB+Ptvy83nNIX8fGDWLLo+bRpQhW0cGIZhGKYimCQk16xZY247GEtEbBavVlt+02ulEujXj5qn//GHbQnJVauo6bqnJ7BkidzWMAzDMEwhlcqRPHbsGM6fPw+A5jm2bdvWLEYxFoJeT5cODtYxWkoUkidPAomJlh+OLw9370q9IpcssbzpQgzDMEyNxiQheevWLYwcORIHDhyAR8EA9JSUFHTu3BnfffcdAgMDzWkjIxdt2wJ//SVNubF0fHyAVq1ISP75p20U3fzvfzSmsnVrYOpUua1hGIZhGCNMytifMmUKtFotzp8/j/v37+P+/fs4f/489Ho9pkyZYm4bGblwdydPZHa2FOa2dPr3p8s//5Q8qtbKiRPAl1/S9ZUruW8kwzAMY3GYJCT37t2LVatWISwsrHBdWFgYPvzwQ+zbt89sxjEyI45J1GqBnBx5bSkvXbtSLmGzZiSArRVBAJ55hi5HjqTXxTAMwzAWhklCMigoCFqxUbUBOp0O/v7+lTaKsRA++QRITgby8ii8ag04OFCbnLlzacyjtfLdd8CBA1Q5v3y53NYwDMMw1cSECROgUCigUChgZ2eH0NBQvPzyy8ixUIeOSULy7bffxuzZs3Hs2LHCdceOHcOzzz6Ld955x2zGMTJz4AAJSEGwHiEJUJW5NZOZSc3HAWDePIBzjhmGYWoUUVFRiI+Px7Vr17BixQp89tlnWLRokdxmlYhJQnLChAk4efIkOnbsCI1GA41Gg44dO+LEiROYNGkSPD09CxfGSsnOBlJS6LpaDaSlyWqOSVy5Apw7J7cVFefKFbqsWxd44QVZTWEYhmGqH41GA19fXwQFBWHYsGGIjIzEjh07Hvq43r17Y5bYd7iAu3fvwt7eHjt37qwSW01y3bz//vtmNoOxOBIT6dLOjoo8rMkjCQDbtgErVgBNmwLW9n1t2RK4eBG4fh1wdJTbGoZhGNtCHLRREgqF8eQwc2xbyULJM2fO4ODBgwgJCXnotlOmTMGsWbPw7rvvQqPRAAC++eYbBAQEoHfv3pWyozRMEpLjx483tx2MpSEKSbHgxtqEZIcO9AM/exa4cYO8e9aEszMVDDEMwzDm5eTJ0u9zcwMaNpRunzpVegcQFxfAoOgYZ85IY4UNMaHH9pYtW+Di4oL8/Hzk5uZCqVTio48+eujjHnvsMcyaNQubNm3CiBEjAAAxMTGFeZdVgcnJZDqdDhs3bixsSN60aVMMGTIEKm5RYhskJNBlrVr0I7K20Hbt2kBEBOV5bt0KzJwpt0UP5+BB8kSOH8+ztBmGYWowvXr1wqpVq5CZmYkVK1ZArVYjOjr6oY9zcHDA2LFj8dVXX2HEiBE4ceIEzpw5g82bN1eZrSYJyStXrmDgwIG4fft2YQugZcuWISgoCFu3bkX9+vXNaiQjA6KQrFOHvJPWJiQBYPBgEpI7dgCTJll2mFivB2bPpt6Rt28Dr74qt0UMwzC2SatWpd9X1GvXokX5tzVjFMnZ2RkNGjQAAHz11Vdo2bIlVq9ejcmTJz/0sVOmTEGrVq1w69YtrFmzBr179y5XWNxUTHJ7PPPMM6hfvz7i4uJw4sQJnDhxArGxsQgNDcUzzzxjbhsZOcjKoh+Jry/dtrbQNgC0aQP4+VEV9N69cltTNno9MGoUEBwMTJsmtzUMwzC2i0pV+lI0GmSObSuJUqnE/Pnz8eqrryK7HP2Rmzdvjnbt2uGLL77Ahg0bMGnSpErbUKZ9pjxo7969WL58uVFVtpeXF958803stfQDNlM+nn+eQsJRUXTbGj2SSiUwaBBd37Kl7G1zc4H0dOn2vXtAjx4kRg2n+nz5Jb0nX31l/PiyErLLg1pNFdpXrgDe3pV7LoZhGMamGD58OFQqFT7++ONybT9lyhS8+eabEAQBjz76aJXaZpKQ1Gg0SDc86BaQkZEBe3v7ShvFWAh2dpRrCAAZGZUXS3LQvz+JtLt3gQcPSt7mww9plnVMjLTO2Rm4dYs8sRkZ0vpbt4DLl6XWSACJ0DZtgCefJAFaUQyFqp1dxR/PMAzD2DRqtRqzZs3C8uXLkZmZ+dDtR44cCbVajZEjR8LBwaFKbTNJSA4ePBjTpk3DkSNHIAgCBEHA4cOHMX36dAwZMsTcNjJy4uJCnj1BsE6vpIcHtQFav54KhwAgLs5YFHt5kRg8e1Za5+gI/PwzsGsXTZcRmTwZWLcOMDzDu3CBxOaNGzSeUeTwYeDq1bLtu3kTaNcO2L7d1FfIMAzD2BAxMTHYuHFjsfWvvPIKkpKS4FyOqW337t1DTk5OuXIqK4tJQnLlypVo0KABOnfuDAcHBzg4OKBLly5o0KABPvjgA3PbyFQ3sbHAnDnARx+RiBRbAFmjkASAxo2laTf/+x/Quzfw11/S/VFRwB9/AKtWGT+uVSsgJMQ4xyUoCOjSBQgNldY1b07P98EHxjkzS5YA/foBv/1Wum1z51KBzfLlxp5JhmEYhqkgWq0WCQkJePXVV9GpUye0adOmyvdZoaptvV6Pt99+G5s3b0ZeXh6GDRuG8ePHQ6FQoEmTJoUVRoyVc+sWcPo0IM71dHOjUK41FtwYotMBGg0Vtvz7L4W9AfIiVmYKk1JJwtJQXOblUaHPjRtAt27S+jt3yAYvL2r38/33VNS0YkXxCkCGYRiGMWDp0qVYunRpifd169YNc+fORa9evdCoUSP89NNP1WJThYTkkiVL8NprryEyMhKOjo7Ytm0b3N3d8VXRwgPGuhGbkYsV2+7udGmNQvL6dQrP378PvP465SBu22bcRLYqsLcHPv+cCnhcXaX1y5YBu3cD//d/wJtv0rpJk2iaDcMwDMOUwfTp0wsbjRfF0dERAQEBEKo5ulUhIblu3Tp88skneOqppwAAf/31FwYNGoQvv/wSSm6gbDvYipDcsoVCx126AO++S6H53FxAq60+GwxFZG4u9YjMzqbcySNHqKjnjTeqzx6GYRjGavH09DTqmGMJVEj9xcbGYuDAgYW3IyMjoVAocOfOHbMbxsiI2Izcx4cuPTzo0tqEZMOGFM7OyaHwc69etL6EJOZqQaOhAp7vvqNKcYCE7o4dwMqV1LuTYRiGYayICnkk8/Pzi5WR29nZQVudHh6m6hGFZFGPpGHLG2sgLIyEW3g45R8++ihVR+/fDyQlydOvUaGg0PbNm0BAAIW1Bw6kqu/gYGDYsOq3iWEYhmFMpEJCUhAETJgwARqNpnBdTk4Opk+fblSO/ssvv5jPQqb6KRraFj2Sli4ks7OBxYuBWbNIpAFA06bS/fXqUSX2yZPApk3A1KnVb+Pdu1TNDdClvz9dbtkCGLbOys0lDybDMAzDWDAVEpLjx48vtm7MmDFmM4axAHJyqIdiVpbksbOWHMnFi4EffqCK882bi4+vAoDoaBKSW7cCY8ZU//zt116jXM02bYCxY8lDOXgwLSI6HY1LbNwYePll6f1nGIZhGAujQkJyzZo1VWUHYyk4OAAbNlBBijhlRfRIpqWRyDHD7NAq4ZlngDNngEWLShaRANChA3krb9+mYpeePavPvvPngc8+o+vvvlu6jYcPk9i9cgV49tlqM49hGIZhKkqFhCRTgzAc1efqSp4zQaB2NqKwtDT8/ChkXVYHAaUSmD2bqqUbN64+2wDyLup0FMIuS8B26QJ8+23xPM7MTLKbYRiGYSwE7tnDPByl0nLD2999R947kfK0oWrbtvpF5M2bNP1GpaIpNg+jQwfjcPeFC9TY/OuveQIOwzCMDTNhwgQoFAooFArY2dkhNDQUL7/8MnLEISEWBgtJxpivv6bxiHv3Gq+3xMrtw4eBBQuAkSMfPtO6NDIzzWtTaYSEAJcuAWvWmNYM/dtvScT//bf5bWMYhmEsiqioKMTHx+PatWtYsWIFPvvsMyxatEhus0qEhSRjzMWLVKySkWG83hJ7STZrRnOzhw6liuyKIAjUy/GJJ0wXoRUlKIgKbExh0SKazPN//yeNUtTp2DvJMAxjg2g0Gvj6+iIoKAjDhg1DZGQkduzY8dDH3bhxAwqFAj/88AO6desGR0dHtG/fHpcuXcLRo0fRrl07uLi4YMCAAbh7965ZbGUhyRgTH0+Xfn7G6y3RI+niAqxaRdXaFZ1TrVCQKM7NBX79tWrsA6gK/siRyj+PUklV5nXqSOtWrqQWRvfuVf75GYZhagr5+bQYnojr9bROpzP/tpXkzJkzOHjwIOzt7cv9mEWLFuHVV1/FiRMnoFarMWrUKLz88sv44IMPsH//fly5cgULFy6stG0AC0nGEEEo3oxcxJJyJGNjpetKJc21NoXHHqPLXbuqTox99BHQqRNVlJuT5GRg9Wpqbn70qHmfm2EYxpb59Vda8vKkdRcv0rp//zXedvNmWm84eezKFVp37Jjxtlu30vq0NGndjRsmmbhlyxa4uLjAwcEBzZs3R1JSEl566aVyP/7FF19E//790aRJEzz77LM4fvw4FixYgC5duqB169aYPHkydu/ebZJtRWEhyUjcv08/LKWy+NQXS2lKfuAA0KcPhXgrG9YND6fwuFYLVFUT/YQEej/btDHv83p50dSeZ58FBgww73MzDMMwstKrVy+cPHkSR44cwfjx4zFx4kRER0eX+/EtWrQovO5TMO64efPmRuuSkpLMYiu3/2EkRG9knTqAushXw1I8kocPU6hAq614OLskRo4E/vc/4LffgCefBNzcKv+chrzzDjB5MtCokXmfF6CiHcPCnZwc4KWXaLKPKQU9DMMwNYFHH6VLw57IYWFAw4bFjyvixDHDbRs0oLz8otsOGlR827p1TTLR2dkZDRo0AAB89dVXaNmyJVavXo3JkyeX6/F2Bi38FAV2Fl2nN0PYHWCPJGOImB9ZNKwNWE6xzQsvAGvXkmAyB+3bA/XrkwjbtMk8z1mUJk2qp4n7Bx8A27ZR3qRWW/X7YxiGsUbUaloMhaBSSeuK/lebY9tKolQqMX/+fLz66qvIzs6u9POZGxaSjIROB9SuTfOfiyJ6JNPTiycYVzddu1KhjTlQKMgrCVB+i7le2/vvU+/H6mTKFKpiX7LEuKE8wzAMY9UMHz4cKpUKH3/8sdymFIOFJCPRvz/1K3z++eL3ubjQmZUgGCcSVwe5uVShXLQlkbno2pXCz598Yh7P4dGj9B62aAHcuVP55ysvXl7AF19Q43KR//6jhWEYhrFa1Go1Zs2aheXLlyOzuvoflxOFIHAjurS0NLi7uyM1NRVu5s6RsyVeeQV48IAuQ0Orb7/vvksir1Ur4KefzJMbWVUIAhUD7d5NPSPXrZPPlpQUmo5z7x61SerVSz5bGIZhqoCyjt85OTm4fv06QkND4eDgIJOF1kt53z9ZPZL79u3DI488An9/fygUCmzcuNHofkEQsHDhQvj5+cHR0RGRkZG4fPmy0Tb379/H6NGj4ebmBg8PD0yePBkZVeW5qunIlSfZsiXlMU6bVj0isjLfn+3bSURqNMAbb5jPJlNQqUh8BwQA7drJawvDMAxjk8gqJDMzM9GyZctSY/7Lly/HypUr8emnn+LIkSNwdnZG//79jeZNjh49GmfPnsWOHTuwZcsW7Nu3D9OmTauul2A7aLXkQXvhBaC0ZF65mpJHRgK//w7061e1+0lKAubOBZ5+2rRcSZ0OePlluj57No1FlBNXV5re88MPdF3ETC0fGIZhmOpl6dKlcHFxKXEZIFMrOFnb/wwYMKDUFy4IAt5//328+uqrGDp0KABg3bp18PHxwcaNG/Hkk0/i/Pnz2L59e+HYHwD48MMPMXDgQLzzzjvwL6lohCmZpCRq/5OSApTmwpZzuk11VD27udG4xNRUYM8eClFXhK+/Bs6cIc/tvHlVYWHFUSgod1Lkr7+oObo4o5xhGIaxGqZPn44RI0aUeJ+jo2M1W0NYbLHN9evXkZCQgMjIyMJ17u7u6NixIw4dOgQAOHToEDw8PApFJABERkZCqVTiSBlj6XJzc5GWlma0VAU3bwLXr5NGy8qi9ocWm5Eq9pD08Sk9fCyGtqur2GbJEuCPP6rvTXNwkPqLffNNxbyS2dkkzgDqS+npaX77zMH27VS8dOWK3JYwDMMwFcTT0xMNGjQocQkICJDFJottSJ5QIGzEjuwiPj4+hfclJCTAu8gEFrVaDU9Pz8JtSmLZsmV4/fXXzWxxcQYNouEjHh507M7NpfX5+dLtnBya8Fe7NuDkRIXRKpVZWk9VjNJmbBtSnR7J48eBr74CYmLIi1ZdYeJHH6UpN7du0X779y/f41aupMcEB1NDcEtl+XIa2Sg22WUYhikJQZAW0QuSnU0HMGdnKXKVkQHcvk3bODtL86bv36ftvbwotSYoqPigC8YmqJGf6rx58zBnzpzC22lpaQgKCjL7for2JTVcr1bTb84QcZRnbCxNKPTzo99ufn7pz2U2SpuxbUh1Fts0akSCLCOjenMNnZxows3nn5NXsnfvh/dkTE4Gli2j62+8UXpqgCWgVAKPPy7dFgTgtdeALl2qPgeVYRjTEASKkOTn0/+RmOqTnk6CTaGgA4oo+m7cADIz6X9U9FJdvUon6Eol/c+Jz5eSQjnytWoBjo50PS1N+p9v21b6T/vvP/q/q18feOwxWnfjBvXgfRhPP22cq83YDBYrJH0LBE1iYiL8DLxkiYmJaNWqVeE2RWdF5ufn4/79+4WPLwmNRgONRmN+o4tw8iRd5uSQHkpPp8u7d+l3mpVFbQazsqhN46BBdJmRAVy6RNu3aUM6SqEgh2CVicnyeCSrc962q2vJ/Syrg0ceoTZDCQkUCn7kkbK3X7aM/nRbtABGj64eG83F9u0kmL/7Dti5EwgMlNsihrFeRA+eVms8+eTBA2rDpVaTiNPrSchduUIHgFatpEEQ//5Lgk2ppO4PoocvPV3y+imVtI+sLLoUBKB7d+mk98QJ+k/KzJSEZHIy5VqVxoMHJa/Pz6dL8eAjjqgVcXKSriuV0iKi0ZBAZWwWixWSoaGh8PX1xc6dOwuFY1paGo4cOYIZM2YAACIiIpCSkoLjx4+jbdu2AIBdu3ZBr9ejY8eOcpleDAcHWmrXLn2bW7eA/fuBa9fo/6VhQ9JSKSmUtpiSQrUgCgX9Z+Tk0H+G2SIF5fFIiqHtjAz6I7HV6SkODlSI8vHH1MqnLCF58yZVRgPAW29VT1GQOYmMpGbs3t4sIhlGr6ecI62W/mxFr11CAq0LDydhBJDYu3yZfvMaDZCXR8v9+/Q8YpFbbi55DnJy6M+7Vy9JlJ09S/+nGo0kJFNSgMTE0m0srauGo6MkMl1cSEQaRkd8fCh3286OtlOr6Xp+Pj3GzY1EoXhQ0enIroYN6XkUCvJwZmcbi8fQUOr2oVJZdo9fpsqQVUhmZGTgikHS//Xr13Hy5El4enoiODgYzz33HP7v//4PDRs2RGhoKBYsWAB/f38MGzYMANCkSRNERUVh6tSp+PTTT6HVajFr1iw8+eSTVlexHRgoFdHq9VRjsns36bq7d4ENG+g/6ssvgTp16D9JFJOOjmbQL56e9MdXlkdS/PPJz6c/RsNqYHOxZQu9+DlzqrfpeVEGDqQ/T4NirxJZtIg+mF69yp9PaUnY2QHz5xuvu3ePzmwKTuAYxqoQi/NEUZOcTItaTcJIp5MKznJygGbN6E83Jwe4eJGEoJ2d9P0XBODIERJmeXmA6KS4c4fCxaWRnl7yeldX+m9RKunkXKs19tjVr0/C1cGBBKGdHdkteigdHWmdvb0kBu3spOljAFCvXvH9hoQAU6eW+20sEReX4uNpFQrOfazhyPrpHzt2DL0Mpm2IeYvjx49HTEwMXn75ZWRmZmLatGlISUlB165dsX37dqMO6+vXr8esWbPQp08fKJVKREdHY+XKldX+WsyJUgkMGEDLlSvA2rWkrbKzgebNqf6kUycSj1otLfb29P9icpFOeZpni/H15GQ6aza3kBQEGvF35gyd+c6ebd7nrwj29kBU1MO3mzKFvBJvvWUbZ+P5+cCzz1Iu1dtvPzyszzBVjRhKtbeXfmO3bpHXzs6OvGP5+STyzp8nkRgVRV52APjnH/qNiuGcvDzjjgyXLpW8X1GoiYsYshYJDqYQkkZD4kqjoUWtlryDGg09j3hpb08pQuIf9ZgxxfcbHEwLw1gJsgrJnj17oqwJjQqFAosXL8bixYtL3cbT0xMbNmyoCvMsggYNSOM9+ST1Cz99mk6Cs7PpBLNJE+k/NC+P/lOrNP1TFJJVUXCjUNCLXbvWsnIN8/MpobxBg+L3de0K/P23bYhIgL5EHh50wGvSRG5rGFulpCrCmzdJHIpnxbm5FPa9cYO+l+KfXUYGEBdHl0olFYqJz5mYSH+O165JQtLOrvRwsBjmdXKifYpi0NmZwthiqKdOHSk/UaRpU1oYpobD/mgroWlT4PBh4P/+Dzh1ikLeN29ShLlbN/rP1eko91qno//EKtE2VV253aIFzda2FBISaFpNRgYJXLHqUBCkN9hWRCRAB9SPPqIDcf360npbzollqo7ERGqka5hHmJtLZ8M5OZQOIiaPnztHnkOA/sTy8oo/V0kEBkrew7g4OtEV87kBCkV7e0tiUVzEvL/yIP7vMUw1MGHCBKxduxYAtTQMDAzE8OHDsXjxYoucGc5C0oqwtwcWLyZB+dpr5KF88IAcYt2708l6Tg79T4snz+X6n/zlF1r696cnLQs5p9vIQZ06dACMj6dE1aeeIhHZpw8QEUEjFd3c5LbSvCgUxiLy2jVg4kTyFnfvLp9djGWg1dKJVW6uFCrOyZE8hz17Si1kTpygJG+12jjn8NYtesylS5KQdHYu7jlUKqUwsasrhZCdnY2XOnWkULE4UMAQV1c6QWUYKyIqKgpr1qyBVqvF8ePHMX78eCgUCrz11ltym1YMFpJWSKdOwKefAhMmUMHt/fvAvn10jHd2ppxwrZZyvQ3zr0vl9m062y/qASiJqvJIvvceKeXRo6mfmaWgUlGC+v/+B2zcSDmDZ89SJdQ//1Aep60JyaJ8/DEd+D/9lNzftuSBZYwR8wBFcRgfT38orVpJFcBHj5JoFHP+srNpSUmhs9lz50p+bn9/qVDkxg363zGs/m3Thk5UXVxI/IkhZ/6+MeamPMe6oqjV0sFUr6fvukJhHKkp7Xnt7Su8O41GU9jGMCgoCJGRkdixY0e5hOTp06fx7LPP4tChQ3ByckJ0dDTee+89uBQtlDITLCStlLp16fg+YYI0SOW//4B27ei7npFB0aG0NNI5ZYpJsfVPWRXbIlXhkUxOpnL03FygfXupKtJSaN+eDnInTpCdCxaQqExIKLtdkq2wdCmFBidN4oO6LSB6EQ37HF66ROJOrZZ+44JAxSs5OSTsxHzAzEwKIZeFnR09xt2d/oDc3Kg4TzygRkcX/y65uAAtW5rtZTJMqaxYUfHHDB0KNG5M1y9dAjZtomk9o0ZJ23z6acn5uHPnmmZnAWfOnMHBgwcRUo7hHJmZmejfvz8iIiJw9OhRJCUlYcqUKZg1axZiYmIqZUdpsJC0Ypo2pRaGU6YAw4YBmzdTRbdaTf/b6enSoIMyhaTYjLw8okg8yJjTI+nmBrz5JsXoO3Qw3/OaC4UCmD6dlv37ySM5dKjcVlUfGk3xP8KNG6n4ISxMFpOYciAWpmRmSs1nxRB0bi4VqTg4UEjj/HlqZ6PT0YmcgwN97rm5dH9CgiQkW7Sgs1Z3d4pQeHjQb1i8dHd/eJI2n5AwTJls2bIFLi4uyM/PR25uLpRKJT766KOHPm7Dhg3IycnBunXr4FxQHPbRRx/hkUcewVtvvVVs7LQ5YCFp5XTqRFHhwYMpIlW/PuVPKpVSXUiZIlKvl5LYy+ORrIrpNnZ2NPvZkuc/h4ZSr8g//gA++4xma9fUg+GxYyQs7ezo7KWknnVM9SB6F9PSKGE6IECqLD53jvoiOjiQwMvMJGF57x4JxGvX6PdflHr1pNZeOTk0DcVwhKy3NzWgrqnff8b6MWVqmmGvzEaN6DmK/gamT6+cXQb06tULq1atQmZmJlasWAG1Wo3o6OiHPu78+fNo2bJloYgEgC5dukCv1+PixYssJJmS6dcPWL0aGDeOpvVFRZHTwDD9CCjFM3n/Ph2IlEpKWn8YokdSHM1Vkyp5MzKAAwekRNQqyjexeOrVozMYDw95m8bXRLKyKLcwK4vCxDk59MOOi6PfcX4+ta0B6CAXF2fc+7AoKhXlJHt6SovhH0eLFsULVVhAMtaOCTmLRiiVJT9HZZ/XAGdnZzQoaDn31VdfoWXLlli9ejUmT55stn2YCxaSNsKYMcC335LjIS6OHA7du0v/+Xl5kvYx0n5ifmSdOuWbTuDkRE+g1VJ4u6y5jw9DEIAXXwR696aKcUuejpCcTHkEWi2NIKqpIhIgsfHVV9IYOcA83weGEKesPHhA3ztfX6kn4u3bwMmTdCALDqZLhYLyWMQUFVFINmwIbNtG1+3t6bPx8jJe3N0rMcWAYZjqQKlUYv78+ZgzZw5GjRoFxzJmlzdp0gQxMTHIzMws9EoeOHAASqUSYVWUisT/IDaCQkE659AhEpFJScbTu0SnRIlFZeHh5c91E6fbAJUPbx8/Trl2c+eW3jDYUli6lMKHLVtKsyxrMiqV8Rzft9+m/IqjR+WzyVrJy6Pw8X//UTj6338pZ/Hffyk0ffUqLQcP0rrYWBp55eBAeYutW9MiCMYTW8SZ8TNmAM89R629Bg6kHMgGDcgTySKSYayC4cOHQ6VS4eOPPy5zu9GjR8PBwQHjx4/HmTNnsHv3bsyePRtjx46tkrA2wB5Jm6J+fWoH9M03dPnff4CPD+VKOjlJPYGNaNYM+OCDiu3Iw4PyrCpbcBMUBDzzDKlcMaHTErl5k5p0AzQKUamk1x4TQwdq0VtUU8nOpiKku3cpVYIpGb2ewgLJyVSMIv6pp6ZS3qlCQS1y0tNpuX+fLq9dK/n58vMlMd+gAbWpKto4m0ftMYxNoFarMWvWLCxfvhwzZswwyoE0xMnJCX/88QeeffZZtG/f3qj9T1WhEMqaUVhDSEtLg7u7O1JTU+Fm5T0Bc3IopemJJ+jS05Mix2ZNa/r8c/ImjhhBjbltnQkTaKpNr17Azp30Zi5YQJ3hu3UDFi6U20L5ycoCdu0iryQjVUmnpEh5JdnZdAKWlkYiUmzurtdTAVdOTskhA4WCfsg+PsaLBU64YJjqpqzjd05ODq5fv47Q0FCLnAhj6ZT3/WOPpI3h4EDOs1GjpEmDt2/TFDERQaDwt0YDKISH9QYqgaqo3LZUTp8G1q2j62++KSnyiROpIfn+/RTObd9ePhstAScnYxGZkUH5ry+8QLl6tk5+vrGHMD+fKvy1WvIKivm/KhV5JNPSJCGpVNJvKjaWbnt6UgcFX18pP9KMSfwMwzDmhBNkbJB+/cgLKebZnz9P4hGgy/R0co7k5gIYP55yp27eLP8OzNFL8tNPSaRZukN8/nyy8fHHjXtc1qsnjWP76CPTJiXYMm+/DezYATz9tHHenq2Ql0eh59hYCktv3059UEXUamlMYGoqfV+aN6dq99RU8kwa5gV37kxhhOeeoxD14ME0XUCcI80wDANg6dKlcHFxKXEZMGCALDaxR9JGWbECaNuWUqe6dJHWKxTkiczKAnIeZMFBrNr29Cz/k1dWSF68SEJjxQqqDqrIvquT/fuBLVvIi7RkSfH7x46lUYl37gA//ECl8wwxezaJrFmzpOkptsDZs9R31dFREng5OfSDSk8HjhyhcZLiLGmAvLXi2E97e/pBenoavy/lmFjBMAwzffp0jBgxosT7yqrmrkpYSNooAQGUwrh0KfX5HjhQuk9sP6e4XTDmrFatihW7VHbetlpNM6sByxWRgiBNc5kyhRrQFsXZmRrQLl1KvZf69ClfU/eaQO3awJo1xuv+/ZfCtAEB8thUEfLyKHXj3j2a4COmNNy+Td/7WrWktjt371Lrnfx8KTwNUJssf//ivTa7dq22l8EwjG3h6ekJTws7brKQtGFmzqSWQL/9Rt1FxOOZQkFOkrwCISkEBqFCtTiid+X+fRJcFa3kqV8feP99yw5rb9pE3lInJ2DRotK369kT+P13Eklr1wKvvFJtJloViYnAU09RmHvtWuoWYEnk55MoTEujS3GetCBQjqPYN9TVlcTi7dsFuSEG2NtTJwJx8fXl9joMw9g8LCRtmLAwypc8cIB0UefOUpqfWg3oE0hI5vsFoULzacSzodzcyk14sdQJGfn5wLx5dP3558v2MioUFMb99Veq7mZKRqcj71xeHp1IWBJir0Y7O+m7rVKRCMzMJNEo9ln19wf27aPrdnYkGIODKTTt7c3CkWGYGgcLSRtn1iyqafHzo3qasDBKcVQoAPsCIan1C4YivwKDZezs6EnEooGKCMlt26jgwMJc80Zcu0aeKS8v4KWXHr692A+TKR1/f+D772lai2EeT3p69fUQFcPVd+6Q+DP8DmZm0ve6USP6bru6khf18mXyTIpCMiCAQtMhIfSjsqX8T4ZhGBPg02cbZ+BA6khy5AjdvnBBuk9xi4SkLiCoWJTuoYij8JKTy/+YuDjy3nXpYtmNqxs1IgGxbZtUWFReBIE6wTPF0Wgo3CuyeTPllRpWO5sTQSCBeOcOTYw5fZp+CJcvAzdu0DZaLXlLtVoqkFGrKQdYpZKmvxg2/lWr6fsbGMgikmEYBuyRtHlUKurA8sknQEQEablmzQqOjeHhEDQO0AcEIz+PHEXljsx5eVE48N698htz9y7t3M3Nsj2SAOVGGrb7KQ96PeVTHj4MLF5MbzhTMoIArF9PJyJHj5q/ACUzk0RjVhaJVzGNws2NUjISE4GffiI3fX6+9Lhr16RioEaNyj86lGEYpobCQrIGMGkSDV85eRJo1Qq4dIlG8+L55wEBUKQD0FHkr9zN/7286LIiHsk2bShZU2yLYmncv09eyFGjTMt1UyopZHr4MI2dbN7c9PxRW0ehoKKbb76pfG5pfj6FzHNzpc77Dg60Tq+nIhhnZyAhgYRjfLzx493cyPtYr57xSEFLzeFlGIaxIDi0XQPw9ARGjwa2bqXbsbF0fAWkvpIAHYfLXUhtSmhbxFJHVS1bRr0hx441/TnGjSMxk5xMY++Y0nFwoNZKYnKuIAAvv0y9OR+GVgskJdFZ0eHD1PPz5EnpC6xSkWfR3p48kz/9RCF0UUT6+dF4y0mTqIVT375UBGRXobIzhmGYKuHu3buYMWMGgoODodFo4Ovri/79++PAgQNym1YM9kjWEGbNIodgaiql/SVdy4BvXQdArYa9PQ3Z0OvJuVOuY2lFPZI3blBRiiXnlQUE0JtTmcbiGg2NBZwzh6addO/O4xPLyy+/AD//TGc8e/dKJyuG3L1L3yWtVjoDsrOjPMe8PFrE9Xl5UlKwUkkFMo0akWCsrgIfhmEYE4iOjkZeXh7Wrl2LevXqITExETt37kSyKc6bKoaFZA2hZUuqEfjzTxqf6PnjZ8DeHcBTT0Hx6KOwt6fjbrk9kqKQvHfv4b0kdToKF+t0NLfaUvPOnnuOwqwVLbApSrNmwNChwMaNwHvvkWfSzc0MBto4gwfT5Jh69SQRqdWSx1L8fl24QCFqV1egbl0qjKlVi86ELl6kJOAGDWjbsDA60RHFo6V6whmGqR4EQb5xtvb25U6XSUlJwf79+7Fnzx706NEDABASEoIOFc3bryZYSNYgZswgPffvv8BTA2NJ2BU0F3d0pKXcaWGenrSxVkstXMoSSrGxFDfX6+ngb8mIU3sqy6RJNIP51i3qCv+//5nneW0ZjYaSeXU6EoC3bpGwzM+nlAGAvj/JyST2GzWSclnz86m1z8WLkpD08ZHmoTMMw+TlydeqbeVKKVryEMTZ2Rs3bkSnTp2gKefj5IJzJGsQgwfT9/jKFQG6GwXjEYOCAJAmrFBtgdgmBXh4eDs0lKbEfPttuX9I1coLL9B0GnNO2nF0pCk3QUEsZsqDIJAQvHaN2ifduEHjmL74Anj9dWDVKvI63r1LJy779pH3UaRVKxq72bevTC+AYRjGPKjVasTExGDt2rXw8PBAly5dMH/+fJw6dUpu00qEPZI1CFdXOs4e+TMV6qx0CAoFFGKVawGCQE5GO7tyCEsvL6qMvXev+DzhotjbA40bV+4FVAV791L4+YMPSMQYVu1WlrAwEkKWnBdqCWRnA//8QwJRbNWj0ZAIb9eOqunt7YGPPyZvJUDbJCZS3iNAofCScioZhmFE7O3JMyjXvitAdHQ0Bg0ahP379+Pw4cP4/fffsXz5cnz55ZeYYGFT1FhI1jAeewzQXIoFAGS5+MBOoYHh1zs9nY7VTk7lcB7Wrg1cuVK2RzK/IiNzqhlBAObOpevTpplXRIoYisi4OKoWttT3o7rQakk8iukQ9vb0HdLp6AymYUP6Ip4+TWIyOlrqV+rtTV/MAQOkme8MwzDlwbBNiRXg4OCAvn37om/fvliwYAGmTJmCRYsWWZyQ5NB2DeORR4DaWRQSTPMIwu3bxveL+cDlivKWULn91lsUKT55sqDP8wsvACNGUL6gpfHzz9QaxsmJcvOqku3bqc3MunVVux9LRQxdX7wI7NlDrXjEHlQqFdCkCXlwc3JolGJMDHD8OAlOLy9qDj9pEg2Mf+MNYOpUEpsMwzA1hPDwcGRmZsptRjFquGuk5lG7NhAZRkIy3SMY8bHGUWmNhpZy5UsaVm4XcOoUiVWdDkhNyoXX7t00ZaSCbv0qJy8PmDePrr/0kvHovqrA0ZH2+d131A2+deuq3Z+lkJtL34/kZGkcYUoK3XfvHnkYAfrC7dghTZlRKskz2bw5fUHFopozZ+i75OHBzd4ZhrFJkpOTMXz4cEyaNAktWrSAq6srjh07huXLl2Po0KFym1cMFpI1ENd2jfDzX73g69sMSUnk9HF0pPsqUnBzI6M26gLIupUMp4J1//d/NNpYoQB0ag3w55/4d8VuXD7fHL38SMhaxMCQzz+nsLyPD3lNq5oePcgru307sHQpFY/Yek7frVs04xqgkw6VioSjgwN5gQ3D/n5+JCLr1AFatACaNpW+lIb06kXThwzPdrRaIC1NOrFhGIaxYlxcXNCxY0esWLECV69ehVarRVBQEKZOnYr58+fLbV4xOLRdA2k6qzcePz4fu/NovvGtW8W3EQTjEcQlcegSHbg1GcmIv62HIJDzqFMncrh5ewO38n3xysmRUKoUiI0lkSk7aWlUCQwAr71Wfc2pZ86kHokpKRSefdgbbG1otcbjL1Uq6oCflkbTflq0oJxHtZpGZe7ZI23r7g5MngxMnEgFNiWJSJGAAGMR/vHHQFRU+SbiMAzDWDgajQbLli3D8ePHkZKSgszMTFy4cAFvvPEGHMv6b5QJFpI1kMBAoGNHQJy0FBtrfL8g0PFfLLwpjRFP1YIABVT6fDyITS/cVqWSnEWBgQUjvQXA2VEHX7csCnUbLuJYnepi+XIKq4aFkXipLhwcKBfT2Zk8dV98UX37rioEgb4oFy9SBfzJk9J9vr50ZtG+PQlDMTzt60siuugXzBR3tVYL7NpFld0WmDvEMAxj67CQrGlkZgJ37uCxYTocOkT6LSvLuNm/QiFFHbXa0p9KZa+CwssTABDqds+4GHnzZuqjePw4oqKA4UNyEeaXBlV+rjTKTlxycshrlZNj3l6OJXHnDrX7AYA336z+2coBATRPGqCRgIbCy5rQ60mMnz9P867j46kVVEKCJA7T04GMDPI+GnoLPT2pcGb8+Mq3RrKzA378EXjnHWqUKpKVVbnnZRiGYcoF50jWNI4eBZYswawGzTE39T288AIVyBSthbG3J6dRXp7xZLnz56nlX3R0Qa2DlxeQnAzHzGQA9aUNf/6ZKnODg6l/ZF4eFAAEtRp/H7FDVibVUdSuLcBeyCNhkp1NYtLRsULjpCrEokW0ny5daIyhHHTuDDz5JOX5tWghjw2VITGRxKNCIY1DEvs5hoQAt29TxfXly9KJQWKicSuoOnXMZ49GY9z0PSeH+ly1a0cnM1yUwzAMU2WwkKxpFEwDcWoQgGbNqAh261Zg7FjjzURHnU5Hi+g4WruWBo54eQEDBwLKEiq3AVA+YHAw0L275O50cEBypgM++kKBRx8F4h8AOQDqhTrQNtnZJDxEF6mzsxQONQdnzwJffUXX335b3qqf6gypmwPDeeqxseR5dHSkcYRiSDo7G9i/n7yTIiEhQJs2tJ05P8uy2LePRGxKCvDii9WzT4ZhmBoKC8mahpgQGRSExx4jIfnLL8CYMbRa1ApKJTmP8vMpvK1SkZYYOJCm1/n5keMpqIRekgDIG9SokSRAnJ0BOzvUdqSIcmwsFeMEBEBqEmtvT+1isrOlHDoXF/NNhlmwgDyf0dFARIR5ntMc5OQAGzcCw4db1hQcMVk2Lo7C0QEBtL5JExKLdetSG57jx2kR+zqqVFR13a6deT2P5aVfP+Cbb+iLazg7PTfXqpoRMwzDWAMsJGsa4nzioCA82ghYvJiOtZs3U89nPz9p06LhbYWCHIzh4RSpdHeHVD1rKCRFr6IgkKhwcTHyRoWGGveuzMsTC3QUUDo4kILNzCTRl55eKEIrzfvvU4X2//5X+ecyF4IAzJ9PU1ySk8mTKzd6PRWvJCaS5/H+fZoiIwpJFxegZ08Sjzt2SB5nZ2epR6aTU6lPXy0UPVE4cgSYM4f6U/XqJY9NDMMwNggLyZqEXi/1+gkKQssAEnR2dqQFEhKMhWRp4e3atQ1a9hX1SD54AHz7LSnOgICHhqczM6kDT+vWlDMZFgbY26tJ8GVk0I4zMso5s/EhBAdTbN6SUCgov+/0afJKBgdTR3c50OmApCRaxNZEYqsJe3vj8PaffwJXr9J1cfJMeLjljn/89FP6gu/cyUKSYRjGjHDVdk3i7l0K76nVgJ8fFAqgf3+pcNgwtQ2QwtsAtfzbu1fq0qNQFGgKQ4+kXg/88Qfw7rs0LcbB4aGh2gsXqBOOlxeJ2cJUS6WSxKRYBZSVRSFvU3jwwLTHVRfdulH/RAD46CPgxAl57Dh1ioqx7t2js4iAABKI/fvTlBnDSuh27aQ52JMnU9GQpYpIAPjkE+CZZ6SKeYB+C1XdJYBhGMbGYSFZkxDzIwMCCgVe377kDMvPJ+9g0fHFoo7z9AR++okcmkbHXnd3En06HeXTeXhQ38CoKONy71Jo2xZ47jmqyfD3N/aIQqEgT6T4PDk5UkFOecksKA8fMaJ4QZAlMXIk0KcPifE33ije3LMqyMszbopumKPatCn1e1SrSVyuW0eXInXrAqNGURGNRYwqegiOjsCzzwJubtK6116jFkTV8V4zDMPYKCwkaxL+/lRV07t34apevUhPXLhAtxMSjB8ihrfr1qXK7rt3aSlEpSKVCVBOXceONP5vxoxyC4y+falDkJ9fwWhFHWlFQYDUYkYMsVZUTO7aRb0jjx6tvgk2pqBQUA5feDiF8ufNqzrhm5cH3LwJHDxIYyJFwsJo/336GG8fEkL2ldVU1NpITKTE4AMHinyhGYZh5GXChAlQKBTFlqioKLlNKxELjkUxZicggDwwBtSqRVHKf/8FmjUjIdmwoXS/YfV2SAgdf0XdWIiXF4me+HiaXW1vX7wxZTmJj6fhL9Onk3OzXr0CPSp6JbOzyWsGSD0My+KRRyh2f/++5Vfs2tvT6MbnnycxmZJi3nncubn0AScn05KSQu9nWJjUhd7BgRp8N2hA/S4BoH59+kAMvXnWjo8P9b3au5fc4iIpKcaV3gzDMDIQFRWFNWvWGK3TWOgxjIUkg759qQZl7FiqszAsrAGk6m1HR4oSF9NutWvTiLzjx8mj5e5usi0//kipePn5dExPTzfQL2LpeFaWlN/m5PRwMWlNTb89PIBly+gNCAw0z3Pm5pJX9t49qfDJz4+8u6Gh9D5eu0beOTFRNiODhqYrlfT+2pKIFKlblxaR1FTKB+3WjRrXW7IHm2EYm0aj0cDX11duM8oFC8maQmYmFVOEhRVzKfbtCyxZQv26H3vMWEiuX08OG3//MjrweHpSuPTTT4Gvv6ZwcmFZd8WYPp10i58fFXwX0y/iGZnhXMeSxOSlS/RCmjQxyQ5ZKfrncfMmiUpTe0xeuEBC0cmJhKO/P7XwCQ+npqDffCMJSLWaGoh36FB9DcQthb17yVN7+rTle68ZhjGdsgo3VSrjiFpZ2yqVxv8VpW0rpmbZKCwkawpnz1LMODAQKOIu79SJNMbrr5OQFH9D168DMTGkP196qQynlIcH/YCcnKiS10QRCdC+Z882XqfTSY4xAPTDVShIHOflkUfN2VnaQBCAp5+mUvPVq4uF862Ko0ep2WePHpRDWR5xp9XSeyB+kLVrk7DOy6MwtUpF/UT37ZPaQanV1IOpY0d6L2siQ4ZQ+yXD904QSIhb4wkJwzAlM2RI6fd16ECeFZERIyh6UxItWlCXEpGxYymyUZQdOyps4pYtW+BSZLzr/PnzMX/+/Ao/V1Vj0S6H1157rViyaePGjQvvz8nJwcyZM+Hl5QUXFxdER0cjMTFRRostmIsX6TIsrNhdGg3pFMD4+65SkbfyscfIKVbiyZYgkHfL3R0YNEgaQWgmTp+mup2zZ4u0J7K3lwSPVkuiUizA2byZ+gWq1dTP0prRakkA/vEH8OGHZRcZ5eeTMDxyhN44EbGNz4ABlOT6/ffAhg20rUpFSbJPPUVFWDVVRIq0akWCWmTrVmDwYODVV2UziWGYmkevXr1w8uRJo2X69Olym1UiFu+RbNq0Kf7666/C22qDXnXPP/88tm7dih9//BHu7u6YNWsWHnvsMRw4cEAOUy0bUUgaCHFD+vYFfv8d2L2bOtHUqkXOmeeeIxEpTpfLy6MQd6F30HAMXUpKpbyRRREE4PPPSaOKdSJeXgZRB/FKZqYkJtVq4IUXaP2cOcYjdKyRzp3JHbx8ObBlCwm/mTONQ/liI/HERDobTkqi96FFCykfwdmZBPbly3RbqQRatqQJMJwLWDri78bHR147GIYxH5s3l35f0RSiH34ofduiEaKvvzbdpiI4OzujQYMGZnu+qsTihaRarS4x4TQ1NRWrV6/Ghg0b0Lugnc2aNWvQpEkTHD58GJ06dSr1OXNzc5ErVv4CSEtLM7/hloQgSAfERo1K3KRvX7ps25ZqLlq1oupte3u61Omo8EWvJwdkYb5kbi798FQqqZdksbJu01AoKNz+zTeUNujuXkIxeFEx+cEHNHHF15da6NgCkZH0xr/zDrBpE/15zZhB9927R0PPdTq67elJhTJBQcZi8/p1EpEKBfWI7NKFq5PLwwsv0I/DsJXBjRv0e+rXzzp6aDIMY0xFcharalsbwuKF5OXLl+Hv7w8HBwdERERg2bJlCA4OxvHjx6HVahEZGVm4bePGjREcHIxDhw6VKSSXLVuG119/vTrMtwySkshbqFJRW5cSEPtPi22ALl6k1Lpateh+lUpqA1QYXc3Pp+XFF0mkNGxIwsZMQhKgp3rmGeN12dmkHwtPHO3t6YB+/Trw1lu0bskS2/K09etHYvG994Bff6UXP2AAxfx1OurNFBBAH1jTpiTw798HvL3p8a1bUyFJu3bmbSlUEyha9b90KaVOPP205P1mGIYxI7m5uUgo0thZrVajtgX+f1t0jmTHjh0RExOD7du3Y9WqVbh+/Tq6deuG9PR0JCQkwN7eHh5FvCo+Pj7F3vyizJs3D6mpqYVLXFxcFb4KC0DsNl6vXqn9HRUKcnyJ4xLT06no5do1aRsnpyJewZwc8n6dOkWeSI1GmrldRfz+Ow0oOX2aciYLRa2dHfD222R4y5aU2CnOc7QVBgyQVHViIgnlzExS1oGBpLoVCvJQfvYZhW/E90CtpmlDFvgnZFXodJRn7OwMDBsmtzUMw9go27dvh5+fn9HStWtXuc0qEYv2SA4YMKDweosWLdCxY0eEhITghx9+gGMlXMgajcZiG3tWCZcu0WUJhTaG9O1LYeTMTDpOjh5N+jA1lQSkURRPp6NQsosLsH8/8P77NCHkISK+Mmi15Izz9qbdJyfTdZUKwH//SYU+S5eSwszIIPtsoY1NTg6N8vP1JW9rmzZSpbWnp+Q6BuhNUSppyciwzR6QcqFSkRdy2jRjj/cXX9AP5amnbMsTzjBMtRMTE4OYmBi5zSg3VnWE9fDwQKNGjXDlyhX4+voiLy8PKSkpRtskJiZaTRPPamPwYODll6VEyFIQswROnCDR6O1NDq2iml0QAH1OQY6pWk1eLvG5xXYyVYCdHdWcNGtGKYANGxaISEGgqiC9Hhg+nJpKi7MW09Ol/EFrRKslAfnffxTGvnmTCojEorPQUMqb3LJFcs9qNHQWMGECi8iqwlAsJicDK1fSaNB9++SziWEYRgasSkhmZGTg6tWr8PPzQ9u2bWFnZ4edO3cW3n/x4kXExsYiIiJCRistED8/Enrh4WVu5u9Pm5w6RZokJYVuG0bDtVogJUWAIq9ASIqjC8UpLFUoJAGqD3nySRK5Gg1px4SVPwB79kBwcCClqVLRgV6ppA3S0ymX05rQ68m7e+YMeXrF8YWGH0ZyMuWnrl9PruQzZ6T7vLxswxNrDXh6Uu7qkCGUfiASH2/dJzEMwzDlwKKPNC+++CL27t2LGzdu4ODBg3j00UehUqkwcuRIuLu7Y/LkyZgzZw52796N48ePY+LEiYiIiCiz0IYpm549JT1y/37xTggqFaBBLhQAhF9+oYTFQ4eo0EOhkOYaVgOCAHz5fgbs51PBQ/LUedAF1ZUMdXWlS0Egm7TaarGr0uTlUbLqqVMkRJycKC2hRw9g4EAK1//1F4Xy1WoSjMnJFF619Q4ElohCQSdqK1ZI4l2nAyZOpN6qYmoJwzCMDWLRQvLWrVsYOXIkwsLCMGLECHh5eeHw4cOoU6cOAGDFihUYPHgwoqOj0b17d/j6+uKXX36R2WoL47//gF9+oYrmcpCZSbUqGzdShLjoWESlQoAGNJpQ2LqNGmVfukTesoLPpaq9kiJ6PdBs0xJ4Zt1GTkA9PJj6srETTqkkMSmGgTMyqJrZ0lGpKJydmkq2N25Mr0Ojoc/z889prrleT43GFy2ipNbz50nY37kj9ytgrlyhgqikJIoIMAzD2CgWXWzz3XfflXm/g4MDPv74Y3z88cfVZJEVsncv8NtvlDs4bVqZm2Znk9YSJ8XFx5eQYqfTQQUdBAA5816D0+7fqRoYoPB2UhIJyWoYKadSAZ3eHIasKX9B9fpChDZxKN7WT6EgD57YZzIriwSYg4Pl9ADUaunNDgiQenI2aUKCsG5dsvPaNZphLlbF16lDk2jq1qXbK1bQ9JVbt6iy+/XXqQ0QIw9hYfTbu3DBOJ9y5Upq1tq5s+V8/xiGYSqBRQtJxgyIrX8eUrENUFHNt99Si7w6dcj5VexhBR69PNgjt0FzOLZrLh0PAwOpUqeaPJIAoIzoCKfTR+igrCAx/NVXwNChpB89PED3OTvTnbm5VAGt0xnP55YDvZ7yH69do8usLGnyUKNGtDx4APz0EzVZB+hD6t6dehsaul9DQ0mkLFhAPT0XLKApCzV95KGcuLmRx1jkwgVqmK9Q0I8sJEQ+2xiGYcwEC0lbJi9PCmmXQ0gCFMr+5x/g8GEKcQcF0aWTE0j45FFYW6vQAAI50wrrP8SCm+roy6nVSnF3A0H13ns0eKRjRzpeN2lC2is+XoHLl52APBW6ts6CClrEX0rHvn9dcPeeEhkZVBStUEgjIV1cqCA9IICiypGRtNv8fHqPlEqKPNvb0z7E7WvVovdLo6FLFxdaNBoD3ZqWRu9TTg7llebmUv9HwxGW+/bRjvR62pnoyRILnIri5QW8+y41Ze/Th0WkpeHlBYwfT/m6hiLy5k0KAbCHkmEYK4SFpC1z9SqpHg+Ph84KFgTpONazJ6Xd9ehBzkVf34KR1QUiEvHx0GxaDV3kI9CGh0lCMiio8H4joWdusrOpj+LjjwPz5xv1JxoxgtpIqtWkt6ZMoc0dHUlXKZUaHD2uxPQxmfDz1qF/RBrW/uyCtDQ16tcnk0uLCB89Kl13cpKu6/UUOc/MpLS40lCpAH+vXHQPjUOg8wNAqUQ+1MgKbQHn1HioWhjsWKGQwvChoSQMyzPH3NGRPryi4xF9fIyNZqqfOnWAhQsNuuiDTiiGDKHP+IsvpDxjhmEYK4GFpC1jOF/7Id6OH3+kGdvDhwOdOpHmOHGChuEkJgKhdQWpUGXbNth9uQpOZ84g8+MYSYSKrrisLGpdIwpLc/PDDxQmXLsWeOUVPHgA7NhBKWm+vsCXX5IDLy+PhKHYCcjJiSLa99PssOZnV4wcnIHannrMHJuOvw464b8L9gDofbKzI00mTl90cqLnFut29u+XIuU6Hek9hUIa3Sj2AxdTHsVR5B09LyEw5SqEHEcczw7H39f8kJuvBhCA0KOJcK6VCwdfD9SpA/g27g6veg2halS/Yt4qw23v3QNeeYVcoq+/LnmNGfkw/HxOnaKTvZyc8p0oMAzDWBgsJG0ZUUgahktLYe9eKfSanU1peKdPk9MvKQkQ8nVQiOP2OnaEcOky8iKHQBDoOGhnB3pwYCBVccfFVZ2QHDcOaXoXHD/vhDUznHH4MKWjtW1LUUKFghaNhsLyV65QWNrfn47bDx4AWTkqfL3JDcP6ZiI0UIuo7lno2DYfOSoneHoq8LDBRyVNqhIEeq8yMkg4JifTW/HHdj3ytErcugVkXq6Fxf21yMhUYttFXwgqNWrVAsKy/0XfzB24nhmKn249DhK0zlAoGsDTkxyKvr60+PiUOumyOCkp9GbExgIzZwLz5tGZAmMZdO1KKQyJiVKKhl4PTJpEoYEnnyw9lYFhGMYCYCFpy1y+TJeNGj1009dfJyefgwOFaPv0IUeW2HpRm5ELe4AUTLduUHTrBmQCyCsSxRaFZBUW3Lw8V4GjR6Oh10u78fUlGwIDyf4HD4B//yUvYGgoRffVagpvBwTQdkFBCtTycAZyc4CcHNRyzgNUOkDtDEBVlgklolCQyBOzCOr65aKtWyxGttRCFxaOuDjg0qVA7LzZFlv/C8Sde3Zo3pyKrLNvBwPrFUjL1iAzVwelvbrQu5mcTMu5c9K+vLyoq0xAAAnk2rVL6T/eoAHwySfA4sWUBLpgAcX/J06U3KuMvHh5GXsjd+0il/fJk3QmxzBMjWLChAlISUnBxo0b5TalXPCRxJb56CPKkxRbxJRB7dpAu3YkWDw9yYOn01FrwrZt9FALeeQkM3DV2dlR+FirNcixrIIJN7m5pF8zt+3FnnvNkJbmhUaNyL6RI6n7UN26FB28cIHC9HfvSo93ciJxWbcuMGqU8XMrFAqKYavVtJFOR3lrzs4VcPsVQZxKExdH+aJ6PVQhIahb17ngo6iHPomJQGwshHbtAQCOAV441GIa3l/jDqVSGhGuUpEZGo1UvKNQSOJSbB5vZycJy8BAqUAIAH2gb78NfPYZjVP84Qdyzc6fzz0OLZGuXYE33qAfl4uLtD4mBoiIKHfhHMMwTHXAQtKWcXCoUC9BBwcSIAB1l6ldm7x60YPyoFSAFN2ff9J0FVfXQi+kXk+LSgUpnH3rlnEFjwlotSQKP/0UGB2ZiLFLh6GHQo1jj+xFbv1w9O0LdOtG+963j3I6xTROsWimZUvyEBqa8ccftO0jj5Do8vAoeICbG4nJ/Hyp76So3MpLaioJyNxcUoIKBb0xubkkTnNyyNv077+AIEARGFgo5iKi3BERRROFjh8Hjhyh84DERHqoWFOkUknC0sGB7hNHcsfGSqbUqUMfB3lf7eAyaxa9Ie+9R4r7++9pRjljWTg4FD/juXqVxKVSSd8fX195bGMYhikCC8kazs2b5KDq04cKoUWUSqBXL+DIEQH1AkmdCbv3QPHq/6g/4ZYtUChIfwmCQSGqnx89WIwve3pW2CZBAH7/nXpsq1TkgGn19Qtwyk1BQkAbPDq3EZq3JufhiRPUqignhx7r4UGvo3nzklPLsrPJMdelC2m7W7dIPyqVBS/axYWeLCeHPEL5+aTUHhYG1mrpzYyPJ/Epxtnr16fntLOj0PLu3fTeAJS7auhxKsDTkybu9e1Lt3U6Snf18KAOQdeuAX//LTlQ9+6lOqdWrWiXYq7r3bu0nDhBz1OrFhAY2A31n2+I0L0xsH9Ig3rGglAoaI63Xm8sIo8cAcLDjZueMwxTNllZdOnoKDkKxP978Uy96LYODlL+kFZLS3m3raoOJhYCC0lbJDubEu/atqWk/TJCtLt3k/crOJh0jWGHmMhIIOVePtycqchG4eJMwmjgwMJtivX0trOjA92dO6TSKigkT5+mDinJybQre3ugya0d6HhlPQSlEr6bPodPGzVOnSIxlZFBj/PyIu/kwwrUHR2BN98Etmwhj52XV5HcQjHUbWdHSk2vp75/Dg4Pn4Zz/jwJ0LAwcoeKg8rv3aOyctFdKCrFcqQcAPQ04eF03d8faN+eiqH+/pvaTIaEUO/MXbuozaSTEzVkr18fBXmZ9BIePKDlNHwB+1fgvo4+9+AgAY22vgf7qD6kRhnLo149SlXR6aR1GRk0rUoQaKZpvXqymccwVkXz5nT5zz9SfvIXX1C0ZsQIYNkyadsOHeiYunevlLr1zTfA//0fte5asULatkcPCin9/rtUm/Dzz1Q0Z8OwkLRFTpwgZZGTAzz1VJmbRkSQpysoiLxdDRtK9/XpA/i5FkyyUWpg/8gjwODBUgUOStFVgYGSkGzRotxmf/QRsGYN6TBxwmKARyae3jad9jV7Nu6FtMX29WQrQI6Ybt1It5VYbFICjRoBc+ZIt/V6+i/o25c0nr8/oFSryVWZlUVnqjk5Uqhb9E5mZUlntKKAvnULcHcn9afVAgcPSk3F1WpSeh06SCLTRPz8qFXT8OF0OzGRnFN//03Xe/Ui08LCaNS6INCJs7OzNPYyNZWEu/DHn2h2bjuwcztuth6GrFGTEdTAoSRnKSM3ht+b27fpO6fXG5+UXL9OX+KHtR5gGIYxAywkbZHDh+myU6eH5veFhdEx5+5dCn0aUi9Eh1APEo2HTmjQuStgZ6co0cOp15NYUalAQvKffyo84SY/n8LSSiU5/4YOBXr+8gqUt65BCA7GkUFv4O8YcsrY21N4uk2byhcf//47efPat5eiED4+kEYr2tmRaNTpyLVnZ0dexps3qSpaTCxt3VqKqV+5Ql7ItDS6r0EDcvG6u1fO2FLw8aGT4yFDit+XmkrvrZsbnVjfu0cvzcGBIuvXA7vh39TzaH17K0L+3Yj7F49ic+Pnkd2oJUJCCryWwdyFxuIICwO2b6cfr3gWJQjA1Kn0oX/xBXuYGaYkTp+mS4NhFpg6lbpZFD3J/+cfujT8AxwzBnjiieLb7t1bfNvoaPPYbMGwkLQ19HpyTQHl7hfo6lpyipUiLxcKJbB9hxJ5505i0702GDBQUWzyXm4u6Sy1uuB5DAtuyiA/n46BYuHwtGnUnaZRI2D0aMDl2B7g448AAH8MX43/TpCR9eoB/ftLnrXK0r07RaWzs8mWYsNF7O2lqu6UFIq7JyXRwVqnk4SkWk1vxO+/UzwZICMjI41dvdXM+vX0UezfDxw6RPrewYG+KtnZwN27Tjjj8BxahXTBqPj34Jl1G6NOvIjT8f2wu+E0HD/uXtjaKCSElsBAm0/7sQ4UCsDbW7odHy91ym/QQFp/5w652/lsgGFKnvJlb19yGlhJ29rZlfwHWNq2Ng4LSVvj0iVKhHNyKjOsnJ5OaVX9+pUyPVEQCkci7v7wDN66Mw4P/JsivtUmNGho7OUUPYJi0Y1CzCO5e5cOaCWE2O7dozTOtDRKN/HwIJNfe428ZIrMDAiTJkEB4GTHp/BfnUg4OpIma9LEvGOJXV2BF180LjK/fh3YsIFOJr29gVqOeVDEx9MbB5DB6el0cNbppDPT7dvpwUoluTg7dza9jZAZCQykVkkjR9LrvHqVhGVeHmndCxeAfxPa44LfFxj24Ct0T9uC5vF/wjM/CZu6vo30dOpolJBA5ykqFXmyRWHp51fpaD1jDvz9ySty5YpxIdeCBZQM/c479CNiGIYxEywkbQ0xrN22bZlnQrt2Ad9+Sw62GTNKCA/n5QGCgHxBibv/3UGWjwseBDTFnXgFGhRxrimVFLEtzFF0c6MlLY3yuIoUAZw6Rft0caHUro0bgQkT6D7RM6p7cS5U168j1SMEuwe+jUaNyAtZleOiDcXpJ5/QW5CZCaRfv4daORfJherqSnlpbm5kvJ0dvU5HRxLMvXqRsIyMtNi5yQoFOasMHVYAFZW/844L3tc9g9X3IzHP+QMsPDkR8Tepa5BnLQERnRW4eZM0dFwcLX//TVo5MJBEZd269NLNKfaZCqBWG0+zys2lUv/0dKrAEklIoEtuJcQwTCVgIWlrHDpElxERZW7m70/5dO3bkxNTrAoGQC6rgn46aicNjtUdjpb3B+HdflnQ3iU9ZSg8xZGERgQG0iiWuDgjIfnjj1SVnZcnpW8ZRuYAIOWXXfD47BMAwPbhq9F1gCvatateYfLUU8Dq1aQXa2VnQHHtDgSVCopWrSC4uUu27N5Nb0anTvSiPDzI7WeFNG1KxU65ucDx4+HYdmAVhMNK2CXT1yEy/mv0vHwfwrjxOH2rFr75hhyyYmP6a9doAUhXBweTqAwOpvxbFpYyodEAO3fSGVxoqLT+iy9oXv3zz9P4TIZhLIKYmBi5TagQLCRtCZ2OFGFGBlUGl0H79uSRunPHeDobAFKK4lxte3sMHAi89ZYT7iud4KynqmAxLbAoen2BsAwKIiFZkCcpCNR258svabvISBq2cv++ccHppRMZ8JkyGQBwput0dFnYp7DjQrWRn48GtTOwbJkH3RZCgIRLuJDkhc0fOqLfIHr9ddKToDh3jlyxzZtTYU5GBikrR0erjfVqNBSR79yZXMxpacDxXano/vn3QFweFLt3Iz10DDKzhiI1lcL29vbkYRYFY3Y29b4Ux727ukph8OBg8+W3MuVEqSxeeBMfTz9Mw7PIBw+AY8cocZirvhmGKQcsJG0JlQp49tlyT5SpVatgqktRxPEwOh1w8yaGDQvFW2+RszMyko4/JQnJ7GzyXDk6Ag5FRiV+9BF5I9u2JZHyzDN0bBMFhSAAR48C99/cgEYPbiCzdgjq/bQcTiXlb1YVgkCFNNeuUcy/W7fC9j5ZEX3wyhgV+vbUQq+nu+s0rAd07EgeV39/evG5uVKzWnH0THn7Elkobm5Ar2HuQP03KeZ/5Qq6nP0cje024xvVOBxy7A1XdxXy8ujEAKCX7u1N4jIvj6KqZ85IIx1r1ZKqwYODS+zLzlQ1n3xCEQPD0PbWrcCiReRhX79ePtsYhrEaWEjaImWIyOxsEoRdu5IXqdimer3UJ3LbNmDxYnQcOw6+vgtx+LAkJEvSqoYDAgqF5O3bgE6HDh1UOHWKNFVAgLG20usp8nbiBIAOUxFUzw5NBteH0qcap3Xk5FA7n7Q0Orjq9XS7INfMyVHAN9P/hvrMv8j0mghnHxcoFMBFv56o4wKoMwA3NydSUNnZ9B7m5tLi4EDrrVxQonlzOiP4808gJgZe9xPwrHY5Znj9iB1NX8K2yw1x+7Y0VVLs/qRQ0Mt3d6fPPjVVao7+33+0jacneSuDgkhYFu0MwFQRYocFQ3x9gd69pdv5+dR8uUcP8lRaqaedYZiqgYWkrZCdTaW4TZqU+Ue/fz/w+efUGmvu3BKEZHY2XarV5JkTBChC62LoUMoZTEqiSW0lCUl7e3q4Tgfo6vhC6eIKRUY6rm6/jHXbGkOppCja0KHSY/LygM2byXQA6NVbgfD2E6svn06vl8qRxUaYISH0QsSD7I0bwJ9/wvXBAwCAY8IZoG4n5OcDS5bQW96vH6UI1K2rIveaViu9GaKnUvRQWnOyoEpFX4BevahK6rvvYJ90C4NGuWOQN72FN2/SnPZLlyi0/ddftP72bXJyeXpSD9BatUh06vXkybx/n0aQA/ReBgezsKx2xoyhOd8GQwdw5AiNRd26VcrBBsod+WAYxrZhIWkrHD8OvP46edA+/LDUzRQK8iq2b0/6yDD3HjpdYcsfODhQL54xYwB/fwytQzOqlyyhiuuSnGtKJenP/HwgLUOJ43ebI9LxIG5u/g/5aIxWrYApU6Ri8uxsCncn3tKi586F8Fz6Ehp2qPhsbpMRBIq13r5NMf7atUm1iO16MjNJ5Z4/T7ddXGjcT1gYABI+Li7ScBsxPCsIANR2gIsaivwCQanXGwtKa/dQOjjQ2K+BA+n9KaiYUiiAuju+AFq0QJsOHdCmjQItW1JHmuPH6T26fx/44w9ybgkCfacePKAJkufO0duVnEyLKCw9PUlUigvnWFYhSqVxfqSPDzB2LH14hlV2o0dT8usrrxT5I2EYpibBQtJW+OMPujQqvy5O3760SVJS8Uk2YqU21GpJ7RX0iOndm44j8fGUi19aLY9GIzUa33m3JSKDD6IF/sP19iMwYaKi0FmakQF8/z31k+yzeyHa7XoTmLaNlEN1CSyFglSNWCAjTgLS68mOfftIWCsUNEKnWzejA6y3N/Dxx+TM9PKS3rLXX6f+4y1bKhAUZA93NzvJQykKypwc28ihdHOjPFGRS5eAH36gpWFD4IknEN61K8LD6YPPzyexeOgQfY8cHKhVUJ06tHlMDGkTceqOKM5Fj6UYCnd3J0EZGEiLpyc7x6qMBg3opNIQcSanQkFhb5GrV+k73qABfyAMU0NgIWkL3LxJ/SMVCpqF/RACAqiBtNH/vKE3Mi2NxI1BPFGjIefTDz9Q6qRYLFG0sDM3l/RSnTqAZ9dw5MXaoTaSMbHfbShVlDeZmkoi8sEDEgr1X3kcuPkzHayqUlQJAilXR0dJobRtS1U+rVrRGxIfTzmAYo89Pz+KW5fSa0+hkCbzANSL/MABEuu5uVRk4u5eMFbSrkBQ5uTQ+y3mUNrbk3Kyhdwzb29gxAjy5F6+TCLD1xd47DEgKgpqR0e0aEG98ouOgRc1vSCQFsnKohMecWSmszN97/Lz6TuUmioV7zg5kaAMCKBLHx/beDstFm9v4LffSNkb9ktdtQr49VfgueeA2bNlM49hmOqDhaQt8MsvdBkRUXLyPKQ0QLEDSDG9ZuiNfPNN6jK9dCnlwxUwbBgJSQ8P4ORJ0kWGrXuysmhc6aOPkvZq3tYeSVnhCLz3H5Sn/wOCA3H/PvDdd6LAouioh0dbUgRVOQEmK4tyPu/cIfXbvTupQFdXcrfm5JCAFGOp4jatWlVI3NatS2/f9eskZsQemRs3Aj4+5KH0rmMHe4WBoMzLo0WtJsWkVluvN8fDg74EI0bQi968mb54n3wCrFsHLF9e6rhILy/6Kl++LHks4+Ppe+bqSh/h3bvSnHDxfEAchX7pkjSZUq0mgR8QIC2GY3WZSqJQ0NlS0QiIINDv2DBkcekS/Zf060f5lwzD2BQsJK2dBw+AHTvo+vDhpW729dck/qKiKN3JCENvpEpFf/xpacUm0gwcSAftgwdpV3fuSEIyO5v0w40bJKIAigbXdm4BfPMfcPIk7nYYhO+/p9TDOs5ZeCLsDJw9Cg44VSUidTrKgbx7l3acmio1OhTH5Fy8SCIyK4tuN20K9OxpUk8ahYKcnG3bSuvS06lQacAAepm5uQrUr1/goczPl1oG5eeTS07MUbO3t96wt7s7MH488MQT9P38+WcSzoZnHklJlJdq8BqVSkpBDQujaUeCQNXfR45IhTlXrtCSnU1ezOPHKbTdogU9nUJBb6U4eUfE05MEpb8/XXp5We/ba7G8+y6weLFxqGLPHqryU6mMheSBA/RB165d7WYyDGM+WEhaO5s2kQhp3JgEUAkIAmmi4cPJYZmUVGSajFipbWdHR+vff6dePAVFJSLu7qSvjh+n50pIoF3b2VE06/JlGqV34wZpMicnIL9JC9grFEBsLH5b9wCZ+bXgXUfA2N8nQz3nZ+pQPm6c+d8XQZAqOHQ6WhcQQK6soCDjWYsKBRns5UVek+Bgs5sybBgJSmdnKRJ4+IgCDg528POzg1ctHdT5BaFuvZ4+k+xsEpMaDR2ErdFL6eAAPPIInYUkJEiJpDodMGcOuQ4HDqTk3WJJu/SSxV6Thly9SiM+L18mfXr1Ki1hYfTx+vmRZ/z2bamrk5hnefo0PYe9PW3n70+Xfn7cz9IsFC2x79+fFLvhh5idTZV3eXlUiSW2C+NKcIaxOlhIWjtiLG/EiFL/gBUKYNo08uJkZRU5XufnS60+HBzoUqkE2rUr8bmGDaNpasnJpLtiY2l874gRFI7MyyNvXK1apInyHNyAwHqwj7uKwOT/oG7cEyNvvgX1T9+RiAgJMc/7UJQHD0jxZmWRZzUkhApD6tcn5REXJ6UBNGxI8yIbNaqSxDo3N2DyZONjpF5P0d769Smt9cEDFRo3dqL4a14evXmGYW9r91KqVMZd7OPiSFlnZdGovq++omKnqChqKfCQz6F+feDVV+l6Xh4Vjv/7L4XDExPp42zZkpbPP6eTG7GdpzgWPS+PRObNm9LzurlJotLXlxYe8FJJQkJINBqSkEC/y9RU4+/FsmXkfn76aRKgDFMDmTBhAtauXQsAUKvVCAwMxPDhw7F48WI4iMdpC4KFpLWzZAlw9iw1MywDlYq8NaIHEYDRTG0AwPbt5B0qQ6gMGUJC8rffKPR45QodD9RqGoixYweJSqBASOYBZ/Ut0RFX0Uz3H3q5ZcJu0XzaYOVKanJsLgyVmosLhYnz8ynBTuwXc+8esGEDbTttmtS75yHvnzkw1Pk5ORT6f/CABI5nQdej/04pcO+eBg0a2MPHSweNIheKvDxjL6VaTerGzs56vTd161Ky7O7d5AG/cIFCnQcO0JsxaxZVyZcDe3tJNE6YQOsEQbo/O5vEpdiqqaAdaKGzV6wQVyjIc5mWJo12BMgcQ2Hp7V216bw1gtBQ6kuZnW38Hf77b3rzxSgCQG7lL76gHHAWl0wNISoqCmvWrIFWq8Xx48cxfvx4KBQKvPXWW3KbVgyFIBj+5dZM0tLS4O7ujtTUVLjZWIO67dtJsBiFskVyc6W8wJ9/Jm9A7970p10GHTpQC5cvvySB2qULhQeLcvcuaZ4bRxLQ+tdFENLSoNi2jY7UTz0FfPpp5V8gIIWxb92i8L7ozSoYz4iAAGNXYEwMXQ4dalxxKgP5+fQeiRp43jx6eyZNovUtWgAKQS9NyjE8wAJSNbg1i0qAXIbbt1P38tRU4IMPpEKO+Hh63ZUYuq7T0UnP0aNUaHz7Np3kuLpKolCcwCMupYW5FQoSlz4+tIji0gIdBdZHfDxNS+jeXQqd/Pwz8PLLFOr44Qdp27/+oje/cWPj/pZMjaKs43dOTg6uX7+O0NBQi/TklcaECROQkpKCjRs3Fq6Ljo7G9evXceLEiWqzo7zvH//6rJW4ODqalTHy48YN0oRdulCBjZFmEj1cAB0Bxf4qkZEP3fWwYZSbdu4cHet376bexEX3vX8/0Lo1kAhfCPYaKH77jQpeunUjb6Q5yMqi2GRcHAkQe/vCsYYIDCRVtnMnJXeq1eRtffxxeq0W0B9GPP4pFCQmmzUjoaPRUAG0QgFcvKTExo0a9O6tQUiQDrVd86DML/BSiqFvhUISlNYoKuvWBaZPpxyAkyeNPcTffUc9p+rVo9me3btXOCVC9MiHhVGPfYC8wpcu0UnQzZuSlk1PJ2f28ePkwaxdmzSMszP95HJzpYbp585J+3B3lyr1vb3puqur9X0UsuLnZzz6CqDUk/HjjZue6/XASy/R73vjRhrfCdDZa36+cU8uhilKZmbFH6PRSH/YYpGkUmncDqK0563kaK4zZ87g4MGDCKmqVLBKwkLSGhEEaqMSGwv873+ldgfX66lotn590liFQlIQ6AsvjgR0cKCja1SUFGMtA72eNjt3jg6mdevSOjEifvky1QDpdKTrHouIh2Lij7RPf3/q8VLZ2KBWS2Xj9+5JrwmQQvV5eeR+OnyYfvTOzhQaAyx2LIpCQYJ81Chj8bFzJ4mayEgg7rYKtVo4QunkgOwMHTSKPCjy86AQBElUAiQm7e0l8Wwt2NlRjqQhWVn0Pb12jZZ16yi/tXNnyqts2tQktebgQB5fQBKLAwZQvuWpU6Rbz56l73NyMonLF1+ktzMxkTzy4ttsZyf1thTTlgE69nh7S03Xvb1pXxwarwBi41FD0tOpNdfFi9KJIwB88w3Ngx83jnJtRO7fL9d/G1NDMKWq7ocfpM4ov/5KOVw9elBXApG6daVjkiEmBH63bNkCFxcX5OfnIzc3F0qlEh999FHF7a4GWEhaI9u2UU6ZnV2pPfkAOhB6epKzzugEPS+PxBVAAks8CJejDcfq1cCaNXR91y5g5EjKmRS1ytmzlPokCFS78kjnZKgj+1Fyvasr5WCWUJ1bIRITqURXrSaB4elJO8vIIDfQqVPkDs3IoO0DA61qhFtRTdSnj5TX6uND1+/fV2DkSDWmTfv/9s48Pooq6/u/qt476aQTQvYEkOVBAZFFwqKDDiioOCLOoqIi4gdFGBFHwWVQZ5wZBF7RB+SR0VcRBZcHXFDeB30wKA6LLBFFhGGRVUJ2muy91X3/OLmp6iRACEk6Hc7386lPd1dX3759u+reX517zrlmdOvmwCWZAbhsfvpvhSChLYOo5EpFFgv9UZFmInv6abI8bdlC/2tODp3UH3xAuajefFM/trr6guaYnc766Zu8XhKTx47p9yDR0ZTmKjaWXquq7nNpteqb11s/DRFAn5PiMiGBtvh4nqFtNLGx1BHVjfL2eKhPqFmRCwDdBQwaRC4uX36pq/iqKjpXIu16YC4Krr32Wrz66quoqKjASy+9BLPZjNtuuy3c1WoQ7rYijV9+0X0LJ05sUJQZ+1a3m/rc2r4yGNT9IoWgu/Z77iEhdg6WLgUWLKDnN91ES3q/9RaljfP7yQftyy/p/d69gRuuKoN63Q3A7t3QUlKh3HADFFUlk82FBLfs30/CND6elueTd5dFRVShwkJ6HRtLd4w9e0b0YCGnZI389BNZgRMSgEBAgWKxAE4L1qx3IDkhiG6d/Ihx+KAKjW4aAgEaOOWC6BZLZFkrY2Io0GLUKLJsb9tG1mZjShmfj0zwnTqRVXPAAGq4C3RhsNnofO7dO3T/iy/SPcuuXTQtnp+vp9qSgtAoKuVmNuvWy4MH9fIUhS7nDh3qb2zBPAN1r+u//IXW/tY0fd/Bg3Sc/AMkTzxBwV3PPENRhABdJ8Egh+q3d6SR4XwwnhO33qrn/DVy5MgFVctIVFQUutXcEL355pvo27cv3njjDUyaNKnZvqO5YCEZSfj9tEJEdTU5HzZwdxIM6rPdY8fWMUAJoYtIs5lU4Xvv0dzp+vVnXfqjqIjSqAwaROJlzhwyDv3wA7BmDVlyZGzLgAHAiCtLofzmZmD7dogOHVD24TrYd++AbUdNZO75CEm5Fra8kLt2pVFb+ojm5VEuOnkR22w0jT1gQLs18Vx9NbBiBcUYpaRQM2gasGyZgv79zVCuN8PtdqBr5yCqyvywwA+TCEAx+lUCJLKMwjISBHdUFHDttbQZ2b+fzu+9e2l7+206MS+/nKZBs7IuKGCnLnLFHMPiT7XWy8JCEoC5uRTYk51NVTlyhPbJYJ2ePanp4+Lospa5Lg8cCP0ul4s+I4VlfDxt7IPZAHX7sawsyg2Vnx+6f98+uoCkWRkg/9w776TPvPOOvr+wkP6kdtqfXHRcoM8izOaGz4ULLfcMqKqKp556Co8++ijuvPNOONrYMl18VUQSb79NI4zLRVGMDViTNm4kQdGxIwm7WoONEGSRklPaTielWPn5Z+Dhh8+5flxZGaWW9Pn09Y5nziRj5qlTVFxMDM20X301oLz1IfDNN4DLBeWLL2C59DKoidEQOZuhbN9O0eF1Vs6pR1UVzSceO0amVek7l5pKU+SVleRoL53SVJUE9rBhF8V6eDKoQ+L1Uj51j4f+C7cbgMmET9aa8O67dvzlOQF3dACd0/1QgzWWF7l5vVSIFJZyixSLJUAmwxUrKJnkjh0kHsrLyXL57bd0YUgfp9JSukC6dzfkw7pwpPVSIl37/vAHOk0PHKAp8Z9/punuQ4dIxzz7LBlaCwooYF0u/Sj1fVkZbcaclwC9FxdHW3y8/jwuLtRr5aLH5aLNyOrV9KcY3V5+/pmuh7rnxKRJdOwbb1D/ApDil/kwIygimIlMfve73+Hxxx/H4sWL8dhjj4W7OiGwkIwU9uwhnzAAmDHjjP6MV1+tz+CEzOhVV+tiwemkNzt0AJYtO+Noo2k06AWD5L/u85Ex8I9/pH7zxhvpufx4bCwZAhUFlNDv6FGaMurfH04A6JpJB2zeTI7Ls2Y1/N1eL5ltSkpo/s/joVH2iiv0Dn7bNtqkE3OvXhTR63Y3tkXbHXY7LVNZl9xcurEIagoq/RaoURZUVABPPqXh7jv86N45AJczABO0+sJSToVLf9S2vsJOYiKdmDfeSL/j0CGyMu3cSXmwJN9+C8yfTxdKjx5kIZdbCyzZFx1NX2+sAkCXZXk5NWl0NFW5uJj0iUyerqq6qDRme5IrbBYW6t4cRiwWuibj4uiyMG4xMWxcg82mR3tLfv97yvAgZ24A6mNOnqQZIWOes/XrqQ8bOjTUevnZZ9TwMtSfYZoBs9mMadOmYd68eZgyZQqi2tC5xXkkESF5JH0+ChOtqgL+9KezHqppNLAkJtaM+dXVeqqfY8dIlA0detYyvF7KrrF3L/mtaxq5mz30EAmWggJK71ZaSn1uWhrQrWAz0kf3Ro+BZ2nD06chZs+G4vXSXb4x4lwKyMJCXQXHxJDlqFs3mpaUImbbNso7JE2gYc4H2dYpKdHzmNtsZLB78kmyKsfH0w2CO0bDpg0BxMf40Tk9CLsl2LBmlFZL+RiJATyrV9Pgf/p0/fcSEsjXTvoNB4OtnipKCHInkWm2jh6lyyIhgTRKQQFde9IrobiY/oKYmMZbI10u3YdaWrDlc5erTWTHajtoGonJ5GS9YZYvB156iZYAfe452icE3fCWlwNffKEH/WzeTA7kgwfTtAHTbLTHPJJtBc4j2d6wWknFGZ3Iaygvp8Va7r1XX0EvKanmTaOIDAZpGvvkSWDxYlrfuAE8HmDKFBqoLrmEvnLAACrfYiG/yOxsukF3uylX5R32jzFp3+0oWvkrlK3/f3B1aDg6wGuPhXbNaDi+WE1pgK64QneAP3yYRk2LhVRrWhqNiG43RexWVupRJ1dcQcKyoUzoTD3qZj7p1QuYO5fuKTp1qolXUlUsXWFFUpIV48YBsTEaunUOwlMUgKc4gPTkIMwmoVstjUhrZaRYLm+5hazlx49TBgTpV3n4MCk4443J22+TKOjaNXRLSWkxtaUoelT3me75ioqATz/Vl5M/cYJ+gtVK+V1jYqjL8Hjokt+6NTQjlJwurxtRLomO1oWlFJfG53JRqIsCVQ1dyhGglGl33aVnRwCovx06lM4juQQrQBbwZcvIICCFpBD03O2m/lj6qeTnU1+XmspBP0xEwEKyLZOXRwpx2jRdbNXxWROCoqYvv5xmi2WyZQBk4aubdHzQIDJH1c3VV8O+fcD06TRYyLiEsWMpxWRlJc3ayEjTTp1oPD5xAlj1/H/gGbMKvyMWOds1DB915kGm+qqRsG79F0ynSihX0K230htpacCPP5KQzMzU/Y4OHKARsqiIrEQyApNFZJNxOOpPswJ0/hw5QsIzNlYFLCo25liwcCHw/PMCUXYNPboGYFWDyD0eRMf4ACxm6OJSBvEAdK6qqi4s25rAVBQ6zzIz9cG9qopEgDEbwv79egbybdv0/VYrfXbuXD0vUFmZ7jrSwiQk0ApIdSkrI3FpNpPeBeiaff99Pber06n7X8rHuq6x5eW0nTjR8PebTLrrodyio2mTr9tI3v+WxehP6XAAr75a/5jBg+naMOaV8njI9QIIzW377rvkS3THHcDf/kb7hABeeIEsBLffTn8gw7QRWEi2VfbvB/78Z4pksdkoWWMDKAo58kuqqwG7rSY6Ww7qVqueL+1vfyNBVseXMBikdHxLl9Jssd1OH5s8mdyIDhygVT9kbuirrwau7HAIquMSTJsGzJ9/GUbZNmHKjL6IM5vg9Tbsf261CAhUQ1x5JbDuC4h166AMH66HoF51Fc3b5eVRcleAAmiKiiiSsq2IkHbKNdfU39ejBwWyVlcrSE42wRJlgiaABx4DrrlGYNR1GpITgkiIC6K4IAATgnDHCDJla5oe4CVRFF1USqEpRWe4/1+HQ1+aUTJ7th4hI7cjR3RXDGMQx4IFZPpLSyOLlAztTk+nR7lcUQvicpHF2Ui3bjQTC+hWyJ9/pinz/HwyrsbGklY+eZIuN4eD3pf+mwkJpK8tFvrLgkHSQh7P2etjtZKglJbM6Gh6XXez2cL/97cYQ4fWNy1HR1Ni6/z80M4yECChaLSAlpaSaxNAF6PkP/+TLAgTJlBnDZDo/PhjMmcPHtyswWQM0xAsJNsiW7eS4Kuuprnl3/++3iHGXJH9+9PAkJAA2E1+oLRSH8SXLiUry+zZdLDNVn+KBsDKlWRtlL7nCQkUSGOzkTvZv/9N+zt2pCTjHRfOpnxA//oXEocMwf33A6+80h8lc4BVqxoQkcEgUFICpbAQ9qoqIKkjEBsL5fRpiA8/gjL2Fpoz372bBuj0dF1IOhx6njem1enRo36a0UCAVjQsLlYQ18EEa7QJcAAfr6N8+c/M1uCwBtH9Eg2KFsSPPwTRrUsQTrugk1fmtjQgAMozarRkGl8rSniUhtNJysyozjSNbnYKC0PrlJdHU51HjtTPKWe301y0ZN06usaTk/WFu1thKtPlIq1cVy9LNI2E5LFj9PMKCkjr5OaSsOzTh/qGigpaPOp//ic0Hsv4qCh6tqlTp85eL0WhujmdJCwdDnp0OhveIj5YyGKpv2IPQM7pjz0W6j6iacD995OgNHauJ07QOWe8lk6fpjKA0DU8X3sNWLuWxpM77tDLXbtWX9op4huVCQd81rQlDh8mP5pNm+h1//6ULNcQnRUIUJDLL79QPvL4+JoZugxREwJas0SgqtJ8lpxmGTOGLHsGjGL0ppsoCBGgzDwjR9ICIj/8oLtlDulTjmE7XoYpaz51aADlbxwyBHPnkhvQjh30VVu2GGYHjx+nOXOTicwSqgotoxMCg6+G9Ys1UHZsBw4eoA/IiIFu3eqvWsG0GSwWOmfqMno0uTyYzCriE1WoDhIQf3qWDCn9rtCQmaYhPjaIXd9rqCgLom9vDXZLkLw25A1QAwgAUNVQsVl3a63zRVXJtaKue8XixaS65HI2J07oW90ImFWr9KlNidtNgjIzkyKhJEePkrJqheVvVLV+aqmGiI0lTxlVpf6ooICCuk6dopkLv580ss2me9hIkSkDhaRYtFjoci8t1buWxtTTuJqQy0V1kiLUbg99dDjouIjoUhQl9H+Oi6PouLrMmkX+KMZMA9XVNLNTVRV6Y/Lzz5Q93+gb7/GQ3zxA7kOS//ovShA8fjxtAAnbd9+luowapVs6g8G2MZtwFjimuGk0tt1YSLYVsrPJ10qKpzFjyFO+zqChKNQhXnMNBQKOuVEjC57XS5/1+WjKxOkkP0gZlmsQkV4vZRJas4bSokl/pocfpvKLikjPSh/ybhleXHf4NcRM/BuNFgDQty8t7TFiBAD6uk8/pdlnf7kXD96n4MlnrXA6gR7BchpdLBZy2vJ4oG7fCsuRI9QpnToFeDwQUVFQ7ryTjmnDnRJzZtLT6+f8drvpfMvLA7p0UWE2q4DFjB/20w0HogCXS6D3ZQJlp4P4539pGHGthsx0Da6oIKwmDRACCnBWoSkRNaJSkYOb8dFo2WyJc0xVaZ44JSU0IwFQP0ApK4vUWn6+HmAh54rlmvGSf/yDRKeiUIMas5KnpZHfnETOSzudLX4dxcTQjee5EIKsm1u3Uhfi89HPLC7WU4xdeilpospKMqRt3lzfA8LoZqtp1EyyqRpKgVQXRaG6yJRKVis1lQwskl2nzG5gt+vPbbY2mLNfZqg3kpxMHXhdJk8mC4Exf6/XSwmCvd7QVX+OHKGbf6OqP31aj07ft0/fP28eBaRNmaKLUr+fXLNiYynLSJiChkw1Dro+n6/NJfGOBCpr0mBZzuEewel/EIb0P8Eg+UB6vRR9DNBFes89dFHfcw+ZdUCd3oEDpK2k0/qPPwJaIIjumV44Va9e7htv0Bz1mjUNpsMpK6P83UuWkPtWbCz5Qz7yCBkvd+2iTl3Sy/89hh9aCtfq5WRqAKgizz9Pjpky8EcI+i0eD7z7j8BWWoRNR9OQm0ji9bJLKnHZ/k+h+LzU2xsGVC0hEX5NhTVnCxQhoPW8DOqDky+KhOJMfUpL6YbEYqG8z243De4v/h+B/DwN90/U4LBryEjV4K3WsOt7Dd26aIhxaTCdR+50AUBRFASFAgEVikmBalJ08WkUoHW3lkAIimzJyyOlpSihPnUPPUQXZ11/U4D6Cuk/B1Ay0SNHSBjExurJI2NjyYJ69936sQcPhkbNtJEo4cpKWgY0P5+6jJISOjcqKvR0Y7Gx9FpGn1utupi020nkyuUqbbaGm66pCEFlJibSo8VCXbjdrvuDRkfrvubymLpLZbYpUWrk6FHybcjI0F2Mioooc35VVej69rNmkXX9scdITAL6+uYAic4WtKKfbfwWQuDYsWPw+/1ITU2FGkkLLIQRIQQqKytRUFAAt9uNlJSUsx7PQhItLCRXrqTBoapKzz68bx/1hj160FSY5PTp0OW6QDd6GRn0x/76V0HA74fw+aFo9LzW891mo7yMW7aEXNDV1RQY/b//S6veyLv3fv1oQYfLLqNOuKoKgBCIL9qPAQVrcVnO27Dv2alXJD2d1l6cNEmfhyosJMcpRdF76ZISoLAQeaV2/HnHOIwaBSgiiLHHFsIcrAn+iY8n80PPnkBCAgIBwLvjRziXvwbF74OWmg7lgclQkpPAMACdt8XF+hSm3U6G7NdeI+Pf0KFAYkeBmGgN763Q4DklcPNNGqwWDYkJAn6fhl+OaUhOErBbRZMGcCGAQFCBAIlOk0WBoiio9tW8NteI0YbEp1GENlU9aBr1EUVFdJ0VF9Oj0wmMG6cfd/fd1Oc0ROfOlK9LMmkSCQaJ1aqHXmdk6BYogJyoq6r06BjprChfn2suvAUJBPT1y0tLydqZl0eBQ9270wRPIEA35QsX6lZJ40JOFsuZPSZaYuZWjrzG0yMYpHM7M1NPOp+bS49yit7Y5HK63hh9b4zCb5WI+cpKuhil6wVAg8ry5fTeOfIeXyjnGr99Ph8OHz4M7RwzGUx93G43kpOTqU87C+1GSC5evBjz589HXl4e+vbti0WLFmFQ3amlM9CiQnLKFD1fjpHoaLJG/vnPgMmEYJCmcgoLgVHXC0Q5aJWRQweC6OAOwGkNwmKu+auqq+kucM8e4Ouvdd+r7Gx4T1fj5/+4EVAUHD1KVsaDB0ln5uVRX9+tG2lQRQvCWVGIClcyoqOBy3tU46rfxEGRatNqpfw+EyZQ9J/Xq/uEaRpFBspggbg4+k2nTgFff40yJQYxs6Zg8GBqgv7VmyBMFiQM6oKU3gn1emUhgOp9R2B7/RWo5WW0s1cvYPhw8u7nO0mmkZSWktaSy3Y6nSQwli2jWcBhwwQS4gWinRo+XCVwMlfgN2M0WK0CyYkCPq+G3bsEOmUKuKI1WExNE54NoWkkRlUToKgKTCYF1V4FFZUKLFbAZldgtSpQVAVl5QAUBTabArMFUNU6YrSh5/J1dTVdi1JdySlzp5MSaEtmzCAHx7Ky+lPvdUXnffedOelkx47kPyd56ikqt66Tot1O1tEHHtCP3bxZDyIxziPLuWWjr0QL+E0bJlSgadTtVVWRRt+8me79TSbqMysr6bVc5GbsWPpsYSHFrBiDjYzeFHW9K1oLIfRNUciVUtYxN5d+r6yX0YXAbqdrRYrSigraL10A5ApLgO7nKtNG1c321dJZvxozfmuaBp8xNRlzTiwWS61rwLloF0Lygw8+wD333IMlS5YgKysLL7/8MlauXIl9+/YhsRF3yS0mJAMBFL+5GsLjQXRHB+yx1KEWOjPxi7UL7HYVl/akq1xoGko9AnaTHxazBtVc8wd+/z1ZNbt2JetBzS1n8Jpfw1SQh7W//b/41n4tSkqoQzOb9YvabAaspiDivScRc/o4qqIScCqhOwAg5fg23Pn6NfAlpCJ/40F06lTTwV13HXXq111HkRMmEw1I+flUn7Q0fXAqKaEeqls3ygWpqlSJmuS6b5T/AU8/Z6nNg96zJxXRpQvN4DeEN7cI6gfvwbzvJyg1p6aIj0fwyiFQunSCqVOGHpTDMM2A308DqhQAVVUkIIJBineLigIcdoH//ULgwH6B4b8SiI/TkJosUFUl8MH7Av37CaQkC7iiBOw2gfx8Ab9PILGjgEkV5zXtfiHUWrlUBT4/UFmp0HKpFgVWC+3PLwA0TYErBrBa6f2KCqDkZBUc/jJEqxWw+sqhmkzIT+qDYJCOdX64HKaSQgRLy6GVV0KpqoLJWwlUVkBJSIBvwSuAQoLX9NBkKEZLp5GEBBKd8hp++OHQQA8jUVHkjyOZNYvujuX8sHG+2OGgdDiS99+nAJO6a0tKs92dd+omu+++I5cC+X7dNef79NGPLSoiRWlMvl9zvFBN8KoOnC5VUFpK3WRZmS7MvF7at2kTaX2LRff19PnoXIyPJwuq30//y5o1ukiTQq2u50Xd520RRaEhrK5L54USESvTtXPahZDMysrClVdeiVdeeQUA3X1kZGTgj3/8I5544olzfr6lTkTt1GmoX6+nKaiUFLqd0zS6q9+8mcwlo0dT769plFn86FHguefgH30TSjwm+D9di/T/nImquBRkz8uB16vA5wP6v/snRPk98FqiYPJ5YfZVwOIth7OyGKbKUvhLq2Cr9MBaUQJVI0tDxZjf4/QTL8DlDMKZfwimG0bRXb+cHgPI10remjfm1LBaqZMdOVLfZ1hSrrKSfDLnzyfj4i23kItlcTF97KqrSIeaTPpYEBUFRFcVIuXgN0g8sAnm6oqQrwzanPAmpAEd4qE5ohB0RCNoj4aoybKsmSzQVAsCMEOYTBCgHlgoCjSoEMJg4VEVaJoCv8F/SlUAGHSq2QQoKgBFgaYBwQZ8rYQgvzuzCWRtUgAtiPrlGjCZ9U7/vMrVQhfTUBCqq001xzamXJNK9TjfcoUAAn7UQ5arKoDZogc3GI0BdctVa+pwvuUC+pLg5yoXAPxnMEhogj5rMUT0+rw1UeINlKvU1EHi89K0qXQDUxTglAcoKqR7nvgOgM0moAWALVsEYlwCPboL0jZmgRMngFMlAt27CTgcAjYroEBg716ykLrdgMlEYrSqCvB5BeLcAqoCqKqoV782QV4eqSAZCOj16mrJYgGuvbb2P1VWrQLy8yCqvRBeH5SAD4rPT3+Y3YHSWc9DaDVGypfmQj3UwAwPAGG1If+5xfD7AFeMgujXX4J57+4zVvGXv74BX0ChpSKXL4blh5wzHnvs6X+iPGBDbCzQ4aPXYd+x6YzHHp+1COVKDFwxQIf/eQf2LV8DJhUaTBCqCtWkK8ITk57BKSUeLhfQYdtaOHP+BaGqCATpGJNVqc1SkDf2QZw2J8DhANx7NsHxw7cQigp/gPo2s1WF169Cg4pD/cahWE2EywXEH9+FmIM5MJkUWO0qoCowWxR4TisIBFUc7joSVa5EREcDMYUHEXtoJ3V4igKhkLuGP0Aq9ZfULBSakhAdDbjLjqNj/m4oigLVrNQ8AoGAgkBQQVHK5aiOTaQ148sKUOCNwZDb0tAxuXn9JVlIhp+IF5I+nw9OpxOrVq3C2LFja/dPmDABHo8Hq1evrvcZr9cLr2EEKi0tRUZGRrOfiEd/KkfmoCQoNZFPjSYrS/ed3LQJmD4dwmrFvL/qdZ65tCcUY+Tc2VBVEq1XXaX7PFVWUlRDfDz5sMiIvbfe0q2PgL4MhsNBo6JcMy02lj4bE9OoUayigjIRvfMOOdHLWbT77iMtfSZmP+nH/f1ycNulexFb9gvcVblQBfu6MMxFSTAYOl8rN+n/ZlzxpaKCFH5DxwOhKXNOndIdyI3HyOfp6Xo/V1hIZRuPMdKpk269LCwkk+SZyMzU70CKixte+12Snq730yUlZ88En5amB06dOnX2JJ4pKXpw4+nTVI8zkZyst7H0ITkTSUl66rrycsBux7HJzyMzq3lXJGMhGX4iPv1PUVERgsEgkpJCAzOSkpLwb5lFuw5z5szBX/7ylxavW/bWaEw0myHkSh5GwSWdVkxmMnlI05SiQKRlwOunjkjtkAJrTTK24cP1KECxuafuc1TjW6TIFWyio+kidrnIH8lqpe+TK2yYTPS6pERf8Ubym9+Q1aCZs/5GRVEM0GOPUR/8008UfX7oEKUEkTNJNhv9rNql2qwW/G3dYPz1i8G4/nrgNzcG4K4+iQ7VJ5AWXQpboBxWfwWs3nIEyiqhBPwwiwDMCMAsfFBkuhihQREagn4BoQn4fAKqCtitApoAhEZWIAAwqSLEIglhsE4p+j4jWs14I61/ssk1w3GqGlpsY5BlyPHT1szlakFqHjnmBA0a3eiSd97l1lhCZe7k5ipX1CyUI1dB0TT9r2hSuag9PRAIAFYblWOsr6LUtyY3hqBGX+D30/mgqs1fbu0qM8Zy0bTpTVmG30cWV7MptH2bWq4sIxAgC7jZXD+DU6PLNZiCpX6TZclurZYYd+PPh466C5SxDBmUE7I/ObWm3DoHykejz2pioi5YpatOzcWroCb0Gwo1rvQzb6gSAF1MsjIxMfTZOsfVupDKXEUAlamq9QWvsVx5rMNBY8aZjjWWa7eHrupU9zMyCqj2uQVKU054ps0T8RbJ3NxcpKWlYfPmzRgyZEjt/pkzZ2LDhg3YunVrvc+0lkWSYRiGYZiWgy2S4SfiLZIJCQkwmUzIN07HAsjPz0dycnKDn7HZbLC1kXxpDMMwDMMwkUobje9qPFarFQMGDEB2dnbtPk3TkJ2dHWKhZBiGYRiGYZqXiLdIAsCjjz6KCRMmYODAgRg0aBBefvllVFRUYOLEieGuGsMwDMMwTLulXQjJP/zhDygsLMQzzzyDvLw8XHHFFfj888/rBeAwDMMwDMMwzUfEB9s0B+ysyzAMwzCRB4/f4SfifSQZhmEYhmGY8MBCkmEYhmEYhmkSLCQZhmEYhmGYJsFCkmEYhmEYhmkSLCQZhmEYhmGYJsFCkmEYhmEYhmkSLCQZhmEYhmGYJsFCkmEYhmEYhmkSLCQZhmEYhmGYJtEulki8UOTiPqWlpWGuCcMwDMMwjUWO27xIX/hgIQmgrKwMAJCRkRHmmjAMwzAMc76UlZUhNjY23NW4KOG1tgFomobc3Fy4XC4oitJs5ZaWliIjIwPHjx/nNUBbEG7n1oPbunXgdm4duJ1bh5ZsZyEEysrKkJqaClVlb71wwBZJAKqqIj09vcXKj4mJ4U6qFeB2bj24rVsHbufWgdu5dWipdmZLZHhh+c4wDMMwDMM0CRaSDMMwDMMwTJNgIdmC2Gw2PPvss7DZbOGuSruG27n14LZuHbidWwdu59aB27l9w8E2DMMwDMMwTJNgiyTDMAzDMAzTJFhIMgzDMAzDME2ChSTDMAzDMAzTJFhIMgzDMAzDME2ChWQLsnjxYnTu3Bl2ux1ZWVnYtm1buKsU0cyZMwdXXnklXC4XEhMTMXbsWOzbty/kmOrqakydOhUdOnRAdHQ0brvtNuTn54epxpHPCy+8AEVR8Mgjj9Tu4zZuPk6cOIG77roLHTp0gMPhQJ8+fbBjx47a94UQeOaZZ5CSkgKHw4GRI0fiwIEDYaxx5BEMBjF79mx06dIFDocDXbt2xfPPPx+yNjO38/nzzTff4Oabb0ZqaioURcEnn3wS8n5j2rSkpATjx49HTEwM3G43Jk2ahPLy8lb8FUxzwEKyhfjggw/w6KOP4tlnn8V3332Hvn37YtSoUSgoKAh31SKWDRs2YOrUqfj222+xbt06+P1+XH/99aioqKg9ZsaMGfjss8+wcuVKbNiwAbm5uRg3blwYax25bN++Hf/85z9x+eWXh+znNm4eTp06hWHDhsFisWDt2rXYs2cPXnzxRcTFxdUeM2/ePCxcuBBLlizB1q1bERUVhVGjRqG6ujqMNY8s5s6di1dffRWvvPIK9u7di7lz52LevHlYtGhR7THczudPRUUF+vbti8WLFzf4fmPadPz48fjpp5+wbt06rFmzBt988w0mT57cWj+BaS4E0yIMGjRITJ06tfZ1MBgUqampYs6cOWGsVfuioKBAABAbNmwQQgjh8XiExWIRK1eurD1m7969AoDYsmVLuKoZkZSVlYnu3buLdevWieHDh4vp06cLIbiNm5NZs2aJq6666ozva5omkpOTxfz582v3eTweYbPZxHvvvdcaVWwX3HTTTeK+++4L2Tdu3Dgxfvx4IQS3c3MAQHz88ce1rxvTpnv27BEAxPbt22uPWbt2rVAURZw4caLV6s5cOGyRbAF8Ph9ycnIwcuTI2n2qqmLkyJHYsmVLGGvWvjh9+jQAID4+HgCQk5MDv98f0u49e/ZEZmYmt/t5MnXqVNx0000hbQlwGzcnn376KQYOHIjf/e53SExMRL9+/fD666/Xvn/48GHk5eWFtHVsbCyysrK4rc+DoUOHIjs7G/v37wcA/PDDD9i4cSNuuOEGANzOLUFj2nTLli1wu90YOHBg7TEjR46EqqrYunVrq9eZaTrmcFegPVJUVIRgMIikpKSQ/UlJSfj3v/8dplq1LzRNwyOPPIJhw4ahd+/eAIC8vDxYrVa43e6QY5OSkpCXlxeGWkYm77//Pr777jts37693nvcxs3HoUOH8Oqrr+LRRx/FU089he3bt+Phhx+G1WrFhAkTatuzoX6E27rxPPHEEygtLUXPnj1hMpkQDAbx97//HePHjwcAbucWoDFtmpeXh8TExJD3zWYz4uPjud0jDBaSTEQydepU7N69Gxs3bgx3VdoVx48fx/Tp07Fu3TrY7fZwV6ddo2kaBg4ciH/84x8AgH79+mH37t1YsmQJJkyYEObatR/++7//GytWrMC7776LXr164fvvv8cjjzyC1NRUbmeGaQZ4arsFSEhIgMlkqhfJmp+fj+Tk5DDVqv0wbdo0rFmzBl999RXS09Nr9ycnJ8Pn88Hj8YQcz+3eeHJyclBQUID+/fvDbDbDbDZjw4YNWLhwIcxmM5KSkriNm4mUlBRcdtllIfsuvfRSHDt2DABq25P7kQvj8ccfxxNPPIHbb78dffr0wd13340ZM2Zgzpw5ALidW4LGtGlycnK94NNAIICSkhJu9wiDhWQLYLVaMWDAAGRnZ9fu0zQN2dnZGDJkSBhrFtkIITBt2jR8/PHHWL9+Pbp06RLy/oABA2CxWELafd++fTh27Bi3eyMZMWIEfvzxR3z//fe128CBAzF+/Pja59zGzcOwYcPqpa/av38/OnXqBADo0qULkpOTQ9q6tLQUW7du5bY+DyorK6GqoUOdyWSCpmkAuJ1bgsa06ZAhQ+DxeJCTk1N7zPr166FpGrKyslq9zswFEO5on/bK+++/L2w2m3jrrbfEnj17xOTJk4Xb7RZ5eXnhrlrEMmXKFBEbGyu+/vprcfLkydqtsrKy9pgHH3xQZGZmivXr14sdO3aIIUOGiCFDhoSx1pGPMWpbCG7j5mLbtm3CbDaLv//97+LAgQNixYoVwul0iuXLl9ce88ILLwi32y1Wr14tdu3aJW655RbRpUsXUVVVFcaaRxYTJkwQaWlpYs2aNeLw4cPio48+EgkJCWLmzJm1x3A7nz9lZWVi586dYufOnQKAWLBggdi5c6c4evSoEKJxbTp69GjRr18/sXXrVrFx40bRvXt3cccdd4TrJzFNhIVkC7Jo0SKRmZkprFarGDRokPj222/DXaWIBkCD29KlS2uPqaqqEg899JCIi4sTTqdT3HrrreLkyZPhq3Q7oK6Q5DZuPj777DPRu3dvYbPZRM+ePcVrr70W8r6maWL27NkiKSlJ2Gw2MWLECLFv374w1TYyKS0tFdOnTxeZmZnCbreLSy65RDz99NPC6/XWHsPtfP589dVXDfbHEyZMEEI0rk2Li4vFHXfcIaKjo0VMTIyYOHGiKCsrC8OvYS4ERQhDen+GYRiGYRiGaSTsI8kwDMMwDMM0CRaSDMMwDMMwTJNgIckwDMMwDMM0CRaSDMMwDMMwTJNgIckwDMMwDMM0CRaSDMMwDMMwTJNgIckwDMMwDMM0CRaSDMMwDMMwTJNgIckwDMMwDMM0CRaSDMNEFPfeey8URYGiKLBYLEhKSsJ1112HN998E5qmhbt6DMMwFxUsJBmGiThGjx6NkydP4siRI1i7di2uvfZaTJ8+HWPGjEEgEAh39RiGYS4aWEgyDBNx2Gw2JCcnIy0tDf3798dTTz2F1atXY+3atXjrrbcAAAsWLECfPn0QFRWFjIwMPPTQQygvLwcAVFRUICYmBqtWrQop95NPPkFUVBTKyspa+ycxDMNEJCwkGYZpF/z6179G37598dFHHwEAVFXFwoUL8dNPP2HZsmVYv349Zs6cCQCIiorC7bffjqVLl4aUsXTpUvz2t7+Fy+Vq9fozDMNEIooQQoS7EgzDMI3l3nvvhcfjwSeffFLvvdtvvx27du3Cnj176r23atUqPPjggygqKgIAbNu2DUOHDsXx48eRkpKCgoICpKWl4csvv8Tw4cNb+mcwDMO0C9giyTBMu0EIAUVRAABffvklRowYgbS0NLhcLtx9990oLi5GZWUlAGDQoEHo1asXli1bBgBYvnw5OnXqhF/96ldhqz/DMEykwUKSYZh2w969e9GlSxccOXIEY8aMweWXX44PP/wQOTk5WLx4MQDA5/PVHn///ffX+lQuXboUEydOrBWiDMMwzLlhIckwTLtg/fr1+PHHH3HbbbchJycHmqbhxRdfxODBg9GjRw/k5ubW+8xdd92Fo0ePYuHChdizZw8mTJgQhpozDMNELuZwV4BhGOZ88Xq9yMvLQzAYRH5+Pj7//HPMmTMHY8aMwT333IPdu3fD7/dj0aJFuPnmm7Fp0yYsWbKkXjlxcXEYN24cHn/8cVx//fVIT08Pw69hGIaJXNgiyTBMxPH5558jJSUFnTt3xujRo/HVV19h4cKFWL16NUwmE/r27YsFCxZg7ty56N27N1asWIE5c+Y0WNakSZPg8/lw3333tfKvYBiGiXw4apthmIuad955BzNmzEBubi6sVmu4q8MwDBNR8NQ2wzAXJZWVlTh58iReeOEFPPDAAywiGYZhmgBPbTMMc1Eyb9489OzZE8nJyXjyySfDXR2GYZiIhKe2GYZhGIZhmCbBFkmGYRiGYRimSbCQZBiGYRiGYZoEC0mGYRiGYRimSbCQZBiGYRiGYZoEC0mGYRiGYRimSbCQZBiGYRiGYZoEC0mGYRiGYRimSbCQZBiGYRiGYZrE/weNdqudHbizWQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#variable_list=list(seir_model.initials.keys())\n", + "variable_list = ['S_y', 'I_y', 'E_y', 'I_m', 'I_o', 'S_m', 'E_m', 'S_o', 'E_o', 'R_y', 'R_m', 'R_o', 'S', 'E', 'I', 'R']\n", + "cm = plt.cm.bwr(numpy.linspace(0, 1, len(variable_list))) # can also use: bwr, brg, hsv, jet\n", + "ax = plt.subplot(111)\n", + "marker_list = ['-','--',':','-.']*4\n", + "ax.set_prop_cycle(color=list(cm), linestyle=marker_list)\n", + "\n", + "\n", + "ax.legend(handles = plt.plot(times_test,res), labels=variable_list,loc = 'upper left', bbox_to_anchor=(1,1))\n", + "plt.xlabel('Day')\n", + "plt.ylabel('Population')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "cedfa54c-a1c6-4eb5-9674-9ac17d823fb3", + "metadata": {}, + "source": [ + "## Change parameter values and uncertainty from the AMR" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "12219f8d-566f-466d-b35e-6bb70af5cea7", + "metadata": {}, + "outputs": [], + "source": [ + "filename = \"SEIR_scenario3_petrinet.json\"\n", + "with open(filename, 'r') as fh:\n", + " tm = template_model_from_amr_json(json.load(fh))\n", + "\n", + "# Change `Myy` parameter value\n", + "tm.parameters[\"Myy\"].value = 50.0\n", + "\n", + "# Change `Myy` distribution\n", + "tm.parameters[\"Myy\"].distribution = Distribution(type='StandardUniform1',\n", + " parameters={'minimum': 40.0, 'maximum': 80.0})\n", + "\n", + "# Save as updated AMR\n", + "with open('update_parameters_example.json', 'w') as fh:\n", + " json.dump(template_model_to_petrinet_json(tm), fh, indent=1)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mira_venv", + "language": "python", + "name": "mira_venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/scratch/notebooks/seirhd_stratified_july_2024_demo.ipynb b/scratch/notebooks/seirhd_stratified_july_2024_demo.ipynb new file mode 100644 index 00000000..673e6400 --- /dev/null +++ b/scratch/notebooks/seirhd_stratified_july_2024_demo.ipynb @@ -0,0 +1,448 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# import statements\n", + "from scipy.integrate import odeint\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "# define model\n", + "## note: p_EI could be included but it's just 1.\n", + "def SEIHRD_model(y, t, beta, r_EI, r_IR, r_IH_u, r_IH_v, r_HR, r_HD, NPI_mult, vacc_mult, N):\n", + " S_u, S_v, E_u, E_v, I_u, I_v, H, R, D = y\n", + " dS_udt = -I_u*NPI_mult(t)*S_u*beta(t)/N(t) - I_v*NPI_mult(t)*S_u*beta(t)/N(t) # done\n", + " dS_vdt = -I_u*NPI_mult(t)*S_v*beta(t)*vacc_mult(t)/N(t) - I_v*NPI_mult(t)*S_v*beta(t)*vacc_mult(t)/N(t) # done\n", + " dE_udt = I_u*NPI_mult(t)*S_u*beta(t)/N(t) + I_v*NPI_mult(t)*S_u*beta(t)/N(t) - E_u*r_EI(t) # done\n", + " dE_vdt = I_u*NPI_mult(t)*S_v*beta(t)*vacc_mult(t)/N(t) + I_v*NPI_mult(t)*S_v*beta(t)*vacc_mult(t)/N(t) - E_v*r_EI(t) # done\n", + " dI_udt = E_u*r_EI(t) - I_u*r_IR(t) - I_u*r_IH_u(t)\n", + " dI_vdt = E_v*r_EI(t) - I_v*r_IR(t) - I_v*r_IH_v(t)\n", + " dHdt = I_u*r_IH_u(t) + I_v*r_IH_v(t) - H*r_HR(t) - H*r_HD(t)\n", + " dRdt = I_u*r_IR(t) + I_v*r_IR(t) + H*r_HR(t)\n", + " dDdt = H*r_HD(t) # done\n", + " # dS_vdt = -I_u*NPI_mult(t)*S_v*beta(t)*vacc_mult(t)/N(t) - I_v*NPI_mult(t)*S_v*beta(t)*vacc_mult(t)/N(t) # done\n", + " # dE_udt = I_u*NPI_mult(t)*S_u*beta(t)/N(t) + I_v*NPI_mult(t)*S_u*beta(t)/N(t) - E_u*r_EI(t) # done\n", + " # dE_vdt = I_u*NPI_mult(t)*S_v*beta(t)*vacc_mult(t)/N(t) + I_v*NPI_mult(t)*S_v*beta(t)*vacc_mult(t)/N(t) - E_v*r_EI(t) # done\n", + " # dI_udt = E_u*r_EI(t) - I_u*r_IR(t) - I_u*r_IH_u(t)\n", + " # dI_vdt = E_v*r_EI(t) - I_v*r_IR(t) - I_v*r_IH_v(t)\n", + " # dHdt = I_u*r_IH_u(t) + I_v*r_IH_v(t) - H*r_HR(t) - H*r_HD(t)\n", + " # dRdt = I_u*r_IR(t) + I_v*r_IR(t) + H*r_HR(t)\n", + " # dDdt = H*r_HD(t) # done\n", + " return dS_udt, dS_vdt, dE_udt, dE_vdt, dI_udt, dI_vdt, dHdt, dRdt, dDdt\n", + "\n", + "# plot model\n", + "def plotSEIHRD(t, S_u, S_v, E_u, E_v, I_u, I_v, H, R, D):\n", + " f, ax = plt.subplots(1,1,figsize=(10,4))\n", + " ax.plot(t, S_u, 'r', alpha=0.7, linewidth=2, label='Susceptible unvacc')\n", + " ax.plot(t, E_u, 'o', alpha=0.7, linewidth=2, label='Exposed unvacc')\n", + " ax.plot(t, I_u, 'y', alpha=0.7, linewidth=2, label='Infected unvacc')\n", + " ax.plot(t, S_v, 'r', alpha=0.7, linewidth=2, linestyle='dotted', label='Susceptible unvacc')\n", + " ax.plot(t, E_v, 'o', alpha=0.7, linewidth=2, linestyle='dotted', label='Exposed unvacc')\n", + " ax.plot(t, I_v, 'y', alpha=0.7, linewidth=2, linestyle='dotted', label='Infected unvacc')\n", + " ax.plot(t, H, 'g', alpha=0.7, linewidth=2, label='Hospitalized')\n", + " ax.plot(t, R, 'b', alpha=0.7, linewidth=2, label='Recovered')\n", + " ax.plot(t, D, 'p', alpha=0.7, linewidth=2, label='Dead')\n", + "\n", + "\n", + " ax.set_xlabel('Time (days)')\n", + " ax.set_ylabel('Population')\n", + "\n", + " ax.yaxis.set_tick_params(length=0)\n", + " ax.xaxis.set_tick_params(length=0)\n", + " # ax.grid(b=True, which='major', c='w', lw=2, ls='-')\n", + " legend = ax.legend()\n", + " legend.get_frame().set_alpha(0.5)\n", + " \n", + " plt.show();" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAEOCAYAAABPZYklAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABUMklEQVR4nO3deXhURfbw8W91J4R9CUF/gEJA2YRsJOxbECEoiMKExUGG5eeMu84w7srmjO/rizgqmw4qCoiyjrgxiggIiiwJhFUQkbgAQkggJJCQpPu8f9xOp5N0IKHTJMD5PE+epE9X1a26t9I5uX37lhERlFJKKaXUxbNVdAeUUkoppS53mlAppZRSSvlIEyqllFJKKR9pQqWUUkop5SNNqJRSSimlfKQJlVJKKaWUjyo8oTLGzDXGHDfG7C5l+WHGmL3GmD3GmPf93T+llFJKqQsxFX0fKmNMTyATmC8i7S5QtgWwBLhZRE4aY64RkeOXop9KKaWUUiWp8DNUIrIeSPOMGWNuMMZ8boxJNMZsMMa0dj31Z2CWiJx01dVkSimllFIVrsITqhLMAR4WkWjgMWC2K94SaGmM+dYYs8kY07/CeqiUUkop5RJQ0R0oyhhTE+gKLDXG5IeDXN8DgBZALHAdsMEY005ETl3ibiqllFJKuVW6hArrrNkpEYn08txvwCYRyQUOGWP2YyVYWy9h/5RSSimlCql0b/mJyGmsZGkogLFEuJ5eAfR2xUOw3gL8qSL6qZRSSimVr8ITKmPMB8B3QCtjzG/GmP8FRgL/a4zZAewB7nAV/wJINcbsBdYCj4tIakX0WymllFIqX4XfNkEppZRS6nJX4WeolFJKKaUud5pQKaWUUkr5qEI/5RcSEiKhoaEV2QWllFJKqVJJTEw8ISINvD1XoQlVaGgoCQkJFdkFpZRSSqlSMcb8XNJz+pafUkoppZSPNKFSSimllPKRJlRKKaWUUj7y6zVUxpi6wFtAO0CAcSLynT+3qZRSSpWVw+EgLS2N3Nzciu6KqgQCAwMJDg7GbreXuo6/L0p/DfhcROKNMVWA6n7enlJKKVVmaWlpVK1alZCQEIwxFd0dVYFEhMzMTNLS0mjQwOsH+rzy21t+xpjaQE/gbQARyRGRU/7anlJKKXWxcnNzqVmzpiZTCmMMNWvWLPPZSn+eoWoOpADvuBY3TgQeFZEzftxmYUeOwIkTBY/zf1G8fT/fcxdTtqxlPB8Xfd5b/bLUK+lxadv3Vqboi46+CCmlLnOaTKl8FzMX/JlQBQDtgYdFZLMx5jXgKWCCH7dZ2GefwccfX7LNKRdvydb5kriS6pRUxttz56vnrR+l3Za3chezbV+3V9bYxdQvbb9Ls+3zlbvQuMt72/5orzL1uzzKXmzdS5WAXIqxdOoE+/eX77bL6IX33uP91aux2+3YjOHf48fT6aabLtn23Ywh6cABjqSmclvnzgB8/O237E1O5qmRIxnzf/8vA7t0IT42tlC1ddu3M23xYj598cVL32eA4GAIC6uYbePfhOo34DcR2ex6vAwrobp0GjUq2Lmei0CLFDz2/F5SGc/H5VXGW/mi30uqX5p2S/pedDHs0sS8tV3056L1z/dYKaUqmxtvhDJcgFzevjtwgE+//pptU6YQFBjIiYwMcvLyrHdaKkDS1q0kHDrEbddfD8Cg0FAGhYbC4cNw9iykpVk/ezpxArKzi8cvlQr+W+O3hEpEfjfG/GqMaSUi+4E+wF5/bc+rAQOsL+V/JSVRpU3izvdcSQld0cfe2rxQIlhSu2VpuzTPl2Z7pXn+YstdTB8vFLvQ9krbB39u25dyla0/vv6xuFTbKa1L0Z+y1A0MhJCQi9+Wj46ePUtIaChBffsC4NmT0E6dSFi5kpDgYBJ27OCxf/yDdcuW8fV33/HopEmA9RbV+uXLqVWzJlNnz2bB8uXYbDZu7d2bF595hoPJyTz47LOkpKVRvVo13pw6ldY33siYv/2NqkFB7PnhB46lpPCvSZPo17MnEx9/nKzsbL45fJinH3qIrOxsEnbsYOYLL8CKFaxOS+O1115z1xl4yy3WPty0CXr14szZszw8YQK79u0jLy+PyePHc0dcXKExr9u4kWn//jefzpsHwEPPPktMRARjhg0jtHNnRsfH88nq1eTm5rL03/+mZfPmNO/alaQvvqBunToA3NitG9+uWMGWpCT++fe/k+N0Ur9+fRYuXMi1115LZmYmDz/8MAkJCRhjmDRpEn/4wx/4/PPPeeaZZ3A4HISEhPDVV1/5fAz9/Sm/h4GFrk/4/QSM9fP2VEXRa6qUUpezI0esdzUAbr/dP9v45JMSn+o3YgTPz5xJy9hYbrnlFoYPH06vXr2sJ+12aNjQSviOHoWgIGjcmGnz5jFrzhy6detGZmYmVatW5b9ffsmKtWvZvG0b1atXJy0tDYKD+cuf/sQbb75JixYt2Lx5Mw88/TRr1qyB6tVJ/v13vv7uOw4ePEjv3r358ccfef6FF0hISGDmzJkAvPvuu1CzJjRu7L3O8OHQoAFUrQqNG/PCM89w88CBzF20iFOnTtGxY0duGT6cGjVqFAzaozxgtV+vnvXYbiekeXO27drF7NmzmbZgAW+99RZ3DBnCh5s3M3bsWDZv3kzojTdybWQk3Zs2ZdPo0RhjeOutt5g6dSovv/wy//jHP6hTpw67du0C4OTJk6SkpPDnP/+Z9evX06xZM2sflQO/3thTRJJEJEZEwkXkThE56c/tKaWUUpejmjVrkpiYyJw5c2jQoAHDhw+3kpjz6NatG+PHj2f69OmcOnWKgIAAVq9ezdixY6le3bpLUXBwMJmZmWzcuJGhQ4cSGRnJvffey9GjR93tDBs2DJvNRosWLWjevDn79u27YH8vVGfVqlW8+OKLREZGEhsbS3Z2Nr/88kuZ9smQIUMAiI6OJjk5GYDhw4ezePFiABYtWsTw4cMB+O2334iLiyMsLIyXXnqJPXv2ALB69WoefPBBd5v16tVj06ZN9OzZk2bNmrn3UXmo0MWRlVJKqUrnPGeS/MlutxMbG0tsbCxhYWHMmzePMWPGEBAQgNPpBCA7O9td/qmnnmLAgAGsXLmSzp07s3r1akSk2CfUnE4ndevWJSkpyet2i5YvzSfcLlRHRFi+fDmtWrUqsQ3PcUHhsQEEBQUB1n7Jy8sDoEuXLvz444+kpKSwYsUKnnvuOQAefvhhxo8fz6BBg1i3bh2TJ09298Nb3/zxiU5dekYppZSqYPv37+fAgQPux0lJSTRt2hSA0NBQEhMTAVi+fLm7zMGDBwkLC+PJJ58kJiaGffv20a9fP+bOncvZs2cB64altWvXplmzZixduhSwEoodO3a421m6dClOp5ODBw/y008/0apVK2rVqkVGRkaJ/fVWx1NcXBwzZsxAXNexbd++vVgbTZs2Ze/evZw7d4709PRSXcdkjGHw4MGMHz+eNm3aUL9+fQDS09Np7HrrcJ7rmiyAfv36ud+2BOstvy5duvD1119z6NAh9z4qD5pQKaWUUhUsMzOT0aNHc9NNNxEeHs7evXvdZ1kmTZrEo48+So8ePQothfLqq6/Srl07IiIiqFatGrfeeiv9+/dn0KBBxMTEEBkZybRp0wBYuHAhb7/9NhEREbRt25aPPvrI3U6rVq3o1asXt956K2+88QZVq1ald+/e7N27l8jISPdbbJ681fE0YcIEcnNzCQ8Pp127dkyYUPyOSddffz3Dhg0jPDyckSNHEhUVVap9NXz4cN577z33230AkydPZujQofTo0YMQjw8XPPfcc5w8edK9n9auXUuDBg2YM2cOQ4YMISIiolA7vjByqT7R4UVMTIwkJCRU2PaVUkopgCNHjtAo/6L0q8iYMWMYOHAg8fHxFd2VSsfbnDDGJIpIjLfyeoZKKaWUUspHelG6UkopdZW60CcJVenpGSqllFJKKR9pQqWUUkop5SNNqJRSSimlfKQJlVJKKaWUjzShUkoppSoBu91OZGSk++vFF1+s6C65xcbGorc5Oj/9lJ9SSilVRpt+SmX+d8n8knaWJsHV+VOXUDo3r+9Tm9WqVStxeRhV+ekZKqWUUqoMNv2Uyj8/3cuJjBwa1AziREYO//x0L5t+Si33baWnp9OqVSv2798PwF133cWbb74JWAsq//3vf6d9+/b06dOHlJQUwFq2pnPnzoSHhzN48GBOnjwJwPTp0913Yh8xYgQAZ86cYdy4cXTo0IGoqCj3HdSzsrIYMWIE4eHhDB8+nKysLK/9Cw0N5cSJEwAkJCQQGxsLWHcuHzduHLGxsTRv3pzp06cD8OSTTzJ79mx3/cmTJ/Pyyy+TmZlJnz59aN++PWFhYYXu5D5//nzCw8OJiIhg1KhRABw7dozBgwcTERFBREQEGzdu9H1n+0pEKuwrOjpalFJKqYp2+PDhUpe9/70EGfr6Rhn3zhb319DXN8r97yX41AebzSYRERHur0WLFomIyKpVq6Rz587ywQcfSFxcnLs8IO+9956IiEyZMkUefPBBEREJCwuTdevWiYjIhAkT5NFHHxURkYYNG0p2draIiJw8eVJERJ5++mlZsGCBO9aiRQvJzMyUl19+WcaOHSsiIjt27BC73S5bt24t1uemTZtKSkqKiIhs3bpVevXqJSIikyZNki5dukh2drakpKRIcHCw5OTkyLZt26Rnz57u+m3atJGff/5ZcnNzJT09XUREUlJS5IYbbhCn0ym7d++Wli1bureRmpoqIiLDhg2TV155RURE8vLy5NSpUxezy8/L25wAEqSEnEbf8lNKKaXK4Je0szSoGVQoViPIzi9pZ31qt6S3/Pr27cvSpUt58MEHCy1qbLPZ3OvQ3X333QwZMoT09HROnTpFr169ABg9ejRDhw4FcK+Zd+edd3LnnXcCsGrVKj7++GP3mn/Z2dn88ssvrF+/nkceecRdLzw8vMzjGTBgAEFBQQQFBXHNNddw7NgxoqKiOH78OEeOHCElJYV69erRpEkTcnNzeeaZZ1i/fj02m43Dhw9z7Ngx1qxZQ3x8vHt9vuDgYADWrFnD/PnzAevaszp16pS5f+VNEyqllFKqDJoEV+dERg61qhb8CT1zzkGT4Op+2Z7T6eT777+nWrVqpKWlcd1113ktZ4w5bzufffYZ69ev5+OPP+Yf//gHe/bsQURYvnw5rVq1KnN7AAEBATidTsBKxjwFBRUknXa7nby8PADi4+NZtmwZv//+u/utx4ULF5KSkkJiYiKBgYGEhoaSnZ2NiJSqH5WBXkOllFJKlcGfuoRyNiePjOw8nCJkZOdxNiePP3UJ9cv2XnnlFdq0acMHH3zAuHHjyM3NBaxEa9myZQC8//77dO/enTp16lCvXj02bNgAwIIFC+jVqxdOp5Nff/2V3r17M3XqVE6dOkVmZiZxcXHMmDED690s2L59OwA9e/Zk4cKFAOzevZudO3d67VtoaCiJiYkALF++vFTjGTFiBIsWLWLZsmXuRZnT09O55pprCAwMZO3atfz8888A9OnThyVLlpCaal2flpaW5o6//vrrADgcDk6fPl3a3ek3mlAppZRSZdC5eX2eG3gTIbWqkJJ5jpBaVXhu4E0+f8ovKyur0G0TnnrqKX744QfeeustXn75ZXr06EHPnj355z//CUCNGjXYs2cP0dHRrFmzhokTJwIwb948Hn/8ccLDw0lKSmLixIk4HA7uvvtuwsLCiIqK4m9/+xt169ZlwoQJ5ObmEh4eTrt27ZgwYQIA999/P5mZmYSHhzN16lQ6duzotc+TJk3i0UcfpUePHtjt9lKNs23btmRkZNC4cWMaNmwIwMiRI0lISCAmJoaFCxfSunVrd9lnn32WXr16ERERwfjx4wF47bXXWLt2LWFhYURHR7Nnz56L3/HlxORnpRUhJiZG9L4WSimlKtqRI0do1KhRRXejTGrWrElmZmZFd+OK5W1OGGMSRSTGW3k9Q6WUUkop5SNNqJRSSqnLkJ6dqlw0oVJKKaWU8pEmVEoppZRSPtKESimllFLKR369sacxJhnIABxAXklXxiullFJKXc4uxRmq3iISqcmUUkopVbKaNWtesMyGDRto27YtkZGRJS5YXJIVK1awd+9ev/RL6Vt+Siml1GVj4cKFPPbYYyQlJVGtWrUy1b3YhEqVjr8TKgFWGWMSjTF/8fO2lFJKqcveunXriI2NJT4+ntatWzNy5EhEhLfeeoslS5bw/PPPM3LkSABeeuklOnToQHh4OJMmTXK3MX/+fMLDw4mIiGDUqFFs3LiRjz/+mMcff5zIyEgOHjzIwYMH6d+/P9HR0fTo0YN9+/YBcOjQIbp06UKHDh3cd04vKjk5mXbt2rkfT5s2jcmTJwMQGxvLk08+SceOHWnZsqV7GZxOnToVuqN5bGwsiYmJbNmyha5duxIVFUXXrl3Zv38/YC0p89hjjxEWFkZ4eDgzZswAYOvWrXTt2pWIiAg6duxIRkZGOe153/h7ceRuInLEGHMN8KUxZp+IrPfzNpVSSqmLtmvX7X5pNyzsk1KX3b59O3v27KFRo0Z069aNb7/9lnvuuYdvvvmGgQMHEh8fz6pVqzhw4ABbtmxBRBg0aBDr16+nfv36vPDCC3z77beEhISQlpZGcHAwgwYNctcFaz28N954gxYtWrB582YeeOAB1qxZw6OPPsr999/Pn/70J2bNmnVRY83Ly2PLli2sXLmSKVOmsHr1akaMGMGSJUuYMmUKR48e5ciRI0RHR3P69GnWr19PQEAAq1ev5plnnmH58uXMmTOHQ4cOsX37dgICAkhLSyMnJ4fhw4ezePFiOnTowOnTp8t8ps5f/JpQicgR1/fjxpgPgY6AJlRKKaXUeXTs2JHrrrsOgMjISJKTk+nevXuhMqtWrWLVqlVERUUB1o0+Dxw4wI4dO4iPjyckJASA4ODgYu1nZmayceNGhg4d6o6dO3cOgG+//da90PGoUaN48skny9z/IUOGABAdHU1ycjIAw4YNo2/fvkyZMoUlS5a4t52ens7o0aM5cOAAxhj34s+rV6/mvvvuIyAgwD2OXbt20bBhQzp06ABA7dq1y9w3f/FbQmWMqQHYRCTD9XM/4Hl/bU8ppZQqD2U5k+QvQUFB7p/tdjt5eXnFyogITz/9NPfee2+h+PTp0zHGnLd9p9NJ3bp1SUpK8vr8heoHBATgdDrdj7Ozs73237PvjRs3pn79+uzcuZPFixfz73//G4AJEybQu3dvPvzwQ5KTk4mNjXWPr2g/vMUqC39eQ3Ut8I0xZgewBfhMRD734/aUUkqpq0ZcXBxz5851L0Fz+PBhjh8/Tp8+fViyZAmpqakApKWlAVCrVi339Ua1a9emWbNmLF26FLASlR07dgDQrVs3Fi1aBFgXwXtz7bXXcvz4cVJTUzl37hyffvppqfo8YsQIpk6dSnp6OmFhYYB1hqpx48YAvPvuu+6y/fr144033nAnZGlpabRu3ZojR46wdetWADIyMrwmmxXBbwmViPwkIhGur7Yi8oK/tqWUUkpdbfr168cf//hHunTpQlhYGPHx8WRkZNC2bVueffZZevXqRUREBOPHjwesZOall14iKiqKgwcPsnDhQt5++20iIiJo27YtH330EQCvvfYas2bNokOHDqSnp3vddmBgIBMnTqRTp04MHDiQ1q1bl6rP8fHxLFq0iGHDhrljTzzxBE8//TTdunXD4XC44/fccw9NmjRxX1z//vvvU6VKFRYvXszDDz9MREQEffv2LXZ2rKIYEamwjcfExEhCQkKFbV8ppZQCOHLkCI0aNarobqhKxNucMMYklnRfTb0PlVJKKaWUjzShUkoppZTykSZUSimllFI+0oRKKaWUUspHmlAppZRSSvlIEyqllFJKKR9pQqWUUkpVAi+88AJt27YlPDycyMhINm/eXGF9SUpKYuXKle7HH3/8MS+++CIAY8aMYdmyZcXqrFu3joEDB16yPlY2/l4cWSmllFIX8N133/Hpp5+ybds2goKCOHHiBDk5ORXWn6SkJBISErjtttsAGDRoEIMGDaqw/lwO9AyVUkopVcGOHj1KSEiIew28kJAQ900lQ0NDOXHiBAAJCQnute6+/vprIiMjiYyMJCoqyr2szNSpUwkLCyMiIoKnnnoKgIMHD9K/f3+io6Pp0aMH+/btA6yzTffddx89evSgZcuWfPrpp+Tk5DBx4kQWL15MZGQkixcv5t133+Whhx5y93f16tWF6hR15swZxo0bR4cOHYiKinLfhd1T0TNaDz30kHvpmdDQUCZNmkT79u0JCwtj3759OJ1OQkNDOXXqlLvOjTfeyLFjx/jkk0/o1KkTUVFR3HLLLRw7dgywFoEeO3YsYWFhhIeHuxd9/vzzz2nfvj0RERH06dOnbAerBJpQKaWUUkXdfrv15en5563Yli0Fsc8/t2IzZxbE0tKs2OjRpd5cv379+PXXX2nZsiUPPPAAX3/99QXrTJs2jVmzZpGUlMSGDRuoVq0a//3vf1mxYgWbN29mx44dPPHEEwD85S9/YcaMGSQmJjJt2jQeeOABdzvJycl8/fXXfPbZZ9x33304nU6ef/55hg8fTlJSEsOHDy+27aJ1ii7/8sILL3DzzTezdetW1q5dy+OPP86ZM2dKvT/ASiq3bdvG/fffz7Rp07DZbNxxxx18+OGHAGzevJnQ0FCuvfZaunfvzqZNm9i+fbt7vUCAf/zjH9SpU4ddu3axc+dObr75ZlJSUvjzn//M8uXL2bFjh3s9Q19pQqWUUkpVsJo1a5KYmMicOXNo0KABw4cPL7RQsDfdunVj/PjxTJ8+nVOnThEQEMDq1asZO3Ys1atXByA4OJjMzEw2btzI0KFDiYyM5N577+Xo0aPudoYNG4bNZqNFixY0b97cffbqfC5UZ9WqVbz44otERkYSGxtLdnY2v/zyS5n2yZAhQwCIjo4mOTkZgOHDh7N48WIAFi1a5E72fvvtN+Li4ggLC+Oll15iz549gHUm7cEHH3S3Wa9ePTZt2kTPnj1p1qyZex+VB72GSimllCrqk0+KxyZOLB7r39/68hQc7L3+BdjtdmJjY4mNjSUsLIx58+YxZswYAgICcDqdAIXOBD311FMMGDCAlStX0rlzZ1avXo2IYIwp1K7T6aRu3bokJSV53W7R8kUfX0wdEWH58uW0atWqxDY8xwUUO8uV//an3W4nLy8PgC5duvDjjz+SkpLCihUreO655wB4+OGHGT9+PIMGDWLdunVMnjzZ3Q9vfSvNGMtKz1AppZRSFWz//v0cOHDA/TgpKYmmTZsC1vVEiYmJAO5rgMC6LiosLIwnn3ySmJgY9u3bR79+/Zg7dy5nz54FIC0tjdq1a9OsWTP3W1siwo4dO9ztLF26FKfTycGDB/npp59o1aoVtWrVcl+T5Y23Op7i4uKYMWMGIgLA9u3bi7XRtGlT9u7dy7lz50hPT+err7664H4yxjB48GDGjx9PmzZtqF+/PgDp6ek0btwYgHnz5rnL9+vXj5keb8eePHmSLl268PXXX3Po0CH3PioPmlAppZRSFSwzM5PRo0dz0003ER4ezt69e91nWSZNmsSjjz5Kjx49sNvt7jqvvvoq7dq1IyIigmrVqnHrrbfSv39/Bg0aRExMDJGRkUybNg2AhQsX8vbbbxMREUHbtm0LXSTeqlUrevXqxa233sobb7xB1apV6d27N3v37nVflF6UtzqeJkyYQG5uLuHh4bRr144JEyYUa+P6669n2LBhhIeHM3LkSKKiokq1r4YPH857771X6NquyZMnM3ToUHr06EFISIg7/txzz3Hy5En3flq7di0NGjRgzpw5DBkyhIiICK/XiF0Mk589VoSYmBhJSEiosO0rpZRSAEeOHHF/qu5qMmbMGAYOHEh8fHxFd6XS8TYnjDGJIhLjrbyeoVJKKaWU8pFelK6UUkpdpS70SUJVenqGSimllFLKR5pQKaWUUkr5SBMqpZRSSikfaUKllFJKKeUjTaiUUkqpSsBut7sXO46MjOTFF1+s6C65xcbGorc5Oj/9lJ9SSilVVsnfwJY5cPJnqNcUOv4FQrv71GS1atVKXB5GVX5+P0NljLEbY7YbYz7197aUUkopv0v+Br54Fs6cgJrXWN+/eNaKl7P09HRatWrF/v37Abjrrrt48803AWtB5b///e+0b9+ePn36kJKSAljL1nTu3Jnw8HAGDx7MyZMnAZg+fbr7TuwjRowA4MyZM4wbN44OHToQFRXlvoN6VlYWI0aMIDw8nOHDh5OVleW1f6GhoZw4cQKAhIQEYmNjAevO5ePGjSM2NpbmzZszffp0AJ588klmz57trj958mRefvllMjMz6dOnD+3btycsLKzQndznz59PeHg4ERERjBo1CoBjx44xePBgIiIiiIiIYOPGjb7vbF+JiF+/gPHA+8CnRZ+Ljo4WpZRSqqIdPny4cGDhMOvL09oXrdg7A0Xm3mr9PKe3yNQbRF6NEFk8yip3JtV67j/3lqkPNptNIiIi3F+LFi0SEZFVq1ZJ586d5YMPPpC4uDh3eUDee+89ERGZMmWKPPjggyIiEhYWJuvWrRMRkQkTJsijjz4qIiINGzaU7OxsERE5efKkiIg8/fTTsmDBAnesRYsWkpmZKS+//LKMHTtWRER27Nghdrtdtm7dWqzPTZs2lZSUFBER2bp1q/Tq1UtERCZNmiRdunSR7OxsSUlJkeDgYMnJyZFt27ZJz5493fXbtGkjP//8s+Tm5kp6erqIiKSkpMgNN9wgTqdTdu/eLS1btnRvIzU1VUREhg0bJq+88oqIiOTl5cmpU6fKtK9Lo9icEBEgQUrId/z6lp8x5jpgAPCCK7FSSimlLm8ZRyG4WeGYPch6+88HJb3l17dvX5YuXcqDDz5YaFFjm83mXofu7rvvZsiQIaSnp3Pq1Cl69eoFwOjRoxk6dCiAe828O++8kzvvvBOAVatW8fHHH7vX/MvOzuaXX35h/fr1PPLII+564eHhZR7PgAEDCAoKIigoiGuuuYZjx44RFRXF8ePHOXLkCCkpKdSrV48mTZqQm5vLM888w/r167HZbBw+fJhjx46xZs0a4uPj3evzBQcHA7BmzRrmz58PWNee1alTp8z9K2/+vobqVeAJoJaft6OUUkqVnz8WXxCY2Cet70v+ZL3NF1QLajSwvs5lQA3XorzVg73Xv0hOp5Pvv/+eatWqkZaWxnXXXee1nDHmvO189tlnrF+/no8//ph//OMf7NmzBxFh+fLltGrVqsztAQQEBOB0OgErGfMUFBTk/tlut5OXlwdAfHw8y5Yt4/fff3e/9bhw4UJSUlJITEwkMDCQ0NBQsrOzEZFS9aMy8Ns1VMaYgcBxEUn01zaUUkqpS67jXyDnjJVEidP6nnPGivvBK6+8Qps2bfjggw8YN24cubm5gJVoLVu2DID333+f7t27U6dOHerVq8eGDRsAWLBgAb169cLpdPLrr7/Su3dvpk6dyqlTp8jMzCQuLo4ZM2bkX6LD9u3bAejZsycLFy4EYPfu3ezcudNr30JDQ0lMtP7ML1++vFTjGTFiBIsWLWLZsmXuRZnT09O55pprCAwMZO3atfz8s3W2r0+fPixZsoTU1FQA0tLS3PHXX38dAIfDwenTp0u7O/3GnxeldwMGGWOSgUXAzcaY9/y4PaWUUsr/QrtD3AvWGanM49b3uBd8/pRfVlZWodsmPPXUU/zwww+89dZbvPzyy/To0YOePXvyz3/+E4AaNWqwZ88eoqOjWbNmDRMnTgRg3rx5PP7444SHh5OUlMTEiRNxOBzcfffdhIWFERUVxd/+9jfq1q3LhAkTyM3NJTw8nHbt2jFhwgQA7r//fjIzMwkPD2fq1Kl07NjRa58nTZrEo48+So8ePbDb7aUaZ9u2bcnIyKBx48Y0bNgQgJEjR5KQkEBMTAwLFy6kdevW7rLPPvssvXr1IiIigvHjrauHXnvtNdauXUtYWBjR0dHs2bPn4nd8OTH5WalfN2JMLPCYiAz0jMfExIje10IppVRFO3LkCI0aNarobpRJzZo1yczMrOhuXLG8zQljTKKIxHgrrzf2VEoppZTy0SW5saeIrAPWXYptKaWUUlcDPTtVuegZKqWUUkopH2lCpZRSSinlI02olFJKKaV8pAmVUkoppZSPNKFSSimlKoGaNWtesMyGDRto27YtkZGRJS5YXJIVK1awd+9ev/RLlfJTfsaYIOAPQKhnHRF53j/dUkoppVRRCxcu5LHHHmPs2LFlrrtixQoGDhzITTfd5IeeqdKeofoIuAPIA854fCmllFKqHK1bt47Y2Fji4+Np3bo1I0eORER46623WLJkCc8//zwjR44E4KWXXqJDhw6Eh4czadIkdxvz588nPDyciIgIRo0axcaNG/n44495/PHHiYyM5ODBgxw8eJD+/fsTHR1Njx492LdvHwCHDh2iS5cudOjQwX3n9KKSk5Np166d+/G0adOYPHkyALGxsTz55JN07NiRli1bupfB6dSpU6E7msfGxpKYmMiWLVvo2rUrUVFRdO3alf379wPWkjKPPfYYYWFhhIeHM2PGDAC2bt1K165diYiIoGPHjmRkZJTTnveRiFzwC9hdmnJl/YqOjhallFKqoh0+fLjQ4507B8rOnQMLxQ4dmiI7dw6U9PTN7tiJE/+VnTsHyq+/znDHcnJSZefOgbJ375/K1IcaNWqIiMjatWuldu3a8uuvv4rD4ZDOnTvLhg0bRERk9OjRsnTpUhER+eKLL+TPf/6zOJ1OcTgcMmDAAPn6669l9+7d0rJlS0lJSRERkdTU1GJ1RURuvvlm+eGHH0REZNOmTdK7d28REbn99ttl3rx5IiIyc+ZMd78K74tD0rZtW/fjl156SSZNmiQiIr169ZLx48eLiMhnn30mffr0ERGRf/3rXzJx4kQRETly5Ii0aNFCRETS09MlNzdXRES+/PJLGTJkiIiIzJ49W4YMGeJ+LjU1Vc6dOyfNmjWTLVu2FKtb3orOCRERIEFKyGlKe2PPjcaYMBHZ5b/UTimllFIAHTt25LrrrgMgMjKS5ORkuncvvFbgqlWrWLVqFVFRUYB1o88DBw6wY8cO4uPjCQkJASA4OLhY+5mZmWzcuJGhQ4e6Y+fOnQPg22+/dS90PGrUKJ588sky93/IkCEAREdHk5ycDMCwYcPo27cvU6ZMYcmSJe5tp6enM3r0aA4cOIAxxr348+rVq7nvvvsICAhwj2PXrl00bNiQDh06AFC7du0y981fSptQdQfGGGMOAecAA4iIhPutZ0oppVQFCQv7pFgsNHRisVj9+v2pX79/oVhgYLDX+mURFBTk/tlut5OXl1esjIjw9NNPc++99xaKT58+HWPMedt3Op3UrVuXpKQkr89fqH5AQABOp9P9ODs722v/PfveuHFj6tevz86dO1m8eDH//ve/AZgwYQK9e/fmww8/JDk5mdjYWPf4ivbDW6yyKO01VLcCLYB+wO3AQNd3pZRSSlWAuLg45s6d616C5vDhwxw/fpw+ffqwZMkSUlNTAUhLSwOgVq1a7uuNateuTbNmzVi6dClgJSo7duwAoFu3bixatAiwLoL35tprr+X48eOkpqZy7tw5Pv3001L1ecSIEUydOpX09HTCwsIA6wxV48aNAXj33XfdZfv168cbb7zhTsjS0tJo3bo1R44cYevWrQBkZGR4TTYrQqkSKhH5GaiLlUTdDtR1xZRSSilVAfr168cf//hHunTpQlhYGPHx8WRkZNC2bVueffZZevXqRUREBOPHjwesZOall14iKiqKgwcPsnDhQt5++20iIiJo27YtH330EQCvvfYas2bNokOHDqSnp3vddmBgIBMnTqRTp04MHDiQ1q1bl6rP8fHxLFq0iGHDhrljTzzxBE8//TTdunXD4XC44/fccw9NmjRxX1z//vvvU6VKFRYvXszDDz9MREQEffv2LXZ2rKIY6xqrCxQy5lHgz8B/XKHBwBwRmeHLxmNiYiQhIcGXJpRSSimfHTlyhEaNGlV0N1Ql4m1OGGMSRSTGW/nSXkP1v0AnETnjavD/Ad8BPiVUSimllFJXgtJeQ2UAh8djhyumlFJKKXXVK+0ZqneAzcaYD12P7wTe9kuPlFJKKaUuM6VKqETkX8aYdVi3TzDAWBHZ7s+OKaWUUkpdLs6bUBljaovIaWNMMJDs+sp/LlhE0vzbPaWUUkqpyu9CZ6jex7rnVCLg+XFA43rc3E/9UkoppZS6bJz3onQRGej63kxEmnt8NRMRTaaUUkqpclKzZs1Cj999910eeuihct1G165dAWtx4/fff/+C5T0XQU5ISOCRRx7xuQ9jxoxh2bJlPrdT2ZTqU37GmK9KE1NKKaVU5bVx40ag9AmVp5iYGKZPn+6Pbl0RzptQGWOquq6fCjHG1DPGBLu+QgG9A5pSSil1Cfz888/06dOH8PBw+vTpwy+//ALA0qVLadeuHREREfTs2ROwzmzdcccd9O/fn1atWjFlyhR3O/lnwZ566ik2bNhAZGQkr7zyCsnJyfTo0YP27dvTvn17d+Llad26dQwcOBCA2267jcjISCIjI6lTpw7z5s3D4XDw+OOP06FDB8LDw91r9YkIDz30EDfddBMDBgzg+PHjft1XFeVC11DdC/wVK3lKpODeU6eBWf7rllJKKVUxbv/AP0vVfnLX+RdMzsrKIjIy0v04LS2NQYMGAfDQQw/xpz/9idGjRzN37lweeeQRVqxYwfPPP88XX3xB48aNOXXqlLvuli1b2L17N9WrV6dDhw4MGDCAmJiCG3y/+OKLTJs2zb0G39mzZ/nyyy+pWrUqBw4c4K677uJ8K5msXLkSgMTERMaOHcudd97J22+/TZ06ddi6dSvnzp2jW7du9OvXj+3bt7N//3527drFsWPHuOmmmxg3blxZd1+ld96ESkReA14zxjzs6zIzSimllCpZtWrVSEpKcj9+99133UnNd999x3/+Y63+NmrUKJ544gnAWsh4zJgxDBs2jCFDhrjr9u3bl/r16wMwZMgQvvnmm0IJVVG5ubk89NBDJCUlYbfb+eGHHy7Y3xMnTjBq1CiWLFlCnTp1WLVqFTt37nRfH5Wens6BAwdYv349d911F3a7nUaNGnHzzTeXbcdcJkp7H6oZxph2wE1AVY/4fH91TCmllKoIFzqTVBkYY71h9MYbb7B582Y+++wzIiMj3QlZ/vNFy5fklVde4dprr2XHjh04nU6qVq163vIOh4MRI0YwceJE90XrIsKMGTOIi4srVHblypUX3P6VoLQXpU/CWrdvBtAbmAoMukCdqsaYLcaYHcaYPcaYKecrr5RSSinvunbtyqJFiwBYuHAh3bt3B+DgwYN06tSJ559/npCQEH799VcAvvzyS9LS0sjKymLFihV069atUHu1atUiIyPD/Tg9PZ2GDRtis9lYsGABDoeD83nqqacIDw9nxIgR7lhcXByvv/46ubm5APzwww+cOXOGnj17smjRIhwOB0ePHmXt2rW+75BKqLRLz8QDEcB2ERlrjLkWeOsCdc4BN4tIpjEmEPjGGPNfEdnkQ3+VUkqpq8706dMZN24cL730Eg0aNOCdd94B4PHHH+fAgQOICH369CEiIoKkpCS6d+/OqFGj+PHHH/njH/9Y7O2+8PBwAgICiIiIYMyYMTzwwAP84Q9/YOnSpfTu3ZsaNWqctz/Tpk2jbdu27mu+nn/+ee655x6Sk5Np3749IkKDBg1YsWIFgwcPZs2aNYSFhdGyZUt69erll31U0YyIXLiQMVtEpKMxJhHrDFUGsFtE2pZqI8ZUB74B7heRzfnxmJgYOd9Fb0oppdSlcOTIERo1ujI+vJ5/7dXMmTMruiuXNW9zwhiTKCJeL0Yr1Vt+QIIxpi7wJtan/bYBWy5UyRhjN8YkAceBLz2TKaWUUkqpK0WpzlAVqmDdg6q2iOwsQ526wIfAwyKyOz+uZ6iUUkpVBlfSGSpVPsp6hupCiyO3P99zIrKtNJ0SkVPGmHVAf2D3BYorpZRSSl1WLnRR+svneU6AEm8mYYxpAOS6kqlqwC3A/yt7F5VSSimlKrcL3diztw9tNwTmGWPsWNdqLRGRT31oTymllFKqUirVbROMMX/yFj/fjT1d11hFXWS/lFJKKaUuG6W9D1UHj5+rAn2wPumnd0pXSimlyoHdbicsLIy8vDyaNWvGggULqFu3bkV3q0wmT55MzZo1eeyxxyq6K5dcqW6bICIPe3z9GevMUxX/dk0ppZS6euSv5bd7926Cg4OZNWtWRXcJsJaUcTqdFd2NSq+096Eq6izQojw7opRSSilLly5dOHz4MGAtL9O/f3+io6Pp0aMH+/btA+DYsWMMHjyYiIgIIiIi2LhxIwD/+te/aNeuHe3atePVV18F4Mknn2T27Nnu9idPnszLL1ufO3vppZfo0KED4eHhTJo0CYDk5GTatGnDAw88QPv27fn111+9lgN44YUXaNWqFbfccgv79+/3+76prEp7DdUnWJ/qA7ADbYAl/uqUUkopVVFuv90/7X5SyjWXHQ4HX331Ff/7v/8LwF/+8hfeeOMNWrRowebNm3nggQdYs2YNjzzyCL169eLDDz/E4XCQmZlJYmIi77zzDps3b0ZE6NSpE7169WLEiBH89a9/5YEHHgBgyZIlfP7556xatYoDBw6wZcsWRIRBgwaxfv16mjRpwv79+3nnnXeYPXt2ieVq1KjBokWL2L59O3l5ebRv357o6Gj/7MBKrrTXUE3z+DkP+FlEfvNDf5RSSqmrUlZWFpGRkSQnJxMdHU3fvn3JzMxk48aNDB061F3u3LlzAKxZs4b5861Lme12O3Xq1OGbb75h8ODB7rX4hgwZwoYNG3jkkUc4fvw4R44cISUlhXr16tGkSROmT5/OqlWriIqyPkOWmZnJgQMHaNKkCU2bNqVz584ArFq1ymu5jIwMBg8eTPXq1QEYNGjQpdlZlVCpEioR+doY8z9AR6wzVQf92iullFKqgpT2TFJ5y7+GKj09nYEDBzJr1izGjBlD3bp1SUpKKlUb51v9JD4+nmXLlvH7778zYsQId/mnn36ae++9t1DZ5OTkQgskl1Tu1VdfxRhTyhFe2Up1DZUx5h6stfuGAPHAJmPMOH92TCmllLoa1alTh+nTpzNt2jSqVatGs2bNWLp0KWAlNjt27ACgT58+vP7664D1NuHp06fp2bMnK1as4OzZs5w5c4YPP/yQHj16ADBixAgWLVrEsmXLiI+PByAuLo65c+eSmZkJwOHDhzl+/HixPpVUrmfPnnz44YdkZWWRkZHBJxWVjVYCpX3L73EgSkRSAYwx9YGNwFx/dUwppZS6WkVFRREREcGiRYtYuHAh999/P//85z/Jzc1lxIgRRERE8Nprr/GXv/yFt99+G7vdzuuvv06XLl0YM2YMHTt2BOCee+5xv03Xtm1bMjIyaNy4MQ0bNgSgX79+fP/993Tp0gWAmjVr8t5772G32wv1p6Ry7du3Z/jw4URGRtK0aVN38nY1KtXiyMaYr4BbRSTH9bgKsFJEbvFl47o4slJKqcpAF0dWRZXr4sgeDgObjTEfYV1DdQewxRgzHkBE/nXxXVZKKaWUuryVNqE6SOEL0T9yfa9Vvt1RSimllLr8lPZTflMAjDG1rIeS6ddeKaWUUkpdRkr7Kb92xpjtwG5gjzEm0RjT1r9dU0oppZS6PJR26Zk5wHgRaSoiTYG/A2/6r1tKKaWUUpeP0iZUNURkbf4DEVkH1Ci5uFJKKaXU1aO0F6X/ZIyZACxwPb4bOOSfLpWznTvhxx8hLAxauNZzPn4cvv0WGjSA7t0Lyn70ETid1kJOAa5ds3Ur/PYbdOgA111nxX79FRIS4PrrIcb16cmcHFi5EgIDYcCAgjY3bIDUVGs7ISFW7MAB2LsXbrwR2rreOc3IgDVroGZN6NOnoP7q1XDmDNxyC+TftXb3bjh40BpT8+ZWLCUFNm60xtS1a0H9zz4DhwNuu61gTAkJcOQIREdD48ZW7LffYPt263H79lYsNxc+/9yqd+utBW1++y2kpUG3bhAcbMV+/BG+/94aU5s2BWNat84aU+/eBfXXrIGzZ61Y/pj27IFDh+CmmwrGdOIEbNpk7TfX8geA1SeHA+LiCsa0bRscPQpRUZD/MdfDhyEpyRpTZGTBmFatso5Tv34FbX73HZw8aW0nf0w//QT79kGzZgVjysyE9eutfvfqVVB/7VrIyrJi+WPauxeSk60xhYYWjGnLFqhfHzp1Kqj/xRfWmPr1KxjT9u0FY3LdM4bDh6053agRREQUjGn1aqte374FbW7aZI2pU6fCY9q/3xpT69YFY9qwwep3z54F9b/+2jpOPXsWjOn77+Hnn626+WNKTbV+T4KDwXXvGwC+/NIa0y23FIwpKQl+/93qu+eYdu2yxhQeXjCmr76y6t3icXeWzZutMXXsWHhMP/xgjalVq4IxffONNfc8f8fXr7fG1KNH6cZUv771u190TH37Qv59eryN6ciRguNUdEyBgYV/x30d04YN1pi6dy8Y07591phatSo8poQEaxtFx+R0Wvs5f0w7dlhjCg8vPKZdu6zHnmNas8Y6Tp5j2rLFGlOHDgVjOnTIGlNoaOExffut1e+ixykryzpOriVN/D6m/Ndnh8Pqq81W8FoE1jzNyrJeT6pVs2InT1p9qFu3oH5ODvzyC1SpAk2aFNT/+WdrfzVtas0BsF4P0tOteVa3Lna7nbC2bcnNyiIgMJDR99zDX//6V2w2mzUnRKw5YXOdC/n9d+vvw7XXWvMCrNfd48etx9de6x7T5L/9jZo1a/LY//k/hceUnW3NU88xpaVZY6pfv2BMv/5q9bvomPLyrFgJYwKs+Xn0qLUNz9sQ+DgmkpOtes2aURmU9gzVOKAB8B/XVwgw1l+dKlebN8M771h/3PIdPQpz58J//1u47Pz5VtzhKIitWWPFDnnkjz/+aMXWry+I5ebC22/DggUU8umnVvzYsYLYzp3w1lvWi06+U6es2LJlhesvXmzFT58uiH33nRXbtasgduSIFfvss8L1586FN98sPKavvrJiP/1UEDtwAObMsRKgfDk5VmzevMJtfvyxFT96tCC2Y4cV27Sp8JjmzIElRdbR/uAD+Pe/C49p40Yr5jmmw4etWNE77775JrzxRuExffmlFTvo8WHUH36wYmvWFB7TG29Y+8XTihXw+uuFx7R9uxXzHNPJk1Zs0aLC9d9/34p7junbb62Y667G7jG9/rq1Dz3NmWPFPce0apUV+/HHwmOaPds6hp5jmj3bmmeePvzQihcd0+zZ1hzyHNPs2dZx8fTee1bcc0zffAOzZhUe02+/WbGPPipc/403rLjnmL74wooVHdOsWVZS6DmmWbOsOe3pP/+x4kXHNGuWNYc8xzRrFixcWLj+ggVWvLRjWrHC+5jy8s4/pv37Sx7Tm0WulvB1TPPnw8yZhce0YYMVKzqmmTO9j2nmzMJj+vxzK1Z0TDNnFh/TzJnFx7R8uRX3HNO2bVas6JhmzvR+nGbOtP4wX+oxORzWa/O2bYXb3LvXimdkAOAUJ1/uWcH9G//Ol7v/g1OcVrmsLKvczp2F6+/YYcWzswtiP/9s/Y36/XfAtfTMqlXsmTKFL59/npUrVzJlyhSr7NatVlmns6D+jz9asdTUgtiJE1bM8/Xd4bBee34rsgTv3r1WWdeYAOuYbd5sJYX5srKsmLcxbd583jEB1tzcvNn658WTr2PavBkSE6ksznuGyhhTFbgPuBHYBfxdRHIvRcfKTXi49R/KjTcWxBo0gMGDC/5LyTdokHWQPO8Q26GD9Z9H/pkcsM5U3Xln4TYDA+GOO6z/Sjx1726dGcvP9MF6fMcd1pmLfLVqWbE6dQrX79PHmuweayrRrp31/YYbCmIhIVb/i96YbsAA60XFc0wxMVCvXuGyjRtbZ+byz+KB9V/n7bcXH1PXrtZ/bvn/eeb3ZeDAgjM5YP03MXBgwX8p+Xr3tn7B8v/zBGtfOByF/9MICbH677nvAfr3Lz6m9u2hdu3Cx7RRI+vMXMuWhcd0223Fx9S5s/Vfr+eYmje3yuafyQHrONx2m7X/PMXGFh9TmzZWop3/3zRY8+DWW4uPKS6u+Jiioqx58T//U3hM/fsX/IefP6b+/SEoqPiYmjQp3NdmzYrXr1HDihUdU8+excfUurX1R9RzTMHBVv38M7j5+vYt/vsUEWHNC29jKnqc+vcvfpw6dSr9mOLivI8pPb34mM6ds84ceI4pLs77mPLyCv6bzh9TjRrFxxQXV/w4xcUVH1PHjtbZ7qJjiosrvE9KGlOPHsXH1KqVdbaz6Jj69Ss+pltu8T6m6tULj6lhQ6u+5+9DQIAVKzr38s/oe/Y1NNQqW3RM/fpVrjHZbNbrWUCRP4+NG1uvMdWqcfzscWYnzWbv8R1UD7LzZupKNm46yv0R93NNlVpW/fwzPvmaNrUSj/wzOWC9xuXlFX6NrFYNbriBa2rXZs6cOXTo0IHJkyfjbNqUp2bOZN0rr3Du3DkefPBB7u3Th8zcXO4YNYqTmZnk5ubyzyee4I6WLSEkhBdeeIH58+dz/XXX0cBuJ7rofsofU9WqBbG6da3+e/7NqlLFinmWA+t38dy5Uo+J2rUL12/e3EqmPNcC/J//sdrLPzsF1uvgDTcUnAWEguNU5I7uFem8d0o3xiwGcoENwK1Asoj8tbw2rndKV0opVRmU5U7pD331EKlZqQRXDcYYg4iQlp1GSLUQZvSZcdF9qFmzpnutvHz16tVj3759fPTRRxw/fpznnnuOc+fO0a1bN5YuXcr111/P2bNnqV27NidOnKBz584cOHCAbdu2MWbMGDZv3kxeXh7t27fnvvvu47HHHrvo/l1tyvtO6TeJSJirkbexFkhWSimlrlpNazflZPZJjOvMijEGm7ERWie03LeVf9Jj1apV7Ny5k2Wuy0LS09M5cOAA1113Hc888wzr16/HZrNx+PBhjh07xoYNGxg8eDDVXWf5Bg0aVO59U4VdKKFyv70nInnG87ScUkopdRXqdV0vth0vfI2VU5z0aFy+CwP/9NNP2O12rrnmGkSEGTNmEBcXV6jMu+++S0pKComJiQQGBhIaGkq265om/Zt9aV3oovQIY8xp11cGEJ7/szHm9AXqKqWUUlecdiHtqFulLsfOHnN/1Q2qS7uQduW2jZSUFO677z4eeughjDHExcXx+uuvk5trnef44YcfOHPmDOnp6VxzzTUEBgaydu1afv75ZwB69uzJhx9+SFZWFhkZGXxS9MM9qtyd9wyViFSeq72UUkqpSqB6YHVe7/t6ubeblZVFZGQkubm5BAQEMGrUKMaPHw/APffcQ3JyMu3bt0dEaNCgAStWrGDkyJHcfvvtxMTEEBkZSWvXBfbt27dn+PDhREZG0rRpU3r0KN+zZ6q4816U7m96UbpSSqnKoCwXpaurQ1kvSi/tfajKzBhzvTFmrTHme2PMHmPMo/7allJKKaVURSrtndIvRh7Wfau2GWNqAYnGmC9FZO+FKiqllFJKXU78doZKRI6KyDbXzxnA90Dj89dSSimllLr8+C2h8mSMCQWigM2XYntKKaVUWVXkNcWqcrmYueD3hMoYUxNYDvxVRPRWC0oppSqdwMBAMjMzNalSiAiZmZkEei6pUwr+vIYKY0wgVjK1UET+489tKaWUUhcrODiYtLQ0MjwXClZXrcDAQII913YtBb8lVMa6RevbwPci8i9/bUcppZTyld1up0GDBhXdDXUZ8+dbft2AUcDNxpgk19dtftyeUkoppVSF8NsZKhH5BtCFhJRSSil1xbskn/JTSimllLqSaUKllFJKKeUjTaiUUkoppXykCZVSSimllI80oVJKKaWU8pEmVEoppZRSPtKESimllFLKR5pQKaWUUkr5SBMqpZRSSikf+XVxZFU+RAp/OZ1W3PO75/Pne+58X571zvd8acteKOb5uKSf/VmupO+lKXO+sp6L1Xt7fKG4t+9lfa682rhQv8ta90Lxi227NM9fTB1vz5d3ufPV9Xz+QuUu1GZp61/Mfixre2WpX9q65d3epdp2abdRHmUvlq/buFTHpm1bePDBi9+Wr67ohOrLL2Hz5uJ/2M+XZJT0XEkJyoUel7V+0fKX4pdFKaWUutxdc03Fbv+KTqiSk62E6kpgXKsi2u3Wd5utIJ7/VTSW/9hmK6if/3P+46LlirbpWdbz+ZLKnq9+SWVKeu5SlCv6fFnL5P9cljLne76kdryV8Va2NOUvto0L9btoXW/Pl1TvQn0tTduleb6s2yvNdio6dr64L21ebN3Stlce9S+2ri/bKKn+pdp2ebfpj/6U93ZKW7dq1YvfRnm4ohOqvn0hLMx70uGZWHgmDEXj56tbNDkpa/2ibZRU/lJNeKWUUkpdnCs6oQoNtb6UUkoppfxJP+WnlFJKKeUjTaiUUkoppXykCZVSSimllI80oVJKKaWU8pEmVEoppZRSPtKESimllFLKR5pQKaWUUkr5SBMqpZRSSikfaUKllFJKKeUjTaiUUkoppXzkt4TKGDPXGHPcGLPbX9tQSimllKoM/HmG6l2gvx/bV0oppZSqFPyWUInIeiDNX+0rpZRSSlUWeg2VUkoppZSPNKFSSimllPKRJlRKKaWUUj7ShEoppZRSykf+vG3CB8B3QCtjzG/GmP/117aUUkoppSpSgL8aFpG7/NW2UkoppVRlom/5KaWUUkr5SBMqpZRSSikfaUKllFJKKeUjTaiUUkoppXykCZVSSimllI80oVJKKaWU8pEmVEoppZRSPtKESimllFLKR5pQKaWUUkr5SBMqpZRSSikfaUKllFJKKeUjTaiUUkoppXykCZVSSimllI80oVJKKaWU8pEmVEoppZRSPtKESimllFLKR5pQKaWUUkr5SBMqpZRSSikfaUKllFJKKeUjTaiUUkoppXykCZVSSimllI80oVJKKaWU8pEmVEoppZRSPtKESimllFLKRwH+bNwY0x94DbADb4nIi/7cnqdd337KxsR/sbHKCbrmhNA1ejxh3QZ6jQOVJqZ91D5qH7WPlSV2OfRb+6h9LKnspWZExD8NG2MHfgD6Ar8BW4G7RGRvfpmYmBhJSEgo921vWL+I/+z8PxysYgjETi4ObswROta5hc3pqwvFm+bkgjH8HBhQ4THto/ZR+6h9rCyxy6Hf2kftY0llB4c/Q4+eI8o9vzDGJIpIjNfn/JhQdQEmi0ic6/HTACLyf/PL+CuhGjWnIxmcQySPs7ZsnMZJLoFkGTvVHE6q4AR7HjgNafaqAATnOiAgBwFOmmquWB7G5sBpc3LSVMVgqJebhzFOnHYHJ21VMeKKAc6AXNJsVbG5YjbAaXeQaq+CEUP9/HI2J6kBgYVigpAdIGTZAqmR66SKiFXWnkeqPejC9Y1wIjCgSJtwooodgJAchzuWWsWOACG5eRgxVizQjhion5eDzWl3xQIQI9R3nMPmCEAw5Bg4E2CjmuRS1WEwYnO1aX0PycvFuOvbXfVzXPWtGAjBzoI2rRgEO7OxOW2I2AvFjBhwBpAaaMcA9ZzZGABHAKmBARgg2HEOjIDTTg42ztptVHc6CDR52MSGOO1e6gcWxBznMK76qQGBVpt5OWBzgtisY+iaE9jzEDGk2YNcMQfY8hAjpNmqumPG5sBpnKTZgjAYK2acOG0OcrCTZQKo7nBSRQB7LgKlrp/mmhPBuQ4MgtOeVyQGYssjNaBK4ZhxkBoYCGKonx9DSK1iLxKDc3YnZ+0B1Mh1UEWMq00HqQFF6ztJrRJQrH5qFeuKgvo5zuKx3LyCuRNoAwP1i8wdjBDsOIfNEegxd/LnSQAi1nw8G2CjmjOXIKF4/bwcq2zR+l7nnh0RW+F5UuLcK5g7wY4cMM4icycXbA4QGzlit+ajw0mgLReDcc1de+G56zmf/TH3sF63is4Tpz3Xy9xxcM5Algl0z1Hvc897factj7SAKoXnRBnmXsHccWAwJc6dHJtwJsBOdUceQQ5bOc+9oq9b55k73l5jXHMnxxjO2g3VJI8qOC4490pu85y1Jwq9buVgzjP3CuaOw/UaY1xzovDcyZUAztrsVHcIVcjzw9zz/hplxaoUmTsO0oq+xhgn52zW38fqeeLx97Hw3KuKnTpUI9PkUYsgFvxlC+XtfAmVP9/yawz86vH4N6CTH7fn1uTcOfZUtZMt2aQ5HYjNetE3DieZBozTgRgBERxOJxg4Jbk4nVZy6TD5sTxEnIgTHDYBxIohiFPIQzBFYg4jOMWKATidThw2wYhw0hUTp+CQAMAjhuAQG+TlkIHBJs7z1HfikABMsfp2wOmOAVabCGnieiEH8pw2MEKaWAlVfjlBOCkOjCvJdjhtiE1IEye2/PEYG05HHhkGzjod7jYdzirWL5YzD+Pqu0MMgpDmdGBzt2ncbRpXn6wYrphgxInDacBYMQRsIoVjgJFcHE6bK+ZAACOCGDvkOThtAyNO91fR+jbJ9Yg5rDadgsNpL2hTBON04jABrlguIgKCe+6clFyc+WP2iInTidjAIeI61rnWPBHBicHmyCXDgE2c3uuLE8F7/TynuI6/R0zy50mudazEWSwmCHnuuecZs7nmTq577uSJAUcOpzHYXf0Tp5M899xz1TdCnnvuedav4pp7OR5zr4qXuVfFmifiMXc85onN1WahueO05o7T2JC8PE7bwO50FJ97Uta5Z0o593JwOINcsTz33CuYO3nW3HEdQ/IcnDa4++fZZmr+3Cs6n8t77pnic6fEeSJOHMaOcRS8Hl3SueeeJ7kXmDs2xOHgtECAaz+W39wrw9xxenmNcc0dp7FBHpy2CTbKMvec2Aq1mT9PCubeyQvMPYczf+7kIO6xFJ87Ik5MnpMMA6YSzL1irzEIDmze56NH/ZrGSV2qg7HTNPscl5o/EyrjJeaf02FFtHE2YI+coBZVqWKsX9YsbISfPcPOGjWpZv2LCcaQ4ZrINU01wEoaCsccgJDhFAyumBHAUTgGQB6nnVbdWu6YwxWjIGacnHZa/zkVlBPO4qBtViZ7q9ahmnHtPpPnpb6XNhFOOx1F2oTTTmtMtU31gpjkgUBtU5X8zyWcduaBgdpUBWN37Yc8xAm1CQJjTZWzCDdlpfN99ZpUM3byD7NVX1xtuuo7rf9eapuC+gVtVnHFDBmSB06oRRXXtm1WTPJjBkyAK2asGIAJLIiZIEDA2DmLIexsJrtrVqcatiL1uUD9ADLE4RFzgrGRIeKKueaJa+64YybPmieFYg7AaR0r8mMC5HHWGMLOZrG7Rk3Xsc51z72ibRau77TmlHjOM6vNdBFsTo+5Z/JjhedOugi2InMnXRwYgdoec+esyeOmcxl8H1iHasZWuM0i8zldnMXqp0seBnHFTMHcQ4rPPZuXeSLimieBheeOCQRbAIiNszhpl3WaPTVqUM0EkP+SluHMQ2xCbVO0vlj1TWDhuWcCXXPPXjBPTKDVx6Jzz4hr7njME+N0lXN6xByAjbNiI+zsGXbXqGEdazHF55lxgs1L/aJzz+S6+p0fq2rNEyOFYzaH63Umf+5UdfU7z2PuVHUdKc95UtU9T84ihGWdZXe1Wla/jdN67Sla3+R6zL2C+sXbdHrMnfxt4zH3CmKnxeGaJ9W8xILccyfLOGlzLp3vg2q7Xo882iyxftWC+eh0eMy9/Nc9h8fcCyiIFZp7xjp++XPHZgOn3XVM8+eOdZzPItbxr1XN9XqU/7rn0ab7dc9RZO7ZC+YJgVa3vc49u8fxL5h7xeaOeJ87Z7ETduasa44GWPVttuJly33u5Xqde97mzlmc3JR1hu+r1vb4+1h47gW4/vYgTlo7G3Cp+TOh+g243uPxdcARP27PrU30Q9TePZGTdoNQFYOTRg4hLmQUJ8584ooHYXByfV4exsBJewBClVLGbCXEAmiSW7xcaWON8wIYUC+eU+4+lrVN4yXG+WPGFcsrHrveM2Zz9dEhDKw3hvRCfSx9/QvGjA1jisSwYWyesSAvMVc5Y/Xx1pBRpHn20VvZEmOmWJuFj3XZ5k6TYvMkkMZ5wq0h8R59LEt9b8c/kKY5xedj8ZizhFjxudM4z87A2vFFjnVZ2ryIuVfGedLYIdwWPIaT+X28FHNPvMwT8TJPxLUfnR7z0VTxPs9Kql8s5m3uBWHEe6zY3PEW8zp3nNYcDR5a+PfIa5uBNPXyeuTL3PP+WmaKzZ1GDmFg7XHFXo8u2KZ77hkvc+ICMfc8MV7mSfFYsdeji26z7HOvtHPH6uMfCvrotX7VSzb3SpqPA+sNLXysi8y9XGycIpd6DqFN9EOXIt0oxJ8J1VaghTGmGXAYGAH80Y/bc4vufidP2qqQvfF1amcd4XS166ja9X7adr2N6zZ2KxYHKk1M+6h91D5qHytL7HLot/ZR+1hS2UvNbxelAxhjbgNexXoPaK6IvOD5vL8uSldKKaWUKm8VdVE6IrISWOnPbSillFJKVTS9U7pSSimllI80oVJKKaWU8pEmVEoppZRSPtKESimllFLKR379lN8FN25MCvBzhXVAKaWUUqr0moqI17uGVmhCpZRSSil1JdC3/JRSSimlfKQJlVJKKaWUj67ohMoY098Ys98Y86Mx5qmK7s/VyhhzvTFmrTHme2PMHmPMo654sDHmS2PMAdf3ehXd16uRMcZujNlujPnU9ViPSyVgjKlrjFlmjNnn+t3posemcjDG/M31WrbbGPOBMaaqHptLzxgz1xhz3Biz2yNW4nEwxjztygf2G2Piyrs/V2xCZYyxA7OAW4GbgLuMMTdVbK+uWnnA30WkDdAZeNB1LJ4CvhKRFsBXrsfq0nsU+N7jsR6XyuE14HMRaQ1EYB0jPTYVzBjTGHgEiBGRdlhLq41Aj01FeBfoXyTm9Ti4/uaMANq66sx25Qnl5opNqICOwI8i8pOI5ACLgDsquE9XJRE5KiLbXD9nYP1haIx1POa5is0D7qyQDl7FjDHXAQOAtzzCelwqmDGmNtATeBtARHJE5BR6bCqLAKCaMSYAqA4cQY/NJSci64G0IuGSjsMdwCIROScih4AfsfKEcnMlJ1SNgV89Hv/miqkKZIwJBaKAzcC1InIUrKQLuKYCu3a1ehV4AnB6xPS4VLzmQArwjuvt2LeMMTXQY1PhROQwMA34BTgKpIvIKvTYVBYlHQe/5wRXckJlvMT0HhEVyBhTE1gO/FVETld0f652xpiBwHERSazovqhiAoD2wOsiEgWcQd9CqhRc1+TcATQDGgE1jDF3V2yvVCn4PSe4khOq34DrPR5fh3VaVlUAY0wgVjK1UET+4wofM8Y0dD3fEDheUf27SnUDBhljkrHeEr/ZGPMeelwqg9+A30Rks+vxMqwES49NxbsFOCQiKSKSC/wH6Ioem8qipOPg95zgSk6otgItjDHNjDFVsC5G+7iC+3RVMsYYrGtBvheRf3k89TEw2vXzaOCjS923q5mIPC0i14lIKNbvxxoRuRs9LhVORH4HfjXGtHKF+gB70WNTGfwCdDbGVHe9tvXBui5Uj03lUNJx+BgYYYwJMsY0A1oAW8pzw1f0ndKNMbdhXSNiB+aKyAsV26OrkzGmO7AB2EXBtTrPYF1HtQRogvUiNVREil5gqC4BY0ws8JiIDDTG1EePS4UzxkRifVigCvATMBbrn2A9NhXMGDMFGI71CebtwD1ATfTYXFLGmA+AWCAEOAZMAlZQwnEwxjwLjMM6bn8Vkf+Wa3+u5IRKKaWUUupSuJLf8lNKKaWUuiQ0oVJKKaWU8pEmVEoppZRSPtKESimllFLKR5pQKaWUUkr5SBMqpZRfGWPqG2OSXF+/G2MOu37ONMbM9tM2/2qM+ZOXeKjnyvTlsJ0qxpj1rjXdlFJXMX0RUEr5lYikApEAxpjJQKaITPPX9lzJzTisO4v7lYjkGGO+wron0UJ/b08pVXnpGSqlVIUwxsQaYz51/TzZGDPPGLPKGJNsjBlijJlqjNlljPnctXQRxphoY8zXxphEY8wX+UtMFHEzsE1E8jzq7DDGfAc86LH9UGPMBmPMNtdXV1d8gTHmDo9yC40xg4wxbY0xW1xn13YaY1q4iqwARvpjHymlLh+aUCmlKosbgAFYC8++B6wVkTAgCxjgSqpmAPEiEg3MBbytftAN8Fzw+R3gERHpUqTccaCviLTHOsM03RV/C+uu5Bhj6mCt07YSuA94TUQigRistcEAdgMdLnLMSqkrhL7lp5SqLP4rIrnGmF1Yy0V97orvAkKBVkA74EtrCTXswFEv7TTEWlstPyGqKyJfu55bANzq+jkQmOla4sUBtAQQka+NMbOMMdcAQ4DlIpLnOsP1rDHmOuA/InLAVd5hjMkxxtQSkYxy2hdKqcuMJlRKqcriHICIOI0xuVKwLpYT67XKAHu8nGkqKguo6vrZACWtr/U3rPW/IrDO1md7PLcA6228EVjXYyEi7xtjNmOdRfvCGHOPiKxxlQ8qUl8pdZXRt/yUUpeL/UADY0wXAGNMoDGmrZdy3wM3AojIKSDdtUA3FL7WqQ5wVEScwCisM1753gX+6mpjj2t7zYGfRGQ61sr14a54fSBFRHJ9H6JS6nKlCZVS6rIgIjlAPPD/jDE7gCSs65uK+i/Q0+PxWGCW6y27LI/4bGC0MWYT1tt9Zzy2dQwrMXvHo/xwYLcxJgloDcx3xXtjXWOllLqKmYKz6kopdWUwxnwIPJF/ndNF1K+Ode1WexFJv0DZ/wBPi8j+i9mWUurKoGeolFJXoqewLk4vM2PMLcA+YEYpkqkqwApNppRSeoZKKaWUUspHeoZKKaWUUspHmlAppZRSSvlIEyqllFJKKR9pQqWUUkop5SNNqJRSSimlfKQJlVJKKaWUj/4/4eM/uRMrexgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# set parameter values\n", + "def beta(t): return np.piecewise(t, [t>=0], [0.125])\n", + "def r_EI(t): return np.piecewise(t, [t>=0], [0.1424])\n", + "def r_IR(t): return np.piecewise(t, [t>=0], [0.15]) ## stratified in AMR??\n", + "def r_IH_u(t): return np.piecewise(t, [t>=0], [0.0041])\n", + "def r_IH_v(t): return np.piecewise(t, [t>=0], [0.0013])\n", + "def r_HR(t): return np.piecewise(t, [t>=0], [0.155])\n", + "def r_HD(t): return np.piecewise(t, [t>=0], [0.0099])\n", + "def NPI_mult(t): return np.piecewise(t, [t>=0], [1.0])\n", + "def vacc_mult(t): return np.piecewise(t, [t>=0], [0.3])\n", + "def N(t): return np.piecewise(t, [t>=0], [9830000.0]) \n", + "\n", + "# set initial conditions\n", + "N0 = 9830000.0\n", + "Sv0 = 5977629.36\n", + "Su0 = 2324633.64\n", + "Ev0 = 3458.66666666667\n", + "Eu0 = 6917.33333333333\n", + "Iv0 = 1729.33333333333\n", + "Iu0 = 3458.66666666667\n", + "H0 = 673\n", + "R0 = 1484896\n", + "D0 = 26604\n", + "y0 = Sv0, Su0, Ev0, Eu0, Iv0, Iu0, H0, R0, D0 # Initial conditions vector\n", + "\n", + "# set simulation parameters\n", + "## \n", + "dt = 1\n", + "tstart = 0\n", + "tend = 100\n", + "tvect = np.arange(tstart, tend, dt) \n", + "\n", + "# solve odes\n", + "sim = odeint(SEIHRD_model, y0, tvect, args=(beta, r_EI, r_IR, r_IH_u, r_IH_v, r_HR, r_HD, NPI_mult, vacc_mult, N))\n", + "Sv, Su, Ev, Eu, Iv, Iu, H, R, D = sim.T\n", + "\n", + "# plot results\n", + "# plotSEIHRD(tvect, S, E, I, H, R, D) ## original\n", + "plotSEIHRD(tvect, Sv, Su, Ev, Eu, Iv, Iu, H, R, D) " + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEDCAYAAADeP8iwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAssElEQVR4nO3deXxV5bn3/8+VeSATEMJMAMMYkSGiotBSEEWtA209WHuwVqX0eDjSek5bbc952j711Kc9bX+0tY7Vo3WqWumkVRQHREUIMkOY5ylhDBAg0/X7Y6/YbRJkgwk72fm+X6+89t7rXvfKdTvsb9Z0L3N3REREwsVFuwAREWl5FA4iItKAwkFERBpQOIiISAMKBxERaUDhICIiDcRMOJjZo2ZWamYrIlz/ejNbZWYrzezp5q5PRKQ1sVi5z8HMxgBHgCfcvfAU6xYAzwGfc/cDZtbJ3UvPRp0iIq1BzOw5uPtcYH/4MjPra2avmNkiM3vHzAYETbcB97n7gaCvgkFEJEzMhMNJPARMd/cRwL8Dvw2W9wP6mdm7ZjbfzC6PWoUiIi1QQrQLaC5m1g4YBTxvZnWLk4PXBKAA+CzQHXjHzArd/eBZLlNEpEWK2XAgtFd00N2HNtK2HZjv7lXAJjNbQygsFp7F+kREWqyYPazk7uWEvvi/BGAh5wXNfwLGBss7EjrMtDEadYqItEQxEw5m9gzwPtDfzLab2S3AjcAtZrYUWAlcE6z+KrDPzFYBbwL/4e77olG3iEhLFDOXsoqISNOJmT0HERFpOjFxQrpjx46en58f7TJERFqVRYsW7XX33MbaYiIc8vPzKS4ujnYZIiKtipltOVmbDiuJiEgDCgcREWlA4SAiIg0oHEREpAGFg4iINKBwEBGRBhQOIiLSQEThYGabzWy5mS0xswY3FJhZjpnNMrNlZrbAzAqD5f2DPnU/5WY2I2j7Q9jyzWa2JFieb2bHwtoeaLrhftyBo5X88K8rOXSsqrl+hYhIq3Q6N8GNdfe9J2m7G1ji7tcFT1u7Dxjn7muAoQBmFg/sAGYBuPs/1XU2s58Dh8K2t+EkU203qe0HjvH4e5uprK7lnuvObe5fJyLSajTVYaVBwBwAdy8B8s0sr9464wh96X/sjjwLPYnneuCZJqolYud2z+Kro3rz1AdbWbRl/6k7iIi0EZGGgwOzg2cxT22kfSkwCcDMRgK9CD1hLdxkGg+A0cAed18Xtqy3mS02s7fNbHRjBZnZVDMrNrPisrKyCIfR0J0T+tE1K4W7XlxOZXXtGW9HRCSWRBoOF7v7cGAicLuZjanXfi+QE5w3mA4sBqrrGs0sCbgaeL6Rbd/Ax0NjF9DT3YcB3wKeNrPM+p3c/SF3L3L3otzcRueNikh6cgI/uqaQtXuO8PA7et6PiAhEGA7uvjN4LSV0zmBkvfZyd785OE8wBcgFNoWtMhH40N33hPczswRCexx/CNvWiboH77j7ImADoSe1NZvxg/KYWNiZmXPWsXnv0eb8VSIircIpw8HM0s0so+49MAFYUW+d7GDvAOBWYG7wmM469fcO6owHStx9e9i2coOT15hZH0LPdm72P+l/cPVgkuLj+PFLq5v7V4mItHiR7DnkAfOCR20uAF5y91fMbJqZTQvWGQisNLMSQnsJd9R1NrM04FLgxUa23dh5iDHAsuD3vQBMc/dmP1ucl5nCv37uHF5fvYe5a8/8HIaISCyIiceEFhUVeVM8z+FEdQ0TfjmXpPg4Xr5jNInxukdQRGKXmS1y96LG2vTtFyY5IZ7vXzmIdaVHeGr+SZ+BISIS8xQO9Ywf2InRBR35xWtr2X+0MtrliIhEhcKhHjPjv64axNHKGma+vjba5YiIRIXCoREFeRlMPr8HT32wlY1lR6JdjojIWadwOIkZ4/uRnBDHT19ZE+1SRETOOoXDSeRmJPP1z/TllZW7Kd6seZdEpG1ROHyCW0f3plNGMve8vJpYuORXRCRSCodPkJaUwJ0T+rF460FeXr472uWIiJw1CodT+OKIHvTLa8fPXi2hqkaztopI26BwOIX4OOPblw1g874K/rBwW7TLERE5KxQOERg3sBPn5+cwc846KiqrT91BRKSVUzhEwMz47sQBlB0+waPzNp26g4hIK6dwiNCIXu25dFAeD769kQOaVkNEYpzC4TR8+7L+HK2s5r4310e7FBGRZqVwOA0FeRl8YXh3npi/hZ0Hj0W7HBGRZqNwOE0zLu0HDjNfXxftUkREmo3C4TR1y07lKxf24vlF21hfqkn5RCQ2KRzOwO1j+5KaGM/PZ2tSPhGJTQqHM9ChXTK3jenD31fsZum2g9EuR0SkySkcztCto/vQPj2Jn75aEu1SRESaXEThYGabzWy5mS0xs+JG2nPMbJaZLTOzBWZWGCzvH/Sp+yk3sxlB2w/MbEdY2xVh27vLzNab2Rozu6yJxtqk2iUncPvYc3h3/T7mrdsb7XJERJrU6ew5jHX3oe5e1Ejb3cASdx8CTAFmArj7mqDPUGAEUAHMCuv3y7p2d38ZwMwGAZOBwcDlwG/NLP50B3Y23HhBT7plp/KzV0s0pbeIxJSmOqw0CJgD4O4lQL6Z5dVbZxywwd23nGJb1wDPuvsJd98ErAdGNlGdTSolMZ4Z4wtYuv0Qr67UlN4iEjsiDQcHZpvZIjOb2kj7UmASgJmNBHoB3eutMxl4pt6yfw0ORT1qZjnBsm5A+PSn24NlH2NmU82s2MyKy8rKIhxG05s0vDvndGrHz15dQ7Wm9BaRGBFpOFzs7sOBicDtZjamXvu9QI6ZLQGmA4uBj6YvNbMk4Grg+bA+9wN9gaHALuDndas38vsbHLNx94fcvcjdi3JzcyMcRtOLjzP+fUJ/NpQd5cUPd0StDhGRphRROLj7zuC1lNA5g5H12svd/ebg3MIUIBcIn750IvChu+8J67PH3WvcvRZ4OGyb24EeYX27AztPZ1Bn22WD8zivRza/fH0tx6tqol2OiMindspwMLN0M8uoew9MAFbUWyc72DsAuBWY6+7lYavcQL1DSmbWJezjdWHb/Asw2cySzaw3UAAsiHxIZ5+Z8Z3L+7Pr0HF+//6pTqmIiLR8CRGskwfMMrO69Z9291fMbBqAuz8ADASeMLMaYBVwS11nM0sDLgW+Xm+7PzWzoYQOGW2ua3f3lWb2XLCdauB2d2/xf46P6tuRMf1yue+t9fzTyB5kpiRGuyQRkTNmsXAJZlFRkRcXN7j94qxbseMQV/16HreP7ct/XDYg2uWIiHwiM1t0ktsTdId0UyrslsXnz+vKo/M2U1p+PNrliIicMYVDE7vz0n5U1dTyqzc0pbeItF4KhyaW3zGdG0b25JkF29hYpim9RaR1Ujg0g38bV0BKQhw/e1VTeotI66RwaAa5Gf+Y0vvDrQeiXY6IyGlTODST20b3oWO7ZO59WZPyiUjro3BoJunJCdwxvoAFm/fzRklptMsRETktCodmNPn8HvTpmM69fy/RpHwi0qooHJpRYnwc3768P+tKj/D8ou3RLkdEJGIKh2Z22eDOFPXK4eez13L0RPWpO4iItAAKh2ZmZtx95UD2HjnBQ3M3RrscEZGIKBzOguE9c7hySBcemruRPZpWQ0RaAYXDWfKdywZQXVvLL2avjXYpIiKnpHA4S3p2SGPKRfk8t2gbq3aWn7qDiEgUKRzOon/7XAFZqYn8+KVVujFORFo0hcNZlJWWyIxxBby3YR+vr9aNcSLScikczrIbL+xF39x0/vvl1VRW68Y4EWmZFA5nWWJ8HN+7ciCb9h7lyfl63rSItEwKhygY278Tows6MnPOOvYfrYx2OSIiDSgcosDM+M+rBnHkRDW/eE3PfBCRlieicDCzzWa23MyWmFlxI+05ZjbLzJaZ2QIzKwyW9w/61P2Um9mMoO1nZlYS9JllZtnB8nwzOxbW54GmG27L0S8vg3++sBdPf7BVl7aKSItzOnsOY919qLsXNdJ2N7DE3YcAU4CZAO6+JugzFBgBVACzgj6vAYVBn7XAXWHb21DXz92nnd6QWo8Z40OXtv7wryt1aauItChNdVhpEDAHwN1LgHwzy6u3zjhCX/pbgvVmu3vdTHTzge5NVEurkZ2WxLcm9OeDTft5efnuaJcjIvKRSMPBgdlmtsjMpjbSvhSYBGBmI4FeNPyynww8c5Ltfw34e9jn3ma22MzeNrPRjXUws6lmVmxmxWVlZREOo+X58sieDOicwX+/vJpjlTXRLkdEBIg8HC529+HAROB2MxtTr/1eIMfMlgDTgcXAR/NTm1kScDXwfP0Nm9n3gnWfChbtAnq6+zDgW8DTZpZZv5+7P+TuRe5elJubG+EwWp74OOMHVw9mx8Fj3P/W+miXIyICRBgO7r4zeC0ldM5gZL32cne/OTi3MAXIBTaFrTIR+NDd94T3M7ObgKuAGz046O7uJ9x9X/B+EbAB6Hf6Q2s9LuzTgWuGduWBuRvZsu9otMsRETl1OJhZupll1L0HJgAr6q2THewdANwKzHX38EtwbqDeISUzuxz4DnC1u1eELc81s/jgfR+gAIj5ByHcfcVAEuOMH/xFJ6dFJPoi2XPIA+aZ2VJgAfCSu79iZtPMrO5KooHASjMrIbSXcEddZzNLAy4FXqy33d8AGcBr9S5ZHQMsC37fC8A0d99/huNrNfIyU5gxvh9vrinTvEsiEnUWC3+lFhUVeXFxg9svWp2qmlqumPkOx6pqeP1bnyElMT7aJYlIDDOzRSe5PUF3SLckifFx/PCawWw/cIz73tTJaRGJHoVDCzOqb0euG9aNB97ewPrSI9EuR0TaKIVDC3T3FQNJTYzn+39arpPTIhIVCocWKDcjme9OHMj8jfuZtXhHtMsRkTZI4dBCTT6/B8N6ZnPPS6s5WKFpvUXk7FI4tFBxccY9157LwWNV/PfLq6Ndjoi0MQqHFmxQ10xuG92H54q3896GvdEuR0TaEIVDCzdjfAG9OqRx94vLOV6liflE5OxQOLRwKYnx/OS6c9m8r4KZc9ZFuxwRaSMUDq3AqHM68qUR3Xlo7kZW7jwU7XJEpA1QOLQS37tyIDlpSXz7hWVU1dRGuxwRiXEKh1YiOy2JH19byMqd5Tz49oZolyMiMU7h0IpcXtiZK4d04Vdz1rN2z+FolyMiMUzh0Mr86OrBtEtJ4D9eWEa1Di+JSDNROLQyHdol84OrB7N020EefmfTqTuIiJwBhUMr9PkhXbh8cGd++dpaSnaXn7qDiMhpUji0QmbGPdcVkpGSwJ3PLaWyWoeXRKRpKRxaqQ7tkvnvSeeycmc5v9GDgUSkiSkcWrHLBndm0vBu3PfmepZuOxjtckQkhigcWrn/8/nB5GUk880/LKGisjra5YhIjFA4tHJZqYn8z/XnsWnfUX78kqb2FpGmEVE4mNlmM1tuZkvMrLiR9hwzm2Vmy8xsgZkVBsv7B33qfsrNbEbQ1t7MXjOzdcFrTtj27jKz9Wa2xswua6KxxqxRfTsydXQfnv5gK6+t2hPtckQkBpzOnsNYdx/q7kWNtN0NLHH3IcAUYCaAu68J+gwFRgAVwKygz3eBOe5eAMwJPmNmg4DJwGDgcuC3ZhZ/2iNrY741oR+DumTynT8uo/Tw8WiXIyKtXFMdVhpE6Asedy8B8s0sr94644AN7r4l+HwN8Hjw/nHg2rDlz7r7CXffBKwHRjZRnTErOSGeX90wlKMnqrnzuaXU1nq0SxKRVizScHBgtpktMrOpjbQvBSYBmNlIoBfQvd46k4Fnwj7nufsugOC1U7C8G7AtbL3twbKPMbOpZlZsZsVlZWURDiO2ndMpg/+8ahDvrNvLw+9sjHY5ItKKRRoOF7v7cGAicLuZjanXfi+QY2ZLgOnAYuCjS2fMLAm4Gng+gt9ljSxr8Gewuz/k7kXuXpSbmxvZKNqAGy/oycTCzvzs1TUs0eWtInKGIgoHd98ZvJYSOmcwsl57ubvfHJxbmALkAuET/0wEPnT38LOle8ysC0DwWhos3w70CFuvO7Az0gG1dWbGvZOGkJeZwvRnPqT8eFW0SxKRVuiU4WBm6WaWUfcemACsqLdOdrB3AHArMNfdwyf9uYGPH1IC+AtwU/D+JuDPYcsnm1mymfUGCoAFkQ9JstIS+dUNQ9l58Dh3vbgcd51/EJHTE8meQx4wz8yWEvqSfsndXzGzaWY2LVhnILDSzEoI7SXcUdfZzNKAS4EX6233XuBSM1sXtN8L4O4rgeeAVcArwO3uXnOmA2yrRvRqz50T+vHSsl08OX/LqTuIiISxWPirsqioyIuLG9x+0ebV1jq3PL6Qd9fv44VvXMSQ7tnRLklEWhAzW3SS2xN0h3Qsi4szfnH9UHIzkvmXpz7kUIXOP4hIZBQOMS4nPYnffHkYe8qPc+fzS3T/g4hEROHQBgzrmcP3rhjI66tLuU/Te4tIBBQObcRNo/K5dmhXfvH6Wt5aU3rqDiLSpikc2ggz4yeThtA/L4M7nl3C1n0V0S5JRFowhUMbkpoUz4P/PAJ35+tPLtLzH0TkpBQObUyvDun86oZhrNldzn88v0w3yIlIoxQObdBn+3fiO5cP4KXlu/jNGzpBLSINJUS7AImOqWP6ULL7MD9/bS39O2cwYXDnaJckIi2I9hzaqNAJ6nM5r3sWM/6whFU7y0/dSUTaDIVDG5aSGM9DU4rITEnk1scXUlquJ8iJSIjCoY3Ly0zhkZuKOFBRxW1PFHOsUnMciojCQYDCbln86oZhLNtxSFNsiAigcJDApYPy+N4VA3l5+W5+8vfV0S5HRKJMVyvJR265pDfb9lfw8Dub6Jadylcv7h3tkkQkShQO8hEz478+P5hdh47zw7+tonNWKpcX6hJXkbZIh5XkY+LjjJmThzG0RzZ3PLuYBZv2R7skEYkChYM0kJoUz+9uOp9uOanc8vhCVu/SPRAibY3CQRrVPj2JJ742kvSkBG56dAHb9msWV5G2ROEgJ9U9J40nbhnJiepapjy6gLLDJ6JdkoicJRGFg5ltNrPlZrbEzIobac8xs1lmtszMFphZYVhbtpm9YGYlZrbazC4Klv8h2N6SYPtLguX5ZnYsrO2BJhqrnIF+eRk8+tUidh86zj//7gMOVlRGuyQROQtOZ89hrLsPdfeiRtruBpa4+xBgCjAzrG0m8Iq7DwDOA1YDuPs/BdsbCvwReDGsz4a6Nnefdho1SjMY0as9D08pYmPZUW56bCFHTug5ECKxrqkOKw0C5gC4ewmQb2Z5ZpYJjAF+F7RVuvvB8I5mZsD1wDNNVIs0g0sKOvKbLw9jxY5D3Pr4Qk2zIRLjIg0HB2ab2SIzm9pI+1JgEoCZjQR6Ad2BPkAZ8JiZLTazR8wsvV7f0cAed18Xtqx3sP7bZja6sYLMbKqZFZtZcVlZWYTDkE9jwuDO/OL68/hg036m/r6Y41UKCJFYFWk4XOzuw4GJwO1mNqZe+71ATnDeYDqwGKgmdJPdcOB+dx8GHAW+W6/vDXx8r2EX0DNY/1vA08EeyMe4+0PuXuTuRbm5uREOQz6ta4Z246dfGMK89Xv5+u8XcaJaASESiyIKB3ffGbyWArOAkfXay9395uD8wRQgF9gEbAe2u/sHwaovEAoLAMwsgdAexx/CtnXC3fcF7xcBG4B+ZzI4aR5fKurBT647l7fXlvGNJz9UQIjEoFOGg5mlm1lG3XtgArCi3jrZZpYUfLwVmBsExm5gm5n1D9rGAavCuo4HStx9e9i2cs0sPnjfBygANp7R6KTZTB7Zk3uuK+SNklKm/X6RDjGJxJhI5lbKA2aFzhuTADzt7q+Y2TQAd38AGAg8YWY1hL78bwnrPx14KgiPjcDNYW2TaXgiegzwIzOrBmqAae6uORxaoBsv6IVh3D1rObc9UczDU4pISYyPdlki0gTMvfXP3V9UVOTFxQ1uv5Cz5LnibXznj8u4qE8HHrmpiLQkzeco0hqY2aKT3J6gO6Tl07u+qAc//9J5zN+4jym/W8ChY1XRLklEPiWFgzSJScO785svD2fp9oPc8NB89h7RVBsirZnCQZrMFed2Cd1JvfcI1z/4PjsPHot2SSJyhhQO0qQ+278TT3ztAsrKT/CF+99jfenhaJckImdA4SBNbmTv9jz79QupqnG++MD7LNpyINolichpUjhIsxjcNYsXvzGKrNREbnxkPnNW74l2SSJyGhQO0mx6dkjjhWmjKOiUwW1PFPPk/C3RLklEIqRwkGaVm5HMs1MvZGz/Tnz/Tyu49+8l1Na2/ntrRGKdwkGaXXpyAg/+8whuvKAnD7y9genPLtZ0GyItnG5llbMiIT6OH19bSK8Oafzk7yVs31/Bw1OK6JSZEu3SRKQR2nOQs8bMmDqmLw9+ZQTrSo9wzX3vsmLHoWiXJSKNUDjIWTdhcGeen3YRAF984D3+unRnlCsSkfoUDhIVg7tm8ed/vZjCrllMf2Yx/++VEmp0olqkxVA4SNR0ykjh6dsu5IaRPbn/rQ187X8XcrCiMtpliQgKB4mypIQ4fjLpXO65rpD3Nuzlql/P03kIkRZA4SAtwo0X9OK5r19ETa0z6f73eG7hNmLhWSMirZXCQVqMYT1z+Nv0Szg/P4dv/3EZdz6/lIrK6miXJdImKRykRenQLpknvnYBM8YXMGvxDq7+zbus3aOZXUXONoWDtDjxccaM8f148pYLOFhRxed/PY8n52/RYSaRs0jhIC3Wxed05OU7LuGCPh34/p9WMO3JRRw4qquZRM6GiMLBzDab2XIzW2JmxY2055jZLDNbZmYLzKwwrC3bzF4wsxIzW21mFwXLf2BmO4JtLjGzK8L63GVm681sjZld1hQDldapU0YK//vV8/neFQN5o6SUiTPfYd66vdEuSyTmnc6ew1h3H+ruRY203Q0scfchwBRgZljbTOAVdx8AnAesDmv7ZbDNoe7+MoCZDQImA4OBy4Hfmln8adQpMSYuzrhtTB9e/MbFpCfH85XffcAP/7pSk/eJNKOmOqw0CJgD4O4lQL6Z5ZlZJjAG+F3QVunuB0+xrWuAZ939hLtvAtYDI5uoTmnFzu2exd+mj+aro/J57N3NXPXreSzddjDaZYnEpEjDwYHZZrbIzKY20r4UmARgZiOBXkB3oA9QBjxmZovN7BEzSw/r96/BoahHzSwnWNYN2Ba2zvZg2ceY2VQzKzaz4rKysgiHIa1dalI8P7h6ME98bSRHT1Rz3W/f5aevlHCiWnsRIk0p0nC42N2HAxOB281sTL32e4EcM1sCTAcWA9WEpgQfDtzv7sOAo8B3gz73A32BocAu4OfBcmvk9ze4TMXdH3L3Incvys3NjXAYEivG9Mvl1W+O4YsjuvPbtzbw+V/PY/FWPatapKlEFA7uvjN4LQVmUe8wj7uXu/vN7j6U0DmHXGATob/6t7v7B8GqLxAKC9x9j7vXuHst8HDYNrcDPcI23x3QtJ3SQGZKIj/94nk89tXzOXy8mkn3v8eP/rpKN86JNIFThoOZpZtZRt17YAKwot462WaWFHy8FZgbBMZuYJuZ9Q/axgGrgj5dwjZxXdg2/wJMNrNkM+sNFAALzmh00iaMHdCJ2d8cw1cu6MWj725iwi/n8mZJabTLEmnVInkSXB4wy8zq1n/a3V8xs2kA7v4AMBB4wsxqCH353xLWfzrwVBAeG4Gbg+U/NbOhhA4ZbQa+HmxvpZk9F2ynGrjd3XVAWT5RRkoi//faQq4e2pW7XlzOzf+7kCvO7cx/XTWYzll62pzI6bJYuOu0qKjIi4sb3H4hbVRldS0Pv7ORX81ZR2J8HDPGF3DTqHwS43XPp0g4M1t0ktsTdIe0xJ6khDhuH3sOs785hqL8HH780mqu/NU7vL9hX7RLE2k1FA4Ss3p1SOexr57Pw1OKqKis4YaH53P7Ux+ybX9FtEsTafEiOecg0mqZGZcOymN0QUceeHsDD7y9gddW72Hq6D5847N9SU/W/wIijdGeg7QJKYnxzBjfjzfu/CwTCzvzmzfX89n/eYtnFmzVs6tFGqFwkDala3YqMycP44/fGEXP9mnc9eJyJs6cy5zVezQluEgYhYO0SSN65fDCtIu4/8bhVFbXcsvjxVz/4PsUb94f7dJEWgSFg7RZZsbEc7vw2rc+wz3XFbJlXwVffOB9bn5sAcu3H4p2eSJRpfscRALHKmt47L1NPPj2Rg4dq+KywXnMGN+PgV0yo12aSLP4pPscFA4i9Rw+XsWj8zbzyDsbOXyimssG5zH9cwUUdsuKdmkiTUrhIHIGDlVU8ei7m3j03U0cPl7NuAGd+Jex5zCiV86pO4u0AgoHkU/h0LEqHn9vM4+9u4kDFVVc0Ls9/zL2HMYUdCSYc0ykVVI4iDSBispqnlmwjYfnbmR3+XEGdM5g6pg+fP68rpq3SVolhYNIE6qsruXPS3bw0NyNrCs9QufMFKaM6sWXR/YkOy3p1BsQaSEUDiLNoLbWeWttKY+8s4n3NuwjNTGeL4zoxk0X5VOQlxHt8kROSeEg0sxW7yrn0Xmb+PPSnVRW1zKqbwemXJTP+IGdSNAhJ2mhFA4iZ8n+o5U8u3ArT76/hZ2HjtM5M4XJI3sw+fyeeuiQtDgKB5GzrLqmljdKSnnqg63MXVeGAZ8b0Il/Or8nY/vnam9CWoRPCgfNVyzSDBLi45gwuDMTBndm674Knl24lecXbef11cV0ykhm0vDufKmoO31z20W7VJFGac9B5CypqqnlzZJSnivexptryqipdYb3zGbS8O5cNaSLrnSSs06HlURamNLDx/nT4h28sGg7a/ccISk+jrEDcrl2aDfGDuhESmJ8tEuUNuBTh4OZbQYOAzVAdf2NmVkO8CjQFzgOfM3dVwRt2cAjQCHgQdv7ZvYz4PNAJbABuNndD5pZPrAaWBNsfr67T/uk+hQO0lq5Oyt3ljNr8Q7+snQnZYdP0C45gcsGd+aq87pwyTkddYOdNJumCocid997kvafAUfc/YdmNgC4z93HBW2PA++4+yNmlgSkBSEwAXjD3avN7P8BuPt3gnD4m7sXRjpAhYPEgppaZ/7Gffx5yQ7+vmI3h49Xk5WayGWD87ji3C6M6tuRpAQFhTSds3FCehDwEwB3LzGzfDPLA44BY4CvBm2VhPYUcPfZYf3nA19solpEWqX4OOPiczpy8Tkd+b/XFvLO2r28tHwXLy/fzXPF28lISeDSgXlcVtiZMQW5pCbp0JM0n0jDwYHZZubAg+7+UL32pcAkYJ6ZjQR6Ad0JHYYqAx4zs/OARcAd7n60Xv+vAX8I+9zbzBYD5cD33f2d0xmUSGuXnBDP+EF5jB+Ux/GqGuat28vfV+zm9dV7eHHxDlIS4xhdkMulA/MYO6ATuRnJ0S5ZYkykh5W6uvtOM+sEvAZMd/e5Ye2ZwExgGLAcGADcCiQS2iu42N0/MLOZQLm7/2dY3+8BRcAkd3czSwbaufs+MxsB/AkY7O7l9WqaCkwF6Nmz54gtW7ac8T8EkdaiqqaWhZv2M3vVHmav3M3OQ8cxg/O6ZzNuQCfGDujEoC6ZxMVptlg5tSa9WsnMfkDo/ML/nKTdgE3AECCN0Anl/KBtNPBdd78y+HwTMA0Y5+4VJ9neW8C/u/tJTyronIO0Re7Oql3lzFldypzVe1gaPNo0NyOZz/TL5TP9crnknI7kpOsSWWncpzrnYGbpQJy7Hw7eTwB+VG+dbKAiOKdwKzA3+Eu/3My2mVl/d18DjANWBX0uB74DfCY8GMwsF9jv7jVm1gcoADae9qhFYpyZMbhrFoO7ZvFv4wooO3yCuWvLeHNNKa+t2sMLi7ZjBkO6ZXFJQUcuOSeXEb1ydFJbInLKPYfgC3pW8DEBeNrd7zGzaQDu/oCZXQQ8QegcwyrgFnc/EPQfSuhS1iRCX/I3u/sBM1sPJAP7gm3Pd/dpZvYFQuFTHWzv/7j7Xz+pRu05iHxcTa2zdPtB5q4tY966vSzedpCaWic1MZ6i/Bwu6tuBi/p04NxuWZrKow3TTXAibdzh41XM37ifd9fv5f0N+1iz5zAA6UnxnN+7PRf07sDI3jmc2y1bexZtiOZWEmnjMlISuXRQHpcOygOg7PAJPti0j/kb9zF/437eWlMCQHJCHOf1yKaoVw5F+TmM6NmerLTEaJYuUaI9BxFh35ETLNx8gIWb97Nw835W7iynpjb03dA3N53hPXMY3iuHoT2y6ZeXQbyuhooJOqwkIqelorKaJdsO8uGWA3y49SAfbj3AwYoqANKS4inslsV53bMY0j2bId2z6Nk+jdCFitKa6LCSiJyWtKQERvXtyKi+HYHQZbOb91WwZNsBlm47xOJtB3n8vS1U1mwCIDMlgcJuWZzbLYtBXTMZ3DWL3h3TtYfRiikcROSUzIzeHdPp3TGd64Z1B6Cyupa1ew6zbPshlu84xIodh3js3c1U1tQCkJoYT//OGQzsksmgLhkM6JJJ/84ZZKboHEZroHAQkTOSlBBHYbcsCrtlfbSssrqW9aVHWLnzECt3llOyu5yXl+/imQVbP1qna1YK/Ttn0C8vg4K8DPrltaNvbjvSk/V11JLo34aINJmkhDgGdc1kUNdMvhQsc3d2HTrOmt2HWb27nDW7D7Nm92HeXb/vo70MgG7ZqRQEQdE3tx19ctPpk5tObrtknc+IAoWDiDQrM6Nrdipds1MZO6DTR8ura2rZvK+C9aWHWbfnCOtKj7C+9AjzN+7jeNU/QiMjOYE+uenkd0wnv0MoMHp1SCe/Q5qenteMFA4iEhUJ8XGc06kd53Rqx+VhT2+prXV2HjrGhrKjbCw7wqa9R9lYdpTizQf4y9KdhF9gmZmSQK8O6fRsn0aP9mnBayo9ctLomp2qG/o+BYWDiLQocXFG95w0uuek8Zl+uR9rO15Vw7b9FWzZV8HmfUfZsq+CLfsrWLWrnNmrdlNV84/kMIPOmSl0z0mlW3Yq3XJSP9qD6ZadSpesFDJ0cvykFA4i0mqkJMZTEJzIrq+m1tldfpxt+yvYtr+C7QeOsf3AMbYdqGDh5gP8ddmuj27sq5ORnECX7BS6ZKXSOTOFzlnBT2YKeZkp5GUm0z49qU2e81A4iEhMiI+z0B5CdioX9unQoL2m1tlTfpydB4+x81DoddfBY+w6dJxdh46zalc5e4+coP59wUnxceRmJJObkUynjGQ6ZSaT2y7lo2W5Gcl0bJdEx3bJpCTGztP5FA4i0ibEx/3jxPjJVNXUUnr4BLsPHWdP+XF2HzpO6eETlB4+Tmn5CTbvO8rCzfs5ENwtXl+75AQ6tkuiQ7tkOqT/4zUnPYkO6Um0D/vJSUtq0Y96VTiIiAQS4+M+2vv4JCeqa9h3pJK9R05QdvgEe4+cYO+Ryo/e7z9aydb9FXy49SAHKiobHM6qk5wQR05aEtlpieSkJZGTnkh2WhLZqYlkpyWSlZpIVmpS8JpIZmoCWamJtEtOaPZDXQoHEZHTlJwQf8q9kDq1tc6hY1XsO1rJwYpK9h8N/RyoqOJARSUHgvcHKypZs/swh45VcbCiiuqTBApAnEFmaiKZKYlMGJTH968a1JTDAxQOIiLNKi7OyAkOLUXK3TlyoppDx6o++in/2Ptqyo+HlnWJIKDOhMJBRKSFMTMyUhLJSEmke050atAdIiIi0oDCQUREGlA4iIhIAwoHERFpIKJwMLPNZrbczJaYWYPncZpZjpnNMrNlZrbAzArD2rLN7AUzKzGz1WZ2UbC8vZm9ZmbrgtecsD53mdl6M1tjZpc1xUBFRCRyp7PnMNbdh57keaN3A0vcfQgwBZgZ1jYTeMXdBwDnAauD5d8F5rh7ATAn+IyZDQImA4OBy4HfmlnLvY1QRCQGNdVhpUGEvuBx9xIg38zyzCwTGAP8LmirdPeDQZ9rgMeD948D14Ytf9bdT7j7JmA9MLKJ6hQRkQhEGg4OzDazRWY2tZH2pcAkADMbCfQCugN9gDLgMTNbbGaPmFl60CfP3XcBBK91TwHpBmwL2/b2YNnHmNlUMys2s+KysrIIhyEiIpGI9Ca4i919p5l1Al4zsxJ3nxvWfi8w08yWAMuBxUA1kAgMB6a7+wdmNpPQ4aP//ITf1diEIQ3uI3f3h4CHAMyszMy2RDiWxnQE9n6K/q1RWxwztM1xa8xtx+mOu9fJGiIKB3ffGbyWmtksQod55oa1lwM3A1hoNqhNwU8asN3dPwhWfYHg3AKwx8y6uPsuM+sClAbLtwM9wn59d2DnKerL/aT2UzGz4pOcS4lZbXHM0DbHrTG3HU057lMeVjKzdDPLqHsPTABW1Fsn28zqJg65FZjr7uXuvhvYZmb9g7ZxwKrg/V+Am4L3NwF/Dls+2cySzaw3UAAsOKPRiYjIGYlkzyEPmBVMD5sAPO3ur5jZNAB3fwAYCDxhZjWEvvxvCes/HXgqCI+NBHsYhA5FPWdmtwBbgS8F21tpZs8F26kGbnf3mk83TBEROR3m9R971AaZ2dTgHEab0RbHDG1z3Bpz29GU41Y4iIhIA5o+Q0REGlA4iIhIA206HMzs8mD+pvVm9t1T92h9zKyHmb0ZzGu10szuCJafdG6rWGJm8cENmH8LPsf0uBubyyzWxwxgZt8M/vteYWbPmFlKLI7bzB41s1IzWxG2rFnmqWuz4RDM13QfMJHQ9B83BPM6xZpq4E53HwhcCNwejLPRua1i0B38Yz4viP1xNzaXWUyP2cy6Af8GFLl7IRBPaH62WBz3/xKacy5cs8xT12bDgdCNfOvdfaO7VwLPEprXKaa4+y53/zB4f5jQl0U3Tj63Vcwws+7AlcAjYYtjdtyfMJdZzI45TAKQamYJhG6+3UkMjjuYmWJ/vcXNMk9dWw6HiOZwiiVmlg8MAz7g5HNbxZL/D/g2UBu2LJbHfbK5zGJ5zLj7DuB/CN0vtQs45O6zifFxh/lU89SdTFsOh4jmcIoVZtYO+CMwI5juJKaZ2VVAqbsvinYtZ1ECobnM7nf3YcBRYuNQyicKjrFfA/QGugLpZvaV6FbVInyq77i2HA6nPYdTa2VmiYSC4Sl3fzFYvCeY04p6c1vFiouBq81sM6FDhp8zsyeJ7XFvp+FcZsOJ7TEDjAc2uXuZu1cBLwKjiP1x1znZOD/Vd1xbDoeFQIGZ9Q6m9phMaF6nmBJMhPg7YLW7/yKs6WRzW8UEd7/L3bu7ez6hf7dvuPtXiOFxf8JcZjE75sBW4EIzSwv+ex9H6NxarI+7TvPMU+fubfYHuAJYC2wAvhftepppjJcQ2pVcBiwJfq4AOhC6smFd8No+2rU24z+DzwJ/C97H9LiBoUBx8O/7T0BOrI85GPcPgRJCk4L+HkiOxXEDzxA6r1JFaM/glk8aJ/C94PttDTDxdH6Xps8QEZEG2vJhJREROQmFg4iINKBwEBGRBhQOIiLSgMJBREQaUDiIiEgDCgcREWng/wc+ekV126mE8wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(tvect, Sv)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEDCAYAAADJHVh5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAtRElEQVR4nO3deXhdZbn+8e/TjM3UMemQNE3nCToRSqGlQJVRpCAiKFK0Hms9gKCgHODo+Sly1AOCBwQ5jIoyiBQEmcpgoUwtTechneeJpmOSDmnaPr8/9gpsQ4bdNulKdu7PdeXK3u96372et5R9d83m7oiIiMSiVdgFiIhI86HQEBGRmCk0REQkZgoNERGJmUJDRERiptAQEZGYtYjQMLPHzGyrmS2Msf/XzGyxmS0ys6cauz4RkebCWsJ1GmY2BigHnnD3E+rp2wd4Fhjr7jvNLMfdtx6POkVEmroWsaXh7tOAHdFtZtbLzF43s1lm9p6Z9Q8WfRe43913BmMVGCIigRYRGrV4CLjO3U8CbgIeCNr7An3N7AMzm25m54VWoYhIE5MYdgFhMLMM4DTgb2ZW1ZwS/E4E+gBnAnnAe2Z2grvvOs5liog0OS0yNIhsYe1y96E1LNsATHf3SmC1mS0lEiIzj2N9IiJNUovcPeXupUQC4TIAixgSLP47cFbQ3pHI7qpVYdQpItLUtIjQMLOngY+Afma2wcy+A1wJfMfM5gGLgHFB9ynAdjNbDEwFfuzu28OoW0SkqWkRp9yKiEjDaBFbGiIi0jDi/kB4x44dvaCgIOwyRESalVmzZm1z9+zq7XEfGgUFBRQVFYVdhohIs2Jma2tq1+4pERGJmUJDRERiptAQEZGYKTRERCRmCg0REYmZQkNERGKm0BARkZgpNGrg7jw7cz1TFm0JuxQRkSYl7i/uOxqHHf48fS1bSvczsmcH2rROCrskEZEmQVsaNUhoZfzqKyeyvbyC/3l9SdjliIg0GQqNWpyQ24YJo3rw5Ix1zFq7o/4BIiItgEKjDj88uy+5bVtzy/MLOHDwcNjliIiETqFRh/SURG6/eBDLPinn4ff08D4REYVGPcb278QFJ3bmvn8uZ9OufWGXIyISKoVGDG69YADu8OvXdFBcRFo2hUYM8tql8b0zevHSvE3MXKOD4iLScik0YjTpjJ50aZPKz/+xiEOH9Vx1EWmZFBoxSktO5D/O78/CjaU8N2t92OWIiISi3tAws25mNtXMis1skZldX0OfcWY238zmmlmRmY0+grE3mZmbWcfgfYGZ7Qs+a66ZPRjV9yQzW2BmK8zsXjOzY5v+kbloSFcKu7fjzilLKa84eDxXLSLSJMSypXEQuNHdBwAjgWvMbGC1Pm8DQ9x9KDABeCSWsWbWDTgbWFft81a6+9DgZ1JU+x+AiUCf4Oe8GOpvMGbGf144kG3lB3jo3ZXHc9UiIk1CvaHh7pvdfXbwugwoBnKr9Sl396od/emAxzj2HuAnVf3rYmZdgCx3/yhY1xPAxfWNa2hDu7XlwsFdePi91XxSuv94r15EJFRHdEzDzAqAYcCMGpZdYmZLgFeIbG3UOdbMLgI2uvu8GlbVw8zmmNm7ZnZ60JYLbIjqs4Fq4XW8/OTc/hw8fJi731gWxupFREITc2iYWQYwGbjB3UurL3f3F9y9P5F//d9e11gzSwNuA35Ww6o2A/nuPgz4EfCUmWUBNR2/qHELxcwmBsdWikpKSmKdYszyO6Qx/tQCnp21niVbPvdHISISt2IKDTNLIvKl/6S7P19XX3efBvSKOrBd09heQA9gnpmtAfKA2WbW2d0r3H178FmzgJVAXyJbFnlRq8oDNtVSw0PuXujuhdnZ2bFM8YhdN7Y3mSmJ/OpVXfAnIi1HLGdPGfAoUOzud9fSp3fVmUxmNhxIBrbXNtbdF7h7jrsXuHsBkUAY7u5bzCzbzBKCz+pJ5ID3KnffDJSZ2cjgc8cDLx791I9N27Rkrh3bm3eXlfDhym1hlSEiclzFsqUxCrgKGBt1GuwFZjbJzKrObLoUWGhmc4H7gcuDg9U1jq1nfWOA+WY2D3gOmOTuVZdhf5/ImVkriGyBvBb7VBve+FML6Nomld+8toTPzgMQEYlfFu9fdoWFhV5UVNRon/9s0Xp+8tx8HrhyOBec2KXR1iMicjyZ2Sx3L6zerivCj9Glw/Pok5PBXVOWcvCQnrkhIvFNoXGMEloZPzmvP6u27eHZog31DxARacYUGg3giwNyKOzejt+9tYx9Bw6FXY6ISKNRaDQAM+Pm8/uztayCP364JuxyREQajUKjgZxc0J6x/XP4wzsr2L23MuxyREQahUKjAf343H6UVRzkwWm6maGIxCeFRgMa0CWLcUO68vgHupmhiMQnhUYD+9HZ/Th4yLn37eVhlyIi0uAUGg0sv0Ma3zgln7/OXM+abXvCLkdEpEEpNBrBtWN7k5TQirvf1K3TRSS+KDQaQU5mKhNGF/DSvE0s2rQ77HJERBqMQqORTBzTizatk7hzytKwSxERaTAKjUbSpnUS/35mL95ZWsKMVdvDLkdEpEEoNBrR1acV0Ckrhd+8rluni0h8UGg0otSkBG74Yl9mr9vFW8Vbwy5HROSYKTQa2WUn5dGzYzp3TlnCocPa2hCR5k2h0cgSE1px07n9WPZJOc/P1q3TRaR5i+UZ4d3MbKqZFZvZIjO7voY+48xsfvA41yIzG30EY28yMzezjsH7s81slpktCH6Pjer7jpktjXp0bM6xTf/4OP+EzgzOa8M9by5jf6VunS4izVcsWxoHgRvdfQAwErjGzAZW6/M2MMTdhwITiDzHu96xZtYNOBtYF/VZ24Avu/uJwNXAn6ut60p3Hxr8NIsDBWbGzef1Z9Pu/fxl+tqwyxEROWr1hoa7b3b32cHrMqAYyK3Wp9w/Oz0oHfAYx94D/KSqf9BvjrtvCt4uAlLNLOUo5takjOrdkdP7dOT3U1dQul+3TheR5umIjmmYWQEwDJhRw7JLzGwJ8AqRrY06x5rZRcBGd59XxyovBea4e0VU2+PBrqmfmpnVUufEYDdZUUlJSWyTOw5uPq8/u/ZW8n/v6tbpItI8xRwaZpYBTAZucPfS6svd/QV37w9cDNxe11gzSwNuA35Wx/oGAb8BvhfVfGWw2+r04Oeqmsa6+0PuXujuhdnZ2bFOsdGdkNuGi4Z05dH3V7Nlt26dLiLNT0yhYWZJRL70n3T35+vq6+7TgF5RB7ZrGtsL6AHMM7M1QB4w28w6B2PygBeA8e6+MuqzNwa/y4CngBExzrPJ+PG5/Th02PndW7qZoYg0P7GcPWXAo0Cxu99dS5/eVbuKzGw4kAxsr22suy9w9xx3L3D3AmADMNzdt5hZWyK7uG5x9w+i1pFYLYguBBYezaTD1K19Gt8c2Z1ni9az/JOysMsRETkisWxpjCKyG2hs1KmuF5jZJDObFPS5FFhoZnOB+4HLgwPjNY6tZ33XAr2Bn1Y7tTYFmGJm84G5wEbg4SObbtNw3dg+pCcn8pvXdTNDEWleLN7viVRYWOhFRUVhl/E5909dwZ1TlvLs905lRI/2YZcjIvIvzGyWuxdWb9cV4SGZMKoHnbNSueOVxRzW7UVEpJlQaISkdXICN57Tl3kbdvPygs1hlyMiEhOFRoi+MjyPAV2y+J/Xl1BxULcXEZGmT6ERooRWxm0XDGDDzn088aFuLyIiTZ9CI2Sj+3TkjL7Z3PfP5ezccyDsckRE6qTQaAJuvWAA5RUH+d+3l4ddiohInRQaTUC/zplcfnI+f5m+lpUl5WGXIyJSK4VGE3HjOX1JTUrgv18pDrsUEZFaKTSaiI4ZKVw7tjdvL9nK+8u3hV2OiEiNFBpNyLdHFdCtfWt++cpiPU9cRJokhUYTkpKYwC3nD2DJljKembmu/gEiIseZQqOJOf+Ezozo0Z67pixl91494U9EmhaFRhNjZvzXlweye18l9+iZGyLSxCg0mqBBXdtwxYh8/jx9rZ65ISJNikKjibrpnH6kJyfwi5cXE++3rxeR5kOh0US1T0/mh2f35b3l23hj8SdhlyMiAsT2uNduZjbVzIrNbJGZXV9Dn3FmNj94yl6RmY0+grE3mZlXPco1aLvFzFaY2VIzOzeq/SQzWxAsu7fqEbPx6psju9O3Uwa3v7yY/ZW6C66IhC+WLY2DwI3uPgAYCVxjZgOr9XkbGOLuQ4EJwCOxjDWzbsDZwLqotoHAFcAg4DzgATNLCBb/AZgI9Al+zot9qs1PUkIrfjHuBDbs3McD76wMuxwRkfpDw903u/vs4HUZUAzkVutT7p/teE8HPMax9wA/qeofGAc84+4V7r4aWAGMMLMuQJa7fxSs6wng4iOcb7MzsmcHLhrSlQffXcna7XvCLkdEWrgjOqZhZgXAMGBGDcsuMbMlwCtEtjbqHGtmFwEb3X1eta65wPqo9xuCttzgdfX2muqcGOwmKyopKYlpbk3ZbV8aQFIr4+f/WBx2KSLSwsUcGmaWAUwGbnD30urL3f0Fd+9P5F//t9c11szSgNuAn9W0qhravI72zze6P+Tuhe5emJ2dXcesmodOWanc8MW+/HPJVt7UQXERCVFMoWFmSUS+9J909+fr6uvu04BeVQe2axnbC+gBzDOzNUAeMNvMOhPZgugW9ZF5wKagPa+G9hbhW6MK6JOTwf97aRF7DxwMuxwRaaFiOXvKgEeBYne/u5Y+vavOZDKz4UAysL22se6+wN1z3L3A3QuIBMJwd98CvARcYWYpZtaDyAHvj919M1BmZiODzx0PvHj0U29ekhJa8cuLT2Djrn3c+/aKsMsRkRYqMYY+o4CrgAVmNjdouxXIB3D3B4FLgfFmVgnsAy53dw9Ovf3cWHd/tbaVufsiM3sWWEzk7Ktr3L3qfNPvA38EWgOvBT8txik9O3DZSXk88t4qLhmWS7/OmWGXJCItjMX71caFhYVeVFQUdhkNZseeA3zht+/QOyeDv048lVat4vpSFREJiZnNcvfC6u26IryZaZ+ezC0XDGDmmp38bdb6+geIiDQghUYzdNlJeYzo0Z7/fnUJJWUVYZcjIi2IQqMZMjP++5IT2XfgED//x6KwyxGRFkSh0Uz1zsng2rG9eXn+Zv65RNduiMjxodBoxiad0Yu+nTL4zxcWUl6hazdEpPEpNJqx5MRW/Oorg9lcup87X18Sdjki0gIoNJq5k7q34+pTC/jTR2v5ePWOsMsRkTin0IgDPz63H93at+bmyfPZd0DP3RCRxqPQiAPpKYn8+iuDWb1tD/e8tSzsckQkjik04sSo3h35+oh8HnlvFXPW7Qy7HBGJUwqNOHLrBf3pnJXKTX+bp8fDikijUGjEkczUJH596WBWluzhrilLwy5HROKQQiPOjOmbzTdH5vPoB6uZsWp72OWISJxRaMShW84fQH77NG56bp4u+hORBqXQiEPpKYncddkQNuzcxx2vFIddjojEEYVGnDq5oD0TT+/J0x+v4y09V1xEGkgsj3vtZmZTzazYzBaZ2fU19BlnZvPNbK6ZFQVP7KtzrJndHjXmDTPrGrRfGbRV/Rw2s6HBsnfMbGnUspwG+5OIQz86py8Du2Rx8+T5uoW6iDSIep/cZ2ZdgC7uPtvMMoFZwMXuvjiqTwawJ3jE62DgWXfvX9dYM8ty99Jg/A+Age4+qdq6TwRedPeewft3gJvcPeZH8cXbk/uO1PJPyrjwvvc5rVcHHvvWyQSPchcRqdNRP7nP3Te7++zgdRlQDORW61Pun6VPOuD1ja0KjOpjqvk68HR9NUrt+nTK5NYLBjB1aQl/nr427HJEpJk7omMaZlYADANm1LDsEjNbArwCTIhlrJndYWbrgSuBn9Wwysv5fGg8Huya+qnV8s9mM5sY7CYrKikpiWlu8Wz8qd05s182d7xSzNItZWGXIyLNWMyhEeyCmgzcUG0rAQB3f8Hd+wMXA7fHMtbdb3P3bsCTwLXVxpwC7HX3hVHNV7r7icDpwc9VNdXq7g+5e6G7F2ZnZ8c6xbhlZtz51SFkpiZx7VOzdVNDETlqMYWGmSUR+dJ/0t2fr6uvu08DeplZxyMY+xRwabW2K6i2leHuG4PfZcGYEbHUL5CdmcI9lw9h+dZyfvHy4voHiIjUIJazpwx4FCh297tr6dO7aleRmQ0HkoHtdY01sz5Rby8ClkQtawVcBjwT1ZZYLYguBKK3QqQep/fJZtIZvXj643W8Mn9z2OWISDOUGEOfUUR2Ay0ws7lB261APoC7P0hkK2G8mVUC+4DLgzOpRtc01t1fBX5tZv2Aw8BaIPrMqTHABndfFdWWAkwJAiMBeAt4+Ajn2+LdeE5fpq/azn9Mns+JuW3I75AWdkki0ozUe8ptc9fST7mtyfode/nSve+R3yGN5yadRmpSQtgliUgTc9Sn3Er86dY+jd9+bSgLN5byy1d0fENEYqfQaKHOHtiJ743pyV+mr+PFuRvDLkdEmgmFRgt207n9KOzejlueX8CKrbp+Q0Tqp9BowZISWvH7bwwnLTmBiX+eRdn+yrBLEpEmTqHRwnVuk8rvvzGctdv3ctPf5hHvJ0aIyLFRaAgje3bglvP7M2XRJ/zh3ZVhlyMiTZhCQwD4zugeXDi4C3dNWco7S7eGXY6INFEKDQEi96f6n68Opm+nTK57eg6rSsrDLklEmiCFhnwqLTmRh8cXkpTQin97oohSHRgXkWoUGvIvurVP44Erh7Nu+16uf3oOhw7rwLiIfEahIZ8zsmcH/uuiQUxdWsKvXysOuxwRaUJiuWGhtEBXjezOik/KePi91fTMzuDrI/LDLklEmgCFhtTqpxcOZO2Ovfz07wvJb5/GqN4dwy5JREKm3VNSq8SEVtz39WH0ys5g0l9m6VYjIqLQkLplpibx6LcKSUlM4OrHZrK1bH/YJYlIiBQaUq+8dmk89q1Cduw5wIQ/zmRPxcGwSxKRkMTyuNduZjbVzIrNbJGZXV9Dn3FmNt/M5ppZUfDEvjrHmtntUWPeMLOuQXuBme0L2uea2YNRY04yswVmtsLM7q16xKw0vsF5bbn/ymEs3lTKtU/N5uChw2GXJCIhiGVL4yBwo7sPAEYC15jZwGp93gaGuPtQYALwSAxj73T3wcGYl4GfRX3eSncfGvxEPwb2D8BEoE/wc16M85QGMLZ/J3558YlMXVrCLc8v0M0NRVqgekPD3Te7++zgdRlQDORW61Pun32DpANe31h3L436iE/H1MbMugBZ7v5RsK4ngIvrq18a1jdOyecHX+jD32Zt4DevLw27HBE5zo7olFszKwCGATNqWHYJ8CsgB/hSLGPN7A5gPLAbOCuqew8zmwOUAv/p7u8RCZsNUX02UC28oj53IpEtEvLzdX1BQ/vhF/uwrbyCB99dSceMZP7t9J5hlyQix0nMB8LNLAOYDNxQbSsBAHd/wd37E/nX/+2xjHX329y9G/AkcG3QvBnId/dhwI+Ap8wsC6jp+EWNWyfu/pC7F7p7YXZ2dqxTlBiZGbePO4HzT+jML18pZvKsDfUPEpG4EFNomFkSkS/9J939+br6uvs0oJeZdTyCsU8BlwbjK9x9e/B6FrAS6EtkyyIvakwesCmW+qXhJbQyfnfFUEb17sCPn5vH6ws3h12SiBwHsZw9ZcCjQLG7311Ln95VZzKZ2XAgGdhe11gz6xP19iJgSdCebWYJweueRA54r3L3zUCZmY0MPnc88OIRzVYaVEpiAg9dVcjQbm257uk5vLusJOySRKSRxbKlMQq4ChgbdRrsBWY2ycyqzmy6FFhoZnOB+4HLg4PVNY4NxvzazBaa2XzgHKDqdNwxwHwzmwc8B0xy9x3Bsu8TOTNrBZEtkNeOYe7SANJTEnn82yPok5PJ9/5cxIxV28MuSUQakcX7aZOFhYVeVFQUdhlxb3t5BV/7v4/YvHs/T0wYQWFB+7BLEpFjYGaz3L2weruuCJcG0SEjhae/O5LOWal86/GZzF63M+ySRKQRKDSkweRkpfLUd0fSISOZqx/9mLnrd4Vdkog0MIWGNKjObVJ5+rsjaZuexFWPzNAWh0icUWhIg+vatjV/nXgq7TOSGf/ox8xcs6P+QSLSLCg0pFFUBUdOZgpXP/YxH63UWVUi8UChIY2mc5tUnvneSHLbtuZbj3/M1CVbwy5JRI6RQkMaVU5mKs9MHEmfThl894kiXp6vi/hFmjOFhjS6DhkpPPXdkQzLb8sPnp7DX2euC7skETlKCg05LrJSk3hiwimM7pPNzZMXcP/UFXoeh0gzpNCQ46Z1cgKPjC/koiFduXPKUn7x8mIOH1ZwiDQnR/Q8DZFjlZzYit9dPpSOGSk89sFqtpUf4K7LBpOSmBB2aSISA4WGHHetWhk/vXAAOVkp/Pq1JWwt3c9DVxXSJi0p7NJEpB7aPSWhMDMmndGL/71iKHPW7eLSBz9k/Y69YZclIvVQaEioxg3N5YnvjGBr6X4ueeBD5ui2IyJNmkJDQjeyZwee//fTSEtO4PKHpvPSPF3LIdJUKTSkSeidk8nfrxnF0LzItRx3v7lMZ1aJNEGxPO61m5lNNbNiM1tkZtfX0Gecmc0PnsxXZGaj6xtrZrdHjXnDzLoG7Web2SwzWxD8Hhs15h0zWxr1FMCchvljkKagfXoyf/63EXz1pDzufXs5339yFuUVB8MuS0Si1PvkPjPrAnRx99lmlgnMAi5298VRfTKAPe7uZjYYeNbd+9c11syy3L00GP8DYKC7TzKzYcAn7r7JzE4Aprh7btDvHeAmd4/5UXx6cl/z4+489sEa7nhlMX1yMnl4fCH5HdLCLkukRTnqJ/e5+2Z3nx28LgOKgdxqfcr9s/RJB7y+sVWBUcOYOe5etVN7EZBqZimxTlSaPzPjO6N78KcJI9hSup8v//593lmqmx2KNAVHdEzDzAqAYcCMGpZdYmZLgFeACbGMNbM7zGw9cCXwsxpWeSkwx90rotoeD3ZN/dTMrJY6Jwa7yYpKSkpinp80Laf3yeala0fRpU0q3/7jTO59e7mOc4iErN7dU592jOyCehe4w92fr6PfGOBn7v7FWMea2S1Aqrv/V1TbIOAl4Bx3Xxm05br7xmBX12TgL+7+RF11a/dU87fvwCFufWEBL8zZyNj+Odz9tSG0TUsOuyyRuHbUu6eCwUlEvqSfrCswANx9GtDLzDoewdiniGxVVK0vD3gBGF8VGMFnbwx+lwVjRsRSvzRvrZMTuPtrQ7h93CDeW17Cl+59X4+RFQlJLGdPGfAoUOzud9fSp3fVriIzGw4kA9vrGmtmfaLeXgQsCdrbEtnFdYu7fxDVP7FaEF0ILIxxntLMmRlXnVrA5O+fRqtW8LUHP+Lhaat0p1yR4yyWs6dGA+8BC4DDQfOtQD6Auz9oZjcD44FKYB/wY3d/v7ax7v6qmU0G+gXta4FJwa6n/wRuAZZHlXEOsAeYBiQBCcBbwI/c/VBd9Wv3VPzZva+Sm5+bz+uLtnBmv2zuumwIHTN0roRIQ6pt91TMxzSaK4VGfHJ3/jJ9Lbe/UkxWahJ3f20IY/pmh12WSNw4pmMaIk1N1e6ql64dRfv0JMY/9jE//8ci9lfWueEpIsdIoSHNWv/OWbx07WiuPrU7j3+whi/f9z4LN+4OuyyRuKXQkGYvNSmBn487gT9NGMHufZVc8sAH3Pf2cioPHa5/sIgcEYWGxI0z+mYz5YYxnDuoM799cxlfeeBDlm4pC7sskbii0JC40i49md9/YzgPXDmcjbv28eX73tdWh0gDUmhIXLrgxC68+cMxnD2oE799cxlfvu995m/YFXZZIs2eQkPiVoeMFO7/xnAeHl/Izr0HuPj+D7j95cW63brIMVBoSNw7e2An3vzRGXx9RD6PfbCas+9+lymLtoRdlkizpNCQFiErNYk7LjmRyd8/jTatk/jen2fxnT/OZN32vWGXJtKsKDSkRRme345/XDea2y4YwPRV2/niPe9y95vLdFGgSIwUGtLiJCW04rtjevL2jWdy3qDO3Pv2cr7w23d5ef4m3QBRpB4KDWmxOrdJ5d6vD+OZiSPJap3EtU/N4fL/m64rykXqoNCQFm9kzw68fN1o/vuSE1lRUs6F973Pj/46l0279oVdmkiTo7vcikQp3V/JA1NX8tgHqzFgwugeTDqjF21aJ4VdmshxpVujixyBDTv38ts3lvH3uRvJSk3i+2f24lunFZCalBB2aSLHhUJD5Cgs3lTKnVOWMHVpCTmZKVw3tjdfO7kbKYkKD4lvR/08DTPrZmZTzazYzBaZ2fU19BlnZvPNbK6ZFQVP7KtzrJndHjXmDTPrGrXsFjNbYWZLzezcqPaTzGxBsOzeqkfMijSWgV2zePzbI/jrxJEUdEjnpy8uYuxd7/LMx+t0PytpkWJ53GsXoIu7zzazTGAWcLG7L47qkwHscXc3s8HAs+7ev66xZpbl7qXB+B8AA919kpkNBJ4GRgBdiTzWta+7HzKzj4HrgenAq8C97v5aXfVrS0Mairvz3vJt/PbNZcxbv4vctq255qzefPWkPJITdU6JxJej3tJw983uPjt4XQYUA7nV+pT7Z+mTDnh9Y6sCo/oYYBzwjLtXuPtqYAUwIgigLHf/KFjXE8DFsUxepCGYGWP6ZvP3fz+Nx791Mh0zU7j1hQWccedUHv9gNfsO6AJBiX+JR9LZzAqAYcCMGpZdAvwKyAG+FMtYM7sDGA/sBs4KmnOJbElU2RC0VQavq7fXVOdEYCJAfn5+DDMTiZ2ZcVb/HM7sl8205du4/58r+Pk/FnPfP1cwYVQBV40soE2azraS+BTzNnWwC2oycEO1rQQA3P0Fd+9P5F//t8cy1t1vc/duwJPAtVXda1i919H++Ub3h9y90N0Ls7Oz652byNEwM87om82zk07lb5NOZUheG+56Yxmn/vptfvGPxWzUdR4Sh2IKDTNLIvKl/6S7P19XX3efBvQys45HMPYp4NLg9QagW9SyPGBT0J5XQ7tI6E4uaM/j3x7Bqz84nXMHdeaJj9Yw5n+mcu1Ts5mzbmfY5Yk0mFjOnjLgUaDY3e+upU/vqjOZzGw4kAxsr2usmfWJensRsCR4/RJwhZmlmFkPoA/wsbtvBsrMbGTwueOBF49griKNbmDXLO65fCjTfnIWE0YV8O7SEi554EO+8sAHvDRvEwcO6owrad5iOXtqNPAesACo+ht/K5AP4O4PmtnNRL7EK4F9wI/d/f3axrr7q2Y2GegXtK8FJrn7xmCdtwETgINEdmm9FrQXAn8EWgOvAdd5PRPQ2VMSpvKKgzxXtJ4/friGNdv3kp2ZwjdG5PONU/LplJUadnkitdLFfSIhOnzYeXd5CX/6cA3vLC0hoZVx9oBOfHNkd07r1YFWrXTJkTQttYXGEZ09JSJHp1Ur46x+OZzVL4e12/fw1Ix1PFu0ntcXbSG/fRqXn9yNy07KI0dbH9LEaUtDJCT7Kw8xZdEWnv54HdNX7SChlXFm32wuK8xjbP9OumBQQqUtDZEmJjUpgXFDcxk3NJfV2/bwzMx1PD97I28v2Ur79GQuGtKVrwzP5cTcNuiOOdJUaEtDpAk5eOgw7y3fxt9mreetxVs5cOgwvbLTuWRYLhcNySW/Q1rYJUoLoQPhIs3M7n2VvLpgM8/P3sDMNZFrPYblt+WiIV254MQuOvtKGpVCQ6QZ27BzL/+Yt5kX525kyZYyzODk7u350uAunDuoM53bKECkYSk0ROLEiq1lvDJ/Cy/P38TyreUADM9vy/kndOGcQZ3o3iE95AolHig0ROLQiq1lvLZgC68t3MLizZHbuvXrlMnZAzvxhQE5DMlrq2tA5KgoNETi3Pode3lz8SdMWbSFmWt2cNihY0YKY/tnM7Z/DqN6dyQzVXffldgoNERakJ17DvDOsq28VbyVaUtLKKs4SFKCUdi9PWf0y2ZMn2wGdMnUqbxSK4WGSAtVeegws9fuZOrSEt5ZupUlW8oAyM5M4fTeHRnVuyOj+3TU2VjyLxQaIgLAJ6X7mbashGnLt/HBim3s2HMAgN45GZzWqwOn9erAKT060C49OeRKJUwKDRH5nMOHneItpby/fBsfrtzOzDU72Bs8trZ/50xO6dGeET06cHKPduRkakukJVFoiEi9Dhw8zPwNu5ixegfTV22naM1O9lVGQqRHx3RO6t6Owu7tKCxoR6/sDB0TiWMKDRE5YpWHDrNw425mrtnBx6t3MGvtTnburQSgTeskhuW3ZXh+O4blt2VwXlvatNbZWfFCoSEix8zdWVmyh1lrdzB77S5mr9v56QWGAD2z0xma15YT89owOK8tg7pmkZqUEGLFcrSOOjTMrBvwBNCZyFP2HnL3/63WZxxwe7C86ml779c11szuBL4MHABWAt92911mdiXw46iPHwwMd/e5ZvYO0IXI0wEBznH3rXXVr9AQaVy791WyYMNu5q7fydz1u5i3YTclZRUAJLQy+uRkMKhrG07IzWJQ1zYM6JKp60WagWMJjS5AF3efbWaZwCzgYndfHNUnA9jj7m5mg4Fn3b1/XWPN7Bzgn+5+0Mx+A+DuN1db94nAi+7eM3j/DnCTu8ecAgoNkePL3fmktIJ5G3axcONuFmzczcKNu9lWfuDTPt07pDGgcxYDumQxoEsm/Ttnkdeuta5eb0KO+nka7r4Z2By8LjOzYiAXWBzVpzxqSDrg9Y119zeixkwHvlrD6r8OPF1fjSLSdJgZnduk0rlNZ84d1BmIBMnWsgoWbypl0abdLN5cSvHmMqYs3kLVv1vTkxPo0ymTfp0y6dMpg76dMunbKZNOWSk64N6EHNFDmMysABgGzKhh2SXAr4Ac4EtHMhaYAPy1hvbLgXHV2h43s0PAZOCXXsOmkplNBCYC5Ofn1zofETk+zIxOWal0ykrlrP45n7bvqTjI0k/KWLol8rNkSylvFX/CX4vWf9onMyWRXjkZ9M7JoFd2Br2y0+mZnUF++zQ93TAEMR8ID3ZBvQvc4e7P19FvDPAzd/9iLGPN7DagEPhKdACY2SnAI+5+YlRbrrtvDHZ1TQb+4u5P1FW3dk+JND/byitY9kkZK7eWs3xrOcs/KWdlSTlbg2MlEDle0q1da3p0TKegYzo9O6bTvUM6BR3S6do2lcQEBcqxOKbHvZpZEpEv6SfrCgwAd59mZr3MrKO7b6trrJldDVwIfKGGLYYrqLZryt03Br/LzOwpYASRA+0iEkc6ZqTQMSOF03p1/Jf20v2VrNxazupte1hVsodV28pZvW0v01ft+PR6EoDEVkZeu9bkd0gnv31r8tun0a1dGt3aR350avDRqzc0LLIz8VGg2N3vrqVPb2BlcCB8OJAMbK9rrJmdB9wMnOHue6stawVcBoyJaksE2kYF0YXAW7FPVUSau6zUJIblt2NYfrt/aa86+L52+x7Wbt/L6u17WLdjL+u272Xuup2U7j/4L/0zUxPJbduavHatyW3bmtx2rcltm0bXtql0bdua7IwUHZSvRSxbGqOAq4AFZjY3aLsVyAdw9weBS4HxZlZJ5HTYy4MAGV3TWHd/Ffg9kAK8GRzkmu7uk4I+Y4AN7r4qqo4UYEoQGAlEAuPhI5+yiMSbzw6+p3JKzw6fW757XyXrd+xl/Y69bNi5jw07q37vY8aqHZRV/GuoJLaKHIPp2jaVzm1a06VNKp2zIp/fKSuFTlmp5GSmtshjKrq4T0RavN37Ktm0ax+bd+9j4679bNq1jy27g9+l+9myez8VBw9/bly7tCQ6ZaWSnZlCTmYqOVkpZGekkJ0Z2b2WnRl5n9U6sdmdAXZMxzREROJZm9ZJtGmdxIAuWTUud3d27a2MBEjpfraW7mfL7gq2lu1na1kFW0v3s3JrOSXlFVQe+vw/xJMSjA7pKXTISKZDRgod05Npn55M+4xkOqQn0z49hfbpSbRLi7RnpSY12d1jCg0RkXqYGe3Sk2mXnlxrsEDkrsG79lWyrbyCkrLIz7byCraVH2BbeQU79hxge3kFK7eWs31PBfsrP7/1AtDKoG1aMm3TIkHSLi0p8r51Em3TIgHXJi3507Cr+slKTWz0s8YUGiIiDaRVK4tsQaQn07dTZr399x44yPbyA+zce4AdeyI/O/dWsit4v2tvJTv3HmDjrv0s3lTKrn2Vn966vjbpyQlktU4iKzWJF645jbTkhv2aV2iIiIQkLTmRtPaJdGufFvOYioOH2L23kt37av4p23+Q0n2VlO6vJDWx4W8WqdAQEWlGUhITyMlKICekx/O2vPPFRETkqCk0REQkZgoNERGJmUJDRERiptAQEZGYKTRERCRmCg0REYmZQkNERGIW93e5NbMSYO1RDu8IbGvAcpqDljhnaJnzbolzhpY576OZc3d3z67eGPehcSzMrKimWwPHs5Y4Z2iZ826Jc4aWOe+GnLN2T4mISMwUGiIiEjOFRt0eCruAELTEOUPLnHdLnDO0zHk32Jx1TENERGKmLQ0REYmZQkNERGKm0KiBmZ1nZkvNbIWZ/UfY9TQWM+tmZlPNrNjMFpnZ9UF7ezN708yWB7/bhV1rQzOzBDObY2YvB+9bwpzbmtlzZrYk+G9+arzP28x+GPzdXmhmT5tZajzO2cweM7OtZrYwqq3WeZrZLcH321IzO/dI1qXQqMbMEoD7gfOBgcDXzWxguFU1moPAje4+ABgJXBPM9T+At929D/B28D7eXA8UR71vCXP+X+B1d+8PDCEy/7idt5nlAj8ACt39BCABuIL4nPMfgfOqtdU4z+D/8SuAQcGYB4LvvZgoND5vBLDC3Ve5+wHgGWBcyDU1Cnff7O6zg9dlRL5EconM909Btz8BF4dSYCMxszzgS8AjUc3xPucsYAzwKIC7H3D3XcT5vIk80rq1mSUCacAm4nDO7j4N2FGtubZ5jgOecfcKd18NrCDyvRcThcbn5QLro95vCNrimpkVAMOAGUAnd98MkWABckIsrTH8DvgJcDiqLd7n3BMoAR4Pdss9YmbpxPG83X0jcBewDtgM7Hb3N4jjOVdT2zyP6TtOofF5VkNbXJ+XbGYZwGTgBncvDbuexmRmFwJb3X1W2LUcZ4nAcOAP7j4M2EN87JapVbAPfxzQA+gKpJvZN8Otqkk4pu84hcbnbQC6Rb3PI7JJG5fMLIlIYDzp7s8HzZ+YWZdgeRdga1j1NYJRwEVmtobIrsexZvYX4nvOEPl7vcHdZwTvnyMSIvE87y8Cq929xN0rgeeB04jvOUerbZ7H9B2n0Pi8mUAfM+thZslEDhi9FHJNjcLMjMg+7mJ3vztq0UvA1cHrq4EXj3dtjcXdb3H3PHcvIPLf9p/u/k3ieM4A7r4FWG9m/YKmLwCLie95rwNGmlla8Hf9C0SO28XznKPVNs+XgCvMLMXMegB9gI9j/VBdEV4DM7uAyH7vBOAxd78j3Ioah5mNBt4DFvDZ/v1biRzXeBbIJ/I/3mXuXv0gW7NnZmcCN7n7hWbWgTifs5kNJXLwPxlYBXybyD8c43beZvZz4HIiZwrOAf4NyCDO5mxmTwNnErkF+ifAfwF/p5Z5mtltwAQify43uPtrMa9LoSEiIrHS7ikREYmZQkNERGKm0BARkZgpNEREJGYKDRERiZlCQ0REYqbQEBGRmP1/cuP722ZHEJoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(tvect, Su)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAnTUlEQVR4nO3deXwddb3/8dcnS7O1aZM0TdMkbdN9X0MpFEE2WxBvQRCLIqhoEUEBFQT13p/LVbmoCCggFRBQFgsU4SJbZS8USkr3Pd3TJUn3dEua5PP7IwM3ltCmaZI5Oef9fDzOI3O+Zybz+T4o7zP5zndmzN0REZHYEBd2ASIi0nYU+iIiMUShLyISQxT6IiIxRKEvIhJDEsIu4Gi6du3qvXv3DrsMEZF2Ze7cudvcPfvw9ogP/d69e1NcXBx2GSIi7YqZrW+sXcM7IiIxRKEvIhJDFPoiIjHkqKFvZslmNsfMFpjZEjP7WdD+UzPbZGbzg9e5Dba52cxKzGyFmU1s0D7WzBYFn91pZtY63RIRkcY05URuFXCGu+81s0Rglpm9EHz2e3f/bcOVzWwIMAUYCvQA/mVmA9y9FrgHmAq8CzwPTAJeQERE2sRRj/S93t7gbWLwOtJd2iYDj7t7lbuvBUqAcWaWC6S7+2yvv8vbw8D5x1W9iIgckyaN6ZtZvJnNB8qBme7+XvDRNWa20MweMLOMoC0P2Nhg89KgLS9YPry9sf1NNbNiMyuuqKhoem9EROSImhT67l7r7qOAfOqP2odRP1TTFxgFbAF+F6ze2Di9H6G9sf1Nc/cidy/Kzv7YtQVNqZfp72/klWVlx7ytiEg0O6bZO+6+C3gdmOTuZcGXQR3wZ2BcsFopUNBgs3xgc9Ce30h7i6upcx5+dx3ff2IBm3cdaI1diIi0S02ZvZNtZl2C5RTgLGB5MEb/oQuAxcHys8AUM0sys0KgPzDH3bcAlWY2Ppi1cxnwTMt15f8kxsfxx0vGUFPrfPexedTU1rXGbkRE2p2mHOnnAq+Z2ULgferH9J8Dbg2mXy4ETgeuB3D3JcB0YCnwInB1MHMH4CrgPupP7q6mFWfu9O6axi8vGEbx+p38/l8rW+R3HjxUy8Yd+9m86wDllQfZc/BQi/xeEZG2YpH+uMSioiI/nnvv/PDJhUyfu5EHLj+B0wd1a/J25XsOUrx+J++v28Gi0t1s2LGf8sqqj62X3SmJIbnpDMtL5+wh3RmZ3xldfiAiYTOzue5e9LH2aA/9A9W1nH/X26woq+S8Ebl87+wB9Mnu+LH1du6rZu76ncwq2cZbqypYXbEPgOTEOEbkdaFXVir5Gal075wEwKFaZ391DSu27mXJ5t2UlO+lps7pk53GBaPy+NKJPcnqmNTsukVEjkfMhj7AnoOHmPbGGh54ey1VNXWM75NJ55REUhIT2Ft1iMWb9rApOOGbnBjHiYVZTOiXxbjCLIb2SCcx/uijYLsPHOKFRVuYMW8Tc9buIK1DPN88tQ/f+FQfOiZF/M1MRSTKxHTof6iisop7Xl/N3PU72F9dy/7qWpIS4hjSI51heZ0Zkd+ZMT0zSE6MP679lJRX8tuXVvLikq1kpXXgx58dzAWj8zTsIyJtRqEfgnkbdvLf/1zG3PU7OXd4d355/nAy0jqEXZaIxIBPCn3dZbMVje6ZwfQrT+KHkwYxc2kZE29/k3dWbwu7LBGJYQr9VhYfZ1z16b784+oJpKckctn9c3j0vQ1hlyUiMUqh30aG9ujM098+mVP6d+VHTy/iF88tpbYusofWRCT6KPTbUKfkRO67rIivTejN/bPW8u1H5lJdo6uFRaTtKPTbWEJ8HP/vc0P5f58bwktLyvjW3+Zy8FDt0TcUEWkBCv2QfG1CIb+8YBivLi/nmw8XK/hFpE0o9EP05RN7cetFI5hVso1vPlxMVY2CX0Ral0I/ZBcXFXDrhSN4a9U2vjd9gU7uikir0v0BIsAXigrYub+aXz2/nIzURH4xeZiu3hWRVqHQjxBTT+3L9n3V3PvGGrLSkrj+7AFhlyQiUUihH0FumjSI7XurueOVVRR2TeP80Y0+QlhEpNk0ph9BzIxfXTCcEwszufHJhRSv2xF2SSISZRT6EaZDQhx/unQsPbokc+Vf57Jxx/6wSxKRKKLQj0AZaR24/6sncKi2jm88VMy+qpqwSxKRKKHQj1B9szty15fHsKq8kh8+tZBIvwW2iLQPCv0I9qn+2fxg4kCeW7iF+2etDbscEYkCCv0Id9VpfZk4NIdfv7Cc2au3h12OiLRzRw19M0s2szlmtsDMlpjZz4L2TDObaWargp8ZDba52cxKzGyFmU1s0D7WzBYFn91pugLpqMyM335hJL2yUvnOYx9Qvudg2CWJSDvWlCP9KuAMdx8JjAImmdl44CbgFXfvD7wSvMfMhgBTgKHAJOBuM/vwobP3AFOB/sFrUst1JXp1Sk7kT5eOZW9VDdc+Pl+3ahCRZjtq6Hu9vcHbxODlwGTgoaD9IeD8YHky8Li7V7n7WqAEGGdmuUC6u8/2+rOSDzfYRo5iQE4nfjF5GLPXbOfOV1aFXY6ItFNNGtM3s3gzmw+UAzPd/T0gx923AAQ/uwWr5wEbG2xeGrTlBcuHtze2v6lmVmxmxRUVFcfQnej2haICLhyTz52vruLtEj1rV0SOXZNC391r3X0UkE/9UfuwI6ze2Di9H6G9sf1Nc/cidy/Kzs5uSokx4xfnD6VvdkeufXw+FZVVYZcjIu3MMc3ecfddwOvUj8WXBUM2BD/Lg9VKgYIGm+UDm4P2/Eba5Rikdkjgri+NYc/BQ9zw5ALN3xeRY9KU2TvZZtYlWE4BzgKWA88ClwerXQ48Eyw/C0wxsyQzK6T+hO2cYAio0szGB7N2LmuwjRyDgd078ZPPDub1FRU8+M66sMsRkXakKXfZzAUeCmbgxAHT3f05M5sNTDezK4ANwBcA3H2JmU0HlgI1wNXu/uEjoa4CHgRSgBeClzTDV8b34s2VFfz6+eWM75PF4Nz0sEsSkXbAIn14oKioyIuLi8MuIyLt2FfNpNvfJD0lkf+95hRSOsQffSMRiQlmNtfdiw5v1xW57VhmWgduu3gUJeV7ueWFZWGXIyLtgEK/nTulf1e+PqGQh2av542Vmt4qIkem0I8CN04ayICcjtzwxAJ27qsOuxwRiWAK/SiQnBjP7V8czc791dw8Y5GmcYrIJ1LoR4khPdL5/mcG8uKSrcz4YFPY5YhIhFLoR5FvfqoP43pn8tNnl7B514GwyxGRCKTQjyLxcfW3Ya5154YnF1Cnu3GKyGEU+lGmZ1YqP/nsEN4u2c7Ds9eFXY6IRBiFfhS6ZFwBnx6YzS0vLmd1xd6jbyAiMUOhH4XMjP+5cARJCfH84IkFeuiKiHxEoR+lctKT+fnkoczbsItpb64JuxwRiRAK/Sj2HyN7cM6w7vx+5kpWbK0MuxwRiQAK/ShmZvz3+cPolJzA96bP51BtXdgliUjIFPpRLqtjEr+8YDhLNu/hrtdKwi5HREKm0I8Bk4Z15/xRPfjjqyUs3rQ77HJEJEQK/Rjx0/8YSmZaB37wxAKqazTMIxKrFPoxoktqB379+eEs31rJna+sCrscEQmJQj+GnDk4h4vG5nPPG6tZsHFX2OWISAgU+jHmP88bQrdOSfzgiQUcPFR79A1EJKoo9GNM55REbrlwBKvK9/L7f60MuxwRaWNHDX0zKzCz18xsmZktMbNrg/afmtkmM5sfvM5tsM3NZlZiZivMbGKD9rFmtij47E4zs9bplhzJaQOyuWRcAX9+cw1z1+8MuxwRaUNNOdKvAb7v7oOB8cDVZjYk+Oz37j4qeD0PEHw2BRgKTALuNrP4YP17gKlA/+A1qeW6IsfiR+cOJrdzCjdomEckphw19N19i7t/ECxXAsuAvCNsMhl43N2r3H0tUAKMM7NcIN3dZ3v98/weBs4/3g5I83RKTuTWi0awZts+fvPSirDLEZE2ckxj+mbWGxgNvBc0XWNmC83sATPLCNrygI0NNisN2vKC5cPbJSQT+nXlK+N78cDba5mzdkfY5YhIG2hy6JtZR+Ap4Dp330P9UE1fYBSwBfjdh6s2srkfob2xfU01s2IzK66oqGhqidIMN50ziIKMVG54cgH7q2vCLkdEWlmTQt/MEqkP/EfcfQaAu5e5e6271wF/BsYFq5cCBQ02zwc2B+35jbR/jLtPc/cidy/Kzs4+lv7IMUpLSuA3F41gw4793PLC8rDLEZFW1pTZOwbcDyxz99satOc2WO0CYHGw/CwwxcySzKyQ+hO2c9x9C1BpZuOD33kZ8EwL9UOOw4l9svjayYU8PHs9b5dsC7scEWlFTTnSnwB8BTjjsOmZtwbTLxcCpwPXA7j7EmA6sBR4Ebja3T+cHnIVcB/1J3dXAy+0aG+k2W6cNJA+XdO48cmFVB48FHY5ItJKrH4iTeQqKiry4uLisMuICR9s2MlF97zDRWPzufWikWGXIyLHwczmunvR4e26Ilc+MqZnBt86rS/Ti0t5ZVlZ2OWISCtQ6Mu/ufas/gzq3ombZixi577qsMsRkRam0Jd/k5QQz20Xj2LX/mp+8szio28gIu2KQl8+ZkiPdK47awD/XLiFZxc0OqtWRNophb406spT+zC6Zxf+8x+L2br7YNjliEgLUehLoxLi47jt4lFU19Rx41MLifRZXiLSNAp9+USFXdP40bmDeHNlBX97b0PY5YhIC1DoyxFdOr4Xn+rflV/9cxlrKvaGXY6IHCeFvhyRmfGbi0bSISGO66cv4FBtXdglichxUOjLUXXvnMwvLxjGgo27+OOrJWGXIyLHQaEvTXLeiB5cMDqPP75WwrwNesSiSHul0Jcm+9nkoXRPT+b6v89nX5XuvS/SHin0pcnSkxP53cUjWb9jP794bmnY5YhIMyj05ZiM75PFVaf15fH3N/Li4q1hlyMix0ihL8fsurMGMDyvMzfNWEjZHl2tK9KeKPTlmHVIiOP2KaOoOlTH96cvoK5OV+uKtBcKfWmWvtkd+a/PDWFWyTb+/NaasMsRkSZS6EuzTTmhgHOGdec3L61gYemusMsRkSZQ6EuzmRm3fH4E3Tol8d3H5rFX0zhFIp5CX45L59REbp8ymg079vNfeuiKSMRT6MtxG1eYyTVn9GfGB5uY8UFp2OWIyBEcNfTNrMDMXjOzZWa2xMyuDdozzWymma0KfmY02OZmMysxsxVmNrFB+1gzWxR8dqeZWet0S9rad8/ox7jemfzkH4tZrbtxikSsphzp1wDfd/fBwHjgajMbAtwEvOLu/YFXgvcEn00BhgKTgLvNLD74XfcAU4H+wWtSC/ZFQpQQH8cdl4wiKSGOax6dx8FDtWGXJCKNOGrou/sWd/8gWK4ElgF5wGTgoWC1h4Dzg+XJwOPuXuXua4ESYJyZ5QLp7j7b6x/D9HCDbSQK5HZO4bdfGMmyLXv41fPLwi5HRBpxTGP6ZtYbGA28B+S4+xao/2IAugWr5QEbG2xWGrTlBcuHt0sUOXNwDt84pZCHZ6/nnwu3hF2OiBymyaFvZh2Bp4Dr3H3PkVZtpM2P0N7YvqaaWbGZFVdUVDS1RIkQN04axKiCLvzwqYWs27Yv7HJEpIEmhb6ZJVIf+I+4+4yguSwYsiH4WR60lwIFDTbPBzYH7fmNtH+Mu09z9yJ3L8rOzm5qXyRCdEiI464vjyEh3vj2Ix9ofF8kgjRl9o4B9wPL3P22Bh89C1weLF8OPNOgfYqZJZlZIfUnbOcEQ0CVZjY++J2XNdhGokxelxRuu3gkS7fs4ee6DbNIxGjKkf4E4CvAGWY2P3idC9wCnG1mq4Czg/e4+xJgOrAUeBG42t0/PNS7CriP+pO7q4EXWrIzElnOGJTDt07ry6PvbdD8fZEIYfUTaSJXUVGRFxcXh12GNFNNbR1fvu89FpTu4ulvT2BwbnrYJYnEBDOb6+5Fh7frilxpVQnxcfzhS6NJT07kqr/NZc/BQ2GXJBLTFPrS6rp1SuauL49h484D/GD6AiL9r0uRaKbQlzZxQu9Mbj5nEC8vLePu11eHXY5IzFLoS5u54pRCPjeyB799eQVvrNT1FyJhUOhLmzEz/ufC4QzM6cR3H5vHhu37wy5JJOYo9KVNpXZI4N6vjMXdmfrXYvZX68ErIm1JoS9trldWGndeMpoVZZXc8MRCndgVaUMKfQnFpwd246ZJg/jnoi3c9VpJ2OWIxIyEsAuQ2DX11D4s31rJb19eycDu6Zw9JCfskkSino70JTRmxq8/P5wR+Z257vF5rNhaGXZJIlFPoS+hSk6MZ9pXikhLSuCKh95n296qsEsSiWoKfQld987J/PmyIioqq7jyr3N1K2aRVqTQl4gwsqALt108irnrd3LzjEWa0SPSShT6EjE+OyKX7509gKfnbeKPr2pGj0hr0OwdiSjfOaMfa7ft43czV1KQmcr5o/UYZZGWpNCXiGJm3HLhcDbvOsCNTy4kt3MyJ/bJCrsskaih4R2JOEkJ9TN68jNTmPrXuZSU7w27JJGoodCXiNQ5NZEHvzqOhDjjq3+ZQ/meg2GXJBIVFPoSsXpmpfLAV09g+95qvvqX96nUU7dEjptCXyLayIIu3H3pGFaUVXLV3z6guqYu7JJE2jWFvkS80wd249efH86skm3c8OQC6uo0h1+kuY4a+mb2gJmVm9niBm0/NbNNZjY/eJ3b4LObzazEzFaY2cQG7WPNbFHw2Z1mZi3fHYlWFxcVcMPEgTwzfzM/f26pLt4SaaamHOk/CExqpP337j4qeD0PYGZDgCnA0GCbu80sPlj/HmAq0D94NfY7RT7Rtz/dlytOKeTBd9bxB128JdIsRw19d38T2NHE3zcZeNzdq9x9LVACjDOzXCDd3Wd7/SHaw8D5zaxZYpSZ8eNzB/P50XncNnMlf529LuySRNqd4xnTv8bMFgbDPxlBWx6wscE6pUFbXrB8eHujzGyqmRWbWXFFhR6gLf8nLs74n4tGcNbgbvznM0uY8UHp0TcSkY80N/TvAfoCo4AtwO+C9sbG6f0I7Y1y92nuXuTuRdnZ2c0sUaJVYnwcf/zSGCb0y+IHTyzgxcVbwi5JpN1oVui7e5m717p7HfBnYFzwUSlQ0GDVfGBz0J7fSLtIs3x4H/7RPTP4zmPzeG1FedglibQLzQr9YIz+QxcAH87seRaYYmZJZlZI/QnbOe6+Bag0s/HBrJ3LgGeOo24R0pISeOCrJzAgpxNX/nUus1ZtC7skkYjXlCmbjwGzgYFmVmpmVwC3BtMvFwKnA9cDuPsSYDqwFHgRuNrdP3wixlXAfdSf3F0NvNDSnZHY0zklkb9dcSJ9uqbxjYffZ/bq7WGXJBLRLNLnOxcVFXlxcXHYZUiE27a3ikumvUvpzgM89PVxjCvMDLskkVCZ2Vx3Lzq8XVfkSlTo2jGJR785nh5dkvnqX+bw3hod8Ys0RqEvUSO7UxKPfXM8uZ2T+epfNNQj0hiFvkSVbunJPD71JPIzUvjag3N0clfkMAp9iTrZnZJ4bOp4emWm8fWH3ufV5WVhlyQSMRT6EpW6dkzi8anjGRhM53x+kS7gEgGFvkSxjLQOPPLNExmR34VrHv2Ap+bqlg0iCn2JaunJifz1inGc1DeL7z+xgAdmrQ27JJFQKfQl6qV2SOD+y09g4tAcfv7cUm57eYXuxy8xS6EvMSE5MZ67vjSGLxYVcOerJfzkH4up1RO4JAYlhF2ASFtJiI/jlguH0yUtkXvfWMO2vVXcMWU0yYnxR99YJEroSF9iiplx8zmD+a/zhvDy0jIuve89du2vDrsskTaj0JeY9PVTCvnDJaNZWLqbi/40m4079oddkkibUOhLzDpvRA8evmIc5XsOcsHdbzNvw86wSxJpdQp9iWnj+2Qx49sTSOkQz5Rp7/KCLuKSKKfQl5jXr1tH/vHtCQztkc5Vj3zAXa+VaEqnRC2FvgiQFdyaefKoHvzmpRVc//f5HDxUe/QNRdoZTdkUCSQnxnP7F0cxIKcTv3lpBeu27+fer4wlJz057NJEWoyO9EUaMDOuPr0ff7p0DCvLKvncH2Yxd71O8Er0UOiLNGLSsFye/vYEkhPjmTJtNo/N2RB2SSItQqEv8gkGdu/Es9dMYHyfLG6esYibnlqocX5p9xT6IkfQJbUDD35tHFef3pfH39/IRX96RxdySbt21NA3swfMrNzMFjdoyzSzmWa2KviZ0eCzm82sxMxWmNnEBu1jzWxR8NmdZmYt3x2RlhcfZ9wwcRD3XVbE+u37Oe8Ps/jXUj2NS9qnphzpPwhMOqztJuAVd+8PvBK8x8yGAFOAocE2d5vZh3ezugeYCvQPXof/TpGIdtaQHJ77zinkZ6TwjYeL+e/nllJdUxd2WSLH5Kih7+5vAjsOa54MPBQsPwSc36D9cXevcve1QAkwzsxygXR3n+31V7083GAbkXajV1YaT111Mped1Iv7Zq3l4nt13x5pX5o7pp/j7lsAgp/dgvY8YGOD9UqDtrxg+fD2RpnZVDMrNrPiioqKZpYo0jqSE+P5+eRh3P3lMawu38u5d7zFM/M3hV2WSJO09Incxsbp/QjtjXL3ae5e5O5F2dnZLVacSEs6d3guz1/7KfrndOTax+fz/ekL2FtVE3ZZIkfU3NAvC4ZsCH6WB+2lQEGD9fKBzUF7fiPtIu1aQWYq0688ie+e0Y+n55Vyzh1vUrzu8NFQkcjR3NB/Frg8WL4ceKZB+xQzSzKzQupP2M4JhoAqzWx8MGvnsgbbiLRrCfFxfO8zA/n7lScBcPG9s7n1xeU6ySsRqSlTNh8DZgMDzazUzK4AbgHONrNVwNnBe9x9CTAdWAq8CFzt7h9ezXIVcB/1J3dXAy+0cF9EQnVC70xeuPZUvjC2gLtfX83ku95myebdYZcl8m8s0m8hW1RU5MXFxWGXIXJMZi4t40dPL2LnvmquOaMfV5/ej8R4XQspbcfM5rp70eHt+lco0grOHpLDy9edymdH5HL7v1bxH398m4Wlu8IuS0ShL9JaMtI6cMeU0dz7lbFs31vF+Xe9za+eX8aBat2/R8Kj0BdpZROHdmfm907jiycUMO3NNUy8/U3eWKnrTyQcCn2RNtA5JZFff34Ej37zRBLijMsfmMN3HptHeeXBsEuTGKPQF2lDJ/ftygvXfYrrzurPS4u3cuZv3+Avb6+lplbTO6VtKPRF2lhSQjzXnTWAl64/ldG9MvjZ/y7lvD/M4r0128MuTWKAQl8kJIVd03joayfwp0vHUnmwhi9Oe5drHv2ATbsOhF2aRDE9GF0kRGbGpGHdOW1ANn96YzV/emM1/1pWxpWn9uXK0/qQ2kH/i0rL0pG+SARI6RDP9WcP4NUffJozB+dwxyur+PRvXufv72+gti6yL6CU9kWhLxJB8rqkcNeXxvDUVSeRl5HCD59axLl3vMWry8uI9KvnpX1Q6ItEoLG9Mplx1cn88UujOVhTy9cfLOaL977L3PU7wy5N2jmFvkiEMjPOG9GDmdefxi8mD2XNtn1ceM87XPHg+7qRmzSbbrgm0k7sq6rhwXfWce8bq9lzsIbPDs/l2rP6MyCnU9ilSQT6pBuuKfRF2pndBw5x/1truH/WWvYfquXcYbl858x+DOqeHnZpEkEU+iJRZue+au6ftZYH31nH3qoaPjMkh2vO6MeI/C5hlyYRQKEvEqV27a/mgbfX8eDba9lzsIZTB2Rz1Wl9Gd8nk/oH1UksUuiLRLnKg4f427sbuH/WGrbtrWZkfmeuPK0vE4d2Jz5O4R9rFPoiMeLgoVqe+qCUP7+5hnXb91OQmcLXTi7k4hMK6JikK3xjhUJfJMbU1jkvL9nK/bPWUrx+J52SErj4hAIuO6kXvbLSwi5PWplCXySGzd+4i/tnreWFRVuodefMQd247KTenNKvK3Ea+olKCn0RoWzPQR55dz2PvLeB7fuq6Z2VypdP7MVFY/PJSOsQdnnSglol9M1sHVAJ1AI17l5kZpnA34HewDrgYnffGax/M3BFsP533f2lo+1DoS/S8qpqanlx8Vb+9u563l+3kw4JcZwzrDuXjOvJiYWa9RMNWjP0i9x9W4O2W4Ed7n6Lmd0EZLj7D81sCPAYMA7oAfwLGODuR3xKtEJfpHUt37qHx97bwIx5m6g8WENh1zQuGpvPhWPy6d45OezypJnaMvRXAJ929y1mlgu87u4Dg6N83P3XwXovAT9199lH2odCX6RtHKiu5Z+LtjC9eCNz1u4gzuDUAdl8fkw+nxmSQ3JifNglyjH4pNA/3vlbDrxsZg7c6+7TgBx33wIQBH+3YN084N0G25YGbY0VOxWYCtCzZ8/jLFFEmiKlQzwXjc3norH5rN22jyeKN/L0vE1897F5dEpK4NzhuUwe3YPxhVk6+duOHW/oT3D3zUGwzzSz5UdYt7F/JY3+mRF8eUyD+iP946xRRI5RYdc0bpw0iB98ZiDvrtnOUx9s4rmFm/l78Ua6pyfzuZG5fG5kD4bnddb4fztzXKHv7puDn+Vm9jT14/VlZpbbYHinPFi9FChosHk+sPl49i8irSsuzji5X1dO7teV/z5/GP9aVsYz8zfx4Dvr+PNba+mVlcpnh+dy7vBchvZI1xdAO9DsMX0zSwPi3L0yWJ4J/Bw4E9je4ERuprvfaGZDgUf5vxO5rwD9dSJXpP3Zvf8QLy3Zyv8u3Mw7q7dTW+f0zEzlnOHdmTi0O6Pyu2gIKGQtfiLXzPoATwdvE4BH3f2XZpYFTAd6AhuAL7j7jmCbHwNfB2qA69z9haPtR6EvEtl27Ktm5tKtPL9oK2+XbKOmzunWKYmzh+Rw9pAcTuqbRVKCTgK3NV2cJSKtbveBQ7y2vJyXlmzl9RUVHDhUS1qHeD7VP5szBnfj9IHdyO6UFHaZMUGhLyJt6uChWmav3s7MZWW8sqyMsj1VAIzM78xpA7tx2oBsRhV00R1AW4lCX0RC4+4s3bKHV5eV89qKcuZv3EWdQ5fURCb07cop/btySr+uFGSmhl1q1FDoi0jE2LW/mrdWbeONlRXMWrWNrXsOAtA7K5WT+3VlQt+ujO+TSVZHDQU1l0JfRCKSu1NSvpe3Vm3jndXbeHfNDvZW1QAwMKcTJ/XN4sTCTE4ozKSrvgSaTKEvIu1CTW0dC0p38+6a7by7ZjvF63Zy4FD9zO6+2WmMK8xkbK9MTuidQc/MVF0b8AkU+iLSLlXX1LF4827mrN3Be2u2U7x+J5UH6/8S6NoxiTE9uzC2VwZjemUwrEdnUjpoeigo9EUkStTVOavK9zJn3Q7mrd/J3A07Wb99PwAJccag3E6MKujCiPwujCroQt/sjjE5Q0ihLyJRa9veKuZt2MX8jTuZt2EXC0t3f3ReILVDPEN7pDMsrzPD8zoztEdn+mankRAfF3LVrUuhLyIxo67OWbNtHwtL678AFm3azZLNuzl4qA6ApIQ4BuWmMyQ3nSE90hmS24mB3dOj6sHxCn0RiWk1tXWs2baPJZt3s3jTHpZs3s2yLZXsPnDoo3UKMlMY1D2dgTmdGNC9EwNzOlHYNY0OCe3vr4LWup++iEi7kBAfx4CcTgzI6cQFo+vb3J3Nuw+ydPMeVmzdw/KtlSzbsodXl5dTW1d/QBwfZ/TOSqV/t07069bxo1dh1zTS2uFfBu2vYhGRFmJm5HVJIa9LCmcPyfmovaqmljUV+1hZVsmqsr2sLKtkZVklM5eVffRlAJDbOZm+2fVfAIVd0yjMTqMwK428jBQSI/ScgUJfROQwSQnxDM5NZ3Bu+r+1V9XUsn77fkrK97KmYi+rK/axpmIv/5i/6aNppFD/10FBRgo9s9LolZlKr6xUemam0jMrlYKM1FD/QlDoi4g0UVJC/EdDRA25Ozv2VbNm2z7WbdvHuu37WLdtP+t37GPehp3/9oUAkJXWgfzMVPIzUupfXVLIy0ghr0sqeRkprXpCWaEvInKczIysjklkdUzihN6Z//aZu7Nr/yE27tzPhh37Wb99P6U7D1C6cz9LN+9h5pIyqmvr/m2b9OQEenRJ4YlvnUSn5MQWrVWhLyLSisyMjLQOZKR1YER+l499XlfnVOyt+uiLYMvug2zedYCtuw+2yhG/Ql9EJERxcUZOejI56cmM7ZXR+vtr9T2IiEjEUOiLiMQQhb6ISAxR6IuIxJA2D30zm2RmK8ysxMxuauv9i4jEsjYNfTOLB+4CzgGGAJeY2ZC2rEFEJJa19ZH+OKDE3de4ezXwODC5jWsQEYlZbR36ecDGBu9Lg7Z/Y2ZTzazYzIorKirarDgRkWjX1hdnNfbMso/d0N/dpwHTAMyswszWN3N/XYFtzdy2vYrFPkNs9jsW+wyx2e/m9LlXY41tHfqlQEGD9/nA5iNt4O7Zzd2ZmRU39hCBaBaLfYbY7Hcs9hlis98t2ee2Ht55H+hvZoVm1gGYAjzbxjWIiMSsNj3Sd/caM7sGeAmIBx5w9yVtWYOISCxr8xuuufvzwPNttLtpbbSfSBKLfYbY7Hcs9hlis98t1ueIfzC6iIi0HN2GQUQkhij0RURiSFSGfqzc38fMCszsNTNbZmZLzOzaoD3TzGaa2argZ+s/maGNmVm8mc0zs+eC97HQ5y5m9qSZLQ/+m58U7f02s+uDf9uLzewxM0uOxj6b2QNmVm5mixu0fWI/zezmIN9WmNnEY9lX1IV+jN3fpwb4vrsPBsYDVwd9vQl4xd37A68E76PNtcCyBu9joc93AC+6+yBgJPX9j9p+m1ke8F2gyN2HUT/jbwrR2ecHgUmHtTXaz+D/8SnA0GCbu4Pca5KoC31i6P4+7r7F3T8IliupD4E86vv7ULDaQ8D5oRTYSswsH/gscF+D5mjvczpwKnA/gLtXu/suorzf1M8wTDGzBCCV+os5o67P7v4msOOw5k/q52TgcXevcve1QAn1udck0Rj6Tbq/T7Qxs97AaOA9IMfdt0D9FwPQLcTSWsPtwI1AXYO2aO9zH6AC+EswrHWfmaURxf12903Ab4ENwBZgt7u/TBT3+TCf1M/jyrhoDP0m3d8nmphZR+Ap4Dp33xN2Pa3JzM4Dyt19bti1tLEEYAxwj7uPBvYRHcManygYw54MFAI9gDQzuzTcqiLCcWVcNIb+Md/fpz0zs0TqA/8Rd58RNJeZWW7weS5QHlZ9rWAC8B9mto76obszzOxvRHefof7fdam7vxe8f5L6L4Fo7vdZwFp3r3D3Q8AM4GSiu88NfVI/jyvjojH0Y+b+PmZm1I/xLnP32xp89CxwebB8OfBMW9fWWtz9ZnfPd/fe1P+3fdXdLyWK+wzg7luBjWY2MGg6E1hKdPd7AzDezFKDf+tnUn/eKpr73NAn9fNZYIqZJZlZIdAfmNPk3+ruUfcCzgVWAquBH4ddTyv28xTq/6xbCMwPXucCWdSf7V8V/MwMu9ZW6v+ngeeC5ajvMzAKKA7+e/8DyIj2fgM/A5YDi4G/AknR2GfgMerPWxyi/kj+iiP1E/hxkG8rgHOOZV+6DYOISAyJxuEdERH5BAp9EZEYotAXEYkhCn0RkRii0BcRiSEKfRGRGKLQFxGJIf8fg/oUEn+mEfoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(tvect, Ev)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiEUlEQVR4nO3de3Sc9X3n8fd3ZnS/WBdLQpZ8w8iAzc1YuCZQkkIIhrIx6Tat26R4E3bd5dCG5OScLpzudk/PLi1tuj0Np4UuS5qYTRvi5lLcJNCwjpMmjQOWuRnb2JaxwbKNJN9lybp/94/5yYxl2RrZkkaa5/M6Z87zPN95npnfLzif59Hv+c2MuTsiIhINsUw3QEREJo9CX0QkQhT6IiIRotAXEYkQhb6ISIQkMt2A0cycOdPnzZuX6WaIiEwrW7ZsOezuVcPrUz70582bR1NTU6abISIyrZjZuyPVNbwjIhIhCn0RkQhR6IuIRMiooW9mV5rZ6ymPk2b2eTOrMLOXzGx3WJanHPOomTWb2U4zuyulvtTMtobnnjAzm6iOiYjIuUYNfXff6e43uPsNwFKgC/gu8Aiwwd0bgA1hGzNbBKwCFgMrgCfNLB5e7ilgDdAQHivGtTciInJBYx3euQPY4+7vAiuBtaG+FrgvrK8EnnP3HnffCzQDy8ysFih1902e/Ja3Z1OOERGRSTDW0F8FfCOs17j7IYCwrA71OmB/yjEtoVYX1ofXz2Fma8ysycya2tvbx9hEERE5n7RD38xygY8D/zjariPU/AL1c4vuT7t7o7s3VlWd89mCtKz9+T7++Y2DF3WsiEi2GsuV/t3Aq+7eGrZbw5ANYdkW6i3A7JTj6oGDoV4/Qn1CfHPzfr772oGJenkRkWlpLKH/W3wwtAOwHlgd1lcDz6fUV5lZnpnNJ3nD9pUwBNRhZsvDrJ37U44Zd3XlBbQc65qolxcRmZbSCn0zKwTuBL6TUn4cuNPMdofnHgdw923AOmA78CLwkLsPhGMeBJ4heXN3D/DCOPRhRPXlBRw4dhr9MpiIyAfS+u4dd+8CKofVjpCczTPS/o8Bj41QbwKuGXszx66urIDO3gGOd/VRXpQ7GW8pIjLlZe0ncuvLCwE4cPx0hlsiIjJ1ZHHoFwBoXF9EJEUEQl9X+iIiQ7I29GcU5FCUG9fwjohIiqwNfTOjvrxQV/oiIimyNvQhOVf/gEJfROSMrA79en1AS0TkLFkd+nVlBZzs7udkd1+mmyIiMiVkdeifmauvIR4RESDLQ78uTNtU6IuIJGV16OsDWiIiZ8vq0K8syiU/J6a5+iIiQVaHvplRV1agufoiIkFWhz5AXXmhrvRFRIKsD/3kXH2FvogIRCD068oKONrZS1dvf6abIiKScVkf+vWatikickZkQr9F4/oiIlEIfX0qV0RkSLo/jF5mZt8ys7fNbIeZ3WxmFWb2kpntDsvylP0fNbNmM9tpZnel1Jea2dbw3BNmZhPRqVRVxXnkxmO6mSsiQvpX+l8GXnT3q4DrgR3AI8AGd28ANoRtzGwRsApYDKwAnjSzeHidp4A1QEN4rBinfpxXLGbMKsvXtE0REdIIfTMrBW4DvgLg7r3ufhxYCawNu60F7gvrK4Hn3L3H3fcCzcAyM6sFSt19k7s78GzKMROqvryQ947qqxhERNK50r8caAe+amavmdkzZlYE1Lj7IYCwrA771wH7U45vCbW6sD68PuHmVhby7pHOyXgrEZEpLZ3QTwA3Ak+5+xKgkzCUcx4jjdP7BernvoDZGjNrMrOm9vb2NJp4YfNnFnG8q4/jXb2X/FoiItNZOqHfArS4+8th+1skTwKtYciGsGxL2X92yvH1wMFQrx+hfg53f9rdG929saqqKt2+nNfcyiIA9h3REI+IRNuooe/u7wP7zezKULoD2A6sB1aH2mrg+bC+HlhlZnlmNp/kDdtXwhBQh5ktD7N27k85ZkLNn5mctrnvsIZ4RCTaEmnu9/vA35tZLvAO8BmSJ4x1ZvYA8B7wSQB332Zm60ieGPqBh9x9ILzOg8DXgALghfCYcPXlhZjBPo3ri0jEpRX67v460DjCU3ecZ//HgMdGqDcB14yhfeMiPyfOrBkFutIXkcjL+k/kDpk3s1Bj+iISedEJ/coiDe+ISORFKvQ1bVNEoi4yoT+3Mszg0RCPiERYZEJ//szkXH19MldEoiwyoT+7Ijltc69m8IhIhEUm9Iembb6r4R0RibDIhD4kx/V1pS8iURap0J83s0hj+iISadEK/cpCjnX1caKrL9NNERHJiIiF/tC3bepqX0SiKVqhP1OhLyLRFqnQnxOmbe47rBk8IhJNkQr9/Jw4taX5utIXkciKVOhD8le0NG1TRKIqcqG/oLqIPe2ncB/x53lFRLJa5EJ/YU0JHd39tHX0ZLopIiKTLnKhf0V1MQC7W09luCUiIpMvcqHfUF0CwK7Wjgy3RERk8kUu9GcW51JWmMPuNl3pi0j0pBX6ZrbPzLaa2etm1hRqFWb2kpntDsvylP0fNbNmM9tpZnel1JeG12k2syfMzMa/S6P2hYbqYprbdKUvItEzliv9X3H3G9y9MWw/Amxw9wZgQ9jGzBYBq4DFwArgSTOLh2OeAtYADeGx4tK7MHYNNSXsatUMHhGJnksZ3lkJrA3ra4H7UurPuXuPu+8FmoFlZlYLlLr7Jk+m7bMpx0yqhupiTpzuo/2UZvCISLSkG/oO/NDMtpjZmlCrcfdDAGFZHep1wP6UY1tCrS6sD6+fw8zWmFmTmTW1t7en2cT0Dd3MbdYMHhGJmHRD/xZ3vxG4G3jIzG67wL4jjdP7BernFt2fdvdGd2+sqqpKs4npa6gJ0zZ1M1dEIiat0Hf3g2HZBnwXWAa0hiEbwrIt7N4CzE45vB44GOr1I9QnXXVJHqX5CXbrZq6IRMyooW9mRWZWMrQOfAx4C1gPrA67rQaeD+vrgVVmlmdm80nesH0lDAF1mNnyMGvn/pRjJpWZ0VBTog9oiUjkJNLYpwb4bphdmQD+wd1fNLPNwDozewB4D/gkgLtvM7N1wHagH3jI3QfCaz0IfA0oAF4Ij4xoqC7mh9tbM/X2IiIZMWrou/s7wPUj1I8Ad5znmMeAx0aoNwHXjL2Z4++K6mKe27yfI6d6qCzOy3RzREQmReQ+kTtkYU1yBo9u5opIlEQ29DWDR0SiKLKhf1lpPsV5CZr1xWsiEiGRDX0z44rqYnZpBo+IREhkQx9gYU0xu1o79B08IhIZkQ79RbWlHOns1a9oiUhkRDv0Z80AYNvBExluiYjI5Ih06F9dm5y2ue3AyQy3RERkckQ69Evyc5hXWci2gwp9EYmGSIc+wOJZM9h+SKEvItEQ+dBfNKuU9452cbK7L9NNERGZcAr9WaUAbNcQj4hEQORDf3EIfY3ri0gURD70q0vyqSrJ07RNEYmEyIc+JK/2NbwjIlGg0CcZ+s1tp+jpHxh9ZxGRaUyhDyyqnUH/oLPrfX35mohkN4U+qTdzNa4vItlNoQ/MqSikOC+hGTwikvUU+kAsZiyqLdUnc0Uk66Ud+mYWN7PXzOx7YbvCzF4ys91hWZ6y76Nm1mxmO83srpT6UjPbGp57wsxsfLtz8RaFGTwDg/pufRHJXmO50n8Y2JGy/Qiwwd0bgA1hGzNbBKwCFgMrgCfNLB6OeQpYAzSEx4pLav04umF2Gaf7Btj5vn4+UUSyV1qhb2b1wK8Cz6SUVwJrw/pa4L6U+nPu3uPue4FmYJmZ1QKl7r7Jkz9V9WzKMRl345zkHyqv7T+W4ZaIiEycdK/0/wr4A2AwpVbj7ocAwrI61OuA/Sn7tYRaXVgfXj+Hma0xsyYza2pvb0+ziZdmdkUBlUW5vPru8Ul5PxGRTBg19M3sXqDN3bek+ZojjdP7BernFt2fdvdGd2+sqqpK820vjZmxZE6ZrvRFJKulc6V/C/BxM9sHPAfcbmZfB1rDkA1h2Rb2bwFmpxxfDxwM9foR6lPGkjnlvNPeyfGu3kw3RURkQowa+u7+qLvXu/s8kjdof+TunwbWA6vDbquB58P6emCVmeWZ2XySN2xfCUNAHWa2PMzauT/lmClhyZwyAF7bfzyj7RARmSiXMk//ceBOM9sN3Bm2cfdtwDpgO/Ai8JC7D32pzYMkbwY3A3uAFy7h/cfd9fVlxAxee+94ppsiIjIhEmPZ2d1/DPw4rB8B7jjPfo8Bj41QbwKuGWsjJ0tRXoIrLyvltfc0ri8i2UmfyB1myZwyXt9/nEF9SEtEspBCf5gls8vo6O5nT7u+cVNEso9Cf5gb54YPaWlcX0SykEJ/mPmVRcwoyOFVjeuLSBZS6A8Tixk3zC7Tlb6IZCWF/ghunFPOrrYOTpzuy3RTRETGlUJ/BMvmV+AOr+w9mummiIiMK4X+CJbMKSM3EWPTniOZboqIyLhS6I8gPyfO0jnlbHpHoS8i2UWhfx43L6hkx6GTHOvUl6+JSPZQ6J/HzQsqAXh5r672RSR7KPTP4/r6Mgpy4hrXF5GsotA/j9xEjMZ5GtcXkeyi0L+A5ZdXsqv1FIdP9WS6KSIi40KhfwFD4/q/0NW+iGQJhf4FXFs3g6JcjeuLSPZQ6F9ATjzGTfMrNK4vIllDoT+KDy2o5J32Tt4/0Z3ppoiIXDKF/ihuW1gFwI93tmW4JSIil27U0DezfDN7xczeMLNtZvbHoV5hZi+Z2e6wLE855lEzazaznWZ2V0p9qZltDc89YWY2Md0aP1fWlDBrRj4/eluhLyLTXzpX+j3A7e5+PXADsMLMlgOPABvcvQHYELYxs0XAKmAxsAJ40szi4bWeAtYADeGxYvy6MjHMjI9cVc3Pmg/T0z+Q6eaIiFySUUPfk4Z+MDYnPBxYCawN9bXAfWF9JfCcu/e4+16gGVhmZrVAqbtvcncHnk05Zkq7/cpqunoH9FXLIjLtpTWmb2ZxM3sdaANecveXgRp3PwQQltVh9zpgf8rhLaFWF9aH10d6vzVm1mRmTe3t7WPozsT40BWV5CZibHw7820REbkUaYW+uw+4+w1APcmr9msusPtI4/R+gfpI7/e0uze6e2NVVVU6TZxQhbkJbr68ko26mSsi09yYZu+4+3HgxyTH4lvDkA1hOZSILcDslMPqgYOhXj9CfVq4/apq9h7uZO/hzkw3RUTkoqUze6fKzMrCegHwUeBtYD2wOuy2Gng+rK8HVplZnpnNJ3nD9pUwBNRhZsvDrJ37U46Z8n7lyuTolWbxiMh0ls6Vfi2w0czeBDaTHNP/HvA4cKeZ7QbuDNu4+zZgHbAdeBF4yN2Hpr08CDxD8ubuHuCFcezLhJpTWciCqiI2KvRFZBpLjLaDu78JLBmhfgS44zzHPAY8NkK9CbjQ/YAp7farqvnaz/dxqqef4rxR/6cTEZly9IncMbjj6hr6BlyfzhWRaUuhPwY3zatgZnEe33/zUKabIiJyURT6YxCPGfdcexk/eruNzp7+TDdHRGTMFPpjdO91s+jpH2SDbuiKyDSk0B+jxrnlVJfk8f03p81HDEREzlDoj1EsZtxzbS0bd7ZzSkM8IjLNKPQvwr3X1dLbP8iGHa2ZboqIyJgo9C/CjXPKuaw0n+9pFo+ITDMK/YswNMTzk53tdHT3Zbo5IiJpU+hfpHuvr6V3YJAXtr6f6aaIiKRNoX+RlswuY0FVEd9s2j/6ziIiU4RC/yKZGb9502y2vHuM5raOTDdHRCQtCv1L8Ikl9SRixrqmltF3FhGZAhT6l6CqJI/br6rmO6+20DcwmOnmiIiMSqF/iX7zptkcPtWrH1cRkWlBoX+JPrywiuqSPNZt1g1dEZn6FPqXKBGP8etL69m4s43Wk92Zbo6IyAUp9MfBbzTOZtDhH15+L9NNERG5IIX+OJg3s4g7rqrm6794l+6+gdEPEBHJEIX+OHng1vkc6ezl+dcPZLopIiLnNWrom9lsM9toZjvMbJuZPRzqFWb2kpntDsvylGMeNbNmM9tpZnel1Jea2dbw3BNmZhPTrcl384JKrq4t5Ss/24u7Z7o5IiIjSudKvx/4ortfDSwHHjKzRcAjwAZ3bwA2hG3Cc6uAxcAK4Ekzi4fXegpYAzSEx4px7EtGmRkP3DqfXa2n+Onuw5lujojIiEYNfXc/5O6vhvUOYAdQB6wE1obd1gL3hfWVwHPu3uPue4FmYJmZ1QKl7r7Jk5fCz6YckxX+3fW1VJXk8ZWf7c10U0RERjSmMX0zmwcsAV4Gatz9ECRPDEB12K0OSJ203hJqdWF9eH2k91ljZk1m1tTe3j6WJmZUXiLO/cvn8pNd7exq1ffxiMjUk3bom1kx8G3g8+5+8kK7jlDzC9TPLbo/7e6N7t5YVVWVbhOnhE8tn0tBTpwnNzZnuikiIudIK/TNLIdk4P+9u38nlFvDkA1hOfQ9BC3A7JTD64GDoV4/Qj2rVBTlcv+H5vL8Gwf17ZsiMuWkM3vHgK8AO9z9L1OeWg+sDuurgedT6qvMLM/M5pO8YftKGALqMLPl4TXvTzkmq/zubQsozInzV/9vd6abIiJylnSu9G8Bfge43cxeD497gMeBO81sN3Bn2MbdtwHrgO3Ai8BD7j70iaUHgWdI3tzdA7wwnp2ZKiqKcvkPt8zj+1sPsfN9Xe2LyNRhU31OeWNjozc1NWW6GWN2vKuXW/9sI7ctnMmTn1qa6eaISMSY2RZ3bxxe1ydyJ0hZYS6fvXU+P9j6PtsPXui+t4jI5FHoT6AHbp3PjIIc/uQHO/QpXRGZEhT6E2hGQQ5f+GgDP2s+zEvbWzPdHBERhf5E+/TyuSysKeZ/fn+HvoFTRDJOoT/BEvEYf3TvYt472qWvZxCRjFPoT4JbG2bysUU1/M3GZt4/oV/XEpHMUehPkv/6q4voH3D+x/e2Z7opIhJhCv1JMqeykIc/2sD3tx7iB1sPZbo5IhJRCv1J9Lu3Xc61dTP4b//0Fkc7ezPdHBGJIIX+JErEY3zpk9dxsruP/75+W6abIyIRpNCfZFddVsrnbm/gn984yItvaZhHRCaXQj8D/vNHFnBt3Qz+y7e30nKsK9PNEZEIUehnQE48xl//9hIGB52H/uE1evsHM90kEYkIhX6GzK0s4s9//Tre2H+cP31hR6abIyIRodDPoLuvreUzt8zjq/+2T9M4RWRSKPQz7NG7r2bJnDK+uO4NtracyHRzRCTLKfQzLDcR43//zlIqinL57NrNurErIhNKoT8FVJfk89XP3ER33wCf/dpmTnb3ZbpJIpKlFPpTxMKaEv7200t5p72T3312i76GWUQmhEJ/Crnlipl86ZPX8Yu9R/hPzzYp+EVk3I0a+mb2d2bWZmZvpdQqzOwlM9sdluUpzz1qZs1mttPM7kqpLzWzreG5J8zMxr87098nltTzZ//+On66+zAPfn0LPf0KfhEZP+lc6X8NWDGs9giwwd0bgA1hGzNbBKwCFodjnjSzeDjmKWAN0BAew19Tgt9onM2f/tq1bNzZzoNff5XTvQp+ERkfo4a+u/8rcHRYeSWwNqyvBe5LqT/n7j3uvhdoBpaZWS1Q6u6bPPkL4c+mHCMj+K1lc/iTT1zLxp1tfOqZX3BM38opIuPgYsf0a9z9EEBYVod6HbA/Zb+WUKsL68PrIzKzNWbWZGZN7e3tF9nE6e+3f2kOT/72jbx18CS//rc/13ROEblk430jd6Rxer9AfUTu/rS7N7p7Y1VV1bg1bjq6+9pavv7AL9He0cMnnvw5TfuG/9ElIpK+iw391jBkQ1i2hXoLMDtlv3rgYKjXj1CXNCybX8G3HvwQRblxVj39C57dtI/kKJmIyNhcbOivB1aH9dXA8yn1VWaWZ2bzSd6wfSUMAXWY2fIwa+f+lGMkDQtrSnj+927lwwur+KPnt/HFf3yDUz39mW6WiEwz6UzZ/AawCbjSzFrM7AHgceBOM9sN3Bm2cfdtwDpgO/Ai8JC7D009eRB4huTN3T3AC+Pcl6w3oyCH/3N/I1/46EK++9oB7vnyT9nyroZ7RCR9NtWHCRobG72pqSnTzZhyNu87yhe++ToHj5/mwY8s4PdvbyA/Jz76gSISCWa2xd0bh9f1idxp6qZ5Fbzw8C/zazfW8zcb93DPl3/KvzUfznSzRGSKU+hPYyX5OfzFJ6/n2c8uY8CdTz3zMg8/9xqHTpzOdNNEZIpS6GeB2xZW8S+fv43P3dHAC1vf5yNf+jF//uLb+rZOETmHxvSzzP6jXfyvH+7kn14/SHlhDv/xly/n/pvnUpKfk+mmicgkOt+YvkI/S7114ARf+ped/GRXOzMKcvjMLfO4/+Z5VBTlZrppIjIJFPoR9cb+4/z1xmZe2t5KXiLGJ5bU8Zlb5nPlZSWZbpqITCCFfsTtau3gq/+2j+++1kJ33yCNc8v5jZtmc+91tRTmJjLdPBEZZwp9AeBYZy/rmvbzzc37eedwJ8V5Ce5afBkfv2EWtyyoJBHXvX2RbKDQl7O4O03vHmPd5v28+Nb7dPT0U1mUy8cW1/CxRZdx84JKfdhLZBpT6Mt5dfcN8JNd7fzzGwfZ+HYbnb0DFOXGueWKmXz4yipua6hidkVhppspImNwvtDXYK6QnxPnrsWXcdfiy+jpH2DTniP8cHsrP9nZzg+3twIwf2YRyy+vYPnllSy/vJKa0vwMt1pELoau9OW83J097Z38ZFc7m/Yc5uV3jtIRvtmzvryApXPLWTK7jOtml7GotlTDQSJTiIZ35JINDDrbDp5g875jbHn3KE37jtHW0QNAImYsrClh8axSFs0q5eraUq6sKaFcnwsQyQiFvow7d+fQiW7ebDnOmy0n2HrgBNsPnuRIyu/5VpXksbCmmCuqillQXcyCqmLmzSyitjSfWGykH1QTkfGgMX0Zd2bGrLICZpUVsOKaWiB5Imjv6GH7oZPsbj3FztYOdrd28O1XD5z1oy+5iRhzKwqZW1nI7IpCZpcXUldeQF1ZAfXlBcwoyCH5ezsiMp4U+jKuzIzq0nyqS/P5yJXVZ+ruTltHD3vaTrHvSBf7jnSy73An7x3tYtOeI3T2Dpz1OoW5cWpn5DOrrICa0nxqSvO4rDSfqpJ8qkvzqCrOo6okT/cRRMZIoS+TwsxCeOfzoSvOfs7dOdrZy4Hjp2k5dpoDx05z6EQ3h06c5uCJbprbDtPW0cPA4LlDkSV5CWaW5DGzOJeKolwqi/OoLMqlvDC5XV6US3lhDmUFuZQV5VCSl9BfEBJpCn3JODNLhnVxHtfVl424z8Cgc+RUD20dPbR1dNN2sofDp3o4fKqX9lM9HDnVwzvtnTTtO8axrl5GOD8AEI8ZMwpymFGQQ+nQMj9BaUEOpfk5lOQnKM1PUBLWi/MSFOcnKMnLoSgvTnF+gryE/rqQ6UuhL9NCPPbBsBHMuOC+A4POydN9HOns5XhXL8e7+jgWlidO93H8dHL9ZHc/J073sf9oFx3dfZw83U/vwOCobcmJG4W5yRNCYW6cwrwERblxCnMTFOXFKcyNU5CTXC/IjVOYk3wuPzdOQU545MbID+v54VGQEycvEdMNbplQkx76ZrYC+DIQB55x98cnuw2S3eIxSw7rXMR00e6+ATq6++no7qOju5/Onn46evrPrJ8Kj66efk71DNDZ009X3wBdPf0c7ezidN8AnT0DnO5N1i9mclxuPEZeTvKkkJeIhZNCjLxEcjsvESM3kdzOTdkequUlYuTGP6jlxmPknKkZufE4OXEjNxEjJz70MHLCManbOfEYcZ2Essqkhr6ZxYG/Ae4EWoDNZrbe3bdPZjtEzmfoqruqJO+SX8vd6ekfpKt3gNN9A5zuTT66+5PLrt4BevoH6O4bqg/S3TdAd19y2dM/SE9fcv+evkF6wvOnevrD9gC9/cl6T/8gvf2Daf2lMlZmkBOLkThzIjASKduJmJEI9XjMyIklTxSJuA17LrlvPGZn9k0M7RvqQ49EzIidqceIG8TjMeJ29nOxmBE3Ix6DmCWP/aBmZ2pnPW8fvE/MkvXUY2MGcTNsaD8zLDa03wf7n1mfZifFyb7SXwY0u/s7AGb2HLASUOhL1jGzMyeRyeLu9A6EE0A4CfT1O70DyZNI34DTF54fWvYODNI/VE9Z7+lPrvcPfnBc/8AgfYNO/9B+Q+tnLZPHnO5zBgbDcYPO4KCftd/Qc4MO/YPJ1xtwv6i/jjIt9WRglnKCiH1wgrCwhNSTR6jHwFLqFurf/9yt434PabJDvw7Yn7LdAvzS8J3MbA2wBmDOnDmT0zKRLGBmYYhn+t5sHjo5DHpyORBOBgPhRDHgyVr/4CCD7gwMJu/jDPoHzw8Opq4zQi0snTP1wXDCGXov96E6DLqHR1gfPHvd4UxbnPA6qa856Gfqg548OXs4fsAdzrwHZ17L3YlNwEyzyQ79kXpwznnd3Z8GnobkJ3InulEiMnXEYkbuNBsymU4m+xczWoDZKdv1wMFJboOISGRNduhvBhrMbL6Z5QKrgPWT3AYRkcia1OEdd+83s98D/oXklM2/c/dtk9kGEZEom/R5+u7+A+AHk/2+IiIy+cM7IiKSQQp9EZEIUeiLiESIQl9EJEKm/M8lmlk78O5FHj4TODyOzZkOothniGa/o9hniGa/L6bPc929anhxyof+pTCzppF+IzKbRbHPEM1+R7HPEM1+j2efNbwjIhIhCn0RkQjJ9tB/OtMNyIAo9hmi2e8o9hmi2e9x63NWj+mLiMjZsv1KX0REUij0RUQiJCtD38xWmNlOM2s2s0cy3Z6JYmazzWyjme0ws21m9nCoV5jZS2a2OyzLM93W8WZmcTN7zcy+F7aj0OcyM/uWmb0d/pvfnO39NrMvhH/bb5nZN8wsPxv7bGZ/Z2ZtZvZWSu28/TSzR0O+7TSzu8byXlkX+ik/vn43sAj4LTNblNlWTZh+4IvufjWwHHgo9PURYIO7NwAbwna2eRjYkbIdhT5/GXjR3a8CrifZ/6ztt5nVAZ8DGt39GpJfx76K7Ozz14AVw2oj9jP8f3wVsDgc82TIvbRkXeiT8uPr7t4LDP34etZx90Pu/mpY7yAZAnUk+7s27LYWuC8jDZwgZlYP/CrwTEo52/tcCtwGfAXA3Xvd/ThZ3m+SX/9eYGYJoJDkL+1lXZ/d/V+Bo8PK5+vnSuA5d+9x971AM8ncS0s2hv5IP75el6G2TBozmwcsAV4Gatz9ECRPDEB1Bps2Ef4K+ANgMKWW7X2+HGgHvhqGtZ4xsyKyuN/ufgD4C+A94BBwwt1/SBb3eZjz9fOSMi4bQz+tH1/PJmZWDHwb+Ly7n8x0eyaSmd0LtLn7lky3ZZIlgBuBp9x9CdBJdgxrnFcYw14JzAdmAUVm9unMtmpKuKSMy8bQj9SPr5tZDsnA/3t3/04ot5pZbXi+FmjLVPsmwC3Ax81sH8mhu9vN7Otkd58h+e+6xd1fDtvfInkSyOZ+fxTY6+7t7t4HfAf4ENnd51Tn6+clZVw2hn5kfnzdzIzkGO8Od//LlKfWA6vD+mrg+clu20Rx90fdvd7d55H8b/sjd/80WdxnAHd/H9hvZleG0h3AdrK73+8By82sMPxbv4Pkfats7nOq8/VzPbDKzPLMbD7QALyS9qu6e9Y9gHuAXcAe4A8z3Z4J7OetJP+sexN4PTzuASpJ3u3fHZYVmW7rBPX/I8D3wnrW9xm4AWgK/73/CSjP9n4Dfwy8DbwF/F8gLxv7DHyD5H2LPpJX8g9cqJ/AH4Z82wncPZb30tcwiIhESDYO74iIyHko9EVEIkShLyISIQp9EZEIUeiLiESIQl9EJEIU+iIiEfL/AZr+WEEt1cT9AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(tvect, Eu)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAovklEQVR4nO3deXhV1b3/8fc3IwGSkJAAGYgJM4SZgKA4a6VqRa1StIqtVhywDu3PttZ723pbW297tQ63aqnzhFJnrTNYR6YgYwhDmBMgCYRAAmRevz+yvTeXBgiQZJ+c83k9z3nOOeucfc53SfxkZ+211zbnHCIiEhrC/C5ARETaj0JfRCSEKPRFREKIQl9EJIQo9EVEQkiE3wUcSVJSksvMzPS7DBGRDmXx4sU7nXPJB7cHfOhnZmaSm5vrdxkiIh2KmW1urv2Iwztm1snMFprZMjPLM7O7vfZEM/vIzNZ59wlNtrnTzArMbI2ZndukfYyZrfBee8jMrDU6JyIiLdOSMf1q4Ezn3AhgJDDJzMYDvwDmOOf6A3O855jZEGAqkA1MAh4xs3Dvsx4FpgP9vduk1uuKiIgcyRFD3zWq9J5GejcHTAae8dqfAS7yHk8GXnLOVTvnNgIFwDgzSwHinHPzXONpwM822UZERNpBi2bvmFm4mS0FSoCPnHMLgJ7Oue0A3n0P7+1pwNYmmxd6bWne44Pbm/u+6WaWa2a5paWlR9EdERE5nBaFvnOu3jk3Ekinca996GHe3tw4vTtMe3PfN9M5l+Ocy0lO/peDzyIicoyOap6+c64c+CeNY/HF3pAN3n2J97ZCoHeTzdKBbV57ejPtIiLSTloyeyfZzLp5j2OAs4HVwFvA1d7brgbe9B6/BUw1s2gzy6LxgO1CbwiowszGe7N2pjXZRkRE2kFL5umnAM94M3DCgNnOuXfMbB4w28yuBbYAlwE45/LMbDawCqgDZjjn6r3PuhF4GogB3vNuIa2qtp6lW8vZWraffdV1VFbXERURRkZiFzISO9MnuQudIsOP/EEiIi1ggb6efk5Ojgu2k7Mqqmp5edFW5uSXsHjLbmrqGg753uiIME7pn8y3hvTk7CE9SewS1Y6VikhHZWaLnXM5B7cH/Bm5waS0opqnvtzIc/M3U1FVx+CUOK4afwIT+nSnf8+uxHaKpEt0OFW1DWzZtZ/NZfvI3bSbj1YV83F+MVFvhnHZmHSuP7UvGd07+90dEemAtKffDpxz/D23kP94ZxX7auo4b2gKN5zWl2Hp8S3ePm/bXl5cuIVXcgupd47JI1P5xaRB9Ijr1MbVi0hHdKg9fYV+GyutqObO15bzcX4J4/sk8vuLh9Enuesxf17x3ioe/3wDz8zbTHREGD+fNIgrxmUQFqYVLUTkfyn0fbCicA8/fHohe6vq+PmkQfzwpMxWC+eNO/fxb2+s4MuCXYzO6MaDU0fRO1FDPiLS6FChr/X028hXBTuZOnMe0RHhvPPjiVw7MatV98azkrrw/LUncv+UEawrqeT8hz7no1XFrfb5IhKcFPpt4L0V2/nBU4tIS4jh1RtPYkDP2Db5HjPjktHp/OPHp3BC9y5c92wuv383n7r6Q88GEpHQptBvZXPyi5nx4tcMS49n9vUT6BXf9gdaM7p35u83TODK8RnM/GwDNzy/mP01dW3+vSLS8Sj0W9GKwj3c/OISslPjefaacXTr3H5z6jtFhvO7i4bx28nZzF1dwuUz57Ozsrrdvl9EOgaFfispKj/ANc8sIrFLFE/8IIcu0f6cAnHVhEweu3IMa4oruOSRr9iya78vdYhIYFLot4LK6jqueWoRVbX1PPXDsfSI9Xfu/LeyezHruvHsrapl6sx5bN61z9d6RCRwKPRbwW/eymNdSQWPfn9Mmx20PVqjMhJ44UcncqC2nqkz57Npp4JfRBT6x+2d5dt4ZXEhM87ox8T+SX6X839kp8bz4nXjqa5r4Hsz5yn4RUShfzyKyg9w52srGNm7G7ec1d/vcpo1OCWOWdeNp6augSufWEDx3iq/SxIRHyn0j1F9g+P2l5bS0OB4cOpIIsMD9z/lwF6xPP3DcezeV8O0JxZSvr/G75JExCeBm1QB7rl5m1i4qYy7Jw/lhO5d/C7niEb07sbMaTls3LmPa55epHn8IiFKoX8MSiqquO/DtZzSP4nvjm722u4B6eR+STx0+SiWbi3nlllLqW8I7HWXRKT1KfSPwe//kU91XQN3X5hN45UfO45JQ3vxmwuz+Ti/mHv+ke93OSLSznQRlaM0b/0u3li6jZvP6HdcSyT7adqETDbt3M+TX27khO6dufqkTL9LEpF2otA/CrX1DfzqzZWkJ8Qw44x+fpdzXO46fzBbyvZz99t5ZHTvzBkDe/hdkoi0Aw3vHIUXF2xhXUklv/5ONjFRHfti5eFhxkOXj2RQrzhumbWE9aWVfpckIu1Aod9C+2vqeHhuASdmJXL24ODYK+4cFcHMaWOIDA/jumdz2VtV63dJItLGFPot9PRXm9hZWc0d5w7scAdvDyc9oTOPfH80W3bt57aXNKNHJNgp9Ftgz4Fa/vrpBs4c1IOczES/y2l14/t059ffGcLc1SU88PFav8sRkTak0G+Bxz/fwJ4Dtfz0WwP8LqXNXDn+BKbkpPPw3ALmrtZlF0WClUL/CHZWVvPEFxs5f3gK2anxfpfTZsyM/5g8lCEpcdz20lK2lmkdfpFgpNA/gie/2MiB2npuPzt49/K/0SkynMeuHAPADc8vpqq23ueKRKS1KfQPo7K6jufnb2ZSdi/69eiYJ2IdrYzunbl/ykjytu3l7rfz/C5HRFrZEUPfzHqb2Sdmlm9meWZ2q9f+GzMrMrOl3u28JtvcaWYFZrbGzM5t0j7GzFZ4rz1kAT4NZvaireytqmP6qX38LqVdnT2kJzee3pdZC7fy5tIiv8sRkVbUkj39OuCnzrnBwHhghpkN8V77s3NupHd7F8B7bSqQDUwCHjGzb85kehSYDvT3bpNaryutq66+gSe+2MjYzARGZST4XU67++k5A8g5IYFfvraCDTpxSyRoHDH0nXPbnXNfe48rgHzgcEtLTgZecs5VO+c2AgXAODNLAeKcc/Occw54FrjoeDvQVt5duYOi8gNMP7Wv36X4IiI8jIcuH0VkRBgzXlyi8X2RIHFUY/pmlgmMAhZ4TTeb2XIze9LMvtkdTgO2Ntms0GtL8x4f3N7c90w3s1wzyy0tLT2aEluFc46Zn62nT1IXzhoUHGffHovUbjHcP2UE+dv3akVOkSDR4tA3s67Aq8Btzrm9NA7V9AVGAtuB+755azObu8O0/2ujczOdcznOuZzk5OSWlthq5m8oY2XRXn50Sh/CwgL6sEObO3NQT647JYvn5m/mg7wdfpcjIsepRaFvZpE0Bv4LzrnXAJxzxc65eudcA/A3YJz39kKgd5PN04FtXnt6M+0B57n5m0joHMklHegCKW3pjnMHMSwtnp+/upztew74XY6IHIeWzN4x4Akg3zl3f5P2lCZvuxhY6T1+C5hqZtFmlkXjAduFzrntQIWZjfc+cxrwZiv1o9WUVlTzYV4x3x2dTqfIjr2SZmuJimgc36+pa9D6PCIdXEv29E8GrgLOPGh65h+96ZfLgTOA2wGcc3nAbGAV8D4wwzn3zVHAG4HHaTy4ux54r1V70wpeWVxIXYNj6rgMv0sJKFlJXfiPyUNZsLGMRz4p8LscETlGR7yIinPuC5ofj3/3MNvcA9zTTHsuMPRoCmxPDQ2OlxdtYVxWYsicjHU0vjs6jc/WlvLAnHVM7J8UklNZRTo6nZHbxPwNu9i0az9XaC+/WWbGby8aSq+4Ttz28lIqq+v8LklEjpJCv4kXF24hPiaSSUN7+V1KwIqPieTP3xvJ1rL93P2WlmkQ6WgU+p5dldV8kLeDS0an6QDuEYzLSuSm0/vx98WFvLtiu9/liMhRUOh7Xl9SRG2943IN7bTIrWf3Z0R6PHe+toIde6r8LkdEWkih73ljaREj0uMZ0DPW71I6hMjwMB6Y2jiN845XltGgaZwiHYJCH9hQWsnKor18Z0Sq36V0KFlJXfi3Cwbz+bqdPP3VJr/LEZEWUOgDby/bjhlcMFyhf7SuGJfBWYN6cO/7q1lbXOF3OSJyBCEf+s453lpWxLjMRHrFd/K7nA7HzLj3u8OJjY7gtpeWUlPX4HdJInIYIR/6q7bvZX3pPg3tHIfk2Gj+87vDWbV9Lw98vNbvckTkMEI+9N9etp3wMOO8YSlHfrMc0tlDevK9nN489ul6cjeV+V2OiBxCSIe+c463l21jYr8kErtE+V1Oh/fv3xlCWkIMP5m9TGfrigSokA79r7eUU1R+gAs1tNMqukZHcP+UkWzdvZ/fvbPK73JEpBkhHfrvLN9GVEQY52T39LuUoDE2M5HrT+3LS4u2Mie/2O9yROQgIRv6zjk+zi/mlH5JxHWK9LucoHL7Of0Z1CuWn7+6gl2V1X6XIyJNhGzoF5RUsrXsAGcODt1r4LaV6Ihw/vy9kew9UMtdr6/EOZ2tKxIoQjb0P84vAeDMEL7weVsanBLHT741gPfzdvD6kiK/yxERT8iG/tzVxWSnxpESH+N3KUHrulP6MDYzgV+/mUdRua6tKxIIQjL0d++rYfHm3Zylvfw2FR5m3HfZSBqc446/a1E2kUAQkqH/6dpSGhycOVizdtpaRvfO/PsFQ/hq/S4tyiYSAEIy9D/OLyapazTD0+L9LiUkfG9sb84a1IP/fH81BSValE3ETyEX+rX1DXy6tpQzByUTFtbc9d6ltZkZf/juMDpHhXP7y8uordeibCJ+CbnQz920m4qqOs4cpKGd9tQjthN/uGQYK4r28PDcAr/LEQlZIRf6c1cXExUexin9k/wuJeRMGprCJaPT+MsnBSzdWu53OSIhKeRC//N1OxmblUCX6Ai/SwlJv7kwm15xnfjJy0s5UFPvdzkiISekQr9sXw2rd1RwUl/t5fslrlMkf7psOBt27uMP7+X7XY5IyAmp0F+wYRcA4/sk+lxJaDupbxLXTszi2Xmb+XRtqd/liISUkAr9+Rt2ERMZzvD0bn6XEvLuOHcgA3p25Y6/L2P3vhq/yxEJGUcMfTPrbWafmFm+meWZ2a1ee6KZfWRm67z7hCbb3GlmBWa2xszObdI+xsxWeK89ZGbtOmdy3oZd5GQmEBkeUr/rAlKnyHDunzKS3ftruOuNFVqUTaSdtCT96oCfOucGA+OBGWY2BPgFMMc51x+Y4z3He20qkA1MAh4xs3Dvsx4FpgP9vdukVuzLYe2srGZtcSUT+nZvr6+UIxiaFs/t5wzg3RU7eGOpFmUTaQ9HDH3n3Hbn3Nfe4wogH0gDJgPPeG97BrjIezwZeMk5V+2c2wgUAOPMLAWIc87Nc427dc822abNLdjQeN3WCX0U+oHk+lP7knNCAr96I4/C3fv9Lkck6B3VOIeZZQKjgAVAT+fcdmj8xQB8s3pZGrC1yWaFXlua9/jg9ua+Z7qZ5ZpZbmlp6xzom7dhJ12iwhmqpRcCSniYcf+UxkXZfjp7GfValE2kTbU49M2sK/AqcJtzbu/h3tpMmztM+782OjfTOZfjnMtJTk5uaYmHNX9DGWOzEjWeH4AyunfmNxdms2BjGX/7fIPf5YgEtRYloJlF0hj4LzjnXvOai70hG7z7Eq+9EOjdZPN0YJvXnt5Me5srqaiioKSS8RraCViXjknn20N7cd+Ha1hZtMfvckSCVktm7xjwBJDvnLu/yUtvAVd7j68G3mzSPtXMos0si8YDtgu9IaAKMxvvfea0Jtu0KY3nBz4z4/cXDyOhcxS3vbyUqlqdrSvSFlqyp38ycBVwppkt9W7nAfcC55jZOuAc7znOuTxgNrAKeB+Y4Zz75v/gG4HHaTy4ux54rzU7cyjzNuwiNjqC7NS49vg6OUYJXaL4r8tGUFBSyb3vrfa7HJGgdMQFaJxzX9D8eDzAWYfY5h7gnmbac4GhR1Nga8jdVMaYzAQiNJ4f8E4dkMw1J2fx5JcbOW1AMmfo6mYirSroU7Cyuo51JZWM7N3N71KkhX42aSCDesVyxyvL2FlZ7Xc5IkEl6EN/ZdEenIMRWnqhw+gUGc6DU0ext6qOn72yXGfrirSioA/95YXlAAxP1/z8jmRgr1h++e1BzF1dwrPzNvtdjkjQCPrQX7Z1D+kJMXTvGu13KXKUrj4pk9MHJnPPu/ms3nG4U0NEpKWCP/QLyxmh8fwOycz4r8tGENcpkltmLdE0TpFWENShv6uymsLdBxihoZ0OK6lrNPdNGcHa4kru+YcuuiJyvII69JcXNp7ZqfXzO7bTBiTzo4lZPDd/Mx/m7fC7HJEOLahDf1lhOWEGw7TIWod3x6SBZKfG8bNXl7N9zwG/yxHpsII79LeW069HV10EPQhER4Tz31eMpraugVtnLaWuvsHvkkQ6pKANfeccywv3aH5+EMlK6sJvLxrKwk1lPDy3wO9yRDqkoA39wt0H2LWvhuGauRNULhmdziWj03h47jrmexe6F5GWC9rQ/+Yg7kjt6Qed304eSmb3Ltz60hJ2aZkGkaMStKG/rLCcqPAwBvaK9bsUaWVdoiP47ytGs3t/LbfPXkaDrrYl0mLBG/pbyxmcGkdURNB2MaQNSY3jVxcM4bO1pTz22Xq/yxHpMIJ2Wktm9y6kJ8T4XYa0oe+fmMG8Dbu478O1jM1MZGxmot8liQQ8C/QVDHNyclxubq7fZUiAqqiq5YKHv6C6toF/3DJRayyJeMxssXMu5+B2jX1IhxbbKZJHvj+asv013PbyUuo1vi9yWAp96fCyU+O5+8JsPl+3k4fnrvO7HJGAptCXoDB1bG8uGZXGg3PW8fm6Ur/LEQlYCn0JCmbG7y4eSv8eXbn1paVsK9f6PCLNUehL0OgcFcGjV46hpq6Bm174muo6rb8vcjCFvgSVvsld+dOlw1m6tZzfvaP190UOptCXoPPtYSlMP7UPz83fzKuLC/0uRySgKPQlKP3s3IGcmJXIL19fwcqiPX6XIxIwFPoSlCLCw/jvK0aT2CWK659bTNm+Gr9LEgkICn0JWsmx0Tx65RhKK6q5ZdYSXXhFBIW+BLmRvbvxu4uG8kXBTv70wRq/yxHx3RFD38yeNLMSM1vZpO03ZlZkZku923lNXrvTzArMbI2ZndukfYyZrfBee8jMrPW7I/KvpoztzZXjM/jrZxt4c2mR3+WI+Kole/pPA5Oaaf+zc26kd3sXwMyGAFOBbG+bR8ws3Hv/o8B0oL93a+4zRdrEry7IZlxWIj97ZTnLC8v9LkfEN0cMfefcZ0BZCz9vMvCSc67aObcRKADGmVkKEOecm+cal/V8FrjoGGsWOWpREWE8+v3RJHWNZvqziympqPK7JBFfHM+Y/s1mttwb/knw2tKArU3eU+i1pXmPD24XaTfdu0Yzc9oY9hyo5YbnFlNVqzN2JfQca+g/CvQFRgLbgfu89ubG6d1h2ptlZtPNLNfMcktLtXiWtJ7s1HjumzKCr7eU88vXVhDo15MQaW3HFPrOuWLnXL1zrgH4GzDOe6kQ6N3krenANq89vZn2Q33+TOdcjnMuJzk5+VhKFDmk84al8JNzBvDakiIe+acutSih5ZhC3xuj/8bFwDcze94CpppZtJll0XjAdqFzbjtQYWbjvVk704A3j6NukePy4zP7ceGIVP70wRreX7nd73JE2s0Rr5FrZrOA04EkMysEfg2cbmYjaRyi2QRcD+CcyzOz2cAqoA6Y4Zz7ZuD0RhpnAsUA73k3EV+YGX+8dDhbyvZz+8vLSOvWmWHp8X6XJdLmdI1cCWklFVVc/JevqKlv4I0ZJ5PWLcbvkkRaha6RK9KMHrGdePIHY6mqqefapxdRUVXrd0kibUqhLyFvYK9YHrlyNOtKKrnpha+p1Ro9EsQU+iLAKf2TueeioXy+bid3va6pnBK8jnggVyRUTB2XQVH5AR6eW0BqtxhuO3uA3yWJtDqFvkgTPzlnANvKq3jg43WkxscwZWzvI28k0oEo9EWaMDPu/e4wSiqquPP1FSTFRnHmoJ5+lyXSajSmL3KQyPAwHr1yDENS4rjpha9ZvHm33yWJtBqFvkgzukZH8NQPx9IrrhPXPL2IdcUVfpck0ioU+iKHkNQ1mueuPZGoiDCmPbmQovIDfpckctwU+iKH0TuxM8/8cByV1XVc9fgCdlZW+12SyHFR6IscwZDUOJ76wVi27TnAtCcWsueAztqVjkuhL9ICOZmJ/PWqHNaVVHDt04vYX1Pnd0kix0ShL9JCpw1I5sGpo/h6y26mP6srb0nHpNAXOQrnDUvhj5eO4IuCndz0wtfU1GmdHulYFPoiR+nSMencc/FQ5q4u4ZZZS6jTAm3SgSj0RY7B9088gV9dMIT383Zw28tLFfzSYWgZBpFjdM3ELOoaGvj9u6sxM/48ZQQR4dqPksCm0Bc5DtNP7UuDg3vfW40B9yv4JcAp9EWO0w2n9cU5+M/3V+NoDP5IBb8EKIW+SCu48fS+mDXu8dfVN/Dg1FFERSj4JfDop1KkldxwWl/+/YIhvLdyBze9sJjqOs3jl8Cj0BdpRddOzOK3k7P5OL+EHz2TqzN3JeAo9EVa2VUTMvnjpcP5smAn055YyN4qrdUjgUOhL9IGpuT05uHLR7OssJzLZ85nl1bnlACh0BdpI+cPT2HmtBwKSiq57K/zKNy93++SRBT6Im3pjIE9eP5HJ1JaUc2lj85jra7AJT5T6Iu0sbGZicy+fgINznHZY/NYvLnM75IkhB0x9M3sSTMrMbOVTdoSzewjM1vn3Sc0ee1OMyswszVmdm6T9jFmtsJ77SEzs9bvjkhgGpwSx6s3nkRilyiu+NsCPsjb4XdJEqJasqf/NDDpoLZfAHOcc/2BOd5zzGwIMBXI9rZ5xMzCvW0eBaYD/b3bwZ8pEtR6J3bmlRsmMDgljhufX8yz8zb5XZKEoCOGvnPuM+Dgv0cnA894j58BLmrS/pJzrto5txEoAMaZWQoQ55yb55xzwLNNthEJGd27RjPruvGcOagHv3ozjz+8l09Dg/O7LAkhxzqm39M5tx3Au+/htacBW5u8r9BrS/MeH9wuEnJiosJ57MoxXDk+g79+uoEZL37NgRqdvSvto7UP5DY3Tu8O0978h5hNN7NcM8stLS1tteJEAkVEeBi/nTyUfzt/MO/n7WDq3+ZTUlHld1kSAo419Iu9IRu8+xKvvRDo3eR96cA2rz29mfZmOedmOudynHM5ycnJx1iiSGAzM350Sh8eu3IMa3dUcPFfvmLVtr1+lyVB7lhD/y3gau/x1cCbTdqnmlm0mWXReMB2oTcEVGFm471ZO9OabCMS0s7N7sXfb5hAfYPju49+xfsrNbNH2k5LpmzOAuYBA82s0MyuBe4FzjGzdcA53nOcc3nAbGAV8D4wwzn3zWDljcDjNB7cXQ+818p9EemwhqbF89bNJzOwVyw3PL+Yh+as0wFeaRPWOJkmcOXk5Ljc3Fy/yxBpF1W19fzytRW8tqSIc7N7ct+UkXSN1mUv5OiZ2WLnXM7B7TojVySAdIoM574pI/j3C4bwcX4JF/3lS9aXVvpdlgQRhb5IgDEzrp2YxXPXjqNsXw0X/feXGueXVqPQFwlQJ/VN4u0fT6RPj67c8Pxifv9uPnX1DX6XJR2cQl8kgKV1i2H29eO5avwJzPxsA1f8bQE79mg+vxw7hb5IgIuOCOe3Fw3lge+NZOW2PZz30Of8c03JkTcUaYZCX6SDuGhUGm/dPJEesdH84KlF3Pveamo13CNHSaEv0oH069GVN2aczOXjMnjs0/Vc+tg8Nu/a53dZ0oEo9EU6mE6R4fzhkmH85YrRbCyt5LwHP+fVxYUE+jk3EhgU+iId1PnDU3jvtlPJTo3np39fxs2zllC+v8bvsiTAKfRFOrC0bjHMmj6eO84dyAcrd/CtP3/Gp2u1Mq0cmkJfpIMLDzNmnNGPN2acTHxMJFc/uZBfvr6Cyuo6v0uTAKTQFwkSQ9PiefvHE7nulCxmLdzCuX/+jK8KdvpdlgQYhb5IEOkUGc5d5w/h79dPICoijCseX8Cdr61gb1Wt36VJgFDoiwShnMxE3r3lFK47JYuXF23hnPs/5aNVxX6XJQFAoS8SpGKiGvf6X7/pZBI6R3Hds7nc9MJiivdqGYdQptAXCXIjenfjrZsn8v++NYA5+SWcfd+nPPPVJup1kZaQpNAXCQFREWHcfGZ/PrjtVEZmdOPXb+Vx8SNfsnRrud+lSTtT6IuEkMykLjx7zTgeunwUO/ZUcfEjX3Lna8sp26eTukKFQl8kxJgZF45IZc5PT+NHE7OYnVvI6X/6hKe+3KgF3EKAQl8kRMV2iuSu84fw3q2nMDy9G3e/vYrzHvycz3RGb1BT6IuEuAE9Y3nu2nHMvGoM1XUNTHtyIVc/uZC1xRV+lyZtQKEvIpgZ38ruxUc/OZW7zhvMki27mfTAZ9z52nJN8QwyFujLsebk5Ljc3Fy/yxAJKbv31fDQ3HU8P38z4WHGNSdncf1pfYmPifS7NGkhM1vsnMv5l3aFvogcypZd+7n/ozW8sXQb8TGRXH9aH35wUiadoyL8Lk2OQKEvIsdsZdEe7vtwDZ+sKSWpazQ3nd6XK07MoFNkuN+lySEo9EXkuC3eXMZ/fbCWeRt20SO2MfynjlP4ByKFvoi0mnnrd/HAx2tZsLGMHrHRTD+1D1ecmKFhnwDSJqFvZpuACqAeqHPO5ZhZIvAykAlsAqY453Z7778TuNZ7/y3OuQ+O9B0KfZHANW/9Lh6eu46v1u8ioXMk15ycxbQJmcR31gFfv7Vl6Oc453Y2afsjUOacu9fMfgEkOOd+bmZDgFnAOCAV+BgY4JyrP9x3KPRFAt/izbv5yycFzF1dQpeocC4fl8E1E7NI7Rbjd2kh61Ch3xbz9CcDz3iPnwEuatL+knOu2jm3ESig8ReAiHRwY05I4MkfjOXdW07hnCE9eeqrTZz6x0+4/eWl5G3b43d50sTxhr4DPjSzxWY23Wvr6ZzbDuDd9/Da04CtTbYt9NpEJEgMSY3jgamj+Of/O52rJpzAh3k7OP+hL7jib/P5aFWxlnMOAMd71OVk59w2M+sBfGRmqw/zXmumrdmfAO8XyHSAjIyM4yxRRNpb78TO/Po72dx29gBeWriFp7/axHXP5pKR2JlpE07gsjG9Ne7vk+Pa03fObfPuS4DXaRyuKTazFADvvsR7eyHQu8nm6cC2Q3zuTOdcjnMuJzk5+XhKFBEfNZ7Q1ZfPf3YGf7liND3jovndP/I58Q8f8/NXlrOySEM/7e2YD+SaWRcgzDlX4T3+CPgP4CxgV5MDuYnOuZ+ZWTbwIv97IHcO0F8HckVCy8qiPTw/fzNvLC2iqraBEb27ccW43nxnRKqmfLaiVp+9Y2Z9aNy7h8Zhohedc/eYWXdgNpABbAEuc86VedvcBVwD1AG3OefeO9L3KPRFgtOeA7W8uriQWQu3sK6kktjoCL4zMpUpOb0ZkR6PWXMjwtJSOjlLRAKSc47Fm3fz4sItvLtiO1W1DQzsGculY9KZPCqVHrGd/C6xQ1Loi0jA21tVy9vLtjE7t5BlW8sJDzNOG5DMxaPSOHtwT2KitNxDSyn0RaRDKSip4NWvi3hjSRHb91TRNTqCc7N7MXlkKif17U5EuC4HcjgKfRHpkOobHAs27uKNJUW8t2IHFdV1dO8SxbeH9eKC4amMzUwkPEzj/wdT6ItIh1dVW88/15Ty9vJtzMkvpqq2geTYaCZl9+K8YSmMzUzQXwAehb6IBJV91XXMXV3Cuyu288maEqpqG0joHMk5Q3pybnYvTu6XFNJLPiv0RSRo7a+p49M1pbyft4O5+SVUVNcRExnOqQOSOHtwT84Y1IOkrtF+l9muDhX6OhNCRDq8zlERfHtYCt8elkJ1XT0LNpTx0apiPs4v5oO8YsxgRHo3zhzUg9MHJjM0NZ6wED0OoD19EQlazjlWbd/L3PwS5qwuYVlhOc5BUtcoTu2fzCkDkpjYL5nk2OD7K0DDOyIS8nZWVvP5ulI+XVPKZ+t2UravBoDBKXFM7Nedk/slMS4rMSiWg1Doi4g00dDQ+FfAp2tL+XxdKV9vLqemvoHIcGNk725M6NOd8X27MzojoUMeEFboi4gcxoGaenI3l/FFwU7mr9/FiqI9NDiICg9jRO94TszqztisREZndCO2U+AvC63QFxE5Cnuralm0sYwF3m1l0R7qGxxh1jgclHNCAqNPSGDMCQmkdYsJuAXiFPoiIsdhX3UdS7aUs2hTGYs2lbF0azn7axpXhu8RG82ojG6MykhgZO9uDEuLp0u0v8cFNGVTROQ4dImOYGL/JCb2TwKgrr6B1Tsq+HrLbpZsKWfJlt18kFcMQJhBvx5dGZ7ejeHp8QxLi2dwSlxAHBvQnr6ISCsp21fDssJylm1tvC0v3MMub4ZQeJjRv0dXslPjyU6NY0hqHINT4oiPaZvjAxreERFpZ845tu+pYnlhOXnb9rKyaA8rivays7L6f96TnhDDoF5xDEmJZWCvOAb2iiWze+fjXkNIwzsiIu3MzEjtFkNqtxgmDU35n/aSiipWbdtL3ra9rN5RQf72vcxdXUyDtw8eFRFGv+SuzLpufKtfQF6hLyLSznrEdqLHwE6cPrDH/7RV1dZTUFLJmh0VrCmuYNPOfcTFtH5EK/RFRAJAp8hwhqbFMzQtvk2/RwtPi4iEEIW+iEgIUeiLiIQQhb6ISAhR6IuIhBCFvohICFHoi4iEEIW+iEgICfi1d8ysFNh8jJsnATtbsZyOIBT7DKHZ71DsM4Rmv4+lzyc455IPbgz40D8eZpbb3IJDwSwU+wyh2e9Q7DOEZr9bs88a3hERCSEKfRGREBLsoT/T7wJ8EIp9htDsdyj2GUKz363W56Ae0xcRkf8r2Pf0RUSkCYW+iEgICcrQN7NJZrbGzArM7Bd+19NWzKy3mX1iZvlmlmdmt3rtiWb2kZmt8+4T/K61tZlZuJktMbN3vOeh0OduZvaKma32/s0nBHu/zex272d7pZnNMrNOwdhnM3vSzErMbGWTtkP208zu9PJtjZmdezTfFXShb2bhwF+AbwNDgMvNbIi/VbWZOuCnzrnBwHhghtfXXwBznHP9gTne82BzK5Df5Hko9PlB4H3n3CBgBI39D9p+m1kacAuQ45wbCoQDUwnOPj8NTDqordl+ev+PTwWyvW0e8XKvRYIu9IFxQIFzboNzrgZ4CZjsc01twjm33Tn3tfe4gsYQSKOxv894b3sGuMiXAtuImaUD5wOPN2kO9j7HAacCTwA452qcc+UEeb9pvKRrjJlFAJ2BbQRhn51znwFlBzUfqp+TgZecc9XOuY1AAY251yLBGPppwNYmzwu9tqBmZpnAKGAB0NM5tx0afzEAPQ6zaUf0APAzoKFJW7D3uQ9QCjzlDWs9bmZdCOJ+O+eKgP8CtgDbgT3OuQ8J4j4f5FD9PK6MC8bQt2bagnpeqpl1BV4FbnPO7fW7nrZkZhcAJc65xX7X0s4igNHAo865UcA+gmNY45C8MezJQBaQCnQxsyv9rSogHFfGBWPoFwK9mzxPp/FPwqBkZpE0Bv4LzrnXvOZiM0vxXk8BSvyqrw2cDFxoZptoHLo708yeJ7j7DI0/14XOuQXe81do/CUQzP0+G9jonCt1ztUCrwEnEdx9bupQ/TyujAvG0F8E9DezLDOLovGAx1s+19QmzMxoHOPNd87d3+Slt4CrvcdXA2+2d21txTl3p3Mu3TmXSeO/7Vzn3JUEcZ8BnHM7gK1mNtBrOgtYRXD3ewsw3sw6ez/rZ9F43CqY+9zUofr5FjDVzKLNLAvoDyxs8ac654LuBpwHrAXWA3f5XU8b9nMijX/WLQeWerfzgO40Hu1f590n+l1rG/X/dOAd73HQ9xkYCeR6/95vAAnB3m/gbmA1sBJ4DogOxj4Ds2g8blFL4578tYfrJ3CXl29rgG8fzXdpGQYRkRASjMM7IiJyCAp9EZEQotAXEQkhCn0RkRCi0BcRCSEKfRGREKLQFxEJIf8fxdRyeOs1BSkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(tvect, Iv)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAhjklEQVR4nO3deXgc9Z3n8fe3u9U6rVuWZEm2jG18G4MF5kzCYWwIDyYHCWESvDnGM1mySWZJJiH5Z7Kz2WQyM2yGmcAOIQHnIIQjA4ZgjnBmgMHIgO9LxvchyfKhwzq7f/tHl0EY2Zbt7q5W9+f1PP1U1a+rur+/x/anyr+qrjLnHCIikhkCfhcgIiLJo9AXEckgCn0RkQyi0BcRySAKfRGRDBLyu4CTKS8vd/X19X6XISIyoqxYsWK/c67i2PaUD/36+noaGxv9LkNEZEQxs+1DtWt4R0Qkgyj0RUQyiEJfRCSDKPRFRDKIQl9EJIMo9EVEMohCX0Qkg6T8dfqJ1NTSwTNrmynMCVGcF2Zq9Sgmjh7ld1kiIgmTsaHf1tnLzT9/g5aO3vfaQgFjyZcu4JKJ5T5WJiKSOBk5vOOc49uPrOLQkX4ev/USln/vSp76+mWcVZHPX/96BRv3dfhdoohIQmRk6N/36jZe2NDC966dwjl1xYwuzGHamELu++IF5IaDfPG+5TS39/hdpohI3A079M0saGZvm9mT3nKpmT1nZpu9acmgdW83syYz22hm8we1zzGz1d57d5qZxbc7J7dm92F+vGwDV02tZNHF9R94r6Y4l1/+t/M53N3Pl+5/k/5INNnliYgk1Kkc6X8DWD9o+bvA8865ScDz3jJmNg24CZgOLADuMrOgt83dwGJgkvdacEbVn4Z/eHoDRXlZ/OOnZzHUPmdGTRH/eOM5rN3TzsONu5JdnohIQg0r9M2sFvg4cO+g5oXAEm9+CXDDoPYHnXO9zrmtQBNwgZlVA4XOuddd7Gnsvxq0TVIc7u7n9S1tfOq8Wkryw8dd75oZVZw7tph/fWEzPf2RJFYoIpJYwz3S/ynwt8Dg8Y5K59xeAG862muvAXYOWm+X11bjzR/b/iFmttjMGs2ssbW1dZglntzLm1oZiDrmTRt9wvXMjG9fPZm9h3v47Rs74vb9IiJ+O2nom9l1QItzbsUwP3OocXp3gvYPNzp3j3OuwTnXUFHxoWcAnLY/rWumLD/M7LqSk6578cRyLp5Qxl0vNtHVOxC3GkRE/DScI/1LgOvNbBvwIHCFmf0GaPaGbPCmLd76u4C6QdvXAnu89toh2pOiPxLlxY0tXDFlNMHA8M4ff2v+ZNq6+rj/tW2JLU5EJElOGvrOududc7XOuXpiJ2hfcM59HlgKLPJWWwQ87s0vBW4ys2wzG0/shO1ybwiow8wu9K7auWXQNgn35tYDdPQMcNW0ymFvc97YEq6cMpp/f3kLHT39CaxORCQ5zuQ6/R8D88xsMzDPW8Y5txZ4CFgHPA3c6pw7ejb0q8ROBjcBW4BlZ/D9p+S59c2EQwEum3Rqv7b92hUTae8Z4LF3kvafEhGRhDml2zA4514CXvLm24Arj7PeD4EfDtHeCMw41SLPlHOOP61v5tKJ5eSFT+3OE7Pripk+ppAH3tjB5+eOHfIyTxGRkSIjfpG7qbmTnQe6uWrq8Id2jjIzbp47lvV723l756H4FycikkQZEfp/Wt8MwJVTT3yp5vEsnF1DfjjIA7p8U0RGuIwI/Zc3tTKzpojKwpzT2r4gO8QN59bwxMo9HD6iE7oiMnKlfeg751i/t51z6orO6HNunjuW3oEoj76lWzOIyMiV9qG/r72Hjp4BJlee2cNRpo8pYnZdMQ8s30HsLhIiIiNP2of+0Xvjn32GoQ+xo/2mlk5WbD94xp8lIuKHjAn9yVVnHvrXzqwmJyvA47pmX0RGqPQP/eYOKguzKc47/l01h6sgO8RVUyv54+q9ute+iIxIaR/6m5o7mFxVGLfPWzi7hgNdffzn5v1x+0wRkWRJ69CPRB2bmzuZXFkQt8/86NkVFOVm8fg7u+P2mSIiyZLWob+9rYvegWhcTuIeFQ4FuHZmNc+ua+ZIn265LCIjS1qH/qbm2EncKXEc3gG4YfYYjvRFeG5dc1w/V0Qk0dI69Dfs68AMJo6O3/AOwPn1pVQX5bBUV/GIyAiT1qG/qbmDcaV55IaDJ1/5FAQCxvXnjOHlTa0c6OqL62eLiCRSWof+hn0dcbk+fyjXzx7DQNTx7Np9Cfl8EZFESNvQ7+mPsG1/1xnffuF4plUXUl+Wx1NrFPoiMnKkbehvae0k6ojrNfqDmRnXzKzmtab9HDqiIR4RGRnSNvTfv/1CfE/iDnbNjCoGok5X8YjIiJG+od/cQTgYYFxZfsK+Y2ZNETXFuSzTEI+IjBBpG/qb9nUwYXQBWcHEddHMuHZmFX/e3Ep7jx6uIiKpL21Df1vbkbjefuF4rplZTX/E8fx6DfGISOoL+V1Aojz3Nx+hqy+S8O+ZXVtMdVEOT63exyfOrU3494mInIm0PdIPBQMU5WYl/HsCAWPBjCpe3tRKZ6/uxSMiqS1tQz+Zrp1ZTd9AlBc2tPhdiojICSn04+C8sSWUF4R5Rr/OFZEUp9CPg2DAmDetkpc2tNDTn/jzCCIip0uhHydXT6+iqy/Ca1v0RC0RSV0K/Ti5eEIZBdkhnlmjSzdFJHUp9OMkOxTk8imj+dP6ZiJR53c5IiJDUujH0fzplbR19dG47YDfpYiIDEmhH0cfmzyacCjAM2s1xCMiqUmhH0cF2SEunVjOM2v34ZyGeEQk9Sj042z+9Ep2H+pm7Z52v0sREfkQhX6cXTW1koChH2qJSEpS6MdZWUE2DfWlerCKiKQkhX4CXD2tkg37Otje1uV3KSIiH6DQT4D506sAeFZX8YhIilHoJ0BdaR5Tqws1ri8iKUehnyBXT6tkxY6DtHb0+l2KiMh7Thr6ZpZjZsvNbKWZrTWzH3jtpWb2nJlt9qYlg7a53cyazGyjmc0f1D7HzFZ7791pZpaYbvlv/vQqnEOPURSRlDKcI/1e4Arn3DnAbGCBmV0IfBd43jk3CXjeW8bMpgE3AdOBBcBdZhb0PutuYDEwyXstiF9XUsvU6lHUluRqiEdEUspJQ9/FdHqLWd7LAQuBJV77EuAGb34h8KBzrtc5txVoAi4ws2qg0Dn3uov9XPVXg7ZJO2bG1dOqeLWpTY9RFJGUMawxfTMLmtk7QAvwnHPuDaDSObcXwJuO9lavAXYO2nyX11bjzR/bPtT3LTazRjNrbG1tPYXupJb50yvpi0R5aaMeoygiqWFYoe+cizjnZgO1xI7aZ5xg9aHG6d0J2of6vnuccw3OuYaKiorhlJiSGupLKc0P6wZsIpIyTunqHefcIeAlYmPxzd6QDd706OHsLqBu0Ga1wB6vvXaI9rQVDBjzplby4oYWegf0GEUR8d9wrt6pMLNibz4XuArYACwFFnmrLQIe9+aXAjeZWbaZjSd2wna5NwTUYWYXelft3DJom7Q1f0Ylnb0DvLalze9SREQIDWOdamCJdwVOAHjIOfekmb0OPGRmXwZ2ADcCOOfWmtlDwDpgALjVOXf0MPerwP1ALrDMe6W1iyeUe49R3Mflk0effAMRkQQ6aeg751YB5w7R3gZceZxtfgj8cIj2RuBE5wPSTk5WkI9NruC5dc388BOOYCBtf5ogIiOAfpGbBPOnV9HW1ceK7Qf9LkVEMpxCPwkunzKacDCgH2qJiO8U+klQkB3i0knlPL1Gj1EUEX8p9JNkwfQqPUZRRHyn0E+SK6eO1mMURcR3Cv0kKSvIZu74MpatUeiLiH8U+kl0zcwqmlo62dzc4XcpIpKhFPpJNH96FWboaF9EfKPQT6LKwhzmjC3hqdV7/S5FRDKUQj/JrplZzYZ9HWzd3+V3KSKSgRT6SbZgRhUAy9boaF9Ekk+hn2Q1xbmcU1fMstUa1xeR5FPo++CaGVWs3n2YnQeO+F2KiGQYhb4PrtEQj4j4RKHvg3Fl+UwfU8gfNcQjIkmm0PfJx2dVs3LnIQ3xiEhSKfR9ct3MMQA8uUpDPCKSPAp9n4wty+Oc2iL+uDqtnw0vIilGoe+j62aNYc3udrbph1oikiQKfR99fFY1AE+u0tG+iCSHQt9HY4pzmTOuROP6IpI0Cn2fXTcrdi+ephbdbllEEk+h77NrZ1ZjBk+s1NG+iCSeQt9nlYU5zB1fyhMr9+ih6SKScAr9FLBwdg3v7u9i9e7DfpciImlOoZ8Crp1RTTgY4LG3dRWPiCSWQj8FFOVlcfmUCp5YtYeBSNTvckQkjSn0U8QNs2to7ejltS1tfpciImlMoZ8iLp8ymlE5IR57Z7ffpYhIGlPop4icrCDXzKjimTX76O6L+F2OiKQphX4KueHcGrr6IvxpfbPfpYhImlLop5ALx5dRVZjDY29riEdEEkOhn0ICAWPhuWN4aVMrrR29fpcjImlIoZ9ibpxTSyTqdLQvIgmh0E8xE0ePYnZdMY+s2KXbMohI3Cn0U9CNDbVsbO7QbRlEJO4U+inoulljyA4FeLhxl9+liEiaUeinoKLcLOZPr2Lpyj309OuafRGJH4V+ivr0nFoOd/frmn0RiauThr6Z1ZnZi2a23szWmtk3vPZSM3vOzDZ705JB29xuZk1mttHM5g9qn2Nmq7337jQzS0y3Rr5LJpZTXZSjIR4RiavhHOkPALc556YCFwK3mtk04LvA8865ScDz3jLeezcB04EFwF1mFvQ+625gMTDJey2IY1/SSjBgfHpOLa9sbmX3oW6/yxGRNHHS0HfO7XXOveXNdwDrgRpgIbDEW20JcIM3vxB40DnX65zbCjQBF5hZNVDonHvdxa5F/NWgbWQInz2/DoDfL9/hcyUiki5OaUzfzOqBc4E3gErn3F6I7RiA0d5qNcDOQZvt8tpqvPlj2+U4akvy+OjZFfy+cafusy8icTHs0DezAuBR4JvOufYTrTpEmztB+1DftdjMGs2ssbW1dbglpqXPXTCW5vZeXtjQ4ncpIpIGhhX6ZpZFLPB/65z7g9fc7A3Z4E2PptIuoG7Q5rXAHq+9doj2D3HO3eOca3DONVRUVAy3L2npyimjqSzM5gEN8YhIHAzn6h0DfgGsd87dMeitpcAib34R8Pig9pvMLNvMxhM7YbvcGwLqMLMLvc+8ZdA2chyhYIDPNtTx8qZWdh444nc5IjLCDedI/xLgC8AVZvaO97oW+DEwz8w2A/O8ZZxza4GHgHXA08CtzrmjvzD6KnAvsZO7W4Bl8exMuvqMd0L3ocadJ1lTROTELNVv6tXQ0OAaGxv9LsN3X7xvOWv3tPOf37mCcEi/qROREzOzFc65hmPblR4jxC0X1dPS0cvTa/f5XYqIjGAK/RHio2dXUF+Wx/2vbvW7FBEZwRT6I0QgYNxyUT1v7TjEyp2H/C5HREYohf4I8umGWvLDQZa8ts3vUkRkhFLojyCFOVl8ek4tT67aq2foishpUeiPMLdcXE9fJMrv9GMtETkNCv0RZkJFAR89u4Jf/9d2egf0gBUROTUK/RHoy5eOp7Wjl8ffGfIuFiIix6XQH4Eum1TO1OpC7nnlXaLR1P5xnYikFoX+CGRm/PVHz6KppVN33xSRU6LQH6GunVlNTXEu//7KFr9LEZERRKE/QmUFA3zlsvG8ue0gK7Yf8LscERkhFPoj2GfPr6M4L4t/f/ldv0sRkRFCoT+C5YVD3HJRPc+ua2ZTc4ff5YjICKDQH+G+eHE9+eEgdz6/2e9SRGQEUOiPcCX5YRZdXM8fV+9ls472ReQkFPpp4CuXnUVuVpA7X2jyuxQRSXEK/TRQmh/mlovqeXLVHppadLQvIsen0E8Tf3nZeHKzgvyrjvZF5AQU+mmirCCbL1w0jqUr92hsX0SOS6GfRv7qIxMoCIf4yTMb/S5FRFKUQj+NlOaH+auPnsVz65pp3KZf6YrIhyn008yXLh1PxahsfrxsA87pDpwi8kEK/TSTFw7xzasm0bj9IH9arztwisgHKfTT0Gca6jirPJ+fPL2BgUjU73JEJIUo9NNQVjDAt+dPZnNLJw++udPvckQkhSj009SCGVXMHV/KPz+7kUNH+vwuR0RShEI/TZkZf3f9dA539/N/n9vkdzkikiIU+mlsanUhfzF3HL95Ywcb9rX7XY6IpACFfpr7n/POZlROiB8sXadLOEVEoZ/uSvLD3DbvbF5/t40nVu31uxwR8ZlCPwPcPHccs2qL+F9PrNVJXZEMp9DPAMGA8aNPzuTgkX5+9NQGv8sRER8p9DPE9DFFfOWy8fy+cSevb2nzuxwR8YlCP4N888qzGVuax/f+YzU9/RG/yxERHyj0M0huOMj/+cRMtu7v4g5duy+SkRT6GebSSeXcPHcsP//zu/zXuxrmEck0Cv0M9P1rpzKuNI/bHlpJe0+/3+WISBIp9DNQfnaIOz47m72Hu/nB0nV+lyMiSaTQz1DnjS3h1ssn8uhbu3hqtX60JZIpThr6ZvZLM2sxszWD2krN7Dkz2+xNSwa9d7uZNZnZRjObP6h9jpmt9t6708ws/t2RU/H1KydxTm0R33lkFdvbuvwuR0SSYDhH+vcDC45p+y7wvHNuEvC8t4yZTQNuAqZ729xlZkFvm7uBxcAk73XsZ0qSZQUD/NvN52EGtz7wli7jFMkAJw1959wrwLFP2V4ILPHmlwA3DGp/0DnX65zbCjQBF5hZNVDonHvdxe769atB24iP6krz+OfPzGbN7nb+9x81vi+S7k53TL/SObcXwJuO9tprgMGPatrltdV488e2D8nMFptZo5k1tra2nmaJMlzzplWy+CNn8Zv/2sFjb+/2uxwRSaB4n8gdapzenaB9SM65e5xzDc65hoqKirgVJ8f37fmTuaC+lO88uoqVOw/5XY6IJMjphn6zN2SDN23x2ncBdYPWqwX2eO21Q7RLisgKBrj78+dRXpDN4l830tze43dJIpIApxv6S4FF3vwi4PFB7TeZWbaZjSd2wna5NwTUYWYXelft3DJoG0kRZQXZ3LuogY6eARb/qlEndkXS0HAu2fwd8Dow2cx2mdmXgR8D88xsMzDPW8Y5txZ4CFgHPA3c6pw7mhxfBe4ldnJ3C7Aszn2ROJhaXchPPzubVbsPc9tDK4lE9bQtkXRiqf4IvYaGBtfY2Oh3GRnn56+8yw+fWs+ii8bxd9dPRz+rEBlZzGyFc67h2PaQH8VI6vvLj5xFS0cPP//zVkYX5nDr5RP9LklE4kChL8d1+zVT2d/Zxz8+s5HS/DCfu2Cs3yWJyBlS6MtxBQLGTz49i4NH+vjef6wmFDBubKg7+YYikrJ0wzU5oaxggP/3+TlcOrGcv310FY+u2HXyjUQkZSn05aRysoL8/JYGLplQzrceWangFxnBFPoyLEeD/+IJZdz28Erue3Wr3yWJyGlQ6Muw5YaD/GLR+Vw9rZIfPLGOO57dSKpf8isiH6TQl1OSkxXkrr84j8801HLnC018/7E1DESifpclIsOkq3fklIWCAf7hU7MoK8jm7pe2sPPAEf7t5vMoys3yuzQROQkd6ctpMTO+s2AKP/nULF7f0sYn73qVbfv19C2RVKfQlzPymfPr+M1X5tLW1cfCn73KCxua/S5JRE5AoS9n7MKzynj81kuoKc7lS/c38pOnN2icXyRFKfQlLsaV5fOH/34xn7ugjrte2sJf3PsGew51+12WiBxDoS9xk5MV5EefnMU/33gOq3cfZv5PX+Hxd/T4RZFUotCXuPvUnFqWfeMyzq4cxTcefIevPfAWbZ29fpclIij0JUHGleXz+8UX8q2rz+aZtfu46o6XeXTFLv2YS8RnCn1JmFAwwNeumMQfv34ZZ1UUcNvDK/nCL5bT1NLpd2kiGUuhLwl3duUoHv6ri/j7hdNZuesQC376Cn//5DoOd/f7XZpIxlHoS1IEAsYXLqrnxW99jBsbavnlq1u5/J9e4r5Xt9I7oAewiySLQl+Sqrwgmx99chZPfO1SJleO4gdPrOOKf3qZhxt36tp+kSRQ6IsvZtQU8cBfzuXXX76A0vww335kFVfe8TK/f3MHfQMKf5FEsVS/mqKhocE1Njb6XYYkkHOOZ9c187MXm1i16zBjinL40qXj+cz5dRTm6CZuIqfDzFY45xo+1K7Ql1ThnOOVzfv52YtNLN96gPxwkBsb6rjlonGcVVHgd3kiI4pCX0aUNbsP84v/3MoTK/cwEHVcPKGMm+eO5eppVYRDGpUUORmFvoxILR09PNy4iwfe2MHuQ90U52Vx/Tlj+OR5tZxTW4SZ+V2iSEpS6MuIFok6/ry5lUff2s2za/fROxClviyPj8+q5rpZY5hSNUo7AJFBFPqSNtp7+lm2ei9PrtrLa1vaiEQd48vzmTetknnTKjlvbAnBgHYAktkU+pKW2jp7WbZmH8+ua+b1LfvpjzhK8rK4bFIFH5tcwUfOrqC8INvvMkWSTqEvaa+9p5+XN7by4sYWXtnUyv7OPgCmVI3iogllXDyhnPPrSyjOC/tcqUjiKfQlo0SjjrV72vlzUyuvNbXx5rYD9Ho/+ppcOYrzx5dw3tjYa1xZns4HSNpR6EtG6+mPsHLnId7cdoA3th7g7R2H6OwdAKA0P8zMmiJm1RYxs6aI6TVFjCnK0Y5ARjSFvsggkahjc0sHb20/xNs7DrJ692E2t3QSicb+PRTnZTGtupDJVaOYXDmKyVWjmFQ5ioLskM+ViwyPQl/kJLr7Iqzb2x577TnMuj3tbGrupLv//buAVhflMHF0ARMqChhfns9ZFfnUl+UzpjhXVwxJSjle6OuwRcSTGw4yZ1wJc8aVvNcWjTp2HjzChn0dNLV0sqWlk80tnTzcuJOuvvd3BllBo64kj7rSPMaW5lFXmktdSR41JbnUFOdSmh/WcJGkBIW+yAkEAsa4snzGleUzf/r77c45Wjt62dLaxfa2Lra1HWF7Wxc7Dhzh7R0Hae8Z+MDn5GQFGFOUS3VxDlWFuVQX5VBZlENVYQ6jR2VTWZhDeUGYUFC3mJDEUuiLnAYzY3RhDqMLc7hoQtmH3j98pJ9dh46w+2A3uw52s/dwN3sO97DnUDevbdlPS0fve+cP3v9MKM0LUzEqm/KCbMoLwrHpqGxK88OUF4Qpzc+mNC9MSX4WBdkh/e9BTplCXyQBivKyKMorYvqYoiHfj0Qd+zt7aW7vobk9Nm3p6GV/Zy+tHbHXtrYu9nf20tM/9PMFsoJGcV6YkrwsivPCFOdmUezNF+VmUZibRWFO6L35otwsRuWEKMzJIjsU0A4jQyn0RXwQDBiVhTlUFuaccD3nHEf6Ihzo6qOtq48DXb0c6OrnYFcfB470cehIHwe6+jh4pJ8dB46walc/h7r7jrujOCocDFCQE2KU9yrIDlGQnUVBdpCCnBD52SEKwt40O0RedpB8bzkvHPResfa8rKCGpUYQhb5ICjMz8rNjYVtXmjfs7Xr6I7R393O4u5/2nn7auwdi054BOrzlzt5+OnoG6OgZoLNngD2Huuno7aerN0Jn78ApPcEsHAyQ6+0McsNBcrNi8zlZsVeu98rJCpATDpITOvpegJysINmh40+zQ0HCoQDZocB7U+1kTl/SQ9/MFgD/AgSBe51zP052DSLp7mjYjj7J/yROpG8gypG+ATp7BzjSF9sRdPdF6OodoKsv1hZbjtDdH6H7aFt/hJ7+CEe8dVs7eunpj9DTH33vvd4zfCRmwHhvZxAOBQgH398pZAWPTo1wKEg4aO+3BwNkeeuHAkbWe+1GKBibzwoaoUBsmhUMEBq0HAoGyArEprH2998LBmLrBwP23jZH1wl66wUM34fVkhr6ZhYEfgbMA3YBb5rZUufcumTWISInFwvUcELuVRSNOvoiUbr7YjuAnv4IPQMRevuPzkfpG4jS67X1RaL0Dmo/+l7fgPfeQJT+iKNvUFv/gONwdz99A1H6I7FXn7fe0fmBaGw5md7fCXjTozuKgBGw2A4jaEYgYDz5Py4lJysY3++P66ed3AVAk3PuXQAzexBYCCj0RTJIIGDkBIJxD7TT4ZyjP+Le2wH0R6IMeNP+SJSB6NF5R8RbZyDi6I9GiXjbDUTde9tEos5bjrW/vxzbPuKOznvt0SiRKES8z4l67VHnEvKDv2SHfg2wc9DyLmDusSuZ2WJgMcDYsWOTU5mIZCQzIxwywmTGeYJk93Ko3daH/m/lnLvHOdfgnGuoqKhIQlkiIpkh2aG/C6gbtFwL7ElyDSIiGSvZof8mMMnMxptZGLgJWJrkGkREMlZSx/SdcwNm9jXgGWKXbP7SObc2mTWIiGSypF+n75x7Cngq2d8rIiLJH94REREfKfRFRDKIQl9EJIOk/OMSzawV2H6am5cD++NYzkiQiX2GzOx3JvYZMrPfp9Pncc65D/3QKeVD/0yYWeNQz4hMZ5nYZ8jMfmdinyEz+x3PPmt4R0Qkgyj0RUQySLqH/j1+F+CDTOwzZGa/M7HPkJn9jluf03pMX0REPijdj/RFRGQQhb6ISAZJy9A3swVmttHMmszsu37XkyhmVmdmL5rZejNba2bf8NpLzew5M9vsTUv8rjXezCxoZm+b2ZPecib0udjMHjGzDd6f+UXp3m8z+xvv7/YaM/udmeWkY5/N7Jdm1mJmawa1HbefZna7l28bzWz+qXxX2oX+oOfwXgNMAz5nZtP8rSphBoDbnHNTgQuBW72+fhd43jk3CXjeW0433wDWD1rOhD7/C/C0c24KcA6x/qdtv82sBvg60OCcm0Hszrw3kZ59vh9YcEzbkP30/o3fBEz3trnLy71hSbvQZ9BzeJ1zfcDR5/CmHefcXufcW958B7EQqCHW3yXeakuAG3wpMEHMrBb4OHDvoOZ073Mh8BHgFwDOuT7n3CHSvN/E7gSca2YhII/YQ5fSrs/OuVeAA8c0H6+fC4EHnXO9zrmtQBOx3BuWdAz9oZ7DW+NTLUljZvXAucAbQKVzbi/EdgzAaB9LS4SfAn8LRAe1pXufzwJagfu8Ya17zSyfNO63c2438E/ADmAvcNg59yxp3OdjHK+fZ5Rx6Rj6w3oObzoxswLgUeCbzrl2v+tJJDO7Dmhxzq3wu5YkCwHnAXc7584FukiPYY3j8sawFwLjgTFAvpl93t+qUsIZZVw6hn5GPYfXzLKIBf5vnXN/8Jqbzazae78aaPGrvgS4BLjezLYRG7q7wsx+Q3r3GWJ/r3c5597wlh8hthNI535fBWx1zrU65/qBPwAXk959Hux4/TyjjEvH0M+Y5/CamREb413vnLtj0FtLgUXe/CLg8WTXlijOududc7XOuXpif7YvOOc+Txr3GcA5tw/YaWaTvaYrgXWkd793ABeaWZ73d/1KYuet0rnPgx2vn0uBm8ws28zGA5OA5cP+VOdc2r2Aa4FNwBbg+37Xk8B+Xkrsv3WrgHe817VAGbGz/Zu9aanftSao/x8DnvTm077PwGyg0fvzfgwoSfd+Az8ANgBrgF8D2enYZ+B3xM5b9BM7kv/yifoJfN/Lt43ANafyXboNg4hIBknH4R0RETkOhb6ISAZR6IuIZBCFvohIBlHoi4hkEIW+iEgGUeiLiGSQ/w+7DoNj12UvwQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(tvect, Iu)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD6CAYAAABamQdMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiWklEQVR4nO3de3hc9X3n8fdXM9Lofr9YlmzLF4GxTcAgCJeQEAgB0jQmT5uNS5O62bS0XdomXZ5t4Ul32z77sKFttk23XbpLSLLeNoV1yAUnbZwQA0low0Xm6isWvsqSJdmWrPv9u3/MkRmDbI0sySOd+byeZ55zzm/Omfn+wP7M8e/czN0REZFwyUh1ASIiMvsU7iIiIaRwFxEJIYW7iEgIKdxFREJI4S4iEkJThruZXWpmrya8us3s82ZWamZPmdn+YFqSsM0DZtZkZvvM7Pa57YKIiLyTTec8dzOLAMeA9wL3Aqfc/SEzux8ocfc/MrM1wGPAtcBi4MfAJe4+dq7PLS8v97q6ugvvhYhIGtqxY8cJd6+Y7L3oND/rVuAtdz9sZhuAm4P2zcCzwB8BG4DH3X0IOGhmTcSD/ufn+tC6ujoaGxunWYqISHozs8Pnem+6Y+4bie+VA1S5eytAMK0M2muAownbNAdt7yzqHjNrNLPGjo6OaZYhIiLnk3S4m1kW8DHgm1OtOknbu8Z+3P0Rd29w94aKikn/VSEiIhdoOnvudwIvu3tbsNxmZtUAwbQ9aG8GliRsVwu0zLRQERFJ3nTC/Vd4e0gGYCuwKZjfBDyZ0L7RzGJmthyoB16caaEiIpK8pA6omlkucBvwWwnNDwFbzOyzwBHgEwDuvsvMtgC7gVHg3vOdKSMiIrMvqXB3936g7B1tJ4mfPTPZ+g8CD864OhERuSC6QlVEJIQWdLgf6xrgv/9oH4dP9qW6FBGReWVBh/vp/hH+9ukmdrV0p7oUEZF5ZUGH++LibABaugZSXImIyPyyoMO9KCeTnMwIracHU12KiMi8sqDD3cyoLs6m9bT23EVEEi3ocAeoKc6hpUt77iIiiRZ8uFcXZWvMXUTkHUIQ7jl09A4xPDqe6lJEROaNBR/ui4uzcYe2bg3NiIhMWPDhXl2UA6AzZkREEiz4cJ84111nzIiIvG3Bh/vEnvsxHVQVETljwYd7XixKUU4mrTodUkTkjAUf7hA/HVLDMiIibwtFuC/WhUwiImcJRbhrz11E5GyhCPfFxTl09o8wMKyn+YmIQGjCPbj1r/beRUSAkIT7mQuZNO4uIgKEJNwXB+GuPXcRkbikwt3Mis3sCTPba2Z7zOx6Mys1s6fMbH8wLUlY/wEzazKzfWZ2+9yVH1dVFAO05y4iMiHZPfe/Aba5+2rgCmAPcD+w3d3rge3BMma2BtgIrAXuAB42s8hsF54oFo1Qnh/TGTMiIoEpw93MCoH3A18FcPdhd+8CNgCbg9U2A3cF8xuAx919yN0PAk3AtbNb9rvVFGfrFgQiIoFk9txXAB3A183sFTN71MzygCp3bwUIppXB+jXA0YTtm4O2s5jZPWbWaGaNHR0dM+oExA+q6s6QIiJxyYR7FLgK+Ht3Xw/0EQzBnINN0ubvanB/xN0b3L2hoqIiqWLPp7o4m9auAdzf9VUiImknmXBvBprd/YVg+QniYd9mZtUAwbQ9Yf0lCdvXAi2zU+65LS7KoW94jO7B0bn+KhGReW/KcHf348BRM7s0aLoV2A1sBTYFbZuAJ4P5rcBGM4uZ2XKgHnhxVqueRLXu6y4ickY0yfV+D/iGmWUBB4DPEP9h2GJmnwWOAJ8AcPddZraF+A/AKHCvu8/5fQEmLmRq6Rpg9aLCuf46EZF5Lalwd/dXgYZJ3rr1HOs/CDx44WVNX21J8NCOTu25i4iE4gpVgIr8GLFoBodP9qe6FBGRlAtNuGdkGEtLczl8SuEuIhKacAdYVpbLUYW7iEi4wn1paR5HTvXrXHcRSXuhCvdlZbn0D4/R0TuU6lJERFIqVOG+tCwXgCM6qCoiaS5c4V4aD3edMSMi6S5U4V5bkoMZOmNGRNJeqMI9Fo2wuCiHIyf7Ul2KiEhKhSrcIT40c0R77iKS5kIX7svKFO4iIqEL96VluZzoHaZ3SLf+FZH0FbpwX1aaB+h0SBFJb6EL94nTIY+c0kFVEUlf4Qv3Mp3rLiISunAvysmkODdT57qLSFoLXbgDLCvV3SFFJL2FMtyXluVpWEZE0loow31ZaS7HugYYGRtPdSkiIikRynBfWprL2LjT0qXnqYpIegpnuOuMGRFJc0mFu5kdMrM3zOxVM2sM2krN7Ckz2x9MSxLWf8DMmsxsn5ndPlfFn8uyiXDXQVURSVPT2XP/oLtf6e4NwfL9wHZ3rwe2B8uY2RpgI7AWuAN42Mwis1jzlBYVZpObFeGt9t6L+bUiIvPGTIZlNgCbg/nNwF0J7Y+7+5C7HwSagGtn8D3TZmasqsznrQ6Fu4ikp2TD3YEfmdkOM7snaKty91aAYFoZtNcARxO2bQ7azmJm95hZo5k1dnR0XFj157GqIp/9bQp3EUlPyYb7je5+FXAncK+Zvf8869okbf6uBvdH3L3B3RsqKiqSLCN5q6ryOd49SPfgyKx/tojIfJdUuLt7SzBtB75DfJilzcyqAYJpe7B6M7AkYfNaoGW2Ck5WfWUBgMbdRSQtTRnuZpZnZgUT88CHgZ3AVmBTsNom4Mlgfiuw0cxiZrYcqAdenO3Cp7KqMh+A/Qp3EUlD0STWqQK+Y2YT6/+Tu28zs5eALWb2WeAI8AkAd99lZluA3cAocK+7j81J9eexpCSHrGiG9txFJC1NGe7ufgC4YpL2k8Ct59jmQeDBGVc3A9FIBivK87TnLiJpKZRXqE5YVZnP/vaeVJchInLRhTrc6ysLaO4cYGD4oo8KiYikVKjDfVVlPu7oYiYRSTuhDvf6qvgZM00adxeRNBPqcK8ryyOSYQp3EUk7oQ73rGgGy8pydVBVRNJOqMMdoL4yX3vuIpJ20iDcCzh0sp/hUT1yT0TSR+jDfVVlPmPjzqGTfakuRUTkokmLcAedMSMi6SX04b6yIh8zeLNNB1VFJH2EPtxzsiIsL8tjd0t3qksREbloQh/uAGtritilcBeRNJIe4b64kGNdA3T2Dae6FBGRiyItwn3d4iIA7b2LSNpIi3Bfu7gQgF0tp1NciYjIxZEW4V6Sl0VNcQ47tecuImkiLcId4nvv2nMXkXSRRuFexMETffQNjaa6FBGROZc24b6uphB32NOqoRkRCb+kw93MImb2ipl9P1guNbOnzGx/MC1JWPcBM2sys31mdvtcFD5da4MzZnYe09CMiITfdPbcPwfsSVi+H9ju7vXA9mAZM1sDbATWAncAD5tZZHbKvXBVhTHK87N0UFVE0kJS4W5mtcAvAI8mNG8ANgfzm4G7Etofd/chdz8INAHXzkq1M2BmrFmsK1VFJD0ku+f+ZeAPgcSbole5eytAMK0M2muAownrNQdtZzGze8ys0cwaOzo6plv3BVm3uJD9bT0MjY5dlO8TEUmVKcPdzD4KtLv7jiQ/0yZp83c1uD/i7g3u3lBRUZHkR8/MupoiRsedN4/r9r8iEm7J7LnfCHzMzA4BjwO3mNk/Am1mVg0QTNuD9ZuBJQnb1wIts1bxDExcqbpT57uLSMhNGe7u/oC717p7HfEDpU+7+6eArcCmYLVNwJPB/FZgo5nFzGw5UA+8OOuVX4ClpbkUZEd5vVnhLiLhFp3Btg8BW8zss8AR4BMA7r7LzLYAu4FR4F53nxeD3GbGlUuKeflwZ6pLERGZU9MKd3d/Fng2mD8J3HqO9R4EHpxhbXOiYVkpX97+JqcHRijKyUx1OSIicyJtrlCd0FBXgju8ckR77yISXmkX7lcuKSaSYezQ0IyIhFjahXteLMpl1QU0HlK4i0h4pV24Q3zc/dWjXYyMjU+9sojIApSW4X71shIGRsZ0h0gRCa20DPeGuvgNLDU0IyJhlZbhXl2UQ01xjg6qikhopWW4Q3xopvHwKdzfddsbEZEFL23DvaGuhLbuIZo7B1JdiojIrEvbcL96WXzcXUMzIhJGaRvuqxcVkh+L0nj4VKpLERGZdWkb7pEM45q6Ev6t6WSqSxERmXVpG+4AN9VXcOBEH0dP9ae6FBGRWZXW4f7+S8oBeK7pRIorERGZXWkd7isr8qkuyuZn+y/OM1xFRC6WtA53M+Om+nKe23+CsXGd7y4i4ZHW4Q7xcffuwVFeb+5KdSkiIrMm7cP9xlXlmMHP9mvcXUTCI+3DvTQvi8trijTuLiKhkvbhDnBTfTkvH+miZ3Ak1aWIiMwKhTvxcfexcefnb+mCJhEJhynD3cyyzexFM3vNzHaZ2Z8F7aVm9pSZ7Q+mJQnbPGBmTWa2z8xun8sOzIarlpaQmxXhpxqaEZGQSGbPfQi4xd2vAK4E7jCz64D7ge3uXg9sD5YxszXARmAtcAfwsJlF5qD2WZMVzeCGleU8s7dDtwAWkVCYMtw9rjdYzAxeDmwANgftm4G7gvkNwOPuPuTuB4Em4NrZLHou3LFuEce6Bni9+XSqSxERmbGkxtzNLGJmrwLtwFPu/gJQ5e6tAMG0Mli9BjiasHlz0PbOz7zHzBrNrLGjI/XDIbddVkU0w/jBzuOpLkVEZMaSCnd3H3P3K4Fa4FozW3ee1W2yj5jkMx9x9wZ3b6ioqEiq2LlUlJvJ9SvL2LazVUMzIrLgTetsGXfvAp4lPpbeZmbVAMG0PVitGViSsFkt0DLTQi+GO9dVc+hkP3uP96S6FBGRGUnmbJkKMysO5nOADwF7ga3ApmC1TcCTwfxWYKOZxcxsOVAPvDjLdc+JD6+tIsPQ0IyILHjJ7LlXA8+Y2evAS8TH3L8PPATcZmb7gduCZdx9F7AF2A1sA+5197G5KH62lefHuKaulG07W1NdiojIjESnWsHdXwfWT9J+Erj1HNs8CDw44+pS4M51i/jT7+3mrY5eVlbkp7ocEZELoitU3+GOddUAbNPQjIgsYAr3d1hUlM36pcV8/3UNzYjIwqVwn8TH19ewp7Wbncd0QZOILEwK90l87IrFZEUz+Gbj0alXFhGZhxTukyjOzeL2tYv47qstDI4siBN9RETOonA/h082LOH0wAhP7W5LdSkiItOmcD+HG1aWUVOcwxYNzYjIAqRwP4eMDOOXr67luaYTNHf2p7ocEZFpUbifxy9fXYs7fGvHsVSXIiIyLQr381hSmsuNq8rY0niU0bHxVJcjIpI0hfsUfu36Oo51DbBtl65YFZGFQ+E+hQ9dVsXy8jy+8tMDus+7iCwYCvcpRDKMz75vOa81n+bFg6dSXY6ISFIU7kn4patqKcnN5Cs/O5jqUkREkqJwT0JOVoRPX1/Hj/e08VZH79QbiIikmMI9Sb92/TKyohk8qr13EVkAFO5JKs+P8UtX1fKtl5tp6RpIdTkiIuelcJ+Gez+4Ehy+/OM3U12KiMh5KdynobYkl09fv4wndjTT1N6T6nJERM5J4T5N/+HmleRmRfnSD7X3LiLz15ThbmZLzOwZM9tjZrvM7HNBe6mZPWVm+4NpScI2D5hZk5ntM7Pb57IDF1tZfozfvGkF23Yd55UjnakuR0RkUsnsuY8C97n7ZcB1wL1mtga4H9ju7vXA9mCZ4L2NwFrgDuBhM4vMRfGp8hs3LacsL4s/37ZXV62KyLw0Zbi7e6u7vxzM9wB7gBpgA7A5WG0zcFcwvwF43N2H3P0g0ARcO8t1p1ReLMrnPlTP8wdO8c9v6EHaIjL/TGvM3czqgPXAC0CVu7dC/AcAqAxWqwESn3DRHLSFyt3XLmVdTSF/9r3dnB4YSXU5IiJnSTrczSwf+BbweXfvPt+qk7S9a+zCzO4xs0Yza+zo6Ei2jHkjGsngix9/Dyd7h/jLH+5NdTkiImdJKtzNLJN4sH/D3b8dNLeZWXXwfjXQHrQ3A0sSNq8FWt75me7+iLs3uHtDRUXFhdafUpfXFrHphjq+8cIRdhzWwVURmT+SOVvGgK8Ce9z9rxLe2gpsCuY3AU8mtG80s5iZLQfqgRdnr+T55b4PX8qiwmy+8J03GB7VAz1EZH5IZs/9RuDTwC1m9mrw+gjwEHCbme0HbguWcfddwBZgN7ANuNfdx+ak+nkgPxblv25Yx97jPXzpR/tSXY6ICADRqVZw9+eYfBwd4NZzbPMg8OAM6lpQPrSmik9dt5RHfnqAG1aWcfOllVNvJCIyh3SF6iz5419Yw+pFBdy35TXauwdTXY6IpDmF+yzJzozwt7+ynr7hUf5gy6uMjeviJhFJHYX7LKqvKuBPf3Et/9p0kj/fptMjRSR1phxzl+n55DVL2N3azSM/PUBdWR53v3dpqksSkTSkcJ9lZsZ/+egaDp/s5z8/uZOlpbm8r7481WWJSJrRsMwciEYy+Lu717OqIp/f+cYOdrec74JeEZHZp3CfIwXZmXz11xvIj0X51UefZ+9xBbyIXDwK9zlUW5LLY795HbFohF/9ygu82aanN4nIxaFwn2N15Xk8ds91RDKMu7/yPHtatQcvInNP4X4RLA8CPpqRwSf+18/52f6FdxdMEVlYFO4XycqKfL5z7w3UluTwma+/xDcbj069kYjIBVK4X0TVRTls+e3ree+KUv7TE6/zxR/sYXRMd5IUkdmncL/ICrMz+fqvX8vd713K//7JAe5+9AXdi0ZEZp3CPQWyohn8t49fzl9/8greaD7NR/7Hz/jJmxqHF5HZo3BPoY+vr2Xr795ISW4Wm772Ig98+3V6BvU8VhGZOYV7itVXFfC933sfv/WBFfy/l45yx5d/xjP72qfeUETkPBTu80B2ZoQH7ryMJ37nBrIzM/jM11/iNzY3cuRkf6pLE5EFSuE+j1y1tIQffO793H/nav7trRN86K9/wl9s28vpAQ3ViMj0KNznmaxoBr/9gZU8fd/NfGTdIh5+9i1u+vOnefjZJgaGQ/soWhGZZeae+icGNTQ0eGNjY6rLmJd2t3TzpR/t4+m97ZTlZfGZG+v49PV1FOVkpro0EUkxM9vh7g2TvqdwXxh2HD7F3z3dxDP7OsiPRbn7vUv59HXLWFKam+rSRCRFzhfuUw7LmNnXzKzdzHYmtJWa2VNmtj+YliS894CZNZnZPjO7fXa6IFcvK+Xrn7mWf/7993HzpRV89bmDfOAvn+G3/qGRf2s6wbie2SoiCabcczez9wO9wP9193VB218Ap9z9ITO7Hyhx9z8yszXAY8C1wGLgx8Al7n7ewWLtuU9fS9cA//j8YR578Qid/SMsK8vl3zUs4ZevrqWqMDvV5YnIRTDjYRkzqwO+nxDu+4Cb3b3VzKqBZ939UjN7AMDdvxis90PgT9395+f7fIX7hRscGWPbzuM8/tIRnj9wigyDG1eVc9eVNdy+bhH5MT1JUSSszhfuF/o3v8rdWwGCgK8M2muA5xPWaw7aJivqHuAegKVL9RDpC5WdGeGu9TXctb6Ggyf6+PbLzXznlWPc983X+MJ33+CDl1bykcuruWV1JXkKepG0Mdt/222Stkn/aeDujwCPQHzPfZbrSEvLy/O478OX8h9vu4QdhzvZ+loLP9h5nB/sPE4smsFN9RV8eG0Vt66upCw/lupyRWQOXWi4t5lZdcKwzMT18s3AkoT1aoGWmRQo02dmNNSV0lBXyp/84lpeOnSKbTuP89TuNn68p40MgyuXFHPL6ko+uLqSNdWFmE32uywiC9WFjrn/JXAy4YBqqbv/oZmtBf6Jtw+obgfqdUB1fnB3drV089TuNp7Z187rzacBqCiIcVN9OR+4pIIbV5VTrr16kQVhRgdUzewx4GagHGgD/gT4LrAFWAocAT7h7qeC9b8A/HtgFPi8u/9gqgIV7qnR3jPIT/Z18NP9J3hufwed/fHbHKxeVMCNq8q5YWUZ1ywvpTBbF0yJzEe6iEmmNDbu7Dx2mn996wT/2nSClw51Mjw6TobB5TVFvHdFGdfWlXJNXSlFuQp7kflA4S7TNjgyxstHOnn+rZP8/MBJXjt6muGxcczg0qoCrqkrpaGuhIa6UhYXZWvMXiQFFO4yY4MjY7x6tIsXDpyi8fApXj7cSV9wI7NFhdlcvayE9UuLWb+0hHU1hcSikRRXLBJ+c3Geu6SZ7MwI160o47oVZQCMjo2z93gPLx/pZMfhThoPdfLPb7QCkBXJ4LLFhVxZW8SVS4u5oraYurI8MjK0dy9ysWjPXWZNe/cgrxzt4uUjnbx6pIs3jp2mP9i7L8iO8p7aIt5TW8x7aoq4vLaImuIcDeeIzICGZSQlxsad/e09vHa0i9eaT/Pa0S72He9hNLjJWUluJutqili7uIh1NYWsXVzEstJc7eGLJEnDMpISkQxj9aJCVi8q5JPXxNsGR8bYe7yHN46d5o3mLna1dPPV5w4wMhYP/PxYlDXVhaxZXMia6kIuqy6kviqf7EyN4YtMh8JdLqrszAhXLinmyiXFwDIAhkbH2N/Wy66W0+xq6WZXSzffbDx65oBtJMNYUZ7H6upCVi8qYPWiAi5dVKBhHZHzULhLysWiEdbVFLGupuhM2/i4c+RUP7tbu9nT2s2e1h5ePtzJ9157+24W+bEol1Tlc+miAuorC7ikqoBLqvKpKIgp9CXtacxdFpSewRHebOthT2sP+9t62Hu8hzfbes5cXQtQlJNJfWU+q4LXysp8VlXkU1Oco/F8CRWNuUtoFGRncvWyUq5eVnqmzd050TvMm23xoN/f3ktTey8/3HWcx196O/SzMzNYUZ7Pioo8VlTks7Iij+Xl8VeBbrEgIaNwlwXPzKgoiFFREOPGVeVnvXeyd4i3Ovpoau/lQEcvb3X08nrzaf7ljVYSn0xYnh9jeXkudWV51JXnBdNclpXl6YEnsiDpT62EWll+jLL8GNcuLz2rfWh0jMMn+znQ0cvBE/0cOtHHwRN9PPtmBx07ms9atzw/i6WluWdeSybmy3KpKsjWUI/MSwp3SUuxaCQ4AFvwrvf6hkY5dLKPwyf7OXyynyOn+jh0op+XDsUfgJK4x58VyWBxcTZLSnOpLcmhpjiHmpIcaopzqSnJoaogRjQy5XPoRWadwl3kHfJiUdYujl9c9U7Do+Mc6xrg6Kl+jnb2c/TUAM2d/RztHOCp3W2c6B0+a/1IhrGoMJvqomyqi3NYXJxNdWEwX5TDoqJsyvKytPcvs07hLjINWdGMMwdhJzMwPMaxrgGOdQ3QEryOdQ7QcnqA15u7+OHOQYbHxs/aJjNiVBZkU1UYY1FRNlWFE6/YmfaK/GwKc6I6xVOSpnAXmUU5WZEzp2BOZnzcOdU/TGvXIC2nB2jrHuT46UFaTw/S1j3I3uM9/GRfx5kLuBLFohlnDhxX5McoP2uaRVl+jPL8GGX5WRTE9EOQ7hTuIhdRRoZRHoTw5bXvHvaZ0Ds0Snv3IG3dQ7T3DNLRM0R7zxDt3YOc6B3m8Ml+Gg930tk/zGSXqmRFMijLz6I0L/4qy8uiNC9GaV7mmWlxbvy94txMinOyyIrq2ECYKNxF5qH8WJT8inxWVEz+L4AJo2PjnOobpr1niJN9w5zsHeJE78R8fPlU3zCHTvZxqnd40n8RJH5ncW4mxbmZlORmUZSTeeZVnPv2fGF2JoUT8zmZFMSiOmYwDyncRRawaCSDysJsKguzk1p/cGSMrv4RTvYN0dU/Qmf/MJ19w3QG8139I3T1D9M1MEJz5wCnB0Y4PTDC2Pi5r2Q3g/ysaDzos6MUZsenBdlR8rOjFGRnkh+Lvt0WyyQvFon/gAWvvFiU3KyIhpJmkcJdJI1kZ0ZYVBRhUVFyPwYQvwK4b3gsHvT98bDvHhyhe2BifpTuoK1ncJSewRGOdw+yvz0+3zM4euY2z+djBrmZEfKCwM+NRcjNipKXFSE3FkyzouRkRcjNjMSnWfEfhfh8/JWdGayXGSEnM0IsM4NYNCPtfjgU7iJyXmZ2Zg+7pjhn2tu7O0Oj4/QOjdI7OErP4Gh8fmiU3qEReofG6BsapW9olP7h+HxvwnxH7xD9p/rpHxqjb3iUgeGxpH4szu4DZEfjPwLZ0QyyMyPEMiNkZ2aQHQ2mmRFiwXsT87GJ6ZlX/MciK5IRTN9ezooGr0h83axoBplBezTDLvqPy5yFu5ndAfwNEAEedfeH5uq7RGT+MrMzgVmeH5uVzxweHWdgeIz+kXjY9w+PMTgSn/YPjzE0OvZ2++gYg4nzI+MMjowFr3GGRsc40TsaXw7eHx6Ntw+OjE9dTBLMiAd9ZCL07czyLasr+eOPrpmV70k0J+FuZhHgfwK3Ac3AS2a21d13z8X3iUh6mdhLLmJub/jm7oyMOYOjYwyNjDM8Ns5Q8KMwPPb2j8DwaHx+eGycoYn50XFGxt5uHx4bZ2TUGR4bY2TU4++NjVN9Af8aSsZc7blfCzS5+wEAM3sc2AAo3EVkwTAzsqIWP000+cMU88JcndhaAxxNWG4O2s4ws3vMrNHMGjs6OuaoDBGR9DRX4T7ZkYOzjoC4+yPu3uDuDRUVFXNUhohIepqrcG8GliQs1wIt51hXRERm2VyF+0tAvZktN7MsYCOwdY6+S0RE3mFODqi6+6iZ/S7wQ+KnQn7N3XfNxXeJiMi7zdl57u7+L8C/zNXni4jIuek2cCIiIaRwFxEJIfPJbgZ9sYsw6wAOz+AjyoETs1TOQpGOfYb07Lf6nD6m2+9l7j7pueTzItxnyswa3b0h1XVcTOnYZ0jPfqvP6WM2+61hGRGREFK4i4iEUFjC/ZFUF5AC6dhnSM9+q8/pY9b6HYoxdxEROVtY9txFRCSBwl1EJIQWdLib2R1mts/Mmszs/lTXMxfMbImZPWNme8xsl5l9LmgvNbOnzGx/MC1Jda1zwcwiZvaKmX0/WA51v82s2MyeMLO9wf/z68PeZwAz+4Pgz/dOM3vMzLLD2G8z+5qZtZvZzoS2c/bTzB4I8m2fmd0+ne9asOGe8Ci/O4E1wK+Y2ew/iDD1RoH73P0y4Drg3qCf9wPb3b0e2B4sh9HngD0Jy2Hv998A29x9NXAF8b6Hus9mVgP8PtDg7uuI32xwI+Hs9/8B7nhH26T9DP6ebwTWBts8HOReUhZsuJPwKD93HwYmHuUXKu7e6u4vB/M9xP+y1xDv6+Zgtc3AXSkpcA6ZWS3wC8CjCc2h7beZFQLvB74K4O7D7t5FiPucIArkmFkUyCX+/IfQ9dvdfwqcekfzufq5AXjc3Yfc/SDQRDz3krKQw33KR/mFjZnVAeuBF4Aqd2+F+A8AUJnC0ubKl4E/BBIfQR/mfq8AOoCvB0NRj5pZHuHuM+5+DPgScARoBU67+48Ieb8TnKufM8q4hRzuUz7KL0zMLB/4FvB5d+9OdT1zzcw+CrS7+45U13IRRYGrgL939/VAH+EYijivYIx5A7AcWAzkmdmnUlvVvDCjjFvI4Z42j/Izs0ziwf4Nd/920NxmZtXB+9VAe6rqmyM3Ah8zs0PEh9xuMbN/JNz9bgaa3f2FYPkJ4mEf5j4DfAg46O4d7j4CfBu4gfD3e8K5+jmjjFvI4Z4Wj/IzMyM+BrvH3f8q4a2twKZgfhPw5MWubS65+wPuXuvudcT/3z7t7p8ixP129+PAUTO7NGi6FdhNiPscOAJcZ2a5wZ/3W4kfWwp7vyecq59bgY1mFjOz5UA98GLSn+ruC/YFfAR4E3gL+EKq65mjPr6P+D/FXgdeDV4fAcqIH1nfH0xLU13rHP43uBn4fjAf6n4DVwKNwf/v7wIlYe9z0O8/A/YCO4F/AGJh7DfwGPHjCiPE98w/e75+Al8I8m0fcOd0vku3HxARCaGFPCwjIiLnoHAXEQkhhbuISAgp3EVEQkjhLiISQgp3EZEQUriLiITQ/wfN/bZNgl3j5gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(tvect, H)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEDCAYAAAA849PJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAm6ElEQVR4nO3deXhV5bn38e9NJkgIEEiYp8g8qIhhqhOt1iq1Vau2eKx1prW12lbfo520ta99W49Dz9Gqh1aEVsVa9aAiDhS12FqRMApCmIdAIBMkhMzJ/f6RZU+KQEKyk5299+9zXfvaaz9ryP1A8vz2XmvttczdERGR2NMp3AWIiEh4KABERGKUAkBEJEYpAEREYpQCQEQkRikARERiVMQFgJnNMbN8M1vXzOW/amYfm9l6M3u2resTEYkUFmnfAzCzs4Ey4A/uPr6JZUcAzwOfc/cDZtbb3fPbo04RkY4u4j4BuPtSoLhxm5kNM7M3zGyFmb1nZqODWTcBv3X3A8G6GvxFRAIRFwDHMBv4rrufDtwBPBa0jwRGmtnfzewDM7sgbBWKiHQw8eEuoLXMrCvwGeDPZvZJc1LwHA+MAKYDA4H3zGy8ux9s5zJFRDqciA8AGj7FHHT3CUeZlwt84O41wHYzy6EhEJa3Y30iIh1SxO8CcvdSGgb3KwCswanB7AXAZ4P2dBp2CW0LR50iIh1NxAWAmc0H/gGMMrNcM7sBuAq4wczWAOuBi4PF3wSKzOxj4B3g/7h7UTjqFhHpaCLuNFAREQmNiPsEICIioRFRB4HT09N96NCh4S5DRCSirFixotDdM45sj6gAGDp0KNnZ2eEuQ0QkopjZzqO1axeQiEiMUgCIiMSoJgOgqatvmtl0Mysxs9XB4+6gfZCZvWNmG4Ircd7WaJ2eZrbYzDYHz2mh65KIiDRHcz4BzAWauobOe+4+IXjcG7TVAre7+xhgKvAdMxsbzLsLWOLuI4AlwWsREWlHTQbA0a6+2RzunufuK4PpQ8AGYEAw+2JgXjA9D7jkRLcvIiKtE6pjANPMbI2ZvW5m446caWZDgdOAZUFTH3fPg4agAHofa8NmNsvMss0su6CgIETliohIKAJgJTDE3U8FHqHh+jv/FFyt80Xge8F1e06Iu8929yx3z8rI+NRprCIi0kKt/h5A40Hd3ReZ2WNmlu7uhWaWQMPg/4y7v9Rotf1m1s/d88ysH6AbtYhIzKqvdw5V1VJaUUNJRQ2lFTWUVtZQWlEbPNdw2ekDGdIrJaQ/t9UBYGZ9gf3u7mY2mYZPFUXWcHH+J4EN7v7QEau9AlwD/Cp4frm1dYiIdASVNXUUH66m+HA1B8qrOVBew4Fg+mB5DQfLqzlYUcOB8hpKgunSihrqj3NZNjM4bUha+wdAcPXN6UC6meUC9wAJAO7+BHA5cLOZ1QIVwMwgDM4ErgY+MrPVweZ+5O6LaBj4nw+u5LkLuCKkvRIRCZHaunqKy6spOFRFYVk1RWVVFJZVUVRWTWFZNcWHqyg6XE1RWcMgX15dd8xtpXaOJy05ke5dEuiRnMDgnsl07xJPjy6J9EhOoFuXBLoHj9TO8XTv0tDWNTGeTp3smNttqYi6GmhWVpbrUhAiEgrVtfXkH6pkf2kl+0uryC+tZP+hKvJLqygoa3hdWNYwuB9tmEyM70R6SiI9uybSMyWJXimJ9Gz0SEv+ZDqBHsmJ9OiSQHxceL57a2Yr3D3ryPaIuhaQiEhzVNbUsa+kkr0lFeQdrCSvpIK8kkr2lVSSV9Iw6Bcdrv7UevGdjIzUJHp368zAtGROG5xGRmoSGV0TSe+aREZqEr26JtGrayKpSfE0ug1tRFIAiEjEKa+uZXdxBbkHysk9UMGegw3Tew5WsudABYVlVZ9aJy05gb7du9Cve2dOHdSDvt0607d7w2DfJ7UzfbolkZac2Ca7WjoqBYCIdDjuTkFZFTuLytlReJhdxeX/fOwuLqew7F/fvSfGd2Jgjy4MSOvCmDG96d+jS8Oje2f69WgY9DsnxIWpNx2XAkBEwqakvIZthWVsKzjM9sL/fewsOszhRgdTOxn079GFIb2SOW9MHwb1TGZgWpd/PqenJMXUO/dQUQCISJtyd/aXVrE5/xCb95expaCMrfllbC04/C+7auI6GYPSujA0PYXJmT3JTE9hSK9khvZKYUBaFxLCdAA1mikARCRkig9Xs3FfKTn7DrFp/yFy9h1ic34Zhypr/7lMj+QEhmd05dzRvTkpI4VhGV3JzEhhcM9kDfLtTAEgIiesrt7ZXniYj/NK+XhvKRvyGh75h/73HX1acgIj+6RyyYQBjOjTlRG9UxnRpyu9UhIj/uyZaKEAEJHjqq2rZ0tBGWtzS1i/p4R1exsG/Yqahn30CXHG8N6pnDkinTF9uzGqbyqj+6aSkZqkgb6DUwCIyD+5O7uKy1m9+yBrdpewJvcg6/eWUFlTD0BKYhzj+nfna5MGMX5Ad8b268bw3l1JjNeum0ikABCJYYeralmz+yArdx1g5a6DrNp1gAPlNQB0TujE+P7d+bfJQzhlYHdOHtidzF4pOtsmiigARGJI/qFKlm8/wPIdxWTvLGZD3iHqgquQDe/dlfPG9OG0wWlMGNSDkX26hu3SBdI+FAAiUSyvpIIPthWxbFsxH2wrYkdROQBdEuKYMKgH354+jIlD0pg4KI3uyQlhrlbamwJAJIoUlVXx/tYi3t9axD+2Fv5zwO/WOZ7Jmb24asoQJmX2ZFz/bjrlUhQAIpGssqaO7B0HeG9zAe9tLuTjvIb7M6UmxTPlpJ58feoQpg3rxei+3YjTvns5ggJAJMLsKDzMuzn5vLupgA+2FVFZU09CnHH6kDTuOH8kZwxP5+QB3bX/XpqkABDp4Grq6lm+o5glG/J5e2M+2wsPA5CZnsLMSYM5e2Q6U0/qRXKi/pzlxOg3RqQDOlRZw7s5BSz+eD/v5ORzqLKWxLhOTB3Wi2umDWH6qN4MTQ/t7QEl9igARDqIorIq/rJhP6+v28fftxRSU+f0SknkwvF9OXdMH84cnk5Kkv5kJXT02yQSRkVlVbyxfh+vrc3jg21F1DsM6tmFaz8zlPPH9WXi4DQdvJU2owAQaWclFTW8uX4fr67Zy/tbi6ird05KT+Hb04dzwfi+jOvfTdfQkXbRZACY2RzgIiDf3ccfZf504GVge9D0krvfe7x1zexnwE1AQdD0I3df1OJeiHRwVbV1vLOxgAWr9vD2xnyq6+oZ3DOZb51zEhed0p/RfVM16Eu7a84ngLnAo8AfjrPMe+5+0Qmu+7C7P9CMny8SkdydNbklvLBiN6+uyaOkoob0rklcNXUwF08YwKkDu2vQl7BqMgDcfamZDW3JxluzrkikKjhUxUsrc/nzily25JeRFN+JC8b35dLTBnDm8HSdny8dRqiOAUwzszXAXuAOd1/fjHVuMbNvANnA7e5+4GgLmdksYBbA4MGDQ1SuSGjV1TtLNxfw3Ie7WLIhn9p65/QhafzqKycz45R+dOus6+xIxxOKAFgJDHH3MjObASwARjSxzuPALwAPnh8Erj/agu4+G5gNkJWV5SGoVyRk8g9V8ufsXJ5dtos9ByvolZLI9Wdm8tWsQQzv3TXc5YkcV6sDwN1LG00vMrPHzCzd3QuPs87+T6bN7HfAwtbWIdJe3J2Vuw4w7/2dvL4uj5o65zPDevHDGaM5f2xf3RxFIkarA8DM+gL73d3NbDLQCShqYp1+7p4XvLwUWNfaOkTaWlVtHQvX5PHU+9tZt6eU1M7xXD11KFdNHcywDL3bl8jTnNNA5wPTgXQzywXuARIA3P0J4HLgZjOrBSqAme7ux1rX3Z8E7jezCTTsAtoBfDOkvRIJoaKyKp7+YBd//GAnhWVVjOzTlfsuHc+lpw3Q9XckolkwVkeErKwsz87ODncZEiO2Fx7m9+9t44UVuVTV1vPZURlcf2YmZw5P1+mbElHMbIW7Zx3ZrrcvIkf4KLeEx/+6hdfX7SOhUye+MnEAN56VyfDeqeEuTSSkFAAigWXbinj0nS28t7mQ1KR4bj5nGNeeMZTeqZ3DXZpIm1AASExzd/6xtYj/XLKZZduLSe+ayJ0XjOaqqYN17r5EPQWAxKx/bC3i4cWb+HBHMX26JXH3RWO5cvJguiTGhbs0kXahAJCYs2LnAR58K4f3txbROzWJn395HF+bNIjOCRr4JbYoACRm5Ow7xH+8mcNfNuwnvWsiP71oLFdNGayBX2KWAkCi3t6DFTy0eBMvrsyla2I8d5w/kuvOyNTdtSTm6S9AolZpZQ2Pv7uVOX/bjgM3nXUSN58zjLSUxHCXJtIhKAAk6tTVO39avpsH38qh6HA1l0zozx1fGMXAtORwlybSoSgAJKq8v7WQe1/9mI37DjFpaBpPXTeJUwb2CHdZIh2SAkCiwt6DFdy3aAOvrc1jYFoXHrtqIheO76tLNogchwJAIlp1bT2//9s2HlmyhXp3vn/eSL55zkk6s0ekGRQAErGWbSvixwvWsSW/jPPH9uGnF41lUE/t5xdpLgWARJwDh6v55aIN/HlFLgPTuvDkNVmcO6ZPuMsSiTgKAIkY7s6ra/O499X1HCyv4ebpw7j1cyN06QaRFlIASETYV1LJj//nI5ZszOfUgd354w1TGNOvW7jLEoloCgDp0NydF1bkcu/Cj6mpq+cnXxzDdWdkEtdJZ/eItJYCQDqs/NJK7nxxLe/kFDB5aE/uv/wUhqanhLsskaihAJAOaeHavfxkwToqa+q450tjuWbaUDrpXb9ISHVqagEzm2Nm+Wa27hjzp5tZiZmtDh53N7WumfU0s8Vmtjl4Tmt9VyQalFbWcNtzq7jl2VUM6ZXCa7eexXVnZGrwF2kDTQYAMBe4oIll3nP3CcHj3masexewxN1HAEuC1xLjsncUc+Fv3mPh2jy+f95IXvzWNIZldA13WSJRq8ldQO6+1MyGtmTjx1n3YmB6MD0PeBe4syU/QyJfbV09j7y9hUfe3szAtGT+/K1pTBysD4UibS1UxwCmmdkaYC9wh7uvb2L5Pu6eB+DueWbW+1gLmtksYBbA4MGDQ1SudBT7Siq59blVfLi9mK+cNoCfXzyOVN2LV6RdhCIAVgJD3L3MzGYAC4ARIdguAO4+G5gNkJWV5aHaroTfOzn53P78Gipr6njwilO57PSB4S5JJKY05xjAcbl7qbuXBdOLgAQzS29itf1m1g8geM5vbR0SOerqnQfezOG6p5bTOzWJV245U4O/SBi0+hOAmfUF9ru7m9lkGkKlqInVXgGuAX4VPL/c2jokMhSVVXHrc6v4+5YivpY1iJ9fPE5X7hQJkyYDwMzm03DANt3McoF7gAQAd38CuBy42cxqgQpgprv7sdZ19ydpGPifN7MbgF3AFSHul3RAq3cf5OanV1B0uJpfX3YyX5ukYzoi4WTBWB0RsrKyPDs7O9xlSAs8n72bnyxYR+/UJJ74+umMH9A93CWJxAwzW+HuWUe265vA0qZq6uq577UNzH1/B2cM78WjV07UTdlFOggFgLSZg+XVfPuZlby/tYibzsrkzgtGEx/X6vMORCREFADSJrbkl3HjvOXsPVipUzxFOigFgITc37cU8q2nV5AY14n5s6Zw+pCe4S5JRI5CASAh9fzy3fzofz5iWEZXnrw2i4FpukevSEelAJCQcHcefGsTj76zhbNGpPPbqybSTZd0EOnQFADSajV19dz5wlpeWrWHmZMG8YtLxpOgg70iHZ4CQFrlcFUtNz+zkqWbCrj98yO55XPDMdO1+0UigQJAWqywrIrr5y5n/d5S7r/sFL46aVC4SxKRE6AAkBbZc7CCq3+/jL0lFcy++nTOHdMn3CWJyAlSAMgJ21pQxtW/X8ahqlqevmEKWUN1mqdIJFIAyAlZt6eEb8z5kE4Gf5o1jbH9u4W7JBFpIQWANNuqXQf4xpwP6dY5gadvnEJmekq4SxKRVlAASLN8uL2Y6576kPTUJJ65cYq+4CUSBRQA0qT3txRyw7xs+vXozLM3TqVv987hLklEQkABIMf1/pZCrp+3nME9k3nmxqlkpCaFuyQRCREFgBzT+1v/d/B/9qappHfV4C8STfR9fTmqD7YVcf3c5QxK0+AvEq0UAPIpK3Ye4Pq5yxmowV8kqikA5F+s21PCtXM+pHdqEs/eOEX7/EWiWJMBYGZzzCzfzNYdY/50Mysxs9XB4+5G8y4wsxwz22JmdzVq/5mZ7Wm0zozQdEdaI2ffIa5+chnduiTwzE1T6d1NZ/uIRLPmHASeCzwK/OE4y7zn7hc1bjCzOOC3wOeBXGC5mb3i7h8Hizzs7g+ceMnSFnYVlXP1k8tIiOvEszdNYUCPLuEuSUTaWJOfANx9KVDcgm1PBra4+zZ3rwaeAy5uwXakjeUfquTqOcuorqvn6RunMKSXvuErEgtCdQxgmpmtMbPXzWxc0DYA2N1omdyg7RO3mNnaYBdT2rE2bGazzCzbzLILCgpCVK58oqSihm88+SEFh6p46tpJjOyTGu6SRKSdhCIAVgJD3P1U4BFgQdB+tLuCePD8ODAMmADkAQ8ea+PuPtvds9w9KyMjIwTlyicqa+q4cd5ythaU8d9Xn85pg4+ZwyIShVodAO5e6u5lwfQiIMHM0ml4x9/4DiEDgb3Bcvvdvc7d64Hf0bC7SNpRXb3zvedWk73zAA9/bQJnjVC4isSaVgeAmfW14B6AZjY52GYRsBwYYWaZZpYIzAReCZbr12gTlwJHPcNI2oa7c++r63lj/T5+8sWxXHRK/3CXJCJh0ORZQGY2H5gOpJtZLnAPkADg7k8AlwM3m1ktUAHMdHcHas3sFuBNIA6Y4+7rg83eb2YTaNgltAP4Zgj7JE3476XbmPePndx4ZiY3nJkZ7nJEJEysYayODFlZWZ6dnR3uMiLawrV7ueXZVVx0Sj/+a+ZpdOqkG7iLRDszW+HuWUe265vAMWTlrgP84Pk1ZA1J44ErTtXgLxLjFAAxYndxOTfNy6Zf987M/kYWnRPiwl2SiISZAiAGlFbWcN3c5dTWO3OunUTPlMRwlyQiHYACIMrV1Tu3zl/FjsLDPP71iQzL6BrukkSkg9ANYaLcr9/YyLs5Bdx36Xg+Myw93OWISAeiTwBR7IUVucxeuo1rpg3hqilDwl2OiHQwCoAotWrXAX700kecMbwXP71obLjLEZEOSAEQhQoOVXHz0yvp0z2J3/7bROLj9N8sIp+mYwBRpqaunu88s5KDFdW8dPMZ9EjWGT8icnQKgChz32sb+HBHMf85cwJj+3cLdzki0oFp30AUeXn1Hua+v4Mbz8zk4gkDml5BRGKaAiBKbNp/iLte/IjJmT2568LR4S5HRCKAAiAKlFXV8q2nV5CSFM+jV56mg74i0iwaKSKcu3PXi2vZUXiYR648jd7dOoe7JBGJEAqACPf0sl0sXJvH7eePYtqwXuEuR0QiiAIggq3fW8IvFn7M9FEZ3HzOsHCXIyIRRgEQoQ5X1fLdZ1fRo0sCD+ra/iLSAvoeQIT66cvr2FF0mGdunEqvrknhLkdEIpA+AUSgl1bm8tLKPXz3cyO0319EWqzJADCzOWaWb2brjjF/upmVmNnq4HF3o3kXmFmOmW0xs7satfc0s8Vmtjl4TgtNd6LfrqJy7n55PZOGpnHruSPCXY6IRLDmfAKYC1zQxDLvufuE4HEvgJnFAb8FLgTGAlea2SeXpbwLWOLuI4AlwWtpQm1dPbf9aRVm8PDXJhCn/f4i0gpNBoC7LwWKW7DtycAWd9/m7tXAc8DFwbyLgXnB9DzgkhZsP+b819tbWLXrIPddejID05LDXY6IRLhQHQOYZmZrzOx1MxsXtA0AdjdaJjdoA+jj7nkAwXPvENURtbJ3FPPo25v5ysQBfPnU/uEuR0SiQCjOAloJDHH3MjObASwARgBH2z/hJ7pxM5sFzAIYPHhwK8qMXIeravnB82vo36MLP//yuKZXEBFphlZ/AnD3UncvC6YXAQlmlk7DO/5BjRYdCOwNpvebWT+A4Dn/ONuf7e5Z7p6VkZHR2nIj0n2LNrD7QDkPfXUCqZ0Twl2OiESJVgeAmfU1MwumJwfbLAKWAyPMLNPMEoGZwCvBaq8A1wTT1wAvt7aOaPVOTj7PLtvFrLNOYnJmz3CXIyJRpMldQGY2H5gOpJtZLnAPkADg7k8AlwM3m1ktUAHMdHcHas3sFuBNIA6Y4+7rg83+CnjezG4AdgFXhLRXUeLA4WrufGEto/qk8v3Pjwx3OSISZZoMAHe/son5jwKPHmPeImDRUdqLgHObWWPMuueV9Rwor+ap6ybROSEu3OWISJTRN4E7qDfW7eOVNXv57udGMK5/93CXIyJRSAHQAR04XM1PFqxjXP9u3DxdV/kUkbahi8F1QD97dT0Hy6v54w2TSdDdvUSkjWh06WDeWr+Pl1c37PoZ069buMsRkSimAOhASipq+MmCdYzp141vf1a7fkSkbSkAOpBfvb6RwrIq7r/sFO36EZE2p1Gmg/hgWxHzP9zFjWedxMkDddaPiLQ9BUAHUFlTx10vrmVwz2S+f56+8CUi7UNnAXUA/7VkMzuKynnmxil0SdQXvkSkfegTQJjl7DvE7KXbuGziQM4Ynh7uckQkhigAwqi+3vnx/3xEaud4fvzFMeEuR0RijAIgjJ7P3k32zgP8cMYYeqYkhrscEYkxCoAwKSyr4v+9vpHJmT254vSB4S5HRGKQAiBMfvnaBsqra/nlpScT3E5BRKRdKQDCYNm2Il5atYdZZ5/E8N5dw12OiMQoBUA7q6mr5+6X1zOgRxdu+eyIcJcjIjFMAdDO/vCPneTsP8TdXxqrc/5FJKwUAO1of2klDy/exPRRGZw/tk+4yxGRGKcAaEe/XLSB6tp6fvalcTrwKyJhpwBoJ8t3FPPy6r3MOvskhqanhLscEZGmA8DM5phZvpmta2K5SWZWZ2aXN2q7zczWmdl6M/teo/afmdkeM1sdPGa0qhcdXF2987NX1tOve2dd519EOozmfAKYC1xwvAXMLA74NfBmo7bxwE3AZOBU4CIza3zay8PuPiF4LDrRwiPJn5bvZv3eUn44YwzJibr+noh0DE0GgLsvBYqbWOy7wItAfqO2McAH7l7u7rXAX4FLW1popCopr+GBt3KYPLQnXzqlX7jLERH5p1YfAzCzATQM7E8cMWsdcLaZ9TKzZGAGMKjR/FvMbG2wiyntONufZWbZZpZdUFDQ2nLb3cN/2cTB8mru+fJYHfgVkQ4lFAeBfwPc6e51jRvdfQMNu4UWA28Aa4DaYPbjwDBgApAHPHisjbv7bHfPcvesjIyMEJTbfrbkH+KPH+xk5uTBjOuvu3yJSMcSih3SWcBzwbvbdGCGmdW6+wJ3fxJ4EsDMfgnkArj7/k9WNrPfAQtDUEeHc99rG0hOiOP2z+suXyLS8bQ6ANw985NpM5sLLHT3BcHr3u6eb2aDga8A04L2fu6eF6x2KQ27i6LK0k0FvJNTwI9mjKZX16RwlyMi8ilNBoCZzQemA+lmlgvcAyQAuPuR+/2P9KKZ9QJqgO+4+4Gg/X4zmwA4sAP4ZkuK76hq6+r5v699zJBeyVzzmaHhLkdE5KiaDAB3v7K5G3P3a494fdYxlru6uduMRPOX72bT/jKe+PpEkuJ1vR8R6Zj0TeAQK62s4eHFm5iS2ZMvjOsb7nJERI5JARBij7+7leLD1fzkizrtU0Q6NgVACO05WMGcv23n0tMGcPJAnfYpIh2bAiCEHnwzBwfu+MKocJciItIkBUCIrNtTwkur9nD9GZkM6NEl3OWIiDRJARAC7s4vF20gLTlBV/sUkYihAAiBdzcV8P7WIm47dwTdOieEuxwRkWZRALRSXb3z69c3MqRXMv82ZUi4yxERaTYFQCstWLWHjfsOccf5o0iM1z+niEQOjVitUFlTx0OLN3HygO588WRd619EIosCoBX++I+d7DlYwV0XjqZTJ33pS0QiiwKghUoqavjtu1s4e2QGZwxPD3c5IiInTAHQQrOXbuVgeQ3/ri99iUiEUgC0QH5pJXP+toMvn9qf8QN0yQcRiUwKgBZ45O0t1NTV8wPd6UtEIpgC4ATtLDrM/A93MXPyIIamp4S7HBGRFlMAnKCHFm8iPs649XMjwl2KiEirKABOwIa8Ul5evZfrzsikd7fO4S5HRKRVFAAn4MG3cujWOZ5vna0LvolI5FMANNOKncX8ZUM+3zxnGN2TdcE3EYl8TQaAmc0xs3wzW9fEcpPMrM7MLm/UdpuZrTOz9Wb2vUbtPc1ssZltDp7TWtWLNubu3P9GDuldE7nujKHhLkdEJCSa8wlgLnDB8RYwszjg18CbjdrGAzcBk4FTgYvM7JMjp3cBS9x9BLAkeN1h/W1LIcu2F3PLZ4eTnBgf7nJEREKiyQBw96VAcROLfRd4Echv1DYG+MDdy929FvgrcGkw72JgXjA9D7jkBGpuV+7Of7yZw4AeXbhyyuBwlyMiEjKtPgZgZgNoGNifOGLWOuBsM+tlZsnADGBQMK+Pu+cBBM+9j7P9WWaWbWbZBQUFrS33hL25fj9rc0u47dwRJMXHtfvPFxFpK6E4CPwb4E53r2vc6O4baNgttBh4A1gD1J7oxt19trtnuXtWRkZGCMptvrp656HFOZyUkcJXJg5o158tItLWQhEAWcBzZrYDuBx4zMwuAXD3J919orufTcNupM3BOvvNrB9A8Jz/qa12AK+u2cum/WX84PMjiY/TCVMiEl1aPaq5e6a7D3X3ocALwLfdfQGAmfUOngcDXwHmB6u9AlwTTF8DvNzaOkKtpq6ehxZvYky/bswYr5u9iEj0afKUFjObD0wH0s0sF7gHSABw9yP3+x/pRTPrBdQA33H3A0H7r4DnzewGYBdwRcvKbzt/zs5lV3E5c67N0s1eRCQqNRkA7n5lczfm7tce8fqsYyxXBJzb3O22t8qaOh55ezMTB/fgs6OOeXxaRCSiacf2UTyzbBd5JZXc8YVRmOndv4hEJwXAEcqqannsnS2cOTydzwzTrR5FJHopAI7w1N+2U3S4mjt0q0cRiXIKgEYOllcze+k2zh/bhwmDeoS7HBGRNqUAaOSJv26jrLqW28/Xu38RiX4KgEB+aSVz39/Oxaf2Z1Tf1HCXIyLS5hQAgUfe3kJtnfO983SjdxGJDQoAdKN3EYlNCgB0o3cRiU0xHwAf7y3llTV7uV43eheRGBPzAfDAWzl065zAN8/Rjd5FJLbEdAB8uL2Ytzfmc/P0YXTvohu9i0hsidkAcHd+uWgDfbolcc20oeEuR0Sk3cVsACz6aB+rdx/k9s+PokuibvUoIrEnJgOgurae+9/cyOi+qVx2+sBwlyMiEhYxGQBPf7CTnUXl3HXhaOJ0sxcRiVExFwAlFTU88vZmzhyezjkj2/cm8yIiHUnMBcBj72zhYEUNd104Wjd7EZGYFlMBsK2gjDl/387lEwcyfkD3cJcjIhJWTQaAmc0xs3wzW9fEcpPMrM7MLm/U9n0zW29m68xsvpl1Dtp/ZmZ7zGx18JjR+q407RcLP6ZzfBz/fsHo9vhxIiIdWnM+AcwFLjjeAmYWB/waeLNR2wDgViDL3ccDccDMRqs97O4TgseiEy38RL29cT/v5BRw23kjyEhNausfJyLS4TUZAO6+FChuYrHvAi8C+Ue0xwNdzCweSAb2tqTI1qqqreMXCzdwUkYK39CXvkREgBAcAwje6V8KPNG43d33AA8Au4A8oMTd32q0yC1mtjbYxZR2nO3PMrNsM8suKChoUY1P/X0H2wsPc/dFY0mMj6nDHiIixxSK0fA3wJ3uXte4MRjULwYygf5Aipl9PZj9ODAMmEBDODx4rI27+2x3z3L3rIyMlp22mdE1ia9mDWT6qN4tWl9EJBrFh2AbWcBzwSmV6cAMM6sFEoDt7l4AYGYvAZ8Bnnb3/Z+sbGa/AxaGoI5juuz0gfrGr4jIEVodAO6e+cm0mc0FFrr7AjObAkw1s2SgAjgXyA6W6+fuecFqlwLHPcNIRERCr8kAMLP5wHQg3cxygXtoeHePuz9xrPXcfZmZvQCsBGqBVcDsYPb9ZjYBcGAH8M0W90BERFrE3D3cNTRbVlaWZ2dnh7sMEZGIYmYr3D3ryHadEiMiEqMUACIiMUoBICISoxQAIiIxSgEgIhKjIuosIDMrAHa2cPV0oDCE5USKWOx3LPYZYrPfsdhnOPF+D3H3T11KIaICoDXMLPtop0FFu1jsdyz2GWKz37HYZwhdv7ULSEQkRikARERiVCwFwOymF4lKsdjvWOwzxGa/Y7HPEKJ+x8wxABER+Vex9AlAREQaUQCIiMSomAgAM7vAzHLMbIuZ3RXuetqCmQ0ys3fMbIOZrTez24L2nma22Mw2B8/HvP1mpDKzODNbZWYLg9ex0OceZvaCmW0M/s+nRXu/zez7we/2OjObb2ado7HPwW1y881sXaO2Y/bTzH4YjG05ZvaFE/lZUR8AZhYH/Ba4EBgLXGlmY8NbVZuoBW539zHAVOA7QT/vApa4+whgSfA62twGbGj0Ohb6/J/AG+4+GjiVhv5Hbb+De4/fCmS5+3ggDphJdPZ5LnDBEW1H7WfwNz4TGBes81gw5jVL1AcAMBnY4u7b3L0aeI6GexVHFXfPc/eVwfQhGgaEATT0dV6w2DzgkrAU2EbMbCDwReD3jZqjvc/dgLOBJwHcvdrdDxLl/abhBlZdzCweSAb2EoV9dvelQPERzcfq58XAc+5e5e7bgS00jHnNEgsBMADY3eh1btAWtcxsKHAasAzo88ntN4Pn3mEsrS38Bvh3oL5RW7T3+SSgAHgq2PX1ezNLIYr77e57gAeAXUAeUOLubxHFfT7CsfrZqvEtFgLAjtIWtee+mllX4EXge+5eGu562pKZXQTku/uKcNfSzuKBicDj7n4acJjo2PVxTME+74uBTKA/kGJmXw9vVR1Cq8a3WAiAXGBQo9cDafjoGHXMLIGGwf8Zd38paN5vZv2C+f2A/HDV1wbOAL5sZjto2LX3OTN7mujuMzT8Tue6+7Lg9Qs0BEI09/s8YLu7F7h7DfAS8Bmiu8+NHaufrRrfYiEAlgMjzCzTzBJpOGDySphrCjkzMxr2CW9w94cazXoFuCaYvgZ4ub1rayvu/kN3H+juQ2n4f33b3b9OFPcZwN33AbvNbFTQdC7wMdHd713AVDNLDn7Xz6XhOFc097mxY/XzFWCmmSWZWSYwAviw2Vt196h/ADOATcBW4MfhrqeN+ngmDR/91gKrg8cMoBcNZw1sDp57hrvWNur/dGBhMB31fQYmANnB//cCIC3a+w38HNgIrAP+CCRFY5+B+TQc56ih4R3+DcfrJ/DjYGzLAS48kZ+lS0GIiMSoWNgFJCIiR6EAEBGJUQoAEZEYpQAQEYlRCgARkRilABARiVEKABGRGPX/AVtS+6hU766EAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(tvect, R)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAseklEQVR4nO3de3xV5Z3v8c9PciOEQEjCLdwvUUGjQFAsOnpkqq3acpzRkY5StJ76qp06OuPUaW17xr7O9By1PZyx03ZaK1ir1kuVWqq01Kr10logRCBAvESu4Zb7jZD77/yxH2zKRXYkYSd7f9+vV1575VlrPev3cFm/vZ5nrfWYuyMiInJarAMQEZH+QQlBREQAJQQREQmUEEREBFBCEBGRICnWAXxUOTk5PmnSpFiHISIyoKxfv77K3XOPtW7AJoRJkyZRVFQU6zBERAYUM9t5vHXqMhIREUAJQUREAiUEEREBlBBERCRQQhAREUAJQUREAiUEEREBBvBzCCIi8aato4um1g6aWjpobG2nqaWDg20dNLZ0cLC1k6bWdppaO1lwxkjOGT+814+vhCAi0ktaOzqpP9ROfXM79YfaaWgJn4c6aAi/NxzqoKGlncaWDhpb2mno9tnW0RXVcUYOTVVCEBE5FdydxtYOag+2UXOwjdrmNmoOtlMblmub26lrbqOuuZ3a5jbqD7VT19zOofbOD613cPIgMgcnMTQtmcy0JIanpzB+RPoHv2ekJjE0LYmMtOQ/L6cmMSQsD0lNIj15EKedZn3SbiUEEUkIbR1dVB9spaqxjaqmViqbWqlqaqW6qY3qplaqD7ZR1dRGzcFWag+209Z57G/rg04zstKTGZ6eQlZ6MuOy0jkrL5ms9GSGDQ4/6SlkpiX9+ffByQxNSyYlqX8P2yohiMiA1tbRxYGGFioaWzjQ0MqBhshnRWMLlY2tVDRETv41B9uOuX96yiCyM1LIHpLK2GFpnDU2k+yMVLKHpJA1JOWDz6z0ZLKGpDA0NQmzvvmGHmtKCCLSbx0+2e+pO8TeukPsq29hX/0h9te3sK++hf31LVQf40SfPMgYOTSN3KGpTMhOp3BSFrlDUyM/GankhM/sjBTSU3QaPEx/EiISMy3tneypO0R57SF21zRTXnso/N7M3rpDVDS24v6X+wwbnMyYYWmMGZZGwbjhjM5MY/SwVEZmpjE6M41RmWlkpSfH7bf4vqSEICJ9qq65jR3VzeysPsjO6mZ21TSzK3zub2j5i22TBxljhw8mb/hg/mp6LnlZgxk7fDBjhw1mzPA0xg4bzOCUQTFqSfxTQhCRk3aorZNtVU1sqzzI9qrIz7aqg+ysPkhdc/tfbDsqM5WJI4Ywf1oO40cMZsKIdMaPSGdc1mBGDk1jUB/dQSMnpoQgIlGra27j3QNNvFfRyPsVBymrbOL9iib21B36i+3GDktjcu4Qrjx7DJNzhjBhRDqTwmdasr7h91cnTAhmNh74KTAa6AIedPcHwrrbgC8BHcAL7n5XKC8AfgRkhn3munuLmX0GuBtwYC9wg7tXmVlqOMYcoBq4zt139GZDRSR6zW0dvHugiXf2N/D2/kbePdDIO/ubqGpq/WCbwcmDmDpyCIWTsrgudzxTcocwJSeDyTlD1K0zQEVzhdAB3OnuxWY2FFhvZi8Co4CFQIG7t5rZSAAzSwIeAxa7+0YzywbaQ/kDwIyQBO4nkkzuAW4Gat19mpktAu4DruvdporIkdydvfUtbN3bQOm+P//srGn+YDB3cPIg8kdlcMnpueSPymD6qKFMH5nB2GGD++wBKYmNEyYEd98H7AvLjWZWCuQBnwfudffWsK4i7HIZsMndN4byagAzSwYMGGJm1USuHsrCPguJJAaAZ4DvmZm5H3l/gYh8VO7OrppmSvbUU7Knni17Gtiyt57a0MdvBpOyh3DmmEz+ZvY4Th89lDNGD2V8VrpO/AmiR2MIZjYJmAWsAb4NXGRm3wJagH9x93VAPuBmthrIBZ509/vdvd3MbgVKgIPAe8A/hKrzgN0A7t5hZvVANlB1ku0TSVgVjS1s2FXHxvI6NpXXs6m8nvpDkZN/yqDTyB+dweUzRzNzbCYzxmZyxuhMhqRqWDGRRf23b2YZwLPAHe7eELqAsoB5wFzgaTObEuq8MJQ1Ay+Z2XrgNeBWIgllG/CfwFeBfydy5XCko64OzOwW4BaACRMmRBu6SNxr7ehky94GinfW8tauOt7aVcve+sgtnUmnGaePHsoVZ4+hYNwwzs4bRv6oof3+NQpy6kWVEEJ3z7PA4+6+IhSXAytCt85aM+sCckL5q+5eFfZdBcwGGgDc/f1Q/jTwlW51jQfKQ6IZBtQcGYe7Pwg8CFBYWKjuJElYdc1tFO2oZd3OGtbvqGXTnvoP3pSZN3wwsydm8bnxw5k1YTgzxw7TnT0SlWjuMjJgGVDq7ku7rXoOuBT4vZnlAylEunhWA3eZWTrQBlwM/D9gDzDDzHLdvRL4OFAa6loJLAHeBK4BXtb4gcifVTa2snZ7DWu2V7N2ew1v728EIg9ynZU3jCUXTGTOxCxmT8hiZGZajKOVgSqaK4T5wGKgxMw2hLK7geXAcjPbTOTEvyScxGvNbCmwjki3zyp3fwHAzL4JvGZm7cBO4MZQ3zLgUTMrI3JlsKgX2iYyYNU1t/GnbdX88f3IT1lFExB5EduciVlcVTCGuZNGcM744fr2L73GBuoX8cLCQi8qKop1GCK9oqW9k/U7a3n9vSr+UFbF5r31uEcSwNxJI7hgajbnTx7BWXnDSB6kvn/56MxsvbsXHmudbikQiQF35/3Kg7z6biWvvVvJmu3VtLR3kTzImDUhizsW5HPh9GwKxg1XApBTRglB5BRpae/kzW3VvPJ2Ba+8U8HumsjrHqbkDmHR3An8VX4O50/O1q2fEjP6lyfShyobW3mp9AC/K63gD2VVHGrvZHDyIOZPy+aWv5rKJfm5jB+RHuswRQAlBJFet6PqIKu37Oe3Ww9QvKsW98itoNcWjuPSM0Yyb0q2BoKlX1JCEOkF7x5oZFXJPn6zef8Ht4TOHJvJHQvy+fiMUZw5ZqgmbJF+TwlB5CMqq2hk5cZ9rCrZR1lFE2ZQODGLb1w1g8tnjmJclrqCZGBRQhDpgfLaZn65YS+/2riXt/c3YgbnTx7BkgtmcvnM0XooTAY0JQSRE6hrbuP5Tft47q09FO2sBWD2hOHc86kZXHH2GCUBiRtKCCLH0N7Zxe/fqWRFcTkvlVbQ1tnF9JEZfPny0/n0OWN1Z5DEJSUEkW7ePdDIz4t284u39lDV1Eb2kBRumDeRv5mdx8yxmRoYlrimhCAJr7mtg+c37uOJdbt4a1cdSacZC84cybVzxnPx6bl6UlgShhKCJKzSfQ08vmYnz721l6bWDqaNzODrV57J1bPyyM5IjXV4IqecEoIklNaOTn5dsp+fvrmD4l11pCSdxlVnj+Hvz5/AnIlZ6hKShKaEIAlhf30Lj6/ZyRNrd1HV1MbknCF8/cozuWbOOIanp8Q6PJF+QQlB4lrxrloe/sMOfl2yj053Fpwxks9eMIkLp+Vo4niRIyghSNzp7HJ+u2U/P359G8W76hiamsSNH5vEko9N0u2iIh8imik0xwM/BUYDXcCD7v5AWHcb8CWgA3jB3e8K5QXAj4DMsM9cIBl4vVvV44DH3P0OM0sNx5gDVAPXufuO3migJI5DbZ38fP1uHnp9O7tqmpkwIp17PjWDawrHk6FXSoucUDT/SzqAO9292MyGAuvN7EVgFLAQKHD3VjMbCWBmScBjwGJ332hm2UC7u7cA5x6u1MzWAyvCrzcDte4+zcwWAfcB1/VOEyXe1TW38dM3d/KTP+6g5mAbsycM5+4rzuDjM0YzSN1CIlE7YUJw933AvrDcaGalQB7weeBed28N6yrCLpcBm9x9YyivPrJOM5sOjOTPVwwLgXvC8jPA98zMfKDO7ymnREVjC8te385jf9rJwbZOLj1jJLdeMpW5k0bEOjSRAalH19FmNgmYBawBvg1cZGbfAlqAf3H3dUA+4Ga2GsgFnnT3+4+o6jPAU91O+HnAbgB37zCzeiAbqDri+LcAtwBMmDChJ6FLHNlXf4gf/v59nli3m47OLq4qGMsX/9tUzhidGevQRAa0qBOCmWUAzwJ3uHtD6BrKAuYRGSN42symhDovDGXNwEthUueXulW3CFjcvfpjHPKoqwN3fxB4EKCwsFBXDwlmb90hfvD7Mp5eV06XO387exy3XjKVSTlDYh2aSFyIKiGYWTKRZPC4ux/u9y8HVoRv+WvNrAvICeWvuntV2HcVMBt4Kfx+DpDk7uu7HaIcGA+Uh0QzDKg52cZJfDjQ0ML3XynjybW7cZxrC8dz68VTdceQSC+L5i4jA5YBpe6+tNuq54BLgd+bWT6QQqSLZzVwl5mlA23AxcD/67bfZ4AnjjjMSmAJ8CZwDfCyxg+k5mAbP3iljEf/tJPOLufawnF86dLp5A0fHOvQROJSNFcI84l075SY2YZQdjewHFhuZpuJnPiXhJN4rZktBdYR6fZZ5e4vdKvv74ArjjjGMuBRMysjcmWw6CO2R+JAU2sHy17fzo9f30ZzWwdXzxrH7QumMyFbVwQifckG6hfxwsJCLyoqinUY0ovaO7t4Yu0uvvvSe1Q1tfGJmaO587J8po8aGuvQROJGGNMtPNY6Pa0jMefu/Hrzfu7/zdvsqG5m3pQRPLTkTM4dPzzWoYkkFCUEiakNu+v49+e3UrSzlvxRGTx841wuOT1Xbx0ViQElBImJffWHuO/Xb/Pchr3kZKTwf/7mbP6ucLyeLBaJISUEOaVa2jt56PVtfP+V9+l059ZLpvLFS6YyNC051qGJJDwlBDllfrf1AN98fgu7aw7xiZmjufuKM3XnkEg/ooQgfW5n9UG++autvPx2BdNHZvD4/zif+dNyYh2WiBxBCUH6TGtHJz96dRvfe6WM5NOMr11xJjfOn6RJ60X6KSUE6RNvvl/N154rYVvlQa4sGMP/vGoGozLTYh2WiHwIJQTpVXXNbfzvVaU8XVTO+BGD+clNc7nk9JGxDktEoqCEIL3C3XmhZB/3rNxCbXM7X7h4KrcvmM7glEGxDk1EoqSEICetoqGFrz23mRe3HuDsvGE88rnzmDl2WKzDEpEeUkKQj8zd+cVbe/jmr7bS0t7J3VecwefmTyZJg8YiA5ISgnwkFY0t3L2ihN+VVlA4MYv7rylgSm5GrMMSkZOghCA9tqpkH1/7RQkH2zr5+pVnctP8yXrlhEgcUEKQqDW0tPNvv9zCL97aQ8G4YSz9u3OYNlKvphaJFyfs7DWz8Wb2ipmVmtkWM7u927rbzOydUH5/t/ICM3szlJeYWVooTzGzB83sXTN728z+NpSnmtlTZlZmZmvMbFIftFVOwtrtNXzyP15n5ca93L5gOs/e+jElA5E4E80VQgdwp7sXm9lQYL2ZvQiMAhYCBe7eamYjAcKcyI8Bi919o5llA+2hrq8BFe6eb2anASNC+c1ArbtPM7NFwH3Adb3VSPnoOjq7eOCl9/j+K2WMH5HOz79wAbMnZMU6LBHpAydMCO6+D9gXlhvNrBTIAz4P3OvurWFdRdjlMmCTu28M5dXdqvsccEYo7yIyBzNEEss9YfkZ4HtmZppXObbKa5u5/ckNrN9Zy7VzxvFvn55JRqp6GUXiVY/uDwxdObOANUA+cFHo4nnVzOaGzfIBN7PVZlZsZneFfYeH9f8rlP/czEaFsjxgN4C7dwD1QPYxjn+LmRWZWVFlZWWPGio985vN+7jigdd5Z38jDyw6l29fe46SgUicizohmFkG8Cxwh7s3ELm6yALmAV8GnrbINFdJwIXA9eHzajNbEMrHAX9w99nAm8B3Dld/jEMedXXg7g+6e6G7F+bm5kYbuvRAW0cX3/zVFr7wWDGTc4bwwj9eyMJz82IdloicAlF95TOzZCLJ4HF3XxGKy4EVoVtnrZl1ATmh/FV3rwr7rgJmAy8DzcAvwv4/JzJ2cLiu8UB5GIMYBtScZNukh8prm/mHn73Fxt113DR/El/95JmkJOkhM5FEEc1dRgYsA0rdfWm3Vc8Bl4Zt8oEUImMCq4ECM0sPJ/eLga0hcfwKuCTsvwDYGpZXAkvC8jXAyxo/OLVee7eSq/7zDbZVNPFf18/m3z41U8lAJMFEc4UwH1gMlJjZhlB2N7AcWG5mm4E2YEk4idea2VJgHZFun1Xu/kLY71+BR83sP4BK4KZQviyUlxG5Mlh0sg2T6Lg7P/j9+3znt++QP3IoP1w8h8k5Q2IdlojEgA3UL+KFhYVeVFQU6zAGtKbWDu58egOrtxzg0+eM5d6/PZv0FA0ci8QzM1vv7oXHWqf//QlqV3Uzn/9pEWWVTXz9yjO5+cLJRHoHRSRRKSEkoD+WVfHFnxXjDo/cdB4XTtf8xiKihJBwfrZmF9/45Wam5g7hx58tZGK2xgtEJEIJIUF0djn/Z1UpD72xnUtOz+U/PzOLoWnJsQ5LRPoRJYQEcKitk3988i1e3HqAJRdM5BtXzdAkNiJyFCWEOFfd1MrNjxSxsbyOez41gxvnT451SCLSTykhxLGd1QdZsnwt++pb+OENc7h85uhYhyQi/ZgSQpzavKeeGx9eS0eX87PPn8+ciSNOvJOIJDQlhDi0Zls1/+ORIjIHJ/PUzecxVXMdi0gUlBDizEulB/ji48WMyxrMozefz9jhg2MdkogMEEoIceT5TXu548kNzBibyU9uOo8RQ1JiHZKIDCBKCHFiRXE5//LzjRROHMHym+ZqMhsR6TGdNeLAU+t28ZUVJVwwJZuHlhTqBXUi8pHozDHAPbk2kgwuzs/lR4vnkJY8KNYhicgApYQwgD2zvpyv/iKSDB787BxSk5QMROSj0/sLBqhfbtjDXc9sZP7UHH60WMlARE5eNFNojjezV8ys1My2mNnt3dbdZmbvhPL7u5UXmNmbobzEzNJC+e/D9hvCz8hQnmpmT5lZmZmtMbNJfdDWuLF6y37++emNnDd5BD/+bKG6iUSkV0TTZdQB3OnuxWY2FFhvZi8Co4CFQIG7t3Y7uScBjwGL3X2jmWUD7d3qu97dj5zq7Gag1t2nmdki4D7gupNrWnz64/tV3PaztygYN4xlS+YyOEXJQER6xwmvENx9n7sXh+VGoBTIA24F7nX31rCuIuxyGbDJ3TeG8mp37zzBYRYCj4TlZ4AFpum7jrKpvI7PP1LEpJx0Hr5xLkN0a6mI9KIejSGErpxZwBogH7godPG8amZzw2b5gJvZajMrNrO7jqjm4dBd9I1uJ/08YDeAu3cA9UD2MY5/i5kVmVlRZWVlT0If8N6vbOLGh9eRNSSFn37ufIan66EzEeldUScEM8sAngXucPcGIt1NWcA84MvA0+EEnwRcCFwfPq82swWhmuvd/WzgovCz+HD1xzikH1Xg/qC7F7p7YW5ubrShD3hVTa3c+PBaDHj05vMZPSwt1iGJSByKKiGYWTKRZPC4u68IxeXACo9YC3QBOaH8VXevcvdmYBUwG8Dd94TPRuBnwHnd6hofjpUEDANqTr55A9+htk5ufqSIysZWHlpSyOQcTXkpIn0jmruMDFgGlLr70m6rngMuDdvkAylAFbAaKDCz9HByvxjYamZJZpYTtk8GrgI2h7pWAkvC8jXAy+5+1BVCounscm5/8i02ldfxwKJZzJqQFeuQRCSORTMqOZ9I106JmW0IZXcDy4HlZrYZaAOWhJN4rZktBdYR6fZZ5e4vmNkQYHVIBoOA3wE/DvUtAx41szIiVwaLeqV1A9z9v3mb3249wL99aoYmtxGRPnfChODub3DsPn6AG46zz2NEbj3tXnYQmHOc7VuAa08USyL5xVvl/Oi1bSyeN5GbNO2liJwCelK5H9q4u45/fbaEeVNG8D8/NSPW4YhIglBC6GcqGlq45dEiRg5N5QfXzyF5kP6KROTU0JNN/UhHZxdf+tlbNBzqYMUXP6YJbkTklFJC6Ee+/dt3WLujhgcWncuZYzJjHY6IJBj1R/QTv9t6gB+9uo3rz5/AwnPzYh2OiCQgJYR+YHdNM3f+fCNn5WXyjas0iCwisaGEEGMdnV3c/uRbdLnzg7/XjGciEjsaQ4ix77/yPsW76vjuZ2YxITs91uGISALTFUIMFe+q5bsvv8fVs/L49DljYx2OiCQ4JYQYaWrt4J+e2sDozDS+uXBmrMMREVGXUax864VSdtc08+QtF5CZlhzrcEREdIUQC38sq+KJtbv4/EVTOG/yiFiHIyICKCGccs1tHXxlRQmTc4bwTx/Pj3U4IiIfUJfRKfZ/f/suu2qaeeqWebrFVET6FV0hnELFu2pZ/oft3DBvAudPOWrKaBGRmIpmxrTxZvaKmZWa2RYzu73butvM7J1Qfn+38gIzezOUl5hZ2hF1rgwT6xz+PdXMnjKzMjNbY2aTeql9/UZHZxd3ryhhdGYa//qJM2IdjojIUaLpMuoA7nT3YjMbCqw3sxeBUcBCoMDdW81sJHwwJ/JjwGJ332hm2UD74crM7G+ApiOOcTNQ6+7TzGwRcB9w3ck2rj959E87eXt/Iz+8YQ5DdVeRiPRDJ7xCcPd97l4clhuBUiAPuBW4191bw7qKsMtlwCZ33xjKq929E8DMMoB/Bv79iMMsBB4Jy88AC8JcznGhsrGVpb99l4um53D5zFGxDkdE5Jh6NIYQunJmAWuAfOCi0MXzqpnNDZvlA25mq82s2Mzu6lbF/wL+L9B8RNV5wG4Ad+8A6oGjOtnN7BYzKzKzosrKyp6EHlP3/eZtWjo6uefTM4mjPCcicSbqu4zCt/tngTvcvSF0DWUB84C5wNNmNiXUeWEoawZeMrP1QDUwzd3/6RhjBMc6S/pRBe4PAg8CFBYWHrW+P1q/s5Zn1pfzhYunMjU3I9bhiIgcV1QJwcySiSSDx919RSguB1a4uwNrzawLyAnlr7p7Vdh3FTCbyLjBHDPbEY470sx+7+6XhH3GA+Uh0QwDanqnibHT1eXcs3ILozPTuO3SabEOR0TkQ0Vzl5EBy4BSd1/abdVzwKVhm3wgBagCVgMFZpYeTu4XA1vd/b/cfay7TyJyBfFuSAYAK4ElYfka4OWQaAa050v2UbKnni9ffjpDUvXIh4j0b9GcpeYDi4ESM9sQyu4GlgPLw+2jbcCScBKvNbOlwDoi3T6r3P2FExxjGfComZURuTJY1OOW9DNtHV18Z/U7nDF6KP99lmZAE5H+74QJwd3f4Nh9/AA3HGefx4jcenq8OncAZ3X7vQW49kSxDCQ/W7OTXTXN/OSmuQw6TQPJItL/6UnlPtDY0s53Xy7jY1OzuTg/N9bhiIhERQmhD/z4tW3UHGzjK588Q7eZisiAoYTQy2oOtvHQG9u5smAMBeOGxzocEZGoKSH0suVvbOdQeyd3LJge61BERHpECaEX1Te385M/7uCKs8YwfdTQWIcjItIjSgi96OE/bqeptYMv6SE0ERmAlBB6SWNLO8vf2M5lM0Zx5pjMWIcjItJjSgi95Kdv7qShpYPbLtXYgYgMTEoIvaClvZOHXt/Gfzs9l7PHDYt1OCIiH4kSQi9YUbyH2uZ2vnDx1FiHIiLykSkhnCR3Z/kftnNWXibnTR4R63BERD4yJYST9Np7VZRVNPG5+ZP1VLKIDGhKCCdp2RvbyR2aylUFY2MdiojISVFCOAnvHWjktXcr+ey8iaQk6Y9SRAY2ncVOwvI/7CA16TT+/vwJsQ5FROSkRTNj2ngze8XMSs1si5nd3m3dbWb2Tii/v1t5gZm9GcpLzCwtlP/GzDaG8h+a2aBQnmpmT5lZmZmtOcacy/1OfXM7K4rLuXpWHtkZqbEOR0TkpEUzY1oHcKe7F5vZUGC9mb0IjAIWAgXu3mpmIwHCtJmPAYvdfaOZZQPtoa6/c/eGMC3nM0QmxXkSuBmodfdpZrYIuA+4rhfb2eue27CH1o4ubpg3MdahiIj0ihNeIbj7PncvDsuNQCmQB9wK3OvurWFdRdjlMmCTu28M5dXu3hmWG8I2SUTmYD48b/JC4JGw/AywwPrxLTvuzhNrd3FWXiZn5elBNBGJDz0aQwhdObOANUA+cFHo4nnVzOaGzfIBN7PVZlZsZncdUcdqoAJoJHLyh0iC2Q3g7h1APZB9jOPfYmZFZlZUWVnZk9B71abyet7e38iiuRo7EJH4EXVCMLMM4FngjvBNPwnIAuYBXwaeDt/qk4ALgevD59VmtuBwPe5+OTAGSAUuPVz9MQ7pRxW4P+juhe5emJsbu6kpn1y3i8HJg1h4rm41FZH4EVVCMLNkIsngcXdfEYrLgRUesRboAnJC+avuXuXuzcAqYHb3+ty9BVhJpKvocF3jw7GSgGFAzck0rK8cbO1g5Ya9XFkwhqFpybEOR0Sk10Rzl5EBy4BSd1/abdVzhG/4ZpZPZEygClgNFJhZeji5XwxsNbMMMxsTtk8CrgDeDnWtBJaE5WuAl939qCuE/uD5TXs52NbJZ84bH+tQRER6VTR3Gc0HFgMlZrYhlN0NLAeWm9lmoA1YEk7itWa2FFhHpNtnlbu/YGajgJVmlgoMAl4GfhjqWwY8amZlRK4MFvVK6/rAE2t3M31kBrMnZMU6FBGRXnXChODub3DsPn6AG46zz2NEbj3tXnYAmHuc7VuI3ILar5VVNLJhdx1fv/JMvbdIROKOnlTugZUb9nKawafP0WCyiMQfJYQouTsrN+7lgqnZjMxMi3U4IiK9TgkhSiV76tlR3ayrAxGJW0oIUVq5YS/Jg4xPzBwT61BERPqEEkIUurqc5zft4+L8kQxL17MHIhKflBCisHZHDfsbWvi0nkwWkTimhBCFlRv3Mjh5EH995shYhyIi0meUEE6graOLVSX7+PiMUaSnRPMcn4jIwKSEcAJ/2lZNXXM7n9LdRSIS55QQTuB3pQcYnDyIi6bnxDoUEZE+pYTwIdyd3209wEXTc0hLHhTrcERE+pQSwofYsreBvfUt/PWMUbEORUSkzykhfIgXtx7ADBacobuLRCT+KSF8iBe3HmDOhCyyM1JjHYqISJ9TQjiOPXWH2LqvgY+ru0hEEoQSwnH8busBACUEEUkY0UyhOd7MXjGzUjPbYma3d1t3m5m9E8rv71ZeYGZvhvISM0sLU2q+YGZvh/J7u22famZPmVmZma0xs0m93tIeenHrAabkDmFKbkasQxEROSWiefS2A7jT3YvNbCiw3sxeBEYBC4ECd281s5HwwXzJjwGL3X2jmWUD7UAq8B13f8XMUoCXzOyT7v5r4Gag1t2nmdki4D7gut5ubLQaWtr507Zqbr5ocqxCEBE55U54heDu+9y9OCw3AqVAHnArcK+7t4Z1FWGXy4BN7r4xlFe7e6e7N7v7K6GsDSgGxoV9FgKPhOVngAUWwzkq33ivio4u56/PVHeRiCSOHo0hhK6cWcAaIB+4KHTxvGpmh+dLzgfczFabWbGZ3XWMeoYDnwJeCkV5wG4Ad+8A6oHsY+x3i5kVmVlRZWVlT0LvkdffqyIjNYlzxw/vs2OIiPQ3UScEM8sAngXucPcGIt1NWcA84MvA0+FbfRJwIXB9+LzazBZ0qycJeAL4rrtvO1x8jEP6UQXuD7p7obsX5ubmRht6j/2hrIp5U7JJHqQxdxFJHFGd8cwsmUgyeNzdV4TicmCFR6wFuoCcUP6qu1e5ezOwCpjdrboHgffc/T+6lZUD48OxkoBhQM1HbtVJ2FXdzK6aZr27SEQSTjR3GRmwDCh196XdVj0HXBq2yQdSgCpgNVAQ7ipKAi4Gtobt/p3Iyf6OIw6zElgSlq8BXnb3o64QToXXyyJdURcqIYhIgonmLqP5wGKgxMw2hLK7geXAcjPbDLQBS8JJvNbMlgLriHT7rHL3F8xsHPA14G2gOIwZf8/dHyKScB41szIiVwaLequBPfXGe1WMHZbGlJwhsQpBRCQmTpgQ3P0Njt3HD3DDcfZ5jMitp93Lyo9Xj7u3ANeeKJa+1tnl/PH9ai6fOYoY3uQkIhITGjXtpmRPPfWH2rlwet8NWIuI9FdKCN288V5k/GD+1KPueBURiXtKCN28/l4VM8dm6u2mIpKQlBCCg60dFO+q5cJpurtIRBKTEkKwbkcN7Z2u201FJGEpIQTrdtSQdJoxZ2JWrEMREYkJJYRg3Y5aZuYNIz0lmkczRETijxIC0NrRycbddczV1YGIJDAlBGDzngZaO7oonDQi1qGIiMSMEgJQtCPyHr3CSbpCEJHEpYRAZPxgSs4QcvT8gYgksIRPCF1dzvqdNbo6EJGEl/AJYVtVE7XN7Ro/EJGEl/AJYd2OWgDmKiGISIJTQthRQ05GCpOy02MdiohITEUzY9p4M3vFzErNbIuZ3d5t3W1m9k4ov79beYGZvRnKS8wsLZR/y8x2m1nTEcdINbOnzKzMzNaY2aRebOOHKtpRS+HEEZr/QEQSXjSP5XYAd7p7sZkNBdab2YvAKGAhUODurWY2Ej6YE/kxYLG7bzSzbKA91PUr4HvAe0cc42ag1t2nmdki4D7gupNt3IkcaGhhV00zn71gYl8fSkSk3zvhFYK773P34rDcCJQCecCtwL3u3hrWVYRdLgM2ufvGUF7t7p1h+U/uvu8Yh1kIPBKWnwEW2Cn4yl4Uxg80oCwi0sMxhNCVMwtYA+QDF4UunlfNbG7YLB9wM1ttZsVmdlcUVecBuwHcvQOoB46apcbMbjGzIjMrqqys7Enox7SpvI6UpNOYMSbzpOsSERnook4IZpYBPAvc4e4NRLqbsoB5wJeBp8O3+iTgQuD68Hm1mS04UfXHKPOjCtwfdPdCdy/MzT35aS43ltdx5phMUpISfmxdRCS6hGBmyUSSwePuviIUlwMrPGIt0AXkhPJX3b3K3ZuBVcDsExyiHBgfjpUEDANqetqYnujqcjbvaaAgb1hfHkZEZMCI5i4jA5YBpe6+tNuq54BLwzb5QApQBawGCswsPZzcLwa2nuAwK4ElYfka4GV3P+oKoTdtrz5IU2sHZ49TQhARgeiuEOYDi4FLzWxD+LkCWA5MMbPNwJPAknC1UAssBdYBG4Bid38BwMzuN7NyIN3Mys3snnCMZUC2mZUB/wx8pfeaeGwl5fUAFCghiIgAUdx26u5vcOw+foAbjrPPY0RuPT2y/C7gqEFmd28Brj1RLL1pU3k9acmnMS0341QeVkSk30rY0dSSPXXMHDuMpEEJ+0cgIvIXEvJs2BkGlM/WgLKIyAcSMiG8X9nEofZOjR+IiHSTkAlhkwaURUSOkpAJoaS8jiEpg5icowFlEZHDEjIhbNpTz1l5wxh0mt5wKiJyWMIlhPbOLrbubVB3kYjIERIuIbx3oInWji7OHjc81qGIiPQrCZcQSvbUAegdRiIiR0i4hDBiSCqXzRjFRE2ZKSLyF6KZMS2ufHzGKD4+Y1SswxAR6XcS7gpBRESOTQlBREQAJQQREQmUEEREBFBCEBGRIJopNMeb2StmVmpmW8zs9m7rbjOzd0L5/d3KC8zszVBeYmZpoXxO+L3MzL4bpufEzFLN7KlQvsbMJvVBW0VE5ENEc9tpB3Cnuxeb2VBgvZm9CIwCFgIF7t5qZiMBwjzKjwGL3X2jmWUD7aGu/wJuAf4ErAI+AfwauBmodfdpZrYIuA+4rtdaKSIiJ3TCKwR33+fuxWG5ESgF8oBbgXvdvTWsqwi7XAZscveNobza3TvNbAyQ6e5vursDPwX+e9hnIfBIWH4GWHD46kFERE6NHj2YFrpyZgFrgG8DF5nZt4AW4F/cfR2QD7iZrQZygSfd/X4iSaS8W3XloYzwuRvA3TvMrB7IBqqOOP4tRK4wAJrM7J2exN9NzpF1J4hEbHcithkSs92J2GboebsnHm9F1AnBzDKAZ4E73L0hdA1lAfOAucDTZjYl1HlhKGsGXjKz9UDDMar1w9V/yLo/F7g/CDwYbcwf0pYidy882XoGmkRsdyK2GRKz3YnYZujddkd1l5GZJRNJBo+7+4pQXA6s8Ii1QBeRTFUOvOruVe7eTGSsYHYoH9et2nHA3m51jQ/HSgKGATUn0zAREemZaO4yMmAZUOruS7uteg64NGyTD6QQuWxZDRSYWXo4uV8MbHX3fUCjmc0LdX4W+GWoayWwJCxfA7wcxhlEROQUiabLaD6wGCgxsw2h7G5gObDczDYDbcCScBKvNbOlwDoi3T6r3P2FsN+twE+AwUTuLvp1KF8GPGpmZUSuDBadZLtO5KS7nQaoRGx3IrYZErPdidhm6MV2m76Ii4gI6EllEREJlBBERARIwIRgZp8Ir9soM7OvxDqevnC8142Y2Qgze9HM3gufWbGOtbeZ2SAze8vMng+/J0Kbh5vZM2b2dvg7vyDe221m/xT+bW82syfMLC0e22xmy82sIozVHi47bjvN7Kvh3PaOmV3e0+MlVEIws0HA94FPAjOAz5jZjNhG1ScOv27kTCLPifxDaOdXgJfcfTrwUvg93txO5Gn6wxKhzQ8Av3H3M4BziLQ/btttZnnAPwKF7n4WMIjIjSjx2OafEHnFT3fHbGf4P74ImBn2+UE450UtoRICcB5Q5u7b3L0NeJLIazPiyoe8bqT7K0Ie4c+vDokLZjYOuBJ4qFtxvLc5E/grInfq4e5t7l5HnLebyB2Sg8Ot7elEnmmKuza7+2sc/UzW8dq5kMibIVrdfTtQRuScF7VESwgfvCIj6P76jLh0xOtGRoXnQQifI2MYWl/4D+AuIg9JHhbvbZ4CVAIPh66yh8xsCHHcbnffA3wH2AXsA+rd/bfEcZuPcLx2nvT5LdESQlSvyIgXR75uJNbx9CUzuwqocPf1sY7lFEsi8iaA/3L3WcBB4qOr5LhCn/lCYDIwFhhiZjfENqp+4aTPb4mWED54RUbQ/fUZceU4rxs5EN46S/isON7+A9B84NNmtoNIV+ClZvYY8d1miPybLnf3NeH3Z4gkiHhu918D29290t3bgRXAx4jvNnd3vHae9Pkt0RLCOmC6mU02sxQiAzArYxxTr/uQ1410f0XIEv786pABz92/6u7j3H0Skb/Xl939BuK4zQDuvh/YbWanh6IFwFbiu927gHnh9ThGpM2lxHebuzteO1cCiywy4dhkYDqwtkc1u3tC/QBXAO8C7wNfi3U8fdTGC4lcKm4CNoSfK4i8Uvwl4L3wOSLWsfZR+y8Bng/Lcd9m4FygKPx9P0fkLcRx3W7gm8DbwGbgUSA1HtsMPEFknKSdyBXAzR/WTuBr4dz2DvDJnh5Pr64QEREg8bqMRETkOJQQREQEUEIQEZFACUFERAAlBBERCZQQREQEUEIQEZHg/wPl1MuyEAzGDgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(tvect, D)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/notebooks/sidarthe-eval-smt-encoding.ipynb b/scratch/notebooks/sidarthe-eval-smt-encoding.ipynb new file mode 100644 index 00000000..3805ff29 --- /dev/null +++ b/scratch/notebooks/sidarthe-eval-smt-encoding.ipynb @@ -0,0 +1,526 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 0: copy sir encoding\n", + "# 59:53.45 to get an encoding (needing debugging/checking)\n", + "# 01:41:13 configure parameter bounds to working test case\n", + "# 03:00:00 debug model \n", + "# 03:00:00 test solvers and extend compartmental bounds with noise\n", + "# +33:37.29 fix step size handling in encoding\n", + "# +1:00:00 debug step size and plotting\n", + "\n", + "from pysmt.shortcuts import And, Or, Plus, Minus, Times, Div, REAL, LE, LT, GE, GT, Equals, Symbol, Real, Solver, TRUE, FALSE\n", + "from pysmt.fnode import FNode\n", + "from typing import Dict\n", + "import pandas as pd\n", + "from decimal import Decimal\n", + "import numpy as np\n", + "\n", + "\n", + "def dataframe(assignment: Dict[Symbol, float], state_variables, parameters, max_step, step_size) -> pd.DataFrame:\n", + " timepoints = list(range(0, max_time+step_size, step_size))\n", + " timeseries = {sv: [None]*len(timepoints) for sv in state_variables}\n", + " for k, v in assignment.items():\n", + " sym = k.symbol_name()\n", + " if \"_\" in sym:\n", + " sv = sym.split(\"_\")[0]\n", + " t = sym.split(\"_\")[1]\n", + " value =Decimal(v.numerator) / Decimal(v.denominator)\n", + " if max_time > 0:\n", + " timepoint = timepoints.index(int(t))\n", + " timeseries[sv][timepoint] = value\n", + " else:\n", + " timeseries[sv][timepoints.index(0)] = value\n", + " else:\n", + " timeseries[sym] = [v]*len(timepoints)\n", + " df = pd.DataFrame(timeseries, index=timepoints).astype(float)\n", + " return df\n", + "\n", + "def reindex_and_interpolate(df, new_index):\n", + " df_reindexed = df.reindex(index = new_index)\n", + " df_reindexed.interpolate(method = 'linear', inplace = True)\n", + " return df_reindexed\n", + "\n", + "\n", + "def plot_results(values, max_step, step_size):\n", + " timepoints = list(range(0, max_time+step_size, step_size))\n", + " results: pd.DataFrame = dataframe(values, [\"Susceptible\", \"Diagnosed\", \"Infected\", \"Ailing\", \"Recognized\", \"Healed\", \"Threatened\", \"Extinct\"], [\"beta\", \"gamma\", \"delta\", \"alpha\", \"epsilon\", \"zeta\", \"lambdax\", \"eta\", \"rho\", \"theta\", \"kappa\", \"mu\", \"nu\", \"xi\", \"tau\", \"sigma\"], max_step, step_size)\n", + " newindex = np.linspace(timepoints[0], timepoints[-1], timepoints[-1]+1)\n", + " results = reindex_and_interpolate(results, newindex)\n", + " print(f\"beta = {results['beta'][0]}, lambda = {results['lambdax'][0]}\")\n", + " print(results[[\"Susceptible\", \"Diagnosed\", \"Infected\", \"Ailing\", \"Recognized\", \"Healed\", \"Threatened\", \"Extinct\"]])\n", + " ax = results[[\"Susceptible\", \"Diagnosed\", \"Infected\", \"Ailing\", \"Recognized\", \"Healed\", \"Threatened\", \"Extinct\"]].plot()\n", + " ax.set_xlabel=\"Time\"\n", + " return ax, results\n", + "\n", + "def run_solver(solver, formula):\n", + " solver.add_assertion(formula)\n", + " result = solver.solve()\n", + " if result:\n", + " model = solver.get_model()\n", + " variables = formula.get_free_variables()\n", + " values = {}\n", + " for var in variables:\n", + " try:\n", + " values[var] = model.get_value(var).constant_value()\n", + " except Exception as e:\n", + " pass\n", + " else:\n", + " print(\"Unsat\")\n", + " values = None\n", + " return values\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# from funman.api.run import Runner\n", + "# import json\n", + "\n", + "# amr_model = \"../../resources/amr/petrinet/mira/models/BIOMD0000000955_askenet.json\"\n", + "# m = Runner().get_model(amr_model)\n", + "# m[0].to_dot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Configure these bounds (lower, upper) to configure the parameter space\n", + "\n", + "noise = 1e-1\n", + "\n", + "beta_bounds = (0.2, 0.8)\n", + "# gamma_bounds = (0.3648, 0.5472)\n", + "# alpha_bounds = ( 0.45599999999999996,0.6839999999999999)\n", + "# delta_bounds = (0.008799999999999999, 0.0132)\n", + "# epsilon_bounds = (0.1368, 0.20520000000000002)\n", + "# zeta_bounds = (0.1, 0.15)\n", + "lambdax_bounds = (0.0, 0.1)\n", + "# eta_bounds = (0.1, 0.15)\n", + "# rho_bounds = (0.027200000000000002, 0.0408)\n", + "# theta_bounds = (0.2968, 0.4452)\n", + "# kappa_bounds = (0.013600000000000001, 0.0204)\n", + "# mu_bounds = (0.013600000000000001, 0.0204)\n", + "# nu_bounds = (0.0216, 0.0324)\n", + "# xi_bounds = (0.013600000000000001, 0.0204)\n", + "# tau_bounds = (0.008, 0.012)\n", + "# sigma_bounds = (0.013600000000000001, 0.0204)\n", + "\n", + "# {\"alpha\":0.570, \"beta\":0.011, \"delta\":0.011, \"gamma\":0.456, \"epsilon\":0.171, \"theta\":0.371, \"eta\":0.125, \"zeta\":0.125,\"mu\":0.017, \"nu\":0.027,\"tau\":0.01, \"lambda\":0.034, \"rho\":0.034, \"kappa\":0.017, \"xi\":0.017,\"sigma\":0.017, \"days\": 1}\n", + "\n", + "param_noise = 0\n", + "# beta_bounds = (0.011-param_noise, 0.011+param_noise)\n", + "gamma_bounds = (0.0456-param_noise, 0.0456+param_noise)\n", + "alpha_bounds = ( 0.1-param_noise, 0.1+param_noise)\n", + "delta_bounds = (0.00011-param_noise, 0.00011+param_noise)\n", + "epsilon_bounds = (0.03-param_noise, 0.03+param_noise)\n", + "zeta_bounds = (0.0125-param_noise, 0.0125+param_noise)\n", + "# lambdax_bounds = (0.0-param_noise, 0.1+param_noise)\n", + "eta_bounds = (0.0125-param_noise, 0.0125+param_noise)\n", + "rho_bounds = (0.034-param_noise, 0.034+param_noise)\n", + "theta_bounds = (0.571-param_noise, 0.571+param_noise) #(epsilon_bounds[0]*2.0, epsilon_bounds[1]*2.0) #(0.2968, 0.4452)\n", + "kappa_bounds = (0.017-param_noise, 0.017+param_noise)\n", + "mu_bounds = (0.017-param_noise, 0.017+param_noise)\n", + "nu_bounds = (0.027-param_noise, 0.027+param_noise)\n", + "xi_bounds = (0.017-param_noise, 0.017+param_noise)\n", + "tau_bounds = (0.01-param_noise, 0.01+param_noise)\n", + "sigma_bounds = (0.017-param_noise, 0.017+param_noise)\n", + "\n", + "\n", + "# Set these values for the initial state\n", + "\n", + "Susceptible_0_value = 0.99\n", + "Diagnosed_0_value = 0.01\n", + "Infected_0_value = 0.0\n", + "Ailing_0_value = 0.0\n", + "Recognized_0_value = 0.0\n", + "Healed_0_value = 0\n", + "Threatened_0_value = 0\n", + "Extinct_0_value = 0\n", + "\n", + "\n", + "# Timepoints\n", + "step_size = 2\n", + "max_time = 10\n", + "\n", + "# 11:34 - adapting names of variables and parameters\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def encode(step_size=1, max_time=10, noise=1e-3, strict_upper_bound_parameters = False, use_compartmental=True):\n", + " # The main encoding code, which includes \n", + "\n", + " time_format = lambda t: f\"{t:03d}\"\n", + "\n", + " timepoints = list(range(0, max_time+step_size, step_size))\n", + "\n", + " ################################################################################\n", + " ################# Initial States ###############################################\n", + " ################################################################################\n", + "\n", + " Susceptible_0 = Symbol(f\"Susceptible_{time_format(0)}\", REAL)\n", + " Diagnosed_0 = Symbol(f\"Diagnosed_{time_format(0)}\", REAL)\n", + " Infected_0 = Symbol(f\"Infected_{time_format(0)}\", REAL)\n", + " Ailing_0 = Symbol(f\"Ailing_{time_format(0)}\", REAL)\n", + " Recognized_0 = Symbol(f\"Recognized_{time_format(0)}\", REAL)\n", + " Healed_0 = Symbol(f\"Healed_{time_format(0)}\", REAL)\n", + " Threatened_0 = Symbol(f\"Threatened_{time_format(0)}\", REAL)\n", + " Extinct_0 = Symbol(f\"Extinct_{time_format(0)}\", REAL)\n", + "\n", + " population_size = Susceptible_0_value + Diagnosed_0_value + Infected_0_value + Ailing_0_value + Recognized_0_value + Healed_0_value + Threatened_0_value + Extinct_0_value\n", + "\n", + " # SIR Model Initial State\n", + " initial_state = And([\n", + " Equals(Susceptible_0, Real(Susceptible_0_value)),\n", + " Equals(Infected_0, Real(Infected_0_value)),\n", + " Equals(Diagnosed_0, Real(Diagnosed_0_value)),\n", + " Equals(Ailing_0, Real(Ailing_0_value)),\n", + " Equals(Recognized_0, Real(Recognized_0_value)),\n", + " Equals(Threatened_0, Real(Threatened_0_value)),\n", + " Equals(Healed_0, Real(Healed_0_value)),\n", + " Equals(Extinct_0, Real(Extinct_0_value))\n", + " ])\n", + "\n", + " ################################################################################\n", + " ################# Parameters ###############################################\n", + " ################################################################################\n", + "\n", + "\n", + " # Parameters\n", + " beta = Symbol(\"beta\", REAL)\n", + " gamma = Symbol(\"gamma\", REAL)\n", + " delta = Symbol(\"delta\", REAL)\n", + " alpha = Symbol(\"alpha\", REAL)\n", + " epsilon = Symbol(\"epsilon\", REAL)\n", + " zeta = Symbol(\"zeta\", REAL)\n", + " lambdax = Symbol(\"lambdax\", REAL)\n", + " eta = Symbol(\"eta\", REAL)\n", + " rho = Symbol(\"rho\", REAL)\n", + " theta = Symbol(\"theta\", REAL)\n", + " kappa = Symbol(\"kappa\", REAL)\n", + " mu = Symbol(\"mu\", REAL)\n", + " nu = Symbol(\"nu\", REAL)\n", + " xi = Symbol(\"xi\", REAL)\n", + " tau = Symbol(\"tau\", REAL)\n", + " sigma = Symbol(\"sigma\", REAL)\n", + "\n", + "\n", + " upper_op = LT if strict_upper_bound_parameters else LE\n", + " parameters = And([\n", + " And(LE(Real(beta_bounds[0]), beta), upper_op(beta, Real(beta_bounds[1]))),\n", + " And(LE(Real(gamma_bounds[0]), gamma), upper_op(gamma, Real(gamma_bounds[1]))),\n", + " And(LE(Real(delta_bounds[0]), delta), upper_op(delta, Real(delta_bounds[1]))),\n", + " And(LE(Real(alpha_bounds[0]), alpha), upper_op(alpha, Real(alpha_bounds[1]))),\n", + " And(LE(Real(epsilon_bounds[0]), epsilon), upper_op(epsilon, Real(epsilon_bounds[1]))),\n", + " And(LE(Real(zeta_bounds[0]), zeta), upper_op(zeta, Real(zeta_bounds[1]))),\n", + " And(LE(Real(lambdax_bounds[0]), lambdax), upper_op(lambdax, Real(lambdax_bounds[1]))),\n", + " And(LE(Real(eta_bounds[0]), eta), upper_op(eta, Real(eta_bounds[1]))),\n", + " And(LE(Real(rho_bounds[0]), rho), upper_op(rho, Real(rho_bounds[1]))),\n", + " And(LE(Real(kappa_bounds[0]), kappa), upper_op(kappa, Real(kappa_bounds[1]))),\n", + " And(LE(Real(theta_bounds[0]), theta), upper_op(theta, Real(theta_bounds[1]))),\n", + " And(LE(Real(mu_bounds[0]), mu), upper_op(mu, Real(mu_bounds[1]))),\n", + " And(LE(Real(nu_bounds[0]), nu), upper_op(nu, Real(nu_bounds[1]))),\n", + " And(LE(Real(xi_bounds[0]), xi), upper_op(xi, Real(xi_bounds[1]))),\n", + " And(LE(Real(tau_bounds[0]), tau), upper_op(tau, Real(tau_bounds[1]))),\n", + " And(LE(Real(sigma_bounds[0]), sigma), upper_op(sigma, Real(sigma_bounds[1])))\n", + " ])\n", + "\n", + "\n", + "\n", + "\n", + " ################################################################################\n", + " ################# Transitions ##################################################\n", + " ################################################################################\n", + "\n", + " Susceptible_next = lambda t: Symbol(f\"Susceptible_{time_format(t+step_size)}\", REAL)\n", + " Susceptible_now = lambda t: Symbol(f\"Susceptible_{time_format(t)}\", REAL)\n", + " Diagnosed_next = lambda t: Symbol(f\"Diagnosed_{time_format(t+step_size)}\", REAL)\n", + " Diagnosed_now = lambda t: Symbol(f\"Diagnosed_{time_format(t)}\", REAL)\n", + " Infected_next = lambda t: Symbol(f\"Infected_{time_format(t+step_size)}\", REAL)\n", + " Infected_now = lambda t: Symbol(f\"Infected_{time_format(t)}\", REAL)\n", + " Ailing_next = lambda t: Symbol(f\"Ailing_{time_format(t+step_size)}\", REAL)\n", + " Ailing_now = lambda t: Symbol(f\"Ailing_{time_format(t)}\", REAL)\n", + " Healed_next = lambda t: Symbol(f\"Healed_{time_format(t+step_size)}\", REAL)\n", + " Healed_now = lambda t: Symbol(f\"Healed_{time_format(t)}\", REAL)\n", + " Threatened_next = lambda t: Symbol(f\"Threatened_{time_format(t+step_size)}\", REAL)\n", + " Threatened_now = lambda t: Symbol(f\"Threatened_{time_format(t)}\", REAL)\n", + " Recognized_next = lambda t: Symbol(f\"Recognized_{time_format(t+step_size)}\", REAL)\n", + " Recognized_now = lambda t: Symbol(f\"Recognized_{time_format(t)}\", REAL)\n", + " Extinct_next = lambda t: Symbol(f\"Extinct_{time_format(t+step_size)}\", REAL)\n", + " Extinct_now = lambda t: Symbol(f\"Extinct_{time_format(t)}\", REAL)\n", + " dt = Real(float(step_size))\n", + "\n", + "\n", + " # t1: D, S -> D, I Diagnosed*Susceptible*beta\n", + " # t2: A, S -> A, I Ailing*Susceptible*gamma\n", + " # t3: R, S -> R, I Recognized*Susceptible*delta\n", + " # t4: I, S -> I, I Infected*Susceptible*alpha\n", + " # t5: I -> D Infected*epsilon\n", + " # t6: I -> A Infected*zeta\n", + " # t7: I -> H Infected*lambdax\n", + " # t8: D -> R Diagnosed*eta\n", + " # t9: D -> H Diagnosed*rho\"\n", + " # t10: A -> R Ailing*theta\n", + " # t11: A -> H Ailing*kappa\n", + " # t12: A -> T Ailing*mu\n", + " # t13: R -> T Recognized*nu\n", + " # t14: R -> H Recognized*xi\n", + " # t15: T -> E Threatened*tau\n", + " # t16: T -> H Threatened*sigma\n", + "\n", + " # -t1 -t2 -t3 -t4\n", + " Susceptible_Trans = lambda t: Equals(Susceptible_next(t), \n", + " Plus(\n", + " Susceptible_now(t), \n", + " Times(Plus([\n", + " Times(Real(-1.0), Diagnosed_now(t), Susceptible_now(t), beta), \n", + " Times(Real(-1.0), Ailing_now(t), Susceptible_now(t), gamma),\n", + " Times(Real(-1.0), Recognized_now(t), Susceptible_now(t), delta),\n", + " Times(Real(-1.0), Infected_now(t), Susceptible_now(t), alpha)]), \n", + " dt)))\n", + "\n", + " # -t1+t1 -t8 -t9 + t5\n", + " Diagnosed_Trans = lambda t: Equals(Diagnosed_next(t), \n", + " Plus(\n", + " Diagnosed_now(t), \n", + " Times(Plus([\n", + " Times(Real(-1.0), Diagnosed_now(t), eta), \n", + " Times(Real(-1.0), Diagnosed_now(t), rho), \n", + " Times( Infected_now(t), epsilon)]),\n", + " dt)))\n", + "\n", + " # +t1 +t2 +t3 +t4 -t5 -t6 -t7 \n", + " Infected_Trans = lambda t: Equals(Infected_next(t), \n", + " Plus(\n", + " Infected_now(t), \n", + " Times(Plus([\n", + " Times(Diagnosed_now(t), Susceptible_now(t), beta), # t1\n", + " Times(Ailing_now(t), Susceptible_now(t), gamma), # t2\n", + " Times(Recognized_now(t), Susceptible_now(t), delta), # t3\n", + " Times(Infected_now(t), Susceptible_now(t), alpha), # t4\n", + " Times(Real(-1.0), Infected_now(t), epsilon), # t5\n", + " Times(Real(-1.0), Infected_now(t), zeta), # t6\n", + " Times(Real(-1.0), Infected_now(t), lambdax)]), #t7\n", + " dt)))\n", + "\n", + " # -t2 +t2 +t6 -t10 -t11 -t12\n", + " Ailing_Trans = lambda t: Equals(Ailing_next(t), \n", + " Plus(\n", + " Ailing_now(t), \n", + " Times(Plus([\n", + " Times(Infected_now(t), zeta), \n", + " Times(Real(-1.0), Ailing_now(t), theta),\n", + " Times(Real(-1.0), Ailing_now(t), kappa),\n", + " Times(Real(-1.0), Ailing_now(t), mu)]),\n", + " dt)))\n", + "\n", + " # +t3 -t3 +t8 +t10 -t13 -t14 \n", + " Recognized_Trans = lambda t: Equals(Recognized_next(t), \n", + " Plus(\n", + " Recognized_now(t), \n", + " Times(Plus([\n", + " Times(Diagnosed_now(t), eta), \n", + " Times(Ailing_now(t), theta),\n", + " Times(Real(-1.0), Recognized_now(t), nu),\n", + " Times(Real(-1.0), Threatened_now(t), xi)]),\n", + " dt)))\n", + "\n", + " # +t7 +t9 +t11 +t14 +t16\n", + " Healed_Trans = lambda t: Equals(Healed_next(t), \n", + " Plus(\n", + " Healed_now(t), \n", + " Times(Plus([\n", + " Times(Infected_now(t), lambdax), \n", + " Times(Diagnosed_now(t), rho),\n", + " Times(Ailing_now(t), kappa),\n", + " Times(Recognized_now(t), xi),\n", + " Times(Threatened_now(t), sigma)]),\n", + " dt)))\n", + "\n", + " # +t12 +t13 -t15 -t16\n", + " Threatened_Trans = lambda t: Equals(Threatened_next(t), \n", + " Plus(\n", + " Threatened_now(t), \n", + " Times(Plus([\n", + " Times(Ailing_now(t), mu),\n", + " Times(Recognized_now(t), nu),\n", + " Times(Real(-1.0), Threatened_now(t), tau),\n", + " Times(Real(-1.0), Threatened_now(t), sigma)]),\n", + " dt)))\n", + "\n", + " # -t15\n", + " Extinct_Trans = lambda t: Equals(Extinct_next(t), \n", + " Plus(\n", + " Extinct_now(t), \n", + " Times(Plus([\n", + " Times(Threatened_now(t), tau)]),\n", + " dt)))\n", + "\n", + "\n", + " Trans = lambda t: And([\n", + " Susceptible_Trans(t), Diagnosed_Trans(t), \n", + " Infected_Trans(t), Ailing_Trans(t), Recognized_Trans(t), \n", + " Healed_Trans(t), Threatened_Trans(t), Extinct_Trans(t)\n", + " ])\n", + "\n", + " All_Trans = And([Trans(t) for t in timepoints[:-1]])\n", + "\n", + "\n", + " ################################################################################\n", + " ################# Constraints ##################################################\n", + " ################################################################################\n", + "\n", + " pop_sum = lambda t: Plus([\n", + " Susceptible_now(t), Diagnosed_now(t), Infected_now(t),\n", + " Ailing_now(t), Recognized_now(t), Healed_now(t),\n", + " Threatened_now(t), Extinct_now(t)\n", + " ])\n", + "\n", + " compartmental_constraint = And([\n", + " And( \n", + " LE(Real(0.0), Susceptible_now(t)),\n", + " LE(Real(0.0), Diagnosed_now(t)),\n", + " LE(Real(0.0), Infected_now(t)),\n", + " LE(Real(0.0), Ailing_now(t)),\n", + " LE(Real(0.0), Recognized_now(t)),\n", + " LE(Real(0.0), Healed_now(t)),\n", + " LE(Real(0.0), Threatened_now(t)),\n", + " LE(Real(0.0), Extinct_now(t)),\n", + " LE(pop_sum(t), Real(population_size+noise)),\n", + " LE(Real(population_size-noise), pop_sum(t))\n", + " )\n", + " for t in timepoints]) if use_compartmental else TRUE()\n", + "\n", + " # 10m to add and check\n", + " I_peak = (0.45, 0.55) # .45, .55\n", + " I_peak_t = (45.0, 55.0) # 45, 55\n", + " peak_I = And([\n", + " And(LE(Real(I_peak[0]), Infected_now(t)),\n", + " LT(Infected_now(t), Real(I_peak_t[1])))\n", + " for t in timepoints \n", + " if I_peak_t[0] <= t and t <= I_peak_t[1]\n", + " ])\n", + "\n", + "\n", + " ################################################################################\n", + " ################# Combine Assertions ###########################################\n", + " ################################################################################\n", + "\n", + " consistency = And([\n", + " initial_state,\n", + " parameters,\n", + " All_Trans,\n", + " compartmental_constraint,\n", + " peak_I\n", + " ])\n", + " # print(consistency.serialize())\n", + " return consistency" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# encode(max_time=max_time, step_size=step_size, noise=noise, use_compartmental=False).serialize(\n", + "\n", + "# )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Use dreal instead of z3\n", + "from pysmt.logics import QF_NRA\n", + "from funman_dreal.solver import ensure_dreal_in_pysmt\n", + "\n", + "ensure_dreal_in_pysmt()\n", + "\n", + "opts = {\n", + " \"dreal_precision\": 1e-3,\n", + " \"dreal_log_level\": \"info\",\n", + " \"dreal_mcts\": True,\n", + " }\n", + "\n", + "max_time=20\n", + "step_size=1\n", + "noise = 0.0001\n", + "\n", + "with Solver(name=\"dreal\",\n", + " logic=QF_NRA,\n", + " solver_options=opts\n", + " ) as solver:\n", + " values = run_solver(solver, encode(max_time=max_time, step_size=step_size, noise=noise, use_compartmental=False))\n", + " \n", + "if values:\n", + " ax, results = plot_results(values, max_time, step_size)\n", + " f_pop = results.loc[float(max_time)][[\"Susceptible\", \"Diagnosed\", \"Infected\", \"Ailing\", \"Recognized\", \"Healed\", \"Threatened\", \"Extinct\" ]].sum()\n", + " print(f\"Population at end: {f_pop}\")\n", + " # results.loc[10.0]\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# max_time=20\n", + "# step_size=1\n", + "\n", + "\n", + "\n", + "# # Solve encoding\n", + "# with Solver() as solver:\n", + "# values = run_solver(solver, encode(max_time=max_time, step_size=step_size, noise=noise))\n", + " \n", + "# if values:\n", + "# plot_results(values, max_time, step_size)\n", + "# values" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "funman_venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/notebooks/sidarthe-manual-true-false.ipynb b/scratch/notebooks/sidarthe-manual-true-false.ipynb new file mode 100644 index 00000000..c9502bed --- /dev/null +++ b/scratch/notebooks/sidarthe-manual-true-false.ipynb @@ -0,0 +1,2555 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "import scipy\n", + "from scipy.integrate import odeint\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import sir_model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# initialize recording of parameter choices and true/false\n", + "\n", + "param_choices_true_false = []" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Start here at each iteration by changing the values of the parameters, then run the following cells to observe the simulation and tell whether the parameter settings are what you're looking for (1) or not (0)." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "alpha_val = 0.57\n", + "beta_val = 0.011\n", + "delta_val = 0.011\n", + "gamma_val = 0.456\n", + "\n", + "epsilon_val = 0.05 #0.171\n", + "theta_val = 0.371\n", + "\n", + "zeta_val = 0.125\n", + "eta_val = 0.125\n", + "\n", + "mu_val = 0.017\n", + "nu_val = 0.027\n", + "lamb_val = 0.034\n", + "rho_val = 0.034\n", + "\n", + "kappa_val = 0.017\n", + "xi_val = 0.017\n", + "sigma_val = 0.017\n", + "\n", + "tau_val = 0.01" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "# set parameter values\n", + "def alpha(t): return np.piecewise(t, [t>=0], [alpha_val])\n", + "def beta(t): return np.piecewise(t, [t>=0], [beta_val])\n", + "def delta(t): return np.piecewise(t, [t>=0], [delta_val])\n", + "def gamma(t): return np.piecewise(t, [t>=0], [gamma_val])\n", + "\n", + "def epsilon(t): return np.piecewise(t, [t>=0], [epsilon_val])\n", + "def theta(t): return np.piecewise(t, [t>=0], [theta_val])\n", + "\n", + "def zeta(t): return np.piecewise(t, [t>=0], [zeta_val])\n", + "def eta(t): return np.piecewise(t, [t>=0], [eta_val])\n", + "\n", + "def mu(t): return np.piecewise(t, [t>=0], [mu_val])\n", + "def nu(t): return np.piecewise(t, [t>=0], [nu_val])\n", + "def lamb(t): return np.piecewise(t, [t>=0], [lamb_val])\n", + "def rho(t): return np.piecewise(t, [t>=0], [rho_val])\n", + "\n", + "def kappa(t): return np.piecewise(t, [t>=0], [kappa_val])\n", + "def xi(t): return np.piecewise(t, [t>=0], [xi_val])\n", + "def sigma(t): return np.piecewise(t, [t>=0], [sigma_val])\n", + "\n", + "def tau(t): return np.piecewise(t, [t>=0], [tau_val])" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "# set initial conditions\n", + "\n", + "N0 = 60e6\n", + "I0, D0, A0, R0, T0, H0, E0 = 200/N0, 20/N0, 1/N0, 2/N0, 0, 0, 0\n", + "S0 = 1-I0-D0-A0-R0-T0-H0-E0\n", + "y0 = S0, I0, D0, A0, R0, T0, H0, E0 # Initial conditions vector\n" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# set simulation parameters\n", + "dt = .5\n", + "tstart = 0\n", + "tend = 100\n", + "tvect = np.arange(tstart, tend, dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACofUlEQVR4nOydd3gV1daH30lPSKGEEnrQUNNIIPQSOoI0qRcRUERREPW7Fu5VwO5VFAR7ARQREBBEREWkiYjU0GsgBJJAEgIhvZ31/bHJSQ9JSEgC+32eeU5mzp6ZNTMnM79Ze+21DBFBo9FoNBqNRlO2WJS3ARqNRqPRaDR3A1p0aTQajUaj0dwGtOjSaDQajUajuQ1o0aXRaDQajUZzG9CiS6PRaDQajeY2oEWXRqPRaDQazW3AqrwNKAqurq7SuHHj8jZDo9FoNBqN5qbs27cvWkRq5l5eKURX48aN2bt3b3mbodFoNBqNRnNTDMM4n99y3b2o0Wg0Go1GcxvQokuj0Wg0Go3mNqBFl0aj0Wg0Gs1toFLEdGk0JSUjI4OYmBjS0tLK2xSNRlNJsLa2pnr16lhaWpa3KZo7jDITXYZhLAQGApEi4pnP9wbwAXAfkAhMEJH9ZWWP5u4kJiYGOzs7XF1dUT85jUajKRgRIT4+npiYGGrWzDP4TKO5Jcqye3Ex0K+Q7/sDHjemycAnZWiL5i4lLS0NR0dHLbg0Gk2RMAwDR0dH7R3XlAll5ukSke2GYTQupMlg4BsREWCXYRhVDcNwE5GIsrKpII4cAZMp57LMZ3TuZ3Xu5fk9y4u6bmHLS7puQfYYBlha5pwsLPIuuxO1iRZcGo2mOOh7hqasKM+YrnrAhWzzF28su+2i6/XXISHhdu+1YpJdnFlbg40N2NqqKfPvzM8qVcDJSU2OjmrKnHd2hmrV1HY08MYbb/Ddd99haWmJhYUFn332Ge3atbvtdgQFBREeHs59990HwLp16zh27BgvvvgiEyZMYODAgQwfPjzHOlu3bmXOnDmsX7/+ttur0Wg0dxLlKbrye5WQ224F0LIlpKSA3Ni75LIi9/KCvi/KukXd5q2sm589JpOaMjKyPjMyID0957yIWpaers7JrWBhATVqQM2aaqpdGxo1gsaNoW5dsLpLhnH8/fffrF+/nv3792Nra0t0dDSpqanlYktQUBB79+41i65BgwYxaNCgcrFFo9Fo7jbK87F3EWiQbb4+EF4ehsycWR57rXiIqClTgKWlKeGVmprzM3OKj8+a4uJy/n31Kly7BlFRasqNlRU0bAju7tCiBXh6KiF2J3r1IyIicHV1xdbWFgBXV1cgq9KCq6sre/fu5d///jdbt25l27ZtTJ8+HVDdHNu3b8fJyYl33nmHJUuWYGFhQf/+/Xn77bcJDg7mySefJCoqCgcHB7744guaN2/OhAkTsLOz4+jRo1y+fJn333+fPn36MHPmTJKSktixYwczZswgKSmJvXv38uGHHwKwadMmPvjgA/M6AwcOzHEsCQkJTJs2jcOHD5Oens7s2bMZPHjwbTybGo1GU3kpT9G1DphqGMZyoB0QWx7xXJosMmO/LCxU16KdneoqLClpaRAdnSW8IiIgJERNly/D2bNq+uMP1d7VFdq2hYAA8PUtfU/Y/feX7vYy+emnwr/v06cPr776Kk2bNqVXr16MGjWKbt26Fdh+zpw5fPTRR3Tq1In4+Hjs7Oz45ZdfWLt2Lf/88w8ODg7ExMQAMHnyZD799FM8PDz4559/eOKJJ9i8eTMAISEhbNu2jeDgYAIDAzlz5gyvvvpqDpG1ePHiHPvOb53svPHGG/To0YOFCxdy7do1AgIC6NWrF1WqVCnmWdNoNJq7j7JMGbEM6A64GoZxEZgFWAOIyKfABlS6iDOolBETy8oWTflgbQ1ubmrKTVISnD8Pp0/DsWNw+LASaL/8oiYnJ+jaFXr3hnvuuf22lyaOjo7s27ePP//8ky1btjBq1CjefvvtAtt36tSJZ599lrFjxzJs2DDq16/Ppk2bmDhxIg4ODgBUr16d+Ph4du7cyYgRI8zrpmTrEx45ciQWFhZ4eHjQpEkTTpw4cVNbb7bOxo0bWbduHXPmzAEgOTmZ0NBQWrRoUaxzotFoNHcjZTl6ccxNvhfgybLav6ZiY28PzZur6f77VbdmcDDs3g07dypB9vPPavL0hKFDlRfsVrofb+aRKkssLS3p3r073bt3x8vLi6+//horKytMN4bNJicnm9u++OKLDBgwgA0bNtC+fXs2bdqEiOQZUWUymahatSpBQUH57jN3+6KMyLrZOiLC6tWradas2U23pdFoNJqc6DJAmgqBYcC998K//gULFsAHH8CgQeDgoFJ6vPYaPPssHDpU3pYWn5MnT3L69GnzfFBQEI0aNaJx48bs27cPgNWrV5u/Dw4OxsvLixdeeIE2bdpw4sQJ+vTpw8KFC0lMTARU0ldnZ2fc3d1ZuXIloATRwYMHzdtZuXIlJpOJ4OBgzp49S7NmzXByciIuLq5AW/NbJzt9+/ZlwYIFyI0RGgcOHLjFs6PRaDR3D1p0aSochgFNmsCjj8KiRTBpElSvDmfOwH//qwRYdHR5W1l04uPjGT9+PC1btsTb25tjx44xe/ZsZs2axfTp0+nSpUuOciPz5s3D09MTHx8f7O3t6d+/P/369WPQoEG0adMGX19fc/fe0qVL+eqrr/Dx8aFVq1b8+OOP5u00a9aMbt260b9/fz799FPs7OwIDAzk2LFj+Pr6smLFijy25rdOdl5++WXS0tLw9vbG09OTl19+uYzOmkaj0dx5GJJfroIKRps2bWTv3r3lbYamHElJgR9/hJUrITlZecAmTYJevQrvcgwPD6du3bq3z9AKQkE5tzQaTdG4W+8dmtLBMIx9ItIm93Lt6dJUCmxtYeRI+OwzaNcOEhNh/nx4+20lwjQajUajqejcJekpNXcK1aurLsZt2+DTT1XQfVgYvPQS1KlT3tZVHHKngtBoNBpN+aM9XZpKh2FA9+7w3ntQr54a6fjssyr9hEaj0Wg0FRUtujSVlnr1lPBq00ZlwX/pJShCKiqNRqPRaMoFLbo0lZoqVVR3Y+fOKs7r5Zfh6NHytkqj0Wg0mrxo0aWp9FhZwb//Dd26qaD6116DCxfK2yqNRqPRaHKiRZfmjsDSUsV1degACQnwyisQG1veVikcHR1v2ubPP/+kVatW+Pr6kpSUVKztr127lmPHjpWaXUlJSXTr1o2MjAzzsrlz52JnZ0dsOZ3UoKAgNmzYUOb7Wbx4MeHh4eb5SZMmlejchoSE4OnpedN2K1eupEWLFgQGBhZ7H7ltLS278msze/Zsc264otK9e3dulupn3rx55oS/xaWkv4nsdvXq1YurV6+WaP8aTUnQoktzx2BhAf/3f+DhoQpqv/EGZNMNFZqlS5fy73//m6CgIOzt7Yu1bklFV0EsXLiQYcOG5UjYumzZMtq2bcuaNWtKbT/FobxE15dffknLli3LbH9fffUVH3/8MVu2bCn2uiURXRWN8hBd2Rk3bhwff/zxLW1DoykOWnRp7ihsbVVAvasrHD+u6jlWFLZu3Ur37t0ZPnw4zZs3Z+zYsYgIX375Jd9//z2vvvoqY8eOBeDdd9+lbdu2eHt7M2vWLPM2vvnmG7y9vfHx8WHcuHHs3LmTdevW8dxzz+Hr60twcDDBwcH069cPf39/unTpYi5afe7cOTp06EDbtm0LzSS/dOlSBg8ebJ4PDg4mPj6e119/nWXLlpmXHz16lICAAHx9ffH29ub06dO8/PLLfPDBB+Y2//3vf5k/fz5bt26lW7dujBw5kqZNm/Liiy+ydOlSAgIC8PLyIvjGhZowYQKPP/44Xbp0oWnTpqxfv57U1FRmzpzJihUrzJn0Y2JiGDJkCN7e3rRv355DN+pDzZ49m/Hjx9OnTx8aN27MDz/8wPPPP4+Xlxf9+vUjLS0NgFdffZW2bdvi6enJ5MmTERFWrVrF3r17GTt2rNnjmN0r8uuvv+Ln54ePjw89e/Ys8nVfvHgxw4YNo1+/fnh4ePD888+bbdixYwePP/44zz33HBkZGTz33HPm6/7ZZ5+Zt/HOO+/g5eWFj48PL774Yr627tu3j27duuHv70/fvn2JiIgAYN++ffj4+NChQwc++uijIttdEN27d+eFF14gICCApk2b8ueffwLKQzp69Gi8vb0ZNWpUDo/txo0b6dChA35+fowYMYL4+Hjmz59PeHg4gYGBZk9ffu0A9uzZQ8eOHfHx8SEgIIDY2Ng8v4mEhAQefvhh2rZtS+vWrc3VGQqza9CgQTl+0xpNmSMiFX7y9/cXjaY4nDolMniwyDffhMnFizcWDhxYNtNNqFKlioiIbNmyRZydneXChQuSkZEh7du3lz///FNERMaPHy8rV64UEZHffvtNHn30UTGZTJKRkSEDBgyQbdu2yZEjR6Rp06YSFRUlIiJXrlzJs66ISI8ePeTUqVMiIrJr1y4JDAwUEZH7779fvv76axER+fDDD812ZSclJUVq166dY9lrr70mr776qmRkZEijRo3k8uXLIiIydepU+fbbb83rJSYmyrlz56R169YiIpKRkSFNmjSR6Oho2bJli7i4uEh4eLgkJydL3bp1ZebMmSIiMm/ePJk+fbr5WPr27SsZGRly6tQpqVevniQlJcmiRYvkySefNNs0depUmT17toiI/PHHH+Lj4yMiIrNmzZJOnTpJamqqBAUFib29vWzYsEFERIYMGSJr1qzJce5ERB588EFZt26diIh069ZN9uzZY/4ucz4yMlLq168vZ8+ezbN+fpw7d05atWolIiKLFi0Sd3d3uXbtmiQlJUnDhg0lNDQ0z/4+++wzee2110REJDk5Wfz9/eXs2bOyYcMG6dChgyQkJOTYd/Z1U1NTpUOHDhIZGSkiIsuXL5eJEyeKiIiXl5ds3bpVRET+/e9/m+0qiu2ZzJo1S959913zfp999lkREfn555+lZ8+eIiLy3nvvmfd58OBBsbS0lD179khUVJR06dJF4uPjRUTk7bfflldeeUVERBo1amT+PRfULiUlRdzd3WX37t0iIhIbGytpaWl5fhMzZsyQJUuWiIjI1atXxcPDQ+Lj4wu0K5N7771XoqOj85yHsLCwQs+TRlMYwF7JR8/o5KiaOxIPDxg3To1o/Ocf6N8fitdpVzYEBARQv359AHx9fQkJCaFz58452mzcuJGNGzfSunVrQNVuPH36NAcPHmT48OG4uroCUL169Tzbj4+PZ+fOnYwYMcK8LCUlBYC//vrLXFh73LhxvPDCC3nWj46OpmrVqjmWLV++nDVr1mBhYcGwYcNYuXIlTz75JB06dOCNN97g4sWLDBs2DA8PDxo3bkyNGjU4cOAAly9fpnXr1tSoUQOAtm3b4ubmBsA999xDnz59APDy8srRvTZy5EgsLCzw8PCgSZMmZk9ddnbs2GE+lh49enDlyhVzvFn//v2xtrbGy8uLjIwM+vXrZ95PSEgIAFu2bOGdd94hMTGRmJgYWrVqxf33359nP5ns2rWLrl274u7uXuC5L4yePXvi4uICQMuWLTl//jwNGjTI0Wbjxo0cOnSIVatWARAbG8vp06fZtGkTEydOxMHBocB9nzx5kiNHjtC7d28AMjIycHNzIzY2lmvXrtGtWzdAXfdffvmlUFuNAupqZV8+bNgwAPz9/c3ndPv27Tz11FMAeHt74+3tDahzd+zYMTp16gRAamoqHTp0yLP9gtqdPHkSNzc32rZtC4Czs3O+9m3cuJF169aZY8+Sk5MJDQ0t0K5MatWqRXh4uPl3qtGUJVp0ae5Yhg2Dn3+G69eV8Oq27qdC6zTeDmxtbc1/W1pakp6enqeNiDBjxgwee+yxHMvnz59f4AMxE5PJRNWqVQkKCsr3+5utb29vT3K2ukqHDh3i9OnT5od5amoqTZo04cknn+Rf//oX7dq14+eff6Zv3758+eWX9OjRg0mTJrF48WIuXbrEww8/nO+xW1hYmOctLCxynIfcNuZns+RTMzazXfbtWltbm5dn7ic5OZknnniCvXv30qBBA2bPnp3jmPNDRG567gqjqNd9wYIF9O3bN8fyX3/99ab7FhFatWrF33//nWP5tWvXim13jRo18gSXx8TEmAUnZB1P7mMp6Fr17t37pt14BbU7dOhQkY5BRFi9ejXNmjXL811h6ycnJxc7jlKjKSk6pktzx2IY0KoV2NhAeHjlSSPRt29fFi5caI5nCQsLIzIykp49e/L9999z5coVQD0IAZycnIiLiwOUF8Dd3Z2VK1cC6kF08OBBADp16sTy5csBFbeVH9WqVSMjI8MsQpYtW8bs2bMJCQkhJCSE8PBwwsLCOH/+PGfPnqVJkyY89dRTDBo0yBxXNXToUH799Vf27NmTR0AUhZUrV2IymQgODubs2bM0a9YsxzECdO3a1XwMW7duxdXVtUAPSG4yj83V1ZX4+HizZwnIs59MOnTowLZt2zh37hyQde53797NQw89VOxjzI++ffvyySefmOPOTp06RUJCAn369GHhwoXmgPP8rnuzZs2Iiooyi660tDSOHj1K1apVcXFxYceOHUDO6x4WFpZvbJqjoyNubm788ccf5v39+uuveTyyucl+TY4cOWL+PbRv356//vqLM2fOAJCYmMipU6fyHENB7Zo3b054eDh79uwBIC4ujvT09DzXqm/fvixYsMAsyA8cOFCoXaD+Py5dukTjxo0LPTaNprTQoktzR2NrC76+6u/9++HG86xC06dPH/71r3/RoUMHvLy8GD58OHFxcbRq1Yr//ve/dOvWDR8fH5599lkARo8ezbvvvkvr1q0JDg5m6dKlfPXVV/j4+NCqVStzQPEHH3zARx99RNu2bQtN/dCnTx/zQ3r58uUMHTo0x/dDhw5l+fLlrFixAk9PT3x9fTlx4oRZfNjY2BAYGMjIkSNzjIAsKs2aNaNbt27079+fTz/9FDs7OwIDAzl27Jg5aHr27Nns3bsXb29vXnzxRb7++usib79q1ao8+uijeHl5MWTIEHO3FWQF8udO3VGzZk0+//xzhg0bho+PD6NGjQIgNDS01LwkkyZNomXLlvj5+eHp6cljjz1Geno6/fr1Y9CgQbRp0wZfX19z91l2WzMyMli1ahUvvPACPj4++Pr6snPnTgAWLVpk7g7ObmtERARWVvl3dnzzzTe8/vrr+Pr60qNHD2bNmsU999xTqP1TpkwhPj4eb29v3nnnHQICAgB17hYvXsyYMWPMAx8yu4wnT55M//79CQwMLLCdjY0NK1asYNq0afj4+NC7d2+Sk5Pz/CZefvll0tLS8Pb2xtPT0zxYpCC7QA0yaN++fYHnQaMpbYz83PQVjTZt2sjN8r1oNPkRHh6Om1tdNm6EK1egeXPw8ytvqyo2Bw4c4P3332fJkiUlWt9kMuHn58fKlSvx8PAo1roTJkxg4MCBDB8+vET7vt0899xzjBs3Lk+cUGXgww8/pGHDhgwaNKi8TSk3pk+fzqBBg/L1+IWHh1O3bt1ysEpzJ2AYxj4RaZN7ufZ0ae54DAPatlWfJ0/CtWvlbVHFpnXr1gQGBuZIjlpUjh07xr333kvPnj2LLbgqI++++26lFFwAU6dOvasFF4Cnp2ex0n9oNLeK9nRp7miyv63u3QunTqlC2TcGc2k0Gk2+aE+X5lbQni7NXY+np6rTGBYGUVHlbY1Go9Fo7ja06NLcNdjZqZgugIMHoRI4eTUajUZzB6FFl+auonlzlUIiMlLVZ9RoNBqN5nahRZfmrsLGBjLrF2tvl0aj0WhuJ1p0ae46mjZVXY1XriiPV1ljaWmJr68vrVq1wsfHh/fffx+TyQTA3r17zSVKKjoTJkzIkUg0O08//TTbt283z0dFRWFtbZ2jaPPt5s033yzzfQQFBbFhwwbz/Lp163j77bdLtK3sxbULIioqinbt2tG6dWtzoemS2lqadk2YMAF3d3d8fHxo2rQpDz30EGFhYTfd9rx588xJX4tLaRxPr1698mTf12jKEi26NHcdVlZKeAEcP172+7O3tycoKIijR4/y+++/s2HDBl555RUA2rRpw/z588veiDIkJibGXJswk5UrV9K+ffubln4pS8pDdA0aNIgXX3yxzPb3xx9/0Lx5cw4cOECXLl2KtW5JRUpReffddzl48CAnT540px1JTU0tdJ3yEF3ZGTduHB9//PEtbUOjKQ5adGnuSjw8wNJSlQfKk7frxAlYuVJ9ljK1atXi888/58MPP0RE2Lp1KwMHDgRUSZmOHTvSunVrOnbsyMmTJwFVDmXkyJF4e3szatQo2rVrZ35Td3R05L///S8+Pj60b9+eyzcC1c6fP0/Pnj3x9vamZ8+ehIaGAkoMeXp64uPjYxZJGRkZPPfcc7Rt2xZvb2+zd0pEmDp1Ki1btmTAgAFEFuAWXLVqlbmodCbLli3jvffe4+LFi2aPR0ZGBhMmTMDT0xMvLy/mzp1LcHAwftmy1Z4+fRp/f38AGjduzH/+8x86dOhAmzZt2L9/P3379uWee+7h008/BVQJoK5duzJ06FBatmzJ448/jslk4sUXXyQpKQlfX1/Gjh0LwPvvv4+npyeenp7MmzcPgJCQEJo3b86kSZPw9PRk7NixbNq0iU6dOuHh4cHu3bsLvDapqanMnDmTFStWmLOiL168mKlTpwJw+fJlhg4dio+PDz4+PuYM8UUhv+saFBTE888/z4YNG8wZ8zdu3EiHDh3w8/NjxIgR5tJRe/bsoWPHjvj4+BAQEEBsbGweWxMSEnj44Ydp27YtrVu3NlcuSEpKYvTo0ebfW/bM/EXBMAyeeeYZ6tSpYy6unZ+d8+fPJzw8nMDAQAIDAwtsV5bHM2jQoHJ9MdDchYhIhZ/8/f1FoykJYWFhBX63Z4/I0qUif/+dbeHx4yLt2om0bq0+jx+/ZRuqVKmSZ1nVqlXl0qVLsmXLFhkwYICIiMTGxkpaWpqIiPz+++8ybNgwERF59913ZfLkySIicvjwYbG0tJQ9e/aIiAgg69atExGR5557Tl577TURERk4cKAsXrxYRES++uorGTx4sIiIeHp6ysWLF0VE5OrVqyIi8tlnn5nXS05OFn9/fzl79qysXr1aevXqJenp6RIWFiYuLi6ycuXKPMfy0EMPmW0QEQkNDZV7771XRERmzJgh7733noiI7N27V3r16mVul7n/7t27y4EDB8zt58+fLyIijRo1ko8//lhERJ5++mnx8vKS69evS2RkpNSsWVNERLZs2SK2trYSHBws6enp0qtXL7ON2c/73r17xdPTU+Lj4yUuLk5atmwp+/fvl3PnzomlpaUcOnRIMjIyxM/PTyZOnCgmk0nWrl1rPm8FXZtFixbJk08+ad5P9vmRI0fK3LlzRUQkPT1drl27lufcZadbt243va7Ztx8VFSVdunSR+Ph4ERF5++235ZVXXpGUlBRxd3eX3bt357A9t60zZsyQJUuWmK+Fh4eHxMfHy3vvvScTJ04UEZGDBw/m+L0VxPjx4/P8NqZPny5vv/12gXaKqGscFRVVrsdz7733SnR0dJ5jKuzeodHcDGCv5KNndMEpzV1Ls2Zw+jSEhICPD9jbA4cPQ2qqyqAaHq7mM/NMlCKSTwR/bGws48eP5/Tp0xiGYS58vGPHDqZPnw6oDNrZM6Db2NiYPWX+/v78/vvvAPz999/88MMPgOpCef755wFV9HrChAmMHDmSYcOGAcq7cOjQIXO8VmxsLKdPn2b79u2MGTMGS0tL6tatS48ePfI9loiICGrWrGmeX758OSNHjgRUXchHHnmEZ599liZNmnD27FmmTZvGgAED6NOnD6BqDi5atIj333+fFStWmL1LgDljupeXF/Hx8Tg5OeHk5ISdnR3XbrgoAwICaNKkCQBjxoxhx44decoI7dixg6FDh1KlShUAhg0bxp9//smgQYNwd3fHy8sLgFatWtGzZ08Mw8DLy4uQkJBCr01hbN68mW+++QZQcX0uLi43XSeTgq5rdnbt2sWxY8fo1KkTAKmpqXTo0IGTJ0/i5uZmrilZUCHwjRs3sm7dOnMtx+TkZEJDQ9m+fbs5ztDb27vEGfczf+MF2VlRjqdWrVqEh4dTo0aNEh2nRlMctOjS3LU4OUGDBhAaqjLV+/gAXl5qiGN4OFhbq/lS5uzZs1haWlKrVi2OZwsqe/nllwkMDGTNmjWEhITQvXt3IH+Blom1tTWGYQDqwZ6enp5vu8w2n376Kf/88w8///wzvr6+BAUFISIsWLCAvn375lhnw4YN5vUKw97enuTkZPP8smXLuHz5MkuXLgVUZu/Tp0/j4eHBwYMH+e233/joo4/4/vvvWbhwIQ888ACvvPIKPXr0wN/fP8fDz9bWFgALCwvz35nzmcea28b8bC7sHObebvZ9Zu6joGtTVhTluooIvXv3ztM9dujQoSJdNxFh9erVNGvWLM93RVn/Zhw4cICePXsWaGd+9pTH8SQnJ5da0XKN5mbomC7NXU1mQP3Zs2AyobxaixfDiy+qz1L2ckVFRfH4448zderUPA+C2NhY6tWrB8DixYvNyzt37sz3338PqNqGhw8fvul+OnbsyPLlywFYunQpnTt3BiA4OJh27drx6quv4urqyoULF+jbty+ffPKJ2Xtz6tQpEhIS6Nq1K8uXLycjI4OIiAi2bNmS775atGjBmTNnADh58iQJCQmEhYUREhJCSEgIM2bMYPny5URHR2MymXjggQd47bXX2L9/PwB2dnb07duXKVOmMHHixKKeSjO7d+/m3LlzmEwmVqxYYT5Wa2tr8zF17dqVtWvXkpiYSEJCAmvWrClWIHpB18bJyYm4uLh81+nZsyeffPIJoOLZrl+/bl5elJF9N6N9+/b89ddf5nOfmJjIqVOnaN68OeHh4ezZsweAuLg40tPT89jat29fFixYYBakBw4cANS5yhTMR44c4dChQ+Z1HnrooRyeyPwQEebPn09ERAT9+vUr0E7Ief7K43hEhEuXLtG4ceMinHGN5tYpU9FlGEY/wzBOGoZxxjCMPEN6DMNwMQzjJ8MwDhqGcdQwjOLfcTWaW6BmTXBxgaQkVR4IUEJrxIhSE1yZAd2tWrWiV69e9OnTh1mzZuVp9/zzzzNjxgw6deqUo9j0E088QVRUFN7e3vzvf//D29v7pl1V8+fPZ9GiRXh7e7NkyRI++OADAJ577jm8vLzw9PSka9eu+Pj4MGnSJFq2bImfnx+enp489thjpKenM3ToUDw8PPDy8mLKlCl0K6Bg5YABA9i6dSugvFxDhw7N8f0DDzzAsmXLCAsLo3v37vj6+jJhwgTeeustc5uxY8diGIa5y7E4dOjQgRdffBFPT0/c3d3N+588eTLe3t6MHTsWPz8/JkyYQEBAAO3atWPSpEm0bt26yPso6NoEBgZy7NgxczB3dj744AO2bNmCl5cX/v7+HD16FJPJxJkzZ6hevXqxjzM3NWvWZPHixYwZMwZvb2/at2/PiRMnsLGxYcWKFUybNg0fHx969+5NcnJyHltffvll0tLS8Pb2xtPTk5dffhmAKVOmEB8fj7e3N++88w4BAQHmfR46dAg3N7d87XnuuefMKSP27NnDli1bsLGxKdBOUNeof//+BAYGlsvx7Nu3j/bt22NlpTt9NLeHMit4bRiGJXAK6A1cBPYAY0TkWLY2/wFcROQFwzBqAieBOiKSY5yxLnitKSlFKVp74gTs3w9ubnBjEFWFIiMjg7S0NOzs7AgODqZnz56cOnUKGxub8jbNTOfOnVm/fj1Vq1Yt0fpz5swhNjaW1157rVjrbd26lTlz5rB+/foS7fd2c+TIERYuXMj7779f3qYUm+vXr/PII4+wcuXK8jal1Jg+fTqDBg2iZ8+eeb7TBa81t0JBBa/LUt4HAGdE5OwNA5YDg4Fj2doI4GSofhZHIAbIPyhFoykj3N1VdvpLlyA+Hhwdy9uinCQmJhIYGEhaWhoiwieffFKhBBfAe++9R2hoaIlE19ChQwkODmbz5s2lb1gFw9PTs1IKLlAB7HeS4AJ1PfITXBpNWVGWnq7hQD8RmXRjfhzQTkSmZmvjBKwDmgNOwCgR+Tn3trSnS1NSivq2+vffcO4ctGp1I6Beo9Hc1WhPl+ZWKMjTVZYxXfkNF8mt8PoCQUBdwBf40DCM/McDazRlyL33qs/g4BsB9RqNRqPRlDJlKbouAg2yzdcHwnO1mQj8cCOX2BngHMrrpdHcVlxdwdkZkpNVN6NGo9FoNKVNWYquPYCHYRjuhmHYAKNRXYnZCQV6AhiGURtoBpwtQ5s0mnwxDBXbBSpZqkaj0Wg0pU2ZiS4RSQemAr8Bx4HvReSoYRiPG4bx+I1mrwEdDcM4DPwBvCAi0WVlk0ZTGI0aqc8LF6AICcc1Go1GoykWZZqnS0Q2iEhTEblHRN64sexTEfn0xt/hItJHRLxExFNEvi1LezSawnB0VHm7MjLg4sXS3faaNWswDMOcnwhUoG5muZrsha/XrVvH22+/XWr7fvrpp9m+fTsA69evp3Xr1vj4+NCyZUtzceuyYt68eSQmJpbpPkJCQvjuu+/M83v37jWXfSkuEyZMMJdDKoiUlBR69eqVb26u4tpamnbl18axmENxs/8OCyIoKIgNGzYUa7vZKclvIrtd69evzzfPnUZTGdAZ6TWabGQmpi7tLsZly5bRuXNnc5Z4gLp16+b7IB00aBAvvpgnl3CJiImJYdeuXXTt2pW0tDQmT57MTz/9xMGDBzlw4ECZl7MpD9HVpk0b5s+fX2b7O3DgAGlpaQQFBTFq1KhirVtS0VWRKA/RlZ0BAwawbt26Mv9daTRlwU1Fl2EYnQzD+N0wjFOGYZw1DOOcYRg67kpzR9KwIVhYqGD6pKTS2WZ8fDx//fUXX331VQ7RFRISgqenZ572ixcvZupUlVllwoQJPPXUU3Ts2JEmTZqYRZrJZOKJJ56gVatWDBw4kPvuuy9fAbdq1Sr69esHZJVPyaxtaGtrS7NmzYiLi8Pd3d1cMuf69es0btyYtLQ0unfvzjPPPEPXrl1p0aIFe/bsYdiwYXh4ePDSSy+Zj6N58+aMHz8eb29vhg8fTmJiIvPnzyc8PJzAwEACb2SdXbZsmTkj/gsvvGC209HRkRdeeAF/f3969erF7t276d69O02aNGHdunXm/XTp0gU/Pz/8/PzYuXMnAC+++CJ//vknvr6+zJ07N4dXJD4+nokTJ+Ll5YW3tzerV68u8nVr3Lgxs2bNws/PDy8vL06cOEFkZCQPPvggQUFB+Pr6EhwczL59++jWrRv+/v707duXiIgIAM6cOUOvXr3w8fHBz8+P4ODgPLZmZGTw3HPP0bZtW7y9vc2eRxFh6tSptGzZkgEDBhAZGVlku/Nj69atdO/eneHDh9O8eXPGjh1rLpfz66+/0rx5czp37mwukg6QkJDAww8/TNu2bWndujU//vgjqampzJw5kxUrVpg9ffm1A5XU99///rf53C9YsCDf38TGjRvp0KEDfn5+jBgxgvj4+ELtMgyD7t27V5qEuBpNDkSk0Ak4AfQHagE1MqebrVeak7+/v2g0JSEsLCzngoED1ZSdV15Ry/75R0REtm0T2fz8LxLXfaDIggVZ7a5cUe0eeqhYNixZskQefvhhERHp0KGD7Nu3T0REzp07J61atRIRkS1btsiAAQNERGTRokXy5JNPiojI+PHjZfjw4ZKRkSFHjx6Ve+65R0REVq5cKf3795eMjAyJiIiQqlWrysqVK/Ps+6GHHpJ169aZ5x955BGpWbOmjB49Wr799lvJyMgQEZEJEybImjVrRETks88+k2effVZERLp16ybPP/+8iIjMmzdP3NzcJDw8XJKTk6VevXoSHR0t586dE0B27NghIiITJ06Ud999V0REGjVqJFFRUSKirkWDBg0kMjJS0tLSJDAw0LxPQDZs2CAiIkOGDJHevXtLamqqBAUFiY+Pj4iIJCQkSFJSkoiInDp1SjLvC9nPXe75559/XqZPn27+LiYmptBrNX78ePN5bNSokcyfP19ERD766CN55JFH8mw/NTVVOnToIJGRkSIisnz5cpk4caKIiAQEBMgPP6jB2UlJSZKQkJDH1s8++0xee+01ERFJTk4Wf39/OXv2rKxevVp69eol6enpEhYWJi4uLvle34Jsz6RKlSpmm52dneXChQuSkZEh7du3lz///FOSkpKkfv36curUKTGZTDJixAizfTNmzJAlS5aIiMjVq1fFw8ND4uPjc/w+C2v38ccfy7BhwyQtLU1ERK5cuWI+r5m/iaioKOnSpYvEx8eLiMjbb78tr7zySqF2iYh8++23MnXq1ELPx62S596h0RQDYK/ko2eK0r0YKyK/iEikiFzJnMpIA2o05U5mF2NpebqWLVvG6NGjARg9ejTLli0r1vpDhgzBwsKCli1bcvnyZQB27NjBiBEjsLCwoE6dOmavQW4iIiKoWbOmef7LL7/kjz/+ICAggDlz5vDwww8DMGnSJBYtWgTAokWLchSeHjRoEABeXl60atUKNzc3bG1tadKkCRcuXACgQYMGdOrUCYAHH3yQHTt25LFlz549dO/enZo1a2JlZcXYsWPNsWY2NjZmj5yXlxfdunXD2toaLy8vQm709aalpfHoo4/i5eXFiBEjOHbsWJ595GbTpk08+eST5vlq1arddJ3sDBs2DAB/f3+zHdk5efIkR44coXfv3vj6+vL6669z8eJF4uLiCAsLM9eBtLOzw8HBIc/6Gzdu5JtvvsHX15d27dpx5coVTp8+zfbt2xkzZgyWlpbUrVuXHj163NTW3AXUcy8LCAigfv36WFhY4OvrS0hICCdOnMDd3R0PDw8Mw+DBBx/MYdvbb7+Nr68v3bt3Jzk5mdDQ0HyPIb92mzZt4vHHHzfXNcyv3uSuXbs4duwYnTp1wtfXl6+//prz588XahdArVq1CA/PnYFIo6n4FKUM0BbDMN4FfgBSMheKyP4ys0qjKSt++invspkzc8zWrQt/+/Xjd59+DBkC5kdl9er5r18IV65cYfPmzRw5cgTDMMjIyMAwDN55550ib8PW1tb8t9zoEsr8vBn29vYkJyfnWObl5YWXlxfjxo3D3d2dxYsX06lTJ0JCQti2bRsZGRk5uj0z929hYZHDFgsLC9LTVdWu3A/8/ARAYTZbW1ub18m+n+z7mDt3LrVr1+bgwYOYTCbs7Oxuevwikq8tRSXTDktLS7MdubffqlUr/v777xzLr1+/XqTtiwgLFiygb9++OZZv2LCh2HbXqFGDq1evmudjYmJwdXU1z2e/dtmPp6D9iAirV6+mWbNmOZb/888/RWpXlHMvIvTu3TvPi0hQUFCh6yYnJ2Nvb1/otjWaikhRPF3tgDbAm8B7N6Y5ZWmURlOeWFkp4QUqfcStsGrVKh566CHOnz9PSEgIFy5cwN3dPV9PUHHo3Lkzq1evxmQycfnyZbZu3ZpvuxYtWnDmzBlAxTdlbxcUFESjzDwZwEMPPcSYMWNyeLmKSmhoqFl4ZA4aAHByciIuLg6Adu3asW3bNqKjo8nIyGDZsmV069atyPuIjY3Fzc0NCwsLlixZQkZGRp595KZPnz58+OGH5vlMUfLQQw+xe/fuYh9nbpo1a0ZUVJT52NPS0jh69CjOzs7Ur1+ftWvXAmrEY2JiYh5b+/btyyeffGKOpzt16hQJCQl07dqV5cuXk5GRQUREBFu2bDGvM2PGDNasWZPHlu7du7NixQpSU1MBFRtYkAc0k+bNm3Pu3DmCg4MBcoifvn37smDBArNYPnDgAJD3fBfUrk+fPnz66admcRcTE5Nn/fbt2/PXX3+Zf6OJiYmcOnWqULsyz1N+8ZAaTUXnpqJLRALzmW7u69ZoKjENbtRSuFXRtWzZMnMXUyYPPPDALY9ge+CBB6hfvz6enp489thjtGvXDhcXlzztBgwYYBZaIsI777xDs2bN8PX1ZdasWSxevNjcduzYsVy9epUxY8YU254WLVrw9ddf4+3tTUxMDFOmTAFg8uTJ9O/fn8DAQNzc3HjrrbcIDAw0B5cPHjy4yPt44okn+Prrr2nfvj2nTp2iSpUqAHh7e2NlZYWPjw9z587Nsc5LL73E1atX8fT0xMfHxyxeDh06hJubW7GPMzc2NjasWrWKF154AR8fH3x9fc0B/kuWLGH+/Pl4e3vTsWNHLl26lMfWSZMm0bJlS/z8/MzXMj09naFDh+Lh4YGXlxdTpkzJIU4PHz5MnTp18tgycOBAunTpgr+/P76+vvz111/873//K9R+Ozs7Pv/8cwYMGEDnzp1ziPCXX36ZtLQ0vL298fT05OWXXwYgMDCQY8eOmQPpC2o3adIkGjZsiLe3Nz4+PubffPbfRM2aNVm8eDFjxozB29ub9u3bc+LEiULtAtiyZQsDBgwowRXTaMqXmxa8NgzDBZgFdL2xaBvwqojElrFtZnTBa01JKWnR2tRU+OEHEIGhQ6EIPVm3nfj4eBwdHbly5QoBAQH89ddf+T6MO3fuzPr166latWqh21u1ahU//vgjS5YsKZYdISEhDBw4kCNHjhRrvfLi+vXrPPLII6xcubK8TSkRffv25bfffitvM8qNy5cv869//Ys//vijTPejC15rboWCCl4XJaZrIXAEGHljfhywCBhWeuZpNBULGxtwc4OwMJUoNbMgdkVi4MCBXLt2jdTUVF5++eV8BRfAe++9R2hoaKGia9q0afzyyy+3lH+psuDs7FxpBRdwVwsuUF3Z7733XnmbodGUiKJ4uoJExPdmy8oS7enSlJRbeVs9exZ27YI6daAIg8c0Gs0dhPZ0aW6FgjxdRQmkTzIMo3O2DXUCSmkwvUZTcalXTyVKvXwZUlJu3l6j0Wg0msIoSvfiFODrG7FdBhADTChLozSaioCtLdSqpbLTh4eDu3t5W6TRaDSaysxNRZeIBAE+hmE435gvWgIajeYOoF49JbrCwrTo0mg0Gs2tUaDoMgzjQRH51jCMZ3MtB0BE3i9j2zSacqd+fdi3DyIiICMDLC3L2yKNRqPRVFYKi+mqcuPTKZ/JsYzt0mgqBFWqQNWqkJYGJa05bGlpia+vL56entx///1cu3atNE0sNnv37uWpp5665e1MmDAh3yLbAE8//bS5xM/69etp3bo1Pj4+tGzZ0lzUuayYN28eiYmJZbqPkJCQHLnWbuWcFnYeM0lJSaFXr17m3Fi3Ymtp2jV79mzq1auHr68vHh4eDBs2rEjlmRYvXlziMj6lcTyjR4/m9OnTJdq/RnMrFCi6RCTzzrhJRF7JPgFlmyBFo6lA1KunPsPCSra+vb09QUFBHDlyhOrVq/PRRx+VnnEloE2bNsyfP7/Mth8TE8OuXbvo2rUraWlpTJ48mZ9++omDBw9y4MABunfvXmb7hvIRXWV9Tg8cOEBaWhpBQUGMGjWqWOuWVKQUlWeeeYagoCBOnz7NqFGj6NGjB1FRUYWuUx6iKztTpkwpVikujaa0KMroxQVFXKbR3JFkF11FLHlYIB06dCDshnoLDg6mX79++Pv706VLF06cOAGo5I9Dhw7Fx8cHHx8fc4bz999/H09PTzw9PZk3b555m6+99hrNmzend+/ejBkzhjlzVJWu7t2788ILLxAQEEDTpk35888/Adi6dSsDBw4E4L777sPX1xdfX19cXFz4+uuvycjI4LnnnqNt27Z4e3ubPVMiwtSpU2nZsiUDBgwgsgDX36pVq8zFq+Pi4khPT6dGjRqAqv/XrFkz4uLicHd3N5e/uX79Oo0bNyYtLY3u3bvzzDPP0LVrV1q0aMGePXsYNmwYHh4evPTSS4B68DZv3pzx48fj7e3N8OHDSUxMZP78+YSHhxMYGGgugbNs2TK8vLzw9PTkhRdeMNvp6OjICy+8gL+/P7169WL37t10796dJk2asG7dOvN+unTpgp+fH35+fuZr8eKLL/Lnn3/i6+vL3Llzc5zT+Ph4Jk6ciJeXF97e3qxevbrIv4/GjRsza9Ys/Pz88PLy4sSJE0RGRvLggw8SFBSEr68vwcHB7Nu3j27duuHv70/fvn2JiIgA4MyZM/Tq1cuc8T84ODiPrbd6fQtj1KhR9OnTxyyK8rNz1apV7N27l7Fjx+Lr60tSUtJtP54uXbqwadOmfOtpajRliojkOwEdgP8DLgDPZptmAwcLWq8sJn9/f9FoSkJYWFjOBQMHFjz98ktWu19+MS83DRwo4f4D5WLrgZLa90bbYlClShUREUlPT5fhw4fLLzf206NHDzl16pSIiOzatUsCAwNFRGTkyJEyd+5c8zrXrl2TvXv3iqenp8THx0tcXJy0bNlS9u/fL3v27BEfHx9JTEyU69evy7333ivvvvuuiIh069ZNnn32WRER+fnnn6Vnz54iIrJlyxYZMGBADhv37t0rXl5ecu3aNfnss8/ktddeExGR5ORk8ff3l7Nnz8rq1aulV69ekp6eLmFhYeLi4iIrV67Mc7wPPfSQrFu3zjz/yCOPSM2aNWX06NHy7bffSkZGhoiITJgwQdasWSMiIp999pnZ1m7dusnzzz8vIiLz5s0TNzc3CQ8Pl+TkZKlXr55ER0fLuXPnBJAdO3aIiMjEiRPNx92oUSOJiooSEXX9GzRoIJGRkZKWliaBgYHmfQKyYcMGEREZMmSI9O7dW1JTUyUoKEh8fHxERCQhIUGSkpJEROTUqVOSeS/KfQ6zzz///PMyffp083cxMTF5zlF2xo8fbz6PjRo1kvnz54uIyEcffSSPPPJInu2npqZKhw4dJDIyUkREli9fLhMnThQRkYCAAPnhhx9ERCQpKUkSEhLy2Hqr1zc7s2bNMp/3TObOnSuPP/54oXZ269ZN9uzZU67H06tXL9m7d2+Bx5bn3qHRFANgr+SjZwobvWiDit2yQsVxZXIdGF7K2k+jqbAYqDJAiYmQnAzW1sVbPykpCV9fX0JCQvD396d3797Ex8ezc+dORowYYW6XciMZ2ObNm/nmm28AFQ/m4uLCjh07GDp0qLne4LBhw/jzzz8xmUwMHjwYe3t7AO6///4c+x42TBWO8Pf3JyQkJF/7oqOjGTduHN9//z0uLi5s3LiRQ4cOmeNfYmNjOX36NNu3b2fMmDFYWlpSt25dehSQMTYiIoKaNWua57/88ksOHz7Mpk2bmDNnDr///juLFy9m0qRJvPPOOwwZMoRFixbxxRdfmNcZNGgQAF5eXrRq1cpcJ7FJkyZcuHCBqlWr0qBBAzp16gTAgw8+yPz58/n3v/+dw5Y9e/bQvXt3sz1jx45l+/btDBkyBBsbG7NHzsvLC1tbW6ytrfHy8jKfq7S0NKZOnUpQUBCWlpacOnUq32POzqZNm1i+fLl5vlq1ajddJzvZr9kPP/yQ5/uTJ09y5MgRevfuDUBGRgZubm7ExcURFhZmrvVpV0Dtqlu9vjdDbriDC7KzohxPrVq1CA8Px9/fv0THqdGUhAJFl4hsA7YZhrFYRM7fRps0mrLjp5+K1q5fPzXdIOEibN8Orq7Qp0/xdpkZ0xUbG8vAgQP56KOPmDBhAlWrViUoKKhI28h8kBV1eSa2traAEm/5daVkZGQwevRoZs6ciaenp3mbCxYsoG/fvjnabtiwwTx6uTDs7e1JTk7OsczLywsvLy/GjRuHu7s7ixcvplOnToSEhLBt2zYyMjLM+89ut4WFhfnvzPnM48htS362FXZ+rK2tzetk30/2fcydO5fatWtz8OBBTCZTgQ/+3PssynkqiJtdMxGhVatW/P333zmWX79etGw+t3p9b8aBAwdo06ZNgXbmZ095HE9ycrL5ZUVz55Gcnsyl+Etcjr/MpfhLOaapAVNpVatVudhVlJiuRMMw3jUMY4NhGJszpzK3TKOpQNSurbLTX7lS8uz0Li4uzJ8/nzlz5mBvb4+7u7u5BqCIcPDgQQB69uzJJ598AihRdP36dbp27cratWtJTEwkISGBNWvW0KVLFzp37sxPP/1EcnIy8fHx/Pzzz8Wy6cUXX8Tb25vRo0ebl/Xt25dPPvnEHG916tQpEhIS6Nq1K8uXLycjI4OIiAi2bNmS7zZbtGjBmTNnABXftHXrVvN3QUFBNGrUyDz/0EMPMWbMGCZOnFgsu0HV4Mt8UC9btozOnVXhDCcnJ+Li4gBo164d27ZtIzo6moyMDJYtW0a3bt2KvI/Y2Fjc3NywsLBgyZIlZGRk5NlHbvr06cOHH35onr969ar5WHfv3l3s48xNs2bNiIqKMh97WloaR48exdnZmfr167N27VpAeU4TExPz2FqS6ztjxgzWrFlzU9tWr17Nxo0bGTNmTIF2Qs7zVx7Hk9muVavyefBqbh2TmIhKiOLw5cP8Hvw7Sw4uYc7OOfx747958IcHGbFyBNN+mcbrf77Olwe+ZP3p9eyN2MvFuIuEx5VsEEdpUJSM9EuBFcBA4HFgPFD40BSN5g7D2hpq1lQlgS5dgmy6oVhkpk5Yvnw5S5cuZcqUKbz++uukpaUxevRofHx8+OCDD5g8eTJfffUVlpaWfPLJJ3To0IEJEyYQEBAAwKRJk2jdujWguuJ8fHxo1KgRbdq0wcXFpcj2zJkzh1atWuHr6wvAq6++yqRJkwgJCcHPzw8RoWbNmqxdu5ahQ4eyefNmvLy8aNq0aYHiZcCAAXz22WdMmjQJEeGdd97hsccew97enipVqrB48WJz27Fjx/LSSy8xZsyYYp/LFi1a8PXXX/PYY4/h4eHBlClTAJg8eTL9+/fHzc2NLVu28NZbbxEYGIiIcN999zF48OAi7+OJJ57ggQceYOXKlQQGBpq7d729vbGyssLHx4cJEyaYrwXASy+9xJNPPomnpyeWlpbMmjWLYcOGcejQoXy714qLjY0Nq1at4qmnniI2Npb09HSefvppWrVqxZIlS3jssceYOXMm1tbWrFy5Mo+t06dPL/b1PXz4sLnLNzdz587l22+/JSEhAU9PTzZv3mzuzi3IzgkTJvD4449jb2/P33//fduP5/Lly9jb25fK9dCUHemmdKISogiPCyc8LpyI+Aj1GRdBZGIk6aaCB0JYW1hTq0ot6jjWyTO5OZbfdS9Kwet9IuJvGMYhEfG+sWybiBT9dfEW0QWvNSWlNIvWHj8OBw5AkybQvn2pbLJUiI+Px9HRkcTERLp27crnn3+On59fudrUuXNn1q9fT9WqVQttt2rVKn788UeWLFlSrO2HhIQwcOBAjhw5cgtW3j6uX7/OI488YvZsVjb69u3Lb7/9Vt5mlBpz587F2dmZRx55pMA2uuD17aEgYRUeF05kQiQZklHgutXsqpmFVO0qtXMIq+r21Uulu7ykFFTwuiierrQbnxGGYQwAwoH6pWmcRlMZcHNToisiQqWOKMf/5xxMnjyZY8eOkZyczPjx48tdcAG89957hIaGFiq6pk2bxi+//MKGDRtun2HlhLOzc6UVXMAdJbgAqlatyrhx48rbjLsGk5iITIgk7HpYsYSVgUFNh5q4ObpR16muearjWIfajrWxs7p5jGVFoyieroHAn0ADVH4uZ+AVEVlX9uYptKdLU1JK821VBNauhaQk6N8fijkoTaPRVCK0p6v4JKcnE3Y9jIvXL+aYwuLCSDOlFbieq4MrdR3r5hBWbk5u1HGsg42lzW08gtKjxJ4uEVl/489YILC0DdNoKguGAXXrQnCw8nZp0aXRaO42RISYpBjC4rLE1YXYC1yMu0h0YnSB61W3r049p3o5hZWjG25ObpVWWJWEwgpeLwAKdIOJyK0Xb9NoKhlubkp0hYdDy5blbY1Go9GUDSYxEREXQWhsKBeuX8gSWNcvkJyenO86VhZWuDm60cC5AfWd65unes71cLB2uM1HUDEpzNOl+/M0mlzUqaM8XtHRqgh2cROlajQaTUVCRLiccJnQ2FBCY0M5f+08obGhXIy7SGpGar7rONk4mQVVdoFVq0otLC0sb/MRVC4KS4769e00RKOpDNjYqASpUVEqfUR9PaREo9FUAkSE6MRoJaxiz5tFVmhsKCkZ+ScfdHVwpZFLIxq6NDSLq3rO9XC2db7N1t853DSmyzCMLeTTzSgiJasRodFUctzclOgKD7+56Lpy5Qo9e/YE4NKlS1haWlKzZk1CQkKoW7cux44dK3X71q5dS9OmTWlZxv2fs2fPxtHRMU/pHYB58+ZRvXp1HnroIQDS09OpU6cOjz76KG+99VaJ9nft2jW+++47nnjiiZu2dXR0JD4+vkjbNZlMPP3002zevBnDMLCzs+P777/H3d29RHbejJCQEHbu3Mm//vWvMtl+Jrl/BzNnzqRr16706tUr3/aHDx/mvffey5FHTVM5uZ5ynXNXzxFyLSSHwEpKT8q3fXX76jR0bkhDl4Y0qpolsqrYVLnNlt/5FCVlRPY7qh3wAFCk0uyGYfQDPgAsgS9F5O182nQH5gHWQPTtzP+l0ZQENzc4dKhoqSNq1KhhLvWTXaRk5pm6Genp6VhZFeXfNIu1a9cycODAMhddBZGens7ChQvZv3+/ednGjRtp1qwZ33//PW+++WaJ8udcu3aNjz/+uEiiqzisWLGC8PBwDh06hIWFBRcvXjQnQS0LQkJC+O67726L6Mr+O3j11VcLbe/l5cXFixcJDQ2lYcOGZWqbpnTIMGUQHhfOuWvnOHf1nPq8do6YpJh82zvbOps9V5mfDV0a4mTrlG97Telz0zJAIrIv2/SXiDwLtLvZeoZhWAIfAf2BlsAYwzBa5mpTFfgYGCQirYARubej0VQ0qlcHW1tISIACKsEUiYyMDB599FFatWpFnz59SEpSb6Hdu3fnP//5D926deODDz5g3759dOvWDX9/f/r27UtERAQAX3zxBW3btsXHx4cHHniAxMREdu7cybp163juuefw9fUlODiY4OBg+vXrh7+/P126dOHEiRMATJgwgaeeeoqOHTvSpEkTc8FggHfffZe2bdvi7e3NrFmzzMvfeOMNmjVrRq9evTh58mS+x7V582b8/PxyiMVly5Yxffp0GjZsyK5du8zLf/31V/z8/PDx8TF7BGfPns2cOXPMbTw9PQkJCeHFF18kODgYX19fnnvuuULtzGTcuHH8+OOP5vmxY8eybl3ObDcRERHmUj8A9evXp1q1anz11Vc888wz5nZffPEFzz77LCEhITRv3pxJkybh6enJ2LFj2bRpE506dcLDw8Nc6mf27NmMGzeOHj164OHhYS7o/eKLL/Lnn3/i6+vL3LlzSU5OZuLEiXh5edG6dWtzuZrFixczZMgQ7r//ftzd3fnwww95//33ad26Ne3btycmJqZYv4MJEyaYr/GePXvo2LEjPj4+BAQEmMvq3H///TmKdWsqDvGp8Ry+fJifTv7E/H/m88yvzzBy1Uie2PAE7+58l1XHV7EvYh8xSTHYWdnRrEYz+t3Tj8f8H+ONHm/w7dBvWTpsKW/2fJPH2zxOf4/+tKrVSguu242IFDoB1bNNrkBf4GQR1usA/JZtfgYwI1ebJ4DXb7Ytf39/0WhKQlhYWM4FAwcWb5o+Pd/1//pLZOlSkePHi27LrFmz5N133xURkXPnzomlpaUcOHBARERGjBghS5YsERGRbt26yZQpU0REJDU1VTp06CCRkZEiIrJ8+XKZOHGiiIhER0ebt/3f//5X5s+fLyIi48ePl5UrV5q/69Gjh5w6dUpERHbt2iWBgYHmdsOHD5eMjAw5evSo3HPPPSIi8ttvv8mjjz4qJpNJMjIyZMCAAbJt2zbZu3eveHp6SkJCgsTGxso999xjPp7szJw502yLiEhiYqK4ublJQkKCfPbZZzJt2jQREYmMjJT69evL2bNnRUTkypUrec6TiEirVq3k3Llzcu7cOWnVqpV5eUF2iohUqVJFRES2bt0qgwcPFhGRa9euSePGjSUtLS2HvRcuXJBGjRqJj4+PPPvss7J//34REYmPj5cmTZpIamqqiIh06NBBDh06ZL52hw4dkoyMDPHz85OJEyeKyWSStWvXmvc3a9Ys8fb2lsTERImKipL69etLWFiYbNmyRQYMGGDe/5w5c2TChAkiInL8+HFp0KCBJCUlyaJFi+See+6R69evS2RkpDg7O8snn3wiIiJPP/20zJ07t1i/g8z5lJQUcXd3l927d4uISGxsrPmc7NixQwYOHJjnmt6N5Ll33CZMJpNExkfK3xf+lm8PfiuvbH1FJqydIAO/G5jv9PDah+W1ba/Jtwe/lR3nd0jY9TAxmUzlYrsmC2Cv5KNnitJvsQ8V02WguhXPAQXXTsiiHnAh2/xF8nrImgLWhmFsBZyAD0TkmyJsW6MpV9zcICREdTE2b16ybbi7u5trHvr7+xMSEmL+btSoUQCcPHmSI0eO0Lt3b0B5xzLrxR05coSXXnqJa9euER8fT9++ffPsIz4+np07dzJiRJYTOSVbxe4hQ4ZgYWFBy5YtuXz5MqC6Ajdu3GiuJxgfH8/p06eJi4tj6NChODiood8F1eKLiIigRYsW5vn169cTGBiIg4MDDzzwAK+99hpz585l165ddO3a1Rw7Vb169aKfvELs7Nq1q7lNt27dePLJJ4mMjOSHH37ggQceyNNdW79+fU6ePMnmzZvZvHkzPXv2ZOXKlfTs2ZMePXqwfv16WrRoQVpaGl5eXoSEhODu7o6XlxcArVq1omfPnhiGYf4+k8GDB2Nvb4+9vT2BgYHs3r07T5b+HTt2MG3aNACaN29Oo0aNOHXqFACBgYE4OTnh5OSEi4sL999/P6C6Ag8dOgQU7XeQnZMnT+Lm5kbbtm0BlS0/k1q1ahEeXn7FgO82RIRL8ZcIvhpMcEyw+rwazPWU63na2lja0MilEe5V3XGv5o57VXcaV22s464qGUVJjlrSaNL8gjZyB+RbAf5AT8Ae+NswjF0icqqE+9RoCuenn0plfbdkFcsVGQnp6VDMsCsAbG1tzX9bWlqauxcBc0yRiNCqVSv+/vvvPOtPmDCBtWvX4uPjw+LFi9m6dWueNiaTiapVq5rjygqzQW5UpxARZsyYwWOPPZaj7bx584oUi2Vvb09yclYen2XLlvHXX3/RuHFjQA0u2LJlCyKS7/asrKwwmUzm+ezbyk5BduZm3LhxLF26lOXLl7Nw4cJ829ja2tK/f3/69+9P7dq1Wbt2LT179mTSpEm8+eabNG/enIkTJ+Zon4mFhYV53sLCgvT0rJDX3MeX3/FmnveC7LrZforyO8i9v4KuY3JyMvb29oWurykZJjERHhduFldnYs5w9upZEtIS8rR1snHinmr3cG/1e2lSrQlNqjXBzckNC+OmEUGaCs5Nr6BhGHaGYTxrGMYPhmGsNgzjGcMwilLw6CKqdFAm9VF1G3O3+VVEEkQkGtgO+BTVeI2mvLCzU7FdGRlKeJUVzZo1Iyoqyiy60tLSOHr0KABxcXG4ubmRlpbG0qVLzes4OTmZY3ScnZ1xd3c31/0TEQ4ePFjoPvv27cvChQvNo//CwsKIjIyka9eurFmzhqSkJOLi4vipAAHbokULzpw5A6hCzzt27CA0NJSQkBBCQkL46KOPWLZsGR06dGDbtm2cO3cOwByj1LhxY3MQ/v79+83fZz+uwuzMzYQJE5g3bx6gvFK52b9/v9m7YzKZOHToEI0aNQKgXbt2XLhwge+++44xY8YUet7y48cffyQ5OZkrV66wdetW2rZtm+c4unbtar5+p06dIjQ0lGbNmhV5H0X5HWSnefPmhIeHs2fPHvP6mQLu1KlTeHp6Fvs4NTkREcLjwtkaspXP933O878/z6hVo5jy8xTm/D2HNSfWcDjyMAlpCVS1q0obtzaMajWK/3T+DwsHLWTpsKW81uM1xvuOp0ujLtRzrqcF1x1CUd7PvwHiUHUXAcYAS7h50PsewMMwDHcgDBgN5B6u8yPwoWEYVoANqvtxbtFM12jKFzc3uHJFdTGWVYk2GxsbVq1axVNPPUVsbCzp6ek8/fTTtGrVitdee4127drRqFEjvLy8zA/Y0aNH8+ijjzJ//nxWrVrF0qVLmTJlCq+//jppaWmMHj0aH5+C32369OnD8ePH6dChA6DSL3z77bf4+fkxatQofH19adSoEV26dMl3/f79+5uLCf/www/06NEjh8dm8ODBPP/883z88cd8/vnnDBs2DJPJRK1atfj999954IEH+Oabb/D19aVt27Y0bdoUUCNBO3XqhKenJ/379+fdd9/N185atWrlsKd27dq0aNGCIUOG5GtvZGQkjz76qLnbNSAggKlTp5q/HzlyJEFBQVQrQd2ngIAABgwYQGhoKC+//DJ169alZs2aWFlZ4ePjw4QJE3jiiSd4/PHH8fLywsrKisWLF+c4XzejqL+DTGxsbFixYgXTpk0jKSkJe3t7Nm3ahKOjI1u2bGHAgAHFPs67natJVzl15RSnrpzidMxpTsecJj41b8oSVwdXswfrnmr3cE/1e6huX7xudU3lpigFrw+KiM/NlhWw7n2odBCWwEIRecMwjMcBROTTG22eAyYCJlRaiXm5t6MLXmtKSlkWrY2Kgt9/B2dnKEL2h7uKoUOH8s477+Dh4VHeppCYmIiXlxf79+/HxcWl2OsPHDiQZ555xjy6sqgUlsesIpKSkkK3bt3YsWNHsdOU3IkUdO9ITEvkTMwZJbCunOZUzKl8aw5Ws6tG0xpNaVqjqVlkudgV//enqZyUuOA1cMAwjPYisuvGhtoBfxVlpyKyAdiQa9mnuebfBd4tyvY0mopEjRqqDND16yp9RBmmdqp0vP3220RERJS76Nq0aRMPP/wwzz77bLEF17Vr1wgICMiRzuJOJjQ0lLffflsLrmxkmDI4H3ueE9EnzJ6si9cvIrnCk+2s7GhaXQksjxoeNK3RlBr2NUqUj05zZ1MUT9dxoBkQemNRQ+A4yjMlIuJdphaiPV2aklOWni6AP/+ECxcgIADuvbfMdqPRaG4DqRmpRCdGq3I5F0P5+uzXeYo7W1lY4V7VHY/qHmZPlo650uTmVjxd/crAHo3mjsDNTYmuiAgtujSayoSIEJcaR1RClFloxabEmr/PSM4gOT2Z2lVq09y1Oc1qNKNpjaa4V3PHxtKmHC3XVGaKkjLivGEYPkBm1OyfIlL48CeN5i6hTh31efkymExgoV92NZoKSbopnSuJV4hOjCYqUQmt1IzUHG0sDUuq21fH1cEVw85goN9AqtkXfwCFRlMQRSl4PR14FPjhxqJvDcP4XEQWFLKaRnNX4OgITk6qHFBMDLi6lrdFGo0GICU9hajEKCITIolKiCImOSZPTjR7a3tqOtTE1cEVVwdXqtlVw9LCElChCVpwaUqbonQvPgK0E5EEAMMw/gf8TVYKCY3mrsbNTYmuiAgtujSa8iIxLZGoBCWyIhMic3QVgkpMW8O+hllguTq44mDtoIPdNbeVooguA8jINp9B/tnmNZq7kjp14NQpJbpuVIbJgaOjozmBJ6hCxnv37uXDDz8s9r62bt3KnDlzWL9+fZHX6d69O3PmzKFNmzwxnRpNpUREiE+NV16sG96s3HmxLC0scbV3pWaVmtSqUgtXB1esLPTITE35UpRf4CLgH8Mw1qDE1mDgqzK1SqOpRNSurWK5rlyB1FSw0TG2Gk2pIiJcT7lu9mJFJkaSlJaUo421hbVZYNV0qEl1++rmrkKNpqJQlED6928UpO58Y9FEETlQplZpNJUIa2vVrRgZqQLqGzS4+TqZREVF8fjjjxMaqjKyzJs3j06dOrF7926efvppc8bwRYsW5SkNk5CQwLRp0zh8+DDp6enMnj2bwYMHk5SUxMSJEzl27BgtWrTIUdNRo6kMiAgJaQlcjr/MpfhLXE64nCd1g62VLbUcapmFVjW7arqrUFPhKY6v1UDl5tK/ak2l5P5l95fJdn8a8xNubkp0RUTkFV1JSUn4+vqa52NiYhg0aBAA06dP55lnnqFz586EhobSt29fjh8/TvPmzdm+fTtWVlZs2rSJ//znP6xevTrHdt944w169OjBwoULzYk8e/XqxWeffYaDgwOHDh3i0KFD+Pn5lclxazSlSVJaEpcTLpuFVu5C0PbW9tRyqEVtx9rUdKiJs62zFlmaSkdRRi/ORNVZXI0SXIsMw1gpIq+XtXEaTWWhTh04eFCJLhHI/iywt7cnKCjIPJ8Z0wUqY/qxY8fM312/fp24uDhiY2MZP348p0+fxjAM0tLS8uxz48aNrFu3jjlz5gCQnJxMaGgo27dv56mnngLA29sbb+8yz1+s0RSblPQUIhMiuZygRNb1lOs5vrextKF2ldrUdqxNHcc6ONk4aZGlqfQUxdM1BmgtIskAhmG8DewHtOjSVCp+GvNTmW27enWwtVXlgOLiVD3GomAymfj777+xt7fPsXzatGkEBgayZs0aQkJC6N69e551RYTVq1fn6XYE9MNJU+FIN6UrkRV/mcsJl7madDVHOR0rCytqValF7SpKZFW1q6p/x5o7jqKkcgwB7LLN2wLBZWKNRlNJMYysRKmXLhV9vT59+uQYxZjpEYuNjaVevXqA8ozlR9++fVmwYIE599CBAyrUsmvXrixduhSAI0eOcOjQoWIciUZTOogIV5OucjzqOJvPbWbVsVVsDdnK8ejjxCTFYBgGtavUxru2N72b9GZ4y+F0b9ydFjVbUM1ex2dp7kyK4ulKAY4ahvE7IEBvYIdhGPMBROSpMrRPo6k0uLnB+fOqi7Fp06KtM3/+fJ588km8vb1JT0+na9eufPrppzz//POMHz+e999/nx49euS77ssvv8zTTz+Nt7c3IkLjxo1Zv349U6ZMYeLEiXh7e+Pr60tAQEApHqVGUzDJ6clcir9ERFwEEfEROYLfDVSerDqOdcxxWXp0oeZuoygFr8cX9r2IfF2qFuWDLnitKSllXfA6O4mJsHYtWFnB8OG6JJDmzifDlEF0YjQR8RFExEVwNflqju/tre1xc3TDzdGNOo51sLWyLSdLi8/tvHdo7jxKXPD6dogqjeZOwMEBXFwgNhaiolT+Lo3mTiMhNYHwuHDC48K5nHCZdFO6+TtLC0tqOdTCzUkJLT3CUKPJiU7Pq9GUIm5uSnRduqRFl+bOwCQmohOjzULrWvK1HN9Xtatq9mTVqlJLdxlqNIWgRZdGU4q4ucGJEyquy8envK3RaEpGSnqKWWRFxEeQmpFq/s7Kwgo3RzfqOtXFzckNB2uHcrRUo6lcFCi6DMNYIiLjDMOYLiIf3E6jNJrKSq1aYGkJMTGQnAx2djdfR6Mpb0SEa8nXCIsLIzwunCuJV3Kkc3C2daauU13qOtXVAfAazS1QmKfL3zCMRsDDhmF8Q65M9CISU6aWaTSVEEtL1a0YHq68Xe7u5W2RRpM/JjFxOf4yF69fJCwujMS0RPN3FoYFtavUpp5TPeo61cXJ1qkcLdVo7hwKE12fAr8CTYB95BRdcmO5RqPJhZubEl3h4Vp0aSoWqRmpRMRFcPH6RcLjw0nLyKp0YG9tbxZZdRzrYGWho080mtKmwP8qEZkPzDcM4xMRmXIbbdJoKjVuburz0qW8JYE0mttNYloiYdfDuHj9IpcTLmMSk/m7qnZVqedUj/rO9aluX12PNNRoypibZhISkSmGYfgYhjH1xqQLuWk0heDkBI6OkJICV66ApaUlvr6+5untt98udP0333wzx3zHjh1LZEdQUBAbNmwo8PsDBw4wadIkQGW9r1mzJq1bt8bDw4O+ffuyc+fOEu03Pxo3bkx0dDSpqal07dqV9PT0m6+kKRGZ8VlHIo/w25nfWHtiLXvC9xARH4GIUKtKLfzc/Li/6f3c53EfPnV8qOFQQwsujeY2UJSC108Bk4EfbixaahjG5yKyoEwt02gqKYYBdevCqVOqizF3weub8eabb/Kf//zHPF9S8RMUFMTevXu57777CtzPSy+9ZJ4fNWqUuSTRli1bGDZsGFu2bKFFixYl2n9+2NjY0LNnT1asWMHYsWNLbbt3O5lCKzQ2lAvXL+QoHm1pYYmboxv1netTz6lepUpQqtHcaRSl034S0E5EEgAMw/gf8DegRZemUnH//feXyXZ/+ilvIW03NyW6IiLyXyc2NpaAgADWrVtHs2bNGDNmDD169CA4OJikpCR8fX1p1aoVS5cuxdHRkfj4eLZu3crs2bNxdXXlyJEj+Pv78+2332IYBnv27GH69OkkJCRga2vL77//zsyZM0lKSmLHjh3MmDGDUaNGmfcfFxfHoUOH8Ckgr0VgYCCTJ0/m888/Z+7cuQQHB/Pkk08SFRWFg4MDX3zxBc2bN+enn37i9ddfJzU1lRo1arB06VJq167NlStXGDNmDFFRUQQEBJC98sWQIUOYMWOGFl23iIgQkxTDhesXCI0NJT413vydrZUt9Z3qU8+5no7P0mgqEEX5TzSAjGzzGeQayajRaHJSu3ZW6ohMEZVJpgD68MMPmTBhAtOnT+fq1as8+uijAHz44YcFesYOHDjA0aNHqVu3Lp06deKvv/4iICCAUaNGsWLFCtq2bcv169dxcHDg1VdfZe/evTkKameyd+9ePD09Cz0GPz8/PvvsMwAmT57Mp59+ioeHB//88w9PPPEEmzdvpnPnzuzatQvDMPjyyy955513eO+993jllVfo3LkzM2fO5Oeff+bzzz83b9fT05M9e/YU84xqQAmtK0lXuBCrhFZCWoL5OzsrOxo4N6ChS0NqVqmJhaHrUGk0FY2iiK5FwD+GYay5MT8E+KrMLNJoyoj8PFJlhZUV1Kypgunt7PLvXuzduzcrV67kySef5ODBg0XabkBAAPXr1wfA19eXkJAQXFxccHNzo23btgA4OzvfdDsRERHUrFmz0DaZ3qn4+Hh27tzJiBEjzN+lpKQAcPHiRUaNGkVERASpqam43xiuuX37dn74QUUkDBgwgGrVqpnXtbS0xMbGhri4OJycdCqCmyEiRCdGmz1a2VM72FvbZwkth5o6LkujqeAUpfbi+4ZhbAU6ozxcE0XkQFkbptFUdurWzRrBmB8mk4njx49jb29PTEyMWUwVhq1tVjyOpaUl6enpiEixH7b29vYkJycX2ubAgQO0aNECk8lE1apV8xWO06ZN49lnn2XQoEHm7s9MCrMpJSUFO505tkAyuw7Px57nfOx5ktKSzN85WDvQ0KUhDZwb4OrgqoWWRlOJKJL/WUT2i8h8EflACy6NpmjUq6c+TSY15Wbu3Lm0aNGCZcuW8fDDD5OWpnImWVtbm/8uCs2bNyc8PNzcZRcXF0d6ejpOTk7ExcXlu06LFi04c+ZMgdvctm0bn3/+OY8++ijOzs64u7uzcuVKQAmCTM9cbGws9W4c6Ndff21ev2vXrixduhSAX375hatXr5q/u3LlCjVr1sTa2rrIx3i3cD3lOocuH2L9qfX8FvwbJ6JPkJSWRBXrKrRwbUGfe/owuNlg/Nz8qFlFe7Y0msqGjq7UaMoIJydwdobU1CS8vX2xuvHf1q9fPx5++GG+/PJLdu/ejZOTE127duX111/nlVdeYfLkyXh7e+Pn52cWLoVhY2PDihUrmDZtGklJSdjb27Np0yYCAwN5++238fX1zRNI37x5c2JjY3N08a1YsYIdO3aQmJiIu7s7q1evNo9cXLp0KVOmTOH1118nLS2N0aNH4+Pjw+zZsxkxYgT16tWjffv2nDt3DoBZs2YxZswY/Pz86NatGw0bNjTve8uWLQWOqLwbSUxL5Py184RcC+FqcpY4tbOyo5FLIxpVbUQNe53SQaO5EzCkoL6PCkSbNm1k79695W2GphISHh5O3bp1y23/Bw7A8ePQvDn4+ZWbGfkyd+5cnJyczLm6bhfDhg3jrbfeolmzZrd1vxWJlPQUQmNDOR97nsiESPNyG0sb6jvXp3HVxtSqUksHw5cj5X3v0FRuDMPYJyJtci/Xni6NpgypV0+JrrCwiie6pkyZYu4yvF2kpqYyZMiQu1JwpZvSuXj9IiHXQrgUf8mcGd7SwpJ6TvVo5NKIuk51dTFpjeYOpijJUYcB/wNqoQLpDUBE5KZDpAzD6Ad8AFgCX4pIvqm4DcNoC+wCRonIqqKbr9FUbFxdwcYG4uLg+nXV3VhRsLOzY9y4cbd1nzY2Njz00EO3dZ/liYgQlRjFuavnCI0NJc2kYvUMw6CuU10auTSivnN9rC11fJtGczdQFE/XO8D9InK8OBs2DMMS+AjoDVwE9hiGsU5EjuXT7n/Ab8XZvkZTVEoyuq+0sLBQoxhDQlR2+ookujRlR1xKHCHXQjh37VyOpKWuDq40rtqYhi4NsbPSozcrKpUh7EZTOSmK6LpcXMF1gwDgjIicBTAMYzkwGDiWq900YDXQtgT70GgKxdramvj4eBwdHctNeNWrp0RXWJiK7dLcmaRmpHIh9gJnr54lKjHKvNzB2gH3qu64V3PH2Var7oqOiBAfH69H12rKhKKIrr2GYawA1gIpmQtF5IcC11DUAy5km78ItMvewDCMesBQoAdadGnKgOrVqxMTE1Ng6oTbhcmkSgKdPw/6Xn6D9HRVqNLyRgxTSoqaDCNrsrFRmWYr6Mg9EeFq8lXCr4cTlRSVFadlWFLToSZuTm5Us6uGYTKIvxJPPPE32aKmImBtbU316tXL2wzNHUhRRJczkAj0ybZMyCqAXRD53SVz+2znAS+ISIYeDq0pCywtLW+aef128OWXEBSkuhp79Chva24jJhOEhsLp03DhAly8qPpZr1yB5GSYMQM6dlRtf/gBFi3Kuw0rK6heXZ3EzPvE7t3g4AANGqg+29t8/4hJimHT2U38Hvw7lxIumZd71fKip3tPOjboiL21/W21SaPRVHyKkpF+Ygm3fRFokG2+PhCeq00bYPkNweUK3GcYRrqIrC3hPjWaCkmHDkp07dx5h4suEbh6VYkkgIQEmDYt/7Y2NpCRrayriws0aZKVTTYtTY0+SEjI8opl8tFHqrAlqIRoTZpAs2bQtCm0aFEmwXMZpgz2hu9lY/BG9oTvQW68Q7o6uNK7SW96NelFrSq1Sn2/Go3mzqEooxfrAwuATihP1Q5guohcvMmqewAPwzDcgTBgNPCv7A1ExD3bfhYD67Xg0tyJtG8Pn3yi8nYlJ8MdVwEnJAS2bYO//lLC64sv1HInJ/D2ViLI3R3q11fuPldXqFIlp5Dq2VNNuUlNhfhs3XImE7RurbxmFy6ooaEHD6oJYMIEeOAB9XdsrBJvrq4lPrSIuAh+P/s7f5z7g5gkJfQsDUva1WtHn3v60Nqttc6npdFoikRRC15/B2RWu33wxrLeha0kIumGYUxFjUq0BBaKyFHDMB6/8f2nJbZao6lkVK+uguhPnIB9+6BTp/K2qBRITVVC69df4dSprOUuLkoIZRazfuONW9uPjU2W5wzUkNCnn1Z/iyiP1+nTcPKkmlq2zGr722+wZIkazeDjo5Kl+fjcVPWmm9LZdXEXv5z+hUORh8zL6znVo+89fenh3gMXO5dbOy6NRnPXURTRVVNEsgdaLDYM4+mibFxENgAbci3LV2yJyISibFOjqax07KhE186dd4DoOncOXn5ZeZJAea26doUuXaBVKyWMbgeGATVqqKl9+7zfp6aCvb0aOhoWBhs2KBHn7a3sDQzM0Tw6MZrfzvzGb8G/mUvy2Fja0KVhF/rc04cWri10OR6NRlNiiiK6og3DeBBYdmN+DHCl7EzSaO5M2reHhQthzx7V41XpRjGKZHUH1q+vRh3eey8MHAidO4Otbfnalx8PPgijRytP2MGD6uSfOgV79yoxFhioCniH7WXD4TX8E3vUPAKxgXMD7vO4j8DGgVSxqVLOB6LRaO4Eblp70TCMhsCHQAdUTNdOVEzX+bI3T6FrL2ruFKZNU+FPs2eDv395W1NEROD339XowjlzwNFRLb9yRXX7VTbPz9WrsHcv8TVd+MMugg2nNxB+4RicPoVlFSc6NuzEfd0m0appZ+3V0mg0JaLEtRdFJBQYVCZWaTR3GR07KtG1Y0clEV1nzqgRAJkxW1u2wP33q79r1Cg/u26Bs1zlJ6djbD+1ndSMVABcxY5+193pc86Fagdj4Kd3oPk65cHr0iVnTJlGo9GUkAJFl2EYz4vIO4ZhLCBvfi1E5KkytUyjuQPp3Bm++w7+/hueeKICdzGmpcGyZbBqlfJ0Va8OjzyiBEglxCQmdoft5scTP3Ik6oh5ees6rRngMYA2ddtgmZauuh137FB5wE6cUNNvv8HHH5ej9RqN5k6hME9XZukf3a+n0ZQSDRqozAnnzsH+/dCu3c3Xue2cOwfvv69ccoYBgwfD2LEqBqqSkZiWyO/Bv/PTqZ+4nHAZAHsre/rc04f7PO6jrlPdrMa2lmqEQ6dOKq/Hnj2wfXvO2k1RUUqM9uihBgzo7keNRlMMChRdIvLTjT8TRWRl9u8MwxiRzyoajaYIdO2qdM22bRVUdEVHK8Hl5gbPPKOSjVYyLsVfYv2p9WwM3khSehIAdarU4f5m99OrSS8crB0K34CdnfLq5fbsbdmi4tt+/x1q1VLiq1cvqF27jI5Eo9HcSRQlkH6/iPjdbFlZogPpNXcSkZGqp87GBpYurSCJUrOPTASV18LPr4IYVzREhKNRR/nxxI/8E/aPOWO8Vy0vBjcbTNt6bW89iWlYGPzxhxJf0dFZy319oX//rJJGGo3mrqbYgfSGYfQH7gPqGYYxP9tXzkB66Zuo0dwd1KqlnEfHj6vQoa5dy9mgy5fhf/+DRx/N8mpVIvFgEhM7L+xk9bHVnLl6BgArCyu6NerGoGaDaFKtSentrF49eOghGDcODh1SAuyvv1SNJ3v7rPOWW8RqNBoNhcd0haPiuQYB+7ItjwOeKUujNJo7na5dlejatg26dhH1kL5dCUWzc+QIvPmmyiD/zTfq70oiFlIzUtl8bjM/HP+BiPgIAFxsXbjP4z7639ufavbVym7nhqEy2/v4wOTJ6kI2bpz1/YEDasREnz6qi7ISxsNpNJrSp7CYroPAQcMw1gAJIpIBYBiGJVABsyBqNJUAETh2jB7nd2NxeA+ue8NI32nCygpVk7BVK/Ug79ix7Ic2/vmnCphPT1f5K557rlIIroTUBH458wvrTq4zZ42vU6UOQ1sMpVeTXthY2txegxwdYcCAnMu2bMkqS/TFF0p49e2rCnJXgnOs0WjKhqLEdO0CeolI/I15R2CjiNy2/gcd06W5IwgJgc8+U94l1PM4NhYaNconDrt6dZUPq39/VWKntPnxR/jyS/X3/ffDpEnl42krBleTrrLu5Do2nNlAYloiAE2qNuGBlg/QqUEnLC0sy9nCbKSkqG7HjRvh6NGs5Q0bqmLcPXqUn20ajabMKXFyVMAuU3ABiEi8YRg3Gfqj0WjMZGTA118roWMygbMz9OhBglUAb33fjIb3WPPB+xlqSOORI7B5sxJoX38NP/0EU6bkX1ewpHz3nUp7ADBxIgwdWqG9LxFxEfxw/Af+OPcHaaY0ALxrefNAywdoXad1xcwab2urhFWPHnDxohrt+McfEBqqYugySUsDK6sKff41Gk3pURTRlWAYhp+I7AcwDMMfSCpbszSaO4TkZHjnHZXzyTCUV+lf/wJHR7zSwP43OHsOzoZa0cTDAzw8YMiQrJigkyfhjTdU7qipU7NK8NwKHh5q6OTUqXkKPlckwq6HseLoCraGbEUQDAw61u/IAy0foGmNpuVtXtGpX1+J23Hj1MiJZs2yvlu3TiVf7d0bevbUme81mjuconQvtgWWowLrAdyAUSKyr+C1ShfdvaiplMTGwquvqhI6Tk7w0kvQsmWOJp99BuvXKy02eXKu9U0m+PlnFeCenAx16sB//5szYLukXL0K1cow0PwWuBB7gRVHV7D9/HYEwdKwJLBxIMNbDqeec73yNq90+e9/1ShIUN27AQEq+N7fv8J392o0moIpqHvxpqLrxsrWQDPAAE6ISFrpm1gwWnRpKh0pKTBjBpw+rXJEvPqqSjeQi7NnYfp0pcm+/rqA2PnISDWqMDhYdVs9/bSqJ1RURODbb6F1a/D0LPEhlTUXYi+w/Mhy/gz9E0GwsrCil3svhrccTm3HOzT5qMmkShP89pvygplMarmrq/KOlXs+EY1GUxJuJaYLlOBqCdgBrQ3DQES+KU0DNZo7BpMJ3nsvS3C9+26B3UZNmqjp7Fn4558CtFStWqqL8qOPVLzX//6nPFWZhadvxrJl8P33ymv21VdlE5h/C4TGhrLs8DL+uvCXWWz1btKb4S2HU6tKrfI2r2yxsIA2bdR09aqK+9q4ESIiVBdwJrGx6rpZFfWWrdFoKiI3/Q82DGMW0B0lujYA/YEdgBZdGk1+LFqkKlpXqQKzZ980TqdXL/j8c+XsKNCBZWOjPFwNG8LixWqFa9fgwQcLD8Jes0aJLsOAp56qUIIrIi6CZUeWmWO2rCys6HtPX4a3HI6rg2t5m3f7qVYNhg9XoxsPH87ZFf3llyrOr1cv1f1Yt27B29FoNBWWorw2DQd8gAMiMtEwjNrAl2VrlkZTSdm5E9auVR6J//xHVbi+CYGBqmsxKAguXChkFcNQD+SqVWH+fOW9SkpSmeTzE16//AILF6q/n366wmSZv5J4heVHlvP72d/JkAyz2BrRcgQ1HGqUt3nlj2GAt3fWvMmkRkDGxsLq1Wry9FR5vzp2zOkR02g0FZqiiK4kETEZhpFuGIYzEAmUYl0NjeYOIToaFixQfz/8cM4HZyE4Oirh9euvqgfw8cdvskLPnirtxJtvqpQSVlYq/ie78NqyBT75RP09ZUqFyAsVmxzLqmOr+Pn0z6SZ0jAw6Onek395/evO70a8FSwsVBLbEyeUO/TPP1VqkSNH1EiMZ5+Ftm3L20qNRlMEiiK69hqGURX4AlUOKB7YXZZGaTSVjsw4rvh49QAcOLBYqw8YoETXH3+o0n4ON8uE17atCtR/6y3VhWhpqVY0DNXt+OGHKoB+wgS4776SHlWpkJiWyJrja1h7ci3J6ckAdG7QmbHeY6nvXL9cbas0GIaqi9mihfJsbt+uBFhwsEpJkcmFC1CzZqUqVK7R3E0UOnrRUFkH64vIhRvzjQFnETl0e8xT6NGLmgrP6tUq1qpqVSV4XFyKvYn//EeF8kyeXPQYef7+WwXWZ2TAqFEqxgtU/M/x4yonWDmRbkrntzO/sezIMmJTYgFo49aGcT7jSrcI9d1MWFjWqFgRmDZNjXbt1k3Ff+myQxpNuVCi0YsiIoZhrAX8b8yHlIl1Gk1lJiJCJTIFFTtVAsEFyjl2+LDqYhw4sIjPyg4dVM3Ed96B5ctVV+Po0So9ROvWJbLjVhERdl3cxdcHvyYsLgyAFq4tmOg7kRY1W5SLTXcs2dOQJCQoF2lSknKb/vqr+r5nT9V/7XoXDk7QaCoYRele3GUYRlsR2VPm1mg0lQ0R+PhjSE1VDzZ//xJvql079VwMC1MJ7AMCirhiZrb6J59UtlhZqVFw5cCJ6BMsPLCQ49HHAajrWJcJvhNoX799xSzXcyfh6KjEd2ioKju0dav6MX3zDSxZomIAK3CeNo3mbqAooisQeNwwjBAgAZUgVUSkaFHCGs2dzNatatihkxM88sgtbcrSEgYPVqm0vv9ehW0VSaeYTCrJV40a6oG7aJHyeNzGWK6IuAi+Pvg1f134CwAXWxfGeI6h7719sbLQuaVuKw0bqt/ihAkq8ermzarodvbyQ7//rtJOtGypux81mttIgXdDwzAaikgoKi+XRqPJTVycyp8E6iFXwm7F7PTrpwTXyZOqq7FIAyAXLVKiq1EjeOIJtYFPPwV7+zKvrZiUlsSKoyv48eSPpJvSsbG0YUizITzQ8gEcrG82GkBTplhaKuXeti2kp2clVk1KUqMeU1JUaanMwty179Cs/xpNBaKwV9C1gJ+InDcMY7WIPHCbbNJoKgfLlsH16+DlVWopGezsYNAgWLoUVq4sguj644+cecG8vZWXa/FimDdP/d2uXanYlh0RYfO5zXx98GuuJl8FoKd7Tx70fvDuTGxa0cmeyT49XY3U2LIFLl1S8Yjffae6Hrt3hy5dijB8VqPRlITCRFd2n7MeaqTRZOfCBRXxbhhquGEpdtEMHKgGQwYFqVrZTZsW0PD0aVUaCFRyr0yF9sADkJioPF5vv62y4vv4lJp9J6NP8sX+Lzh55SQAzWo0Y7L/ZJrWKMhQTYXCyQnGj4dx41Sx7U2b1CjYzNxfXl5ZoktEdz9qNKVIYaJLCvhbo9F89ZWKperXDxo3LtVNOzqqvF2rV6sBiTNn5tMoPV2likhLUzb07Zvz+wcfVMJr/Xp4/XV47TVo3vyW7IpJiuGbg9/wx7k/AKhuX50JPhPo3ri7DpKvjFhYgK+vmhITlfA6cyZniaHnn1ddkN27K+Guaz9qNLdEgXm6DMPIICtw3h5IzPwKFUjvfFssROfp0lQw9u1T3iMHB1UDsRRiuXJz7RpMmqTCbv73v5xl+MwcOQLr1qkHY34PQxHVxbh5s6q5+NZb4O5ebFsyTBn8dOonlh5eSnJ6MlYWVgxpNoSRrUZib21f7O1pKgkREcqLm4mzsyoO2r27EvBaaGs0BVJQnq5Ck6NWFLTo0lQY0tNVAsqLF1Wpn6FDy2xXS5cqT1fz5ioTQImecRkZSrX9/bcSh//7X87cTjfheNRxPt7zMSGxIQC0q9eOR1o/gpuTWwmM0VQ6Ll1S2e+3blVd6pnUqAGvvqpGSmo0mjwUJLosynin/QzDOGkYxhnDMF7M5/uxhmEcujHtNAyj9AJPNJqy4JdflOBycytG2viSMXSo0kknTqjBiYB6AO4pRso8S0uVPNXXVxVMfukliIq66WpxKXEs+GcBz296npDYEGpXqc2sbrN4qetLWnDdTdSpAyNHqtjB+fNVvGDNmqo7sk6drHZ//KHSUlSCl3iNpjwpM0+XYRiWwCmgN3AR2AOMEZFj2dp0BI6LyFXDMPoDs0Ukz1Ar7enSVAji4lR3S3y8Ei9lMCowNz/9pHow69eHD6efxvI/Lyhv27x50KQY41uSk1Vw2PHjytP19tuqZFEuRIQ/zv3BoqBFXE+5jpWFFcOaD2Nkq5HYWtmW2nFpKjEicPlyluhKSYGxY9Vn9erQsaNK2NuypYob02juQkpUBugWCQDOiMjZGwYsBwYDZtElIjuztd8F6Oq3morLsmVKcPn4FCNd/K3Rv78K24o5F0vY1DdpaH8jcL44ggtULopZs1SR7HPnlAB7800VtX+D89fO8/GejzkWrf5FvWt5M6XtFF2U+k5GRImlzCk5Oeenv39Wv/bu3RAdDe3bZwmufftUAlYXFzWa9sIFOHhQVUaoUkX9Tv39VTxYJv37ZwXrBwWp9by9s5K3RkSoJHWWlkq0WVmBjQ1YW6tPW1v1mX2yt9dB/ppKQVn+SusB2YIAuAgU5hp4BPilDO3RaEpO9hQRkybdtiBiKyt4ZHw6Fya8TVRiNDUfaI599uDm4lClihrF+MILSni98gq89hpp1pasOLqCVcdWkSEZuNi6MMlvEt0addOjEisDaWmquy/7gI5ff1We2WHDlHgBlTD35En14pCYqIRVamrh2161SokcgB9+UF2IDRsqjxaowurr1qm/XVzUDzYmBq5eVfFgwcHKK2Znp9okJamUFJmia+9e+PFHlVw4U3SdPAkLFhTvHGSPr9y5UyV/7dQpayDA1asqkbGDgxJomZOdXd5l9vbqf6VKFS3kNKVOWf6i8rtb59uXaRhGIEp0dS5DezSaklOGKSJuRrtji6hueYQLltX5osYMnrK2LvnGXFxUConnn4cTJzj+xjPMb5vBxYQIAPrf25+HfB7C0cbxJhvSlCkiShhFRqoYvKtX1XTtWt4pIUGJmM8+y1p/8WK1vF8/lZcLVB3GM2fy7svGRokPW1v1mfm3ra0aiJFJu3bQoAFUq5a1zN9feUstLbNeRAxD2R8ZqcpSZe+G/+ILNfLX3195zBo1UnVCsyejc3OD3r3V/1tGhupOT03NOaWkqM+0NPV3pqgDdd5iYtRnJrGxKh6yOHTrBv/+t/o7MhLef18JzieeyGrz889q346OSqQ5OqrJ2VmdV40mF2Upui4CDbLN1wfCczcyDMMb+BLoLyJXytAejaZk7NunJgcHlf/qdrJlC8ZP62h0jxUfpr3IuX3V6XIAWre+hW26upI0+798879/8XP8HiSoKvV8u/JUh6dpWTO/3BSaMiM1VXlmEhNz1sqcNEk96ItCZjdcdu67Twmf7MsfeUSJlEwvTqawKqo3M7+Ruq1bF/3HmJKiuiiPHlXdikFBavm99yo7qlVTgqtZs5x1IotL165q4Eh2L1WNGvDss8rTljklJ6vznt+yhIScXaJXryq7s3sGTSblPSwIW1sleJ2d1eTkpF7YRo7MahMUpETaPffoFBx3CWUpuvYAHoZhuANhwGjgX9kbGIbREPgBGCcip8rQFo2mZKSnKy8XwOjRZZKTq1Dc3KB6dWzHjKFrfAvOfZ01kKyklVr2he/jowMfEeXniOVxKx4ItmeUUReb/h6la/vdjoiKgQoPV3FK4eFqqlYNnnxStcnIgPfeU/FK/ftnPXirVFEelJo11VS9uhr4ULWqWj/7p6Nj3gf2Qw/ltec2e2jzYGurcsVdv65G4P7zj4oHO3NGTe7u6vcOSnBmisPiYmMDrrlKUTk53Vod0gYNlO2ZXbWgrt399yuBFh+f9RkXp44xM04uOjprnZiYLNGVmgovv6zE4Q8/ZLV5+WXlwXRxUVPVqgV/Fkc0ayoEZSa6RCTdMIypwG+AJbBQRI4ahvH4je8/BWYCNYCPb8SOpOcX7a/RlBu//qriudzcVH2e203z5uag5CHp8OefcPas6qWZPr14m7qecp0v93/JlpAtANxbz5un/P6L+ztfwO598MYbqn6j7hYpHpmj+UJDc04XLuQfM5U91YK9PfTsqR6i6elKfIFKzHanPlCdndUx9+ypzk9QkIrtyl6qavFi+OsvNQLS318V7W7YsPzOh4ODqk2ZHWvrnMljs5M5QOH69ZxTdhGZmqqO2TByHldoqBJnRcHGRv2eMsuBAaxZo7bXu3fW/hIS1O9Jx6iVOzo5qkZTEPHx6qYaFwf//a+KQbkdpKfDsWP5Vru+cAGeflrdr2fMUKPzi8I/F/9hwe4FxKbEYmNpw4NeDzKo2SAsLSxVUP1LL6mHgre3etPOHiOjySIxUQWIZx89On58wQ/JqlVVvJWbm/qsW1el7ChBZYC7ijfeUF2RJlPWMldXJcC6d88rgO4koqPV/2JsrPJ4xcbm/Dv7Z2qqEl1ffJG1/r/+pe5Z336b5Zl/5RUlbB0d1bJq1XJ6TLNPmZ607F49TbEpj5QRGk3lZvlydfPy9r4tObnMLFqkRoTlk/G+QQOYOFHFTH/4oQp9qVGj4E0lpiXyxb4v2HRuEwCeNT15qt1TOROcururvF3//a8qgDxzZlaZo7uZuDgVxJ4psJKSVBeztbUqJp75UKpVS302bKimBg1UgHiDBjlScmiKwX//q7wzQUGqK3LfPiVGfvtNiYxM0RUZqURwixZZXsLKjqtr3u7R/Mj0piUk5Fw2dKgSZJkDKEB1hRqGepGMj1eDKgrDMFSKnExP2Q8/qP+H/v2zfu9xcapdlSp3pke2jNCiS6PJj7AwVSz6NqeIYMsWJbisrAosUD1ggHpp3bdPhZm89Vb+z5tDlw8xb9c8ohKjsLG04SHvhxjUbFD+aSAaNMgSXsePK8/XK6/kvHHfyaSlKY/fyZNw6pT6jIhQ8VQLF6o29vbKS2VrqzwNmWkT3nzzznngVySqVFFpHzp1UmIiOFilqMj+ArR5s6qXZWOjhJivrwrsb9TozhcChpE12jT7shEj8rZ99VV1DuPiska9Zo6IzT5lLk9KyvnStWULhIRAly5Zouubb1T4hZVV/t6y3MuqVdOhC2jRpdHkz1dfqbfDvn1vX1dQ9vxEkyert/d8MAx45hk1nTwJn3yiykFmPmNS0lP4+uDX/HTqJwA8qnvwTPtnaODSIN/tmalbN0t4nT6tygfNnp0zBulOITZWjUY7dkzVWQoOVt262ckMyE5LyxJVH3+c92GuBVfZYxhqlOO99+Zc7uysBgiEhKig/P371XIXFzWKsaQ57e5EDCNrJOXNamZmesYyGTFCeRRr1865PXt7JdCioopUXoyPP1YveJBVUq1Xr6x7bHy86lJ2crpjRbMWXRpNbg4cUF0a9va3L0XElSvKY5J2I+N8v36FNndxUc6o556D339XPWADB8LJ6JPM3TWXsLgwLA1LRnuOZnjL4VhZFPFfvXZtVRR79mz1IPv3v1V3Y/Y8SpWZ779X3pH8ulcaNFDHmZmyoGHDvIHHd+iDoNJy331quno1Kw1FUJCKsYuPz2oXF6ce+F5eaqpfX1/Lwsgdz9W1a942TzyhpuTknJ6zwrxo2UuP7dqlRLKvb5boWr9eeS6trLK8ZdWrZ3nKsv+dOVWywQGVy1qNpqxJTVWuI1DxO/nUJyyTfb7xhnpQeHrCY48V6YHQpIkawfjuu/Dp5+nsTl5GUNpKBKGBcwOe7fAs91a/96bbyUONGkp4vfWWeoDNmKGSqd7OuLbSYMcOFYz94INZXSJXryrBZWurhJWnp/IoeniULD2BpmJQrZpKCREYqLrRwsNzFt8+elT9HnbsUPMuLkp8eXqqEZKNG2sRVlLs7JQ3/GYe8dyD9gYNyim4Mts4OirBHB2dM91GQbzxRtago507VXhAhw5Zud5SUpT3zM6uQlxjPXpRo8nOsmXw3XfKy/HBB7fnLSoiQqVqsLRUWa+zJ2UsAvO/Oc/cXe+TZHeW5s0MHgoYwoPeD2JjeYvxE+npaij6pk3qZvXYYyqgrCISF6fq9fn7Z5WteeMN9Tb91FNq+Dyo7oyEBJWMspK9IWtugZgYJcAPH4YjR3KONs0dNH7+vPL46hG85UdqqvKMZZaUunpV/R0Tk3f5/PlZOejmz1eu/yefzOot+P13tdzWVnnKJk5UoqyM0aMXNZqbEREBK1eqv5944vY9lN3cYO5c9XZXDMFlEhNrjq9hi823ODVMJ+NibWz+fJpO3T2xKY3R3lZWSrDUrq1c/p9+qnIITZpU/nFMJpMKaNu7V3VRBAert+TXXlNvz6Di8by8cuZ/qq+Ld9+VVK+e1W0vklVU+8gRJdgzBZeIKgx/9arywLRsqTyhLVoUbUShpnSwsVHe6UwPdUGYTDm9V127Ko9b9kFIKSlqeykp6rqXs7dLe7o0GlA325kzVXdaz54qGVZZc+VK4fkeCiEiLoK5u+ZyPPo4AH3v6Uf89of5a5s9dnYq1VY+ab5Kzh9/qBwV6enKbf/ii7f/IRQbm1WSaf/+nDE7VlbqwTh6dCkfuOauIjFRBUsGB+fMEQbqf/Wxx7K8JCLl/gDXFBERFfB/9arqir4N6XC0p0ujKYxNm5TgcnJS7uey5uRJNUpw4ECVXLOIN28R4Zczv7DwwEJSMlKobl+daQHTaFO3DRn+YGOhRnfPng0vvFCKYVg9e6ou17feUrZPn66i+DO9SmWByaRGUWbmxzhzJmdciJsbtGmjuhQ9PbO6FTWakuLgoLr4k5NVbNDx42o6cUK9JGVPobJyJWzdqgZfeHioz8aNy98LrMmLYahrWwFyD2pPl0YTHa1iABIT1Wi9bt3Kdn9hYUqwxMUpMTN9epFEV3RiNPP/mc+BSwcA6NqwK4+3eRwn26wHgYhKnPrzz2qTDz8MgweX4gv59eswZ44a4WkYKkh9xIjS20F278HZszlrHVlbKy+Wv7+a6tYtnX1qNDcjMzi/Zs2sXFOvv67qR2bHykqNcAkIgFGjbr+dmgqD9nRpNPkhonJjJSaqMj/5DY0uTWJiVDdmXJzy0kydelPBIiJsO7+NT/d+SkJaAk42TjzR9gk6N+ycp21mvLuLixoP8NVXKufnk0+WUl5CZ2flRlu2TGXsX7JExcZMn35r3Y2RkaqUSXKyissCFVPTooV6iLVpo+KztDdLUx4YhkqMm50XXlBpVU6dUh7ZU6dUna5Tp3Lms4qNVYmGmzTJmho31oH6dyna06W5u/n1VzVCz8lJfVarVnb7SkhQ6RfOnVNdEW+8cdMbb2xyLB/v+ZidF3cC0MatDdPaTaO6ffWb7u6vv1R8fkqKusc/99zNcyIWi717VVdMZiDy5MlqyH5RvF6XLyuPn5+fmk9KUjXjTCZVM+5uyYSvubNISFDxYHZ2Wbnt9u9XwfnZMQzlqW3SRLmjdZD+HUdBni4tujR3LyEh8H//p4YnP/dc2Xq50tKUh+jQIfXG/M47Nx2pmL1ItZ2VHY/6PUrvJr3zL+NTAOfOqTCsiAjl6ZowQYWRlVp347VrKsA+s5ulfXvlVssvv9mFC0oJ7typDHNyUp6yzESMu3erVA4lHFyg0VRIkpNVPOLZs1lTaKjK+g7KJZ35krFggfL6NmqUNTVsqL1ihZCRkUFiYqJ5SkhIICkpiYSEhBzLsrcZOXIkzTLzeJURuntRo8lOcrISPqmpKodTWXcrXr+uymRUq6a6GgoRXPGp8Xyx7ws2h2wGVJHqp9s/TW3H2gWuUxDu7ipFzeefq3Q1n38O27crXZSZ2uaWqFpVDQjYvFltfNcuVVrn0UdVbNzFi1lJKUNDs9azs1OpHOLjVV8oqDgYjeZOw85ODfTILNIN6iXswgU1ZffqHj6s3pCCgnJuo3ZtlSNv6FA1n56uvMKVvJahiJCcnExCQgLx8fFmgRQfH09CQoJ5ypzPT1ilpKQUe7/dunUrc9FVENrTpbn7EFFKZNMmVfrl/fdvz5tkbKzyDDVqVGCTPWF7+HDPh8QkxWBjacM473EMbja4WN6tgti5U6XaunpVOZcGDoSRI4udi7VgoqJUQtldu7KST2Yfnl2livKEdeqkRj3qUV4aTU4uXVLJWTOn0FD14pKeDuPGqX9YUF2Wr7yiRvA2bKi85/Xrq6lePZXV/TYgIjk8SbnFUm7BlN/3ptypOYqJYRg4ODjg4OBAlSpVsLe3p0qVKjmW5f773nvvpUYZe9S1p0ujyeTnn5XgsrFRwbBlJbhMJvj7b+jYUfXnubhkeXVykdu71cK1BdPbTaeeo5saXZmQkNM1dfKk8tbde2+Ry9d07KicS0uWwIYN8OOPyvv1wANKgN3yaOqLF9Ww+vh41UWSlqZitzp3VgMGOnTQWeA1msLILKeTPddLerryfmX/B42OVi+PYWH51xH9/ntVOxbU25a1tRJktWrlqauYlpZGfHy8eYqLizN/5hZI+QmpW3Xc2NnZUaVKlXwnR0fHHPO5RZSDgwN2dnal8lJ6u9CeLs3dxf79KrZKRMVzde9eNvtJT1dR7Nu3w5gxKki8AMzerdhL2MQlMq7xYAYNeBYLw0KJl0ceUR6jb77JWun//k+NknrnHTXCD5SC+vVXlXU7s+yNiBJ/uW60587B4sXqdIDSbQMHwv33F6gLcyKi3sJTUrIChk+cULFxTk7QurXy6h08qASnszOMHQt9+mjhpdGUBqmp6kXn4kXkwgUSzp0jLiSE+Lg44l98MUtAvfce8dHRxGdkEGcyEW9nR7yNDXGWlsQ7OJByiy+ddnZ2ecRRfvOZgin79w4ODljdofcD7enSaC5cUIWcRVQOnbISXCkp8PbbanSfvX2BGdLjr0TwxeHFbI5QIxNbpFVl+uYM6rVNg4EWqlG1aiqwPHcx2aZNlYcue8D6+fNKiHXqlLXs3DklhNq3V583cHdXvRMHD6rsD0ePwooVsHo1dOkC992nEs8X+AL5998qQt/bW43CBLXCa6+p2JXMG2lIiEocduSIKiS+apXKGt+jhxZfGk02RISUlJR8vU4FeaEy5xMSEnJ6nGbOzPo7KkqNDk5OVkItOw0aYFm/Po6OjjgmJeF4+jRO1avj6OqKY61aONapQ5W6ddVUtWq+nifLXC90msLRni7N3UFEhCpdExOjRMkLL5RNCY+4OJU08dgx5fF55RWVrTobIsKf37zGF/u/4Fqj2tjUb8Q473EMcm6LxdffQNu20KtX0fd54oQKwG3cWMWEXL6shqMnJKib7aJFqmthzBi1rEULJZRsbGD4cEhOJtjBi+/2N2fPnqyk725u0KWzENjkPPVDdqj2mTElCQmqPmVAgPos7FyKKJG2dGlWMH2dOkp8de+exwun0VR2MgPEr1+/nmOKi4vL8Zn7u7S0tBLv08HBQYknR0ecnJxwcnIyz2cuc7S2xjExEceEBJzi4nAMCMDO01N1z/34I3z5Zf4bNwz1RpYZh/nLL+ozsz5irVo6h14udMoIzd1LVJQSXJGRygsze3bZ3CDCwpTIiohQeXdefVUF6osoYVS9OmH26Xyy9xMOHt8KZ87QokFrpk/6knrO9Qrebqao8vJS84cPq/7AhAT1+eqr6g02cwh6WpoSNw0bqptkRob6PjxcLTOZ1N+Wlqptw4aq+69bN+JTrPknrTUXd0dgik/g3tj9uCWcweTojK17XdIXfkMTD0ulsYpbe85kUqMYv/suKw6ldm3Vp9m7d4Uo0aHR5CYzWLwooin7Z3p6erH3ZW1tnUMs5Suc8pmvUqXKrXucUlPVS1tERM7p0iUVLrFwYVbbhx9W99XsuLgo8dW/f1Z4Q0KCalezpvr/rkSxV7eK7l7U3J1ERqoCtpGRqvtr5syyeyP77DN1k2rSRO0nc3TMt9+SunI5K/vUZ1XNSNJN6TjVbsDEzs/Sy3towUGgJ06oGK1Fi5RAyk9UpaUpYXXPPaqPEFSXpMmkujavXs27LCZG3SAdHVWXpL29Glm5YAGOJhM909MRe3tMYpCRZiJVrElOcWCbXRv+mHwSB0cLulQ9TI3uXrRoATXCbwjC5s0LPz8WFio1R6dOsG2bymgfEaHerpcuVTfqgQOVi02jKQNExNwtV1QvVFxcHBmZ/3vFwNbWFmdnZ5ycnHB2djZPueezL7MtT2+RjY26p+SXQTm3c6Z/f/W/GxWlPOtRUeoeEhurBs5kcvCgCkMAdd91dVX3xczPkSOzBjIlJqp70R0uzLSnS3Pncvas8mpdvapEyRtvFHmkX4mIiVEBUqNGqRtHjRqICH/tXM7Xq17mUoNq4FaHXu69mNh6Is622XI1ZHqzcnuwLl9WgjEgQAkkUALq+HHVTZicrISXk5N6GwX1ef68Sk2RGTeV37K0NBVzVa2a6hbN7NpITVWizMICkpMRG1tMCYnEO7oRK06kpwkmCyssRD2IDGtLHGwyiOg3Efsh/WjYEOzPZDuWggSZyQR79qhujcOH1TLDUCV/evZUx6zTSmgKQESIj4/PI5TyE03Z/y5JigI7O7siiabs39lU8hxaxUJE3WcvX1aCqmZNtXznTjVcOjpa3auyYxjwww9Z96PnnlNJZKtXzynOqldXL8yZA4YyNUsFF2e6e1Fzd7F/vwpmT0pSwd7/+U/pC67oaPjtNzUyMfMGsHOnyvvVsSPHx/XnqwNfcfLKSTCZaFC1EU+0fQLPWjeSJGYXWq++qhKo5vZg1a6tMrXXrp2VRDG7gHJyUl61THEDOcVbYcs++khtOz1d3fjOnlWfsbEqPszKSt1EExKUQGrXDjl/noxrcaTYupCekEyyyYbLto3wuLaba7a1SbJSNtpapuGaGEqia0MsXJxJ/L+Z1LBLwKZaAULs7FlYt055wDLFo6Oj8oz17Kni4ir4TVZTckwmU74CqrCuvLi4uBKlK7C3ty+SaMr+nbUW/7eGiPJkXbmipuholVomM9krwFNPqYE/+TF4MEyapP4+cUKVU6tWLedUtaoSaF27Zt3rTSb18lgO6O5Fzd2ByaS8TStWqH/0rl3h6adL12MiojKwf/GFEhCGkZUS4p57CCeOr+M2sPP3LWCAi60LD3o/SO8mvbG0sMzbbRgXp+yzt8/qAjQMJbyuX1e5uCZOVKkgIK+Ayu1F+v/2zj3IkqrO85/ffVfdW49+0NJAS9M8pnm0jTAiL1kQBAZcmECNERkWNYwJHWcZJnZjQtcNH39srI4zGyuurDvjwrA+R0GUGQE10FVjRFBe2w10K2A/6G66qxvqcR91782bv/3jl6fyVnUV/aCrqrvr94nIyMxfnpt5Mk/ezG/+zu+cM51XScSCX9euTbd/5CO2/4susknEqiinirMf/MC6qxgdRfr6yI2OkqsPwfJj6S+VWPzqZqQaUxjspTj2Kq1OjjFZhEYxe6o95EfGyN16Gzskx7LxLQwPvJG43M+z7/okS3tr9L2hzKJijcplV1O86CL4znes6mJ42DoUe+AB6/DxggtscgF2WNPpdCYE1P7GP1Wr1YMSUOVyeb9EU/f8aO2i4LBGxJ4r5fLMA8Defrt52YMoC/NXXkmfRWAfhVFkVZpT48rAGiIF0fW5z1kV5+CgCbOBAQth6B4dYI7xu885eti1y/64oW+om25Kq/oOFdu2mdh6/HHzotVq8OST8L73sXl4M/e8cA8//7cZ4kKBQr3JDbqaG9Z8kJ6oBPd+d/pqw2bTBNb4+ESV3l4erG4hta/YKTDBEkXpQLpbt8LDD9sD7LLLzHb66dZZV/f1OeOMvfe1erUNQRKC+et1E3DXX4/kcuQfegg+/3mWVLfCkkXEA30sboyTaQrLSiO0I2jGBdrag2hMLeoh/8oYZ/z9bUSJENvV80ZGJE8mA5LLkst0+P2Z11GoFDh++2NUNvwafXQjcuc9yNKlcP755C9+K6VzzkCKC6gaZ46JomiSgNqfVni1Wu2gjhUCw2eKf5q6rVKpuIA62igULKbzteI63/pW63pmeNiqNLun4eHJHQ2OjtoztFZLG++87W2zeQb7xKsXnSOfOIZ//mf42tdMsAwMWHzA2rWH7hjVqv3Rv/c9C2gvl21YjjvvZONAm++872weHXoSgGytwdv39HPTPRtZ0immAfDdXq3uasNly1KBta84qJmIIvOgPfGECcIXX7Rg1z//c9s+MmJVoRdcYC0qDzX/9E8mxG6+2bxS69ZZ3Nn3v28dpa5fj46NoZs20Vq2gk67Q0Secelh0cvPsX3gdEqNV1GFoZ7J1ZUC5OIW+bjJjt5VVNqvEkuWjHaoFpYwNHgKWurlxVOvYvsZV1AsCaWSOQyLxXQ+k61YtCKZOmWzR5dDrdVqTVTL7StwPMwPRkCJCJVKZZ+iqXu9Uql4f0/OoUfVnt1BkI2M2IflLA8BBB7T5RyNqJrIuPvuNBbg4ovhz/7MXMmHkvvvt769Wi249VZaN7+PX409x4OPfo317W1Qr1MYq3PV4vP44zt/ybKtr+wdAH/mmSaGugPfQ7XhgQiswK5dqch6+mnzvAUKBRtw+tZbD835HwwPP2x9+1x7rTVkWLfOvjzvuMOqTDdvNhG6eTOccAJaKBAjxMNjZIZ2Mnb6eeS2b0Y7sPsNZ1Le9SKZqEUcK4NjL9HM9pKJLf5LRRBVtpdP5bnFF7Gj92SydNjRezL5uMXm/jW8VDmwayySCrBczi7pTOLs9Uy5nDk4w3omk04iNgUBaJPSbjeo18doNEZpNEaT5THqdVuu1Wxer49Sq41Rr4/RbI5PiMiZ5t3nbnNJuiXorqYLU7o+MJAKqb6+CtlsZmI/3ccIy+Hcpju24xwNuOhyjh5UTWjce6/1dA5WjfbhD08es+z1sHOnVRuGOKpmEy66iN+/ocCPb7uOn44+TbVVhWqV3qFhrn1kD9fvXMTAq/WZA+BzOds2U7Xhvtixw873mWdsvnPn5O0rVsA558C555rAO1xaT3X35/XLX9rwSOefn1ZZlkrWk/2xx1rHsj/5icW7qdqUydi1Gx1NY9+S1pu6ew/abNLpKZPdugnNFYizOQTQOCbbGqfdM0Cr1M+z53+Aen6AofJKtNli68Aamk045uV1E6Ks1TJN3G6bA3X2L01MFFWJolGiaKxrHpanW6+ieuB9QIlkyeX6kqk/mdLlfL6fbLZvyrwyZ+PaTRVn063vK8106afL/msJvn0J0QNNcyDbDjTNTNsO1Tm/3n3v7/XYn/WZjnkw6d/1rukjKQ4lHkjvHPmMjNhYhg88YGOOgQma97zHXuCvV2Q0m9Zz+kMP2YCxUYQ+8QSbsmM8tu0xHnn/sbxQ2wrP3AediJPLK7jyBzv4NxsalLfvgfNOhlr02gHw+yu0Oh07xxNPTG2f+czkwW3LZatCPfdcE1shfutwo/tpd+GFVsXZaFhniatXm5g8+WSrFn7Tm2y6+mobX7JeNw/j2Jid7yc+YdUEIjA+jgwOIEBmbMzqCc8+m2zwJmYysKdBMRtRHB/irT/93MTv6O9P6xVLJcvLpz5l3sekijc+cw1RBJ2n19HOl9FqjfFT19A4cTXttjk9owiiSGk0ml1Dtti8Xq9RrY5Rr1ep16uJx6nK+Hgt8UzZsqpODJEJaYv4MM9kUi9bsGezRYrFfgqFPgoFm+fztpzP23ouZ8Ipnzdhlcn0AIKq3V5B08axTWE9HLc7P932mZbDPl4rTfe+pn7vTz1vx5ktQljrfOCiyzm8GR62MQwfecS8WyE+aulS68n8qqteX1cQY2PWMu9Xv7IXfKtFPdPhuf4qjx3b4df/8E6GCm3I5uB3v6U8HnPZhnHe0VrBquHE83LCKti+26rJuuOz9jcAvtOxVjjd4yt+6EPWcueuu1IxdcEF1pP8WWeZJ2vlynlrDv26EJnc+/zy5dZLfbWa2lavtk/RF16wwNdQxo88YqL75pvtGqxZY+L0y182z+T4uJUBmPCq1+361eupumg07JqPjFi6vj502zYaN91EPZej1mhQGxxkLJejKkI1jqkOD1NdtMgGCr74Yqqjo1Q7HRtcuFi0zjNHR80jF0Um6sBs/f3W/UXX6YeGXDA5gHy6+dS4qL6+vqOqD6jpBFn3+tRt+yMAu0XsdMeZzv5a2w40zcFsm+/fT7UfaJpDdczpONTpTznltX8/m7jocg4fVK2Z8PPPW/XZ+vUWA9X9yR86zjz//AMfMDmK7MW8Ywdcdx0AcXWMHX/zn9kw0GbDaUvYsCLD5jcU0eXj9tR+9jcsylV4y1Ce84YHefP4IIVnN8LpA1AYn96rNZO4iiKrEty2zfrj2rzZpq1b7Ry//e3UW7dihZ3f0FAqum655SAu6hGCSFoNG/j85/fuZ2ftWrvmN9wwMZB4vHkzjVqN2jXXUF+9mtob30h9dJTaZz5D/bTTqF16KXWgdt991IaHqYtQE6Gez1OLIhqjo9SjyLosaLetnIaH07d2JmO23btt/TvfsfxGkZWXCMVslooIlUaDvoEByrkclUyGSi5H3+7dVK68ksrb3kalXKby0ktUzj6bSm8vlRdfJNvXN3OfaiedlNrWrDGhfZThsV3OQmJWRZeIXA18AcgCX1HVz07ZLsn2a4A68H5VfWI28+QcBoQX2NCQCaBNmywQftOmyd4OME/S2rXW98qFF1p/K/vDgw/CfffBsmXEnYjhZ59g96vb2DW0ia3HV9ja+Tlbtz7DdkZpXVoDATovQdRLbouyqlHknGo/5z2+g1OOXYWMJ9065FvTd+tw1lkmtsKb46mn4Le/tXN8+WXzUA0NzfyJtmyZXZPjjrP1T37ywEXlEUCn06HZbDI+Pk6j0ZiYh+WZ7HvNv/jFieVmGH6kVrN7CKx8Rketyvh3vzPbypUm5Pv6bADwIGY3bYLhYUrtNr2ZDOV6nXKxSF8UmZDKZKjEMZVcjkqnQ18mQyWbpdJu2wDCrRZ5VRNgcWz3SaNh90l/v5X7vfeahy5EzoNtj+N0gPJEwNHpmBAPY2dCOgzUa/XXFmwH2knua+3nYBp4OI4zI7MWSC8iWeC3wDuAl4BfAzeq6rNdaa4B/j0mut4KfEFV94qEnvVA+tcaUPhQPsBma99zfbw1a0w8PPmkxcUMD5unp9WyVnRgTXSXLTMR9fzz9sIYHraXx/CwvRDDi6S7Kqavz1oennuuVbeNj8MVVxBrTOupx2k+8guar+6m+ZZzaI5XqW1+nrFtL1AdHmLsmssZO+s0quseZ+xnP2KkU2dPWdhTztCRJJBFxF52PT0THowl7RynNcqs3rCb0/tO4uTdMYVmZPnbvt3yUSxa7NjIiJ37xRebp2X1aosFWr8e/u7vUk/E7bfDj388+T4TsWuyfLm9UE880aYVK2Z9sGdVpdPpEEUR7XabKIomTe12e5/2drtNq9Wi1WrRbDYnLU9dn2nbwYxhtz+USiXK5TK9vb2Uy2VbLpUo5/P0Ll6cbnv8cXqrVcrvfje9xxxj9nvuofehh8hee601JS+XrbHCAw/Y8COXX262kREbbWDjRrtHd+60HrCrVRN3hYKJrdDJbRhWKY7tY6FWs3uwVEp73c/nrYq7VEobHARbuWzps1n7j+zcafdJCPCKY/svDQ5ObgoZx6l4C9XWuVxqe/lluweDLYrs4+e442y/oblkHMONN8KVV9p/ZcMGqyZtNOxDSOTofLb5uSyM483yB8Wct14UkQuAT6vqVcn6xwFU9b92pflfwP9V1W8m6xuBS1V1R/e+ZlV0bdjA+9/1Fpr1GihoJvFUJA8utYzZQ6cToZKBWCEDZLLJECpZ6MSWtpC3h22hAO0WGitkuvzmMaBqx0n6pdEQawITNgCiDghoPmfHUoV2K9mY5A0mj0WVzaTOlDh5wantV4XJ0a75PBoexJ2OpUvyakk0sWXME5Rcl4njiti5SHIMEft9HINkJtKqJKct6XKcERQlzmZQVWJ0wqaZjK2rEmcg6imaaFKg2QqnnxIylEnKaSKgI0mUzVDSHL31FuU4x0AjZoASAwPL6B+qUhgZS1+S+bztY+nStGorjqFYRLvjaG68ccILoT/6kb3ILr889VRt2YIODdlLsq/PpkplxhgsVSWO472mTqcz7fJMaWayR+ElP8+ICMVikZ6eHkql0rTzsDyTfbrtr7uFXYgsD16oPXvso2JgwLysYNs/+1mrGr7sMivPWs3iAZ980gbsXrvWRNiuXTYyQrlsnjQREyu7d9vy4KDdV1FkHdZms+mHQKdj+8hk0n4posiEXRBDQXhVq+nHS6Fg4mxszNKHiPm+vrQ5ZvivBxtY2qnjd4pYHFyxmFZ5t9upuAy20DBBxGz1up1zq2XHz+ftvIOADCKy2bTrp2ppw/77+tJ9huvT12e/abXs9+GahDi60KdHqWS/CbYQOxhsxaIdr1i0azsyYvlqt+33QSyrWrmOj5uoDv1b1Gp2foODqWBtNu169/XZfsNIEsPDduwQuNfpWDmXSmYLfYI0GukwXLWa7VvV9hvumSCqw3BczaaJ/mw2HXu12xaa32azlqdOxz6Ci0Wz9famH8FhsOkwHx5Oyyr0hzI8bPdVq5W26ghiv9m0/HbH1TYadk0GB9P7pNWy3/T1pR+YUWT/s95euxfCB8Arr1hZ9PSkMZKvvmp5LBTS8osiO5aqXYdw/uGahvIL906zaduWLLEPkW99a1aF13y0Xjwe2Nq1/hLmzdpXmuOBHcwV69bxk2qNZhTe3N0itNsWojK7ozOTB1S76+u93bLk4aGz1z679z3di3AaT0ArAokwBTY1b1P3aUJt780z7DcIq0n7mMpMbeenpk3EaAxkdOafAQQRJbr3dRJN8yVApm0zySAtyGpiVsipkOsoORWyMeQ0JkeGXAuyCAUyFAo9ZGKFRgSijCuM9wg7R/bYn3fxYnughWDnQsH+qEGAdXsRwvyxx1IBVSrBqlX2Mt6yZfJ5hqqvw4BsNksulyOXy5HP5yfNu6d8Pj+jvVAoUCwWJ81nWp7Olsvl5qwLggNiasecS5bAFVdMtonYmG9Tec97Jn/4gL10rrnGXijDw/aVfdppdt9s2WKjJYDZ160zkXbLLfbiWLfOYhl/8xsT8mecYV7Tb3wjFWiLFjHRhDJ4vRYtSjsUq1bTfttC68xWy+xxbL8JImRkJPVuherMUM1fLtvLKlyj4I0L4qxctrQi6f7A8hZEbLAF0VQspo0awmgMwUPX6aTn1f1BOD5uxwyiJuQ1eE5DLF6whQ+vIEbDfkO6IEZaLdt3EChjY/bbKLLfhz5EwNKHPHf3idfpmK37OgVbt0cz2ILHva/Prl24JkEohGsSxHa3sAqiPNi68xZs4ZqoWj7DfkJLg3DPhH0HQT81D+FDINjq9bQVSLDVarbPQsGWw3E7HUtfr5st5LvRSK9TuCaNhuU7eHmDLYi8kNdGw46Zy9m1Gx21NOF6h/103zvB1v0R0mjYtG7dvFSfz6bomu7JOvUtvT9pZpc1a/jI4FJaoyOgsXmUUGglDwIUyebMizJuX3kSRWnfQY1xKBWh3UZEkFIP1GtQrqRfa8kDXWDijyyhuTqkN0I+b3YE0RhqdcjbF5yEB+vIiLWkC70oxrHFGwVvWMG+8CT5c4nGJgrLvZDJIOFPGUXQP4Bkur4C2u3ki8eKReKOnXN/P2QzZm21kfClnREYHYPeXiTqQCEHxRK8+gr0D1iTfkwsZapVpFwhq0JGIZvJkhkZJdM/SEaVTKxkyJAbGSVzzDJEMmRbLbKZHPlMnpwK0unAKzsmvl4kXLuRV9IvGhEkeLsuucQC7485xl5ipZJVt6xcaX/aTZtg1SrkxBP3iuI9UGEwU/rp7DOlzWQy007ZbPY1bdNtn7rtsBU7RwtTr23wboJ9VYeH+9RRElavNtE21TaVSy4xobY/1SozbY9j88gF705I96//aqIsm51onMC998LXv54KJLBnxJYtVh0ePCPhoyV0iLV1q3l7g6gSsSr65ctTMQPmGT72WPt9ECK7d1u/drlcKiD27LEq+eCtUE2fvcFDt3ixrQfR0G6bAA1hBEFwhV7IC4Wk1iCxqaYCY2DA1qtVE7hLlqTez1rN8rh0abqPRsOeKUuWpNek1bIpVFVDKlIWLbJrHT7mQp6zWdv34sXptQbz8ARvW6ORVikHWzjWyEhqC+cbvFJB7A0MpOcZBGeIkQ3V262W5TEI83CMRYtST30+n9rKZftdb28aJhIGtl682M4vnE/4Tbenq9FI9xPEfBhVpNvT1UzeQ92ert7e9B07Opp6BMO7rNsW9jsyYrZKZfJ4jnOIVy+Cx3QdTvs+VMfzIGDHeX3s73PxSHgeHA779nM5vI53FMZ05bBA+suBbVgg/ftU9ZmuNNcCf0EaSH+7qp43dV/eI73jOI7jOEcKcx7TpaqRiPwF8EOsy4g7VfUZEflwsv3LwAOY4Hoe6zLiA7OVH8dxHMdxnPlkVjsCUtUHMGHVbfty17ICH53NPDiO4ziO4xwOHIFjiDiO4ziO4xx5uOhyHMdxHMeZA1x0OY7jOI7jzAEuuhzHcRzHceaAWesy4lAiIkPA5vnOh+M4juM4zn5woqoeM9V4RIgux3Ecx3GcIx2vXnQcx3Ecx5kDXHQ5juM4juPMAS66ABG5WkQ2isjzIvKx+c7PQkREVojIT0XkORF5RkT+MrEvFpEfi8jvkvmi+c7rQkREsiLypIj8S7Lu5TLPiMigiNwjIhuS/80FXi7zj4j8VfIMWy8i3xSRkpfL3CMid4rILhFZ32WbsRxE5OOJBtgoIlfNVr4WvOgSkSzwJeCPgDOAG0XkjPnN1YIkAv6Dqp4OnA98NCmHjwEPq+qpwMPJujP3/CXwXNe6l8v88wXgIVVdDazFysfLZR4RkeOBW4E/VNWzsCHw3ouXy3zwj8DVU2zTlkPyrnkvcGbymzsSbXDIWfCiCzgPeF5VX1TVFvAt4Pp5ztOCQ1V3qOoTyfIY9gI5HiuLu5NkdwN/PC8ZXMCIyAnAtcBXusxeLvOIiPQDlwD/G0BVW6o6jJfL4UAO6BGRHNALbMfLZc5R1Z8Dr0wxz1QO1wPfUtWmqv4eGw/6vNnIl4sue7Fv7Vp/KbE584SIrATeDDwKvEFVd4AJM2DZPGZtofLfgb8G4i6bl8v8sgoYAu5Kqn2/IiJlvFzmFVXdBvwtsAXYAYyo6o/wcjlcmKkc5kwHuOgCmcbm/WjMEyJSAe4FblPV0fnOz0JHRN4J7FLVx+c7L84kcsA5wP9U1TcDNbzKat5JYoSuB04CjgPKIvKn85srZz+YMx3gossU7Yqu9RMwd7Azx4hIHhNcX1fV7ybmnSKyPNm+HNg1X/lboFwEXCcim7Cq97eLyNfwcplvXgJeUtVHk/V7MBHm5TK/XAH8XlWHVLUNfBe4EC+Xw4WZymHOdICLLvg1cKqInCQiBSyY7v55ztOCQ0QEi095TlX/W9em+4FbkuVbgO/Pdd4WMqr6cVU9QVVXYv+Nn6jqn+LlMq+o6svAVhH5g8R0OfAsXi7zzRbgfBHpTZ5pl2PxqV4uhwczlcP9wHtFpCgiJwGnAo/NRga8R3pARK7B4laywJ2q+l/mN0cLDxG5GPgFsI40dug/YXFd3wbeiD3Q3qOqU4MjnTlARC4F/qOqvlNEluDlMq+IyNlY44YC8CLwAexD2stlHhGRzwB/grXIfhL4EFDBy2VOEZFvApcCS4GdwKeA7zFDOYjIJ4APYuV2m6o+OCv5ctHlOI7jOI4z+3j1ouM4juM4zhzgostxHMdxHGcOcNHlOI7jOI4zB7jochzHcRzHmQNcdDmO4ziO48wBLrocx5l3RGSJiDyVTC+LyLZkuSoid8zSMW8TkX83jX2liKw/hMcpiMjPk7H4HMdZwPhDwHGceUdV9wBnA4jIp4Gqqv7tbB0vEUAfxHpxn1VUtSUiD2N9N319to/nOM7hi3u6HMc5bBGRS0XkX5LlT4vI3SLyIxHZJCI3iMjfiMg6EXkoGUYKETlXRH4mIo+LyA/DsB9TeDvwhKpGXb95WkQeAT7adfyVIvILEXkimS5M7F8Vkeu70n1dRK4TkTNF5LHES/f/ROTUJMn3gJtm4xo5jnPk4KLLcZwjiZOBa7FBhb8G/FRV1wAN4NpEeH0ReLeqngvcCUw3wsRFQPcg3ncBt6rqBVPS7QLeoarnYJ6q2xP7V7Ae4BGRAWx8vQeADwNfUNWzgT/ExnQDWA+85SDP2XGcowSvXnQc50jiQVVti8g6bNiuhxL7OmAl8AfAWcCPbeg7ssCOafazHBsTL4imQVX9WbLtq8AfJct54H8kQ+50gNMAVPVnIvIlEVkG3ADcq6pR4in7hIicAHxXVX+XpO+ISEtE+lR17BBdC8dxjjBcdDmOcyTRBFDVWETamo5jFmPPMwGemcZjNZUGUEqWBZhpPLS/wsZtW4vVDIx3bfsqVmX4Xiw+DFX9hog8innjfigiH1LVnyTpi1N+7zjOAsOrFx3HOZrYCBwjIhcAiEheRM6cJt1zwCkAqjoMjCSDrsPk2KsBYIeqxsDNmOcs8I/Abck+nkmOtwp4UVVvB+4H3pTYlwBDqtp+/afoOM6Riosux3GOGlS1Bbwb+JyIPA08hcVbTeVB4JKu9Q8AX0qqBxtd9juAW0TkV1jVYq3rWDsx8XZXV/o/AdaLyFPAauD/JPbLsJgvx3EWMJJ65x3HcRYOInIf8Nch7uogft+LxZKdo6oj+0j7XeDjqrrxYI7lOM7RgXu6HMdZqHwMC6g/YETkCmAD8MX9EFwF4HsuuBzHcU+X4ziO4zjOHOCeLsdxHMdxnDnARZfjOI7jOM4c4KLLcRzHcRxnDnDR5TiO4ziOMwe46HIcx3Ecx5kDXHQ5juM4juPMAf8fuOOm8typAjoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# solve odes\n", + "sim = odeint(sir_model.SIDARTHE_model, y0, tvect, args=(alpha, beta, gamma, delta, epsilon, mu, zeta, lamb, eta, rho, theta, kappa, nu, xi, sigma, tau))\n", + "S, I, D, A, R, T, H, E = sim.T\n", + "\n", + "# plot results\n", + "sir_model.plotSIDARTHE(tvect, S, I, D, A, R, T, H, E)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "## log parameters and sat/unsat\n", + "\n", + "param_assignments = {'alpha': alpha_val, 'beta': beta_val, 'delta': delta_val, 'gamma': gamma_val, 'epsilon': epsilon_val, 'theta': theta_val, 'zeta': zeta_val, 'eta': eta_val, 'mu': mu_val, 'nu':nu_val, 'lamb':lamb_val, 'rho':rho_val, 'kappa':kappa_val, 'xi':xi_val, 'sigma':sigma_val, 'tau':tau_val, 'assignment': input(\"Please enter 0 if the parameter choices were bad and 1 if they were good:\")}\n", + "\n", + "param_choices_true_false.append(param_assignments)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZiElEQVR4nO3de7hddX3n8ffHRK6CgMQLAUkcKSM6qHgArdd6BdQClc4AWu9FOsLYmbGClyq22g4+TsFWWkSLYFEZBaEUUaz2Uft4K4mgEpEa8UIAJXhFQTDhO3+sdWC73TnZSfbvnJzT9+t5znPW5bfW+v7O3tmfrOtOVSFJ0qTda64LkCQtTAaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgpDmU5ClJ1sx1HYOSrErylBnmvy7Je2avIs1XBow2W5LvJLk9yc+T/CDJe5PcZ67rmkmSZUkqyeIJrW+7JD9J8tQR805LcsEktrM5+n7+on99bkjyV0kWbWy5qnp4VX16hvl/UVUvn2ixWpAMGG2p51bVfYADgAOBN2zKwunMm/fhcDBV1S+B/we8cKjdIuAY4NzZq26kR/avz9OAY4E/3JKVTSqY9R/DvPmHra1bVd0AfAx4RJJdk1yaZG2SH/fDe063TfLpJG9N8jngNuAhSV6S5Joktya5LskrBto/JcmaJK9JcnOSm5IckeSwJP+e5EdJXjfQ/l5JTk7yrSQ/TPKhJLv1sz/b//5J/z/7x/XLvLTf/o+TXJ5k74H1VZJXJvkm8M0R3T8XeF6SHQamPYvu39fHZurbsH5bDx0YPyfJWwbGn5Pkqn6v6fNJ9t/wq3KPqvoG8K90r89/SvIv/d/mliTvT7LLwDa+k+Tp/fApSS5Icl6SnwEv7qed18+f3iN8UZLv9et7/cC6tk9ybv93vaZ/DdcMzD+p37u6Ncm1SZ42Tn80PxgwmogkewGHAVfSva/eC+wNPBi4HXjn0CJ/ABwH7AR8F7gZeA6wM/AS4LQkBwy0fyCwHbAUeCPwbuAFwGOAJwJvTPKQvu3/AI4AngzsAfwYOKOf96T+9y5VdZ+q+kKSI4DXAb8HLKH7IP7gUL1HAAcD+w33vao+D9zULz/Yvw9U1box+jaWfpmzgVcA9wPeBVySZNsxlt2P7u90JRDgL+n+Ng8D9gJOmWHxw4ELgF2A92+gzROAfen2lN6Y5GH99DcBy4CHAM+ge82ma9oXOAE4sKp2ogvl72ysL5pHqsoffzbrh+7D4OfAT+hC4m+B7Ue0exTw44HxTwN/tpF1Xwy8qh9+Cl1ILerHdwIKOHig/UrgiH74GuBpA/MeBPwKWEz3YVfA4oH5HwNeNjB+L7o9q7378QKeupF63wB8oh/euV/+0WP2bc3AvAIeOjB+DvCWfvjvgD8fWte1wJM3sJ0CfkYXsN8C3gLca0S7I4Arh17Xp/fDpwCfHWp/CnBePzz999xzYP6/AUf3w9cBzxqY9/Lp/gIPpQvfpwP3nuv3sz+T//F4qrbUEVX1ycEJ/aGi04BDgF37yTslWVRV6/vx64eWOZTuf7u/RfcBvwPwtYEmPxxY9vb+9w8G5t8OTF9gsDdwUZK7BuavBx6wgT7sDbwjyf8dLIlub+m7o+od4X3Am5Ispfuf+OqqunLMvo1rb+BFSU4cmLYN3Z7IhhxQVasHJyS5P/DXdHs0O/U1/XiGdWys7wDfHxi+jXteiz2Glr97uKpWJ/ljusB6eJLLgf9VVTeOsT3NAx4iUwv/m+5wycFVtTP3HJbKQJu7H+PdH+K5EHg78ICq2gW4bKj9prgeOLSqdhn42a6680SjHh9+PfCKofbbV3fo6zfqHaWqvkd3aO35dIfH3reZfbuNLoCmPXCozrcO1blDVQ0fztuYv+z7s3//+rxghnpgI33fiJuAPQfG9/q1FVd9oKqeQBeeBZy6BdvSVsaAUQs70e1R/KQ/uf6mjbTfBtgWWAus6//H/8wt2P6ZwFunT9QnWZLk8H7eWuAuunMCg+1fm+Thffv7Jvn9zdjuuXTnFB7PPecqNrVvVwHHJlmU5BC680jT3g0cn+TgdHZM8uwkO21inTvRH9rs97j+ZBOX3xQfovvb7tpv64TpGUn2TfLUPoR/SfeeWb+B9WgeMmDUwunA9sAtwBeBj8/UuKpupTsx/yG6QzXHApdswfbf0S//iSS39jUc3G/rNuCtwOf6K7EeW1UX0f3P+fz+SqmrgUM3Y7sX0B0S/FRV3bSZfXsV8Fy681rPpztfQ7+uFXSXGb+zX9dq4MWbUeeb6S4r/ynwUeAjm7GOcf0ZsAb4NvBJur/RHf28bYH/Q/c++T5wf7qLLbRApMovHJM0O5L8Ed0FAE/eaGPNe+7BSGomyYOSPL6/N2lfuvNzF811XZodXkUmqaVt6O7XWU532O98usvZ9R+Ah8gkSU14iEyS1MSCOkS2++6717Jly+a6DEmaN1auXHlLVS1pse4FFTDLli1jxYoVc12GJM0bSb678Vabp+khsiSH9E9IXZ3k5BnaHZhkfZKjBqb9z3RffHR1kg8m2a5lrZKkyWoWMOm+D+MMuhvW9gOO6Z/oOqrdqcDlA9OW0t2cNlVVjwAWAUe3qlWSNHkt92AOonvg33VVdSfd5YmHj2h3It2zmm4emr4Y2D7dFxztAPgAPEmaR1oGzFJ+/Smqa/ppd+v3VI6kexbU3fqHEr4d+B7dw/J+WlWfGLWRJMclWZFkxdq1aydYviRpS7QMmFFPZx2+6eZ04KSBx7B3Cya70u3tLKd73PeOSV7ACFV1VlVNVdXUkiVNLoSQJG2GlleRreHXH829J795mGuK7gGDALsDhyVZB9wb+HZVrQVI8hHgt4HzGtYrSZqglgFzBbBPkuXADXQn6Y8dbFBVy6eHk5wDXFpVFyc5GHhs/8VVt9N9DavXH0vSPNIsYKpqXZIT6K4OWwScXVWrkhzfzz9zhmW/lOQC4MvAOrrvET+rVa2SpMlbUM8im5qaKm+0lKTxJVlZVVMt1u2zyCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmmgZMkkOSXJtkdZKTZ2h3YJL1SY7qx/dNctXAz8+S/HHLWiVJk7W41YqTLALOAJ4BrAGuSHJJVX19RLtTgcunp1XVtcCjBubfAFzUqlZJ0uS13IM5CFhdVddV1Z3A+cDhI9qdCFwI3LyB9TwN+FZVfbdNmZKkFloGzFLg+oHxNf20uyVZChwJnDnDeo4GPrihmUmOS7IiyYq1a9duQbmSpElqGTAZMa2Gxk8HTqqq9SNXkGwD/C7w4Q1tpKrOqqqpqppasmTJ5tYqSZqwZudg6PZY9hoY3xO4cajNFHB+EoDdgcOSrKuqi/v5hwJfrqofNKxTktRAy4C5AtgnyXK6k/RHA8cONqiq5dPDSc4BLh0IF4BjmOHwmCRp69UsYKpqXZIT6K4OWwScXVWrkhzfz5/pvAtJdqC7Au0VrWqUJLXTcg+GqroMuGxo2shgqaoXD43fBtyvWXGSpKa8k1+S1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDXRNGCSHJLk2iSrk5w8Q7sDk6xPctTAtF2SXJDkG0muSfK4lrVKkiarWcAkWQScARwK7Acck2S/DbQ7Fbh8aNY7gI9X1X8GHglc06pWSdLktdyDOQhYXVXXVdWdwPnA4SPanQhcCNw8PSHJzsCTgL8HqKo7q+onDWuVJE1Yy4BZClw/ML6mn3a3JEuBI4Ezh5Z9CLAWeG+SK5O8J8mOozaS5LgkK5KsWLt27eSqlyRtkZYBkxHTamj8dOCkqlo/NH0xcADwd1X1aOAXwMhzOFV1VlVNVdXUkiVLtrBkSdKkLB6nUZLHAn8DPAzYBlgE/KKqdp5hsTXAXgPjewI3DrWZAs5PArA7cFiSdcAXgTVV9aW+3QVsIGAkSVunsQIGeCdwNPBhulB4IfDQjSxzBbBPkuXADf3yxw42qKrl08NJzgEuraqL+/Hrk+xbVdcCTwO+PmatkqStwLgBQ1WtTrKoP5z13iSf30j7dUlOoLs6bBFwdlWtSnJ8P3/4vMuwE4H3J9kGuA54ybi1SpLm3rgBc1v/QX9VkrcBNwEjT7oPqqrLgMuGpo0Mlqp68dD4VXR7S5KkeWjck/x/QLcXcgLdCfe9gOe1KkqSNP+NtQdTVd/tB28H3tyuHEnSQjHWHkyS5/T3o/woyc+S3JrkZ62LkyTNX+Oegzkd+D3ga1U1fC+LJEm/YdxzMNcDVxsukqRxjbsH8xrgsiSfAe6YnlhVf9WkKknSvDduwLwV+DmwHd2d/JIkzWjcgNmtqp7ZtBJJ0oIy7jmYTyYxYCRJYxs3YF4JfDzJ7V6mLI1v3Z2/5PMffRdf+vjfc9f6dXNdjjSrxr3RcqfWhUgL0b9cdBrnfOldEPijX93OE597wlyXJM2asR92mWR/YNngMlX1kQY1SQvG7XfcSoCiuP22W+e6HGlWjft9MGcD+wOrgLv6yQUYMNIMnnnEq7njzttZdK9FPPk5r5zrcqRZNe4ezGOrar+mlUgL0PY778Z/fflpc12GNCfGPcn/hSQGjCRpbOPuwZxLFzLfp7uTP0BV1f7NKpMkzWvjBszZdN8J8zXuOQcjSdIGjRsw36uqS5pWIklaUMYNmG8k+QDwT/z6wy69ikySNNK4AbM9XbAMPi7Gy5QlSRs07p38L2ldiCRpYRn3RsvtgJcBD6d7ZD8AVfXSRnVJkua5ce+D+QfggcCzgM8AewI+90KStEHjBsxDq+pPgV9U1bnAs4H/0q4sSdJ8N27A/Kr//ZMkjwDuS/fgS0mSRhr3KrKzkuwKvAG4BLgP8KfNqpIkzXvjBsx9gekryc7of69L8qiqumriVUmS5r1xD5E9BjgeWArsAfwh8BTg3Ule06Y0SdJ8Nu4ezP2AA6rq5wBJ3gRcADwJWAm8rU15kqT5atw9mAcDdw6M/wrYu6puZ+DRMZIkTRt3D+YDwBeT/GM//lzgg0l2BL7epDJJ0rw27qNi/jzJZcAT6L4L5viqWtHPfn6r4iRJ89e4ezBU1Uq68y2SJG3UuOdgJEnaJE0DJskhSa5NsjrJyTO0OzDJ+iRHDUz7TpKvJbkqyYoNLStJ2jqNfYhsUyVZRHdT5jOANcAVSS6pqq+PaHcqcPmI1fxOVd3SqkZJUjst92AOAlZX1XVVdSdwPnD4iHYnAhcCNzesRZI0y1oGzFLg+oHxNf20uyVZChwJnDli+QI+kWRlkuM2tJEkxyVZkWTF2rVrJ1C2JGkSWgZMRkyrofHTgZOqav2Ito+vqgOAQ4FXJnnSqI1U1VlVNVVVU0uWLNmigiVJk9PsHAzdHsteA+N7AjcOtZkCzk8CsDtwWJJ1VXVxVd0IUFU3J7mI7pDbZxvWK0maoJZ7MFcA+yRZnmQb4Gi6R/3fraqWV9WyqlpG92yz/15VFyfZMclOAP3TAp4JXN2wVknShDXbg6mqdUlOoLs6bBFwdlWtSnJ8P3/UeZdpDwAu6vdsFgMfqKqPt6pVkjR5qRo+LTJ/TU1N1YoV3jIjSeNKsrKqplqs2zv5JUlNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCaaBkySQ5Jcm2R1kpNnaHdgkvVJjhqavijJlUkubVmnJGnymgVMkkXAGcChwH7AMUn220C7U4HLR6zmVcA1rWqUJLXTcg/mIGB1VV1XVXcC5wOHj2h3InAhcPPgxCR7As8G3tOwRklSIy0DZilw/cD4mn7a3ZIsBY4Ezhyx/OnAa4C7ZtpIkuOSrEiyYu3atVtUsCRpcloGTEZMq6Hx04GTqmr9ry2YPAe4uapWbmwjVXVWVU1V1dSSJUs2u1hJ0mQtbrjuNcBeA+N7AjcOtZkCzk8CsDtwWJJ1wMHA7yY5DNgO2DnJeVX1gob1SpImqGXAXAHsk2Q5cANwNHDsYIOqWj49nOQc4NKquhi4GHhtP/0pwKsNF0maX5oFTFWtS3IC3dVhi4Czq2pVkuP7+aPOu0iSFohUDZ8Wmb+mpqZqxYoVc12GJM0bSVZW1VSLdXsnvySpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktREqmqua5iYJGuBXwC3zHUtjezOwu0bLOz+2bf5ayH3b3dgx6pa0mLlCypgAJKsqKqpua6jhYXcN1jY/bNv89dC7l/rvnmITJLUhAEjSWpiIQbMWXNdQEMLuW+wsPtn3+avhdy/pn1bcOdgJElbh4W4ByNJ2goYMJKkJra6gElySJJrk6xOcvKI+Uny1/38ryY5YGDe2UluTnL10DK7JfnnJN/sf+86NP/BSX6e5NXtejb7fUuyf5IvJFmV5GtJtlso/Uty7yTn9v26Jslr52Hffr9/be5KMjU077X9uq5N8qx2PZvdviV5RpKV/eu2MslTW/at3+asvnb9/Pn8mTLT+3LTPlOqaqv5ARYB3wIeAmwDfAXYb6jNYcDHgACPBb40MO9JwAHA1UPLvA04uR8+GTh1aP6FwIeBVy+UvgGLga8Cj+zH7wcsWkD9OxY4vx/eAfgOsGye9e1hwL7Ap4Gpgen79dvYFljeb7vJazcHfXs0sEc//Ajghlbvybno38D8+fyZsqHXbpM/U7a2PZiDgNVVdV1V3QmcDxw+1OZw4H3V+SKwS5IHAVTVZ4EfjVjv4cC5/fC5wBHTM5IcAVwHrJpgP0aZ7b49E/hqVX2lX/6HVbV+kh0aMtv9K2DHJIuB7YE7gZ9NsD+DmvStqq6pqmtHbO9wuvC8o6q+Dazua2hhVvtWVVdW1Y396CpguyTbTrA/w2b7tZv3nykz9G2TP1O2toBZClw/ML6mn7apbYY9oKpuAuh/3x8gyY7AScCbt6Dmcc1q34DfAirJ5Um+nOQ1m135eGa7fxfQPRboJuB7wNuralRATUKrvm3J9iZltvs26HnAlVV1xwTWtSGz2r8F8pmyIZv8mbJ4MzfUSkZMG76Oepw243ozcFpV/TwZtdqJmu2+LQaeABwI3AZ8KsnKqvrUZq5vY2a7fwcB64E9gF2Bf03yyaq6bjPXN5PZ7tsk1zWJbU28niQPB06l+19xS36mbLzNuDb5M2VrC5g1wF4D43sCN25Gm2E/SPKgqrqp3z28uZ9+MHBUkrcBuwB3JfllVb1zczswg9nu2xrgM1V1C0CSy+iOt7YKmNnu37HAx6vqV8DNST4HTNEdmpi0Vn3bku1Nymz3jSR7AhcBL6yqb23uesY02/1bCJ8pM21vkz5TtrZDZFcA+yRZnmQb4GjgkqE2lwAv7K+OeCzw0+lDKDO4BHhRP/wi4B8BquqJVbWsqpYBpwN/0eiNALPcN+ByYP8kO/TnKZ4MfH0SHdmA2e7f94Cn9uvake4E5jcm0ZERWvVtQy4Bjk6ybZLlwD7Av21u8Rsxq31LsgvwUeC1VfW5Lah7XLPavwXymbIhm/6ZMtMVAHPxQ3fVw7/TXR3x+n7a8cDx/XCAM/r5X+PXr3L4IN0x+V/Rpe3L6p6rHT4FfLP/vduI7Z5Cwys+5qJvwAvoTjReDbxtIb12wH3ortJZ1b/J/2Qe9u3IfvwO4AfA5QPLvL5f17XAoQulb8Ab6M6dXTXwc/+F0r+h7Z7C/PxMmel9uUmfKT4qRpLUxNZ2iEyStEAYMJKkJgwYSVITBowkqQkDRpLUhAEjbYEky4afRruR9i9OskfLmqSthQEjza4X0z3eRlrwDBhpyy1O9900X01yQX+n82OSfCbdd55cnuRBSY6ie5zN+5NclWT7JG9MckWSq5OclVl4gJU0W7zRUtoCSZYB3waeUFWfS3I2cA3d3dCHV9XaJP8NeFZVvTTJp+nu7l7RL79b9U+BTvIPwIeq6p/moi/SpG1tD7uU5qPr657nap0HvI7uy7T+ud8hWUT3SI5Rfqd/7PkOwG50j+EwYLQgGDDSlhs+DHArsKqqHjfTQum+bvZv6Z4PdX2SU4CmX2stzSbPwUhb7sFJpsPkGOCLwJLpaUnu3X//CXThs1M/PB0mtyS5D3DUbBUszQYDRtpy1wAvSvJVusNcf0MXFqcm+QrdE4N/u297DnBmkqvonlb7brqn3F5M9/h1acHwJL8kqQn3YCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ18f8BwpYvV3eFvUQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot \"true/false\" points. Is there any way of characterizing these regions?\n", + "\n", + "\n", + "xsample = [result['beta'] for result in param_choices_true_false]\n", + "ysample = [result['gamma'] for result in param_choices_true_false]\n", + "colors = ['green' if result['assignment'] == '1' else 'red' for result in param_choices_true_false]\n", + "plt.title(\"Parameter Value Pairings\")\n", + "plt.xlabel(\"beta\")\n", + "plt.ylabel(\"gamma\")\n", + "\n", + "area = 5 # 0 to 15 point radii\n", + "\n", + "plt.scatter(xsample, ysample, s=area, c=colors, alpha=0.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha beta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEWCAYAAAC0Q+rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAdxElEQVR4nO3dfbyVZZ3v8c83EJ/S0ERFEMETMqHZidaATKW8NBN6GLDyddA6aGMHSbE61SnqzJj2nNPRcnLsoKkwlhzGtHglSubJmKMyufEBQWTcksoWkq0iipqK/M4f97VzuVjstfZa+9pPft+v13qt+76v677u69prs7/cj0sRgZmZWQ5v6u0OmJnZwOWQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWPWz0iaIqmtt/tRTtIaSVM6Kf+apCt6rkfWVzhkrEdJekTSi5K2SXpC0lWS3tzb/eqMpNGSQtLgbmpvD0nPSDq+StnFkq7rju00Io3z+fT5PC7pIkmDaq0XEUdGxG2dlH8nIj7drZ21fsEhY73hIxHxZmAC8NfA33dlZRX6ze9uZThFxJ+B/wPMqqg3CDgVWNBzvavqnenzOQE4DfhvzTTWXeFs/VO/+YdqA09EPA7cBBwlaT9Jv5bULmlLmh7ZUVfSbZK+Lel24AXgcEmfkrRW0nOS1ks6q6z+FEltkr4sabOkTZJmSPqgpP+Q9LSkr5XVf5OkeZIelvSUpMWS9k/Fy9P7M+l/+JPTOn+Xtr9F0jJJh5W1F5LOkfQQ8FCV4S8APiZpr7JlJ1H8m7yps7FVStt6W9n81ZK+VTb/YUn3pr2nOyQdvetP5TUR8SDwbxSfz3+S9H/Tz+ZJST+TNLRsG49Ien+aPl/SdZKukfQscEZadk0q79gzPF3SY6m9/1nW1p6SFqSf69r0GbaVlX8l7WU9J2mdpBPqGY/1DoeM9RpJhwIfBO6h+F28CjgMGAW8CPy4YpX/CswG9gEeBTYDHwb2BT4FXCxpQln9g4E9gBHAecDlwCeBdwPvA86TdHiq+1lgBnAccAiwBbg0lR2b3odGxJsj4k5JM4CvAR8FhlH8Mb62or8zgEnA+MqxR8QdwKa0fvn4fh4R2+sYW13SOlcCZwFvBf43sETS7nWsO57i53QPIOC7FD+btwOHAud3svp04DpgKPCzXdR5LzCOYo/pPElvT8u/DowGDgdOpPjMOvo0DpgL/HVE7EMRzI/UGov1oojwy68ee1H8QdgGPEMRFP8M7Fml3n8GtpTN3wZ8o0bbvwQ+l6anUATVoDS/DxDApLL6K4EZaXotcEJZ2XDgFWAwxR+8AAaXld8EnFk2/yaKPazD0nwAx9fo798Dv0nT+6b131Xn2NrKygJ4W9n81cC30vRlwDcr2loHHLeL7QTwLEXIPgx8C3hTlXozgHsqPtf3p+nzgeUV9c8HrknTHT/PkWXlfwBmpun1wEllZZ/uGC/wNooAfj+wW2//PvtV++VjpdYbZkTEb8sXpMNGFwNTgf3S4n0kDYqIV9P8hop1plH8r/cIij/yewH3l1V5qmzdF9P7E2XlLwIdFx0cBtwgaUdZ+avAQbsYw2HAjyT9r/IuUew1PVqtv1UsBL4uaQTF/8hbI+KeOsdWr8OA0yWdW7ZsCMUeya5MiIjW8gWSDgQuodiz2Sf1aUsnbdQaO8CfyqZf4LXP4pCK9f8yHRGtkj5PEVpHSloGfCEiNtaxPesFPlxmfcUXKQ6dTIqIfXntEJXK6vzlkeHpcM8vgB8AB0XEUGBpRf2u2ABMi4ihZa89ojhvVO1R5RuAsyrq7xnFYbCd+ltNRDxGcZjtExSHyhY2OLYXKEKow8EV/fx2RT/3iojKQ3u1fDeN5+j0+Xyyk/5AjbHXsAkYWTZ/6Osajvh5RLyXIkAD+H4T27LMHDLWV+xDsWfxTDrh/vUa9YcAuwPtwPb0P/8PNLH9nwDf7jh5L2mYpOmprB3YQXGOoLz+VyUdmeq/RdIpDWx3AcU5hvfw2rmLro7tXuA0SYMkTaU4r9ThcmCOpEkq7C3pQ5L26WI/9yEd5kx7Xv+ji+t3xWKKn+1+aVtzOwokjZN0fAriP1P8zry6i3asD3DIWF/xQ2BP4ElgBXBzZ5Uj4jmKk/WLKQ7bnAYsaWL7P0rr/0bSc6kPk9K2XgC+DdyertA6JiJuoPgf9KJ0BdVqYFoD272O4vDgrRGxqcGxfQ74CMV5rk9QnL8htdVCcQnyj1NbrcAZDfTzAopLzrcCNwLXN9BGvb4BtAF/BH5L8TN6KZXtDnyP4vfkT8CBFBdgWB+lCH9pmZn1XZI+Q3FRwHE1K1uf4z0ZM+tTJA2X9J5079I4ivN1N/R2v6wxvrrMzPqaIRT384yhOAS4iOJSd+uHsu7JSJqa7shtlTSvSrkkXZLKV5XfbCbpShV3aq+uWOcUFQ/j2yGpVFF2tKQ7U/n9kvbINzozyyEiHo2IoyJi74gYERFfjIiXe7tf1phsIaPiOUyXUpwMHQ+cmu4gLjcNGJtesyluHOtwNcU9E5VWU9wlvbx8oYrnI10DzImIIyluWHul2XGYmVnjch4um0hxc9l6AEmLKB418UBZnenAwiiuPlghaaik4RGxKSKWSxpd2WhErE3tVRZ9AFgVEfelek/V6uABBxwQo0fvtAkzM+vEypUrn4yIYfXUzRkyI3j9XbttpEtCa9QZQXEzVlcdAUS6A3gYsCgiLqysJGk2xV4To0aNoqWlpYFNmZm9cUl6tHatQs5zMtXuBq68XrqeOvUaTPHAvU+k95OrPZ01IuZHRCkiSsOG1RXEZmbWoJwh08brHwcxEqh8vlA9dbqyvd9HxJPp5rmlFDePmZlZL8kZMncBYyWNkTQEmMnOdy0vAWalq8yOAbZ23PXcgGXA0ZL2ShcBHMfrz/+YmVkPyxYyUXwnxlyKP/5rgcURsUbSHElzUrWlFI/1bqV4xtLZHetLuha4Exin4sunzkzLT05fYDQZuDGdgyEitgAXUYTbvcDdEXFjrvGZmVltb+jHypRKpfCJfzOzrpG0MiJKtWv6sTJmZpaRQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTZZQ0bSVEnrJLVKmlelXJIuSeWrJE0oK7tS0mZJqyvWOUXSGkk7JJWqtDlK0jZJX8ozKjMzq1e2kJE0CLgUmAaMB06VNL6i2jRgbHrNBi4rK7samFql6dXAR4Hlu9j0xcBNDXfczMy6Tc49mYlAa0Ssj4iXgUXA9Io604GFUVgBDJU0HCAilgNPVzYaEWsjYl21DUqaAawH1nTfMMzMrFE5Q2YEsKFsvi0t62qdukjaG/gKcEGNerMltUhqaW9vb2RTZmZWp5whoyrLooE69boAuDgitnVWKSLmR0QpIkrDhg1rcFNmZlaPwRnbbgMOLZsfCWxsoE69JgEfl3QhMBTYIenPEfHjBtszM7Mm5QyZu4CxksYAjwMzgdMq6iwB5kpaRBESWyNiUyMbi4j3dUxLOh/Y5oAxM+td2Q6XRcR2YC6wDFgLLI6INZLmSJqTqi2lOFHfClwOnN2xvqRrgTuBcZLaJJ2Zlp8sqQ2YDNwoaVmuMZiZWXMU0egpkP6vVCpFS0tLb3fDzKxfkbQyIna6T7Ea3/FvZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWWTNWQkTZW0TlKrpHlVyiXpklS+StKEsrIrJW2WtLpinVMkrZG0Q1KpbPmJklZKuj+9H59zbGZmVlu2kJE0CLgUmAaMB06VNL6i2jRgbHrNBi4rK7samFql6dXAR4HlFcufBD4SEe8ATgf+pckhmJlZk3LuyUwEWiNifUS8DCwCplfUmQ4sjMIKYKik4QARsRx4urLRiFgbEeuqLL8nIjam2TXAHpJ278bxmJlZF+UMmRHAhrL5trSsq3Ua8THgnoh4qbJA0mxJLZJa2tvbu2FTZma2KzlDRlWWRQN1urZR6Ujg+8BZ1cojYn5ElCKiNGzYsGY2ZWZmNeQMmTbg0LL5kcDGBurUTdJI4AZgVkQ83Gg7ZmbWPXKGzF3AWEljJA0BZgJLKuosAWalq8yOAbZGxKZGNiZpKHAj8NWIuL2JfpuZWTfJFjIRsR2YCywD1gKLI2KNpDmS5qRqS4H1QCtwOXB2x/qSrgXuBMZJapN0Zlp+sqQ2YDJwo6RlaZW5wNuAf5B0b3odmGt8ZmZWmyKaOgXSr5VKpWhpaentbpiZ9SuSVkZEqXZN3/FvZmYZOWTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMshlcb0VJHwKOBPboWBYR38jRKTMzGxjq2pOR9BPgvwDnAgJOAQ7L2C8zMxsA6j1c9jcRMQvYEhEXAJOBQ/N1y8zMBoJ6Q+bF9P6CpEOAV4AxebpkZmYDRb3nZH4taSjwj8DdQABX5OqUmZkNDPXuyVwYEc9ExC8ozsX8FfCtWitJmippnaRWSfOqlEvSJal8laQJZWVXStosaXXFOqdIWiNph6RSRdlXU1vrJJ1U59jMzCyTekPmzo6JiHgpIraWL6tG0iDgUmAaMB44VdL4imrTgLHpNRu4rKzsamBqlaZXAx8Flldsbzwwk+IKuKnAP6c+mPUrzz21kd9dfxEP/mFpb3fFrGmdHi6TdDAwAthT0rsoriwD2BfYq0bbE4HWiFif2loETAceKKszHVgYEQGskDRU0vCI2BQRyyWNrmw0Itam9iqLpgOLIuIl4I+SWlMfOg1Ds77miss/Q0v7feyu3fjm0AMZcUSp9kpmfVStczInAWcAI4GLypY/C3ytxrojgA1l823ApDrqjAA21Wh7V9tbUaWt15E0m2KviVGjRjWwGbO8nn95G0O0G6+yg5de3Nbb3TFrSqchExELgAWSPpbOx3TFTrsaFBcMdLVOd26PiJgPzAcolUqNbsssm09/8mJuvvFHjB75Dsa849je7o5ZU+q9uux2ST8FDomIaen8x+SI+Gkn67Tx+ntpRgIbG6hTr+5sy6zXHHz40Zxxbmf/tMz6j3pP/F8FLAMOSfP/AXy+xjp3AWMljZE0hOKk/JKKOkuAWekqs2OArRHRyKGyjrZmStpd0hiKiwn+0GBbZmbWDeoNmQMiYjGwAyAitgOvdrZCqjOXIpzWAosjYo2kOZLmpGpLgfVAK3A5cHbH+pKupThpP05Sm6Qz0/KTJbVRPHXgRknL0vbWAIspLiy4GTgnIjrto5mZ5aXiwq4alaTbgI8Bt0TEhLTX8f2IOC5z/7IqlUrR0tLS290wM+tXJK2MiLoue6z3nMwXKA5HHS7pdmAY8PEG+2dmZm8Q9YbMA8ANwAvAc8AvKc7LmJmZ7VK952QWUjxK5jvAP1GcVP+XXJ0yM7OBod49mXER8c6y+d9Jui9Hh8zMbOCod0/mnnSyHwBJk4Db83TJzMwGilrPLruf4q753SjuZ3kszR/G659BZmZmtpNah8s+3CO9MDOzAanWs8se7amOmJnZwFPvORkzM7Muc8iYmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8sma8hImippnaRWSfOqlEvSJal8laQJZWVXStosaXXFOvtLukXSQ+l9v7R8N0kLJN0vaa2kr+Ycm5mZ1ZYtZCQNAi4FpgHjgVMlja+oNg0Ym16zgcvKyq4GplZpeh5wa0SMBW5N8wCnALtHxDuAdwNnSRrdLYMxM7OG5NyTmQi0RsT6iHgZWARMr6gzHVgYhRXAUEnDASJiOfB0lXanAwvS9AJgRpoOYG9Jg4E9gZeBZ7txPGZm1kU5Q2YEsKFsvi0t62qdSgdFxCaA9H5gWn4d8DywCXgM+EFE7BRSkmZLapHU0t7eXu9YzMysATlDRlWWRQN16jUReBU4BBgDfFHS4Ts1HjE/IkoRURo2bFiDmzIzs3rkDJk24NCy+ZHAxgbqVHqi45Baet+clp8G3BwRr0TEZuB2oNRg383MrBvkDJm7gLGSxkgaAswEllTUWQLMSleZHQNs7TgU1oklwOlp+nTgV2n6MeD41NbewDHAg90xEDMza0y2kImI7cBcYBmwFlgcEWskzZE0J1VbCqwHWoHLgbM71pd0LXAnME5Sm6QzU9H3gBMlPQScmOahuJLtzcBqioC7KiJW5RqfmZnVpohGT4H0f6VSKVpaWnq7G2Zm/YqklRFR1+kI3/FvZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWWTNWQkTZW0TlKrpHlVyiXpklS+StKEsrIrJW2WtLpinf0l3SLpofS+X1nZ0ZLulLRG0v2S9sg5PjMz61y2kJE0CLgUmAaMB06VNL6i2jRgbHrNBi4rK7samFql6XnArRExFrg1zSNpMHANMCcijgSmAK9003DMzKwBOfdkJgKtEbE+Il4GFgHTK+pMBxZGYQUwVNJwgIhYDjxdpd3pwII0vQCYkaY/AKyKiPvS+k9FxKvdOSAzM+uanCEzAthQNt+WlnW1TqWDImITQHo/MC0/AghJyyTdLenL1VaWNFtSi6SW9vb2OodiZmaNyBkyqrIsGqhTr8HAe4FPpPeTJZ2wU+MR8yOiFBGlYcOGNbgpMzOrR86QaQMOLZsfCWxsoE6lJzoOqaX3zWVt/T4inoyIF4ClwIRdtGFmZj0gZ8jcBYyVNEbSEGAmsKSizhJgVrrK7Bhga8ehsE4sAU5P06cDv0rTy4CjJe2VLgI4DnigOwZiZmaNyRYyEbEdmEvxx38tsDgi1kiaI2lOqrYUWA+0ApcDZ3esL+la4E5gnKQ2SWemou8BJ0p6CDgxzRMRW4CLKMLtXuDuiLgx1/jMzKw2RTR6CqT/K5VK0dLS0tvdMDPrVyStjIhSPXV9x7+ZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlk3WkJE0VdI6Sa2S5lUpl6RLUvkqSRPKyq6UtFnS6op19pd0i6SH0vt+FeWjJG2T9KV8IzMzs3pkCxlJg4BLgWnAeOBUSeMrqk0DxqbXbOCysrKrgalVmp4H3BoRY4Fb03y5i4Gbmu2/mZk1L+eezESgNSLWR8TLwCJgekWd6cDCKKwAhkoaDhARy4Gnq7Q7HViQphcAMzoKJM0A1gNrunEcZmbWoJwhMwLYUDbflpZ1tU6lgyJiE0B6PxBA0t7AV4ALOltZ0mxJLZJa2tvbaw7CzMwaNzhj26qyLBqoU68LgIsjYptUrdnUeMR8YD6ApHZJj3bS5gHAkw32p6/ymPqPgTiugTgmGJjj6mxMh9XbSM6QaQMOLZsfCWxsoE6lJyQNj4hN6dDa5rR8EvBxSRcCQ4Edkv4cET/eVUMRMayzDUlqiYhSjf70Kx5T/zEQxzUQxwQDc1zdNaach8vuAsZKGiNpCDATWFJRZwkwK11ldgywteNQWCeWAKen6dOBXwFExPsiYnREjAZ+CHyns4AxM7P8soVMRGwH5gLLgLXA4ohYI2mOpDmp2lKKE/WtwOXA2R3rS7oWuBMYJ6lN0pmp6HvAiZIeAk5M82Zm1gflPFxGRCylCJLyZT8pmw7gnF2se+oulj8FnFBju+d3ta+7ML+b2ulLPKb+YyCOayCOCQbmuLplTCr+zpuZmXU/P1bGzMyycciYmVk2b8iQqeOZalMkbZV0b3qdV1E+SNI9kn7dc73uXDNjkvSIpPvT8pae7XnnmhzXUEnXSXpQ0lpJk3u299U1OiZJ48qW3SvpWUmf7/EB7EKTn9V/l7RG0mpJ10rao2d7X12TY/pcGs+a/vQ5pTpT0njWSPp9V9bdSUS8oV7AIOBh4HBgCHAfML6izhTg15208QXg553V6U9jAh4BDujtcWQY1wLg02l6CDC0v4+pop0/AYf19piaHRfFUz7+COyZ5hcDZ/TzMR0FrAb2orjA6rfA2H4ypqHAA8CoNH9gvetWe70R92TqeabaLkkaCXwIuCJT/xrR1Jj6sIbHJWlf4FjgpwAR8XJEPJOro13QXZ/VCcDDEdHZEyt6UrPjGgzsKWkwxR/mWjdl94RmxvR2YEVEvBDF7Ry/B07O1M+uqGdMpwHXR8RjABGxuQvr7uSNGDL1Pi9tsqT7JN0k6ciy5T8EvgzsyNfFLmt2TAH8RtJKSbNzdrSLmhnX4UA7cFU6tHmFiufb9bZmP6sOM4Frc3SwQQ2PKyIeB34APAZsorgp+ze5O1yHZj6r1cCxkt4qaS/gg7z+6Sa9pZ4xHQHsJ+m29DdhVhfW3ckbMWTqeV7a3RSHId4J/BPwSwBJHwY2R8TKrD3suobHlLwnIiZQfPXCOZKOzdLLrmtmXIOBCcBlEfEu4Hl2/lqI3tDsZ4WKJ2j8LfCvOTrYoGb+Xe1H8T/iMcAhwN6SPpmvq3VreEwRsRb4PnALcDPFoaXt2Xpav3rGNBh4N8URm5OAf5B0RJ3r7uSNGDI1n5cWEc9GxLY0vRTYTdIBwHuAv5X0CMWu4vGSrumRXneumTERERvT+2bgBord4r6gmXG1AW0R8e+p6nUUodPbmvqskmnA3RHxRO7OdkEz43o/8MeIaI+IV4Drgb/pmW53qtl/Vz+NiAkRcSzF15Y81DPd7lS9z5S8OSKej4gngeXAO+tcd2e9fSKqp18UKb2e4n9NHSevjqyoczCv3ag6kWI3XhV1ptB3Tvw3PCZgb2CftHxv4A5gam+PqTs+K+DfgHFp+nzgH/v7mNKyRcCnenss3fg7OIniO6D2SvMLgHP785jSfMcJ81HAg8B+/WRMb6f4QsiO82OrKS5kqLlutVfWx8r0RRGxXVLHM9UGAVdGeqZaKv8J8HHgM5K2Ay8CMyP99PuiZsYk6SDgBhVfjzAY+HlE3NwrA6nQDZ/VucDP0uGl9cCnenwQFZodUzq+fyJwVq8MYBeaHNe/S7qO4tDTduAe+sBjWrrh9+8Xkt4KvAKcExFben4Ur1fPmCJiraSbgVUU556viIjVANXWrbVNP1bGzMyyeSOekzEzsx7ikDEzs2wcMmZmlo1DxszMsnHImJlZNg4Zs16i4unXBzRbx6wvc8iYmVk2DhmzHiDpl+lhg2sqH0IqabSK77xZIGmViu/A2ausyrmS7lbxnT9/ldaZKOmO9PDPOySN69EBmdXJIWPWM/4uIt4NlIDPpjvBy40D5kfE0cCzwNllZU9G8QDTy4AvpWUPAsdG8fDP84DvZO29WYMcMmY947OS7gNWUDxkcGxF+YaIuD1NXwO8t6zs+vS+Ehidpt8C/Kuk1cDFQLWvAzDrdQ4Zs8wkTaF40vDkKB4Jfw9Q+fXClc93Kp9/Kb2/Cn953uA3gd9FxFHAR6q0Z9YnOGTM8nsLsCUiXkjnVI6pUmeUpMlp+lTg/9XR5uNp+oxu6aVZBg4Zs/xuBgZLWkWxB7KiSp21wOmpzv4U5186cyHwXUm3UzwR16xP8lOYzXqZpNEU3010VG/3xay7eU/GzMyy8Z6MmZll4z0ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2z+P1Z41pPrbr8nAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha delta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEWCAYAAAC0Q+rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAd5ElEQVR4nO3de7zVdZ3v8dc7EBWztibeQAQnZEKzE65QpzIemgldBqx8jJfGy9hBUqw51RR1GtPKLk5Hy5Njg2bimDJkWjwUxfKUzFGY3IgihBy3eGELycYL3kXkc/74fXcuFou9115rf/eN9/PxWI/1+/2+39/39/3utdlvfteliMDMzCyHt/R2B8zMbOByyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45Ax62ckTZTU2tv9KCdphaSJHZR/XdJVPdcj6yscMtajJD0m6RVJL0p6StLPJb21t/vVEUmjJIWkwd3U3i6SnpN0TJWySyXd2B3bqUca50vp83lS0iWSBnW2XkQcEhF/6KD8uxHx2W7trPULDhnrDZ+IiLcC44H3Ad/oysoq9Jvf3cpwiohXgf8ATquoNwg4GZjdc72r6j3p8zkWOAX474001l3hbP1Tv/mHagNPRDwJ3AYcKmkPSbdIapP0bJoe0V5X0h8kXSTpbuBl4CBJZ0paKekFSaslnV1Wf6KkVklfkbRe0jpJUyV9VNL/k/SMpK+X1X+LpJmSHpH0tKS5kvZMxQvT+3Ppf/hHpXX+IW3/WUkLJB1Y1l5IOlfSw8DDVYY/G/iUpKFly46n+Dd5W0djq5S29c6y+Wskfads/uOS7k97T/dIOmz7n8qbIuIh4D8pPp+/kvR/0s9mg6RfSGoq28Zjkj6cpi+QdKOk6yQ9D5yRll2Xytv3DE+X9ERq73+WtbWrpNnp57oyfYatZeVfTXtZL0haJenYWsZjvcMhY71G0gHAR4GlFL+LPwcOBEYCrwA/qVjl74FpwO7A48B64OPA24AzgUsljS+rvy+wCzAcOB+4EvgMcDjwQeB8SQelup8HpgIfAvYHngUuT2VHp/emiHhrRCySNBX4OvBJYBjFH+MbKvo7FTgCGFc59oi4B1iX1i8f3/URsbmGsdUkrXM1cDbwDuDfgHmSdq5h3XEUP6elgIDvUfxs3gUcAFzQwepTgBuBJuAX26nzAWAsxR7T+ZLelZZ/ExgFHAQcR/GZtfdpLDADeF9E7E4RzI91NhbrRRHhl1899qL4g/Ai8BxFUPwrsGuVev8NeLZs/g/Atzpp+9fAF9L0RIqgGpTmdwcCOKKs/hJgappeCRxbVrYf8DowmOIPXgCDy8pvA84qm38LxR7WgWk+gGM66e83gDvS9NvS+u+tcWytZWUBvLNs/hrgO2n6CuDbFW2tAj60ne0E8DxFyD4CfAd4S5V6U4GlFZ/rh9P0BcDCivoXANel6faf54iy8j8CJ6Xp1cDxZWWfbR8v8E6KAP4wsFNv/z771fnLx0qtN0yNiN+VL0iHjS4FJgF7pMW7SxoUEW+k+TUV60ym+F/vwRR/5IcCD5ZVebps3VfS+1Nl5a8A7RcdHAjcLGlLWfkbwD7bGcOBwI8l/a/yLlHsNT1erb9VXAt8U9Jwiv+Rt0TE0hrHVqsDgdMlnVe2bAjFHsn2jI+IlvIFkvYGLqPYs9k99enZDtrobOwAfy6bfpk3P4v9K9b/y3REtEj6R4rQOkTSAuCLEbG2hu1ZL/DhMusrvkRx6OSIiHgbbx6iUlmdvzwyPB3u+RXwQ2CfiGgC5lfU74o1wOSIaCp77RLFeaNqjypfA5xdUX/XKA6DbdPfaiLiCYrDbKdSHCq7ts6xvUwRQu32rejnRRX9HBoRlYf2OvO9NJ7D0ufzmQ76A52MvRPrgBFl8wds1XDE9RHxAYoADeAHDWzLMnPIWF+xO8WexXPphPs3O6k/BNgZaAM2p//5f6SB7f8UuKj95L2kYZKmpLI2YAvFOYLy+l+TdEiq/3ZJJ9ax3dkU5xjez5vnLro6tvuBUyQNkjSJ4rxSuyuB6ZKOUGE3SR+TtHsX+7k76TBn2vP6py6u3xVzKX62e6RtzWgvkDRW0jEpiF+l+J15YzvtWB/gkLG+4kfArsAGYDFwe0eVI+IFipP1cykO25wCzGtg+z9O698h6YXUhyPStl4GLgLuTldoHRkRN1P8D3pOuoJqOTC5ju3eSHF48M6IWFfn2L4AfILiPNepFOdvSG01U1yC/JPUVgtwRh39vJDikvONwK3ATXW0UatvAa3Ao8DvKH5Gr6WynYHvU/ye/BnYm+ICDOujFOEvLTOzvkvS5yguCvhQp5Wtz/GejJn1KZL2k/T+dO/SWIrzdTf3dr+sPr66zMz6miEU9/OMpjgEOIfiUnfrh7LuyUialO7IbZE0s0q5JF2WypeV32wm6WoVd2ovr1jnRBUP49siqVRRdpikRan8QUm75BudmeUQEY9HxKERsVtEDI+IL0XEpt7ul9UnW8ioeA7T5RQnQ8cBJ6c7iMtNBsak1zSKG8faXUNxz0Sl5RR3SS8sX6ji+UjXAdMj4hCKG9Zeb3QcZmZWv5yHyyZQ3Fy2GkDSHIpHTfyprM4U4Noorj5YLKlJ0n4RsS4iFkoaVdloRKxM7VUWfQRYFhEPpHpPd9bBvfbaK0aN2mYTZmbWgSVLlmyIiGG11M0ZMsPZ+q7dVtIloZ3UGU5xM1ZXHQxEugN4GDAnIi6urCRpGsVeEyNHjqS5ubmOTZmZ7bgkPd55rULOczLV7gauvF66ljq1GkzxwL1T0/sJ1Z7OGhGzIqIUEaVhw2oKYjMzq1POkGll68dBjAAqny9US52ubO+uiNiQbp6bT3HzmJmZ9ZKcIXMvMEbSaElDgJPY9q7lecBp6SqzI4GN7Xc912EBcJikoekigA+x9fkfMzPrYdlCJorvxJhB8cd/JTA3IlZImi5peqo2n+Kx3i0Uz1g6p319STcAi4CxKr586qy0/IT0BUZHAbemczBExLPAJRThdj9wX0Tcmmt8ZmbWuR36sTKlUil84t/MrGskLYmIUuc1/VgZMzPLyCFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCybrCEjaZKkVZJaJM2sUi5Jl6XyZZLGl5VdLWm9pOUV65woaYWkLZJKVdocKelFSV/OMyozM6tVtpCRNAi4HJgMjANOljSuotpkYEx6TQOuKCu7BphUpenlwCeBhdvZ9KXAbXV33MzMuk3OPZkJQEtErI6ITcAcYEpFnSnAtVFYDDRJ2g8gIhYCz1Q2GhErI2JVtQ1KmgqsBlZ03zDMzKxeOUNmOLCmbL41LetqnZpI2g34KnBhJ/WmSWqW1NzW1lbPpszMrEY5Q0ZVlkUddWp1IXBpRLzYUaWImBURpYgoDRs2rM5NmZlZLQZnbLsVOKBsfgSwto46tToC+LSki4EmYIukVyPiJ3W2Z2ZmDcoZMvcCYySNBp4ETgJOqagzD5ghaQ5FSGyMiHX1bCwiPtg+LekC4EUHjJlZ78p2uCwiNgMzgAXASmBuRKyQNF3S9FRtPsWJ+hbgSuCc9vUl3QAsAsZKapV0Vlp+gqRW4CjgVkkLco3BzMwao4h6T4H0f6VSKZqbm3u7G2Zm/YqkJRGxzX2K1fiOfzMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsm6whI2mSpFWSWiTNrFIuSZel8mWSxpeVXS1pvaTlFeucKGmFpC2SSmXLj5O0RNKD6f2YnGMzM7POZQsZSYOAy4HJwDjgZEnjKqpNBsak1zTgirKya4BJVZpeDnwSWFixfAPwiYh4N3A68O8NDsHMzBqUc09mAtASEasjYhMwB5hSUWcKcG0UFgNNkvYDiIiFwDOVjUbEyohYVWX50ohYm2ZXALtI2rkbx2NmZl2UM2SGA2vK5lvTsq7WqcengKUR8VplgaRpkpolNbe1tXXDpszMbHtyhoyqLIs66nRto9IhwA+As6uVR8SsiChFRGnYsGGNbMrMzDqRM2RagQPK5kcAa+uoUzNJI4CbgdMi4pF62zEzs+6RM2TuBcZIGi1pCHASMK+izjzgtHSV2ZHAxohYV8/GJDUBtwJfi4i7G+i3mZl1k2whExGbgRnAAmAlMDciVkiaLml6qjYfWA20AFcC57SvL+kGYBEwVlKrpLPS8hMktQJHAbdKWpBWmQG8E/hnSfen1965xmdmZp1TREOnQPq1UqkUzc3Nvd0NM7N+RdKSiCh1XtN3/JuZWUYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZllM7jWipI+BhwC7NK+LCK+laNTZmY2MNS0JyPpp8DfAecBAk4EDszYLzMzGwBqPVz2NxFxGvBsRFwIHAUckK9bZmY2ENQaMq+k95cl7Q+8DozO0yUzMxsoaj0nc4ukJuBfgPuAAK7K1SkzMxsYag2ZiyPiNeBXkm6hOPn/ar5umZnZQFDr4bJF7RMR8VpEbCxftj2SJklaJalF0swq5ZJ0WSpfJml8WdnVktZLWl6xzomSVkjaIqlUUfa11NYqScfXODYzM8ukw5CRtK+kw4FdJb1X0vj0mggM7WTdQcDlwGRgHHCypHEV1SYDY9JrGnBFWdk1wKQqTS8HPgksrNjeOOAkisusJwH/mvpg1q+88PRafn/TJTz0x/m93RWzhnV2uOx44AxgBHBJ2fIXgK93su4EoCUiVgNImgNMAf5UVmcKcG1EBLBYUpOk/SJiXUQslDSqstGIWJnaqyyaAsxJh/UeldSS+tDpHpdZX3LVlZ+jue0BdtZOfLtpb4YfXOp8JbM+qsOQiYjZwGxJn4qIX3Wx7eHAmrL5VuCIGuoMB9Z1cVvtbS2u0tZWJE2j2Gti5MiRdWzGLK+XNr3IEO3EG2zhtVde7O3umDWkw5CR9MVq0+0i4pLKZeWrV1kWddSpVU1tRcQsYBZAqVSqd1tm2Xz2M5dy+60/ZtSIdzP63Uf3dnfMGtLZ4bLdG2i7la1v2BwBrK2jTnduz6zP2/egwzjjvJ/1djfMukVnh8subKDte4ExkkYDT1KclD+los48YEY6X3MEsDEi6jlU1t7W9ZIuAfanuJjgj3W2ZWZm3aDWZ5cdLOnO9suJJR0m6RsdrRMRm4EZwAJgJTA3IlZImi5peqo2H1gNtABXAueUbfMGipP2YyW1SjorLT9BUivFo21ulbQgbW8FMJfiwoLbgXMj4o2afgpmZpaFigu7Oqkk3QX8E/BvEfHetGx5RByauX9ZlUqlaG5u7u1umJn1K5KWRERNlz3WejPm0IioPPS0uWvdMjOzHU2tIbNB0l+RrtaS9Gnqu8zYzMx2ILU+u+xcist+/1rSk8CjwKnZemVmZgNCzffJUJyk/z3F3s9LwKfY+ikAZmZmW6n1PpmxwPuA31Dc9Pj3VDw7zMzMrFJN98lIugMYHxEvpPkLgF9m752ZmfVrtZ74HwlsKpvfBIzq9t6YmdmAUuuJ/38H/ijpZoorzE4AZmfrlZmZDQg1hUxEXCTpNuCDadGZEbE0X7fMzGwgqHVPhoi4D7gvY1/MzGyAqfWcjJmZWZc5ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtlkDRlJkyStktQiaWaVckm6LJUvkzS+rOxqSeslLa9YZ09Jv5X0cHrfIy3fSdJsSQ9KWinpaznHZmZmncsWMpIGAZcDk4FxwMmSxlVUmwyMSa9pwBVlZdcAk6o0PRO4MyLGAHemeYATgZ0j4t3A4cDZkkZ1y2DMzKwuOfdkJgAtEbE6IjYBc4ApFXWmANdGYTHQJGk/gIhYCDxTpd0pwOw0PRuYmqYD2E3SYGBXYBPwfDeOx8zMuihnyAwH1pTNt6ZlXa1TaZ+IWAeQ3vdOy28EXgLWAU8AP4yIbUJK0jRJzZKa29raah2LmZnVIWfIqMqyqKNOrSYAbwD7A6OBL0k6aJvGI2ZFRCkiSsOGDatzU2ZmVoucIdMKHFA2PwJYW0edSk+1H1JL7+vT8lOA2yPi9YhYD9wNlOrsu5mZdYOcIXMvMEbSaElDgJOAeRV15gGnpavMjgQ2th8K68A84PQ0fTrwmzT9BHBMams34Ejgoe4YiJmZ1SdbyETEZmAGsABYCcyNiBWSpkuanqrNB1YDLcCVwDnt60u6AVgEjJXUKumsVPR94DhJDwPHpXkormR7K7CcIuB+HhHLco3PzMw6p4h6T4H0f6VSKZqbm3u7G2Zm/YqkJRFR0+kI3/FvZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWWTNWQkTZK0SlKLpJlVyiXpslS+TNL4srKrJa2XtLxinT0l/VbSw+l9j7KywyQtkrRC0oOSdsk5PjMz61i2kJE0CLgcmAyMA06WNK6i2mRgTHpNA64oK7sGmFSl6ZnAnRExBrgzzSNpMHAdMD0iDgEmAq9303DMzKwOOfdkJgAtEbE6IjYBc4ApFXWmANdGYTHQJGk/gIhYCDxTpd0pwOw0PRuYmqY/AiyLiAfS+k9HxBvdOSAzM+uanCEzHFhTNt+alnW1TqV9ImIdQHrfOy0/GAhJCyTdJ+kr1VaWNE1Ss6Tmtra2GodiZmb1yBkyqrIs6qhTq8HAB4BT0/sJko7dpvGIWRFRiojSsGHD6tyUmZnVImfItAIHlM2PANbWUafSU+2H1NL7+rK27oqIDRHxMjAfGL+dNszMrAfkDJl7gTGSRksaApwEzKuoMw84LV1ldiSwsf1QWAfmAaen6dOB36TpBcBhkoamiwA+BPypOwZiZmb1yRYyEbEZmEHxx38lMDciVkiaLml6qjYfWA20AFcC57SvL+kGYBEwVlKrpLNS0feB4yQ9DByX5omIZ4FLKMLtfuC+iLg11/jMzKxziqj3FEj/VyqVorm5ube7YWbWr0haEhGlWur6jn8zM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtk4ZMzMLJusISNpkqRVklokzaxSLkmXpfJlksaXlV0tab2k5RXr7Cnpt5IeTu97VJSPlPSipC/nG5mZmdUiW8hIGgRcDkwGxgEnSxpXUW0yMCa9pgFXlJVdA0yq0vRM4M6IGAPcmebLXQrc1mj/zcyscTn3ZCYALRGxOiI2AXOAKRV1pgDXRmEx0CRpP4CIWAg8U6XdKcDsND0bmNpeIGkqsBpY0Y3jMDOzOuUMmeHAmrL51rSsq3Uq7RMR6wDS+94AknYDvgpc2NHKkqZJapbU3NbW1ukgzMysfoMztq0qy6KOOrW6ELg0Il6UqjWbGo+YBcwCkNQm6fEO2twL2FBnf/oqj6n/GIjjGohjgoE5ro7GdGCtjeQMmVbggLL5EcDaOupUekrSfhGxLh1aW5+WHwF8WtLFQBOwRdKrEfGT7TUUEcM62pCk5ogoddKffsVj6j8G4rgG4phgYI6ru8aU83DZvcAYSaMlDQFOAuZV1JkHnJauMjsS2Nh+KKwD84DT0/TpwG8AIuKDETEqIkYBPwK+21HAmJlZftlCJiI2AzOABcBKYG5ErJA0XdL0VG0+xYn6FuBK4Jz29SXdACwCxkpqlXRWKvo+cJykh4Hj0ryZmfVBOQ+XERHzKYKkfNlPy6YDOHc76568neVPA8d2st0LutrX7ZjVTe30JR5T/zEQxzUQxwQDc1zdMiYVf+fNzMy6nx8rY2Zm2ThkzMwsmx0yZGp4ptpESRsl3Z9e51eUD5K0VNItPdfrjjUyJkmPSXowLW/u2Z53rMFxNUm6UdJDklZKOqpne19dvWOSNLZs2f2Snpf0jz0+gO1o8LP6H5JWSFou6QZJu/Rs76trcExfSONZ0Z8+p1RnYhrPCkl3dWXdbUTEDvUCBgGPAAcBQ4AHgHEVdSYCt3TQxheB6zuq05/GBDwG7NXb48gwrtnAZ9P0EKCpv4+pop0/Awf29pgaHRfFUz4eBXZN83OBM/r5mA4FlgNDKS6w+h0wpp+MqQn4EzAyze9d67rVXjvinkwtz1TbLkkjgI8BV2XqXz0aGlMfVve4JL0NOBr4GUBEbIqI53J1tAu667M6FngkIjp6YkVPanRcg4FdJQ2m+MPc2U3ZPaGRMb0LWBwRL0dxO8ddwAmZ+tkVtYzpFOCmiHgCICLWd2HdbeyIIVPr89KOkvSApNskHVK2/EfAV4At+brYZY2OKYA7JC2RNC1nR7uokXEdBLQBP0+HNq9S8Xy73tboZ9XuJOCGHB2sU93jiogngR8CTwDrKG7KviN3h2vQyGe1HDha0jskDQU+ytZPN+kttYzpYGAPSX9IfxNO68K629gRQ6aW56XdR3EY4j3A/wZ+DSDp48D6iFiStYddV/eYkvdHxHiKr144V9LRWXrZdY2MazAwHrgiIt4LvMS2XwvRGxr9rFDxBI2/BX6Zo4N1auTf1R4U/yMeDewP7CbpM/m6WrO6xxQRK4EfAL8Fbqc4tLQ5W09rV8uYBgOHUxyxOR74Z0kH17juNnbEkOn0eWkR8XxEvJim5wM7SdoLeD/wt5Ieo9hVPEbSdT3S6441MiYiYm16Xw/cTLFb3Bc0Mq5WoDUi/itVvZEidHpbQ59VMhm4LyKeyt3ZLmhkXB8GHo2Itoh4HbgJ+Jue6XaHGv139bOIGB8RR1N8bcnDPdPtDtX6TMnbI+KliNgALATeU+O62+rtE1E9/aJI6dUU/2tqP3l1SEWdfXnzRtUJFLvxqqgzkb5z4r/uMQG7Abun5bsB9wCTentM3fFZAf8JjE3TFwD/0t/HlJbNAc7s7bF04+/gERTfATU0zc8GzuvPY0rz7SfMRwIPAXv0kzG9i+ILIdvPjy2nuJCh03WrvbI+VqYviojNktqfqTYIuDrSM9VS+U+BTwOfk7QZeAU4KdJPvy9qZEyS9gFuVvH1CIOB6yPi9l4ZSIVu+KzOA36RDi+tBs7s8UFUaHRM6fj+ccDZvTKA7WhwXP8l6UaKQ0+bgaX0gce0dMPv368kvQN4HTg3Ip7t+VFsrZYxRcRKSbcDyyjOPV8VEcsBqq3b2Tb9WBkzM8tmRzwnY2ZmPcQhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmvUTF06/3arSOWV/mkDEzs2wcMmY9QNKv08MGV1Q+hFTSKBXfeTNb0jIV34EztKzKeZLuU/GdP3+d1pkg6Z708M97JI3t0QGZ1cghY9Yz/iEiDgdKwOfTneDlxgKzIuIw4HngnLKyDVE8wPQK4Mtp2UPA0VE8/PN84LtZe29WJ4eMWc/4vKQHgMUUDxkcU1G+JiLuTtPXAR8oK7spvS8BRqXptwO/lLQcuBSo9nUAZr3OIWOWmaSJFE8aPiqKR8IvBSq/Xrjy+U7l86+l9zfgL88b/Dbw+4g4FPhElfbM+gSHjFl+bweejYiX0zmVI6vUGSnpqDR9MvB/a2jzyTR9Rrf00iwDh4xZfrcDgyUto9gDWVylzkrg9FRnT4rzLx25GPiepLspnohr1if5KcxmvUzSKIrvJjq0t/ti1t28J2NmZtl4T8bMzLLxnoyZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNv8fxpPguvFsd9EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha gamma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZl0lEQVR4nO3dfZhmdX3f8ffH3SAPgqBsNC7IrhWJSH3AATQapD4CPgCJ7YVoEk0MkghqUqvEGjUxxmJtxEYroiKkCFRRqCUI1qRqKtGyK6isSF0RZUFliSAoq7jrN3+cs3BzZ3bmtzNzdmZ236/ruq+5zzm/c+7vb+6Z+cx5+t2pKiRJms795rsASdLiYGBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBjSPEpyRJJ1813HqCRrkhwxxfI3JPngtqtIC4WBoRlLckOSDUl+nOQHST6c5AHzXddUkqxIUkmWztH2dk5ye5KnT7LsXUkunIvXmYm+nz/p35+bkvxVkiXTrVdVj6mqz06x/C+r6uVzWqwWBQNDs/X8qnoAcDBwCPDGrVk5nUXzczgeNFX1U+B/AL891m4J8CLgnG1X3aQe178/zwBOAH5/Nhubq6DV4rRoflG1sFXVTcCngIOS7JXkkiTrk9zWP99nc9skn03ytiRfAO4CHpHkZUmuTXJnkuuTvGKk/RFJ1iV5XZJbknwvybFJjk7y/5P8MMkbRtrfL8mpSb6V5J+SfDTJg/rFn++/3t7/5/3kfp3f7V//tiSXJ9lvZHuV5JVJvgl8c5LunwP8ZpJdR+Y9h+7361NT9W1c/1qPHJk+O8lfjEw/L8nV/V7NFUkeu+V35V5V9Q3gH+jen3+V5O/7782tST6SZM+R17ghyTP7529JcmGSc5PcAby0n3duv3zzHtvvJPluv73/OLKtXZKc039fr+3fw3Ujy1/f7/3cmeS6JM9o6Y/mh4GhOZFkX+Bo4Cq6n6sPA/sBDwc2AO8ZW+W3gBOB3YHvALcAzwP2AF4GvCvJwSPtHwrsDCwH3gR8AHgJ8ETg14E3JXlE3/ZVwLHA04CHAbcB7+2XHd5/3bOqHlBV/5jkWOANwG8Ay+j+sJ4/Vu+xwGHAgeN9r6orgO/164/277yq2tjQtyb9OmcBrwAeDLwf+GSS+zeseyDd9+kqIMDb6b43jwb2Bd4yxerHABcCewIf2UKbpwIH0O3JvCnJo/v5bwZWAI8AnkX3nm2u6QDgZOCQqtqdLmRvmK4vmkdV5cPHjB50v9w/Bm6n+6P/34BdJmn3eOC2kenPAn8+zbYvBl7dPz+CLnSW9NO7AwUcNtJ+NXBs//xa4Bkjy34F+DmwlO6PVwFLR5Z/Cvi9ken70e357NdPF/D0aep9I/Dp/vke/fpPaOzbupFlBTxyZPps4C/65+8D3jq2reuAp23hdQq4gy4wvwX8BXC/SdodC1w19r4+s3/+FuDzY+3fApzbP9/8/dxnZPn/A47vn18PPGdk2cs39xd4JF2YPhP4pfn+efYx/cPjkZqtY6vqM6Mz+kMz7wKOBPbqZ++eZElVbeqnbxxb5yi6/0YfRfcHe1fgayNN/mlk3Q391x+MLN8AbD7hvh9wUZJfjCzfBDxkC33YD3h3kv8yWhLd3sx3Jqt3En8DvDnJcrr/lNdW1VWNfWu1H/A7SU4ZmbcT3Z7ClhxcVWtHZyT5ZeC/0u1x7N7XdNsU25iu7wDfH3l+F/e+Fw8bW/+e51W1Nslr6ALoMUkuB/64qm5ueD3NAw9JaQj/nu7wxGFVtQf3HgbKSJt7hknuD6l8HHgn8JCq2hO4dKz91rgROKqq9hx57FzdeZbJhme+EXjFWPtdqjvU9C/qnUxVfZfuUNaL6Q5H/c0M+3YXXaBs9tCxOt82VueuVTV++Gw6b+/789j+/XnJFPXANH2fxveAfUam973PhqvOq6qn0oVhAafN4rU0MANDQ9id7j/+2/uTzW+epv1OwP2B9cDG/j/yZ8/i9c8A3rb5xHWSZUmO6ZetB35Bd0x9tP2fJHlM3/6BSf7tDF73HLpj8k/h3mP9W9u3q4ETkixJciTdeZjNPgCclOSwdHZL8twku29lnbvTH0rs94j+w1auvzU+Sve93at/rZM3L0hyQJKn96H6U7qfmU1b2I4WAANDQzgd2AW4FfgicNlUjavqTroT1R+lOzRyAvDJWbz+u/v1P53kzr6Gw/rXugt4G/CF/kqjJ1XVRXT/2V7QXwl0DXDUDF73QrpDcH9XVd+bYd9eDTyf7rzQi+nOd9BvaxXdZbHv6be1FnjpDOr8M7rLoH8E/C3wiRlso9WfA+uAbwOfofse/axfdn/gP9H9nHwf+GW6iw+0QKXKD1CStG0k+QO6E+JPm7axFhz3MCQNJsmvJHlKf2/MAXTnty6a77o0M14lJWlIO9HdL7KS7jDbBXSXX2sR8pCUJKmJh6QkSU22q0NSe++9d61YsWK+y5CkRWP16tW3VtWylrbbVWCsWLGCVatWzXcZkrRoJPnO9K06gx6SSnJkPwLl2iSnTtHukCSbkrxwZN4fpfsgl2uSnJ9k5yFrlSRNbbDASPd5AO+luwHqQOBF/YiZk7U7Dbh8ZN5yupudJqrqIGAJcPxQtUqSpjfkHsahdAOwXV9Vd9NdTnfMJO1OoRtr55ax+UuBXdJ9YMuugAOSSdI8GjIwlnPfUSrX9fPu0e9JHEc3ls89+kHi3gl8l27wsh9V1acne5EkJyZZlWTV+vXr57B8SdKoIQNjstEvx2/6OB14/ciw1d2KyV50eyMr6YZH3i3JS5hEVZ1ZVRNVNbFsWdOJfknSDAx5ldQ67juU8T78y8NKE3QDvgHsDRydZCPwS8C3q2o9QJJPAL8GnDtgvZKkKQwZGFcC+ydZCdxEd9L6hNEGVbVy8/MkZwOXVNXFSQ4DntR/EM8Guo999HpZSZpHgwVGVW1McjLd1U9LgLOqak2Sk/rlZ0yx7peSXAh8GdhI9znEZw5VqyRpetvVWFITExPljXuS1C7J6qqaaGnrWFKSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKnJoIGR5Mgk1yVZm+TUKdodkmRTkhf20wckuXrkcUeS1wxZqyRpakuH2nCSJcB7gWcB64Ark3yyqr4+SbvTgMs3z6uq64DHjyy/CbhoqFolSdMbcg/jUGBtVV1fVXcDFwDHTNLuFODjwC1b2M4zgG9V1XeGKVOS1GLIwFgO3Dgyva6fd48ky4HjgDOm2M7xwPlbWpjkxCSrkqxav379LMqVJE1lyMDIJPNqbPp04PVVtWnSDSQ7AS8APralF6mqM6tqoqomli1bNtNaJUnTGOwcBt0exb4j0/sAN4+1mQAuSAKwN3B0ko1VdXG//Cjgy1X1gwHrlCQ1GDIwrgT2T7KS7qT18cAJow2qauXm50nOBi4ZCQuAFzHF4ShJ0rYzWGBU1cYkJ9Nd/bQEOKuq1iQ5qV8+1XkLkuxKd4XVK4aqUZLUbsg9DKrqUuDSsXmTBkVVvXRs+i7gwYMVJ0naKt7pLUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmgwZGkiOTXJdkbZJTp2h3SJJNSV44Mm/PJBcm+UaSa5M8echaJUlTGywwkiwB3gscBRwIvCjJgVtodxpw+diidwOXVdWvAo8Drh2qVknS9IbcwzgUWFtV11fV3cAFwDGTtDsF+Dhwy+YZSfYADgc+BFBVd1fV7QPWKkmaxpCBsRy4cWR6XT/vHkmWA8cBZ4yt+whgPfDhJFcl+WCS3SZ7kSQnJlmVZNX69evnrnpJ0n0MGRiZZF6NTZ8OvL6qNo3NXwocDLyvqp4A/ASY9BxIVZ1ZVRNVNbFs2bJZlixJ2pKlLY2SPAn4a+DRwE7AEuAnVbXHFKutA/Ydmd4HuHmszQRwQRKAvYGjk2wEvgisq6ov9e0uZAuBIUnaNpoCA3gPcDzwMbo/8r8NPHKada4E9k+yEripX/+E0QZVtXLz8yRnA5dU1cX99I1JDqiq64BnAF9vrFWSNIDWwKCq1iZZ0h8++nCSK6ZpvzHJyXRXPy0BzqqqNUlO6pePn7cYdwrwkSQ7AdcDL2utVZI091oD467+D/fVSd4BfA+Y9CT0qKq6FLh0bN6kQVFVLx2bvppub0aStAC0nvT+Lbq9hJPpTkDvC/zmUEVJkhaepj2MqvpO/3QD8GfDlSNJWqia9jCSPK+/H+KHSe5IcmeSO4YuTpK0cLSewzgd+A3ga1U1fi+FJGkH0HoO40bgGsNCknZcrXsYrwMuTfI54GebZ1bVXw1SlSRpwWkNjLcBPwZ2prvTW5K0g2kNjAdV1bMHrUSStKC1nsP4TBIDQ5J2YK2B8UrgsiQbvKxWarfx7p9yxd++ny9d9iF+sWnjfJcjzUrrjXu7D12ItD36+4vexdlfej8E/uDnG/j155883yVJM9Y8+GCSxwIrRtepqk8MUJO03djwszsJUBQb7rpzvsuRZqX18zDOAh4LrAF+0c8uwMCQpvDsY1/Lz+7ewJL7LeFpz3vlfJcjzUrrHsaTqurAQSuRtkO77PEg/t3L3zXfZUhzovWk9z8mMTAkaQfWuodxDl1ofJ/uTu8AVVWPHawySdKC0hoYZ9F9JsbXuPcchiRpB9IaGN+tqk8OWokkaUFrDYxvJDkP+F/cd/BBr5KSpB1Ea2DsQhcUo8ODeFmtJO1AWu/0ftnQhUiSFrbWG/d2Bn4PeAzdEOcAVNXvDlSXJGmBab0P478DDwWeA3wO2AdwnANJ2oG0BsYjq+pPgZ9U1TnAc4F/PVxZkqSFpjUwft5/vT3JQcAD6QYilCTtIFqvkjozyV7AG4FPAg8A/nSwqiRJC05rYDwQ2Hyl1Hv7rxuTPL6qrp7zqiRJC07rIaknAicBy4GHAb8PHAF8IMnrhilNkrSQtO5hPBg4uKp+DJDkzcCFwOHAauAdw5QnSVooWvcwHg7cPTL9c2C/qtrAyFAhkqTtV+sexnnAF5P8z376+cD5SXYDvj5IZZKkBaV1aJC3JrkUeCrdZ2GcVFWr+sUvHqo4SdLC0bqHQVWtpjtfIUnaAbWew5Ak7eAGDYwkRya5LsnaJKdO0e6QJJuSvHBk3g1Jvpbk6iSrtrSuJGnbaD4ktbWSLKG7ye9ZwDrgyiSfrKqvT9LuNODySTbzb6rq1qFqlCS1G3IP41BgbVVdX1V3AxcAx0zS7hTg48AtA9YiSZqlIQNjOXDjyPS6ft49kiwHjgPOmGT9Aj6dZHWSE7f0IklOTLIqyar169fPQdmSpMkMGRiZZF6NTZ8OvL6qNk3S9ilVdTBwFPDKJIdP9iJVdWZVTVTVxLJly2ZVsCRpywY7h0G3R7HvyPQ+wM1jbSaAC5IA7A0cnWRjVV1cVTcDVNUtSS6iO8T1+QHrlSRNYcg9jCuB/ZOsTLITcDzd0Oj3qKqVVbWiqlbQjU31h1V1cZLdkuwO0N9N/mzgmgFrlSRNY7A9jKramORkuquflgBnVdWaJCf1yyc7b7HZQ4CL+j2PpcB5VXXZULVKkqaXqvHTCovXxMRErVrlLRuS1CrJ6qqaaGnrnd6SpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKnJoIGR5Mgk1yVZm+TUKdodkmRTkheOzV+S5KoklwxZpyRpeoMFRpIlwHuBo4ADgRclOXAL7U4DLp9kM68Grh2qRklSuyH3MA4F1lbV9VV1N3ABcMwk7U4BPg7cMjozyT7Ac4EPDlijJKnRkIGxHLhxZHpdP+8eSZYDxwFnTLL+6cDrgF9M9SJJTkyyKsmq9evXz6pgSdKWDRkYmWRejU2fDry+qjbdZ8XkecAtVbV6uhepqjOraqKqJpYtWzbjYiVJU1s64LbXAfuOTO8D3DzWZgK4IAnA3sDRSTYChwEvSHI0sDOwR5Jzq+olA9YrSZrCkIFxJbB/kpXATcDxwAmjDapq5ebnSc4GLqmqi4GLgT/p5x8BvNawkKT5NVhgVNXGJCfTXf20BDirqtYkOalfPtl5C0nSApWq8dMKi9fExEStWrVqvsuQpEUjyeqqmmhp653ekqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpSapqvmuYM0nWA9/ZwuK9gVu3YTnbwvbYJ9g++2WfFo/tsV9T9Wm/qlrWspHtKjCmkmRVVU3Mdx1zaXvsE2yf/bJPi8f22K+56pOHpCRJTQwMSVKTHSkwzpzvAgawPfYJts9+2afFY3vs15z0aYc5hyFJmp0daQ9DkjQLBoYkqcmiD4wkRya5LsnaJKdOsvyIJD9KcnX/eNPY8iVJrkpyybarenqz6VeSG5J8rZ+/attWvmWz7NOeSS5M8o0k1yZ58ratfnIz7VOSA0bmXZ3kjiSv2eYd2IJZvld/lGRNkmuSnJ9k521b/eRm2adX9/1Zs5DeJ5i+X32bI/o+rUnyua1Z9z6qatE+gCXAt4BHADsBXwEOHGtzBHDJFNv4Y+C8qdostn4BNwB7z3c/5rhP5wAv75/vBOy52Ps0tp3v091AtajfK2A58G1gl376o8BLF3mfDgKuAXYFlgKfAfaf7z5tRb/2BL4OPLyf/uXWdccfi30P41BgbVVdX1V3AxcAx7SunGQf4LnABweqb6Zm1a8FasZ9SrIHcDjwIYCquruqbh+q0K0wV+/TM4BvVdWWRinY1mbbr6XALkmW0v2RvXmAGrfWbPr0aOCLVXVXVW0EPgccN1CdW6ulXycAn6iq7wJU1S1bse59LPbAWA7cODK9rp837slJvpLkU0keMzL/dOB1wC+GK3FGZtuvAj6dZHWSE4csdCvMpk+PANYDH+4PH34wyW4D19titu/TZscD5w9R4AzNuF9VdRPwTuC7wPeAH1XVp4cuuMFs3qtrgMOTPDjJrsDRwL7DltuspV+PAvZK8tn+b8Jvb8W697HYAyOTzBu/TvjLdLv6jwP+GrgYIMnzgFuqavWgFc7MjPvVe0pVHQwcBbwyyeGDVLl1ZtOnpcDBwPuq6gnAT4Dpj7cOb7bvE0l2Al4AfGyIAmdoNr9Xe9H9l7oSeBiwW5KXDFdqsxn3qaquBU4D/jdwGd2hm42DVbp1Wvq1FHgi3dGU5wB/muRRjevex2IPjHXcN+n3YWz3t6ruqKof988vBX4pyd7AU4AXJLmBblfs6UnO3SZVT282/aKqbu6/3gJcRLfrOd9m06d1wLqq+lLf9EK6AJlvs3qfekcBX66qHwxd7FaYTb+eCXy7qtZX1c+BTwC/tm3KntJsf6c+VFUHV9XhwA+Bb26bsqc1bb/6NpdV1U+q6lbg88DjGte9r/k+aTObB11yXk/338zmkzaPGWvzUO69QfFQul3ljLU5goV10nvG/QJ2A3bv5+8GXAEcuZj71E//A3BA//wtwH9e7H3q510AvGy++zKHP3+HAWvozl2E7mKFUxZzn/rpzSeKHw58A9hrvvu0Ff16NPB3fdtd6Q6xHdSy7vhjKYtYVW1McjJwOd0Z/7Oqak2Sk/rlZwAvBP4gyUZgA3B89d/FhWo2/UryEOCiJND9QJxXVZfNS0dGzMF7dQrwkf4QzvXAy7Z5J8bMtk/98fBnAa+Ylw5swSz79aUkF9Id3tkIXMUCGGpjDn7+Pp7kwcDPgVdW1W3bvhf/Uku/quraJJcBX6U7X/vBqroGYLJ1p3o9hwaRJDVZ7OcwJEnbiIEhSWpiYEiSmhgYkqQmBoYkqYmBIc2RdKME7z3bNtJCZWBIkpoYGNIMJLm4H8htzfgAj0lWpPvcjnOSfDXd53jsOtLklCRfTveZJb/ar3Nokiv6wRWvSHLANu2Q1MDAkGbmd6vqicAE8Kr+LuBRBwBnVtVjgTuAPxxZdmt1g0O+D3htP+8bwOHVDa74JuAvB61emgEDQ5qZVyX5CvBFugHc9h9bfmNVfaF/fi7w1JFln+i/rgZW9M8fCHwsyTXAu4DJhkGX5pWBIW2lJEfQjcr65OqGwr4KGP8Y0vExd0anf9Z/3QT3jOf2VuD/VNVBwPMn2Z407wwMaes9ELitqu7qz0E8aZI2D8+9nzv+IuD/Nmzzpv75S+ekSmmOGRjS1rsMWJrkq3R7Bl+cpM21wO/0bR5Ed75iKu8A3p7kC3Qjh0oLjqPVSnMsyQq6z1c5aL5rkeaSexiSpCbuYUiSmriHIUlqYmBIkpoYGJKkJgaGJKmJgSFJavLPzVDKIxtvuYMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha epsilon\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAagElEQVR4nO3df5QlZX3n8feHGUYBB0EZgwIyEBEdPbqQDkhwCSuagDFhdpPNAWOMZLNIVkRiiEvcXWOi5teaGElYkCAGjygxBBPWIGh+GBNFlx4ghnEgGUeQBgxtBCFCgJHv/lE18dL0TD/dPTXdPfN+nXNP36rneep+n77d/emqurduqgpJkmay20IXIElaGgwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDWkBJjk8ysdB1jEqyPsnx22h/a5KLd1xFWiwMDM1ZktuSPJTkX5L8U5IPJHnKQte1LUlWJ6kky7fT9p6c5L4kL5um7T1JrtgejzMX/Ty/1T8/dyb57STLZhpXVS+oqk9vo/1Xq+pntmuxWhIMDM3XD1fVU4Ajge8F/udsBqezZH4OpwZNVf0r8IfAa6f0WwacCly646qb1ov75+cE4NXAf53PxrZX0GppWjK/qFrcqupO4BPAC5Psm+TjSSaT3NvfP3BL3ySfTvKuJJ8FHgQOTXJakg1JHkiyKcnrR/ofn2QiyVuS3JPk7iRrk7wyyT8k+UaSt4703y3JuUm+nOSfk3w0ydP65s/0X+/r//M+ph/z0/3j35vk2iQHj2yvkrwhyT8C/zjN9C8FfjTJniPrfpDu9+sT25rbVP1jPWdk+Q+SvHNk+VVJbur3aj6X5EVbf1a+o6puAf6G7vn57iR/2X9vvp7ksiT7jDzGbUle3t9/e5Irknwoyf3A6/p1H+rbt+yx/VSSr/bb+x8j29ojyaX993VD/xxOjLT/937v54EktyY5oWU+WhgGhraLJAcBrwRupPu5+gBwMPBs4CHg96YM+UngdGAlcDtwD/AqYG/gNOA9SY4c6b8/8GTgAOBtwO8DrwG+B/j3wNuSHNr3PQtYC3w/8CzgXuD8vu24/us+VfWUqrouyVrgrcB/AlbR/WH9yJR61wJHA2umzr2qPgfc3Y8fnd+Hq2pzw9ya9GMuAV4PPB14H3BVkic1jF1D9326EQjwa3Tfm+cDBwFv38bwk4ErgH2Ay7bS56XA4XR7Mm9L8vx+/S8Bq4FDgVfQPWdbajocOBP43qpaSReyt800Fy2gqvLmbU43ul/ufwHuo/uj/3+APabp9++Ae0eWPw38ygzb/hPgTf394+lCZ1m/vBIo4OiR/uuAtf39DcAJI23PBB4FltP98Spg+Uj7J4D/MrK8G92ez8H9cgEvm6He/wl8sr+/dz/+iMa5TYy0FfCckeU/AN7Z378AeMeUbd0KfP9WHqeA++kC88vAO4Hdpum3FrhxyvP68v7+24HPTOn/duBD/f0t388DR9r/H3BKf38T8IMjbT+zZb7Ac+jC9OXA7gv98+xt5pvHIzVfa6vqz0dX9Idm3gOcCOzbr16ZZFlVfbtfvmPKmJPo/ht9Lt0f7D2Bvx/p8s8jYx/qv/7TSPtDwJYT7gcDH0vy2Ej7t4Hv2socDgbem+S3Rkui25u5fbp6p/FB4JeSHED3n/LGqrqxcW6tDgZ+KskbR9atoNtT2Jojq2rj6IokzwDOo9vjWNnXdO82tjHT3AG+NnL/Qb7zXDxryvh/u19VG5OcTRdAL0hyLfDmqrqr4fG0ADwkpSH8PN3hiaOram++cxgoI33+7TLJ/SGVPwbeDXxXVe0DXD2l/2zcAZxUVfuM3J5c3XmW6S7PfAfw+in996juUNMT6p1OVX2V7lDWT9AdjvrgHOf2IF2gbLH/lDrfNaXOPatq6uGzmfxaP58X9c/Pa7ZRD8ww9xncDRw4snzQ4zZc9eGqeildGBbwG/N4LA3MwNAQVtL9x39ff7L5l2bovwJ4EjAJbO7/I/+BeTz+hcC7tpy4TrIqycl92yTwGN0x9dH+v5jkBX3/pyb5z3N43Evpjskfy3eO9c92bjcBr06yLMmJdOdhtvh94IwkR6ezV5IfSrJylnWupD+U2O8R/cIsx8/GR+m+t/v2j3XmloYkhyd5WR+q/0r3M/PtrWxHi4CBoSH8DrAH8HXg88A12+pcVQ/Qnaj+KN2hkVcDV83j8d/bj/9kkgf6Go7uH+tB4F3AZ/tXGr2kqj5G95/t5f0rgW4GTprD415BdwjuL6rq7jnO7U3AD9OdF/oJuvMd9Nsap3tZ7O/129oIvG4Odf4y3cugvwn8GXDlHLbR6leACeArwJ/TfY8e7tueBPw63c/J14Bn0L34QItUqvwAJUk7RpKfpTsh/v0zdtai4x6GpMEkeWaSY/v3xhxOd37rYwtdl+bGV0lJGtIKuveLHEJ3mO1yupdfawnykJQkqYmHpCRJTXaqQ1L77bdfrV69eqHLkKQlY926dV+vqlUtfXeqwFi9ejXj4+MLXYYkLRlJbp+5V8dDUpKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhDakKNm6ETZsWuhJp3naq92FIi85118H73tfdP/tsOOKIBS1Hmg/3MKQh3Xlnt5fx2GNwl588qqXNPQxpSCecALffDsuXw0tfutDVSPNiYEhDetrT4JxzFroKabvwkJQkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmgwZGkhOT3JpkY5Jzp2l/XpLrkjyc5JwpbfskuSLJLUk2JDlmyFolSds22NVqkywDzgdeAUwA1ye5qqq+NNLtG8BZwNppNvFe4Jqq+rEkK4A9h6pVkjSzIfcwjgI2VtWmqnoEuBw4ebRDVd1TVdcDj46uT7I3cBzw/r7fI1V134C1SpJmMGRgHADcMbI80a9rcSgwCXwgyY1JLk6y13Qdk5yeZDzJ+OTk5PwqliRt1ZCBkWnWVePY5cCRwAVVdQTwLeAJ50AAquqiqhqrqrFVq1bNrVJJ0oyGDIwJ4KCR5QOB1g81ngAmquoL/fIVdAEiSVogQwbG9cBhSQ7pT1qfAlzVMrCqvgbckeTwftUJwJe2MUSSNLDBXiVVVZuTnAlcCywDLqmq9UnO6NsvTLI/MA7sDTyW5GxgTVXdD7wRuKwPm03AaUPVKkma2WCBAVBVVwNXT1l34cj9r9Edqppu7E3A2JD1SZLa+U5vSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQYNjCQnJrk1ycYk507T/rwk1yV5OMk507QvS3Jjko8PWackaWaDBUaSZcD5wEnAGuDUJGumdPsGcBbw7q1s5k3AhqFqlCS1G3IP4yhgY1VtqqpHgMuBk0c7VNU9VXU98OjUwUkOBH4IuHjAGiVJjYYMjAOAO0aWJ/p1rX4HeAvw2LY6JTk9yXiS8cnJyVkXKUlqM2RgZJp11TQweRVwT1Wtm6lvVV1UVWNVNbZq1arZ1ihJajRkYEwAB40sHwjc1Tj2WOBHktxGdyjrZUk+tH3LkyTNxpCBcT1wWJJDkqwATgGuahlYVb9YVQdW1ep+3F9W1WuGK1WSNJPlQ224qjYnORO4FlgGXFJV65Oc0bdfmGR/YBzYG3gsydnAmqq6f6i6JElzk6qm0wpLwtjYWI2Pjy90GZK0ZCRZV1VjLX19p7ckqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmgwaGElOTHJrko1Jzp2m/XlJrkvycJJzRtYflOSvkmxIsj7Jm4asU5I0s+VDbTjJMuB84BXABHB9kquq6ksj3b4BnAWsnTJ8M/DzVXVDkpXAuiSfmjJWkrQDDbmHcRSwsao2VdUjwOXAyaMdquqeqroeeHTK+rur6ob+/gPABuCAAWuVJM1gyMA4ALhjZHmCOfzRT7IaOAL4wvYpS5I0F0MGRqZZV7PaQPIU4I+Bs6vq/q30OT3JeJLxycnJOZQpSWrRFBhJjk3yqST/kGRTkq8k2TTDsAngoJHlA4G7WgtLsjtdWFxWVVdurV9VXVRVY1U1tmrVqtbNS5JmqfWk9/uBnwPWAd9uHHM9cFiSQ4A7gVOAV7cMTJL+MTdU1W83Pp4kaUCtgfHNqvrEbDZcVZuTnAlcCywDLqmq9UnO6NsvTLI/MA7sDTyW5GxgDfAi4CeBv09yU7/Jt1bV1bOpQZK0/aRq5tMKSX6d7o/+lcDDW9ZveSXTYjE2Nlbj4+MLXYYkLRlJ1lXVWEvf1j2Mo/uvoxst4GWzKUyStHQ1BUZV/YehC5EkLW6tr5J6apLf3vLy1SS/leSpQxcnSVo8Wt+HcQnwAPDj/e1+4ANDFSVJWnxaz2F8d1X96MjyL4+8ekmStAto3cN4KMlLtywkORZ4aJiSJEmLUesexs8Cl/bnLUJ3ldnXDVWUJGnxaX2V1E3Ai5Ps3S9Pe10nSdLOa5uBkeTNW1kPgJftkKRdx0x7GCt3SBWSpEVvm4FRVb+8owqRJC1uMx2SektV/WaS32Waz7KoqrMGq0yStKjMdEhqQ//VK/pJ0i5upkNS/7f/eumWdUl2A57iK6UkadfSei2pDyfZO8lewJeAW5P8wrClSZIWk9Z3eq/p9yjWAlcDz6b7gCNJ0i6iNTB27z9jey3wp1X1KNOcBJck7bxaA+N9wG3AXsBnkhxMd8VaSdIuovXSIOcB542suj2JH6okSbuQ1pPeT09yXpIbkqxL8l7AD1CSpF1I6yGpy4FJ4EeBH+vv/+FQRUmSFp/Wy5s/rareMbL8ziRrB6hHkrRIte5h/FWSU5Ls1t9+HPizIQuTJC0urYHxeuAy4OH+djnw5iQPJPHVUpK0C2gNjKfSfcLeO6pqd2A18PKqWllVe29tUJITk9yaZGOSc6dpf16S65I8nOSc2YyVJO1YrYFxPvAS4NR++QHg97Y1IMmyftxJwBrg1CRrpnT7BnAW8O45jJUk7UCtgXF0Vb0B+FeAqroXWDHDmKOAjVW1qaoeoTuMdfJoh6q6p6quBx6d7VhJ0o7VGhiP9v/1F0CSVcBjM4w5ALhjZHmiX9eieWyS05OMJxmfnJxs3LwkabZaA+M84GPAM5K8C/hb4FdnGJNp1rVef6p5bFVdVFVjVTW2atWqxs1Lkmar9dIglyVZB5xA98d8bVVtmGHYBHDQyPKBwF2Ndc1nrCRpAK1v3KOqbgFumcW2rwcOS3IIcCdwCvDqHTBWkjSA5sCYraranORM4FpgGXBJVa1PckbffmGS/ek+/nVv4LEkZ9N/9sZ0Y4eqVZI0s1TtPB9rMTY2VuPjfvy4JLVKsq6qxlr6tp70liTt4gwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUZNDCSnJjk1iQbk5w7TXuSnNe3fzHJkSNtP5dkfZKbk3wkyZOHrFWStG2DBUaSZcD5wEnAGuDUJGumdDsJOKy/nQ5c0I89ADgLGKuqFwLLgFOGqlWSNLMh9zCOAjZW1aaqegS4HDh5Sp+TgQ9W5/PAPkme2bctB/ZIshzYE7hrwFolSTMYMjAOAO4YWZ7o183Yp6ruBN4NfBW4G/hmVX1yugdJcnqS8STjk5OT2614SdLjDRkYmWZdtfRJsi/d3schwLOAvZK8ZroHqaqLqmqsqsZWrVo1r4IlSVs3ZGBMAAeNLB/IEw8rba3Py4GvVNVkVT0KXAl834C1SpJmMGRgXA8cluSQJCvoTlpfNaXPVcBr+1dLvYTu0NPddIeiXpJkzyQBTgA2DFirJGkGy4facFVtTnImcC3dq5wuqar1Sc7o2y8ErgZeCWwEHgRO69u+kOQK4AZgM3AjcNFQtUqSZpaqqacVlq6xsbEaHx9f6DIkaclIsq6qxlr6+k5vSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUZNDCSnJjk1iQbk5w7TXuSnNe3fzHJkSNt+yS5IsktSTYkOWbIWiVJ2zZYYCRZBpwPnASsAU5NsmZKt5OAw/rb6cAFI23vBa6pqucBLwY2DFWrJGlmQ+5hHAVsrKpNVfUIcDlw8pQ+JwMfrM7ngX2SPDPJ3sBxwPsBquqRqrpvwFolSTMYMjAOAO4YWZ7o17X0ORSYBD6Q5MYkFyfZa8BaJUkzGDIwMs26auyzHDgSuKCqjgC+BTzhHAhAktOTjCcZn5ycnE+9kqRtGDIwJoCDRpYPBO5q7DMBTFTVF/r1V9AFyBNU1UVVNVZVY6tWrdouhUuSnmjIwLgeOCzJIUlWAKcAV03pcxXw2v7VUi8BvllVd1fV14A7khze9zsB+NKAtUqSZrB8qA1X1eYkZwLXAsuAS6pqfZIz+vYLgauBVwIbgQeB00Y28Ubgsj5sNk1pkyTtYKmaelph6RobG6vx8fGFLkOSlowk66pqrKWv7/SWJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNRns0iCS4MFHH+Tj//BxlmUZr3ruq3jS8ictdEnSnBkY0oA+9eVP8ae3/CkAK1es5Aee8wMLXJE0dx6Skga0x+57UP3HwOyx+x4LXI00P+5hSAM64ZATWLliJct2W8bYs5qu7yYtWgaGNKBluy3jmIOOWegypO3CQ1KSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqkqpa6Bq2mySTwO1bad4P+PoOLGdH2BnnBDvnvJzT0rEzzmtbczq4qla1bGSnCoxtSTJeVTvVW213xjnBzjkv57R07Izz2l5z8pCUJKmJgSFJarIrBcZFC13AAHbGOcHOOS/ntHTsjPPaLnPaZc5hSJLmZ1faw5AkzYOBIUlqsuQDI8mJSW5NsjHJudO0H5/km0lu6m9vm9K+LMmNST6+46qe2XzmleS2JH/frx/fsZVv3TzntE+SK5LckmRDkkXxIRNznVOSw0fW3ZTk/iRn7/AJbMU8n6ufS7I+yc1JPpLkyTu2+unNc05v6uezfjE9TzDzvPo+x/dzWp/kr2cz9nGqasnegGXAl4FDgRXA3wFrpvQ5Hvj4NrbxZuDD2+qz1OYF3Abst9Dz2M5zuhT4mf7+CmCfpT6nKdv5Gt0bqJb0cwUcAHwF2KNf/ijwuiU+pxcCNwN70n3o3J8Dhy30nGYxr32ALwHP7pef0Tp26m2p72EcBWysqk1V9QhwOXBy6+AkBwI/BFw8UH1zNa95LVJznlOSvYHjgPcDVNUjVXXfUIXOwvZ6nk4AvlxVW7tKwY4233ktB/ZIspzuj+xdA9Q4W/OZ0/OBz1fVg1W1Gfhr4D8OVOdstczr1cCVVfVVgKq6ZxZjH2epB8YBwB0jyxP9uqmOSfJ3ST6R5AUj638HeAvw2HAlzsl851XAJ5OsS3L6kIXOwnzmdCgwCXygP3x4cZK9Bq63xXyfpy1OAT4yRIFzNOd5VdWdwLuBrwJ3A9+sqk8OXXCD+TxXNwPHJXl6kj2BVwIHDVtus5Z5PRfYN8mn+78Jr53F2MdZ6oGRadZNfZ3wDXS7+i8Gfhf4E4AkrwLuqap1g1Y4N3OeV+/YqjoSOAl4Q5LjBqlyduYzp+XAkcAFVXUE8C1g5uOtw5vv80SSFcCPAH80RIFzNJ/fq33p/ks9BHgWsFeS1wxXarM5z6mqNgC/AXwKuIbu0M3mwSqdnZZ5LQe+h+5oyg8C/yvJcxvHPs5SD4wJHp/0BzJl97eq7q+qf+nvXw3snmQ/4FjgR5LcRrcr9rIkH9ohVc9sPvOiqu7qv94DfIxu13OhzWdOE8BEVX2h73oFXYAstHk9T72TgBuq6p+GLnYW5jOvlwNfqarJqnoUuBL4vh1T9jbN93fq/VV1ZFUdB3wD+McdU/aMZpxX3+eaqvpWVX0d+Azw4saxj7fQJ23mc6NLzk10/81sOWnzgil99uc7b1A8im5XOVP6HM/iOuk953kBewEr+/V7AZ8DTlzKc+qX/wY4vL//duB/L/U59esuB05b6Llsx5+/o4H1dOcuQvdihTcu5Tn1y1tOFD8buAXYd6HnNIt5PR/4i77vnnSH2F7YMnbqbTlLWFVtTnImcC3dGf9Lqmp9kjP69guBHwN+Nslm4CHglOq/i4vVfOaV5LuAjyWB7gfiw1V1zYJMZMR2eK7eCFzWH8LZBJy2wycxxXzn1B8PfwXw+gWZwFbMc15fSHIF3eGdzcCNLIJLbWyHn78/TvJ04FHgDVV1746fxRO1zKuqNiS5Bvgi3fnai6vqZoDpxm7r8bw0iCSpyVI/hyFJ2kEMDElSEwNDktTEwJAkNTEwJElNDAxpO0l3leD95ttHWqwMDElSEwNDmoMkf9JfyG391As8Jlmd7nM7Lk3yxXSf47HnSJc3Jrkh3WeWPK8fc1SSz/UXV/xcksN36ISkBgaGNDc/XVXfA4wBZ/XvAh51OHBRVb0IuB/4byNtX6/u4pAXAOf0624Bjqvu4opvA3510OqlOTAwpLk5K8nfAZ+nu4DbYVPa76iqz/b3PwS8dKTtyv7rOmB1f/+pwB8luRl4DzDdZdClBWVgSLOU5Hi6q7IeU92lsG8Epn4M6dRr7owuP9x//Tb82/Xc3gH8VVW9EPjhabYnLTgDQ5q9pwL3VtWD/TmIl0zT59n5zueOnwr8bcM27+zvv267VCltZwaGNHvXAMuTfJFuz+Dz0/TZAPxU3+dpdOcrtuU3gV9L8lm6K4dKi45Xq5W2sySr6T5f5YULXYu0PbmHIUlq4h6GJKmJexiSpCYGhiSpiYEhSWpiYEiSmhgYkqQm/x/Rb1JyjI++mwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha theta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgK0lEQVR4nO3dfZwV1Z3n8c83EKIQjCitIqAiEhB9KZI7+BDXuFEnYB4a4uQlZlyMJItmgsZkd2fZ7KxxYjIxjhknO+PqouKQjQ9LiCRsjE8hmzhrJo6NEAICIxKVRoKt8SEoE0B/+0edTlc3l763u7q66fb7fr3u61adc6ruOX0bvl2n7q1SRGBmZtZd7+jrDpiZWf/mIDEzs0IcJGZmVoiDxMzMCnGQmJlZIQ4SMzMrxEFitp+SdLak5r7uR56kdZLO7qT+S5Ju670e2f7AQWKlkPSMpJ2SdkjaLukOSe/u6351RtIxkkLS4B7a3wGSXpH0wSp1N0pa2hOv0x1pnK+n92erpL+RNKjWdhFxQkT8tJP6v4qIz/RoZ22/5yCxMn00It4NTAX+CPiLrmysTL/5He0YQBHxr8D/BuZ0aDcIuAhY3Hu9q+rk9P6cA3wS+PdFdtZTAWz9T7/5R2r9V0RsBe4HTpQ0QtIPJbVIejktj2ltK+mnkr4m6VHgDeBYSZdKWi/pd5I2S7os1/5sSc2S/lzSC5K2SZop6XxJ/yLpt5K+lGv/DkkLJD0t6SVJSyQdkqofSc+vpL/UT0/bzE2v/7KkByUdndtfSPqcpKeAp6oMfzFwgaShubIPkf3bu7+zsXWUXuu43Po/SPpqbv0jklano6CfSzpp3+9Km4jYAPwj2fszXtJP0s/mRUl3Sjo49xrPSDo3LV8jaamk70h6DfhUKvtOqm89wrtE0nNpf/81t68DJS1OP9f16T1sztX/53S09DtJGyWdU894rPc5SKx0ksYC5wOryH7n7gCOBo4CdgJ/32GTfwfMA4YDzwIvAB8BDgIuBW6UNDXX/gjgAGA0cDVwK3Ax8D7g3wBXSzo2tb0SmAl8ADgSeBm4KdWdlZ4Pjoh3R8Q/SZoJfAn4ONBA9h/u3R36OxM4FZjccewR8XNgW9o+P767ImJPHWOrS9pmEXAZcCjwP4Hlkt5Vx7aTyX5OqwABXyf72RwPjAWu6WTzRmApcDBw5z7anAlMJDvyuVrS8an8y8AxwLHAeWTvWWufJgLzgT+KiOFk4ftMrbFYH4kIP/zo8QfZP/odwCtkYfA/gAOrtJsCvJxb/ynwlRr7/j7w+bR8NlkYDUrrw4EATs21XwnMTMvrgXNydaOA3cBgsv/UAhicq78f+HRu/R1kR0pHp/UAPlijv38BPJSWD0rbn1Ln2JpzdQEcl1v/B+Craflm4NoO+9oIfGAfrxPAa2RB+jTwVeAdVdrNBFZ1eF/PTcvXAI90aH8N8J203PrzHJOr/2dgdlreDHwoV/eZ1vECx5GF7LnAO/v699mPzh+e07QyzYyIH+cL0hTPjcB0YEQqHi5pUES8mda3dNhmBtlfr+8l+498KPCrXJOXctvuTM/bc/U7gdYT/UcDyyS9lat/Ezh8H2M4GviWpG/mu0R29PNstf5W8W3gy5JGk/1lvSkiVtU5tnodDVwi6Ypc2RCyI4t9mRoRm/IFkg4D/jvZEcrw1KeXO9lHrbED/Ca3/AZt78WRHbb/w3JEbJJ0FVkwnSDpQeCLEfF8Ha9nvcxTW9bb/gPZNMepEXEQbdNJyrX5wyWp09TM94AbgMMj4mDgRx3ad8UWYEZEHJx7HBDZeZxql8LeAlzWof2BkU1Z7dXfaiLiObIpsT8lm9b6djfH9gZZ0LQ6okM/v9ahn0MjouM0XC1fT+M5Kb0/F3fSH6gx9hq2AWNy62Pb7Tjirog4kywkA/hGgdeyEjlIrLcNJztCeCWd5P5yjfZDgHcBLcCe9Bf8Hxd4/VuAr7WeMJfUIKkx1bUAb5HN2efb/xdJJ6T275H0iW687mKyOf/303YuoatjWw18UtIgSdPJzvO0uhW4XNKpygyT9GFJw7vYz+GkKcl0BPWfurh9Vywh+9mOSK81v7VC0kRJH0xh+69kvzNv7mM/1sccJNbb/hY4EHgR+AXwQGeNI+J3ZCfIl5BNsXwSWF7g9b+Vtn9I0u9SH05Nr/UG8DXg0fTJp9MiYhnZX8L3pE8mrQVmdON1l5JN5a2IiG3dHNvngY+SnXf6U7LzKaR9NZF9fPfv0742AZ/qRj//kuzj2q8C9wH3dmMf9foK0Az8Gvgx2c/o96nuXcB1ZL8nvwEOI/vQg+2HFOEbW5lZ35P0WbIT8R+o2dj2Kz4iMbM+IWmUpPen7/ZMJDt/tqyv+2Vd509tmVlfGUL2fZdxZNN195B9TNz6GU9tmZlZIZ7aMjOzQt4WU1sjR46MY445pq+7YWbWr6xcufLFiGio1e5tESTHHHMMTU1Nfd0NM7N+RdKztVt5asvMzApykJiZWSEOEjMzK6TUIJE0Pd2QZpOkBVXqGyWtSTfjaZJ0Zq7u85LWKrtH9FW58kMkPSzpqfQ8ouN+zcys95QWJMpuJ3oT2XWJJgMXpRvo5K0gu93nFGAucFva9kSy6wZNA04GPiJpQtpmAdn1iiak7fcKKDMz6z1lHpFMI7vvwuaI2EX2rdXGfIOI2BFt34gcRtslqY8HfhERb0R2F7mfAbNSXSNt97peTHbjHTMz6yNlBslo2t+0pjmVtSNplqQNZFcanZuK1wJnSTo03QjpfNruVXB47uqp28iuCroXSfPSdFlTS0tLjwzIzMz2VmaQVLsZzl7XY4mIZRExiezI4tpUtp7s0t0Pk11m/JfAnq68eEQsjIhKRFQaGmp+n8bMzLqpzCBppv0dz8YA+7xNZkQ8AoyXNDKt3x4RUyPiLOC3wFOp6XZJoyC7eijZfZ3NzKyPlBkkjwMTJI2TNASYTYeb9kg6TpLS8lSyq4G+lNYPS89HAR8HWm8Zuhy4JC1fAvygxDGYmVkNpV0iJSL2SJoPPAgMAhZFxDpJl6f6W4ALgDmSdpPdSvPC3Mn370k6FNgNfC4iXk7l1wFLJH0aeA7ozm1Pzcysh7wtLiNfqVTC19oyM+saSSsjolKrnb/ZbmZmhThIzMysEAeJmZkV4iAxM7NCHCRmZlaIg8TMzApxkJiZWSEOEjMzK8RBYmZmhThIzMysEAeJmZkV4iAxM7NCHCRmZlaIg8TMzApxkJiZWSEOEjMzK8RBYmZmhZQaJJKmS9ooaZOkBVXqGyWtkbRaUpOkM3N1X5C0TtJaSXdLOiCVXyNpa9pmtaTzyxyDmZl1rrQgkTQIuAmYAUwGLpI0uUOzFcDJETEFmAvclrYdDVwJVCLiRLJ7vs/ObXdjRExJjx+VNQYzM6utzCOSacCmiNgcEbuAe4DGfIOI2BFtN40fBuRvID8YOFDSYGAo8HyJfTUzs24qM0hGA1ty682prB1JsyRtAO4jOyohIrYCNwDPAduAVyPiodxm89OU2CJJI6q9uKR5abqsqaWlpWdGZGZmeykzSFSlLPYqiFgWEZOAmcC1ACkcGoFxwJHAMEkXp01uBsYDU8hC5pvVXjwiFkZEJSIqDQ0NxUZiZmb7VGaQNANjc+tj6GR6KiIeAcZLGgmcC/w6IloiYjdwL3BGarc9It6MiLeAW8mm0MzMrI+UGSSPAxMkjZM0hOxk+fJ8A0nHSVJangoMAV4im9I6TdLQVH8OsD61G5XbxSxgbYljMDOzGgaXteOI2CNpPvAg2aeuFkXEOkmXp/pbgAuAOZJ2AzuBC9PJ98ckLQWeAPYAq4CFadfXS5pCNk32DHBZWWMwM7Pa1PahqYGrUqlEU1NTX3fDzKxfkbQyIiq12vmb7WZmVoiDxMzMCnGQmJlZIQ4SMzMrxEFiZmaFOEjMzKwQB4mZmRXiIDEzs0IcJGZmVoiDxMzMCnGQmJlZIQ4SMzMrxEFiZmaFOEjMzKwQB4mZmRXiIDEzs0IcJGZmVoiDxMzMCik1SCRNl7RR0iZJC6rUN0paI2m1pCZJZ+bqviBpnaS1ku6WdEAqP0TSw5KeSs8jyhyDmZl1rrQgkTQIuAmYAUwGLpI0uUOzFcDJETEFmAvclrYdDVwJVCLiRGAQMDttswBYERET0vZ7BZSZmfWeMo9IpgGbImJzROwC7gEa8w0iYkdERFodBkSuejBwoKTBwFDg+VTeCCxOy4uBmeV038zM6lFmkIwGtuTWm1NZO5JmSdoA3Ed2VEJEbAVuAJ4DtgGvRsRDaZPDI2JbarcNOKzai0ual6bLmlpaWnpoSGZm1lGZQaIqZbFXQcSyiJhEdmRxLUA679EIjAOOBIZJurgrLx4RCyOiEhGVhoaGrvbdzMzqVGaQNANjc+tjaJue2ktEPAKMlzQSOBf4dUS0RMRu4F7gjNR0u6RRAOn5hTI6b2Zm9SkzSB4HJkgaJ2kI2cny5fkGko6TpLQ8FRgCvEQ2pXWapKGp/hxgfdpsOXBJWr4E+EGJYzAzsxoGl7XjiNgjaT7wINmnrhZFxDpJl6f6W4ALgDmSdgM7gQvTyffHJC0FngD2AKuAhWnX1wFLJH2aLHA+UdYYzMysNrV9aGrgqlQq0dTU1NfdMDPrVyStjIhKrXb+ZruZmRXiIDEzs0IcJGZmVoiDxMzMCnGQmJlZIQ4SMzMrxEFiZmaFOEjMzKwQB4mZmRXiIDEzs0IcJGZmVoiDxMzMCnGQmJlZIQ4SMzMrxEFiZmaFOEjMzKwQB4mZmRXiIDEzs0JKDRJJ0yVtlLRJ0oIq9Y2S1khaLalJ0pmpfGIqa328JumqVHeNpK25uvPLHIOZmXVucFk7ljQIuAk4D2gGHpe0PCKezDVbASyPiJB0ErAEmBQRG4Epuf1sBZbltrsxIm4oq+9mZla/Mo9IpgGbImJzROwC7gEa8w0iYkdERFodBgR7Owd4OiKeLbGvZmbWTWUGyWhgS269OZW1I2mWpA3AfcDcKvuZDdzdoWx+mhJbJGlEtReXNC9NlzW1tLR0bwRmZlZTmUGiKmV7HXFExLKImATMBK5ttwNpCPAx4Lu54puB8WRTX9uAb1Z78YhYGBGViKg0NDR0p/9mZlaHMoOkGRibWx8DPL+vxhHxCDBe0shc8QzgiYjYnmu3PSLejIi3gFvJptDMzKyPlBkkjwMTJI1LRxazgeX5BpKOk6S0PBUYAryUa3IRHaa1JI3Krc4C1pbQdzMzq1Npn9qKiD2S5gMPAoOARRGxTtLlqf4W4AJgjqTdwE7gwtaT75KGkn3i67IOu75e0hSyabJnqtSbmVkvUtuHpgauSqUSTU1Nfd0NM7N+RdLKiKjUaudvtpuZWSEOEjMzK8RBYmZmhThIzMysEAeJmZkVUtfHfyV9GDgBOKC1LCK+UlanzMys/6h5RCLpFuBC4Aqyy558Aji65H6ZmVk/Uc/U1hkRMQd4OSL+Ejid9pc+MTOzt7F6gmRnen5D0pHAbmBceV0yM7P+pJ5zJD+UdDDw18ATZJcmua3MTpmZWf9RT5BcHxG/B74n6YdkJ9z/tdxumZlZf1HP1NY/tS5ExO8j4tV8mZmZvb3t84hE0hFkdzQ8UNIptN2o6iBgaC/0zczM+oHOprY+BHyK7IZUf5Mrfw34Uol9MntbeHr1T3j26VWccsbHGTHKn1+x/mufQRIRi4HFki6IiO/1Yp/MBryXmp/iujs/y863dvHetfdx9Zd/0tddMuu2es6RPCrpdkn3A0iaLOnTJffLbEDbvWsnu+NNDnjHEHbs2tHX3TErpJ4guYPsLodHpvV/Aa4qq0NmbwdHHHsSl5+7gDPGnsEVF/9dX3fHrJB6gmRkRCwB3oLsFrrAm/XsXNJ0SRslbZK0oEp9o6Q1klZLapJ0ZiqfmMpaH69JuirVHSLpYUlPpecR9Q7WbH9y2vTPMPfKOxh7/Kl93RWzQuoJktclHUr2RUQknQa8WmsjSYOAm4AZwGTgIkmTOzRbAZwcEVOAuaQvOkbExoiYksrfB7wBLEvbLABWRMSEtP1eAWVmZr2nniD5IrAcGC/pUeDbZBdwrGUasCkiNkfELuAeoDHfICJ2RNtN44eRwqqDc4CnI+LZtN4ILE7Li4GZdfTFzMxKUvOb7RHxhKQPABPJvkuyMSJ217Hv0cCW3HozsNcxvKRZwNeBw4APV9nPbODu3PrhEbEt9W2bpMOqvbikecA8gKOOOqqO7pqZWXfUe2OracDJwFSyKao5dWyjKmV7HXFExLKImER2ZHFtux1IQ4CPAd+ts5/5/S6MiEpEVBoaGrq6uZmZ1anmEYmk/wWMB1bTdpI9yKa4OtNM+8vNjwGe31fjiHhE0nhJIyPixVQ8A3giIrbnmm6XNCodjYwCXqg1BjMzK089F22sAJNz5zLq9TgwQdI4YCvZFNUn8w0kHUd2/iMkTQWGAC/lmlxE+2ktyM7XXAJcl55/0MV+mZlZD6onSNYCRwDburLjiNgjaT7Zd1AGAYsiYp2ky1P9LcAFwBxJu8nue3Jha2BJGgqcB1zWYdfXAUvSlyKfI7tjo5mZ9RHt60BD0v8hm8IaDkwB/hn4fWt9RHysF/rXIyqVSjQ1NfV1N8zM+hVJKyOiUqtdZ0ckN5CdMP8G7T9i21pmZmbW6UUbfwYg6Z2ty60kHVh2x8zMrH/o7H4knwX+DDhW0ppc1XDg0bI7ZmZm/UNnU1t3AfeTfVkwfxmS30XEb0vtlZmZ9RudTW29SnZNrYt6rztmZtbf1PvNdjMzs6ocJGZmVoiDxMzMCnGQmJlZIQ4SMzMrxEFiZmaFOEjMzKwQB4mZmRXiIDEzs0IcJGZmVoiDxMzMCnGQmJlZIQ4SMzMrpNQgkTRd0kZJmyQtqFLfKGmNpNWSmiSdmas7WNJSSRskrZd0eiq/RtLWtM1qSeeXOQYzM+tcZ/cjKUTSIOAm4DygGXhc0vKIeDLXbAWwPCJC0knAEmBSqvsW8EBE/ImkIcDQ3HY3RsQNZfXdzMzqV+YRyTRgU0RsjohdwD1AY75BROyIiEirw4AAkHQQcBZwe2q3KyJeKbGvZmbWTWUGyWhgS269OZW1I2mWpA3AfcDcVHws0ALcIWmVpNskDcttNj9NiS2SNKLai0ual6bLmlpaWnpkQGZmtrcyg0RVymKvgohlETEJmAlcm4oHA1OBmyPiFOB12m73ezMwHpgCbAO+We3FI2JhRFQiotLQ0FBgGGZm1pkyg6QZGJtbHwM8v6/GEfEIMF7SyLRtc0Q8lqqXkgULEbE9It6MiLeAW8mm0MzMrI+UGSSPAxMkjUsny2cDy/MNJB0nSWl5KjAEeCkifgNskTQxNT0HeDK1G5XbxSxgbYljMDOzGkr71FZE7JE0H3gQGAQsioh1ki5P9bcAFwBzJO0GdgIX5k6+XwHcmUJoM3BpKr9e0hSyabJngMvKGoOZmdWmtv+3B65KpRJNTU193Q0zs35F0sqIqNRq52+2m5lZIQ4SMzMrxEFiZmaFOEjMzKwQB4mZmRXiIDEzs0IcJGZmVoiDxMzMCnGQmJlZIQ4SMzMrxEFiZmaFOEjMzKwQB4mZmRXiIDEzs0IcJGZmVoiDxMzMCnGQmJlZIQ4SMzMrpNQgkTRd0kZJmyQtqFLfKGmNpNWSmiSdmas7WNJSSRskrZd0eio/RNLDkp5KzyPKHIOZmXWutCCRNAi4CZgBTAYukjS5Q7MVwMkRMQWYC9yWq/sW8EBETAJOBtan8gXAioiYkLbfK6DMzKz3lHlEMg3YFBGbI2IXcA/QmG8QETsiItLqMCAAJB0EnAXcntrtiohXUrtGYHFaXgzMLHEMZmZWQ5lBMhrYkltvTmXtSJolaQNwH9lRCcCxQAtwh6RVkm6TNCzVHR4R2wDS82HVXlzSvDRd1tTS0tIzIzIzs72UGSSqUhZ7FUQsS9NXM4FrU/FgYCpwc0ScArxOF6ewImJhRFQiotLQ0NCljpuZWf3KDJJmYGxufQzw/L4aR8QjwHhJI9O2zRHxWKpeShYsANsljQJIzy/0dMfNzKx+ZQbJ48AESeMkDQFmA8vzDSQdJ0lpeSowBHgpIn4DbJE0MTU9B3gyLS8HLknLlwA/KHEMZmZWw+CydhwReyTNBx4EBgGLImKdpMtT/S3ABcAcSbuBncCFuZPvVwB3phDaDFyayq8Dlkj6NPAc8ImyxmBmZrWp7f/tgatSqURTU1Nfd8PMrF+RtDIiKrXa+ZvtZmZWiIPEzMwKcZCYmVkhDhIzMyvEQWJmZoU4SMzMrBAHiZmZFeIgMTOzQhwkZmZWiIPEzMwKcZCYmVkhDhIzMyvEQWJmZoU4SMzMrBAHiZmZFeIgMTOzQhwkZmZWSKlBImm6pI2SNklaUKW+UdIaSaslNUk6M1f3jKRftdblyq+RtDWVr5Z0fpljMDOzzpV2z3ZJg4CbgPOAZuBxScsj4slcsxXA8ogISScBS4BJufp/GxEvVtn9jRFxQ1l9NzOz+pV5RDIN2BQRmyNiF3AP0JhvEBE7ou2m8cOAgX8DeTOzAabMIBkNbMmtN6eydiTNkrQBuA+Ym6sK4CFJKyXN67DZ/DQltkjSiGovLmlemi5ramlpKTYSMzPbpzKDRFXK9jriiIhlETEJmAlcm6t6f0RMBWYAn5N0Viq/GRgPTAG2Ad+s9uIRsTAiKhFRaWho6PYgzMysc2UGSTMwNrc+Bnh+X40j4hFgvKSRaf359PwCsIxsqoyI2B4Rb0bEW8CtreVmZtY3ygySx4EJksZJGgLMBpbnG0g6TpLS8lRgCPCSpGGShqfyYcAfA2vT+qjcLma1lpuZWd8o7VNbEbFH0nzgQWAQsCgi1km6PNXfAlwAzJG0G9gJXJg+wXU4sCxlzGDgroh4IO36eklTyKbJngEuK2sMZmZWm9o+NDVwVSqVaGpqqt3QzMz+QNLKiKjUaudvtpuZWSEOEjMzK8RBYmZmhThIzMysEAeJmZkV4iAxM7NCHCRmZlaIg8TMzApxkJiZWSEOEjMzK8RBYmZmhThIzMysEAeJmZkV4iAxM7NCHCRmZlaIg8TMzApxkJiZWSEOEjMzK+RtcatdSS3As/uoHgm82Ivd6S0DcVweU/8xEMc1EMcEnY/r6IhoqLWDt0WQdEZSUz33JO5vBuK4PKb+YyCOayCOCXpmXJ7aMjOzQhwkZmZWiIMEFvZ1B0oyEMflMfUfA3FcA3FM0APjetufIzEzs2J8RGJmZoU4SMzMrJABHSSSpkvaKGmTpAVV6s+W9Kqk1elxdYf6QZJWSfph7/W6c0XGJOkZSb9K5U292/N9KzimgyUtlbRB0npJp/du7/etu+OSNDFXtlrSa5Ku6vUBVFHwvfqCpHWS1kq6W9IBvdv7fSs4rs+nMa3bX94nqD2m1ObsNJ51kn7WlW3biYgB+QAGAU8DxwJDgF8Ckzu0ORv4YSf7+CJwV2dt+tOYgGeAkX09jh4e02LgM2l5CHBwX4+pp37/cvv5DdkXw/rtmIDRwK+BA9P6EuBTfT2mHhjXicBaYCgwGPgxMKGfjOlg4EngqLR+WL3bdnwM5COSacCmiNgcEbuAe4DGejeWNAb4MHBbSf3rjkJj2k91e0ySDgLOAm4HiIhdEfFKWR3top56r84Bno6IfV2ZoTcVHdNg4EBJg8n+432+hD52R5FxHQ/8IiLeiIg9wM+AWSX1syvqGdMngXsj4jmAiHihC9u2M5CDZDSwJbfenMo6Ol3SLyXdL+mEXPnfAn8OvFVeF7us6JgCeEjSSknzyuxoFxQZ07FAC3BHmoK8TdKwkvtbr6LvVavZwN1ldLAbuj2miNgK3AA8B2wDXo2Ih8rucJ2KvFdrgbMkHSppKHA+MLbc7talnjG9Fxgh6afp/4Q5Xdi2nYEcJKpS1vGzzk+QTRmcDPwd8H0ASR8BXoiIlaX2sOu6Pabk/RExFZgBfE7SWaX0smuKjGkwMBW4OSJOAV4Has/n9o6i7xWShgAfA75bRge7oci/qRFkf9WOA44Ehkm6uLyudkm3xxUR64FvAA8DD5BNA+0praf1q2dMg4H3kc28fAj4b5LeW+e27QzkIGmm/V8GY+hwKB0Rr0XEjrT8I+CdkkYC7wc+JukZssO6D0r6Tq/0unNFxkREPJ+eXwCWkR3C9rUiY2oGmiPisdR0KVmw7A8KvVfJDOCJiNhedmfrVGRM5wK/joiWiNgN3Auc0Tvdrqnov6vbI2JqRJwF/BZ4qne63amaY0ptHoiI1yPiReAR4OQ6t22vr08KlfUgS9vNZH8BtZ4wOqFDmyNo+1LmNLLDbnVoczb7z8n2bo8JGAYMT+XDgJ8D0/vzmNL6PwIT0/I1wF/39Zh66veP7I+YS/t6LD30+3cqsI7s3IjIPiRxRV+PqYd+B1tPUh8FbABG9JMxHQ+sSG2Hkk3TnVjPth0fgxmgImKPpPnAg2SfQlgUEeskXZ7qbwH+BPispD3ATmB2pJ/w/qjImCQdDiyTBNkvyl0R8UCfDCSnB96nK4A70zTQZuDSXh9EFUXHlebbzwMu65MBVFFwTI9JWko2RbQHWMV+csmRHvgd/J6kQ4HdwOci4uXeH0V79YwpItZLegBYQ3Yu+LaIWAtQbdvOXs+XSDEzs0IG8jkSMzPrBQ4SMzMrxEFiZmaFOEjMzKwQB4mZmRXiIDErmbKrLo8s2sZsf+UgMTOzQhwkZj1I0vfTBfDWdbwwpqRjlN03ZbGkNcruozI01+QKSU8ou2fMpLTNNEk/Txel/Lmkib06ILM6OEjMetbciHgfUAGuTN94zpsILIyIk4DXgD/L1b0Y2UU1bwb+YyrbAJwV2UUprwb+qtTem3WDg8SsZ10p6ZfAL8gufDehQ/2WiHg0LX8HODNXd296Xgkck5bfA3xX0lrgRqDapebN+pSDxKyHSDqb7Cq3p0d2ufFVQMfbyXa8JlF+/ffp+U34w3XwrgX+b0ScCHy0yv7M+pyDxKznvAd4OSLeSOc4TqvS5ii13Vf+IuD/1bHPrWn5Uz3SS7Me5iAx6zkPAIMlrSE7kvhFlTbrgUtSm0PIzod05nrg65IeJbsSq9l+x1f/Neslko4hu7fNiX3dF7Oe5CMSMzMrxEckZmZWiI9IzMysEAeJmZkV4iAxM7NCHCRmZlaIg8TMzAr5/4cZsfOfJIG/AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha zeta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAb0klEQVR4nO3df7xldV3v8dfbGRAQEIxBcBgZUOSHPFDsBKilXNQbmAm3W48HWoY/CjEQpqQi6qKVlhlX66ZXIqHoIcYlQON6ESTSSgWcM4DCOBIjIYygMwQEBAEjn/vHWiOb7Zk5e5911hzO8Ho+Hvtx1vr+WOv7Pfuc8z5rrb3XTlUhSdJMPWOuByBJmt8MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEhPUUkOT7JmrscxKMnKJIdvov70JJ/YfCPSU4FBol4kuS3Jw0keTPK9JH+ZZPu5HtemJFmapJIsnKXtbZPkviRHTFH3kSQXzcZ+ZqKd53+0z893knw4yYLp+lXVi6vqi5uo/4Oq+qVZHaye8gwS9emnq2p74GXAjwG/M07nNObNz+hwAFXVfwL/B/jFoXYLgDcB522+0U3pJe3z8xrgzcAvd9nYbAWw5p9580uq+auqvgN8Djgwyc5JPptkXZJ72+U9NrRN8sUkH0jyZeAhYO8kb0uyKskDSW5N8s6B9ocnWZPkN5KsTXJXkmOSvD7JvyS5J8npA+2fkeS0JN9K8m9JLkzynLb6n9qv97X/qb+87fP2dv/3JrkiyZ4D26skJya5BbhliumfB/z3JNsNlP0kze/e5zY1t2Htvl44sP5XSd4/sP6GJDe0R0FfSXLQxp+VJ1TVN4F/pnl+XpDkH9rvzd1Jzk+y08A+bkvy2nb5fUkuSvLJJPcDb23LPtnWbzjCOy7J7e32fntgW9smOa/9vq5qn8M1A/W/2R4tPZDk5iSvGWU+2vwMEvUuyRLg9cD1ND9zfwnsCTwfeBj46FCXtwDHAzsA3wbWAm8AdgTeBnwkycsG2u8GbAMsBs4A/gL4BeBHgZ8Azkiyd9v2ZOAY4NXA84B7gY+1da9qv+5UVdtX1dVJjgFOB34GWETzB/dvhsZ7DHAocMDw3KvqK8Bdbf/B+X2qqtaPMLeRtH3OBd4J/Ajw58ClSZ45Qt8DaL5P1wMB/pDme7M/sAR43ya6Hw1cBOwEnL+RNj8O7Etz5HNGkv3b8vcCS4G9gdfRPGcbxrQvcBLwY1W1A0343jbdXDRHqsqHj1l/0PzSPwjcRxMG/xvYdop2LwXuHVj/IvB702z7M8Ap7fLhNGG0oF3fASjg0IH2K4Bj2uVVwGsG6nYHHgMW0vxRK2DhQP3ngHcMrD+D5khpz3a9gCOmGe/vAJ9vl3ds+x884tzWDNQV8MKB9b8C3t8ufxz4/aFt3Qy8eiP7KeB+miD9FvB+4BlTtDsGuH7oeX1tu/w+4J+G2r8P+GS7vOH7ucdA/VeBY9vlW4GfHKj7pQ3zBV5IE7KvBbaa659nH5t+eE5TfTqmqv5+sKA9xfMR4Ehg57Z4hyQLqur77fodQ32Oovnv9UU0f8i3A24caPJvA30fbr9+b6D+YWDDhf49gU8neXyg/vvAczcyhz2BP03yPweHRHP08+2pxjuFvwbem2QxzX/Wq6vq+hHnNqo9geOSvHugbGuaI4uNeVlVrR4sSLIr8L9ojlB2aMd07ya2Md3cAb47sPwQTzwXzxvq/4PlqlqdZBlNML04yRXAr1XVnSPsT5uZp7a0ub2H5jTHoVW1I0+cTspAmx/ckro9NXMxcCbw3KraCbhsqP047gCOqqqdBh7bVHMdZ6pbYd8BvHOo/bbVnLL6ofFOpapupzkl9vM0p7X+eoZze4gmaDbYbWicHxga53ZVNXwabjp/2M7noPb5+YVNjAemmfs07gL2GFhf8qQNV32qqn6cJiQL+KMO+1KPDBJtbjvQHCHc117kfu807bcGngmsA9a3/8H/1w77Pwv4wIYL5kkWJTm6rVsHPE5zzn6w/W8leXHb/tlJfm4G+z2P5pz/K3niWsK4c7sBeHOSBUmOpLnOs8FfACckOTSNZyX5qSQ7jDnOHWhPSbZHUL8+Zv9xXEjzvd253ddJGyqS7JvkiDZs/5PmZ+b7G9mO5phBos3tT4BtgbuBa4DLN9W4qh6guUB+Ic0pljcDl3bY/5+2/T+f5IF2DIe2+3oI+ADw5faVT4dV1adp/hO+oH1l0k3AUTPY70U0p/Kuqqq7Zji3U4Cfprnu9PM011NotzVJ8/Ldj7bbWg28dQbj/F2al2v/O/D/gEtmsI1R/R6wBvhX4O9pvkePtHXPBD5I83PyXWBXmhc96CkoVX6wlaS5l+RdNBfiXz1tYz2leEQiaU4k2T3JK9v39uxLc/3s03M9Lo3PV21Jmitb07zfZS+a03UX0LxMXPOMp7YkSZ14akuS1MnT4tTWLrvsUkuXLp3rYUjSvLJixYq7q2rRdO2eFkGydOlSJicn53oYkjSvJPn29K08tSVJ6sggkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6qTXIElyZJKbk6xOctoU9fsluTrJI0lOHSjfJslXk3wtycokvztQ95wkVya5pf26c59zkCRtWm9BkmQB8DHgKOAA4E1JDhhqdg9wMnDmUPkjwBFV9RLgpcCRSQ5r604DrqqqfYCr2nVJ0hzp84jkEGB1Vd1aVY8CFwBHDzaoqrVVtRx4bKi8qurBdnWr9lHt+tHAee3yecAx/QxfkjSKPoNkMXDHwPqatmwkSRYkuQFYC1xZVde2Vc+tqrsA2q+7bqT/8Ukmk0yuW7duJuOXJI2gzyDJFGU1RdmUqur7VfVSYA/gkCQHjrPzqjq7qiaqamLRokXjdJUkjaHPIFkDLBlY3wO4c9yNVNV9wBeBI9ui7yXZHaD9urbTKCVJnfQZJMuBfZLslWRr4Fjg0lE6JlmUZKd2eVvgtcA32+pLgePa5eOAv5vNQUuSxrOwrw1X1fokJwFXAAuAc6tqZZIT2vqzkuwGTAI7Ao8nWUbzCq/dgfPaV349A7iwqj7bbvqDwIVJ3gHcDvxcX3OQJE0vVSNftpi3JiYmanJycq6HIUnzSpIVVTUxXTvf2S5J6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUie9BkmSI5PcnGR1ktOmqN8vydVJHkly6kD5kiRfSLIqycokpwzUvTTJNUluSDKZ5JA+5yBJ2rTegiTJAuBjwFHAAcCbkhww1Owe4GTgzKHy9cB7qmp/4DDgxIG+HwJ+t6peCpzRrkuS5kifRySHAKur6taqehS4ADh6sEFVra2q5cBjQ+V3VdV17fIDwCpg8YZqYMd2+dnAnf1NQZI0nYU9bnsxcMfA+hrg0HE3kmQpcDBwbVu0DLgiyZk0QfiKTqOUJHXS5xFJpiirsTaQbA9cDCyrqvvb4ncBv1pVS4BfBc7ZSN/j22sok+vWrRtnt5KkMfQZJGuAJQPrezDGaagkW9GEyPlVdclA1XHAhvW/pTmF9kOq6uyqmqiqiUWLFo01cEnS6PoMkuXAPkn2SrI1cCxw6Sgdk4TmSGNVVX14qPpO4NXt8hHALbM0XknSDPR2jaSq1ic5CbgCWACcW1Urk5zQ1p+VZDdgkubi+eNJltG8wusg4C3AjUluaDd5elVdBvwy8KdJFgL/CRzf1xwkSdNL1ViXLealiYmJmpycnOthSNK8kmRFVU1M1853tkuSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqpNcgSXJkkpuTrE5y2hT1+yW5OskjSU4dKF+S5AtJViVZmeSUoX7vbre7MsmH+pyDJGnTFva14SQLgI8BrwPWAMuTXFpV3xhodg9wMnDMUPf1wHuq6rokOwArklxZVd9I8l+Ao4GDquqRJLv2NQdJ0vT6PCI5BFhdVbdW1aPABTQB8ANVtbaqlgOPDZXfVVXXtcsPAKuAxW31u4APVtUjG7bR4xwkSdPoM0gWA3cMrK/hiTAYWZKlwMHAtW3Ri4CfSHJtkn9M8mMb6Xd8kskkk+vWrRt3t5KkEfUZJJmirMbaQLI9cDGwrKrub4sXAjsDhwG/DlyY5If2VVVnV9VEVU0sWrRovJFLkkbWZ5CsAZYMrO8B3Dlq5yRb0YTI+VV1ydB2L6nGV4HHgV1mYbySpBnoM0iWA/sk2SvJ1sCxwKWjdGyPMM4BVlXVh4eqPwMc0bZ7EbA1cPdsDVqSNJ7eXrVVVeuTnARcASwAzq2qlUlOaOvPSrIbMAnsCDyeZBlwAHAQ8BbgxiQ3tJs8vaouA84Fzk1yE/AocFxVjXXKTJI0e/J0+Bs8MTFRk5OTcz0MSZpXkqyoqonp2vnOdklSJwaJJKkTg0SS1MnIF9uTHEhzIXybDWVV9dd9DEqSNH+MFCRJ3gscThMklwFHAV8CDBJJepob9dTWzwKvAb5bVW8DXgI8s7dRSZLmjVGD5OGqehxYn2RHYC2wd3/DkiTNF6NeI5lMshPwF8AK4EHgq30NSpI0f4wUJFX1K+3iWUkuB3asqq/3Nyxpy/etG/6Bb3/reg5+xc+w8+57zfVwpBkb6dRWkqs2LFfVbVX19cEySeP5tzW38MHz38W5X/kof3b2O+Z6OFInmzwiSbINsB2wS5KdeeLW8DsCz+t5bNIW67FHH+ax+j7bPGNrHnz0wbkejtTJdKe23gksowmN6wbK76f5GF1JM7Db3gdxwmtP4xv/8mVe97oT5no4Uicj3bQxybur6s82w3h64U0bJWl8s33TxnOT/E6Ss9uN75PkDZ1GKEnaIowcJDSf/fGKdn0N8P5eRiRJmldGDZIXVNWHgMcAquphpv5MdknS08yoQfJokm2BAkjyAuCR3kYlSZo3Rn1n+3uBy4ElSc4HXgm8ta9BSZLmj1GD5DTgbOA+mlNay4APAF/sY1CSpPlj1FNbewHHAxNV9dmqWgdM+5IwSdKWb9QguY/mNvLPTfJ/kzy7vyFJkuaTUYMkVbW+vXnjxTQfarVrf8OSJM0Xo14jOWvDQlX9VZIbgRP7GZIkaT4Z6Yikqv58aH1FVb19un5Jjkxyc5LVSU6bon6/JFcneSTJqQPlS5J8IcmqJCuTnDJF31OTVJJdRpmDJKkfox6RjC3JApobO76O5p3wy5NcWlXfGGh2D3AycMxQ9/XAe6rquiQ7ACuSXLmhb5Il7XZv72v8kqTRjHqNZCYOAVZX1a1V9ShwAXD0YIOqWltVy2nfMT9QfldVXdcuPwCsAhYPNPkI8Bu0b5CUJM2dPoNkMXDHwPoanhwGI0myFDgYuLZdfyPwnar62jT9jk8ymWRy3bp14+5WkjSiPoNkqntxjXUEkWR7mleJLauq+5NsB/w2cMZ0favq7KqaqKqJRYsWjbNbSdIY+gySNcCSgfU9gDtH7ZxkK5oQOb+qLmmLX0Dz5sivJbmt3eZ1SXablRFLksbW28V2YDmwT5K9gO8AxwJvHqVjkgDnAKuq6sMbyqvqRgbev9KGyURV3T2L45YkjaG3IKmq9UlOAq4AFgDnVtXKJCe09We1RxKTNJ8B/3iSZcABwEHAW4Abk9zQbvL0qrqsr/FKkmamzyMS2j/8lw2VDb658bs0p6eGfYkRPu+kqpZ2HKIkqaM+r5FIkp4GDBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR10muQJDkyyc1JVic5bYr6/ZJcneSRJKcOlC9J8oUkq5KsTHLKQN0fJ/lmkq8n+XSSnfqcgyRp03oLkiQLgI8BRwEHAG9KcsBQs3uAk4Ezh8rXA++pqv2Bw4ATB/peCRxYVQcB/wL8Vk9TkCSNoM8jkkOA1VV1a1U9ClwAHD3YoKrWVtVy4LGh8ruq6rp2+QFgFbC4Xf98Va1vm14D7NHjHCRJ0+gzSBYDdwysr2nLxpJkKXAwcO0U1W8HPjeTwUmSZkefQZIpymqsDSTbAxcDy6rq/qG636Y5BXb+Rvoen2QyyeS6devG2a0kaQx9BskaYMnA+h7AnaN2TrIVTYicX1WXDNUdB7wB+PmqmjKcqursqpqoqolFixaNPXhJ0mj6DJLlwD5J9kqyNXAscOkoHZMEOAdYVVUfHqo7EvhN4I1V9dAsj1mSNKaFfW24qtYnOQm4AlgAnFtVK5Oc0NaflWQ3YBLYEXg8yTKaV3gdBLwFuDHJDe0mT6+qy4CPAs8Ermzyhmuq6oS+5iFJ2rTeggSg/cN/2VDZWQPL32XqV119iamvsVBVL5zNMUqSuvGd7ZKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI66TVIkhyZ5OYkq5OcNkX9fkmuTvJIklMHypck+UKSVUlWJjlloO45Sa5Mckv7dec+5yBJ2rTegiTJAuBjwFHAAcCbkhww1Owe4GTgzKHy9cB7qmp/4DDgxIG+pwFXVdU+wFXtuiRpjvR5RHIIsLqqbq2qR4ELgKMHG1TV2qpaDjw2VH5XVV3XLj8ArAIWt9VHA+e1y+cBx/Q2A0nStPoMksXAHQPra3giDEaWZClwMHBtW/TcqroLmsABdt1Iv+OTTCaZXLdu3bi7lSSNqM8gyRRlNdYGku2Bi4FlVXX/OH2r6uyqmqiqiUWLFo3TVZI0hj6DZA2wZGB9D+DOUTsn2YomRM6vqksGqr6XZPe2ze7A2lkYqyRphvoMkuXAPkn2SrI1cCxw6SgdkwQ4B1hVVR8eqr4UOK5dPg74u1karyRpBhb2teGqWp/kJOAKYAFwblWtTHJCW39Wkt2ASWBH4PEky2he4XUQ8BbgxiQ3tJs8vaouAz4IXJjkHcDtwM/1NQdJ0vRSNdZli3lpYmKiJicn53oYkjSvJFlRVRPTtfOd7ZKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ2kquZ6DL1Lsg749kaqdwHu3ozD2Vy2xHk5p/ljS5zXljgn2PS89qyqRdNt4GkRJJuSZLKqJuZ6HLNtS5yXc5o/tsR5bYlzgtmZl6e2JEmdGCSSpE4MEjh7rgfQky1xXs5p/tgS57UlzglmYV5P+2skkqRuPCKRJHVikEiSOtmigyTJkUluTrI6yWlT1B+e5N+T3NA+zhiqX5Dk+iSf3Xyj3rQuc0pyW5Ib2/LJzTvyjes4p52SXJTkm0lWJXn55h39xs10Xkn2HSi7Icn9SZZt9glMoeNz9atJVia5KcnfJNlm845+4zrO65R2TiufKs8TTD+nts3h7XxWJvnHcfo+SVVtkQ9gAfAtYG9ga+BrwAFDbQ4HPruJbfwa8KlNtZlPcwJuA3aZ63nM8pzOA36pXd4a2Gmu5zRbP38D2/kuzRvD5u2cgMXAvwLbtusXAm+d6znNwrwOBG4CtgMWAn8P7DNP5rQT8A3g+e36rqP2HX5syUckhwCrq+rWqnoUuAA4etTOSfYAfgr4RE/jm4lOc3qKmvGckuwIvAo4B6CqHq2q+/oa6Jhm67l6DfCtqtrYnRk2p65zWghsm2QhzR/eO3sY40x0mdf+wDVV9VBVrQf+EfhvPY1zHKPM6c3AJVV1O0BVrR2j75NsyUGyGLhjYH1NWzbs5Um+luRzSV48UP4nwG8Aj/c3xLF1nVMBn0+yIsnxfQ50DF3mtDewDvjL9hTkJ5I8q+fxjqrrc7XBscDf9DHAGZjxnKrqO8CZwO3AXcC/V9Xn+x7wiLo8VzcBr0ryI0m2A14PLOl3uCMZZU4vAnZO8sX2b8IvjtH3SbbkIMkUZcOvdb6O5pTBS4A/Az4DkOQNwNqqWtHrCMc34zm1XllVLwOOAk5M8qpeRjmeLnNaCLwM+HhVHQz8BzD9+dzNo+tzRZKtgTcCf9vHAGegy+/UzjT/1e4FPA94VpJf6G+oY5nxvKpqFfBHwJXA5TSngdb3NtLRjTKnhcCP0px5+UngfyR50Yh9n2RLDpI1PPk/gz0YOpSuqvur6sF2+TJgqyS7AK8E3pjkNprDuiOSfHKzjHrTusyJqrqz/boW+DTNIexc6zKnNcCaqrq2bXoRTbA8FXR6rlpHAddV1ff6HuyIuszptcC/VtW6qnoMuAR4xeYZ9rS6/l6dU1Uvq6pXAfcAt2yeYW/StHNq21xeVf9RVXcD/wS8ZMS+TzbXF4X6etCk7a00/wFtuGD04qE2u/HEmzIPoTnszlCbw3nqXGyf8ZyAZwE7tOXPAr4CHDmf59Su/zOwb7v8PuCP53pOs/XzR/NPzNvmei6z9PN3KLCS5tpIaF4k8e65ntMs/QxuuEj9fOCbwM7zZE77A1e1bbejOU134Ch9hx8L2UJV1fokJwFX0LwK4dyqWpnkhLb+LOBngXclWQ88DBxb7Xf4qajLnJI8F/h0Emh+UD5VVZfPyUQGzMLz9G7g/PY00K3A2zb7JKbQdV7t+fbXAe+ckwlMoeOcrk1yEc0povXA9TxFbjkyCz+DFyf5EeAx4MSqunfzz+LJRplTVa1KcjnwdZprwZ+oqpsApuq7qf15ixRJUidb8jUSSdJmYJBIkjoxSCRJnRgkkqRODBJJUicGidSzNHdd3qVrG+mpyiCRJHVikEizKMln2hvgrRy+MWaSpWk+N+W8JF9P8zkq2w00eXeS69J8Zsx+bZ9DknylvSnlV5Lsu1knJI3AIJFm19ur6keBCeDk9h3Pg/YFzq6qg4D7gV8ZqLu7mptqfhw4tS37JvCqam5KeQbwB72OXpoBg0SaXScn+RpwDc2N7/YZqr+jqr7cLn8S+PGBukvaryuApe3ys4G/TXIT8BFgqlvNS3PKIJFmSZLDae5y+/Jqbjd+PTD8cbLD9yQaXH+k/fp9+MF98H4f+EJVHQj89BTbk+acQSLNnmcD91bVQ+01jsOmaPP8PPG58m8CvjTCNr/TLr91VkYpzTKDRJo9lwMLk3yd5kjiminarAKOa9s8h+Z6yKZ8CPjDJF+muROr9JTj3X+lzSTJUprPtjlwrscizSaPSCRJnXhEIknqxCMSSVInBokkqRODRJLUiUEiSerEIJEkdfL/AbHyEcqXjgvHAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha eta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbiklEQVR4nO3df5RdZX3v8ffHhAgICJYgNokEKwKRhYIjoLZKUdvQWqH33q6FVou2FvGCkFbaUtqL9ofVthT7i1suFVp6xXIpPyzLokgVtSrQTACFGCgRESLRhIIFCwKR7/1j78jhdDJzzuw5mUx4v9aaNXvv53n2eb5zZuYze+9z9qSqkCRpup4x2xOQJM1tBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUikbVSSI5Osm+159EqyOsmRk7SfkeTDW29G2hYYJBqJJHcleSTJd5N8O8nfJNlltuc1mSRLk1SS+TO0vx2TfCfJURO0fSjJpTPxONPR1vmf7fPzzSRnJ5k31biqenFVfXaS9j+oqnfM6GS1zTNINEo/U1W7AIcCLwd+e5jBacyZ79H+AKqq7wH/D/iFvn7zgDcBF2692U3oJe3z81rgzcAvd9nZTAWw5p4580Oquauqvgl8AjgoyR5JPp5kY5IH2uXFm/sm+WyS9yf5IvAw8IIkb0+yJslDSe5M8s6e/kcmWZfk15NsSLI+ybFJfirJvyW5P8kZPf2fkeT0JF9L8u9JLknynLb58+3n77R/qb+iHfOL7eM/kOTqJPv07K+SnJTkDuCOCcq/EPjvSXbu2faTND97n5istn7tY72wZ/1vk/x+z/obktzcHgV9KcnBW35WnlRVtwH/QvP8/EiSz7Rfm/uSXJRk957HuCvJ69rl9yW5NMlHkjwIvK3d9pG2ffMR3vFJ7m7391s9+9opyYXt13VN+xyu62n/jfZo6aEktyd57SD1aOszSDRySZYAPwXcRPM99zfAPsDzgUeAv+wb8lbgBGBX4BvABuANwG7A24EPJTm0p//ewI7AIuBM4K+BtwAvA34MODPJC9q+pwDHAq8Bfhh4ADinbXt1+3n3qtqlqq5LcixwBvDfgIU0v3D/vm++xwKHA8v6a6+qLwHr2/G99X20qjYNUNtA2jEXAO8Efgj4P8CVSZ45wNhlNF+nm4AAH6D52hwILAHeN8nwY4BLgd2Bi7bQ50eB/WmOfM5McmC7/b3AUuAFwOtpnrPNc9ofOBl4eVXtShO+d01Vi2ZJVfnhx4x/0PzQfxf4Dk0Y/G9gpwn6vRR4oGf9s8DvTrHvjwGntstH0oTRvHZ9V6CAw3v6rwKObZfXAK/taXse8Dgwn+aXWgHze9o/AfxSz/ozaI6U9mnXCzhqivn+NvCpdnm3dvwhA9a2rqetgBf2rP8t8Pvt8l8Bv9e3r9uB12zhcQp4kCZIvwb8PvCMCfodC9zU97y+rl1+H/D5vv7vAz7SLm/+ei7uaf9X4Lh2+U7gJ3va3rG5XuCFNCH7OmCH2f5+9mPyD89papSOrap/7t3QnuL5ELAc2KPdvGuSeVX1/Xb9nr4xR9P89foiml/kOwO39HT5956xj7Sfv93T/giw+UL/PsAVSZ7oaf8+8Nwt1LAP8GdJ/qR3SjRHP9+YaL4T+DvgvUkW0fxlvbaqbhqwtkHtAxyf5N092xbQHFlsyaFVtbZ3Q5K9gD+nOULZtZ3TA5PsY6raAb7Vs/wwTz4XP9w3/gfLVbU2yQqaYHpxkquBX62qewd4PG1lntrS1vYemtMch1fVbjx5Oik9fX5wS+r21MxlwFnAc6tqd+Cqvv7DuAc4uqp27/nYsZrrOBPdCvse4J19/Xeq5pTVf5nvRKrqbppTYj9Pc1rr76ZZ28M0QbPZ3n3zfH/fPHeuqv7TcFP5QFvPwe3z85ZJ5gNT1D6F9cDinvUlT9lx1Uer6kdpQrKAP+zwWBohg0Rb2640RwjfaS9yv3eK/guAZwIbgU3tX/A/0eHxzwXev/mCeZKFSY5p2zYCT9Ccs+/t/5tJXtz2f3aSn5vG415Ic87/VTx5LWHY2m4G3pxkXpLlNNd5Nvtr4MQkh6fxrCQ/nWTXIee5K+0pyfYI6teGHD+MS2i+tnu0j3Xy5oYk+yc5qg3b79F8z3x/C/vRLDNItLX9KbATcB9wPfDJyTpX1UM0F8gvoTnF8mbgyg6P/2ft+E8leaidw+HtYz0MvB/4YvvKpyOq6gqav4Qvbl+ZdCtw9DQe91KaU3mfrqr106ztVOBnaK47/TzN9RTafY3TvHz3L9t9rQXeNo15/g7Ny7X/A/gn4PJp7GNQvwusA74O/DPN1+jRtu2ZwAdpvk++BexF86IHbYNS5T+2kjT7kryL5kL8a6bsrG2KRySSZkWS5yV5Vfvenv1prp9dMdvz0vB81Zak2bKA5v0u+9KcrruY5mXimmM8tSVJ6sRTW5KkTp4Wp7b23HPPWrp06WxPQ5LmlFWrVt1XVQun6ve0CJKlS5cyPj4+29OQpDklyTem7uWpLUlSRwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJyMNkiTLk9yeZG2S0ydoPyDJdUkeTXJaz/Ydk/xrki8nWZ3kd3ranpPkmiR3tJ/3GGUNkqTJjSxIkswDzgGOBpYBb0qyrK/b/cApwFl92x8FjqqqlwAvBZYnOaJtOx34dFXtB3y6XZckzZJRHpEcBqytqjur6jHgYuCY3g5VtaGqVgKP922vqvpuu7pD+1Ht+jHAhe3yhcCxo5m+JGkQowySRcA9Pevr2m0DSTIvyc3ABuCaqrqhbXpuVa0HaD/vtYXxJyQZTzK+cePG6cxfkjSAUQZJJthWE2ybUFV9v6peCiwGDkty0DAPXlXnVdVYVY0tXLhwmKGSpCGMMkjWAUt61hcD9w67k6r6DvBZYHm76dtJngfQft7QaZaSpE5GGSQrgf2S7JtkAXAccOUgA5MsTLJ7u7wT8Drgtrb5SuD4dvl44B9nctKSpOHMH9WOq2pTkpOBq4F5wAVVtTrJiW37uUn2BsaB3YAnkqygeYXX84AL21d+PQO4pKo+3u76g8AlSX4JuBv4uVHVIEmaWqoGvmwxZ42NjdX4+PhsT0OS5pQkq6pqbKp+vrNdktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRORhokSZYnuT3J2iSnT9B+QJLrkjya5LSe7UuSXJtkTZLVSU7taXtpkuuT3JxkPMlho6xBkjS5kQVJknnAOcDRwDLgTUmW9XW7HzgFOKtv+ybgPVV1IHAEcFLP2D8CfqeqXgqc2a5LkmbJKI9IDgPWVtWdVfUYcDFwTG+HqtpQVSuBx/u2r6+qG9vlh4A1wKLNzcBu7fKzgXtHV4IkaSrzR7jvRcA9PevrgMOH3UmSpcAhwA3tphXA1UnOognCV3aapSSpk1EekWSCbTXUDpJdgMuAFVX1YLv5XcCvVNUS4FeA87cw9oT2Gsr4xo0bh3lYSdIQRhkk64AlPeuLGeI0VJIdaELkoqq6vKfpeGDz+j/QnEL7L6rqvKoaq6qxhQsXDjVxSdLgRhkkK4H9kuybZAFwHHDlIAOThOZIY01Vnd3XfC/wmnb5KOCOGZqvJGkaRnaNpKo2JTkZuBqYB1xQVauTnNi2n5tkb2Cc5uL5E0lW0LzC62DgrcAtSW5ud3lGVV0F/DLwZ0nmA98DThhVDZKkqaVqqMsWc9LY2FiNj4/P9jQkaU5Jsqqqxqbq5zvbJUmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHUy0iBJsjzJ7UnWJjl9gvYDklyX5NEkp/VsX5Lk2iRrkqxOcmrfuHe3+12d5I9GWYMkaXLzR7XjJPOAc4DXA+uAlUmurKqv9nS7HzgFOLZv+CbgPVV1Y5JdgVVJrqmqryb5ceAY4OCqejTJXqOqQZI0tVEekRwGrK2qO6vqMeBimgD4garaUFUrgcf7tq+vqhvb5YeANcCitvldwAer6tHN+xhhDZKkKYwySBYB9/Ssr+PJMBhYkqXAIcAN7aYXAT+W5IYkn0vy8i2MOyHJeJLxjRs3DvuwkqQBjTJIMsG2GmoHyS7AZcCKqnqw3Twf2AM4Avg14JIk/+Wxquq8qhqrqrGFCxcON3NJ0sBGGSTrgCU964uBewcdnGQHmhC5qKou79vv5dX4V+AJYM8ZmK8kaRpGGSQrgf2S7JtkAXAccOUgA9sjjPOBNVV1dl/zx4Cj2n4vAhYA983UpCVJwxnZq7aqalOSk4GrgXnABVW1OsmJbfu5SfYGxoHdgCeSrACWAQcDbwVuSXJzu8szquoq4ALggiS3Ao8Bx1fVUKfMJEkzJ0+H38FjY2M1Pj4+29OQpDklyaqqGpuqn+9slyR1YpBIkjoxSCRJnRgkkqRODBJJUicDv/w3yR7AfsCOm7dV1edHMSlJ0twxUJAkeQdwKs2702+muT3JdbRvDJQkPX0NemrrVODlwDeq6sdpbqLonRAlSQMHyfeq6nsASZ5ZVbcB+49uWtL272s3f4bPXPYnPLD+67M9FamTQa+RrEuyO819rq5J8gBD3IBR0lP9+7o7+OBF7+KRJx7jRbf+E2e+9zOzPSVp2gYKkqr62XbxfUmuBZ4NfGJks5K2c48/9giP1/fZ8RkL+O5j353t6UidDHRqK8n/3bxcVZ+rqitpbp4oaRr2fsHBnPi603nlklfy7rf8xWxPR+pk0FNbL+5daf8f+8tmfjrS08cRy9/BEcvfMdvTkDqb9IgkyW8meQg4OMmD7cdDwAbgH7fKDCVJ27RJg6SqPlBVuwJnAycBf9KuHwJcsRXmJ0naxg368t/daN6EeFy7/hBwzkhmJEmaUwa9RnJYVR2a5CaAqnqg/fe5kqSnuUGPSB5vL7AXQJKFwBMjm5Ukac4YNEj+nOaayF5J3g98AfiDkc1KkjRnDPqGxIuSrAJeCwQ4tqrWjHRmkqQ5YeDbyLf317pthHORJM1B/mMrSVInBokkqZORBkmS5UluT7I2yekTtB+Q5LokjyY5rWf7kiTXJlmTZHWSUycYe1qSSrLnKGuQJE1u4Gskw2pfLnwO8HpgHbAyyZVV9dWebvcDpwDH9g3fBLynqm5MsiuwKsk1m8cmWdLu9+5RzV+SNJhRHpEcBqytqjur6jHgYuCY3g5VtaGqVgKP921fX1U3tssPAWuART1dPgT8Ou37WiRJs2eUQbIIuKdnfR1PDYOBJFlKc2+vG9r1NwLfrKovTzHuhCTjScY3bvS/AkvSqIwySDLBtqGOIJLsAlwGrKiqB5PsDPwWcOZUY6vqvKoaq6qxhQsXDvOwkqQhjDJI1gFLetYXM8S/502yA02IXFRVl7ebfwTYF/hykrvafd6YZO8ZmbEkaWgju9gOrAT2S7Iv8E2aOwe/eZCBSQKcD6ypqrM3b6+qW4C9evrdBYxV1X0zOG9J0hBGFiRVtSnJycDVwDzggqpaneTEtv3c9khinOY29U8kWQEsAw4G3grckuTmdpdnVNVVo5qvJGl6RnlEQvuL/6q+bef2LH+L5vRUvy8w8TWW/v0v7ThFSVJHvrNdktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRORhokSZYnuT3J2iSnT9B+QJLrkjya5LSe7UuSXJtkTZLVSU7tafvjJLcl+UqSK5LsPsoaJEmTG1mQJJkHnAMcDSwD3pRkWV+3+4FTgLP6tm8C3lNVBwJHACf1jL0GOKiqDgb+DfjNEZUgSRrAKI9IDgPWVtWdVfUYcDFwTG+HqtpQVSuBx/u2r6+qG9vlh4A1wKJ2/VNVtantej2weIQ1SJKmMMogWQTc07O+rt02lCRLgUOAGyZo/kXgE9OZnCRpZowySDLBthpqB8kuwGXAiqp6sK/tt2hOgV20hbEnJBlPMr5x48ZhHlaSNIRRBsk6YEnP+mLg3kEHJ9mBJkQuqqrL+9qOB94A/HxVTRhOVXVeVY1V1djChQuHnrwkaTCjDJKVwH5J9k2yADgOuHKQgUkCnA+sqaqz+9qWA78BvLGqHp7hOUuShjR/VDuuqk1JTgauBuYBF1TV6iQntu3nJtkbGAd2A55IsoLmFV4HA28Fbklyc7vLM6rqKuAvgWcC1zR5w/VVdeKo6pAkTW5kQQLQ/uK/qm/buT3L32LiV119gYmvsVBVL5zJOUqSuvGd7ZKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6GWmQJFme5PYka5OcPkH7AUmuS/JoktN6ti9Jcm2SNUlWJzm1p+05Sa5Jckf7eY9R1iBJmtzIgiTJPOAc4GhgGfCmJMv6ut0PnAKc1bd9E/CeqjoQOAI4qWfs6cCnq2o/4NPtuiRplozyiOQwYG1V3VlVjwEXA8f0dqiqDVW1Eni8b/v6qrqxXX4IWAMsapuPAS5sly8Ejh1ZBZKkKY0ySBYB9/Ssr+PJMBhYkqXAIcAN7abnVtV6aAIH2GsL405IMp5kfOPGjcM+rCRpQKMMkkywrYbaQbILcBmwoqoeHGZsVZ1XVWNVNbZw4cJhhkqShjDKIFkHLOlZXwzcO+jgJDvQhMhFVXV5T9O3kzyv7fM8YMMMzFWSNE2jDJKVwH5J9k2yADgOuHKQgUkCnA+sqaqz+5qvBI5vl48H/nGG5itJmob5o9pxVW1KcjJwNTAPuKCqVic5sW0/N8newDiwG/BEkhU0r/A6GHgrcEuSm9tdnlFVVwEfBC5J8kvA3cDPjaoGSdLUUjXUZYs5aWxsrMbHx2d7GpI0pyRZVVVjU/Xzne2SpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdpKpmew4jl2Qj8I0tNO8J3LcVp7O1bI91WdPcsT3WtT3WBJPXtU9VLZxqB0+LIJlMkvGqGpvtecy07bEua5o7tse6tseaYGbq8tSWJKkTg0SS1IlBAufN9gRGZHusy5rmju2xru2xJpiBup7210gkSd14RCJJ6sQgkSR1sl0HSZLlSW5PsjbJ6RO0H5nkP5Lc3H6c2dc+L8lNST6+9WY9uS41JbkryS3t9vGtO/Mt61jT7kkuTXJbkjVJXrF1Z79l060ryf49225O8mCSFVu9gAl0fK5+JcnqJLcm+fskO27d2W9Zx7pObWtava08TzB1TW2fI9t6Vif53DBjn6KqtssPYB7wNeAFwALgy8Cyvj5HAh+fZB+/Cnx0sj5zqSbgLmDP2a5jhmu6EHhHu7wA2H22a5qp77+e/XyL5o1hc7YmYBHwdWCndv0S4G2zXdMM1HUQcCuwMzAf+GdgvzlS0+7AV4Hnt+t7DTq2/2N7PiI5DFhbVXdW1WPAxcAxgw5Oshj4aeDDI5rfdHSqaRs17ZqS7Aa8GjgfoKoeq6rvjGqiQ5qp5+q1wNeqakt3ZtiautY0H9gpyXyaX7z3jmCO09GlrgOB66vq4araBHwO+NkRzXMYg9T0ZuDyqroboKo2DDH2KbbnIFkE3NOzvq7d1u8VSb6c5BNJXtyz/U+BXweeGN0Uh9a1pgI+lWRVkhNGOdEhdKnpBcBG4G/aU5AfTvKsEc93UF2fq82OA/5+FBOchmnXVFXfBM4C7gbWA/9RVZ8a9YQH1OW5uhV4dZIfSrIz8FPAktFOdyCD1PQiYI8kn21/J/zCEGOfYnsOkkywrf+1zjfSnDJ4CfAXwMcAkrwB2FBVq0Y6w+FNu6bWq6rqUOBo4KQkrx7JLIfTpab5wKHAX1XVIcB/AlOfz906uj5XJFkAvBH4h1FMcBq6/EztQfNX7b7ADwPPSvKW0U11KNOuq6rWAH8IXAN8kuY00KaRzXRwg9Q0H3gZzZmXnwT+V5IXDTj2KbbnIFnHU/8yWEzfoXRVPVhV322XrwJ2SLIn8CrgjUnuojmsOyrJR7bKrCfXpSaq6t728wbgCppD2NnWpaZ1wLqquqHteilNsGwLOj1XraOBG6vq26Oe7IC61PQ64OtVtbGqHgcuB165daY9pa4/V+dX1aFV9WrgfuCOrTPtSU1ZU9vnk1X1n1V1H/B54CUDjn2q2b4oNKoPmrS9k+YvoM0XjF7c12dvnnxT5mE0h93p63Mk287F9mnXBDwL2LXd/izgS8DyuVxTu/4vwP7t8vuAP57tmmbq+4/mj5i3z3YtM/T9dziwmubaSGheJPHu2a5phr4HN1+kfj5wG7DHHKnpQODTbd+daU7THTTI2P6P+WynqmpTkpOBq2lehXBBVa1OcmLbfi7wP4B3JdkEPAIcV+1XeFvUpaYkzwWuSALNN8pHq+qTs1JIjxl4nt4NXNSeBroTePtWL2ICXetqz7e/HnjnrBQwgY413ZDkUppTRJuAm9hGbjkyA9+DlyX5IeBx4KSqemDrV/FUg9RUVWuSfBL4Cs214A9X1a0AE42d7PG8RYokqZPt+RqJJGkrMEgkSZ0YJJKkTgwSSVInBokkqRODRBqxNHdd3rNrH2lbZZBIkjoxSKQZlORj7Q3wVvffGDPJ0jT/N+XCJF9J839Udu7p8u4kN6b5nzEHtGMOS/Kl9qaUX0qy/1YtSBqAQSLNrF+sqpcBY8Ap7Tuee+0PnFdVBwMPAv+zp+2+am6q+VfAae2224BXV3NTyjOBPxjp7KVpMEikmXVKki8D19Pc+G6/vvZ7quqL7fJHgB/tabu8/bwKWNouPxv4hyS3Ah8CJrrVvDSrDBJphiQ5kuYut6+o5nbjNwH9/062/55EveuPtp+/Dz+4D97vAddW1UHAz0ywP2nWGSTSzHk28EBVPdxe4zhigj7Pz5P/V/5NwBcG2Oc32+W3zcgspRlmkEgz55PA/CRfoTmSuH6CPmuA49s+z6G5HjKZPwI+kOSLNHdilbY53v1X2kqSLKX53zYHzfZcpJnkEYkkqROPSCRJnXhEIknqxCCRJHVikEiSOjFIJEmdGCSSpE7+P7Ac943B6EsSAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha mu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfjklEQVR4nO3df5hcVZ3n8feHNOGHgmFMUEyAhDEw8ksMRRJXgxFhTBgwLK4SjAZRNwQFnXXHWdRBXEfHH6vrDAsTFiRAHiCBQcCMAnF1FnCQKB0TQwJkaQKSJpE0AgENJga++8c9LTeV6lR1ddepDn5ez3OfqnvPueee09WpT997T6oUEZiZmeW0W7s7YGZmf3ocPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMXiEkTZXU3e5+lElaLWnqTso/J+k7+XpkQ4XDx4YESY9JekHSbyU9KekqSa9ud792RtJYSSGpY5Da21PSs5JOqFH2bUk3DcZxmpHG+bv0+jwh6X9KGlZvv4g4IiLu3En5P0TExwa1s7ZLcPjYUHJqRLwamAAcB/xdf3ZWYZf5na4OrYj4PXADMLuq3jDgTOCafL2r6c3p9XkX8AHgPw+kscEKbds17TL/UO1PR0Q8AdwOHClpP0nfl9Qj6Zn0fExvXUl3SvqKpHuAzcAhks6W9KCk5yWtlXROqf5USd2S/lbSRkkbJJ0m6WRJ/0/S05I+V6q/m6QLJD0i6TeSbpT0Z6n47vT4bDojeGva5yPp+M9IWiLp4FJ7IekTkh4GHq4x/GuA90rau7Tt3RT/Vm/f2diqpWO9sbR+taQvl9ZPkbQinW39VNLRfb8qL4uIh4CfULw+fy7p39LP5ilJ10kaUTrGY5JOTM+/KOkmSddKeg74cNp2bSrvPZM8S9Ljqb3Pl9raS9I16ef6YHoNu0vl/y2dlT0vaY2kdzUyHmsPh48NOZIOBE4GllP8jl4FHAwcBLwAXFK1y4eAOcA+wK+AjcApwL7A2cC3JU0o1X89sCcwGvgCcAXwQeBYYArwBUmHpLqfBE4D3gG8AXgGuDSVHZ8eR0TEqyPiXkmnAZ8DTgdGUbxJL6zq72nAJODw6rFHxE+BDWn/8viuj4htDYytIWmf+cA5wGuB/w0slrRHA/seTvFzWg4I+CrFz+ZNwIHAF3ey+wzgJmAEcF0fdd4OHEZxhvUFSW9K2y8CxgKHACdRvGa9fToMOA84LiL2oQjsx+qNxdooIrx4aftC8UbxW+BZigD5Z2CvGvWOAZ4prd8JfKlO27cCn0rPp1IE2LC0vg8QwKRS/WXAaen5g8C7SmUHAH8AOijeCAPoKJXfDny0tL4bxRnZwWk9gBPq9PfvgB+m5/um/d/S4Ni6S2UBvLG0fjXw5fR8HvD3VW2tAd7Rx3ECeI4ifB8BvgzsVqPeacDyqtf1xPT8i8DdVfW/CFybnvf+PMeUyn8OzEzP1wLvLpV9rHe8wBspgvlEYPd2/z57qb/4mqsNJadFxI/KG9Llp28D04D90uZ9JA2LiBfT+rqqfaZT/JV8KMWb/97A/aUqvynt+0J6fLJU/gLQO9nhYOAWSS+Vyl8EXtfHGA4G/knSt8pdojjL+lWt/tawALhI0miKv+C7ImJ5g2Nr1MHAWZLOL20bTnEG05cJEdFV3iBpf+BiijOhfVKfntlJG/XGDvDr0vPNvPxavKFq/z8+j4guSX9NEWZHSFoCfDoi1jdwPGsDX3azoe6/UlyCmRQR+/LypS6V6vzxo9nTZaPvAt8EXhcRI4Dbqur3xzpgekSMKC17RnFfqtZHwq8Dzqmqv1cUl9N26G8tEfE4xeW6WRSX3BY0ObbNFOHU6/VV/fxKVT/3jojqS4T1fDWN5+j0+nxwJ/2BOmOvYwMwprR+4HYNR1wfEW+nCNYAvj6AY1mLOXxsqNuH4kzk2XSj/6I69YcDewA9wLZ0pvCXAzj+ZcBXeicNSBolaUYq6wFeorgHUa7/WUlHpPqvkfS+Jo57DcU9jLfx8r2R/o5tBfABScMkTaO4b9XrCmCupEkqvErSX0nap5/93Id0uTSdqX2mn/v3x40UP9v90rHO6y2QdJikE1JA/57id+bFPtqxIcDhY0PdPwJ7AU8BS4E7dlY5Ip6nmCRwI8Xlnw8Aiwdw/H9K+/9Q0vOpD5PSsTYDXwHuSTPGJkfELRR/cS9KM7pWAdObOO5NFJcZfxwRG5oc26eAUynuo82iuD9EaquTYqr0JamtLuDDTfTzv1NMjd8E/AC4uYk2GvUloBt4FPgRxc9oSyrbA/gaxe/Jr4H9KSZ+2BClCH+ZnJnteiSdSzEZ4R11K9uQ4zMfM9slSDpA0tvS/706jOJ+4C3t7pc1x7PdzGxXMZzi/yONo7iUuIhiSr7tgnzZzczMsvNlNzMzy86X3fowcuTIGDt2bLu7YWa2yxg5ciRLlixZEhHT6tV1+PRh7NixdHZ2trsbZma7FEkjG6nny25mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpZdS8NH0jRJayR1SbqgRrkkXZzKV0qaUCqbL2mjpFVV+9wgaUVaHpO0Im2fVdq+QtJLko5JZXemfvSW7d/KcZuZ2c617Gu0JQ0DLgVOArqB+yQtjogHStWmA+PTMgmYlx4BrgYuARaU242IM0rH+BawKW2/DrgubT8K+F5ErCjtOisi/L3YZmZDQCvPfCYCXRGxNiK2AouAGVV1ZgALorAUGCHpAICIuBt4uq/GJQl4P7CwRvGZfWw3M7MhoJXhMxpYV1rvTtv6W6cvU4AnI+LhGmVnsGP4XJUuuV2YgmsHkuZI6pTU2dPT02A3zMysv1oZPrXe4KOJOn2peXYjaRKwOSLK94pmRcRRFIE1BfhQrQYj4vKIqEREZdSoUQ12w8zM+quV4dMNHFhaHwOsb6LODiR1AKcDN9QonklVKEXEE+nxeeB6ikuCZmbWJq0Mn/uA8ZLGSRpOEQqLq+osBmanWW+TgU0RsaGBtk8EHoqI7vJGSbsB76O4v9S7rUPSyPR8d+AUYLsZdGZmllfLZrtFxDZJ5wFLgGHA/IhYLWluKr8MuA04GegCNgNn9+4vaSEwFRgpqRu4KCKuTMU7nN0kxwPdEbG2tG0PYEkKnmHAj4ArBm2gZmbWb4po9BbLn5ZKpRKdnZ6ZbWbWH5KWRUSlXj1/woGZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsmtp+EiaJmmNpC5JF9Qol6SLU/lKSRNKZfMlbZS0qmqfGyStSMtjklak7WMlvVAqu6y0z7GS7k/HuViSWjhsMzOro2XhI2kYcCkwHTgcOFPS4VXVpgPj0zIHmFcquxqYVt1uRJwREcdExDHAd4GbS8WP9JZFxNzS9nmp/d5j7dCumZnl08ozn4lAV0SsjYitwCJgRlWdGcCCKCwFRkg6ACAi7gae7qvxdPbyfmDhzjqR2ts3Iu6NiAAWAKc1OSYzMxsErQyf0cC60np32tbfOn2ZAjwZEQ+Xto2TtFzSXZKmlI7R3cgxJM2R1Cmps6enp8FumJlZf7UyfGrdV4km6vTlTLY/69kAHBQRbwE+DVwvad/+HCMiLo+ISkRURo0a1WA3zMysvzpa2HY3cGBpfQywvok6O5DUAZwOHNu7LSK2AFvS82WSHgEOTccY099jmJlZ67TyzOc+YLykcZKGAzOBxVV1FgOz06y3ycCmiNjQQNsnAg9FxB8vp0kalSY5IOkQiokFa1N7z0uanO4TzQa+N+DRmZlZ01p25hMR2ySdBywBhgHzI2K1pLmp/DLgNuBkoAvYDJzdu7+khcBUYKSkbuCiiLgyFc9kx4kGxwNfkrQNeBGYGxG9ExbOpZg9txdwe1rMzKxNVEwAs2qVSiU6Ozvb3Q0zs12KpGURUalXz59wYGZm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsWho+kqZJWiOpS9IFNcol6eJUvlLShFLZfEkbJa2q2ucGSSvS8pikFWn7SZKWSbo/PZ5Q2ufO1I/e/fZv4bDNzKyOjlY1LGkYcClwEtAN3CdpcUQ8UKo2HRiflknAvPQIcDVwCbCg3G5EnFE6xreATWn1KeDUiFgv6UhgCTC6tOusiOgcnNGZmdlAtPLMZyLQFRFrI2IrsAiYUVVnBrAgCkuBEZIOAIiIu4Gn+2pckoD3AwtT/eURsT4Vrwb2lLTHoI7IzMwGRSvDZzSwrrTezfZnIo3W6csU4MmIeLhG2XuB5RGxpbTtqnTJ7cIUXDuQNEdSp6TOnp6eBrthZmb91crwqfUGH03U6cuZpLOe7RqUjgC+DpxT2jwrIo6iCKwpwIdqNRgRl0dEJSIqo0aNarAbZmbWX60Mn27gwNL6GGB9E3V2IKkDOB24oWr7GOAWYHZEPNK7PSKeSI/PA9dTXBI0M7M2aWX43AeMlzRO0nBgJrC4qs5iYHaa9TYZ2BQRGxpo+0TgoYjo7t0gaQTwA+CzEXFPaXuHpJHp+e7AKcAqzMysbVoWPhGxDTiPYtbZg8CNEbFa0lxJc1O124C1QBdwBfDx3v0lLQTuBQ6T1C3po6XmZ7LjJbfzgDcCF1ZNqd4DWCJpJbACeCIdy8zM2kQRjd5i+dNSqVSis9Mzs83M+kPSsoio1KvnTzgwM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpZdRyOVJB1Ua3tEPD643TEzsz8FDYUP8AMgAAF7AuOANcARLeqXmZm9gjV02S0ijoqIo9PjeGAi8O/19pM0TdIaSV2SLqhRLkkXp/KVkiaUyuZL2ihpVdU+N0hakZbHJK0olX02tbVG0rtL24+VdH8qu1iSGhm3mZm1RlP3fCLiF8BxO6sjaRhwKTAdOBw4U9LhVdWmA+PTMgeYVyq7GphW49hnRMQxEXEM8F3g5nS8w4GZFGdj04B/Tn0gtTundKwd2jUb6uKll/jFv13HTxZfwtYXftvu7pgNSKP3fD5dWt0NOBboqbPbRKArItamNhYBM4AHSnVmAAsiIoClkkZIOiAiNkTE3ZLG7qRPAt4PnFBqa1FEbAEeldQFTJT0GLBvRNyb9lsAnAbcXn/kZkPHirtv4Fs/+DwRQc9vHuf0s7/R7i6ZNa3RM599gFenZTjwr8B76uwzGlhXWu9O2/pbpy9TgCcj4uE6bY1Oz+seQ9IcSZ2SOnt66mWrWV5bfv87gmA37cbvXniu3d0xG5BGJxzcBnwOGFva5wLg6J3sU+u+SjRRpy9nAgsbaKvhY0TE5cDlAJVKpdF+mGVx7NQPMHPjo/x287Oc+r7Pt7s7ZgPSaPhcC/wNsAp4qcF9uoEDS+tjgPVN1NmBpA7gdIrLf/Xa6k7P+3UMs6Fm9z335j2zv9LubpgNikYvu/VExL9GxKMR8avepc4+9wHjJY2TNJxiMsDiqjqLgdlp1ttkYFNEbGigPycCD0VE+XLaYmCmpD0kjaOYWPDz1N7zkian+0Szge81cAwzM2uRRs98LpL0HeDHwJbejRFxc187RMQ2SecBS4BhwPyIWC1pbiq/jOJy3slAF7AZOLt3f0kLganASEndwEURcWUqnsn2l9xIbd9IMaFhG/CJiHgxFZ9LMXtuL4qJBp5sYGbWRiommtWpJF0L/AWwmpcvu0VEfKSFfWurSqUSnZ2d7e6GmdkuRdKyiKjUq9fomc+bI+KoAfbJzMwMaPyez9Ia/0HUzMysKY2e+bwdOEvSoxT3fERx2W1nU63NzMxqajR8/HE0ZmY2aBoKnwamVZuZmTXMXyZnZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdi0NH0nTJK2R1CXpghrlknRxKl8paUKpbL6kjZJW1djv/NTuaknfSNtmSVpRWl6SdEwquzPV7y3bv4XDNjOzOhr9JtN+kzQMuBQ4CegG7pO0OCIeKFWbDoxPyyRgXnoEuBq4BFhQ1e47gRnA0RGxpTdIIuI64LpU5yjgexGxorTrrIjoHMwxmplZc1p55jMR6IqItRGxFVhEERplM4AFUVgKjJB0AEBE3A08XaPdc4GvRcSWVG9jjTpnAgsHaRxmZjbIWhk+o4F1pfXutK2/daodCkyR9DNJd0k6rkadM9gxfK5Kl9wulKRaDUuaI6lTUmdPT0+dbpiZWbNaGT613uCjiTrVOoD9gMnAZ4Aby2EiaRKwOSLK94pmRcRRwJS0fKhWwxFxeURUIqIyatSoOt0wM7NmtTJ8uoEDS+tjgPVN1KnV7s3pUt3PgZeAkaXymVSd9UTEE+nxeeB6ikuCZmbWJq0Mn/uA8ZLGSRpOEQqLq+osBmanWW+TgU0RsaFOu7cCJwBIOhQYDjyV1ncD3kdxf4m0rUPSyPR8d+AUYIcZdGZmlk/LZrtFxDZJ5wFLgGHA/IhYLWluKr8MuA04GegCNgNn9+4vaSEwFRgpqRu4KCKuBOYD89MU7K3AWRHRe6nueKA7ItaWurIHsCQFzzDgR8AVLRq2mZk1QC+/b1tZpVKJzk7PzDYz6w9JyyKiUq+eP+HAzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtm1NHwkTZO0RlKXpAtqlEvSxal8paQJpbL5kjZKWlVjv/NTu6slfSNtGyvpBUkr0nJZqf6xku5Px7lYklo1ZjMzq69l4SNpGHApMB04HDhT0uFV1aYD49MyB5hXKrsamFaj3XcCM4CjI+II4Jul4kci4pi0zC1tn5fa7z3WDu2amVk+rTzzmQh0RcTaiNgKLKIIjbIZwIIoLAVGSDoAICLuBp6u0e65wNciYkuqt3FnnUjt7RsR90ZEAAuA0wYwLjMzG6BWhs9oYF1pvTtt62+daocCUyT9TNJdko4rlY2TtDxtn1I6Rncjx5A0R1KnpM6enp463TAzs2Z1tLDtWvdVook61TqA/YDJwHHAjZIOATYAB0XEbyQdC9wq6Yj+HCMiLgcuB6hUKvX6YWZmTWrlmU83cGBpfQywvok6tdq9OV2q+znwEjAyIrZExG8AImIZ8AjFWVJ3arc/xzAzsxZqZfjcB4yXNE7ScGAmsLiqzmJgdpr1NhnYFBEb6rR7K3ACgKRDgeHAU5JGpUkOpDOh8cDa1N7zkianWW6zge8NzhDNzKwZLbvsFhHbJJ0HLAGGAfMjYrWkuan8MuA24GSgC9gMnN27v6SFwFRgpKRu4KKIuBKYD8xPU7C3AmdFREg6HviSpG3Ai8DciOidsHAuxey5vYDb02JmZm2iYgKYVatUKtHZ2dnubpiZ7VIkLYuISr16/oQDMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXX0vCRNE3SGkldki6oUS5JF6fylZImlMrmS9ooaVWN/c5P7a6W9I207SRJyyTdnx5PKNW/M9VfkZb9WzVmMzOrr6NVDUsaBlwKnAR0A/dJWhwRD5SqTQfGp2USMC89AlwNXAIsqGr3ncAM4OiI2FIKkqeAUyNivaQjgSXA6NKusyKicxCHaGZmTWrlmc9EoCsi1kbEVmARRWiUzQAWRGEpMELSAQARcTfwdI12zwW+FhFbUr2N6XF5RKxPdVYDe0raY9BHZWZmA9bK8BkNrCutd7P9mUijdaodCkyR9DNJd0k6rkad9wLLewMquSpdcrtQkmo1LGmOpE5JnT09PXW6YWZmzWpl+NR6g48m6lTrAPYDJgOfAW4sh4mkI4CvA+eU9pkVEUcBU9LyoVoNR8TlEVGJiMqoUaPqdMPMzJrVyvDpBg4srY8B1jdRp1a7N6dLdT8HXgJGAkgaA9wCzI6IR3p3iIgn0uPzwPUUlwTNzKxNWhk+9wHjJY2TNByYCSyuqrMYmJ1mvU0GNkXEhjrt3gqcACDpUGA48JSkEcAPgM9GxD29lSV1SOoNp92BU4AdZtCZmVk+LQufiNgGnEcx6+xB4MaIWC1prqS5qdptwFqgC7gC+Hjv/pIWAvcCh0nqlvTRVDQfOCRNwV4EnBURkY71RuDCqinVewBLJK0EVgBPpGOZmVmbqHjftmqVSiU6Oz0z28ysPyQti4hKvXr+hAMzM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2/jK5PkjqAX7VR/FI4KmM3cnhlTgmeGWOy2PadbwSx7WzMT0FEBHT6jXi8GmCpM5GvqlvV/JKHBO8MsflMe06XonjGqwx+bKbmZll5/AxM7PsHD7NubzdHWiBV+KY4JU5Lo9p1/FKHNegjMn3fMzMLDuf+ZiZWXYOHzMzy87hUyJpmqQ1krokXVCjfKqkTZJWpOULVeXDJC2X9P18va5vIOOS9Jik+9P2zrw979sAxzRC0k2SHpL0oKS35u1935odl6TDSttWSHpO0l9nH0ANA3yt/ouk1ZJWSVooac+8va9tgGP6VBrP6qHyGvWqN65UZ2oa02pJd/Vn3+1EhJfivtcw4BHgEGA48Evg8Ko6U4Hv76SNTwPX76zOrjYu4DFgZLvHMchjugb4WHo+HBjR7jEN1u9gqZ1fAwfvymMCRgOPAnul9RuBD+/iYzoSWAXsDXQAPwLGt3tM/RjXCOAB4KC0vn+j+1YvPvN52USgKyLWRsRWYBEwo9GdJY0B/gr4Tov616wBjWuIanpMkvYFjgeuBIiIrRHxbKs62k+D9Vq9C3gkIvr6hI6cBjqmDmAvSR0Ub9jrW9DH/hrImN4ELI2IzRGxDbgL+I8t6md/NTKuDwA3R8TjABGxsR/7bsfh87LRwLrSenfaVu2tkn4p6XZJR5S2/yPwt8BLretiUwY6rgB+KGmZpDmt7Gg/DGRMhwA9wFXpEul3JL2qxf1t1EBfq14zgYWt6GATmh5TRDwBfBN4HNgAbIqIH7a6ww0YyOu0Cjhe0msl7Q2cDBzY2u42rJFxHQrsJ+nO9J4wux/7bsfh8zLV2FY9D/0XFJcy3gz8L+BWAEmnABsjYllLe9icpseVvC0iJgDTgU9IOr4lveyfgYypA5gAzIuItwC/A+pfn85joK8VkoYD7wH+pRUdbMJA/l3tR/HX8zjgDcCrJH2wdV1tWNNjiogHga8D/we4g+Ly1LaW9bR/GhlXB3AsxVWedwMXSjq0wX234/B5WTfb/wUyhqpT/Ih4LiJ+m57fBuwuaSTwNuA9kh6jON08QdK1WXpd30DGRUSsT48bgVsoTq/bbSBj6ga6I+JnqepNFGE0FAzotUqmA7+IiCdb3dkGDWRMJwKPRkRPRPwBuBn4D3m6vVMD/Td1ZURMiIjjgaeBh/N0u66640p17oiI30XEU8DdwJsb3Hd77b7JNVQWikRfS/FXVu8NsyOq6ryel/9j7kSKywGqqjOVoTXhoOlxAa8C9knbXwX8FJi2K48prf8EOCw9/yLwP9o9psH6HaT44+fsdo9lkH7/JgGrKe71iGKiyPm78pjSeu9N+oOAh4D92j2mfozrTcCPU929KS4jHtnIvtVLBwZARGyTdB6whGLmxvyIWC1pbiq/DPhPwLmStgEvADMjvSJD1UDGJel1wC2SoPjluj4i7mjLQEoG4bU6H7guXaJaC5ydfRA1DHRc6R7CScA5bRlADQMc088k3URxCWsbsJwh8HE1g/D7911JrwX+AHwiIp7JP4odNTKuiHhQ0h3ASor729+JiFUAtfbd2fH88TpmZpad7/mYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMRuCVHya+MiB1jEbqhw+ZmaWncPHrM0k3Zo+pHF19Ye3Shqr4nuHrpG0UsX3EO1dqnK+pF+o+M6lv0j7TJT00/TBqT+VdFjWAZk1wOFj1n4fiYhjgQrwyfS/38sOAy6PiKOB54CPl8qeiuKDX+cBf5O2PQQcH8UHp34B+IeW9t6sCQ4fs/b7pKRfAkspPpxxfFX5uoi4Jz2/Fnh7qezm9LgMGJuevwb4F0mrgG8Dtb52waytHD5mbSRpKsWnN781io/fXw5Uf1V09Wdglde3pMcX4Y+f1fj3wP+NiCOBU2u0Z9Z2Dh+z9noN8ExEbE73bCbXqHOQpLem52cC/95Am0+k5x8elF6aDTKHj1l73QF0SFpJccaytEadB4GzUp0/o7i/szPfAL4q6R6KTxg2G3L8qdZmQ5iksRTfD3Vku/tiNph85mNmZtn5zMfMzLLzmY+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdv8fcL0humPWx5EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha nu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEWCAYAAAC0Q+rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbS0lEQVR4nO3dfZhedX3n8ffHhKBIMLTEiiGQsAUqWCo4AhZBiroCrYVtt220itK1iAsUqtsusl1qbe2D9bm1sFRo5RJFCuiVq0VQu2pbLcgEEAiRNTwokVSCIqBQMPjdP85JubkZMvdk8ptJyPt1Xeea8/D7nfP7zj0znzkPc0+qCkmSWnjabA9AkvTUZchIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNG2sokOSLJmtkex6AkK5McsZHtZyb58MyNSFsKQ0YzKskdSR5K8v0k307yN0l2nO1xbUySJUkqydzNtL+nJ/lekiMn2Pa+JJdsjuNsir7OH/Svz7eSvDfJnMn6VdV+VfWFjWz/46p642YdrLYKhoxmw6uqakfgQOBFwO9NpXM6W83X7nA4VdW/A58Ajh9qNwd4NfCRmRvdhH6mf31eBrwG+M3p7GxzhbO2TlvNN6qeeqrqW8Cngecn2TnJ3ydZl+Tefn63DW2TfCHJO5N8CXgQ2DPJCUlWJXkgyW1J3jTQ/ogka5L8bpK7k6xNclySY5L8vyTfTXLmQPunJTkjya1JvpPk4iQ/1m/+p/7j9/rf8F/c9/mN/vj3JrkyyR4D+6skJyf5OvD1Ccr/CPDLSXYYWPdKuu/JT2+stmH9sX5yYPlvk/zRwPIvJLm+P3v6cpL9n/xVeUxVfQ34Z7rX5z8l+b/95+aeJBcmWTBwjDuSvLyff3uSS5J8NMn9wBv6dR/tt284M3x9km/2+/tfA/t6RpKP9J/XVf1ruGZg+//sz7IeSHJLkpeNUo9mhyGjWZNkMXAMcB3d1+LfAHsAuwMPAX851OV1wInAfOAbwN3ALwA7AScA70ty4ED75wBPBxYBZwF/DbwWeCFwGHBWkj37tr8FHAe8FHgucC/woX7b4f3HBVW1Y1X9a5LjgDOBXwIW0v0w/vjQeI8DDgb2Ha69qr4MrO37D9b3sapaP0JtI+n7nA+8Cfhx4P8Ay5NsP0Lffek+T9cBAf6E7nPzPGAx8PaNdD8WuARYAFz4JG1eAuxDd8Z0VpLn9et/H1gC7Am8gu412zCmfYBTgBdV1Xy6YL5jslo0i6rKyWnGJrofCN8HvkcXFH8FPGOCdi8A7h1Y/gLwjkn2/SngtH7+CLqgmtMvzwcKOHig/QrguH5+FfCygW27Aj8E5tL9wCtg7sD2TwP/bWD5aXRnWHv0ywUcOcl4fw/4TD+/U9//gBFrWzOwrYCfHFj+W+CP+vmzgT8c2tctwEuf5DgF3E8XsrcCfwQ8bYJ2xwHXDb2uL+/n3w7801D7twMf7ec3fD53G9j+FWBZP38b8MqBbW/cUC/wk3QB/HJgu9n+enaafPJaqWbDcVX1ucEV/WWj9wFHATv3q+cnmVNVj/bLdw71OZrut9696X7I7wDcONDkOwN9H+o/fntg+0PAhocO9gA+meRHA9sfBX7iSWrYA/hAkvcMDonurOkbE413AhcAv59kEd1v5Kur6roRaxvVHsDrk5w6sG4e3RnJkzmwqlYPrkjybOCDdGc28/sx3buRfUxWO8C/Dcw/yGOvxXOH+v/HfFWtTnI6XWjtl+RK4C1VddcIx9Ms8HKZthRvpbt0cnBV7cRjl6gy0OY/3jK8v9xzKfBu4CeqagFw+VD7qbgTOLqqFgxMT6/uvtFEb1V+J/CmofbPqO4y2BPGO5Gq+ibdZbZfp7tUdsEm1vYgXQht8Jyhcb5zaJw7VNXwpb3J/Elfz/796/PajYwHJql9EmuB3QaWFz9ux1Ufq6qX0AVoAX82jWOpMUNGW4r5dGcW3+tvuP/+JO3nAdsD64D1/W/+/3kaxz8HeOeGm/dJFiY5tt+2DvgR3T2CwfZvS7Jf3/5ZSX5lE477Ebp7DIfy2L2LqdZ2PfCaJHOSHEV3X2mDvwZOSnJwOs9M8vNJ5k9xnPPpL3P2Z16/M8X+U3Ex3ed25/5Yp2zYkGSfJEf2QfzvdF8zjz7JfrQFMGS0pXg/8AzgHuAq4IqNNa6qB+hu1l9Md9nmNcDyaRz/A33/zyR5oB/Dwf2xHgTeCXypf0LrkKr6JN1v0Bf1T1DdBBy9Cce9hO7y4D9W1dpNrO004FV097l+ne7+Df2+xukeQf7Lfl+rgTdswjj/gO6R8/uAfwAu24R9jOodwBrgduBzdJ+jh/tt2wN/Svd18m/As+kewNAWKlX+0zJJW64kb6Z7KOClkzbWFsczGUlblCS7Jjm0/9ulfeju131ytselTePTZZK2NPPo/p5nKd0lwIvoHnXXVsjLZZKkZrxcJklqZpu+XLbLLrvUkiVLZnsYkrRVWbFixT1VtXCUttt0yCxZsoTx8fHZHoYkbVWSfGPyVh0vl0mSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqpmnIJDkqyS1JVic5Y4LtSfLBfvsNSQ7s1y9O8vkkq5KsTHLaQJ8XJLkqyfVJxpMcNLDtbf2+bknyypa1SZIm1yxkkswBPgQcDewLvDrJvkPNjgb26qcTgbP79euBt1bV84BDgJMH+r4L+IOqegFwVr9Mv30ZsB9wFPBX/RgkSbOk5ZnMQcDqqrqtqh4BLgKOHWpzLHBBda4CFiTZtarWVtW1AFX1ALAKWNT3KWCnfv5ZwF0D+7qoqh6uqtuB1f0YJEmzZG7DfS8C7hxYXgMcPEKbRcDaDSuSLAEOAK7uV50OXJnk3XQh+bMD+7pqgn09TpIT6c6a2H333adQjiRpqlqeyWSCdTWVNkl2BC4FTq+q+/vVbwZ+u6oWA78NnDeF41FV51bVWFWNLVy4cJISJEnT0TJk1gCLB5Z347FLW5O2SbIdXcBcWFWXDbR5PbBh+e947JLYKMeTJM2gliFzDbBXkqVJ5tHdlF8+1GY5cHz/lNkhwH1VtTZJ6M5QVlXVe4f63AW8tJ8/Evj6wL6WJdk+yVK6hwm+svnLkiSNqtk9mapan+QU4EpgDnB+Va1MclK//RzgcuAYupv0DwIn9N0PBV4H3Jjk+n7dmVV1OfCbwAeSzAX+nf7+Sr/vi4Gb6Z5OO7mqHm1VnyRpcql6wm2LbcbY2FiNj4/P9jAkaauSZEVVjY3S1r/4lyQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzTQNmSRHJbklyeokZ0ywPUk+2G+/IcmB/frFST6fZFWSlUlOG+jziSTX99MdSa7v1y9J8tDAtnNa1iZJmtzcVjtOMgf4EPAKYA1wTZLlVXXzQLOjgb366WDg7P7jeuCtVXVtkvnAiiSfraqbq+rXBo7xHuC+gf3dWlUvaFWTJGlqWp7JHASsrqrbquoR4CLg2KE2xwIXVOcqYEGSXatqbVVdC1BVDwCrgEWDHZME+FXg4w1rkCRNQ8uQWQTcObC8hqGgGKVNkiXAAcDVQ30PA75dVV8fWLc0yXVJvpjksIkGleTEJONJxtetWzdyMZKkqWsZMplgXU2lTZIdgUuB06vq/qF2r+bxZzFrgd2r6gDgLcDHkuz0hJ1XnVtVY1U1tnDhwhHKkCRtqpYhswZYPLC8G3DXqG2SbEcXMBdW1WWDnZLMBX4J+MSGdVX1cFV9p59fAdwK7L1ZKpEkbZKWIXMNsFeSpUnmAcuA5UNtlgPH90+ZHQLcV1Vr+/st5wGrquq9E+z75cDXqmrNhhVJFvYPG5BkT7qHCW7b/GVJkkbV7Omyqlqf5BTgSmAOcH5VrUxyUr/9HOBy4BhgNfAgcELf/VDgdcCNGx5RBs6sqsv7+WU88Yb/4cA7kqwHHgVOqqrvNilOkjSSVA3fJtl2jI2N1fj4+GwPQ5K2KklWVNXYKG39i39JUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJamakkElye5LbhqcR+h2V5JYkq5OcMcH2JPlgv/2GJAf26xcn+XySVUlWJjltoM8nklzfT3ckuX5g29v6fd2S5JUjfQYkSc3MHbHd2MD804FfAX5sYx2SzAE+BLwCWANck2R5Vd080OxoYK9+Ohg4u/+4HnhrVV2bZD6wIslnq+rmqvq1gWO8B7ivn98XWAbsBzwX+FySvavq0RFrlLYID3znLsa/eBG77vZT/NRBx8z2cKRpGSlkquo7Q6ven+RfgLM20u0gYHVV3QaQ5CLgWGAwZI4FLqiqAq5KsiDJrlW1FljbH/uBJKuARYN9kwT4VeDIgX1dVFUPA7cnWd2P4V9HqVHaUnz4r9/M+Lqvsn224w8XPJtFe49N3knaQo0UMhsuY/WeRndmM3+SbouAOweW19CdpUzWZhF9wPTHXgIcAFw91Pcw4NtV9fWBfV01wb4eJ8mJwIkAu++++yQlSDPvB498n3nZjkf5EQ8/9P3ZHo40LaNeLnsPUP38euAOuktmG5MJ1tVU2iTZEbgUOL2q7h9q92rg41M8HlV1LnAuwNjY2BO2S7Ptja99H1f8wwdYsttPs/SnD5/t4UjTMmrIHA38MrBkoM8y4B0b6bMGWDywvBtw16htkmxHFzAXVtVlg52SzAV+CXjhFI8nbfGes+f+vOHU82Z7GNJmMeojzJ8CXgX8EPh+P/1gkj7XAHslWZpkHl0oLR9qsxw4vn/K7BDgvqpa299vOQ9YVVXvnWDfLwe+VlVrhva1LMn2SZbSPUzwlRHrkyQ1MOqZzG5VddRUdlxV65OcAlwJzAHOr6qVSU7qt58DXA4cA6wGHgRO6LsfCrwOuHHgEeUzq+ryfn4Zj79URr/vi+keDlgPnOyTZZI0u9I92DVJo+Rc4C+q6sb2Q5o5Y2NjNT4+PtvDkKStSpIVVTXSY4+jnsm8BHhDktuBh+lusldV7b+JY5QkbQOmcuNfkqQpGfWPMb/ReiCSpKce3yBTktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktRM05BJclSSW5KsTnLGBNuT5IP99huSHNivX5zk80lWJVmZ5LShfqf2+12Z5F39uiVJHkpyfT+d07I2SdLk5rbacZI5wIeAVwBrgGuSLK+qmweaHQ3s1U8HA2f3H9cDb62qa5PMB1Yk+WxV3Zzk54Bjgf2r6uEkzx7Y361V9YJWNUmSpqblmcxBwOqquq2qHgEuoguHQccCF1TnKmBBkl2ram1VXQtQVQ8Aq4BFfZ83A39aVQ/32+9uWIMkaRpahswi4M6B5TU8FhQjt0myBDgAuLpftTdwWJKrk3wxyYsGmi9Ncl2//rCJBpXkxCTjScbXrVs35aIkSaNrGTKZYF1NpU2SHYFLgdOr6v5+9VxgZ+AQ4HeAi5MEWAvsXlUHAG8BPpZkpyfsvOrcqhqrqrGFCxdOtSZJ0hS0DJk1wOKB5d2Au0Ztk2Q7uoC5sKouG+pzWX+J7SvAj4BdqurhqvoOQFWtAG6lO+uRJM2SliFzDbBXkqVJ5gHLgOVDbZYDx/dPmR0C3FdVa/szk/OAVVX13qE+nwKOBEiyNzAPuCfJwv5hA5LsSfcwwW2NapMkjaDZ02VVtT7JKcCVwBzg/KpameSkfvs5wOXAMcBq4EHghL77ocDrgBuTXN+vO7OqLgfOB85PchPwCPD6qqokhwPvSLIeeBQ4qaq+26o+SdLkUjV8m2TbMTY2VuPj47M9DEnaqiRZUVVjo7T1L/4lSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzTUMmyVFJbkmyOskZE2xPkg/2229IcmC/fnGSzydZlWRlktOG+p3a73dlkncNrH9bv69bkryyZW2SpMnNbbXjJHOADwGvANYA1yRZXlU3DzQ7Gtirnw4Gzu4/rgfeWlXXJpkPrEjy2aq6OcnPAccC+1fVw0me3R9vX2AZsB/wXOBzSfauqkdb1ShJ2riWZzIHAaur6raqegS4iC4cBh0LXFCdq4AFSXatqrVVdS1AVT0ArAIW9X3eDPxpVT3cb797YF8XVdXDVXU7sLofgyRplrQMmUXAnQPLa3gsKEZuk2QJcABwdb9qb+CwJFcn+WKSF03heCQ5Mcl4kvF169ZNrSJJ0pS0DJlMsK6m0ibJjsClwOlVdX+/ei6wM3AI8DvAxUky4vGoqnOraqyqxhYuXDh5FZKkTdYyZNYAiweWdwPuGrVNku3oAubCqrpsqM9l/SW2rwA/AnYZ8XiSpBnUMmSuAfZKsjTJPLqb8suH2iwHju+fMjsEuK+q1vZnJucBq6rqvUN9PgUcCZBkb2AecE+/r2VJtk+ylO5hgq80qk2SNIJmT5dV1fokpwBXAnOA86tqZZKT+u3nAJcDx9DdpH8QOKHvfijwOuDGJNf3686sqsuB84Hzk9wEPAK8vqoKWJnkYuBmuqfTTvbJMkmaXel+Pm+bxsbGanx8fLaHIUlblSQrqmpslLb+xb8kqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc2kqmZ7DLMmyTrgGxtpsgtwzwwNZ6ZY09bjqVjXU7EmeGrWtbGa9qiqhaPsZJsOmckkGa+qsdkex+ZkTVuPp2JdT8Wa4KlZ1+aqyctlkqRmDBlJUjOGzMadO9sDaMCath5PxbqeijXBU7OuzVKT92QkSc14JiNJasaQkSQ1s02GTJKjktySZHWSMybYfkSS+5Jc309nDW2fk+S6JH8/c6PeuOnUlOSOJDf268dnduQbN826FiS5JMnXkqxK8uKZHf3ENrWmJPsMrLs+yf1JTp/xAp7ENF+r306yMslNST6e5OkzO/qJTbOm0/p6Vm5Nr1Pf5oi+npVJvjiVvk9QVdvUBMwBbgX2BOYBXwX2HWpzBPD3G9nHW4CPbazN1lQTcAewy2zX0aCujwBv7OfnAQu29pqG9vNvdH8Ut1W/VsAi4HbgGf3yxcAbtvKang/cBOwAzAU+B+y1ldS0ALgZ2L1ffvaofSeatsUzmYOA1VV1W1U9AlwEHDtq5yS7AT8PfLjR+DbFtGragm1yXUl2Ag4HzgOoqkeq6nutBjoFm+u1ehlwa1Vt7B0rZtJ065oLPCPJXLofzHc1GONUTaem5wFXVdWDVbUe+CLwXxqNcypGqek1wGVV9U2Aqrp7Cn2fYFsMmUXAnQPLa/p1w16c5KtJPp1kv4H17wd+F/hRuyFO2XRrKuAzSVYkObHlQKdoOnXtCawD/qa/tPnhJM9sPN5RTPe12mAZ8PEWA9xEm1xXVX0LeDfwTWAtcF9Vfab1gEcwndfqJuDwJD+eZAfgGGBx2+GOZJSa9gZ2TvKF/mfC8VPo+wTbYshkgnXDz3FfS3cZ4meAvwA+BZDkF4C7q2pF0xFO3SbX1Du0qg4EjgZOTnJ4k1FO3XTqmgscCJxdVQcAPwBGu4bc1nRfK5LMA34R+LsWA9xE0/m+2pnuN+KlwHOBZyZ5bbuhjmyTa6qqVcCfAZ8FrqC7tLS+2UhHN0pNc4EX0l2xeSXwv5PsPWLfJ9gWQ2YNj/+NYjeGTs2r6v6q+n4/fzmwXZJdgEOBX0xyB92p4pFJPjojo9646dREVd3Vf7wb+CTdafGWYDp1rQHWVNXVfdNL6EJntk3rteodDVxbVd9uPdgpmE5dLwdur6p1VfVD4DLgZ2dm2Bs13e+r86rqwKo6HPgu8PWZGfZGTVpT3+aKqvpBVd0D/BPwMyP2faLZvhE10xNdSt9G91vThptX+w21eQ6P/aHqQXSn8RlqcwRbzo3/Ta4JeCYwv1//TODLwFGzXdPmeK2Afwb26effDvz51l5Tv+4i4ITZrmUzfg0eDKykuxcTugc2Tt2aa+qXN9ww3x34GrDzVlLT84B/7NvuQHfp7/mj9J1omss2pqrWJzkFuJLuaYnzq2plkpP67ecA/xV4c5L1wEPAsuo/+1ui6dSU5CeATyaB7ovoY1V1xawUMmQzvFanAhf2l5duA06Y8SKGTLem/vr+K4A3zUoBT2KadV2d5BK6S0/rgevYAt6mZTN8/V2a5MeBHwInV9W9M1/F441SU1WtSnIFcAPdvecPV9VNABP1neyYvq2MJKmZbfGejCRphhgykqRmDBlJUjOGjCSpGUNGktSMISPNknTvfr3LdNtIWzJDRpLUjCEjzYAkn+rfbHDl8JuQJlmS7n/efCTJDen+B84OA01OTXJtuv/581N9n4OSfLl/888vJ9lnRguSRmTISDPjN6rqhcAY8Fv9X4IP2gc4t6r2B+4H/vvAtnuqewPTs4H/0a/7GnB4dW/+eRbwx01HL20iQ0aaGb+V5KvAVXRvMrjX0PY7q+pL/fxHgZcMbLus/7gCWNLPPwv4uyQ3Ae8DJvp3ANKsM2SkxpIcQfdOwy+u7i3hrwOG/73w8Ps7DS4/3H98FP7j/Qb/EPh8VT0feNUE+5O2CIaM1N6zgHur6sH+nsohE7TZPcmL+/lXA/8ywj6/1c+/YbOMUmrAkJHauwKYm+QGujOQqyZoswp4fd/mx+juv2zMu4A/SfIlunfElbZIvguzNMuSLKH730TPn+2xSJubZzKSpGY8k5EkNeOZjCSpGUNGktSMISNJasaQkSQ1Y8hIkpr5//4vUNOu3A7mAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha lamb\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEWCAYAAAC0Q+rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfpklEQVR4nO3de5RdZZ3m8e+TSkICgkVLISEJJGhAQ4QQq0McFVkITZJWgm3PWvEyKI4T4hC1m7FtbHoQRFrby9Ay0skgxg5LMJOmxc5Kc9VpsJUOpAIJUpBoJVxSEE1xCRBDByv85o/9lmxOTqrOqcpbpyp5Pmvtdc7e77v3fn91KnlqX845igjMzMxyGNHoAZiZ2f7LIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGbJiRdLqkzkaPo0xSu6TTe2n/K0nXDd6IbKhwyNigkvSYpJck7ZD0G0nfk/S6Ro+rN5ImSQpJI/fR9sZI2i7pjCptV0m6aV/spz9Snb9Nr8+Tkv6XpKa+1ouIEyPirl7a/yYiPrlPB2vDgkPGGuH9EfE6YAbwh8Bf17OyCsPmd7cynCLiP4D/C5xX0a8J+BCwbPBGV9XJ6fV5L/Bh4L8NZGP7KpxteBo2/1Bt/xMRTwK3AtMkHS5plaQuSc+l5xN6+kq6S9KVkn4O7ASOk3S+pEckvShps6QLSv1Pl9Qp6fOStknaKulcSXMl/VLSs5L+qtR/hKSLJW2S9IykFZL+IDX/ND1uT3/hvyOt84m0/+ck3S7p2NL2QtKFkn4F/KpK+cuAD0o6uLTsbIp/k7f2VlultK83l+b/QdKXS/Pvk7QuHT3dI+mkvb8qr4qIDcC/Ubw+b5L0/9LP5mlJN0hqLu3jMUlnpueXSbpJ0vclvQB8PC37fmrvOTL8mKQn0vYuKW1rrKRl6ef6SHoNO0vtf5mOsl6UtFHSe2upxxrDIWMNI2kiMBd4gOJ38XvAscAxwEvAtytW+S/AAuBQ4HFgG/A+4DDgfOAqSTNK/Y8CxgDjgUuB7wAfBd4OvBu4VNJxqe9ngHOB9wBHA88B16S209Jjc0S8LiL+XdK5wF8BfwK0UPxn/IOK8Z4LnApMraw9Iu4Btqb1y/XdGBHdNdRWk7TOUuAC4A3A/wFWSjqohnWnUvycHgAEfIXiZ/NWYCJwWS+rzwNuApqBG/bS513ACRRHTJdKemta/kVgEnAccBbFa9YzphOARcAfRsShFMH8WF+1WANFhCdPgzZR/IewA9hOERR/D4yt0m868Fxp/i7gS31s+0fAZ9Pz0ymCqinNHwoEcGqp/1rg3PT8EeC9pbZxwO+AkRT/4QUwstR+K/BfS/MjKI6wjk3zAZzRx3j/GrgjPT8srX9KjbV1ltoCeHNp/h+AL6fni4ErKra1EXjPXvYTwAsUIbsJ+DIwokq/c4EHKl7XM9Pzy4CfVvS/DPh+et7z85xQar8PmJ+ebwbOLrV9sqde4M0UAXwmMKrRv8+e+p58rtQa4dyI+HF5QTptdBUwGzg8LT5UUlNE7E7zWyrWmUPxV+/xFP/JHwz8otTlmdK6L6XH35TaXwJ6bjo4FrhZ0iul9t3AG/dSw7HAtyR9szwkiqOmx6uNt4rrgS9KGk/xF3lHRDxQY221Ohb4mKRPl5aNpjgi2ZsZEdFRXiDpSOBqiiObQ9OYnutlG33VDvDr0vOdvPpaHF2x/u+fR0SHpD+jCK0TJd0OXBQRT9WwP2sAny6zoeJ/UJw6OTUiDuPVU1Qq9fn9R4an0z3/BHwDeGNENAO3VPSvxxZgTkQ0l6YxUVw3qvZR5VuACyr6j43iNNge460mIp6gOM32EYpTZdf3s7adFCHU46iKcV5ZMc6DI6Ly1F5fvpLqOSm9Ph/tZTzQR+192ApMKM1PfM2GI26MiHdRBGgAfzuAfVlmDhkbKg6lOLLYni64f7GP/qOBg4AuoDv95f9HA9j/EuDKnov3klokzUttXcArFNcIyv2/IOnE1P/1kv5zP/a7jOIawzt59dpFvbWtAz4sqUnSbIrrSj2+AyyUdKoKh0j6Y0mH1jnOQ0mnOdOR11/UuX49VlD8bA9P+1rU0yDpBElnpCD+D4rfmd172Y4NAQ4ZGyr+DhgLPA2sBm7rrXNEvEhxsX4FxWmbDwMrB7D/b6X175D0YhrDqWlfO4ErgZ+nO7RmRcTNFH9BL093UD0EzOnHfm+iOD34k4jY2s/aPgu8n+I610cort+QttVGcQvyt9O2OoCP92Ocl1Pccv488C/AD/uxjVp9CegEHgV+TPEz2pXaDgK+SvF78mvgSIobMGyIUoS/tMzMhi5Jn6K4KeA9fXa2IcdHMmY2pEgaJ+md6b1LJ1Bcr7u50eOy/vHdZWY21IymeD/PZIpTgMspbnW3Yciny8zMLBufLjMzs2wO6NNlRxxxREyaNKnRwzAzG1bWrl37dES01NL3gA6ZSZMm0dbW1uhhmJkNK5Ie77tXwafLzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsm6whI2m2pI2SOiRdXKVdkq5O7Q9KmpGWj5F0n6T1ktolXV5a5zJJT0pal6a5afkkSS+Vli/JWZuZmfUt29cvS2oCrgHOAjqBNZJWRsTDpW5zgClpOhVYnB53AWdExA5Jo4CfSbo1Ilan9a6KiG9U2e2miJiepyIzM6tXziOZmUBHRGyOiJeB5cC8ij7zgOujsBpoljQuze9IfUalKTKO1czMMsgZMuOBLaX5zrSspj6SmiStA7YBd0bEvaV+i9LptaWSDi8tnyzpAUl3S3p3tUFJWiCpTVJbV1dX/yozM7Oa5AwZVVlWeTSy1z4RsTud+poAzJQ0LbUvBt4ETAe2At9My7cCx0TEKcBFwI2SDttj4xHXRkRrRLS2tLTUV5GZmdUlZ8h0AhNL8xOAp+rtExHbgbuA2Wn+NymAXgG+Q3FajojYFRHPpOdrgU3A8fuoFjMz64ecIbMGmCJpsqTRwHxgZUWflcB56S6zWcDzEbFVUoukZgBJY4EzgQ1pflxp/Q8AD6XlLelmAyQdR3EzweZs1ZmZWZ+y3V0WEd2SFgG3A03A0ohol7QwtS8BbgHmAh3ATuD8tPo4YFkKjRHAiohYldq+Jmk6xWm1x4AL0vLTgC9J6gZ2Awsj4tlc9ZmZWd8UceDetNXa2hptbW2NHoaZ2bAiaW1EtNbS1+/4NzOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2WUNG0mxJGyV1SLq4SrskXZ3aH5Q0Iy0fI+k+SesltUu6vLTOZZKelLQuTXNLbV9I29oo6eyctZmZWd9G5tqwpCbgGuAsoBNYI2llRDxc6jYHmJKmU4HF6XEXcEZE7JA0CviZpFsjYnVa76qI+EbF/qYC84ETgaOBH0s6PiJ256rRzMx6l/NIZibQERGbI+JlYDkwr6LPPOD6KKwGmiWNS/M7Up9RaYo+9jcPWB4RuyLiUaAjjcHMzBokZ8iMB7aU5jvTspr6SGqStA7YBtwZEfeW+i1Kp9eWSjq8jv0haYGkNkltXV1d/SjLzMxqlTNkVGVZ5dHIXvtExO6ImA5MAGZKmpbaFwNvAqYDW4Fv1rE/IuLaiGiNiNaWlpa+ajAzswHIGTKdwMTS/ATgqXr7RMR24C5gdpr/TQqgV4Dv8OopsVr2Z2ZmgyhnyKwBpkiaLGk0xUX5lRV9VgLnpbvMZgHPR8RWSS2SmgEkjQXOBDak+XGl9T8APFTa1nxJB0maTHEzwX2ZajMzsxpku7ssIrolLQJuB5qApRHRLmlhal8C3ALMpbhIvxM4P60+DliW7lAbAayIiFWp7WuSplOcCnsMuCBtr13SCuBhoBu40HeWmZk1liL6umlr/9Xa2hptbW2NHoaZ2bAiaW1EtNbS1+/4NzOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2WUNG0mxJGyV1SLq4SrskXZ3aH5Q0Iy0fI+k+SesltUu6vMq6n5MUko5I85MkvSRpXZqW5KzNzMz6NjLXhiU1AdcAZwGdwBpJKyPi4VK3OcCUNJ0KLE6Pu4AzImKHpFHAzyTdGhGr07Ynpu0+UbHbTRExPVdNZmZWn5xHMjOBjojYHBEvA8uBeRV95gHXR2E10CxpXJrfkfqMSlOU1rsK+HzFMjMzG2Jyhsx4YEtpvjMtq6mPpCZJ64BtwJ0RcW9afg7wZESsr7LPyZIekHS3pHdXG5SkBZLaJLV1dXX1py4zM6tRzpBRlWWVRx577RMRu9OprwnATEnTJB0MXAJcWmW9rcAxEXEKcBFwo6TD9th4xLUR0RoRrS0tLbVXY2ZmdcsZMp3AxNL8BOCpevtExHbgLmA28CZgMrBe0mOp//2SjoqIXRHxTFpnLbAJOH4f1WJmZv2QM2TWAFMkTZY0GpgPrKzosxI4L91lNgt4PiK2SmqR1AwgaSxwJrAhIn4REUdGxKSImEQRUjMi4tdpnaa0znEUNxNszlifmZn1IdvdZRHRLWkRcDvQBCyNiHZJC1P7EuAWYC7QAewEzk+rjwOWpdAYAayIiFV97PI04EuSuoHdwMKIeHZf12VmZrVTxIF7g1Zra2u0tbU1ehhmZsOKpLUR0VpLX7/j38zMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCybmj/qX9JRwEyKb65cExG/zjYqMzPbL9R0JCPpk8B9wJ8AfwqslvSJnAMzM7Phr9Yjmb8ATun5emNJbwDuAZbmGpiZmQ1/tV6T6QReLM2/CGzZ98MxM7P9Sa9HMpIuSk+fBO6V9M8U12TmUZw+MzMz26u+Tpcdmh43panHP+cZjpmZ7U96DZmIuHywBmJmZvufWu8ua5V0s6T7JT3YM9Ww3mxJGyV1SLq4SrskXZ3aH5Q0Iy0fI+k+SesltUvaI+wkfU5SSDqitOwLaVsbJZ1dS21mZpZPrXeX3UBxh9kvgFdqWUFSE3ANcBbFjQNrJK2MiIdL3eYAU9J0KrA4Pe4CzoiIHZJGAT+TdGtErE7bnpi2+0Rpf1OB+cCJwNHAjyUdHxG7a6zRbEh48ZmnaLt7OeMmvIW3zJzb6OGYDUitIdMVESvr3PZMoCMiNgNIWk5xw0A5ZOYB10dEULz3plnSuIjYCuxIfUalKUrrXQV8ntdeG5oHLI+IXcCjkjrSGP69znGbNdR13/kUbV3rOUijuKL5SMYf39roIZn1W60h80VJ1wE/oTjKACAiftjLOuN57W3OnRRHKX31GQ9sTUdCa4E3A9dExL0Aks4BnoyI9ZIqt7W6yrZeQ9ICYAHAMccc08vwzRrjty/vYLRGsZtX2PXSjr5XMBvCag2Z84G3UBxR9JwuC6C3kFGVZVFrn3Saa7qkZuBmSdOAzcAlwB/1c39ExLXAtQCtra17tJs12ic/ehW3/cu3mDThbUx+22mNHo7ZgNQaMidHxNvq3HYnMLE0PwF4qt4+EbFd0l3AbOB2YDLQcxQzAbhf0swa92c25B113El8/NPfbfQwzPaJWt/xvzpdWK/HGmCKpMmSRlNclK+8rrMSOC/dZTYLeD4itkpqSUcwSBoLnAlsiIhfRMSRETEpIiZRBMuM9GGdK4H5kg6SNJniZgK/YdTMrIFqPZJ5F/AxSY9SXJMREBFx0t5WiIhuSYsojj6agKUR0S5pYWpfAtwCzAU6gJ0Up+UAxgHL0nWZEcCKiFjV2wDTtldQ3FjQDVzoO8vMzBpLxY1dfXSSjq22PCIe3+cjGkStra3R1tbW6GGYmQ0rktZGRE23PdZ0JNMTJpKOBMYMYGxmZnYAqfUd/+dI+hXwKHA38Bhwa8ZxmZnZfqDWC/9XALOAX0bEZOC9wM+zjcrMzPYLtYbM79IXlo2QNCIi/hWYnm9YZma2P6j17rLtkl4H/BS4QdI2iju4zMzM9qrWI5l5wEvAnwO3UXy3zPtzDcrMzPYPtd5d9tvS7LJMYzEzs/1MX1+//CJVPv+LV9+MeViWUZmZ2X6hr2/GPLS3djMzs97Uek3GzMysbg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZZA0ZSbMlbZTUIeniKu2SdHVqf1DSjLR8jKT7JK2X1C7p8tI6V6S+6yTdIenotHySpJfS8nWSluSszczM+pYtZCQ1AdcAc4CpwIckTa3oNgeYkqYFwOK0fBdwRkScTPENnLMlzUptX4+IkyJiOrAKuLS0vU0RMT1NCzOUZWZmdch5JDMT6IiIzRHxMrCc4svPyuYB10dhNdAsaVya35H6jEpTAETEC6X1D6H6VxGYmdkQkDNkxgNbSvOdaVlNfSQ1SVoHbAPujIh7ezpJulLSFuAjvPZIZrKkByTdLend1QYlaYGkNkltXV1d/SzNzMxqkTNkVGVZ5VHHXvtExO50SmwCMFPStN93iLgkIiYCNwCL0uKtwDERcQpwEXCjpD2+VC0iro2I1ohobWlpqbcmMzOrQ86Q6QQmluYnAE/V2ycitgN3AbOr7ONG4IOp366IeCY9XwtsAo7v9+jNzGzAcobMGmCKpMmSRgPzgZUVfVYC56W7zGYBz0fEVkktkpoBJI0FzgQ2pPkppfXPKS1vSTcbIOk4ipsJNmerzszM+tTr1y8PRER0S1oE3A40AUsjol3SwtS+BLgFmAt0ADuB89Pq44BlKTRGACsiYlVq+6qkE4BXgMeBnrvITgO+JKkb2A0sjIhnc9VnZmZ9U8SBe3NWa2trtLW1NXoYZmbDiqS1EdFaS1+/49/MzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2WQNGUmzJW2U1CHp4irtknR1an9Q0oy0fIyk+yStl9Qu6fLSOlekvusk3SHp6FLbF9K2Nko6O2dtZmbWt2whI6kJuAaYA0wFPiRpakW3OcCUNC0AFqflu4AzIuJkYDowW9Ks1Pb1iDgpIqYDq4BL0/6mAvOBE4HZwN+nMZiZWYPkPJKZCXRExOaIeBlYDsyr6DMPuD4Kq4FmSePS/I7UZ1SaAiAiXiitf0jP8rSt5RGxKyIeBTrSGMzMrEFyhsx4YEtpvjMtq6mPpCZJ64BtwJ0RcW9PJ0lXStoCfIR0JFPj/pC0QFKbpLaurq7+1GVmZjXKGTKqsixq7RMRu9MpsQnATEnTft8h4pKImAjcACyqY39ExLUR0RoRrS0tLX1XYWZm/ZYzZDqBiaX5CcBT9faJiO3AXRTXWSrdCHywjv2Zmdkgyhkya4ApkiZLGk1xUX5lRZ+VwHnpLrNZwPMRsVVSi6RmAEljgTOBDWl+Smn9c3qWp23Nl3SQpMkUNxPcl6k2MzOrwchcG46IbkmLgNuBJmBpRLRLWpjalwC3AHMpLtLvBM5Pq48DlqW7w0YAKyJiVWr7qqQTgFeAx4Ge7bVLWgE8DHQDF0bE7lz1mZlZ3xSxx2WLA0Zra2u0tbU1ehhmZsOKpLUR0VpLX7/j38zMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZZA0ZSbMlbZTUIeniKu2SdHVqf1DSjLR8jKT7JK2X1C7p8tI6X5e0IfW/WVJzWj5J0kuS1qVpSc7azMysb9lCRlITcA0wB5gKfEjS1Ipuc4ApaVoALE7LdwFnRMTJwHRgtqRZqe1OYFpEnAT8EvhCaXubImJ6mhZmKMvMzOqQ80hmJtAREZsj4mVgOTCvos884PoorAaaJY1L8ztSn1FpCoCIuCMiulPbamBCxhrMzGwAcobMeGBLab4zLaupj6QmSeuAbcCdEXFvlX18Ari1ND9Z0gOS7pb07mqDkrRAUpuktq6urroKMjOz+uQMGVVZFrX2iYjdETGd4khlpqRpr1lRugToBm5Ii7YCx0TEKcBFwI2SDttj4xHXRkRrRLS2tLTUU4+ZmdUpZ8h0AhNL8xOAp+rtExHbgbuA2T3LJH0MeB/wkYjoCaVdEfFMer4W2AQcvw/qMDOzfsoZMmuAKZImSxoNzAdWVvRZCZyX7jKbBTwfEVsltZTuGhsLnAlsSPOzgb8EzomInT0bSus0pefHUdxMsDljfWZm1oeRuTYcEd2SFgG3A03A0ohol7QwtS8BbgHmAh3ATuD8tPo4YFkKjRHAiohYldq+DRwE3CkJYHW6k+w04EuSuoHdwMKIeDZXfWZm1jels00HpNbW1mhra2v0MMzMhhVJayOitZa+fse/mZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsmwP6S8skdQGP99LlCODpQRrOYHFNw8f+WNf+WBPsn3X1VtOxEdFSy0YO6JDpi6S2Wr/9bbhwTcPH/ljX/lgT7J917auafLrMzMyycciYmVk2DpneXdvoAWTgmoaP/bGu/bEm2D/r2ic1+ZqMmZll4yMZMzPLxiFjZmbZHJAhI2m2pI2SOiRdXKX9dEnPS1qXpksr2pskPSBp1eCNuncDqUnSY5J+kZa3De7IezfAupol3SRpg6RHJL1jcEdfXX9rknRCadk6SS9I+rNBL2AvBvha/bmkdkkPSfqBpDGDO/rqBljTZ1M97cPpdUp9Tk/1tEu6u5519xARB9QENAGbgOOA0cB6YGpFn9OBVb1s4yLgxt76DKeagMeAIxpdR4a6lgGfTM9HA83DvaaK7fya4k1xw/q1AsYDjwJj0/wK4OPDvKZpwEPAwcBI4MfAlGFSUzPwMHBMmj+y1nWrTQfikcxMoCMiNkfEy8ByYF6tK0uaAPwxcF2m8fXHgGoawvpdl6TDgNOA7wJExMsRsT3XQOuwr16r9wKbIqK3T6wYTAOtayQwVtJIiv+Yn8owxnoNpKa3AqsjYmdEdAN3Ax/INM561FLTh4EfRsQTABGxrY5193Aghsx4YEtpvjMtq/QOSesl3SrpxNLyvwM+D7ySb4h1G2hNAdwhaa2kBTkHWqeB1HUc0AV8L53avE7SIZnHW4uBvlY95gM/yDHAfup3XRHxJPAN4AlgK/B8RNyRe8A1GMhr9RBwmqQ3SDoYmAtMzDvcmtRS0/HA4ZLuSv8nnFfHuns4EENGVZZV3sd9P8VpiJOB/w38CEDS+4BtEbE26wjr1++akndGxAxgDnChpNOyjLJ+A6lrJDADWBwRpwC/BWo7h5zXQF8rJI0GzgH+MccA+2kg/64Op/iLeDJwNHCIpI/mG2rN+l1TRDwC/C1wJ3Abxaml7mwjrV0tNY0E3k5xxuZs4H9KOr7GdfdwIIZMJ6/9i2ICFYfmEfFCROxIz28BRkk6AngncI6kxygOFc+Q9P1BGXXvBlITEfFUetwG3ExxWDwUDKSuTqAzIu5NXW+iCJ1GG9BrlcwB7o+I3+QebB0GUteZwKMR0RURvwN+CPynwRl2rwb67+q7ETEjIk4DngV+NTjD7lWfNaU+t0XEbyPiaeCnwMk1rrunRl+IGuyJIqU3U/zV1HPx6sSKPkfx6htVZ1Icxquiz+kMnQv//a4JOAQ4NC0/BLgHmN3omvbFawX8G3BCen4Z8PXhXlNathw4v9G17MPfwVOBdoprMaK4YePTw7mmNN9zwfwYYANw+DCp6a3AT1LfgylO/U2rZd1q00gOMBHRLWkRcDvF3RJLI6Jd0sLUvgT4U+BTkrqBl4D5kX76Q9FAapL0RuBmSVD8Et0YEbc1pJAK++C1+jRwQzq9tBk4f9CLqDDQmtL5/bOACxpSwF4MsK57Jd1EceqpG3iAIfAxLfvg9++fJL0B+B1wYUQ8N/hVvFYtNUXEI5JuAx6kuPZ8XUQ8BFBt3b726Y+VMTOzbA7EazJmZjZIHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY9YgKj79+oiB9jEbyhwyZmaWjUPGbBBI+lH6sMH2yg8hlTRJxXfeLJP0oIrvwDm41OXTku5X8Z0/b0nrzJR0T/rwz3sknTCoBZnVyCFjNjg+ERFvB1qBz6R3gpedAFwbEScBLwD/vdT2dBQfYLoY+FxatgE4LYoP/7wU+JusozfrJ4eM2eD4jKT1wGqKDxmcUtG+JSJ+np5/H3hXqe2H6XEtMCk9fz3wj5IeAq4Cqn0dgFnDOWTMMpN0OsUnDb8jio+EfwCo/Hrhys93Ks/vSo+74fefN3gF8K8RMQ14f5XtmQ0JDhmz/F4PPBcRO9M1lVlV+hwj6R3p+YeAn9WwzSfT84/vk1GaZeCQMcvvNmCkpAcpjkBWV+nzCPCx1OcPKK6/9OZrwFck/ZziE3HNhiR/CrNZg0maRPHdRNMaPRazfc1HMmZmlo2PZMzMLBsfyZiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll8/8Bz+8ygLgrZ84AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha rho\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEWCAYAAAC0Q+rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfCElEQVR4nO3de5hVV53m8e9LAYHExEqbihIuAZRkJJgQPA04aswg6RS0hjjOzEPUicFxCE5QezKOHU1PTKJp76bNGGGiYpPHRIZOG5uHztWeTmxNEygEYiqBtiAXKqBULhARmljkN3/sVebkcKg6VcWqC7yf59lPnb32WnuvH6fgZV/qlCICMzOzHIb09wTMzOzo5ZAxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhYzbISDpfUmt/z6OcpGZJ53ey/bOSvtt3M7KBwiFjfUrSk5L2S9or6TeSvi/pNf09r85IGi8pJA09QvsbIWm3pFlVtt0o6Y4jcZyeSHX+Lr0/z0j6hqS6rsZFxFkR8UAn2/8yIj56RCdrg4JDxvrDeyPiNcA04I+Bv+jOYBUGzfduZThFxL8C/xe4tKJfHXAJsLzvZlfVOen9eTfwAeC/9mZnRyqcbXAaNH9R7egTEc8AdwNTJJ0sabWkNkkvpNdjOvpKekDSDZJ+DuwDJkpaIOlxSb+VtE3S5WX9z5fUKunTknZJ2inpYklzJf2LpOclfbas/xBJV0naKuk5SSsl/VHa/NP0dXf6H/7b0piPpOO/IOleSaeX7S8kXSHpV8CvqpS/HHi/pOPL2i6k+Dt5d2e1VUrHelPZ+l9L+kLZ+nskbUxnTw9JOvvw78orImIz8E8U788bJf2/9GfzrKTbJNWXHeNJSbPT62sl3SHpB5JeBC5LbT9I2zvODD8s6em0v6vL9jVS0vL05/p4eg9by7b/eTrL+q2kLZLeXUs91j8cMtZvJI0F5gIbKL4Xvw+cDowD9gPfqhjyn4GFwInAU8Au4D3AScAC4EZJ08r6vwEYAYwGrgG+A3wIeCvwTuAaSRNT308AFwPvAk4DXgBuTtvOS1/rI+I1EfHPki4GPgv8e6CB4h/jH1bM92JgBjC5svaIeAjYmcaX13d7RLTXUFtN0phlwOXA64D/A6ySdFwNYydT/DltAAR8keLP5s3AWODaTobPA+4A6oHbDtPnHcCZFGdM10h6c2r/HDAemAhcQPGedczpTGAx8McRcSJFMD/ZVS3WjyLCi5c+Wyj+QdgL7KYIim8DI6v0mwq8ULb+AHB9F/v+MfDJ9Pp8iqCqS+snAgHMKOu/Hrg4vX4ceHfZtlHA74GhFP/gBTC0bPvdwH8pWx9CcYZ1eloPYFYX8/0L4L70+qQ0/twaa2st2xbAm8rW/xr4Qnq9BPh8xb62AO86zHECeJEiZLcCXwCGVOl3MbCh4n2dnV5fC/y0ov+1wA/S644/zzFl29cC89PrbcCFZds+2lEv8CaKAJ4NDOvv72cvXS++Vmr94eKI+El5Q7psdCPQCJycmk+UVBcRB9P69ooxcyj+13sGxT/yxwO/LOvyXNnY/enrb8q27wc6Hjo4HbhT0stl2w8Crz9MDacD35T09fIpUZw1PVVtvlXcCnxO0miK/5G3RMSGGmur1enAhyV9vKxtOMUZyeFMi4iW8gZJpwI3UZzZnJjm9EIn++iqdoBfl73exyvvxWkV4//wOiJaJP0ZRWidJele4MqI2FHD8awf+HKZDRT/g+LSyYyIOIlXLlGprM8fPjI8Xe75W+BrwOsjoh64q6J/d2wH5kREfdkyIor7RtU+qnw7cHlF/5FRXAY7ZL7VRMTTFJfZPkhxqezWHta2jyKEOryhYp43VMzz+IiovLTXlS+mes5O78+HOpkPdFF7F3YCY8rWx75qxxG3R8Q7KAI0gC/34liWmUPGBooTKc4sdqcb7p/rov9w4DigDWhP//P/k14cfylwQ8fNe0kNkualbW3AyxT3CMr7f0bSWan/ayX9xx4cdznFPYa388q9i+7WthH4gKQ6SY0U95U6fAdYJGmGCidI+lNJJ3ZznieSLnOmM6//2c3x3bGS4s/25HSsxR0bJJ0paVYK4n+l+J45eJj92ADgkLGB4q+AkcCzwBrgns46R8RvKW7Wr6S4bPMBYFUvjv/NNP4+Sb9Nc5iRjrUPuAH4eXpCa2ZE3EnxP+gV6QmqR4E5PTjuHRSXB/8hInb2sLZPAu+luM/1QYr7N6R9NVE8gvyttK8W4LIezPM6ikfO9wB/D/yoB/uo1fVAK/AE8BOKP6MDadtxwJcovk9+DZxK8QCGDVCK8C8tM7OBS9LHKB4KeFeXnW3A8ZmMmQ0okkZJenv62aUzKe7X3dnf87Ke8dNlZjbQDKf4eZ4JFJcAV1A86m6DkC+XmZlZNr5cZmZm2RzTl8tOOeWUGD9+fH9Pw8xsUFm/fv2zEdFQS99jOmTGjx9PU1NTf0/DzGxQkfRU170KvlxmZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZZA0ZSY2StkhqkXRVle2SdFPa/oikaal9hKS1kjZJapZ0XdmYayU9I2ljWuam9vGS9pe1L81Zm5mZdS3br1+WVAfcDFwAtALrJK2KiMfKus0BJqVlBrAkfT0AzIqIvZKGAT+TdHdErEnjboyIr1U57NaImJqnIjMz666cZzLTgZaI2BYRLwErgHkVfeYBt0ZhDVAvaVRa35v6DEtLZJyrmZllkDNkRgPby9ZbU1tNfSTVSdoI7ALuj4iHy/otTpfXlkk6uax9gqQNkh6U9M5qk5K0UFKTpKa2traeVWZmZjXJGTKq0lZ5NnLYPhFxMF36GgNMlzQlbV8CvBGYCuwEvp7adwLjIuJc4ErgdkknHbLziFsiohQRpYaGhu5VZGZm3ZIzZFqBsWXrY4Ad3e0TEbuBB4DGtP6bFEAvA9+huCxHRByIiOfS6/XAVuCMI1SLmZn1QM6QWQdMkjRB0nBgPrCqos8q4NL0lNlMYE9E7JTUIKkeQNJIYDawOa2PKhv/PuDR1N6QHjZA0kSKhwm2ZavOzMy6lO3psohol7QYuBeoA5ZFRLOkRWn7UuAuYC7QAuwDFqTho4DlKTSGACsjYnXa9hVJUykuqz0JXJ7azwOul9QOHAQWRcTzueozM7OuKeLYfWirVCpFU1NTf0/DzGxQkbQ+Ikq19PVP/JuZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsm6whI6lR0hZJLZKuqrJdkm5K2x+RNC21j5C0VtImSc2Srisbc62kZyRtTMvcsm2fSfvaIunCnLWZmVnXhubasaQ64GbgAqAVWCdpVUQ8VtZtDjApLTOAJenrAWBWROyVNAz4maS7I2JNGndjRHyt4niTgfnAWcBpwE8knRERB3PVaGZmnct5JjMdaImIbRHxErACmFfRZx5waxTWAPWSRqX1vanPsLREF8ebB6yIiAMR8QTQkuZgZmb9JGfIjAa2l623praa+kiqk7QR2AXcHxEPl/VbnC6vLZN0cjeOh6SFkpokNbW1tfWgLDMzq1XOkFGVtsqzkcP2iYiDETEVGANMlzQlbV8CvBGYCuwEvt6N4xERt0REKSJKDQ0NXdVgZma9kDNkWoGxZetjgB3d7RMRu4EHgMa0/psUQC8D3+GVS2K1HM/MzPpQzpBZB0ySNEHScIqb8qsq+qwCLk1Pmc0E9kTETkkNkuoBJI0EZgOb0/qosvHvAx4t29d8ScdJmkDxMMHaTLWZmVkNsj1dFhHtkhYD9wJ1wLKIaJa0KG1fCtwFzKW4Sb8PWJCGjwKWpyfUhgArI2J12vYVSVMpLoU9CVye9tcsaSXwGNAOXOEny8zM+pciunpo6+hVKpWiqampv6dhZjaoSFofEaVa+von/s3MLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWTdaQkdQoaYukFklXVdkuSTel7Y9ImpbaR0haK2mTpGZJ11UZ+ylJIemUtD5e0n5JG9OyNGdtZmbWtaG5diypDrgZuABoBdZJWhURj5V1mwNMSssMYEn6egCYFRF7JQ0Dfibp7ohYk/Y9Nu336YrDbo2IqblqMjOz7sl5JjMdaImIbRHxErACmFfRZx5waxTWAPWSRqX1vanPsLRE2bgbgU9XtJmZ2QCTM2RGA9vL1ltTW019JNVJ2gjsAu6PiIdT+0XAMxGxqcoxJ0jaIOlBSe+sNilJCyU1SWpqa2vrSV1mZlajnCGjKm2VZx6H7RMRB9OlrzHAdElTJB0PXA1cU2XcTmBcRJwLXAncLumkQ3YecUtElCKi1NDQUHs1ZmbWbTlDphUYW7Y+BtjR3T4RsRt4AGgE3ghMADZJejL1/4WkN0TEgYh4Lo1ZD2wFzjhCtZiZWQ/kDJl1wCRJEyQNB+YDqyr6rAIuTU+ZzQT2RMROSQ2S6gEkjQRmA5sj4pcRcWpEjI+I8RQhNS0ifp3G1KUxEykeJtiWsT4zM+tCtqfLIqJd0mLgXqAOWBYRzZIWpe1LgbuAuUALsA9YkIaPApan0BgCrIyI1V0c8jzgekntwEFgUUQ8f6TrMjOz2ini2H1Aq1QqRVNTU39Pw8xsUJG0PiJKtfT1T/ybmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8umppCR9FpJN0pqSsvXJb029+TMzGxwq/VMZhnwIvCf0vIi8P1ckzIzs6NDrSHzxoj4XERsS8t1wMSuBklqlLRFUoukq6psl6Sb0vZHJE1L7SMkrZW0SVKzpOuqjP2UpJB0SlnbZ9K+tki6sMbazMwsk1pDZr+kd3SsSHo7sL+zAZLqgJuBOcBk4BJJkyu6zQEmpWUhsCS1HwBmRcQ5wFSgUdLMsn2PBS4Ani5rmwzMB84CGoFvpzmYDSq/fW4H//ijb7B57V39PRWzXhtaY79FwK3pPoyA54HLuhgzHWiJiG0AklYA84DHyvrMA26NiADWSKqXNCoidgJ7U59haYmycTcCnwb+rmJfKyLiAPCEpJY0h3+usUazAeG73/kYTW2bOE7D+Hz9qYw+o9TfUzLrsZpCJiI2AedIOimtv1jDsNHA9rL1VmBGDX1GAzvTWch64E3AzRHxMICki4BnImKTpMp9ramyr1eRtJDirIlx48bVUIZZ3/rdS3sZrmEc5GUO7N/b9QCzAaymkJF0HPB+YDwwtOMf94i4vrNhVdqi1j4RcRCYKqkeuFPSFGAbcDXwJz08HhFxC3ALQKlUOmS7WX/76Idu5J6//ybjx7yFCW85r7+nY9YrtV4u+ztgD8WZxYEax7QCY8vWxwA7utsnInZLeoDiPsu9wASg4yxmDPALSdNrPJ7ZgPeGiWdz2ce/19/TMDsiag2ZMRHR2M19rwMmSZoAPENxU/4DFX1WAYvT/ZoZwJ6I2CmpAfh9CpiRwGzgyxHxS+DUjsGSngRKEfGspFXA7ZK+AZxG8TDB2m7O2czMjqBaQ+YhSW9J/8jXJCLaJS2mOPuoA5ZFRLOkRWn7UuAuYC7QAuwDFqTho4Dl6b7MEGBlRKzu4njNklZSPFjQDlyRLrmZmVk/UfFg12E2Sr+kuNcxEhhHcU/kQGqLiDi7LyaZS6lUiqampv6ehpnZoCJpfUTU9NhjV2cy76E4k+h4ysvMzKxmnYZMRDwFIOmHwKkRsa5PZmVmZkeFWu/J/DvgcklPAb/jKLlcZmZmedUaMnOyzsLMzI5Ktf7E/1O5J2JmZkcf/9IyMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsskaMpIaJW2R1CLpqirbJemmtP0RSdNS+whJayVtktQs6bqyMZ9PfTdKuk/Saal9vKT9qX2jpKU5azMzs65lCxlJdcDNFL9VczJwiaTJFd3mAJPSshBYktoPALMi4hxgKtAoaWba9tWIODsipgKrgWvK9rc1IqamZVGGsszMrBtynslMB1oiYltEvASsAOZV9JkH3BqFNUC9pFFpfW/qMywtARARL5aNP6Gj3czMBp6cITMa2F623praauojqU7SRmAXcH9EPNzRSdINkrYDH+TVZzITJG2Q9KCkd1ablKSFkpokNbW1tfWwNDMzq0XOkFGVtsqzjsP2iYiD6ZLYGGC6pCl/6BBxdUSMBW4DFqfmncC4iDgXuBK4XdJJh+w84paIKEVEqaGhobs1mZlZN+QMmVZgbNn6GGBHd/tExG7gAaCxyjFuB96f+h2IiOfS6/XAVuCMHs/ezMx6LWfIrAMmSZogaTgwH1hV0WcVcGl6ymwmsCcidkpqkFQPIGkkMBvYnNYnlY2/qKy9IT1sgKSJFA8TbMtWnZmZdWlorh1HRLukxcC9QB2wLCKaJS1K25cCdwFzgRZgH7AgDR8FLE+hMQRYGRGr07YvSToTeBl4Cuh4iuw84HpJ7cBBYFFEPJ+rPjMz65oijt2Hs0qlUjQ1NfX3NMzMBhVJ6yOiVEtf/8S/mZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLJxyJiZWTYOGTMzy8YhY2Zm2ThkzMwsG4eMmZll45AxM7NsHDJmZpaNQ8bMzLLJGjKSGiVtkdQi6aoq2yXpprT9EUnTUvsISWslbZLULOm6sjGfT303SrpP0mll2z6T9rVF0oU5azMzs65lCxlJdcDNwBxgMnCJpMkV3eYAk9KyEFiS2g8AsyLiHGAq0ChpZtr21Yg4OyKmAquBa9LxJgPzgbOARuDbaQ5mZtZPcp7JTAdaImJbRLwErADmVfSZB9wahTVAvaRRaX1v6jMsLQEQES+WjT+hoz3ta0VEHIiIJ4CWNAczM+snOUNmNLC9bL01tdXUR1KdpI3ALuD+iHi4o5OkGyRtBz5IOpOp8XhIWiipSVJTW1tbT+oyM7Ma5QwZVWmLWvtExMF0SWwMMF3SlD90iLg6IsYCtwGLu3E8IuKWiChFRKmhoaHrKszMrMdyhkwrMLZsfQywo7t9ImI38ADFfZZKtwPv78bxzMysD+UMmXXAJEkTJA2nuCm/qqLPKuDS9JTZTGBPROyU1CCpHkDSSGA2sDmtTyobf1FHe9rXfEnHSZpA8TDB2ky1mZlZDYbm2nFEtEtaDNwL1AHLIqJZ0qK0fSlwFzCX4ib9PmBBGj4KWJ6eDhsCrIyI1WnblySdCbwMPAV07K9Z0krgMaAduCIiDuaqz8zMuqaIQ25bHDNKpVI0NTX19zTMzAYVSesjolRLX//Ev5mZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZmaWjUPGzMyyyRoykholbZHUIumqKtsl6aa0/RFJ01L7CElrJW2S1CzpurIxX5W0OfW/U1J9ah8vab+kjWlZmrM2MzPrWraQkVQH3AzMASYDl0iaXNFtDjApLQuBJan9ADArIs4BpgKNkmambfcDUyLibOBfgM+U7W9rRExNy6IMZZmZWTfkPJOZDrRExLaIeAlYAcyr6DMPuDUKa4B6SaPS+t7UZ1haAiAi7ouI9rRtDTAmYw1mZtYLOUNmNLC9bL01tdXUR1KdpI3ALuD+iHi4yjE+Atxdtj5B0gZJD0p6Z7VJSVooqUlSU1tbW7cKMjOz7skZMqrSFrX2iYiDETGV4kxluqQprxooXQ20A7elpp3AuIg4F7gSuF3SSYfsPOKWiChFRKmhoaE79ZiZWTflDJlWYGzZ+hhgR3f7RMRu4AGgsaNN0oeB9wAfjIiOUDoQEc+l1+uBrcAZR6AOMzProZwhsw6YJGmCpOHAfGBVRZ9VwKXpKbOZwJ6I2CmpoeypsZHAbGBzWm8E/hy4KCL2dewojalLrydSPEywLWN9ZmbWhaG5dhwR7ZIWA/cCdcCyiGiWtChtXwrcBcwFWoB9wII0fBSwPIXGEGBlRKxO274FHAfcLwlgTXqS7DzgekntwEFgUUQ8n6s+MzPrmtLVpmNSqVSKpqam/p6GmdmgIml9RJRq6euf+Dczs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWXjkDEzs2wcMmZmlo1DxszMsnHImJlZNg4ZMzPLxiFjZmbZOGTMzCwbh4yZmWVzTP/SMkltwFOddDkFeLaPptNXXNPgcTTWdTTWBEdnXZ3VdHpENNSyk2M6ZLoiqanW3/42WLimweNorOtorAmOzrqOVE2+XGZmZtk4ZMzMLBuHTOdu6e8JZOCaBo+jsa6jsSY4Ous6IjX5noyZmWXjMxkzM8vGIWNmZtkckyEjqVHSFkktkq6qsv18SXskbUzLNRXb6yRtkLS672bdud7UJOlJSb9M7U19O/PO9bKuekl3SNos6XFJb+vb2VfX05oknVnWtlHSi5L+rM8LOIxevlf/XVKzpEcl/VDSiL6dfXW9rOmTqZ7mwfQ+pT7np3qaJT3YnbGHiIhjagHqgK3ARGA4sAmYXNHnfGB1J/u4Eri9sz6DqSbgSeCU/q4jQ13LgY+m18OB+sFeU8V+fk3xQ3GD+r0CRgNPACPT+krgskFe0xTgUeB4YCjwE2DSIKmpHngMGJfWT611bLXlWDyTmQ60RMS2iHgJWAHMq3WwpDHAnwLfzTS/nuhVTQNYj+uSdBJwHvA9gIh4KSJ255poNxyp9+rdwNaI6OwTK/pSb+saCoyUNJTiH+YdGebYXb2p6c3AmojYFxHtwIPA+zLNsztqqekDwI8i4mmAiNjVjbGHOBZDZjSwvWy9NbVVepukTZLulnRWWftfAZ8GXs43xW7rbU0B3CdpvaSFOSfaTb2payLQBnw/Xdr8rqQTMs+3Fr19rzrMB36YY4I91OO6IuIZ4GvA08BOYE9E3Jd7wjXozXv1KHCepNdJOh6YC4zNO92a1FLTGcDJkh5I/yZc2o2xhzgWQ0ZV2iqf4/4FxWWIc4D/DfwYQNJ7gF0RsT7rDLuvxzUlb4+IacAc4ApJ52WZZff1pq6hwDRgSUScC/wOqO0acl69fa+QNBy4CPibHBPsod78vTqZ4n/EE4DTgBMkfSjfVGvW45oi4nHgy8D9wD0Ul5bas820drXUNBR4K8UVmwuB/yXpjBrHHuJYDJlWXv0/ijFUnJpHxIsRsTe9vgsYJukU4O3ARZKepDhVnCXpB30y6871piYiYkf6ugu4k+K0eCDoTV2tQGtEPJy63kEROv2tV+9VMgf4RUT8Jvdku6E3dc0GnoiItoj4PfAj4N/2zbQ71du/V9+LiGkRcR7wPPCrvpl2p7qsKfW5JyJ+FxHPAj8Fzqlx7KH6+0ZUXy8UKb2N4n9NHTevzqro8wZe+UHV6RSn8arocz4D58Z/j2sCTgBOTO0nAA8Bjf1d05F4r4B/As5Mr68FvjrYa0ptK4AF/V3LEfwenAE0U9yLEcUDGx8fzDWl9Y4b5uOAzcDJg6SmNwP/kPoeT3Hpb0otY6stQznGRES7pMXAvRRPSyyLiGZJi9L2pcB/AD4mqR3YD8yP9Kc/EPWmJkmvB+6UBMU30e0RcU+/FFLhCLxXHwduS5eXtgEL+ryICr2tKV3fvwC4vF8KOIxe1vWwpDsoLj21AxsYAB/TcgS+//5W0uuA3wNXRMQLfV/Fq9VSU0Q8Luke4BGKe8/fjYhHAaqN7eqY/lgZMzPL5li8J2NmZn3EIWNmZtk4ZMzMLBuHjJmZZeOQMTOzbBwyZv1Exadfn9LbPmYDmUPGzMyycciY9QFJP04fNthc+SGkksar+J03yyU9ouJ34Bxf1uXjkn6h4nf+/Js0Zrqkh9KHfz4k6cw+LcisRg4Zs77xkYh4K1ACPpF+ErzcmcAtEXE28CLw38q2PRvFB5guAT6V2jYD50Xx4Z/XAH+ZdfZmPeSQMesbn5C0CVhD8SGDkyq2b4+In6fXPwDeUbbtR+nremB8ev1a4G8kPQrcCFT7dQBm/c4hY5aZpPMpPmn4bVF8JPwGoPLXC1d+vlP5+oH09SD84fMGPw/8Y0RMAd5bZX9mA4JDxiy/1wIvRMS+dE9lZpU+4yS9Lb2+BPhZDft8Jr2+7IjM0iwDh4xZfvcAQyU9QnEGsqZKn8eBD6c+f0Rx/6UzXwG+KOnnFJ+IazYg+VOYzfqZpPEUv5toSn/PxexI85mMmZll4zMZMzPLxmcyZmaWjUPGzMyycciYmVk2DhkzM8vGIWNmZtn8f+rSAOpVHBcaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha kappa\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgnUlEQVR4nO3de5hcVZ3u8e9LmnBRMGiCYgIkHANHbmJoSBgNRoQxQTAcHCUxEmT0hKCgHs9xDjrDZbyMl9HjTAYmDEiADJCACJhHgTg6AzjcpGNiSLgcmhikSSSNQIgGg4Hf/LFXy06luru6umtVp30/z1NP1d5r7bXXSnXq7b336l2KCMzMzHLaqdkdMDOzPz0OHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mQ4SkKZI6mt2PMkmrJU3pofwLkr6Tr0c2WDh8bFCQtFbSi5J+K+lpSVdKem2z+9UTSWMlhaSWAWpvV0nPSzquStm3Jd04EPupRxrn79L785Sk/ydpWG/bRcQhEXFHD+V/FxEfH9DO2g7B4WODyckR8VpgAnAU8Dd92ViFHeZnujK0IuL3wPXA7Ip6w4CZwNX5elfV29L78x7gw8D/7E9jAxXatmPaYf6j2p+OiHgKuA04VNJekn4gqVPSc+n1mK66ku6Q9BVJdwObgQMknSnpYUmbJK2RdFap/hRJHZL+StIGSeslnSLpREn/X9Kzkr5Qqr+TpPMkPS7pN5JukPT6VHxXen4+HREck7b5y7T/5yQtlbR/qb2Q9ElJjwGPVRn+1cAHJO1eWvdeiv+rt/U0tkppX28pLV8l6cul5ZMkrUhHW/dIOrz7d+VVEfEI8FOK9+e/Sfr39G/zjKRrJY0o7WOtpOPT64sk3SjpGkkvAB9N665J5V1HkmdI+lVq769Lbe0m6er07/pweg87SuX/Nx2VbZL0qKT31DIeaw6Hjw06kvYFTgSWU/yMXgnsD+wHvAhcXLHJ6cAcYA/gCWADcBKwJ3Am8G1JE0r13wTsCowGLgAuBz4CHAlMBi6QdECq+yngFOBdwJuB54BLUtmx6XlERLw2Iu6VdArwBeBUYBTFh/Siiv6eAkwEDq4ce0TcA6xP25fHd11EbK1hbDVJ2ywAzgLeAPwLsETSLjVsezDFv9NyQMBXKf5t3grsC1zUw+bTgRuBEcC13dR5J3AQxRHWBZLemtZfCIwFDgBOoHjPuvp0EHAOcFRE7EER2Gt7G4s1UUT44UfTHxQfFL8FnqcIkH8GdqtS7wjgudLyHcAXe2n7FuDT6fUUigAblpb3AAKYWKq/DDglvX4YeE+pbB/gD0ALxQdhAC2l8tuAj5WWd6I4Its/LQdwXC/9/RvgR+n1nmn7t9c4to5SWQBvKS1fBXw5vZ4PfKmirUeBd3WznwBeoAjfx4EvAztVqXcKsLzifT0+vb4IuKui/kXANel117/nmFL5z4AZ6fUa4L2lso93jRd4C0UwHw/s3OyfZz96f/icqw0mp0TEj8sr0umnbwNTgb3S6j0kDYuIl9PykxXbTKP4LflAig//3YEHS1V+U9r2xfT8dKn8RaBrssP+wM2SXimVvwy8sZsx7A/8o6RvlbtEcZT1RLX+VrEQuFDSaIrf4NsjYnmNY6vV/sAZks4trRtOcQTTnQkR0V5eIWlvYB7FkdAeqU/P9dBGb2MH+HXp9WZefS/eXLH9H19HRLukz1CE2SGSlgKfjYh1NezPmsCn3Wyw+98Up2AmRsSevHqqS6U6f7w1ezpt9D3gm8AbI2IEcGtF/b54EpgWESNKj12juC5V7ZbwTwJnVdTfLYrTadv1t5qI+BXF6bpZFKfcFtY5ts0U4dTlTRX9/EpFP3ePiMpThL35ahrP4en9+UgP/YFext6L9cCY0vK+2zQccV1EvJMiWAP4ej/2ZQ3m8LHBbg+KI5Hn04X+C3upPxzYBegEtqYjhT/vx/4vBb7SNWlA0ihJ01NZJ/AKxTWIcv3PSzok1X+dpA/Wsd+rKa5hvINXr430dWwrgA9LGiZpKsV1qy6XA3MlTVThNZLeJ2mPPvZzD9Lp0nSk9rk+bt8XN1D82+6V9nVOV4GkgyQdlwL69xQ/My93044NAg4fG+z+AdgNeAa4D7i9p8oRsYliksANFKd/Pgws6cf+/zFt/yNJm1IfJqZ9bQa+AtydZoxNioibKX7jXpxmdK0CptWx3xspTjP+JCLW1zm2TwMnU1xHm0VxfYjUVhvFVOmLU1vtwEfr6OffUkyN3wj8ELipjjZq9UWgA/gl8GOKf6MtqWwX4GsUPye/BvammPhhg5Qi/GVyZrbjkXQ2xWSEd/Va2QYdH/mY2Q5B0j6S3pH+9uogiuuBNze7X1Yfz3Yzsx3FcIq/RxpHcSpxMcWUfNsB+bSbmZll59NuZmaWnU+7dWPkyJExduzYZnfDzGyHMXLkSJYuXbo0Iqb2Vtfh042xY8fS1tbW7G6Yme1QJI2spZ5Pu5mZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYNDR9JUyU9Kqld0nlVyiVpXipfKWlCqWyBpA2SVlVsc72kFemxVtKKtH5Waf0KSa9IOiKV3ZH60VW2dyPHbWZmPWvY12hLGgZcApwAdAAPSFoSEQ+Vqk0DxqfHRGB+ega4CrgYWFhuNyJOK+3jW8DGtP5a4Nq0/jDg+xGxorTprIjw92KbmQ0CjTzyORpoj4g1EfESsBiYXlFnOrAwCvcBIyTtAxARdwHPdte4JAEfAhZVKZ7ZzXozMxsEGhk+o4EnS8sdaV1f63RnMvB0RDxWpew0tg+fK9Mpt/NTcG1H0hxJbZLaOjs7a+yGmZn1VSPDp9oHfNRRpztVj24kTQQ2R0T5WtGsiDiMIrAmA6dXazAiLouI1ohoHTVqVI3dMDOzvmpk+HQA+5aWxwDr6qizHUktwKnA9VWKZ1ARShHxVHreBFxHcUrQzMyapJHh8wAwXtI4ScMpQmFJRZ0lwOw0620SsDEi1tfQ9vHAIxHRUV4paSfggxTXl7rWtUgamV7vDJwEbDODzszM8mrYbLeI2CrpHGApMAxYEBGrJc1N5ZcCtwInAu3AZuDMru0lLQKmACMldQAXRsQVqXi7o5vkWKAjItaU1u0CLE3BMwz4MXD5gA3UzMz6TBG1XmL509La2hptbZ6ZbWbWF5KWRURrb/V8hwMzM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZdfQ8JE0VdKjktolnVelXJLmpfKVkiaUyhZI2iBpVcU210takR5rJa1I68dKerFUdmlpmyMlPZj2M0+SGjhsMzPrRcPCR9Iw4BJgGnAwMFPSwRXVpgHj02MOML9UdhUwtbLdiDgtIo6IiCOA7wE3lYof7yqLiLml9fNT+1372q5dMzPLp5FHPkcD7RGxJiJeAhYD0yvqTAcWRuE+YISkfQAi4i7g2e4aT0cvHwIW9dSJ1N6eEXFvRASwEDilzjGZmdkAaGT4jAaeLC13pHV9rdOdycDTEfFYad04Scsl3SlpcmkfHbXsQ9IcSW2S2jo7O2vshpmZ9VUjw6fadZWoo053ZrLtUc96YL+IeDvwWeA6SXv2ZR8RcVlEtEZE66hRo2rshpmZ9VVLA9vuAPYtLY8B1tVRZzuSWoBTgSO71kXEFmBLer1M0uPAgWkfY/q6DzMza5xGHvk8AIyXNE7ScGAGsKSizhJgdpr1NgnYGBHra2j7eOCRiPjj6TRJo9IkByQdQDGxYE1qb5OkSek60Wzg+/0enZmZ1a1hRz4RsVXSOcBSYBiwICJWS5qbyi8FbgVOBNqBzcCZXdtLWgRMAUZK6gAujIgrUvEMtp9ocCzwRUlbgZeBuRHRNWHhbIrZc7sBt6WHmZk1iYoJYFaptbU12tramt0NM7MdiqRlEdHaWz3f4cDMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2TU0fCRNlfSopHZJ51Upl6R5qXylpAmlsgWSNkhaVbHN9ZJWpMdaSSvS+hMkLZP0YHo+rrTNHakfXdvt3cBhm5lZL1oa1bCkYcAlwAlAB/CApCUR8VCp2jRgfHpMBOanZ4CrgIuBheV2I+K00j6+BWxMi88AJ0fEOkmHAkuB0aVNZ0VE28CMzszM+qORRz5HA+0RsSYiXgIWA9Mr6kwHFkbhPmCEpH0AIuIu4NnuGpck4EPAolR/eUSsS8WrgV0l7TKgIzIzswHRyPAZDTxZWu5g2yORWut0ZzLwdEQ8VqXsA8DyiNhSWndlOuV2fgqu7UiaI6lNUltnZ2eN3TAzs75qZPhU+4CPOup0ZybpqGebBqVDgK8DZ5VWz4qIwygCazJwerUGI+KyiGiNiNZRo0bV2A0zM+urRoZPB7BvaXkMsK6OOtuR1AKcClxfsX4McDMwOyIe71ofEU+l503AdRSnBM3MrEkaGT4PAOMljZM0HJgBLKmoswSYnWa9TQI2RsT6Gto+HngkIjq6VkgaAfwQ+HxE3F1a3yJpZHq9M3ASsAozM2uahoVPRGwFzqGYdfYwcENErJY0V9LcVO1WYA3QDlwOfKJre0mLgHuBgyR1SPpYqfkZbH/K7RzgLcD5FVOqdwGWSloJrACeSvsyM7MmUUStl1j+tLS2tkZbm2dmm5n1haRlEdHaWz3f4cDMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy67mr9GW9D7gEGDXrnUR8cVGdMrMzIa2mo58JF0KnAacS/EFcB8E9m9gv8zMbAir9bTbn0XEbOC5iPhb4Bi2/RI4MzOzmtUaPi+m582S3gz8ARjXmC6ZmdlQV+s1nx+kbwr9e+DnQOAvZDMzszrVFD4R8aX08nuSfgDsGhEbG9ctMzMbymoKH0m7UnzF9Tspjnr+U9L8iPh9IztnZmZDU62n3RYCm4B/SsszgX+lmPVmZmbWJ7WGz0ER8bbS8n9I+kUjOmRmZkNfrbPdlkua1LUgaSJwd28bSZoq6VFJ7ZLOq1IuSfNS+UpJE0plCyRtkLSqYpvrJa1Ij7WSVpTKPp/aelTSe0vrj5T0YCqbJ0k1jtvMzBqg1vCZCNyTPuzXAvcC70of6CurbSBpGHAJMA04GJgp6eCKatOA8ekxB5hfKrsKmFrZbkScFhFHRMQRwPeAm9L+DgZmUNyFYSrwz6kPpHbnlPa1Xbtmg1288go///dr+emSi3npxd82uztm/VLrabd6PqyPBtojYg2ApMXAdOChUp3pwMKICOA+SSMk7RMR6yPiLklju2s8Hb18CDiu1NbiiNgC/FJSO3B0Css9I+LetN1C4BTgtjrGZNY0K+66nm/98K+JCDp/8ytOPfMbze6SWd1qOvKJiCeAN1B8wL8feENEPNH16Gaz0cCTpeWOtK6vdbozGXg6Ih7rpa3R6XWv+5A0R1KbpLbOzs4au2GWx5bf/44g2Ek78bsXX2h2d8z6pdap1hdQzGy7Ka26UtJ3I+LLPW1WZV3UUac7M4FFNbRV8z4i4jLgMoDW1tZa+2GWxZFTPsyMDb/kt5uf5+QP/nWzu2PWL7WedpsJvL3r73okfY3iTgc9hU8H297/bQywro4625HUApwKHFlDWx3pdZ/2YTbY7Lzr7rx/9lea3Q2zAVHrhIO1lL5KAdgFeLyXbR4AxksaJ2k4xWSAJRV1lgCz06y3ScDGiFhfQ3+OBx6JiPLptCXADEm7SBpHMbHgZ6m9TZImpetEs4Hv17APMzNrkFqPfLYAqyX9G8UpqxMo7nIwDyAiPlW5QURslXQOsBQYBiyIiNWS5qbyS4FbgROBdmAzcGbX9pIWAVOAkZI6gAsj4opUPINtT7mR2r6BYkLDVuCTEfFyKj6bYvbcbhQTDTzZwMysiVRMNOulknRGT+URcfWA9WiQaG1tjba2tmZ3w8xshyJpWUS09lav1huLDrlwMTOz5ql1ttt44KsUfyxa/hrtAxrULzMzG8JqnXBwJcVdArYC76a40ei/NqpTZmY2tNUaPrtFxE8orhE9EREX8eqdBczMzPqk1tluv5e0E/BYmsH2FLB347plZmZDWa1HPp8Bdgc+RfGHnacD1zSoT2ZmNsTVGj7/AoyLiI6IOBP4LnBS47plZmZDWa2n3f4CuFHSLIqv0j4d+POG9crMzIa0Wv/OZ42kGcAtFHeOfm9EvNjIjpmZ2dDVY/hIepBt7wD9eopb5dwviYg4vJGdMzOzoam3Ix9f1zEzswHXY/j08EVxZmZmdat1tpuZmdmAcfiYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWXUPDR9JUSY9Kapd0XpVySZqXyldKmlAqWyBpg6RVVbY7N7W7WtI30rpZklaUHq9IOiKV3ZHqd5X5u4jMzJqo1rta95mkYcAlwAlAB/CApCUR8VCp2jRgfHpMpPiq7omp7CrgYoqv7C63+25gOnB4RGzpCpKIuBa4NtU5DPh+RKwobTorItoGcoxmZlafRh75HA20R8SaiHgJWEwRGmXTgYVRuA8YIWkfgIi4C3i2SrtnA1+LiC2p3oYqdWYCiwZoHGZmNsAaGT6jKb5+oUtHWtfXOpUOBCZLul/SnZKOqlLnNLYPnyvTKbfzJalaw5LmSGqT1NbZ2dlLN8zMrF6NDJ9qH/BRR51KLcBewCTgc8AN5TCRNBHYHBHla0WzIuIwYHJ6nF6t4Yi4LCJaI6J11KhRvXTDzMzq1cjw6QD2LS2PAdbVUadauzelU3U/A14BRpbKZ1Bx1BMRT6XnTcB1FKcEzcysSRoZPg8A4yWNkzScIhSWVNRZAsxOs94mARsjYn0v7d4CHAcg6UBgOPBMWt4J+CDF9SXSuhZJI9PrnSm+o2i7GXRmZpZPw2a7RcRWSecASym+/XRBRKyWNDeVXwrcCpwItAObgTO7tpe0CJgCjJTUAVwYEVcAC4AFaQr2S8AZEdF1qu5YoCMi1pS6sguwNAXPMODHwOUNGraZmdVAr35uW1lra2u0tXlmtplZX0haFhGtvdXzHQ7MzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmll1Dw0fSVEmPSmqXdF6Vckmal8pXSppQKlsgaYOkVVW2Oze1u1rSN9K6sZJelLQiPS4t1T9S0oNpP/MkqVFjNjOz3jUsfCQNAy4BpgEHAzMlHVxRbRowPj3mAPNLZVcBU6u0+25gOnB4RBwCfLNU/HhEHJEec0vr56f2u/a1XbtmZpZPI498jgbaI2JNRLwELKYIjbLpwMIo3AeMkLQPQETcBTxbpd2zga9FxJZUb0NPnUjt7RkR90ZEAAuBU/oxLjMz66dGhs9o4MnSckda19c6lQ4EJku6X9Kdko4qlY2TtDytn1zaR0ct+5A0R1KbpLbOzs5eumFmZvVqaWDb1a6rRB11KrUAewGTgKOAGyQdAKwH9ouI30g6ErhF0iF92UdEXAZcBtDa2tpbP8zMrE6NPPLpAPYtLY8B1tVRp1q7N6VTdT8DXgFGRsSWiPgNQEQsAx6nOErqSO32ZR9mZtZAjQyfB4DxksZJGg7MAJZU1FkCzE6z3iYBGyNifS/t3gIcByDpQGA48IykUWmSA+lIaDywJrW3SdKkNMttNvD9gRmimZnVo2Gn3SJiq6RzgKXAMGBBRKyWNDeVXwrcCpwItAObgTO7tpe0CJgCjJTUAVwYEVcAC4AFaQr2S8AZERGSjgW+KGkr8DIwNyK6JiycTTF7bjfgtvQwM7MmUTEBzCq1trZGW1tbs7thZrZDkbQsIlp7q+c7HJiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsu4aGj6Spkh6V1C7pvCrlkjQvla+UNKFUtkDSBkmrqmx3bmp3taRvpHUnSFom6cH0fFyp/h2p/or02LtRYzYzs961NKphScOAS4ATgA7gAUlLIuKhUrVpwPj0mAjMT88AVwEXAwsr2n03MB04PCK2lILkGeDkiFgn6VBgKTC6tOmsiGgbwCGamVmdGnnkczTQHhFrIuIlYDFFaJRNBxZG4T5ghKR9ACLiLuDZKu2eDXwtIrakehvS8/KIWJfqrAZ2lbTLgI/KzMz6rZHhMxp4srTcwbZHIrXWqXQgMFnS/ZLulHRUlTofAJZ3BVRyZTrldr4kVWtY0hxJbZLaOjs7e+mGmZnVq5HhU+0DPuqoU6kF2AuYBHwOuKEcJpIOAb4OnFXaZlZEHAZMTo/TqzUcEZdFRGtEtI4aNaqXbpiZWb0aGT4dwL6l5THAujrqVGv3pnSq7mfAK8BIAEljgJuB2RHxeNcGEfFUet4EXEdxStDMzJqkkeHzADBe0jhJw4EZwJKKOkuA2WnW2yRgY0Ss76XdW4DjACQdCAwHnpE0Avgh8PmIuLursqQWSV3htDNwErDdDDozM8unYeETEVuBcyhmnT0M3BARqyXNlTQ3VbsVWAO0A5cDn+jaXtIi4F7gIEkdkj6WihYAB6Qp2IuBMyIi0r7eApxfMaV6F2CppJXACuCptC8zM2sSFZ/bVqm1tTXa2jwz28ysLyQti4jW3ur5DgdmZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7Ps/GVy3ZDUCTzRTfFI4JmM3clhKI4Jhua4PKYdx1AcV09jegYgIqb21ojDpw6S2mr5pr4dyVAcEwzNcXlMO46hOK6BGpNPu5mZWXYOHzMzy87hU5/Lmt2BBhiKY4KhOS6PaccxFMc1IGPyNR8zM8vORz5mZpadw8fMzLJz+JRImirpUUntks6rUj5F0kZJK9LjgoryYZKWS/pBvl73rj/jkrRW0oNpfVvennevn2MaIelGSY9IeljSMXl73716xyXpoNK6FZJekPSZ7AOoop/v1f+StFrSKkmLJO2at/fV9XNMn07jWT1Y3qMuvY0r1ZmSxrRa0p192XYbEeFHcd1rGPA4cAAwHPgFcHBFnSnAD3po47PAdT3V2dHGBawFRjZ7HAM8pquBj6fXw4ERzR7TQP0Mltr5NbD/jjwmYDTwS2C3tHwD8NEdfEyHAquA3YEW4MfA+GaPqQ/jGgE8BOyXlveuddvKh498XnU00B4RayLiJWAxML3WjSWNAd4HfKdB/atXv8Y1SNU9Jkl7AscCVwBExEsR8XyjOtpHA/VevQd4PCK6u0NHTv0dUwuwm6QWig/sdQ3oY1/1Z0xvBe6LiM0RsRW4E/gfDepnX9Uyrg8DN0XErwAiYkMftt2Gw+dVo4EnS8sdaV2lYyT9QtJtkg4prf8H4K+AVxrXxbr0d1wB/EjSMklzGtnRPujPmA4AOoEr0ynS70h6TYP7W6v+vlddZgCLGtHBOtQ9poh4Cvgm8CtgPbAxIn7U6A7XoD/v0yrgWElvkLQ7cCKwb2O7W7NaxnUgsJekO9Jnwuw+bLsNh8+rVGVd5Tz0n1Ocyngb8E/ALQCSTgI2RMSyhvawPnWPK3lHREwApgGflHRsQ3rZN/0ZUwswAZgfEW8Hfgf0fn46j/6+V0gaDrwf+G4jOliH/vy/2ovit+dxwJuB10j6SOO6WrO6xxQRDwNfB/4NuJ3i9NTWhvW0b2oZVwtwJMVZnvcC50s6sMZtt+HweVUH2/4GMoaKQ/yIeCEifpte3wrsLGkk8A7g/ZLWUhxuHifpmiy97l1/xkVErEvPG4CbKQ6vm60/Y+oAOiLi/lT1RoowGgz69V4l04CfR8TTje5sjfozpuOBX0ZEZ0T8AbgJ+LM83e5Rf/9PXREREyLiWOBZ4LE83e5Vr+NKdW6PiN9FxDPAXcDbatx2W82+yDVYHhSJvobit6yuC2aHVNR5E6/+Ye7RFKcDVFFnCoNrwkHd4wJeA+yR1r8GuAeYuiOPKS3/FDgovb4I+Ptmj2mgfgYpfvk5s9ljGaCfv4nAaoprPaKYKHLujjymtNx1kX4/4BFgr2aPqQ/jeivwk1R3d4rTiIfWsm3lowUDICK2SjoHWEoxc2NBRKyWNDeVXwr8BXC2pK3Ai8CMSO/IYNWfcUl6I3CzJCh+uK6LiNubMpCSAXivzgWuTaeo1gBnZh9EFf0dV7qGcAJwVlMGUEU/x3S/pBspTmFtBZYzCG5XMwA/f9+T9AbgD8AnI+K5/KPYXi3jioiHJd0OrKS4vv2diFgFUG3bnvbn2+uYmVl2vuZjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx2wQUnE38ZH9rWM2WDl8zMwsO4ePWZNJuiXdpHF15c1bJY1V8b1DV0taqeJ7iHYvVTlX0s9VfOfSf0/bHC3pnnTj1HskHZR1QGY1cPiYNd9fRsSRQCvwqfTX72UHAZdFxOHAC8AnSmXPRHHj1/nA/0nrHgGOjeLGqRcAf9fQ3pvVweFj1nyfkvQL4D6KmzOOryh/MiLuTq+vAd5ZKrspPS8DxqbXrwO+K2kV8G2g2tcumDWVw8esiSRNobh78zFR3H5/OVD5VdGV98AqL29Jzy/DH+/V+CXgPyLiUODkKu2ZNZ3Dx6y5Xgc8FxGb0zWbSVXq7CfpmPR6JvCfNbT5VHr90QHppdkAc/iYNdftQIuklRRHLPdVqfMwcEaq83qK6zs9+QbwVUl3U9xh2GzQ8V2tzQYxSWMpvh/q0Gb3xWwg+cjHzMyy85GPmZll5yMfMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+z+C25KbKp88PBCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha xi\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfS0lEQVR4nO3df5gdVZ3n8feHNOGHgmFMUEyAhDWw8ksMFxJXgxFhTRgwLK4SjAQZ3RAUdNZdZ1EHYR0dldF1hoUJCxIgKyRkEDCPAnGdWcAFoumYGBJ+LJ2ApkkkjUBAg8HAd/6o01K5uZ17+3bfczv4eT1PPfdWnVOnzunb6U9X1Um1IgIzM7Ocdmt3B8zM7E+Pw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4eP2WuEpCmSutvdjzJJayRN2Un5FyR9J1+PbKhw+NiQIOkJSS9K+q2kpyRdJ+n17e7XzkgaKykkdQxSe3tKek7SiTXKvi3plsE4TjPSOH+XPp8nJf0PScPq7RcRR0TE3Tsp/9uI+MSgdtZ2CQ4fG0pOi4jXAxOA44C/7s/OKuwy39PVoRURvwduBmZV1RsGnAXckK93Nb09fT7vAz4C/KeBNDZYoW27pl3mH6r96YiIJ4E7gSMl7SfpB5J6JD2b3o/prSvpbklflXQfsAU4RNK5kh6W9IKkdZLOK9WfIqlb0l9J2iRpo6TTJZ0i6f9LekbSF0r1d5N0kaS1kn4jaZGkP0vF96bX59IZwTvTPn+Rjv+spCWSDi61F5I+Jekx4LEaw78B+KCkvUvb3k/xb/XOnY2tWjrWW0vr10v6Smn9VEkr09nW/ZKO7vtTeVVEPAL8hOLz+TeS/iV9bZ6WdKOkEaVjPCHppPT+Ukm3SPqupOeBj6Vt303lvWeS50j6VWrvi6W29pJ0Q/q6Ppw+w+5S+X9LZ2UvSHpU0vsaGY+1h8PHhhxJBwKnACsovkevAw4GDgJeBK6o2uVsYDawD/BLYBNwKrAvcC7wbUkTSvXfDOwJjAa+BFwDfBQ4FpgMfEnSIanup4HTgfcAbwGeBa5MZSek1xER8fqIeEDS6cAXgDOAURQ/pBdU9fd0YCJwePXYI+J+YGPavzy+myJiWwNja0jaZx5wHvBG4H8BiyXt0cC+h1N8nVYAAr5G8bV5G3AgcOlOdp8O3AKMAG7so867gcMozrC+JOltafslwFjgEOBkis+st0+HARcAx0XEPhSB/US9sVgbRYQXL21fKH5Q/BZ4jiJA/hHYq0a9Y4BnS+t3A1+u0/btwGfS+ykUATYsre8DBDCxVH85cHp6/zDwvlLZAcAfgA6KH4QBdJTK7wQ+XlrfjeKM7OC0HsCJdfr718CP0vt90/7vaHBs3aWyAN5aWr8e+Ep6Pxf4m6q2HgXe08dxAnieInzXAl8BdqtR73RgRdXnelJ6fylwb1X9S4Hvpve9X88xpfKfATPS+3XA+0tln+gdL/BWimA+Cdi93d/PXuovvuZqQ8npEfHj8oZ0+enbwFRgv7R5H0nDIuLltL6+ap9pFL8lH0rxw39v4MFSld+U9n0xvT5VKn8R6J3scDBwm6RXSuUvA2/qYwwHA/8g6VvlLlGcZf2yVn9rmA9cImk0xW/wXRGxosGxNepg4BxJF5a2Dac4g+nLhIjoKm+QtD9wOcWZ0D6pT8/upI16Ywf4den9Fl79LN5Stf8f30dEl6S/pAizIyQtAT4bERsaOJ61gS+72VD3XyguwUyMiH159VKXSnX++Gj2dNnoe8A3gTdFxAjgjqr6/bEemBYRI0rLnlHcl6r1SPj1wHlV9feK4nLaDv2tJSJ+RXG5bibFJbf5TY5tC0U49XpzVT+/WtXPvSOi+hJhPV9L4zk6fT4f3Ul/oM7Y69gIjCmtH7hdwxE3RcS7KYI1gG8M4FjWYg4fG+r2oTgTeS7d6L+kTv3hwB5AD7AtnSn8+wEc/yrgq72TBiSNkjQ9lfUAr1DcgyjX/7ykI1L9N0j6UBPHvYHiHsa7ePXeSH/HthL4iKRhkqZS3LfqdQ0wR9JEFV4n6c8l7dPPfu5DulyaztQ+18/9+2MRxdd2v3SsC3oLJB0m6cQU0L+n+J55uY92bAhw+NhQ9/fAXsDTwFLgrp1VjogXKCYJLKK4/PMRYPEAjv8Paf8fSXoh9WFiOtYW4KvAfWnG2KSIuI3iN+6FaUbXamBaE8e9heIy4z9HxMYmx/YZ4DSK+2gzKe4PkdrqpJgqfUVqqwv4WBP9/O8UU+M3Az8Ebm2ijUZ9GegGHgd+TPE12prK9gC+TvF98mtgf4qJHzZEKcJ/TM7Mdj2SzqeYjPCeupVtyPGZj5ntEiQdIOld6f9eHUZxP/C2dvfLmuPZbma2qxhO8f+RxlFcSlxIMSXfdkG+7GZmZtn5spuZmWXny259GDlyZIwdO7bd3TAz22WMHDmSJUuWLImIqfXqOnz6MHbsWDo7O9vdDTOzXYqkkY3U82U3MzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLrqXhI2mqpEcldUm6qEa5JF2eyldJmlAqmydpk6TVVfvcLGllWp6QtDJtn1navlLSK5KOSWV3p370lu3fynGbmdnOtezPaEsaBlwJnAx0A8skLY6Ih0rVpgHj0zIRmJteAa4HrgDml9uNiDNLx/gWsDltvxG4MW0/Cvh+RKws7TozIvx3sc3MhoBWnvkcD3RFxLqIeAlYCEyvqjMdmB+FpcAISQcARMS9wDN9NS5JwIeBBTWKz+pju5mZDQGtDJ/RwPrSenfa1t86fZkMPBURj9UoO5Mdw+e6dMnt4hRcO5A0W1KnpM6enp4Gu2FmZv3VyvCp9QM+mqjTl5pnN5ImAlsionyvaGZEHEURWJOBs2s1GBFXR0QlIiqjRo1qsBtmZtZfrQyfbuDA0voYYEMTdXYgqQM4A7i5RvEMqkIpIp5Mry8AN1FcEjQzszZpZfgsA8ZLGidpOEUoLK6qsxiYlWa9TQI2R8TGBto+CXgkIrrLGyXtBnyI4v5S77YOSSPT+92BU4HtZtCZmVleLZvtFhHbJF0ALAGGAfMiYo2kOan8KuAO4BSgC9gCnNu7v6QFwBRgpKRu4JKIuDYV73B2k5wAdEfEutK2PYAlKXiGAT8Grhm0gZqZWb8potFbLH9aKpVKdHZ6ZraZWX9IWh4RlXr1/IQDMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXX0vCRNFXSo5K6JF1Uo1ySLk/lqyRNKJXNk7RJ0uqqfW6WtDItT0hambaPlfRiqeyq0j7HSnowHedySWrhsM3MrI6WhY+kYcCVwDTgcOAsSYdXVZsGjE/LbGBuqex6YGp1uxFxZkQcExHHAN8Dbi0Vr+0ti4g5pe1zU/u9x9qhXTMzy6eVZz7HA10RsS4iXgIWAtOr6kwH5kdhKTBC0gEAEXEv8Exfjaezlw8DC3bWidTevhHxQEQEMB84vckxmZnZIGhl+IwG1pfWu9O2/tbpy2TgqYh4rLRtnKQVku6RNLl0jO5GjiFptqROSZ09PT0NdsPMzPqrleFT675KNFGnL2ex/VnPRuCgiHgH8FngJkn79ucYEXF1RFQiojJq1KgGu2FmZv3V0cK2u4EDS+tjgA1N1NmBpA7gDODY3m0RsRXYmt4vl7QWODQdY0x/j2FmZq3TyjOfZcB4SeMkDQdmAIur6iwGZqVZb5OAzRGxsYG2TwIeiYg/Xk6TNCpNckDSIRQTC9al9l6QNCndJ5oFfH/AozMzs6a17MwnIrZJugBYAgwD5kXEGklzUvlVwB3AKUAXsAU4t3d/SQuAKcBISd3AJRFxbSqewY4TDU4AvixpG/AyMCcieicsnE8xe24v4M60mJlZm6iYAGbVKpVKdHZ2trsbZma7FEnLI6JSr56fcGBmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7FoaPpKmSnpUUpeki2qUS9LlqXyVpAmlsnmSNklaXbXPzZJWpuUJSSvT9pMlLZf0YHo9sbTP3akfvfvt38Jhm5lZHR2taljSMOBK4GSgG1gmaXFEPFSqNg0Yn5aJwNz0CnA9cAUwv9xuRJxZOsa3gM1p9WngtIjYIOlIYAkwurTrzIjoHJzRmZnZQLTyzOd4oCsi1kXES8BCYHpVnenA/CgsBUZIOgAgIu4FnumrcUkCPgwsSPVXRMSGVLwG2FPSHoM6IjMzGxStDJ/RwPrSejfbn4k0Wqcvk4GnIuKxGmUfBFZExNbStuvSJbeLU3DtQNJsSZ2SOnt6ehrshpmZ9Vcrw6fWD/hook5fziKd9WzXoHQE8A3gvNLmmRFxFEVgTQbOrtVgRFwdEZWIqIwaNarBbpiZWX+1Mny6gQNL62OADU3U2YGkDuAM4Oaq7WOA24BZEbG2d3tEPJleXwBuorgkaGZmbdLK8FkGjJc0TtJwYAawuKrOYmBWmvU2CdgcERsbaPsk4JGI6O7dIGkE8EPg8xFxX2l7h6SR6f3uwKnAaszMrG1aFj4RsQ24gGLW2cPAoohYI2mOpDmp2h3AOqALuAb4ZO/+khYADwCHSeqW9PFS8zPY8ZLbBcBbgYurplTvASyRtApYCTyZjmVmZm2iiEZvsfxpqVQq0dnpmdlmZv0haXlEVOrV8xMOzMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpZdS8NH0lRJj0rqknRRjXJJujyVr5I0oVQ2T9ImSaur9rlZ0sq0PCFpZans86mtRyW9v7T9WEkPprLLJalFQzYzswa0LHwkDQOuBKYBhwNnSTq8qto0YHxaZgNzS2XXA1Or242IMyPimIg4BvgecGs63uHADOCItN8/pj6Q2p1dOtYO7ZoNdfHKK/z8X27kJ4uv4KUXf9vu7pgNSEdfBZIWRcSHJT0IRLkIiIg4uk7bxwNdEbEutbcQmA48VKozHZgfEQEslTRC0gERsTEi7pU0dif9E/Bh4MRSWwsjYivwuKQu4HhJTwD7RsQDab/5wOnAnXX6bzakrLz3Zr71wy8SEfT85lecce5l7e6SWdP6DB/gM+l1BlD9a9Z7G2h7NLC+tN4NTGygzmhgYwPtTwaeiojHSm0trdHWH9L76u07kDSb4gyJgw46qIEumOWz9fe/Iwh202787sXn290dswHpM3wiojcAbgbmA38H7AlcBlQoLovtTK37KtFEnb6cBSxooK2GjxERVwNXA1QqlUb7YZbFsVM+woxNj/PbLc9x2oe+2O7umA3Izs58ek0EvgHcD+wD3Ai8q4H9uoEDS+tjgA1N1NmBpA7gDODYBtrqTu/7dQyzoWb3PffmA7O+2u5umA2KRiYc/AF4EdiL4szn8Yh4pYH9lgHjJY2TNJzi8t3iqjqLgVlp1tskYHPpjGtnTgIeiYjy5bTFwAxJe0gaRzGx4GepvRckTUr3iWYB32/gGGZm1iKNhM8yivA5Dng3xay1W+rtFBHbgAuAJcDDwKKIWCNpjqQ5qdodwDqgC7gG+GTv/pIWAA8Ah0nqlvTxUvMz2P6SGxGxBlhEMaHhLuBTEfFyKj4f+E46zlo82cDMrK1UTDTbSQWpEhGdVdvOjoj/3dKetVmlUonOzs76Fc3M7I8kLY+ISr16dc98qoMnbXtNB4+ZmbWWH69jZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXX0vCRNFXSo5K6JF1Uo1ySLk/lqyRNKJXNk7RJ0uoa+12Y2l0j6bK0baaklaXlFUnHpLK7U/3esv1bOGwzM6ujo1UNSxoGXAmcDHQDyyQtjoiHStWmAePTMhGYm14BrgeuAOZXtfteYDpwdERs7Q2SiLgRuDHVOQr4fkSsLO06MyI6B3OMZmbWnFae+RwPdEXEuoh4CVhIERpl04H5UVgKjJB0AEBE3As8U6Pd84GvR8TWVG9TjTpnAQsGaRxmZjbIWhk+o4H1pfXutK2/daodCkyW9FNJ90g6rkadM9kxfK5Ll9wulqRaDUuaLalTUmdPT0+dbpiZWbNaGT61fsBHE3WqdQD7AZOAzwGLymEiaSKwJSLK94pmRsRRwOS0nF2r4Yi4OiIqEVEZNWpUnW6YmVmzWhk+3cCBpfUxwIYm6tRq99Z0qe5nwCvAyFL5DKrOeiLiyfT6AnATxSVBMzNrk1aGzzJgvKRxkoZThMLiqjqLgVlp1tskYHNEbKzT7u3AiQCSDgWGA0+n9d2AD1HcXyJt65A0Mr3fHTgV2GEGnZmZ5dOy2W4RsU3SBcASYBgwLyLWSJqTyq8C7gBOAbqALcC5vftLWgBMAUZK6gYuiYhrgXnAvDQF+yXgnIjovVR3AtAdEetKXdkDWJKCZxjwY+CaFg3bzMwaoFd/bltZpVKJzk7PzDYz6w9JyyOiUq+en3BgZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+xaGj6Spkp6VFKXpItqlEvS5al8laQJpbJ5kjZJWl1jvwtTu2skXZa2jZX0oqSVabmqVP9YSQ+m41wuSa0as5mZ1dey8JE0DLgSmAYcDpwl6fCqatOA8WmZDcwtlV0PTK3R7nuB6cDREXEE8M1S8dqIOCYtc0rb56b2e4+1Q7tmZpZPK898jge6ImJdRLwELKQIjbLpwPwoLAVGSDoAICLuBZ6p0e75wNcjYmuqt2lnnUjt7RsRD0REAPOB0wcwLjMzG6BWhs9oYH1pvTtt62+daocCkyX9VNI9ko4rlY2TtCJtn1w6Rncjx5A0W1KnpM6enp463TAzs2Z1tLDtWvdVook61TqA/YBJwHHAIkmHABuBgyLiN5KOBW6XdER/jhERVwNXA1QqlXr9MDOzJrXyzKcbOLC0PgbY0ESdWu3emi7V/Qx4BRgZEVsj4jcAEbEcWEtxltSd2u3PMczMrIVaGT7LgPGSxkkaDswAFlfVWQzMSrPeJgGbI2JjnXZvB04EkHQoMBx4WtKoNMmBdCY0HliX2ntB0qQ0y20W8P3BGaKZmTWjZZfdImKbpAuAJcAwYF5ErJE0J5VfBdwBnAJ0AVuAc3v3l7QAmAKMlNQNXBIR1wLzgHlpCvZLwDkREZJOAL4saRvwMjAnInonLJxPMXtuL+DOtJiZWZuomABm1SqVSnR2dra7G2ZmuxRJyyOiUq+en3BgZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+xaGj6Spkp6VFKXpItqlEvS5al8laQJpbJ5kjZJWl1jvwtTu2skXZa2nSxpuaQH0+uJpfp3p/or07J/q8ZsZmb1dbSqYUnDgCuBk4FuYJmkxRHxUKnaNGB8WiYCc9MrwPXAFcD8qnbfC0wHjo6IraUgeRo4LSI2SDoSWAKMLu06MyI6B3GIZmbWpFae+RwPdEXEuoh4CVhIERpl04H5UVgKjJB0AEBE3As8U6Pd84GvR8TWVG9Tel0RERtSnTXAnpL2GPRRmZnZgLUyfEYD60vr3Wx/JtJonWqHApMl/VTSPZKOq1Hng8CK3oBKrkuX3C6WpFoNS5otqVNSZ09PT51umJlZs1oZPrV+wEcTdap1APsBk4DPAYvKYSLpCOAbwHmlfWZGxFHA5LScXavhiLg6IioRURk1alSdbpiZWbNaGT7dwIGl9THAhibq1Gr31nSp7mfAK8BIAEljgNuAWRGxtneHiHgyvb4A3ERxSdDMzNqkleGzDBgvaZyk4cAMYHFVncXArDTrbRKwOSI21mn3duBEAEmHAsOBpyWNAH4IfD4i7uutLKlDUm847Q6cCuwwg87MzPJpWfhExDbgAopZZw8DiyJijaQ5kuakancA64Au4Brgk737S1oAPAAcJqlb0sdT0TzgkDQFeyFwTkREOtZbgYurplTvASyRtApYCTyZjmVmZm2i4ue2VatUKtHZ6ZnZZmb9IWl5RFTq1fMTDszMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtn5j8n1QVIP8Ms+ikcCT2fsTg6vxTHBa3NcHtOu47U4rp2N6WmAiJharxGHTxMkdTbyl/p2Ja/FMcFrc1we067jtTiuwRqTL7uZmVl2Dh8zM8vO4dOcq9vdgRZ4LY4JXpvj8ph2Ha/FcQ3KmHzPx8zMsvOZj5mZZefwMTOz7Bw+JZKmSnpUUpeki2qUT5G0WdLKtHypqnyYpBWSfpCv1/UNZFySnpD0YNrembfnfRvgmEZIukXSI5IelvTOvL3vW7PjknRYadtKSc9L+svsA6hhgJ/Vf5a0RtJqSQsk7Zm397UNcEyfSeNZM1Q+o171xpXqTEljWiPpnv7su52I8FLc9xoGrAUOAYYDvwAOr6ozBfjBTtr4LHDTzursauMCngBGtnscgzymG4BPpPfDgRHtHtNgfQ+W2vk1cPCuPCZgNPA4sFdaXwR8bBcf05HAamBvoAP4MTC+3WPqx7hGAA8BB6X1/Rvdt3rxmc+rjge6ImJdRLwELASmN7qzpDHAnwPfaVH/mjWgcQ1RTY9J0r7ACcC1ABHxUkQ816qO9tNgfVbvA9ZGRF9P6MhpoGPqAPaS1EHxA3tDC/rYXwMZ09uApRGxJSK2AfcA/6FF/eyvRsb1EeDWiPgVQERs6se+23H4vGo0sL603p22VXunpF9IulPSEaXtfw/8FfBK67rYlIGOK4AfSVouaXYrO9oPAxnTIUAPcF26RPodSa9rcX8bNdDPqtcMYEErOtiEpscUEU8C3wR+BWwENkfEj1rd4QYM5HNaDZwg6Y2S9gZOAQ5sbXcb1si4DgX2k3R3+pkwqx/7bsfh8yrV2FY9D/3nFJcy3g78T+B2AEmnApsiYnlLe9icpseVvCsiJgDTgE9JOqElveyfgYypA5gAzI2IdwC/A+pfn85joJ8VkoYDHwD+qRUdbMJA/l3tR/Hb8zjgLcDrJH20dV1tWNNjioiHgW8A/we4i+Ly1LaW9bR/GhlXB3AsxVWe9wMXSzq0wX234/B5VTfb/wYyhqpT/Ih4PiJ+m97fAewuaSTwLuADkp6gON08UdJ3s/S6voGMi4jYkF43AbdRnF6320DG1A10R8RPU9VbKMJoKBjQZ5VMA34eEU+1urMNGsiYTgIej4ieiPgDcCvw7/J0e6cG+m/q2oiYEBEnAM8Aj+Xpdl11x5Xq3BURv4uIp4F7gbc3uO/22n2Ta6gsFIm+juK3rN4bZkdU1Xkzr/7H3OMpLgeoqs4UhtaEg6bHBbwO2Cdtfx1wPzB1Vx5TWv8JcFh6fynwd+0e02B9D1L88nNuu8cySN9/E4E1FPd6RDFR5MJdeUxpvfcm/UHAI8B+7R5TP8b1NuCfU929KS4jHtnIvtVLBwZARGyTdAGwhGLmxryIWCNpTiq/CviPwPmStgEvAjMifSJD1UDGJelNwG2SoPjmuiki7mrLQEoG4bO6ELgxXaJaB5ybfRA1DHRc6R7CycB5bRlADQMc008l3UJxCWsbsIIh8LiaQfj++56kNwJ/AD4VEc/mH8WOGhlXRDws6S5gFcX97e9ExGqAWvvu7Hh+vI6ZmWXnez5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zIYgFU8THznQOmZDlcPHzMyyc/iYtZmk29NDGtdUP7xV0lgVf3foBkmrVPwdor1LVS6U9HMVf3Pp36Z9jpd0f3pw6v2SDss6ILMGOHzM2u8vIuJYoAJ8Ov3v97LDgKsj4mjgeeCTpbKno3jw61zgv6ZtjwAnRPHg1C8Bf9vS3ps1weFj1n6flvQLYCnFwxnHV5Wvj4j70vvvAu8uld2aXpcDY9P7NwD/JGk18G2g1p9dMGsrh49ZG0maQvH05ndG8fj9FUD1n4qufgZWeX1ren0Z/visxr8B/m9EHAmcVqM9s7Zz+Ji11xuAZyNiS7pnM6lGnYMkvTO9Pwv4fw20+WR6/7FB6aXZIHP4mLXXXUCHpFUUZyxLa9R5GDgn1fkzivs7O3MZ8DVJ91E8YdhsyPFTrc2GMEljKf4+1JHt7ovZYPKZj5mZZeczHzMzy85nPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZ/StTC/mbJRmewwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha sigma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgnElEQVR4nO3df7xVdZ3v8ddbjvgrDQssAxS8ouWvDLdAtzAincA0vDYlSmJOXcTC6nanuVZjdpt+emuaYXRwMFF5pKCZGrdUus6M2pgohyAEleuRTA+QHFNRwzDkM3+s787FZh/O3vucvfaB3s/HYz32Xuv7Xd/1/bIP581a68vaigjMzMyKtEerO2BmZn9+HD5mZlY4h4+ZmRXO4WNmZoVz+JiZWeEcPmZmVjiHj9luQtIESZ2t7keepNWSJuyk/IuSvl9cj6y/cPhYvyDpCUkvS3pJ0tOSrpH0ulb3a2ckjZAUktr6qL29JT0vaWKVsu9JurkvjtOINM7fp89nnaS/lzSgp/0i4uiIuHsn5d+IiE/0aWdtl+Dwsf7k9Ih4HTAaOBH423p2VmaX+ZmuDK2I+ANwIzC9ot4A4GzguuJ6V9Xb0+fzPuAc4L/3prG+Cm3bNe0yf1Htz0dErAPuAI6RdKCkn0jqkvRcej+sXFfS3ZK+Luk+YDNwmKTzJT0i6UVJayVdkKs/QVKnpL+RtFHSBklnSDpV0v+X9KykL+bq7yHpYkmPS/qdpJskvSEV35ten09nBO9M+/xVOv5zkhZLOjTXXkj6lKTHgMeqDP864EOS9s1tez/Z39U7dja2SulYh+fWr5X0tdz6aZJWpLOtX0g6rvtP5TUR8Sjwc7LP579I+rf0Z/OMpOslDcod4wlJJ6f3X5F0s6QfSHoB+Fja9oNUXj6TPE/Sk6m9L+Xa2kfSdenP9ZH0GXbmyv9XOit7UdIaSe+rZTzWGg4f63ckDQdOBZaT/YxeAxwKHAK8DFxescu5wAxgf+A3wEbgNOAA4Hzge5JG5+q/GdgbGAp8GbgK+ChwAjAe+LKkw1LdTwNnAO8B3gI8B1yRyk5Kr4Mi4nURcb+kM4AvAmcCQ8h+SS+o6O8ZwFjgqMqxR8QvgA1p//z4boiIrTWMrSZpn3nABcAbgX8BFknaq4Z9jyL7c1oOCPgm2Z/N24DhwFd2svsU4GZgEHB9N3XeDRxJdob1ZUlvS9svBUYAhwGnkH1m5T4dCcwCToyI/ckC+4mexmItFBFevLR8IftF8RLwPFmA/DOwT5V6xwPP5dbvBr7aQ9u3AZ9J7yeQBdiAtL4/EMDYXP1lwBnp/SPA+3JlBwN/BNrIfhEG0JYrvwP4eG59D7IzskPTegATe+jv3wI/S+8PSPu/o8axdebKAjg8t34t8LX0fg7wdxVtrQHe081xAniBLHwfB74G7FGl3hnA8orP9eT0/ivAvRX1vwL8IL0v/3kOy5U/CExN79cC78+VfaI8XuBwsmA+Gdiz1T/PXnpefM3V+pMzIuKu/IZ0+el7wCTgwLR5f0kDIuLVtP5UxT6Tyf6VfATZL/99gYdyVX6X2/fl9Pp0rvxloDzZ4VDgVknbcuWvAm/qZgyHAv8o6bv5LpGdZf2mWn+rmA9cKmko2b/gOyJieY1jq9WhwHmSLsptG0h2BtOd0RHRkd8g6SBgNtmZ0P6pT8/tpI2exg7w29z7zbz2WbylYv8/vY+IDkmfJQuzoyUtBj4XEetrOJ61gC+7WX/3P8kuwYyNiAN47VKXcnX+9Gj2dNnoR8B3gDdFxCDg9or69XgKmBwRg3LL3pHdl6r2SPingAsq6u8T2eW0HfpbTUQ8SXa5bhrZJbf5DY5tM1k4lb25op9fr+jnvhFReYmwJ99M4zkufT4f3Ul/oIex92ADMCy3Pny7hiNuiIh3kwVrAN/uxbGsyRw+1t/tT3Ym8ny60X9pD/UHAnsBXcDWdKbwF704/pXA18uTBiQNkTQllXUB28juQeTrf0HS0an+6yV9uIHjXkd2D+NdvHZvpN6xrQDOkTRA0iSy+1ZlVwEzJY1VZj9JH5C0f5393J90uTSdqX2+zv3rcRPZn+2B6VizygWSjpQ0MQX0H8h+Zl7tph3rBxw+1t/9A7AP8AywBLhzZ5Uj4kWySQI3kV3+OQdY1Ivj/2Pa/2eSXkx9GJuOtRn4OnBfmjE2LiJuJfsX98I0o2sVMLmB495MdpnxXyNiQ4Nj+wxwOtl9tGlk94dIbbWTTZW+PLXVAXysgX7+b7Kp8ZuAnwK3NNBGrb4KdAK/Bu4i+zPaksr2Ar5F9nPyW+Agsokf1k8pwl8mZ2a7HkkXkk1GeE+Pla3f8ZmPme0SJB0s6V3p/14dSXY/8NZW98sa49luZrarGEj2/5FGkl1KXEg2Jd92Qb7sZmZmhfNlNzMzK5wvu3Vj8ODBMWLEiFZ3w8xslzF48GAWL168OCIm9VTX4dONESNG0N7e3upumJntUiQNrqWeL7uZmVnhHD5mZlY4h4+ZmRXO4WNmZoVz+JiZWeEcPmZmVjiHj5mZFc7hY2ZmhXP4mJlZ4Rw+ZmZWOIePmZkVzuFjZmaFc/iYmVnhHD5mZlY4h4+ZmRXO4WNmZoVz+JiZWeGaGj6SJklaI6lD0sVVyiVpdipfKWl0rmyepI2SVlXsc6OkFWl5QtKKtH1abvsKSdskHZ/K7k79KJcd1Mxxm5nZzjXta7QlDQCuAE4BOoGlkhZFxMO5apOBUWkZC8xJrwDXApcD8/PtRsRZuWN8F9iUtl8PXJ+2Hwv8OCJW5HadFhH+Xmwzs36gmWc+Y4COiFgbEa8AC4EpFXWmAPMjswQYJOlggIi4F3i2u8YlCfgIsKBK8dndbDczs36gmeEzFHgqt96ZttVbpzvjgacj4rEqZWexY/hcky65XZKCaweSZkhql9Te1dVVYzfMzKxezQyfar/go4E63al6diNpLLA5IvL3iqZFxLFkgTUeOLdagxExNyJKEVEaMmRIjd0wM7N6NTN8OoHhufVhwPoG6uxAUhtwJnBjleKpVIRSRKxLry8CN5BdEjQzsxZpZvgsBUZJGilpIFkoLKqoswiYnma9jQM2RcSGGto+GXg0IjrzGyXtAXyY7P5SeVubpMHp/Z7AacB2M+jMzKxYTZvtFhFbJc0CFgMDgHkRsVrSzFR+JXA7cCrQAWwGzi/vL2kBMAEYLKkTuDQirk7FO5zdJCcBnRGxNrdtL2BxCp4BwF3AVX02UDMzq5siar3F8uelVCpFe7tnZpuZ1UPSsogo9VTPTzgwM7PCOXzMzKxwDh8zMyucw8fMzArn8DEzs8I5fMzMrHAOHzMzK5zDx8zMCufwMTOzwjl8zMyscA4fMzMrnMPHzMwK5/AxM7PCOXzMzKxwDh8zMyucw8fMzArn8DEzs8I5fMzMrHAOHzMzK5zDx8zMCtfU8JE0SdIaSR2SLq5SLkmzU/lKSaNzZfMkbZS0qmKfGyWtSMsTklak7SMkvZwruzK3zwmSHkrHmS1JTRy2mZn1oGnhI2kAcAUwGTgKOFvSURXVJgOj0jIDmJMruxaYVNluRJwVEcdHxPHAj4BbcsWPl8siYmZu+5zUfvlYO7RrZmbFaeaZzxigIyLWRsQrwEJgSkWdKcD8yCwBBkk6GCAi7gWe7a7xdPbyEWDBzjqR2jsgIu6PiADmA2c0OCYzM+sDzQyfocBTufXOtK3eOt0ZDzwdEY/lto2UtFzSPZLG547RWcsxJM2Q1C6pvaurq8ZumJlZvZoZPtXuq0QDdbpzNtuf9WwADomIdwCfA26QdEA9x4iIuRFRiojSkCFDauyGmZnVq62JbXcCw3Prw4D1DdTZgaQ24EzghPK2iNgCbEnvl0l6HDgiHWNYvccwM7PmaeaZz1JglKSRkgYCU4FFFXUWAdPTrLdxwKaI2FBD2ycDj0bEny6nSRqSJjkg6TCyiQVrU3svShqX7hNNB37c69GZmVnDmnbmExFbJc0CFgMDgHkRsVrSzFR+JXA7cCrQAWwGzi/vL2kBMAEYLKkTuDQirk7FU9lxosFJwFclbQVeBWZGRHnCwoVks+f2Ae5Ii5mZtYiyCWBWqVQqRXt7e6u7YWa2S5G0LCJKPdXzEw7MzKxwDh8zMyucw8fMzArn8DEzs8I5fMzMrHAOHzMzK5zDx8zMCufwMTOzwjl8zMyscA4fMzMrnMPHzMwK5/AxM7PCOXzMzKxwDh8zMyucw8fMzArn8DEzs8I5fMzMrHAOHzMzK5zDx8zMCufwMTOzwjU1fCRNkrRGUoeki6uUS9LsVL5S0uhc2TxJGyWtqtjnRkkr0vKEpBVp+ymSlkl6KL1OzO1zd+pHeb+DmjhsMzPrQVuzGpY0ALgCOAXoBJZKWhQRD+eqTQZGpWUsMCe9AlwLXA7Mz7cbEWfljvFdYFNafQY4PSLWSzoGWAwMze06LSLa+2Z0ZmbWG8088xkDdETE2oh4BVgITKmoMwWYH5klwCBJBwNExL3As901LknAR4AFqf7yiFifilcDe0vaq09HZGZmfaKZ4TMUeCq33sn2ZyK11unOeODpiHisStmHgOURsSW37Zp0ye2SFFw7kDRDUruk9q6urhq7YWZm9Wpm+FT7BR8N1OnO2aSznu0alI4Gvg1ckNs8LSKOJQus8cC51RqMiLkRUYqI0pAhQ2rshpmZ1auZ4dMJDM+tDwPWN1BnB5LagDOBGyu2DwNuBaZHxOPl7RGxLr2+CNxAdknQzMxapJnhsxQYJWmkpIHAVGBRRZ1FwPQ0620csCkiNtTQ9snAoxHRWd4gaRDwU+ALEXFfbnubpMHp/Z7AacAqzMysZZoWPhGxFZhFNuvsEeCmiFgtaaakmana7cBaoAO4CvhkeX9JC4D7gSMldUr6eK75qex4yW0WcDhwScWU6r2AxZJWAiuAdelYZmbWIoqo9RbLn5dSqRTt7Z6ZbWZWD0nLIqLUUz0/4cDMzArn8DEzs8I5fMzMrHAOHzMzK5zDx8zMCufwMTOzwjl8zMyscA4fMzMrnMPHzMwK5/AxM7PCOXzMzKxwNX+Ndvpq6qOAvcvbImJ+93uYmZlVV1P4SLoUmEAWPrcDk4H/ABw+ZmZWt1ovu/0l8D7gtxFxPvB2sq8qMDMzq1ut4fNyRGwDtko6ANgIHNa8bpmZ2e6s1ns+7embQq8ClgEvAQ82q1NmZrZ7qyl8IqL8DaNXSroTOCAiVjavW2ZmtjurZ7bbccCI8j6SDo+IW5rULzMz243VOtttHnAcsBrYljYH4PAxM7O61XrmMy4ijmpqT8zM7M9GrbPd7pdUd/hImiRpjaQOSRdXKZek2al8paTRubJ5kjZKWlWxz42SVqTlCUkrcmVfSG2tkfT+3PYTJD2UymZLUr1jMTOzvlNr+FxHFkBrUkg8JGmnEw4kDQCuIPsPqUcBZ1cJsMnAqLTMAObkyq4FJlW2GxFnRcTxEXE88CPSpb/U9lTg6LTfP6c+kNqdkTvWDu2a9XexbRu//Lfr+fmiy3nl5Zda3R2zXqn1sts84FzgIV6759OTMUBHRKwFkLQQmAI8nKszBZgfEQEskTRI0sERsSEi7pU0orvG09nLR4CJubYWRsQW4NeSOoAxkp4gm513f9pvPnAGcEeN4zDrF1bceyPf/emXiAi6fvckZ55/Wau7ZNawWsPnyYhYVGfbQ4GncuudwNga6gwFNtTQ/njg6Yh4LNfWkipt/TG9r9y+A0kzyM6QOOSQQ2rogllxtvzh9wTBHtqD37/8Qqu7Y9YrtYbPo5JuAP4vsKW8sYep1tXuq0QDdbpzNrCghrZqPkZEzAXmApRKpVr7YVaIEyacw9SNv+alzc9z+oe/1OrumPVKreGzD1no/EVuW09TrTuB4bn1YcD6BursQFIbcCZwQg1tdab3dR3DrL/Zc+99+eD0r7e6G2Z9otYnHJzfQNtLgVGSRgLryCYDnFNRZxEwK90PGgtsiohaLrmdDDwaEfnLaYuAGyT9PfAWsokFD0bEq5JelDQOeACYDvxTA+MxM7M+Uut/Mp1dZfMmoD0iflxtn4jYKmkWsBgYAMyLiNWSZqbyK8m+nuFUoAPYDPwp5CQtIPsah8GSOoFLI+LqVDyV7S+5kdq+iWxCw1bgUxHxaiq+kGz23D5kEw082cDMrIWUTTTroZI0F3gr8MO06UNkTzsYDqyNiM82q4OtUiqVor29vdXdMDPbpUhaFhGlnurVes/ncGBiRGxNjc8BfgacQjb92szMrGa1/ifTocB+ufX9gLeky1pbqu9iZmZWXa1nPpcBKyTdTTZ1+STgG5L2A+5qUt/MzGw3Vetst6sl3U721AIBX4yI8nTlzzerc2Zmtnva6WU3SW9Nr6OBg8meRvAk8Ob8Q0DNzMzq0dOZz+fIHjfz3dy2/PS4iZiZmdVpp2c+ETEjvZ0DTImI9wL/TvZ/fP66yX0zM7PdVK2z3f42Il6Q9G6y6dXXsv3XH5iZmdWs1vApPyngA8CV6akGA5vTJTMz293VGj7rJP0L2ffn3C5przr2NTMz206tAfIRsme0TYqI54E34CnWZmbWoFr/n89mcl+fkJ48XcvTp83MzHbgS2dmZlY4h4+ZmRXO4WNmZoVz+JiZWeEcPmZmVjiHj5mZFc7hY2ZmhXP4mJlZ4ZoaPpImSVojqUPSxVXKJWl2Kl+Z/44gSfMkbZS0qsp+F6V2V0u6LG2bJmlFbtkm6fhUdneqXy47qInDNjOzHtT6Ndp1kzQAuILsKdidwFJJiyLi4Vy1ycCotIwle1L22FR2LXA5ML+i3fcCU4DjImJLOUgi4nrg+lTnWODHEbEit+u0iGjvyzGamVljmnnmMwboiIi1EfEKsJAsNPKmAPMjswQYJOlggIi4F3i2SrsXAt+KiC2p3sYqdc4GFvTROMzMrI81M3yGkn3tdlln2lZvnUpHAOMlPSDpHkknVqlzFjuGzzXpktslklStYUkzJLVLau/q6uqhG2Zm1qhmhk+1X/DRQJ1KbcCBwDiyJ2vflA8TSWOBzRGRv1c0LSKOBcan5dxqDUfE3IgoRURpyJAhPXTDzMwa1czw6QSG59aHAesbqFOt3VvSpboHgW3A4Fz5VCrOeiJiXXp9EbiB7JKgmZm1SDPDZykwStJISQPJQmFRRZ1FwPQ0620csCl9XcPO3AZMBJB0BNk3qj6T1vcAPkx2f4m0rU3S4PR+T+A0YIcZdGZmVpymzXaLiK2SZpF9Cd0AYF5ErJY0M5VfCdwOnAp0AJuB88v7S1oATAAGS+oELo2Iq4F5wLw0BfsV4LyIKF+qOwnojIi1ua7sBSxOwTMAuAu4qknDNjOzGui139uWVyqVor3dM7PNzOohaVlElHqq5yccmJlZ4Rw+ZmZWOIePmZkVzuFjZmaFc/iYmVnhHD5mZlY4h4+ZmRXO4WNmZoVz+JiZWeEcPmZmVjiHj5mZFc7hY2ZmhXP4mJlZ4Rw+ZmZWOIePmZkVzuFjZmaFc/iYmVnhHD5mZlY4h4+ZmRXO4WNmZoVravhImiRpjaQOSRdXKZek2al8paTRubJ5kjZKWlVlv4tSu6slXZa2jZD0sqQVabkyV/8ESQ+l48yWpGaN2czMeta08JE0ALgCmAwcBZwt6aiKapOBUWmZAczJlV0LTKrS7nuBKcBxEXE08J1c8eMRcXxaZua2z0ntl4+1Q7tmZlacZp75jAE6ImJtRLwCLCQLjbwpwPzILAEGSToYICLuBZ6t0u6FwLciYkuqt3FnnUjtHRAR90dEAPOBM3oxLjMz66Vmhs9Q4KncemfaVm+dSkcA4yU9IOkeSSfmykZKWp62j88do7OWY0iaIaldUntXV1cP3TAzs0a1NbHtavdVooE6ldqAA4FxwInATZIOAzYAh0TE7ySdANwm6eh6jhERc4G5AKVSqad+mJlZg5p55tMJDM+tDwPWN1CnWru3pEt1DwLbgMERsSUifgcQEcuAx8nOkjpTu/Ucw8zMmqiZ4bMUGCVppKSBwFRgUUWdRcD0NOttHLApIjb00O5twEQASUcAA4FnJA1JkxxIZ0KjgLWpvRcljUuz3KYDP+6bIZqZWSOadtktIrZKmgUsBgYA8yJitaSZqfxK4HbgVKAD2AycX95f0gJgAjBYUidwaURcDcwD5qUp2K8A50VESDoJ+KqkrcCrwMyIKE9YuJBs9tw+wB1pMTOzFlE2AcwqlUqlaG9vb3U3zMx2KZKWRUSpp3p+woGZmRXO4WNmZoVz+JiZWeEcPmZmVjiHj5mZFc7hY2ZmhXP4mJlZ4Rw+ZmZWOIePmZkVzuFjZmaFc/iYmVnhHD5mZlY4h4+ZmRXO4WNmZoVz+JiZWeEcPmZmVjiHj5mZFc7hY2ZmhXP4mJlZ4Rw+ZmZWuKaGj6RJktZI6pB0cZVySZqdyldKGp0rmydpo6RVVfa7KLW7WtJladspkpZJeii9TszVvzvVX5GWg5o1ZjMz61lbsxqWNAC4AjgF6ASWSloUEQ/nqk0GRqVlLDAnvQJcC1wOzK9o973AFOC4iNiSC5JngNMjYr2kY4DFwNDcrtMior0Ph2hmZg1q5pnPGKAjItZGxCvAQrLQyJsCzI/MEmCQpIMBIuJe4Nkq7V4IfCsitqR6G9Pr8ohYn+qsBvaWtFefj8rMzHqtmeEzFHgqt97J9mcitdapdAQwXtIDku6RdGKVOh8ClpcDKrkmXXK7RJKqNSxphqR2Se1dXV09dMPMzBrVzPCp9gs+GqhTqQ04EBgHfB64KR8mko4Gvg1ckNtnWkQcC4xPy7nVGo6IuRFRiojSkCFDeuiGmZk1qpnh0wkMz60PA9Y3UKdau7ekS3UPAtuAwQCShgG3AtMj4vHyDhGxLr2+CNxAdknQzMxapJnhsxQYJWmkpIHAVGBRRZ1FwPQ0620csCkiNvTQ7m3ARABJRwADgWckDQJ+CnwhIu4rV5bUJqkcTnsCpwE7zKAzM7PiNC18ImIrMIts1tkjwE0RsVrSTEkzU7XbgbVAB3AV8Mny/pIWAPcDR0rqlPTxVDQPOCxNwV4InBcRkY51OHBJxZTqvYDFklYCK4B16VhmZtYiyn5vW6VSqRTt7Z6ZbWZWD0nLIqLUUz0/4cDMzArn8DEzs8I5fMzMrHAOHzMzK5zDx8zMCufwMTOzwjl8zMyscA4fMzMrnMPHzMwK5/AxM7PCOXzMzKxwDh8zMyucw8fMzArn8DEzs8I5fMzMrHAOHzMzK5y/TK4bkrqA33RTPBh4psDuFGF3HBPsnuPymHYdu+O4djamZwAiYlJPjTh8GiCpvZZv6tuV7I5jgt1zXB7TrmN3HFdfjcmX3czMrHAOHzMzK5zDpzFzW92BJtgdxwS757g8pl3H7jiuPhmT7/mYmVnhfOZjZmaFc/iYmVnhHD45kiZJWiOpQ9LFVconSNokaUVavlxRPkDSckk/Ka7XPevNuCQ9IemhtL292J53r5djGiTpZkmPSnpE0juL7X33Gh2XpCNz21ZIekHSZwsfQBW9/Kz+h6TVklZJWiBp72J7X10vx/SZNJ7V/eUzKutpXKnOhDSm1ZLuqWff7USEl+y+1wDgceAwYCDwK+CoijoTgJ/spI3PATfsrM6uNi7gCWBwq8fRx2O6DvhEej8QGNTqMfXVz2Cund8Ch+7KYwKGAr8G9knrNwEf28XHdAywCtgXaAPuAka1ekx1jGsQ8DBwSFo/qNZ9Kxef+bxmDNAREWsj4hVgITCl1p0lDQM+AHy/Sf1rVK/G1U81PCZJBwAnAVcDRMQrEfF8szpap776rN4HPB4R3T2ho0i9HVMbsI+kNrJf2Oub0Md69WZMbwOWRMTmiNgK3AP8tyb1s161jOsc4JaIeBIgIjbWse92HD6vGQo8lVvvTNsqvVPSryTdIeno3PZ/AP4G2Na8Ljakt+MK4GeSlkma0cyO1qE3YzoM6AKuSZdIvy9pvyb3t1a9/azKpgILmtHBBjQ8pohYB3wHeBLYAGyKiJ81u8M16M3ntAo4SdIbJe0LnAoMb253a1bLuI4ADpR0d/qdML2Ofbfj8HmNqmyrnIf+S7JLGW8H/gm4DUDSacDGiFjW1B42puFxJe+KiNHAZOBTkk5qSi/r05sxtQGjgTkR8Q7g90DP16eL0dvPCkkDgQ8CP2xGBxvQm79XB5L963kk8BZgP0kfbV5Xa9bwmCLiEeDbwP8D7iS7PLW1aT2tTy3jagNOILvK837gEklH1Ljvdhw+r+lk+3+BDKPiFD8iXoiIl9L724E9JQ0G3gV8UNITZKebEyX9oJBe96w34yIi1qfXjcCtZKfXrdabMXUCnRHxQKp6M1kY9Qe9+qySycAvI+LpZne2Rr0Z08nAryOiKyL+CNwC/Ndiur1Tvf07dXVEjI6Ik4BngceK6XaPehxXqnNnRPw+Ip4B7gXeXuO+22v1Ta7+spAl+lqyf2WVb5gdXVHnzbz2H3PHkF0OUEWdCfSvCQcNjwvYD9g/bd8P+AUwaVceU1r/OXBkev8V4P+0ekx99TNI9o+f81s9lj76+RsLrCa71yOyiSIX7cpjSuvlm/SHAI8CB7Z6THWM623Av6a6+5JdRjymln0rlzYMgIjYKmkWsJhs5sa8iFgtaWYqvxL4S+BCSVuBl4GpkT6R/qo345L0JuBWSZD9cN0QEXe2ZCA5ffBZXQRcny5RrQXOL3wQVfR2XOkewinABS0ZQBW9HNMDkm4mu4S1FVhOP3hcTR/8/P1I0huBPwKfiojnih/FjmoZV0Q8IulOYCXZ/e3vR8QqgGr77ux4fryOmZkVzvd8zMyscA4fMzMrnMPHzMwK5/AxM7PCOXzMzKxwDh+zfkjZ08QH97aOWX/l8DEzs8I5fMxaTNJt6SGNqysf3ipphLLvHbpO0kpl30O0b67KRZJ+qew7l96a9hkj6Rfpwam/kHRkoQMyq4HDx6z1/ioiTgBKwKfT/37POxKYGxHHAS8An8yVPRPZg1/nAH+dtj0KnBTZg1O/DHyjqb03a4DDx6z1Pi3pV8ASsoczjqoofyoi7kvvfwC8O1d2S3pdBoxI718P/FDSKuB7QLWvXTBrKYePWQtJmkD29OZ3Rvb4/eVA5VdFVz4DK7++Jb2+Cn96VuPfAf8eEccAp1dpz6zlHD5mrfV64LmI2Jzu2YyrUucQSe9M788G/qOGNtel9x/rk16a9TGHj1lr3Qm0SVpJdsaypEqdR4DzUp03kN3f2ZnLgG9Kuo/sCcNm/Y6fam3Wj0kaQfb9UMe0ui9mfclnPmZmVjif+ZiZWeF85mNmZoVz+JiZWeEcPmZmVjiHj5mZFc7hY2ZmhftP4PJqg/Z682UAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEWCAYAAAC0Q+rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaoklEQVR4nO3de5hddX3v8feHxHATDZagyC1QY47BS4tTwKNFqqLEqqHH+jygHvB2EAV7v2CPtbbWantasZ5SPEBVOFY4lEqbtggqp5YelNaJKJICJcYLkRSCIopQMfA9f6yVst1MZnZm8pvJJO/X8+xnr7V+v9/av2/2ZD6zLrMnVYUkSS3sNtcTkCTtvAwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISPNMkuOSbJjreQxKsjbJcZO0/0aSC2ZvRtpRGDKaVUm+muT+JPcmuSPJh5I8eq7nNZkkS5NUkoXbaX97JPl2kudN0HZ2ksu2x+tMR1/n9/r35xtJ3ptkwVTjquqIqvr0JO2/V1Vv2K6T1bxgyGguvLSqHg0cCfwE8LZtGZzOvPnaHQ6nqvp34P8Apwz1WwCcDFw4e7Ob0DP69+f5wCuB/zaTnW2vcNb8NG/+o2rnU1XfAD4OPDXJvkn+NsmmJHf3ywdt6Zvk00neleRa4D7g8CSvTXJTku8mWZ/kjQP9j0uyIcmvJbkzycYkJyZ5cZJ/TfKtJL8x0H+3JGcl+XKSbya5NMnj+uZr+udv9z/hP6sf87r+9e9OclWSQwf2V0nOSHIrcOsE5V8IvDzJXgPbXkT3f/Ljk9U2rH+tJw2sfzjJ7w6svyTJF/qjp88kefrW35WHVdXNwD/SvT8/muT/9v82dyX58ySLB17jq0le0C+/I8llST6S5DvAa/ptH+nbtxwZnprk6/3+/vvAvvZMcmH/73pT/x5uGGj/9f4o67tJbkny/FHq0dwwZDRnkhwMvBi4nu5r8UPAocAhwP3AnwwN+a/AacA+wNeAO4GXAI8BXgucneTIgf5PAPYADgTeDpwPvBp4JvCTwNuTHN73/TngROC5wBOBu4Fz+rZj++fFVfXoqvpskhOB3wD+C7CE7pvxxUPzPRE4GlgxXHtVfQbY2I8frO+jVbV5hNpG0o/5IPBG4EeA/wWsTrL7CGNX0P07XQ8EeDfdv81TgIOBd0wyfBVwGbAY+POt9HkOsJzuiOntSZ7Sb/8tYClwOHA83Xu2ZU7LgTOBn6iqfeiC+atT1aI5VFU+fMzag+4bwr3At+mC4k+BPSfo92PA3QPrnwZ+Z4p9/xXw8/3ycXRBtaBf3wco4OiB/muAE/vlm4DnD7QdAPwAWEj3Da+AhQPtHwdeP7C+G90R1qH9egHPm2K+bwM+0S8/ph//4yPWtmGgrYAnDax/GPjdfvlc4J1D+7oFeO5WXqeA79CF7JeB3wV2m6DficD1Q+/rC/rldwDXDPV/B/CRfnnLv+dBA+3/DJzUL68HXjTQ9oYt9QJPogvgFwCPmuuvZx9TPzxXqrlwYlV9anBDf9robOAEYN9+8z5JFlTVg/36bUNjVtL91Ptkum/yewFfGujyzYGx9/fPdwy03w9suengUODyJA8NtD8IPH4rNRwK/HGSPxqcEt1R09cmmu8ELgJ+K8mBdD+Rr6uq60esbVSHAqcmecvAtkV0RyRbc2RVrRvckGR/4P10Rzb79HO6e5J9TFU7wL8NLN/Hw+/FE4fG/8dyVa1L8gt0oXVEkquAX6qq20d4Pc0BT5dpR/HLdKdOjq6qx/DwKaoM9PmPjwzvT/f8JfCHwOOrajFwxVD/bXEbsLKqFg889qjuutFEH1V+G/DGof57Vnca7BHznUhVfZ3uNNur6E6VXTTN2u6jC6EtnjA0z3cNzXOvqho+tTeVd/f1PL1/f149yXxgitqnsBE4aGD94B/acdVHq+o5dAFawO/P4LXUmCGjHcU+dEcW3+4vuP/WFP0XAbsDm4DN/U/+L5zB638AeNeWi/dJliRZ1bdtAh6iu0Yw2P+tSY7o+z82ySum8boX0l1jeDYPX7vY1tq+ALwyyYIkJ9BdV9rifOD0JEens3eSn06yzzbOcx/605z9kdevbuP4bXEp3b/tvv1rnbmlIcnyJM/rg/jf6b5mHtzKfrQDMGS0o3gfsCdwF3AdcOVknavqu3QX6y+lO23zSmD1DF7/j/vxn0jy3X4OR/evdR/wLuDa/g6tY6rqcrqfoC/p76C6EVg5jde9jO704NVVtXGatf088FK661yvort+Q7+vcbpbkP+k39c64DXTmOdv091yfg/wd8DHprGPUf0OsAH4CvApun+j7/dtuwPvofs6+Tdgf7obMLSDSpV/tEzSjivJm+huCnjulJ21w/FIRtIOJckBSZ7d/+7ScrrrdZfP9bw0Pd5dJmlHs4ju93kOozsFeAndre6ahzxdJklqxtNlkqRmdunTZfvtt18tXbp0rqchSfPKmjVr7qqqJaP03aVDZunSpYyPj8/1NCRpXknytal7dTxdJklqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqpmnIJDkhyS1J1iU5a4L2JHl/335DkiMH2j6Y5M4kNw6NeVySTya5tX/ed6j9kCT3JvmVdpVJkkbRLGSSLADOAVYCK4CTk6wY6rYSWNY/TgPOHWj7MHDCBLs+C7i6qpYBV/frg84GPj7T+UuSZq7lkcxRwLqqWl9VDwCXAKuG+qwCLqrOdcDiJAcAVNU1wLcm2O8q4MJ++ULgxC0NSU4E1gNrt2MdkqRpahkyBwK3Daxv6Ldta59hj6+qjQD98/4ASfYGfh347ckGJzktyXiS8U2bNk1ZhCRp+lqGTCbYVtPoM6rfBs6uqnsn61RV51XVWFWNLVmyZJovJUkaxcKG+94AHDywfhBw+zT6DLsjyQFVtbE/tXZnv/1o4GeT/AGwGHgoyb9X1Z9MtwBJ0sy0PJL5HLAsyWFJFgEnAauH+qwGTunvMjsGuGfLqbBJrAZO7ZdPBf4aoKp+sqqWVtVS4H3A7xkwkjS3moVMVW0GzgSuAm4CLq2qtUlOT3J63+0Kugv164DzgTdvGZ/kYuCzwPIkG5K8vm96D3B8kluB4/t1SdIOKFXTvQQy/42NjdX4+PhcT0OS5pUka6pqbJS+/sa/JKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNNA2ZJCckuSXJuiRnTdCeJO/v229IcuRA2weT3JnkxqExj0vyySS39s/79tuPT7ImyZf65+e1rE2SNLVmIZNkAXAOsBJYAZycZMVQt5XAsv5xGnDuQNuHgRMm2PVZwNVVtQy4ul8HuAt4aVU9DTgV+N/bpxJJ0nS1PJI5ClhXVeur6gHgEmDVUJ9VwEXVuQ5YnOQAgKq6BvjWBPtdBVzYL18InNj3v76qbu+3rwX2SLL79ixIkrRtWobMgcBtA+sb+m3b2mfY46tqI0D/vP8EfV4OXF9V39+mGUuStquFDfedCbbVNPps24smRwC/D7xwK+2n0Z2a45BDDpnJS0mSptDySGYDcPDA+kHA7dPoM+yOLafU+uc7tzQkOQi4HDilqr480eCqOq+qxqpqbMmSJSMVIkmanpYh8zlgWZLDkiwCTgJWD/VZDZzS32V2DHDPllNhk1hNd2Gf/vmvAZIsBv4OeGtVXbudapAkzUCzkKmqzcCZwFXATcClVbU2yelJTu+7XQGsB9YB5wNv3jI+ycXAZ4HlSTYkeX3f9B7g+CS3Asf36/Sv9STgN5N8oX9MdL1GkjRLUjWjSyDz2tjYWI2Pj8/1NCRpXkmypqrGRunrb/xLkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpmYVTdUjy9om2V9XvbP/pSJJ2JlOGDPC9geU9gJcAN7WZjiRpZzLl6bKq+qOBx7uA44ADR9l5khOS3JJkXZKzJmhPkvf37TckOXKg7YNJ7kxy49CYxyX5ZJJb++d9B9re2u/rliQvGmWOkqR2pnNNZi/g8Kk6JVkAnAOsBFYAJydZMdRtJbCsf5wGnDvQ9mHghAl2fRZwdVUtA67u1+n3fRJwRD/uT/s5SPPKd795O3//sfdy8z9fMddTkWZslGsyXwKqX10ALAFGuR5zFLCuqtb3+7kEWAX8y0CfVcBFVVXAdUkWJzmgqjZW1TVJlk6w31V0R1MAFwKfBn69335JVX0f+EqSdf0cPjvCXKUdxgXnv4nxTV9k9zyKdy7enwOfPDbXU5KmbZRrMi8ZWN4M3FFVm0cYdyBw28D6BuDoEfocCGycZL+Pr6qNAFW1Mcn+A/u6boJ9/ZAkp9EdNXHIIYdMXYU0y773wL0syqN4kIf4/v33zvV0pBkZ5ZrM16rqa8D9dEcyT0wyynfnTLS7afQZ1Uj7qqrzqmqsqsaWLFkyzZeS2nnDq8/muYcey2uf/RYOe9qxcz0daUZGOV32MuCPgCcCdwKH0t1ddsQUQzcABw+sHwTcPo0+w+7YckotyQH9nKa7L2mH84TDn85r3vJncz0NabsY5cL/O4FjgH+tqsOA5wPXjjDuc8CyJIclWUR3UX71UJ/VwCn9XWbHAPdsORU2idXAqf3yqcBfD2w/KcnuSQ6ju5ngn0eYpySpkVFC5gdV9U1gtyS7VdXfAz821aD+us2ZwFV0Rz6XVtXaJKcnOb3vdgWwHlgHnA+8ecv4JBfTXbRfnmRDktf3Te8Bjk9yK3B8v05VrQUupbux4ErgjKp6cIT6JEmNpLuxa5IOyaeAE4F3A/vRnZ4aq6pnN59dY2NjYzU+Pj7X05CkeSXJmqoa6bbHUe4u+yJwH/CLwKuAxwKPnv70JEm7ilFC5qeq6iHgIbrfSyHJDU1nJUnaKWw1ZJK8ie4ayY8Ohco+jHbhX5K0i5vsSOajwMfprsUMfu7Yd6vqW01nJUnaKWw1ZKrqHuAe4OTZm44kaWfiHy2TJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDXTNGSSnJDkliTrkpw1QXuSvL9vvyHJkVONTfKMJJ9N8qUkf5PkMf32RyW5sN9+U5K3tqxNkjS1ZiGTZAFwDrASWAGcnGTFULeVwLL+cRpw7ghjLwDOqqqnAZcDv9pvfwWwe7/9mcAbkyxtU50kaRQtj2SOAtZV1fqqegC4BFg11GcVcFF1rgMWJzlgirHLgWv65U8CL++XC9g7yUJgT+AB4DuNapMkjaBlyBwI3DawvqHfNkqfycbeCLysX34FcHC/fBnwPWAj8HXgD6vqWzMrQZI0Ey1DJhNsqxH7TDb2dcAZSdYA+9AdsUB39PMg8ETgMOCXkxz+iEklpyUZTzK+adOmqauQJE1by5DZwMNHGQAHAbeP2GerY6vq5qp6YVU9E7gY+HLf55XAlVX1g6q6E7gWGBueVFWdV1VjVTW2ZMmSaRcnSZpay5D5HLAsyWFJFgEnAauH+qwGTunvMjsGuKeqNk42Nsn+/fNuwNuAD/T7+jrwvH5fewPHADc3rE+SNIVmIVNVm4EzgauAm4BLq2ptktOTnN53uwJYD6wDzgfePNnYfszJSf6VLkBuBz7Ubz8HeDTdNZvPAR+qqhta1SdJmlqqhi+T7DrGxsZqfHx8rqchSfNKkjVV9YjLERPxN/4lSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNdM0ZJKckOSWJOuSnDVBe5K8v2+/IcmRU41N8owkn03ypSR/k+QxA21P79vW9u17tKxPkjS5ZiGTZAFwDrASWAGcnGTFULeVwLL+cRpw7ghjLwDOqqqnAZcDv9qPWQh8BDi9qo4AjgN+0Ko+SdLUWh7JHAWsq6r1VfUAcAmwaqjPKuCi6lwHLE5ywBRjlwPX9MufBF7eL78QuKGqvghQVd+sqgdbFSdJmlrLkDkQuG1gfUO/bZQ+k429EXhZv/wK4OB++clAJbkqyeeT/NpEk0pyWpLxJOObNm3axpIkSduiZchkgm01Yp/Jxr4OOCPJGmAf4IF++0LgOcCr+uefSfL8R+yk6ryqGquqsSVLlkxdhSRp2hY23PcGHj7KADgIuH3EPou2NraqbqY7NUaSJwM/PbCvf6iqu/q2K4Ajgau3Qy2SpGloeSTzOWBZksOSLAJOAlYP9VkNnNLfZXYMcE9VbZxsbJL9++fdgLcBH+j3dRXw9CR79TcBPBf4l4b1SZKm0OxIpqo2JzmT7pv/AuCDVbU2yel9+weAK4AXA+uA+4DXTja23/XJSc7olz8GfKgfc3eS99IFVAFXVNXftapPkjS1VA1fJtl1jI2N1fj4+FxPQ5LmlSRrqmpslL7+xr8kqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzqaq5nsOcSbIJ+NokXfYD7pql6cwWa5o/dsa6dsaaYOesa7KaDq2qJaPsZJcOmakkGa+qsbmex/ZkTfPHzljXzlgT7Jx1ba+aPF0mSWrGkJEkNWPITO68uZ5AA9Y0f+yMde2MNcHOWdd2qclrMpKkZjySkSQ1Y8hIkprZJUMmyQlJbkmyLslZE7Qfl+SeJF/oH28fal+Q5Pokfzt7s57cTGpK8tUkX+q3j8/uzCc3w7oWJ7ksyc1JbkryrNmd/cSmW1OS5QPbvpDkO0l+YdYL2IoZvle/mGRtkhuTXJxkj9md/cRmWNPP9/WsnU/vU9/nuL6etUn+YVvGPkJV7VIPYAHwZeBwYBHwRWDFUJ/jgL+dZB+/BHx0sj7zqSbgq8B+c11Hg7ouBN7QLy8CFs/3mob28290vxQ3r98r4EDgK8Ce/fqlwGvmeU1PBW4E9gIWAp8Cls2TmhYD/wIc0q/vP+rYiR674pHMUcC6qlpfVQ8AlwCrRh2c5CDgp4ELGs1vOmZU0w5s2nUleQxwLPBnAFX1QFV9u9VEt8H2eq+eD3y5qib7xIrZNNO6FgJ7JllI94359gZz3FYzqekpwHVVdV9VbQb+AfiZRvPcFqPU9ErgY1X1dYCqunMbxj7CrhgyBwK3Daxv6LcNe1aSLyb5eJIjBra/D/g14KF2U9xmM62pgE8kWZPktJYT3UYzqetwYBPwof7U5gVJ9m4831HM9L3a4iTg4hYTnKZp11VV3wD+EPg6sBG4p6o+0XrCI5jJe3UjcGySH0myF/Bi4OC20x3JKDU9Gdg3yaf77wmnbMPYR9gVQyYTbBu+j/vzdKchngH8T+CvAJK8BLizqtY0neG2m3ZNvWdX1ZHASuCMJMc2meW2m0ldC4EjgXOr6seB7wGjnUNua6bvFUkWAS8D/qLFBKdpJv+v9qX7ifgw4InA3kle3W6qI5t2TVV1E/D7wCeBK+lOLW1uNtPRjVLTQuCZdGdsXgT8ZpInjzj2EXbFkNnAD/9EcRBDh+ZV9Z2qurdfvgJ4VJL9gGcDL0vyVbpDxecl+ciszHpyM6mJqrq9f74TuJzusHhHMJO6NgAbquqf+q6X0YXOXJvRe9VbCXy+qu5oPdltMJO6XgB8pao2VdUPgI8B/3l2pj2pmf6/+rOqOrKqjgW+Bdw6O9Oe1JQ19X2urKrvVdVdwDXAM0Yc+0hzfSFqth90Kb2e7qemLRevjhjq8wQe/kXVo+gO4zPU5zh2nAv/064J2BvYp9++N/AZ4IS5rml7vFfAPwLL++V3AP9jvtfUb7sEeO1c17IdvwaPBtbSXYsJ3Q0bb5nPNfXrWy6YHwLcDOw7T2p6CnB133cvulN/Tx1l7ESPhexiqmpzkjOBq+julvhgVa1Ncnrf/gHgZ4E3JdkM3A+cVP2//o5oJjUleTxweRLovog+WlVXzkkhQ7bDe/UW4M/700vrgdfOehFDZlpTf37/eOCNc1LAVsywrn9KchndqafNwPXsAB/Tsh2+/v4yyY8APwDOqKq7Z7+KHzZKTVV1U5IrgRvorj1fUFU3Akw0dqrX9GNlJEnN7IrXZCRJs8SQkSQ1Y8hIkpoxZCRJzRgykqRmDBlpjqT79Ov9ZtpH2pEZMpKkZgwZaRYk+av+wwbXDn8IaZKl6f7mzYVJbkj3N3D2GujyliSfT/c3f/5TP+aoJJ/pP/zzM0mWz2pB0ogMGWl2vK6qngmMAT/X/yb4oOXAeVX1dOA7wJsH2u6q7gNMzwV+pd92M3BsdR/++Xbg95rOXpomQ0aaHT+X5IvAdXQfMrhsqP22qrq2X/4I8JyBto/1z2uApf3yY4G/SHIjcDYw0Z8DkOacISM1luQ4uk8aflZ1Hwl/PTD854WHP99pcP37/fOD8B+fN/hO4O+r6qnASyfYn7RDMGSk9h4L3F1V9/XXVI6ZoM8hSZ7VL58M/L8R9vmNfvk122WWUgOGjNTelcDCJDfQHYFcN0Gfm4BT+z6Po7v+Mpk/AN6d5Fq6T8SVdkh+CrM0x5IspfvbRE+d67lI25tHMpKkZjySkSQ145GMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmvn/up7VAQMeLMsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta delta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEWCAYAAADGjIh1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAdOElEQVR4nO3de5hdVZ3m8e9rwi0QJ9AGDAkhoQ0Zg9JjPHLpVqFRJLHbp4LK01xswMYJaYzT87S3oI6Crd3KONAyInZwkCBKJo1Nm5FA1ExD+qGTgQqXkBjTFEFJQZoUFxEECZDf/LFXNZvDSdWpk7NPraq8n+c5z9l7r7XXXqtO5bzZ11JEYGZmloPXDHcHzMzM+jmUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiWzEUbSiZJ6h7sfZZI2SjpxgPLPSPp253pkI5VDyTpK0i8kPSfpGUmPSvqOpAOGu18DkTRNUkga26b29pX0K0knNSi7TNIN7dhOK9I4f5M+n4clXSppzGDrRcRREXHrAOV/HREfaWtnbVRyKNlweF9EHADMBt4GfG4oK6swYn5368MsIn4L/G/g7Lp6Y4AzgCWd611Dv5c+n3cBZwL/eXcaa1eY255hxPzDttEnIh4GbgbeJOlAST+S1CfpyTQ9pb+upFslfVnS7cCzwBGSPixpk6SnJW2RdH6p/omSeiV9StJ2SdskzZP0Xkn/KukJSZ8p1X+NpEWSHpD0uKRlkg5KxavT+6/SHsTxaZ0/S9t/UtJKSYeX2gtJH5V0P3B/g+EvAT4gaVxp2SkU/yZvHmhs9dK23lCav0bSl0rzfyzpnrR39i+Sjt71p/KyiPg58M8Un8/vSvq/6WfzmKTvSZpQ2sYvJL07TV8k6QZJ10n6NXBuWnZdKu/f8zxH0kOpvc+W2tpP0pL0c92UPsPeUvmn017c05I2S3pXM+OxkcGhZMNG0mHAe4G7KX4XvwMcDkwFngO+UbfKnwLzgfHAL4HtwB8DrwU+DFwmaXap/uuBfYHJwOeBq4APAW8F3gF8XtIRqe5/AeYBJwCHAk8CV6Syd6b3CRFxQESskTQP+AzwfmAixZf39XX9nQccC8yqH3tE/AuwLa1fHt/3I+LFJsbWlLTO1cD5wO8Afwcsl7RPE+vOovg53Q0I+BuKn80bgcOAiwZYvQu4AZgAfG8Xdd4OzKTYI/u8pDem5V8ApgFHACdTfGb9fZoJLATeFhHjKYL8F4ONxUaQiPDLr469KL5AngF+RREs3wT2a1DvPwFPluZvBb44SNv/CPxFmj6RItjGpPnxQADHluqvA+al6U3Au0plk4AXgLEUX5ABjC2V3wycV5p/DcUe3OFpPoCTBunv54Afp+nXpvXf0uTYektlAbyhNH8N8KU0fSXwV3VtbQZO2MV2Avg1RSg/AHwJeE2DevOAu+s+13en6YuA1XX1LwKuS9P9P88ppfI7gNPT9BbglFLZR/rHC7yBIrDfDew13L/PfrX/5WO9NhzmRcRPywvSYazLgDnAgWnxeEljIuKlNL+1bp25FP+rPpIiFMYB95WqPF5a97n0/mip/Dmg/yKLw4EbJe0slb8EHLKLMRwOfF3S/yh3iWKv7JeN+tvAtcAXJE2m+B9/T0Tc3eTYmnU4cI6kj5WW7U2xx7MrsyOip7xA0sHA5RR7TuNTn54coI3Bxg7wb6XpZ3n5szi0bv1/n46IHkn/lSLkjpK0EvjLiHikie3ZCODDd5aLj1Mcyjk2Il7Ly4fMVKrz74+0T4effgB8DTgkIiYAK+rqD8VWYG5ETCi99o3ivFejR+lvBc6vq79fFIflXtXfRiLiIYrDfmdRHLq7tsWxPUsRWv1eX9fPL9f1c1xE1B9qHMzfpPEcnT6fDw3QHxhk7IPYBkwpzR/2ioYjvh8Rb6cI3AC+uhvbssw4lCwX4yn2XH6VLjD4wiD19wb2AfqAF9OexXt2Y/vfAr7cf7GCpImSulJZH7CT4hxHuf6Fko5K9f+DpNNa2O4SinMkf8DL516GOrZ7gDMljZE0h+K8WL+rgAWSjlVhf0l/JGn8EPs5nnTYNe3ZfXKI6w/FMoqf7YFpWwv7CyTNlHRSCu7fUvzOvLSLdmwEcihZLv4W2A94DFgL3DJQ5Yh4muLihGUUh5HOBJbvxva/ntb/saSnUx+OTdt6FvgycHu6gu24iLiR4n/oS9MVZhuAuS1s9waKw5WrImJbi2P7C+B9FOfpzqI4/0Rqq5viku5vpLZ6gHNb6OfFFJfwPwXcBPxDC20064tAL/Ag8FOKn9HzqWwf4CsUvyf/BhxMccGJjRKK8B/5M7N8SfpziosgThi0so143lMys6xImiTpD9K9YzMpzjfeONz9ss7w1Xdmlpu9Ke6nmk5xSHIpxa0DtgeodE9J0px0x3WPpEUNyiXp8lS+vnxzoKSrVdyJv6FundNUPPxxp6RaXdnRktak8vsk7Vvd6MysChHxy4h4U0TsHxGTI+LjEbFjuPtlnVFZKKl4jtcVFCd/ZwFnpDvEy+YCM9JrPsWNfv2uobhnpd4GirvgV5cXqni+1nXAgog4iuIGwxd2dxxmZtY5VR6+O4biZsAtAJKWUjx65GelOl3AtVFcbbFW0gRJkyJiW0SsljStvtGI2JTaqy96D7A+Iu5N9R4frIOve93rYtq0V23CzMwGsG7dusciYmIVbVcZSpN55V3ZvaRLbAepM5ni5rmhOhKIdIf3RGBpRFxSX0nSfIq9MqZOnUp3d3cLmzIz23NJ+uXgtVpT5TmlRnd7119/3kydZo2leMDjWen91EZPD46IxRFRi4jaxImVBL2ZmbWoylDq5ZWPB5kC1D+fqpk6Q9nebRHxWLrZcQXFzX5mZjZCVBlKdwIzJE2XtDdwOq++K305cHa6Cu844Kn+u9pbsBI4WtK4dNHDCbzy/JWZmWWuslCK4m/CLKQIi03AsojYKGmBpAWp2gqKx9T3UDyj64L+9SVdD6wBZqr4Y23npeWnpj/4dTxwUzqHREQ8CVxKEYb3AHdFxE1Vjc/MzNpvj37MUK1WC1/oYGY2NJLWRURt8JpD58cMmZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllo9JQkjRH0mZJPZIWNSiXpMtT+XpJs0tlV0vaLmlD3TqnSdooaaekWoM2p0p6RtInqhmVmZlVpbJQkjQGuAKYC8wCzpA0q67aXGBGes0HriyVXQPMadD0BuD9wOpdbPoy4OaWO25mZsOmyj2lY4CeiNgSETuApUBXXZ0u4NoorAUmSJoEEBGrgSfqG42ITRGxudEGJc0DtgAb2zcMMzPrlCpDaTKwtTTfm5YNtU5TJO0PfBq4eJB68yV1S+ru6+trZVNmZlaRKkNJDZZFC3WadTFwWUQ8M1CliFgcEbWIqE2cOLHFTZmZWRXGVth2L3BYaX4K8EgLdZp1LPBBSZcAE4Cdkn4bEd9osT0zM+uwKkPpTmCGpOnAw8DpwJl1dZYDCyUtpQiVpyJiWysbi4h39E9Lugh4xoFkZjayVHb4LiJeBBYCK4FNwLKI2ChpgaQFqdoKigsTeoCrgAv615d0PbAGmCmpV9J5afmpknqB44GbJK2sagxmZtZZimj1FM7IV6vVoru7e7i7YWY2okhaFxGvuk+0HfxEBzMzy4ZDyczMsuFQMjOzbDiUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2w4lMzMLBsOJTMzy4ZDyczMsuFQMjOzbDiUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2w4lMzMLBsOJTMzy4ZDyczMsuFQMjOzbFQaSpLmSNosqUfSogblknR5Kl8vaXap7GpJ2yVtqFvnNEkbJe2UVCstP1nSOkn3pfeTqhybmZm1X2WhJGkMcAUwF5gFnCFpVl21ucCM9JoPXFkquwaY06DpDcD7gdV1yx8D3hcRbwbOAb67m0MwM7MOq3JP6RigJyK2RMQOYCnQVVenC7g2CmuBCZImAUTEauCJ+kYjYlNEbG6w/O6IeCTNbgT2lbRPG8djZmYVqzKUJgNbS/O9adlQ67TiA8DdEfF8fYGk+ZK6JXX39fW1YVNmZtYuVYaSGiyLFuoMbaPSUcBXgfMblUfE4oioRURt4sSJu7MpMzNrsypDqRc4rDQ/BXikhTpNkzQFuBE4OyIeaLUdMzMbHlWG0p3ADEnTJe0NnA4sr6uzHDg7XYV3HPBURGxrZWOSJgA3ARdGxO270W8zMxsmlYVSRLwILARWApuAZRGxUdICSQtStRXAFqAHuAq4oH99SdcDa4CZknolnZeWnyqpFzgeuEnSyrTKQuANwH+TdE96HVzV+MzMrP0UsVuncEa0Wq0W3d3dw90NM7MRRdK6iKgNXnPo/EQHMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2w4lMzMLBsOJTMzy4ZDyczMsuFQMjOzbDiUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2w4lMzMLBsOJTMzy8bYZitK+iPgKGDf/mUR8cUqOmVmZnumpvaUJH0L+BPgY4CA04DDK+yXmZntgZo9fPf7EXE28GREXAwcDxxWXbfMzGxP1GwoPZfen5V0KPACML2aLpmZ2Z6q2XNKP5I0AfjvwF1AAN+uqlNmZrZnajaULomI54EfSPoRxcUOv62uW2Zmtidq9vDdmv6JiHg+Ip4qL9sVSXMkbZbUI2lRg3JJujyVr5c0u1R2taTtkjbUrXOapI2Sdkqq1ZVdmNraLOmUJsdmZmaZGDCUJL1e0luB/SS9RdLs9DoRGDfIumOAK4C5wCzgDEmz6qrNBWak13zgylLZNcCcBk1vAN4PrK7b3izgdIrL1ucA30x9MBtRnn78Ef7pHy7l53esGO6umHXcYIfvTgHOBaYAl5aWPw18ZpB1jwF6ImILgKSlQBfws1KdLuDaiAhgraQJkiZFxLaIWC1pWn2jEbEptVdf1AUsTYcZH5TUk/ow6B6dWU6+fdWf0913L/toL/5qwsFMPrI2+Epmo8SAoRQRS4Alkj4QET8YYtuTga2l+V7g2CbqTAa2DXFb/W2tbdDWK0iaT7FXxtSpU1vYjFm1frPjGfbWXrzETp5/7pnh7o5ZRw0YSpL+stF0v4i4tH5ZefUGy6KFOs1qqq2IWAwsBqjVaq1uy6wyH/nQZdxy09eZNuXNTH/zO4e7O2YdNdjhu/G70XYvr7zBdgrwSAt12rk9s+y9/oijOfdj/2u4u2E2LAY7fHfxbrR9JzBD0nTgYYqLEM6sq7McWJjONx0LPBURrRy662/r+5IuBQ6luHjijhbbMjOzYdDss++OlLSq//JsSUdL+txA60TEi8BCYCWwCVgWERslLZC0IFVbAWwBeoCrgAtK27ye4iKFmZJ6JZ2Xlp8qqZfiUUc3SVqZtrcRWEZxIcUtwEcj4qWmfgpmZpYFFRe+DVJJug34JPB3EfGWtGxDRLyp4v5VqlarRXd393B3w8xsRJG0LiIquSy02Ztnx0VE/aGwF9vdGTMz27M1G0qPSfpd0tVskj5Ia5dtm5mZ7VKzz777KMVl1P9R0sPAg8BZlfXKzMz2SE3fp0RxUcI/Uexd/Qb4AK98yoOZmdluafY+pZnA24AfUtyk+qfUPXvOzMxsdzV1n5KkHwOzI+LpNH8R8PeV987MzPYozV7oMBXYUZrfAUxre2/MzGyP1uyFDt8F7pB0I8UVeKcCSyrrlZmZ7ZGaCqWI+LKkm4F3pEUfjoi7q+uWmZntiZrdUyIi7gLuqrAvZma2h2v2nJKZmVnlHEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYqDSVJcyRtltQjaVGDckm6PJWvlzS7VHa1pO2SNtStc5Ckn0i6P70fmJbvJWmJpPskbZJ0YZVjMzOz9qsslCSNAa4A5gKzgDMkzaqrNheYkV7zgStLZdcAcxo0vQhYFREzgFVpHuA0YJ+IeDPwVuB8SdPaMhgzM+uIKveUjgF6ImJLROwAlgJddXW6gGujsBaYIGkSQESsBp5o0G4XsCRNLwHmpekA9pc0FtgP2AH8uo3jMTOzilUZSpOBraX53rRsqHXqHRIR2wDS+8Fp+Q3Ab4BtwEPA1yLiVaEmab6kbkndfX19zY7FzMw6oMpQUoNl0UKdZh0DvAQcCkwHPi7piFc1HrE4ImoRUZs4cWKLmzIzsypUGUq9wGGl+SnAIy3Uqfdo/yG+9L49LT8TuCUiXoiI7cDtQK3FvpuZ2TCoMpTuBGZImi5pb+B0YHldneXA2ekqvOOAp/oPzQ1gOXBOmj4H+GGafgg4KbW1P3Ac8PN2DMTMzDqjslCKiBeBhcBKYBOwLCI2SlogaUGqtgLYAvQAVwEX9K8v6XpgDTBTUq+k81LRV4CTJd0PnJzmobjS7wBgA0Ugfici1lc1PjMzaz9FtHoKZ+Sr1WrR3d093N0wMxtRJK2LiEpOj/iJDmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2ag0lCTNkbRZUo+kRQ3KJenyVL5e0uxS2dWStkvaULfOQZJ+Iun+9H5gqexoSWskbZR0n6R9qxyfmZm1V2WhJGkMcAUwF5gFnCFpVl21ucCM9JoPXFkquwaY06DpRcCqiJgBrErzSBoLXAcsiIijgBOBF9o0HDMz64Aq95SOAXoiYktE7ACWAl11dbqAa6OwFpggaRJARKwGnmjQbhewJE0vAeal6fcA6yPi3rT+4xHxUjsHZGZm1aoylCYDW0vzvWnZUOvUOyQitgGk94PT8iOBkLRS0l2SPtVoZUnzJXVL6u7r62tyKGZm1glVhpIaLIsW6jRrLPB24Kz0fqqkd72q8YjFEVGLiNrEiRNb3JSZmVWhylDqBQ4rzU8BHmmhTr1H+w/xpfftpbZui4jHIuJZYAUwexdtmJlZhqoMpTuBGZKmS9obOB1YXldnOXB2ugrvOOCp/kNzA1gOnJOmzwF+mKZXAkdLGpcuejgB+Fk7BmJmZp1RWShFxIvAQoqw2AQsi4iNkhZIWpCqrQC2AD3AVcAF/etLuh5YA8yU1CvpvFT0FeBkSfcDJ6d5IuJJ4FKKMLwHuCsibqpqfGZm1n6KaPUUzshXq9Wiu7t7uLthZjaiSFoXEbUq2vYTHczMLBsOJTMzy4ZDyczMsuFQMjOzbDiUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2w4lMzMLBsOJTMzy4ZDyczMsuFQMjOzbDiUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2w4lMzMLBsOJTMzy4ZDyczMslFpKEmaI2mzpB5JixqUS9LlqXy9pNmlsqslbZe0oW6dgyT9RNL96f3AuvKpkp6R9InqRmZmZlWoLJQkjQGuAOYCs4AzJM2qqzYXmJFe84ErS2XXAHMaNL0IWBURM4BVab7sMuDm3e2/mZl1XpV7SscAPRGxJSJ2AEuBrro6XcC1UVgLTJA0CSAiVgNPNGi3C1iSppcA8/oLJM0DtgAb2zgOMzPrkCpDaTKwtTTfm5YNtU69QyJiG0B6PxhA0v7Ap4GLB1pZ0nxJ3ZK6+/r6Bh2EmZl1ztgK21aDZdFCnWZdDFwWEc9IjZpNjUcsBhYDSOqT9EvgdcBjLW43dx7byDWax+exjVyvAw6vqvEqQ6kXOKw0PwV4pIU69R6VNCkitqVDfdvT8mOBD0q6BJgA7JT024j4xq4aioiJAJK6I6I22IBGIo9t5BrN4/PYRq40vmlVtV/l4bs7gRmSpkvaGzgdWF5XZzlwdroK7zjgqf5DcwNYDpyTps8BfggQEe+IiGnph/W3wF8PFEhmZpafykIpIl4EFgIrgU3AsojYKGmBpAWp2gqKCxN6gKuAC/rXl3Q9sAaYKalX0nmp6CvAyZLuB05O82ZmNgpUefiOiFhBETzlZd8qTQfw0V2se8Yulj8OvGuQ7V40xK4uHmL9kcRjG7lG8/g8tpGr0vGpyAUzM7Ph58cMmZlZNhxKZmaWjVERSqP5GXudHpukoyWtkbRR0n2S9h0NY5O0l6QlaUybJF1Y1bgqHt9p6bPZKalWV3ZhamuzpFOqG1lnxybpZEnr0me3TtJJo2VspfKOPbNzGH4vh/adEhEj+gWMAR4AjgD2Bu4FZtXVeS/F8/AEHAf8v1LZO4HZwIa6dS4BFqXpRcBX68p/APw98InRMjaKC1/WA7+X5n8HGDNKxnYmsDRNjwN+AUwbgZ/dG4GZwK1ArbR8VtrGPsD0tO2R9tntamxvAQ5N028CHh4tn1upvPLvk2H67Ib8nTIa9pRG8zP2Oj229wDrI+LetP7jEfFSOwdU0umxBbC/pLHAfsAO4NdtHE+9SsYXEZsiYnOD7XVRhO7zEfEgxW0Wx7RxPGUdHVtE3B0R/TfVbwT2lbRPG8dT1unPrdPP7Oz0+Ib8nTIaQinLZ+y1SUfHBhwJhKSVku6S9KmWez64To/tBuA3wDbgIeBrEdEo1NqlqvHtzvbapdNjK/sAcHdEPN+Gthrp6Ng6/H0Cnf/shvydUul9Sh2S5TP22qTTYxsLvB14G/AssErSuohY1WJ7A+n02I4BXgIOBQ4E/lnSTyNiS4vtDabT42tnW+3YVtv7I+ko4KsU//uuymj+PoER8J0yGkIp+2fs7YZOj60XuC0iHgOQtILi+HEVodTpsZ0J3BIRLwDbJd0O1CgOm1ShqvHtzvbapdNjQ9IU4Ebg7Ih4oNV2mtDpsXXy+wSG5/dySN8po+Hw3Wh+xl5Hx0bxSKijJY1L515OAH7WjoE00OmxPQSclNran+IE7s/bMZBdqGp8u7IcOF3SPpKmU/zhzDta7fwgOjo2SROAm4ALI+L23eh3Mzo6tg5/n0Dnfy+H/p0y0FUQI+VFcbXIv1JcVfLZtGwBsCBNi+Kv4D4A3Mcrrw65nuI8wwsUqX5evHyVyCrg/vR+UIPtXkT1V8t0dGzAhyhOuG4ALhktYwMOoLi6aWP6R/HJEfp7eWqafx54FFhZWuezqa3NwNzRMjbgcxTnA+8pvQ4eDWOr2+5FVPx9Mky/l0P6TvFjhszMLBuj4fCdmZmNEg4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiWzDpI0rf4Jy4PUP1fSoVX2ySwnDiWzvJ1L8Wgksz2CQ8ms88aq+NtO6yXdkO52f6uk21T8vaCVkiZJ+iDFo5C+J+keSftJ+rykOyVtkLRYHXpgmlmn+OZZsw6SNA14EHh7RNwu6WpgE8Ud8V0R0SfpT4BTIuLPJN1KcZd/d1r/oEhPN5f0XWBZRPyf4RiLWRVGwwNZzUaarfHyM9yuAz5D8cfrfpJ2fMZQPMqlkT9Mj/8fBxxE8fgWh5KNGg4ls86rPzzxNLAxIo4faCUVf0b6mxTPItsq6SKgsj9XbzYcfE7JrPOmSuoPoDOAtcDE/mWS9kp/OwiKwBqfpvsD6DFJBwAf7FSHzTrFoWTWeZuAcyStpzgE9z8pAuarku6leAr276e61wDfknQPxROYr6J4cvM/UvwZArNRxRc6mJlZNrynZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpaN/w9S3EXuy/d3zwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta gamma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZiElEQVR4nO3de7hddX3n8ffHRK6CgMQLAUkcKSM6qHgArdd6BdQClc4AWu9FOsLYmbGClyq22g4+TsFWWkSLYFEZBaEUUaz2Uft4K4mgEpEa8UIAJXhFQTDhO3+sdWC73TnZSfbvnJzT9+t5znPW5bfW+v7O3tmfrOtOVSFJ0qTda64LkCQtTAaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgpDmU5ClJ1sx1HYOSrErylBnmvy7Je2avIs1XBow2W5LvJLk9yc+T/CDJe5PcZ67rmkmSZUkqyeIJrW+7JD9J8tQR805LcsEktrM5+n7+on99bkjyV0kWbWy5qnp4VX16hvl/UVUvn2ixWpAMGG2p51bVfYADgAOBN2zKwunMm/fhcDBV1S+B/we8cKjdIuAY4NzZq26kR/avz9OAY4E/3JKVTSqY9R/DvPmHra1bVd0AfAx4RJJdk1yaZG2SH/fDe063TfLpJG9N8jngNuAhSV6S5Joktya5LskrBto/JcmaJK9JcnOSm5IckeSwJP+e5EdJXjfQ/l5JTk7yrSQ/TPKhJLv1sz/b//5J/z/7x/XLvLTf/o+TXJ5k74H1VZJXJvkm8M0R3T8XeF6SHQamPYvu39fHZurbsH5bDx0YPyfJWwbGn5Pkqn6v6fNJ9t/wq3KPqvoG8K90r89/SvIv/d/mliTvT7LLwDa+k+Tp/fApSS5Icl6SnwEv7qed18+f3iN8UZLv9et7/cC6tk9ybv93vaZ/DdcMzD+p37u6Ncm1SZ42Tn80PxgwmogkewGHAVfSva/eC+wNPBi4HXjn0CJ/ABwH7AR8F7gZeA6wM/AS4LQkBwy0fyCwHbAUeCPwbuAFwGOAJwJvTPKQvu3/AI4AngzsAfwYOKOf96T+9y5VdZ+q+kKSI4DXAb8HLKH7IP7gUL1HAAcD+w33vao+D9zULz/Yvw9U1box+jaWfpmzgVcA9wPeBVySZNsxlt2P7u90JRDgL+n+Ng8D9gJOmWHxw4ELgF2A92+gzROAfen2lN6Y5GH99DcBy4CHAM+ge82ma9oXOAE4sKp2ogvl72ysL5pHqsoffzbrh+7D4OfAT+hC4m+B7Ue0exTw44HxTwN/tpF1Xwy8qh9+Cl1ILerHdwIKOHig/UrgiH74GuBpA/MeBPwKWEz3YVfA4oH5HwNeNjB+L7o9q7378QKeupF63wB8oh/euV/+0WP2bc3AvAIeOjB+DvCWfvjvgD8fWte1wJM3sJ0CfkYXsN8C3gLca0S7I4Arh17Xp/fDpwCfHWp/CnBePzz999xzYP6/AUf3w9cBzxqY9/Lp/gIPpQvfpwP3nuv3sz+T//F4qrbUEVX1ycEJ/aGi04BDgF37yTslWVRV6/vx64eWOZTuf7u/RfcBvwPwtYEmPxxY9vb+9w8G5t8OTF9gsDdwUZK7BuavBx6wgT7sDbwjyf8dLIlub+m7o+od4X3Am5Ispfuf+OqqunLMvo1rb+BFSU4cmLYN3Z7IhhxQVasHJyS5P/DXdHs0O/U1/XiGdWys7wDfHxi+jXteiz2Glr97uKpWJ/ljusB6eJLLgf9VVTeOsT3NAx4iUwv/m+5wycFVtTP3HJbKQJu7H+PdH+K5EHg78ICq2gW4bKj9prgeOLSqdhn42a6680SjHh9+PfCKofbbV3fo6zfqHaWqvkd3aO35dIfH3reZfbuNLoCmPXCozrcO1blDVQ0fztuYv+z7s3//+rxghnpgI33fiJuAPQfG9/q1FVd9oKqeQBeeBZy6BdvSVsaAUQs70e1R/KQ/uf6mjbTfBtgWWAus6//H/8wt2P6ZwFunT9QnWZLk8H7eWuAuunMCg+1fm+Thffv7Jvn9zdjuuXTnFB7PPecqNrVvVwHHJlmU5BC680jT3g0cn+TgdHZM8uwkO21inTvRH9rs97j+ZBOX3xQfovvb7tpv64TpGUn2TfLUPoR/SfeeWb+B9WgeMmDUwunA9sAtwBeBj8/UuKpupTsx/yG6QzXHApdswfbf0S//iSS39jUc3G/rNuCtwOf6K7EeW1UX0f3P+fz+SqmrgUM3Y7sX0B0S/FRV3bSZfXsV8Fy681rPpztfQ7+uFXSXGb+zX9dq4MWbUeeb6S4r/ynwUeAjm7GOcf0ZsAb4NvBJur/RHf28bYH/Q/c++T5wf7qLLbRApMovHJM0O5L8Ed0FAE/eaGPNe+7BSGomyYOSPL6/N2lfuvNzF811XZodXkUmqaVt6O7XWU532O98usvZ9R+Ah8gkSU14iEyS1MSCOkS2++6717Jly+a6DEmaN1auXHlLVS1pse4FFTDLli1jxYoVc12GJM0bSb678Vabp+khsiSH9E9IXZ3k5BnaHZhkfZKjBqb9z3RffHR1kg8m2a5lrZKkyWoWMOm+D+MMuhvW9gOO6Z/oOqrdqcDlA9OW0t2cNlVVjwAWAUe3qlWSNHkt92AOonvg33VVdSfd5YmHj2h3It2zmm4emr4Y2D7dFxztAPgAPEmaR1oGzFJ+/Smqa/ppd+v3VI6kexbU3fqHEr4d+B7dw/J+WlWfGLWRJMclWZFkxdq1aydYviRpS7QMmFFPZx2+6eZ04KSBx7B3Cya70u3tLKd73PeOSV7ACFV1VlVNVdXUkiVNLoSQJG2GlleRreHXH829J795mGuK7gGDALsDhyVZB9wb+HZVrQVI8hHgt4HzGtYrSZqglgFzBbBPkuXADXQn6Y8dbFBVy6eHk5wDXFpVFyc5GHhs/8VVt9N9DavXH0vSPNIsYKpqXZIT6K4OWwScXVWrkhzfzz9zhmW/lOQC4MvAOrrvET+rVa2SpMlbUM8im5qaKm+0lKTxJVlZVVMt1u2zyCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmmgZMkkOSXJtkdZKTZ2h3YJL1SY7qx/dNctXAz8+S/HHLWiVJk7W41YqTLALOAJ4BrAGuSHJJVX19RLtTgcunp1XVtcCjBubfAFzUqlZJ0uS13IM5CFhdVddV1Z3A+cDhI9qdCFwI3LyB9TwN+FZVfbdNmZKkFloGzFLg+oHxNf20uyVZChwJnDnDeo4GPrihmUmOS7IiyYq1a9duQbmSpElqGTAZMa2Gxk8HTqqq9SNXkGwD/C7w4Q1tpKrOqqqpqppasmTJ5tYqSZqwZudg6PZY9hoY3xO4cajNFHB+EoDdgcOSrKuqi/v5hwJfrqofNKxTktRAy4C5AtgnyXK6k/RHA8cONqiq5dPDSc4BLh0IF4BjmOHwmCRp69UsYKpqXZIT6K4OWwScXVWrkhzfz5/pvAtJdqC7Au0VrWqUJLXTcg+GqroMuGxo2shgqaoXD43fBtyvWXGSpKa8k1+S1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDXRNGCSHJLk2iSrk5w8Q7sDk6xPctTAtF2SXJDkG0muSfK4lrVKkiarWcAkWQScARwK7Acck2S/DbQ7Fbh8aNY7gI9X1X8GHglc06pWSdLktdyDOQhYXVXXVdWdwPnA4SPanQhcCNw8PSHJzsCTgL8HqKo7q+onDWuVJE1Yy4BZClw/ML6mn3a3JEuBI4Ezh5Z9CLAWeG+SK5O8J8mOozaS5LgkK5KsWLt27eSqlyRtkZYBkxHTamj8dOCkqlo/NH0xcADwd1X1aOAXwMhzOFV1VlVNVdXUkiVLtrBkSdKkLB6nUZLHAn8DPAzYBlgE/KKqdp5hsTXAXgPjewI3DrWZAs5PArA7cFiSdcAXgTVV9aW+3QVsIGAkSVunsQIGeCdwNPBhulB4IfDQjSxzBbBPkuXADf3yxw42qKrl08NJzgEuraqL+/Hrk+xbVdcCTwO+PmatkqStwLgBQ1WtTrKoP5z13iSf30j7dUlOoLs6bBFwdlWtSnJ8P3/4vMuwE4H3J9kGuA54ybi1SpLm3rgBc1v/QX9VkrcBNwEjT7oPqqrLgMuGpo0Mlqp68dD4VXR7S5KkeWjck/x/QLcXcgLdCfe9gOe1KkqSNP+NtQdTVd/tB28H3tyuHEnSQjHWHkyS5/T3o/woyc+S3JrkZ62LkyTNX+Oegzkd+D3ga1U1fC+LJEm/YdxzMNcDVxsukqRxjbsH8xrgsiSfAe6YnlhVf9WkKknSvDduwLwV+DmwHd2d/JIkzWjcgNmtqp7ZtBJJ0oIy7jmYTyYxYCRJYxs3YF4JfDzJ7V6mLI1v3Z2/5PMffRdf+vjfc9f6dXNdjjSrxr3RcqfWhUgL0b9cdBrnfOldEPijX93OE597wlyXJM2asR92mWR/YNngMlX1kQY1SQvG7XfcSoCiuP22W+e6HGlWjft9MGcD+wOrgLv6yQUYMNIMnnnEq7njzttZdK9FPPk5r5zrcqRZNe4ezGOrar+mlUgL0PY778Z/fflpc12GNCfGPcn/hSQGjCRpbOPuwZxLFzLfp7uTP0BV1f7NKpMkzWvjBszZdN8J8zXuOQcjSdIGjRsw36uqS5pWIklaUMYNmG8k+QDwT/z6wy69ikySNNK4AbM9XbAMPi7Gy5QlSRs07p38L2ldiCRpYRn3RsvtgJcBD6d7ZD8AVfXSRnVJkua5ce+D+QfggcCzgM8AewI+90KStEHjBsxDq+pPgV9U1bnAs4H/0q4sSdJ8N27A/Kr//ZMkjwDuS/fgS0mSRhr3KrKzkuwKvAG4BLgP8KfNqpIkzXvjBsx9gekryc7of69L8qiqumriVUmS5r1xD5E9BjgeWArsAfwh8BTg3Ule06Y0SdJ8Nu4ezP2AA6rq5wBJ3gRcADwJWAm8rU15kqT5atw9mAcDdw6M/wrYu6puZ+DRMZIkTRt3D+YDwBeT/GM//lzgg0l2BL7epDJJ0rw27qNi/jzJZcAT6L4L5viqWtHPfn6r4iRJ89e4ezBU1Uq68y2SJG3UuOdgJEnaJE0DJskhSa5NsjrJyTO0OzDJ+iRHDUz7TpKvJbkqyYoNLStJ2jqNfYhsUyVZRHdT5jOANcAVSS6pqq+PaHcqcPmI1fxOVd3SqkZJUjst92AOAlZX1XVVdSdwPnD4iHYnAhcCNzesRZI0y1oGzFLg+oHxNf20uyVZChwJnDli+QI+kWRlkuM2tJEkxyVZkWTF2rVrJ1C2JGkSWgZMRkyrofHTgZOqav2Ito+vqgOAQ4FXJnnSqI1U1VlVNVVVU0uWLNmigiVJk9PsHAzdHsteA+N7AjcOtZkCzk8CsDtwWJJ1VXVxVd0IUFU3J7mI7pDbZxvWK0maoJZ7MFcA+yRZnmQb4Gi6R/3fraqWV9WyqlpG92yz/15VFyfZMclOAP3TAp4JXN2wVknShDXbg6mqdUlOoLs6bBFwdlWtSnJ8P3/UeZdpDwAu6vdsFgMfqKqPt6pVkjR5qRo+LTJ/TU1N1YoV3jIjSeNKsrKqplqs2zv5JUlNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCaaBkySQ5Jcm2R1kpNnaHdgkvVJjhqavijJlUkubVmnJGnymgVMkkXAGcChwH7AMUn220C7U4HLR6zmVcA1rWqUJLXTcg/mIGB1VV1XVXcC5wOHj2h3InAhcPPgxCR7As8G3tOwRklSIy0DZilw/cD4mn7a3ZIsBY4Ezhyx/OnAa4C7ZtpIkuOSrEiyYu3atVtUsCRpcloGTEZMq6Hx04GTqmr9ry2YPAe4uapWbmwjVXVWVU1V1dSSJUs2u1hJ0mQtbrjuNcBeA+N7AjcOtZkCzk8CsDtwWJJ1wMHA7yY5DNgO2DnJeVX1gob1SpImqGXAXAHsk2Q5cANwNHDsYIOqWj49nOQc4NKquhi4GHhtP/0pwKsNF0maX5oFTFWtS3IC3dVhi4Czq2pVkuP7+aPOu0iSFohUDZ8Wmb+mpqZqxYoVc12GJM0bSVZW1VSLdXsnvySpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktREqmqua5iYJGuBXwC3zHUtjezOwu0bLOz+2bf5ayH3b3dgx6pa0mLlCypgAJKsqKqpua6jhYXcN1jY/bNv89dC7l/rvnmITJLUhAEjSWpiIQbMWXNdQEMLuW+wsPtn3+avhdy/pn1bcOdgJElbh4W4ByNJ2goYMJKkJra6gElySJJrk6xOcvKI+Uny1/38ryY5YGDe2UluTnL10DK7JfnnJN/sf+86NP/BSX6e5NXtejb7fUuyf5IvJFmV5GtJtlso/Uty7yTn9v26Jslr52Hffr9/be5KMjU077X9uq5N8qx2PZvdviV5RpKV/eu2MslTW/at3+asvnb9/Pn8mTLT+3LTPlOqaqv5ARYB3wIeAmwDfAXYb6jNYcDHgACPBb40MO9JwAHA1UPLvA04uR8+GTh1aP6FwIeBVy+UvgGLga8Cj+zH7wcsWkD9OxY4vx/eAfgOsGye9e1hwL7Ap4Gpgen79dvYFljeb7vJazcHfXs0sEc//Ajghlbvybno38D8+fyZsqHXbpM/U7a2PZiDgNVVdV1V3QmcDxw+1OZw4H3V+SKwS5IHAVTVZ4EfjVjv4cC5/fC5wBHTM5IcAVwHrJpgP0aZ7b49E/hqVX2lX/6HVbV+kh0aMtv9K2DHJIuB7YE7gZ9NsD+DmvStqq6pqmtHbO9wuvC8o6q+Dazua2hhVvtWVVdW1Y396CpguyTbTrA/w2b7tZv3nykz9G2TP1O2toBZClw/ML6mn7apbYY9oKpuAuh/3x8gyY7AScCbt6Dmcc1q34DfAirJ5Um+nOQ1m135eGa7fxfQPRboJuB7wNuralRATUKrvm3J9iZltvs26HnAlVV1xwTWtSGz2r8F8pmyIZv8mbJ4MzfUSkZMG76Oepw243ozcFpV/TwZtdqJmu2+LQaeABwI3AZ8KsnKqvrUZq5vY2a7fwcB64E9gF2Bf03yyaq6bjPXN5PZ7tsk1zWJbU28niQPB06l+19xS36mbLzNuDb5M2VrC5g1wF4D43sCN25Gm2E/SPKgqrqp3z28uZ9+MHBUkrcBuwB3JfllVb1zczswg9nu2xrgM1V1C0CSy+iOt7YKmNnu37HAx6vqV8DNST4HTNEdmpi0Vn3bku1Nymz3jSR7AhcBL6yqb23uesY02/1bCJ8pM21vkz5TtrZDZFcA+yRZnmQb4GjgkqE2lwAv7K+OeCzw0+lDKDO4BHhRP/wi4B8BquqJVbWsqpYBpwN/0eiNALPcN+ByYP8kO/TnKZ4MfH0SHdmA2e7f94Cn9uvake4E5jcm0ZERWvVtQy4Bjk6ybZLlwD7Av21u8Rsxq31LsgvwUeC1VfW5Lah7XLPavwXymbIhm/6ZMtMVAHPxQ3fVw7/TXR3x+n7a8cDx/XCAM/r5X+PXr3L4IN0x+V/Rpe3L6p6rHT4FfLP/vduI7Z5Cwys+5qJvwAvoTjReDbxtIb12wH3ortJZ1b/J/2Qe9u3IfvwO4AfA5QPLvL5f17XAoQulb8Ab6M6dXTXwc/+F0r+h7Z7C/PxMmel9uUmfKT4qRpLUxNZ2iEyStEAYMJKkJgwYSVITBowkqQkDRpLUhAEjbYEky4afRruR9i9OskfLmqSthQEjza4X0z3eRlrwDBhpyy1O9900X01yQX+n82OSfCbdd55cnuRBSY6ie5zN+5NclWT7JG9MckWSq5OclVl4gJU0W7zRUtoCSZYB3waeUFWfS3I2cA3d3dCHV9XaJP8NeFZVvTTJp+nu7l7RL79b9U+BTvIPwIeq6p/moi/SpG1tD7uU5qPr657nap0HvI7uy7T+ud8hWUT3SI5Rfqd/7PkOwG50j+EwYLQgGDDSlhs+DHArsKqqHjfTQum+bvZv6Z4PdX2SU4CmX2stzSbPwUhb7sFJpsPkGOCLwJLpaUnu3X//CXThs1M/PB0mtyS5D3DUbBUszQYDRtpy1wAvSvJVusNcf0MXFqcm+QrdE4N/u297DnBmkqvonlb7brqn3F5M9/h1acHwJL8kqQn3YCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ18f8BwpYvV3eFvUQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta epsilon\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAae0lEQVR4nO3df7xldV3v8debM4D8GERyTGCQwSRs7KEXOgEmqYE/wOzO3Kt1gcwf1UV6REhFhtbDMLXSh2WSJKJieKXIS5qToWSW2TW0OSOEjsPoOP6YAyjH/AGK8kM+94+1JneHM3P2mdnf86vX8/HYj7PXWt/vWp/v2Wf2e9aPvXaqCkmSRm2fhS5AkrQ8GTCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRFlCSJyeZXOg6BiXZnOTJu1n+0iRvmb+KtFQZMNpjST6f5NtJvpnky0neluTgha5rd5KsSVJJVoxofQ9K8vUkp86w7HVJrhnFdvZEP85v9a/PLUn+KMnYbP2q6jFV9aHdLP+9qvrFkRarZcmA0d76qao6GDgB+FHgt+fSOZ0l83c4PZiq6jvAXwLPndZuDDgLuHL+qpvR4/rX5zTgbOB/783KRhXM+q9hyfzD1uJWVbcA7wN+OMlDkrw3yVSSr/XPV+9sm+RDSV6V5CPAXcAjk7wgyZYkdybZnuSFA+2fnGQyyYuT3J7ktiTrkzwjyaeTfDXJSwfa75PkoiSfTfLvSd6Z5LB+8Yf7n1/v/2f/+L7Pz/fb/1qS65IcPbC+SvLLST4DfGaG4V8JPCvJgQPznk737+t9uxvbdP22HjUw/WdJXjkw/cwkN/Z7Tf+S5LG7flW+p6puBv6Z7vX5gST/0P9uvpLkqiSHDmzj80me0j+/OMk1Sd6R5A7g+f28d/TLd+4RPi/JF/v1/dbAug5IcmX/e93Sv4aTA8t/s9+7ujPJ1iSnDTMeLQ0GjEYiyVHAM4Ab6P6u3gYcDTwC+Dbwhmldfg44B1gJfAG4HXgmcAjwAuB1SU4YaP9w4EHAkcDLgDcDzwF+BPhx4GVJHtm3PR9YDzwJOAL4GnBpv+yJ/c9Dq+rgqro+yXrgpcD/BFbRvRH/xbR61wMnAWunj72q/gW4re8/OL4/r6r7hhjbUPo+VwAvBL4PeBOwIcn+Q/RdS/d7ugEI8Pt0v5sfAo4CLt5N93XANcChwFW7aHMKcBzdntLLkvxQP/93gDXAI4Gn0r1mO2s6DjgP+NGqWkkXyp+fbSxaQqrKh489etC9GXwT+DpdSPwpcMAM7f4b8LWB6Q8BvzvLuv8aeFH//Ml0ITXWT68ECjhpoP0mYH3/fAtw2sCyw4F7gRV0b3YFrBhY/j7gFwam96Hbszq6ny7g1Fnq/W3g7/rnh/T9jx9ybJMDywp41MD0nwGv7J+/EXjFtHVtBZ60i+0UcAddwH4WeCWwzwzt1gM3THtdn9I/vxj48LT2FwPv6J/v/H2uHlj+r8CZ/fPtwNMHlv3izvECj6IL36cA+y7037OP0T88nqq9tb6q/n5wRn+o6HXA6cBD+tkrk4xV1Xf76R3T+pxB97/dH6R7gz8Q+MRAk38f6Pvt/ueXB5Z/G9h5gcHRwLuT3D+w/LvA9+9iDEcDr0/yh4Ml0e0tfWGmemfwduB3khxJ9z/xbVV1w5BjG9bRwPOS/MrAvP3o9kR25YSq2jY4I8nDgEvo9mhW9jV9bTfrmG3sAF8aeH4X33stjpjW/z+eV9W2JBfQBdZjklwH/FpV3TrE9rQEeIhMLfw63eGSk6rqEL53WCoDbf7jNt79IZ6/Al4LfH9VHQpcO639XOwAzqiqQwceD6ruPNFMtw/fAbxwWvsDqjv09YB6Z1JVX6Q7tPazdIfH3r6HY7uLLoB2evi0Ol81rc4Dq2r64bzZ/H4/nsf2r89zdlMPzDL2WdwGrB6YPuo/rbjqz6vqFLrwLODVe7EtLTIGjFpYSbdH8fX+5PrvzNJ+P2B/YAq4r/8f/9P2YvuXAa/aeaI+yaok6/plU8D9dOcEBtu/JMlj+vYPTvLTe7DdK+nOKTyB752rmOvYbgTOTjKW5HS680g7vRk4N8lJ6RyU5CeTrJxjnSvpD232e1y/Mcf+c/FOut/tQ/ptnbdzQZLjkpzah/B36P5mvruL9WgJMmDUwh8DBwBfAT4KvH93javqTroT8++kO1RzNrBhL7b/+r7/3yW5s6/hpH5bdwGvAj7SX4l1clW9m+5/zlf3V0p9EjhjD7Z7Dd0hwQ9W1W17OLYXAT9Fd17rZ+nO19Cva4LuMuM39OvaBjx/D+p8Od1l5d8A/hZ41x6sY1i/C0wCnwP+nu53dHe/bH/gD+j+Tr4EPIzuYgstE6nyC8ckzY8kv0R3AcCTZm2sJc89GEnNJDk8yRP6zyYdR3d+7t0LXZfmh1eRSWppP7rP6xxDd9jvarrL2fVfgIfIJElNeIhMktTEsjpE9tCHPrTWrFmz0GVI0pKxadOmr1TVqhbrXlYBs2bNGiYmJha6DElaMpJ8YfZWe8ZDZJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASC1VwbZtsH37Qlcizbtl9TkYadG5/np405u65xdcAMcfv6DlSPPJPRippVtu6fZi7r8fbvWbgPVfi3swUkunnQZf+AKsWAGnnLLQ1UjzyoCRWjrsMLjwwoWuQloQHiKTJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCaaBkyS05NsTbItyUUzLH90kuuT3J3kwmnLDk1yTZKbk2xJ8viWtUqSRqvZ3ZSTjAGXAk8FJoGNSTZU1acGmn0VOB9YP8MqXg+8v6qenWQ/4MBWtUqSRq/lHsyJwLaq2l5V9wBXA+sGG1TV7VW1Ebh3cH6SQ4AnAm/t291TVV9vWKskacRaBsyRwI6B6cl+3jAeCUwBb0tyQ5K3JDlopoZJzkkykWRiampq7yqWJI1My4DJDPNqyL4rgBOAN1bV8cC3gAecwwGoqsuraryqxletWrVnlUqSRq5lwEwCRw1MrwaG/VLySWCyqj7WT19DFziSpCWiZcBsBI5Nckx/kv5MYMMwHavqS8COJMf1s04DPrWbLpKkRabZVWRVdV+S84DrgDHgiqranOTcfvllSR4OTACHAPcnuQBYW1V3AL8CXNWH03bgBa1qlSSNXrOAAaiqa4Frp827bOD5l+gOnc3U90ZgvGV9kqR2/CS/JKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSE00DJsnpSbYm2ZbkohmWPzrJ9UnuTnLhDMvHktyQ5L0t65QkjV6zgEkyBlwKnAGsBc5KsnZas68C5wOv3cVqXgRsaVWjJKmdlnswJwLbqmp7Vd0DXA2sG2xQVbdX1Ubg3umdk6wGfhJ4S8MaJUmNtAyYI4EdA9OT/bxh/THwYuD+3TVKck6SiSQTU1NTcy5SktRGy4DJDPNqqI7JM4Hbq2rTbG2r6vKqGq+q8VWrVs21RklSIy0DZhI4amB6NXDrkH2fAPz3JJ+nO7R2apJ3jLY8SVJLLQNmI3BskmOS7AecCWwYpmNVvaSqVlfVmr7fP1TVc9qVKkkatRWtVlxV9yU5D7gOGAOuqKrNSc7tl1+W5OHABHAIcH+SC4C1VXVHq7okSfMjVUOdFlkSxsfHa2JiYqHLkKQlI8mmqhpvsW4/yS9JasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpiaYBk+T0JFuTbEty0QzLH53k+iR3J7lwYP5RSf4xyZYkm5O8qGWdkqTRW9FqxUnGgEuBpwKTwMYkG6rqUwPNvgqcD6yf1v0+4Ner6uNJVgKbknxgWl9J0iLWcg/mRGBbVW2vqnuAq4F1gw2q6vaq2gjcO23+bVX18f75ncAW4MiGtUqSRqxlwBwJ7BiYnmQPQiLJGuB44GOjKUuSNB9aBkxmmFdzWkFyMPBXwAVVdccu2pyTZCLJxNTU1B6UKUlqYaiASfKEJB9I8ukk25N8Lsn2WbpNAkcNTK8Gbh22sCT70oXLVVX1rl21q6rLq2q8qsZXrVo17OolSY0Ne5L/rcCvApuA7w7ZZyNwbJJjgFuAM4Gzh+mYJP02t1TVHw25PUnSIjJswHyjqt43lxVX1X1JzgOuA8aAK6pqc5Jz++WXJXk4MAEcAtyf5AJgLfBY4OeATyS5sV/lS6vq2rnUIElaOKma/bRIkj+gC4l3AXfvnL/zSq/FYnx8vCYmJha6DElaMpJsqqrxFusedg/mpP7nYBEFnDraciRJy8VQAVNVP9G6EEnS8jLsVWQPTvJHOy8HTvKHSR7cujhJ0tI17OdgrgDuBH6mf9wBvK1VUZKkpW/YczA/UFXPGph++cDVXZIkPcCwezDfTnLKzokkTwC+3aYkSdJyMOwezC8BV/bnXUJ3F+TntypKkrT0DXsV2Y3A45Ic0k/PeF8wSZJ22m3AJPm1XcwHwNu4SJJ2ZbY9mJXzUoUkadnZbcBU1cvnqxBJ0vIy2yGyF1fVa5L8CTN8l0tVnd+sMknSkjbbIbIt/U/vIClJmpPZDpH9Tf/zyp3zkuwDHOyVZJKk3Rn2XmR/nuSQJAcBnwK2JvmNtqVJkpayYT/Jv7bfY1kPXAs8gu4LwSRJmtGwAbNvkn3pAuY9VXUvM5z0lyRpp2ED5k3A54GDgA8nOZrujsqSJM1o2FvFXAJcMjDrC0n8EjJJ0i4Ne5L/+5JckuTjSTYleT3gF45JknZp2ENkVwNTwLOAZ/fP/7JVUZKkpW/Y2/UfVlWvGJh+ZZL1DeqRJC0Tw+7B/GOSM5Ps0z9+BvjbloVJkpa2YQPmhcBVwN3942rg15LcmcSrySRJDzBswDyY7hssX1FV+wJrgKdU1cqqOmRXnZKcnmRrkm1JLpph+aOTXJ/k7iQXzqWvJGlxGzZgLgVOBs7qp+8E3rC7DknG+n5nAGuBs5Ksndbsq8D5wGv3oK8kaREbNmBOqqpfBr4DUFVfA/abpc+JwLaq2l5V99AdVls32KCqbq+qjcC9c+0rSVrchg2Ye/u9igJIsgq4f5Y+RwI7BqYn+3nDGLpvknOSTCSZmJqaGnL1kqTWhg2YS4B3Aw9L8irg/wG/N0ufzDBv2PuXDd23qi6vqvGqGl+1atWQq5cktTbsrWKuSrIJOI3uzX99VW2ZpdskcNTA9Grg1iHr2pu+kqRFYNgPWlJVNwM3z2HdG4FjkxwD3AKcCZw9D30lSYvA0AEzV1V1X5LzgOuAMeCKqtqc5Nx++WVJHk73dcyHAPcnuYD+u2dm6tuqVknS6KVq+Xyty/j4eE1MTCx0GZK0ZCTZVFXjLdY97El+SZLmxICRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1ETTgElyepKtSbYluWiG5UlySb/8piQnDCz71SSbk3wyyV8keVDLWiVJo9UsYJKMAZcCZwBrgbOSrJ3W7Azg2P5xDvDGvu+RwPnAeFX9MDAGnNmqVknS6LXcgzkR2FZV26vqHuBqYN20NuuAt1fno8ChSQ7vl60ADkiyAjgQuLVhrZKkEWsZMEcCOwamJ/t5s7apqluA1wJfBG4DvlFVfzfTRpKck2QiycTU1NTIipck7Z2WAZMZ5tUwbZI8hG7v5hjgCOCgJM+ZaSNVdXlVjVfV+KpVq/aqYEnS6LQMmEngqIHp1TzwMNeu2jwF+FxVTVXVvcC7gB9rWKskacRaBsxG4NgkxyTZj+4k/YZpbTYAz+2vJjuZ7lDYbXSHxk5OcmCSAKcBWxrWKkkasRWtVlxV9yU5D7iO7iqwK6pqc5Jz++WXAdcCzwC2AXcBL+iXfSzJNcDHgfuAG4DLW9UqSRq9VE0/LbJ0jY+P18TExEKXIUlLRpJNVTXeYt1+kl+S1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSE00DJsnpSbYm2ZbkohmWJ8kl/fKbkpwwsOzQJNckuTnJliSPb1mrJGm0mgVMkjHgUuAMYC1wVpK105qdARzbP84B3jiw7PXA+6vq0cDjgC2tapUkjV7LPZgTgW1Vtb2q7gGuBtZNa7MOeHt1PgocmuTwJIcATwTeClBV91TV1xvWKkkasZYBcySwY2B6sp83TJtHAlPA25LckOQtSQ5qWKskacRaBkxmmFdDtlkBnAC8saqOB74FPOAcDkCSc5JMJJmYmpram3olSSPUMmAmgaMGplcDtw7ZZhKYrKqP9fOvoQucB6iqy6tqvKrGV61aNZLCJUl7r2XAbASOTXJMkv2AM4EN09psAJ7bX012MvCNqrqtqr4E7EhyXN/uNOBTDWuVJI3YilYrrqr7kpwHXAeMAVdU1eYk5/bLLwOuBZ4BbAPuAl4wsIpfAa7qw2n7tGWSpEUuVdNPiyxd4+PjNTExsdBlSNKSkWRTVY23WLef5JckNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNdHsVjGS4K577+K9n34vYxnjmT/4TPZfsf9ClyTNGwNGaugDn/0A77n5PQCs3G8lT3vU0xa4Imn+eIhMauiAfQ+g+q9BOmDfAxa4Gml+uQcjNXTaMaexcr+VjO0zxvgRTe4nKC1aBozU0Ng+Yzz+qMcvdBnSgvAQmSSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmUlULXcPIJJkCvgV8ZaFraeShLN+xwfIen2Nbupbz+B4KHFRVq1qsfFkFDECSiapalh+ZXs5jg+U9Pse2dC3n8bUem4fIJElNGDCSpCaWY8BcvtAFNLScxwbLe3yObelazuNrOrZldw5GkrQ4LMc9GEnSImDASJKaWHQBk+T0JFuTbEty0QzLk+SSfvlNSU4YWHZFktuTfHJan8OSfCDJZ/qfD5m2/BFJvpnkwnYjm/+xJXlskuuTbE7yiSQPWi7jS7Jvkiv7cW1J8pIlOLaf7l+b+5OMT1v2kn5dW5M8vd3I5ndsSZ6aZFP/um1KcmrLsfXbnNfXrl++lN9Tdvd3Obf3lKpaNA9gDPgs8EhgP+DfgLXT2jwDeB8Q4GTgYwPLngicAHxyWp/XABf1zy8CXj1t+V8B/xe4cLmMje7L5G4CHtdPfx8wtozGdzZwdf/8QODzwJolNrYfAo4DPgSMD8xf229jf+CYfttNXrsFGNvxwBH98x8Gbmn1N7kQ4xtYvpTfU3b12s35PWWx7cGcCGyrqu1VdQ9wNbBuWpt1wNur81Hg0CSHA1TVh4GvzrDedcCV/fMrgfU7FyRZD2wHNo9wHDOZ77E9Dbipqv6t7//vVfXdUQ5omvkeXwEHJVkBHADcA9wxwvEMajK2qtpSVVtn2N46uvC8u6o+B2zra2hhXsdWVTdU1a395GbgQUn2H+F4ppvv127Jv6fsZmxzfk9ZbAFzJLBjYHqynzfXNtN9f1XdBtD/fBhAkoOA3wRevhc1D2texwb8IFBJrkvy8SQv3uPKhzPf47uG7rZAtwFfBF5bVTMF1Ci0GtvebG9U5ntsg54F3FBVd49gXbsyr+NbJu8puzLn95QVe7ihVjLDvOnXUQ/TZlgvB15XVd9MZlrtSM332FYApwA/CtwFfDDJpqr64B6ubzbzPb4Tge8CRwAPAf45yd9X1fY9XN/uzPfYRrmuUWxr5PUkeQzwarr/Fbfke8rsbYY15/eUxRYwk8BRA9OrgVv3oM10X05yeFXd1u8e3t7PPwl4dpLXAIcC9yf5TlW9YU8HsBvzPbZJ4J+q6isASa6lO97aKmDme3xnA++vqnuB25N8BBinOzQxaq3GtjfbG5X5HhtJVgPvBp5bVZ/d0/UMab7HtxzeU3a3vTm9pyy2Q2QbgWOTHJNkP+BMYMO0NhuA5/ZXR5wMfGPnIZTd2AA8r3/+POA9AFX141W1pqrWAH8M/F6jPwSY57EB1wGPTXJgf57iScCnRjGQXZjv8X0ROLVf10F0JzBvHsVAZtBqbLuyATgzyf5JjgGOBf51T4ufxbyOLcmhwN8CL6mqj+xF3cOa1/Etk/eUXZn7e8rurgBYiAfdVQ+fprs64rf6eecC5/bPA1zaL/8E//kqh7+gOyZ/L13a/kJ972qHDwKf6X8eNsN2L6bhFR8LMTbgOXQnGj8JvGY5vXbAwXRX6Wzu/8h/YwmO7X/003cDXwauG+jzW/26tgJnLJexAb9Nd+7sxoHHw5bL+KZt92KW5nvK7v4u5/Se4q1iJElNLLZDZJKkZcKAkSQ1YcBIkpowYCRJTRgwkqQmDBhpLyRZM/1utLO0f36SI1rWJC0WBow0v55Pd3sbadkzYKS9tyLdd9PclOSa/pPOP5Lkn9J958l1SQ5P8my629lcleTGJAckeVmSjUk+meTyzMMNrKT54gctpb2QZA3wOeCUqvpIkiuALXSfhl5XVVNJ/hfw9Kr6+SQfovt090Tf/7Dq7wKd5P8A76yqv1mIsUijtthudiktRTvqe/fVegfwUrov0/pAv0MyRndLjpn8RH/b8wOBw+huw2HAaFkwYKS9N/0wwJ3A5qp6/O46pfu62T+luz/UjiQXA02/1lqaT56DkfbeI5LsDJOzgI8Cq3bOS7Jv//0n0IXPyv75zjD5SpKDgWfPV8HSfDBgpL23BXhekpvoDnP9CV1YvDrJv9HdMfjH+rZ/BlyW5Ea6u9W+me4ut39Nd/t1adnwJL8kqQn3YCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ18f8B7TO3l8JU7RkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta theta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgFUlEQVR4nO3df5xXZZ338de7IVQIV4zREFAQSKMeivQNzVhr/VFgbQNZD9H1hsJupTv6sXvvD/rxKMrazNvWbTdXbjSMNtObKDY2MzJ6lPtw+8GgRCCSSCqjhCP5iyT54ef+41wTh+ELDMOca5jh/Xw85vE957quc851MeP37bm+53uOIgIzM7OcXtbdHTAzsyOPw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4eP2WFK0lsktXR3P8okrZH0lv3Uf1zSLfl6ZD2Vw8cqIekRSdskbZW0WdKtkl7R3f3aH0nDJYWkPl20v6MlPSPp/Dp1N0ha1BXH6Yw0zj+k38/jkv5JUsOBtouI10bET/ZT/48R8f4u7az1Sg4fq9JfRsQrgHHAG4BPHszGKvSYv9H2oRURfwT+HzCtXbsG4DJgQb7e1XVm+v1cAFwO/M9D2VlXhbYdGXrMf9jWc0XE48BdwOskDZT0PUmtkp5Oy0Pb2kr6iaTPS7oXeAE4VdL7JK2V9LykDZKuLrV/i6QWSX8v6UlJmyRNlnSxpN9I+r2kj5fav0zSbEkPS9oiaaGk41P1Pen1mXRG8Ma0zYx0/KclLZV0Sml/IemDkh4CHqoz/AXAJZL6lcreRvHf3l37G1t76VijSutfk/S50vo7JK1MZ1v/LemMff9WdouIB4H/ovj9jJT04/Rv85Sk2yQdVzrGI5IuTMtzJC2S9A1JzwHvTWXfSPVtZ5LTJT2W9veJ0r6OkbQg/buuTb/DllL9P6SzsuclrZN0QUfGYz2Dw8cqJ2kYcDFwP8Xf3K3AKcDJwDbgK+02+R/AVcAA4FHgSeAdwLHA+4AbJI0rtX8VcDQwBPgUcDNwBfB64M+BT0k6NbX9MDAZeDNwEvA0cGOqOy+9HhcRr4iIn0maDHwceBfQSPEmfXu7/k4GzgbGtB97RPw3sCltXx7fNyNiZwfG1iFpm/nA1cArgf8LLJF0VAe2HUPx73Q/IOALFP82rwGGAXP2s3kTsAg4DrhtH20mAKdRnGF9StJrUvmngeHAqcBFFL+ztj6dBswC3hARAygC+5EDjcV6kIjwj3+6/IfijWIr8AxFgPwbcEyddmOBp0vrPwE+e4B9/wfwkbT8FooAa0jrA4AAzi61XwFMTstrgQtKdYOBHUAfijfCAPqU6u8Criytv4zijOyUtB7A+Qfo7yeBH6blY9P2Z3VwbC2lugBGlda/BnwuLd8EXNNuX+uAN+/jOAE8RxG+DwOfA15Wp91k4P52v9cL0/Ic4J527ecA30jLbf+eQ0v1vwSmpuUNwNtKde9vGy8wiiKYLwRe3t1/z/7p+h/P0VqVJkfEj8oFafrpBmAiMDAVD5DUEBG70vrGdttMovi/5FdTvPn3A35darKltO229Lq5VL8NaLvY4RRgsaSXSvW7gBP3MYZTgC9L+lK5SxRnWY/W628dXwc+LWkIxf/Br4+I+zs4to46BZgu6UOlsr4UZzD7Mi4i1pcLJJ0A/AvFmdCA1Ken97OPA40d4Hel5RfY/bs4qd32f1qOiPWSPkoRZq+VtBT4m4h4ogPHsx7A026W2/+mmII5OyKOZfdUl0pt/nSr9TRt9G3geuDEiDgO+H679gdjIzApIo4r/RwdxedS9W7xvhG4ul37Y6KYTturv/VExGMU03V/RTHl9vVOju0FinBq86p2/fx8u372i4j2U4QH8oU0njPS7+eK/fQHDjD2A9gEDC2tD9tjxxHfjIgJFMEawBcP4Vh2mHH4WG4DKM5Enkkf9H/6AO37AkcBrcDOdKbw1kM4/lzg820XDUhqlNSU6lqBlyg+gyi3/5ik16b2fybpPZ047gKKzzDexO7PRg52bCuByyU1SJpI8blVm5uBmZLOVqG/pLdLGnCQ/RxAmi5NZ2p/d5DbH4yFFP+2A9OxZrVVSDpN0vkpoP9I8Tezax/7sR7I4WO5/TNwDPAU8HPgB/trHBHPU1wksJBi+udyYMkhHP/LafsfSno+9eHsdKwXgM8D96Yrxs6JiMUU/8d9R7qiazUwqRPHXUQxzbgsIjZ1cmwfAf6S4nO0v6L4fIi0r2aKS6W/kva1HnhvJ/r5GYpL458F7gS+04l9dNRngRbgt8CPKP6NXkx1RwHXUvyd/A44geLCD+slFOGHyZlZ95P0AYqLEd58wMbW4/nMx8y6haTBkt6Uvnt1GsXngYu7u1+Wh692M7Pu0pfi+0gjKKYS76C4JN+OAJ52MzOz7DztZmZm2R0R026DBg2K4cOHd3c3zMx6lBUrVjwVEY1V7PuICJ/hw4fT3Nzc3d0wM+tRJD164Fad42k3MzPLzuFjZmbZOXzMzCy7SsNH0sT0EKj1kmbXqW+StCo9AKtZ0oRS3UckrVbxzPiPlsqPl3S3pIfS68D2+zUzs8NbZeGj4lHBN1LcB2sMcFl6aFXZMopH+Y4FZgC3pG1fR3GfqvHAmcA7JI1O28ymuD/W6LT9XqFmZmaHtyrPfMZTPLdkQ0Rsp/j2clO5QURsjd3fcu3P7tuzvwb4eUS8EMXTHn8KTEl1TRR3CCa9Tq5uCGZmVoUqw2cIez4oqiWV7UHSFEkPUtxBd0YqXg2cJ+mV6eFjF7P7WR8nlu4KvInibrd7kXRVmsprbm1t7ZIBmZlZ16gyfOo9gGqve/lExOKIOJ3iDOaaVLaW4jb2d1Pccv9XwM6DOXhEzIuIWkTUGhsr+Y6UmZl1UpXh08KeTyYcCuzzEbgRcQ8wUtKgtP7ViBgXEecBvwceSk03SxoMxV1xKZ7zbmZmPUiV4bMcGC1phKS+wFTaPShL0ihJSsvjKO5yuyWtn5BeTwbeBbQ9DngJMD0tTwe+W+EYzMysApXdXicidkqaBSwFGoD5EbFG0sxUPxe4BJgmaQfFY3IvLV2A8G1JrwR2AB+MiKdT+bXAQklXAo8BnXmksZmZdaMj4pEKtVotfG83M7ODI2lFRNSq2LfvcGBmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtlVGj6SJkpaJ2m9pNl16pskrZK0UlKzpAmlur+WtEbSakm3Szo6lc+R9HjaZqWki6scg5mZdb3KwkdSA3AjMAkYA1wmaUy7ZsuAMyNiLDADuCVtOwT4MFCLiNcBDcDU0nY3RMTY9PP9qsZgZmbVqPLMZzywPiI2RMR24A6gqdwgIrZGRKTV/kCUqvsAx0jqA/QDnqiwr2ZmllGV4TME2Fhab0lle5A0RdKDwJ0UZz9ExOPA9cBjwCbg2Yj4YWmzWWm6br6kgfUOLumqNJXX3Nra2jUjMjOzLlFl+KhOWexVELE4Ik4HJgPXAKRAaQJGACcB/SVdkTa5CRgJjKUIpi/VO3hEzIuIWkTUGhsbD20kZmbWpaoMnxZgWGl9KPuZOouIe4CRkgYBFwK/jYjWiNgBfAc4N7XbHBG7IuIl4GaK6T0zM+tBqgyf5cBoSSMk9aW4YGBJuYGkUZKUlscBfYEtFNNt50jql+ovANamdoNLu5gCrK5wDGZmVoE+Ve04InZKmgUspbhabX5ErJE0M9XPBS4BpknaAWwDLk0XIPxC0iLgPmAncD8wL+36OkljKabwHgGurmoMZmZWDe2+2Kz3qtVq0dzc3N3dMDPrUSStiIhaFfv2HQ7MzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWVXafhImihpnaT1kmbXqW+StErSSknNkiaU6v5a0hpJqyXdLunoVH68pLslPZReB1Y5BjMz63qVhY+kBuBGYBIwBrhM0ph2zZYBZ0bEWGAGcEvadgjwYaAWEa8DGoCpaZvZwLKIGJ223yvUzMzs8Fblmc94YH1EbIiI7cAdQFO5QURsjYhIq/2BKFX3AY6R1AfoBzyRypuABWl5ATC5mu6bmVlVqgyfIcDG0npLKtuDpCmSHgTupDj7ISIeB64HHgM2Ac9GxA/TJidGxKbUbhNwQr2DS7oqTeU1t7a2dtGQzMysK1QZPqpTFnsVRCyOiNMpzmCuAUif4zQBI4CTgP6SrjiYg0fEvIioRUStsbHxYPtuZmYVqjJ8WoBhpfWh7J4620tE3AOMlDQIuBD4bUS0RsQO4DvAuanpZkmDAdLrk1V03szMqlNl+CwHRksaIakvxQUDS8oNJI2SpLQ8DugLbKGYbjtHUr9UfwGwNm22BJielqcD361wDGZmVoE+Ve04InZKmgUspbhabX5ErJE0M9XPBS4BpknaAWwDLk0XIPxC0iLgPmAncD8wL+36WmChpCspQuo9VY3BzMyqod0Xm/VetVotmpubu7sbZmY9iqQVEVGrYt++w4GZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wqDR9JEyWtk7Re0uw69U2SVklaKalZ0oRUfloqa/t5TtJHU90cSY+X6i6ucgxmZtb1+lS1Y0kNwI3ARUALsFzSkoh4oNRsGbAkIkLSGcBC4PSIWAeMLe3ncWBxabsbIuL6qvpuZmbVqvLMZzywPiI2RMR24A6gqdwgIrZGRKTV/kCwtwuAhyPi0Qr7amZmGVUZPkOAjaX1llS2B0lTJD0I3AnMqLOfqcDt7cpmpem6+ZIG1ju4pKvSVF5za2tr50ZgZmaVqDJ8VKdsrzObiFgcEacDk4Fr9tiB1Bd4J/CtUvFNwEiKablNwJfqHTwi5kVELSJqjY2Nnem/mZlVpMrwaQGGldaHAk/sq3FE3AOMlDSoVDwJuC8iNpfabY6IXRHxEnAzxfSemZn1IFWGz3JgtKQR6QxmKrCk3EDSKElKy+OAvsCWUpPLaDflJmlwaXUKsLqCvpuZWYUqu9otInZKmgUsBRqA+RGxRtLMVD8XuASYJmkHsA24tO0CBEn9KK6Uu7rdrq+TNJZiCu+ROvVmZnaY0+6LzXqvWq0Wzc3N3d0NM7MeRdKKiKhVsW/f4cDMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsuw5dai3p7cBrgaPbyiLis1V1yszMercDnvlImgtcCnyI4pY57wFOqbhfZmbWi3Vk2u3ciJgGPB0RnwHeyJ63zTEzMzsoHQmfben1BUknATuAEdV1yczMeruOfObzPUnHAf8HuI/itja3VNkpMzPr3ToSPtdFxIvAtyV9j+Kigz9W2y0zM+vNOjLt9rO2hYh4MSKeLZeZmZkdrH2e+Uh6FcWTR4+RdBa7Hw53LNAvQ9/MzKyX2t+029uA91I8BO6fSuXPAR+vsE9mR4SHV/6YRx++n7POfRcDB/saHjuy7DN8ImIBsEDSJRHx7Yx9Muv1trQ8xLW3fYBtL23n1avv5FOf/nF3d8ksq4585nOvpK9KugtA0hhJV1bcL7Nebcf2beyIXRz9sr5s3b61u7tjll1HwudWiqeRnpTWfwN8tKoOmR0JXnXqGcy8cDbnDjuXD13xr93dHbPsOhI+gyJiIfASFI/HBnZ1ZOeSJkpaJ2m9pNl16pskrZK0UlKzpAmp/LRU1vbznKSPprrjJd0t6aH0OrCjgzU7nJwz8f3M+PCtDHvN2d3dFbPsOhI+f5D0SoovlyLpHODZA20kqQG4EZgEjAEukzSmXbNlwJkRMRaYQfryakSsi4ixqfz1wAvA4rTNbGBZRIxO2+8VamZmdnjrSPj8DbAEGCnpXuDrFDcZPZDxwPqI2BAR24E7gKZyg4jYGhGRVvuTAq6dC4CHI+LRtN4ELEjLC4DJHeiLmZkdRg54h4OIuE/Sm4HTKL7rsy4idnRg30OAjaX1FmCv+QVJU4AvACcAb6+zn6nA7aX1EyNiU+rbJkkn1Du4pKuAqwBOPvnkDnTXzMxy6ejD5MYDZwLjKKbPpnVgG9Up2+vMJiIWR8TpFGcw1+yxA6kv8E7gWx3sZ3m/8yKiFhG1xsbGg93czMwqdMAzH0n/DowEVrL7QoOgmH7bnxb2fPTCUOCJfTWOiHskjZQ0KCKeSsWTgPsiYnOp6WZJg9NZz2DgyQONwczMDi8dubFoDRhT+mymo5YDoyWNAB6nmD67vNxA0iiKz3NC0jigL7Cl1OQy9pxyg+Lzp+nAten1uwfZLzMz62YdCZ/VwKuATQez44jYKWkWxXeEGoD5EbFG0sxUPxe4BJgmaQfFc4MubQs5Sf2Ai4Cr2+36WmBh+qLrYxRPVjUzsx5E+zqhkfSfFNNrA4CxwC+BF9vqI+KdGfrXJWq1WjQ3N3d3N8zMehRJKyKiVsW+93fmcz3FRQNfZM/LmdvKzMzMOmV/Nxb9KYCkl7ctt5F0TNUdMzOz3mt/z/P5APC/gFMlrSpVDQDurbpjZmbWe+1v2u2bwF0UXwAt38Lm+Yj4faW9MjOzXm1/027PUtzD7bJ83TEzsyNBR+9wYGZm1mUcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLrtLwkTRR0jpJ6yXNrlPfJGmVpJWSmiVNKNUdJ2mRpAclrZX0xlQ+R9LjaZuVki6ucgxmZtb19vc8n0MiqQG4EbgIaAGWS1oSEQ+Umi0DlkRESDoDWAicnuq+DPwgIt4tqS/Qr7TdDRFxfVV9NzOzalV55jMeWB8RGyJiO3AH0FRuEBFbIyLSan8gACQdC5wHfDW12x4Rz1TYVzMzy6jK8BkCbCytt6SyPUiaIulB4E5gRio+FWgFbpV0v6RbJPUvbTYrTdfNlzSw3sElXZWm8ppbW1u7ZEBmZtY1qgwf1SmLvQoiFkfE6cBk4JpU3AcYB9wUEWcBf2D3o7xvAkYCY4FNwJfqHTwi5kVELSJqjY2NhzAMMzPralWGTwswrLQ+FHhiX40j4h5gpKRBaduWiPhFql5EEUZExOaI2BURLwE3U0zvmZlZD1Jl+CwHRksakS4YmAosKTeQNEqS0vI4oC+wJSJ+B2yUdFpqegHwQGo3uLSLKcDqCsdgZmYVqOxqt4jYKWkWsBRoAOZHxBpJM1P9XOASYJqkHcA24NLSBQgfAm5LwbUBeF8qv07SWIopvEeAq6sag5mZVUO73+t7r1qtFs3Nzd3dDTOzHkXSioioVbFv3+HAzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2lYaPpImS1klaL2l2nfomSaskrZTULGlCqe44SYskPShpraQ3pvLjJd0t6aH0OrDKMZiZWderLHwkNQA3ApOAMcBlksa0a7YMODMixgIzgFtKdV8GfhARpwNnAmtT+WxgWUSMTtvvFWpmZnZ4q/LMZzywPiI2RMR24A6gqdwgIrZGRKTV/kAASDoWOA/4amq3PSKeSe2agAVpeQEwucIxmJlZBaoMnyHAxtJ6Syrbg6Qpkh4E7qQ4+wE4FWgFbpV0v6RbJPVPdSdGxCaA9HpCvYNLuipN5TW3trZ2zYjMzKxLVBk+qlMWexVELE5Ta5OBa1JxH2AccFNEnAX8gYOcXouIeRFRi4haY2PjQXXczMyqVWX4tADDSutDgSf21Tgi7gFGShqUtm2JiF+k6kUUYQSwWdJggPT6ZFd33MzMqlVl+CwHRksaIakvMBVYUm4gaZQkpeVxQF9gS0T8Dtgo6bTU9ALggbS8BJielqcD361wDGZmVoE+Ve04InZKmgUsBRqA+RGxRtLMVD8XuASYJmkHsA24tHQBwoeA21JwbQDel8qvBRZKuhJ4DHhPVWMwM7NqaPd7fe9Vq9Wiubm5u7thZtajSFoREbUq9u07HJiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXaVho+kiZLWSVovaXad+iZJqyStlNQsaUKp7hFJv26rK5XPkfR4Kl8p6eIqx2BmZl2vT1U7ltQA3AhcBLQAyyUtiYgHSs2WAUsiIiSdASwETi/V/0VEPFVn9zdExPVV9d3MzKpV5ZnPeGB9RGyIiO3AHUBTuUFEbI2ISKv9gcDMzHq9KsNnCLCxtN6SyvYgaYqkB4E7gRmlqgB+KGmFpKvabTYrTdfNlzSw3sElXZWm8ppbW1sPbSRmZtalqgwf1Snb68wmIhZHxOnAZOCaUtWbImIcMAn4oKTzUvlNwEhgLLAJ+FK9g0fEvIioRUStsbGx04MwM7OuV2X4tADDSutDgSf21Tgi7gFGShqU1p9Ir08Ciymm8YiIzRGxKyJeAm5uKzczs56jyvBZDoyWNEJSX2AqsKTcQNIoSUrL44C+wBZJ/SUNSOX9gbcCq9P64NIuprSVm5lZz1HZ1W4RsVPSLGAp0ADMj4g1kmam+rnAJcA0STuAbcCl6cq3E4HFKZf6AN+MiB+kXV8naSzFFN4jwNVVjcHMzKqh3Reb9V61Wi2am5sP3NDMzP5E0oqIqFWxb9/hwMzMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdkfEY7QltQJ/AJ7q7r5UaBC9d3weW8/Vm8d3JIztlIhorOIAR0T4AEhqrupZ5IeD3jw+j63n6s3j89gOjafdzMwsO4ePmZlldySFz7zu7kDFevP4PLaeqzePz2M7BEfMZz5mZnb4OJLOfMzM7DDh8DEzs+x6TPhImihpnaT1kmbXqZekf0n1qySNK9XNl/SkpNXttjle0t2SHkqvA9vVnyxpq6S/rW5kfzpW1vFJOkPSzyStkfRrSUf3hrFJermkBWlMayV9rKpxVTi296Tfy0uSau3qPpb2tU7S26ob2Z+Ol218ki6StCL97lZIOr+3jK1Un+U9pRv+Lg/+/SQiDvsfoAF4GDgV6Av8ChjTrs3FwF2AgHOAX5TqzgPGAavbbXMdMDstzwa+2K7+28C3gL/tTeMD+gCrgDPT+iuBhl4ytsuBO9JyP+ARYHgPG9trgNOAnwC1UvmYdIyjgBHp2JX83rppfGcBJ6Xl1wGP95axleorf0/pht9bp95PesqZz3hgfURsiIjtwB1AU7s2TcDXo/Bz4DhJgwEi4h7g93X22wQsSMsLgMltFZImAxuANV04jn3JPb63Aqsi4ldp+y0RsasrB1SSe2wB9JfUBzgG2A4814XjKatkbBGxNiLW1TleE0WwvhgRvwXWpz5UJev4IuL+iHgira4BjpZ0VBeOpyz37y7ne0rusXXq/aSnhM8QYGNpvSWVHWyb9k6MiE0A6fUEAEn9gX8APnMIfT4YWccHvBoISUsl3Sfp7zvd8wPLPbZFFLdS2gQ8BlwfEfXCqytUNbZDOV5Xyj2+skuA+yPixS7YVz1Zx5b5PSX3761T7yd9Onmw3FSnrP014h1p01GfAW6IiK1Svd12udzj6wNMAN4AvAAsk7QiIpZ1cn/7k3ts44FdwEnAQOC/JP0oIjZ0cn/7k3tsXbmvrjpel/dJ0muBL1L8H3VVevN7So94P+kp4dMCDCutDwWe6ESb9jZLGhwRm9Ip55Op/Gzg3ZKuA44DXpL0x4j4SmcHcAC5x9cC/DQingKQ9H2KOd4qwif32C4HfhARO4AnJd0L1CimO7paVWM7lON1pdzjQ9JQYDEwLSIe7ux+OiD32HK+p3TH3+VBv5/0lGm35cBoSSMk9QWmAkvatVkCTEtXcZwDPNs2LbMfS4DpaXk68F2AiPjziBgeEcOBfwb+scLggczjA5YCZ0jqlz4beTPwQFcMpI7cY3sMOD/tqz/Fh6kPdsVA6qhqbPuyBJgq6ShJI4DRwC872/kOyDo+SccBdwIfi4h7D6HfHZF1bJnfU3L/XXbu/eRAVyQcLj8UV2f8huIqjk+kspnAzLQs4MZU/2v2vBrjdorPAHZQpPSVsfuqjGXAQ+n1+DrHnUPFV7t1x/iAKyg++FwNXNdbxga8guJqojXpP4C/64Fjm5LWXwQ2A0tL23wi7WsdMKmH/l3WHR/wSYrP61aWfk7oDWNrd9w5VH8Fbe6/y4N+P/HtdczMLLueMu1mZma9iMPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMwqIGl4+7sCH6D9eyWdVGWfzA4nDh+zw8N7KW4JZHZEcPiYVaePimcLrZK0KH0D/PWSfqrieTVLJQ2W9G6KWwDdJmmlpGMkfUrSckmrJc1TppsMmuXiL5maVUDScOC3wISIuFfSfGAtxbfEmyKiVdKlwNsiYoakn1B86705bX98pLtxS/p3YGFE/Gd3jMWsCj3lxqJmPdHG2H2Psm8AH6d4SNrd6USmgeI2JvX8Rbo1fT/geIpblzh8rNdw+JhVp/20wvPAmoh44/42UvEI4n+juN/WRklzgMoec27WHfyZj1l1TpbUFjSXAT8HGtvKJL08PbsGimAakJbbguYpSa8A3p2rw2a5OHzMqrMWmC5pFcXU2b9SBMkXJf2K4q7N56a2XwPmSlpJcdfgmynuNvwfFLfIN+tVfMGBmZll5zMfMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsvv/WVEhHmw+jPAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta zeta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbtklEQVR4nO3dfbhnZV3v8ffHGR4FAmIQhIlBxYfRC8W2QGZpqAkdazil10HLMC3EI8F0pEL08qG01MPRHqRDeCTxSHFIsKZCiUh6MMTZAwiOIzKSwsjoDCIBicDA9/yx1sivXxtm72Gve7M379d17Wuvdd/rvtd979+e32fWw16/VBWSJLX0uLkegCTpscfwkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGj/QoleRFSTbM9ThGJVmb5EUPU396kv/TbkSarwwfDSLJ15LcneSuJN9K8idJdpvrcT2cJMuSVJLFs9TfzkluT3LUFHUfTPKJ2djP9ujn+e/96/ONJB9Ismhb7arqmVV1+cPU/05V/fKsDlYLkuGjIf10Ve0GPBd4HvC2mTROZ978jo6HVlV9D/h/wC+ObbcIeBVwbrvRTenZ/evzYuDVwK88ks5mK7T12DBv/mFr/qqqbwCfAp6VZK8kf51kc5Lv9MsHbt02yeVJ3pPks8B3gScl+aUk65LcmeTGJG8Y2f5FSTYk+Y0km5JsTHJskp9K8pUktyU5fWT7xyU5LclXk3w7yQVJ9u6r/7H/fnt/RPAjfZvX9fv/TpJLkhw00l8leVOSG4Abppj+ucDPJdl1pOxldP/2PvVwcxvX7+spI+sfTfLukfWXJ7mmP9r6lySHPvSr8qCq+jLwT3Svz5OT/H3/s7k1yXlJ9hzZx9eSvKRffmeSTyT5eJI7gNf2ZR/v67ceSR6f5Ka+v7eO9LVLknP7n+u6/jXcMFL/m/1R2Z1Jrk/y4unMR/OD4aPBJVkK/BRwNd3v3J8ABwE/BNwNfGisyWuAE4Ddga8Dm4CXA3sAvwR8MMlzR7bfD9gZOAB4O/Bh4BeAHwZ+DHh7kif1254MHAu8EHgi8B3gzL7ux/vve1bVblV1RZJjgdOBnwWW0L1J/9nYeI8FjgCWj8+9qv4F2Ni3H53fn1bVlmnMbVr6NucAbwB+EPhjYFWSnabRdjndz+lqIMDv0v1sngEsBd75MM1XAJ8A9gTOe4htXgA8je4I6+1JntGXvwNYBjwJeCnda7Z1TE8DTgKeV1W70wX217Y1F80jVeWXX7P+RfdGcRdwO12A/BGwyxTbPQf4zsj65cBvbaPvvwBO6ZdfRBdgi/r13YECjhjZfg1wbL+8DnjxSN3+wH3AYro3wgIWj9R/Cnj9yPrj6I7IDurXCzhqG+N9G/C3/fIeffvDpjm3DSN1BTxlZP2jwLv75f8N/PZYX9cDL3yI/RRwB134fhV4N/C4KbY7Frh67HV9Sb/8TuAfx7Z/J/Dxfnnrz/PAkfrPA8f1yzcCLxup++Wt8wWeQhfMLwF2mOvfZ79m/8tztBrSsVX1d6MF/emnDwJHA3v1xbsnWVRV9/frN4+1OYbuf8lPpXvz3xW4bmSTb4+0vbv//q2R+ruBrTc7HAR8MskDI/X3A094iDkcBPx+kv81OiS6o6yvTzXeKXwMeEeSA+j+B7++qq6e5tym6yDg+CS/OlK2I90RzEN5blWtHy1Isi/wB3RHQrv3Y/rOw/SxrbkDfHNk+bs8+Fo8caz995eran2SlXRh9swklwD/o6pumcb+NA942k2tvZnuFMwRVbUHD57qysg233/Uen/a6ELgDOAJVbUncPHY9jNxM3BMVe058rVzddelpnrE+83AG8a236W602n/abxTqaqb6E7X/TzdKbePbefcvksXTlvtNzbO94yNc9eqGj9FuC2/28/n0P71+YWHGQ9sY+7bsBE4cGR96X/ouOpPq+oFdMFawPsewb70KGP4qLXd6Y5Ebu8v9L9jG9vvCOwEbAa29EcKP/kI9n8W8J6tNw0kWZJkRV+3GXiA7hrE6PZvSfLMfvsfSPLK7djvuXTXMH6UB6+NzHRu1wCvTrIoydF01622+jBwYpIj0nl8kv+SZPcZjnN3+tOl/ZHar8+w/UxcQPez3avf10lbK5I8LclRfUB/j+535v6H6EfzkOGj1n4P2AW4Ffgc8OmH27iq7qS7SeACutM/rwZWPYL9/37f/m+T3NmP4Yh+X98F3gN8tr9j7Miq+iTd/7jP7+/o+iJwzHbs9xN0pxkvq6qN2zm3U4CfpruO9vN014fo+5qku1X6Q31f64HXbsc430V3a/y/AX8DXLQdfUzXbwEbgH8F/o7uZ3RPX7cT8F6635NvAvvS3fihBSJVfpicpLmX5I10NyO8cJsba97zyEfSnEiyf5If7f/26ml01wM/OdfjUhve7SZpruxI9/dIB9OdSjyf7pZ8PQZ42k2S1Jyn3SRJzT0mTrvts88+tWzZsrkehiTNK2vWrLm1qpYM0fdjInyWLVvG5OTkXA9DkuaVJF/f9lbbx9NukqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmBg2fJEcnuT7J+iSnTVH/9CRXJLknyakj5Tsn+XySLyRZm+RdI3V7J7k0yQ39972GnIMkafYNFj5JFgFnAscAy4FXJVk+ttltwMnAGWPl9wBHVdWzgecARyc5sq87Dbisqg4BLuvXJUnzyJBHPocD66vqxqq6FzgfWDG6QVVtqqrVwH1j5VVVd/WrO/Rf1a+vAM7tl88Fjh1m+JKkoQwZPgcAN4+sb+jLpiXJoiTXAJuAS6vqyr7qCVW1EaD/vu9DtD8hyWSSyc2bN2/P+CVJAxkyfDJFWU1RNqWqur+qngMcCBye5Fkz2XlVnV1VE1U1sWTJkpk0lSQNbMjw2QAsHVk/ELhlpp1U1e3A5cDRfdG3kuwP0H/f9IhGKUlqbsjwWQ0ckuTgJDsCxwGrptMwyZIke/bLuwAvAb7cV68Cju+Xjwf+cjYHLUka3uKhOq6qLUlOAi4BFgHnVNXaJCf29Wcl2Q+YBPYAHkiyku7OuP2Bc/s75h4HXFBVf913/V7ggiSvB24CXjnUHCRJw0jVtC/DzFsTExM1OTk518OQpHklyZqqmhiib59wIElqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4OGT5Kjk1yfZH2S06aof3qSK5Lck+TUkfKlST6TZF2StUlOGal7TpLPJbkmyWSSw4ecgyRp9g0WPkkWAWcCxwDLgVclWT622W3AycAZY+VbgDdX1TOAI4E3jbR9P/CuqnoO8PZ+XZI0jwx55HM4sL6qbqyqe4HzgRWjG1TVpqpaDdw3Vr6xqq7ql+8E1gEHbK0G9uiXfwC4ZbgpSJKGsHjAvg8Abh5Z3wAcMdNOkiwDDgOu7ItWApckOYMuPJ//iEYpSWpuyCOfTFFWM+og2Q24EFhZVXf0xW8Efq2qlgK/BnzkIdqe0F8Tmty8efNMditJGtiQ4bMBWDqyfiAzOEWWZAe64Dmvqi4aqToe2Lr+53Sn9/6Tqjq7qiaqamLJkiUzGrgkaVhDhs9q4JAkByfZETgOWDWdhklCd0Szrqo+MFZ9C/DCfvko4IZZGq8kqZHBrvlU1ZYkJwGXAIuAc6pqbZIT+/qzkuwHTNLdQPBAkpV0d8YdCrwGuC7JNX2Xp1fVxcCvAL+fZDHwPeCEoeYgSRpGqmZ0GWZempiYqMnJybkehiTNK0nWVNXEEH37hANJUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzQ0aPkmOTnJ9kvVJTpui/ulJrkhyT5JTR8qXJvlMknVJ1iY5Zazdr/b9rk3y/iHnIEmafYuH6jjJIuBM4KXABmB1klVV9aWRzW4DTgaOHWu+BXhzVV2VZHdgTZJLq+pLSX4CWAEcWlX3JNl3qDlIkoYx5JHP4cD6qrqxqu4FzqcLje+rqk1VtRq4b6x8Y1Vd1S/fCawDDuir3wi8t6ru2drHgHOQJA1gyPA5ALh5ZH0DDwbItCVZBhwGXNkXPRX4sSRXJvmHJM97iHYnJJlMMrl58+aZ7laSNKAhwydTlNWMOkh2Ay4EVlbVHX3xYmAv4Ejg14ELkvynfVXV2VU1UVUTS5YsmdnIJUmDGjJ8NgBLR9YPBG6ZbuMkO9AFz3lVddFYvxdV5/PAA8A+szBeSVIjQ4bPauCQJAcn2RE4Dlg1nYb9kcxHgHVV9YGx6r8Ajuq3eyqwI3DrbA1akjS8we52q6otSU4CLgEWAedU1dokJ/b1ZyXZD5gE9gAeSLISWA4cCrwGuC7JNX2Xp1fVxcA5wDlJvgjcCxxfVTM6nSdJmlt5LLxvT0xM1OTk5FwPQ5LmlSRrqmpiiL59woEkqTnDR5LUnOEjSWpu2jccJHkW3c0AO28tq6qPDTEoSdLCNq3wSfIO4EV04XMxcAzwz4DhI0masemednsF8GLgm1X1S8CzgZ0GG5UkaUGbbvjcXVUPAFuS7AFsAp403LAkSQvZdK/5TCbZE/gwsAa4C/j8UIOSJC1s0wqfqvrv/eJZST4N7FFV1w43LGnh++o1f8/Xv3o1hz3/Z9lr/4PnejhSU9M67Zbksq3LVfW1qrp2tEzSzHx7ww2897w3cs6/fIg/PPv1cz0cqbmHPfJJsjOwK7BPkr148GMS9gCeOPDYpAXrvnvv5r66n50ftyN33XvXXA9Ham5bp93eAKykC5qrRsrvoPuIbEnbYb8nHcqJLzmNL33ls7z0pSfO9XCk5qb1YNEkv1pVf9hgPIPwwaKSNHOPhgeLnpPkbUnO7gd0SJKXDzEgSdLCN+3wofvsnOf36xuAdw8yIknSgjfd8HlyVb0fuA+gqu7mwZsPJEmakemGz71JdgEKIMmTgXsGG5UkaUGb7hMO3gF8Glia5DzgR4HXDjUoSdLCNt3wOQ04G7id7nTbSuA9wOVDDEqStLBN97TbwcAJwERV/XVVbQYGuf1OkrTwTTd8bqf7SIUnJPmrJD8w3JAkSQvddMMnVbWlf8DohXQfJLfvcMOSJC1k073mc9bWhar6aJLrgDcNMyRJ0kI3rSOfqvrjsfU1VfW6bbVLcnSS65OsT3LaFPVPT3JFknuSnDpSvjTJZ5KsS7I2ySlTtD01SSXZZzpzkCQ9ekz3yGfGkiyie/joS+meiLA6yaqq+tLIZrcBJwPHjjXfAry5qq5KsjuwJsmlW9smWdr3e9NQ45ckDWe613y2x+HA+qq6saruBc4HVoxuUFWbqmo1/ZMTRso3VtVV/fKdwDrggJFNPgj8Bv0fvUqS5pchw+cA4OaR9Q38xwCZliTLgMOAK/v1nwG+UVVf2Ea7E5JMJpncvHnzTHcrSRrQkOEz1bPfZnSkkmQ3urvrVlbVHUl2Bd4KvH1bbavq7KqaqKqJJUuWzGS3kqSBDRk+G4ClI+sHArdMt3GSHeiC57yquqgvfjLdH7x+IcnX+j6vSrLfrIxYktTEYDccAKuBQ5IcDHwDOA549XQaJgnwEWBdVX1ga3lVXcfI3xf1ATRRVbfO4rglSQMbLHyqakuSk4BLgEXAOVW1NsmJff1Z/RHLJLAH8ECSlcBy4FDgNcB1Sa7puzy9qi4earySpHaGPPKhD4uLx8pG/2D1m3Snzsb9M9P4vKCqWvYIhyhJmgNDXvORJGlKho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaGzR8khyd5Pok65OcNkX905NckeSeJKeOlC9N8pkk65KsTXLKSN3/TPLlJNcm+WSSPYecgyRp9g0WPkkWAWcCxwDLgVclWT622W3AycAZY+VbgDdX1TOAI4E3jbS9FHhWVR0KfAV4y0BTkCQNZMgjn8OB9VV1Y1XdC5wPrBjdoKo2VdVq4L6x8o1VdVW/fCewDjigX//bqtrSb/o54MAB5yBJGsCQ4XMAcPPI+oa+bEaSLAMOA66covp1wKe2Z3CSpLkzZPhkirKaUQfJbsCFwMqqumOs7q10p+fOe4i2JySZTDK5efPmmexWkjSwIcNnA7B0ZP1A4JbpNk6yA13wnFdVF43VHQ+8HPj5qpoy0Krq7KqaqKqJJUuWzHjwkqThDBk+q4FDkhycZEfgOGDVdBomCfARYF1VfWCs7mjgN4GfqarvzvKYJUkNLB6q46rakuQk4BJgEXBOVa1NcmJff1aS/YBJYA/ggSQr6e6MOxR4DXBdkmv6Lk+vqouBDwE7AZd2GcXnqurEoeYhSZp9g4UPQB8WF4+VnTWy/E2mvlvtn5n6mhFV9ZTZHKMkqT2fcCBJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpuUHDJ8nRSa5Psj7JaVPUPz3JFUnuSXLqSPnSJJ9Jsi7J2iSnjNTtneTSJDf03/cacg6SpNk3WPgkWQScCRwDLAdelWT52Ga3AScDZ4yVbwHeXFXPAI4E3jTS9jTgsqo6BLisX5ckzSNDHvkcDqyvqhur6l7gfGDF6AZVtamqVgP3jZVvrKqr+uU7gXXAAX31CuDcfvlc4NjBZiBJGsSQ4XMAcPPI+gYeDJBpS7IMOAy4si96QlVthC6kgH0fot0JSSaTTG7evHmmu5UkDWjI8MkUZTWjDpLdgAuBlVV1x0zaVtXZVTVRVRNLliyZSVNJ0sCGDJ8NwNKR9QOBW6bbOMkOdMFzXlVdNFL1rST799vsD2yahbFKkhoaMnxWA4ckOTjJjsBxwKrpNEwS4CPAuqr6wFj1KuD4fvl44C9nabySpEYWD9VxVW1JchJwCbAIOKeq1iY5sa8/K8l+wCSwB/BAkpV0d8YdCrwGuC7JNX2Xp1fVxcB7gQuSvB64CXjlUHOQJA0jVTO6DDMvTUxM1OTk5FwPQ5LmlSRrqmpiiL59woEkqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzqaq5HsPgkmwG/h24da7HMqB9WLjzc27z10Ke32NhbgdV1ZIhdvCYCB+AJJNVNTHX4xjKQp6fc5u/FvL8nNsj42k3SVJzho8kqbnHUvicPdcDGNhCnp9zm78W8vyc2yPwmLnmI0l69HgsHflIkh4lDB9JUnPzJnySHJ3k+iTrk5w2RX2S/EFff22S547UnZNkU5IvjrXZO8mlSW7ov+81Vv9DSe5KcupwM/v+vprOL8mhSa5IsjbJdUl2XghzS7JDknP7Oa1L8pah5jXg3F7Zvy4PJJkYq3tL39f1SV423My+v79m80vy0iRr+tduTZKjFsrcRuqbvKfMwe/lzN9PqupR/wUsAr4KPAnYEfgCsHxsm58CPgUEOBK4cqTux4HnAl8ca/N+4LR++TTgfWP1FwJ/Dpy6kOYHLAauBZ7dr/8gsGiBzO3VwPn98q7A14Bl82xuzwCeBlwOTIyUL+/3sRNwcL/vQV63OZrfYcAT++VnAd9YKHMbqR/8PWUOXrftej+ZL0c+hwPrq+rGqroXOB9YMbbNCuBj1fkcsGeS/QGq6h+B26bodwVwbr98LnDs1ookxwI3AmtncR4PpfX8fhK4tqq+0Lf/dlXdP5sTGtF6bgU8PsliYBfgXuCOWZzPqEHmVlXrqur6Kfa3gi5Y76mqfwXW92MYStP5VdXVVXVLv7oW2DnJTrM4n1GtX7uW7ymt57Zd7yfzJXwOAG4eWd/Ql810m3FPqKqNAP33fQGSPB74TeBdj2DMM9F0fsBTgUpySZKrkvzGdo9821rP7RN0j1LaCNwEnFFVU4XXbBhqbo9kf7Op9fxG/RxwdVXdMwt9TaXp3Bq/p7R+3bbr/WTxdu6stUxRNn6P+HS2ma53AR+sqruSqbqdda3ntxh4AfA84LvAZUnWVNVl29nfw2k9t8OB+4EnAnsB/5Tk76rqxu3s7+G0ntts9jVb+5v1MSV5JvA+uv9RD2Uhv6fMi/eT+RI+G4ClI+sHArdsxzbjvpVk/6ra2B9yburLjwBekeT9wJ7AA0m+V1Uf2t4JbEPr+W0A/qGqbgVIcjHdOd4hwqf13F4NfLqq7gM2JfksMEF3umO2DTW3R7K/2dR6fiQ5EPgk8ItV9dXt7WcaWs+t5XvKXPxezvj9ZL6cdlsNHJLk4CQ7AscBq8a2WQX8Yn8Xx5HAv209LfMwVgHH98vHA38JUFU/VlXLqmoZ8HvA7wwYPNB4fsAlwKFJdu2vjbwQ+NJsTGQKred2E3BU39fj6S6mfnk2JjKFoeb2UFYBxyXZKcnBwCHA57d38NPQdH5J9gT+BnhLVX32EYx7OprOrfF7Suvfy+17P9nWHQmPli+6uzO+QncXx1v7shOBE/vlAGf29dfxH+/G+DO6awD30aX06+vBuzIuA27ov+89xX7fycB3u83F/IBfoLvw+UXg/QtlbsBudHcTre3/Afz6PJzbf+3X7wG+BVwy0uatfV/XA8fM09/LKecHvI3uet01I1/7LoS5je33nQx/B23r38sZv5/4eB1JUnPz5bSbJGkBMXwkSc0ZPpKk5gwfSVJzho8kqTnDRxpAkmXjTwXexvavTfLEIcckPZoYPtKjw2vpHgkkPSYYPtJwFqf7bKFrk3yi/wvwH07yD+k+r+aSJPsneQXdI4DOS3JNkl2SvD3J6iRfTHJ2Gj1kUGrFPzKVBpBkGfCvwAuq6rNJzgHW0f2V+Iqq2pzkvwEvq6rXJbmc7q/eJ/v2e1f/NO4k/xe4oKr+ai7mIg1hvjxYVJqPbq4Hn1H2ceB0ug9Ju7Q/kFlE9xiTqfxE/2j6XYG96R5dYvhowTB8pOGMn1a4E1hbVT/ycI3SfQTxH9E9b+vmJO8EBvuYc2kueM1HGs4PJdkaNK8CPgcs2VqWZIf+s2ugC6bd++WtQXNrkt2AV7QasNSK4SMNZx1wfJJr6U6d/SFdkLwvyRfontr8/H7bjwJnJbmG7qnBH6Z72vBf0D0iX1pQvOFAktScRz6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmvv/4VSA5pDhhlYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta eta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbcElEQVR4nO3df7hmZV3v8ffHGX4KBOQgOEwMJv5ALxLbApmloebQqWY65XXQNCyN8JKAjlSIXYidLPUQ9kM6HDpSlBSHBHNOYUT4qwxx9sAojCMxosLI6AyCAanAyPf8sdbI49NmZu9hr3uzZ96v69rXXuu+132v+97Pnucz68deT6oKSZJaesJcD0CStOsxfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SM9TiV5cZINcz2OUUnWJnnxNurPTvJ/2o1I85Xho0Ek+WKSbya5P8lXk/xZkn3melzbkmRpkkqycJb62zPJ15McP0Xdu5O8fzb2syP6ef5H//p8Ocn5SRZsr11VPbuqPrqN+t+tqtfP6mC1UzJ8NKSfqqp9gOcBzwd+ayaN05k3v6PjoVVV3wL+L/ALY9stAF4JXNJudFP6gf71eQnwKuCXH0tnsxXa2jXMm3/Ymr+q6svAh4DnJDkgyd8l2Zzknn750K3bJvlokrcn+QTwDeCpSX4xybok9yW5LcmvjGz/4iQbkvxGkk1JNiZZkeQnkvxbkruTnD2y/ROSnJXk80m+luTyJAf21R/vv3+9PyL4ob7NL/X7vyfJ1UkOG+mvkrwxya3ArVNM/xLgZ5PsPVL2crp/ex/a1tzG9ft62sj6nyf5nZH1n0yypj/a+tckRz36q/KIqvoc8M90r8/3J/lw/7O5K8mlSfYf2ccXk7y0Xz43yfuTvC/JvcBr+7L39fVbjyRPSnJ7399bRvraK8kl/c91Xf8abhip/83+qOy+JLckecl05qP5wfDR4JIsAX4CuJHud+7PgMOA7wO+CbxnrMlrgJOBfYEvAZuAnwT2A34ReHeS541sfzCwJ7AYOAf4U+DVwA8CPwKck+Sp/banASuAFwFPAe4BLujrfrT/vn9V7VNV1yVZAZwN/FdgEd2b9F+PjXcFcCxw5Pjcq+pfgY19+9H5/VVVbZnG3Kalb3Mx8CvA9wL/G1iZZI9ptD2S7ud0IxDg9+h+Ns8ClgDnbqP5cuD9wP7ApY+yzQuBZ9AdYZ2T5Fl9+VuBpcBTgZfRvWZbx/QM4FTg+VW1L11gf3F7c9E8UlV++TXrX3RvFPcDX6cLkD8B9ppiu+cC94ysfxT47e30/bfA6f3yi+kCbEG/vi9QwLEj268GVvTL64CXjNQdAjwELKR7Iyxg4Uj9h4DXjaw/ge6I7LB+vYDjtzPe3wL+sV/er29/9DTntmGkroCnjaz/OfA7/fL/Av7HWF+3AC96lP0UcC9d+H4e+B3gCVNstwK4cex1fWm/fC7w8bHtzwXe1y9v/XkeOlL/KeDEfvk24OUjda/fOl/gaXTB/FJgt7n+ffZr9r88R6shraiqfxot6E8/vRtYBhzQF++bZEFVfbtfv2OszQl0/0t+Ot2b/97ATSObfG2k7Tf7718dqf8msPVmh8OADyR5eKT+28CTH2UOhwF/mOT3R4dEd5T1panGO4W/AN6aZDHd/+DXV9WN05zbdB0GnJTkV0fKdqc7gnk0z6uq9aMFSQ4C/ojuSGjffkz3bKOP7c0d4Csjy9/gkdfiKWPtv7NcVeuTnEEXZs9OcjXw36vqzmnsT/OAp93U2pvoTsEcW1X78ciproxs851Hrfenja4AzgOeXFX7A1eNbT8TdwAnVNX+I197VnddaqpHvN8B/MrY9ntVdzrtP413KlV1O93pup+nO+X2Fzs4t2/QhdNWB4+N8+1j49y7qsZPEW7P7/XzOap/fV69jfHAdua+HRuBQ0fWl3xXx1V/VVUvpAvWAt75GPalxxnDR63tS3ck8vX+Qv9bt7P97sAewGZgS3+k8OOPYf8XAm/fetNAkkVJlvd1m4GH6a5BjG7/5iTP7rf/niSv2IH9XkJ3DeOHeeTayEzntgZ4VZIFSZbRXbfa6k+BU5Icm84Tk/yXJPvOcJz70p8u7Y/Ufn2G7Wficrqf7QH9vk7dWpHkGUmO7wP6W3S/M99+lH40Dxk+au0PgL2Au4BPAv+wrY2r6j66mwQupzv98ypg5WPY/x/27f8xyX39GI7t9/UN4O3AJ/o7xo6rqg/Q/Y/7sv6OrpuBE3Zgv++nO814bVVt3MG5nQ78FN11tJ+nuz5E39ck3a3S7+n7Wg+8dgfG+Ta6W+P/Hfh74Mod6GO6fhvYAHwB+Ce6n9EDfd0ewDvofk++AhxEd+OHdhKp8sPkJM29JG+guxnhRdvdWPOeRz6S5kSSQ5L8cP+3V8+gux74gbkel9rwbjdJc2V3ur9HOpzuVOJldLfkaxfgaTdJUnOedpMkNbdLnHZ70pOeVEuXLp3rYUjSvLJ69eq7qmrREH3vEuGzdOlSJicn53oYkjSvJPnS9rfaMZ52kyQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1N2j4JFmW5JYk65OcNUX9M5Ncl+SBJGeOlO+Z5FNJPp1kbZK3jdQdmOSaJLf23w8Ycg6SpNk3WPgkWQBcAJwAHAm8MsmRY5vdDZwGnDdW/gBwfFX9APBcYFmS4/q6s4Brq+oI4Np+XZI0jwx55HMMsL6qbquqB4HLgOWjG1TVpqpaBTw0Vl5VdX+/ulv/Vf36cuCSfvkSYMUww5ckDWXI8FkM3DGyvqEvm5YkC5KsATYB11TV9X3Vk6tqI0D//aBHaX9ykskkk5s3b96R8UuSBjJk+GSKspqibEpV9e2qei5wKHBMkufMZOdVdVFVTVTVxKJFi2bSVJI0sCHDZwOwZGT9UODOmXZSVV8HPgos64u+muQQgP77psc0SklSc0OGzyrgiCSHJ9kdOBFYOZ2GSRYl2b9f3gt4KfC5vnolcFK/fBLwwdkctCRpeAuH6riqtiQ5FbgaWABcXFVrk5zS11+Y5GBgEtgPeDjJGXR3xh0CXNLfMfcE4PKq+ru+63cAlyd5HXA78Iqh5iBJGkaqpn0ZZt6amJioycnJuR6GJM0rSVZX1cQQffuEA0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmhs0fJIsS3JLkvVJzpqi/plJrkvyQJIzR8qXJPlIknVJ1iY5faTuuUk+mWRNkskkxww5B0nS7BssfJIsAC4ATgCOBF6Z5Mixze4GTgPOGyvfArypqp4FHAe8caTtu4C3VdVzgXP6dUnSPDLkkc8xwPqquq2qHgQuA5aPblBVm6pqFfDQWPnGqrqhX74PWAcs3loN7Ncvfw9w53BTkCQNYeGAfS8G7hhZ3wAcO9NOkiwFjgau74vOAK5Och5deL7gMY1SktTckEc+maKsZtRBsg9wBXBGVd3bF78B+LWqWgL8GvDeR2l7cn9NaHLz5s0z2a0kaWBDhs8GYMnI+qHM4BRZkt3ogufSqrpypOokYOv639Cd3vtPquqiqpqoqolFixbNaOCSpGENGT6rgCOSHJ5kd+BEYOV0GiYJ3RHNuqo6f6z6TuBF/fLxwK2zNF5JUiODXfOpqi1JTgWuBhYAF1fV2iSn9PUXJjkYmKS7geDhJGfQ3Rl3FPAa4KYka/ouz66qq4BfBv4wyULgW8DJQ81BkjSMVM3oMsy8NDExUZOTk3M9DEmaV5KsrqqJIfr2CQeSpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmhs0fJIsS3JLkvVJzpqi/plJrkvyQJIzR8qXJPlIknVJ1iY5fazdr/b9rk3yriHnIEmafQuH6jjJAuAC4GXABmBVkpVV9dmRze4GTgNWjDXfArypqm5Isi+wOsk1VfXZJD8GLAeOqqoHkhw01BwkScMY8sjnGGB9Vd1WVQ8Cl9GFxndU1aaqWgU8NFa+sapu6JfvA9YBi/vqNwDvqKoHtvYx4BwkSQMYMnwWA3eMrG/gkQCZtiRLgaOB6/uipwM/kuT6JB9L8vxHaXdykskkk5s3b57pbiVJAxoyfDJFWc2og2Qf4ArgjKq6ty9eCBwAHAf8OnB5kv+0r6q6qKomqmpi0aJFMxu5JGlQQ4bPBmDJyPqhwJ3TbZxkN7rgubSqrhzr98rqfAp4GHjSLIxXktTIkOGzCjgiyeFJdgdOBFZOp2F/JPNeYF1VnT9W/bfA8f12Twd2B+6arUFLkoY32N1uVbUlyanA1cAC4OKqWpvklL7+wiQHA5PAfsDDSc4AjgSOAl4D3JRkTd/l2VV1FXAxcHGSm4EHgZOqakan8yRJcyu7wvv2xMRETU5OzvUwJGleSbK6qiaG6NsnHEiSmjN8JEnNGT6SpOYMH0lSc4aPJKm5ad9qneQA4Ahgz61lVfXxIQYlSdq5TSt8krweOJ3uKQVr6B5tcx39H3tKkjQT0z3tdjrwfOBLVfVjdA/69GmdkqQdMt3w+VZVfQsgyR5V9TngGcMNS9r5fX7Nh/nwFb/PPRu/MNdDkZqb7jWfDUn2p3uu2jVJ7mEGDwmV9N2+tuFW3nHpG/jmww/y9Jv/nnPe+uG5HpLU1LTCp6p+pl88N8lHgO8BPjTYqKSd3EMPfpOH6tvs+YTduf/B++d6OFJz0zrtluQvty5X1ceqaiXdAz4l7YCDn3oUp7z0LF6w5AX86qv/eK6HIzU33dNuzx5dSbIA+MHZH4606zhu2es5btnr53oY0pzY5pFPkjcnuQ84Ksm9/dd9wCbgg01GKEna6WwzfKrq96pqX+B84I3A7/frRwMfaDA+SdJOaLq3Wu9H94elJ/br9wEXDDIiSdJOb7rXfI6pqucluRGgqu7pPxpbkqQZm+6Rz0P9TQYFkGQR8PBgo5Ik7dSmGz5/RHeN56Akbwf+BfjdwUYlSdqpTfePTC9Nshp4CRBgRVWtG3RkkqSd1rQ/UqF/ntvnBhyLJGkX4YfJSZKaM3wkSc0NGj5JliW5Jcn6JGdNUf/MJNcleSDJmSPlS5J8JMm6JGuTnD5F2zOTVJInDTkHSdLsm/Y1n5nqb82+AHgZsAFYlWRlVX12ZLO7gdOAFWPNtwBvqqobkuwLrE5yzda2SZb0/d4+1PglScMZ8sjnGGB9Vd1WVQ8ClwHLRzeoqk1VtQp4aKx8Y1Xd0C/fB6wDFo9s8m7gN+j/7kiSNL8MGT6LgTtG1jfw3QEyLUmW0j1L7vp+/aeBL1fVp7fT7uQkk0kmN2/2E78l6fFkyPDJFGUzOlJJsg9wBXBGVd2bZG/gLcA522tbVRdV1URVTSxatGgmu5UkDWzI8NkALBlZP5QZfPR2kt3ogufSqrqyL/5+4HDg00m+2Pd5Q5KDZ2XEkqQmBrvhAFgFHJHkcODLdE/EftV0GiYJ8F5gXVWdv7W8qm4CDhrZ7ovARFXdNYvjliQNbLDwqaotSU4FrgYWABdX1dokp/T1F/ZHLJN0H9nwcJIzgCOBo4DXADclWdN3eXZVXTXUeCVJ7Qx55EMfFleNlV04svwVulNn4/6Fqa8Zjfe/9DEOUZI0B3zCgSSpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzQ0aPkmWJbklyfokZ01R/8wk1yV5IMmZI+VLknwkyboka5OcPlL3P5N8Lslnknwgyf5DzkGSNPsGC58kC4ALgBOAI4FXJjlybLO7gdOA88bKtwBvqqpnAccBbxxpew3wnKo6Cvg34M0DTUGSNJAhj3yOAdZX1W1V9SBwGbB8dIOq2lRVq4CHxso3VtUN/fJ9wDpgcb/+j1W1pd/0k8ChA85BkjSAIcNnMXDHyPqGvmxGkiwFjgaun6L6l4AP7cjgJElzZ8jwyRRlNaMOkn2AK4Azquresbq30J2eu/RR2p6cZDLJ5ObNm2eyW0nSwIYMnw3AkpH1Q4E7p9s4yW50wXNpVV05VncS8JPAz1fVlIFWVRdV1URVTSxatGjGg5ckDWfI8FkFHJHk8CS7AycCK6fTMEmA9wLrqur8sbplwG8CP11V35jlMUuSGlg4VMdVtSXJqcDVwALg4qpam+SUvv7CJAcDk8B+wMNJzqC7M+4o4DXATUnW9F2eXVVXAe8B9gCu6TKKT1bVKUPNQ5I0+wYLH4A+LK4aK7twZPkrTH232r8w9TUjquppszlGSVJ7PuFAktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnODhk+SZUluSbI+yVlT1D8zyXVJHkhy5kj5kiQfSbIuydokp4/UHZjkmiS39t8PGHIOkqTZN1j4JFkAXACcABwJvDLJkWOb3Q2cBpw3Vr4FeFNVPQs4DnjjSNuzgGur6gjg2n5dkjSPDHnkcwywvqpuq6oHgcuA5aMbVNWmqloFPDRWvrGqbuiX7wPWAYv76uXAJf3yJcCKwWYgSRrEkOGzGLhjZH0DjwTItCVZChwNXN8XPbmqNkIXUsBBj9Lu5CSTSSY3b948091KkgY0ZPhkirKaUQfJPsAVwBlVde9M2lbVRVU1UVUTixYtmklTSdLAhgyfDcCSkfVDgTun2zjJbnTBc2lVXTlS9dUkh/TbHAJsmoWxSpIaGjJ8VgFHJDk8ye7AicDK6TRMEuC9wLqqOn+seiVwUr98EvDBWRqvJKmRhUN1XFVbkpwKXA0sAC6uqrVJTunrL0xyMDAJ7Ac8nOQMujvjjgJeA9yUZE3f5dlVdRXwDuDyJK8DbgdeMdQcJEnDSNWMLsPMSxMTEzU5OTnXw5CkeSXJ6qqaGKJvn3AgSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUXKpqrscwuCSbgf8A7prrsQzoSey883Nu89fOPL9dYW6HVdWiIXawS4QPQJLJqpqY63EMZWeen3Obv3bm+Tm3x8bTbpKk5gwfSVJzu1L4XDTXAxjYzjw/5zZ/7czzc26PwS5zzUeS9PixKx35SJIeJwwfSVJz8yZ8kixLckuS9UnOmqI+Sf6or/9MkueN1F2cZFOSm8faHJjkmiS39t8PGKv/viT3JzlzuJl9Z19N55fkqCTXJVmb5KYke+4Mc0uyW5JL+jmtS/LmoeY14Nxe0b8uDyeZGKt7c9/XLUlePtzMvrO/ZvNL8rIkq/vXbnWS43eWuY3UN3lPmYPfy5m/n1TV4/4LWAB8HngqsDvwaeDIsW1+AvgQEOA44PqRuh8FngfcPNbmXcBZ/fJZwDvH6q8A/gY4c2eaH7AQ+AzwA/369wILdpK5vQq4rF/eG/gisHSeze1ZwDOAjwITI+VH9vvYAzi83/cgr9scze9o4Cn98nOAL+8scxupH/w9ZQ5etx16P5kvRz7HAOur6raqehC4DFg+ts1y4C+q80lg/ySHAFTVx4G7p+h3OXBJv3wJsGJrRZIVwG3A2lmcx6NpPb8fBz5TVZ/u23+tqr49mxMa0XpuBTwxyUJgL+BB4N5ZnM+oQeZWVeuq6pYp9recLlgfqKovAOv7MQyl6fyq6saqurNfXQvsmWSPWZzPqNavXcv3lNZz26H3k/kSPouBO0bWN/RlM91m3JOraiNA//0ggCRPBH4TeNtjGPNMNJ0f8HSgklyd5IYkv7HDI9++1nN7P92jlDYCtwPnVdVU4TUbhprbY9nfbGo9v1E/C9xYVQ/MQl9TaTq3xu8prV+3HXo/WbiDO2stU5SN3yM+nW2m623Au6vq/mSqbmdd6/ktBF4IPB/4BnBtktVVde0O9rctred2DPBt4CnAAcA/J/mnqrptB/vbltZzm82+Zmt/sz6mJM8G3kn3P+qh7MzvKfPi/WS+hM8GYMnI+qHAnTuwzbivJjmkqjb2h5yb+vJjgZ9L8i5gf+DhJN+qqvfs6AS2o/X8NgAfq6q7AJJcRXeOd4jwaT23VwH/UFUPAZuSfAKYoDvdMduGmttj2d9saj0/khwKfAD4har6/I72Mw2t59byPWUufi9n/H4yX067rQKOSHJ4kt2BE4GVY9usBH6hv4vjOODft56W2YaVwEn98knABwGq6keqamlVLQX+APjdAYMHGs8PuBo4Ksne/bWRFwGfnY2JTKH13G4Hju/7eiLdxdTPzcZEpjDU3B7NSuDEJHskORw4AvjUjg5+GprOL8n+wN8Db66qTzyGcU9H07k1fk9p/Xu5Y+8n27sj4fHyRXd3xr/R3cXxlr7sFOCUfjnABX39TXz33Rh/TXcN4CG6lH5dPXJXxrXArf33A6fY77kMfLfbXMwPeDXdhc+bgXftLHMD9qG7m2ht/w/g1+fh3H6mX38A+Cpw9Uibt/R93QKcME9/L6ecH/BbdNfr1ox8HbQzzG1sv+cy/B20rX8vZ/x+4uN1JEnNzZfTbpKknYjhI0lqzvCRJDVn+EiSmjN8JEnNGT7SAJIsHX8q8Ha2f22Spww5JunxxPCRHh9eS/dIIGmXYPhIw1mY7rOFPpPk/f1fgP9gko+l+7yaq5MckuTn6B4BdGmSNUn2SnJOklVJbk5yURo9ZFBqxT8ylQaQZCnwBeCFVfWJJBcD6+j+Snx5VW1O8t+Al1fVLyX5KN1fvU/27Q+s/mncSf4SuLyq/t9czEUawnx5sKg0H91Rjzyj7H3A2XQfknZNfyCzgO4xJlP5sf7R9HsDB9I9usTw0U7D8JGGM35a4T5gbVX90LYapfsI4j+he97WHUnOBQb7mHNpLnjNRxrO9yXZGjSvBD4JLNpalmS3/rNroAumffvlrUFzV5J9gJ9rNWCpFcNHGs464KQkn6E7dfbHdEHyziSfpntq8wv6bf8cuDDJGrqnBv8p3dOG/5buEfnSTsUbDiRJzXnkI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKm5/w9ngWa48SzxJwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta mu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEWCAYAAADYRbjGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfhElEQVR4nO3df5hcVZ3n8feHNAkgsMFJcGICJKyBFQQxFCSzYxQRxoTFSRZ/EIgG0dkYZnBnH1dngoqgozPCo+tMFoSFMUAWSGCRH+0CkxmdB3AZkHRMDAmQoQlImmRIA4rBYDDku3/c03KpVHdXN1XVp9vP63nuU3XvOffcc7o69cm993SVIgIzM7Oc7TXUHTAzM+uPw8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMhshJJ0kqWuo+1EmaYOkk/oo/4Kkv29dj2y4clhZFiQ9JellSS9JelbSNZL2H+p+9UXSZEkhqa1B7e0j6ReSTq5R9m1JtzTiOIORxvmr9Po8I+l/SBrV334RcXRE3NNH+V9HxJ80tLM2IjmsLCcfjIj9gWnACcCXBrKzCsPmd7o65CLi18BNwIKqeqOAs4DrWte7mt6ZXp/3A2cD/+WNNNaokLffDcPmH7b97oiIZ4C7gXdIOkjS/5XULenn6fmknrqS7pH0dUn3AzuAwyWdK+lRSdslbZL06VL9kyR1SfoLSdskbZU0V9Jpkv5V0guSvlCqv5ekxZKekPS8pJslvTkV35cef5HOOP4g7fPJdPyfS1op6bBSeyHpzyQ9DjxeY/jXAR+StF9p2wco/q3e3dfYqqVjva20fq2kr5XWT5e0Np3N/YukY3t/VV4TEY8BP6J4ff69pH9OP5vnJN0gaWzpGE9JOiU9v1jSLZKul/RL4BNp2/WpvOdM9RxJT6f2vlhqa19J16Wf66PpNewqlf9lOuvbLmmjpPfXMx4bHhxWlh1JhwCnAWsofkevAQ4DDgVeBi6r2uXjwELgAOBnwDbgdOBA4Fzg25Kmler/PrAPMBH4MnA18DHgeGAm8GVJh6e6/xWYC7wXeCvwc+DyVPae9Dg2IvaPiAckzQW+AJwBjKd4U19e1d+5wHTgqOqxR8S/AFvT/uXx3RgRu+oYW13SPkuBTwO/B/wvoF3SmDr2PYri57QGEPA3FD+btwOHABf3sfsc4BZgLHBDL3XeDRxJcQb3ZUlvT9svAiYDhwOnUrxmPX06EjgfOCEiDqAI+Kf6G4sNIxHhxcuQLxRvLC8Bv6AInO8A+9aodxzw89L6PcBX+2n7duDP0/OTKAJvVFo/AAhgeqn+amBuev4o8P5S2QTgN0AbxRtnAG2l8ruBT5XW96I44zssrQdwcj/9/RLwj+n5gWn/d9U5tq5SWQBvK61fC3wtPb8C+KuqtjYC7+3lOAH8kiKsnwC+BuxVo95cYE3V63pKen4xcF9V/YuB69Pznp/npFL5Q8C89HwT8IFS2Z/0jBd4G0WQnwLsPdS/z14av/iaseVkbkT8oLwhXQ77NjALOChtPkDSqIh4Na1vrtpnNsX/wo+gCIv9gIdLVZ4v7ftyeny2VP4y0DO54zDgNkm7S+WvAm/pZQyHAX8n6VvlLlGcxf2sVn9rWAZcJGkixRlCZ0SsqXNs9ToMOEfSZ0rbRlOcIfVmWkR0ljdIOhhYQnGmdUDq08/7aKO/sQP8W+n5Dl57Ld5atf9vn0dEp6T/RhF+R0taCXw2IrbUcTwbBnwZ0HL33ykuCU2PiAN57dKbSnV++9UB6TLW94BvAm+JiLHAXVX1B2IzMDsixpaWfaK4r1brKws2A5+uqr9vFJf39uhvLRHxNMXlw/kUlwCXDXJsOyjCrMfvV/Xz61X93C8iqi9Z9udv0niOTa/Px/roD/Qz9n5sBSaV1g95XcMRN0bEuymCOIBL3sCxLDMOK8vdARRnOr9IExsu6qf+aGAM0A3sSmcif/QGjn8l8PWeSRKSxkuak8q6gd0U91DK9S+QdHSq/+8kfWQQx72O4h7MH/LavZ2Bjm0tcLakUZJmUdx363E1sEjSdBXeJOk/STpggP08gHT5Np0Jfn6A+w/EzRQ/24PSsc7vKZB0pKSTU6D/muJ35tVe2rFhyGFluftbYF/gOeBB4B/6qhwR2ykmRdxMcTnqbKD9DRz/79L+/yhpe+rD9HSsHcDXgfvTjLoZEXEbxf/oV6QZb+uB2YM47i0Ulz1/GBFbBzm2Pwc+SHEfcD7F/S1SWx0UU88vS211Ap8YRD+/QvGnBi8CdwK3DqKNen0V6AKeBH5A8TPamcrGAN+g+D35N+BgiokuNkIowl++aGbDj6TzKCZfvLffyjbs+czKzIYFSRMk/WH627cjKe5n3jbU/bLW8GxAMxsuRlP8PdgUikubKyj+xMF+B/gyoJmZZc+XAc3MLHu+DNiLcePGxeTJk4e6G2Zmw8a4ceNYuXLlyoiY1ei2HVa9mDx5Mh0dHUPdDTOzYUXSuGa068uAZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpa9poaVpFmSNkrqlLS4RrkkLUnl6yRNK5UtlbRN0vqqfW6StDYtT0lam7bPL21fK2m3pONS2T2pHz1lBzdz3GZm1lhN+1p7SaOAy4FTgS5glaT2iHikVG02MDUt04Er0iPAtcBlwLJyuxFxZukY3wJeTNtvAG5I248B7oiItaVd50eEv6fezGwYauaZ1YlAZ0RsiohXgBXAnKo6c4BlUXgQGCtpAkBE3Ae80FvjkgR8FFheo/isXrabmdkw1MywmghsLq13pW0DrdObmcCzEfF4jbIz2TOsrkmXAC9MQbcHSQsldUjq6O7urrMbZmbWbM0Mq1qBEIOo05uaZ0+SpgM7IqJ8r2t+RBxDEXAzgY/XajAiroqISkRUxo8fX2c3zMys2ZoZVl3AIaX1ScCWQdTZg6Q24AzgphrF86gKsYh4Jj1uB26kuERpZmbDRDPDahUwVdIUSaMpQqS9qk47sCDNCpwBvBgRW+to+xTgsYjoKm+UtBfwEYr7Yz3b2iSNS8/3Bk4HXjfD0MzM8ta02YARsUvS+cBKYBSwNCI2SFqUyq8E7gJOAzqBHcC5PftLWg6cBIyT1AVcFBHfTcV7nD0l7wG6ImJTadsYYGUKqlHAD4CrGzZQMzNrOkXUe4vod0ulUomODs90NzMbCEmrI6LS6Hb9CRZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9poaVpJmSdooqVPS4hrlkrQkla+TNK1UtlTSNknrq/a5SdLatDwlaW3aPlnSy6WyK0v7HC/p4XScJZLUxGGbmVmDNS2sJI0CLgdmA0cBZ0k6qqrabGBqWhYCV5TKrgVmVbcbEWdGxHERcRzwPeDWUvETPWURsai0/YrUfs+x9mjXzMzy1cwzqxOBzojYFBGvACuAOVV15gDLovAgMFbSBICIuA94obfG09nRR4HlfXUitXdgRDwQEQEsA+YOckxmZjYEmhlWE4HNpfWutG2gdXozE3g2Ih4vbZsiaY2keyXNLB2jq55jSFooqUNSR3d3d53dMDOzZmtmWNW6LxSDqNObs3j9WdVW4NCIeBfwWeBGSQcO5BgRcVVEVCKiMn78+Dq7YWZmzdbWxLa7gENK65OALYOoswdJbcAZwPE92yJiJ7AzPV8t6QngiHSMSQM9hpmZ5aOZZ1argKmSpkgaDcwD2qvqtAML0qzAGcCLEbG1jrZPAR6LiN9e3pM0Pk3qQNLhFBMpNqX2tkuake5zLQDueMOjMzOzlmnamVVE7JJ0PrASGAUsjYgNkhal8iuBu4DTgE5gB3Buz/6SlgMnAeMkdQEXRcR3U/E89pxY8R7gq5J2Aa8CiyKiZ4LGeRSzC/cF7k6LmZkNEyomyFm1SqUSHR0dQ90NM7NhRdLqiKg0ul1/goWZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWvaaGlaRZkjZK6pS0uEa5JC1J5eskTSuVLZW0TdL6qn1ukrQ2LU9JWpu2nypptaSH0+PJpX3uSf3o2e/gJg7bzMwarK1ZDUsaBVwOnAp0AasktUfEI6Vqs4GpaZkOXJEeAa4FLgOWlduNiDNLx/gW8GJafQ74YERskfQOYCUwsbTr/IjoaMzozMyslZp5ZnUi0BkRmyLiFWAFMKeqzhxgWRQeBMZKmgAQEfcBL/TWuCQBHwWWp/prImJLKt4A7CNpTENHZGZmQ6KZYTUR2Fxa7+L1Zzr11unNTODZiHi8RtmHgDURsbO07Zp0CfDCFHR7kLRQUoekju7u7jq7YWZmzdbMsKoVCDGIOr05i3RW9boGpaOBS4BPlzbPj4hjKAJuJvDxWg1GxFURUYmIyvjx4+vshpmZNVszw6oLOKS0PgnYMog6e5DUBpwB3FS1fRJwG7AgIp7o2R4Rz6TH7cCNFJcozcxsmGhmWK0CpkqaImk0MA9or6rTDixIswJnAC9GxNY62j4FeCwiuno2SBoL3AlcEBH3l7a3SRqXnu8NnA6sx8zMho2mhVVE7ALOp5iV9yhwc0RskLRI0qJU7S5gE9AJXA38ac/+kpYDDwBHSuqS9KlS8/PY8xLg+cDbgAurpqiPAVZKWgesBZ5JxzIzs2FCEfXeIvrdUqlUoqPDM93NzAZC0uqIqDS6XX+ChZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZa6unkqRDa22PiKcb2x0zM7M91RVWwJ1AAAL2AaYAG4Gjm9QvMzOz36rrMmBEHBMRx6bHqcCJwP/rbz9JsyRtlNQpaXGNcklaksrXSZpWKlsqaZuk9VX73CRpbVqekrS2VHZBamujpA+Uth8v6eFUtkSS6hm3mZnlYVD3rCLiJ8AJfdWRNAq4HJgNHAWcJemoqmqzgalpWQhcUSq7FphV49hnRsRxEXEc8D3g1nS8o4B5FGd7s4DvpD6Q2l1YOtYe7ZrlLnbv5if/fAM/ar+MV15+aai7Y9ZS9d6z+mxpdS/geKC7n91OBDojYlNqYwUwB3ikVGcOsCwiAnhQ0lhJEyJia0TcJ2lyH30S8FHg5FJbKyJiJ/CkpE7gRElPAQdGxANpv2XAXODu/kdulo+1993Et+78IhFB9/NPc8a5lw51l8xapt4zqwOA/dMyGvg+8Mf97DMR2Fxa70rbBlqnNzOBZyPi8X7ampie93sMSQsldUjq6O7uL4vNWmvnr39FEOylvfjVy78c6u6YtVS9EyzuAr4ATC7tsxg4to99at0XikHU6c1ZwPI62qr7GBFxFXAVQKVSqbcfZi1x/ElnM2/bk7y04xd88CNfHOrumLVUvWF1PfA5YD2wu859uoBDSuuTgC2DqLMHSW3AGRSXI/trqys9H9AxzHKz9z778ccLvj7U3TAbEvVeBuyOiO9HxJMR8bOepZ99VgFTJU2RNJpi8kN7VZ12YEGaFTgDeDEittbRn1OAxyKifHmvHZgnaYykKRQTKR5K7W2XNCPd51oA3FHHMczMLBP1nlldJOnvgR8CO3s2RsStve0QEbsknQ+sBEYBSyNig6RFqfxKisuLpwGdwA7g3J79JS0HTgLGSeoCLoqI76biebz+EiCp7ZspJnDsAv4sIl5NxedRzC7cl2JihSdXmJkNIyom4vVTSboe+A/ABl67DBgR8ckm9m1IVSqV6OjoGOpumJkNK5JWR0Sl0e3We2b1zog4ptEHNzMzq0e996werPEHvWZmZi1R75nVu4FzJD1Jcc9KFJcB+5q6bmZm1hD1hpU/nsjMzIZMXWFVxzR1MzOzpvGXL5qZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZa+pYSVplqSNkjolLa5RLklLUvk6SdNKZUslbZO0vsZ+n0ntbpB0ado2X9La0rJb0nGp7J5Uv6fs4CYO28zMGqzebwoeMEmjgMuBU4EuYJWk9oh4pFRtNjA1LdOBK9IjwLXAZcCyqnbfB8wBjo2InT3BExE3ADekOscAd0TE2tKu8yOio5FjNDOz1mjmmdWJQGdEbIqIV4AVFCFTNgdYFoUHgbGSJgBExH3ACzXaPQ/4RkTsTPW21ahzFrC8QeMwM7Mh1sywmghsLq13pW0DrVPtCGCmpB9LulfSCTXqnMmeYXVNugR4oSTValjSQkkdkjq6u7v76YaZmbVKM8OqViDEIOpUawMOAmYAnwduLoePpOnAjogo3+uaHxHHADPT8vFaDUfEVRFRiYjK+PHj++mGmZm1SjPDqgs4pLQ+CdgyiDq12r01XTp8CNgNjCuVz6PqrCoinkmP24EbKS5RmpnZMNHMsFoFTJU0RdJoihBpr6rTDixIswJnAC9GxNZ+2r0dOBlA0hHAaOC5tL4X8BGK+2OkbW2SxqXnewOnA3vMMDQzs3w1bTZgROySdD6wEhgFLI2IDZIWpfIrgbuA04BOYAdwbs/+kpYDJwHjJHUBF0XEd4GlwNI0pf0V4JyI6Ll0+B6gKyI2lboyBliZgmoU8APg6iYN28zMmkCvvc9bWaVSiY4Oz3Q3MxsISasjotLodv0JFmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2mhpWkmZJ2iipU9LiGuWStCSVr5M0rVS2VNI2Setr7PeZ1O4GSZembZMlvSxpbVquLNU/XtLD6ThLJKlZYzYzs8ZrWlhJGgVcDswGjgLOknRUVbXZwNS0LASuKJVdC8yq0e77gDnAsRFxNPDNUvETEXFcWhaVtl+R2u851h7tmplZvpp5ZnUi0BkRmyLiFWAFRciUzQGWReFBYKykCQARcR/wQo12zwO+ERE7U71tfXUitXdgRDwQEQEsA+a+gXGZmVmLNTOsJgKbS+tdadtA61Q7Apgp6ceS7pV0QqlsiqQ1afvM0jG66jmGpIWSOiR1dHd399MNMzNrlbYmtl3rvlAMok61NuAgYAZwAnCzpMOBrcChEfG8pOOB2yUdPZBjRMRVwFUAlUqlv36YmVmLNPPMqgs4pLQ+CdgyiDq12r01XTp8CNgNjIuInRHxPEBErAaeoDgL60rtDuQYZmaWkWaG1SpgqqQpkkYD84D2qjrtwII0K3AG8GJEbO2n3duBkwEkHQGMBp6TND5N6iCdaU0FNqX2tkuakWYBLgDuaMwQzcysFZp2GTAidkk6H1gJjAKWRsQGSYtS+ZXAXcBpQCewAzi3Z39Jy4GTgHGSuoCLIuK7wFJgaZrS/gpwTkSEpPcAX5W0C3gVWBQRPRM0zqOYXbgvcHdazMxsmFAxQc6qVSqV6OjoGOpumJkNK5JWR0Sl0e36EyzMzCx7DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DU1rCTNkrRRUqekxTXKJWlJKl8naVqpbKmkbZLW19jvM6ndDZIuTdtOlbRa0sPp8eRS/XtS/bVpObhZYzYzs8Zra1bDkkYBlwOnAl3AKkntEfFIqdpsYGpapgNXpEeAa4HLgGVV7b4PmAMcGxE7S8HzHPDBiNgi6R3ASmBiadf5EdHRwCGamVmLNPPM6kSgMyI2RcQrwAqKkCmbAyyLwoPAWEkTACLiPuCFGu2eB3wjInametvS45qI2JLqbAD2kTSm4aMyM7OWa2ZYTQQ2l9a7eP2ZTr11qh0BzJT0Y0n3SjqhRp0PAWt6Ai25Jl0CvFCSajUsaaGkDkkd3d3d/XTDzMxapZlhVSsQYhB1qrUBBwEzgM8DN5fDR9LRwCXAp0v7zI+IY4CZafl4rYYj4qqIqEREZfz48f10w8zMWqWZYdUFHFJanwRsGUSdWu3emi4dPgTsBsYBSJoE3AYsiIgnenaIiGfS43bgRopLlGZmNkw0M6xWAVMlTZE0GpgHtFfVaQcWpFmBM4AXI2JrP+3eDpwMIOkIYDTwnKSxwJ3ABRFxf09lSW2SesJsb+B0YI8ZhmZmlq+mhVVE7ALOp5iV9yhwc0RskLRI0qJU7S5gE9AJXA38ac/+kpYDDwBHSuqS9KlUtBQ4PE1pXwGcExGRjvU24MKqKepjgJWS1gFrgWfSsczMbJhQ8T5v1SqVSnR0eKa7mdlASFodEZVGt+tPsDAzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsucvX+yFpG7gV8BzQ92XJhnHyB0bjOzxeWzD10ge3zjgMYCImNXoxh1WfZDU0YxvvMzBSB4bjOzxeWzD10geX7PH5suAZmaWPYeVmZllz2HVt6uGugNNNJLHBiN7fB7b8DWSx9fUsfmelZmZZc9nVmZmlj2HlZmZZW9Eh5WkWZI2SuqUtLhGuSQtSeXrJE0rlS2VtE3S+qp93izpnyQ9nh4Pqio/VNJLkj7XvJG1fmySjpX0gKQNkh6WtM9IGZ+kvSVdl8b1qKQLhuHYPpJem92SKlVlF6S2Nkr6QPNG9tvjtWx8kk6VtDq9dqslnTxSxlYqH87vKX39Xg7sPSUiRuQCjAKeAA4HRgM/BY6qqnMacDcgYAbw41LZe4BpwPqqfS4FFqfni4FLqsq/B/wf4HMjZWxAG7AOeGda/z1g1Aga39nAivR8P+ApYPIwG9vbgSOBe4BKaftR6RhjgCnp2MPxtettfO8C3pqevwN4ZqSMrVQ+nN9TenvdBvyeMpLPrE4EOiNiU0S8AqwA5lTVmQMsi8KDwFhJEwAi4j7ghRrtzgGuS8+vA+b2FEiaC2wCNjRwHLW0emx/BKyLiJ+m/Z+PiFcbOaAqrR5fAG+S1AbsC7wC/LKB4ylrytgi4tGI2FjjeHMognhnRDwJdKY+NEtLxxcRayJiS1rdAOwjaUwDx1PW6tdu2L+n9DG2Ab+njOSwmghsLq13pW0DrVPtLRGxFSA9Hgwg6U3AXwJfeQN9rldLxwYcAYSklZJ+IukvBt3z+rR6fLdQfLTWVuBp4JsRUSvsGqFZY3sjx2ukVo+v7EPAmojY2YC2amnp2EbIe0pvBvye0jbIAw0HqrGtep5+PXXq9RXg2xHxklSr2YZq9djagHcDJwA7gB9KWh0RPxxke/1p9fhOBF4F3gocBPxI0g8iYtMg2+tLq8fWyLYadbyG90nS0cAlFP9jbxa/p/Rfp14Dfk8ZyWHVBRxSWp8EbBlEnWrPSpoQEVvTKfC2tH068GFJlwJjgd2Sfh0Rlw12AH1o9di6gHsj4jkASXdRXJ9uVli1enxnA/8QEb8Btkm6H6hQXH5ptGaN7Y0cr5FaPT4kTQJuAxZExBODbacOrR7bSHhP6et4A3pPGcmXAVcBUyVNkTQamAe0V9VpBxakWS4zgBd7LhP1oR04Jz0/B7gDICJmRsTkiJgM/C3w1036pYIWjw1YCRwrab90X+e9wCONGEgvWj2+p4GTU1tvorh5/FgjBlJDs8bWm3ZgnqQxkqYAU4GHBtv5OrR0fJLGAncCF0TE/W+g3/Vo6dhGyHtKbwb+ntLX7IvhvlDMXvlXilkuX0zbFgGL0nMBl6fyh3n9bJXlFPcwfkPxv4BPxWuzVn4IPJ4e31zjuBfTxJk7QzE24GMUN3nXA5eOpNcO2J9ittWG9A/m88NwbP85re8EngVWlvb5YmprIzB7mL52NccHfInifuPa0nLwSBhb1XEvZni+p/T1ezmg9xR/3JKZmWVvJF8GNDOzEcJhZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FllglJk6s/tbqf+p+Q9NZm9sksFw4rs+HrExQfEWU24jmszPLSpuK7tdZJuiX9hf/xku5V8X1NKyVNkPRhio+EukHSWkn7SvqypFWS1ku6Si34QDmzVvEfBZtlQtJk4Eng3RFxv6SlwKMUnwIwJyK6JZ0JfCAiPinpHopPNehI+7850qfFS/rfwM0R8f2hGItZo43kD7I1G442x2ufcXc98AWKLxX8p3SiNIriY21qeV/6qoX9gDdTfJSNw8pGBIeVWV6qL3VsBzZExB/0tZOKrwT/DsXntW2WdDHQ99eEmw0jvmdllpdDJfUE01nAg8D4nm2S9k7f3QRFkB2QnvcE03OS9gc+3KoOm7WCw8osL48C50haR3Ep739SBM8lkn5K8ani/zHVvRa4UtJaik+1vpri07Bvp/jKB7MRwxMszMwsez6zMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiszM8ve/wef+IbfqferiwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta nu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEWCAYAAADGjIh1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbWElEQVR4nO3de5SddX3v8ffHBPBCbLCEFkIw4RSs0FKhI9AiaqmWy2lXOL1GqyC9UFzigdbaAu2yamtbXVUrLZWDlRaOKFJBT84plqpHbY8tlwlEIMSUcFFSUgmoXASDge/543lStuOQzITZe34T3q+19prn8vv9nuc7e7I/eZ79mz2pKiRJasEzZvsEJEnaylCSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkuaYJC9PsmG2z2NQkjVJXr6N/eck+evRnZHmKkNJI5XkziSPJHkoyVeT/E2S3Wf7vLYlydIklWT+DI33zCTfSHLMJPvem+RjM3GcHdHX+c3++fn3JO9JMm97/arq4Kr63Db2/3FV/dqMnqx2SoaSZsPPVNXuwGHAi4Hfn07ndObMz+7EMKuqbwEfBU6a0G4e8CrgotGd3aR+pH9+fhJ4NfDrT2WwmQpzPT3MmX/Y2vlU1b8DnwR+KMkeSf5Pkk1Jvt4v77u1bZLPJXlHki8ADwP7JzklydokDya5PclvDLR/eZINSX4nyT1JNiY5MckJSf4tydeSnDPQ/hlJzkpyW5L7klyW5Hn97n/qv36jv4L4sb7Pr/TH/3qSq5I8f2C8SvKGJLcCt05S/kXAzyV59sC2Y+n+TX5yW7VN1B/rBwbW/zbJHw2s/3SS1f3V2b8kOeTJn5UnVNWXgH+me37+S5L/239v7k1ySZKFA8e4M8kr+uW3JvlYkg8leQB4Xb/tQ/3+rVeeJyf5Sj/e7w2M9awkF/Xf17X9c7hhYP/v9ldxDyZZl+Qnp1KP5gZDSbMmyRLgBOAGup/FvwGeD+wHPAL85YQurwVOBRYAXwbuAX4aeC5wCvDeJIcNtP9+4JnAYuAtwAeA1wA/ChwNvCXJ/n3b/w6cCLwM2Af4OnBev++l/deFVbV7Vf1rkhOBc4CfBRbRvXh/ZML5nggcARw0sfaq+hdgY99/sL4PV9WWKdQ2JX2fC4HfAL4X+B/AyiS7TaHvQXTfpxuAAH9C9715IbAEeOs2ui8HPgYsBC55kjYvAV5Ad0X2liQv7Lf/AbAU2B94Jd1ztvWcXgCcDry4qhbQBfmd26tFc0hV+fAxsgfdC8hDwDfoguWvgGdN0u5FwNcH1j8HvH07Y38COKNffjldsM3r1xcABRwx0H4VcGK/vBb4yYF9ewPfBubTvUAWMH9g/yeBXx1YfwbdFdzz+/UCjtnO+f4+8I/98nP7/odOsbYNA/sK+IGB9b8F/qhffj/whxPGWge87EmOU8ADdKF8G/BHwDMmaXcicMOE5/UV/fJbgX+a0P6twIf65a3fz30H9l8LrOiXbweOHdj3a1vrBX6ALrBfAewy2z/PPmb+4b1ezYYTq+rTgxv621jvBY4D9ug3L0gyr6oe69fvmtDneLr/VR9IFwrPBm4aaHLfQN9H+q9fHdj/CLB1ksXzgY8neXxg/2PA9z1JDc8H3pfk3YOnRHdV9uXJzncSFwN/kGQx3f/411fVDVOsbaqeD5yc5I0D23alu+J5ModV1frBDUn2As6lu3Ja0J/T17cxxvZqB/iPgeWHeeK52GdC//9crqr1Sc6kC7mDk1wF/FZV3T2F42kO8PadWvEmuls5R1TVc3nillkG2vznR9r3t58uB/4M+L6qWghcOaH9dNwFHF9VCwcez6zufa/JPkr/LuA3JrR/VnW35b7rfCdTVV+hu+33y3S37i7ewdoepgutrb5/wnm+Y8J5PruqJt5q3J4/6es5pH9+XrON84Ht1L4dG4F9B9aXfMfAVR+uqpfQBW4B73wKx1JjDCW1YgHdlcs3+gkGf7Cd9rsCuwGbgC39lcVPPYXjnw+8Y+tkhSSLkizv920CHqd7j2Ow/dlJDu7bf0+SX9iB415E9x7JUTzx3st0a1sNvDrJvCTH0b0vttUHgNOSHJHOc5L81yQLpnmeC+hvu/ZXdm+eZv/puIzue7tHf6zTt+5I8oIkx/TB/S26n5nHnmQczUGGklrx58CzgHuBq4F/2FbjqnqQbnLCZXS3kV4NrHwKx39f3/8fkzzYn8MR/bEeBt4BfKGfwXZkVX2c7n/ol/YzzG4Gjt+B436M7nblZ6pq4w7WdgbwM3Tv0/0y3ftP9GON003p/st+rPXA63bgPN9GN4X/fuDvgSt2YIypejuwAbgD+DTd92hzv2834E/pfk7+A9iLbsKJdhKp8o/8SWpXktfTTYJ42XYba87zSklSU5LsneSo/nfHXkD3fuPHZ/u8NBrOvpPUml3pfp9qGd0tyUvpfnVATwPevpMkNcPbd5KkZjytb9/tueeetXTp0tk+DUmaU1atWnVvVS0axthP61BaunQp4+Pjs30akjSnJPny9lvtGG/fSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaMdRQSnJcknVJ1ic5a5L9SXJuv//GJIf125ck+WyStUnWJDljoM+LklydZHWS8SSHD+w7ux9rXZJjh1mbJGnmDS2UkswDzgOOBw4CXpXkoAnNjgcO6B+nAu/vt28B3lRVLwSOBN4w0PddwNuq6kXAW/p1+v0rgIOB44C/6s9BkjRHDPNK6XBgfVXdXlWPApcCyye0WQ5cXJ2rgYVJ9q6qjVV1PUBVPQisBRb3fQp4br/8PcDdA2NdWlWbq+oOYH1/DpKkOWL+EMdeDNw1sL4BOGIKbRYDG7duSLIUOBS4pt90JnBVkj+jC9UfHxjr6knG+g5JTqW7KmO//fabRjmSpGEb5pVSJtlW02mTZHfgcuDMqnqg3/x64Deragnwm8AHp3E8quqCqhqrqrFFixZtpwRJ0igNM5Q2AEsG1vfliVtt222TZBe6QLqkqq4YaHMysHX973jiFt1UjidJatgwQ+k64IAky5LsSjcJYeWENiuBk/pZeEcC91fVxiShuwJaW1XvmdDnbuBl/fIxwK0DY61IsluSZXSTJ66d+bIkScMytPeUqmpLktOBq4B5wIVVtSbJaf3+84ErgRPoJiU8DJzSdz8KeC1wU5LV/bZzqupK4NeB9yWZD3yL/v2hfuzLgFvoZu+9oaoeG1Z9kqSZl6rvetvlaWNsbKzGx8dn+zQkaU5JsqqqxoYxtp/oIElqhqEkSWqGoSRJaoahJElqhqEkSWqGoSRJaoahJElqhqEkSWqGoSRJaoahJElqhqEkSWqGoSRJaoahJElqhqEkSWqGoSRJaoahJElqhqEkSWqGoSRJaoahJElqhqEkSWqGoSRJaoahJElqhqEkSWqGoSRJaoahJElqhqEkSWqGoSRJasZQQynJcUnWJVmf5KxJ9ifJuf3+G5Mc1m9fkuSzSdYmWZPkjIE+H02yun/cmWR1v31pkkcG9p0/zNokSTNv/rAGTjIPOA94JbABuC7Jyqq6ZaDZ8cAB/eMI4P391y3Am6rq+iQLgFVJPlVVt1TVLw0c493A/QPj3VZVLxpWTZKk4RrmldLhwPqqur2qHgUuBZZPaLMcuLg6VwMLk+xdVRur6nqAqnoQWAssHuyYJMAvAh8ZYg2SpBEaZigtBu4aWN/AhGCZSpskS4FDgWsm9D0a+GpV3TqwbVmSG5J8PsnRk51UklOTjCcZ37Rp05SLkSQN3zBDKZNsq+m0SbI7cDlwZlU9MKHdq/jOq6SNwH5VdSjwW8CHkzz3uwavuqCqxqpqbNGiRVMoQ5I0KsMMpQ3AkoH1fYG7p9omyS50gXRJVV0x2CnJfOBngY9u3VZVm6vqvn55FXAbcOCMVCJJGolhhtJ1wAFJliXZFVgBrJzQZiVwUj8L70jg/qra2L9f9EFgbVW9Z5KxXwF8qao2bN2QZFE/uYIk+9NNnrh95suSJA3L0GbfVdWWJKcDVwHzgAurak2S0/r95wNXAicA64GHgVP67kcBrwVu2jrlGzinqq7sl1fw3RMcXgq8PckW4DHgtKr62lCKkyQNRaomvs3z9DE2Nlbj4+OzfRqSNKckWVVVY8MY2090kCQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1Y0qhlOSOJLdPfEyh33FJ1iVZn+SsSfYnybn9/huTHNZvX5Lks0nWJlmT5IyBPh9Nsrp/3Jlk9cC+s/ux1iU5dkrfAUlSM+ZPsd3YwPIzgV8AnretDknmAecBrwQ2ANclWVlVtww0Ox44oH8cAby//7oFeFNVXZ9kAbAqyaeq6paq+qWBY7wbuL9fPghYARwM7AN8OsmBVfXYFGuUmvDgfXcz/vlL2XvfH+QHDz9htk9HGqkphVJV3Tdh058n+X/AW7bR7XBgfVXdDpDkUmA5MBhKy4GLq6qAq5MsTLJ3VW0ENvbHfjDJWmDxYN8kAX4ROGZgrEurajNwR5L1/Tn861RqlFrx1x94PeObvshu2YU/XLgXiw8c234naScxpVDaelut9wy6K6cF2+m2GLhrYH0D3VXQ9tospg+k/thLgUOBayb0PRr4alXdOjDW1ZOM9R2SnAqcCrDffvttpwRp9L756EPsml14jMfZ/MhDs3060khN9fbdu4Hql7cAd9LdwtuWTLKtptMmye7A5cCZVfXAhHavAj4yzeNRVRcAFwCMjY19135ptv3aa97LP/z9+1i67w+z7IdfOtunI43UVEPpeODngKUDfVYAb99Gnw3AkoH1fYG7p9omyS50gXRJVV0x2CnJfOBngR+d5vGk5n3//ofwujd+cLZPQ5oVU50S/gngZ4BvAw/1j29up891wAFJliXZlS7EVk5osxI4qZ+FdyRwf1Vt7N8v+iCwtqreM8nYrwC+VFUbJoy1IsluSZbRTZ64dor1SZIaMNUrpX2r6rjpDFxVW5KcDlwFzAMurKo1SU7r958PXAmcAKwHHgZO6bsfBbwWuGlgyvc5VXVlv7yC77x1Rz/2ZXSTIbYAb3DmnSTNLekmvm2nUXIB8BdVddPwT2l0xsbGanx8fLZPQ5LmlCSrqmoo00KneqX0EuB1Se4ANtNNKqiqOmQYJyVJenqazkQHSZKGaqq/PPvlYZ+IJEl+IKskqRmGkiSpGYaSJKkZhpIkqRmGkiSpGYaSJKkZhpIkqRmGkiSpGYaSJKkZhpIkqRmGkiSpGYaSJKkZhpIkqRmGkiSpGYaSJKkZhpIkqRmGkiSpGYaSJKkZhpIkqRmGkiSpGYaSJKkZhpIkqRmGkiSpGYaSJKkZhpIkqRlDDaUkxyVZl2R9krMm2Z8k5/b7b0xyWL99SZLPJlmbZE2SMyb0e2M/7pok7+q3LU3ySJLV/eP8YdYmSZp584c1cJJ5wHnAK4ENwHVJVlbVLQPNjgcO6B9HAO/vv24B3lRV1ydZAKxK8qmquiXJTwDLgUOqanOSvQbGu62qXjSsmiRJwzXMK6XDgfVVdXtVPQpcShcmg5YDF1fnamBhkr2ramNVXQ9QVQ8Ca4HFfZ/XA39aVZv7/fcMsQZJ0ggNM5QWA3cNrG/giWCZcpskS4FDgWv6TQcCRye5Jsnnk7x4oPmyJDf024+e7KSSnJpkPMn4pk2bpl2UJGl4hhlKmWRbTadNkt2By4Ezq+qBfvN8YA/gSODNwGVJAmwE9quqQ4HfAj6c5LnfNXjVBVU1VlVjixYtmm5NkqQhGmYobQCWDKzvC9w91TZJdqELpEuq6ooJfa7ob/ldCzwO7FlVm6vqPoCqWgXcRndVJUmaI4YZStcBByRZlmRXYAWwckKblcBJ/Sy8I4H7q2pjf+XzQWBtVb1nQp9PAMcAJDkQ2BW4N8mifnIFSfanmzxx+5BqkyQNwdBm31XVliSnA1cB84ALq2pNktP6/ecDVwInAOuBh4FT+u5HAa8Fbkqyut92TlVdCVwIXJjkZuBR4OSqqiQvBd6eZAvwGHBaVX1tWPVJkmZeqia+zfP0MTY2VuPj47N9GpI0pyRZVVVjwxjbT3SQJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1Y6ihlOS4JOuSrE9y1iT7k+Tcfv+NSQ7rty9J8tkka5OsSXLGhH5v7Mddk+RdA9vP7sdal+TYYdYmSZp584c1cJJ5wHnAK4ENwHVJVlbVLQPNjgcO6B9HAO/vv24B3lRV1ydZAKxK8qmquiXJTwDLgUOqanOSvfrjHQSsAA4G9gE+neTAqnpsWDVKkmbWMK+UDgfWV9XtVfUocCldmAxaDlxcnauBhUn2rqqNVXU9QFU9CKwFFvd9Xg/8aVVt7vffMzDWpVW1uaruANb35yBJmiOGGUqLgbsG1jfwRLBMuU2SpcChwDX9pgOBo5Nck+TzSV48jeOR5NQk40nGN23aNL2KJElDNcxQyiTbajptkuwOXA6cWVUP9JvnA3sARwJvBi5Lkikej6q6oKrGqmps0aJF269CkjQywwylDcCSgfV9gbun2ibJLnSBdElVXTGhzxX9Lb9rgceBPad4PElSw4YZStcBByRZlmRXukkIKye0WQmc1M/COxK4v6o29lc+HwTWVtV7JvT5BHAMQJIDgV2Be/uxViTZLckyuskT1w6pNknSEAxt9l1VbUlyOnAVMA+4sKrWJDmt338+cCVwAt2khIeBU/ruRwGvBW5Ksrrfdk5VXQlcCFyY5GbgUeDkqipgTZLLgFvoZu+9wZl3kjS3pHs9f3oaGxur8fHx2T4NSZpTkqyqqrFhjO0nOkiSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpphKEmSmmEoSZKaYShJkpqRqprtc5g1STYBXwb2BO6d5dMZFmubu3bm+qxt7toTeE5VLRrG4E/rUNoqyXhVjc32eQyDtc1dO3N91jZ3Dbs+b99JkpphKEmSmmEodS6Y7RMYImubu3bm+qxt7hpqfb6nJElqhldKkqRmGEqSpGbsFKGU5Lgk65KsT3LWJPuT5Nx+/41JDhvYd2GSe5LcPKHP85J8Ksmt/dc9JuzfL8lDSX57eJWNvrYkhyT51yRrktyU5Jk7Q21JdklyUV/T2iRnD6uuIdf3C/1z83iSsQn7zu7HWpfk2OFVNtrakrwyyar+uVuV5JidpbaB/SN5PemPNeqfy+m9plTVnH4A84DbgP2BXYEvAgdNaHMC8EkgwJHANQP7XgocBtw8oc+7gLP65bOAd07Yfznwd8Bv7yy1AfOBG4Ef6de/F5i3k9T2auDSfvnZwJ3A0jn43L0QeAHwOWBsYPtB/TF2A5b1x55rz92T1XYosE+//EPAv+8sz9vA/qG/nszSczft15Sd4UrpcGB9Vd1eVY8ClwLLJ7RZDlxcnauBhUn2BqiqfwK+Nsm4y4GL+uWLgBO37khyInA7sGYG65jMqGv7KeDGqvpi3/++qnpsJgsaMOraCnhOkvnAs4BHgQdmsJ6JhlJfVa2tqnWTHG85Xehurqo7gPX9OQzDSGurqhuq6u5+dQ3wzCS7zWA9g0b9vI3y9QRGX9+0X1N2hlBaDNw1sL6h3zbdNhN9X1VtBOi/7gWQ5DnA7wJvewrnPFUjrQ04EKgkVyW5Psnv7PCZb9+oa/sY8E1gI/AV4M+qarJQmynDqu+pHG+mjLq2QT8H3FBVm2dgrMmMtLYRv57A6J+7ab+mzN/BA7Ukk2ybOM99Km2m6m3Ae6vqoWSyYWfUqGubD7wEeDHwMPCZJKuq6jM7ON62jLq2w4HHgH2APYB/TvLpqrp9B8fbnlHXN5NjzcSxZvx8khwMvJPuf9/DsjO/nsAceE3ZGUJpA7BkYH1f4O4daDPRV5PsXVUb+0vXe/rtRwA/n+RdwELg8STfqqq/3NECtmHUtW0APl9V9wIkuZLu/vEwQmnUtb0a+Ieq+jZwT5IvAGN0t02GYVj1PZXjzZRR10aSfYGPAydV1W07Os4UjLq2Ub6ewOz8XE7rNWVnuH13HXBAkmVJdgVWACsntFkJnNTPKjkSuH/rLZ5tWAmc3C+fDPwvgKo6uqqWVtVS4M+BPx7iD9BIawOuAg5J8uz+vZeXAbfMRCGTGHVtXwGO6cd6Dt0buF+aiUKexLDqezIrgRVJdkuyDDgAuHZHT347RlpbkoXA3wNnV9UXnsJ5T8VIaxvx6wmM/udy+q8p25oFMVcedLNF/o1uVsnv9dtOA07rlwOc1++/ie+cHfIRuvcZvk2X6r9aT8wS+Qxwa//1eZMc960Mf7bMSGsDXkP3huvNwLt2ltqA3elmN63p/1G8eY7+XP63fn0z8FXgqoE+v9ePtQ44fmepDfh9uvcDVw889toZaptw3Lcy5NeTWfq5nNZrih8zJElqxs5w+06StJMwlCRJzTCUJEnNMJQkSc0wlCRJzTCUpBFKsnTiJyxvp/3rkuwzzHOSWmIoSW17Hd1HI0lPC4aSNHrz0/1tpxuTfKz/bfcfTfL5dH8v6Kokeyf5ebqPQrokyeokz0ryliTXJbk5yQUZ0QemSaPiL89KI5RkKXAH8JKq+kKSC4G1dL8Rv7yqNiX5JeDYqvqVJJ+j+y3/8b7/86r/dPMk/xO4rKr+92zUIg3DzvCBrNJcc1c98RluHwLOofvjdZ/qL3zm0X2Uy2R+ov/4/2cDz6P7+BZDSTsNQ0kavYm3Jx4E1lTVj22rU7o/I/1XdJ9FdleStwJD+3P10mzwPSVp9PZLsjWAXgVcDSzaui3JLv3fDoIusBb0y1sD6N4kuwM/P6oTlkbFUJJGby1wcpIb6W7B/QVdwLwzyRfpPgX7x/u2fwucn2Q13Scwf4Duk5s/QfdnCKSdihMdJEnN8EpJktQMQ0mS1AxDSZLUDENJktQMQ0mS1AxDSZLUDENJktSM/w+tSrX4OAwnVgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta lamb\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEWCAYAAADGjIh1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfrklEQVR4nO3dfZQddZ3n8fcnnUeetlEaDUkgQQMaEELmGjI7gm4ESbJK4+icjQ8L4rgxc8zs7LI+BJmDgDLj4zKyIllwM4YVJptlhrEXwYjuBkc0JB1JAgGinfCQJi1pwCAxGEz47h/1aykuN+nbTdft6u7P65w6fat+v6r6fXOb+6Hq/vpeRQRmZmZlMGqwB2BmZtbDoWRmZqXhUDIzs9JwKJmZWWk4lMzMrDQcSmZmVhoOJbMhRtI7JHUO9jjyJG2R9I5DtH9W0rcaNyIbqhxK1lCSHpX0vKQ9kp6U9PeSjhjscR2KpKmSQtLoATreeEm7Jc2t0XaNpFsH4jz9ker8bXp+npD0XyU19bZfRJwSEWsO0f43EfGxAR2sDUsOJRsM74mII4BZwFuBv+7LzsoMmd/d6jCLiN8B/wu4sKpfE/ABYEXjRlfT6en5eSfwQeA/vJqDDVSY28gwZP7DtuEnIp4A7gROlXS0pNsldUv6dXo8uaevpDWSrpZ0D7AXOFHSxZIekvScpO2SPp7r/w5JnZI+LWmXpC5JF0haIOkXkp6R9Nlc/1GSlkraJulpSaskvSY1/zj93J2uIP447fPRdP5fS1ot6YTc8ULSJyT9EvhljfJXAO+TdFhu23lk/03eeajaqqVzvTG3/m1JX8itv1vSxnR19lNJpx38WXlJRDwM/AvZ8/MGSf83/ds8JelmSc25czwq6Zz0+ApJt0r6jqTfAB9J276T2nuuPC+S9Hg63mW5Y02QtCL9uz6UnsPOXPtn0lXcc5K2SnpnPfXY0OBQskEjaQqwALiP7Hfx74ETgOOB54FvVO3y74FFwJHAY8Au4N3AUcDFwDWSZuX6vx4YD0wCLgduBD4M/BFwFnC5pBNT3/8IXAC8HTgO+DVwXWo7O/1sjogjIuJnki4APgv8KdBC9uL9D1XjvQA4E5hRXXtE/BToSvvn67slIvbXUVtd0j7LgY8DrwX+O9AmaVwd+84g+3e6DxDwt2T/Nm8GpgBXHGL3VuBWoBm4+SB93gacTHZFdrmkN6ftnwOmAicC55I9Zz1jOhlYArw1Io4kC/JHe6vFhpCI8OKlYQvZC8geYDdZsHwTmFCj30zg17n1NcBVvRz7n4G/So/fQRZsTWn9SCCAM3P9NwAXpMcPAe/MtU0Efg+MJnuBDGB0rv1O4M9z66PIruBOSOsBzO1lvH8N/CA9Pirtf0adtXXm2gJ4Y27928AX0uPrgc9XHWsr8PaDnCeA35CF8jbgC8CoGv0uAO6rel7PSY+vAH5c1f8K4Dvpcc+/5+Rc+zpgYXq8HTgv1/axnnqBN5IF9jnAmMH+ffYy8Ivv9dpguCAifpjfkG5jXQPMA45Om4+U1BQRB9L6jqp95pP9X/VJZKFwGHB/rsvTuX2fTz+fzLU/D/RMsjgBuE3Si7n2A8DrDlLDCcDXJX0tPySyq7LHao23hpuAz0maRPZ//B0RcV+dtdXrBOAiSX+Z2zaW7IrnYGZFREd+g6RjgWvJrpyOTGP69SGO0VvtAL/KPd7LS8/FcVX7/+FxRHRI+k9kIXeKpNXAJRGxs47z2RDg23dWFv+F7FbOmRFxFC/dMlOuzx8+0j7dfvpH4KvA6yKiGbijqn9f7ADmR0Rzbhkf2ftetT5Kfwfw8ar+EyK7LfeK8dYSEY+T3fb7ENmtu5v6WdtestDq8fqqcV5dNc7DIqL6VmNv/jbVc1p6fj58iPFAL7X3oguYnFuf8rIDR9wSEW8jC9wAvvQqzmUl41CysjiS7Mpld5pg8Lle+o8FxgHdwP50ZfGuV3H+ZcDVPZMVJLVIak1t3cCLZO9x5PtfKumU1P9fSfqzfpx3Bdl7JH/CS++99LW2jcAHJTVJmkf2vliPG4HFks5U5nBJ/1bSkX0c55Gk267pyu5Tfdy/L1aR/dsenc61pKdB0smS5qbg/h3Z78yBgxzHhiCHkpXF3wETgKeAtcD3D9U5Ip4jm5ywiuw20geBtldx/q+n/X8g6bk0hjPTufYCVwP3pBlscyLiNrL/Q1+ZZpg9AMzvx3lvJbtd+aOI6OpnbX8FvIfsfboPkb3/RDpWO9mU7m+kY3UAH+nHOK8km8L/LPA94J/6cYx6XQV0Ao8APyT7N9qX2sYBXyT7PfkVcCzZhBMbJhThL/kzs/KS9BdkkyDe3mtnG/J8pWRmpSJpoqQ/SX87djLZ+423Dfa4rDE8+87MymYs2d9TTSO7JbmS7E8HbATw7TszMysN374zM7PSGNG374455piYOnXqYA/DzGxI2bBhw1MR0VLEsUd0KE2dOpX29vbBHoaZ2ZAi6bHee/WPb9+ZmVlpOJTMzKw0HEpmZlYaDiUzMysNh5KZmZWGQ8nMzErDoWRmZqXhUDIzs9JwKJmZWWk4lMzMrDQcSmZmVhoOJTMzKw2HkpmZlYZDyczMSsOhZGZmpeFQMjOz0nAomZlZaRQaSpLmSdoqqUPS0hrtknRtat8saVbaPl7SOkmbJG2RdGVunyskPSFpY1oWpO1TJT2f276syNrMzGzgFfZ16JKagOuAc4FOYL2ktoh4MNdtPjA9LWcC16ef+4C5EbFH0hjgJ5LujIi1ab9rIuKrNU67LSJmFlORmZkVrcgrpdlAR0Rsj4gXgJVAa1WfVuCmyKwFmiVNTOt7Up8xaYkCx2pmZiVQZChNAnbk1jvTtrr6SGqStBHYBdwVEffm+i1Jt/uWSzo6t32apPsk3S3prFqDkrRIUruk9u7u7v5VZmZmhSgylFRjW/XVzkH7RMSBdCtuMjBb0qmp/XrgDcBMoAv4WtreBRwfEWcAlwC3SDrqFQePuCEiKhFRaWlp6VtFZmZWqCJDqROYklufDOzsa5+I2A2sAeal9SdTYL0I3Eh2m5CI2BcRT6fHG4BtwEkDVIuZmTVAkaG0HpguaZqkscBCoK2qTxtwYZqFNwd4NiK6JLVIagaQNAE4B3g4rU/M7f9e4IG0vSVNrkDSiWSTJ7YXVp2ZmQ24wmbfRcR+SUuA1UATsDwitkhanNqXAXcAC4AOYC9wcdp9IrAihcwoYFVE3J7avixpJtltvkeBj6ftZwNXSdoPHAAWR8QzRdVnZmYDTxEjd1JbpVKJ9vb2wR6GmdmQImlDRFSKOLY/0cHMzErDoWRmZqXhUDIzs9JwKJmZWWk4lMzMrDQcSmZmVhoOJTMzKw2HkpmZlYZDyczMSsOhZGZmpeFQMjOz0nAomZlZaTiUzMysNBxKZmZWGg4lMzMrDYeSmZmVhkPJzMxKw6FkZmal4VAyM7PScCiZmVlpFBpKkuZJ2iqpQ9LSGu2SdG1q3yxpVto+XtI6SZskbZF0ZW6fKyQ9IWljWhbk2i5Nx9oq6bwiazMzs4E3uqgDS2oCrgPOBTqB9ZLaIuLBXLf5wPS0nAlcn37uA+ZGxB5JY4CfSLozItam/a6JiK9WnW8GsBA4BTgO+KGkkyLiQFE1mpnZwCrySmk20BER2yPiBWAl0FrVpxW4KTJrgWZJE9P6ntRnTFqil/O1AisjYl9EPAJ0pDGYmdkQUWQoTQJ25NY707a6+khqkrQR2AXcFRH35votSbf7lks6ug/nQ9IiSe2S2ru7u/tRlpmZFaXIUFKNbdVXOwftExEHImImMBmYLenU1H498AZgJtAFfK0P5yMiboiISkRUWlpaeqvBzMwaqMhQ6gSm5NYnAzv72icidgNrgHlp/ckUWC8CN/LSLbp6zmdmZiVWZCitB6ZLmiZpLNkkhLaqPm3AhWkW3hzg2YjoktQiqRlA0gTgHODhtD4xt/97gQdyx1ooaZykaWSTJ9YVVJuZmRWgsNl3EbFf0hJgNdAELI+ILZIWp/ZlwB3AArJJCXuBi9PuE4EVaQbfKGBVRNye2r4saSbZrblHgY+n422RtAp4ENgPfMIz78zMhhZF9DapbfiqVCrR3t4+2MMwMxtSJG2IiEoRx/YnOpiZWWk4lMzMrDQcSmZmVhoOJTMzKw2HkpmZlYZDyczMSsOhZGZmpeFQMjOz0nAomZlZaTiUzMysNBxKZmZWGg4lMzMrDYeSmZmVhkPJzMxKw6FkZmal4VAyM7PScCiZmVlpOJTMzKw0HEpmZlYaDiUzMyuNQkNJ0jxJWyV1SFpao12Srk3tmyXNStvHS1onaZOkLZKurLHvJyWFpGPS+lRJz0vamJZlRdZmZmYDb3RRB5bUBFwHnAt0AusltUXEg7lu84HpaTkTuD793AfMjYg9ksYAP5F0Z0SsTceeko77eNVpt0XEzKJqMjOzYhV5pTQb6IiI7RHxArASaK3q0wrcFJm1QLOkiWl9T+ozJi2R2+8a4NNV28zMbIgrMpQmATty651pW119JDVJ2gjsAu6KiHvT9vOBJyJiU41zTpN0n6S7JZ1Va1CSFklql9Te3d3dn7rMzKwgRYaSamyrvrI5aJ+IOJBuxU0GZks6VdJhwGXA5TX26wKOj4gzgEuAWyQd9YqDR9wQEZWIqLS0tNRfjZmZFa7IUOoEpuTWJwM7+9onInYDa4B5wBuAacAmSY+m/j+X9PqI2BcRT6d9NgDbgJMGqBYzM2uAIkNpPTBd0jRJY4GFQFtVnzbgwjQLbw7wbER0SWqR1AwgaQJwDvBwRNwfEcdGxNSImEoWarMi4ldpn6a0z4lkkye2F1ifmZkNsMJm30XEfklLgNVAE7A8IrZIWpzalwF3AAuADmAvcHHafSKwIoXMKGBVRNzeyynPBq6StB84ACyOiGcGui4zMyuOIkbuBLZKpRLt7e2DPQwzsyFF0oaIqBRxbH+ig5mZlYZDyczMSsOhZGZmpeFQMjOz0nAomZlZaTiUzMysNBxKZmZWGg4lMzMrDYeSmZmVhkPJzMxKw6FkZmal4VAyM7PScCiZmVlp1P3VFZJeD8wm+2bY9RHxq8JGZWZmI1JdV0qSPgasA/4UeD+wVtJHixyYmZmNPPVeKX0KOKPn68YlvRb4KbC8qIGZmdnIU+97Sp3Ac7n154AdAz8cMzMbyQ55pSTpkvTwCeBeSd8le0+plex2npmZ2YDp7fbdkenntrT0+G4xwzEzs5HskKEUEVc2aiBmZmb1zr6rSLpN0s8lbe5Z6thvnqStkjokLa3RLknXpvbNkmal7eMlrZO0SdIWSa8IR0mflBSSjsltuzQda6uk8+qpzczMyqPe2Xc3k83Aux94sZ4dJDUB1wHnkk2UWC+pLSIezHWbD0xPy5nA9ennPmBuROyRNAb4iaQ7I2JtOvaUdNzHc+ebASwETgGOA34o6aSIOFBnjWal8NzTO2m/eyUTJ7+JN81eMNjDMWuoekOpOyLa+njs2UBHRGwHkLSSbIJEPpRagZsiIsj+9qlZ0sSI6AL2pD5j0hK5/a4BPs3L39tqBVZGxD7gEUkdaQw/6+O4zQbVt278C9q7NzFOY/h887FMOqky2EMya5h6Q+lzkr4F/IjsKgaAiPinQ+wziZdPG+8kuwrqrc8koCtdaW0A3ghcFxH3Akg6H3giIjZJqj7W2hrHehlJi4BFAMcff/whhm82OH77wh7GagwHeJF9z+/pfQezYaTeULoYeBPZFUvP7bsADhVKqrEt6u2TbrvNlNQM3CbpVGA7cBnwrn6ej4i4AbgBoFKpvKLdbLB97MPX8P3vfZ2pk9/CtLecPdjDMWuoekPp9Ih4Sx+P3QlMya1PBnb2tU9E7Ja0BpgHrAamAT1XSZOBn0uaXef5zErv9Seexkf+8n8M9jDMBkW9n+iwNk0k6Iv1wHRJ0ySNJZuEUP2+VBtwYZqFNwd4NiK6JLWkKyQkTQDOAR6OiPsj4tiImBoRU8mCaFb6cNg2YKGkcZKmkU2e8B/4mpkNIfVeKb0NuEjSI2TvKQmIiDjtYDtExH5JS8iubpqA5RGxRdLi1L4MuANYAHQAe8luEwJMBFak95VGAasi4vZDDTAdexXZRIr9wCc8887MbGhRNvGtl07SCbW2R8RjAz6iBqpUKtHe3j7YwzAzG1IkbYiIQqaF1nWl1BM+ko4FxhcxEDMzs3o/0eF8Sb8EHgHuBh4F7ixwXGZmNgLVO9Hh88Ac4BcRMQ14J3BPYaMyM7MRqd5Q+n36gr9RkkZFxP8DZhY3LDMzG4nqnX23W9IRwI+BmyXtIpvhZmZmNmDqvVJqBZ4H/jPwfbLvVnpPUYMyM7ORqd7Zd7/Nra4oaCxmZjbC9fZ16M9R4/PjeOmPZ48qZFRmZjYi9fbNs0ceqt3MzGwg1fuekpmZWeEcSmZmVhoOJTMzKw2HkpmZlYZDyczMSsOhZGZmpeFQMjOz0nAomZlZaTiUzMysNBxKZmZWGg4lMzMrjUJDSdI8SVsldUhaWqNdkq5N7ZslzUrbx0taJ2mTpC2Srszt8/nUd6OkH0g6Lm2fKun5tH2jpGVF1mZmZgOvsFCS1ARcB8wHZgAfkDSjqtt8YHpaFgHXp+37gLkRcTrZN9zOkzQntX0lIk6LiJnA7cDlueNti4iZaVlcQFlmZlagIq+UZgMdEbE9Il4AVpJ9WWBeK3BTZNYCzZImpvU9qc+YtARARPwmt//h1P5qDTMzG4KKDKVJwI7cemfaVlcfSU2SNgK7gLsi4t6eTpKulrQD+BAvv1KaJuk+SXdLOqvWoCQtktQuqb27u7ufpZmZWRGKDCXV2FZ9VXPQPhFxIN2imwzMlnTqHzpEXBYRU4CbgSVpcxdwfEScAVwC3CLpFV9CGBE3REQlIiotLS19rcnMzApUZCh1AlNy65OBnX3tExG7gTXAvBrnuAV4X+q3LyKeTo83ANuAk/o9ejMza7giQ2k9MF3SNEljgYVAW1WfNuDCNAtvDvBsRHRJapHUDCBpAnAO8HBan57b//zc9pY0uQJJJ5JNntheWHVmZjbgDvl16K9GROyXtARYDTQByyNii6TFqX0ZcAewAOgA9gIXp90nAitSyIwCVkXE7anti5JOBl4EHgN6ZtmdDVwlaT9wAFgcEc8UVZ+ZmQ08RYzcyWuVSiXa29sHexhmZkOKpA0RUSni2P5EBzMzKw2HkpmZlYZDyczMSsOhZGZmpeFQMjOz0nAomZlZaTiUzMysNBxKZmZWGg4lMzMrDYeSmZmVhkPJzMxKw6FkZmal4VAyM7PScCiZmVlpOJTMzKw0HEpmZlYaDiUzMysNh5KZmZWGQ8nMzErDoWRmZqVRaChJmidpq6QOSUtrtEvStal9s6RZaft4SeskbZK0RdKVuX0+n/pulPQDScfl2i5Nx9oq6bwiazMzs4FXWChJagKuA+YDM4APSJpR1W0+MD0ti4Dr0/Z9wNyIOB2YCcyTNCe1fSUiTouImcDtwOXpfDOAhcApwDzgm2kMZmY2RBR5pTQb6IiI7RHxArASaK3q0wrcFJm1QLOkiWl9T+ozJi0BEBG/ye1/eM/2dKyVEbEvIh4BOtIYzMxsiCgylCYBO3LrnWlbXX0kNUnaCOwC7oqIe3s6Sbpa0g7gQ6QrpTrPh6RFktoltXd3d/enLjMzK0iRoaQa26LePhFxIN2imwzMlnTqHzpEXBYRU4CbgSV9OB8RcUNEVCKi0tLS0nsVZmbWMEWGUicwJbc+GdjZ1z4RsRtYQ/Y+UbVbgPf14XxmZlZiRYbSemC6pGmSxpJNQmir6tMGXJhm4c0Bno2ILkktkpoBJE0AzgEeTuvTc/uf37M9HWuhpHGSppFNnlhXUG1mZlaA0UUdOCL2S1oCrAaagOURsUXS4tS+DLgDWEA2KWEvcHHafSKwIs2eGwWsiojbU9sXJZ0MvAg8BvQcb4ukVcCDwH7gExFxoKj6zMxs4CniFW+7jBiVSiXa29sHexhmZkOKpA0RUSni2P5EBzMzKw2HkpmZlYZDyczMSsOhZGZmpeFQMjOz0nAomZlZaTiUzMysNBxKZmZWGg4lMzMrDYeSmZmVhkPJzMxKw6FkZmal4VAyM7PScCiZmVlpOJTMzKw0HEpmZlYaDiUzMysNh5KZmZWGQ8nMzErDoWRmZqVRaChJmidpq6QOSUtrtEvStal9s6RZaft4SeskbZK0RdKVuX2+Iunh1P82Sc1p+1RJz0vamJZlRdZmZmYDr7BQktQEXAfMB2YAH5A0o6rbfGB6WhYB16ft+4C5EXE6MBOYJ2lOarsLODUiTgN+AVyaO962iJiZlsUFlGVmZgUq8kppNtAREdsj4gVgJdBa1acVuCkya4FmSRPT+p7UZ0xaAiAifhAR+1PbWmBygTWYmVkDFRlKk4AdufXOtK2uPpKaJG0EdgF3RcS9Nc7xUeDO3Po0SfdJulvSWbUGJWmRpHZJ7d3d3X0qyMzMilVkKKnGtqi3T0QciIiZZFdCsyWd+rIdpcuA/cDNaVMXcHxEnAFcAtwi6ahXHDzihoioRESlpaWlL/WYmVnBigylTmBKbn0ysLOvfSJiN7AGmNezTdJFwLuBD0VET4jti4in0+MNwDbgpAGow8zMGqTIUFoPTJc0TdJYYCHQVtWnDbgwzcKbAzwbEV2SWnKz6iYA5wAPp/V5wGeA8yNib8+B0j5N6fGJZJMnthdYn5mZDbDRRR04IvZLWgKsBpqA5RGxRdLi1L4MuANYAHQAe4GL0+4TgRUpZEYBqyLi9tT2DWAccJckgLVppt3ZwFWS9gMHgMUR8UxR9ZmZ2cBTuvs1IlUqlWhvbx/sYZiZDSmSNkREpYhj+xMdzMysNBxKZmZWGg4lMzMrDYeSmZmVhkPJzMxKw6FkZmal4VAyM7PScCiZmVlpOJTMzKw0HEpmZlYaDiUzMysNh5KZmZWGQ8nMzErDoWRmZqXhUDIzs9JwKJmZWWmM6C/5k9QNPAYcAzw1yMMpimsbuoZzfa5t6DoGODwiWoo4+IgOpR6S2ov6FsXB5tqGruFcn2sbuoquz7fvzMysNBxKZmZWGg6lzA2DPYACubahazjX59qGrkLr83tKZmZWGr5SMjOz0nAomZlZaQyLUJI0T9JWSR2SltZol6RrU/tmSbNybcsl7ZL0QNU+r5F0l6Rfpp9HV7UfL2mPpE8WV1nja5N0mqSfSdoi6X5J44dDbZLGSFqRanpI0qVF1VVwfX+WnpsXJVWq2i5Nx9oq6bziKmtsbZLOlbQhPXcbJM0dLrXl2hvyepLO1ejfy769pkTEkF6AJmAbcCIwFtgEzKjqswC4ExAwB7g313Y2MAt4oGqfLwNL0+OlwJeq2v8R+N/AJ4dLbcBoYDNwelp/LdA0TGr7ILAyPT4MeBSYOgSfuzcDJwNrgEpu+4x0jnHAtHTuofbcHay2M4Dj0uNTgSeGy/OWay/89WSQnrs+v6YMhyul2UBHRGyPiBeAlUBrVZ9W4KbIrAWaJU0EiIgfA8/UOG4rsCI9XgFc0NMg6QJgO7BlAOuopdG1vQvYHBGb0v5PR8SBgSwop9G1BXC4pNHABOAF4DcDWE+1QuqLiIciYmuN87WShe6+iHgE6EhjKEJDa4uI+yJiZ1rdAoyXNG4A68lr9PPWyNcTaHx9fX5NGQ6hNAnYkVvvTNv62qfa6yKiCyD9PBZA0uHAZ4ArX8WY69XQ2oCTgJC0WtLPJX263yPvXaNruxX4LdAFPA58NSJqhdpAKaq+V3O+gdLo2vLeB9wXEfsG4Fi1NLS2Br+eQOOfuz6/pozu54nKRDW2Vc9zr6dPva4EromIPVKtww6oRtc2Gngb8FZgL/AjSRsi4kf9PN6hNLq22cAB4DjgaOBfJP0wIrb383i9aXR9A3msgTjXgI9H0inAl8j+77sow/n1BIbAa8pwCKVOYEpufTKwsx99qj0paWJEdKVL111p+5nA+yV9GWgGXpT0u4j4Rn8LOIRG19YJ3B0RTwFIuoPs/nERodTo2j4IfD8ifg/sknQPUCG7bVKEoup7NecbKI2uDUmTgduACyNiW3+PU4dG19bI1xMYnN/LPr2mDIfbd+uB6ZKmSRoLLATaqvq0ARemWSVzgGd7bvEcQhtwUXp8EfBdgIg4KyKmRsRU4O+AvynwF6ihtQGrgdMkHZbee3k78OBAFFJDo2t7HJibjnU42Ru4Dw9EIQdRVH0H0wYslDRO0jRgOrCuv4PvRUNrk9QMfA+4NCLueRXjrkdDa2vw6wk0/vey768ph5oFMVQWstkivyCbVXJZ2rYYWJweC7gutd/Py2eH/APZ+wy/J0v1P4+XZon8CPhl+vmaGue9guJnyzS0NuDDZG+4PgB8ebjUBhxBNrtpS/qP4lND9PfyvWl9H/AksDq3z2XpWFuB+cOlNuCvyd4P3Jhbjh0OtVWd9woKfj0ZpN/LPr2m+GOGzMysNIbD7TszMxsmHEpmZlYaDiUzMysNh5KZmZWGQ8nMzErDoWTWQJKmVn/Cci/9PyLpuCLHZFYmDiWzcvsI2UcjmY0IDiWzxhut7LudNku6Nf21+x9JulvZ9wWtljRR0vvJPgrpZkkbJU2QdLmk9ZIekHSDGvSBaWaN4j+eNWsgSVOBR4C3RcQ9kpYDD5H9RXxrRHRL+nfAeRHxUUlryP7Kvz3t/5pIn24u6X8CqyLi/wxGLWZFGA4fyGo21OyIlz7D7TvAZ8m+vO6udOHTRPZRLrX8m/Tx/4cBryH7+BaHkg0bDiWzxqu+PfEcsCUi/vhQOyn7Gulvkn0W2Q5JVwCFfV292WDwe0pmjXe8pJ4A+gCwFmjp2SZpTPruIMgC68j0uCeAnpJ0BPD+Rg3YrFEcSmaN9xBwkaTNZLfg/htZwHxJ0iayT8H+16nvt4FlkjaSfQLzjWSf3PzPZF9DYDaseKKDmZmVhq+UzMysNBxKZmZWGg4lMzMrDYeSmZmVhkPJzMxKw6FkZmal4VAyM7PS+P+1ZJelK8a4aQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta rho\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEWCAYAAADGjIh1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfFElEQVR4nO3dfZRdVZ3m8e9DJSEBwcKm0JAEEjSwDAghfQ3pUdCOIJWMbXC0ZwI6vNhOSC/T07McW0F6IaB0+07LiGSgJxpGMJOhm7YGwYjOBNuXkFQkCRQQrYSXFEQoQF5iMJjwmz/OLrleblK3ijq3dlWez1pn1T1n733O/tWt3Cfn3FO3FBGYmZnl4IDhnoCZmVkfh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZDbCSHqnpJ7hnkc1SV2S3rmP9k9J+sfmzchGKoeSNZWkhyS9IGmHpMclfUPSa4Z7XvsiaaqkkDRmiPY3XtIzkubWabtK0s1DcZzBSHX+Jj0/j0r6iqSW/sZFxPERsXof7X8XER8Z0snaqORQsuHwZxHxGmAW8FbgbwcyWIUR87NbG2YR8VvgfwHn1vRrAc4GljdvdnWdlJ6fdwHnAP/p1exsqMLc9g8j5h+2jT4R8ShwO3CCpMMk3SqpV9Kv0+PJfX0lrZZ0paSfADuBYyRdIOl+Sc9L2irpwqr+75TUI+kTkp6QtF3SWZLmS/qFpKclfaqq/wGSLpK0RdJTklZKel1q/lH6+kw6g/iTNObD6fi/lrRK0tFV+wtJH5X0S+CXdcpfDrxf0kFV286k+Dd5+75qq5WO9aaq9W9K+mzV+nskbUhnZz+VdOLen5WXRcQDwL9SPD9vlPR/0/fmSUk3SmqtOsZDkk5Pjy+TdLOkb0l6Djg/bftWau878zxP0iNpf5dU7WuCpOXp+3p/eg57qto/mc7inpe0WdK7GqnHRgaHkg0bSVOA+cDdFD+L3wCOBo4CXgC+VjPkPwKLgEOAh4EngPcAhwIXAFdJmlXV/w3AeGAScClwPfAh4I+BU4FLJR2T+v5n4CzgHcCRwK+Ba1Lbaelra0S8JiJ+Juks4FPAvwPaKF68v10z37OAU4AZtbVHxE+B7Wl8dX03RcTuBmprSBqzDLgQ+CPgvwMdkg5sYOwMiu/T3YCAv6f43rwZmAJcto/hC4CbgVbgxr30eTtwHMUZ2aWS3py2fxqYChwDnEHxnPXN6ThgCfDWiDiEIsgf6q8WG0EiwouXpi0ULyA7gGcoguXrwIQ6/WYCv65aXw1c0c++/wX46/T4nRTB1pLWDwECOKWq/3rgrPT4fuBdVW0Tgd8BYyheIAMYU9V+O/AXVesHUJzBHZ3WA5jbz3z/Fvh+enxoGn9yg7X1VLUF8Kaq9W8Cn02PrwU+U7OvzcA79nKcAJ6jCOUtwGeBA+r0Owu4u+Z5PT09vgz4UU3/y4Bvpcd938/JVe1rgYXp8VbgzKq2j/TVC7yJIrBPB8YO98+zl6FffK3XhsNZEfGD6g3pMtZVQDtwWNp8iKSWiNiT1rfVjJlH8b/qYylC4SDgnqouT1WNfSF9fbyq/QWg7yaLo4FbJL1U1b4HeP1eajga+KqkL1dPieKs7OF6863jBuDTkiZR/I+/OyLubrC2Rh0NnCfpr6q2jaM449mbWRHRXb1B0hHA1RRnToekOf16H/vor3aAX1U93snLz8WRNeN//zgiuiX9F4qQO17SKuBjEfFYA8ezEcCX7ywX/5XiUs4pEXEoL18yU1Wf33+kfbr89E/Al4DXR0QrcFtN/4HYBsyLiNaqZXwU73vV+yj9bcCFNf0nRHFZ7hXzrSciHqG47PdBikt3Nwyytp0UodXnDTXzvLJmngdFRO2lxv78farnxPT8fGgf84F+au/HdmBy1fqUP9hxxE0R8XaKwA3g86/iWJYZh5Ll4hCKM5dn0g0Gn+6n/zjgQKAX2J3OLN79Ko6/FLiy72YFSW2SFqS2XuAlivc4qvtfLOn41P+1kv58EMddTvEeydt4+b2Xgda2AThHUoukdor3xfpcDyyWdIoKB0v6t5IOGeA8DyFddk1ndn8zwPEDsZLie3tYOtaSvgZJx0mam4L7txQ/M3v2sh8bgRxKlot/ACYATwJrgO/tq3NEPE9xc8JKistI5wAdr+L4X03jvy/p+TSHU9KxdgJXAj9Jd7DNiYhbKP6HviLdYXYvMG8Qx72Z4nLlDyNi+yBr+2vgzyjep/sgxftPpH11UtzS/bW0r27g/EHM83KKW/ifBb4L/PMg9tGoK4Ae4EHgBxTfo12p7UDgcxQ/J78CjqC44cRGCUX4j/yZWb4k/SXFTRDv6LezjXg+UzKzrEiaKOlt6XfHjqN4v/GW4Z6XNYfvvjOz3Iyj+H2qaRSXJFdQ/OqA7Qd8+c7MzLLhy3dmZpaN/fry3eGHHx5Tp04d7mmYmY0o69evfzIi2srY934dSlOnTqWzs3O4p2FmNqJIerj/XoPjy3dmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlo1SQ0lSu6TNkrolXVSnXZKuTu2bJM1K28dLWitpo6QuSZdXjblM0qOSNqRlfto+VdILVduXllmbmZkNvdL+HLqkFuAa4AygB1gnqSMi7qvqNg+YnpZTgGvT113A3IjYIWks8GNJt0fEmjTuqoj4Up3DbomImeVUZGZmZSvzTGk20B0RWyPiRWAFsKCmzwLghiisAVolTUzrO1KfsWmJEudqZmYZKDOUJgHbqtZ70raG+khqkbQBeAK4IyLuquq3JF3uWybpsKrt0yTdLelOSafWm5SkRZI6JXX29vYOrjIzMytFmaGkOttqz3b22ici9qRLcZOB2ZJOSO3XAm8EZgLbgS+n7duBoyLiZOBjwE2SDn3FziOui4hKRFTa2toGVpGZmZWqzFDqAaZUrU8GHhton4h4BlgNtKf1x1NgvQRcT3GZkIjYFRFPpcfrgS3AsUNUi5mZNUGZobQOmC5pmqRxwEKgo6ZPB3BuugtvDvBsRGyX1CapFUDSBOB04IG0PrFq/PuAe9P2tnRzBZKOobh5Ymtp1ZmZ2ZAr7e67iNgtaQmwCmgBlkVEl6TFqX0pcBswH+gGdgIXpOETgeUpZA4AVkbErantC5JmUlzmewi4MG0/DbhC0m5gD7A4Ip4uqz4zMxt6ith/b2qrVCrR2dk53NMwMxtRJK2PiEoZ+/YnOpiZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZKDWUJLVL2iypW9JFddol6erUvknSrLR9vKS1kjZK6pJ0edWYyyQ9KmlDWuZXtV2c9rVZ0pll1mZmZkNvTFk7ltQCXAOcAfQA6yR1RMR9Vd3mAdPTcgpwbfq6C5gbETskjQV+LOn2iFiTxl0VEV+qOd4MYCFwPHAk8ANJx0bEnrJqNDOzoVXmmdJsoDsitkbEi8AKYEFNnwXADVFYA7RKmpjWd6Q+Y9MS/RxvAbAiInZFxINAd5qDmZmNEGWG0iRgW9V6T9rWUB9JLZI2AE8Ad0TEXVX9lqTLfcskHTaA4yFpkaROSZ29vb2DKMvMzMpSZiipzrbas5299omIPRExE5gMzJZ0Qmq/FngjMBPYDnx5AMcjIq6LiEpEVNra2vqrwczMmqjMUOoBplStTwYeG2ifiHgGWA20p/XHU2C9BFzPy5foGjmemZllrMxQWgdMlzRN0jiKmxA6avp0AOemu/DmAM9GxHZJbZJaASRNAE4HHkjrE6vGvw+4t2pfCyUdKGkaxc0Ta0uqzczMSlDa3XcRsVvSEmAV0AIsi4guSYtT+1LgNmA+xU0JO4EL0vCJwPJ0B98BwMqIuDW1fUHSTIpLcw8BF6b9dUlaCdwH7AY+6jvvzMxGFkX0d1Pb6FWpVKKzs3O4p2FmNqJIWh8RlTL27U90MDOzbDiUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2w4lMzMLBsOJTMzy4ZDyczMsuFQMjOzbDiUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLJRaihJape0WVK3pIvqtEvS1al9k6RZaft4SWslbZTUJenyOmM/LikkHZ7Wp0p6QdKGtCwtszYzMxt6Y8rasaQW4BrgDKAHWCepIyLuq+o2D5iellOAa9PXXcDciNghaSzwY0m3R8SatO8pab+P1Bx2S0TMLKsmMzMrV5lnSrOB7ojYGhEvAiuABTV9FgA3RGEN0CppYlrfkfqMTUtUjbsK+ETNNjMzG+HKDKVJwLaq9Z60raE+klokbQCeAO6IiLvS9vcCj0bExjrHnCbpbkl3Sjq13qQkLZLUKamzt7d3MHWZmVlJygwl1dlWe2az1z4RsSddipsMzJZ0gqSDgEuAS+uM2w4cFREnAx8DbpJ06Ct2HnFdRFQiotLW1tZ4NWZmVroyQ6kHmFK1Phl4bKB9IuIZYDXQDrwRmAZslPRQ6v9zSW+IiF0R8VQasx7YAhw7RLWYmVkTlBlK64DpkqZJGgcsBDpq+nQA56a78OYAz0bEdkltkloBJE0ATgceiIh7IuKIiJgaEVMpQm1WRPwqjWlJY46huHlia4n1mZnZECvt7ruI2C1pCbAKaAGWRUSXpMWpfSlwGzAf6AZ2Ahek4ROB5SlkDgBWRsSt/RzyNOAKSbuBPcDiiHh6qOsyM7PyKGL/vYGtUqlEZ2fncE/DzGxEkbQ+Iipl7Nuf6GBmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhoKJUmvlXSVpM60fFnSa8uenJmZ7V8aPVNaBjwH/Pu0PAd8o6xJmZnZ/qnRUHpjRHw6Iram5XLgmP4GSWqXtFlSt6SL6rRL0tWpfZOkWWn7eElrJW2U1CXp8jpjPy4pJB1ete3itK/Nks5ssDYzM8tEo6H0gqS3961Iehvwwr4GSGoBrgHmATOAsyXNqOk2D5ielkXAtWn7LmBuRJwEzATaJc2p2vcU4AzgkaptM4CFwPFAO/D1NAezEeX5px7j//3zV3hg7W3DPRWzphvTYL/FwA3pfSQBTwPn9zNmNtAdEVsBJK0AFgD3VfVZANwQEQGskdQqaWJEbAd2pD5j0xJV464CPgF8p2ZfKyJiF/CgpO40h581WKNZFv7x+r+ks3cjB2osn2k9gknHVoZ7SmZN01AoRcRG4CRJh6b15xoYNgnYVrXeA5zSQJ9JwPZ0lrMeeBNwTUTcBSDpvcCjEbFRUu2+1tTZ1x+QtIjirIyjjjqqgTLMmus3L+5gnMayh5fY9cKO/geYjSINhZKkA4H3A1OBMX1hEBFX7GtYnW3RaJ+I2APMlNQK3CLpBGArcAnw7kEej4i4DrgOoFKpvKLdbLh95ENX8b3vfpWpk9/CtLecNtzTMWuqRi/ffQd4luLMZVeDY3qAKVXrk4HHBtonIp6RtJrifaJVwDSg7yxpMvBzSbMbPJ5Z9t5wzImc/1f/Y7inYTYsGg2lyRHRPsB9rwOmS5oGPEpxE8I5NX06gCXp/aZTgGcjYrukNuB3KZAmAKcDn4+Ie4Aj+gZLegioRMSTkjqAmyR9BTiS4uaJtQOcs5mZDaNGQ+mnkt6SQqEhEbFb0hKKs5sWYFlEdElanNqXArcB84FuYCdwQRo+EVie3lc6AFgZEbf2c7wuSSspbqTYDXw0XQI0M7MRQsWNb3tplO6heK9mAnAUxXs6u9K2iIgTmzHJslQqlejs7BzuaZiZjSiS1kdEKbeF9nem9B6KM5W+u+DMzMxKs89QioiHASR9GzgiItY1ZVZmZrZfavQ9pT8FLpT0MPAbRsnlOzMzy0ujoTSv1FmYmZnR+Cc6PFz2RMzMzPxH/szMLBsOJTMzy4ZDyczMsuFQMjOzbDiUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2w4lMzMLBsOJTMzy4ZDyczMslFqKElql7RZUreki+q0S9LVqX2TpFlp+3hJayVtlNQl6fKqMZ9JfTdI+r6kI9P2qZJeSNs3SFpaZm1mZjb0SgslSS3ANRR/tXYGcLakGTXd5gHT07IIuDZt3wXMjYiTgJlAu6Q5qe2LEXFiRMwEbgUurdrfloiYmZbFJZRlZmYlKvNMaTbQHRFbI+JFYAWwoKbPAuCGKKwBWiVNTOs7Up+xaQmAiHiuavzBfdvNzGzkKzOUJgHbqtZ70raG+khqkbQBeAK4IyLu6usk6UpJ24AP8odnStMk3S3pTkmn1puUpEWSOiV19vb2DrI0MzMrQ5mhpDrbas9q9tonIvakS3STgdmSTvh9h4hLImIKcCOwJG3eDhwVEScDHwNuknToK3YecV1EVCKi0tbWNtCazMysRGWGUg8wpWp9MvDYQPtExDPAaqC9zjFuAt6f+u2KiKfS4/XAFuDYQc/ezMyarsxQWgdMlzRN0jhgIdBR06cDODfdhTcHeDYitktqk9QKIGkCcDrwQFqfXjX+vVXb29LNFUg6huLmia2lVWdmZkNuTFk7jojdkpYAq4AWYFlEdElanNqXArcB84FuYCdwQRo+EVieQuYAYGVE3JraPifpOOAl4GGg7y6704ArJO0G9gCLI+LpsuozM7Ohp4j99+a1SqUSnZ2dwz0NM7MRRdL6iKiUsW9/ooOZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWjVJDSVK7pM2SuiVdVKddkq5O7ZskzUrbx0taK2mjpC5Jl1eN+Uzqu0HS9yUdWdV2cdrXZklnllmbmZkNvdJCSVILcA0wD5gBnC1pRk23ecD0tCwCrk3bdwFzI+IkYCbQLmlOavtiRJwYETOBW4FL0/FmAAuB44F24OtpDmZmNkKUeaY0G+iOiK0R8SKwAlhQ02cBcEMU1gCtkiam9R2pz9i0BEBEPFc1/uC+7WlfKyJiV0Q8CHSnOZiZ2QhRZihNArZVrfekbQ31kdQiaQPwBHBHRNzV10nSlZK2AR8knSk1eDwkLZLUKamzt7d3MHWZmVlJygwl1dkWjfaJiD3pEt1kYLakE37fIeKSiJgC3AgsGcDxiIjrIqISEZW2trb+qzAzs6YpM5R6gClV65OBxwbaJyKeAVZTvE9U6ybg/QM4npmZZazMUFoHTJc0TdI4ipsQOmr6dADnprvw5gDPRsR2SW2SWgEkTQBOBx5I69Orxr+3b3va10JJB0qaRnHzxNqSajMzsxKMKWvHEbFb0hJgFdACLIuILkmLU/tS4DZgPsVNCTuBC9LwicDydPfcAcDKiLg1tX1O0nHAS8DDQN/+uiStBO4DdgMfjYg9ZdVnZmZDTxGveNtlv1GpVKKzs3O4p2FmNqJIWh8RlTL27U90MDOzbDiUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2w4lMzMLBsOJTMzy4ZDyczMsuFQMjOzbDiUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLJRaihJape0WVK3pIvqtEvS1al9k6RZaft4SWslbZTUJenyqjFflPRA6n+LpNa0faqkFyRtSMvSMmszM7OhV1ooSWoBrgHmATOAsyXNqOk2D5ielkXAtWn7LmBuRJwEzATaJc1JbXcAJ0TEicAvgIur9rclImamZXEJZZmZWYnKPFOaDXRHxNaIeBFYASyo6bMAuCEKa4BWSRPT+o7UZ2xaAiAivh8Ru1PbGmByiTWYmVkTlRlKk4BtVes9aVtDfSS1SNoAPAHcERF31TnGh4Hbq9anSbpb0p2STq03KUmLJHVK6uzt7R1QQWZmVq4yQ0l1tkWjfSJiT0TMpDgTmi3phD8YKF0C7AZuTJu2A0dFxMnAx4CbJB36ip1HXBcRlYiotLW1DaQeMzMrWZmh1ANMqVqfDDw20D4R8QywGmjv2ybpPOA9wAcjoi/EdkXEU+nxemALcOwQ1GFmZk1SZiitA6ZLmiZpHLAQ6Kjp0wGcm+7CmwM8GxHbJbVV3VU3ATgdeCCttwOfBN4bETv7dpTGtKTHx1DcPLG1xPrMzGyIjSlrxxGxW9ISYBXQAiyLiC5Ji1P7UuA2YD7QDewELkjDJwLLU8gcAKyMiFtT29eAA4E7JAGsSXfanQZcIWk3sAdYHBFPl1WfmZkNPaWrX/ulSqUSnZ2dwz0NM7MRRdL6iKiUsW9/ooOZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlo39+o/8SeoFHgYOB54c5umUxbWNXKO5Ptc2ch0OHBwRbWXsfL8OpT6SOsv6K4rDzbWNXKO5Ptc2cpVdny/fmZlZNhxKZmaWDYdS4brhnkCJXNvINZrrc20jV6n1+T0lMzPLhs+UzMwsGw4lMzPLxqgIJUntkjZL6pZ0UZ12Sbo6tW+SNKuqbZmkJyTdWzPmdZLukPTL9PWwmvajJO2Q9PHyKmt+bZJOlPQzSV2S7pE0fjTUJmmspOWppvslXVxWXSXX9+fpuXlJUqWm7eK0r82SziyvsubWJukMSevTc7de0tzRUltVe1NeT9Kxmv1zObDXlIgY0QvQAmwBjgHGARuBGTV95gO3AwLmAHdVtZ0GzALurRnzBeCi9Pgi4PM17f8E/G/g46OlNmAMsAk4Ka3/EdAySmo7B1iRHh8EPARMHYHP3ZuB44DVQKVq+4x0jAOBaenYI+2521ttJwNHpscnAI+Oluetqr3015Nheu4G/JoyGs6UZgPdEbE1Il4EVgALavosAG6IwhqgVdJEgIj4EfB0nf0uAJanx8uBs/oaJJ0FbAW6hrCOeppd27uBTRGxMY1/KiL2DGVBVZpdWwAHSxoDTABeBJ4bwnpqlVJfRNwfEZvrHG8BRejuiogHge40hzI0tbaIuDsiHkurXcB4SQcOYT3Vmv28NfP1BJpf34BfU0ZDKE0CtlWt96RtA+1T6/URsR0gfT0CQNLBwCeBy1/FnBvV1NqAY4GQtErSzyV9YtAz71+za7sZ+A2wHXgE+FJE1Au1oVJWfa/meEOl2bVVez9wd0TsGoJ91dPU2pr8egLNf+4G/JoyZpAHyonqbKu9z72RPo26HLgqInZI9XY7pJpd2xjg7cBbgZ3ADyWtj4gfDnJ/+9Ls2mYDe4AjgcOAf5X0g4jYOsj99afZ9Q3lvobiWEM+H0nHA5+n+N93WUbz6wmMgNeU0RBKPcCUqvXJwGOD6FPrcUkTI2J7OnV9Im0/BfiApC8ArcBLkn4bEV8bbAH70OzaeoA7I+JJAEm3UVw/LiOUml3bOcD3IuJ3wBOSfgJUKC6blKGs+l7N8YZKs2tD0mTgFuDciNgy2P00oNm1NfP1BIbn53JArymj4fLdOmC6pGmSxgELgY6aPh3AuemukjnAs32XePahAzgvPT4P+A5ARJwaEVMjYirwD8DflfgD1NTagFXAiZIOSu+9vAO4bygKqaPZtT0CzE37OpjiDdwHhqKQvSirvr3pABZKOlDSNGA6sHawk+9HU2uT1Ap8F7g4In7yKubdiKbW1uTXE2j+z+XAX1P2dRfESFko7hb5BcVdJZekbYuBxemxgGtS+z384d0h36Z4n+F3FKn+F/HyXSI/BH6Zvr6uznEvo/y7ZZpaG/Ahijdc7wW+MFpqA15DcXdTV/pH8Tcj9OfyfWl9F/A4sKpqzCVpX5uBeaOlNuBvKd4P3FC1HDEaaqs57mWU/HoyTD+XA3pN8ccMmZlZNkbD5TszMxslHEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZNJGlq7Scs99P/fElHljkns5w4lMzydj7FRyOZ7RccSmbNN0bF33baJOnm9NvufyzpThV/L2iVpImSPkDxUUg3StogaYKkSyWtk3SvpOvUpA9MM2sW//KsWRNJmgo8CLw9In4iaRlwP8VvxC+IiF5J/wE4MyI+LGk1xW/5d6bxr4v06eaS/iewMiL+z3DUYlaG0fCBrGYjzbZ4+TPcvgV8iuKP192RTnxaKD7KpZ4/TR//fxDwOoqPb3Eo2ajhUDJrvtrLE88DXRHxJ/sapOLPSH+d4rPItkm6DCjtz9WbDQe/p2TWfEdJ6gugs4E1QFvfNklj098OgiKwDkmP+wLoSUmvAT7QrAmbNYtDyaz57gfOk7SJ4hLcf6MImM9L2kjxKdj/JvX9JrBU0gaKT2C+nuKTm/+F4s8QmI0qvtHBzMyy4TMlMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2z8f2euZg/+bCwiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta kappa\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEWCAYAAADYRbjGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgiElEQVR4nO3df7xVdZ3v8ddbENTSiwY2CCZ4Qx9pmuFWaCbMTBMcG7iWCZKY01zCGWvmMXea0cq0pqb01m2G0XT0hkopaOaPc0uHqeaqXdPkEISgMh7J4ggjxx8RhmLo5/6xvlsWm33O2ed41j5rn97Px2M99l7r+13f9f2efdhv1trfs7YiAjMzszLbY7A7YGZm1huHlZmZlZ7DyszMSs9hZWZmpeewMjOz0nNYmZlZ6TmszIYISSdK6hzsfuRJWivpxB7KPy3pfzevR9aqHFZWCpKelPSipBckPS3pOklvHOx+9UTSBEkhafgAtbeXpF9LOqlO2dcl3ToQx+mPNM7fptfnKUn/S9Kw3vaLiCMj4p4eyv8hIv5sQDtrQ5LDysrkAxHxRmAycBzw2b7srEzL/E7XhlxEvATcDMyrqTcMmAPc0Lze1fWO9Pq8Dzgb+O+vp7GBCnn7/dAy/7Dt90dEPAXcDbxd0v6SviepS9Lz6fn4al1J90j6kqT7gW3AoZLOk/SopK2S1kv6eK7+iZI6Jf2tpM2SNkmaJek0Sf8h6TlJn87V30PShZKekPSspFskHZCK70uPv05nHO9K+/xpOv7zkpZJOiTXXkj6C0mPA4/XGf4NwAcl7ZPbdirZv9W7expbrXSst+bWr5f0xdz66ZJWpbO5n0g6uvtXZaeIeAz4Mdnr818l/Xv62Twj6UZJo3LHeFLSyen5pZJulfRtSb8BPpq2fTuVV89Uz5X0q9TeZ3Jt7S3phvRzfTS9hp258r9LZ31bJa2T9L5GxmOtwWFlpSPpYOA0YCXZ7+h1wCHAW4AXgStqdjkHmA/sC/wS2AycDuwHnAd8XdLkXP0/APYCxgGfA64FPgIcC0wDPifp0FT3k8As4D3AQcDzwJWp7IT0OCoi3hgRD0iaBXwaOAMYQ/amvqSmv7OAKcARtWOPiJ8Am9L++fHdFBE7GhhbQ9I+i4CPA28C/gVokzSygX2PIPs5rQQEfJnsZ/M24GDg0h52nwncCowCbuymzruBw8nO4D4n6W1p+yXABOBQ4BSy16zap8OBC4DjImJfsoB/srexWAuJCC9eBn0he2N5Afg1WeB8A9i7Tr1jgOdz6/cAX+il7TuAv0zPTyQLvGFpfV8ggCm5+iuAWen5o8D7cmVjgd8Bw8neOAMYniu/G/hYbn0PsjO+Q9J6ACf10t/PAv+Wnu+X9n9ng2PrzJUF8Nbc+vXAF9Pzq4C/r2lrHfCebo4TwG/IwvoJ4IvAHnXqzQJW1ryuJ6fnlwL31dS/FPh2el79eY7PlT8EzE7P1wOn5sr+rDpe4K1kQX4ysOdg/z57GfjF14ytTGZFxA/zG9LlsK8D04H90+Z9JQ2LiFfS+oaafWaQ/S/8MLKw2Ad4OFfl2dy+L6bHp3PlLwLVyR2HALdLejVX/grw5m7GcAjwT5K+lu8S2VncL+v1t47FwCWSxpGdIXRExMoGx9aoQ4BzJX0it20E2RlSdyZHREd+g6QDgYVkZ1r7pj4930MbvY0d4D9zz7ex87U4qGb/155HRIekvyILvyMlLQP+OiI2NnA8awG+DGhl9z/ILglNiYj92HnpTbk6r311QLqM9V3gq8CbI2IUcFdN/b7YAMyIiFG5Za/IPler95UFG4CP19TfO7LLe7v1t56I+BXZ5cO5ZJcAF/dzbNvIwqzqD2r6+aWafu4TEbWXLHvz5TSeo9Pr85Ee+gO9jL0Xm4DxufWDd2k44qaIeDdZEAdw2es4lpWMw8rKbl+yM51fp4kNl/RSfwQwEugCdqQzkfe/juNfDXypOklC0hhJM1NZF/Aq2Wco+foXSToy1f8vks7sx3FvIPsM5o/Y+dlOX8e2Cjhb0jBJ08k+d6u6FlggaYoyb5D0x5L27WM/9yVdvk1ngp/q4/59cQvZz3b/dKwLqgWSDpd0Ugr0l8h+Z17pph1rQQ4rK7t/BPYGngEeBP61p8oRsZVsUsQtZJejzgbaXsfx/ynt/2+StqY+TEnH2gZ8Cbg/zaibGhG3k/2Pfmma8bYGmNGP495KdtnzRxGxqZ9j+0vgA2SfA84l+3yL1FY72dTzK1JbHcBH+9HPz5P9qcEW4PvAbf1oo1FfADqBXwA/JPsZbU9lI4GvkP2e/CdwINlEFxsiFOEvXzSz1iPpfLLJF+/ptbK1PJ9ZmVlLkDRW0h+lv307nOzzzNsHu1/WHJ4NaGatYgTZ34NNJLu0uZTsTxzs94AvA5qZWen5MqCZmZWeLwN2Y/To0TFhwoTB7oaZWcsYPXo0y5YtWxYR0we6bYdVNyZMmEB7e/tgd8PMrKVIGl1Eu74MaGZmpeewMjOz0nNYmZlZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqVXaFhJmi5pnaQOSRfWKZekhal8taTJubJFkjZLWlOzz82SVqXlSUmr0va5ue2rJL0q6ZhUdk/qR7XswCLHbWZmA6uwr7WXNAy4EjgF6ASWS2qLiEdy1WYAk9IyBbgqPQJcD1wBLM63GxFn5Y7xNWBL2n4jcGPafhRwZ0Ssyu06NyL8PfVmZi2oyDOr44GOiFgfES8DS4GZNXVmAosj8yAwStJYgIi4D3iuu8YlCfgwsKRO8ZxutpuZWQsqMqzGARty651pW1/rdGca8HREPF6n7Cx2D6vr0iXAi1PQ7UbSfEntktq7uroa7IaZmRWtyLCqFwjRjzrdqXv2JGkKsC0i8p91zY2Io8gCbhpwTr0GI+KaiKhERGXMmDENdsPMzIpWZFh1Agfn1scDG/tRZzeShgNnADfXKZ5NTYhFxFPpcStwE9klSjMzaxFFhtVyYJKkiZJGkIVIW02dNmBemhU4FdgSEZsaaPtk4LGI6MxvlLQHcCbZ52PVbcMljU7P9wROB3aZYWhmZuVW2GzAiNgh6QJgGTAMWBQRayUtSOVXA3cBpwEdwDbgvOr+kpYAJwKjJXUCl0TEN1PxbmdPyQlAZ0Ssz20bCSxLQTUM+CFw7YAN1MzMCqeIRj8i+v1SqVSivd0z3c3M+kLSioioDHS7voOFmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSs9hZWZmpeewMjOz0is0rCRNl7ROUoekC+uUS9LCVL5a0uRc2SJJmyWtqdnnZkmr0vKkpFVp+wRJL+bKrs7tc6ykh9NxFkpSgcM2M7MBVlhYSRoGXAnMAI4A5kg6oqbaDGBSWuYDV+XKrgem17YbEWdFxDERcQzwXeC2XPET1bKIWJDbflVqv3qs3do1M7PyKvLM6nigIyLWR8TLwFJgZk2dmcDiyDwIjJI0FiAi7gOe667xdHb0YWBJT51I7e0XEQ9ERACLgVn9HJOZmQ2CIsNqHLAht96ZtvW1TnemAU9HxOO5bRMlrZR0r6RpuWN0NnIMSfMltUtq7+rqarAbZmZWtCLDqt7nQtGPOt2Zw65nVZuAt0TEO4G/Bm6StF9fjhER10REJSIqY8aMabAbZmZWtOEFtt0JHJxbHw9s7Eed3UgaDpwBHFvdFhHbge3p+QpJTwCHpWOM7+sxzMysPIo8s1oOTJI0UdIIYDbQVlOnDZiXZgVOBbZExKYG2j4ZeCwiXru8J2lMmtSBpEPJJlKsT+1tlTQ1fc41D7jzdY/OzMyaprAzq4jYIekCYBkwDFgUEWslLUjlVwN3AacBHcA24Lzq/pKWACcCoyV1ApdExDdT8Wx2n1hxAvAFSTuAV4AFEVGdoHE+2ezCvYG702JmZi1C2QQ5q1WpVKK9vX2wu2Fm1lIkrYiIykC36ztYmJlZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzK71Cw0rSdEnrJHVIurBOuSQtTOWrJU3OlS2StFnSmpp9bpa0Ki1PSlqVtp8iaYWkh9PjSbl97kn9qO53YIHDNjOzATa8qIYlDQOuBE4BOoHlktoi4pFctRnApLRMAa5KjwDXA1cAi/PtRsRZuWN8DdiSVp8BPhARGyW9HVgGjMvtOjci2gdmdGZm1kxFnlkdD3RExPqIeBlYCsysqTMTWByZB4FRksYCRMR9wHPdNS5JwIeBJan+yojYmIrXAntJGjmgIzIzs0FRZFiNAzbk1jvZ9Uyn0TrdmQY8HRGP1yn7ILAyIrbntl2XLgFenIJuN5LmS2qX1N7V1dVgN8zMrGhFhlW9QIh+1OnOHNJZ1S4NSkcClwEfz22eGxFHkQXcNOCceg1GxDURUYmIypgxYxrshpmZFa3IsOoEDs6tjwc29qPObiQNB84Abq7ZPh64HZgXEU9Ut0fEU+lxK3AT2SVKMzNrEUWG1XJgkqSJkkYAs4G2mjptwLw0K3AqsCUiNjXQ9snAYxHRWd0gaRTwfeCiiLg/t324pNHp+Z7A6cAazMysZRQWVhGxA7iAbFbeo8AtEbFW0gJJC1K1u4D1QAdwLfDn1f0lLQEeAA6X1CnpY7nmZ7P7JcALgLcCF9dMUR8JLJO0GlgFPJWOZWZmLUIRjX5E9PulUqlEe7tnupuZ9YWkFRFRGeh2fQcLMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzEqv4a+1l/THwJHAXtVtEfGFIjplZmaW19CZlaSrgbOAT5B9YeKZwCEF9svMzOw1jV4G/MOImAc8HxGfB97Frl+aaGZmVphGw+rF9LhN0kHA74CJxXTJzMxsV41+ZvW99E28/xP4GRD4CwzNzKxJGgqriPj79PS7kr4H7BURW4rrlpmZ2U4NhZWkvci+cv7dZGdV/0/SVRHxUpGdMzMzg8YvAy4GtgL/nNbnAN8imxVoZmZWqEbD6vCIeEdu/f9K+nkRHTIzM6vV6GzAlZKmVlckTQHu720nSdMlrZPUIenCOuWStDCVr5Y0OVe2SNJmSWtq9rlZ0qq0PClpVa7sotTWOkmn5rYfK+nhVLZQkhoct5mZlUCjYTUF+EkKhyeBB4D3pABYXW8HScOAK4EZwBHAHElH1FSbAUxKy3zgqlzZ9cD02nYj4qyIOCYijgG+C9yWjncEMJvsLhvTgW+kPpDanZ871m7tmpVdvPoqP/v3G/lx2xW8/OILg90ds6Zq9DJgf97cjwc6ImI9gKSlwEzgkVydmcDiiAjgQUmjJI2NiE0RcZ+kCd01ns6OPgyclGtraURsB34hqQM4PoXrfhHxQNpvMTALuLsfYzIbNKvuu5mvff8zRARdz/6KM867fLC7ZNY0DZ1ZRcQvgTeRBcKfAG+KiF9Wl252GwdsyK13pm19rdOdacDTEfF4L22NS897PYak+ZLaJbV3dXU12A2z5tj+0m8Jgj20B7998TeD3R2zpmp06vrnyGb+3ZY2XSfpOxHxxZ52q7Mt+lGnO3OAJQ201fAxIuIa4BqASqXSaD/MmuLYE89m9uZf8MK2X/OBMz8z2N0xa6pGLwPOAd5Z/bsqSV8hu5NFT2HVya73DxwPbOxHnd1IGg6cARzbQFud6XmfjmFWNnvutQ9/Mu9Lg90Ns0HR6ASLJ8l9NQgwEniil32WA5MkTZQ0gmzyQ1tNnTZgXpoVOBXYEhGbGujPycBjEZG/vNcGzJY0UtJEsokUD6X2tkqamj7nmgfc2cAxzMysJBo9s9oOrJX0A7JLaKeQ3cViIUBEfLJ2h4jYIekCYBkwDFgUEWslLUjlVwN3AacBHcA24Lzq/pKWACcCoyV1ApdExDdT8Wx2vQRIavsWsgkcO4C/iIhXUvH5ZLML9yabWOHJFWZmLUTZRLxeKknn9lQeETcMWI9KolKpRHt7+2B3w8yspUhaERGVgW630RvZDrkwMjOz1tHobMBJwJfJ/rg3/7X2hxbULzMzs9c0OsHiOrK7QOwA3kt2Y9tvFdUpMzOzvEbDau+I+BHZZ1y/jIhL2XnnCDMzs0I1OhvwJUl7AI+nGX5PAQcW1y0zM7OdGj2z+itgH+CTZH+Iew7w7YL6ZGZmtotGw+pfgIkR0RkR5wHfAU4vrltmZmY7NXoZ8EPArZLmkn21/TnA+wvrlZmZWU6jf2e1XtJs4A6yO5ufGhEvFtkxMzOzqh7DStLD7HqH8gPIbp30U0lExNFFds7MzAx6P7Py51JmZjboegyrHr5Y0czMrGkanQ1oZmY2aBxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpFRpWkqZLWiepQ9KFdcolaWEqXy1pcq5skaTNktbU2e8Tqd21ki5P2+ZKWpVbXpV0TCq7J9Wvlvm7uMzMWkijd13vM0nDgCuBU4BOYLmktoh4JFdtBjApLVOAq9IjwPXAFcDimnbfC8wEjo6I7dXgiYgbgRtTnaOAOyNiVW7XuRHRPpBjNDOz5ijyzOp4oCMi1kfEy8BSspDJmwksjsyDwChJYwEi4j7guTrtng98JSK2p3qb69SZAywZoHGYmdkgKzKsxpF9nUhVZ9rW1zq1DgOmSfqppHslHVenzlnsHlbXpUuAF0tSvYYlzZfULqm9q6url26YmVmzFBlW9QIh+lGn1nBgf2Aq8Cnglnz4SJoCbIuI/GddcyPiKGBaWs6p13BEXBMRlYiojBkzppdumJlZsxQZVp3Awbn18cDGftSp1+5t6dLhQ8CrwOhc+Wxqzqoi4qn0uBW4iewSpZmZtYgiw2o5MEnSREkjyEKkraZOGzAvzQqcCmyJiE29tHsHcBKApMOAEcAzaX0P4Eyyz8dI24ZLGp2e70n2HV27zTA0M7PyKmw2YETskHQBsIzs24UXRcRaSQtS+dXAXcBpQAewDTivur+kJcCJwGhJncAlEfFNYBGwKE1pfxk4NyKqlw5PADojYn2uKyOBZSmohgE/BK4taNhmZlYA7Xyft7xKpRLt7Z7pbmbWF5JWRERloNv1HSzMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSs9hZWZmpeewMjOz0nNYmZlZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVXqFhJWm6pHWSOiRdWKdckham8tWSJufKFknaLGlNnf0+kdpdK+nytG2CpBclrUrL1bn6x0p6OB1noSQVNWYzMxt4hYWVpGHAlcAM4AhgjqQjaqrNACalZT5wVa7semB6nXbfC8wEjo6II4Gv5oqfiIhj0rIgt/2q1H71WLu1a2Zm5VXkmdXxQEdErI+Il4GlZCGTNxNYHJkHgVGSxgJExH3Ac3XaPR/4SkRsT/U299SJ1N5+EfFARASwGJj1OsZlZmZNVmRYjQM25NY707a+1ql1GDBN0k8l3SvpuFzZREkr0/ZpuWN0NnIMSfMltUtq7+rq6qUbZmbWLMMLbLve50LRjzq1hgP7A1OB44BbJB0KbALeEhHPSjoWuEPSkX05RkRcA1wDUKlUeuuHmZk1SZFnVp3Awbn18cDGftSp1+5t6dLhQ8CrwOiI2B4RzwJExArgCbKzsM7Ubl+OYWZmJVJkWC0HJkmaKGkEMBtoq6nTBsxLswKnAlsiYlMv7d4BnAQg6TBgBPCMpDFpUgfpTGsSsD61t1XS1DQLcB5w58AM0czMmqGwy4ARsUPSBcAyYBiwKCLWSlqQyq8G7gJOAzqAbcB51f0lLQFOBEZL6gQuiYhvAouARWlK+8vAuRERkk4AviBpB/AKsCAiqhM0ziebXbg3cHdazMysRSibIGe1KpVKtLe3D3Y3zMxaiqQVEVEZ6HZ9BwszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSs9hZWZmpeewMjOz0nNYmZlZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmalV2hYSZouaZ2kDkkX1imXpIWpfLWkybmyRZI2S1pTZ79PpHbXSro8bTtF0gpJD6fHk3L170n1V6XlwKLGbGZmA294UQ1LGgZcCZwCdALLJbVFxCO5ajOASWmZAlyVHgGuB64AFte0+15gJnB0RGzPBc8zwAciYqOktwPLgHG5XedGRPsADtHMzJqkyDOr44GOiFgfES8DS8lCJm8msDgyDwKjJI0FiIj7gOfqtHs+8JWI2J7qbU6PKyNiY6qzFthL0sgBH5WZmTVdkWE1DtiQW+9k1zOdRuvUOgyYJumnku6VdFydOh8EVlYDLbkuXQK8WJLqNSxpvqR2Se1dXV29dMPMzJqlyLCqFwjRjzq1hgP7A1OBTwG35MNH0pHAZcDHc/vMjYijgGlpOadewxFxTURUIqIyZsyYXrphZmbNUmRYdQIH59bHAxv7Uadeu7elS4cPAa8CowEkjQduB+ZFxBPVHSLiqfS4FbiJ7BKlmZm1iCLDajkwSdJESSOA2UBbTZ02YF6aFTgV2BIRm3pp9w7gJABJhwEjgGckjQK+D1wUEfdXK0saLqkaZnsCpwO7zTA0M7PyKiysImIHcAHZrLxHgVsiYq2kBZIWpGp3AeuBDuBa4M+r+0taAjwAHC6pU9LHUtEi4NA0pX0pcG5ERDrWW4GLa6aojwSWSVoNrAKeSscyM7MWoex93mpVKpVob/dMdzOzvpC0IiIqA92u72BhZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSs9fvtgNSV3Ab4FnBrsvBRnN0B0bDO3xeWytayiPbzTwGEBETB/oxh1WPZDUXsQ3XpbBUB4bDO3xeWytayiPr+ix+TKgmZmVnsPKzMxKz2HVs2sGuwMFGspjg6E9Po+tdQ3l8RU6Nn9mZWZmpeczKzMzKz2HlZmZld6QDitJ0yWtk9Qh6cI65ZK0MJWvljQ5V7ZI0mZJa2r2OUDSDyQ9nh73ryl/i6QXJP1NcSNr/tgkHS3pAUlrJT0saa+hMj5Je0q6IY3rUUkXteDYzkyvzauSKjVlF6W21kk6tbiRvXa8po1P0imSVqTXboWkk4bK2HLlrfye0tPvZd/eUyJiSC7AMOAJ4FBgBPBz4IiaOqcBdwMCpgI/zZWdAEwG1tTsczlwYXp+IXBZTfl3ge8AfzNUxgYMB1YD70jrbwKGDaHxnQ0sTc/3AZ4EJrTY2N4GHA7cA1Ry249IxxgJTEzHbsXXrrvxvRM4KD1/O/DUUBlbrryV31O6e936/J4ylM+sjgc6ImJ9RLwMLAVm1tSZCSyOzIPAKEljASLiPuC5Ou3OBG5Iz28AZlULJM0C1gNrB3Ac9TR7bO8HVkfEz9P+z0bEKwM5oBrNHl8Ab5A0HNgbeBn4zQCOJ6+QsUXEoxGxrs7xZpIF8faI+AXQkfpQlKaOLyJWRsTGtLoW2EvSyAEcT16zX7uWf0/pYWx9fk8ZymE1DtiQW+9M2/pap9abI2ITQHo8EEDSG4C/Az7/OvrcqKaODTgMCEnLJP1M0t/2u+eNafb4biW7tdYm4FfAVyOiXtgNhKLG9nqON5CaPb68DwIrI2L7ALRVT1PHNkTeU7rT5/eU4f08UCtQnW218/QbqdOozwNfj4gXpHrNDqhmj2048G7gOGAb8CNJKyLiR/1srzfNHt/xwCvAQcD+wI8l/TAi1vezvZ40e2wD2dZAHW/A+yTpSOAysv+xF8XvKb3XaVSf31OGclh1Agfn1scDG/tRp9bTksZGxKZ0Crw5bZ8CfEjS5cAo4FVJL0XEFf0dQA+aPbZO4N6IeAZA0l1k16eLCqtmj+9s4F8j4nfAZkn3AxWyyy8DraixvZ7jDaRmjw9J44HbgXkR8UR/22lAs8c2FN5Tejpen95ThvJlwOXAJEkTJY0AZgNtNXXagHlplstUYEv1MlEP2oBz0/NzgTsBImJaREyIiAnAPwL/UNAvFTR5bMAy4GhJ+6TPdd4DPDIQA+lGs8f3K+Ck1NYbyD48fmwgBlJHUWPrThswW9JISROBScBD/e18A5o6PkmjgO8DF0XE/a+j341o6tiGyHtKd/r+ntLT7ItWX8hmr/wH2SyXz6RtC4AF6bmAK1P5w+w6W2UJ2WcYvyP7X8DHYueslR8Bj6fHA+oc91IKnLkzGGMDPkL2Ie8a4PKh9NoBbySbbbU2/YP5VAuO7b+l9e3A08Cy3D6fSW2tA2a06GtXd3zAZ8k+b1yVWw4cCmOrOe6ltOZ7Sk+/l316T/HtlszMrPSG8mVAMzMbIhxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlVhKSJtTetbqX+h+VdFCRfTIrC4eVWev6KNktosyGPIeVWbkMV/bdWqsl3Zr+wv9YSfcq+76mZZLGSvoQ2S2hbpS0StLekj4nabmkNZKuURNuKGfWLP6jYLOSkDQB+AXw7oi4X9Ii4FGyuwDMjIguSWcBp0bEn0q6h+yuBu1p/wMi3S1e0reAWyLi/wzGWMwG2lC+ka1ZK9oQO+9x923g02RfKviDdKI0jOy2NvW8N33Vwj7AAWS3snFY2ZDgsDIrl9pLHVuBtRHxrp52UvaV4N8gu1/bBkmXAj1/TbhZC/FnVmbl8hZJ1WCaAzwIjKluk7Rn+u4myIJs3/S8GkzPSHoj8KFmddisGRxWZuXyKHCupNVkl/L+mSx4LpP0c7K7iv9hqns9cLWkVWR3tb6W7G7Yd5B95YPZkOEJFmZmVno+szIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSu//AxOr0c8uRxXeAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta xi\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEWCAYAAADYRbjGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfQUlEQVR4nO3df5hU1Z3n8fdHWlATXcyAGQIquEGfYHQMlsJsgjFEJ+CahTU/RIkYJ7MEM2azz+xkBpMxmkwyE91kM8NqdHGCykRB1vijd6NhJplHzWMk0gwEQWVs0AktjLSaEAwGo3z3j3s6Xovq7uq2q/p05/N6nvtU3XvOPfecrqY+3HtPVykiMDMzy9lBg90BMzOz3jiszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiuzYULSmZI6BrsfZZI2Szqzh/LPSfq75vXIhiqHlWVB0tOSXpL0oqRnJd0k6c2D3a+eSJooKSS1DFB7h0j6uaSZNcq+IemOgThOf6Rx/jK9Ps9I+p+SRvS2X0ScGBH391D+VxHxRwPaWRuWHFaWkw9GxJuBqcBpwF/0ZWcVhszvdHXIRcSvgNuBBVX1RgAXALc0r3c1/V56fd4PXAj8lzfS2ECFvP12GDL/sO23R0Q8A9wHvFPSkZL+n6ROST9Lzyd01ZV0v6SvSHoI2AscJ+kSSY9L2iNpm6RPluqfKalD0p9J2iVpp6S5ks6R9C+SXpD0uVL9gyQtlrRV0vOSVkl6Syp+MD3+PJ1x/H7a5w/T8X8mabWkY0vthaQ/lvQk8GSN4d8CfEjSYaVtH6D4t3pfT2Orlo719tL6zZK+XFo/V9KGdDb3I0knd/+qvCYingB+SPH6/HtJ/5R+Ns9JulXS6NIxnpZ0Vnp+laQ7JH1b0i+Aj6dt307lXWeqF0v6aWrv86W2DpV0S/q5Pp5ew45S+Z+ns749krZIen8947GhwWFl2ZF0NHAOsJ7id/Qm4FjgGOAl4NqqXS4CFgKHA/8K7ALOBY4ALgG+IWlqqf7vAocA44EvADcCHwNOBWYAX5B0XKr7X4G5wHuBtwE/A65LZWekx9ER8eaIeFjSXOBzwHnAWIo39RVV/Z0LTAOmVI89In4E7Ez7l8d3W0S8UsfY6pL2WQZ8Evgd4H8DrZJG1bHvFIqf03pAwF9T/GzeARwNXNXD7nOAO4DRwK3d1HkPcALFGdwXJL0jbb8SmAgcB5xN8Zp19ekE4DLgtIg4nCLgn+5tLDaERIQXL4O+ULyxvAj8nCJwvgkcWqPeKcDPSuv3A1/qpe27gc+k52dSBN6ItH44EMC0Uv11wNz0/HHg/aWyccCvgRaKN84AWkrl9wGfKK0fRHHGd2xaD2BmL/39C+Af0vMj0v7vqnNsHaWyAN5eWr8Z+HJ6fj3wl1VtbQHe281xAvgFRVhvBb4MHFSj3lxgfdXrelZ6fhXwYFX9q4Bvp+ddP88JpfJHgHnp+TbgA6WyP+oaL/B2iiA/Czh4sH+fvQz84mvGlpO5EfH98oZ0OewbwCzgyLT5cEkjIuLVtL69ap/ZFP8LP54iLA4DHi1Veb6070vp8dlS+UtA1+SOY4G7JO0vlb8KvLWbMRwL/K2kr5e7RHEW96+1+lvDcuBKSeMpzhDaI2J9nWOr17HAxZI+Xdo2kuIMqTtTI6K9vEHSUcASijOtw1OfftZDG72NHeDfSs/38tpr8baq/X/zPCLaJf03ivA7UdJq4E8iYkcdx7MhwJcBLXf/neKS0LSIOILXLr2pVOc3Xx2QLmN9B/ga8NaIGA3cW1W/L7YDsyNidGk5JIr7arW+smA78Mmq+odGcXnvgP7WEhE/pbh8OJ/iEuDyfo5tL0WYdfndqn5+paqfh0VE9SXL3vx1Gs/J6fX5WA/9gV7G3oudwITS+tGvazjitoh4D0UQB3D1GziWZcZhZbk7nOJM5+dpYsOVvdQfCYwCOoFX0pnIH7yB498AfKVrkoSksZLmpLJOYD/FPZRy/cslnZjq/ztJH+nHcW+huAfzbl67t9PXsW0ALpQ0QtIsivtuXW4EFkmapsKbJP1HSYf3sZ+Hky7fpjPBz/Zx/75YRfGzPTId67KuAkknSJqZAv1XFL8zr3bTjg1BDivL3d8AhwLPAWuA7/VUOSL2UEyKWEVxOepCoPUNHP9v0/7/IGlP6sO0dKy9wFeAh9KMuukRcRfF/+hXphlvm4DZ/TjuHRSXPX8QETv7ObbPAB+kuA84n+L+FqmtNoqp59emttqBj/ejn1+k+FOD3cB3gTv70Ua9vgR0AE8B36f4Ge1LZaOAr1L8nvwbcBTFRBcbJhThL180s6FH0qUUky/e22tlG/J8ZmVmQ4KkcZLenf727QSK+5l3DXa/rDk8G9DMhoqRFH8PNoni0uZKij9xsN8CvgxoZmbZ82VAMzPLni8DdmPMmDExceLEwe6GmdmQMWbMGFavXr06ImYNdNsOq25MnDiRtra2we6GmdmQImlMI9r1ZUAzM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy15Dw0rSLElbJLVLWlyjXJKWpPKNkqaWypZJ2iVpU9U+t0vakJanJW1I2+eXtm+QtF/SKans/tSPrrKjGjluMzMbWA37WntJI4DrgLOBDmCtpNaIeKxUbTYwOS3TgOvTI8DNwLXA8nK7EXF+6RhfB3an7bcCt6btJwH3RMSG0q7zI8LfU29mNgQ18szqdKA9IrZFxMvASmBOVZ05wPIorAFGSxoHEBEPAi9017gkAR8FVtQovqCb7WZmNgQ1MqzGA9tL6x1pW1/rdGcG8GxEPFmj7HwODKub0iXAK1LQHUDSQkltkto6Ozvr7IaZmTVaI8OqViBEP+p0p+bZk6RpwN6IKN/rmh8RJ1EE3AzgoloNRsTSiKhERGXs2LF1dsPMzBqtkWHVARxdWp8A7OhHnQNIagHOA26vUTyPqhCLiGfS4x7gNopLlGZmNkQ0MqzWApMlTZI0kiJEWqvqtAIL0qzA6cDuiNhZR9tnAU9EREd5o6SDgI9Q3B/r2tYiaUx6fjBwLvC6GYZmZpa3hs0GjIhXJF0GrAZGAMsiYrOkRan8BuBe4BygHdgLXNK1v6QVwJnAGEkdwJUR8a1UfMDZU3IG0BER20rbRgGrU1CNAL4P3DhgAzUzs4ZTRL23iH67VCqVaGvzTHczs76QtC4iKgPdrj/BwszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiszM8teQ8NK0ixJWyS1S1pco1ySlqTyjZKmlsqWSdolaVPVPrdL2pCWpyVtSNsnSnqpVHZDaZ9TJT2ajrNEkho4bDMzG2ANCytJI4DrgNnAFOACSVOqqs0GJqdlIXB9qexmYFZ1uxFxfkScEhGnAN8B7iwVb+0qi4hFpe3Xp/a7jnVAu2Zmlq9GnlmdDrRHxLaIeBlYCcypqjMHWB6FNcBoSeMAIuJB4IXuGk9nRx8FVvTUidTeERHxcEQEsByY288xmZnZIGhkWI0HtpfWO9K2vtbpzgzg2Yh4srRtkqT1kh6QNKN0jI56jiFpoaQ2SW2dnZ11dsPMzBqtkWFV675Q9KNOdy7g9WdVO4FjIuJdwJ8At0k6oi/HiIilEVGJiMrYsWPr7IaZmTVaSwPb7gCOLq1PAHb0o84BJLUA5wGndm2LiH3AvvR8naStwPHpGBP6egwzM8tHI8+s1gKTJU2SNBKYB7RW1WkFFqRZgdOB3RGxs462zwKeiIjfXN6TNDZN6kDScRQTKbal9vZImp7ucy0A7nnDozMzs6Zp2JlVRLwi6TJgNTACWBYRmyUtSuU3APcC5wDtwF7gkq79Ja0AzgTGSOoAroyIb6XieRw4seIM4EuSXgFeBRZFRNcEjUspZhceCtyXFjMzGyJUTJCzapVKJdra2ga7G2ZmQ4qkdRFRGeh2/QkWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYaGlaSZknaIqld0uIa5ZK0JJVvlDS1VLZM0i5Jm6r2uV3ShrQ8LWlD2n62pHWSHk2PM0v73J/60bXfUQ0ctpmZDbCWRjUsaQRwHXA20AGsldQaEY+Vqs0GJqdlGnB9egS4GbgWWF5uNyLOLx3j68DutPoc8MGI2CHpncBqYHxp1/kR0TYwozMzs2Zq5JnV6UB7RGyLiJeBlcCcqjpzgOVRWAOMljQOICIeBF7ornFJAj4KrEj110fEjlS8GThE0qgBHZGZmQ2KRobVeGB7ab2D15/p1FunOzOAZyPiyRplHwLWR8S+0rab0iXAK1LQHUDSQkltkto6Ozvr7IaZmTVaI8OqViBEP+p05wLSWdXrGpROBK4GPlnaPD8iTqIIuBnARbUajIilEVGJiMrYsWPr7IaZmTVaI8OqAzi6tD4B2NGPOgeQ1AKcB9xetX0CcBewICK2dm2PiGfS4x7gNopLlGZmNkQ0MqzWApMlTZI0EpgHtFbVaQUWpFmB04HdEbGzjrbPAp6IiI6uDZJGA98FLo+Ih0rbWySNSc8PBs4FNmFmZkNGw8IqIl4BLqOYlfc4sCoiNktaJGlRqnYvsA1oB24EPtW1v6QVwMPACZI6JH2i1Pw8DrwEeBnwduCKqinqo4DVkjYCG4Bn0rHMzGyIUES9t4h+u1QqlWhr80x3M7O+kLQuIioD3a4/wcLMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DmszMwsew4rMzPLXkPDStIsSVsktUtaXKNckpak8o2SppbKlknaJWlT1T63S9qQlqclbSiVXZ7a2iLpA6Xtp0p6NJUtkaQGDdnMzBqgYWElaQRwHTAbmAJcIGlKVbXZwOS0LASuL5XdDMyqbjcizo+IUyLiFOA7wJ3peFOAecCJab9vpj6Q2l1YOtYB7ZrlLvbv55//6VZ+2HotL7/04mB3x6ypWrorkLQqIj4q6VEgykVARMTJvbR9OtAeEdtSeyuBOcBjpTpzgOUREcAaSaMljYuInRHxoKSJPfRPwEeBmaW2VkbEPuApSe3A6ZKeBo6IiIfTfsuBucB9vfTfLCsbHrydr3/380QEnc//lPMuuWawu2TWNN2GFfCZ9DgPqP5v3PvqaHs8sL203gFMq6POeGBnHe3PAJ6NiCdLba2p0dav0/Pq7QeQtJDiDIxjjjmmji6YNc++X/2SIDhIB/HLl34x2N0xa6puwyoiugLjdmA58D+AQ4BrgArFZbqe1LovFP2o050LgBV1tFX3MSJiKbAUoFKp1NsPs6Y49cwLmbfrKV7c+3M++JHPD3Z3zJqqpzOrLtOAq4EfAYcDtwLvrmO/DuDo0voEYEc/6hxAUgtwHnBqHW11pOd9OoZZbg4+5DD+04KvDHY3zAZFPRMsfg28BBxKcWb1VETsr2O/tcBkSZMkjaS4nNhaVacVWJBmBU4HdpfO6HpyFvBERJQv77UC8ySNkjSJYiLFI6m9PZKmp/tcC4B76jiGmZllop6wWksRVqcB76GY1XdHbztFxCvAZcBq4HFgVURslrRI0qJU7V5gG9AO3Ah8qmt/SSuAh4ETJHVI+kSp+Xm8/hIgEbEZWEUxgeN7wB9HxKup+FLg79JxtuLJFWZmQ4qKiXg9VJAqEdFWte2iiPj7hvZskFUqlWhra+u9opmZ/YakdRFRGeh2ez2zqg6qtG1YB5WZmeXFH7dkZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlr2GhpWkWZK2SGqXtLhGuSQtSeUbJU0tlS2TtEvSphr7fTq1u1nSNWnbfEkbSst+SaeksvtT/a6yoxo4bDMzG2AtjWpY0gjgOuBsoANYK6k1Ih4rVZsNTE7LNOD69AhwM3AtsLyq3fcBc4CTI2JfV/BExK3AranOScA9EbGhtOv8iGgbyDGamVlzNPLM6nSgPSK2RcTLwEqKkCmbAyyPwhpgtKRxABHxIPBCjXYvBb4aEftSvV016lwArBigcZiZ2SBrZFiNB7aX1jvStr7WqXY8MEPSjyU9IOm0GnXO58CwuildArxCkmo1LGmhpDZJbZ2dnb10w8zMmqWRYVUrEKIfdaq1AEcC04HPAqvK4SNpGrA3Isr3uuZHxEnAjLRcVKvhiFgaEZWIqIwdO7aXbpiZWbM0Mqw6gKNL6xOAHf2oU6vdO9Olw0eA/cCYUvk8qs6qIuKZ9LgHuI3iEqWZmQ0RjQyrtcBkSZMkjaQIkdaqOq3AgjQrcDqwOyJ29tLu3cBMAEnHAyOB59L6QcBHKO6Pkba1SBqTnh8MnAscMMPQzMzy1bDZgBHxiqTLgNXACGBZRGyWtCiV3wDcC5wDtAN7gUu69pe0AjgTGCOpA7gyIr4FLAOWpSntLwMXR0TXpcMzgI6I2FbqyihgdQqqEcD3gRsbNGwzM2sAvfY+b2WVSiXa2jzT3cysLySti4jKQLfrT7AwM7PsOazMzCx7DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMstfQsJI0S9IWSe2SFtcol6QlqXyjpKmlsmWSdknaVGO/T6d2N0u6Jm2bKOklSRvSckOp/qmSHk3HWSJJjRqzmZkNvIaFlaQRwHXAbGAKcIGkKVXVZgOT07IQuL5UdjMwq0a77wPmACdHxInA10rFWyPilLQsKm2/PrXfdawD2jUzs3w18szqdKA9IrZFxMvASoqQKZsDLI/CGmC0pHEAEfEg8EKNdi8FvhoR+1K9XT11IrV3REQ8HBEBLAfmvoFxmZlZkzUyrMYD20vrHWlbX+tUOx6YIenHkh6QdFqpbJKk9Wn7jNIxOuo5hqSFktoktXV2dvbSDTMza5aWBrZd675Q9KNOtRbgSGA6cBqwStJxwE7gmIh4XtKpwN2STuzLMSJiKbAUoFKp9NYPMzNrkkaeWXUAR5fWJwA7+lGnVrt3pkuHjwD7gTERsS8ingeIiHXAVoqzsI7Ubl+OYWZmGWlkWK0FJkuaJGkkMA9orarTCixIswKnA7sjYmcv7d4NzASQdDwwEnhO0tg0qYN0pjUZ2Jba2yNpepoFuAC4Z2CGaGZmzdCwy4AR8Yqky4DVwAhgWURslrQold8A3AucA7QDe4FLuvaXtAI4ExgjqQO4MiK+BSwDlqUp7S8DF0dESDoD+JKkV4BXgUUR0TVB41KK2YWHAvelxczMhggVE+SsWqVSiba2tsHuhpnZkCJpXURUBrpdf4KFmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlr2GhpWkWZK2SGqXtLhGuSQtSeUbJU0tlS2TtEvSphr7fTq1u1nSNWnb2ZLWSXo0Pc4s1b8/1d+QlqMaNWYzMxt4LY1qWNII4DrgbKADWCupNSIeK1WbDUxOyzTg+vQIcDNwLbC8qt33AXOAkyNiXyl4ngM+GBE7JL0TWA2ML+06PyLaBnCIZmbWJI08szodaI+IbRHxMrCSImTK5gDLo7AGGC1pHEBEPAi8UKPdS4GvRsS+VG9XelwfETtSnc3AIZJGDfiozMys6RoZVuOB7aX1Dl5/plNvnWrHAzMk/VjSA5JOq1HnQ8D6rkBLbkqXAK+QpFoNS1ooqU1SW2dnZy/dMDOzZmlkWNUKhOhHnWotwJHAdOCzwKpy+Eg6Ebga+GRpn/kRcRIwIy0X1Wo4IpZGRCUiKmPHju2lG2Zm1iyNDKsO4OjS+gRgRz/q1Gr3znTp8BFgPzAGQNIE4C5gQURs7dohIp5Jj3uA2yguUZqZ2RDRyLBaC0yWNEnSSGAe0FpVpxVYkGYFTgd2R8TOXtq9G5gJIOl4YCTwnKTRwHeByyPioa7KklokdYXZwcC5wAEzDM3MLF8NC6uIeAW4jGJW3uPAqojYLGmRpEWp2r3ANqAduBH4VNf+klYADwMnSOqQ9IlUtAw4Lk1pXwlcHBGRjvV24IqqKeqjgNWSNgIbgGfSsczMbIhQ8T5v1SqVSrS1eaa7mVlfSFoXEZWBbtefYGFmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9fvtgNSZ3AL4HnBrsvDTKG4Ts2GN7j89iGruE8vjHAEwARMWugG3dY9UBSWyO+8TIHw3lsMLzH57ENXcN5fI0emy8DmplZ9hxWZmaWPYdVz5YOdgcaaDiPDYb3+Dy2oWs4j6+hY/M9KzMzy57PrMzMLHsOKzMzy96wDitJsyRtkdQuaXGNcklakso3SppaKlsmaZekTVX7vEXSP0p6Mj0eWVV+jKQXJf1p40bW/LFJOlnSw5I2S3pU0iHDZXySDpZ0SxrX45IuH4Jj+0h6bfZLqlSVXZ7a2iLpA40b2W+O17TxSTpb0rr02q2TNHO4jK1UPpTfU3r6vezbe0pEDMsFGAFsBY4DRgI/AaZU1TkHuA8QMB34cansDGAqsKlqn2uAxen5YuDqqvLvAP8H+NPhMjagBdgI/F5a/x1gxDAa34XAyvT8MOBpYOIQG9s7gBOA+4FKafuUdIxRwKR07KH42nU3vncBb0vP3wk8M1zGViofyu8p3b1ufX5PGc5nVqcD7RGxLSJeBlYCc6rqzAGWR2ENMFrSOICIeBB4oUa7c4Bb0vNbgLldBZLmAtuAzQM4jlqaPbY/ADZGxE/S/s9HxKsDOaAqzR5fAG+S1AIcCrwM/GIAx1PWkLFFxOMRsaXG8eZQBPG+iHgKaE99aJSmji8i1kfEjrS6GThE0qgBHE9Zs1+7If+e0sPY+vyeMpzDajywvbTekbb1tU61t0bEToD0eBSApDcBfw588Q30uV5NHRtwPBCSVkv6Z0l/1u+e16fZ47uD4qO1dgI/Bb4WEbXCbiA0amxv5HgDqdnjK/sQsD4i9g1AW7U0dWzD5D2lO31+T2np54GGAtXYVj1Pv5469foi8I2IeFGq1eyAavbYWoD3AKcBe4EfSFoXET/oZ3u9afb4TgdeBd4GHAn8UNL3I2JbP9vrSbPHNpBtDdTxBrxPkk4Erqb4H3uj+D2l9zr16vN7ynAOqw7g6NL6BGBHP+pUe1bSuIjYmU6Bd6Xt04APS7oGGA3sl/SriLi2vwPoQbPH1gE8EBHPAUi6l+L6dKPCqtnjuxD4XkT8Gtgl6SGgQnH5ZaA1amxv5HgDqdnjQ9IE4C5gQURs7W87dWj22IbDe0pPx+vTe8pwvgy4FpgsaZKkkcA8oLWqTiuwIM1ymQ7s7rpM1INW4OL0/GLgHoCImBEREyNiIvA3wF816JcKmjw2YDVwsqTD0n2d9wKPDcRAutHs8f0UmJnaehPFzeMnBmIgNTRqbN1pBeZJGiVpEjAZeKS/na9DU8cnaTTwXeDyiHjoDfS7Hk0d2zB5T+lO399Tepp9MdQXitkr/0Ixy+XzadsiYFF6LuC6VP4or5+tsoLiHsavKf4X8Il4bdbKD4An0+Nbahz3Kho4c2cwxgZ8jOIm7ybgmuH02gFvpphttTn9g/nsEBzbf07r+4BngdWlfT6f2toCzB6ir13N8QF/QXG/cUNpOWo4jK3quFcxNN9Tevq97NN7ij9uyczMsjecLwOamdkw4bAyM7PsOazMzCx7DiszM8uew8rMzLLnsDLLhKSJ1Z9a3Uv9j0t6WyP7ZJYLh5XZ0PVxio+IMhv2HFZmeWlR8d1aGyXdkf7C/1RJD6j4vqbVksZJ+jDFR0LdKmmDpEMlfUHSWkmbJC1VEz5QzqxZ/EfBZpmQNBF4CnhPRDwkaRnwOMWnAMyJiE5J5wMfiIg/lHQ/xacatKX93xLp0+Il/T2wKiL+72CMxWygDecPsjUbirbHa59x923gcxRfKviP6URpBMXH2tTyvvRVC4cBb6H4KBuHlQ0LDiuzvFRf6tgDbI6I3+9pJxVfCf5Nis9r2y7pKqDnrwk3G0J8z8osL8dI6gqmC4A1wNiubZIOTt/dBEWQHZ6edwXTc5LeDHy4WR02awaHlVleHgculrSR4lLe/6IInqsl/YTiU8X/Q6p7M3CDpA0Un2p9I8WnYd9N8ZUPZsOGJ1iYmVn2fGZlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlr3/D3A6Xs/0H2oSAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta sigma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEWCAYAAADYRbjGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgj0lEQVR4nO3df5xV9X3n8ddbRvBHdNGCCQIKrmij0Ri8Ct0GY4gmYM3Cmh+iRIxNl2Brtn1km1aTGE2apNFH0rRUo8UVlY2C1vhjutGQmq6atRoZCkFQqSOxMkJk1EgwGAzy2T/Od/R4uTNzZ7jnzpnJ+/l43Me953y/53u+37nDfXPO/c45igjMzMzKbK+B7oCZmVlvHFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIbIiSdKqljoPuRJ2mdpFN7KP+8pP/VvB7ZYOWwslKQ9IykVyW9Iul5STdIettA96snkiZICkktDWpvH0kvS5peo+zbkm5vxH76I43zV+n9eU7S30ga1tt2EXFsRNzfQ/nXI+KPGtpZG5IcVlYmH46ItwGTgZOAL/ZlY2UGze90dchFxK+BW4F5VfWGAecANzWvdzW9O70/HwDOBf77njTWqJC33w6D5h+2/faIiOeAe4F3STpI0v+R1CnpF+n1uK66ku6X9DVJDwHbgSMkXSDpCUnbJG2Q9Olc/VMldUj6C0lbJG2WNFvSGZL+XdJLkj6fq7+XpIslPS3pRUm3STo4FT+Ynl9ORxy/l7b5w7T/X0haLunwXHsh6U8kPQU8VWP4NwEfkbRfbt2HyP6t3tvT2KqlfR2ZW75R0ldzy2dKWp2O5v5V0vHdvytviogngR+TvT//WdK/pJ/NC5JuljQyt49nJJ2WXl8u6XZJ35X0S+CTad13U3nXker5kp5N7X0h19a+km5KP9cn0nvYkSv/y3TUt03SekkfqGc8Njg4rKx0JI0HzgBWkf2O3gAcDhwGvApcVbXJecB84ADgP4AtwJnAgcAFwLclTc7VfwewDzAW+BJwHfAJ4ERgGvAlSUekuv8DmA28DzgU+AVwdSo7JT2PjIi3RcTDkmYDnwfOAkaTfagvrervbGAKcEz12CPiX4HNafv8+G6JiJ11jK0uaZvFwKeB3wH+AWiVNKKObY8h+zmtAgT8NdnP5p3AeODyHjafBdwOjARu7qbOe4GjyY7gviTpnWn9ZcAE4AjgdLL3rKtPRwMXASdFxAFkAf9Mb2OxQSQi/PBjwB9kHyyvAC+TBc53gH1r1DsB+EVu+X7gK720fRfwp+n1qWSBNywtHwAEMCVXfyUwO71+AvhArmwM8BugheyDM4CWXPm9wKdyy3uRHfEdnpYDmN5Lf78I/DC9PjBt/546x9aRKwvgyNzyjcBX0+trgL+qams98L5u9hPAL8nC+mngq8BeNerNBlZVva+npdeXAw9W1b8c+G563fXzHJcrfxSYk15vAD6UK/ujrvECR5IF+WnA3gP9++xH4x8+Z2xlMjsi7suvSKfDvg3MAA5Kqw+QNCwiXk/LG6u2mUn2v/CjyMJiP+CxXJUXc9u+mp6fz5W/CnRN7jgcuFPSrlz568DbuxnD4cDfSfpWvktkR3H/Uau/NSwBLpM0luwIoT0iVtU5tnodDpwv6TO5dcPJjpC6Mzki2vMrJB0CLCQ70jog9ekXPbTR29gBfp57vZ0334tDq7Z/43VEtEv6M7LwO1bScuCzEbGpjv3ZIODTgFZ2/5PslNCUiDiQN0+9KVfnjVsHpNNY3wO+Cbw9IkYC91TV74uNwMyIGJl77BPZ92q1blmwEfh0Vf19Izu9t1t/a4mIZ8lOH84lOwW4pJ9j204WZl3eUdXPr1X1c7+IqD5l2Zu/TuM5Pr0/n+ihP9DL2HuxGRiXWx7/loYjbomI95IFcQBX7MG+rGQcVlZ2B5Ad6bycJjZc1kv94cAIoBPYmY5EPrgH+78W+FrXJAlJoyXNSmWdwC6y71Dy9S+RdGyq/58kfawf+72J7DuY3+fN73b6OrbVwLmShkmaQfa9W5frgAWSpiizv6Q/kHRAH/t5AOn0bToS/Fwft++L28h+tgelfV3UVSDpaEnTU6D/mux35vVu2rFByGFlZfe3wL7AC8AjwA96qhwR28gmRdxGdjrqXKB1D/b/d2n7H0ralvowJe1rO/A14KE0o25qRNxJ9j/6ZWnG21pgZj/2ezvZac8fRcTmfo7tT4EPk30POJfs+y1SW21kU8+vSm21A5/sRz+/TPanBluB7wN39KONen0F6AB+BtxH9jPakcpGAN8g+z35OXAI2UQXGyIU4ZsvmtngI+lCsskX7+u1sg16PrIys0FB0hhJv5/+9u1osu8z7xzofllzeDagmQ0Ww8n+Hmwi2anNZWR/4mC/BXwa0MzMSs+nAc3MrPR8GrAbo0aNigkTJgx0N8zMBo1Ro0axfPny5RExo9FtO6y6MWHCBNra2ga6G2Zmg4qkUUW069OAZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnqFhpWkGZLWS2qXdHGNcklamMrXSJqcK1ssaYuktVXb3CppdXo8I2l1Wj83t361pF2STkhl96d+dJUdUuS4zcyssQq7rb2kYcDVwOlAB7BCUmtEPJ6rNhOYlB5TgGvSM8CNwFXAkny7EXF2bh/fAram9TcDN6f1xwF3R8Tq3KZzI8L3qTczG4SKPLI6GWiPiA0R8RqwDJhVVWcWsCQyjwAjJY0BiIgHgZe6a1ySgI8DS2sUn9PNejMzG4SKDKuxwMbcckda19c63ZkGPB8RT9UoO5vdw+qGdArw0hR0u5E0X1KbpLbOzs46u2FmZkUrMqxqBUL0o053ah49SZoCbI+I/HddcyPiOLKAmwacV6vBiFgUEZWIqIwePbrObpiZWdGKDKsOYHxueRywqR91diOpBTgLuLVG8RyqQiwinkvP24BbyE5RmpnZIFFkWK0AJkmaKGk4WYi0VtVpBealWYFTga0RsbmOtk8DnoyIjvxKSXsBHyP7fqxrXYukUen13sCZwFtmGJqZWbkVNhswInZKughYDgwDFkfEOkkLUvm1wD3AGUA7sB24oGt7SUuBU4FRkjqAyyLi+lS829FTcgrQEREbcutGAMtTUA0D7gOua9hAzcyscIqo9yui3y6VSiXa2jzT3cysLyStjIhKo9v1FSzMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSs9hZWZmpeewMjOz0nNYmZlZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVXqFhJWmGpPWS2iVdXKNckham8jWSJufKFkvaImlt1Ta3SlqdHs9IWp3WT5D0aq7s2tw2J0p6LO1noSQVOGwzM2uwwsJK0jDgamAmcAxwjqRjqqrNBCalx3zgmlzZjcCM6nYj4uyIOCEiTgC+B9yRK366qywiFuTWX5Pa79rXbu2amVl5FXlkdTLQHhEbIuI1YBkwq6rOLGBJZB4BRkoaAxARDwIvddd4Ojr6OLC0p06k9g6MiIcjIoAlwOx+jsnMzAZAkWE1FtiYW+5I6/papzvTgOcj4qncuomSVkl6QNK03D466tmHpPmS2iS1dXZ21tkNMzMrWpFhVet7oehHne6cw1uPqjYDh0XEe4DPArdIOrAv+4iIRRFRiYjK6NGj6+yGmZkVraXAtjuA8bnlccCmftTZjaQW4CzgxK51EbED2JFer5T0NHBU2se4vu7DzMzKo8gjqxXAJEkTJQ0H5gCtVXVagXlpVuBUYGtEbK6j7dOAJyPijdN7kkanSR1IOoJsIsWG1N42SVPT91zzgLv3eHRmZtY0hR1ZRcROSRcBy4FhwOKIWCdpQSq/FrgHOANoB7YDF3RtL2kpcCowSlIHcFlEXJ+K57D7xIpTgK9I2gm8DiyIiK4JGheSzS7cF7g3PczMbJBQNkHOqlUqlWhraxvobpiZDSqSVkZEpdHt+goWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSq/QsJI0Q9J6Se2SLq5RLkkLU/kaSZNzZYslbZG0tmqbWyWtTo9nJK1O60+XtFLSY+l5em6b+1M/urY7pMBhm5lZg7UU1bCkYcDVwOlAB7BCUmtEPJ6rNhOYlB5TgGvSM8CNwFXAkny7EXF2bh/fAramxReAD0fEJknvApYDY3Obzo2ItsaMzszMmqnII6uTgfaI2BARrwHLgFlVdWYBSyLzCDBS0hiAiHgQeKm7xiUJ+DiwNNVfFRGbUvE6YB9JIxo6IjMzGxBFhtVYYGNuuYO3HunUW6c704DnI+KpGmUfAVZFxI7cuhvSKcBLU9DtRtJ8SW2S2jo7O+vshpmZFa3IsKoVCNGPOt05h3RU9ZYGpWOBK4BP51bPjYjjyAJuGnBerQYjYlFEVCKiMnr06Dq7YWZmRSsyrDqA8bnlccCmftTZjaQW4Czg1qr144A7gXkR8XTX+oh4Lj1vA24hO0VpZmaDRJFhtQKYJGmipOHAHKC1qk4rMC/NCpwKbI2IzXW0fRrwZER0dK2QNBL4PnBJRDyUW98iaVR6vTdwJrAWMzMbNAoLq4jYCVxENivvCeC2iFgnaYGkBanaPcAGoB24Dvjjru0lLQUeBo6W1CHpU7nm57D7KcCLgCOBS6umqI8AlktaA6wGnkv7MjOzQUIR9X5F9NulUqlEW5tnupuZ9YWklRFRaXS7voKFmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqVX923t063ijwH26VoXEUu638LMzKwx6gorSZcBp5KF1T3ATOD/AQ4rMzMrXL2nAT8KfAD4eURcALyb7NYbZmZmhas3rF6NiF3ATkkHAluAI4rrlpmZ2Zvq/c6qLd2J9zpgJfAK8GhRnTIzM8urK6wiousOvtdK+gFwYESsKa5bZmZmb+rLbMDjgQld20g6MiLuKKhfZmZmb6h3NuBi4HhgHbArrQ7AYWVmZoWr98hqakQcU2hPzMzMulHvbMCHJfU5rCTNkLReUruki2uUS9LCVL5G0uRc2WJJWyStrdrmVkmr0+MZSatzZZekttZL+lBu/YmSHktlCyWpr2MxM7OBU29Y3UQWWOtTqDwmqccJFpKGAVeT/QHxMcA5NQJvJjApPeYD1+TKbgRmVLcbEWdHxAkRcQLwPdKpyNT2HODYtN13Uh9I7c7P7Wu3ds3KLnbt4t/+5WZ+3HoVr736ykB3x6yp6j0NuBg4D3iMN7+z6s3JQHtEbACQtAyYBTyeqzMLWBIRATwiaaSkMRGxOSIelDShu8bT0dHHgem5tpZFxA7gZ5LagZMlPUM2e/HhtN0SYDZwb53jMCuF1Q/eyre+/wUigs4Xn+WsC64c6C6ZNU29YfVsRLT2se2xwMbccgcwpY46Y4HNdbQ/DXg+Ip7KtfVIjbZ+k15Xr9+NpPlkR2AcdthhdXTBrHl2/PpXBMFe2otfvfrLge6OWVPVG1ZPSroF+CdgR9fKXqau1/peKPpRpzvnAEvraKvufUTEImARQKVSqbcfZk1x4qnnMmfLz3hl+8t8+GNfGOjumDVVvWG1L1lIfTC3rrep6x3A+NzyOGBTP+rsRlILcBZwYh1tdaTXfdqHWdnsvc9+/Nd5XxvobpgNiHqvYHFBP9peAUySNBF4jmzyw7lVdVqBi9L3WVOArRFRzynA04AnIyJ/eq8VuEXS3wCHkk2keDQiXpe0TdJU4CfAPODv+zEeMzMbIPX+UfDCGqu3Am0RcXetbSJip6SLgOXAMGBxRKyTtCCVX0t2u5EzgHZgO/BGKEpaSnZbklGSOoDLIuL6VDyHt54CJLV9G9kEjp3An0TE66n4QrLZhfuSTazw5Aozs0FE2US8XipJi4DfBf4xrfoI2dUsxgMbIuLPiurgQKlUKtHW1jbQ3TAzG1QkrYyISqPbrfc7qyOB6RGxM3XmGuCHwOlk09nNzMwKU+8fBY8F9s8t7w8cmk6z7ai9iZmZWWPUe2R1JbBa0v1kU8FPAb4uaX/gvoL6ZmZmBtQ/G/B6SfeQXZVCwOcjomv69+eK6pyZmRn0chpQ0u+m58nAGLKrTTwLvCN/0VkzM7Mi9XZk9Vmyyw99K7cuP31wOmZmZgXr8cgqIuanl9cAsyLi/cD/Jfsbqz8vuG9mZmZA/bMBvxgRv5T0XrLp6jfy1tt5mJmZFabesOq6EsQfANemq1YML6ZLZmZmb1VvWD0n6R/I7h91j6QRfdjWzMxsj9QbOB8nu8bfjIh4GTgYT1k3M7MmqffvrLaTux1IujJ6PVdHNzMz22M+lWdmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSq/QsJI0Q9J6Se2SLq5RLkkLU/ma/D2yJC2WtEXS2hrbfSa1u07SlWndXEmrc49dkk5IZfen+l1lhxQ4bDMza7B6b2vfZ5KGAVeTXaW9A1ghqTUiHs9VmwlMSo8pZFdyn5LKbgSuApZUtft+YBZwfETs6AqeiLgZuDnVOQ64OyJW5zadGxFtjRyjmZk1R5FHVicD7RGxISJeA5aRhUzeLGBJZB4BRkoaAxARDwIv1Wj3QuAbEbEj1dtSo845wNIGjcPMzAZYkWE1FtiYW+5I6/pap9pRwDRJP5H0gKSTatQ5m93D6oZ0CvBSSarVsKT5ktoktXV2dvbSDTMza5Yiw6pWIEQ/6lRrAQ4CppJd+f22fPhImgJsj4j8d11zI+I4YFp6nFer4YhYFBGViKiMHj26l26YmVmzFBlWHcD43PI4YFM/6tRq94506vBRYBcwKlc+h6qjqoh4Lj1vA24hO0VpZmaDRJFhtQKYJGmipOFkIdJaVacVmJdmBU4Ftqbbj/TkLmA6gKSjyO5Y/EJa3gv4GNn3Y6R1LZJGpdd7A2cCu80wNDOz8ipsNmBE7JR0EdlNG4cBiyNinaQFqfxa4B7gDKAd2A5c0LW9pKXAqcAoSR3AZRFxPbAYWJymtL8GnB8RXacOTwE6ImJDrisjgOUpqIYB9wHXFTRsMzMrgN78nLe8SqUSbW2e6W5m1heSVkZEpdHt+goWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSq/QsJI0Q9J6Se2SLq5RLkkLU/kaSZNzZYslbZG0tsZ2n0ntrpN0ZVo3QdKrklanx7W5+idKeiztZ6EkFTVmMzNrvMLCStIw4GpgJnAMcI6kY6qqzQQmpcd84Jpc2Y3AjBrtvh+YBRwfEccC38wVPx0RJ6THgtz6a1L7XfvarV0zMyuvIo+sTgbaI2JDRLwGLCMLmbxZwJLIPAKMlDQGICIeBF6q0e6FwDciYkeqt6WnTqT2DoyIhyMigCXA7D0Yl5mZNVmRYTUW2Jhb7kjr+lqn2lHANEk/kfSApJNyZRMlrUrrp+X20VHPPiTNl9Qmqa2zs7OXbpiZWbO0FNh2re+Foh91qrUABwFTgZOA2yQdAWwGDouIFyWdCNwl6di+7CMiFgGLACqVSm/9MDOzJinyyKoDGJ9bHgds6kedWu3ekU4dPgrsAkZFxI6IeBEgIlYCT5MdhXWkdvuyDzMzK5Eiw2oFMEnSREnDgTlAa1WdVmBemhU4FdgaEZt7afcuYDqApKOA4cALkkanSR2kI61JwIbU3jZJU9MswHnA3Y0ZopmZNUNhpwEjYqeki4DlwDBgcUSsk7QglV8L3AOcAbQD24ELuraXtBQ4FRglqQO4LCKuBxYDi9OU9teA8yMiJJ0CfEXSTuB1YEFEdE3QuJBsduG+wL3pYWZmg4SyCXJWrVKpRFtb20B3w8xsUJG0MiIqjW7XV7AwM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSs9hZWZmpeewMjOz0nNYmZlZ6TmszMys9BxWZmZWeoWGlaQZktZLapd0cY1ySVqYytdImpwrWyxpi6S1Nbb7TGp3naQr07rTJa2U9Fh6np6rf3+qvzo9DilqzGZm1ngtRTUsaRhwNXA60AGskNQaEY/nqs0EJqXHFOCa9AxwI3AVsKSq3fcDs4DjI2JHLnheAD4cEZskvQtYDozNbTo3ItoaOEQzM2uSIo+sTgbaI2JDRLwGLCMLmbxZwJLIPAKMlDQGICIeBF6q0e6FwDciYkeqtyU9r4qITanOOmAfSSMaPiozM2u6IsNqLLAxt9zBW4906q1T7ShgmqSfSHpA0kk16nwEWNUVaMkN6RTgpZJUq2FJ8yW1SWrr7OzspRtmZtYsRYZVrUCIftSp1gIcBEwFPgfclg8fSccCVwCfzm0zNyKOA6alx3m1Go6IRRFRiYjK6NGje+mGmZk1S5Fh1QGMzy2PAzb1o06tdu9Ipw4fBXYBowAkjQPuBOZFxNNdG0TEc+l5G3AL2SlKMzMbJIoMqxXAJEkTJQ0H5gCtVXVagXlpVuBUYGtEbO6l3buA6QCSjgKGAy9IGgl8H7gkIh7qqiypRVJXmO0NnAnsNsPQzMzKq7CwioidwEVks/KeAG6LiHWSFkhakKrdA2wA2oHrgD/u2l7SUuBh4GhJHZI+lYoWA0ekKe3LgPMjItK+jgQurZqiPgJYLmkNsBp4Lu3LzMwGCWWf81atUqlEW5tnupuZ9YWklRFRaXS7voKFmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz3ffLEbkjqBXwEvDHRfCjKKoTs2GNrj89gGr6E8vlHAkwARMaPRjTuseiCprYg7XpbBUB4bDO3xeWyD11AeX9Fj82lAMzMrPYeVmZmVnsOqZ4sGugMFGspjg6E9Po9t8BrK4yt0bP7OyszMSs9HVmZmVnoOKzMzK70hHVaSZkhaL6ld0sU1yiVpYSpfI2lyrmyxpC2S1lZtc7Ckf5b0VHo+qKr8MEmvSPrz4kbW/LFJOl7Sw5LWSXpM0j5DZXyS9pZ0UxrXE5IuGYRj+1h6b3ZJqlSVXZLaWi/pQ8WN7I39NW18kk6XtDK9dyslTR8qY8uVD+bPlJ5+L/v2mRIRQ/IBDAOeBo4AhgM/BY6pqnMGcC8gYCrwk1zZKcBkYG3VNlcCF6fXFwNXVJV/D/hH4M+HytiAFmAN8O60/DvAsCE0vnOBZen1fsAzwIRBNrZ3AkcD9wOV3Ppj0j5GABPTvgfje9fd+N4DHJpevwt4bqiMLVc+mD9Tunvf+vyZMpSPrE4G2iNiQ0S8BiwDZlXVmQUsicwjwEhJYwAi4kHgpRrtzgJuSq9vAmZ3FUiaDWwA1jVwHLU0e2wfBNZExE/T9i9GxOuNHFCVZo8vgP0ltQD7Aq8Bv2zgePIKGVtEPBER62vsbxZZEO+IiJ8B7akPRWnq+CJiVURsSovrgH0kjWjgePKa/d4N+s+UHsbW58+UoRxWY4GNueWOtK6vdaq9PSI2A6TnQwAk7Q/8JfDlPehzvZo6NuAoICQtl/Rvkv6i3z2vT7PHdzvZpbU2A88C34yIWmHXCEWNbU/210jNHl/eR4BVEbGjAW3V0tSxDZHPlO70+TOlpZ87GgxUY131PP166tTry8C3I+IVqVazDdXssbUA7wVOArYDP5K0MiJ+1M/2etPs8Z0MvA4cChwE/FjSfRGxoZ/t9aTZY2tkW43aX8P7JOlY4Aqy/7EXxZ8pvdepV58/U4ZyWHUA43PL44BN/ahT7XlJYyJiczoE3pLWTwE+KulKYCSwS9KvI+Kq/g6gB80eWwfwQES8ACDpHrLz00WFVbPHdy7wg4j4DbBF0kNAhez0S6MVNbY92V8jNXt8SBoH3AnMi4in+9tOHZo9tqHwmdLT/vr0mTKUTwOuACZJmihpODAHaK2q0wrMS7NcpgJbu04T9aAVOD+9Ph+4GyAipkXEhIiYAPwt8PWCfqmgyWMDlgPHS9ovfa/zPuDxRgykG80e37PA9NTW/mRfHj/ZiIHUUNTYutMKzJE0QtJEYBLwaH87X4emjk/SSOD7wCUR8dAe9LseTR3bEPlM6U7fP1N6mn0x2B9ks1f+nWyWyxfSugXAgvRawNWp/DHeOltlKdl3GL8h+1/Ap+LNWSs/Ap5KzwfX2O/lFDhzZyDGBnyC7EvetcCVQ+m9A95GNttqXfoH87lBOLb/lpZ3AM8Dy3PbfCG1tR6YOUjfu5rjA75I9n3j6tzjkKEwtqr9Xs7g/Ezp6feyT58pvtySmZmV3lA+DWhmZkOEw8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMxKQtKE6qtW91L/k5IOLbJPZmXhsDIbvD5JdokosyHPYWVWLi3K7q21RtLt6S/8T5T0gLL7NS2XNEbSR8kuCXWzpNWS9pX0JUkrJK2VtEhNuKCcWbP4j4LNSkLSBOBnwHsj4iFJi4EnyK4CMCsiOiWdDXwoIv5Q0v1kVzVoS9sfHOlq8ZL+N3BbRPzTQIzFrNGG8oVszQajjfHmNe6+C3ye7KaC/5wOlIaRXdamlvenWy3sBxxMdikbh5UNCQ4rs3KpPtWxDVgXEb/X00bKbgn+HbLrtW2UdDnQ823CzQYRf2dlVi6HSeoKpnOAR4DRXesk7Z3u3QRZkB2QXncF0wuS3gZ8tFkdNmsGh5VZuTwBnC9pDdmpvL8nC54rJP2U7Kri/yXVvRG4VtJqsqtaX0d2Ney7yG75YDZkeIKFmZmVno+szMys9BxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PS+//Gm8+ojM4zkgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEWCAYAAADGjIh1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAarklEQVR4nO3de5RlZX3m8e9Dt9wxDbEx3Btiy0oTMcEKMKNRg0FpY9Jk1DWgDnjJIFEymZnE2BjHYBITdSUhYSQ64KAQExmGhNgZUYJMDFkERqqDAh1E2vZChw40XhBEQeA3f+zd4eRYXVVd1Dn1VvP9rHXW2Xu/l/2+dU6fp/elTqWqkCSpBbss9AAkSdrGUJIkNcNQkiQ1w1CSJDXDUJIkNcNQkiQ1w1CSFpkkL0yyeaHHMSjJhiQvnKb8bUk+OL4RabEylDRWSb6c5DtJHkhyd5IPJdl7occ1nSQrklSSpfPU3+5JvpnkhCnKzk1y+XzsZy76eX67f33+KckfJFkyU7uqOqqqPj1N+e9U1S/M62C1UzKUtBB+tqr2Bo4BfgJ4+440TmfRvHeHw6yqvgv8L+C0oXpLgFOBi8c3uik9u399XgS8CviPT6Sz+QpzPTksmn/Y2vlU1T8BnwB+NMm+Sf5Pkq1JvtEvH7ytbpJPJ3lXkuuAB4EjkrwuyW1J7k+yKckbB+q/MMnmJL+W5J4kW5KcnOSlSb6Q5OtJ3jZQf5cka5N8McnXklyWZL+++Nr++Zv9EcS/6du8vt//N5JcleSwgf4qyZuT3AHcMcX0LwZenmTPgW0vofs3+Ynp5jas39czBtY/nOS3B9ZfluSz/dHZ3yc5evuvyuOq6vPA39G9Pj+c5P/2P5t7k/xpkmUD+/hykp/ul89JcnmSjyT5FvDafttH+vJtR56nJ/lq39+vD/S1R5KL+5/rbf1ruHmg/K39Udz9SW5P8qLZzEeLg6GkBZPkEOClwE1078UPAYcBhwLfAd431OQ/AGcA+wBfAe4BXgY8FXgdcG6SYwbq/xCwO3AQ8A7gQuA1wHOAnwTekeSIvu5/Ak4GXgAcCHwDOL8ve37/vKyq9q6q65OcDLwN+HfAcroP748Ojfdk4Dhg1fDcq+rvgS19+8H5/VlVPTKLuc1K3+Yi4I3ADwL/A1iXZLdZtF1F93O6CQjwu3Q/mx8BDgHOmab5GuByYBnwp9up8zzgSLojsnck+ZF++28AK4AjgBPpXrNtYzoSOAv4iarahy7IvzzTXLSIVJUPH2N70H2APAB8ky5Y/hjYY4p6PwZ8Y2D908BvztD3XwK/3C+/kC7YlvTr+wAFHDdQfz1wcr98G/CigbIDgO8BS+k+IAtYOlD+CeANA+u70B3BHdavF3DCDON9O/DX/fJT+/Y/Psu5bR4oK+AZA+sfBn67X34/8FtDfd0OvGA7+yngW3Sh/EXgt4Fdpqh3MnDT0Ov60/3yOcC1Q/XPAT7SL2/7eR48UP4Z4JR+eRPwkoGyX9g2X+AZdIH908BTFvr97GP+H57r1UI4uao+NbihP411LnASsG+/eZ8kS6rq0X79zqE2q+n+V/1MulDYE7hloMrXBtp+p3++e6D8O8C2mywOA65I8thA+aPA07czh8OAP0ry+4NDojsq+8pU453CJcBvJDmI7n/8G6vqplnObbYOA05P8ksD23alO+LZnmOqauPghiT7A+fRHTnt04/pG9P0MdPcAf55YPlBHn8tDhxq/y/LVbUxyX+mC7mjklwF/NequmsW+9Mi4Ok7teJX6E7lHFdVT+XxU2YZqPMvX2nfn376c+D3gKdX1TLgyqH6O+JOYHVVLRt47F7dda+pvkr/TuCNQ/X3qO603PeNdypV9VW6036vpjt1d8kc5/YgXWht80ND43zX0Dj3rKrhU40z+d1+Pkf3r89rphkPzDD3GWwBDh5YP+RfdVz1Z1X1PLrALeA9T2BfaoyhpFbsQ3fk8s3+BoPfmKH+rsBuwFbgkf7I4sVPYP8fAN617WaFJMuTrOnLtgKP0V3jGKx/dpKj+vo/kOSVc9jvxXTXSJ7L49dednRunwVelWRJkpPorottcyFwZpLj0tkryc8k2WcHx7kP/WnX/sjuLTvYfkdcRvez3bff11nbCpIcmeSEPri/S/eeeXQ7/WgRMpTUij8E9gDuBW4APjld5aq6n+7mhMvoTiO9Clj3BPb/R337v05yfz+G4/p9PQi8C7iuv4Pt+Kq6gu5/6Jf2d5jdCqyew34vpztdeU1VbZnj3H4Z+Fm663Svprv+RN/XJN0t3e/r+9oIvHYO43wn3S389wEfB/5iDn3M1m8Cm4EvAZ+i+xk91JftBryb7n3yz8D+dDecaCeRKv/In6R2JflFupsgXjBjZS16HilJakqSA5I8t//dsSPprjdesdDj0nh4952k1uxK9/tUh9OdkryU7lcH9CTg6TtJUjM8fSdJasaT+vTd0572tFqxYsVCD0OSFpX169ffW1XLR9H3kzqUVqxYweTk5EIPQ5IWlSRfmbnW3Hj6TpLUDENJktQMQ0mS1AxDSZLUDENJktQMQ0mS1AxDSZLUDENJktQMQ0mS1AxDSZLUDENJktQMQ0mS1AxDSZLUDENJktQMQ0mS1AxDSZLUDENJktQMQ0mS1AxDSZLUDENJktQMQ0mS1AxDSZLUDENJktQMQ0mS1AxDSZLUjJGGUpKTktyeZGOStVOUJ8l5ffnNSY4ZKLsoyT1Jbh1qs1+Sq5Pc0T/vO1R+aJIHkvzq6GYmSRqFkYVSkiXA+cBqYBVwapJVQ9VWAyv7xxnA+wfKPgycNEXXa4FrqmolcE2/Puhc4BNPdPySpPEb5ZHSscDGqtpUVQ8DlwJrhuqsAS6pzg3AsiQHAFTVtcDXp+h3DXBxv3wxcPK2giQnA5uADfM4D0nSmIwylA4C7hxY39xv29E6w55eVVsA+uf9AZLsBbwVeOd0jZOckWQyyeTWrVtnnIQkaXxGGUqZYlvNoc5svRM4t6oemK5SVV1QVRNVNbF8+fI57kqSNApLR9j3ZuCQgfWDgbvmUGfY3UkOqKot/am+e/rtxwGvSPJeYBnwWJLvVtX75joBSdJ4jfJI6UZgZZLDk+wKnAKsG6qzDjitvwvveOC+bafmprEOOL1fPh34GEBV/WRVraiqFcAfAr9jIEnS4jKyUKqqR4CzgKuA24DLqmpDkjOTnNlXu5LuxoSNwIXAm7a1T/JR4HrgyCSbk7yhL3o3cGKSO4AT+3VJ0k4gVXO9hLP4TUxM1OTk5EIPQ5IWlSTrq2piFH37jQ6SpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmjDSUkpyU5PYkG5OsnaI8Sc7ry29OcsxA2UVJ7kly61Cb/ZJcneSO/nnffvuJSdYnuaV/PmGUc5Mkzb+RhVKSJcD5wGpgFXBqklVD1VYDK/vHGcD7B8o+DJw0RddrgWuqaiVwTb8OcC/ws1X1LOB04E/mZyaSpHEZ5ZHSscDGqtpUVQ8DlwJrhuqsAS6pzg3AsiQHAFTVtcDXp+h3DXBxv3wxcHJf/6aquqvfvgHYPclu8zkhSdJojTKUDgLuHFjf3G/b0TrDnl5VWwD65/2nqPNy4KaqemiHRixJWlBLR9h3pthWc6izYztNjgLeA7x4O+Vn0J0q5NBDD30iu5IkzbNRHiltBg4ZWD8YuGsOdYbdve0UX/98z7aCJAcDVwCnVdUXp2pcVRdU1URVTSxfvnxWE5EkjccoQ+lGYGWSw5PsCpwCrBuqsw44rb8L73jgvm2n5qaxju5GBvrnjwEkWQZ8HDi7qq6bpzlIksZoZKFUVY8AZwFXAbcBl1XVhiRnJjmzr3YlsAnYCFwIvGlb+yQfBa4HjkyyOckb+qJ3AycmuQM4sV+n39czgP+W5LP9Y6rrTZKkRqXqCV3CWdQmJiZqcnJyoYchSYtKkvVVNTGKvv1GB0lSMwwlSVIzDCVJUjMMJUlSMwwlSVIzDCVJUjMMJUlSMwwlSVIzDCVJUjMMJUlSMwwlSVIzDCVJUjMMJUlSMwwlSVIzDCVJUjMMJUlSMwwlSVIzDCVJUjMMJUlSMwwlSVIzDCVJUjMMJUlSMwwlSVIzDCVJUjMMJUlSMwwlSVIzDCVJUjMMJUlSMwwlSVIzls5UIck7ptpeVb85/8ORJD2ZzRhKwLcHlncHXgbcNprhSJKezGY8fVdVvz/weBfwQuCg2XSe5KQktyfZmGTtFOVJcl5ffnOSYwbKLkpyT5Jbh9rsl+TqJHf0z/sOlJ3d93V7kpfMZoySpHbM5ZrSnsARM1VKsgQ4H1gNrAJOTbJqqNpqYGX/OAN4/0DZh4GTpuh6LXBNVa0ErunX6fs+BTiqb/fH/RikReX+r93F3/zFH/D5z1y50EORxm4215RuAapfXQIsB2ZzPelYYGNVber7uRRYA/zjQJ01wCVVVcANSZYlOaCqtlTVtUlWTNHvGrqjNYCLgU8Db+23X1pVDwFfSrKxH8P1sxir1IwPXviLTG79HLvlKfzWsv056JkTCz0kaWxmc03pZQPLjwB3V9Ujs2h3EHDnwPpm4LhZ1DkI2DJNv0+vqi0AVbUlyf4Dfd0wRV//SpIz6I7KOPTQQ2eehTRm3374AXbNU3iUx3joOw8s9HCksZrNNaWvVNVXgO/QHSkdmGQ2n+aZqrs51JmtWfVVVRdU1URVTSxfvnyOu5JG5xdecy4vOOz5vO65v8Thz3r+Qg9HGqvZnL77OeD3gQOBe4DD6O6+O2qGppuBQwbWDwbumkOdYXdvO8WX5IB+THPtS2rODx1xNK/9pf+50MOQFsRsbnT4LeB44AtVdTjwIuC6WbS7EViZ5PAku9LdhLBuqM464LT+Lrzjgfu2nZqbxjrg9H75dOBjA9tPSbJbksPpbp74zCzGKUlqxGxC6XtV9TVglyS7VNXfAD82U6P+utNZwFV0R1aXVdWGJGcmObOvdiWwCdgIXAi8aVv7JB+lu0nhyCSbk7yhL3o3cGKSO4AT+3WqagNwGd2NFJ8E3lxVj85ifpKkRqS78W2aCsmngJOB3wWeRne6bKKqnjvy0Y3YxMRETU5OLvQwJGlRSbK+qkZyW+hs7r77HPAg8F+AVwM/AOw9isFIkp7cZhNKP1VVjwGP0f1eEEluHumoJElPStsNpSS/SHeN54eHQmgfZnejgyRJO2S6I6U/Az5Bdy1p8Hvr7q+qr490VJKkJ6XthlJV3QfcB5w6vuFIkp7M/CN/kqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmjDSUkpyU5PYkG5OsnaI8Sc7ry29OcsxMbZM8O8n1SW5J8ldJntpvf0qSi/vttyU5e5RzkyTNv5GFUpIlwPnAamAVcGqSVUPVVgMr+8cZwPtn0faDwNqqehZwBfCWfvsrgd367c8B3phkxWhmJ0kahVEeKR0LbKyqTVX1MHApsGaozhrgkurcACxLcsAMbY8Eru2XrwZe3i8XsFeSpcAewMPAt0Y0N0nSCIwylA4C7hxY39xvm02d6dreCvxcv/xK4JB++XLg28AW4KvA71XV15/YFCRJ4zTKUMoU22qWdaZr+3rgzUnWA/vQHRFBd3T1KHAgcDjwK0mO+L5BJWckmUwyuXXr1plnIUkam1GG0mYeP4oBOBi4a5Z1ttu2qj5fVS+uqucAHwW+2Nd5FfDJqvpeVd0DXAdMDA+qqi6oqomqmli+fPmcJydJmn+jDKUbgZVJDk+yK3AKsG6ozjrgtP4uvOOB+6pqy3Rtk+zfP+8CvB34QN/XV4ET+r72Ao4HPj/C+UmS5tnIQqmqHgHOAq4CbgMuq6oNSc5McmZf7UpgE7ARuBB403Rt+zanJvkCXeDcBXyo334+sDfdNacbgQ9V1c2jmp8kaf6lavgyz5PHxMRETU5OLvQwJGlRSbK+qr7v8sh88BsdJEnNMJQkSc0wlCRJzTCUJEnNMJQkSc0wlCRJzTCUJEnNMJQkSc0wlCRJzTCUJEnNMJQkSc0wlCRJzTCUJEnNMJQkSc0wlCRJzTCUJEnNMJQkSc0wlCRJzTCUJEnNMJQkSc0wlCRJzTCUJEnNMJQkSc0wlCRJzTCUJEnNMJQkSc0wlCRJzTCUJEnNMJQkSc0wlCRJzTCUJEnNGGkoJTkpye1JNiZZO0V5kpzXl9+c5JiZ2iZ5dpLrk9yS5K+SPHWg7Oi+bENfvvso5ydJml8jC6UkS4DzgdXAKuDUJKuGqq0GVvaPM4D3z6LtB4G1VfUs4ArgLX2bpcBHgDOr6ijghcD3RjU/SdL8G+WR0rHAxqraVFUPA5cCa4bqrAEuqc4NwLIkB8zQ9kjg2n75auDl/fKLgZur6nMAVfW1qnp0VJOTJM2/UYbSQcCdA+ub+22zqTNd21uBn+uXXwkc0i8/E6gkVyX5hyS/NtWgkpyRZDLJ5NatW3dwSpKkURplKGWKbTXLOtO1fT3w5iTrgX2Ah/vtS4HnAa/un38+yYu+r5OqC6pqoqomli9fPvMsJEljs3SEfW/m8aMYgIOBu2ZZZ9ftta2qz9OdqiPJM4GfGejrb6vq3r7sSuAY4Jp5mIskaQxGeaR0I7AyyeFJdgVOAdYN1VkHnNbfhXc8cF9VbZmubZL9++ddgLcDH+j7ugo4Osme/U0PLwD+cYTzkyTNs5EdKVXVI0nOoguLJcBFVbUhyZl9+QeAK4GXAhuBB4HXTde27/rUJG/ul/8C+FDf5htJ/oAu0Aq4sqo+Pqr5SZLmX6qGL/M8eUxMTNTk5ORCD0OSFpUk66tqYhR9+40OkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZqSqFnoMCybJVuArwNOAexd4OKPi3BavnXl+zm3xehqwV1UtH0XnT+pQ2ibJZFVNLPQ4RsG5LV478/yc2+I16vl5+k6S1AxDSZLUDEOpc8FCD2CEnNvitTPPz7ktXiOdn9eUJEnN8EhJktQMQ0mS1IydIpSSnJTk9iQbk6ydojxJzuvLb05yzEDZRUnuSXLrUJv9klyd5I7+ed+h8kOTPJDkV0c3s/HPLcnRSa5PsiHJLUl23xnmluQpSS7u53RbkrNHNa8Rz++V/WvzWJKJobKz+75uT/KS0c1svHNLcmKS9f1rtz7JCTvL3AbKx/J50u9r3O/LHftMqapF/QCWAF8EjgB2BT4HrBqq81LgE0CA44H/N1D2fOAY4NahNu8F1vbLa4H3DJX/OfC/gV/dWeYGLAVuBp7dr/8gsGQnmdurgEv75T2BLwMrFuFr9yPAkcCngYmB7av6fewGHN7ve7G9dtub248DB/bLPwr8087yug2Uj/zzZIFeux3+TNkZjpSOBTZW1aaqehi4FFgzVGcNcEl1bgCWJTkAoKquBb4+Rb9rgIv75YuBk7cVJDkZ2ARsmMd5TGXcc3sxcHNVfa5v/7WqenQ+JzRg3HMrYK8kS4E9gIeBb83jfIaNZH5VdVtV3T7F/tbQhe5DVfUlYGM/hlEY69yq6qaquqtf3QDsnmS3eZzPoHG/buP8PIHxz2+HP1N2hlA6CLhzYH1zv21H6wx7elVtAeif9wdIshfwVuCdT2DMszXWuQHPBCrJVUn+IcmvzXnkMxv33C4Hvg1sAb4K/F5VTRVq82VU83si+5sv457boJcDN1XVQ/PQ11TGOrcxf57A+F+7Hf5MWTrHHbUkU2wbvs99NnVm653AuVX1QDJVt/Nq3HNbCjwP+AngQeCaJOur6po59jedcc/tWOBR4EBgX+DvknyqqjbNsb+ZjHt+89nXfOxr3seT5CjgPXT/+x6VnfnzBBbBZ8rOEEqbgUMG1g8G7ppDnWF3Jzmgqrb0h6739NuPA16R5L3AMuCxJN+tqvfNdQLTGPfcNgN/W1X3AiS5ku788ShCadxzexXwyar6HnBPkuuACbrTJqMwqvk9kf3Nl3HPjSQHA1cAp1XVF+fazyyMe27j/DyBhXlf7tBnys5w+u5GYGWSw5PsCpwCrBuqsw44rb+r5Hjgvm2neKaxDji9Xz4d+BhAVf1kVa2oqhXAHwK/M8I30FjnBlwFHJ1kz/7aywuAf5yPiUxh3HP7KnBC39dedBdwPz8fE9mOUc1ve9YBpyTZLcnhwErgM3Md/AzGOrcky4CPA2dX1XVPYNyzMda5jfnzBMb/vtzxz5Tp7oJYLA+6u0W+QHdXya/3284EzuyXA5zfl9/Cv7475KN01xm+R5fqb6jH7xK5Brijf95viv2ew+jvlhnr3IDX0F1wvRV4784yN2BvurubNvT/KN6ySN+XP9+vPwTcDVw10ObX+75uB1bvLHMD3k53PfCzA4/9d4a5De33HEb8ebJA78sd+kzxa4YkSc3YGU7fSZJ2EoaSJKkZhpIkqRmGkiSpGYaSJKkZhpI0RklWDH/D8gz1X5vkwFGOSWqJoSS17bV0X40kPSkYStL4LU33t51uTnJ5/9vuz0nyt+n+XtBVSQ5I8gq6r0L60ySfTbJHknckuTHJrUkuyJi+ME0aF395VhqjJCuALwHPq6rrklwE3Eb3G/Frqmprkn8PvKSqXp/k03S/5T/Zt9+v+m83T/InwGVV9VcLMRdpFHaGL2SVFps76/HvcPsI8Da6P153dX/gs4Tuq1ym8lP91//vCexH9/UthpJ2GoaSNH7DpyfuBzZU1b+ZrlG6PyP9x3TfRXZnknOAkf25emkheE1JGr9Dk2wLoFOBG4Dl27YleUr/t4OgC6x9+uVtAXRvkr2BV4xrwNK4GErS+N0GnJ7kZrpTcP+dLmDek+RzdN+C/W/7uh8GPpDks3TfwHwh3Tc3/yXdnyGQdire6CBJaoZHSpKkZhhKkqRmGEqSpGYYSpKkZhhKkqRmGEqSpGYYSpKkZvx/tcI6NWvPySEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "delta gamma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZmUlEQVR4nO3debRlZX3m8e9DlcwgKOVUIFVGQkQbFS9D4hhHQA2g2AvROESDpIU23W0EhygmmgSXHTEtBtEg2A5EQQhRBFuzHJZTqBJUEIklDhSgFCqKUoJV/PqPvQsPx1O3Tt067711b76fte66Z+/97r1/7z2nzlN7OO9JVSFJ0qRtM9cFSJIWJgNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgw0hxK8oQkq+e6jkFJrkryhGmWvybJe2avIs1XBoxmLMn3kqxN8oskP0ry3iQ7z3Vd00myLEklWTyh7W2f5JYkTxyx7G1JzpvEfmai7+cv++fn+iR/n2TRptarqodW1WemWf43VfXSiRarBcmA0ZZ6ZlXtDBwAHAi8bnNWTmfevA6Hg6mqfgX8M/CCoXaLgOcC58xedSM9vH9+ngQcC/zplmxsUsGs/xzmzT9sbd2q6nrgE8DDkuye5GNJ1iT5af94zw1tk3wmyZuTfAG4DXhQkhcnuTrJrUmuTfKygfZPSLI6yauS3JTkxiRHJjk8yX8k+UmS1wy03ybJyUm+k+THST6c5F794s/1v2/p/2f/+/06f9Lv/6dJLk2y98D2KsnLk3wb+PaI7p8DPDvJjgPznkb37+sT0/VtWL+vBw9Mn53kTQPTz0hyRX/U9MUk+2/8WfmNqvoW8Hm65+d3kvxb/7e5OckHkuw2sI/vJXly//iUJOcleX+SnwMv6ue9v1++4YjwhUl+0G/vtQPb2iHJOf3f9er+OVw9sPyk/ujq1iTXJHnSOP3R/GDAaCKS7AUcDlxO97p6L7A38EBgLfCOoVX+GDgO2AX4PnAT8AxgV+DFwNuSHDDQ/n7A9sBS4PXAu4HnA48CHgu8PsmD+rb/HTgSeDzwAOCnwOn9ssf1v3erqp2r6ktJjgReAzwLWEL3RvyhoXqPBA4G9hvue1V9EbixX3+wfx+sqnVj9G0s/TpnAS8D7g28C7goyXZjrLsf3d/pciDA39L9bR4C7AWcMs3qRwDnAbsBH9hIm8cA+9IdKb0+yUP6+W8AlgEPAp5C95xtqGlf4ATgwKrahS6Uv7epvmgeqSp//JnRD92bwS+AW+hC4p3ADiPaPQL46cD0Z4C/2sS2LwRe0T9+Al1ILeqndwEKOHig/UrgyP7x1cCTBpbdH/g1sJjuza6AxQPLPwG8ZGB6G7ojq7376QKeuIl6Xwd8sn+8a7/+I8fs2+qBZQU8eGD6bOBN/eN/BP56aFvXAI/fyH4K+DldwH4HeBOwzYh2RwKXDz2vT+4fnwJ8bqj9KcD7+8cb/p57Diz/d+CY/vG1wNMGlr10Q3+BB9OF75OBe8z169mfyf94PlVb6siq+tTgjP5U0duAQ4Hd+9m7JFlUVev76euG1jmM7n+7v0v3Br8j8I2BJj8eWHdt//tHA8vXAhtuMNgbuCDJnQPL1wP33Ugf9gbenuR/D5ZEd7T0/VH1jvA+4A1JltL9T3xVVV0+Zt/GtTfwwiQnDszblu5IZGMOqKpVgzOS3Af4B7ojml36mn46zTY21XeAHw48vo3fPBcPGFr/rsdVtSrJn9MF1kOTXAr8z6q6YYz9aR7wFJla+F90p0sOrqpd+c1pqQy0uWsY7/4Uz/nAW4H7VtVuwMVD7TfHdcBhVbXbwM/21V0nGjV8+HXAy4ba71Ddqa/fqneUqvoB3am159GdHnvfDPt2G10AbXC/oTrfPFTnjlU1fDpvU/6278/+/fPz/GnqgU30fRNuBPYcmN7rbhuu+mBVPYYuPAs4dQv2pa2MAaMWdqE7orilv7j+hk203xbYDlgDrOv/x//ULdj/GcCbN1yoT7IkyRH9sjXAnXTXBAbbvzrJQ/v290zynBns9xy6awqP5jfXKja3b1cAxyZZlORQuutIG7wbOD7JwenslOTpSXbZzDp3oT+12R9x/cVmrr85Pkz3t92939cJGxYk2TfJE/sQ/hXda2b9RrajeciAUQunATsANwNfBi6ZrnFV3Up3Yf7DdKdqjgUu2oL9v71f/5NJbu1rOLjf123Am4Ev9HdiHVJVF9D9z/nc/k6pK4HDZrDf8+hOCX66qm6cYd9eATyT7rrW8+iu19BvawXdbcbv6Le1CnjRDOp8I91t5T8DPg58dAbbGNdfAauB7wKfovsb3d4v2w74O7rXyQ+B+9DdbKEFIlV+4Zik2ZHkz+huAHj8Jhtr3vMIRlIzSe6f5NH9Z5P2pbs+d8Fc16XZ4V1kklralu7zOsvpTvudS3c7u/4T8BSZJKkJT5FJkppYUKfI9thjj1q2bNlclyFJ88bKlStvrqolLba9oAJm2bJlrFixYq7LkKR5I8n3N91qZpqeIktyaD9C6qokJ0/T7sAk65McPTDvf6T74qMrk3woyfYta5UkTVazgEn3fRin031gbT/guf2IrqPanQpcOjBvKd2H06aq6mHAIuCYVrVKkiav5RHMQXQD/l1bVXfQ3Z54xIh2J9KN1XTT0PzFwA7pvuBoR8AB8CRpHmkZMEu5+yiqq/t5d+mPVI6iGwvqLv2ghG8FfkA3WN7PquqTo3aS5LgkK5KsWLNmzQTLlyRtiZYBM2p01uEP3ZwGnDQwDHu3YrI73dHOcrrhvndK8nxGqKozq2qqqqaWLGlyI4QkaQZa3kW2mrsPzb0nv32aa4pugEGAPYDDk6wD7gF8t6rWACT5KPAHwPsb1itJmqCWAXMZsE+S5cD1dBfpjx1sUFXLNzxOcjbwsaq6MMnBwCH9F1etpfsaVu8/lqR5pFnAVNW6JCfQ3R22CDirqq5Kcny//Ixp1v1KkvOArwLr6L5H/MxWtUqSJm9BjUU2NTVVftBSksaXZGVVTbXYtmORSZKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU00DZgkhya5JsmqJCdP0+7AJOuTHN1P75vkioGfnyf585a1SpIma3GrDSdZBJwOPAVYDVyW5KKq+uaIdqcCl26YV1XXAI8YWH49cEGrWiVJk9fyCOYgYFVVXVtVdwDnAkeMaHcicD5w00a28yTgO1X1/TZlSpJaaBkwS4HrBqZX9/PukmQpcBRwxjTbOQb40MYWJjkuyYokK9asWbMF5UqSJqllwGTEvBqaPg04qarWj9xAsi3wR8BHNraTqjqzqqaqamrJkiUzrVWSNGHNrsHQHbHsNTC9J3DDUJsp4NwkAHsAhydZV1UX9ssPA75aVT9qWKckqYGWAXMZsE+S5XQX6Y8Bjh1sUFXLNzxOcjbwsYFwAXgu05wekyRtvZoFTFWtS3IC3d1hi4CzquqqJMf3y6e77kKSHenuQHtZqxolSe20PIKhqi4GLh6aNzJYqupFQ9O3AfduVpwkqSk/yS9JasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkppoGjBJDk1yTZJVSU6ept2BSdYnOXpg3m5JzkvyrSRXJ/n9lrVKkiarWcAkWQScDhwG7Ac8N8l+G2l3KnDp0KK3A5dU1e8BDweublWrJGnyWh7BHASsqqprq+oO4FzgiBHtTgTOB27aMCPJrsDjgH8CqKo7quqWhrVKkiasZcAsBa4bmF7dz7tLkqXAUcAZQ+s+CFgDvDfJ5Unek2SnUTtJclySFUlWrFmzZnLVS5K2SMuAyYh5NTR9GnBSVa0fmr8YOAD4x6p6JPBLYOQ1nKo6s6qmqmpqyZIlW1iyJGlSFo/TKMkhwP8BHgJsCywCfllVu06z2mpgr4HpPYEbhtpMAecmAdgDODzJOuDLwOqq+krf7jw2EjCSpK3TWAEDvAM4BvgIXSi8AHjwJta5DNgnyXLg+n79YwcbVNXyDY+TnA18rKou7KevS7JvVV0DPAn45pi1SpK2AuMGDFW1Ksmi/nTWe5N8cRPt1yU5ge7usEXAWVV1VZLj++XD112GnQh8IMm2wLXAi8etVZI098YNmNv6N/orkrwFuBEYedF9UFVdDFw8NG9ksFTVi4amr6A7WpIkzUPjXuT/Y7qjkBPoLrjvBTy7VVGSpPlvrCOYqvp+/3At8MZ25UiSFoqxjmCSPKP/PMpPkvw8ya1Jft66OEnS/DXuNZjTgGcB36iq4c+ySJL0W8a9BnMdcKXhIkka17hHMK8CLk7yWeD2DTOr6u+bVCVJmvfGDZg3A78Atqf7JL8kSdMaN2DuVVVPbVqJJGlBGfcazKeSGDCSpLGNGzAvBy5JstbblKXxrbvjV3zx4+/iK5f8E3euXzfX5UizatwPWu7SuhBpIfq3C97G2V95FwT+7NdreewzT5jrkqRZM/Zgl0n2B5YNrlNVH21Qk7RgrL39VgIUxdrbbp3rcqRZNe73wZwF7A9cBdzZzy7AgJGm8dQjX8ntd6xl0TaLePwzXj7X5UizatwjmEOqar+mlUgL0A673ov/+tK3zXUZ0pwY9yL/l5IYMJKksY17BHMOXcj8kO6T/AGqqvZvVpkkaV4bN2DOovtOmG/wm2swkiRt1LgB84OquqhpJZKkBWXcgPlWkg8C/8rdB7v0LjJJ0kjjBswOdMEyOFyMtylLkjZq3E/yv7h1IZKkhWXcD1puD7wEeCjdkP0AVNWfNKpLkjTPjfs5mP8L3A94GvBZYE/AcS8kSRs1bsA8uKr+EvhlVZ0DPB34L+3KkiTNd+MGzK/737ckeRhwT7qBLyVJGmncu8jOTLI78DrgImBn4C+bVSVJmvfGDZh7AhvuJDu9/70uySOq6oqJVyVJmvfGPUX2KOB4YCnwAOBPgScA707yqjalSZLms3GPYO4NHFBVvwBI8gbgPOBxwErgLW3KkyTNV+MewTwQuGNg+tfA3lW1loGhYyRJ2mDcI5gPAl9O8i/99DOBDyXZCfhmk8okSfPauEPF/HWSi4HH0H0XzPFVtaJf/LxWxUmS5q9xj2CoqpV011skSdqkca/BSJK0WZoGTJJDk1yTZFWSk6dpd2CS9UmOHpj3vSTfSHJFkhUbW1eStHUa+xTZ5kqyiO5DmU8BVgOXJbmoqr45ot2pwKUjNvOHVXVzqxolSe20PII5CFhVVddW1R3AucARI9qdCJwP3NSwFknSLGsZMEuB6wamV/fz7pJkKXAUcMaI9Qv4ZJKVSY7b2E6SHJdkRZIVa9asmUDZkqRJaBkwGTGvhqZPA06qqvUj2j66qg4ADgNenuRxo3ZSVWdW1VRVTS1ZsmSLCpYkTU6zazB0Ryx7DUzvCdww1GYKODcJwB7A4UnWVdWFVXUDQFXdlOQCulNun2tYryRpgloewVwG7JNkeZJtgWPohvq/S1Utr6plVbWMbmyz/1ZVFybZKckuAP1oAU8FrmxYqyRpwpodwVTVuiQn0N0dtgg4q6quSnJ8v3zUdZcN7gtc0B/ZLAY+WFWXtKpVkjR5qRq+LDJ/TU1N1YoVfmRGksaVZGVVTbXYtp/klyQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkppoGjBJDk1yTZJVSU6ept2BSdYnOXpo/qIklyf5WMs6JUmT1yxgkiwCTgcOA/YDnptkv420OxW4dMRmXgFc3apGSVI7LY9gDgJWVdW1VXUHcC5wxIh2JwLnAzcNzkyyJ/B04D0Na5QkNdIyYJYC1w1Mr+7n3SXJUuAo4IwR658GvAq4c7qdJDkuyYokK9asWbNFBUuSJqdlwGTEvBqaPg04qarW323F5BnATVW1clM7qaozq2qqqqaWLFky42IlSZO1uOG2VwN7DUzvCdww1GYKODcJwB7A4UnWAQcDf5TkcGB7YNck76+q5zesV5I0QS0D5jJgnyTLgeuBY4BjBxtU1fINj5OcDXysqi4ELgRe3c9/AvBKw0WS5pdmAVNV65KcQHd32CLgrKq6Ksnx/fJR110kSQtEqoYvi8xfU1NTtWLFirkuQ5LmjSQrq2qqxbb9JL8kqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLURKpqrmuYmCRrgF8CN891LY3swcLtGyzs/tm3+Wsh928PYKeqWtJi4wsqYACSrKiqqbmuo4WF3DdY2P2zb/PXQu5f6755ikyS1IQBI0lqYiEGzJlzXUBDC7lvsLD7Z9/mr4Xcv6Z9W3DXYCRJW4eFeAQjSdoKGDCSpCa2uoBJcmiSa5KsSnLyiOVJ8g/98q8nOWBg2VlJbkpy5dA690ry/5J8u/+9+9DyByb5RZJXtuvZ7Pctyf5JvpTkqiTfSLL9QulfknskOafv19VJXj0P+/ac/rm5M8nU0LJX99u6JsnT2vVsdvuW5ClJVvbP28okT2zZt36fs/rc9cvn83vKdK/LzXtPqaqt5gdYBHwHeBCwLfA1YL+hNocDnwACHAJ8ZWDZ44ADgCuH1nkLcHL/+GTg1KHl5wMfAV65UPoGLAa+Djy8n743sGgB9e9Y4Nz+8Y7A94Bl86xvDwH2BT4DTA3M36/fx3bA8n7fTZ67OejbI4EH9I8fBlzf6jU5F/0bWD6f31M29txt9nvK1nYEcxCwqqqurao7gHOBI4baHAG8rzpfBnZLcn+Aqvoc8JMR2z0COKd/fA5w5IYFSY4ErgWummA/Rpntvj0V+HpVfa1f/8dVtX6SHRoy2/0rYKcki4EdgDuAn0+wP4Oa9K2qrq6qa0bs7wi68Ly9qr4LrOpraGFW+1ZVl1fVDf3kVcD2SbabYH+GzfZzN+/fU6bp22a/p2xtAbMUuG5genU/b3PbDLtvVd0I0P++D0CSnYCTgDduQc3jmtW+Ab8LVJJLk3w1yatmXPl4Zrt/59ENC3Qj8APgrVU1KqAmoVXftmR/kzLbfRv0bODyqrp9AtvamFnt3wJ5T9mYzX5PWTzDHbWSEfOG76Mep8243gi8rap+kYza7ETNdt8WA48BDgRuAz6dZGVVfXqG29uU2e7fQcB64AHA7sDnk3yqqq6d4famM9t9m+S2JrGvideT5KHAqXT/K27J95RNtxnXZr+nbG0BsxrYa2B6T+CGGbQZ9qMk96+qG/vDw5v6+QcDRyd5C7AbcGeSX1XVO2bagWnMdt9WA5+tqpsBklxMd761VcDMdv+OBS6pql8DNyX5AjBFd2pi0lr1bUv2Nymz3TeS7AlcALygqr4z0+2Mabb7txDeU6bb32a9p2xtp8guA/ZJsjzJtsAxwEVDbS4CXtDfHXEI8LMNp1CmcRHwwv7xC4F/Aaiqx1bVsqpaBpwG/E2jFwLMct+AS4H9k+zYX6d4PPDNSXRkI2a7fz8Anthvaye6C5jfmkRHRmjVt425CDgmyXZJlgP7AP8+0+I3YVb7lmQ34OPAq6vqC1tQ97hmtX8L5D1lYzb/PWW6OwDm4ofurof/oLs74rX9vOOB4/vHAU7vl3+Du9/l8CG6c/K/pkvbl9Rv7nb4NPDt/ve9Ruz3FBre8TEXfQOeT3eh8UrgLQvpuQN2prtL56r+Rf4X87BvR/XTtwM/Ai4dWOe1/bauAQ5bKH0DXkd37eyKgZ/7LJT+De33FObne8p0r8vNek9xqBhJUhNb2ykySdICYcBIkpowYCRJTRgwkqQmDBhJUhMGjDQBSU7JNCPnDi5P8qIkD5i96qS5YcBIs+9FdEPcSAuaASPNUJLXpvsujk/RDW9Okt9Jckm67zr5fJLfG1rnaLohbT6Q5IokOyR5fZLLklyZ5MzMwiBW0mwwYKQZSPIouqE5Hgk8i24AQIAzgROr6lHAK4F3Dq5XVecBK4DnVdUjqmot8I6qOrCqHkb31QPPmKVuSE1tbYNdSvPFY4ELquo2gCQXAdsDfwB8ZOAgZJzvOvnDfujzHYF70Q3F8a8Tr1iaZQaMNHPD4yxtA9xSVY8YdwPpvnL2nXRjRF2X5BS6oJLmPU+RSTPzOeCo/hrKLsAz6b4j47tJngN3fR/6w0eseyuwS/94Q5jcnGRn4OjGdUuzxoCRZqCqvgr8M91owOcDn+8XPQ94SZKv0Z3qGv4KW4CzgTOSXEE3Yu276Ua6vZBuCHZpQXA0ZUlSEx7BSJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWri/wOwcC4JSLITRgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "delta epsilon\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAai0lEQVR4nO3df7RldV3/8eeLO/xmEMkxhSEGk7DRpUFXwDQ1UAOz70xpLUTzx7e+SCtEKjLUlmFqP1yWSZJIhuGSokLNyVBSy69+DW3uCKnjMDqOP+YCyjVFUJAf8v7+sffk6XJn7rl3zufeubfnY62z7tn789l7vz/33Dmv2T/OPqkqJEkatX0WuwBJ0vJkwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0ZaREmenGRysesYlGRzkifvpv3lSd66cBVpqTJgNG9JvpTkziTfTvK1JG9Lcshi17U7SdYkqSQrRrS+A5LcmuSUGdrekOSqUWxnPvpxfqd/fW5M8idJxmZbrqoeWVUf3k3771fVr4y0WC1LBoz21M9W1SHACcBjgd+Zy8LpLJm/w+nBVFXfBf4WeN60fmPAs4HLF666GT2mf31OBc4E/s+erGxUwaz/GZbMP2zt3arqRuB9wKOSPDDJe5NMJflm/3z1zr5JPpzktUk+BtwBPCzJC5NsSXJ7ku1JXjTQ/8lJJpO8NMktSW5Osj7J05N8Lsk3krx8oP8+SS5I8oUk/5nk75Ic3jd/pP95a/8/+8f1y/zvfvvfTHJNkqMH1ldJfi3J54HPzzD8y4FnJjloYN5P0/37et/uxjZdv62HD0z/VZLXDEw/I8n1/V7TvyV59K5fle+rqhuAj9K9Pj+c5F/6383Xk1yR5LCBbXwpyVP65xcmuSrJO5LcBrygn/eOvn3nHuHzk3ylX98rBtZ1YJLL+9/rlv41nBxo/+1+7+r2JFuTnDrMeLQ0GDAaiSRHAU8HrqP7u3obcDTwQ8CdwJumLfJLwFnASuDLwC3AM4BDgRcCb0hywkD/hwAHAEcCrwT+Angu8OPATwKvTPKwvu+5wHrgScARwDeBi/u2J/Y/D6uqQ6rq2iTrgZcDPw+sonsj/ptp9a4HTgLWTh97Vf0bcHO//OD4/rqq7h1ibEPpl7kMeBHwA8BbgA1J9h9i2bV0v6frgAB/QPe7+VHgKODC3Sy+DrgKOAy4Yhd9ngAcR7en9MokP9rP/11gDfAw4Kl0r9nOmo4DzgEeW1Ur6UL5S7ONRUtIVfnwMa8H3ZvBt4Fb6ULiz4EDZ+j3Y8A3B6Y/DPzeLOv+B+Al/fMn04XUWD+9EijgpIH+m4D1/fMtwKkDbQ8F7gFW0L3ZFbBioP19wC8PTO9Dt2d1dD9dwCmz1Ps7wD/3zw/tlz9+yLFNDrQV8PCB6b8CXtM/fzPw6mnr2go8aRfbKeA2uoD9AvAaYJ8Z+q0Hrpv2uj6lf34h8JFp/S8E3tE/3/n7XD3Q/u/AGf3z7cBPD7T9ys7xAg+nC9+nAPsu9t+zj9E/PJ6qPbW+qj44OKM/VPQG4DTggf3slUnGqup7/fSOacucTve/3R+he4M/CPj0QJf/HFj2zv7n1wba7wR2XmBwNPDuJPcNtH8P+MFdjOFo4I1J/niwJLq9pS/PVO8M3g78bpIj6f4nvq2qrhtybMM6Gnh+khcPzNuPbk9kV06oqm2DM5I8GLiIbo9mZV/TN3ezjtnGDvDVged38P3X4ohpy//X86raluQ8usB6ZJJrgN+oqpuG2J6WAA+RqYXfpDtcclJVHcr3D0tloM9/3ca7P8TzTuD1wA9W1WHA1dP6z8UO4PSqOmzgcUB154lmun34DuBF0/ofWN2hr/vVO5Oq+grdobXn0B0ee/s8x3YHXQDt9JBpdb52Wp0HVdX0w3mz+YN+PI/uX5/n7qYemGXss7gZWD0wfdR/W3HVX1fVE+jCs4A/2oNtaS9jwKiFlXR7FLf2J9d/d5b++wH7A1PAvf3/+J+2B9u/BHjtzhP1SVYlWde3TQH30Z0TGOz/siSP7Ps/IMkvzGO7l9OdU3g83z9XMdexXQ+cmWQsyWl055F2+gvg7CQnpXNwkp9JsnKOda6kP7TZ73H91hyXn4u/o/vdPrDf1jk7G5Icl+SUPoS/S/c3871drEdLkAGjFv4UOBD4OvBx4P2761xVt9OdmP87ukM1ZwIb9mD7b+yX/+ckt/c1nNRv6w7gtcDH+iuxTq6qd9P9z/nK/kqpzwCnz2O7V9EdEvxQVd08z7G9BPhZuvNaz6E7X0O/rgm6y4zf1K9rG/CCedT5KrrLyr8F/BPwrnmsY1i/B0wCXwQ+SPc7uqtv2x/4Q7q/k68CD6a72ELLRKr8wjFJCyPJr9JdAPCkWTtryXMPRlIzSR6a5PH9Z5OOozs/9+7FrksLw6vIJLW0H93ndY6hO+x3Jd3l7PofwENkkqQmPEQmSWpiWR0ie9CDHlRr1qxZ7DIkacnYtGnT16tqVYt1L6uAWbNmDRMTE4tdhiQtGUm+PHuv+fEQmSSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwUktVsG0bbN++2JVIC25ZfQ5G2utcey285S3d8/POg+OPX9RypIXkHozU0o03dnsx990HN/lNwPqfxT0YqaVTT4UvfxlWrIAnPGGxq5EWlAEjtXT44XD++YtdhbQoPEQmSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU00DZgkpyXZmmRbkgtmaH9EkmuT3JXk/GlthyW5KskNSbYkeVzLWiVJo9XsbspJxoCLgacCk8DGJBuq6rMD3b4BnAusn2EVbwTeX1XPSrIfcFCrWiVJo9dyD+ZEYFtVba+qu4ErgXWDHarqlqraCNwzOD/JocATgb/s+91dVbc2rFWSNGItA+ZIYMfA9GQ/bxgPA6aAtyW5Lslbkxw8U8ckZyWZSDIxNTW1ZxVLkkamZcBkhnk15LIrgBOAN1fV8cB3gPudwwGoqkuraryqxletWjW/SiVJI9cyYCaBowamVwPDfin5JDBZVZ/op6+iCxxJ0hLRMmA2AscmOaY/SX8GsGGYBavqq8COJMf1s04FPrubRSRJe5lmV5FV1b1JzgGuAcaAy6pqc5Kz+/ZLkjwEmAAOBe5Lch6wtqpuA14MXNGH03bgha1qlSSNXrOAAaiqq4Grp827ZOD5V+kOnc207PXAeMv6JEnt+El+SVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJpoGTJLTkmxNsi3JBTO0PyLJtUnuSnL+DO1jSa5L8t6WdUqSRq9ZwCQZAy4GTgfWAs9OsnZat28A5wKv38VqXgJsaVWjJKmdlnswJwLbqmp7Vd0NXAmsG+xQVbdU1UbgnukLJ1kN/Azw1oY1SpIaaRkwRwI7BqYn+3nD+lPgpcB9u+uU5KwkE0kmpqam5lykJKmNlgGTGebVUAsmzwBuqapNs/WtqkuraryqxletWjXXGiVJjbQMmEngqIHp1cBNQy77eOB/JfkS3aG1U5K8Y7TlSZJaahkwG4FjkxyTZD/gDGDDMAtW1cuqanVVremX+5eqem67UiVJo7ai1Yqr6t4k5wDXAGPAZVW1OcnZffslSR4CTACHAvclOQ9YW1W3tapLkrQwUjXUaZElYXx8vCYmJha7DElaMpJsqqrxFuv2k/ySpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmmgaMElOS7I1ybYkF8zQ/ogk1ya5K8n5A/OPSvKvSbYk2ZzkJS3rlCSN3opWK04yBlwMPBWYBDYm2VBVnx3o9g3gXGD9tMXvBX6zqj6ZZCWwKckHpi0rSdqLtdyDORHYVlXbq+pu4Epg3WCHqrqlqjYC90ybf3NVfbJ/fjuwBTiyYa2SpBFrGTBHAjsGpieZR0gkWQMcD3xiNGVJkhZCy4DJDPNqTitIDgHeCZxXVbftos9ZSSaSTExNTc2jTElSC0MFTJLHJ/lAks8l2Z7ki0m2z7LYJHDUwPRq4KZhC0uyL124XFFV79pVv6q6tKrGq2p81apVw65ektTYsCf5/xL4dWAT8L0hl9kIHJvkGOBG4AzgzGEWTJJ+m1uq6k+G3J4kaS8ybMB8q6reN5cVV9W9Sc4BrgHGgMuqanOSs/v2S5I8BJgADgXuS3IesBZ4NPBLwKeTXN+v8uVVdfVcapAkLZ5UzX5aJMkf0oXEu4C7ds7feaXX3mJ8fLwmJiYWuwxJWjKSbKqq8RbrHnYP5qT+52ARBZwy2nIkScvFUAFTVT/VuhBJ0vIy7FVkD0jyJzsvB07yx0ke0Lo4SdLSNeznYC4Dbgd+sX/cBrytVVGSpKVv2HMwP1xVzxyYftXA1V2SJN3PsHswdyZ5ws6JJI8H7mxTkiRpORh2D+ZXgcv78y6huwvyC1oVJUla+oa9iux64DFJDu2nZ7wvmCRJO+02YJL8xi7mA+BtXCRJuzLbHszKBalCkrTs7DZgqupVC1WIJGl5me0Q2Uur6nVJ/owZvsulqs5tVpkkaUmb7RDZlv6nd5CUJM3JbIfI/rH/efnOeUn2AQ7xSjJJ0u4Mey+yv05yaJKDgc8CW5P8VtvSJElL2bCf5F/b77GsB64GfojuC8EkSZrRsAGzb5J96QLmPVV1DzOc9JckaadhA+YtwJeAg4GPJDma7o7KkiTNaNhbxVwEXDQw68tJ/BIySdIuDXuS/weSXJTkk0k2JXkj4BeOSZJ2adhDZFcCU8AzgWf1z/+2VVGSpKVv2Nv1H15Vrx6Yfk2S9Q3qkSQtE8PuwfxrkjOS7NM/fhH4p5aFSZKWtmED5kXAFcBd/eNK4DeS3J7Eq8kkSfczbMA8gO4bLF9dVfsCa4CnVNXKqjp0VwslOS3J1iTbklwwQ/sjklyb5K4k589lWUnS3m3YgLkYOBl4dj99O/Cm3S2QZKxf7nRgLfDsJGundfsGcC7w+nksK0naiw0bMCdV1a8B3wWoqm8C+82yzInAtqraXlV30x1WWzfYoapuqaqNwD1zXVaStHcbNmDu6fcqCiDJKuC+WZY5EtgxMD3ZzxvG0MsmOSvJRJKJqampIVcvSWpt2IC5CHg38OAkrwX+H/D7syyTGeYNe/+yoZetqkuraryqxletWjXk6iVJrQ17q5grkmwCTqV7819fVVtmWWwSOGpgejVw05B17cmykqS9wLAftKSqbgBumMO6NwLHJjkGuBE4AzhzAZaVJO0Fhg6Yuaqqe5OcA1wDjAGXVdXmJGf37ZckeQjd1zEfCtyX5Dz6756ZadlWtUqSRi9Vy+drXcbHx2tiYmKxy5CkJSPJpqoab7HuYU/yS5I0JwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCaaBkyS05JsTbItyQUztCfJRX37p5KcMND260k2J/lMkr9JckDLWiVJo9UsYJKMARcDpwNrgWcnWTut2+nAsf3jLODN/bJHAucC41X1KGAMOKNVrZKk0Wu5B3MisK2qtlfV3cCVwLppfdYBb6/Ox4HDkjy0b1sBHJhkBXAQcFPDWiVJI9YyYI4EdgxMT/bzZu1TVTcCrwe+AtwMfKuq/nmmjSQ5K8lEkompqamRFS9J2jMtAyYzzKth+iR5IN3ezTHAEcDBSZ4700aq6tKqGq+q8VWrVu1RwZKk0WkZMJPAUQPTq7n/Ya5d9XkK8MWqmqqqe4B3AT/RsFZJ0oi1DJiNwLFJjkmyH91J+g3T+mwAntdfTXYy3aGwm+kOjZ2c5KAkAU4FtjSsVZI0Yitarbiq7k1yDnAN3VVgl1XV5iRn9+2XAFcDTwe2AXcAL+zbPpHkKuCTwL3AdcClrWqVJI1eqqafFlm6xsfHa2JiYrHLkKQlI8mmqhpvsW4/yS9JasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpiaYBk+S0JFuTbEtywQztSXJR3/6pJCcMtB2W5KokNyTZkuRxLWuVJI1Ws4BJMgZcDJwOrAWenWTttG6nA8f2j7OANw+0vRF4f1U9AngMsKVVrZKk0Wu5B3MisK2qtlfV3cCVwLppfdYBb6/Ox4HDkjw0yaHAE4G/BKiqu6vq1oa1SpJGrGXAHAnsGJie7OcN0+dhwBTwtiTXJXlrkoMb1ipJGrGWAZMZ5tWQfVYAJwBvrqrjge8A9zuHA5DkrCQTSSampqb2pF5J0gi1DJhJ4KiB6dXATUP2mQQmq+oT/fyr6ALnfqrq0qoar6rxVatWjaRwSdKeaxkwG4FjkxyTZD/gDGDDtD4bgOf1V5OdDHyrqm6uqq8CO5Ic1/c7Ffhsw1olSSO2otWKq+reJOcA1wBjwGVVtTnJ2X37JcDVwNOBbcAdwAsHVvFi4Io+nLZPa5Mk7eVSNf20yNI1Pj5eExMTi12GJC0ZSTZV1XiLdftJfklSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSE81uFSMJ7rjnDt77ufcyljGe8SPPYP8V+y92SdKCMWCkhj7whQ/wnhveA8DK/VbytIc/bZErkhaOh8ikhg7c90Cq/xqkA/c9cJGrkRaWezBSQ6cecyor91vJ2D5jjB/R5H6C0l7LgJEaGttnjMcd9bjFLkNaFB4ikyQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktREqmqxaxiZJFPAd4CvL3YtjTyI5Ts2WN7jc2xL13Ie34OAg6tqVYuVL6uAAUgyUVXL8iPTy3lssLzH59iWruU8vtZj8xCZJKkJA0aS1MRyDJhLF7uAhpbz2GB5j8+xLV3LeXxNx7bszsFIkvYOy3EPRpK0FzBgJElN7HUBk+S0JFuTbEtywQztSXJR3/6pJCcMtF2W5JYkn5m2zOFJPpDk8/3PB05r/6Ek305yfruRLfzYkjw6ybVJNif5dJIDlsv4kuyb5PJ+XFuSvGwJju0X+tfmviTj09pe1q9ra5KfbjeyhR1bkqcm2dS/bpuSnNJybP02F/S169uX8nvK7v4u5/aeUlV7zQMYA74APAzYD/gPYO20Pk8H3gcEOBn4xEDbE4ETgM9MW+Z1wAX98wuAP5rW/k7g74Hzl8vY6L5M7lPAY/rpHwDGltH4zgSu7J8fBHwJWLPExvajwHHAh4Hxgflr+23sDxzTb7vJa7cIYzseOKJ//ijgxlZ/k4sxvoH2pfyesqvXbs7vKXvbHsyJwLaq2l5VdwNXAuum9VkHvL06HwcOS/JQgKr6CPCNGda7Dri8f345sH5nQ5L1wHZg8wjHMZOFHtvTgE9V1X/0y/9nVX1vlAOaZqHHV8DBSVYABwJ3A7eNcDyDmoytqrZU1dYZtreOLjzvqqovAtv6GlpY0LFV1XVVdVM/uRk4IMn+IxzPdAv92i3595TdjG3O7yl7W8AcCewYmJ7s5821z3Q/WFU3A/Q/HwyQ5GDgt4FX7UHNw1rQsQE/AlSSa5J8MslL5135cBZ6fFfR3RboZuArwOuraqaAGoVWY9uT7Y3KQo9t0DOB66rqrhGsa1cWdHzL5D1lV+b8nrJinhtqJTPMm34d9TB9hvUq4A1V9e1kptWO1EKPbQXwBOCxwB3Ah5JsqqoPzXN9s1no8Z0IfA84Angg8NEkH6yq7fNc3+4s9NhGua5RbGvk9SR5JPBHdP8rbsn3lNn7DGvO7yl7W8BMAkcNTK8GbppHn+m+luShVXVzv3t4Sz//JOBZSV4HHAbcl+S7VfWm+Q5gNxZ6bJPA/62qrwMkuZrueGurgFno8Z0JvL+q7gFuSfIxYJzu0MSotRrbnmxvVBZ6bCRZDbwbeF5VfWG+6xnSQo9vObyn7G57c3pP2dsOkW0Ejk1yTJL9gDOADdP6bACe118dcTLwrZ2HUHZjA/D8/vnzgfcAVNVPVtWaqloD/Cnw+43+EGCBxwZcAzw6yUH9eYonAZ8dxUB2YaHH9xXglH5dB9OdwLxhFAOZQaux7coG4Iwk+yc5BjgW+Pf5Fj+LBR1bksOAfwJeVlUf24O6h7Wg41sm7ym7Mvf3lN1dAbAYD7qrHj5Hd3XEK/p5ZwNn988DXNy3f5r/fpXD39Adk7+HLm1/ub5/tcOHgM/3Pw+fYbsX0vCKj8UYG/BcuhONnwFet5xeO+AQuqt0Nvd/5L+1BMf2c/30XcDXgGsGlnlFv66twOnLZWzA79CdO7t+4PHg5TK+adu9kKX5nrK7v8s5vad4qxhJUhN72yEySdIyYcBIkpowYCRJTRgwkqQmDBhJUhMGjDQCSS7Mbu6cO9ie5AVJjli46qTFYcBIC+8FdLe4kZY1A0aapySvSPddHB+ku705SX44yfvTfdfJR5M8Ytoyz6K7pc0VSa5PcmCSVybZmOQzSS7NAtzESloIBow0D0l+nO7WHMcDP093A0CAS4EXV9WPA+cDfz64XFVdBUwAz6mqH6uqO4E3VdVjq+pRdF898IwFGobU1N52s0tpqfhJ4N1VdQdAkg3AAcBPAH8/sBMyzHed/FR/6/ODgMPpbsXxjyOvWFpgBow0f9Pvs7QPcGtV/diwK0j3lbN/TnePqB1JLqQLKmnJ8xCZND8fAX6uP4eyEvhZuu/I+GKSX4D/+j70x8yw7O3Ayv75zjD5epJDgGc1rltaMAaMNA9V9Ungb+nuBvxO4KN903OAX07yH3SHuqZ/hS3AXwGXJLme7o61f0F3p9t/oLsFu7QseDdlSVIT7sFIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJauL/A9sNtkmO1d8yAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "delta theta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgJElEQVR4nO3df5xXVb3v8ddbCBXCK8ZoCKiIJJEPRfqGZmad1EL7MZD5EM2DpV2lG1bn3M459ONRlHUyrx1P52Z60TA6mR7DOM3JlIweRQ9PPxiUCFQSSWWUcCR/kSSgn/vHXhOb4QsMw3evYYb38/GYx3fvtdbeey2+4/ftXt89eysiMDMzy2m/nu6AmZntexw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMz2UpLeKqmtp/tRJmmFpLfupP5Tkm7M1yPrrRw+VglJj0jaKGmDpHWSbpL0yp7u185IOkpSSOrfoP0dIOkZSW+rU3eNpHmNOE53pHH+Ob0/j0v6F0n9drVdRLwuIn62k/p/jogPNbSz1ic5fKxK746IVwITgDcAn9mdjVXoNb+jnUMrIv4C/AcwrVO7fsD5wNx8vavrhPT+nA5cAPzPPdlZo0Lb9g295j9s670i4nHgTuA4SUMk/VBSu6Sn0/KIjraSfibpS5LuAV4Ajpb0QUkPSHpe0mpJl5Xav1VSm6R/lPSkpLWSJks6W9LvJf1J0qdK7feTNFPSw5LWS7pN0iGpelF6fSadEbwxbXNxOv7TkhZIOrK0v5D0EUkPAQ/VGf5c4BxJA0tl76D4b+/OnY2ts3SsY0rr35L0xdL6uyQtTWdb/y3p+B2/K1tFxIPALyjen9GSfpr+bZ6SdLOkg0vHeETSGWl5lqR5kr4j6TngA6nsO6m+40zyIkmPpf19urSvAyXNTf+uD6T3sK1U/0/prOx5SSslnd6V8Vjv4PCxykkaCZwN3EfxO3cTcCRwBLAR+HqnTf4WuBQYDDwKPAm8CzgI+CBwjaQJpfavBg4AhgOfBW4ALgReD7wZ+Kyko1PbjwKTgbcAhwNPA9emutPS68ER8cqI+KWkycCngPcCTRQf0rd06u9k4CRgXOexR8R/A2vT9uXxfTcitnRhbF2StpkDXAa8Cvh/QIuk/buw7TiKf6f7AAFfpvi3eS0wEpi1k82bgXnAwcDNO2hzKnAsxRnWZyW9NpV/DjgKOBo4k+I96+jTscAM4A0RMZgisB/Z1VisF4kI//in4T8UHxQbgGcoAuQbwIF12o0Hni6t/wz4wi72/Z/Ax9LyWykCrF9aHwwEcFKp/RJgclp+ADi9VDcM2Az0p/ggDKB/qf5O4JLS+n4UZ2RHpvUA3raL/n4G+HFaPihtf2IXx9ZWqgvgmNL6t4AvpuXrgCs67Wsl8JYdHCeA5yjC92Hgi8B+ddpNBu7r9L6ekZZnAYs6tZ8FfCctd/x7jijV/waYmpZXA+8o1X2oY7zAMRTBfAbwip7+ffZP4388R2tVmhwRPykXpOmna4BJwJBUPFhSv4h4Ka2v6bTNWRT/l/waig//gcDvSk3Wl7bdmF7Xleo3Ah0XOxwJzJf0cqn+JeCwHYzhSOBrkr5a7hLFWdaj9fpbx7eBz0kaTvF/8Ksi4r4ujq2rjgQuknR5qWwAxRnMjkyIiFXlAkmHAv9GcSY0OPXp6Z3sY1djB/hjafkFtr4Xh3fa/q/LEbFK0scpwux1khYAfx8RT3TheNYLeNrNcvvfFFMwJ0XEQWyd6lKpzV9vtZ6mjW4HrgYOi4iDgR91ar871gBnRcTBpZ8Dovheqt4t3tcAl3Vqf2AU02nb9beeiHiMYrru/RRTbt/u5theoAinDq/u1M8vdernwIjoPEW4K19O4zk+vT8X7qQ/sIux78JaYERpfeQ2O474bkScShGsAXxlD45lexmHj+U2mOJM5Jn0Rf/ndtF+ALA/0A5sSWcKb9+D418PfKnjogFJTZKaU1078DLFdxDl9p+U9LrU/n9IOrcbx51L8R3Gm9j63cjujm0pcIGkfpImUXxv1eEGYLqkk1QYJOmdkgbvZj8Hk6ZL05naP+zm9rvjNop/2yHpWDM6KiQdK+ltKaD/QvE789IO9mO9kMPHcvtX4EDgKeBXwF07axwRz1NcJHAbxfTPBUDLHhz/a2n7H0t6PvXhpHSsF4AvAfekK8ZOjoj5FP/HfWu6oms5cFY3jjuPYppxYUSs7ebYPga8m+J7tPdTfD9E2lcrxaXSX0/7WgV8oBv9/DzFpfHPAncA3+/GPrrqC0Ab8AfgJxT/Ri+muv2BKyl+T/4IHEpx4Yf1EYrww+TMrOdJ+jDFxQhv2WVj6/V85mNmPULSMElvSn97dSzF94Hze7pfloevdjOznjKA4u+RRlFMJd5KcUm+7QM87WZmZtl52s3MzLLbJ6bdhg4dGkcddVRPd8PMrFdZsmTJUxHRVMW+94nwOeqoo2htbe3pbpiZ9SqSHt11q+7xtJuZmWXn8DEzs+wcPmZmll2l4SNpUnoI1CpJM+vUN0talh6A1Srp1FLdxyQtV/HM+I+Xyg+RdLekh9LrkM77NTOzvVtl4aPiUcHXUtwHaxxwfnpoVdlCikf5jgcuBm5M2x5HcZ+qicAJwLskjUnbzKS4P9aYtP12oWZmZnu3Ks98JlI8t2R1RGyi+Ovl5nKDiNgQW//KdRBbb8/+WuBXEfFCFE97/DkwJdU1U9whmPQ6ubohmJlZFaoMn+Fs+6CotlS2DUlTJD1IcQfdi1PxcuA0Sa9KDx87m63P+jisdFfgtRR3u92OpEvTVF5re3t7QwZkZmaNUWX41HsA1Xb38omI+RExluIM5opU9gDFbezvprjl/m+BLbtz8IiYHRG1iKg1NVXyN1JmZtZNVYZPG9s+mXAEsMNH4EbEImC0pKFp/ZsRMSEiTgP+BDyUmq6TNAyKu+JSPOfdzMx6kSrDZzEwRtIoSQOAqXR6UJakYyQpLU+guMvt+rR+aHo9Angv0PE44BbgorR8EfCDCsdgZmYVqOz2OhGxRdIMYAHQD5gTESskTU/11wPnANMkbaZ4TO55pQsQbpf0KmAz8JGIeDqVXwncJukS4DGgO480NjOzHrRPPFKhVquF7+1mZrZ7JC2JiFoV+/YdDszMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLLtKw0fSJEkrJa2SNLNOfbOkZZKWSmqVdGqp7u8krZC0XNItkg5I5bMkPZ62WSrp7CrHYGZmjVdZ+EjqB1wLnAWMA86XNK5Ts4XACRExHrgYuDFtOxz4KFCLiOOAfsDU0nbXRMT49POjqsZgZmbVqPLMZyKwKiJWR8Qm4FagudwgIjZERKTVQUCUqvsDB0rqDwwEnqiwr2ZmllGV4TMcWFNab0tl25A0RdKDwB0UZz9ExOPA1cBjwFrg2Yj4cWmzGWm6bo6kIfUOLunSNJXX2t7e3pgRmZlZQ1QZPqpTFtsVRMyPiLHAZOAKgBQozcAo4HBgkKQL0ybXAaOB8RTB9NV6B4+I2RFRi4haU1PTno3EzMwaqsrwaQNGltZHsJOps4hYBIyWNBQ4A/hDRLRHxGbg+8Apqd26iHgpIl4GbqCY3jMzs16kyvBZDIyRNErSAIoLBlrKDSQdI0lpeQIwAFhPMd12sqSBqf504IHUblhpF1OA5RWOwczMKtC/qh1HxBZJM4AFFFerzYmIFZKmp/rrgXOAaZI2AxuB89IFCL+WNA+4F9gC3AfMTru+StJ4iim8R4DLqhqDmZlVQ1svNuu7arVatLa29nQ3zMx6FUlLIqJWxb59hwMzM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtlVGj6SJklaKWmVpJl16pslLZO0VFKrpFNLdX8naYWk5ZJukXRAKj9E0t2SHkqvQ6ocg5mZNV5l4SOpH3AtcBYwDjhf0rhOzRYCJ0TEeOBi4Ma07XDgo0AtIo4D+gFT0zYzgYURMSZtv12omZnZ3q3KM5+JwKqIWB0Rm4BbgeZyg4jYEBGRVgcBUaruDxwoqT8wEHgilTcDc9PyXGByNd03M7OqVBk+w4E1pfW2VLYNSVMkPQjcQXH2Q0Q8DlwNPAasBZ6NiB+nTQ6LiLWp3Vrg0HoHl3RpmsprbW9vb9CQzMysEaoMH9Upi+0KIuZHxFiKM5grANL3OM3AKOBwYJCkC3fn4BExOyJqEVFramra3b6bmVmFqgyfNmBkaX0EW6fOthMRi4DRkoYCZwB/iIj2iNgMfB84JTVdJ2kYQHp9sorOm5lZdaoMn8XAGEmjJA2guGCgpdxA0jGSlJYnAAOA9RTTbSdLGpjqTwceSJu1ABel5YuAH1Q4BjMzq0D/qnYcEVskzQAWUFytNiciVkianuqvB84BpknaDGwEzksXIPxa0jzgXmALcB8wO+36SuA2SZdQhNS5VY3BzMyqoa0Xm/VdtVotWltbe7obZma9iqQlEVGrYt++w4GZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wqDR9JkyStlLRK0sw69c2SlklaKqlV0qmp/NhU1vHznKSPp7pZkh4v1Z1d5RjMzKzx+le1Y0n9gGuBM4E2YLGkloi4v9RsIdASESHpeOA2YGxErATGl/bzODC/tN01EXF1VX03M7NqVXnmMxFYFRGrI2ITcCvQXG4QERsiItLqICDY3unAwxHxaIV9NTOzjKoMn+HAmtJ6WyrbhqQpkh4E7gAurrOfqcAtncpmpOm6OZKG1Du4pEvTVF5re3t790ZgZmaVqDJ8VKdsuzObiJgfEWOBycAV2+xAGgC8B/heqfg6YDTFtNxa4Kv1Dh4RsyOiFhG1pqam7vTfzMwqUmX4tAEjS+sjgCd21DgiFgGjJQ0tFZ8F3BsR60rt1kXESxHxMnADxfSemZn1IlWGz2JgjKRR6QxmKtBSbiDpGElKyxOAAcD6UpPz6TTlJmlYaXUKsLyCvpuZWYUqu9otIrZImgEsAPoBcyJihaTpqf564BxgmqTNwEbgvI4LECQNpLhS7rJOu75K0niKKbxH6tSbmdleTlsvNuu7arVatLa29nQ3zMx6FUlLIqJWxb59hwMzM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Lp0qbWkdwKvAw7oKIuIL1TVKTMz69t2eeYj6XrgPOByilvmnAscWXG/zMysD+vKtNspETENeDoiPg+8kW1vm2NmZrZbuhI+G9PrC5IOBzYDo6rrkpmZ9XVd+c7nh5IOBv4PcC/FbW1urLJTZmbWt3UlfK6KiBeB2yX9kOKig79U2y0zM+vLujLt9suOhYh4MSKeLZeZmZntrh2e+Uh6NcWTRw+UdCJbHw53EDAwQ9/MzKyP2tm02zuAD1A8BO5fSuXPAZ+qsE9m+4SHl/6URx++jxNPeS9DhvkaHtu37DB8ImIuMFfSORFxe8Y+mfV569se4sqbP8zGlzfxmuV38NnP/bSnu2SWVVe+87lH0jcl3QkgaZykSyrul1mftnnTRjbHSxyw3wA2bNrQ090xy64r4XMTxdNID0/rvwc+XlWHzPYFrz76eKafMZNTRp7C5Rf+357ujll2XQmfoRFxG/AyFI/HBl7qys4lTZK0UtIqSTPr1DdLWiZpqaRWSaem8mNTWcfPc5I+nuoOkXS3pIfS65CuDtZsb3LypA9x8UdvYuRrT+rprphl15Xw+bOkV1H8cSmSTgae3dVGkvoB1wJnAeOA8yWN69RsIXBCRIwHLib98WpErIyI8an89cALwPy0zUxgYUSMSdtvF2pmZrZ360r4/D3QAoyWdA/wbYqbjO7KRGBVRKyOiE3ArUBzuUFEbIiISKuDSAHXyenAwxHxaFpvBuam5bnA5C70xczM9iK7vMNBRNwr6S3AsRR/67MyIjZ3Yd/DgTWl9TZgu/kFSVOALwOHAu+ss5+pwC2l9cMiYm3q21pJh9Y7uKRLgUsBjjjiiC5018zMcunqw+QmAicAEyimz6Z1YRvVKdvuzCYi5kfEWIozmCu22YE0AHgP8L0u9rO839kRUYuIWlNT0+5ubmZmFdrlmY+kfwdGA0vZeqFBUEy/7Uwb2z56YQTwxI4aR8QiSaMlDY2Ip1LxWcC9EbGu1HSdpGHprGcY8OSuxmBmZnuXrtxYtAaMK30301WLgTGSRgGPU0yfXVBuIOkYiu9zQtIEYACwvtTkfLadcoPi+6eLgCvT6w92s19mZtbDuhI+y4FXA2t3Z8cRsUXSDIq/EeoHzImIFZKmp/rrgXOAaZI2Uzw36LyOkJM0EDgTuKzTrq8Ebkt/6PoYxZNVzcysF9GOTmgk/RfF9NpgYDzwG+DFjvqIeE+G/jVErVaL1tbWnu6GmVmvImlJRNSq2PfOznyuprho4CtsezlzR5mZmVm37OzGoj8HkPSKjuUOkg6sumNmZtZ37ex5Ph8G/hdwtKRlparBwD1Vd8zMzPqunU27fRe4k+IPQMu3sHk+Iv5Uaa/MzKxP29m027MU93A7P193zMxsX9DVOxyYmZk1jMPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtlVGj6SJklaKWmVpJl16pslLZO0VFKrpFNLdQdLmifpQUkPSHpjKp8l6fG0zVJJZ1c5BjMza7ydPc9nj0jqB1wLnAm0AYsltUTE/aVmC4GWiAhJxwO3AWNT3deAuyLifZIGAANL210TEVdX1XczM6tWlWc+E4FVEbE6IjYBtwLN5QYRsSEiIq0OAgJA0kHAacA3U7tNEfFMhX01M7OMqgyf4cCa0npbKtuGpCmSHgTuAC5OxUcD7cBNku6TdKOkQaXNZqTpujmShtQ7uKRL01Rea3t7e0MGZGZmjVFl+KhOWWxXEDE/IsYCk4ErUnF/YAJwXUScCPyZrY/yvg4YDYwH1gJfrXfwiJgdEbWIqDU1Ne3BMMzMrNGqDJ82YGRpfQTwxI4aR8QiYLSkoWnbtoj4daqeRxFGRMS6iHgpIl4GbqCY3jMzs16kyvBZDIyRNCpdMDAVaCk3kHSMJKXlCcAAYH1E/BFYI+nY1PR04P7UblhpF1OA5RWOwczMKlDZ1W4RsUXSDGAB0A+YExErJE1P9dcD5wDTJG0GNgLnlS5AuBy4OQXXauCDqfwqSeMppvAeAS6ragxmZlYNbf2s77tqtVq0trb2dDfMzHoVSUsiolbFvn2HAzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2VUaPpImSVopaZWkmXXqmyUtk7RUUqukU0t1B0uaJ+lBSQ9IemMqP0TS3ZIeSq9DqhyDmZk1XmXhI6kfcC1wFjAOOF/SuE7NFgInRMR44GLgxlLd14C7ImIscALwQCqfCSyMiDFp++1CzczM9m5VnvlMBFZFxOqI2ATcCjSXG0TEhoiItDoICABJBwGnAd9M7TZFxDOpXTMwNy3PBSZXOAYzM6tAleEzHFhTWm9LZduQNEXSg8AdFGc/AEcD7cBNku6TdKOkQanusIhYC5BeD613cEmXpqm81vb29saMyMzMGqLK8FGdstiuIGJ+mlqbDFyRivsDE4DrIuJE4M/s5vRaRMyOiFpE1Jqamnar42ZmVq0qw6cNGFlaHwE8saPGEbEIGC1paNq2LSJ+narnUYQRwDpJwwDS65ON7riZmVWryvBZDIyRNErSAGAq0FJuIOkYSUrLE4ABwPqI+COwRtKxqenpwP1puQW4KC1fBPygwjGYmVkF+le144jYImkGsADoB8yJiBWSpqf664FzgGmSNgMbgfNKFyBcDtycgms18MFUfiVwm6RLgMeAc6sag5mZVUNbP+v7rlqtFq2trT3dDTOzXkXSkoioVbFv3+HAzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyqzR8JE2StFLSKkkz69Q3S1omaamkVkmnluoekfS7jrpS+SxJj6fypZLOrnIMZmbWeP2r2rGkfsC1wJlAG7BYUktE3F9qthBoiYiQdDxwGzC2VP83EfFUnd1fExFXV9V3MzOrVpVnPhOBVRGxOiI2AbcCzeUGEbEhIiKtDgICMzPr86oMn+HAmtJ6WyrbhqQpkh4E7gAuLlUF8GNJSyRd2mmzGWm6bo6kIfUOLunSNJXX2t7evmcjMTOzhqoyfFSnbLszm4iYHxFjgcnAFaWqN0XEBOAs4COSTkvl1wGjgfHAWuCr9Q4eEbMjohYRtaampm4PwszMGq/K8GkDRpbWRwBP7KhxRCwCRksamtafSK9PAvMppvGIiHUR8VJEvAzc0FFuZma9R5XhsxgYI2mUpAHAVKCl3EDSMZKUlicAA4D1kgZJGpzKBwFvB5an9WGlXUzpKDczs96jsqvdImKLpBnAAqAfMCciVkianuqvB84BpknaDGwEzktXvh0GzE+51B/4bkTclXZ9laTxFFN4jwCXVTUGMzOrhrZebNZ31Wq1aG1t3XVDMzP7K0lLIqJWxb59hwMzM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtntE4/RltQO/Bl4qqf7UqGh9N3xeWy9V18e374wtiMjoqmKA+wT4QMgqbWqZ5HvDfry+Dy23qsvj89j2zOedjMzs+wcPmZmlt2+FD6ze7oDFevL4/PYeq++PD6PbQ/sM9/5mJnZ3mNfOvMxM7O9hMPHzMyy6zXhI2mSpJWSVkmaWadekv4t1S+TNKFUN0fSk5KWd9rmEEl3S3oovQ7pVH+EpA2SPlHdyP56rKzjk3S8pF9KWiHpd5IO6Atjk/QKSXPTmB6Q9MmqxlXh2M5N78vLkmqd6j6Z9rVS0juqG9lfj5dtfJLOlLQkvXdLJL2tr4ytVJ/lM6UHfi93//MkIvb6H6Af8DBwNDAA+C0wrlObs4E7AQEnA78u1Z0GTACWd9rmKmBmWp4JfKVT/e3A94BP9KXxAf2BZcAJaf1VQL8+MrYLgFvT8kDgEeCoXja21wLHAj8DaqXycekY+wOj0rEred96aHwnAoen5eOAx/vK2Er1lX+m9MD71q3Pk95y5jMRWBURqyNiE3Ar0NypTTPw7Sj8CjhY0jCAiFgE/KnOfpuBuWl5LjC5o0LSZGA1sKKB49iR3ON7O7AsIn6btl8fES81ckAluccWwCBJ/YEDgU3Acw0cT1klY4uIByJiZZ3jNVME64sR8QdgVepDVbKOLyLui4gn0uoK4ABJ+zdwPGW537ucnym5x9atz5PeEj7DgTWl9bZUtrttOjssItYCpNdDASQNAv4J+Pwe9Hl3ZB0f8BogJC2QdK+kf+x2z3ct99jmUdxKaS3wGHB1RNQLr0aoamx7crxGyj2+snOA+yLixQbsq56sY8v8mZL7fevW50n/bh4sN9Up63yNeFfadNXngWsiYoNUb7cNl3t8/YFTgTcALwALJS2JiIXd3N/O5B7bROAl4HBgCPALST+JiNXd3N/O5B5bI/fVqOM1vE+SXgd8heL/qKvSlz9TesXnSW8JnzZgZGl9BPBEN9p0tk7SsIhYm045n0zlJwHvk3QVcDDwsqS/RMTXuzuAXcg9vjbg5xHxFICkH1HM8VYRPrnHdgFwV0RsBp6UdA9Qo5juaLSqxrYnx2uk3OND0ghgPjAtIh7u7n66IPfYcn6m9MTv5W5/nvSWabfFwBhJoyQNAKYCLZ3atADT0lUcJwPPdkzL7EQLcFFavgj4AUBEvDkijoqIo4B/Bf65wuCBzOMDFgDHSxqYvht5C3B/IwZSR+6xPQa8Le1rEMWXqQ82YiB1VDW2HWkBpkraX9IoYAzwm+52vguyjk/SwcAdwCcj4p496HdXZB1b5s+U3L+X3fs82dUVCXvLD8XVGb+nuIrj06lsOjA9LQu4NtX/jm2vxriF4juAzRQpfUlsvSpjIfBQej2kznFnUfHVbj0xPuBCii8+lwNX9ZWxAa+kuJpoRfoP4B964dimpPUXgXXAgtI2n077Wgmc1Ut/L+uOD/gMxfd1S0s/h/aFsXU67iyqv4I29+/lbn+e+PY6ZmaWXW+ZdjMzsz7E4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZhWSNEs7uYNxuV7SByQdnq93Zj3H4WO29/gAxW2BzPo8h49Zg0n6tIpnqfyE4hb0SBot6S4Vz6n5haSxnbZ5H8VtgG6WtFTSgZI+K2mxpOWSZivTjQbNcnD4mDWQpNdT3M7kROC9FDdbBJgNXB4Rrwc+AXyjvF1EzANagfdHxPiI2Ah8PSLeEBHHUTwe4l2ZhmFWud5yY1Gz3uLNwPyIeAFAUgtwAHAK8L3SyUtXnlPzN+n29AOBQyhuX/JfDe+xWQ9w+Jg1Xud7Vu0HPBMR47u6AxWPIf4GxT231kiaRRFiZn2Cp93MGmsRMCV9ZzMYeDfFM07+IOlcgHQn4RPqbPs8MDgtdwTNU5JeCbyv4n6bZeXwMWugiLgX+A+KOzLfDvwiVb0fuETSbymmzzo/1hjgW8D1kpZS3Dn4Boo7Dv8nxW3yzfoM39XazMyy85mPmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2f1/iIcf0AwXrZAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "delta zeta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbxklEQVR4nO3df7RndV3v8eeLGX4KBMYgCBODiuLoQrAjcC3TUAu6FlS6FmqGZSFeEaYrFaJLsatlXq72Q7qEVxJXFJFgTYUSkqYZ4pwBFMcRGUlhZHQGkYBAYOB9/9h75Nu3A3POcPbncA7Px1pnnb0/n/357M/nfM98X7N/nP1NVSFJUkvbzfUAJEmPP4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8pMeoJC9Ksn6uxzEqyZokL3qE+jOS/L92I9J8ZfhoEEm+keSeJHcl+U6SP0uy61yP65EkWZakkiyepf52SnJ7kqOmqHt/ko/Oxn62RT/P/+hfn28leV+SRVtrV1XPqqpPP0L971bVr83qYLUgGT4a0s9W1a7Ac4HnAW+bSeN05s3v6HhoVdX3gb8Cfnlsu0XAK4Hz241uSs/pX58XA68Cfv3RdDZboa3Hh3nzD1vzV1V9C/g48Owkeyb5+ySbknyvX95/y7ZJPp3k3Uk+B9wNPCXJryRZm+TOJDcmef3I9i9Ksj7JbyXZmGRDkuOS/EySryW5LckZI9tvl+T0JF9P8t0kFyV5Yl/9mf777f0RwX/r2/xqv//vJbksyQEj/VWSNya5AbhhiumfD/xikl1Gyn6a7t/exx9pbuP6fT1tZP3DSd41sv6yJNf2R1v/muSQh39VHlJVXwU+S/f6PDXJP/U/m1uTXJBkj5F9fCPJS/rlM5N8NMmfJ7kDeG1f9ud9/ZYjyROS3NT399aRvnZOcn7/c13bv4brR+p/uz8quzPJ9UlePJ35aH4wfDS4JEuBnwGuofud+zPgAOBHgHuAD4w1eQ1wIrAb8E1gI/AyYHfgV4D3J3nuyPb7ADsB+wFvBz4I/BLwo8ALgLcneUq/7SnAccALgScD3wPO7ut+ov++R1XtWlVXJjkOOAP4BWAJ3Zv0X46N9zjgCGD5+Nyr6l+BDX370fn9RVVtnsbcpqVvcx7weuCHgT8FVibZcRptl9P9nK4BAvwe3c/mmcBS4MxHaH4s8FFgD+CCh9nmx4Fn0B1hvT3JM/vydwDLgKcAL6V7zbaM6RnAycDzqmo3usD+xtbmonmkqvzya9a/6N4o7gJupwuQPwF2nmK7Q4Hvjax/GvidrfT9N8Cp/fKL6AJsUb++G1DAESPbrwaO65fXAi8eqdsXuB9YTPdGWMDikfqPA68bWd+O7ojsgH69gKO2Mt63Af/YL+/etz9smnNbP1JXwNNG1j8MvKtf/r/A/xrr63rghQ+znwLuoAvfrwPvArabYrvjgGvGXteX9MtnAp8Z2/5M4M/75S0/z/1H6r8AHN8v3wj89Ejdr22ZL/A0umB+CbD9XP8++zX7X56j1ZCOq6pPjhb0p5/eDxwN7NkX75ZkUVU90K/fPNbmGLr/JT+d7s1/F+C6kU2+O9L2nv77d0bq7wG23OxwAPCxJA+O1D8APOlh5nAA8IdJ/s/okOiOsr451Xin8BHgHUn2o/sf/Lqqumaac5uuA4ATkrxppGwHuiOYh/Pcqlo3WpBkb+CP6I6EduvH9L1H6GNrcwf49sjy3Tz0Wjx5rP0PlqtqXZIVdGH2rCSXAf+zqm6Zxv40D3jaTa29me4UzBFVtTsPnerKyDY/eNR6f9roYuAs4ElVtQdw6dj2M3EzcExV7THytVN116WmesT7zcDrx7bfubrTaf9lvFOpqpvoTte9mu6U20e2cW5304XTFvuMjfPdY+PcparGTxFuze/18zmkf31+6RHGA1uZ+1ZsAPYfWV/6nzqu+ouq+nG6YC3g9x/FvvQYY/iotd3ojkRu7y/0v2Mr2+8A7AhsAjb3Rwo/9Sj2fw7w7i03DSRZkuTYvm4T8CDdNYjR7d+S5Fn99j+U5BXbsN/z6a5h/BgPXRuZ6dyuBV6VZFGSo+muW23xQeCkJEek84Qk/z3JbjMc5270p0v7I7XfnGH7mbiI7me7Z7+vk7dUJHlGkqP6gP4+3e/MAw/Tj+Yhw0et/QGwM3Ar8HngE4+0cVXdSXeTwEV0p39eBax8FPv/w779Pya5sx/DEf2+7gbeDXyuv2PsyKr6GN3/uC/s7+j6MnDMNuz3o3SnGa+oqg3bOLdTgZ+lu472arrrQ/R9TdLdKv2Bvq91wGu3YZzvpLs1/t+BfwAu2YY+put3gPXAvwGfpPsZ3dvX7Qi8h+735NvA3nQ3fmiBSJUfJidp7iV5A93NCC/c6saa9zzykTQnkuyb5Mf6v716Bt31wI/N9bjUhne7SZorO9D9PdKBdKcSL6S7JV+PA552kyQ152k3SVJzj4vTbnvttVctW7ZsrochSfPK6tWrb62qJUP0/bgIn2XLljE5OTnXw5CkeSXJN7e+1bbxtJskqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqblBwyfJ0UmuT7IuyelT1B+c5Mok9yY5baR8pyRfSPLFJGuSvHOk7olJLk9yQ/99zyHnIEmafYOFT5JFwNnAMcBy4JVJlo9tdhtwCnDWWPm9wFFV9RzgUODoJEf2dacDV1TVQcAV/bokaR4Z8sjncGBdVd1YVfcBFwLHjm5QVRurahVw/1h5VdVd/er2/Vf168cC5/fL5wPHDTN8SdJQhgyf/YCbR9bX92XTkmRRkmuBjcDlVXVVX/WkqtoA0H/f+2Han5hkMsnkpk2btmX8kqSBDBk+maKspiibUlU9UFWHAvsDhyd59kx2XlXnVtVEVU0sWbJkJk0lSQMbMnzWA0tH1vcHbplpJ1V1O/Bp4Oi+6DtJ9gXov298VKOUJDU3ZPisAg5KcmCSHYDjgZXTaZhkSZI9+uWdgZcAX+2rVwIn9MsnAH87m4OWJA1v8VAdV9XmJCcDlwGLgPOqak2Sk/r6c5LsA0wCuwMPJllBd2fcvsD5/R1z2wEXVdXf912/B7goyeuAm4BXDDUHSdIwUjXtyzDz1sTERE1OTs71MCRpXkmyuqomhujbJxxIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktTcoOGT5Ogk1ydZl+T0KeoPTnJlknuTnDZSvjTJp5KsTbImyakjdYcm+XySa5NMJjl8yDlIkmbfYOGTZBFwNnAMsBx4ZZLlY5vdBpwCnDVWvhl4c1U9EzgSeONI2/cC76yqQ4G39+uSpHlkyCOfw4F1VXVjVd0HXAgcO7pBVW2sqlXA/WPlG6rq6n75TmAtsN+WamD3fvmHgFuGm4IkaQiLB+x7P+DmkfX1wBEz7STJMuAw4Kq+aAVwWZKz6MLz+Y9qlJKk5oY88skUZTWjDpJdgYuBFVV1R1/8BuA3qmop8BvAhx6m7Yn9NaHJTZs2zWS3kqSBDRk+64GlI+v7M4NTZEm2pwueC6rqkpGqE4At639Nd3rvv6iqc6tqoqomlixZMqOBS5KGNWT4rAIOSnJgkh2A44GV02mYJHRHNGur6n1j1bcAL+yXjwJumKXxSpIaGeyaT1VtTnIycBmwCDivqtYkOamvPyfJPsAk3Q0EDyZZQXdn3CHAa4Drklzbd3lGVV0K/Drwh0kWA98HThxqDpKkYaRqRpdh5qWJiYmanJyc62FI0rySZHVVTQzRt084kCQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktTcoOGT5Ogk1ydZl+T0KeoPTnJlknuTnDZSvjTJp5KsTbImyalj7d7U97smyXuHnIMkafYtHqrjJIuAs4GXAuuBVUlWVtVXRja7DTgFOG6s+WbgzVV1dZLdgNVJLq+qryT5SeBY4JCqujfJ3kPNQZI0jCGPfA4H1lXVjVV1H3AhXWj8QFVtrKpVwP1j5Ruq6up++U5gLbBfX/0G4D1Vde+WPgacgyRpAEOGz37AzSPr63koQKYtyTLgMOCqvujpwAuSXJXkn5M872HanZhkMsnkpk2bZrpbSdKAhgyfTFFWM+og2RW4GFhRVXf0xYuBPYEjgd8ELkryX/ZVVedW1URVTSxZsmRmI5ckDWrI8FkPLB1Z3x+4ZbqNk2xPFzwXVNUlY/1eUp0vAA8Ce83CeCVJjQwZPquAg5IcmGQH4Hhg5XQa9kcyHwLWVtX7xqr/Bjiq3+7pwA7ArbM1aEnS8Aa7262qNic5GbgMWAScV1VrkpzU15+TZB9gEtgdeDDJCmA5cAjwGuC6JNf2XZ5RVZcC5wHnJfkycB9wQlXN6HSeJGlu5fHwvj0xMVGTk5NzPQxJmleSrK6qiSH69gkHkqTmDB9JUnOGjySpuWnfcJDk2XQ3A+y0payqPjLEoCRJC9u0wifJO4AX0YXPpcAxwL8Aho8kacame9rt5cCLgW9X1a8AzwF2HGxUkqQFbbrhc09VPQhsTrI7sBF4ynDDkiQtZNO95jOZZA/gg8Bq4C7gC0MNSpK0sE0rfKrqf/SL5yT5BLB7VX1puGFJC9/Xr/0nvvn1azjs+b/AnvseONfDkZqa1mm3JFdsWa6qb1TVl0bLJM3Md9ffwHsueAPn/esH+ONzXzfXw5Gae8QjnyQ7AbsAeyXZk4c+JmF34MkDj01asO6/7x7urwfYabsduOu+u+Z6OFJzWzvt9npgBV3QXD1SfgfdR2RL2gb7POUQTnrJ6Xzla5/jpS89aa6HIzU3rQeLJnlTVf1xg/EMwgeLStLMPRYeLHpekrclObcf0EFJXjbEgCRJC9+0w4fus3Oe36+vB941yIgkSQvedMPnqVX1XuB+gKq6h4duPpAkaUamGz73JdkZKIAkTwXuHWxUkqQFbbpPOHgH8AlgaZILgB8DXjvUoCRJC9t0w+d04FzgdrrTbSuAdwOfHmJQkqSFbbqn3Q4ETgQmqurvq2oTMMjtd5KkhW+64XM73UcqPCnJ3yX5oeGGJEla6KYbPqmqzf0DRi+m+yC5vYcbliRpIZvuNZ9ztixU1YeTXAe8cZghSZIWumkd+VTVn46tr66qX91auyRHJ7k+ybokp09Rf3CSK5Pcm+S0kfKlST6VZG2SNUlOnaLtaUkqyV7TmYMk6bFjukc+M5ZkEd3DR19K90SEVUlWVtVXRja7DTgFOG6s+WbgzVV1dZLdgNVJLt/SNsnSvt+bhhq/JGk4073msy0OB9ZV1Y1VdR9wIXDs6AZVtbGqVtE/OWGkfENVXd0v3wmsBfYb2eT9wG/R/9GrJGl+GTJ89gNuHllfz38OkGlJsgw4DLiqX/854FtV9cWttDsxyWSSyU2bNs10t5KkAQ0ZPlM9+21GRypJdqW7u25FVd2RZBfgrcDbt9a2qs6tqomqmliyZMlMditJGtiQ4bMeWDqyvj9wy3QbJ9meLnguqKpL+uKn0v3B6xeTfKPv8+ok+8zKiCVJTQx2wwGwCjgoyYHAt4DjgVdNp2GSAB8C1lbV+7aUV9V1jPx9UR9AE1V16yyOW5I0sMHCp6o2JzkZuAxYBJxXVWuSnNTXn9MfsUwCuwMPJlkBLAcOAV4DXJfk2r7LM6rq0qHGK0lqZ8gjH/qwuHSsbPQPVr9Nd+ps3L8wjc8Lqqplj3KIkqQ5MOQ1H0mSpmT4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqblBwyfJ0UmuT7IuyelT1B+c5Mok9yY5baR8aZJPJVmbZE2SU0fq/neSryb5UpKPJdljyDlIkmbfYOGTZBFwNnAMsBx4ZZLlY5vdBpwCnDVWvhl4c1U9EzgSeONI28uBZ1fVIcDXgLcMNAVJ0kCGPPI5HFhXVTdW1X3AhcCxoxtU1caqWgXcP1a+oaqu7pfvBNYC+/Xr/1hVm/tNPw/sP+AcJEkDGDJ89gNuHllf35fNSJJlwGHAVVNU/yrw8W0ZnCRp7gwZPpmirGbUQbIrcDGwoqruGKt7K93puQsepu2JSSaTTG7atGkmu5UkDWzI8FkPLB1Z3x+4ZbqNk2xPFzwXVNUlY3UnAC8DXl1VUwZaVZ1bVRNVNbFkyZIZD16SNJwhw2cVcFCSA5PsABwPrJxOwyQBPgSsrar3jdUdDfw28HNVdfcsj1mS1MDioTquqs1JTgYuAxYB51XVmiQn9fXnJNkHmAR2Bx5MsoLuzrhDgNcA1yW5tu/yjKq6FPgAsCNweZdRfL6qThpqHpKk2TdY+AD0YXHpWNk5I8vfZuq71f6Fqa8ZUVVPm80xSpLa8wkHkqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpobNHySHJ3k+iTrkpw+Rf3BSa5Mcm+S00bKlyb5VJK1SdYkOXWk7olJLk9yQ/99zyHnIEmafYOFT5JFwNnAMcBy4JVJlo9tdhtwCnDWWPlm4M1V9UzgSOCNI21PB66oqoOAK/p1SdI8MuSRz+HAuqq6saruAy4Ejh3doKo2VtUq4P6x8g1VdXW/fCewFtivrz4WOL9fPh84brAZSJIGMWT47AfcPLK+nocCZNqSLAMOA67qi55UVRugCylg74dpd2KSySSTmzZtmuluJUkDGjJ8MkVZzaiDZFfgYmBFVd0xk7ZVdW5VTVTVxJIlS2bSVJI0sCHDZz2wdGR9f+CW6TZOsj1d8FxQVZeMVH0nyb79NvsCG2dhrJKkhoYMn1XAQUkOTLIDcDywcjoNkwT4ELC2qt43Vr0SOKFfPgH421karySpkcVDdVxVm5OcDFwGLALOq6o1SU7q689Jsg8wCewOPJhkBd2dcYcArwGuS3Jt3+UZVXUp8B7goiSvA24CXjHUHCRJw0jVjC7DzEsTExM1OTk518OQpHklyeqqmhiib59wIElqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1Fyqaq7HMLgkm4D/AG6d67EMaC8W7vyc2/y1kOf3eJjbAVW1ZIgdPC7CByDJZFVNzPU4hrKQ5+fc5q+FPD/n9uh42k2S1JzhI0lq7vEUPufO9QAGtpDn59zmr4U8P+f2KDxurvlIkh47Hk9HPpKkxwjDR5LU3LwJnyRHJ7k+ybokp09RnyR/1Nd/KclzR+rOS7IxyZfH2jwxyeVJbui/7zlW/yNJ7kpy2nAz+8G+ms4vySFJrkyyJsl1SXZaCHNLsn2S8/s5rU3ylqHmNeDcXtG/Lg8mmRire0vf1/VJfnq4mf1gf83ml+SlSVb3r93qJEctlLmN1Dd5T5mD38uZv59U1WP+C1gEfB14CrAD8EVg+dg2PwN8HAhwJHDVSN1PAM8FvjzW5r3A6f3y6cDvj9VfDPw1cNpCmh+wGPgS8Jx+/YeBRQtkbq8CLuyXdwG+ASybZ3N7JvAM4NPAxEj58n4fOwIH9vse5HWbo/kdBjy5X3428K2FMreR+sHfU+bgddum95P5cuRzOLCuqm6sqvuAC4Fjx7Y5FvhIdT4P7JFkX4Cq+gxw2xT9Hguc3y+fDxy3pSLJccCNwJpZnMfDaT2/nwK+VFVf7Nt/t6oemM0JjWg9twKekGQxsDNwH3DHLM5n1CBzq6q1VXX9FPs7li5Y762qfwPW9WMYStP5VdU1VXVLv7oG2CnJjrM4n1GtX7uW7ymt57ZN7yfzJXz2A24eWV/fl810m3FPqqoNAP33vQGSPAH4beCdj2LMM9F0fsDTgUpyWZKrk/zWNo9861rP7aN0j1LaANwEnFVVU4XXbBhqbo9mf7Op9fxG/SJwTVXdOwt9TaXp3Bq/p7R+3bbp/WTxNu6stUxRNn6P+HS2ma53Au+vqruSqbqdda3ntxj4ceB5wN3AFUlWV9UV29jfI2k9t8OBB4AnA3sCn03yyaq6cRv7eySt5zabfc3W/mZ9TEmeBfw+3f+oh7KQ31PmxfvJfAmf9cDSkfX9gVu2YZtx30myb1Vt6A85N/blRwAvT/JeYA/gwSTfr6oPbOsEtqL1/NYD/1xVtwIkuZTuHO8Q4dN6bq8CPlFV9wMbk3wOmKA73THbhprbo9nfbGo9P5LsD3wM+OWq+vq29jMNrefW8j1lLn4vZ/x+Ml9Ou60CDkpyYJIdgOOBlWPbrAR+ub+L40jg37eclnkEK4ET+uUTgL8FqKoXVNWyqloG/AHwuwMGDzSeH3AZcEiSXfprIy8EvjIbE5lC67ndBBzV9/UEuoupX52NiUxhqLk9nJXA8Ul2THIgcBDwhW0d/DQ0nV+SPYB/AN5SVZ97FOOejqZza/ye0vr3ctveT7Z2R8Jj5Yvu7oyv0d3F8da+7CTgpH45wNl9/XX857sx/pLuGsD9dCn9unrorowrgBv670+cYr9nMvDdbnMxP+CX6C58fhl470KZG7Ar3d1Ea/p/AL85D+f28/36vcB3gMtG2ry17+t64Jh5+ns55fyAt9Fdr7t25GvvhTC3sf2eyfB30Lb+vZzx+4mP15EkNTdfTrtJkhYQw0eS1JzhI0lqzvCRJDVn+EiSmjN8pAElOTOP8ATj0fokr03y5Hajk+aO4SM9dryW7rFA0oJn+EizLMlb032WyifpHkFPkqcm+US6z6n5bJKDx9q8nO4xQBckuTbJzknenmRVki8nOTeNHjQotWD4SLMoyY/SPc7kMOAX6B62CHAu8Kaq+lHgNOBPRttV1UeBSeDVVXVoVd0DfKCqnldVz6b7eIiXNZqGNLj58mBRab54AfCxqrobIMlKYCfg+cBfjxy8TOdzan6yfzz9LsAT6R5f8nezPmJpDhg+0uwbf2bVdsDtVXXodDtI9zHEf0L3zK2bk5xJF2LSguBpN2l2fQb4+f6azW7Az9J9xsm/JXkFQP8k4edM0fZOYLd+eUvQ3JpkV+DlA49basrwkWZRVV0N/BXdE5kvBj7bV70aeF2SL9KdPhv/WGOADwPnJLmW7snBH6R74vDf0D0mX1owfKq1JKk5j3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNff/ARCZf5gsTewbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "delta eta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbf0lEQVR4nO3df7RndV3v8efL4bdAYA6Cw8RgooguBD0C1zINtYauNfTDtfBXWBrhEoGuVIgtxG6WeQmrK10uXSm6UUQCObcwQtQ0Q5wDjMI4EiMqjIzOIBgQCAy87x97j3z9dmDOGc7+HM7h+VjrrLP357M/n/35nO+Z72v2j7O/qSokSWrpKXM9AEnSk4/hI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH+kJKskrkqyf63GMSrImySseo/60JP+n3Yg0Xxk+GkSSryW5L8k9Sb6V5M+S7DrX43osSZYlqSTbzVJ/OyX5TpIjp6j7YJKPzMZ+tkU/z//oX59vJDkryaKttauq51fVpx6j/ner6q2zOlgtSIaPhvTTVbUr8CLgJcBvzaRxOvPmd3Q8tKrqu8DfAL84tt0i4HXA+e1GN6UX9q/PK4HXA7/yeDqbrdDWk8O8+Yet+auqvgF8DHhBkj2T/H2STUnu7Jf33bJtkk8leV+SzwL3As9K8ktJ1ia5O8nNSX51ZPtXJFmf5DeSbEyyIcnRSX4qyb8luSPJaSPbPyXJqUm+kuTbSS5K8rS++tP99+/0RwT/pW/zy/3+70xyeZL9RvqrJG9PchNw0xTTPx/4+SS7jJT9JN2/vY891tzG9ft69sj6nyf5nZH11yRZ3R9t/WuSgx/9VXlEVX0Z+Azd6/PDST7R/2xuT3JBkj1G9vG1JK/ql89I8pEkf5nkLuDNfdlf9vVbjiSPTXJL39+7R/raOcn5/c91bf8arh+p/83+qOzuJDcmeeV05qP5wfDR4JIsBX4KuI7ud+7PgP2AHwLuAz401uRNwHHAbsDXgY3Aa4DdgV8CPpjkRSPb7w3sBCwBTgf+FHgj8GLgZcDpSZ7Vb3sicDTwcuCZwJ3A2X3dj/Xf96iqXavqqiRHA6cBPwcspnuT/uux8R4NHA4cND73qvpXYEPffnR+f1VVm6cxt2np25wH/Crwg8D/BlYm2XEabQ+i+zldBwT4PbqfzfOApcAZj9F8BfARYA/ggkfZ5keB59IdYZ2e5Hl9+XuAZcCzgFfTvWZbxvRc4ATgJVW1G11gf21rc9E8UlV++TXrX3RvFPcA36ELkD8Bdp5iu0OAO0fWPwX89lb6/jvgpH75FXQBtqhf3w0o4PCR7a8Bju6X1wKvHKnbB3gQ2I7ujbCA7UbqPwa8ZWT9KXRHZPv16wUcuZXx/hbwT/3y7n37Q6c5t/UjdQU8e2T9z4Hf6Zf/F/Dfx/q6EXj5o+yngLvowvcrwO8AT5liu6OB68Ze11f1y2cAnx7b/gzgL/vlLT/PfUfqPw8c0y/fDPzkSN1bt8wXeDZdML8K2H6uf5/9mv0vz9FqSEdX1cdHC/rTTx8ElgN79sW7JVlUVQ/167eOtTmK7n/Jz6F7898FuH5kk2+PtL2v//6tkfr7gC03O+wHXJrk4ZH6h4BnPMoc9gP+KMkfjA6J7ijr61ONdwp/AbwnyRK6/8Gvq6rrpjm36doPODbJO0bKdqA7gnk0L6qqdaMFSfYC/pjuSGi3fkx3PkYfW5s7wDdHlu/lkdfimWPtv7dcVeuSnEwXZs9Pcjnw36rqtmnsT/OAp93U2jvpTsEcXlW788iproxs871HrfenjS4GzgSeUVV7AJeNbT8TtwJHVdUeI187VXddaqpHvN8K/OrY9jtXdzrtP413KlV1C93pujfQnXL7i22c27104bTF3mPjfN/YOHepqvFThFvze/18Du5fnzc+xnhgK3Pfig3AviPrS7+v46q/qqofpQvWAn7/cexLTzCGj1rbje5I5Dv9hf73bGX7HYAdgU3A5v5I4Scex/7PAd635aaBJIuTrOjrNgEP012DGN3+XUme32//A0leuw37PZ/uGsaP8Mi1kZnObTXw+iSLkiynu261xZ8Cxyc5PJ2nJvmvSXab4Th3oz9d2h+p/foM28/ERXQ/2z37fZ2wpSLJc5Mc2Qf0d+l+Zx56lH40Dxk+au0PgZ2B24HPAf/4WBtX1d10NwlcRHf65/XAysex/z/q2/9Tkrv7MRze7+te4H3AZ/s7xo6oqkvp/sd9YX9H1w3AUduw34/QnWa8sqo2bOPcTgJ+mu462hvorg/R9zVJd6v0h/q+1gFv3oZxvpfu1vh/B/4BuGQb+piu3wbWA18FPk73M7q/r9sReD/d78k3gb3obvzQApEqP0xO0txL8ja6mxFevtWNNe955CNpTiTZJ8mP9H979Vy664GXzvW41IZ3u0maKzvQ/T3S/nSnEi+kuyVfTwKedpMkNedpN0lSc0+K025Pf/rTa9myZXM9DEmaV6655prbq2rxEH0/KcJn2bJlTE5OzvUwJGleSfL1rW+1bTztJklqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqbtDwSbI8yY1J1iU5dYr6A5NcleT+JKeMlO+U5PNJvpBkTZL3jtQ9LckVSW7qv+855BwkSbNvsPBJsgg4GzgKOAh4XZKDxja7AzgROHOs/H7gyKp6IXAIsDzJEX3dqcCVVXUAcGW/LkmaR4Y88jkMWFdVN1fVA8CFwIrRDapqY1WtAh4cK6+quqdf3b7/qn59BXB+v3w+cPQww5ckDWXI8FkC3Dqyvr4vm5Yki5KsBjYCV1TV1X3VM6pqA0D/fa9HaX9ckskkk5s2bdqW8UuSBjJk+GSKspqibEpV9VBVHQLsCxyW5AUz2XlVnVtVE1U1sXjx4pk0lSQNbMjwWQ8sHVnfF7htpp1U1XeATwHL+6JvJdkHoP++8XGNUpLU3JDhswo4IMn+SXYAjgFWTqdhksVJ9uiXdwZeBXy5r14JHNsvHwt8dDYHLUka3nZDdVxVm5OcAFwOLALOq6o1SY7v689JsjcwCewOPJzkZLo74/YBzu/vmHsKcFFV/X3f9fuBi5K8BbgFeO1Qc5AkDSNV074MM29NTEzU5OTkXA9DkuaVJNdU1cQQffuEA0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmhs0fJIsT3JjknVJTp2i/sAkVyW5P8kpI+VLk3wyydoka5KcNFJ3SJLPJVmdZDLJYUPOQZI0+wYLnySLgLOBo4CDgNclOWhsszuAE4Ezx8o3A++squcBRwBvH2n7AeC9VXUIcHq/LkmaR4Y88jkMWFdVN1fVA8CFwIrRDapqY1WtAh4cK99QVdf2y3cDa4ElW6qB3fvlHwBuG24KkqQhbDdg30uAW0fW1wOHz7STJMuAQ4Gr+6KTgcuTnEkXni99XKOUJDU35JFPpiirGXWQ7ApcDJxcVXf1xW8Dfq2qlgK/Bnz4Udoe118Tmty0adNMditJGtiQ4bMeWDqyvi8zOEWWZHu64Lmgqi4ZqToW2LL+t3Sn9/6Tqjq3qiaqamLx4sUzGrgkaVhDhs8q4IAk+yfZATgGWDmdhklCd0SztqrOGqu+DXh5v3wkcNMsjVeS1Mhg13yqanOSE4DLgUXAeVW1Jsnxff05SfYGJuluIHg4ycl0d8YdDLwJuD7J6r7L06rqMuBXgD9Ksh3wXeC4oeYgSRpGqmZ0GWZempiYqMnJybkehiTNK0muqaqJIfr2CQeSpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmhs0fJIsT3JjknVJTp2i/sAkVyW5P8kpI+VLk3wyydoka5KcNNbuHX2/a5J8YMg5SJJm33ZDdZxkEXA28GpgPbAqycqq+tLIZncAJwJHjzXfDLyzqq5NshtwTZIrqupLSX4cWAEcXFX3J9lrqDlIkoYx5JHPYcC6qrq5qh4ALqQLje+pqo1VtQp4cKx8Q1Vd2y/fDawFlvTVbwPeX1X3b+ljwDlIkgYwZPgsAW4dWV/PIwEybUmWAYcCV/dFzwFeluTqJP+c5CWP0u64JJNJJjdt2jTT3UqSBjRk+GSKsppRB8muwMXAyVV1V1+8HbAncATw68BFSf7Tvqrq3KqaqKqJxYsXz2zkkqRBDRk+64GlI+v7ArdNt3GS7emC54KqumSs30uq83ngYeDpszBeSVIjQ4bPKuCAJPsn2QE4Blg5nYb9kcyHgbVVddZY9d8BR/bbPQfYAbh9tgYtSRreYHe7VdXmJCcAlwOLgPOqak2S4/v6c5LsDUwCuwMPJzkZOAg4GHgTcH2S1X2Xp1XVZcB5wHlJbgAeAI6tqhmdzpMkza08Gd63JyYmanJycq6HIUnzSpJrqmpiiL59woEkqTnDR5LUnOEjSWrO8JEkNWf4SJKam/at1kn2BA4AdtpSVlWfHmJQkqSFbVrhk+StwEl0TylYTfdom6vo/9hTkqSZmO5pt5OAlwBfr6ofp3vQp0/rlCRtk+mGz3er6rsASXasqi8Dzx1uWNLC95XVn+ATF/8Bd2746lwPRWpuutd81ifZg+65alckuZMZPCRU0vf79vqbeP8Fb+O+hx/gOTf8A6e/5xNzPSSpqWmFT1X9bL94RpJPAj8AfGywUUkL3IMP3MeD9RA7PWUH7nngnrkejtTctE67Jfm/W5ar6p+raiXdAz4lbYO9n3Uwx7/qVF669KW8443/c66HIzU33dNuzx9dSbIIePHsD0d68jhi+Vs5Yvlb53oY0px4zCOfJO9KcjdwcJK7+q+7gY3AR5uMUJK04Dxm+FTV71XVbsBZwNuBP+jXDwUubTA+SdICNN1brXen+8PSY/r1u4GzBxmRJGnBm+41n8Oq6kVJrgOoqjv7j8aWJGnGpnvk82B/k0EBJFkMPDzYqCRJC9p0w+eP6a7x7JXkfcC/AL872KgkSQvadP/I9IIk1wCvBAIcXVVrBx2ZJGnBmvZHKvTPc/vygGORJD1J+GFykqTmDB9JUnODhk+S5UluTLIuyalT1B+Y5Kok9yc5ZaR8aZJPJlmbZE2Sk6Zoe0qSSvL0IecgSZp9077mM1P9rdlnA68G1gOrkqysqi+NbHYHcCJw9FjzzcA7q+raJLsB1yS5YkvbJEv7fm8ZavySpOEMeeRzGLCuqm6uqgeAC4EVoxtU1caqWgU8OFa+oaqu7ZfvBtYCS0Y2+SDwG/R/dyRJml+GDJ8lwK0j6+v5/gCZliTL6J4ld3W//jPAN6rqC1tpd1ySySSTmzb5id+S9EQyZPhkirIZHakk2RW4GDi5qu5KsgvwbuD0rbWtqnOraqKqJhYvXjyT3UqSBjZk+KwHlo6s78sMPno7yfZ0wXNBVV3SF/8wsD/whSRf6/u8NsneszJiSVITg91wAKwCDkiyP/ANuidiv346DZME+DCwtqrO2lJeVdcDe41s9zVgoqpun8VxS5IGNlj4VNXmJCcAlwOLgPOqak2S4/v6c/ojlkm6j2x4OMnJwEHAwcCbgOuTrO67PK2qLhtqvJKkdoY88qEPi8vGys4ZWf4m3amzcf/C1NeMxvtf9jiHKEmaAz7hQJLUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gYNnyTLk9yYZF2SU6eoPzDJVUnuT3LKSPnSJJ9MsjbJmiQnjdT9jyRfTvLFJJcm2WPIOUiSZt9g4ZNkEXA2cBRwEPC6JAeNbXYHcCJw5lj5ZuCdVfU84Ajg7SNtrwBeUFUHA/8GvGugKUiSBjLkkc9hwLqqurmqHgAuBFaMblBVG6tqFfDgWPmGqrq2X74bWAss6df/qao295t+Dth3wDlIkgYwZPgsAW4dWV/fl81IkmXAocDVU1T/MvCxbRmcJGnuDBk+maKsZtRBsitwMXByVd01VvduutNzFzxK2+OSTCaZ3LRp00x2K0ka2JDhsx5YOrK+L3DbdBsn2Z4ueC6oqkvG6o4FXgO8oaqmDLSqOreqJqpqYvHixTMevCRpOEOGzyrggCT7J9kBOAZYOZ2GSQJ8GFhbVWeN1S0HfhP4maq6d5bHLElqYLuhOq6qzUlOAC4HFgHnVdWaJMf39eck2RuYBHYHHk5yMt2dcQcDbwKuT7K67/K0qroM+BCwI3BFl1F8rqqOH2oekqTZN1j4APRhcdlY2Tkjy99k6rvV/oWprxlRVc+ezTFKktrzCQeSpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmjN8JEnNGT6SpOYMH0lSc4aPJKk5w0eS1JzhI0lqzvCRJDVn+EiSmhs0fJIsT3JjknVJTp2i/sAkVyW5P8kpI+VLk3wyydoka5KcNFL3tCRXJLmp/77nkHOQJM2+wcInySLgbOAo4CDgdUkOGtvsDuBE4Myx8s3AO6vqecARwNtH2p4KXFlVBwBX9uuSpHlkyCOfw4B1VXVzVT0AXAisGN2gqjZW1SrgwbHyDVV1bb98N7AWWNJXrwDO75fPB44ebAaSpEEMGT5LgFtH1tfzSIBMW5JlwKHA1X3RM6pqA3QhBez1KO2OSzKZZHLTpk0z3a0kaUBDhk+mKKsZdZDsClwMnFxVd82kbVWdW1UTVTWxePHimTSVJA1syPBZDywdWd8XuG26jZNsTxc8F1TVJSNV30qyT7/NPsDGWRirJKmhIcNnFXBAkv2T7AAcA6ycTsMkAT4MrK2qs8aqVwLH9svHAh+dpfFKkhrZbqiOq2pzkhOAy4FFwHlVtSbJ8X39OUn2BiaB3YGHk5xMd2fcwcCbgOuTrO67PK2qLgPeD1yU5C3ALcBrh5qDJGkYqZrRZZh5aWJioiYnJ+d6GJI0ryS5pqomhujbJxxIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1l6qa6zEMLskm4D+A2+d6LAN6Ogt3fs5t/lrI83syzG2/qlo8xA6eFOEDkGSyqibmehxDWcjzc27z10Ken3N7fDztJklqzvCRJDX3ZAqfc+d6AANbyPNzbvPXQp6fc3scnjTXfCRJTxxPpiMfSdIThOEjSWpu3oRPkuVJbkyyLsmpU9QnyR/39V9M8qKRuvOSbExyw1ibpyW5IslN/fc9x+p/KMk9SU4Zbmbf21fT+SU5OMlVSdYkuT7JTgthbkm2T3J+P6e1Sd411LwGnNtr+9fl4SQTY3Xv6vu6MclPDjez7+2v2fySvDrJNf1rd02SIxfK3Ebqm7ynzMHv5czfT6rqCf8FLAK+AjwL2AH4AnDQ2DY/BXwMCHAEcPVI3Y8BLwJuGGvzAeDUfvlU4PfH6i8G/hY4ZSHND9gO+CLwwn79B4FFC2Rurwcu7Jd3Ab4GLJtnc3se8FzgU8DESPlB/T52BPbv9z3I6zZH8zsUeGa//ALgGwtlbiP1g7+nzMHrtk3vJ/PlyOcwYF1V3VxVDwAXAivGtlkB/EV1PgfskWQfgKr6NHDHFP2uAM7vl88Hjt5SkeRo4GZgzSzO49G0nt9PAF+sqi/07b9dVQ/N5oRGtJ5bAU9Nsh2wM/AAcNcszmfUIHOrqrVVdeMU+1tBF6z3V9VXgXX9GIbSdH5VdV1V3davrgF2SrLjLM5nVOvXruV7Suu5bdP7yXwJnyXArSPr6/uymW4z7hlVtQGg/74XQJKnAr8JvPdxjHkmms4PeA5QSS5Pcm2S39jmkW9d67l9hO5RShuAW4Azq2qq8JoNQ83t8exvNrWe36ifB66rqvtnoa+pNJ1b4/eU1q/bNr2fbLeNO2stU5SN3yM+nW2m673AB6vqnmSqbmdd6/ltB/wo8BLgXuDKJNdU1ZXb2N9jaT23w4CHgGcCewKfSfLxqrp5G/t7LK3nNpt9zdb+Zn1MSZ4P/D7d/6iHspDfU+bF+8l8CZ/1wNKR9X2B27Zhm3HfSrJPVW3oDzk39uWHA7+Q5APAHsDDSb5bVR/a1glsRev5rQf+uapuB0hyGd053iHCp/XcXg/8Y1U9CGxM8llggu50x2wbam6PZ3+zqfX8SLIvcCnwi1X1lW3tZxpaz63le8pc/F7O+P1kvpx2WwUckGT/JDsAxwArx7ZZCfxifxfHEcC/bzkt8xhWAsf2y8cCHwWoqpdV1bKqWgb8IfC7AwYPNJ4fcDlwcJJd+msjLwe+NBsTmULrud0CHNn39VS6i6lfno2JTGGouT2alcAxSXZMsj9wAPD5bR38NDSdX5I9gH8A3lVVn30c456OpnNr/J7S+vdy295PtnZHwhPli+7ujH+ju4vj3X3Z8cDx/XKAs/v66/n+uzH+mu4awIN0Kf2WeuSujCuBm/rvT5tiv2cw8N1uczE/4I10Fz5vAD6wUOYG7Ep3N9Ga/h/Ar8/Duf1sv34/8C3g8pE27+77uhE4ap7+Xk45P+C36K7XrR752mshzG1sv2cw/B20rX8vZ/x+4uN1JEnNzZfTbpKkBcTwkSQ1Z/hIkpozfCRJzRk+kqTmDB9pQEnOyGM8wXi0Psmbkzyz3eikuWP4SE8cb6Z7LJC04Bk+0ixL8u50n6XycbpH0JPkh5P8Y7rPqflMkgPH2vwC3WOALkiyOsnOSU5PsirJDUnOTaMHDUotGD7SLEryYrrHmRwK/BzdwxYBzgXeUVUvBk4B/mS0XVV9BJgE3lBVh1TVfcCHquolVfUCuo+HeE2jaUiDmy8PFpXmi5cBl1bVvQBJVgI7AS8F/nbk4GU6n1Pz4/3j6XcBnkb3+JL/N+sjluaA4SPNvvFnVj0F+E5VHTLdDtJ9DPGf0D1z69YkZ9CFmLQgeNpNml2fBn62v2azG/DTdJ9x8tUkrwXonyT8wina3g3s1i9vCZrbk+wK/MLA45aaMnykWVRV1wJ/Q/dE5ouBz/RVbwDekuQLdKfPxj/WGODPgXOSrKZ7cvCf0j1x+O/oHpMvLRg+1VqS1JxHPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKa+/+Wt2VqLejk0AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "delta mu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEWCAYAAADYRbjGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAflElEQVR4nO3df5hcVZ3n8feHhAQQ2OAkOJggCWNgBEEMBcnuGESEMWFhkkGRQDTIOBvDDO7s4+pMEBF0dEZ5dJ3JA8KGMUAeIYFBfrQLmFmcB+MyIOmYGBIgQxOQNMmQBgSDwWDId/+4p+VSqe6ubqqqT7ef1/Pcp+rec+6553R16pN77+kqRQRmZmY522uwO2BmZtYXh5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZTZMSDpZUudg96NM0gZJJ/dS/nlJ/9S6HtlQ5bCyLEh6StIrkl6W9Kyk6yTtP9j96o2kiZJC0sgGtbePpBclnVKj7FuSbm3EcQYijfNX6fV5RtL/kjSir/0i4uiIuK+X8r+LiD9vaGdtWHJYWU7OjIj9gSnACcAX+rOzCkPmd7o65CLi18DNwLyqeiOAc4EbWte7mt6TXp8PAucB/+3NNNaokLffDUPmH7b97oiIZ4B7gHdLOkjS/5HUJekX6fmE7rqS7pP0VUn3AzuAwyVdIOlRSdslbZL0qVL9kyV1SvprSdskbZU0W9Lpkv5d0guSPl+qv5ekhZKekPS8pFskvTUVr0yPL6Yzjv+c9vmzdPxfSFoh6bBSeyHpLyU9DjxeY/g3AB+WtF9p24co/q3e09vYqqVjvbO0fr2kr5TWz5C0Np3N/ZukY3t+VV4XEY8BP6Z4ff5A0r+mn81zkm6UNKZ0jKcknZqeXy7pVknflfRL4BNp23dTefeZ6vmSnk7tXVJqa19JN6Sf66PpNewslf9NOuvbLmmjpA/WMx4bGhxWlh1JhwKnA2sofkevAw4D3gG8AlxZtcvHgfnAAcDPgW3AGcCBwAXAtyRNKdX/fWAfYDzwReBa4GPA8cB04IuSDk91/zswG3g/8HbgF8BVqeyk9DgmIvaPiAckzQY+D5wFjKN4U19W1d/ZwFTgqOqxR8S/AVvT/uXx3RQRu+oYW13SPkuATwG/B/xvoE3S6Dr2PYri57QGEPD3FD+bdwGHApf3svss4FZgDHBjD3XeBxxJcQb3RUnvStsvAyYChwOnUbxm3X06ErgIOCEiDqAI+Kf6GosNIRHhxcugLxRvLC8DL1IEzreBfWvUOw74RWn9PuDLfbR9B/BX6fnJFIE3Iq0fAAQwtVR/NTA7PX8U+GCp7BDgN8BIijfOAEaWyu8BPlla34vijO+wtB7AKX309wvAv6TnB6b931vn2DpLZQG8s7R+PfCV9Pxq4G+r2toIvL+H4wTwS4qwfgL4CrBXjXqzgTVVr+up6fnlwMqq+pcD303Pu3+eE0rlDwFz0vNNwIdKZX/ePV7gnRRBfiqw92D/Pntp/OJrxpaT2RFxb3lDuhz2LWAGcFDafICkERHxWlrfXLXPTIr/hR9BERb7AQ+Xqjxf2veV9PhsqfwVoHtyx2HA7ZJ2l8pfA97WwxgOA/5R0jfLXaI4i/t5rf7WsBS4TNJ4ijOEjohYU+fY6nUYcL6kT5e2jaI4Q+rJlIjoKG+QdDCwiOJM64DUp1/00kZfYwf4j9LzHbz+Wry9av/fPo+IDkn/gyL8jpa0AvhMRGyp43g2BPgyoOXuf1JcEpoaEQfy+qU3ler89qsD0mWs7wHfAN4WEWOAu6vq98dmYGZEjCkt+0RxX63WVxZsBj5VVX/fKC7v7dHfWiLiaYrLh3MpLgEuHeDYdlCEWbffr+rnV6v6uV9EVF+y7Mvfp/Ecm16fj/XSH+hj7H3YCkworR/6hoYjboqI91EEcQBffxPHssw4rCx3B1Cc6byYJjZc1kf9UcBooAvYlc5E/vhNHP8a4KvdkyQkjZM0K5V1Absp7qGU618s6ehU/z9JOnsAx72B4h7MH/H6vZ3+jm0tcJ6kEZJmUNx363YtsEDSVBXeIum/Sjqgn/08gHT5Np0Jfq6f+/fHLRQ/24PSsS7qLpB0pKRTUqD/muJ35rUe2rEhyGFlufsHYF/gOeBB4Ae9VY6I7RSTIm6huBx1HtD2Jo7/j2n/f5G0PfVhajrWDuCrwP1pRt20iLid4n/0y9OMt/XAzAEc91aKy54/jIitAxzbXwFnUtwHnEtxf4vUVjvF1PMrU1sdwCcG0M8vUfypwUvAXcBtA2ijXl8GOoEngXspfkY7U9lo4GsUvyf/ARxMMdHFhglF+MsXzWzokXQhxeSL9/dZ2YY8n1mZ2ZAg6RBJf5T+9u1IivuZtw92v6w1PBvQzIaKURR/DzaJ4tLmcoo/cbDfAb4MaGZm2fNlQDMzy54vA/Zg7NixMXHixMHuhpnZkDF27FhWrFixIiJmNLpth1UPJk6cSHt7+2B3w8xsSJE0thnt+jKgmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWWvqWElaYakjZI6JC2sUS5Ji1L5OklTSmVLJG2TtL5qn5slrU3LU5LWpu1zS9vXStot6bhUdl/qR3fZwc0ct5mZNVbTvtZe0gjgKuA0oBNYJaktIh4pVZsJTE7LVODq9AhwPXAlsLTcbkScUzrGN4GX0vYbgRvT9mOAOyNibWnXuRHh76k3MxuCmnlmdSLQERGbIuJVYDkwq6rOLGBpFB4Exkg6BCAiVgIv9NS4JAEfBZbVKD63h+1mZjYENTOsxgObS+udaVt/6/RkOvBsRDxeo+wc9gyr69IlwEtT0O1B0nxJ7ZLau7q66uyGmZk1WzPDqlYgxADq9KTm2ZOkqcCOiCjf65obEcdQBNx04OO1GoyIxRFRiYjKuHHj6uyGmZk1WzPDqhM4tLQ+AdgygDp7kDQSOAu4uUbxHKpCLCKeSY/bgZsoLlGamdkQ0cywWgVMljRJ0iiKEGmrqtMGzEuzAqcBL0XE1jraPhV4LCI6yxsl7QWcTXF/rHvbSElj0/O9gTOAN8wwNDOzvDVtNmBE7JJ0EbACGAEsiYgNkhak8muAu4HTgQ5gB3BB9/6SlgEnA2MldQKXRcR3UvEeZ0/JSUBnRGwqbRsNrEhBNQK4F7i2YQM1M7OmU0S9t4h+t1QqlWhv90x3M7P+kLQ6IiqNbtefYGFmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllr6lhJWmGpI2SOiQtrFEuSYtS+TpJU0plSyRtk7S+ap+bJa1Ny1OS1qbtEyW9Uiq7prTP8ZIeTsdZJElNHLaZmTVY08JK0gjgKmAmcBRwrqSjqqrNBCanZT5wdansemBGdbsRcU5EHBcRxwHfA24rFT/RXRYRC0rbr07tdx9rj3bNzCxfzTyzOhHoiIhNEfEqsByYVVVnFrA0Cg8CYyQdAhARK4EXemo8nR19FFjWWydSewdGxAMREcBSYPYAx2RmZoOgmWE1HthcWu9M2/pbpyfTgWcj4vHStkmS1kj6kaTppWN01nMMSfMltUtq7+rqqrMbZmbWbM0Mq1r3hWIAdXpyLm88q9oKvCMi3gt8BrhJ0oH9OUZELI6ISkRUxo0bV2c3zMys2UY2se1O4NDS+gRgywDq7EHSSOAs4PjubRGxE9iZnq+W9ARwRDrGhP4ew8zM8tHMM6tVwGRJkySNAuYAbVV12oB5aVbgNOCliNhaR9unAo9FxG8v70kalyZ1IOlwiokUm1J72yVNS/e55gF3vunRmZlZyzTtzCoidkm6CFgBjACWRMQGSQtS+TXA3cDpQAewA7ige39Jy4CTgbGSOoHLIuI7qXgOe06sOAn4sqRdwGvAgojonqBxIcXswn2Be9JiZmZDhIoJclatUqlEe3v7YHfDzGxIkbQ6IiqNbtefYGFmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllr6lhJWmGpI2SOiQtrFEuSYtS+TpJU0plSyRtk7S+ap+bJa1Ny1OS1qbtp0laLenh9HhKaZ/7Uj+69zu4icM2M7MGG9mshiWNAK4CTgM6gVWS2iLikVK1mcDktEwFrk6PANcDVwJLy+1GxDmlY3wTeCmtPgecGRFbJL0bWAGML+06NyLaGzM6MzNrpWaeWZ0IdETEpoh4FVgOzKqqMwtYGoUHgTGSDgGIiJXACz01LknAR4Flqf6aiNiSijcA+0ga3dARmZnZoGhmWI0HNpfWO3njmU69dXoyHXg2Ih6vUfZhYE1E7Cxtuy5dArw0Bd0eJM2X1C6pvaurq85umJlZszUzrGoFQgygTk/OJZ1VvaFB6Wjg68CnSpvnRsQxFAE3Hfh4rQYjYnFEVCKiMm7cuDq7YWZmzdbMsOoEDi2tTwC2DKDOHiSNBM4Cbq7aPgG4HZgXEU90b4+IZ9LjduAmikuUZmY2RDQzrFYBkyVNkjQKmAO0VdVpA+alWYHTgJciYmsdbZ8KPBYRnd0bJI0B7gIujoj7S9tHShqbnu8NnAGsx8zMhoymhVVE7AIuopiV9yhwS0RskLRA0oJU7W5gE9ABXAv8Rff+kpYBDwBHSuqU9MlS83PY8xLgRcA7gUurpqiPBlZIWgesBZ5JxzIzsyFCEfXeIvrdUqlUor3dM93NzPpD0uqIqDS6XX+ChZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZG1lPJUnvqLU9Ip5ubHfMzMz2VFdYAXcBAQjYB5gEbASOblK/zMzMfquuy4ARcUxEHJseJwMnAv+vr/0kzZC0UVKHpIU1yiVpUSpfJ2lKqWyJpG2S1lftc7OktWl5StLaUtnFqa2Nkj5U2n68pIdT2SJJqmfcZmaWhwHds4qInwIn9FZH0gjgKmAmcBRwrqSjqqrNBCanZT5wdansemBGjWOfExHHRcRxwPeA29LxjgLmUJztzQC+nfpAand+6Vh7tGuWu9i9m5/+6438uO1KXn3l5cHujllL1XvP6jOl1b2A44GuPnY7EeiIiE2pjeXALOCRUp1ZwNKICOBBSWMkHRIRWyNipaSJvfRJwEeBU0ptLY+IncCTkjqAEyU9BRwYEQ+k/ZYCs4F7+h65WT7WrryZb951CRFB1/NPc9YFVwx2l8xapt4zqwOA/dMyCvg+8Cd97DMe2Fxa70zb+lunJ9OBZyPi8T7aGp+e93kMSfMltUtq7+rqK4vNWmvnr39FEOylvfjVK78c7O6YtVS9EyzuBj4PTCztsxA4tpd9at0XigHU6cm5wLI62qr7GBGxGFgMUKlU6u2HWUscf/J5zNn2JC/veJEzz75ksLtj1lL1htV3gc8C64Hdde7TCRxaWp8AbBlAnT1IGgmcRXE5sq+2OtPzfh3DLDd777MffzLvq4PdDbNBUe9lwK6I+H5EPBkRP+9e+thnFTBZ0iRJoygmP7RV1WkD5qVZgdOAlyJiax39ORV4LCLKl/fagDmSRkuaRDGR4qHU3nZJ09J9rnnAnXUcw8zMMlHvmdVlkv4J+CGws3tjRNzW0w4RsUvSRcAKYASwJCI2SFqQyq+huLx4OtAB7AAu6N5f0jLgZGCspE7gsoj4TiqewxsvAZLavoViAscu4C8j4rVUfCHF7MJ9KSZWeHKFmdkQomIiXh+VpO8Cfwhs4PXLgBERf9bEvg2qSqUS7e3tg90NM7MhRdLqiKg0ut16z6zeExHHNPrgZmZm9aj3ntWDNf6g18zMrCXqPbN6H3C+pCcp7lmJ4jJgb1PXzczMGqLesPLHE5mZ2aCpK6zqmKZuZmbWNP7yRTMzy57DyszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DU1rCTNkLRRUoekhTXKJWlRKl8naUqpbImkbZLW19jv06ndDZKuSNvmSlpbWnZLOi6V3Zfqd5cd3MRhm5lZg9X7TcH9JmkEcBVwGtAJrJLUFhGPlKrNBCanZSpwdXoEuB64Elha1e4HgFnAsRGxszt4IuJG4MZU5xjgzohYW9p1bkS0N3KMZmbWGs08szoR6IiITRHxKrCcImTKZgFLo/AgMEbSIQARsRJ4oUa7FwJfi4idqd62GnXOBZY1aBxmZjbImhlW44HNpfXOtK2/daodAUyX9BNJP5J0Qo0657BnWF2XLgFeKkm1GpY0X1K7pPaurq4+umFmZq3SzLCqFQgxgDrVRgIHAdOAzwG3lMNH0lRgR0SU73XNjYhjgOlp+XithiNicURUIqIybty4PrphZmat0syw6gQOLa1PALYMoE6tdm9Llw4fAnYDY0vlc6g6q4qIZ9LjduAmikuUZmY2RDQzrFYBkyVNkjSKIkTaquq0AfPSrMBpwEsRsbWPdu8ATgGQdAQwCngure8FnE1xf4y0baSksen53sAZwB4zDM3MLF9Nmw0YEbskXQSsAEYASyJig6QFqfwa4G7gdKAD2AFc0L2/pGXAycBYSZ3AZRHxHWAJsCRNaX8VOD8iui8dngR0RsSmUldGAytSUI0A7gWubdKwzcysCfT6+7yVVSqVaG/3THczs/6QtDoiKo1u159gYWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWWvqWElaYakjZI6JC2sUS5Ji1L5OklTSmVLJG2TtL7Gfp9O7W6QdEXaNlHSK5LWpuWaUv3jJT2cjrNIkpo1ZjMza7ymhZWkEcBVwEzgKOBcSUdVVZsJTE7LfODqUtn1wIwa7X4AmAUcGxFHA98oFT8REcelZUFp+9Wp/e5j7dGumZnlq5lnVicCHRGxKSJeBZZThEzZLGBpFB4Exkg6BCAiVgIv1Gj3QuBrEbEz1dvWWydSewdGxAMREcBSYPabGJeZmbVYM8NqPLC5tN6ZtvW3TrUjgOmSfiLpR5JOKJVNkrQmbZ9eOkZnPceQNF9Su6T2rq6uPrphZmatMrKJbde6LxQDqFNtJHAQMA04AbhF0uHAVuAdEfG8pOOBOyQd3Z9jRMRiYDFApVLpqx9mZtYizTyz6gQOLa1PALYMoE6tdm9Llw4fAnYDYyNiZ0Q8DxARq4EnKM7COlO7/TmGmZllpJlhtQqYLGmSpFHAHKCtqk4bMC/NCpwGvBQRW/to9w7gFABJRwCjgOckjUuTOkhnWpOBTam97ZKmpVmA84A7GzNEMzNrhaZdBoyIXZIuAlYAI4AlEbFB0oJUfg1wN3A60AHsAC7o3l/SMuBkYKykTuCyiPgOsARYkqa0vwqcHxEh6STgy5J2Aa8BCyKie4LGhRSzC/cF7kmLmZkNESomyFm1SqUS7e3tg90NM7MhRdLqiKg0ul1/goWZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWvaaGlaQZkjZK6pC0sEa5JC1K5eskTSmVLZG0TdL6Gvt9OrW7QdIVadtpklZLejg9nlKqf1+qvzYtBzdrzGZm1ngjm9WwpBHAVcBpQCewSlJbRDxSqjYTmJyWqcDV6RHgeuBKYGlVux8AZgHHRsTOUvA8B5wZEVskvRtYAYwv7To3ItobOEQzM2uRZp5ZnQh0RMSmiHgVWE4RMmWzgKVReBAYI+kQgIhYCbxQo90Lga9FxM5Ub1t6XBMRW1KdDcA+kkY3fFRmZtZyzQyr8cDm0nonbzzTqbdOtSOA6ZJ+IulHkk6oUefDwJruQEuuS5cAL5WkWg1Lmi+pXVJ7V1dXH90wM7NWaWZY1QqEGECdaiOBg4BpwOeAW8rhI+lo4OvAp0r7zI2IY4Dpafl4rYYjYnFEVCKiMm7cuD66YWZmrdLMsOoEDi2tTwC2DKBOrXZvS5cOHwJ2A2MBJE0AbgfmRcQT3TtExDPpcTtwE8UlSjMzGyKaGVargMmSJkkaBcwB2qrqtAHz0qzAacBLEbG1j3bvAE4BkHQEMAp4TtIY4C7g4oi4v7uypJGSusNsb+AMYI8ZhmZmlq+mhVVE7AIuopiV9yhwS0RskLRA0oJU7W5gE9ABXAv8Rff+kpYBDwBHSuqU9MlUtAQ4PE1pXw6cHxGRjvVO4NKqKeqjgRWS1gFrgWfSsczMbIhQ8T5v1SqVSrS3e6a7mVl/SFodEZVGt+tPsDAzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsucvX+yBpC7gV8Bzg92XJhnL8B0bDO/xeWxD13Ae31jgMYCImNHoxh1WvZDU3oxvvMzBcB4bDO/xeWxD13AeX7PH5suAZmaWPYeVmZllz2HVu8WD3YEmGs5jg+E9Po9t6BrO42vq2HzPyszMsuczKzMzy57DyszMsjesw0rSDEkbJXVIWlijXJIWpfJ1kqaUypZI2iZpfdU+b5X0fyU9nh4Pqip/h6SXJX22eSNr/dgkHSvpAUkbJD0saZ/hMj5Je0u6IY3rUUkXD8GxnZ1em92SKlVlF6e2Nkr6UPNG9tvjtWx8kk6TtDq9dqslnTJcxlYqH8rvKb39XvbvPSUihuUCjACeAA4HRgE/A46qqnM6cA8gYBrwk1LZScAUYH3VPlcAC9PzhcDXq8q/B/wz8NnhMjZgJLAOeE9a/z1gxDAa33nA8vR8P+ApYOIQG9u7gCOB+4BKaftR6RijgUnp2EPxtetpfO8F3p6evxt4ZriMrVQ+lN9Tenrd+v2eMpzPrE4EOiJiU0S8CiwHZlXVmQUsjcKDwBhJhwBExErghRrtzgJuSM9vAGZ3F0iaDWwCNjRwHLW0emx/DKyLiJ+l/Z+PiNcaOaAqrR5fAG+RNBLYF3gV+GUDx1PWlLFFxKMRsbHG8WZRBPHOiHgS6Eh9aJaWji8i1kTElrS6AdhH0ugGjqes1a/dkH9P6WVs/X5PGc5hNR7YXFrvTNv6W6fa2yJiK0B6PBhA0luAvwG+9Cb6XK+Wjg04AghJKyT9VNJfD7jn9Wn1+G6l+GitrcDTwDciolbYNUKzxvZmjtdIrR5f2YeBNRGxswFt1dLSsQ2T95Se9Ps9ZeQADzQUqMa26nn69dSp15eAb0XEy1KtZhuq1WMbCbwPOAHYAfxQ0uqI+OEA2+tLq8d3IvAa8HbgIODHku6NiE0DbK83rR5bI9tq1PEa3idJRwNfp/gfe7P4PaXvOvXq93vKcA6rTuDQ0voEYMsA6lR7VtIhEbE1nQJvS9unAh+RdAUwBtgt6dcRceVAB9CLVo+tE/hRRDwHIOluiuvTzQqrVo/vPOAHEfEbYJuk+4EKxeWXRmvW2N7M8Rqp1eND0gTgdmBeRDwx0Hbq0OqxDYf3lN6O16/3lOF8GXAVMFnSJEmjgDlAW1WdNmBemuUyDXip+zJRL9qA89Pz84E7ASJiekRMjIiJwD8Af9ekXypo8diAFcCxkvZL93XeDzzSiIH0oNXjexo4JbX1Foqbx481YiA1NGtsPWkD5kgaLWkSMBl4aKCdr0NLxydpDHAXcHFE3P8m+l2Plo5tmLyn9KT/7ym9zb4Y6gvF7JV/p5jlcknatgBYkJ4LuCqVP8wbZ6sso7iH8RuK/wV8Ml6ftfJD4PH0+NYax72cJs7cGYyxAR+juMm7HrhiOL12wP4Us602pH8wnxuCY/vTtL4TeBZYUdrnktTWRmDmEH3tao4P+ALF/ca1peXg4TC2quNeztB8T+nt97Jf7yn+uCUzM8vecL4MaGZmw4TDyszMsuewMjOz7DmszMwsew4rMzPLnsPKLDOSLlcvn7BdLpf0CUlvb13vzAaHw8psaPsExcdEmQ1rDiuzDEi6RMV3Cd1L8ZUKSPoDST9Q8T1NP5b0h1X7fITiY6FulLRW0r6SvihplaT1kharBR8qZ9YKDiuzQSbpeIqPt3kvcBbFh3sCLAY+HRHHA58Fvl3eLyJuBdqBuRFxXES8AlwZESdExLspvu7kjBYNw6yphvMH2ZoNFdOB2yNiB4CkNmAf4L8A/1w6Oarne5o+kL5uYT/grRQfZ/P9hvfYrMUcVmZ5qP7cs72AFyPiuHobUPG14N+m+My2zZIupwg9syHPlwHNBt9K4E/TPacDgDMpvuPnSUlnA6RPun5PjX23Awek593B9Jyk/YGPNLnfZi3jsDIbZBHxU+Bmik8M/x7w41Q0F/ikpJ9RXM6r/ppxgOuBayStpfhk62spPhH7DoqvfTAbFvyp62Zmlj2fWZmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZll7/8DUZyFkd01jsUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "delta nu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEWCAYAAADGjIh1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbaElEQVR4nO3dfZRddX3v8ffHhIBKbLCECkkwoQUVLAKOwC3iA9UK3LpCtbbxCeTaIi7xQmttAbssWm3VVbVyRblYaWEVjVTQm3uLUvX6dK08TCACIaaEgJKSSkDlQTAY+N4/9k45HodkJsw5s2d4v9Y6a/bD7/fbv++cyfnM3mfnTKoKSZK64AlTPQFJkrYylCRJnWEoSZI6w1CSJHWGoSRJ6gxDSZLUGYaSNM0keVGSDVM9j15JVid50Tb2n5nk74Y3I01XhpKGKsmtSR5Icl+SHyT5+yS7TvW8tiXJ4iSVZPYkjbdLkh8nOWqMfR9O8tnJOM6OaOv8Sfv8/HuSDyWZtb1+VXVAVX1tG/v/qqr+YFInqxnJUNJUeHlV7QocAjwP+POJdE5j2vzs9odZVf0U+AxwfF+7WcCrgQuGN7sxPad9fn4TeA3wh49lsMkKcz0+TJt/2Jp5qurfgS8Az06yW5L/k2RTkh+1ywu3tk3ytSTvTfIt4H5gnyQnJlmT5N4k65O8qaf9i5JsSPKnSe5IsjHJcUmOTfJvSX6Y5Mye9k9IcnqSm5PcleTiJE9td3+j/frj9gziv7R9/lt7/B8luTzJ03vGqyRvSXITcNMY5V8AvDLJk3q2vYzm3+QXtlVbv/ZYv9az/g9J3tOz/ttJVrVnZ/+a5MBHf1YeUVXfBb5J8/z8apL/235v7kxyUZJ5Pce4NclL2uWzknw2yT8muQd4Q7vtH9v9W888T0jy/Xa8d/SM9cQkF7Tf1zXtc7ihZ/+ftWdx9yZZm+Q3x1OPpgdDSVMmySLgWOBamp/FvweeDuwNPAB8tK/L64GTgLnA94A7gN8GngKcCHw4ySE97Z8G7AIsAN4JfAJ4HfBc4EjgnUn2adv+d+A44IXAXsCPgHPafS9ov86rql2r6ttJjgPOBF4BzKd58f5033yPAw4D9u+vvar+FdjY9u+t71NVtWUctY1L2+d84E3ALwP/E1iRZOdx9N2f5vt0LRDgr2m+N88CFgFnbaP7UuCzwDzgokdp83zgGTRnZO9M8qx2+18Ai4F9gJfSPGdb5/QM4BTgeVU1lybIb91eLZpGqsqHj6E9aF5A7gN+TBMsHwOeOEa7g4Af9ax/DXj3dsb+PHBqu/wimmCb1a7PBQo4rKf9SuC4dnkN8Js9+/YEfgbMpnmBLGB2z/4vAG/sWX8CzRnc09v1Ao7aznz/HPiXdvkpbf+Dx1nbhp59Bfxaz/o/AO9plz8O/GXfWGuBFz7KcQq4hyaUbwbeAzxhjHbHAdf2Pa8vaZfPAr7R1/4s4B/b5a3fz4U9+68ClrXL64GX9ez7g631Ar9GE9gvAXaa6p9nH5P/8FqvpsJxVfXl3g3tZawPA0cDu7Wb5yaZVVUPteu39fU5hua36v1oQuFJwPU9Te7q6ftA+/UHPfsfALbeZPF04HNJHu7Z/xDwK49Sw9OBjyT5YO+UaM7KvjfWfMdwIfAXSRbQ/Ma/rqquHWdt4/V04IQkb+3ZNofmjOfRHFJV63o3JNkDOJvmzGluO6cfbWOM7dUO8B89y/fzyHOxV1///1yuqnVJTqMJuQOSXA78cVXdPo7jaRrw8p264m00l3IOq6qn8Mgls/S0+c+PtG8vP10C/A3wK1U1D7isr/1E3AYcU1Xzeh67VPO+11gfpX8b8Ka+9k+s5rLcL8x3LFX1fZrLfq+luXR34Q7Wdj9NaG31tL55vrdvnk+qqv5Ljdvz1209B7bPz+u2MR/YTu3bsRFY2LO+6OcGrvpUVT2fJnALeP9jOJY6xlBSV8ylOXP5cXuDwV9sp/0cYGdgE7ClPbP4rcdw/HOB9269WSHJ/CRL232bgIdp3uPobX9GkgPa9r+U5FU7cNwLaN4jOYJH3nuZaG2rgNckmZXkaJr3xbb6BHByksPSeHKS/5pk7gTnOZf2smt7Zvf2CfafiItpvre7tcc6ZeuOJM9IclQb3D+l+Zl56FHG0TRkKKkr/hZ4InAncAXwxW01rqp7aW5OuJjmMtJrgBWP4fgfafv/S5J72zkc1h7rfuC9wLfaO9gOr6rP0fyGvry9w+wG4JgdOO5naS5XfqWqNu5gbacCL6d5n+61NO8/0Y41SnNL90fbsdYBb9iBeb6L5hb+u4F/Bi7dgTHG693ABuAW4Ms036PN7b6dgffR/Jz8B7AHzQ0nmiFS5R/5k9RdSd5McxPEC7fbWNOeZ0qSOiXJnkmOaP/v2DNo3m/83FTPS8Ph3XeSumYOzf+nWkJzSXI5zX8d0OOAl+8kSZ3h5TtJUmc8ri/f7b777rV48eKpnoYkTSsrV668s6rmD2Lsx3UoLV68mNHR0amehiRNK0m+t/1WO8bLd5KkzjCUJEmdYShJkjrDUJIkdYahJEnqDENJktQZhpIkqTMMJUlSZxhKkqTOMJQkSZ1hKEmSOsNQkiR1hqEkSeoMQ0mS1BmGkiSpMwwlSVJnGEqSpM4wlCRJnWEoSZI6w1CSJHWGoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzjCUJEmdYShJkjrDUJIkdYahJEnqDENJktQZhpIkqTMGGkpJjk6yNsm6JKePsT9Jzm73X5fkkHb7oiRfTbImyeokp/b0OSjJFUlWJRlNcmjPvjPasdYmedkga5MkTb6BhVKSWcA5wDHA/sCrk+zf1+wYYN/2cRLw8Xb7FuBtVfUs4HDgLT19PwC8q6oOAt7ZrtPuXwYcABwNfKydgyRpmhjkmdKhwLqqWl9VDwLLgaV9bZYCF1bjCmBekj2ramNVXQNQVfcCa4AFbZ8CntIu/xJwe89Yy6tqc1XdAqxr5yBJmiZmD3DsBcBtPesbgMPG0WYBsHHrhiSLgYOBK9tNpwGXJ/kbmlD9jZ6xrhhjrJ+T5CSaszL23nvvCZQjSRq0QZ4pZYxtNZE2SXYFLgFOq6p72s1vBv6oqhYBfwR8cgLHo6rOq6qRqhqZP3/+dkqQJA3TIENpA7CoZ30hj1xq226bJDvRBNJFVXVpT5sTgK3r/8Qjl+jGczxJUocNMpSuBvZNsiTJHJqbEFb0tVkBHN/ehXc4cHdVbUwSmjOgNVX1ob4+twMvbJePAm7qGWtZkp2TLKG5eeKqyS9LkjQoA3tPqaq2JDkFuByYBZxfVauTnNzuPxe4DDiW5qaE+4ET2+5HAK8Hrk+yqt12ZlVdBvwh8JEks4Gf0r4/1I59MXAjzd17b6mqhwZVnyRp8qXqF952edwYGRmp0dHRqZ6GJE0rSVZW1cggxvYTHSRJnWEoSZI6w1CSJHWGoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzjCUJEmdYShJkjrDUJIkdYahJEnqDENJktQZhpIkqTMMJUlSZxhKkqTOMJQkSZ1hKEmSOsNQkiR1hqEkSeoMQ0mS1BmGkiSpMwwlSVJnGEqSpM4wlCRJnWEoSZI6w1CSJHXGQEMpydFJ1iZZl+T0MfYnydnt/uuSHNJuX5Tkq0nWJFmd5NSePp9Jsqp93JpkVbt9cZIHevadO8jaJEmTb/agBk4yCzgHeCmwAbg6yYqqurGn2THAvu3jMODj7dctwNuq6pokc4GVSb5UVTdW1e/3HOODwN09491cVQcNqiZJ0mAN8kzpUGBdVa2vqgeB5cDSvjZLgQurcQUwL8meVbWxqq4BqKp7gTXAgt6OSQL8HvDpAdYgSRqiQYbSAuC2nvUN9AXLeNokWQwcDFzZ1/dI4AdVdVPPtiVJrk3y9SRHjjWpJCclGU0yumnTpnEXI0kavEGGUsbYVhNpk2RX4BLgtKq6p6/dq/n5s6SNwN5VdTDwx8CnkjzlFwavOq+qRqpqZP78+eMoQ5I0LIMMpQ3Aop71hcDt422TZCeaQLqoqi7t7ZRkNvAK4DNbt1XV5qq6q11eCdwM7DcplUiShmKQoXQ1sG+SJUnmAMuAFX1tVgDHt3fhHQ7cXVUb2/eLPgmsqaoPjTH2S4DvVtWGrRuSzG9vriDJPjQ3T6yf/LIkSYMysLvvqmpLklOAy4FZwPlVtTrJye3+c4HLgGOBdcD9wIlt9yOA1wPXb73lGzizqi5rl5fxizc4vAB4d5ItwEPAyVX1w4EUJ0kaiFT1v83z+DEyMlKjo6NTPQ1JmlaSrKyqkUGM7Sc6SJI6w1CSJHWGoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzjCUJEmdYShJkjrDUJIkdYahJEnqDENJktQZhpIkqTMMJUlSZxhKkqTOMJQkSZ1hKEmSOsNQkiR1hqEkSeoMQ0mS1BmGkiSpMwwlSVJnGEqSpM4wlCRJnWEoSZI6w1CSJHWGoSRJ6gxDSZLUGeMKpSS3JFnf/xhHv6OTrE2yLsnpY+xPkrPb/dclOaTdvijJV5OsSbI6yak9fT6TZFX7uDXJqp59Z7RjrU3ysnF9ByRJnTF7nO1GepZ3AV4FPHVbHZLMAs4BXgpsAK5OsqKqbuxpdgywb/s4DPh4+3UL8LaquibJXGBlki9V1Y1V9fs9x/ggcHe7vD+wDDgA2Av4cpL9quqhcdYodcK9d93O6NeXs+fCZ/LMQ4+d6ulIQzWuUKqqu/o2/W2S/we8cxvdDgXWVdV6gCTLgaVAbygtBS6sqgKuSDIvyZ5VtRHY2B773iRrgAW9fZME+D3gqJ6xllfVZuCWJOvaOXx7PDVKXfF3n3gzo5u+w87Zib+ctwcL9hvZfidphhhXKG29rNZ6As2Z09ztdFsA3NazvoHmLGh7bRbQBlJ77MXAwcCVfX2PBH5QVTf1jHXFGGP9nCQnAScB7L333tspQRq+nzx4H3OyEw/xMJsfuG+qpyMN1Xgv330QqHZ5C3ArzSW8bckY22oibZLsClwCnFZV9/S1ezXw6Qkej6o6DzgPYGRk5Bf2S1PtD173Yb74zx9h8cJfZ8mvv2CqpyMN1XhD6RjglcDinj7LgHdvo88GYFHP+kLg9vG2SbITTSBdVFWX9nZKMht4BfDcCR5P6ryn7XMgb3jrJ6d6GtKUGO8t4Z8HXg78DLivffxkO32uBvZNsiTJHJoQW9HXZgVwfHsX3uHA3VW1sX2/6JPAmqr60BhjvwT4blVt6BtrWZKdkyyhuXniqnHWJ0nqgPGeKS2sqqMnMnBVbUlyCnA5MAs4v6pWJzm53X8ucBlwLLAOuB84se1+BPB64PqeW77PrKrL2uVl/PylO9qxL6a5GWIL8BbvvJOk6SXNjW/baZScB/yPqrp+8FManpGRkRodHZ3qaUjStJJkZVUN5LbQ8Z4pPR94Q5JbgM00NxVUVR04iElJkh6fJnKjgyRJAzXe/zz7vUFPRJIkP5BVktQZhpIkqTMMJUlSZxhKkqTOMJQkSZ1hKEmSOsNQkiR1hqEkSeoMQ0mS1BmGkiSpMwwlSVJnGEqSpM4wlCRJnWEoSZI6w1CSJHWGoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzjCUJEmdYShJkjrDUJIkdYahJEnqDENJktQZAw2lJEcnWZtkXZLTx9ifJGe3+69Lcki7fVGSryZZk2R1klP7+r21HXd1kg+02xYneSDJqvZx7iBrkyRNvtmDGjjJLOAc4KXABuDqJCuq6saeZscA+7aPw4CPt1+3AG+rqmuSzAVWJvlSVd2Y5MXAUuDAqtqcZI+e8W6uqoMGVZMkabAGeaZ0KLCuqtZX1YPAcpow6bUUuLAaVwDzkuxZVRur6hqAqroXWAMsaPu8GXhfVW1u998xwBokSUM0yFBaANzWs76BR4Jl3G2SLAYOBq5sN+0HHJnkyiRfT/K8nuZLklzbbj9yrEklOSnJaJLRTZs2TbgoSdLgDDKUMsa2mkibJLsClwCnVdU97ebZwG7A4cDbgYuTBNgI7F1VBwN/DHwqyVN+YfCq86pqpKpG5s+fP9GaJEkDNMhQ2gAs6llfCNw+3jZJdqIJpIuq6tK+Ppe2l/yuAh4Gdq+qzVV1F0BVrQRupjmrkiRNE4MMpauBfZMsSTIHWAas6GuzAji+vQvvcODuqtrYnvl8ElhTVR/q6/N54CiAJPsBc4A7k8xvb64gyT40N0+sH1BtkqQBGNjdd1W1JckpwOXALOD8qlqd5OR2/7nAZcCxwDrgfuDEtvsRwOuB65OsaredWVWXAecD5ye5AXgQOKGqKskLgHcn2QI8BJxcVT8cVH2SpMmXqv63eR4/RkZGanR0dKqnIUnTSpKVVTUyiLH9RAdJUmcYSpKkzjCUJEmdYShJkjrDUJIkdYahJEnqDENJktQZhpIkqTMMJUlSZxhKkqTOMJQkSZ1hKEmSOsNQkiR1hqEkSeoMQ0mS1BmGkiSpMwwlSVJnGEqSpM4wlCRJnWEoSZI6w1CSJHWGoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzjCUJEmdMdBQSnJ0krVJ1iU5fYz9SXJ2u/+6JIe02xcl+WqSNUlWJzm1r99b23FXJ/lAz/Yz2rHWJnnZIGuTJE2+2YMaOMks4BzgpcAG4OokK6rqxp5mxwD7to/DgI+3X7cAb6uqa5LMBVYm+VJV3ZjkxcBS4MCq2pxkj/Z4+wPLgAOAvYAvJ9mvqh4aVI2SpMk1yDOlQ4F1VbW+qh4EltOESa+lwIXVuAKYl2TPqtpYVdcAVNW9wBpgQdvnzcD7qmpzu/+OnrGWV9XmqroFWNfOQZI0TQwylBYAt/Wsb+CRYBl3mySLgYOBK9tN+wFHJrkyydeTPG8CxyPJSUlGk4xu2rRpYhVJkgZqkKGUMbbVRNok2RW4BDitqu5pN88GdgMOB94OXJwk4zweVXVeVY1U1cj8+fO3X4UkaWgGGUobgEU96wuB28fbJslONIF0UVVd2tfn0vaS31XAw8Du4zyeJKnDBhlKVwP7JlmSZA7NTQgr+tqsAI5v78I7HLi7qja2Zz6fBNZU1Yf6+nweOAogyX7AHODOdqxlSXZOsoTm5omrBlSbJGkABnb3XVVtSXIKcDkwCzi/qlYnObndfy5wGXAszU0J9wMntt2PAF4PXJ9kVbvtzKq6DDgfOD/JDcCDwAlVVcDqJBcDN9LcvfcW77yTpOklzev549PIyEiNjo5O9TQkaVpJsrKqRgYxtp/oIEnqDENJktQZhpIkqTMMJUlSZxhKkqTOMJQkSZ1hKEmSOsNQkiR1hqEkSeoMQ0mS1BmGkiSpMwwlSVJnGEqSpM4wlCRJnWEoSZI6w1CSJHWGoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzjCUJEmdYShJkjrDUJIkdYahJEnqDENJktQZhpIkqTMMJUlSZxhKkqTOMJQkSZ2RqprqOUyZJJuA7wG7A3dO8XQGxdqmr5lcn7VNX7sDT66q+YMY/HEdSlslGa2qkamexyBY2/Q1k+uztulr0PV5+U6S1BmGkiSpMwylxnlTPYEBsrbpaybXZ23T10Dr8z0lSVJneKYkSeoMQ0mS1BkzIpSSHJ1kbZJ1SU4fY3+SnN3uvy7JIT37zk9yR5Ib+vo8NcmXktzUft2tb//eSe5L8ieDq2z4tSU5MMm3k6xOcn2SXWZCbUl2SnJBW9OaJGcMqq4B1/eq9rl5OMlI374z2rHWJnnZ4Cobbm1JXppkZfvcrUxy1EyprWf/UF5P2mMN++dyYq8pVTWtH8As4GZgH2AO8B1g/742xwJfAAIcDlzZs+8FwCHADX19PgCc3i6fDry/b/8lwD8BfzJTagNmA9cBz2nXfxmYNUNqew2wvF1+EnArsHgaPnfPAp4BfA0Y6dm+f3uMnYEl7bGn23P3aLUdDOzVLj8b+PeZ8rz17B/468kUPXcTfk2ZCWdKhwLrqmp9VT0ILAeW9rVZClxYjSuAeUn2BKiqbwA/HGPcpcAF7fIFwHFbdyQ5DlgPrJ7EOsYy7Np+C7iuqr7T9r+rqh6azIJ6DLu2Ap6cZDbwROBB4J5JrKffQOqrqjVVtXaM4y2lCd3NVXULsK6dwyAMtbaquraqbm9XVwO7JNl5EuvpNeznbZivJzD8+ib8mjITQmkBcFvP+oZ220Tb9PuVqtoI0H7dAyDJk4E/A971GOY8XkOtDdgPqCSXJ7kmyZ/u8My3b9i1fRb4CbAR+D7wN1U1VqhNlkHV91iON1mGXVuvVwLXVtXmSRhrLEOtbcivJzD8527Crymzd/BAXZIxtvXf5z6eNuP1LuDDVXVfMtawk2rYtc0Gng88D7gf+EqSlVX1lR0cb1uGXduhwEPAXsBuwDeTfLmq1u/geNsz7Pomc6zJONakzyfJAcD7aX77HpSZ/HoC0+A1ZSaE0gZgUc/6QuD2HWjT7wdJ9qyqje2p6x3t9sOA303yAWAe8HCSn1bVR3e0gG0Ydm0bgK9X1Z0ASS6juX48iFAadm2vAb5YVT8D7kjyLWCE5rLJIAyqvsdyvMky7NpIshD4HHB8Vd28o+OMw7BrG+brCUzNz+WEXlNmwuW7q4F9kyxJMgdYBqzoa7MCOL69q+Rw4O6tl3i2YQVwQrt8AvC/AKrqyKpaXFWLgb8F/mqAP0BDrQ24HDgwyZPa915eCNw4GYWMYdi1fR84qh3ryTRv4H53Mgp5FIOq79GsAJYl2TnJEmBf4Kodnfx2DLW2JPOAfwbOqKpvPYZ5j8dQaxvy6wkM/+dy4q8p27oLYro8aO4W+Teau0re0W47GTi5XQ5wTrv/en7+7pBP07zP8DOaVH9jPXKXyFeAm9qvTx3juGcx+Ltlhlob8DqaN1xvAD4wU2oDdqW5u2l1+4/i7dP05/J32vXNwA+Ay3v6vKMday1wzEypDfhzmvcDV/U89pgJtfUd9ywG/HoyRT+XE3pN8WOGJEmdMRMu30mSZghDSZLUGYaSJKkzDCVJUmcYSpKkzjCUpCmS5Kxs41Ohe/cneUOSvYY3O2lqGErS9PAGmo9IkmY0Q0kaoiTvSPO3bL5M81H/JPnVJF9M87eCvpnkmX19fpfmI5EuSrIqyROTvDPJ1UluSHJehvTBadKgGUrSkCR5Ls3HuhwMvILmQyoBzgPeWlXPBf4E+Fhvv6r6LDAKvLaqDqqqB4CPVtXzqurZNH+K47eHVIY0UDPhA1ml6eJI4HNVdT9AkhXALsBvAP/Uc7Iznr8V9OL2zwA8CXgqzce4/O9Jn7E0ZIaSNFz9n+v1BODHVXXQeAdI8+ekP0bzmWS3JTmLJtykac/Ld9LwfAP4nfY9obnAy2n+xswtSV4F0H4y83PG6HsvMLdd3hpAdybZFfjdAc9bGhpDSRqSqroG+AzNp1xfAnyz3fVa4I1JvkNzGa7/z1MD/ANwbpJVNJ/E/AmaT3D+PM2fI5BmBD8lXJLUGZ4pSZI6w1CSJHWGoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzvj/ZCy0qtcxfD0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "delta lamb\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEWCAYAAADGjIh1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfvUlEQVR4nO3df5xVdb3v8deb4aeKdyzHQkDBQgtJkXbIvSetS5rAKbFfjwdlV7O6xHlE99zr7QdmD1PLc/p5PfnI5GKHEz7Sw+HY8TTXNNLuxX4iDAkoJjXgD0ZIRg2TIAz83D/Wd3K53TB7xll71gzv5+OxHrPX+n7XWt8Pe9hv1tpf9lZEYGZmVgZD+nsAZmZmXRxKZmZWGg4lMzMrDYeSmZmVhkPJzMxKw6FkZmal4VAyG2AkvVVSR3+PI0/SJklvPUT7ZyV9u3EjsoHKoWQNJekRSXsl7Zb0hKR/knRUf4/rUCRNkBSShvbR8UZK2iVpZo22ayXd2hfn6Y1U5x/T8/O4pP8lqam7/SLi1IhYdYj2v4uIj/bpYG1QcihZf3hnRBwFTAPeBHyuJzsrM2B+d6vDLCL+BPwLcFFVvybg/cCyxo2uptPT8/M24APAf305B+urMLfDw4D5i22DT0Q8DtwJTJF0jKTbJXVK+n16PK6rr6RVkq6R9HNgD3CSpEsk/VrSs5K2SvpYrv9bJXVI+rSknZJ2SLpA0hxJv5H0tKTP5voPkbRI0hZJT0laIekVqfkn6eeudAXxH9M+H07n/72klZJOzB0vJH1c0m+B39YofxnwHklH5LadR/Z38s5D1VYtneu1ufXvSPpibv0dktanq7NfSDrt4M/KCyLiIeCnZM/PayT93/Rn86SkmyU1587xiKRz0uMrJd0q6buS/gB8KG37bmrvuvK8WNJj6XiX5441StKy9Of66/QcduTaP5Ou4p6VtFnS2+qpxwYGh5L1G0njgTnAfWS/i/8EnAicAOwFvlm1y38B5gOjgUeBncA7gKOBS4BrJU3L9X81MBIYC1wB3Ah8EHgjcBZwhaSTUt//BlwAvAU4Hvg9cH1qOzv9bI6IoyLil5IuAD4LvBtoIXvx/ueq8V4AnAlMrq49In4B7Ej75+u7JSL211FbXdI+S4GPAa8E/jfQKmlEHftOJvtzug8Q8PdkfzavB8YDVx5i97nArUAzcPNB+rwZOIXsiuwKSa9P2z8PTABOAs4le866xnQKsBB4U0SMJgvyR7qrxQaQiPDipWEL2QvIbmAXWbB8CxhVo99U4Pe59VXA1d0c+9+Bv02P30oWbE1pfTQQwJm5/uuAC9LjXwNvy7WNAf4MDCV7gQxgaK79TuAjufUhZFdwJ6b1AGZ2M97PAT9Kj49O+59RZ20dubYAXptb/w7wxfT4BuALVcfaDLzlIOcJ4A9kobwF+CIwpEa/C4D7qp7Xc9LjK4GfVPW/Evhuetz15zku174GmJcebwXOy7V9tKte4LVkgX0OMKy/f5+99P3ie73WHy6IiLvzG9JtrGuBWcAxafNoSU0RcSCtb6vaZzbZv6pPJguFI4D7c12eyu27N/18Ite+F+iaZHEicJuk53PtB4BXHaSGE4FvSPp6fkhkV2WP1hpvDTcBn5c0luxf/O0RcV+dtdXrROBiSZ/IbRtOdsVzMNMioj2/QdJxwHVkV06j05h+f4hjdFc7wO9yj/fwwnNxfNX+f3kcEe2S/jtZyJ0qaSVwaURsr+N8NgD49p2Vxf8ku5VzZkQczQu3zJTr85ePtE+3n74HfA14VUQ0A3dU9e+JbcDsiGjOLSMje9+r1kfpbwM+VtV/VGS35V4y3loi4jGy234Xkt26u6mXte0hC60ur64a5zVV4zwiIqpvNXbn71M9p6Xn54OHGA90U3s3dgDjcuvjX3TgiFsi4s1kgRvAl1/GuaxkHEpWFqPJrlx2pQkGn++m/3BgBNAJ7E9XFm9/GedfDFzTNVlBUoukuamtE3ie7D2OfP/LJJ2a+v8HSe/rxXmXkb1H8le88N5LT2tbD3xAUpOkWWTvi3W5EVgg6UxljpT015JG93Cco0m3XdOV3ad6uH9PrCD7sz0mnWthV4OkUyTNTMH9J7LfmQMHOY4NQA4lK4t/AEYBTwKrgR8eqnNEPEs2OWEF2W2kDwCtL+P830j7/0jSs2kMZ6Zz7QGuAX6eZrDNiIjbyP6FvjzNMHsAmN2L895KdrvyxxGxo5e1/S3wTrL36S4ke/+JdKw2sind30zHagc+1ItxXkU2hf8Z4AfAv/XiGPW6GugAHgbuJvsz2pfaRgBfIvs9+R1wHNmEExskFOEv+TOz8pL0N2STIN7SbWcb8HylZGalImmMpL9K/3fsFLL3G2/r73FZY3j2nZmVzXCy/081keyW5HKy/zpghwHfvjMzs9Lw7TszMyuNw/r23bHHHhsTJkzo72GYmQ0o69atezIiWoo49mEdShMmTKCtra2/h2FmNqBIerT7Xr3j23dmZlYaDiUzMysNh5KZmZWGQ8nMzErDoWRmZqXhUDIzs9JwKJmZWWk4lMzMrDQcSmZmVhoOJTMzKw2HkpmZlYZDyczMSsOhZGZmpeFQMjOz0nAomZlZaTiUzMysNBxKZmZWGoWGkqRZkjZLape0qEa7JF2X2jdKmpa2j5S0RtIGSZskXZXb50pJj0tan5Y5afsESXtz2xcXWZuZmfW9wr4OXVITcD1wLtABrJXUGhEP5rrNBial5UzghvRzHzAzInZLGgb8TNKdEbE67XdtRHytxmm3RMTUYioyM7OiFXmlNB1oj4itEfEcsByYW9VnLnBTZFYDzZLGpPXdqc+wtESBYzUzsxIoMpTGAtty6x1pW119JDVJWg/sBO6KiHtz/Ram231LJR2T2z5R0n2S7pF0Vq1BSZovqU1SW2dnZ+8qMzOzQhQZSqqxrfpq56B9IuJAuhU3DpguaUpqvwF4DTAV2AF8PW3fAZwQEWcAlwK3SDr6JQePWBIRlYiotLS09KwiMzMrVJGh1AGMz62PA7b3tE9E7AJWAbPS+hMpsJ4HbiS7TUhE7IuIp9LjdcAW4OQ+qsXMzBqgyFBaC0ySNFHScGAe0FrVpxW4KM3CmwE8ExE7JLVIagaQNAo4B3gorY/J7f8u4IG0vSVNrkDSSWSTJ7YWVp2ZmfW5wmbfRcR+SQuBlUATsDQiNklakNoXA3cAc4B2YA9wSdp9DLAshcwQYEVE3J7aviJpKtltvkeAj6XtZwNXS9oPHAAWRMTTRdVnZmZ9TxGH76S2SqUSbW1t/T0MM7MBRdK6iKgUcWx/ooOZmZWGQ8nMzErDoWRmZqXhUDIzs9JwKJmZWWk4lMzMrDQcSmZmVhoOJTMzKw2HkpmZlYZDyczMSsOhZGZmpeFQMjOz0nAomZlZaTiUzMysNBxKZmZWGg4lMzMrDYeSmZmVhkPJzMxKw6FkZmal4VAyM7PSKDSUJM2StFlSu6RFNdol6brUvlHStLR9pKQ1kjZI2iTpqtw+V0p6XNL6tMzJtV2WjrVZ0nlF1mZmZn1vaFEHltQEXA+cC3QAayW1RsSDuW6zgUlpORO4If3cB8yMiN2ShgE/k3RnRKxO+10bEV+rOt9kYB5wKnA8cLekkyPiQFE1mplZ3yrySmk60B4RWyPiOWA5MLeqz1zgpsisBpoljUnru1OfYWmJbs43F1geEfsi4mGgPY3BzMwGiCJDaSywLbfekbbV1UdSk6T1wE7groi4N9dvYbrdt1TSMT04H5LmS2qT1NbZ2dmLsszMrChFhpJqbKu+2jlon4g4EBFTgXHAdElTUvsNwGuAqcAO4Os9OB8RsSQiKhFRaWlp6a4GMzNroCJDqQMYn1sfB2zvaZ+I2AWsAmal9SdSYD0P3MgLt+jqOZ+ZmZVYkaG0FpgkaaKk4WSTEFqr+rQCF6VZeDOAZyJih6QWSc0AkkYB5wAPpfUxuf3fBTyQO9Y8SSMkTSSbPLGmoNrMzKwAhc2+i4j9khYCK4EmYGlEbJK0ILUvBu4A5pBNStgDXJJ2HwMsSzP4hgArIuL21PYVSVPJbs09AnwsHW+TpBXAg8B+4OOeeWdmNrAoortJbYNXpVKJtra2/h6GmdmAImldRFSKOLY/0cHMzErDoWRmZqXhUDIzs9JwKJmZWWk4lMzMrDQcSmZmVhoOJTMzKw2HkpmZlYZDyczMSsOhZGZmpeFQMjOz0nAomZlZaTiUzMysNBxKZmZWGg4lMzMrDYeSmZmVhkPJzMxKw6FkZmal4VAyM7PScCiZmVlpFBpKkmZJ2iypXdKiGu2SdF1q3yhpWto+UtIaSRskbZJ0VY19PykpJB2b1idI2itpfVoWF1mbmZn1vaFFHVhSE3A9cC7QAayV1BoRD+a6zQYmpeVM4Ib0cx8wMyJ2SxoG/EzSnRGxOh17fDruY1Wn3RIRU4uqyczMilXkldJ0oD0itkbEc8ByYG5Vn7nATZFZDTRLGpPWd6c+w9ISuf2uBT5dtc3MzAa4IkNpLLAtt96RttXVR1KTpPXATuCuiLg3bT8feDwiNtQ450RJ90m6R9JZtQYlab6kNkltnZ2dvanLzMwKUmQoqca26iubg/aJiAPpVtw4YLqkKZKOAC4Hrqix3w7ghIg4A7gUuEXS0S85eMSSiKhERKWlpaX+aszMrHBFhlIHMD63Pg7Y3tM+EbELWAXMAl4DTAQ2SHok9f+VpFdHxL6IeCrtsw7YApzcR7WYmVkDFBlKa4FJkiZKGg7MA1qr+rQCF6VZeDOAZyJih6QWSc0AkkYB5wAPRcT9EXFcREyIiAlkoTYtIn6X9mlK+5xENnlia4H1mZlZHyts9l1E7Je0EFgJNAFLI2KTpAWpfTFwBzAHaAf2AJek3ccAy1LIDAFWRMTt3ZzybOBqSfuBA8CCiHi6r+syM7PiKOLwncBWqVSira2tv4dhZjagSFoXEZUiju1PdDAzs9JwKJmZWWk4lMzMrDQcSmZmVhoOJTMzKw2HkpmZlYZDyczMSsOhZGZmpeFQMjOz0nAomZlZaTiUzMysNBxKZmZWGg4lMzMrjbq/ukLSq4HpZN8MuzYiflfYqMzM7LBU15WSpI8Ca4B3A+8FVkv6cJEDMzOzw0+9V0qfAs7o+rpxSa8EfgEsLWpgZmZ2+Kn3PaUO4Nnc+rPAtr4fjpmZHc4OeaUk6dL08HHgXknfJ3tPaS7Z7TwzM7M+093tu9Hp55a0dPl+McMxM7PD2SFDKSKuatRAzMzM6p19V5F0m6RfSdrYtdSx3yxJmyW1S1pUo12SrkvtGyVNS9tHSlojaYOkTZJeEo6SPikpJB2b23ZZOtZmSefVU5uZmZVHvbPvbiabgXc/8Hw9O0hqAq4HziWbKLFWUmtEPJjrNhuYlJYzgRvSz33AzIjYLWkY8DNJd0bE6nTs8em4j+XONxmYB5wKHA/cLenkiDhQZ41mpfDsU9tpu2c5Y8a9jtdNn9PfwzFrqHpDqTMiWnt47OlAe0RsBZC0nGyCRD6U5gI3RUSQ/d+nZkljImIHsDv1GZaWyO13LfBpXvze1lxgeUTsAx6W1J7G8MsejtusX337xr+hrXMDIzSMLzQfx9iTK/09JLOGqTeUPi/p28CPya5iAIiIfzvEPmN58bTxDrKroO76jAV2pCutdcBrgesj4l4ASecDj0fEBknVx1pd41gvImk+MB/ghBNOOMTwzfrHH5/bzXAN4wDPs2/v7u53MBtE6g2lS4DXkV2xdN2+C+BQoaQa26LePum221RJzcBtkqYAW4HLgbf38nxExBJgCUClUnlJu1l/++gHr+WHP/gGE8a9gYlvOLu/h2PWUPWG0ukR8YYeHrsDGJ9bHwds72mfiNglaRUwC1gJTAS6rpLGAb+SNL3O85mV3qtPOo0PfeIf+3sYZv2i3k90WJ0mEvTEWmCSpImShpNNQqh+X6oVuCjNwpsBPBMROyS1pCskJI0CzgEeioj7I+K4iJgQERPIgmha+nDYVmCepBGSJpJNnvB/8DUzG0DqvVJ6M3CxpIfJ3lMSEBFx2sF2iIj9khaSXd00AUsjYpOkBal9MXAHMAdoB/aQ3SYEGAMsS+8rDQFWRMTthxpgOvYKsokU+4GPe+admdnAomziWzedpBNrbY+IR/t8RA1UqVSira2tv4dhZjagSFoXEYVMC63rSqkrfCQdB4wsYiBmZmb1fqLD+ZJ+CzwM3AM8AtxZ4LjMzOwwVO9Ehy8AM4DfRMRE4G3AzwsblZmZHZbqDaU/py/4GyJpSET8P2BqccMyM7PDUb2z73ZJOgr4CXCzpJ1kM9zMzMz6TL1XSnOBvcD/AH5I9t1K7yxqUGZmdniqd/bdH3Orywoai5mZHea6+zr0Z6nx+XG88J9njy5kVGZmdljq7ptnRx+q3czMrC/V+56SmZlZ4RxKZmZWGg4lMzMrDYeSmZmVhkPJzMxKw6FkZmal4VAyM7PScCiZmVlpOJTMzKw0HEpmZlYaDiUzMyuNQkNJ0ixJmyW1S1pUo12SrkvtGyVNS9tHSlojaYOkTZKuyu3zhdR3vaQfSTo+bZ8gaW/avl7S4iJrMzOzvldYKElqAq4HZgOTgfdLmlzVbTYwKS3zgRvS9n3AzIg4newbbmdJmpHavhoRp0XEVOB24Irc8bZExNS0LCigLDMzK1CRV0rTgfaI2BoRzwHLyb4sMG8ucFNkVgPNksak9d2pz7C0BEBE/CG3/5HU/moNMzMbgIoMpbHAttx6R9pWVx9JTZLWAzuBuyLi3q5Okq6RtA24kBdfKU2UdJ+keySdVWtQkuZLapPU1tnZ2cvSzMysCEWGkmpsq76qOWifiDiQbtGNA6ZLmvKXDhGXR8R44GZgYdq8AzghIs4ALgVukfSSLyGMiCURUYmISktLS09rMjOzAhUZSh3A+Nz6OGB7T/tExC5gFTCrxjluAd6T+u2LiKfS43XAFuDkXo/ezMwarshQWgtMkjRR0nBgHtBa1acVuCjNwpsBPBMROyS1SGoGkDQKOAd4KK1Pyu1/fm57S5pcgaSTyCZPbC2sOjMz63OH/Dr0lyMi9ktaCKwEmoClEbFJ0oLUvhi4A5gDtAN7gEvS7mOAZSlkhgArIuL21PYlSacAzwOPAl2z7M4Grpa0HzgALIiIp4uqz8zM+p4iDt/Ja5VKJdra2vp7GGZmA4qkdRFRKeLY/kQHMzMrDYeSmZmVhkPJzMxKw6FkZmal4VAyM7PScCiZmVlpOJTMzKw0HEpmZlYaDiUzMysNh5KZmZWGQ8nMzErDoWRmZqXhUDIzs9JwKJmZWWk4lMzMrDQcSmZmVhoOJTMzKw2HkpmZlYZDyczMSsOhZGZmpVFoKEmaJWmzpHZJi2q0S9J1qX2jpGlp+0hJayRtkLRJ0lW5fb6Q+q6X9CNJx+faLkvH2izpvCJrMzOzvldYKElqAq4HZgOTgfdLmlzVbTYwKS3zgRvS9n3AzIg4HZgKzJI0I7V9NSJOi4ipwO3AFel8k4F5wKnALOBbaQxmZjZAFHmlNB1oj4itEfEcsByYW9VnLnBTZFYDzZLGpPXdqc+wtARARPwht/+RXdvTsZZHxL6IeBhoT2MwM7MBoshQGgtsy613pG119ZHUJGk9sBO4KyLu7eok6RpJ24ALSVdKdZ4PSfMltUlq6+zs7E1dZmZWkCJDSTW2Rb19IuJAukU3DpguacpfOkRcHhHjgZuBhT04HxGxJCIqEVFpaWnpvgozM2uYIkOpAxifWx8HbO9pn4jYBawie5+o2i3Ae3pwPjMzK7EiQ2ktMEnSREnDySYhtFb1aQUuSrPwZgDPRMQOSS2SmgEkjQLOAR5K65Ny+5/ftT0da56kEZImkk2eWFNQbWZmVoChRR04IvZLWgisBJqApRGxSdKC1L4YuAOYQzYpYQ9wSdp9DLAszZ4bAqyIiNtT25cknQI8DzwKdB1vk6QVwIPAfuDjEXGgqPrMzKzvKeIlb7scNiqVSrS1tfX3MMzMBhRJ6yKiUsSx/YkOZmZWGg4lMzMrDYeSmZmVhkPJzMxKw6FkZmal4VAyM7PScCiZmVlpOJTMzKw0HEpmZlYaDiUzMysNh5KZmZWGQ8nMzErDoWRmZqXhUDIzs9JwKJmZWWk4lMzMrDQcSmZmVhoOJTMzKw2HkpmZlYZDyczMSqPQUJI0S9JmSe2SFtVol6TrUvtGSdPS9pGS1kjaIGmTpKty+3xV0kOp/22SmtP2CZL2SlqflsVF1mZmZn2vsFCS1ARcD8wGJgPvlzS5qttsYFJa5gM3pO37gJkRcTowFZglaUZquwuYEhGnAb8BLssdb0tETE3LggLKMjOzAhV5pTQdaI+IrRHxHLAcmFvVZy5wU2RWA82SxqT13anPsLQEQET8KCL2p7bVwLgCazAzswYqMpTGAtty6x1pW119JDVJWg/sBO6KiHtrnOPDwJ259YmS7pN0j6Szag1K0nxJbZLaOjs7e1SQmZkVq8hQUo1tUW+fiDgQEVPJroSmS5ryoh2ly4H9wM1p0w7ghIg4A7gUuEXS0S85eMSSiKhERKWlpaUn9ZiZWcGKDKUOYHxufRywvad9ImIXsAqY1bVN0sXAO4ALI6IrxPZFxFPp8TpgC3ByH9RhZmYNUmQorQUmSZooaTgwD2it6tMKXJRm4c0AnomIHZJacrPqRgHnAA+l9VnAZ4DzI2JP14HSPk3p8Ulkkye2FlifmZn1saFFHTgi9ktaCKwEmoClEbFJ0oLUvhi4A5gDtAN7gEvS7mOAZSlkhgArIuL21PZNYARwlySA1Wmm3dnA1ZL2AweABRHxdFH1mZlZ31O6+3VYqlQq0dbW1t/DMDMbUCSti4hKEcf2JzqYmVlpOJTMzKw0HEpmZlYaDiUzMysNh5KZmZWGQ8nMzErDoWRmZqXhUDIzs9JwKJmZWWk4lMzMrDQcSmZmVhoOJTMzKw2HkpmZlYZDyczMSsOhZGZmpeFQMjOz0jisv+RPUifwKHAs8GQ/D6corm3gGsz1ubaB61jgyIhoKeLgh3UodZHUVtS3KPY31zZwDeb6XNvAVXR9vn1nZmal4VAyM7PScChllvT3AArk2gauwVyfaxu4Cq3P7ymZmVlp+ErJzMxKw6FkZmalMShCSdIsSZsltUtaVKNdkq5L7RslTcu1LZW0U9IDVfu8QtJdkn6bfh5T1X6CpN2SPllcZY2vTdJpkn4paZOk+yWNHAy1SRomaVmq6deSLiuqroLre196bp6XVKlquywda7Ok84qrrLG1STpX0rr03K2TNHOw1JZrb8jrSTpXo38ve/aaEhEDegGagC3AScBwYAMwuarPHOBOQMAM4N5c29nANOCBqn2+AixKjxcBX65q/x7wr8AnB0ttwFBgI3B6Wn8l0DRIavsAsDw9PgJ4BJgwAJ+71wOnAKuASm775HSOEcDEdO6B9twdrLYzgOPT4ynA44Plecu1F/560k/PXY9fUwbDldJ0oD0itkbEc8ByYG5Vn7nATZFZDTRLGgMQET8Bnq5x3LnAsvR4GXBBV4OkC4CtwKY+rKOWRtf2dmBjRGxI+z8VEQf6sqCcRtcWwJGShgKjgOeAP/RhPdUKqS8ifh0Rm2ucby5Z6O6LiIeB9jSGIjS0toi4LyK2p9VNwEhJI/qwnrxGP2+NfD2BxtfX49eUwRBKY4FtufWOtK2nfaq9KiJ2AKSfxwFIOhL4DHDVyxhzvRpaG3AyEJJWSvqVpE/3euTda3RttwJ/BHYAjwFfi4haodZXiqrv5ZyvrzS6trz3APdFxL4+OFYtDa2twa8n0PjnrsevKUN7eaIyUY1t1fPc6+lTr6uAayNit1TrsH2q0bUNBd4MvAnYA/xY0rqI+HEvj3coja5tOnAAOB44BvippLsjYmsvj9edRtfXl8fqi3P1+XgknQp8mexf30UZzK8nMABeUwZDKHUA43Pr44DtvehT7QlJYyJiR7p03Zm2nwm8V9JXgGbgeUl/iohv9raAQ2h0bR3APRHxJICkO8juHxcRSo2u7QPADyPiz8BOST8HKmS3TYpQVH0v53x9pdG1IWkccBtwUURs6e1x6tDo2hr5egL983vZo9eUwXD7bi0wSdJEScOBeUBrVZ9W4KI0q2QG8EzXLZ5DaAUuTo8vBr4PEBFnRcSEiJgA/APwdwX+AjW0NmAlcJqkI9J7L28BHuyLQmpodG2PATPTsY4kewP3ob4o5CCKqu9gWoF5kkZImghMAtb0dvDdaGhtkpqBHwCXRcTPX8a469HQ2hr8egKN/73s+WvKoWZBDJSFbLbIb8hmlVyeti0AFqTHAq5P7ffz4tkh/0z2PsOfyVL9I/HCLJEfA79NP19R47xXUvxsmYbWBnyQ7A3XB4CvDJbagKPIZjdtSn8pPjVAfy/fldb3AU8AK3P7XJ6OtRmYPVhqAz5H9n7g+txy3GCoreq8V1Lw60k//V726DXFHzNkZmalMRhu35mZ2SDhUDIzs9JwKJmZWWk4lMzMrDQcSmZmVhoOJbN+IulKHeJTofPtkj4k6fjGjc6sfziUzAaGD5F9RJLZoOZQMmsgSZcr+y6bu8k+6h9Jr5H0Q2XfFfRTSa+r2ue9ZB+JdLOk9ZJGSbpC0lpJD0haogZ9cJpZ0RxKZg0i6Y1kH+tyBvBusg+pBFgCfCIi3gh8EvhWfr+IuBVoAy6MiKkRsRf4ZkS8KSKmkH0VxzsaVIZZoQbDB7KaDRRnAbdFxB4ASa3ASOA/Af+au9ip57uC/nP6GoAjgFeQfYzL/+nzEZs1mEPJrLGqP9drCLArIqbWewBlXyf9LbLPJNsm6UqycDMb8Hz7zqxxfgK8K70nNBp4J9l3zDws6X0A6ZOZT6+x77PA6PS4K4CelHQU8N6Cx23WMA4lswaJiF8B/0L2KdffA36ami4EPiJpA9ltuOqvpwb4DrBY0nqyT2K+kewTnP+d7OsIzAYFf0q4mZmVhq+UzMysNBxKZmZWGg4lMzMrDYeSmZmVhkPJzMxKw6FkZmal4VAyM7PS+P9sRpZXs7aIQQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "delta rho\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEWCAYAAADGjIh1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfIUlEQVR4nO3dfZRdVZ3m8e+TSkICgoVNoSEJJGBgDAghXkNmFLQjSJJRg632iuAgtE5IL+P0LMdWEBcCSrfvtCyRDPREwxJMp7FpqxGM6Ay+h6QiCRAkWgkvKYgQwAAxMZjwmz/OLjleKqlbRZ1buyrPZ62z6p6z99ln/+oW98k593CvIgIzM7McjBjsCZiZmXVzKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZkOMpDdL6hrseZRJWi/pzfto/4Skf27ejGyocihZU0l6UNJOSdslPSbp65JeNtjz2hdJkySFpJEDNN4YSdskzeqh7UpJNw3Ecfoj1fn79Pw8IunLklp62y8ijo+IO/bR/g8R8cEBnawNSw4lGwxvj4iXAdOB1wOf7MvOKgyZv936MIuIPwD/Apxb168FeC+wtHmz69FJ6fl5C3A28N9fymADFea2fxgy/2Hb8BMRjwC3ASdIOlTSLZK2Svpdejyhu6+kOyRdIelnwA7gaEnnS/qVpGclbZJ0Qan/myV1SfqYpMclbZF0lqS5kn4t6SlJnyj1HyHpQkkbJT0pabmkV6TmH6ef29IZxH9O+/xNOv7vJK2QdFRpvJD0IUm/AX7TQ/lLgXdJOrC07UyK/yZv21dt9dKxXl1a/4akz5TW3yZpbTo7+7mkE/f+rLwgIu4HfkLx/Bwj6f+m380Tkm6Q1Fo6xoOSTk+PL5V0k6RvSnoGOC9t+2Zq7z7zfL+kh9N4F5fGGitpafq9/io9h12l9o+ns7hnJW2Q9JZG6rGhwaFkg0bSRGAucBfF3+LXgaOAI4GdwFfrdvlvwALgYOAh4HHgbcAhwPnAlZKml/q/ChgDjAcuAa4D3ge8DjgVuETS0anv/wDOAt4EHAH8Drg6tZ2WfrZGxMsi4heSzgI+AfwV0Ebx4v2tuvmeBZwCTK2vPSJ+DmxJ+5fruzEidjdQW0PSPkuAC4C/AP430C7pgAb2nUrxe7oLEPCPFL+b1wATgUv3sfs84CagFbhhL33eCBxHcUZ2iaTXpO2fAiYBRwNnUDxn3XM6DlgEvD4iDqYI8gd7q8WGkIjw4qVpC8ULyHZgG0WwfA0Y20O/acDvSut3AJf3Mva/A3+XHr+ZItha0vrBQACnlPqvAc5Kj38FvKXUNg74IzCS4gUygJGl9tuAD5TWR1CcwR2V1gOY1ct8Pwl8Pz0+JO1/coO1dZXaAnh1af0bwGfS42uAT9eNtQF4016OE8AzFKG8EfgMMKKHfmcBd9U9r6enx5cCP67rfynwzfS4+/c5odS+CpifHm8Cziy1fbC7XuDVFIF9OjBqsP+evQz84mu9NhjOiogflDeky1hXArOBQ9PmgyW1RMSetL65bp85FP+qPpYiFA4E7il1ebK0787087FS+06g+yaLo4CbJT1fat8DvHIvNRwFfEXSl8pTojgre6in+fbgeuBTksZT/Iu/MyLuarC2Rh0FvF/Sh0vbRlOc8ezN9IjoLG+QdDhwFcWZ08FpTr/bxxi91Q7w29LjHbzwXBxRt/+fHkdEp6T/SRFyx0taAXwkIh5t4Hg2BPjyneXif1FcyjklIg7hhUtmKvX500fap8tP3wa+CLwyIlqBW+v698VmYE5EtJaWMVG879XTR+lvBi6o6z82istyL5pvTyLiYYrLfudQXLq7vp+17aAIrW6vqpvnFXXzPDAi6i819uYfUz0npufnffuYD/RSey+2ABNK6xP/bOCIGyPijRSBG8DnXsKxLDMOJcvFwRRnLtvSDQaf6qX/aOAAYCuwO51ZvPUlHH8xcEX3zQqS2iTNS21bgecp3uMo979I0vGp/8slvacfx11K8R7JG3jhvZe+1rYWOFtSi6TZFO+LdbsOWCjpFBUOkvRfJR3cx3keTLrsms7s/r6P+/fFcorf7aHpWIu6GyQdJ2lWCu4/UPzN7NnLODYEOZQsF/8EjAWeAFYC39tX54h4luLmhOUUl5HOBtpfwvG/kvb/vqRn0xxOScfaAVwB/CzdwTYzIm6m+Bf6snSH2b3AnH4c9yaKy5U/jIgt/azt74C3U7xPdw7F+0+ksToobun+ahqrEzivH/O8jOIW/qeB7wL/1o8xGnU50AU8APyA4ne0K7UdAHyW4u/kt8DhFDec2DChCH/Jn5nlS9LfUtwE8aZeO9uQ5zMlM8uKpHGS3pD+37HjKN5vvHmw52XN4bvvzCw3oyn+f6rJFJckl1H8rwO2H/DlOzMzy4Yv35mZWTb268t3hx12WEyaNGmwp2FmNqSsWbPmiYhoq2Ls/TqUJk2aREdHx2BPw8xsSJH0UO+9+seX78zMLBsOJTMzy4ZDyczMsuFQMjOzbDiUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2w4lMzMLBsOJTMzy4ZDyczMsuFQMjOzbDiUzMwsG5WGkqTZkjZI6pR0YQ/tknRVar9b0vS0fYykVZLWSVov6bLSPpdKekTS2rTMTdsnSdpZ2r64ytrMzGzgVfZ16JJagKuBM4AuYLWk9oi4r9RtDjAlLacA16Sfu4BZEbFd0ijgp5Jui4iVab8rI+KLPRx2Y0RMq6YiMzOrWpVnSjOAzojYFBHPAcuAeXV95gHXR2El0CppXFrfnvqMSktUOFczM8tAlaE0HthcWu9K2xrqI6lF0lrgceD2iLiz1G9Ruty3RNKhpe2TJd0l6UeSTu1pUpIWSOqQ1LF169b+VWZmZpWoMpTUw7b6s5299omIPelS3ARghqQTUvs1wDHANGAL8KW0fQtwZEScDHwEuFHSIS8aPOLaiKhFRK2tra1vFZmZWaWqDKUuYGJpfQLwaF/7RMQ24A5gdlp/LAXW88B1FJcJiYhdEfFkerwG2AgcO0C1mJlZE1QZSquBKZImSxoNzAfa6/q0A+emu/BmAk9HxBZJbZJaASSNBU4H7k/r40r7vxO4N21vSzdXIOloipsnNlVWnZmZDbjK7r6LiN2SFgErgBZgSUSsl7QwtS8GbgXmAp3ADuD8tPs4YGkKmRHA8oi4JbV9XtI0ist8DwIXpO2nAZdL2g3sARZGxFNV1WdmZgNPEfvvTW21Wi06OjoGexpmZkOKpDURUatibH+ig5mZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpaNSkNJ0mxJGyR1Srqwh3ZJuiq13y1peto+RtIqSeskrZd0WWmfSyU9ImltWuaW2i5KY22QdGaVtZmZ2cAbWdXAklqAq4EzgC5gtaT2iLiv1G0OMCUtpwDXpJ+7gFkRsV3SKOCnkm6LiJVpvysj4ot1x5sKzAeOB44AfiDp2IjYU1WNZmY2sKo8U5oBdEbEpoh4DlgGzKvrMw+4PgorgVZJ49L69tRnVFqil+PNA5ZFxK6IeADoTHMwM7MhospQGg9sLq13pW0N9ZHUImkt8Dhwe0TcWeq3KF3uWyLp0D4cD0kLJHVI6ti6dWs/yjIzs6pUGUrqYVv92c5e+0TEnoiYBkwAZkg6IbVfAxwDTAO2AF/qw/GIiGsjohYRtba2tt5qMDOzJqoylLqAiaX1CcCjfe0TEduAO4DZaf2xFFjPA9fxwiW6Ro5nZmYZqzKUVgNTJE2WNJriJoT2uj7twLnpLryZwNMRsUVSm6RWAEljgdOB+9P6uNL+7wTuLY01X9IBkiZT3DyxqqLazMysApXdfRcRuyUtAlYALcCSiFgvaWFqXwzcCsyluClhB3B+2n0csDTdwTcCWB4Rt6S2z0uaRnFp7kHggjTeeknLgfuA3cCHfOedmdnQoojebmobvmq1WnR0dAz2NMzMhhRJayKiVsXY/kQHMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2w4lMzMLBsOJTMzy4ZDyczMsuFQMjOzbDiUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2w4lMzMLBuVhpKk2ZI2SOqUdGEP7ZJ0VWq/W9L0tH2MpFWS1klaL+myHvb9qKSQdFhanyRpp6S1aVlcZW1mZjbwRlY1sKQW4GrgDKALWC2pPSLuK3WbA0xJyynANennLmBWRGyXNAr4qaTbImJlGntiGvfhusNujIhpVdVkZmbVqvJMaQbQGRGbIuI5YBkwr67PPOD6KKwEWiWNS+vbU59RaYnSflcCH6vbZmZmQ1yVoTQe2Fxa70rbGuojqUXSWuBx4PaIuDNtfwfwSESs6+GYkyXdJelHkk7taVKSFkjqkNSxdevW/tRlZmYVqTKU1MO2+jObvfaJiD3pUtwEYIakEyQdCFwMXNLDfluAIyPiZOAjwI2SDnnR4BHXRkQtImptbW2NV2NmZpWrMpS6gIml9QnAo33tExHbgDuA2cAxwGRgnaQHU/9fSnpVROyKiCfTPmuAjcCxA1SLmZk1QZWhtBqYImmypNHAfKC9rk87cG66C28m8HREbJHUJqkVQNJY4HTg/oi4JyIOj4hJETGJItSmR8Rv0z4taZ+jKW6e2FRhfWZmNsAqu/suInZLWgSsAFqAJRGxXtLC1L4YuBWYC3QCO4Dz0+7jgKUpZEYAyyPill4OeRpwuaTdwB5gYUQ8NdB1mZlZdRSx/97AVqvVoqOjY7CnYWY2pEhaExG1Ksb2JzqYmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlo2GQknSyyVdKakjLV+S9PKqJ2dmZvuXRs+UlgDPAH+dlmeAr1c1KTMz2z81GkrHRMSnImJTWi4Dju5tJ0mzJW2Q1Cnpwh7aJemq1H63pOlp+xhJqyStk7Re0mU97PtRSSHpsNK2i9JYGySd2WBtZmaWiUZDaaekN3avSHoDsHNfO0hqAa4G5gBTgfdKmlrXbQ4wJS0LgGvS9l3ArIg4CZgGzJY0szT2ROAM4OHStqnAfOB4YDbwtTQHsyHl2Scf5f/925e5f9Wtgz0Vs6Yb2WC/hcD16X0kAU8B5/WyzwygMyI2AUhaBswD7iv1mQdcHxEBrJTUKmlcRGwBtqc+o9ISpf2uBD4GfKdurGURsQt4QFJnmsMvGqzRLAv/fN3f0rF1HQdoFJ9uPZzxx9YGe0pmTdNQKEXEOuAkSYek9Wca2G08sLm03gWc0kCf8cCWdJazBng1cHVE3Akg6R3AIxGxTlL9WCt7GOvPSFpAcVbGkUce2UAZZs31++e2M1qj2MPz7Nq5vfcdzIaRhkJJ0gHAu4BJwMjuMIiIy/e1Ww/botE+EbEHmCapFbhZ0gnAJuBi4K39PB4RcS1wLUCtVntRu9lg++D7ruR73/0Kkya8lsmvPW2wp2PWVI1evvsO8DTFmcuuBvfpAiaW1icAj/a1T0Rsk3QHxftEK4DJQPdZ0gTgl5JmNHg8s+y96ugTOe/D/2ewp2E2KBoNpQkRMbuPY68GpkiaDDxCcRPC2XV92oFF6f2mU4CnI2KLpDbgjymQxgKnA5+LiHuAw7t3lvQgUIuIJyS1AzdK+jJwBMXNE6v6OGczMxtEjYbSzyW9NoVCQyJit6RFFGc3LcCSiFgvaWFqXwzcCswFOoEdwPlp93HA0vS+0ghgeUTc0svx1ktaTnEjxW7gQ+kSoJmZDREqbnzbS6N0D8V7NWOBIyne09mVtkVEnNiMSValVqtFR0fHYE/DzGxIkbQmIiq5LbS3M6W3UZypdN8FZ2ZmVpl9hlJEPAQg6VvA4RGxuimzMjOz/VKj7yn9JXCBpIeA3zNMLt+ZmVleGg2lOZXOwszMjMY/0eGhqidiZmbmL/kzM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2w4lMzMLBsOJTMzy4ZDyczMsuFQMjOzbDiUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8tGpaEkabakDZI6JV3YQ7skXZXa75Y0PW0fI2mVpHWS1ku6rLTPp1PftZK+L+mItH2SpJ1p+1pJi6uszczMBl5loSSpBbia4ltrpwLvlTS1rtscYEpaFgDXpO27gFkRcRIwDZgtaWZq+0JEnBgR04BbgEtK422MiGlpWVhBWWZmVqEqz5RmAJ0RsSkingOWAfPq+swDro/CSqBV0ri0vj31GZWWAIiIZ0r7H9S93czMhr4qQ2k8sLm03pW2NdRHUouktcDjwO0RcWd3J0lXSNoMnMOfnylNlnSXpB9JOrWnSUlaIKlDUsfWrVv7WZqZmVWhylBSD9vqz2r22ici9qRLdBOAGZJO+FOHiIsjYiJwA7Aobd4CHBkRJwMfAW6UdMiLBo+4NiJqEVFra2vra01mZlahKkOpC5hYWp8APNrXPhGxDbgDmN3DMW4E3pX67YqIJ9PjNcBG4Nh+z97MzJquylBaDUyRNFnSaGA+0F7Xpx04N92FNxN4OiK2SGqT1AogaSxwOnB/Wp9S2v8dpe1t6eYKJB1NcfPEpsqqMzOzATeyqoEjYrekRcAKoAVYEhHrJS1M7YuBW4G5QCewAzg/7T4OWJpCZgSwPCJuSW2flXQc8DzwENB9l91pwOWSdgN7gIUR8VRV9ZmZ2cBTxP5781qtVouOjo7BnoaZ2ZAiaU1E1KoY25/oYGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWWj0lCSNFvSBkmdki7soV2Srkrtd0uanraPkbRK0jpJ6yVdVtrn06nvWknfl3REqe2iNNYGSWdWWZuZmQ28ykJJUgtwNTAHmAq8V9LUum5zgClpWQBck7bvAmZFxEnANGC2pJmp7QsRcWJETANuAS5Jx5sKzAeOB2YDX0tzMDOzIaLKM6UZQGdEbIqI54BlwLy6PvOA66OwEmiVNC6tb099RqUlACLimdL+B3VvT2Mti4hdEfEA0JnmYGZmQ0SVoTQe2Fxa70rbGuojqUXSWuBx4PaIuLO7k6QrJG0GziGdKTV4PCQtkNQhqWPr1q39qcvMzCpSZSiph23RaJ+I2JMu0U0AZkg64U8dIi6OiInADcCiPhyPiLg2ImoRUWtra+u9CjMza5oqQ6kLmFhanwA82tc+EbENuIPifaJ6NwLv6sPxzMwsY1WG0mpgiqTJkkZT3ITQXtenHTg33YU3E3g6IrZIapPUCiBpLHA6cH9an1La/x3d29NY8yUdIGkyxc0TqyqqzczMKjCyqoEjYrekRcAKoAVYEhHrJS1M7YuBW4G5FDcl7ADOT7uPA5amu+dGAMsj4pbU9llJxwHPAw8B3eOtl7QcuA/YDXwoIvZUVZ+ZmQ08RbzobZf9Rq1Wi46OjsGehpnZkCJpTUTUqhjbn+hgZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2HEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmZmlg2HkpmZZaPSUJI0W9IGSZ2SLuyhXZKuSu13S5qeto+RtErSOknrJV1W2ucLku5P/W+W1Jq2T5K0U9LatCyusjYzMxt4lYWSpBbgamAOMBV4r6Spdd3mAFPSsgC4Jm3fBcyKiJOAacBsSTNT2+3ACRFxIvBr4KLSeBsjYlpaFlZQlpmZVajKM6UZQGdEbIqI54BlwLy6PvOA66OwEmiVNC6tb099RqUlACLi+xGxO7WtBCZUWIOZmTVRlaE0HthcWu9K2xrqI6lF0lrgceD2iLizh2P8DXBbaX2ypLsk/UjSqT1NStICSR2SOrZu3dqngszMrFpVhpJ62BaN9omIPRExjeJMaIakE/5sR+liYDdwQ9q0BTgyIk4GPgLcKOmQFw0ecW1E1CKi1tbW1pd6zMysYlWGUhcwsbQ+AXi0r30iYhtwBzC7e5uk9wNvA86JiO4Q2xURT6bHa4CNwLEDUIeZmTVJlaG0GpgiabKk0cB8oL2uTztwbroLbybwdERskdRWuqtuLHA6cH9anw18HHhHROzoHijt05IeH01x88SmCuszM7MBNrKqgSNit6RFwAqgBVgSEeslLUzti4FbgblAJ7ADOD/tPg5YmkJmBLA8Im5JbV8FDgBulwSwMt1pdxpwuaTdwB5gYUQ8VVV9ZmY28JSufu2XarVadHR0DPY0zMyGFElrIqJWxdj+RAczM8uGQ8nMzLLhUDIzs2w4lMzMLBsOJTMzy4ZDyczMsuFQMjOzbDiUzMwsGw4lMzPLhkPJzMyy4VAyM7NsOJTMzCwbDiUzM8uGQ8nMzLLhUDIzs2w4lMzMLBv79Zf8SdoKPAQcBjwxyNOpimsbuoZzfa5t6DoMOCgi2qoYfL8OpW6SOqr6FsXB5tqGruFcn2sbuqquz5fvzMwsGw4lMzPLhkOpcO1gT6BCrm3oGs71ubahq9L6/J6SmZllw2dKZmaWDYeSmZllY1iEkqTZkjZI6pR0YQ/tknRVar9b0vRS2xJJj0u6t26fV0i6XdJv0s9D69qPlLRd0kerq6z5tUk6UdIvJK2XdI+kMcOhNkmjJC1NNf1K0kVV1VVxfe9Jz83zkmp1bRelsTZIOrO6yppbm6QzJK1Jz90aSbOGS22l9qa8nqRjNfvvsm+vKRExpBegBdgIHA2MBtYBU+v6zAVuAwTMBO4stZ0GTAfurdvn88CF6fGFwOfq2r8N/Cvw0eFSGzASuBs4Ka3/BdAyTGo7G1iWHh8IPAhMGoLP3WuA44A7gFpp+9R0jAOAyenYQ+2521ttJwNHpMcnAI8Ml+et1F7568kgPXd9fk0ZDmdKM4DOiNgUEc8By4B5dX3mAddHYSXQKmkcQET8GHiqh3HnAUvT46XAWd0Nks4CNgHrB7COnjS7trcCd0fEurT/kxGxZyALKml2bQEcJGkkMBZ4DnhmAOupV0l9EfGriNjQw/HmUYTuroh4AOhMc6hCU2uLiLsi4tG0uh4YI+mAAaynrNnPWzNfT6D59fX5NWU4hNJ4YHNpvStt62ufeq+MiC0A6efhAJIOAj4OXPYS5tyoptYGHAuEpBWSfinpY/2eee+aXdtNwO+BLcDDwBcjoqdQGyhV1fdSjjdQml1b2buAuyJi1wCM1ZOm1tbk1xNo/nPX59eUkf08UE7Uw7b6+9wb6dOoy4ArI2K71NOwA6rZtY0E3gi8HtgB/FDSmoj4YT/H25dm1zYD2AMcARwK/ETSDyJiUz/H602z6xvIsQbiWAM+H0nHA5+j+Nd3VYbz6wkMgdeU4RBKXcDE0voE4NF+9Kn3mKRxEbElnbo+nrafArxb0ueBVuB5SX+IiK/2t4B9aHZtXcCPIuIJAEm3Ulw/riKUml3b2cD3IuKPwOOSfgbUKC6bVKGq+l7K8QZKs2tD0gTgZuDciNjY33Ea0Ozamvl6AoPzd9mn15ThcPluNTBF0mRJo4H5QHtdn3bg3HRXyUzg6e5LPPvQDrw/PX4/8B2AiDg1IiZFxCTgn4B/qPAPqKm1ASuAEyUdmN57eRNw30AU0oNm1/YwMCuNdRDFG7j3D0Qhe1FVfXvTDsyXdICkycAUYFV/J9+LptYmqRX4LnBRRPzsJcy7EU2trcmvJ9D8v8u+v6bs6y6IobJQ3C3ya4q7Si5O2xYCC9NjAVen9nv487tDvkXxPsMfKVL9A/HCXSI/BH6Tfr6ih+NeSvV3yzS1NuB9FG+43gt8frjUBryM4u6m9ek/ir8fon+X70zru4DHgBWlfS5OY20A5gyX2oBPUrwfuLa0HD4caqs77qVU/HoySH+XfXpN8ccMmZlZNobD5TszMxsmHEpmZpYNh5KZmWXDoWRmZtlwKJmZWTYcSmaDRNKl2senQpfbJZ0n6Yjmzc5scDiUzIaG8yg+IslsWHMomTWRpItVfJfNDyg+6h9Jx0j6norvCvqJpP9Ut8+7KT4S6QZJayWNlXSJpNWS7pV0rZr0wWlmVXMomTWJpNdRfKzLycBfUXxIJcC1wIcj4nXAR4GvlfeLiJuADuCciJgWETuBr0bE6yPiBIqv4nhbk8owq9Rw+EBWs6HiVODmiNgBIKkdGAP8F+BfSyc7jXxX0F+mrwE4EHgFxce4/MeAz9isyRxKZs1V/7leI4BtETGt0QFUfJ301yg+k2yzpEspws1syPPlO7Pm+THwzvSe0MHA2ym+Y+YBSe8BSJ/MfFIP+z4LHJwedwfQE5JeBry74nmbNY1DyaxJIuKXwL9QfMr1t4GfpKZzgA9IWkdxGa7+66kBvgEslrSW4pOYr6P4BOd/p/g6ArNhwZ8SbmZm2fCZkpmZZcOhZGZm2XAomZlZNhxKZmaWDYeSmZllw6FkZmbZcCiZmVk2/j8ekGTB+4zP4QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "delta kappa\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEWCAYAAADYRbjGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAglklEQVR4nO3df7xVdZ3v8ddbENDSiwU2CiY4oTdMM9wKMxNmpgWODoxlgiTmbS7hjDbzmFszmpnW1FTeus1wNRy8oTIpaP48tzRmbK7RNU0OQQgq45EsjzBy/EUYiiGf+WN9jy42+5yzz/GsfdY+vZ+Px37svdb3u77r+z37sN+stb9nLUUEZmZmZbbXQHfAzMysJw4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZDRKSTpTUPtD9yJO0XtKJ3ZR/VtL/aVyPrFk5rKwUJD0h6SVJL0p6WtK1kt480P3qjqRxkkLS0H5qb4SkFySdVKPsm5Ju6Y/99EUa52/S+/OUpP8laUhP20XEkRFxbzflfx8Rf9avnbVByWFlZXJ6RLwZmAQcB3yuNxsr0zS/09UhFxEvAzcBc6vqDQFmA9c3rnc1vTu9Px8Azgb++xtprL9C3n43NM0/bPvdERFPAXcD75J0gKTvSeqQ9Hx6PbazrqR7JX1Z0n3AduAwSedJekTSNkkbJX0yV/9ESe2S/kbSFkmbJc2UdKqkf5f0nKTP5urvJekiSY9LelbSzZLekopXpOcX0hHHH6Rt/lva//OSlks6NNdeSPoLSY8Bj9UY/vXAhyXtm1v3IbJ/q3d3N7ZqaV/vyC1fJ+lLueXTJK1JR3M/kXR01+/K6yLiUeDHZO/P70v6t/SzeUbSDZJG5vbxhKST0+vLJd0i6TuSfg18PK37TirvPFI9V9KvUnuX5NraR9L16ef6SHoP23Plf5uO+rZJ2iDpA/WMx5qDw8pKR9IhwKnAarLf0WuBQ4G3Ay8BV1Ztcg4wD9gP+CWwBTgN2B84D/impEm5+r8HjADGAJ8HrgE+BhwLTAU+L+mwVPdTwEzgfcDBwPPAVanshPQ8MiLeHBH3S5oJfBY4AxhN9qG+tKq/M4HJwMTqsUfET4DNafv8+G6MiJ11jK0uaZvFwCeBtwL/BLRIGl7HthPJfk6rAQFfIfvZvBM4BLi8m81nALcAI4EbuqjzXuAIsiO4z0t6Z1p/GTAOOAw4hew96+zTEcAFwHERsR9ZwD/R01isiUSEH34M+IPsg+VF4AWywPkWsE+NescAz+eW7wW+2EPbdwB/mV6fSBZ4Q9LyfkAAk3P1VwEz0+tHgA/kyg4CfgsMJfvgDGBorvxu4BO55b3IjvgOTcsBnNRDfz8H/Et6vX/a/j11jq09VxbAO3LL1wFfSq8XAn9X1dYG4H1d7CeAX5OF9ePAl4C9atSbCayuel9PTq8vB1ZU1b8c+E563fnzHJsrfxCYlV5vBD6UK/uzzvEC7yAL8pOBvQf699mP/n/4nLGVycyIuCe/Ip0O+yYwDTggrd5P0pCIeDUtP1m1zXSy/4UfThYW+wIP5ao8m9v2pfT8dK78JaBzcsehwO2SduXKXwXe1sUYDgX+UdI38l0iO4r7Za3+1rAEuEzSGLIjhLaIWF3n2Op1KHCupAtz64aRHSF1ZVJEtOVXSDoQWEB2pLVf6tPz3bTR09gB/iP3ejuvvxcHV23/2uuIaJP0V2Thd6Sk5cBfR8SmOvZnTcCnAa3s/gfZKaHJEbE/r596U67Oa7cOSKexbgW+DrwtIkYCd1XV740ngekRMTL3GBHZ92q1blnwJPDJqvr7RHZ6b4/+1hIRvyI7fTiH7BTgkj6ObTtZmHX6vap+frmqn/tGRPUpy558JY3n6PT+fKyb/kAPY+/BZmBsbvmQ3RqOuDEi3ksWxAF87Q3sy0rGYWVltx/Zkc4LaWLDZT3UHwYMBzqAnelI5INvYP9XA1/unCQhabSkGamsA9hF9h1Kvv7Fko5M9f+LpDP7sN/ryb6D+SNe/26nt2NbA5wtaYikaWTfu3W6BpgvabIyb5L0x5L262U/9yOdvk1Hgp/p5fa9cTPZz/aAtK8LOgskHSHppBToL5P9zrzaRTvWhBxWVnb/AOwDPAM8APygu8oRsY1sUsTNZKejzgZa3sD+/zFt/y+StqU+TE772g58GbgvzaibEhG3k/2Pflma8bYOmN6H/d5CdtrzhxGxuY9j+0vgdLLvAeeQfb9FaquVbOr5lamtNuDjfejnF8j+1GAr8H3gtj60Ua8vAu3AL4B7yH5GO1LZcOCrZL8n/wEcSDbRxQYJRfjmi2bWfCSdTzb54n09Vram5yMrM2sKkg6S9Efpb9+OIPs+8/aB7pc1hmcDmlmzGEb292DjyU5tLiP7Ewf7HeDTgGZmVno+DWhmZqXn04BdGDVqVIwbN26gu2Fm1jRGjRrF8uXLl0fEtP5u22HVhXHjxtHa2jrQ3TAzayqSRhXRrk8DmplZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWekVGlaSpknaIKlN0kU1yiVpQSpfK2lSrmyxpC2S1lVtc5OkNenxhKQ1af2c3Po1knZJOiaV3Zv60Vl2YJHjNjOz/lXYbe0lDQGuAk4B2oGVkloi4uFctenAhPSYDCxMzwDXAVcCS/LtRsRZuX18A9ia1t8A3JDWHwXcGRFrcpvOiQjfp97MrAkVeWR1PNAWERsj4hVgGTCjqs4MYElkHgBGSjoIICJWAM911bgkAR8FltYont3FejMza0JFhtUY4Mnccnta19s6XZkKPB0Rj9UoO4s9w+radArw0hR0e5A0T1KrpNaOjo46u2FmZkUrMqxqBUL0oU5Xah49SZoMbI+I/HddcyLiKLKAmwqcU6vBiFgUEZWIqIwePbrObpiZWdGKDKt24JDc8lhgUx/q7EHSUOAM4KYaxbOoCrGIeCo9bwNuJDtFaWZmTaLIsFoJTJA0XtIwshBpqarTAsxNswKnAFsjYnMdbZ8MPBoR7fmVkvYCziT7fqxz3VBJo9LrvYHTgN1mGJqZWbkVNhswInZKugBYDgwBFkfEeknzU/nVwF3AqUAbsB04r3N7SUuBE4FRktqByyLi26l4j6On5ASgPSI25tYNB5anoBoC3ANc028DNTOzwimi3q+IfrdUKpVobfVMdzOz3pC0KiIq/d2ur2BhZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSs9hZWZmpeewMjOz0nNYmZlZ6TmszMys9AoNK0nTJG2Q1CbpohrlkrQgla+VNClXtljSFknrqra5SdKa9HhC0pq0fpykl3JlV+e2OVbSQ2k/CySpwGGbmVk/KyysJA0BrgKmAxOB2ZImVlWbDkxIj3nAwlzZdcC06nYj4qyIOCYijgFuBW7LFT/eWRYR83PrF6b2O/e1R7tmZlZeRR5ZHQ+0RcTGiHgFWAbMqKozA1gSmQeAkZIOAoiIFcBzXTWejo4+CiztrhOpvf0j4v6ICGAJMLOPYzIzswFQZFiNAZ7MLbendb2t05WpwNMR8Vhu3XhJqyX9SNLU3D7a69mHpHmSWiW1dnR01NkNMzMrWpFhVet7oehDna7MZvejqs3A2yPiPcBfAzdK2r83+4iIRRFRiYjK6NGj6+yGmZkVbWiBbbcDh+SWxwKb+lBnD5KGAmcAx3aui4gdwI70epWkx4HD0z7G9nYfZmZWHkUeWa0EJkgaL2kYMAtoqarTAsxNswKnAFsjYnMdbZ8MPBoRr53ekzQ6TepA0mFkEyk2pva2SZqSvueaC9z5hkdnZmYNU9iRVUTslHQBsBwYAiyOiPWS5qfyq4G7gFOBNmA7cF7n9pKWAicCoyS1A5dFxLdT8Sz2nFhxAvBFSTuBV4H5EdE5QeN8stmF+wB3p4eZmTUJZRPkrFqlUonW1taB7oaZWVORtCoiKv3drq9gYWZmpeewMjOz0nNYmZlZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQKDStJ0yRtkNQm6aIa5ZK0IJWvlTQpV7ZY0hZJ66q2uUnSmvR4QtKatP4USaskPZSeT8ptc2/qR+d2BxY4bDMz62dDi2pY0hDgKuAUoB1YKaklIh7OVZsOTEiPycDC9AxwHXAlsCTfbkScldvHN4CtafEZ4PSI2CTpXcByYExu0zkR0do/ozMzs0Yq8sjqeKAtIjZGxCvAMmBGVZ0ZwJLIPACMlHQQQESsAJ7rqnFJAj4KLE31V0fEplS8HhghaXi/jsjMzAZEkWE1Bngyt9zO7kc69dbpylTg6Yh4rEbZh4HVEbEjt+7adArw0hR0e5A0T1KrpNaOjo46u2FmZkUrMqxqBUL0oU5XZpOOqnZrUDoS+BrwydzqORFxFFnATQXOqdVgRCyKiEpEVEaPHl1nN8zMrGhFhlU7cEhueSywqQ919iBpKHAGcFPV+rHA7cDciHi8c31EPJWetwE3kp2iNDOzJlFkWK0EJkgaL2kYMAtoqarTAsxNswKnAFsjYnMdbZ8MPBoR7Z0rJI0Evg9cHBH35dYPlTQqvd4bOA1Yh5mZNY3CwioidgIXkM3KewS4OSLWS5ovaX6qdhewEWgDrgH+vHN7SUuB+4EjJLVL+kSu+VnseQrwAuAdwKVVU9SHA8slrQXWAE+lfZmZWZNQRL1fEf1uqVQq0drqme5mZr0haVVEVPq7XV/BwszMSs9hZWZmpeewMjOz0nNYmZlZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSq/u29pL+GDgSGNG5LiK+WESnzMzM8uo6spJ0NXAWcCHZDRPPBA4tsF9mZmavqfc04B9GxFzg+Yj4AvAH7H7TRDMzs8LUG1Yvpeftkg4GfguML6ZLZmZmu6v3O6vvpTvx/k/gZ0DgGxiamVmD1BVWEfF36eWtkr4HjIiIrcV1y8zM7HV1hZWkEWS3nH8v2VHV/5e0MCJeLrJzZmZmUP9pwCXANuB/p+XZwD+TzQo0MzMrVL1hdUREvDu3/P8k/byIDpmZmVWrdzbgaklTOhckTQbu62kjSdMkbZDUJumiGuWStCCVr5U0KVe2WNIWSeuqtrlJ0pr0eELSmlzZxamtDZI+lFt/rKSHUtkCSapz3GZmVgL1htVk4CcpHJ4A7gfelwJgba0NJA0BrgKmAxOB2ZImVlWbDkxIj3nAwlzZdcC06nYj4qyIOCYijgFuBW5L+5sIzCK7ysY04FupD6R25+X2tUe7ZmUXu3bxs3+7gR+3XMkrL7040N0xa6h6TwP25cP9eKAtIjYCSFoGzAAeztWZASyJiAAekDRS0kERsTkiVkga11Xj6ejoo8BJubaWRcQO4BeS2oDjU7juHxH3p+2WADOBu/swJrMBs2bFTXzj+5cQEXQ8+yvOOO+Kge6SWcPUdWQVEb8E3koWCH8CvDUiftn56GKzMcCTueX2tK63dboyFXg6Ih7roa0x6XWP+5A0T1KrpNaOjo46u2HWGDte/g1BsJf24jcv/Xqgu2PWUPVOXf882cy/29KqayV9NyK+1N1mNdZFH+p0ZTawtI626t5HRCwCFgFUKpV6+2HWEMeeeDaztvyCF7e/wOlnXjLQ3TFrqHpPA84G3tP5d1WSvkp2JYvuwqqd3a8fOBbY1Ic6e5A0FDgDOLaOttrT617tw6xs9h6xL38y98sD3Q2zAVHvBIsnyN0aBBgOPN7DNiuBCZLGSxpGNvmhpapOCzA3zQqcAmyNiM119Odk4NGIyJ/eawFmSRouaTzZRIoHU3vbJE1J33PNBe6sYx9mZlYS9R5Z7QDWS/pXslNop5BdxWIBQER8qnqDiNgp6QJgOTAEWBwR6yXNT+VXA3cBpwJtwHbgvM7tJS0FTgRGSWoHLouIb6fiWex+CpDU9s1kEzh2An8REa+m4vPJZhfuQzaxwpMrzMyaiLKJeD1Uks7trjwiru+3HpVEpVKJ1tbWge6GmVlTkbQqIir93W69F7IddGFkZmbNo97ZgBOAr5D9cW/+tvaHFdQvMzOz19Q7weJasqtA7ATeT3Zh238uqlNmZmZ59YbVPhHxQ7LvuH4ZEZfz+pUjzMzMClXvbMCXJe0FPJZm+D0FHFhct8zMzF5X75HVXwH7Ap8i+0Pcc4DvFNQnMzOz3dQbVv8EjI+I9og4D/gucFpx3TIzM3tdvacBPwLcImkO2a3tzwE+WFivzMzMcur9O6uNkmYBd5Bd2fxDEfFSkR0zMzPr1G1YSXqI3a9Q/haySyf9VBIRcXSRnTMzM4Oej6z8vZSZmQ24bsOqmxsrmpmZNUy9swHNzMwGjMPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMyu9QsNK0jRJGyS1SbqoRrkkLUjlayVNypUtlrRF0roa212Y2l0v6Yq0bo6kNbnHLknHpLJ7U/3OMt+Ly8ysidR71fVekzQEuAo4BWgHVkpqiYiHc9WmAxPSYzKwMD0DXAdcCSypavf9wAzg6IjY0Rk8EXEDcEOqcxRwZ0SsyW06JyJa+3OMZmbWGEUeWR0PtEXExoh4BVhGFjJ5M4AlkXkAGCnpIICIWAE8V6Pd84GvRsSOVG9LjTqzgaX9NA4zMxtgRYbVGLLbiXRqT+t6W6fa4cBUST+V9CNJx9WocxZ7htW16RTgpZJUq2FJ8yS1Smrt6OjooRtmZtYoRYZVrUCIPtSpNhQ4AJgCfAa4OR8+kiYD2yMi/13XnIg4CpiaHufUajgiFkVEJSIqo0eP7qEbZmbWKEWGVTtwSG55LLCpD3VqtXtbOnX4ILALGJUrn0XVUVVEPJWetwE3kp2iNDOzJlFkWK0EJkgaL2kYWYi0VNVpAeamWYFTgK0RsbmHdu8ATgKQdDgwDHgmLe8FnEn2/Rhp3VBJo9Lrvcnu0bXHDEMzMyuvwmYDRsROSRcAy8nuLrw4ItZLmp/KrwbuAk4F2oDtwHmd20taCpwIjJLUDlwWEd8GFgOL05T2V4BzI6Lz1OEJQHtEbMx1ZTiwPAXVEOAe4JqChm1mZgXQ65/zllepVKK11TPdzcx6Q9KqiKj0d7u+goWZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSs9hZWZmpeewMjOz0nNYmZlZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSKzSsJE2TtEFSm6SLapRL0oJUvlbSpFzZYklbJK2rsd2Fqd31kq5I68ZJeknSmvS4Olf/WEkPpf0skKSixmxmZv2vsLCSNAS4CpgOTARmS5pYVW06MCE95gELc2XXAdNqtPt+YAZwdEQcCXw9V/x4RByTHvNz6xem9jv3tUe7ZmZWXkUeWR0PtEXExoh4BVhGFjJ5M4AlkXkAGCnpIICIWAE8V6Pd84GvRsSOVG9Ld51I7e0fEfdHRABLgJlvYFxmZtZgRYbVGODJ3HJ7WtfbOtUOB6ZK+qmkH0k6Llc2XtLqtH5qbh/t9exD0jxJrZJaOzo6euiGmZk1ytAC2671vVD0oU61ocABwBTgOOBmSYcBm4G3R8Szko4F7pB0ZG/2ERGLgEUAlUqlp36YmVmDFHlk1Q4cklseC2zqQ51a7d6WTh0+COwCRkXEjoh4FiAiVgGPkx2Ftad2e7MPMzMrkSLDaiUwQdJ4ScOAWUBLVZ0WYG6aFTgF2BoRm3to9w7gJABJhwPDgGckjU6TOkhHWhOAjam9bZKmpFmAc4E7+2eIZmbWCIWdBoyInZIuAJYDQ4DFEbFe0vxUfjVwF3Aq0AZsB87r3F7SUuBEYJSkduCyiPg2sBhYnKa0vwKcGxEh6QTgi5J2Aq8C8yOic4LG+WSzC/cB7k4PMzNrEsomyFm1SqUSra2tA90NM7OmImlVRFT6u11fwcLMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSs9hZWZmpeewMjOz0nNYmZlZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpFRpWkqZJ2iCpTdJFNcolaUEqXytpUq5ssaQtktbV2O7C1O56SVekdadIWiXpofR8Uq7+van+mvQ4sKgxm5lZ/xtaVMOShgBXAacA7cBKSS0R8XCu2nRgQnpMBhamZ4DrgCuBJVXtvh+YARwdETtywfMMcHpEbJL0LmA5MCa36ZyIaO3HIZqZWYMUeWR1PNAWERsj4hVgGVnI5M0AlkTmAWCkpIMAImIF8FyNds8HvhoRO1K9Lel5dURsSnXWAyMkDe/3UZmZWcMVGVZjgCdzy+3sfqRTb51qhwNTJf1U0o8kHVejzoeB1Z2BllybTgFeKkm1GpY0T1KrpNaOjo4eumFmZo1SZFjVCoToQ51qQ4EDgCnAZ4Cb8+Ej6Ujga8Anc9vMiYijgKnpcU6thiNiUURUIqIyevToHrphZmaNUmRYtQOH5JbHApv6UKdWu7elU4cPAruAUQCSxgK3A3Mj4vHODSLiqfS8DbiR7BSlmZk1iSLDaiUwQdJ4ScOAWUBLVZ0WYG6aFTgF2BoRm3to9w7gJABJhwPDgGckjQS+D1wcEfd1VpY0VFJnmO0NnAbsMcPQzMzKq7CwioidwAVks/IeAW6OiPWS5kuan6rdBWwE2oBrgD/v3F7SUuB+4AhJ7ZI+kYoWA4elKe3LgHMjItK+3gFcWjVFfTiwXNJaYA3wVNqXmZk1CWWf81atUqlEa6tnupuZ9YakVRFR6e92fQULMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnq++WIXJHUAvwGeGei+FGQUg3dsMLjH57E1r8E8vlHAowARMa2/G3dYdUNSaxF3vCyDwTw2GNzj89ia12AeX9Fj82lAMzMrPYeVmZmVnsOqe4sGugMFGsxjg8E9Po+teQ3m8RU6Nn9nZWZmpecjKzMzKz2HlZmZld6gDitJ0yRtkNQm6aIa5ZK0IJWvlTQpV7ZY0hZJ66q2eYukf5X0WHo+oKr87ZJelPTp4kbW+LFJOlrS/ZLWS3pI0ojBMj5Je0u6Po3rEUkXN+HYzkzvzS5Jlaqyi1NbGyR9qLiRvba/ho1P0imSVqX3bpWkkwbL2HLlzfyZ0t3vZe8+UyJiUD6AIcDjwGHAMODnwMSqOqcCdwMCpgA/zZWdAEwC1lVtcwVwUXp9EfC1qvJbge8Cnx4sYwOGAmuBd6fltwJDBtH4zgaWpdf7Ak8A45psbO8EjgDuBSq59RPTPoYD49O+m/G962p87wEOTq/fBTw1WMaWK2/mz5Su3rdef6YM5iOr44G2iNgYEa8Ay4AZVXVmAEsi8wAwUtJBABGxAniuRrszgOvT6+uBmZ0FkmYCG4H1/TiOWho9tg8CayPi52n7ZyPi1f4cUJVGjy+AN0kaCuwDvAL8uh/Hk1fI2CLikYjYUGN/M8iCeEdE/AJoS30oSkPHFxGrI2JTWlwPjJA0vB/Hk9fo967pP1O6GVuvP1MGc1iNAZ7MLbendb2tU+1tEbEZID0fCCDpTcDfAl94A32uV0PHBhwOhKTlkn4m6W/63PP6NHp8t5BdWmsz8Cvg6xFRK+z6Q1FjeyP760+NHl/eh4HVEbGjH9qqpaFjGySfKV3p9WfK0D7uqBmoxrrqefr11KnXF4BvRsSLUq1m+1WjxzYUeC9wHLAd+KGkVRHxwz6215NGj+944FXgYOAA4MeS7omIjX1srzuNHlt/ttVf++v3Pkk6Evga2f/Yi+LPlJ7r1KvXnymDOazagUNyy2OBTX2oU+1pSQdFxOZ0CLwlrZ8MfETSFcBIYJeklyPiyr4OoBuNHls78KOIeAZA0l1k56eLCqtGj+9s4AcR8Vtgi6T7gArZ6Zf+VtTY3sj++lOjx4ekscDtwNyIeLyv7dSh0WMbDJ8p3e2vV58pg/k04EpggqTxkoYBs4CWqjotwNw0y2UKsLXzNFE3WoBz0+tzgTsBImJqRIyLiHHAPwB/X9AvFTR4bMBy4GhJ+6bvdd4HPNwfA+lCo8f3K+Ck1NabyL48frQ/BlJDUWPrSgswS9JwSeOBCcCDfe18HRo6Pkkjge8DF0fEfW+g3/Vo6NgGyWdKV3r/mdLd7Itmf5DNXvl3slkul6R184H56bWAq1L5Q+w+W2Up2XcYvyX7X8An4vVZKz8EHkvPb6mx38spcObOQIwN+BjZl7zrgCsG03sHvJlsttX69A/mM004tj9NyzuAp4HluW0uSW1tAKY36XtXc3zA58i+b1yTexw4GMZWtd/Lac7PlO5+L3v1meLLLZmZWekN5tOAZmY2SDiszMys9BxWZmZWeg4rMzMrPYeVmZmVnsPKrGQkXa5urrCdL5f0cUkHN653ZgPDYWXW3D5Odpkos0HNYWVWApIuUXYvoXvIbqmApN+X9ANl92n6saT/WrXNR8guC3WDpDWS9pH0eUkrJa2TtEgNuKicWSM4rMwGmKRjyS5v8x7gDLKLewIsAi6MiGOBTwPfym8XEbcArcCciDgmIl4CroyI4yLiXWS3OzmtQcMwK9RgvpCtWbOYCtweEdsBJLUAI4A/BL6bOziq5z5N70+3W9gXeAvZ5Wz+b7/32KzBHFZm5VB93bO9gBci4ph6G1B2W/BvkV2z7UlJl5OFnlnT82lAs4G3AvjT9J3TfsDpZPf4+YWkMwHSla7fXWPbbcB+6XVnMD0j6c3ARwrut1nDOKzMBlhE/Ay4ieyK4bcCP05Fc4BPSPo52em86tuMA1wHXC1pDdmVra8huyL2HWS3fTAbFHzVdTMzKz0fWZmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSs9hZWZmpfefxUDQgfvdNb0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "delta xi\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEWCAYAAADYRbjGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfUElEQVR4nO3df5hcVZ3n8feHNAmgsMFJcGICJIyBNQhiKEh2NYgIY8LCJoMigUiQZTYGB9d9ZnUGZBB0dUZYXWfygLBhDJAVEjLIj94VzCzOg/FBkHRMDAmQoQmMaZIhDUgMBoOQ7/5xT8ulUt1d3XRVn24/r+e5T9W959xzz+nq1KfvvSdVigjMzMxyts9gd8DMzKw3DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DymyYkHSypI7B7keZpI2STu6h/IuS/r55PbKhymFlWZD0jKRXJL0s6TlJN0l6+2D3qyeSJkoKSS0D1N5+kl6SdEqNsm9JumMgjtMfaZy/Tq/Ps5L+p6QRve0XEUdHxAM9lP91RPzpgHbWhiWHleXkzIh4OzAVOAH4q77srMKQ+Z2uDrmI+A1wOzC/qt4I4Fzglub1rqb3pdfnI8B5wH9+K40NVMjb74ch8w/bfn9ExLPAfcB7JR0s6f9K6pT0y/R8QlddSQ9I+pqkB4FdwBGSLpT0uKSdkjZL+nSp/smSOiT9haTtkrZJmiPpdEn/LOlFSV8s1d9H0qWSnpL0gqQVkt6Rilelx5fSGce/S/v8p3T8X0paKenwUnsh6c8kPQk8WWP4twAfk3RAadtHKf6t3tfT2KqlY727tH6zpK+W1s+QtC6dzf1E0rHdvypviIgngB9TvD5/JOmf0s/meUm3ShpdOsYzkk5Nz6+SdIek70r6FfCptO27qbzrTPUCSb9I7V1eamt/Sbekn+vj6TXsKJX/ZTrr2ylpk6SP1DMeGxocVpYdSYcCpwNrKX5HbwIOBw4DXgGurdrlfGABcCDwL8B24AzgIOBC4FuSppbq/yGwHzAe+BJwI/BJ4HhgBvAlSUekuv8FmAN8CHgX8EvgulR2UnocHRFvj4iHJM0BvgicBYyleFNfVtXfOcA0YEr12CPiJ8C2tH95fLdFxGt1jK0uaZ8lwKeBPwD+F9AqaVQd+06h+DmtBQT8DcXP5j3AocBVPew+G7gDGA3c2k2dDwJHUZzBfUnSe9L2K4GJwBHAaRSvWVefjgIuAU6IiAMpAv6Z3sZiQ0hEePEy6AvFG8vLwEsUgfNtYP8a9Y4DfllafwD4Si9t3w18Lj0/mSLwRqT1A4EAppXqrwHmpOePAx8plY0Dfgu0ULxxBtBSKr8PuKi0vg/FGd/haT2AU3rp718B/5ieH5T2f3+dY+solQXw7tL6zcBX0/Prgf9e1dYm4EPdHCeAX1GE9VPAV4F9atSbA6ytel1PTc+vAlZV1b8K+G563vXznFAqfwSYm55vBj5aKvvTrvEC76YI8lOBfQf799nLwC++Zmw5mRMR95c3pMth3wJmAgenzQdKGhERr6f1LVX7zKL4K/xIirA4AHi0VOWF0r6vpMfnSuWvAF2TOw4H7pK0p1T+OvDObsZwOPB3kr5Z7hLFWdy/1OpvDUuBKyWNpzhDaI+ItXWOrV6HAxdI+mxp20iKM6TuTI2I9vIGSYcAiyjOtA5MffplD230NnaAfy0938Ubr8W7qvb/3fOIaJf0XynC72hJK4E/j4itdRzPhgBfBrTc/TeKS0LTIuIg3rj0plKd3311QLqM9T3gG8A7I2I0cG9V/b7YAsyKiNGlZb8o7qvV+sqCLcCnq+rvH8Xlvb36W0tE/ILi8uE8ikuAS/s5tl0UYdblD6v6+bWqfh4QEdWXLHvzN2k8x6bX55M99Ad6GXsvtgETSuuHvqnhiNsi4oMUQRzA1W/hWJYZh5Xl7kCKM52X0sSGK3upPxIYBXQCr6UzkT9+C8e/Afha1yQJSWMlzU5lncAeinso5fqXSTo61f83ks7ux3FvobgH8wHeuLfT17GtA86TNELSTIr7bl1uBBZKmqbC2yT9B0kH9rGfB5Iu36YzwS/0cf++WEHxsz04HeuSrgJJR0k6JQX6byh+Z17vph0bghxWlru/BfYHngceBn7QU+WI2EkxKWIFxeWo84DWt3D8v0v7/6OknakP09KxdgFfAx5MM+qmR8RdFH/RL08z3jYAs/px3DsoLnv+MCK29XNsnwPOpLgPOI/i/haprTaKqefXprbagU/1o59fpvivBjuA7wN39qONen0F6ACeBu6n+BntTmWjgK9T/J78K3AIxUQXGyYU4S9fNLOhR9LFFJMvPtRrZRvyfGZlZkOCpHGSPpD+79tRFPcz7xrsfllzeDagmQ0VIyn+P9gkikubyyn+i4P9HvBlQDMzy54vA5qZWfZ8GbAbY8aMiYkTJw52N8zMhowxY8awcuXKlRExc6Dbdlh1Y+LEibS1tQ12N8zMhhRJYxrRri8DmplZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2GhpWkmZK2iSpXdKlNcolaVEqXy9paqlsiaTtkjZU7XO7pHVpeUbSurR9Xmn7Okl7JB2Xyh5I/egqO6SR4zYzs4HVsK+1lzQCuA44DegAVktqjYjHStVmAZPTMg24Pj0C3AxcCywttxsR55SO8U1gR9p+K3Br2n4McE9ErCvtOi8i/D31ZmZDUCPPrE4E2iNic0S8CiwHZlfVmQ0sjcLDwGhJ4wAiYhXwYneNSxLwCWBZjeJzu9luZmZDUCPDajywpbTekbb1tU53ZgDPRcSTNcrOYe+wuildArwiBd1eJC2Q1CaprbOzs85umJlZozUyrGoFQvSjTndqnj1Jmgbsiojyva55EXEMRcDNAM6v1WBELI6ISkRUxo4dW2c3zMys0RoZVh3AoaX1CcDWftTZi6QW4Czg9hrFc6kKsYh4Nj3uBG6juERpZmZDRCPDajUwWdIkSSMpQqS1qk4rMD/NCpwO7IiIbXW0fSrwRER0lDdK2gc4m+L+WNe2Fklj0vN9gTOAN80wNDOzvDVsNmBEvCbpEmAlMAJYEhEbJS1M5TcA9wKnA+3ALuDCrv0lLQNOBsZI6gCujIjvpOK9zp6Sk4COiNhc2jYKWJmCagRwP3DjgA3UzMwaThH13iL6/VKpVKKtzTPdzcz6QtKaiKgMdLv+BAszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DmszMwsew0NK0kzJW2S1C7p0hrlkrQola+XNLVUtkTSdkkbqva5XdK6tDwjaV3aPlHSK6WyG0r7HC/p0XScRZLUwGGbmdkAa1hYSRoBXAfMAqYA50qaUlVtFjA5LQuA60tlNwMzq9uNiHMi4riIOA74HnBnqfiprrKIWFjafn1qv+tYe7VrZmb5auSZ1YlAe0RsjohXgeXA7Ko6s4GlUXgYGC1pHEBErAJe7K7xdHb0CWBZT51I7R0UEQ9FRABLgTn9HJOZmQ2CRobVeGBLab0jbetrne7MAJ6LiCdL2yZJWivpR5JmlI7RUc8xJC2Q1CaprbOzs85umJlZozUyrGrdF4p+1OnOubz5rGobcFhEvB/4c+A2SQf15RgRsTgiKhFRGTt2bJ3dMDOzRmtpYNsdwKGl9QnA1n7U2YukFuAs4PiubRGxG9idnq+R9BRwZDrGhL4ew8zM8tHIM6vVwGRJkySNBOYCrVV1WoH5aVbgdGBHRGyro+1TgSci4neX9ySNTZM6kHQExUSKzam9nZKmp/tc84F73vLozMysaRp2ZhURr0m6BFgJjACWRMRGSQtT+Q3AvcDpQDuwC7iwa39Jy4CTgTGSOoArI+I7qXgue0+sOAn4iqTXgNeBhRHRNUHjYorZhfsD96XFzMyGCBUT5KxapVKJtra2we6GmdmQImlNRFQGul1/goWZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWvYaGlaSZkjZJapd0aY1ySVqUytdLmloqWyJpu6QNVfvcLmldWp6RtC5tP03SGkmPpsdTSvs8kPrRtd8hDRy2mZkNsJZGNSxpBHAdcBrQAayW1BoRj5WqzQImp2UacH16BLgZuBZYWm43Is4pHeObwI60+jxwZkRslfReYCUwvrTrvIhoG5jRmZlZMzXyzOpEoD0iNkfEq8ByYHZVndnA0ig8DIyWNA4gIlYBL3bXuCQBnwCWpfprI2JrKt4I7Cdp1ICOyMzMBkUjw2o8sKW03sGbz3TqrdOdGcBzEfFkjbKPAWsjYndp203pEuAVKej2ImmBpDZJbZ2dnXV2w8zMGq2RYVUrEKIfdbpzLums6k0NSkcDVwOfLm2eFxHHUATcDOD8Wg1GxOKIqEREZezYsXV2w8zMGq2RYdUBHFpanwBs7UedvUhqAc4Cbq/aPgG4C5gfEU91bY+IZ9PjTuA2ikuUZmY2RDQyrFYDkyVNkjQSmAu0VtVpBeanWYHTgR0Rsa2Otk8FnoiIjq4NkkYD3wcui4gHS9tbJI1Jz/cFzgA2YGZmQ0bDwioiXgMuoZiV9ziwIiI2SlooaWGqdi+wGWgHbgQ+07W/pGXAQ8BRkjokXVRqfi57XwK8BHg3cEXVFPVRwEpJ64F1wLPpWGZmNkQoot5bRL9fKpVKtLV5pruZWV9IWhMRlYFu159gYWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWWvoWElaaakTZLaJV1ao1ySFqXy9ZKmlsqWSNouaUPVPrdLWpeWZyStK5VdltraJOmjpe3HS3o0lS2SpAYN2czMGqBhYSVpBHAdMAuYApwraUpVtVnA5LQsAK4vld0MzKxuNyLOiYjjIuI44HvAnel4U4C5wNFpv2+nPpDaXVA61l7tmuUu9uzhZ/90Kz9uvZZXX3l5sLtj1lQt3RVIWhERn5D0KBDlIiAi4the2j4RaI+Izam95cBs4LFSndnA0ogI4GFJoyWNi4htEbFK0sQe+ifgE8AppbaWR8Ru4GlJ7cCJkp4BDoqIh9J+S4E5wH299N8sK+tW3c43v385EUHnC7/grAuvGewumTVNt2EFfC49zgWq/4z7cB1tjwe2lNY7gGl11BkPbKuj/RnAcxHxZKmth2u09dv0vHr7XiQtoDgD47DDDqujC2bNs/s3vyYI9tE+/PqVXw12d8yaqtuwioiuwLgdWAr8D2A/4BqgQnGZrie17gtFP+p051xgWR1t1X2MiFgMLAaoVCr19sOsKY4/+Tzmbn+al3e9xJlnXz7Y3TFrqp7OrLpMA64GfgIcCNwKfKCO/TqAQ0vrE4Ct/aizF0ktwFnA8XW01ZGe9+kYZrnZd78D+I/zvzbY3TAbFPVMsPgt8AqwP8WZ1dMRsaeO/VYDkyVNkjSS4nJia1WdVmB+mhU4HdhROqPryanAExFRvrzXCsyVNErSJIqJFI+k9nZKmp7uc80H7qnjGGZmlol6wmo1RVidAHyQYlbfHb3tFBGvAZcAK4HHgRURsVHSQkkLU7V7gc1AO3Aj8Jmu/SUtAx4CjpLUIemiUvNzefMlQCJiI7CCYgLHD4A/i4jXU/HFwN+n4zyFJ1eYmQ0pKibi9VBBqkREW9W28yPifze0Z4OsUqlEW1tb7xXNzOx3JK2JiMpAt9vrmVV1UKVtwzqozMwsL/64JTMzy57DyszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsNTSsJM2UtElSu6RLa5RL0qJUvl7S1FLZEknbJW2osd9nU7sbJV2Tts2TtK607JF0XCp7INXvKjukgcM2M7MB1tKohiWNAK4DTgM6gNWSWiPisVK1WcDktEwDrk+PADcD1wJLq9r9MDAbODYidncFT0TcCtya6hwD3BMR60q7zouItoEco5mZNUcjz6xOBNojYnNEvAospwiZstnA0ig8DIyWNA4gIlYBL9Zo92Lg6xGxO9XbXqPOucCyARqHmZkNskaG1XhgS2m9I23ra51qRwIzJP1U0o8knVCjzjnsHVY3pUuAV0hSrYYlLZDUJqmts7Ozl26YmVmzNDKsagVC9KNOtRbgYGA68AVgRTl8JE0DdkVE+V7XvIg4BpiRlvNrNRwRiyOiEhGVsWPH9tINMzNrlkaGVQdwaGl9ArC1H3VqtXtnunT4CLAHGFMqn0vVWVVEPJsedwK3UVyiNDOzIaKRYbUamCxpkqSRFCHSWlWnFZifZgVOB3ZExLZe2r0bOAVA0pHASOD5tL4PcDbF/THSthZJY9LzfYEzgL1mGJqZWb4aNhswIl6TdAmwEhgBLImIjZIWpvIbgHuB04F2YBdwYdf+kpYBJwNjJHUAV0bEd4AlwJI0pf1V4IKI6Lp0eBLQERGbS10ZBaxMQTUCuB+4sUHDNjOzBtAb7/NWVqlUoq3NM93NzPpC0pqIqAx0u/4ECzMzy57DyszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DQ0rSTMlbZLULunSGuWStCiVr5c0tVS2RNJ2SRtq7PfZ1O5GSdekbRMlvSJpXVpuKNU/XtKj6TiLJKlRYzYzs4HXsLCSNAK4DpgFTAHOlTSlqtosYHJaFgDXl8puBmbWaPfDwGzg2Ig4GvhGqfipiDguLQtL269P7Xcda692zcwsX408szoRaI+IzRHxKrCcImTKZgNLo/AwMFrSOICIWAW8WKPdi4GvR8TuVG97T51I7R0UEQ9FRABLgTlvYVxmZtZkjQyr8cCW0npH2tbXOtWOBGZI+qmkH0k6oVQ2SdLatH1G6Rgd9RxD0gJJbZLaOjs7e+mGmZk1S0sD2651Xyj6UadaC3AwMB04AVgh6QhgG3BYRLwg6XjgbklH9+UYEbEYWAxQqVR664eZmTVJI8+sOoBDS+sTgK39qFOr3TvTpcNHgD3AmIjYHREvAETEGuApirOwjtRuX45hZmYZaWRYrQYmS5okaSQwF2itqtMKzE+zAqcDOyJiWy/t3g2cAiDpSGAk8LyksWlSB+lMazKwObW3U9L0NAtwPnDPwAzRzMyaoWGXASPiNUmXACuBEcCSiNgoaWEqvwG4FzgdaAd2ARd27S9pGXAyMEZSB3BlRHwHWAIsSVPaXwUuiIiQdBLwFUmvAa8DCyOia4LGxRSzC/cH7kuLmZkNESomyFm1SqUSbW1tg90NM7MhRdKaiKgMdLv+BAszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DmszMwsew4rMzPLnsPKzMyy57AyM7PsOazMzCx7DiszM8uew8rMzLLnsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMjOz7DmszMwsew0NK0kzJW2S1C7p0hrlkrQola+XNLVUtkTSdkkbauz32dTuRknXpG2nSVoj6dH0eEqp/gOp/rq0HNKoMZuZ2cBraVTDkkYA1wGnAR3AakmtEfFYqdosYHJapgHXp0eAm4FrgaVV7X4YmA0cGxG7S8HzPHBmRGyV9F5gJTC+tOu8iGgbwCGamVmTNPLM6kSgPSI2R8SrwHKKkCmbDSyNwsPAaEnjACJiFfBijXYvBr4eEbtTve3pcW1EbE11NgL7SRo14KMyM7Oma2RYjQe2lNY7ePOZTr11qh0JzJD0U0k/knRCjTofA9Z2BVpyU7oEeIUk1WpY0gJJbZLaOjs7e+mGmZk1SyPDqlYgRD/qVGsBDgamA18AVpTDR9LRwNXAp0v7zIuIY4AZaTm/VsMRsTgiKhFRGTt2bC/dMDOzZmlkWHUAh5bWJwBb+1GnVrt3pkuHjwB7gDEAkiYAdwHzI+Kprh0i4tn0uBO4jeISpZmZDRGNDKvVwGRJkySNBOYCrVV1WoH5aVbgdGBHRGzrpd27gVMAJB0JjASelzQa+D5wWUQ82FVZUoukrjDbFzgD2GuGoZmZ5athYRURrwGXUMzKexxYEREbJS2UtDBVuxfYDLQDNwKf6dpf0jLgIeAoSR2SLkpFS4Aj0pT25cAFERHpWO8Grqiaoj4KWClpPbAOeDYdy8zMhggV7/NWrVKpRFubZ7qbmfWFpDURURnodv0JFmZmlj2HlZmZZc9hZWZm2XNYmZlZ9hxWZmaWPYeVmZllz2FlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlj2HlZmZZc9hZWZm2XNYmZlZ9vzli92Q1An8Gnh+sPvSIGMYvmOD4T0+j23oGs7jGwM8ARARMwe6cYdVDyS1NeIbL3MwnMcGw3t8HtvQNZzH1+ix+TKgmZllz2FlZmbZc1j1bPFgd6CBhvPYYHiPz2Mbuobz+Bo6Nt+zMjOz7PnMyszMsuewMjOz7A3rsJI0U9ImSe2SLq1RLkmLUvl6SVNLZUskbZe0oWqfd0j6f5KeTI8HV5UfJullSZ9v3MiaPzZJx0p6SNJGSY9K2m+4jE/SvpJuSeN6XNJlQ3BsZ6fXZo+kSlXZZamtTZI+2riR/e54TRufpNMkrUmv3RpJpwyXsZXKh/J7Sk+/l317T4mIYbkAI4CngCOAkcDPgSlVdU4H7gMETAd+Wio7CZgKbKja5xrg0vT8UuDqqvLvAf8AfH64jA1oAdYD70vrfwCMGEbjOw9Ynp4fADwDTBxiY3sPcBTwAFApbZ+SjjEKmJSOPRRfu+7G937gXen5e4Fnh8vYSuVD+T2lu9etz+8pw/nM6kSgPSI2R8SrwHJgdlWd2cDSKDwMjJY0DiAiVgEv1mh3NnBLen4LMKerQNIcYDOwcQDHUUuzx/bHwPqI+Hna/4WIeH0gB1Sl2eML4G2SWoD9gVeBXw3geMoaMraIeDwiNtU43myKIN4dEU8D7akPjdLU8UXE2ojYmlY3AvtJGjWA4ylr9ms35N9Tehhbn99ThnNYjQe2lNY70ra+1qn2zojYBpAeDwGQ9DbgL4Evv4U+16upYwOOBELSSkk/k/QX/e55fZo9vjsoPlprG/AL4BsRUSvsBkKjxvZWjjeQmj2+so8BayNi9wC0VUtTxzZM3lO60+f3lJZ+HmgoUI1t1fP066lTry8D34qIl6VazQ6oZo+tBfggcAKwC/ihpDUR8cN+ttebZo/vROB14F3AwcCPJd0fEZv72V5Pmj22gWxroI434H2SdDRwNcVf7I3i95Te69Srz+8pwzmsOoBDS+sTgK39qFPtOUnjImJbOgXenrZPAz4u6RpgNLBH0m8i4tr+DqAHzR5bB/CjiHgeQNK9FNenGxVWzR7fecAPIuK3wHZJDwIVissvA61RY3srxxtIzR4fkiYAdwHzI+Kp/rZTh2aPbTi8p/R0vD69pwzny4CrgcmSJkkaCcwFWqvqtALz0yyX6cCOrstEPWgFLkjPLwDuAYiIGRExMSImAn8L/HWDfqmgyWMDVgLHSjog3df5EPDYQAykG80e3y+AU1Jbb6O4efzEQAykhkaNrTutwFxJoyRNAiYDj/S383Vo6vgkjQa+D1wWEQ++hX7Xo6ljGybvKd3p+3tKT7MvhvpCMXvlnylmuVyeti0EFqbnAq5L5Y/y5tkqyyjuYfyW4q+Ai+KNWSs/BJ5Mj++ocdyraODMncEYG/BJipu8G4BrhtNrB7ydYrbVxvQP5gtDcGx/ktZ3A88BK0v7XJ7a2gTMGqKvXc3xAX9Fcb9xXWk5ZDiMreq4VzE031N6+r3s03uKP27JzMyyN5wvA5qZ2TDhsDIzs+w5rMzMLHsOKzMzy57DyszMsuewMsuMpKvUwydsl8slfUrSu5rXO7PB4bAyG9o+RfExUWbDmsPKLAOSLlfxXUL3U3ylApL+SNIPVHxP048l/duqfT5O8bFQt0paJ2l/SV+StFrSBkmL1YQPlTNrBoeV2SCTdDzFx9u8HziL4sM9ARYDn42I44HPA98u7xcRdwBtwLyIOC4iXgGujYgTIuK9FF93ckaThmHWUMP5g2zNhooZwF0RsQtAUiuwH/DvgX8onRzV8z1NH05ft3AA8A6Kj7P5PwPeY7Mmc1iZ5aH6c8/2AV6KiOPqbUDF14J/m+Iz27ZIuooi9MyGPF8GNBt8q4A/SfecDgTOpPiOn6clnQ2QPun6fTX23QkcmJ53BdPzkt4OfLzB/TZrGoeV2SCLiJ8Bt1N8Yvj3gB+nonnARZJ+TnE5r/prxgFuBm6QtI7ik61vpPhE7LspvvbBbFjwp66bmVn2fGZlZmbZc1iZmVn2HFZmZpY9h5WZmWXPYWVmZtlzWJmZWfYcVmZmlr3/DyHeXYHRQ9wJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "delta sigma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEWCAYAAADYRbjGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgnklEQVR4nO3df7xVdZ3v8ddbEPyRXmzAQkDBES1NM9wK906YkhY4emEsEyUxb3MJZ+zOPLo1o5lp3WrKR00zXE0Hr6g8UtDMH2duGl2ba3QdTQ5xQlAZj+TIERLUJAzDkM/9Y32PLjf7nLPPYa991jm9n4/Hfuy91ve7vuv7Pfuw36y1v2ctRQRmZmZltld/d8DMzKwnDiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJkNEpJOkdTR3/3Ik7RW0indlH9e0v9qXo9soHJYWSlIekbSq5JekfS8pJskva2/+9UdSeMlhaShDWpvH0kvS5pWo+zbku5sxH76Io3zt+n9eU7S30sa0tN2EXFMRDzYTfnXIuLPG9pZG5QcVlYmZ0XE24BJwInAF3qzsTID5ne6OuQi4nfA7cDcqnpDgPOAW5rXu5rem96fDwLnA/91TxprVMjbH4YB8w/b/nBExHPA/cB7JB0k6X9L2iLp1+n12M66kh6U9FVJDwHbgcMlXSTpCUnbJK2X9Klc/VMkdUj6G0mbJW2SNEvSGZL+TdJLkj6fq7+XpEslPS3pRUl3SHp7Kl6enl9ORxz/MW3zX9L+fy1pmaTDcu2FpL+U9BTwVI3h3wJ8RNJ+uXUfJvu3en93Y6uW9nVEbvlmSV/JLZ8pqS0dzf2rpOO6flfeFBFPAj8le3/+WNK/pJ/NC5JulTQit49nJJ2WXl8l6U5J35X0G+ATad13U3nnkeqFkp5N7V2ea2tfSbekn+sT6T3syJX/bTrq2yZpnaQP1jMeGxgcVlY6ksYBZwCryH5HbwIOAw4FXgWuqdrkAmAecADw78Bm4EzgQOAi4NuSJuXqvxPYBxgDfBG4Afg4cAIwFfiipMNT3f8GzAI+ABwC/Bq4NpWdnJ5HRMTbIuJhSbOAzwNnA6PIPtSXVPV3FjAZOLp67BHxr8CmtH1+fLdFxM46xlaXtM0i4FPAHwH/BLRIGl7HtkeT/ZxWAQL+juxn825gHHBVN5vPBO4ERgC3dlHn/cBRZEdwX5T07rT+SmA8cDhwOtl71tmno4BLgBMj4gCygH+mp7HYABIRfvjR7w+yD5ZXgJfJAuc7wL416h0P/Dq3/CDw5R7avgf4q/T6FLLAG5KWDwACmJyrvxKYlV4/AXwwVzYa+D0wlOyDM4ChufL7gU/mlvciO+I7LC0HMK2H/n4B+FF6fWDa/n11jq0jVxbAEbnlm4GvpNfXAf+jqq11wAe62E8AvyEL66eBrwB71ag3C1hV9b6ell5fBSyvqn8V8N30uvPnOTZX/igwO71eD3w4V/bnneMFjiAL8tOAvfv799mPxj98ztjKZFZEPJBfkU6HfRuYDhyUVh8gaUhEvJ6WN1RtM4Psf+FHkoXFfsBjuSov5rZ9NT0/nyt/Feic3HEYcLekXbny14F3dDGGw4B/lPStfJfIjuL+vVZ/a1gMXClpDNkRQntErKpzbPU6DLhQ0qdz64aRHSF1ZVJEtOdXSDoYWEB2pHVA6tOvu2mjp7ED/Cr3ejtvvheHVG3/xuuIaJf012Thd4ykZcBnImJjHfuzAcCnAa3s/jvZKaHJEXEgb556U67OG7cOSKexvg98E3hHRIwA7quq3xsbgBkRMSL32Cey79Vq3bJgA/Cpqvr7RnZ6b7f+1hIRz5KdPpxDdgpwcR/Htp0szDq9s6qfX63q534RUX3Ksid/l8ZzXHp/Pt5Nf6CHsfdgEzA2tzzuLQ1H3BYR7ycL4gC+sQf7spJxWFnZHUB2pPNymthwZQ/1hwHDgS3AznQk8qE92P/1wFc7J0lIGiVpZirbAuwi+w4lX/8yScek+v9B0jl92O8tZN/B/AlvfrfT27G1AedLGiJpOtn3bp1uAOZLmqzM/pL+VNIBveznAaTTt+lI8HO93L437iD72R6U9nVJZ4GkoyRNS4H+O7Lfmde7aMcGIIeVld0/APsCLwCPAD/srnJEbCObFHEH2emo84GWPdj/P6btfyRpW+rD5LSv7cBXgYfSjLopEXE32f/ol6YZb2uAGX3Y751kpz1/HBGb+ji2vwLOIvsecA7Z91uktlrJpp5fk9pqBz7Rh35+iexPDbYCPwDu6kMb9foy0AH8EniA7Ge0I5UNB75O9nvyK+BgsokuNkgowjdfNLOBR9LFZJMvPtBjZRvwfGRlZgOCpNGS/iT97dtRZN9n3t3f/bLm8GxAMxsohpH9PdgEslObS8n+xMH+APg0oJmZlZ5PA5qZWen5NGAXRo4cGePHj+/vbpiZDRgjR45k2bJlyyJieqPbdlh1Yfz48bS2tvZ3N8zMBhRJI4to16cBzcys9BxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQKDStJ0yWtk9Qu6dIa5ZK0IJWvljQpV7ZI0mZJa6q2uV1SW3o8I6ktrZ+TW98maZek41PZg6kfnWUHFzluMzNrrMJuay9pCHAtcDrQAayQ1BIRj+eqzQAmpsdk4Lr0DHAzcA2wON9uRJyb28e3gK1p/a3ArWn9scC9EdGW23RORPg+9WZmA1CRR1YnAe0RsT4iXgOWAjOr6swEFkfmEWCEpNEAEbEceKmrxiUJ+BiwpEbxeV2sNzOzAajIsBoDbMgtd6R1va3TlanA8xHxVI2yc9k9rG5KpwCvSEG3G0nzJLVKat2yZUud3TAzs6IVGVa1AiH6UKcrNY+eJE0GtkdE/ruuORFxLFnATQUuqNVgRCyMiEpEVEaNGlVnN8zMrGhFhlUHMC63PBbY2Ic6u5E0FDgbuL1G8WyqQiwinkvP24DbyE5RmpnZAFFkWK0AJkqaIGkYWYi0VNVpAeamWYFTgK0RsamOtk8DnoyIjvxKSXsB55B9P9a5bqikken13sCZwFtmGJqZWbkVNhswInZKugRYBgwBFkXEWknzU/n1wH3AGUA7sB24qHN7SUuAU4CRkjqAKyPixlS829FTcjLQERHrc+uGA8tSUA0BHgBuaNhAzcyscIqo9yuiPyyVSiVaWz3T3cysNyStjIhKo9v1FSzMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSs9hZWZmpeewMjOz0nNYmZlZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVXqFhJWm6pHWS2iVdWqNckhak8tWSJuXKFknaLGlN1Ta3S2pLj2cktaX14yW9miu7PrfNCZIeS/tZIEkFDtvMzBqssLCSNAS4FpgBHA2cJ+noqmozgInpMQ+4Lld2MzC9ut2IODcijo+I44HvA3flip/uLIuI+bn116X2O/e1W7tmZlZeRR5ZnQS0R8T6iHgNWArMrKozE1gcmUeAEZJGA0TEcuClrhpPR0cfA5Z014nU3oER8XBEBLAYmNXHMZmZWT8oMqzGABtyyx1pXW/rdGUq8HxEPJVbN0HSKkk/kTQ1t4+OevYhaZ6kVkmtW7ZsqbMbZmZWtCLDqtb3QtGHOl05j7ceVW0CDo2I9wGfAW6TdGBv9hERCyOiEhGVUaNG1dkNMzMr2tAC2+4AxuWWxwIb+1BnN5KGAmcDJ3Sui4gdwI70eqWkp4Ej0z7G9nYfZmZWHkUeWa0AJkqaIGkYMBtoqarTAsxNswKnAFsjYlMdbZ8GPBkRb5zekzQqTepA0uFkEynWp/a2SZqSvueaC9y7x6MzM7OmKezIKiJ2SroEWAYMARZFxFpJ81P59cB9wBlAO7AduKhze0lLgFOAkZI6gCsj4sZUPJvdJ1acDHxZ0k7gdWB+RHRO0LiYbHbhvsD96WFmZgOEsglyVq1SqURra2t/d8PMbECRtDIiKo1u11ewMDOz0nNYmZlZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnqFhpWk6ZLWSWqXdGmNcklakMpXS5qUK1skabOkNVXb3C6pLT2ekdSW1p8uaaWkx9LztNw2D6Z+dG53cIHDNjOzBhtaVMOShgDXAqcDHcAKSS0R8Xiu2gxgYnpMBq5LzwA3A9cAi/PtRsS5uX18C9iaFl8AzoqIjZLeAywDxuQ2nRMRrY0ZnZmZNVORR1YnAe0RsT4iXgOWAjOr6swEFkfmEWCEpNEAEbEceKmrxiUJ+BiwJNVfFREbU/FaYB9Jwxs6IjMz6xdFhtUYYENuuYO3HunUW6crU4HnI+KpGmUfAVZFxI7cupvSKcArUtDtRtI8Sa2SWrds2VJnN8zMrGhFhlWtQIg+1OnKeaSjqrc0KB0DfAP4VG71nIg4lizgpgIX1GowIhZGRCUiKqNGjaqzG2ZmVrQiw6oDGJdbHgts7EOd3UgaCpwN3F61fixwNzA3Ip7uXB8Rz6XnbcBtZKcozcxsgCgyrFYAEyVNkDQMmA20VNVpAeamWYFTgK0RsamOtk8DnoyIjs4VkkYAPwAui4iHcuuHShqZXu8NnAmswczMBozCwioidgKXkM3KewK4IyLWSpovaX6qdh+wHmgHbgD+onN7SUuAh4GjJHVI+mSu+dnsfgrwEuAI4IqqKerDgWWSVgNtwHNpX2ZmNkAoot6viP6wVCqVaG31THczs96QtDIiKo1u11ewMDOz0nNYmZlZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz06r6tfbpV/NHAPp3rImJx11uYmZk1Rl1hJelK4BSysLoPmAH8P8BhZWZmhav3NOBHgQ8Cv4qIi4D3kt16w8zMrHD1htWrEbEL2CnpQGAzcHhx3TIzM3tTvd9ZtaY78d4ArAReAR4tqlNmZmZ5dYVVRHTewfd6ST8EDoyI1cV1y8zM7E29mQ14HDC+cxtJR0TEXQX1y8zM7A31zgZcBBwHrAV2pdUBOKzMzKxw9R5ZTYmIowvtiZmZWRfqnQ34sKReh5Wk6ZLWSWqXdGmNcklakMpXS5qUK1skabOkNVXb3C6pLT2ekdSWK7sstbVO0odz60+Q9FgqWyBJvR2LmZn1n3rD6haywFqXQuUxSd1OsJA0BLiW7A+IjwbOqxF4M4CJ6TEPuC5XdjMwvbrdiDg3Io6PiOOB75NORaa2ZwPHpO2+k/pAandebl+7tWtWdrFrFz//l1v5acs1vPbqK/3dHbOmqvc04CLgAuAx3vzOqicnAe0RsR5A0lJgJvB4rs5MYHFEBPCIpBGSRkfEpohYLml8V42no6OPAdNybS2NiB3ALyW1AydJeoZs9uLDabvFwCzg/jrHYVYKbctv51s/uJyIYMuLz3L2RVf3d5fMmqbesHo2Ilp62fYYYENuuQOYXEedMcCmOtqfCjwfEU/l2nqkRlu/T6+r1+9G0jyyIzAOPfTQOrpg1jw7fvdbgmAv7cVvX/1Nf3fHrKnqDasnJd0G/DOwo3NlD1PXa30vFH2o05XzgCV1tFX3PiJiIbAQoFKp1NsPs6Y44ZTzmb35l7yy/WXOOufy/u6OWVPVG1b7koXUh3Lrepq63gGMyy2PBTb2oc5uJA0FzgZOqKOtjvS6V/swK5u999mP/zz3q/3dDbN+Ue8VLC7qQ9srgImSJgDPkU1+OL+qTgtwSfo+azKwNSLqOQV4GvBkRORP77UAt0n6e+AQsokUj0bE65K2SZoC/AyYC/zPPozHzMz6Sb1/FLygxuqtQGtE3Ftrm4jYKekSYBkwBFgUEWslzU/l15PdbuQMoB3YDrwRipKWkN2WZKSkDuDKiLgxFc/mracASW3fQTaBYyfwlxHxeiq+mGx24b5kEys8ucLMbABRNhGvh0rSQuBdwPfSqo+QXc1iHLA+Iv66qA72l0qlEq2trf3dDTOzAUXSyoioNLrder+zOgKYFhE7U2euA34EnE42nd3MzKww9f5R8Bhg/9zy/sAh6TTbjtqbmJmZNUa9R1ZXA22SHiSbCn4y8DVJ+wMPFNQ3MzMzoP7ZgDdKuo/sqhQCPh8RndO/P1dU58zMzKCH04CS3pWeJwGjya428SzwzvxFZ83MzIrU05HVZ8guP/St3Lr89MFpmJmZFazbI6uImJdeXgfMjIhTgf9L9jdWny24b2ZmZkD9swG/EBG/kfR+sunqN/PW23mYmZkVpt6w6rwSxJ8C16erVgwrpktmZmZvVW9YPSfpn8juH3WfpOG92NbMzGyP1Bs4HyO7xt/0iHgZeDuesm5mZk1S799ZbSd3O5B0ZfR6ro5uZma2x3wqz8zMSs9hZWZmpeewMjOz0nNYmZlZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVXqFhJWm6pHWS2iVdWqNckhak8tX5e2RJWiRps6Q1Nbb7dGp3raSr07o5ktpyj12Sjk9lD6b6nWUHFzhsMzNrsHpva99rkoYA15Jdpb0DWCGpJSIez1WbAUxMj8lkV3KfnMpuBq4BFle1eyowEzguInZ0Bk9E3ArcmuocC9wbEW25TedERGsjx2hmZs1R5JHVSUB7RKyPiNeApWQhkzcTWByZR4ARkkYDRMRy4KUa7V4MfD0idqR6m2vUOQ9Y0qBxmJlZPysyrMYAG3LLHWldb+tUOxKYKulnkn4i6cQadc5l97C6KZ0CvEKSajUsaZ6kVkmtW7Zs6aEbZmbWLEWGVa1AiD7UqTYUOAiYQnbl9zvy4SNpMrA9IvLfdc2JiGOBqelxQa2GI2JhRFQiojJq1KgeumFmZs1SZFh1AONyy2OBjX2oU6vdu9Kpw0eBXcDIXPlsqo6qIuK59LwNuI3sFKWZmQ0QRYbVCmCipAmShpGFSEtVnRZgbpoVOAXYmm4/0p17gGkAko4ku2PxC2l5L+Acsu/HSOuGShqZXu8NnAnsNsPQzMzKq7DZgBGxU9IlZDdtHAIsioi1kuan8uuB+4AzgHZgO3BR5/aSlgCnACMldQBXRsSNwCJgUZrS/hpwYUR0njo8GeiIiPW5rgwHlqWgGgI8ANxQ0LDNzKwAevNz3vIqlUq0tnqmu5lZb0haGRGVRrfrK1iYmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSs9hZWZmpeewMjOz0nNYmZlZ6TmszMys9BxWZmZWeg4rMzMrvULDStJ0SesktUu6tEa5JC1I5aslTcqVLZK0WdKaGtt9OrW7VtLVad14Sa9KakuP63P1T5D0WNrPAkkqasxmZtZ4hYWVpCHAtcAM4GjgPElHV1WbAUxMj3nAdbmym4HpNdo9FZgJHBcRxwDfzBU/HRHHp8f83PrrUvud+9qtXTMzK68ij6xOAtojYn1EvAYsJQuZvJnA4sg8AoyQNBogIpYDL9Vo92Lg6xGxI9Xb3F0nUnsHRsTDERHAYmDWHozLzMyarMiwGgNsyC13pHW9rVPtSGCqpJ9J+omkE3NlEyStSuun5vbRUc8+JM2T1CqpdcuWLT10w8zMmmVogW3X+l4o+lCn2lDgIGAKcCJwh6TDgU3AoRHxoqQTgHskHdObfUTEQmAhQKVS6akfZmbWJEUeWXUA43LLY4GNfahTq9270qnDR4FdwMiI2BERLwJExErgabKjsI7Ubm/2YWZmJVJkWK0AJkqaIGkYMBtoqarTAsxNswKnAFsjYlMP7d4DTAOQdCQwDHhB0qg0qYN0pDURWJ/a2yZpSpoFOBe4tzFDNDOzZijsNGBE7JR0CbAMGAIsioi1kuan8uuB+4AzgHZgO3BR5/aSlgCnACMldQBXRsSNwCJgUZrS/hpwYUSEpJOBL0vaCbwOzI+IzgkaF5PNLtwXuD89zMxsgFA2Qc6qVSqVaG1t7e9umJkNKJJWRkSl0e36ChZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz2HlZmZlZ7DyszMSs9hZWZmpeewMjOz0nNYmZlZ6TmszMys9BxWZmZWeg4rMzMrPYeVmZmVnsPKzMxKr9CwkjRd0jpJ7ZIurVEuSQtS+WpJk3JliyRtlrSmxnafTu2ulXR1Wne6pJWSHkvP03L1H0z129Lj4KLGbGZmjTe0qIYlDQGuBU4HOoAVkloi4vFctRnAxPSYDFyXngFuBq4BFle1eyowEzguInbkgucF4KyI2CjpPcAyYExu0zkR0drAIZqZWZMUeWR1EtAeEesj4jVgKVnI5M0EFkfmEWCEpNEAEbEceKlGuxcDX4+IHane5vS8KiI2pjprgX0kDW/4qMzMrOmKDKsxwIbccgdvPdKpt061I4Gpkn4m6SeSTqxR5yPAqs5AS25KpwCvkKRaDUuaJ6lVUuuWLVt66IaZmTVLkWFVKxCiD3WqDQUOAqYAnwPuyIePpGOAbwCfym0zJyKOBaamxwW1Go6IhRFRiYjKqFGjeuiGmZk1S5Fh1QGMyy2PBTb2oU6tdu9Kpw4fBXYBIwEkjQXuBuZGxNOdG0TEc+l5G3Ab2SlKMzMbIIoMqxXAREkTJA0DZgMtVXVagLlpVuAUYGtEbOqh3XuAaQCSjgSGAS9IGgH8ALgsIh7qrCxpqKTOMNsbOBPYbYahmZmVV2FhFRE7gUvIZuU9AdwREWslzZc0P1W7D1gPtAM3AH/Rub2kJcDDwFGSOiR9MhUtAg5PU9qXAhdGRKR9HQFcUTVFfTiwTNJqoA14Lu3LzMwGCGWf81atUqlEa6tnupuZ9YaklRFRaXS7voKFmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6DiszMys9h5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmZWek5rMzMrPQcVmZmVnoOKzMzKz3ffLELkrYAvwVe6O++FGQkg3dsMLjH57ENXIN5fCOBJwEiYnqjG3dYdUNSaxF3vCyDwTw2GNzj89gGrsE8vqLH5tOAZmZWeg4rMzMrPYdV9xb2dwcKNJjHBoN7fB7bwDWYx1fo2PydlZmZlZ6PrMzMrPQcVmZmVnqDOqwkTZe0TlK7pEtrlEvSglS+WtKkXNkiSZslrana5u2S/o+kp9LzQVXlh0p6RdJnixtZ88cm6ThJD0taK+kxSfsMlvFJ2lvSLWlcT0i6bACO7Zz03uySVKkquyy1tU7Sh4sb2Rv7a9r4JJ0uaWV671ZKmjZYxpYrH8ifKd39XvbuMyUiBuUDGAI8DRwODAN+ARxdVecM4H5AwBTgZ7myk4FJwJqqba4GLk2vLwW+UVX+feB7wGcHy9iAocBq4L1p+Y+AIYNofOcDS9Pr/YBngPEDbGzvBo4CHgQqufVHp30MByakfQ/E966r8b0POCS9fg/w3GAZW658IH+mdPW+9fozZTAfWZ0EtEfE+oh4DVgKzKyqMxNYHJlHgBGSRgNExHLgpRrtzgRuSa9vAWZ1FkiaBawH1jZwHLU0e2wfAlZHxC/S9i9GxOuNHFCVZo8vgP0lDQX2BV4DftPA8eQVMraIeCIi1tXY30yyIN4REb8E2lMfitLU8UXEqojYmBbXAvtIGt7A8eQ1+70b8J8p3Yyt158pgzmsxgAbcssdaV1v61R7R0RsAkjPBwNI2h/4W+BLe9DnejV1bMCRQEhaJunnkv6mzz2vT7PHdyfZpbU2Ac8C34yIWmHXCEWNbU/210jNHl/eR4BVEbGjAW3V0tSxDZLPlK70+jNlaB93NBCoxrrqefr11KnXl4BvR8QrUq1mG6rZYxsKvB84EdgO/FjSyoj4cR/b60mzx3cS8DpwCHAQ8FNJD0TE+j62151mj62RbTVqfw3vk6RjgG+Q/Y+9KP5M6blOvXr9mTKYw6oDGJdbHgts7EOdas9LGh0Rm9Ih8Oa0fjLwUUlXAyOAXZJ+FxHX9HUA3Wj22DqAn0TECwCS7iM7P11UWDV7fOcDP4yI3wObJT0EVMhOvzRaUWPbk/01UrPHh6SxwN3A3Ih4uq/t1KHZYxsMnynd7a9XnymD+TTgCmCipAmShgGzgZaqOi3A3DTLZQqwtfM0UTdagAvT6wuBewEiYmpEjI+I8cA/AF8r6JcKmjw2YBlwnKT90vc6HwAeb8RAutDs8T0LTEtt7U/25fGTjRhIDUWNrSstwGxJwyVNACYCj/a183Vo6vgkjQB+AFwWEQ/tQb/r0dSxDZLPlK70/jOlu9kXA/1BNnvl38hmuVye1s0H5qfXAq5N5Y/x1tkqS8i+w/g92f8CPhlvzlr5MfBUen57jf1eRYEzd/pjbMDHyb7kXQNcPZjeO+BtZLOt1qZ/MJ8bgGP7s7S8A3geWJbb5vLU1jpgxgB972qOD/gC2feNbbnHwYNhbFX7vYqB+ZnS3e9lrz5TfLklMzMrvcF8GtDMzAYJh5WZmZWew8rMzErPYWVmZqXnsDIzs9JzWJmVjKSr1M0VtvPlkj4h6ZDm9c6sfziszAa2T5BdJspsUHNYmZWApMuV3UvoAbJbKiDpjyX9UNl9mn4q6V1V23yU7LJQt0pqk7SvpC9KWiFpjaSFasJF5cyawWFl1s8knUB2eZv3AWeTXdwTYCHw6Yg4Afgs8J38dhFxJ9AKzImI4yPiVeCaiDgxIt5DdruTM5s0DLNCDeYL2ZoNFFOBuyNiO4CkFmAf4D8B38sdHNVzn6ZT0+0W9gPeTnY5m39ueI/NmsxhZVYO1dc92wt4OSKOr7cBZbcF/w7ZNds2SLqKLPTMBjyfBjTrf8uBP0vfOR0AnEV2j59fSjoHIF3p+r01tt0GHJBedwbTC5LeBny04H6bNY3DyqyfRcTPgdvJrhj+feCnqWgO8ElJvyA7nVd9m3GAm4HrJbWRXdn6BrIrYt9DdtsHs0HBV103M7PS85GVmZmVnsPKzMxKz2FlZmal57AyM7PSc1iZmVnpOazMzKz0HFZmZlZ6/x94P85a7DIvPQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "delta tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEWCAYAAADGjIh1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAavUlEQVR4nO3de7hddX3n8feHRO6xgRos94QamYaKFo/AjDeKosRqE6s+D6gDWjuYKk5npl6COor3y6PS8ohacNQwVimlpaYjSpWpxYfCyElRIEUkxguRFIIXBEEQ+M4fa52y3Z6cc3I4e591Tt6v59nPXmv9Luv3yz7Zn6xL1klVIUlSF+wy2wOQJGmMoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzjCUpDkmyXFJtsz2OHol2ZjkuAnK35jk48MbkeYqQ0lDleS7Se5JcleSW5N8Msnesz2uiSRZmqSSLJyh/nZP8pMkx49TdlaSi2ZiP9PRzvNn7efzgyQfSrJgsnZVdURVfWWC8ndX1R/N6GA1LxlKmg3Pq6q9gaOAJwFv3pHGacyZn93+MKuqnwN/BZzSV28BcDKwbnijG9fj28/nGcCLgf/ycDqbqTDXzmHO/MXW/FNVPwC+APx2kn2S/J8k25L8uF0+aKxukq8keVeSK4C7gcOSvDzJDUnuTLI5ySt76h+XZEuS1ye5LcnWJKuTPCfJt5L8KMkbe+rvkmRtkm8n+WGSC5Ps2xZf3r7/pD2C+I9tmz9s9//jJJcmObSnv0ry6iQ3ATeNM/11wAuS7Nmz7dk0fye/MNHc+rX7ekzP+qeSvLNn/blJvt4enf1zkiO3/6k8pKq+CXyV5vP5zST/t/2zuT3JXyZZ3LOP7yZ5Zrt8ZpKLknw6yU+Bl7XbPt2Wjx15nprk+21/b+rpa48k69o/1xvaz3BLT/kb2qO4O5PcmOQZU5mP5gZDSbMmycHAc4BraH4WPwkcChwC3AN8uK/JfwZOAxYB3wNuA54LPBJ4OXBWkqN66v8GsDtwIPAW4DzgpcATgacCb0lyWFv3vwKrgacDBwA/Bs5py57Wvi+uqr2r6sokq4E3An8ALKH58v5s33hXA8cAK/rnXlX/DGxt2/fO7zNVdf8U5jYlbZtPAK8Efh34C2B9kt2m0HYFzZ/TNUCA99D82fwWcDBw5gTNVwEXAYuBv9xOnacAh9Mckb0lyW+1298KLAUOA06g+czGxnQ4cDrwpKpaRBPk351sLppDqsqXr6G9aL5A7gJ+QhMsHwH2GKfeE4Af96x/BXj7JH3/HfAn7fJxNMG2oF1fBBRwTE/9DcDqdvkG4Bk9ZfsDvwAW0nxBFrCwp/wLwCt61nehOYI7tF0v4PhJxvtm4B/a5Ue27X9ninPb0lNWwGN61j8FvLNd/ijwjr6+bgSevp39FPBTmlD+NvBOYJdx6q0Grun7XJ/ZLp8JXN5X/0zg0+3y2J/nQT3lXwNOapc3A8/uKfujsfkCj6EJ7GcCj5jtn2dfM//yXK9mw+qq+nLvhvY01lnAicA+7eZFSRZU1QPt+s19bVbS/Kv6sTShsCdwXU+VH/a0vad9v7Wn/B5g7CaLQ4GLkzzYU/4A8OjtzOFQ4M+TfLB3SDRHZd8bb7zjOB94a5IDaf7Fv6mqrpni3KbqUODUJK/p2bYrzRHP9hxVVZt6NyTZDzib5shpUTumH0/Qx2RzB/i3nuW7eeizOKCv/b8vV9WmJP+NJuSOSHIp8D+q6pYp7E9zgKfv1BV/SnMq55iqeiQPnTJLT51/f6R9e/rpb4APAI+uqsXAJX31d8TNwMqqWtzz2r2a617jPUr/ZuCVffX3qOa03K+MdzxV9X2a034voTl1d/4053Y3TWiN+Y2+cb6rb5x7VlX/qcbJvKedz5Ht5/PSCcYDk8x9EluBg3rWD/6ljqs+U1VPoQncAt73MPaljjGU1BWLaI5cftLeYPDWServCuwGbAPub48snvUw9v8x4F1jNyskWZJkVVu2DXiQ5hpHb/0zkhzR1v+1JC+axn7X0VwjeTIPXXvZ0bl9HXhxkgVJTqS5LjbmPGBNkmPS2CvJ7yVZtIPjXER72rU9snvdDrbfERfS/Nnu0+7r9LGCJIcnOb4N7p/T/Mw8sJ1+NAcZSuqKPwP2AG4HrgK+OFHlqrqT5uaEC2lOI70YWP8w9v/nbft/SHJnO4Zj2n3dDbwLuKK9g+3YqrqY5l/oF7R3mF0PrJzGfi+iOV15WVVtnebc/gR4Hs11upfQXH+i7WuU5pbuD7d9bQJeNo1xvo3mFv47gM8DfzuNPqbq7cAW4DvAl2n+jO5ty3YD3kvzc/JvwH40N5xonkiVv+RPUncl+WOamyCePmllzXkeKUnqlCT7J3ly+3/HDqe53njxbI9Lw+Hdd5K6Zlea/0+1jOaU5AU0/3VAOwFP30mSOsPTd5KkztipT9896lGPqqVLl872MCRpTtmwYcPtVbVkEH3v1KG0dOlSRkdHZ3sYkjSnJPne5LWmx9N3kqTOMJQkSZ1hKEmSOsNQkiR1hqEkSeoMQ0mS1BmGkiSpMwwlSVJnGEqSpM4wlCRJnWEoSZI6w1CSJHWGoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzjCUJEmdYShJkjrDUJIkdYahJEnqDENJktQZhpIkqTMMJUlSZxhKkqTOGGgoJTkxyY1JNiVZO055kpzdll+b5Kiesk8kuS3J9X1t9k3ypSQ3te/79JUfkuSuJK8d3MwkSYMwsFBKsgA4B1gJrABOTrKir9pKYHn7Og34aE/Zp4ATx+l6LXBZVS0HLmvXe50FfOHhjl+SNHyDPFI6GthUVZur6j7gAmBVX51VwPnVuApYnGR/gKq6HPjROP2uAta1y+uA1WMFSVYDm4GNMzgPSdKQDDKUDgRu7lnf0m7b0Tr9Hl1VWwHa9/0AkuwFvAF420SNk5yWZDTJ6LZt2yadhCRpeAYZShlnW02jzlS9DTirqu6aqFJVnVtVI1U1smTJkmnuSpI0CAsH2PcW4OCe9YOAW6ZRp9+tSfavqq3tqb7b2u3HAC9M8n5gMfBgkp9X1YenOwFJ0nAN8kjpamB5kmVJdgVOAtb31VkPnNLehXcscMfYqbkJrAdObZdPBT4HUFVPraqlVbUU+DPg3QaSJM0tAwulqrofOB24FLgBuLCqNiZZk2RNW+0SmhsTNgHnAa8aa5/ks8CVwOFJtiR5RVv0XuCEJDcBJ7TrkqR5IFXTvYQz942MjNTo6OhsD0OS5pQkG6pqZBB9+0QHSVJnGEqSpM4wlCRJnWEoSZI6w1CSJHWGoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzjCUJEmdYShJkjrDUJIkdYahJEnqDENJktQZhpIkqTMMJUlSZxhKkqTOMJQkSZ1hKEmSOsNQkiR1hqEkSeoMQ0mS1BmGkiSpMwwlSVJnGEqSpM4wlCRJnWEoSZI6w1CSJHWGoSRJ6oyBhlKSE5PcmGRTkrXjlCfJ2W35tUmO6in7RJLbklzf12bfJF9KclP7vk+7/YQkG5Jc174fP8i5SZJm3sBCKckC4BxgJbACODnJir5qK4Hl7es04KM9ZZ8CThyn67XAZVW1HLisXQe4HXheVT0OOBX43zMzE0nSsAzySOloYFNVba6q+4ALgFV9dVYB51fjKmBxkv0Bqupy4Efj9LsKWNcurwNWt/Wvqapb2u0bgd2T7DaTE5IkDdYgQ+lA4Oae9S3tth2t0+/RVbUVoH3fb5w6LwCuqap7d2jEkqRZtXCAfWecbTWNOju20+QI4H3As7ZTfhrNqUIOOeSQh7MrSdIMG+SR0hbg4J71g4BbplGn361jp/ja99vGCpIcBFwMnFJV3x6vcVWdW1UjVTWyZMmSKU1EkjQcgwylq4HlSZYl2RU4CVjfV2c9cEp7F96xwB1jp+YmsJ7mRgba988BJFkMfB44o6qumKE5SJKGaGChVFX3A6cDlwI3ABdW1cYka5KsaatdAmwGNgHnAa8aa5/ks8CVwOFJtiR5RVv0XuCEJDcBJ7TrtPt6DPA/k3y9fY13vUmS1FGpeliXcOa0kZGRGh0dne1hSNKckmRDVY0Mom+f6CBJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzjCUJEmdYShJkjrDUJIkdYahJEnqDENJktQZhpIkqTMMJUlSZxhKkqTOMJQkSZ1hKEmSOsNQkiR1hqEkSeoMQ0mS1BmGkiSpMwwlSVJnGEqSpM4wlCRJnWEoSZI6w1CSJHWGoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzlg4WYUkbxlve1W9feaHI0namU0aSsDPepZ3B54L3DCY4UiSdmaTnr6rqg/2vN4FHAccOJXOk5yY5MYkm5KsHac8Sc5uy69NclRP2SeS3Jbk+r42+yb5UpKb2vd9esrOaPu6McmzpzJGSVJ3TOea0p7AYZNVSrIAOAdYCawATk6yoq/aSmB5+zoN+GhP2aeAE8fpei1wWVUtBy5r12n7Pgk4om33kXYM0pxy5w9v4R//9kN882uXzPZQpKGbyjWl64BqVxcAS4CpXE86GthUVZvbfi4AVgH/2lNnFXB+VRVwVZLFSfavqq1VdXmSpeP0u4rmaA1gHfAV4A3t9guq6l7gO0k2tWO4cgpjlTrj4+f9MaPbvsFueQTvWLwfBz52ZLaHJA3NVK4pPbdn+X7g1qq6fwrtDgRu7lnfAhwzhToHAlsn6PfRVbUVoKq2Jtmvp6+rxunrlyQ5jeaojEMOOWTyWUhD9rP77mLXPIIHeJB777lrtocjDdVUril9r6q+B9xDc6R0QJKpfJtnvO6mUWeqptRXVZ1bVSNVNbJkyZJp7koanD966Vk8/dCn8fInv4Zlj3vabA9HGqqpnL77feCDwAHAbcChNHffHTFJ0y3AwT3rBwG3TKNOv1vHTvEl2b8d03T7kjrnNw47kpe95n/N9jCkWTGVGx3eARwLfKuqlgHPAK6YQrurgeVJliXZleYmhPV9ddYDp7R34R0L3DF2am4C64FT2+VTgc/1bD8pyW5JltHcPPG1KYxTktQRUwmlX1TVD4FdkuxSVf8IPGGyRu11p9OBS2mOrC6sqo1J1iRZ01a7BNgMbALOA1411j7JZ2luUjg8yZYkr2iL3guckOQm4IR2naraCFxIcyPFF4FXV9UDU5ifJKkj0tz4NkGF5MvAauA9wKNoTpeNVNWTBz66ARsZGanR0dHZHoYkzSlJNlTVQG4Lncrdd98A7gb+O/AS4NeAvQcxGEnSzm0qofS7VfUg8CDN/wsiybUDHZUkaae03VBK8sc013h+sy+EFjG1Gx0kSdohEx0pfQb4As21pN7n1t1ZVT8a6KgkSTul7YZSVd0B3AGcPLzhSJJ2Zv6SP0lSZxhKkqTOMJQkSZ1hKEmSOsNQkiR1hqEkSeoMQ0mS1BmGkiSpMwwlSVJnGEqSpM4wlCRJnWEoSZI6w1CSJHWGoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzjCUJEmdYShJkjrDUJIkdYahJEnqDENJktQZhpIkqTMMJUlSZww0lJKcmOTGJJuSrB2nPEnObsuvTXLUZG2TPD7JlUmuS/L3SR7Zbn9EknXt9huSnDHIuUmSZt7AQinJAuAcYCWwAjg5yYq+aiuB5e3rNOCjU2j7cWBtVT0OuBh4Xbv9RcBu7fYnAq9MsnQws5MkDcIgj5SOBjZV1eaqug+4AFjVV2cVcH41rgIWJ9l/kraHA5e3y18CXtAuF7BXkoXAHsB9wE8HNDdJ0gAMMpQOBG7uWd/SbptKnYnaXg/8frv8IuDgdvki4GfAVuD7wAeq6kcPbwqSpGEaZChlnG01xToTtf1D4NVJNgCLaI6IoDm6egA4AFgG/GmSw35lUMlpSUaTjG7btm3yWUiShmaQobSFh45iAA4Cbpline22rapvVtWzquqJwGeBb7d1Xgx8sap+UVW3AVcAI/2Dqqpzq2qkqkaWLFky7clJkmbeIEPpamB5kmVJdgVOAtb31VkPnNLehXcscEdVbZ2obZL92vddgDcDH2v7+j5wfNvXXsCxwDcHOD9J0gwbWChV1f3A6cClwA3AhVW1McmaJGvaapcAm4FNwHnAqyZq27Y5Ocm3aALnFuCT7fZzgL1prjldDXyyqq4d1PwkSTMvVf2XeXYeIyMjNTo6OtvDkKQ5JcmGqvqVyyMzwSc6SJI6w1CSJHWGoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzjCUJEmdYShJkjrDUJIkdYahJEnqDENJktQZhpIkqTMMJUlSZxhKkqTOMJQkSZ1hKEmSOsNQkiR1hqEkSeoMQ0mS1BmGkiSpMwwlSVJnGEqSpM4wlCRJnWEoSZI6w1CSJHWGoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzhhoKCU5McmNSTYlWTtOeZKc3ZZfm+SoydomeXySK5Ncl+Tvkzyyp+zItmxjW777IOcnSZpZAwulJAuAc4CVwArg5CQr+qqtBJa3r9OAj06h7ceBtVX1OOBi4HVtm4XAp4E1VXUEcBzwi0HNT5I08wZ5pHQ0sKmqNlfVfcAFwKq+OquA86txFbA4yf6TtD0cuLxd/hLwgnb5WcC1VfUNgKr6YVU9MKjJSZJm3iBD6UDg5p71Le22qdSZqO31wO+3yy8CDm6XHwtUkkuT/EuS1483qCSnJRlNMrpt27YdnJIkaZAGGUoZZ1tNsc5Ebf8QeHWSDcAi4L52+0LgKcBL2vfnJ3nGr3RSdW5VjVTVyJIlSyafhSRpaBYOsO8tPHQUA3AQcMsU6+y6vbZV9U2aU3UkeSzwez19/VNV3d6WXQIcBVw2A3ORJA3BII+UrgaWJ1mWZFfgJGB9X531wCntXXjHAndU1daJ2ibZr33fBXgz8LG2r0uBI5Ps2d708HTgXwc4P0nSDBvYkVJV3Z/kdJqwWAB8oqo2JlnTln8MuAR4DrAJuBt4+URt265PTvLqdvlvgU+2bX6c5EM0gVbAJVX1+UHNT5I081LVf5ln5zEyMlKjo6OzPQxJmlOSbKiqkUH07RMdJEmdYShJkjrDUJIkdYahJEnqDENJktQZhpIkqTMMJUlSZxhKkqTOMJQkSZ1hKEmSOsNQkiR1hqEkSeoMQ0mS1BmGkiSpMwwlSVJnGEqSpM4wlCRJnWEoSZI6w1CSJHWGoSRJ6gxDSZLUGYaSJKkzDCVJUmcYSpKkzkhVzfYYZk2SbcD3gEcBt8/ycAbFuc1d83l+zm3uehSwV1UtGUTnO3UojUkyWlUjsz2OQXBuc9d8np9zm7sGPT9P30mSOsNQkiR1hqHUOHe2BzBAzm3ums/zc25z10Dn5zUlSVJneKQkSeoMQ0mS1BnzIpSSnJjkxiSbkqwdpzxJzm7Lr01yVE/ZJ5LcluT6vjb7JvlSkpva9336yg9JcleS1w5uZsOfW5Ijk1yZZGOS65LsPh/mluQRSda1c7ohyRmDmteA5/ei9rN5MMlIX9kZbV83Jnn24GY23LklOSHJhvaz25Dk+Pkyt57yoXyftPsa9s/ljn2nVNWcfgELgG8DhwG7At8AVvTVeQ7wBSDAscD/6yl7GnAUcH1fm/cDa9vltcD7+sr/Bvhr4LXzZW7AQuBa4PHt+q8DC+bJ3F4MXNAu7wl8F1g6Bz+73wIOB74CjPRsX9HuYzdgWbvvufbZbW9uvwMc0C7/NvCD+fK59ZQP/Ptklj67Hf5OmQ9HSkcDm6pqc1XdB1wArOqrswo4vxpXAYuT7A9QVZcDPxqn31XAunZ5HbB6rCDJamAzsHEG5zGeYc/tWcC1VfWNtv0Pq+qBmZxQj2HPrYC9kiwE9gDuA346g/PpN5D5VdUNVXXjOPtbRRO691bVd4BN7RgGYahzq6prquqWdnUjsHuS3WZwPr2G/bkN8/sEhj+/Hf5OmQ+hdCBwc8/6lnbbjtbp9+iq2grQvu8HkGQv4A3A2x7GmKdqqHMDHgtUkkuT/EuS10975JMb9twuAn4GbAW+D3ygqsYLtZkyqPk9nP3NlGHPrdcLgGuq6t4Z6Gs8Q53bkL9PYPif3Q5/pyyc5o66JONs67/PfSp1puptwFlVdVcyXrczathzWwg8BXgScDdwWZINVXXZNPubyLDndjTwAHAAsA/w1SRfrqrN0+xvMsOe30z2NRP7mvHxJDkCeB/Nv74HZT5/n8Ac+E6ZD6G0BTi4Z/0g4JZp1Ol3a5L9q2pre+h6W7v9GOCFSd4PLAYeTPLzqvrwdCcwgWHPbQvwT1V1O0CSS2jOHw8ilIY9txcDX6yqXwC3JbkCGKE5bTIIg5rfw9nfTBn23EhyEHAxcEpVfXu6/UzBsOc2zO8TmJ2fyx36TpkPp++uBpYnWZZkV+AkYH1fnfXAKe1dJccCd4yd4pnAeuDUdvlU4HMAVfXUqlpaVUuBPwPePcAfoKHODbgUODLJnu21l6cD/zoTExnHsOf2feD4tq+9aC7gfnMmJrIdg5rf9qwHTkqyW5JlwHLga9Md/CSGOrcki4HPA2dU1RUPY9xTMdS5Dfn7BIb/c7nj3ykT3QUxV140d4t8i+aukje129YAa9rlAOe05dfxy3eHfJbmOsMvaFL9FfXQXSKXATe17/uOs98zGfzdMkOdG/BSmguu1wPvny9zA/amubtpY/uX4nVz9Ofy+e36vcCtwKU9bd7U9nUjsHK+zA14M831wK/3vPabD3Pr2++ZDPj7ZJZ+LnfoO8XHDEmSOmM+nL6TJM0ThpIkqTMMJUlSZxhKkqTOMJQkSZ1hKEmzJMmZmeCp0L3lSV6W5IDhjU6aHYaSNDe8jOYRSdK8ZihJQ5TkTWl+l82XaR71T5LfTPLFNL8r6KtJ/kNfmxfSPBLpL5N8PckeSd6S5Ook1yc5N0N6cJo0aIaSNCRJnkjzWJffAf6A5iGVAOcCr6mqJwKvBT7S266qLgJGgZdU1ROq6h7gw1X1pKr6bZpfxfHcIU1DGqj58EBWaa54KnBxVd0NkGQ9sDvwn4C/7jnYmcrvCvrd9tcA7AnsS/MYl7+f8RFLQ2YoScPV/1yvXYCfVNUTptpBml8n/RGaZ5LdnORMmnCT5jxP30nDcznw/Paa0CLgeTS/Y+Y7SV4E0D6Z+fHjtL0TWNQujwXQ7Un2Bl444HFLQ2MoSUNSVf8C/BXNU67/BvhqW/QS4BVJvkFzGq7/11MDfAr4WJKv0zyJ+TyaJzj/Hc2vI5DmBZ8SLknqDI+UJEmdYShJkjrDUJIkdYahJEnqDENJktQZhpIkqTMMJUlSZ/x/bKQ457qgI2QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamma epsilon\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZ30lEQVR4nO3df5ymdV3v8debWVZ+7YrmlrpLLCRhayeDRtD0mIkaqMWW1kHTklMH6REimhl5+mGl1elYKkcSSVE8ouRBTTQU7ZQPK5Gzs0DRulDrCjKAMiYICgLLfs4f17VyN8zOfHdmr51ZeD0fj/ux93V9v9/r+lzX3Dvvua7rvq87VYUkSXPZZ7ELkCTtHQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDWkRJnpFkcrHrGJVkU5JnzNL+uiTv3HMVaakwMDRvSa5LcleSbyb5apJ3JzloseuaTZK1SSrJst20vP2S3JbkmTO0vTnJRbtjPfPRb+e3+p/PjUn+LMnYXOOq6glV9ZlZ2v+wqn55txarvYKBoYX6yao6CDgaeBLwW7syOJ295nU4PWiq6tvAXwK/MK3fGPAi4Pw9V92Mntj/fI4DXgz8t4UsbHcFrfZOe81/VC1tVXUj8AngB5M8IsnHk0wlubV/vmZH3ySfSfLGJP8I3AkcnuTkJJuT3JFka5KXj/R/RpLJJK9NckuSm5OsT/LcJP+a5OtJXjfSf58kZyb5YpJ/T/LBJI/smz/b/3tb/5f3U/ox/7Vf/61JLk1y6MjyKsmvJvk34N9m2PzzgRckOWBk3k/Q/f/6xGzbNl2/rseNTL8nyRtGpp+f5Kr+qOZzSX5o5z+V+1XVNcDf0/18vi/J3/b75mtJLkhy8Mg6rkvyrP7565NclOR9SW4HXtbPe1/fvuOI7ReTfLlf3n8fWdb+Sc7v9+vm/mc4OdL+G/3Rzx1Jrk1yXMv2aHEYGNotkhwCPBe4ku519W7gUOB7gbuAt00b8lLgFGAFcD1wC/B8YCVwMvDmJEeP9H80sB+wGvgd4C+AlwA/Avxn4HeSHN73PR1YD/wY8FjgVuDsvu3p/b8HV9VBVXVZkvXA64CfAVbR/WL9wLR61wPHAuumb3tVfQ64uR8/un3vr6ptDdvWpB9zHvBy4LuAdwAXJ3lYw9h1dPvpSiDAH9Htmx8ADgFeP8vwE4GLgIOBC3bS52nAkXRHMr+T5Af6+b8LrAUOB55N9zPbUdORwGnAk6pqBV3IXjfXtmgRVZUPH/N60P3n/iZwG90v/T8H9p+h3w8Dt45Mfwb4/TmW/VfAK/vnz6ALnbF+egVQwLEj/TcC6/vnm4HjRtoeA9wLLKP75VXAspH2TwC/NDK9D92Rz6H9dAHPnKPe3wI+1T9f2Y8/qnHbJkfaCnjcyPR7gDf0z98O/MG0ZV0L/NhO1lPA7XSB+UXgDcA+M/RbD1w57ef6rP7564HPTuv/euB9/fMd+3PNSPv/A07qn28FfmKk7Zd3bC/wOLowfRaw72K/nn3M/fB8pBZqfVX9zeiM/tTMm4HjgUf0s1ckGauq+/rpG6aNOYHur9Hvp/uFfQBw9UiXfx8Ze1f/71dH2u8CdlxwPxT4SJLtI+33Ad+zk204FHhrkj8dLYnuaOb6meqdwXuB302ymu4v5S1VdWXjtrU6FPjFJK8Ymbec7khhZ46uqi2jM5J8N3AW3RHHir6mW2dZxlzbDvCVked3cv/P4rHTxn/neVVtSXIGXQA9IcmlwKur6qaG9WkReEpKQ/g1utMTx1bVSu4/DZSRPt+5TXJ/SuVDwJuA76mqg4FLpvXfFTcAJ1TVwSOP/aq7zjLT7ZlvAF4+rf/+1Z1qekC9M6mqL9Odyvp5utNR753ntt1JFyg7PHpanW+cVucBVTX99Nlc/qjfnh/qfz4vmaUemGPb53AzsGZk+pD/sOCq91fV0+jCsID/sYB1aWAGhoawgu4v/tv6i82/O0f/5cDDgClgW/8X+XMWsP5zgDfuuHCdZFWSE/u2KWA73Tn10f6/meQJff+HJ/nZeaz3fLpz8k/l/nP9u7ptVwEvTjKW5Hi66zA7/AVwapJj0zkwyfOSrNjFOlfQn0rsj4h+fRfH74oP0u3bR/TrOm1HQ5IjkzyzD9Vv071m7tvJcrQEGBgawluA/YGvAZ8HPjlb56q6g+5C9QfpTo28GLh4Aet/az/+U0nu6Gs4tl/XncAbgX/s32n05Kr6CN1fthf27wT6F+CEeaz3IrpTcP+3qm6e57a9EvhJuutCP093vYN+WRN0b4t9W7+sLcDL5lHn79G9DfobwF8DH57HMlr9PjAJfAn4G7p9dHff9jDgj+leJ18BvpvuzQdaolLlFyhJ2jOS/ArdBfEfm7OzlhyPMCQNJsljkjy1/2zMkXTXtz6y2HVpfnyXlKQhLaf7vMhhdKfZLqR7+7X2Qp6SkiQ18ZSUJKnJg+qU1KMe9ahau3btYpchSXuNjRs3fq2qVrX0fVAFxtq1a5mYmFjsMiRpr5Hk+rl7dTwlJUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBjSkKpgyxbYunWxK5EW7EH1OQxpybnsMnjHO7rnZ5wBRx21qOVIC+ERhjSkG2/sjjK2b4eb/OZR7d08wpCGdNxxcP31sGwZPO1pi12NtCAGhjSkRz4SXvOaxa5C2i08JSVJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKnJoIGR5Pgk1ybZkuTMGdofn+SyJHcnec20toOTXJTkmiSbkzxlyFolSbMb7G61ScaAs4FnA5PAhiQXV9UXRrp9HTgdWD/DIt4KfLKqXphkOXDAULVKkuY25BHGMcCWqtpaVfcAFwInjnaoqluqagNw7+j8JCuBpwPv6vvdU1W3DVirJGkOQwbGauCGkenJfl6Lw4Ep4N1JrkzyziQHztQxySlJJpJMTE1NLaxiSdJODRkYmWFeNY5dBhwNvL2qjgK+BTzgGghAVZ1bVeNVNb5q1ar5VSpJmtOQgTEJHDIyvQZo/VLjSWCyqi7vpy+iCxBJ0iIZMjA2AEckOay/aH0ScHHLwKr6CnBDkiP7WccBX5hliCRpYIO9S6qqtiU5DbgUGAPOq6pNSU7t289J8mhgAlgJbE9yBrCuqm4HXgFc0IfNVuDkoWqVJM1tsMAAqKpLgEumzTtn5PlX6E5VzTT2KmB8yPokSe38pLckqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmgwZGkuOTXJtkS5IzZ2h/fJLLktyd5DUztI8luTLJx4esU5I0t8ECI8kYcDZwArAOeFGSddO6fR04HXjTThbzSmDzUDVKktoNeYRxDLClqrZW1T3AhcCJox2q6paq2gDcO31wkjXA84B3DlijJKnRkIGxGrhhZHqyn9fqLcBrge2zdUpySpKJJBNTU1O7XKQkqc2QgZEZ5lXTwOT5wC1VtXGuvlV1blWNV9X4qlWrdrVGSVKjIQNjEjhkZHoNcFPj2KcCP5XkOrpTWc9M8r7dW54kaVcMGRgbgCOSHJZkOXAScHHLwKr6zapaU1Vr+3F/W1UvGa5USdJclg214KraluQ04FJgDDivqjYlObVvPyfJo4EJYCWwPckZwLqqun2ouiRJ85OqpssKe4Xx8fGamJhY7DIkaa+RZGNVjbf09ZPekqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWoyaGAkOT7JtUm2JDlzhvbHJ7ksyd1JXjMy/5Akf5dkc5JNSV45ZJ2SpLktG2rBScaAs4FnA5PAhiQXV9UXRrp9HTgdWD9t+Dbg16rqiiQrgI1JPj1trCRpDxryCOMYYEtVba2qe4ALgRNHO1TVLVW1Abh32vybq+qK/vkdwGZg9YC1SpLmMGRgrAZuGJmeZB6/9JOsBY4CLt89ZUmS5mPIwMgM82qXFpAcBHwIOKOqbt9Jn1OSTCSZmJqamkeZkqQWTYGR5KlJPp3kX5NsTfKlJFvnGDYJHDIyvQa4qbWwJPvShcUFVfXhnfWrqnOraryqxletWtW6eEnSLmq96P0u4FXARuC+xjEbgCOSHAbcCJwEvLhlYJL069xcVX/WuD5J0oBaA+MbVfWJXVlwVW1LchpwKTAGnFdVm5Kc2refk+TRwASwEtie5AxgHfBDwEuBq5Nc1S/ydVV1ya7UIEnafVI192WFJH9M90v/w8DdO+bveCfTUjE+Pl4TExOLXYYk7TWSbKyq8Za+rUcYx/b/ji60gGfuSmGSpL1XU2BU1Y8PXYgkaWlrfZfUw5P82Y63ryb50yQPH7o4SdLS0fo5jPOAO4Cf6x+3A+8eqihJ0tLTeg3j+6rqBSPTvzfy7iVJ0kNA6xHGXUmetmMiyVOBu4YpSZK0FLUeYfwKcH5/3SJ0d5l92VBFSZKWntZ3SV0FPDHJyn56xvs6SZIevGYNjCSv3sl8ALxthyQ9dMx1hLFij1QhSVryZg2Mqvq9PVWIJGlpm+uU1Gur6k+S/C9m+C6Lqjp9sMokSUvKXKekNvf/ekc/SXqIm+uU1Mf6f8/fMS/JPsBBvlNKkh5aWu8l9f4kK5McCHwBuDbJrw9bmiRpKWn9pPe6/ohiPXAJ8L10X3AkSXqIaA2Mffvv2F4PfLSq7mWGi+CSpAev1sB4B3AdcCDw2SSH0t2xVpL0ENF6a5CzgLNGZl2fxC9VkqSHkNaL3t+V5KwkVyTZmOStgF+gJEkPIa2npC4EpoAXAC/sn//lUEVJkpae1tubP7Kq/mBk+g1J1g9QjyRpiWo9wvi7JCcl2ad//Bzw10MWJklaWloD4+XABcDd/eNC4NVJ7kjiu6Uk6SGgNTAeTvcNe39QVfsCa4FnVdWKqlq5s0FJjk9ybZItSc6cof3xSS5LcneS1+zKWEnSntUaGGcDTwZe1E/fAbxttgFJxvpxJwDrgBclWTet29eB04E3zWOsJGkPag2MY6vqV4FvA1TVrcDyOcYcA2ypqq1VdQ/daawTRztU1S1VtQG4d1fHSpL2rNbAuLf/q78AkqwCts8xZjVww8j0ZD+vRfPYJKckmUgyMTU11bh4SdKuag2Ms4CPAN+d5I3APwB/OMeYzDCv9f5TzWOr6tyqGq+q8VWrVjUuXpK0q1pvDXJBko3AcXS/zNdX1eY5hk0Ch4xMrwFuaqxrIWMlSQNo/eAeVXUNcM0uLHsDcESSw4AbgZOAF++BsZKkATQHxq6qqm1JTgMuBcaA86pqU5JT+/Zzkjya7utfVwLbk5xB/90bM40dqlZJ0txS9eD5Wovx8fGamPDrxyWpVZKNVTXe0rf1orck6SHOwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSk0EDI8nxSa5NsiXJmTO0J8lZffs/Jzl6pO1VSTYl+ZckH0iy35C1SpJmN1hgJBkDzgZOANYBL0qyblq3E4Aj+scpwNv7sauB04HxqvpBYAw4aahaJUlzG/II4xhgS1Vtrap7gAuBE6f1ORF4b3U+Dxyc5DF92zJg/yTLgAOAmwasVZI0hyEDYzVww8j0ZD9vzj5VdSPwJuDLwM3AN6rqUzOtJMkpSSaSTExNTe224iVJ/9GQgZEZ5lVLnySPoDv6OAx4LHBgkpfMtJKqOreqxqtqfNWqVQsqWJK0c0MGxiRwyMj0Gh54WmlnfZ4FfKmqpqrqXuDDwI8OWKskaQ5DBsYG4IgkhyVZTnfR+uJpfS4GfqF/t9ST6U493Ux3KurJSQ5IEuA4YPOAtUqS5rBsqAVX1bYkpwGX0r3L6byq2pTk1L79HOAS4LnAFuBO4OS+7fIkFwFXANuAK4Fzh6pVkjS3VE2/rLD3Gh8fr4mJicUuQ5L2Gkk2VtV4S18/6S1JamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJoMGRpLjk1ybZEuSM2doT5Kz+vZ/TnL0SNvBSS5Kck2SzUmeMmStkqTZDRYYScaAs4ETgHXAi5Ksm9btBOCI/nEK8PaRtrcCn6yqxwNPBDYPVaskaW5DHmEcA2ypqq1VdQ9wIXDitD4nAu+tzueBg5M8JslK4OnAuwCq6p6qum3AWiVJcxgyMFYDN4xMT/bzWvocDkwB705yZZJ3JjlwwFolSXMYMjAyw7xq7LMMOBp4e1UdBXwLeMA1EIAkpySZSDIxNTW1kHolSbMYMjAmgUNGptcANzX2mQQmq+ryfv5FdAHyAFV1blWNV9X4qlWrdkvhkqQHGjIwNgBHJDksyXLgJODiaX0uBn6hf7fUk4FvVNXNVfUV4IYkR/b9jgO+MGCtkqQ5LBtqwVW1LclpwKXAGHBeVW1Kcmrffg5wCfBcYAtwJ3DyyCJeAVzQh83WaW2SpD0sVdMvK+y9xsfHa2JiYrHLkKS9RpKNVTXe0tdPekuSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaDHZrEElw57138vF//ThjGeP53/98HrbsYYtdkjRvBoY0oE9/8dN89JqPArBi+Qqe87jnLHJF0vx5Skoa0P777k/1XwOz/777L3I10sJ4hCEN6LjDjmPF8hWM7TPG+GOb7u8mLVkGhjSgsX3GeMohT1nsMqTdwlNSkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJapKqWuwadpskU8D1i13HHvQo4GuLXcQS4b64n/ui436432z74tCqWtWykAdVYDzUJJmoKj8+jPtilPui43643+7aF56SkiQ1MTAkSU0MjL3buYtdwBLivrif+6LjfrjfbtkXXsOQJDXxCEOS1MTAkCQ1MTCWqCTHJ7k2yZYkZ87S70lJ7kvywmnzx5JcmeTjw1c7nIXshyTXJbk6yVVJJvZMxcNZ4L44OMlFSa5JsjnJXv0lHfPdF0mO7F8POx63JzljjxU+gAW+Ll6VZFOSf0nygST7zbqyqvKxxB7AGPBF4HBgOfBPwLqd9Ptb4BLghdPaXg28H/j4Ym/PYu0H4DrgUYu9HUtkX5wP/HL/fDlw8GJv02Lti2ntX6H74Nqib9ee3hfAauBLwP799AeBl822Po8wlqZjgC1VtbWq7gEuBE6cod8rgA8Bt4zOTLIGeB7wzqELHdiC9sODzLz3RZKVwNOBdwFU1T1VddvgFQ9nd70ujgO+WFV7890hFrovlgH7J1kGHADcNNvKDIylaTVww8j0ZD/vO5KsBn4aOGeG8W8BXgtsH6i+PWWh+6GATyXZmOSUwarcMxayLw4HpoB396cp35nkwCGLHdhCXxc7nAR8YLdXt2fNe19U1Y3Am4AvAzcD36iqT822MgNjacoM86a///ktwG9U1X3/YWDyfOCWqto4UG170rz3Q++pVXU0cALwq0mevpvr25MWsi+WAUcDb6+qo4BvATs9170XWOjrgiTLgZ8C/s/uLW2PW8jvikfQHY0cBjwWODDJS2Zb2bL516kBTQKHjEyv4YGHiuPAhUmgu7HYc5NsA44FfirJc4H9gJVJ3ldVs74Qlqh574eq+ququgmgqm5J8hG6w/fPDl/2IBbymvg8MFlVl/f9LmLvDowFvS769hOAK6rqqwPXOrSFvC72Bb5UVVMAST4M/Cjwvp2ubbEv2viY8ULWMmArXfLvuJD1hFn6v4eZL+o9g737ove89wNwILBi5PnngOMXe5sW6zUB/D1wZP/89cD/XOxtWqx90c+7EDh5sbdlMfcF3R+Xm+iuXYTujRGvmG19HmEsQVW1LclpwKV07244r6o2JTm1b5/tvOyDxgL3w/cAH+n/qloGvL+qPjl0zUPZDa+JVwAX9KditgInD1rwgBa6L5IcADwbePngxQ5sIfuiqi5PchFwBbANuJI5biHirUEkSU286C1JamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmfnBPmkOS3wZ+nu4mb18DNgLfAE6h+3TtFuClVXVnkvcAdwGPBw6l+4DcLwJPAS6vqpf1y/wmcDbwLOBW4HXAnwDfC5xRVRcnWQv8b7pPqgOcVlWfG3hzpZ3yCEOaRZJx4AXAUcDP0N2XB+DDVfWkqnoisBn4pZFhjwCeCbwK+BjwZuAJwH9K8sN9nwOBz1TVjwB3AG+g+/TxTwO/3/e5BXh2dTdQ/C/AWUNso9TKIwxpdk8DPlpVdwEk+Vg//weTvAE4GDiI7tYMO3ysqirJ1cBXq+rqfuwmYC1wFXAPsONWJVcDd1fVvf2Ytf38fYG39SFzH/D9A2yf1MzAkGY30+2jobuJ2/qq+qckL6O70eMOd/f/bh95vmN6x/+5e+v++/J8p19Vbe+/zAa6I5SvAk+kOxvw7XlvhbQbeEpKmt0/AD+ZZL8kB9F9kyHACuDmJPvSXd8YwsOBm6tqO/BSupvLSYvGIwxpFlW1IcnFdLeNvh6YoLvg/dvA5f28q+kCZHf7c+BDSX4W+Du6Lz6SFo13q5XmkOSgqvpmf1vszwKnVNUVi12XtKd5hCHN7dwk6+i+wfB8w0IPVR5hSJKaeNFbktTEwJAkNTEwJElNDAxJUhMDQ5LU5P8DgjA18ClxV1wAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamma theta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfjklEQVR4nO3dcZwfZWHn8c/XxBQSoUSzIASEECgYPQnpT1Dk0BNoAa1JpL4Aa0HRC/QMFnuva3Neq1T0Si2W2iuFQwymVeEomhqlChbP0tOWsoEUiEAJEchCDAsFNBJNAt/7Y551J5vN7mYns8uG7/v12tdv5nmemXlm9pd8d575/WZkm4iIiNF6yXh3ICIiJrYESURENJIgiYiIRhIkERHRSIIkIiIaSZBEREQjCZKIFyhJb5HUM979qJO0WtJbhqj/iKSrx65H8UKQIIlWSHpI0iZJGyVtkHSNpJeNd7+GIukQSZY0eRetbw9JT0t66yB1l0m6YVdsZzTKfv6k/H4elfSnkiYNt5zt19j+zhD1/9P2B3ZpZ+MFL0ESbfo12y8D5gGvB35/ZxZWZcK8RwcGkO2fAv8HOHtAu0nAWcCysevdoI4qv58TgXcD/7nJynZVAMfEM2H+kcbEZftR4BvAayVNl/R1Sb2SnirTB/a1lfQdSZ+U9F3gWeBQSe+TdK+kH0taK+m8Wvu3SOqR9LuSHpe0XtICSadJ+jdJ/y7pI7X2L5G0RNKDkp6UdL2kl5fqW8vr0+Uv9TeWZc4t239K0k2SDq6tz5I+KOkB4IFBdn8ZcLqkqbWyX6X6t/eNofZtoLKtw2rzn5f0idr82yWtKmdB35P0uh3/VvrZvg/4R6rfz2xJ3y7H5glJX5S0T20bD0k6qUxfJOkGSV+Q9CPgvaXsC6W+7wzvHEmPlPX9j9q69pS0rBzXe8vvsKdW/3vlbOnHku6XdOJI9ifGXoIkWifpIOA04E6q99w1wMHAq4BNwF8MWOQ3gUXAXsDDwOPA24G9gfcBl0maV2v/SmAPYCbwUeCzwHuAXwb+I/BRSYeWth8CFgBvBg4AngIuL3UnlNd9bL/M9j9JWgB8BHgn0EX1H+61A/q7ADgWmDNw321/D1hflq/v35dsbx3Bvo1IWWYpcB7wCuB/Aysk/cIIlp1DdZzuBAT8EdWxeTVwEHDREIvPB24A9gG+uIM2xwNHUJ35fFTSq0v5x4BDgEOBk6l+Z319OgJYDLze9l5U4fvQcPsS48R2fvKzy3+o/tFvBJ6mCoO/BPYcpN1c4Kna/HeAjw+z7r8FfrtMv4UqjCaV+b0AA8fW2q8EFpTpe4ETa3X7A1uAyVT/qRmYXKv/BvD+2vxLqM6UDi7zBt46TH9/H7i5TO9dlj96hPvWU6szcFht/vPAJ8r0FcDFA9Z1P/DmHWzHwI+ogvRB4BPASwZptwC4c8Dv9aQyfRFw64D2FwFfKNN9x/PAWv2/AGeW6bXAr9bqPtC3v8BhVCF7EvDS8X4/52fon4xpRpsW2P77ekEZ4rkMOAWYXor3kjTJ9nNlft2AZU6l+uv1l6j+I58K3F1r8mRt2U3ldUOtfhPQd6H/YGC5pOdr9c8B++1gHw4GPiPp0/UuUZ39PDxYfwfxV8DHJM2k+st6je07R7hvI3UwcI6kC2plU6jOLHZknu019QJJ+wJ/TnWGslfp01NDrGO4fQf4YW36Wfp/FwcMWP7n07bXSLqQKpheI+km4HdsPzaC7cUYy9BWjLX/SjXMcaztvekfTlKtzc9vSV2GZr4MXArsZ3sf4O8GtN8Z64BTbe9T+9nD1XWcwW6FvQ44b0D7PV0NWW3X38HYfoRqSOw3qIa1/mqU+/YsVdD0eeWAfn5yQD+n2h44DDecPyr787ry+3nPEP2BYfZ9GOuBA2vzB22zYvtLto+nCkkDf9xgW9GiBEmMtb2ozhCeLhe5PzZM+ynALwC9wNbyF/yvNNj+lcAn+y6YS+qSNL/U9QLPU43Z19v/d0mvKe1/UdK7RrHdZVRj/m+i/1rCzu7bKuDdkiZJOoXqOk+fzwLnSzpWlWmS3iZpr53s516UIclyBvXfdnL5nXE91bGdXra1uK9C0hGS3lrC9qdU75nndrCeGGcJkhhrfwbsCTwB/DPwzaEa2/4x1QXy66mGWN4NrGiw/c+U5W+W9OPSh2PLtp4FPgl8t3zy6Q22l1P9JXxd+WTSPcCpo9juDVRDebfYXj/Kfftt4Neorjv9BtX1FMq6uqk+vvsXZV1rgPeOop9/SPVx7WeAG4GvjGIdI/VxoAf4AfD3VMfoZ6XuF4BLqN4nPwT2pfrQQ7wAyc6DrSJi/En6LaoL8W8etnG8oOSMJCLGhaT9Jb2pfLfnCKrrZ8vHu1+x8/KprYgYL1Oovu8yi2q47jqqj4nHBJOhrYiIaCRDWxER0ciLYmhrxowZPuSQQ8a7GxERE8rKlSufsN01XLsXRZAccsghdHd3j3c3IiImFEkPD98qQ1sREdFQgiQiIhpJkERERCOtBomkU8oDadZIWjJI/XxJd5WH8XRLOr5W99uS7lH1jOgLa+Uvl/QtSQ+U1+kD1xsREWOntSBR9TjRy6nuSzQHOKs8QKfuFqrHfc4FzgWuLsu+luq+QccARwFvl3R4WWYJ1f2KDi/LbxdQERExdto8IzmG6rkLa21vpvrW6vx6A9sb3f+NyGn035L61cA/237W1VPk/gFYWOrm0/+s62VUD96JiIhx0maQzGTbh9b0lLJtSFoo6T6qO42eW4rvAU6Q9IryIKTT6H9WwX61u6eup7or6HYkLSrDZd29vb27ZIciImJ7bQbJYA/D2e5+LLaX2z6S6szi4lJ2L9Wtu79FdZvxfwW27szGbV9lu2O709U17PdpIiJilNoMkh62feLZgcAOH5Np+1ZgtqQZZf5ztufZPgH4d+CB0nSDpP2hunso1XOdIyJinLQZJLcDh0uaJWkKcCYDHtoj6TBJKtPzqO4G+mSZ37e8vgp4J9D3yNAVwDll+hzgqy3uQ0REDKO1W6TY3ippMXATMAlYanu1pPNL/ZXA6cDZkrZQPUrzjNrF9y9LegWwBfig7adK+SXA9ZLeDzwCjOaxpxERsYu8KG4j3+l0nHttRUTsHEkrbXeGa5dvtkdERCMJkoiIaCRBEhERjSRIIiKikQRJREQ0kiCJiIhGEiQREdFIgiQiIhpJkERERCMJkoiIaCRBEhERjSRIIiKikQRJREQ0kiCJiIhGEiQREdFIgiQiIhpJkERERCOtBomkUyTdL2mNpCWD1M+XdJekVZK6JR1fq/uwpNWS7pF0raQ9SvlFkh4ty6ySdFqb+xAREUNrLUgkTQIuB04F5gBnSZozoNktwFG25wLnAleXZWcCHwI6tl9L9cz3M2vLXWZ7bvn5u7b2ISIihtfmGckxwBrba21vBq4D5tcb2N7o/ofGTwPqD5CfDOwpaTIwFXisxb5GRMQotRkkM4F1tfmeUrYNSQsl3QfcSHVWgu1HgUuBR4D1wDO2b64ttrgMiS2VNH2wjUtaVIbLunt7e3fNHkVExHbaDBINUubtCuzlto8EFgAXA5RwmA/MAg4Apkl6T1nkCmA2MJcqZD492MZtX2W7Y7vT1dXVbE8iImKH2gySHuCg2vyBDDE8ZftWYLakGcBJwA9s99reAnwFOK6022D7OdvPA5+lGkKLiIhx0maQ3A4cLmmWpClUF8tX1BtIOkySyvQ8YArwJNWQ1hskTS31JwL3lnb711axELinxX2IiIhhTG5rxba3SloM3ET1qaultldLOr/UXwmcDpwtaQuwCTijXHy/TdINwB3AVuBO4Kqy6k9Jmks1TPYQcF5b+xAREcNT/4emdl+dTsfd3d3j3Y2IiAlF0krbneHa5ZvtERHRSIIkIiIaSZBEREQjCZKIiGgkQRIREY0kSCIiopEESURENJIgiYiIRhIkERHRSIIkIiIaSZBEREQjCZKIiGgkQRIREY0kSCIiopEESURENJIgiYiIRhIkERHRSIIkIiIaaTVIJJ0i6X5JayQtGaR+vqS7JK2S1C3p+FrdhyWtlnSPpGsl7VHKXy7pW5IeKK/T29yHiIgYWmtBImkScDlwKjAHOEvSnAHNbgGOsj0XOBe4uiw7E/gQ0LH9WmAScGZZZglwi+3Dy/LbBVRERIydNs9IjgHW2F5rezNwHTC/3sD2Rtsus9MA16onA3tKmgxMBR4r5fOBZWV6GbCgne5HRMRItBkkM4F1tfmeUrYNSQsl3QfcSHVWgu1HgUuBR4D1wDO2by6L7Gd7fWm3Hth3sI1LWlSGy7p7e3t30S5FRMRAbQaJBinzdgX2cttHUp1ZXAxQrnvMB2YBBwDTJL1nZzZu+yrbHdudrq6une17RESMUJtB0gMcVJs/kP7hqe3YvhWYLWkGcBLwA9u9trcAXwGOK003SNofoLw+3kbnIyJiZNoMktuBwyXNkjSF6mL5inoDSYdJUpmeB0wBnqQa0nqDpKml/kTg3rLYCuCcMn0O8NUW9yEiIoYxua0V294qaTFwE9WnrpbaXi3p/FJ/JXA6cLakLcAm4Ixy8f02STcAdwBbgTuBq8qqLwGul/R+qsB5V1v7EBERw1P/h6Z2X51Ox93d3ePdjYiICUXSStud4drlm+0REdFIgiQiIhpJkERERCMJkoiIaCRBEhERjSRIIiKikQRJREQ0kiCJiIhGEiQREdFIgiQiIhpJkERERCMJkoiIaCRBEhERjSRIIiKikQRJREQ0kiCJiIhGEiQREdFIgiQiIhppNUgknSLpfklrJC0ZpH6+pLskrZLULen4Un5EKev7+ZGkC0vdRZIerdWd1uY+RETE0Ca3tWJJk4DLgZOBHuB2SStsf7/W7BZghW1Leh1wPXCk7fuBubX1PAosry13me1L2+p7RESMXJtnJMcAa2yvtb0ZuA6YX29ge6Ntl9lpgNneicCDth9usa8RETFKbQbJTGBdbb6nlG1D0kJJ9wE3AucOsp4zgWsHlC0uQ2JLJU0fbOOSFpXhsu7e3t7R7UFERAyrzSDRIGXbnXHYXm77SGABcPE2K5CmAO8A/qZWfAUwm2roaz3w6cE2bvsq2x3bna6urtH0PyIiRqDNIOkBDqrNHwg8tqPGtm8FZkuaUSs+FbjD9oZauw22n7P9PPBZqiG0iIgYJ20Gye3A4ZJmlTOLM4EV9QaSDpOkMj0PmAI8WWtyFgOGtSTtX5tdCNzTQt8jImKEWvvUlu2tkhYDNwGTgKW2V0s6v9RfCZwOnC1pC7AJOKPv4rukqVSf+DpvwKo/JWku1TDZQ4PUR0TEGFL/h6Z2X51Ox93d3ePdjYiICUXSStud4drlm+0REdFIgiQiIhpJkERERCMJkoiIaCRBEhERjYzo47+S3ga8Btijr8z2x9vqVERETBzDnpFIuhI4A7iA6rYn7wIObrlfERExQYxkaOs422cDT9n+Q+CNbHvrk4iIeBEbSZBsKq/PSjoA2ALMaq9LERExkYzkGsnXJe0D/AlwB9WtSa5us1MRETFxjCRIPmX7Z8CXJX2d6oL7T9vtVkRETBQjGdr6p74J2z+z/Uy9LCIiXtx2eEYi6ZVUTzTcU9LR9D+oam9g6hj0LSIiJoChhrZ+FXgv1QOp/rRW/iPgIy32KeJF4cFV3+bhB+/k6OPeyfT98/mVmLh2GCS2lwHLJJ1u+8tj2KeI3d6TPQ9wyRd/i03Pb+aX7rmRj37s2+PdpYhRG8k1ku9K+pykbwBImiPp/S33K2K3tmXzJrb4OfZ4yRQ2bt443t2JaGQkQXIN1VMODyjz/wZc2FaHIl4MXnno6zj/pCUcd9BxXPCe/zXe3YloZCRBMsP29cDzUD1CF3huJCuXdIqk+yWtkbRkkPr5ku6StEpSt6TjS/kRpazv50eSLix1L5f0LUkPlNfpI93ZiBeSN5zyAc790DUc9Opjx7srEY2MJEh+IukVVF9ERNIbgGeGW0jSJOBy4FRgDnCWpDkDmt0CHGV7LnAu5YuOtu+3PbeU/zLwLLC8LLMEuMX24WX57QIqIiLGzkiC5HeAFcBsSd8F/orqBo7DOQZYY3ut7c3AdcD8egPbG93/0PhplLAa4ETgQdsPl/n5wLIyvQxYMIK+RERES4b9ZrvtOyS9GTiC6rsk99veMoJ1zwTW1eZ7gO3O4SUtBP4I2Bd42yDrORO4tja/n+31pW/rJe072MYlLQIWAbzqVa8aQXcjImI0Rvpgq2OAo4B5VENUZ49gGQ1Stt0Zh+3lto+kOrO4eJsVSFOAdwB/M8J+1td7le2O7U5XV9fOLh4RESM07BmJpL8GZgOr6L/IbqohrqH0sO3t5g8EHttRY9u3SpotaYbtJ0rxqcAdtjfUmm6QtH85G9kfeHy4fYiIiPaM5KaNHWBO7VrGSN0OHC5pFvAo1RDVu+sNJB1Gdf3DkuYBU4Ana03OYtthLaiu15wDXFJev7qT/YqIiF1oJEFyD/BKYP3OrNj2VkmLqb6DMglYanu1pPNL/ZXA6cDZkrZQPffkjL7AkjQVOBk4b8CqLwGuL1+KfITqiY0RETFOtKMTDUlfoxrC2guYC/wL8LO+etvvGIP+7RKdTsfd3d3j3Y2IiAlF0krbneHaDXVGcinVBfM/ZtuP2PaVRUREDHnTxn8AkPTSvuk+kvZsu2MRETExDPU8kt8C/gtwqKS7alV7Ad9tu2MRETExDDW09SXgG1RfFqzfhuTHtv+91V5FRMSEMdTQ1jNU99Q6a+y6ExERE81Iv9keERExqARJREQ0kiCJiIhGEiQREdFIgiQiIhpJkERERCMJkoiIaCRBEhERjSRIIiKikQRJREQ0kiCJiIhGEiQREdFIgiQiIhppNUgknSLpfklrJC0ZpH6+pLskrZLULen4Wt0+km6QdJ+keyW9sZRfJOnRsswqSae1uQ8RETG0oZ5H0oikScDlwMlAD3C7pBW2v19rdguwwrYlvQ64Hjiy1H0G+KbtX5c0BZhaW+4y25e21feIiBi5Ns9IjgHW2F5rezNwHTC/3sD2Rtsus9MAA0jaGzgB+Fxpt9n20y32NSIiRqnNIJkJrKvN95SybUhaKOk+4Ebg3FJ8KNALXCPpTklXS5pWW2xxGRJbKmn6YBuXtKgMl3X39vbukh2KiIjttRkkGqTM2xXYy20fCSwALi7Fk4F5wBW2jwZ+Qv/jfq8AZgNzgfXApwfbuO2rbHdsd7q6uhrsRkREDKXNIOkBDqrNHwg8tqPGtm8FZkuaUZbtsX1bqb6BKliwvcH2c7afBz5LNYQWERHjpM0guR04XNKscrH8TGBFvYGkwySpTM8DpgBP2v4hsE7SEaXpicD3S7v9a6tYCNzT4j5ERMQwWvvUlu2tkhYDNwGTgKW2V0s6v9RfCZwOnC1pC7AJOKN28f0C4IslhNYC7yvln5I0l2qY7CHgvLb2ISIihqf+/7d3X51Ox93d3ePdjYiICUXSStud4drlm+0REdFIgiQiIhpJkERERCMJkoiIaCRBEhERjSRIIiKikQRJREQ0kiCJiIhGEiQREdFIgiQiIhpJkERERCMJkoiIaCRBEhERjSRIIiKikQRJREQ0kiCJiIhGEiQREdFIgiQiIhppNUgknSLpfklrJC0ZpH6+pLskrZLULen4Wt0+km6QdJ+keyW9sZS/XNK3JD1QXqe3uQ8RETG01oJE0iTgcuBUYA5wlqQ5A5rdAhxley5wLnB1re4zwDdtHwkcBdxbypcAt9g+vCy/XUBFRMTYafOM5Bhgje21tjcD1wHz6w1sb7TtMjsNMICkvYETgM+VdpttP13azQeWlellwIIW9yEiIobRZpDMBNbV5ntK2TYkLZR0H3Aj1VkJwKFAL3CNpDslXS1pWqnbz/Z6gPK672Abl7SoDJd19/b27po9ioiI7bQZJBqkzNsV2MvL8NUC4OJSPBmYB1xh+2jgJ+zkEJbtq2x3bHe6urp2quMRETFybQZJD3BQbf5A4LEdNbZ9KzBb0oyybI/t20r1DVTBArBB0v4A5fXxXd3xiIgYuTaD5HbgcEmzJE0BzgRW1BtIOkySyvQ8YArwpO0fAuskHVGangh8v0yvAM4p0+cAX21xHyIiYhiT21qx7a2SFgM3AZOApbZXSzq/1F8JnA6cLWkLsAk4o3bx/QLgiyWE1gLvK+WXANdLej/wCPCutvYhIiKGp/7/t3dfnU7H3d3d492NiIgJRdJK253h2uWb7RER0UiCJCIiGkmQREREIwmSiIhoJEESERGNJEgiIqKRBElERDSSIImIiEYSJBER0UiCJCIiGkmQREREIwmSiIhoJEESERGNJEgiIqKRBElERDSSIImIiEYSJBER0UirQSLpFEn3S1ojackg9fMl3SVplaRuScfX6h6SdHdfXa38IkmPlvJVkk5rcx8iImJorT2zXdIk4HLgZKAHuF3SCtvfrzW7BVhh25JeB1wPHFmr/0+2nxhk9ZfZvrStvkdExMi1eUZyDLDG9lrbm4HrgPn1BrY3uv+h8dOA3f8B8hERu5k2g2QmsK4231PKtiFpoaT7gBuBc2tVBm6WtFLSogGLLS5DYkslTR9s45IWleGy7t7e3mZ7EhERO9RmkGiQsu3OOGwvt30ksAC4uFb1JtvzgFOBD0o6oZRfAcwG5gLrgU8PtnHbV9nu2O50dXWNeiciImJobQZJD3BQbf5A4LEdNbZ9KzBb0owy/1h5fRxYTjVUhu0Ntp+z/Tzw2b7yiIgYH20Gye3A4ZJmSZoCnAmsqDeQdJgklel5wBTgSUnTJO1VyqcBvwLcU+b3r61iYV95RESMj9Y+tWV7q6TFwE3AJGCp7dWSzi/1VwKnA2dL2gJsAs4on+DaD1heMmYy8CXb3yyr/pSkuVTDZA8B57W1DxERMTz1f2hq99XpdNzd3T18w4iI+DlJK213hmuXb7ZHREQjCZKIiGgkQRIREY0kSCIiopEESURENJIgiYiIRhIkERHRSIIkIiIaSZBEREQjCZKIiGgkQRIREY0kSCIiopEESURENJIgiYiIRhIkERHRSIIkIiIaSZBEREQjCZKIiGjkRfGoXUm9wMPj3Y8xNgN4Yrw78QKQ49Avx6JfjkW/oY7Fwba7hlvBiyJIXowkdY/kWcu7uxyHfjkW/XIs+u2KY5GhrYiIaCRBEhERjSRIdl9XjXcHXiByHPrlWPTLsejX+FjkGklERDSSM5KIiGgkQRIREY0kSCYYSadIul/SGklLhmj3eknPSfr1AeWTJN0p6evt97ZdTY6FpIck3S1plaTuselxOxoeh30k3SDpPkn3Snrj2PS6HaM9FpKOKO+Fvp8fSbpwzDregobviw9LWi3pHknXStpjyI3Zzs8E+QEmAQ8ChwJTgH8F5uyg3beBvwN+fUDd7wBfAr4+3vsznscCeAiYMd778QI4DsuAD5TpKcA+471P43UsBtT/kOrLeOO+X2N9LICZwA+APcv89cB7h9pezkgmlmOANbbX2t4MXAfMH6TdBcCXgcfrhZIOBN4GXN12R8dAo2OxGxn1cZC0N3AC8DkA25ttP916j9uzq94TJwIP2p7Id8NoeiwmA3tKmgxMBR4bamMJkollJrCuNt9Tyn5O0kxgIXDlIMv/GfC7wPMt9W8sNT0WBm6WtFLSotZ62b4mx+FQoBe4pgx3Xi1pWpudbVnT90SfM4Frd3nvxtaoj4XtR4FLgUeA9cAztm8eamMJkolFg5QN/Pz2nwG/Z/u5bRaU3g48bntlS30ba6M+FsWbbM8DTgU+KOmEXdy/sdLkOEwG5gFX2D4a+Amww7H0CaDpewJJU4B3AH+za7s25pr8XzGd6uxlFnAAME3Se4ba2OTR9zPGQQ9wUG3+QLY/5ewA10mC6mZsp0naChwLvEPSacAewN6SvmB7yDfIC9ioj4Xtv7X9GIDtxyUtpxoKuLX9bu9yTd4T/wz02L6ttLuBiR0kjd4Tpf5U4A7bG1rua9uavC9eCvzAdi+ApK8AxwFf2OHWxvuiUH526gLaZGAt1V8KfRfQXjNE+88z+MXEtzDxL7aP+lgA04C9atPfA04Z730aj/cE8I/AEWX6IuBPxnufxutYlLLrgPeN976M57Gg+qNzNdW1EVF9IOOCobaXM5IJxPZWSYuBm6g+bbHU9mpJ55f6ocZ9dysNj8V+wPLyl9hk4Eu2v9l2n9uwC94TFwBfLEM6a4H3tdrhFjU9FpKmAicD57Xe2ZY1ORa2b5N0A3AHsBW4k2Fuo5JbpERERCO52B4REY0kSCIiopEESURENJIgiYiIRhIkERHRSIIkIiIaSZBEREQj+UJixChJ+gPgN6hujvcEsBJ4BlhE9W3iNcBv2n5W0ueBTcCRwMFUX/w7B3gjcJvt95Z1bgQuB04CngI+AnwKeBVwoe0Vkg4B/prqW/kAi21/r+XdjdihnJFEjIKkDnA6cDTwTqr7FgF8xfbrbR8F3Au8v7bYdOCtwIeBrwGXAa8B/oOkuaXNNOA7tn8Z+DHwCapvWy8EPl7aPA6c7Oqmk2cAf97GPkaMVM5IIkbneOCrtjcBSPpaKX+tpE8A+wAvo7pFRZ+v2baku4ENtu8uy64GDgFWAZuBvtu13A38zPaWsswhpfylwF+U8HkO+KUW9i9ixBIkEaMz2G26obr53QLb/yrpvVQ3yOzzs/L6fG26b77v3+IW99+36OftbD9fHjIE1RnNBuAoqlGFn456LyJ2gQxtRYzO/wN+TdIekl5G9eRJgL2A9ZJeSnX9pA2/CKy3/Tzwm1Q35YsYNzkjiRgF27dLWkF1e+6HgW6qC+1/ANxWyu6mCpZd7S+BL0t6F/B/qR5IFTFucvffiFGS9DLbG8vtx28FFtm+Y7z7FTHWckYSMXpXSZpD9cTJZQmReLHKGUlERDSSi+0REdFIgiQiIhpJkERERCMJkoiIaCRBEhERjfx/+ymVcY7EJWUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamma zeta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbMklEQVR4nO3dfZhedX3n8ffHhAgIEbpEwSQloChGF8WOYLWtLso2WCv0wWtRy6K1RVwRYqUtpa0PXd26ltU+SEtppdIVy1LANrooUqtrrYiZADaNkRopSiSSUKRAxYSQ7/5xzpi742TmnjlzMgy8X9c115zzezjn9ztzJ58559z3mVQVkiTN1GPmegCSpPnNIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBon0MJXkRUk2z/U4BiXZkORFk9Sfn+RP996I9HBgkKgXSW5L8kCS+5PcmeTPkhww1+OaTJIVSSrJwlna3r5J7klywgR170ty5WzsZybaef5b+/P5ZpL3JlkwVb+qekZVfWaS+v9RVb8wq4PVw55Boj79ZFUdADwHeC7wG9PpnMa8eY2OD6Cq+i7wf4D/Oq7dAuCVwKV7b3QTelb783kx8CrgF7tsbLYCWPPPvPlHqvmrqr4JfBx4ZpKDk3wsybYk326Xl421TfKZJO9K8vfAd4Ajk7w2ycYk9yW5NcnrB9q/KMnmJL+SZGuSLUlOSfLSJP+U5O4k5w+0f0yS85J8Lcm/JLkiyQ+01Z9tv9/T/qb+w22fn2/3/+0k1yY5fGB7leSNSb4KfHWC6V8K/EyS/QfKfpzm397HJ5vbeO2+njKw/sEk7xxYf1mSm9uzoM8nOWbPP5XdquorwN/R/HyenORv22NzV5LLkhw0sI/bkrykXX57kiuTfCjJvcBr2rIPtfVjZ3inJ/lGu71fH9jWfkkubY/rxvZnuHmg/lfbs6X7ktyS5MXDzEd7n0Gi3iVZDrwUuInmNfdnwOHADwIPAO8f1+U04AzgQODrwFbgZcBi4LXA+5I8Z6D9ocC+wFLgrcCfAD8H/BDwo8BbkxzZtj0bOAV4IfAk4NvAhW3dj7XfD6qqA6rq+iSnAOcDPw0sofkP9y/GjfcU4Hhg5fi5V9XngS1t/8H5fbiqdg4xt6G0fS4BXg/8B+CPgTVJHjtE35U0x+kmIMBv0xybpwPLgbdP0v1k4ErgIOCyPbT5EeBpNGc+b03y9Lb8bcAK4EjgRJqf2diYngacBTy3qg6kCd/bppqL5khV+eXXrH/R/KO/H7iHJgz+ENhvgnbPBr49sP4Z4Lem2PZfAee0yy+iCaMF7fqBQAHHD7RfB5zSLm8EXjxQdxjwILCQ5j+1AhYO1H8ceN3A+mNozpQOb9cLOGGK8f4G8Ml2eXHb/9gh57Z5oK6ApwysfxB4Z7v8R8B/H7etW4AX7mE/BdxLE6RfA94JPGaCdqcAN437ub6kXX478Nlx7d8OfKhdHjueywbqvwic2i7fCvz4QN0vjM0XeApNyL4E2GeuX89+Tf7lNU316ZSq+pvBgvYSz/uAVcDBbfGBSRZU1UPt+u3j+pxE89vrU2n+I98fWD/Q5F8G+j7Qfr9zoP4BYOxG/+HAR5LsGqh/CHjiHuZwOPB7Sf7X4JBozn6+PtF4J/DnwNuSLKX5zXpTVd005NyGdThwepI3DZQtojmz2JPnVNWmwYIkTwB+n+YM5cB2TN+eZBtTzR3gWwPL32H3z+JJ4/p/b7mqNiVZTRNMz0hyLfBLVXXHEPvTXualLe1tb6G5zHF8VS1m9+WkDLT53iOp20szVwEXAE+sqoOAa8a1n47bgZOq6qCBr32ruY8z0aOwbwdeP679ftVcsvq+8U6kqr5Bc0ns1TSXtf58hnP7Dk3QjDl03DjfNW6c+1fV+MtwU/ntdj7HtD+fn5tkPDDF3KewBVg2sL7832246sNV9SM0IVnA/+ywL/XIINHediDNGcI97U3ut03RfhHwWGAbsLP9Df4/d9j/RcC7xm6YJ1mS5OS2bhuwi+aa/WD7X0vyjLb945O8Ygb7vZTmmv8L2H0vYbpzuxl4VZIFSVbR3OcZ8yfAmUmOT+NxSX4iyYHTHOeBtJck2zOoX55m/+m4gubYHtzu66yxiiRPS3JCG7bfpXnNPLSH7WiOGSTa234X2A+4C/gC8InJGlfVfTQ3yK+gucTyKmBNh/3/Xtv/k0nua8dwfLuv7wDvAv6+fefT86rqIzS/CV/evjPpH4GTZrDfK2ku5X2qqrbMcG7nAD9Jc9/p1TT3U2i3NUrz9t33t9vaBLxmBuN8B83btf8V+L/A1TPYxrB+C9gM/DPwNzTHaHtb91jg3TSvk28BT6B504MehlLlH7aSNPeSvIHmRvwLp2yshxXPSCTNiSSHJXlB+9mep9HcP/vIXI9L0+e7tiTNlUU0n3c5guZy3eU0bxPXPOOlLUlSJ17akiR18qi4tHXIIYfUihUr5noYkjSvrFu37q6qWjJVu0dFkKxYsYLR0dG5HoYkzStJvj51Ky9tSZI6MkgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI66TVIkqxKckuSTUnOm6D+6CTXJ9me5NyB8n2TfDHJl5JsSPKOgbofSHJdkq+23w/ucw6SpMn1FiRJFgAXAicBK4FXJlk5rtndwNnABePKtwMnVNWzgGcDq5I8r607D/hUVR0FfKpdlyTNkT7PSI4DNlXVrVW1A7gcOHmwQVVtraq1wIPjyquq7m9X92m/ql0/Gbi0Xb4UOKWf4UuShtFnkCwFbh9Y39yWDSXJgiQ3A1uB66rqhrbqiVW1BaD9/oQ99D8jyWiS0W3bts1k/JKkIfQZJJmgrCYom1BVPVRVzwaWAccleeZ0dl5VF1fVSFWNLFmyZDpdJUnT0GeQbAaWD6wvA+6Y7kaq6h7gM8CqtujOJIcBtN+3dhqlJKmTPoNkLXBUkiOSLAJOBdYM0zHJkiQHtcv7AS8BvtJWrwFOb5dPB/56NgctSZqehX1tuKp2JjkLuBZYAFxSVRuSnNnWX5TkUGAUWAzsSrKa5h1ehwGXtu/8egxwRVV9rN30u4ErkrwO+Abwir7mIEmaWqqGvm0xb42MjNTo6OhcD0OS5pUk66pqZKp2frJdktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqROeg2SJKuS3JJkU5LzJqg/Osn1SbYnOXegfHmSTyfZmGRDknMG6p6d5AtJbk4ymuS4PucgSZpcb0GSZAFwIXASsBJ4ZZKV45rdDZwNXDCufCfwlqp6OvA84I0Dfd8DvKOqng28tV2XJM2RPs9IjgM2VdWtVbUDuBw4ebBBVW2tqrXAg+PKt1TVje3yfcBGYOlYNbC4XX48cEd/U5AkTWVhj9teCtw+sL4ZOH66G0myAjgWuKEtWg1cm+QCmiB8fqdRSpI66fOMJBOU1bQ2kBwAXAWsrqp72+I3AG+uquXAm4EP7KHvGe09lNFt27ZNZ7eSpGnoM0g2A8sH1pcxjctQSfahCZHLqurqgarTgbH1v6S5hPZ9quriqhqpqpElS5ZMa+CSpOH1GSRrgaOSHJFkEXAqsGaYjklCc6axsareO676DuCF7fIJwFdnabySpBno7R5JVe1MchZwLbAAuKSqNiQ5s62/KMmhwCjNzfNdSVbTvMPrGOA0YH2Sm9tNnl9V1wC/CPxekoXAd4Ez+pqDJGlqqZrWbYt5aWRkpEZHR+d6GJI0ryRZV1UjU7Xzk+2SpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOuk1SJKsSnJLkk1Jzpug/ugk1yfZnuTcgfLlST6dZGOSDUnOGdfvTe12NyR5T59zkCRNbmFfG06yALgQOBHYDKxNsqaqvjzQ7G7gbOCUcd13Am+pqhuTHAisS3JdVX05yX8CTgaOqartSZ7Q1xwkSVPr84zkOGBTVd1aVTuAy2kC4HuqamtVrQUeHFe+papubJfvAzYCS9vqNwDvrqrtY9vocQ6SpCn0GSRLgdsH1jezOwyGlmQFcCxwQ1v0VOBHk9yQ5P8lee4e+p2RZDTJ6LZt26a7W0nSkPoMkkxQVtPaQHIAcBWwuqrubYsXAgcDzwN+Gbgiyfftq6ourqqRqhpZsmTJ9EYuSRpan0GyGVg+sL4MuGPYzkn2oQmRy6rq6nHbvboaXwR2AYfMwnglSTPQZ5CsBY5KckSSRcCpwJphOrZnGB8ANlbVe8dV/xVwQtvuqcAi4K7ZGrQkaXp6e9dWVe1MchZwLbAAuKSqNiQ5s62/KMmhwCiwGNiVZDWwEjgGOA1Yn+TmdpPnV9U1wCXAJUn+EdgBnF5V07pkJkmaPXk0/B88MjJSo6Ojcz0MSZpXkqyrqpGp2vnJdklSJwaJJKkTg0SS1MnQN9uTPJPmRvi+Y2VV9ed9DEqSNH8MFSRJ3ga8iCZIrgFOAj4HGCSS9Cg37KWtnwVeDHyrql4LPAt4bG+jkiTNG8MGyQNVtQvYmWQxsBU4sr9hSZLmi2HvkYwmOQj4E2AdcD/wxb4GJUmaP4YKkqr6b+3iRUk+ASyuqn/ob1jSI9/Xbv5bvv61mzj2+T/NwYcdMdfDkWZsqEtbST41tlxVt1XVPwyWSZqef9n8Vd592Ru45PPv5w8uft1cD0fqZNIzkiT7AvsDhyQ5mN2Phl8MPKnnsUmPWA/ueIAH6yH2fcwi7t9x/1wPR+pkqktbrwdW04TGjQPl99L8GV1JM3Dokcdw5kvO48v/9PeceOKZcz0cqZOhHtqY5E1V9Qd7YTy98KGNkjR9s/3QxkuS/EaSi9uNH5XkZZ1GKEl6RBg6SGj+9sfz2/XNwDt7GZEkaV4ZNkieXFXvAR4EqKoHmPhvskuSHmWGDZIdSfYDCiDJk4HtvY1KkjRvDPvJ9rcBnwCWJ7kMeAHwmr4GJUmaP4YNkvOAi4F7aC5prQbeBXymj0FJkuaPYS9tHQGcAYxU1ceqahsw5VvCJEmPfMMGyT00j5F/YpKPJnl8f0OSJM0nwwZJqmpn+/DGq2j+qNUT+huWJGm+GPYeyUVjC1X1wSTrgTf2MyRJ0nwy1BlJVf3xuPV1VfXzU/VLsirJLUk2JTlvgvqjk1yfZHuScwfKlyf5dJKNSTYkOWeCvucmqSSHDDMHSVI/hj0jmbYkC2ge7HgizSfh1yZZU1VfHmh2N3A2cMq47juBt1TVjUkOBNYluW6sb5Ll7Xa/0df4JUnDGfYeyUwcB2yqqluragdwOXDyYIOq2lpVa2k/MT9QvqWqbmyX7wM2AksHmrwP+BXaD0hKkuZOn0GyFLh9YH0z/z4MhpJkBXAscEO7/nLgm1X1pSn6nZFkNMnotm3bprtbSdKQ+gySiZ7FNa0ziCQH0LxLbHVV3Ztkf+DXgbdO1beqLq6qkaoaWbJkyXR2K0mahj6DZDOwfGB9GXDHsJ2T7EMTIpdV1dVt8ZNpPhz5pSS3tdu8McmhszJiSdK09XazHVgLHJXkCOCbwKnAq4bpmCTAB4CNVfXesfKqWs/A51faMBmpqrtmcdySpGnoLUiqameSs4BrgQXAJVW1IcmZbf1F7ZnEKM3fgN+VZDWwEjgGOA1Yn+TmdpPnV9U1fY1XkjQzfZ6R0P7Hf824ssEPN36L5vLUeJ9jiL93UlUrOg5RktRRn/dIJEmPAgaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOuk1SJKsSnJLkk1Jzpug/ugk1yfZnuTcgfLlST6dZGOSDUnOGaj7nSRfSfIPST6S5KA+5yBJmlxvQZJkAXAhcBKwEnhlkpXjmt0NnA1cMK58J/CWqno68DzgjQN9rwOeWVXHAP8E/FpPU5AkDaHPM5LjgE1VdWtV7QAuB04ebFBVW6tqLfDguPItVXVju3wfsBFY2q5/sqp2tk2/ACzrcQ6SpCn0GSRLgdsH1je3ZdOSZAVwLHDDBNU/D3x8JoOTJM2OPoMkE5TVtDaQHABcBayuqnvH1f06zSWwy/bQ94wko0lGt23bNp3dSpKmoc8g2QwsH1hfBtwxbOck+9CEyGVVdfW4utOBlwGvrqoJw6mqLq6qkaoaWbJkybQHL0kaTp9BshY4KskRSRYBpwJrhumYJMAHgI1V9d5xdauAXwVeXlXfmeUxS5KmaWFfG66qnUnOAq4FFgCXVNWGJGe29RclORQYBRYDu5KspnmH1zHAacD6JDe3mzy/qq4B3g88FriuyRu+UFVn9jUPSdLkegsSgPY//mvGlV00sPwtJn7X1eeY+B4LVfWU2RyjJKkbP9kuSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqZNegyTJqiS3JNmU5LwJ6o9Ocn2S7UnOHShfnuTTSTYm2ZDknIG6H0hyXZKvtt8P7nMOkqTJ9RYkSRYAFwInASuBVyZZOa7Z3cDZwAXjyncCb6mqpwPPA9440Pc84FNVdRTwqXZdkjRH+jwjOQ7YVFW3VtUO4HLg5MEGVbW1qtYCD44r31JVN7bL9wEbgaVt9cnApe3ypcApvc1AkjSlPoNkKXD7wPpmdofB0JKsAI4FbmiLnlhVW6AJHOAJe+h3RpLRJKPbtm2b7m4lSUPqM0gyQVlNawPJAcBVwOqqunc6favq4qoaqaqRJUuWTKerJGka+gySzcDygfVlwB3Ddk6yD02IXFZVVw9U3ZnksLbNYcDWWRirJGmG+gyStcBRSY5Isgg4FVgzTMckAT4AbKyq946rXgOc3i6fDvz1LI1XkjQDC/vacFXtTHIWcC2wALikqjYkObOtvyjJocAosBjYlWQ1zTu8jgFOA9Ynubnd5PlVdQ3wbuCKJK8DvgG8oq85SJKmlqpp3baYl0ZGRmp0dHSuhyFJ80qSdVU1MlU7P9kuSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUSapqrsfQuyTbgK/P9Tj2skOAu+Z6EA8DHofdPBa7eSx2m+xYHF5VS6bawKMiSB6NkoxW1chcj2OueRx281js5rHYbTaOhZe2JEmdGCSSpE4Mkkeui+d6AA8THofdPBa7eSx263wsvEciSerEMxJJUicGiSSpE4NknkmyKsktSTYlOW+Sds9N8lCSnx1XviDJTUk+1v9o+9XlWCS5Lcn6JDcnGd07I+5Hx+NwUJIrk3wlycYkP7x3Rt2PmR6LJE9rXwtjX/cmWb3XBt6Djq+LNyfZkOQfk/xFkn0n3VlV+TVPvoAFwNeAI4FFwJeAlXto97fANcDPjqv7JeDDwMfmej5zeSyA24BD5noeD4PjcCnwC+3yIuCguZ7TXB2LcfXfovkw3pzPa28fC2Ap8M/Afu36FcBrJtufZyTzy3HApqq6tap2AJcDJ0/Q7k3AVcDWwcIky4CfAP6074HuBZ2OxSPIjI9DksXAjwEfAKiqHVV1T+8j7s9svSZeDHytqubz0zC6HouFwH5JFgL7A3dMtjODZH5ZCtw+sL65LfueJEuBnwIumqD/7wK/AuzqaXx7U9djUcAnk6xLckZvo+xfl+NwJLAN+LP2cuefJnlcn4PtWdfXxJhTgb+Y9dHtXTM+FlX1TeAC4BvAFuBfq+qTk+3MIJlfMkHZ+Pdv/y7wq1X10L/rmLwM2FpV63oa294242PRekFVPQc4CXhjkh+b5fHtLV2Ow0LgOcAfVdWxwL8Be7yWPg90fU2QZBHwcuAvZ3doe12X/ysOpjl7OQJ4EvC4JD832c4WznycmgObgeUD68v4/lPOEeDyJNA8jO2lSXYCxwMvT/JSYF9gcZIPVdWkL5CHsRkfi6r6q6q6A6Cqtib5CM2lgM/2P+xZ1+U18QVgc1Xd0La7kvkdJJ1eE239ScCNVXVnz2PtW5fXxT7AP1fVNoAkVwPPBz60x73N9U0hv6Z1A20hcCvNbwpjN9CeMUn7DzLxzcQXMf9vts/4WACPAw4cWP48sGqu5zQXrwng74CntctvB35nruc0V8eiLbsceO1cz2UujwXNL50baO6NhOYNGW+abH+ekcwjVbUzyVnAtTTvtrikqjYkObOtn+y67yNKx2PxROAj7W9iC4EPV9Un+h5zH2bhNfEm4LL2ks6twGt7HXCPuh6LJPsDJwKv732wPetyLKrqhiRXAjcCO4GbmOIxKj4iRZLUiTfbJUmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHXiBxKlGUrym8CraR6OdxewDvhX4AyaTxNvAk6rqu8k+SDwAHA0cDjNB/9OB34YuKGqXtNu837gQuAlwLeB84H3AD8IrK6qNUlWAP+b5lP5AGdV1ed7nq60R56RSDOQZAT4GeBY4KdpnlsEcHVVPbeqngVsBF430O1g4ATgzcBHgfcBzwD+Y5Jnt20eB3ymqn4IuA94J82nrX8K+K22zVbgxGoeOvlfgN/vY47SsDwjkWbmR4C/rqoHAJJ8tC1/ZpJ3AgcBB9A8omLMR6uqkqwH7qyq9W3fDcAK4GZgBzD2uJb1wPaqerDts6It3wd4fxs+DwFP7WF+0tAMEmlmJnpMNzQPvzulqr6U5DU0D8gcs739vmtgeWx97N/ig7X7uUXfa1dVu9o/MgTNGc2dwLNorip8d8azkGaBl7akmfkc8JNJ9k1yAM1fngQ4ENiSZB+a+yd9eDywpap2AafRPJRPmjOekUgzUFVrk6yheTz314FRmhvtvwnc0JatpwmW2faHwFVJXgF8muYPUklzxqf/SjOU5ICqur99/PhngTOq6sa5Hpe0t3lGIs3cxUlW0vzFyUsNET1aeUYiSerEm+2SpE4MEklSJwaJJKkTg0SS1IlBIknq5P8DJhH1OY7htq8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamma eta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAa6ElEQVR4nO3de5wfdX3v8dfbhAhKEHoIYpOUYEUwelDsClTbalFPg7WSXnwcvHDQahEfIsRKK9LWS4+2Hot4OdJyqFJpxXIol5paLFLFWivSbCAeTCM1IkokklBQQkVCyOf8MbPm57rZ2+xkWXk9H4997Mz3MvP9zv6S987M7zebqkKSpOl6xGwPQJI0txkkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkR6ikjwnyabZHsegJOuTPGec+rOTfGjPjUgPBQaJepHk1iT3Jbk3yR1J/iLJvrM9rvEkWZakksyfoe3tneQ7SY4bo+69SS6bif1MRzvP/2x/Pt9Kcm6SeRP1q6onV9Vnx6n/o6p69YwOVg95Bon69CtVtS/wdOAZwO9PpXMac+Y1OjqAqur7wP8F/seodvOAlwAX7bnRjemp7c/nucBLgd/qsrGZCmDNPXPmH6nmrqr6FvBJ4ClJDkjyiSRbk9zdLi8ZaZvks0nemeRfgO8Bj0/yyiQbkmxLckuS1wy0f06STUl+N8mWJJuTrEzygiT/nuSuJGcPtH9EkrOSfC3JfyS5NMlPtNWfa79/p/1N/WfbPr/Z7v/uJFcnOWRge5XkdUm+Cnx1jOlfBPx6kkcNlP0Szb+9T443t9HafT1hYP0jSd4xsP7CJOvas6AvJDly9z+VXarqK8A/0/x8fjrJZ9pjc2eSi5PsP7CPW5M8r11+W5LLknw0yT3AK9qyj7b1I2d4Jyf5Zru93xvY1j5JLmqP64b2Z7hpoP5N7dnStiQ3J3nuZOajPc8gUe+SLAVeANxI85r7C+AQ4KeA+4APjupyEnAKsBD4BrAFeCGwH/BK4L1Jnj7Q/mBgb2Ax8Bbgz4GXAz8D/DzwliSPb9ueDqwEng38JHA3cF5b9wvt9/2rat+qui7JSuBs4NeARTT/4f71qPGuBI4Blo+ee1V9Adjc9h+c38eqasck5jYpbZ8LgdcA/wX4P8DqJI+cRN/lNMfpRiDAH9McmycBS4G3jdP9BOAyYH/g4t20+TngcJozn7ckeVJb/lZgGfB44Pk0P7ORMR0OnAY8o6oW0oTvrRPNRbOkqvzya8a/aP7R3wt8hyYM/hTYZ4x2TwPuHlj/LPCHE2z7b4Ez2uXn0ITRvHZ9IVDAMQPt1wIr2+UNwHMH6h4HPADMp/lPrYD5A/WfBF41sP4ImjOlQ9r1Ao6bYLy/D3yqXd6v7X/UJOe2aaCugCcMrH8EeEe7/GfA/xy1rZuBZ+9mPwXcQxOkXwPeATxijHYrgRtH/Vyf1y6/DfjcqPZvAz7aLo8czyUD9f8KnNgu3wL80kDdq0fmCzyBJmSfB+w1269nv8b/8pqm+rSyqv5xsKC9xPNeYAVwQFu8MMm8qnqwXb9tVJ/jaX57fSLNf+SPAm4aaPIfA33va7/fMVB/HzByo/8Q4MokOwfqHwQeu5s5HAK8P8l7BodEc/bzjbHGO4a/BN6aZDHNb9Ybq+rGSc5tsg4BTk7y+oGyBTRnFrvz9KraOFiQ5CDgAzRnKAvbMd09zjYmmjvAtweWv8eun8VPjur/g+Wq2phkFU0wPTnJ1cBvV9Xtk9if9jAvbWlPeyPNZY5jqmo/dl1OykCbHzySur00czlwDvDYqtofuGpU+6m4DTi+qvYf+Nq7mvs4Yz0K+zbgNaPa71PNJasfGe9YquqbNJfEXkZzWesvpzm379EEzYiDR43znaPG+aiqGn0ZbiJ/3M7nyPbn8/JxxgMTzH0Cm4ElA+tLf2jDVR+rqp+jCckC/leHfalHBon2tIU0ZwjfaW9yv3WC9guARwJbgR3tb/D/rcP+zwfeOXLDPMmiJCe0dVuBnTTX7AfbvznJk9v2j0ny4mns9yKaa/7PYte9hKnObR3w0iTzkqyguc8z4s+BU5Mck8ajk/xykoVTHOdC2kuS7RnU70yx/1RcSnNsD2j3ddpIRZLDkxzXhu33aV4zD+5mO5plBon2tPcB+wB3Al8E/mG8xlW1jeYG+aU0l1heCqzusP/3t/0/lWRbO4Zj2n19D3gn8C/tO5+OraoraX4TvqR9Z9KXgeOnsd/LaC7lfbqqNk9zbmcAv0Jz3+llNPdTaLc1TPP23Q+229oIvGIa43w7zdu1vwv8PXDFNLYxWX8IbAK+DvwjzTG6v617JPAumtfJt4GDaN70oIegVPmHrSTNviSvpbkR/+wJG+shxTMSSbMiyeOSPKv9bM/hNPfPrpztcWnqfNeWpNmygObzLofSXK67hOZt4ppjvLQlSerES1uSpE4eFpe2DjzwwFq2bNlsD0OS5pS1a9feWVWLJmr3sAiSZcuWMTw8PNvDkKQ5Jck3Jm7lpS1JUkcGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUie9BkmSFUluTrIxyVlj1B+R5Lok9yc5c6B87yT/muRLSdYneftA3U8kuSbJV9vvB/Q5B0nS+HoLkiTzgPOA44HlwEuSLB/V7C7gdOCcUeX3A8dV1VOBpwErkhzb1p0FfLqqDgM+3a5LkmZJn2ckRwMbq+qWqtoOXAKcMNigqrZU1RrggVHlVVX3tqt7tV/Vrp8AXNQuXwSs7Gf4kqTJ6DNIFgO3DaxvassmJcm8JOuALcA1VXV9W/XYqtoM0H4/aDf9T0kynGR469at0xm/JGkS+gySjFFWY5SNqaoerKqnAUuAo5M8ZSo7r6oLqmqoqoYWLVo0la6SpCnoM0g2AUsH1pcAt091I1X1HeCzwIq26I4kjwNov2/pNEpJUid9Bska4LAkhyZZAJwIrJ5MxySLkuzfLu8DPA/4Slu9Gji5XT4Z+PhMDlqSNDXz+9pwVe1IchpwNTAPuLCq1ic5ta0/P8nBwDCwH7AzySqad3g9DriofefXI4BLq+oT7abfBVya5FXAN4EX9zUHSdLEUjXp2xZz1tDQUA0PD8/2MCRpTkmytqqGJmrnJ9slSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSeqk1yBJsiLJzUk2JjlrjPojklyX5P4kZw6UL01ybZINSdYnOWOg7mlJvphkXZLhJEf3OQdJ0vh6C5Ik84DzgOOB5cBLkiwf1ewu4HTgnFHlO4A3VtWTgGOB1w30fTfw9qp6GvCWdl2SNEv6PCM5GthYVbdU1XbgEuCEwQZVtaWq1gAPjCrfXFU3tMvbgA3A4pFqYL92+THA7f1NQZI0kfk9bnsxcNvA+ibgmKluJMky4Cjg+rZoFXB1knNogvCZnUYpSeqkzzOSjFFWU9pAsi9wObCqqu5pi18LvKGqlgJvAD68m76ntPdQhrdu3TqV3UqSpqDPINkELB1YX8IULkMl2YsmRC6uqisGqk4GRtb/huYS2o+oqguqaqiqhhYtWjSlgUuSJq/PIFkDHJbk0CQLgBOB1ZPpmCQ0ZxobqurcUdW3A89ul48DvjpD45UkTUNv90iqakeS04CrgXnAhVW1Psmpbf35SQ4Ghmlunu9MsormHV5HAicBNyVZ127y7Kq6Cvgt4P1J5gPfB07paw6SpImlakq3LeakoaGhGh4enu1hSNKckmRtVQ1N1M5PtkuSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqpNcgSbIiyc1JNiY5a4z6I5Jcl+T+JGcOlC9Ncm2SDUnWJzljVL/Xt9tdn+Tdfc5BkjS++X1tOMk84Dzg+cAmYE2S1VX1bwPN7gJOB1aO6r4DeGNV3ZBkIbA2yTVV9W9JfhE4ATiyqu5PclBfc5AkTazPM5KjgY1VdUtVbQcuoQmAH6iqLVW1BnhgVPnmqrqhXd4GbAAWt9WvBd5VVfePbKPHOUiSJtBnkCwGbhtY38SuMJi0JMuAo4Dr26InAj+f5Pok/5TkGbvpd0qS4STDW7dunepuJUmT1GeQZIyymtIGkn2By4FVVXVPWzwfOAA4Fvgd4NIkP7KvqrqgqoaqamjRokVTG7kkadL6DJJNwNKB9SXA7ZPtnGQvmhC5uKquGLXdK6rxr8BO4MAZGK8kaRr6DJI1wGFJDk2yADgRWD2Zju0ZxoeBDVV17qjqvwWOa9s9EVgA3DlTg5YkTU1v79qqqh1JTgOuBuYBF1bV+iSntvXnJzkYGAb2A3YmWQUsB44ETgJuSrKu3eTZVXUVcCFwYZIvA9uBk6tqSpfMJEkzJw+H/4OHhoZqeHh4tochSXNKkrVVNTRROz/ZLknqxCCRJHVikEiSOjFIJEmdGCSSpE4m/fbfJAcAhwF7j5RV1ef6GJQkae6YVJAkeTVwBs2n09fRPJ7kOtoPBkqSHr4me2nrDOAZwDeq6hdpHqLokxAlSZMOku9X1fcBkjyyqr4CHN7fsKQff19b9xk+c/l7uHvz12d7KFInk71HsinJ/jTPubomyd1M4QGMkn7Yf2z6Ku+6+LXct3M7T/zy3/OWt35mtockTdukgqSqfrVdfFuSa4HHAJ/sbVTSj7kHtt/HA/Ugez9iAfduv3e2hyN1MqlLW0n+amS5qv6pqlbTPDxR0jQc/PgjOfV5Z/HMpc/k9S//37M9HKmTyV7aevLgSvv32H9m5ocjPXwcu+LVHLvi1bM9DKmzcc9Ikrw5yTbgyCT3tF/bgC3Ax/fICCVJD2njBklV/XFVLQTOBV4HvKddPwq4cg+MT5L0EDfZt//uR/MhxBPb9W3Aeb2MSJI0p0z2HsnRVfX0JDcCVNXd7Z/PlSQ9zE32jOSB9gZ7ASRZBOzsbVSSpDljskHyAZp7IgcleSfweeCPehuVJGnOmOwHEi9OshZ4LhBgZVVt6HVkkqQ5YdKPkW+fr/WVHsciSZqD/MNWkqRODBJJUie9BkmSFUluTrIxyVlj1B+R5Lok9yc5c6B8aZJrk2xIsj7JGWP0PTNJJTmwzzlIksY36XskU9W+Xfg84PnAJmBNktVV9W8Dze4CTgdWjuq+A3hjVd2QZCGwNsk1I32TLG23+82+xi9Jmpw+z0iOBjZW1S1VtR24BDhhsEFVbamqNcADo8o3V9UN7fI2YAOweKDJe4Hfpf1ciyRp9vQZJIuB2wbWN/HDYTApSZbRPNvr+nb9RcC3qupLE/Q7JclwkuGtW/2rwJLUlz6DJGOUTekMIsm+wOXAqqq6J8mjgN8D3jJR36q6oKqGqmpo0aJFU9mtJGkK+gySTcDSgfUlTOHP8ybZiyZELq6qK9rinwYOBb6U5NZ2mzckOXhGRixJmrLebrYDa4DDkhwKfIvmycEvnUzHJAE+DGyoqnNHyqvqJuCggXa3AkNVdecMjluSNAW9BUlV7UhyGnA1MA+4sKrWJzm1rT+/PZMYpnlM/c4kq4DlwJHAScBNSda1mzy7qq7qa7ySpOnp84yE9j/+q0aVnT+w/G2ay1OjfZ6x77GM3v6yjkOUJHXkJ9slSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSeqk1yBJsiLJzUk2JjlrjPojklyX5P4kZw6UL01ybZINSdYnOWOg7k+SfCXJ/0tyZZL9+5yDJGl8vQVJknnAecDxwHLgJUmWj2p2F3A6cM6o8h3AG6vqScCxwOsG+l4DPKWqjgT+HXhzT1OQJE1Cn2ckRwMbq+qWqtoOXAKcMNigqrZU1RrggVHlm6vqhnZ5G7ABWNyuf6qqdrRNvwgs6XEOkqQJ9Bkki4HbBtY3tWVTkmQZcBRw/RjVvwl8cjqDkyTNjD6DJGOU1ZQ2kOwLXA6sqqp7RtX9Hs0lsIt30/eUJMNJhrdu3TqV3UqSpqDPINkELB1YXwLcPtnOSfaiCZGLq+qKUXUnAy8EXlZVY4ZTVV1QVUNVNbRo0aIpD16SNDl9Bska4LAkhyZZAJwIrJ5MxyQBPgxsqKpzR9WtAN4EvKiqvjfDY5YkTdH8vjZcVTuSnAZcDcwDLqyq9UlObevPT3IwMAzsB+xMsormHV5HAicBNyVZ127y7Kq6Cvgg8EjgmiZv+GJVndrXPCRJ4+stSADa//ivGlV2/sDytxn7XVefZ+x7LFTVE2ZyjJKkbvxkuySpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqROeg2SJCuS3JxkY5Kzxqg/Isl1Se5PcuZA+dIk1ybZkGR9kjMG6n4iyTVJvtp+P6DPOUiSxtdbkCSZB5wHHA8sB16SZPmoZncBpwPnjCrfAbyxqp4EHAu8bqDvWcCnq+ow4NPtuiRplvR5RnI0sLGqbqmq7cAlwAmDDapqS1WtAR4YVb65qm5ol7cBG4DFbfUJwEXt8kXAyt5mIEmaUJ9Bshi4bWB9E7vCYNKSLAOOAq5vix5bVZuhCRzgoN30OyXJcJLhrVu3TnW3kqRJ6jNIMkZZTWkDyb7A5cCqqrpnKn2r6oKqGqqqoUWLFk2lqyRpCvoMkk3A0oH1JcDtk+2cZC+aELm4qq4YqLojyePaNo8DtszAWCVJ09RnkKwBDktyaJIFwInA6sl0TBLgw8CGqjp3VPVq4OR2+WTg4zM0XknSNMzva8NVtSPJacDVwDzgwqpan+TUtv78JAcDw8B+wM4kq2je4XUkcBJwU5J17SbPrqqrgHcBlyZ5FfBN4MV9zUGSNLFUTem2xZw0NDRUw8PDsz0MSZpTkqytqqGJ2vnJdklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE5SVbM9ht4l2Qp8Y7bHsYcdCNw524N4CPA47OKx2MVjsct4x+KQqlo00QYeFkHycJRkuKqGZnscs83jsIvHYhePxS4zcSy8tCVJ6sQgkSR1YpD8+LpgtgfwEOFx2MVjsYvHYpfOx8J7JJKkTjwjkSR1YpBIkjoxSOaYJCuS3JxkY5Kzxmn3jCQPJvmNUeXzktyY5BP9j7ZfXY5FkluT3JRkXZLhPTPifnQ8DvsnuSzJV5JsSPKze2bU/ZjusUhyePtaGPm6J8mqPTbwHnR8XbwhyfokX07y10n2HndnVeXXHPkC5gFfAx4PLAC+BCzfTbvPAFcBvzGq7reBjwGfmO35zOaxAG4FDpzteTwEjsNFwKvb5QXA/rM9p9k6FqPqv03zYbxZn9eePhbAYuDrwD7t+qXAK8bbn2ckc8vRwMaquqWqtgOXACeM0e71wOXAlsHCJEuAXwY+1PdA94BOx+LHyLSPQ5L9gF8APgxQVdur6ju9j7g/M/WaeC7wtaqay0/D6Hos5gP7JJkPPAq4fbydGSRzy2LgtoH1TW3ZDyRZDPwqcP4Y/d8H/C6ws6fx7Uldj0UBn0qyNskpvY2yf12Ow+OBrcBftJc7P5Tk0X0OtmddXxMjTgT+esZHt2dN+1hU1beAc4BvApuB71bVp8bbmUEyt2SMstHv334f8KaqevCHOiYvBLZU1dqexranTftYtJ5VVU8Hjgdel+QXZnh8e0qX4zAfeDrwZ1V1FPCfwG6vpc8BXV8TJFkAvAj4m5kd2h7X5f+KA2jOXg4FfhJ4dJKXj7ez+dMfp2bBJmDpwPoSfvSUcwi4JAk0D2N7QZIdwDHAi5K8ANgb2C/JR6tq3BfIQ9i0j0VV/W1V3Q5QVVuSXElzKeBz/Q97xnV5TXwR2FRV17ftLmNuB0mn10RbfzxwQ1Xd0fNY+9bldbEX8PWq2gqQ5ArgmcBHd7u32b4p5NeUbqDNB26h+U1h5Abak8dp/xHGvpn4HOb+zfZpHwvg0cDCgeUvACtme06z8ZoA/hk4vF1+G/Ansz2n2ToWbdklwCtney6zeSxofulcT3NvJDRvyHj9ePvzjGQOqaodSU4DrqZ5t8WFVbU+yalt/XjXfX+sdDwWjwWubH8Tmw98rKr+oe8x92EGXhOvBy5uL+ncAryy1wH3qOuxSPIo4PnAa3ofbM+6HIuquj7JZcANwA7gRiZ4jIqPSJEkdeLNdklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmd+IFEaZqS/AHwMpqH490JrAW+C5xC82nijcBJVfW9JB8B7gOOAA6h+eDfycDPAtdX1Svabd4LnAc8D7gbOBt4N/BTwKqqWp1kGfBXNJ/KBzitqr7Q83Sl3fKMRJqGJEPArwNHAb9G89wigCuq6hlV9VRgA/CqgW4HAMcBbwD+Dngv8GTgvyZ5Wtvm0cBnq+pngG3AO2g+bf2rwB+2bbYAz6/moZP/HfhAH3OUJsszEml6fg74eFXdB5Dk79rypyR5B7A/sC/NIypG/F1VVZKbgDuq6qa273pgGbAO2A6MPK7lJuD+qnqg7bOsLd8L+GAbPg8CT+xhftKkGSTS9Iz1mG5oHn63sqq+lOQVNA/IHHF/+33nwPLI+si/xQdq13OLftCuqna2f2QImjOaO4Cn0lxV+P60ZyHNAC9tSdPzeeBXkuydZF+avzwJsBDYnGQvmvsnfXgMsLmqdgIn0TyUT5o1npFI01BVa5Kspnk89zeAYZob7X8AXN+W3UQTLDPtT4HLk7wYuJbmD1JJs8an/0rTlGTfqrq3ffz454BTquqG2R6XtKd5RiJN3wVJltP8xcmLDBE9XHlGIknqxJvtkqRODBJJUicGiSSpE4NEktSJQSJJ6uT/AyQ72wsJmew5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamma mu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAe9UlEQVR4nO3df5gdVZ3n8feHNOGHwITdBAcTJGENzIAghguJq0FEWBMGDIOjBCNBRjeEMew47jqDOojr6o66ujp5QNggIWSBBBb50SpMfBwX4yhgOiYDRMjSBJQmkTQCMRhMDPnuH3UuKW5u9739456bwOf1PPXcW3VOnTpVfXM/qarT1YoIzMzMctqr3R0wM7PXHoePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOH7NXCUmnSOppdz/KJK2RdEo/5Z+W9K18PbLdhcPHdguSnpD0oqQXJD0t6TpJB7S7X/2RNF5SSOoYpvb2lfS8pFPrlH1d0q3DsZ3BSPv5u/TzeUrS/5Q0otF6EXFMRNzTT/l/j4iPDmtnbY/g8LHdyVkRcQAwCTgR+PuBrKzCHvOZrg2tiPg9cDMwu6beCOA84Pp8vavrLenn827gg8B/HEpjwxXatmfaY/6h2mtHRDwF3A28WdLBkr4rqVfSc+n9uGpdSfdI+qKknwBbgCMkXSjpYUmbJa2TdFGp/imSeiT9raSNkjZIOlvSGZL+n6RnJX26VH8vSZdKekzSbyTdIunfpOLl6fX5dEbwtrTOX6btPydpmaTDS+2FpI9JehR4tM7uXw+8T9L+pWXvofi3end/+1YrbetNpflFkr5Qmj9T0up0tvVTScf1/VPZKSIeAX5M8fP5d5J+mI7NM5JulDSqtI0nJJ2W3n9O0q2SbpD0W+DDadkNqbx6JnmBpF+l9j5Tams/Sden4/pw+hn2lMr/Lp2VbZa0VtK7m9kfaw+Hj+12JB0GnAGsoviMXgccDrwReBG4omaV84E5wIHAL4GNwJnAQcCFwNclTSrV/2NgX2As8FngGuBDwAnAVOCzko5Idf8TcDbwTuANwHPAlans5PQ6KiIOiIh7JZ0NfBo4BxhD8SW9pKa/ZwOTgaNr9z0ifgpsSOuX9++miNjexL41Ja2zELgI+LfA/wI6Je3TxLpHUxynVYCAf6A4Nn8KHAZ8rp/VZwC3AqOAG/uo8w7gKIozrM9K+tO0/HJgPHAEcDrFz6zap6OAecCJEXEgRWA/0WhfrI0iwpOntk8UXxQvAM9TBMg3gf3q1DseeK40fw/w+QZt3wH8dXp/CkWAjUjzBwIBTC7VXwmcnd4/DLy7VHYo8Aegg+KLMICOUvndwEdK83tRnJEdnuYDOLVBf/8e+H56f1Ba/61N7ltPqSyAN5XmFwFfSO+vAv5bTVtrgXf2sZ0AfksRvo8BXwD2qlPvbGBVzc/1tPT+c8DymvqfA25I76vHc1yp/GfAzPR+HfCeUtlHq/sLvIkimE8D9m7359lT48nXXG13cnZE/KC8IF1++jowDTg4LT5Q0oiIeCnNP1mzznSK/yUfSfHlvz/wYKnKb0rrvpheny6VvwhUBzscDtwuaUep/CXg9X3sw+HAP0r6WrlLFGdZv6zX3zoWA5dLGkvxP/juiFjV5L4163DgAkmXlJaNpDiD6cukiOguL5B0CDCf4kzowNSn5/ppo9G+A/y69H4LO38Wb6hZ/+X3EdEt6eMUYXaMpGXAJyJifRPbszbwZTfb3f1nikswkyPiIHZe6lKpzsuPZk+Xjb4NfBV4fUSMAu6qqT8QTwLTI2JUado3ivtS9R4J/yRwUU39/aK4nLZLf+uJiF9RXK6bRXHJbfEg920LRThV/XFNP79Y08/9I6L2EmEj/5D257j08/lQP/2BBvvewAZgXGn+sFc0HHFTRLyDIlgD+PIQtmUt5vCx3d2BFGciz6cb/Zc3qD8S2AfoBbanM4X/MITtXw18sTpoQNIYSTNSWS+wg+IeRLn+pyQdk+r/kaT3D2K711Pcw3g7O++NDHTfVgMflDRC0jSK+1ZV1wBzJU1W4XWS/kzSgQPs54Gky6XpTO2TA1x/IG6hOLYHp23NqxZIOkrSqSmgf0/xmXmpj3ZsN+Dwsd3dN4D9gGeA+4B/6q9yRGymGCRwC8Xlnw8CnUPY/j+m9b8vaXPqw+S0rS3AF4GfpBFjUyLidor/cS9NI7oeAqYPYru3Ulxm/OeI2DDIfftr4CyK+2izKO4PkdrqohgqfUVqqxv48CD6+V8phsZvAr4H3DaINpr1eaAHeBz4AcUx2prK9gG+RPE5+TVwCMXAD9tNKcJ/TM7M9jySLqYYjPDOhpVtt+MzHzPbI0g6VNLb0+9eHUVxP/D2dvfLBsej3cxsTzGS4veRJlBcSlxKMSTf9kC+7GZmZtn5spuZmWXny259GD16dIwfP77d3TAz22OMHj2aZcuWLYuIaY3qOnz6MH78eLq6utrdDTOzPYqk0c3U82U3MzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLrqXhI2mapLWSuiVdWqdckuan8gckTSqVLZS0UdJDNevcLGl1mp6QtDotn1VavlrSDknHp7J7Uj+qZYe0cr/NzKx/Lfsz2pJGAFcCpwM9wApJnRHxi1K16cDENE0GrkqvAIuAK4DF5XYj4tzSNr4GbErLbwRuTMuPBe6MiNWlVWdFhP8utpnZbqCVZz4nAd0RsS4itgFLgRk1dWYAi6NwHzBK0qEAEbEceLavxiUJ+ACwpE7xeX0sNzOz3UArw2cs8GRpvictG2idvkwFno6IR+uUncuu4XNduuR2WQquXUiaI6lLUldvb2+T3TAzs4FqZfjU+4KPQdTpS92zG0mTgS0RUb5XNCsijqUIrKnA+fUajIgFEVGJiMqYMWOa7IaZmQ1UK8OnBzisND8OWD+IOruQ1AGcA9xcp3gmNaEUEU+l183ATRSXBM3MrE1aGT4rgImSJkgaSREKnTV1OoHZadTbFGBTRGxoou3TgEcioqe8UNJewPsp7i9Vl3VIGp3e7w2cCbxiBJ2ZmeXVstFuEbFd0jxgGTACWBgRayTNTeVXA3cBZwDdwBbgwur6kpYApwCjJfUAl0fEtal4l7Ob5GSgJyLWlZbtAyxLwTMC+AFwzbDtqJmZDZgimr3F8tpSqVSiq8sjs83MBkLSyoioNKrnJxyYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLLuWho+kaZLWSuqWdGmdckman8ofkDSpVLZQ0kZJD9Wsc7Ok1Wl6QtLqtHy8pBdLZVeX1jlB0oNpO/MlqYW7bWZmDbQsfCSNAK4EpgNHA+dJOrqm2nRgYprmAFeVyhYB02rbjYhzI+L4iDge+DZwW6n4sWpZRMwtLb8qtV/d1i7tmplZPq088zkJ6I6IdRGxDVgKzKipMwNYHIX7gFGSDgWIiOXAs301ns5ePgAs6a8Tqb2DIuLeiAhgMXD2IPfJzMyGQSvDZyzwZGm+Jy0baJ2+TAWejohHS8smSFol6UeSppa20dPMNiTNkdQlqau3t7fJbpiZ2UC1Mnzq3VeJQdTpy3m88qxnA/DGiHgr8AngJkkHDWQbEbEgIioRURkzZkyT3TAzs4HqaGHbPcBhpflxwPpB1NmFpA7gHOCE6rKI2ApsTe9XSnoMODJtY9xAt2FmZq3TyjOfFcBESRMkjQRmAp01dTqB2WnU2xRgU0RsaKLt04BHIuLly2mSxqRBDkg6gmJgwbrU3mZJU9J9otnAnUPeOzMzG7SWnflExHZJ84BlwAhgYUSskTQ3lV8N3AWcAXQDW4ALq+tLWgKcAoyW1ANcHhHXpuKZ7DrQ4GTg85K2Ay8BcyOiOmDhYorRc/sBd6fJzMzaRMUAMKtVqVSiq6ur3d0wM9ujSFoZEZVG9fyEAzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll19LwkTRN0lpJ3ZIurVMuSfNT+QOSJpXKFkraKOmhmnVulrQ6TU9IWp2Wny5ppaQH0+uppXXuSf2orndIC3fbzMwa6GhVw5JGAFcCpwM9wApJnRHxi1K16cDENE0GrkqvAIuAK4DF5XYj4tzSNr4GbEqzzwBnRcR6SW8GlgFjS6vOioiu4dk7MzMbilae+ZwEdEfEuojYBiwFZtTUmQEsjsJ9wChJhwJExHLg2b4alyTgA8CSVH9VRKxPxWuAfSXtM6x7ZGZmw6KV4TMWeLI038Mrz0SardOXqcDTEfFonbL3AasiYmtp2XXpkttlKbh2IWmOpC5JXb29vU12w8zMBqqV4VPvCz4GUacv55HOel7RoHQM8GXgotLiWRFxLEVgTQXOr9dgRCyIiEpEVMaMGdNkN8zMbKBaGT49wGGl+XHA+kHU2YWkDuAc4Oaa5eOA24HZEfFYdXlEPJVeNwM3UVwSNDOzNmll+KwAJkqaIGkkMBPorKnTCcxOo96mAJsiYkMTbZ8GPBIRPdUFkkYB3wM+FRE/KS3vkDQ6vd8bOBN4CDMza5uWhU9EbAfmUYw6exi4JSLWSJoraW6qdhewDugGrgH+qrq+pCXAvcBRknokfaTU/Ex2veQ2D3gTcFnNkOp9gGWSHgBWA0+lbZmZWZsootlbLK8tlUoluro8MtvMbCAkrYyISqN6fsKBmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsOpqpJOmN9ZZHxK+GtztmZvZa0FT4AN8DAhCwLzABWAsc06J+mZnZq1hTl90i4tiIOC69TgROAv6l0XqSpklaK6lb0qV1yiVpfip/QNKkUtlCSRslPVSzzs2SVqfpCUmrS2WfSm2tlfSe0vITJD2YyuZLUjP7bWZmrTGoez4R8XPgxP7qSBoBXAlMB44GzpN0dE216cDENM0BriqVLQKm1dn2uRFxfEQcD3wbuC1t72hgJsXZ2DTgm6kPpHbnlLa1S7tmu7vYsYOf//BGftx5BdtefKHd3TEbkmbv+XyiNLsXcALQ22C1k4DuiFiX2lgKzAB+UaozA1gcEQHcJ2mUpEMjYkNELJc0vp8+CfgAcGqpraURsRV4XFI3cJKkJ4CDIuLetN5i4Gzg7sZ7brb7WL38Zr72vc8QEfT+5lecc+FX2t0ls0Fr9sznQOCANI0EvgO8t8E6Y4EnS/M9adlA6/RlKvB0RDzaoK2x6X3DbUiaI6lLUldvb6NsNctr6+9/RxDspb343Yu/bXd3zIak2QEHdwGfBsaX1rkUOK6fderdV4lB1OnLecCSJtpqehsRsQBYAFCpVJrth1kWJ5zyQWZufJwXtjzPWe//TLu7YzYkzYbPDcB/AR4CdjS5Tg9wWGl+HLB+EHV2IakDOIfi8l+jtnrS+wFtw2x3s/e++/Pe2V9sdzfMhkWzl916I+I7EfF4RPyyOjVYZwUwUdIESSMpBgN01tTpBGanUW9TgE0RsaGJ/pwGPBIR5ctpncBMSftImkAxsOBnqb3Nkqak+0SzgTub2IaZmbVIs2c+l0v6FvDPwNbqwoi4ra8VImK7pHnAMmAEsDAi1kiam8qvpricdwbQDWwBLqyuL2kJcAowWlIPcHlEXJuKZ/LKS26ktm+hGNCwHfhYRLyUii+mGD23H8VAAw82MDNrIxUDzRpUkm4A/gRYw87LbhERf9nCvrVVpVKJrq6udnfDzGyPImllRFQa1Wv2zOctEXHsEPtkZmYGNH/P5746vyBqZmY2KM2e+bwDuEDS4xT3fERx2a2/odZmZmZ1NRs+fhyNmZkNm6bCp4lh1WZmZk3zH5MzM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsu5aGj6RpktZK6pZ0aZ1ySZqfyh+QNKlUtlDSRkkP1VnvktTuGklfSctmSVpdmnZIOj6V3ZPqV8sOaeFum5lZA83+JdMBkzQCuBI4HegBVkjqjIhflKpNByamaTJwVXoFWARcASyuafddwAzguIjYWg2SiLgRuDHVORa4MyJWl1adFRFdw7mPZmY2OK088zkJ6I6IdRGxDVhKERplM4DFUbgPGCXpUICIWA48W6fdi4EvRcTWVG9jnTrnAUuGaT/MzGyYtTJ8xgJPluZ70rKB1ql1JDBV0v2SfiTpxDp1zmXX8LkuXXK7TJLqNSxpjqQuSV29vb0NumFmZoPVyvCp9wUfg6hTqwM4GJgCfBK4pRwmkiYDWyKifK9oVkQcC0xN0/n1Go6IBRFRiYjKmDFjGnTDzMwGq5Xh0wMcVpofB6wfRJ167d6WLtX9DNgBjC6Vz6TmrCcinkqvm4GbKC4JmplZm7QyfFYAEyVNkDSSIhQ6a+p0ArPTqLcpwKaI2NCg3TuAUwEkHQmMBJ5J83sB76e4v0Ra1iFpdHq/N3AmsMsIOjMzy6dlo90iYrukecAyYASwMCLWSJqbyq8G7gLOALqBLcCF1fUlLQFOAUZL6gEuj4hrgYXAwjQEextwQURUL9WdDPRExLpSV/YBlqXgGQH8ALimRbttZmZN0M7vbSurVCrR1eWR2WZmAyFpZURUGtXzEw7MzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmll1Lw0fSNElrJXVLurROuSTNT+UPSJpUKlsoaaOkh+qsd0lqd42kr6Rl4yW9KGl1mq4u1T9B0oNpO/MlqVX7bGZmjbUsfCSNAK4EpgNHA+dJOrqm2nRgYprmAFeVyhYB0+q0+y5gBnBcRBwDfLVU/FhEHJ+muaXlV6X2q9vapV0zM8unlWc+JwHdEbEuIrYBSylCo2wGsDgK9wGjJB0KEBHLgWfrtHsx8KWI2JrqbeyvE6m9gyLi3ogIYDFw9hD2y8zMhqiV4TMWeLI035OWDbROrSOBqZLul/QjSSeWyiZIWpWWTy1to6eZbUiaI6lLUldvb2+DbpiZ2WB1tLDtevdVYhB1anUABwNTgBOBWyQdAWwA3hgRv5F0AnCHpGMGso2IWAAsAKhUKo36YWZmg9TKM58e4LDS/Dhg/SDq1Gv3tnSp7mfADmB0RGyNiN8ARMRK4DGKs6Se1O5AtmFmZi3UyvBZAUyUNEHSSGAm0FlTpxOYnUa9TQE2RcSGBu3eAZwKIOlIYCTwjKQxaZAD6UxoIrAutbdZ0pQ0ym02cOfw7KKZmQ1Gyy67RcR2SfOAZcAIYGFErJE0N5VfDdwFnAF0A1uAC6vrS1oCnAKMltQDXB4R1wILgYVpCPY24IKICEknA5+XtB14CZgbEdUBCxdTjJ7bD7g7TWZm1iYqBoBZrUqlEl1dXe3uhpnZHkXSyoioNKrnJxyYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLLuWho+kaZLWSuqWdGmdckman8ofkDSpVLZQ0kZJD9VZ75LU7hpJX0nLTpe0UtKD6fXUUv17Uv3VaTqkVftsZmaNdbSqYUkjgCuB04EeYIWkzoj4RanadGBimiYDV6VXgEXAFcDimnbfBcwAjouIraUgeQY4KyLWS3ozsAwYW1p1VkR0DeMumpnZILXyzOckoDsi1kXENmApRWiUzQAWR+E+YJSkQwEiYjnwbJ12Lwa+FBFbU72N6XVVRKxPddYA+0raZ9j3yszMhqyV4TMWeLI038Mrz0SarVPrSGCqpPsl/UjSiXXqvA9YVQ2o5Lp0ye0ySarXsKQ5krokdfX29jbohpmZDVYrw6feF3wMok6tDuBgYArwSeCWcphIOgb4MnBRaZ1ZEXEsMDVN59drOCIWREQlIipjxoxp0A0zMxusVoZPD3BYaX4csH4Qdeq1e1u6VPczYAcwGkDSOOB2YHZEPFZdISKeSq+bgZsoLgmamVmbtDJ8VgATJU2QNBKYCXTW1OkEZqdRb1OATRGxoUG7dwCnAkg6EhgJPCNpFPA94FMR8ZNqZUkdkqrhtDdwJrDLCDozM8unZeETEduBeRSjzh4GbomINZLmSpqbqt0FrAO6gWuAv6quL2kJcC9wlKQeSR9JRQuBI9IQ7KXABRERaVtvAi6rGVK9D7BM0gPAauCptC0zM2sTFd/bVqtSqURXl0dmm5kNhKSVEVFpVM9PODAzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXnPybXB0m9wC/b3Y+MRgPPtLsTuwkfi518LHbysSj0dxyeAYiIaY0acfgYAJK6mvnrg68FPhY7+Vjs5GNRGK7j4MtuZmaWncPHzMyyc/hY1YJ2d2A34mOxk4/FTj4WhWE5Dr7nY2Zm2fnMx8zMsnP4mJlZdg6f1wBJ0yStldQt6dJ+6p0o6SVJf1GzfISkVZK+2/rets5QjoOkJyQ9KGm1pK48PW6dIR6LUZJulfSIpIclvS1Pr1tjsMdC0lHp81Cdfivp49k63gJD/Fz8jaQ1kh6StETSvv1uLCI8vYonYATwGHAEMBL4V+DoPur9ELgL+Iuask8ANwHfbff+tOs4AE8Ao9u9H7vJsbge+Gh6PxIY1e59atexqCn/NXB4u/epHccCGAs8DuyX5m8BPtzf9nzm8+p3EtAdEesiYhuwFJhRp94lwLeBjeWFksYBfwZ8q9UdbbEhHYdXmUEfC0kHAScD1wJExLaIeL7lPW6d4fpcvBt4LCL25KeiDPVYdAD7SeoA9gfW97cxh8+r31jgydJ8T1r2MkljgT8Hrq6z/jeAvwV2tKh/uQz1OATwfUkrJc1pWS/zGMqxOALoBa5Ll2K/Jel1rexsiw31c1E1E1gy7L3La9DHIiKeAr4K/ArYAGyKiO/3tzGHz6uf6iyrHV//DeDvIuKlV6wonQlsjIiVLepbToM+DsnbI2ISMB34mKSTh7l/OQ3lWHQAk4CrIuKtwO+APu8N7AGG+rlA0kjgvcD/Gd6uZTeU74qDKc6SJgBvAF4n6UP9baxj8P20PUQPcFhpfhy7ng5XgKWSoHho4BmStgOTgfdKOgPYFzhI0g0R0e+Hajc16OMQEXdExHqAiNgo6XaKSxTLW9/tlhjKZ+I+oCci7k/1bmXPDp8hfS5S+XTg5xHxdIv72mpD+VzsDTweEb0Akm4D/j1wQ59ba/dNLk8tv4nYAayj+B9J9SbiMf3UX0T9G6qnsGcPOBj0cQBeBxxYev9TYFq796ldnwngx8BR6f3ngP/R7n1q17FIy5YCF7Z7X9p5LCj+o7qG4l6PKAalXNLf9nzm8yoXEdslzQOWUYxSWRgRayTNTeX9Xcd+1RjicXg9cHv6314HcFNE/FOr+9wqw/CZuAS4MV1uWgdc2NIOt9BQj4Wk/YHTgYta3tkWG8qxiIj7Jd0K/BzYDqyiwWN4/HgdMzPLzgMOzMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy86/ZGqWkaTLgFkUD3B8BlgJbALmUPxWeTdwfkRskbQIeBH4E+Bwil/mvAB4G3B/RHw4tfkCcCVwGvAc8GngK8AbgY9HRKek8cD/pnhCA8C8iPhpi3fXrE8+8zHLRFIFeB/wVuAciudkAdwWESdGxFuAh4GPlFY7GDgV+BvgO8DXgWOAYyUdn+q8DrgnIk4ANgNfoPit+z8HPp/qbAROj+LhqOcC81uxj2bN8pmPWT7vAO6MiBcBJH0nLX+zpC8Ao4ADKB5vUvWdiAhJDwJPR8SDad01wHhgNbANqD7u50Fga0T8Ia0zPi3fG7giBdZLwJEt2D+zpjl8zPKp98h6KB7QeHZE/KukD1M8xLVqa3rdUXpfna/++/1D7HxO1sv1ImJH+sNeUJw5PQ28heKKx+8HvRdmw8CX3czy+RfgLEn7SjqA4i/EAhwIbJC0N8X9oFb4I2BDROwAzqd4cKRZ2/jMxyyTiFghqZPiUfW/BLooBhtcBtyflj1IEUbD7ZvAtyW9H/i/FH8Ezqxt/FRrs4wkHRARL6RH8S8H5kTEz9vdL7PcfOZjltcCSUdT/GXY6x089lrlMx8zM8vOAw7MzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsvv/gpoFOHcUAAQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamma nu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEWCAYAAAC0Q+rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAau0lEQVR4nO3df7hdVX3n8ffHhIBKaOgQWwyBhCnYQmuFXoEWUYsyAq0Ntb9iKwpTi/gIA+rTFpnWWqvTjlN/MaUwVKgyopECOmlLizr1R1sLcgNUDJExBCwpKQSr/BAMBr7zx94xx8sl99zcu3ISeL+e5zx377XXWnutfU/u5+4f9yRVhSRJLTxt1AOQJD15GTKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRdjFJXpxk/ajHMSjJ6iQv3sb2c5N8YMeNSDsLQ0Y7VJI7kjyc5MEkdyf58yR7jnpc25JkSZJKMneW+tsjyTeTHDvJtvcmuWI29rM9+nl+q//+/GuS9ySZM1W7qjq0qj67je3/rapeO6uD1S7BkNEovLyq9gQOB54P/M50Gqezy7x3J4ZTVX0b+Bjw6gn15gCvBD6040Y3qR/vvz8vAX4V+I2ZdDZb4axd0y7zD1VPPlX1r8DfAD+aZO8kf5VkY5Jv9Mv7bamb5LNJ3pnkH4GHgAOTnJpkTZIHkqxL8rqB+i9Osj7JbyW5J8mGJCclOTHJ/0vy70nOHaj/tCTnJLktydeTXJ7k+/vNn++/frP/Df8n+zb/ud//N5Jck+SAgf4qyRuSfBX46iTT/xDwC0meMVD2Mrp/k3+zrblN1O/rhwbWP5jkHQPrP5vkpv7s6QtJnvvE35WtquorwN/TfX/+Y5K/64/NvUkuS7JgYB93JHlpv/y2JFck+XCS+4FT+rIP99u3nBm+Jsm/9P3914G+np7kQ/1xXdN/D9cPbP/t/izrgSS3JnnJMPPRaBgyGpkki4ETgRvp3ot/DhwA7A88DPzJhCYnA6cB84GvAfcAPwvsBZwKvDfJ4QP1fxDYA1gEvBX4M+BVwE8AxwBvTXJgX/e/ACcBLwKeDXwDOL/f9sL+64Kq2rOq/inJScC5wCuAhXQ/jD86YbwnAUcCh0yce1V9AdjQtx+c30eqavMQcxtK3+YS4HXAfwD+F7Ayye5DtD2E7jjdCAT4Q7pj8yPAYuBt22i+DLgCWABc9gR1XgA8h+6M6a1JfqQv/z1gCXAgcBzd92zLmJ4DnAE8v6rm0wXzHVPNRSNUVb587bAX3Q+EB4Fv0gXFnwJPn6Te84BvDKx/Fnj7FH1/AjirX34xXVDN6dfnAwUcOVB/FXBSv7wGeMnAtn2B7wBz6X7gFTB3YPvfAL8+sP40ujOsA/r1Ao6dYry/A3yyX96rb3/YkHNbP7CtgB8aWP8g8I5++QLgDyb0dSvwoifYTwH304XsbcA7gKdNUu8k4MYJ39eX9stvAz4/of7bgA/3y1uO534D278ILO+X1wEvG9j22i3zBX6ILoBfCuw26vezr6lfXivVKJxUVZ8eLOgvG70XOB7Yuy+en2ROVT3ar985oc0JdL/1Hkz3Q/4ZwM0DVb4+0Pbh/uvdA9sfBrY8dHAA8PEkjw1sfxT4gSeYwwHA+5O8e3BIdGdNX5tsvJO4FPi9JIvofiNfW1U3Djm3YR0AvCbJmQNl8+jOSJ7I4VW1drAgybOA8+jObOb3Y/rGNvqYau4A/zaw/BBbvxfPntD+u8tVtTbJ2XShdWiSa4A3VdVdQ+xPI+DlMu0s3kx36eTIqtqLrZeoMlDnux8Z3l/uuRL4Y+AHqmoBcPWE+tNxJ3BCVS0YeO1R3X2jyT6q/E7gdRPqP726y2CPG+9kqupf6C6z/RrdpbJLt3NuD9GF0BY/OGGc75wwzmdU1cRLe1P5w34+z+2/P6/axnhgirlPYQOw38D64u/puOojVfUCugAt4L/PYF9qzJDRzmI+3ZnFN/sb7r83Rf15wO7ARmBz/5v/f5rB/i8E3rnl5n2ShUmW9ds2Ao/R3SMYrP+WJIf29b8vyS9tx34/RHeP4Wi23ruY7txuAn41yZwkx9PdV9riz4DTkxyZzjOT/EyS+dMc53z6y5z9mddvTrP9dFxOd2z37vd1xpYNSZ6T5Ng+iL9N95559An60U7AkNHO4n3A04F7gWuBv91W5ap6gO5m/eV0l21+FVg5g/2/v2//ySQP9GM4st/XQ8A7gX/sn9A6qqo+Tvcb9Ir+CaovAydsx36voLs8+H+rasN2zu0s4OV097l+je7+DX1f43SPIP9J39da4JTtGOfv0z1yfh/w18BV29HHsN4OrAduBz5Nd4w29dt2B/6I7n3yb8Cz6B7A0E4qVf6nZZJ2XkleT/dQwIumrKydjmcyknYqSfZNcnT/t0vPobtf9/FRj0vbx6fLJO1s5tH9Pc9SukuAK+geddcuyMtlkqRmvFwmSWrmKX25bJ999qklS5aMehiStEtZtWrVvVW1cJi6T+mQWbJkCePj46MehiTtUpJ8bepaHS+XSZKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWqmacgkOT7JrUnWJjlnku1Jcl6//UtJDu/LFyf5TJI1SVYnOWugzfOSXJvkpiTjSY4Y2PaWvq9bk7ys5dwkSVNrFjJJ5gDnAycAhwCvTHLIhGonAAf1r9OAC/ryzcCbq+pHgKOANwy0fRfw+1X1POCt/Tr99uXAocDxwJ/2Y5AkjUjLM5kjgLVVta6qHgFWAMsm1FkGXFqda4EFSfatqg1VdQNAVT0ArAEW9W0K2Ktf/j7groG+VlTVpqq6HVjbj0GSNCJzG/a9CLhzYH09cOQQdRYBG7YUJFkCHAZc1xedDVyT5I/pQvKnBvq6dpK+vkeS0+jOmth///2nMR1J0nS1PJPJJGU1nTpJ9gSuBM6uqvv74tcDb6yqxcAbgYunsT+q6qKqGquqsYULF04xBUnSTLQMmfXA4oH1/dh6aWvKOkl2owuYy6rqqoE6rwG2rP8FWy+JDbM/SdIO1DJkrgcOSrI0yTy6m/IrJ9RZCby6f8rsKOC+qtqQJHRnKGuq6j0T2twFvKhfPhb46kBfy5PsnmQp3cMEX5z9aUmShtXsnkxVbU5yBnANMAe4pKpWJzm9334hcDVwIt1N+oeAU/vmRwMnAzcnuakvO7eqrgZ+A3h/krnAt+nvr/R9Xw7cQvd02huq6tFW85MkTS1Vj7tt8ZQxNjZW4+Pjox6GJO1SkqyqqrFh6voX/5KkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqZmmIZPk+CS3Jlmb5JxJtifJef32LyU5vC9fnOQzSdYkWZ3krIE2H0tyU/+6I8lNffmSJA8PbLuw5dwkSVOb26rjJHOA84HjgPXA9UlWVtUtA9VOAA7qX0cCF/RfNwNvrqobkswHViX5VFXdUlW/MrCPdwP3DfR3W1U9r9WcJEnT0/JM5ghgbVWtq6pHgBXAsgl1lgGXVudaYEGSfatqQ1XdAFBVDwBrgEWDDZME+GXgow3nIEmagZYhswi4c2B9PROCYpg6SZYAhwHXTWh7DHB3VX11oGxpkhuTfC7JMZMNKslpScaTjG/cuHHoyUiSpq9lyGSSsppOnSR7AlcCZ1fV/RPqvZLvPYvZAOxfVYcBbwI+kmSvx3VedVFVjVXV2MKFC4eYhiRpe7UMmfXA4oH1/YC7hq2TZDe6gLmsqq4abJRkLvAK4GNbyqpqU1V9vV9eBdwGHDwrM5EkbZeWIXM9cFCSpUnmAcuBlRPqrARe3T9ldhRwX1Vt6O+3XAysqar3TNL3S4GvVNX6LQVJFvYPG5DkQLqHCdbN/rQkScNq9nRZVW1OcgZwDTAHuKSqVic5vd9+IXA1cCKwFngIOLVvfjRwMnDzlkeUgXOr6up+eTmPv+H/QuDtSTYDjwKnV9W/N5mcJGkoqZp4m+SpY2xsrMbHx0c9DEnapSRZVVVjw9T1L/4lSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqZmhQibJ7UnWTXwN0e74JLcmWZvknEm2J8l5/fYvJTm8L1+c5DNJ1iRZneSsgTYfS3JT/7ojyU0D297S93VrkpcNdQQkSc3MHbLe2MDyHsAvAd+/rQZJ5gDnA8cB64Hrk6ysqlsGqp0AHNS/jgQu6L9uBt5cVTckmQ+sSvKpqrqlqn5lYB/vBu7rlw8BlgOHAs8GPp3k4Kp6dMg5SjuFB75+F+OfW8G++/0wP3zEiaMejjQjQ4VMVX19QtH7kvwD8NZtNDsCWFtV6wCSrACWAYMhswy4tKoKuDbJgiT7VtUGYEO/7weSrAEWDbZNEuCXgWMH+lpRVZuA25Os7cfwT8PMUdpZfODPXs/4xn9m9+zGHyx4FosOHpu6kbSTGipktlzG6j2N7sxm/hTNFgF3DqyvpztLmarOIvqA6fe9BDgMuG5C22OAu6vqqwN9XTtJX98jyWnAaQD777//FFOQdrxvPfIg87Ibj/IYmx5+cNTDkWZk2Mtl7waqX94M3EF3yWxbMklZTadOkj2BK4Gzq+r+CfVeCXx0mvujqi4CLgIYGxt73HZp1F77qvfyt3/9fpbs92Ms/bEXjno40owMGzInAL8ALBlosxx4+zbarAcWD6zvB9w1bJ0ku9EFzGVVddVgoyRzgVcAPzHN/Uk7vR888LmccubFox6GNCuGfYT5E8DLge8AD/avb03R5nrgoCRLk8yjC6WVE+qsBF7dP2V2FHBfVW3o77dcDKypqvdM0vdLga9U1foJfS1PsnuSpXQPE3xxyPlJkhoY9kxmv6o6fjodV9XmJGcA1wBzgEuqanWS0/vtFwJXAycCa4GHgFP75kcDJwM3DzyifG5VXd0vL+d7L5XR93053cMBm4E3+GSZJI1Wuge7pqiUXAT8z6q6uf2QdpyxsbEaHx8f9TAkaZeSZFVVDfXY47BnMi8ATklyO7CJ7iZ7VdVzt3OMkqSngOnc+JckaVqG/WPMr7UeiCTpyccPyJQkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNdM0ZJIcn+TWJGuTnDPJ9iQ5r9/+pSSH9+WLk3wmyZokq5OcNaHdmX2/q5O8qy9bkuThJDf1rwtbzk2SNLW5rTpOMgc4HzgOWA9cn2RlVd0yUO0E4KD+dSRwQf91M/DmqrohyXxgVZJPVdUtSX4aWAY8t6o2JXnWQH+3VdXzWs1JkjQ9Lc9kjgDWVtW6qnoEWEEXDoOWAZdW51pgQZJ9q2pDVd0AUFUPAGuARX2b1wN/VFWb+u33NJyDJGkGWobMIuDOgfX1bA2KoeskWQIcBlzXFx0MHJPkuiSfS/L8gepLk9zYlx8z2aCSnJZkPMn4xo0bpz0pSdLwWoZMJimr6dRJsidwJXB2Vd3fF88F9gaOAn4TuDxJgA3A/lV1GPAm4CNJ9npc51UXVdVYVY0tXLhwunOSJE1Dy5BZDyweWN8PuGvYOkl2owuYy6rqqgltruovsX0ReAzYp6o2VdXXAapqFXAb3VmPJGlEWobM9cBBSZYmmQcsB1ZOqLMSeHX/lNlRwH1VtaE/M7kYWFNV75nQ5hPAsQBJDgbmAfcmWdg/bECSA+keJljXaG6SpCE0e7qsqjYnOQO4BpgDXFJVq5Oc3m+/ELgaOBFYCzwEnNo3Pxo4Gbg5yU192blVdTVwCXBJki8DjwCvqapK8kLg7Uk2A48Cp1fVv7eanyRpaqmaeJvkqWNsbKzGx8dHPQxJ2qUkWVVVY8PU9S/+JUnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM01DJsnxSW5NsjbJOZNsT5Lz+u1fSnJ4X744yWeSrEmyOslZE9qd2fe7Osm7Bsrf0vd1a5KXtZybJGlqc1t1nGQOcD5wHLAeuD7Jyqq6ZaDaCcBB/etI4IL+62bgzVV1Q5L5wKokn6qqW5L8NLAMeG5VbUryrH5/hwDLgUOBZwOfTnJwVT3aao6SpG1reSZzBLC2qtZV1SPACrpwGLQMuLQ61wILkuxbVRuq6gaAqnoAWAMs6tu8HvijqtrUb79noK8VVbWpqm4H1vZjkCSNSMuQWQTcObC+nq1BMXSdJEuAw4Dr+qKDgWOSXJfkc0meP439keS0JONJxjdu3Di9GUmSpqVlyGSSsppOnSR7AlcCZ1fV/X3xXGBv4CjgN4HLk2TI/VFVF1XVWFWNLVy4cOpZSJK2W8uQWQ8sHljfD7hr2DpJdqMLmMuq6qoJba7qL7F9EXgM2GfI/UmSdqCWIXM9cFCSpUnm0d2UXzmhzkrg1f1TZkcB91XVhv7M5GJgTVW9Z0KbTwDHAiQ5GJgH3Nv3tTzJ7kmW0j1M8MVGc5MkDaHZ02VVtTnJGcA1wBzgkqpaneT0fvuFwNXAiXQ36R8CTu2bHw2cDNyc5Ka+7Nyquhq4BLgkyZeBR4DXVFUBq5NcDtxC93TaG3yyTJJGK93P56emsbGxGh8fH/UwJGmXkmRVVY0NU9e/+JckNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqZlU1ajHMDJJNgJfG/U4drB9gHtHPYidhMei43HYymOx1baOxQFVtXCYTp7SIfNUlGS8qsZGPY6dgcei43HYymOx1WwdCy+XSZKaMWQkSc0YMk89F416ADsRj0XH47CVx2KrWTkW3pORJDXjmYwkqRlDRpLUjCHzJJHk+CS3Jlmb5Jxt1Ht+kkeT/OKE8jlJbkzyV+1H29ZMjkWSO5LcnOSmJOM7ZsTtzPBYLEhyRZKvJFmT5Cd3zKjb2N5jkeQ5/fthy+v+JGfvsIHPshm+J96YZHWSLyf5aJI9ptxhVfnaxV/AHOA24EBgHvDPwCFPUO/vgKuBX5yw7U3AR4C/GvV8RnksgDuAfUY9j53kWHwIeG2/PA9YMOo5jepYTNj+b3R/jDjyee3I4wAsAm4Hnt6vXw6cMtU+PZN5cjgCWFtV66rqEWAFsGySemcCVwL3DBYm2Q/4GeADrQe6A8zoWDzJbPexSLIX8ELgYoCqeqSqvtl8xO3M1vviJcBtVbWrflLITI/DXODpSeYCzwDummqHhsyTwyLgzoH19X3ZdyVZBPw8cOEk7d8H/BbwWKPx7UgzPRYFfDLJqiSnNRvljjGTY3EgsBH48/4y6geSPLPlYBub6ftii+XAR2d9dDvOdh+HqvpX4I+BfwE2APdV1Sen2qEh8+SQScomPpv+PuC3q+rR72mY/CxwT1WtajS2HW27j0Xv6Ko6HDgBeEOSF87y+HakmRyLucDhwAVVdRjwLeAJr9/vAmb6viDJPODngL+Y3aHtUDP5WbE33VnPUuDZwDOTvGqqHc7dvnFqJ7MeWDywvh+PP40dA1Ykge6D705Mshk4Evi5JCcCewB7JflwVU355tlJbfexqKpPVNVdAFV1T5KP011e+Hz7YTcxk/fFtcD6qrqur3cFu3bIzOh90W8/Abihqu5uPNaWZvKe2A24vao2AiS5Cvgp4MPb3OOob0T5mpWbeXOBdXS/YWy5mXfoNup/kMlvar6YXf/G/3YfC+CZwPyB5S8Ax496TqN6XwB/DzynX34b8D9GPadRHYu+bAVw6qjnMqrjQPcL6Wq6ezGhezDkzKn26ZnMk0BVbU5yBnAN3VMhl1TV6iSn99u3dY35SWWGx+IHgI/3v8HNBT5SVX/besytzML74kzgsv4y0Trg1KYDbmimxyLJM4DjgNc1H2xDMzkOVXVdkiuAG4DNwI0M8dEzfqyMJKkZb/xLkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasY/xpRmWZLfBX6N7oMI7wVWAfcBp9H9lfVa4OSqeijJB4GHgR8GDqD7g8fXAD8JXFdVp/R9PgicD7wU+AZwLvAuYH/g7KpamWQJ8L/pPq0A4Iyq+kLj6Urb5JmMNIuSjAG/ABwGvILuc6AArqqq51fVjwNrgF8faLY3cCzwRuAvgfcChwI/luR5fZ1nAp+tqp8AHgDeQfcX6D8PvL2vcw9wXHUf8PkrwHkt5ihNh2cy0ux6AfB/quphgCR/2Zf/aJJ3AAuAPek+1mOLv6yqSnIzcHdV3dy3XQ0sAW4CHgG2fMTNzcCmqvpO32ZJX74b8Cd9MD0KHNxgftK0GDLS7Jrso9Sh+6DBk6rqn5OcQvdhpFts6r8+NrC8ZX3Lv9Hv1NbPgPpuvap6rP8PpKA7E7ob+HG6qxTf3u5ZSLPEy2XS7PoH4OVJ9kiyJ93/OAowH9iQZDe6+zUtfB+woaoeA06m+wBEaaQ8k5FmUVVdn2Ql3Ueofw0Yp7vp/7vAdX3ZzXShM9v+FLgyyS8Bn6H7j8akkfJTmKVZlmTPqnqw/3j4zwOnVdUNox6XNAqeyUiz76Ikh9D9T6MfMmD0VOaZjCSpGW/8S5KaMWQkSc0YMpKkZgwZSVIzhowkqZn/D4F4NFG1IJzSAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamma lamb\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEWCAYAAAC0Q+rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfFUlEQVR4nO3df7ReVWHm8e+TS0IiPxqmXGtIAgkasIAQ0mugU0UXQk1SJVjbNVgtSuvEdBmnLdNa1FYBddqpdqgskQxaahihmQyVNqUgYFu01ga4kQBGob0JYAKRRBQkhgYTnvnj7GteLje57/2x8+bH81nrrPuevfc5Z+9z3+S558d7XtkmIiKihnGd7kBERBy4EjIREVFNQiYiIqpJyERERDUJmYiIqCYhExER1SRkIvYzkl4vaWOn+9FK0lpJr99D/QclfW7v9Sj2FQmZ2KskPSLpWUlbJT0h6S8lHd7pfu2JpBmSLOmQMVrfRElPSTp7kLorJN04FtsZiTLOH5Xfz2OS/pekrqGWs32y7Tv3UP8/bL97TDsb+4WETHTCm20fDswBXg384XAWVmO/ee8ODCfb/wH8X+DCAe26gLcBy/Ze7wZ1Wvn9vAH4NeC/jmZlYxXOsX/ab/6hxoHH9mPArcApko6SdLOkLZJ+UF5P628r6U5JH5f0L8A24HhJF0n6tqRnJK2X9J6W9q+XtFHS+yVtlrRJ0vmSFkj6N0nfl/TBlvbjJF0iaZ2kJyWtkPSfSvVXy8+nyl/4P1+W+Y2y/R9Iuk3ScS3rs6T3Svp34N8HGf4y4K2SXtJS9kaaf5O37mlsA5VtvaJl/vOSPtYy/yZJa8rR09clnbr738outh8E/pnm9/NySf9Y9s33JF0vaXLLNh6RdE55famkGyV9QdIPgXeVsi+U+v4jw3dK+k5Z34da1jVJ0rKyX79dfocbW+r/oBxlPSPpIUlvaGc80RkJmegYSdOBBcC9NO/FvwSOA44FngU+PWCRXwcWAUcAjwKbgTcBRwIXAVdImtPS/mXARGAq8GHgs8A7gJ8DXgt8WNLxpe1/A84HXgccA/wAuKrUnVV+TrZ9uO1/lXQ+8EHgl4Fumv+M/2pAf88HzgBOGjh2218HNpXlW8d3g+0dbYytLWWZa4H3AD8N/G9gpaRD21j2JJr9dC8g4I9p9s3PAtOBS/ew+ELgRmAycP1u2rwGOJHmiOnDkn62lH8EmAEcD5xL8zvr79OJwBLg1baPoAnmR4YaS3SQ7UyZ9tpE8x/CVuApmqD4DDBpkHazgR+0zN8JXD7Euv8G+O3y+vU0QdVV5o8ADJzR0n41cH55/W3gDS11U4AfA4fQ/Idn4JCW+luB32yZH0dzhHVcmTdw9hD9/UPg9vL6yLL86W2ObWNLnYFXtMx/HvhYeX018NEB63oIeN1utmPghzQhuw74GDBukHbnA/cO+L2eU15fCnx1QPtLgS+U1/37c1pL/d3ABeX1euCNLXXv7h8v8AqaAD4HGN/p93OmoaecK41OON/2l1sLymmjK4B5wFGl+AhJXbZ3lvkNA5aZT/NX7wk0/8m/BHigpcmTLcs+W34+0VL/LNB/08FxwE2Snm+p3wn8zG7GcBzwKUl/1tolmqOmRwfr7yCuAz4iaSrNX+R9tu9tc2ztOg54p6T3tZRNoDki2Z05tvtaCyS9FLiS5sjmiNKnH+xhHUONHeC7La+3set3ccyA5X/y2nafpN+hCa2TJd0GXGz78Ta2Fx2Q02Wxr/jvNKdOzrB9JLtOUamlzU8eGV5O9/w18EngZ2xPBm4Z0H44NgDzbU9umSa6uW402KPKNwDvGdB+kpvTYC/q72Bsf4fmNNvbaU6VXTfCsW2jCaF+LxvQz48P6OdLbA88tTeUPy7jObX8ft6xh/7AEGMfwiZgWsv89Bes2L7B9mtoAtTA/xzFtqKyhEzsK46gObJ4qlxw/8gQ7ScAhwJbgB3lL/9fHMX2lwIf7794L6lb0sJStwV4nuYaQWv7D0g6ubT/KUm/OoLtLqO5xvAL7Lp2MdyxrQF+TVKXpHk015X6fRZYLOkMNQ6T9EuSjhhmP4+gnOYsR16/P8zlh2MFzb49qmxrSX+FpBMlnV2C+D9o3jM7d7Oe2AckZGJf8efAJOB7wCrgS3tqbPsZmov1K2hO2/wasHIU2/9UWf52Sc+UPpxRtrUN+DjwL+UOrTNt30TzF/TycgfVN4H5I9jujTSnB//B9qYRju23gTfTXOd6O831G8q6emluQf50WVcf8K4R9PMymlvOnwb+HvjiCNbRrsuBjcDDwJdp9tH2Unco8Cc075PvAi+luQEj9lGy86VlEbHvkvRbNDcFvG7IxrHPyZFMROxTJE2R9Avls0sn0lyvu6nT/YqRyd1lEbGvmUDzeZ6ZNKcAl9Pc6h77oZwui4iIanK6LCIiqjmoT5cdffTRnjFjRqe7ERGxX1m9evX3bHe30/agDpkZM2bQ29vb6W5EROxXJD06dKtGTpdFREQ1CZmIiKgmIRMREdUkZCIiopqETEREVJOQiYiIahIyERFRTUImIiKqSchEREQ1CZmIiKgmIRMREdUkZCIiopqETEREVJOQiYiIahIyERFRTUImIiKqSchEREQ1VUNG0jxJD0nqk3TJIPWSdGWpv1/SnFI+UdLdku6TtFbSZS3LXCrpMUlryrSglM+Q9GxL+dKaY4uIiKFV+/plSV3AVcC5wEbgHkkrbX+rpdl8YFaZzgCuLj+3A2fb3ippPPA1SbfaXlWWu8L2JwfZ7Drbs+uMKCIihqvmkcxcoM/2etvPAcuBhQPaLASuc2MVMFnSlDK/tbQZXyZX7GtERFRQM2SmAhta5jeWsrbaSOqStAbYDNxh+66WdkvK6bVrJR3VUj5T0r2SviLptYN1StIiSb2Serds2TKykUVERFtqhowGKRt4NLLbNrZ3llNf04C5kk4p9VcDLwdmA5uAPyvlm4BjbZ8OXAzcIOnIF63cvsZ2j+2e7u7u4Y0oIiKGpWbIbASmt8xPAx4fbhvbTwF3AvPK/BMlgJ4HPktzWg7b220/WV6vBtYBJ4zRWCIiYgRqhsw9wCxJMyVNAC4AVg5osxK4sNxldibwtO1NkrolTQaQNAk4B3iwzE9pWf4twDdLeXe52QBJx9PcTLC+2ugiImJI1e4us71D0hLgNqALuNb2WkmLS/1S4BZgAdAHbAMuKotPAZaV0BgHrLB9c6n7U0mzaU6rPQK8p5SfBVwuaQewE1hs+/u1xhcREUOTffDetNXT0+Pe3t5OdyMiYr8iabXtnnba5hP/ERFRTUImIiKqSchEREQ1CZmIiKgmIRMREdUkZCIiopqETEREVJOQiYiIahIyERFRTUImIiKqSchEREQ1CZmIiKgmIRMREdUkZCIiopqETEREVJOQiYiIahIyERFRTUImIiKqSchEREQ1CZmIiKimashImifpIUl9ki4ZpF6Sriz190uaU8onSrpb0n2S1kq6rGWZSyU9JmlNmRa01H2grOshSW+sObaIiBjaIbVWLKkLuAo4F9gI3CNppe1vtTSbD8wq0xnA1eXnduBs21sljQe+JulW26vKclfY/uSA7Z0EXACcDBwDfFnSCbZ31hpjRETsWc0jmblAn+31tp8DlgMLB7RZCFznxipgsqQpZX5raTO+TB5iewuB5ba3234Y6Ct9iIiIDqkZMlOBDS3zG0tZW20kdUlaA2wG7rB9V0u7JeX02rWSjhrG9pC0SFKvpN4tW7aMYFgREdGumiGjQcoGHo3sto3tnbZnA9OAuZJOKfVXAy8HZgObgD8bxvawfY3tHts93d3dQ40hIiJGoWbIbASmt8xPAx4fbhvbTwF3AvPK/BMlgJ4HPsuuU2LtbC8iIvaimiFzDzBL0kxJE2guyq8c0GYlcGG5y+xM4GnbmyR1S5oMIGkScA7wYJmf0rL8W4BvtqzrAkmHSppJczPB3ZXGFhERbah2d5ntHZKWALcBXcC1ttdKWlzqlwK3AAtoLtJvAy4qi08BlpU71MYBK2zfXOr+VNJsmlNhjwDvKetbK2kF8C1gB/De3FkWEdFZsoe6aevA1dPT497e3k53IyJivyJpte2edtrmE/8REVFNQiYiIqpJyERERDUJmYiIqCYhExER1SRkIiKimoRMRERUk5CJiIhqEjIREVFNQiYiIqpJyERERDUJmYiIqCYhExER1SRkIiKimoRMRERUk5CJiIhqEjIREVFNQiYiIqpJyERERDUJmYiIqKZqyEiaJ+khSX2SLhmkXpKuLPX3S5pTyidKulvSfZLWSrpskGV/T5IlHV3mZ0h6VtKaMi2tObaIiBjaIbVWLKkLuAo4F9gI3CNppe1vtTSbD8wq0xnA1eXnduBs21sljQe+JulW26vKuqeX9X5nwGbX2Z5da0wRETE8NY9k5gJ9ttfbfg5YDiwc0GYhcJ0bq4DJkqaU+a2lzfgyuWW5K4D3DyiLiIh9TM2QmQpsaJnfWMraaiOpS9IaYDNwh+27Svl5wGO27xtkmzMl3SvpK5JeO1inJC2S1Cupd8uWLSMZV0REtKlmyGiQsoFHHrttY3tnOfU1DZgr6RRJLwE+BHx4kOU2AcfaPh24GLhB0pEvWrl9je0e2z3d3d3tjyYiIoatZshsBKa3zE8DHh9uG9tPAXcC84CXAzOB+yQ9Utp/Q9LLbG+3/WRZZjWwDjhhjMYSEREjUDNk7gFmSZopaQJwAbByQJuVwIXlLrMzgadtb5LULWkygKRJwDnAg7YfsP1S2zNsz6AJqTm2v1uW6SrLHE9zM8H6iuOLiIghVLu7zPYOSUuA24Au4FrbayUtLvVLgVuABUAfsA24qCw+BVhWQmMcsML2zUNs8izgckk7gJ3AYtvfH+txRURE+2QfvDdo9fT0uLe3t9PdiIjYr0habbunnbb5xH9ERFSTkImIiGoSMhERUU1CJiIiqknIRERENQmZiIioJiETERHVJGQiIqKahExERFSTkImIiGoSMhERUU1CJiIiqknIRERENW0/6l/Sy4C5NN9ceY/t71brVUREHBDaOpKR9G7gbuCXgV8BVkn6jZodi4iI/V+7RzK/D5ze//XGkn4a+Dpwba2ORUTE/q/dazIbgWda5p8BNox9dyIi4kCyxyMZSReXl48Bd0n6W5prMgtpTp9FRETs1lCny44oP9eVqd/f1ulOREQcSPYYMrYv21sdiYiIA0+7d5f1SLpJ0jck3d8/tbHcPEkPSeqTdMkg9ZJ0Zam/X9KcUj5R0t2S7pO0VtKLwk7S70mypKNbyj5Q1vWQpDe2M7aIiKin3bvLrqe5w+wB4Pl2FpDUBVwFnEtz48A9klba/lZLs/nArDKdAVxdfm4Hzra9VdJ44GuSbrW9qqx7elnvd1q2dxJwAXAycAzwZUkn2N7Z5hgj9gnPPPk4vV9ZzpRpr+SVcxd0ujsRo9JuyGyxvXKY654L9NleDyBpOc0NA60hsxC4zrZpPnszWdIU25uAraXN+DK5ZbkrgPfzwmtDC4HltrcDD0vqK33412H2O6KjPvfZ36J3y30cqvF8dPJLmXpCT6e7FDFi7YbMRyR9DvgHmqMMAGx/cQ/LTOWFtzlvpDlKGarNVGBTORJaDbwCuMr2XQCSzgMes32fpIHrWjXIul5A0iJgEcCxxx67h+5HdMaPntvKBI1nJ8+z/dmtQy8QsQ9rN2QuAl5Jc0TRf7rMwJ5CRoOUud025TTXbEmTgZsknQKsBz4E/OIIt4fta4BrAHp6el5UH9Fp737HFXzp7z/FjGmvYuarzup0dyJGpd2QOc32q4a57o3A9Jb5acDjw21j+ylJdwLzgNuAmUD/Ucw04BuS5ra5vYh93suOP5V3ve8vOt2NiDHR7if+V5UL68NxDzBL0kxJE2guyg+8rrMSuLDcZXYm8LTtTZK6yxEMkiYB5wAP2n7A9kttz7A9gyZY5pSHda4ELpB0qKSZNDcT5AOjEREd1O6RzGuAd0p6mOaajADbPnV3C9jeIWkJzdFHF3Ct7bWSFpf6pcAtwAKgD9hGc1oOYAqwrFyXGQessH3znjpY1r2C5saCHcB7c2dZRERnqbmxa4hG0nGDldt+dMx7tBf19PS4t7e3092IiNivSFptu63bHts6kukPE0kvBSaOom8REXEQafcT/+dJ+nfgYeArwCPArRX7FRERB4B2L/x/FDgT+DfbM4E3AP9SrVcREXFAaDdkfly+sGycpHG2/wmYXa9bERFxIGj37rKnJB0OfBW4XtJmmju4IiIidqvdI5mFwLPA7wJfovlumTfX6lRERBwY2r277Ects8sq9SUiIg4wQ3398jMM8vwvdn0Y88gqvYqIiAPCUN+MecSe6iMiIvak3WsyERERw5aQiYiIahIyERFRTUImIiKqSchEREQ1CZmIiKgmIRMREdUkZCIiopqETEREVJOQiYiIahIyERFRTdWQkTRP0kOS+iRdMki9JF1Z6u+XNKeUT5R0t6T7JK2VdFnLMh8tbddIul3SMaV8hqRnS/kaSUtrji0iIoZWLWQkdQFXAfOBk4C3STppQLP5wKwyLQKuLuXbgbNtn0bzDZzzJJ1Z6j5h+1Tbs4GbgQ+3rG+d7dllWlxhWBERMQw1j2TmAn2219t+DlhO8+VnrRYC17mxCpgsaUqZ31rajC+TAWz/sGX5wxj8qwgiImIfUDNkpgIbWuY3lrK22kjqkrQG2AzcYfuu/kaSPi5pA/B2XngkM1PSvZK+Ium1g3VK0iJJvZJ6t2zZMsKhRUREO2qGjAYpG3jUsds2tneWU2LTgLmSTvlJA/tDtqcD1wNLSvEm4FjbpwMXAzdIetGXqtm+xnaP7Z7u7u7hjikiIoahZshsBKa3zE8DHh9uG9tPAXcC8wbZxg3AW0u77bafLK9XA+uAE0bc+4iIGLWaIXMPMEvSTEkTgAuAlQParAQuLHeZnQk8bXuTpG5JkwEkTQLOAR4s87Nalj+vpby73GyApONpbiZYX210ERExpD1+/fJo2N4haQlwG9AFXGt7raTFpX4pcAuwAOgDtgEXlcWnAMtKaIwDVti+udT9iaQTgeeBR4H+u8jOAi6XtAPYCSy2/f1a44uIiKHJPnhvzurp6XFvb2+nuxERsV+RtNp2Tztt84n/iIioJiETERHVJGQiIqKahExERFSTkImIiGoSMhERUU1CJiIiqknIRERENQmZiIioJiETERHVJGQiIqKahExERFSTkImIiGoSMhERUU1CJiIiqknIRERENQmZiIioJiETERHVJGQiIqKahExERFRTNWQkzZP0kKQ+SZcMUi9JV5b6+yXNKeUTJd0t6T5JayVd1rLMR0vbNZJul3RMS90HyroekvTGmmOLiIihVQsZSV3AVcB84CTgbZJOGtBsPjCrTIuAq0v5duBs26cBs4F5ks4sdZ+wfart2cDNwIfL9k4CLgBOBuYBnyl9iIiIDql5JDMX6LO93vZzwHJg4YA2C4Hr3FgFTJY0pcxvLW3Gl8kAtn/Ysvxh/eVlXcttb7f9MNBX+hARER1SM2SmAhta5jeWsrbaSOqStAbYDNxh+67+RpI+LmkD8HbKkUyb20PSIkm9knq3bNkyknFFRESbaoaMBilzu21s7yynxKYBcyWd8pMG9odsTweuB5YMY3vYvsZ2j+2e7u7uoUcREREjVjNkNgLTW+anAY8Pt43tp4A7aa6zDHQD8NZhbC8iIvaimiFzDzBL0kxJE2guyq8c0GYlcGG5y+xM4GnbmyR1S5oMIGkScA7wYJmf1bL8ef3lZV0XSDpU0kyamwnurjS2iIhowyG1Vmx7h6QlwG1AF3Ct7bWSFpf6pcAtwAKai/TbgIvK4lOAZeXusHHACts3l7o/kXQi8DzwKNC/vrWSVgDfAnYA77W9s9b4IiJiaLJfdNnioNHT0+Pe3t5OdyMiYr8iabXtnnba5hP/ERFRTUImIiKqSchEREQ1CZmIiKgmIRMREdUkZCIiopqETEREVJOQiYiIahIyERFRTUImIiKqSchEREQ1CZmIiKgmIRMREdUkZCIiopqETEREVJOQiYiIahIyERFRTUImIiKqSchEREQ1CZmIiKimashImifpIUl9ki4ZpF6Sriz190uaU8onSrpb0n2S1kq6rGWZT0h6sLS/SdLkUj5D0rOS1pRpac2xRUTE0KqFjKQu4CpgPnAS8DZJJw1oNh+YVaZFwNWlfDtwtu3TgNnAPElnlro7gFNsnwr8G/CBlvWtsz27TIsrDCsiIoah5pHMXKDP9nrbzwHLgYUD2iwErnNjFTBZ0pQyv7W0GV8mA9i+3faOUrcKmFZxDBERMQo1Q2YqsKFlfmMpa6uNpC5Ja4DNwB227xpkG78B3NoyP1PSvZK+Ium1g3VK0iJJvZJ6t2zZMqwBRUTE8NQMGQ1S5nbb2N5pezbNkcpcSae8YEHpQ8AO4PpStAk41vbpwMXADZKOfNHK7Wts99ju6e7uHs54IiJimGqGzEZgesv8NODx4bax/RRwJzCvv0zSO4E3AW+33R9K220/WV6vBtYBJ4zBOCIiYoRqhsw9wCxJMyVNAC4AVg5osxK4sNxldibwtO1Nkrpb7hqbBJwDPFjm5wF/AJxne1v/isoyXeX18TQ3E6yvOL6IiBjCIbVWbHuHpCXAbUAXcK3ttZIWl/qlwC3AAqAP2AZcVBafAiwroTEOWGH75lL3aeBQ4A5JAKvKnWRnAZdL2gHsBBbb/n6t8UVExNBUzjYdlHp6etzb29vpbkRE7Fckrbbd007bfOI/IiKqSchEREQ1CZmIiKgmIRMREdUkZCIiopqETEREVJOQiYiIahIyERFRTUImIiKqSchEREQ1CZmIiKgmIRMREdUkZCIiopqETEREVJOQiYiIahIyERFRzUH9pWWStgCPdrofe9nRwPc63Yl9RPZFI/thl+yLXfa0L46z3d3OSg7qkDkYSept9xvtDnTZF43sh12yL3YZq32R02UREVFNQiYiIqpJyBx8rul0B/Yh2ReN7Iddsi92GZN9kWsyERFRTY5kIiKimoRMRERUk5A5QEiaJ+khSX2SLtlDu1dL2inpVwaUd0m6V9LN9Xtb12j2haRHJD0gaY2k3r3T43pGuS8mS7pR0oOSvi3p5/dOr+sY6b6QdGJ5P/RPP5T0O3ut42NslO+J35W0VtI3Jf2VpIlDbtB2pv18ArqAdcDxwATgPuCk3bT7R+AW4FcG1F0M3ADc3OnxdHJfAI8AR3d6HPvIvlgGvLu8ngBM7vSYOrUvBtR/l+bDiB0f197cD8BU4GFgUplfAbxrqG3mSObAMBfos73e9nPAcmDhIO3eB/w1sLm1UNI04JeAz9Xu6F4wqn1xgBnxvpB0JHAW8BcAtp+z/VT1HtczVu+LNwDrbO+vTwoZ7X44BJgk6RDgJcDjQ20wIXNgmApsaJnfWMp+QtJU4C3A0kGW/3Pg/cDzlfq3N412Xxi4XdJqSYuq9XLvGM2+OB7YAvxlOY36OUmH1exsZaN9X/S7APirMe/d3jPi/WD7MeCTwHeATcDTtm8faoMJmQODBikbeG/6nwN/YHvnCxaU3gRstr26Ut/2thHvi+IXbM8B5gPvlXTWGPdvbxrNvjgEmANcbft04EfAbs/f7wdG+75A0gTgPOD/jW3X9qrR/F9xFM1Rz0zgGOAwSe8YaoOHjKyfsY/ZCExvmZ/Giw9je4DlkqB58N0CSTuAM4DzJC0AJgJHSvqC7SHfPPuoEe8L239j+3EA25sl3URzeuGr9btdxWjeF6uAjbbvKu1uZP8OmVG9L0r9fOAbtp+o3NeaRvOeGA88bHsLgKQvAv8Z+MIet9jpC1GZxuRi3iHAepq/MPov5p28h/afZ/CLmq9n/7/wP+J9ARwGHNHy+uvAvE6PqVPvC+CfgRPL60uBT3R6TJ3aF6VsOXBRp8fSqf1A8wfpWpprMaK5MeR9Q20zRzIHANs7JC0BbqO5K+Ra22slLS71ezrHfEAZ5b74GeCm8hfcIcANtr9Uu8+1jMH74n3A9eU00Xrgoqodrmi0+0LSS4BzgfdU72xFo9kPtu+SdCPwDWAHcC9tPHomj5WJiIhqcuE/IiKqSchEREQ1CZmIiKgmIRMREdUkZCIiopqETEREVJOQiYiIavJhzIgxJumPgLfTPIjwe8Bq4GlgEc2nrPuAX7e9TdLngWeBVwLH0Xzg8Z3AzwN32X5XWedW4CrgHOAHwAeBPwWOBX7H9kpJM4D/Q/O0AoAltr9eebgRe5QjmYgxJKkHeCtwOvDLNM+BAvii7VfbPg34NvCbLYsdBZwN/C7wd8AVwMnAqyTNLm0OA+60/XPAM8DHaD6B/hbg8tJmM3Cumwd8/hfgyhpjjBiOHMlEjK3XAH9r+1kASX9Xyk+R9DFgMnA4zWM9+v2dbUt6AHjC9gNl2bXADGAN8BzQ/4ibB4Dttn9clplRyscDny7BtBM4ocL4IoYlIRMxtgZ7lDo0Dxo83/Z9kt5F8zDSftvLz+dbXvfP9/8b/bF3PQPqJ+1sP1++QAqaI6EngNNozlL8x4hHETFGcrosYmx9DXizpImSDqf5xlGAI4BNksbTXK+p4aeATbafB36d5gGIER2VI5mIMWT7HkkraR6h/ijQS3PR/4+Au0rZAzShM9Y+A/y1pF8F/onmi8YiOipPYY4YY5IOt721PB7+q8Ai29/odL8iOiFHMhFj7xpJJ9F80+iyBEwczHIkExER1eTCf0REVJOQiYiIahIyERFRTUImIiKqSchEREQ1/x9TOBX+2MqDoAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamma rho\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEWCAYAAAC0Q+rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeeElEQVR4nO3dfZheZWHn8e+PSUIigmGXsYYkkKCBbUAI6RjoqtRFqElqCdZ2F1+K0LohvYzb1u1a1FYBddv6hnKJZNGiYRWzWSptSkHAbdFaG2AiCRgl7RDBDEQYUcCYNJjw2z/OPfI4TDLPvNyZJPw+13WuPOd+Oee+zzyZ35yXeUa2iYiIqOGQ8R5AREQcvBIyERFRTUImIiKqSchEREQ1CZmIiKgmIRMREdUkZCIOMJJeJal3vMfRStJGSa/aS/27JX1m340o9hcJmdinJD0gaYekbZIekfRZSc8f73HtjaRZkixpwhhtb7KkxyWdOUjd5ZKuH4v9jESZ50/K1+chSR+T1DFUP9sn2r59L/X/0/Zbx3SwcUBIyMR4+HXbzwfmAy8D/mQ4ndU4YN67A8PJ9r8B/wc4f0C7DuANwMp9N7pBnVK+Pq8G3gj819FsbKzCOQ5MB8x/1Dj42H4IuBk4SdKRkm6U1CfpR+X1jP62km6X9EFJ/wRsB46TdKGk70j6saTNki5qaf8qSb2S3inpUUlbJZ0rabGkf5H0Q0nvbml/iKSLJd0v6TFJqyX9u1L9tfLv4+Un/F8ufX6n7P9Hkm6RdGzL9izpbZL+FfjXQaa/Eni9pOe1lL2G5v/kzXub20BlXy9pWf+cpA+0rL9W0vpy9vQNSSfv+avyDNv3Af9I8/V5saS/L8fmB5K+IGlqyz4ekHRWeX2JpOslfV7Sk8AFpezzpb7/zPAtkr5Xtveelm1NkbSyHNfvlK9hb0v9H5ezrB9L2iTp1e3MJ8ZHQibGjaSZwGLgbpr34meBY4FjgB3AJwd0+W1gKXA48CDwKPBa4AjgQuBySfNb2r8ImAxMB94LfBp4M/BLwCuB90o6rrT9b8C5wK8ARwM/Aq4sdWeUf6fafr7tf5Z0LvBu4DeATppvxl8cMN5zgdOAuQPnbvsbwNbSv3V+19ne1cbc2lL6XANcBPx74H8BayQd2kbfuTTH6W5AwJ/RHJtfBGYCl+yl+xLgemAq8IU9tHkFcALNGdN7Jf1iKX8fMAs4Djib5mvWP6YTgOXAy2wfThPMDww1lxhHtrNk2WcLzTeEbcDjNEHxKWDKIO3mAT9qWb8duGyIbf818Pvl9atogqqjrB8OGDitpf064Nzy+jvAq1vqpgE/BSbQfMMzMKGl/mbgd1vWD6E5wzq2rBs4c4jx/glwa3l9ROl/aptz622pM/CSlvXPAR8or68C3j9gW5uAX9nDfgw8SROy9wMfAA4ZpN25wN0Dvq5nldeXAF8b0P4S4PPldf/xnNFSfydwXnm9GXhNS91b++cLvIQmgM8CJo73+znL0EuulcZ4ONf2V1oLymWjy4GFwJGl+HBJHbZ3l/UtA/osovmp93iab/LPA+5tafJYS98d5d9HWup3AP0PHRwL3CDp6Zb63cAv7GEOxwKfkPTR1iHRnDU9ONh4B3Et8D5J02l+Iu+xfXebc2vXscBbJL29pWwSzRnJnsy33dNaIOmFwBU0ZzaHlzH9aC/bGGruAN9veb2dZ74WRw/o/7PXtnsk/QFNaJ0o6RbgHbYfbmN/MQ5yuSz2F/+d5tLJabaP4JlLVGpp87OPDC+Xe/4K+AjwC7anAjcNaD8cW4BFtqe2LJPd3Dca7KPKtwAXDWg/xc1lsGeNdzC2v0dzme1NNJfKrh3h3LbThFC/Fw0Y5wcHjPN5tgde2hvKn5X5nFy+Pm/ey3hgiLkPYSswo2V95s9t2L7O9itoAtTAX4xiX1FZQib2F4fTnFk8Xm64v2+I9pOAQ4E+YFf5yf9XR7H/FcAH+2/eS+qUtKTU9QFP09wjaG3/LkknlvYvkPRbI9jvSpp7DC/nmXsXw53beuCNkjokLaS5r9Tv08AySaepcZikX5N0+DDHeTjlMmc58/ofw+w/HKtpju2RZV/L+ysknSDpzBLE/0bzntm9h+3EfiAhE/uLjwNTgB8Aa4Ev762x7R/T3KxfTXPZ5o3AmlHs/xOl/62SflzGcFrZ13bgg8A/lSe0Trd9A81P0KvKE1TfAhaNYL/X01we/H+2t45wbr8P/DrNfa430dy/oWyrm+YR5E+WbfUAF4xgnJfSPHL+BPB3wJdGsI12XQb0At8FvkJzjHaWukOBP6d5n3wfeCHNAxixn5KdP1oWEfsvSb9H81DArwzZOPY7OZOJiP2KpGmSXl5+d+kEmvt1N4z3uGJk8nRZROxvJtH8Ps9smkuAq2gedY8DUC6XRURENblcFhER1TynL5cdddRRnjVr1ngPIyLigLJu3bof2O5sp+1zOmRmzZpFd3f3eA8jIuKAIunBoVs1crksIiKqSchEREQ1CZmIiKgmIRMREdUkZCIiopqETEREVJOQiYiIahIyERFRTUImIiKqSchEREQ1CZmIiKgmIRMREdUkZCIiopqETEREVJOQiYiIahIyERFRTUImIiKqqRoykhZK2iSpR9LFg9RL0hWl/h5J80v5ZEl3StogaaOkS1v6XCLpIUnry7K4lM+StKOlfEXNuUVExNCq/fllSR3AlcDZQC9wl6Q1tr/d0mwRMKcspwFXlX93Amfa3iZpIvB1STfbXlv6XW77I4Ps9n7b8+rMKCIihqvmmcwCoMf2ZttPAauAJQPaLAGudWMtMFXStLK+rbSZWBZXHGtERFRQM2SmA1ta1ntLWVttJHVIWg88Ctxm+46WdsvL5bVrJB3ZUj5b0t2SvirplYMNStJSSd2Suvv6+kY2s4iIaEvNkNEgZQPPRvbYxvbuculrBrBA0kml/irgxcA8YCvw0VK+FTjG9qnAO4DrJB3xrI3bV9vust3V2dk5vBlFRMSw1AyZXmBmy/oM4OHhtrH9OHA7sLCsP1IC6Gng0zSX5bC90/Zj5fU64H7g+DGaS0REjEDNkLkLmCNptqRJwHnAmgFt1gDnl6fMTgeesL1VUqekqQCSpgBnAfeV9Wkt/V8HfKuUd5aHDZB0HM3DBJurzS4iIoZU7eky27skLQduATqAa2xvlLSs1K8AbgIWAz3AduDC0n0asLKExiHAats3lroPSZpHc1ntAeCiUn4GcJmkXcBuYJntH9aaX0REDE32c/ehra6uLnd3d4/3MCIiDiiS1tnuaqdtfuM/IiKqSchEREQ1CZmIiKgmIRMREdUkZCIiopqETEREVJOQiYiIahIyERFRTUImIiKqSchEREQ1CZmIiKgmIRMREdUkZCIiopqETEREVJOQiYiIahIyERFRTUImIiKqSchEREQ1CZmIiKgmIRMREdVUDRlJCyVtktQj6eJB6iXpilJ/j6T5pXyypDslbZC0UdKlLX0ukfSQpPVlWdxS966yrU2SXlNzbhERMbQJtTYsqQO4Ejgb6AXukrTG9rdbmi0C5pTlNOCq8u9O4Ezb2yRNBL4u6Wbba0u/y21/ZMD+5gLnAScCRwNfkXS87d215hgREXtX80xmAdBje7Ptp4BVwJIBbZYA17qxFpgqaVpZ31baTCyLh9jfEmCV7Z22vwv0lDFERMQ4qRky04EtLeu9paytNpI6JK0HHgVus31HS7vl5fLaNZKOHMb+kLRUUrek7r6+vhFMKyIi2lUzZDRI2cCzkT22sb3b9jxgBrBA0kml/irgxcA8YCvw0WHsD9tX2+6y3dXZ2TnUHCIiYhRqhkwvMLNlfQbw8HDb2H4cuB1YWNYfKQH0NPBpnrkk1s7+IiJiH6oZMncBcyTNljSJ5qb8mgFt1gDnl6fMTgeesL1VUqekqQCSpgBnAfeV9Wkt/V8HfKtlW+dJOlTSbJqHCe6sNLeIiGhDtafLbO+StBy4BegArrG9UdKyUr8CuAlYTHOTfjtwYek+DVhZnlA7BFht+8ZS9yFJ82guhT0AXFS2t1HSauDbwC7gbXmyLCJifMke6qGtg1dXV5e7u7vHexgREQcUSetsd7XTNr/xHxER1SRkIiKimoRMRERUk5CJiIhqEjIREVFNQiYiIqpJyERERDUJmYiIqCYhExER1SRkIiKimoRMRERUk5CJiIhqEjIREVFNQiYiIqpJyERERDUJmYiIqCYhExER1SRkIiKimoRMRERUk5CJiIhqqoaMpIWSNknqkXTxIPWSdEWpv0fS/FI+WdKdkjZI2ijp0kH6/pEkSzqqrM+StEPS+rKsqDm3iIgY2oRaG5bUAVwJnA30AndJWmP72y3NFgFzynIacFX5dydwpu1tkiYCX5d0s+21Zdszy3a/N2C399ueV2tOERExPDXPZBYAPbY3234KWAUsGdBmCXCtG2uBqZKmlfVtpc3Esril3+XAOweURUTEfqZmyEwHtrSs95ayttpI6pC0HngUuM32HaX8HOAh2xsG2edsSXdL+qqkVw42KElLJXVL6u7r6xvJvCIiok01Q0aDlA0889hjG9u7y6WvGcACSSdJeh7wHuC9g/TbChxj+1TgHcB1ko541sbtq2132e7q7OxsfzYRETFsNUOmF5jZsj4DeHi4bWw/DtwOLAReDMwGNkh6oLT/pqQX2d5p+7HSZx1wP3D8GM0lIiJGoGbI3AXMkTRb0iTgPGDNgDZrgPPLU2anA0/Y3iqpU9JUAElTgLOA+2zfa/uFtmfZnkUTUvNtf7/06Sh9jqN5mGBzxflFRMQQqj1dZnuXpOXALUAHcI3tjZKWlfoVwE3AYqAH2A5cWLpPA1aW0DgEWG37xiF2eQZwmaRdwG5gme0fjvW8IiKifbKfuw9odXV1ubu7e7yHERFxQJG0znZXO23zG/8REVFNQiYiIqpJyERERDUJmYiIqCYhExER1SRkIiKimoRMRERUk5CJiIhqEjIREVFNQiYiIqpJyERERDUJmYiIqCYhExER1SRkIiKimoRMRERUk5CJiIhqEjIREVFNQiYiIqppK2QkvUDS5ZK6y/JRSS+oPbiIiDiwtXsmcw3wJPCfy/Ik8Nlag4qIiINDuyHzYtvvs725LJcCxw3VSdJCSZsk9Ui6eJB6Sbqi1N8jaX4pnyzpTkkbJG2UdOkgff9IkiUd1VL2rrKtTZJe0+bcIiKiknZDZoekV/SvSHo5sGNvHSR1AFcCi4C5wBskzR3QbBEwpyxLgatK+U7gTNunAPOAhZJOb9n2TOBs4HstZXOB84ATgYXAp8oYIg4oP37sYf7hSx/jvjtvGu+hRIzahDbbLQOuLfdhBPwQuGCIPguAHtubASStApYA325pswS41raBtZKmSppmeyuwrbSZWBa39LsceCfwNwO2tcr2TuC7knrKGP65zTlG7Bc+8+nfo7tvA4dqIu+f+kKmH9813kOKGLG2Qsb2BuAUSUeU9Sfb6DYd2NKy3guc1kab6cDWchayDngJcKXtOwAknQM8ZHuDpIHbWjvItn6OpKU0Z00cc8wxbUwjYt/6yVPbmKSJ7OZpdu7YNnSHiP1YWyEj6VDg9cAsYEL/N3fbl+2t2yBlbreN7d3APElTgRsknQRsBt4D/OoI94ftq4GrAbq6up5VHzHe3vrmy/ny332CWTNeyuyXnjHew4kYlXYvl/0N8ATNmcXONvv0AjNb1mcADw+3je3HJd1Oc5/lFmA20H8WMwP4pqQFbe4vYr/3ouNO5oK3/+V4DyNiTLQbMjNsLxzmtu8C5kiaDTxEc1P+jQParAGWl/s1pwFP2N4qqRP4aQmYKcBZwF/Yvhd4YX9nSQ8AXbZ/IGkNcJ2kjwFH0zxMcOcwxxwREWOo3ZD5hqSXlm/ybbG9S9JymrOPDuAa2xslLSv1K4CbgMVAD7AduLB0nwasLPdlDgFW275xiP1tlLSa5sGCXcDbyiW3iIgYJ2oe7NpDpXQvzb2OKcAxNPdEdpYy2z55Xwyylq6uLnd3d4/3MCIiDiiS1tlu67HHoc5kXktzJtH/lFdERETb9hoyth8EkPRF4IW279ono4qIiINCu/dk/hNwkaQHgZ9wkFwui4iIutoNmUVVRxEREQeldn/j/8HaA4mIiINP/mhZRERUk5CJiIhqEjIREVFNQiYiIqpJyERERDUJmYiIqCYhExER1SRkIiKimoRMRERUk5CJiIhqEjIREVFNQiYiIqpJyERERDUJmYiIqCYhExER1VQNGUkLJW2S1CPp4kHqJemKUn+PpPmlfLKkOyVtkLRR0qUtfd5f2q6XdKuko0v5LEk7Svl6SStqzi0iIoZWLWQkdQBX0vxVzbnAGyTNHdBsETCnLEuBq0r5TuBM26cA84CFkk4vdR+2fbLtecCNwHtbtne/7XllWVZhWhERMQw1z2QWAD22N9t+ClgFLBnQZglwrRtrgamSppX1baXNxLIYwPaTLf0P6y+PiIj9T82QmQ5saVnvLWVttZHUIWk98Chwm+07+htJ+qCkLcCb+PkzmdmS7pb0VUmvHGxQkpZK6pbU3dfXN8KpRUREO2qGjAYpG3jWscc2tneXS2IzgAWSTvpZA/s9tmcCXwCWl+KtwDG2TwXeAVwn6Yhnbdy+2naX7a7Ozs7hzikiIoahZsj0AjNb1mcADw+3je3HgduBhYPs4zrg9aXdTtuPldfrgPuB40c8+oiIGLWaIXMXMEfSbEmTgPOANQParAHOL0+ZnQ48YXurpE5JUwEkTQHOAu4r63Na+p/TUt5ZHjZA0nE0DxNsrja7iIgY0oRaG7a9S9Jy4BagA7jG9kZJy0r9CuAmYDHQA2wHLizdpwErS2gcAqy2fWOp+3NJJwBPAw8C/U+RnQFcJmkXsBtYZvuHteYXERFDk/3cfTirq6vL3d3d4z2MiIgDiqR1trvaaZvf+I+IiGoSMhERUU1CJiIiqknIRERENQmZiIioJiETERHVJGQiIqKahExERFSTkImIiGoSMhERUU1CJiIiqknIRERENQmZiIioJiETERHVJGQiIqKahExERFSTkImIiGoSMhERUU1CJiIiqknIRERENVVDRtJCSZsk9Ui6eJB6Sbqi1N8jaX4pnyzpTkkbJG2UdGlLn/eXtusl3Srp6Ja6d5VtbZL0mppzi4iIoVULGUkdwJXAImAu8AZJcwc0WwTMKctS4KpSvhM40/YpwDxgoaTTS92HbZ9sex5wI/Desr+5wHnAicBC4FNlDBERMU5qnsksAHpsb7b9FLAKWDKgzRLgWjfWAlMlTSvr20qbiWUxgO0nW/of1l9etrXK9k7b3wV6yhgiImKc1AyZ6cCWlvXeUtZWG0kdktYDjwK32b6jv5GkD0raAryJcibT5v6QtFRSt6Tuvr6+kcwrIiLaVDNkNEiZ221je3e5JDYDWCDppJ81sN9jeybwBWD5MPaH7attd9nu6uzsHHoWERExYjVDpheY2bI+A3h4uG1sPw7cTnOfZaDrgNcPY38REbEP1QyZu4A5kmZLmkRzU37NgDZrgPPLU2anA0/Y3iqpU9JUAElTgLOA+8r6nJb+5/SXl22dJ+lQSbNpHia4s9LcIiKiDRNqbdj2LknLgVuADuAa2xslLSv1K4CbgMU0N+m3AxeW7tOAleXpsEOA1bZvLHV/LukE4GngQaB/exslrQa+DewC3mZ7d635RUTE0GQ/67bFc0ZXV5e7u7vHexgREQcUSetsd7XTNr/xHxER1SRkIiKimoRMRERUk5CJiIhqEjIREVFNQiYiIqpJyERERDUJmYiIqCYhExER1SRkIiKimoRMRERUk5CJiIhqEjIREVFNQiYiIqpJyERERDUJmYiIqCYhExER1SRkIiKimoRMRERUk5CJiIhqqoaMpIWSNknqkXTxIPWSdEWpv0fS/FI+WdKdkjZI2ijp0pY+H5Z0X2l/g6SppXyWpB2S1pdlRc25RUTE0KqFjKQO4EpgETAXeIOkuQOaLQLmlGUpcFUp3wmcafsUYB6wUNLppe424CTbJwP/AryrZXv3255XlmUVphUREcNQ80xmAdBje7Ptp4BVwJIBbZYA17qxFpgqaVpZ31baTCyLAWzfantXqVsLzKg4h4iIGIWaITMd2NKy3lvK2mojqUPSeuBR4Dbbdwyyj98Bbm5Zny3pbklflfTKwQYlaamkbkndfX19w5pQREQMT82Q0SBlbreN7d2259GcqSyQdNLPdZTeA+wCvlCKtgLH2D4VeAdwnaQjnrVx+2rbXba7Ojs7hzOfiIgYppoh0wvMbFmfATw83Da2HwduBxb2l0l6C/Ba4E22+0Npp+3Hyut1wP3A8WMwj4iIGKGaIXMXMEfSbEmTgPOANQParAHOL0+ZnQ48YXurpM6Wp8amAGcB95X1hcAfA+fY3t6/odKno7w+juZhgs0V5xcREUOYUGvDtndJWg7cAnQA19jeKGlZqV8B3AQsBnqA7cCFpfs0YGUJjUOA1bZvLHWfBA4FbpMEsLY8SXYGcJmkXcBuYJntH9aaX0REDE3latNzUldXl7u7u8d7GBERBxRJ62x3tdM2v/EfERHVJGQiIqKahExERFSTkImIiGoSMhERUU1CJiIiqknIRERENQmZiIioJiETERHVJGQiIqKahExERFSTkImIiGoSMhERUU1CJiIiqknIRERENQmZiIio5jn9R8sk9QEPjvc49rGjgB+M9yD2EzkWjRyHZ+RYPGNvx+JY253tbOQ5HTLPRZK62/2Ldge7HItGjsMzciyeMVbHIpfLIiKimoRMRERUk5B57rl6vAewH8mxaOQ4PCPH4hljcixyTyYiIqrJmUxERFSTkImIiGoSMgcJSQslbZLUI+nivbR7maTdkn5zQHmHpLsl3Vh/tHWN5lhIekDSvZLWS+reNyOuZ5THYqqk6yXdJ+k7kn5534y6jpEeC0knlPdD//KkpD/YZwMfY6N8T/yhpI2SviXpi5ImD7lD21kO8AXoAO4HjgMmARuAuXto9/fATcBvDqh7B3AdcON4z2c8jwXwAHDUeM9jPzkWK4G3lteTgKnjPafxOhYD6r9P88uI4z6vfXkcgOnAd4EpZX01cMFQ+8yZzMFhAdBje7Ptp4BVwJJB2r0d+Cvg0dZCSTOAXwM+U3ug+8CojsVBZsTHQtIRwBnAXwLYfsr249VHXM9YvS9eDdxv+0D9pJDRHocJwBRJE4DnAQ8PtcOEzMFhOrClZb23lP2MpOnA64AVg/T/OPBO4OlK49uXRnssDNwqaZ2kpdVGuW+M5lgcB/QBny2XUT8j6bCag61stO+LfucBXxzz0e07Iz4Oth8CPgJ8D9gKPGH71qF2mJA5OGiQsoHPpn8c+GPbu3+uo/Ra4FHb6yqNbV8b8bEoXm57PrAIeJukM8Z4fPvSaI7FBGA+cJXtU4GfAHu8fn8AGO37AkmTgHOA/zu2Q9unRvO94kias57ZwNHAYZLePNQOJ4xsnLGf6QVmtqzP4NmnsV3AKknQfPDdYkm7gNOAcyQtBiYDR0j6vO0h3zz7qREfC9t/bfthANuPSrqB5vLC1+oPu4rRvC/WAr227yjtrufADplRvS9K/SLgm7YfqTzWmkbznpgIfNd2H4CkLwH/Efj8Xvc43jeisozJzbwJwGaanzD6b+aduJf2n2Pwm5qv4sC/8T/iYwEcBhze8vobwMLxntN4vS+AfwROKK8vAT483nMar2NRylYBF473XMbrOND8QLqR5l6MaB4MeftQ+8yZzEHA9i5Jy4FbaJ4Kucb2RknLSv3erjEfVEZ5LH4BuKH8BDcBuM72l2uPuZYxeF+8HfhCuUy0Gbiw6oArGu2xkPQ84GzgouqDrWg0x8H2HZKuB74J7ALupo2PnsnHykRERDW58R8REdUkZCIiopqETEREVJOQiYiIahIyERFRTUImIiKqSchEREQ1+WXMiDEm6U+BN9F8EOEPgHXAE8BSmt+y7gF+2/Z2SZ8DdgD/ATiW5hce3wL8MnCH7QvKNrcBVwJnAT8C3g18CDgG+APbayTNAv43zacVACy3/Y3K043Yq5zJRIwhSV3A64FTgd+g+RwogC/ZfpntU4DvAL/b0u1I4EzgD4G/BS4HTgReKmleaXMYcLvtXwJ+DHyA5jfQXwdcVto8Cpzt5gM+/wtwRY05RgxHzmQixtYrgL+xvQNA0t+W8pMkfQCYCjyf5mM9+v2tbUu6F3jE9r2l70ZgFrAeeAro/4ibe4Gdtn9a+swq5ROBT5Zg2g0cX2F+EcOSkIkYW4N9lDo0HzR4ru0Nki6g+TDSfjvLv0+3vO5f7/8/+lM/8xlQP2tn++nyB6SgORN6BDiF5irFv414FhFjJJfLIsbW14FflzRZ0vNp/uIowOHAVkkTae7X1PACYKvtp4HfpvkAxIhxlTOZiDFk+y5Ja2g+Qv1BoJvmpv+fAneUsntpQmesfQr4K0m/BfwDzR8aixhX+RTmiDEm6fm2t5WPh/8asNT2N8d7XBHjIWcyEWPvaklzaf7S6MoETDyX5UwmIiKqyY3/iIioJiETERHVJGQiIqKahExERFSTkImIiGr+P24b5FlM2U6FAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamma kappa\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgAklEQVR4nO3df7xVdZ3v8ddbjoimDk5gY2CCN/SOphluhaYwMp3ANBzLxEjMWxdxwqbpPpqxGtNx7PZj6tZwNR1NVFJB8+epdOg2jdGUGocgkdTrkTSPkBxTCQMh5DN/rO+O5Wafc/bZ56y1Ad/Px2M9zl7r+13f9V3rbPabtdb3rK2IwMzMrEy7tboDZmb26uPwMTOz0jl8zMysdA4fMzMrncPHzMxK5/AxM7PSOXzMdhGSJkvqanU/8iStlDS5l/LPSPpmeT2yHYXDx3YIkp6QtFHSi5KekXStpL1b3a/eSBojKSS1DVJ7wyS9IOn4OmVfk3TrYGynGWk/f59+P09L+j+ShvS1XkQcHhH39lL+vyPio4PaWdspOHxsR3JKROwNjAeOAf6hPysrs9O8p2tDKyJeAm4GZtbUGwKcCVxfXu/qenP6/bwL+CDwPwfS2GCFtu2cdpp/qPbqERFPA/cAb5K0n6TvSuqW9Hx6PbpaV9K9kj4v6SfABuBgSedIeljSekmrJJ2bqz9ZUpekv5O0VtIaSadKOknS/5f0nKTP5OrvJukCSY9L+q2kWyT9aSpenH6+kM4I3prW+R9p+89LWiTpoFx7Ieljkh4DHquz+9cD75O0V27Zu8n+rd7T277VStt6Y27+OkmX5uZPlrQ8nW39VNKRPf9WtomIR4Afk/1+/pukH6Zj86ykGyUNz23jCUknpNcXS7pV0g2Sfgd8OC27IZVXzyTPlvTr1N5nc23tKen6dFwfTr/Drlz536ezsvWSHpX0rkb2x1rD4WM7HEkHAicBy8jeo9cCBwFvADYCl9WschYwC9gHeBJYC5wM7AucA3xN0vhc/T8DhgGjgM8BVwMfAo4GJgGfk3Rwqvtx4FTgHcDrgeeBy1PZcenn8IjYOyLuk3Qq8BngNGAk2Yf0gpr+ngpMAA6r3feI+CmwJq2f37+bImJLA/vWkLTOPOBc4LXAvwLtkvZoYN3DyI7TMkDAF8iOzZ8DBwIX97L6NOBWYDhwYw913g4cSnaG9TlJf56WXwSMAQ4GTiT7nVX7dCgwBzgmIvYhC+wn+toXa6GI8OSp5RPZB8WLwAtkAfINYM869Y4Cns/N3wtc0kfbdwJ/k15PJguwIWl+HyCACbn6S4FT0+uHgXflyg4A/gC0kX0QBtCWK78H+EhufjeyM7KD0nwAx/fR338Avp9e75vWf0uD+9aVKwvgjbn564BL0+srgH+qaetR4B09bCeA35GF7+PApcBudeqdCiyr+b2ekF5fDCyuqX8xcEN6XT2eo3PlPwOmp9ergHfnyj5a3V/gjWTBfAKwe6vfz576nnzN1XYkp0bED/IL0uWnrwFTgP3S4n0kDYmIl9P8UzXrTCX7X/IhZB/+ewErclV+m1t3Y/r5TK58I1Ad7HAQcIekrbnyl4HX9bAPBwH/Iumr+S6RnWU9Wa+/dcwHLpI0iux/8J0RsazBfWvUQcDZks7PLRtKdgbTk/ER0ZlfIGl/YC7ZmdA+qU/P99JGX/sO8Jvc6w1s+128vmb9P76OiE5JnyALs8MlLQI+GRGrG9ietYAvu9mO7n+RXYKZEBH7su1Sl3J1/vho9nTZ6DbgK8DrImI4cHdN/f54CpgaEcNz07DI7kvVeyT8U8C5NfX3jOxy2nb9rScifk12uW4G2SW3+U3u2waycKr6s5p+fr6mn3tFRO0lwr58Ie3Pken386Fe+gN97Hsf1gCjc/MHvqLhiJsi4u1kwRrAlwawLSuYw8d2dPuQnYm8kG70X9RH/aHAHkA3sCWdKfzlALZ/JfD56qABSSMlTUtl3cBWsnsQ+fqflnR4qv8nkk5vYrvXk93DeBvb7o30d9+WAx+UNETSFLL7VlVXA7MlTVDmNZLeI2mffvZzH9Ll0nSm9ql+rt8ft5Ad2/3StuZUCyQdKun4FNAvkb1nXu6hHdsBOHxsR/d1YE/gWeB+4N96qxwR68kGCdxCdvnng0D7ALb/L2n970tan/owIW1rA/B54CdpxNjEiLiD7H/cC9OIroeAqU1s91ayy4z/HhFrmty3vwFOIbuPNoPs/hCprQ6yodKXpbY6gQ830c9/JBsavw74HnB7E2006hKgC/gV8AOyY7Qple0BfJHsffIbYH+ygR+2g1KEv0zOzHY+ks4jG4zwjj4r2w7HZz5mtlOQdICkt6W/vTqU7H7gHa3ulzXHo93MbGcxlOzvkcaSXUpcSDYk33ZCvuxmZmal82U3MzMrnS+79WDEiBExZsyYVnfDzGynMWLECBYtWrQoIqb0Vdfh04MxY8bQ0dHR6m6Yme1UJI1opJ4vu5mZWekcPmZmVjqHj5mZlc7hY2ZmpXP4mJlZ6Rw+ZmZWOoePmZmVzuFjZmalc/iYmVnpHD5mZlY6h4+ZmZXO4WNmZqVz+JiZWekcPmZmVjqHj5mZlc7hY2ZmpXP4mJlZ6QoNH0lTJD0qqVPSBXXKJWluKn9Q0vhc2TxJayU9VLPOzZKWp+kJScvT8hm55cslbZV0VCq7N/WjWrZ/kfttZma9K+xrtCUNAS4HTgS6gCWS2iPil7lqU4FxaZoAXJF+AlwHXAbMz7cbEWfktvFVYF1afiNwY1p+BHBXRCzPrTojIvy92GZmO4Aiz3yOBTojYlVEbAYWAtNq6kwD5kfmfmC4pAMAImIx8FxPjUsS8AFgQZ3iM3tYbmZmO4Aiw2cU8FRuvist62+dnkwCnomIx+qUncH24XNtuuR2YQqu7UiaJalDUkd3d3eD3TAzs/4qMnzqfcBHE3V6UvfsRtIEYENE5O8VzYiII8gCaxJwVr0GI+KqiKhERGXkyJENdsPMzPqryPDpAg7MzY8GVjdRZzuS2oDTgJvrFE+nJpQi4un0cz1wE9klQTMza5Eiw2cJME7SWElDyUKhvaZOOzAzjXqbCKyLiDUNtH0C8EhEdOUXStoNOJ3s/lJ1WZukEen17sDJwCtG0JmZWbkKG+0WEVskzQEWAUOAeRGxUtLsVH4lcDdwEtAJbADOqa4vaQEwGRghqQu4KCKuScXbnd0kxwFdEbEqt2wPYFEKniHAD4CrB21Hzcys3xTR6C2WV5dKpRIdHR6ZbWbWH5KWRkSlr3p+woGZmZXO4WNmZqVz+JiZWekcPmZmVjqHj5mZlc7hY2ZmpXP4mJlZ6Rw+ZmZWOoePmZmVzuFjZmalc/iYmVnpHD5mZlY6h4+ZmZXO4WNmZqVz+JiZWekcPmZmVjqHj5mZlc7hY2ZmpXP4mJlZ6Rw+ZmZWukLDR9IUSY9K6pR0QZ1ySZqbyh+UND5XNk/SWkkP1axzs6TlaXpC0vK0fIykjbmyK3PrHC1pRdrOXEkqcLfNzKwPhYWPpCHA5cBU4DDgTEmH1VSbCoxL0yzgilzZdcCU2nYj4oyIOCoijgJuA27PFT9eLYuI2bnlV6T2q9varl0zMytPkWc+xwKdEbEqIjYDC4FpNXWmAfMjcz8wXNIBABGxGHiup8bT2csHgAW9dSK1t29E3BcRAcwHTm1yn8zMbBAUGT6jgKdy811pWX/r9GQS8ExEPJZbNlbSMkk/kjQpt42uRrYhaZakDkkd3d3dDXbDzMz6q8jwqXdfJZqo05MzeeVZzxrgDRHxFuCTwE2S9u3PNiLiqoioRERl5MiRDXbDzMz6q63AtruAA3Pzo4HVTdTZjqQ24DTg6OqyiNgEbEqvl0p6HDgkbWN0f7dhZmbFKfLMZwkwTtJYSUOB6UB7TZ12YGYa9TYRWBcRaxpo+wTgkYj44+U0SSPTIAckHUw2sGBVam+9pInpPtFM4K4B752ZmTWtsDOfiNgiaQ6wCBgCzIuIlZJmp/IrgbuBk4BOYANwTnV9SQuAycAISV3ARRFxTSqezvYDDY4DLpG0BXgZmB0R1QEL55GNntsTuCdNZmbWIsoGgFmtSqUSHR0dre6GmdlORdLSiKj0Vc9PODAzs9I5fMzMrHQOHzMzK53Dx8zMSufwMTOz0jl8zMysdA4fMzMrncPHzMxK5/AxM7PSOXzMzKx0Dh8zMyudw8fMzErn8DEzs9I5fMzMrHQOHzMzK53Dx8zMSufwMTOz0jl8zMysdA4fMzMrncPHzMxKV2j4SJoi6VFJnZIuqFMuSXNT+YOSxufK5klaK+mhmnVulrQ8TU9IWp6WnyhpqaQV6efxuXXuTf2orrd/gbttZmZ9aCuqYUlDgMuBE4EuYImk9oj4Za7aVGBcmiYAV6SfANcBlwHz8+1GxBm5bXwVWJdmnwVOiYjVkt4ELAJG5VadEREdg7N3ZmY2EEWe+RwLdEbEqojYDCwEptXUmQbMj8z9wHBJBwBExGLguZ4alyTgA8CCVH9ZRKxOxSuBYZL2GNQ9MjOzQVFk+IwCnsrNd/HKM5FG6/RkEvBMRDxWp+x9wLKI2JRbdm265HZhCq7tSJolqUNSR3d3d4PdMDOz/ioyfOp9wEcTdXpyJums5xUNSocDXwLOzS2eERFHkAXWJOCseg1GxFURUYmIysiRIxvshpmZ9VeR4dMFHJibHw2sbqLOdiS1AacBN9csHw3cAcyMiMeryyPi6fRzPXAT2SVBMzNrkSLDZwkwTtJYSUOB6UB7TZ12YGYa9TYRWBcRaxpo+wTgkYjoqi6QNBz4HvDpiPhJbnmbpBHp9e7AycBDmJlZyxQWPhGxBZhDNursYeCWiFgpabak2ana3cAqoBO4Gvjr6vqSFgD3AYdK6pL0kVzz09n+ktsc4I3AhTVDqvcAFkl6EFgOPJ22ZWZmLaKIRm+xvLpUKpXo6PDIbDOz/pC0NCIqfdXzEw7MzKx0Dh8zMyudw8fMzErn8DEzs9I5fMzMrHQOHzMzK53Dx8zMSufwMTOz0jl8zMysdA4fMzMrncPHzMxK1/DXaEt6D3A4MKy6LCIuKaJTZma2a2vozEfSlcAZwPlkXwB3OnBQgf0yM7NdWKOX3f4iImYCz0fEPwJv5ZVfAmdmZtawRsNnY/q5QdLrgT8AY4vpkpmZ7eoavefz3fRNof8M/BwI/IVsZmbWpIbCJyL+Kb28TdJ3gWERsa64bpmZ2a6sofCRNIzsK67fTnbW85+SroiIl4rsnJmZ7Zoavew2H1gP/N80fybwLbJRb2ZmZv3SaPgcGhFvzs3/h6RfFNEhMzPb9TU62m2ZpInVGUkTgJ/0tZKkKZIeldQp6YI65ZI0N5U/KGl8rmyepLWSHqpZ52ZJy9P0hKTlubJPp7YelfTu3PKjJa1IZXMlqcH9NjOzAjQaPhOAn6YP+yeA+4B3pA/0B+utIGkIcDkwFTgMOFPSYTXVpgLj0jQLuCJXdh0wpbbdiDgjIo6KiKOA24Db0/YOA6aTPYVhCvCN1AdSu7Ny29quXbMdXWzdys9/eCM/br+MzRtfbHV3zAak0ctuzXxYHwt0RsQqAEkLgWnAL3N1pgHzIyKA+yUNl3RARKyJiMWSxvTUeDp7+QBwfK6thRGxCfiVpE7g2BSW+0bEfWm9+cCpwD1N7JNZyyxffDNf/d5niQi6f/trTjvny63uklnTGjrziYgngdeSfcC/F3htRDxZnXpYbRTwVG6+Ky3rb52eTAKeiYjH+mhrVHrd5zYkzZLUIamju7u7wW6YlWPTS78nCHbTbvx+4+9a3R2zAWl0qPXnyEa23Z4WXSvp2xFxaW+r1VkWTdTpyZnAggbaangbEXEVcBVApVJptB9mpTh68geZvvZXvLjhBU45/bOt7o7ZgDR62e1M4C3Vv+uR9EWyJx30Fj5dvPL5b6OB1U3U2Y6kNuA04OgG2upKr/u1DbMdze7D9uK9Mz/f6m6YDYpGBxw8Qe6rFIA9gMf7WGcJME7SWElDyQYDtNfUaQdmplFvE4F1EbGmgf6cADwSEfnLae3AdEl7SBpLNrDgZ6m99ZImpvtEM4G7GtiGmZkVpNEzn03ASkn/j+yS1YlkTzmYCxARH69dISK2SJoDLAKGAPMiYqWk2an8SuBu4CSgE9gAnFNdX9ICYDIwQlIXcFFEXJOKp/PKS26ktm8hG9CwBfhYRLycis8jGz23J9lAAw82MDNrIWUDzfqoJJ3dW3lEXD9oPdpBVCqV6OjoaHU3zMx2KpKWRkSlr3qNPlh0lwsXMzNrnUZHu40DvkD2x6L5r9E+uKB+mZnZLqzRAQfXkj0lYAvwTrIHjX6rqE6ZmdmurdHw2TMi/p3sHtGTEXEx254sYGZm1i+NjnZ7SdJuwGNpBNvTwP7FdcvMzHZljZ75fALYC/g42R92ngXcUFCfzMxsF9do+PwrMDYiuiLiHODbwMnFdcvMzHZljV52ez9wq6QZZF+lfRbwl4X1yszMdmmN/p3PKknTgTvJnhz97ojYWGTHzMxs19Vr+EhawSufAP2nZI/KeUASEXFkkZ0zM7NdU19nPr6vY2Zmg67X8Onli+LMzMya1uhoNzMzs0Hj8DEzs9I5fMzMrHQOHzMzK53Dx8zMSufwMTOz0jl8zMysdA4fMzMrXaHhI2mKpEcldUq6oE65JM1N5Q9KGp8rmydpraSH6qx3fmp3paQvp2UzJC3PTVslHZXK7k31q2X+LiIzsxZq9KnW/SZpCHA5cCLQBSyR1B4Rv8xVmwqMS9MEsq/qnpDKrgMuI/vK7ny77wSmAUdGxKZqkETEjcCNqc4RwF0RsTy36oyI6BjMfTQzs+YUeeZzLNAZEasiYjOwkCw08qYB8yNzPzBc0gEAEbEYeK5Ou+cBX4yITane2jp1zgQWDNJ+mJnZICsyfEaRff1CVVda1t86tQ4BJkl6QNKPJB1Tp84ZbB8+16ZLbhdKUr2GJc2S1CGpo7u7u49umJlZs4oMn3of8NFEnVptwH7AROBTwC35MJE0AdgQEfl7RTMi4ghgUprOqtdwRFwVEZWIqIwcObKPbpiZWbOKDJ8u4MDc/GhgdRN16rV7e7pU9zNgKzAiVz6dmrOeiHg6/VwP3ER2SdDMzFqkyPBZAoyTNFbSULJQaK+p0w7MTKPeJgLrImJNH+3eCRwPIOkQYCjwbJrfDTid7P4SaVmbpBHp9e5k31G03Qg6MzMrT2Gj3SJii6Q5wCKybz+dFxErJc1O5VcCdwMnAZ3ABuCc6vqSFgCTgRGSuoCLIuIaYB4wLw3B3gycHRHVS3XHAV0RsSrXlT2ARSl4hgA/AK4uaLfNzKwB2va5bXmVSiU6Ojwy28ysPyQtjYhKX/X8hAMzMyudw8fMzErn8DEzs9I5fMzMrHQOHzMzK53Dx8zMSufwMTOz0jl8zMysdA4fMzMrncPHzMxK5/AxM7PSOXzMzKx0Dh8zMyudw8fMzErn8DEzs9I5fMzMrHQOHzMzK53Dx8zMSufwMTOz0jl8zMysdIWGj6Qpkh6V1CnpgjrlkjQ3lT8oaXyubJ6ktZIeqrPe+andlZK+nJaNkbRR0vI0XZmrf7SkFWk7cyWpqH02M7O+FRY+koYAlwNTgcOAMyUdVlNtKjAuTbOAK3Jl1wFT6rT7TmAacGREHA58JVf8eEQclabZueVXpPar29quXTMzK0+RZz7HAp0RsSoiNgMLyUIjbxowPzL3A8MlHQAQEYuB5+q0ex7wxYjYlOqt7a0Tqb19I+K+iAhgPnDqAPbLzMwGqMjwGQU8lZvvSsv6W6fWIcAkSQ9I+pGkY3JlYyUtS8sn5bbR1cg2JM2S1CGpo7u7u49umJlZs9oKbLvefZVook6tNmA/YCJwDHCLpIOBNcAbIuK3ko4G7pR0eH+2ERFXAVcBVCqVvvphZmZNKvLMpws4MDc/GljdRJ167d6eLtX9DNgKjIiITRHxW4CIWAo8TnaW1JXa7c82zMysQEWGzxJgnKSxkoYC04H2mjrtwMw06m0isC4i1vTR7p3A8QCSDgGGAs9KGpkGOZDOhMYBq1J76yVNTKPcZgJ3Dc4umplZMwq77BYRWyTNARYBQ4B5EbFS0uxUfiVwN3AS0AlsAM6pri9pATAZGCGpC7goIq4B5gHz0hDszcDZERGSjgMukbQFeBmYHRHVAQvnkY2e2xO4J01mZtYiygaAWa1KpRIdHR2t7oaZ2U5F0tKIqPRVz084MDOz0jl8zMysdA4fMzMrncPHzMxK5/AxM7PSOXzMzKx0Dh8zMyudw8fMzErn8DEzs9I5fMzMrHQOHzMzK53Dx8zMSufwMTOz0jl8zMysdA4fMzMrncPHzMxK5/AxM7PSOXzMzKx0Dh8zMyudw8fMzEpXaPhImiLpUUmdki6oUy5Jc1P5g5LG58rmSVor6aE6652f2l0p6ctp2YmSlkpakX4en6t/b6q/PE37F7XPZmbWt7aiGpY0BLgcOBHoApZIao+IX+aqTQXGpWkCcEX6CXAdcBkwv6bddwLTgCMjYlMuSJ4FTomI1ZLeBCwCRuVWnRERHYO4i2Zm1qQiz3yOBTojYlVEbAYWkoVG3jRgfmTuB4ZLOgAgIhYDz9Vp9zzgixGxKdVbm34ui4jVqc5KYJikPQZ9r8zMbMCKDJ9RwFO5+S5eeSbSaJ1ahwCTJD0g6UeSjqlT533AsmpAJdemS24XSlK9hiXNktQhqaO7u7uPbpiZWbOKDJ96H/DRRJ1abcB+wETgU8At+TCRdDjwJeDc3DozIuIIYFKazqrXcERcFRGViKiMHDmyj26YmVmzigyfLuDA3PxoYHUTdeq1e3u6VPczYCswAkDSaOAOYGZEPF5dISKeTj/XAzeRXRI0M7MWKTJ8lgDjJI2VNBSYDrTX1GkHZqZRbxOBdRGxpo927wSOB5B0CDAUeFbScOB7wKcj4ifVypLaJFXDaXfgZGC7EXRmZlaewsInIrYAc8hGnT0M3BIRKyXNljQ7VbsbWAV0AlcDf11dX9IC4D7gUEldkj6SiuYBB6ch2AuBsyMi0rbeCFxYM6R6D2CRpAeB5cDTaVtmZtYiyj63rValUomODo/MNjPrD0lLI6LSVz0/4cDMzErn8DEzs9I5fMzMrHQOHzMzK53Dx8zMSufwMTOz0jl8zMysdA4fMzMrncPHzMxK5/AxM7PSOXzMzKx0Dh8zMyudw8fMzErn8DEzs9I5fMzMrHQOHzMzK52/TK4HkrqBJ1vdjxKNAJ5tdSd2ED4W2/hYbONjkentODwLEBFT+mrE4WMASOpo5NsHXw18LLbxsdjGxyIzWMfBl93MzKx0Dh8zMyudw8eqrmp1B3YgPhbb+Fhs42ORGZTj4Hs+ZmZWOp/5mJlZ6Rw+ZmZWOofPq4CkKZIeldQp6YJe6h0j6WVJ769ZPkTSMknfLb63xRnIcZD0hKQVkpZL6iinx8UZ4LEYLulWSY9IeljSW8vpdTGaPRaSDk3vh+r0O0mfKK3jBRjg++JvJa2U9JCkBZKG9bqxiPC0C0/AEOBx4GBgKPAL4LAe6v0QuBt4f03ZJ4GbgO+2en9adRyAJ4ARrd6PHeRYXA98NL0eCgxv9T616ljUlP8GOKjV+9SKYwGMAn4F7JnmbwE+3Nv2fOaz6zsW6IyIVRGxGVgITKtT73zgNmBtfqGk0cB7gG8W3dGCDeg47GKaPhaS9gWOA64BiIjNEfFC4T0uzmC9L94FPB4RO/NTUQZ6LNqAPSW1AXsBq3vbmMNn1zcKeCo335WW/ZGkUcBfAVfWWf/rwN8BWwvqX1kGehwC+L6kpZJmFdbLcgzkWBwMdAPXpkux35T0miI7W7CBvi+qpgMLBr135Wr6WETE08BXgF8Da4B1EfH93jbm8Nn1qc6y2vH1Xwf+PiJefsWK0snA2ohYWlDfytT0cUjeFhHjganAxyQdN8j9K9NAjkUbMB64IiLeAvwe6PHewE5goO8LJA0F3gt8e3C7VrqBfFbsR3aWNBZ4PfAaSR/qbWNtzffTdhJdwIG5+dFsfzpcARZKguyhgSdJ2gJMAN4r6SRgGLCvpBsiotc31Q6q6eMQEXdGxGqAiFgr6Q6ySxSLi+92IQbynrgf6IqIB1K9W9m5w2dA74tUPhX4eUQ8U3BfizaQ98XuwK8iohtA0u3AXwA39Li1Vt/k8lT4TcQ2YBXZ/0iqNxEP76X+ddS/oTqZnXvAQdPHAXgNsE/u9U+BKa3ep1a9J4AfA4em1xcD/9zqfWrVsUjLFgLntHpfWnksyP6jupLsXo/IBqWc39v2fOazi4uILZLmAIvIRqnMi4iVkman8t6uY+8yBngcXgfckf631wbcFBH/VnSfizII74nzgRvT5aZVwDmFdrhAAz0WkvYCTgTOLbyzBRvIsYiIByTdCvwc2AIso4/H8PjxOmZmVjoPODAzs9I5fMzMrHQOHzMzK53Dx8zMSufwMTOz0jl8zMysdA4fMzMrnf/I1KxEki4EZpA9wPFZYCmwDphF9lflncBZEbFB0nXARuC/AweR/THn2cBbgQci4sOpzReBy4ETgOeBzwBfBt4AfCIi2iWNAb5F9oQGgDkR8dOCd9esRz7zMSuJpArwPuAtwGlkz8kCuD0ijomINwMPAx/JrbYfcDzwt8B3gK8BhwNHSDoq1XkNcG9EHA2sBy4l+6v7vwIuSXXWAidG9nDUM4C5ReyjWaN85mNWnrcDd0XERgBJ30nL3yTpUmA4sDfZ402qvhMRIWkF8ExErEjrrgTGAMuBzUD1cT8rgE0R8Ye0zpi0fHfgshRYLwOHFLB/Zg1z+JiVp94j6yF7QOOpEfELSR8me4hr1ab0c2vudXW++u/3D7HtOVl/rBcRW9MXe0F25vQM8GayKx4vNb0XZoPAl93MyvOfwCmShknam+wbYgH2AdZI2p3sflAR/gRYExFbgbPIHhxp1jI+8zErSUQskdRO9qj6J4EOssEGFwIPpGUryMJosH0DuE3S6cB/kH0JnFnL+KnWZiWStHdEvJgexb8YmBURP291v8zK5jMfs3JdJekwsm+Gvd7BY69WPvMxM7PSecCBmZmVzuFjZmalc/iYmVnpHD5mZlY6h4+ZmZXuvwCAJ1AoMVE36QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamma xi\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAerklEQVR4nO3df5gdVZ3n8feHNOGHwITdBAcTIGEN7IAghguJq0FEWBMGDIOjBCNBVjcEDavjPs6gDsK4uqOMrk4eEBY0QEZIyCI/WgXj47oYVwHTMRlCBJYmoDSJpBGIwWBiyHf/qHNJcXP7d9e5CXxez1PPvVXn1KlT1Tf301V1Uq2IwMzMLKc9Wt0BMzN77XH4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DF7lZB0sqSuVvejTNIaSSf3Uv4ZSd/M1yPbVTh8bJcg6QlJL0p6QdLTkq6XtF+r+9UbSeMlhaS2YWpvb0nPSzqlSdnXJN06HNsZjLSff0g/n6ck/Q9JI/paLyKOjoh7ein/7xHxkWHtrO0WHD62KzkzIvYDJgEnAH8/kJVV2G0+042hFRF/BG4BZjfUGwGcC9yYr3dNvTn9fN4FfAD4z0NpbLhC23ZPu80/VHvtiIingLuBN0k6UNL3JHVLei69H1evK+keSV+U9DNgM3C4pAskPSRpk6S1ki4s1T9ZUpekv5W0QdJ6SWdJOl3S/5P0rKTPlOrvIekSSY9J+p2kJZL+TSpell6fT2cEb03r/Ke0/eckLZV0WKm9kPQxSY8CjzbZ/RuB90rat7Ts3RT/Vu/ubd8apW29sTR/g6QvlObPkLQqnW39XNKxPf9UdoiIh4GfUvx8/p2kH6dj84ykmySNKm3jCUmnpveXS7pV0rcl/R74UFr27VReP5M8X9JvUnufLbW1j6Qb03F9KP0Mu0rlf5fOyjZJekTSu/qzP9YaDh/b5Ug6BDgdWEnxGb0eOAw4FHgRuLJhlfOAOcD+wK+BDcAZwAHABcDXJE0q1f9zYG9gLPA54Drgg8DxwFTgc5IOT3X/C3AW8A7gDcBzwFWp7KT0Oioi9ouIeyWdBXwGOBsYQ/Elvaihv2cBk4GjGvc9In4OrE/rl/fv5ojY1o9965e0zgLgQuDfAv8TaJe0Vz/WPYriOK0EBPwjxbH5C+AQ4PJeVp8B3AqMAm7qoc7bgSMpzrA+J+kv0vLLgPHA4cBpFD+zep+OBOYBJ0TE/hSB/URf+2ItFBGePLV8oviieAF4niJAvgHs06TeccBzpfl7gM/30fYdwMfT+5MpAmxEmt8fCGByqf4K4Kz0/iHgXaWyg4E/AW0UX4QBtJXK7wY+XJrfg+KM7LA0H8ApffT374EfpvcHpPXf0s996yqVBfDG0vwNwBfS+6uB/9bQ1iPAO3rYTgC/pwjfx4AvAHs0qXcWsLLh53pqen85sKyh/uXAt9P7+vEcVyr/BTAzvV8LvLtU9pH6/gJvpAjmU4E9W/159tT35Guutis5KyJ+VF6QLj99DZgGHJgW7y9pRES8lOafbFhnOsVvyUdQfPnvC6wuVfldad0X0+vTpfIXgfpgh8OA2yVtL5W/BLy+h304DPhnSV8td4niLOvXzfrbxELgMkljKX6D74yIlf3ct/46DDhf0sWlZSMpzmB6MikiOssLJB0EzKc4E9o/9em5Xtroa98Bflt6v5kdP4s3NKz/8vuI6JT0CYowO1rSUuCTEbGuH9uzFvBlN9vV/VeKSzCTI+IAdlzqUqnOy49mT5eNvgN8BXh9RIwC7mqoPxBPAtMjYlRp2juK+1LNHgn/JHBhQ/19orictlN/m4mI31BcrptFcclt4SD3bTNFONX9eUM/v9jQz30jovESYV/+Me3Psenn88Fe+gN97Hsf1gPjSvOHvKLhiJsj4u0UwRrAl4ewLauYw8d2dftTnIk8n270X9ZH/ZHAXkA3sC2dKfzHIWz/GuCL9UEDksZImpHKuoHtFPcgyvU/LenoVP/PJL1vENu9keIextvYcW9koPu2CviApBGSplHct6q7DpgrabIKr5P0l5L2H2A/9yddLk1nap8a4PoDsYTi2B6YtjWvXiDpSEmnpID+I8Vn5qUe2rFdgMPHdnVfB/YBngHuA37QW+WI2EQxSGAJxeWfDwDtQ9j+P6f1fyhpU+rD5LStzcAXgZ+lEWNTIuJ2it+4F6cRXQ8C0wex3VspLjP+74hYP8h9+zhwJsV9tFkU94dIbXVQDJW+MrXVCXxoEP38B4qh8RuB7wO3DaKN/vo80AU8DvyI4hhtSWV7AV+i+Jz8FjiIYuCH7aIU4T8mZ2a7H0kXUQxGeEeflW2X4zMfM9stSDpY0tvS/706kuJ+4O2t7pcNjke7mdnuYiTF/0eaQHEpcTHFkHzbDfmym5mZZefLbmZmlp0vu/Vg9OjRMX78+FZ3w8xstzF69GiWLl26NCKm9VXX4dOD8ePH09HR0epumJntViSN7k89X3YzM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsKg0fSdMkPSKpU9IlTcolaX4qf0DSpFLZAkkbJD3YsM4tklal6QlJq9LyWaXlqyRtl3RcKrsn9aNedlCV+21mZr2r7M9oSxoBXAWcBnQByyW1R8SvStWmAxPTNBm4Or0C3ABcCSwstxsR55S28VVgY1p+E3BTWn4McGdErCqtOisi/Hexzcx2AVWe+ZwIdEbE2ojYCiwGZjTUmQEsjMJ9wChJBwNExDLg2Z4alyTg/cCiJsXn9rDczMx2AVWGz1jgydJ8V1o20Do9mQo8HRGPNik7h53D5/p0ye3SFFw7kTRHUoekju7u7n52w8zMBqrK8Gn2BR+DqNOTpmc3kiYDmyOifK9oVkQcQxFYU4HzmjUYEddGRC0iamPGjOlnN8zMbKCqDJ8u4JDS/Dhg3SDq7ERSG3A2cEuT4pk0hFJEPJVeNwE3U1wSNDOzFqkyfJYDEyVNkDSSIhTaG+q0A7PTqLcpwMaIWN+Ptk8FHo6IrvJCSXsA76O4v1Rf1iZpdHq/J3AG8IoRdGZmlldlo90iYpukecBSYASwICLWSJqbyq8B7gJOBzqBzcAF9fUlLQJOBkZL6gIui4hvpeKdzm6Sk4CuiFhbWrYXsDQFzwjgR8B1w7ajZmY2YIro7y2W15ZarRYdHR6ZbWY2EJJWREStr3p+woGZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsqs0fCRNk/SIpE5JlzQpl6T5qfwBSZNKZQskbZD0YMM6t0halaYnJK1Ky8dLerFUdk1pneMlrU7bmS9JFe62mZn1obLwkTQCuAqYDhwFnCvpqIZq04GJaZoDXF0quwGY1thuRJwTEcdFxHHAd4DbSsWP1csiYm5p+dWp/fq2dmrXzMzyqfLM50SgMyLWRsRWYDEwo6HODGBhFO4DRkk6GCAilgHP9tR4Ont5P7Cot06k9g6IiHsjIoCFwFmD3CczMxsGVYbPWODJ0nxXWjbQOj2ZCjwdEY+Wlk2QtFLSTyRNLW2jqz/bkDRHUoekju7u7n52w8zMBqrK8Gl2XyUGUacn5/LKs571wKER8Rbgk8DNkg4YyDYi4tqIqEVEbcyYMf3shpmZDVRbhW13AYeU5scB6wZRZyeS2oCzgePryyJiC7AlvV8h6THgiLSNcQPdhpmZVafKM5/lwERJEySNBGYC7Q112oHZadTbFGBjRKzvR9unAg9HxMuX0ySNSYMckHQ4xcCCtam9TZKmpPtEs4E7h7x3ZmY2aJWd+UTENknzgKXACGBBRKyRNDeVXwPcBZwOdAKbgQvq60taBJwMjJbUBVwWEd9KxTPZeaDBScDnJW0DXgLmRkR9wMJFFKPn9gHuTpOZmbWIigFg1qhWq0VHR0eru2FmtluRtCIian3V8xMOzMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpZdpeEjaZqkRyR1SrqkSbkkzU/lD0iaVCpbIGmDpAcb1rlF0qo0PSFpVVp+mqQVklan11NK69yT+lFf76AKd9vMzPrQVlXDkkYAVwGnAV3AckntEfGrUrXpwMQ0TQauTq8ANwBXAgvL7UbEOaVtfBXYmGafAc6MiHWS3gQsBcaWVp0VER3Ds3dmZjYUVZ75nAh0RsTaiNgKLAZmNNSZASyMwn3AKEkHA0TEMuDZnhqXJOD9wKJUf2VErEvFa4C9Je01rHtkZmbDosrwGQs8WZrv4pVnIv2t05OpwNMR8WiTsvcCKyNiS2nZ9emS26UpuHYiaY6kDkkd3d3d/eyGmZkNVJXh0+wLPgZRpyfnks56XtGgdDTwZeDC0uJZEXEMRWBNBc5r1mBEXBsRtYiojRkzpp/dMDOzgaoyfLqAQ0rz44B1g6izE0ltwNnALQ3LxwG3A7Mj4rH68oh4Kr1uAm6muCRoZmYtUmX4LAcmSpogaSQwE2hvqNMOzE6j3qYAGyNifT/aPhV4OCK66gskjQK+D3w6In5WWt4maXR6vydwBvAgZmbWMpWFT0RsA+ZRjDp7CFgSEWskzZU0N1W7C1gLdALXAR+try9pEXAvcKSkLkkfLjU/k50vuc0D3ghc2jCkei9gqaQHgFXAU2lbZmbWIoro7y2W15ZarRYdHR6ZbWY2EJJWREStr3p+woGZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsnP4mJlZdg4fMzPLzuFjZmbZOXzMzCw7h4+ZmWXn8DEzs+wcPmZmlp3Dx8zMsqs0fCRNk/SIpE5JlzQpl6T5qfwBSZNKZQskbZD0YMM6t0halaYnJK0qlX06tfWIpHeXlh8vaXUqmy9JFe2ymZn1Q2XhI2kEcBUwHTgKOFfSUQ3VpgMT0zQHuLpUdgMwrbHdiDgnIo6LiOOA7wC3pe0dBcwEjk7rfSP1gdTunNK2dmrXbFcX27fzyx/fxE/br2Triy+0ujtmQ9LWU4GkJRHxfkmrgSgXARERx/bR9olAZ0SsTe0tBmYAvyrVmQEsjIgA7pM0StLBEbE+IpZJGt9L/wS8Hzil1NbiiNgCPC6pEzhR0hPAARFxb1pvIXAWcHcf/Tfbpaxadgtf/f5niQi6f/cbzr7gilZ3yWzQegwf4OPpdSbQ+GvWO/vR9ljgydJ8FzC5H3XGAuv70f5U4OmIeLTU1n1N2vpTet+4fCeS5lCcIXHooYf2owtm+Wz54x8Igj20B3948fet7o7ZkPQYPhFRD4BbgIXAPwF7A1cANYrLYr1pdl8lBlGnJ+cCi/rRVr+3ERHXAtcC1Gq1/vbDLIvjT/4AMzc8zgubn+fM93221d0xG5LeznzqJgNfBn4O7A/cBLytH+t1AYeU5scB6wZRZyeS2oCzgeP70VZXej+gbZjtavbce1/eM/uLre6G2bDoz4CDPwEvAvtQnPk8HhHb+7HecmCipAmSRlJcvmtvqNMOzE6j3qYAG0tnXL05FXg4IsqX09qBmZL2kjSBYmDBL1J7myRNSfeJZgN39mMbZmZWkf6Ez3KK8DkBeDvFqLVb+1opIrYB84ClwEPAkohYI2mupLmp2l3AWqATuA74aH19SYuAe4EjJXVJ+nCp+Zm88pIbEbEGWEIxoOEHwMci4qVUfBHwzbSdx/BgAzOzllIx0KyXClItIjoalp0XEf9Sac9arFarRUdHR98VzczsZZJWREStr3p9nvk0Bk9a9qoOHjMzq5Yfr2NmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZVdp+EiaJukRSZ2SLmlSLknzU/kDkiaVyhZI2iDpwSbrXZzaXSPpirRslqRVpWm7pONS2T2pfr3soAp328zM+tBWVcOSRgBXAacBXcBySe0R8atStenAxDRNBq5OrwA3AFcCCxvafScwAzg2IrbUgyQibgJuSnWOAe6MiFWlVWdFRMdw7qOZmQ1OlWc+JwKdEbE2IrYCiylCo2wGsDAK9wGjJB0MEBHLgGebtHsR8KWI2JLqbWhS51xg0TDth5mZDbMqw2cs8GRpvistG2idRkcAUyXdL+knkk5oUuccdg6f69Mlt0slqVnDkuZI6pDU0d3d3Uc3zMxssKoMn2Zf8DGIOo3agAOBKcCngCXlMJE0GdgcEeV7RbMi4hhgaprOa9ZwRFwbEbWIqI0ZM6aPbpiZ2WBVGT5dwCGl+XHAukHUadbubelS3S+A7cDoUvlMGs56IuKp9LoJuJnikqCZmbVIleGzHJgoaYKkkRSh0N5Qpx2YnUa9TQE2RsT6Ptq9AzgFQNIRwEjgmTS/B/A+ivtLpGVtkkan93sCZwA7jaAzM7N8KhvtFhHbJM0DlgIjgAURsUbS3FR+DXAXcDrQCWwGLqivL2kRcDIwWlIXcFlEfAtYACxIQ7C3AudHRP1S3UlAV0SsLXVlL2BpCp4RwI+A6yrabTMz6wft+N62slqtFh0dHpltZjYQklZERK2ven7CgZmZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLDuHj5mZZefwMTOz7Bw+ZmaWncPHzMyyqzR8JE2T9IikTkmXNCmXpPmp/AFJk0plCyRtkPRgk/UuTu2ukXRFWjZe0ouSVqXpmlL94yWtTtuZL0lV7bOZmfWtsvCRNAK4CpgOHAWcK+mohmrTgYlpmgNcXSq7AZjWpN13AjOAYyPiaOArpeLHIuK4NM0tLb86tV/f1k7tmplZPlWe+ZwIdEbE2ojYCiymCI2yGcDCKNwHjJJ0MEBELAOebdLuRcCXImJLqreht06k9g6IiHsjIoCFwFlD2C8zMxuiKsNnLPBkab4rLRtonUZHAFMl3S/pJ5JOKJVNkLQyLZ9a2kZXf7YhaY6kDkkd3d3dfXTDzMwGq63CtpvdV4lB1GnUBhwITAFOAJZIOhxYDxwaEb+TdDxwh6SjB7KNiLgWuBagVqv11Q8zMxukKs98uoBDSvPjgHWDqNOs3dvSpbpfANuB0RGxJSJ+BxARK4DHKM6SulK7A9mGmZlVqMrwWQ5MlDRB0khgJtDeUKcdmJ1GvU0BNkbE+j7avQM4BUDSEcBI4BlJY9IgB9KZ0ERgbWpvk6QpaZTbbODO4dlFMzMbjMouu0XENknzgKXACGBBRKyRNDeVXwPcBZwOdAKbgQvq60taBJwMjJbUBVwWEd8CFgAL0hDsrcD5ERGSTgI+L2kb8BIwNyLqAxYuohg9tw9wd5rMzKxFVAwAs0a1Wi06Ojpa3Q0zs92KpBURUeurnp9wYGZm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsKg0fSdMkPSKpU9IlTcolaX4qf0DSpFLZAkkbJD3YZL2LU7trJF2Rlp0maYWk1en1lFL9e1L9VWk6qKp9NjOzvrVV1bCkEcBVwGlAF7BcUntE/KpUbTowMU2TgavTK8ANwJXAwoZ23wnMAI6NiC2lIHkGODMi1kl6E7AUGFtadVZEdAzjLpqZ2SBVeeZzItAZEWsjYiuwmCI0ymYAC6NwHzBK0sEAEbEMeLZJuxcBX4qILanehvS6MiLWpTprgL0l7TXse2VmZkNWZfiMBZ4szXfxyjOR/tZpdAQwVdL9kn4i6YQmdd4LrKwHVHJ9uuR2qSQ1a1jSHEkdkjq6u7v76IaZmQ1WleHT7As+BlGnURtwIDAF+BSwpBwmko4GvgxcWFpnVkQcA0xN03nNGo6IayOiFhG1MWPG9NENMzMbrCrDpws4pDQ/Dlg3iDrN2r0tXar7BbAdGA0gaRxwOzA7Ih6rrxART6XXTcDNFJcEzcysRaoMn+XAREkTJI0EZgLtDXXagdlp1NsUYGNErO+j3TuAUwAkHQGMBJ6RNAr4PvDpiPhZvbKkNkn1cNoTOAPYaQSdmZnlU1n4RMQ2YB7FqLOHgCURsUbSXElzU7W7gLVAJ3Ad8NH6+pIWAfcCR0rqkvThVLQAODwNwV4MnB8Rkbb1RuDShiHVewFLJT0ArAKeStsyM7MWUfG9bY1qtVp0dHhktpnZQEhaERG1vur5CQdmZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7PsHD5mZpadw8fMzLJz+JiZWXYOHzMzy87hY2Zm2Tl8zMwsO4ePmZll5/AxM7Ps/MfkeiCpG/h1q/uR0WjgmVZ3YhfhY7GDj8UOPhaF3o7DMwARMa2vRhw+BoCkjv789cHXAh+LHXwsdvCxKAzXcfBlNzMzy87hY2Zm2Tl8rO7aVndgF+JjsYOPxQ4+FoVhOQ6+52NmZtn5zMfMzLJz+JiZWXYOn9cASdMkPSKpU9IlvdQ7QdJLkv66YfkISSslfa/63lZnKMdB0hOSVktaJakjT4+rM8RjMUrSrZIelvSQpLfm6XU1BnssJB2ZPg/16feSPpGt4xUY4ufibyStkfSgpEWS9u51YxHh6VU8ASOAx4DDgZHAvwJH9VDvx8BdwF83lH0SuBn4Xqv3p1XHAXgCGN3q/dhFjsWNwEfS+5HAqFbvU6uORUP5b4HDWr1PrTgWwFjgcWCfNL8E+FBv2/OZz6vfiUBnRKyNiK3AYmBGk3oXA98BNpQXShoH/CXwzao7WrEhHYdXmUEfC0kHACcB3wKIiK0R8XzlPa7OcH0u3gU8FhG781NRhnos2oB9JLUB+wLretuYw+fVbyzwZGm+Ky17maSxwF8B1zRZ/+vA3wLbK+pfLkM9DgH8UNIKSXMq62UeQzkWhwPdwPXpUuw3Jb2uys5WbKifi7qZwKJh711egz4WEfEU8BXgN8B6YGNE/LC3jTl8Xv3UZFnj+PqvA38XES+9YkXpDGBDRKyoqG85Dfo4JG+LiEnAdOBjkk4a5v7lNJRj0QZMAq6OiLcAfwB6vDewGxjq5wJJI4H3AP9reLuW3VC+Kw6kOEuaALwBeJ2kD/a2sbbB99N2E13AIaX5cex8OlwDFkuC4qGBp0vaBkwG3iPpdGBv4ABJ346IXj9Uu6hBH4eIuCMi1gFExAZJt1NcolhWfbcrMZTPxH1AV0Tcn+rdyu4dPkP6XKTy6cAvI+LpivtataF8LvYEHo+IbgBJtwH/Afh2j1tr9U0uT5XfRGwD1lL8RlK/iXh0L/VvoPkN1ZPZvQccDPo4AK8D9i+9/zkwrdX71KrPBPBT4Mj0/nLgn1q9T606FmnZYuCCVu9LK48FxS+qayju9YhiUMrFvW3PZz6vchGxTdI8YCnFKJUFEbFG0txU3tt17FeNIR6H1wO3p9/22oCbI+IHVfe5KsPwmbgYuCldbloLXFBphys01GMhaV/gNODCyjtbsaEci4i4X9KtwC+BbcBK+ngMjx+vY2Zm2XnAgZmZZefwMTOz7Bw+ZmaWncPHzMyyc/iYmVl2Dh8zM8vO4WNmZtn5P5maZSTpUmAWxQMcnwFWABuBORT/q7wTOC8iNku6AXgR+PfAYRT/mfN84K3A/RHxodTmC8BVwKnAc8BngCuAQ4FPRES7pPHAv1A8oQFgXkT8vOLdNeuRz3zMMpFUA94LvAU4m+I5WQC3RcQJEfFm4CHgw6XVDgROAf4G+C7wNeBo4BhJx6U6rwPuiYjjgU3AFyj+1/1fAZ9PdTYAp0XxcNRzgPlV7KNZf/nMxyyftwN3RsSLAJK+m5a/SdIXgFHAfhSPN6n7bkSEpNXA0xGxOq27BhgPrAK2AvXH/awGtkTEn9I649PyPYErU2C9BBxRwf6Z9ZvDxyyfZo+sh+IBjWdFxL9K+hDFQ1zrtqTX7aX39fn6v98/xY7nZL1cLyK2pz/sBcWZ09PAmymuePxx0HthNgx82c0sn/8LnClpb0n7UfyFWID9gfWS9qS4H1SFPwPWR8R24DyKB0eatYzPfMwyiYjlktopHlX/a6CDYrDBpcD9adlqijAabt8AviPpfcD/ofgjcGYt46dam2Ukab+IeCE9in8ZMCciftnqfpnl5jMfs7yulXQUxV+GvdHBY69VPvMxM7PsPODAzMyyc/iYmVl2Dh8zM8vO4WNmZtk5fMzMLLv/D2To3RlIrtXYAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamma sigma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgBUlEQVR4nO3dfZwdVZ3n8c+XNOGZCbMJikkgsAQcEMRwIXE1iBHGBMEw+EAwEmR1QxjDjuOuM/jA4Lo6o6yOThYMEySErJDAIA+tgvHlOhhHeUjHZAgRsjQRoUkkjUAMBhNDfvtHnUuKm9vdt2931U3C9/161eveqnPq1Knqm/6mqk7XVURgZmZWpr1a3QEzM3vtcfiYmVnpHD5mZlY6h4+ZmZXO4WNmZqVz+JiZWekcPmZ7CEmnS+pqdT/yJK2WdHov5Z+R9K3yemS7CoeP7RIkPSHpJUkvSnpG0g2SDmx1v3ojaYykkNQ2SO3tK+kFSZPqlH1d0m2DsZ1mpP38ffr5PC3pHyUN6Wu9iDg+Iu7tpfzvI+Jjg9pZ2y04fGxXck5EHAiMA04BPteflZXZbT7TtaEVEX8AbgFm1NQbAlwA3Fhe7+p6c/r5vAv4EPBfBtLYYIW27Z52m3+o9toREU8D9wBvknSIpO9J6pb0fHo/qlpX0r2SviTpZ8Bm4ChJF0t6RNImSWslXZKrf7qkLkl/I2mDpPWSzpV0lqT/J+k5SZ/J1d9L0uWSHpf0W0m3SvrTVLw0vb6Qzgjemtb5z2n7z0taIumIXHsh6eOSHgMeq7P7NwLvk7R/btm7yf6t3tPbvtVK2zo6N79A0hdz82dLWpnOtn4u6cSefyo7RMSjwE/Jfj7/UdKP07F5VtJNkobltvGEpDPS+89Luk3StyX9DvhIWvbtVF49k7xI0pOpvc/m2tpP0o3puD6SfoZdufK/TWdlmyStkfSuRvbHWsPhY7scSaOBs4AVZJ/RG4AjgMOBl4Cra1a5EJgJHAT8GtgAnA0cDFwMfF3SuFz91wP7AiOBvwOuAz4MnAxMBP5O0lGp7n8FzgXeAbwBeB64JpWdll6HRcSBEXGfpHOBzwDnASPIfkkvqunvucB44LjafY+InwPr0/r5/bs5IrY1sG8NSevMBy4B/gPwz0C7pH0aWPc4suO0AhDwD2TH5s+A0cDne1l9KnAbMAy4qYc6bweOJTvD+jtJf5aWXwmMAY4CziT7mVX7dCwwGzglIg4iC+wn+toXa6GI8OSp5RPZL4oXgRfIAuSbwH516p0EPJ+bvxf4Qh9t3wn8VXp/OlmADUnzBwEBjM/VXw6cm94/ArwrV3YY8EegjewXYQBtufJ7gI/m5vciOyM7Is0HMKmP/n4O+GF6f3Ba/y0N7ltXriyAo3PzC4Avpvdzgf9Z09Ya4B09bCeA35GF7+PAF4G96tQ7F1hR83M9I73/PLC0pv7ngW+n99XjOSpX/iAwLb1fC7w7V/ax6v4CR5MF8xnA3q3+PHvqe/I1V9uVnBsRP8ovSJefvg5MBg5Jiw+SNCQiXk7zT9WsM4Xsf8nHkP3y3x9Ylavy29y6L6XXZ3LlLwHVwQ5HAHdI2p4rfxl4XQ/7cATwT5K+lu8S2VnWr+v1t46FwJWSRpL9D74zIlY0uG+NOgK4SNJluWVDyc5gejIuIjrzCyQdCswhOxM6KPXp+V7a6GvfAX6Te7+ZHT+LN9Ss/8r7iOiU9AmyMDte0hLgkxGxroHtWQv4spvt6v4b2SWY8RFxMDsudSlX55VHs6fLRt8Bvgq8LiKGAXfX1O+Pp4ApETEsN+0b2X2peo+Efwq4pKb+fpFdTtupv/VExJNkl+umk11yW9jkvm0mC6eq19f080s1/dw/ImovEfblH9L+nJh+Ph/upT/Qx773YT0wKjc/+lUNR9wcEW8nC9YAvjKAbVnBHD62qzuI7EzkhXSj/8o+6g8F9gG6gW3pTOHPB7D9a4EvVQcNSBohaWoq6wa2k92DyNf/tKTjU/0/kfSBJrZ7I9k9jLex495If/dtJfAhSUMkTSa7b1V1HTBL0nhlDpD0HkkH9bOfB5Eul6YztU/1c/3+uJXs2B6StjW7WiDpWEmTUkD/gewz83IP7dguwOFju7pvAPsBzwL3Az/orXJEbCIbJHAr2eWfDwHtA9j+P6X1fyhpU+rD+LStzcCXgJ+lEWMTIuIOsv9xL04juh4GpjSx3dvILjP+34hY3+S+/RVwDtl9tOlk94dIbXWQDZW+OrXVCXykiX7+D7Kh8RuB7wO3N9FGo74AdAG/An5Edoy2pLJ9gC+TfU5+AxxKNvDDdlGK8JfJmdnuR9KlZIMR3tFnZdvl+MzHzHYLkg6T9Lb0t1fHkt0PvKPV/bLmeLSbme0uhpL9PdKRZJcSF5MNybfdkC+7mZlZ6XzZzczMSufLbj0YPnx4jBkzptXdMDPbbQwfPpwlS5YsiYjJfdV1+PRgzJgxdHR0tLobZma7FUnDG6nny25mZlY6h4+ZmZXO4WNmZqVz+JiZWekcPmZmVjqHj5mZlc7hY2ZmpXP4mJlZ6Rw+ZmZWOoePmZmVzuFjZmalc/iYmVnpHD5mZlY6h4+ZmZXO4WNmZqVz+JiZWekcPmZmVrpCw0fSZElrJHVKurxOuSTNSeUPSRqXK5svaYOkh2vWuUXSyjQ9IWllWj49t3ylpO2STkpl96Z+VMsOLXK/zcysd4V9jbakIcA1wJlAF7BMUntE/DJXbQowNk3jgbnpFWABcDWwMN9uRJyf28bXgI1p+U3ATWn5CcBdEbEyt+r0iPD3YpuZ7QKKPPM5FeiMiLURsRVYDEytqTMVWBiZ+4Fhkg4DiIilwHM9NS5JwAeBRXWKL+hhuZmZ7QKKDJ+RwFO5+a60rL91ejIReCYiHqtTdj47h88N6ZLbFSm4diJppqQOSR3d3d0NdsPMzPqryPCp9ws+mqjTk7pnN5LGA5sjIn+vaHpEnEAWWBOBC+s1GBHzIqISEZURI0Y02A0zM+uvIsOnCxidmx8FrGuizk4ktQHnAbfUKZ5GTShFxNPpdRNwM9klQTMza5Eiw2cZMFbSkZKGkoVCe02ddmBGGvU2AdgYEesbaPsM4NGI6MovlLQX8AGy+0vVZW2Shqf3ewNnA68aQWdmZuUqbLRbRGyTNBtYAgwB5kfEakmzUvm1wN3AWUAnsBm4uLq+pEXA6cBwSV3AlRFxfSre6ewmOQ3oioi1uWX7AEtS8AwBfgRcN2g7amZm/aaIRm+xvLZUKpXo6PDIbDOz/pC0PCIqfdXzEw7MzKx0Dh8zMyudw8fMzErn8DEzs9I5fMzMrHQOHzMzK53Dx8zMSufwMTOz0jl8zMysdA4fMzMrncPHzMxK5/AxM7PSOXzMzKx0Dh8zMyudw8fMzErn8DEzs9I5fMzMrHQOHzMzK53Dx8zMSufwMTOz0hUaPpImS1ojqVPS5XXKJWlOKn9I0rhc2XxJGyQ9XLPOLZJWpukJSSvT8jGSXsqVXZtb52RJq9J25khSgbttZmZ9KCx8JA0BrgGmAMcBF0g6rqbaFGBsmmYCc3NlC4DJte1GxPkRcVJEnAR8B7g9V/x4tSwiZuWWz03tV7e1U7tmZlaeIs98TgU6I2JtRGwFFgNTa+pMBRZG5n5gmKTDACJiKfBcT42ns5cPAot660Rq7+CIuC8iAlgInNvkPpmZ2SAoMnxGAk/l5rvSsv7W6clE4JmIeCy37EhJKyT9RNLE3Da6GtmGpJmSOiR1dHd3N9gNMzPrryLDp959lWiiTk8u4NVnPeuBwyPiLcAngZslHdyfbUTEvIioRERlxIgRDXbDzMz6q63AtruA0bn5UcC6JursRFIbcB5wcnVZRGwBtqT3yyU9DhyTtjGqv9swM7PiFHnmswwYK+lISUOBaUB7TZ12YEYa9TYB2BgR6xto+wzg0Yh45XKapBFpkAOSjiIbWLA2tbdJ0oR0n2gGcNeA987MzJpW2JlPRGyTNBtYAgwB5kfEakmzUvm1wN3AWUAnsBm4uLq+pEXA6cBwSV3AlRFxfSqexs4DDU4DviBpG/AyMCsiqgMWLiUbPbcfcE+azMysRZQNALNalUolOjo6Wt0NM7PdiqTlEVHpq56fcGBmZqVz+JiZWekcPmZmVjqHj5mZlc7hY2ZmpXP4mJlZ6Rw+ZmZWOoePmZmVzuFjZmalc/iYmVnpHD5mZlY6h4+ZmZXO4WNmZqVz+JiZWekcPmZmVjqHj5mZlc7hY2ZmpXP4mJlZ6Rw+ZmZWOoePmZmVrtDwkTRZ0hpJnZIur1MuSXNS+UOSxuXK5kvaIOnhmnVukbQyTU9IWpmWnylpuaRV6XVSbp17Uz+q6x1a4G6bmVkf2opqWNIQ4BrgTKALWCapPSJ+mas2BRibpvHA3PQKsAC4GliYbzcizs9t42vAxjT7LHBORKyT9CZgCTAyt+r0iOgYnL0zM7OBKPLM51SgMyLWRsRWYDEwtabOVGBhZO4Hhkk6DCAilgLP9dS4JAEfBBal+isiYl0qXg3sK2mfQd0jMzMbFEWGz0jgqdx8F68+E2m0Tk8mAs9ExGN1yt4HrIiILbllN6RLblek4NqJpJmSOiR1dHd3N9gNMzPrryLDp94v+GiiTk8uIJ31vKpB6XjgK8AlucXTI+IEssCaCFxYr8GImBcRlYiojBgxosFumJlZfxUZPl3A6Nz8KGBdE3V2IqkNOA+4pWb5KOAOYEZEPF5dHhFPp9dNwM1klwTNzKxFigyfZcBYSUdKGgpMA9pr6rQDM9KotwnAxohY30DbZwCPRkRXdYGkYcD3gU9HxM9yy9skDU/v9wbOBh7GzMxaprDwiYhtwGyyUWePALdGxGpJsyTNStXuBtYCncB1wF9W15e0CLgPOFZSl6SP5pqfxs6X3GYDRwNX1Ayp3gdYIukhYCXwdNqWmZm1iCIavcXy2lKpVKKjwyOzzcz6Q9LyiKj0Vc9PODAzs9I5fMzMrHQOHzMzK53Dx8zMSufwMTOz0jl8zMysdA4fMzMrncPHzMxK5/AxM7PSOXzMzKx0Dh8zMytdw1+jnb6a+jhg3+qyiFjY8xpmZmb1NRQ+kq4ETicLn7uBKcC/AQ4fMzPrt0Yvu70feBfwm4i4GHgz2VcVmJmZ9Vuj4fNSRGwHtkk6GNgAHFVct8zMbE/W6D2fjvRNodcBy4EXgQeL6pSZme3ZGgqfiKh+w+i1kn4AHBwRDxXXLTMz25P1Z7TbicCY6jqSjo6I2wvql5mZ7cEaHe02HzgRWA1sT4sDcPiYmVm/NXrmMyEijiu0J2Zm9prR6Gi3+yT1O3wkTZa0RlKnpMvrlEvSnFT+kKRxubL5kjZIerhmnVskrUzTE5JW5so+ndpaI+ndueUnS1qVyuZIUn/3xczMBk+j4XMjWQCtSSGxSlKvAw4kDQGuIfuD1OOAC+oE2BRgbJpmAnNzZQuAybXtRsT5EXFSRJwEfId06S+1PQ04Pq33zdQHUrszc9vaqV2zXV1s384vfnwTP22/mq0vvdjq7pgNSKOX3eYDFwKr2HHPpy+nAp0RsRZA0mJgKvDLXJ2pwMKICOB+ScMkHRYR6yNiqaQxPTWezl4+CEzKtbU4IrYAv5LUCZwq6Qmy0Xn3pfUWAucC9zS4H2a7hJVLb+Fr3/8sEUH3b5/kvIuvanWXzJrWaPg8GRHt/Wx7JPBUbr4LGN9AnZHA+gbanwg8ExGP5dq6v05bf0zva5fvRNJMsjMkDj/88Aa6YFaeLX/4PUGwl/bi9y/9rtXdMRuQRsPnUUk3A98FtlQX9jHUut59lWiiTk8uABY10FbD24iIecA8gEql0mg/zEpx8ukfYtqGX/Hi5hc45wOfbXV3zAak0fDZjyx0/jy3rK+h1l3A6Nz8KGBdE3V2IqkNOA84uYG2utL7fm3DbFez9777894ZX2p1N8wGRaNPOLi4ibaXAWMlHQk8TTYY4EM1ddqB2el+0HhgY0Q0csntDODRiMhfTmsHbpb0j8AbyAYWPBgRL0vaJGkC8AAwA/jfTeyPmZkNkkb/yHROncUbgY6IuKveOhGxTdJsYAkwBJgfEaslzUrl15J9PcNZQCewGXgl5CQtIvsah+GSuoArI+L6VDyNV19yI7V9K9mAhm3AxyPi5VR8Kdnouf3IBhp4sIGZWQspG2jWRyVpHvBG4F/SoveRPe1gNLA2Ij5RVAdbpVKpREdHR6u7YWa2W5G0PCIqfdVr9J7P0cCkiNiWGp8L/BA4k2z4tZmZWcMa/SPTkcABufkDgDeky1pb6q9iZmZWX6NnPlcBKyXdSzZ0+TTg7yUdAPyooL6ZmdkeqtHRbtdLupvsqQUCPhMR1eHKnyqqc2Zmtmfq9bKbpDem13HAYWRPI3gSeH3+IaBmZmb90deZzyfJHjfztdyy/PC4SZiZmfVTr2c+ETEzvZ0LTI2IdwL/SvY3Pv+94L6ZmdkeqtHRbp+LiN9JejvZ8OoFvPrrD8zMzBrWaPhUnxTwHuDa9FSDocV0yczM9nSNhs/Tkv6Z7Ptz7pa0Tz/WNTMze5VGA+SDZM9omxwRLwB/iodYm5lZkxr9O5/N5L4+IT15upGnT5uZme3El87MzKx0Dh8zMyudw8fMzErn8DEzs9I5fMzMrHQOHzMzK53Dx8zMSufwMTOz0hUaPpImS1ojqVPS5XXKJWlOKn8o/x1BkuZL2iDp4TrrXZbaXS3pqrRsuqSVuWm7pJNS2b2pfrXs0AJ328zM+tDo12j3m6QhwDVkT8HuApZJao+IX+aqTQHGpmk82ZOyx6eyBcDVwMKadt8JTAVOjIgt1SCJiJuAm1KdE4C7ImJlbtXpEdExmPtoZmbNKfLM51SgMyLWRsRWYDFZaORNBRZG5n5gmKTDACJiKfBcnXYvBb4cEVtSvQ116lwALBqk/TAzs0FWZPiMJPva7aqutKy/dWodA0yU9ICkn0g6pU6d89k5fG5Il9yukKR6DUuaKalDUkd3d3cf3TAzs2YVGT71fsFHE3VqtQGHABPInqx9az5MJI0HNkdE/l7R9Ig4AZiYpgvrNRwR8yKiEhGVESNG9NENMzNrVpHh0wWMzs2PAtY1Uadeu7enS3UPAtuB4bnyadSc9UTE0+l1E3Az2SVBMzNrkSLDZxkwVtKRkoaShUJ7TZ12YEYa9TYB2Ji+rqE3dwKTACQdQ/aNqs+m+b2AD5DdXyIta5M0PL3fGzgb2GkEnZmZlaew0W4RsU3SbLIvoRsCzI+I1ZJmpfJrgbuBs4BOYDNwcXV9SYuA04HhkrqAKyPiemA+MD8Nwd4KXBQR1Ut1pwFdEbE215V9gCUpeIYAPwKuK2i3zcysAdrxe9vyKpVKdHR4ZLaZWX9IWh4Rlb7q+QkHZmZWOoePmZmVzuFjZmalc/iYmVnpHD5mZlY6h4+ZmZXO4WNmZqVz+JiZWekcPmZmVjqHj5mZlc7hY2ZmpXP4mJlZ6Rw+ZmZWOoePmZmVzuFjZmalc/iYmVnpHD5mZlY6h4+ZmZXO4WNmZqVz+JiZWekKDR9JkyWtkdQp6fI65ZI0J5U/JGlcrmy+pA2SHq6z3mWp3dWSrkrLxkh6SdLKNF2bq3+ypFVpO3Mkqah9NjOzvhUWPpKGANcAU4DjgAskHVdTbQowNk0zgbm5sgXA5DrtvhOYCpwYEccDX80VPx4RJ6VpVm753NR+dVs7tWtmZuUp8sznVKAzItZGxFZgMVlo5E0FFkbmfmCYpMMAImIp8Fyddi8FvhwRW1K9Db11IrV3cETcFxEBLATOHcB+mZnZABUZPiOBp3LzXWlZf+vUOgaYKOkBST+RdEqu7EhJK9LyibltdDWyDUkzJXVI6uju7u6jG2Zm1qy2Atuud18lmqhTqw04BJgAnALcKukoYD1weET8VtLJwJ2Sju/PNiJiHjAPoFKp9NUPMzNrUpFnPl3A6Nz8KGBdE3XqtXt7ulT3ILAdGB4RWyLitwARsRx4nOwsqSu1259tmJlZgYoMn2XAWElHShoKTAPaa+q0AzPSqLcJwMaIWN9Hu3cCkwAkHQMMBZ6VNCINciCdCY0F1qb2NkmakEa5zQDuGpxdNDOzZhR22S0itkmaDSwBhgDzI2K1pFmp/FrgbuAsoBPYDFxcXV/SIuB0YLikLuDKiLgemA/MT0OwtwIXRURIOg34gqRtwMvArIioDli4lGz03H7APWkyM7MWUTYAzGpVKpXo6OhodTfMzHYrkpZHRKWven7CgZmZlc7hY2ZmpXP4mJlZ6Rw+ZmZWOoePmZmVzuFjZmalc/iYmVnpHD5mZlY6h4+ZmZXO4WNmZqVz+JiZWekcPmZmVjqHj5mZlc7hY2ZmpXP4mJlZ6Rw+ZmZWOoePmZmVzuFjZmalc/iYmVnpHD5mZla6QsNH0mRJayR1Srq8TrkkzUnlD0kalyubL2mDpIfrrHdZane1pKvSsjMlLZe0Kr1OytW/N9VfmaZDi9pnMzPrW1tRDUsaAlwDnAl0AcsktUfEL3PVpgBj0zQemJteARYAVwMLa9p9JzAVODEituSC5FngnIhYJ+lNwBJgZG7V6RHRMYi7aGZmTSryzOdUoDMi1kbEVmAxWWjkTQUWRuZ+YJikwwAiYinwXJ12LwW+HBFbUr0N6XVFRKxLdVYD+0raZ9D3yszMBqzI8BkJPJWb7+LVZyKN1ql1DDBR0gOSfiLplDp13gesqAZUckO65HaFJNVrWNJMSR2SOrq7u/vohpmZNavI8Kn3Cz6aqFOrDTgEmAB8Crg1HyaSjge+AlySW2d6RJwATEzThfUajoh5EVGJiMqIESP66IaZmTWryPDpAkbn5kcB65qoU6/d29OlugeB7cBwAEmjgDuAGRHxeHWFiHg6vW4Cbia7JGhmZi1SZPgsA8ZKOlLSUGAa0F5Tpx2YkUa9TQA2RsT6Ptq9E5gEIOkYYCjwrKRhwPeBT0fEz6qVJbVJqobT3sDZwE4j6MzMrDyFhU9EbANmk406ewS4NSJWS5olaVaqdjewFugErgP+srq+pEXAfcCxkrokfTQVzQeOSkOwFwMXRUSkbR0NXFEzpHofYImkh4CVwNNpW2Zm1iLKfm9brUqlEh0dHpltZtYfkpZHRKWven7CgZmZlc7hY2ZmpXP4mJlZ6Rw+ZmZWOoePmZmVzuFjZmalc/iYmVnpHD5mZlY6h4+ZmZXO4WNmZqVz+JiZWekcPmZmVjqHj5mZlc7hY2ZmpXP4mJlZ6Rw+ZmZWOn+ZXA8kdQO/bnU/SjQceLbVndhF+Fjs4GOxg49Fprfj8CxAREzuqxGHjwEgqaORbx98LfCx2MHHYgcfi8xgHQdfdjMzs9I5fMzMrHQOH6ua1+oO7EJ8LHbwsdjBxyIzKMfB93zMzKx0PvMxM7PSOXzMzKx0Dp/XAEmTJa2R1Cnp8l7qnSLpZUnvr1k+RNIKSd8rvrfFGchxkPSEpFWSVkrqKKfHxRngsRgm6TZJj0p6RNJby+l1MZo9FpKOTZ+H6vQ7SZ8oreMFGODn4q8lrZb0sKRFkvbtdWMR4WkPnoAhwOPAUcBQ4N+B43qo92PgbuD9NWWfBG4Gvtfq/WnVcQCeAIa3ej92kWNxI/Cx9H4oMKzV+9SqY1FT/hvgiFbvUyuOBTAS+BWwX5q/FfhIb9vzmc+e71SgMyLWRsRWYDEwtU69y4DvABvyCyWNAt4DfKvojhZsQMdhD9P0sZB0MHAacD1ARGyNiBcK73FxButz8S7g8YjYnZ+KMtBj0QbsJ6kN2B9Y19vGHD57vpHAU7n5rrTsFZJGAn8BXFtn/W8AfwNsL6h/ZRnocQjgh5KWS5pZWC/LMZBjcRTQDdyQLsV+S9IBRXa2YAP9XFRNAxYNeu/K1fSxiIinga8CTwLrgY0R8cPeNubw2fOpzrLa8fXfAP42Il5+1YrS2cCGiFheUN/K1PRxSN4WEeOAKcDHJZ02yP0r00CORRswDpgbEW8Bfg/0eG9gNzDQzwWShgLvBf5lcLtWuoH8rjiE7CzpSOANwAGSPtzbxtqa76ftJrqA0bn5Uex8OlwBFkuC7KGBZ0naBowH3ivpLGBf4GBJ346IXj9Uu6imj0NE3BkR6wAiYoOkO8guUSwtvtuFGMhn4n6gKyIeSPVuY/cOnwF9LlL5FOAXEfFMwX0t2kA+F3sDv4qIbgBJtwP/Cfh2j1tr9U0uT4XfRGwD1pL9j6R6E/H4XuovoP4N1dPZvQccNH0cgAOAg3Lvfw5MbvU+teozAfwUODa9/zzwv1q9T606FmnZYuDiVu9LK48F2X9UV5Pd6xHZoJTLetuez3z2cBGxTdJsYAnZKJX5EbFa0qxU3tt17D3GAI/D64A70v/22oCbI+IHRfe5KIPwmbgMuCldbloLXFxohws00GMhaX/gTOCSwjtbsIEci4h4QNJtwC+AbcAK+ngMjx+vY2ZmpfOAAzMzK53Dx8zMSufwMTOz0jl8zMysdA4fMzMrncPHzMxK5/AxM7PS+Y9MzUok6QpgOtkDHJ8FlgMbgZlkf1XeCVwYEZslLQBeAt4IHEH2x5wXAW8FHoiIj6Q2XwSuAc4Angc+A1wFHA58IiLaJY0B/g/ZExoAZkfEzwveXbMe+czHrCSSKsD7gLcA55E9Jwvg9og4JSLeDDwCfDS32iHAJOCvge8CXweOB06QdFKqcwBwb0ScDGwCvkj2V/d/AXwh1dkAnBnZw1HPB+YUsY9mjfKZj1l53g7cFREvAUj6blr+JklfBIYBB5I93qTquxERklYBz0TEqrTuamAMsBLYClQf97MK2BIRf0zrjEnL9wauToH1MnBMAftn1jCHj1l56j2yHrIHNJ4bEf8u6SNkD3Gt2pJet+feV+er/37/GDuek/VKvYjYnr7YC7Izp2eAN5Nd8fhD03thNgh82c2sPP8GnCNpX0kHkn1DLMBBwHpJe5PdDyrCnwDrI2I7cCHZgyPNWsZnPmYliYhlktrJHlX/a6CDbLDBFcADadkqsjAabN8EviPpA8C/kn0JnFnL+KnWZiWSdGBEvJgexb8UmBkRv2h1v8zK5jMfs3LNk3Qc2TfD3ujgsdcqn/mYmVnpPODAzMxK5/AxM7PSOXzMzKx0Dh8zMyudw8fMzEr3/wHyz04Ba85vsQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamma tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEWCAYAAAC0Q+rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaEklEQVR4nO3dfZxeZX3n8c+XhPAYGlyDYngI1Mg21IfiKHS1yqpYYtXQWl8LPoBPG1Fxa9ttRddaa7W13bZYXlJcsArUCsui1KgoKtWlq2KZiAIpIjGKpKQkKCIIisBv/zhnzN1xMnNnZq5MEj7v1+t+3eec67rOua4zd+Y75+E+SVUhSVILu811ByRJuy5DRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMtJOJsmxSTbMdT8GJVmb5NhJyt+c5H3br0faURgy2q6SfDvJvUnuTnJbkg8k2Xeu+zWZJEuTVJL5s7S+PZN8P8kzJig7I8kls7Gd6ejH+cP+5/OvSf4qybyp2lXVkVX1+UnK/6SqXjWrndVOwZDRXHheVe0LHAU8CXjLtjROZ6f57I4Pp6r6EfC/gZPH1ZsHnAScv/16N6HH9z+fZwIvAv7rTFY2W+GsndNO8w9Vu56q+lfgk8AvJtk/yceTbE5yRz990FjdJJ9P8s4kXwDuAQ5P8vIkNyS5K8n6JK8eqH9skg1Jfj/JpiQbk5yQ5DlJvpHke0nePFB/tySnJ/lmku8muTjJw/riK/v37/d/4f9y3+YV/fbvSHJ5kkMH1ldJXpfkJuCmCYZ/PvCCJHsPLPtVun+Tn5xsbOP123r0wPx5Sd4xMP/cJF/tj56+mORxW/+pbFFVXwf+ie7n8/NJ/rHfN7cn+fskiwa28e0kz+qn35bkkiQfTPID4GX9sg/25WNHhqck+U6/vv8xsK69kpzf79cb+p/hhoHyN/ZHWXcluTHJM4cZj+aGIaM5k+Rg4DnANXSfxQ8AhwKHAPcC7xnX5KXAKmAhcDOwCXgusB/wcuCMJEcN1H8ksCewBHgrcC7wEuCJwK8Ab01yeF/3vwEnAE8HHgXcAZzVlz2tf19UVftW1ZeSnAC8GfgNYDHdL+MLx/X3BOBoYPn4sVfVF4GNffvB8X2oqu4fYmxD6du8H3g18B+A/wWsTrLHEG2X0+2na4AAf0q3b34BOBh42yTNVwKXAIuAv99KnacCR9AdMb01yS/0y/8QWAocDhxH9zMb69MRwGnAk6pqIV0wf3uqsWgOVZUvX9vtRfcL4W7g+3RB8TfAXhPUewJwx8D854G3T7HufwB+q58+li6o5vXzC4ECjh6ovwY4oZ++AXjmQNmBwE+A+XS/8AqYP1D+SeCVA/O70R1hHdrPF/CMKfr7FuDT/fR+fftfGnJsGwbKCnj0wPx5wDv66bOBPx63rhuBp29lOwX8gC5kvwm8A9htgnonANeM+7k+q59+G3DluPpvAz7YT4/tz4MGyv8ZOLGfXg/86kDZq8bGCzyaLoCfBew+159nX1O/PFequXBCVX12cEF/2ugM4Hhg/37xwiTzquqBfv6WcW1W0P3V+xi6X/J7A9cNVPnuQNt7+/fbBsrvBcZuOjgUuDTJgwPlDwCP2MoYDgX+OslfDnaJ7qjp5on6O4ELgD9MsoTuL/J1VXXNkGMb1qHAKUleP7BsAd0RydYcVVXrBhckOQA4k+7IZmHfpzsmWcdUYwf4t4Hpe9jys3jUuPY/na6qdUneQBdaRya5HPidqrp1iO1pDni6TDuK36U7dXJ0Ve3HllNUGajz00eG96d7Pgz8BfCIqloEXDau/ra4BVhRVYsGXntWd91ookeV3wK8elz9vao7DfYz/Z1IVX2H7jTbi+lOlV0wzbHdQxdCYx45rp/vHNfPvatq/Km9qfxpP57H9T+fl0zSH5hi7FPYCBw0MH/wv1tx1Yeq6ql0AVrAn81gW2rMkNGOYiHdkcX3+wvufzhF/QXAHsBm4P7+L/9nz2D77wXeOXbxPsniJCv7ss3Ag3TXCAbrvynJkX39n0vywmls93y6awxPYcu1i20d21eBFyWZl+R4uutKY84FTk1ydDr7JPm1JAu3sZ8L6U9z9kdev7eN7bfFxXT7dv9+W6eNFSQ5Iskz+iD+Ed1n5oGtrEc7AENGO4p3A3sBtwNXAZ+arHJV3UV3sf5iutM2LwJWz2D7f923/3SSu/o+HN1v6x7gncAX+ju0jqmqS+n+gr6ov4PqemDFNLZ7Cd3pwSuqauM0x/ZbwPPornO9mO76Df26RuluQX5Pv651wMum0c8/orvl/E7gE8BHprGOYb0d2AB8C/gs3T76cV+2B/Auus/JvwEH0N2AoR1UqvxPyyTtuJK8hu6mgKdPWVk7HI9kJO1QkhyY5Cn9d5eOoLted+lc90vT491lknY0C+i+z3MY3SnAi+hudddOyNNlkqRmPF0mSWrmIX267OEPf3gtXbp0rrshSTuVNWvW3F5Vi4ep+5AOmaVLlzI6OjrX3ZCknUqSm6eu1fF0mSSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpmaYhk+T4JDcmWZfk9AnKk+TMvvzaJEcNlL0/yaYk149r87Akn0lyU/++/7jyQ5LcneS/txuZJGkYzUImyTzgLGAFsBw4KcnycdVWAMv61yrg7IGy84DjJ1j16cAVVbUMuKKfH3QG8MmZ9l+SNHMtj2SeDKyrqvVVdR9wEbByXJ2VwAXVuQpYlORAgKq6EvjeBOtdCZzfT58PnDBWkOQEYD2wdhbHIUmappYhswS4ZWB+Q79sW+uM94iq2gjQvx8AkGQf4I3AH03WOMmqJKNJRjdv3jzlICRJ09cyZDLBsppGnWH9EXBGVd09WaWqOqeqRqpqZPHixdPclCRpGPMbrnsDcPDA/EHArdOoM95tSQ6sqo39qbVN/fKjgd9M8ufAIuDBJD+qqvdMdwCSpJlpeSRzNbAsyWFJFgAnAqvH1VkNnNzfZXYMcOfYqbBJrAZO6adPAT4KUFW/UlVLq2op8G7gTwwYSZpbzUKmqu4HTgMuB24ALq6qtUlOTXJqX+0yugv164BzgdeOtU9yIfAl4IgkG5K8si96F3BckpuA4/p5SdIOKFXTvQSy8xsZGanR0dG57oYk7VSSrKmqkWHq+o1/SVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaaRoySY5PcmOSdUlOn6A8Sc7sy69NctRA2fuTbEpy/bg2D0vymSQ39e/798uPS7ImyXX9+zNajk2SNLVmIZNkHnAWsAJYDpyUZPm4aiuAZf1rFXD2QNl5wPETrPp04IqqWgZc0c8D3A48r6oeC5wC/N3sjESSNF0tj2SeDKyrqvVVdR9wEbByXJ2VwAXVuQpYlORAgKq6EvjeBOtdCZzfT58PnNDXv6aqbu2XrwX2TLLHbA5IkrRtWobMEuCWgfkN/bJtrTPeI6pqI0D/fsAEdV4AXFNVP96mHkuSZtX8huvOBMtqGnW2baPJkcCfAc/eSvkqulNzHHLIITPZlCRpCi2PZDYABw/MHwTcOo064902dkqtf980VpDkIOBS4OSq+uZEjavqnKoaqaqRxYsXDzUQSdL0tAyZq4FlSQ5LsgA4EVg9rs5q4OT+LrNjgDvHToVNYjXdhX36948CJFkEfAJ4U1V9YZbGIEmagWYhU1X3A6cBlwM3ABdX1dokpyY5ta92GbAeWAecC7x2rH2SC4EvAUck2ZDklX3Ru4DjktwEHNfP02/r0cAfJPlq/5roeo0kaTtJ1YwugezURkZGanR0dK67IUk7lSRrqmpkmLp+41+S1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNzJ+qQpK3TrS8qt4++92RJO1KpgwZ4IcD03sCzwVuaNMdSdKuZMrTZVX1lwOvdwLHAkuGWXmS45PcmGRdktMnKE+SM/vya5McNVD2/iSbklw/rs3DknwmyU39+/4DZW/q13Vjkl8dpo+SpHamc01mb+DwqSolmQecBawAlgMnJVk+rtoKYFn/WgWcPVB2HnD8BKs+HbiiqpYBV/Tz9Os+ETiyb/c3fR+kncpd372Vz33kr/j6P182112RZmyYazLXAdXPzgMWA8Ncj3kysK6q1vfruQhYCfzLQJ2VwAVVVcBVSRYlObCqNlbVlUmWTrDelXRHUwDnA58H3tgvv6iqfgx8K8m6vg9fGqKv0g7jfee+htHNX2OP7M4fLzqAJY8ZmesuSdM2zDWZ5w5M3w/cVlX3D9FuCXDLwPwG4Ogh6iwBNk6y3kdU1UaAqtqY5ICBdV01wbr+nSSr6I6aOOSQQ6YehbSd/fC+u1mQ3XmAB/nxvXfPdXekGRnmmszNVXUzcC/dkcyjkgzz2zkTrW4adYY11Lqq6pyqGqmqkcWLF09zU1I7r3rJGTz90Kfx8qe8nsMe+7S57o40I8OcLns+8JfAo4BNwKF0d5cdOUXTDcDBA/MHAbdOo854t42dUktyYN+n6a5L2uE88vDH8bLX/+1cd0OaFcNc+P9j4BjgG1V1GPBM4AtDtLsaWJbksCQL6C7Krx5XZzVwcn+X2THAnWOnwiaxGjilnz4F+OjA8hOT7JHkMLqbCf55iH5KkhoZJmR+UlXfBXZLsltVfQ54wlSN+us2pwGX0x35XFxVa5OcmuTUvtplwHpgHXAu8Nqx9kkupLtof0SSDUle2Re9CzguyU3Acf08VbUWuJjuxoJPAa+rqgeGGJ8kqZF0N3ZNUiH5LHAC8KfAw+lOT41U1VOa966xkZGRGh0dnetuSNJOJcmaqhrqtsdh7i77GnAP8NvAi4GfA/adfvckSQ8Vw4TMf66qB4EH6b6XQpJrm/ZKkrRL2GrIJHkN3TWSnx8XKgsZ7sK/JOkhbrIjmQ8Bn6S7FjP43LG7qup7TXslSdolbDVkqupO4E7gpO3XHUnSrsT/tEyS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDVjyEiSmjFkJEnNGDKSpGYMGUlSM4aMJKkZQ0aS1EzTkElyfJIbk6xLcvoE5UlyZl9+bZKjpmqb5PFJvpTkuiQfS7Jfv3z3JOf3y29I8qaWY5MkTa1ZyCSZB5wFrACWAyclWT6u2gpgWf9aBZw9RNv3AadX1WOBS4Hf65e/ENijX/5E4NVJlrYZnSRpGC2PZJ4MrKuq9VV1H3ARsHJcnZXABdW5CliU5MAp2h4BXNlPfwZ4QT9dwD5J5gN7AfcBP2g0NknSEFqGzBLgloH5Df2yYepM1vZ64Pn99AuBg/vpS4AfAhuB7wB/UVXfm9kQJEkz0TJkMsGyGrLOZG1fAbwuyRpgId0RC3RHPw8AjwIOA343yeE/06lkVZLRJKObN2+eehSSpGlrGTIb2HKUAXAQcOuQdbbatqq+XlXPrqonAhcC3+zrvAj4VFX9pKo2AV8ARsZ3qqrOqaqRqhpZvHjxtAcnSZpay5C5GliW5LAkC4ATgdXj6qwGTu7vMjsGuLOqNk7WNskB/ftuwFuA9/br+g7wjH5d+wDHAF9vOD5J0hSahUxV3Q+cBlwO3ABcXFVrk5ya5NS+2mXAemAdcC7w2sna9m1OSvINugC5FfhAv/wsYF+6azZXAx+oqmtbjU+SNLVUjb9M8tAxMjJSo6Ojc90NSdqpJFlTVT9zOWIifuNfktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjOGjCSpGUNGktSMISNJasaQkSQ1Y8hIkpoxZCRJzRgykqRmDBlJUjNNQybJ8UluTLIuyekTlCfJmX35tUmOmqptkscn+VKS65J8LMl+A2WP68vW9uV7thyfJGlyzUImyTzgLGAFsBw4KcnycdVWAMv61yrg7CHavg84vaoeC1wK/F7fZj7wQeDUqjoSOBb4SavxSZKm1vJI5snAuqpaX1X3ARcBK8fVWQlcUJ2rgEVJDpyi7RHAlf30Z4AX9NPPBq6tqq8BVNV3q+qBVoOTJE2tZcgsAW4ZmN/QLxumzmRtrwee30+/EDi4n34MUEkuT/KVJL8/UaeSrEoymmR08+bN2zgkSdK2aBkymWBZDVlnsravAF6XZA2wELivXz4feCrw4v7915M882dWUnVOVY1U1cjixYunHoUkadrmN1z3BrYcZQAcBNw6ZJ0FW2tbVV+nOzVGkscAvzawrv9bVbf3ZZcBRwFXzMJYJEnT0PJI5mpgWZLDkiwATgRWj6uzGji5v8vsGODOqto4WdskB/TvuwFvAd7br+ty4HFJ9u5vAng68C8NxydJmkKzI5mquj/JaXS//OcB76+qtUlO7cvfC1wGPAdYB9wDvHyytv2qT0ryun76I8AH+jZ3JPkruoAq4LKq+kSr8UmSppaq8ZdJHjpGRkZqdHR0rrshSTuVJGuqamSYun7jX5LUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqRlDRpLUjCEjSWrGkJEkNWPISJKaMWQkSc0YMpKkZgwZSVIzhowkqZlU1Vz3Yc4k2QzcPNf92M4eDtw+153YQbgvOu6HLdwXW0y2Lw6tqsXDrOQhHTIPRUlGq2pkrvuxI3BfdNwPW7gvtpitfeHpMklSM4aMJKkZQ+ah55y57sAOxH3RcT9s4b7YYlb2hddkJEnNeCQjSWrGkJEkNWPI7CKSHJ/kxiTrkpw+Sb0nJXkgyW+OWz4vyTVJPt6+t23NZF8k+XaS65J8Ncno9ulxOzPcF4uSXJLk60luSPLL26fXbUx3XyQ5ov88jL1+kOQN263js2yGn4nfTrI2yfVJLkyy55QbrCpfO/kLmAd8EzgcWAB8DVi+lXr/CFwG/Oa4st8BPgR8fK7HM5f7Avg28PC5HscOsi/OB17VTy8AFs31mOZqX4wr/ze6LyPO+bi2534AlgDfAvbq5y8GXjbVNj2S2TU8GVhXVeur6j7gImDlBPVeD3wY2DS4MMlBwK8B72vd0e1gRvtiFzPtfZFkP+BpwN8CVNV9VfX95j1uZ7Y+F88EvllVO+uTQma6H+YDeyWZD+wN3DrVBg2ZXcMS4JaB+Q39sp9KsgT4deC9E7R/N/D7wION+rc9zXRfFPDpJGuSrGrWy+1jJvvicGAz8IH+NOr7kuzTsrONzfRzMeZE4MJZ7932M+39UFX/CvwF8B1gI3BnVX16qg0aMruGTLBs/L3p7wbeWFUP/LuGyXOBTVW1plHftrdp74veU6rqKGAF8LokT5vl/m1PM9kX84GjgLOr6peAHwJbPX+/E5jp54IkC4DnA/9ndru2Xc3kd8X+dEc9hwGPAvZJ8pKpNjh/ev3UDmYDcPDA/EH87GHsCHBREugefPecJPcDRwPPT/IcYE9gvyQfrKopPzw7qGnvi6r6h6q6FaCqNiW5lO70wpXtu93ETD4XVwEbqurLfb1L2LlDZkafi758BfCVqrqtcV9bmslnYnfgW1W1GSDJR4D/BHxw0i3O9YUoX7NyMW8+sJ7uL4yxi3lHTlL/PCa+qHksO/+F/2nvC2AfYOHA9BeB4+d6THP1uQD+CTiin34b8D/nekxztS/6ZRcBL5/rsczVfqD7g3Qt3bWY0N0Y8vqptumRzC6gqu5PchpwOd1dIe+vqrVJTu3LJzvHvEuZ4b54BHBp/xfcfOBDVfWp1n1uZRY+F68H/r4/TbQeeHnTDjc0032RZG/gOODVzTvb0Ez2Q1V9OcklwFeA+4FrGOLRMz5WRpLUjBf+JUnNGDKSpGYMGUlSM4aMJKkZQ0aS1IwhI0lqxpCRJDXjlzGlWZbkD4AX0z2I8HZgDXAnsIruW9brgJdW1T1JzgPuBf4jcCjdFx5PAX4Z+HJVvaxf593AWcCzgDuANwN/DhwCvKGqVidZCvwd3dMKAE6rqi82Hq40KY9kpFmUZAR4AfBLwG/QPQcK4CNV9aSqejxwA/DKgWb7A88Afhv4GHAGcCTw2CRP6OvsA3y+qp4I3AW8g+4b6L8OvL2vswk4rroHfP4X4MwWY5S2hUcy0ux6KvDRqroXIMnH+uW/mOQdwCJgX7rHeoz5WFVVkuuA26rqur7tWmAp8FXgPmDsETfXAT+uqp/0bZb2y3cH3tMH0wPAYxqMT9omhow0uyZ6lDp0Dxo8oaq+luRldA8jHfPj/v3Bgemx+bF/oz+pLc+A+mm9qnqw/w+koDsSug14PN1Zih9NexTSLPF0mTS7/h/wvCR7JtmX7n8cBVgIbEyyO931mhZ+DthYVQ8CL6V7AKI0pzySkWZRVV2dZDXdI9RvBkbpLvr/AfDlftl1dKEz2/4G+HCSFwKfo/uPxqQ55VOYpVmWZN+qurt/PPyVwKqq+spc90uaCx7JSLPvnCTL6f6n0fMNGD2UeSQjSWrGC/+SpGYMGUlSM4aMJKkZQ0aS1IwhI0lq5v8DPee4f/yOB7wAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epsilon theta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAf6klEQVR4nO3df5xWdZ338dfbIRIIA2M0BBJEkqgU6QqtXGvTNjG3gbVusVws60b2jspq71368SjLurNuzdpH3rr+wKXVNKIo7lzTlt3i3raMQVkCgSRSGUQczV8ECsjn/uN8R85cc81wnZk5MwO+n4/H9Zhzvt/vOdf3y8zwnvM95zpHEYGZmVm9DuvvDpiZ2cHFwWFmZoU4OMzMrBAHh5mZFeLgMDOzQhwcZmZWiIPDbICS9DZJLf3djzxJ6yS9rYv6z0i6oe96ZP3BwWGlkPSApF2SdkjaLukmSS/r7351RdJ4SSFpUC/t73BJT0p6e426qyQt6Y336Y40zj+l789WSd+Q1HCg7SLitRHx8y7q/1dEfLhXO2sDjoPDyvSXEfEyYBrwRuBzRTZW5qD5Ga0OnIh4FvgeMKeqXQNwPrCo73pX00np+3MG8D7gv/dkZ70VuDbwHTS/lHbwioitwB3A6ySNlPQTSa2SnkjLY9vaSvq5pK9I+iWwEzhO0gclrZf0jKTNki7OtX+bpBZJfyfpUUnbJM2UdLak30n6o6TP5NofJmmBpN9LelzSYklHpuoV6euT6S/xN6VtLkrv/4SkOyUdm9tfSPqIpPuB+2sMfxFwrqShubJ3kv3u3dHV2Kql9zo+t/5Pkr6cWz9H0up0lPOfkk7s/LuyX0RsAP4f2fdnoqR/S/82j0m6RdKI3Hs8IOnMtHyppCWSbpb0NPCBVHZzqm87grtQ0kNpf5/N7WuIpEXp33V9+h625Or/Ph0NPSNpo6Qz6hmPlc/BYaWTNA44G7iX7GfuJuBY4FXALuDbVZv8NTAXGA48CDwKnAMcAXwQuErStFz7VwKHA2OAzwPXAxcAbwD+DPi8pONS248BM4G3AscATwBXp7rT09cREfGyiPiVpJnAZ4C/AhrJ/oO9taq/M4FTgCnVY4+I/wS2pe3z4/tuROytY2x1SdssBC4GXgH8I7BM0kvr2HYK2b/TvYCAr5L927wGGAdc2sXmTcASYARwSydtTgNOIDuy+byk16TyLwDjgeOAd5B9z9r6dAIwH3hjRAwnC9sHDjQW6yMR4Zdfvf4i+yXfATxJ9p///wGG1Gg3FXgit/5z4EsH2PePgI+n5beRhU9DWh8OBHBKrv0qYGZaXg+ckasbDewBBpH9JxbAoFz9HcCHcuuHkR0JHZvWA3j7Afr7OeCutHxE2v7kOsfWkqsL4Pjc+j8BX07L1wCXVe1rI/DWTt4ngKfJgvP3wJeBw2q0mwncW/V9PTMtXwqsqGp/KXBzWm779xybq/8NMDstbwbemav7cNt4gePJQvVM4CX9/fPsV/uX5yStTDMj4l/zBWnK5irgLGBkKh4uqSEink/rW6q2mUH21+mryf7jHgr8Ntfk8dy2u9LX7bn6XUDbifljgaWS9uXqnweO7mQMxwLfknRlvktkRzcP1upvDd8BviBpDNlfzpsi4t46x1avY4ELJX00VzaY7MihM9MiYlO+QNJRwD+QHYEMT316oot9HGjsAI/klney/3txTNX2LyxHxCZJl5AF0Wsl3Ql8MiIeruP9rGSeqrK+9imyaYtTIuII9k8PKdfmhVs2p6mWHwBXAEdHxAjgX6raF7EFmBERI3KvwyM7D1PrVtFbgIur2g+JbAqqQ39riYiHyKa43k82TfWdbo5tJ1mwtHllVT+/UtXPoRFRPa12IF9N4zkxfX8u6KI/cICxH8A2YGxufVy7HUd8NyJOIwvFAL7Wg/eyXuTgsL42nOwI4Ml0UvoLB2g/GHgp0ArsTX+h/0UP3v9a4CttJ7glNUpqSnWtwD6yOfd8+09Lem1q/3JJ7+3G+y4im7N/C/vPBRQd22rgfZIaJJ1Fdp6mzfXAPEmnKDNM0rskDS/Yz+GkKcZ0hPQ/C25fxGKyf9uR6b3mt1VIOkHS21O4Pkv2M/N8J/uxPubgsL72TWAI8Bjwa+CnXTWOiGfITmgvJpsyeR+wrAfv/620/V2Snkl9OCW9107gK8Av05VJp0bEUrK/dG9LVw6tBWZ0432XkE3NLY+Ibd0c28eBvyQ7b/R+svMhpH01k11O++20r03AB7rRzy+SXT79FHA78MNu7KNeXwJagD8A/0r2b/RcqnspcDnZz8kjwFFkFynYAKAIP8jJzPqfpL8hO3H+1gM2tn7lIw4z6xeSRkt6S/pszQlk57+W9ne/7MB8VZWZ9ZfBZJ83mUA2/XYb2WXbNsB5qsrMzArxVJWZmRXyopiqGjVqVIwfP76/u2FmdlBZtWrVYxHRWF3+ogiO8ePH09zc3N/dMDM7qEh6sFa5p6rMzKwQB4eZmRXi4DAzs0JKDQ5JZ6UHsGyStKBGfZOkNenhM82STsvVfVzSWmXPOL4kV36kpJ9Juj99HVm9XzMzK09pwaHs8ZhXk93XZwpwfnpgTN5yssdXTgUuAm5I276O7L4704GTgHMkTUrbLCC738+ktH2HQDIzs/KUecQxney5A5sjYjfZp0Kb8g0iYkfs/wTiMPbfovk1wK8jYmdkT0n7BTAr1TWx/1nNi8geNGNmZn2kzOAYQ/uHtLSksnYkzZK0gexOnBel4rXA6ZJekR78czb779V/dO7uotvI7prZgaS5afqrubW1tVcGZGZm5QZHrYe/dLi/SUQsjYjJZEcOl6Wy9WS3sv4Z2W23/wvYW+TNI+K6iKhERKWxscPnV8zMrJvKDI4W2j/RayzQ6WMfI2IFMFHSqLR+Y0RMi4jTgT8C96em2yWNhuzummTPJTYzsz5SZnCsBCZJmiBpMDCbqofUSDpektLyNLK7ZT6e1o9KX18F/BXQ9gjMZcCFaflC4McljsHMzKqUdsuRiNgraT5wJ9AALIyIdZLmpfprgXOBOZL2kD0a8rzcyfIfSHoFsAf4SEQ8kcovBxZL+hDwENCdx3iamVk3vShuq16pVML3qjIzK0bSqoioVJf7k+NmZlaIg8PMzApxcJiZWSEODjMzK8TBYWZmhTg4zMysEAeHmZkV4uAwM7NCHBxmZlaIg8PMzApxcJiZWSEODjMzK8TBYWZmhTg4zMysEAeHmZkV4uAwM7NCHBxmZlZIqcEh6SxJGyVtkrSgRn2TpDWSVktqlnRaru4TktZJWivpVkmHp/JLJW1N26yWdHaZYzAzs/ZKCw5JDcDVwAxgCnC+pClVzZYDJ0XEVOAi4Ia07RjgY0AlIl5H9szy2bntroqIqen1L2WNwczMOirziGM6sCkiNkfEbuA2oCnfICJ2xP6Hng8D8g9AHwQMkTQIGAo8XGJfzcysTmUGxxhgS269JZW1I2mWpA3A7WRHHUTEVuAK4CFgG/BURNyV22x+muJaKGlkrTeXNDdNfzW3trb2zojMzKzU4FCNsuhQELE0IiYDM4HLAFIYNAETgGOAYZIuSJtcA0wEppKFypW13jwirouISkRUGhsbezYSMzN7QZnB0QKMy62PpYvppohYAUyUNAo4E/hDRLRGxB7gh8CbU7vtEfF8ROwDriebEjMzsz5SZnCsBCZJmiBpMNnJ7WX5BpKOl6S0PA0YDDxONkV1qqShqf4MYH1qNzq3i1nA2hLHYGZmVQaVteOI2CtpPnAn2VVRCyNinaR5qf5a4FxgjqQ9wC7gvHSy/G5JS4B7gL3AvcB1addflzSVbNrrAeDissZgZmYdaf9FTYeuSqUSzc3N/d0NM7ODiqRVEVGpLvcnx83MrBAHh5mZFeLgMDOzQhwcZmZWiIPDzMwKcXCYmVkhDg4zMyvEwWFmZoU4OMzMrBAHh5mZFeLgMDOzQhwcZmZWiIPDzMwKcXCYmVkhDg4zMyvEwWFmZoU4OMzMrBAHh5mZFVJqcEg6S9JGSZskLahR3yRpjaTVkpolnZar+4SkdZLWSrpV0uGp/EhJP5N0f/o6sswxmJlZe6UFh6QG4GpgBjAFOF/SlKpmy4GTImIqcBFwQ9p2DPAxoBIRrwMagNlpmwXA8oiYlLbvEEhmZlaeMo84pgObImJzROwGbgOa8g0iYkdERFodBkSuehAwRNIgYCjwcCpvAhal5UXAzHK6b2ZmtZQZHGOALbn1llTWjqRZkjYAt5MddRARW4ErgIeAbcBTEXFX2uToiNiW2m0Djqr15pLmpumv5tbW1l4akpmZlRkcqlEWHQoilkbEZLIjh8sA0nmLJmACcAwwTNIFRd48Iq6LiEpEVBobG4v23czMOlFmcLQA43LrY9k/3dRBRKwAJkoaBZwJ/CEiWiNiD/BD4M2p6XZJowHS10fL6LyZmdVWZnCsBCZJmiBpMNnJ7WX5BpKOl6S0PA0YDDxONkV1qqShqf4MYH3abBlwYVq+EPhxiWMwM7Mqg8racUTslTQfuJPsqqiFEbFO0rxUfy1wLjBH0h5gF3BeOll+t6QlwD3AXuBe4Lq068uBxZI+RBYw7y1rDGZm1pH2X9R06KpUKtHc3Nzf3TAzO6hIWhURlepyf3LczMwKcXCYmVkhDg4zMyvEwWFmZoU4OMzMrBAHh5mZFeLgMDOzQhwcZmZWiIPDzMwKcXCYmVkhDg4zMyvEwWFmZoU4OMzMrBAHh5mZFeLgMDOzQhwcZmZWiIPDzMwKcXCYmVkhpQaHpLMkbZS0SdKCGvVNktZIWi2pWdJpqfyEVNb2elrSJanuUklbc3VnlzkGMzNrb1BZO5bUAFwNvANoAVZKWhYR9+WaLQeWRURIOhFYDEyOiI3A1Nx+tgJLc9tdFRFXlNV3MzPrXJlHHNOBTRGxOSJ2A7cBTfkGEbEjIiKtDgOCjs4Afh8RD5bYVzMzq1OZwTEG2JJbb0ll7UiaJWkDcDtwUY39zAZurSqbn6a4FkoaWevNJc1N01/Nra2t3RuBmZl1UGZwqEZZhyOKiFgaEZOBmcBl7XYgDQbeDXw/V3wNMJFsKmsbcGWtN4+I6yKiEhGVxsbG7vTfzMxqKDM4WoBxufWxwMOdNY6IFcBESaNyxTOAeyJie67d9oh4PiL2AdeTTYmZmVkfKTM4VgKTJE1IRw6zgWX5BpKOl6S0PA0YDDyea3I+VdNUkkbnVmcBa0vou5mZdaK0q6oiYq+k+cCdQAOwMCLWSZqX6q8FzgXmSNoD7ALOaztZLmko2RVZF1ft+uuSppJNez1Qo97MzEqk/Rc1HboqlUo0Nzf3dzfMzA4qklZFRKW63J8cNzOzQhwcZmZWiIPDzMwKcXCYmVkhDg4zMyukrstxJb0LeC1weFtZRHyprE6ZmdnAdcAjDknXAucBHyW7jch7gWNL7peZmQ1Q9UxVvTki5gBPRMQXgTfR/lYiZmb2IlJPcOxKX3dKOgbYA0wor0tmZjaQ1XOO4yeSRgD/G7iH7FYfN5TZKTMzG7jqCY6vR8RzwA8k/YTsBPmz5XbLzMwGqnqmqn7VthARz0XEU/kyMzN7cen0iEPSK8me2DdE0snsfzDTEcDQPuibmZkNQF1NVb0T+ADZA5i+kSt/GvhMiX0aECKCNdvX8OSzT3LK2FM4fNDhB97IzGygeOQRWLcOJk+GMR2e2t0jnQZHRCwCFkk6NyJ+0KvvehDY+PhGrvzVlezdt5cHn3qQOSfN6e8umZnV5/nn4Wtfg8ceg5e/HK64Ag7vvT9+6znH8UtJN0q6A0DSFEkf6rUeDFDP7n2WfbGPQYcNYueenf3dHTOz+u3bBzt3wpAh8OyzWZD0onquqropvT6b1n8HfA+4sVd7MsC8/qjX8/7Xv5/Hdj7GOa8+p7+7Y2ZWv5e8BD71KVixAk49FYYN69Xd1xMcoyJisaRPwwuPhK0rviSdBXyL7NGxN0TE5VX1TcBlwD5gL3BJRPyHpBPIwqnNccDnI+Kbko5MdePJHh373yLiiXr6U0TDYQ3MmDSjt3drZtY3Xv3q7FWCeqaq/iTpFWQf/EPSqcBTB9pIUgNwNTADmAKcL2lKVbPlwEkRMRW4iPTBwojYGBFTU/kbgJ3A0rTNAmB5RExK2y+oYwxmZtZL6gmOTwLLgImSfgl8h+yGhwcyHdgUEZsjYjdwG9CUbxARO2L/Q8+HkcKpyhnA7yPiwbTeBCxKy4uAmXX0xczMeskBp6oi4h5JbwVOIPssx8aI2FPHvscAW3LrLcAp1Y0kzQK+ChwFvKvGfmYDt+bWj46Ibalv2yQdVevNJc0F5gK86lWvqqO7ZmZWj3of5DQdOAmYRjblVM+1qapR1uGIIiKWRsRksiOHy9rtQBoMvBv4fp39zO/3uoioRESlsbGx6OZmZtaJAx5xSPpnYCKwGmg7KR5kU1ZdaaH97dfHAg931jgiVkiaKGlURDyWimcA90TE9lzT7ZJGp6ON0cCjBxqDmZn1nnquqqoAU3LnIuq1EpgkaQKwlWzK6X35BpKOJzt/EZKmAYOBx3NNzqf9NBVk51suBC5PX39csF9mZtYD9QTHWuCVwLYiO06X7c4H7iS7HHdhRKyTNC/VXwucC8yRtIfsuR/ntQWUpKHAO4CLq3Z9ObA4fQjxIbInEpqZWR9RZwcSkv4v2ZTUcGAq8Bvgubb6iHh3H/SvV1QqlWhubu7vbpiZHVQkrYqISnV5V0ccV5Cd4P4a7S95bSszM7MXoa5ucvgLAEkvaVtuI2lI2R0zM7OBqavncfwN8D+A4yStyVUNB35ZdsfMzGxg6mqq6rvAHWQfzsvf1uOZiPhjqb0yM7MBq6upqqfI7kl1ft91x8zMBrp6PzluZmYGODjMzKwgB4eZmRXi4DAzs0IcHGZmVoiDw8zMCnFwmJlZIQ4OMzMrxMFhZmaFODjMzKwQB4eZmRXi4DAzs0IcHGZmVkipwSHpLEkbJW2StKBGfZOkNZJWS2qWdFquboSkJZI2SFov6U2p/FJJW9M2qyWdXeYYzMysva6ex9EjkhqAq4F3AC3ASknLIuK+XLPlwLKICEknAouByanuW8BPI+I9kgYDQ3PbXRURV5TVdzMz61yZRxzTgU0RsTkidgO3AU35BhGxIyIirQ4DAkDSEcDpwI2p3e6IeLLEvpqZWZ3KDI4xwJbceksqa0fSLEkbgNuBi1LxcUArcJOkeyXdIGlYbrP5aYproaSRtd5c0tw0/dXc2traKwMyM7Nyg0M1yqJDQcTSiJgMzAQuS8WDgGnANRFxMvAn9j++9hpgIjAV2AZcWevNI+K6iKhERKWxsbEHwzAzs7wyg6MFGJdbHws83FnjiFgBTJQ0Km3bEhF3p+olZEFCRGyPiOcjYh9wPdmUmJmZ9ZEyg2MlMEnShHRyezawLN9A0vGSlJanAYOBxyPiEWCLpBNS0zOA+1K70bldzALWljgGMzOrUtpVVRGxV9J84E6gAVgYEeskzUv11wLnAnMk7QF2AeflTpZ/FLglhc5m4IOp/OuSppJNez0AXFzWGMzMrCPt/3/60FWpVKK5ubm/u2FmdlCRtCoiKtXl/uS4mZkV4uAwM7NCHBxmZlaIg8PMzApxcJiZWSEODjMzK8TBYWZmhTg4zMysEAeHmZkV4uAwM7NCHBxmZlaIg8PMzApxcJiZWSEODjMzK8TBYWZmhTg4zMysEAeHmZkV4uAwM7NCSg0OSWdJ2ihpk6QFNeqbJK2RtFpSs6TTcnUjJC2RtEHSeklvSuVHSvqZpPvT15FljsHMzNorLTgkNQBXAzOAKcD5kqZUNVsOnBQRU4GLgBtydd8CfhoRk4GTgPWpfAGwPCImpe07BJKZmZWnzCOO6cCmiNgcEbuB24CmfIOI2BERkVaHAQEg6QjgdODG1G53RDyZ2jUBi9LyImBmiWMwM7MqZQbHGGBLbr0llbUjaZakDcDtZEcdAMcBrcBNku6VdIOkYanu6IjYBpC+HlXrzSXNTdNfza2trb0zIjMzKzU4VKMsOhRELE3TUTOBy1LxIGAacE1EnAz8iYJTUhFxXURUIqLS2NhYqONmZta5MoOjBRiXWx8LPNxZ44hYAUyUNCpt2xIRd6fqJWRBArBd0miA9PXR3u64mZl1rszgWAlMkjRB0mBgNrAs30DS8ZKUlqcBg4HHI+IRYIukE1LTM4D70vIy4MK0fCHw4xLHYGZmVQaVteOI2CtpPnAn0AAsjIh1kual+muBc4E5kvYAu4DzcifLPwrckkJnM/DBVH45sFjSh4CHgPeWNQYzM+tI+/+fPnRVKpVobm7u726YmR1UJK2KiEp1uT85bmZmhTg4zMysEAeHmZkV4uAwM7NCHBxmZlaIg8PMzApxcJiZWSEODjMzK8TBYWZmhTg4zMysEAeHmZkV4uAwM7NCHBxmZlaIg8PMzApxcJiZWSEODjMzK8TBYWZmhZQaHJLOkrRR0iZJC2rUN0laI2m1pGZJp+XqHpD027a6XPmlkram8tWSzi5zDGZm1l5pzxyX1ABcDbwDaAFWSloWEfflmi0HlkVESDoRWAxMztX/eUQ8VmP3V0XEFWX13czMOlfmEcd0YFNEbI6I3cBtQFO+QUTsiP0PPR8GHPoPQDczO8iVGRxjgC259ZZU1o6kWZI2ALcDF+WqArhL0ipJc6s2m5+muBZKGlnrzSXNTdNfza2trT0biZmZvaDM4FCNsg5HFBGxNCImAzOBy3JVb4mIacAM4COSTk/l1wATganANuDKWm8eEddFRCUiKo2Njd0ehJmZtVdmcLQA43LrY4GHO2scESuAiZJGpfWH09dHgaVkU19ExPaIeD4i9gHXt5WbmVnfKDM4VgKTJE2QNBiYDSzLN5B0vCSl5WnAYOBxScMkDU/lw4C/ANam9dG5XcxqKzczs75R2lVVEbFX0nzgTqABWBgR6yTNS/XXAucCcyTtAXYB56UrrI4GlqZMGQR8NyJ+mnb9dUlTyaa9HgAuLmsMZmbWkfZf1HToqlQq0dzcfOCGZmb2AkmrIqJSXe5PjpuZWSEODjMzK8TBYWZmhTg4zMysEAeHmZkV4uAwM7NCHBxmZlaIg8PMzApxcJiZWSEODjMzK8TBYWZmhTg4zMysEAeHmZkV4uAwM7NCHBxmZlaIg8PMzApxcJiZWSEODjMzK+RF8ehYSa3Ag/3djy6MAh7r7070kkNlLB7HwHOojOVgGsexEdFYXfiiCI6BTlJzref6HowOlbF4HAPPoTKWQ2EcnqoyM7NCHBxmZlaIg2NguK6/O9CLDpWxeBwDz6EyloN+HD7HYWZmhfiIw8zMCnFwmJlZIQ6Okkk6S9JGSZskLahRL0n/kOrXSJqWqxshaYmkDZLWS3pT3/a+XT97Mo5PSFonaa2kWyUd3re9b9fPA41jsqRfSXpO0t8W2bavdXcsksZJ+vf0M7VO0sf7tucd+tnt70mqb5B0r6Sf9E2Pa+vhz9aA+V2vS0T4VdILaAB+DxwHDAb+C5hS1eZs4A5AwKnA3bm6RcCH0/JgYMTBNg5gDPAHYEhaXwx8YACP4yjgjcBXgL8tsu1BNJbRwLS0PBz4XX+NpSfjyNV/Evgu8JOD8fuR6gbE73q9Lx9xlGs6sCkiNkfEbuA2oKmqTRPwncj8GhghabSkI4DTgRsBImJ3RDzZh33P6/Y4Ut0gYIikQcBQ4OG+6niVA44jIh6NiJXAnqLb9rFujyUitkXEPWn5GWA9WcD3h558T5A0FngXcENfdLYL3R7HAPtdr4uDo1xjgC259RY6/oJ21uY4oBW4KR2G3yBpWJmd7UK3xxERW4ErgIeAbcBTEXFXiX3tSj3jKGPbMvRKfySNB04G7u6dbhXW03F8E/g7YF8v9qk7ejKOgfS7XhcHR7lUo6z6+ufO2gwCpgHXRMTJwJ+A/ppX7/Y4JI0k+8trAnAMMEzSBb3cv3rVM44yti1Dj/sj6WXAD4BLIuLpXulVcd0eh6RzgEcjYlXvdqlbevL9GEi/63VxcJSrBRiXWx9Lx2maztq0AC0R0faX4BKyH67+0JNxnAn8ISJaI2IP8EPgzSX2tSv1jKOMbcvQo/5IeglZaNwSET/s5b4V0ZNxvAV4t6QHyKaG3i7p5t7tXt16+rM1UH7X6+LgKNdKYJKkCZIGA7OBZVVtlgFz0lVJp5JN5WyLiEeALZJOSO3OAO7rs5631+1xkE1RnSppqCSRjWN9X3Y+p55xlLFtGbrdn/R9uBFYHxHfKLGP9ej2OCLi0xExNiLGp+3+LSL662i2J+MYSL/r9envs/OH+ovsaqPfkV1x8dlUNg+Yl5YFXJ3qfwtUcttOBZqBNcCPgJEH6Ti+CGwA1gL/DLx0AI/jlWR/AT4NPJmWj+hs2wH+s1VzLMBpZNMoa4DV6XX2wTaOqn28jX68qqoXfrYGzO96PS/fcsTMzArxVJWZmRXi4DAzs0IcHGZmVoiDw8zMCnFwmJlZIQ4Os34k6d1td1KVdGmtu7+aDTSD+rsDZi9mEbGM/v0goVlhPuIw6wFJF0j6jaTVkv4xPRtih6QrJd0jabmkxtT2Y5LuU/a8kttS2QckfbvGfqdK+nVquzTd8wtJP5f0tfSev5P0Z307YjMHh1m3SXoNcB7wloiYCjwPvB8YBtwTEdOAXwBfSJssAE6OiBPJPlHcle8Af5/a/ja3D4BBETEduKSq3KxPeKrKrPvOAN4ArMxu/8QQ4FGyW3x/L7W5mezGjpDdTuIWST8iu61ETZJeTvYgn1+kokXA93NN2va3ChjfwzGYFeYjDrPuE7AoIqam1wkRcWmNdm339XkX2f283gCsSg+26o7n0tfn8R9/1g8cHGbdtxx4j6SjACQdKelYst+r96Q27wP+Q9JhwLiI+HeyBw+NAF5Wa6cR8RTwRO78xV+TTXmZDQj+a8WsmyLiPkmfA+5KwbAH+AjZg3heK2kV8BTZeZAG4OY0DSXgqoh4Mk1x1XIhcK2kocBm4IPljsasfr47rlkvk7QjImoeTZgdCjxVZWZmhfiIw8zMCvERh5mZFeLgMDOzQhwcZmZWiIPDzMwKcXCYmVkh/x+aZBnPzcdOKAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epsilon zeta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbhElEQVR4nO3dfbRddX3n8feHBAQEBIcgmGQIKopoEegVaG2rA3YK1gprpl2DD4j2AelIIS20pejyoaNT7SC2HZlSWmhxpKVU0DIOFinFOraIuUEEY0RTqhIJJhQRLPIQ8p0/9k45HG6S87u5J/cmvl9rnXX3/j3s/fvdc8/9nL33eUhVIUnSqHaa7QFIkrYvBockqYnBIUlqYnBIkpoYHJKkJgaHJKmJwSHNUUlekWT1bI9jUJIVSV6xmfrzkvzJthuRZoPBobFI8vUk30/yvSTfTvKnSfaY7XFtTpIlSSrJ/Bna3q5J7k9y7BR1H0zy0ZnYz3T08/zX/v75VpILkszbUr+qelFVfXoz9f+9qn5xRgerOcfg0Dj9TFXtARwJvBR4e0vndLabv9HhwKmqh4G/BN441G4e8Frgsm03uim9pL9/jgNeB/zS1mxspgJXc99286DU9quqvgV8Enhxkn2SfCLJuiTf6ZcXbWyb5NNJ3pvkH4CHgOckeXOSlUkeTHJnkrcMtH9FktVJfiPJ2iRrkpyU5FVJvprkviTnDbTfKcm5Sf4pyb8kuTLJM/vqz/Q/7++fif9I3+fn+/1/J8l1SQ4c2F4leWuSrwFfm2L6lwH/OcnuA2U/RffY++Tm5jas39fzBtb/LMl7BtZfneTW/ijnH5Mctul75QlV9RXg/9HdP89N8nf97+beJJcn2XtgH19P8sp++V1JPprkI0keAN7Ul32kr994BHdqkm/223vbwLZ2S3JZ/3td2d+Hqwfqf7M/GnowyR1JjhtlPho/g0Njl2Qx8CrgC3R/c38KHAj8e+D7wIeGupwCnAbsCXwDWAu8GtgLeDPwwSRHDrTfH9gVWAi8A/hj4A3ADwM/DrwjyXP6tmcCJwEvB54NfAe4sK/7if7n3lW1R1XdlOQk4DzgPwEL6P7B/sXQeE8CjgYOHZ57Vf0jsKbvPzi/P6+q9SPMbSR9n0uBtwD/Dvgj4JokTxuh76F0v6cvAAF+h+5380JgMfCuzXQ/EfgosDdw+Sba/BjwArojm3ckeWFf/k5gCfAc4Cfp7rONY3oBcAbw0qraky5sv76luWgbqSpv3mb8Rvcg/x5wP90///8F7DZFu8OB7wysfxr47S1s++PAWf3yK+jCZ16/vidQwNED7ZcDJ/XLK4HjBuoOAB4D5tP9Eytg/kD9J4FfGFjfie5I6MB+vYBjtzDetwOf6pf36vsfMeLcVg/UFfC8gfU/A97TL/8h8N+GtnUH8PJN7KeAB+iC85+A9wA7TdHuJOALQ/frK/vldwGfGWr/LuAj/fLG3+eigfrPAyf3y3cCPzVQ94sb5ws8jy5UXwnsPNt/z96efPOcpMbppKr628GC/pTNB4HjgX364j2TzKuqx/v1u4b6nED37PT5dP+4dwduH2jyLwN9v9///PZA/feBjRfmDwQ+lmTDQP3jwLM2MYcDgd9P8oHBIdEd3XxjqvFO4cPAO5MspHvmvKqqvjDi3EZ1IHBqkl8ZKNuF7shhU46sqlWDBUn2A/6A7ghkz35M39nMNrY0d4B7BpYf4on74tlD/f9tuapWJVlKF0QvSnId8GtVdfcI+9OYeapK29rZdKctjq6qvXji9FAG2vzbRzb3p1quAs4HnlVVewPXDrVvcRdwQlXtPXDbtbrrMFN9VPRdwFuG2u9W3Smop4x3KlX1TbpTXK+nO0314WnO7SG6YNlo/6FxvndonLtX1fBptS35nX4+h/X3zxs2Mx7Ywty3YA2waGB98ZM2XPXnVfVjdKFYwPu3Yl+aQQaHtrU96Y4A7u8vSr9zC+13AZ4GrAPW98/Q/+NW7P8i4L0bL3AnWZDkxL5uHbCB7pz7YPvfSvKivv0zkvzcNPZ7Gd05+5fxxLWA1rndCrwuybwkx9Ndp9noj4HTkxydztOT/HSSPRvHuSf9Kcb+COnXG/u3uJLud7tPv68zNlYkeUGSY/twfZjub+bxTWxH25jBoW3t94DdgHuBzwF/s7nGVfUg3QXtK+lOmbwOuGYr9v/7ff9PJXmwH8PR/b4eAt4L/EP/yqRjqupjdM90r+hfOfQl4IRp7PejdKfmbqiqNdOc21nAz9BdN3o93fUQ+m1N0r2c9kP9tlYBb5rGON9N9/Lp7wL/F7h6GtsY1W8Dq4F/Bv6W7nf0SF/3NOB9dH8n9wD70b1IQXNAqvwiJ0mzL8kv0104f/kWG2tWecQhaVYkOSDJy/r31ryA7vrXx2Z7XNoyX1UlabbsQvd+k4PoTr9dQfeybc1xnqqSJDXxVJUkqckPxKmqfffdt5YsWTLbw5Ck7cry5cvvraoFw+U/EMGxZMkSJicnZ3sYkrRdSfKNqco9VSVJamJwSJKaGBySpCYGhySpicEhSWpicEiSmhgckqQmBockqYnBIUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSJKaGBySpCYGhySpicEhSWpicEiSmhgckqQmBockqYnBIUlqYnBIkpoYHJKkJgaHJKmJwSFJajLW4EhyfJI7kqxKcu4U9YckuSnJI0nOGSjfNcnnk3wxyYok7x6oe2aS65N8rf+5zzjnIEl6srEFR5J5wIXACcChwGuTHDrU7D7gTOD8ofJHgGOr6iXA4cDxSY7p684Fbqiqg4Eb+nVJ0jYyziOOo4BVVXVnVT0KXAGcONigqtZW1TLgsaHyqqrv9as797fq108ELuuXLwNOGs/wJUlTGWdwLATuGlhf3ZeNJMm8JLcCa4Hrq+rmvupZVbUGoP+53yb6n5ZkMsnkunXrpjN+SdIUxhkcmaKspiibUlU9XlWHA4uAo5K8uGXnVXVxVU1U1cSCBQtaukqSNmOcwbEaWDywvgi4u3UjVXU/8Gng+L7o20kOAOh/rt2qUUqSmowzOJYBByc5KMkuwMnANaN0TLIgyd798m7AK4Gv9NXXAKf2y6cCfz2Tg5Ykbd78cW24qtYnOQO4DpgHXFpVK5Kc3tdflGR/YBLYC9iQZCndK7AOAC7rX5m1E3BlVX2i3/T7gCuT/ALwTeDnxjUHSdJTpWrkyw7brYmJiZqcnJztYUjSdiXJ8qqaGC73neOSpCYGhySpicEhSWpicEiSmhgckqQmBockqYnBIUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSJKaGBySpCYGhySpicEhSWpicEiSmhgckqQmBockqYnBIUlqYnBIkpoYHJKkJgaHJKnJWIMjyfFJ7kiyKsm5U9QfkuSmJI8kOWegfHGSG5OsTLIiyVkDdYcn+VySW5NMJjlqnHOQJD3Z2IIjyTzgQuAE4FDgtUkOHWp2H3AmcP5Q+Xrg7Kp6IXAM8NaBvr8LvLuqDgfe0a9LkraRcR5xHAWsqqo7q+pR4ArgxMEGVbW2qpYBjw2Vr6mqW/rlB4GVwMKN1cBe/fIzgLvHNwVJ0rD5Y9z2QuCugfXVwNGtG0myBDgCuLkvWgpcl+R8uuD70a0apSSpyTiPODJFWTVtINkDuApYWlUP9MW/DPxqVS0GfhW4ZBN9T+uvgUyuW7euZbeSpM0YZ3CsBhYPrC+i4bRSkp3pQuPyqrp6oOpUYOP6X9GdEnuKqrq4qiaqamLBggVNA5ckbdo4g2MZcHCSg5LsApwMXDNKxyShO5JYWVUXDFXfDby8Xz4W+NoMjVeSNIKxXeOoqvVJzgCuA+YBl1bViiSn9/UXJdkfmKS72L0hyVK6V2AdBpwC3J7k1n6T51XVtcAvAb+fZD7wMHDauOYgSXqqVDVddtguTUxM1OTk5GwPQ5K2K0mWV9XEcLnvHJckNTE4JElNDA5JUhODQ5LUxOCQJDUxOCRJTQwOSVITg0OS1MTgkCQ1MTgkSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDUxOCRJTQwOSVITg0OS1MTgkCQ1MTgkSU0MDklSk7EGR5Ljk9yRZFWSc6eoPyTJTUkeSXLOQPniJDcmWZlkRZKzhvr9Sr/dFUl+d5xzkCQ92fxxbTjJPOBC4CeB1cCyJNdU1ZcHmt0HnAmcNNR9PXB2Vd2SZE9geZLrq+rLSf4DcCJwWFU9kmS/cc1BkvRU4zziOApYVVV3VtWjwBV0//D/TVWtraplwGND5Wuq6pZ++UFgJbCwr/5l4H1V9cjGbYxxDpKkIeMMjoXAXQPrq3nin//IkiwBjgBu7oueD/x4kpuT/H2Sl26i32lJJpNMrlu3rnW3kqRNGGdwZIqyatpAsgdwFbC0qh7oi+cD+wDHAL8OXJnkKfuqqouraqKqJhYsWNA2cknSJo0zOFYDiwfWFwF3j9o5yc50oXF5VV09tN2rq/N5YAOw7wyMV5I0gnEGxzLg4CQHJdkFOBm4ZpSO/RHEJcDKqrpgqPrjwLF9u+cDuwD3ztSgJUmbN7ZXVVXV+iRnANcB84BLq2pFktP7+ouS7A9MAnsBG5IsBQ4FDgNOAW5Pcmu/yfOq6lrgUuDSJF8CHgVOraqmU2CSpOnLD8L/3ImJiZqcnJztYUjSdiXJ8qqaGC73neOSpCYGhySpicEhSWoy8sXxJC+mu3C968ayqvrwOAYlSZq7RgqOJO8EXkEXHNcCJwCfBQwOSfoBM+qpqp8FjgPuqao3Ay8Bnja2UUmS5qxRg+P7VbUBWJ9kL2At8JzxDUuSNFeNeo1jMsnewB8Dy4HvAZ8f16AkSXPXSMFRVf+1X7woyd8Ae1XVbeMb1uyrKm779m3c//D9HL3oaHadv+uWO0nSXHHPPbBiBRxyCCxs/mDyzRr14vgNVXUcQFV9fbhsR3THv9zBB276AOs3rOcb3/0Gb3zJG2d7SJI0mscfh/e/H+69F57xDDj/fNh15p78bjY4kuwK7A7sm2Qfnvio9L2AZ8/YKOagh9c/zIbawPyd5vPQYw/N9nAkaXQbNsBDD8Fuu8HDD3dBMoO2dMTxFmApXUjcMlD+AN3Xwu6wfmi/H+L1P/R67n3oXl79/FfP9nAkaXQ77wxnnw2f+Qwccww8/ekzuvmRPuQwya9U1f+c0T1vQ37IoSS129oPObw0yduTXNxv7OAkPg2XpB9AIwcH3Xdf/Gi/vhp4z1hGJEma00YNjudW1e8CjwFU1feZ+jvFJUk7uFGD49EkuwEFkOS5wCNjG5Ukac4a9Z3j7wT+Blic5HLgZcCbxjUoSdLcNWpwnAtcDNxPd4pqKfBe4NPjGJQkae4a9VTVQcBpwERVfaKq1gFPeYmWJGnHN2pw3E/3serPSvJ/kjxjfEOSJM1lowZHqmp9/2GHV9F9idN+4xuWJGmuGvUax0UbF6rqz5LcDrx1PEOSJM1lIx1xVNUfDa0vr6qf31K/JMcnuSPJqiTnTlF/SJKbkjyS5JyB8sVJbkyyMsmKJGdN0fecJJVk31HmIEmaGaMecTRLMo/ugxB/ku6d5suSXFNVXx5odh9wJnDSUPf1wNlVdUuSPYHlSa7f2DfJ4n673xzX+CVJUxv1Gsd0HAWsqqo7q+pR4ArgxMEGVbW2qpbRvyN9oHxNVd3SLz8IrAQGv4nkg8Bv0L8hUZK07YwzOBYCdw2sr+bJ//xHkmQJcARwc7/+GuBbVfXFLfQ7Lclkksl169a17laStAnjDI6pPsuq6QghyR50r+JaWlUPJNkdeBvwji31raqLq2qiqiYWLFjQsltJ0maMMzhWA4sH1hcBd4/aOcnOdKFxeVVd3Rc/l+7NiF9M8vV+m7ck2X9GRixJ2qKxXRwHlgEHJzkI+BZwMvC6UTomCXAJsLKqLthYXlW3M/D+kT48Jqrq3hkctyRpM8YWHFW1PskZwHXAPODSqlqR5PS+/qL+SGGS7jvMNyRZChwKHAacAtye5NZ+k+dV1bXjGq8kaTTjPOKg/0d/7VDZ4JsJ76E73TTss4zwfR9VtWQrhyhJajTOaxySpB2QwSFJamJwSJKaGBySpCYGhySpicEhSWpicEiSmhgckqQmBockqYnBIUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSJKaGBySpCYGhySpicEhSWpicEiSmhgckqQmBockqYnBIUlqMtbgSHJ8kjuSrEpy7hT1hyS5KckjSc4ZKF+c5MYkK5OsSHLWQN3/SPKVJLcl+ViSvcc5B0nSk40tOJLMAy4ETgAOBV6b5NChZvcBZwLnD5WvB86uqhcCxwBvHeh7PfDiqjoM+CrwW2OagiRpCuM84jgKWFVVd1bVo8AVwImDDapqbVUtAx4bKl9TVbf0yw8CK4GF/fqnqmp93/RzwKIxzkGSNGScwbEQuGtgfXVf1iTJEuAI4OYpqn8e+OR0BidJmp5xBkemKKumDSR7AFcBS6vqgaG6t9Gd0rp8E31PSzKZZHLdunUtu5UkbcY4g2M1sHhgfRFw96idk+xMFxqXV9XVQ3WnAq8GXl9VU4ZRVV1cVRNVNbFgwYLmwUuSpjbO4FgGHJzkoCS7ACcD14zSMUmAS4CVVXXBUN3xwG8Cr6mqh2Z4zJKkLZg/rg1X1fokZwDXAfOAS6tqRZLT+/qLkuwPTAJ7ARuSLKV7BdZhwCnA7Ulu7Td5XlVdC3wIeBpwfZcvfK6qTh/XPCRJTza24ADo/9FfO1R20cDyPUz9qqjPMvU1EqrqeTM5RklSG985LklqYnBIkpoYHJKkJgaHJKmJwSFJamJwSJKaGBySpCYGhySpicEhSWpicEiSmhgckqQmBockqYnBIUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSJKaGBySpCYGhySpicEhSWpicEiSmhgckqQmYw2OJMcnuSPJqiTnTlF/SJKbkjyS5JyB8sVJbkyyMsmKJGcN1D0zyfVJvtb/3Gecc5AkPdnYgiPJPOBC4ATgUOC1SQ4danYfcCZw/lD5euDsqnohcAzw1oG+5wI3VNXBwA39uiRpGxnnEcdRwKqqurOqHgWuAE4cbFBVa6tqGfDYUPmaqrqlX34QWAks7KtPBC7rly8DThrbDCRJTzHO4FgI3DWwvpon/vmPLMkS4Ajg5r7oWVW1BrqAAfbbRL/TkkwmmVy3bl3rbiVJmzDO4MgUZdW0gWQP4CpgaVU90NK3qi6uqomqmliwYEFLV0nSZowzOFYDiwfWFwF3j9o5yc50oXF5VV09UPXtJAf0bQ4A1s7AWCVJIxpncCwDDk5yUJJdgJOBa0bpmCTAJcDKqrpgqPoa4NR++VTgr2dovJKkEcwf14aran2SM4DrgHnApVW1Isnpff1FSfYHJoG9gA1JltK9Ausw4BTg9iS39ps8r6quBd4HXJnkF4BvAj83rjlIkp4qVU2XHbZLExMTNTk5OdvDkKTtSpLlVTUxXO47xyVJTQwOSVITg0OS1MTgkCQ1MTgkSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDUxOCRJTQwOSVITg0OS1MTgkCQ1MTgkSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDVJVc32GMYuyTrgG7M9js3YF7h3tgcxQ3aUuTiPuWdHmcv2NI8Dq2rBcOEPRHDMdUkmq2pitscxE3aUuTiPuWdHmcuOMA9PVUmSmhgckqQmBsfccPFsD2AG7ShzcR5zz44yl+1+Hl7jkCQ18YhDktTE4JAkNTE4xizJ8UnuSLIqyblT1CfJH/T1tyU5cqBu7yQfTfKVJCuT/Mi2Hf2Txrk18/jVJCuSfCnJXyTZdduO/knj3NI8DklyU5JHkpzT0ndbm+5ckixOcmP/N7UiyVnbduRPGee075O+fl6SLyT5xLYZ8dS28m9rzjzWR1JV3sZ0A+YB/wQ8B9gF+CJw6FCbVwGfBAIcA9w8UHcZ8Iv98i7A3tvbPICFwD8Du/XrVwJvmsPz2A94KfBe4JyWvtvRXA4AjuyX9wS+Oltz2Zp5DNT/GvDnwCe2x/ujr5sTj/VRbx5xjNdRwKqqurOqHgWuAE4canMi8OHqfA7YO8kBSfYCfgK4BKCqHq2q+7fh2AdNex593XxgtyTzgd2Bu7fVwIdscR5VtbaqlgGPtfbdxqY9l6paU1W39MsPAivpAn42bM19QpJFwE8Df7ItBrsZ057HHHusj8TgGK+FwF0D66t56gN0U22eA6wD/rQ/DP+TJE8f52A3Y9rzqKpvAecD3wTWAN+tqk+NcaybM8o8xtF3HGZkPEmWAEcAN8/MsJpt7Tx+D/gNYMMMjmk6tmYec+mxPhKDY7wyRdnw65831WY+cCTwh1V1BPCvwGydV5/2PJLsQ/fM6yDg2cDTk7xhhsc3qlHmMY6+47DV40myB3AVsLSqHpiRUbWb9jySvBpYW1XLZ3ZI07I198dceqyPxOAYr9XA4oH1RTz1NM2m2qwGVlfVxmeCH6X745oNWzOPVwL/XFXrquox4GrgR8c41s0ZZR7j6DsOWzWeJDvThcblVXX1DI+txdbM42XAa5J8ne7U0LFJPjKzwxvZ1v5tzZXH+kgMjvFaBhyc5KAkuwAnA9cMtbkGeGP/qqRj6E7lrKmqe4C7krygb3cc8OVtNvInm/Y86E5RHZNk9yShm8fKbTn4AaPMYxx9x2Ha4+nvh0uAlVV1wRjHOIppz6OqfquqFlXVkr7f31XVbB3Nbs085tJjfTSzfXV+R7/Rvdroq3SvuHhbX3Y6cHq/HODCvv52YGKg7+HAJHAb8HFgn+10Hu8GvgJ8CfjfwNPm8Dz2p3sG+ABwf7+816b6zvG/rSnnAvwY3WmU24Bb+9urtrd5DG3jFcziq6pm4G9rzjzWR7n5kSOSpCaeqpIkNTE4JElNDA5JUhODQ5LUxOCQJDUxOKRZlOQ1Gz9JNcm7pvr0V2mumT/bA5B+kFXVNczuGwmlZh5xSFshyRuSfD7JrUn+qP9uiO8l+UCSW5LckGRB3/bMJF9O930lV/Rlb0ryoSm2e3iSz/VtP9Z/5hdJPp3k/f0+v5rkx7ftjCWDQ5q2JC8E/gvwsqo6HHgceD3wdOCWqjoS+HvgnX2Xc4EjquowuncUb86Hgd/s294+sA2A+VV1FLB0qFzaJjxVJU3fccAPA8u6j39iN2At3Ud8/2Xf5iN0H+wI3cdJXJ7k43QfKzGlJM+g+yKfv++LLgP+aqDJxu0tB5Zs5RykZh5xSNMX4LKqOry/vaCq3jVFu42f6/PTdJ/n9cPA8v6Lrabjkf7n4/jkT7PA4JCm7wbgZ5PsB5DkmUkOpHtc/Wzf5nXAZ5PsBCyuqhvpvnhob2CPqTZaVd8FvjNw/eIUulNe0pzgsxVpmqrqy0neDnyqD4bHgLfSfRHPi5IsB75Ldx1kHvCR/jRUgA9W1f39Ka6pnApclGR34E7gzeOdjTQ6Px1XmmFJvldVUx5NSDsCT1VJkpp4xCFJauIRhySpicEhSWpicEiSmhgckqQmBockqcn/BwDgc4+tuOeQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epsilon eta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbQElEQVR4nO3df7xldV3v8debGRAQELwOQjNzGUwEsQjwiJSVhnYDM+HeW4+LPxArI3pIMAUVYg9/dLO0i1g95EYUFCZFJGjz8OJFItRrIc4ZRHEc0IlABgZnCBAM+THM5/6x1uRmc2Zmf8+cPecMvJ6Px36ctb4/1v5+z977vM9aa++1U1VIkjSqnWZ7AJKkHYvBIUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSHNUklclWTPb4xiUZGWSV22h/pwkf779RqTZYHBoLJLcnuS7Sb6T5FtJ/iLJHrM9ri1JsiRJJZk/Q9vbNckDSY6Zou5DST42E/czHf08/71/fO5Kcl6SeVvrV1UvqarPbKH+96rqbTM6WM05BofG6Weqag/gSOBlwG+3dE5nh3mODgdOVT0C/C3wlqF284A3AJdsv9FN6Yf6x+fVwBuBX9qWjc1U4Gru22FelNpxVdVdwKeAH0iyT5JPJlmf5P5+edGmtkk+k+R9Sf4JeBh4QZKfT7IqyUNJbkvyywPtX5VkTZLfTLIuydokJyR5bZKvJ7kvyTkD7XdKcnaSf0nyb0kuT/Lcvvpz/c8H+v/Ef7jv8wv9/d+f5OokBwxsr5K8Pck3gG9MMf1LgP+eZPeBsp+ie+19aktzG9bf1wsH1v8yye8OrL8uyU39Xs4/Jzls84/K91TVLcD/o3t8vj/JP/a/m3uTXJpk74H7uD3Ja/rl9yT5WJKPJnkQeGtf9tG+ftMe3MlJvtlv750D29otySX973VV/xiuGaj/rX5v6KEktyZ59Sjz0fgZHBq7JIuB1wJfonvO/QVwAPCfge8CHx7qchJwCrAncAewDngdsBfw88CHkhw50H4/YFdgIfAu4M+ANwMvBX4MeFeSF/RtTwdOAF4JfB9wP3B+X/fj/c+9q2qPqro+yQnAOcB/AxbQ/YH9m6HxngC8HDh0eO5V9c/A2r7/4Pz+uqo2jDC3kfR9LgZ+GfhPwJ8Cy5I8a4S+h9L9nr4EBPh9ut/Ni4HFwHu20P144GPA3sClm2nzo8DBdHs270ry4r783cAS4AXAT9I9ZpvGdDBwGvCyqtqTLmxv39pctJ1UlTdvM36je5F/B3iA7o///wZ2m6Ld4cD9A+ufAX5nK9v+BHBGv/wquvCZ16/vCRTw8oH2K4AT+uVVwKsH6vYHHgfm0/0RK2D+QP2ngF8cWN+Jbk/ogH69gGO2Mt7fBj7dL+/V9z9ixLmtGagr4IUD638J/G6//CfA/xza1q3AKzdzPwU8SBec/wL8LrDTFO1OAL409Li+pl9+D/C5ofbvAT7aL2/6fS4aqP8icGK/fBvwUwN1b9s0X+CFdKH6GmDn2X4+e3vyzWOSGqcTquofBgv6QzYfAo4F9umL90wyr6qe6NfvHOpzHN1/py+i+8O9O3DzQJN/G+j73f7ntwbqvwtsOjF/APDxJBsH6p8Anr+ZORwA/FGSDw4OiW7v5o6pxjuFjwDvTrKQ7j/n1VX1pRHnNqoDgJOT/OpA2S50ew6bc2RVrR4sSLIv8Md0eyB79mO6fwvb2NrcAe4ZWH6Y7z0W3zfU/z+Wq2p1kqV0QfSSJFcDv15Vd49wfxozD1VpezuT7rDFy6tqL753eCgDbf7jks39oZYrgHOB51fV3sBVQ+1b3AkcV1V7D9x2re48zFSXir4T+OWh9rtVdwjqKeOdSlV9k+4Q15voDlN9ZJpze5guWDbZb2ic7xsa5+5VNXxYbWt+v5/PYf3j8+YtjAe2MvetWAssGlhf/KQNV/11Vf0oXSgW8IFtuC/NIIND29uedHsAD/Qnpd+9lfa7AM8C1gMb+v/Q/8s23P8FwPs2neBOsiDJ8X3demAj3TH3wfbvSPKSvv1zkvzcNO73Erpj9q/ge+cCWud2E/DGJPOSHEt3nmaTPwNOTfLydJ6d5KeT7Nk4zj3pDzH2e0i/0di/xeV0v9t9+vs6bVNFkoOTHNOH6yN0z5knNrMdbWcGh7a3PwR2A+4FvgD83y01rqqH6E5oX053yOSNwLJtuP8/6vt/OslD/Rhe3t/Xw8D7gH/q35l0dFV9nO4/3cv6dw59FThuGvf7MbpDc9dW1dppzu0M4Gfozhu9ie58CP22JuneTvvhflurgbdOY5zvpXv79LeB/wNcOY1tjOp3gDXAvwL/QPc7erSvexbwfrrnyT3AvnRvUtAckCq/yEnS7EvyK3Qnzl+51caaVe5xSJoVSfZP8or+szUH053/+vhsj0tb57uqJM2WXeg+b3Ig3eG3y+jetq05zkNVkqQmHqqSJDV5Rhyqet7znldLliyZ7WFI0g5lxYoV91bVguHyZ0RwLFmyhMnJydkehiTtUJLcMVW5h6okSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDUxOCRJTQwOSVITg0OS1MTgkCQ1MTgkSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDUxOCRJTQwOSVITg0OS1MTgkCQ1MTgkSU3GGhxJjk1ya5LVSc6eov6QJNcneTTJWQPluyb5YpIvJ1mZ5L0Ddc9Nck2Sb/Q/9xnnHCRJTza24EgyDzgfOA44FHhDkkOHmt0HnA6cO1T+KHBMVf0QcDhwbJKj+7qzgWur6iDg2n5dkrSdjHOP4yhgdVXdVlWPAZcBxw82qKp1VbUceHyovKrqO/3qzv2t+vXjgUv65UuAE8YzfEnSVMYZHAuBOwfW1/RlI0kyL8lNwDrgmqq6oa96flWtBeh/7ruZ/qckmUwyuX79+umMX5I0hXEGR6YoqynKplRVT1TV4cAi4KgkP9By51V1YVVNVNXEggULWrpKkrZgnMGxBlg8sL4IuLt1I1X1APAZ4Ni+6FtJ9gfof67bplFKkpqMMziWAwclOTDJLsCJwLJROiZZkGTvfnk34DXALX31MuDkfvlk4O9nctCSpC2bP64NV9WGJKcBVwPzgIuramWSU/v6C5LsB0wCewEbkyylewfW/sAl/TuzdgIur6pP9pt+P3B5kl8Evgn83LjmIEl6qlSNfNphhzUxMVGTk5OzPQxJ2qEkWVFVE8PlfnJcktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDUxOCRJTQwOSVITg0OS1MTgkCQ1MTgkSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDUxOCRJTQwOSVITg0OS1MTgkCQ1GWtwJDk2ya1JVic5e4r6Q5Jcn+TRJGcNlC9Ocl2SVUlWJjljoO7wJF9IclOSySRHjXMOkqQnG1twJJkHnA8cBxwKvCHJoUPN7gNOB84dKt8AnFlVLwaOBt4+0PcPgPdW1eHAu/p1SdJ2Ms49jqOA1VV1W1U9BlwGHD/YoKrWVdVy4PGh8rVVdWO//BCwCli4qRrYq19+DnD3+KYgSRo2f4zbXgjcObC+Bnh560aSLAGOAG7oi5YCVyc5ly74fmSbRilJajLOPY5MUVZNG0j2AK4AllbVg33xrwC/VlWLgV8DLtpM31P6cyCT69evb7lbSdIWjDM41gCLB9YX0XBYKcnOdKFxaVVdOVB1MrBp/e/oDok9RVVdWFUTVTWxYMGCpoFLkjZvnMGxHDgoyYFJdgFOBJaN0jFJ6PYkVlXVeUPVdwOv7JePAb4xQ+OVJI1gbOc4qmpDktOAq4F5wMVVtTLJqX39BUn2AybpTnZvTLKU7h1YhwEnATcnuanf5DlVdRXwS8AfJZkPPAKcMq45SJKeKlVNpx12SBMTEzU5OTnbw5CkHUqSFVU1MVzuJ8clSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDUxOCRJTQwOSVITg0OS1MTgkCQ1MTgkSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDUxOCRJTQwOSVITg0OS1GSswZHk2CS3Jlmd5Owp6g9Jcn2SR5OcNVC+OMl1SVYlWZnkjKF+v9pvd2WSPxjnHCRJTzZ/XBtOMg84H/hJYA2wPMmyqvraQLP7gNOBE4a6bwDOrKobk+wJrEhyTVV9LclPAMcDh1XVo0n2HdccJElPNc49jqOA1VV1W1U9BlxG9wf/P1TVuqpaDjw+VL62qm7slx8CVgEL++pfAd5fVY9u2sYY5yBJGjLO4FgI3Dmwvobv/fEfWZIlwBHADX3Ri4AfS3JDks8medlm+p2SZDLJ5Pr161vvVpK0GeMMjkxRVk0bSPYArgCWVtWDffF8YB/gaOA3gMuTPOW+qurCqpqoqokFCxa0jVyStFnjDI41wOKB9UXA3aN2TrIzXWhcWlVXDm33yup8EdgIPG8GxitJGsE4g2M5cFCSA5PsApwILBulY78HcRGwqqrOG6r+BHBM3+5FwC7AvTM1aEnSlo3tXVVVtSHJacDVwDzg4qpameTUvv6CJPsBk8BewMYkS4FDgcOAk4Cbk9zUb/KcqroKuBi4OMlXgceAk6uq6RCYJGn68kz4mzsxMVGTk5OzPQxJ2qEkWVFVE8PlfnJcktTE4JAkNTE4JElNDA5JUhODQ5LUZOS34ybZBzgI2HVTWVV9bhyDkiTNXSMFR5K3AWfQffr7JrrLfVxP/0E8SdIzx6iHqs4AXgbcUVU/QXfRQa8cKEnPQKMGxyNV9QhAkmdV1S3AweMb1uyrKr58z5f57O2f5ZENj8z2cCSpzT33wLXXwl13zfimRz3HsSbJ3nTXibomyf00XLBwR3Trv93KB6//IBs2buCOb9/BW37oLbM9JEkazRNPwAc+APfeC895Dpx7Luy669b7jWik4Kiq/9ovvifJdcBzgE/N2CjmoEc2PMLG2sj8nebz8OMPz/ZwJGl0GzfCww/DbrvBI490QTKDRj05/ldVdRJAVX12UxndhQifln5w3x/kTT/4Ju59+F5e96LXzfZwJGl0O+8MZ54Jn/scHH00PPvZM7r5UQ9VvWRwpf8+8ZfO6EjmmHk7zeO4g46b7WFI0vS86EXdbQy2eHI8yTuSPAQcluTB/vYQsA74+7GMSJI0p20xOKrq96tqT+A84O3AB/v1I4CPb4fxSZLmmFHfjrsX3Yf+TuzXHwLOH8uIJElz2qjnOI6qqiOTfAmgqu7vvw5WkvQMM+oex+P9CfECSLIA2Di2UUmS5qxRg+OP6c5p7JvkfcDngd8b26gkSXPWqB8AvDTJCuDVQIATqmrVWEcmSZqTRr6sen99qlvGOBZJ0g7AL3KSJDUxOCRJTcYaHEmOTXJrktVJzp6i/pAk1yd5NMlZA+WLk1yXZFWSlUnOmKLvWUkqyfPGOQdJ0pONfI6jVf/23fOBnwTWAMuTLKuqrw00uw84HThhqPsG4MyqujHJnsCKJNds6ptkcb/db45r/JKkqY1zj+MoYHVV3VZVjwGXAccPNqiqdVW1HHh8qHxtVd3YLz8ErAIWDjT5EPCb9J8rkSRtP+MMjoXAnQPra3jyH/+RJFlCd22sG/r11wN3VdWXt9LvlCSTSSbXr/dbbiVppowzODJFWdMeQpI9gCuApVX1YJLdgXcC79pa36q6sKomqmpiwYIFLXcrSdqCcQbHGmDxwPoiGr5uNsnOdKFxaVVd2Rd/P3Ag8OUkt/fbvDHJfjMyYknSVo3t5DiwHDgoyYHAXXRX1n3jKB2TBLgIWFVV520qr6qbgX0H2t0OTFTVvTM4bknSFowtOKpqQ5LTgKuBecDFVbUyyal9/QX9nsIk3WXbNyZZChwKHEb3tbQ3J7mp3+Q5VXXVuMYrSRrNOPc46P/QXzVUdsHA8j10h5uGfZ6pz5EMb3/JNg5RktTIT45LkpoYHJKkJgaHJKmJwSFJamJwSJKaGBySpCYGhySpicEhSWpicEiSmhgckqQmBockqYnBIUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSJKaGBySpCYGhySpicEhSWpicEiSmhgckqQmYw2OJMcmuTXJ6iRnT1F/SJLrkzya5KyB8sVJrkuyKsnKJGcM1P2vJLck+UqSjyfZe5xzkCQ92diCI8k84HzgOOBQ4A1JDh1qdh9wOnDuUPkG4MyqejFwNPD2gb7XAD9QVYcBXwfeMaYpSJKmMM49jqOA1VV1W1U9BlwGHD/YoKrWVdVy4PGh8rVVdWO//BCwCljYr3+6qjb0Tb8ALBrjHCRJQ8YZHAuBOwfW1/RlTZIsAY4Abpii+heAT01ncJKk6RlncGSKsmraQLIHcAWwtKoeHKp7J90hrUs30/eUJJNJJtevX99yt5KkLRhncKwBFg+sLwLuHrVzkp3pQuPSqrpyqO5k4HXAm6pqyjCqqguraqKqJhYsWNA8eEnS1MYZHMuBg5IcmGQX4ERg2SgdkwS4CFhVVecN1R0L/Bbw+qp6eIbHLEnaivnj2nBVbUhyGnA1MA+4uKpWJjm1r78gyX7AJLAXsDHJUrp3YB0GnATcnOSmfpPnVNVVwIeBZwHXdPnCF6rq1HHNQ5L0ZGMLDoD+D/1VQ2UXDCzfw9Tvivo8U58joapeOJNjlCS18ZPjkqQmBockqYnBIUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSJKaGBySpCYGhySpicEhSWpicEiSmhgckqQmBockqYnBIUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSJKaGBySpCYGhySpicEhSWoy1uBIcmySW5OsTnL2FPWHJLk+yaNJzhooX5zkuiSrkqxMcsZA3XOTXJPkG/3PfcY5B0nSk40tOJLMA84HjgMOBd6Q5NChZvcBpwPnDpVvAM6sqhcDRwNvH+h7NnBtVR0EXNuvS5K2k3HucRwFrK6q26rqMeAy4PjBBlW1rqqWA48Pla+tqhv75YeAVcDCvvp44JJ++RLghLHNQJL0FOMMjoXAnQPra/jeH/+RJVkCHAHc0Bc9v6rWQhcwwL6b6XdKkskkk+vXr2+9W0nSZowzODJFWTVtINkDuAJYWlUPtvStqguraqKqJhYsWNDSVZK0BeMMjjXA4oH1RcDdo3ZOsjNdaFxaVVcOVH0ryf59m/2BdTMwVknSiMYZHMuBg5IcmGQX4ERg2SgdkwS4CFhVVecNVS8DTu6XTwb+fobGK0kawfxxbbiqNiQ5DbgamAdcXFUrk5za11+QZD9gEtgL2JhkKd07sA4DTgJuTnJTv8lzquoq4P3A5Ul+Efgm8HPjmoMk6alS1XTaYYc0MTFRk5OTsz0MSdqhJFlRVRPD5X5yXJLUxOCQJDUxOCRJTQwOSVITg0OS1MTgkCQ1MTgkSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDUxOCRJTQwOSVITg0OS1MTgkCQ1MTgkSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUpNU1WyPYeySrAfumO1xbMHzgHtnexAz5OkyF+cx9zxd5rIjzeOAqlowXPiMCI65LslkVU3M9jhmwtNlLs5j7nm6zOXpMA8PVUmSmhgckqQmBsfccOFsD2AGPV3m4jzmnqfLXHb4eXiOQ5LUxD0OSVITg0OS1MTgGLMkxya5NcnqJGdPUZ8kf9zXfyXJkQN1eyf5WJJbkqxK8sPbd/RPGue2zOPXkqxM8tUkf5Nk1+07+ieNc2vzOCTJ9UkeTXJWS9/tbbpzSbI4yXX9c2plkjO278ifMs5pPyZ9/bwkX0ryye0z4qlt43NrzrzWR1JV3sZ0A+YB/wK8ANgF+DJw6FCb1wKfAgIcDdwwUHcJ8LZ+eRdg7x1tHsBC4F+B3fr1y4G3zuF57Au8DHgfcFZL3x1oLvsDR/bLewJfn625bMs8Bup/Hfhr4JM74uPR182J1/qoN/c4xusoYHVV3VZVjwGXAccPtTke+Eh1vgDsnWT/JHsBPw5cBFBVj1XVA9tx7IOmPY++bj6wW5L5wO7A3dtr4EO2Oo+qWldVy4HHW/tuZ9OeS1Wtraob++WHgFV0AT8btuUxIcki4KeBP98eg92Cac9jjr3WR2JwjNdC4M6B9TU89QW6uTYvANYDf9Hvhv95kmePc7BbMO15VNVdwLnAN4G1wLer6tNjHOuWjDKPcfQdhxkZT5IlwBHADTMzrGbbOo8/BH4T2DiDY5qObZnHXHqtj8TgGK9MUTb8/ufNtZkPHAn8SVUdAfw7MFvH1ac9jyT70P3ndSDwfcCzk7x5hsc3qlHmMY6+47DN40myB3AFsLSqHpyRUbWb9jySvA5YV1UrZnZI07Itj8dceq2PxOAYrzXA4oH1RTz1MM3m2qwB1lTVpv8EP0b35JoN2zKP1wD/WlXrq+px4ErgR8Y41i0ZZR7j6DsO2zSeJDvThcalVXXlDI+txbbM4xXA65PcTndo6JgkH53Z4Y1sW59bc+W1PhKDY7yWAwclOTDJLsCJwLKhNsuAt/TvSjqa7lDO2qq6B7gzycF9u1cDX9tuI3+yac+D7hDV0Ul2TxK6eazanoMfMMo8xtF3HKY9nv5xuAhYVVXnjXGMo5j2PKrqHVW1qKqW9P3+sapma292W+Yxl17ro5nts/NP9xvdu42+TveOi3f2ZacCp/bLAc7v628GJgb6Hg5MAl8BPgHss4PO473ALcBXgb8CnjWH57Ef3X+ADwIP9Mt7ba7vHH9uTTkX4EfpDqN8Bbipv712R5vH0DZexSy+q2oGnltz5rU+ys1LjkiSmnioSpLUxOCQJDUxOCRJTQwOSVITg0OS1MTgkGZRktdvupJqkvdMdfVXaa6ZP9sDkJ7JqmoZs/tBQqmZexzSNkjy5iRfTHJTkj/tvxviO0k+mOTGJNcmWdC3PT3J19J9X8llfdlbk3x4iu0enuQLfduP99f8Islnknygv8+vJ/mx7TtjyeCQpi3Ji4H/Abyiqg4HngDeBDwbuLGqjgQ+C7y773I2cERVHUb3ieIt+QjwW33bmwe2ATC/qo4Clg6VS9uFh6qk6Xs18FJgeXf5J3YD1tFd4vtv+zYfpbuwI3SXk7g0ySfoLisxpSTPofsin8/2RZcAfzfQZNP2VgBLtnEOUjP3OKTpC3BJVR3e3w6uqvdM0W7TdX1+mu56Xi8FVvRfbDUdj/Y/n8B//jQLDA5p+q4FfjbJvgBJnpvkALrX1c/2bd4IfD7JTsDiqrqO7ouH9gb2mGqjVfVt4P6B8xcn0R3ykuYE/1uRpqmqvpbkt4FP98HwOPB2ui/ieUmSFcC36c6DzAM+2h+GCvChqnqgP8Q1lZOBC5LsDtwG/Px4ZyONzqvjSjMsyXeqasq9CenpwENVkqQm7nFIkpq4xyFJamJwSJKaGBySpCYGhySpicEhSWry/wF9rFbJMGubJgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epsilon mu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfI0lEQVR4nO3df7xVdZ3v8dfbcwQxdXAGnAhI8IZOmg7BFugWZqY3MA0fNSVGYlaXcLKp660ZajKdpu5kj5pmeOjgaKJyVdAxtTOllx41qbdGkkNwEVTyiBpHSI6pRGEo+Ll/rO/JxT77cPb58T0/6P18PNZj772+P9b3y/nxPmutL3srIjAzM8vpoIEegJmZHfgcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMDhCSTpXUOtDjKJO0UdKp+yn/vKRv9d+IbKA4bGxQkPSkpBcl/UbSM5Kul3TYQI9rfyRNkBSSGvuov0MkvSDptBpl35R0e18cpyfSPH+bvj5PS/pHSQ1dtYuIEyLi3v2U/6+I+FifDtYGJYeNDSZnR8RhwBTgZOAL3WmswpD5nq4OqYj4HXArML+qXgNwHnBj/42upj9PX593Ah8E/ntvOuurkLahYcj8YNofjoh4GrgHeJOkIyV9V1KbpOfT83HtdSXdK+krkn4C7AKOkXShpEck7ZS0WdLHS/VPldQq6a8lbZe0TdI5ks6U9HNJz0n6fKn+QZIWSXpc0q8k3Sbpj1Px/enxhfQX/1tSm4+k4z8vaaWko0v9haRPSHoMeKzG9G8E3ifp0NK+d1H8rN6zv7lVS8d6Q+n1DZK+XHp9lqR16WzqPyWd1PlX5VUR8Sjwfym+Pv9F0n+kf5tnJd0saWTpGE9KOj09v1zS7ZJukvRr4MNp302pvP1M8QJJv0j9/W2prxGSbkz/ro+kr2Frqfxv0lnXTkmbJL2znvlY/3DY2KAjaTxwJrCW4nv0euBo4PXAi8CVVU3OBxYAhwNPAduBs4AjgAuBb0qaUqr/WuAQYCzwReBa4EPAVGAm8EVJx6S6fwWcA7wdeB3wPHBVKjslPY6MiMMi4gFJ5wCfB94LjKb4pby8arznANOB46vnHhH/CWxL7cvzuyUi9tQxt7qkNkuBjwN/Avwr0CRpeB1tj6f4d1oLCPgHin+bNwLjgcv303wOcDswEri5kzpvA46jOIP6oqQ3pv2XAROAY4AzKL5m7WM6DrgYODkiDqcI6Ce7mov1o4jw5m3AN4pfDL8BXqAIjH8BRtSoNxl4vvT6XuBLXfR9F/Cp9PxUisBqSK8PBwKYXqq/BjgnPX8EeGepbAzwMtBI8YsvgMZS+T3AR0uvD6I44zo6vQ7gtC7G+wXg++n5Ean9m+ucW2upLIA3lF7fAHw5PV8C/H1VX5uAt3dynAB+TRG2jwNfBg6qUe8cYG3V1/X09Pxy4P6q+pcDN6Xn7f+e40rlDwJz0/PNwLtKZR9rny/wBoogPh04eKC/n7113HzN1AaTcyLiB+Ud6XLSN4FZwJFp9+GSGiJib3q9parNbIq/go+l+GV/KPBQqcqvSm1fTI/PlMpfBNoXJxwN3CnplVL5XuBPO5nD0cA/S/pGeUgUZ1FP1RpvDcuAyySNpfgLvSUi1tY5t3odDVwg6ZOlfcMozlA6MyUiWso7JB0FLKY40zk8jen5/fTR1dwBfll6votXvxavq2r/++cR0SLp0xThdYKklcAlEbG1juNZP/BlNBvs/ifFJZXpEXEEr166UqnO79+6PF0G+jbwdeBPI2IkcHdV/e7YAsyOiJGl7ZAo7ivVesv0LcDHq+qPiOLyWIfx1hIRv6C4/DaP4hLash7ObRdFGLV7bdU4v1I1zkMjovqSX1f+Ic3npPT1+dB+xgNdzL0L24Bxpdfj9+k44paIeBtFkAZwRS+OZX3MYWOD3eEUZxovpBvzl3VRfxgwHGgD9qQzgf/Wi+NfDXyl/Sa/pNGS5qSyNuAVinsI5fqfk3RCqv9Hkt7fg+PeSHEP4q28em+ju3NbB3xQUoOkWRT3ndpdCyyUNF2F10h6t6TDuznOw0mXP9OZ2Ge72b47bqP4tz0yHevi9gJJx0k6LQXy7yi+Z/Z20o8NAIeNDXb/BIwAngVWAf9nf5UjYifFTf3bKC7nfBBo6sXx/zm1/76knWkM09OxdgFfAX6SVnTNiIg7Kf6iXpFWXG0AZvfguLdTXDb8YURs6+HcPgWcTXEfbB7F/R1SX80US5evTH21AB/uwTj/jmKp+g7ge8AdPeijXl8CWoEngB9Q/BvtTmXDga9SfJ/8EjiKYqGGDRKK8IenmdnQI+kiisUDb++ysg04n9mY2ZAgaYykt6b/+3Qcxf28Owd6XFYfr0Yzs6FiGMX/B5pIcWlwBcUSeRsCfBnNzMyy82U0MzPLzpfROjFq1KiYMGHCQA/DzGxIWbNmzbMRMbp6v8OmExMmTKC5uXmgh2FmNqRIeqrWfl9GMzOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7LKGjaRZkjZJapG0qEa5JC1O5eslTSmVLZW0XdKGqja3SlqXticlrUv755X2r5P0iqTJqezeNI72sqNyztvMzPaV7WOhJTUAVwFnAK3AaklNEfFwqdpsYFLapgNL0iPADcCVwLJyvxFxbukY3wB2pP03Azen/ScC34mIdaWm8yLCn/NsZjYAcp7ZTANaImJzRLwErADmVNWZAyyLwipgpKQxABFxP/BcZ51LEvABYHmN4vM62W9mZgMgZ9iMBbaUXremfd2t05mZwDMR8ViNsnPpGDbXp0tol6ag6kDSAknNkprb2trqHIaZmXUlZ9jU+oUePajTmZpnL5KmA7sionyvZ15EnEgRUDOB82t1GBHXREQlIiqjR4+ucxhmZtaVnGHTCowvvR4HbO1BnQ4kNQLvBW6tUTyXqhCKiKfT407gFopLfGZm1k9yhs1qYJKkiZKGUYRAU1WdJmB+WpU2A9gREdvq6Pt04NGIaC3vlHQQ8H6K+0Pt+xoljUrPDwbOAvZZ4WZmZnllW40WEXskXQysBBqApRGxUdLCVH41cDdwJtAC7AIubG8vaTlwKjBKUitwWURcl4o7nL0kpwCtEbG5tG84sDIFTQPwA+DaPpuomZl1SRH13iL5w1KpVKK52Sulzcy6Q9KaiKhU7/c7CJiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsu6xhI2mWpE2SWiQtqlEuSYtT+XpJU0plSyVtl7Shqs2tktal7UlJ69L+CZJeLJVdXWozVdJD6TiLJSnjtM3MrEq2sJHUAFwFzAaOB86TdHxVtdnApLQtAJaUym4AZlX3GxHnRsTkiJgMfBu4o1T8eHtZRCws7V+S+m8/Vod+zcwsn5xnNtOAlojYHBEvASuAOVV15gDLorAKGClpDEBE3A8811nn6ezkA8Dy/Q0i9XdERDwQEQEsA87p4ZzMzKwHcobNWGBL6XVr2tfdOp2ZCTwTEY+V9k2UtFbSfZJmlo7RWs8xJC2Q1Cypua2trc5hmJlZV3KGTa37ItGDOp05j33ParYBr4+INwOXALdIOqI7x4iIayKiEhGV0aNH1zkMMzPrSmPGvluB8aXX44CtPajTgaRG4L3A1PZ9EbEb2J2er5H0OHBsOsa47h7DzMz6Ts4zm9XAJEkTJQ0D5gJNVXWagPlpVdoMYEdEbKuj79OBRyPi95fHJI1OixKQdAzFQoDNqb+dkmak+zzzge/0enZmZla3bGc2EbFH0sXASqABWBoRGyUtTOVXA3cDZwItwC7gwvb2kpYDpwKjJLUCl0XEdal4Lh0XBpwCfEnSHmAvsDAi2hcYXESxum0EcE/azMysn6hYoGXVKpVKNDc3D/QwzMyGFElrIqJSvd/vIGBmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7LKGjaRZkjZJapG0qEa5JC1O5eslTSmVLZW0XdKGqja3SlqXticlrUv7z5C0RtJD6fG0Upt70zja2x2VcdpmZlalMVfHkhqAq4AzgFZgtaSmiHi4VG02MClt04El6RHgBuBKYFm534g4t3SMbwA70stngbMjYqukNwErgbGlpvMiorlvZmdmZt2R88xmGtASEZsj4iVgBTCnqs4cYFkUVgEjJY0BiIj7gec661ySgA8Ay1P9tRGxNRVvBA6RNLxPZ2RmZj2SM2zGAltKr1vZ90yj3jqdmQk8ExGP1Sh7H7A2InaX9l2fLqFdmoKqA0kLJDVLam5ra6tzGGZm1pWcYVPrF3r0oE5nziOd1ezToXQCcAXw8dLueRFxIkVAzQTOr9VhRFwTEZWIqIwePbrOYZiZWVdyhk0rML70ehywtQd1OpDUCLwXuLVq/zjgTmB+RDzevj8ink6PO4FbKC7xmZlZP8kZNquBSZImShoGzAWaquo0AfPTqrQZwI6I2FZH36cDj0ZEa/sOSSOB7wGfi4iflPY3ShqVnh8MnAVswMzM+k22sImIPcDFFKvCHgFui4iNkhZKWpiq3Q1sBlqAa4G/bG8vaTnwAHCcpFZJHy11P5eOl9AuBt4AXFq1xHk4sFLSemAd8HQ6lpmZ9RNF1HuL5A9LpVKJ5mavlDYz6w5JayKiUr3f7yBgZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCy7xnoqSXp9rf0R8Yu+HY6ZmR2I6gob4HtAAAIOASYCm4ATMo3LzMwOIHVdRouIEyPipPQ4CZgG/LirdpJmSdokqUXSohrlkrQ4la+XNKVUtlTSdkkbqtrcKmld2p6UtK5U9rnU1yZJ7yrtnyrpoVS2WJLqmbeZmfWNHt2ziYifASfvr46kBuAqYDZwPHCepOOrqs0GJqVtAbCkVHYDMKvGsc+NiMkRMRn4NnBHOt7xwFyKs61ZwL+kMZD6XVA6Vod++8LLe1/mx0/9mOatzUREjkOYmeWzaRP86Eewc2efd13vPZtLSi8PAqYCbV00mwa0RMTm1McKYA7wcKnOHGBZFL+ZV0kaKWlMRGyLiPslTdjPmAR8ADit1NeKiNgNPCGpBZgm6UngiIh4ILVbBpwD3NP1zLvn7sfu5taNtyLEJW+5hKmvm9rXhzAzy2PrVrjiCti9G9auhUsu6bpNN9R7ZnM4cFjahgH/DrynizZjgS2l161pX3frdGYm8ExEPNZFX2PT8y6PIWmBpGZJzW1tXWVpR7te3sVBOogg+N2e33W7vZnZgNm9G/buhWHD4Le/7fPu610gcDfweWBCqc0i4KT9tKl1X6T62lI9dTpzHrC8jr7qPkZEXANcA1CpVLp9Hezs485GiBEHj2Da2GndbW5mNnAmTICPfASeeAJm9f2dhnrD5ibgM8AG4JU627QC40uvxwFbe1CnA0mNwHspLud11Vdret6tY/TEYcMOY+6Jc3N0bWaWlwRvf3uxZVDvZbS2iPj3iHgiIp5q37posxqYJGmipGEUN++bquo0AfPTqrQZwI6I2FbHeE4HHo2I8uWxJmCupOGSJlIsBHgw9bdT0ox0n2c+8J06jmFmZn2k3jObyyR9C/ghsLt9Z0Tc0VmDiNgj6WJgJdAALI2IjZIWpvKrKS7PnQm0ALuAC9vbS1oOnAqMktQKXBYR16Xiuex7CY3U920UCxD2AJ+IiL2p+CKK1W0jKBYG9PniADMz65zqWaIr6Sbgz4CNvHoZLSLiIxnHNqAqlUo0NzcP9DDMzIYUSWsiolK9v94zmz+PiBP7eExmZvYHot57Nqtq/IdMMzOzutR7ZvM24AJJT1DcsxHFZbT9LX02MzMD6g+bLG/vYmZmfxjqCps6ljmbmZl1yh+eZmZm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXZZw0bSLEmbJLVIWlSjXJIWp/L1kqaUypZK2i5pQ412n0z9bpT0tbRvnqR1pe0VSZNT2b2pfnvZURmnbWZmVer9pM5uk9QAXAWcAbQCqyU1RcTDpWqzgUlpmw4sSY8ANwBXAsuq+n0HMAc4KSJ2twdHRNwM3JzqnAh8JyLWlZrOi4jmvpyjmZnVJ+eZzTSgJSI2R8RLwAqKkCibAyyLwipgpKQxABFxP/BcjX4vAr4aEbtTve016pwHLO+jeZiZWS/lDJuxwJbS69a0r7t1qh0LzJT0U0n3STq5Rp1z6Rg216dLaJdKUq2OJS2Q1Cypua2trYthmJlZvXKGTa1f6NGDOtUagSOBGcBngdvK4SFpOrArIsr3euZFxInAzLSdX6vjiLgmIioRURk9enQXwzAzs3rlDJtWYHzp9Thgaw/q1Or3jnTp7UHgFWBUqXwuVWc1EfF0etwJ3EJxic/MzPpJzrBZDUySNFHSMIoQaKqq0wTMT6vSZgA7ImJbF/3eBZwGIOlYYBjwbHp9EPB+ivtDpH2Nkkal5wcDZwEdVriZmVk+2VajRcQeSRcDK4EGYGlEbJS0MJVfDdwNnAm0ALuAC9vbS1oOnAqMktQKXBYR1wFLgaVpSfRLwAUR0X7p7RSgNSI2l4YyHFiZgqYB+AFwbaZpm5lZDXr197SVVSqVaG72Smkzs+6QtCYiKtX7/Q4CZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8sua9hImiVpk6QWSYtqlEvS4lS+XtKUUtlSSdslbajR7pOp342Svpb2TZD0oqR1abu6VH+qpIfScRZLUq45m5lZR9nCRlIDcBUwGzgeOE/S8VXVZgOT0rYAWFIquwGYVaPfdwBzgJMi4gTg66XixyNictoWlvYvSf23H6tDv2Zmlk/OM5tpQEtEbI6Il4AVFCFRNgdYFoVVwEhJYwAi4n7guRr9XgR8NSJ2p3rb9zeI1N8REfFARASwDDinF/MyM7Nuyhk2Y4EtpdetaV9361Q7Fpgp6aeS7pN0cqlsoqS1af/M0jFa6zmGpAWSmiU1t7W1dTEMMzOrV2PGvmvdF4ke1KnWCBwJzABOBm6TdAywDXh9RPxK0lTgLkkndOcYEXENcA1ApVLpahxmZlannGc2rcD40utxwNYe1KnV7x3p0tuDwCvAqIjYHRG/AoiINcDjFGdBranf7hzDzMz6UM6wWQ1MkjRR0jBgLtBUVacJmJ9Wpc0AdkTEti76vQs4DUDSscAw4FlJo9OiBNKZziRgc+pvp6QZaRXafOA7fTNFMzOrR7bLaBGxR9LFwEqgAVgaERslLUzlVwN3A2cCLcAu4ML29pKWA6cCoyS1ApdFxHXAUmBpWhL9EnBBRISkU4AvSdoD7AUWRkT7AoOLKFa3jQDuSZuZmfUTFQu0rFqlUonm5uaBHoaZ2ZAiaU1EVKr3+x0EzMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpZd1rCRNEvSJkktkhbVKJekxal8vaQppbKlkrZL2lCj3SdTvxslfS3tO0PSGkkPpcfTSvXvTfXXpe2oXHM2M7OOGnN1LKkBuAo4A2gFVktqioiHS9VmA5PSNh1Ykh4BbgCuBJZV9fsOYA5wUkTsLgXHs8DZEbFV0puAlcDYUtN5EdHch1M0M7M65TyzmQa0RMTmiHgJWEEREmVzgGVRWAWMlDQGICLuB56r0e9FwFcjYneqtz09ro2IranORuAQScP7fFZmZtZtOcNmLLCl9LqVfc806q1T7VhgpqSfSrpP0sk16rwPWNseSMn16RLapZJUq2NJCyQ1S2pua2vrYhhmZlavnGFT6xd69KBOtUbgSGAG8FngtnJ4SDoBuAL4eKnNvIg4EZiZtvNrdRwR10REJSIqo0eP7mIYZmZWr5xh0wqML70eB2ztQZ1a/d6RLr09CLwCjAKQNA64E5gfEY+3N4iIp9PjTuAWikt8ZmbWT3KGzWpgkqSJkoYBc4GmqjpNwPy0Km0GsCMitnXR713AaQCSjgWGAc9KGgl8D/hcRPykvbKkRkntYXQwcBbQYYWbmZnlky1sImIPcDHFqrBHgNsiYqOkhZIWpmp3A5uBFuBa4C/b20taDjwAHCepVdJHU9FS4Ji0JHoFcEFERDrWG4BLq5Y4DwdWSloPrAOeTscyM7N+ouL3tFWrVCrR3OyV0mZm3SFpTURUqvf7HQTMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZ+cPTOiGpDXhqoMexH6OAZwd6EH3gQJkHHDhz8TwGn6E0l6MjYnT1TofNECWpudan4Q01B8o84MCZi+cx+BwIc/FlNDMzy85hY2Zm2Tlshq5rBnoAfeRAmQccOHPxPAafIT8X37MxM7PsfGZjZmbZOWzMzCw7h80gJGmWpE2SWiQtqlEuSYtT+XpJU0plIyXdLulRSY9Iekv/jn6fcfZmHv9D0kZJGyQtl3RI/45+n3F2NY8/k/SApN2SPtOdtv2pp/OQNF7Sj9L300ZJn+rfkXfUm69JKm+QtFbSd/tnxLX18ntr0Pys1yUivA2iDWgAHgeOAYYB/w84vqrOmcA9gIAZwE9LZTcCH0vPhwEjh9o8gLHAE8CI9Po24MODeB5HAScDXwE+0522Q2QeY4Ap6fnhwM8Hah69nUup/BLgFuC7Q3Ueg+Vnvd7NZzaDzzSgJSI2R8RLwApgTlWdOcCyKKwCRkoaI+kI4BTgOoCIeCkiXujHsZf1eB6prBEYIakROBTY2l8Dr9LlPCJie0SsBl7ubtt+1ON5RMS2iPhZer4TeITiD4KB0puvCZLGAe8GvtUfg92PHs9jkP2s18VhM/iMBbaUXrfS8Qe7szrHAG3A9ekSwbckvSbnYPejx/OIiKeBrwO/ALYBOyLi+xnHuj/1zCNH277WJ2ORNAF4M/DTvhlWj/R2Lv8E/DXwSh+OqSd6M4/B9LNeF4fN4KMa+6rXp3dWpxGYAiyJiDcDvwUG6j5Bj+ch6UiKv/AmAq8DXiPpQ308vnrVM48cbftar8ci6TDg28CnI+LXfTKqnunxXCSdBWyPiDV9O6Qe6c3XZDD9rNfFYTP4tALjS6/H0fESUmd1WoHWiGj/q/N2im/IgdCbeZwOPBERbRHxMnAH8F8zjnV/6plHjrZ9rVdjkXQwRdDcHBF39PHYuqs3c3kr8B5JT1JctjpN0k19O7y69fZ7a7D8rNfFYTP4rAYmSZooaRgwF2iqqtMEzE+ruWZQXGbaFhG/BLZIOi7VeyfwcL+NfF89ngfF5bMZkg6VJIp5PNKfgy+pZx452va1Ho8lfQ2uAx6JiH/MOMZ69XguEfG5iBgXERNSu/+IiIE6a+7NPAbTz3p9BnqFgreOG8UqrZ9TrFT527RvIbAwPRdwVSp/CKiU2k4GmoH1wF3AkUN0Hn8HPApsAP43MHwQz+O1FH9p/hp4IT0/orO2Q20ewNsoLu+sB9al7cyhOJeqPk5lAFej9cH31qD5Wa9n89vVmJlZdr6MZmZm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8ZsiJH0nvZ3CJZ0ea13NTYbbBoHegBm1j0R0cTA/edQsx7xmY1ZP5P0IUkPSlon6V/TZ6v8RtI3JP1M0g8ljU51/0rSwyo+72dF2vdhSVfW6HeypFWp7p3pPeaQdK+kK9Ixfy5pZv/O2MxhY9avJL0ROBd4a0RMBvYC84DXAD+LiCnAfcBlqcki4M0RcRLF/yzfn2XA36S6D5X6AGiMiGnAp6v2m/ULX0Yz61/vBKYCq4u3HGMEsJ3i7e5vTXVuonjzUSjeiuRmSXdRvCVJTZL+iOLDs+5Lu24E/q1Upb2/NcCEXs7BrNt8ZmPWvwTcGBGT03ZcRFxeo177+0i9m+L946YCa9KHyfXE7vS4F/+RaQPAYWPWv34I/IWkowAk/bGkoyl+Fv8i1fkg8GNJBwHjI+JHFB/2NRI4rFanEbEDeL50P+Z8istxZoOC/8Ix60cR8bCkLwDfT2HyMvAJig+/OkHSGmAHxX2dBuCmdIlMwDcj4oV0+a2WC4CrJR0KbAYuzDsbs/r5XZ/NBgFJv4mImmctZgcCX0YzM7PsfGZjZmbZ+czGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLLv/D0PHcg4BkL3XAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epsilon nu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbEklEQVR4nO3de7SddX3n8feHhCBKaGiJLSaBwDQwwiwH4hFoEbWoFWhrWL2iFZSZluKSFiq9IO1Sa+u0dim2TCmUFloYUaSAriwHB7VFOr1wSYABQkTDxZKSSrQKKDSY8J0/nidlc3KSs0/y2+ck8H6ttdd5nud3eX6/s/c+n/Nczj6pKiRJamG3mR6AJOn5w1CRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKtItJ8roka2d6HIOSrEryum2Un5fkL6ZvRJophoqmVZKHkjyV5NtJvpbkL5PsNdPj2pYki5NUktmN+ntRkm8lOW6Cso8muabFfrZHP8/v9M/PvyQ5P8msydpV1WFV9cVtlP+PqvqFpoPVTslQ0Uz4iaraC1gKvAr47ak0TmeXee2OD6Oq+nfgk8Cp4+rNAt4CXD59o5vQf+2fn9cDbwV+cUc6axXG2jXsMm9MPf9U1b8AnwX+S5J9knwmyfok3+yXF26um+SLST6Y5B+AJ4GDkpyWZHWSJ5I8kOSXBuq/LsnaJL+R5NEk65KclOTEJF9O8m9Jzhuov1uSc5Pcn+QbSa5O8r198d/1X7/V/wb/Q32b/9bv/5tJbkhywEB/leRdSb4CfGWC6V8O/FSSFw9sexPde/Kz25rbeP2+fnBg/a+S/N7A+o8nubM/OvrHJK/Y+rPyrKr6EvB/6Z6f/5Tkb/vvzdeTXJlk3sA+Hkryhn75/UmuSfKxJI8D7+i3fawv33zk9/Yk/9z391sDfe2Z5PL++7q6fw7XDpT/Zn8U9USS+5K8fpj5aHoYKpoxSRYBJwJ30L0W/xI4ANgfeAr4k3FNTgFOB+YCXwUeBX4c2Bs4DfhokqUD9X8AeBGwAHgv8OfA24BXAscC701yUF/3V4CTgNcCLwO+CVzYl72m/zqvqvaqqn9KchJwHvCTwHy6H76fGDfek4CjgEPHz72q/hFY17cfnN/Hq2rjEHMbSt/mMuCXgO8D/gxYnmSPIdoeSvd9ugMI8Pt035uXA4uA92+j+TLgGmAecOVW6rwaOITuiOi9SV7eb38fsBg4CHgj3XO2eUyHAGcCr6qquXRB/NBkc9E0qiofPqbtQfcD4NvAt+iC4U+BPSeodzjwzYH1LwIfmKTvTwNn9cuvowumWf36XKCAowbqrwRO6pdXA68fKNsP+C4wm+4HXAGzB8o/C/z3gfXd6I6gDujXCzhukvH+NvC5fnnvvv0RQ85t7UBZAT84sP5XwO/1yxcBvzuur/uA125lPwU8Theq9wO/B+w2Qb2TgDvGPa9v6JffD/zduPrvBz7WL2/+fi4cKL8VOLlffgB400DZL2yeL/CDdIH7BmD3mX49+9jy4blOzYSTquoLgxv600AfBY4H9uk3z00yq6o29esPj2tzAt1vtQfT/VB/MXD3QJVvDLR9qv/6tYHyp4DNNwkcAHwqyTMD5ZuA79/KHA4A/jjJRwaHRHdU9NWJxjuBK4D3JVlA9xv3mqq6Y8i5DesA4O1Jfnlg2xy6I46tWVpVawY3JHkpcAHdkcvcfkzf3EYfk80d4F8Hlp/k2efiZePa/8dyVa1JcjZdSB2W5Abg3VX1yBD70zTw9Jd2FufQnQo5qqr25tlTThmo8x8fqd2fvrkW+DDw/VU1D7h+XP2peBg4oarmDTxeVN11n4k+yvth4JfG1d+zutNaW4x3IlX1z3SnzX6e7tTXFds5tyfpQmezHxg3zg+OG+eLq2r8qbrJ/H4/n1f0z8/btjEemGTuk1gHLBxYX/Scjqs+XlWvpgvMAj60A/tSY4aKdhZz6Y4cvtVfIH/fJPXnAHsA64GN/W/2P7oD+78Y+ODmi+1J5idZ1petB56hO8c/WP89SQ7r639Pkp/Zjv1eTneN4BievfYw1bndCbw1yawkx9NdF9rsz4EzkhyVzkuS/FiSuVMc51z605b9kdWvT7H9VFxN973dp9/XmZsLkhyS5Lg+eP+d7jWzaSv9aAYYKtpZ/BGwJ/B14Gbg/2yrclU9QXdx/Wq60zBvBZbvwP7/uG//uSRP9GM4qt/Xk8AHgX/o76A6uqo+Rfcb8lX9HU73ACdsx36voTvd9zdVtW4753YW8BN016l+nu76C31fK+huCf6Tvq81wDu2Y5y/Q3cL+GPA/wau244+hvUBYC3wIPAFuu/Rhr5sD+AP6F4n/wq8lO6GCe0kUuU/6ZK080ryTrqL+K+dtLJmnEcqknYqSfZLckz/t0OH0F1v+9RMj0vD8e4vSTubOXR/T3Mg3Sm9q+huPdcuwNNfkqRmPP0lSWrmBX36a999963FixfP9DAkaZeycuXKr1fV/InKXtChsnjxYlasWDHTw5CkXUqSr26tzNNfkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoZaagkOT7JfUnWJDl3gvIkuaAvvyvJ0n77oiQ3JlmdZFWSswbaHJ7k5iR3JlmR5MiBsvf0fd2X5E2jnJskaUsjC5Uks4ALgROAQ4G3JDl0XLUTgCX943Tgon77RuCcqno5cDTwroG2fwj8TlUdDry3X6cvPxk4DDge+NN+DJKkaTLKI5UjgTVV9UBVPQ1cBSwbV2cZcEV1bgbmJdmvqtZV1e0AVfUEsBpY0LcpYO9++XuARwb6uqqqNlTVg8CafgySpGkye4R9LwAeHlhfCxw1RJ0FwLrNG5IsBo4Abuk3nQ3ckOTDdKH4wwN93TxBX8+R5HS6oyL233//KUxHkjSZUR6pZIJtNZU6SfYCrgXOrqrH+83vBH61qhYBvwpcOoX9UVWXVNVYVY3Nnz9/kilIkqZilKGyFlg0sL6QZ09VTVonye50gXJlVV03UOftwOb1v+bZU1zD7E+SNEKjDJXbgCVJDkwyh+4i+vJxdZYDp/Z3gR0NPFZV65KE7ghkdVWdP67NI8Br++XjgK8M9HVykj2SHEh38f/W9tOSJG3NyK6pVNXGJGcCNwCzgMuqalWSM/ryi4HrgRPpLqo/CZzWNz8GOAW4O8md/bbzqup64BeBP04yG/h3+usjfd9XA/fS3T32rqraNKr5SZK2lKotLju8YIyNjdWKFStmehiStEtJsrKqxiYq8y/qJUnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSMyMNlSTHJ7kvyZok505QniQX9OV3JVnab1+U5MYkq5OsSnLWQJtPJrmzfzyU5M5+++IkTw2UXTzKuUmStjR7VB0nmQVcCLwRWAvclmR5Vd07UO0EYEn/OAq4qP+6ETinqm5PMhdYmeTzVXVvVf3cwD4+Ajw20N/9VXX4qOYkSdq2UR6pHAmsqaoHqupp4Cpg2bg6y4ArqnMzMC/JflW1rqpuB6iqJ4DVwILBhkkC/CzwiRHOQZI0BaMMlQXAwwPraxkXDMPUSbIYOAK4ZVzbY4GvVdVXBrYdmOSOJDclOXaiQSU5PcmKJCvWr18/9GQkSZMbZahkgm01lTpJ9gKuBc6uqsfH1XsLzz1KWQfsX1VHAO8GPp5k7y06r7qkqsaqamz+/PlDTEOSNKxRhspaYNHA+kLgkWHrJNmdLlCurKrrBhslmQ38JPDJzduqakNVfaNfXgncDxzcZCaSpKGMMlRuA5YkOTDJHOBkYPm4OsuBU/u7wI4GHquqdf31kkuB1VV1/gR9vwH4UlWt3bwhyfz+5gCSHER38f+B9tOSJG3NyO7+qqqNSc4EbgBmAZdV1aokZ/TlFwPXAycCa4AngdP65scApwB3b75lGDivqq7vl09mywv0rwE+kGQjsAk4o6r+bSSTkyRNKFXjL3O8cIyNjdWKFStmehiStEtJsrKqxiYq8y/qJUnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKmZoUIlyYNJHhj/GKLd8UnuS7ImybkTlCfJBX35XUmW9tsXJbkxyeokq5KcNdDmk0nu7B8PJblzoOw9fV/3JXnTUN8BSVIzs4esNzaw/CLgZ4Dv3VaDJLOAC4E3AmuB25Isr6p7B6qdACzpH0cBF/VfNwLnVNXtSeYCK5N8vqruraqfG9jHR4DH+uVDgZOBw4CXAV9IcnBVbRpyjkP72re/xj2P3sMh+x7Cwr0Xtu5ekkbn6afh1lthzz1h6VJImnY/VKhU1TfGbfqjJH8PvHcbzY4E1lTVAwBJrgKWAYOhsgy4oqoKuDnJvCT7VdU6YF2/7yeSrAYWDLZNEuBngeMG+rqqqjYADyZZ04/hn4aZ47A2PbOJD/3Dh1j/nfXsvcfefPhHP8yeu+/ZcheSNDqf+Qxcc00XJuec0wVLQ0OFyubTUr3d6I5c5k7SbAHw8MD6WrqjkMnqLKAPlH7fi4EjgFvGtT0W+FpVfWWgr5sn6Os5kpwOnA6w//77TzKFLRXFk999kj1335MNmzawqf2BkCSNzlNPwW67wTPPwIYNzbsf9vTXR4DqlzcCD9GdAtuWiY6paip1kuwFXAucXVWPj6v3FuATU9wfVXUJcAnA2NjYFuWTmb3bbM75oXO46aGbOGrhUew1Z6+pdiFJM+fNb+5C5SUvgbGxyetP0bChcgLwU8DigTYnAx/YRpu1wKKB9YXAI8PWSbI7XaBcWVXXDTZKMhv4SeCVU9xfE0u+bwlLvm/JKLqWpNGaOxfe8paRdT/sLcWfBn4C+C7w7f7xnUna3AYsSXJgkjl0IbR8XJ3lwKn9XWBHA49V1br+esmlwOqqOn+Cvt8AfKmq1o7r6+QkeyQ5kO7i/61Dzk+S1MCwRyoLq+r4qXRcVRuTnAncAMwCLquqVUnO6MsvBq4HTgTWAE8Cp/XNjwFOAe4euGX4vKq6vl8+meee+qLv+2q6i/kbgXeN4s4vSdLWpbvxapJKySXA/6yqu0c/pOkzNjZWK1asmOlhSNIuJcnKqprwgsywRyqvBt6R5EFgA91F8aqqVzQaoyTpeWAqF+olSdqmYf/48aujHogkadfnB0pKkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoZaagkOT7JfUnWJDl3gvIkuaAvvyvJ0n77oiQ3JlmdZFWSs8a1++W+31VJ/rDftjjJU0nu7B8Xj3JukqQtzR5Vx0lmARcCbwTWArclWV5V9w5UOwFY0j+OAi7qv24Ezqmq25PMBVYm+XxV3ZvkR4BlwCuqakOSlw70d39VHT6qOUmStm2URypHAmuq6oGqehq4ii4MBi0DrqjOzcC8JPtV1bqquh2gqp4AVgML+jbvBP6gqjb05Y+OcA6SpCkYZagsAB4eWF/Ls8EwdJ0ki4EjgFv6TQcDxya5JclNSV41UP3AJHf024+daFBJTk+yIsmK9evXT3lSkqStG2WoZIJtNZU6SfYCrgXOrqrH+82zgX2Ao4FfB65OEmAdsH9VHQG8G/h4kr236Lzqkqoaq6qx+fPnT3VOkqRtGGWorAUWDawvBB4Ztk6S3ekC5cqqum5cm+v6U2a3As8A+1bVhqr6BkBVrQTupzuqkSRNk1GGym3AkiQHJpkDnAwsH1dnOXBqfxfY0cBjVbWuP/K4FFhdVeePa/Np4DiAJAcDc4CvJ5nf3xxAkoPoLv4/MKK5SZImMLK7v6pqY5IzgRuAWcBlVbUqyRl9+cXA9cCJwBrgSeC0vvkxwCnA3Unu7LedV1XXA5cBlyW5B3gaeHtVVZLXAB9IshHYBJxRVf82qvlJkraUqvGXOV44xsbGasWKFTM9DEnapSRZWVVjE5X5F/WSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKmZkYZKkuOT3JdkTZJzJyhPkgv68ruSLO23L0pyY5LVSVYlOWtcu1/u+12V5A8Htr+n7+u+JG8a5dwkSVuaPaqOk8wCLgTeCKwFbkuyvKruHah2ArCkfxwFXNR/3QicU1W3J5kLrEzy+aq6N8mPAMuAV1TVhiQv7fd3KHAycBjwMuALSQ6uqk2jmqMk6blGeaRyJLCmqh6oqqeBq+jCYNAy4Irq3AzMS7JfVa2rqtsBquoJYDWwoG/zTuAPqmpDX/7oQF9XVdWGqnoQWNOPQZI0TUYZKguAhwfW1/JsMAxdJ8li4Ajgln7TwcCxSW5JclOSV01hfyQ5PcmKJCvWr18/tRlJkrZplKGSCbbVVOok2Qu4Fji7qh7vN88G9gGOBn4duDpJhtwfVXVJVY1V1dj8+fMnn4UkaWijDJW1wKKB9YXAI8PWSbI7XaBcWVXXjWtzXX/K7FbgGWDfIfcnSRqhUYbKbcCSJAcmmUN3EX35uDrLgVP7u8COBh6rqnX9kcelwOqqOn9cm08DxwEkORiYA3y97+vkJHskOZDu4v+tI5qbJGkCI7v7q6o2JjkTuAGYBVxWVauSnNGXXwxcD5xId1H9SeC0vvkxwCnA3Unu7LedV1XXA5cBlyW5B3gaeHtVFbAqydXAvXR3j73LO78kaXql+3n8wjQ2NlYrVqyY6WFI0i4lycqqGpuozL+olyQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpmVTVTI9hxiRZD3x1pscxiX2Br8/0IBpwHjuf58tcnMf0O6Cq5k9U8IIOlV1BkhVVNTbT49hRzmPn83yZi/PYuXj6S5LUjKEiSWrGUNn5XTLTA2jEeex8ni9zcR47Ea+pSJKa8UhFktSMoSJJasZQmSFJjk9yX5I1Sc6doDxJLujL70qydKBsXpJrknwpyeokPzS9o3/OOHdkHr+aZFWSe5J8IsmLpnf0W4x1srn85yT/lGRDkl+bStvptL3zSLIoyY39a2pVkrOmd+RbjHO7n4++fFaSO5J8ZnpGvHU7+Nraad7vQ6kqH9P8AGYB9wMHAXOA/wccOq7OicBngQBHA7cMlF0O/EK/PAeYt6vNA1gAPAjs2a9fDbxjJ39OXgq8Cvgg8GtTabuLzGM/YGm/PBf48q44j4HydwMfBz4zU6+rFnPZWd7vwz48UpkZRwJrquqBqnoauApYNq7OMuCK6twMzEuyX5K9gdcAlwJU1dNV9a1pHPug7Z5HXzYb2DPJbODFwCPTNfAJTDqXqnq0qm4DvjvVttNou+dRVeuq6vZ++QlgNV34z4QdeT5IshD4MeAvpmOwk9juuexk7/ehGCozYwHw8MD6WrZ8826tzkHAeuAv+0P7v0jyklEOdhu2ex5V9S/Ah4F/BtYBj1XV50Y41skMM5dRtG2tyViSLAaOAG5pM6wp29F5/BHwG8AzDce0vXZkLjvT+30ohsrMyATbxt/bvbU6s4GlwEVVdQTwHWCmzuFv9zyS7EP329qBwMuAlyR5W+PxTcUwcxlF29Z2eCxJ9gKuBc6uqsebjGrqtnseSX4ceLSqVrYd0nbbkedkZ3q/D8VQmRlrgUUD6wvZ8tTP1uqsBdZW1ebfIK+he9HNhB2ZxxuAB6tqfVV9F7gO+OERjnUyw8xlFG1b26GxJNmdLlCurKrrGo9tKnZkHscAb07yEN2ppuOSfKzt8KZkR19bO8v7fSiGysy4DViS5MAkc4CTgeXj6iwHTu3vnjqa7vTQuqr6V+DhJIf09V4P3DttI3+u7Z4H3Wmvo5O8OEno5rF6Ogc/zjBzGUXb1rZ7LP3zcCmwuqrOH+EYh7Hd86iq91TVwqpa3Lf726qayaPgHZnLzvR+H85M3ynwQn3Q3RX1Zbq7Qn6r33YGcEa/HODCvvxuYGyg7eHACuAu4NPAPrvoPH4H+BJwD/C/gD128ufkB+h+c3wc+Fa/vPfW2u5q8wBeTXda5i7gzv5x4q42j3F9vI4ZvvurwWtrp3m/D/PwY1okSc14+kuS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCrSTijJmzd/mm2S90/0KbzSzmj2TA9A0paqajkz9weU0nbzSEUagSRvS3JrkjuT/Fn/vz2+neQjSW5P8jdJ5vd1fyXJven+38xV/bZ3JPmTCfo9PMnNfd1P9Z+hRpIvJvlQv88vJzl2emcsdQwVqbEkLwd+Djimqg4HNgE/D7wEuL2qlgI3Ae/rm5wLHFFVr6D7K+ttuQL4zb7u3QN9AMyuqiOBs8dtl6aNp7+k9l4PvBK4rfs4LfYEHqX7GPZP9nU+RvchmtB9/MaVST5N9zEcE0ryPXT/oOmmftPlwF8PVNnc30pg8Q7OQdouHqlI7QW4vKoO7x+HVNX7J6i3+TOSfozu89FeCazs/2nZ9tjQf92EvzBqhhgqUnt/A/x0kpcCJPneJAfQvd9+uq/zVuDvk+wGLKqqG+n+qdQ8YK+JOq2qx4BvDlwvOYXuNJq00/C3Gamxqro3yW8Dn+tD47vAu+j+wdJhSVYCj9Fdd5kFfKw/tRXgo1X1rf602UTeDlyc5MXAA8Bpo52NNDV+SrE0TZJ8u6omPAqRni88/SVJasYjFUlSMx6pSJKaMVQkSc0YKpKkZgwVSVIzhookqZn/D29UqkiKhd5JAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epsilon lamb\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfa0lEQVR4nO3df5RdZX3v8fcnk4QESBoqQw2ZQIIGauBiiGOIV0FXQE2iElq96waxKF5vzF3mVotWQboQUG61YmlZUlK02HCBprlU7KxcKKAVvP4IyQTCjwDBSQAzEMmIBIihgYTv/WM/A5szJzNnJs+eH/B5rbXXnP382Pt5cubkM/vHOUcRgZmZWQ6jhnoAZmb22uFQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWI2wkh6j6TOoR5HmaSNkt7TS/2XJX138EZkQ8WhYoNK0qOSnpe0U9KTkr4n6eChHldvJE2TFJJGZ9reOEk7JM2rU3eZpBty7Gcg0jx/l56fxyX9taSmvvpFxLERcXsv9f8rIj6VdbA2LDlUbCh8KCIOBmYDbwf+oj+dVRgxv7u1YRQR/wH8M3BWTbsm4AxgxeCNrq63pufnFOCjwH/fn43lCmMbGUbMC9NeeyLiceBm4DhJh0haLalL0tPpcUt3W0m3S7pE0s+AXcBRks6W9KCk5yRtkfTpUvv3SOqU9EVJ2yVtk3S6pIWSHpb0W0lfLrUfJelcSZslPSVplaTfT9U/ST93pL/g35H6fDLt/2lJt0g6srS9kPQZSb8Eflln+iuAD0s6sFT2forX5M29za1W2tebS+v/KOlrpfUPStqQjo5+Lun4fT8rr4iIh4D/R/H8vEnSv6d/m99Iuk7SpNI+HpV0anp8oaQbJF0r6VngE6ns2lTffeT3cUm/Sts7v7St8ZJWpH/XB9Nz2Fmq/1I6inpO0iZJpzQyHxscDhUbMpKmAguBuyl+F78HHAkcATwPfLumy58AS4AJwGPAduCDwETgbOAySbNL7d8IjAOmABcA3wE+BrwNOAm4QNJRqe2fAqcD7wYOB54Grkh1J6efkyLi4Ij4haTTgS8Dfww0U/zn+0814z0dOBGYWTv3iPg5sC31L8/v+ojY08DcGpL6XA18GngD8PdAm6QDGug7k+Lf6W5AwF9S/Nu8BZgKXNhL90XADcAk4Lp9tHkXcAzFEdEFkt6Syr8CTAOOAt5L8Zx1j+kYYBnw9oiYQBHEj/Y1FxtEEeHFy6AtFP8B7AR2UATD3wHj67SbBTxdWr8duLiPbf8A+Gx6/B6KYGpK6xOAAE4stV8PnJ4ePwicUqqbDLwIjKb4Dy6A0aX6m4H/VlofRXEEdWRaD2BeH+P9C+DW9Hhi6n9Cg3PrLNUF8ObS+j8CX0uPrwS+WrOtTcC797GfAJ6lCNXNwNeAUXXanQ7cXfO8npoeXwj8pKb9hcC16XH3v2dLqX4tsDg93gK8v1T3qe75Am+mCNxTgTFD/fvspefic502FE6PiB+WC9JpoMuA+cAhqXiCpKaI2JvWt9b0WUDxV+3RFP+pHwjcV2ryVKnv8+nnk6X654HumwSOBG6U9FKpfi/wB/uYw5HA30r6VnlIFEdFj9Ubbx3XAF+RNIXiL+6OiLi7wbk16kjg45L+Z6lsLMURx77MjoiOcoGkw4DLKY5cJqQxPd3LNvqaO8CvS4938cpzcXhN/5cfR0SHpM9RhNSxkm4BzomIJxrYnw0Cn/6y4eLzFKdCToyIibxyykmlNi9/pHY6ffMvwKXAH0TEJOCmmvb9sRVYEBGTSsu4KK771Pso763Ap2vaj4/itFaP8dYTEb+iOG12JsWpr2sGOLddFKHT7Y0147ykZpwHRkTtqbq+/GWaz/Hp+flYL+OBPubeh21AS2l96qs2HHF9RLyLIjAD+MZ+7Msyc6jYcDGB4shhR7pA/pU+2o8FDgC6gD3pL/v37cf+lwOXdF9sl9QsaVGq6wJeojjHX25/nqRjU/vfk/RfBrDfFRTXCN7JK9ce+ju3DcBHJTVJmk9xXajbd4Clkk5U4SBJH5A0oZ/jnEA6bZmOrP68n/37YxXFv+0haV/LuiskHSNpXgre/6D4ndm7j+3YEHCo2HDxN8B44DfAGuDfemscEc9RXFxfRXEa5qNA237s/29T/1slPZfGcGLa1y7gEuBn6Q6quRFxI8VfyCvTHU73AwsGsN8bKE73/Sgitg1wbp8FPkRxnepMiusvpG21U9wS/O20rQ7gEwMY50UUt4A/A/xf4PsD2EajLgY6gUeAH1L8G+1OdQcAX6f4Pfk1cBjFDRM2TCjCX9JlZsOXpP9BcRH/3X02tiHnIxUzG1YkTZb0zvTeoWMorrfdONTjssb47i8zG27GUryfZjrFKb2VFLee2wjg019mZpaNT3+ZmVk2r+vTX4ceemhMmzZtqIdhZjairF+//jcR0Vyv7nUdKtOmTaO9vX2oh2FmNqJIemxfdT79ZWZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2VQaKpLmS9okqUPSuXXqJenyVH+vpNmpfJyktZLukbRR0kWlPhdKelzShrQsTOXTJD1fKl9e5dzMzKynyr5OWFITcAXwXqATWCepLSIeKDVbAMxIy4nAlennbmBeROyUNAb4qaSbI2JN6ndZRFxaZ7ebI2JWNTMyM7O+VHmkMgfoiIgtEfECsBJYVNNmEXBNFNYAkyRNTus7U5sxaYkKx2pmZhlUGSpTgK2l9c5U1lAbSU2SNgDbgdsi4s5Su2XpdNnVkg4plU+XdLekOySdVG9QkpZIapfU3tXVNbCZmZlZXVWGiuqU1R5t7LNNROxNp7JagDmSjkv1VwJvAmYB24BvpfJtwBERcQJwDnC9pIk9Nh5xVUS0RkRrc3Nz/2ZkZma9qjJUOoGppfUW4In+tomIHcDtwPy0/mQKnJeA71CcZiMidkfEU+nxemAzcHSmuZiZWQOqDJV1wAxJ0yWNBRYDbTVt2oCz0l1gc4FnImKbpGZJkwAkjQdOBR5K65NL/f8IuD+VN6ebA5B0FMXF/y2Vzc7MzHqo7O6viNgjaRlwC9AEXB0RGyUtTfXLgZuAhUAHsAs4O3WfDKxIITEKWBURq1PdX0maRXGa7FHg06n8ZOBiSXuAvcDSiPhtVfMzM7OeFPH6vamqtbU12tvbh3oYZmYjiqT1EdFar87vqDczs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNpWGiqT5kjZJ6pB0bp16Sbo81d8raXYqHydpraR7JG2UdFGpz4WSHpe0IS0LS3XnpW1tkvT+KudmZmY9ja5qw5KagCuA9wKdwDpJbRHxQKnZAmBGWk4Erkw/dwPzImKnpDHATyXdHBFrUr/LIuLSmv3NBBYDxwKHAz+UdHRE7K1qjmZm9mpVHqnMAToiYktEvACsBBbVtFkEXBOFNcAkSZPT+s7UZkxaoo/9LQJWRsTuiHgE6EhjMDOzQVJlqEwBtpbWO1NZQ20kNUnaAGwHbouIO0vtlqXTZVdLOqQf+0PSEkntktq7uroGMC0zM9uXKkNFdcpqjzb22SYi9kbELKAFmCPpuFR/JfAmYBawDfhWP/ZHRFwVEa0R0drc3NzXHMzMrB+qDJVOYGppvQV4or9tImIHcDswP60/mQLnJeA7vHKKq5H9mZlZhaoMlXXADEnTJY2luIjeVtOmDTgr3QU2F3gmIrZJapY0CUDSeOBU4KG0PrnU/4+A+0vbWizpAEnTKS7+r61obmZmVkdld39FxB5Jy4BbgCbg6ojYKGlpql8O3AQspLiovgs4O3WfDKxId5CNAlZFxOpU91eSZlGc2noU+HTa3kZJq4AHgD3AZ3znl5nZ4FJEXzdVvXa1trZGe3v7UA/DzGxEkbQ+Ilrr1fkd9WZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLptJQkTRf0iZJHZLOrVMvSZen+nslzU7l4yStlXSPpI2SLqrT9wuSQtKhaX2apOclbUjL8irnZmZmPY2uasOSmoArgPcCncA6SW0R8UCp2QJgRlpOBK5MP3cD8yJip6QxwE8l3RwRa9K2p6bt/qpmt5sjYlZVczIzs95VeaQyB+iIiC0R8QKwElhU02YRcE0U1gCTJE1O6ztTmzFpiVK/y4Av1pSZmdkQqzJUpgBbS+udqayhNpKaJG0AtgO3RcSdqfw04PGIuKfOPqdLulvSHZJOqjcoSUsktUtq7+rqGsi8zMxsH6oMFdUpqz2y2GebiNibTmW1AHMkHSfpQOB84II6/bYBR0TECcA5wPWSJvbYeMRVEdEaEa3Nzc2Nz8bMzPpUZah0AlNL6y3AE/1tExE7gNuB+cCbgOnAPZIeTe3vkvTGiNgdEU+lPuuBzcDRmeZiZmYNqDJU1gEzJE2XNBZYDLTVtGkDzkp3gc0FnomIbZKaJU0CkDQeOBV4KCLui4jDImJaREyjCKXZEfHr1Kcp9TmK4uL/lgrnZ2ZmNSq7+ysi9khaBtwCNAFXR8RGSUtT/XLgJmAh0AHsAs5O3ScDK1JIjAJWRcTqPnZ5MnCxpD3AXmBpRPw297zMzGzfFPH6vYGqtbU12tvbh3oYZmYjiqT1EdFar87vqDczs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLpuGPvpf0RorvnQ9gXUT8urJRmZnZiNTQkYqkTwFrgT8GPgKskfTJKgdmZmYjT6NHKn8OnND9db2S3gD8HLi6qoGZmdnI0+g1lU7gudL6c8DW/MMxM7ORrNcjFUnnpIePA3dK+leKayqLKE6HmZmZvayv018T0s/Naen2r9UMx8zMRrJeQyUiLhqsgZiZ2cjX6N1frZJulHSXpHu7lwb6zZe0SVKHpHPr1EvS5an+XkmzU/k4SWsl3SNpo6Qe4SbpC5JC0qGlsvPStjZJen8jczMzs3wavfvrOoo7wO4DXmqkg6Qm4ArgvRQX+tdJaouIB0rNFgAz0nIicGX6uRuYFxE7JY0Bfirp5ohYk7Y9NW33V6X9zQQWA8cChwM/lHR0ROxtcI4Ne3Lnk9y//X6OOfQYWia25N68mVl1XngB1q6F8eNh9myQsm6+0VDpioi2fm57DtAREVsAJK2kuMBfDpVFwDURERTvfZkkaXJEbAN2pjZj0hKlfpcBX+TV13YWASsjYjfwiKSONIZf9HPcvdr70l6+8bNv0PW7LiYeMJFL33cp48eMz7kLM7PqrF4NN9xQhMnnP18ES0aNhspXJH0X+BHFUQQAEfH9XvpM4dW3HXdSHIX01WYKsC0d6awH3gxcERF3Akg6DXg8Iu7RqxN2CrCmzrZeRdISYAnAEUcc0cvw6wuCXS/uYvyY8ezeu5u9+Q+EzMyq8/zzMGoUvPQS7N7dd/t+ajRUzgb+kOKIofv0VwC9hUq9Y6potE06bTVL0iTgRknHAVuA84H3DXB/RMRVwFUAra2tPer7MnrUaD7/js9zx6N3cGLLiRw89uD+bsLMbOicdloRKgcdBK2t2TffaKi8NSL+Uz+33QlMLa23AE/0t01E7JB0OzAfuAWYDnQfpbQAd0ma0+D+spjxhhnMeMOMKjZtZlatCRPgjDMq23yj76hfky6E98c6YIak6ZLGUlxEr70u0wacle4Cmws8ExHbJDWnIxQkjQdOBR6KiPsi4rCImBYR0yiCZHb6cMs2YLGkAyRNp7j47zdompkNokaPVN4FfFzSIxTXVARERBy/rw4RsUfSMoqjiybg6ojYKGlpql8O3AQsBDqAXRSn2QAmAyvSdZVRwKqIWN3bANO2V1HcCLAH+EwVd36Zmdm+qbjxqo9G0pH1yiPisewjGkStra3R3t4+1MMwMxtRJK2PiLoXZBo6UukOD0mHAeMyjs3MzF5DGn1H/WmSfgk8AtwBPArcXOG4zMxsBGr0Qv1XgbnAwxExHTgF+FllozIzsxGp0VB5MX1B1yhJoyLix8Cs6oZlZmYjUaN3f+2QdDDwE+A6Sdsp7rAyMzN7WaNHKouA54E/A/6N4rtVPlTVoMzMbGRq9O6v35VWV1Q0FjMzG+H6+jrh56jz+Vm88ubHiZWMyszMRqS+vvlxQm/1ZmZmZY1eUzEzM+uTQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTaVhoqk+ZI2SeqQdG6dekm6PNXfK2l2Kh8naa2keyRtlHRRqc9XU9sNkm6VdHgqnybp+VS+QdLyKudmZmY9VRYqkpqAK4AFwEzgDEkza5otAGakZQlwZSrfDcyLiLdSfMPkfElzU903I+L4iJgFrAYuKG1vc0TMSsvSCqZlZma9qPJIZQ7QERFbIuIFYCXFl32VLQKuicIaYJKkyWl9Z2ozJi0BEBHPlvofRP2P5jczsyFQZahMAbaW1jtTWUNtJDVJ2gBsB26LiDu7G0m6RNJW4ExefaQyXdLdku6QdFK9QUlaIqldUntXV9cAp2ZmZvVUGSqqU1Z7VLHPNhGxN53iagHmSDru5QYR50fEVOA6YFkq3gYcEREnAOcA10vq8SViEXFVRLRGRGtzc3N/52RmZr2oMlQ6gaml9Rbgif62iYgdwO3A/Dr7uB74cGq3OyKeSo/XA5uBowc8ejMz67cqQ2UdMEPSdEljgcVAW02bNuCsdBfYXOCZiNgmqVnSJABJ44FTgYfS+oxS/9NK5c3p5gAkHUVx8X9LZbMzM7Meev064f0REXskLQNuAZqAqyNio6SlqX45cBOwEOgAdgFnp+6TgRUpJEYBqyJidar7uqRjgJeAx4Duu7xOBi6WtAfYCyyNiN9WNT8zM+tJEa/fm6daW1ujvb19qIdhZjaiSFofEa316vyOejMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZllU2moSJovaZOkDknn1qmXpMtT/b2SZqfycZLWSrpH0kZJF5X6fDW13SDpVkmHl+rOS9vaJOn9Vc7NzMx6qixUJDUBVwALgJnAGZJm1jRbAMxIyxLgylS+G5gXEW8FZgHzJc1Ndd+MiOMjYhawGrgg7W8msBg4FpgP/F0ag5mZDZIqj1TmAB0RsSUiXgBWAotq2iwCronCGmCSpMlpfWdqMyYtARARz5b6H9Rdnra1MiJ2R8QjQEcag5mZDZIqQ2UKsLW03pnKGmojqUnSBmA7cFtE3NndSNIlkrYCZ5KOVBrcH5KWSGqX1N7V1TWQeZmZ2T5UGSqqUxaNtomIvekUVwswR9JxLzeIOD8ipgLXAcv6sT8i4qqIaI2I1ubm5r5nYWZmDasyVDqBqaX1FuCJ/raJiB3A7RTXSWpdD3y4H/szM7MKVRkq64AZkqZLGktxEb2tpk0bcFa6C2wu8ExEbJPULGkSgKTxwKnAQ2l9Rqn/ad3laVuLJR0gaTrFxf+1Fc3NzMzqGF3VhiNij6RlwC1AE3B1RGyUtDTVLwduAhZSXFTfBZyduk8GVqS7t0YBqyJidar7uqRjgJeAx4Du7W2UtAp4ANgDfCYi9lY1PzMz60kRPS47vG60trZGe3v7UA/DzGxEkbQ+Ilrr1fkd9WZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLptJQkTRf0iZJHZLOrVMvSZen+nslzU7l4yStlXSPpI2SLir1+aakh1L7GyVNSuXTJD0vaUNallc5NzMz66myUJHUBFwBLABmAmdImlnTbAEwIy1LgCtT+W5gXkS8FZgFzJc0N9XdBhwXEccDDwPnlba3OSJmpWVpBdMyM7NeVHmkMgfoiIgtEfECsBJYVNNmEXBNFNYAkyRNTus7U5sxaQmAiLg1IvakujVAS4VzMDOzfqgyVKYAW0vrnamsoTaSmiRtALYDt0XEnXX28Ung5tL6dEl3S7pD0kn1BiVpiaR2Se1dXV39mpCZmfWuylBRnbJotE1E7I2IWRRHInMkHfeqjtL5wB7gulS0DTgiIk4AzgGulzSxx8YjroqI1ohobW5u7s98zMysD1WGSicwtbTeAjzR3zYRsQO4HZjfXSbp48AHgTMjojuEdkfEU+nxemAzcHSGeZiZWYOqDJV1wAxJ0yWNBRYDbTVt2oCz0l1gc4FnImKbpObSXV3jgVOBh9L6fOBLwGkRsat7Q6lPU3p8FMXF/y0Vzs/MzGqMrmrDEbFH0jLgFqAJuDoiNkpamuqXAzcBC4EOYBdwduo+GViRQmIUsCoiVqe6bwMHALdJAliT7vQ6GbhY0h5gL7A0In5b1fzMzKwnpbNHr0utra3R3t4+1MMwMxtRJK2PiNZ6dX5HvZmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLJvX9Zd0SeoCHhvqcfThUOA3Qz2IDDyP4ee1MhfPY/AdGRHN9Spe16EyEkhq39c3rI0knsfw81qZi+cxvPj0l5mZZeNQMTOzbBwqw99VQz2ATDyP4ee1MhfPYxjxNRUzM8vGRypmZpaNQ8XMzLJxqAwRSfMlbZLUIencOvWSdHmqv1fS7FLdJEk3SHpI0oOS3jG4o3/VOPdnHn8maaOk+yX9k6Rxgzv6HmPtay5/KOkXknZL+kJ/+g6mgc5D0lRJP06/UxslfXZwR95jnAN+PlJ9k6S7Ja0enBHv237+bg2b13tDIsLLIC9AE7AZOAoYC9wDzKxpsxC4GRAwF7izVLcC+FR6PBaYNNLmAUwBHgHGp/VVwCeG+XNyGPB24BLgC/3pO0LmMRmYnR5PAB4eifMo1Z8DXA+sHqrfqxxzGS6v90YXH6kMjTlAR0RsiYgXgJXAopo2i4BrorAGmCRpsqSJwMnAPwBExAsRsWMQx1424HmkutHAeEmjgQOBJwZr4HX0OZeI2B4R64AX+9t3EA14HhGxLSLuSo+fAx6kCP+hsD/PB5JagA8A3x2MwfZhwHMZZq/3hjhUhsYUYGtpvZOeL959tTkK6AK+lw7tvyvpoCoH24sBzyMiHgcuBX4FbAOeiYhbKxxrXxqZSxV9c8syFknTgBOAO/MMq9/2dx5/A3wReCnjmAZqf+YynF7vDXGoDA3VKau9t3tfbUYDs4ErI+IE4HfAUJ3DH/A8JB1C8dfadOBw4CBJH8s8vv5oZC5V9M1tv8ci6WDgX4DPRcSzWUbVfwOeh6QPAtsjYn3eIQ3Y/jwnw+n13hCHytDoBKaW1lvoeepnX206gc6I6P4L8gaKX7qhsD/zOBV4JCK6IuJF4PvAf65wrH1pZC5V9M1tv8YiaQxFoFwXEd/PPLb+2J95vBM4TdKjFKea5km6Nu/w+mV/f7eGy+u9IQ6VobEOmCFpuqSxwGKgraZNG3BWuntqLsXpoW0R8Wtgq6RjUrtTgAcGbeSvNuB5UJz2mivpQEmimMeDgzn4Go3MpYq+uQ14LOl5+AfgwYj46wrH2IgBzyMizouIloiYlvr9e0QM5VHw/sxlOL3eGzPUdwq8XheKu6Ieprgr5PxUthRYmh4LuCLV3we0lvrOAtqBe4EfAIeM0HlcBDwE3A/8b+CAYf6cvJHiL8dngR3p8cR99R1p8wDeRXFa5l5gQ1oWjrR51GzjPQzx3V8ZfreGzeu9kcUf02JmZtn49JeZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4Vs2FI0mndn2Yr6cJ6n8JrNhyNHuoBmFlPEdHG0L2B0mzAfKRiVgFJH5O0VtIGSX+fvttjp6RvSbpL0o8kNae2fyrpARXfN7MylX1C0rfrbHeWpDWp7Y3pM9SQdLukb6R9PizppMGdsVnBoWKWmaS3AP8VeGdEzAL2AmcCBwF3RcRs4A7gK6nLucAJEXE8xbuse3MN8KXU9r7SNgBGR8Qc4HM15WaDxqe/zPI7BXgbsK74OC3GA9spPob9n1Obayk+RBOKj9+4TtIPKD6Goy5Jv0fxBU13pKIVwP8pNene3npg2n7OwWxAfKRilp+AFRExKy3HRMSFddp1f0bSByg+H+1twPr0pWUDsTv93Iv/YLQh4lAxy+9HwEckHQYg6fclHUnxevtIavNR4KeSRgFTI+LHFF8qNQk4uN5GI+IZ4OnS9ZI/oTiNZjZs+K8Zs8wi4gFJfwHcmkLjReAzFF+wdKyk9cAzFNddmoBr06ktAZdFxI502qyejwPLJR0IbAHOrnY2Zv3jTyk2GySSdkZE3aMQs9cKn/4yM7NsfKRiZmbZ+EjFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLJv/Dy72i/WYfRC+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epsilon rho\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAezklEQVR4nO3df5jWdZ3v8eeLARR/0Lg5bggoWOgJPYp0B3RK6xDVQK24pz3naLaWezrIueJsHeuUZpep5W5tlrteGay1tHDUWI6bLRdHj1q7uscKYUjQUGkH1BglnVQwgkUZ3+eP72fq9p57mHuGz3d+6OtxXd+L+/v59f185p7hNd8fM6OIwMzMLIdRQz0BMzN79XComJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEbYSS9S1LHUM+jmqQtkt51kPrPSfr24M3IhopDxQaVpMcl7ZO0R9LTkr4j6aihntfBSJoiKSSNzjTe4ZJ2SZpbp+46SbfmOM5ApHX+Jr0/T0r6uqSmvvpFxKkRcc9B6v8sIj6WdbI2LDlUbCj8QUQcBcwE3gp8vj+dVRgxn7u1YRQR/wr8HXBhTbsm4HxgxeDNrq4z0vvzbuBDwH89lMFyhbGNDCPmC9NefSLiSeAO4DRJx0haK6lT0vPp9aTutpLukXSNpB8Be4GTJF0k6RFJv5a0XdLFVe3fJalD0mckPSNpp6RzJS2Q9HNJz0n6XFX7UZIulbRN0rOSVkv6vVT9z+nfXek7+LelPn+Sjv+8pDslnVg1Xkj6uKR/Af6lzvJXAB+UdERV2fsovibvONjaaqVjvalq/28lfalq/wOSNqWzox9LOr33d+V3IuJR4P9RvD9vlPSP6WPzK0k3S2quOsbjkual11dKulXSTZJeAD6aym5K9d1nfh+R9Is03uVVY42TtCJ9XB9J72FHVf1n01nUryVtlfTuRtZjg8OhYkNG0mRgAfAAxefid4ATgROAfcA3arr8MbAIOBp4AngG+AAwHrgIuE7SzKr2bwAOByYCVwDfAj4MvAU4C7hC0kmp7Z8C5wLvBI4HngduSHVnp3+bI+KoiPiJpHOBzwH/AWih+M/3uzXzPReYDUyvXXtE/BjYmfpXr++WiDjQwNoakvosBy4GXg/8NbBG0mEN9J1O8XF6ABDw5xQfmzcDk4ErD9J9IXAr0Azc3EubdwCnUJwRXSHpzan8C8AU4CTgPRTvWfecTgGWAG+NiKMpgvjxvtZigygivHkbtI3iP4A9wC6KYPgmMK5OuxnA81X79wBX9zH294FPpNfvogimprR/NBDA7Kr2G4Fz0+tHgHdX1U0AXgJGU/wHF8Doqvo7gP9StT+K4gzqxLQfwNw+5vt54K70enzqf2aDa+uoqgvgTVX7fwt8Kb1eCnyxZqytwDt7OU4AL1CE6jbgS8CoOu3OBR6oeV/npddXAv9c0/5K4Kb0uvvjOamqfj1wXnq9HXhfVd3HutcLvIkicOcBY4b689lbz83XOm0onBsRP6guSJeBrgNagWNS8dGSmiKiK+3vqOkzn+K72pMp/lM/AnioqsmzVX33pX+frqrfB3Q/JHAicJukl6vqu4Df72UNJwJ/Jelr1VOiOCt6ot5861gJfEHSRIrvuNsj4oEG19aoE4GPSPrvVWVjKc44ejMzItqrCyQdB1xPceZydJrT8wcZo6+1A/yy6vVefvdeHF/T/7evI6Jd0icpQupUSXcCl0TEUw0czwaBL3/ZcPEpikshsyNiPL+75KSqNr/9ldrp8s3fA9cCvx8RzcDtNe37YwcwPyKaq7bDo7jvU+9Xee8ALq5pPy6Ky1o95ltPRPyC4rLZBRSXvlYOcG17KUKn2xtq5nlNzTyPiIjaS3V9+fO0ntPT+/Phg8wH+lh7H3YCk6r2J79i4IhbIuIdFIEZwFcO4ViWmUPFhoujKc4cdqUb5F/oo/1Y4DCgEziQvrN/7yEcfxlwTffNdkktkhamuk7gZYpr/NXtL5N0amr/Okn/cQDHXUFxj+Dt/O7eQ3/Xtgn4kKQmSa0U94W6fQtYLGm2CkdKer+ko/s5z6NJly3TmdX/7Gf//lhN8bE9Jh1rSXeFpFMkzU3B+68UnzNdvYxjQ8ChYsPFXwLjgF8B64D/e7DGEfFripvrqykuw3wIWHMIx/+r1P8uSb9Oc5idjrUXuAb4UXqCak5E3EbxHfKq9ITTz4D5AzjurRSX+34YETsHuLZPAH9AcZ/qAor7L6Sx2igeCf5GGqsd+OgA5nkVxSPgu4H/A3xvAGM06mqgA3gM+AHFx2h/qjsM+DLF58kvgeMoHpiwYUIR/iNdZjZ8SfpvFDfx39lnYxtyPlMxs2FF0gRJb08/O3QKxf2224Z6XtYYP/1lZsPNWIqfp5lKcUlvFcWj5zYC+PKXmZll48tfZmaWzWv68texxx4bU6ZMGeppmJmNKBs3bvxVRLTUq3tNh8qUKVNoa2sb6mmYmY0okp7orc6Xv8zMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLJtSQ0VSq6StktolXVqnXpKuT/UPSpqZyg+XtF7SZklbJF1V1edKSU9K2pS2Bal8iqR9VeXLylybmZn1VNqfE5bUBNwAvAfoADZIWhMRD1c1mw9MS9tsYGn6dz8wNyL2SBoD3CfpjohYl/pdFxHX1jnstoiYUc6KzMysL2WeqcwC2iNie0S8CKwCFta0WQisjMI6oFnShLS/J7UZk7Yoca5mZpZBmaEyEdhRtd+RyhpqI6lJ0ibgGeDuiLi/qt2SdLlsuaRjqsqnSnpA0r2Szqo3KUmLJLVJauvs7BzYyszMrK4yQ0V1ymrPNnptExFd6VLWJGCWpNNS/VLgjcAMYCfwtVS+EzghIs4ELgFukTS+x+ARN0ZEJSIqLS0t/VuRmZkdVJmh0gFMrtqfBDzV3zYRsQu4B2hN+0+nwHkZ+BbFZTYiYn9EPJtebwS2ASdnWouZmTWgzFDZAEyTNFXSWOA8YE1NmzXAhekpsDnA7ojYKalFUjOApHHAPODRtD+hqv8fAj9L5S3p4QAknURx8397aaszM7MeSnv6KyIOSFoC3Ak0AcsjYoukxal+GXA7sABoB/YCF6XuE4AVKSRGAasjYm2q+wtJMygukz0OXJzKzwaulnQA6AIWR8RzZa3PzMx6UsRr96GqSqUSbW1tQz0NM7MRRdLGiKjUq/NP1JuZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsm1JDRVKrpK2S2iVdWqdekq5P9Q9KmpnKD5e0XtJmSVskXVXV50pJT0ralLYFVXWXpbG2SnpfmWszM7OeRpc1sKQm4AbgPUAHsEHSmoh4uKrZfGBa2mYDS9O/+4G5EbFH0hjgPkl3RMS61O+6iLi25njTgfOAU4HjgR9IOjkiuspao5mZvVKZZyqzgPaI2B4RLwKrgIU1bRYCK6OwDmiWNCHt70ltxqQt+jjeQmBVROyPiMeA9jQHMzMbJGWGykRgR9V+RyprqI2kJkmbgGeAuyPi/qp2S9LlsuWSjunH8ZC0SFKbpLbOzs4BLMvMzHpTZqioTlnt2UavbSKiKyJmAJOAWZJOS/VLgTcCM4CdwNf6cTwi4saIqEREpaWlpa81mJlZP5QZKh3A5Kr9ScBT/W0TEbuAe4DWtP90CpyXgW/xu0tcjRzPzMxKVGaobACmSZoqaSzFTfQ1NW3WABemp8DmALsjYqekFknNAJLGAfOAR9P+hKr+fwj8rGqs8yQdJmkqxc3/9SWtzczM6ijt6a+IOCBpCXAn0AQsj4gtkhan+mXA7cACipvqe4GLUvcJwIr0BNkoYHVErE11fyFpBsWlrceBi9N4WyStBh4GDgAf95NfZmaDSxF9PVT16lWpVKKtrW2op2FmNqJI2hgRlXp1/ol6MzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWVTaqhIapW0VVK7pEvr1EvS9an+QUkzU/nhktZL2ixpi6Sr6vT9tKSQdGzanyJpn6RNaVtW5trMzKyn0WUNLKkJuAF4D9ABbJC0JiIermo2H5iWttnA0vTvfmBuROyRNAa4T9IdEbEujT05jfuLmsNui4gZZa3JzMwOrswzlVlAe0Rsj4gXgVXAwpo2C4GVUVgHNEuakPb3pDZj0hZV/a4DPlNTZmZmQ6zMUJkI7Kja70hlDbWR1CRpE/AMcHdE3J/KzwGejIjNdY45VdIDku6VdFa9SUlaJKlNUltnZ+dA1mVmZr0oM1RUp6z2zKLXNhHRlS5lTQJmSTpN0hHA5cAVdfrtBE6IiDOBS4BbJI3vMXjEjRFRiYhKS0tL46sxM7M+lRkqHcDkqv1JwFP9bRMRu4B7gFbgjcBUYLOkx1P7n0p6Q0Tsj4hnU5+NwDbg5ExrMTOzBpQZKhuAaZKmShoLnAesqWmzBrgwPQU2B9gdETsltUhqBpA0DpgHPBoRD0XEcRExJSKmUITSzIj4ZerTlPqcRHHzf3uJ6zMzsxqlPf0VEQckLQHuBJqA5RGxRdLiVL8MuB1YALQDe4GLUvcJwIoUEqOA1RGxto9Dng1cLekA0AUsjojncq/LzMx6p4jX7gNUlUol2trahnoaZmYjiqSNEVGpV+efqDczs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlk1DoSLpdZKuk9SWtq9Jel3ZkzMzs5Gl0TOV5cALwH9K2wvAd8qalJmZjUyNhsobI+ILEbE9bVcBJ/XVSVKrpK2S2iVdWqdekq5P9Q9KmpnKD5e0XtJmSVskXVWn76clhaRjq8ouS2NtlfS+BtdmZmaZNBoq+yS9o3tH0tuBfQfrIKkJuAGYD0wHzpc0vabZfGBa2hYBS1P5fmBuRJwBzABaJc2pGnsy8B7gF1Vl04HzgFOBVuCbaQ7ZPb3naX64/Yd0vNBRxvBmZuV58UW47z7YuBEisg8/usF2i4GV6T6KgOeAj/bRZxbQHhHbASStAhYCD1e1WQisjIgA1klqljQhInYCe1KbMWmrXv11wGeAf6gZa1VE7Acek9Se5vCTBtfYkK6Xu/jKj75C5286GX/YeK5977WMGzMu5yHMzMqzdi3ceitI8KlPwcyZWYdvKFQiYjNwhqTxaf+FBrpNBHZU7XcAsxtoMxHYmc4yNgJvAm6IiPsBJJ0DPBkRmyXVjrWuzlivIGkRxVkRJ5xwQgPLeKUg2PvSXsaNGcf+rv10RVe/xzAzGzL79sGoUfDyy7B/f/bhGwoVSYcBHwSmAKO7/zOPiKsP1q1OWe25Vq9tIqILmCGpGbhN0mnAduBy4L0DPB4RcSNwI0ClUun3ud/oUaP51Ns+xb2P38vsSbM5auxR/R3CzGzonHNOESpHHgmVSvbhG7389Q/Aboozh0ajrQOYXLU/CXiqv20iYpekeyjuk9wJTAW6z1ImAT+VNKvB42Ux7fXTmPb6aWUMbWZWrqOPhvPPL234RkNlUkS09nPsDcA0SVOBJyluon+ops0aYEm63zIb2B0ROyW1AC+lQBkHzAO+EhEPAcd1d5b0OFCJiF9JWgPcIunrwPEUN//X93POZmZ2CBoNlR9L+rfpP/WGRMQBSUsozi6agOURsUXS4lS/DLgdWAC0A3uBi1L3CcCKdF9lFLA6Itb2cbwtklZTPAhwAPh4uoRmZmaDRHGQR8okPURxr2IccALFPY39qSwi4vTBmGRZKpVKtLW1DfU0zMxGFEkbI6LuDZm+zlQ+QHGm0P0UlpmZWa8OGioR8QSApO8Cx0XEhkGZlZmZjUiN3lP598DFkp4AfsOr5PKXmZnl1WiozC91FmZm9qrQ6E/UP1H2RMzMbOTzH+kyM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsm1JDRVKrpK2S2iVdWqdekq5P9Q9KmpnKD5e0XtJmSVskXVXV54up7SZJd0k6PpVPkbQvlW+StKzMtZmZWU+lhYqkJuAGir8aOR04X9L0mmbzgWlpWwQsTeX7gbkRcQYwA2iVNCfVfTUiTo+IGcBa4Iqq8bZFxIy0LS5hWWZmdhBlnqnMAtojYntEvAisAhbWtFkIrIzCOqBZ0oS0vye1GZO2AIiIF6r6H9ldbmZmQ6/MUJkI7Kja70hlDbWR1CRpE/AMcHdE3N/dSNI1knYAF/DKM5Wpkh6QdK+ks+pNStIiSW2S2jo7Owe4NDMzq6fMUFGdstqzil7bRERXusQ1CZgl6bTfNoi4PCImAzcDS1LxTuCEiDgTuAS4RdL4HoNH3BgRlYiotLS09HdNZmZ2EGWGSgcwuWp/EvBUf9tExC7gHqC1zjFuAT6Y2u2PiGfT643ANuDkAc/ezMz6rcxQ2QBMkzRV0ljgPGBNTZs1wIXpKbA5wO6I2CmpRVIzgKRxwDzg0bQ/rar/OVXlLenhACSdRHHzf3tpqzMzsx5GlzVwRByQtAS4E2gClkfEFkmLU/0y4HZgAdAO7AUuSt0nACtSSIwCVkfE2lT3ZUmnAC8DTwDdT3mdDVwt6QDQBSyOiOfKWp+ZmfWkiNfuw1OVSiXa2tqGehpmZiOKpI0RUalX55+oNzOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2pYaKpFZJWyW1S7q0Tr0kXZ/qH5Q0M5UfLmm9pM2Stki6qqrPF1PbTZLuknR8Vd1laaytkt5X5trMzKyn0kJFUhNwAzAfmA6cL2l6TbP5wLS0LQKWpvL9wNyIOAOYAbRKmpPqvhoRp0fEDGAtcEU63nTgPOBUoBX4ZpqDmZkNkjLPVGYB7RGxPSJeBFYBC2vaLARWRmEd0CxpQtrfk9qMSVsARMQLVf2P7C5PY62KiP0R8RjQnuZgZmaDpMxQmQjsqNrvSGUNtZHUJGkT8Axwd0Tc391I0jWSdgAXkM5UGjwekhZJapPU1tnZOZB1mZlZL8oMFdUpi0bbRERXusQ1CZgl6bTfNoi4PCImAzcDS/pxPCLixoioRESlpaWl71WYmVnDygyVDmBy1f4k4Kn+tomIXcA9FPdJat0CfLAfxzMzsxKVGSobgGmSpkoaS3ETfU1NmzXAhekpsDnA7ojYKalFUjOApHHAPODRtD+tqv853eVprPMkHSZpKsXN//Ulrc3MzOoYXdbAEXFA0hLgTqAJWB4RWyQtTvXLgNuBBRQ31fcCF6XuE4AV6emtUcDqiFib6r4s6RTgZeAJoHu8LZJWAw8DB4CPR0RXWeszM7OeFNHjtsNrRqVSiba2tqGehpnZiCJpY0RU6tX5J+rNzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlk2poSKpVdJWSe2SLq1TL0nXp/oHJc1M5YdLWi9ps6Qtkq6q6vNVSY+m9rdJak7lUyTtk7QpbcvKXJuZmfVUWqhIagJuAOYD04HzJU2vaTYfmJa2RcDSVL4fmBsRZwAzgFZJc1Ld3cBpEXE68HPgsqrxtkXEjLQtLmFZZmZ2EGWeqcwC2iNie0S8CKwCFta0WQisjMI6oFnShLS/J7UZk7YAiIi7IuJAqlsHTCpxDWZm1g9lhspEYEfVfkcqa6iNpCZJm4BngLsj4v46x/gT4I6q/amSHpB0r6Sz6k1K0iJJbZLaOjs7+7UgMzM7uDJDRXXKotE2EdEVETMozkRmSTrtFR2ly4EDwM2paCdwQkScCVwC3CJpfI/BI26MiEpEVFpaWvqzHjMz60OZodIBTK7anwQ81d82EbELuAdo7S6T9BHgA8AFEdEdQvsj4tn0eiOwDTg5wzrMzKxBZYbKBmCapKmSxgLnAWtq2qwBLkxPgc0BdkfETkktVU91jQPmAY+m/Vbgs8A5EbG3e6DUpym9Poni5v/2EtdnZmY1Rpc1cEQckLQEuBNoApZHxBZJi1P9MuB2YAHQDuwFLkrdJwArUkiMAlZHxNpU9w3gMOBuSQDr0pNeZwNXSzoAdAGLI+K5stZnZmY9KV09ek2qVCrR1tY21NMwMxtRJG2MiEq9Ov9EvZmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLJvX9B/pktQJPDHU8+jDscCvhnoSGXgdw8+rZS1ex+A7MSJa6lW8pkNlJJDU1ttfWBtJvI7h59WyFq9jePHlLzMzy8ahYmZm2ThUhr8bh3oCmXgdw8+rZS1exzDieypmZpaNz1TMzCwbh4qZmWXjUBkiklolbZXULunSOvWSdH2qf1DSzKq6Zkm3SnpU0iOS3ja4s3/FPA9lHf9D0hZJP5P0XUmHD+7se8y1r7X8G0k/kbRf0qf703cwDXQdkiZL+qf0ObVF0icGd+Y95jng9yPVN0l6QNLawZlx7w7xc2vYfL03JCK8DfIGNAHbgJOAscBmYHpNmwXAHYCAOcD9VXUrgI+l12OB5pG2DmAi8BgwLu2vBj46zN+T44C3AtcAn+5P3xGyjgnAzPT6aODnI3EdVfWXALcAa4fq8yrHWobL13ujm89UhsYsoD0itkfEi8AqYGFNm4XAyiisA5olTZA0Hjgb+BuAiHgxInYN4tyrDXgdqW40ME7SaOAI4KnBmngdfa4lIp6JiA3AS/3tO4gGvI6I2BkRP02vfw08QhH+Q+FQ3g8kTQLeD3x7MCbbhwGvZZh9vTfEoTI0JgI7qvY76PnF21ubk4BO4Dvp1P7bko4sc7IHMeB1RMSTwLXAL4CdwO6IuKvEufalkbWU0Te3LHORNAU4E7g/z7T67VDX8ZfAZ4CXM85poA5lLcPp670hDpWhoTpltc9299ZmNDATWBoRZwK/AYbqGv6A1yHpGIrv1qYCxwNHSvpw5vn1RyNrKaNvboc8F0lHAX8PfDIiXsgyq/4b8DokfQB4JiI25p3SgB3KezKcvt4b4lAZGh3A5Kr9SfS89NNbmw6gIyK6v4O8leKTbigcyjrmAY9FRGdEvAR8D/h3Jc61L42spYy+uR3SXCSNoQiUmyPie5nn1h+Hso63A+dIepziUtNcSTflnV6/HOrn1nD5em+IQ2VobACmSZoqaSxwHrCmps0a4ML09NQcistDOyPil8AOSaekdu8GHh60mb/SgNdBcdlrjqQjJIliHY8M5uRrNLKWMvrmNuC5pPfhb4BHIuLrJc6xEQNeR0RcFhGTImJK6vePETGUZ8GHspbh9PXemKF+UuC1ulE8FfVziqdCLk9li4HF6bWAG1L9Q0Clqu8MoA14EPg+cMwIXcdVwKPAz4D/BRw2zN+TN1B85/gCsCu9Ht9b35G2DuAdFJdlHgQ2pW3BSFtHzRjvYoif/srwuTVsvt4b2fxrWszMLBtf/jIzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiNgxJOqf7t9lKurLeb+E1G45GD/UEzKyniFjD0P0ApdmA+UzFrASSPixpvaRNkv46/W2PPZK+Jumnkn4oqSW1/VNJD6v4ezOrUtlHJX2jzrgzJK1LbW9Lv0MNSfdI+ko65s8lnTW4KzYrOFTMMpP0ZuA/A2+PiBlAF3ABcCTw04iYCdwLfCF1uRQ4MyJOp/gp64NZCXw2tX2oagyA0RExC/hkTbnZoPHlL7P83g28BdhQ/DotxgHPUPwa9r9LbW6i+CWaUPz6jZslfZ/i13DUJel1FH+g6d5UtAL431VNusfbCEw5xDWYDYjPVMzyE7AiImak7ZSIuLJOu+7fkfR+it+P9hZgY/qjZQOxP/3bhb9htCHiUDHL74fAH0k6DkDS70k6keLr7Y9Smw8B90kaBUyOiH+i+KNSzcBR9QaNiN3A81X3S/6Y4jKa2bDh72bMMouIhyV9HrgrhcZLwMcp/sDSqZI2Arsp7rs0ATelS1sCrouIXemyWT0fAZZJOgLYDlxU7mrM+se/pdhskEjaExF1z0LMXi18+cvMzLLxmYqZmWXjMxUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbP4/0oZeMpUTAkoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epsilon kappa\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgLElEQVR4nO3de5hdVZ3m8e9LioQg0EETWkzSJIyBEYQO4ZDE1gAitAmC4fFGMBJEnRhavAzTdqMtgraO4mjbnYEOggSIQAIiYD0KE0dbYFQuqZh0SIBIEUCKRFIIxGgwEPjNH3uV7Jw6VXXqsurm+3me/Zxz9lp77bXqct7ae6/aRxGBmZlZTnsMdAfMzGz4c9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMRsmJB0vqWWg+1EmaYOk4zsp/6ykb/dfj2ygOGxsUJD0mKTnJf1e0lOSrpK0z0D3qzOSJkkKSQ191N5ekp6TdEKNsm9Kuqkv9tMTaZx/SN+fJyX9i6QRXW0XEYdHxB2dlP/PiPhIn3bWBiWHjQ0mp0bEPsA04Bjgc93ZWIUh8zNdHVIR8UfgBmBBVb0RwBnANf3Xu5r+On1/3ga8H/hvvWmsr0LahoYh84tpfz4i4kngduCNkvaX9ANJrZKeTc8ntNWVdIekL0v6ObADOFjS2ZIelLRd0iZJHy3VP15Si6R/kLRV0hZJp0k6WdKvJD0j6bOl+ntIOl/SI5J+K+lGSa9OxXelx+fSX/xvStt8KO3/WUkrJR1Uai8kfUzSw8DDNYZ/DfBuSXuX1r2d4nf19s7GVi3t6/Wl11dL+lLp9SmS1qajqV9IOrLj78orIuIh4P9RfH/+i6T/SF+bpyVdJ2lMaR+PSToxPb9I0k2SrpX0O+CDad21qbztSPEsSb9O7f1Tqa3Rkq5JX9cH0/ewpVT+j+moa7ukjZLeVs94rH84bGzQkTQROBlYQ/EzehVwEPBXwPPAJVWbnAksBPYFHge2AqcA+wFnA9+UNK1U/7XAXsB44PPAFcAHgKOBWcDnJR2c6n4COA04Dngd8CxwaSo7Nj2OiYh9IuJuSacBnwXeBYyjeFNeXtXf04AZwGHVY4+IXwBb0vbl8V0fEbvqGFtd0jZLgY8CrwG+BTRKGlXHtodRfJ3WAAK+QvG1eQMwEbiok83nAjcBY4DrOqjzFuBQiiOoz0t6Q1p/ITAJOBg4ieJ71tanQ4FzgWMiYl+KgH6sq7FYP4oIL14GfKF4Y/g98BxFYPw7MLpGvanAs6XXdwBf7KLtW4FPpufHUwTWiPR6XyCAGaX6q4HT0vMHgbeVyg4EXgQaKN74Amgold8OfLj0eg+KI66D0usATuiiv58DfpSe75e2P6rOsbWUygJ4fen11cCX0vMlwD9XtbUROK6D/QTwO4qwfQT4ErBHjXqnAWuqvq8npucXAXdV1b8IuDY9b/t6TiiV3wfMS883AW8vlX2kbbzA6ymC+ERgz4H+efbSfvE5UxtMTouIH5dXpNNJ3wRmA/un1ftKGhERL6XXT1RtM4fir+BDKN7s9wbuL1X5bWnb59PjU6Xy54G2yQkHAbdIerlU/hLwlx2M4SDg3yR9o9wliqOox2v1t4ZlwIWSxlP8hd4cEWvqHFu9DgLOkvTx0rqRFEcoHZkWEc3lFZIOABZTHOnsm/r0bCdtdDV2gN+Unu/gle/F66q2/9PziGiW9CmK8Dpc0krgvIjYXMf+rB/4NJoNdv+D4pTKjIjYj1dOXalU50+3Lk+ngb4HfB34y4gYA9xWVb87ngDmRMSY0rJXFNeVat0y/Qngo1X1R0dxeqxdf2uJiF9TnH6bT3EKbVkPx7aDIozavLaqn1+u6ufeEVF9yq8rX0njOTJ9fz7QSX+gi7F3YQswofR64m4NR1wfEW+hCNIALu7FvqyPOWxssNuX4kjjuXRh/sIu6o8ERgGtwK50JPC3vdj/ZcCX2y7ySxonaW4qawVepriGUK7/GUmHp/p/Iem9PdjvNRTXIN7MK9c2uju2tcD7JY2QNJviulObK4BFkmao8CpJ75C0bzf7uS/p9Gc6Evt0N7fvjhspvrb7p32d21Yg6VBJJ6RA/iPFz8xLHbRjA8BhY4PdvwKjgaeBe4D/01nliNhOcVH/RorTOe8HGnux/39L2/9I0vbUhxlpXzuALwM/TzO6ZkbELRR/Ua9IM67WA3N6sN+bKE4b/iQitvRwbJ8ETqW4Djaf4voOqa0miqnLl6S2moEP9qCfX6CYqr4N+CFwcw/aqNcXgRbgUeDHFF+jnalsFPBVip+T3wAHUEzUsEFCEf7wNDMbeiSdQzF54LguK9uA85GNmQ0Jkg6U9Ob0v0+HUlzPu2Wg+2X18Ww0MxsqRlL8P9BkilODKyimyNsQ4NNoZmaWnU+jmZlZdj6N1oGxY8fGpEmTBrobZmZDyurVq5+OiHHV6x02HZg0aRJNTU0D3Q0zsyFF0uO11vs0mpmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZZc1bCTNlrRRUrOk82uUS9LiVL5O0rRS2VJJWyWtr9rmBklr0/KYpLVp/fzS+rWSXpY0NZXdkfrRVnZAznGbmdnusn0stKQRwKXASUALsEpSY0Q8UKo2B5iSlhnAkvQIcDVwCbCs3G5EnF7axzeAbWn9dcB1af0RwPcjYm1p0/kR4c95NjMbADmPbKYDzRGxKSJeAFYAc6vqzAWWReEeYIykAwEi4i7gmY4alyTgfcDyGsVndLDezMwGQM6wGQ88UXrdktZ1t05HZgFPRcTDNcpOp33YXJVOoV2QgqodSQslNUlqam1trbMbZmbWlZxhU+sNPXpQpyM1j14kzQB2RET5Ws/8iDiCIqBmAWfWajAiLo+ISkRUxo0bV2c3zMysKznDpgWYWHo9AdjcgzrtSGoA3gXcUKN4HlUhFBFPpsftwPUUp/jMzKyf5AybVcAUSZMljaQIgcaqOo3AgjQrbSawLSK21NH2icBDEdFSXilpD+C9FNeH2tY1SBqbnu8JnALsNsPNzMzyyjYbLSJ2SToXWAmMAJZGxAZJi1L5ZcBtwMlAM7ADOLtte0nLgeOBsZJagAsj4spU3O7oJTkWaImITaV1o4CVKWhGAD8GruizgZqZWZcUUe8lkj8vlUolmpo8U9rMrDskrY6ISvV630HAzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtllDRtJsyVtlNQs6fwa5ZK0OJWvkzStVLZU0lZJ66u2uUHS2rQ8JmltWj9J0vOlsstK2xwt6f60n8WSlHHYZmZWJVvYSBoBXArMAQ4DzpB0WFW1OcCUtCwElpTKrgZmV7cbEadHxNSImAp8D7i5VPxIW1lELCqtX5Lab9tXu3bNzCyfnEc204HmiNgUES8AK4C5VXXmAsuicA8wRtKBABFxF/BMR42no5P3Acs760Rqb7+IuDsiAlgGnNbDMZmZWQ/kDJvxwBOl1y1pXXfrdGQW8FREPFxaN1nSGkl3SppV2kdLPfuQtFBSk6Sm1tbWOrthZmZdyRk2ta6LRA/qdOQMdj+q2QL8VUQcBZwHXC9pv+7sIyIuj4hKRFTGjRtXZzfMzKwrDRnbbgEmll5PADb3oE47khqAdwFHt62LiJ3AzvR8taRHgEPSPiZ0dx9mZtZ3ch7ZrAKmSJosaSQwD2isqtMILEiz0mYC2yJiSx1tnwg8FBF/Oj0maVyalICkgykmAmxK7W2XNDNd51kAfL/XozMzs7plO7KJiF2SzgVWAiOApRGxQdKiVH4ZcBtwMtAM7ADObtte0nLgeGCspBbgwoi4MhXPo/3EgGOBL0raBbwELIqItgkG51DMbhsN3J4WMzPrJyomaFm1SqUSTU1NA90NM7MhRdLqiKhUr/cdBMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWXdawkTRb0kZJzZLOr1EuSYtT+TpJ00plSyVtlbS+apsbJK1Ny2OS1qb1J0laLen+9HhCaZs7Uj/atjsg47DNzKxKQ66GJY0ALgVOAlqAVZIaI+KBUrU5wJS0zACWpEeAq4FLgGXldiPi9NI+vgFsSy+fBk6NiM2S3gisBMaXNp0fEU19MzozM+uOnEc204HmiNgUES8AK4C5VXXmAsuicA8wRtKBABFxF/BMR41LEvA+YHmqvyYiNqfiDcBekkb16YjMzKxHcobNeOCJ0usWdj/SqLdOR2YBT0XEwzXK3g2siYidpXVXpVNoF6SgakfSQklNkppaW1vr7IaZmXUlZ9jUekOPHtTpyBmko5rdGpQOBy4GPlpaPT8ijqAIqFnAmbUajIjLI6ISEZVx48bV2Q0zM+tKzrBpASaWXk8ANvegTjuSGoB3ATdUrZ8A3AIsiIhH2tZHxJPpcTtwPcUpPjMz6yc5w2YVMEXSZEkjgXlAY1WdRmBBmpU2E9gWEVvqaPtE4KGIaGlbIWkM8EPgMxHx89L6Bklj0/M9gVOA9ZiZWb/JFjYRsQs4l2JW2IPAjRGxQdIiSYtStduATUAzcAXwd23bS1oO3A0cKqlF0odLzc+j/Sm0c4HXAxdUTXEeBayUtA5YCzyZ9mVmZv1EEfVeIvnzUqlUoqnJM6XNzLpD0uqIqFSv9x0EzMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7Ps6v5YaEnvAA4H9mpbFxFfzNEpMzMbXuo6spF0GXA68HGKDzx7L3BQxn6ZmdkwUu9ptL+JiAXAsxHxBeBN7P6hZ2ZmZh2qN2yeT487JL0OeBGYnKdLZmY23NR7zeYH6ZMw/xfwSyDwB5CZmVmd6gqbiPjn9PR7kn4A7BUR2/J1y8zMhpO6wkbSXhQf2fwWiqOan0laEhF/zNk5MzMbHuo9jbYM2A787/T6DOA7FLPSzMzMOlVv2BwaEX9dev1TSf+Zo0NmZjb81DsbbY2kmW0vJM0Aft7VRpJmS9ooqVnS+TXKJWlxKl8naVqpbKmkrZLWV21zg6S1aXlM0tpS2WdSWxslvb20/mhJ96eyxZJU57jNzKwP1Bs2M4BfpDf3x4C7gePSG/i6WhtIGgFcCswBDgPOkHRYVbU5wJS0LASWlMquBmZXtxsRp0fE1IiYCnwPuDnt7zBgHsVdDmYD/576QGp3YWlf7drtCy++9CI/e/xnNG1uIiJy7MLMLJ+NG+GnP4Xt2/u86XpPo/XkzXk60BwRmwAkrQDmAg+U6swFlkXxznyPpDGSDoyILRFxl6RJHTWejk7eB5xQamtFROwEHpXUDExP4bhfRNydtlsGnAbc3oMxdeq2h2/jhg03IMR5bzqPo193dF/vwswsj82b4eKLYedOWLMGzjuvT5uv68gmIh4HXkPxhv5O4DUR8Xjb0sFm44EnSq9b0rru1unILOCpiHi4i7bGp+dd7kPSQklNkppaW1vr7MYrdry4gz20B0Hwx12eqGdmQ8jOnfDSSzByJPzhD33efL1Tnz9PMfPs5rTqKknfjYgvdbZZjXXV55bqqdORM4DldbRV9z4i4nLgcoBKpdLt82CnHnoqQozeczTTx0/v7uZmZgNn0iT40Ifg0Udhdt9faaj3NNoZwFFt/1cj6asUdxLoLGxa2P3+aROAzT2o046kBuBdQPk8VUdttaTn3dpHT+wzch/mHTEvR9NmZnlJcNxxxZJBvRMEHqP00QLAKOCRLrZZBUyRNFnSSIqL941VdRqBBWlW2kxgW0RsqaM/JwIPRUT59FgjME/SKEmTKSYC3Jfa2y5pZrrOswD4fh37MDOzPlLvkc1OYIOk/0txCuokirsILAaIiE9UbxARuySdC6wERgBLI2KDpEWp/DLgNuBkoBnYAZzdtr2k5cDxwFhJLcCFEXFlKp7H7qfQSG3fSDEBYRfwsYh4KRWfQzG7bTTFxIA+nxxgZmYdUz1TdCWd1Vl5RFzTZz0aJCqVSjQ1NQ10N8zMhhRJqyOiUr2+3htxDrswMTOz/lPvbLQpwFco/jmz/LHQB2fql5mZDSP1ThC4iuK/8HcBb6W4Med3cnXKzMyGl3rDZnRE/ITiGs/jEXERr/znvpmZWafqnY32R0l7AA+nGWZPAgfk65aZmQ0n9R7ZfArYG/gExT9Snglcm6lPZmY2zNQbNt8CJkdES0ScDXwXOCVft8zMbDip9zTae4CbJM2n+GjoM4G/zdYrMzMbVur9P5tNkuYBt1LcWfntEfF8zo6Zmdnw0WnYSLqf3e+Q/GqKW8/cK4mIODJn58zMbHjo6sjG12XMzKzXOg2bTj4YzczMrG71zkYzMzPrMYeNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2WUNG0mzJW2U1Czp/BrlkrQ4la+TNK1UtlTSVknra2z38dTuBklfS+vmS1pbWl6WNDWV3ZHqt5X5s3jMzPpRvXd97jZJI4BLgZOAFmCVpMaIeKBUbQ4wJS0zKD56ekYquxq4hOIjqMvtvhWYCxwZETvbgiMirgOuS3WOAL4fEWtLm86PiKa+HKOZmdUn55HNdKA5IjZFxAvACoqQKJsLLIvCPcAYSQcCRMRdwDM12j0H+GpE7Ez1ttaocwawvI/GYWZmvZQzbMZTfBxBm5a0rrt1qh0CzJJ0r6Q7JR1To87ptA+bq9IptAskqVbDkhZKapLU1Nra2kU3zMysXjnDptYbevSgTrUGYH9gJvBp4MZyeEiaAeyIiPK1nvkRcQQwKy1n1mo4Ii6PiEpEVMaNG9dFN8zMrF45w6YFmFh6PQHY3IM6tdq9OZ16uw94GRhbKp9H1VFNRDyZHrcD11Oc4jMzs36SM2xWAVMkTZY0kiIEGqvqNAIL0qy0mcC2iNjSRbu3AicASDoEGAk8nV7vAbyX4voQaV2DpLHp+Z4Un9HTboabmZnlk202WkTsknQusJLi0z2XRsQGSYtS+WXAbcDJQDOwAzi7bXtJy4HjgbGSWoALI+JKYCmwNE2JfgE4KyLaTr0dC7RExKZSV0YBK1PQjAB+DFyRadhmZlaDXnmftrJKpRJNTZ4pbWbWHZJWR0Sler3vIGBmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7LKGjaTZkjZKapZ0fo1ySVqcytdJmlYqWyppq6T1Nbb7eGp3g6SvpXWTJD0vaW1aLivVP1rS/Wk/iyUp15jNzKy9bGEjaQRwKTAHOAw4Q9JhVdXmAFPSshBYUiq7Gphdo923AnOBIyPicODrpeJHImJqWhaV1i9J7bftq127ZmaWT84jm+lAc0RsiogXgBUUIVE2F1gWhXuAMZIOBIiIu4BnarR7DvDViNiZ6m3trBOpvf0i4u6ICGAZcFovxmVmZt2UM2zGA0+UXrekdd2tU+0QYJakeyXdKemYUtlkSWvS+lmlfbTUsw9JCyU1SWpqbW3tohtmZlavhoxt17ouEj2oU60B2B+YCRwD3CjpYGAL8FcR8VtJRwO3Sjq8O/uIiMuBywEqlUpX/TAzszrlPLJpASaWXk8ANvegTq12b06n3u4DXgbGRsTOiPgtQESsBh6hOApqSe12Zx9mZtaHcobNKmCKpMmSRgLzgMaqOo3AgjQrbSawLSK2dNHurcAJAJIOAUYCT0salyYlkI50pgCbUnvbJc1Ms9AWAN/vmyGamVk9sp1Gi4hdks4FVgIjgKURsUHSolR+GXAbcDLQDOwAzm7bXtJy4HhgrKQW4MKIuBJYCixNU6JfAM6KiJB0LPBFSbuAl4BFEdE2weAcitlto4Hb02JmZv1ExQQtq1apVKKpqWmgu2FmNqRIWh0Rler1voOAmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLLLGjaSZkvaKKlZ0vk1yiVpcSpfJ2laqWyppK2S1tfY7uOp3Q2SvpbWnSRptaT70+MJpfp3pPpr03JArjGbmVl7DbkaljQCuBQ4CWgBVklqjIgHStXmAFPSMgNYkh4BrgYuAZZVtftWYC5wZETsLAXH08CpEbFZ0huBlcD40qbzI6KpD4doZmZ1ynlkMx1ojohNEfECsIIiJMrmAsuicA8wRtKBABFxF/BMjXbPAb4aETtTva3pcU1EbE51NgB7SRrV56MyM7Nuyxk244EnSq9b2P1Io9461Q4BZkm6V9Kdko6pUefdwJq2QEquSqfQLpCkWg1LWiipSVJTa2trF90wM7N65QybWm/o0YM61RqA/YGZwKeBG8vhIelw4GLgo6Vt5kfEEcCstJxZq+GIuDwiKhFRGTduXBfdMDOzeuUMmxZgYun1BGBzD+rUavfmdOrtPuBlYCyApAnALcCCiHikbYOIeDI9bgeupzjFZ2Zm/SRn2KwCpkiaLGkkMA9orKrTCCxIs9JmAtsiYksX7d4KnAAg6RBgJPC0pDHAD4HPRMTP2ypLapDUFkZ7AqcA7Wa4mZlZPtnCJiJ2AedSzAp7ELgxIjZIWiRpUap2G7AJaAauAP6ubXtJy4G7gUMltUj6cCpaChycpkSvAM6KiEj7ej1wQdUU51HASknrgLXAk2lfZmbWT1S8T1u1SqUSTU2eKW1m1h2SVkdEpXq97yBgZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzh+e1gFJrcDjA92PTowFnh7oTvSB4TIOGD5j8TgGn6E0loMiYlz1SofNECWpqdan4Q01w2UcMHzG4nEMPsNhLD6NZmZm2TlszMwsO4fN0HX5QHegjwyXccDwGYvHMfgM+bH4mo2ZmWXnIxszM8vOYWNmZtk5bAYhSbMlbZTULOn8GuWStDiVr5M0rVQ2RtJNkh6S9KCkN/Vv73frZ2/G8d8lbZC0XtJySXv1b+9362dX4/ivku6WtFPS33dn2/7U03FImijpp+nnaYOkT/Zvz9vrzfcklY+QtEbSD/qnx7X18mdr0Pyu1yUivAyiBRgBPAIcDIwE/hM4rKrOycDtgICZwL2lsmuAj6TnI4ExQ20cwHjgUWB0en0j8MFBPI4DgGOALwN/351th8g4DgSmpef7Ar8aqHH0diyl8vOA64EfDNVxDJbf9XoXH9kMPtOB5ojYFBEvACuAuVV15gLLonAPMEbSgZL2A44FrgSIiBci4rl+7HtZj8eRyhqA0ZIagL2Bzf3V8SpdjiMitkbEKuDF7m7bj3o8jojYEhG/TM+3Aw9S/EEwUHrzPUHSBOAdwLf7o7Od6PE4Btnvel0cNoPPeOCJ0usW2v9id1TnYKAVuCqdIvi2pFfl7GwnejyOiHgS+Drwa2ALsC0ifpSxr52pZxw5tu1rfdIXSZOAo4B7+6ZbPdLbsfwr8A/Ay33Yp57ozTgG0+96XRw2g49qrKuen95RnQZgGrAkIo4C/gAM1HWCHo9D0v4Uf+FNBl4HvErSB/q4f/WqZxw5tu1rve6LpH2A7wGfiojf9UmveqbHY5F0CrA1Ilb3bZd6pDffk8H0u14Xh83g0wJMLL2eQPtTSB3VaQFaIqLtr86bKH4gB0JvxnEi8GhEtEbEi8DNwN9k7Gtn6hlHjm37Wq/6ImlPiqC5LiJu7uO+dVdvxvJm4J2SHqM4bXWCpGv7tnt16+3P1mD5Xa+Lw2bwWQVMkTRZ0khgHtBYVacRWJBmc82kOM20JSJ+Azwh6dBU723AA/3W8931eBwUp89mStpbkijG8WB/dr6knnHk2Lav9bgv6XtwJfBgRPxLxj7Wq8djiYjPRMSEiJiUtvuPiBioo+bejGMw/a7XZ6BnKHhpv1DM0voVxUyVf0rrFgGL0nMBl6by+4FKadupQBOwDrgV2H+IjuMLwEPAeuA7wKhBPI7XUvyl+TvgufR8v462HWrjAN5CcXpnHbA2LScPxbFUtXE8AzgbrQ9+tgbN73o9i29XY2Zm2fk0mpmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhuzIUbSO9vuECzpolp3NTYbbBoGugNm1j0R0cjA/XOoWY/4yMasn0n6gKT7JK2V9K302Sq/l/QNSb+U9BNJ41LdT0h6QMXn/axI6z4o6ZIa7U6VdE+qe0u6xxyS7pB0cdrnryTN6t8RmzlszPqVpDcApwNvjoipwEvAfOBVwC8jYhpwJ3Bh2uR84KiIOJLiP8s7swz4x1T3/lIbAA0RMR34VNV6s37h02hm/ettwNHAquKWY4wGtlLc7v6GVOdaipuPQnErkusk3UpxS5KaJP0FxYdn3ZlWXQN8t1Slrb3VwKRejsGs23xkY9a/BFwTEVPTcmhEXFSjXtt9pN5Bcf+4o4HV6cPkemJnenwJ/5FpA8BhY9a/fgK8R9IBAJJeLekgit/F96Q67wd+JmkPYGJE/JTiw77GAPvUajQitgHPlq7HnElxOs5sUPBfOGb9KCIekPQ54EcpTF4EPkbx4VeHS1oNbKO4rjMCuDadIhPwzYh4Lp1+q+Us4DJJewObgLPzjsasfr7rs9kgIOn3EVHzqMVsOPBpNDMzy85HNmZmlp2PbMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyy+/8Z97z+FvBUKAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epsilon xi\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAe4UlEQVR4nO3df5yWdZ3v8ddbRhBTF/cwbgQoeEJPmh7CW6BTmJmewHTxUVtiJGZ1CMu2jmfbtTbT7dTZ7NS2y0MXVxOVVflxTG0epUuP2tRTSTIEB0ElR7QYIRlTicJQ4HP+uL5TF/fcw9zz4zs/6P18PK7HfV/fX9f3y8zc77mu++IeRQRmZmY5HTLQEzAzs4Ofw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eN2UFC0pmSWgd6HmWSNko68wD1n5X0jf6bkQ0Uh40NCpKekfSypN9Iek7SLZKOGOh5HYikCZJCUkMfjXeYpJcknVWj7uuS7uqL4/REWudv09fnWUn/IGlYV/0i4uSIeOAA9f8rIj7Sp5O1QclhY4PJ+RFxBDAFOB34XHc6qzBkvqerQyoifgcsB+ZVtRsGXATc1n+zq+k/p6/PO4D3A/+tN4P1VUjb0DBkfjDtj0dEPAvcD7xR0tGSvi2pTdKL6fm49raSHpD0JUk/AnYBx0u6VNLjknZK2izpo6X2Z0pqlfTXkrZL2ibpAknnSvqZpBckfbbU/hBJV0p6StKvJK2Q9Kep+qH0+FL6jf/Nqc+H0vFflLRS0nGl8ULSxyU9CTxZY/m3Ae+RdHip7J0UP6v3H2ht1dKxXl/av1XSF0v750lal86mfizp1M6/Kn8QEU8A/5fi6/MfJf17+rd5XtIdkkaVjvGMpLPT82sk3SXpdkm/Bj6Yym5P9e1nipdI+kUa729LY42UdFv6d308fQ1bS/V/k866dkraJOkd9azH+ofDxgYdSeOBc4G1FN+jtwDHAccCLwPXVXW5GJgPHAn8HNgOnAccBVwKfF3SlFL71wKHAWOBzwM3AR8ATgNmAJ+XdHxq+5fABcDbgNcBLwLXp7oz0uOoiDgiIh6WdAHwWeDdQCPFi/LSqvleAEwDTqpee0T8GNiW+pfXd2dE7KljbXVJfRYDHwX+A/AvQJOkEXX0PYni32ktIODvKf5t3gCMB645QPfZwF3AKOCOTtq8FTiR4gzq85LekMqvBiYAxwPnUHzN2ud0InA5cHpEHEkR0M90tRbrRxHhzduAbxQvDL8BXqIIjH8GRtZoNxl4sbT/APCFLsa+F/hken4mRWANS/tHAgFMK7VfA1yQnj8OvKNUNwZ4FWigeOELoKFUfz/w4dL+IRRnXMel/QDO6mK+nwO+m54flfq/qc61tZbqAnh9af9W4Ivp+SLgf1aNtQl4WyfHCeDXFGH7FPBF4JAa7S4A1lZ9Xc9Oz68BHqpqfw1we3re/u85rlT/CDAnPd8MvLNU95H29QKvpwjis4FDB/r72VvHzddMbTC5ICK+Vy5Il5O+DswEjk7FR0oaFhF70/6Wqj6zKH4LPoHixf5w4NFSk1+V+r6cHp8r1b8MtN+ccBxwj6R9pfq9wJ91sobjgH+S9LXylCjOon5ea741LAGuljSW4jf0lohYW+fa6nUccImkT5TKhlOcoXRmSkS0lAskHQMspDjTOTLN6cUDjNHV2gF+WXq+iz98LV5X1f/3zyOiRdKnKMLrZEkrgSsiYmsdx7N+4MtoNtj9D4pLKtMi4ij+cOlKpTa//+jydBnom8BXgT+LiFHAfVXtu2MLMCsiRpW2w6J4X6nWR6ZvAT5a1X5kFJfHOsy3loj4BcXlt7kUl9CW9HBtuyjCqN1rq+b5pap5Hh4R1Zf8uvL3aT2npq/PBw4wH+hi7V3YBowr7Y/fb+CIOyPirRRBGsC1vTiW9TGHjQ12R1KcabyU3pi/uov2w4ERQBuwJ50J/NdeHP8G4Evtb/JLapQ0O9W1Afso3kMot/+MpJNT+z+R9N4eHPc2ivcg3sIf3tvo7trWAe+XNEzSTIr3ndrdBCyQNE2F10h6l6QjuznPI0mXP9OZ2Ke72b87VlD82x6djnV5e4WkEyWdlQL5dxTfM3s7GccGgMPGBrt/BEYCzwOrgH87UOOI2Enxpv4Kiss57weaenH8f0r9vytpZ5rDtHSsXcCXgB+lO7qmR8Q9FL9RL0t3XG0AZvXguHdRXDb8fkRs6+HaPgmcT/E+2FyK93dIYzVT3Lp8XRqrBfhgD+b5dxS3qu8AvgPc3YMx6vUFoBV4Gvgexb/R7lQ3AvgyxffJL4FjKG7UsEFCEf7jaWY29Ei6jOLmgbd12dgGnM9szGxIkDRG0lvS/306keL9vHsGel5WH9+NZmZDxXCK/w80keLS4DKKW+RtCPBlNDMzy86X0czMLDtfRuvE6NGjY8KECQM9DTOzIWXNmjXPR0RjdbnDphMTJkygubl5oKdhZjakSPp5rXJfRjMzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+yyho2kmZI2SWqRdGWNeklamOrXS5pSqlssabukDVV9lktal7ZnJK1L5XNL5esk7ZM0OdU9kObRXndMznWbmdn+sv1ZaEnDgOuBc4BWYLWkpoh4rNRsFjApbdOARekR4FbgOmBJedyIuLB0jK8BO1L5HcAdqfwU4FsRsa7UdW5E+O88m5kNgJxnNlOBlojYHBGvAMuA2VVtZgNLorAKGCVpDEBEPAS80NngkgS8D1hao/qiTsrNzGwA5AybscCW0n5rKutum87MAJ6LiCdr1F1Ix7C5JV1CuyoFVQeS5ktqltTc1tZW5zTMzKwrOcOm1gt69KBNZ2qevUiaBuyKiPJ7PXMj4hSKgJoBXFxrwIi4MSIqEVFpbGyscxpmZtaVnGHTCowv7Y8DtvagTQeSGoB3A8trVM+hKoQi4tn0uBO4k+ISn5mZ9ZOcYbMamCRpoqThFCHQVNWmCZiX7kqbDuyIiG11jH028EREtJYLJR0CvJfi/aH2sgZJo9PzQ4HzgP3ucDMzs7yy3Y0WEXskXQ6sBIYBiyNio6QFqf4G4D7gXKAF2AVc2t5f0lLgTGC0pFbg6oi4OVV3OHtJzgBaI2JzqWwEsDIFzTDge8BNfbZQMzPrkiLqfYvkj0ulUonmZt8pbWbWHZLWRESlutyfIGBmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7LKGjaSZkjZJapF0ZY16SVqY6tdLmlKqWyxpu6QNVX2WS1qXtmckrUvlEyS9XKq7odTnNEmPpuMslKSMyzYzsyrZwkbSMOB6YBZwEnCRpJOqms0CJqVtPrCoVHcrMLN63Ii4MCImR8Rk4JvA3aXqp9rrImJBqXxRGr/9WB3GNTOzfHKe2UwFWiJic0S8AiwDZle1mQ0sicIqYJSkMQAR8RDwQmeDp7OT9wFLDzSJNN5REfFwRASwBLigh2syM7MeyBk2Y4Etpf3WVNbdNp2ZATwXEU+WyiZKWivpQUkzSsdorecYkuZLapbU3NbWVuc0zMysKznDptb7ItGDNp25iP3ParYBx0bEm4ArgDslHdWdY0TEjRFRiYhKY2NjndMwM7OuNGQcuxUYX9ofB2ztQZsOJDUA7wZOay+LiN3A7vR8jaSngBPSMcZ19xhmZtZ3cp7ZrAYmSZooaTgwB2iqatMEzEt3pU0HdkTEtjrGPht4IiJ+f3lMUmO6KQFJx1PcCLA5jbdT0vT0Ps884Fu9Xp2ZmdUt25lNROyRdDmwEhgGLI6IjZIWpPobgPuAc4EWYBdwaXt/SUuBM4HRklqBqyPi5lQ9h443BpwBfEHSHmAvsCAi2m8wuIzi7raRwP1pMzOzfqLiBi2rVqlUorm5eaCnYWY2pEhaExGV6nJ/goCZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsssaNpJmStokqUXSlTXqJWlhql8vaUqpbrGk7ZI2VPVZLmld2p6RtC6VnyNpjaRH0+NZpT4PpHm09zsm47LNzKxKQ66BJQ0DrgfOAVqB1ZKaIuKxUrNZwKS0TQMWpUeAW4HrgCXlcSPiwtIxvgbsSLvPA+dHxFZJbwRWAmNLXedGRHPfrM7MzLoj55nNVKAlIjZHxCvAMmB2VZvZwJIorAJGSRoDEBEPAS90NrgkAe8Dlqb2ayNia6reCBwmaUSfrsjMzHokZ9iMBbaU9lvZ/0yj3jadmQE8FxFP1qh7D7A2InaXym5Jl9CuSkHVgaT5kpolNbe1tdU5DTMz60rOsKn1gh49aNOZi0hnNfsNKJ0MXAt8tFQ8NyJOoQioGcDFtQaMiBsjohIRlcbGxjqnYWZmXckZNq3A+NL+OGBrD9p0IKkBeDewvKp8HHAPMC8inmovj4hn0+NO4E6KS3xmZtZPcobNamCSpImShgNzgKaqNk3AvHRX2nRgR0Rsq2Pss4EnIqK1vUDSKOA7wGci4kel8gZJo9PzQ4HzgA2YmVm/yRY2EbEHuJzirrDHgRURsVHSAkkLUrP7gM1AC3AT8LH2/pKWAg8DJ0pqlfTh0vBz6HgJ7XLg9cBVVbc4jwBWSloPrAOeTccyM7N+ooh63yL541KpVKK52XdKm5l1h6Q1EVGpLvcnCJiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsu6xhI2mmpE2SWiRdWaNekham+vWSppTqFkvaLmlDVZ/lktal7RlJ60p1n0ljbZL0zlL5aZIeTXULJSnTks3MrIZsYSNpGHA9MAs4CbhI0klVzWYBk9I2H1hUqrsVmFk9bkRcGBGTI2Iy8E3g7nS8k4A5wMmp3z+nOZDGnV86Vodx+8Kre1/lhz//Ic1bm4mIHIcwM8tn0yb4wQ9g584+H7qhswpJKyLifZIeBcqvnAIiIk7tYuypQEtEbE7jLQNmA4+V2swGlkTxyrxK0ihJYyJiW0Q8JGnCAeYn4H3AWaWxlkXEbuBpSS3AVEnPAEdFxMOp3xLgAuD+Lubfbfc9eR/LNy5HiCvefAWnve60vj6EmVkeW7fCtdfC7t2wdi1ccUWfDt9p2ACfTI9zgN9U1b29jrHHAltK+63AtDrajAW21TH+DOC5iHiyNNaqGmO9mp5Xl3cgaT7FGRDHHntsHVPY365Xd3GIDmFf7ON3e37X7f5mZgNm927YuxeGD4ff/rbPh+80bCKi/QV/ObAE+N/AYcBXgArFZa4DqfW+SPW1pXradOYiYGkdY9V9jIi4EbgRoFKpdPs62Pknno8QIw8dydSxU7vb3cxs4EyYAB/6EDz9NMzs+3caDnRm024acC3wY+BI4A7gLXX0awXGl/bHAVt70KYDSQ3Au4HydarOxmpNz7t1jJ44YvgRzDllTo6hzczykuBtbyu2DOq5QeBV4GVgJMWZzdMRsa+OfquBSZImShpOcTmuqapNEzAv3ZU2HdhROqM6kLOBJyKifHmsCZgjaYSkiRQ3AjySxtspaXp6n2ce8K06jmFmZn2knrBZTRE2pwNvpbir7K6uOkXEHuByYCXwOLAiIjZKWiBpQWp2H7AZaAFuAj7W3l/SUuBh4ERJrZI+XBp+DvtfQiMiNgIrKG5A+Dfg4xGxN1VfBnwjHecpMtwcYGZmnVNXt+hKqkREc1XZxRHxr1lnNsAqlUo0Nzd33dDMzH5P0pqIqFSXd3lmUx00qeygDhozM+tb/rgaMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCy7rGEjaaakTZJaJF1Zo16SFqb69ZKmlOoWS9ouaUONfp9I426U9JVUNlfSutK2T9LkVPdAat9ed0zGZZuZWZWGXANLGgZcD5wDtAKrJTVFxGOlZrOASWmbBixKjwC3AtcBS6rGfTswGzg1Ina3B0dE3AHckdqcAnwrItaVus6NiOa+XKOZmdUn55nNVKAlIjZHxCvAMoqQKJsNLInCKmCUpDEAEfEQ8EKNcS8DvhwRu1O77TXaXAQs7aN1mJlZL+UMm7HAltJ+ayrrbptqJwAzJP1E0oOSTq/R5kI6hs0t6RLaVZJUa2BJ8yU1S2pua2vrYhpmZlavnGFT6wU9etCmWgNwNDAd+DSwohwekqYBuyKi/F7P3Ig4BZiRtotrDRwRN0ZEJSIqjY2NXUzDzMzqlTNsWoHxpf1xwNYetKk17t3p0tsjwD5gdKl+DlVnNRHxbHrcCdxJcYnPzMz6Sc6wWQ1MkjRR0nCKEGiqatMEzEt3pU0HdkTEti7GvRc4C0DSCcBw4Pm0fwjwXor3h0hlDZJGp+eHAucBHe5wMzOzfLLdjRYReyRdDqwEhgGLI2KjpAWp/gbgPuBcoAXYBVza3l/SUuBMYLSkVuDqiLgZWAwsTrdEvwJcEhHtl97OAFojYnNpKiOAlSlohgHfA27KtGwzM6tBf3idtrJKpRLNzb5T2sysOyStiYhKdbk/QcDMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2WUNG0kzJW2S1CLpyhr1krQw1a+XNKVUt1jSdkkbavT7RBp3o6SvpLIJkl6WtC5tN5Tanybp0XSchZKUa81mZtZRtrCRNAy4HpgFnARcJOmkqmazgElpmw8sKtXdCsysMe7bgdnAqRFxMvDVUvVTETE5bQtK5YvS+O3H6jCumZnlk/PMZirQEhGbI+IVYBlFSJTNBpZEYRUwStIYgIh4CHihxriXAV+OiN2p3fYDTSKNd1REPBwRASwBLujFuszMrJtyhs1YYEtpvzWVdbdNtROAGZJ+IulBSaeX6iZKWpvKZ5SO0VrPMSTNl9Qsqbmtra2LaZiZWb0aMo5d632R6EGbag3A0cB04HRghaTjgW3AsRHxK0mnAfdKOrk7x4iIG4EbASqVSlfzMDOzOuU8s2kFxpf2xwFbe9Cm1rh3p0tvjwD7gNERsTsifgUQEWuApyjOglrTuN05hpmZ9aGcYbMamCRpoqThwBygqapNEzAv3ZU2HdgREdu6GPde4CwASScAw4HnJTWmmxJIZzqTgM1pvJ2Spqe70OYB3+qbJZqZWT2yXUaLiD2SLgdWAsOAxRGxUdKCVH8DcB9wLtAC7AIube8vaSlwJjBaUitwdUTcDCwGFqdbol8BLomIkHQG8AVJe4C9wIKIaL/B4DKKu9tGAvenzczM+omKG7SsWqVSiebm5oGehpnZkCJpTURUqsv9CQJmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzyy5r2EiaKWmTpBZJV9aol6SFqX69pCmlusWStkvaUKPfJ9K4GyV9JZWdI2mNpEfT41ml9g+k9uvSdkyuNZuZWUcNuQaWNAy4HjgHaAVWS2qKiMdKzWYBk9I2DViUHgFuBa4DllSN+3ZgNnBqROwuBcfzwPkRsVXSG4GVwNhS17kR0dyHSzQzszrlPLOZCrRExOaIeAVYRhESZbOBJVFYBYySNAYgIh4CXqgx7mXAlyNid2q3PT2ujYitqc1G4DBJI/p8VWZm1m05w2YssKW038r+Zxr1tql2AjBD0k8kPSjp9Bpt3gOsbQ+k5JZ0Ce0qSao1sKT5kpolNbe1tXUxDTMzq1fOsKn1gh49aFOtATgamA58GlhRDg9JJwPXAh8t9ZkbEacAM9J2ca2BI+LGiKhERKWxsbGLaZiZWb1yhk0rML60Pw7Y2oM2tca9O116ewTYB4wGkDQOuAeYFxFPtXeIiGfT407gTopLfGZm1k9yhs1qYJKkiZKGA3OApqo2TcC8dFfadGBHRGzrYtx7gbMAJJ0ADAeelzQK+A7wmYj4UXtjSQ2S2sPoUOA8oMMdbmZmlk+2sImIPcDlFHeFPQ6siIiNkhZIWpCa3QdsBlqAm4CPtfeXtBR4GDhRUqukD6eqxcDx6ZboZcAlERHpWK8Hrqq6xXkEsFLSemAd8Gw6lpmZ9RMVr9NWrVKpRHOz75Q2M+sOSWsiolJd7k8QMDOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZec/ntYJSW3Azwd6HgcwGnh+oCfRBw6WdcDBsxavY/AZSms5LiIaqwsdNkOUpOZafw1vqDlY1gEHz1q8jsHnYFiLL6OZmVl2DhszM8vOYTN03TjQE+gjB8s64OBZi9cx+Az5tfg9GzMzy85nNmZmlp3DxszMsnPYDEKSZkraJKlF0pU16iVpYapfL2lKqW6UpLskPSHpcUlv7t/Z7zfP3qzjv0vaKGmDpKWSDuvf2e83z67W8Z8kPSxpt6S/6k7f/tTTdUgaL+kH6ftpo6RP9u/MO+rN1yTVD5O0VtK3+2fGtfXye2vQ/KzXJSK8DaINGAY8BRwPDAf+H3BSVZtzgfsBAdOBn5TqbgM+kp4PB0YNtXUAY4GngZFpfwXwwUG8jmOA04EvAX/Vnb5DZB1jgCnp+ZHAzwZqHb1dS6n+CuBO4NtDdR2D5We93s1nNoPPVKAlIjZHxCvAMmB2VZvZwJIorAJGSRoj6SjgDOBmgIh4JSJe6se5l/V4HamuARgpqQE4HNjaXxOv0uU6ImJ7RKwGXu1u337U43VExLaI+Gl6vhN4nOIXgoHSm68JksYB7wK+0R+TPYAer2OQ/azXxWEz+IwFtpT2W+n4g91Zm+OBNuCWdIngG5Jek3OyB9DjdUTEs8BXgV8A24AdEfHdjHM9kHrWkaNvX+uTuUiaALwJ+EnfTKtHeruWfwT+GtjXh3Pqid6sYzD9rNfFYTP4qEZZ9f3pnbVpAKYAiyLiTcBvgYF6n6DH65B0NMVveBOB1wGvkfSBPp5fvepZR46+fa3Xc5F0BPBN4FMR8es+mVXP9Hgtks4DtkfEmr6dUo/05msymH7W6+KwGXxagfGl/XF0vITUWZtWoDUi2n/rvIviG3Ig9GYdZwNPR0RbRLwK3A38l4xzPZB61pGjb1/r1VwkHUoRNHdExN19PLfu6s1a3gL8uaRnKC5bnSXp9r6dXt16+701WH7W6+KwGXxWA5MkTZQ0HJgDNFW1aQLmpbu5plNcZtoWEb8Etkg6MbV7B/BYv818fz1eB8Xls+mSDpckinU83p+TL6lnHTn69rUezyV9DW4GHo+If8g4x3r1eC0R8ZmIGBcRE1K/f4+IgTpr7s06BtPPen0G+g4Fbx03iru0fkZxp8rfprIFwIL0XMD1qf5RoFLqOxloBtYD9wJHD9F1/B3wBLAB+FdgxCBex2spftP8NfBSen5UZ32H2jqAt1Jc3lkPrEvbuUNxLVVjnMkA3o3WB99bg+ZnvZ7NH1djZmbZ+TKamZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOG7MhRtKft39CsKRran2qsdlg0zDQEzCz7omIJgbuP4ea9YjPbMz6maQPSHpE0jpJ/5L+tspvJH1N0k8lfV9SY2r7l5IeU/H3fpalsg9Kuq7GuJMlrUpt70mfMYekByRdm475M0kz+nfFZg4bs34l6Q3AhcBbImIysBeYC7wG+GlETAEeBK5OXa4E3hQRp1L8z/IDWQL8TWr7aGkMgIaImAp8qqrcrF/4MppZ/3oHcBqwuvjIMUYC2yk+7n55anM7xYePQvFRJHdIupfiI0lqkvQnFH8868FUdBvwf0pN2sdbA0zo5RrMus1nNmb9S8BtETE5bSdGxDU12rV/jtS7KD4/7jRgTfpjcj2xOz3uxb9k2gBw2Jj1r+8DfyHpGABJfyrpOIqfxb9Ibd4P/FDSIcD4iPgBxR/7GgUcUWvQiNgBvFh6P+ZiistxZoOCf8Mx60cR8ZikzwHfTWHyKvBxij9+dbKkNcAOivd1hgG3p0tkAr4eES+ly2+1XALcIOlwYDNwad7VmNXPn/psNghI+k1E1DxrMTsY+DKamZll5zMbMzPLzmc2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtn9f5XySvs/SYrjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epsilon sigma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgMUlEQVR4nO3df7zVVZ3v8ddbjij+GuyCEwIJXtHSdAi3QLcwQ53AdPDRLzESs7qEk01db81Yk6PT1Ez26McMVwfTROWqoGNq5xYOPWpSb40/OAQXRSWPaHmE5JhKFIYCn/vHd+38ss8+nH0OZ50f9H4+Ht/H2Xut9V3ftc6v9/l+9zrfrYjAzMwsp336ewBmZrb3c9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMdtLSDpFUlt/j6NM0lpJp+ym/vOSvt13I7L+4rCxAUHS05JelvRbSc9Jul7SQf09rt2RNE5SSGrqpf72l/SSpOl16r4p6fbeOE5PpHn+Ln19npX0DUlDutovIo6LiHt2U/+PEfGxXh2sDUgOGxtIzoqIg4BJwEnAF7qzswqD5nu6NqQi4vfArcDcmnZDgHOBG/tudHX9Wfr6nAp8EPjve9JZb4W0DQ6D5gfT/nhExLPA3cCbJR0q6XuS2iW9mB6PqbaVdI+kL0v6KbAVOFLSBZIek7RF0npJHy+1P0VSm6S/lrRJ0kZJZ0s6Q9LPJb0g6fOl9vtIukTSk5J+Lek2Sa9L1feljy+lv/jfmvb5SDr+i5KWSzqi1F9I+oSkJ4An6kz/RuC9kg4olb2L4mf17t3NrVY61lGl5zdI+lLp+ZmSVqezqf+UdELnX5XXRMTjwP+l+Pr8V0n/kT43z0u6WdLw0jGelnRaeny5pNsl3STpN8CHU9lNqb56pni+pF+m/v621NcwSTemz+tj6WvYVqr/m3TWtUXSOkmnNjIf6xsOGxtwJI0FzgBWUXyPXg8cAbwBeBm4smaX84B5wMHAL4BNwJnAIcAFwDclTSq1fz2wPzAa+DvgWuBDwInANODvJB2Z2v4VcDbwDuBw4EXgqlR3cvo4PCIOioj7JZ0NfB54DzCS4pfykprxng1MAY6tnXtE/CewMe1fnt8tEbG9gbk1JO2zCPg48F+AbwHNkvZrYN9jKT5PqwAB/0TxuXkTMBa4fDe7zwJuB4YDN3fS5u3AMRRnUH8n6U2p/DJgHHAkcDrF16w6pmOAi4CTIuJgioB+uqu5WB+KCG/e+n2j+MXwW+AlisD4V2BYnXYTgRdLz+8BvthF33cBn0qPT6EIrCHp+cFAAFNK7VcCZ6fHjwGnlupGAa8CTRS/+AJoKtXfDXy09HwfijOuI9LzAKZ3Md4vAD9Ijw9J+7+lwbm1leoCOKr0/AbgS+nxQuAfavpaB7yjk+ME8BuKsH0S+BKwT512ZwOrar6up6XHlwP31bS/HLgpPa5+PseU6h8CZqfH64F3leo+Vp0vcBRFEJ8G7Nvf38/eOm6+ZmoDydkR8cNyQbqc9E1gBnBoKj5Y0pCI2JGeP1Ozz0yKv4KPpvhlfwDwcKnJr0v7vpw+PleqfxmoLk44ArhT0s5S/Q7gTzuZwxHAv0j6enlIFGdRv6g33joWA5dJGk3xF3prRKxqcG6NOgI4X9InS2VDKc5QOjMpIlrLBZIOAxZQnOkcnMb04m766GruAL8qPd7Ka1+Lw2v2/8PjiGiV9GmK8DpO0nLg4ojY0MDxrA/4MpoNdP+T4pLKlIg4hNcuXanU5g+3Lk+Xgb4DfA3404gYDiyrad8dzwAzI2J4ads/iteV6t0y/Rng4zXth0VxeazDeOuJiF9SXH6bQ3EJbXEP57aVIoyqXl8zzi/XjPOAiKi95NeVf0rzOSF9fT60m/FAF3PvwkZgTOn52F06jrglIt5OEaQBXLEHx7Je5rCxge5gijONl9IL85d10X4osB/QDmxPZwJ/vgfHvxr4cvVFfkkjJc1Kde3ATorXEMrtPyfpuNT+TyS9vwfHvZHiNYi38dprG92d22rgg5KGSJpB8bpT1bXAfElTVDhQ0rslHdzNcR5MuvyZzsQ+2839u+M2is/toelYF1UrJB0jaXoK5N9TfM/s6KQf6wcOGxvo/hkYBjwPPAD8++4aR8QWihf1b6O4nPNBoHkPjv8vaf8fSNqSxjAlHWsr8GXgp2lF19SIuJPiL+qlacXVI8DMHhz3dorLhj+KiI09nNungLMoXgebQ/H6DqmvFoqly1emvlqBD/dgnH9PsVR9M/B94I4e9NGoLwJtwFPADyk+R9tS3X7AVyi+T34FHEaxUMMGCEX4zdPMbPCRdCHF4oF3dNnY+p3PbMxsUJA0StLb0v8+HUPxet6d/T0ua4xXo5nZYDGU4v+BxlNcGlxKsUTeBgFfRjMzs+x8Gc3MzLLzZbROjBgxIsaNG9ffwzAzG1RWrlz5fESMrC132HRi3LhxtLS09PcwzMwGFUm/qFfuy2hmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpZd1rCRNEPSOkmtki6pUy9JC1L9GkmTSnWLJG2S9EjNPrdKWp22pyWtTuVzSuWrJe2UNDHV3ZPGUa07LOe8zcxsV9neFlrSEOAq4HSgDVghqTkiHi01mwlMSNsUYGH6CHADcCWwuNxvRJxTOsbXgc2p/Gbg5lR+PPDdiFhd2nVORPh9ns3M+kHOM5vJQGtErI+IV4ClwKyaNrOAxVF4ABguaRRARNwHvNBZ55IEfABYUqf63E7KzcysH+QMm9HAM6Xnbamsu206Mw14LiKeqFN3Dh3D5vp0Ce3SFFQdSJonqUVSS3t7e4PDMDOzruQMm3q/0KMHbTpT9+xF0hRga0SUX+uZExHHUwTUNOC8eh1GxDURUYmIysiRIxschpmZdSVn2LQBY0vPxwAbetCmA0lNwHuAW+tUz6YmhCLi2fRxC3ALxSU+MzPrIznDZgUwQdJ4SUMpQqC5pk0zMDetSpsKbI6IjQ30fRrweES0lQsl7QO8n+L1oWpZk6QR6fG+wJnALivczMwsr2yr0SJiu6SLgOXAEGBRRKyVND/VXw0sA84AWoGtwAXV/SUtAU4BRkhqAy6LiOtSdYezl+RkoC0i1pfK9gOWp6AZAvwQuLbXJmpmZl1SRKMvkfxxqVQq0dLildJmZt0haWVEVGrLfQcBMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWWXNWwkzZC0TlKrpEvq1EvSglS/RtKkUt0iSZskPVKzz62SVqftaUmrU/k4SS+X6q4u7XOipIfTcRZIUsZpm5lZjWxhI2kIcBUwEzgWOFfSsTXNZgIT0jYPWFiquwGYUdtvRJwTERMjYiLwHeCOUvWT1bqImF8qX5j6rx6rQ79mZpZPzjObyUBrRKyPiFeApcCsmjazgMVReAAYLmkUQETcB7zQWefp7OQDwJLdDSL1d0hE3B8RASwGzu7hnMzMrAdyhs1o4JnS87ZU1t02nZkGPBcRT5TKxktaJeleSdNKx2hr5BiS5klqkdTS3t7e4DDMzKwrOcOm3usi0YM2nTmXXc9qNgJviIi3ABcDt0g6pDvHiIhrIqISEZWRI0c2OAwzM+tKU8a+24CxpedjgA09aNOBpCbgPcCJ1bKI2AZsS49XSnoSODodY0x3j2FmZr0n55nNCmCCpPGShgKzgeaaNs3A3LQqbSqwOSI2NtD3acDjEfGHy2OSRqZFCUg6kmIhwPrU3xZJU9PrPHOB7+7x7MzMrGHZzmwiYruki4DlwBBgUUSslTQ/1V8NLAPOAFqBrcAF1f0lLQFOAUZIagMui4jrUvVsOi4MOBn4oqTtwA5gfkRUFxhcSLG6bRhwd9rMzKyPqFigZbUqlUq0tLT09zDMzAYVSSsjolJb7jsImJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCy7rGEjaYakdZJaJV1Sp16SFqT6NZImleoWSdok6ZGafW6VtDptT0tancpPl7RS0sPp4/TSPvekcVT3OyzjtM3MrEZTro4lDQGuAk4H2oAVkpoj4tFSs5nAhLRNARamjwA3AFcCi8v9RsQ5pWN8Hdicnj4PnBURGyS9GVgOjC7tOiciWnpndmZm1h05z2wmA60RsT4iXgGWArNq2swCFkfhAWC4pFEAEXEf8EJnnUsS8AFgSWq/KiI2pOq1wP6S9uvVGZmZWY/kDJvRwDOl523seqbRaJvOTAOei4gn6tS9F1gVEdtKZdenS2iXpqDqQNI8SS2SWtrb2xschpmZdSVn2NT7hR49aNOZc0lnNbt0KB0HXAF8vFQ8JyKOpwioacB59TqMiGsiohIRlZEjRzY4DDMz60rOsGkDxpaejwE29KBNB5KagPcAt9aUjwHuBOZGxJPV8oh4Nn3cAtxCcYnPzMz6SM6wWQFMkDRe0lBgNtBc06YZmJtWpU0FNkfExgb6Pg14PCLaqgWShgPfBz4XET8tlTdJGpEe7wucCTyCmZn1mWxhExHbgYsoVoU9BtwWEWslzZc0PzVbBqwHWoFrgb+s7i9pCXA/cIykNkkfLXU/m46X0C4CjgIurVnivB+wXNIaYDXwbDqWmZn1EUU0+hLJH5dKpRItLV4pbWbWHZJWRkSlttx3EDAzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsmv4baHTWy0fC+xfLYuIxZ3vYWZmVmgobCRdBpxCETbLgJnATwCHjZmZdanRy2jvA04FfhURFwB/RnHrfjMzsy41GjYvR8ROYLukQ4BNwJH5hmVmZnuTRl+zaUnvhHktsBL4LfBQrkGZmdnepaGwiYjqO2heLenfgUMiYk2+YZmZ2d6kO6vRTgDGVfeRdFRE3JFpXGZmthdpdDXaIuAEYC2wMxUH4LAxM7MuNXpmMzUijs06EjMz22s1uhrtfkndDhtJMyStk9Qq6ZI69ZK0INWvkTSpVLdI0iZJj9Tsc6uk1Wl7WtLqUt3nUl/rJL2rVH6ipIdT3QJJ6u5czMys5xoNmxspAmddCoWHJe12gYCkIcBVFP8Aeixwbp3AmglMSNs8YGGp7gZgRm2/EXFOREyMiInAd0iX8lLfs4Hj0n7/msZA6nde6Vgd+u0Nr+54lZ/84ie0bGghInIcwswsn3Xr4Mc/hi1ber3rRi+jLQLOAx7mtddsujIZaI2I9QCSlgKzgEdLbWYBi6P4zfyApOGSRkXExoi4T9K4zjpPZycfAKaX+loaEduApyS1ApMlPU2xeu7+tN9i4Gzg7gbn0bBlTyzj1rW3IsTFb72YEw8/sbcPYWaWx4YNcMUVsG0brFoFF1/cq903Gja/jIjmbvY9Gnim9LwNmNJAm9HAxgb6nwY8FxFPlPp6oE5fr6bHteUdSJpHcQbEG97whgaGsKutr25lH+3DztjJ77f/vtv7m5n1m23bYMcOGDoUfve7Xu++0bB5XNItwP8BtlULu1j6XO91kdprS4206cy5wJIG+mr4GBFxDXANQKVS6fZ1sLOOOQshhu07jMmjJ3d3dzOz/jNuHHzkI/DUUzCj919paDRshlGEzJ+Xyrpa+twGjC09HwNs6EGbDiQ1Ae8BytepOuurLT3u1jF64qChBzH7+Nk5ujYzy0uCd7yj2DJo9A4CF/Sg7xXABEnjgWcpXrz/YE2bZuCi9HrOFGBzRDRyCe004PGIKF8eawZukfQN4HCKhQAPRcQOSVskTQUeBOYC/6sH8zEzsx5q9J86F9Qp3gy0RMR36+0TEdslXQQsB4YAiyJiraT5qf5qircrOANoBbYCfwg1SUso3tZghKQ24LKIuC5Vz2bXS2ikvm+jWICwHfhEROxI1RdSrG4bRrEwoNcXB5iZWefUyBJdSdcAbwT+LRW9l+JuAmOB9RHx6VwD7C+VSiVaWlr6exhmZoOKpJURUaktb/Q1m6OA6RGxPXW2EPgBcDrFcmgzM7NONfpPnaOBA0vPDwQOT5epttXfxczMrNDomc1XgdWS7qFYSnwy8I+SDgR+mGlsZma2l2h0Ndp1kpZR3BVAwOcjorp8+LO5BmdmZnuH3V5Gk/TG9HESMIriv/1/Cby+fNNMMzOz3enqzOZiitu3fL1UVl6+Nh0zM7Mu7PbMJiLmpYcLgVkR8U7gxxT/Y/OZzGMzM7O9RKOr0b4QEb+R9HaK5c43sOvbAZiZmXWq0bCp/if+u4Gr010DhuYZkpmZ7W0aDZtnJX2L4v1jlknarxv7mpnZH7lGA+MDFPc4mxERLwGvw0uezcysQY3+n81WSm8nkO7M3Mjdmc3MzHwpzMzM8nPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmll3WsJE0Q9I6Sa2SLqlTL0kLUv2a8nvkSFokaZOkR+rs98nU71pJX01lcyStLm07JU1Mdfek9tW6wzJO28zMajT6ttDdJmkIcBXFXaLbgBWSmiPi0VKzmcCEtE2huJP0lFR3A3AlsLim33cCs4ATImJbNTgi4mbg5tTmeOC7EbG6tOuciGjpzTmamVljcp7ZTAZaI2J9RLwCLKUIibJZwOIoPAAMlzQKICLuA16o0++FwFciYltqt6lOm3OBJb00DzMz20M5w2Y0xdtIV7Wlsu62qXU0ME3Sg5LulXRSnTbn0DFsrk+X0C6VpHodS5onqUVSS3t7exfDMDOzRuUMm3q/0KMHbWo1AYcCUynuPH1bOTwkTQG2RkT5tZ45EXE8MC1t59XrOCKuiYhKRFRGjhzZxTDMzKxROcOmDRhbej4G2NCDNvX6vSNdensI2AmMKNXPpuasJiKeTR+3ALdQXOIzM7M+kjNsVgATJI2XNJQiBJpr2jQDc9OqtKnA5vT2BbtzFzAdQNLRFO8Y+nx6vg/wforXh0hlTZJGpMf7AmcCHVa4mZlZPtlWo0XEdkkXUbzp2hBgUUSslTQ/1V8NLAPOAFqBrcAF1f0lLQFOAUZIagMui4jrgEXAorQk+hXg/IioXno7GWiLiPWloewHLE9BMwT4IXBtpmmbmVkdeu33tJVVKpVoafFKaTOz7pC0MiIqteW+g4CZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsssaNpJmSFonqVXSJXXqJWlBql8jaVKpbpGkTZIeqbPfJ1O/ayV9NZWNk/SypNVpu7rU/kRJD6fjLJCkXHM2M7OOsoWNpCHAVcBM4FjgXEnH1jSbCUxI2zxgYanuBmBGnX7fCcwCToiI44CvlaqfjIiJaZtfKl+Y+q8eq0O/ZmaWT84zm8lAa0Ssj4hXgKUUIVE2C1gchQeA4ZJGAUTEfcALdfq9EPhKRGxL7TbtbhCpv0Mi4v6ICGAxcPYezMvMzLopZ9iMBp4pPW9LZd1tU+toYJqkByXdK+mkUt14SatS+bTSMdoaOYakeZJaJLW0t7d3MQwzM2tUU8a+670uEj1oU6sJOBSYCpwE3CbpSGAj8IaI+LWkE4G7JB3XnWNExDXANQCVSqWrcZiZWYNyntm0AWNLz8cAG3rQpl6/d6RLbw8BO4EREbEtIn4NEBErgScpzoLaUr/dOYaZmfWinGGzApggabykocBsoLmmTTMwN61KmwpsjoiNXfR7FzAdQNLRwFDgeUkj06IE0pnOBGB96m+LpKlpFdpc4Lu9M0UzM2tEtstoEbFd0kXAcmAIsCgi1kqan+qvBpYBZwCtwFbggur+kpYApwAjJLUBl0XEdcAiYFFaEv0KcH5EhKSTgS9K2g7sAOZHRHWBwYUUq9uGAXenzczM+oiKBVpWq1KpREtLS38Pw8xsUJG0MiIqteW+g4CZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsssaNpJmSFonqVXSJXXqJWlBql8jaVKpbpGkTZIeqbPfJ1O/ayV9NZWdLmmlpIfTx+ml9vek9qvTdliuOZuZWUdNuTqWNAS4CjgdaANWSGqOiEdLzWYCE9I2BViYPgLcAFwJLK7p953ALOCEiNhWCo7ngbMiYoOkNwPLgdGlXedEREsvTtHMzBqU88xmMtAaEesj4hVgKUVIlM0CFkfhAWC4pFEAEXEf8EKdfi8EvhIR21K7TenjqojYkNqsBfaXtF+vz8rMzLotZ9iMBp4pPW9j1zONRtvUOhqYJulBSfdKOqlOm/cCq6qBlFyfLqFdKkn1OpY0T1KLpJb29vYuhmFmZo3KGTb1fqFHD9rUagIOBaYCnwVuK4eHpOOAK4CPl/aZExHHA9PSdl69jiPimoioRERl5MiRXQzDzMwalTNs2oCxpedjgA09aFOv3zvSpbeHgJ3ACABJY4A7gbkR8WR1h4h4Nn3cAtxCcYnPzMz6SM6wWQFMkDRe0lBgNtBc06YZmJtWpU0FNkfExi76vQuYDiDpaGAo8Lyk4cD3gc9FxE+rjSU1SaqG0b7AmUCHFW5mZpZPtrCJiO3ARRSrwh4DbouItZLmS5qfmi0D1gOtwLXAX1b3l7QEuB84RlKbpI+mqkXAkWlJ9FLg/IiIdKyjgEtrljjvByyXtAZYDTybjmVmZn1Exe9pq1WpVKKlxSulzcy6Q9LKiKjUlvsOAmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+z85mmdkNQO/KK/x7EbI4Dn+3sQvWBvmQfsPXPxPAaewTSXIyJiZG2hw2aQktRS793wBpu9ZR6w98zF8xh49oa5+DKamZll57AxM7PsHDaD1zX9PYBesrfMA/aeuXgeA8+gn4tfszEzs+x8ZmNmZtk5bMzMLDuHzQAkaYakdZJaJV1Sp16SFqT6NZImleqGS7pd0uOSHpP01r4d/S7j3JN5/A9JayU9ImmJpP37dvS7jLOrebxR0v2Stkn6THf27Us9nYeksZJ+nL6f1kr6VN+OvKM9+Zqk+iGSVkn6Xt+MuL49/N4aMD/rDYkIbwNoA4YATwJHAkOB/wccW9PmDOBuQMBU4MFS3Y3Ax9LjocDwwTYPYDTwFDAsPb8N+PAAnsdhwEnAl4HPdGffQTKPUcCk9Phg4Of9NY89nUup/mLgFuB7g3UeA+VnvdHNZzYDz2SgNSLWR8QrwFJgVk2bWcDiKDwADJc0StIhwMnAdQAR8UpEvNSHYy/r8TxSXRMwTFITcACwoa8GXqPLeUTEpohYAbza3X37UI/nEREbI+Jn6fEW4DGKPwj6y558TZA0Bng38O2+GOxu9HgeA+xnvSEOm4FnNPBM6XkbHX+wO2tzJNAOXJ8uEXxb0oE5B7sbPZ5HRDwLfA34JbAR2BwRP8g41t1pZB459u1tvTIWSeOAtwAP9s6wemRP5/LPwF8DO3txTD2xJ/MYSD/rDXHYDDyqU1a7Pr2zNk3AJGBhRLwF+B3QX68T9Hgekg6l+AtvPHA4cKCkD/Xy+BrVyDxy7Nvb9ngskg4CvgN8OiJ+0yuj6pkez0XSmcCmiFjZu0PqkT35mgykn/WGOGwGnjZgbOn5GDpeQuqsTRvQFhHVvzpvp/iG7A97Mo/TgKcioj0iXgXuAP5bxrHuTiPzyLFvb9ujsUjalyJobo6IO3p5bN21J3N5G/AXkp6muGw1XdJNvTu8hu3p99ZA+VlviMNm4FkBTJA0XtJQYDbQXNOmGZibVnNNpbjMtDEifgU8I+mY1O5U4NE+G/muejwPistnUyUdIEkU83isLwdf0sg8cuzb23o8lvQ1uA54LCK+kXGMjerxXCLicxExJiLGpf3+IyL666x5T+YxkH7WG9PfKxS8ddwoVmn9nGKlyt+msvnA/PRYwFWp/mGgUtp3ItACrAHuAg4dpPP4e+Bx4BHgfwP7DeB5vJ7iL83fAC+lx4d0tu9gmwfwdorLO2uA1Wk7YzDOpaaPU+jH1Wi98L01YH7WG9l8uxozM8vOl9HMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmA0ykv6ieodgSZfXu6ux2UDT1N8DMLPuiYhm+u+fQ816xGc2Zn1M0ockPSRptaRvpfdW+a2kr0v6maQfSRqZ2v6VpEdVvN/P0lT2YUlX1ul3oqQHUts70z3mkHSPpCvSMX8uaVrfztjMYWPWpyS9CTgHeFtETAR2AHOAA4GfRcQk4F7gsrTLJcBbIuIEiv8s353FwN+ktg+X+gBoiojJwKdrys36hC+jmfWtU4ETgRXFLccYBmyiuN39ranNTRQ3H4XiViQ3S7qL4pYkdUn6E4o3z7o3Fd0I/FupSbW/lcC4PZyDWbf5zMasbwm4MSImpu2YiLi8TrvqfaTeTXH/uBOBlenN5HpiW/q4A/+Raf3AYWPWt34EvE/SYQCSXifpCIqfxfelNh8EfiJpH2BsRPyY4s2+hgMH1es0IjYDL5ZejzmP4nKc2YDgv3DM+lBEPCrpC8APUpi8CnyC4s2vjpO0EthM8brOEOCmdIlMwDcj4qV0+a2e84GrJR0ArAcuyDsbs8b5rs9mA4Ck30ZE3bMWs72BL6OZmVl2PrMxM7PsfGZjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlt3/BzZqu9QguTkDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epsilon tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaX0lEQVR4nO3de7zldV3v8debGbkPDeZgyAADOXGCk+m4AzpackSUUWM4x3wcUAPNDk7K6WYllsdbWXoemsZDwtBUCJU4JDUZhkYpJ4NijxgXERnHCxMTjAooYlw/54/fb3K5Zs/ea+/5rtl74PV8PNZj/X6/72V9v3uttd/rd9lrp6qQJKmF3eZ7AJKkRw5DRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKtIuJslxSTbN9zgGJbkxyXHTlP9WkvftvBFpvhgq2qmSfCXJd5Pck+T2JB9Isu98j2s6SVYkqSSLG/W3Z5K7kjxzirJ3JrmkxePMRT/P7/TPz78m+YMki2ZqV1VHVdWnpin/var6haaD1YJkqGg+/ExV7QusAn4CeN1sGqezy7x2h8Ooqv4d+DPgtKF6i4BTgfN33uim9OP983M88CLgf+5IZ63CWLuGXeaNqUeeqvpX4OPAf06yf5KPJdmS5M5+efnWukk+leQtST4D3AscnuRlSW5K8u0kG5O8YqD+cUk2JfnNJHck2Zzk5CTPTfLFJN9M8lsD9XdLclaSLyX5RpKLkzy2L76yv7+r/wT/k32bn+8f/84klyc5dKC/SvKqJLcAt0wx/fOBFyTZe2Dbc+jekx+fbm7D+sd64sD6B5P87sD685N8rt87+sckT9r+s/I9VfUF4P/RPT8/nOTv+p/N15N8KMnSgcf4SpJn9ctvTHJJkguTfAt4ab/twr58657f6Um+1vf32wN97ZXk/P7nelP/HG4aKH9Nvxf17SQ3Jzl+lPlo5zBUNG+SHAw8F7iW7rX4AeBQ4BDgu8C7h5r8HHAGsAT4KnAH8HxgP+BlwDuTrBqo/0PAnsBBwOuB9wIvAZ4K/BTw+iSH93V/CTgZeAbwBOBO4Jy+7Kf7+6VVtW9VXZXkZOC3gP8OLKP75fuRofGeDBwDHDk896r6R2Bz335wfh+uqgdHmNtI+jbvB14B/CDwx8C6JHuM0PZIup/TtUCA36f72fwocDDwxmmarwEuAZYCH9pOnacDR9DtEb0+yY/2298ArAAOB06ge862jukI4EzgJ6pqCV0Qf2WmuWgnqipv3nbaje4XwD3AXXTB8EfAXlPUezJw58D6p4A3z9D3XwC/3C8fRxdMi/r1JUABxwzUXw+c3C/fBBw/UHYg8ACwmO4XXAGLB8o/Drx8YH03uj2oQ/v1Ap45w3hfB3yiX96vb/+UEee2aaCsgCcOrH8Q+N1++Vzgd4b6uhl4xnYep4Bv0YXql4DfBXabot7JwLVDz+uz+uU3AlcO1X8jcGG/vPXnuXyg/J+BU/rljcBzBsp+Yet8gSfSBe6zgMfM9+vZ27Y3j3VqPpxcVX87uKE/DPRO4ERg/37zkiSLquqhfv3WoTar6T7V/gjdL/W9gesHqnxjoO13+/vbB8q/C2y9SOBQ4NIkDw+UPwQ8fjtzOBT4wyTvGBwS3V7RV6ca7xQuAN6Q5CC6T9wbquraEec2qkOB05P8r4Ftu9PtcWzPqqraMLghyQHA2XR7Lkv6Md05TR8zzR3g3waW7+V7z8UThtr/x3JVbUjyK3QhdVSSy4Ffq6rbRng87QQe/tJC8Wq6QyHHVNV+fO+QUwbq/MdXaveHb/4ceDvw+KpaClw2VH82bgVWV9XSgdue1Z33meqrvG8FXjFUf6/qDmttM96pVNXX6A6bvZju0NcFc5zbvXShs9UPDY3zLUPj3Luqhg/VzeT3+/k8qX9+XjLNeGCGuc9gM7B8YP3g7+u46sNV9XS6wCzgbTvwWGrMUNFCsYRuz+Gu/gT5G2aovzuwB7AFeLD/ZP/sHXj89wBv2XqyPcmyJGv6si3Aw3TH+AfrvzbJUX39H0jywjk87vl05wiexvfOPcx2bp8DXpRkUZIT6c4LbfVeYG2SY9LZJ8nzkiyZ5TiX0B+27PesfmOW7WfjYrqf7f79Y525tSDJEUme2Qfvv9O9Zh7aTj+aB4aKFop3AXsBXweuBv5muspV9W26k+sX0x2GeRGwbgce/w/79p9I8u1+DMf0j3Uv8BbgM/0VVMdW1aV0n5Av6q9wugFYPYfHvYTucN8VVbV5jnP7ZeBn6M5TvZju/At9X5N0lwS/u+9rA/DSOYzzTXSXgN8N/DXw0Tn0Mao3A5uALwN/S/czuq8v2wN4K93r5N+AA+gumNACkSr/SZekhSvJL9KdxH/GjJU179xTkbSgJDkwydP6vx06gu5826XzPS6Nxqu/JC00u9P9Pc1hdIf0LqK79Fy7AA9/SZKa8fCXJKmZR/Xhr8c97nG1YsWK+R6GJO1S1q9f//WqWjZV2aM6VFasWMHk5OR8D0OSdilJvrq9Mg9/SZKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaGWuoJDkxyc1JNiQ5a4ryJDm7L78uyaqBsvcnuSPJDUNtHpvkk0lu6e/3Hyo/JMk9SX59fDOTJE1lbKGSZBFwDrAaOBI4NcmRQ9VWAyv72xnAuQNlHwROnKLrs4ArqmolcEW/PuidwMd3dPySpNkb557K0cCGqtpYVfcDFwFrhuqsAS6oztXA0iQHAlTVlcA3p+h3DXB+v3w+cPLWgiQnAxuBGxvOQ5I0onGGykHArQPrm/pts60z7PFVtRmgvz8AIMk+wGuAN03XOMkZSSaTTG7ZsmXGSUiSRjfOUMkU22oOdUb1JuCdVXXPdJWq6ryqmqiqiWXLls3xoSRJU1k8xr43AQcPrC8HbptDnWG3Jzmwqjb3h8ru6LcfA/xskv8DLAUeTvLvVfXuuU5AkjQ749xTuQZYmeSwJLsDpwDrhuqsA07rrwI7Frh766GtaawDTu+XTwf+EqCqfqqqVlTVCuBdwO8ZKJK0c40tVKrqQeBM4HLgJuDiqroxydoka/tql9GdWN8AvBd45db2ST4CXAUckWRTkpf3RW8FTkhyC3BCvy5JWgBSNddTGLu+iYmJmpycnO9hSNIuJcn6qpqYqsy/qJckNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqZmxhkqSE5PcnGRDkrOmKE+Ss/vy65KsGih7f5I7ktww1OaxST6Z5Jb+fv9++wlJ1ie5vr9/5jjnJkna1thCJcki4BxgNXAkcGqSI4eqrQZW9rczgHMHyj4InDhF12cBV1TVSuCKfh3g68DPVNWPAacDf9pmJpKkUY1zT+VoYENVbayq+4GLgDVDddYAF1TnamBpkgMBqupK4JtT9LsGOL9fPh84ua9/bVXd1m+/EdgzyR4tJyRJmt44Q+Ug4NaB9U39ttnWGfb4qtoM0N8fMEWdFwDXVtV9sxqxJGmHLB5j35liW82hzuweNDkKeBvw7O2Un0F3qI1DDjlkRx5KkjRknHsqm4CDB9aXA7fNoc6w27ceIuvv79hakGQ5cClwWlV9aarGVXVeVU1U1cSyZctGmogkaTTjDJVrgJVJDkuyO3AKsG6ozjrgtP4qsGOBu7ce2prGOroT8fT3fwmQZCnw18Brq+ozjeYgSZqFsYVKVT0InAlcDtwEXFxVNyZZm2RtX+0yYCOwAXgv8Mqt7ZN8BLgKOCLJpiQv74veCpyQ5BbghH6d/rGeCPzvJJ/rb1Odb5EkjUmqdugUxi5tYmKiJicn53sYkrRLSbK+qiamKvMv6iVJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktTM4pkqJHn9VNur6s3thyNJ2pXNGCrAdwaW9wSeD9w0nuFIknZlMx7+qqp3DNzeAhwHHDRK50lOTHJzkg1JzpqiPEnO7suvS7JqoOz9Se5IcsNQm8cm+WSSW/r7/QfKXtv3dXOS54wyRklSO3M5p7I3cPhMlZIsAs4BVgNHAqcmOXKo2mpgZX87Azh3oOyDwIlTdH0WcEVVrQSu6Nfp+z4FOKpv90f9GJq7/Z7buWLjFWz61qZxdC9J43P//fAP/wDr10NV8+5HOadyPbD1kRcBy4BRzqccDWyoqo19PxcBa4DPD9RZA1xQVQVcnWRpkgOranNVXZlkxRT9rqHbWwI4H/gU8Jp++0VVdR/w5SQb+jFcNcJYR/bQww/xts+8jS3f2cJ+e+zH25/9dvZ6zF4tH0KSxudjH4NLLoEEXv1qWLVq5jazMMo5lecPLD8I3F5VD47Q7iDg1oH1TcAxI9Q5CNg8Tb+Pr6rNAFW1OckBA31dPUVf3yfJGXR7RRxyyCEzz2JIUdz7wL3s9Zi9uO+h+3ioHpp1H5I0b777XdhtN3j4YbjvvubdzxgqVfVVgP6X957AE5JQVV+boWmm6m4OdUY1Ul9VdR5wHsDExMSsH2vxbot59U++mk9/5dMcs/wY9t1939mPVJLmy0kndaGyzz4wMdG8+1EOf50EvAN4AnAHcCjd1V9HzdB0E3DwwPpy4LY51Bl2+9ZDZEkO7Mc0177mZOUPrmTlD64cR9eSNF5LlsCpp46t+1FO1P8OcCzwxao6DDge+MwI7a4BViY5LMnudCfR1w3VWQec1l8Fdixw99ZDW9NYB5zeL58O/OXA9lOS7JHkMLqT//88wjglSY2MEioPVNU3gN2S7FZVfw88eaZG/XmXM4HL6fZsLq6qG5OsTbK2r3YZsBHYALwXeOXW9kk+QneS/Ygkm5K8vC96K3BCkluAE/p1qupG4GK6CwH+BnhVlSc8JGlnSs1wSVmSvwVOBn4feBzd4aaJqnra2Ec3ZhMTEzU5OTnfw5CkXUqS9VU15QmZUa7++hfgXuBXgRcDPwB4dlqStI1RQuW/VtXDwMN0fxdCkuvGOipJ0i5pu6GS5BfpznH88FCILGG0E/WSpEeZ6fZUPgx8nO5cyuD3dn27qr451lFJknZJ2w2VqrobuBsY3wXNkqRHFP9JlySpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpmbGGSpITk9ycZEOSs6YoT5Kz+/LrkqyaqW2SH09yVZLrk/xVkv367Y9Jcn6//aYkrx3n3CRJ2xpbqCRZBJwDrAaOBE5NcuRQtdXAyv52BnDuCG3fB5xVVT8GXAr8Rr/9hcAe/fanAq9IsmI8s5MkTWWceypHAxuqamNV3Q9cBKwZqrMGuKA6VwNLkxw4Q9sjgCv75U8CL+iXC9gnyWJgL+B+4FtjmpskaQrjDJWDgFsH1jf120apM13bG4CT+uUXAgf3y5cA3wE2A18D3l5V39yxKUiSZmOcoZIpttWIdaZr+/PAq5KsB5bQ7ZFAt3fzEPAE4DDg1UkO32ZQyRlJJpNMbtmyZeZZSJJGNs5Q2cT39iIAlgO3jVhnu22r6gtV9eyqeirwEeBLfZ0XAX9TVQ9U1R3AZ4CJ4UFV1XlVNVFVE8uWLZvz5CRJ2xpnqFwDrExyWJLdgVOAdUN11gGn9VeBHQvcXVWbp2ub5ID+fjfgdcB7+r6+Bjyz72sf4FjgC2OcnyRpyNhCpaoeBM4ELgduAi6uqhuTrE2ytq92GbAR2AC8F3jldG37Nqcm+SJdYNwGfKDffg6wL905l2uAD1TVdeOanyRpW6kaPs3x6DExMVGTk5PzPQxJ2qUkWV9V25xeAP+iXpLUkKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzYw2VJCcmuTnJhiRnTVGeJGf35dclWTVT2yQ/nuSqJNcn+ask+w2UPakvu7Ev33Oc85Mkfb+xhUqSRcA5wGrgSODUJEcOVVsNrOxvZwDnjtD2fcBZVfVjwKXAb/RtFgMXAmur6ijgOOCBcc1PkrStce6pHA1sqKqNVXU/cBGwZqjOGuCC6lwNLE1y4AxtjwCu7Jc/CbygX342cF1V/QtAVX2jqh4a1+QkSdsaZ6gcBNw6sL6p3zZKnena3gCc1C+/EDi4X/4RoJJcnuSzSX5zqkElOSPJZJLJLVu2zHJKkqTpjDNUMsW2GrHOdG1/HnhVkvXAEuD+fvti4OnAi/v7/5bk+G06qTqvqiaqamLZsmUzz0KSNLLFY+x7E9/biwBYDtw2Yp3dt9e2qr5Ad6iLJD8CPG+gr09X1df7ssuAVcAVDeYiSRrBOPdUrgFWJjksye7AKcC6oTrrgNP6q8COBe6uqs3TtU1yQH+/G/A64D19X5cDT0qyd3/S/hnA58c4P0nSkLHtqVTVg0nOpPtlvwh4f1XdmGRtX/4e4DLgucAG4F7gZdO17bs+Ncmr+uWPAh/o29yZ5A/oAqmAy6rqr8c1P0nStlI1fJrj0WNiYqImJyfnexiStEtJsr6qJqYq8y/qJUnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmklVzfcY5k2SLcBX53scM3gc8PX5HkQDzmPheaTMxXnsfIdW1bKpCh7VobIrSDJZVRPzPY4d5TwWnkfKXJzHwuLhL0lSM4aKJKkZQ2XhO2++B9CI81h4HilzcR4LiOdUJEnNuKciSWrGUJEkNWOozJMkJya5OcmGJGdNUZ4kZ/fl1yVZNVC2NMklSb6Q5KYkP7lzR/9949yRefxqkhuT3JDkI0n23Lmj32asM83lPyW5Ksl9SX59Nm13prnOI8nBSf6+f03dmOSXd+7ItxnnnJ+PvnxRkmuTfGznjHj7dvC1tWDe7yOpKm87+QYsAr4EHA7sDvwLcORQnecCHwcCHAv800DZ+cAv9Mu7A0t3tXkABwFfBvbq1y8GXrrAn5MDgJ8A3gL8+mza7iLzOBBY1S8vAb64K85joPzXgA8DH5uv11WLuSyU9/uoN/dU5sfRwIaq2lhV9wMXAWuG6qwBLqjO1cDSJAcm2Q/4aeBPAKrq/qq6ayeOfdCc59GXLQb2SrIY2Bu4bWcNfAozzqWq7qiqa4AHZtt2J5rzPKpqc1V9tl/+NnATXfjPhx15PkiyHHge8L6dMdgZzHkuC+z9PhJDZX4cBNw6sL6Jbd+826tzOLAF+EC/a/++JPuMc7DTmPM8qupfgbcDXwM2A3dX1SfGONaZjDKXcbRtrclYkqwAngL8U5thzdqOzuNdwG8CDzcc01ztyFwW0vt9JIbK/MgU24av7d5encXAKuDcqnoK8B1gvo7hz3keSfan+7R2GPAEYJ8kL2k8vtkYZS7jaNvaDo8lyb7AnwO/UlXfajKq2ZvzPJI8H7ijqta3HdKc7chzspDe7yMxVObHJuDggfXlbHvoZ3t1NgGbqmrrJ8hL6F5082FH5vEs4MtVtaWqHgA+CvyXMY51JqPMZRxtW9uhsSR5DF2gfKiqPtp4bLOxI/N4GnBSkq/QHWp6ZpIL2w5vVnb0tbVQ3u8jMVTmxzXAyiSHJdkdOAVYN1RnHXBaf/XUsXSHhzZX1b8BtyY5oq93PPD5nTby7zfnedAd9jo2yd5JQjePm3bm4IeMMpdxtG1tzmPpn4c/AW6qqj8Y4xhHMed5VNVrq2p5Va3o2/1dVc3nXvCOzGUhvd9HM99XCjxab3RXRX2R7qqQ3+63rQXW9ssBzunLrwcmBto+GZgErgP+Ath/F53Hm4AvADcAfwrsscCfkx+i++T4LeCufnm/7bXd1eYBPJ3usMx1wOf623N3tXkM9XEc83z1V4PX1oJ5v49y82taJEnNePhLktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgq0gKU5KSt32ab5I1TfQuvtBAtnu8BSNpWVa1j/v6AUpoz91SkMUjykiT/nORzSf64/98e9yR5R5LPJrkiybK+7i8l+Xy6/zdzUb/tpUnePUW/T05ydV/30v471EjyqSRv6x/zi0l+aufOWOoYKlJjSX4U+B/A06rqycBDwIuBfYDPVtUq4NPAG/omZwFPqaon0f2V9XQuAF7T171+oA+AxVV1NPArQ9ulncbDX1J7xwNPBa7pvk6LvYA76L6G/c/6OhfSfYkmdF+/8aEkf0H3NRxTSvIDdP+g6dP9pvOB/ztQZWt/64EVOzgHaU7cU5HaC3B+VT25vx1RVW+cot7W70h6Ht33oz0VWN//07K5uK+/fwg/MGqeGCpSe1cAP5vkAIAkj01yKN377Wf7Oi8C/iHJbsDBVfX3dP9Uaimw71SdVtXdwJ0D50t+ju4wmrRg+GlGaqyqPp/kdcAn+tB4AHgV3T9YOirJeuBuuvMui4AL+0NbAd5ZVXf1h82mcjrwniR7AxuBl413NtLs+C3F0k6S5J6qmnIvRHqk8PCXJKkZ91QkSc24pyJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRm/j9oTy26aBwI+gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "theta zeta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbyElEQVR4nO3df5xmdV338dfbXVZAQCAWwWVjQUlcfRDQhPgjJdECb2upWx83mt6YFmISbLdUG/ZQLC3zJuyHFmGQpBQ3KdZmKBJpPxRxZ3EV1wVZCWFgYQeRgCSWhc/9xzkjV+PszDVn52Ku0dfz8ZjHdc73+z3n+pxzzcx7zjnXdSZVhSRJXTxhvguQJC1chogkqTNDRJLUmSEiSerMEJEkdWaISJI6M0SkIZXkuCRj811HryQbkxw3Tf/ZSf788atI880Q0UAkuSXJg0keSHJXkr9Issd81zWdJCuSVJLFc7S+XZPcm+TFU/S9N8lH5uJ5umi38z/b1+f2JOclWTTTclX1rKr6zDT9v1NVvzCnxWqoGSIapJ+qqj2Ao4EfBX5zNgunsWC+RyeHT1X9F/D/gP89adwi4FXAxY9fdVP64fb1OR54NfCLO7OyuQpfLSwL5gdUC1dV3Q58Anh2kn2SfDzJeJJvtdMHTYxN8pkk70ryWeDbwKFJfj7JpiT3J7k5yRt7xh+XZCzJryXZmmRLkpOSvCzJ15Lck+TsnvFPSLImydeTfDPJZUn2bbv/pX28t/0L/bntMq9vn/9bSa5McnDP+irJm5PcBNw0xeZfDPzPJLv3tP0kzc/eJ6bbtsna53p6z/wHk7yzZ/7lSTa0Rz+fS3LEjl+Vx1TVDcC/0rw+T0vyT+2+uTvJJUn27nmOW5K8pJ0+J8lHknw4yX3A69q2D7f9E0d2pyS5tV3fW3vWtVuSi9v9uql9Dcd6+n+9PUq6P8mNSY7vZ3v0+DJENHBJlgMvA75I8z33F8DBwA8CDwLvm7TIa4FTgT2BbwBbgZcDewE/D7w3ydE94w8AdgWWAW8DPgC8BvgR4MeAtyU5tB17BnAS8CLgqcC3gPe3fS9sH/euqj2q6pokJwFnAz8LLKX5ZfvXk+o9CXgOsHLytlfV54At7fK92/dXVbW9j23rS7vMRcAbgR8A/gxYm+SJfSy7kmY/fREI8Ls0++aZwHLgnGkWXwV8BNgbuGQHY14APIPmiOdtSZ7Ztr8dWAEcCryU5jWbqOkZwOnAj1bVnjTBe8tM26J5UFV++TXnXzQ/8A8A99IEwZ8Au00x7kjgWz3znwF+a4Z1/y1wZjt9HE0QLWrn9wQKeE7P+PXASe30JuD4nr4DgYeBxTS/0ApY3NP/CeANPfNPoDlCOridL+DFM9T7m8Cn2um92uWP6nPbxnr6Cnh6z/wHgXe2038K/Pakdd0IvGgHz1PAfTQh+nXgncATphh3EvDFSa/rS9rpc4B/mTT+HODD7fTE/jyop/8LwMnt9M3AT/b0/cLE9gJPpwnYlwC7zPf3s187/vIcpgbppKr6x96G9rTOe4ETgH3a5j2TLKqqR9r52yYtcyLNX60/RPNLfHfg+p4h3+xZ9sH28a6e/geBiYv6BwMfS/JoT/8jwFN2sA0HA3+Y5Pd7S6I56vnGVPVO4S+BtydZRvMX9eaq+mKf29avg4FTkvxyT9sSmiOKHTm6qjb3NiTZH/gjmiOTPduavjXNOmbadoA7e6a/zWOvxVMnLf+d6aranGQ1TSg9K8mVwP+pqjv6eD49jjydpcfbW2hObTynqvbisVNI6RnznVtLt6djPgqcCzylqvYGrpg0fjZuA06sqr17vnat5rrNVLe0vg1446Txu1Vzmuq76p1KVd1Kcxrs52hOZf1lx237Nk3ITDhgUp3vmlTn7lU1+dTbTH633Z4j2tfnNdPUAzNs+wy2AAf1zC//byuu+quqegFNQBbwezvxXBoQQ0SPtz1pjgzubS9ov32G8UuAJwLjwPb2L/ef2InnPx9418TF8SRLk6xq+8aBR2nO0feO/40kz2rHPznJKzs878U05/ifz2PXDma7bRuAVydZlOQEmus6Ez4AnJbkOWk8Kcn/SLLnLOvck/Y0ZHvk9KuzXH42LqPZt/u0z3X6REeSZyR5cRu0/0XzPfPIDtajeWSI6PH2B8BuwN3A54FPTje4qu6nuRh+Gc1plVcDa3fi+f+wXf5TSe5va3hO+1zfBt4FfLZ9h9OxVfUxmr+AL23fgfQV4MQOz/sRmtN3V1fVlo7bdibwUzTXmX6O5voJ7bpGad6i+752XZuB13Wo8x00b8n+D+AfgMs7rKNfvwWMAf8O/CPNPnqo7Xsi8G6a75M7gf1p3uCgIZMq/ymVpPmX5E00F91fNONgDQ2PRCTNiyQHJnl++9mdZ9BcL/vYfNel2fHdWZLmyxKaz7McQnOK7lKat4JrAfF0liSpM09nSZI6+744nbXffvvVihUr5rsMSVpQ1q9ff3dVLZ1uzPdFiKxYsYLR0dH5LkOSFpQk35hpjKezJEmdGSKSpM4MEUlSZ4aIJKkzQ0SS1JkhIknqzBCRJHVmiEiSOjNEJEmdGSKSpM4MEUlSZ4aIJKkzQ0SS1JkhIknqzBCRJHVmiEiSOjNEJEmdGSKSpM4MEUlSZ4aIJKkzQ0SS1JkhIknqzBCRJHVmiEiSOjNEJEmdDTREkpyQ5MYkm5OsmaL/8CTXJHkoyVk97bsm+UKSLyXZmOQdPX37JrkqyU3t4z6D3AZJ0o4NLESSLALeD5wIrARelWTlpGH3AGcA505qfwh4cVX9MHAkcEKSY9u+NcDVVXUYcHU7L0maB4M8EjkG2FxVN1fVNuBSYFXvgKraWlXrgIcntVdVPdDO7tJ+VTu/Cri4nb4YOGkw5UuSZjLIEFkG3NYzP9a29SXJoiQbgK3AVVV1bdv1lKraAtA+7r+D5U9NMppkdHx8vEv9kqQZDDJEMkVbTdE2pap6pKqOBA4Cjkny7Nk8eVVdUFUjVTWydOnS2SwqSerTIENkDFjeM38QcMdsV1JV9wKfAU5om+5KciBA+7h1p6qUJHU2yBBZBxyW5JAkS4CTgbX9LJhkaZK92+ndgJcAN7Tda4FT2ulTgL+by6IlSf1bPKgVV9X2JKcDVwKLgIuqamOS09r+85McAIwCewGPJllN806uA4GL23d4PQG4rKo+3q763cBlSd4A3Aq8clDbIEmaXqr6vkyxYI2MjNTo6Oh8lyFJC0qS9VU1Mt0YP7EuSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSEiSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSEiSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnAw2RJCckuTHJ5iRrpug/PMk1SR5KclZP+/Ikn06yKcnGJGf29B2Z5PNJNiQZTXLMILdBkrRjAwuRJIuA9wMnAiuBVyVZOWnYPcAZwLmT2rcDb6mqZwLHAm/uWfY9wDuq6kjgbe28JGkeDPJI5Bhgc1XdXFXbgEuBVb0DqmprVa0DHp7UvqWqrmun7wc2AcsmuoG92uknA3cMbhMkSdNZPMB1LwNu65kfA54z25UkWQEcBVzbNq0GrkxyLk0IPm+nqpQkdTbII5FM0VazWkGyB/BRYHVV3dc2vwn4lapaDvwKcOEOlj21vWYyOj4+PpunlST1aZAhMgYs75k/iFmcekqyC02AXFJVl/d0nQJMzP8NzWmz71JVF1TVSFWNLF26dFaFS5L6M8gQWQccluSQJEuAk4G1/SyYJDRHGJuq6rxJ3XcAL2qnXwzcNEf1SpJmaWDXRKpqe5LTgSuBRcBFVbUxyWlt//lJDgBGaS6UP5pkNc07uY4AXgtcn2RDu8qzq+oK4BeBP0yyGPgv4NRBbYMkaXqpmtVligVpZGSkRkdH57sMSVpQkqyvqpHpxviJdUlSZ4aIJKkzQ0SS1JkhIknqzBCRJHVmiEiSOjNEJEmdGSKSpM4MEUlSZ4aIJKkzQ0SS1JkhIknqzBCRJHVmiEiSOjNEJEmdGSKSpM4MEUlSZ4aIJKkzQ0SS1JkhIknqzBCRJHVmiEiSOjNEJEmdDTREkpyQ5MYkm5OsmaL/8CTXJHkoyVk97cuTfDrJpiQbk5w5ablfbte7Mcl7BrkNkqQdWzyoFSdZBLwfeCkwBqxLsraqvtoz7B7gDOCkSYtvB95SVdcl2RNYn+Sqqvpqkh8HVgFHVNVDSfYf1DZIkqY3yCORY4DNVXVzVW0DLqX55f8dVbW1qtYBD09q31JV17XT9wObgGVt95uAd1fVQxPrGOA2SJKmMcgQWQbc1jM/xmNB0LckK4CjgGvbph8CfizJtUn+OcmP7mC5U5OMJhkdHx+f7dNKkvowyBDJFG01qxUkewAfBVZX1X1t82JgH+BY4FeBy5J813NV1QVVNVJVI0uXLp1d5ZKkvgwyRMaA5T3zBwF39Ltwkl1oAuSSqrp80novr8YXgEeB/eagXknSLA0yRNYBhyU5JMkS4GRgbT8LtkcWFwKbquq8Sd1/C7y4HfdDwBLg7rkqWpLUv4G9O6uqtic5HbgSWARcVFUbk5zW9p+f5ABgFNgLeDTJamAlcATwWuD6JBvaVZ5dVVcAFwEXJfkKsA04papmdZpMkjQ38v3w+3dkZKRGR0fnuwxJWlCSrK+qkenG+Il1SVJnhogkqTNDRJLUWd8X1pM8m+ai964TbVX1l4MoSpK0MPQVIkneDhxHEyJXACcC/wYYIpL0fazf01mvAI4H7qyqnwd+GHjiwKqSJC0I/YbIg1X1KLA9yV7AVuDQwZUlSVoI+r0mMppkb+ADwHrgAeALgypKkrQw9BUiVfVL7eT5ST4J7FVVXx5cWdL3vq9v+Ce+8fUvctTzfpZ9DjxkvsuROunrdFaSqyemq+qWqvpyb5uk2fnm2E28+5I3cdHn3scfX/CG+S5H6mzaI5EkuwK7A/sl2YfHbu++F/DUAdcmfc96eNuDPFyPsOsTlvDAtgfmuxyps5lOZ70RWE0TGNf1tN9H869vJXVwwKFHcNpL1vDVr32Wl770tPkuR+qsrxswJvnlqvrjx6GegfAGjJI0e3N5A8aLkvxmkgvaFR+W5OU7XaEkaUHrO0Ro/nfH89r5MeCdA6lIkrRg9BsiT6uq9wAPA1TVg0z9P9QlSd9H+g2RbUl2AwogydOAhwZWlSRpQej3E+tvBz4JLE9yCfB84HWDKkqStDD0GyJrgAuAe2lOY60G3gV8ZhBFSZIWhn5PZx0CnAqMVNXHq2ocmPZtX5Kk7339hsi9NLeCf0qSv0/y5MGVJElaKPoNkVTV9vZGjB+l+YdU+w+uLEnSQtDvNZHzJyaq6oNJrgfePJiSJEkLRV9HIlX1Z5Pm11fV62daLskJSW5MsjnJmin6D09yTZKHkpzV0748yaeTbEqyMcmZUyx7VpJKsl8/2yBJmnv9HonMWpJFNDdpfCnNJ9zXJVlbVV/tGXYPcAZw0qTFtwNvqarrkuwJrE9y1cSySZa36711UPVLkmbW7zWRLo4BNlfVzVW1DbgUWNU7oKq2VtU62k/C97Rvqarr2un7gU3Asp4h7wV+jfbDj5Kk+THIEFkG3NYzP8Z/D4K+JFkBHAVc287/NHB7VX1phuVOTTKaZHR8fHy2TytJ6sMgQ2Sqe2vN6sghyR407wZbXVX3JdkdeCvwtpmWraoLqmqkqkaWLl06m6eVJPVpkCEyBizvmT8IuKPfhZPsQhMgl1TV5W3z02g++PilJLe067wuyQFzUrEkaVYGdmEdWAccluQQ4HbgZODV/SyYJMCFwKaqOm+ivaqup+fzKW2QjFTV3XNYtySpTwMLkaranuR04EpgEXBRVW1Mclrbf357BDFK8z/bH02yGlgJHAG8Frg+yYZ2lWdX1RWDqleSNHuDPBKh/aV/xaS23g8u3klzSmqyf6OP/1dSVSt2skRJ0k4Y5DURSdL3OENEktSZISJJ6swQkSR1ZohIkjozRCRJnRkikqTODBFJUmeGiCSpM0NEktSZISJJ6swQkSR1ZohIkjozRCRJnRkikqTODBFJUmeGiCSpM0NEktSZISJJ6swQkSR1ZohIkjozRCRJnQ00RJKckOTGJJuTrJmi//Ak1yR5KMlZPe3Lk3w6yaYkG5Oc2dP3f5PckOTLST6WZO9BboMkaccGFiJJFgHvB04EVgKvSrJy0rB7gDOAcye1bwfeUlXPBI4F3tyz7FXAs6vqCOBrwG8MaBMkSTMY5JHIMcDmqrq5qrYBlwKregdU1daqWgc8PKl9S1Vd107fD2wClrXzn6qq7e3QzwMHDXAbJEnTGGSILANu65kfa9tmJckK4Cjg2im6Xw98oktxkqSdN8gQyRRtNasVJHsAHwVWV9V9k/reSnPa65IdLHtqktEko+Pj47N5WklSnwYZImPA8p75g4A7+l04yS40AXJJVV0+qe8U4OXAz1XVlMFUVRdU1UhVjSxdunTWxUuSZjbIEFkHHJbkkCRLgJOBtf0smCTAhcCmqjpvUt8JwK8DP11V357jmiVJs7B4UCuuqu1JTgeuBBYBF1XVxiSntf3nJzkAGAX2Ah5NsprmnVxHAK8Frk+yoV3l2VV1BfA+4InAVU3W8PmqOm1Q2yFJ2rGBhQhA+0v/iklt5/dM38nU7676N6a+pkJVPX0ua5Qkdecn1iVJnRkikqTODBFJUmeGiCSpM0NEktSZISJJ6swQkSR1ZohIkjozRCRJnRkikqTODBFJUmeGiCSpM0NEktSZISJJ6swQkSR1ZohIkjozRCRJnRkikqTODBFJUmeGiCSpM0NEktSZISJJ6swQkSR1NtAQSXJCkhuTbE6yZor+w5Nck+ShJGf1tC9P8ukkm5JsTHJmT9++Sa5KclP7uM8gt0GStGMDC5Eki4D3AycCK4FXJVk5adg9wBnAuZPatwNvqapnAscCb+5Zdg1wdVUdBlzdzkuS5sEgj0SOATZX1c1VtQ24FFjVO6CqtlbVOuDhSe1bquq6dvp+YBOwrO1eBVzcTl8MnDSwLZAkTWuQIbIMuK1nfozHgqBvSVYARwHXtk1Pqaot0IQNsP8Oljs1yWiS0fHx8dk+rSSpD4MMkUzRVrNaQbIH8FFgdVXdN5tlq+qCqhqpqpGlS5fOZlFJUp8GGSJjwPKe+YOAO/pdOMkuNAFySVVd3tN1V5ID2zEHAlvnoFZJUgeDDJF1wGFJDkmyBDgZWNvPgkkCXAhsqqrzJnWvBU5pp08B/m6O6pUkzdLiQa24qrYnOR24ElgEXFRVG5Oc1vafn+QAYBTYC3g0yWqad3IdAbwWuD7JhnaVZ1fVFcC7gcuSvAG4FXjloLZBkjS9VM3qMsWCNDIyUqOjo/NdhiQtKEnWV9XIdGP8xLokqTNDRJLUmSEiSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSEiSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSEiSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnqar5rmHgkowD35jvOnrsB9w930XMwBrnhjXODWucG7Ot8eCqWjrdgO+LEBk2SUaramS+65iONc4Na5wb1jg3BlGjp7MkSZ0ZIpKkzgyR+XHBfBfQB2ucG9Y4N6xxbsx5jV4TkSR15pGIJKkzQ0SS1JkhspOSnJDkxiSbk6yZon9Vki8n2ZBkNMkLevpuSXL9RF9P+zlJbm/bNyR52TzWuHeSjyS5IcmmJM9t2/dNclWSm9rHfYawxqHYj0me0VPDhiT3JVnd9g3FfpyhxqHYj23fryTZmOQrSf46ya5t+1DsxxlqHKb9eGZb38aJ17ltn/1+rCq/On4Bi4CvA4cCS4AvASsnjdmDx649HQHc0NN3C7DfFOs9BzhrSGq8GPiFdnoJsHc7/R5gTTu9Bvi9IaxxaPbjpPXcSfMhrqHaj9PUOBT7EVgG/DuwWzt/GfC6YdqPM9Q4LPvx2cBXgN2BxcA/Aod13Y8eieycY4DNVXVzVW0DLgVW9Q6oqgeqfUWAJwGP9zsZOteYZC/ghcCF7bhtVXVvO24VzS9v2seThrDGuTRXr/XxwNerauIOCkOxH2eocS7tbI2Lgd2SLKb5JXhH2z5M+3FHNc6lnanxmcDnq+rbVbUd+GfgZ9q+We9HQ2TnLANu65kfa9v+myQ/k+QG4B+A1/d0FfCpJOuTnDppsdPbQ9GLdvLQfGdqPBQYB/4iyReT/HmSJ7V9T6mqLQDt4/5DWCMMx37sdTLw1z3zw7Ifp6sRhmA/VtXtwLnArcAW4D+q6lPtIkOxH2eoEYZgP9IchbwwyQ8k2R14GbC87Zv1fjREdk6maPuuv+yq6mNVdThNqv92T9fzq+po4ETgzUle2Lb/KfA04Eiab8Tfn6caFwNHA39aVUcB/0lziDvXBlXjsOzHZgXJEuCngb/ZiTqmM6gah2I/tr90VwGHAE8FnpTkNTtRy+Nd41Dsx6raBPwecBXwSZpTYdu7FmKI7JwxHktwgIOY5tC1qv4FeFqS/dr5O9rHrcDHaA5Rqaq7quqRqnoU+MBE+zzUOAaMVdW1bfdHaH5hA9yV5ECA9nHrsNU4RPtxwonAdVV1V0/bsOzHHdY4RPvxJcC/V9V4VT0MXA48rx06LPtxhzUO0X6kqi6sqqOr6oXAPcBN7dBZ70dDZOesAw5Lckj7F9zJwNreAUmeniTt9NE0F8G+meRJSfZs258E/ATNYebEizfhZybaH+8aq+pO4LYkz2iHHg98tZ1eC5zSTp8C/N2w1Tgs+7FnyKv47tNEQ7Efp6txiPbjrcCxSXZv+48HNrWLDct+3GGNQ7QfSbJ/+/iDwM/y2Gs++/1YfbwTwK9p3yXxMuBrNO+UeGvbdhpwWjv968BGYANwDfCCtv1QmsPIL7X9b+1Z54eA64Evty/qgfNRY9t3JDDa1vK3wD5t+w8AV9P8BXM1sO8Q1jhM+3F3mh/gJ09a5zDtxx3VOEz78R3ADTS/gD8EPHEI9+OOahym/fivNH9sfQk4fme+H73tiSSpM09nSZI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJojae4m/Evt9HFJPj7L5V+X5KmDqU4aDENEmjt7A7+0E8u/juZWGdKC4edEpDmSZOJOqjcCD9Pcx+tumltvrwdeU1WV5EeA82hu1X03TXg8H/ggcDvwIPBc4FeBnwJ2Az4HvLH8gdWQMUSkOZJkBfDxqnp2kuNobhnxLJp7Gn2WJhSupbn19qqqGk/yv4CfrKrXJ/kMzf+bGG3Xt29V3dNOfwi4rKr+/vHdKml6i+e7AOl72BeqagwgyQZgBXAvzZHJVe1tjRbR3NF1Kj+e5NdobkeyL80tLAwRDRVDRBqch3qmH6H5eQuwsaqeO92Caf6l6p8AI1V1W5JzgF0HVajUlRfWpblzP7DnDGNuBJbmsf8Dv0uSZ02x/ERg3J1kD+AVc12sNBc8EpHmSFV9M8lnk3yF5uL4XVOM2ZbkFcAfJXkyzc/gH9CcqvogcH6SiQvrH6C56+stNLf+loaOF9YlSZ15OkuS1JkhIknqzBCRJHVmiEiSOjNEJEmdGSKSpM4MEUlSZ/8fGb69NIMwtLcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "theta eta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbgUlEQVR4nO3df5wddX3v8dfbhAhIEChBMKQEFMHogwJdEX9UrWgN3raJve3jotWLtRaxUkivtE2xD8W2trZFbHtLy8VCpZaWSwVqrsUiRa2tRcwGYzEGSkSEhUiCQIkVCYHP/WNm5bhuNmcne7In5fV8PPZxZr7f78z5zJzdfe/MnDObqkKSpC6eMtsFSJJ2X4aIJKkzQ0SS1JkhIknqzBCRJHVmiEiSOjNEpCGV5BVJxma7jl5J1iV5xRT95yT5811XkWabIaKBSHJHkoeTfCvJvUn+Isk+s13XVJIsTlJJ5s7Q+vZM8mCSV07S98EkH52J5+mi3c7/bF+fu5Ocn2TOjparqudV1Wem6P+dqnrrjBaroWaIaJB+oqr2AY4HXgD8xnQWTmO3+R6dGD5V9R3g/wL/c8K4OcDrgUt3XXWT+qH29TkJeAPwCzuzspkKX+1edpsfUO2+qupu4BPA85Psn+TjSTYneaCdPnR8bJLPJHlfks8B3waOSPJzSdYn2ZLk9iRv6xn/iiRjSX41yaYkG5MsT/LaJP+e5P4k5/SMf0qSlUm+muSbSa5IckDb/dn28cH2L/QXtcu8pX3+B5Jcm+SwnvVVknckuQ24bZLNvxT470n27ml7Dc3P3iem2raJ2ud6ds/8h5P8ds/8jydZ2x79/GuSY7b/qjyhqm4B/pnm9XlWkk+1++a+JJcl2a/nOe5I8qp2+twkH03yV0keAt7ctv1V2z9+ZHdqkjvb9b2rZ117Jbm03a/r29dwrKf/19qjpC1Jbk1yUj/bo13LENHAJVkEvBb4Is333F8AhwE/CDwM/MmERd4EnAbMB74ObAJ+HNgX+Dngg0mO7xl/MLAnsBB4N/Ah4I3ADwM/Arw7yRHt2DOB5cDLgWcCDwAXtH0vax/3q6p9quqGJMuBc4CfAhbQ/LL9mwn1LgdeCCyZuO1V9a/Axnb53u3766ra1se29aVd5hLgbcAPAP8HWJXkqX0su4RmP30RCPC7NPvmucAi4NwpFl8GfBTYD7hsO2NeChxFc8Tz7iTPbdvfAywGjgBeTfOajdd0FHAG8IKqmk8TvHfsaFs0C6rKL79m/IvmB/5bwIM0QfCnwF6TjDsWeKBn/jPAb+5g3X8HnNVOv4ImiOa08/OBAl7YM34NsLydXg+c1NN3CPAoMJfmF1oBc3v6PwH8fM/8U2iOkA5r5wt45Q7q/Q3gk+30vu3yx/W5bWM9fQU8u2f+w8Bvt9N/BvzWhHXdCrx8O89TwEM0IfpV4LeBp0wybjnwxQmv66va6XOBz04Yfy7wV+30+P48tKf/C8Ap7fTtwGt6+t46vr3As2kC9lXAHrP9/ezX9r88h6lBWl5V/9jb0J7W+SCwFNi/bZ6fZE5VPdbO3zVhmZNp/mp9Ds0v8b2Bm3uGfLNn2Yfbx3t7+h8Gxi/qHwZcneTxnv7HgGdsZxsOA/4oyQd6S6I56vn6ZPVO4i+B9yRZSPMX9Yaq+mKf29avw4BTk/xST9s8miOK7Tm+qjb0NiQ5CPhjmiOT+W1ND0yxjh1tO8A3eqa/zROvxTMnLP/d6arakGQFTSg9L8m1wP+qqnv6eD7tQp7O0q72TppTGy+sqn154hRSesZ899bS7emYK4HzgGdU1X7ANRPGT8ddwMlVtV/P157VXLeZ7JbWdwFvmzB+r2pOU31fvZOpqjtpToP9LM2prL/suG3fpgmZcQdPqPN9E+rcu6omnnrbkd9tt+eY9vV54xT1wA62fQc2Aof2zC/6nhVX/XVVvZQmIAv4vZ14Lg2IIaJdbT7NkcGD7QXt9+xg/DzgqcBmYFv7l/uP7cTzXwi8b/zieJIFSZa1fZuBx2nO0feO//Ukz2vHPz3Jz3R43ktpzvG/hCeuHUx329YCb0gyJ8lSmus64z4EnJ7khWk8Lcl/SzJ/mnXOpz0N2R45/co0l5+OK2j27f7tc50x3pHkqCSvbIP2OzTfM49tZz2aRYaIdrU/BPYC7gM+D/zDVIOragvNxfAraE6rvAFYtRPP/0ft8p9MsqWt4YXtc30beB/wufYdTidW1dU0fwFf3r4D6cvAyR2e96M0p++ur6qNHbftLOAnaK4z/SzN9RPadY3SvEX3T9p1bQDe3KHO99K8Jfs/gL8Hruqwjn79JjAGfA34R5p99Ejb91Tg/TTfJ98ADqJ5g4OGTKr8p1SSZl+St9NcdH/5DgdraHgkImlWJDkkyUvaz+4cRXO97OrZrkvT47uzJM2WeTSfZzmc5hTd5TRvBdduxNNZkqTOPJ0lSersSXE668ADD6zFixfPdhmStFtZs2bNfVW1YKoxT4oQWbx4MaOjo7NdhiTtVpJ8fUdjPJ0lSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSEiSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSEiSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSEiSepsoCGSZGmSW5NsSLJykv6jk9yQ5JEkZ/e075nkC0m+lGRdkvf29B2Q5Lokt7WP+w9yGyRJ2zewEEkyB7gAOBlYArw+yZIJw+4HzgTOm9D+CPDKqvoh4FhgaZIT276VwPVVdSRwfTsvSZoFgzwSOQHYUFW3V9VW4HJgWe+AqtpUVauBRye0V1V9q53do/2qdn4ZcGk7fSmwfDDlS5J2ZJAhshC4q2d+rG3rS5I5SdYCm4DrqurGtusZVbURoH08aDvLn5ZkNMno5s2bu9QvSdqBQYZIJmmrSdomVVWPVdWxwKHACUmeP50nr6qLqmqkqkYWLFgwnUUlSX0aZIiMAYt65g8F7pnuSqrqQeAzwNK26d4khwC0j5t2qkpJUmeDDJHVwJFJDk8yDzgFWNXPgkkWJNmvnd4LeBVwS9u9Cji1nT4V+NhMFi1J6t/cQa24qrYlOQO4FpgDXFJV65Kc3vZfmORgYBTYF3g8yQqad3IdAlzavsPrKcAVVfXxdtXvB65I8vPAncDPDGobJElTS1Xflyl2WyMjIzU6OjrbZUjSbiXJmqoamWqMn1iXJHVmiEiSOjNEJEmdGSKSpM4MEUlSZ4aIJKkzQ0SS1JkhIknqzBCRJHVmiEiSOjNEJEmdGSKSpM4MEUlSZ4aIJKkzQ0SS1JkhIknqzBCRJHVmiEiSOjNEJEmdGSKSpM4MEUlSZ4aIJKmzgYZIkqVJbk2yIcnKSfqPTnJDkkeSnN3TvijJp5OsT7IuyVk9fccm+XyStUlGk5wwyG2QJG3fwEIkyRzgAuBkYAnw+iRLJgy7HzgTOG9C+zbgnVX1XOBE4B09y/4+8N6qOhZ4dzsvSZoFgzwSOQHYUFW3V9VW4HJgWe+AqtpUVauBRye0b6yqm9rpLcB6YOF4N7BvO/104J7BbYIkaSpzB7juhcBdPfNjwAunu5Iki4HjgBvbphXAtUnOownBF+9UlZKkzgZ5JJJJ2mpaK0j2Aa4EVlTVQ23z24FfrqpFwC8DF29n2dPaayajmzdvns7TSpL6NMgQGQMW9cwfyjROPSXZgyZALquqq3q6TgXG5/+W5rTZ96mqi6pqpKpGFixYMK3CJUn9GWSIrAaOTHJ4knnAKcCqfhZMEpojjPVVdf6E7nuAl7fTrwRum6F6JUnTNLBrIlW1LckZwLXAHOCSqlqX5PS2/8IkBwOjNBfKH0+yguadXMcAbwJuTrK2XeU5VXUN8AvAHyWZC3wHOG1Q2yBJmlqqpnWZYrc0MjJSo6Ojs12GJO1WkqypqpGpxviJdUlSZ4aIJKkzQ0SS1JkhIknqzBCRJHVmiEiSOjNEJEmdGSKSpM4MEUlSZ4aIJKkzQ0SS1JkhIknqzBCRJHVmiEiSOjNEJEmdGSKSpM4MEUlSZ4aIJKkzQ0SS1JkhIknqzBCRJHVmiEiSOjNEJEmdDTREkixNcmuSDUlWTtJ/dJIbkjyS5Oye9kVJPp1kfZJ1Sc6asNwvtetdl+T3B7kNkqTtmzuoFSeZA1wAvBoYA1YnWVVVX+kZdj9wJrB8wuLbgHdW1U1J5gNrklxXVV9J8qPAMuCYqnokyUGD2gZJ0tQGeSRyArChqm6vqq3A5TS//L+rqjZV1Wrg0QntG6vqpnZ6C7AeWNh2vx14f1U9Mr6OAW6DJGkKgwyRhcBdPfNjPBEEfUuyGDgOuLFteg7wI0luTPJPSV6wneVOSzKaZHTz5s3TfVpJUh8GGSKZpK2mtYJkH+BKYEVVPdQ2zwX2B04EfgW4Isn3PVdVXVRVI1U1smDBgulVLknqyyBDZAxY1DN/KHBPvwsn2YMmQC6rqqsmrPeqanwBeBw4cAbqlSRN0yBDZDVwZJLDk8wDTgFW9bNge2RxMbC+qs6f0P13wCvbcc8B5gH3zVTRkqT+DezdWVW1LckZwLXAHOCSqlqX5PS2/8IkBwOjwL7A40lWAEuAY4A3ATcnWduu8pyquga4BLgkyZeBrcCpVTWt02SSpJmRJ8Pv35GRkRodHZ3tMiRpt5JkTVWNTDXGT6xLkjozRCRJnRkikqTODBFJUmeGiCSps77f4ptkf+BIYM/xtqr67CCKkiTtHvoKkSRvBc6i+dT5WppbjtxA+6E/SdKTU7+ns84CXgB8vap+lOaGiN7VUJKe5PoNke9U1XcAkjy1qm4BjhpcWdJ/fV9d+yk+deUHeGDj12a7FKmzfq+JjCXZj+a+VdcleYBp3ExR0vf65thtvP+yt/Pw41t5zpf/nne/51OzXZLUSV8hUlWvayfPTfJp4OnAJwZWlfRf3KNbH+bReow9nzKPb2391myXI3XW1+msJB8Zn66qf6qqVTQ3QpTUwcFHHMPpr1rJixe9mF964/+e7XKkzvo9nfW83pn2/6f/8MyXIz15nLj0rZy49K2zXYa0U6Y8Ekny60m2AMckeaj92gJsAj62SyqUJA2tKUOkqn63quYD5wPvAD7Qzh8HXL0L6pMkDbF+3+K7L80HDE9p57cAFwykIknSbqPfayInVNXxSb4IUFUPtP/yVpL0JNbvkcij7cX0AkiyAHh8YFVJknYL/YbIH9NcAzkoyfuAfwF+Z2BVSZJ2C/1+2PCyJGuAk4AAy6tq/UArkyQNvb5vBd/eL+uWAdYiSdrN+E+pJEmdGSKSpM4GGiJJlia5NcmGJCsn6T86yQ1JHklydk/7oiSfTrI+ybokZ02y7NlJKsmBg9wGSdL29X1NZLratwRfALwaGANWJ1lVVV/pGXY/cCawfMLi24B3VtVNSeYDa5JcN75skkXteu8cVP2SpB0b5JHICcCGqrq9qrYClwPLegdU1aaqWg08OqF9Y1Xd1E5vAdYDC3uGfBD4VdrPrUiSZscgQ2QhcFfP/BjfGwR9SbKY5l5dN7bzPwncXVVf2sFypyUZTTK6ebP/yVeSBmGQIZJJ2qZ15JBkH+BKYEVVPZRkb+BdwLt3tGxVXVRVI1U1smDBguk8rSSpT4MMkTFgUc/8oUzjX+om2YMmQC6rqqva5mcBhwNfSnJHu86bkhw8IxVLkqZlYBfWgdXAkUkOB+6muQPwG/pZMEmAi4H1VXX+eHtV3Qwc1DPuDmCkqu6bwbolSX0aWIhU1bYkZwDXAnOAS6pqXZLT2/4L2yOIUZpbzT+eZAWwBDgGeBNwc5K17SrPqaprBlWvJGn6BnkkQvtL/5oJbRf2TH+D5pTURP/C5NdUJq5/8U6WKEnaCX5iXZLUmSEiSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSEiSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSEiSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgYaIkmWJrk1yYYkKyfpPzrJDUkeSXJ2T/uiJJ9Osj7JuiRn9fT9QZJbkvxbkquT7DfIbZAkbd/AQiTJHOAC4GRgCfD6JEsmDLsfOBM4b0L7NuCdVfVc4ETgHT3LXgc8v6qOAf4d+PUBbYIkaQcGeSRyArChqm6vqq3A5cCy3gFVtamqVgOPTmjfWFU3tdNbgPXAwnb+k1W1rR36eeDQAW6DJGkKgwyRhcBdPfNjbdu0JFkMHAfcOEn3W4BPdClOkrTzBhkimaStprWCZB/gSmBFVT00oe9dNKe9LtvOsqclGU0yunnz5uk8rSSpT4MMkTFgUc/8ocA9/S6cZA+aALmsqq6a0Hcq8OPAz1bVpMFUVRdV1UhVjSxYsGDaxUuSdmyQIbIaODLJ4UnmAacAq/pZMEmAi4H1VXX+hL6lwK8BP1lV357hmiVJ0zB3UCuuqm1JzgCuBeYAl1TVuiSnt/0XJjkYGAX2BR5PsoLmnVzHAG8Cbk6ytl3lOVV1DfAnwFOB65qs4fNVdfqgtkOStH0DCxGA9pf+NRPaLuyZ/gaTv7vqX5j8mgpV9eyZrFGS1J2fWJckdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSEiSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSEiSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLU2UBDJMnSJLcm2ZBk5ST9Rye5IckjSc7uaV+U5NNJ1idZl+Ssnr4DklyX5Lb2cf9BboMkafsGFiJJ5gAXACcDS4DXJ1kyYdj9wJnAeRPatwHvrKrnAicC7+hZdiVwfVUdCVzfzkuSZsEgj0ROADZU1e1VtRW4HFjWO6CqNlXVauDRCe0bq+qmdnoLsB5Y2HYvAy5tpy8Flg9sCyRJUxpkiCwE7uqZH+OJIOhbksXAccCNbdMzqmojNGEDHLSd5U5LMppkdPPmzdN9WklSHwYZIpmkraa1gmQf4EpgRVU9NJ1lq+qiqhqpqpEFCxZMZ1FJUp8GGSJjwKKe+UOBe/pdOMkeNAFyWVVd1dN1b5JD2jGHAJtmoFZJUgeDDJHVwJFJDk8yDzgFWNXPgkkCXAysr6rzJ3SvAk5tp08FPjZD9UqSpmnuoFZcVduSnAFcC8wBLqmqdUlOb/svTHIwMArsCzyeZAXNO7mOAd4E3JxkbbvKc6rqGuD9wBVJfh64E/iZQW2DJGlqqZrWZYrd0sjISI2Ojs52GZK0W0mypqpGphrjJ9YlSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSEiSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSEiSerMEJEkdWaISJI6M0QkSZ0ZIpKkzgwRSVJnhogkqTNDRJLUmSEiSerMEJEkdWaISJI6S1XNdg0Dl2Qz8PXZrqPHgcB9s13EDljjzLDGmWGNM2O6NR5WVQumGvCkCJFhk2S0qkZmu46pWOPMsMaZYY0zYxA1ejpLktSZISJJ6swQmR0XzXYBfbDGmWGNM8MaZ8aM1+g1EUlSZx6JSJI6M0QkSZ0ZIjspydIktybZkGTlJP3LkvxbkrVJRpO8tKfvjiQ3j/f1tJ+b5O62fW2S185ijfsl+WiSW5KsT/Kitv2AJNclua193H8IaxyK/ZjkqJ4a1iZ5KMmKtm8o9uMOahyK/dj2/XKSdUm+nORvkuzZtg/FftxBjcO0H89q61s3/jq37dPfj1XlV8cvYA7wVeAIYB7wJWDJhDH78MS1p2OAW3r67gAOnGS95wJnD0mNlwJvbafnAfu1078PrGynVwK/N4Q1Ds1+nLCeb9B8iGuo9uMUNQ7FfgQWAl8D9mrnrwDePEz7cQc1Dst+fD7wZWBvYC7wj8CRXfejRyI75wRgQ1XdXlVbgcuBZb0Dqupb1b4iwNOAXf1Ohs41JtkXeBlwcTtua1U92I5bRvPLm/Zx+RDWOJNm6rU+CfhqVY3fQWEo9uMOapxJO1vjXGCvJHNpfgne07YP037cXo0zaWdqfC7w+ar6dlVtA/4JeF3bN+39aIjsnIXAXT3zY23b90jyuiS3AH8PvKWnq4BPJlmT5LQJi53RHopespOH5jtT4xHAZuAvknwxyZ8neVrb94yq2gjQPh40hDXCcOzHXqcAf9MzPyz7caoaYQj2Y1XdDZwH3AlsBP6jqj7ZLjIU+3EHNcIQ7Eeao5CXJfmBJHsDrwUWtX3T3o+GyM7JJG3f95ddVV1dVUfTpPpv9XS9pKqOB04G3pHkZW37nwHPAo6l+Ub8wCzVOBc4HvizqjoO+E+aQ9yZNqgah2U/NitI5gE/CfztTtQxlUHVOBT7sf2luww4HHgm8LQkb9yJWnZ1jUOxH6tqPfB7wHXAP9CcCtvWtRBDZOeM8USCAxzKFIeuVfVZ4FlJDmzn72kfNwFX0xyiUlX3VtVjVfU48KHx9lmocQwYq6ob2+6P0vzCBrg3ySEA7eOmYatxiPbjuJOBm6rq3p62YdmP261xiPbjq4CvVdXmqnoUuAp4cTt0WPbjdmscov1IVV1cVcdX1cuA+4Hb2qHT3o+GyM5ZDRyZ5PD2L7hTgFW9A5I8O0na6eNpLoJ9M8nTksxv258G/BjNYeb4izfudePtu7rGqvoGcFeSo9qhJwFfaadXAae206cCHxu2GodlP/YMeT3ff5poKPbjVDUO0X68Ezgxyd5t/0nA+naxYdmP261xiPYjSQ5qH38Q+CmeeM2nvx+rj3cC+DXluyReC/w7zTsl3tW2nQ6c3k7/GrAOWAvcALy0bT+C5jDyS23/u3rW+RHgZuDf2hf1kNmose07Fhhta/k7YP+2/QeA62n+grkeOGAIaxym/bg3zQ/w0yesc5j24/ZqHKb9+F7gFppfwB8BnjqE+3F7NQ7Tfvxnmj+2vgSctDPfj972RJLUmaezJEmdGSKSpM4MEUlSZ4aIJKkzQ0SS1JkhIs2QNHcT/sV2+hVJPj7N5d+c5JmDqU4aDENEmjn7Ab+4E8u/meZWGdJuw8+JSDMkyfidVG8FHqW5j9d9NLfeXgO8saoqyQ8D59Pcqvs+mvB4CfBh4G7gYeBFwK8APwHsBfwr8LbyB1ZDxhCRZkiSxcDHq+r5SV5Bc8uI59Hc0+hzNKFwI82tt5dV1eYk/wN4TVW9JclnaP7fxGi7vgOq6v52+iPAFVX1/3btVklTmzvbBUj/hX2hqsYAkqwFFgMP0hyZXNfe1mgOzR1dJ/OjSX6V5nYkB9DcwsIQ0VAxRKTBeaRn+jGan7cA66rqRVMtmOZfqv4pMFJVdyU5F9hzUIVKXXlhXZo5W4D5OxhzK7AgT/wf+D2SPG+S5ccD474k+wA/PdPFSjPBIxFphlTVN5N8LsmXaS6O3zvJmK1Jfhr44yRPp/kZ/EOaU1UfBi5MMn5h/UM0d329g+bW39LQ8cK6JKkzT2dJkjozRCRJnRkikqTODBFJUmeGiCSpM0NEktSZISJJ6uz/A0iDowasZ+yoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "theta mu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAEWCAYAAABWn/G6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfhklEQVR4nO3dfZRcVZ3u8e9DmvCOQRMcTJAECYwgDIYG4tVg5GVMuGAijhKMBlFvCIrXud5xJuowMI7OqEvHmSwwXJAQo5DARV5agYkvsxAvgqQjLSRAhiYgaRJJBwSjwcTA7/5xdsmhUt1d3enaVdHns9ZZVWfvffbZ51Snnj6ndqoVEZiZmeWyW7MHYGZmf1ocPGZmlpWDx8zMsnLwmJlZVg4eMzPLysFjZmZZOXjM/khImiqpp9njKJO0WtLUfuo/Lenr+UZkrcDBYy1B0uOSnpf0G0lPSbpa0r7NHld/JI2XFJLahqm/PSU9K+nkGnVflXTDcOxnKNJx/ja9Pk9K+ldJIwbaLiKOiog7+qn/54j48LAO1lqeg8dayZkRsS8wCTge+PvBbKzCLvMzXR1YEfE74DpgTlW7EcA5wDfyja6mv0ivzynAe4H/sTOdDVdg265nl/lHan86IuJJ4HbgDZIOkPRdSb2SfpWej6u0lXSHpM9LugvYAhwq6TxJD0naLGmtpPNL7adK6pH0t5I2Stogaaak0yX9l6RnJH261H43SfMlPSrpaUnXS3plqr4zPT6brgTelLb5YNr/ryQtl3RIqb+Q9FFJjwCP1Dj8bwDvkrR3qeztFP9Wb+/v2KqlfR1WWl8s6XOl9TMkdaWrrJ9IOqbvV+UlEfEw8GOK1+d1kv4znZtNkq6RNKq0j8clnZqeXyLpBknfkvRr4AOp7FupvnIFea6kJ1J/nyn1tZekb6Tz+lB6DXtK9X+XrsY2S1oj6ZR6jsfyc/BYy5F0MHA6cB/Fz+jVwCHAa4HngUurNnk/MBfYD/gFsBE4A9gfOA/4qqRJpfZ/BuwJjAX+AbgSeB9wHDAF+AdJh6a2/xOYCbwVeA3wK+CyVHdSehwVEftGxN2SZgKfBs4CxlC8QS+tGu9M4ETgyOpjj4ifABvS9uXjuzYittdxbHVJ2ywCzgdeBfwfoEPSHnVseyTFeboPEPAvFOfm9cDBwCX9bD4DuAEYBVzTR5u3AEdQXFn9g6TXp/KLgfHAocBpFK9ZZUxHABcCx0fEfhRh/fhAx2JNEhFevDR9oXiT+A3wLEV4fA3Yq0a7Y4FfldbvAD47QN83Ax9Pz6dShNeItL4fEMCJpfYrgZnp+UPAKaW6g4DfA20Ub4IBtJXqbwc+VFrfjeJK7JC0HsDJA4z374Hvpef7p+3fWOex9ZTqAjistL4Y+Fx6vhD4p6q+1gBv7WM/AfyaIngfBT4H7Faj3UzgvqrX9dT0/BLgzqr2lwDfSs8r53Ncqf5eYFZ6vhZ4e6nuw5XjBQ6jCOVTgd2b/fPspf/F91itlcyMiB+UC9Itp68C04ADUvF+kkZExAtpfV3VNtMpfjs+nOKNf2/ggVKTp0vbPp8enyrVPw9UJjYcAtwk6cVS/QvAq/s4hkOAf5f0lfKQKK6uflFrvDUsAS6WNJbiN/fuiLivzmOr1yHAuZI+ViobSXHl0pdJEdFdLpB0ILCA4gpovzSmX/XTx0DHDvDL0vMtvPRavKZq+z88j4huSX9NEWRHSVoOfCIi1texP8vMt9qs1f1vitsuJ0bE/rx0e0ulNn/4ivV0q+jbwJeBV0fEKOC2qvaDsQ6YHhGjSsueUXwOVeur3dcB51e13yuKW2g7jLeWiHiC4hbdbIrbbEuGeGxbKIKp4s+qxvn5qnHuHRHVtwUH8i/peI5Jr8/7+hkPDHDsA9gAjCutH/yyjiOujYi3UIRqAF/ciX1ZAzl4rNXtR3EF8mz6UP/iAdqPBPYAeoHt6QrhL3di/5cDn69MEJA0RtKMVNcLvEjxmUO5/ackHZXav0LSu4ew329QfGbxZl76LGSwx9YFvFfSCEnTKD6nqrgSmCfpRBX2kfTfJe03yHHuR7pFmq7QPjnI7Qfjeopze0Da14WVCklHSDo5hfPvKH5mXuijH2syB4+1un8D9gI2AfcA/9Ff44jYTDEh4HqKWz7vBTp2Yv//nrb/nqTNaQwnpn1tAT4P3JVmhk2OiJsoftNelmZurQKmD2G/N1DcWvxhRGwY4rF9HDiT4nOz2RSfB5H66qSYDn1p6qsb+MAQxvmPFNPfnwNuBW4cQh/1+izQAzwG/IDiHG1NdXsAX6D4OfklcCDFJA9rQYrwH4Izs12PpAsoJh68dcDG1lJ8xWNmuwRJB0l6c/q/VUdQfP53U7PHZYPnWW1mtqsYSfH/jSZQ3D5cRjHt3nYxvtVmZmZZ+VabmZll5VttfRg9enSMHz++2cMwM9tljB49muXLly+PiGn9tXPw9GH8+PF0dnY2exhmZrsUSaMHauNbbWZmlpWDx8zMsnLwmJlZVg4eMzPLysFjZmZZOXjMzCwrB4+ZmWXl4DEzs6wcPGZmlpWDx8zMsnLwmJlZVg4eMzPLysFjZmZZOXjMzCwrB4+ZmWXl4DEzs6wcPGZmllVDg0fSNElrJHVLml+jXpIWpPr7JU0q1S2StFHSqqptrpPUlZbHJXWl8tml8i5JL0o6NtXdkcZRqTuwkcdtZmZ9a9ifvpY0ArgMOA3oAVZI6oiIB0vNpgMT03IisDA9AiwGLgWWlPuNiLNL+/gK8Fwqvwa4JpUfDdwSEV2lTWdHhP+WtZlZkzXyiucEoDsi1kbENmAZMKOqzQxgSRTuAUZJOgggIu4Enumrc0kC3gMsrVF9Th/lZmbWZI0MnrHAutJ6TyobbJu+TAGeiohHatSdzY7Bc3W6zXZRCq0dSJorqVNSZ29vb53DMDOzwWhk8NR6c48htOlLzasaSScCWyKi/NnQ7Ig4miKspgDvr9VhRFwREe0R0T5mzJg6h2FmZoPRyODpAQ4urY8D1g+hzQ4ktQFnAdfVqJ5FVSBFxJPpcTNwLcVtQDMza4JGBs8KYKKkCZJGUgRCR1WbDmBOmt02GXguIjbU0fepwMMR0VMulLQb8G6Kz5MqZW2SRqfnuwNnAC+bKWdmZvk0bFZbRGyXdCGwHBgBLIqI1ZLmpfrLgduA04FuYAtwXmV7SUuBqcBoST3AxRFxVare4aomOQnoiYi1pbI9gOUpdEYAPwCuHLYDNTOzQVFEvR+p/Glpb2+Pzk7PvjYzGwxJKyOivb82/uYCMzPLysFjZmZZOXjMzCwrB4+ZmWXl4DEzs6wcPGZmlpWDx8zMsnLwmJlZVg4eMzPLysFjZmZZOXjMzCwrB4+ZmWXl4DEzs6wcPGZmlpWDx8zMsnLwmJlZVg4eMzPLysFjZmZZOXjMzCwrB4+ZmWXV0OCRNE3SGkndkubXqJekBan+fkmTSnWLJG2UtKpqm+skdaXlcUldqXy8pOdLdZeXtjlO0gNpPwskqYGHbWZm/WhY8EgaAVwGTAeOBM6RdGRVs+nAxLTMBRaW6hYD06r7jYizI+LYiDgW+DZwY6n60UpdRMwrlS9M/Vf2tUO/ZmaWRyOveE4AuiNibURsA5YBM6razACWROEeYJSkgwAi4k7gmb46T1ct7wGW9jeI1N/+EXF3RASwBJg5xGMyM7Od1MjgGQusK633pLLBtunLFOCpiHikVDZB0n2SfiRpSmkfPfXsQ9JcSZ2SOnt7e+schpmZDUYjg6fW5ygxhDZ9OYeXX+1sAF4bEW8EPgFcK2n/wewjIq6IiPaIaB8zZkydwzAzs8Foa2DfPcDBpfVxwPohtNmBpDbgLOC4SllEbAW2pucrJT0KHJ72MW6w+zAzs8Zo5BXPCmCipAmSRgKzgI6qNh3AnDS7bTLwXERsqKPvU4GHI+IPt9AkjUkTGpB0KMUkgrWpv82SJqfPheYAt+z00ZmZ2ZA07IonIrZLuhBYDowAFkXEaknzUv3lwG3A6UA3sAU4r7K9pKXAVGC0pB7g4oi4KlXPYsdJBScBn5W0HXgBmBcRlckJF1DMktsLuD0tZmbWBComelm19vb26OzsbPYwzMx2KZJWRkR7f238zQVmZpaVg8fMzLJy8JiZWVYOHjMzy8rBY2ZmWTl4zMwsKwePmZll5eAxM7OsHDxmZpaVg8fMzLJy8JiZWVYOHjMzy8rBY2ZmWTl4zMwsKwePmZll5eAxM7OsHDxmZpaVg8fMzLJy8JiZWVYOHjMzy6qhwSNpmqQ1krolza9RL0kLUv39kiaV6hZJ2ihpVdU210nqSsvjkrpS+WmSVkp6ID2eXNrmjjSOynYHNvCwzcysH22N6ljSCOAy4DSgB1ghqSMiHiw1mw5MTMuJwML0CLAYuBRYUu43Is4u7eMrwHNpdRNwZkSsl/QGYDkwtrTp7IjoHJ6jMzOzoWrkFc8JQHdErI2IbcAyYEZVmxnAkijcA4ySdBBARNwJPNNX55IEvAdYmtrfFxHrU/VqYE9JewzrEZmZ2U5rZPCMBdaV1nt4+RVIvW36MgV4KiIeqVH3LuC+iNhaKrs63Wa7KIXWDiTNldQpqbO3t7fOYZiZ2WA0MnhqvbnHENr05RzS1c7LOpSOAr4InF8qnh0RR1OE1RTg/bU6jIgrIqI9ItrHjBlT5zDMzGwwGhk8PcDBpfVxwPohtNmBpDbgLOC6qvJxwE3AnIh4tFIeEU+mx83AtRS3Ac3MrAkaGTwrgImSJkgaCcwCOqradABz0uy2ycBzEbGhjr5PBR6OiJ5KgaRRwK3ApyLirlJ5m6TR6fnuwBnAKszMrCkaFjwRsR24kGJ22UPA9RGxWtI8SfNSs9uAtUA3cCXwkcr2kpYCdwNHSOqR9KFS97PY8TbbhcBhwEVV06b3AJZLuh/oAp5M+zIzsyZQRL0fqfxpaW9vj85Oz742MxsMSSsjor2/Nv7mAjMzy8rBY2ZmWTl4zMwsKwePmZll5eAxM7OsHDxmZpaVg8fMzLJy8JiZWVYOHjMzy8rBY2ZmWTl4zMwsKwePmZll5eAxM7OsHDxmZpaVg8fMzLJy8JiZWVYOHjMzy8rBY2ZmWbXV00jSa2uVR8QTwzscMzP7Y1dX8AC3AgEI2BOYAKwBjmrQuMzM7I9UXbfaIuLoiDgmPU4ETgD+30DbSZomaY2kbknza9RL0oJUf7+kSaW6RZI2SlpVtc11krrS8rikrlLdp1JfayS9vVR+nKQHUt0CSarnuM3MbPgN6TOeiPgZcHx/bSSNAC4DpgNHAudIOrKq2XRgYlrmAgtLdYuBaTX2fXZEHBsRxwLfBm5M+zsSmEVxFTYN+FoaA6nfuaV97dCvWauLF1/kZ/95DT/uuJRtz/+m2cMxG7J6P+P5RGl1N+A4oHeAzU4AuiNibepjGTADeLDUZgawJCICuEfSKEkHRcSGiLhT0vh+xiTgPcDJpb6WRcRW4DFJ3cAJkh4H9o+Iu9N2S4CZwO0DH7lZ6+i68zq+cutniAh6n36Cs877UrOHZDYk9V7x7Afsm5aRwHeAdwywzVhgXWm9J5UNtk1fpgBPRcQjA/Q1Nj0fcB+S5krqlNTZ2ztQrprltfV3vyUIdtNu/Pb5Xzd7OGZDVu/kgtuATwPjS9vMB47pZ5tan6PEENr05RxgaR191b2PiLgCuAKgvb293nGYZXHc1Pcya+Nj/GbLs5z57s80ezhmQ1Zv8HwL+BtgFfBindv0AAeX1scB64fQZgeS2oCzKG75DdRXT3o+qH2YtZrd99ybd8z5fLOHYbbT6r3V1hsR34mIxyLiF5VlgG1WABMlTZA0kuKD/46qNh3AnDS7bTLwXERsqGM8pwIPR0T5FloHMEvSHpImUEwiuDf1t1nS5PS50Bzgljr2YWZmDVDvFc/Fkr4O/BDYWimMiBv72iAitku6EFgOjAAWRcRqSfNS/eUUt/BOB7qBLcB5le0lLQWmAqMl9QAXR8RVqXoWL7/NRur7eorJC9uBj0bEC6n6AopZcntRTCrwxAIzsyZRMaFsgEbSt4A/B1bz0q22iIgPNnBsTdXe3h6dnZ3NHoaZ2S5F0sqIaO+vTb1XPH8REUcPw5jMzOxPXL2f8dxT4z9/mpmZDVq9VzxvAc6V9BjFZzyiuNXW33RqMzOzHdQbPP6KGTMzGxZ1BU8dU6fNzMzq4j8EZ2ZmWTl4zMwsKwePmZll5eAxM7OsHDxmZpaVg8fMzLJy8JiZWVYOHjMzy8rBY2ZmWTl4zMwsKwePmZll5eAxM7OsHDxmZpaVg8fMzLJy8JiZWVYNDR5J0yStkdQtaX6NeklakOrvlzSpVLdI0kZJq2ps97HU72pJX0plsyV1lZYXJR2b6u5I7St1BzbwsM3MrB/1/gXSQZM0ArgMOA3oAVZI6oiIB0vNpgMT03IisDA9AiwGLgWWVPX7NmAGcExEbK2ESERcA1yT2hwN3BIRXaVNZ0dE53Aeo5mZDV4jr3hOALojYm1EbAOWUQRG2QxgSRTuAUZJOgggIu4EnqnR7wXAFyJia2q3sUabc4Clw3QcZmY2jBoZPGOBdaX1nlQ22DbVDgemSPqppB9JOr5Gm7PZMXiuTrfZLpKkWh1LmiupU1Jnb2/vAMMwM7OhaGTw1HpzjyG0qdYGHABMBj4JXF8OEkknAlsiovzZ0OyIOBqYkpb31+o4Iq6IiPaIaB8zZswAwzAzs6FoZPD0AAeX1scB64fQpla/N6bbc/cCLwKjS/WzqLraiYgn0+Nm4FqK24BmZtYEjQyeFcBESRMkjaQIhI6qNh3AnDS7bTLwXERsGKDfm4GTASQdDowENqX13YB3U3yeRCprkzQ6Pd8dOAPYYaacmZnl0bBZbRGxXdKFwHJgBLAoIlZLmpfqLwduA04HuoEtwHmV7SUtBaYCoyX1ABdHxFXAImBRmma9DTg3Iiq3504CeiJibWkoewDLU+iMAH4AXNmgwzYzswHopfdsK2tvb4/OTs++NjMbDEkrI6K9vzb+5gIzM8vKwWNmZlk5eMzMLCsHj5mZZeXgMTOzrBw8ZmaWlYPHzMyycvCYmVlWDh4zM8vKwWNmZlk5eMzMLCsHj5mZZeXgMTOzrBw8ZmaWlYPHzMyycvCYmVlWDh4zM8vKwWNmZlk5eMzMLCsHj5mZZdXQ4JE0TdIaSd2S5teol6QFqf5+SZNKdYskbZS0qsZ2H0v9rpb0pVQ2XtLzkrrScnmp/XGSHkj7WSBJjTpmMzPrX8OCR9II4DJgOnAkcI6kI6uaTQcmpmUusLBUtxiYVqPftwEzgGMi4ijgy6XqRyPi2LTMK5UvTP1X9rVDv2Zmlkcjr3hOALojYm1EbAOWUQRG2QxgSRTuAUZJOgggIu4EnqnR7wXAFyJia2q3sb9BpP72j4i7IyKAJcDMnTguMzPbCY0MnrHAutJ6TyobbJtqhwNTJP1U0o8kHV+qmyDpvlQ+pbSPnnr2IWmupE5Jnb29vQMMw8zMhqKtgX3X+hwlhtCmWhtwADAZOB64XtKhwAbgtRHxtKTjgJslHTWYfUTEFcAVAO3t7QONw8zMhqCRVzw9wMGl9XHA+iG0qdXvjen23L3Ai8DoiNgaEU8DRMRK4FGKq6Oe1O9g9mFmZg3SyOBZAUyUNEHSSGAW0FHVpgOYk2a3TQaei4gNA/R7M3AygKTDgZHAJklj0oQG0hXQRGBt6m+zpMlpNtsc4JbhOUQzMxusht1qi4jtki4ElgMjgEURsVrSvFR/OXAbcDrQDWwBzqtsL2kpMBUYLakHuDgirgIWAYvSNOttwLkREZJOAj4raTvwAjAvIiqTEy6gmCW3F3B7WszMrAlUTPSyau3t7dHZ2dnsYZiZ7VIkrYyI9v7a+JsLzMwsKwePmZll5eAxM7OsHDxmZpaVg8fMzLJy8JiZWVYOHjMzy8rBY2ZmWTl4zMwsKwePmZll5eAxM7OsHDxmZpaVg8fMzLJy8JiZWVYOHjMzy8rBY2ZmWTl4zMwsKwePmZll5eAxM7OsHDxmZpZVQ4NH0jRJayR1S5pfo16SFqT6+yVNKtUtkrRR0qoa230s9bta0pdS2WmSVkp6ID2eXGp/R2rflZYDG3XMZmbWv7ZGdSxpBHAZcBrQA6yQ1BERD5aaTQcmpuVEYGF6BFgMXAosqer3bcAM4JiI2FoKkU3AmRGxXtIbgOXA2NKmsyOicxgP0czMhqCRVzwnAN0RsTYitgHLKAKjbAawJAr3AKMkHQQQEXcCz9To9wLgCxGxNbXbmB7vi4j1qc1qYE9Jewz7UZmZ2U5pZPCMBdaV1nt4+RVIvW2qHQ5MkfRTST+SdHyNNu8C7quEU3J1us12kSTV6ljSXEmdkjp7e3sHGIaZmQ1FI4On1pt7DKFNtTbgAGAy8Eng+nKQSDoK+CJwfmmb2RFxNDAlLe+v1XFEXBER7RHRPmbMmAGGYWZmQ9HI4OkBDi6tjwPWD6FNrX5vTLfn7gVeBEYDSBoH3ATMiYhHKxtExJPpcTNwLcVtQDMza4JGBs8KYKKkCZJGArOAjqo2HcCcNLttMvBcRGwYoN+bgZMBJB0OjAQ2SRoF3Ap8KiLuqjSW1CapEky7A2cAO8yUMzOzPBoWPBGxHbiQYnbZQ8D1EbFa0jxJ81Kz24C1QDdwJfCRyvaSlgJ3A0dI6pH0oVS1CDg0TbNeBpwbEZH2dRhwUdW06T2A5ZLuB7qAJ9O+zMysCVS8Z1u19vb26Oz07Gszs8GQtDIi2vtr428uMDOzrBw8ZmaWlYPHzMyycvCYmVlWDh4zM8vKwWNmZlk5eMzMLCsHj5mZZeXgMTOzrBw8ZmaWlYPHzMyycvCYmVlWDh4zM8vKwWNmZlk5eMzMLCsHj5mZZeU/BNcHSb3AL5o9jpLRwKZmD2IAHuPw8BiHh8c4PAYzxk0AETGtv0YOnl2EpM6B/qpfs3mMw8NjHB4e4/BoxBh9q83MzLJy8JiZWVYOnl3HFc0eQB08xuHhMQ4Pj3F4DPsY/RmPmZll5SseMzPLysFjZmZZOXiaQNI0SWskdUuaX6N+hqT7JXVJ6pT0llLd45IeqNSVyi+R9GQq75J0ehPHOErSDZIelvSQpDel8ldK+r6kR9LjAS04xpY4j5KOKI2hS9KvJf11qmuJ8zjAGFviPKa6/yVptaRVkpZK2jOVt8R5HGCMrXQeP57Gt7ryOqfywZ/HiPCScQFGAI8ChwIjgZ8DR1a12ZeXPn87Bni4VPc4MLpGv5cAf9MiY/wG8OH0fCQwKj3/EjA/PZ8PfLEFx9gy57Gqn18Ch7TaeexnjC1xHoGxwGPAXmn9euADrXQeBxhjq5zHNwCrgL2BNuAHwMShnkdf8eR3AtAdEWsjYhuwDJhRbhARv4n0KgL7ALlngAx5jJL2B04CrkrttkXEs6ndDIo3fNLjzBYc43Aartf6FODRiKh8k0ZLnMcBxjicdnaMbcBektoo3jjXp/JWOo99jXE47cwYXw/cExFbImI78CPgnalu0OfRwZPfWGBdab0nlb2MpHdKehi4FfhgqSqA70laKWlu1WYXpsvkRTt522Bnxngo0AtcLek+SV+XtE+qe3VEbABIjwe24BihNc5j2SxgaWm9Vc5jf2OEFjiPEfEk8GXgCWAD8FxEfC9t0hLncYAxQgucR4qrnZMkvUrS3sDpwMGpbtDn0cGTn2qU7fAbZETcFBF/TvHbwz+Vqt4cEZOA6cBHJZ2UyhcCrwOOpfjh/UqTxtgGTAIWRsQbgd9SXH4Pt0aNsVXOY9GBNBJ4B/B/d2Ic/WnUGFviPKY36hnABOA1wD6S3rcTY8k9xpY4jxHxEPBF4PvAf1Dcpts+1IE4ePLr4aXfFADG0c9ldUTcCbxO0ui0vj49bgRuorh8JiKeiogXIuJF4MpKeRPG2AP0RMRPU/UNFG/yAE9JOgggPW5stTG20HmsmA78LCKeKpW1ynnsc4wtdB5PBR6LiN6I+D1wI/DfUtNWOY99jrGFziMRcVVETIqIk4BngEdS00GfRwdPfiuAiZImpN8UZwEd5QaSDpOk9HwSxQeBT0vaR9J+qXwf4C8pLoErL3jFOyvluccYEb8E1kk6IjU9BXgwPe8Azk3PzwVuabUxtsp5LDU5hx1vYbXEeexvjC10Hp8AJkvaO9WfAjyUNmuV89jnGFvoPCLpwPT4WuAsXnrNB38eo47ZEF6Gd6G4P/pfFDNMPpPK5gHz0vO/A1YDXcDdwFtS+aEUl7g/T/WfKfX5TeAB4P70g3BQM8aY6o4FOtNYbgYOSOWvAn5I8ZvSD4FXtuAYW+k87k3xj/4VVX220nnsa4ytdB7/EXiY4k37m8AeLXge+xpjK53HH1P8gvZz4JSd+Xn0V+aYmVlWvtVmZmZZOXjMzCwrB4+ZmWXl4DEzs6wcPGZmlpWDx6yJVHxL9kfS86mSvjvI7T8g6TWNGZ1ZYzh4zJprFPCRndj+AxRfs2K2y/D/4zFrIkmVbwheA/ye4nvjNlF8Df1K4H0REZKOA/6V4mvrN1EEzpuBxcCTwPPAm4BPAmcCewE/Ac4P/yO3FuPgMWsiSeOB70bEGyRNpfi6kaMovkPrLoog+SnF19DPiIheSWcDb4+ID0q6g+LvtXSm/l4ZEc+k598Ero+I7+Q9KrP+tTV7AGb2MvdGRA+ApC5gPPAsxRXQ99PXaI2g+KbiWt4m6W8pvsrmlRRff+LgsZbi4DFrLVtLz1+g+DcqYHVEvKm/DVX8ueSvAe0RsU7SJcCejRqo2VB5coFZc20G9hugzRpgjKQ3AUjaXdJRNbavhMwmSfsCfzXcgzUbDr7iMWuiiHha0l2SVlFMEHiqRpttkv4KWCDpFRT/bv+N4jbaYuBySZXJBVdSfJvx4xRfg2/Wcjy5wMzMsvKtNjMzy8rBY2ZmWTl4zMwsKwePmZll5eAxM7OsHDxmZpaVg8fMzLL6/xDjzSTeDuzoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "theta nu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbWUlEQVR4nO3de7hddX3n8ffHhCBIMFhCiyGQUMEKLQP0CFgELWgFpk6ovcVWBToWseJA69gi7WOprdPWR1GZWhgsVGlRpIpOpqVF7Kjt2HI5gQiGQAkXJRIxoAIKBYPf+WOtU7aHk3NJ8svZkffrefZz1v5d1v6utU/O56zL2UlVIUnS1vaM2S5AkvSDyYCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMtJ1J8tIk62a7jkFJVid56ST9Zyf5i21XkYaBAaNtKsndSR5N8u0k9yX5yyS7zHZdk0myJEklmbuV1vfMJN9KcswEfe9N8vGt8Tqbo9/O7/Tvz1eTnJtkzlTzqurAqvrcJP3/o6pev1WL1dAzYDQbXllVuwCHAi8Efm8mk9PZbr53xwdTVf078DHgdePGzQFeDXx421U3of/Uvz/HAr8C/PqWrGxrBbO2P9vNP1L94KmqrwJ/D/x4kt2S/G2SDUm+2S/vNTY2yeeSvDPJF4BHgH2TnJJkTZKHk9yZ5A0D41+aZF2S307y9STrk5yY5IQk/5bkG0nOHhj/jCRnJbkjyQNJLk/ynL77n/qv3+p/s39RP+fX+tf/ZpKrkuwzsL5K8qYktwO3T7D5HwZ+PsnOA22voPs3+feTbdt4/Ws9b+D5h5L80cDzn02yqj9q+pckB236XXlSVd0K/DPd+/OjSf5vv2/uT3JpkgUDr3F3kpf1y+ck+XiSv07yEHBy3/bXff/YEeFJSb7Sr+93B9a1U5IP9/t1Tf8erhvo/53+6OrhJLclOXY626Ntz4DRrEmyGDgBuJHue/EvgX2AvYFHgT8bN+W1wKnAfODLwNeBnwV2BU4B3pvk0IHxPwI8E1gEvB34IPAa4CeBo4C3J9m3H/vfgBOBlwDPBb4JfKDvO7r/uqCqdqmqf01yInA28CpgId0P4o+Oq/dE4HDggPHbXlX/Aqzv5w9u30eqauM0tm1a+jkXA28Afgj4X8CKJDtOY+4BdPvpRiDAH9PtmxcAi4FzJpm+DPg4sAC4dBNjXgw8n+5I6e1JXtC3/z6wBNgXeDndezZW0/OB04EXVtV8ulC+e6pt0SypKh8+ttmD7ofBt4Fv0YXEnwM7TTDuYOCbA88/B7xjinV/CjijX34pXUjN6Z/PBwo4fGD8SuDEfnkNcOxA357Ad4G5dD/sCpg70P/3wH8deP4MuiOrffrnBRwzRb2/B3y6X961n3/INLdt3UBfAc8beP4h4I/65fOBPxy3rtuAl2zidQp4iC5g7wD+CHjGBONOBG4c976+rF8+B/incePPAf66Xx7bn3sN9F8HLO+X7wReMdD3+rHtBZ5HF74vA3aY7e9nH5M/PDeq2XBiVX1msKE/VfRe4Dhgt755fpI5VfVE//yecXOOp/ttd3+6H/A7AzcPDHlgYO6j/df7BvofBcZuMNgH+GSS7w30PwH88Ca2YR/g/UneM1gS3dHSlyeqdwKXAL+fZBHdb+Jrq+rGaW7bdO0DnJTkzQNt8+iORDbl0KpaO9iQZA/gPLojmvl9Td+cZB1TbTvA1waWH+HJ9+K54+b/x3JVrU1yJl1gHZjkKuC3qureabyetjFPkWlYvIXudMnhVbUrT56WysCY//jo7/4UzyeAdwM/XFULgCvHjZ+Je4Djq2rBwOOZ1V0nmugjx+8B3jBu/E7Vnfp6Sr0Tqaqv0J1a+1W602OXbOa2PUIXQGN+ZFyd7xxX585VNf503lT+uN+eg/r35zWT1ANTbPsU1gN7DTxf/H0rrvpIVb2YLjwL+NMteC01ZMBoWMynO6L4Vn9x/fenGD8P2BHYAGzsf+P/mS14/QuAd45dqE+yMMmyvm8D8D26awKD49+W5MB+/LOT/OJmvO6H6a4pHMmT1ypmum2rgF9JMifJcXTXkcZ8EDgtyeHpPCvJf04yf4Z1zqc/tdkfcb11hvNn4nK6fbtb/1qnj3UkeX6SY/oQ/ne675knNrEezTIDRsPifcBOwP3ANcA/TDa4qh6muzB/Od2pml8BVmzB67+/n//pJA/3NRzev9YjwDuBL/R3Yh1RVZ+k+835sv5OqS8Bx2/G636c7pTgP1bV+s3ctjOAV9Jd1/pVuus19OsapbvN+M/6da0FTt6MOv+A7rbyB4G/A67YjHVM1zuAdcBdwGfo9tFjfd+OwJ/QfZ98DdiD7mYLDaFU+R+OSRpeSd5IdwPAS6YcrKHiEYykoZJkzyRH9n+b9Hy663OfnO26NHPeRSZp2Myj+3udpXSn/S6ju51d2xlPkUmSmvAUmSSpiaf1KbLdd9+9lixZMttlSNJ2ZeXKlfdX1cKpxj2tA2bJkiWMjo7OdhmStF1J8uWpR3mKTJLUiAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITTQMmyXFJbkuyNslZE/QnyXl9/01JDu3bFyf5bJI1SVYnOWNgzsFJrkmyKsloksMG+t7Wr+u2JK9ouW2SpMk1C5gkc4APAMcDBwCvTnLAuGHHA/v1j1OB8/v2jcBbquoFwBHAmwbmvgv4g6o6GHh7/5y+fzlwIHAc8Od9DZKkWdDyCOYwYG1V3VlVjwOXAcvGjVkGXFKda4AFSfasqvVVdQNAVT0MrAEW9XMK2LVffjZw78C6Lquqx6rqLmBtX4MkaRbMbbjuRcA9A8/XAYdPY8wiYP1YQ5IlwCHAtX3TmcBVSd5NF5A/NbCuayZY1/dJcird0RJ77733DDZHkjQTLY9gMkFbzWRMkl2ATwBnVtVDffMbgd+sqsXAbwIXzeD1qKoLq2qkqkYWLlw4xSZIkjZXy4BZByweeL4XT57OmnJMkh3owuXSqrpiYMxJwNjzv+HJ02DTeT1J0jbSMmCuB/ZLsjTJPLoL8CvGjVkBvK6/m+wI4MGqWp8kdEcma6rq3HFz7gVe0i8fA9w+sK7lSXZMspTuxoHrtv5mSZKmo9k1mKramOR04CpgDnBxVa1OclrffwFwJXAC3QX5R4BT+ulHAq8Fbk6yqm87u6quBH4deH+SucC/019P6dd9OXAL3V1ob6qqJ1ptnyRpcql6ymWKp42RkZEaHR2d7TIkabuSZGVVjUw1zr/klyQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTTQNmCTHJbktydokZ03QnyTn9f03JTm0b1+c5LNJ1iRZneSMgTkfS7Kqf9ydZFXfviTJowN9F7TcNknS5Oa2WnGSOcAHgJcD64Drk6yoqlsGhh0P7Nc/DgfO779uBN5SVTckmQ+sTHJ1Vd1SVb888BrvAR4cWN8dVXVwq22SJE1fyyOYw4C1VXVnVT0OXAYsGzdmGXBJda4BFiTZs6rWV9UNAFX1MLAGWDQ4MUmAXwI+2nAbJEmbqWXALALuGXi+jnEhMZ0xSZYAhwDXjpt7FHBfVd0+0LY0yY1JPp/kqImKSnJqktEkoxs2bJj2xkiSZqZlwGSCtprJmCS7AJ8Azqyqh8aNezXff/SyHti7qg4Bfgv4SJJdn7LyqguraqSqRhYuXDiNzZAkbY6WAbMOWDzwfC/g3umOSbIDXbhcWlVXDE5KMhd4FfCxsbaqeqyqHuiXVwJ3APtvlS2RJM1Yy4C5HtgvydIk84DlwIpxY1YAr+vvJjsCeLCq1vfXVy4C1lTVuROs+2XArVW1bqwhycL+xgKS7Et348CdW3+zJEnT0ewusqramOR04CpgDnBxVa1OclrffwFwJXACsBZ4BDiln34k8Frg5rHbkIGzq+rKfnk5T724fzTwjiQbgSeA06rqG002TpI0pVSNvyzy9DEyMlKjo6OzXYYkbVeSrKyqkanG+Zf8kqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktTEtAImyV1J7hz/mMa845LclmRtkrMm6E+S8/r+m5Ic2rcvTvLZJGuSrE5yxsCcjyVZ1T/uTrJqoO9t/bpuS/KKae0BSVITc6c5bmRg+ZnALwLPmWxCkjnAB4CXA+uA65OsqKpbBoYdD+zXPw4Hzu+/bgTeUlU3JJkPrExydVXdUlW/PPAa7wEe7JcPAJYDBwLPBT6TZP+qemKa2ygNhYcfuJfRz1/Gnnv9GD922AmzXY602aYVMFX1wLim9yX5f8DbJ5l2GLC2qu4ESHIZsAwYDJhlwCVVVcA1SRYk2bOq1gPr+9d+OMkaYNHg3CQBfgk4ZmBdl1XVY8BdSdb2NfzrdLZRGhZ/8cE3Mrrhi+yYHfjDBXuwaP+RqSdJQ2haATN26qr3DLojmvlTTFsE3DPwfB3d0clUYxbRh0v/2kuAQ4Brx809Crivqm4fWNc1E6zr+yQ5FTgVYO+9955iE6Rt7zuPf5t52YEn+B6PPfrt2S5H2mzTPUX2HqD65Y3A3XSnySaTCdpqJmOS7AJ8Ajizqh4aN+7VwEdn+HpU1YXAhQAjIyNP6Zdm2+tf817+4e/ez5K9foKlP3H0bJcjbbbpBszxwM8DSwbmLAfeMcmcdcDiged7AfdOd0ySHejC5dKqumJwUpK5wKuAn5zh60lD70f2PYiT33zRbJchbbHp3qb8KeCVwHeBb/eP70wx53pgvyRLk8yjC6QV48asAF7X3012BPBgVa3vr69cBKypqnMnWPfLgFurat24dS1PsmOSpXQ3Dlw3ze2TJG1l0z2C2auqjpvJiqtqY5LTgauAOcDFVbU6yWl9/wXAlcAJwFrgEeCUfvqRwGuBmwduQz67qq7sl5fz/afH6Nd9Od2NABuBN3kHmSTNnnQ3cE0xKLkQ+J9VdXP7kradkZGRGh0dne0yJGm7kmRlVU15e+N0j2BeDJyc5C7gMboL6lVVB21BjZKkH2AzucgvSdK0TfcPLb/cuhBJ0g8WP+xSktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktRE04BJclyS25KsTXLWBP1Jcl7ff1OSQ/v2xUk+m2RNktVJzhg37839elcneVfftiTJo0lW9Y8LWm6bJGlyc1utOMkc4APAy4F1wPVJVlTVLQPDjgf26x+HA+f3XzcCb6mqG5LMB1Ymubqqbkny08Ay4KCqeizJHgPru6OqDm61TZKk6Wt5BHMYsLaq7qyqx4HL6IJh0DLgkupcAyxIsmdVra+qGwCq6mFgDbCon/NG4E+q6rG+/+sNt0GStJlaBswi4J6B5+t4MiSmPSbJEuAQ4Nq+aX/gqCTXJvl8khcODF+a5Ma+/aiJikpyapLRJKMbNmyY8UZJkqanZcBkgraayZgkuwCfAM6sqof65rnAbsARwFuBy5MEWA/sXVWHAL8FfCTJrk9ZedWFVTVSVSMLFy6c6TZJkqapZcCsAxYPPN8LuHe6Y5LsQBcul1bVFePmXNGfVrsO+B6we1U9VlUPAFTVSuAOuqMdSdIsaBkw1wP7JVmaZB6wHFgxbswK4HX93WRHAA9W1fr+iOQiYE1VnTtuzqeAYwCS7A/MA+5PsrC/sYAk+9LdOHBno22TJE2h2V1kVbUxyenAVcAc4OKqWp3ktL7/AuBK4ARgLfAIcEo//UjgtcDNSVb1bWdX1ZXAxcDFSb4EPA6cVFWV5GjgHUk2Ak8Ap1XVN1ptnyRpcqkaf1nk6WNkZKRGR0dnuwxJ2q4kWVlVI1ON8y/5JUlNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSE00DJslxSW5LsjbJWRP0J8l5ff9NSQ7t2xcn+WySNUlWJzlj3Lw39+tdneRdA+1v69d1W5JXtNw2SdLk5rZacZI5wAeAlwPrgOuTrKiqWwaGHQ/s1z8OB87vv24E3lJVNySZD6xMcnVV3ZLkp4FlwEFV9ViSPfrXOwBYDhwIPBf4TJL9q+qJVtsoSdq0lkcwhwFrq+rOqnocuIwuGAYtAy6pzjXAgiR7VtX6qroBoKoeBtYAi/o5bwT+pKoe6/u/PrCuy6rqsaq6C1jb1yBJmgUtA2YRcM/A83U8GRLTHpNkCXAIcG3ftD9wVJJrk3w+yQtn8HokOTXJaJLRDRs2zGyLJEnT1jJgMkFbzWRMkl2ATwBnVtVDffNcYDfgCOCtwOVJMs3Xo6ourKqRqhpZuHDh1FshSdosLQNmHbB44PlewL3THZNkB7pwubSqrhg354r+tNp1wPeA3af5epKkbaRlwFwP7JdkaZJ5dBfgV4wbswJ4XX832RHAg1W1vj8iuQhYU1XnjpvzKeAYgCT7A/OA+/t1LU+yY5KldDcOXNdo2yRJU2h2F1lVbUxyOnAVMAe4uKpWJzmt778AuBI4ge6C/CPAKf30I4HXAjcnWdW3nV1VVwIXAxcn+RLwOHBSVRWwOsnlwC10d6G9yTvIJGn2pPvZ/PQ0MjJSo6Ojs12GJG1XkqysqpGpxvmX/JKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNZGqmu0aZk2SDcCXZ7uOAbsD9892EVPYHmqE7aNOa9w6rHHrmEmN+1TVwqkGPa0DZtgkGa2qkdmuYzLbQ42wfdRpjVuHNW4dLWr0FJkkqQkDRpLUhAEzXC6c7QKmYXuoEbaPOq1x67DGrWOr1+g1GElSEx7BSJKaMGAkSU0YMA0lOS7JbUnWJjlrgv5lSW5KsirJaJIXD/TdneTmsb6B9nOSfLVvX5XkhFmscUGSjye5NcmaJC/q25+T5Ookt/dfdxvCGodiPyZ5/kANq5I8lOTMvm8o9uMUNQ7Ffuz7fjPJ6iRfSvLRJM/s24diP05R4zDtxzP6+laPvc99+8z3Y1X5aPAA5gB3APsC84AvAgeMG7MLT14HOwi4daDvbmD3CdZ7DvDfh6TGDwOv75fnAQv65XcBZ/XLZwF/OoQ1Ds1+HLeer9H9EdtQ7cdJahyK/QgsAu4CduqfXw6cPEz7cYoah2U//jjwJWBnYC7wGWC/zd2PHsG0cxiwtqrurKrHgcuAZYMDqurb1b9bwLOAbX3HxWbXmGRX4Gjgon7c41X1rX7cMrof7PRfTxzCGremrfVeHwvcUVVjny4xFPtxihq3pi2tcS6wU5K5dD8g7+3bh2k/bqrGrWlLanwBcE1VPVJVG4HPAz/X9814Pxow7SwC7hl4vq5v+z5Jfi7JrcDfAb820FXAp5OsTHLquGmn94e3F2/h4f6W1LgvsAH4yyQ3JvmLJM/q+364qtYD9F/3GMIaYTj246DlwEcHng/LfpysRhiC/VhVXwXeDXwFWA88WFWf7qcMxX6cokYYgv1Id/RydJIfSrIzcAKwuO+b8X40YNrJBG1P+Y2wqj5ZVT9G99vAHw50HVlVhwLHA29KcnTffj7wo8DBdN+k75mlGucChwLnV9UhwHfoDpu3tlY1Dst+7FaQzAP+C/A3W1DHZFrVOBT7sf+BvAxYCjwXeFaS12xBLdu6xqHYj1W1BvhT4GrgH+hOr23c3EIMmHbW8WTyA+zFJIfDVfVPwI8m2b1/fm//9evAJ+kOe6mq+6rqiar6HvDBsfZZqHEdsK6qru27P073wxzgviR7AvRfvz5sNQ7RfhxzPHBDVd030DYs+3GTNQ7RfnwZcFdVbaiq7wJXAD/VDx2W/bjJGodoP1JVF1XVoVV1NPAN4PZ+6Iz3owHTzvXAfkmW9r/5LQdWDA5I8rwk6ZcPpbsg90CSZyWZ37c/C/gZukPXsTd2zM+NtW/rGqvqa8A9SZ7fDz0WuKVfXgGc1C+fBPzvYatxWPbjwJBX89RTT0OxHyercYj241eAI5Ls3PcfC6zppw3LftxkjUO0H0myR/91b+BVPPmez3w/1jTuSvCx2XdznAD8G90dHb/bt50GnNYv/w6wGlgF/Cvw4r59X7pD0y/2/b87sM6/Am4Gburf8D1no8a+72BgtK/lU8BuffsPAf9I95vPPwLPGcIah2k/7kz3j/vZ49Y5TPtxUzUO0378A+BWuh/OfwXsOIT7cVM1DtN+/Ge6X8S+CBy7Jd+PflSMJKkJT5FJkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNG2gbSfarzb/TLL03ytzOcf3KS57apTmrDgJG2jQXAb2zB/JPpPl5E2m74dzDSNpBk7BNtbwO+S/e5aPfTfTz6SuA1VVVJfhI4l+7j1O+nC5YjgQ8BXwUeBV4EvBV4JbAT8C/AG8p/zBoyBoy0DSRZAvxtVf14kpfSfczGgXSfEfUFusC4lu7j0ZdV1YYkvwy8oqp+Lcnn6P6/kNF+fc+pqm/0y38FXF5V/2fbbpU0ubmzXYD0NHVdVa0DSLIKWAJ8i+6I5ur+Y6Lm0H2y7kR+Oslv032Ey3PoPvbDgNFQMWCk2fHYwPITdP8WA6yuqhdNNjHdf7P758BIVd2T5Bzgma0KlTaXF/mlbeNhYP4UY24DFiZ5EUCSHZIcOMH8sTC5P8kuwC9s7WKlrcEjGGkbqKoHknwhyZfoLtTfN8GYx5P8AnBekmfT/ft8H93prw8BFyQZu8j/QbpP372b7uPZpaHjRX5JUhOeIpMkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUxP8H8sv8PRx+4AUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "theta lamb\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfsElEQVR4nO3df5heZX3n8fcnQwIBoUEZakgCCRqwQDGk04CrogtYk2wl2HavjdVFcV1Ma7pt3dZi6aWgtT+1tFylsGCpoYVms25psxQEdBes2kAmkqBBokMAMxBhAINEaDDhs3+ce+RhmMw8k+TOPAOf13Wda55z3/c553vOJPOZ82OeR7aJiIjY1yaNdwEREfHSlICJiIgqEjAREVFFAiYiIqpIwERERBUJmIiIqCIBEzHBSHqrpP7xrqOVpI2S3jpC/+9K+uz+qyg6QQIm9itJD0h6RtJ2SY9I+htJrxjvukYiabYkSzpgH63vIEnbJJ0xTN8lkj6/L7azJ8p+/rB8fx6S9GeSukZbzvaJtm8bof8PbH9gnxYbHS8BE+PhHbZfAcwHfhb4vbEsrMaE+bc7NJhs/xvwP4Fzh4zrAt4FrNh/1Q3r9eX7cybwy8B/3ZuV7atgjolnwvwnjZce2w8BNwEnSTpc0g2SBiR9v7yeOThW0m2SPiXpq8DTwLGSzpP0LUlPSdos6YMt498qqV/SRyQ9KmmrpHMkLZb0bUlPSPrdlvGTJF0g6T5Jj0taJemVpfvL5eu28pv9G8oy7y/b/76kmyUd07I+S/qQpO8A3xlm91cAvyjp4Ja2t9P8n7xppH0bqmzrtS3zn5P0+y3zPy9pfTlr+pqkk3f/XXme7XuBf6H5/rxG0v8tx+YxSddKmtayjQcknVVeXyTp85L+TtIPgPeVtr8r/YNnhO+V9N2yvgtb1jVV0opyXL9Vvof9Lf2/U86unpK0SdKZ7exP7H8JmBg3kmYBi4G7aP4t/g1wDHA08Azwl0MW+c/A+cChwIPAo8DPA4cB5wGXSJrfMv7VwEHADOBjwFXAe4CfAd4MfEzSsWXsfwPOAd4CHAV8H7is9J1evk6z/Qrb/yrpHOB3gV8Auml+EP/9kHrPAU4FThi677a/Bmwty7fu33W2d7axb20py1wNfBB4FfA/gNWSDmxj2RNojtNdgIA/pDk2PwXMAi4aYfElwOeBacC1uxnzJuB4mjOlj0n6qdL+cWA2cCzwNprv2WBNxwPLgZ+1fShNKD8w2r7EOLGdKdN+m2h+GGwHttGExF8BU4cZNw/4fsv8bcAnRln3PwK/Xl6/lSakusr8oYCBU1vGrwPOKa+/BZzZ0jcd+BFwAM0POwMHtPTfBPyXlvlJNGdWx5R5A2eMUu/vAbeU14eV5U9pc9/6W/oMvLZl/nPA75fXlwOfHLKuTcBbdrMdAz+gCdj7gN8HJg0z7hzgriHf17PK64uALw8ZfxHwd+X14PGc2dJ/J7C0vN4MvL2l7wOD+wu8liZ8zwImj/e/50wjT7k2GuPhHNtfbG0ol4ouARYCh5fmQyV12d5V5rcMWWYRzW+7x9H8gD8Y+EbLkMdbln2mfH2kpf8ZYPABg2OA6yU919K/C/jJ3ezDMcBfSPpMa0k0Z0sPDlfvMK4BPi5pBs1v4n2272pz39p1DPBeSb/W0jaF5kxkd+bb7mttkHQkcCnNGc2hpabvj7CO0fYd4Hstr5/m+e/FUUOW//Fr232SfoMmsE6UdDPwYdsPt7G92M9yiSw6xX+nuVxyqu3DeP6ylFrG/Pitv8slnv8NfBr4SdvTgBuHjB+LLcAi29NapoPc3Cca7i3HtwAfHDJ+qptLXy+qdzi2v0tzae3dNJfHrtnDfXuaJoAGvXpInZ8aUufBtodezhvNH5b9Obl8f94zQj0wyr6PYisws2V+1gtWbF9n+0004Wngj/diW1FRAiY6xaE0ZxTbys31j48yfgpwIDAA7Cy/8f/cXmz/CuBTgzfqJXVLWlL6BoDnaO4JtI7/qKQTy/ifkPQf92C7K2juKbyR5+9VjHXf1gO/LKlL0kKa+0iDrgKWSTpVjUMk/QdJh46xzkMplzbLGddvj3H5sVhFc2wPL9taPtgh6XhJZ5QQ/jeafzO7drOeGGcJmOgUfw5MBR4D1gBfGGmw7adobsyvorlU88vA6r3Y/l+U5W+R9FSp4dSyraeBTwFfLU9inWb7eprfnFeWJ6W+CSzag+1+nuaS4Jdsb93Dfft14B0097XeTXO/hrKuXprHjP+yrKsPeN8e1HkxzWPlTwL/DPzDHqyjXZ8A+oH7gS/SHKMdpe9A4I9o/p18DziS5mGL6ECy84FjEdG5JP0KzQMAbxl1cHSUnMFEREeRNF3SG8vfJh1Pc3/u+vGuK8YuT5FFRKeZQvP3OnNoLvutpHmcPSaYXCKLiIgqcoksIiKqeFlfIjviiCM8e/bs8S4jImJCWbdu3WO2u0cb97IOmNmzZ9Pb2zveZURETCiSHhx9VC6RRUREJQmYiIioIgETERFVJGAiIqKKBExERFSRgImIiCoSMBERUUUCJiIiqkjAREREFQmYiIioIgETERFVJGAiIqKKBExERFSRgImIiCoSMBERUUUCJiIiqkjAREREFVUDRtJCSZsk9Um6YJh+Sbq09N8taX5pP0jSnZI2SNoo6eKWZS6S9JCk9WVaXNpnS3qmpf2KmvsWEREjq/aRyZK6gMuAtwH9wFpJq23f0zJsETC3TKcCl5evO4AzbG+XNBn4iqSbbK8py11i+9PDbPY+2/Pq7FFERIxFzTOYBUCf7c22nwVWAkuGjFkCXOPGGmCapOllfnsZM7lMrlhrRETsYzUDZgawpWW+v7S1NUZSl6T1wKPArbbvaBm3vFxSu1rS4S3tcyTdJel2SW8erihJ50vqldQ7MDCwZ3sWERGjqhkwGqZt6FnIbsfY3lUud80EFkg6qfRfDrwGmAdsBT5T2rcCR9s+BfgwcJ2kw160cvtK2z22e7q7u8e2RxER0baaAdMPzGqZnwk8PNYxtrcBtwELy/wjJXyeA66iuRSH7R22Hy+v1wH3Acfto32JiIgxqhkwa4G5kuZImgIsBVYPGbMaOLc8TXYa8KTtrZK6JU0DkDQVOAu4t8xPb1n+ncA3S3t3ebAAScfSPDiwudreRUTEiKo9RWZ7p6TlwM1AF3C17Y2SlpX+K4AbgcVAH/A0cF5ZfDqwogTGJGCV7RtK359ImkdzKe0B4IOl/XTgE5J2AruAZbafqLV/ERExMtkv34ezenp63NvbO95lRERMKJLW2e4ZbVz+kj8iIqpIwERERBUJmIiIqCIBExERVSRgIiKiigRMRERUkYCJiIgqEjAREVFFAiYiIqpIwERERBUJmIiIqCIBExERVSRgIiKiigRMRERUkYCJiIgqEjAREVFFAiYiIqpIwERERBUJmIiIqCIBExERVVQNGEkLJW2S1CfpgmH6JenS0n+3pPml/SBJd0raIGmjpItblrlI0kOS1pdpcUvfR8u6Nkl6e819i4iIkR1Qa8WSuoDLgLcB/cBaSatt39MybBEwt0ynApeXrzuAM2xvlzQZ+Iqkm2yvKctdYvvTQ7Z3ArAUOBE4CviipONs76q1jxERsXs1z2AWAH22N9t+FlgJLBkyZglwjRtrgGmSppf57WXM5DJ5lO0tAVba3mH7fqCv1BAREeOgZsDMALa0zPeXtrbGSOqStB54FLjV9h0t45aXS2pXSzp8DNtD0vmSeiX1DgwM7MFuRUREO2oGjIZpG3oWstsxtnfZngfMBBZIOqn0Xw68BpgHbAU+M4btYftK2z22e7q7u0fbh4iI2EM1A6YfmNUyPxN4eKxjbG8DbgMWlvlHSvg8B1zF85fB2tleRETsJzUDZi0wV9IcSVNobsCvHjJmNXBueZrsNOBJ21sldUuaBiBpKnAWcG+Zn96y/DuBb7asa6mkAyXNoXlw4M5K+xYREaOo9hSZ7Z2SlgM3A13A1bY3SlpW+q8AbgQW09yQfxo4ryw+HVhRnkSbBKyyfUPp+xNJ82gufz0AfLCsb6OkVcA9wE7gQ3mCLCJi/Mge7eGsl66enh739vaOdxkREROKpHW2e0Ybl7/kj4iIKhIwERFRRQImIiKqSMBEREQVCZiIiKgiARMREVUkYCIioooETEREVJGAiYiIKhIwERFRRQImIiKqSMBEREQVCZiIiKgiARMREVUkYCIioooETEREVJGAiYiIKhIwERFRRQImIiKqSMBEREQVVQNG0kJJmyT1SbpgmH5JurT03y1pfmk/SNKdkjZI2ijp4mGW/S1JlnREmZ8t6RlJ68t0Rc19i4iIkR1Qa8WSuoDLgLcB/cBaSatt39MybBEwt0ynApeXrzuAM2xvlzQZ+Iqkm2yvKeueVdb73SGbvc/2vFr7FBER7at5BrMA6LO92fazwEpgyZAxS4Br3FgDTJM0vcxvL2Mml8kty10CfGRIW0REdJCaATMD2NIy31/a2hojqUvSeuBR4Fbbd5T2s4GHbG8YZptzJN0l6XZJbx6uKEnnS+qV1DswMLAn+xUREW2oGTAapm3oGcdux9jeVS53zQQWSDpJ0sHAhcDHhlluK3C07VOADwPXSTrsRSu3r7TdY7unu7u7/b2JiIgxqRkw/cCslvmZwMNjHWN7G3AbsBB4DTAH2CDpgTL+65JebXuH7cfLMuuA+4Dj9tG+RETEGNUMmLXAXElzJE0BlgKrh4xZDZxbniY7DXjS9lZJ3ZKmAUiaCpwF3Gv7G7aPtD3b9myagJpv+3tlma6yzLE0Dw5srrh/ERExgmpPkdneKWk5cDPQBVxte6OkZaX/CuBGYDHQBzwNnFcWnw6sKIExCVhl+4ZRNnk68AlJO4FdwDLbT+zr/YqIiPbIfvk+iNXT0+Pe3t7xLiMiYkKRtM52z2jj8pf8ERFRRQImIiKqSMBEREQVCZiIiKgiARMREVUkYCIioooETEREVJGAiYiIKhIwERFRRQImIiKqSMBEREQVCZiIiKgiARMREVW0/Xb9kl4NLKD5xMm1tr9XraqIiJjw2jqDkfQB4E7gF4BfAtZIen/NwiIiYmJr9wzmt4FTBj+SWNKrgK8BV9cqLCIiJrZ278H0A0+1zD8FbNn35URExEvFiGcwkj5cXj4E3CHpn2juwSyhuWQWERExrNEukR1avt5XpkH/VKeciIh4qRgxYGxfvL8KiYiIl5Z2nyLrkXS9pK9LuntwamO5hZI2SeqTdMEw/ZJ0aem/W9L80n6QpDslbZC0UdKLgk7Sb0mypCNa2j5a1rVJ0tvb2beIiKij3afIrqV5kuwbwHPtLCCpC7gMeBvNQwJrJa22fU/LsEXA3DKdClxevu4AzrC9XdJk4CuSbrK9pqx7Vlnvd1u2dwKwFDgROAr4oqTjbO9qcx8jOsJTjz9M7+0rmT7zdbxuweLxLidij7UbMAO2V49x3QuAPtubASStpHk4oDVglgDX2DbN39ZMkzTd9lZgexkzuUxuWe4S4CO88F7QEmCl7R3A/ZL6Sg3/Osa6I8bVZ6/6FXoHNnCgJvPJaUcy47ie8S4pYo+0GzAfl/RZ4Es0ZxcA2P6HEZaZwQsfZe6nOTsZbcwMYGs5A1oHvBa4zPYdAJLOBh6yvUHS0HWtGWZdLyDpfOB8gKOPPnqE8iPGxw+f3c4UTWYXz7Hjme2jLxDRodoNmPOA19GcSQxeIjMwUsBomDa3O6Zc2ponaRpwvaSTgM3AhcDP7eH2sH0lcCVAT0/Pi/ojxtsH3nMJX/jnv2D2zJ9mzk+fPt7lROyxdgPm9bZ/eozr7gdmtczPBB4e6xjb2yTdBiwEbgbmAINnLzOBr0ta0Ob2Ijreq489mff92l+PdxkRe63dv+RfU26ij8VaYK6kOZKm0NyAH3ofZzVwbnma7DTgSdtbJXWXMxckTQXOAu61/Q3bR9qebXs2TajML2+8uRpYKulASXNoHhzIH4NGRIyTds9g3gS8V9L9NPdgBNj2ybtbwPZOSctpzjq6gKttb5S0rPRfAdwILAb6gKdpLsUBTAdWlPswk4BVtm8YqcCy7lU0DxHsBD6UJ8giIsaPmge4RhkkHTNcu+0H93lF+1FPT497e3vHu4yIiAlF0jrboz7e2NYZzGCQSDoSOGgva4uIiJeBdv+S/2xJ3wHuB24HHgBuqlhXRERMcO3e5P8kcBrwbdtzgDOBr1arKiIiJrx2A+ZH5cPGJkmaZPv/AfPqlRURERNdu0+RbZP0CuDLwLWSHqV5UisiImJY7Z7BLAGeAX4T+ALNZ8O8o1ZREREx8bX7FNkPW2ZXVKolIiJeQkb7yOSnGOb9vHj+Dy0Pq1JVRERMeKN9ouWhI/VHRETsTrv3YCIiIsYkARMREVUkYCIioooETEREVJGAiYiIKhIwERFRRQImIiKqSMBEREQVCZiIiKgiARMREVUkYCIiooqqASNpoaRNkvokXTBMvyRdWvrvljS/tB8k6U5JGyRtlHRxyzKfLGPXS7pF0lGlfbakZ0r7eklX1Ny3iIgYWbWAkdQFXAYsAk4A3iXphCHDFgFzy3Q+cHlp3wGcYfv1NJ+cuVDSaaXvT22fbHsecAPwsZb13Wd7XpmWVditiIhoU80zmAVAn+3Ntp8FVtJ8cFmrJcA1bqwBpkmaXua3lzGTy2QA2z9oWf4Qhv84gYiIGGc1A2YGsKVlvr+0tTVGUpek9cCjwK227xgcJOlTkrYA7+aFZzBzJN0l6XZJbx6uKEnnS+qV1DswMLCHuxYREaOpGTAapm3o2cZux9jeVS6DzQQWSDrpxwPsC23PAq4FlpfmrcDRtk8BPgxcJ+lFH4hm+0rbPbZ7uru7x7pPERHRppoB0w/MapmfCTw81jG2twG3AQuH2cZ1wC+WcTtsP15erwPuA47b4+ojImKv1AyYtcBcSXMkTQGWAquHjFkNnFueJjsNeNL2VkndkqYBSJoKnAXcW+bntix/dkt7d3mwAEnH0jw4sLna3kVExIhG/MjkvWF7p6TlwM1AF3C17Y2SlpX+K4AbgcVAH/A0cF5ZfDqwogTGJGCV7RtK3x9JOh54DngQGHxa7HTgE5J2AruAZbafqLV/ERExMtkv34ewenp63NvbO95lRERMKJLW2e4ZbVz+kj8iIqpIwERERBUJmIiIqCIBExERVSRgIiKiigRMRERUkYCJiIgqEjAREVFFAiYiIqpIwERERBUJmIiIqCIBExERVSRgIiKiigRMRERUkYCJiIgqEjAREVFFAiYiIqpIwERERBUJmIiIqCIBExERVVQNGEkLJW2S1CfpgmH6JenS0n+3pPml/SBJd0raIGmjpItblvlkGbte0i2Sjmrp+2hZ1yZJb6+5bxERMbJqASOpC7gMWAScALxL0glDhi0C5pbpfODy0r4DOMP264F5wEJJp5W+P7V9su15wA3Ax8r2TgCWAicCC4G/KjVERMQ4qHkGswDos73Z9rPASmDJkDFLgGvcWANMkzS9zG8vYyaXyQC2f9Cy/CGD7WVdK23vsH0/0FdqiIiIcVAzYGYAW1rm+0tbW2MkdUlaDzwK3Gr7jsFBkj4laQvwbsoZTJvbQ9L5knol9Q4MDOzJfkVERBtqBoyGaXO7Y2zvKpfBZgILJJ304wH2hbZnAdcCy8ewPWxfabvHdk93d/foexEREXukZsD0A7Na5mcCD491jO1twG0091WGug74xTFsLyIi9pOaAbMWmCtpjqQpNDfgVw8Zsxo4tzxNdhrwpO2tkrolTQOQNBU4C7i3zM9tWf7swfayrqWSDpQ0h+bBgTsr7VtERIzigFortr1T0nLgZqALuNr2RknLSv8VwI3AYpob8k8D55XFpwMrylNgk4BVtm8ofX8k6XjgOeBBYHB9GyWtAu4BdgIfsr2r1v5FRMTIZL/oNsXLRk9Pj3t7e8e7jIiICUXSOts9o43LX/JHREQVCZiIiKgiARMREVUkYCIioooETEREVJGAiYiIKhIwERFRRQImIiKqSMBEREQVCZiIiKgiARMREVUkYCIioooETEREVJGAiYiIKhIwERFRRQImIiKqSMBEREQVCZiIiKgiARMREVUkYCIiooqqASNpoaRNkvokXTBMvyRdWvrvljS/tB8k6U5JGyRtlHRxyzJ/KuneMv56SdNK+2xJz0haX6Yrau5bRESMrFrASOoCLgMWAScA75J0wpBhi4C5ZTofuLy07wDOsP16YB6wUNJppe9W4CTbJwPfBj7asr77bM8r07IKuxUREW2qeQazAOizvdn2s8BKYMmQMUuAa9xYA0yTNL3Mby9jJpfJALZvsb2z9K0BZlbch4iI2EM1A2YGsKVlvr+0tTVGUpek9cCjwK227xhmG+8HbmqZnyPpLkm3S3rzcEVJOl9Sr6TegYGBMe1QRES0r2bAaJg2tzvG9i7b82jOUBZIOukFC0oXAjuBa0vTVuBo26cAHwauk3TYi1ZuX2m7x3ZPd3f3WPYnIiLGoGbA9AOzWuZnAg+PdYztbcBtwMLBNknvBX4eeLftwUDaYfvx8nodcB9w3D7Yj4iI2AM1A2YtMFfSHElTgKXA6iFjVgPnlqfJTgOetL1VUnfL02FTgbOAe8v8QuB3gLNtPz24orJMV3l9LM2DA5sr7l9ERIzggFortr1T0nLgZqALuNr2RknLSv8VwI3AYqAPeBo4ryw+HVhRAmMSsMr2DaXvL4EDgVslAawpT4ydDnxC0k5gF7DM9hO19i8iIkamcoXpZamnp8e9vb3jXUZExIQiaZ3tntHG5S/5IyKiigRMRERUkYCJiIgqEjAREVFFAiYiIqpIwERERBUJmIiIqCIBExERVSRgIiKiigRMRERUkYCJiIgqEjAREVFFAiYiIqpIwERERBUJmIiIqCIBExERVbysP3BM0gDw4HjX0eII4LHxLmIUE6FGmBh1psZ9IzXuG2Op8Rjb3aMNelkHTKeR1NvOp8SNp4lQI0yMOlPjvpEa940aNeYSWUREVJGAiYiIKhIwneXK8S6gDROhRpgYdabGfSM17hv7vMbcg4mIiCpyBhMREVUkYCIioooETEWSFkraJKlP0gXD9C+RdLek9ZJ6Jb2ppe8BSd8Y7Gtpv0jSQ6V9vaTF41jjNEmfl3SvpG9JekNpf6WkWyV9p3w9vANr7IjjKOn4lhrWS/qBpN8ofR1xHEepsSOOY+n7TUkbJX1T0t9LOqi0d8RxHKXGTjqOv17q2zj4fS7tYz+OtjNVmIAu4D7gWGAKsAE4YciYV/D8fbCTgXtb+h4AjhhmvRcBv9UhNa4APlBeTwGmldd/AlxQXl8A/HEH1tgxx3HIer5H80dsHXUcR6ixI44jMAO4H5ha5lcB7+uk4zhKjZ1yHE8CvgkcDBwAfBGYu6fHMWcw9SwA+mxvtv0ssBJY0jrA9naX7xZwCLC/n7jY4xolHQacDvx1Gfes7W1l3BKaH+yUr+d0YI370r76Xp8J3Gd78N0lOuI4jlLjvrS3NR4ATJV0AM0PyIdLeycdx93VuC/tTY0/Bayx/bTtncDtwDtL35iPYwKmnhnAlpb5/tL2ApLeKele4J+B97d0GbhF0jpJ5w9ZbHk5vb16L0/396bGY4EB4G8k3SXps5IOKX0/aXsrQPl6ZAfWCJ1xHFstBf6+Zb5TjuNINUIHHEfbDwGfBr4LbAWetH1LWaQjjuMoNUIHHEeas5fTJb1K0sHAYmBW6RvzcUzA1KNh2l70G6Ht622/jua3gU+2dL3R9nxgEfAhSaeX9suB1wDzaP6RfmacajwAmA9cbvsU4Ic0p837Wq0aO+U4NiuQpgBnA/9rL+oYSa0aO+I4lh/IS4A5wFHAIZLesxe17O8aO+I42v4W8MfArcAXaC6v7dzTQhIw9fTzfPIDzGSE02HbXwZeI+mIMv9w+foocD3NaS+2H7G9y/ZzwFWD7eNQYz/Qb/uO0v15mh/mAI9Img5Qvj7aaTV20HEctAj4uu1HWto65TjutsYOOo5nAffbHrD9I+AfgH9XhnbKcdxtjR10HLH917bn2z4deAL4Thk65uOYgKlnLTBX0pzym99SYHXrAEmvlaTyej7NDbnHJR0i6dDSfgjwczSnroPf2EHvHGzf3zXa/h6wRdLxZeiZwD3l9WrgveX1e4F/6rQaO+U4tgx5Fy++9NQRx3GkGjvoOH4XOE3SwaX/TOBbZbFOOY67rbGDjiOSjixfjwZ+gee/52M/jm7jqYRMe/w0x2Lg2zRPdFxY2pYBy8rr3wE2AuuBfwXeVNqPpTk13VD6L2xZ598C3wDuLt/w6eNRY+mbB/SWWv4ROLy0vwr4Es1vPl8CXtmBNXbScTyY5j/3TwxZZycdx93V2EnH8WLgXpofzn8LHNiBx3F3NXbScfwXml/ENgBn7s2/x7xVTEREVJFLZBERUUUCJiIiqkjAREREFQmYiIioIgETERFVJGAi9gM17+r8q+X1WyXdMMbl3yfpqDrVRdSRgInYP6YBv7oXy7+P5u1FIiaM/B1MxH4gafAdbTcBP6J5X7THaN4efR3wHtuW9DPAn9G8nfpjNMHyRuBzwEPAM8AbgN8G3gFMBb4GfND5zxwdJgETsR9Img3cYPskSW+leZuNE2neI+qrNIFxB83boy+xPSDpPwFvt/1+SbfRfF5Ib1nfK20/UV7/LbDK9v/Zv3sVMbIDxruAiJepO233A0haD8wGttGc0dxa3iaqi+addYfz7yV9hOYtXF5J87YfCZjoKAmYiPGxo+X1Lpr/iwI22n7DSAuq+ZjdvwJ6bG+RdBFwUK1CI/ZUbvJH7B9PAYeOMmYT0C3pDQCSJks6cZjlB8PkMUmvAH5pXxcbsS/kDCZiP7D9uKSvSvomzY36R4YZ86ykXwIulfQTNP8//5zm8tfngCskDd7kv4rm3XcfoHl79oiOk5v8ERFRRS6RRUREFQmYiIioIgETERFVJGAiIqKKBExERFSRgImIiCoSMBERUcX/B0AL3epY0NJMAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "theta rho\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfFElEQVR4nO3df5yWdZ3v8debAQRNG82xEFDA0A1Jkb0X6VTmKuXAKce2PedgdUw7HWQ39rSn0xblPkwtd/vt5iODo0VhaSzHkxuHNKXOobYfCEOCOgo14A9GSEcNlWAx8HP+uL6TV7fDzD3DfJl79P18PK7H3Nf3x3V9v9cN857rx9yjiMDMzGygDRvsAZiZ2UuTA8bMzLJwwJiZWRYOGDMzy8IBY2ZmWThgzMwsCweM2RAj6WxJHYM9jjJJbZLO7qH+E5K+duhGZPXAAWOHlKSHJO2RtEvSY5K+IekVgz2unkiaICkkDR+g7Y2StFPSOd3UXSPploHYT3+kef4uvT+PSvqSpIbe+kXEqRGxuof6f4iIDwzoYK3uOWBsMLwjIl4BTAf+DPj7vnRWYcj8260Opoj4N+CfgYuq2jUAFwJLD93ounV6en/OBd4N/NeD2dhABbMNPUPmP6m99ETEo8DtwFRJR0taKalT0m/T63FdbSWtlnS1pJ8Bu4FJki6R9ICkZyVtlXRpqf3ZkjokfVTS45J2SLpA0hxJv5L0lKRPlNoPk7RQ0hZJT0paLumYVP2T9HVn+sn+DanP+9P+fyvpDkknlrYXkj4o6dfAr7uZ/lLgXZIOL5WdR/F/8vae5lYt7eu1pfVvSvp0af3tkjaks6afSzrtwO/KCyJiE/CvFO/PSZL+bzo2T0i6SVJjaR8PSZqVXl8h6RZJ35b0DHBxKvt2qu86I3yfpEfS9i4rbWu0pKXpuD6Q3sOOUv3H0tnVs5I2Szq3lvnYoeeAsUEjaTwwB7ib4t/iN4ATgROAPcBXqrr8Z2AecCTwMPA48HbgKOAS4BpJ00vtXwOMAsYClwM3AO8F/hR4M3C5pEmp7X8DLgDeAhwP/Ba4LtWdlb42RsQrIuIXki4APgH8BdBE8Y34O1XjvQA4E5hSPfeI+DmwI/Uvz+/miNhXw9xqkvosAS4FXgX8T2CFpMNq6DuF4jjdDQj4R4pj8zpgPHBFD91bgFuARuCmA7R5E3AKxZnS5ZJel8o/CUwAJgFvpXjPusZ0CrAA+LOIOJIilB/qbS42SCLCi5dDtlB8M9gF7KQIia8Co7tpNw34bWl9NXBVL9v+F+BD6fXZFCHVkNaPBAI4s9R+PXBBev0AcG6pbgzwe2A4xTe7AIaX6m8H/ktpfRjFmdWJaT2Ac3oZ798Dd6bXR6X+Z9Q4t45SXQCvLa1/E/h0er0I+FTVtjYDbznAfgJ4hiJgtwCfBoZ10+4C4O6q93VWen0F8JOq9lcA306vu47nuFL9WmBuer0VOK9U94Gu+QKvpQjfWcCIwf737KXnxddGbTBcEBE/LBekS0XXAM3A0an4SEkNEbE/rW+r6jOb4qfdkym+wR8O3Ftq8mSp75709bFS/R6g6wGDE4FbJT1fqt8PvPoAczgR+LKkL5aHRHG29HB34+3GjcAnJY2l+Em8PSLurnFutToReJ+kvymVjaQ4EzmQ6RHRXi6QdBxwLcUZzZFpTL/tYRu9zR3gN6XXu3nhvTi+qv8fXkdEu6S/pQisUyXdAXw4IrbXsD87xHyJzOrF/6C4XHJmRBzFC5elVGrzh4/+Tpd4/jfwBeDVEdEI3FbVvi+2AbMjorG0jIriPlF3Hzm+Dbi0qv3oKC59vWi83YmIRygurb2H4vLYjf2c226KAOrymqpxXl01zsMjovpyXm/+Mc3ntPT+vLeH8UAvc+/FDmBcaX38H2044uaIeBNFeAbw2YPYl2XkgLF6cSTFGcXOdHP9k720HwkcBnQC+9JP/G87iP0vBq7uulEvqUlSS6rrBJ6nuCdQbv9xSaem9q+U9B/6sd+lFPcU3sgL9yr6OrcNwLslNUhqpriP1OUGYL6kM1U4QtK/l3RkH8d5JOnSZjrj+rs+9u+L5RTH9ui0rwVdFZJOkXROCuF/o/g3s/8A27FB5oCxevFPwGjgCWAN8IOeGkfEsxQ35pdTXKp5N7DiIPb/5dT/TknPpjGcmfa1G7ga+Fl6EmtmRNxK8ZPzsvSk1H3A7H7s9xaKS4I/iogd/Zzbh4B3UNzXeg/F/RrStlopHjP+StpWO3BxP8Z5JcVj5U8D3we+249t1OoqoAN4EPghxTHam+oOAz5D8e/kN8BxFA9bWB1ShP/gmJnVL0l/RfEAwFt6bWx1xWcwZlZXJI2R9Mb0u0mnUNyfu3Wwx2V956fIzKzejKT4fZ2JFJf9llE8zm5DjC+RmZlZFr5EZmZmWbysL5Ede+yxMWHChMEehpnZkLJ+/fonIqKpt3Yv64CZMGECra2tgz0MM7MhRdLDvbfyJTIzM8vEAWNmZlk4YMzMLAsHjJmZZeGAMTOzLBwwZmaWhQPGzMyycMCYmVkWDhgzM8vCAWNmZlk4YMzMLAsHjJmZZeGAMTOzLBwwZmaWhQPGzMyycMCYmVkWDhgzM8sia8BIapa0WVK7pIXd1EvStan+HknTU/koSWslbZTUJunKUp8rJD0qaUNa5qTyCZL2lMoX55ybmZn1LNufTJbUAFwHvBXoANZJWhER95eazQYmp+VMYFH6uhc4JyJ2SRoB/FTS7RGxJvW7JiK+0M1ut0TEtDwzMjOzvsh5BjMDaI+IrRHxHLAMaKlq0wLcGIU1QKOkMWl9V2ozIi2RcaxmZjbAcgbMWGBbab0jldXURlKDpA3A48CqiLir1G5BuqS2RNLRpfKJku6W9GNJb+5uUJLmSWqV1NrZ2dm/mZmZWa9yBoy6Kas+Czlgm4jYny53jQNmSJqa6hcBJwHTgB3AF1P5DuCEiDgD+DBws6SjXrTxiOsjohIRlaampr7NyMzMapYzYDqA8aX1ccD2vraJiJ3AaqA5rT+Wwud54AaKS3FExN6IeDK9Xg9sAU4eoLmYmVkf5QyYdcBkSRMljQTmAiuq2qwALkpPk80Eno6IHZKaJDUCSBoNzAI2pfUxpf7vBO5L5U3pwQIkTaJ4cGBrttmZmVmPsj1FFhH7JC0A7gAagCUR0SZpfqpfDNwGzAHagd3AJan7GGBpCoxhwPKIWJnqPidpGsWltIeAS1P5WcBVkvYB+4H5EfFUrvmZmVnPFPHyfTirUqlEa2vrYA/DzGxIkbQ+Iiq9tfNv8puZWRYOGDMzy8IBY2ZmWThgzMwsCweMmZll4YAxM7MsHDBmZpaFA8bMzLJwwJiZWRYOGDMzy8IBY2ZmWThgzMwsCweMmZll4YAxM7MsHDBmZpaFA8bMzLJwwJiZWRYOGDMzy8IBY2ZmWThgzMwsi6wBI6lZ0mZJ7ZIWdlMvSdem+nskTU/loyStlbRRUpukK0t9rpD0qKQNaZlTqvt42tZmSeflnJuZmfVseK4NS2oArgPeCnQA6yStiIj7S81mA5PTciawKH3dC5wTEbskjQB+Kun2iFiT+l0TEV+o2t8UYC5wKnA88ENJJ0fE/lxzNDOzA8t5BjMDaI+IrRHxHLAMaKlq0wLcGIU1QKOkMWl9V2ozIi3Ry/5agGURsTciHgTa0xjMzGwQ5AyYscC20npHKqupjaQGSRuAx4FVEXFXqd2CdEltiaSj+7A/JM2T1CqptbOzsx/TMjOzWuQMGHVTVn0WcsA2EbE/IqYB44AZkqam+kXAScA0YAfwxT7sj4i4PiIqEVFpamrqbQ5mZtZPOQOmAxhfWh8HbO9rm4jYCawGmtP6Yyl8ngdu4IXLYLXsz8zMDpGcAbMOmCxpoqSRFDfgV1S1WQFclJ4mmwk8HRE7JDVJagSQNBqYBWxK62NK/d8J3Ffa1lxJh0maSPHgwNpMczMzs15ke4osIvZJWgDcATQASyKiTdL8VL8YuA2YQ3FDfjdwSeo+BliankQbBiyPiJWp7nOSplFc/noIuDRtr03ScuB+YB/wQT9BZmY2eBTR28NZL12VSiVaW1sHexhmZkOKpPURUemtnX+T38zMsnDAmJlZFg4YMzPLwgFjZmZZOGDMzCwLB4yZmWXhgDEzsywcMGZmloUDxszMsnDAmJlZFg4YMzPLwgFjZmZZOGDMzCwLB4yZmWXhgDEzsywcMGZmloUDxszMsnDAmJlZFg4YMzPLwgFjZmZZZA0YSc2SNktql7Swm3pJujbV3yNpeiofJWmtpI2S2iRd2U3fj0gKScem9QmS9kjakJbFOedmZmY9G55rw5IagOuAtwIdwDpJKyLi/lKz2cDktJwJLEpf9wLnRMQuSSOAn0q6PSLWpG2PT9t9pGq3WyJiWq45mZlZ7XKewcwA2iNia0Q8BywDWqratAA3RmEN0ChpTFrfldqMSEuU+l0DfLSqzMzM6kjOgBkLbCutd6SymtpIapC0AXgcWBURd6Xy84FHI2JjN/ucKOluST+W9ObuBiVpnqRWSa2dnZ39mZeZmdUgZ8Com7LqM44DtomI/ely1zhghqSpkg4HLgMu76bfDuCEiDgD+DBws6SjXrTxiOsjohIRlaamptpnY2ZmfZIzYDqA8aX1ccD2vraJiJ3AaqAZOAmYCGyU9FBq/0tJr4mIvRHxZOqzHtgCnDxAczEzsz7KGTDrgMmSJkoaCcwFVlS1WQFclJ4mmwk8HRE7JDVJagSQNBqYBWyKiHsj4riImBAREygCanpE/Cb1aUh9JlE8OLA14/zMzKwH2Z4ii4h9khYAdwANwJKIaJM0P9UvBm4D5gDtwG7gktR9DLA0BcYwYHlErOxll2cBV0naB+wH5kfEUwM9LzMzq40iXr4PYlUqlWhtbR3sYZiZDSmS1kdEpbd2/k1+MzPLwgFjZmZZOGDMzCwLB4yZmWXhgDEzsywcMGZmloUDxszMsnDAmJlZFg4YMzPLwgFjZmZZOGDMzCwLB4yZmWXhgDEzsywcMGZmloUDxszMsnDAmJlZFg4YMzPLwgFjZmZZ1BQwkl4p6RpJrWn5oqRX5h6cmZkNXbWewSwBngH+Y1qeAb6Ra1BmZjb01RowJ0XEJyNia1quBCb11klSs6TNktolLeymXpKuTfX3SJqeykdJWitpo6Q2SVd20/cjkkLSsaWyj6dtbZZ0Xo1zMzOzDGoNmD2S3tS1IumNwJ6eOkhqAK4DZgNTgAslTalqNhuYnJZ5wKJUvhc4JyJOB6YBzZJmlrY9Hngr8EipbAowFzgVaAa+msZgNqQ8++R2/t93v8SmtbcN9lDMDsrwGtvNB25M910EPAVc3EufGUB7RGwFkLQMaAHuL7VpAW6MiADWSGqUNCYidgC7UpsRaYlSv2uAjwLfq9rWsojYCzwoqT2N4Rc1ztGsLnzthr+itXMjh2kEn2o8jrEnVwZ7SGb9UlPARMRG4HRJR6X1Z2roNhbYVlrvAM6soc1YYEc6+1gPvBa4LiLuApB0PvBoRGyUVL2tNd1s649ImkdxtsQJJ5xQwzTMDq3fPbeLkRrBfp5n755dvXcwq1M1BYykw4B3AROA4V3f2CPiqp66dVMWtbaJiP3ANEmNwK2SpgJbgcuAt/Vzf0TE9cD1AJVK5UX1ZoPtA++9hh98/8tMGPd6Jr7+rMEejlm/1XqJ7HvA0xRnFHtr7NMBjC+tjwO297VNROyUtJrivsodwESg6+xlHPBLSTNq3J9Z3XvNpNO4+G++PtjDMDtotQbMuIho7uO21wGTJU0EHqW4Af/uqjYrgAXp/syZwNMRsUNSE/D7FC6jgVnAZyPiXuC4rs6SHgIqEfGEpBXAzZK+BBxP8eDA2j6O2czMBkitAfNzSa9P3+BrEhH7JC2gOOtoAJZERJuk+al+MXAbMAdoB3YDl6TuY4Cl6T7MMGB5RKzsZX9tkpZTPESwD/hgusxmZmaDQMUDXAeolO6luLcxGjiB4h7I3lQWEXHaoRhkLpVKJVpbWwd7GGZmQ4qk9RHR6+ONvZ3BvJ3iDKLraS4zM7Oa9BgwEfEwgKTvAMdFxLpDMiozMxvyar0H8+fApZIeBn7HS+QSmZmZ5VNrwMzOOgozM3vJqfU3+R/OPRAzM3tp8R8cMzOzLBwwZmaWhQPGzMyycMCYmVkWDhgzM8vCAWNmZlk4YMzMLAsHjJmZZeGAMTOzLBwwZmaWhQPGzMyycMCYmVkWDhgzM8vCAWNmZlk4YMzMLIusASOpWdJmSe2SFnZTL0nXpvp7JE1P5aMkrZW0UVKbpCtLfT6V2m6QdKek41P5BEl7UvkGSYtzzs3MzHqWLWAkNQDXUfw1zCnAhZKmVDWbDUxOyzxgUSrfC5wTEacD04BmSTNT3ecj4rSImAasBC4vbW9LRExLy/wM0zIzsxrlPIOZAbRHxNaIeA5YBrRUtWkBbozCGqBR0pi0viu1GZGWAIiIZ0r9j+gqNzOz+pIzYMYC20rrHamspjaSGiRtAB4HVkXEXV2NJF0taRvwHv74DGaipLsl/VjSm7sblKR5kloltXZ2dvZzamZm1pucAaNuyqrPNg7YJiL2p8tg44AZkqb+oUHEZRExHrgJWJCKdwAnRMQZwIeBmyUd9aKNR1wfEZWIqDQ1NfV1TmZmVqOcAdMBjC+tjwO297VNROwEVgPN3ezjZuBdqd3eiHgyvV4PbAFO7vfozczsoOQMmHXAZEkTJY0E5gIrqtqsAC5KT5PNBJ6OiB2SmiQ1AkgaDcwCNqX1yaX+55fKm9KDBUiaRPHgwNZsszMzsx4Nz7XhiNgnaQFwB9AALImINknzU/1i4DZgDtAO7AYuSd3HAEtTYAwDlkfEylT3GUmnAM8DDwNdT4udBVwlaR+wH5gfEU/lmp+ZmfVMES/fh7AqlUq0trYO9jDMzIYUSesjotJbO/8mv5mZZeGAMTOzLBwwZmaWhQPGzMyycMCYmVkWDhgzM8vCAWNmZlk4YMzMLAsHjJmZZeGAMTOzLBwwZmaWhQPGzMyycMCYmVkWDhgzM8vCAWNmZlk4YMzMLAsHjJmZZeGAMTOzLBwwZmaWhQPGzMyyyBowkpolbZbULmlhN/WSdG2qv0fS9FQ+StJaSRsltUm6stTnU6ntBkl3Sjq+VPfxtK3Nks7LOTczM+tZtoCR1ABcB8wGpgAXSppS1Ww2MDkt84BFqXwvcE5EnA5MA5olzUx1n4+I0yJiGrASuDztbwowFzgVaAa+msZgZmaDIOcZzAygPSK2RsRzwDKgpapNC3BjFNYAjZLGpPVdqc2ItARARDxT6n9EV3na1rKI2BsRDwLtaQxmZjYIcgbMWGBbab0jldXURlKDpA3A48CqiLirq5GkqyVtA95DOoOpcX9ImiepVVJrZ2dnf+ZlZmY1yBkw6qYsam0TEfvTZbBxwAxJU//QIOKyiBgP3AQs6MP+iIjrI6ISEZWmpqbeZ2FmZv2SM2A6gPGl9XHA9r62iYidwGqK+yrVbgbe1Yf9mZnZIZIzYNYBkyVNlDSS4gb8iqo2K4CL0tNkM4GnI2KHpCZJjQCSRgOzgE1pfXKp//ld5WlbcyUdJmkixYMDazPNzczMejE814YjYp+kBcAdQAOwJCLaJM1P9YuB24A5FDfkdwOXpO5jgKXpKbBhwPKIWJnqPiPpFOB54GGga3ttkpYD9wP7gA9GxP5c8zMzs54p4kW3KV42KpVKtLa2DvYwzMyGFEnrI6LSWzv/Jr+ZmWXhgDEzsywcMGZmloUDxszMsnDAmJlZFg4YMzPLwgFjZmZZOGDMzCwLB4yZmWXhgDEzsywcMGZmloUDxszMsnDAmJlZFg4YMzPLwgFjZmZZOGDMzCwLB4yZmWXhgDEzsywcMGZmloUDxszMssgaMJKaJW2W1C5pYTf1knRtqr9H0vRUPkrSWkkbJbVJurLU5/OSNqX2t0pqTOUTJO2RtCEti3POzczMepYtYCQ1ANcBs4EpwIWSplQ1mw1MTss8YFEq3wucExGnA9OAZkkzU90qYGpEnAb8Cvh4aXtbImJaWuZnmJaZmdUo5xnMDKA9IrZGxHPAMqClqk0LcGMU1gCNksak9V2pzYi0BEBE3BkR+1LdGmBcxjmYmVk/5QyYscC20npHKqupjaQGSRuAx4FVEXFXN/t4P3B7aX2ipLsl/VjSm7sblKR5kloltXZ2dvZpQmZmVrucAaNuyqLWNhGxPyKmUZyhzJA09Y86SpcB+4CbUtEO4ISIOAP4MHCzpKNetPGI6yOiEhGVpqamvszHzMz6IGfAdADjS+vjgO19bRMRO4HVQHNXmaT3AW8H3hMRXYG0NyKeTK/XA1uAkwdgHmZm1g85A2YdMFnSREkjgbnAiqo2K4CL0tNkM4GnI2KHpKbS02GjgVnAprTeDHwMOD8idndtKPVpSK8nUTw4sDXj/MzMrAfDc204IvZJWgDcATQASyKiTdL8VL8YuA2YA7QDu4FLUvcxwNIUGMOA5RGxMtV9BTgMWCUJYE16Yuws4CpJ+4D9wPyIeCrX/MzMrGdKV5heliqVSrS2tg72MMzMhhRJ6yOi0ls7/ya/mZll4YAxM7MsHDBmZpaFA8bMzLJwwJiZWRYOGDMzy8IBY2ZmWThgzMwsCweMmZll4YAxM7MsHDBmZpaFA8bMzLJwwJiZWRYOGDMzy8IBY2ZmWThgzMwsi5f1HxyT1Ak8PNjjKDkWeGKwB9GLoTBGGBrj9BgHhsc4MPoyxhMjoqm3Ri/rgKk3klpr+Stxg2kojBGGxjg9xoHhMQ6MHGP0JTIzM8vCAWNmZlk4YOrL9YM9gBoMhTHC0BinxzgwPMaBMeBj9D0YMzPLwmcwZmaWhQPGzMyycMBkJKlZ0mZJ7ZIWdlPfIukeSRsktUp6U6nuIUn3dtWVyq+Q9Ggq3yBpziCOsVHSLZI2SXpA0htS+TGSVkn6dfp6dB2OsS6Oo6RTSmPYIOkZSX+b6uriOPYyxro4jqnuv0tqk3SfpO9IGpXK6+I49jLGejqOH0rja+t6n1N5349jRHjJsAANwBZgEjAS2AhMqWrzCl64D3YasKlU9xBwbDfbvQL4SJ2McSnwgfR6JNCYXn8OWJheLwQ+W4djrJvjWLWd31D8EltdHccexlgXxxEYCzwIjE7ry4GL6+k49jLGejmOU4H7gMOB4cAPgcn9PY4+g8lnBtAeEVsj4jlgGdBSbhARuyK9W8ARwKF+4qLfY5R0FHAW8PXU7rmI2JnatVB8Yyd9vaAOxziQBuq9PhfYEhFdny5RF8exlzEOpIMd43BgtKThFN8gt6fyejqOBxrjQDqYMb4OWBMRuyNiH/Bj4J2prs/H0QGTz1hgW2m9I5X9EUnvlLQJ+D7w/lJVAHdKWi9pXlW3Ben0dslBnu4fzBgnAZ3ANyTdLelrko5Ida+OiB0A6etxdThGqI/jWDYX+E5pvV6OY09jhDo4jhHxKPAF4BFgB/B0RNyZutTFcexljFAHx5Hi7OUsSa+SdDgwBxif6vp8HB0w+aibshf9RBgRt0bEn1D8NPCpUtUbI2I6MBv4oKSzUvki4CRgGsU/0i8O0hiHA9OBRRFxBvA7itPmgZZrjPVyHIsNSCOB84H/dRDj6EmuMdbFcUzfkFuAicDxwBGS3nsQYznUY6yL4xgRDwCfBVYBP6C4vLavvwNxwOTTwQvJDzCOHk6HI+InwEmSjk3r29PXx4FbKU57iYjHImJ/RDwP3NBVPghj7AA6IuKuVH0LxTdzgMckjQFIXx+vtzHW0XHsMhv4ZUQ8Viqrl+N4wDHW0XGcBTwYEZ0R8Xvgu8C/S03r5TgecIx1dByJiK9HxPSIOAt4Cvh1atrn4+iAyWcdMFnSxPST31xgRbmBpNdKUno9neKG3JOSjpB0ZCo/Angbxalr1xvb5Z1d5Yd6jBHxG2CbpFNS03OB+9PrFcD70uv3Ad+rtzHWy3EsNbmQF196qovj2NMY6+g4PgLMlHR4qj8XeCB1q5fjeMAx1tFxRNJx6esJwF/wwnve9+MYNTyV4KXfT3PMAX5F8UTHZalsPjA/vf4Y0AZsAH4BvCmVT6I4Nd2Y6i8rbfNbwL3APekNHzMYY0x104DWNJZ/AY5O5a8CfkTxk8+PgGPqcIz1dBwPp/jP/cqqbdbTcTzQGOvpOF4JbKL45vwt4LA6PI4HGmM9Hcd/pfhBbCNw7sH8e/RHxZiZWRa+RGZmZlk4YMzMLAsHjJmZZeGAMTOzLBwwZmaWhQPG7BBQ8anOf51eny1pZR/7Xyzp+DyjM8vDAWN2aDQCf30Q/S+m+HgRsyHDvwdjdghI6vpE283A7yk+F+0Jio9HXw+8NyJC0p8CX6L4OPUnKILljcA3gUeBPcAbgL8D3gGMBn4OXBr+z2x1xgFjdghImgCsjIipks6m+JiNUyk+I+pnFIFxF8XHo7dERKek/wScFxHvl7Sa4u+FtKbtHRMRT6XX3wKWR8T/ObSzMuvZ8MEegNnL1NqI6ACQtAGYAOykOKNZlT4mqoHik3W78+eSPkrxES7HUHzshwPG6ooDxmxw7C293k/xf1FAW0S8oaeOKv7M7leBSkRsk3QFMCrXQM36yzf5zQ6NZ4Eje2mzGWiS9AYASSMkndpN/64weULSK4C/HOjBmg0En8GYHQIR8aSkn0m6j+JG/WPdtHlO0l8C10p6JcX/z3+iuPz1TWCxpK6b/DdQfPruQxQfz25Wd3yT38zMsvAlMjMzy8IBY2ZmWThgzMwsCweMmZll4YAxM7MsHDBmZpaFA8bMzLL4//jyrFRQyj7DAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "theta kappa\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAEWCAYAAABWn/G6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAglklEQVR4nO3de7xVZb3v8c9XluAlDQ1sG5hgoidNt+FUcBdGXgrcGmYXIRKzOohll7PPaW+qbdrtdDm125uj4dYtKqWgmZd1Sjdd9jE75oVFrBBUtkvCWECy8EIUBqG/88d4Zg4mc60112LNMSf0fb9e8zXnHM8znvEbYy3md40xH+ZURGBmZlaUvRpdgJmZ/WVx8JiZWaEcPGZmVigHj5mZFcrBY2ZmhXLwmJlZoRw8ZnsISRMldTa6jjxJKyRN7KH9M5L+rbiKrBk4eKwpSFot6QVJv5f0tKTrJb2i0XX1RNIoSSGpZYDG20fS85JOq9L2LUm3DcR2+iPt5x/Sz2etpH+SNKi39SLi2Ii4t4f2/xkRHx7QYq3pOXismZwTEa8AxgInAf/Yl5WV2W1+pysDKyL+CNwCzKjoNwiYBtxYXHVV/XX6+ZwOvA/4r7sy2EAFtu1+dpt/pPaXIyLWAvcAb5B0kKQfSOqS9Fx6PLLcV9K9kr4s6X5gC3CEpIskPSZps6RVki7O9Z8oqVPS30vaIGm9pHMlnSXpPyU9K+kzuf57SZot6UlJz0i6VdLBqfm+dP98OhM4Ja3zwbT95yQtknR4bryQ9FFJTwBPVNn9G4F3Sdovt+ztZP9W7+lp3yqlbR2Ze36DpC/lnp8tqT2dZf1C0vHd/1ReFhGPAz8n+/m8TtJ/pGOzUdJNkobmtrFa0hnp8RWSbpP0XUm/Az6Qln03tZfPIC+U9Js03mdzY+0r6cZ0XB9LP8POXPs/pLOxzZJWSjq9lv2x4jl4rOlIOgw4C1hK9jt6PXA48FrgBeDKilUuAGYCBwBPARuAs4EDgYuAb0kam+v/V8A+wAjgc8C1wPuBE4EJwOckHZH6fhw4F3gL8BrgOeCq1HZquh8aEa+IiAcknQt8BjgPGE72Ar2got5zgXHAMZX7HhG/ANan9fP7d3NEbK9h32qS1pkHXAy8CvhXoFXSkBrWPYbsOC0FBHyF7Ni8HjgMuKKH1acAtwFDgZu66fNm4GiyM6vPSXp9Wn45MAo4AjiT7GdWrulo4FLgpIg4gCysV/e2L9YgEeGbbw2/kb1I/B54niw8vg3sW6XfCcBzuef3Al/oZew7gU+kxxPJwmtQen4AEMC4XP8lwLnp8WPA6bm2Q4E/AS1kL4IBtOTa7wE+lHu+F9mZ2OHpeQCn9VLvPwI/So8PTOu/scZ968y1BXBk7vkNwJfS47nAFyvGWgm8pZvtBPA7suB9EvgSsFeVfucCSyt+rmekx1cA91X0vwL4bnpcPp4jc+0PA1PT41XA23NtHy7vL3AkWSifAezd6N9n33q++RqrNZNzI+In+QXpktO3gEnAQWnxAZIGRcSL6fmainUmk/11fBTZC/9+wCO5Ls/k1n0h3T+da38BKE9sOBy4Q9JLufYXgVd3sw+HA/8i6Zv5ksjOrp6qVm8V84HLJY0g+8u9IyKW1rhvtTocuFDSx3LLBpOduXRnbER05BdIOgSYQ3YGdECq6bkexuht3wF+m3u8hZd/Fq+pWP/PjyOiQ9InyYLsWEmLgL+LiHU1bM8K5ktt1uz+O9lll3ERcSAvX95Srs+fP2I9XSr6PvAN4NURMRS4u6J/X6wBJkfE0Nxtn8jeh6r20e5rgIsr+u8b2SW0neqtJiJ+Q3aJbjrZZbb5/dy3LWTBVPZXFXV+uaLO/SKi8rJgb76S9uf49PN5fw/1QC/73ov1wMjc88N2GDji5oh4M1moBvC1XdiW1ZGDx5rdAWRnIM+nN/Uv76X/YGAI0AVsT2cIb9uF7V8NfLk8QUDScElTUlsX8BLZew75/p+WdGzq/0pJ7+nHdm8ke8/iTbz8Xkhf960deJ+kQZImkb1PVXYtMEvSOGX2l/S3kg7oY50HkC6RpjO0T/Vx/b64lezYHpS2dWm5QdLRkk5L4fxHst+ZF7sZxxrMwWPN7p+BfYGNwIPAv/fUOSI2k00IuJXsks/7gNZd2P6/pPV/JGlzqmFc2tYW4MvA/Wlm2PiIuIPsL+2FaebWcmByP7Z7G9mlxZ9GxPp+7tsngHPI3jebTvZ+EGmsNrLp0FemsTqAD/Sjzs+TTX/fBPwQuL0fY9TqC0An8GvgJ2THaGtqGwJ8lez35LfAIWSTPKwJKcJfBGdmux9Jl5BNPHhLr52tqfiMx8x2C5IOlfSm9H+rjiZ7/++ORtdlfedZbWa2uxhM9v+NRpNdPlxINu3edjO+1GZmZoXypTYzMyuUL7V1Y9iwYTFq1KhGl2FmttsYNmwYixYtWhQRk3rq5+DpxqhRo2hra2t0GWZmuxVJw3rr40ttZmZWKAePmZkVysFjZmaFcvCYmVmhHDxmZlYoB4+ZmRXKwWNmZoVy8JiZWaEcPGZmVigHj5mZFcrBY2ZmhXLwmJlZoRw8ZmZWKAePmZkVysFjZmaFcvCYmVmhHDxmZlaougaPpEmSVkrqkDS7SrskzUntyySNzbXNk7RB0vKKdW6R1J5uqyW1p+XTc8vbJb0k6YTUdm+qo9x2SD3328zMule3r76WNAi4CjgT6AQWS2qNiEdz3SYDY9JtHDA33QPcAFwJzM+PGxHn57bxTWBTWn4TcFNafhxwV0S051adHhH+Lmszswar5xnPyUBHRKyKiG3AQmBKRZ8pwPzIPAgMlXQoQETcBzzb3eCSBLwXWFCleVo3y83MrMHqGTwjgDW5551pWV/7dGcC8HREPFGl7Xx2Dp7r02W2y1Jo7UTSTEltktq6urpqLMPMzPqinsFT7cU9+tGnO1XPaiSNA7ZERP69oekRcRxZWE0ALqg2YERcExGliCgNHz68xjLMzKwv6hk8ncBhuecjgXX96LMTSS3AecAtVZqnUhFIEbE23W8Gbia7DGhmZg1Qz+BZDIyRNFrSYLJAaK3o0wrMSLPbxgObImJ9DWOfATweEZ35hZL2At5D9n5SeVmLpGHp8d7A2cAOM+XMzKw4dZvVFhHbJV0KLAIGAfMiYoWkWan9auBu4CygA9gCXFReX9ICYCIwTFIncHlEXJeadzqrSU4FOiNiVW7ZEGBRCp1BwE+AawdsR83MrE8UUetbKn9ZSqVStLV59rWZWV9IWhIRpZ76+JMLzMysUA4eMzMrlIPHzMwK5eAxM7NCOXjMzKxQDh4zMyuUg8fMzArl4DEzs0I5eMzMrFAOHjMzK5SDx8zMCuXgMTOzQjl4zMysUA4eMzMrlIPHzMwK5eAxM7NCOXjMzKxQDh4zMyuUg8fMzArl4DEzs0LVNXgkTZK0UlKHpNlV2iVpTmpfJmlsrm2epA2Sllesc4uk9nRbLak9LR8l6YVc29W5dU6U9EjazhxJquNum5lZD+oWPJIGAVcBk4FjgGmSjqnoNhkYk24zgbm5thuASZXjRsT5EXFCRJwAfB+4Pdf8ZLktImblls9N45e3tdO4ZmZWjHqe8ZwMdETEqojYBiwEplT0mQLMj8yDwFBJhwJExH3As90Nns5a3gss6KmINN6BEfFARAQwHzi3n/tkZma7qJ7BMwJYk3vemZb1tU93JgBPR8QTuWWjJS2V9DNJE3Lb6KxlG5JmSmqT1NbV1VVjGWZm1hf1DJ5q76NEP/p0Zxo7nu2sB14bEW8E/g64WdKBfdlGRFwTEaWIKA0fPrzGMszMrC9a6jh2J3BY7vlIYF0/+uxEUgtwHnBieVlEbAW2psdLJD0JHJW2MbKv2zAzs/qo5xnPYmCMpNGSBgNTgdaKPq3AjDS7bTywKSLW1zD2GcDjEfHnS2iShqcJDUg6gmwSwao03mZJ49P7QjOAu3Z578zMrF/qdsYTEdslXQosAgYB8yJihaRZqf1q4G7gLKAD2AJcVF5f0gJgIjBMUidweURcl5qnsvOkglOBL0jaDrwIzIqI8uSES8hmye0L3JNuZmbWAMomelmlUqkUbW1tjS7DzGy3ImlJRJR66uNPLjAzs0I5eMzMrFAOHjMzK5SDx8zMCuXgMTOzQjl4zMysUA4eMzMrlIPHzMwK5eAxM7NCOXjMzKxQDh4zMyuUg8fMzArl4DEzs0I5eMzMrFAOHjMzK5SDx8zMCuXgMTOzQjl4zMysUA4eMzMrlIPHzMwKVdfgkTRJ0kpJHZJmV2mXpDmpfZmksbm2eZI2SFpesc4tktrTbbWk9rT8TElLJD2S7k/LrXNvqqO83iF13G0zM+tBS70GljQIuAo4E+gEFktqjYhHc90mA2PSbRwwN90D3ABcCczPjxsR5+e28U1gU3q6ETgnItZJegOwCBiRW3V6RLQNzN6ZmVl/1fOM52SgIyJWRcQ2YCEwpaLPFGB+ZB4Ehko6FCAi7gOe7W5wSQLeCyxI/ZdGxLrUvALYR9KQAd0jMzPbZfUMnhHAmtzzTnY8A6m1T3cmAE9HxBNV2t4FLI2Irbll16fLbJel0NqJpJmS2iS1dXV11ViGmZn1RT2Dp9qLe/SjT3emkc52dhhQOhb4GnBxbvH0iDiOLKwmABdUGzAiromIUkSUhg8fXmMZZmbWF/UMnk7gsNzzkcC6fvTZiaQW4DzglorlI4E7gBkR8WR5eUSsTfebgZvJLgOamVkD1DN4FgNjJI2WNBiYCrRW9GkFZqTZbeOBTRGxvoaxzwAej4jO8gJJQ4EfAp+OiPtzy1skDUuP9wbOBpZjZmYNUbfgiYjtwKVks8seA26NiBWSZkmalbrdDawCOoBrgY+U15e0AHgAOFpSp6QP5Yafys6X2S4FjgQuq5g2PQRYJGkZ0A6sTdsyM7MGUEStb6n8ZSmVStHW5tnXZmZ9IWlJRJR66uNPLjAzs0I5eMzMrFAOHjMzK5SDx8zMCuXgMTOzQjl4zMysUA4eMzMrlIPHzMwK5eAxM7NCOXjMzKxQDh4zMytUzV99LelvgWOBfcrLIuIL9SjKzMz2XDWd8Ui6Gjgf+BjZl7e9Bzi8jnWZmdkeqtZLbX8TETOA5yLi88Ap7PgFbmZmZjWpNXheSPdbJL0G+BMwuj4lmZnZnqzW93h+kL7h838BvwQCf5mamZn1Q03BExFfTA+/L+kHwD4Rsal+ZZmZ2Z6qpuCRtA/Z11K/mexs5/9JmhsRf6xncWZmtuep9VLbfGAz8L/T82nAd8hmt5mZmdWs1uA5OiL+Ovf8/0r6VT0KMjOzPVuts9qWShpffiJpHHB/bytJmiRppaQOSbOrtEvSnNS+TNLYXNs8SRskLa9Y5xZJ7em2WlJ7ru3TaayVkt6eW36ipEdS2xxJqnG/zcxsgNUaPOOAX6QX+tXAA8Bb0ov5smorSBoEXAVMBo4Bpkk6pqLbZGBMus0E5ubabgAmVY4bEedHxAkRcQLwfeD2tL1jgKlkn64wCfh2qoE07szctnYa16zZxUsv8cv/uImft17Jthd+3+hyzPqt1ktt/XmhPhnoiIhVAJIWAlOAR3N9pgDzIyKAByUNlXRoRKyPiPskjepu8HTW8l7gtNxYCyNiK/BrSR3AySkoD4yIB9J684FzgXv6sU9mDdN+3y1884efJSLoeuY3nHfR1xtdklm/1HTGExFPAa8ie3F/B/CqiHiqfOtmtRHAmtzzzrSsr326MwF4OiKe6GWsEelxr9uQNFNSm6S2rq6uGsswK8bWP/6BINhLe/GHF37X6HLM+q3W6dSfI5vBdntadL2k70XEl3parcqy6Eef7kwDFtQwVs3biIhrgGsASqVSrXWYFeLEie9j6oZf8/stz3POez7b6HLM+q3WS23TgDeW/9+OpK+SfYJBT8HTyY6f5zYSWNePPjuR1AKcB5xYw1id6XGftmHWbPbeZz/eMePLjS7DbJfVOrlgNbmvQwCGAE/2ss5iYIyk0ZIGk73x31rRpxWYkWa3jQc2RcT6Guo5A3g8IvKX0FqBqZKGSBpNNong4TTeZknj0/tCM4C7atiGmZnVQa1nPFuBFZJ+THaZ6kyyTy+YAxARH69cISK2S7oUWAQMAuZFxApJs1L71cDdwFlAB7AFuKi8vqQFwERgmKRO4PKIuC41T2XHy2yksW8lm7ywHfhoRLyYmi8hmyW3L9mkAk8sMDNrEGUTynrpJF3YU3tE3DhgFTWJUqkUbW1tjS7DzGy3ImlJRJR66lPrh4TuccFiZmaNUeustjHAV8j+I2j+q6+PqFNdZma2h6p1csH1ZP/7fzvwVrIPDf1OvYoyM7M9V63Bs29E/JTsPaGnIuIKXv7EADMzs5rVOqvtj5L2Ap5IM9XWAofUrywzM9tT1XrG80lgP+DjZP9p8wLgu3WqyczM9mC1Bs+/AqMjojMiLgK+B5xdv7LMzGxPVeultncDt0maTvb11xcAb6tbVWZmtseq9f/xrJI0FbiT7BOg3x4RL9SzMDMz2zP1GDySHmHHT3I+mOzjbx6SREQcX8/izMxsz9PbGY/fxzEzswHVY/D08CVvZmZm/VLrrDYzM7MB4eAxM7NCOXjMzKxQDh4zMyuUg8fMzArl4DEzs0I5eMzMrFAOHjMzK1Rdg0fSJEkrJXVIml2lXZLmpPZlksbm2uZJ2iBpeZX1PpbGXSHp62nZdEntudtLkk5Ibfem/uU2f5eQmVmD1Prp1H0maRBwFXAm0AksltQaEY/muk0GxqTbOLKv1x6X2m4AriT7mu38uG8FpgDHR8TWcohExE3ATanPccBdEdGeW3V6RLQN5D6amVnf1fOM52SgIyJWRcQ2YCFZYORNAeZH5kFgqKRDASLiPuDZKuNeAnw1Iramfhuq9JkGLBig/TAzswFUz+AZQfYVCmWdaVlf+1Q6Cpgg6SFJP5N0UpU+57Nz8FyfLrNdJknVBpY0U1KbpLaurq5eyjAzs/6oZ/BUe3GPfvSp1AIcBIwHPgXcmg8SSeOALRGRf29oekQcB0xItwuqDRwR10REKSJKw4cP76UMMzPrj3oGTydwWO75SGBdP/pUG/f2dHnuYeAlYFiufSoVZzsRsTbdbwZuJrsMaGZmDVDP4FkMjJE0WtJgskBorejTCsxIs9vGA5siYn0v494JnAYg6ShgMLAxPd8LeA/Z+0mkZS2ShqXHe5N9x9BOM+XMzKwYdZvVFhHbJV0KLCL71tJ5EbFC0qzUfjVwN3AW0AFsAS4qry9pATARGCapE7g8Iq4D5gHz0jTrbcCFEVG+PHcq0BkRq3KlDAEWpdAZBPwEuLZOu21mZr3Qy6/ZllcqlaKtzbOvzcz6QtKSiCj11MefXGBmZoVy8JiZWaEcPGZmVigHj5mZFcrBY2ZmhXLwmJlZoRw8ZmZWKAePmZkVysFjZmaFcvCYmVmhHDxmZlYoB4+ZmRXKwWNmZoVy8JiZWaEcPGZmVigHj5mZFcrBY2ZmhXLwmJlZoRw8ZmZWKAePmZkVqq7BI2mSpJWSOiTNrtIuSXNS+zJJY3Nt8yRtkLS8ynofS+OukPT1tGyUpBcktafb1bn+J0p6JG1njiTVa5/NzKxndQseSYOAq4DJwDHANEnHVHSbDIxJt5nA3FzbDcCkKuO+FZgCHB8RxwLfyDU/GREnpNus3PK5afzytnYa18zMilHPM56TgY6IWBUR24CFZIGRNwWYH5kHgaGSDgWIiPuAZ6uMewnw1YjYmvpt6KmINN6BEfFARAQwHzh3F/bLzMx2QT2DZwSwJve8My3ra59KRwETJD0k6WeSTsq1jZa0NC2fkNtGZy3bkDRTUpuktq6url7KMDOz/mip49jV3keJfvSp1AIcBIwHTgJulXQEsB54bUQ8I+lE4E5Jx/ZlGxFxDXANQKlU6q0OMzPrh3qe8XQCh+WejwTW9aNPtXFvT5fnHgZeAoZFxNaIeAYgIpYAT5KdHXWmcfuyDTMzq5N6Bs9iYIyk0ZIGA1OB1oo+rcCMNLttPLApItb3Mu6dwGkAko4CBgMbJQ1PExpIZ0BjgFVpvM2SxqfZbDOAuwZmF83MrK/qdqktIrZLuhRYBAwC5kXECkmzUvvVwN3AWUAHsAW4qLy+pAXARGCYpE7g8oi4DpgHzEvTrLcBF0ZESDoV+IKk7cCLwKyIKE9OuIRslty+wD3pZmZmDaBsopdVKpVK0dbW1ugyzMx2K5KWRESppz7+5AIzMyuUg8fMzArl4DEzs0I5eMzMrFAOHjMzK5SDx8zMCuXgMTOzQjl4zMysUA4eMzMrlIPHzMwK5eAxM7NCOXjMzKxQDh4zMyuUg8fMzArl4DEzs0I5eMzMrFAOHjMzK5SDx8zMCuXgMTOzQjl4zMysUHUNHkmTJK2U1CFpdpV2SZqT2pdJGptrmydpg6TlVdb7WBp3haSvp2VnSloi6ZF0f1qu/72pf3u6HVKvfTYzs5611GtgSYOAq4AzgU5gsaTWiHg0120yMCbdxgFz0z3ADcCVwPyKcd8KTAGOj4ituRDZCJwTEeskvQFYBIzIrTo9ItoGcBfNzKwf6nnGczLQERGrImIbsJAsMPKmAPMj8yAwVNKhABFxH/BslXEvAb4aEVtTvw3pfmlErEt9VgD7SBoy4HtlZma7pJ7BMwJYk3veyY5nILX2qXQUMEHSQ5J+JumkKn3eBSwth1NyfbrMdpkkVRtY0kxJbZLaurq6einDzMz6o57BU+3FPfrRp1ILcBAwHvgUcGs+SCQdC3wNuDi3zvSIOA6YkG4XVBs4Iq6JiFJElIYPH95LGWZm1h/1DJ5O4LDc85HAun70qTbu7eny3MPAS8AwAEkjgTuAGRHxZHmFiFib7jcDN5NdBjQzswaoZ/AsBsZIGi1pMDAVaK3o0wrMSLPbxgObImJ9L+PeCZwGIOkoYDCwUdJQ4IfApyPi/nJnSS2SysG0N3A2sNNMOTMzK0bdgicitgOXks0uewy4NSJWSJolaVbqdjewCugArgU+Ul5f0gLgAeBoSZ2SPpSa5gFHpGnWC4ELIyLSto4ELquYNj0EWCRpGdAOrE3bMjOzBlD2mm2VSqVStLV59rWZWV9IWhIRpZ76+JMLzMysUA4eMzMrlIPHzMwK5eAxM7NCOXjMzKxQDh4zMyuUg8fMzArl4DEzs0I5eMzMrFAOHjMzK5SDx8zMCuXgMTOzQjl4zMysUA4eMzMrlIPHzMwK5eAxM7NC+YvguiGpC3iq0XXkDAM2NrqIXrjGgeEaB4ZrHBh9qXEjQERM6qmTg2c3Iamtt2/1azTXODBc48BwjQOjHjX6UpuZmRXKwWNmZoVy8Ow+rml0ATVwjQPDNQ4M1zgwBrxGv8djZmaF8hmPmZkVysFjZmaFcvA0gKRJklZK6pA0u0r7FEnLJLVLapP05lzbakmPlNtyy6+QtDYtb5d0VgNrHCrpNkmPS3pM0ilp+cGSfizpiXR/UBPW2BTHUdLRuRraJf1O0idTW1Mcx15qbIrjmNr+m6QVkpZLWiBpn7S8KY5jLzU203H8RKpvRfnnnJb3/ThGhG8F3oBBwJPAEcBg4FfAMRV9XsHL778dDzyea1sNDKsy7hXA/2iSGm8EPpweDwaGpsdfB2anx7OBrzVhjU1zHCvG+S1weLMdxx5qbIrjCIwAfg3sm57fCnygmY5jLzU2y3F8A7Ac2A9oAX4CjOnvcfQZT/FOBjoiYlVEbAMWAlPyHSLi95F+isD+QNEzQPpdo6QDgVOB61K/bRHxfOo3hewFn3R/bhPWOJAG6md9OvBkRJQ/SaMpjmMvNQ6kXa2xBdhXUgvZC+e6tLyZjmN3NQ6kXanx9cCDEbElIrYDPwPemdr6fBwdPMUbAazJPe9My3Yg6Z2SHgd+CHww1xTAjyQtkTSzYrVL02nyvF28bLArNR4BdAHXS1oq6d8k7Z/aXh0R6wHS/SFNWCM0x3HMmwosyD1vluPYU43QBMcxItYC3wB+A6wHNkXEj9IqTXEce6kRmuA4kp3tnCrpVZL2A84CDkttfT6ODp7iqcqynf6CjIg7IuK/kP318MVc05siYiwwGfiopFPT8rnA64ATyH55v9mgGluAscDciHgj8Aey0++BVq8am+U4ZgNIg4F3AN/bhTp6Uq8am+I4phfqKcBo4DXA/pLevwu1FF1jUxzHiHgM+BrwY+DfyS7Tbe9vIQ6e4nXy8l8KACPp4bQ6Iu4DXidpWHq+Lt1vAO4gO30mIp6OiBcj4iXg2vLyBtTYCXRGxEOp+TayF3mApyUdCpDuNzRbjU10HMsmA7+MiKdzy5rlOHZbYxMdxzOAX0dEV0T8Cbgd+JvUtVmOY7c1NtFxJCKui4ixEXEq8CzwROra5+Po4CneYmCMpNHpL8WpQGu+g6QjJSk9Hkv2RuAzkvaXdEBavj/wNrJT4PIPvOyd5eVF1xgRvwXWSDo6dT0deDQ9bgUuTI8vBO5qthqb5Tjmukxj50tYTXEce6qxiY7jb4DxkvZL7acDj6XVmuU4dltjEx1HJB2S7l8LnMfLP/O+H8eoYTaEbwN7I7s++p9kM0w+m5bNAmalx/8ArADagQeAN6flR5Cd4v4qtX82N+Z3gEeAZekX4dBG1JjaTgDaUi13Agel5a8Cfkr2l9JPgYObsMZmOo77kf2jf2XFmM10HLursZmO4+eBx8letL8DDGnC49hdjc10HH9O9gfar4DTd+X30R+ZY2ZmhfKlNjMzK5SDx8zMCuXgMTOzQjl4zMysUA4eMzMrlIPHrIGUfUr2R9LjiZJ+0Mf1PyDpNfWpzqw+HDxmjTUU+MgurP8Bso9ZMdtt+P/xmDWQpPInBK8E/kT2uXEbyT6Gfgnw/ogISScC/0T2sfUbyQLnTcANwFrgBeAU4FPAOcC+wC+Ai8P/yK3JOHjMGkjSKOAHEfEGSRPJPm7kWLLP0LqfLEgeIvsY+ikR0SXpfODtEfFBSfeSfV9LWxrv4Ih4Nj3+DnBrRPyfYvfKrGctjS7AzHbwcER0AkhqB0YBz5OdAf04fYzWILJPKq7mrZL+nuyjbA4m+/gTB481FQePWXPZmnv8Itm/UQErIuKUnlZU9nXJ3wZKEbFG0hXAPvUq1Ky/PLnArLE2Awf00mclMFzSKQCS9pZ0bJX1yyGzUdIrgHcPdLFmA8FnPGYNFBHPSLpf0nKyCQJPV+mzTdK7gTmSXkn27/afyS6j3QBcLak8ueBask8zXk32MfhmTceTC8zMrFC+1GZmZoVy8JiZWaEcPGZmVigHj5mZFcrBY2ZmhXLwmJlZoRw8ZmZWqP8PRJUYI6eyEUsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "theta xi\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAEWCAYAAABWn/G6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfQElEQVR4nO3df5hcVZ3n8feHNAk/BIMmOJgACRJYQVgMBYmrQeTHmLAwiThKMBJE3RAU19nZdQZ1GBhHZ4TVcSYPGBYkYBQSssiPXgXjj3kQHwRJZ2ghATI0IZomkXRAMBpMDHz3j3tKLpXqn+k6VRk/r+e5T9U959xzz73VqU/fWyfVigjMzMxy2aPZAzAzsz8uDh4zM8vKwWNmZlk5eMzMLCsHj5mZZeXgMTOzrBw8Zv9BSDpZUnezx1EmabWkk/uo/4ykr+UbkbUCB4+1BEnrJL0o6TeSnpF0g6TXNHtcfZE0QVJIahum/vaS9LykU+rUfUXSrcOxn6FIx/nb9Po8LemfJI3ob7uIODoi7umj/h8i4qPDOlhreQ4eayVnRcRrgMnACcDfDGZjFXabn+nawIqI3wG3AHNr2o0AzgW+nm90df3n9PqcCnwA+G+70tlwBbbtfnabf6T2xyMingbuBt4i6QBJ35bUI+lX6fn4altJ90j6gqT7gK3AYZIukPSYpC2S1kq6sNT+ZEndkv5K0iZJGyXNknSGpH+X9Jykz5Ta7yHpEklPSnpW0jJJr0vV96bH59OVwNvSNh9O+/+VpOWSDi31F5I+LukJ4Ik6h/914L2S9imVvZvi3+rdfR1brbSvw0vrN0r6fGn9TEmd6SrrJ5KO7f1VeUVEPA78mOL1eZOkf03nZrOkmySNLu1jnaTT0vPLJd0q6ZuSfg18KJV9M9VXryDPl/SL1N9nS33tLenr6bw+ll7D7lL9X6ersS2S1kg6dSDHY/k5eKzlSDoYOAN4iOJn9AbgUOAQ4EXgqppNzgPmAfsBPwc2AWcC+wMXAF+RNLnU/k+AvYBxwN8C1wEfBI4HpgF/K+mw1Pa/A7OAdwJvBH4FXJ3qTkqPoyPiNRFxv6RZwGeAs4GxFG/QS2rGOwuYAhxVe+wR8RNgY9q+fHw3R8SOARzbgKRtFgEXAq8H/g/QLmnUALY9iuI8PQQI+EeKc/Nm4GDg8j42nwncCowGbuqlzTuAIymurP5W0ptT+WXABOAw4HSK16w6piOBi4ETImI/irBe19+xWJNEhBcvTV8o3iR+AzxPER5fBfau0+444Fel9XuAz/XT9x3AJ9PzkynCa0Ra3w8IYEqp/UpgVnr+GHBqqe4g4PdAG8WbYABtpfq7gY+U1veguBI7NK0HcEo/4/0b4Hvp+f5p+7cO8Ni6S3UBHF5avxH4fHq+EPj7mr7WAO/sZT8B/JoieJ8EPg/sUafdLOChmtf1tPT8cuDemvaXA99Mz6vnc3yp/kFgdnq+Fnh3qe6j1eMFDqcI5dOAPZv98+yl78X3WK2VzIqIH5QL0i2nrwDTgQNS8X6SRkTES2l9fc02Myh+Oz6C4o1/H+CRUpNnS9u+mB6fKdW/CFQnNhwK3C7p5VL9S8AbejmGQ4F/kfTl8pAorq5+Xm+8dSwGLpM0juI3966IeGiAxzZQhwLnS/pEqWwkxZVLbyZHRFe5QNKBwAKKK6D90ph+1Ucf/R07wC9Lz7fyymvxxprt//A8Irok/QVFkB0taTnwlxGxYQD7s8x8q81a3f+kuO0yJSL255XbWyq1+cNXrKdbRd8CvgS8ISJGA3fVtB+M9cCMiBhdWvaK4nOoel/tvh64sKb93lHcQttpvPVExC8obtHNobjNtniIx7aVIpiq/qRmnF+oGec+EVF7W7A//5iO59j0+nywj/FAP8fej43A+NL6wa/qOOLmiHgHRagGcMUu7MsayMFjrW4/iiuQ59OH+pf1034kMAroAXakK4Q/3YX9XwN8oTpBQNJYSTNTXQ/wMsVnDuX2n5Z0dGr/WknvG8J+v07xmcXbeeWzkMEeWyfwAUkjJE2n+Jyq6jpgvqQpKuwr6b9K2m+Q49yPdIs0XaF9apDbD8YyinN7QNrXxdUKSUdKOiWF8+8ofmZe6qUfazIHj7W6fwb2BjYDDwDf7atxRGyhmBCwjOKWzweA9l3Y/7+k7b8naUsaw5S0r63AF4D70sywqRFxO8Vv2kvTzK1VwIwh7PdWiluLP4yIjUM8tk8CZ1F8bjaH4vMgUl8dFNOhr0p9dQEfGsI4/45i+vsLwHeA24bQx0B9DugGngJ+QHGOtqW6UcAXKX5OfgkcSDHJw1qQIvyH4Mxs9yPpIoqJB+/st7G1FF/xmNluQdJBkt6e/m/VkRSf/93e7HHZ4HlWm5ntLkZS/H+jiRS3D5dSTLu33YxvtZmZWVa+1WZmZln5VlsvxowZExMmTGj2MMzMdhtjxoxh+fLlyyNiel/tHDy9mDBhAh0dHc0ehpnZbkXSmP7a+FabmZll5eAxM7OsHDxmZpaVg8fMzLJy8JiZWVYOHjMzy8rBY2ZmWTl4zMwsKwePmZll5eAxM7OsHDxmZpaVg8fMzLJy8JiZWVYOHjMzy8rBY2ZmWTl4zMwsKwePmZll1dDgkTRd0hpJXZIuqVMvSQtS/cOSJpfqFknaJGlVzTa3SOpMyzpJnal8Tqm8U9LLko5LdfekcVTrDmzkcZuZWe8a9qevJY0ArgZOB7qBFZLaI+LRUrMZwKS0TAEWpkeAG4GrgMXlfiPinNI+vgy8kMpvAm5K5ccAd0ZEZ2nTORHhv2VtZtZkjbziORHoioi1EbEdWArMrGkzE1gchQeA0ZIOAoiIe4HneutckoD3A0vqVJ/bS7mZmTVZI4NnHLC+tN6dygbbpjfTgGci4ok6deewc/DckG6zXZpCayeS5knqkNTR09MzwGGYmdlgNDJ46r25xxDa9KbuVY2kKcDWiCh/NjQnIo6hCKtpwHn1OoyIayOiEhGVsWPHDnAYZmY2GI0Mnm7g4NL6eGDDENrsRFIbcDZwS53q2dQEUkQ8nR63ADdT3AY0M7MmaGTwrAAmSZooaSRFILTXtGkH5qbZbVOBFyJi4wD6Pg14PCK6y4WS9gDeR/F5UrWsTdKY9HxP4EzgVTPlzMwsn4bNaouIHZIuBpYDI4BFEbFa0vxUfw1wF3AG0AVsBS6obi9pCXAyMEZSN3BZRFyfqne6qklOArojYm2pbBSwPIXOCOAHwHXDdqBmZjYoihjoRyp/XCqVSnR0ePa1mdlgSFoZEZW+2vibC8zMLCsHj5mZZeXgMTOzrBw8ZmaWlYPHzMyycvCYmVlWDh4zM8vKwWNmZlk5eMzMLCsHj5mZZeXgMTOzrBw8ZmaWlYPHzMyycvCYmVlWDh4zM8vKwWNmZlk5eMzMLCsHj5mZZeXgMTOzrBw8ZmaWVUODR9J0SWskdUm6pE69JC1I9Q9LmlyqWyRpk6RVNdvcIqkzLeskdabyCZJeLNVdU9rmeEmPpP0skKQGHraZmfWhYcEjaQRwNTADOAo4V9JRNc1mAJPSMg9YWKq7EZhe229EnBMRx0XEccC3gNtK1U9W6yJifql8Yeq/uq+d+jUzszwaecVzItAVEWsjYjuwFJhZ02YmsDgKDwCjJR0EEBH3As/11nm6ank/sKSvQaT+9o+I+yMigMXArCEek5mZ7aJGBs84YH1pvTuVDbZNb6YBz0TEE6WyiZIekvQjSdNK++geyD4kzZPUIamjp6dngMMwM7PBaGTw1PscJYbQpjfn8uqrnY3AIRHxVuAvgZsl7T+YfUTEtRFRiYjK2LFjBzgMMzMbjLYG9t0NHFxaHw9sGEKbnUhqA84Gjq+WRcQ2YFt6vlLSk8ARaR/jB7sPMzNrjEZe8awAJkmaKGkkMBtor2nTDsxNs9umAi9ExMYB9H0a8HhE/OEWmqSxaUIDkg6jmESwNvW3RdLU9LnQXODOXT46MzMbkoZd8UTEDkkXA8uBEcCiiFgtaX6qvwa4CzgD6AK2AhdUt5e0BDgZGCOpG7gsIq5P1bPZeVLBScDnJO0AXgLmR0R1csJFFLPk9gbuTouZmTWBioleVqtSqURHR0ezh2FmtluRtDIiKn218TcXmJlZVg4eMzPLysFjZmZZOXjMzCwrB4+ZmWXl4DEzs6wcPGZmlpWDx8zMsnLwmJlZVg4eMzPLysFjZmZZOXjMzCwrB4+ZmWXl4DEzs6wcPGZmlpWDx8zMsnLwmJlZVg4eMzPLysFjZmZZOXjMzCyrhgaPpOmS1kjqknRJnXpJWpDqH5Y0uVS3SNImSatqtrlFUmda1knqTOWnS1op6ZH0eEppm3vSOKrbHdjAwzYzsz60NapjSSOAq4HTgW5ghaT2iHi01GwGMCktU4CF6RHgRuAqYHG534g4p7SPLwMvpNXNwFkRsUHSW4DlwLjSpnMiomN4js7MzIaqkVc8JwJdEbE2IrYDS4GZNW1mAouj8AAwWtJBABFxL/Bcb51LEvB+YElq/1BEbEjVq4G9JI0a1iMyM7Nd1sjgGQesL6138+orkIG26c004JmIeKJO3XuBhyJiW6nshnSb7dIUWjuRNE9Sh6SOnp6eAQ7DzMwGo5HBU+/NPYbQpjfnkq52XtWhdDRwBXBhqXhORBxDEVbTgPPqdRgR10ZEJSIqY8eOHeAwzMxsMBoZPN3AwaX18cCGIbTZiaQ24Gzglpry8cDtwNyIeLJaHhFPp8ctwM0UtwHNzKwJGhk8K4BJkiZKGgnMBtpr2rQDc9PstqnACxGxcQB9nwY8HhHd1QJJo4HvAJ+OiPtK5W2SxqTnewJnAqswM7OmaFjwRMQO4GKK2WWPAcsiYrWk+ZLmp2Z3AWuBLuA64GPV7SUtAe4HjpTULekjpe5ns/NttouBw4FLa6ZNjwKWS3oY6ASeTvsyM7MmUMRAP1L541KpVKKjw7OvzcwGQ9LKiKj01cbfXGBmZlk5eMzMLCsHj5mZZeXgMTOzrBw8ZmaWlYPHzMyycvCYmVlWDh4zM8vKwWNmZlk5eMzMLCsHj5mZZeXgMTOzrBw8ZmaWlYPHzMyycvCYmVlWDh4zM8vKwWNmZlk5eMzMLCsHj5mZZeXgMTOzrBoaPJKmS1ojqUvSJXXqJWlBqn9Y0uRS3SJJmyStqtnmFkmdaVknqbNU9+nU1xpJ7y6VHy/pkVS3QJIadMhmZtaPhgWPpBHA1cAM4CjgXElH1TSbAUxKyzxgYanuRmB6bb8RcU5EHBcRxwHfAm5L+zsKmA0cnbb7ahoDqd95pX3t1K9Zq4uXX+bf/vUmftx+Fdtf/E2zh2M2ZG29VUhaFhHvl/QIEOUqICLi2H76PhHoioi1qb+lwEzg0VKbmcDiiAjgAUmjJR0UERsj4l5JE/oYn4D3A6eU+loaEduApyR1ASdKWgfsHxH3p+0WA7OAu/sZv1lL6bz3Fr78nc8SEfQ8+wvOvuDKZg/JbEh6DR7gk+lxNlD769W7BtD3OGB9ab0bmDKANuOAjQPofxrwTEQ8UerrgTp9/T49ry3fiaR5FFdGHHLIIQMYglk+2373W4JgD+3Bb1/8dbOHYzZkvQZPRFTf/G8BFgP/G9gLuBKoUNwK60u9z1FiCG16cy6wZAB9DXgfEXEtcC1ApVIZ6DjMsjj+5A8we9NT/Gbr85z1vs82ezhmQ9bXFU/VFOAK4CfAfsBNwNsHsF03cHBpfTywYQhtdiKpDTgbOH4AfXWn54Pah1mr2XOvffizuV9o9jDMdtlAJhf8HngR2JviiuepiHh5ANutACZJmihpJMUtu/aaNu3A3DS7bSrwQulKqy+nAY9HRPkWWjswW9IoSRMpJhE8mPrbImlq+lxoLnDnAPZhZmYNMJDgWUERPCcA76CYnXZrfxtFxA7gYmA58BiwLCJWS5ovaX5qdhewFugCrgM+Vt1e0hLgfuBISd2SPlLqfjavvs1GRKwGllFMXvgu8PGIeClVXwR8Le3nSTyxwMysaVRMKOujgVSJiI6asvMi4hsNHVmTVSqV6Ojo6L+hmZn9gaSVEVHpq02/Vzy1oZPK/kOHjpmZNY6/MsfMzLJy8JiZWVYOHjMzy8rBY2ZmWTl4zMwsKwePmZll5eAxM7OsHDxmZpaVg8fMzLJy8JiZWVYOHjMzy8rBY2ZmWTl4zMwsKwePmZll5eAxM7OsHDxmZpaVg8fMzLJy8JiZWVYOHjMzy6qhwSNpuqQ1krokXVKnXpIWpPqHJU0u1S2StEnSqjrbfSL1u1rSlalsjqTO0vKypONS3T2pfbXuwAYetpmZ9aGtUR1LGgFcDZwOdAMrJLVHxKOlZjOASWmZAixMjwA3AlcBi2v6fRcwEzg2IrZVQyQibgJuSm2OAe6MiM7SpnMiomM4j9HMzAavkVc8JwJdEbE2IrYDSykCo2wmsDgKDwCjJR0EEBH3As/V6fci4IsRsS2121SnzbnAkmE6DjMzG0aNDJ5xwPrSencqG2ybWkcA0yT9VNKPJJ1Qp8057Bw8N6TbbJdKUr2OJc2T1CGpo6enp59hmJnZUDQyeOq9uccQ2tRqAw4ApgKfApaVg0TSFGBrRJQ/G5oTEccA09JyXr2OI+LaiKhERGXs2LH9DMPMzIaikcHTDRxcWh8PbBhCm3r93pZuzz0IvAyMKdXPpuZqJyKeTo9bgJspbgOamVkTNDJ4VgCTJE2UNJIiENpr2rQDc9PstqnACxGxsZ9+7wBOAZB0BDAS2JzW9wDeR/F5EqmsTdKY9HxP4Exgp5lyZmaWR8NmtUXEDkkXA8uBEcCiiFgtaX6qvwa4CzgD6AK2AhdUt5e0BDgZGCOpG7gsIq4HFgGL0jTr7cD5EVG9PXcS0B0Ra0tDGQUsT6EzAvgBcF2DDtvMzPqhV96zraxSqURHh2dfm5kNhqSVEVHpq42/ucDMzLJy8JiZWVYOHjMzy8rBY2ZmWTl4zMwsKwePmZll5eAxM7OsHDxmZpaVg8fMzLJy8JiZWVYOHjMzy8rBY2ZmWTl4zMwsKwePmZll5eAxM7OsHDxmZpaVg8fMzLJy8JiZWVYOHjMzy8rBY2ZmWTU0eCRNl7RGUpekS+rUS9KCVP+wpMmlukWSNklaVWe7T6R+V0u6MpVNkPSipM60XFNqf7ykR9J+FkhSo47ZzMz61rDgkTQCuBqYARwFnCvpqJpmM4BJaZkHLCzV3QhMr9Pvu4CZwLERcTTwpVL1kxFxXFrml8oXpv6r+9qpXzMzy6ORVzwnAl0RsTYitgNLKQKjbCawOAoPAKMlHQQQEfcCz9Xp9yLgixGxLbXb1NcgUn/7R8T9ERHAYmDWLhyXmZntgkYGzzhgfWm9O5UNtk2tI4Bpkn4q6UeSTijVTZT0UCqfVtpH90D2IWmepA5JHT09Pf0Mw8zMhqKtgX3X+xwlhtCmVhtwADAVOAFYJukwYCNwSEQ8K+l44A5JRw9mHxFxLXAtQKVS6W8cZmY2BI284ukGDi6tjwc2DKFNvX5vS7fnHgReBsZExLaIeBYgIlYCT1JcHXWnfgezDzMza5BGBs8KYJKkiZJGArOB9po27cDcNLttKvBCRGzsp987gFMAJB0BjAQ2SxqbJjSQroAmAWtTf1skTU2z2eYCdw7PIZqZ2WA17FZbROyQdDGwHBgBLIqI1ZLmp/prgLuAM4AuYCtwQXV7SUuAk4ExkrqByyLiemARsChNs94OnB8RIekk4HOSdgAvAfMjojo54SKKWXJ7A3enxczMmkDFRC+rValUoqOjo9nDMDPbrUhaGRGVvtr4mwvMzCwrB4+ZmWXl4DEzs6wcPGZmlpWDx8zMsnLwmJlZVg4eMzPLysFjZmZZOXjMzCwrB4+ZmWXl4DEzs6wcPGZmlpWDx8zMsnLwmJlZVg4eMzPLysFjZmZZOXjMzCwrB4+ZmWXl4DEzs6wcPGZmllVDg0fSdElrJHVJuqROvSQtSPUPS5pcqlskaZOkVXW2+0Tqd7WkK1PZ6ZJWSnokPZ5San9Pat+ZlgMbdcxmZta3tkZ1LGkEcDVwOtANrJDUHhGPlprNACalZQqwMD0C3AhcBSyu6fddwEzg2IjYVgqRzcBZEbFB0luA5cC40qZzIqJjGA/RzMyGoJFXPCcCXRGxNiK2A0spAqNsJrA4Cg8AoyUdBBAR9wLP1en3IuCLEbEttduUHh+KiA2pzWpgL0mjhv2ozMxslzQyeMYB60vr3bz6CmSgbWodAUyT9FNJP5J0Qp027wUeqoZTckO6zXapJNXrWNI8SR2SOnp6evoZhpmZDUUjg6fem3sMoU2tNuAAYCrwKWBZOUgkHQ1cAVxY2mZORBwDTEvLefU6johrI6ISEZWxY8f2MwwzMxuKRgZPN3BwaX08sGEIber1e1u6Pfcg8DIwBkDSeOB2YG5EPFndICKeTo9bgJspbgOamVkTNDJ4VgCTJE2UNBKYDbTXtGkH5qbZbVOBFyJiYz/93gGcAiDpCGAksFnSaOA7wKcj4r5qY0ltkqrBtCdwJrDTTDkzM8ujYcETETuAiylmlz0GLIuI1ZLmS5qfmt0FrAW6gOuAj1W3l7QEuB84UlK3pI+kqkXAYWma9VLg/IiItK/DgUtrpk2PApZLehjoBJ5O+zIzsyZQ8Z5ttSqVSnR0ePa1mdlgSFoZEZW+2vibC8zMLCsHj5mZZeXgMTOzrBw8ZmaWlYPHzMyycvCYmVlWDh4zM8vKwWNmZlk5eMzMLCsHj5mZZeXgMTOzrBw8ZmaWlYPHzMyycvCYmVlWDh4zM8vKwWNmZln5D8H1QlIP8PNmj6NkDLC52YPoh8c4PDzG4eExDo/BjHEzQERM76uRg2c3Iamjv7/q12we4/DwGIeHxzg8GjFG32ozM7OsHDxmZpaVg2f3cW2zBzAAHuPw8BiHh8c4PIZ9jP6Mx8zMsvIVj5mZZeXgMTOzrBw8TSBpuqQ1krokXVKnfqakhyV1SuqQ9I5S3TpJj1TrSuWXS3o6lXdKOqOJYxwt6VZJj0t6TNLbUvnrJH1f0hPp8YAWHGNLnEdJR5bG0Cnp15L+ItW1xHnsZ4wtcR5T3f+QtFrSKklLJO2VylviPPYzxlY6j59M41tdfZ1T+eDPY0R4ybgAI4AngcOAkcDPgKNq2ryGVz5/OxZ4vFS3DhhTp9/Lgf/VImP8OvDR9HwkMDo9vxK4JD2/BLiiBcfYMuexpp9fAoe22nnsY4wtcR6BccBTwN5pfRnwoVY6j/2MsVXO41uAVcA+QBvwA2DSUM+jr3jyOxHoioi1EbEdWArMLDeIiN9EehWBfYHcM0CGPEZJ+wMnAdendtsj4vnUbibFGz7pcVYLjnE4DddrfSrwZERUv0mjJc5jP2McTrs6xjZgb0ltFG+cG1J5K53H3sY4nHZljG8GHoiIrRGxA/gR8J5UN+jz6ODJbxywvrTencpeRdJ7JD0OfAf4cKkqgO9JWilpXs1mF6fL5EW7eNtgV8Z4GNAD3CDpIUlfk7RvqntDRGwESI8HtuAYoTXOY9lsYElpvVXOY19jhBY4jxHxNPAl4BfARuCFiPhe2qQlzmM/Y4QWOI8UVzsnSXq9pH2AM4CDU92gz6ODJz/VKdvpN8iIuD0i/hPFbw9/X6p6e0RMBmYAH5d0UipfCLwJOI7ih/fLTRpjGzAZWBgRbwV+S3H5PdwaNcZWOY9FB9JI4M+A/7sL4+hLo8bYEucxvVHPBCYCbwT2lfTBXRhL7jG2xHmMiMeAK4DvA9+luE23Y6gDcfDk180rvykAjKePy+qIuBd4k6QxaX1DetwE3E5x+UxEPBMRL0XEy8B11fImjLEb6I6In6bqWyne5AGekXQQQHrc1GpjbKHzWDUD+LeIeKZU1irnsdcxttB5PA14KiJ6IuL3wG3Af0lNW+U89jrGFjqPRMT1ETE5Ik4CngOeSE0HfR4dPPmtACZJmph+U5wNtJcbSDpcktLzyRQfBD4raV9J+6XyfYE/pbgErr7gVe+pluceY0T8Elgv6cjU9FTg0fS8HTg/PT8fuLPVxtgq57HU5Fx2voXVEuexrzG20Hn8BTBV0j6p/lTgsbRZq5zHXsfYQucRSQemx0OAs3nlNR/8eYwBzIbwMrwLxf3Rf6eYYfLZVDYfmJ+e/zWwGugE7gfekcoPo7jE/Vmq/2ypz28AjwAPpx+Eg5oxxlR3HNCRxnIHcEAqfz3wQ4rflH4IvK4Fx9hK53Efin/0r63ps5XOY29jbKXz+HfA4xRv2t8ARrXgeextjK10Hn9M8Qvaz4BTd+Xn0V+ZY2ZmWflWm5mZZeXgMTOzrBw8ZmaWlYPHzMyycvCYmVlWDh6zJlLxLdkfS89PlvTtQW7/IUlvbMzozBrDwWPWXKOBj+3C9h+i+JoVs92G/x+PWRNJqn5D8Brg9xTfG7eZ4mvoVwIfjIiQdDzwTxRfW7+ZInDeDtwIPA28CLwN+BRwFrA38BPgwvA/cmsxDh6zJpI0Afh2RLxF0skUXzdyNMV3aN1HESQ/pfga+pkR0SPpHODdEfFhSfdQ/L2WjtTf6yLiufT8G8CyiPh/eY/KrG9tzR6Amb3KgxHRDSCpE5gAPE9xBfT99DVaIyi+qbied0n6K4qvsnkdxdefOHispTh4zFrLttLzlyj+jQpYHRFv62tDFX8u+atAJSLWS7oc2KtRAzUbKk8uMGuuLcB+/bRZA4yV9DYASXtKOrrO9tWQ2SzpNcCfD/dgzYaDr3jMmiginpV0n6RVFBMEnqnTZrukPwcWSHotxb/bf6a4jXYjcI2k6uSC6yi+zXgdxdfgm7UcTy4wM7OsfKvNzMyycvCYmVlWDh4zM8vKwWNmZlk5eMzMLCsHj5mZZeXgMTOzrP4/9KOlFLfWFtIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "theta sigma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAEWCAYAAABWn/G6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgl0lEQVR4nO3df7xVdZ3v8ddbjvgrDQ0sBBRMtDQdw6PQLYz8UeDoYPZDjMSsLmLRrdudZuyH6TQ1Uz6yZrgajo6IlIKO+eNMaZTNNbvmDw7jCUFlPJLJAZKDJmEYhHzmj/Xdudzsc87eh7PX3tj7+Xisx977+/2u7/qudQ77fdbaX9ZWRGBmZlaU3Ro9ADMz+/Pi4DEzs0I5eMzMrFAOHjMzK5SDx8zMCuXgMTOzQjl4zF4lJE2S1NXoceRJWiFpUi/1X5D0r8WNyJqBg8eagqSnJL0o6QVJz0i6TtJrGj2u3kgaLSkktQxQf3tKel7SSRXqvi3ploHYTn+k/fx9+vmskfQtSYP6Wi8ijoqIe3qp/4eI+PiADtaanoPHmskZEfEaYBxwPPClWlZWZpf5nS4PrIj4A3ATMKOs3SDgHOD64kZX0V+kn8/JwIeA/7kznQ1UYNuuZ5f5R2p/PiJiDXAX8BZJ+0v6gaRuSb9Nz0eW2kq6R9LXJN0HbAYOlXS+pMckbZK0StIFufaTJHVJ+htJ6yWtk3SmpNMk/Zek5yR9Idd+N0kXSXpS0rOSbpZ0QKq+Nz0+n84E3pbW+Wja/m8lLZZ0SK6/kPRJSU8AT1TY/euB90naO1f2HrJ/q3f1tm/l0rYOy72eL+mrudenS+pIZ1m/kHRMzz+Vl0XE48DPyX4+b5T0H+nYbJB0g6QhuW08JemU9PxSSbdI+p6k3wEfSWXfS/WlM8jzJD2d+vtirq+9JF2fjutj6WfYlav/23Q2tknSSkknV7M/VjwHjzUdSaOA04CHyX5HrwMOAQ4GXgSuKFvlXGAmsC/wa2A9cDqwH3A+8G1J43Lt3wDsCYwAvgxcA3wYOA6YCHxZ0qGp7f8CzgTeCRwE/Ba4MtWdmB6HRMRrIuJ+SWcCXwDOAoaRvUEvLBvvmcB44MjyfY+IXwDr0vr5/bsxIrZVsW9VSevMAy4AXgf8C9AmaY8q1j2S7Dg9DAj4R7Jj82ZgFHBpL6tPBW4BhgA39NDmHcARZGdWX5b05lR+CTAaOBQ4lexnVhrTEcBs4PiI2JcsrJ/qa1+sQSLCi5eGL2RvEi8Az5OFx3eAvSq0Oxb4be71PcBX+uj7duDT6fkksvAalF7vCwQwPtd+KXBmev4YcHKubjjwR6CF7E0wgJZc/V3Ax3KvdyM7EzskvQ7gpD7G+yXgx+n5fmn9t1a5b125ugAOy72eD3w1PZ8L/H1ZXyuBd/awnQB+Rxa8TwJfBXar0O5M4OGyn+sp6fmlwL1l7S8Fvpeel47nyFz9Q8C09HwV8J5c3cdL+wscRhbKpwC7N/r32Uvvi6+xWjM5MyLuzhekS07fBiYD+6fifSUNioiX0uvVZetMIfvr+HCyN/69gUdyTZ7NrftienwmV/8iUJrYcAhwm6TtufqXgNf3sA+HAP8s6fL8kMjOrn5dabwVLAAukTSC7C/3zoh4uMp9q9YhwHmSPpUrG0x25tKTcRHRmS+QdCAwh+wMaN80pt/20kdf+w7wm9zzzbz8sziobP0/PY+ITkmfIQuyoyQtBj4bEWur2J4VzJfarNn9H7LLLuMjYj9evrylXJs/3WI9XSr6PvBN4PURMQS4s6x9LVYDUyJiSG7ZM7LPoSrd2n01cEFZ+70iu4S2w3griYinyS7RTSe7zLagn/u2mSyYSt5QNs6vlY1z74govyzYl39M+3NM+vl8uJfxQB/73od1wMjc61Gv6Djixoh4B1moBvCNndiW1ZGDx5rdvmRnIM+nD/Uv6aP9YGAPoBvYls4Q3r0T278K+FppgoCkYZKmprpuYDvZZw759p+XdFRq/1pJH+jHdq8n+8zi7bz8WUit+9YBfEjSIEmTyT6nKrkGmCVpvDL7SPpLSfvWOM59SZdI0xna52pcvxY3kx3b/dO2ZpcqJB0h6aQUzn8g+515qYd+rMEcPNbs/gnYC9gAPAD8qLfGEbGJbELAzWSXfD4EtO3E9v85rf9jSZvSGManbW0Gvgbcl2aGTYiI28j+0l6UZm4tB6b0Y7u3kF1a/GlErOvnvn0aOIPsc7PpZJ8HkfpqJ5sOfUXqqxP4SD/G+Xdk0983Aj8Ebu1HH9X6CtAF/Aq4m+wYbUl1ewBfJ/s9+Q1wINkkD2tCivAXwZnZrkfShWQTD97ZZ2NrKj7jMbNdgqThkt6e/m/VEWSf/93W6HFZ7Tyrzcx2FYPJ/r/RGLLLh4vIpt3bLsaX2szMrFC+1GZmZoXypbYeDB06NEaPHt3oYZiZ7TKGDh3K4sWLF0fE5N7aOXh6MHr0aNrb2xs9DDOzXYqkoX218aU2MzMrlIPHzMwK5eAxM7NCOXjMzKxQDh4zMyuUg8fMzArl4DEzs0I5eMzMrFAOHjMzK5SDx8zMCuXgMTOzQjl4zMysUA4eMzMrlIPHzMwK5eAxM7NCOXjMzKxQDh4zMytUXYNH0mRJKyV1SrqoQr0kzUn1yySNy9XNk7Re0vKydW6S1JGWpyR1pPLpufIOSdslHZvq7knjKNUdWM/9NjOzntXtq68lDQKuBE4FuoAlktoi4tFcsynA2LSMB+amR4D5wBXAgny/EXF2bhuXAxtT+Q3ADan8aOCOiOjIrTo9Ivxd1mZmDVbPM54TgM6IWBURW4FFwNSyNlOBBZF5ABgiaThARNwLPNdT55IEfBBYWKH6nB7KzcysweoZPCOA1bnXXams1jY9mQg8ExFPVKg7mx2D57p0me3iFFo7kDRTUruk9u7u7iqHYWZmtahn8FR6c49+tOlJxbMaSeOBzRGR/2xoekQcTRZWE4FzK3UYEVdHRGtEtA4bNqzKYZiZWS3qGTxdwKjc65HA2n602YGkFuAs4KYK1dMoC6SIWJMeNwE3kl0GNDOzBqhn8CwBxkoaI2kwWSC0lbVpA2ak2W0TgI0Rsa6Kvk8BHo+IrnyhpN2AD5B9nlQqa5E0ND3fHTgdeMVMOTMzK07dZrVFxDZJs4HFwCBgXkSskDQr1V8F3AmcBnQCm4HzS+tLWghMAoZK6gIuiYhrU/UOZzXJiUBXRKzKle0BLE6hMwi4G7hmwHbUzMxqoohqP1L589La2hrt7Z59bWZWC0lLI6K1tza+c4GZmRXKwWNmZoVy8JiZWaEcPGZmVigHj5mZFcrBY2ZmhXLwmJlZoRw8ZmZWKAePmZkVysFjZmaFcvCYmVmhHDxmZlYoB4+ZmRXKwWNmZoVy8JiZWaEcPGZmVigHj5mZFcrBY2ZmhXLwmJlZoRw8ZmZWqLoGj6TJklZK6pR0UYV6SZqT6pdJGpermydpvaTlZevcJKkjLU9J6kjloyW9mKu7KrfOcZIeSduZI0l13G0zM+tF3YJH0iDgSmAKcCRwjqQjy5pNAcamZSYwN1c3H5hc3m9EnB0Rx0bEscD3gVtz1U+W6iJiVq58buq/tK0d+jUzs2LU84znBKAzIlZFxFZgETC1rM1UYEFkHgCGSBoOEBH3As/11Hk6a/kgsLC3QaT+9ouI+yMigAXAmf3cJzMz20n1DJ4RwOrc665UVmubnkwEnomIJ3JlYyQ9LOlnkibmttFVzTYkzZTULqm9u7u7ymGYmVkt6hk8lT5HiX606ck5vPJsZx1wcES8FfgscKOk/WrZRkRcHRGtEdE6bNiwKodhZma1aKlj313AqNzrkcDafrTZgaQW4CzguFJZRGwBtqTnSyU9CRyetjGy1m2YmVl91POMZwkwVtIYSYOBaUBbWZs2YEaa3TYB2BgR66ro+xTg8Yj40yU0ScPShAYkHUo2iWBV6m+TpAnpc6EZwB07vXdmZtYvdTvjiYhtkmYDi4FBwLyIWCFpVqq/CrgTOA3oBDYD55fWl7QQmAQMldQFXBIR16bqaew4qeBE4CuStgEvAbMiojQ54UKyWXJ7AXelxczMGkDZRC8r19raGu3t7Y0ehpnZLkXS0oho7a2N71xgZmaFcvCYmVmhHDxmZlYoB4+ZmRXKwWNmZoVy8JiZWaEcPGZmVigHj5mZFcrBY2ZmhXLwmJlZoRw8ZmZWKAePmZkVysFjZmaFcvCYmVmhHDxmZlYoB4+ZmRXKwWNmZoVy8JiZWaEcPGZmVigHj5mZFaquwSNpsqSVkjolXVShXpLmpPplksbl6uZJWi9pedk6N0nqSMtTkjpS+amSlkp6JD2elFvnnjSO0noH1nG3zcysFy316ljSIOBK4FSgC1giqS0iHs01mwKMTct4YG56BJgPXAEsyPcbEWfntnE5sDG93ACcERFrJb0FWAyMyK06PSLaB2bvzMysv+p5xnMC0BkRqyJiK7AImFrWZiqwIDIPAEMkDQeIiHuB53rqXJKADwILU/uHI2Jtql4B7ClpjwHdIzMz22n1DJ4RwOrc6y5eeQZSbZueTASeiYgnKtS9D3g4Irbkyq5Ll9kuTqG1A0kzJbVLau/u7q5yGGZmVot6Bk+lN/foR5uenEM623lFh9JRwDeAC3LF0yPiaLKwmgicW6nDiLg6IlojonXYsGFVDsPMzGpRz+DpAkblXo8E1vajzQ4ktQBnATeVlY8EbgNmRMSTpfKIWJMeNwE3kl0GNDOzBqhn8CwBxkoaI2kwMA1oK2vTBsxIs9smABsjYl0VfZ8CPB4RXaUCSUOAHwKfj4j7cuUtkoam57sDpwPLMTOzhqhb8ETENmA22eyyx4CbI2KFpFmSZqVmdwKrgE7gGuATpfUlLQTuB46Q1CXpY7nup7HjZbbZwGHAxWXTpvcAFktaBnQAa9K2zMysARRR7Ucqf15aW1ujvd2zr83MaiFpaUS09tbGdy4wM7NCOXjMzKxQDh4zMyuUg8fMzArl4DEzs0I5eMzMrFAOHjMzK5SDx8zMCuXgMTOzQjl4zMysUA4eMzMrVNVffZ2+TvpIYM9SWUQs6HkNMzOzHVUVPJIuASaRBc+dwBTg/wMOHjMzq0m1l9reD5wM/CYizgf+guzrBszMzGpSbfC8GBHbgW2S9gPWA4fWb1hmZvZqVe1nPO3pGz6vAZYCLwAP1WtQZmb26lVV8ERE6ZtBr5L0I2C/iFhWv2GZmdmrVS2z2o4BRpfWkXRYRNxap3GZmdmrVLWz2uYBxwArgO2pOAAHj5mZ1aTaM54JEXFkXUdiZmZ/Fqqd1Xa/pJqDR9JkSSsldUq6qEK9JM1J9cskjcvVzZO0XtLysnVuktSRlqckdeTqPp/6WinpPbny4yQ9kurmSFKt+2JmZgOj2uC5nix8VqaAeERSr5MLJA0CriT7z6ZHAudUCK8pwNi0zATm5urmA5PL+42IsyPi2Ig4Fvg+6XJf6nsacFRa7ztpDKR+Z+a2tUO/Zs0utm/nP//jBn7edgVbX3yh0cMx67dqL7XNA84FHuHlz3j6cgLQGRGrACQtAqYCj+baTAUWREQAD0gaIml4RKyLiHslje6p83TW8kHgpFxfiyJiC/ArSZ3ACZKeIpuFd39abwFwJnBXlfth1hQ67r2Jy3/4RSKC7mef5qzzL2v0kMz6pdrgeToi2mrsewSwOve6CxhfRZsRwLoq+p8IPBMRT+T6eqBCX39Mz8vLdyBpJtmZEQcffHAVQzArzpY//J4g2E278fsXf9fo4Zj1W7XB87ikG4F/B7aUCvuYTl3pc5ToR5uenAMsrKKvqrcREVcDVwO0trZWOw6zQhw36UNMW/8rXtj8PGd84IuNHo5Zv1UbPHuRBc67c2V9TafuAkblXo8E1vajzQ4ktQBnAcdV0VdXel7TNsyaze577s1fzfhao4dhttOqvXPB+f3oewkwVtIYYA3ZB/8fKmvTBsxOn/+MBzZGRDWX2U4BHo+I/CW0NuBGSd8CDiKbRPBQRLwkaZOkCcCDwAzg//Zjf8zMbABU+x9I51Qo3gi0R8QdldaJiG2SZgOLgUHAvIhYIWlWqr+K7CsWTgM6gc3AnwJO0kKyr2IYKqkLuCQirk3V03jlZTZS3zeTTV7YBnwyIl5K1ReSzZLbi2xSgScWmJk1iLIJZX00kq4G3gT8Wyp6H9ldDEYBqyLiM/UaYKO0trZGe3t7o4dhZrZLkbQ0Ilp7a1PtZzyHASdFxLbU8Vzgx8CpZFOszczMqlLtfyAdAeyTe70PcFC6lLWl8ipmZmY7qvaM5zKgQ9I9ZNOTTwT+QdI+wN11GpuZmb0KVTur7VpJd5LdjUDAFyKiNCX5c/UanJmZvfr0eqlN0pvS4zhgONldBp4G3pC/oaeZmVm1+jrj+SzZLWQuz5Xlp8GdhJmZWQ16PeOJiJnp6VxgakS8C/h/ZP+H56/rPDYzM3sVqnZW25ci4neS3kE2hXo+r/wKAzMzs6pUGzylOwD8JXBVulvB4PoMyczMXs2qDZ41kv6F7Ptv7pS0Rw3rmpmZ/Um14fFBsnuuTY6I54ED8DRqMzPrh2r/H89mcl+BkO4gXc1dpM3MzF7Bl8vMzKxQDh4zMyuUg8fMzArl4DEzs0I5eMzMrFAOHjMzK5SDx8zMCuXgMTOzQtU1eCRNlrRSUqekiyrUS9KcVL8s/x0/kuZJWi9peYX1PpX6XSHpslQ2XVJHbtku6dhUd09qX6o7sI67bWZmvaj2q69rJmkQcCXZ3ay7gCWS2iLi0VyzKcDYtIwnu+P1+FQ3H7gCWFDW77uAqcAxEbGlFCIRcQNwQ2pzNHBHRHTkVp0eEe0DuY9mZla7ep7xnAB0RsSqiNgKLCILjLypwILIPAAMkTQcICLuBZ6r0O+FwNcjYktqt75Cm3OAhQO0H2ZmNoDqGTwjyL4qu6QrldXaptzhwERJD0r6maTjK7Q5mx2D57p0me1iSarUsaSZktoltXd3d/cxDDMz6496Bk+lN/foR5tyLcD+wASyO2TfnA8SSeOBzRGR/2xoekQcDUxMy7mVOo6IqyOiNSJahw0b1scwzMysP+oZPF3AqNzrkcDafrSp1O+t6fLcQ8B2YGiufhplZzsRsSY9bgJuJLsMaGZmDVDP4FkCjJU0RtJgskBoK2vTBsxIs9smABvTVy705nbgJABJh5N9E+qG9Ho34ANknyeRylokDU3PdwdOB3aYKWdmZsWo26y2iNgmaTbZF8gNAuZFxApJs1L9VcCdwGlAJ7AZOL+0vqSFwCRgqKQu4JKIuBaYB8xL06y3AudFROny3IlAV0Ssyg1lD2BxCp1BwN3ANXXabTMz64Nefs+2vNbW1mhv9+xrM7NaSFoaEa29tfGdC8zMrFAOHjMzK5SDx8zMCuXgMTOzQjl4zMysUA4eMzMrlIPHzMwK5eAxM7NCOXjMzKxQDh4zMyuUg8fMzArl4DEzs0I5eMzMrFAOHjMzK5SDx8zMCuXgMTOzQjl4zMysUA4eMzMrlIPHzMwK5eAxM7NC1TV4JE2WtFJSp6SLKtRL0pxUv0zSuFzdPEnrJS2vsN6nUr8rJF2WykZLelFSR1quyrU/TtIjaTtzJKle+2xmZr2rW/BIGgRcCUwBjgTOkXRkWbMpwNi0zATm5urmA5Mr9PsuYCpwTEQcBXwzV/1kRBybllm58rmp/9K2dujXzMyKUc8znhOAzohYFRFbgUVkgZE3FVgQmQeAIZKGA0TEvcBzFfq9EPh6RGxJ7db3NojU334RcX9EBLAAOHMn9svMzHZCPYNnBLA697orldXaptzhwERJD0r6maTjc3VjJD2cyifmttFVzTYkzZTULqm9u7u7j2GYmVl/tNSx70qfo0Q/2pRrAfYHJgDHAzdLOhRYBxwcEc9KOg64XdJRtWwjIq4GrgZobW3taxxmZtYP9Tzj6QJG5V6PBNb2o02lfm9Nl+ceArYDQyNiS0Q8CxARS4Enyc6OulK/tWzDzMzqpJ7BswQYK2mMpMHANKCtrE0bMCPNbpsAbIyIdX30eztwEoCkw4HBwAZJw9KEBtIZ0FhgVepvk6QJaTbbDOCOgdlFMzOrVd0utUXENkmzgcXAIGBeRKyQNCvVXwXcCZwGdAKbgfNL60taCEwChkrqAi6JiGuBecC8NM16K3BeRISkE4GvSNoGvATMiojS5IQLyWbJ7QXclRYzM2sAZRO9rFxra2u0t7c3ehhmZrsUSUsjorW3Nr5zgZmZFcrBY2ZmhXLwmJlZoRw8ZmZWKAePmZkVysFjZmaFcvCYmVmhHDxmZlYoB4+ZmRXKwWNmZoVy8JiZWaEcPGZmVigHj5mZFcrBY2ZmhXLwmJlZoRw8ZmZWKAePmZkVysFjZmaFcvCYmVmhHDxmZlaougaPpMmSVkrqlHRRhXpJmpPql0kal6ubJ2m9pOUV1vtU6neFpMtS2amSlkp6JD2elGt/T2rfkZYD67XPZmbWu5Z6dSxpEHAlcCrQBSyR1BYRj+aaTQHGpmU8MDc9AswHrgAWlPX7LmAqcExEbMmFyAbgjIhYK+ktwGJgRG7V6RHRPoC7aGZm/VDPM54TgM6IWBURW4FFZIGRNxVYEJkHgCGShgNExL3AcxX6vRD4ekRsSe3Wp8eHI2JtarMC2FPSHgO+V2ZmtlPqGTwjgNW511288gyk2jblDgcmSnpQ0s8kHV+hzfuAh0vhlFyXLrNdLEmVOpY0U1K7pPbu7u4+hmFmZv1Rz+Cp9OYe/WhTrgXYH5gAfA64OR8kko4CvgFckFtnekQcDUxMy7mVOo6IqyOiNSJahw0b1scwzMysP+oZPF3AqNzrkcDafrSp1O+t6fLcQ8B2YCiApJHAbcCMiHiytEJErEmPm4AbyS4DmplZA9QzeJYAYyWNkTQYmAa0lbVpA2ak2W0TgI0Rsa6Pfm8HTgKQdDgwGNggaQjwQ+DzEXFfqbGkFkmlYNodOB3YYaacmZkVo27BExHbgNlks8seA26OiBWSZkmalZrdCawCOoFrgE+U1pe0ELgfOEJSl6SPpap5wKFpmvUi4LyIiLStw4CLy6ZN7wEslrQM6ADWpG2ZmVkDKHvPtnKtra3R3u7Z12ZmtZC0NCJae2vjOxeYmVmhHDxmZlYoB4+ZmRXKwWNmZoVy8JiZWaEcPGZmVigHj5mZFcrBY2ZmhXLwmJlZoRw8ZmZWKAePmZkVysFjZmaFcvCYmVmhHDxmZlYoB4+ZmRXKwWNmZoXyF8H1QFI38OtGjyNnKLCh0YPog8c4MDzGgeExDoxaxrgBICIm99bIwbOLkNTe17f6NZrHODA8xoHhMQ6MeozRl9rMzKxQDh4zMyuUg2fXcXWjB1AFj3FgeIwDw2McGAM+Rn/GY2ZmhfIZj5mZFcrBY2ZmhXLwNICkyZJWSuqUdFGF+qmSlknqkNQu6R25uqckPVKqy5VfKmlNKu+QdFoDxzhE0i2SHpf0mKS3pfIDJP1E0hPpcf8mHGNTHEdJR+TG0CHpd5I+k+qa4jj2McamOI6p7n9LWiFpuaSFkvZM5U1xHPsYYzMdx0+n8a0o/ZxTee3HMSK8FLgAg4AngUOBwcAvgSPL2ryGlz9/OwZ4PFf3FDC0Qr+XAn/dJGO8Hvh4ej4YGJKeXwZclJ5fBHyjCcfYNMexrJ/fAIc023HsZYxNcRyBEcCvgL3S65uBjzTTcexjjM1yHN8CLAf2BlqAu4Gx/T2OPuMp3glAZ0SsioitwCJgar5BRLwQ6acI7AMUPQOk32OUtB9wInBtarc1Ip5P7aaSveGTHs9swjEOpIH6WZ8MPBkRpTtpNMVx7GOMA2lnx9gC7CWpheyNc20qb6bj2NMYB9LOjPHNwAMRsTkitgE/A96b6mo+jg6e4o0AVuded6WyV5D0XkmPAz8EPpqrCuDHkpZKmlm22ux0mjxvJy8b7MwYDwW6geskPSzpXyXtk+peHxHrANLjgU04RmiO45g3DViYe90sx7G3MUITHMeIWAN8E3gaWAdsjIgfp1Wa4jj2MUZoguNIdrZzoqTXSdobOA0YlepqPo4OnuKpQtkOf0FGxG0R8Sayvx7+Plf19ogYB0wBPinpxFQ+F3gjcCzZL+/lDRpjCzAOmBsRbwV+T3b6PdDqNcZmOY5ZB9Jg4K+Af9uJcfSmXmNsiuOY3qinAmOAg4B9JH14J8ZS9Bib4jhGxGPAN4CfAD8iu0y3rb8DcfAUr4uX/1IAGEkvp9URcS/wRklD0+u16XE9cBvZ6TMR8UxEvBQR24FrSuUNGGMX0BURD6bqW8je5AGekTQcID2ub7YxNtFxLJkC/GdEPJMra5bj2OMYm+g4ngL8KiK6I+KPwK3A/0hNm+U49jjGJjqORMS1ETEuIk4EngOeSE1rPo4OnuItAcZKGpP+UpwGtOUbSDpMktLzcWQfBD4raR9J+6byfYB3k50Cl37gJe8tlRc9xoj4DbBa0hGp6cnAo+l5G3Been4ecEezjbFZjmOuyTnseAmrKY5jb2NsouP4NDBB0t6p/mTgsbRasxzHHsfYRMcRSQemx4OBs3j5Z177cYwqZkN4GdiF7Prof5HNMPliKpsFzErP/xZYAXQA9wPvSOWHkp3i/jLVfzHX53eBR4Bl6RdheCPGmOqOBdrTWG4H9k/lrwN+SvaX0k+BA5pwjM10HPcm+0f/2rI+m+k49jTGZjqOfwc8Tvam/V1gjyY8jj2NsZmO48/J/kD7JXDyzvw++pY5ZmZWKF9qMzOzQjl4zMysUA4eMzMrlIPHzMwK5eAxM7NCOXjMGkjZXbI/kZ5PkvSDGtf/iKSD6jM6s/pw8Jg11hDgEzux/kfIbrNitsvw/+MxayBJpTsErwT+SHbfuA1kt6FfCnw4IkLSccC3yG5bv4EscN4OzAfWAC8CbwM+B5wB7AX8Argg/I/cmoyDx6yBJI0GfhARb5E0iex2I0eR3UPrPrIgeZDsNvRTI6Jb0tnAeyLio5LuIfu+lvbU3wER8Vx6/l3g5oj492L3yqx3LY0egJm9wkMR0QUgqQMYDTxPdgb0k3QbrUFkdyqu5F2S/obsVjYHkN3+xMFjTcXBY9ZctuSev0T2b1TAioh4W28rKvu65O8ArRGxWtKlwJ71GqhZf3lygVljbQL27aPNSmCYpLcBSNpd0lEV1i+FzAZJrwHeP9CDNRsIPuMxa6CIeFbSfZKWk00QeKZCm62S3g/MkfRasn+3/0R2GW0+cJWk0uSCa8juZvwU2W3wzZqOJxeYmVmhfKnNzMwK5eAxM7NCOXjMzKxQDh4zMyuUg8fMzArl4DEzs0I5eMzMrFD/DQdBFfxGp+j6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "theta tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaqklEQVR4nO3dfZRddX3v8feHxPAYDZRgeQ5o5BrqQ+NU8GqRiiixarDWdUG94NPFqHjb3tYarddira12VW1ZpXjFKqAtXC5XaqwoIreWLoTKpCCQAhLxgUiEAIogKALf+8feU07HycxkMr/Mibxfa5119t6/32+f795ncj6zH+YkVYUkSbNth7kuQJL088mAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjLSdSXJkkg1zXcegJOuSHDlJ+zuTfGzbVaRhYMBom0ryrST3J7k3yW1JPpFkt7muazJJliSpJPNnaX07JflBkudN0PbhJOfPxuvMRL+dP+rfn+8m+VCSeVONq6pDq+rLk7T/SVW9YVaL1dAzYDQXXlJVuwHLgV8B3rUlg9PZbn52xwdTVf0Y+N/ACeP6zQOOB87adtVN6Gn9+3MU8Ergv23NymYrmLX92W7+kernT1V9F/g88EtJdk/yD0k2Jfl+P73fWN8kX07yviSXAfcBByd5bZLrk9yT5OYkbxzof2SSDUl+P8ntSTYmOTbJi5J8PcldSd450H+HJKuTfCPJnUnOS7JH33xp//yD/jf7Z/VjXte//veTXJTkwIH1VZK3JLkJuGmCzT8LeHmSXQaWvZDu3+TnJ9u28frXeuLA/JlJ/nhg/sVJru6Pmr6S5Kmbf1ceUVU3AP9M9/48Icn/6/fNHUn+Nsmigdf4VpLn99OnJDk/yaeS/BB4Tb/sU3372BHhiUm+06/vDwbWtXOSs/r9en3/Hm4YaH97f3R1T5Ibkxw1ne3RtmfAaM4k2R94EXAV3c/iJ4ADgQOA+4G/GjfkvwInAQuBbwO3Ay8GHgu8FvhwkuUD/X8R2AnYF3g3cAbwauAZwK8C705ycN/3vwPHAs8F9gG+D5zWtx3RPy+qqt2q6vIkxwLvBH4DWEz3QXzOuHqPBQ4Dlo3f9qr6CrCxHz+4fX9XVQ9OY9umpR/zceCNwC8A/wtYk2THaYxdRrefrgIC/CndvnkysD9wyiTDVwLnA4uAv91Mn+cAh9AdKb07yZP75X8ILAEOBo6me8/GajoEOBn4lapaSBfK35pqWzRHqsqHj232oPswuBf4AV1I/DWw8wT9ng58f2D+y8AfTbHuvwd+q58+ki6k5vXzC4ECDhvovxY4tp++HjhqoG1v4KfAfLoPuwLmD7R/Hnj9wPwOdEdWB/bzBTxvinrfBXyxn35sP/6Xp7ltGwbaCnjiwPyZwB/306cD7x23rhuB527mdQr4IV3AfgP4Y2CHCfodC1w17n19fj99CnDpuP6nAJ/qp8f2534D7V8FjuunbwZeOND2hrHtBZ5IF77PBx4z1z/PPiZ/eG5Uc+HYqvrS4IL+VNGHgWOA3fvFC5PMq6qH+vlbxo1ZQffb7pPoPuB3Aa4d6HLnwNj7++fbBtrvB8ZuMDgQuCDJwwPtDwGP38w2HAj8ZZIPDpZEd7T07YnqncDZwB8m2ZfuN/H1VXXVNLdtug4ETkzy1oFlC+iORDZneVWtH1yQZC/gVLojmoV9Td+fZB1TbTvA9wam7+OR92KfceP/fbqq1if5bbrAOjTJRcD/qKpbp/F62sY8RaZh8bt0p0sOq6rH8shpqQz0+fev/u5P8fxf4M+Bx1fVIuDCcf23xC3AiqpaNPDYqbrrRBN95fgtwBvH9d+5ulNfP1PvRKrqO3Sn1l5Fd3rs7Blu2310ATTmF8fV+b5xde5SVeNP503lT/vteWr//rx6knpgim2fwkZgv4H5/f/Diqv+rqqeQxeeBXxgK15LDRkwGhYL6Y4oftBfXP/DKfovAHYENgEP9r/xv2ArXv8jwPvGLtQnWZxkZd+2CXiY7prAYP93JDm07/+4JK+YweueRXdN4dk8cq1iS7ftauCVSeYlOYbuOtKYM4BVSQ5LZ9ckv55k4RbWuZD+1GZ/xPW2LRy/Jc6j27e796918lhDkkOSPK8P4R/T/cw8tJn1aI4ZMBoWfwHsDNwBXAF8YbLOVXUP3YX58+hO1bwSWLMVr/+X/fgvJrmnr+Gw/rXuA94HXNbfiXV4VV1A95vzuf2dUtcBK2bwuufTnRK8pKo2znDbfgt4Cd11rVfRXa+hX9co3W3Gf9Wvaz3wmhnU+R6628rvBj4HfHoG65iuPwI2AN8EvkS3j37St+0IvJ/u5+R7wF50N1toCKXK/3BM0vBK8ia6GwCeO2VnDRWPYCQNlSR7J3l2/7dJh9Bdn7tgruvSlvMuMknDZgHd3+scRHfa71y629m1nfEUmSSpCU+RSZKaeFSfIttzzz1ryZIlc12GJG1X1q5de0dVLZ6q36M6YJYsWcLo6OhclyFJ25Uk3566l6fIJEmNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNNA2YJMckuTHJ+iSrJ2hPklP79muSLB9o+3iS25NcN27MHkkuTnJT/7z7uPYDktyb5PfabZkkaSrNAibJPOA0YAWwDDg+ybJx3VYAS/vHScDpA21nAsdMsOrVwCVVtRS4pJ8f9GHg81tbvyRp67Q8gnkmsL6qbq6qB4BzgZXj+qwEzq7OFcCiJHsDVNWlwF0TrHclcFY/fRZw7FhDkmOBm4F1s7gdkqQZaBkw+wK3DMxv6JdtaZ/xHl9VGwH6570AkuwKvB14z2SDk5yUZDTJ6KZNm6bcCEnSzLQMmEywrGbQZ7reA3y4qu6drFNVfbSqRqpqZPHixTN8KUnSVOY3XPcGYP+B+f2AW2fQZ7zbkuxdVRv702m398sPA34zyZ8Bi4CHk/y4qv5qphsgSZq5lkcwVwJLkxyUZAFwHLBmXJ81wAn93WSHA3ePnf6axBrgxH76ROAzAFX1q1W1pKqWAH8B/InhIklzp1nAVNWDwMnARcD1wHlVtS7JqiSr+m4X0l2UXw+cAbx5bHySc4DLgUOSbEjy+r7p/cDRSW4Cju7nJUlDJlUzveSx/RsZGanR0dG5LkOStitJ1lbVyFT9/Et+SVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYSVITBowkqQkDRpLUhAEjSWrCgJEkNWHASJKaaBowSY5JcmOS9UlWT9CeJKf27dckWT7Q9vEktye5btyYPZJcnOSm/nn3fvnRSdYmubZ/fl7LbZMkTa5ZwCSZB5wGrACWAccnWTau2wpgaf84CTh9oO1M4JgJVr0auKSqlgKX9PMAdwAvqaqnACcCn5ydLZEkzUTLI5hnAuur6uaqegA4F1g5rs9K4OzqXAEsSrI3QFVdCtw1wXpXAmf102cBx/b9r6qqW/vl64Cdkuw4mxskSZq+lgGzL3DLwPyGftmW9hnv8VW1EaB/3muCPi8Hrqqqn2xRxZKkWTO/4bozwbKaQZ8te9HkUOADwAs2034S3ek4DjjggK15KUnSJFoewWwA9h+Y3w+4dQZ9xrtt7DRa/3z7WEOS/YALgBOq6hsTDa6qj1bVSFWNLF68eFobIknaci0D5kpgaZKDkiwAjgPWjOuzBjihv5vscODusdNfk1hDdxGf/vkzAEkWAZ8D3lFVl83SNkiSZqhZwFTVg8DJwEXA9cB5VbUuyaokq/puFwI3A+uBM4A3j41Pcg5wOXBIkg1JXt83vR84OslNwNH9PP1rPRH4n0mu7h8TXZ+RJG0DqdqqSx7btZGRkRodHZ3rMiRpu5JkbVWNTNXPv+SXJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKkJA0aS1IQBI0lqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSE/On6pDk3RMtr6o/mv1yJEk/L6YMGOBHA9M7AS8Grm9TjiTp58WUp8iq6oMDj/cBRwL7TmflSY5JcmOS9UlWT9CeJKf27dckWT7Q9vEktye5btyYPZJcnOSm/nn3gbZ39Ou6MckLp1OjJKmNmVyD2QU4eKpOSeYBpwErgGXA8UmWjeu2AljaP04CTh9oOxM4ZoJVrwYuqaqlwCX9PP26jwMO7cf9dV+DtF25585b+cdPf4gbvnrhXJcibZXpXIO5Fqh+dh6wGJjO9ZdnAuur6uZ+PecCK4F/G+izEji7qgq4IsmiJHtX1caqujTJkgnWu5LuKArgLODLwNv75edW1U+AbyZZ39dw+TRqlYbGx854E6ObvsaOeQzvXbQX+z5pZK5LkmZkOtdgXjww/SBwW1U9OI1x+wK3DMxvAA6bRp99gY2TrPfxVbURoKo2JtlrYF1XTLCu/yDJSXRHSxxwwAFTb4W0jf3ogXtZkMfwEA/zk/vvnetypBmbzjWYb1fVt4H76Y5g9kkynU/mTLS6GfSZrmmtq6o+WlUjVTWyePHiGb6U1M4bXv1hnnvgEbz22W/loKccMdflSDM2nVNkLwU+COwD3A4cSHcX2aFTDN0A7D8wvx9w6wz6jHfb2Gm0JHv3Nc10XdLQ+cWDn8pr3vo3c12GtNWmc5H/vcDhwNer6iDgKOCyaYy7Elia5KAkC+guwK8Z12cNcEJ/N9nhwN1jp78msQY4sZ8+EfjMwPLjkuyY5CC6Gwe+Oo06JUkNTCdgflpVdwI7JNmhqv4RePpUg/rrNCcDF9Ed8ZxXVeuSrEqyqu92IXAzsB44A3jz2Pgk59BdoD8kyYYkr++b3g8cneQm4Oh+nqpaB5xHdxPBF4C3VNVD09g+SVID6W7gmqRD8iXgWOBPgT3pTkmNVNWzm1fX2MjISI2Ojs51GZK0XUmytqqmvL1xOneRfQ24D/gd4FXA44Ddtq48SdLPu+kEzK9V1cPAw3R/d0KSa5pWJUna7m02YJK8ie6ayBPGBcpCpneRX5L0KDbZEczfAZ+nu/Yy+D1i91TVXU2rkiRt9zYbMFV1N3A3cPy2K0eS9PPC/3BMktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktRE04BJckySG5OsT7J6gvYkObVvvybJ8qnGJnlaksuTXJvks0ke2y9/TJKz+uXXJ3lHy22TJE2uWcAkmQecBqwAlgHHJ1k2rtsKYGn/OAk4fRpjPwasrqqnABcAb+uXvwLYsV/+DOCNSZa02TpJ0lRaHsE8E1hfVTdX1QPAucDKcX1WAmdX5wpgUZK9pxh7CHBpP30x8PJ+uoBdk8wHdgYeAH7YaNskSVNoGTD7ArcMzG/ol02nz2RjrwNe2k+/Ati/nz4f+BGwEfgO8OdVddfWbYIkaaZaBkwmWFbT7DPZ2NcBb0myFlhId6QC3VHPQ8A+wEHA7yY5+GeKSk5KMppkdNOmTVNvhSRpRloGzAYeOboA2A+4dZp9Nju2qm6oqhdU1TOAc4Bv9H1eCXyhqn5aVbcDlwEj44uqqo9W1UhVjSxevHjGGydJmlzLgLkSWJrkoCQLgOOANeP6rAFO6O8mOxy4u6o2TjY2yV798w7Au4CP9Ov6DvC8fl27AocDNzTcPknSJJoFTFU9CJwMXARcD5xXVeuSrEqyqu92IXAzsB44A3jzZGP7Mccn+TpdeNwKfKJffhqwG901miuBT1TVNa22T5I0uVSNvyzy6DEyMlKjo6NzXYYkbVeSrK2qn7kEMZ5/yS9JasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpiaYBk+SYJDcmWZ9k9QTtSXJq335NkuVTjU3ytCSXJ7k2yWeTPHag7al927q+faeW2ydJ2rxmAZNkHnAasAJYBhyfZNm4biuApf3jJOD0aYz9GLC6qp4CXAC8rR8zH/gUsKqqDgWOBH7aavskSZNreQTzTGB9Vd1cVQ8A5wIrx/VZCZxdnSuARUn2nmLsIcCl/fTFwMv76RcA11TV1wCq6s6qeqjVxkmSJtcyYPYFbhmY39Avm06fycZeB7y0n34FsH8//SSgklyU5F+T/P5ERSU5KcloktFNmzZt4SZJkqarZcBkgmU1zT6TjX0d8JYka4GFwAP98vnAc4BX9c8vS3LUz6yk6qNVNVJVI4sXL556KyRJMzK/4bo38MjRBcB+wK3T7LNgc2Or6ga602EkeRLw6wPr+qequqNvuxBYDlwyC9siSdpCLY9grgSWJjkoyQLgOGDNuD5rgBP6u8kOB+6uqo2TjU2yV/+8A/Au4CP9ui4Cnppkl/6C/3OBf2u4fZKkSTQ7gqmqB5OcTPfBPw/4eFWtS7Kqb/8IcCHwImA9cB/w2snG9qs+Pslb+ulPA5/ox3w/yYfowqmAC6vqc622T5I0uVSNvyzy6DEyMlKjo6NzXYYkbVeSrK2qkan6+Zf8kqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTRgwkqQmDBhJUhMGjCSpCQNGktSEASNJasKAkSQ1YcBIkpowYCRJTaSq5rqGOZNkE/Dtua5jwJ7AHXNdxBS2hxph+6jTGmeHNc6OLanxwKpaPFWnR3XADJsko1U1Mtd1TGZ7qBG2jzqtcXZY4+xoUaOnyCRJTRgwkqQmDJjh8tG5LmAatocaYfuo0xpnhzXOjlmv0WswkqQmPIKRJDVhwEiSmjBgGkpyTJIbk6xPsnqC9pVJrklydZLRJM8ZaPtWkmvH2gaWn5Lku/3yq5O8aA5rXJTk/CQ3JLk+ybP65XskuTjJTf3z7kNY41DsxySHDNRwdZIfJvntvm0o9uMUNQ7FfuzbfifJuiTXJTknyU798qHYj1PUOEz78bf6+taNvc/98i3fj1Xlo8EDmAd8AzgYWAB8DVg2rs9uPHId7KnADQNt3wL2nGC9pwC/NyQ1ngW8oZ9eACzqp/8MWN1PrwY+MIQ1Ds1+HLee79H9EdtQ7cdJahyK/QjsC3wT2LmfPw94zTDtxylqHJb9+EvAdcAuwHzgS8DSme5Hj2DaeSawvqpurqoHgHOBlYMdqure6t8tYFdgW99xMeMakzwWOAL4m77fA1X1g77fSroPdvrnY4ewxtk0W+/1UcA3qmrs2yWGYj9OUeNs2toa5wM7J5lP9wF5a798mPbj5mqcTVtT45OBK6rqvqp6EPgn4GV92xbvRwOmnX2BWwbmN/TL/oMkL0tyA/A54HUDTQV8McnaJCeNG3Zyf3j78a083N+aGg8GNgGfSHJVko8l2bVve3xVbQTon/cawhphOPbjoOOAcwbmh2U/TlYjDMF+rKrvAn8OfAfYCNxdVV/shwzFfpyiRhiC/Uh39HJEkl9IsgvwImD/vm2L96MB004mWPYzvxFW1QVV9Z/ofht470DTs6tqObACeEuSI/rlpwNPAJ5O90P6wTmqcT6wHDi9qn4Z+BHdYfNsa1XjsOzHbgXJAuClwP/Zijom06rGodiP/QfySuAgYB9g1ySv3opatnWNQ7Efq+p64APAxcAX6E6vPTjTQgyYdjbwSPID7Mckh8NVdSnwhCR79vO39s+3AxfQHfZSVbdV1UNV9TBwxtjyOahxA7Chqv6lbz6f7sMc4LYkewP0z7cPW41DtB/HrAD+tapuG1g2LPtxszUO0X58PvDNqtpUVT8FPg38577rsOzHzdY4RPuRqvqbqlpeVUcAdwE39V23eD8aMO1cCSxNclD/m99xwJrBDkmemCT99HK6C3J3Jtk1ycJ++a7AC+gOXcfe2DEvG1u+rWusqu8BtyQ5pO96FPBv/fQa4MR++kTgM8NW47Dsx4Eux/Ozp56GYj9OVuMQ7cfvAIcn2aVvPwq4vh82LPtxszUO0X4kyV798wHAb/DIe77l+7GmcVeCjxnfzfEi4Ot0d3T8Qb9sFbCqn347sA64GrgceE6//GC6Q9Ov9e1/MLDOTwLXAtf0b/jec1Fj3/Z0YLSv5e+B3fvlvwBcQvebzyXAHkNY4zDtx13o/nE/btw6h2k/bq7GYdqP7wFuoPtw/iSw4xDux83VOEz78Z/pfhH7GnDU1vw8+lUxkqQmPEUmSWrCgJEkNWHASJKaMGAkSU0YMJKkJgwYaRtI963Ob+6nj0zyD1s4/jVJ9mlTndSGASNtG4uAN2/F+NfQfb2ItN3w72CkbSDJ2Dfa3gj8lO570e6g+3r0tcCrq6qSPAP4EN3Xqd9BFyzPBs4EvgvcDzwLeBvwEmBn4CvAG8t/zBoyBoy0DSRZAvxDVf1SkiPpvmbjULrviLqMLjD+he7r0VdW1aYk/wV4YVW9LsmX6f6/kNF+fXtU1V399CeB86rqs9t2q6TJzZ/rAqRHqa9W1QaAJFcDS4Af0B3RXNx/TdQ8um/WncivJfl9uq9w2YPuaz8MGA0VA0aaGz8ZmH6I7t9igHVV9azJBqb7b3b/GhipqluSnALs1KpQaaa8yC9tG/cAC6focyOwOMmzAJI8JsmhE4wfC5M7kuwG/OZsFyvNBo9gpG2gqu5MclmS6+gu1N82QZ8HkvwmcGqSx9H9+/wLutNfZwIfSTJ2kf8Mum/f/Rbd17NLQ8eL/JKkJjxFJklqwoCRJDVhwEiSmjBgJElNGDCSpCYMGElSEwaMJKmJ/w++OIB622RApgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "zeta eta\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAa/UlEQVR4nO3df7RdZX3n8ffHQEAHEChBaMgQrCiii4JekGntqGjbYK0wM6uz8NdgW0txiRBHWhG7UDu1tZZi7ZQpQwdaOtIyVLBmtTBIEdupRcwFgpgGJFKUSDSxQIlVgch3/tg7ejjcJPdJ7r43V96vtc66ez/P3vt8n3vuOZ+7f5xzUlVIkjRdT5vrAiRJ84vBIUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSLuoJC9Psm6u6xiVZHWSl2+j/9wk/2v2KtJcMDg0iCT3Jvl2km8m+XqSP06y11zXtS1JliapJLvN0Pb2TPJQkhOm6Ptwko/NxP3siH6c/9o/Pl9NckGSBdtbr6peUFWf3kb/b1bVW2a0WO1yDA4N6Werai/gRcCxwK+1rJzOvPkbHQ+cqvoO8H+A/zK23ALgdcBls1fdlH60f3xeCbwe+KWd2dhMBa52ffPmSan5q6q+ClwLvDDJfkn+KsnGJA/204dsWTbJp5N8IMlngG8Bz07y80nWJNmU5J4kvzyy/MuTrEvyq0k2JFmf5OQkr07yxSQPJDl3ZPmnJTknyZeS/HOSK5Ps33f/Xf/zof4/8X/Xr/ML/f0/mOS6JIeObK+SvC3J3cDdUwz/MuA/JXnGSNtP0z33rt3W2Mb19/Wckfk/SfIbI/OvSbKq38v5hyRHbf1R+b6quhP4f3SPz48k+VT/u/lGksuT7DtyH/cmeVU//b4kH0vy0SQPA2/u2z7a92/Zgzs1yVf67b1nZFtPT3JZ/3td0z+G60b639XvDW1KcleSV05nPBqewaHBJVkCvBq4je5v7o+BQ4F/C3wb+IOxVd4EnAbsDXwZ2AC8BtgH+Hngw0leNLL8QcCewGLgPOCPgDcCLwZ+AjgvybP7Zc8ETgZeBvww8CBwYd/37/uf+1bVXlV1U5KTgXOB/wgsonuB/fOxek8GXgIcOT72qvoHYH2//uj4/qyqNk9jbNPSr3Mp8MvADwH/E1iRZI9prHsk3e/pNiDAb9H9bp4PLAHet43VTwI+BuwLXL6VZV4KPI9uz+a8JM/v298LLAWeDfwk3WO2pabnAWcAx1bV3nRhe+/2xqJZUlXevM34je5J/k3gIboX//8BPH2K5Y4GHhyZ/zTw69vZ9l8CZ/XTL6cLnwX9/N5AAS8ZWf4W4OR+eg3wypG+g4HHgN3oXsQK2G2k/1rgF0fmn0a3J3RoP1/ACdup99eAT/bT+/TrHzPNsa0b6SvgOSPzfwL8Rj/9h8B/G9vWXcDLtnI/BTxMF5xfAn4DeNoUy50M3Db2uL6qn34f8Hdjy78P+Gg/veX3echI/+eAU/rpe4CfHul7y5bxAs+hC9VXAbvP9d+ztyfePCapIZ1cVX8z2tAfsvkwsAzYr2/eO8mCqvpuP3/f2Don0v13+ly6F+5nAHeMLPLPI+t+u//59ZH+bwNbTswfCnw8yeMj/d8FnrWVMRwKfCTJ746WRLd38+Wp6p3CnwLvTbKY7j/ntVV12zTHNl2HAqcmeftI20K6PYeteVFVrR1tSHIg8Pt0eyB79zU9uI1tbG/sAF8bmf4W338sfnhs/e9NV9XaJMvpgugFSa4D/mtV3T+N+9PAPFSl2fZOusMWL6mqffj+4aGMLPO9j2zuD7VcBZwPPKuq9gWuGVu+xX3AiVW178htz+rOw0z1UdH3Ab88tvzTqzsE9aR6p1JVX6E7xPUGusNUf7qDY/sWXbBscdBYnR8Yq/MZVTV+WG17fqsfz1H94/PGbdQD2xn7dqwHDhmZX/KEDVf9WVW9lC4UC/jtnbgvzSCDQ7Ntb7o9gIf6k9Lv3c7yC4E9gI3A5v4/9J/aifu/CPjAlhPcSRYlOanv2wg8TnfMfXT5dyd5Qb/8M5P83A7c72V0x+x/nO+fC2gd2yrg9UkWJFlGd55miz8CTk/yknT+TZKfSbJ3Y5170x9i7PeQfqVx/RZX0v1u9+vv64wtHUmel+SEPly/Q/c3892tbEezzODQbPs94OnAN4DPAv93WwtX1Sa6E9pX0h0yeT2wYifu/yP9+p9Msqmv4SX9fX0L+ADwmf7KpOOr6uN0/+le0V859AXgxB2434/RHZq7oarW7+DYzgJ+lu680RvozofQb2uS7nLaP+i3tRZ48w7U+X66y6f/Bfhr4Ood2MZ0/TqwDvgn4G/ofkeP9H17AB+k+zv5GnAg3UUK2gWkyi9ykjT3kryV7sT5y7a7sOaUexyS5kSSg5P8eP/emufRnf/6+FzXpe3zqipJc2Uh3ftNDqM7/HYF3WXb2sV5qEqS1MRDVZKkJk+JQ1UHHHBALV26dK7LkKR55ZZbbvlGVS0ab39KBMfSpUuZnJyc6zIkaV5J8uWp2j1UJUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSJKaGBySpCYGhySpicEhSWpicEiSmhgckqQmBockqYnBIUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSJKaGBySpCYGhySpicEhSWpicEiSmhgckqQmBockqYnBIUlqMmhwJFmW5K4ka5OcM0X/EUluSvJIkrNH2vdM8rkktydZneT9I337J7k+yd39z/2GHIMk6YkGC44kC4ALgROBI4HXJTlybLEHgDOB88faHwFOqKofBY4GliU5vu87B7ihqg4HbujnJUmzZMg9juOAtVV1T1U9ClwBnDS6QFVtqKqVwGNj7VVV3+xnd+9v1c+fBFzWT18GnDxM+ZKkqQwZHIuB+0bm1/Vt05JkQZJVwAbg+qq6ue96VlWtB+h/HriV9U9LMplkcuPGjTtSvyRpCkMGR6ZoqynaplRV362qo4FDgOOSvLDlzqvq4qqaqKqJRYsWtawqSdqGIYNjHbBkZP4Q4P7WjVTVQ8CngWV909eTHAzQ/9ywU1VKkpoMGRwrgcOTHJZkIXAKsGI6KyZZlGTffvrpwKuAO/vuFcCp/fSpwCdmsmhJ0rbtNtSGq2pzkjOA64AFwKVVtTrJ6X3/RUkOAiaBfYDHkyynuwLrYOCy/sqspwFXVtVf9Zv+IHBlkl8EvgL83FBjkCQ9Waqmfdph3pqYmKjJycm5LkOS5pUkt1TVxHi77xyXJDUxOCRJTQwOSVITg0OS1MTgkCQ1MTgkSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDUxOCRJTQwOSVITg0OS1MTgkCQ1MTgkSU0MDklSE4NDktTE4JAkNTE4JElNBg2OJMuS3JVkbZJzpug/IslNSR5JcvZI+5IkNyZZk2R1krNG+o5O8tkkq5JMJjluyDFIkp5osOBIsgC4EDgROBJ4XZIjxxZ7ADgTOH+sfTPwzqp6PnA88LaRdT8EvL+qjgbO6+clSbNkyD2O44C1VXVPVT0KXAGcNLpAVW2oqpXAY2Pt66vq1n56E7AGWLylG9inn34mcP9wQ5AkjdttwG0vBu4bmV8HvKR1I0mWAscAN/dNy4HrkpxPF3w/tlNVSpKaDLnHkSnaqmkDyV7AVcDyqnq4b34r8I6qWgK8A7hkK+ue1p8Dmdy4cWPL3UqStmHI4FgHLBmZP4SGw0pJdqcLjcur6uqRrlOBLfN/QXdI7Emq6uKqmqiqiUWLFjUVLknauiGDYyVweJLDkiwETgFWTGfFJKHbk1hTVReMdd8PvKyfPgG4e4bqlSRNw2DnOKpqc5IzgOuABcClVbU6yel9/0VJDgIm6U52P55kOd0VWEcBbwLuSLKq3+S5VXUN8EvAR5LsBnwHOG2oMUiSnixVTacd5qWJiYmanJyc6zIkaV5JcktVTYy3+85xSVITg0OS1MTgkCQ1MTgkSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDUxOCRJTQwOSVITg0OS1MTgkCQ1MTgkSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDUZNDiSLEtyV5K1Sc6Zov+IJDcleSTJ2SPtS5LcmGRNktVJzhpb7+39dlcn+dCQY5AkPdFuQ204yQLgQuAngXXAyiQrquofRxZ7ADgTOHls9c3AO6vq1iR7A7ckub6q/jHJK4CTgKOq6pEkBw41BknSkw25x3EcsLaq7qmqR4Er6F7wv6eqNlTVSuCxsfb1VXVrP70JWAMs7rvfCnywqh7Zso0BxyBJGjNkcCwG7huZX8f3X/ynLclS4Bjg5r7pucBPJLk5yd8mOXYr652WZDLJ5MaNG1vvVpK0FUMGR6Zoq6YNJHsBVwHLq+rhvnk3YD/geOBXgCuTPOm+quriqpqoqolFixa1VS5J2qohg2MdsGRk/hDg/umunGR3utC4vKquHtvu1dX5HPA4cMAM1CtJmoYhg2MlcHiSw5IsBE4BVkxnxX4P4hJgTVVdMNb9l8AJ/XLPBRYC35ipoiVJ2zbYVVVVtTnJGcB1wALg0qpaneT0vv+iJAcBk8A+wONJlgNHAkcBbwLuSLKq3+S5VXUNcClwaZIvAI8Cp1ZV0yEwSdKOy1PhNXdiYqImJyfnugxJmleS3FJVE+PtvnNcktTE4JAkNTE4JElNDA5JUhODQ5LUZNqX4ybZDzgc2HNLW1X93RBFSZJ2XdMKjiRvAc6ie/f3KrqP+7iJ/o14kqSnjukeqjoLOBb4clW9gu5DB/3kQEl6CppucHynqr4DkGSPqroTeN5wZUk/+L606lN86qrf5cH1/zTXpUhNpnuOY12Sfek+J+r6JA/S8IGFkp7on9fdzQcvfyvffvxRnvuFv+a8935qrkuSpm1awVFV/6GffF+SG4FnAtcOVpX0A+6xR7/NY/Vd9nzaQr756DfnuhypybQOVSX531umq+pvq2oF3YcNStoBBz37KE5/1Tn82JIf4+1v/O9zXY7UZLqHql4wOtN/n/iLZ74c6anj+GVv4fhlb5nrMqRm29zjSPLuJJuAo5I83N82ARuAT8xKhZKkXco2g6Oqfquq9gYuAN4G/G4/fwzw8VmoT5K0i5nu5bj70L3p75R+fhNw4SAVSZJ2adM9x3FcVb0oyW0AVfVg/3WwkqSnmOnucTzWnxAvgCSLgMcHq0qStMuabnD8Pt05jQOTfAD4e+A3B6tKkrTLmu4bAC9PcgvwSiDAyVW1ZtDKJEm7pGl/rHr/+VR3DliLJGke8IucJElNDA5JUpNBgyPJsiR3JVmb5Jwp+o9IclOSR5KcPdK+JMmNSdYkWZ3krCnWPTtJJTlgyDFIkp5o2uc4WvWX714I/CSwDliZZEVV/ePIYg8AZwInj62+GXhnVd2aZG/gliTXb1k3yZJ+u18Zqn5J0tSG3OM4DlhbVfdU1aPAFcBJowtU1YaqWgk8Nta+vqpu7ac3AWuAxSOLfBj4Vfr3lUiSZs+QwbEYuG9kfh1PfPGfliRL6T4b6+Z+/rXAV6vq9u2sd1qSySSTGzf6LbeSNFOGDI5M0da0h5BkL+AqYHlVPZzkGcB7gPO2t25VXVxVE1U1sWjRopa7lSRtw5DBsQ5YMjJ/CA1fN5tkd7rQuLyqru6bfwQ4DLg9yb39Nm9NctCMVCxJ2q7BTo4DK4HDkxwGfJXuk3VfP50VkwS4BFhTVRdsaa+qO4ADR5a7F5ioqm/MYN2SpG0YLDiqanOSM4DrgAXApVW1Osnpff9F/Z7CJN3Htj+eZDlwJHAU8CbgjiSr+k2eW1XXDFWvJGl6htzjoH+hv2as7aKR6a/RHW4a9/dMfY5kfPtLd7JESVIj3zkuSWpicEiSmhgckqQmBockqYnBIUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSJKaGBySpCYGhySpicEhSWpicEiSmhgckqQmBockqYnBIUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSJKaDBocSZYluSvJ2iTnTNF/RJKbkjyS5OyR9iVJbkyyJsnqJGeN9P1OkjuTfD7Jx5PsO+QYJElPNFhwJFkAXAicCBwJvC7JkWOLPQCcCZw/1r4ZeGdVPR84HnjbyLrXAy+sqqOALwLvHmgIkqQpDLnHcRywtqruqapHgSuAk0YXqKoNVbUSeGysfX1V3dpPbwLWAIv7+U9W1eZ+0c8Chww4BknSmCGDYzFw38j8ur6tSZKlwDHAzVN0/wJw7Y4UJ0naMUMGR6Zoq6YNJHsBVwHLq+rhsb730B3Sunwr656WZDLJ5MaNG1vuVpK0DUMGxzpgycj8IcD90105ye50oXF5VV091ncq8BrgDVU1ZRhV1cVVNVFVE4sWLWouXpI0tSGDYyVweJLDkiwETgFWTGfFJAEuAdZU1QVjfcuAdwGvrapvzXDNkqTt2G2oDVfV5iRnANcBC4BLq2p1ktP7/ouSHARMAvsAjydZTncF1lHAm4A7kqzqN3luVV0D/AGwB3B9ly98tqpOH2ockqQnGiw4APoX+mvG2i4amf4aU18V9fdMfY6EqnrOTNYoSWrjO8clSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDUxOCRJTQwOSVITg0OS1MTgkCQ1MTgkSU0MDklSE4NDktTE4JAkNTE4JElNDA5JUhODQ5LUxOCQJDUxOCRJTQwOSVITg0OS1GTQ4EiyLMldSdYmOWeK/iOS3JTkkSRnj7QvSXJjkjVJVic5a6Rv/yTXJ7m7/7nfkGOQJD3RYMGRZAFwIXAicCTwuiRHji32AHAmcP5Y+2bgnVX1fOB44G0j654D3FBVhwM39POSpFky5B7HccDaqrqnqh4FrgBOGl2gqjZU1UrgsbH29VV1az+9CVgDLO67TwIu66cvA04ebASSpCcZMjgWA/eNzK/j+y/+05ZkKXAMcHPf9KyqWg9dwAAHbmW905JMJpncuHFj691KkrZiyODIFG3VtIFkL+AqYHlVPdyyblVdXFUTVTWxaNGillUlSdswZHCsA5aMzB8C3D/dlZPsThcal1fV1SNdX09ycL/MwcCGGahVkjRNQwbHSuDwJIclWQicAqyYzopJAlwCrKmqC8a6VwCn9tOnAp+YoXolSdOw21AbrqrNSc4ArgMWAJdW1eokp/f9FyU5CJgE9gEeT7Kc7gqso4A3AXckWdVv8tyqugb4IHBlkl8EvgL83FBjkCQ9WaqaTjvMSxMTEzU5OTnXZUjSvJLklqqaGG/3neOSpCYGhySpicEhSWpicEiSmhgckqQmBockqYnBIUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSJKaGBySpCYGhySpicEhSWpicEiSmhgckqQmBockqYnBIUlqYnBIkpoYHJKkJgaHJKmJwSFJamJwSJKapKrmuobBJdkIfHmu69gBBwDfmOsidsJ8rx8cw65gvtcP83cMh1bVovHGp0RwzFdJJqtqYq7r2FHzvX5wDLuC+V4//GCMYZSHqiRJTQwOSVITg2PXdvFcF7CT5nv94Bh2BfO9fvjBGMP3eI5DktTEPQ5JUhODQ5LUxOCYJUmWJbkrydok50zRf0SSm5I8kuTskfYlSW5MsibJ6iRnjfTtn+T6JHf3P/ebh2P4nSR3Jvl8ko8n2Xc+1T+yzNlJKskBQ9U/5BiSvL3f7uokH5pvY0hydJLPJlmVZDLJcbtg/Xsm+VyS2/v63z/SN6vP5Z1WVd4GvgELgC8BzwYWArcDR44tcyBwLPAB4OyR9oOBF/XTewNf3LIu8CHgnH76HOC35+EYfgrYrZ/+7aHGMFT9fdsS4Dq6N5keMA8fg1cAfwPssWUb83AMnwRO7KdfDXx6F6w/wF799O7AzcDx/fysPZdn4uYex+w4DlhbVfdU1aPAFcBJowtU1YaqWgk8Nta+vqpu7ac3AWuAxX33ScBl/fRlwMmDjWCgMVTVJ6tqc7/oZ4FD5lP9vQ8DvwoMfaXJUGN4K/DBqnpkyzbm4RgK2KeffiZw/y5Yf1XVN/vZ3fvblr+Z2Xwu7zSDY3YsBu4bmV/HE194piXJUuAYuv9UAJ5VVeuhe1LR/aczlKHGMOoXgGt3pLhpGKT+JK8FvlpVt89Ajdsz1GPwXOAnktyc5G+THLuzhW7DUGNYDvxOkvuA84F371SVW7dT9SdZkGQVsAG4vqrm4rm80wyO2ZEp2pr+O02yF3AVsLyqHp6RqtoMOoYk7wE2A5fvcIXbufsp2naq/iTPAN4DnDcD9U2rhCnaZuIx2A3YDzge+BXgyiRT3ddMGGoMbwXeUVVLgHcAl+xUldu4+ynapl1/VX23qo6m27M+LskLZ6qw2WRwzI51dMfBtziEhl3pJLvTPVEur6qrR7q+nuTgfpmD6f6LGcpQYyDJqcBrgDdUf5B3AEPU/yPAYcDtSe7tt3lrkoNmpOInG+oxWAdc3R9K+RzwON2H8g1hqDGcCmyZ/wu6Q0pD2Kn6t6iqh4BPA8v6ptl8Lu80g2N2rAQOT3JYkoXAKcCK6azY/+d3CbCmqi4Y615B94Sh//mJGap3KoOMIcky4F3Aa6vqWzNc86gZr7+q7qiqA6tqaVUtpXtReVFVfW3myweG+zv6S+CEfrnn0p30HeqTXIcaw/3Ay/rpE4C7Z6jecTtT/6L0Vw0meTrwKuDOvns2n8s7b67Pzj9VbnRXenyR7oqM9/RtpwOn99MH0b3wPAw81E/vA7yUblf488Cq/vbqfp0fAm6ge5LcAOw/D8ewlu6Y8Zb2i+ZT/WPbv5cBr6oa8DFYCHwU+AJwK3DCPBzDS4Fb6K5yuhl48S5Y/1HAbX39XwDOG9nmrD6Xd/bmR45Ikpp4qEqS1MTgkCQ1MTgkSU0MDklSE4NDktTE4JDmWJLl/bvQpXnBy3GlOda/63yiqoZ60500o9zjkAaQ5PT+uyFWJfmn/nskfqr/noZbk/xFkr2SnAn8MHBjkhv7df+w/06JJ3xng7SrcI9DGlD/2UqfAi4GfonuOyP+Ncm76L7/4tfH9ziS7F9VDyRZQPcu4jOr6vNzNATpSXab6wKkH3AfoQuOB4Ejgc/0Hzy7ELhpK+v85ySn0T0/D+7XMzi0yzA4pIEkeTNwKHAG8DN037/wuu2scxhwNnBsVT2Y5E+APQcuVWriOQ5pAEleTBcAb6yqx+m+3fDHkzyn739G/0m0AJvovgoVug/D+1fgX5I8CzhxdiuXts89DmkYZwD70530BpgE3gz8eZI9+mV+je5TVi8Grk2yvqpekeQ2YDVwD/CZ2S5c2h5PjkuSmnioSpLUxOCQJDUxOCRJTQwOSVITg0OS1MTgkCQ1MTgkSU3+P9kjBnrcf2fTAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "zeta mu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAe+UlEQVR4nO3df7xVVZ3/8ddbrqB+1cEGLAISHNEZTMfwiHwfRRlpgWPBwx4lRmHWDOEM/Zi+NVFmNk1+p5yavvHQwS+OqDxU0Cl/3PmmQ9MPc8YR5SI3hJS8osUVkmsqURgO8vn+sdfJ7bnncs+93HV/2Pv5eOzHOWettddei/vjfffei3MUEZiZmeV00EAPwMzMXvkcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMXiEknSGpfaDHUSZpk6Qz9lP/OUn/3H8jsoHisLFBQdITkp6X9GtJT0m6VtLhAz2u/ZE0QVJIauqj/g6R9JykGXXqviHpW31xnN5I8/xN+vo8KekfJQ3rbr+IODEi7t5P/f+OiD/v08HaoOSwscHknRFxODAFOA34fE92VmHIfE/XhlRE/Ba4GZhf024YcD5wff+Nrq4/TV+ftwHvA/7iQDrrq5C2oWHI/GDa74+IeBK4C3i9pKMk/T9JHZKeTc/HVdtKulvSZZLuBXYDx0q6UNLDknZJ2iLpI6X2Z0hql/Q3knZI2i5pjqSzJf1U0jOSPldqf5CkxZIek/RLSbdIelWqvic9Ppf+4v+faZ8PpeM/K2m1pGNK/YWkv5L0KPBonelfD7xb0mGlsndQ/Kzetb+51UrHOq70+jpJXy69PkdSazqb+i9JJ3f9VXlJRDwC/AfF1+ePJP0g/ds8LelGSSNLx3hC0pnp+RclfUvSDZJ+BXwwld2Q6qtnihdI+nnq7+JSX4dKuj79uz6cvobtpfrPpLOuXZI2S3pbI/Ox/uGwsUFH0njgbGA9xffotcAxwOuA54Eranb5ALAAOAL4GbADOAc4ErgQ+IakKaX2rwEOAcYCXwCuBt4PnApMB74g6djU9mPAHOAtwGuBZ4ErU92b0+PIiDg8Iu6TNAf4HHAuMJril/LKmvHOAU4HJtfOPSL+C9ie9i/P76aI2NvA3BqS9lkOfAT4Q+D/As2SRjSw72SKf6f1gIC/p/i3+RNgPPDF/ew+G/gWMBK4sYs2bwJOoDiD+oKkP0nllwITgGOBsyi+ZtUxnQAsAk6LiCMoAvqJ7uZi/SgivHkb8I3iF8OvgecoAuOfgEPrtDsFeLb0+m7gS930fTvw8fT8DIrAGpZeHwEEcHqp/TpgTnr+MPC2Ut0Y4L+BJopffAE0lervAj5cen0QxRnXMel1ADO6Ge/nge+m50em/d/Q4NzaS3UBHFd6fR3w5fR8KfB3NX1tBt7SxXEC+BVF2D4GfBk4qE67OcD6mq/rmen5F4F7atp/EbghPa/+e44r1T8AzE3PtwDvKNX9eXW+wHEUQXwmcPBAfz9767z5mqkNJnMi4nvlgnQ56RvATOCoVHyEpGER8WJ6vbVmn1kUfwUfT/HL/jDgoVKTX5b2fT49PlWqfx6oLk44BrhN0r5S/YvAq7uYwzHANyV9vTwkirOon9Ubbx0rgEsljaX4C70tItY3OLdGHQNcIOmjpbLhFGcoXZkSEW3lAklHA0soznSOSGN6dj99dDd3gF+Unu/mpa/Fa2v2/93ziGiT9AmK8DpR0mrgkxGxrYHjWT/wZTQb7P4XxSWV0yPiSF66dKVSm9+9dXm6DPRt4GvAqyNiJHBnTfue2ArMioiRpe2QKO4r1XvL9K3AR2raHxrF5bFO460nIn5OcfltHsUltBW9nNtuijCqek3NOC+rGedhEVF7ya87f5/mc3L6+rx/P+OBbubeje3AuNLr8S/rOOKmiHgTRZAG8NUDOJb1MYeNDXZHUJxpPJduzF/aTfvhwAigA9ibzgTefgDHvwq4rHqTX9JoSbNTXQewj+IeQrn9ZyWdmNr/gaT39OK411Pcg3gjL93b6OncWoH3SRomaSbFfaeqq4GFkk5X4X9I+jNJR/RwnEeQLn+mM7FP93D/nriF4t/2qHSsRdUKSSdImpEC+bcU3zMvdtGPDQCHjQ12/wc4FHgaWAP82/4aR8Quipv6t1Bcznkf0HwAx/9m2v+7knalMZyejrUbuAy4N63omhYRt1H8Rb0qrbjaCMzqxXG/RXHZ8PsRsb2Xc/s48E6K+2DzKO7vkPpqoVi6fEXqqw34YC/G+bcUS9V3At8Bbu1FH436EtAOPA58j+LfaE+qGwF8heL75BfA0RQLNWyQUIQ/PM3Mhh5JF1EsHnhLt41twPnMxsyGBEljJL0x/d+nEyju59020OOyxng1mpkNFcMp/j/QRIpLg6solsjbEODLaGZmlp0vo5mZWXa+jNaFUaNGxYQJEwZ6GGZmQ8q6deuejojRteUOmy5MmDCBlpaWgR6GmdmQIuln9cp9Gc3MzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLLLGjaSZkraLKlN0uI69ZK0JNVvkDSlVLdc0g5JG2v2uVlSa9qekNSayueVylsl7ZN0Sqq7O42jWnd0znmbmdnLZftYaEnDgCuBs4B2YK2k5oj4SanZLGBS2k4HlqZHgOuAK4AV5X4j4rzSMb4O7EzlNwI3pvKTgDsiorW067yI8Oc8m5kNgJxnNlOBtojYEhEvAKuA2TVtZgMrorAGGClpDEBE3AM801XnkgS8F1hZp/r8LsrNzGwA5AybscDW0uv2VNbTNl2ZDjwVEY/WqTuPzmFzbbqEdkkKqk4kLZDUIqmlo6OjwWGYmVl3coZNvV/o0Ys2Xal79iLpdGB3RJTv9cyLiJMoAmo68IF6HUbEsoioRERl9OjRDQ7DzMy6kzNs2oHxpdfjgG29aNOJpCbgXODmOtVzqQmhiHgyPe4CbqK4xGdmZv0kZ9isBSZJmihpOEUINNe0aQbmp1Vp04CdEbG9gb7PBB6JiPZyoaSDgPdQ3B+qljVJGpWeHwycA7xshZuZmeWVbTVaROyVtAhYDQwDlkfEJkkLU/1VwJ3A2UAbsBu4sLq/pJXAGcAoSe3ApRFxTarudPaSvBloj4gtpbIRwOoUNMOA7wFX99lEzcysW4po9BbJ75dKpRItLV4pbWbWE5LWRUSlttzvIGBmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7LKGjaSZkjZLapO0uE69JC1J9RskTSnVLZe0Q9LGmn1ultSaticktabyCZKeL9VdVdrnVEkPpeMskaSM0zYzsxrZwkbSMOBKYBYwGThf0uSaZrOASWlbACwt1V0HzKztNyLOi4hTIuIU4NvAraXqx6p1EbGwVL409V89Vqd+zcwsn5xnNlOBtojYEhEvAKuA2TVtZgMrorAGGClpDEBE3AM801Xn6ezkvcDK/Q0i9XdkRNwXEQGsAOb0ck5mZtYLOcNmLLC19Lo9lfW0TVemA09FxKOlsomS1kv6kaTppWO0N3IMSQsktUhq6ejoaHAYZmbWnZxhU+++SPSiTVfO5+VnNduB10XEG4BPAjdJOrInx4iIZRFRiYjK6NGjGxyGmZl1pylj3+3A+NLrccC2XrTpRFITcC5warUsIvYAe9LzdZIeA45PxxjX02OYmVnfyXlmsxaYJGmipOHAXKC5pk0zMD+tSpsG7IyI7Q30fSbwSET87vKYpNFpUQKSjqVYCLAl9bdL0rR0n2c+cMcBz87MzBqW7cwmIvZKWgSsBoYByyNik6SFqf4q4E7gbKAN2A1cWN1f0krgDGCUpHbg0oi4JlXPpfPCgDcDX5K0F3gRWBgR1QUGF1GsbjsUuCttZmbWT1Qs0LJalUolWlpaBnoYZmZDiqR1EVGpLfc7CJiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsu6xhI2mmpM2S2iQtrlMvSUtS/QZJU0p1yyXtkLSxZp+bJbWm7QlJran8LEnrJD2UHmeU9rk7jaO639EZp21mZjWacnUsaRhwJXAW0A6sldQcET8pNZsFTErb6cDS9AhwHXAFsKLcb0ScVzrG14Gd6eXTwDsjYpuk1wOrgbGlXedFREvfzM7MzHoi55nNVKAtIrZExAvAKmB2TZvZwIoorAFGShoDEBH3AM901bkkAe8FVqb26yNiW6reBBwiaUSfzsjMzHolZ9iMBbaWXrfz8jONRtt0ZTrwVEQ8Wqfu3cD6iNhTKrs2XUK7JAVVJ5IWSGqR1NLR0dHgMMzMrDs5w6beL/ToRZuunE86q3lZh9KJwFeBj5SK50XESRQBNR34QL0OI2JZRFQiojJ69OgGh2FmZt3JGTbtwPjS63HAtl606URSE3AucHNN+TjgNmB+RDxWLY+IJ9PjLuAmikt8ZmbWT3KGzVpgkqSJkoYDc4HmmjbNwPy0Km0asDMitjfQ95nAIxHRXi2QNBL4DvDZiLi3VN4kaVR6fjBwDrARMzPrN9nCJiL2AosoVoU9DNwSEZskLZS0MDW7E9gCtAFXA39Z3V/SSuA+4ARJ7ZI+XOp+Lp0voS0CjgMuqVniPAJYLWkD0Ao8mY5lZmb9RBGN3iL5/VKpVKKlxSulzcx6QtK6iKjUlvsdBMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZdfUSCNJr6tXHhE/79vhmJnZK1FDYQN8BwhAwCHARGAzcGKmcZmZ2StIQ5fRIuKkiDg5PU4CpgL/2d1+kmZK2iypTdLiOvWStCTVb5A0pVS3XNIOSRtr9rlZUmvanpDUWqr7bOprs6R3lMpPlfRQqlsiSY3M28zM+kav7tlExIPAaftrI2kYcCUwC5gMnC9pck2zWcCktC0AlpbqrgNm1jn2eRFxSkScAnwbuDUdbzIwl+JsaybwT2kMpH4XlI7VqV+zwS727ePBH9zIfzRfwQvP/3qgh2PWI43es/lk6eVBwKlARze7TQXaImJL6mMVMBv4SanNbGBFRASwRtJISWMiYntE3CNpwn7GJOC9wIxSX6siYg/wuKQ2YKqkJ4AjI+K+tN8KYA5wV/czNxs8Wu+5ma9/52Iigo5f/pxzL7x8oIdk1rBGz2yOAA5P23DgX4F3dbPPWGBr6XV7Kutpm65MB56KiEe76Wtset7tMSQtkNQiqaWjo7ssNetfe377G4LgIB3Eb57/1UAPx6xHGl0gcCfwOWBCaZ/FwMn72afefZHoRZuunA+sbKCvho8REcuAZQCVSqXRcZj1i1PPeB9zdzzOr3c/xzvfc/FAD8esRxoNmxuATwEbgX0N7tMOjC+9Hgds60WbTiQ1AedSXM7rrq/29LxHxzAbbA4+5DDeNf+ygR6GWa80ehmtIyL+NSIej4ifVbdu9lkLTJI0UdJwipv3zTVtmoH5aVXaNGBnRGxvYDxnAo9ERPnyWDMwV9IISRMpFgI8kPrbJWlaus8zH7ijgWOYmVkfafTM5lJJ/wx8H9hTLYyIW7vaISL2SloErAaGAcsjYpOkhan+KorLc2cDbcBu4MLq/pJWAmcAoyS1A5dGxDWpei4vv4RG6vsWigUIe4G/iogXU/VFFKvbDqVYGODFAWZm/UjFQrBuGkk3AH8MbOKly2gRER/KOLYBValUoqWlZaCHYWY2pEhaFxGV2vJGz2z+NCJO6uMxmZnZ74lG79msqfMfMs3MzBrS6JnNm4ALJD1Occ9GFJfR9rf02czMDGg8bPz2LmZm1msNhU0Dy5zNzMy65A9PMzOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLLusYSNppqTNktokLa5TL0lLUv0GSVNKdcsl7ZC0sc5+H039bpJ0eSqbJ6m1tO2TdEqquzu1r9YdnXHaZmZWo9FP6uwxScOAK4GzgHZgraTmiPhJqdksYFLaTgeWpkeA64ArgBU1/b4VmA2cHBF7qsERETcCN6Y2JwF3RERradd5EdHSl3M0M7PG5DyzmQq0RcSWiHgBWEUREmWzgRVRWAOMlDQGICLuAZ6p0+9FwFciYk9qt6NOm/OBlX00DzMzO0A5w2YssLX0uj2V9bRNreOB6ZLul/QjSafVaXMencPm2nQJ7RJJqtexpAWSWiS1dHR0dDMMMzNrVM6wqfcLPXrRplYTcBQwDfg0cEs5PCSdDuyOiPK9nnkRcRIwPW0fqNdxRCyLiEpEVEaPHt3NMMzMrFE5w6YdGF96PQ7Y1os29fq9NV16ewDYB4wq1c+l5qwmIp5Mj7uAmygu8ZmZWT/JGTZrgUmSJkoaThECzTVtmoH5aVXaNGBnRGzvpt/bgRkAko4HhgNPp9cHAe+huD9EKmuSNCo9Pxg4B+i0ws3MzPLJthotIvZKWgSsBoYByyNik6SFqf4q4E7gbKAN2A1cWN1f0krgDGCUpHbg0oi4BlgOLE9Lol8ALoiI6qW3NwPtEbGlNJQRwOoUNMOA7wFXZ5q2mZnVoZd+T1tZpVKJlhavlDYz6wlJ6yKiUlvudxAwM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXZZw0bSTEmbJbVJWlynXpKWpPoNkqaU6pZL2iFpY539Ppr63STp8lQ2QdLzklrTdlWp/amSHkrHWSJJueZsZmadZQsbScOAK4FZwGTgfEmTa5rNAialbQGwtFR3HTCzTr9vBWYDJ0fEicDXStWPRcQpaVtYKl+a+q8eq1O/ZmaWT84zm6lAW0RsiYgXgFUUIVE2G1gRhTXASEljACLiHuCZOv1eBHwlIvakdjv2N4jU35ERcV9EBLACmHMA8zIzsx7KGTZjga2l1+2prKdtah0PTJd0v6QfSTqtVDdR0vpUPr10jPZGjiFpgaQWSS0dHR3dDMPMzBrVlLHvevdFohdtajUBRwHTgNOAWyQdC2wHXhcRv5R0KnC7pBN7coyIWAYsA6hUKt2Nw8zMGpTzzKYdGF96PQ7Y1os29fq9NV16ewDYB4yKiD0R8UuAiFgHPEZxFtSe+u3JMczMrA/lDJu1wCRJEyUNB+YCzTVtmoH5aVXaNGBnRGzvpt/bgRkAko4HhgNPSxqdFiWQznQmAVtSf7skTUur0OYDd/TNFM3MrBHZLqNFxF5Ji4DVwDBgeURskrQw1V8F3AmcDbQBu4ELq/tLWgmcAYyS1A5cGhHXAMuB5WlJ9AvABRERkt4MfEnSXuBFYGFEVBcYXESxuu1Q4K60mZlZP1GxQMtqVSqVaGlpGehhmJkNKZLWRUSlttzvIGBmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7LKGjaSZkjZLapO0uE69JC1J9RskTSnVLZe0Q9LGOvt9NPW7SdLlqewsSeskPZQeZ5Ta353at6bt6FxzNjOzzppydSxpGHAlcBbQDqyV1BwRPyk1mwVMStvpwNL0CHAdcAWwoqbftwKzgZMjYk8pOJ4G3hkR2yS9HlgNjC3tOi8iWvpwimZm1qCcZzZTgbaI2BIRLwCrKEKibDawIgprgJGSxgBExD3AM3X6vQj4SkTsSe12pMf1EbEttdkEHCJpRJ/PyszMeixn2IwFtpZet/PyM41G29Q6Hpgu6X5JP5J0Wp027wbWVwMpuTZdQrtEkup1LGmBpBZJLR0dHd0Mw8zMGpUzbOr9Qo9etKnVBBwFTAM+DdxSDg9JJwJfBT5S2mdeRJwETE/bB+p1HBHLIqISEZXRo0d3MwwzM2tUzrBpB8aXXo8DtvWiTb1+b02X3h4A9gGjACSNA24D5kfEY9UdIuLJ9LgLuIniEp+ZmfWTnGGzFpgkaaKk4cBcoLmmTTMwP61KmwbsjIjt3fR7OzADQNLxwHDgaUkjge8An42Ie6uNJTVJqobRwcA5QKcVbmZmlk+2sImIvcAiilVhDwO3RMQmSQslLUzN7gS2AG3A1cBfVveXtBK4DzhBUrukD6eq5cCxaUn0KuCCiIh0rOOAS2qWOI8AVkvaALQCT6ZjmZlZP1Hxe9pqVSqVaGnxSmkzs56QtC4iKrXlfgcBMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdv7wtC5I6gB+NtDj6KFRwNMDPYgD5DkMvKE+fvAcBtIxETG6ttBh8woiqaXeJ+QNJZ7DwBvq4wfPYTDyZTQzM8vOYWNmZtk5bF5Zlg30APqA5zDwhvr4wXMYdHzPxszMsvOZjZmZZeewMTOz7Bw2g5ikmZI2S2qTtLhO/R9Luk/SHkmfKpWPl/RDSQ9L2iTp46W6V0n6d0mPpsejhtj4/0HSI5I2SLpN0shc4881h1KbT0kKSaOG4hwkfTT1u0nS5UNp/JJOkbRGUqukFklTc43/AOdwiKQHJP04zeFvS3X99rPcJyLC2yDcgGHAY8CxwHDgx8DkmjZHA6cBlwGfKpWPAaak50cAP63uC1wOLE7PFwNfHWLjfzvQlJ5/Ndf4c84hlY0HVlP8x+FRQ20OwFuB7wEjqn0MsfF/F5iVnp8N3D1IvwYCDk/PDwbuB6al1/3ys9xXm89sBq+pQFtEbImIF4BVwOxyg4jYERFrgf+uKd8eEQ+m57uAh4GxqXo2cH16fj0wZyiNPyK+GxF7U9M1wLhM4882h+QbwN8AuVfo5JrDRcBXImJPtY8hNv4AjkzP/wDYlmn8cGBziIj4dXp5cNqq3zP99bPcJxw2g9dYYGvpdTsv/2XVEEkTgDdQ/EUE8OqI2A7FDyPFX1Q55Bp/2YeAu3ozuAZlmYOkdwFPRsSP+2CM3cn1dTgemC7pfkk/knTagQ60C7nG/wngHyRtBb4GfPaARrl/BzQHScMktQI7gH+PiP7+We4TDpvBS3XKevRXsKTDgW8Dn4iIX/XJqHpw+DplfTZ+SRcDe4Ebez3CBoZQp+yA5iDpMOBi4At9ML6GhlCnrC++Dk3AUcA04NPALZLqHetA5Rr/RcBfR8R44K+Baw5olN0MoU5Zw3OIiBcj4hSKs/ipkl7fVwPrTw6bwaud4rp+1Th6cKov6WCKH7AbI+LWUtVTksakNmMo/lrKIdf4kXQBcA4wL9IF60xyzOGPgInAjyU9kfp8UNJr+mTEneX6OrQDt6bLPA8A+yjeOLKv5Rr/BUD19b9QXOrK5YDmUBURzwF3AzNTUX/9LPcJh83gtRaYJGmipOHAXKC5kR3TX5jXAA9HxD/WVDdT/KCRHu/oo/HWyjJ+STOBzwDviojdfTzmWn0+h4h4KCKOjogJETGB4hfRlIj4Rd8PH8j3fXQ7MCO1O57ixneOdyjONf5twFvS8xnAo3003noOZA6jlVZcSjoUOBN4JFX3189y3xjoFQreut4oVsn8lGIly8WpbCGwMD1/DcUvq18Bz6XnRwJvojhN3wC0pu3stM8fAt+n+OH6PvCqITb+Norr39Xyq4ba16Cm/yfIuBot49dhOHADsBF4EJgxxMb/JmAdxcqw+4FTB+nX4GRgfZrDRuALpT777We5Lza/XY2ZmWXny2hmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszIYgSZ9I70ZgNiR46bPZEJTefaASETn+I6VZn/OZjdkgIWlh+nyVVkmPp89ieXv6nJMHJf2LpMMlfQx4LfBDST9M+y5Nn8vyss88MRssfGZjNsik9/P6AbAM+AuKz135jaTPUHx+zJdqz2wkvSoinpE0jOJ/k38sIjYM0BTMOmka6AGYWSffpAibZ4HJwL3pDZWHA/d1sc97JS2g+Jkek/Zz2Nig4bAxG0QkfRA4BlgE/BnF55ec380+E4FPAadFxLOSrgMOyTxUsx7xPRuzQULSqRSh8f6I2EfxSaRvlHRcqj8svcMywC6KjzqG4g0bfwPslPRqYFb/jtysez6zMRs8FgGvorjxD9ACfBBYKWlEavN5incPXgbcJWl7RLxV0npgE7AFuLe/B27WHS8QMDOz7HwZzczMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+z+P8+fMGVu8998AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "zeta nu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAa5ElEQVR4nO3de5SddX3v8ffHhKAegkAJikkgoYIWWw7gcDkH8UK9ANWGZVfb2Mqtp6WwxIJFK6KLWquttYrVUwsHCxWWKKKgJ+sUi9qiPcfKZQIRDJESLpaUqFERUDA08D1/PE/KZjIkM+S3ZzLyfq211zzP87s8v9/s2fOZ57L3pKqQJKmFp033ACRJPzsMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEgzTJKXJVkz3eMYlGRlkpdtpvysJH87dSPSdDFUNKWS3JXkoSQ/TvLdJH+XZIfpHtfmJFmUpJLMbtTf05P8KMkR45R9KMlnW+znyejn+ZP++fn3JOckmbWldlX1wqr6ymbK/6yqfrfpYLVNMlQ0HV5bVTsABwIHAe+cTON0ZszP7tgwqqqfAp8GjhtTbxbweuCiqRvduP5r//z8MvBbwO9tTWetwlgzw4x5YepnT1X9O/AF4BeT7Jzk/yRZl+TefnnBxrpJvpLkvUm+BjwI7JXkxCSrkjyQ5I4kvz9Q/2VJ1iT5oyTfS7I2yTFJjk7yr0l+mOSsgfpPS3JmktuT/CDJZUl26Yv/uf/6o/4v+P/Wt/mdfv/3JrkqyZ4D/VWSNya5DbhtnOlfBPxakmcObHs13WvyC5ub21j9vp43sP7xJO8ZWH9NkhX90dG/JNnviZ+Vx1TVt4D/S/f8/HySf+q/N99PckmSnQb2cVeSV/TL70ry2SSfSHI/cEK/7RN9+cYjv+OT/Fvf3zsG+npGkov67+uq/jlcM1D+tv4o6oEktyb55YnMR1PDUNG0SbIQOBq4ke5n8e+APYE9gIeAvx7T5FjgJGAu8G3ge8BrgB2BE4EPJTlwoP5zgKcD84GzgY8BbwBeBBwOnJ1kr77uHwDHAC8FngvcC3y0L3tJ/3Wnqtqhqr6e5BjgLOB1wDy6X76fGjPeY4BDgH3Hzr2q/gVY27cfnN8nq2rDBOY2IX2bC4HfB34O+F/AsiTbT6DtvnTfpxuBAH9O9735BWAh8K7NNF8CfBbYCbjkCeq8GHg+3RHR2Ul+od/+x8AiYC/glXTP2cYxPR84FTioqubSBfFdW5qLplBV+fAxZQ+6XwA/Bn5EFwx/AzxjnHr7A/cOrH8FePcW+v48cFq//DK6YJrVr88FCjhkoP5y4Jh+eRXwywNluwP/Acym+wVXwOyB8i8A/2Ng/Wl0R1B79usFHLGF8b4T+GK/vGPf/oAJzm3NQFkBzxtY/zjwnn75XOBPx/R1K/DSJ9hPAffThertwHuAp41T7xjgxjHP6yv65XcB/zym/ruAT/TLG7+fCwbKrwOW9st3AK8eKPvdjfMFnkcXuK8Atpvun2cfmz4816npcExVfXlwQ38a6EPAkcDO/ea5SWZV1SP9+t1j2hxF91ftPnS/1J8J3DxQ5QcDbR/qv353oPwhYONNAnsCn0vy6ED5I8Czn2AOewIfTvLBwSHRHRV9e7zxjuNi4I+TzKf7i3t1Vd04wblN1J7A8UneNLBtDt0RxxM5sKpWD25IshvwEbojl7n9mO7dTB9bmjvAdwaWH+Sx5+K5Y9r/53JVrU5yOl1IvTDJVcAfVtU9E9ifpoCnv7StOIPuVMghVbUjj51yykCd//xI7f70zeXAB4BnV9VOwJVj6k/G3cBRVbXTwOPp1V33Ge+jvO8Gfn9M/WdUd1prk/GOp6r+je602W/Tnfq6+EnO7UG60NnoOWPG+d4x43xmVY09Vbclf97PZ7/++XnDZsYDW5j7FqwFFgysL3xcx1WfrKoX0wVmAX+xFftSY4aKthVz6Y4cftRfIP/jLdSfA2wPrAM29H/Zv2or9n8e8N6NF9uTzEuypC9bBzxKd45/sP7bk7ywr/+sJL/+JPZ7Ed01gsN47NrDZOe2AvitJLOSHEl3XWijjwEnJzkknf+S5FeSzJ3kOOfSn7bsj6zeOsn2k3EZ3fd2535fp24sSPL8JEf0wftTup+ZR56gH00DQ0Xbir8CngF8H7gG+IfNVa6qB+gurl9Gdxrmt4BlW7H/D/ftv5jkgX4Mh/T7ehB4L/C1/g6qQ6vqc3R/IV/a3+H0TeCoJ7Hfz9Kd7vvHqlr7JOd2GvBauutUv013/YW+r1G6W4L/uu9rNXDCkxjnn9DdAn4f8PfAFU+ij4l6N7AGuBP4Mt33aH1ftj3wPrqfk+8Au9HdMKFtRKr8J12Stl1JTqG7iP/SLVbWtPNIRdI2JcnuSQ7r3zv0fLrrbZ+b7nFpYrz7S9K2Zg7d+2kW053Su5Tu1nPNAJ7+kiQ14+kvSVIzT+nTX7vuumstWrRouochSTPK8uXLv19V88Yre0qHyqJFixgdHZ3uYUjSjJLk209U5ukvSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0MNVSSHJnk1iSrk5w5TnmSfKQvvynJgf32hUmuTrIqycokpw202T/JNUlWJBlNcvBA2dv7vm5N8uphzk2StKmhhUqSWcBHgaOAfYHXJ9l3TLWjgL37x0nAuf32DcAZVfULwKHAGwfavh/4k6raHzi7X6cvXwq8EDgS+Jt+DJKkKTLMI5WDgdVVdUdVPQxcCiwZU2cJcHF1rgF2SrJ7Va2tqhsAquoBYBUwv29TwI798rOAewb6urSq1lfVncDqfgySpCkye4h9zwfuHlhfAxwygTrzgbUbNyRZBBwAXNtvOh24KskH6ELxvw/0dc04fT1OkpPojorYY489JjEdSdKWDPNIJeNsq8nUSbIDcDlwelXd328+BXhzVS0E3gxcMIn9UVXnV9VIVY3MmzdvC1OQJE3GMENlDbBwYH0Bj52q2mKdJNvRBcolVXXFQJ3jgY3rn+GxU1wT2Z8kaYiGGSrXA3snWZxkDt1F9GVj6iwDjuvvAjsUuK+q1iYJ3RHIqqo6Z0ybe4CX9stHALcN9LU0yfZJFtNd/L+u/bQkSU9kaNdUqmpDklOBq4BZwIVVtTLJyX35ecCVwNF0F9UfBE7smx8GHAvcnGRFv+2sqroS+D3gw0lmAz+lvz7S930ZcAvd3WNvrKpHhjU/SdKmUrXJZYenjJGRkRodHZ3uYUjSjJJkeVWNjFfmO+olSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzQw2VJEcmuTXJ6iRnjlOeJB/py29KcmC/fWGSq5OsSrIyyWkDbT6dZEX/uCvJin77oiQPDZSdN8y5SZI2NXtYHSeZBXwUeCWwBrg+ybKqumWg2lHA3v3jEODc/usG4IyquiHJXGB5ki9V1S1V9ZsD+/ggcN9Af7dX1f7DmpMkafOGeaRyMLC6qu6oqoeBS4ElY+osAS6uzjXATkl2r6q1VXUDQFU9AKwC5g82TBLgN4BPDXEOkqRJGGaozAfuHlhfw5hgmEidJIuAA4Brx7Q9HPhuVd02sG1xkhuTfDXJ4eMNKslJSUaTjK5bt27Ck5EkbdkwQyXjbKvJ1EmyA3A5cHpV3T+m3ut5/FHKWmCPqjoA+EPgk0l23KTzqvOraqSqRubNmzeBaUiSJmqYobIGWDiwvgC4Z6J1kmxHFyiXVNUVg42SzAZeB3x647aqWl9VP+iXlwO3A/s0mYkkaUKGGSrXA3snWZxkDrAUWDamzjLguP4usEOB+6pqbX+95AJgVVWdM07frwC+VVVrNm5IMq+/OYAke9Fd/L+j/bQkSU9kaHd/VdWGJKcCVwGzgAuramWSk/vy84ArgaOB1cCDwIl988OAY4GbN94yDJxVVVf2y0vZ9AL9S4B3J9kAPAKcXFU/HMrkJEnjStXYyxxPHSMjIzU6Ojrdw5CkGSXJ8qoaGa/Md9RLkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjMTCpUkdya5Y+xjAu2OTHJrktVJzhynPEk+0pfflOTAfvvCJFcnWZVkZZLTBtp8OsmK/nFXkhUDZW/v+7o1yasn9B2QJDUze4L1RgaWnw78OrDL5hokmQV8FHglsAa4PsmyqrploNpRwN794xDg3P7rBuCMqrohyVxgeZIvVdUtVfWbA/v4IHBfv7wvsBR4IfBc4MtJ9qmqRyY4R2mb8MAP7mH0q5ey+4IX8IKDj57u4UiTMqFQqaofjNn0V0n+H3D2ZpodDKyuqjsAklwKLAEGQ2UJcHFVFXBNkp2S7F5Va4G1/b4fSLIKmD/YNkmA3wCOGOjr0qpaD9yZZHU/hq9PZI7StuJvP3YKo+u+wfbZjj/daTfm7zOy5UbSNmJCobLxtFTvaXRHLnO30Gw+cPfA+hq6o5At1ZlPHyj9vhcBBwDXjml7OPDdqrptoK9rxunrcZKcBJwEsMcee2xhCtLU+8nDP2ZOtuMRHmX9Qz+e7uFIkzLR018fBKpf3gDcRXcKbHMyzraaTJ0kOwCXA6dX1f1j6r0e+NQk90dVnQ+cDzAyMrJJuTTdfvcNH+If/v7DLFrwSyz+pZdM93CkSZloqBwF/BqwaKDNUuDdm2mzBlg4sL4AuGeidZJsRxcol1TVFYONkswGXge8aJL7k7Z5z9lrP0540wXTPQzpSZnoLcWfB14L/Afw4/7xky20uR7YO8niJHPoQmjZmDrLgOP6u8AOBe6rqrX99ZILgFVVdc44fb8C+FZVrRnT19Ik2ydZTHfx/7oJzk+S1MBEj1QWVNWRk+m4qjYkORW4CpgFXFhVK5Oc3JefB1wJHA2sBh4ETuybHwYcC9w8cMvwWVV1Zb+8lMef+qLv+zK6i/kbgDd655ckTa10N15toVJyPvA/q+rm4Q9p6oyMjNTo6Oh0D0OSZpQky6tq3NsSJ3qk8mLghCR3AuvpLopXVe3XaIySpJ8Bk7lQL0nSZk30zY/fHvZAJEkznx8oKUlqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqZqihkuTIJLcmWZ3kzHHKk+QjfflNSQ7sty9McnWSVUlWJjltTLs39f2uTPL+ftuiJA8lWdE/zhvm3CRJm5o9rI6TzAI+CrwSWANcn2RZVd0yUO0oYO/+cQhwbv91A3BGVd2QZC6wPMmXquqWJC8HlgD7VdX6JLsN9Hd7Ve0/rDlJkjZvmEcqBwOrq+qOqnoYuJQuDAYtAS6uzjXATkl2r6q1VXUDQFU9AKwC5vdtTgHeV1Xr+/LvDXEOkqRJGGaozAfuHlhfw2PBMOE6SRYBBwDX9pv2AQ5Pcm2SryY5aKD64iQ39tsPH29QSU5KMppkdN26dZOelCTpiQ0zVDLOtppMnSQ7AJcDp1fV/f3m2cDOwKHAW4HLkgRYC+xRVQcAfwh8MsmOm3RedX5VjVTVyLx58yY7J0nSZgwzVNYACwfWFwD3TLROku3oAuWSqrpiTJsr+lNm1wGPArtW1fqq+gFAVS0Hbqc7qpEkTZFhhsr1wN5JFieZAywFlo2psww4rr8L7FDgvqpa2x95XACsqqpzxrT5PHAEQJJ9gDnA95PM628OIMledBf/7xjS3CRJ4xja3V9VtSHJqcBVwCzgwqpameTkvvw84ErgaGA18CBwYt/8MOBY4OYkK/ptZ1XVlcCFwIVJvgk8DBxfVZXkJcC7k2wAHgFOrqofDmt+kqRNpWrsZY6njpGRkRodHZ3uYUjSjJJkeVWNjFfmO+olSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzQw2VJEcmuTXJ6iRnjlOeJB/py29KcmC/fWGSq5OsSrIyyWlj2r2p73dlkvcPbH9739etSV49zLlJkjY1e1gdJ5kFfBR4JbAGuD7Jsqq6ZaDaUcDe/eMQ4Nz+6wbgjKq6IclcYHmSL1XVLUleDiwB9quq9Ul26/e3L7AUeCHwXODLSfapqkeGNUdJ0uMN80jlYGB1Vd1RVQ8Dl9KFwaAlwMXVuQbYKcnuVbW2qm4AqKoHgFXA/L7NKcD7qmp9X/69gb4urar1VXUnsLofgyRpigwzVOYDdw+sr+GxYJhwnSSLgAOAa/tN+wCHJ7k2yVeTHDSJ/ZHkpCSjSUbXrVs3uRlJkjZrmKGScbbVZOok2QG4HDi9qu7vN88GdgYOBd4KXJYkE9wfVXV+VY1U1ci8efO2PAtJ0oQNM1TWAAsH1hcA90y0TpLt6ALlkqq6YkybK/pTZtcBjwK7TnB/kqQhGmaoXA/snWRxkjl0F9GXjamzDDiuvwvsUOC+qlrbH3lcAKyqqnPGtPk8cARAkn2AOcD3+76WJtk+yWK6i//XDWlukqRxDO3ur6rakORU4CpgFnBhVa1McnJffh5wJXA03UX1B4ET++aHAccCNydZ0W87q6quBC4ELkzyTeBh4PiqKmBlksuAW+juHnujd35J0tRK9/v4qWlkZKRGR0enexiSNKMkWV5VI+OV+Y56SVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaSVVN9ximTZJ1wLenexxPwq7A96d7EFtpps9hpo8fnMO2YKaOf8+qmjdewVM6VGaqJKNVNTLd49gaM30OM3384By2BTN9/OPx9JckqRlDRZLUjKEyM50/3QNoYKbPYaaPH5zDtmCmj38TXlORJDXjkYokqRlDRZLUjKEyzZIcmeTWJKuTnDlO+QuSfD3J+iRvGdi+MMnVSVYlWZnktIGyXZJ8Kclt/dedZ+Ac/jLJt5LclORzSXaaaXMYqPOWJJVk15k2/iRv6vtdmeT9wxr/sOaQZP8k1yRZkWQ0ycHb6ByenuS6JN/o5/AnA2VT+nrealXlY5oewCzgdmAvYA7wDWDfMXV2Aw4C3gu8ZWD77sCB/fJc4F83tgXeD5zZL58J/MUMnMOrgNn98l/MxDn02xYCV9G9yXbXmTR+4OXAl4HtN/Yx054D4IvAUf3y0cBXttE5BNihX94OuBY4tF+fstdzi4dHKtPrYGB1Vd1RVQ8DlwJLBitU1feq6nrgP8ZsX1tVN/TLDwCrgPl98RLgon75IuCYoc1gSHOoqi9W1Ya+6jXAgpk2h96HgD8ChnlHzLDGfwrwvqpav7GPGTiHAnbsl58F3DO8KWzVHKqqftyvbtc/Nv7MTOXreasZKtNrPnD3wPoaHv8LaUKSLAIOoPvrBuDZVbUWuhcc3V9HwzKsOQz6HeALT2ZwEzSUOST5VeDfq+obDca4OcN6DvYBDk9ybZKvJjloawe6GcOaw+nAXya5G/gA8PatGuXmbdUcksxKsgL4HvClqpqO1/NWM1SmV8bZNqm/aJPsAFwOnF5V9zcZ1eQMdQ5J3gFsAC550iOcwBDG2bZVc0jyTOAdwNkNxrfF3Y+zrcVzMBvYGTgUeCtwWZLx9tXCsOZwCvDmqloIvBm4YKtGuYUhjLNtwnOoqkeqan+6o/KDk/xiq4FNJUNleq2hO+e+0QImcXieZDu6F9ElVXXFQNF3k+ze19md7i+fYRnWHEhyPPAa4LerP6E8JMOYw88Di4FvJLmr7/OGJM9pMuLHG9ZzsAa4oj81cx3wKN0HIA7DsOZwPLBx/TN0p6iGZavmsFFV/Qj4CnBkv2kqX89bzVCZXtcDeydZnGQOsBRYNpGG/V+MFwCrquqcMcXL6F5M9F//d6Pxjmcoc0hyJPA24Fer6sHGYx6r+Ryq6uaq2q2qFlXVIrpfOAdW1XfaD39oP0efB47o6+1Dd/F5WJ+oO6w53AO8tF8+Arit0XjHszVzmJf+DsckzwBeAXyrL57K1/PWm+47BZ7qD7o7Uv6V7q6Rd/TbTgZO7pefQ/cL6X7gR/3yjsCL6Q6tbwJW9I+j+zY/B/wj3QvoH4FdZuAcVtOdn964/byZNocx/d/FkO7+GuJzMAf4BPBN4AbgiJn2HPRly+nuxLoWeNE2Oof9gBv7OXwTOHugzyl9PW/tw49pkSQ14+kvSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSNuoJKf378yXZgxvKZa2Uf078UeqalhvOJSa80hFmkJJTu7/t8eKJHf2/wfkVf3/2LghyWeS7JDkD4DnAlcnubpve27/P0Ee9/82pG2JRyrSNOg/q+qfgPOB36P7nx8/SfI2uv9f8u6xRypJdqmqHyaZRffO6j+oqpumaQrSuGZP9wCkp6gP04XKvcC+wNf6DwCeA3z9Cdr8RpKT6F63u/ftDBVtUwwVaYolOQHYEzgV+BW6/53x+i20WQy8BTioqu5N8nHg6UMeqjRpXlORplCSF9GFwxuq6lG6/2p5WJLn9eXP7D8RGOABun+PC92HDv4EuC/Js4Gjpnbk0sR4pCJNrVOBXeguwAOMAicAn0qyfV/nnXSfdHs+8IUka6vq5UluBFYCdwBfm+qBSxPhhXpJUjOe/pIkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUzP8HDrtfschXEj0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "zeta lamb\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfOElEQVR4nO3dfZRdVZ3m8e+TIiFBoINSSJEEEjRgB8QQryGzFLQjaiWthG5nZkVxQBw7xmV8Y1BBeiGgdPvajCxpMqi0YQmdSdvS1qKJgLbB8SUkFUjQANFKAFMQpQQCxNDBhN/8cXbB4eam6layT1WuPJ+1zqp79ss5e9etW0+dl1tXEYGZmVkOo0Z6AGZm9qfDoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFrMVIepOk3pEeR5mk9ZLeNED9pyV9Y/hGZCPFoWLDStIDkp6WtE3S7yT9k6SDR3pcA5E0WVJIOiDT9sZK2ippdoO6KyR9J8d+9kaa5x/S8/OQpH+Q1DZYv4g4ISJWDFD/dxHx/qyDtf2SQ8VGwjsi4mBgBvA64G+H0lmFlvnZrQ+jiPhP4P8CZ9e1awPeBSwZvtE19Jr0/LwZeDfwN/uysVxhbK2hZV6Y9qcnIh4ClgMnSjpM0k2S+iQ9nh5P7G8raYWkyyX9FNgOHCvpXEn3SnpK0iZJHyi1f5OkXkmflPSIpC2SzpQ0V9KvJD0m6dOl9qMkXSBpo6RHJS2T9NJU/eP0dWv6C/6/pD7vS/t/XNItko4pbS8kfUjSr4FfN5j+EuCdkg4qlb2N4jW5fKC51Uv7emVp/VuSPldaf7ukteno6GeSTtrzs/K8iLgP+H8Uz88rJP1H+t78XtL1ksaX9vGApNPT40skfUfStyU9Cbw3lX071fcf+Z0j6TdpexeVtjVO0pL0fb03PYe9pfpPpaOopyRtkPTmZuZjw8OhYiNG0iRgLnAXxc/iPwHHAEcDTwNfq+vyP4AFwCHAg8AjwNuBQ4FzgSskzSi1PxIYC0wALga+DrwHeC1wKnCxpGNT248AZwJvBI4CHgeuSnWnpa/jI+LgiPi5pDOBTwN/DbRT/PL957rxngmcAkyrn3tE/AzYkvqX53dDROxsYm5NSX2uBT4AvAz4P0CXpAOb6DuN4vt0FyDg7ym+N38OTAIuGaD7POA7wHjg+j20eQNwPMUR0cWS/jyVfwaYDBwLvIXiOesf0/HAIuB1EXEIRRA/MNhcbBhFhBcvw7ZQ/ALYBmylCIZ/BMY1aDcdeLy0vgK4bJBt/xvw0fT4TRTB1JbWDwECOKXUfg1wZnp8L/DmUl0H8EfgAIpfcAEcUKpfDvzP0vooiiOoY9J6ALMHGe/fAremx4em/ic3ObfeUl0Aryytfwv4XHp8NfDZum1tAN64h/0E8CRFqG4EPgeMatDuTOCuuuf19PT4EuDHde0vAb6dHvd/PyeW6lcB89PjTcDbSnXv758v8EqKwD0dGD3SP89edl98rtNGwpkR8YNyQToNdAXQCRyWig+R1BYRu9L65ro+cyj+qj2O4pf6QcAvSk0eLfV9On39Xan+aaD/JoFjgBslPVuq3wW8fA9zOAb4qqSvlIdEcVT0YKPxNnAd8BlJEyj+4u6JiLuanFuzjgHOkfThUtkYiiOOPZkRET3lAklHAFdSHLkcksb0+ADbGGzuAL8tPd7O88/FUXX9n3scET2SPkYRUidIugU4LyIebmJ/Ngx8+sv2F/+L4lTIKRFxKM+fclKpzXP/UjudvvlX4MvAyyNiPHBzXfuh2AzMiYjxpWVsFNd9Gv0r783AB+raj4vitNZu420kIn5DcdrsLIpTX9ft5dy2U4ROvyPrxnl53TgPioj6U3WD+fs0n5PS8/OeAcYDg8x9EFuAiaX1SS/YcMQNEfEGisAM4Av7sC/LzKFi+4tDKI4ctqYL5J8ZpP0Y4ECgD9iZ/rJ/6z7sfzFwef/Fdkntkualuj7gWYpz/OX2F0o6IbX/M0n/bS/2u4TiGsHref7aw1DnthZ4t6Q2SZ0U14X6fR1YKOkUFV4i6S8lHTLEcR5COm2Zjqw+McT+Q7GM4nt7WNrXov4KScdLmp2C9z8pfmZ27WE7NgIcKra/+N/AOOD3wErg+wM1joinKC6uL6M4DfNuoGsf9v/V1P9WSU+lMZyS9rUduBz4abqDalZE3EjxF/LSdIfTL4E5e7Hf71Cc7vthRGzZy7l9FHgHxXWqsyiuv5C21U1xS/DX0rZ6gPfuxTgvpbgF/Ang34Hv7sU2mnUZ0AvcD/yA4nu0I9UdCHye4ufkt8ARFDdM2H5CEf6QLjPbf0n6IMVF/DcO2thGnI9UzGy/IqlD0uvTe4eOp7jeduNIj8ua47u/zGx/M4bi/TRTKE7pLaW49dxagE9/mZlZNj79ZWZm2byoT38dfvjhMXny5JEehplZS1mzZs3vI6K9Ud2LOlQmT55Md3f3SA/DzKylSHpwT3U+/WVmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtlUGiqSOiVtkNQj6YIG9ZJ0Zaq/W9KMVD5W0ipJ6yStl3Rpqc8lkh6StDYtc1P5ZElPl8oXVzk3MzPbXWUfJyypDbgKeAvQC6yW1BUR95SazQGmpuUU4Or0dQcwOyK2SRoN/ETS8ohYmfpdERFfbrDbjRExvZoZmZnZYKo8UpkJ9ETEpoh4BlgKzKtrMw+4LgorgfGSOtL6ttRmdFqiwrGamVkGVYbKBGBzab03lTXVRlKbpLXAI8BtEXFHqd2idLrsWkmHlcqnSLpL0u2STm00KEkLJHVL6u7r69u7mZmZWUNVhooalNUfbeyxTUTsSqeyJgIzJZ2Y6q8GXgFMB7YAX0nlW4CjI+Jk4DzgBkmH7rbxiGsiohYRtfb29qHNyMzMBlRlqPQCk0rrE4GHh9omIrYCK4DOtP67FDjPAl+nOM1GROyIiEfT4zXARuC4THMxM7MmVBkqq4GpkqZIGgPMB7rq2nQBZ6e7wGYBT0TEFkntksYDSBoHnA7cl9Y7Sv3/CvhlKm9PNwcg6ViKi/+bKpudmZntprK7vyJip6RFwC1AG3BtRKyXtDDVLwZuBuYCPcB24NzUvQNYkkJiFLAsIm5KdV+UNJ3iNNkDwAdS+WnAZZJ2AruAhRHxWFXzMzOz3SnixXtTVa1Wi+7u7pEehplZS5G0JiJqjer8jnozM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZVNpqEjqlLRBUo+kCxrUS9KVqf5uSTNS+VhJqyStk7Re0qWlPpdIekjS2rTMLdVdmLa1QdLbqpybmZnt7oCqNiypDbgKeAvQC6yW1BUR95SazQGmpuUU4Or0dQcwOyK2SRoN/ETS8ohYmfpdERFfrtvfNGA+cAJwFPADScdFxK6q5mhmZi9U5ZHKTKAnIjZFxDPAUmBeXZt5wHVRWAmMl9SR1relNqPTEoPsbx6wNCJ2RMT9QE8ag5mZDZMqQ2UCsLm03pvKmmojqU3SWuAR4LaIuKPUblE6XXatpMOGsD8kLZDULam7r69vL6ZlZmZ7UmWoqEFZ/dHGHttExK6ImA5MBGZKOjHVXw28ApgObAG+MoT9ERHXREQtImrt7e2DzcHMzIagylDpBSaV1icCDw+1TURsBVYAnWn9dylwngW+zvOnuJrZn5mZVajKUFkNTJU0RdIYiovoXXVtuoCz011gs4AnImKLpHZJ4wEkjQNOB+5L6x2l/n8F/LK0rfmSDpQ0heLi/6qK5mZmZg1UdvdXROyUtAi4BWgDro2I9ZIWpvrFwM3AXIqL6tuBc1P3DmBJuoNsFLAsIm5KdV+UNJ3i1NYDwAfS9tZLWgbcA+wEPuQ7v8zMhpciBrup6k9XrVaL7u7ukR6GmVlLkbQmImqN6vyOejMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZllU2moSOqUtEFSj6QLGtRL0pWp/m5JM1L5WEmrJK2TtF7SpQ36ni8pJB2e1idLelrS2rQsrnJuZma2uwOq2rCkNuAq4C1AL7BaUldE3FNqNgeYmpZTgKvT1x3A7IjYJmk08BNJyyNiZdr2pLTd39TtdmNETK9qTmZmNrAqj1RmAj0RsSkingGWAvPq2swDrovCSmC8pI60vi21GZ2WKPW7AvhkXZmZmY2wKkNlArC5tN6byppqI6lN0lrgEeC2iLgjlZ8BPBQR6xrsc4qkuyTdLunURoOStEBSt6Tuvr6+vZmXmZntQZWhogZl9UcWe2wTEbvSqayJwExJJ0o6CLgIuLhBvy3A0RFxMnAecIOkQ3fbeMQ1EVGLiFp7e3vzszEzs0FVGSq9wKTS+kTg4aG2iYitwAqgE3gFMAVYJ+mB1P5OSUdGxI6IeDT1WQNsBI7LNBczM2tClaGyGpgqaYqkMcB8oKuuTRdwdroLbBbwRERskdQuaTyApHHA6cB9EfGLiDgiIiZHxGSKUJoREb9NfdpSn2MpLv5vqnB+ZmZWp7K7vyJip6RFwC1AG3BtRKyXtDDVLwZuBuYCPcB24NzUvQNYkkJiFLAsIm4aZJenAZdJ2gnsAhZGxGO552VmZnumiBfvDVS1Wi26u7tHehhmZi1F0pqIqDWq8zvqzcwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJp+l/fSzqS4nPnA1gdEb+tbFRmZtaSmjpSkfR+YBXw18B/BVZKel+VAzMzs9bT7JHKJ4CT+z+uV9LLgJ8B11Y1MDMzaz3NXlPpBZ4qrT8FbM4/HDMza2UDHqlIOi89fAi4Q9L3KK6pzKM4HWZmZvacwU5/HZK+bkxLv+9VMxwzM2tlA4ZKRFw6XAMxM7PW1+zdXzVJN0q6U9Ld/UsT/TolbZDUI+mCBvWSdGWqv1vSjFQ+VtIqSeskrZe0W7hJOl9SSDq8VHZh2tYGSW9rZm5mZpZPs3d/XU9xB9gvgGeb6SCpDbgKeAvFhf7Vkroi4p5SsznA1LScAlydvu4AZkfENkmjgZ9IWh4RK9O2J6Xt/qa0v2nAfOAE4CjgB5KOi4hdTc7RbL/w1KMP0337UjomvopXzZw70sMxG5JmQ6UvIrqGuO2ZQE9EbAKQtJTiAn85VOYB10VEULz3ZbykjojYAmxLbUanJUr9rgA+yQuv7cwDlkbEDuB+ST1pDD8f4rjNRtQ3vv5BuvvWcaBG89nxRzDhuNpID8msac2GymckfQP4IcVRBAAR8d0B+kzghbcd91IchQzWZgKwJR3prAFeCVwVEXcASDoDeCgi1kmq39bKBtt6AUkLgAUARx999ADDNxsZf3hmG2M0ml08y46ntw3ewWw/0myonAu8iuKIof/0VwADhYoalEWzbdJpq+mSxgM3SjoR2ARcBLx1L/dHRFwDXANQq9V2qzcbae9/zxV8/9+/yuSJr2bKq08b6eGYDUmzofKaiHj1ELfdC0wqrU8EHh5qm4jYKmkF0AncAkwB+o9SJgJ3SprZ5P7M9ntHHnsS7/3wN0d6GGZ7pdl31K9MF8KHYjUwVdIUSWMoLqLXX5fpAs5Od4HNAp6IiC2S2tMRCpLGAacD90XELyLiiIiYHBGTKYJkRvrnll3AfEkHSppCcfHfb9A0MxtGzR6pvAE4R9L9FNdUBEREnLSnDhGxU9IiiqOLNuDaiFgvaWGqXwzcDMwFeoDtFKfZADqAJem6yihgWUTcNNAA07aXUdwIsBP4kO/8MjMbXipuvBqkkXRMo/KIeDD7iIZRrVaL7u7ukR6GmVlLkbQmIhreltjUkUp/eEg6AhibcWxmZvYnpNl31J8h6dfA/cDtwAPA8grHZWZmLajZC/WfBWYBv4qIKcCbgZ9WNiozM2tJzYbKH9MHdI2SNCoifgRMr25YZmbWipq9+2urpIOBHwPXS3qE4g4rMzOz5zR7pDIPeBr4OPB9is9WeUdVgzIzs9bU7N1ffyitLqloLGZm1uIG+zjhp2jw/7N4/s2Ph1YyKjMza0mDffLjIQPVm5mZlTV7TcXMzGxQDhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtlUGiqSOiVtkNQj6YIG9ZJ0Zaq/W9KMVD5W0ipJ6yStl3Rpqc9nU9u1km6VdFQqnyzp6VS+VtLiKudmZma7qyxUJLUBVwFzgGnAuyRNq2s2B5ialgXA1al8BzA7Il5D8QmTnZJmpbovRcRJETEduAm4uLS9jRExPS0LK5iWmZkNoMojlZlAT0RsiohngKUUH/ZVNg+4LgorgfGSOtL6ttRmdFoCICKeLPV/CY3/Nb+ZmY2AKkNlArC5tN6byppqI6lN0lrgEeC2iLijv5GkyyVtBs7ihUcqUyTdJel2Sac2GpSkBZK6JXX39fXt5dTMzKyRKkNFDcrqjyr22CYidqVTXBOBmZJOfK5BxEURMQm4HliUircAR0fEycB5wA2SdvsQsYi4JiJqEVFrb28f6pzMzGwAVYZKLzCptD4ReHiobSJiK7AC6GywjxuAd6Z2OyLi0fR4DbAROG6vR29mZkNWZaisBqZKmiJpDDAf6Kpr0wWcne4CmwU8ERFbJLVLGg8gaRxwOnBfWp9a6n9Gqbw93RyApGMpLv5vqmx2Zma2mwE/TnhfRMROSYuAW4A24NqIWC9pYapfDNwMzAV6gO3Aual7B7AkhcQoYFlE3JTqPi/peOBZ4EGg/y6v04DLJO0EdgELI+KxquZnZma7U8SL9+apWq0W3d3dIz0MM7OWImlNRNQa1fkd9WZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLptJQkdQpaYOkHkkXNKiXpCtT/d2SZqTysZJWSVonab2kS0t9PpvarpV0q6SjSnUXpm1tkPS2KudmZma7qyxUJLUBVwFzgGnAuyRNq2s2B5ialgXA1al8BzA7Il4DTAc6Jc1KdV+KiJMiYjpwE3Bx2t80YD5wAtAJ/GMag5mZDZMqj1RmAj0RsSkingGWAvPq2swDrovCSmC8pI60vi21GZ2WAIiIJ0v9X9Jfnra1NCJ2RMT9QE8ag5mZDZMqQ2UCsLm03pvKmmojqU3SWuAR4LaIuKO/kaTLJW0GziIdqTS5PyQtkNQtqbuvr29v5mVmZntQZaioQVk02yYidqVTXBOBmZJOfK5BxEURMQm4Hlg0hP0REddERC0iau3t7YPPwszMmlZlqPQCk0rrE4GHh9omIrYCKyiuk9S7AXjnEPZnZmYVqjJUVgNTJU2RNIbiInpXXZsu4Ox0F9gs4ImI2CKpXdJ4AEnjgNOB+9L61FL/M/rL07bmSzpQ0hSKi/+rKpqbmZk1cEBVG46InZIWAbcAbcC1EbFe0sJUvxi4GZhLcVF9O3Bu6t4BLEl3b40ClkXETanu85KOB54FHgT6t7de0jLgHmAn8KGI2FXV/MzMbHeK2O2yw4tGrVaL7u7ukR6GmVlLkbQmImqN6vyOejMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZllU2moSOqUtEFSj6QLGtRL0pWp/m5JM1L5WEmrJK2TtF7SpaU+X5J0X2p/o6TxqXyypKclrU3L4irnZmZmu6ssVCS1AVcBc4BpwLskTatrNgeYmpYFwNWpfAcwOyJeA0wHOiXNSnW3ASdGxEnAr4ALS9vbGBHT07KwgmmZmdkAqjxSmQn0RMSmiHgGWArMq2szD7guCiuB8ZI60vq21GZ0WgIgIm6NiJ2pbiUwscI5mJnZEFQZKhOAzaX13lTWVBtJbZLWAo8At0XEHQ328T5geWl9iqS7JN0u6dRGg5K0QFK3pO6+vr4hTcjMzAZWZaioQVk02yYidkXEdIojkZmSTnxBR+kiYCdwfSraAhwdEScD5wE3SDp0t41HXBMRtYiotbe3D2U+ZmY2iCpDpReYVFqfCDw81DYRsRVYAXT2l0k6B3g7cFZE9IfQjoh4ND1eA2wEjsswDzMza1KVobIamCppiqQxwHygq65NF3B2ugtsFvBERGyR1F66q2sccDpwX1rvBD4FnBER2/s3lPq0pcfHUlz831Th/MzMrM4BVW04InZKWgTcArQB10bEekkLU/1i4GZgLtADbAfOTd07gCUpJEYByyLiplT3NeBA4DZJACvTnV6nAZdJ2gnsAhZGxGNVzc/MzHandPboRalWq0V3d/dID8PMrKVIWhMRtUZ1fke9mZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsmxf1h3RJ6gMeHOlx7IXDgd+P9CD2UavPodXHD57D/qBVx39MRLQ3qnhRh0qrktS9p09daxWtPodWHz94DvuDVh9/Iz79ZWZm2ThUzMwsG4dKa7pmpAeQQavPodXHD57D/qDVx78bX1MxM7NsfKRiZmbZOFTMzCwbh8oIk9QpaYOkHkkXNKh/laSfS9oh6fxS+SRJP5J0r6T1kj5aqnuppNsk/Tp9PawF5/AlSfdJulvSjZLGt9ocSm3OlxSSDm+18Uv6cNrueklfrGr8Vc1B0nRJKyWtldQtaeZ+OoexklZJWpfmcGmpblhfz/ssIryM0AK0ARuBY4ExwDpgWl2bI4DXAZcD55fKO4AZ6fEhwK/6+wJfBC5Ijy8AvtCCc3grcEB6/IVWnEMqmwTcQvEm28NbafzAXwA/AA7s30arPQfArcCc9HgusGI/nYOAg9Pj0cAdwKy0Pmyv5xyLj1RG1kygJyI2RcQzwFJgXrlBRDwSEauBP9aVb4mIO9Pjp4B7gQmpeh6wJD1eApxZ2QwqmkNE3BoRO1PTlcDEVptDcgXwSaDKO2KqGv8Hgc9HxI7+bbTgHAI4ND3+M+Dh6qawT3OIiNiWVkenpf9nZjhfz/vMoTKyJgCbS+u9vPAXUlMkTQZOpvjrBuDlEbEFihccxV9HValqDmXvA5bvzeCaVMkcJJ0BPBQR6zKMcSBVPQfHAadKukPS7ZJet68DHUBVc/gY8CVJm4EvAxfu0ygHtk9zkNQmaS3wCHBbRIzE63mfOVRGlhqUDekvWkkHA/8KfCwinswyqqGpdA6SLgJ2Atfv9QibGEKDsn2ag6SDgIuAizOMb9DdNyjL8RwcABwGzAI+ASyT1GhfOVQ1hw8CH4+IScDHgW/u0ygHGUKDsqbnEBG7ImI6xVH5TEkn5hrYcHKojKxeinPu/SYyhMNzSaMpXkTXR8R3S1W/k9SR2nRQ/OVTlarmgKRzgLcDZ0U6oVyRKubwCmAKsE7SA2mbd0o6MsuIX6iq56AX+G46NbMKeJbiHyBWoao5nAP0r/8LxSmqquzTHPpFxFZgBdCZiobz9bzPHCojazUwVdIUSWOA+UBXMx3TX4zfBO6NiH+oq+6ieDGRvn4v03gbqWQOkjqBTwFnRMT2zGOul30OEfGLiDgiIiZHxGSKXzgzIuK3+Ydf2c/RvwGzU7vjKC4+V/Ufdauaw8PAG9Pj2cCvM423kX2ZQ7vSHY6SxgGnA/el6uF8Pe+7kb5T4MW+UNyR8iuKu0YuSmULgYXp8ZEUv5CeBLamx4cCb6A4tL4bWJuWuanPy4AfUryAfgi8tAXn0ENxfrq/fHGrzaFu+w9Q0d1fFT4HY4BvA78E7gRmt9pzkOrWUNyJdQfw2v10DicBd6U5/BK4uLTNYX097+vif9NiZmbZ+PSXmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFbP9lKSPpXfmm7UM31Jstp9K78SvRURVbzg0y85HKmbDSNLC9NkeayXdnz4H5K3pMzbulPQvkg6W9BHgKOBHkn6U+l6dPhPkBZ+3YbY/8ZGK2QhI/6vqP4BrgL+h+MyPP0j6FMXnl1xWf6Qi6aUR8ZikNop3Vn8kIu4eoSmYNXTASA/A7EXqqxSh8jgwDfhp+gfAY4Cf76HPf5e0gOJ125H6OVRsv+JQMRtmkt4LHAMsAv6S4rMz3jVInynA+cDrIuJxSd8CxlY8VLMh8zUVs2Ek6bUU4fCeiHiW4lMtXy/plan+oPQfgQGeovh4XCj+6eAfgCckvRyYM7wjN2uOj1TMhtci4KUUF+ABuoH3Av8s6cDU5m8p/tPtNcBySVsi4i8k3QWsBzYBPx3ugZs1wxfqzcwsG5/+MjOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLJv/D85OQV6xBVfYAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "zeta rho\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeoUlEQVR4nO3df5jWdZ3v8eeLAQRTw9YxEVDQ0LNoinSHnKu0IqqBbcU9XWcvzI5pp0W6oh/bcQuzy9Ryt9+evDI4tFF4pXHYNjcuV1etjfb0A2FQsFCogTRGppxUVILFwPf54/uZ+npzw9wDn+8ME6/HdX2vub+fH9/v5zP33POa7497bkUEZmZmOQwZ6AGYmdmfDoeKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFbNBRtLrJXUO9DjKJG2Q9PoD1H9U0j/234hsoDhUrF9JelTSLkk7JP1G0tckHTPQ4zoQSeMlhaShmbY3QtJ2SdMb1N0k6Vs59nMw0jx/l56fxyV9QVJLb/0i4qyIWHmA+r+PiHdnHawdlhwqNhD+MiKOAaYArwY+1pfOKgyan936MIqI/wT+L3BZXbsW4BJgaf+NrqFz0/PzRuDtwN8cysZyhbENDoPmhWl/eiLiceBu4GxJx0u6U1K3pKfT47E9bSWtlHSjpB8BO4HTJF0h6RFJz0naIunKUvvXS+qU9GFJT0jqknSxpFmSfi7pKUkfLbUfImmBpM2SnpS0XNLLUvV/pK/b01/w/zX1eVfa/9OS7pF0aml7Iem9kn4B/KLB9JcCb5N0dKnsLRSvybsPNLd6aV+vKK1/XdInS+tvlbQuHR39WNI5+39W/igiNgL/j+L5OV3Sv6fvzW8l3SZpVGkfj0qakR5fJ+lbkr4h6Vng8lT2jVTfc+T3Tkm/Stu7prStkZKWpu/rI+k57CzVfyQdRT0naZOkNzYzH+sfDhUbMJLGAbOAByl+Fr8GnAqcAuwCvlTX5X8Ac4FjgceAJ4C3AscBVwA3SZpSan8SMAIYA1wLfAV4B/Aq4ALgWkmnpbbvBy4GXgecDDwN3JLqLkxfR0XEMRHxE0kXAx8F/hvQSvHL95t1470YOB+YVD/3iPgx0JX6l+d3e0TsaWJuTUl9lgBXAn8G/B9ghaSjmug7ieL79CAg4B8ovjd/DowDrjtA99nAt4BRwG37afNa4EyKI6JrJf15Kv84MB44DXgTxXPWM6YzgfnAqyPiWIogfrS3uVg/iggvXvptofgFsAPYThEMXwZGNmg3GXi6tL4SuKGXbf8L8IH0+PUUwdSS1o8FAji/1H4tcHF6/AjwxlLdaOD3wFCKX3ABDC3V3w38z9L6EIojqFPTegDTexnvx4B70+PjUv/zmpxbZ6kugFeU1r8OfDI9Xgh8om5bm4DX7Wc/ATxLEaqbgU8CQxq0uxh4sO55nZEeXwf8R13764BvpMc938+xpfrVwJz0eAvwllLdu3vmC7yCInBnAMMG+ufZy76Lz3XaQLg4Ir5bLkingW4C2oDjU/GxkloiYm9a31rXZybFX7VnUPxSPxr4aanJk6W+u9LX35TqdwE9NwmcCtwh6YVS/V7g5fuZw6nAFyV9vjwkiqOixxqNt4FbgY9LGkPxF3dHRDzY5NyadSrwTknvK5UNpzji2J8pEdFRLpB0InAzxZHLsWlMTx9gG73NHeDXpcc7+eNzcXJd/z88jogOSR+kCKmzJN0DfCgitjWxP+sHPv1lh4v/RXEq5PyIOI4/nnJSqc0f/qV2On3zz8DngJdHxCjgrrr2fbEVmBkRo0rLiCiu+zT6V95bgSvr2o+M4rTWPuNtJCJ+RXHa7FKKU1+3HuTcdlKETo+T6sZ5Y904j46I+lN1vfmHNJ9z0vPzjgOMB3qZey+6gLGl9XEv2nDE7RHxWorADODTh7Avy8yhYoeLYymOHLanC+Qf76X9cOAooBvYk/6yf/Mh7H8RcGPPxXZJrZJmp7pu4AWKc/zl9ldLOiu1f6mk/34Q+11KcY3gNfzx2kNf57YOeLukFkltFNeFenwFmCfpfBVeIukvJB3bx3EeSzptmY6s/q6P/ftiOcX39vi0r/k9FZLOlDQ9Be9/UvzM7N3PdmwAOFTscPG/gZHAb4FVwL8dqHFEPEdxcX05xWmYtwMrDmH/X0z975X0XBrD+WlfO4EbgR+lO6imRcQdFH8hL0t3OP0MmHkQ+/0Wxem+70VE10HO7QPAX1Jcp7qU4voLaVvtFLcEfyltqwO4/CDGeT3FLeDPAP8KfPsgttGsG4BO4JfAdym+R7tT3VHApyh+Tn4NnEhxw4QdJhThD+kys8OXpPdQXMR/Xa+NbcD5SMXMDiuSRkt6TXrv0JkU19vuGOhxWXN895eZHW6GU7yfZgLFKb1lFLee2yDg019mZpaNT3+ZmVk2R/TprxNOOCHGjx8/0MMwMxtU1q5d+9uIaG1Ud0SHyvjx42lvbx/oYZiZDSqSHttfnU9/mZlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNpWGiqQ2SZskdUha0KBekm5O9Q9JmpLKR0haLWm9pA2Sri/1uU7S45LWpWVWKh8vaVepfFGVczMzs31V9nHCklqAW4A3AZ3AGkkrIuLhUrOZwMS0nA8sTF93A9MjYoekYcAPJd0dEatSv5si4nMNdrs5IiZXMyMzM+tNlUcqU4GOiNgSEc8Dy4DZdW1mA7dGYRUwStLotL4jtRmWlqhwrGZmlkGVoTIG2Fpa70xlTbWR1CJpHfAEcF9E3F9qNz+dLlsi6fhS+QRJD0r6gaQLGg1K0lxJ7ZLau7u7D25mZmbWUJWhogZl9Ucb+20TEXvTqayxwFRJZ6f6hcDpwGSgC/h8Ku8CTomI84APAbdLOm6fjUcsjohaRNRaW1v7NiMzMzugKkOlExhXWh8LbOtrm4jYDqwE2tL6b1LgvAB8heI0GxGxOyKeTI/XApuBMzLNxczMmlBlqKwBJkqaIGk4MAdYUddmBXBZugtsGvBMRHRJapU0CkDSSGAGsDGtjy71/yvgZ6m8Nd0cgKTTKC7+b6lsdmZmto/K7v6KiD2S5gP3AC3AkojYIGleql8E3AXMAjqAncAVqftoYGkKiSHA8oi4M9V9RtJkitNkjwJXpvILgRsk7QH2AvMi4qmq5mdmZvtSxJF7U1WtVov29vaBHoaZ2aAiaW1E1BrV+R31ZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8um0lCR1CZpk6QOSQsa1EvSzan+IUlTUvkISaslrZe0QdL1pT7XSXpc0rq0zCrVXZ22tUnSW6qcm5mZ7WtoVRuW1ALcArwJ6ATWSFoREQ+Xms0EJqblfGBh+robmB4ROyQNA34o6e6IWJX63RQRn6vb3yRgDnAWcDLwXUlnRMTequZoZmYvVuWRylSgIyK2RMTzwDJgdl2b2cCtUVgFjJI0Oq3vSG2GpSV62d9sYFlE7I6IXwIdaQxmZtZPqgyVMcDW0npnKmuqjaQWSeuAJ4D7IuL+Urv56XTZEknH92F/SJorqV1Se3d390FMy8zM9qfKUFGDsvqjjf22iYi9ETEZGAtMlXR2ql8InA5MBrqAz/dhf0TE4oioRUSttbW1tzmYmVkfVBkqncC40vpYYFtf20TEdmAl0JbWf5MC5wXgK/zxFFcz+zMzswpVGSprgImSJkgaTnERfUVdmxXAZekusGnAMxHRJalV0igASSOBGcDGtD661P+vgJ+VtjVH0lGSJlBc/F9d0dzMzKyByu7+iog9kuYD9wAtwJKI2CBpXqpfBNwFzKK4qL4TuCJ1Hw0sTXeQDQGWR8Sdqe4zkiZTnNp6FLgybW+DpOXAw8Ae4L2+88vMrH8porebqv501Wq1aG9vH+hhmJkNKpLWRkStUZ3fUW9mZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbCoNFUltkjZJ6pC0oEG9JN2c6h+SNCWVj5C0WtJ6SRskXd+g71WSQtIJaX28pF2S1qVlUZVzMzOzfQ2tasOSWoBbgDcBncAaSSsi4uFSs5nAxLScDyxMX3cD0yNih6RhwA8l3R0Rq9K2x6Xt/qput5sjYnJVczIzswOr8khlKtAREVsi4nlgGTC7rs1s4NYorAJGSRqd1nekNsPSEqV+NwEfriszM7MBVmWojAG2ltY7U1lTbSS1SFoHPAHcFxH3p/KLgMcjYn2DfU6Q9KCkH0i6oNGgJM2V1C6pvbu7+2DmZWZm+1FlqKhBWf2RxX7bRMTedCprLDBV0tmSjgauAa5t0K8LOCUizgM+BNwu6bh9Nh6xOCJqEVFrbW1tfjZmZtarKkOlExhXWh8LbOtrm4jYDqwE2oDTgQnAekmPpvYPSDopInZHxJOpz1pgM3BGprmYmVkTqgyVNcBESRMkDQfmACvq2qwALkt3gU0DnomILkmtkkYBSBoJzAA2RsRPI+LEiBgfEeMpQmlKRPw69WlJfU6juPi/pcL5mZlZncru/oqIPZLmA/cALcCSiNggaV6qXwTcBcwCOoCdwBWp+2hgaQqJIcDyiLizl11eCNwgaQ+wF5gXEU/lnpeZme2fIo7cG6hqtVq0t7cP9DDMzAYVSWsjotaozu+oNzOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWTVOhIumlkm6S1J6Wz0t6adWDMzOzwaXZI5UlwLPAX6flWeBrVQ3KzMwGp2ZD5fSI+HhEbEnL9cBpvXWS1CZpk6QOSQsa1EvSzan+IUlTUvkISaslrZe0QdL1DfpeJSkknVAquzpta5OktzQ5NzMzy6TZUNkl6bU9K5JeA+w6UAdJLcAtwExgEnCJpEl1zWYCE9MyF1iYyncD0yPiXGAy0CZpWmnb44A3Ab8qlU0C5gBnAW3Al9MYzAaV557cxve//QU2rr5roIdi1mdDm2w3D7g1XUcR8BRweS99pgIdEbEFQNIyYDbwcKnNbODWiAhglaRRkkZHRBewI7UZlpYo9bsJ+DDwnbptLYuI3cAvJXWkMfykyTmaHRb+8Svvob17PUdpGJ8YdSJjzqgN9JDMmtZUqETEeuBcScel9Web6DYG2Fpa7wTOb6LNGKArHWWsBV4B3BIR9wNIugh4PCLWS6rf1qoG23oRSXMpjoo45ZRTmpiGWf/63fM7GK5h7OUFdu/a0XsHs8NIU6Ei6SjgbcB4YGjPL/OIuOFA3RqURbNtImIvMFnSKOAOSWcDW4BrgDcf5P6IiMXAYoBarbZPvdlAe/c7buLf/vWLjB/7Sia88sKBHo5ZnzR7+us7wDMURw67m+zTCYwrrY8FtvW1TURsl7SS4jrJPcAEoOcoZSzwgKSpTe7P7LB30mnncPn7vjrQwzA7KM2GytiIaOvjttcAEyVNAB6nuIj+9ro2K4D56XrL+cAzEdElqRX4fQqUkcAM4NMR8VPgxJ7Okh4FahHxW0krgNslfQE4meLi/+o+jtnMzA5Bs6HyY0mvTL/UmxIReyTNpzi6aAGWRMQGSfNS/SLgLmAW0AHsBK5I3UcDS9N1lSHA8oi4s5f9bZC0nOJGgD3Ae9MpNDMz6ycqbrzaT6X0U4prFSOBUyiuaexOZRER5/THIKtSq9Wivb19oIdhZjaoSFobEQ1vS+ztSOWtFEcKPXdhmZmZ7dcBQyUiHgOQ9E3gxIhY0y+jMjOzQanZaypvAK6U9BjwO/5ETn+ZmVlezYbKzEpHYWZmfxKafUf9Y1UPxMzMBj9/SJeZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZVBoqktokbZLUIWlBg3pJujnVPyRpSiofIWm1pPWSNki6vtTnE6ntOkn3Sjo5lY+XtCuVr5O0qMq5mZnZvioLFUktwC0Unxo5CbhE0qS6ZjOBiWmZCyxM5buB6RFxLjAZaJM0LdV9NiLOiYjJwJ3AtaXtbY6IyWmZV8G0zMzsAKo8UpkKdETEloh4HlgGzK5rMxu4NQqrgFGSRqf1HanNsLQEQEQ8W+r/kp5yMzMbeFWGyhhga2m9M5U11UZSi6R1wBPAfRFxf08jSTdK2gpcyouPVCZIelDSDyRd0GhQkuZKapfU3t3dfZBTMzOzRqoMFTUoqz+q2G+biNibTnGNBaZKOvsPDSKuiYhxwG3A/FTcBZwSEecBHwJul3TcPhuPWBwRtYiotba29nVOZmZ2AFWGSicwrrQ+FtjW1zYRsR1YCbQ12MftwNtSu90R8WR6vBbYDJxx0KM3M7M+qzJU1gATJU2QNByYA6yoa7MCuCzdBTYNeCYiuiS1ShoFIGkkMAPYmNYnlvpfVCpvTTcHIOk0iov/WyqbnZmZ7WNoVRuOiD2S5gP3AC3AkojYIGleql8E3AXMAjqAncAVqftoYGkKiSHA8oi4M9V9StKZwAvAY0DPXV4XAjdI2gPsBeZFxFNVzc/MzPaliCP35qlarRbt7e0DPQwzs0FF0tqIqDWq8zvqzcwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpZNpaEiqU3SJkkdkhY0qJekm1P9Q5KmpPIRklZLWi9pg6TrS30+kdquk3SvpJNLdVenbW2S9JYq52ZmZvuqLFQktQC3ADOBScAlkibVNZsJTEzLXGBhKt8NTI+Ic4HJQJukaanusxFxTkRMBu4Erk37mwTMAc4C2oAvpzGYmVk/qfJIZSrQERFbIuJ5YBkwu67NbODWKKwCRkkandZ3pDbD0hIAEfFsqf9LesrTtpZFxO6I+CXQkcZgZmb9pMpQGQNsLa13prKm2khqkbQOeAK4LyLu72kk6UZJW4FLSUcqTe4PSXMltUtq7+7uPph5mZnZflQZKmpQFs22iYi96RTXWGCqpLP/0CDimogYB9wGzO/D/oiIxRFRi4haa2tr77MwM7OmVRkqncC40vpYYFtf20TEdmAlxXWSercDb+vD/szMrEJVhsoaYKKkCZKGU1xEX1HXZgVwWboLbBrwTER0SWqVNApA0khgBrAxrU8s9b+opzxta46koyRNoLj4v7qiuZmZWQNDq9pwROyRNB+4B2gBlkTEBknzUv0i4C5gFsVF9Z3AFan7aGBpuntrCLA8Iu5MdZ+SdCbwAvAY0LO9DZKWAw8De4D3RsTequZnZmb7UsQ+lx2OGLVaLdrb2wd6GGZmg4qktRFRa1Tnd9SbmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLJtKQ0VSm6RNkjokLWhQL0k3p/qHJE1J5SMkrZa0XtIGSdeX+nxW0sbU/g5Jo1L5eEm7JK1Ly6Iq52ZmZvuqLFQktQC3ADOBScAlkibVNZsJTEzLXGBhKt8NTI+Ic4HJQJukaanuPuDsiDgH+DlwdWl7myNiclrmVTAtMzM7gCqPVKYCHRGxJSKeB5YBs+vazAZujcIqYJSk0Wl9R2ozLC0BEBH3RsSeVLcKGFvhHMzMrA+qDJUxwNbSemcqa6qNpBZJ64AngPsi4v4G+3gXcHdpfYKkByX9QNIFjQYlaa6kdknt3d3dfZqQmZkdWJWhogZl0WybiNgbEZMpjkSmSjr7RR2la4A9wG2pqAs4JSLOAz4E3C7puH02HrE4ImoRUWttbe3LfMzMrBdVhkonMK60PhbY1tc2EbEdWAm09ZRJeifwVuDSiOgJod0R8WR6vBbYDJyRYR5mZtakKkNlDTBR0gRJw4E5wIq6NiuAy9JdYNOAZyKiS1Jr6a6ukcAMYGNabwM+AlwUETt7NpT6tKTHp1Fc/N9S4fzMzKzO0Ko2HBF7JM0H7gFagCURsUHSvFS/CLgLmAV0ADuBK1L30cDSFBJDgOURcWeq+xJwFHCfJIBV6U6vC4EbJO0B9gLzIuKpquZnZmb7Ujp7dESq1WrR3t4+0MMwMxtUJK2NiFqjOr+j3szMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmls0R/SFdkrqBxwZ6HAfhBOC3Az2IQzTY5zDYxw+ew+FgsI7/1IhobVRxRIfKYCWpfX+fujZYDPY5DPbxg+dwOBjs42/Ep7/MzCwbh4qZmWXjUBmcFg/0ADIY7HMY7OMHz+FwMNjHvw9fUzEzs2x8pGJmZtk4VMzMLBuHygCT1CZpk6QOSQsa1P8XST+RtFvSVaXycZK+L+kRSRskfaBU9zJJ90n6Rfp6/CCcw2clbZT0kKQ7JI0abHMotblKUkg6YbCNX9L70nY3SPpMVeOvag6SJktaJWmdpHZJUw/TOYyQtFrS+jSH60t1/fp6PmQR4WWAFqAF2AycBgwH1gOT6tqcCLwauBG4qlQ+GpiSHh8L/LynL/AZYEF6vAD49CCcw5uBoenxpwfjHFLZOOAeijfZnjCYxg+8AfgucFTPNgbbcwDcC8xMj2cBKw/TOQg4Jj0eBtwPTEvr/fZ6zrH4SGVgTQU6ImJLRDwPLANmlxtExBMRsQb4fV15V0Q8kB4/BzwCjEnVs4Gl6fFS4OLKZlDRHCLi3ojYk5quAsYOtjkkNwEfBqq8I6aq8b8H+FRE7O7ZxiCcQwDHpccvBbZVN4VDmkNExI60OiwtPT8z/fl6PmQOlYE1BthaWu/kxb+QmiJpPHAexV83AC+PiC4oXnAUfx1Vpao5lL0LuPtgBtekSuYg6SLg8YhYn2GMB1LVc3AGcIGk+yX9QNKrD3WgB1DVHD4IfFbSVuBzwNWHNMoDO6Q5SGqRtA54ArgvIgbi9XzIHCoDSw3K+vQXraRjgH8GPhgRz2YZVd9UOgdJ1wB7gNsOeoRNDKFB2SHNQdLRwDXAtRnG1+vuG5TleA6GAscD04C/A5ZLarSvHKqaw3uAv42IccDfAl89pFH2MoQGZU3PISL2RsRkiqPyqZLOzjWw/uRQGVidFOfce4ylD4fnkoZRvIhui4hvl6p+I2l0ajOa4i+fqlQ1ByS9E3grcGmkE8oVqWIOpwMTgPWSHk3bfEDSSVlG/GJVPQedwLfTqZnVwAsU/wCxClXN4Z1Az/o/UZyiqsohzaFHRGwHVgJtqag/X8+HzKEysNYAEyVNkDQcmAOsaKZj+ovxq8AjEfGFuuoVFC8m0tfvZBpvI5XMQVIb8BHgoojYmXnM9bLPISJ+GhEnRsT4iBhP8QtnSkT8Ov/wK/s5+hdgemp3BsXF56r+o25Vc9gGvC49ng78ItN4GzmUObQq3eEoaSQwA9iYqvvz9XzoBvpOgSN9obgj5ecUd41ck8rmAfPS45MofiE9C2xPj48DXktxaP0QsC4ts1KfPwO+R/EC+h7wskE4hw6K89M95YsG2xzqtv8oFd39VeFzMBz4BvAz4AFg+mB7DlLdWoo7se4HXnWYzuEc4ME0h58B15a22a+v50Nd/G9azMwsG5/+MjOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJ2mJL0wfTOfLNBw7cUmx2m0jvxaxFR1RsOzbLzkYpZP5I0L322xzpJv0yfA/Lm9BkbD0j6J0nHSHo/cDLwfUnfT30Xps8EedHnbZgdTnykYjYA0v+q+ndgMfA3FJ/58TtJH6H4/JIb6o9UJL0sIp6S1ELxzur3R8RDAzQFs4aGDvQAzI5QX6QIlaeBScCP0j8AHg78ZD99/lrSXIrX7ejUz6FihxWHilk/k3Q5cCowH/gLis/OuKSXPhOAq4BXR8TTkr4OjKh4qGZ95msqZv1I0qsowuEdEfECxadavkbSK1L90ek/AgM8R/HxuFD808HfAc9Iejkws39HbtYcH6mY9a/5wMsoLsADtAOXA9+UdFRq8zGK/3S7GLhbUldEvEHSg8AGYAvwo/4euFkzfKHezMyy8ekvMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsvn/YW4PyJX8/UkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "zeta kappa\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgBUlEQVR4nO3df7xVdZ3v8ddbENSrDhpYBIzgiN7BdAy3wtyilLTALHzYLSESc5ohnMFq5tZEmVpO3sxqunF1dPCKyqSglT/Oo/TST3Ou+YODnFBS80gaR0iOqURhGPq5f6zvzsU++3D2OZzv+UHv5+OxHnut7/e7vuvzZXP256y1vmcvRQRmZmY57dXfAZiZ2Z7PycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMdtDSDpRUlt/x1EmaZ2kE3dR/2lJ/6fvIrL+4mRjA4KkJyW9KOm3kp6RdK2k/fs7rl2RNF5SSBraS/3tI+kFSdPr1H1V0jd74zg9kcb5u/T+PC3pXyUN6Wq/iDgqIu7aRf3/jIi/7dVgbUBysrGB5F0RsT8wGTge+Ex3dlZh0Pyfrk1SEfF74CZgXk27IcAc4Pq+i66uv0rvz9uA9wN/tzud9VaStsFh0Pxg2p+OiHgauBN4g6SDJH1bUruk59P62GpbSXdJukTSPcA24DBJ50h6RNJWSeslfbjU/kRJbZL+WdJmSZsknS7pVEk/l/ScpE+X2u8laZGkJyT9WtLNkg5O1Xen1xfSb/x/nfb5m3T85yWtlHRoqb+Q9A+SHgcerzP864H3SNqvVPYOip/VO3c1tlrpWIeXtq+T9PnS9mmSWtLZ1E8kHdP5u/KqiHgU+E+K9+cvJP0w/ds8K+kGSSNKx3hS0slp/bOSvinp65J+A3wwlX091VfPFM+W9MvU3/mlvvaVdH36d30kvYdtpfpPprOurZIek/S2RsZjfcPJxgYcSeOAU4E1FP9HrwUOBf4ceBG4vGaXs4D5wAHAU8Bm4DTgQOAc4KuSJpfavw7YBxgDXAhcDXwAOA6YBlwo6bDU9iPA6cBbgdcDzwNXpLq3pNcREbF/RNwr6XTg08AZwCiKD+XlNfGeDkwBJtWOPSJ+AmxK+5fHd2NE7GhgbA1J+ywFPgy8Bvh3oEnS8Ab2nUTx77QGEPAFin+bvwTGAZ/dxe6zgG8CI4AbOmnzZuBIijOoCyX9ZSq/CBgPHAacQvGeVWM6ElgIHB8RB1Ak6Ce7Gov1oYjw4qXfF4oPht8CL1AkjH8D9q3T7ljg+dL2XcDFXfR9G/DRtH4iRcIakrYPAAKYUmq/Gjg9rT8CvK1UNxr4AzCU4oMvgKGl+juBD5W296I44zo0bQcwvYt4PwN8N60fmPZ/Y4NjayvVBXB4afs64PNp/UrgX2r6egx4ayfHCeA3FMn2CeDzwF512p0OrKl5X09O658F7q5p/1ng62m9+u85tlT/ADA7ra8H3lGq+9vqeIHDKRLxycDe/f3/2UvHxddMbSA5PSK+Xy5Il5O+CswADkrFB0gaEhEvp+0NNfvMpPgt+AiKD/v9gIdKTX5d2vfF9PpMqf5FoDo54VDgVkmvlOpfBl7byRgOBb4m6SvlkCjOop6qF28dy4CLJI2h+A29NSLWNDi2Rh0KnC3pvFLZMIozlM5MjojWcoGkQ4DFFGc6B6SYnt9FH12NHeBXpfVtvPpevL5m/z+uR0SrpI9RJK+jJK0E/ikiNjZwPOsDvoxmA93/oLikMiUiDuTVS1cqtfnjV5eny0DfAr4MvDYiRgB31LTvjg3AzIgYUVr2ieK+Ur2vTN8AfLim/b5RXB7rEG89EfFListvcykuoS3r4di2USSjqtfVxHlJTZz7RUTtJb+ufCGN55j0/nxgF/FAF2PvwiZgbGl73E4dR9wYEW+mSKQBfHE3jmW9zMnGBroDKM40Xkg35i/qov0wYDjQDuxIZwJv343jXwVcUr3JL2mUpFmprh14heIeQrn9pyQdldr/maT39uC411Pcg3gTr97b6O7YWoD3SxoiaQbFfaeqq4EFkqao8F8kvVPSAd2M8wDS5c90JvaJbu7fHTdT/NselI61sFoh6UhJ01NC/j3F/5mXO+nH+oGTjQ10/wvYF3gWuA/4v7tqHBFbKW7q30xxOef9QNNuHP9raf/vStqaYpiSjrUNuAS4J83omhoRt1L8Rr0izbh6GJjZg+N+k+Ky4Q8iYlMPx/ZR4F0U98HmUtzfIfXVTDF1+fLUVyvwwR7E+TmKqepbgO8At/Sgj0ZdDLQBvwC+T/FvtD3VDQcupfh/8ivgEIqJGjZAKMIPTzOzwUfSuRSTB97aZWPrdz6zMbNBQdJoSW9Kf/t0JMX9vFv7Oy5rjGejmdlgMYzi74EmUFwaXEExRd4GAV9GMzOz7HwZzczMsvNltE6MHDkyxo8f399hmJkNKqtXr342IkbVljvZdGL8+PE0Nzf3dxhmZoOKpKfqlfsympmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZlllzXZSJoh6TFJrZIW1amXpMWpfq2kyaW6pZI2S3q4Zp+bJLWk5UlJLal8bqm8RdIrko5NdXelOKp1h+Qct5mZ7SzbY6ElDQGuAE4B2oBVkpoi4melZjOBiWmZAlyZXgGuAy4HlpX7jYgzS8f4CrAlld8A3JDKjwZuj4iW0q5zI8LPeTYz6wc5z2xOAFojYn1EvASsAGbVtJkFLIvCfcAISaMBIuJu4LnOOpck4H3A8jrVczopNzOzfpAz2YwBNpS221JZd9t0ZhrwTEQ8XqfuTDomm2vTJbQLUqLqQNJ8Sc2Smtvb2xsMw8zMupIz2dT7QI8etOlM3bMXSVOAbRFRvtczNyKOpkhQ04Cz6nUYEUsiohIRlVGjRjUYhpmZdSVnsmkDxpW2xwIbe9CmA0lDgTOAm+pUz6YmCUXE0+l1K3AjxSU+MzPrIzmTzSpgoqQJkoZRJIGmmjZNwLw0K20qsCUiNjXQ98nAoxHRVi6UtBfwXor7Q9WyoZJGpvW9gdOAnWa4mZlZXtlmo0XEDkkLgZXAEGBpRKyTtCDVXwXcAZwKtALbgHOq+0taDpwIjJTUBlwUEdek6g5nL8lbgLaIWF8qGw6sTIlmCPB94OpeG6iZmXVJEY3eIvnTUqlUornZM6XNzLpD0uqIqNSW+xsEzMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+yyJhtJMyQ9JqlV0qI69ZK0ONWvlTS5VLdU0mZJD9fsc5OklrQ8KakllY+X9GKp7qrSPsdJeigdZ7EkZRy2mZnVyJZsJA0BrgBmApOAOZIm1TSbCUxMy3zgylLddcCM2n4j4syIODYijgW+BdxSqn6iWhcRC0rlV6b+q8fq0K+ZmeWT88zmBKA1ItZHxEvACmBWTZtZwLIo3AeMkDQaICLuBp7rrPN0dvI+YPmugkj9HRgR90ZEAMuA03s4JjMz64GcyWYMsKG03ZbKutumM9OAZyLi8VLZBElrJP1Y0rTSMdoaOYak+ZKaJTW3t7c3GIaZmXUlZ7Kpd18ketCmM3PY+axmE/DnEfFG4J+AGyUd2J1jRMSSiKhERGXUqFENhmFmZl0ZmrHvNmBcaXsssLEHbTqQNBQ4AziuWhYR24HtaX21pCeAI9Ixxnb3GGZm1ntyntmsAiZKmiBpGDAbaKpp0wTMS7PSpgJbImJTA32fDDwaEX+8PCZpVJqUgKTDKCYCrE/9bZU0Nd3nmQfcvtujMzOzhmU7s4mIHZIWAiuBIcDSiFgnaUGqvwq4AzgVaAW2AedU95e0HDgRGCmpDbgoIq5J1bPpODHgLcDFknYALwMLIqI6weBcitlt+wJ3psXMzPqIiglaVqtSqURzc3N/h2FmNqhIWh0Rldpyf4OAmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmll3WZCNphqTHJLVKWlSnXpIWp/q1kiaX6pZK2izp4Zp9bpLUkpYnJbWk8lMkrZb0UHqdXtrnrhRHdb9DMg7bzMxqDM3VsaQhwBXAKUAbsEpSU0T8rNRsJjAxLVOAK9MrwHXA5cCycr8RcWbpGF8BtqTNZ4F3RcRGSW8AVgJjSrvOjYjm3hmdmZl1R84zmxOA1ohYHxEvASuAWTVtZgHLonAfMELSaICIuBt4rrPOJQl4H7A8tV8TERtT9TpgH0nDe3VEZmbWIzmTzRhgQ2m7jZ3PNBpt05lpwDMR8XiduvcAayJie6ns2nQJ7YKUqDqQNF9Ss6Tm9vb2BsMwM7Ou5Ew29T7QowdtOjOHdFazU4fSUcAXgQ+XiudGxNEUCWoacFa9DiNiSURUIqIyatSoBsMwM7Ou5Ew2bcC40vZYYGMP2nQgaShwBnBTTflY4FZgXkQ8US2PiKfT61bgRopLfGZm1kdyJptVwERJEyQNA2YDTTVtmoB5aVbaVGBLRGxqoO+TgUcjoq1aIGkE8B3gUxFxT6l8qKSRaX1v4DTgYczMrM9kSzYRsQNYSDEr7BHg5ohYJ2mBpAWp2R3AeqAVuBr4++r+kpYD9wJHSmqT9KFS97PpeAltIXA4cEHNFOfhwEpJa4EW4Ol0LDMz6yOKaPQWyZ+WSqUSzc2eKW1m1h2SVkdEpbbc3yBgZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWXcOPhZb0TuAoYJ9qWURcnCMoMzPbszR0ZiPpKuBM4DyKB569Fzg0Y1xmZrYHafQy2n+LiHnA8xHxOeCv2fmhZ2ZmZp1qNNm8mF63SXo98AdgQp6QzMxsT9PoPZtvpydhfgl4EAj8ADIzM2tQQ8kmIv4lrX5L0reBfSJiS76wzMxsT9JQspG0D8Ujm99McVbz/yRdGRG/zxmcmZntGRq9jLYM2Ar877Q9B/gPillpZmZmu9RosjkyIv6qtP0jST/NEZCZme15Gp2NtkbS1OqGpCnAPV3tJGmGpMcktUpaVKdekhan+rWSJpfqlkraLOnhmn1uktSSlicltZTqPpX6ekzSO0rlx0l6KNUtlqQGx21mZr2g0WQzBfhJ+nB/ErgXeGv6AF9bbwdJQ4ArgJnAJGCOpEk1zWYCE9MyH7iyVHcdMKO234g4MyKOjYhjgW8Bt6TjTQJmU3zLwQzg31IMpH7nl47VoV+zgS5eeYUHf3gD/9l0OS+9+Nv+DsesWxq9jNaTD+cTgNaIWA8gaQUwC/hZqc0sYFlEBHCfpBGSRkfEpoi4W9L4zjpPZyfvA6aX+loREduBX0hqBU5IyfHAiLg37bcMOB24swdjMus3LXffxFe+cz4RQfuvf8kZ51zW3yGZNayhM5uIeAp4DcUH+ruB10TEU9Wlk93GABtK222prLttOjMNeCYiHu+irzFpvctjSJovqVlSc3t7e4NhmPWN7b//HUGwl/bidy/+pr/DMeuWRqc+X0gx8+yWVHStpG9ExOd3tVudsuhBm87MAZY30FfDx4iIJcASgEql0mgcZn3iuBPfz+zNv+C3217gXe89v7/DMeuWRi+jzQHeWP27GkmXUnyTwK6STRs7f3/aWGBjD9p0IGkocAZwXAN9taX1bh3DbKDZe5/9ePe8S/o7DLMeaXSCwJOUHi0ADAee6GKfVcBESRMkDaO4ed9U06YJmJdmpU0FtkTEpgbiORl4NCLKl8eagNmShkuaQDER4IHU31ZJU9N9nnnA7Q0cw8zMekmjZzbbgXWSvkdxCeoUim8RWAwQER+p3SEidkhaCKwEhgBLI2KdpAWp/irgDuBUoBXYBpxT3V/ScuBEYKSkNuCiiLgmVc9m50topL5vppiAsAP4h4h4OVWfSzG7bV+KiQGeHGBm1odUTATropF09q7qI+L6XotogKhUKtHc3NzfYZiZDSqSVkdEpba80S/i3OOSiZmZ9Z1GZ6NNBL5A8ceZ5cdCH5YpLjMz24M0OkHgWoq/wt8BnETxxZz/kSsoMzPbszSabPaNiB9Q3ON5KiI+y6t/uW9mZrZLjc5G+72kvYDH0wyzp4FD8oVlZmZ7kkbPbD4G7Ad8hOIPKc8Cvp4pJjMz28M0mmz+HZgQEW0RcQ7wDeC0fGGZmdmepNHLaP8d+KakuRSPhj4LeHu2qMzMbI/S6N/ZrJc0G7iN4puV3xERL+YMzMzM9hy7TDaSHmLnb0g+mOKrZ+6XREQckzM4MzPbM3R1ZuP7MmZmttt2mWx28WA0MzOzhjU6G83MzKzHnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMssuabCTNkPSYpFZJi+rUS9LiVL9W0uRS3VJJmyU9XGe/81K/6yRdlsrmSmopLa9IOjbV3ZXaV+v8LB4zsz7U6Lc+d5ukIcAVwClAG7BKUlNE/KzUbCYwMS1TKB49PSXVXQdcTvEI6nK/JwGzgGMiYns1cUTEDcANqc3RwO0R0VLadW5ENPfmGM3MrDE5z2xOAFojYn1EvASsoEgSZbOAZVG4DxghaTRARNwNPFen33OBSyNie2q3uU6bOcDyXhqHmZntppzJZgzF4wiq2lJZd9vUOgKYJul+ST+WdHydNmfSMdlcmy6hXSBJ9TqWNF9Ss6Tm9vb2LsIwM7NG5Uw29T7Qowdtag0FDgKmAp8Abi4nD0lTgG0RUb7XMzcijgampeWseh1HxJKIqEREZdSoUV2EYWZmjcqZbNqAcaXtscDGHrSp1+8t6dLbA8ArwMhS/Wxqzmoi4un0uhW4keISn5mZ9ZGcyWYVMFHSBEnDKJJAU02bJmBempU2FdgSEZu66Pc2YDqApCOAYcCzaXsv4L0U94dIZUMljUzre1M8o6fDDDczM8sn22y0iNghaSGwkuLpnksjYp2kBan+KuAO4FSgFdgGnFPdX9Jy4ERgpKQ24KKIuAZYCixNU6JfAs6OiOqlt7cAbRGxvhTKcGBlSjRDgO8DV2catpmZ1aFXP6etrFKpRHOzZ0qbmXWHpNURUakt9zcImJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtllTTaSZkh6TFKrpEV16iVpcapfK2lyqW6ppM2SHq6z33mp33WSLktl4yW9KKklLVeV2h8n6aF0nMWSlGvMZmbWUbZkI2kIcAUwE5gEzJE0qabZTGBiWuYDV5bqrgNm1On3JGAWcExEHAV8uVT9REQcm5YFpfIrU//VY3Xo18zM8sl5ZnMC0BoR6yPiJWAFRZIomwUsi8J9wAhJowEi4m7guTr9ngtcGhHbU7vNuwoi9XdgRNwbEQEsA07fjXGZmVk35Uw2Y4ANpe22VNbdNrWOAKZJul/SjyUdX6qbIGlNKp9WOkZbI8eQNF9Ss6Tm9vb2LsIwM7NGDc3Yd737ItGDNrWGAgcBU4HjgZslHQZsAv48In4t6TjgNklHdecYEbEEWAJQqVS6isPMzBqU88ymDRhX2h4LbOxBm3r93pIuvT0AvAKMjIjtEfFrgIhYDTxBcRbUlvrtzjHMzKwX5Uw2q4CJkiZIGgbMBppq2jQB89KstKnAlojY1EW/twHTASQdAQwDnpU0Kk1KIJ3pTATWp/62SpqaZqHNA27vnSGamVkjsl1Gi4gdkhYCK4EhwNKIWCdpQaq/CrgDOBVoBbYB51T3l7QcOBEYKakNuCgirgGWAkvTlOiXgLMjIiS9BbhY0g7gZWBBRFQnGJxLMbttX+DOtJiZWR9RMUHLalUqlWhubu7vMMzMBhVJqyOiUlvubxAwM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMssuabCTNkPSYpFZJi+rUS9LiVL9W0uRS3VJJmyU9XGe/81K/6yRdlspOkbRa0kPpdXqp/V2pfUtaDsk1ZjMz62horo4lDQGuAE4B2oBVkpoi4melZjOBiWmZAlyZXgGuAy4HltX0exIwCzgmIraXEsezwLsiYqOkNwArgTGlXedGRHMvDtHMzBqU88zmBKA1ItZHxEvACookUTYLWBaF+4ARkkYDRMTdwHN1+j0XuDQitqd2m9PrmojYmNqsA/aRNLzXR2VmZt2WM9mMATaUttvY+Uyj0Ta1jgCmSbpf0o8lHV+nzXuANdWElFybLqFdIEn1OpY0X1KzpOb29vYuwjAzs0blTDb1PtCjB21qDQUOAqYCnwBuLicPSUcBXwQ+XNpnbkQcDUxLy1n1Oo6IJRFRiYjKqFGjugjDzMwalTPZtAHjSttjgY09aFOv31vSpbcHgFeAkQCSxgK3AvMi4onqDhHxdHrdCtxIcYnPzMz6SM5kswqYKGmCpGHAbKCppk0TMC/NSpsKbImITV30exswHUDSEcAw4FlJI4DvAJ+KiHuqjSUNlVRNRnsDpwEdZriZmVk+2ZJNROwAFlLMCnsEuDki1klaIGlBanYHsB5oBa4G/r66v6TlwL3AkZLaJH0oVS0FDktTolcAZ0dEpGMdDlxQM8V5OLBS0lqgBXg6HcvMzPqIis9pq1WpVKK52TOlzcy6Q9LqiKjUlvsbBMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7PzwtE5Iagee6u84umkk8Gx/B7GbPIb+N9jjB4+hPx0aEaNqC51s9iCSmus9IW8w8Rj632CPHzyGgciX0czMLDsnGzMzy87JZs+ypL8D6AUeQ/8b7PGDxzDg+J6NmZll5zMbMzPLzsnGzMyyc7IZwCTNkPSYpFZJi+rU/1dJ90raLunjpfJxkn4k6RFJ6yR9tFR3sKTvSXo8vR40yOL/kqRHJa2VdKukEbnizzWGUpuPSwpJIwfjGCSdl/pdJ+mywRS/pGMl3SepRVKzpBNyxb+bY9hH0gOSfprG8LlSXZ/9LPeKiPAyABdgCPAEcBgwDPgpMKmmzSHA8cAlwMdL5aOByWn9AODn1X2By4BFaX0R8MVBFv/bgaFp/Yu54s85hlQ2DlhJ8YfDIwfbGICTgO8Dw6t9DLL4vwvMTOunAncN0PdAwP5pfW/gfmBq2u6Tn+XeWnxmM3CdALRGxPqIeAlYAcwqN4iIzRGxCvhDTfmmiHgwrW8FHgHGpOpZwPVp/Xrg9MEUf0R8NyJ2pKb3AWMzxZ9tDMlXgX8Gcs/QyTWGc4FLI2J7tY9BFn8AB6b1PwM2Zoofdm8MERG/TZt7p6X6f6avfpZ7hZPNwDUG2FDabmPnD6uGSBoPvJHiNyKA10bEJih+GCl+o8ohV/xlfwPc2ZPgGpRlDJLeDTwdET/thRi7kut9OAKYJul+ST+WdPzuBtqJXPF/DPiSpA3Al4FP7VaUu7ZbY5A0RFILsBn4XkT09c9yr3CyGbhUp6xbvwVL2h/4FvCxiPhNr0TVjcPXKeu1+CWdD+wAbuhxhA2EUKdst8YgaT/gfODCXoivoRDqlPXG+zAUOAiYCnwCuFlSvWPtrlzxnwv8Y0SMA/4RuGa3ouwihDplDY8hIl6OiGMpzuJPkPSG3gqsLznZDFxtFNf1q8bSjVN9SXtT/IDdEBG3lKqekTQ6tRlN8dtSDrniR9LZwGnA3EgXrDPJMYa/ACYAP5X0ZOrzQUmv65WIO8r1PrQBt6TLPA8Ar1B8cWRvyxX/2UB1+xsUl7py2a0xVEXEC8BdwIxU1Fc/y73CyWbgWgVMlDRB0jBgNtDUyI7pN8xrgEci4l9rqpsoftBIr7f3Ury1ssQvaQbwSeDdEbGtl2Ou1etjiIiHIuKQiBgfEeMpPogmR8Svej98IN//o9uA6andERQ3vnN8Q3Gu+DcCb03r04HHeyneenZnDKOUZlxK2hc4GXg0VffVz3Lv6O8ZCl46XyhmyfycYibL+alsAbAgrb+O4sPqN8ALaf1A4M0Up+lrgZa0nJr2eQ3wA4ofrh8ABw+y+Fsprn9Xy68abO9BTf9PknE2Wsb3YRjwdeBh4EFg+iCL/83AaoqZYfcDxw3Q9+AYYE0aw8PAhaU+++xnuTcWf12NmZll58toZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk43ZICTpY+nbCMwGBU99NhuE0rcPVCIixx9SmvU6n9mYDRCSFqTnq7RI+kV6Fsvb03NOHpT0DUn7S/oI8HrgR5J+lPa9Mj2XZadnnpgNFD6zMRtg0vd5/RBYAvwdxXNXfifpkxTPj7m49sxG0sER8ZykIRR/Tf6RiFjbT0Mw62BofwdgZh18jSLZPA9MAu5JX6g8DLi3k33eJ2k+xc/06LSfk40NGE42ZgOIpA8ChwILgXdSPL9kThf7TAA+DhwfEc9Lug7YJ3OoZt3iezZmA4Sk4yiSxgci4hWKJ5G+SdLhqX6/9A3LAFspHnUMxRc2/g7YIum1wMy+jdysaz6zMRs4FgIHU9z4B2gGPggslzQ8tfkMxbcHLwHulLQpIk6StAZYB6wH7unrwM264gkCZmaWnS+jmZlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWX3/wGlz3tVOUVJ2wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "zeta xi\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAetElEQVR4nO3dfZRcVZ3u8e9DmgS4wAQnjcYkkDAEZoJwMRRJ7tIoRNCEQcPCJQQjQcaZGJz4MnN1jCLieOWOoI7XLJhwwxAgIyRklJdeV5g4viCzkJd0TBuIgDQRTZNIGoEYDQZDfvePs0sP1dXp6k7vftHns9ZZVbX3Pvvsnerqp8+pnSpFBGZmZjkdMNgDMDOzP3wOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmfyAknSapY7DHUSZpk6TT9lH/SUn/OnAjssHisLEhQdJTkl6U9CtJz0i6QdKhgz2ufZE0UVJIauqn/g6S9IKkWXXqvizpa/1xnL5I8/x1en6elvTPkkb0tF9EnBAR9+yj/n9HxF/362BtSHLY2FDy9og4FJgKnAp8qjc7qzBsfqZrQyoifgPcCiyoaTcCuAC4aeBGV9d/T8/PW4B3A3+zP531V0jb8DBsXpj2xyMingbuBl4n6QhJ/09Sp6Tn0/3x1baS7pF0haT7gF3AMZIulvSopJ2SNkt6f6n9aZI6JP2DpO2Stkk6R9JZkn4s6TlJnyy1P0DSEklPSvqFpDWSXpWq7023L6S/+P9H2uev0vGfl7RW0tGl/kLS30p6AniizvRvAt4p6ZBS2dsoXqt372tutdKxji09vlHS50qPz5bUls6mvi/ppO6fld+LiMeA/6J4fv5M0nfSv82zkm6WNLp0jKcknZHuf0bS1yR9VdIvgfemsq+m+uqZ4kWSfpb6u7TU18GSbkr/ro+m57CjVP/xdNa1U9Ljkt7SyHxsYDhsbMiRNAE4C9hA8TN6A3A0cBTwInB1zS4XAguBw4CfAtuBs4HDgYuBL0uaWmr/GuAgYBzwaeA64D3AKcBM4NOSjkltPwScA7wZeC3wPHBNqntTuh0dEYdGxP2SzgE+CZwLNFP8Ul5VM95zgOnAlNq5R8T3gW1p//L8bomIPQ3MrSFpnxXA+4E/Bf4v0CJpVAP7TqH4d9oACPgnin+bvwAmAJ/Zx+5zga8Bo4Gbu2nzRuB4ijOoT0v6i1R+OTAROAY4k+I5q47peGAxcGpEHEYR0E/1NBcbQBHhzdugbxS/GH4FvEARGP8CHFyn3cnA86XH9wCf7aHvO4APp/unUQTWiPT4MCCA6aX264Fz0v1HgbeU6sYCvwWaKH7xBdBUqr8beF/p8QEUZ1xHp8cBzOphvJ8CvpnuH572f32Dc+so1QVwbOnxjcDn0v1lwP+q6etx4M3dHCeAX1KE7ZPA54AD6rQ7B9hQ87yeke5/Bri3pv1ngK+m+9V/z/Gl+oeAeen+ZuBtpbq/rs4XOJYiiM8ADhzsn2dvXTdfM7Wh5JyI+Fa5IF1O+jIwGzgiFR8maUREvJweb6nZZw7FX8HHUfyyPwR4uNTkF6V9X0y3z5TqXwSqixOOBm6XtLdU/zLw6m7mcDTwFUlfKg+J4izqp/XGW8dK4HJJ4yj+Qm+PiA0Nzq1RRwMXSfpgqWwkxRlKd6ZGRHu5QNKRwFKKM53D0pie30cfPc0d4Oel+7v4/XPx2pr9f3c/ItolfYQivE6QtBb4+4jY2sDxbAD4MpoNdf+T4pLK9Ig4nN9fulKpze8+ujxdBvo68EXg1RExGrirpn1vbAHmRMTo0nZQFO8r1fvI9C3A+2vaHxzF5bEu460nIn5GcfltPsUltJV9nNsuijCqek3NOK+oGechEVF7ya8n/5Tmc1J6ft6zj/FAD3PvwTZgfOnxhFd0HHFLRLyRIkgDuHI/jmX9zGFjQ91hFGcaL6Q35i/vof1IYBTQCexJZwJv3Y/jXwtcUX2TX1KzpLmprhPYS/EeQrn9JySdkNr/iaR39eG4N1G8B/EGfv/eRm/n1ga8W9IISbMp3nequg5YJGm6Cv9N0l9KOqyX4zyMdPkznYl9rJf798Yain/bI9KxFlcrJB0vaVYK5N9Q/My83E0/NggcNjbU/R/gYOBZ4AHgP/bVOCJ2Urypv4bics67gZb9OP5X0v7flLQzjWF6OtYu4ArgvrSia0ZE3E7xF/XqtOLqEWBOH477NYrLht+OiG19nNuHgbdTvA82n+L9HVJfrRRLl69OfbUD7+3DOP+RYqn6DuAbwG196KNRnwU6gJ8A36L4N9qd6kYBn6f4Ofk5cCTFQg0bIhThL08zs+FH0iUUiwfe3GNjG3Q+szGzYUHSWElvSP/36XiK9/NuH+xxWWO8Gs3MhouRFP8faBLFpcHVFEvkbRjwZTQzM8vOl9HMzCw7X0brxpgxY2LixImDPQwzs2Fl/fr1z0ZEc225w6YbEydOpLW1dbCHYWY2rEj6ab1yX0YzM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PssoaNpNmSHpfULmlJnXpJWprqN0qaWqpbIWm7pEdq9rlVUlvanpLUlsrnl8rbJO2VdHKquyeNo1p3ZM55m5nZK2X7WmhJI4BrgDOBDmCdpJaI+FGp2RxgctqmA8vSLcCNwNXAynK/EXF+6RhfAnak8puBm1P5icCdEdFW2nV+RPh7ns3MBkHOM5tpQHtEbI6Il4DVwNyaNnOBlVF4ABgtaSxARNwLPNdd55IEnAesqlN9QTflZmY2CHKGzThgS+lxRyrrbZvuzASeiYgn6tSdT9ewuSFdQrssBVUXkhZKapXU2tnZ2eAwzMysJznDpt4v9OhDm+7UPXuRNB3YFRHl93rmR8SJFAE1E7iwXocRsTwiKhFRaW5ubnAYZmbWk5xh0wFMKD0eD2ztQ5suJDUB5wK31qmeR00IRcTT6XYncAvFJT4zMxsgOcNmHTBZ0iRJIylCoKWmTQuwIK1KmwHsiIhtDfR9BvBYRHSUCyUdALyL4v2halmTpDHp/oHA2cArVriZmVle2VajRcQeSYuBtcAIYEVEbJK0KNVfC9wFnAW0A7uAi6v7S1oFnAaMkdQBXB4R16fqLmcvyZuAjojYXCobBaxNQTMC+BZwXb9N1MzMeqSIRt8i+eNSqVSitdUrpc3MekPS+oio1Jb7EwTMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmll3WsJE0W9LjktolLalTL0lLU/1GSVNLdSskbZf0SM0+t0pqS9tTktpS+URJL5bqri3tc4qkh9NxlkpSxmmbmVmNbGEjaQRwDTAHmAJcIGlKTbM5wOS0LQSWlepuBGbX9hsR50fEyRFxMvB14LZS9ZPVuohYVCpflvqvHqtLv2Zmlk/OM5tpQHtEbI6Il4DVwNyaNnOBlVF4ABgtaSxARNwLPNdd5+ns5Dxg1b4Gkfo7PCLuj4gAVgLn9HFOZmbWBznDZhywpfS4I5X1tk13ZgLPRMQTpbJJkjZI+p6kmaVjdDRyDEkLJbVKau3s7GxwGGZm1pOcYVPvfZHoQ5vuXMArz2q2AUdFxOuBvwdukXR4b44REcsjohIRlebm5gaHYWZmPWnK2HcHMKH0eDywtQ9tupDUBJwLnFIti4jdwO50f72kJ4Hj0jHG9/YYZmbWf3Ke2awDJkuaJGkkMA9oqWnTAixIq9JmADsiYlsDfZ8BPBYRv7s8Jqk5LUpA0jEUCwE2p/52SpqR3udZANy537MzM7OGZTuziYg9khYDa4ERwIqI2CRpUaq/FrgLOAtoB3YBF1f3l7QKOA0YI6kDuDwirk/V8+i6MOBNwGcl7QFeBhZFRHWBwSUUq9sOBu5Om5mZDRAVC7SsVqVSidbW1sEehpnZsCJpfURUasv9CQJmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzyy5r2EiaLelxSe2SltSpl6SlqX6jpKmluhWStkt6pGafWyW1pe0pSW2p/ExJ6yU9nG5nlfa5J42jut+RGadtZmY1mnJ1LGkEcA1wJtABrJPUEhE/KjWbA0xO23RgWboFuBG4GlhZ7jcizi8d40vAjvTwWeDtEbFV0uuAtcC40q7zI6K1f2ZnZma9kfPMZhrQHhGbI+IlYDUwt6bNXGBlFB4ARksaCxAR9wLPdde5JAHnAatS+w0RsTVVbwIOkjSqX2dkZmZ9kjNsxgFbSo87eOWZRqNtujMTeCYinqhT905gQ0TsLpXdkC6hXZaCqgtJCyW1Smrt7OxscBhmZtaTnGFT7xd69KFNdy4gndW8okPpBOBK4P2l4vkRcSJFQM0ELqzXYUQsj4hKRFSam5sbHIaZmfUkZ9h0ABNKj8cDW/vQpgtJTcC5wK015eOB24EFEfFktTwink63O4FbKC7xmZnZAMkZNuuAyZImSRoJzANaatq0AAvSqrQZwI6I2NZA32cAj0VER7VA0mjgG8AnIuK+UnmTpDHp/oHA2cAjmJnZgMkWNhGxB1hMsSrsUWBNRGyStEjSotTsLmAz0A5cB3ygur+kVcD9wPGSOiS9r9T9PLpeQlsMHAtcVrPEeRSwVtJGoA14Oh3LzMwGiCIafYvkj0ulUonWVq+UNjPrDUnrI6JSW+5PEDAzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdlnDRtJsSY9Lape0pE69JC1N9RslTS3VrZC0XdIjNfvcKqktbU9JaivVfSL19bikt5XKT5H0cKpbKkmZpmxmZnVkCxtJI4BrgDnAFOACSVNqms0BJqdtIbCsVHcjMLu234g4PyJOjoiTga8Dt6XjTQHmASek/f4ljYHU78LSsbr0azbUxd69/OA7N/NfLVfz0ou/GuzhmPVKU3cVktZExHmSHgaiXAVERJzUQ9/TgPaI2Jz6Ww3MBX5UajMXWBkRATwgabSksRGxLSLulTRxH+MTcB4wq9TX6ojYDfxEUjswTdJTwOERcX/abyVwDnB3D+M3G1La7r2VL33jUiKCzl/8jHMvvmqwh2TWsG7DBvhwup0H1P4ZdXoDfY8DtpQedwDTG2gzDtjWQP8zgWci4olSXw/U6eu36X5teReSFlKcAXHUUUc1MASzgbP7N78mCA7QAfz6xV8O9nDMeqXbsImI6i/8W4GVwBeAg4CrgArFZa59qfe+SPShTXcuAFY10FfDx4iI5cBygEql0ug4zAbEKae9m3nbf8Kvdr3A29916WAPx6xX9nVmUzUduBL4PnAYcDPwhgb26wAmlB6PB7b2oU0XkpqAc4FTGuirI93v1THMhpoDDzqEdyy4YrCHYdYnjSwQ+C3wInAwxZnNTyJibwP7rQMmS5okaSTF5biWmjYtwIK0Km0GsKN0RrUvZwCPRUT58lgLME/SKEmTKBYCPJT62ylpRnqfZwFwZwPHMDOzftJI2KyjCJtTgTdSrCr7Wk87RcQeYDGwFngUWBMRmyQtkrQoNbsL2Ay0A9cBH6juL2kVcD9wvKQOSe8rdT+PV15CIyI2AWsoFiD8B/C3EfFyqr4E+Nd0nCfx4gAzswGlYiHYPhpIlYhorSm7MCL+LevIBlmlUonW1taeG5qZ2e9IWh8RldryHs9saoMmlf1BB42ZmfUvf1yNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpZd1rCRNFvS45LaJS2pUy9JS1P9RklTS3UrJG2X9Eid/T6Y+t0k6apUNl9SW2nbK+nkVHdPal+tOzLjtM3MrEZTro4ljQCuAc4EOoB1kloi4kelZnOAyWmbDixLtwA3AlcDK2v6PR2YC5wUEburwRERNwM3pzYnAndGRFtp1/kR0dqfczQzs8bkPLOZBrRHxOaIeAlYTRESZXOBlVF4ABgtaSxARNwLPFen30uAz0fE7tRue502FwCr+mkeZma2n3KGzThgS+lxRyrrbZtaxwEzJT0o6XuSTq3T5ny6hs0N6RLaZZJUr2NJCyW1Smrt7OzsYRhmZtaonGFT7xd69KFNrSbgCGAG8DFgTTk8JE0HdkVE+b2e+RFxIjAzbRfW6zgilkdEJSIqzc3NPQzDzMwalTNsOoAJpcfjga19aFOv39vSpbeHgL3AmFL9PGrOaiLi6XS7E7iF4hKfmZkNkJxhsw6YLGmSpJEUIdBS06YFWJBWpc0AdkTEth76vQOYBSDpOGAk8Gx6fADwLor3h0hlTZLGpPsHAmcDXVa4mZlZPtlWo0XEHkmLgbXACGBFRGyStCjVXwvcBZwFtAO7gIur+0taBZwGjJHUAVweEdcDK4AVaUn0S8BFEVG99PYmoCMiNpeGMgpYm4JmBPAt4LpM0zYzszr0+9/TVlapVKK11Sulzcx6Q9L6iKjUlvsTBMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWXdawkTRb0uOS2iUtqVMvSUtT/UZJU0t1KyRtl/RInf0+mPrdJOmqVDZR0ouS2tJ2ban9KZIeTsdZKkm55mxmZl1lCxtJI4BrgDnAFOACSVNqms0BJqdtIbCsVHcjMLtOv6cDc4GTIuIE4Iul6icj4uS0LSqVL0v9V4/VpV8zM8sn55nNNKA9IjZHxEvAaoqQKJsLrIzCA8BoSWMBIuJe4Lk6/V4CfD4idqd22/c1iNTf4RFxf0QEsBI4Zz/mZWZmvZQzbMYBW0qPO1JZb9vUOg6YKelBSd+TdGqpbpKkDal8ZukYHY0cQ9JCSa2SWjs7O3sYhpmZNaopY9/13heJPrSp1QQcAcwATgXWSDoG2AYcFRG/kHQKcIekE3pzjIhYDiwHqFQqPY3DzMwalPPMpgOYUHo8Htjahzb1+r0tXXp7CNgLjImI3RHxC4CIWA88SXEW1JH67c0xzMysH+UMm3XAZEmTJI0E5gEtNW1agAVpVdoMYEdEbOuh3zuAWQCSjgNGAs9Kak6LEkhnOpOBzam/nZJmpFVoC4A7+2eKZmbWiGyX0SJij6TFwFpgBLAiIjZJWpTqrwXuAs4C2oFdwMXV/SWtAk4DxkjqAC6PiOuBFcCKtCT6JeCiiAhJbwI+K2kP8DKwKCKqCwwuoVjddjBwd9rMzGyAqFigZbUqlUq0trYO9jDMzIYVSesjolJb7k8QMDOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2WcNG0mxJj0tql7SkTr0kLU31GyVNLdWtkLRd0iN19vtg6neTpKtS2ZmS1kt6ON3OKrW/J7VvS9uRueZsZmZdNeXqWNII4BrgTKADWCepJSJ+VGo2B5ictunAsnQLcCNwNbCypt/TgbnASRGxuxQczwJvj4itkl4HrAXGlXadHxGt/ThFMzNrUM4zm2lAe0RsjoiXgNUUIVE2F1gZhQeA0ZLGAkTEvcBzdfq9BPh8ROxO7ban2w0RsTW12QQcJGlUv8/KzMx6LWfYjAO2lB538MozjUbb1DoOmCnpQUnfk3RqnTbvBDZUAym5IV1Cu0yS6nUsaaGkVkmtnZ2dPQzDzMwalTNs6v1Cjz60qdUEHAHMAD4GrCmHh6QTgCuB95f2mR8RJwIz03ZhvY4jYnlEVCKi0tzc3MMwzMysUTnDpgOYUHo8Htjahzb1+r0tXXp7CNgLjAGQNB64HVgQEU9Wd4iIp9PtTuAWikt8ZmY2QHKGzTpgsqRJkkYC84CWmjYtwIK0Km0GsCMitvXQ7x3ALABJxwEjgWcljQa+AXwiIu6rNpbUJKkaRgcCZwNdVriZmVk+2cImIvYAiylWhT0KrImITZIWSVqUmt0FbAbageuAD1T3l7QKuB84XlKHpPelqhXAMWlJ9GrgooiIdKxjgctqljiPAtZK2gi0AU+nY5mZ2QBR8XvaalUqlWht9UppM7PekLQ+Iiq15f4EATMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXb+8rRuSOoEfjrY4+ilMcCzgz2I/eQ5DL7hPn7wHAbT0RHRXFvosPkDIqm13jfkDSeew+Ab7uMHz2Eo8mU0MzPLzmFjZmbZOWz+sCwf7AH0A89h8A338YPnMOT4PRszM8vOZzZmZpadw8bMzLJz2AxhkmZLelxSu6Qlder/XNL9knZL+mipfIKk70p6VNImSR8u1b1K0n9KeiLdHjHMxv8FSY9J2ijpdkmjc40/1xxKbT4qKSSNGY5zkPTB1O8mSVcNp/FLOlnSA5LaJLVKmpZr/Ps5h4MkPSTph2kO/1iqG7DXcr+ICG9DcANGAE8CxwAjgR8CU2raHAmcClwBfLRUPhaYmu4fBvy4ui9wFbAk3V8CXDnMxv9WoCndvzLX+HPOIZVNANZS/MfhMcNtDsDpwLeAUdU+htn4vwnMSffPAu4Zos+BgEPT/QOBB4EZ6fGAvJb7a/OZzdA1DWiPiM0R8RKwGphbbhAR2yNiHfDbmvJtEfGDdH8n8CgwLlXPBW5K928CzhlO44+Ib0bEntT0AWB8pvFnm0PyZeAfgNwrdHLN4RLg8xGxu9rHMBt/AIen+38CbM00fti/OURE/Co9PDBt1Z+ZgXot9wuHzdA1DthSetzBK39ZNUTSROD1FH8RAbw6IrZB8WKk+Isqh1zjL/sr4O6+DK5BWeYg6R3A0xHxw34YY09yPQ/HATMlPSjpe5JO3d+BdiPX+D8CfEHSFuCLwCf2a5T7tl9zkDRCUhuwHfjPiBjo13K/cNgMXapT1qu/giUdCnwd+EhE/LJfRtWLw9cp67fxS7oU2APc3OcRNjCEOmX7NQdJhwCXAp/uh/E1NIQ6Zf3xPDQBRwAzgI8BayTVO9b+yjX+S4C/i4gJwN8B1+/XKHsYQp2yhucQES9HxMkUZ/HTJL2uvwY2kBw2Q1cHxXX9qvH04lRf0oEUL7CbI+K2UtUzksamNmMp/lrKIdf4kXQRcDYwP9IF60xyzOHPgEnADyU9lfr8gaTX9MuIu8r1PHQAt6XLPA8Beyk+OLK/5Rr/RUD18b9TXOrKZb/mUBURLwD3ALNT0UC9lvuFw2boWgdMljRJ0khgHtDSyI7pL8zrgUcj4p9rqlsoXmik2zv7aby1soxf0mzg48A7ImJXP4+5Vr/PISIejogjI2JiREyk+EU0NSJ+3v/DB/L9HN0BzErtjqN44zvHJxTnGv9W4M3p/izgiX4abz37M4dmpRWXkg4GzgAeS9UD9VruH4O9QsFb9xvFKpkfU6xkuTSVLQIWpfuvofhl9UvghXT/cOCNFKfpG4G2tJ2V9vlT4NsUL65vA68aZuNvp7j+XS2/drg9BzX9P0XG1WgZn4eRwFeBR4AfALOG2fjfCKynWBn2IHDKEH0OTgI2pDk8Any61OeAvZb7Y/PH1ZiZWXa+jGZmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGbBiS9JH0aQRmw4KXPpsNQ+nTByoRkeM/Upr1O5/ZmA0Rkhal71dpk/ST9F0sb03fc/IDSf8u6VBJHwJeC3xX0nfTvsvS97K84jtPzIYKn9mYDTHp87y+AywH/obie1d+LenjFN8f89naMxtJr4qI5ySNoPjf5B+KiI2DNAWzLpoGewBm1sVXKMLmeWAKcF/6QOWRwP3d7HOepIUUr+mxaT+HjQ0ZDhuzIUTSe4GjgcXAX1J8f8kFPewzCfgocGpEPC/pRuCgzEM16xW/Z2M2REg6hSI03hMReym+ifQNko5N9YekT1gG2EnxVcdQfGDjr4Edkl4NzBnYkZv1zGc2ZkPHYuBVFG/8A7QC7wVWSRqV2nyK4tODlwN3S9oWEadL2gBsAjYD9w30wM164gUCZmaWnS+jmZlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlt3/B7fxCFVcfGuKAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "zeta sigma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgA0lEQVR4nO3df7zVVZ3v8ddbENTUQQcsAhQc0UbTMdwK91GYkhaYBQ+7KUZiTjOEM/RjujVZZjZOzpTTjxtXBweviDxS0Mof5950aKzMuY4/OMQJJSWPZHmE5JiKGIYhn/vHd+38us8+nH0OZ50f9H4+Ht/H2Xut9V3ftdic8z7f717nuxURmJmZ5bRXfw/AzMz2fA4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZ7CEmnSGrr73GUSVon6ZRd1H9O0v/uuxFZf3HY2IAg6QlJL0l6UdLTkq6TtH9/j2tXJI2XFJKG9lJ/+0h6XtK0OnXfkPSd3jhOT6R5/ja9Pk9J+rqkIV3tFxHHRMTdu6j/p4j4q14drA1IDhsbSN4TEfsDk4ATgc93Z2cVBs3/6dqQiojfATcBc2vaDQHOBa7vu9HV9Rfp9XkH8AHgr3ens94KaRscBs03pv3xiIingDuBN0s6SNL/ldQu6bn0eGy1raS7JV0u6V5gG3C4pAskPSJpq6QNkj5San+KpDZJfy9ps6RNkmZJOkPSzyU9K+lzpfZ7SbpI0uOSfiPpZkkHp+p70tfn02/8/y3t85fp+M9JWinpsFJ/IelvJT0GPFZn+tcD75O0X6nsXRTfq3fuam610rGOKD1fKulLpednSmpJZ1P/Jem4zl+VV0XEo8B/Urw+fybph+nf5hlJN0gaUTrGE5JOS4+/KOk7kr4l6QXgQ6nsW6m+eqZ4vqRfpf4uLvW1r6Tr07/rI+k1bCvVfyaddW2VtF7SOxqZj/UNh40NOJLGAWcAayj+j14HHAYcCrwEXFmzy3nAPOAA4JfAZuBM4EDgAuAbkiaV2r8B2AcYA3wBuAb4IHACMBX4gqTDU9uPAbOAtwNvBJ4Drkp1J6evIyJi/4i4T9Is4HPAWcAoih/Ky2vGOwuYDBxdO/eI+C9gU9q/PL8bI2JHA3NrSNpnCfAR4E+BfwOaJA1vYN+jKf6d1gAC/pni3+bPgXHAF3ex+0zgO8AI4IZO2rwNOIriDOoLkv48lV8KjAcOB06neM2qYzoKWACcGBEHUAT0E13NxfpQRHjz1u8bxQ+GF4HnKQLjX4F967Q7Hniu9Pxu4LIu+r4N+Hh6fApFYA1Jzw8AAphcar8amJUePwK8o1Q3Gvg9MJTiB18AQ0v1dwIfLj3fi+KM67D0PIBpXYz388D30+MD0/5vaXBubaW6AI4oPV8KfCk9XgT8Y01f64G3d3KcAF6gCNvHgS8Be9VpNwtYU/O6npYefxG4p6b9F4FvpcfVf8+xpfoHgdnp8QbgXaW6v6rOFziCIohPA/bu7//P3jpuvmZqA8msiLirXJAuJ30DmA4clIoPkDQkIl5Jz5+s2WcGxW/BR1L8sN8PeKjU5DelfV9KX58u1b8EVBcnHAbcKmlnqf4V4PWdzOEw4JuSvlYeEsVZ1C/rjbeOZcClksZQ/IbeGhFrGpxbow4Dzpf00VLZMIozlM5MiojWcoGkQ4CFFGc6B6QxPbeLPrqaO8CvS4+38epr8caa/f/wOCJaJX2CIryOkbQS+GREbGzgeNYHfBnNBrr/QXFJZXJEHMirl65UavOHW5eny0DfBb4KvD4iRgB31LTvjieBGRExorTtE8X7SvVumf4k8JGa9vtGcXmsw3jriYhfUVx+m0NxCW1ZD+e2jSKMqt5QM87La8a5X0TUXvLryj+n+RyXXp8P7mI80MXcu7AJGFt6Pu41HUfcGBFvowjSAL6yG8eyXuawsYHuAIozjefTG/OXdtF+GDAcaAd2pDOBd+7G8a8GLq++yS9plKSZqa4d2EnxHkK5/WclHZPa/4mk9/fguNdTvAfxVl59b6O7c2sBPiBpiKTpFO87VV0DzJc0WYXXSXq3pAO6Oc4DSJc/05nYp7u5f3fcTPFve1A61oJqhaSjJE1Lgfw7iv8zr3TSj/UDh40NdP8T2Bd4Brgf+PddNY6IrRRv6t9McTnnA0DTbhz/m2n/70vamsYwOR1rG3A5cG9a0TUlIm6l+I16RVpx9TAwowfH/Q7FZcMfRMSmHs7t48B7KN4Hm0Px/g6pr2aKpctXpr5agQ/1YJz/QLFUfQvwPeCWHvTRqMuANuAXwF0U/0bbU91w4MsU/09+DRxCsVDDBghF+MPTzGzwkXQhxeKBt3fZ2Pqdz2zMbFCQNFrSW9PfPh1F8X7erf09LmuMV6OZ2WAxjOLvgSZQXBpcQbFE3gYBX0YzM7PsfBnNzMyy82W0TowcOTLGjx/f38MwMxtUVq9e/UxEjKotd9h0Yvz48TQ3N/f3MMzMBhVJv6xX7stoZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWXdawkTRd0npJrZIuqlMvSQtT/VpJk0p1SyRtlvRwzT43SWpJ2xOSWlL5nFJ5i6Sdko5PdXencVTrDsk5bzMze61sHwstaQhwFXA60AasktQUET8rNZsBTEzbZGBR+gqwFLgSWFbuNyLOKR3ja8CWVH4DcEMqPxa4PSJaSrvOiQh/zrOZWT/IeWZzEtAaERsi4mVgBTCzps1MYFkU7gdGSBoNEBH3AM921rkkAWcDy+tUn9tJuZmZ9YOcYTMGeLL0vC2VdbdNZ6YCT0fEY3XqzqFj2FyXLqFdkoKqA0nzJDVLam5vb29wGGZm1pWcYVPvB3r0oE1n6p69SJoMbIuI8ns9cyLiWIqAmgqcV6/DiFgcEZWIqIwaNarBYZiZWVdyhk0bMK70fCywsQdtOpA0FDgLuKlO9WxqQiginkpftwI3UlziMzOzPpIzbFYBEyVNkDSMIgSaato0AXPTqrQpwJaI2NRA36cBj0ZEW7lQ0l7A+yneH6qWDZU0Mj3eGzgTeM0KNzMzyyvbarSI2CFpAbASGAIsiYh1kuan+quBO4AzgFZgG3BBdX9Jy4FTgJGS2oBLI+LaVN3h7CU5GWiLiA2lsuHAyhQ0Q4C7gGt6baJmZtYlRTT6Fskfl0qlEs3NXiltZtYdklZHRKW23HcQMDOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2WcNG0nRJ6yW1SrqoTr0kLUz1ayVNKtUtkbRZ0sM1+9wkqSVtT0hqSeXjJb1Uqru6tM8Jkh5Kx1koSRmnbWZmNbKFjaQhwFXADOBo4FxJR9c0mwFMTNs8YFGpbikwvbbfiDgnIo6PiOOB7wK3lKofr9ZFxPxS+aLUf/VYHfo1M7N8cp7ZnAS0RsSGiHgZWAHMrGkzE1gWhfuBEZJGA0TEPcCznXWezk7OBpbvahCpvwMj4r6ICGAZMKuHczIzsx7IGTZjgCdLz9tSWXfbdGYq8HREPFYqmyBpjaQfS5paOkZbI8eQNE9Ss6Tm9vb2BodhZmZdyRk29d4XiR606cy5vPasZhNwaES8BfgkcKOkA7tzjIhYHBGViKiMGjWqwWGYmVlXhmbsuw0YV3o+FtjYgzYdSBoKnAWcUC2LiO3A9vR4taTHgSPTMcZ29xhmZtZ7cp7ZrAImSpogaRgwG2iqadMEzE2r0qYAWyJiUwN9nwY8GhF/uDwmaVRalICkwykWAmxI/W2VNCW9zzMXuH23Z2dmZg3LdmYTETskLQBWAkOAJRGxTtL8VH81cAdwBtAKbAMuqO4vaTlwCjBSUhtwaURcm6pn03FhwMnAZZJ2AK8A8yOiusDgQorVbfsCd6bNzMz6iIoFWlarUqlEc3Nzfw/DzGxQkbQ6Iiq15b6DgJmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyyxo2kqZLWi+pVdJFdeolaWGqXytpUqluiaTNkh6u2ecmSS1pe0JSSyo/XdJqSQ+lr9NK+9ydxlHd75CM0zYzsxpDc3UsaQhwFXA60AasktQUET8rNZsBTEzbZGBR+gqwFLgSWFbuNyLOKR3ja8CW9PQZ4D0RsVHSm4GVwJjSrnMiorl3ZmdmZt2R88zmJKA1IjZExMvACmBmTZuZwLIo3A+MkDQaICLuAZ7trHNJAs4Glqf2ayJiY6peB+wjaXivzsjMzHokZ9iMAZ4sPW/jtWcajbbpzFTg6Yh4rE7d+4A1EbG9VHZduoR2SQqqDiTNk9Qsqbm9vb3BYZiZWVdyhk29H+jRgzadOZd0VvOaDqVjgK8AHykVz4mIYykCaipwXr0OI2JxRFQiojJq1KgGh2FmZl3JGTZtwLjS87HAxh606UDSUOAs4Kaa8rHArcDciHi8Wh4RT6WvW4EbKS7xmZlZH8kZNquAiZImSBoGzAaaato0AXPTqrQpwJaI2NRA36cBj0ZEW7VA0gjge8BnI+LeUvlQSSPT472BM4GHMTOzPpMtbCJiB7CAYlXYI8DNEbFO0nxJ81OzO4ANQCtwDfA31f0lLQfuA46S1Cbpw6XuZ9PxEtoC4AjgkpolzsOBlZLWAi3AU+lYZmbWRxTR6Fskf1wqlUo0N3ultJlZd0haHRGV2nLfQcDMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy67hj4VOH7V8NLBPtSwilnW+h5mZWaGhsJF0KXAKRdjcAcwA/h/gsDEzsy41ehntvwPvAH4dERcAf0Fx634zM7MuNRo2L0XETmCHpAOBzcDh+YZlZmZ7kkbfs2lOn4R5DbAaeBF4MNegzMxsz9JQ2ERE9RM0r5b078CBEbE237DMzGxP0p3VaMcB46v7SDoiIm7JNC4zM9uDNLoabQlwHLAO2JmKA3DYmJlZlxo9s5kSEUdnHYmZme2xGl2Ndp+kboeNpOmS1ktqlXRRnXpJWpjq10qaVKpbImmzpIdr9rlJUkvanpDUUqr7bOprvaR3lcpPkPRQqlsoSd2di5mZ9VyjYXM9ReCsT6HwkKRdLhCQNAS4iuIPQI8Gzq0TWDOAiWmbBywq1S0Fptf2GxHnRMTxEXE88F3SpbzU92zgmLTfv6YxkPqdVzpWh37NBrrYuZOf/PAG/rPpSl5+6cX+Ho5ZtzR6GW0JcB7wEK++Z9OVk4DWiNgAIGkFMBP4WanNTGBZRARwv6QRkkZHxKaIuEfS+M46T2cnZwPTSn2tiIjtwC8ktQInSXqCYvXcfWm/ZcAs4M4G52E2ILTccxNf+97FRATtv/kVZ11wRX8PyaxhjYbNryKiqZt9jwGeLD1vAyY30GYMsKmB/qcCT0fEY6W+7q/T1+/T49ryDiTNozgD4tBDD21gCGZ9Z/vvfksQ7KW9+O1LL/T3cMy6pdGweVTSjcD/AbZXC7tY+lzvfZHoQZvOnAssb6Cvho8REYuBxQCVSqXRcZj1iRNO+QCzN/+CF7c9z3vef3F/D8esWxoNm30pQuadpbKulj63AeNKz8cCG3vQpgNJQ4GzgBMa6KstPe7WMcwGmr332Y/3zr28v4dh1iON3kHggh70vQqYKGkC8BTFm/cfqGnTBCxI7+dMBrZERCOX0E4DHo2I8uWxJuBGSV8H3kixEODBiHhF0lZJU4AHgLnA/+rBfMzMrIca/aPOhXWKtwDNEXF7vX0iYoekBcBKYAiwJCLWSZqf6q+m+LiCM4BWYBvwh1CTtJziYw1GSmoDLo2Ia1P1bF57CY3U980UCxB2AH8bEa+k6gspVrftS7EwwIsDzMz6kIqFYF00khYDbwK+nYreR3E3gXHAhoj4RK4B9pdKpRLNzc39PQwzs0FF0uqIqNSWN/qezRHAtIjYkTpbBHwfOJ1iObSZmVmnGv2jzjHA60rPXwe8MV2m2l5/FzMzs0KjZzZXAC2S7qZYSnwy8E+SXgfclWlsZma2h2h0Ndq1ku6guCuAgM9FRHX58KdzDc7MzPYMu7yMJulN6eskYDTFX/v/CnhD+aaZZmZmu9LVmc0nKW7f8rVSWXn52jTMzMy6sMszm4iYlx4uAmZGxKnAjyj+xuZTmcdmZmZ7iEZXo30+Il6Q9DaK5c5Lee3HAZiZmXWq0bCp/iX+u4Gr010DhuUZkpmZ7WkaDZunJP0bxefH3CFpeDf2NTOzP3KNBsbZFPc4mx4RzwMH4yXPZmbWoEb/zmYbpY8TSHdmbuTuzGZmZr4UZmZm+TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzyy5r2EiaLmm9pFZJF9Wpl6SFqX5t+TNyJC2RtFnSw3X2+2jqd52kK1LZHEktpW2npONT3d2pfbXukIzTNjOzGo1+LHS3SRoCXEVxl+g2YJWkpoj4WanZDGBi2iZT3El6cqpbClwJLKvp91RgJnBcRGyvBkdE3ADckNocC9weES2lXedERHNvztHMzBqT88zmJKA1IjZExMvACoqQKJsJLIvC/cAISaMBIuIe4Nk6/V4IfDkitqd2m+u0ORdY3kvzMDOz3ZQzbMZQfIx0VVsq626bWkcCUyU9IOnHkk6s0+YcOobNdekS2iWSVK9jSfMkNUtqbm9v72IYZmbWqJxhU+8HevSgTa2hwEHAFIo7T99cDg9Jk4FtEVF+r2dORBwLTE3befU6jojFEVGJiMqoUaO6GIaZmTUqZ9i0AeNKz8cCG3vQpl6/t6RLbw8CO4GRpfrZ1JzVRMRT6etW4EaKS3xmZtZHcobNKmCipAmShlGEQFNNmyZgblqVNgXYkj6+YFduA6YBSDqS4hNDn0nP9wLeT/H+EKlsqKSR6fHewJlAhxVuZmaWT7bVaBGxQ9ICig9dGwIsiYh1kuan+quBO4AzgFZgG3BBdX9Jy4FTgJGS2oBLI+JaYAmwJC2Jfhk4PyKql95OBtoiYkNpKMOBlSlohgB3AddkmraZmdWhV39OW1mlUonmZq+UNjPrDkmrI6JSW+47CJiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsu6xhI2m6pPWSWiVdVKdekham+rWSJpXqlkjaLOnhOvt9NPW7TtIVqWy8pJcktaTt6lL7EyQ9lI6zUJJyzdnMzDrKFjaShgBXATOAo4FzJR1d02wGMDFt84BFpbqlwPQ6/Z4KzASOi4hjgK+Wqh+PiOPTNr9Uvij1Xz1Wh37NzCyfnGc2JwGtEbEhIl4GVlCERNlMYFkU7gdGSBoNEBH3AM/W6fdC4MsRsT2127yrQaT+DoyI+yIigGXArN2Yl5mZdVPOsBkDPFl63pbKutum1pHAVEkPSPqxpBNLdRMkrUnlU0vHaGvkGJLmSWqW1Nze3t7FMMzMrFFDM/Zd732R6EGbWkOBg4ApwInAzZIOBzYBh0bEbySdANwm6ZjuHCMiFgOLASqVSlfjMDOzBuU8s2kDxpWejwU29qBNvX5vSZfeHgR2AiMjYntE/AYgIlYDj1OcBbWlfrtzDDMz60U5w2YVMFHSBEnDgNlAU02bJmBuWpU2BdgSEZu66Pc2YBqApCOBYcAzkkalRQmkM52JwIbU31ZJU9IqtLnA7b0zRTMza0S2y2gRsUPSAmAlMARYEhHrJM1P9VcDdwBnAK3ANuCC6v6SlgOnACMltQGXRsS1wBJgSVoS/TJwfkSEpJOByyTtAF4B5kdEdYHBhRSr2/YF7kybmZn1ERULtKxWpVKJ5ubm/h6GmdmgIml1RFRqy30HATMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZlllzVsJE2XtF5Sq6SL6tRL0sJUv1bSpFLdEkmbJT1cZ7+Ppn7XSboilZ0uabWkh9LXaaX2d6f2LWk7JNeczcyso6G5OpY0BLgKOB1oA1ZJaoqIn5WazQAmpm0ysCh9BVgKXAksq+n3VGAmcFxEbC8FxzPAeyJio6Q3AyuBMaVd50REcy9O0czMGpTzzOYkoDUiNkTEy8AKipAomwksi8L9wAhJowEi4h7g2Tr9Xgh8OSK2p3ab09c1EbExtVkH7CNpeK/PyszMui1n2IwBniw9b+O1ZxqNtql1JDBV0gOSfizpxDpt3gesqQZScl26hHaJJNXrWNI8Sc2Smtvb27sYhpmZNSpn2NT7gR49aFNrKHAQMAX4NHBzOTwkHQN8BfhIaZ85EXEsMDVt59XrOCIWR0QlIiqjRo3qYhhmZtaonGHTBowrPR8LbOxBm3r93pIuvT0I7ARGAkgaC9wKzI2Ix6s7RMRT6etW4EaKS3xmZtZHcobNKmCipAmShgGzgaaaNk3A3LQqbQqwJSI2ddHvbcA0AElHAsOAZySNAL4HfDYi7q02ljRUUjWM9gbOBDqscDMzs3yyhU1E7AAWUKwKewS4OSLWSZovaX5qdgewAWgFrgH+prq/pOXAfcBRktokfThVLQEOT0uiVwDnR0SkYx0BXFKzxHk4sFLSWqAFeCody8zM+oiKn9NWq1KpRHOzV0qbmXWHpNURUakt9x0EzMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2fnD0zohqR34ZX+Po5tGAs/09yB2k+fQ/wb7+MFz6E+HRcSo2kKHzR5EUnO9T8gbTDyH/jfYxw+ew0Dky2hmZpadw8bMzLJz2OxZFvf3AHqB59D/Bvv4wXMYcPyejZmZZeczGzMzy85hY2Zm2TlsBjBJ0yWtl9Qq6aI69W+SdJ+k7ZI+VSofJ+lHkh6RtE7Sx0t1B0v6D0mPpa8HDbLx/4ukRyWtlXSrpBG5xp9rDqU2n5IUkkYOxjlI+mjqd52kKwbT+CUdL+l+SS2SmiWdlGv8uzmHfSQ9KOmnaQ7/UKrrs+/lXhER3gbgBgwBHgcOB4YBPwWOrmlzCHAicDnwqVL5aGBSenwA8PPqvsAVwEXp8UXAVwbZ+N8JDE2Pv5Jr/DnnkMrGASsp/nB45GCbA3AqcBcwvNrHIBv/94EZ6fEZwN0D9DUQsH96vDfwADAlPe+T7+Xe2nxmM3CdBLRGxIaIeBlYAcwsN4iIzRGxCvh9TfmmiPhJerwVeAQYk6pnAtenx9cDswbT+CPi+xGxIzW9HxibafzZ5pB8A/h7IPcKnVxzuBD4ckRsr/YxyMYfwIHp8Z8AGzONH3ZvDhERL6ane6et+n+mr76Xe4XDZuAaAzxZet7Ga39YNUTSeOAtFL8RAbw+IjZB8c1I8RtVDrnGX/aXwJ09GVyDssxB0nuBpyLip70wxq7keh2OBKZKekDSjyWduLsD7USu8X8C+BdJTwJfBT67W6Pctd2ag6QhklqAzcB/RERffy/3CofNwKU6Zd36LVjS/sB3gU9ExAu9MqpuHL5OWa+NX9LFwA7ghh6PsIEh1CnbrTlI2g+4GPhCL4yvoSHUKeuN12EocBAwBfg0cLOkesfaXbnGfyHwdxExDvg74NrdGmUXQ6hT1vAcIuKViDie4iz+JElv7q2B9SWHzcDVRnFdv2os3TjVl7Q3xTfYDRFxS6nqaUmjU5vRFL8t5ZBr/Eg6HzgTmBPpgnUmOebwZ8AE4KeSnkh9/kTSG3plxB3leh3agFvSZZ4HgZ0UN47sbbnGfz5Qff5tiktduezWHKoi4nngbmB6Kuqr7+Ve4bAZuFYBEyVNkDQMmA00NbJj+g3zWuCRiPh6TXUTxTca6evtvTTeWlnGL2k68BngvRGxrZfHXKvX5xARD0XEIRExPiLGU/wgmhQRv+794QP5/h/dBkxL7Y6keOM7xx2Kc41/I/D29Hga8Fgvjbee3ZnDKKUVl5L2BU4DHk3VffW93Dv6e4WCt843ilUyP6dYyXJxKpsPzE+P30Dxw+oF4Pn0+EDgbRSn6WuBlrSdkfb5U+AHFN9cPwAOHmTjb6W4/l0tv3qwvQY1/T9BxtVoGV+HYcC3gIeBnwDTBtn43wasplgZ9gBwwgB9DY4D1qQ5PAx8odRnn30v98bm29WYmVl2voxmZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxmwQkvSJdDcCs0HBS5/NBqF094FKROT4Q0qzXuczG7MBQtL89PkqLZJ+kT6L5Z3pc05+IunbkvaX9DHgjcCPJP0o7bsofS7Laz7zxGyg8JmN2QCT7uf1Q2Ax8NcUn7vyW0mfofj8mMtqz2wkHRwRz0oaQvHX5B+LiLX9NAWzDob29wDMrINvUoTNc8DRwL3phsrDgPs62edsSfMovqdHp/0cNjZgOGzMBhBJHwIOAxYA76b4/JJzu9hnAvAp4MSIeE7SUmCfzEM16xa/Z2M2QEg6gSI0PhgROyk+ifStko5I9fulOywDbKX4qGMobtj4W2CLpNcDM/p25GZd85mN2cCxADiY4o1/gGbgQ8ByScNTm89T3D14MXCnpE0RcaqkNcA6YANwb18P3KwrXiBgZmbZ+TKamZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2f1/WGl5LnzOZ04AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "zeta tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaPUlEQVR4nO3de7SddX3n8feHhIAINFACIreEGpmGai0egVnaalFsYq1hxnEWqANeWoyKrZ1qjdWxXmqrvUjrKsWCVWG0MtRKTadQRKplFoXKQS6SAhJTlZQUoiKCWBH4zh/Pc+p253DOTvLbOTnl/Vprr/08z++yf7+zzz6f81z23qkqJElqYbe5HoAk6T8OQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCrSPJPkWUk2zfU4BiVZn+RZM5T/RpIP7rwRaa4YKtqpknwlyXeT3JfkziQfTrL3XI9rJkmWJqkkCxv1t2eSbyU5YZqyM5N8osXjbI9+nt/pn59/SfK+JAtma1dVR1fV52Yo/+2q+sWmg9UuyVDRXPiFqtobOAZ4GvDWbWmczrz53R0Oo6r6N+D/AKcO1VsAnAKct/NGN62f7J+fZwMvBn5pRzprFcaaH+bNC1P/8VTVvwCXAD+RZL8k/zfJliR398uHTtVN8rkk705yJXA/cGSSlye5Ocm9STYmedVA/Wcl2ZTk15PclWRzkpOSPC/Jl5J8M8lvDNTfLcnaJF9O8o0kFybZvy++or//Vv8f/H/u27yif/y7k1ya5IiB/irJa5PcBtw2zfTPA16YZK+BbT9H95q8ZKa5Desf6wkD6x9J8lsD689Pcn2/d/QPSZ78yM/KD1TVLcD/o3t+fizJ3/U/m68n+ViSxQOP8ZUkz+mX357kE0k+muTbwMv6bR/ty6f2/E5L8rW+v7cM9PWYJOf1P9eb++dw00D5m/q9qHuT3Jrk2aPMRzuHoaI5k+Qw4HnAdXS/ix8GjgAOB74L/PFQk/8BnA7sA3wVuAt4PrAv8HLgzCTHDNR/HLAncAjwNuBc4KXAU4GfBt6W5Mi+7i8DJwHPBB4P3A2c1Zf9TH+/uKr2rqqrkpwE/AbwX4EldH98Pz403pOA44AVw3Ovqn8ANvftB+f351X14AhzG0nf5kPAq4AfBf4UWJdkjxHarqD7OV0HBPgdup/NjwOHAW+foflq4BPAYuBjj1DnGcBRdHtEb0vy4/323wSWAkcCJ9I9Z1NjOgo4A3haVe1DF8RfmW0u2omqypu3nXaj+wNwH/AtumD4E+Ax09R7CnD3wPrngHfO0vdfAb/SLz+LLpgW9Ov7AAUcN1D/WuCkfvlm4NkDZQcD3wcW0v2BK2DhQPklwCsH1nej24M6ol8v4IRZxvtW4NP98r59+58acW6bBsoKeMLA+keA3+qXzwbeNdTXrcAzH+FxCvg2Xah+GfgtYLdp6p0EXDf0vD6nX347cMVQ/bcDH+2Xp36ehw6Ufx44uV/eCPzcQNkvTs0XeAJd4D4H2H2uf5+9bX3zWKfmwklV9ZnBDf1hoDOBlcB+/eZ9kiyoqof69duH2qyi+6/2iXR/1PcCvjhQ5RsDbb/b3985UP5dYOoigSOAi5I8PFD+EHDQI8zhCOCPkvzB4JDo9oq+Ot14p3E+8JtJDqH7j3tDVV034txGdQRwWpLXDWxbRLfH8UiOqaoNgxuSHAi8n27PZZ9+THfP0Mdscwf414Hl+/nBc/H4ofb/vlxVG5K8ni6kjk5yKfA/q+qOER5PO4GHv7Sr+DW6QyHHVdW+/OCQUwbq/PtHaveHb/4S+H3goKpaDFw8VH9b3A6sqqrFA7c9qzvvM91Hed8OvGqo/mOqO6y11XinU1Vfozts9hK6Q1/nb+fc7qcLnSmPGxrnu4fGuVdVDR+qm83v9PN5cv/8vHSG8cAsc5/FZuDQgfXDfqjjqj+vqmfQBWYB792Bx1Jjhop2FfvQ7Tl8qz9B/puz1F8E7AFsAR7s/7N/7g48/geAd0+dbE+yJMnqvmwL8DDdMf7B+m9OcnRf/0eSvGg7Hvc8unMET+cH5x62dW7XAy9OsiDJSrrzQlPOBdYkOS6dxyb5+ST7bOM496E/bNnvWb1xG9tviwvpfrb79Y91xlRBkqOSnNAH77/R/c489Aj9aA4YKtpV/CHwGODrwNXA385UuarupTu5fiHdYZgXA+t24PH/qG//6ST39mM4rn+s+4F3A1f2V1AdX1UX0f2HfEF/hdNNwKrteNxP0B3uu7yqNm/n3H4F+AW681QvoTv/Qt/XJN0lwX/c97UBeNl2jPMddJeA3wP8DfDJ7ehjVO8ENgH/DHyG7mf0vb5sD+A9dL8n/wocSHfBhHYRqfJLuiTtupK8mu4k/jNnraw5556KpF1KkoOTPL1/79BRdOfbLprrcWk0Xv0laVeziO79NMvoDuldQHfpueYBD39Jkprx8JckqZlH9eGvAw44oJYuXTrXw5CkeeXaa6/9elUtma7sUR0qS5cuZXJycq6HIUnzSpKvPlKZh78kSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc2MNVSSrExya5INSdZOU54k7+/Lb0xyzEDZh5LcleSmoTb7J7ksyW39/X5D5YcnuS/JG8Y3M0nSdMYWKkkWAGcBq4AVwClJVgxVWwUs72+nA2cPlH0EWDlN12uBy6tqOXB5vz7oTOCSHR2/JGnbjXNP5VhgQ1VtrKoHgAuA1UN1VgPnV+dqYHGSgwGq6grgm9P0uxo4r18+DzhpqiDJScBGYH3DeUiSRjTOUDkEuH1gfVO/bVvrDDuoqjYD9PcHAiR5LPAm4B0zNU5yepLJJJNbtmyZdRKSpNGNM1QyzbbajjqjegdwZlXdN1OlqjqnqiaqamLJkiXb+VCSpOksHGPfm4DDBtYPBe7YjjrD7kxycFVt7g+V3dVvPw74b0l+F1gMPJzk36rqj7d3ApKkbTPOPZVrgOVJliVZBJwMrBuqsw44tb8K7HjgnqlDWzNYB5zWL58GfAqgqn66qpZW1VLgD4HfNlAkaecaW6hU1YPAGcClwM3AhVW1PsmaJGv6ahfTnVjfAJwLvGaqfZKPA1cBRyXZlOSVfdF7gBOT3Aac2K9LknYBqdreUxjz38TERE1OTs71MCRpXklybVVNTFfmO+olSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWpmrKGSZGWSW5NsSLJ2mvIkeX9ffmOSYwbKPpTkriQ3DbXZP8llSW7r7/frt5+Y5NokX+zvTxjn3CRJWxtbqCRZAJwFrAJWAKckWTFUbRWwvL+dDpw9UPYRYOU0Xa8FLq+q5cDl/TrA14FfqKonAacB/7vNTCRJoxrnnsqxwIaq2lhVDwAXAKuH6qwGzq/O1cDiJAcDVNUVwDen6Xc1cF6/fB5wUl//uqq6o9++HtgzyR4tJyRJmtk4Q+UQ4PaB9U39tm2tM+ygqtoM0N8fOE2dFwLXVdX3tmnEkqQdsnCMfWeabbUddbbtQZOjgfcCz32E8tPpDrVx+OGH78hDSZKGjHNPZRNw2MD6ocAd21Fn2J1Th8j6+7umCpIcClwEnFpVX56ucVWdU1UTVTWxZMmSkSYiSRrNOEPlGmB5kmVJFgEnA+uG6qwDTu2vAjseuGfq0NYM1tGdiKe//xRAksXA3wBvrqorG81BkrQNxhYqVfUgcAZwKXAzcGFVrU+yJsmavtrFwEZgA3Au8Jqp9kk+DlwFHJVkU5JX9kXvAU5MchtwYr9O/1hPAP5Xkuv723TnWyRJY5KqHTqFMa9NTEzU5OTkXA9DkuaVJNdW1cR0Zb6jXpLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0snK1CkrdNt72q3tl+OJKk+WzWUAG+M7C8J/B84ObxDEeSNJ/Nevirqv5g4PZu4FnAIaN0nmRlkluTbEiydpryJHl/X35jkmMGyj6U5K4kNw212T/JZUlu6+/3Gyh7c9/XrUl+bpQxSpLa2Z5zKnsBR85WKckC4CxgFbACOCXJiqFqq4Dl/e104OyBso8AK6fpei1weVUtBy7v1+n7Phk4um/3J/0YpHnl3m/cwWc/+T5u+fzFcz0UaZuNck7li0D1qwuAJcAo51OOBTZU1ca+nwuA1cA/DdRZDZxfVQVcnWRxkoOranNVXZFk6TT9rqbbWwI4D/gc8KZ++wVV9T3gn5Ns6Mdw1QhjlXYZHzz31UxuuYE9sjvvWnwghzxxYq6HJI1slHMqzx9YfhC4s6oeHKHdIcDtA+ubgONGqHMIsHmGfg+qqs0AVbU5yYEDfV09TV8/JMnpdHtFHH744bPPQtrJvvPAfSzK7jzEw3zvu/fN9XCkbTLKOZWvVtVXge/S7ak8Pskof40zXXfbUWdUI/VVVedU1URVTSxZsmQ7H0oan1986Zk884if4eVPfx3LnvQzcz0caZuMcvjrBcAfAI8H7gKOoLv66+hZmm4CDhtYPxS4YzvqDLtz6hBZkoP7MW1vX9Iu53FHPpmXve7P5noY0nYZ5UT9u4DjgS9V1TLg2cCVI7S7BlieZFmSRXQn0dcN1VkHnNpfBXY8cM/Uoa0ZrANO65dPAz41sP3kJHskWUZ38v/zI4xTktTIKKHy/ar6BrBbkt2q6rPAU2Zr1J93OQO4lG7P5sKqWp9kTZI1fbWLgY3ABuBc4DVT7ZN8nO4k+1FJNiV5ZV/0HuDEJLcBJ/brVNV64EK6CwH+FnhtVT00wvwkSY2ku/BqhgrJZ4CTgN8BDqA73DRRVU8f++jGbGJioiYnJ+d6GJI0ryS5tqqmvSxxlKu/bgDuB34VeAnwI8De7YYnSfqPYpRQ+dmqehh4mO59ISS5cayjkiTNS48YKkleTXeO48eGQmQfRjtRL0l6lJlpT+XPgUvozqUMfm7XvVX1zbGOSpI0Lz1iqFTVPcA9wCk7bziSpPnML+mSJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDUz1lBJsjLJrUk2JFk7TXmSvL8vvzHJMbO1TfKTSa5K8sUkf51k33777knO67ffnOTN45ybJGlrYwuVJAuAs4BVwArglCQrhqqtApb3t9OBs0do+0FgbVU9CbgIeGO//UXAHv32pwKvSrJ0PLOTJE1nnHsqxwIbqmpjVT0AXACsHqqzGji/OlcDi5McPEvbo4Ar+uXLgBf2ywU8NslC4DHAA8C3xzQ3SdI0xhkqhwC3D6xv6reNUmemtjcBL+iXXwQc1i9/AvgOsBn4GvD7VfXNHZuCJGlbjDNUMs22GrHOTG1fAbw2ybXAPnR7JNDt3TwEPB5YBvxakiO3GlRyepLJJJNbtmyZfRaSpJGNM1Q28YO9CIBDgTtGrPOIbavqlqp6blU9Ffg48OW+zouBv62q71fVXcCVwMTwoKrqnKqaqKqJJUuWbPfkJElbG2eoXAMsT7IsySLgZGDdUJ11wKn9VWDHA/dU1eaZ2iY5sL/fDXgr8IG+r68BJ/R9PRY4HrhljPOTJA0ZW6hU1YPAGcClwM3AhVW1PsmaJGv6ahcDG4ENwLnAa2Zq27c5JcmX6ALjDuDD/fazgL3pzrlcA3y4qm4c1/wkSVtL1fBpjkePiYmJmpycnOthSNK8kuTaqtrq9AL4jnpJUkOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzYw1VJKsTHJrkg1J1k5TniTv78tvTHLMbG2T/GSSq5J8MclfJ9l3oOzJfdn6vnzPcc5PkvTDxhYqSRYAZwGrgBXAKUlWDFVbBSzvb6cDZ4/Q9oPA2qp6EnAR8Ma+zULgo8CaqjoaeBbw/XHNT5K0tXHuqRwLbKiqjVX1AHABsHqozmrg/OpcDSxOcvAsbY8CruiXLwNe2C8/F7ixqm4AqKpvVNVD45qcJGlr4wyVQ4DbB9Y39dtGqTNT25uAF/TLLwIO65efCFSSS5N8IcmvTzeoJKcnmUwyuWXLlm2ckiRpJuMMlUyzrUasM1PbVwCvTXItsA/wQL99IfAM4CX9/X9J8uytOqk6p6omqmpiyZIls89CkjSyhWPsexM/2IsAOBS4Y8Q6ix6pbVXdQneoiyRPBH5+oK+/r6qv92UXA8cAlzeYiyRpBOPcU7kGWJ5kWZJFwMnAuqE664BT+6vAjgfuqarNM7VNcmB/vxvwVuADfV+XAk9Osld/0v6ZwD+NcX6SpCFj21OpqgeTnEH3x34B8KGqWp9kTV/+AeBi4HnABuB+4OUzte27PiXJa/vlTwIf7tvcneR9dIFUwMVV9Tfjmp8kaWupGj7N8egxMTFRk5OTcz0MSZpXklxbVRPTlfmOeklSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGZSVXM9hjmTZAvw1bkex3Y4APj6XA9iB833Ocz38YNz2BXM1/EfUVVLpit4VIfKfJVksqom5nocO2K+z2G+jx+cw65gvo9/Oh7+kiQ1Y6hIkpoxVOanc+Z6AA3M9znM9/GDc9gVzPfxb8VzKpKkZtxTkSQ1Y6hIkpoxVOZYkpVJbk2yIcnaacr/U5KrknwvyRsGth+W5LNJbk6yPsmvDJTtn+SyJLf19/vNwzn8XpJbktyY5KIki+fbHAbqvCFJJTlgvo0/yev6ftcn+d1xjX9cc0jylCRXJ7k+yWSSY3fROeyZ5PNJbujn8I6Bsp36et5hVeVtjm7AAuDLwJHAIuAGYMVQnQOBpwHvBt4wsP1g4Jh+eR/gS1Ntgd8F1vbLa4H3zsM5PBdY2C+/dz7Ood92GHAp3ZtsD5hP4wd+FvgMsMdUH/PtOQA+Dazql58HfG4XnUOAvfvl3YF/BI7v13fa67nFzT2VuXUssKGqNlbVA8AFwOrBClV1V1VdA3x/aPvmqvpCv3wvcDNwSF+8GjivXz4POGlsMxjTHKrq01X1YF/1auDQ+TaH3pnArwPjvCJmXON/NfCeqvreVB/zcA4F7Nsv/whwx/imsENzqKq6r1/dvb9N/c7szNfzDjNU5tYhwO0D65v44T9II0myFPgpuv9uAA6qqs3QveDo/jsal3HNYdArgEu2Z3AjGssckrwA+JequqHBGGcyrufgicBPJ/nHJH+f5Gk7OtAZjGsOrwd+L8ntwO8Db96hUc5sh+aQZEGS64G7gMuqai5ezzvMUJlbmWbbNv1Hm2Rv4C+B11fVt5uMatuMdQ5J3gI8CHxsu0c4whCm2bZDc0iyF/AW4G0Nxjfrw0+zrcVzsBDYDzgeeCNwYZLpHquFcc3h1cCvVtVhwK8Cf7ZDo5xlCNNsG3kOVfVQVT2Fbq/82CQ/0WpgO5OhMrc20R1zn3Io27B7nmR3uhfRx6rqkwNFdyY5uK9zMN1/PuMyrjmQ5DTg+cBLqj+gPCbjmMOPAcuAG5J8pe/zC0ke12TEP2xcz8Em4JP9oZnPAw/TfQDiOIxrDqcBU+t/QXeIalx2aA5TqupbwOeAlf2mnfl63mGGyty6BlieZFmSRcDJwLpRGvb/Mf4ZcHNVvW+oeB3di4n+/lONxjudscwhyUrgTcALqur+xmMe1nwOVfXFqjqwqpZW1VK6PzjHVNW/th/+2H6P/go4oa/3RLqTz+P6RN1xzeEO4Jn98gnAbY3GO50dmcOS9Fc4JnkM8Bzglr54Z76ed9xcXynwaL/RXZHyJbqrRt7Sb1sDrOmXH0f3B+nbwLf65X2BZ9DtWt8IXN/fnte3+VHgcroX0OXA/vNwDhvojk9Pbf/AfJvDUP9fYUxXf43xOVgEfBS4CfgCcMJ8ew76smvprsT6R+Cpu+gcngxc18/hJuBtA33u1Nfzjt78mBZJUjMe/pIkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhoq0i0ry+v6d+dK84SXF0i6qfyf+RFWN6w2HUnPuqUg7UZI1/Xd7XJ/kn/vvAXlu/x0bX0jyF0n2TvLLwOOBzyb5bN/27P47QX7o+zakXYl7KtIc6D+r6u+Ac4BfovvOj+8keRPd95e8c3hPJcn+VfXNJAvo3ln9y1V14xxNQZrWwrkegPQo9Ud0oXI3sAK4sv8A4EXAVY/Q5r8nOZ3udXtw385Q0S7FUJF2siQvA44AzgB+nu67M06Zpc0y4A3A06rq7iQfAfYc81ClbeY5FWknSvJUunB4aVU9TPetlk9P8oS+fK/+E4EB7qX7elzoPnTwO8A9SQ4CVu3ckUujcU9F2rnOAPanOwEPMAm8DPh4kj36Om+l+6Tbc4BLkmyuqp9Nch2wHtgIXLmzBy6NwhP1kqRmPPwlSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqZn/Dwci49/pxE1BAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "eta mu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAezUlEQVR4nO3df7zVVZ3v8ddbjqBddbDhWAyQ4ISWpmO4BeZRFJFO4LVg7JYYhWPNJZzsx3RrhjKz6eadcmq68dB0cETloYLe/HXmqpem5ppzG1EOckJQySNZHCE5/gzDMORz//iunV/32Yezz+Gs88Pez8fj+9j7u9b6ru9anB/v8/3uxd6KCMzMzHI6YLAHYGZmr34OGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmrxKSZkrqGOxxlEnaJGnmPuq/KOmfB25ENlgcNjYkSHpM0guSnpf0hKSrJB0y2OPaF0kTJYWkpn7q7yBJz0qaVafu25K+1x/n6Ys0z1+nr8/jkv5R0oiejouI4yLirn3U/4+I+Mt+HawNSQ4bG0reGxGHAFOAk4Ev9eZgFYbN93RtSEXEb4AbgIU17UYAZwHXDNzo6vqT9PV5N/Ah4L/uT2f9FdI2PAybH0z7/RERjwN3Am+RdLik/y2pU9Iz6fn4altJd0m6SNKPgV3AUZLOkfSQpJ2Stkj6eKn9TEkdkv5G0g5J2yXNk3SapJ9KelrSF0vtD5C0RNKjkp6SdKOk16bqu9Pjs+kv/j9Nx3w0nf8ZSaslHVnqLyR9QtIjwCN1pn8N8H5JrymVvYfiZ/XOfc2tVjrXG0v7V0v6Wmn/dElt6WrqPySd0P1X5WUR8TDw7xRfnz+W9G/p3+ZJSddJGl06x2OSTknPvyLpe5KulfQr4C9S2bWpvnqleLakX6T+zi/1dbCka9K/60Ppa9hRqv/bdNW1U9JmSe9uZD42MBw2NuRImgCcBqyn+B69CjgSeAPwAnBJzSEfARYBhwI/B3YApwOHAecA35Y0pdT+9cBBwDjgy8AVwIeBk4AZwJclHZXafgqYB7wT+CPgGeDSVPeO9Dg6Ig6JiHskzQO+CJwBNFP8Ul5ZM955wDTg2Nq5R8R/ANvT8eX5XR8RexqYW0PSMcuBjwN/CPwT0CJpVAPHHkvx77QeEPD3FP82bwYmAF/Zx+Fzge8Bo4HrumnzduAYiiuoL0t6cyq/EJgIHAWcSvE1q47pGOA84OSIOJQioB/raS42gCLCm7dB3yh+MTwPPEsRGN8FDq7T7kTgmdL+XcBXe+j7VuDT6flMisAakfYPBQKYVmq/DpiXnj8EvLtUNxb4LdBE8YsvgKZS/Z3Ax0r7B1BccR2Z9gOY1cN4vwR8Pz0/LB3/1gbn1lGqC+CNpf2rga+l55cB/72mr83AO7s5TwC/ogjbR4GvAQfUaTcPWF/zdT0lPf8KcHdN+68A16bn1X/P8aX6+4D56fkW4D2lur+szhd4I0UQnwIcONjfz966br5nakPJvIj4Qbkg3U76NjAbODwVHyppRES8lPa31hwzh+Kv4KMpftm/Bnig1OSp0rEvpMcnSvUvANXFCUcCt0jaW6p/CXhdN3M4EviOpG+Vh0RxFfXzeuOtYwVwoaRxFH+ht0fE+gbn1qgjgbMlfbJUNpLiCqU7UyKivVwg6QhgKcWVzqFpTM/so4+e5g7wy9LzXbz8tfijmuN/9zwi2iV9hiK8jpO0GvhsRGxr4Hw2AHwbzYa6/0ZxS2VaRBzGy7euVGrzu7cuT7eBbgK+CbwuIkYDd9S0742twJyIGF3aDoridaV6b5m+Ffh4TfuDo7g91mW89UTELyhuvy2guIW2oo9z20URRlWvrxnnRTXjfE1E1N7y68nfp/mckL4+H97HeKCHufdgOzC+tD/hFR1HXB8Rb6cI0gC+sR/nsn7msLGh7lCKK41n0wvzF/bQfiQwCugE9qQrgT/bj/NfDlxUfZFfUrOkuamuE9hL8RpCuf0XJB2X2v+BpA/04bzXULwG8TZefm2jt3NrAz4kaYSk2RSvO1VdASyWNE2F/yTpP0s6tJfjPJR0+zNdiX2+l8f3xo0U/7aHp3OdV62QdIykWSmQf0PxPfNSN/3YIHDY2FD3P4GDgSeBNcD/2VfjiNhJ8aL+jRS3cz4EtOzH+b+Tjv++pJ1pDNPSuXYBFwE/Tiu6pkfELRR/Ua9KK642AnP6cN7vUdw2/GFEbO/j3D4NvJfidbAFFK/vkPpqpVi6fEnqqx34iz6M8+8olqo/B9wO3NyHPhr1VaAD+BnwA4p/o92pbhTwdYrvk18CR1As1LAhQhH+8DQzG34knUuxeOCdPTa2QecrGzMbFiSNlfS29H+fjqF4Pe+WwR6XNcar0cxsuBhJ8f+BJlHcGlxFsUTehgHfRjMzs+x8G83MzLLzbbRujBkzJiZOnDjYwzAzG1bWrVv3ZEQ015Y7bLoxceJEWltbB3sYZmbDiqSf1yv3bTQzM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8sua9hImi1ps6R2SUvq1EvS0lS/QdKUUt1ySTskbaw55gZJbWl7TFJbKl9QKm+TtFfSianurjSOat0ROedtZmavlO1joSWNAC4FTgU6gLWSWiLiwVKzOcDktE0DLkuPAFcDlwAryv1GxJmlc3wLeC6VXwdcl8qPB26LiLbSoQsiwp/zbGY2CHJe2UwF2iNiS0S8CKwC5ta0mQusiMIaYLSksQARcTfwdHedSxLwQWBlneqzuik3M7NBkDNsxgFbS/sdqay3bbozA3giIh6pU3cmXcPmqnQL7YIUVF1IWiSpVVJrZ2dng8MwM7Oe5Ayber/Qow9tulP36kXSNGBXRJRf61kQEcdTBNQM4CP1OoyIZRFRiYhKc3Nzg8MwM7Oe5AybDmBCaX88sK0PbbqQ1AScAdxQp3o+NSEUEY+nx53A9RS3+MzMbIDkDJu1wGRJkySNpAiBlpo2LcDCtCptOvBcRGxvoO9TgIcjoqNcKOkA4AMUrw9Vy5okjUnPDwROB16xws3MzPLKthotIvZIOg9YDYwAlkfEJkmLU/3lwB3AaUA7sAs4p3q8pJXATGCMpA7gwoi4MlV3uXpJ3gF0RMSWUtkoYHUKmhHAD4Ar+m2iZmbWI0U0+hLJ75dKpRKtrV4pbWbWG5LWRUSlttzvIGBmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7LKGjaTZkjZLape0pE69JC1N9RskTSnVLZe0Q9LGmmNukNSWtscktaXyiZJeKNVdXjrmJEkPpPMslaSM0zYzsxrZwkbSCOBSYA5wLHCWpGNrms0BJqdtEXBZqe5qYHZtvxFxZkScGBEnAjcBN5eqH63WRcTiUvllqf/qubr0a2Zm+eS8spkKtEfEloh4EVgFzK1pMxdYEYU1wGhJYwEi4m7g6e46T1cnHwRW7msQqb/DIuKeiAhgBTCvj3MyM7M+yBk244Ctpf2OVNbbNt2ZATwREY+UyiZJWi/pR5JmlM7R0cg5JC2S1CqptbOzs8FhmJlZT3KGTb3XRaIPbbpzFq+8qtkOvCEi3gp8Frhe0mG9OUdELIuISkRUmpubGxyGmZn1pClj3x3AhNL+eGBbH9p0IakJOAM4qVoWEbuB3en5OkmPAkenc4zv7TnMzKz/5LyyWQtMljRJ0khgPtBS06YFWJhWpU0HnouI7Q30fQrwcET87vaYpOa0KAFJR1EsBNiS+tspaXp6nWchcNt+z87MzBqW7comIvZIOg9YDYwAlkfEJkmLU/3lwB3AaUA7sAs4p3q8pJXATGCMpA7gwoi4MlXPp+vCgHcAX5W0B3gJWBwR1QUG51KsbjsYuDNtZmY2QFQs0LJalUolWltbB3sYZmbDiqR1EVGpLfc7CJiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsu6xhI2m2pM2S2iUtqVMvSUtT/QZJU0p1yyXtkLSx5pgbJLWl7TFJban8VEnrJD2QHmeVjrkrjaN63BEZp21mZjWacnUsaQRwKXAq0AGsldQSEQ+Wms0BJqdtGnBZegS4GrgEWFHuNyLOLJ3jW8BzafdJ4L0RsU3SW4DVwLjSoQsiorV/ZmdmZr2R88pmKtAeEVsi4kVgFTC3ps1cYEUU1gCjJY0FiIi7gae761ySgA8CK1P79RGxLVVvAg6SNKpfZ2RmZn2SM2zGAVtL+x288kqj0TbdmQE8ERGP1Kl7P7A+InaXyq5Kt9AuSEHVhaRFkloltXZ2djY4DDMz60nOsKn3Cz360KY7Z5Gual7RoXQc8A3g46XiBRFxPEVAzQA+Uq/DiFgWEZWIqDQ3Nzc4DDMz60nOsOkAJpT2xwPb+tCmC0lNwBnADTXl44FbgIUR8Wi1PCIeT487gespbvGZmdkAyRk2a4HJkiZJGgnMB1pq2rQAC9OqtOnAcxGxvYG+TwEejoiOaoGk0cDtwBci4sel8iZJY9LzA4HTgY2YmdmAyRY2EbEHOI9iVdhDwI0RsUnSYkmLU7M7gC1AO3AF8FfV4yWtBO4BjpHUIeljpe7n0/UW2nnAG4ELapY4jwJWS9oAtAGPp3OZmdkAUUSjL5H8fqlUKtHa6pXSZma9IWldRFRqy/0OAmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsmtqpJGkN9Qrj4hf9O9wzMzs1aihsAFuBwIQcBAwCdgMHJdpXGZm9irS0G20iDg+Ik5Ij5OBqcD/6+k4SbMlbZbULmlJnXpJWprqN0iaUqpbLmmHpI01x9wgqS1tj0lqK9V9IfW1WdJ7SuUnSXog1S2VpEbmbWZm/aNPr9lExP3AyftqI2kEcCkwBzgWOEvSsTXN5gCT07YIuKxUdzUwu865z4yIEyPiROAm4OZ0vmOB+RRXW7OB76YxkPpdVDpXl37NhrrYu5f7/+06/r3lEl584fnBHo5ZrzT6ms1nS7sHACcBnT0cNhVoj4gtqY9VwFzgwVKbucCKiAhgjaTRksZGxPaIuFvSxH2MScAHgVmlvlZFxG7gZ5LagamSHgMOi4h70nErgHnAnT3P3GzoaLv7Br51+/lEBJ1P/YIzzrl4sIdk1rBGr2wOBQ5J20jgX4D39XDMOGBrab8jlfW2TXdmAE9ExCM99DUuPe/xHJIWSWqV1NrZ2VOWmg2s3b/5NUFwgA7g1y/8arCHY9YrjS4QuAP4IjCxdMwS4IR9HFPvdZHoQ5vunAWsbKCvhs8REcuAZQCVSqXRcZgNiJNmfoj5O37G87ue5b0fOH+wh2PWK42GzbXA54CNwN4Gj+kAJpT2xwPb+tCmC0lNwBkUt/N66qsjPe/VOcyGmgMPeg3vW3jRYA/DrE8avY3WGRH/EhE/i4ifV7cejlkLTJY0SdJIihfvW2ratAAL06q06cBzEbG9gfGcAjwcEeXbYy3AfEmjJE2iWAhwX+pvp6Tp6XWehcBtDZzDzMz6SaNXNhdK+mfgh8DuamFE3NzdARGxR9J5wGpgBLA8IjZJWpzqL6e4PXca0A7sAs6pHi9pJTATGCOpA7gwIq5M1fN55S00Ut83UixA2AN8IiJeStXnUqxuO5hiYYAXB5iZDSAVC8F6aCRdC7wJ2MTLt9EiIj6acWyDqlKpRGtr62APw8xsWJG0LiIqteWNXtn8SUQc389jMjOz3xONvmazps5/yDQzM2tIo1c2bwfOlvQzitdsRHEbbV9Ln83MzIDGw8Zv72JmZn3WUNg0sMzZzMysW/7wNDMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLLLGjaSZkvaLKld0pI69ZK0NNVvkDSlVLdc0g5JG+sc98nU7yZJF6eyBZLaStteSSemurtS+2rdERmnbWZmNRr9pM5ekzQCuBQ4FegA1kpqiYgHS83mAJPTNg24LD0CXA1cAqyo6fddwFzghIjYXQ2OiLgOuC61OR64LSLaSocuiIjW/pyjmZk1JueVzVSgPSK2RMSLwCqKkCibC6yIwhpgtKSxABFxN/B0nX7PBb4eEbtTux112pwFrOyneZiZ2X7KGTbjgK2l/Y5U1ts2tY4GZki6V9KPJJ1cp82ZdA2bq9IttAskqV7HkhZJapXU2tnZ2cMwzMysUTnDpt4v9OhDm1pNwOHAdODzwI3l8JA0DdgVEeXXehZExPHAjLR9pF7HEbEsIioRUWlubu5hGGZm1qicYdMBTCjtjwe29aFNvX5vTrfe7gP2AmNK9fOpuaqJiMfT407geopbfGZmNkByhs1aYLKkSZJGUoRAS02bFmBhWpU2HXguIrb30O+twCwASUcDI4En0/4BwAcoXh8ilTVJGpOeHwicDnRZ4WZmZvlkW40WEXsknQesBkYAyyNik6TFqf5y4A7gNKAd2AWcUz1e0kpgJjBGUgdwYURcCSwHlqcl0S8CZ0dE9dbbO4COiNhSGsooYHUKmhHAD4ArMk3bzMzq0Mu/p62sUqlEa6tXSpuZ9YakdRFRqS33OwiYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLLusYSNptqTNktolLalTL0lLU/0GSVNKdcsl7ZC0sc5xn0z9bpJ0cSqbKOkFSW1pu7zU/iRJD6TzLJWkXHM2M7OusoWNpBHApcAc4FjgLEnH1jSbA0xO2yLgslLd1cDsOv2+C5gLnBARxwHfLFU/GhEnpm1xqfyy1H/1XF36NTOzfHJe2UwF2iNiS0S8CKyiCImyucCKKKwBRksaCxARdwNP1+n3XODrEbE7tduxr0Gk/g6LiHsiIoAVwLz9mJeZmfVSzrAZB2wt7Xekst62qXU0MEPSvZJ+JOnkUt0kSetT+YzSOToaOYekRZJaJbV2dnb2MAwzM2tUU8a+670uEn1oU6sJOByYDpwM3CjpKGA78IaIeErSScCtko7rzTkiYhmwDKBSqfQ0DjMza1DOK5sOYEJpfzywrQ9t6vV7c7r1dh+wFxgTEbsj4imAiFgHPEpxFdSR+u3NOczMrB/lDJu1wGRJkySNBOYDLTVtWoCFaVXadOC5iNjeQ7+3ArMAJB0NjASelNScFiWQrnQmA1tSfzslTU+r0BYCt/XPFM3MrBHZbqNFxB5J5wGrgRHA8ojYJGlxqr8cuAM4DWgHdgHnVI+XtBKYCYyR1AFcGBFXAsuB5WlJ9IvA2RERkt4BfFXSHuAlYHFEVBcYnEuxuu1g4M60mZnZAFGxQMtqVSqVaG1tHexhmJkNK5LWRUSlttzvIGBmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7LKGjaTZkjZLape0pE69JC1N9RskTSnVLZe0Q9LGOsd9MvW7SdLFqexUSeskPZAeZ5Xa35Xat6XtiFxzNjOzrppydSxpBHApcCrQAayV1BIRD5aazQEmp20acFl6BLgauARYUdPvu4C5wAkRsbsUHE8C742IbZLeAqwGxpUOXRARrf04RTMza1DOK5upQHtEbImIF4FVFCFRNhdYEYU1wGhJYwEi4m7g6Tr9ngt8PSJ2p3Y70uP6iNiW2mwCDpI0qt9nZWZmvZYzbMYBW0v7HbzySqPRNrWOBmZIulfSjySdXKfN+4H11UBKrkq30C6QpHodS1okqVVSa2dnZw/DMDOzRuUMm3q/0KMPbWo1AYcD04HPAzeWw0PSccA3gI+XjlkQEccDM9L2kXodR8SyiKhERKW5ubmHYZiZWaNyhk0HMKG0Px7Y1oc29fq9Od16uw/YC4wBkDQeuAVYGBGPVg+IiMfT407geopbfGZmNkByhs1aYLKkSZJGAvOBlpo2LcDCtCptOvBcRGzvod9bgVkAko4GRgJPShoN3A58ISJ+XG0sqUlSNYwOBE4HuqxwMzOzfLKFTUTsAc6jWBX2EHBjRGyStFjS4tTsDmAL0A5cAfxV9XhJK4F7gGMkdUj6WKpaDhyVlkSvAs6OiEjneiNwQc0S51HAakkbgDbg8XQuMzMbICp+T1utSqUSra1eKW1m1huS1kVEpbbc7yBgZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzh+e1g1JncDPB3scvTQGeHKwB7GfPIfBN9zHD57DYDoyIpprCx02ryKSWut9Qt5w4jkMvuE+fvAchiLfRjMzs+wcNmZmlp3D5tVl2WAPoB94DoNvuI8fPIchx6/ZmJlZdr6yMTOz7Bw2ZmaWncNmCJM0W9JmSe2SltSpf5OkeyTtlvS5UvkESf9X0kOSNkn6dKnutZL+VdIj6fHwYTb+f5D0sKQNkm6RNDrX+HPNodTmc5JC0pjhOAdJn0z9bpJ08XAav6QTJa2R1CapVdLUXOPfzzkcJOk+ST9Jc/i7Ut2A/Sz3i4jwNgQ3YATwKHAUMBL4CXBsTZsjgJOBi4DPlcrHAlPS80OBn1aPBS4GlqTnS4BvDLPx/xnQlJ5/I9f4c84hlU0AVlP8x+Exw20OwLuAHwCjqn0Ms/F/H5iTnp8G3DVEvwYCDknPDwTuBaan/QH5We6vzVc2Q9dUoD0itkTEi8AqYG65QUTsiIi1wG9ryrdHxP3p+U7gIWBcqp4LXJOeXwPMG07jj4jvR8Se1HQNMD7T+LPNIfk28DdA7hU6ueZwLvD1iNhd7WOYjT+Aw9LzPwC2ZRo/7N8cIiKeT7sHpq36PTNQP8v9wmEzdI0Dtpb2O3jlL6uGSJoIvJXiLyKA10XEdih+GCn+osoh1/jLPgrc2ZfBNSjLHCS9D3g8In7SD2PsSa6vw9HADEn3SvqRpJP3d6DdyDX+zwD/IGkr8E3gC/s1yn3brzlIGiGpDdgB/GtEDPTPcr9w2AxdqlPWq7+CJR0C3AR8JiJ+1S+j6sXp65T12/glnQ/sAa7r8wgbGEKdsv2ag6TXAOcDX+6H8TU0hDpl/fF1aAIOB6YDnwdulFTvXPsr1/jPBf46IiYAfw1cuV+j7GEIdcoankNEvBQRJ1JcxU+V9Jb+GthActgMXR0U9/WrxtOLS31JB1L8gF0XETeXqp6QNDa1GUvx11IOucaPpLOB04EFkW5YZ5JjDn8MTAJ+Iumx1Of9kl7fLyPuKtfXoQO4Od3muQ/YS/HGkf0t1/jPBqr7/4viVlcu+zWHqoh4FrgLmJ2KBupnuV84bIautcBkSZMkjQTmAy2NHJj+wrwSeCgi/rGmuoXiB430eFs/jbdWlvFLmg38LfC+iNjVz2Ou1e9ziIgHIuKIiJgYERMpfhFNiYhf9v/wgXzfR7cCs1K7oyle+M7xDsW5xr8NeGd6Pgt4pJ/GW8/+zKFZacWlpIOBU4CHU/VA/Sz3j8FeoeCt+41ilcxPKVaynJ/KFgOL0/PXU/yy+hXwbHp+GPB2isv0DUBb2k5Lx/wh8EOKH64fAq8dZuNvp7j/XS2/fLh9DWr6f4yMq9Eyfh1GAtcCG4H7gVnDbPxvB9ZRrAy7FzhpiH4NTgDWpzlsBL5c6nPAfpb7Y/Pb1ZiZWXa+jWZmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGbBiR9MXBHoNZX3jps9kwIun5iDhksMdh1ltNgz0AM6tP0oeBT1H8B8p7Kf7D38HpTRk3RcQCSbdSvBXKQcB3IuJV9bn19urhsDEbgiS9GTgTeFtE/FbSd4EHgBeieFPGqo9GxNPprUzWSropIp4ahCGb7ZPDxmxoejdwEkWAABxM/Tda/JSkP0/PJwCTAYeNDTkOG7OhScA1EfGKz1mp+cjgmRRvzPinEbFL0l0Ut9PMhhyvRjMbmn4I/BdJR8DvPm/+SOC36W3zofiEyWdS0LyJ4rNlzIYkX9mYDUER8aCkLwHfl3QAxccFfwJYBmyQdD/FJ5UulrQB2EzxMdlmQ5KXPpuZWXa+jWZmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2/x9+2CROYivBpwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "eta nu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAatklEQVR4nO3dfZiddX3n8ffHhCAuQbAExSSQUEGFlgUcgS7iA2oFVhvWbmt8RFyLcImCtbaIXvhQ3apVrG5VFgstXKJIBd1cWyyiq3a3lYcJRDBEJCCWlFQjKg+FBoPf/eO+Rw6TIZlJfieTkffrus41933/Hu7fb86c+Zz7Yc6kqpAkqYXHTPcAJEm/OgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSDNMkucmWTPd4xiUZGWS526i/Iwkf7XtRqTpYqhom0pyW5L7k9yb5IdJ/jrJztM9rk1JsihJJZndqL/HJvlZkqMmKPtoki+02M+W6Of5b/3z8y9Jzkoya3PtquqAqvrGJsr/e1W9vulgtV0yVDQdXlJVOwOHAM8E3jmVxunMmJ/d8WFUVf8OfB54zbh6s4CXA+dvu9FN6D/2z8/zgVcAf7A1nbUKY80MM+aFqV89VfUvwJeB30iyW5L/nWRdkp/2ywvG6ib5RpL3J/lH4D5gnyQnJFmV5J4ktyZ5w0D95yZZk+SPk/woydokxyU5Nsn3kvwkyRkD9R+T5PQktyS5M8nFSZ7QF/9D//Vn/Tv43+rbvK7f/0+TXJ5k74H+Kskbk9wM3DzB9M8HfjfJ4wa2vYjuNfnlTc1tvH5fTxlY/5sk7xtYf3GSFf3R0T8lOfCRn5WHVNV3gf9L9/z8epL/039vfpzkwiS7DuzjtiQv6JffneQLST6T5G7gtf22z/TlY0d+xyf5576/dwz0tVOS8/vv66r+OVwzUP4n/VHUPUluSvL8ycxH24ahommTZCFwLHAd3c/iXwN7A3sB9wN/Oa7Jq4ETgbnAD4AfAS8GdgFOAD6a5JCB+k8CHgvMB84EPg28CngGcCRwZpJ9+rpvBo4DngM8Gfgp8Im+7Nn9112raueq+laS44AzgJcC8+h++X5u3HiPAw4D9h8/96r6J2Bt335wfp+tqg2TmNuk9G3OA94A/BrwP4FlSXacRNv96b5P1wEB/ozue/N0YCHw7k00XwJ8AdgVuPAR6jwLeCrdEdGZSZ7eb38XsAjYB3gh3XM2NqanAqcAz6yquXRBfNvm5qJtqKp8+NhmD7pfAPcCP6MLhk8CO01Q7yDgpwPr3wDeu5m+vwSc2i8/ly6YZvXrc4ECDhuovxw4rl9eBTx/oGxP4OfAbLpfcAXMHij/MvDfBtYfQ3cEtXe/XsBRmxnvO4Gv9Mu79O0PnuTc1gyUFfCUgfW/Ad7XL38K+NNxfd0EPOcR9lPA3XShegvwPuAxE9Q7Drhu3PP6gn753cA/jKv/buAz/fLY93PBQPnVwNJ++VbgRQNlrx+bL/AUusB9AbDDdP88+9j44blOTYfjquqrgxv600AfBY4Gdus3z00yq6oe7NdvH9fmGLp3tfvR/VJ/HHDDQJU7B9re33/94UD5/cDYTQJ7A19M8ouB8geBJz7CHPYGPpbkI4NDojsq+sFE453ABcC7ksyne8e9uqqum+TcJmtv4PgkbxrYNofuiOORHFJVqwc3JNkD+Djdkcvcfkw/3UQfm5s7wL8OLN/HQ8/Fk8e1/+VyVa1OchpdSB2Q5HLgD6vqjknsT9uAp7+0vXgr3amQw6pqFx465ZSBOr/8SO3+9M0lwIeBJ1bVrsBl4+pPxe3AMVW168DjsdVd95noo7xvB94wrv5O1Z3W2mi8E6mqf6Y7bfZKulNfF2zh3O6jC50xTxo3zvePG+fjqmr8qbrN+bN+Pgf2z8+rNjEe2MzcN2MtsGBgfeHDOq76bFU9iy4wC/jgVuxLjRkq2l7MpTty+Fl/gfxdm6k/B9gRWAds6N/Z//ZW7P9s4P1jF9uTzEuypC9bB/yC7hz/YP23Jzmgr//4JL+3Bfs9n+4awRE8dO1hqnNbAbwiyawkR9NdFxrzaeCkJIel8x+S/Ockc6c4zrn0py37I6u3TbH9VFxM973drd/XKWMFSZ6a5Kg+eP+d7mfmwUfoR9PAUNH24i+AnYAfA1cCf7+pylV1D93F9YvpTsO8Ali2Ffv/WN/+K0nu6cdwWL+v+4D3A//Y30F1eFV9ke4d8kX9HU7fAY7Zgv1+ge5039eqau0Wzu1U4CV016leSXf9hb6vUbpbgv+y72s18NotGOd76G4Bvwv4O+DSLehjst4LrAG+D3yV7nu0vi/bEfgA3c/JvwJ70N0woe1EqvwnXZK2X0lOpruI/5zNVta080hF0nYlyZ5Jjuj/duipdNfbvjjd49LkePeXpO3NHLq/p1lMd0rvIrpbzzUDePpLktSMp78kSc08qk9/7b777rVo0aLpHoYkzSjLly//cVXNm6jsUR0qixYtYnR0dLqHIUkzSpIfPFKZp78kSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNTPUUElydJKbkqxOcvoE5Uny8b78+iSH9NsXJvl6klVJViY5daDNQUmuTLIiyWiSQwfK3t73dVOSFw1zbpKkjQ0tVJLMAj4BHAPsD7w8yf7jqh0D7Ns/TgQ+1W/fALy1qp4OHA68caDth4D3VNVBwJn9On35UuAA4Gjgk/0YJEnbyDCPVA4FVlfVrVX1AHARsGRcnSXABdW5Etg1yZ5VtbaqrgWoqnuAVcD8vk0Bu/TLjwfuGOjroqpaX1XfB1b3Y5AkbSOzh9j3fOD2gfU1wGGTqDMfWDu2Icki4GDgqn7TacDlST5MF4r/aaCvKyfo62GSnEh3VMRee+01helIkjZnmEcqmWBbTaVOkp2BS4DTqurufvPJwFuqaiHwFuDcKeyPqjqnqkaqamTevHmbmYIkaSqGGSprgIUD6wt46FTVZusk2YEuUC6sqksH6hwPjK3/LQ+d4prM/iRJQzTMULkG2DfJ4iRz6C6iLxtXZxnwmv4usMOBu6pqbZLQHYGsqqqzxrW5A3hOv3wUcPNAX0uT7JhkMd3F/6vbT0uS9EiGdk2lqjYkOQW4HJgFnFdVK5Oc1JefDVwGHEt3Uf0+4IS++RHAq4Ebkqzot51RVZcBfwB8LMls4N/pr4/0fV8M3Eh399gbq+rBYc1PkrSxVG102eFRY2RkpEZHR6d7GJI0oyRZXlUjE5X5F/WSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKmZoYZKkqOT3JRkdZLTJyhPko/35dcnOaTfvjDJ15OsSrIyyakDbT6fZEX/uC3Jin77oiT3D5SdPcy5SZI2NntYHSeZBXwCeCGwBrgmybKqunGg2jHAvv3jMOBT/dcNwFur6tokc4HlSa6oqhur6mUD+/gIcNdAf7dU1UHDmpMkadOGeaRyKLC6qm6tqgeAi4Al4+osAS6ozpXArkn2rKq1VXUtQFXdA6wC5g82TBLg94HPDXEOkqQpGGaozAduH1hfw7hgmEydJIuAg4GrxrU9EvhhVd08sG1xkuuSfDPJkRMNKsmJSUaTjK5bt27Sk5Ekbd4wQyUTbKup1EmyM3AJcFpV3T2u3st5+FHKWmCvqjoY+EPgs0l22ajzqnOqaqSqRubNmzeJaUiSJmuYobIGWDiwvgC4Y7J1kuxAFygXVtWlg42SzAZeCnx+bFtVra+qO/vl5cAtwH5NZiJJmpRhhso1wL5JFieZAywFlo2rswx4TX8X2OHAXVW1tr9eci6wqqrOmqDvFwDfrao1YxuSzOtvDiDJPnQX/29tPy1J0iMZ2t1fVbUhySnA5cAs4LyqWpnkpL78bOAy4FhgNXAfcELf/Ajg1cANY7cMA2dU1WX98lI2vkD/bOC9STYADwInVdVPhjI5SdKEUjX+Msejx8jISI2Ojk73MCRpRkmyvKpGJirzL+olSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqZlJhUqS7ye5dfxjEu2OTnJTktVJTp+gPEk+3pdfn+SQfvvCJF9PsirJyiSnDrT5fJIV/eO2JCsGyt7e93VTkhdN6jsgSWpm9iTrjQwsPxb4PeAJm2qQZBbwCeCFwBrgmiTLqurGgWrHAPv2j8OAT/VfNwBvraprk8wFlie5oqpurKqXDezjI8Bd/fL+wFLgAODJwFeT7FdVD05yjtJ24Z4772D0mxex54Kn8bRDj53u4UhTMqlQqao7x236iyT/DzhzE80OBVZX1a0ASS4ClgCDobIEuKCqCrgyya5J9qyqtcDaft/3JFkFzB9smyTA7wNHDfR1UVWtB76fZHU/hm9NZo7S9uKvPn0yo+u+zY7ZgT/ddQ/m7zey+UbSdmJSoTJ2Wqr3GLojl7mbaTYfuH1gfQ3dUcjm6synD5R+34uAg4GrxrU9EvhhVd080NeVE/T1MElOBE4E2GuvvTYzBWnb+7cH7mVOduBBfsH6+++d7uFIUzLZ018fAapf3gDcRncKbFMywbaaSp0kOwOXAKdV1d3j6r0c+NwU90dVnQOcAzAyMrJRuTTdXv+qj/L3f/cxFi34TRb/5rOnezjSlEw2VI4BfhdYNNBmKfDeTbRZAywcWF8A3DHZOkl2oAuUC6vq0sFGSWYDLwWeMcX9Sdu9J+1zIK9907nTPQxpi0z2luIvAS8Bfg7c2z/+bTNtrgH2TbI4yRy6EFo2rs4y4DX9XWCHA3dV1dr+esm5wKqqOmuCvl8AfLeq1ozra2mSHZMsprv4f/Uk5ydJamCyRyoLquroqXRcVRuSnAJcDswCzquqlUlO6svPBi4DjgVWA/cBJ/TNjwBeDdwwcMvwGVV1Wb+8lIef+qLv+2K6i/kbgDd655ckbVvpbrzaTKXkHOB/VNUNwx/StjMyMlKjo6PTPQxJmlGSLK+qCW9LnOyRyrOA1yb5PrCe7qJ4VdWBjcYoSfoVMJUL9ZIkbdJk//jxB8MeiCRp5vMDJSVJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzQw1VJIcneSmJKuTnD5BeZJ8vC+/Pskh/faFSb6eZFWSlUlOHdfuTX2/K5N8qN+2KMn9SVb0j7OHOTdJ0sZmD6vjJLOATwAvBNYA1yRZVlU3DlQ7Bti3fxwGfKr/ugF4a1Vdm2QusDzJFVV1Y5LnAUuAA6tqfZI9Bvq7paoOGtacJEmbNswjlUOB1VV1a1U9AFxEFwaDlgAXVOdKYNcke1bV2qq6FqCq7gFWAfP7NicDH6iq9X35j4Y4B0nSFAwzVOYDtw+sr+GhYJh0nSSLgIOBq/pN+wFHJrkqyTeTPHOg+uIk1/Xbj5xoUElOTDKaZHTdunVTnpQk6ZENM1QywbaaSp0kOwOXAKdV1d395tnAbsDhwNuAi5MEWAvsVVUHA38IfDbJLht1XnVOVY1U1ci8efOmOidJ0iYMM1TWAAsH1hcAd0y2TpId6ALlwqq6dFybS/tTZlcDvwB2r6r1VXUnQFUtB26hO6qRJG0jwwyVa4B9kyxOMgdYCiwbV2cZ8Jr+LrDDgbuqam1/5HEusKqqzhrX5kvAUQBJ9gPmAD9OMq+/OYAk+9Bd/L91SHOTJE1gaHd/VdWGJKcAlwOzgPOqamWSk/rys4HLgGOB1cB9wAl98yOAVwM3JFnRbzujqi4DzgPOS/Id4AHg+KqqJM8G3ptkA/AgcFJV/WRY85MkbSxV4y9zPHqMjIzU6OjodA9DkmaUJMuramSiMv+iXpLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNTPUUElydJKbkqxOcvoE5Uny8b78+iSH9NsXJvl6klVJViY5dVy7N/X9rkzyoYHtb+/7uinJi4Y5N0nSxmYPq+Mks4BPAC8E1gDXJFlWVTcOVDsG2Ld/HAZ8qv+6AXhrVV2bZC6wPMkVVXVjkucBS4ADq2p9kj36/e0PLAUOAJ4MfDXJflX14LDmKEl6uGEeqRwKrK6qW6vqAeAiujAYtAS4oDpXArsm2bOq1lbVtQBVdQ+wCpjftzkZ+EBVre/LfzTQ10VVtb6qvg+s7scgSdpGhhkq84HbB9bX8FAwTLpOkkXAwcBV/ab9gCOTXJXkm0meOYX9keTEJKNJRtetWze1GUmSNmmYoZIJttVU6iTZGbgEOK2q7u43zwZ2Aw4H3gZcnCST3B9VdU5VjVTVyLx58zY/C0nSpA0zVNYACwfWFwB3TLZOkh3oAuXCqrp0XJtL+1NmVwO/AHaf5P4kSUM0zFC5Btg3yeIkc+guoi8bV2cZ8Jr+LrDDgbuqam1/5HEusKqqzhrX5kvAUQBJ9gPmAD/u+1qaZMcki+ku/l89pLlJkiYwtLu/qmpDklOAy4FZwHlVtTLJSX352cBlwLF0F9XvA07omx8BvBq4IcmKftsZVXUZcB5wXpLvAA8Ax1dVASuTXAzcSHf32Bu980uStq10v48fnUZGRmp0dHS6hyFJM0qS5VU1MlGZf1EvSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzqarpHsO0SbIO+MF0j2ML7A78eLoHsZVm+hxm+vjBOWwPZur4966qeRMVPKpDZaZKMlpVI9M9jq0x0+cw08cPzmF7MNPHPxFPf0mSmjFUJEnNGCoz0znTPYAGZvocZvr4wTlsD2b6+DfiNRVJUjMeqUiSmjFUJEnNGCrTLMnRSW5KsjrJ6ROUPy3Jt5KsT/JHA9sXJvl6klVJViY5daDsCUmuSHJz/3W3GTiHP0/y3STXJ/likl1n2hwG6vxRkkqy+0wbf5I39f2uTPKhYY1/WHNIclCSK5OsSDKa5NDtdA6PTXJ1km/3c3jPQNk2fT1vtaryMU0PYBZwC7APMAf4NrD/uDp7AM8E3g/80cD2PYFD+uW5wPfG2gIfAk7vl08HPjgD5/DbwOx++YMzcQ79toXA5XR/ZLv7TBo/8Dzgq8COY33MtOcA+ApwTL98LPCN7XQOAXbul3cArgIO79e32eu5xcMjlel1KLC6qm6tqgeAi4AlgxWq6kdVdQ3w83Hb11bVtf3yPcAqYH5fvAQ4v18+HzhuaDMY0hyq6itVtaGveiWwYKbNofdR4I+BYd4RM6zxnwx8oKrWj/UxA+dQwC798uOBO4Y3ha2aQ1XVvf3qDv1j7GdmW76et5qhMr3mA7cPrK/h4b+QJiXJIuBgunc3AE+sqrXQveDo3h0Ny7DmMOh1wJe3ZHCTNJQ5JPkd4F+q6tsNxrgpw3oO9gOOTHJVkm8meebWDnQThjWH04A/T3I78GHg7Vs1yk3bqjkkmZVkBfAj4Iqqmo7X81YzVKZXJtg2pXe0SXYGLgFOq6q7m4xqaoY6hyTvADYAF27xCCcxhAm2bdUckjwOeAdwZoPxbXb3E2xr8RzMBnYDDgfeBlycZKJ9tTCsOZwMvKWqFgJvAc7dqlFuZggTbJv0HKrqwao6iO6o/NAkv9FqYNuSoTK91tCdcx+zgCkcnifZge5FdGFVXTpQ9MMke/Z19qR75zMsw5oDSY4HXgy8svoTykMyjDn8OrAY+HaS2/o+r03ypCYjfrhhPQdrgEv7UzNXA7+g+wDEYRjWHI4Hxtb/lu4U1bBs1RzGVNXPgG8AR/ebtuXreasZKtPrGmDfJIuTzAGWAssm07B/x3gusKqqzhpXvIzuxUT/9X81Gu9EhjKHJEcDfwL8TlXd13jM4zWfQ1XdUFV7VNWiqlpE9wvnkKr61/bDH9rP0ZeAo/p6+9FdfB7WJ+oOaw53AM/pl48Cbm403olszRzmpb/DMclOwAuA7/bF2/L1vPWm+06BR/uD7o6U79HdNfKOfttJwEn98pPofiHdDfysX94FeBbdofX1wIr+cWzf5teAr9G9gL4GPGEGzmE13fnpse1nz7Q5jOv/NoZ099cQn4M5wGeA7wDXAkfNtOegL1tOdyfWVcAzttM5HAhc18/hO8CZA31u09fz1j78mBZJUjOe/pIkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhoq0nUlyxnSPQdpS3lIsbWeS3FtVO0/3OKQtMXu6ByA9miV5FfBmuj80vIruj+J26j9YcGVVvTLJl+g+/uOxwMeq6lfu/5rrV4ehIk2TJE8HXgYcUVU/T/JJ4Abg/uo+WHDM66rqJ/3Hd1yT5JKqunMahixtlqEiTZ/nA8+gCwqAnZj4wwLfnOS/9MsLgX0BQ0XbJUNFmj4Bzq+qh/2Pj3H/Zva5dB8u+FtVdV+Sb9CdBpO2S979JU2frwH/Ncke8Mv/Rb438PP+o9yh+2+FP+0D5Wl0/9tE2m55pCJNk6q6Mck7ga8keQzdv5h9I3AOcH2Sa+n+6+VJSa4HbqL718rSdstbiiVJzXj6S5LUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIz/x86TFOauLUJTQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "eta lamb\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfC0lEQVR4nO3dfZRdVZ3m8e+TIiFRoINSSEgCCRrQgBhiGdJLQSeiVjJKsO1ZE8UBcZwYl/GN8QXEhbxIt6/NyBLJoNIdljCZjIrWokFAp4PjS14qkAQDRCsBTEGUEggQQwcTfvPH2QWHm5uqW8k+uXXh+ax1Vp2z9z7n7F23bj33vNx7FRGYmZnlMKLZHTAzsxcOh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VsxYj6S2SepvdjzJJ6yW9ZYD6z0v67v7rkTWLQ8X2K0n3S3pK0jZJf5L0z5IOana/BiJpkqSQdECm7Y2WtFXSrDp1l0v6QY797I00zr+kx+dBSf8kqW2w9SLi+IhYNkD9P0TEh7J21oYlh4o1w7si4iBgOvAG4AtDWVmFlvnbrQ2jiPh34H8DZ9W0awPeCyzef72r63Xp8Xkr8D7gv+3LxnKFsbWGlnli2gtPRDwI3AycIOlQSTdK6pP0WJqf0N9W0jJJl0n6FbAdOEbSOZLukfSkpE2SPlxq/xZJvZI+K+lhSVsknSFpjqTfSXpU0udL7UdIOk/SRkmPSFoq6WWp+hfp59b0Cv5v0zofTPt/TNItko4ubS8kfVTS74Hf1xn+YuA9kl5SKnsHxXPy5oHGVivt61Wl5X+R9KXS8jslrUlHR7+WdOKeH5XnRMS9wP+jeHxeKen/pt/NnyVdJ2lsaR/3SzotzV8k6QeSvi/pCeADqez7qb7/yO9sSX9I27ugtK0xkhan3+s96THsLdV/Lh1FPSlpg6S3NjIe2z8cKtY0kiYCc4A7Kf4W/xk4GjgKeAr4Vs0q/wWYDxwMPAA8DLwTOAQ4B7hc0vRS+yOA0cB44ELgO8D7gdcDpwAXSjomtf04cAbwZuBI4DHgylR3avo5NiIOiojfSDoD+Dzwd0A7xT/f/1XT3zOAk4GptWOPiF8DW9L65fFdHxE7GxhbQ9I61wAfBl4O/E+gS9KBDaw7leL3dCcg4B8pfjevASYCFw2w+lzgB8BY4Lo9tHkTcBzFEdGFkl6Tyr8ITAKOAd5G8Zj19+k4YCHwhog4mCKI7x9sLLYfRYQnT/ttovgHsA3YShEM3wbG1Gk3DXistLwMuGSQbf8Y+ESafwtFMLWl5YOBAE4utV8NnJHm7wHeWqobB/wVOIDiH1wAB5Tqbwb+a2l5BMUR1NFpOYBZg/T3C8Ctaf6QtP5JDY6tt1QXwKtKy/8CfCnNXwVcWrOtDcCb97CfAJ6gCNWNwJeAEXXanQHcWfO4npbmLwJ+UdP+IuD7ab7/9zmhVL8SmJfmNwHvKNV9qH+8wKsoAvc0YGSz/5497T75XKc1wxkR8bNyQToNdDnQCRyaig+W1BYRu9Ly5pp1ZlO8qj2W4p/6S4C7Sk0eKa37VPr5p1L9U0D/TQJHAzdIeqZUvwt4xR7GcDTwTUnfKHeJ4qjogXr9reNa4IuSxlO84u6JiDsbHFujjgbOlvSxUtkoiiOOPZkeET3lAkmHA1dQHLkcnPr02ADbGGzsAH8szW/nucfiyJr1n52PiB5Jn6QIqeMl3QKcGxEPNbA/2w98+suGi/9OcSrk5Ig4hOdOOanU5tmP1E6nb34IfB14RUSMBW6qaT8Um4HZETG2NI2O4rpPvY/y3gx8uKb9mChOa+3W33oi4g8Up83OpDj1de1ejm07Rej0O6Kmn5fV9PMlEVF7qm4w/5jGc2J6fN4/QH9gkLEPYgswobQ88Xkbjrg+It5EEZgBfGUf9mWZOVRsuDiY4shha7pA/sVB2o8CDgT6gJ3plf3b92H/i4DL+i+2S2qXNDfV9QHPUJzjL7c/X9Lxqf3fSPpPe7HfxRTXCN7Ic9cehjq2NcD7JLVJ6qS4LtTvO8ACSSer8FJJ/1HSwUPs58Gk05bpyOozQ1x/KJZS/G4PTfta2F8h6ThJs1Lw/jvF38yuPWzHmsChYsPF/wDGAH8GlgM/HahxRDxJcXF9KcVpmPcBXfuw/2+m9W+V9GTqw8lpX9uBy4BfpTuoZkbEDRSvkJekO5x+C8zei/3+gOJ0388jYsteju0TwLsorlOdSXH9hbStbopbgr+VttUDfGAv+nkxxS3gjwP/CvxoL7bRqEuAXuA+4GcUv6Mdqe5A4MsUfyd/BA6nuGHChglF+Eu6zGz4kvQRiov4bx60sTWdj1TMbFiRNE7SG9N7h46juN52Q7P7ZY3x3V9mNtyMong/zWSKU3pLKG49txbg019mZpaNT3+ZmVk2L+rTX4cddlhMmjSp2d0wM2spq1ev/nNEtNere1GHyqRJk+ju7m52N8zMWoqkB/ZU59NfZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWTaWhIqlT0gZJPZLOq1MvSVek+nWSpqfy0ZJWSlorab2ki0vrXCTpQUlr0jQnlU+S9FSpfFGVYzMzs91V9nXCktqAK4G3Ab3AKkldEXF3qdlsYEqaTgauSj93ALMiYpukkcAvJd0cEcvTepdHxNfr7HZjREyrZkRmZjaYKo9UZgA9EbEpIp4GlgBza9rMBa6NwnJgrKRxaXlbajMyTVFhX83MLIMqQ2U8sLm03JvKGmojqU3SGuBh4LaIWFFqtzCdLrtG0qGl8smS7pR0u6RT6nVK0nxJ3ZK6+/r69m5kZmZWV5WhojpltUcbe2wTEbvSqawJwAxJJ6T6q4BXAtOALcA3UvkW4KiIOAk4F7he0iG7bTzi6ojoiIiO9vb2oY3IzMwGVGWo9AITS8sTgIeG2iYitgLLgM60/KcUOM8A36E4zUZE7IiIR9L8amAjcGymsZiZWQOqDJVVwBRJkyWNAuYBXTVtuoCz0l1gM4HHI2KLpHZJYwEkjQFOA+5Ny+NK678b+G0qb083ByDpGIqL/5sqG52Zme2msru/ImKnpIXALUAbcE1ErJe0INUvAm4C5gA9wHbgnLT6OGBxCokRwNKIuDHVfVXSNIrTZPcDH07lpwKXSNoJ7AIWRMSjVY3PzMx2p4gX701VHR0d0d3d3exumJm1FEmrI6KjXp3fUW9mZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbCoNFUmdkjZI6pF0Xp16Sboi1a+TND2Vj5a0UtJaSeslXVxa5yJJD0pak6Y5pbrz07Y2SHpHlWMzM7PdHVDVhiW1AVcCbwN6gVWSuiLi7lKz2cCUNJ0MXJV+7gBmRcQ2SSOBX0q6OSKWp/Uuj4iv1+xvKjAPOB44EviZpGMjYldVYzQzs+er8khlBtATEZsi4mlgCTC3ps1c4NooLAfGShqXlrelNiPTFIPsby6wJCJ2RMR9QE/qg5mZ7SdVhsp4YHNpuTeVNdRGUpukNcDDwG0RsaLUbmE6XXaNpEOHsD8kzZfULam7r69vL4ZlZmZ7UmWoqE5Z7dHGHttExK6ImAZMAGZIOiHVXwW8EpgGbAG+MYT9ERFXR0RHRHS0t7cPNgYzMxuCKkOlF5hYWp4APDTUNhGxFVgGdKblP6XAeQb4Ds+d4mpkf2ZmVqEqQ2UVMEXSZEmjKC6id9W06QLOSneBzQQej4gtktoljQWQNAY4Dbg3LY8rrf9u4Lelbc2TdKCkyRQX/1dWNDYzM6ujsru/ImKnpIXALUAbcE1ErJe0INUvAm4C5lBcVN8OnJNWHwcsTneQjQCWRsSNqe6rkqZRnNq6H/hw2t56SUuBu4GdwEd955eZ2f6liMFuqnrh6ujoiO7u7mZ3w8yspUhaHREd9er8jnozM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZVNpqEjqlLRBUo+k8+rUS9IVqX6dpOmpfLSklZLWSlov6eI6635aUkg6LC1PkvSUpDVpWlTl2MzMbHcHVLVhSW3AlcDbgF5glaSuiLi71Gw2MCVNJwNXpZ87gFkRsU3SSOCXkm6OiOVp2xPTdv9Qs9uNETGtqjGZmdnAqjxSmQH0RMSmiHgaWALMrWkzF7g2CsuBsZLGpeVtqc3INEVpvcuBz9aUmZlZk1UZKuOBzaXl3lTWUBtJbZLWAA8Dt0XEilR+OvBgRKyts8/Jku6UdLukU+p1StJ8Sd2Suvv6+vZmXGZmtgdVhorqlNUeWeyxTUTsSqeyJgAzJJ0g6SXABcCFddbbAhwVEScB5wLXSzpkt41HXB0RHRHR0d7e3vhozMxsUFWGSi8wsbQ8AXhoqG0iYiuwDOgEXglMBtZKuj+1v0PSERGxIyIeSeusBjYCx2Yai5mZNaDKUFkFTJE0WdIoYB7QVdOmCzgr3QU2E3g8IrZIapc0FkDSGOA04N6IuCsiDo+ISRExiSKUpkfEH9M6bWmdYygu/m+qcHxmZlajsru/ImKnpIXALUAbcE1ErJe0INUvAm4C5gA9wHbgnLT6OGBxCokRwNKIuHGQXZ4KXCJpJ7ALWBARj+Yel5mZ7ZkiXrw3UHV0dER3d3ezu2Fm1lIkrY6Ijnp1fke9mZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYNf/S9pCMovnc+gFUR8cfKemVmZi2poSMVSR8CVgJ/B/w9sFzSB6vsmJmZtZ5Gj1Q+A5zU/3W9kl4O/Bq4pqqOmZlZ62n0mkov8GRp+Ulgc/7umJlZKxvwSEXSuWn2QWCFpJ9QXFOZS3E6zMzM7FmDnf46OP3cmKZ+P6mmO2Zm1soGDJWIuHh/dcTMzFpfo3d/dUi6QdIdktb1Tw2s1ylpg6QeSefVqZekK1L9OknTU/loSSslrZW0XtJu4Sbp05JC0mGlsvPTtjZIekcjYzMzs3wavfvrOoo7wO4CnmlkBUltwJXA2ygu9K+S1BURd5eazQampOlk4Kr0cwcwKyK2SRoJ/FLSzRGxPG17YtruH0r7mwrMA44HjgR+JunYiNjV4BjNhoUnH3mI7tuXMG7Cq3n1jDnN7o7ZkDQaKn0R0TXEbc8AeiJiE4CkJRQX+MuhMhe4NiKC4r0vYyWNi4gtwLbUZmSaorTe5cBnef61nbnAkojYAdwnqSf14TdD7LdZU333Ox+hu28tB2okl449nPHHdjS7S2YNazRUvijpu8DPKY4iAIiIHw2wznief9txL8VRyGBtxgNb0pHOauBVwJURsQJA0unAgxGxVlLttpbX2dbzSJoPzAc46qijBui+WXP85eltjNJIdvEMO57aNvgKZsNIo6FyDvBqiiOG/tNfAQwUKqpTFo22SaetpkkaC9wg6QRgE3AB8Pa93B8RcTVwNUBHR8du9WbN9qH3X85P//WbTJrwWia/9tRmd8dsSBoNlddFxGuHuO1eYGJpeQLw0FDbRMRWScuATuAWYDLQf5QyAbhD0owG92c27B1xzIl84GPfa3Y3zPZKo++oX54uhA/FKmCKpMmSRlFcRK+9LtMFnJXuApsJPB4RWyS1pyMUJI0BTgPujYi7IuLwiJgUEZMogmR6+nDLLmCepAMlTaa4+O83aJqZ7UeNHqm8CThb0n0U11QEREScuKcVImKnpIUURxdtwDURsV7SglS/CLgJmAP0ANspTrMBjAMWp+sqI4ClEXHjQB1M215KcSPATuCjvvPLzGz/UnHj1SCNpKPrlUfEA9l7tB91dHREd3d3s7thZtZSJK2OiLq3JTZ0pNIfHpIOB0Zn7JuZmb2ANPqO+tMl/R64D7gduB+4ucJ+mZlZC2r0Qv2lwEzgdxExGXgr8KvKemVmZi2p0VD5a/qCrhGSRkTEvwHTquuWmZm1okbv/toq6SDgF8B1kh6muMPKzMzsWY0eqcwFngI+BfyU4rtV3lVVp8zMrDU1evfXX0qLiyvqi5mZtbjBvk74Sep8fhbPvfnxkEp6ZWZmLWmwb348eKB6MzOzskavqZiZmQ3KoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLJtKQ0VSp6QNknoknVenXpKuSPXrJE1P5aMlrZS0VtJ6SReX1rk0tV0j6VZJR6bySZKeSuVrJC2qcmxmZra7ykJFUhtwJTAbmAq8V9LUmmazgSlpmg9clcp3ALMi4nUU3zDZKWlmqvtaRJwYEdOAG4ELS9vbGBHT0rSggmGZmdkAqjxSmQH0RMSmiHgaWELxZV9lc4Fro7AcGCtpXFreltqMTFMARMQTpfVfSv2P5jczsyaoMlTGA5tLy72prKE2ktokrQEeBm6LiBX9jSRdJmkzcCbPP1KZLOlOSbdLOqVepyTNl9Qtqbuvr28vh2ZmZvVUGSqqU1Z7VLHHNhGxK53imgDMkHTCsw0iLoiIicB1wMJUvAU4KiJOAs4Frpe025eIRcTVEdERER3t7e1DHZOZmQ2gylDpBSaWlicADw21TURsBZYBnXX2cT3wntRuR0Q8kuZXAxuBY/e692ZmNmRVhsoqYIqkyZJGAfOArpo2XcBZ6S6wmcDjEbFFUruksQCSxgCnAfem5Sml9U8vlbenmwOQdAzFxf9NlY3OzMx2M+DXCe+LiNgpaSFwC9AGXBMR6yUtSPWLgJuAOUAPsB04J60+DlicQmIEsDQibkx1X5Z0HPAM8ADQf5fXqcAlknYCu4AFEfFoVeMzM7PdKeLFe/NUR0dHdHd3N7sbZmYtRdLqiOioV+d31JuZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsm0pDRVKnpA2SeiSdV6dekq5I9eskTU/loyWtlLRW0npJF5fWuTS1XSPpVklHlurOT9vaIOkdVY7NzMx2V1moSGoDrgRmA1OB90qaWtNsNjAlTfOBq1L5DmBWRLwOmAZ0SpqZ6r4WESdGxDTgRuDCtL+pwDzgeKAT+Hbqg5mZ7SdVHqnMAHoiYlNEPA0sAebWtJkLXBuF5cBYSePS8rbUZmSaAiAiniit/9L+8rStJRGxIyLuA3pSH8zMbD+pMlTGA5tLy72prKE2ktokrQEeBm6LiBX9jSRdJmkzcCbpSKXB/SFpvqRuSd19fX17My4zM9uDKkNFdcqi0TYRsSud4poAzJB0wrMNIi6IiInAdcDCIeyPiLg6IjoioqO9vX3wUZiZWcOqDJVeYGJpeQLw0FDbRMRWYBnFdZJa1wPvGcL+zMysQlWGyipgiqTJkkZRXETvqmnTBZyV7gKbCTweEVsktUsaCyBpDHAacG9anlJa//T+8rSteZIOlDSZ4uL/yorGZmZmdRxQ1YYjYqekhcAtQBtwTUSsl7Qg1S8CbgLmUFxU3w6ck1YfByxOd2+NAJZGxI2p7suSjgOeAR4A+re3XtJS4G5gJ/DRiNhV1fjMzGx3itjtssOLRkdHR3R3dze7G2ZmLUXS6ojoqFfnd9SbmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLJtKQ0VSp6QNknoknVenXpKuSPXrJE1P5aMlrZS0VtJ6SReX1vmapHtT+xskjU3lkyQ9JWlNmhZVOTYzM9tdZaEiqQ24EpgNTAXeK2lqTbPZwJQ0zQeuSuU7gFkR8TpgGtApaWaquw04ISJOBH4HnF/a3saImJamBRUMy8zMBlDlkcoMoCciNkXE08ASYG5Nm7nAtVFYDoyVNC4tb0ttRqYpACLi1ojYmeqWAxMqHIOZmQ1BlaEyHthcWu5NZQ21kdQmaQ3wMHBbRKyos48PAjeXlidLulPS7ZJOqdcpSfMldUvq7uvrG9KAzMxsYFWGiuqURaNtImJXREyjOBKZIemE560oXQDsBK5LRVuAoyLiJOBc4HpJh+y28YirI6IjIjra29uHMh4zMxtElaHSC0wsLU8AHhpqm4jYCiwDOvvLJJ0NvBM4MyL6Q2hHRDyS5lcDG4FjM4zDzMwaVGWorAKmSJosaRQwD+iqadMFnJXuApsJPB4RWyS1l+7qGgOcBtybljuBzwGnR8T2/g2lddrS/DEUF/83VTg+MzOrcUBVG46InZIWArcAbcA1EbFe0oJUvwi4CZgD9ADbgXPS6uOAxSkkRgBLI+LGVPct4EDgNkkAy9OdXqcCl0jaCewCFkTEo1WNz8zMdqd09uhFqaOjI7q7u5vdDTOzliJpdUR01KvzO+rNzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZvKi/pEtSH/BAs/uxFw4D/tzsTuyjVh9Dq/cfPIbhoFX7f3REtNereFGHSquS1L2nb11rFa0+hlbvP3gMw0Gr978en/4yM7NsHCpmZpaNQ6U1Xd3sDmTQ6mNo9f6DxzActHr/d+NrKmZmlo2PVMzMLBuHipmZZeNQaTJJnZI2SOqRdF6d+ldL+o2kHZI+XSqfKOnfJN0jab2kT5TqXibpNkm/Tz8PbcExfE3SvZLWSbpB0thWG0OpzaclhaTDWq3/kj6Wtrte0ler6n9VY5A0TdJySWskdUuaMUzHMFrSSklr0xguLtXt1+fzPosIT02agDZgI3AMMApYC0ytaXM48AbgMuDTpfJxwPQ0fzDwu/51ga8C56X584CvtOAY3g4ckOa/0opjSGUTgVso3mR7WCv1H/gPwM+AA/u30WqPAXArMDvNzwGWDdMxCDgozY8EVgAz0/J+ez7nmHyk0lwzgJ6I2BQRTwNLgLnlBhHxcESsAv5aU74lIu5I808C9wDjU/VcYHGaXwycUdkIKhpDRNwaETtT0+XAhFYbQ3I58Fmgyjtiqur/R4AvR8SO/m204BgCOCTN/w3wUHVD2KcxRERsS4sj09T/N7M/n8/7zKHSXOOBzaXlXp7/D6khkiYBJ1G8ugF4RURsgeIJR/HqqCpVjaHsg8DNe9O5BlUyBkmnAw9GxNoMfRxIVY/BscApklZIul3SG/a1owOoagyfBL4maTPwdeD8ferlwPZpDJLaJK0BHgZui4hmPJ/3mUOluVSnbEivaCUdBPwQ+GREPJGlV0NT6RgkXQDsBK7b6x420IU6Zfs0BkkvAS4ALszQv0F3X6csx2NwAHAoMBP4DLBUUr195VDVGD4CfCoiJgKfAr63T70cpAt1yhoeQ0TsiohpFEflMySdkKtj+5NDpbl6Kc6595vAEA7PJY2keBJdFxE/KlX9SdK41GYcxSufqlQ1BiSdDbwTODPSCeWKVDGGVwKTgbWS7k/bvEPSEVl6/HxVPQa9wI/SqZmVwDMUH4BYharGcDbQv/x/KE5RVWWfxtAvIrYCy4DOVLQ/n8/7zKHSXKuAKZImSxoFzAO6GlkxvWL8HnBPRPxTTXUXxZOJ9PMnmfpbTyVjkNQJfA44PSK2Z+5zrexjiIi7IuLwiJgUEZMo/uFMj4g/5u9+ZX9HPwZmpXbHUlx8ruoTdasaw0PAm9P8LOD3mfpbz76MoV3pDkdJY4DTgHtT9f58Pu+7Zt8p8GKfKO5I+R3FXSMXpLIFwII0fwTFP6QngK1p/hDgTRSH1uuANWmak9Z5OfBziifQz4GXteAYeijOT/eXL2q1MdRs/34quvurwsdgFPB94LfAHcCsVnsMUt1qijuxVgCvH6ZjOBG4M43ht8CFpW3u1+fzvk7+mBYzM8vGp7/MzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomA0zkj7f7D6Y7S3fUmw2zEjaFhEHNbsfZnvjgGZ3wOzFTNL7gY9TvNFwBcWb4sakDxZcHxFnSvoxxcd/jAa+GREvuO81txcOh4pZk0h6DfCfgTdGxF8lfRu4C3gqig8W7PfBiHg0fXzHKkk/jIhHmtBls0E5VMya563A6ymCAmAM9T8s8OOS3p3mJwJTAIeKDUsOFbPmEbA4Ip73HR81XzP7FooPF/zbiNguaRnFaTCzYcl3f5k1z8+Bv5d0ODz7XeRHA39NH+UOxbcVPpYC5dUU321iNmz5SMWsSSLibklfAG6VNILiK2Y/ClwNrJN0B8W3Xi6QtA7YQPHVymbDlm8pNjOzbHz6y8zMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2z+P/nfNUcYUY0vAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "eta rho\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAedElEQVR4nO3df5RXdb3v8eeLAYRSw45jIqCgoSc0RfqGnFVah6gGbkfsdn9Qdi27XaQV/TjdTmG2TC3v6bc3VybXTnRwpYfLrSyWR49a99C5neLHoIChUANpjFJOKirBwcD3/WN/JrdfvjDfgc/mOyOvx1p7zd6fH3t/PvOdmdfsHzNfRQRmZmY5DGn1AMzM7MXDoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFbJCR9EZJ3a0eR5mkDZLeeID6T0n6u8M3ImsVh4odVpIekrRL0g5Jv5P0bUlHt3pcByJpvKSQNDTT/kZI2i5peoO66yR9N8dxDkaa5x/S6/OIpK9KauurX0ScGRHLD1D/PyLi/VkHawOSQ8Va4a8i4mhgCvBa4NP96azCoPnarQ+jiPg34H8Dl9S1awPeCSw+fKNr6Jz0+rwJeBfw3w5lZ7nC2AaHQfONaS8+EfEIcCdwlqTjJN0uqUfSk2l9bG9bScslXSvpX4GdwKmSLpX0oKRnJG2RdFmp/RsldUv6hKTHJG2TdJGkWZJ+KekJSZ8qtR8iaYGkzZIel7RU0stT9b+kj9vTb/B/kfq8Lx3/SUl3STqltL+Q9EFJvwJ+1WD6i4F3SHpJqeytFN+Tdx5obvXSsV5Z2v57SZ8rbb9N0tp0dvQzSWfv/1V5XkRsBP4fxetzmqT/mz43v5d0i6RRpWM8JGlGWr9K0nclfUfS08B7U9l3Un3vmd97JP0m7e+K0r5GSlqcPq8Pptewu1T/yXQW9YykTZLe1Mx87PBwqFjLSBoHzALuo/ha/DZwCnAysAv4el2X/wLMBY4BHgYeA94GHAtcClwnaUqp/YnACGAMcCXwTeDdwGuA84ErJZ2a2n4YuAh4A3AS8CRwQ6q7IH0cFRFHR8TPJV0EfAr490A7xQ/ff6gb70XAecCk+rlHxM+Abal/eX63RsSeJubWlNRnEXAZ8GfA/wKWSTqqib6TKD5P9wEC/pbic/MqYBxw1QG6zwa+C4wCbtlPm9cDZ1CcEV0p6VWp/DPAeOBU4M0Ur1nvmM4A5gOvjYhjKIL4ob7mYodRRHjxctgWih8AO4DtFMHwDWBkg3aTgSdL28uBa/rY9w+Aj6T1N1IEU1vaPgYI4LxS+zXARWn9QeBNpbrRwB+BoRQ/4AIYWqq/E/ivpe0hFGdQp6TtAKb3Md5PA3en9WNT/3ObnFt3qS6AV5a2/x74XFq/Efhs3b42AW/Yz3ECeJoiVDcDnwOGNGh3EXBf3es6I61fBfxLXfurgO+k9d7P59hS/SpgTlrfAry1VPf+3vkCr6QI3BnAsFZ/PXvZd/G1TmuFiyLiR+WCdBnoOqADOC4VHyOpLSL2pu2tdX1mUvxWezrFD/WXAPeXmjxe6rsrffxdqX4X0PuQwCnAbZKeK9XvBV6xnzmcAnxN0lfKQ6I4K3q40XgbuBn4jKQxFL9xd0XEfU3OrVmnAO+R9KFS2XCKM479mRIRXeUCSScA11OcuRyTxvTkAfbR19wBflta38nzr8VJdf3/tB4RXZI+ShFSZ0q6C/hYRDzaxPHsMPDlLxso/jvFpZDzIuJYnr/kpFKbP/1L7XT55nvAl4FXRMQo4I669v2xFZgZEaNKy4go7vs0+lfeW4HL6tqPjOKy1j7jbSQifkNx2exiiktfNx/k3HZShE6vE+vGeW3dOF8SEfWX6vryt2k+Z6fX590HGA/0Mfc+bAPGlrbHvWDHEbdGxOspAjOALxzCsSwzh4oNFMdQnDlsTzfIP9NH++HAUUAPsCf9Zv+WQzj+QuDa3pvtktolzU51PcBzFNf4y+0vl3Rmav8ySf/xII67mOIewet4/t5Df+e2FniXpDZJHRT3hXp9E5gn6TwVXirp30k6pp/jPIZ02TKdWf1NP/v3x1KKz+1x6VjzeysknSFpegref6P4mtm7n/1YCzhUbKD4n8BI4PfACuCfDtQ4Ip6huLm+lOIyzLuAZYdw/K+l/ndLeiaN4bx0rJ3AtcC/pieopkXEbRS/IS9JTzj9Aph5EMf9LsXlvh9HxLaDnNtHgL+iuE91McX9F9K+OikeCf562lcX8N6DGOfVFI+APwX8I/D9g9hHs64BuoFfAz+i+BztTnVHAZ+n+Dr5LXACxQMTNkAowm/SZWYDl6QPUNzEf0Ofja3lfKZiZgOKpNGSXpf+dugMivttt7V6XNYcP/1lZgPNcIq/p5lAcUlvCcWj5zYI+PKXmZll48tfZmaWzRF9+ev444+P8ePHt3oYZmaDypo1a34fEe2N6o7oUBk/fjydnZ2tHoaZ2aAi6eH91fnyl5mZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZVNpqEjqkLRJUpekBQ3qJen6VL9e0pRUPkLSKknrJG2QdHWpz1WSHpG0Ni2zUvl4SbtK5QurnJuZme2rsrcTltQG3AC8GegGVktaFhEPlJrNBCam5TzgxvRxNzA9InZIGgb8VNKdEbEi9bsuIr7c4LCbI2JyNTMyM7O+VHmmMhXoiogtEfEssASYXddmNnBzFFYAoySNTts7UpthaYkKx2pmZhlUGSpjgK2l7e5U1lQbSW2S1gKPAfdExMpSu/npctkiSceVyidIuk/STySd32hQkuZK6pTU2dPTc3AzMzOzhqoMFTUoqz/b2G+biNibLmWNBaZKOivV3wicBkwGtgFfSeXbgJMj4lzgY8Ctko7dZ+cRN0VELSJq7e3t/ZuRmZkdUJWh0g2MK22PBR7tb5uI2A4sBzrS9u9S4DwHfJPiMhsRsTsiHk/ra4DNwOmZ5mJmZk2oMlRWAxMlTZA0HJgDLKtrswy4JD0FNg14KiK2SWqXNApA0khgBrAxbY8u9X878ItU3p4eDkDSqRQ3/7dUNjszM9tHZU9/RcQeSfOBu4A2YFFEbJA0L9UvBO4AZgFdwE7g0tR9NLA4hcQQYGlE3J7qvihpMsVlsoeAy1L5BcA1kvYAe4F5EfFEVfMzM7N9KeLIfaiqVqtFZ2dnq4dhZjaoSFoTEbVGdf6LejMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZllU2moSOqQtElSl6QFDeol6fpUv17SlFQ+QtIqSeskbZB0danPVZIekbQ2LbNKdZenfW2S9NYq52ZmZvsaWtWOJbUBNwBvBrqB1ZKWRcQDpWYzgYlpOQ+4MX3cDUyPiB2ShgE/lXRnRKxI/a6LiC/XHW8SMAc4EzgJ+JGk0yNib1VzNDOzF6ryTGUq0BURWyLiWWAJMLuuzWzg5iisAEZJGp22d6Q2w9ISfRxvNrAkInZHxK+BrjQGMzM7TKoMlTHA1tJ2dyprqo2kNklrgceAeyJiZand/HS5bJGk4/pxPCTNldQpqbOnp+cgpmVmZvtTZaioQVn92cZ+20TE3oiYDIwFpko6K9XfCJwGTAa2AV/px/GIiJsiohYRtfb29r7mYGZm/VBlqHQD40rbY4FH+9smIrYDy4GOtP27FDjPAd/k+UtczRzPzMwqVGWorAYmSpogaTjFTfRldW2WAZekp8CmAU9FxDZJ7ZJGAUgaCcwANqbt0aX+bwd+UdrXHElHSZpAcfN/VUVzMzOzBip7+isi9kiaD9wFtAGLImKDpHmpfiFwBzCL4qb6TuDS1H00sDg9QTYEWBoRt6e6L0qaTHFp6yHgsrS/DZKWAg8Ae4AP+skvM7PDSxF9PVT14lWr1aKzs7PVwzAzG1QkrYmIWqM6/0W9mZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLKpNFQkdUjaJKlL0oIG9ZJ0fapfL2lKKh8haZWkdZI2SLq6Qd+PSwpJx6ft8ZJ2SVqbloVVzs3MzPY1tKodS2oDbgDeDHQDqyUti4gHSs1mAhPTch5wY/q4G5geETskDQN+KunOiFiR9j0u7fc3dYfdHBGTq5qTmZkdWJVnKlOBrojYEhHPAkuA2XVtZgM3R2EFMErS6LS9I7UZlpYo9bsO+ERdmZmZtViVoTIG2Fra7k5lTbWR1CZpLfAYcE9ErEzlFwKPRMS6BsecIOk+ST+RdH6jQUmaK6lTUmdPT8/BzMvMzPajylBRg7L6M4v9tomIvelS1lhgqqSzJL0EuAK4skG/bcDJEXEu8DHgVknH7rPziJsiohYRtfb29uZnY2ZmfaoyVLqBcaXtscCj/W0TEduB5UAHcBowAVgn6aHU/l5JJ0bE7oh4PPVZA2wGTs80FzMza0KVobIamChpgqThwBxgWV2bZcAl6SmwacBTEbFNUrukUQCSRgIzgI0RcX9EnBAR4yNiPEUoTYmI36Y+banPqRQ3/7dUOD8zM6tT2dNfEbFH0nzgLqANWBQRGyTNS/ULgTuAWUAXsBO4NHUfDSxOITEEWBoRt/dxyAuAayTtAfYC8yLiidzzMjOz/VPEkfsAVa1Wi87OzlYPw8xsUJG0JiJqjer8F/VmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJpKlQkvUzSdZI60/IVSS+renBmZja4NHumsgh4GvhPaXka+HZVgzIzs8Gp2VA5LSI+ExFb0nI1cGpfnSR1SNokqUvSggb1knR9ql8vaUoqHyFplaR1kjZIurpB349LCknHl8ouT/vaJOmtTc7NzMwyaTZUdkl6fe+GpNcBuw7UQVIbcAMwE5gEvFPSpLpmM4GJaZkL3JjKdwPTI+IcYDLQIWlaad/jgDcDvymVTQLmAGcCHcA30hjMBpVnHn+Uf/7+V9m46o5WD8Ws34Y22W4ecHO6jyLgCeC9ffSZCnRFxBYASUuA2cADpTazgZsjIoAVkkZJGh0R24Adqc2wtESp33XAJ4Af1u1rSUTsBn4tqSuN4edNztFsQPi7b36Azp51HKVhfHbUCYw5vdbqIZk1ralQiYh1wDmSjk3bTzfRbQywtbTdDZzXRJsxwLZ0lrEGeCVwQ0SsBJB0IfBIRKyTVL+vFQ329QKS5lKcFXHyySc3MQ2zw+sPz+5guIaxl+fYvWtH3x3MBpCmQkXSUcA7gPHA0N4f5hFxzYG6NSiLZttExF5gsqRRwG2SzgK2AFcAbznI4xERNwE3AdRqtX3qzVrt/e++jn/6x68xfuyrmfDqC1o9HLN+afby1w+BpyjOHHY32acbGFfaHgs82t82EbFd0nKK+yR3AROA3rOUscC9kqY2eTyzAe/EU8/mvR/6VquHYXZQmg2VsRHR0c99rwYmSpoAPEJxE/1ddW2WAfPT/ZbzgKciYpukduCPKVBGAjOAL0TE/cAJvZ0lPQTUIuL3kpYBt0r6KnASxc3/Vf0cs5mZHYJmQ+Vnkl6dfqg3JSL2SJpPcXbRBiyKiA2S5qX6hcAdwCygC9gJXJq6jwYWp/sqQ4ClEXF7H8fbIGkpxYMAe4APpktoZmZ2mKh48Go/ldL9FPcqRgInU9zT2J3KIiLOPhyDrEqtVovOzs5WD8PMbFCRtCYiGj6W2NeZytsozhR6n8IyMzPbrwOGSkQ8DCDpH4ATImL1YRmVmZkNSs3eU/lL4DJJDwN/4EVy+cvMzPJqNlRmVjoKMzN7UWj2L+ofrnogZmY2+PlNuszMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8um0lCR1CFpk6QuSQsa1EvS9al+vaQpqXyEpFWS1knaIOnqUp/PprZrJd0t6aRUPl7SrlS+VtLCKudmZmb7qixUJLUBN1C8a+Qk4J2SJtU1mwlMTMtc4MZUvhuYHhHnAJOBDknTUt2XIuLsiJgM3A5cWdrf5oiYnJZ5FUzLzMwOoMozlalAV0RsiYhngSXA7Lo2s4Gbo7ACGCVpdNrekdoMS0sARMTTpf4v7S03M7PWqzJUxgBbS9vdqaypNpLaJK0FHgPuiYiVvY0kXStpK3AxLzxTmSDpPkk/kXR+o0FJmiupU1JnT0/PQU7NzMwaqTJU1KCs/qxiv20iYm+6xDUWmCrprD81iLgiIsYBtwDzU/E24OSIOBf4GHCrpGP32XnETRFRi4hae3t7f+dkZmYHUGWodAPjSttjgUf72yYitgPLgY4Gx7gVeEdqtzsiHk/ra4DNwOkHPXozM+u3KkNlNTBR0gRJw4E5wLK6NsuAS9JTYNOApyJim6R2SaMAJI0EZgAb0/bEUv8LS+Xt6eEAJJ1KcfN/S2WzMzOzfQytascRsUfSfOAuoA1YFBEbJM1L9QuBO4BZQBewE7g0dR8NLE4hMQRYGhG3p7rPSzoDeA54GOh9yusC4BpJe4C9wLyIeKKq+ZmZ2b4UceQ+PFWr1aKzs7PVwzAzG1QkrYmIWqM6/0W9mZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLKpNFQkdUjaJKlL0oIG9ZJ0fapfL2lKKh8haZWkdZI2SLq61Oezqe1aSXdLOqlUd3na1yZJb61ybmZmtq/KQkVSG3ADMBOYBLxT0qS6ZjOBiWmZC9yYyncD0yPiHGAy0CFpWqr7UkScHRGTgduBK9PxJgFzgDOBDuAbaQxmZnaYVHmmMhXoiogtEfEssASYXddmNnBzFFYAoySNTts7UpthaQmAiHi61P+lveVpX0siYndE/BroSmMwM7PDpMpQGQNsLW13p7Km2khqk7QWeAy4JyJW9jaSdK2krcDFpDOVJo+HpLmSOiV19vT0HMy8zMxsP6oMFTUoi2bbRMTedIlrLDBV0ll/ahBxRUSMA24B5vfjeETETRFRi4hae3t737MwM7OmVRkq3cC40vZY4NH+tomI7cByivsk9W4F3tGP45mZWYWqDJXVwERJEyQNp7iJvqyuzTLgkvQU2DTgqYjYJqld0igASSOBGcDGtD2x1P/C3vK0rzmSjpI0geLm/6qK5mZmZg0MrWrHEbFH0nzgLqANWBQRGyTNS/ULgTuAWRQ31XcCl6buo4HF6emtIcDSiLg91X1e0hnAc8DDQO/+NkhaCjwA7AE+GBF7q5qfmZntSxH73HY4YtRqtejs7Gz1MMzMBhVJayKi1qjOf1FvZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wqDRVJHZI2SeqStKBBvSRdn+rXS5qSykdIWiVpnaQNkq4u9fmSpI2p/W2SRqXy8ZJ2SVqbloVVzs3MzPZVWahIagNuAGYCk4B3SppU12wmMDEtc4EbU/luYHpEnANMBjokTUt19wBnRcTZwC+By0v72xwRk9Myr4JpmZnZAVR5pjIV6IqILRHxLLAEmF3XZjZwcxRWAKMkjU7bO1KbYWkJgIi4OyL2pLoVwNgK52BmZv1QZaiMAbaWtrtTWVNtJLVJWgs8BtwTESsbHON9wJ2l7QmS7pP0E0nnNxqUpLmSOiV19vT09GtCZmZ2YFWGihqURbNtImJvREymOBOZKumsF3SUrgD2ALekom3AyRFxLvAx4FZJx+6z84ibIqIWEbX29vb+zMfMzPpQZah0A+NK22OBR/vbJiK2A8uBjt4ySe8B3gZcHBG9IbQ7Ih5P62uAzcDpGeZhZmZNqjJUVgMTJU2QNByYAyyra7MMuCQ9BTYNeCoitklqLz3VNRKYAWxM2x3AJ4ELI2Jn745Sn7a0firFzf8tFc7PzMzqDK1qxxGxR9J84C6gDVgUERskzUv1C4E7gFlAF7ATuDR1Hw0sTiExBFgaEbenuq8DRwH3SAJYkZ70ugC4RtIeYC8wLyKeqGp+Zma2L6WrR0ekWq0WnZ2drR6GmdmgImlNRNQa1fkv6s3MLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtkc0W/SJakHeLjV4zgIxwO/b/UgDtFgn8NgHz94DgPBYB3/KRHR3qjiiA6VwUpS5/7edW2wGOxzGOzjB89hIBjs42/El7/MzCwbh4qZmWXjUBmcbmr1ADIY7HMY7OMHz2EgGOzj34fvqZiZWTY+UzEzs2wcKmZmlo1DpcUkdUjaJKlL0oIG9X8u6eeSdkv6eKl8nKR/lvSgpA2SPlKqe7mkeyT9Kn08bhDO4UuSNkpaL+k2SaMG2xxKbT4uKSQdP9jGL+lDab8bJH2xqvFXNQdJkyWtkLRWUqekqQN0DiMkrZK0Ls3h6lLdYf1+PmQR4aVFC9AGbAZOBYYD64BJdW1OAF4LXAt8vFQ+GpiS1o8BftnbF/gisCCtLwC+MAjn8BZgaFr/wmCcQyobB9xF8Ue2xw+m8QN/CfwIOKp3H4PtNQDuBmam9VnA8gE6BwFHp/VhwEpgWto+bN/PORafqbTWVKArIrZExLPAEmB2uUFEPBYRq4E/1pVvi4h70/ozwIPAmFQ9G1ic1hcDF1U2g4rmEBF3R8Se1HQFMHawzSG5DvgEUOUTMVWN/wPA5yNid+8+BuEcAjg2rb8MeLS6KRzSHCIidqTNYWnp/Zo5nN/Ph8yh0lpjgK2l7W5e+AOpKZLGA+dS/HYD8IqI2AbFNxzFb0dVqWoOZe8D7jyYwTWpkjlIuhB4JCLWZRjjgVT1GpwOnC9ppaSfSHrtoQ70AKqaw0eBL0naCnwZuPyQRnlghzQHSW2S1gKPAfdERCu+nw+ZQ6W11KCsX7/RSjoa+B7w0Yh4Osuo+qfSOUi6AtgD3HLQI2xiCA3KDmkOkl4CXAFcmWF8fR6+QVmO12AocBwwDfgbYKmkRsfKoao5fAD464gYB/w18K1DGmUfQ2hQ1vQcImJvREymOCufKumsXAM7nBwqrdVNcc2911j6cXouaRjFN9EtEfH9UtXvJI1ObUZT/OZTlarmgKT3AG8DLo50QbkiVczhNGACsE7SQ2mf90o6McuIX6iq16Ab+H66NLMKeI7iHyBWoao5vAfo3f4/FJeoqnJIc+gVEduB5UBHKjqc38+HzKHSWquBiZImSBoOzAGWNdMx/cb4LeDBiPhqXfUyim8m0scfZhpvI5XMQVIH8EngwojYmXnM9bLPISLuj4gTImJ8RIyn+IEzJSJ+m3/4lX0d/QCYntqdTnHzuar/qFvVHB4F3pDWpwO/yjTeRg5lDu1KTzhKGgnMADam6sP5/XzoWv2kwJG+UDyR8kuKp0auSGXzgHlp/USKH0hPA9vT+rHA6ylOrdcDa9MyK/X5M+DHFN9APwZePgjn0EVxfbq3fOFgm0Pd/h+ioqe/KnwNhgPfAX4B3AtMH2yvQapbQ/Ek1krgNQN0DmcD96U5/AK4srTPw/r9fKiL/02LmZll48tfZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMwGGEmfavUYzA6WHyk2G2Ak7YiIo1s9DrODMbTVAzA7kkl6N/Bhij80XEnxR3Ej0z8W3BARF0v6AcW//xgBfC0iXnTva24vHg4VsxaR9CrgPwOvi4g/SvoGcD+wK4p/LNjrfRHxRPr3HaslfS8iHm/BkM365FAxa503Aa+hCAqAkTT+Z4EflvT2tD4OmAg4VGxAcqiYtY6AxRHxgvf4qHub2TdS/HPBv4iInZKWU1wGMxuQ/PSXWev8GPgPkk6AP70X+SnAH9O/cofi3QqfTIHy5xTvbWI2YPlMxaxFIuIBSZ8G7pY0hOItZj8I3ASsl3QvxbtezpO0HthE8dbKZgOWHyk2M7NsfPnLzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbP4/jP8Dsdf18Y0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "eta kappa\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAf2ElEQVR4nO3df7zVVZ3v8ddbkB9edbA4FgEJTuik6RgegW5RRFrgWHBtSojEseYSTlrN3JqhTK0mb2Y13biaDl5RmRS0/HUepZd+zJhzyx8chBBU8kiYR0iOvwiDMPRz//iunV82+3D2OZx1ftD7+Xh8H3vvtdZ3fddic/b7fL97nb0VEZiZmeV0QG8PwMzM9n8OGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZm+wlJUyS19vY4yiStkzRlL/Wfk/R/em5E1lscNtYnSNooaYekFyQ9JekaSQf39rj2RtIYSSFpYDf1N0TS85Km1qj7pqTvdcdxuiLN83fp+XlS0r9IGtDRfhFxbETctZf6/xkRf9utg7U+yWFjfcl7I+JgYDxwEvD5zuysQr/5P10dUhHxe+BGYG5VuwHAbOC6nhtdTX+Znp93AR8C/vu+dNZdIW39Q7/5wbQ/HRHxJHAn8CZJh0n6vqQ2Sc+l+6MqbSXdJeliST8DtgNHSjpb0sOStknaIOljpfZTJLVK+kdJWyRtljRT0qmSfinpWUmfK7U/QNICSY9JekbSTZJelarvTrfPp9/435L2+Ug6/nOSlks6otRfSPq4pEeBR2tM/zrg/ZIOKpW9h+Jn9c69za1aOtYbSo+vlfTl0uPTJK1OZ1M/l3R8+8/KKyLiEeA/KZ6fP5f07+nf5mlJ10saVjrGRkknp/tfkPQ9Sd+R9Fvgb1LZd1J95UzxLEm/Tv2dX+prqKTr0r/rw+k5bC3V/1M669omab2kd9UzH+sZDhvrcySNBk4FVlH8H70GOAJ4PbADuKxqlzOBecAhwOPAFuA04FDgbOCbksaX2r8WGAKMBC4ErgI+DJwITAYulHRkavsJYCbwDuB1wHPA5anu7el2WEQcHBH3SJoJfA44HWigeFFeWjXemcBE4JjquUfEz4HNaf/y/G6IiF11zK0uaZ/FwMeAVwP/CjRJGlzHvsdQ/DutAgR8heLf5o3AaOALe9l9BvA9YBhwfTtt3gYcTXEGdaGkN6byi4AxwJHAKRTPWWVMRwPnAidFxCEUAb2xo7lYD4oIb956faN4YXgBeJ4iML4NDK3R7gTgudLju4AvddD3bcAn0/0pFIE1ID0+BAhgYqn9SmBmuv8w8K5S3QjgD8BAihe+AAaW6u8EPlp6fADFGdcR6XEAUzsY7+eBH6b7h6b931zn3FpLdQG8ofT4WuDL6f4VwD9X9bUeeEc7xwngtxRh+xjwZeCAGu1mAquqnteT0/0vAHdXtf8C8J10v/LvOapUfz8wK93fALynVPe3lfkCb6AI4pOBA3v7/7O3PTdfM7W+ZGZE/LhckC4nfROYBhyWig+RNCAiXkqPn6jaZzrFb8FHUbzYHwQ8WGryTGnfHen2qVL9DqCyOOEI4FZJL5fqXwJe084cjgC+Jekb5SFRnEU9Xmu8NSwBLpI0kuI39JaIWFXn3Op1BHCWpPNKZYMozlDaMz4iWsoFkg4HFlKc6RySxvTcXvroaO4Avynd384rz8Xrqvb/4/2IaJH0KYrwOlbScuAfImJTHcezHuDLaNbX/Q+KSyoTI+JQXrl0pVKbP350eboMdDPwdeA1ETEMuKOqfWc8AUyPiGGlbUgU7yvV+sj0J4CPVbUfGsXlsT3GW0tE/Jri8tsciktoS7o4t+0UYVTx2qpxXlw1zoMiovqSX0e+kuZzfHp+PryX8UAHc+/AZmBU6fHo3TqOuCEi3kYRpAF8dR+OZd3MYWN93SEUZxrPpzfmL+qg/SBgMNAG7EpnAu/eh+NfCVxceZNfUoOkGamuDXiZ4j2EcvvPSjo2tf8zSR/ownGvo3gP4q288t5GZ+e2GviQpAGSplG871RxFTBf0kQV/oukv5J0SCfHeQjp8mc6E/tMJ/fvjJso/m0PS8c6t1Ih6WhJU1Mg/57i/8xL7fRjvcBhY33d/wKGAk8D9wL/d2+NI2IbxZv6N1FczvkQ0LQPx/9W2v+HkralMUxMx9oOXAz8LK3omhQRt1L8Rr0srbhaC0zvwnG/R3HZ8CcRsbmLc/sk8F6K98HmULy/Q+qrmWLp8mWprxbgb7owzi9SLFXfCvwAuKULfdTrS0Ar8CvgxxT/RjtT3WDgEor/J78BDqdYqGF9hCL85Wlm1v9IOodi8cA7Omxsvc5nNmbWL0gaIemt6W+fjqZ4P+/W3h6X1cer0cysvxhE8fdAYykuDS6jWCJv/YAvo5mZWXa+jGZmZtn5Mlo7hg8fHmPGjOntYZiZ9SsrV658OiIaqssdNu0YM2YMzc3NvT0MM7N+RdLjtcp9Gc3MzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLLLGjaSpklaL6lF0oIa9ZK0MNWvkTS+VLdY0hZJa6v2uVHS6rRtlLQ6lc8pla+W9LKkE1LdXWkclbrDc87bzMx2l+1roSUNAC4HTgFagRWSmiLioVKz6cC4tE0Erki3ANcClwFLyv1GxBmlY3wD2JrKrweuT+XHAbdHxOrSrnMiwt/zbGbWC3Ke2UwAWiJiQ0S8CCwDZlS1mQEsicK9wDBJIwAi4m7g2fY6lyTgg8DSGtWz2yk3M7NekDNsRgJPlB63prLOtmnPZOCpiHi0Rt0Z7Bk216RLaBekoNqDpHmSmiU1t7W11TkMMzPrSM6wqfWCHl1o056aZy+SJgLbI6L8Xs+ciDiOIqAmA2fW6jAiFkVEY0Q0NjQ01DkMMzPrSM6waQVGlx6PAjZ1oc0eJA0ETgdurFE9i6oQiogn0+024AaKS3xmZtZDcobNCmCcpLGSBlGEQFNVmyZgblqVNgnYGhGb6+j7ZOCRiGgtF0o6APgAxftDlbKBkoan+wcCpwG7rXAzM7O8sq1Gi4hdks4FlgMDgMURsU7S/FR/JXAHcCrQAmwHzq7sL2kpMAUYLqkVuCgirk7Ve5y9JG8HWiNiQ6lsMLA8Bc0A4MfAVd02UTMz65Ai6n2L5E9LY2NjNDd7pbSZWWdIWhkRjdXl/gQBMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWWXNWwkTZO0XlKLpAU16iVpYapfI2l8qW6xpC2S1lbtc6Ok1WnbKGl1Kh8jaUep7srSPidKejAdZ6EkZZy2mZlVyRY2kgYAlwPTgWOA2ZKOqWo2HRiXtnnAFaW6a4Fp1f1GxBkRcUJEnADcDNxSqn6sUhcR80vlV6T+K8fao18zM8sn55nNBKAlIjZExIvAMmBGVZsZwJIo3AsMkzQCICLuBp5tr/N0dvJBYOneBpH6OzQi7omIAJYAM7s4JzMz64KcYTMSeKL0uDWVdbZNeyYDT0XEo6WysZJWSfqppMmlY7TWcwxJ8yQ1S2pua2urcxhmZtaRnGFT632R6EKb9sxm97OazcDrI+LNwD8AN0g6tDPHiIhFEdEYEY0NDQ11DsPMzDoyMGPfrcDo0uNRwKYutNmDpIHA6cCJlbKI2AnsTPdXSnoMOCodY1Rnj2FmZt0n55nNCmCcpLGSBgGzgKaqNk3A3LQqbRKwNSI219H3ycAjEfHHy2OSGtKiBCQdSbEQYEPqb5ukSel9nrnA7fs8OzMzq1u2M5uI2CXpXGA5MABYHBHrJM1P9VcCdwCnAi3AduDsyv6SlgJTgOGSWoGLIuLqVD2LPRcGvB34kqRdwEvA/IioLDA4h2J121DgzrSZmVkPUbFAy6o1NjZGc3Nzbw/DzKxfkbQyIhqry/0JAmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLLmvYSJomab2kFkkLatRL0sJUv0bS+FLdYklbJK2t2udGSavTtlHS6lR+iqSVkh5Mt1NL+9yVxlHZ7/CM0zYzsyoDc3UsaQBwOXAK0AqskNQUEQ+Vmk0HxqVtInBFugW4FrgMWFLuNyLOKB3jG8DW9PBp4L0RsUnSm4DlwMjSrnMiorl7ZmdmZp2R88xmAtASERsi4kVgGTCjqs0MYEkU7gWGSRoBEBF3A8+217kkAR8Elqb2qyJiU6peBwyRNLhbZ2RmZl2SM2xGAk+UHrey+5lGvW3aMxl4KiIerVH3fmBVROwslV2TLqFdkIJqD5LmSWqW1NzW1lbnMMzMrCM5w6bWC3p0oU17ZpPOanbrUDoW+CrwsVLxnIg4jiKgJgNn1uowIhZFRGNENDY0NNQ5DDMz60jOsGkFRpcejwI2daHNHiQNBE4HbqwqHwXcCsyNiMcq5RHxZLrdBtxAcYnPzMx6SM6wWQGMkzRW0iBgFtBU1aYJmJtWpU0CtkbE5jr6Phl4JCJaKwWShgE/AD4bET8rlQ+UNDzdPxA4DViLmZn1mGxhExG7gHMpVoU9DNwUEeskzZc0PzW7A9gAtABXAX9X2V/SUuAe4GhJrZI+Wup+FnteQjsXeANwQdUS58HAcklrgNXAk+lYZmbWQxRR71skf1oaGxujudkrpc3MOkPSyohorC73JwiYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtnV/bXQkv4KOBYYUimLiC/lGJSZme1f6jqzkXQlcAZwHsUXnn0AOCLjuMzMbD9S72W0/xoRc4HnIuKLwFvY/UvPzMzM2lVv2OxIt9slvQ74AzA2z5DMzGx/U+97Nt9P34T5NeABIPAXkJmZWZ3qCpuI+Od092ZJ3weGRMTWfMMyM7P9SV1hI2kIxVc2v43irOb/SboiIn6fc3BmZrZ/qPcy2hJgG/C/0+PZwL9RrEozMzPbq3rD5uiI+MvS4/+Q9IscAzIzs/1PvavRVkmaVHkgaSLws452kjRN0npJLZIW1KiXpIWpfo2k8aW6xZK2SFpbtc+NklanbaOk1aW6z6a+1kt6T6n8REkPprqFklTnvM3MrBvUGzYTgZ+nF/eNwD3AO9IL+JpaO0gaAFwOTAeOAWZLOqaq2XRgXNrmAVeU6q4FplX3GxFnRMQJEXECcDNwSzreMcAsik85mAZ8O42B1O+80rH26Nesr4uXX+aBf7+e/2y6jBd3vNDbwzHrlHovo3XlxXkC0BIRGwAkLQNmAA+V2swAlkREAPdKGiZpRERsjoi7JY1pr/N0dvJBYGqpr2URsRP4laQWYEIKx0Mj4p603xJgJnBnF+Zk1mtW330j3/jB+UQEbc/8mtPPvrS3h2RWt7rObCLiceDVFC/o7wNeHRGPV7Z2dhsJPFF63JrKOtumPZOBpyLi0Q76Gpnud3gMSfMkNUtqbmtrq3MYZj1j5+9/RxAcoAP43Y7f9vZwzDql3qXPF1KsPLslFV0j6bsR8eW97VajLLrQpj2zgaV19FX3MSJiEbAIoLGxsd5xmPWIE6d8iFlbfsUL25/nvR84v7eHY9Yp9V5Gmw28ufJ3NZIuofgkgb2FTSu7f37aKGBTF9rsQdJA4HTgxDr6ak33O3UMs77mwCEH8b65F/f2MMy6pN4FAhspfbUAMBh4rIN9VgDjJI2VNIjizfumqjZNwNy0Km0SsDUiNtcxnpOBRyKifHmsCZglabCksRQLAe5P/W2TNCm9zzMXuL2OY5iZWTep98xmJ7BO0o8oLkGdQvEpAgsBIuIT1TtExC5J5wLLgQHA4ohYJ2l+qr8SuAM4FWgBtgNnV/aXtBSYAgyX1ApcFBFXp+pZ7H4JjdT3TRQLEHYBH4+Il1L1ORSr24ZSLAzw4gAzsx6kYiFYB42ks/ZWHxHXdduI+ojGxsZobm7u7WGYmfUrklZGRGN1eb0fxLnfhYmZmfWcelejjQO+QvHHmeWvhT4y07jMzGw/Uu8CgWso/gp/F/BOig/m/LdcgzIzs/1LvWEzNCJ+QvEez+MR8QVe+ct9MzOzvap3NdrvJR0APJpWmD0JHJ5vWGZmtj+p98zmU8BBwCco/pDyTOA7mcZkZmb7mXrD5l+BsRHRGhFnA98FTss3LDMz25/Uexntr4HvSZpD8dXQZwLvzjYqMzPbr9T7dzYbJM0CbqP4ZOX3RMSOnAMzM7P9x17DRtKD7P4Jya+i+OiZ+yQREcfnHJyZme0fOjqz8fsyZma2z/YaNnv5YjQzM7O61bsazczMrMscNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWWXNWwkTZO0XlKLpAU16iVpYapfI2l8qW6xpC2S1tbY77zU7zpJl6ayOZJWl7aXJZ2Q6u5K7St1/i4eM7MeVO+nPneapAHA5cApQCuwQlJTRDxUajYdGJe2iRRfPT0x1V0LXEbxFdTlft8JzACOj4idleCIiOuB61Ob44DbI2J1adc5EdHcnXM0M7P65DyzmQC0RMSGiHgRWEYREmUzgCVRuBcYJmkEQETcDTxbo99zgEsiYmdqt6VGm9nA0m6ah5mZ7aOcYTOS4usIKlpTWWfbVDsKmCzpPkk/lXRSjTZnsGfYXJMuoV0gSbU6ljRPUrOk5ra2tg6GYWZm9coZNrVe0KMLbaoNBA4DJgGfAW4qh4ekicD2iCi/1zMnIo4DJqftzFodR8SiiGiMiMaGhoYOhmFmZvXKGTatwOjS41HApi60qdXvLenS2/3Ay8DwUv0sqs5qIuLJdLsNuIHiEp+ZmfWQnGGzAhgnaaykQRQh0FTVpgmYm1alTQK2RsTmDvq9DZgKIOkoYBDwdHp8APABiveHSGUDJQ1P9w+k+I6ePVa4mZlZPtlWo0XELknnAsspvt1zcUSskzQ/1V8J3AGcCrQA24GzK/tLWgpMAYZLagUuioirgcXA4rQk+kXgrIioXHp7O9AaERtKQxkMLE9BMwD4MXBVpmmbmVkNeuV12soaGxujudkrpc3MOkPSyohorC73JwiYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLLusYSNpmqT1klokLahRL0kLU/0aSeNLdYslbZG0tsZ+56V+10m6NJWNkbRD0uq0XVlqf6KkB9NxFkpSrjmbmdmesoWNpAHA5cB04BhgtqRjqppNB8albR5wRanuWmBajX7fCcwAjo+IY4Gvl6ofi4gT0ja/VH5F6r9yrD36NTOzfHKe2UwAWiJiQ0S8CCyjCImyGcCSKNwLDJM0AiAi7gaerdHvOcAlEbEztduyt0Gk/g6NiHsiIoAlwMx9mJeZmXVSzrAZCTxRetyayjrbptpRwGRJ90n6qaSTSnVjJa1K5ZNLx2it5xiS5klqltTc1tbWwTDMzKxeAzP2Xet9kehCm2oDgcOAScBJwE2SjgQ2A6+PiGcknQjcJunYzhwjIhYBiwAaGxs7GoeZmdUp55lNKzC69HgUsKkLbWr1e0u69HY/8DIwPCJ2RsQzABGxEniM4iyoNfXbmWOYmVk3yhk2K4BxksZKGgTMApqq2jQBc9OqtEnA1ojY3EG/twFTASQdBQwCnpbUkBYlkM50xgEbUn/bJE1Kq9DmArd3zxTNzKwe2S6jRcQuSecCy4EBwOKIWCdpfqq/ErgDOBVoAbYDZ1f2l7QUmAIMl9QKXBQRVwOLgcVpSfSLwFkREZLeDnxJ0i7gJWB+RFQWGJxDsbptKHBn2szMrIeoWKBl1RobG6O5ubm3h2Fm1q9IWhkRjdXl/gQBMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWWXNWwkTZO0XlKLpAU16iVpYapfI2l8qW6xpC2S1tbY77zU7zpJl6ayUyStlPRgup1aan9Xar86bYfnmrOZme1pYK6OJQ0ALgdOAVqBFZKaIuKhUrPpwLi0TQSuSLcA1wKXAUuq+n0nMAM4PiJ2loLjaeC9EbFJ0puA5cDI0q5zIqK5G6doZmZ1ynlmMwFoiYgNEfEisIwiJMpmAEuicC8wTNIIgIi4G3i2Rr/nAJdExM7Ubku6XRURm1KbdcAQSYO7fVZmZtZpOcNmJPBE6XEru59p1Num2lHAZEn3SfqppJNqtHk/sKoSSMk16RLaBZJUq2NJ8yQ1S2pua2vrYBhmZlavnGFT6wU9utCm2kDgMGAS8BngpnJ4SDoW+CrwsdI+cyLiOGBy2s6s1XFELIqIxohobGho6GAYZmZWr5xh0wqMLj0eBWzqQpta/d6SLr3dD7wMDAeQNAq4FZgbEY9VdoiIJ9PtNuAGikt8ZmbWQ3KGzQpgnKSxkgYBs4CmqjZNwNy0Km0SsDUiNnfQ723AVABJRwGDgKclDQN+AHw2In5WaSxpoKRKGB0InAbsscLNzMzyyRY2EbELOJdiVdjDwE0RsU7SfEnzU7M7gA1AC3AV8HeV/SUtBe4BjpbUKumjqWoxcGRaEr0MOCsiIh3rDcAFVUucBwPLJa0BVgNPpmOZmVkPUfE6bdUaGxujudkrpc3MOkPSyohorC73JwiYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyy85entUNSG/B4b4+jk4YDT/f2IPaR59D7+vv4wXPoTUdEREN1ocNmPyKpudY35PUnnkPv6+/jB8+hL/JlNDMzy85hY2Zm2Tls9i+LensA3cBz6H39ffzgOfQ5fs/GzMyy85mNmZll57AxM7PsHDZ9mKRpktZLapG0oEb9X0i6R9JOSZ8ulY+W9B+SHpa0TtInS3WvkvQjSY+m28P62fi/JukRSWsk3SppWK7x55pDqc2nJYWk4f1xDpLOS/2uk3Rpfxq/pBMk3StptaRmSRNyjX8f5zBE0v2SfpHm8MVSXY/9LHeLiPDWBzdgAPAYcCQwCPgFcExVm8OBk4CLgU+XykcA49P9Q4BfVvYFLgUWpPsLgK/2s/G/GxiY7n811/hzziGVjQaWU/zh8PD+NgfgncCPgcGVPvrZ+H8ITE/3TwXu6qPPgYCD0/0DgfuASelxj/wsd9fmM5u+awLQEhEbIuJFYBkwo9wgIrZExArgD1XlmyPigXR/G/AwMDJVzwCuS/evA2b2p/FHxA8jYldqei8wKtP4s80h+Sbwj0DuFTq55nAOcElE7Kz00c/GH8Ch6f6fAZsyjR/2bQ4RES+khwemrfJ/pqd+lruFw6bvGgk8UXrcyu4vVnWRNAZ4M8VvRACviYjNUPwwUvxGlUOu8Zd9BLizK4OrU5Y5SHof8GRE/KIbxtiRXM/DUcBkSfdJ+qmkk/Z1oO3INf5PAV+T9ATwdeCz+zTKvdunOUgaIGk1sAX4UUT09M9yt3DY9F2qUdap34IlHQzcDHwqIn7bLaPqxOFrlHXb+CWdD+wCru/yCOsYQo2yfZqDpIOA84ELu2F8dQ2hRll3PA8DgcOAScBngJsk1TrWvso1/nOAv4+I0cDfA1fv0yg7GEKNsrrnEBEvRcQJFGfxEyS9qbsG1pMcNn1XK8V1/YpRdOJUX9KBFD9g10fELaWqpySNSG1GUPy2lEOu8SPpLOA0YE6kC9aZ5JjDnwNjgV9I2pj6fEDSa7tlxHvK9Ty0Arekyzz3Ay9TfHBkd8s1/rOAyuPvUlzqymWf5lAREc8DdwHTUlFP/Sx3C4dN37UCGCdprKRBwCygqZ4d02+YVwMPR8S/VFU3UfygkW5v76bxVssyfknTgH8C3hcR27t5zNW6fQ4R8WBEHB4RYyJiDMUL0fiI+E33Dx/I9//oNmBqancUxRvfOT6hONf4NwHvSPenAo9203hr2Zc5NCituJQ0FDgZeCRV99TPcvfo7RUK3trfKFbJ/JJiJcv5qWw+MD/dfy3Fi9VvgefT/UOBt1Gcpq8BVqft1LTPq4GfUPxw/QR4VT8bfwvF9e9K+ZX97Tmo6n8jGVejZXweBgHfAdYCDwBT+9n43waspFgZdh9wYh99Do4HVqU5rAUuLPXZYz/L3bH542rMzCw7X0YzM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY9aPSPpcb4/BrCu89NmsH5H0QkQc3NvjMOusgb09ADOrTdKHgU9Q/AHlfRR/8Dc0fSjjuoiYI+k2io9CGQJ8KyL2q++tt/2Hw8asD5L0RuAM4K0R8QdJ3wYeBHZE8aGMFR+JiGfTR5mskHRzRDzTC0M22yuHjVnf9C7gRIoAARhK7Q9a/ISk/5bujwbGAQ4b63McNmZ9k4DrImK371mp+srgKRQfzPiWiNgu6S6Ky2lmfY5Xo5n1TT8B/lrS4fDH75s/AvhD+th8KL5h8rkUNH9B8d0yZn2Sz2zM+qCIeEjS54EfSjqA4uuCPw4sAtZIeoDim0rnS1oDrKf4mmyzPslLn83MLDtfRjMzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCy7/w9VCG8+Ww+15gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "eta xi\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeh0lEQVR4nO3dfZRdVZ3m8e9DigQcoIOdQtNJIKENtCAMhkuSXhrFCG3CoMngKMFIaLQnBsWX7tHuKCK2I9OC2o5ZIHRoAqSFhIzyUmuEjq09SC8lkIopQwJEioimSCTFq8FgIOQ3f5x98XDrVupWpXa94PNZ66x77t777LN3blU9dc7duaWIwMzMLKcDBnsAZmb26uewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWP2KiHpVEkdgz2OMkmbJJ26j/rPSfrngRuRDRaHjQ0Jkh6V9Lyk5yQ9Luk6SYcM9rj2RdJESSGpqZ/6O0jSM5Jm1qn7hqTv9Md5+iLN87fp9XlM0j9KGtHTcRFxfETctY/6/xURf9Wvg7UhyWFjQ8m7I+IQYApwCvD53hyswrD5mq4NqYj4HXAzsKCm3QjgHOCGgRtdXf85vT7vBD4A/Pf96ay/QtqGh2HzjWl/OCLiMeBO4E2SDpf0fyV1Sno67Y+vtpV0l6RLJf0Y2AUcLel8SQ9K2ilpi6SPlNqfKqlD0t9K2iFpu6S5ks6Q9HNJT0n6XKn9AZIWS3pE0pOSVkl6baq+Oz0+k37j//N0zIfS+Z+WtFrSUaX+QtLHJD0MPFxn+jcA75X0mlLZuyi+V+/c19xqpXO9ofT8eklfLj0/U1Jbupr6iaQTu39Vfi8iHgL+g+L1+VNJ/57+bZ6QdKOk0aVzPCrptLT/RUnfkfRtSb8B/jKVfTvVV68Uz5P0q9TfRaW+DpZ0Q/p3fTC9hh2l+r9LV107JW2W9M5G5mMDw2FjQ46kCcAZwHqKr9HrgKOAI4HngStqDjkXWAgcCvwS2AGcCRwGnA98Q9KUUvvXAwcB44AvANcAHwROBmYAX5B0dGr7CWAu8HbgT4CngStT3dvS4+iIOCQi7pE0F/gccBbQTPFDeUXNeOcC04DjauceET8Btqfjy/O7KSL2NDC3hqRjlgEfAf4Y+CegRdKoBo49juLfaT0g4B8o/m3eCEwAvriPw+cA3wFGAzd20+atwLEUV1BfkPTGVH4JMBE4Gjid4jWrjulY4ELglIg4lCKgH+1pLjaAIsKbt0HfKH4wPAc8QxEY3wIOrtPuJODp0vO7gC/10PdtwCfT/qkUgTUiPT8UCGBaqf06YG7afxB4Z6luLPAi0ETxgy+AplL9ncCHS88PoLjiOio9D2BmD+P9PPD9tH9YOv7NDc6to1QXwBtKz68Hvpz2rwL+Z01fm4G3d3OeAH5DEbaPAF8GDqjTbi6wvuZ1PS3tfxG4u6b9F4Fvp/3qv+f4Uv19wLy0vwV4V6nur6rzBd5AEcSnAQcO9tezt66b75naUDI3In5QLki3k74BzAIOT8WHShoRES+l51trjplN8VvwMRQ/7F8D3F9q8mTp2OfT4+Ol+ueB6uKEo4BbJe0t1b8EvK6bORwFfFPS18tDoriK+mW98daxHLhE0jiK39DbI2J9g3Nr1FHAeZI+XiobSXGF0p0pEdFeLpB0BLCE4krn0DSmp/fRR09zB/h1aX8Xv38t/qTm+Jf3I6Jd0qcowut4SauBv4mIbQ2czwaAb6PZUPc/KG6pTIuIw/j9rSuV2rz80eXpNtB3ga8Br4uI0cAdNe17YyswOyJGl7aDonhfqd5Hpm8FPlLT/uAobo91GW89EfErittv8yluoS3v49x2UYRR1etrxnlpzThfExG1t/x68g9pPiem1+eD+xgP9DD3HmwHxpeeT3hFxxE3RcRbKYI0gMv241zWzxw2NtQdSnGl8Ux6Y/6SHtqPBEYBncCedCXwF/tx/quBS6tv8ktqljQn1XUCeyneQyi3/6yk41P7P5L0vj6c9waK9yDewu/f2+jt3NqAD0gaIWkWxftOVdcAiyRNU+E/Sfovkg7t5TgPJd3+TFdin+nl8b2xiuLf9vB0rgurFZKOlTQzBfLvKL5mXuqmHxsEDhsb6v43cDDwBLAG+Nd9NY6InRRv6q+iuJ3zAaBlP87/zXT89yXtTGOYls61C7gU+HFa0TU9Im6l+I16ZVpxtRGY3YfzfofituEPI2J7H+f2SeDdFO+Dzad4f4fUVyvF0uUrUl/twF/2YZx/T7FU/Vnge8AtfeijUV8COoBfAD+g+DfanepGAV+h+Dr5NXAExUINGyIU4T+eZmbDj6QLKBYPvL3HxjbofGVjZsOCpLGS3pL+79OxFO/n3TrY47LGeDWamQ0XIyn+P9AkiluDKymWyNsw4NtoZmaWnW+jmZlZdr6N1o0xY8bExIkTB3sYZmbDyrp1656IiObacodNNyZOnEhra+tgD8PMbFiR9Mt65b6NZmZm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2WUNG0mzJG2W1C5pcZ16SVqS6jdImlKqWyZph6SNNcfcLKktbY9Kakvl80vlbZL2Sjop1d2VxlGtOyLnvM3M7JWy/VloSSOAK4HTgQ5graSWiHig1Gw2MDlt04Cr0iPA9cAVwPJyvxFxdukcXweeTeU3Ajem8hOA2yOirXTo/Ijw33k2MxsEOa9spgLtEbElIl4AVgJzatrMAZZHYQ0wWtJYgIi4G3iqu84lCXg/sKJO9TndlJuZ2SDIGTbjgK2l5x2prLdtujMDeDwiHq5TdzZdw+a6dAvt4hRUXUhaKKlVUmtnZ2eDwzAzs57kDJt6P9CjD226U/fqRdI0YFdElN/rmR8RJ1AE1Azg3HodRsTSiKhERKW5ubnBYZiZWU9yhk0HMKH0fDywrQ9tupDUBJwF3Fyneh41IRQRj6XHncBNFLf4zMxsgOQMm7XAZEmTJI2kCIGWmjYtwIK0Km068GxEbG+g79OAhyKio1wo6QDgfRTvD1XLmiSNSfsHAmcCr1jhZmZmeWVbjRYReyRdCKwGRgDLImKTpEWp/mrgDuAMoB3YBZxfPV7SCuBUYIykDuCSiLg2VXe5ekneBnRExJZS2ShgdQqaEcAPgGv6baJmZtYjRTT6FskflkqlEq2tXiltZtYbktZFRKW23J8gYGZm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PssoaNpFmSNktql7S4Tr0kLUn1GyRNKdUtk7RD0saaY26W1Ja2RyW1pfKJkp4v1V1dOuZkSfen8yyRpIzTNjOzGtnCRtII4EpgNnAccI6k42qazQYmp20hcFWp7npgVm2/EXF2RJwUEScB3wVuKVU/Uq2LiEWl8qtS/9VzdenXzMzyyXllMxVoj4gtEfECsBKYU9NmDrA8CmuA0ZLGAkTE3cBT3XWerk7eD6zY1yBSf4dFxD0REcByYG4f52RmZn2QM2zGAVtLzztSWW/bdGcG8HhEPFwqmyRpvaQfSZpROkdHI+eQtFBSq6TWzs7OBodhZmY9yRk29d4XiT606c45vPKqZjtwZES8Gfgb4CZJh/XmHBGxNCIqEVFpbm5ucBhmZtaTpox9dwATSs/HA9v60KYLSU3AWcDJ1bKI2A3sTvvrJD0CHJPOMb635zAzs/6T88pmLTBZ0iRJI4F5QEtNmxZgQVqVNh14NiK2N9D3acBDEfHy7TFJzWlRApKOplgIsCX1t1PS9PQ+zwLg9v2enZmZNSzblU1E7JF0IbAaGAEsi4hNkhal+quBO4AzgHZgF3B+9XhJK4BTgTGSOoBLIuLaVD2PrgsD3gZ8SdIe4CVgUURUFxhcQLG67WDgzrSZmdkAUbFAy2pVKpVobW0d7GGYmQ0rktZFRKW23J8gYGZm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PssoaNpFmSNktql7S4Tr0kLUn1GyRNKdUtk7RD0saaY26W1Ja2RyW1pfLTJa2TdH96nFk65q40jupxR2SctpmZ1WjK1bGkEcCVwOlAB7BWUktEPFBqNhuYnLZpwFXpEeB64ApgebnfiDi7dI6vA8+mp08A746IbZLeBKwGxpUOnR8Rrf0zOzMz642cVzZTgfaI2BIRLwArgTk1beYAy6OwBhgtaSxARNwNPNVd55IEvB9Ykdqvj4htqXoTcJCkUf06IzMz65OcYTMO2Fp63sErrzQabdOdGcDjEfFwnbr3AusjYnep7Lp0C+3iFFRdSFooqVVSa2dnZ4PDMDOznuQMm3o/0KMPbbpzDumq5hUdSscDlwEfKRXPj4gTKAJqBnBuvQ4jYmlEVCKi0tzc3OAwzMysJznDpgOYUHo+HtjWhzZdSGoCzgJurikfD9wKLIiIR6rlEfFYetwJ3ERxi8/MzAZIzrBZC0yWNEnSSGAe0FLTpgVYkFalTQeejYjtDfR9GvBQRHRUCySNBr4HfDYiflwqb5I0Ju0fCJwJbMTMzAZMtrCJiD3AhRSrwh4EVkXEJkmLJC1Kze4AtgDtwDXAR6vHS1oB3AMcK6lD0odL3c+j6y20C4E3ABfXLHEeBayWtAFoAx5L5zIzswGiiEbfIvnDUqlUorXVK6XNzHpD0rqIqNSW+xMEzMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpZd1rCRNEvSZkntkhbXqZekJal+g6QppbplknZI2lhzzM2S2tL2qKS2Ut1nU1+bJb2rVH6ypPtT3RJJyjRlMzOrI1vYSBoBXAnMBo4DzpF0XE2z2cDktC0ErirVXQ/Mqu03Is6OiJMi4iTgu8At6XzHAfOA49Nx30pjIPW7sHSuLv2aDXWxdy8//fcb+Y+WK3jh+ecGezhmvdLUXYWkVRHxfkn3A1GuAiIiTuyh76lAe0RsSf2tBOYAD5TazAGWR0QAaySNljQ2IrZHxN2SJu5jfALeD8ws9bUyInYDv5DUDkyV9ChwWETck45bDswF7uxh/GZDStvdN/P1711ERND55K846/zLB3tIZg3rNmyAT6bHeUDtr1HvaKDvccDW0vMOYFoDbcYB2xvofwbweEQ8XOprTZ2+Xkz7teVdSFpIcQXEkUce2cAQzAbO7t/9liA4QAfw2+d/M9jDMeuVbsMmIqo/8G8GlgNfBQ4CLgcqFLe59qXe+yLRhzbdOQdY0UBfDZ8jIpYCSwEqlUqj4zAbECef+gHm7fgFz+16hne/76LBHo5Zr+zryqZqGnAZ8BPgUOBG4C0NHNcBTCg9Hw9s60ObLiQ1AWcBJzfQV0fa79U5zIaaAw96De9ZcOlgD8OsTxpZIPAi8DxwMMWVzS8iYm8Dx60FJkuaJGkkxe24lpo2LcCCtCptOvBs6YpqX04DHoqI8u2xFmCepFGSJlEsBLgv9bdT0vT0Ps8C4PYGzmFmZv2kkbBZSxE2pwBvpVhV9p2eDoqIPcCFwGrgQWBVRGyStEjSotTsDmAL0A5cA3y0erykFcA9wLGSOiR9uNT9PF55C42I2ASsoliA8K/AxyLipVR9AfDP6TyP4MUBZmYDSsVCsH00kCoR0VpTdm5E/EvWkQ2ySqUSra2tPTc0M7OXSVoXEZXa8h6vbGqDJpW9qoPGzMz6lz+uxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLLmvYSJolabOkdkmL69RL0pJUv0HSlFLdMkk7JG2sc9zHU7+bJF2eyuZLaitteyWdlOruSu2rdUdknLaZmdVoytWxpBHAlcDpQAewVlJLRDxQajYbmJy2acBV6RHgeuAKYHlNv+8A5gAnRsTuanBExI3AjanNCcDtEdFWOnR+RLT25xzNzKwxOa9spgLtEbElIl4AVlKERNkcYHkU1gCjJY0FiIi7gafq9HsB8JWI2J3a7ajT5hxgRT/Nw8zM9lPOsBkHbC0970hlvW1T6xhghqR7Jf1I0il12pxN17C5Lt1Cu1iS6nUsaaGkVkmtnZ2dPQzDzMwalTNs6v1Ajz60qdUEHA5MBz4DrCqHh6RpwK6IKL/XMz8iTgBmpO3ceh1HxNKIqEREpbm5uYdhmJlZo3KGTQcwofR8PLCtD23q9XtLuvV2H7AXGFOqn0fNVU1EPJYedwI3UdziMzOzAZIzbNYCkyVNkjSSIgRaatq0AAvSqrTpwLMRsb2Hfm8DZgJIOgYYCTyRnh8AvI/i/SFSWZOkMWn/QOBMoMsKNzMzyyfbarSI2CPpQmA1MAJYFhGbJC1K9VcDdwBnAO3ALuD86vGSVgCnAmMkdQCXRMS1wDJgWVoS/QJwXkRUb729DeiIiC2loYwCVqegGQH8ALgm07TNzKwO/f7ntJVVKpVobfVKaTOz3pC0LiIqteX+BAEzM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZZc1bCTNkrRZUrukxXXqJWlJqt8gaUqpbpmkHZI21jnu46nfTZIuT2UTJT0vqS1tV5fanyzp/nSeJZKUa85mZtZVtrCRNAK4EpgNHAecI+m4mmazgclpWwhcVaq7HphVp993AHOAEyPieOBrpepHIuKktC0qlV+V+q+eq0u/ZmaWT84rm6lAe0RsiYgXgJUUIVE2B1gehTXAaEljASLibuCpOv1eAHwlInandjv2NYjU32ERcU9EBLAcmLsf8zIzs17KGTbjgK2l5x2prLdtah0DzJB0r6QfSTqlVDdJ0vpUPqN0jo5GziFpoaRWSa2dnZ09DMPMzBrVlLHveu+LRB/a1GoCDgemA6cAqyQdDWwHjoyIJyWdDNwm6fjenCMilgJLASqVSk/jMDOzBuW8sukAJpSejwe29aFNvX5vSbfe7gP2AmMiYndEPAkQEeuARyiugjpSv705h5mZ9aOcYbMWmCxpkqSRwDygpaZNC7AgrUqbDjwbEdt76Pc2YCaApGOAkcATkprTogTSlc5kYEvqb6ek6WkV2gLg9v6ZopmZNSLbbbSI2CPpQmA1MAJYFhGbJC1K9VcDdwBnAO3ALuD86vGSVgCnAmMkdQCXRMS1wDJgWVoS/QJwXkSEpLcBX5K0B3gJWBQR1QUGF1CsbjsYuDNtZmY2QFQs0LJalUolWltbB3sYZmbDiqR1EVGpLfcnCJiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsu6xhI2mWpM2S2iUtrlMvSUtS/QZJU0p1yyTtkLSxznEfT/1uknR5Kjtd0jpJ96fHmaX2d6X2bWk7Iteczcysq6ZcHUsaAVwJnA50AGsltUTEA6Vms4HJaZsGXJUeAa4HrgCW1/T7DmAOcGJE7C4FxxPAuyNim6Q3AauBcaVD50dEaz9O0czMGpTzymYq0B4RWyLiBWAlRUiUzQGWR2ENMFrSWICIuBt4qk6/FwBfiYjdqd2O9Lg+IralNpuAgySN6vdZmZlZr+UMm3HA1tLzDl55pdFom1rHADMk3SvpR5JOqdPmvcD6aiAl16VbaBdLUr2OJS2U1CqptbOzs4dhmJlZo3KGTb0f6NGHNrWagMOB6cBngFXl8JB0PHAZ8JHSMfMj4gRgRtrOrddxRCyNiEpEVJqbm3sYhpmZNSpn2HQAE0rPxwPb+tCmXr+3pFtv9wF7gTEAksYDtwILIuKR6gER8Vh63AncRHGLz8zMBkjOsFkLTJY0SdJIYB7QUtOmBViQVqVNB56NiO099HsbMBNA0jHASOAJSaOB7wGfjYgfVxtLapJUDaMDgTOBLivczMwsn2xhExF7gAspVoU9CKyKiE2SFklalJrdAWwB2oFrgI9Wj5e0ArgHOFZSh6QPp6plwNFpSfRK4LyIiHSuNwAX1yxxHgWslrQBaAMeS+cyM7MBouLntNWqVCrR2uqV0mZmvSFpXURUasv9CQJmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7Ps/MfTuiGpE/jlYI+jl8YATwz2IPaT5zD4hvv4wXMYTEdFRHNtocPmVURSa72/kDeceA6Db7iPHzyHoci30czMLDuHjZmZZeeweXVZOtgD6Aeew+Ab7uMHz2HI8Xs2ZmaWna9szMwsO4eNmZll57AZwiTNkrRZUrukxXXq/0zSPZJ2S/p0qXyCpP8n6UFJmyR9slT3Wkn/Junh9Hj4MBv/VyU9JGmDpFsljc41/lxzKLX5tKSQNGY4zkHSx1O/myRdPpzGL+kkSWsktUlqlTQ11/j3cw4HSbpP0s/SHP6+VDdg38v9IiK8DcENGAE8AhwNjAR+BhxX0+YI4BTgUuDTpfKxwJS0fyjw8+qxwOXA4rS/GLhsmI3/L4CmtH9ZrvHnnEMqmwCspviPw2OG2xyAdwA/AEZV+xhm4/8+MDvtnwHcNURfAwGHpP0DgXuB6en5gHwv99fmK5uhayrQHhFbIuIFYCUwp9wgInZExFrgxZry7RHx07S/E3gQGJeq5wA3pP0bgLnDafwR8f2I2JOargHGZxp/tjkk3wD+Fsi9QifXHC4AvhIRu6t9DLPxB3BY2v8jYFum8cP+zSEi4rn09MC0Vb9mBup7uV84bIauccDW0vMOXvnDqiGSJgJvpviNCOB1EbEdim9Git+ocsg1/rIPAXf2ZXANyjIHSe8BHouIn/XDGHuS63U4Bpgh6V5JP5J0yv4OtBu5xv8p4KuStgJfAz67X6Pct/2ag6QRktqAHcC/RcRAfy/3C4fN0KU6Zb36LVjSIcB3gU9FxG/6ZVS9OH2dsn4bv6SLgD3AjX0eYQNDqFO2X3OQ9BrgIuAL/TC+hoZQp6w/Xocm4HBgOvAZYJWkeufaX7nGfwHw1xExAfhr4Nr9GmUPQ6hT1vAcIuKliDiJ4ip+qqQ39dfABpLDZujqoLivXzWeXlzqSzqQ4hvsxoi4pVT1uKSxqc1Yit+Wcsg1fiSdB5wJzI90wzqTHHP4U2AS8DNJj6Y+fyrp9f0y4q5yvQ4dwC3pNs99wF6KD47sb7nGfx5Qff5/KG515bJfc6iKiGeAu4BZqWigvpf7hcNm6FoLTJY0SdJIYB7Q0siB6TfMa4EHI+Ifa6pbKL7RSI+399N4a2UZv6RZwN8B74mIXf085lr9PoeIuD8ijoiIiRExkeIH0ZSI+HX/Dx/I93V0GzAztTuG4o3vHJ9QnGv824C3p/2ZwMP9NN569mcOzUorLiUdDJwGPJSqB+p7uX8M9goFb91vFKtkfk6xkuWiVLYIWJT2X0/xw+o3wDNp/zDgrRSX6RuAtrSdkY75Y+CHFN9cPwReO8zG305x/7tafvVwew1q+n+UjKvRMr4OI4FvAxuBnwIzh9n43wqso1gZdi9w8hB9DU4E1qc5bAS+UOpzwL6X+2Pzx9WYmVl2vo1mZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxmwYkfS5wR6DWV946bPZMCLpuYg4ZLDHYdZbTYM9ADOrT9IHgU9Q/AfKeyn+w9/B6UMZN0XEfEm3UXwUykHANyPiVfV36+3Vw2FjNgRJeiNwNvCWiHhR0reA+4Hno/hQxqoPRcRT6aNM1kr6bkQ8OQhDNtsnh43Z0PRO4GSKAAE4mPoftPgJSf817U8AJgMOGxtyHDZmQ5OAGyLiFX9npeZPBp9K8cGMfx4RuyTdRXE7zWzI8Wo0s6Hph8B/k3QEvPz35o8CXkwfmw/FX5h8OgXNn1H8bRmzIclXNmZDUEQ8IOnzwPclHUDx54I/BiwFNkj6KcVfKl0kaQOwmeLPZJsNSV76bGZm2fk2mpmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtn9f2cq/C8q4FqeAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "eta sigma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAf10lEQVR4nO3df5zWZZ3v8ddbELTUxRYsAhRc0dJ0DUdgH4UZaYFrwbEtMRLX2kO40Y/t1C5lZtvmbrn9OHE0WTyi8khBt/wx56SLa7vmnlaUISYElRzJYoBk/IUYLoZ8zh/f684v99zD3DPMNT/o/Xw8vo+57+u6vtf3uriZec/3e1/zvRURmJmZ5XRQXw/AzMwOfA4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmYHCElnSmrt63GUSVov6cx91H9B0v/uvRFZX3HYWL8g6UlJL0l6UdJTkq6XdFhfj2tfJI2VFJIG91B/h0h6XtLUGnXflvT9njhOd6R5/ia9PpslfUvSoM72i4iTIuK+fdT/fUT8RY8O1volh431J++NiMOACcDpwBe7srMKA+b/dHVIRcR/AbcAc6raDQIuAG7svdHV9Mfp9XkX8CHgv+9PZz0V0jYwDJhvTPv9ERGbgbuBt0g6UtL/ldQm6bn0eHSlraT7JF0h6SfATuBYSRdLelTSDkkbJX2s1P5MSa2S/lrSNklbJc2UdI6kn0t6VtIXSu0PkrRA0hOSnpF0q6TXper709fn02/8f5L2+Ug6/nOSVkg6ptRfSPq4pMeBx2tM/0bg/ZJeUyp7D8X36t37mlu1dKzjSs9vkPTV0vNzJTWns6n/lHRKx6/KqyLiMeA/KF6fP5L0b+nf5mlJN0kaVjrGk5LOSo+/LOn7kr4n6QXgz1PZ91J95UzxIkm/Sv1dWurrUEk3pn/XR9Nr2Fqq/5t01rVD0gZJ76pnPtY7HDbW70gaA5wDrKH4P3o9cAxwNPAScFXVLhcCc4HDgV8C24BzgSOAi4FvS5pQav8G4BBgFPAl4Frgw8BpwBTgS5KOTW0/CcwE3gG8EXgOuDrVnZG+DouIwyLiAUkzgS8A5wEjKH4oL6sa70xgEnBi9dwj4j+BrWn/8vxujojddcytLmmfJcDHgD8E/glolDS0jn1PpPh3WgMI+AeKf5s3A2OAL+9j9xnA94FhwE0dtHk7cALFGdSXJL05lV8OjAWOBc6meM0qYzoBmA+cHhGHUwT0k53NxXpRRHjz1ucbxQ+GF4HnKQLju8ChNdqdCjxXen4f8JVO+r4D+FR6fCZFYA1Kzw8HAphUar8amJkePwq8q1Q3EvgtMJjiB18Ag0v1dwMfLT0/iOKM65j0PICpnYz3i8A96fERaf+31jm31lJdAMeVnt8AfDU9vgb4u6q+NgDv6OA4AbxAEbZPAF8FDqrRbiawpup1PSs9/jJwf1X7LwPfS48r/56jS/UPAbPS443Ae0p1f1GZL3AcRRCfBRzc1/+fvbXffM3U+pOZEXFvuSBdTvo2MA04MhUfLmlQRLySnm+q2mc6xW/Bx1P8sH8N8HCpyTOlfV9KX58q1b8EVBYnHAPcLmlPqf4V4PUdzOEY4DuSvlkeEsVZ1C9rjbeGpcDlkkZR/IbeEhFr6pxbvY4BLpL0iVLZEIozlI5MiIiWcoGko4CFFGc6h6cxPbePPjqbO8CvS4938upr8caq/X/3OCJaJH2aIrxOkrQC+ExEbKnjeNYLfBnN+rv/QXFJZVJEHMGrl65UavO7W5eny0A/AL4BvD4ihgF3VbXvik3A9IgYVtoOieJ9pVq3TN8EfKyq/aFRXB5rN95aIuJXFJffZlNcQlvazbntpAijijdUjfOKqnG+JiKqL/l15h/SfE5Jr8+H9zEe6GTundgKjC49H7NXxxE3R8TbKYI0gK/vx7GshzlsrL87nOJM4/n0xvzlnbQfAgwF2oDd6Uzg3ftx/EXAFZU3+SWNkDQj1bUBeyjeQyi3/7ykk1L7P5D0gW4c90aK9yDexqvvbXR1bs3AhyQNkjSN4n2nimuBeZImqfBaSX8q6fAujvNw0uXPdCb2uS7u3xW3UvzbHpmONb9SIekESVNTIP8Xxf+ZVzrox/qAw8b6u/8JHAo8DawE/mVfjSNiB8Wb+rdSXM75ENC4H8f/Ttr/Hkk70hgmpWPtBK4AfpJWdE2OiNspfqNenlZcrQOmd+O436e4bPijiNjazbl9Cngvxftgsyne3yH11USxdPmq1FcL8OfdGOffUixV3w78ELitG33U6ytAK/AL4F6Kf6NdqW4o8DWK/ye/Bo6iWKhh/YQi/OFpZjbwSLqEYvHAOzptbH3OZzZmNiBIGinpbelvn06geD/v9r4el9XHq9HMbKAYQvH3QOMoLg0up1gibwOAL6OZmVl2voxmZmbZ+TJaB4YPHx5jx47t62GYmQ0oq1evfjoiRlSXO2w6MHbsWJqamvp6GGZmA4qkX9Yq92U0MzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLLmvYSJomaYOkFkkLatRL0sJUv1bShFLdEknbJK2r2ucWSc1pe1JScyqfXSpvlrRH0qmp7r40jkrdUTnnbWZme8v2sdCSBgFXA2cDrcAqSY0R8Uip2XRgfNomAdekrwA3AFcBS8v9RsT5pWN8E9ieym8CbkrlJwN3RkRzadfZEeHPeTYz6wM5z2wmAi0RsTEiXgaWAzOq2swAlkZhJTBM0kiAiLgfeLajziUJ+CCwrEb1BR2Um5lZH8gZNqOATaXnramsq206MgV4KiIer1F3Pu3D5vp0Ce2yFFTtSJorqUlSU1tbW53DMDOzzuQMm1o/0KMbbTpS8+xF0iRgZ0SU3+uZHREnUwTUFODCWh1GxOKIaIiIhhEjRtQ5DDMz60zOsGkFxpSejwa2dKNNO5IGA+cBt9SonkVVCEXE5vR1B3AzxSU+MzPrJTnDZhUwXtI4SUMoQqCxqk0jMCetSpsMbI+IrXX0fRbwWES0lgslHQR8gOL9oUrZYEnD0+ODgXOBvVa4mZlZXtlWo0XEbknzgRXAIGBJRKyXNC/VLwLuAs4BWoCdwMWV/SUtA84EhktqBS6PiOtSdbuzl+QMoDUiNpbKhgIrUtAMAu4Fru2xiZqZWacUUe9bJL9fGhoaoqnJK6XNzLpC0uqIaKgu9x0EzMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpZd1rCRNE3SBkktkhbUqJekhal+raQJpbolkrZJWle1zy2SmtP2pKTmVD5W0kulukWlfU6T9HA6zkJJyjhtMzOrki1sJA0CrgamAycCF0g6sarZdGB82uYC15TqbgCmVfcbEedHxKkRcSrwA+C2UvUTlbqImFcqvyb1XzlWu37NzCyfnGc2E4GWiNgYES8Dy4EZVW1mAEujsBIYJmkkQETcDzzbUefp7OSDwLJ9DSL1d0REPBARASwFZnZzTmZm1g05w2YUsKn0vDWVdbVNR6YAT0XE46WycZLWSPqxpCmlY7TWcwxJcyU1SWpqa2urcxhmZtaZnGFT632R6EabjlzA3mc1W4GjI+KtwGeAmyUd0ZVjRMTiiGiIiIYRI0bUOQwzM+vM4Ix9twJjSs9HA1u60aYdSYOB84DTKmURsQvYlR6vlvQEcHw6xuiuHsPMzHpOzjObVcB4SeMkDQFmAY1VbRqBOWlV2mRge0RsraPvs4DHIuJ3l8ckjUiLEpB0LMVCgI2pvx2SJqf3eeYAd+737MzMrG7ZzmwiYrek+cAKYBCwJCLWS5qX6hcBdwHnAC3ATuDiyv6SlgFnAsMltQKXR8R1qXoW7RcGnAF8RdJu4BVgXkRUFhhcQrG67VDg7rSZmVkvUbFAy6o1NDREU1NTXw/DzGxAkbQ6Ihqqy30HATMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZlllzVsJE2TtEFSi6QFNeolaWGqXytpQqluiaRtktZV7XOLpOa0PSmpOZWfLWm1pIfT16mlfe5L46jsd1TGaZuZWZXBuTqWNAi4GjgbaAVWSWqMiEdKzaYD49M2CbgmfQW4AbgKWFruNyLOLx3jm8D29PRp4L0RsUXSW4AVwKjSrrMjoqlnZmdmZl2R88xmItASERsj4mVgOTCjqs0MYGkUVgLDJI0EiIj7gWc76lySgA8Cy1L7NRGxJVWvBw6RNLRHZ2RmZt2SM2xGAZtKz1vZ+0yj3jYdmQI8FRGP16h7P7AmInaVyq5Pl9AuS0HVjqS5kpokNbW1tdU5DDMz60zOsKn1Az260aYjF5DOavbqUDoJ+DrwsVLx7Ig4mSKgpgAX1uowIhZHRENENIwYMaLOYZiZWWdyhk0rMKb0fDSwpRtt2pE0GDgPuKWqfDRwOzAnIp6olEfE5vR1B3AzxSU+MzPrJTnDZhUwXtI4SUOAWUBjVZtGYE5alTYZ2B4RW+vo+yzgsYhorRRIGgb8EPh8RPykVD5Y0vD0+GDgXGAdZmbWa7KFTUTsBuZTrAp7FLg1ItZLmidpXmp2F7ARaAGuBf6ysr+kZcADwAmSWiV9tNT9LNpfQpsPHAdcVrXEeSiwQtJaoBnYnI5lZma9RBH1vkXy+6WhoSGamrxS2sysKyStjoiG6nLfQcDMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy67uj4VOH7V8InBIpSwilna8h5mZWaGusJF0OXAmRdjcBUwH/h/gsDEzs07Vexntz4B3Ab+OiIuBP6a4db+ZmVmn6g2blyJiD7Bb0hHANuDYfMMyM7MDSb3v2TSlT8K8FlgNvAg8lGtQZmZ2YKkrbCKi8gmaiyT9C3BERKzNNywzMzuQdGU12inA2Mo+ko6LiNsyjcvMzA4g9a5GWwKcAqwH9qTiABw2ZmbWqXrPbCZHxIlZR2JmZgeselejPSCpy2EjaZqkDZJaJC2oUS9JC1P9WkkTSnVLJG2TtK5qn1skNaftSUnNpbrPp742SHpPqfw0SQ+nuoWS1NW5mJlZ99UbNjdSBM6GFAoPS9rnAgFJg4CrKf4A9ETgghqBNR0Yn7a5wDWluhuAadX9RsT5EXFqRJwK/IB0KS/1PQs4Ke333TQGUr9zS8dq169Zfxd79vDTf7uJ/2i8ipdferGvh2PWJfVeRlsCXAg8zKvv2XRmItASERsBJC0HZgCPlNrMAJZGRAArJQ2TNDIitkbE/ZLGdtR5Ojv5IDC11NfyiNgF/EJSCzBR0pMUq+ceSPstBWYCd9c5D7N+ofn+W/jmDy8lImh75lecd/GVfT0ks7rVGza/iojGLvY9CthUet4KTKqjzShgax39TwGeiojHS32trNHXb9Pj6vJ2JM2lOAPi6KOPrmMIZr1n13/9hiA4SAfxm5de6OvhmHVJvWHzmKSbgf8D7KoUdrL0udb7ItGNNh25AFhWR191HyMiFgOLARoaGuodh1mvOO3MDzFr2y94cefzvPcDl/b1cMy6pN6wOZQiZN5dKuts6XMrMKb0fDSwpRtt2pE0GDgPOK2OvlrT4y4dw6y/OfiQ1/C+OVf09TDMuqXeOwhc3I2+VwHjJY0DNlO8ef+hqjaNwPz0fs4kYHtE1HMJ7SzgsYgoXx5rBG6W9C3gjRQLAR6KiFck7ZA0GXgQmAP8r27Mx8zMuqneP+pcWKN4O9AUEXfW2icidkuaD6wABgFLImK9pHmpfhHFxxWcA7QAO4HfhZqkZRQfazBcUitweURcl6pnsfclNFLft1IsQNgNfDwiXknVl1CsbjuUYmGAFweYmfUiFQvBOmkkLQbeBPxzKno/xd0ExgAbI+LTuQbYVxoaGqKpqamvh2FmNqBIWh0RDdXl9b5ncxwwNSJ2p86uAe4BzqZYDm1mZtahev+ocxTw2tLz1wJvTJepdtXexczMrFDvmc2VQLOk+yiWEp8B/L2k1wL3ZhqbmZkdIOpdjXadpLso7gog4AsRUVk+/LlcgzMzswPDPi+jSXpT+joBGEnx1/6/At5QvmmmmZnZvnR2ZvMZitu3fLNUVl6+NhUzM7NO7PPMJiLmpofXADMi4p3Av1P8jc1nM4/NzMwOEPWuRvtiRLwg6e0Uy51vYO+PAzAzM+tQvWFT+Uv8PwUWpbsGDMkzJDMzO9DUGzabJf0TxefH3CVpaBf2NTOz33P1BsYHKe5xNi0ingdeh5c8m5lZner9O5udlD5OIN2ZuZ67M5uZmflSmJmZ5eewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLLusYSNpmqQNklokLahRL0kLU/3a8mfkSFoiaZukdTX2+0Tqd72kK1PZbEnNpW2PpFNT3X2pfaXuqIzTNjOzKvV+LHSXSRoEXE1xl+hWYJWkxoh4pNRsOjA+bZMo7iQ9KdXdAFwFLK3q953ADOCUiNhVCY6IuAm4KbU5GbgzIppLu86OiKaenKOZmdUn55nNRKAlIjZGxMvAcoqQKJsBLI3CSmCYpJEAEXE/8GyNfi8BvhYRu1K7bTXaXAAs66F5mJnZfsoZNqMoPka6ojWVdbVNteOBKZIelPRjSafXaHM+7cPm+nQJ7TJJqtWxpLmSmiQ1tbW1dTIMMzOrV86wqfUDPbrRptpg4EhgMsWdp28th4ekScDOiCi/1zM7Ik4GpqTtwlodR8TiiGiIiIYRI0Z0MgwzM6tXzrBpBcaUno8GtnSjTa1+b0uX3h4C9gDDS/WzqDqriYjN6esO4GaKS3xmZtZLcobNKmC8pHGShlCEQGNVm0ZgTlqVNhnYnj6+YF/uAKYCSDqe4hNDn07PDwI+QPH+EKlssKTh6fHBwLlAuxVuZmaWT7bVaBGxW9J8ig9dGwQsiYj1kual+kXAXcA5QAuwE7i4sr+kZcCZwHBJrcDlEXEdsARYkpZEvwxcFBGVS29nAK0RsbE0lKHAihQ0g4B7gWszTdvMzGrQqz+nrayhoSGamrxS2sysKyStjoiG6nLfQcDMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2WUNG0nTJG2Q1CJpQY16SVqY6tdKmlCqWyJpm6R1Nfb7ROp3vaQrU9lYSS9Jak7bolL70yQ9nI6zUJJyzdnMzNrLFjaSBgFXA9OBE4ELJJ1Y1Ww6MD5tc4FrSnU3ANNq9PtOYAZwSkScBHyjVP1ERJyatnml8mtS/5VjtevXzMzyyXlmMxFoiYiNEfEysJwiJMpmAEujsBIYJmkkQETcDzxbo99LgK9FxK7Ubtu+BpH6OyIiHoiIAJYCM/djXmZm1kU5w2YUsKn0vDWVdbVNteOBKZIelPRjSaeX6sZJWpPKp5SO0VrPMSTNldQkqamtra2TYZiZWb0GZ+y71vsi0Y021QYDRwKTgdOBWyUdC2wFjo6IZySdBtwh6aSuHCMiFgOLARoaGjobh5mZ1SnnmU0rMKb0fDSwpRttavV7W7r09hCwBxgeEbsi4hmAiFgNPEFxFtSa+u3KMczMrAflDJtVwHhJ4yQNAWYBjVVtGoE5aVXaZGB7RGztpN87gKkAko4HhgBPSxqRFiWQznTGAxtTfzskTU6r0OYAd/bMFM3MrB7ZLqNFxG5J84EVwCBgSUSslzQv1S8C7gLOAVqAncDFlf0lLQPOBIZLagUuj4jrgCXAkrQk+mXgoogISWcAX5G0G3gFmBcRlQUGl1CsbjsUuDttZmbWS1Qs0LJqDQ0N0dTU1NfDMDMbUCStjoiG6nLfQcDMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2WUNG0nTJG2Q1CJpQY16SVqY6tdKmlCqWyJpm6R1Nfb7ROp3vaQrU9nZklZLejh9nVpqf19q35y2o3LN2czM2hucq2NJg4CrgbOBVmCVpMaIeKTUbDowPm2TgGvSV4AbgKuApVX9vhOYAZwSEbtKwfE08N6I2CLpLcAKYFRp19kR0dSDUzQzszrlPLOZCLRExMaIeBlYThESZTOApVFYCQyTNBIgIu4Hnq3R7yXA1yJiV2q3LX1dExFbUpv1wCGShvb4rMzMrMtyhs0oYFPpeSt7n2nU26ba8cAUSQ9K+rGk02u0eT+wphJIyfXpEtplklSrY0lzJTVJampra+tkGGZmVq+cYVPrB3p0o021wcCRwGTgc8Ct5fCQdBLwdeBjpX1mR8TJwJS0XVir44hYHBENEdEwYsSIToZhZmb1yhk2rcCY0vPRwJZutKnV723p0ttDwB5gOICk0cDtwJyIeKKyQ0RsTl93ADdTXOIzM7NekjNsVgHjJY2TNASYBTRWtWkE5qRVaZOB7RGxtZN+7wCmAkg6HhgCPC1pGPBD4PMR8ZNKY0mDJVXC6GDgXKDdCjczM8snW9hExG5gPsWqsEeBWyNivaR5kualZncBG4EW4FrgLyv7S1oGPACcIKlV0kdT1RLg2LQkejlwUUREOtZxwGVVS5yHAiskrQWagc3pWGZm1ktU/Jy2ag0NDdHU5JXSZmZdIWl1RDRUl/sOAmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+z84WkdkNQG/LKvx9FFw4Gn+3oQ+8lz6HsDffzgOfSlYyJiRHWhw+YAIqmp1ifkDSSeQ98b6OMHz6E/8mU0MzPLzmFjZmbZOWwOLIv7egA9wHPoewN9/OA59Dt+z8bMzLLzmY2ZmWXnsDEzs+wcNv2YpGmSNkhqkbSgRv2bJD0gaZekz5bKx0j6d0mPSlov6VOlutdJ+ldJj6evRw6w8f+jpMckrZV0u6Rhucafaw6lNp+VFJKGD8Q5SPpE6ne9pCsH0vglnSpppaRmSU2SJuYa/37O4RBJD0n6WZrD35bqeu17uUdEhLd+uAGDgCeAY4EhwM+AE6vaHAWcDlwBfLZUPhKYkB4fDvy8si9wJbAgPV4AfH2Ajf/dwOD0+Ou5xp9zDqlsDLCC4g+Hhw+0OQDvBO4Fhlb6GGDjvweYnh6fA9zXT18DAYelxwcDDwKT0/Ne+V7uqc1nNv3XRKAlIjZGxMvAcmBGuUFEbIuIVcBvq8q3RsRP0+MdwKPAqFQ9A7gxPb4RmDmQxh8R90TE7tR0JTA60/izzSH5NvDXQO4VOrnmcAnwtYjYVeljgI0/gCPS4z8AtmQaP+zfHCIiXkxPD05b5f9Mb30v9wiHTf81CthUet7K3j+s6iJpLPBWit+IAF4fEVuh+Gak+I0qh1zjL/sIcHd3BlenLHOQ9D5gc0T8rAfG2Jlcr8PxwBRJD0r6saTT93egHcg1/k8D/yhpE/AN4PP7Ncp92685SBokqRnYBvxrRPT293KPcNj0X6pR1qXfgiUdBvwA+HREvNAjo+rC4WuU9dj4JV0K7AZu6vYI6xhCjbL9moOk1wCXAl/qgfHVNYQaZT3xOgwGjgQmA58DbpVU61j7K9f4LwH+KiLGAH8FXLdfo+xkCDXK6p5DRLwSEadSnMVPlPSWnhpYb3LY9F+tFNf1K0bThVN9SQdTfIPdFBG3laqekjQytRlJ8dtSDrnGj6SLgHOB2ZEuWGeSYw5/BIwDfibpydTnTyW9oUdG3F6u16EVuC1d5nkI2ENx48ielmv8FwGV5/9Mcakrl/2aQ0VEPA/cB0xLRb31vdwjHDb91ypgvKRxkoYAs4DGenZMv2FeBzwaEd+qqm6k+EYjfb2zh8ZbLcv4JU0D/gZ4X0Ts7OExV+vxOUTEwxFxVESMjYixFD+IJkTEr3t++EC+/0d3AFNTu+Mp3vjOcYfiXOPfArwjPZ4KPN5D461lf+YwQmnFpaRDgbOAx1J1b30v94y+XqHgreONYpXMzylWslyayuYB89LjN1D8sHoBeD49PgJ4O8Vp+lqgOW3npH3+EPgRxTfXj4DXDbDxt1Bc/66ULxpor0FV/0+ScTVaxtdhCPA9YB3wU2DqABv/24HVFCvDHgRO66evwSnAmjSHdcCXSn322vdyT2y+XY2ZmWXny2hmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszAYQSV/o6zGYdYeXPpsNIJJejIjD+nocZl01uK8HYGa1Sfow8EmKP6B8kOIP/g5NN2VcHxGzJd1BcSuUQ4DvRMQB9bn1duBw2Jj1Q5LeDJwPvC0ifivpu8DDwEtR3JSx4iMR8Wy6lckqST+IiGf6YMhm++SwMeuf3gWcRhEgAIdS+0aLn5T039LjMcB4wGFj/Y7Dxqx/EnBjROz1OStVHxl8JsWNGf8kInZKuo/icppZv+PVaGb904+AP5N0FPzu8+aPAX6bbpsPxSdMPpeC5k0Uny1j1i/5zMasH4qIRyR9EbhH0kEUHxf8cWAxsFbSTyk+qXSepLXABoqPyTbrl7z02czMsvNlNDMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLL7/weibReomQb6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "eta tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaEElEQVR4nO3de5SkdX3n8feHGW4KZDAMitwG4kgyRGOwBXI0kaCYGWMcssazoC5EzeKomMtG43hZo0lMNBdJPCG6YNRhNbKskTjZYBDZEPYYUHpELhNARqIyYQKjIoIQuX33j+fpWNY03TU9v5qelvfrnDr1PM/vUr9fV1d/6rl0VaoKSZJa2G2+ByBJ+sFhqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0VaYJKckGTzfI9jUJKNSU6YofzNST6w80ak+WKoaKdK8pUk9yW5J8ntST6UZJ/5HtdMkixLUkkWN+pvryTfSnLiNGVnJfl4i8eZi36e3+mfn39N8p4ki2ZrV1VHV9VlM5T/flX9StPBapdkqGg+/EJV7QMcAzwDeOv2NE5nwfzuDodRVf078L+A04bqLQJOBdbtvNFN6yf65+c5wEuA/7ojnbUKYy0MC+aFqR88VfWvwKeAH0+yf5L/k2Rrkjv75UOm6ia5LMk7k3wWuBc4MsnLk9yQ5O4ktyR51UD9E5JsTvJbSe5IsiXJyUmen+RLSb6Z5M0D9XdLsjbJl5N8I8kFSR7XF1/e33+rfwf/U32bV/SPf2eSi5McPtBfJXltkpuBm6eZ/jrgRUkeM7Dt5+hek5+aaW7D+sd60sD6h5P83sD6C5J8sd87+qckT33kZ+V7qupG4P/RPT8/kuT/9j+bryf5aJIlA4/xlSTP7ZffnuTjST6S5NvAL/fbPtKXT+35nZ7ka31/bxnoa+8k6/qf6w39c7h5oPyN/V7U3UluSvKcUeajncNQ0bxJcijwfOBqut/FDwGHA4cB9wF/PtTkvwBnAPsCXwXuAF4A7Ae8HDgryTED9Z8A7AUcDLwNOBd4GfB04KeBtyU5sq/7q8DJwLOBJwJ3Amf3ZT/T3y+pqn2q6ookJwNvBv4TsJTuj+/HhsZ7MnAcsGJ47lX1T8CWvv3g/P6qqh4cYW4j6dt8EHgV8MPA/wDWJ9lzhLYr6H5OVwMB/oDuZ/NjwKHA22dovhr4OLAE+Ogj1HkWcBTdHtHbkvxYv/23gWXAkcBJdM/Z1JiOAs4EnlFV+9IF8Vdmm4t2oqry5m2n3ej+ANwDfIsuGP4C2Huaek8D7hxYvwz4nVn6/hvg1/rlE+iCaVG/vi9QwHED9TcAJ/fLNwDPGSg7CHgAWEz3B66AxQPlnwJeObC+G90e1OH9egEnzjLetwKf7pf369v/5Ihz2zxQVsCTBtY/DPxev/w+4HeH+roJePYjPE4B36YL1S8DvwfsNk29k4Grh57X5/bLbwcuH6r/duAj/fLUz/OQgfLPA6f0y7cAPzdQ9itT8wWeRBe4zwV2n+/fZ2/b3jzWqflwclV9ZnBDfxjoLGAlsH+/ed8ki6rqoX791qE2q+je1T6Z7o/6Y4DrBqp8Y6Dtff397QPl9wFTFwkcDlyY5OGB8oeAxz/CHA4H/izJnwwOiW6v6KvTjXca5wG/neRgunfcm6rq6hHnNqrDgdOTvG5g2x50exyP5Jiq2jS4IcmBwHvp9lz27cd05wx9zDZ3gH8bWL6X7z0XTxxq/x/LVbUpya/ThdTRSS4G/ltV3TbC42kn8PCXdhW/SXco5Liq2o/vHXLKQJ3/+Ejt/vDNXwN/DDy+qpYAFw3V3x63AquqasnAba/qzvtM91HetwKvGqq/d3WHtbYZ73Sq6mt0h81eSnfo67w5zu1eutCZ8oShcb5zaJyPqarhQ3Wz+YN+Pk/tn5+XzTAemGXus9gCHDKwfuj3dVz1V1X1LLrALODdO/BYasxQ0a5iX7o9h2/1J8h/e5b6ewB7AluBB/t39s/bgcd/P/DOqZPtSZYmWd2XbQUepjvGP1j/TUmO7uv/UJIXz+Fx19GdI3gm3zv3sL1z+yLwkiSLkqykOy805VxgTZLj0nlskp9Psu92jnNf+sOW/Z7VG7az/fa4gO5nu3//WGdOFSQ5KsmJffD+O93vzEOP0I/mgaGiXcWfAnsDXweuBP5+pspVdTfdyfUL6A7DvARYvwOP/2d9+08nubsfw3H9Y90LvBP4bH8F1fFVdSHdO+Tz+yucrgdWzeFxP053uO/Sqtoyx7n9GvALdOepXkp3/oW+r0m6S4L/vO9rE/DLcxjnO+guAb8L+DvgE3PoY1S/A2wG/gX4DN3P6Lt92Z7Au+h+T/4NOJDuggntIlLll3RJ2nUleTXdSfxnz1pZ8849FUm7lCQHJXlm/79DR9Gdb7twvsel0Xj1l6RdzR50/09zBN0hvfPpLj3XAuDhL0lSMx7+kiQ186g+/HXAAQfUsmXL5nsYkrSgbNiw4etVtXS6skd1qCxbtozJycn5HoYkLShJvvpIZR7+kiQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1M9ZQSbIyyU1JNiVZO015kry3L782yTEDZR9MckeS64faPC7JJUlu7u/3Hyo/LMk9SV4/vplJkqYztlBJsgg4G1gFrABOTbJiqNoqYHl/OwN430DZh4GV03S9Fri0qpYDl/brg84CPrWj45ckbb9x7qkcC2yqqluq6n7gfGD1UJ3VwHnVuRJYkuQggKq6HPjmNP2uBtb1y+uAk6cKkpwM3AJsbDgPSdKIxhkqBwO3Dqxv7rdtb51hj6+qLQD9/YEASR4LvBF4x0yNk5yRZDLJ5NatW2edhCRpdOMMlUyzreZQZ1TvAM6qqntmqlRV51TVRFVNLF26dI4PJUmazuIx9r0ZOHRg/RDgtjnUGXZ7koOqakt/qOyOfvtxwC8l+UNgCfBwkn+vqj+f6wQkSdtnnHsqVwHLkxyRZA/gFGD9UJ31wGn9VWDHA3dNHdqawXrg9H75dOCTAFX101W1rKqWAX8K/L6BIkk719hCpaoeBM4ELgZuAC6oqo1J1iRZ01e7iO7E+ibgXOA1U+2TfAy4AjgqyeYkr+yL3gWclORm4KR+XZK0C0jVXE9hLHwTExM1OTk538OQpAUlyYaqmpiuzP+olyQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpmbGGSpKVSW5KsinJ2mnKk+S9ffm1SY4ZKPtgkjuSXD/U5nFJLklyc3+/f7/9pCQbklzX3584zrlJkrY1tlBJsgg4G1gFrABOTbJiqNoqYHl/OwN430DZh4GV03S9Fri0qpYDl/brAF8HfqGqngKcDvzPNjORJI1qnHsqxwKbquqWqrofOB9YPVRnNXBeda4EliQ5CKCqLge+OU2/q4F1/fI64OS+/tVVdVu/fSOwV5I9W05IkjSzcYbKwcCtA+ub+23bW2fY46tqC0B/f+A0dV4EXF1V392uEUuSdsjiMfadabbVHOps34MmRwPvBp73COVn0B1q47DDDtuRh5IkDRnnnspm4NCB9UOA2+ZQZ9jtU4fI+vs7pgqSHAJcCJxWVV+ernFVnVNVE1U1sXTp0pEmIkkazThD5SpgeZIjkuwBnAKsH6qzHjitvwrseOCuqUNbM1hPdyKe/v6TAEmWAH8HvKmqPttoDpKk7TC2UKmqB4EzgYuBG4ALqmpjkjVJ1vTVLgJuATYB5wKvmWqf5GPAFcBRSTYneWVf9C7gpCQ3Ayf16/SP9STgvyf5Yn+b7nyLJGlMUrVDpzAWtImJiZqcnJzvYUjSgpJkQ1VNTFfmf9RLkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpmcWzVUjytum2V9XvtB+OJGkhmzVUgO8MLO8FvAC4YTzDkSQtZLMe/qqqPxm4vRM4ATh4lM6TrExyU5JNSdZOU54k7+3Lr01yzEDZB5PckeT6oTaPS3JJkpv7+/0Hyt7U93VTkp8bZYySpHbmck7lMcCRs1VKsgg4G1gFrABOTbJiqNoqYHl/OwN430DZh4GV03S9Fri0qpYDl/br9H2fAhzdt/uLfgzSgnL3N27jHz7xHm78/EXzPRRpu41yTuU6oPrVRcBSYJTzKccCm6rqlr6f84HVwD8P1FkNnFdVBVyZZEmSg6pqS1VdnmTZNP2upttbAlgHXAa8sd9+flV9F/iXJJv6MVwxwlilXcYHzn01k1uvYc/szu8uOZCDnzwx30OSRjbKOZUXDCw/CNxeVQ+O0O5g4NaB9c3AcSPUORjYMkO/j6+qLQBVtSXJgQN9XTlNX98nyRl0e0Ucdthhs89C2sm+c/897JHdeYiH+e5998z3cKTtMso5la9W1VeB++j2VJ6YZJS/xpmuuznUGdVIfVXVOVU1UVUTS5cuneNDSePzKy87i2cf/jO8/Jmv44in/Mx8D0faLqMc/noh8CfAE4E7gMPprv46epamm4FDB9YPAW6bQ51ht08dIktyUD+mufYl7XKecORT+eXX/eV8D0Oak1FO1P8ucDzwpao6AngO8NkR2l0FLE9yRJI96E6irx+qsx44rb8K7HjgrqlDWzNYD5zeL58OfHJg+ylJ9kxyBN3J/8+PME5JUiOjhMoDVfUNYLcku1XVPwBPm61Rf97lTOBiuj2bC6pqY5I1Sdb01S4CbgE2AecCr5lqn+RjdCfZj0qyOckr+6J3AScluRk4qV+nqjYCF9BdCPD3wGur6qER5idJaiTdhVczVEg+A5wM/AFwAN3hpomqeubYRzdmExMTNTk5Od/DkKQFJcmGqpr2ssRRrv66BrgX+A3gpcAPAfu0G54k6QfFKKHys1X1MPAw3f+FkOTasY5KkrQgPWKoJHk13TmOHxkKkX0Z7US9JOlRZqY9lb8CPkV3LmXwc7vurqpvjnVUkqQF6RFDparuAu4CTt15w5EkLWR+SZckqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqZmxhkqSlUluSrIpydppypPkvX35tUmOma1tkp9IckWS65L8bZL9+u27J1nXb78hyZvGOTdJ0rbGFipJFgFnA6uAFcCpSVYMVVsFLO9vZwDvG6HtB4C1VfUU4ELgDf32FwN79tufDrwqybLxzE6SNJ1x7qkcC2yqqluq6n7gfGD1UJ3VwHnVuRJYkuSgWdoeBVzeL18CvKhfLuCxSRYDewP3A98e09wkSdMYZ6gcDNw6sL653zZKnZnaXg+8sF9+MXBov/xx4DvAFuBrwB9X1Td3bAqSpO0xzlDJNNtqxDoztX0F8NokG4B96fZIoNu7eQh4InAE8JtJjtxmUMkZSSaTTG7dunX2WUiSRjbOUNnM9/YiAA4BbhuxziO2raobq+p5VfV04GPAl/s6LwH+vqoeqKo7gM8CE8ODqqpzqmqiqiaWLl0658lJkrY1zlC5Clie5IgkewCnAOuH6qwHTuuvAjseuKuqtszUNsmB/f1uwFuB9/d9fQ04se/rscDxwI1jnJ8kacjYQqWqHgTOBC4GbgAuqKqNSdYkWdNXuwi4BdgEnAu8Zqa2fZtTk3yJLjBuAz7Ubz8b2IfunMtVwIeq6tpxzU+StK1UDZ/mePSYmJioycnJ+R6GJC0oSTZU1TanF8D/qJckNWSoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUzFhDJcnKJDcl2ZRk7TTlSfLevvzaJMfM1jbJTyS5Isl1Sf42yX4DZU/tyzb25XuNc36SpO83tlBJsgg4G1gFrABOTbJiqNoqYHl/OwN43whtPwCsraqnABcCb+jbLAY+AqypqqOBE4AHxjU/SdK2xrmnciywqapuqar7gfOB1UN1VgPnVedKYEmSg2ZpexRweb98CfCifvl5wLVVdQ1AVX2jqh4a1+QkSdsaZ6gcDNw6sL653zZKnZnaXg+8sF9+MXBov/xkoJJcnOQLSX5rukElOSPJZJLJrVu3bueUJEkzGWeoZJptNWKdmdq+Anhtkg3AvsD9/fbFwLOAl/b3v5jkOdt0UnVOVU1U1cTSpUtnn4UkaWSLx9j3Zr63FwFwCHDbiHX2eKS2VXUj3aEukjwZ+PmBvv6xqr7el10EHANc2mAukqQRjHNP5SpgeZIjkuwBnAKsH6qzHjitvwrseOCuqtoyU9skB/b3uwFvBd7f93Ux8NQkj+lP2j8b+Ocxzk+SNGRseypV9WCSM+n+2C8CPlhVG5Os6cvfD1wEPB/YBNwLvHymtn3XpyZ5bb/8CeBDfZs7k7yHLpAKuKiq/m5c85MkbStVw6c5Hj0mJiZqcnJyvochSQtKkg1VNTFdmf9RL0lqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1Eyqar7HMG+SbAW+Ot/jmIMDgK/P9yB20EKfw0IfPziHXcFCHf/hVbV0uoJHdagsVEkmq2pivsexIxb6HBb6+ME57AoW+vin4+EvSVIzhookqRlDZWE6Z74H0MBCn8NCHz84h13BQh//NjynIklqxj0VSVIzhookqRlDZZ4lWZnkpiSbkqydpvxHk1yR5LtJXj+w/dAk/5DkhiQbk/zaQNnjklyS5Ob+fv8FOIc/SnJjkmuTXJhkyUKbw0Cd1yepJAcstPEneV3f78Ykfziu8Y9rDkmeluTKJF9MMpnk2F10Dnsl+XySa/o5vGOgbKe+nndYVXmbpxuwCPgycCSwB3ANsGKozoHAM4B3Aq8f2H4QcEy/vC/wpam2wB8Ca/vltcC7F+Acngcs7pffvRDn0G87FLiY7p9sD1hI4wd+FvgMsOdUHwvtOQA+Dazql58PXLaLziHAPv3y7sDngOP79Z32em5xc09lfh0LbKqqW6rqfuB8YPVghaq6o6quAh4Y2r6lqr7QL98N3AAc3BevBtb1y+uAk8c2gzHNoao+XVUP9lWvBA5ZaHPonQX8FjDOK2LGNf5XA++qqu9O9bEA51DAfv3yDwG3jW8KOzSHqqp7+tXd+9vU78zOfD3vMENlfh0M3Dqwvpnv/4M0kiTLgJ+ke3cD8Piq2gLdC47u3dG4jGsOg14BfGougxvRWOaQ5IXAv1bVNQ3GOJNxPQdPBn46yeeS/GOSZ+zoQGcwrjn8OvBHSW4F/hh40w6NcmY7NIcki5J8EbgDuKSq5uP1vMMMlfmVabZt1zvaJPsAfw38elV9u8mots9Y55DkLcCDwEfnPMIRhjDNth2aQ5LHAG8B3tZgfLM+/DTbWjwHi4H9geOBNwAXJJnusVoY1xxeDfxGVR0K/Abwlzs0ylmGMM22kedQVQ9V1dPo9sqPTfLjrQa2Mxkq82sz3TH3KYewHbvnSXanexF9tKo+MVB0e5KD+joH0b3zGZdxzYEkpwMvAF5a/QHlMRnHHH4EOAK4JslX+j6/kOQJTUb8/cb1HGwGPtEfmvk88DDdByCOw7jmcDowtf6/6Q5RjcsOzWFKVX0LuAxY2W/ama/nHWaozK+rgOVJjkiyB3AKsH6Uhv07xr8Ebqiq9wwVr6d7MdHff7LReKczljkkWQm8EXhhVd3beMzDms+hqq6rqgOrallVLaP7g3NMVf1b++GP7ffob4AT+3pPpjv5PK5P1B3XHG4Dnt0vnwjc3Gi809mROSxNf4Vjkr2B5wI39sU78/W84+b7SoFH+43uipQv0V018pZ+2xpgTb/8BLo/SN8GvtUv7wc8i27X+lrgi/3t+X2bHwYupXsBXQo8bgHOYRPd8emp7e9faHMY6v8rjOnqrzE+B3sAHwGuB74AnLjQnoO+bAPdlVifA56+i87hqcDV/RyuB9420OdOfT3v6M2PaZEkNePhL0lSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEi7mCRvnu8xSHPlJcXSLibJPVW1z3yPQ5qLxfM9AOnRLMnLgF+l+0fDz9H9U9ze/QcLbqyqlyb5G7qP/9gL+LOq+oH7XnP94DBUpHmS5MeA/ww8s6oeSPIXwHXAfdV9sOCUV1TVN/uP77gqyV9X1TfmYcjSrAwVaf48B3g6XVAA7M30Hxb4q0l+sV8+FFgOGCraJRkq0vwJsK6qvu87Poa+ZvYEug8X/KmqujfJZXSHwaRdkld/SfPnUuCXkhwI//Fd5IcDD/Qf5Q7dtxXe2QfKj9J9t4m0y3JPRZonVfXPSd4KfDrJbnRfMfta4Bzg2iRfoPvWyzVJrgVuovtqZWmX5SXFkqRmPPwlSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqZn/DzKz18herFJqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mu nu\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAarklEQVR4nO3df5RfdX3n8efLhKAtodEltJgEElawhZYVHIEuopZqBVpPOHraohaUbUvxiAut7S7SrrVWt9ZTtbKlslSxckSRFfTkbLFUu2p32/JjAikQYkoIWCKpRlRAoaGB9/5x75Qv30wmM+HznZnI83HO98z33s/nc+/73rkzr7k/ZiZVhSRJLTxjrguQJH3/MFQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEi7WWSvCzJlrmuY1CS9UleNkX7hUk+PHsVaa4YKppVSe5J8kiS7yb5epKPJtlvruuaSpKVSSrJwkbLe2aS7yQ5aZK2DyT5dIv17Il+O7/Xf36+luT9SRbsblxVHVlVX5qi/b9X1a80LVbzkqGiufCqqtoPOAZ4EfA7Mxmczl5z7A6HUVX9C/Ap4MyhfguA1wIfm73qJvUf+s/PTwOvA371qSysVRhr77DXfGHq+09VfQ34HPDjSZ6d5H8n2Zbk2/375RN9k3wpybuT/C3wMHBokrOSbEjyUJLNSX5toP/LkmxJ8l+SfCPJ1iSnJTk1yT8m+VaSCwf6PyPJBUnuSnJ/kquSPKdv/pv+43f6n+B/sh/zn/r1fzvJdUkOGVheJXlzkjuBOyfZ/I8Br0nyAwPzXkn3Nfm5qbZtWL+u5w1M/3mSdw1M/1ySdf3Z0d8lOWrXn5UnVNVXgP9L9/n590n+T79vvpnkiiRLBtZxT5KX9+/fkeTTST6e5EHgjf28j/ftE2d+b0jyT/3yfntgWc9K8rF+v27oP4dbBtr/a38W9VCSjUl+ejrbo9lhqGjOJFkBnArcQncsfhQ4BDgYeAT4k6EhZwBnA4uBrwLfAH4O2B84C/hAkmMG+v8I8ExgGfB24M+AXwJeCJwIvD3JoX3f/wycBrwUeC7wbeDivu0l/cclVbVfVf19ktOAC4FXA0vpvvl+cqje04DjgCOGt72q/g7Y2o8f3L5PVNWOaWzbtPRjLgN+Dfh3wP8E1iTZdxpjj6DbT7cAAf6Abt/8GLACeMcUw1cDnwaWAFfsos+LgefTnRG9PcmP9fN/F1gJHAq8gu5zNlHT84FzgRdV1WK6IL5nd9uiWVRVvnzN2ovuG8B3ge/QBcOfAs+apN8LgG8PTH8JeOdulv1Z4Lz+/cvogmlBP70YKOC4gf5rgdP69xuAnx5oOwj4V2Ah3Te4AhYOtH8O+OWB6WfQnUEd0k8XcNJu6v0d4K/69/v344+e5rZtGWgr4HkD038OvKt//yHg94eWtRF46S7WU8CDdKF6F/Au4BmT9DsNuGXo8/ry/v07gL8Z6v8O4OP9+4n9uXyg/Ubg9P79ZuCVA22/MrG9wPPoAvflwD5zfTz72vnltU7NhdOq6guDM/rLQB8ATgae3c9enGRBVT3WT987NOYUup9qD6f7pv4DwG0DXe4fGPtI//HrA+2PABMPCRwCfCbJ4wPtjwE/vIttOAT4YJL3DZZEd1b01cnqncTlwO8mWUb3E/emqrplmts2XYcAb0jyloF5i+jOOHblmKraNDgjyYHARXRnLov7mr49xTJ2t+0A/zzw/mGe+Fw8d2j8v72vqk1JzqcLqSOTXAf8RlXdN431aRZ4+UvzxVvpLoUcV1X788Qlpwz0+bc/qd1fvrka+CPgh6tqCXDtUP+ZuBc4paqWDLyeWd19n8n+lPe9wK8N9X9WdZe1dqp3MlX1T3SXzV5Pd+nr8j3ctofpQmfCjwzV+e6hOn+gqoYv1e3OH/Tbc1T/+fmlKeqB3Wz7bmwFlg9Mr3jSgqs+UVUvpgvMAv7wKaxLjRkqmi8W0505fKe/Qf67u+m/CNgX2Abs6H+y/5mnsP5LgHdP3GxPsjTJ6r5tG/A43TX+wf5vS3Jk3/+Hkvz8Hqz3Y3T3CE7giXsPM922dcDrkixIcjLdfaEJfwack+S4dH4wyc8mWTzDOhfTX7bsz6x+a4bjZ+Iqun377H5d5040JHl+kpP64P0XumPmsV0sR3PAUNF88cfAs4BvAtcDfzlV56p6iO7m+lV0l2FeB6x5Cuv/YD/+r5I81NdwXL+uh4F3A3/bP0F1fFV9hu4n5Cv7J5xuB07Zg/V+mu5y319X1dY93LbzgFfR3ad6Pd39F/pljdM9Evwn/bI2AW/cgzp/j+4R8AeAvwCu2YNlTNc7gS3A3cAX6PbR9r5tX+A9dMfJPwMH0j0woXkiVf6TLknzV5I30d3Ef+luO2vOeaYiaV5JclCSE/rfHXo+3f22z8x1XZoen/6SNN8sovt9mlV0l/SupHv0XHsBL39Jkprx8pckqZmn9eWvAw44oFauXDnXZUjSXmXt2rXfrKqlk7U9rUNl5cqVjI+Pz3UZkrRXSfLVXbV5+UuS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSMyMNlSQnJ9mYZFOSCyZpT5KL+vZbkxzTz1+R5ItJNiRZn+S8gTEvSHJ9knVJxpMcO9D2tn5ZG5O8cpTbJkna2chCJckC4GLgFOAI4LVJjhjqdgpwWP86G/hQP38H8Naq+jHgeODNA2PfC/xeVb0AeHs/Td9+OnAkcDLwp30NkqRZMsozlWOBTVW1uaoeBa4EVg/1WQ1cXp3rgSVJDqqqrVV1M0BVPQRsAJb1YwrYv3//Q8B9A8u6sqq2V9XdwKa+BknSLFk4wmUvA+4dmN4CHDeNPsuArRMzkqwEjgZu6GedD1yX5I/oQvE/Dizr+kmW9SRJzqY7K+Lggw+eweZIknZnlGcqmWRezaRPkv2Aq4Hzq+rBfvabgF+vqhXArwMfmcH6qKpLq2qsqsaWLl26m02QJM3EKENlC7BiYHo5T1yq2m2fJPvQBcoVVXXNQJ83ABPT/4snLnFNZ32SpBEaZajcBByWZFWSRXQ30dcM9VkDnNk/BXY88EBVbU0SujOQDVX1/qEx9wEv7d+fBNw5sKzTk+ybZBXdzf8b22+WJGlXRnZPpap2JDkXuA5YAFxWVeuTnNO3XwJcC5xKd1P9YeCsfvgJwBnAbUnW9fMurKprgV8FPphkIfAv9PdH+mVfBdxB9/TYm6vqsVFtnyRpZ6na6bbD08bY2FiNj4/PdRmStFdJsraqxiZr8zfqJUnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSMyMNlSQnJ9mYZFOSCyZpT5KL+vZbkxzTz1+R5ItJNiRZn+S8gTGfSrKuf92TZF0/f2WSRwbaLhnltkmSdrZwVAtOsgC4GHgFsAW4KcmaqrpjoNspwGH96zjgQ/3HHcBbq+rmJIuBtUk+X1V3VNUvDqzjfcADA8u7q6peMKptkiRNbZRnKscCm6pqc1U9ClwJrB7qsxq4vDrXA0uSHFRVW6vqZoCqegjYACwbHJgkwC8AnxzhNkiSZmCUobIMuHdgegtDwTCdPklWAkcDNwyNPRH4elXdOTBvVZJbknw5yYmTFZXk7CTjSca3bds27Y2RJO3eKEMlk8yrmfRJsh9wNXB+VT041O+1PPksZStwcFUdDfwG8Ikk+++08KpLq2qsqsaWLl06jc2QJE3XKENlC7BiYHo5cN90+yTZhy5QrqiqawYHJVkIvBr41MS8qtpeVff379cCdwGHN9kSSdK0jDJUbgIOS7IqySLgdGDNUJ81wJn9U2DHAw9U1db+fslHgA1V9f5Jlv1y4CtVtWViRpKl/cMBJDmU7ub/5vabJUnalZE9/VVVO5KcC1wHLAAuq6r1Sc7p2y8BrgVOBTYBDwNn9cNPAM4Abpt4ZBi4sKqu7d+fzs436F8CvDPJDuAx4Jyq+tZINk6SNKlUDd/mePoYGxur8fHxuS5DkvYqSdZW1dhkbf5GvSSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1M61QSXJ3ks3Dr2mMOznJxiSbklwwSXuSXNS335rkmH7+iiRfTLIhyfok5w2M+VSSdf3rniTrBtre1i9rY5JXTmsPSJKaWTjNfmMD758J/DzwnKkGJFkAXAy8AtgC3JRkTVXdMdDtFOCw/nUc8KH+4w7grVV1c5LFwNokn6+qO6rqFwfW8T7ggf79EcDpwJHAc4EvJDm8qh6b5jZK88JD99/H+Jev5KDlP8qPHnvqXJcjzci0QqWq7h+a9cdJ/h/w9imGHQtsqqrNAEmuBFYDg6GyGri8qgq4PsmSJAdV1VZga7/uh5JsAJYNjk0S4BeAkwaWdWVVbQfuTrKpr+Hvp7ON0nzx4T97E+Pb/oF9sw+/v+RAlh0+tvtB0jwxrVCZuCzVewbdmcvi3QxbBtw7ML2F7ixkd32W0QdKv+6VwNHADUNjTwS+XlV3Dizr+kmW9SRJzgbOBjj44IN3swnS7Pveo99lUfbhMR5n+yPfnetypBmZ7uWv9wHVv98B3EN3CWwqmWRezaRPkv2Aq4Hzq+rBoX6vBT45w/VRVZcClwKMjY3t1C7NtV/5pQ/wl3/xQVYu/wlW/cRL5rocaUamGyqnAK8BVg6MOR145xRjtgArBqaXA/dNt0+SfegC5YqqumZwUJKFwKuBF85wfdK89yOHHsUb3/KRuS5D2iPTfaT4s8CrgH8Fvtu/vrebMTcBhyVZlWQRXQitGeqzBjizfwrseOCBqtra3y/5CLChqt4/ybJfDnylqrYMLev0JPsmWUV38//GaW6fJKmB6Z6pLK+qk2ey4KrakeRc4DpgAXBZVa1Pck7ffglwLXAqsAl4GDirH34CcAZw28AjwxdW1bX9+9N58qUv+mVfRXczfwfwZp/8kqTZle7Bq910Si4F/kdV3Tb6kmbP2NhYjY+Pz3UZkrRXSbK2qiZ9LHG6ZyovBt6Y5G5gO91N8aqqoxrVKEn6PjCTG/WSJE1pur/8+NVRFyJJ2vv5ByUlSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc2MNFSSnJxkY5JNSS6YpD1JLurbb01yTD9/RZIvJtmQZH2S84bGvaVf7vok7+3nrUzySJJ1/euSUW6bJGlnC0e14CQLgIuBVwBbgJuSrKmqOwa6nQIc1r+OAz7Uf9wBvLWqbk6yGFib5PNVdUeSnwJWA0dV1fYkBw4s766qesGotkmSNLVRnqkcC2yqqs1V9ShwJV0YDFoNXF6d64ElSQ6qqq1VdTNAVT0EbACW9WPeBLynqrb37d8Y4TZIkmZglKGyDLh3YHoLTwTDtPskWQkcDdzQzzocODHJDUm+nORFA91XJbmln3/iZEUlOTvJeJLxbdu2zXijJEm7NspQySTzaiZ9kuwHXA2cX1UP9rMXAs8Gjgd+C7gqSYCtwMFVdTTwG8Ankuy/08KrLq2qsaoaW7p06Uy3SZI0hVGGyhZgxcD0cuC+6fZJsg9doFxRVdcMjbmmv2R2I/A4cEBVba+q+wGqai1wF91ZjSRplowyVG4CDkuyKski4HRgzVCfNcCZ/VNgxwMPVNXW/szjI8CGqnr/0JjPAicBJDkcWAR8M8nS/uEAkhxKd/N/84i2TZI0iZE9/VVVO5KcC1wHLAAuq6r1Sc7p2y8BrgVOBTYBDwNn9cNPAM4Abkuyrp93YVVdC1wGXJbkduBR4A1VVUleArwzyQ7gMeCcqvrWqLZPkrSzVA3f5nj6GBsbq/Hx8bkuQ5L2KknWVtXYZG3+Rr0kqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWpmpKGS5OQkG5NsSnLBJO1JclHffmuSY/r5K5J8McmGJOuTnDc07i39ctcnee/A/Lf1y9qY5JWj3DZJ0s4WjmrBSRYAFwOvALYANyVZU1V3DHQ7BTisfx0HfKj/uAN4a1XdnGQxsDbJ56vqjiQ/BawGjqqq7UkO7Nd3BHA6cCTwXOALSQ6vqsdGtY2SpCcb5ZnKscCmqtpcVY8CV9KFwaDVwOXVuR5YkuSgqtpaVTcDVNVDwAZgWT/mTcB7qmp73/6NgWVdWVXbq+puYFNfgyRplowyVJYB9w5Mb+GJYJh2nyQrgaOBG/pZhwMnJrkhyZeTvGgG6yPJ2UnGk4xv27ZtZlskSZrSKEMlk8yrmfRJsh9wNXB+VT3Yz14IPBs4Hvgt4Kokmeb6qKpLq2qsqsaWLl26+62QJE3bKENlC7BiYHo5cN90+yTZhy5Qrqiqa4bGXNNfMrsReBw4YJrrkySN0ChD5SbgsCSrkiyiu4m+ZqjPGuDM/imw44EHqmprf+bxEWBDVb1/aMxngZMAkhwOLAK+2S/r9CT7JllFd/P/xhFtmyRpEiN7+quqdiQ5F7gOWABcVlXrk5zTt18CXAucSndT/WHgrH74CcAZwG1J1vXzLqyqa4HLgMuS3A48CryhqgpYn+Qq4A66p8fe7JNfkjS70n0/fnoaGxur8fHxuS5DkvYqSdZW1dhkbf5GvSSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzaSq5rqGOZNkG/DVOS7jAOCbc1zDTFnz7Njbat7b6gVr3lOHVNXSyRqe1qEyHyQZr6qxua5jJqx5duxtNe9t9YI1j4KXvyRJzRgqkqRmDJW5d+lcF7AHrHl27G017231gjU35z0VSVIznqlIkpoxVCRJzRgqeyDJyUk2JtmU5IJJ2pPkor791iTHDLRdluQbSW6fZNxb+uWuT/Left4rkqxNclv/8aSB/l/q+6/rXwfOk5pXJnlkoK5LBvq/sN+WTf36Mk9qfv1AveuSPJ7kBfNhPyf51MC670mybqDtbf2yNiZ55Uz382zWO5+P5SlqnrfH8hQ1NzmW91hV+ZrBC1gA3AUcCiwC/gE4YqjPqcDngADHAzcMtL0EOAa4fWjMTwFfAPbtpw/sPx4NPLd//+PA1wbGfAkYm4c1rxzuOzDmRuAn+/V8DjhlPtQ81OcngM3zZT8PjX8f8Pb+/RH9OvYFVvXrXjDd/TwH9c7bY3mKmuftsbyrmlscy0/l5ZnKzB0LbKqqzVX1KHAlsHqoz2rg8upcDyxJchBAVf0N8K1Jlvsm4D1Vtb3v943+4y1VdV/fZz3wzCT7zuead6Vf3v5V9ffVHeGXA6fNw5pfC3xyqm2Z5ZqB7qdZ4BcGalsNXFlV26vqbmATcOwM9vOs1jvPj+VJa56i33w4lqdT854ey3vMUJm5ZcC9A9Nb+nkz7TPscODEJDck+XKSF03S5zXALRPfEHsf7U9j/9sUp99zUfOqJLf0808cWMeWaa5jLvfzL7LzF+Jc7ucJJwJfr6o7d7Os6e7n2a530Hw7lqeqeb4ey1PVPGFPj+U9trD1Ap8GJvskDD+XPZ0+wxYCz6Y79X0RcFWSQ/ufgkhyJPCHwM8MjHl9VX0tyWLgauAMup+Y5rRmYCtwcFXdn+SFwGf7+meyjrnaz8cBD1fV4PXrud7PE4Z/6tzVsqa7jtmut1vg/DyWJwzXPJ+P5Qm72s9P5VjeY56pzNwWYMXA9HLgvj3oM9lyr+lPf28EHqf7w3EkWQ58Bjizqu6aGFBVX+s/PgR8gu40e85r7i/H3N/XtpbuevLhff/l01zHrO/n3ukMfYHOg/1MkoXAq4FPTWNZ093Ps13vfD6WJ615nh/Lu9zPvadyLO+5GuENm+/HF91PupvpboxO3HQ7cqjPz/Lkm243DrWvZOcbyOcA7+zfH053KhxgSb+O10xSxwH9+32ATwPnzJOal/LEDeNDga8Bz+mnb+qXP3Fz89T5UHM//Qy6L+5D59N+7uefDHx5aN6RPPlG/eaB/b7b/TwH9S5hnh7LU9Q8b4/lXdXc4lh+Kq9Z+Ub8/faie1LjH+l+avntft45E5+g/sC4uG+/jYGnLeh+ctgK/Gv/Sf/lfv4i4OPA7cDNwEn9/N8BvgesG3gdCPwgsBa4le6m5wcnDv55UPNr+pr+oZ//qoFljfX97wL+hP4b+lzX3Le9DLh+qIY53899258zyTcA4Lf7ZW1k4Omj6e7n2ayXeXwsT1HzvD2Wd3NcvIyneCzv6cs/0yJJasZ7KpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVSkOdT/v46vJPlwktuTXJHk5Un+NsmdSY5N8o4kvzkw5vYkK+ewbGmXDBVp7j2P7rebjwJ+FHgd8GLgN4EL57AuacYMFWnu3V1Vt1XV43R/PuOvq/tTF7fR/c0naa9hqEhzb/B/ijw+MP043R8B3MGTv1afOUt1STNmqEjz3z10/06W/n+Xr5rTaqQpGCrS/Hc18Jwk6+j+HfI/zm050q75V4olSc14piJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpmf8PSYijRI7wp/EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mu lamb\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfBElEQVR4nO3dfZRdVZ3m8e+TIiFRYQqbog2pQBIN2AExxGtIrxakI0glrYSWeYlio9hOjMs4PcPYNoiDgDJt+zKMLGnSaEfDEjpmqXRn0UREZ4LjS0gqkgBBopUApkiUEgwSkw4m+c0fZxccbt2qulXsW7cKns9aZ9U9Z+9zzm/fOslT56XqKiIwMzPLYVyzCzAzsxcPh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VszFG0tmSuptdR5mkrZLOHqD9Y5K+PHIVWbM4VGxESXpE0n5JeyX9StJXJL2i2XUNRNI0SSHpiEzbmyhpj6T5Ndquk/SNHPsZjjTO36Xvz2OS/peklsHWi4hTImLdAO3/MyLen7VYG5UcKtYMb4+IVwBzgDcCHx/KyiqMmWO3Oowi4t+ArwMXV/VrAd4JrBy56mp6ffr+vAV4F/CfX8jGcoWxjQ1j5h+mvfhExGPAWuBUScdIul1Sj6TfpNftvX0lrZN0raQfAvuAGZIukfRTSU9L2iHpA6X+Z0vqlvRRSY9L2i3pAkkLJf1M0pOSPlbqP07SZZK2S3pC0mpJr0zN309f96Sf4P84rfO+tP/fSLpT0oml7YWkD0n6OfDzGsNfCVwo6WWlZedR/JtcO9DYqqV9vaY0/1VJnyrNv03S5nR29CNJp/X/XXlORDwE/D+K78+rJf2f9N78WtItklpL+3hE0jnp9VWSviHpa5J+C7w3Lftaau8983uPpF+k7V1R2tYkSSvT+/rT9D3sLrX/TTqLelrSNklvqWc8NjIcKtY0kqYCC4F7KY7FrwAnAicA+4EvVq3yF8AS4CjgUeBx4G3A0cAlwHWS5pT6vwqYCEwBrgS+BLwbeANwJnClpBmp738BLgDeDBwP/Aa4IbWdlb62RsQrIuLHki4APga8A2ij+M/3n6rqvQA4A5hVPfaI+BGwO61fHt+tEXGwjrHVJa2zAvgA8AfAPwBrJB1Zx7qzKN6newEBf0vx3vwRMBW4aoDVFwHfAFqBW/rp8ybgZIozoisl/VFa/glgGjADOJfie9Zb08nAMuCNEXEURRA/MthYbARFhCdPIzZR/AewF9hDEQx/D0yq0W828JvS/DrgmkG2/c/AX6XXZ1MEU0uaPwoI4IxS/03ABen1T4G3lNomA78HjqD4Dy6AI0rta4G/LM2PoziDOjHNBzB/kHo/DnwnvT46rX96nWPrLrUF8JrS/FeBT6XXNwKfrNrWNuDN/ewngN9ShOp24FPAuBr9LgDurfq+npNeXwV8v6r/VcDX0uve97O91L4BWJxe7wDOK7W9v3e8wGsoAvccYHyzj2dPfSdf67RmuCAivltekC4DXQd0AMekxUdJaomIQ2l+Z9U6Cyh+qj2J4j/1lwH3l7o8UVp3f/r6q1L7fqD3IYETgdskHS61HwL+sJ8xnAh8QdLnyyVRnBU9WqveGm4GPiFpCsVP3F0RcW+dY6vXicB7JH24tGwCxRlHf+ZERFd5gaTjgOspzlyOSjX9ZoBtDDZ2gF+WXu/jue/F8VXrP/s6Irok/VeKkDpF0p3ApRGxq4792Qjw5S8bLf47xaWQMyLiaJ675KRSn2f/pHa6fPNN4HPAH0ZEK3BHVf+h2AksiIjW0jQxivs+tf6U907gA1X9J0VxWatPvbVExC8oLptdRHHp6+Zhjm0fRej0elVVnddW1fmyiKi+VDeYv03jOS19f949QD0wyNgHsRtoL81Pfd6GI26NiDdRBGYAf/cC9mWZOVRstDiK4sxhT7pB/olB+k8AjgR6gIPpJ/u3voD9Lweu7b3ZLqlN0qLU1gMcprjGX+5/uaRTUv9/J+k/DGO/KynuEfwJz917GOrYNgPvktQiqYPivlCvLwFLJZ2hwssl/Zmko4ZY51Gky5bpzOqvh7j+UKymeG+PSfta1tsg6WRJ81Pw/hvFMXOon+1YEzhUbLT438Ak4NfAeuDbA3WOiKcpbq6vprgM8y5gzQvY/xfS+t+R9HSq4Yy0r33AtcAP0xNU8yLiNoqfkFelJ5weABYMY7/foLjc972I2D3Msf0V8HaK+1QXUdx/IW2rk+KR4C+mbXUB7x1GnVdTPAL+FPCvwLeGsY16XQN0Aw8D36V4jw6ktiOBT1McJ78EjqN4YMJGCUX4Q7rMbPSS9EGKm/hvHrSzNZ3PVMxsVJE0WdKfpN8dOpniftttza7L6uOnv8xstJlA8fs00yku6a2iePTcxgBf/jIzs2x8+cvMzLJ5SV/+OvbYY2PatGnNLsPMbEzZtGnTryOirVbbSzpUpk2bRmdnZ7PLMDMbUyQ92l+bL3+ZmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DQ0VSR2StknqknRZjXZJuj613ydpTlo+UdIGSVskbZV0dWmdqyQ9Jmlzmham5dMk7S8tX97IsZmZWV8N+zhhSS3ADcC5QDewUdKaiHiw1G0BMDNNZwA3pq8HgPkRsVfSeOAHktZGxPq03nUR8bkau90eEbMbMyIzMxtMI89U5gJdEbEjIp4BVgGLqvosAm6OwnqgVdLkNL839RmfpmhgrWZmlkEjQ2UKsLM0352W1dVHUoukzcDjwF0RcU+p37J0uWyFpGNKy6dLulfS3ZLOrFWUpCWSOiV19vT0DG9kZmZWUyNDRTWWVZ9t9NsnIg6lS1ntwFxJp6b2G4FXA7OB3cDn0/LdwAkRcTpwKXCrpKP7bDzipoioRESlra1taCMyM7MBNTJUuoGppfl2YNdQ+0TEHmAd0JHmf5UC5zDwJYrLbETEgYh4Ir3eBGwHTso0FjMzq0MjQ2UjMFPSdEkTgMXAmqo+a4CL01Ng84CnImK3pDZJrQCSJgHnAA+l+cml9f8ceCAtb0sPByBpBsXN/x0NG52ZmfXRsKe/IuKgpGXAnUALsCIitkpamtqXA3cAC4EuYB9wSVp9MrAyhcQ4YHVE3J7aPiNpNsVlskeAD6TlZwHXSDoIHAKWRsSTjRqfmZn1pYiX7kNVlUolOjs7m12GmdmYImlTRFRqtfk36s3MLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWTUNDRVKHpG2SuiRdVqNdkq5P7fdJmpOWT5S0QdIWSVslXV1a5ypJj0nanKaFpbbL07a2STqvkWMzM7O+jmjUhiW1ADcA5wLdwEZJayLiwVK3BcDMNJ0B3Ji+HgDmR8ReSeOBH0haGxHr03rXRcTnqvY3C1gMnAIcD3xX0kkRcahRYzQzs+dr5JnKXKArInZExDPAKmBRVZ9FwM1RWA+0Spqc5vemPuPTFIPsbxGwKiIORMTDQFeqwczMRkgjQ2UKsLM0352W1dVHUoukzcDjwF0RcU+p37J0uWyFpGOGsD8kLZHUKamzp6dnGMMyM7P+NDJUVGNZ9dlGv30i4lBEzAbagbmSTk3tNwKvBmYDu4HPD2F/RMRNEVGJiEpbW9tgYzAzsyFoZKh0A1NL8+3ArqH2iYg9wDqgI83/KgXOYeBLPHeJq579mZlZAzUyVDYCMyVNlzSB4ib6mqo+a4CL01Ng84CnImK3pDZJrQCSJgHnAA+l+cml9f8ceKC0rcWSjpQ0neLm/4YGjc3MzGpo2NNfEXFQ0jLgTqAFWBERWyUtTe3LgTuAhRQ31fcBl6TVJwMr0xNk44DVEXF7avuMpNkUl7YeAT6QtrdV0mrgQeAg8CE/+WVmNrIUMdhDVS9elUolOjs7m12GmdmYImlTRFRqtfk36s3MLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWTUNDRVKHpG2SuiRdVqNdkq5P7fdJmpOWT5S0QdIWSVslXV1j3Y9ICknHpvlpkvZL2pym5Y0cm5mZ9XVEozYsqQW4ATgX6AY2SloTEQ+Wui0AZqbpDODG9PUAMD8i9koaD/xA0tqIWJ+2PTVt9xdVu90eEbMbNSYzMxtYI89U5gJdEbEjIp4BVgGLqvosAm6OwnqgVdLkNL839Rmfpiitdx3w0aplZmbWZI0MlSnAztJ8d1pWVx9JLZI2A48Dd0XEPWn5+cBjEbGlxj6nS7pX0t2SzqxVlKQlkjoldfb09AxnXGZm1o9GhopqLKs+s+i3T0QcSpey2oG5kk6V9DLgCuDKGuvtBk6IiNOBS4FbJR3dZ+MRN0VEJSIqbW1t9Y/GzMwG1chQ6QamlubbgV1D7RMRe4B1QAfwamA6sEXSI6n/TyS9KiIORMQTaZ1NwHbgpExjMTOzOjQyVDYCMyVNlzQBWAysqeqzBrg4PQU2D3gqInZLapPUCiBpEnAO8FBE3B8Rx0XEtIiYRhFKcyLil2mdlrTODIqb/zsaOD4zM6vSsKe/IuKgpGXAnUALsCIitkpamtqXA3cAC4EuYB9wSVp9MrAyhcQ4YHVE3D7ILs8CrpF0EDgELI2IJ3OPy8zM+qeIl+4DVJVKJTo7O5tdhpnZmCJpU0RUarX5N+rNzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsqn7T99LehXF584HsDEiftmwqszMbEyq60xF0vuBDcA7gH8PrJf0vkYWZmZmY0+9Zyp/DZze+3G9kv4A+BGwolGFmZnZ2FPvPZVu4OnS/NPAzvzlmJnZWDbgmYqkS9PLx4B7JP0LxT2VRRSXw8zMzJ412OWvo9LX7Wnq9S+NKcfMzMayAUMlIq4eqULMzGzsq/fpr4qk2yT9RNJ9vVMd63VI2iapS9JlNdol6frUfp+kOWn5REkbJG2RtFVSn3CT9BFJIenY0rLL07a2STqvnrGZmVk+9T79dQvFE2D3A4frWUFSC3ADcC7Fjf6NktZExIOlbguAmWk6A7gxfT0AzI+IvZLGAz+QtDYi1qdtT03b/UVpf7OAxcApwPHAdyWdFBGH6hyj2ajw9BO76Lx7FZPbX8tr5y5sdjlmQ1JvqPRExJohbnsu0BUROwAkraK4wV8OlUXAzRERFL/70ippckTsBvamPuPTFKX1rgM+yvPv7SwCVkXEAeBhSV2phh8PsW6zpvrylz5IZ88WjtR4Ptl6HFNOqjS7JLO61Rsqn5D0ZeB7FGcRAETEtwZYZwrPf+y4m+IsZLA+U4Dd6UxnE/Aa4IaIuAdA0vnAYxGxRVL1ttbX2NbzSFoCLAE44YQTBijfrDl+98xeJmg8hzjMgf17B1/BbBSpN1QuAV5LccbQe/krgIFCRTWWRb190mWr2ZJagdsknQrsAK4A3jrM/RERNwE3AVQqlT7tZs32/ndfx7f/9QtMa38d0193VrPLMRuSekPl9RHxuiFuuxuYWppvB3YNtU9E7JG0DugA7gSmA71nKe3ATyTNrXN/ZqPeq2acxns//I/NLsNsWOr9jfr16Ub4UGwEZkqaLmkCxU306vsya4CL01Ng84CnImK3pLZ0hoKkScA5wEMRcX9EHBcR0yJiGkWQzEl/3HINsFjSkZKmU9z89y9ompmNoHrPVN4EvEfSwxT3VARERJzW3woRcVDSMoqzixZgRURslbQ0tS8H7gAWAl3APorLbACTgZXpvso4YHVE3D5QgWnbqykeBDgIfMhPfpmZjSwVD14N0kk6sdbyiHg0e0UjqFKpRGdnZ7PLMDMbUyRtioiajyXWdabSGx6SjgMmZqzNzMxeROr9jfrzJf0ceBi4G3gEWNvAuszMbAyq90b9J4F5wM8iYjrwFuCHDavKzMzGpHpD5ffpA7rGSRoXEf8XmN24sszMbCyq9+mvPZJeAXwfuEXS4xRPWJmZmT2r3jOVRcB+4L8B36b4bJW3N6ooMzMbm+p9+ut3pdmVDarFzMzGuME+Tvhpavz9LJ775cejG1KVmZmNSYN98uNRA7WbmZmV1XtPxczMbFAOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2TQ0VCR1SNomqUvSZTXaJen61H6fpDlp+URJGyRtkbRV0tWldT6Z+m6W9B1Jx6fl0yTtT8s3S1reyLGZmVlfDQsVSS3ADcACYBbwTkmzqrotAGamaQlwY1p+AJgfEa+n+ITJDknzUttnI+K0iJgN3A5cWdre9oiYnaalDRiWmZkNoJFnKnOBrojYERHPAKsoPuyrbBFwcxTWA62SJqf5vanP+DQFQET8trT+y6n9p/nNzKwJGhkqU4CdpfnutKyuPpJaJG0GHgfuioh7ejtJulbSTuAinn+mMl3SvZLulnRmraIkLZHUKamzp6dnmEMzM7NaGhkqqrGs+qyi3z4RcShd4moH5ko69dkOEVdExFTgFmBZWrwbOCEiTgcuBW6V1OdDxCLipoioRESlra1tqGMyM7MBNDJUuoGppfl2YNdQ+0TEHmAd0FFjH7cCF6Z+ByLiifR6E7AdOGnY1ZuZ2ZA1MlQ2AjMlTZc0AVgMrKnqswa4OD0FNg94KiJ2S2qT1AogaRJwDvBQmp9ZWv/80vK29HAAkmZQ3Pzf0bDRmZlZHwN+nPALEREHJS0D7gRagBURsVXS0tS+HLgDWAh0AfuAS9Lqk4GVKSTGAasj4vbU9mlJJwOHgUeB3qe8zgKukXQQOAQsjYgnGzU+MzPrSxEv3YenKpVKdHZ2NrsMM7MxRdKmiKjUavNv1JuZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsm4aGiqQOSdskdUm6rEa7JF2f2u+TNCctnyhpg6QtkrZKurq0zidT382SviPp+FLb5Wlb2ySd18ixmZlZXw0LFUktwA3AAmAW8E5Js6q6LQBmpmkJcGNafgCYHxGvB2YDHZLmpbbPRsRpETEbuB24Mu1vFrAYOAXoAP4+1WBmZiOkkWcqc4GuiNgREc8Aq4BFVX0WATdHYT3QKmlymt+b+oxPUwBExG9L67+8d3na1qqIOBARDwNdqQYzMxshjQyVKcDO0nx3WlZXH0ktkjYDjwN3RcQ9vZ0kXStpJ3AR6Uylzv0haYmkTkmdPT09wxmXmZn1o5GhohrLot4+EXEoXeJqB+ZKOvXZDhFXRMRU4BZg2RD2R0TcFBGViKi0tbUNPgozM6tbI0OlG5hamm8Hdg21T0TsAdZR3Cepditw4RD2Z2ZmDdTIUNkIzJQ0XdIEipvoa6r6rAEuTk+BzQOeiojdktoktQJImgScAzyU5meW1j+/d3na1mJJR0qaTnHzf0ODxmZmZjUc0agNR8RBScuAO4EWYEVEbJW0NLUvB+4AFlLcVN8HXJJWnwysTE9vjQNWR8Ttqe3Tkk4GDgOPAr3b2yppNfAgcBD4UEQcatT4zMysL0X0ue3wklGpVKKzs7PZZZiZjSmSNkVEpVabf6PezMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk0NFQkdUjaJqlL0mU12iXp+tR+n6Q5aflESRskbZG0VdLVpXU+K+mh1P82Sa1p+TRJ+yVtTtPyRo7NzMz6alioSGoBbgAWALOAd0qaVdVtATAzTUuAG9PyA8D8iHg9MBvokDQvtd0FnBoRpwE/Ay4vbW97RMxO09IGDMvMzAbQyDOVuUBXROyIiGeAVcCiqj6LgJujsB5olTQ5ze9NfcanKQAi4jsRcTC1rQfaGzgGMzMbgkaGyhRgZ2m+Oy2rq4+kFkmbgceBuyLinhr7eB+wtjQ/XdK9ku6WdGatoiQtkdQpqbOnp2dIAzIzs4E1MlRUY1nU2yciDkXEbIozkbmSTn3eitIVwEHglrRoN3BCRJwOXArcKunoPhuPuCkiKhFRaWtrG8p4zMxsEI0MlW5gamm+Hdg11D4RsQdYB3T0LpP0HuBtwEUR0RtCByLiifR6E7AdOCnDOMzMrE6NDJWNwExJ0yVNABYDa6r6rAEuTk+BzQOeiojdktpKT3VNAs4BHkrzHcDfAOdHxL7eDaV1WtLrGRQ3/3c0cHxmZlbliEZtOCIOSloG3Am0ACsiYqukpal9OXAHsBDoAvYBl6TVJwMrU0iMA1ZHxO2p7YvAkcBdkgDWpye9zgKukXQQOAQsjYgnGzU+MzPrS+nq0UtSpVKJzs7OZpdhZjamSNoUEZVabf6NejMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYv6Q/pktQDPNrkMo4Fft3kGobKNY+MsVbzWKsXXPNwnRgRbbUaXtKhMhpI6uzvE9RGK9c8MsZazWOtXnDNjeDLX2Zmlo1DxczMsnGoNN9NzS5gGFzzyBhrNY+1esE1Z+d7KmZmlo3PVMzMLBuHipmZZeNQGQZJHZK2SeqSdFmNdkm6PrXfJ2lOqW2FpMclPVBjvQ+n7W6V9Jm07FxJmyTdn77OL/Vfl/pvTtNxo6TmaZL2l+paXur/hjSWrrQ/jZKaLyrVu1nSYUmzR8P7LOnrpX0/Imlzqe3ytK1tks4b6vs8kvWO5mN5gJpH7bE8QM1ZjuVhiwhPQ5iAFmA7MAOYAGwBZlX1WQisBQTMA+4ptZ0FzAEeqFrnT4HvAkem+ePS19OB49PrU4HHSuusAyqjsOZp1X1L62wA/jjtZy2wYDTUXNXndcCO0fI+V63/eeDK9HpW2seRwPS075Z63+cm1Dtqj+UBah61x3J/Nec4ll/I5DOVoZsLdEXEjoh4BlgFLKrqswi4OQrrgVZJkwEi4vvAkzW2+0Hg0xFxIPV7PH29NyJ2pT5bgYmSjhzNNfcnbe/oiPhxFEf4zcAFo7DmdwL/NNBYRrhmoPhpFviPpdoWAasi4kBEPAx0AXOH8D6PaL2j/FiuWfMA/UbDsVxPzcM9lofNoTJ0U4CdpfnutGyofaqdBJwp6R5Jd0t6Y40+FwL39v6HmHwlncb+jwFOv5tR83RJ96blZ5b20V3nPpr5Pv8n+v5DbOb73OtM4FcR8fNBtlXv+zzS9ZaNtmN5oJpH67E8UM29hnssD9sRuTf4ElDrm1D9XHY9faodARxDcer7RmC1pBnppyAknQL8HfDW0joXRcRjko4Cvgn8BcVPTE2tGdgNnBART0h6A/DPqf6h7KNZ7/MZwL6IKF+/bvb73Kv6p87+tlXvPka63mKDo/NY7lVd82g+lnv19z6/kGN52HymMnTdwNTSfDuwaxh9am33W+n0dwNwmOIPxyGpHbgNuDgitveuEBGPpa9PA7dSnGY3veZ0OeaJVNsmiuvJJ6X+7XXuY8Tf52QxVf9AR8H7jKQjgHcAX69jW/W+zyNd72g+lmvWPMqP5X7f5+SFHMvDFw28YfNinCh+0t1BcWO096bbKVV9/ozn33TbUNU+jb43kJcC16TXJ1GcCgtoTfu4sEYdx6bX44FvAEtHSc1tPHfDeAbwGPDKNL8xbb/35ubC0VBzmh9H8Y97xmh6n9PyDuDuqmWn8Pwb9TtK7/ug73MT6m1llB7LA9Q8ao/l/mrOcSy/kGlE/iN+sU0UT2r8jOKnlivSsqW936B0YNyQ2u+n9LQFxU8Ou4Hfp2/6X6blE4CvAQ8APwHmp+UfB34HbC5NxwEvBzYB91Hc9PxC78E/Cmq+MNW0JS1/e2lbldR/O/BF0n/oza45tZ0NrK+qoenvc2r7KjX+AwCuSNvaRunpo3rf55Gsl1F8LA9Q86g9lgc5Ls7mBR7Lw538Z1rMzCwb31MxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKWROlz+t4SNKXJT0g6RZJ50j6oaSfS5or6SpJHymt84CkaU0s26xfDhWz5nsNxW83nwa8FngX8CbgI8DHmliX2ZA5VMya7+GIuD8iDlP8+YzvRfGnLu6n+JtPZmOGQ8Ws+cqfKXK4NH+Y4o8AHuT5/1YnjlBdZkPmUDEb/R6h+DhZ0meXT29qNWYDcKiYjX7fBF4paTPFxyH/rLnlmPXPf6XYzMyy8ZmKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2fx/CSqE8RlOjQwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mu rho\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeaklEQVR4nO3df5BdZZ3n8fcnnZ8q2Lg0Y0gCSTSwExBCvIZMKQwTg3QyapihdhbEQZlxQyzjzpbrOiAuAsqOv1kpkSy6UVKCMaUyk2JgEGc3uP4IScckQJBoJ4BpEqUFA8Rkgkm++8d5Wg63b3ffbp7btxs+r6pTfc/z45znuX26P31+dLciAjMzsxzGNHsAZmb20uFQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWI2ykg6R1JXs8dRJmmbpHP6qf+opK8O34isWRwqNqwkPSrpgKR9kn4t6WuSXtXscfVH0nRJIWlspu1NlLRX0oIadddL+naO/QxFmufv0ufncUlfkNQyUL+IOCUi1vVT/z8i4n1ZB2sjkkPFmuEdEfEqYC7wJuBjg+mswqg5dqvDKCL+DfgWcElVuxbgIuCW4RtdTaenz89bgXcB/+nFbCxXGNvoMGq+MO2lJyIeB+4CTpV0jKQ7JHVL+m16PbWnraR1kq6T9CNgPzBT0qWSfibpWUk7JV1Wan+OpC5JH5H0hKQ9ks6XtFjSzyU9JemjpfZjJF0uaYekJyWtkfSaVP2D9HFv+gn+T1Kfv0n7/62kuyWdWNpeSPqApF8Av6gx/VuACyS9olR2HsXX5F39za1a2tfrS+tfl/TJ0vrbJW1JZ0c/lnRa35+V50XEw8D/o/j8vE7S/0nvzW8k3SqptbSPRyUtTK+vlvRtSd+Q9Azw3lT2jVTfc+b3Hkm/TNu7srStSZJuSe/rz9LnsKtU//fpLOpZSdslvbWe+djwcKhY00iaBiwGNlMci18DTgROAA4AX6rq8tfAUuAo4DHgCeDtwNHApcD1kuaW2r8WmAhMAa4CvgK8G3gjcBZwlaSZqe1/Bs4H/hQ4HvgtcGOqOzt9bI2IV0XETySdD3wU+EugjeKb7zerxns+cCYwu3ruEfFjYE/qX57fbRFxqI651SX1WQlcBvw74H8BayVNqKPvbIr3aTMg4B8o3ps/BqYBV/fTfQnwbaAVuLWPNm8BTqY4I7pK0h+n8o8D04GZwLkUn7OeMZ0MLAfeFBFHUQTxowPNxYZRRHjxMmwLxTeAfcBeimD4MjCpRrs5wG9L6+uAawfY9j8Cf5den0MRTC1p/SgggDNL7TcB56fXPwPeWqqbDPweGEvxDS6AsaX6u4C/La2PoTiDOjGtB7BggPF+DPheen106n9GnXPrKtUF8PrS+teBT6bXNwGfqNrWduBP+9hPAM9QhOoO4JPAmBrtzgc2V31eF6bXVwM/qGp/NfCN9Lrn/Zxaqt8AXJhe7wTOK9W9r2e+wOspAnchMK7Zx7OX3ouvdVoznB8R3y8XpMtA1wPtwDGp+ChJLRFxOK3vquqziOKn2pMovqm/Anig1OTJUt8D6eOvS/UHgJ6HBE4Ebpd0pFR/GPijPuZwIvBFSZ8vD4nirOixWuOtYRXwcUlTKH7i7oyIzXXOrV4nAu+R9MFS2XiKM46+zI2IznKBpOOAGyjOXI5KY/ptP9sYaO4Avyq93s/zn4vjq/r/4XVEdEr6LxQhdYqku4EPRcTuOvZnw8CXv2yk+K8Ul0LOjIijef6Sk0pt/vAntdPlm+8AnwP+KCJagTur2g/GLmBRRLSWlolR3Pep9ae8dwGXVbWfFMVlrV7jrSUifklx2exiiktfq4Y4t/0UodPjtVXjvK5qnK+IiOpLdQP5hzSf09Ln5939jAcGmPsA9gBTS+vTXrDhiNsi4i0UgRnAp1/Eviwzh4qNFEdRnDnsTTfIPz5A+/HABKAbOJR+sn/bi9j/CuC6npvtktokLUl13cARimv85fZXSDoltX+1pP8whP3eQnGP4M08f+9hsHPbArxLUoukdor7Qj2+AiyTdKYKr5T055KOGuQ4jyJdtkxnVv9tkP0HYw3Fe3tM2tfyngpJJ0takIL33yiOmcN9bMeawKFiI8X/BCYBvwHWA//SX+OIeJbi5voaissw7wLWvoj9fzH1/56kZ9MYzkz72g9cB/woPUE1PyJup/gJeXV6wulBYNEQ9vttist9/xoRe4Y4t78D3kFxn+piivsvpG11UDwS/KW0rU7gvUMY5zUUj4A/Dfwz8N0hbKNe1wJdwCPA9yneo4OpbgLwKYrj5FfAcRQPTNgIoQj/ky4zG7kkvZ/iJv6fDtjYms5nKmY2okiaLOnN6XeHTqa433Z7s8dl9fHTX2Y20oyn+H2aGRSX9FZTPHpuo4Avf5mZWTa+/GVmZtm8rC9/HXvssTF9+vRmD8PMbFTZtGnTbyKirVbdyzpUpk+fTkdHR7OHYWY2qkh6rK86X/4yM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsGhoqktolbZfUKenyGvWSdEOqv1/S3FQ+UdIGSVslbZN0TanP1ZIel7QlLYtT+XRJB0rlKxo5NzMz661h/05YUgtwI3Au0AVslLQ2Ih4qNVsEzErLmcBN6eNBYEFE7JM0DvihpLsiYn3qd31EfK7GbndExJzGzMjMzAbSyDOVeUBnROyMiOeA1cCSqjZLgFVRWA+0Spqc1velNuPSEg0cq5mZZdDIUJkC7Cqtd6WyutpIapG0BXgCuCci7iu1W54ul62UdEypfIakzZLulXRWrUFJWiqpQ1JHd3f30GZmZmY1NTJUVKOs+myjzzYRcThdypoKzJN0aqq/CXgdMAfYA3w+le8BToiIM4APAbdJOrrXxiNujohKRFTa2toGNyMzM+tXI0OlC5hWWp8K7B5sm4jYC6wD2tP6r1PgHAG+QnGZjYg4GBFPptebgB3ASZnmYmZmdWhkqGwEZkmaIWk8cCGwtqrNWuCS9BTYfODpiNgjqU1SK4CkScBC4OG0PrnU/y+AB1N5W3o4AEkzKW7+72zY7MzMrJeGPf0VEYckLQfuBlqAlRGxTdKyVL8CuBNYDHQC+4FLU/fJwC0pJMYAayLijlT3GUlzKC6TPQpclsrPBq6VdAg4DCyLiKcaNT8zM+tNES/fh6oqlUp0dHQ0exhmZqOKpE0RUalV59+oNzOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DQ0VSe2StkvqlHR5jXpJuiHV3y9pbiqfKGmDpK2Stkm6ptTnakmPS9qSlsWluivStrZLOq+RczMzs97GNmrDklqAG4FzgS5go6S1EfFQqdkiYFZazgRuSh8PAgsiYp+kccAPJd0VEetTv+sj4nNV+5sNXAicAhwPfF/SSRFxuFFzNDOzF2rkmco8oDMidkbEc8BqYElVmyXAqiisB1olTU7r+1KbcWmJAfa3BFgdEQcj4hGgM43BzMyGSSNDZQqwq7TelcrqaiOpRdIW4Angnoi4r9RuebpctlLSMYPYH5KWSuqQ1NHd3T2EaZmZWV8aGSqqUVZ9ttFnm4g4HBFzgKnAPEmnpvqbgNcBc4A9wOcHsT8i4uaIqEREpa2tbaA5mJnZIDQyVLqAaaX1qcDuwbaJiL3AOqA9rf86Bc4R4Cs8f4mrnv2ZmVkDNTJUNgKzJM2QNJ7iJvraqjZrgUvSU2DzgacjYo+kNkmtAJImAQuBh9P65FL/vwAeLG3rQkkTJM2guPm/oUFzMzOzGhr29FdEHJK0HLgbaAFWRsQ2SctS/QrgTmAxxU31/cClqftk4Jb0BNkYYE1E3JHqPiNpDsWlrUeBy9L2tklaAzwEHAI+4Ce/zMyGlyIGeqjqpatSqURHR0ezh2FmNqpI2hQRlVp1/o16MzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXT0FCR1C5pu6ROSZfXqJekG1L9/ZLmpvKJkjZI2ippm6RravT9sKSQdGxany7pgKQtaVnRyLmZmVlvYxu1YUktwI3AuUAXsFHS2oh4qNRsETArLWcCN6WPB4EFEbFP0jjgh5Luioj1advT0nZ/WbXbHRExp1FzMjOz/jXyTGUe0BkROyPiOWA1sKSqzRJgVRTWA62SJqf1fanNuLREqd/1wEeqyszMrMkaGSpTgF2l9a5UVlcbSS2StgBPAPdExH2p/J3A4xGxtcY+Z0jaLOleSWfVGpSkpZI6JHV0d3cPZV5mZtaHRoaKapRVn1n02SYiDqdLWVOBeZJOlfQK4Ergqhr99gAnRMQZwIeA2yQd3WvjETdHRCUiKm1tbfXPxszMBtTIUOkCppXWpwK7B9smIvYC64B24HXADGCrpEdT+59Kem1EHIyIJ1OfTcAO4KRMczEzszo0MlQ2ArMkzZA0HrgQWFvVZi1wSXoKbD7wdETskdQmqRVA0iRgIfBwRDwQEcdFxPSImE4RSnMj4lepT0vqM5Pi5v/OBs7PzMyqNOzpr4g4JGk5cDfQAqyMiG2SlqX6FcCdwGKgE9gPXJq6TwZuSSExBlgTEXcMsMuzgWslHQIOA8si4qnc8zIzs74p4uX7AFWlUomOjo5mD8PMbFSRtCkiKrXq/Bv1ZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyyqStUJL1a0vWSOtLyeUmvbvTgzMxsdKn3TGUl8AzwV2l5BvhaowZlZmajU72h8rqI+HhE7EzLNcDMgTpJape0XVKnpMtr1EvSDan+fklzU/lESRskbZW0TdI1Nfp+WFJIOrZUdkXa1nZJ59U5NzMzy6TeUDkg6S09K5LeDBzor4OkFuBGYBEwG7hI0uyqZouAWWlZCtyUyg8CCyLidGAO0C5pfmnb04BzgV+WymYDFwKnAO3Al9MYzEaVZ5/czf/97hd4eMOdzR6K2aCNrbPdMmBVuo8i4CngvQP0mQd0RsROAEmrgSXAQ6U2S4BVERHAekmtkiZHxB5gX2ozLi1R6nc98BHgn6q2tToiDgKPSOpMY/hJnXM0GxG++pX309G9lQkaxydaj2PKSZVmD8msbnWFSkRsBU6XdHRaf6aOblOAXaX1LuDMOtpMAfaks4xNwOuBGyPiPgBJ7wQej4itkqq3tb7Gtl5A0lKKsyJOOOGEOqZhNrx+99w+xmschznCwQP7Bu5gNoLUFSqSJgAXANOBsT3fzCPi2v661SiLettExGFgjqRW4HZJpwI7gSuBtw1xf0TEzcDNAJVKpVe9WbO9793X8y///EWmT30DM95wdrOHYzYo9V7++ifgaYozh4N19ukCppXWpwK7B9smIvZKWkdxn+RuYAbQc5YyFfippHl17s9sxHvtzNN47wf/d7OHYTYk9YbK1IhoH+S2NwKzJM0AHqe4if6uqjZrgeXpfsuZwNMRsUdSG/D7FCiTgIXApyPiAeC4ns6SHgUqEfEbSWuB2yR9ATie4ub/hkGO2czMXoR6Q+XHkt6QvqnXJSIOSVpOcXbRAqyMiG2SlqX6FcCdwGKgE9gPXJq6TwZuSfdVxgBrIuKOAfa3TdIaigcBDgEfSJfQzMxsmKh48KqPSukBinsVk4ATKO5pHExlERGnDccgG6VSqURHR0ezh2FmNqpI2hQRNR9LHOhM5e0UZwo9T2GZmZn1qd9QiYjHACR9EzguIjYOy6jMzGxUqveeyp8Bl0l6DPgdL5HLX2Zmlle9obKooaMwM7OXhHp/o/6xRg/EzMxGP/+TLjMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJpaKhIape0XVKnpMtr1EvSDan+fklzU/lESRskbZW0TdI1pT6fSG23SPqepONT+XRJB1L5FkkrGjk3MzPrrWGhIqkFuJHiv0bOBi6SNLuq2SJgVlqWAjel8oPAgog4HZgDtEuan+o+GxGnRcQc4A7gqtL2dkTEnLQsa8C0zMysH408U5kHdEbEzoh4DlgNLKlqswRYFYX1QKukyWl9X2ozLi0BEBHPlPq/sqfczMyar5GhMgXYVVrvSmV1tZHUImkL8ARwT0Tc19NI0nWSdgEX88IzlRmSNku6V9JZtQYlaamkDkkd3d3dQ5yamZnV0shQUY2y6rOKPttExOF0iWsqME/SqX9oEHFlREwDbgWWp+I9wAkRcQbwIeA2SUf32njEzRFRiYhKW1vbYOdkZmb9aGSodAHTSutTgd2DbRMRe4F1QHuNfdwGXJDaHYyIJ9PrTcAO4KQhj97MzAatkaGyEZglaYak8cCFwNqqNmuBS9JTYPOBpyNij6Q2Sa0AkiYBC4GH0/qsUv93lsrb0sMBSJpJcfN/Z8NmZ2ZmvYxt1IYj4pCk5cDdQAuwMiK2SVqW6lcAdwKLgU5gP3Bp6j4ZuCWFxBhgTUTckeo+Jelk4AjwGNDzlNfZwLWSDgGHgWUR8VSj5mdmZr0p4uX78FSlUomOjo5mD8PMbFSRtCkiKrXq/Bv1ZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8umoaEiqV3Sdkmdki6vUS9JN6T6+yXNTeUTJW2QtFXSNknXlPp8IrXdIul7ko4v1V2RtrVd0nmNnJuZmfXWsFCR1ALcCCwCZgMXSZpd1WwRMCstS4GbUvlBYEFEnA7MAdolzU91n42I0yJiDnAHcFXa32zgQuAUoB34chqDmZkNk0aeqcwDOiNiZ0Q8B6wGllS1WQKsisJ6oFXS5LS+L7UZl5YAiIhnSv1f2VOetrU6Ig5GxCNAZxqDmZkNk0aGyhRgV2m9K5XV1UZSi6QtwBPAPRFxX08jSddJ2gVcTDpTqXN/SFoqqUNSR3d391DmZWZmfWhkqKhGWdTbJiIOp0tcU4F5kk79Q4OIKyNiGnArsHwQ+yMibo6ISkRU2traBp6FmZnVrZGh0gVMK61PBXYPtk1E7AXWUdwnqXYbcMEg9mdmZg3UyFDZCMySNEPSeIqb6Gur2qwFLklPgc0Hno6IPZLaJLUCSJoELAQeTuuzSv3f2VOetnWhpAmSZlDc/N/QoLmZmVkNYxu14Yg4JGk5cDfQAqyMiG2SlqX6FcCdwGKKm+r7gUtT98nALenprTHAmoi4I9V9StLJwBHgMaBne9skrQEeAg4BH4iIw42an5mZ9aaIXrcdXjYqlUp0dHQ0exhmZqOKpE0RUalV59+oNzOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DQ0VSe2StkvqlHR5jXpJuiHV3y9pbiqfKGmDpK2Stkm6ptTns5IeTu1vl9SayqdLOiBpS1pWNHJuZmbWW8NCRVILcCOwCJgNXCRpdlWzRcCstCwFbkrlB4EFEXE6MAdolzQ/1d0DnBoRpwE/B64obW9HRMxJy7IGTMvMzPrRyDOVeUBnROyMiOeA1cCSqjZLgFVRWA+0Spqc1velNuPSEgAR8b2IOJTq1gNTGzgHMzMbhEaGyhRgV2m9K5XV1UZSi6QtwBPAPRFxX419/A1wV2l9hqTNku6VdFatQUlaKqlDUkd3d/egJmRmZv1rZKioRlnU2yYiDkfEHIozkXmSTn1BR+lK4BBwayraA5wQEWcAHwJuk3R0r41H3BwRlYiotLW1DWY+ZmY2gEaGShcwrbQ+Fdg92DYRsRdYB7T3lEl6D/B24OKI6AmhgxHxZHq9CdgBnJRhHmZmVqdGhspGYJakGZLGAxcCa6varAUuSU+BzQeejog9ktpKT3VNAhYCD6f1duDvgXdGxP6eDaU+Len1TIqb/zsbOD8zM6sytlEbjohDkpYDdwMtwMqI2CZpWapfAdwJLAY6gf3Apan7ZOCWFBJjgDURcUeq+xIwAbhHEsD69KTX2cC1kg4Bh4FlEfFUo+ZnZma9KV09elmqVCrR0dHR7GGYmY0qkjZFRKVWnX+j3szMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmls3L+p90SeoGHmvyMI4FftPkMQyWxzw8RtuYR9t4wWMeqhMjoq1Wxcs6VEYCSR19/Qe1kcpjHh6jbcyjbbzgMTeCL3+ZmVk2DhUzM8vGodJ8Nzd7AEPgMQ+P0Tbm0TZe8Jiz8z0VMzPLxmcqZmaWjUPFzMyycagMgaR2SdsldUq6vEa9JN2Q6u+XNLdUt1LSE5IerNHvg2m72yR9JpWdK2mTpAfSxwWl9utS+y1pOW6EjHm6pAOlca0otX9jmktn2p9GyJgvLo13i6QjkuaMhPdZ0rdK+35U0pZS3RVpW9slnTfY93k4xzuSj+V+xjxij+V+xpzlWB6yiPAyiAVoAXYAM4HxwFZgdlWbxcBdgID5wH2lurOBucCDVX3+DPg+MCGtH5c+ngEcn16fCjxe6rMOqIzAMU+vblvqswH4k7Sfu4BFI2HMVW3eAOwcKe9zVf/PA1el17PTPiYAM9K+W+p9n5sw3hF7LPcz5hF7LPc15hzH8otZfKYyePOAzojYGRHPAauBJVVtlgCrorAeaJU0GSAifgA8VWO77wc+FREHU7sn0sfNEbE7tdkGTJQ0YSSPuS9pe0dHxE+iOMJXAeePwDFfBHyzv7kM85iB4qdZ4K9KY1sCrI6IgxHxCNAJzBvE+zys4x3hx3LNMffTbiQcy/WMeajH8pA5VAZvCrCrtN6VygbbptpJwFmS7pN0r6Q31WhzAbC55xti8rV0Gvvf+zn9bsaYZ0janMrPKu2jq859NPN9/o/0/kJs5vvc4yzg1xHxiwG2Ve/7PNzjLRtpx3J/Yx6px3J/Y+4x1GN5yMbm3uDLQK1PQvVz2fW0qTYWOIbi1PdNwBpJM9NPQUg6Bfg08LZSn4sj4nFJRwHfAf6a4iempo4Z2AOcEBFPSnoj8I9p/IPZR7Pe5zOB/RFRvn7d7Pe5R/VPnX1tq959DPd4iw2OzGO5R/WYR/Kx3KOv9/nFHMtD5jOVwesCppXWpwK7h9Cm1na/m05/NwBHKP5wHJKmArcDl0TEjp4OEfF4+vgscBvFaXbTx5wuxzyZxraJ4nrySan91Dr3Mezvc3IhVV+gI+B9RtJY4C+Bb9WxrXrf5+Ee70g+lmuOeYQfy32+z8mLOZaHLhp4w+aluFD8pLuT4sZoz023U6ra/DkvvOm2oap+Or1vIC8Drk2vT6I4FRbQmvZxQY1xHJtejwO+DSwbIWNu4/kbxjOBx4HXpPWNafs9NzcXj4Qxp/UxFF/cM0fS+5zK24F7q8pO4YU36neW3vcB3+cmjLeVEXos9zPmEXss9zXmHMfyi1mG5RvxS22heFLj5xQ/tVyZypb1fILSgXFjqn+A0tMWFD857AF+nz7pf5vKxwPfAB4EfgosSOUfA34HbCktxwGvBDYB91Pc9Pxiz8E/AsZ8QRrT1lT+jtK2Kqn9DuBLpG/ozR5zqjsHWF81hqa/z6nu69T4BgBcmba1ndLTR/W+z8M5XkbwsdzPmEfssTzAcXEOL/JYHuriP9NiZmbZ+J6KmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzJoo/b+OhyV9VdKDkm6VtFDSjyT9QtI8SVdL+nCpz4OSpjdx2GZ9cqiYNd/rKX67+TTg3wPvAt4CfBj4aBPHZTZoDhWz5nskIh6IiCMUfz7jX6P4UxcPUPzNJ7NRw6Fi1nzl/ylypLR+hOKPAB7ihV+rE4dpXGaD5lAxG/kepfh3sqT/XT6jqaMx64dDxWzk+w7wGklbKP4d8s+bOxyzvvmvFJuZWTY+UzEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCyb/w+cO1Nbd2STRgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mu kappa\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAf4UlEQVR4nO3df5gV1Z3n8fdHEDATXUzAGQNGYEV3MDoGr0B2giFEEzA6+OgmQhhx3MwSnNHMPLOTXfPD6DjJxmQnmw2ro6MTNEwUdPwVnkSX2WRWmTX+oAkdfiQSG4KxgZH2RwgJBoN89486NxaX2923mz7dt/Hzep567q1zTp36VnX1/XZVnb6liMDMzCynIwY6ADMzO/w52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZocJSTMktQ90HGWSNkqa0UX9pyT9ff9FZAPFycaagqStkl6R9AtJz0u6XdKbBzqurkgaJykkDe2j/kZI+pmkmXXqviLp3r5YT2+k7fxl+vlsk/Q/JA3pbrmIODUiHumi/r9FxB/3abDWlJxsrJlcEBFvBiYDZwGf6cnCKgyaY7o2SUXEr4C7gQU17YYA84Cv9190df1e+vm8D/gI8J8OpbO+StI2OAyaX0x744iIbcDDwDskHSvpW5I6JL2c3o+ttpX0iKTPS3oM2ANMkHS5pB9J2i1pi6SPldrPkNQu6b9I2ilph6QLJZ0n6ceSXpL0qVL7IyRdLWmzpBcl3SPpLal6VXr9WfqL/11pmf+Y1v+ypJWSTiz1F5L+VNIzwDN1Nv/rwMWS3lQq+wDF7+rDXW1brbSuk0rzd0j6XGn+fEmt6Wzqe5JO7/yn8rqIeBr4F4qfz7+V9M9p37wg6U5JI0vr2CrpnPT+Okn3SvqGpJ8Df5TKvpHqq2eKl0n6aerv06W+jpL09bRff5R+hu2l+v+azrp2S9ok6X2NbI/1DycbazqSTgDOA9ZSHKO3AycCbwdeAW6sWeRSYCFwNPAssBM4HzgGuBz4iqTJpfa/A4wAxgCfBW4D/hA4E5gOfFbShNT248CFwHuAtwEvAzelurPT68iIeHNEPC7pQuBTwEXAaIoP5WU18V4ITAUm1W57RHwP2JGWL2/fXRGxr4Fta0haZgnwMeCtwN8BKyQNb2DZSRT7aS0g4AsU++Z3gROA67pYfA5wLzASuLOTNu8GTqE4g/qspN9N5dcC44AJwLkUP7NqTKcAVwJnRcTRFAl6a3fbYv0oIjx5GvCJ4oPhF8DPKBLG3wJH1Wl3BvByaf4R4Ppu+n4Q+LP0fgZFwhqS5o8GAphaar8GuDC9/xHwvlLd8cCvgaEUH3wBDC3VPwx8tDR/BMUZ14lpPoCZ3cT7GeCf0vtj0vLvbHDb2kt1AZxUmr8D+Fx6fzPw1zV9bQLe08l6Avg5RbLdDHwOOKJOuwuBtTU/13PS++uAVTXtrwO+kd5X9+fYUv1TwNz0fgvwgVLdH1e3FziJIhGfAxw50Mezp4MnXzO1ZnJhRHynXJAuJ30FmAUcm4qPljQkIl5L88/VLDOb4q/gkyk+7N8ErC81ebG07Cvp9flS/StAdXDCicADkvaX6l8DfruTbTgR+KqkL5dDojiLerZevHUsBa6VNIbiL/S2iFjb4LY16kTgMklXlcqGUZyhdGZyRLSVCyQdByymONM5OsX0chd9dLftAP9aer+H138Wb6tZ/jfvI6JN0p9TJK9TJa0E/iIitjewPusHvoxmze4/U1xSmRoRx/D6pSuV2vzmq8vTZaD7gL8BfjsiRgIP1bTvieeA2RExsjSNiOK+Ur2vTH8O+FhN+6OiuDx2ULz1RMRPKS6/zae4hLa0l9u2hyIZVf1OTZyfr4nzTRFRe8mvO19I23N6+vn8YRfxQDfb3o0dwNjS/AkHdBxxV0S8myKRBvDFQ1iX9TEnG2t2R1Ocafws3Zi/tpv2w4DhQAewL50JvP8Q1n8L8PnqTX5JoyXNSXUdwH6Kewjl9p+UdGpq/28kfagX6/06xT2I3+f1exs93bZW4COShkiaRXHfqeo2YJGkqSr8lqQPSjq6h3EeTbr8mc7EPtHD5XviHop9e2xa15XVCkmnSJqZEvKvKI6Z1zrpxwaAk401u/8JHAW8ADwB/O+uGkfEboqb+vdQXM75CLDiENb/1bT8P0nanWKYmta1B/g88Fga0TUtIh6g+It6eRpxtQGY3Yv13ktx2fC7EbGjl9v2Z8AFFPfB5lPc3yH11UIxdPnG1Fcb8Ee9iPOvKIaq7wK+Ddzfiz4adT3QDvwE+A7FPtqb6oYDN1AcJ/8KHEcxUMOahCL88DQzG3wkXUExeOA93Ta2AeczGzMbFCQdL+n30/8+nUJxP++BgY7LGuPRaGY2WAyj+H+g8RSXBpdTDJG3QcCX0czMLDtfRjMzs+x8Ga0To0aNinHjxg10GGZmg8aoUaNYuXLlyoiYVVvnZNOJcePG0dLSMtBhmJkNKpJG1Sv3ZTQzM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzyy5rspE0S9ImSW2Srq5TL0mLU/06SZNLdUsk7ZS0oWaZuyW1pmmrpNZUPr9U3ippv6QzUt0jKY5q3XE5t9vMzA6U7bHQkoYANwHnAu3AakkrIuKHpWazgYlpmgrcnF4B7gBuBJaW+42IS0rr+DKwK5XfCdyZyk8DvhkRraVF50eEn/NsZjYAcp7ZTAHaImJLRLwKLAfm1LSZAyyNwhPASEnHA0TEKuClzjqXJODDwLI61fM6KTczswGQM9mMAZ4rzbensp626cx04PmIeKZO3SUcnGxuT5fQrkmJ6iCSFkpqkdTS0dHRYBhmZtadnMmm3gd69KJNZ+qevUiaCuyJiPK9nvkRcRpFgpoOXFqvw4i4NSIqEVEZPXp0g2GYmVl3ciabduCE0vxYYHsv2hxE0lDgIuDuOtVzqUlCEbEtve4G7qK4xGdmZv0kZ7JZDUyUNF7SMIoksKKmzQpgQRqVNg3YFRE7Guj7HODpiGgvF0o6AvgQxf2hatlQSaPS+yOB84EDRriZmVle2UajRcQ+SVcCK4EhwJKI2ChpUaq/BXgIOA9oA/YAl1eXl7QMmAGMktQOXBsRX0vVB529JGcD7RGxpVQ2HFiZEs0Q4DvAbX22oWZm1i1FNHqL5I2lUqlES4tHSpuZ9YSkNRFRqS33NwiYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2WVNNpJmSdokqU3S1XXqJWlxql8naXKpbomknZI21Cxzt6TWNG2V1JrKx0l6pVR3S2mZMyWtT+tZLEkZN9vMzGpkSzaShgA3AbOBScA8SZNqms0GJqZpIXBzqe4OYFZtvxFxSUScERFnAPcB95eqN1frImJRqfzm1H91XQf1a2Zm+eQ8s5kCtEXEloh4FVgOzKlpMwdYGoUngJGSjgeIiFXAS511ns5OPgws6yqI1N8xEfF4RASwFLiwl9tkZma9kDPZjAGeK823p7KetunMdOD5iHimVDZe0lpJj0qaXlpHeyPrkLRQUouklo6OjgbDMDOz7uRMNvXui0Qv2nRmHgee1ewA3h4R7wT+ArhL0jE9WUdE3BoRlYiojB49usEwzMysO0Mz9t0OnFCaHwts70Wbg0gaClwEnFkti4i9wN70fo2kzcDJaR1je7oOMzPrOznPbFYDEyWNlzQMmAusqGmzAliQRqVNA3ZFxI4G+j4HeDoifnN5TNLoNCgBSRMoBgJsSf3tljQt3edZAHzzkLfOzMwalu3MJiL2SboSWAkMAZZExEZJi1L9LcBDwHlAG7AHuLy6vKRlwAxglKR24NqI+FqqnsvBAwPOBq6XtA94DVgUEdUBBldQjG47Cng4TWZm1k9UDNCyWpVKJVpaWgY6DDOzQUXSmoio1Jb7GwTMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7LImG0mzJG2S1Cbp6jr1krQ41a+TNLlUt0TSTkkbapa5W1JrmrZKak3l50paI2l9ep1ZWuaRFEd1ueMybraZmdUYmqtjSUOAm4BzgXZgtaQVEfHDUrPZwMQ0TQVuTq8AdwA3AkvL/UbEJaV1fBnYlWZfAC6IiO2S3gGsBMaUFp0fES19s3VmZtYTOc9spgBtEbElIl4FlgNzatrMAZZG4QlgpKTjASJiFfBSZ51LEvBhYFlqvzYitqfqjcAIScP7dIvMzKxXciabMcBzpfl2DjzTaLRNZ6YDz0fEM3XqLgbWRsTeUtnt6RLaNSlRHUTSQkktklo6OjoaDMPMzLqTM9nU+0CPXrTpzDzSWc0BHUqnAl8EPlYqnh8Rp1EkqOnApfU6jIhbI6ISEZXRo0c3GIaZmXUnZ7JpB04ozY8FtveizUEkDQUuAu6uKR8LPAAsiIjN1fKI2JZedwN3UVziMzOzfpIz2awGJkoaL2kYMBdYUdNmBbAgjUqbBuyKiB0N9H0O8HREtFcLJI0Evg18MiIeK5UPlTQqvT8SOB/YgJmZ9ZtsySYi9gFXUowK+xFwT0RslLRI0qLU7CFgC9AG3Ab8SXV5ScuAx4FTJLVL+mip+7kcfAntSuAk4JqaIc7DgZWS1gGtwLa0LjMz6yeKaPQWyRtLpVKJlhaPlDYz6wlJayKiUlvubxAwM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLruHHQkv6IHAqMKJaFhHX5wjKzMwOLw2d2Ui6BbgEuIrigWcfAk7MGJeZmR1GGr2M9u8jYgHwckT8FfAuDnzomZmZWacaTTavpNc9kt4G/BoYnyckMzM73DR6z+Zb6UmY/x34PhD4AWRmZtaghpJNRPx1enufpG8BIyJiV76wzMzscNJQspE0guKRze+mOKv5f5Jujohf5QzOzMwOD41eRlsK7Ab+V5qfB/wDxag0MzOzLjWabE6JiN8rzf9fST/IEZCZmR1+Gh2NtlbStOqMpKnAY90tJGmWpE2S2iRdXadekhan+nWSJpfqlkjaKWlDzTJ3S2pN01ZJraW6T6a+Nkn6QKn8TEnrU91iSWpwu83MrA80mmymAt9LH+5bgceB96QP8HX1FpA0BLgJmA1MAuZJmlTTbDYwMU0LgZtLdXcAs2r7jYhLIuKMiDgDuA+4P61vEjCX4lsOZgF/m2Ig9buwtK6D+jVrdrF/P9//5zv5lxU38uorvxjocMx6pNHLaL35cJ4CtEXEFgBJy4E5wA9LbeYASyMigCckjZR0fETsiIhVksZ11nk6O/kwMLPU1/KI2Av8RFIbMCUlx2Mi4vG03FLgQuDhXmyT2YBpXXU3X/72p4kIOl78KRdd/qWBDsmsYQ2d2UTEs8BbKT7Q/wB4a0Q8W506WWwM8Fxpvj2V9bRNZ6YDz0fEM930NSa973YdkhZKapHU0tHR0WAYZv1j769+SRAcoSP45Ss/H+hwzHqk0aHPn6UYeXZ/Krpd0j9GxOe6WqxOWfSiTWfmAcsa6KvhdUTErcCtAJVKpdE4zPrFmTM+wtydP+EXe37GBR/69ECHY9YjjV5Gmwe8s/p/NZJuoPgmga6STTsHfn/aWGB7L9ocRNJQ4CLgzAb6ak/ve7QOs2Zz5Ig38QcLPj/QYZj1SqMDBLZSerQAMBzY3M0yq4GJksZLGkZx835FTZsVwII0Km0asCsidjQQzznA0xFRvjy2Apgrabik8RQDAZ5K/e2WNC3d51kAfLOBdZiZWR9p9MxmL7BR0v+huAR1LsW3CCwGiIiP1y4QEfskXQmsBIYASyJio6RFqf4W4CHgPKAN2ANcXl1e0jJgBjBKUjtwbUR8LVXP5cBLaKS+76EYgLAP+NOIeC1VX0Exuu0oioEBHhxgZtaPVAwE66aRdFlX9RHx9T6LqElUKpVoaWkZ6DDMzAYVSWsiolJb3ugXcR52ycTMzPpPo6PRJgJfoPjnzPJjoSdkisvMzA4jjQ4QuJ3iv/D3Ae+l+GLOf8gVlJmZHV4aTTZHRcR3Ke7xPBsR1/H6f+6bmZl1qdHRaL+SdATwTBphtg04Ll9YZmZ2OGn0zObPgTcBH6f4R8pLgW9kisnMzA4zjSabvwPGR0R7RFwO/CNwfr6wzMzscNLoZbT/ANwraT7Fo6EvBd6fLSozMzusNPp/NlskzQUepPhm5Q9ExCs5AzMzs8NHl8lG0noO/Ibkt1B89cyTkoiI03MGZ2Zmh4fuzmx8X8bMzA5Zl8mmiwejmZmZNazR0WhmZma95mRjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmll3WZCNplqRNktokXV2nXpIWp/p1kiaX6pZI2ilpQ53lrkr9bpT0pVQ2X1Jradov6YxU90hqX63zs3jMzPpRo9/63GOShgA3AecC7cBqSSsi4oelZrOBiWmaSvHo6amp7g7gRopHUJf7fS8wBzg9IvZWE0dE3AncmdqcBnwzIlpLi86PiJa+3EYzM2tMzjObKUBbRGyJiFeB5RRJomwOsDQKTwAjJR0PEBGrgJfq9HsFcENE7E3tdtZpMw9Y1kfbYWZmhyhnshlD8TiCqvZU1tM2tU4Gpkt6UtKjks6q0+YSDk42t6dLaNdIUr2OJS2U1CKppaOjo5swzMysUTmTTb0P9OhFm1pDgWOBacAngHvKyUPSVGBPRJTv9cyPiNOA6Wm6tF7HEXFrRFQiojJ69OhuwjAzs0blTDbtwAml+bHA9l60qdfv/enS21PAfmBUqX4uNWc1EbEtve4G7qK4xGdmZv0kZ7JZDUyUNF7SMIoksKKmzQpgQRqVNg3YFRE7uun3QWAmgKSTgWHAC2n+COBDFPeHSGVDJY1K74+keEbPQSPczMwsn2yj0SJin6QrgZUUT/dcEhEbJS1K9bcADwHnAW3AHuDy6vKSlgEzgFGS2oFrI+JrwBJgSRoS/SpwWURUL72dDbRHxJZSKMOBlSnRDAG+A9yWabPNzKwOvf45bWWVSiVaWjxS2sysJyStiYhKbbm/QcDMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLLmuykTRL0iZJbZKurlMvSYtT/TpJk0t1SyTtlLShznJXpX43SvpSKhsn6RVJrWm6pdT+TEnr03oWS1KubTYzs4NlSzaShgA3AbOBScA8SZNqms0GJqZpIXBzqe4OYFadft8LzAFOj4hTgb8pVW+OiDPStKhUfnPqv7qug/o1M7N8cp7ZTAHaImJLRLwKLKdIEmVzgKVReAIYKel4gIhYBbxUp98rgBsiYm9qt7OrIFJ/x0TE4xERwFLgwkPYLjMz66GcyWYM8Fxpvj2V9bRNrZOB6ZKelPSopLNKdeMlrU3l00vraG9kHZIWSmqR1NLR0dFNGGZm1qihGfuud18ketGm1lDgWGAacBZwj6QJwA7g7RHxoqQzgQclndqTdUTErcCtAJVKpbs4zMysQTnPbNqBE0rzY4HtvWhTr9/706W3p4D9wKiI2BsRLwJExBpgM8VZUHvqtyfrMDOzPpQz2awGJkoaL2kYMBdYUdNmBbAgjUqbBuyKiB3d9PsgMBNA0snAMOAFSaPToATSmc5EYEvqb7ekaWkU2gLgm32ziWZm1ohsl9EiYp+kK4GVwBBgSURslLQo1d8CPAScB7QBe4DLq8tLWgbMAEZJageujYivAUuAJWlI9KvAZRERks4Grpe0D3gNWBQR1QEGV1CMbjsKeDhNZmbWT1QM0LJalUolWlpaBjoMM7NBRdKaiKjUlvsbBMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PssiYbSbMkbZLUJunqOvWStDjVr5M0uVS3RNJOSRvqLHdV6nejpC+lsnMlrZG0Pr3OLLV/JLVvTdNxubbZzMwONjRXx5KGADcB5wLtwGpJKyLih6Vms4GJaZoK3JxeAe4AbgSW1vT7XmAOcHpE7C0ljheACyJiu6R3ACuBMaVF50dESx9uopmZNSjnmc0UoC0itkTEq8ByiiRRNgdYGoUngJGSjgeIiFXAS3X6vQK4ISL2pnY70+vaiNie2mwERkga3udbZWZmPZYz2YwBnivNt3PgmUajbWqdDEyX9KSkRyWdVafNxcDaakJKbk+X0K6RpHodS1ooqUVSS0dHRzdhmJlZo3Imm3of6NGLNrWGAscC04BPAPeUk4ekU4EvAh8rLTM/Ik4Dpqfp0nodR8StEVGJiMro0aO7CcPMzBqVM9m0AyeU5scC23vRpl6/96dLb08B+4FRAJLGAg8ACyJic3WBiNiWXncDd1Fc4jMzs36SM9msBiZKGi9pGDAXWFHTZgWwII1Kmwbsiogd3fT7IDATQNLJwDDgBUkjgW8Dn4yIx6qNJQ2VVE1GRwLnAweNcDMzs3yyJZuI2AdcSTEq7EfAPRGxUdIiSYtSs4eALUAbcBvwJ9XlJS0DHgdOkdQu6aOpagkwIQ2JXg5cFhGR1nUScE3NEOfhwEpJ64BWYFtal5mZ9RMVn9NWq1KpREuLR0qbmfWEpDURUakt9zcImJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZ+eFpnZDUATw7wGGMAl4Y4Bh6arDFPNjiBcfcXwZbzM0Q7wsAETGrtsLJpolJaqn3xLtmNthiHmzxgmPuL4Mt5maP15fRzMwsOycbMzPLzsmmud060AH0wmCLebDFC465vwy2mJs6Xt+zMTOz7HxmY2Zm2TnZmJlZdk42fUzSLEmbJLVJurpOvSQtTvXrJE0u1S2RtFPShjrLXZX63SjpS6nsXElrJK1PrzNL7R9J7VvTdFwTxDtO0iulmG4ptT8zbUdbWp+aZB/PL8XbKmm/pDN6so9zxSzp7tK6t0pqLdV9MvW1SdIHmmU/dxZzsx7LXcTbtMdyFzH3ybHcaxHhqY8mYAiwGZgADAN+AEyqaXMe8DAgYBrwZKnubGAysKFmmfcC3wGGp/nj0us7gbel9+8AtpWWeQSoNFm842rblpZ5CnhXWs/DwOxmiLmmzWnAlp7s45wx1yz/ZeCz6f2ktI7hwPi07iHNsJ+7iLkpj+Uu4m3aY7mzmPviWD6UyWc2fWsK0BYRWyLiVWA5MKemzRxgaRSeAEZKOh4gIlYBL9Xp9wrghojYm9rtTK9rI2J7arMRGCFpeLPG25nU3zER8XgUR/5S4MImjHkesKyrbennmIHir1/gw6XY5gDLI2JvRPwEaAOmNMl+rhtzEx/LdePtol3T7uMavT2We83Jpm+NAZ4rzbensp62qXUyMF3Sk5IelXRWnTYXA2urH5bJ7emU+JpOTuUHIt7xktam8umldbQ3uI6B3MeXcPAvaHf7OGfMVdOB5yPimW76aob93FnMZc10LHcVb7Mey13FXNXbY7nXhvZ1h29w9X5AtWPLG2lTayhwLMVp9FnAPZImpL+ckHQq8EXg/aVl5kfENklHA/cBl1L8lTVg8QI7gLdHxIuSzgQeTLH3ZB0DtY+nAnsionx9vJF9nDPmqtq/Ujvrqxn2c1Xdv6yb8FjuLN5mPparOtvHh3Is95rPbPpWO3BCaX4ssL0Xber1e386lX4K2E/xpXtIGgs8ACyIiM3VBSJiW3rdDdxFcco+oPGmyzovprjWUFyvPjm1H9vgOvp9HydzqfnFbXAf54wZSUOBi4C7G+irGfZzZzE367FcN94mP5Y73cfJoRzLvRcZbwi90SaKv463UNyUrd7wO7WmzQc58IbfUzX14zj45vUi4Pr0/mSK02oBI9M6Lq4Tx6j0/kjgXmBRE8Q7mtdvVE8AtgFvSfOrU//Vm6rnNcM+TvNHUPzST+jpPs4ZcyqfBTxaU3YqBw4Q2FLa7wO6n7uIeSRNeCx3EW/THsudxdwXx/KhTP32QfxGmShGj/yY4i+dT6eyRdUfXjpobkr16ymNAKH4a2MH8Ot0QHw0lQ8DvgFsAL4PzEzlnwF+CbSWpuOA3wLWAOsobrZ+tfqLMcDxXpzi+UEqv6DUVyW13wzcSPqgH+iYU90M4ImaGBrex7liTnV3UP/D99Opr02URkMN9H7uLGaa9FjuIt6mPZa7OS5mcIjHcm8nf12NmZll53s2ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52Zg1ofS8lKcl/b2kDZLulHSOpMckPSNpiqTrJP1laZkNksYNYNhmnXKyMWteJ1H8N/fpwL8DPgK8G/hL4FMDGJdZjznZmDWvn0TE+ojYT/E1It+N4is/1lN8J5bZoOFkY9a8ys9z2V+a30/x5Yn7OPB3eEQ/xWXWY042ZoPXVorHApOeTT9+QKMx64KTjdngdR/wFkmtFI+1/vHAhmPWOX/rs5mZZeczGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7Ps/j9+TdEJvXRVzgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mu xi\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAejUlEQVR4nO3df5BV5Z3n8fdHWtBMdDELzhhAwRXcgegavAJTCYYQnYCjC6UVxTCScTNLMGM2W7OTXfPDmM3EncSdbDaUjq4maNgoP8qooTY6TGWmlKlEIs3Qw48osUETGhhpNTEkGAzy3T/Oc+Ph9u3u200/3bfj51V16t57nuc853tuH+6nzw9uKyIwMzPL6YShLsDMzH77OWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmP2WkDRHUsdQ11EmaYekOT20f0rS1wavIhsqDhtrCpKel/SqpF9IekHSvZLeOtR19UTSREkhqWWAxjtJ0s8kza3T9hVJDw7Eevojbecv089nr6T/JWlEb8tFxLSIeLyH9v8REX86oMVaU3LYWDO5IiLeCkwHLgI+05eFVRg2+3RtSEXEr4A1wJKafiOAa4FvDF51df279PN5H/BB4D8ez2ADFdI2PAybf5j25hERe4HHgHdIOk3S/5PUKemn6fn4al9Jj0u6VdL3gEPA2ZKul/S0pIOSdkv6SKn/HEkdkv6rpAOS9ktaKOkyST+S9LKkT5X6nyDpJkm7JL0kaa2kt6XmDenxZ+k3/j9Iy/yHtP6fSlov6azSeCHpzyQ9CzxbZ/O/AVwl6S2lee+n+Lf6WE/bViut65zS6/skfaH0+nJJbelo6vuSzu/+p/KGiHgG+EeKn8+/kfQP6b15UdL9kkaX1vG8pEvS889JelDSNyX9HPiTNO+bqb16pPghST9J4326NNbJkr6R3ten08+wo9T+39JR10FJOyW9r5HtscHhsLGmI2kCcBmwhWIfvRc4CzgTeBW4vWaR64ClwCnAj4EDwOXAqcD1wFckTS/1/z3gJGAc8FngHuCPgQuB2cBnJZ2d+v4nYCHwHuDtwE+BO1LbxelxdES8NSKelLQQ+BRwJTCW4kN5VU29C4GZwNTabY+I7wP70/Ll7XsgIo40sG0NScusAD4C/Gvg/wDrJI1qYNmpFO/TFkDAX1G8N78PTAA+18PiC4AHgdHA/d30eTdwLsUR1Gcl/X6afwswETgbuJTiZ1at6VzgRuCiiDiFIqCf721bbBBFhCdPQz5RfDD8AvgZRWD8DXBynX4XAD8tvX4c+HwvYz8CfDw9n0MRWCPS61OAAGaW+m8GFqbnTwPvK7WdAfwaaKH44AugpdT+GPDh0usTKI64zkqvA5jbS72fAf4uPT81Lf/OBreto9QWwDml1/cBX0jP7wT+smasncB7ullPAD+nCNtdwBeAE+r0Wwhsqfm5XpKefw7YUNP/c8A30/Pq+zm+1P4UsCg93w28v9T2p9XtBc6hCOJLgBOHen/21HXyOVNrJgsj4rvlGel00leAecBpafYpkkZExOvp9Z6aZeZT/BY8heLD/i3AtlKXl0rLvpoeXyi1vwpUb044C3hY0tFS++vA73azDWcBX5X05XJJFEdRP65Xbx0rgVskjaP4Db09IrY0uG2NOgv4kKSPleaNpDhC6c70iGgvz5B0OrCc4kjnlFTTT3sYo7dtB/iX0vNDvPGzeHvN8r95HhHtkv4zRXhNk7Qe+POI2NfA+mwQ+DSaNbv/QnFKZWZEnMobp65U6vObry5Pp4G+Bfw18LsRMRp4tKZ/X+wB5kfE6NJ0UhTXlep9Zfoe4CM1/U+O4vRYl3rriYifUJx+W0xxCm1lP7ftEEUYVf1eTZ231tT5loioPeXXm79K23N++vn8cQ/1QC/b3ov9wPjS6wnHDBzxQES8myJIA/jScazLBpjDxprdKRRHGj9LF+Zv6aX/SGAU0AkcSUcCf3gc678LuLV6kV/SWEkLUlsncJTiGkK5/yclTUv9/5WkD/Rjvd+guAbxLt64ttHXbWsDPihphKR5FNedqu4BlkmaqcLvSPojSaf0sc5TSKc/05HYJ/q4fF+spXhvT0vrurHaIOlcSXNTIP+KYp95vZtxbAg4bKzZ/W/gZOBFYCPwtz11joiDFBf111KczvkgsO441v/VtPzfSTqYapiZ1nUIuBX4Xrqja1ZEPEzxG/XqdMfVdmB+P9b7IMVpw7+PiP393LaPA1dQXAdbTHF9hzRWK8Wty7ensdqBP+lHnf+d4lb1V4DvAA/1Y4xGfR7oAJ4DvkvxHh1ObaOAL1LsJ/8CnE5xo4Y1CUX4j6eZ2fAj6QaKmwfe02tnG3I+sjGzYUHSGZLelf7v07kU1/MeHuq6rDG+G83MhouRFP8faBLFqcHVFLfI2zDg02hmZpadT6OZmVl2Po3WjTFjxsTEiROHugwzs2FjzJgxrF+/fn1EzKttc9h0Y+LEibS2tg51GWZmw4qkMfXm+zSamZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZlllzVsJM2TtFNSu6Sb6rRL0vLUvlXS9FLbCkkHJG2vWWaNpLY0PS+pLc1fXJrfJumopAtS2+Opjmrb6Tm328zMjpXtz0JLGgHcAVwKdACbJK2LiB+Wus0HJqdpJnBnegS4D7gdWFkeNyKuKa3jy8Araf79wP1p/nnAtyOirbTo4ojw33k2MxsCOY9sZgDtEbE7Il4DVgMLavosAFZGYSMwWtIZABGxAXi5u8ElCbgaWFWn+dpu5puZ2RDIGTbjgD2l1x1pXl/7dGc28EJEPFun7Rq6hs296RTazSmoupC0VFKrpNbOzs4GyzAzs97kDJt6H+jRjz7dqXv0ImkmcCgiytd6FkfEeRQBNRu4rt6AEXF3RFQiojJ27NgGyzAzs97kDJsOYELp9XhgXz/6dCGpBbgSWFOneRE1IRQRe9PjQeABilN8ZmY2SHKGzSZgsqRJkkZShMC6mj7rgCXprrRZwCsRsb+BsS8BnomIjvJMSScAH6C4PlSd1yJpTHp+InA5cMwdbmZmlle2u9Ei4oikG4H1wAhgRUTskLQstd8FPApcBrQDh4Drq8tLWgXMAcZI6gBuiYivp+YuRy/JxUBHROwuzRsFrE9BMwL4LnDPgG2omZn1ShGNXiJ5c6lUKtHa6julzcz6QtLmiKjUzvc3CJiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsu6xhI2mepJ2S2iXdVKddkpan9q2SppfaVkg6IGl7zTJrJLWl6XlJbWn+REmvltruKi1zoaRtaT3LJSnjZpuZWY1sYSNpBHAHMB+YClwraWpNt/nA5DQtBe4std0HzKsdNyKuiYgLIuIC4FvAQ6XmXdW2iFhWmn9nGr+6ri7jmplZPjmPbGYA7RGxOyJeA1YDC2r6LABWRmEjMFrSGQARsQF4ubvB09HJ1cCqnopI450aEU9GRAArgYX93CYzM+uHnGEzDthTet2R5vW1T3dmAy9ExLOleZMkbZH0hKTZpXV0NLIOSUsltUpq7ezsbLAMMzPrTc6wqXddJPrRpzvXcuxRzX7gzIh4J/DnwAOSTu3LOiLi7oioRERl7NixDZZhZma9ack4dgcwofR6PLCvH326kNQCXAlcWJ0XEYeBw+n5Zkm7gClpHeP7ug4zMxs4OY9sNgGTJU2SNBJYBKyr6bMOWJLuSpsFvBIR+xsY+xLgmYj4zekxSWPTTQlIOpviRoDdabyDkmal6zxLgG8f99aZmVnDsh3ZRMQRSTcC64ERwIqI2CFpWWq/C3gUuAxoBw4B11eXl7QKmAOMkdQB3BIRX0/Ni+h6Y8DFwOclHQFeB5ZFRPUGgxso7m47GXgsTWZmNkhU3KBltSqVSrS2tg51GWZmw4qkzRFRqZ3vbxAwM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXZZw0bSPEk7JbVLuqlOuyQtT+1bJU0vta2QdEDS9ppl1khqS9PzktrS/EslbZa0LT3OLS3zeKqjutzpGTfbzMxqtOQaWNII4A7gUqAD2CRpXUT8sNRtPjA5TTOBO9MjwH3A7cDK8rgRcU1pHV8GXkkvXwSuiIh9kt4BrAfGlRZdHBGtA7N1ZmbWFzmPbGYA7RGxOyJeA1YDC2r6LABWRmEjMFrSGQARsQF4ubvBJQm4GliV+m+JiH2peQdwkqRRA7pFZmbWLznDZhywp/S6g2OPNBrt053ZwAsR8WydtquALRFxuDTv3nQK7eYUVF1IWiqpVVJrZ2dng2WYmVlvcoZNvQ/06Eef7lxLOqo5ZkBpGvAl4COl2Ysj4jyKgJoNXFdvwIi4OyIqEVEZO3Zsg2WYmVlvcoZNBzCh9Ho8sK8ffbqQ1AJcCaypmT8eeBhYEhG7qvMjYm96PAg8QHGKz8zMBknOsNkETJY0SdJIYBGwrqbPOmBJuittFvBKROxvYOxLgGcioqM6Q9Jo4DvAJyPie6X5LZLGpOcnApcD2zEzs0GTLWwi4ghwI8VdYU8DayNih6Rlkpalbo8Cu4F24B7go9XlJa0CngTOldQh6cOl4RfR9RTajcA5wM01tziPAtZL2gq0AXvTuszMbJAootFLJG8ulUolWlt9p7SZWV9I2hwRldr5/gYBMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWWXNWwkzZO0U1K7pJvqtEvS8tS+VdL0UtsKSQckba9ZZo2ktjQ9L6mt1PbJNNZOSe8vzb9Q0rbUtlySMm2ymZnVkS1sJI0A7gDmA1OBayVNrek2H5icpqXAnaW2+4B5teNGxDURcUFEXAB8C3gorW8qsAiYlpb7m1QDadylpXV1Gdes2cXRo/zTP9zPP667ndde/cVQl2PWJy3dNUhaGxFXS9oGRLkJiIg4v5exZwDtEbE7jbcaWAD8sNRnAbAyIgLYKGm0pDMiYn9EbJA0sYf6BFwNzC2NtToiDgPPSWoHZkh6Hjg1Ip5My60EFgKP9VK/WVNp27CGL3/n00QEnS/9hCuvv22oSzJrWLdhA3w8PS4Can+Nem8DY48D9pRedwAzG+gzDtjfwPizgRci4tnSWBvrjPXr9Lx2fheSllIcAXHmmWc2UILZ4Dn8q18SBCfoBH756s+HuhyzPuk2bCKi+oG/BlgJ/E/gJOA2oEJxmqsn9a6LRD/6dOdaYFUDYzW8joi4G7gboFKpNFqH2aC4cM4HWXTgOX5x6Gdc8YFPD3U5Zn3S05FN1UzgS8D3gVOA+4F3NbBcBzCh9Ho8sK8ffbqQ1AJcCVzYwFgd6Xmf1mHWbE486S38+yW3DnUZZv3SyA0CvwZeBU6mOLJ5LiKONrDcJmCypEmSRlKcjltX02cdsCTdlTYLeKV0RNWTS4BnIqJ8emwdsEjSKEmTKG4EeCqNd1DSrHSdZwnw7QbWYWZmA6SRsNlEETYXAe+muKvswd4WiogjwI3AeuBpYG1E7JC0TNKy1O1RYDfQDtwDfLS6vKRVwJPAuZI6JH24NPwijj2FRkTsANZS3IDwt8CfRcTrqfkG4GtpPbvwzQFmZoNKxY1gPXSQKhHRWjPvuoj4v1krG2KVSiVaW1t772hmZr8haXNEVGrn93pkUxs0ad5vddCYmdnA8tfVmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZZQ0bSfMk7ZTULummOu2StDy1b5U0vdS2QtIBSdvrLPexNO4OSbeleYsltZWmo5IuSG2Pp/7VttMzbraZmdVoyTWwpBHAHcClQAewSdK6iPhhqdt8YHKaZgJ3pkeA+4DbgZU1474XWACcHxGHq8EREfcD96c+5wHfjoi20qKLI6J1ILfRzMwak/PIZgbQHhG7I+I1YDVFSJQtAFZGYSMwWtIZABGxAXi5zrg3AF+MiMOp34E6fa4FVg3QdpiZ2XHKGTbjgD2l1x1pXl/71JoCzJb0A0lPSLqoTp9r6Bo296ZTaDdLUr2BJS2V1CqptbOzs5cyzMysUTnDpt4HevSjT60W4DRgFvAJYG05PCTNBA5FRPlaz+KIOA+Ynabr6g0cEXdHRCUiKmPHju2lDDMza1TOsOkAJpRejwf29aNPvXEfSqfengKOAmNK7YuoOaqJiL3p8SDwAMUpPjMzGyQ5w2YTMFnSJEkjKUJgXU2fdcCSdFfaLOCViNjfy7iPAHMBJE0BRgIvptcnAB+guD5EmtciaUx6fiJwOdDlDjczM8sn291oEXFE0o3AemAEsCIidkhaltrvAh4FLgPagUPA9dXlJa0C5gBjJHUAt0TE14EVwIp0S/RrwIcionrq7WKgIyJ2l0oZBaxPQTMC+C5wT6bNNjOzOvTG57SVVSqVaG31ndJmZn0haXNEVGrn+xsEzMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpZd1rCRNE/STkntkm6q0y5Jy1P7VknTS20rJB2QtL3Och9L4+6QdFuaN1HSq5La0nRXqf+Fkral9SyXpFzbbGZmXWULG0kjgDuA+cBU4FpJU2u6zQcmp2kpcGep7T5gXp1x3wssAM6PiGnAX5ead0XEBWlaVpp/Zxq/uq4u45qZWT45j2xmAO0RsTsiXgNWU4RE2QJgZRQ2AqMlnQEQERuAl+uMewPwxYg4nPod6KmINN6pEfFkRASwElh4HNtlZmZ9lDNsxgF7Sq870ry+9qk1BZgt6QeSnpB0UaltkqQtaf7s0jo6GlmHpKWSWiW1dnZ29lKGmZk1qiXj2PWui0Q/+tRqAU4DZgEXAWslnQ3sB86MiJckXQg8ImlaX9YREXcDdwNUKpXe6jAzswblPLLpACaUXo8H9vWjT71xH0qn3p4CjgJjIuJwRLwEEBGbgV0UR0Edady+rMPMzAZQzrDZBEyWNEnSSGARsK6mzzpgSborbRbwSkTs72XcR4C5AJKmACOBFyWNTTclkI50JgO703gHJc1Kd6EtAb49MJtoZmaNyHYaLSKOSLoRWA+MAFZExA5Jy1L7XcCjwGVAO3AIuL66vKRVwBxgjKQO4JaI+DqwAliRbol+DfhQRISki4HPSzoCvA4si4jqDQY3UNzddjLwWJrMzGyQqLhBy2pVKpVobW0d6jLMzIYVSZsjolI7398gYGZm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PssoaNpHmSdkpql3RTnXZJWp7at0qaXmpbIemApO11lvtYGneHpNvSvEslbZa0LT3OLfV/PPVvS9PpubbZzMy6ask1sKQRwB3ApUAHsEnSuoj4YanbfGBymmYCd6ZHgPuA24GVNeO+F1gAnB8Rh0vB8SJwRUTsk/QOYD0wrrTo4ohoHcBNNDOzBuU8spkBtEfE7oh4DVhNERJlC4CVUdgIjJZ0BkBEbABerjPuDcAXI+Jw6ncgPW6JiH2pzw7gJEmjBnyrzMysz3KGzThgT+l1B8ceaTTap9YUYLakH0h6QtJFdfpcBWypBlJybzqFdrMk1RtY0lJJrZJaOzs7eynDzMwalTNs6n2gRz/61GoBTgNmAZ8A1pbDQ9I04EvAR0rLLI6I84DZabqu3sARcXdEVCKiMnbs2F7KMDOzRuUMmw5gQun1eGBfP/rUG/ehdOrtKeAoMAZA0njgYWBJROyqLhARe9PjQeABilN8ZmY2SHKGzSZgsqRJkkYCi4B1NX3WAUvSXWmzgFciYn8v4z4CzAWQNAUYCbwoaTTwHeCTEfG9amdJLZKqYXQicDnQ5Q43MzPLJ1vYRMQR4EaKu8KeBtZGxA5JyyQtS90eBXYD7cA9wEery0taBTwJnCupQ9KHU9MK4Ox0S/Rq4EMREWld5wA319ziPApYL2kr0AbsTesyM7NBouJz2mpVKpVobfWd0mZmfSFpc0RUauf7GwTMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZ+Y+ndUNSJ/DjIS5jDPDiENfQV8Ot5uFWL7jmwTLcam6Gel8EiIh5tQ0OmyYmqbXeX7xrZsOt5uFWL7jmwTLcam72en0azczMsnPYmJlZdg6b5nb3UBfQD8Ot5uFWL7jmwTLcam7qen3NxszMsvORjZmZZeewMTOz7Bw2A0zSPEk7JbVLuqlOuyQtT+1bJU0vta2QdEDS9jrLfSyNu0PSbWnepZI2S9qWHueW+j+e+rel6fQmqHeipFdLNd1V6n9h2o72tD41yXu8uFRvm6Sjki7oy3ucq2ZJa0rrfl5SW6ntk2msnZLe3yzvc3c1N+u+3EO9Tbsv91DzgOzL/RYRngZoAkYAu4CzgZHAPwNTa/pcBjwGCJgF/KDUdjEwHdhes8x7ge8Co9Lr09PjO4G3p+fvAPaWlnkcqDRZvRNr+5aWeQr4g7Sex4D5zVBzTZ/zgN19eY9z1lyz/JeBz6bnU9M6RgGT0rpHNMP73EPNTbkv91Bv0+7L3dU8EPvy8Uw+shlYM4D2iNgdEa8Bq4EFNX0WACujsBEYLekMgIjYALxcZ9wbgC9GxOHU70B63BIR+1KfHcBJkkY1a73dSeOdGhFPRrHnrwQWNmHN1wKretqWQa4ZKH77Ba4u1bYAWB0RhyPiOaAdmNEk73Pdmpt4X65bbw/9mvY9rtHffbnfHDYDaxywp/S6I83ra59aU4DZkn4g6QlJF9XpcxWwpfphmdybDolv7uZQfijqnSRpS5o/u7SOjgbXMZTv8TV0/Qfa23ucs+aq2cALEfFsL2M1w/vcXc1lzbQv91Rvs+7LPdVc1d99ud9aBnrAN7l6P6Dae8sb6VOrBTiN4jD6ImCtpLPTb05ImgZ8CfjD0jKLI2KvpFOAbwHXUfyWNWT1AvuBMyPiJUkXAo+k2vuyjqF6j2cChyKifH68kfc4Z81Vtb+ldjdWM7zPVXV/s27Cfbm7ept5X67q7j0+nn2533xkM7A6gAml1+OBff3oU2/ch9Kh9FPAUYov3UPSeOBhYElE7KouEBF70+NB4AGKQ/YhrTed1nkp1bWZ4nz1lNR/fIPrGPT3OFlEzT/cBt/jnDUjqQW4EljTwFjN8D53V3Oz7st1623yfbnb9zg5nn25/yLjBaE320Tx2/Fuiouy1Qt+02r6/BHHXvB7qqZ9Il0vXi8DPp+eT6E4rBYwOq3jqjp1jEnPTwQeBJY1Qb1jeeNC9dnAXuBt6fWmNH71ouplzfAep9cnUPyjP7uv73HOmtP8ecATNfOmcewNArtL7/uQvs891DyaJtyXe6i3affl7moeiH35eKZB+yB+s0wUd4/8iOI3nU+necuqP7y009yR2rdRugOE4reN/cCv0w7x4TR/JPBNYDvwT8DcNP8zwC+BttJ0OvA7wGZgK8XF1q9W/2EMcb1XpXr+Oc2/ojRWJfXfBdxO+qAf6ppT2xxgY00NDb/HuWpObfdR/8P302msnZTuhhrq97m7mmnSfbmHept2X+5lv5jDce7L/Z38dTVmZpadr9mYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGrAmlv5fyjKSvSdou6X5Jl0j6nqRnJc2Q9DlJf1FaZrukiUNYtlm3HDZmzesciv/NfT7wb4EPAu8G/gL41BDWZdZnDhuz5vVcRGyLiKMUXyPy91F85cc2iu/EMhs2HDZmzav891yOll4fpfjyxCMc+2/4pEGqy6zPHDZmw9fzFH8WmPS36ScNaTVmPXDYmA1f3wLeJqmN4s9a/2hoyzHrnr/12czMsvORjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtn9f5BvXgkhsIjrAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mu sigma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAf4ElEQVR4nO3df5QV5Z3n8fdHEDSJLmbBCQEUWNGMRsfgFZgzwRCiCRgdPLpRlJGMm1mCM2ZnTjbZNT+M2Uwyk3jGyYbVgdERDScKOokadqNDjjOrzGZEaYYefiQSW2JiA5FWIyHBYJDv/lHPjcXt2923m366b+PndU6de+t5nnrqW9XV99tV9XRdRQRmZmY5HTXYAZiZ2ZHPycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTtCSJolqX2w4yiTtFXSrG7qPy3p7wYuIhssTjbWFCQ9K+kVSb+Q9LykOyW9ZbDj6o6kiZJC0vB+6u8YSS9Lml2n7quSvtkf6+mLtJ2/TD+fHZL+WtKwnpaLiDMi4tFu6v8iIv6oX4O1puRkY83k4oh4CzAVOBf4bG8WVmHIHNO1SSoifgXcCyysaTcMuBL4+sBFV9fvpJ/P+4CrgP98OJ31V5K2oWHI/GLaG0dE7AAeBt4p6QRJ/0dSh6Sfpffjq20lPSrpS5K+B+wDJku6RtIPJO2VtF3SR0vtZ0lql/TfJO2WtEvSJZIulPRDSS9J+nSp/VGSrpf0jKQXJd0n6a2pem16fTn9xf+7aZn/lNb/M0lrJJ1c6i8k/Ymkp4Gn62z+14HLJL2pVPYBit/Vh7vbtlppXaeU5u+S9MXS/EWSWtPZ1L9IOqvrn8rrIuIp4J8pfj7/QdI/pX3zgqS7JY0qreNZSeen95+X9E1J35D0c+APU9k3Un31TPHDkn6S+vtMqa9jJX097dcfpJ9he6n+v6ezrr2Stkl6XyPbYwPDycaajqQJwIXARopj9E7gZOAk4BXglppFrgYWAccBPwZ2AxcBxwPXAF+VNLXU/m3AMcA44HPA7cAfAOcAM4HPSZqc2v4X4BLgPcDbgZ8Bt6a689LrqIh4S0Q8LukS4NPApcAYig/llTXxXgJMB06v3faI+BdgV1q+vH33RMSBBratIWmZ5cBHgX8P/C2wWtLIBpY9nWI/bQQE/CXFvvltYALw+W4Wnwd8ExgF3N1Fm3cDp1GcQX1O0m+n8huBicBk4AKKn1k1ptOA64BzI+I4igT9bE/bYgMoIjx5GvSJ4oPhF8DLFAnjb4Bj67Q7G/hZaf5R4As99P0g8Kfp/SyKhDUszR8HBDC91H4DcEl6/wPgfaW6scCvgeEUH3wBDC/VPwx8pDR/FMUZ18lpPoDZPcT7WeC76f3xafl3Nbht7aW6AE4pzd8FfDG9Xwr8eU1f24D3dLGeAH5OkWyfAb4IHFWn3SXAxpqf6/np/eeBtTXtPw98I72v7s/xpfongfnp/XbgA6W6P6puL3AKRSI+Hzh6sI9nT50nXzO1ZnJJRDxSLkiXk74KzAFOSMXHSRoWEa+l+edqlplL8VfwqRQf9m8CNpeavFha9pX0+nyp/hWgOjjhZOABSQdL9a8Bv9XFNpwMfE3SzeWQKM6iflwv3jpWADdKGkfxF3pbRGxscNsadTLwYUkfK5WNoDhD6crUiGgrF0g6EVhCcaZzXIrpZ9300dO2A/y09H4fr/8s3l6z/G/eR0SbpD+jSF5nSFoDfDwidjawPhsAvoxmze6/UlxSmR4Rx/P6pSuV2vzm0eXpMtC3gL8CfisiRgEP1bTvjeeAuRExqjQdE8V9pXqPTH8O+GhN+2OjuDzWKd56IuInFJffFlBcQlvRx23bR5GMqt5WE+eXauJ8U0TUXvLryV+m7Tkr/Xz+oJt4oIdt78EuYHxpfsIhHUfcExHvpkikAXzlMNZl/czJxprdcRRnGi+nG/M39tB+BDAS6AAOpDOB9x/G+pcBX6re5Jc0RtK8VNcBHKS4h1Bu/ylJZ6T2/07Sh/qw3q9T3IP4PV6/t9HbbWsFrpI0TNIcivtOVbcDiyVNV+HNkj4o6bhexnkc6fJnOhP7ZC+X7437KPbtCWld11UrJJ0maXZKyL+iOGZe66IfGwRONtbs/idwLPACsA74h+4aR8Reipv691FczrkKWH0Y6/9aWv67kvamGKande0DvgR8L43omhERD1D8Rb0qjbjaAsztw3q/SXHZ8B8jYlcft+1PgYsp7oMtoLi/Q+qrhWLo8i2przbgD/sQ5/+gGKq+B/gOcH8f+mjUF4B24EfAIxT7aH+qGwl8meI4+SlwIsVADWsSivCXp5nZ0CPpWorBA+/psbENOp/ZmNmQIGmspN9L//t0GsX9vAcGOy5rjEejmdlQMYLi/4EmUVwaXEUxRN6GAF9GMzOz7HwZzczMsvNltC6MHj06Jk6cONhhmJkNGaNHj2bNmjVrImJObZ2TTRcmTpxIS0vLYIdhZjakSBpdr9yX0czMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsu6zJRtIcSdsktUm6vk69JC1J9ZskTS3VLZe0W9KWmmXuldSapmcltabyBaXyVkkHJZ2d6h5NcVTrTsy53WZmdqhsXwstaRhwK3AB0A6sl7Q6Ir5fajYXmJKm6cDS9ApwF3ALsKLcb0RcUVrHzcCeVH43cHcqPxP4dkS0lhZdEBH+nmczs0GQ88xmGtAWEdsj4lVgFTCvps08YEUU1gGjJI0FiIi1wEtddS5JwOXAyjrVV3ZRbmZmgyBnshkHPFeab09lvW3TlZnA8xHxdJ26K+icbO5Ml9BuSImqE0mLJLVIauno6GgwDDMz60nOZFPvAz360KYrdc9eJE0H9kVE+V7Pgog4kyJBzQSurtdhRNwWEZWIqIwZM6bBMMzMrCc5k007MKE0Px7Y2Yc2nUgaDlwK3Funej41SSgidqTXvcA9FJf4zMxsgORMNuuBKZImSRpBkQRW17RZDSxMo9JmAHsiYlcDfZ8PPBUR7eVCSUcBH6K4P1QtGy5pdHp/NHARcMgINzMzyyvbaLSIOCDpOmANMAxYHhFbJS1O9cuAh4ALgTZgH3BNdXlJK4FZwGhJ7cCNEXFHqu509pKcB7RHxPZS2UhgTUo0w4BHgNv7bUPNzKxHimj0FskbS6VSiZYWj5Q2M+sNSRsiolJb7icImJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtllTTaS5kjaJqlN0vV16iVpSarfJGlqqW65pN2SttQsc6+k1jQ9K6k1lU+U9EqpbllpmXMkbU7rWSJJGTfbzMxqZEs2koYBtwJzgdOBKyWdXtNsLjAlTYuApaW6u4A5tf1GxBURcXZEnA18C7i/VP1MtS4iFpfKl6b+q+vq1K+ZmeWT88xmGtAWEdsj4lVgFTCvps08YEUU1gGjJI0FiIi1wEtddZ7OTi4HVnYXROrv+Ih4PCICWAFc0sdtMjOzPsiZbMYBz5Xm21NZb9t0ZSbwfEQ8XSqbJGmjpMckzSyto72RdUhaJKlFUktHR0eDYZiZWU9yJpt690WiD226ciWHntXsAk6KiHcBHwfukXR8b9YREbdFRCUiKmPGjGkwDDMz68nwjH23AxNK8+OBnX1o04mk4cClwDnVsojYD+xP7zdIegY4Na1jfG/XYWZm/Sfnmc16YIqkSZJGAPOB1TVtVgML06i0GcCeiNjVQN/nA09FxG8uj0kakwYlIGkyxUCA7am/vZJmpPs8C4FvH/bWmZlZw7Kd2UTEAUnXAWuAYcDyiNgqaXGqXwY8BFwItAH7gGuqy0taCcwCRktqB26MiDtS9Xw6Dww4D/iCpAPAa8DiiKgOMLiWYnTbscDDaTIzswGiYoCW1apUKtHS0jLYYZiZDSmSNkREpbbcTxAwM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMssuabCTNkbRNUpuk6+vUS9KSVL9J0tRS3XJJuyVtqVnmXkmtaXpWUmsqv0DSBkmb0+vs0jKPpjiqy52YcbPNzKzG8FwdSxoG3ApcALQD6yWtjojvl5rNBaakaTqwNL0C3AXcAqwo9xsRV5TWcTOwJ82+AFwcETslvRNYA4wrLbogIlr6Z+vMzKw3cp7ZTAPaImJ7RLwKrALm1bSZB6yIwjpglKSxABGxFnipq84lCbgcWJnab4yInal6K3CMpJH9ukVmZtYnOZPNOOC50nw7h55pNNqmKzOB5yPi6Tp1lwEbI2J/qezOdAnthpSoOpG0SFKLpJaOjo4GwzAzs57kTDb1PtCjD226ciXprOaQDqUzgK8AHy0VL4iIMykS1Ezg6nodRsRtEVGJiMqYMWMaDMPMzHqSM9m0AxNK8+OBnX1o04mk4cClwL015eOBB4CFEfFMtTwidqTXvcA9FJf4zMxsgORMNuuBKZImSRoBzAdW17RZDSxMo9JmAHsiYlcDfZ8PPBUR7dUCSaOA7wCfiojvlcqHSxqd3h8NXARswczMBky2ZBMRB4DrKEaF/QC4LyK2SlosaXFq9hCwHWgDbgf+uLq8pJXA48BpktolfaTU/Xw6X0K7DjgFuKFmiPNIYI2kTUArsCOty8zMBogiGr1F8sZSqVSipcUjpc3MekPShoio1Jb7CQJmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZNfy10Omrlk8HjqmWRcSKrpcwMzMrNJRsJN0IzKJINg8Bc4H/BzjZmJlZjxq9jPYfgfcBP42Ia4DfoXh0v5mZWY8aTTavRMRB4ICk44HdwOR8YZmZ2ZGk0Xs2LembMG8HNgC/AJ7MFZSZmR1ZGko2EVH9Bs1lkv4BOD4iNuULy8zMjiS9GY12FjCxuoykUyLi/kxxmZnZEaTR0WjLgbOArcDBVByAk42ZmfWo0TObGRFxetZIzMzsiNXoaLTHJfU62UiaI2mbpDZJ19epl6QlqX6TpKmluuWSdkvaUrPMvZJa0/SspNZS3adSX9skfaBUfo6kzaluiST1dlvMzKzvGk02X6dIONtSUtgsqdsBApKGAbdS/APo6cCVdRLWXGBKmhYBS0t1dwFzavuNiCsi4uyIOBv4FulSXup7PnBGWu5vUgykfheV1tWpX7NmFwcP8q//dDf/vPoWXn3lF4MdjlmvNHoZbTlwNbCZ1+/Z9GQa0BYR2wEkrQLmAd8vtZkHrIiIANZJGiVpbETsioi1kiZ21Xk6O7kcmF3qa1VE7Ad+JKkNmCbpWYrRc4+n5VYAlwAPN7gdZk2hde293PydzxARdLz4Ey695qbBDsmsYY0mm59ExOpe9j0OeK403w5Mb6DNOGBXA/3PBJ6PiKdLfa2r09ev0/va8k4kLaI4A+Kkk05qIASzgbP/V78kCI7SUfzylZ8PdjhmvdJosnlK0j3A/wb2Vwt7GPpc775I9KFNV64EVjbQV8PriIjbgNsAKpVKo3GYDYhzZl3F/N0/4hf7XubiD31msMMx65VGk82xFEnm/aWynoY+twMTSvPjgZ19aNOJpOHApcA5DfTVnt73ah1mzeboY97E7y/80mCHYdYnjT5B4Jo+9L0emCJpErCD4ub9VTVtVgPXpfs504E9EdHIJbTzgacionx5bDVwj6S/Bt5OMRDgyYh4TdJeSTOAJ4CFwP/qw/aYmVkfNfpPnUvqFO8BWiLi2/WWiYgDkq4D1gDDgOURsVXS4lS/jOLrCi4E2oB9wG+SmqSVFF9rMFpSO3BjRNyRqudz6CU0Ut/3UQxAOAD8SUS8lqqvpRjddizFwAAPDjAzG0AqBoL10Ei6DXgH8Pep6DKKpwlMALZHxJ/lCnCwVCqVaGlpGewwzMyGFEkbIqJSW97oPZtTgNkRcSB1thT4LnABxXBoMzOzLjX6T53jgDeX5t8MvD1dptpffxEzM7NCo2c2NwGtkh6lGEp8HvAXkt4MPJIpNjMzO0I0OhrtDkkPUTwVQMCnI6I6fPiTuYIzM7MjQ7eX0SS9I71OBcZS/Lf/T4C3lR+aaWZm1p2ezmw+TvH4lptLZeXha7MxMzPrQbdnNhGxKL1dCsyLiPcC/5fif2w+kTk2MzM7QjQ6Gu2zEfFzSe+mGO58F4d+HYCZmVmXGk021f/E/yCwLD01YESekMzM7EjTaLLZIelvKb4/5iFJI3uxrJmZvcE1mjAup3jG2ZyIeBl4Kx7ybGZmDWr0/2z2Ufo6gfRk5kaezmxmZuZLYWZmlp+TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2WZONpDmStklqk3R9nXpJWpLqN5W/I0fSckm7JW2ps9zHUr9bJd2UyhZIai1NByWdneoeTe2rdSdm3GwzM6vR6NdC95qkYcCtFE+JbgfWS1odEd8vNZsLTEnTdIonSU9PdXcBtwAravp9LzAPOCsi9lcTR0TcDdyd2pwJfDsiWkuLLoiIlv7cRjMza0zOM5tpQFtEbI+IV4FVFEmibB6wIgrrgFGSxgJExFrgpTr9Xgt8OSL2p3a767S5EljZT9thZmaHKWeyGUfxNdJV7amst21qnQrMlPSEpMcknVunzRV0TjZ3pktoN0hSvY4lLZLUIqmlo6OjhzDMzKxROZNNvQ/06EObWsOBE4AZFE+evq+cPCRNB/ZFRPlez4KIOBOYmaar63UcEbdFRCUiKmPGjOkhDDMza1TOZNMOTCjNjwd29qFNvX7vT5fengQOAqNL9fOpOauJiB3pdS9wD8UlPjMzGyA5k816YIqkSZJGUCSB1TVtVgML06i0GcCe9PUF3XkQmA0g6VSKbwx9Ic0fBXyI4v4QqWy4pNHp/dHARUCnEW5mZpZPttFoEXFA0nUUX7o2DFgeEVslLU71y4CHgAuBNmAfcE11eUkrgVnAaEntwI0RcQewHFiehkS/Cnw4IqqX3s4D2iNieymUkcCalGiGAY8At2fabDMzq0Ovf05bWaVSiZYWj5Q2M+sNSRsiolJb7icImJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtllTTaS5kjaJqlN0vV16iVpSarfJGlqqW65pN2SttRZ7mOp362SbkplEyW9Iqk1TctK7c+RtDmtZ4kk5dpmMzPrLFuykTQMuBWYC5wOXCnp9Jpmc4EpaVoELC3V3QXMqdPve4F5wFkRcQbwV6XqZyLi7DQtLpUvTf1X19WpXzMzyyfnmc00oC0itkfEq8AqiiRRNg9YEYV1wChJYwEiYi3wUp1+rwW+HBH7U7vd3QWR+js+Ih6PiABWAJccxnaZmVkv5Uw244DnSvPtqay3bWqdCsyU9ISkxySdW6qbJGljKp9ZWkd7I+uQtEhSi6SWjo6OHsIwM7NGDc/Yd737ItGHNrWGAycAM4BzgfskTQZ2ASdFxIuSzgEelHRGb9YREbcBtwFUKpWe4jAzswblPLNpByaU5scDO/vQpl6/96dLb08CB4HREbE/Il4EiIgNwDMUZ0Htqd/erMPMzPpRzmSzHpgiaZKkEcB8YHVNm9XAwjQqbQawJyJ29dDvg8BsAEmnAiOAFySNSYMSSGc6U4Dtqb+9kmakUWgLgW/3zyaamVkjsl1Gi4gDkq4D1gDDgOURsVXS4lS/DHgIuBBoA/YB11SXl7QSmAWMltQO3BgRdwDLgeVpSPSrwIcjIiSdB3xB0gHgNWBxRFQHGFxLMbrtWODhNJmZ2QBRMUDLalUqlWhpaRnsMMzMhhRJGyKiUlvuJwiYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2WVNNpLmSNomqU3S9XXqJWlJqt8kaWqpbrmk3ZK21FnuY6nfrZJuSmUXSNogaXN6nV1q/2hq35qmE3Nts5mZdTY8V8eShgG3AhcA7cB6Sasj4vulZnOBKWmaDixNrwB3AbcAK2r6fS8wDzgrIvaXEscLwMURsVPSO4E1wLjSogsioqUfN9HMzBqU88xmGtAWEdsj4lVgFUWSKJsHrIjCOmCUpLEAEbEWeKlOv9cCX46I/and7vS6MSJ2pjZbgWMkjez3rTIzs17LmWzGAc+V5ts59Eyj0Ta1TgVmSnpC0mOSzq3T5jJgYzUhJXemS2g3SFK9jiUtktQiqaWjo6OHMMzMrFE5k029D/ToQ5taw4ETgBnAJ4H7yslD0hnAV4CPlpZZEBFnAjPTdHW9jiPitoioRERlzJgxPYRhZmaNypls2oEJpfnxwM4+tKnX7/3p0tuTwEFgNICk8cADwMKIeKa6QETsSK97gXsoLvGZmdkAyZls1gNTJE2SNAKYD6yuabMaWJhGpc0A9kTErh76fRCYDSDpVGAE8IKkUcB3gE9FxPeqjSUNl1RNRkcDFwGdRriZmVk+2ZJNRBwArqMYFfYD4L6I2CppsaTFqdlDwHagDbgd+OPq8pJWAo8Dp0lql/SRVLUcmJyGRK8CPhwRkdZ1CnBDzRDnkcAaSZuAVmBHWpeZmQ0QFZ/TVqtSqURLi0dKm5n1hqQNEVGpLfcTBMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7PzlaV2Q1AH8eJDDGA28MMgx9NZQi3moxQuOeaAMtZibId4XACJiTm2Fk00Tk9RS7xvvmtlQi3moxQuOeaAMtZibPV5fRjMzs+ycbMzMLDsnm+Z222AH0AdDLeahFi845oEy1GJu6nh9z8bMzLLzmY2ZmWXnZGNmZtk52fQzSXMkbZPUJun6OvWStCTVb5I0tVS3XNJuSVvqLPex1O9WSTelsgskbZC0Ob3OLrV/NLVvTdOJTRDvREmvlGJaVmp/TtqOtrQ+Nck+XlCKt1XSQUln92Yf54pZ0r2ldT8rqbVU96nU1zZJH2iW/dxVzM16LHcTb9Mey93E3C/Hcp9FhKd+moBhwDPAZGAE8G/A6TVtLgQeBgTMAJ4o1Z0HTAW21CzzXuARYGSaPzG9vgt4e3r/TmBHaZlHgUqTxTuxtm1pmSeB303reRiY2wwx17Q5E9jem32cM+aa5W8GPpfen57WMRKYlNY9rBn2czcxN+Wx3E28TXssdxVzfxzLhzP5zKZ/TQPaImJ7RLwKrALm1bSZB6yIwjpglKSxABGxFnipTr/XAl+OiP2p3e70ujEidqY2W4FjJI1s1ni7kvo7PiIej+LIXwFc0oQxXwms7G5bBjhmoPjrF7i8FNs8YFVE7I+IHwFtwLQm2c91Y27iY7luvN20a9p9XKOvx3KfOdn0r3HAc6X59lTW2za1TgVmSnpC0mOSzq3T5jJgY/XDMrkznRLf0MWp/GDEO0nSxlQ+s7SO9gbXMZj7+Ao6/4L2tI9zxlw1E3g+Ip7uoa9m2M9dxVzWTMdyd/E267HcXcxVfT2W+2x4f3f4BlfvB1Q7tryRNrWGAydQnEafC9wnaXL6ywlJZwBfAd5fWmZBROyQdBzwLeBqir+yBi1eYBdwUkS8KOkc4MEUe2/WMVj7eDqwLyLK18cb2cc5Y66q/Su1q76aYT9X1f3LugmP5a7ibeZjuaqrfXw4x3Kf+cymf7UDE0rz44GdfWhTr9/706n0k8BBiofuIWk88ACwMCKeqS4QETvS617gHopT9kGNN13WeTHFtYHievWpqf34Btcx4Ps4mU/NL26D+zhnzEgaDlwK3NtAX82wn7uKuVmP5brxNvmx3OU+Tg7nWO67yHhD6I02Ufx1vJ3ipmz1ht8ZNW0+yKE3/J6sqZ9I55vXi4EvpPenUpxWCxiV1nFZnThGp/dHA98EFjdBvGN4/Ub1ZGAH8NY0vz71X72pemEz7OM0fxTFL/3k3u7jnDGn8jnAYzVlZ3DoAIHtpf0+qPu5m5hH0YTHcjfxNu2x3FXM/XEsH840YB/Eb5SJYvTIDyn+0vlMKltc/eGlg+bWVL+Z0ggQir82dgG/TgfER1L5COAbwBbgX4HZqfyzwC+B1tJ0IvBmYAOwieJm69eqvxiDHO9lKZ5/S+UXl/qqpPbPALeQPugHO+ZUNwtYVxNDw/s4V8yp7i7qf/h+JvW1jdJoqMHez13FTJMey93E27THcg/HxSwO81ju6+TH1ZiZWXa+Z2NmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONWRNK35fylKS/k7RF0t2Szpf0PUlPS5om6fOSPlFaZoukiYMYtlmXnGzMmtcpFP/NfRbwDuAq4N3AJ4BPD2JcZr3mZGPWvH4UEZsj4iDFY0T+MYpHfmymeCaW2ZDhZGPWvMrf53KwNH+Q4uGJBzj0d/iYAYrLrNecbMyGrmcpvhaY9N30kwY1GrNuONmYDV3fAt4qqZXia61/OLjhmHXNT302M7PsfGZjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlt3/BzDnzuI5kJXhAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mu tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaAklEQVR4nO3dfZQldX3n8feHQcAHzOA6GORpIA5shmgSbIEcnwiKMkYzbFh3QROIMYuj4mZ384TGGDUxMTlRI0eiK64Ka5RwjCSTDYQoG8MeA5GegDwEkWF8YGQCIypBISLw3T+qOlzv3Om+3fO7093yfp1zz62q3+9X9a3qmv50Vd3uSVUhSVILeyx2AZKk7x+GiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVKRlJsnxSbYudh2DktyY5PhZ2t+Q5AO7ryItFkNFu1WSLyW5L8m3ktyR5ENJHrfYdc0myeoklWTPRuvbJ8k3k5wwou1dST7eYjsL0e/nt/uvz1eTvDPJirnGVdVRVfXpWdp/t6p+sWmxWpIMFS2Gl1TV44CjgWcAb5zP4HSWzbk7HEZV9a/AnwKnD/VbAZwGnL/7qhvpR/uvz/OAlwH/ZVdW1iqMtTwsm3+Y+v5TVV8FLgV+JMl+Sf5Pku1JvtFPHzTTN8mnk7wtyWeAe4HDk7wiyU1J7kmyJcmrBvofn2Rrkl9LcmeSbUlOTvKiJF9I8vUkbxjov0eSs5PcmuSuJBcleULffEX//s3+J/if6Mf8Qr/9byS5LMmhA+urJK9Ncgtwy4jdPx84JcljBpa9kO7f5KWz7duwfltPGZj/cJLfGZh/cZJr+6ujv0/ytJ1/VR5WVZ8H/h/d1+eHkvzf/th8LcmfJFk5sI0vJXl+P/3mJB9P8pEk/wL8fL/sI337zJXfGUm+0q/vNwbW9egk5/fH9ab+a7h1oP3X+6uoe5LcnOR54+yPdg9DRYsmycHAi4Br6M7FDwGHAocA9wHvGRryc8CZwL7Al4E7gRcDjwdeAbwrydED/X8Q2Ac4EHgTcB7ws8DTgWcDb0pyeN/3vwInA88Fngx8Azi3b3tO/76yqh5XVVcmORl4A/AzwCq6b74fG6r3ZOBYYO3wvlfV3wPb+vGD+/fRqnpgjH0bSz/mg8CrgH8H/E9gY5K9xxi7lu44XQME+D26Y/PDwMHAm2cZvh74OLAS+JOd9HkWcCTdFdGbkvxwv/y3gNXA4cCJdF+zmZqOBM4CnlFV+9IF8Zfm2hftRlXly9due9F9A/gW8E26YPhj4NEj+v0Y8I2B+U8Db51j3X8O/FI/fTxdMK3o5/cFCjh2oP8m4OR++ibgeQNtBwDfBfak+wZXwJ4D7ZcCrxyY34PuCurQfr6AE+ao943A3/TTj+/H//iY+7Z1oK2ApwzMfxj4nX76vcBvD63rZuC5O9lOAf9CF6q3Ar8D7DGi38nANUNf1+f3028Grhjq/2bgI/30zPE8aKD9s8Cp/fQW4IUDbb84s7/AU+gC9/nAoxb7fPa148t7nVoMJ1fVpwYX9LeB3gWcBOzXL943yYqqerCfv21ozDq6n2qPoPum/hjg+oEudw2Mva9/v2Og/T5g5kMChwIXJ3looP1B4Ek72YdDgXcnecdgSXRXRV8eVe8IFwC/leRAup+4N1fVNWPu27gOBc5I8rqBZXvRXXHszNFVtXlwQZL9gXPorlz27Wv6xizrmGvfAf55YPpeHv5aPHlo/L9NV9XmJP+NLqSOSnIZ8D+q6vYxtqfdwNtfWip+me5WyLFV9XgevuWUgT7/9ie1+9s3fwb8IfCkqloJXDLUfz5uA9ZV1cqB1z7VPfcZ9ae8bwNeNdT/0dXd1tqh3lGq6it0t81eTnfr64IF7tu9dKEz4weH6nzbUJ2PqarhW3Vz+b1+f57Wf31+dpZ6YI59n8M24KCB+YO/Z8VVH62qZ9EFZgG/vwvbUmOGipaKfemuHL7ZPyD/rTn67wXsDWwHHuh/sn/BLmz/fcDbZh62J1mVZH3fth14iO4e/2D/1yc5qu//A0leuoDtnk/3jOCZPPzsYb77di3wsiQrkpxE91xoxnnAhiTHpvPYJD+VZN951rkv/W3L/srqV+c5fj4uoju2+/XbOmumIcmRSU7og/df6c6ZB3eyHi0CQ0VLxR8Bjwa+BlwF/PVsnavqHrqH6xfR3YZ5GbBxF7b/7n783yS5p6/h2H5b9wJvAz7Tf4LquKq6mO4n5Av7TzjdAKxbwHY/Tne77/Kq2rbAffsl4CV0z6leTvf8hX5d03QfCX5Pv67NwM8voM630H0E/G7gr4BPLGAd43orsBX4IvApumP0nb5tb+DtdOfJPwP7031gQktEqvxPuiQtXUleTfcQ/7lzdtai80pF0pKS5IAkz+x/d+hIuudtFy92XRqPn/6StNTsRff7NIfR3dK7kO6j51oGvP0lSWrG21+SpGYe0be/nvjEJ9bq1asXuwxJWlY2bdr0tapaNartER0qq1evZnp6erHLkKRlJcmXd9bm7S9JUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjMTDZUkJyW5OcnmJGePaE+Sc/r265IcPdD2wSR3JrlhaMwTknwyyS39+35D7Yck+VaSX5ncnkmSRplYqCRZAZwLrAPWAqclWTvUbR2wpn+dCbx3oO3DwEkjVn02cHlVrQEu7+cHvQu4dFfrlyTN3ySvVI4BNlfVlqq6H7gQWD/UZz1wQXWuAlYmOQCgqq4Avj5iveuB8/vp84GTZxqSnAxsAW5suB+SpDFNMlQOBG4bmN/aL5tvn2FPqqptAP37/gBJHgv8OvCW2QYnOTPJdJLp7du3z7kTkqTxTTJUMmJZLaDPuN4CvKuqvjVbp6p6f1VNVdXUqlWrFrgpSdIoe05w3VuBgwfmDwJuX0CfYXckOaCqtvW3yu7slx8L/MckfwCsBB5K8q9V9Z6F7oAkaX4meaVyNbAmyWFJ9gJOBTYO9dkInN5/Cuw44O6ZW1uz2Aic0U+fAfwFQFU9u6pWV9Vq4I+A3zVQJGn3mlioVNUDwFnAZcBNwEVVdWOSDUk29N0uoXuwvhk4D3jNzPgkHwOuBI5MsjXJK/umtwMnJrkFOLGflyQtAala6COM5W9qaqqmp6cXuwxJWlaSbKqqqVFt/ka9JKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNTDRUkpyU5OYkm5OcPaI9Sc7p269LcvRA2weT3JnkhqExT0jyySS39O/79ctPTLIpyfX9+wmT3DdJ0o4mFipJVgDnAuuAtcBpSdYOdVsHrOlfZwLvHWj7MHDSiFWfDVxeVWuAy/t5gK8BL6mqpwJnAP+7zZ5IksY1ySuVY4DNVbWlqu4HLgTWD/VZD1xQnauAlUkOAKiqK4Cvj1jveuD8fvp84OS+/zVVdXu//EZgnyR7t9whSdLsJhkqBwK3Dcxv7ZfNt8+wJ1XVNoD+ff8RfU4Brqmq78yrYknSLtlzguvOiGW1gD7z22hyFPD7wAt20n4m3a02DjnkkF3ZlCRpyCSvVLYCBw/MHwTcvoA+w+6YuUXWv98505DkIOBi4PSqunXU4Kp6f1VNVdXUqlWrxtoRSdJ4JhkqVwNrkhyWZC/gVGDjUJ+NwOn9p8COA+6eubU1i410D+Lp3/8CIMlK4K+A11fVZxrtgyRpHiYWKlX1AHAWcBlwE3BRVd2YZEOSDX23S4AtwGbgPOA1M+OTfAy4EjgyydYkr+yb3g6cmOQW4MR+nn5bTwF+M8m1/WvU8xZJ0oSkapceYSxrU1NTNT09vdhlSNKykmRTVU2NavM36iVJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktTMnnN1SPKmUcur6q3ty5EkLWdzhgrw7YHpfYAXAzdNphxJ0nI25+2vqnrHwOttwPHAgeOsPMlJSW5OsjnJ2SPak+Scvv26JEcPtH0wyZ1Jbhga84Qkn0xyS/++30Db6/t13ZzkhePUKElqZyHPVB4DHD5XpyQrgHOBdcBa4LQka4e6rQPW9K8zgfcOtH0YOGnEqs8GLq+qNcDl/Tz9uk8FjurH/XFfg7Ss3HPX7fztJ97J5z97yWKXIs3bOM9Urgeqn10BrALGeZ5yDLC5qrb067kQWA/800Cf9cAFVVXAVUlWJjmgqrZV1RVJVo9Y73q6qyWA84FPA7/eL7+wqr4DfDHJ5r6GK8eoVVoyPnDeq5ne/jn2zqP47ZX7c+ARU4tdkjS2cZ6pvHhg+gHgjqp6YIxxBwK3DcxvBY4do8+BwLZZ1vukqtoGUFXbkuw/sK6rRqzreyQ5k+6qiEMOOWTuvZB2s2/f/y32yqN4kIf4zn3fWuxypHkZ55nKl6vqy8B9dFcqT04yznfjjFrdAvqMa6x1VdX7q2qqqqZWrVq1wE1Jk/OLP/sunnvoc3jFM1/HYU99zmKXI83LOLe/fhp4B/Bk4E7gULpPfx01x9CtwMED8wcBty+gz7A7Zm6RJTmgr2mh65KWnB88/Gn8/Ov+12KXIS3IOA/qfxs4DvhCVR0GPA/4zBjjrgbWJDksyV50D9E3DvXZCJzefwrsOODumVtbs9gInNFPnwH8xcDyU5PsneQwuof/nx2jTklSI+OEyner6i5gjyR7VNXfAj8216D+uctZwGV0VzYXVdWNSTYk2dB3uwTYAmwGzgNeMzM+ycfoHrIfmWRrklf2TW8HTkxyC3BiP09V3QhcRPdBgL8GXltVD46xf5KkRtJ98GqWDsmngJOB3wOeSHe7aaqqnjnx6iZsamqqpqenF7sMSVpWkmyqqpEfSxzn01+fA+4F/jvwcuAHgMe1K0+S9P1inFD5yap6CHiI7vdCSHLdRKuSJC1LOw2VJK+me8bxQ0Mhsi/jPaiXJD3CzHal8lHgUrpnKYN/t+ueqvr6RKuSJC1LOw2VqrobuBs4bfeVI0lazvxPuiRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzUw0VJKclOTmJJuTnD2iPUnO6duvS3L0XGOT/GiSK5Ncn+Qvkzy+X/6oJOf3y29K8vpJ7pskaUcTC5UkK4BzgXXAWuC0JGuHuq0D1vSvM4H3jjH2A8DZVfVU4GLgV/vlLwX27pc/HXhVktWT2TtJ0iiTvFI5BthcVVuq6n7gQmD9UJ/1wAXVuQpYmeSAOcYeCVzRT38SOKWfLuCxSfYEHg3cD/zLhPZNkjTCJEPlQOC2gfmt/bJx+sw29gbgp/vplwIH99MfB74NbAO+AvxhVX1913ZBkjQfkwyVjFhWY/aZbewvAK9NsgnYl+6KBLqrmweBJwOHAb+c5PAdikrOTDKdZHr79u1z74UkaWyTDJWtPHwVAXAQcPuYfXY6tqo+X1UvqKqnAx8Dbu37vAz466r6blXdCXwGmBouqqreX1VTVTW1atWqBe+cJGlHkwyVq4E1SQ5LshdwKrBxqM9G4PT+U2DHAXdX1bbZxibZv3/fA3gj8L5+XV8BTujX9VjgOODzE9w/SdKQiYVKVT0AnAVcBtwEXFRVNybZkGRD3+0SYAuwGTgPeM1sY/sxpyX5Al1g3A58qF9+LvA4umcuVwMfqqrrJrV/kqQdpWr4Mccjx9TUVE1PTy92GZK0rCTZVFU7PF4Af6NektSQoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjMTDZUkJyW5OcnmJGePaE+Sc/r265IcPdfYJD+a5Mok1yf5yySPH2h7Wt92Y9++zyT3T5L0vSYWKklWAOcC64C1wGlJ1g51Wwes6V9nAu8dY+wHgLOr6qnAxcCv9mP2BD4CbKiqo4Djge9Oav8kSTua5JXKMcDmqtpSVfcDFwLrh/qsBy6ozlXAyiQHzDH2SOCKfvqTwCn99AuA66rqcwBVdVdVPTipnZMk7WiSoXIgcNvA/NZ+2Th9Zht7A/DT/fRLgYP76SOASnJZkn9M8mujikpyZpLpJNPbt2+f5y5JkmYzyVDJiGU1Zp/Zxv4C8Nokm4B9gfv75XsCzwJe3r//hyTP22ElVe+vqqmqmlq1atXceyFJGtueE1z3Vh6+igA4CLh9zD577WxsVX2e7lYXSY4AfmpgXX9XVV/r2y4BjgYub7AvkqQxTPJK5WpgTZLDkuwFnApsHOqzETi9/xTYccDdVbVttrFJ9u/f9wDeCLyvX9dlwNOSPKZ/aP9c4J8muH+SpCETu1KpqgeSnEX3zX4F8MGqujHJhr79fcAlwIuAzcC9wCtmG9uv+rQkr+2nPwF8qB/zjSTvpAukAi6pqr+a1P5JknaUquHHHI8cU1NTNT09vdhlSNKykmRTVU2NavM36iVJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkppJVS12DYsmyXbgy4tcxhOBry1yDfNlzbvHcqt5udUL1rxQh1bVqlENj+hQWQqSTFfV1GLXMR/WvHsst5qXW71gzZPg7S9JUjOGiiSpGUNl8b1/sQtYAGvePZZbzcutXrDm5nymIklqxisVSVIzhookqRlDZQGSnJTk5iSbk5w9oj1Jzunbr0ty9EDbB5PcmeSGEeNe16/3xiR/0C87McmmJNf37ycM9P903//a/rX/Eql5dZL7Bup630D/p/f7srnfXpZIzS8fqPfaJA8l+bGlcJyT/OnAtr+U5NqBttf367o5yQvne5x3Z71L+VyepeYley7PUnOTc3nBqsrXPF7ACuBW4HBgL+BzwNqhPi8CLgUCHAf8w0Dbc4CjgRuGxvwk8Clg735+//79x4En99M/Anx1YMyngaklWPPq4b4DYz4L/ES/nUuBdUuh5qE+TwW2LJXjPDT+HcCb+um1/Tb2Bg7rt71i3OO8CPUu2XN5lpqX7Lm8s5pbnMu78vJKZf6OATZX1Zaquh+4EFg/1Gc9cEF1rgJWJjkAoKquAL4+Yr2vBt5eVd/p+93Zv19TVbf3fW4E9kmy91KueWf69T2+qq6s7gy/ADh5CdZ8GvCx2fZlN9cMdD/NAv9poLb1wIVV9Z2q+iKwGThmHsd5t9a7xM/lkTXP0m8pnMvj1LzQc3nBDJX5OxC4bWB+a79svn2GHQE8O8k/JPm7JM8Y0ecU4JqZb4i9D/WXsb85y+X3YtR8WJJr+uXPHtjG1jG3sZjH+T+z4z/ExTzOM54N3FFVt8yxrnGP8+6ud9BSO5dnq3mpnsuz1Txjoefygu3ZeoWPAKO+CMOfyx6nz7A9gf3oLn2fAVyU5PD+pyCSHAX8PvCCgTEvr6qvJtkX+DPg5+h+YlrUmoFtwCFVdVeSpwN/3tc/n20s1nE+Fri3qgbvXy/2cZ4x/FPnztY17jZ2d73dCpfmuTxjuOalfC7P2Nlx3pVzecG8Upm/rcDBA/MHAbcvoM+o9X6iv/z9LPAQ3R+OI8lBwMXA6VV168yAqvpq/34P8FG6y+xFr7m/HXNXX9smuvvJR/T9DxpzG7v9OPdOZegf6BI4ziTZE/gZ4E/HWNe4x3l317uUz+WRNS/xc3mnx7m3K+fywtUEH9h8P77oftLdQvdgdOah21FDfX6K733o9tmh9tXs+AB5A/DWfvoIukvhACv7bZwyoo4n9tOPAj4ObFgiNa/i4QfGhwNfBZ7Qz1/dr3/m4eaLlkLN/fwedP+4D19Kx7lffhLwd0PLjuJ7H9RvGTjucx7nRah3JUv0XJ6l5iV7Lu+s5hbn8q68dss34u+3F90nNb5A91PLb/TLNsx8gfoT49y+/XoGPm1B95PDNuC7/Rf9lf3yvYCPADcA/wic0C9/I/Bt4NqB1/7AY4FNwHV0Dz3fPXPyL4GaT+lr+ly//CUD65rq+98KvIf+G/pi19y3HQ9cNVTDoh/nvu3DjPgGAPxGv66bGfj00bjHeXfWyxI+l2epecmey3OcF8ezi+fyQl/+mRZJUjM+U5EkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiLaL+/+v4fJIPJLkhyZ8keX6SzyS5JckxSd6c5FcGxtyQZPUili3tlKEiLb6n0P1289OAfw+8DHgW8CvAGxaxLmneDBVp8X2xqq6vqofo/nzG5dX9qYvr6f7mk7RsGCrS4hv8P0UeGph/iO6PAD7A9/5b3Wc31SXNm6EiLX1fovvvZOn/7/LDFrUaaRaGirT0/RnwhCTX0v13yF9Y3HKknfOvFEuSmvFKRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIz/x9B7yeB/XFH8QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "nu lamb\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeAElEQVR4nO3df5RfdX3n8ecrQ0KihoaWoYYkkEETbEAM8WvIngq6MZZJqoRqtyf+WBTXjfEYV8u2FqQH+SFb1x9L5ZiSBZuaHKExq9LmUBCw2+CqzY8JJGiA6CSAGYgyokFi0tCE9/5xPwOX73wz8534ufOL1+Oce+Z7Pz/u/XzmTvKa++M7X0UEZmZmOYwZ6gGYmdno4VAxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYjbCSHqzpK6hHkeZpB2S3txH/SclfXnwRmRDxaFig0rSo5IOStov6WeS/k7SK4Z6XH2RNF1SSDou0/bGS9onaX6DuuslfT3Hfo5Fmuev0/F5XNL/ktTSX7+IODMiNvRR/z8i4oNZB2vDkkPFhsLbI+IVwBzgDcBfDqSzCiPmZ7c+jCLi34CvARfXtWsB3gWsHrzRNfS6dHzeArwb+K+/ycZyhbGNDCPmH6aNPhHxOHAncJakEyXdLqlb0i/T66k9bSVtkHSdpO8BB4DTJV0i6SFJz0jaLelDpfZvltQl6ROSnpS0V9JFkhZJ+pGkX0j6ZKn9GEmXSdol6SlJ6yT9dqr+Tvq6L/0G/x9Snw+k/f9S0l2STittLyR9RNKPgR83mP5q4J2SXlYqu4Di3+Sdfc2tXtrXq0vrX5H06dL62yRtS2dH35d09tGPygsi4mHg/1Ecn1dJ+r/pe/NzSbdImlTax6OSFqTXV0n6uqSvSvoV8P5U9tVU33Pm9z5JP0nbu6K0rQmSVqfv60PpGHaV6v8inUU9I2mnpLc0Mx8bHA4VGzKSpgGLgPspfhb/DjgNOBU4CHyprst/BpYCE4HHgCeBtwEnAJcA10uaU2r/SmA8MAW4ErgZeC/weuA84EpJp6e2/w24CHgTcArwS2BFqjs/fZ0UEa+IiH+VdBHwSeAdQCvFf75/Xzfei4BzgVn1c4+I7wN7U//y/G6NiMNNzK0pqc8q4EPA7wD/G1gv6fgm+s6i+D7dDwj4K4rvze8B04Cr+ui+GPg6MAm45Sht3gicQXFGdKWk30vlnwKmA6cDb6U4Zj1jOgNYDrwhIiZSBPGj/c3FBlFEePEyaAvFfwD7gX0UwfA3wIQG7WYDvyytbwCu6Wfb/wB8LL1+M0UwtaT1iUAA55babwUuSq8fAt5SqpsM/DtwHMV/cAEcV6q/E/gvpfUxFGdQp6X1AOb3M96/BO5Or09I/c9pcm5dpboAXl1a/wrw6fT6RuDaum3tBN50lP0E8CuKUN0FfBoY06DdRcD9dcd1QXp9FfCduvZXAV9Nr3u+n1NL9ZuBJen1buCCUt0He+YLvJoicBcAY4f659lL78XXOm0oXBQR3y4XpMtA1wPtwImpeKKklog4ktb31PVZSPFb7UyK/9RfBvyg1OSpUt+D6evPSvUHgZ6HBE4DbpP0XKn+CPC7R5nDacAXJX2hPCSKs6LHGo23gTXApyRNofiNuzMi7m9ybs06DXifpI+WysZRnHEczZyI6CwXSDoZuIHizGViGtMv+9hGf3MH+Gnp9QFeOBan1PV//nVEdEr6OEVInSnpLuDSiHiiif3ZIPDlLxsu/jvFpZBzI+IEXrjkpFKb5/+kdrp88w3g88DvRsQk4I669gOxB1gYEZNKy/go7vs0+lPee4AP1bWfEMVlrV7jbSQifkJx2ew9FJe+1hzj3A5QhE6PV9aN87q6cb4sIuov1fXnr9J8zk7H5719jAf6mXs/9gJTS+vTXrThiFsj4o0UgRnA//wN9mWZOVRsuJhIceawL90g/1Q/7ccBxwPdwOH0m/0f/Ab7Xwlc13OzXVKrpMWprht4juIaf7n95ZLOTO1/S9J/Oob9rqa4R/D7vHDvYaBz2wa8W1KLpHaK+0I9bgaWSTpXhZdL+kNJEwc4zomky5bpzOrPB9h/INZRfG9PTPta3lMh6QxJ81Pw/hvFz8yRo2zHhoBDxYaLvwYmAD8HNgLf6qtxRDxDcXN9HcVlmHcD63+D/X8x9b9b0jNpDOemfR0ArgO+l56gmhcRt1H8hrw2PeH0Q2DhMez36xSX+/45IvYe49w+Bryd4j7Veyjuv5C21UHxSPCX0rY6gfcfwzivpngE/Gngn4BvHsM2mnUN0AU8Anyb4nt0KNUdD3yG4ufkp8DJFA9M2DChCH9Il5kNX5I+THET/039NrYh5zMVMxtWJE2W9PvpvUNnUNxvu22ox2XN8dNfZjbcjKN4P00bxSW9tRSPntsI4MtfZmaWjS9/mZlZNi/py18nnXRSTJ8+faiHYWY2omzduvXnEdHaqO4lHSrTp0+no6NjqIdhZjaiSHrsaHW+/GVmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtlUGiqS2iXtlNQp6bIG9ZJ0Q6p/QNKcVD5e0mZJ2yXtkHR1qc9Vkh6XtC0ti1L5dEkHS+Urq5ybmZn1VtnHCUtqAVYAbwW6gC2S1kfEg6VmC4EZaTkXuDF9PQTMj4j9ksYC35V0Z0RsTP2uj4jPN9jtroiYXc2MzMysP1WeqcwFOiNid0Q8C6wFFte1WQysicJGYJKkyWl9f2ozNi1R4VjNzCyDKkNlCrCntN6VyppqI6lF0jbgSeCeiNhUarc8XS5bJenEUnmbpPsl3SvpvEaDkrRUUoekju7u7mObmZmZNVRlqKhBWf3ZxlHbRMSRdClrKjBX0lmp/kbgVcBsYC/whVS+Fzg1Is4BLgVulXRCr41H3BQRtYiotba2DmxGZmbWpypDpQuYVlqfCjwx0DYRsQ/YALSn9Z+lwHkOuJniMhsRcSginkqvtwK7gJmZ5mJmZk2oMlS2ADMktUkaBywB1te1WQ9cnJ4Cmwc8HRF7JbVKmgQgaQKwAHg4rU8u9f8j4IepvDU9HICk0ylu/u+ubHZmZtZLZU9/RcRhScuBu4AWYFVE7JC0LNWvBO4AFgGdwAHgktR9MrA6hcQYYF1E3J7qPitpNsVlskeBD6Xy84FrJB0GjgDLIuIXVc3PzMx6U8RL96GqWq0WHR0dQz0MM7MRRdLWiKg1qvM76s3MLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWTaWhIqld0k5JnZIua1AvSTek+gckzUnl4yVtlrRd0g5JV5f6XCXpcUnb0rKoVHd52tZOSRdUOTczM+vtuKo2LKkFWAG8FegCtkhaHxEPlpotBGak5VzgxvT1EDA/IvZLGgt8V9KdEbEx9bs+Ij5ft79ZwBLgTOAU4NuSZkbEkarmaGZmL1blmcpcoDMidkfEs8BaYHFdm8XAmihsBCZJmpzW96c2Y9MS/exvMbA2Ig5FxCNAZxqDmZkNkipDZQqwp7TelcqaaiOpRdI24EngnojYVGq3PF0uWyXpxAHsD0lLJXVI6uju7j6GaZmZ2dFUGSpqUFZ/tnHUNhFxJCJmA1OBuZLOSvU3Aq8CZgN7gS8MYH9ExE0RUYuIWmtra39zMDOzAagyVLqAaaX1qcATA20TEfuADUB7Wv9ZCpzngJt54RJXM/szM7MKVRkqW4AZktokjaO4ib6+rs164OL0FNg84OmI2CupVdIkAEkTgAXAw2l9cqn/HwE/LG1riaTjJbVR3PzfXNHczMysgcqe/oqIw5KWA3cBLcCqiNghaVmqXwncASyiuKl+ALgkdZ8MrE5PkI0B1kXE7anus5JmU1zaehT4UNreDknrgAeBw8BH/OSXmdngUkR/D1WNXrVaLTo6OoZ6GGZmI4qkrRFRa1Tnd9SbmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLJtKQ0VSu6SdkjolXdagXpJuSPUPSJqTysdL2ixpu6Qdkq5u0PfPJIWkk9L6dEkHJW1Ly8oq52ZmZr0dV9WGJbUAK4C3Al3AFknrI+LBUrOFwIy0nAvcmL4eAuZHxH5JY4HvSrozIjambU9L2/1J3W53RcTsquZkZmZ9q/JMZS7QGRG7I+JZYC2wuK7NYmBNFDYCkyRNTuv7U5uxaYlSv+uBT9SVmZnZEKsyVKYAe0rrXamsqTaSWiRtA54E7omITan8QuDxiNjeYJ9tku6XdK+k8xoNStJSSR2SOrq7u49lXmZmdhRVhooalNWfWRy1TUQcSZeypgJzJZ0l6WXAFcCVDfrtBU6NiHOAS4FbJZ3Qa+MRN0VELSJqra2tzc/GzMz6VWWodAHTSutTgScG2iYi9gEbgHbgVUAbsF3So6n9fZJeGRGHIuKp1GcrsAuYmWkuZmbWhCpDZQswQ1KbpHHAEmB9XZv1wMXpKbB5wNMRsVdSq6RJAJImAAuAhyPiBxFxckRMj4jpFKE0JyJ+mvq0pD6nU9z8313h/MzMrE5lT39FxGFJy4G7gBZgVUTskLQs1a8E7gAWAZ3AAeCS1H0ysDqFxBhgXUTc3s8uzweukXQYOAIsi4hf5J6XmZkdnSJeug9Q1Wq16OjoGOphmJmNKJK2RkStUZ3fUW9mZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWTdN/+l7SKyk+dz6ALRHx08pGZWZmI1JTZyqSPghsBt4B/DGwUdIHqhyYmZmNPM2eqfw5cE7Px/VK+h3g+8CqqgZmZmYjT7P3VLqAZ0rrzwB78g/HzMxGsj7PVCRdml4+DmyS9I8U91QWU1wOMzMze15/l78mpq+70tLjH6sZjpmZjWR9hkpEXD1YAzEzs5Gv2ae/apJuk3SfpAd6lib6tUvaKalT0mUN6iXphlT/gKQ5qXy8pM2StkvaIalXuEn6M0kh6aRS2eVpWzslXdDM3MzMLJ9mn/66heIJsB8AzzXTQVILsAJ4K8WN/i2S1kfEg6VmC4EZaTkXuDF9PQTMj4j9ksYC35V0Z0RsTNuelrb7k9L+ZgFLgDOBU4BvS5oZEUeanKPZsPDMU0/Qce9aJk99Da+Zu2ioh2M2IM2GSndErB/gtucCnRGxG0DSWoob/OVQWQysiYigeO/LJEmTI2IvsD+1GZuWKPW7HvgEL763sxhYGxGHgEckdaYx/OsAx202pL5884fp6N7O8RrLtZNOZsrM2lAPyaxpzYbKpyR9GfhnirMIACLim330mcKLHzvuojgL6a/NFGBvOtPZCrwaWBERmwAkXQg8HhHbJdVva2ODbb2IpKXAUoBTTz21j+GbDY1fP7ufcRrLEZ7j0MH9/XcwG0aaDZVLgNdQnDH0XP4KoK9QUYOyaLZNumw1W9Ik4DZJZwG7gSuAPzjG/RERNwE3AdRqtV71ZkPtg++9nm/90xeZPvW1tL32/KEejtmANBsqr4uI1w5w213AtNL6VOCJgbaJiH2SNgDtwF1AG9BzljIVuE/S3Cb3ZzbsvfL0s3n/R/92qIdhdkyafUf9xnQjfCC2ADMktUkaR3ETvf6+zHrg4vQU2Dzg6YjYK6k1naEgaQKwAHg4In4QESdHxPSImE4RJHPSH7dcDyyRdLykNoqb/36DppnZIGr2TOWNwPskPUJxT0VARMTZR+sQEYclLac4u2gBVkXEDknLUv1K4A5gEdAJHKC4zAYwGVid7quMAdZFxO19DTBtex3FgwCHgY/4yS8zs8Gl4sGrfhpJpzUqj4jHso9oENVqtejo6BjqYZiZjSiStkZEw8cSmzpT6QkPSScD4zOOzczMRpFm31F/oaQfA48A9wKPAndWOC4zMxuBmr1Rfy0wD/hRRLQBbwG+V9mozMxsRGo2VP49fUDXGEljIuJfgNnVDcvMzEaiZp/+2ifpFcB3gFskPUnxhJWZmdnzmj1TWQwcBP4U+BbFZ6u8vapBmZnZyNTs01+/Lq2urmgsZmY2wvX3ccLP0ODvZ/HCmx9PqGRUZmY2IvX3yY8T+6o3MzMra/aeipmZWb8cKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsqk0VCS1S9opqVPSZQ3qJemGVP+ApDmpfLykzZK2S9oh6epSn2tT222S7pZ0SiqfLulgKt8maWWVczMzs94qCxVJLcAKYCEwC3iXpFl1zRYCM9KyFLgxlR8C5kfE6yg+YbJd0rxU97mIODsiZgO3A1eWtrcrImanZVkF0zIzsz5UeaYyF+iMiN0R8SywluLDvsoWA2uisBGYJGlyWt+f2oxNSwBExK9K/V9O4z/Nb2ZmQ6DKUJkC7Cmtd6WyptpIapG0DXgSuCciNvU0knSdpD3Ae3jxmUqbpPsl3SvpvEaDkrRUUoekju7u7mOcmpmZNVJlqKhBWf1ZxVHbRMSRdIlrKjBX0lnPN4i4IiKmAbcAy1PxXuDUiDgHuBS4VVKvDxGLiJsiohYRtdbW1oHOyczM+lBlqHQB00rrU4EnBtomIvYBG4D2Bvu4FXhnancoIp5Kr7cCu4CZxzx6MzMbsCpDZQswQ1KbpHHAEmB9XZv1wMXpKbB5wNMRsVdSq6RJAJImAAuAh9P6jFL/C0vlrenhACSdTnHzf3dlszMzs176/Djh30REHJa0HLgLaAFWRcQOSctS/UrgDmAR0AkcAC5J3ScDq1NIjAHWRcTtqe4zks4AngMeA3qe8jofuEbSYeAIsCwiflHV/MzMrDdFvHQfnqrVatHR0THUwzAzG1EkbY2IWqM6v6PezMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtlUGiqS2iXtlNQp6bIG9ZJ0Q6p/QNKcVD5e0mZJ2yXtkHR1qc+1qe02SXdLOqVUd3na1k5JF1Q5NzMz662yUJHUAqwAFgKzgHdJmlXXbCEwIy1LgRtT+SFgfkS8DpgNtEual+o+FxFnR8Rs4HbgyrS/WcAS4EygHfibNAYzMxskVZ6pzAU6I2J3RDwLrAUW17VZDKyJwkZgkqTJaX1/ajM2LQEQEb8q9X95T3na1tqIOBQRjwCdaQxmZjZIqgyVKcCe0npXKmuqjaQWSduAJ4F7ImJTTyNJ10naA7yHdKbS5P6QtFRSh6SO7u7uY5mXmZkdRZWhogZl0WybiDiSLnFNBeZKOuv5BhFXRMQ04BZg+QD2R0TcFBG1iKi1trb2PwszM2talaHSBUwrrU8Fnhhom4jYB2yguE9S71bgnQPYn5mZVajKUNkCzJDUJmkcxU309XVt1gMXp6fA5gFPR8ReSa2SJgFImgAsAB5O6zNK/S/sKU/bWiLpeEltFDf/N1c0NzMza+C4qjYcEYclLQfuAlqAVRGxQ9KyVL8SuANYRHFT/QBwSeo+GVidnt4aA6yLiNtT3WcknQE8BzwG9Gxvh6R1wIPAYeAjEXGkqvmZmVlviuh12+Elo1arRUdHx1APw8xsRJG0NSJqjer8jnozM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZVNpqEhql7RTUqekyxrUS9INqf4BSXNS+XhJmyVtl7RD0tWlPp+T9HBqf5ukSal8uqSDkralZWWVczMzs94qCxVJLcAKYCEwC3iXpFl1zRYCM9KyFLgxlR8C5kfE64DZQLukeanuHuCsiDgb+BFweWl7uyJidlqWVTAtMzPrQ5VnKnOBzojYHRHPAmuBxXVtFgNrorARmCRpclrfn9qMTUsARMTdEXE41W0EplY4BzMzG4AqQ2UKsKe03pXKmmojqUXSNuBJ4J6I2NRgHx8A7iytt0m6X9K9ks5rNChJSyV1SOro7u4e0ITMzKxvVYaKGpRFs20i4khEzKY4E5kr6awXdZSuAA4Dt6SivcCpEXEOcClwq6QTem084qaIqEVErbW1dSDzMTOzflQZKl3AtNL6VOCJgbaJiH3ABqC9p0zS+4C3Ae+JiJ4QOhQRT6XXW4FdwMwM8zAzsyZVGSpbgBmS2iSNA5YA6+varAcuTk+BzQOejoi9klpLT3VNABYAD6f1duAvgAsj4kDPhlKflvT6dIqb/7srnJ+ZmdU5rqoNR8RhScuBu4AWYFVE7JC0LNWvBO4AFgGdwAHgktR9MrA6hcQYYF1E3J7qvgQcD9wjCWBjetLrfOAaSYeBI8CyiPhFVfMzM7PelK4evSTVarXo6OgY6mGYmY0okrZGRK1Rnd9Rb2Zm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy+Yl/SFdkrqBx4Z6HBU5Cfj5UA+iQqN9fjD65+j5jVynRURro4qXdKiMZpI6jvbJbKPBaJ8fjP45en6jky9/mZlZNg4VMzPLxqEyet001AOo2GifH4z+OXp+o5DvqZiZWTY+UzEzs2wcKmZmlo1DZZiS1C5pp6ROSZc1qJekG1L9A5LmpPJpkv5F0kOSdkj6WF2/j6bt7pD02VL55WlbOyVdMJrmJ2m6pIOStqVlZdXzq2qOkr5WmsejkraV6kb8MTza/EbZMZwtaWOaR4ekuaW6QT2GlYgIL8NsAVqAXcDpwDhgOzCrrs0i4E5AwDxgUyqfDMxJrycCP+rpC/xH4NvA8Wn95PR1VtrH8UBb2nfLKJrfdOCHo+EY1vX/AnDlaDqGfcxv1BxD4G5gYan/hqE4hlUtPlMZnuYCnRGxOyKeBdYCi+vaLAbWRGEjMEnS5IjYGxH3AUTEM8BDwJTU58PAZyLiUKp/srSttRFxKCIeATrTGEbL/IZCVXMEit+QgT8B/r60rdFwDIGG8xsKVc0xgBPS698CnihtazCPYSUcKsPTFGBPab2Lun90zbSRNB04B9iUimYC50naJOleSW8YwP5yGuz5AbRJuj+Vn5dhDv2pao49zgN+FhE/HsD+chrs+cHoOYYfBz4naQ/weeDyAexv2DtuqAdgDalBWf2z3322kfQK4BvAxyPiV6n4OOBEitP0NwDrJJ3e5P5yGuz57QVOjYinJL0e+AdJZ5b6VaGqOfZ4Fy/+LX60HMMe9fMbTcfww8CfRsQ3JP0J8LfAgib3N+z5TGV46gKmldan8sIpcr9tJI2l+EG+JSK+Wdfnm+lUfTPwHMUfvWtmfzkN6vzS5YSnACJiK8W16pkZ59NIVXNE0nHAO4CvDXB/OQ3q/EbZMXwf0LP+f3jhEtdgH8NqDPVNHS+9F4rfuHdT3KzruUF4Zl2bP+TFNwg3p3IBa4C/brDdZcA16fVMilNtAWfy4huEu6n2Ju9gz6+1Zz4UN10fB357JB7DVN8O3FtXNiqOYR/zGzXHkOL+ypvT67cAW4fiGFb2fRvqAXg5yoEpngr5EcVvZFeksmXAsvRawIpU/wOglsrfSHHK/ACwLS2LUt044KvAD4H7gPml/V2RtrWT9GTKaJkf8E5gR/oHex/w9pF6DFP9V3q2Ube/EX8Mjza/0XQMU93WNJdNwOuH6hhWsfjPtJiZWTa+p2JmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhWzIZY+K+QhSTenz964W9IESRsk1VKbkyQ9OsRDNeuXQ8VseJgBrIiIM4F9FO8gNxtxHCpmw8MjEbEtvd5K8aFUZiOOQ8VseDhUen2E4o8ZHuaFf6PjB31EZsfAoWI2fD0KvD69/uMhHIdZ0xwqZsPX54EPS/o+xefemA17/ivFZmaWjc9UzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy+b/A1bXhiys+kr9AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "nu rho\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAdZUlEQVR4nO3df5RfdX3n8ecrk4REBYcuQw1JIIkGTgNCiF9D9ihoYyyTVA2tux5QF6XrhniMq+t2LUgPAsrW+ovKMZKFNpocwZj1R5tDoYC7DV1r82MiCTpAdBLADIwyggFi0tCE9/5xPyOX73yT+U783PnF63HOPXPv58e9n8/cybzm/piMIgIzM7Mcxg33AMzMbOxwqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxG2UkvVlS93CPo0xSp6Q3H6X+E5L+euhGZMPFoWJDStIjkg5I2ifpF5K+KukVwz2uo5E0Q1JIGp9pf5Mk7ZW0sEHdDZK+leM4xyLN89fp/Dwm6YuSWgbqFxFnRsTGo9T/z4j4QNbB2ojkULHh8PaIeAUwD3g98OeD6azCqPnarQ+jiPhX4JvApXXtWoBLgDVDN7qGzknn5y3Au4H/8tvsLFcY2+gwav5h2tgTEY8BdwJnSTpR0u2SeiX9Kq1P62sraaOk6yX9M7AfmCXpMkkPSnpW0m5Jl5fav1lSt6SPS3pCUo+kiyQtkfQTSU9J+kSp/ThJV0jaJelJSesl/U6q/qf0cW/6Cf7fpz5/ko7/K0l3STqttL+Q9CFJPwV+2mD6a4B3SnpZqexCin+Tdx5tbvXSsV5T2v6apE+Xtt8maXu6OvqBpLOPfFZeEBEPAf+P4vy8WtL/TZ+bX0q6VVJr6RiPSFqU1q+R9C1JX5f0DPD+VPb1VN935fc+ST9L+7uqtK/Jktakz+uD6Rx2l+r/LF1FPStpp6S3NDMfGxoOFRs2kqYDS4D7KL4WvwqcBpwKHAC+XNflPwHLgOOBR4EngLcBJwCXATdImldq/ypgEjAVuBq4BXgv8DrgfOBqSbNS2/8KXAS8CTgF+BWwMtVdkD62RsQrIuJfJF0EfAL4Y6CN4pvvN+rGexFwHjCnfu4R8QOgJ/Uvz++2iDjUxNyakvqsBi4H/h3wv4ANko5rou8cis/TfYCAv6D43PweMB245ijdlwLfAlqBW4/Q5o3AGRRXRFdL+r1U/klgBjALeCvFOesb0xnACuD1EXE8RRA/MtBcbAhFhBcvQ7ZQfAPYB+ylCIavAJMbtJsL/Kq0vRG4boB9/y3wkbT+ZopgaknbxwMBnFdqvw24KK0/CLylVDcF+DdgPMU3uADGl+rvBP5zaXscxRXUaWk7gIUDjPfPgbvT+gmp/7lNzq27VBfAa0rbXwM+ndZvAj5Vt6+dwJuOcJwAnqEI1V3Ap4FxDdpdBNxXd14XpfVrgH+qa38N8PW03vf5nFaq3wJcnNZ3AxeW6j7QN1/gNRSBuwiYMNxfz176L77XacPhooj4Xrkg3Qa6AWgHTkzFx0tqiYjDaXtPXZ/FFD/Vnk7xTf1lwI9KTZ4s9T2QPv6iVH8A6HtJ4DTgu5KeL9UfBn73CHM4DfiSpC+Uh0RxVfRoo/E2sBb4pKSpFD9xd0XEfU3OrVmnAe+T9OFS2USKK44jmRcRXeUCSScDN1JcuRyfxvSro+xjoLkD/Ly0vp8XzsUpdf1/sx4RXZI+ShFSZ0q6C/hYRDzexPFsCPj2l40U/53iVsh5EXECL9xyUqnNb/5L7XT75tvA54HfjYhW4I669oOxB1gcEa2lZVIUz30a/Vfee4DL69pPjuK2Vr/xNhIRP6O4bfYeiltfa49xbvspQqfPq+rGeX3dOF8WEfW36gbyF2k+Z6fz896jjAcGmPsAeoBppe3pL9pxxG0R8UaKwAzgL3+LY1lmDhUbKY6nuHLYmx6Qf3KA9hOB44Be4FD6yf4PfovjrwKu73vYLqlN0tJU1ws8T3GPv9z+SklnpvavlPQfj+G4ayieEbyBF549DHZu24F3S2qR1E7xXKjPLcBySeep8HJJfyjp+EGO83jSbct0ZfU/Btl/MNZTfG5PTMda0Vch6QxJC1Pw/ivF18zhI+zHhoFDxUaKvwImA78ENgH/cLTGEfEsxcP19RS3Yd4NbPgtjv+l1P9uSc+mMZyXjrUfuB745/QG1YKI+C7FT8jr0htOPwYWH8Nxv0Vxu+//RETPMc7tI8DbKZ5TvYfi+QtpXx0UrwR/Oe2rC3j/MYzzWopXwJ8G/h74zjHso1nXAd3Aw8D3KD5HB1PdccBnKL5Ofg6cTPHChI0QivAf6TKzkUvSByke4r9pwMY27HylYmYjiqQpkt6QfnfoDIrnbd8d7nFZc/z2l5mNNBMpfp9mJsUtvXUUr57bKODbX2Zmlo1vf5mZWTYv6dtfJ510UsyYMWO4h2FmNqps27btlxHR1qjuJR0qM2bMoKOjY7iHYWY2qkh69Eh1vv1lZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZVBoqktol7ZTUJemKBvWSdGOqv1/SvFQ+SdIWSTskdUq6ttTnGkmPSdqeliWpfIakA6XyVVXOzczM+qvszwlLagFWAm8FuoGtkjZExAOlZouB2Wk5D7gpfTwILIyIfZImAN+XdGdEbEr9boiIzzc47K6ImFvNjMzMbCBVXqnMB7oiYndEPAesA5bWtVkKrI3CJqBV0pS0vS+1mZCWqHCsZmaWQZWhMhXYU9ruTmVNtZHUImk78ARwT0RsLrVbkW6XrZZ0Yql8pqT7JN0r6fxGg5K0TFKHpI7e3t5jm5mZmTVUZaioQVn91cYR20TE4XQraxowX9JZqf4m4NXAXKAH+EIq7wFOjYhzgY8Bt0k6od/OI26OiFpE1Nra2gY3IzMzO6oqQ6UbmF7angY8Ptg2EbEX2Ai0p+1fpMB5HriF4jYbEXEwIp5M69uAXcDpmeZiZmZNqDJUtgKzJc2UNBG4GNhQ12YDcGl6C2wB8HRE9Ehqk9QKIGkysAh4KG1PKfX/I+DHqbwtvRyApFkUD/93VzY7MzPrp7K3vyLikKQVwF1AC7A6IjolLU/1q4A7gCVAF7AfuCx1nwKsSSExDlgfEbenus9Kmktxm+wR4PJUfgFwnaRDwGFgeUQ8VdX8zMysP0W8dF+qqtVq0dHRMdzDMDMbVSRti4haozr/Rr2ZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsqk0VCS1S9opqUvSFQ3qJenGVH+/pHmpfJKkLZJ2SOqUdG2pzzWSHpO0PS1LSnVXpn3tlHRhlXMzM7P+xle1Y0ktwErgrUA3sFXShoh4oNRsMTA7LecBN6WPB4GFEbFP0gTg+5LujIhNqd8NEfH5uuPNAS4GzgROAb4n6fSIOFzVHM3M7MWqvFKZD3RFxO6IeA5YByyta7MUWBuFTUCrpClpe19qMyEtMcDxlgLrIuJgRDwMdKUxmJnZEKkyVKYCe0rb3amsqTaSWiRtB54A7omIzaV2K9LtstWSThzE8ZC0TFKHpI7e3t5jmJaZmR1JlaGiBmX1VxtHbBMRhyNiLjANmC/prFR/E/BqYC7QA3xhEMcjIm6OiFpE1Nra2gaag5mZDUKVodINTC9tTwMeH2ybiNgLbATa0/YvUuA8D9zCC7e4mjmemZlVqMpQ2QrMljRT0kSKh+gb6tpsAC5Nb4EtAJ6OiB5JbZJaASRNBhYBD6XtKaX+fwT8uLSviyUdJ2kmxcP/LRXNzczMGqjs7a+IOCRpBXAX0AKsjohOSctT/SrgDmAJxUP1/cBlqfsUYE16g2wcsD4ibk91n5U0l+LW1iPA5Wl/nZLWAw8Ah4AP+c0vM7OhpYiBXqoau2q1WnR0dAz3MMzMRhVJ2yKi1qjOv1FvZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wqDRVJ7ZJ2SuqSdEWDekm6MdXfL2leKp8kaYukHZI6JV3boO+fSgpJJ6XtGZIOSNqellVVzs3MzPobX9WOJbUAK4G3At3AVkkbIuKBUrPFwOy0nAfclD4eBBZGxD5JE4DvS7ozIjalfU9P+/1Z3WF3RcTcquZkZmZHV+WVynygKyJ2R8RzwDpgaV2bpcDaKGwCWiVNSdv7UpsJaYlSvxuAj9eVmZnZMKsyVKYCe0rb3amsqTaSWiRtB54A7omIzan8HcBjEbGjwTFnSrpP0r2Szm80KEnLJHVI6ujt7T2WeZmZ2RFUGSpqUFZ/ZXHENhFxON3KmgbMl3SWpJcBVwFXN+jXA5waEecCHwNuk3RCv51H3BwRtYiotbW1NT8bMzMbUJWh0g1ML21PAx4fbJuI2AtsBNqBVwMzgR2SHkntfyjpVRFxMCKeTH22AbuA0zPNxczMmlBlqGwFZkuaKWkicDGwoa7NBuDS9BbYAuDpiOiR1CapFUDSZGAR8FBE/CgiTo6IGRExgyKU5kXEz1OfltRnFsXD/90Vzs/MzOpU9vZXRByStAK4C2gBVkdEp6TlqX4VcAewBOgC9gOXpe5TgDUpJMYB6yPi9gEOeQFwnaRDwGFgeUQ8lXteZmZ2ZIp46b5AVavVoqOjY7iHYWY2qkjaFhG1RnX+jXozM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk0FSqSXinpBkkdafmCpFdWPTgzMxtdmr1SWQ08A7wrLc8AX61qUGZmNjo1GyqvjohPRsTutFwLzBqok6R2STsldUm6okG9JN2Y6u+XNC+VT5K0RdIOSZ2Srm3Q908lhaSTSmVXpn3tlHRhk3MzM7NMmg2VA5Le2Lch6Q3AgaN1kNQCrAQWA3OASyTNqWu2GJidlmXATan8ILAwIs4B5gLtkhaU9j0deCvws1LZHOBi4EygHfhKGoPZqPLsk4/zj9/5Ig9tuWO4h2I2aOObbLccWJueowh4Cnj/AH3mA10RsRtA0jpgKfBAqc1SYG1EBLBJUqukKRHRA+xLbSakJUr9bgA+Dvxd3b7WRcRB4GFJXWkM/9LkHM1GhL++5YN09O7gOE3gU60nM/X02nAPyaxpTYVKROwAzpF0Qtp+poluU4E9pe1u4Lwm2kwFetJVxjbgNcDKiNgMIOkdwGMRsUNS/b42NdjXi0haRnFVxKmnntrENMyG1q+f28dETeAwz3PwwL6BO5iNIE2FiqTjgHcCM4Dxfd/MI+K6o3VrUBbNtomIw8BcSa3AdyWdBewGrgL+4BiPR0TcDNwMUKvV+tWbDbcPvPcG/uHvv8SMaa9l5msvGO7hmA1Ks7e//g54muLK4WCTfbqB6aXtacDjg20TEXslbaR4TnIXMBPou0qZBvxQ0vwmj2c24r1q1tm8/8N/M9zDMDsmzYbKtIhoH+S+twKzJc0EHqN4iP7uujYbgBXpect5wNMR0SOpDfi3FCiTgUXAX0bEj4CT+zpLegSoRcQvJW0AbpP0ReAUiof/WwY5ZjMz+y00Gyo/kPTa9E29KRFxSNIKiquLFmB1RHRKWp7qVwF3AEuALmA/cFnqPgVYk56rjAPWR8TtAxyvU9J6ihcBDgEfSrfQzMxsiKh48eoIldKPKJ5VTAZOpXimcTCVRUScPRSDrEqtVouOjo7hHoaZ2agiaVtENHwtcaArlbdRXCn0vYVlZmZ2REcNlYh4FEDSN4CTI2LrkIzKzMxGpWafqfw+cLmkR4FfM0Zuf5mZWV7NhsriSkdhZmZjQrO/Uf9o1QMxM7PRz3+ky8zMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wqDRVJ7ZJ2SuqSdEWDekm6MdXfL2leKp8kaYukHZI6JV1b6vOp1Ha7pLslnZLKZ0g6kMq3S1pV5dzMzKy/ykJFUguwkuKvRs4BLpE0p67ZYmB2WpYBN6Xyg8DCiDgHmAu0S1qQ6j4XEWdHxFzgduDq0v52RcTctCyvYFpmZnYUVV6pzAe6ImJ3RDwHrAOW1rVZCqyNwiagVdKUtL0vtZmQlgCIiGdK/V/eV25mZsOvylCZCuwpbXensqbaSGqRtB14ArgnIjb3NZJ0vaQ9wHt48ZXKTEn3SbpX0vmNBiVpmaQOSR29vb3HODUzM2ukylBRg7L6q4ojtomIw+kW1zRgvqSzftMg4qqImA7cCqxIxT3AqRFxLvAx4DZJJ/TbecTNEVGLiFpbW9tg52RmZkdRZah0A9NL29OAxwfbJiL2AhuB9gbHuA14Z2p3MCKeTOvbgF3A6cc8ejMzG7QqQ2UrMFvSTEkTgYuBDXVtNgCXprfAFgBPR0SPpDZJrQCSJgOLgIfS9uxS/3eUytvSywFImkXx8H93ZbMzM7N+xle144g4JGkFcBfQAqyOiE5Jy1P9KuAOYAnQBewHLkvdpwBrUkiMA9ZHxO2p7jOSzgCeBx4F+t7yugC4TtIh4DCwPCKeqmp+ZmbWnyJeui9P1Wq16OjoGO5hmJmNKpK2RUStUZ1/o97MzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2VQaKpLaJe2U1CXpigb1knRjqr9f0rxUPknSFkk7JHVKurbU51Op7XZJd0s6pVR3ZdrXTkkXVjk3MzPrr7JQkdQCrAQWA3OASyTNqWu2GJidlmXATan8ILAwIs4B5gLtkhakus9FxNkRMRe4Hbg6HW8OcDFwJtAOfCWNwczMhkiVVyrzga6I2B0RzwHrgKV1bZYCa6OwCWiVNCVt70ttJqQlACLimVL/l/eVp32ti4iDEfEw0JXGYGZmQ6TKUJkK7Cltd6eyptpIapG0HXgCuCciNvc1knS9pD3Ae0hXKk0eD0nLJHVI6ujt7T2WeZmZ2RFUGSpqUBbNtomIw+kW1zRgvqSzftMg4qqImA7cCqwYxPGIiJsjohYRtba2toFnYWZmTasyVLqB6aXtacDjg20TEXuBjRTPSerdBrxzEMczM7MKVRkqW4HZkmZKmkjxEH1DXZsNwKXpLbAFwNMR0SOpTVIrgKTJwCLgobQ9u9T/HX3laV8XSzpO0kyKh/9bKpqbmZk1ML6qHUfEIUkrgLuAFmB1RHRKWp7qVwF3AEsoHqrvBy5L3acAa9LbW+OA9RFxe6r7jKQzgOeBR4G+/XVKWg88ABwCPhQRh6uan5mZ9aeIfo8dXjJqtVp0dHQM9zDMzEYVSdsiotaozr9Rb2Zm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsKg0VSe2SdkrqknRFg3pJujHV3y9pXiqfJGmLpB2SOiVdW+rzOUkPpfbfldSaymdIOiBpe1pWVTk3MzPrr7JQkdQCrAQWA3OASyTNqWu2GJidlmXATan8ILAwIs4B5gLtkhakunuAsyLibOAnwJWl/e2KiLlpWV7BtMzM7CiqvFKZD3RFxO6IeA5YByyta7MUWBuFTUCrpClpe19qMyEtARARd0fEoVS3CZhW4RzMzGwQqgyVqcCe0nZ3KmuqjaQWSduBJ4B7ImJzg2P8CXBnaXumpPsk3Svp/EaDkrRMUoekjt7e3kFNyMzMjq7KUFGDsmi2TUQcjoi5FFci8yWd9aKO0lXAIeDWVNQDnBoR5wIfA26TdEK/nUfcHBG1iKi1tbUNZj5mZjaAKkOlG5he2p4GPD7YNhGxF9gItPeVSXof8DbgPRHRF0IHI+LJtL4N2AWcnmEeZmbWpCpDZSswW9JMSROBi4ENdW02AJemt8AWAE9HRI+kttJbXZOBRcBDabsd+DPgHRGxv29HqU9LWp9F8fB/d4XzMzOzOuOr2nFEHJK0ArgLaAFWR0SnpOWpfhVwB7AE6AL2A5el7lOANSkkxgHrI+L2VPdl4DjgHkkAm9KbXhcA10k6BBwGlkfEU1XNz8zM+lO6e/SSVKvVoqOjY7iHYWY2qkjaFhG1RnX+jXozM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2L+k/0iWpF3h0uMdRkZOAXw73ICo01ucHY3+Ont/odVpEtDWqeEmHylgmqeNIf5ltLBjr84OxP0fPb2zy7S8zM8vGoWJmZtk4VMaum4d7ABUb6/ODsT9Hz28M8jMVMzPLxlcqZmaWjUPFzMyycaiMUJLaJe2U1CXpigb1knRjqr9f0rxUPl3SP0p6UFKnpI/U9ftw2m+npM+Wyq9M+9op6cKxND9JMyQdkLQ9Lauqnl9Vc5T0zdI8HpG0vVQ36s/hkeY3xs7hXEmb0jw6JM0v1Q3pOaxERHgZYQvQAuwCZgETgR3AnLo2S4A7AQELgM2pfAowL60fD/ykry/w+8D3gOPS9snp45x0jOOAmenYLWNofjOAH4+Fc1jX/wvA1WPpHB5lfmPmHAJ3A4tL/TcOxzmsavGVysg0H+iKiN0R8RywDlha12YpsDYKm4BWSVMioicifggQEc8CDwJTU58PAp+JiIOp/onSvtZFxMGIeBjoSmMYK/MbDlXNESh+QgbeBXyjtK+xcA6BhvMbDlXNMYAT0vorgcdL+xrKc1gJh8rINBXYU9rupu4fXTNtJM0AzgU2p6LTgfMlbZZ0r6TXD+J4OQ31/ABmSrovlZ+fYQ4DqWqOfc4HfhERPx3E8XIa6vnB2DmHHwU+J2kP8HngykEcb8QbP9wDsIbUoKz+3e+jtpH0CuDbwEcj4plUPB44keIy/fXAekmzmjxeTkM9vx7g1Ih4UtLrgL+VdGapXxWqmmOfS3jxT/Fj5Rz2qZ/fWDqHHwT+W0R8W9K7gL8BFjV5vBHPVyojUzcwvbQ9jRcukQdsI2kCxRfyrRHxnbo+30mX6luA5yn+07tmjpfTkM4v3U54EiAitlHcqz4943waqWqOSBoP/DHwzUEeL6chnd8YO4fvA/q2/zcv3OIa6nNYjeF+qOOl/0LxE/duiod1fQ8Iz6xr84e8+AHhllQuYC3wVw32uxy4Lq2fTnGpLeBMXvyAcDfVPuQd6vm19c2H4qHrY8DvjMZzmOrbgXvrysbEOTzK/MbMOaR4vvLmtP4WYNtwnMPKPm/DPQAvRzgxxVshP6H4ieyqVLYcWJ7WBaxM9T8Caqn8jRSXzPcD29OyJNVNBL4O/Bj4IbCwdLyr0r52kt5MGSvzA94JdKZ/sD8E3j5az2Gq/1rfPuqON+rP4ZHmN5bOYarbluayGXjdcJ3DKhb/Ny1mZpaNn6mYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFbJilvxXyoKRb0t/euFvSZEkbJdVSm5MkPTLMQzUbkEPFbGSYDayMiDOBvRS/QW426jhUzEaGhyNie1rfRvFHqcxGHYeK2chwsLR+mOI/MzzEC/9GJw35iMyOgUPFbOR6BHhdWv8PwzgOs6Y5VMxGrs8DH5T0A4q/e2M24vl/KTYzs2x8pWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2/x/p6FSWBKYp/wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "nu kappa\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeyUlEQVR4nO3df5hV1X3v8fdHRtDcaDFhbAkQwQo+hWgNHIXehgSNVjBafEyjECrWm16CrSa5vU/u1aTG1CaNSeNNy9VqtaLSKGiiMfMkeslNW7U38QdDmCLEEEeCYYTK+IuQQLDo9/6x14mbw5mZM+OsGWb8vJ5nP3POWmuvvdYcmM/svdeco4jAzMwsp0MGewBmZjb8OWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmA0TkuZI6hjscZRJ2ihpTjf1n5L0DwM3IhssDhs7KEjaImmPpJ9Lek7SrZLeOtjj6o6kiZJCUlM/9XeYpJclnVan7iuSvt4fx+mLNM9fpNfnWUn/S9KInvaLiGkR8WA39X8VEX/cr4O1g5LDxg4m50TEW4HpwMnAn/dmZxWGzL/p2pCKiF8CdwGLa9qNABYCtw/c6Or67fT6vB/4MPBf30hn/RXSNjQMmf+Y9uYREc8CDwDvknSUpG9J6pT0Uno8vtpW0oOSPi/pe8Bu4FhJF0t6UtIuSZslfbTUfo6kDkn/Q9IOSdslnSvpLEk/lvSipE+V2h8i6XJJT0t6QdLdkt6Wqh9OX19Ov/H/Ttrnv6TjvyRptaRjSv2FpD+V9BTwVJ3p3w58UNJbSmVnUvxffaC7udVKxzqu9Pw2SZ8rPT9bUls6m/q+pBO7flVeFxE/Av6V4vX5TUn/nL43z0u6Q9Lo0jG2SDo9Pf6spK9L+qqknwF/lMq+muqrZ4oXSfpp6u/Tpb4Ol3R7+r4+mV7DjlL9/0xnXbskbZL0/kbmYwPDYWMHHUkTgLOAdRT/Rm8FjgHeCewBrqvZ5UJgCXAE8AywAzgbOBK4GPiKpOml9r8BHAaMAz4D3Az8ITADmA18RtKxqe3HgHOB9wHvAF4Crk91701fR0fEWyPiEUnnAp8CzgOaKX4or6wZ77nATGBq7dwj4vvA9rR/eX53RsS+BubWkLTPcuCjwNuBvwdaJI1qYN+pFN+ndYCAL1B8b34LmAB8tpvd5wNfB0YDd3TR5j3A8RRnUJ+R9Fup/CpgInAscAbFa1Yd0/HApcDJEXEERUBv6WkuNoAiwpu3Qd8ofjD8HHiZIjD+Dji8TruTgJdKzx8Eru6h7/uAj6fHcygCa0R6fgQQwMxS+7XAuenxk8D7S3Vjgf8Amih+8AXQVKp/APhI6fkhFGdcx6TnAZzWw3j/HPhOenxk2v/dDc6to1QXwHGl57cBn0uPbwD+sqavTcD7ujhOAD+jCNungc8Bh9Rpdy6wruZ1PT09/izwcE37zwJfTY+r38/xpfrHgQXp8WbgzFLdH1fnCxxHEcSnA4cO9r9nbwduvmZqB5NzI+K75YJ0OekrwFzgqFR8hKQREfFqer61Zp95FL8FT6H4Yf8W4IlSkxdK++5JX58r1e8BqosTjgG+Iem1Uv2rwK93MYdjgL+VdG15SBRnUc/UG28dK4CrJI2j+A29PSLWNTi3Rh0DXCTpslLZSIozlK5Mj4j2coGko4FlFGc6R6QxvdRNHz3NHeDfS4938/pr8Y6a/X/1OCLaJX2CIrymSVoN/FlEbGvgeDYAfBnNDnb/neKSysyIOJLXL12p1OZXb12eLgPdA3wZ+PWIGA3cX9O+N7YC8yJidGk7LIr7SvXeMn0r8NGa9odHcXnsgPHWExE/pbj8tojiEtqKPs5tN0UYVf1GzTg/XzPOt0RE7SW/nnwhzefE9Pr8YTfjgR7m3oPtwPjS8wn7dRxxZ0S8hyJIA/jiGziW9TOHjR3sjqA403g53Zi/qof2I4FRQCewL50J/N4bOP6NwOerN/klNUuan+o6gdco7iGU218haVpq/2uSPtSH495OcQ/id3n93kZv59YGfFjSCElzKe47Vd0MLJU0U4X/JOkDko7o5TiPIF3+TGdin+zl/r1xN8X39qh0rEurFZKOl3RaCuRfUvybebWLfmwQOGzsYPc3wOHA88CjwP/prnFE7KK4qX83xeWcDwMtb+D4f5v2/46kXWkMM9OxdgOfB76XVnTNiohvUPxGvSqtuNoAzOvDcb9OcdnwnyJiex/n9nHgHIr7YIso7u+Q+mqlWLp8XeqrHfijPozzLyiWqu8Evg3c24c+GnU10AH8BPguxfdob6obBVxD8e/k34GjKRZq2EFCEf7wNDMbeiRdQrF44H09NrZB5zMbMxsSJI2V9Lvpb5+Op7if943BHpc1xqvRzGyoGEnx90CTKC4NrqJYIm9DgC+jmZlZdr6MZmZm2fkyWhfGjBkTEydOHOxhmJkNKWvXrn0+Ippryx02XZg4cSKtra2DPQwzsyFF0jP1yn0ZzczMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsssaNpLmStokqV3S5XXqJWlZql8vaXqpbrmkHZI21Oxzl6S2tG2R1JbKF5XK2yS9JumkVPdgGke17uic8zYzs/1l+1hoSSOA64EzgA5gjaSWiPhhqdk8YHLaZgI3pK8AtwHXASvK/UbEBaVjXAvsTOV3AHek8hOAb0ZEW2nXRRHhz3k2MxsEOc9sTgHaI2JzRLwCrALm17SZD6yIwqPAaEljASLiYeDFrjqXJOB8YGWd6oVdlJuZ2SDIGTbjgK2l5x2prLdtujIbeC4inqpTdwEHhs2t6RLalSmoDiBpiaRWSa2dnZ0NDsPMzHqSM2zq/UCPPrTpSt2zF0kzgd0RUb7XsygiTqAIqNnAhfU6jIibIqISEZXm5uYGh2FmZj3JGTYdwITS8/HAtj60OYCkJuA84K461QuoCaGIeDZ93QXcSXGJz8zMBkjOsFkDTJY0SdJIihBoqWnTAixOq9JmATsjYnsDfZ8O/CgiOsqFkg4BPkRxf6ha1iRpTHp8KHA2sN8KNzMzyyvbarSI2CfpUmA1MAJYHhEbJS1N9TcC9wNnAe3AbuDi6v6SVgJzgDGSOoCrIuKWVH3A2UvyXqAjIjaXykYBq1PQjAC+C9zcbxM1M7MeKaLRWyRvLpVKJVpbvVLazKw3JK2NiEptud9BwMzMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZZQ0bSXMlbZLULunyOvWStCzVr5c0vVS3XNIOSRtq9rlLUlvatkhqS+UTJe0p1d1Y2meGpCfScZZJUsZpm5lZjWxhI2kEcD0wD5gKLJQ0tabZPGBy2pYAN5TqbgPm1vYbERdExEkRcRJwD3Bvqfrpal1ELC2V35D6rx7rgH7NzCyfnGc2pwDtEbE5Il4BVgHza9rMB1ZE4VFgtKSxABHxMPBiV52ns5PzgZXdDSL1d2REPBIRAawAzu3jnMzMrA9yhs04YGvpeUcq622brswGnouIp0plkyStk/SQpNmlY3Q0cgxJSyS1Smrt7OxscBhmZtaTnGFT775I9KFNVxay/1nNduCdEfFu4M+AOyUd2ZtjRMRNEVGJiEpzc3ODwzAzs540Zey7A5hQej4e2NaHNgeQ1AScB8yolkXEXmBverxW0tPAlHSM8b09hpmZ9Z+cZzZrgMmSJkkaCSwAWmratACL06q0WcDOiNjeQN+nAz+KiF9dHpPUnBYlIOlYioUAm1N/uyTNSvd5FgPffMOzMzOzhmU7s4mIfZIuBVYDI4DlEbFR0tJUfyNwP3AW0A7sBi6u7i9pJTAHGCOpA7gqIm5J1Qs4cGHAe4GrJe0DXgWWRkR1gcElFKvbDgceSJuZmQ0QFQu0rFalUonW1tbBHoaZ2ZAiaW1EVGrL/Q4CZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8sua9hImitpk6R2SZfXqZekZal+vaTppbrlknZI2lCzz12S2tK2RVJbKj9D0lpJT6Svp5X2eTCNo7rf0RmnbWZmNZpydSxpBHA9cAbQAayR1BIRPyw1mwdMTttM4Ib0FeA24DpgRbnfiLigdIxrgZ3p6fPAORGxTdK7gNXAuNKuiyKitX9mZ2ZmvZHzzOYUoD0iNkfEK8AqYH5Nm/nAiig8CoyWNBYgIh4GXuyqc0kCzgdWpvbrImJbqt4IHCZpVL/OyMzM+iRn2IwDtpaed7D/mUajbboyG3guIp6qU/dBYF1E7C2V3ZouoV2ZguoAkpZIapXU2tnZ2eAwzMysJznDpt4P9OhDm64sJJ3V7NehNA34IvDRUvGiiDiBIqBmAxfW6zAiboqISkRUmpubGxyGmZn1JGfYdAATSs/HA9v60OYAkpqA84C7asrHA98AFkfE09XyiHg2fd0F3Elxic/MzAZIzrBZA0yWNEnSSGAB0FLTpgVYnFalzQJ2RsT2Bvo+HfhRRHRUCySNBr4NXBER3yuVN0kakx4fCpwNbMDMzAZMtrCJiH3ApRSrwp4E7o6IjZKWSlqamt0PbAbagZuBP6nuL2kl8AhwvKQOSR8pdb+AAy+hXQocB1xZs8R5FLBa0nqgDXg2HcvMzAaIIhq9RfLmUqlUorXVK6XNzHpD0tqIqNSW+x0EzMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsGv5YaEkfAKYBh1XLIuLqHIMyM7PhpaEzG0k3AhcAl1F84NmHgGMyjsvMzIaRRi+j/eeIWAy8FBF/AfwO+3/omZmZWZcaDZs96etuSe8A/gOYlGdIZmY23DR6z+Zb6ZMw/xr4ARD4A8jMzKxBDYVNRPxleniPpG8Bh0XEznzDMjOz4aShsJF0GMVHNr+H4qzm/0m6ISJ+mXNwZmY2PDR6GW0FsAv43+n5QuAfKValmZmZdavRsDk+In679PxfJP1bjgGZmdnw0+hqtHWSZlWfSJoJfK+nnSTNlbRJUruky+vUS9KyVL9e0vRS3XJJOyRtqNnnLkltadsiqa1Ud0Xqa5OkM0vlMyQ9keqWSVKD8zYzs37QaNjMBL6ffrhvAR4B3pd+gK+vt4OkEcD1wDxgKrBQ0tSaZvOAyWlbAtxQqrsNmFvbb0RcEBEnRcRJwD3Avel4U4EFFO9yMBf4uzQGUr9LSsc6oF+zg1289ho/+Oc7+NeW63hlz88HezhmvdLoZbS+/HA+BWiPiM0AklYB84EfltrMB1ZERACPShotaWxEbI+IhyVN7KrzdHZyPnBaqa9VEbEX+ImkduCUFI5HRsQjab8VwLnAA32Yk9mgaXv4Lq799qeJCDpf+CnnXfylwR6SWcMaOrOJiGeAt1P8QP994O0R8Ux162K3ccDW0vOOVNbbNl2ZDTwXEU/10Ne49LjHY0haIqlVUmtnZ2eDwzAbGHt/+QuC4BAdwi/2/Gywh2PWK40uff4Mxcqze1PRrZK+FhGf6263OmXRhzZdWQisbKCvho8RETcBNwFUKpVGx2E2IGbM+TALdvyEn+9+mXM+9OnBHo5ZrzR6GW0h8O7q39VIuobinQS6C5sO9n//tPHAtj60OYCkJuA8YEYDfXWkx706htnB5tDD3sLvL/78YA/DrE8aXSCwhdJHCwCjgKd72GcNMFnSJEkjKW7et9S0aQEWp1Vps4CdEbG9gfGcDvwoIsqXx1qABZJGSZpEsRDg8dTfLkmz0n2excA3GziGmZn1k0bPbPYCGyX9X4pLUGdQvIvAMoCI+FjtDhGxT9KlwGpgBLA8IjZKWprqbwTuB84C2oHdwMXV/SWtBOYAYyR1AFdFxC2pegH7X0Ij9X03xQKEfcCfRsSrqfoSitVth1MsDPDiADOzAaRiIVgPjaSLuquPiNv7bUQHiUqlEq2trYM9DDOzIUXS2oio1JY3+kacwy5MzMxs4DS6Gm0y8AWKP84sfyz0sZnGZWZmw0ijCwRupfgr/H3AqRRvzPmPuQZlZmbDS6Nhc3hE/BPFPZ5nIuKzvP6X+2ZmZt1qdDXaLyUdAjyVVpg9Cxydb1hmZjacNHpm8wngLcDHKP6Q8kLgq5nGZGZmw0yjYfP3wKSI6IiIi4GvAWfnG5aZmQ0njV5G+wPg65IWUXw09IXA72UblZmZDSuN/p3NZkkLgPso3ln5zIjYk3NgZmY2fHQbNpKeYP93SH4bxVvPPCaJiDgx5+DMzGx46OnMxvdlzMzsDes2bLr5YDQzM7OGNboazczMrM8cNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWWXNWwkzZW0SVK7pMvr1EvSslS/XtL0Ut1ySTskbaiz32Wp342SvpTKFklqK22vSTop1T2Y2lfr/Fk8ZmYDqNF3fe41SSOA64EzgA5gjaSWiPhhqdk8YHLaZlJ89PTMVHcbcB3FR1CX+z0VmA+cGBF7q8EREXcAd6Q2JwDfjIi20q6LIqK1P+doZmaNyXlmcwrQHhGbI+IVYBVFSJTNB1ZE4VFgtKSxABHxMPBinX4vAa6JiL2p3Y46bRYCK/tpHmZm9gblDJtxFB9HUNWRynrbptYUYLakxyQ9JOnkOm0u4MCwuTVdQrtSkup1LGmJpFZJrZ2dnT0Mw8zMGpUzbOr9QI8+tKnVBBwFzAI+CdxdDg9JM4HdEVG+17MoIk4AZqftwnodR8RNEVGJiEpzc3MPwzAzs0blDJsOYELp+XhgWx/a1Ov33nTp7XHgNWBMqX4BNWc1EfFs+roLuJPiEp+ZmQ2QnGGzBpgsaZKkkRQh0FLTpgVYnFalzQJ2RsT2Hvq9DzgNQNIUYCTwfHp+CPAhivtDpLImSWPS40MpPqPngBVuZmaWT7bVaBGxT9KlwGqKT/dcHhEbJS1N9TcC9wNnAe3AbuDi6v6SVgJzgDGSOoCrIuIWYDmwPC2JfgW4KCKql97eC3RExObSUEYBq1PQjAC+C9ycadpmZlaHXv85bWWVSiVaW71S2sysNyStjYhKbbnfQcDMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2WUNG0lzJW2S1C7p8jr1krQs1a+XNL1Ut1zSDkkb6ux3Wep3o6QvpbKJkvZIakvbjaX2MyQ9kY6zTJJyzdnMzA6ULWwkjQCuB+YBU4GFkqbWNJsHTE7bEuCGUt1twNw6/Z4KzAdOjIhpwJdL1U9HxElpW1oqvyH1Xz3WAf2amVk+Oc9sTgHaI2JzRLwCrKIIibL5wIooPAqMljQWICIeBl6s0+8lwDURsTe129HdIFJ/R0bEIxERwArg3DcwLzMz66WcYTMO2Fp63pHKetum1hRgtqTHJD0k6eRS3SRJ61L57NIxOho5hqQlkloltXZ2dvYwDDMza1RTxr7r3ReJPrSp1QQcBcwCTgbulnQssB14Z0S8IGkGcJ+kab05RkTcBNwEUKlUehqHmZk1KOeZTQcwofR8PLCtD23q9XtvuvT2OPAaMCYi9kbECwARsRZ4muIsqCP125tjmJlZP8oZNmuAyZImSRoJLABaatq0AIvTqrRZwM6I2N5Dv/cBpwFImgKMBJ6X1JwWJZDOdCYDm1N/uyTNSqvQFgPf7J8pmplZI7JdRouIfZIuBVYDI4DlEbFR0tJUfyNwP3AW0A7sBi6u7i9pJTAHGCOpA7gqIm4BlgPL05LoV4CLIiIkvRe4WtI+4FVgaURUFxhcQrG67XDggbSZmdkAUbFAy2pVKpVobW0d7GGYmQ0pktZGRKW23O8gYGZm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PssoaNpLmSNklql3R5nXpJWpbq10uaXqpbLmmHpA119rss9btR0pdS2RmS1kp6In09rdT+wdS+LW1H55qzmZkdqClXx5JGANcDZwAdwBpJLRHxw1KzecDktM0EbkhfAW4DrgNW1PR7KjAfODEi9paC43ngnIjYJuldwGpgXGnXRRHR2o9TNDOzBuU8szkFaI+IzRHxCrCKIiTK5gMrovAoMFrSWICIeBh4sU6/lwDXRMTe1G5H+rouIralNhuBwySN6vdZmZlZr+UMm3HA1tLzDvY/02i0Ta0pwGxJj0l6SNLJddp8EFhXDaTk1nQJ7UpJqtexpCWSWiW1dnZ29jAMMzNrVM6wqfcDPfrQplYTcBQwC/gkcHc5PCRNA74IfLS0z6KIOAGYnbYL63UcETdFRCUiKs3NzT0Mw8zMGpUzbDqACaXn44FtfWhTr99706W3x4HXgDEAksYD3wAWR8TT1R0i4tn0dRdwJ8UlPjMzGyA5w2YNMFnSJEkjgQVAS02bFmBxWpU2C9gZEdt76Pc+4DQASVOAkcDzkkYD3wauiIjvVRtLapJUDaNDgbOBA1a4mZlZPtnCJiL2AZdSrAp7Erg7IjZKWippaWp2P7AZaAduBv6kur+klcAjwPGSOiR9JFUtB45NS6JXARdFRKRjHQdcWbPEeRSwWtJ6oA14Nh3LzMwGiIqf01arUqlEa6tXSpuZ9YaktRFRqS33OwiYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyy84endUFSJ/DMYI8jgzHA84M9iMyG+xw9v6FvOM/xmIhori102LzJSGqt9yl6w8lwn6PnN/S9GeZYy5fRzMwsO4eNmZll57B587lpsAcwAIb7HD2/oe/NMMf9+J6NmZll5zMbMzPLzmFjZmbZOWyGGElzJW2S1C7p8jr1krQs1a+XND2VT5D0L5KelLRR0sdr9rss9btR0pdK5VekvjZJOjP/DAd2jpImStojqS1tNw7F+Um6qzSHLZLaSnXD4jXsao7D6DU8SdKjaQ6tkk4p1Q34a9jvIsLbENmAEcDTwLHASODfgKk1bc4CHgAEzAIeS+Vjgenp8RHAj6v7AqcC3wVGpedHp69T0zFGAZPSsUcMszlOBDYM9dewZv9rgc8Mt9ewmzkOi9cQ+A4wr7T/g4P1GubYfGYztJwCtEfE5oh4BVgFzK9pMx9YEYVHgdGSxkbE9oj4AUBE7AKeBMalfS4BromIval+R6mvVRGxNyJ+ArSnMeQ00HMcaLnmBxS/UQPnAytLfQ2X1xCoO8eBlmt+ARyZHv8asK3U10C/hv3OYTO0jAO2lp53UPMfsZE2kiYC7wYeS0VTgNmSHpP0kKSTe3G8/jbQcwSYJGldKp/dD3PoTq75Vc0GnouIp3pxvP420HOE4fEafgL4a0lbgS8DV/TieAe9psEegPWK6pTVrl3vto2ktwL3AJ+IiJ+l4ibgKIrT/ZOBuyUd2+Dx+ttAz3E78M6IeEHSDOA+SdNK+/W3XPOrWsj+v/EPp9ewqnaOw+U1vAT4bxFxj6TzgVuA0xs83kHPZzZDSwcwofR8PK+favfYRtKhFP/A74iIe2v2uTed8j8OvEbxRoGNHK+/Degc06WJFwAiYi3F9fAp/TifWrnmh6Qm4Dzgrl4er78N6ByH0Wt4EVB9/jVev1Q2GK9h/xvsm0beGt8ofjvfTHGTsHpjclpNmw+w/43Jx1O5gBXA39TpdylwdXo8heKUXcA09r8xuZn8N5cHeo7N1TlR3PB9FnjbUJtfqp8LPFRTNmxew27mOCxeQ4r7N3PS4/cDawfrNczyfRvsAXjr5QtWrFL5McVvb59OZUuBpemxgOtT/RNAJZW/h+LUez3QlrazUt1I4KvABuAHwGml43069bWJtFJmOM0R+CCwMf1n/gFwzlCcX6q/rdpHzfGGxWvY1RyHy2uY6tameTwGzBjM17C/N79djZmZZed7NmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDE7iKXPanlS0s3p80++I+lwSQ9KqqQ2YyRtGeShmnXLYWN28JsMXB8R04CXKf5i3mxIcdiYHfx+EhFt6fFaig8LMxtSHDZmB7+9pcevUrwR5D5e//972ICPyKyXHDZmQ9MWYEZ6/AeDOA6zhjhszIamLwOXSPo+xWcPmR3U/K7PZmaWnc9szMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy+7/A7au0hF7v05NAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "nu xi\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAdeElEQVR4nO3df5CV1Z3n8fdHWtBsdHCWdoYBFNyANRBdA1dgKyEhRjfg6ECZjWIYcdzMEsyQTXa2sqvJGLOZZCdxks0MpYODEyRslB+bGNO10SGVnVWnElGa0IugElskoYWRVqMhwWCQ7/7xnBsfbt+mb7d9uun286p66t7nnPOc55x+mv7084PbigjMzMxyOmmwB2BmZsOfw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eN2TAhaa6kjsEeR5mknZLmHqf+U5L+fuBGZIPFYWMnBEl7JL0i6ReSnpN0p6S3Dva4jkfSREkhqamf+jtF0kuSLqpT91VJ3+yP/fRFmucv0/F5VtL/kDSip+0iYlpEPHCc+v8eEX/Sr4O1E5LDxk4kl0fEW4HpwIXAn/dmYxWGzPd0bUhFxK+ADcCSmnYjgKuBrw/c6Or61+n4vA/4EPAf3khn/RXSNjQMmX+Y9uYREc8C9wNvl3SGpP8tqVPSz9L78dW2kh6Q9AVJPwAOAedIuk7SE5IOStot6SOl9nMldUj6L5IOSNovaaGkSyX9WNKLkj5Van+SpBskPS3pBUkbJf12qn4ovb6UfuP/N2mbf5/2/zNJmySdXeovJP2ppKeAp+pM/+vAByS9pVT2fop/q/cfb2610r7eVlpfI+nzpfXLJLWls6kfSjq/+6Pyuoh4EvgniuPzryT9Y/raPC/pLkmjS/vYI+ni9P6zkr4p6RuSfg78cSr7RqqvnileK+mnqb9Pl/o6VdLX09f1iXQMO0r1/zWddR2UtEvS+xqZjw0Mh42dcCRNAC4FtlF8j94JnA2cBbwC3FqzyTXAUuA04CfAAeAy4HTgOuCrkqaX2v8ucAowDvgMcAfwR8AMYA7wGUnnpLb/EVgIvAf4PeBnwG2p7t3pdXREvDUiHpa0EPgUcAXQTPFDeV3NeBcCs4CptXOPiB8C+9P25fndHRFHGphbQ9I2q4GPAP8S+DugRdKoBradSvF12gYI+EuKr83vAxOAzx5n8wXAN4HRwF3dtHkXcC7FGdRnJP1+Kr8ZmAicA1xCccyqYzoXWA5cGBGnUQT0np7mYgMoIrx4GfSF4gfDL4CXKALjb4FT67S7APhZaf0B4HM99H0v8PH0fi5FYI1I66cBAcwqtd8KLEzvnwDeV6obC/waaKL4wRdAU6n+fuDDpfWTKM64zk7rAVzUw3j/HPheen962v4dDc6to1QXwNtK62uAz6f3K4G/qOlrF/CebvYTwM8pwvZp4PPASXXaLQS21RzXi9P7zwIP1bT/LPCN9L769Rxfqn8UWJTe7wbeX6r7k+p8gbdRBPHFwMmD/f3spevia6Z2IlkYEd8vF6TLSV8F5gFnpOLTJI2IiNfS+t6abeZT/BY8heKH/VuAx0pNXiht+0p6fa5U/wpQfTjhbODbko6W6l8DfqebOZwN/I2kr5SHRHEW9ZN6461jLXCzpHEUv6G3R8S2BufWqLOBayV9rFQ2kuIMpTvTI6K9XCDpTGAFxZnOaWlMPztOHz3NHeCfS+8P8fqx+L2a7X/zPiLaJX2CIrymSdoE/FlE7GtgfzYAfBnNTnT/meKSyqyIOJ3XL12p1OY3H12eLgN9C/gy8DsRMRq4r6Z9b+wF5kfE6NJyShT3lep9ZPpe4CM17U+N4vJYl/HWExE/pbj8tpjiEtraPs7tEEUYVf1uzTi/UDPOt0RE7SW/nvxlms/56fj80XHGAz3MvQf7gfGl9QnHdBxxd0S8iyJIA/jSG9iX9TOHjZ3oTqM403gp3Zi/uYf2I4FRQCdwJJ0J/Ns3sP/bgS9Ub/JLapa0INV1Akcp7iGU298oaVpq/1uSPtiH/X6d4h7EO3n93kZv59YGfEjSCEnzKO47Vd0BLJM0S4V/IekPJJ3Wy3GeRrr8mc7EPtnL7XtjI8XX9oy0r+XVCknnSrooBfKvKL5nXuumHxsEDhs70f01cCrwPLAZ+IfjNY6IgxQ39TdSXM75ENDyBvb/N2n770k6mMYwK+3rEPAF4Afpia7ZEfFtit+o16cnrnYA8/uw329SXDb8PxGxv49z+zhwOcV9sMUU93dIfbVSPLp8a+qrHfjjPozzv1E8qv4y8F3gnj700ajPAR3AM8D3Kb5Gh1PdKOCLFN8n/wycSfGghp0gFOE/nmZmQ4+k6ykeHnhPj41t0PnMxsyGBEljJb0z/d+ncynu5317sMdljfHTaGY2VIyk+P9AkyguDa6neETehgBfRjMzs+x8Gc3MzLLzZbRujBkzJiZOnDjYwzAzG1K2bt36fEQ015Y7bLoxceJEWltbB3sYZmZDiqSf1Cv3ZTQzM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8sua9hImidpl6R2STfUqZekFal+u6TppbrVkg5I2lGzzQZJbWnZI6ktlS8ulbdJOirpglT3QBpHte7MnPM2M7NjZfuz0JJGALcBlwAdwBZJLRHxeKnZfGByWmYBK9MrwBrgVmBtud+IuKq0j68AL6fyu4C7Uvl5wHcioq206eKI8N95NjMbBDnPbGYC7RGxOyJeBdYDC2raLADWRmEzMFrSWICIeAh4sbvOJQm4ElhXp/rqbsrNzGwQ5AybccDe0npHKuttm+7MAZ6LiKfq1F1F17C5M11CuykFVReSlkpqldTa2dnZ4DDMzKwnOcOm3g/06EOb7tQ9e5E0CzgUEeV7PYsj4jyKgJoDXFOvw4hYFRGViKg0Nzc3OAwzM+tJzrDpACaU1scD+/rQpgtJTcAVwIY61YuoCaGIeDa9HgTuprjEZ2ZmAyRn2GwBJkuaJGkkRQi01LRpAZakp9JmAy9HxP4G+r4YeDIiOsqFkk4CPkhxf6ha1iRpTHp/MnAZcMwTbmZmlle2p9Ei4oik5cAmYASwOiJ2SlqW6m8H7gMuBdqBQ8B11e0lrQPmAmMkdQA3R8TXUnWXs5fk3UBHROwulY0CNqWgGQF8H7ij3yZqZmY9UkSjt0jeXCqVSrS2+klpM7PekLQ1Iiq15f4EATMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZlllzVsJM2TtEtSu6Qb6tRL0opUv13S9FLdakkHJO2o2WaDpLa07JHUlsonSnqlVHd7aZsZkh5L+1khSRmnbWZmNbKFjaQRwG3AfGAqcLWkqTXN5gOT07IUWFmqWwPMq+03Iq6KiAsi4gLgW8A9peqnq3URsaxUvjL1X91Xl37NzCyfnGc2M4H2iNgdEa8C64EFNW0WAGujsBkYLWksQEQ8BLzYXefp7ORKYN3xBpH6Oz0iHo6IANYCC/s4JzMz64OcYTMO2Fta70hlvW3TnTnAcxHxVKlskqRtkh6UNKe0j45G9iFpqaRWSa2dnZ0NDsPMzHqSM2zq3ReJPrTpztUce1azHzgrIt4B/Blwt6TTe7OPiFgVEZWIqDQ3Nzc4DDMz60lTxr47gAml9fHAvj606UJSE3AFMKNaFhGHgcPp/VZJTwNT0j7G93YfZmbWf3Ke2WwBJkuaJGkksAhoqWnTAixJT6XNBl6OiP0N9H0x8GRE/ObymKTm9FACks6heBBgd+rvoKTZ6T7PEuA7b3h2ZmbWsGxnNhFxRNJyYBMwAlgdETslLUv1twP3AZcC7cAh4Lrq9pLWAXOBMZI6gJsj4mupehFdHwx4N/A5SUeA14BlEVF9wOB6iqfbTgXuT4uZmQ0QFQ9oWa1KpRKtra2DPQwzsyFF0taIqNSW+xMEzMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpZd1rCRNE/SLkntkm6oUy9JK1L9dknTS3WrJR2QtKNmmw2S2tKyR1JbKr9E0lZJj6XXi0rbPJDGUd3uzIzTNjOzGk25OpY0ArgNuAToALZIaomIx0vN5gOT0zILWJleAdYAtwJry/1GxFWlfXwFeDmtPg9cHhH7JL0d2ASMK226OCJa+2d2ZmbWGznPbGYC7RGxOyJeBdYDC2raLADWRmEzMFrSWICIeAh4sbvOJQm4EliX2m+LiH2peidwiqRR/TojMzPrk5xhMw7YW1rv4NgzjUbbdGcO8FxEPFWn7gPAtog4XCq7M11CuykFVReSlkpqldTa2dnZ4DDMzKwnOcOm3g/06EOb7lxNOqs5pkNpGvAl4COl4sURcR5FQM0BrqnXYUSsiohKRFSam5sbHIaZmfUkZ9h0ABNK6+OBfX1o04WkJuAKYENN+Xjg28CSiHi6Wh4Rz6bXg8DdFJf4zMxsgOQMmy3AZEmTJI0EFgEtNW1agCXpqbTZwMsRsb+Bvi8GnoyIjmqBpNHAd4EbI+IHpfImSWPS+5OBy4AdmJnZgMkWNhFxBFhO8VTYE8DGiNgpaZmkZanZfcBuoB24A/hodXtJ64CHgXMldUj6cKn7RXS9hLYceBtwU80jzqOATZK2A23As2lfZmY2QBTR6C2SN5dKpRKtrX5S2sysNyRtjYhKbbk/QcDMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2WUNG0nzJO2S1C7phjr1krQi1W+XNL1Ut1rSAUk7arbZIKktLXsktZXqbkx97ZL0/lL5DEmPpboVkpRpymZmVke2sJE0ArgNmA9MBa6WNLWm2XxgclqWAitLdWuAebX9RsRVEXFBRFwAfAu4J+1vKrAImJa2+9s0BlK/S0v76tKv2Ykujh7lR/94F//UciuvvvKLwR6OWa80dVchaWNEXCnpMSDKVUBExPk99D0TaI+I3am/9cAC4PFSmwXA2ogIYLOk0ZLGRsT+iHhI0sTjjE/AlcBFpb7WR8Rh4BlJ7cBMSXuA0yPi4bTdWmAhcH8P4zc7obQ9tIGvfPfTRASdL/yUK667ZbCHZNawbsMG+Hh6XQTU/hr13gb6HgfsLa13ALMaaDMO2N9A/3OA5yLiqVJfm+v09ev0vra8C0lLKc6AOOussxoYgtnAOfyrXxIEJ+kkfvnKzwd7OGa90m3YRET1B/4GYC3wV8ApwC1AheIy1/HUuy8SfWjTnauBdQ301fA+ImIVsAqgUqk0Og6zATFj7odYdOAZfnHoJS7/4KcHezhmvXK8M5uqWcCXgB8CpwF3Ae9sYLsOYEJpfTywrw9tupDUBFwBzGigr470vlf7MDvRnHzKW/jDJV8Y7GGY9UkjDwj8GngFOJXizOaZiDjawHZbgMmSJkkaSXE5rqWmTQuwJD2VNht4uXRGdTwXA09GRPnyWAuwSNIoSZMoHgR4NPV3UNLsdJ9nCfCdBvZhZmb9pJGw2UIRNhcC76J4quybPW0UEUeA5cAm4AlgY0TslLRM0rLU7D5gN9AO3AF8tLq9pHXAw8C5kjokfbjU/SKOvYRGROwENlI8gPAPwJ9GxGup+nrg79N+nsYPB5iZDSgVD4Idp4FUiYjWmrJrIuJ/Zh3ZIKtUKtHa2tpzQzMz+w1JWyOiUlve45lNbdCksmEdNGZm1r/8cTVmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXZZw0bSPEm7JLVLuqFOvSStSPXbJU0v1a2WdEDSjjrbfSz1u1PSLalssaS20nJU0gWp7oHUvlp3ZsZpm5lZjaZcHUsaAdwGXAJ0AFsktUTE46Vm84HJaZkFrEyvAGuAW4G1Nf2+F1gAnB8Rh6vBERF3AXelNucB34mIttKmiyOitT/naGZmjcl5ZjMTaI+I3RHxKrCeIiTKFgBro7AZGC1pLEBEPAS8WKff64EvRsTh1O5AnTZXA+v6aR5mZvYG5QybccDe0npHKuttm1pTgDmSHpH0oKQL67S5iq5hc2e6hHaTJNXrWNJSSa2SWjs7O3sYhpmZNSpn2NT7gR59aFOrCTgDmA18EthYDg9Js4BDEVG+17M4Is4D5qTlmnodR8SqiKhERKW5ubmHYZiZWaNyhk0HMKG0Ph7Y14c29fq9J116exQ4Cowp1S+i5qwmIp5NrweBuyku8ZmZ2QDJGTZbgMmSJkkaSRECLTVtWoAl6am02cDLEbG/h37vBS4CkDQFGAk8n9ZPAj5IcX+IVNYkaUx6fzJwGdDlCTczM8sn29NoEXFE0nJgEzACWB0ROyUtS/W3A/cBlwLtwCHguur2ktYBc4ExkjqAmyPia8BqYHV6JPpV4NqIqF56ezfQERG7S0MZBWxKQTMC+D5wR6Zpm5lZHXr957SVVSqVaG31k9JmZr0haWtEVGrL/QkCZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8sua9hImidpl6R2STfUqZekFal+u6TppbrVkg5I2lFnu4+lfndKuiWVTZT0iqS2tNxeaj9D0mNpPyskKdeczcysq2xhI2kEcBswH5gKXC1pak2z+cDktCwFVpbq1gDz6vT7XmABcH5ETAO+XKp+OiIuSMuyUvnK1H91X136NTOzfHKe2cwE2iNid0S8CqynCImyBcDaKGwGRksaCxARDwEv1un3euCLEXE4tTtwvEGk/k6PiIcjIoC1wMI3MC8zM+ulnGEzDthbWu9IZb1tU2sKMEfSI5IelHRhqW6SpG2pfE5pHx2N7EPSUkmtklo7Ozt7GIaZmTWqKWPf9e6LRB/a1GoCzgBmAxcCGyWdA+wHzoqIFyTNAO6VNK03+4iIVcAqgEql0tM4zMysQTnPbDqACaX18cC+PrSp1+896dLbo8BRYExEHI6IFwAiYivwNMVZUEfqtzf7MDOzfpQzbLYAkyVNkjQSWAS01LRpAZakp9JmAy9HxP4e+r0XuAhA0hRgJPC8pOb0UALpTGcysDv1d1DS7PQU2hLgO/0zRTMza0S2y2gRcUTScmATMAJYHRE7JS1L9bcD9wGXAu3AIeC66vaS1gFzgTGSOoCbI+JrwGpgdXok+lXg2ogISe8GPifpCPAasCwiqg8YXE/xdNupwP1pMTOzAaLiAS2rValUorW1dbCHYWY2pEjaGhGV2nJ/goCZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsssaNpLmSdolqV3SDXXqJWlFqt8uaXqpbrWkA5J21NnuY6nfnZJuSWWXSNoq6bH0elGp/QOpfVtazsw1ZzMz66opV8eSRgC3AZcAHcAWSS0R8Xip2XxgclpmASvTK8Aa4FZgbU2/7wUWAOdHxOFScDwPXB4R+yS9HdgEjCttujgiWvtximZm1qCcZzYzgfaI2B0RrwLrKUKibAGwNgqbgdGSxgJExEPAi3X6vR74YkQcTu0OpNdtEbEvtdkJnCJpVL/PyszMei1n2IwD9pbWOzj2TKPRNrWmAHMkPSLpQUkX1mnzAWBbNZCSO9MltJskqV7HkpZKapXU2tnZ2cMwzMysUTnDpt4P9OhDm1pNwBnAbOCTwMZyeEiaBnwJ+Ehpm8URcR4wJy3X1Os4IlZFRCUiKs3NzT0Mw8zMGpUzbDqACaX18cC+PrSp1+896dLbo8BRYAyApPHAt4ElEfF0dYOIeDa9HgTuprjEZ2ZmAyRn2GwBJkuaJGkksAhoqWnTAixJT6XNBl6OiP099HsvcBGApCnASOB5SaOB7wI3RsQPqo0lNUmqhtHJwGVAlyfczMwsn2xhExFHgOUUT4U9AWyMiJ2SlklalprdB+wG2oE7gI9Wt5e0DngYOFdSh6QPp6rVwDnpkej1wLUREWlfbwNuqnnEeRSwSdJ2oA14Nu3LzMwGiIqf01arUqlEa6uflDYz6w1JWyOiUlvuTxAwM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll5z+e1g1JncBPBnscGYwBnh/sQWQ23Ofo+Q19w3mOZ0dEc22hw+ZNRlJrvb+iN5wM9zl6fkPfm2GOtXwZzczMsnPYmJlZdg6bN59Vgz2AATDc5+j5DX1vhjkew/dszMwsO5/ZmJlZdg4bMzPLzmEzxEiaJ2mXpHZJN9Spl6QVqX67pOmpfIKk/yvpCUk7JX28ZruPpX53SrqlVH5j6muXpPfnn+HAzlHSREmvSGpLy+1DcX6SNpTmsEdSW6luWBzD7uY4jI7hBZI2pzm0SppZqhvwY9jvIsLLEFmAEcDTwDnASOD/AVNr2lwK3A8ImA08ksrHAtPT+9OAH1e3Bd4LfB8YldbPTK9T0z5GAZPSvkcMszlOBHYM9WNYs/1XgM8Mt2N4nDkOi2MIfA+YX9r+gcE6hjkWn9kMLTOB9ojYHRGvAuuBBTVtFgBro7AZGC1pbETsj4gfAUTEQeAJYFza5nrgixFxONUfKPW1PiIOR8QzQHsaQ04DPceBlmt+QPEbNXAlsK7U13A5hkDdOQ60XPML4PT0/reAfaW+BvoY9juHzdAyDthbWu+g5h9iI20kTQTeATySiqYAcyQ9IulBSRf2Yn/9baDnCDBJ0rZUPqcf5nA8ueZXNQd4LiKe6sX++ttAzxGGxzH8BPBXkvYCXwZu7MX+TnhNgz0A6xXVKat9dv24bSS9FfgW8ImI+HkqbgLOoDjdvxDYKOmcBvfX3wZ6jvuBsyLiBUkzgHslTStt199yza/qao79jX84HcOq2jkOl2N4PfCfIuJbkq4EvgZc3OD+Tng+sxlaOoAJpfXxvH6q3WMbSSdTfIPfFRH31GxzTzrlfxQ4SvFBgY3sr78N6BzTpYkXACJiK8X18Cn9OJ9aueaHpCbgCmBDL/fX3wZ0jsPoGF4LVNf/F69fKhuMY9j/BvumkZfGF4rfzndT3CSs3picVtPmDzj2xuSjqVzAWuCv6/S7DPhcej+F4pRdwDSOvTG5m/w3lwd6js3VOVHc8H0W+O2hNr9UPw94sKZs2BzD48xxWBxDivs3c9P79wFbB+sYZvm6DfYAvPTygBVPqfyY4re3T6eyZcCy9F7Aban+MaCSyt9Fceq9HWhLy6WpbiTwDWAH8CPgotL+Pp362kV6UmY4zRH4ALAz/WP+EXD5UJxfql9T7aNmf8PiGHY3x+FyDFPd1jSPR4AZg3kM+3vxx9WYmVl2vmdjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bsxNY+lstT0i6I/39k+9JOlXSA5Iqqc0YSXsGeahmx+WwMTvxTQZui4hpwEsU/2PebEhx2Jid+J6JiLb0fivFHwszG1IcNmYnvsOl969RfBDkEV7/93vKgI/IrJccNmZD0x5gRnr/7wZxHGYNcdiYDU1fBq6X9EOKvz1kdkLzpz6bmVl2PrMxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsu/8PyNBfES6zcqIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "nu sigma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAex0lEQVR4nO3dcZyV1X3n8c9XEDSJFrOMDQEUXMEWojVwFfbVYAjRBowuvkyjGCrWTZdgSzbZ7GZXkxjTbNImbmxaVgvFFQmvKGgTY2Y3WvJyW7WbiDKEWYQocSQkDBAZNRISDBb57R/PufHhcoe5M86ZYcbv+/V6XnPvOec5zzlzYb7zPM+ZexURmJmZ5XRcfw/AzMwGP4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOG7NBQtJMSe39PY4ySVskzTxK/ack/c++G5H1F4eNHRMkbZf0sqRfSnpO0p2S3tLf4zoaSeMkhaShvdTfCZJekjSrTt1XJX2jN47TE2mev0qvz05JfyVpSFf7RcTkiHj4KPV/ERF/0quDtWOSw8aOJZdGxFuAKcB5wGe6s7MKA+bfdG1IRcSvgXuABTXthgBXAV/ru9HV9Xvp9Xkv8CHg37+eznorpG1gGDD/Me2NIyJ2Ag8C75B0iqT/LalD0s/T4zHVtpIelvRFSd8D9gNnSLpW0lOS9knaJukjpfYzJbVL+i+S9kjaLekySRdL+pGkFyV9qtT+OEnXS3pW0guS7pX01lT9aPr6UvqN/9+kff5dOv7PJa2VdHqpv5D0Z5KeAZ6pM/2vAR+Q9KZS2fso/q8+eLS51UrHOrP0fKWkL5SeXyKpNZ1NfV/SOZ2/Kq+JiKeBf6Z4ff61pH9M35vnJd0laUTpGNslXZgef07SNyR9XdIvgD9OZV9P9dUzxWsk/TT19+lSXydK+lr6vj6VXsP2Uv1/TWdd+yRtlfTeRuZjfcNhY8ccSWOBi4GNFP9G7wROB04DXgZurdnlamAhcBLwE2APcAlwMnAt8FVJU0rt3wacAIwGPgvcDvwRMBWYAXxW0hmp7X8ALgPeDbwd+DlwW6q7IH0dERFviYjHJF0GfAq4HGii+KG8uma8lwHTgEm1c4+I7wO70/7l+d0dEQcbmFtD0j4rgI8A/wr4O6BZ0vAG9p1E8X3aCAj4S4rvze8CY4HPHWX3ucA3gBHAXZ20eRdwFsUZ1Gcl/W4qvwkYB5wBXETxmlXHdBawGDgvIk6iCOjtXc3F+lBEePPW7xvFD4ZfAi9RBMbfAifWaXcu8PPS84eBz3fR9/3Ax9LjmRSBNSQ9PwkIYFqp/QbgsvT4KeC9pbpRwL8AQyl+8AUwtFT/IPDh0vPjKM64Tk/PA5jVxXg/A3w3PT457f/OBufWXqoL4MzS85XAF9LjpcB/q+lrK/DuTo4TwC8owvZZ4AvAcXXaXQZsrHldL0yPPwc8WtP+c8DX0+Pq93NMqf4JYF56vA14X6nuT6rzBc6kCOILgeP7+9+ztyM3XzO1Y8llEfFQuSBdTvoqMBs4JRWfJGlIRLyanu+o2WcOxW/BEyl+2L8JeLLU5IXSvi+nr8+V6l8GqosTTge+JelQqf5V4Lc7mcPpwN9IuqU8JIqzqJ/UG28dq4CbJI2m+A29LSI2Nji3Rp0OXCPpo6WyYRRnKJ2ZEhFt5QJJpwJLKM50Tkpj+vlR+uhq7gA/Kz3ez2uvxdtr9v/N44hok/RxivCaLGkt8ImI2NXA8awP+DKaHev+E8UllWkRcTKvXbpSqc1v3ro8XQb6JvAV4LcjYgTwQE377tgBzImIEaXthCjuK9V7y/QdwEdq2p8YxeWxI8ZbT0T8lOLy23yKS2ireji3/RRhVPW2mnF+sWacb4qI2kt+XfnLNJ9z0uvzR0cZD3Qx9y7sBsaUno89rOOIuyPiXRRBGsCXX8exrJc5bOxYdxLFmcZL6cb8TV20HwYMBzqAg+lM4A9ex/GXAV+s3uSX1CRpbqrrAA5R3EMot79B0uTU/rckfbAHx/0axT2I3+e1exvdnVsr8CFJQyTNprjvVHU7sEjSNBXeLOn9kk7q5jhPIl3+TGdin+zm/t1xL8X39pR0rMXVCklnSZqVAvnXFP9mXu2kH+sHDhs71v01cCLwPLAO+IejNY6IfRQ39e+luJzzIaD5dRz/b9L+35W0L41hWjrWfuCLwPfSiq7pEfEtit+o16QVV5uBOT047jcoLhv+n4jY3cO5fQy4lOI+2HyK+zukvlooli7fmvpqA/64B+P8c4ql6nuB7wD39aCPRn0eaAd+DDxE8T06kOqGA1+i+HfyM+BUioUadoxQhD88zcwGHknXUSweeHeXja3f+czGzAYESaMk/X7626ezKO7nfau/x2WN8Wo0MxsohlH8PdB4ikuDayiWyNsA4MtoZmaWnS+jmZlZdr6M1omRI0fGuHHj+nsYZmYDyoYNG56PiKbacodNJ8aNG0dLS0t/D8PMbECR9JN65b6MZmZm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2WUNG0mzJW2V1Cbp+jr1krQk1W+SNKVUt0LSHkmba/a5R1Jr2rZLak3l80vlrZIOSTo31T2cxlGtOzXnvM3M7HDZPhZa0hDgNuAioB1YL6k5In5YajYHmJC2acDS9BVgJXArsKrcb0RcWTrGLcDeVH4XcFcqPxv4dkS0lnadHxH+nGczs36Q88zmfKAtIrZFxCvAGmBuTZu5wKoorANGSBoFEBGPAi921rkkAVcAq+tUX9VJuZmZ9YOcYTMa2FF63p7KutumMzOA5yLimTp1V3Jk2NyZLqHdmILqCJIWSmqR1NLR0dHgMMzMrCs5w6beD/ToQZvO1D17kTQN2B8R5Xs98yPibIqAmgFcXa/DiFgeEZWIqDQ1NTU4DDMz60rOsGkHxpaejwF29aDNESQNBS4H7qlTPY+aEIqInenrPuBuikt8ZmbWR3KGzXpggqTxkoZRhEBzTZtmYEFalTYd2BsRuxvo+0Lg6YhoLxdKOg74IMX9oWrZUEkj0+PjgUuAw1a4mZlZXtlWo0XEQUmLgbXAEGBFRGyRtCjVLwMeAC4G2oD9wLXV/SWtBmYCIyW1AzdFxB2p+oizl+QCoD0itpXKhgNrU9AMAR4Cbu+1iZqZWZcU0egtkjeWSqUSLS1eKW1m1h2SNkREpbbc7yBgZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+yyho2k2ZK2SmqTdH2deklakuo3SZpSqlshaY+kzTX73COpNW3bJbWm8nGSXi7VLSvtM1XSk+k4SyQp47TNzKxGtrCRNAS4DZgDTAKukjSpptkcYELaFgJLS3Urgdm1/UbElRFxbkScC3wTuK9U/Wy1LiIWlcqXpv6rxzqiXzMzyyfnmc35QFtEbIuIV4A1wNyaNnOBVVFYB4yQNAogIh4FXuys83R2cgWw+miDSP2dHBGPRUQAq4DLejgnMzPrgZxhMxrYUXrensq626YzM4DnIuKZUtl4SRslPSJpRukY7Y0cQ9JCSS2SWjo6OhochpmZdSVn2NS7LxI9aNOZqzj8rGY3cFpEvBP4BHC3pJO7c4yIWB4RlYioNDU1NTgMMzPrytCMfbcDY0vPxwC7etDmCJKGApcDU6tlEXEAOJAeb5D0LDAxHWNMd49hZma9J+eZzXpggqTxkoYB84DmmjbNwIK0Km06sDcidjfQ94XA0xHxm8tjkprSogQknUGxEGBb6m+fpOnpPs8C4Nuve3ZmZtawbGc2EXFQ0mJgLTAEWBERWyQtSvXLgAeAi4E2YD9wbXV/SauBmcBISe3ATRFxR6qex5ELAy4APi/pIPAqsCgiqgsMrqNY3XYi8GDazMysj6hYoGW1KpVKtLS09PcwzMwGFEkbIqJSW+53EDAzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdlnDRtJsSVsltUm6vk69JC1J9ZskTSnVrZC0R9Lmmn3ukdSatu2SWlP5RZI2SHoyfZ1V2ufhNI7qfqdmnLaZmdUYmqtjSUOA24CLgHZgvaTmiPhhqdkcYELapgFL01eAlcCtwKpyvxFxZekYtwB709PngUsjYpekdwBrgdGlXedHREvvzM7MzLoj55nN+UBbRGyLiFeANcDcmjZzgVVRWAeMkDQKICIeBV7srHNJAq4AVqf2GyNiV6reApwgaXivzsjMzHokZ9iMBnaUnrdz+JlGo206MwN4LiKeqVP3AWBjRBwold2ZLqHdmILqCJIWSmqR1NLR0dHgMMzMrCs5w6beD/ToQZvOXEU6qzmsQ2ky8GXgI6Xi+RFxNkVAzQCurtdhRCyPiEpEVJqamhochpmZdSVn2LQDY0vPxwC7etDmCJKGApcD99SUjwG+BSyIiGer5RGxM33dB9xNcYnPzMz6SM6wWQ9MkDRe0jBgHtBc06YZWJBWpU0H9kbE7gb6vhB4OiLaqwWSRgDfAW6IiO+VyodKGpkeHw9cAmzGzMz6TLawiYiDwGKKVWFPAfdGxBZJiyQtSs0eALYBbcDtwJ9W95e0GngMOEtSu6QPl7qfx5GX0BYDZwI31ixxHg6slbQJaAV2pmOZmVkfUUSjt0jeWCqVSrS0eKW0mVl3SNoQEZXacr+DgJmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWXcMfC50+ankScEK1LCJWdb6HmZlZoaGwkXQTMJMibB4A5gD/F3DYmJlZlxq9jPaHwHuBn0XEtcDvUbx1v5mZWZcaDZuXI+IQcFDSycAe4Ix8wzIzs8Gk0Xs2LemTMG8HNgC/BJ7INSgzMxtcGgqbiKh+guYySf8AnBwRm/INy8zMBpPurEY7BxhX3UfSmRFxX6ZxmZnZINLoarQVwDnAFuBQKg7AYWNmZl1q9MxmekRMyjoSMzMbtBpdjfaYpG6HjaTZkrZKapN0fZ16SVqS6jdJmlKqWyFpj6TNNfvcI6k1bdsltZbqbkh9bZX0vlL5VElPprolktTduZiZWc81GjZfowicrSkUnpR01AUCkoYAt1H8Aegk4Ko6gTUHmJC2hcDSUt1KYHZtvxFxZUScGxHnAt8kXcpLfc8DJqf9/jaNgdTvwtKxjujX7FgXhw7xg3+8i39uvpVXXv5lfw/HrFsavYy2ArgaeJLX7tl05XygLSK2AUhaA8wFflhqMxdYFREBrJM0QtKoiNgdEY9KGtdZ5+ns5ApgVqmvNRFxAPixpDbgfEnbKVbPPZb2WwVcBjzY4DzMjgmtj97DLd/5NBFBxws/5fJrb+7vIZk1rNGw+WlENHez79HAjtLzdmBaA21GA7sb6H8G8FxEPFPqa12dvv4lPa4tP4KkhRRnQJx22mkNDMGs7xz49a8IguN0HL96+Rf9PRyzbmk0bJ6WdDfwv4AD1cIulj7Xuy8SPWjTmauA1Q301fAxImI5sBygUqk0Og6zPjF15oeYt+fH/HL/S1z6wU/393DMuqXRsDmRImT+oFTW1dLndmBs6fkYYFcP2hxB0lDgcmBqA321p8fdOobZseb4E97Ev13wxf4ehlmPNPoOAtf2oO/1wARJ44GdFDfvP1TTphlYnO7nTAP2RkQjl9AuBJ6OiPLlsWbgbkl/BbydYiHAExHxqqR9kqYDjwMLgP/Rg/mYmVkPNfpHnUvqFO8FWiLi2/X2iYiDkhYDa4EhwIqI2CJpUapfRvFxBRcDbcB+4DehJmk1xccajJTUDtwUEXek6nkcfgmN1Pe9FAsQDgJ/FhGvpurrKFa3nUixMMCLA8zM+pCKhWBdNJKWA78D/H0q+gDFuwmMBbZFxMdzDbC/VCqVaGlp6e9hmJkNKJI2RESltrzRezZnArMi4mDqbCnwXeAiiuXQZmZmnWr0jzpHA28uPX8z8PZ0mepA/V3MzMwKjZ7Z3Ay0SnqYYinxBcBfSHoz8FCmsZmZ2SDR6Gq0OyQ9QPGuAAI+FRHV5cOfzDU4MzMbHI56GU3S76SvU4BRFH/t/1PgbeU3zTQzMzuars5sPkHx9i23lMrKy9dmYWZm1oWjntlExML0cCkwNyLeA/wTxd/Y/OfMYzMzs0Gi0dVon4mIX0h6F8Vy55Uc/nEAZmZmnWo0bKp/if9+YFl614BheYZkZmaDTaNhs1PS31F8fswDkoZ3Y18zM3uDazQwrqB4j7PZEfES8Fa85NnMzBrU6N/Z7Kf0cQLpnZkbeXdmMzMzXwozM7P8HDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZlllzVsJM2WtFVSm6Tr69RL0pJUv6n8GTmSVkjaI2lznf0+mvrdIunmVDZfUmtpOyTp3FT3cGpfrTs147TNzKxGox8L3W2ShgC3UbxLdDuwXlJzRPyw1GwOMCFt0yjeSXpaqlsJ3Aqsqun3PcBc4JyIOFANjoi4C7grtTkb+HZEtJZ2nR8RLb05RzMza0zOM5vzgbaI2BYRrwBrKEKibC6wKgrrgBGSRgFExKPAi3X6vQ74UkQcSO321GlzFbC6l+ZhZmavU86wGU3xMdJV7amsu21qTQRmSHpc0iOSzqvT5kqODJs70yW0GyWpXseSFkpqkdTS0dHRxTDMzKxROcOm3g/06EGbWkOBU4DpFO88fW85PCRNA/ZHRPlez/yIOBuYkbar63UcEcsjohIRlaampi6GYWZmjcoZNu3A2NLzMcCuHrSp1+996dLbE8AhYGSpfh41ZzURsTN93QfcTXGJz8zM+kjOsFkPTJA0XtIwihBormnTDCxIq9KmA3vTxxcczf3ALABJEyk+MfT59Pw44IMU94dIZUMljUyPjwcuAY5Y4WZmZvlkW40WEQclLab40LUhwIqI2CJpUapfBjwAXAy0AfuBa6v7S1oNzARGSmoHboqIO4AVwIq0JPoV4JqIqF56uwBoj4htpaEMB9amoBkCPATcnmnaZmZWh177OW1llUolWlq8UtrMrDskbYiISm2530HAzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtllDRtJsyVtldQm6fo69ZK0JNVvkjSlVLdC0h5Jm+vs99HU7xZJN6eycZJeltSatmWl9lMlPZmOs0SScs3ZzMyOlC1sJA0BbgPmAJOAqyRNqmk2B5iQtoXA0lLdSmB2nX7fA8wFzomIycBXStXPRsS5aVtUKl+a+q8e64h+zcwsn5xnNucDbRGxLSJeAdZQhETZXGBVFNYBIySNAoiIR4EX6/R7HfCliDiQ2u052iBSfydHxGMREcAq4LLXMS8zM+umnGEzGthRet6eyrrbptZEYIakxyU9Ium8Ut14SRtT+YzSMdobOYakhZJaJLV0dHR0MQwzM2vU0Ix917svEj1oU2socAowHTgPuFfSGcBu4LSIeEHSVOB+SZO7c4yIWA4sB6hUKl2Nw8zMGpTzzKYdGFt6PgbY1YM29fq9L116ewI4BIyMiAMR8QJARGwAnqU4C2pP/XbnGGZm1otyhs16YIKk8ZKGAfOA5po2zcCCtCptOrA3InZ30e/9wCwASROBYcDzkprSogTSmc4EYFvqb5+k6WkV2gLg270zRTMza0S2y2gRcVDSYmAtMARYERFbJC1K9cuAB4CLgTZgP3BtdX9Jq4GZwEhJ7cBNEXEHsAJYkZZEvwJcExEh6QLg85IOAq8CiyKiusDgOorVbScCD6bNzMz6iIoFWlarUqlES0tLfw/DzGxAkbQhIiq15X4HATMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZlllzVsJM2WtFVSm6Tr69RL0pJUv0nSlFLdCkl7JG2us99HU79bJN2cyi6StEHSk+nrrFL7h1P71rSdmmvOZmZ2pKG5OpY0BLgNuAhoB9ZLao6IH5aazQEmpG0asDR9BVgJ3Aqsqun3PcBc4JyIOFAKjueBSyNil6R3AGuB0aVd50dESy9O0czMGpTzzOZ8oC0itkXEK8AaipAomwusisI6YISkUQAR8SjwYp1+rwO+FBEHUrs96evGiNiV2mwBTpA0vNdnZWZm3ZYzbEYDO0rP2zn8TKPRNrUmAjMkPS7pEUnn1WnzAWBjNZCSO9MltBslqV7HkhZKapHU0tHR0cUwzMysUTnDpt4P9OhBm1pDgVOA6cAngXvL4SFpMvBl4COlfeZHxNnAjLRdXa/jiFgeEZWIqDQ1NXUxDDMza1TOsGkHxpaejwF29aBNvX7vS5fengAOASMBJI0BvgUsiIhnqztExM70dR9wN8UlPjMz6yM5w2Y9MEHSeEnDgHlAc02bZmBBWpU2HdgbEbu76Pd+YBaApInAMOB5SSOA7wA3RMT3qo0lDZVUDaPjgUuAI1a4mZlZPtnCJiIOAospVoU9BdwbEVskLZK0KDV7ANgGtAG3A39a3V/SauAx4CxJ7ZI+nKpWAGekJdFrgGsiItKxzgRurFniPBxYK2kT0ArsTMcyM7M+ouLntNWqVCrR0uKV0mZm3SFpQ0RUasv9DgJmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7Ps/OFpnZDUAfykv8eRwUjg+f4eRGaDfY6e38A3mOd4ekQ01RY6bN5gJLXU+xS9wWSwz9HzG/jeCHOs5ctoZmaWncPGzMyyc9i88Szv7wH0gcE+R89v4HsjzPEwvmdjZmbZ+czGzMyyc9iYmVl2DpsBRtJsSVsltUm6vk69JC1J9ZskTUnlYyX9k6SnJG2R9LGa/T6a+t0i6eZS+Q2pr62S3pd/hn07R0njJL0sqTVtywbi/CTdU5rDdkmtpbpB8Rp2NsdB9BqeK2ldmkOLpPNLdX3+Gva6iPA2QDZgCPAscAYwDPh/wKSaNhcDDwICpgOPp/JRwJT0+CTgR9V9gfcADwHD0/NT09dJ6RjDgfHp2EMG2RzHAZsH+mtYs/8twGcH22t4lDkOitcQ+C4wp7T/w/31GubYfGYzsJwPtEXEtoh4BVgDzK1pMxdYFYV1wAhJoyJid0T8ACAi9gFPAaPTPtcBX4qIA6l+T6mvNRFxICJ+DLSlMeTU13Psa7nmBxS/UQNXAKtLfQ2W1xCoO8e+lmt+AZycHv8WsKvUV1+/hr3OYTOwjAZ2lJ63U/MfsZE2ksYB7wQeT0UTgRmSHpf0iKTzunG83tbXcwQYL2ljKp/RC3M4mlzzq5oBPBcRz3TjeL2tr+cIg+M1/Djw3yXtAL4C3NCN4x3zhvb3AKxbVKesdu36UdtIegvwTeDjEfGLVDwUOIXidP884F5JZzR4vN7W13PcDZwWES9ImgrcL2lyab/elmt+VVdx+G/8g+k1rKqd42B5Da8D/mNEfFPSFcAdwIUNHu+Y5zObgaUdGFt6PobXTrW7bCPpeIp/4HdFxH01+9yXTvmfAA5RvFFgI8frbX06x3Rp4gWAiNhAcT18Yi/Op1au+SFpKHA5cE83j9fb+nSOg+g1vAaoPv97XrtU1h+vYe/r75tG3hrfKH4730Zxk7B6Y3JyTZv3c/iNySdSuYBVwF/X6XcR8Pn0eCLFKbuAyRx+Y3Ib+W8u9/Ucm6pzorjhuxN460CbX6qfDTxSUzZoXsOjzHFQvIYU929mpsfvBTb012uY5fvW3wPw1s0XrFil8iOK394+ncoWAYvSYwG3pfongUoqfxfFqfcmoDVtF6e6YcDXgc3AD4BZpeN9OvW1lbRSZjDNEfgAsCX9Z/4BcOlAnF+qX1nto+Z4g+I17GyOg+U1THUb0jweB6b252vY25vfrsbMzLLzPRszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYHcPSZ7U8Jen29Pkn35V0oqSHJVVSm5GStvfzUM2OymFjduybANwWEZOBlyj+Yt5sQHHYmB37fhwRrenxBooPCzMbUBw2Zse+A6XHr1K8EeRBXvv/e0Kfj8ismxw2ZgPTdmBqevyH/TgOs4Y4bMwGpq8A10n6PsVnD5kd0/yuz2Zmlp3PbMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vu/wNpSM/qvgzNkwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "nu tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAY9klEQVR4nO3deZRedZ3n8feHRMAFDY5BkS3QBk6HcWksgTlutIoStzBt2wfUAbfBqDja02OLy7jb2j1uzZHGAVuFcUHGpU2PKCqjMkdFrQgiaURiXIikIaIiKoLAd/64t5qHJ5WqJ+H3pFLl+3XOPc+997fc369uVX3q3vtUVaoKSZJa2GWuByBJWjgMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEjzTJKjkmyc63EMSrIuyVEzlL8qyft23Ig0VwwV7VBJfpTkxiS/TnJNkg8kucdcj2smSZYlqSSLG/W3e5JfJnnMNGXvSvLxFsfZHv08f9Ofn58meWeSRbO1q6pDq+rLM5T/TVU9v+lgtVMyVDQXnlJV9wAOAx4GvGZbGqczbz53h8Ooqn4HfAw4YajeIuB44KwdN7ppPbg/P48FngH85zvTWasw1vwwb74wtfBU1U+BzwL/PsmeSf5Pks1JftGv7ztVN8mXk7wlyVeB3wIHJXlOksuT3JBkQ5IXDNQ/KsnGJH+d5Nokm5Icm+SJSb6f5OdJXjVQf5ckpyT5QZLrkpyb5N598YX96y/7n+D/Q9/muf3xf5Hk/CQHDPRXSV6c5ErgymmmfxbwtCR3G9j3BLqvyc/ONLdh/bEeMLD9wSRvHth+cpJL+qujryV50NbPyu2q6nvA/6M7P3+U5P/2H5ufJflwkiUDx/hRksf1669P8vEkH0ryK+DZ/b4P9eVTV34nJvlJ39+rB/q6a5Kz+o/r5f053DhQ/or+KuqGJFckeewo89GOYahoziTZD3gicDHd5+IHgAOA/YEbgfcMNflPwEnAHsCPgWuBJwP3BJ4DvCvJYQP17wfsDuwDvBY4E3gW8FDgkcBrkxzU1/0vwLHAo4H7A78ATuvLHtW/Lqmqe1TV15McC7wK+DNgKd03348OjfdY4AhgxfDcq+prwKa+/eD8PlJVt4wwt5H0bd4PvAD4d8D/BNYk2W2EtivoPk4XAwHeSvex+WNgP+D1MzRfBXwcWAJ8eCt1HgEcQndF9Nokf9zvfx2wDDgIOJrunE2N6RDgZOBhVbUHXRD/aLa5aAeqKheXHbbQfQP4NfBLumD4B+Cu09R7CPCLge0vA2+cpe9/Al7arx9FF0yL+u09gAKOGKi/Fji2X78ceOxA2d7A74HFdN/gClg8UP5Z4HkD27vQXUEd0G8X8JhZxvsa4PP9+j379n8y4tw2DpQV8ICB7Q8Cb+7XTwfeNNTXFcCjt3KcAn5FF6o/AN4M7DJNvWOBi4fO6+P69dcDFw7Vfz3woX596uO570D5N4Hj+vUNwBMGyp4/NV/gAXSB+zjgLnP9+eyy5eK9Ts2FY6vqi4M7+ttA7wKOAfbsd++RZFFV3dpvXzXUZiXdT7UH031Tvxvw3YEq1w20vbF/vWag/EZg6k0CBwCfSnLbQPmtwH23MocDgL9P8o7BIdFdFf14uvFO42zgdUn2ofuJe31VXTzi3EZ1AHBikpcM7NuV7opjaw6rqvWDO5LsBZxKd+WyRz+mX8zQx2xzB/jXgfXfcvu5uP9Q+39br6r1SV5GF1KHJjkf+K9VdfUIx9MO4O0v7Sz+iu5WyBFVdU9uv+WUgTr/9ie1+9s3nwDeDty3qpYA5w3V3xZXASurasnAsnt1z32m+1PeVwEvGKp/1+pua20x3ulU1U/obps9k+7W19nbObff0oXOlPsNjfMtQ+O8W1UN36qbzVv7+TyoPz/PmmE8MMvcZ7EJ2Hdge787dFz1kap6BF1gFvC3d+JYasxQ0c5iD7orh1/2D8hfN0v9XYHdgM3ALf1P9o+/E8d/L/CWqYftSZYmWdWXbQZuo7vHP1j/lUkO7evfK8nTt+O4Z9E9I3g4tz972Na5XQI8I8miJMfQPReaciawOskR6dw9yZOS7LGN49yD/rZlf2X18m1svy3OpfvY7tkf6+SpgiSHJHlMH7y/o/ucuXUr/WgOGCraWbwbuCvwM+Ai4HMzVa6qG+gerp9LdxvmGcCaO3H8v+/bfz7JDf0YjuiP9VvgLcBX+3dQHVlVn6L7Cfmc/h1OlwErt+O4H6e73XdBVW3azrm9FHgK3XOqZ9I9f6Hva5LuLcHv6ftaDzx7O8b5Brq3gF8PfAb45Hb0Mao3AhuBHwJfpPsY3dSX7Qa8je7z5F+BvejeMKGdRKr8J12Sdl5JXkj3EP/Rs1bWnPNKRdJOJcneSR7e/+7QIXTP2z411+PSaHz3l6Sdza50v09zIN0tvXPo3nquecDbX5KkZrz9JUlq5g/69td97nOfWrZs2VwPQ5LmlbVr1/6sqpZOV/YHHSrLli1jcnJyrochSfNKkh9vrczbX5KkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZsYaKkmOSXJFkvVJTpmmPElO7csvTXLYQNn7k1yb5LKhNvdO8oUkV/avew6V75/k10n+2/hmJkmazthCJcki4DRgJbACOD7JiqFqK4Hl/XIScPpA2QeBY6bp+hTggqpaDlzQbw96F/DZOzt+SdK2G+eVyuHA+qraUFU3A+cAq4bqrALOrs5FwJIkewNU1YXAz6fpdxVwVr9+FnDsVEGSY4ENwLqG85AkjWicobIPcNXA9sZ+37bWGXbfqtoE0L/uBZDk7sArgDfM1DjJSUkmk0xu3rx51klIkkY3zlDJNPtqO+qM6g3Au6rq1zNVqqozqmqiqiaWLl26nYeSJE1n8Rj73gjsN7C9L3D1dtQZdk2SvatqU3+r7Np+/xHAnyf5O2AJcFuS31XVe7Z3ApKkbTPOK5VvAcuTHJhkV+A4YM1QnTXACf27wI4Erp+6tTWDNcCJ/fqJwKcBquqRVbWsqpYB7wb+xkCRpB1rbKFSVbcAJwPnA5cD51bVuiSrk6zuq51H92B9PXAm8KKp9kk+CnwdOCTJxiTP64veBhyd5Erg6H5bkrQTSNX2PsKY/yYmJmpycnKuhyFJ80qStVU1MV2Zv1EvSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzYw2VJMckuSLJ+iSnTFOeJKf25ZcmOWyg7P1Jrk1y2VCbeyf5QpIr+9c9+/1HJ1mb5Lv962PGOTdJ0pbGFipJFgGnASuBFcDxSVYMVVsJLO+Xk4DTB8o+CBwzTdenABdU1XLggn4b4GfAU6rqgcCJwP9qMxNJ0qjGeaVyOLC+qjZU1c3AOcCqoTqrgLOrcxGwJMneAFV1IfDzafpdBZzVr58FHNvXv7iqru73rwN2T7JbywlJkmY2zlDZB7hqYHtjv29b6wy7b1VtAuhf95qmztOAi6vqpm0asSTpTlk8xr4zzb7ajjrbdtDkUOBvgcdvpfwkultt7L///nfmUJKkIeO8UtkI7DewvS9w9XbUGXbN1C2y/vXaqYIk+wKfAk6oqh9M17iqzqiqiaqaWLp06UgTkSSNZpyh8i1geZIDk+wKHAesGaqzBjihfxfYkcD1U7e2ZrCG7kE8/eunAZIsAT4DvLKqvtpoDpKkbTC2UKmqW4CTgfOBy4Fzq2pdktVJVvfVzgM2AOuBM4EXTbVP8lHg68AhSTYmeV5f9Dbg6CRXAkf32/THegDw35Nc0i/TPW+RJI1Jqu7UI4x5bWJioiYnJ+d6GJI0ryRZW1UT05X5G/WSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqZvFsFZK8drr9VfXG9sORJM1ns4YK8JuB9d2BJwOXj2c4kqT5bNbbX1X1joHlLcBRwD6jdJ7kmCRXJFmf5JRpypPk1L780iSHDZS9P8m1SS4banPvJF9IcmX/uudA2Sv7vq5I8oRRxihJamd7nqncDThotkpJFgGnASuBFcDxSVYMVVsJLO+Xk4DTB8o+CBwzTdenABdU1XLggn6bvu/jgEP7dv/Qj0GaV2647mq+9Ml38r1vnjfXQ5G22SjPVL4LVL+5CFgKjPI85XBgfVVt6Ps5B1gF/MtAnVXA2VVVwEVJliTZu6o2VdWFSZZN0+8quqslgLOALwOv6PefU1U3AT9Msr4fw9dHGKu003jfmS9kcvN32C134U1L9mKfgyfmekjSyEZ5pvLkgfVbgGuq6pYR2u0DXDWwvRE4YoQ6+wCbZuj3vlW1CaCqNiXZa6Cvi6bp6w6SnER3VcT+++8/+yykHew3N/+aXXMXbuU2brrx13M9HGmbjPJM5cdV9WPgRrorlfsnGeW7cabrbjvqjGqkvqrqjKqaqKqJpUuXbuehpPF5/rPexaMPeBTPefhLOPCBj5rr4UjbZJTbX08F3gHcH7gWOIDu3V+HztJ0I7DfwPa+wNXbUWfYNVO3yJLs3Y9pe/uSdjr3O+hBPPsl/zjXw5C2yygP6t8EHAl8v6oOBB4LfHWEdt8Clic5MMmudA/R1wzVWQOc0L8L7Ejg+qlbWzNYA5zYr58IfHpg/3FJdktyIN3D/2+OME5JUiOjhMrvq+o6YJcku1TVl4CHzNaof+5yMnA+3ZXNuVW1LsnqJKv7aucBG4D1wJnAi6baJ/ko3UP2Q5JsTPK8vuhtwNFJrgSO7repqnXAuXRvBPgc8OKqunWE+UmSGkn3xqsZKiRfBI4F3grch+5200RVPXzsoxuziYmJmpycnOthSNK8kmRtVU37tsRR3v31HeC3wF8CzwTuBdyj3fAkSQvFKKHyp1V1G3Ab3e+FkOTSsY5KkjQvbTVUkryQ7hnHHw2FyB6M9qBekvQHZqYrlY8An6V7ljL4d7tuqKqfj3VUkqR5aauhUlXXA9cDx++44UiS5jP/SZckqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqZmxhkqSY5JckWR9klOmKU+SU/vyS5McNlvbJA9O8vUk303yz0nu2e+/S5Kz+v2XJ3nlOOcmSdrS2EIlySLgNGAlsAI4PsmKoWorgeX9chJw+ght3wecUlUPBD4FvLzf/3Rgt37/Q4EXJFk2ntlJkqYzziuVw4H1VbWhqm4GzgFWDdVZBZxdnYuAJUn2nqXtIcCF/foXgKf16wXcPcli4K7AzcCvxjQ3SdI0xhkq+wBXDWxv7PeNUmemtpcBT+3Xnw7s169/HPgNsAn4CfD2qvr5nZuCJGlbjDNUMs2+GrHOTG2fC7w4yVpgD7orEuiubm4F7g8cCPxVkoO2GFRyUpLJJJObN2+efRaSpJGNM1Q2cvtVBMC+wNUj1tlq26r6XlU9vqoeCnwU+EFf5xnA56rq91V1LfBVYGJ4UFV1RlVNVNXE0qVLt3tykqQtjTNUvgUsT3Jgkl2B44A1Q3XWACf07wI7Eri+qjbN1DbJXv3rLsBrgPf2ff0EeEzf192BI4HvjXF+kqQhYwuVqroFOBk4H7gcOLeq1iVZnWR1X+08YAOwHjgTeNFMbfs2xyf5Pl1gXA18oN9/GnAPumcu3wI+UFWXjmt+kqQtpWr4MccfjomJiZqcnJzrYUjSvJJkbVVt8XgB/I16SVJDhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc2MNVSSHJPkiiTrk5wyTXmSnNqXX5rksNnaJnlwkq8n+W6Sf05yz4GyB/Vl6/ry3cc5P0nSHY0tVJIsAk4DVgIrgOOTrBiqthJY3i8nAaeP0PZ9wClV9UDgU8DL+zaLgQ8Bq6vqUOAo4Pfjmp8kaUvjvFI5HFhfVRuq6mbgHGDVUJ1VwNnVuQhYkmTvWdoeAlzYr38BeFq//njg0qr6DkBVXVdVt45rcpKkLY0zVPYBrhrY3tjvG6XOTG0vA57arz8d2K9fPxioJOcn+XaSv55uUElOSjKZZHLz5s3bOCVJ0kzGGSqZZl+NWGemts8FXpxkLbAHcHO/fzHwCOCZ/et/TPLYLTqpOqOqJqpqYunSpbPPQpI0ssVj7Hsjt19FAOwLXD1inV231raqvkd3q4skBwNPGujrK1X1s77sPOAw4IIGc5EkjWCcVyrfApYnOTDJrsBxwJqhOmuAE/p3gR0JXF9Vm2Zqm2Sv/nUX4DXAe/u+zgcelORu/UP7RwP/Msb5SZKGjO1KpapuSXIy3Tf7RcD7q2pdktV9+XuB84AnAuuB3wLPmalt3/XxSV7cr38S+EDf5hdJ3kkXSAWcV1WfGdf8JElbStXwY44/HBMTEzU5OTnXw5CkeSXJ2qqamK7M36iXJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqJlU112OYM0k2Az+e63GMyX2An831IMZooc8PFv4cnd/8dUBVLZ2u4A86VBayJJNVNTHX4xiXhT4/WPhzdH4Lk7e/JEnNGCqSpGYMlYXrjLkewJgt9PnBwp+j81uAfKYiSWrGKxVJUjOGiiSpGUNlJ5XkmCRXJFmf5JRpypPk1L780iSH9fv3S/KlJJcnWZfkpUPtXtL3uy7J3w3sf2Xf1xVJnrCQ5pdkWZIbk1zSL+8d9/zGNcckHxuYx4+SXDJQNu/P4dbmt8DO4UOSXNTPYzLJ4QNlO/QcjkVVuexkC7AI+AFwELAr8B1gxVCdJwKfBQIcCXyj3783cFi/vgfw/am2wJ8CXwR267f36l9X9MfYDTiwP/aiBTS/ZcBlC+EcDrV/B/DahXQOZ5jfgjmHwOeBlQPtvzwX53Bci1cqO6fDgfVVtaGqbgbOAVYN1VkFnF2di4AlSfauqk1V9W2AqroBuBzYp2/zQuBtVXVTX37tQF/nVNVNVfVDYH0/hoUyv7kwrjkC3U/IwF8AHx3oayGcQ2Da+c2Fcc2xgHv26/cCrh7oa0eew7EwVHZO+wBXDWxvZOiLbpQ6SZYBfwJ8o991MPDIJN9I8pUkD9uG47W0o+cHcGCSi/v9j2wwh9mMa45THglcU1VXbsPxWtrR84OFcw5fBvyPJFcBbwdeuQ3H2+ktnusBaFqZZt/we79nrJPkHsAngJdV1a/63YuBPeku0x8GnJvkoBGP19KOnt8mYP+qui7JQ4F/SnLoQLtxGNccpxzPHX+KXyjncMrw/BbSOXwh8JdV9YkkfwH8I/C4EY+30/NKZee0EdhvYHtfbr9EnrVOkrvQfSJ/uKo+OdTmk/2l+jeB2+j+6N0ox2tph86vv51wHUBVraW7V31ww/lMZ1xzJMli4M+Aj23j8VraofNbYOfwRGBq+39z+y2uHX0Ox2OuH+q4bLnQ/cS9ge5h3dQDwkOH6jyJOz4g/Ga/P8DZwLun6Xc18MZ+/WC6S+0Ah3LHB4QbGO9D3h09v6VT86F76PpT4N7z8Rz25ccAXxnatyDO4QzzWzDnkO75ylH9+mOBtXNxDsf2cZvrAbhs5cR07wr5Pt1PZK/u960GVvfrAU7ry78LTPT7H0F3yXwpcEm/PLEv2xX4EHAZ8G3gMQPHe3Xf1xX070xZKPMDngas679gvw08Zb6ew778g1N9DB1v3p/Drc1vIZ3DvmxtP5dvAA+dq3M4jsU/0yJJasZnKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVSkOdb/r5DLk5zZ/++Nzye5a5IvJ5no69wnyY/meKjSrAwVaeewHDitqg4Ffkn3G+TSvGOoSDuHH1bVJf36Wrp/SiXNO4aKtHO4aWD9Vro/ZngLt3+N7r7DRyRtB0NF2nn9CHhov/7nczgOaWSGirTzejvwwiRfo/u/N9JOz79SLElqxisVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc38f4+cKLx2rH64AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lamb rho\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAegklEQVR4nO3df5RdZX3v8feHSSBBwKFl0JAEEjCwGhBCehpyl4IWUSYpErysexeKF8XakC5jey/Xa0G6kB+l1fqDK0skF7yxcCXNzbLlmiIU0Da2akMykSQQJDoEMANRBjBgTBpM+N4/9jOyc3Imc07y7Jkz8HmttVfOfn7s/Tx7TuYz+8eZUURgZmaWw0EjPQAzM3vtcKiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMRtlJL1TUt9Ij6NM0gZJ79xH/ackfXX4RmQjxaFiw0rSk5J2SNom6eeSvibpsJEe175ImiIpJI3JtL1xkrZKOrtB3Y2SvpFjP/sjzfNX6evztKQvSuoYql9EnBwRK/ZR/5cR8dGsg7W25FCxkfDeiDgMmAn8HvDnrXRWYdS8d+vDKCL+Hfi/wCV17TqA9wO3D9/oGjotfX3eBXwA+KMD2ViuMLbRYdT8x7TXnoh4GrgXOEXSkZLultQv6Rfp9aSBtpJWSLpB0veB7cDxki6V9CNJv5S0SdJlpfbvlNQn6ZOSnpW0RdIFkuZK+rGkFyR9qtT+IElXSHpc0vOSlkn6rVT9L+nfrekn+P+Q+nwk7f8Xku6TdFxpeyHpY5J+AvykwfRvBy6UdGip7FyK/5P37mtu9dK+3lJa/xtJf1FaP0/S2nR29ANJpw7+VXlVRDwG/CvF1+cESf+Ujs1zku6U1Fnax5OSzkmvr5H0DUlfl/QS8OFU9vVUP3Dm9yFJP03bu6q0rfGSbk/H9Ufpa9hXqv+zdBb1S0kbJb2rmfnY8HCo2IiRNBmYCzxE8V78GnAccCywA/hyXZf/AswHDgeeAp4FzgOOAC4FbpQ0s9T+zcA4YCJwNXAb8EHgd4EzgaslHZ/a/glwAfAO4BjgF8DNqe6s9G9nRBwWEf8m6QLgU8B/BLoovvn+bd14LwDOAKbXzz0ifgBsSf3L81sSEbuamFtTUp/FwGXAbwP/C1gu6ZAm+k6nOE4PAQL+iuLY/A4wGbhmH93nAd8AOoE7B2nzduAkijOiqyX9Tir/NDAFOB54N8XXbGBMJwELgd+LiMMpgvjJoeZiwygivHgZtoXiG8A2YCtFMHwFGN+g3QzgF6X1FcB1Q2z7/wF/ml6/kyKYOtL64UAAZ5TarwEuSK9/BLyrVDcB+DUwhuIbXABjSvX3An9YWj+I4gzquLQewNlDjPfPgfvT6yNS/9ObnFtfqS6At5TW/wb4i/T6FuD6um1tBN4xyH4CeIkiVB8H/gI4qEG7C4CH6r6u56TX1wD/Utf+GuDr6fXA8ZxUql8FXJRebwLOLdV9dGC+wFsoAvccYOxIv5+97L34WqeNhAsi4tvlgnQZ6EagGzgyFR8uqSMidqf1zXV95lD8VHsixTf1Q4GHS02eL/Xdkf79eal+BzDwkMBxwF2SXinV7wbeNMgcjgO+JOkL5SFRnBU91Wi8DdwBfFrSRIqfuHsj4qEm59as44APSfp4qexgijOOwcyMiN5ygaSjgZsozlwOT2P6xT62MdTcAX5Wer2dV78Wx9T1/83riOiV9F8pQupkSfcBl0fEM03sz4aBL39Zu/jvFJdCzoiII3j1kpNKbX7zK7XT5Zu/Az4PvCkiOoF76tq3YjMwJyI6S8u4KO77NPpV3puBy+raj4/istZe420kIn5KcdnsYopLX3fs59y2U4TOgDfXjfOGunEeGhH1l+qG8ldpPqemr88H9zEeGGLuQ9gCTCqtT95jwxFLIuLtFIEZwGcPYF+WmUPF2sXhFGcOW9MN8k8P0f5g4BCgH9iVfrJ/zwHsfxFww8DNdkldkualun7gFYpr/OX2V0o6ObV/o6T/tB/7vZ3iHsHbePXeQ6tzWwt8QFKHpG6K+0IDbgMWSDpDhTdI+gNJh7c4zsNJly3TmdX/aLF/K5ZRHNsj074WDlRIOknS2Sl4/53iPbN7kO3YCHCoWLv4n8B44DlgJfCP+2ocEb+kuLm+jOIyzAeA5Qew/y+l/vdL+mUawxlpX9uBG4DvpyeoZkfEXRQ/IS9NTzg9AszZj/1+g+Jy33ciYst+zu1PgfdS3Ke6mOL+C2lbPRSPBH85basX+PB+jPNaikfAXwS+Bfz9fmyjWdcBfcATwLcpjtHOVHcI8BmK98nPgKMpHpiwNqEI/5EuM2tfkv6Y4ib+O4ZsbCPOZypm1lYkTZD0tvTZoZMo7rfdNdLjsub46S8zazcHU3yeZirFJb2lFI+e2yjgy19mZpaNL3+ZmVk2r+vLX0cddVRMmTJlpIdhZjaqrFmz5rmI6GpU97oOlSlTptDT0zPSwzAzG1UkPTVYnS9/mZlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNpWGiqRuSRsl9Uq6okG9JN2U6tdLmpnKx0laJWmdpA2Sri31uUbS05LWpmVuKp8iaUepfFGVczMzs71V9ueEJXUANwPvBvqA1ZKWR8SjpWZzgGlpOQO4Jf27Ezg7IrZJGgt8T9K9EbEy9bsxIj7fYLePR8SMamZkZmZDqfJMZRbQGxGbIuJlYCkwr67NPOCOKKwEOiVNSOvbUpuxaYkKx2pmZhlUGSoTgc2l9b5U1lQbSR2S1gLPAg9ExIOldgvT5bLFko4slU+V9JCk70o6s9GgJM2X1COpp7+/f/9mZmZmDVUZKmpQVn+2MWibiNidLmVNAmZJOiXV3wKcAMwAtgBfSOVbgGMj4nTgcmCJpCP22njErRFRi4haV1dXazMyM7N9qjJU+oDJpfVJwDOttomIrcAKoDut/zwFzivAbRSX2YiInRHxfHq9BngcODHTXMzMrAlVhspqYJqkqZIOBi4Clte1WQ5ckp4Cmw28GBFbJHVJ6gSQNB44B3gsrU8o9X8f8Egq70oPByDpeIqb/5sqm52Zme2lsqe/ImKXpIXAfUAHsDgiNkhakOoXAfcAc4FeYDtwaeo+Abg9hcRBwLKIuDvV/bWkGRSXyZ4ELkvlZwHXSdoF7AYWRMQLVc3PzMz2pojX70NVtVotenp6RnoYZmajiqQ1EVFrVOdP1JuZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsm0pDRVK3pI2SeiVd0aBekm5K9eslzUzl4yStkrRO0gZJ15b6XCPpaUlr0zK3VHdl2tZGSedWOTczM9vbmKo2LKkDuBl4N9AHrJa0PCIeLTWbA0xLyxnALenfncDZEbFN0ljge5LujYiVqd+NEfH5uv1NBy4CTgaOAb4t6cSI2F3VHM3MbE9VnqnMAnojYlNEvAwsBebVtZkH3BGFlUCnpAlpfVtqMzYtMcT+5gFLI2JnRDwB9KYxmJnZMKkyVCYCm0vrfamsqTaSOiStBZ4FHoiIB0vtFqbLZYslHdnC/pA0X1KPpJ7+/v79mJaZmQ2mylBRg7L6s41B20TE7oiYAUwCZkk6JdXfApwAzAC2AF9oYX9ExK0RUYuIWldX11BzMDOzFlQZKn3A5NL6JOCZVttExFZgBdCd1n+eAucV4DZevcTVzP7MzKxCVYbKamCapKmSDqa4ib68rs1y4JL0FNhs4MWI2CKpS1IngKTxwDnAY2l9Qqn/+4BHStu6SNIhkqZS3PxfVdHczMysgcqe/oqIXZIWAvcBHcDiiNggaUGqXwTcA8yluKm+Hbg0dZ8A3J6eIDsIWBYRd6e6v5Y0g+LS1pPAZWl7GyQtAx4FdgEf85NfZmbDSxFDPVT12lWr1aKnp2ekh2FmNqpIWhMRtUZ1/kS9mZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLJxqJiZWTYOFTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmZpaNQ8XMzLKpNFQkdUvaKKlX0hUN6iXpplS/XtLMVD5O0ipJ6yRtkHRtg76fkBSSjkrrUyTtkLQ2LYuqnJuZme1tTFUbltQB3Ay8G+gDVktaHhGPlprNAaal5QzglvTvTuDsiNgmaSzwPUn3RsTKtO3Jabs/rdvt4xExo6o5mZnZvlV5pjIL6I2ITRHxMrAUmFfXZh5wRxRWAp2SJqT1banN2LREqd+NwCfryszMbIRVGSoTgc2l9b5U1lQbSR2S1gLPAg9ExIOp/Hzg6YhY12CfUyU9JOm7ks5sNChJ8yX1SOrp7+/fn3mZmdkgqgwVNSirP7MYtE1E7E6XsiYBsySdIulQ4Crg6gb9tgDHRsTpwOXAEklH7LXxiFsjohYRta6uruZnY2ZmQ6oyVPqAyaX1ScAzrbaJiK3ACqAbOAGYCqyT9GRq/0NJb46InRHxfOqzBngcODHTXMzMrAlVhspqYJqkqZIOBi4Clte1WQ5ckp4Cmw28GBFbJHVJ6gSQNB44B3gsIh6OiKMjYkpETKEIpZkR8bPUpyP1OZ7i5v+mCudnZmZ1Knv6KyJ2SVoI3Ad0AIsjYoOkBal+EXAPMBfoBbYDl6buE4DbU0gcBCyLiLuH2OVZwHWSdgG7gQUR8ULueZmZ2eAU8fp9gKpWq0VPT89ID8PMbFSRtCYiao3q/Il6MzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZNBUqkt4o6UZJPWn5gqQ3Vj04MzMbXZo9U1kMvAT857S8BHytqkGZmdno1GyonBARn46ITWm5Fjh+qE6SuiVtlNQr6YoG9ZJ0U6pfL2lmKh8naZWkdZI2SLq2Qd9PSApJR5XKrkzb2ijp3CbnZmZmmTQbKjskvX1gRdLbgB376iCpA7gZmANMB94vaXpdsznAtLTMB25J5TuBsyPiNGAG0C1pdmnbk4F3Az8tlU0HLgJOBrqBr6QxmI0qv3z+Gf7577/IY6vuGemhmLVsTJPtFgB3pPsoAl4APjxEn1lAb0RsApC0FJgHPFpqMw+4IyICWCmpU9KEiNgCbEttxqYlSv1uBD4JfLNuW0sjYifwhKTeNIZ/a3KOZm3hq7f9MT396zhEY7m+82gmnlgb6SGZNa2pUImIdcBpko5I6y810W0isLm03gec0USbicCWdJaxBngLcHNEPAgg6Xzg6YhYJ6l+WysbbGsPkuZTnBVx7LHHNjENs+H1q5e3cbDGsptX2Llj29AdzNpIU6Ei6RDgQmAKMGbgm3lEXLevbg3Kotk2EbEbmCGpE7hL0inAJuAq4D37uT8i4lbgVoBarbZXvdlI++gHb+Qfv/Ulpkx6K1PfetZID8esJc1e/vom8CLFmcPOJvv0AZNL65OAZ1ptExFbJa2guE9yHzAVGDhLmQT8UNKsJvdn1vbefPypfPjj/3ukh2G2X5oNlUkR0d3itlcD0yRNBZ6muIn+gbo2y4GF6X7LGcCLEbFFUhfw6xQo44FzgM9GxMPA0QOdJT0J1CLiOUnLgSWSvggcQ3Hzf1WLYzYzswPQbKj8QNJb0zf1pkTELkkLKc4uOoDFEbFB0oJUvwi4B5gL9ALbgUtT9wnA7em+ykHAsoi4e4j9bZC0jOJBgF3Ax9IlNDMzGyYqHrwapFJ6mOJexXjgWIp7GjtTWUTEqcMxyKrUarXo6ekZ6WGYmY0qktZERMPHEoc6UzmP4kxh4CksMzOzQe0zVCLiKQBJfwscHRGrh2VUZmY2KjV7T+X3gcskPQX8itfI5S8zM8ur2VCZU+kozMzsNaHZT9Q/VfVAzMxs9PMf6TIzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCybSkNFUrekjZJ6JV3RoF6Sbkr16yXNTOXjJK2StE7SBknXlvpcn9qulXS/pGNS+RRJO1L5WkmLqpybmZntrbJQkdQB3EzxVyOnA++XNL2u2RxgWlrmA7ek8p3A2RFxGjAD6JY0O9V9LiJOjYgZwN3A1aXtPR4RM9KyoIJpmZnZPlR5pjIL6I2ITRHxMrAUmFfXZh5wRxRWAp2SJqT1banN2LQEQES8VOr/hoFyMzMbeVWGykRgc2m9L5U11UZSh6S1wLPAAxHx4EAjSTdI2gxczJ5nKlMlPSTpu5LObDQoSfMl9Ujq6e/v38+pmZlZI1WGihqU1Z9VDNomInanS1yTgFmSTvlNg4irImIycCewMBVvAY6NiNOBy4Elko7Ya+MRt0ZELSJqXV1drc7JzMz2ocpQ6QMml9YnAc+02iYitgIrgO4G+1gCXJja7YyI59PrNcDjwIn7PXozM2tZlaGyGpgmaaqkg4GLgOV1bZYDl6SnwGYDL0bEFkldkjoBJI0HzgEeS+vTSv3PL5V3pYcDkHQ8xc3/TZXNzszM9jKmqg1HxC5JC4H7gA5gcURskLQg1S8C7gHmAr3AduDS1H0CcHsKiYOAZRFxd6r7jKSTgFeAp4CBp7zOAq6TtAvYDSyIiBeqmp+Zme1NEa/fh6dqtVr09PSM9DDMzEYVSWsiotaozp+oNzOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2lYaKpG5JGyX1SrqiQb0k3ZTq10uamcrHSVolaZ2kDZKuLfW5PrVdK+l+SceU6q5M29oo6dwq52ZmZnurLFQkdQA3A3OA6cD7JU2vazYHmJaW+cAtqXwncHZEnAbMALolzU51n4uIUyNiBnA3cHXa33TgIuBkoBv4ShqDmZkNkyrPVGYBvRGxKSJeBpYC8+razAPuiMJKoFPShLS+LbUZm5YAiIiXSv3fMFCetrU0InZGxBNAbxqDmZkNkypDZSKwubTel8qaaiOpQ9Ja4FnggYh4cKCRpBskbQYuJp2pNLk/JM2X1COpp7+/f3/mZWZmg6gyVNSgLJptExG70yWuScAsSaf8pkHEVRExGbgTWNjC/oiIWyOiFhG1rq6uoWdhZmZNqzJU+oDJpfVJwDOttomIrcAKivsk9ZYAF7awPzMzq1CVobIamCZpqqSDKW6iL69rsxy4JD0FNht4MSK2SOqS1AkgaTxwDvBYWp9W6n/+QHna1kWSDpE0leLm/6qK5mZmZg2MqWrDEbFL0kLgPqADWBwRGyQtSPWLgHuAuRQ31bcDl6buE4Db09NbBwHLIuLuVPcZSScBrwBPAQPb2yBpGfAosAv4WETsrmp+Zma2N0XsddvhdaNWq0VPT89ID8PMbFSRtCYiao3q/Il6MzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWXjUDEzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCwbh4qZmWVTaahI6pa0UVKvpCsa1EvSTal+vaSZqXycpFWS1knaIOnaUp/PSXostb9LUmcqnyJph6S1aVlU5dzMzGxvlYWKpA7gZmAOMB14v6Tpdc3mANPSMh+4JZXvBM6OiNOAGUC3pNmp7gHglIg4FfgxcGVpe49HxIy0LKhgWmZmtg9VnqnMAnojYlNEvAwsBebVtZkH3BGFlUCnpAlpfVtqMzYtARAR90fErlS3EphU4RzMzKwFVYbKRGBzab0vlTXVRlKHpLXAs8ADEfFgg318BLi3tD5V0kOSvivpzEaDkjRfUo+knv7+/pYmZGZm+1ZlqKhBWTTbJiJ2R8QMijORWZJO2aOjdBWwC7gzFW0Bjo2I04HLgSWSjthr4xG3RkQtImpdXV2tzMfMzIZQZaj0AZNL65OAZ1ptExFbgRVA90CZpA8B5wEXR8RACO2MiOfT6zXA48CJGeZhZmZNqjJUVgPTJE2VdDBwEbC8rs1y4JL0FNhs4MWI2CKpq/RU13jgHOCxtN4N/BlwfkRsH9hQ6tORXh9PcfN/U4XzMzOzOmOq2nBE7JK0ELgP6AAWR8QGSQtS/SLgHmAu0AtsBy5N3ScAt6eQOAhYFhF3p7ovA4cAD0gCWJme9DoLuE7SLmA3sCAiXqhqfmZmtjelq0evS7VaLXp6ekZ6GGZmo4qkNRFRa1TnT9SbmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyycaiYmVk2DhUzM8vGoWJmZtk4VMzMLBuHipmZZeNQMTOzbBwqZmaWjUPFzMyyeV3/kS5J/cBTIzyMo4DnRngMrfKYh8doG/NoGy94zPvruIjoalTxug6VdiCpZ7C/oNauPObhMdrGPNrGCx5zFXz5y8zMsnGomJlZNg6VkXfrSA9gP3jMw2O0jXm0jRc85ux8T8XMzLLxmYqZmWXjUDEzs2wcKhlI6pa0UVKvpCsa1EvSTal+vaSZqXycpFWS1knaIOnaUp/PSXostb9LUmcqnyJph6S1aVnUJuO9PrVdK+l+SceU6q5M29oo6dxWxzvcY85xjKsac6nvJySFpKNKZW15nAcbcxu/l6+R9HRpXHNLdW15jAcbc673cksiwssBLEAH8DhwPHAwsA6YXtdmLnAvIGA28GAqF3BYej0WeBCYndbfA4xJrz8LfDa9ngI80objPaLU/0+ARen19LSPQ4Cpad8dbT7mAzrGVY45lU0G7qP44O5R7X6c9zHmdn0vXwN8osH+2vYY72PMB/xebnXxmcqBmwX0RsSmiHgZWArMq2szD7gjCiuBTkkT0vq21GZsWgIgIu6PiF2pbiUwqc3H+1Kp/xsGytO2lkbEzoh4AuhNY2jnMedQyZiTG4FP1pW17XHex5gPVJXjbaTdj3FbcKgcuInA5tJ6Xyprqo2kDklrgWeBByLiwQb7+AjFTy4Dpkp6SNJ3JZ3ZLuOVdIOkzcDFwNUt7K/dxgwHdowrG7Ok84GnI2Ldfuyv3cYMbfpeBhamS0+LJR3Zwv7abcxw4O/lljhUDpwalNX/9DBom4jYHREzKM5EZkk6ZY+O0lXALuDOVLQFODYiTgcuB5ZIOqIdxhsRV0XE5DTWhS3sr93GfKDHuJIxSzoUuIo9w6+V/Q1luMfcru/lW4ATgBlpjF9oYX9DGe4x53gvt8ShcuD6KK4XD5gEPNNqm4jYCqwAugfKJH0IOA+4OCIG3lQ7I+L59HoNxfXZE9thvCVLgAtb2F9bjTnDMa5qzCdQXMtfJ+nJ1P6Hkt7c5P7aaszt+l6OiJ+nb96vALfx6iWudj3Gg44503u5NTGMN3BeiwswBthE8R9n4MbbyXVt/oA9b7ytSuVdQGd6PR74V+C8tN4NPAp01W2ri3RzkOJm39PAb7XBeKeV+n8c+EZ6fTJ73tzcROs3N4d7zAd0jKscc13/J3n1pnfbHud9jLld38sTSv3/G8V9lLY+xvsY8wG/l1tdKtvw62mheFrjxxQ/BVyVyhYAC9JrATen+oeBWio/FXgIWA88Alxd2mYvxXXVtWkZeDLpQmBDejP+EHhvm4z371LZeuAfgImluqvStjYCc9roGDccc45jXNWY67b/JOkbdDsf58HG3Mbv5f+T2q4HlrPnN+y2PMaDjTnXe7mVxb+mxczMsvE9FTMzy8ahYmZm2ThUzMwsG4eKmZll41AxM7NsHCpmw0TStqFbNbWdayR9Ise2zHJzqJiZWTYOFbNhJukwSd+R9ENJD0ual8qnqPgbOl+V9IikOyWdI+n7kn4iqfwbcU+T9E+p/I9GaCpme/GHH82GiaRtEXGYpDHAoRHxkoo/WLUSmAYcR/GbFE6n+BT0aopPQv8hcD5waURcIOka4H0Uv8LjDRSfsj4jIlr9PVRm2flMxWz4CfhLSeuBb1P8WvM3pbonIuLhKH4x4AbgO1H85PcwxR9cGvDNiNgREc8B/0zrf9fDrBJjRnoAZq9DF1P8or/fjYhfp9/eOy7V7Sy1e6W0/gp7/n+tv8TgSw7WFnymYjb83gg8mwLl9ykue7VqXvqb5b8NvJPiUpnZiPOZitnwuxP4B0k9FL+B+rH92MYq4FvAscD1vp9i7cI36s3MLBtf/jIzs2wcKmZmlo1DxczMsnGomJlZNg4VMzPLxqFiZmbZOFTMzCyb/w9ATxE0BDQ0+AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lamb kappa\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAf3UlEQVR4nO3df7xVdZ3v8ddbENTUwQLLwAQLfYymmW6FuRNlpgWm4bVbYow4TjOEM9jM7dZcy/FHltOPmW53uDowOqFRCjrmjzOll6Yas2v+4BAnBJPxSJgHGDn+IgzCkM/9Y313Ljb7cPY+nO85G3o/H4/12Gt9v9/1XZ+1zmZ/WGt999qKCMzMzHLaZ7ADMDOzvZ+TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjtpeQdKqkrsGOo0zSSkmn7qL+M5L+eeAissHiZGMtQdIaSVskvSTpGUk3SjpwsOPaFUljJYWkof3U336SXpR0Wp26r0q6vT+20xdpP3+V/j5rJf0vSUN6Wy8ijo2I+3ZR/7cR8af9Gqy1JCcbayVnR8SBwInAycDfNLOyCnvMe7o2SUXEr4FbgRk17YYA5wNfH7jo6npb+vu8B/gI8Ge701l/JWnbM+wx/zDtd0dErAXuBd4q6RBJ35bULemFND+m2lbSfZKukfQAsBk4UtJFkn4maZOk1ZI+Vmp/qqQuSX8taYOk9ZLOkXSmpP+Q9Lykz5Ta7yPpUklPSnpO0m2SXpuq70+vL6b/8f9BWudP0vZfkLRY0hGl/kLSX0h6Aniizu5/HfigpANKZe+j+Ld67672rVba1ltKyzdJ+nxp+SxJHels6seSju/5r/KqiHgc+BHF3+fNkn6Qjs2zkm6WNKK0jTWSTk/zV0m6XdI3Jf0S+ONU9s1UXz1TvFDSL1J/l5X62l/S19Nx/Vn6G3aV6v9nOuvaJGmVpPc0sj82MJxsrOVIOhw4E1hG8R69ETgCeBOwBbi2ZpULgJnAQcBTwAbgLOBg4CLgq5JOLLV/A7AfMBq4ArgB+CPgJGAScIWkI1PbjwPnAO8C3gi8AFyX6t6ZXkdExIER8aCkc4DPAOcCoyg+lBfWxHsOMAE4pnbfI+LHwPq0fnn/bomIbQ3sW0PSOvOBjwGvA/4JaJM0vIF1j6E4TssAAV+gODa/DxwOXLWL1acCtwMjgJt7aPMO4GiKM6grJP1+Kr8SGAscCZxB8TerxnQ0MBs4OSIOokjQa3rbFxtAEeHJ06BPFB8MLwEvUiSMfwT2r9PuBOCF0vJ9wNW99H0X8Jdp/lSKhDUkLR8EBDCh1H4pcE6a/xnwnlLdYcBvgKEUH3wBDC3V3wt8tLS8D8UZ1xFpOYDTeon3b4DvpvmD0/pvb3Dfukp1AbyltHwT8Pk0Pxf4XE1fq4B39bCdAH5JkWyfBD4P7FOn3TnAspq/6+lp/irg/pr2VwHfTPPV4zmmVP8IMC3NrwbeV6r70+r+Am+hSMSnA/sO9vvZ086Tr5laKzknIr5XLkiXk74KTAYOScUHSRoSEa+k5adr1plC8b/goyg+7A8AHi01ea607pb0+kypfgtQHZxwBHCnpO2l+leA1/ewD0cA/yDpK+WQKM6inqoXbx0LgCsljab4H3pnRCxrcN8adQRwoaRLSmXDKM5QenJiRHSWCyQdCsyhONM5KMX0wi766G3fAf6zNL+ZV/8Wb6xZ/7fzEdEp6a8oktexkhYDn4iIdQ1szwaAL6NZq/sfFJdUJkTEwbx66UqlNr99dHm6DPQt4O+B10fECOCemvbNeBqYEhEjStN+UdxXqvfI9KeBj9W03z+Ky2M7xVtPRPyC4vLbdIpLaAv6uG+bKZJR1Rtq4rymJs4DIqL2kl9vvpD25/j09/mjXcQDvex7L9YDY0rLh+/QccQtEfEOikQawJd2Y1vWz5xsrNUdRHGm8WK6MX9lL+2HAcOBbmBbOhN4725sfx5wTfUmv6RRkqamum5gO8U9hHL7T0s6NrX/PUkf6sN2v05xD+IPefXeRrP71gF8RNIQSZMp7jtV3QDMkjRBhddIer+kg5qM8yDS5c90JvapJtdvxm0Ux/aQtK3Z1QpJR0s6LSXkX1O8Z17poR8bBE421ur+N7A/8CzwEPB/d9U4IjZR3NS/jeJyzkeAtt3Y/j+k9b8raVOKYULa1mbgGuCBNKJrYkTcSfE/6kVpxNUKYEoftns7xWXD70fE+j7u218CZ1PcB5tOcX+H1Fc7xdDla1NfncAf9yHOz1IMVd8IfAe4ow99NOpqoAv4OfA9imO0NdUNB75I8T75T+BQioEa1iIU4R9PM7M9j6SLKQYPvKvXxjbofGZjZnsESYdJ+sP03aejKe7n3TnYcVljPBrNzPYUwyi+DzSO4tLgIooh8rYH8GU0MzPLzpfRzMwsO19G68HIkSNj7Nixgx2GmdkeY+TIkSxevHhxREyurXOy6cHYsWNpb28f7DDMzPYokkbWK/dlNDMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLLmuykTRZ0ipJnZIurVMvSXNS/XJJJ5bq5kvaIGlFzTq3SupI0xpJHal8eqm8Q9J2SSekuvtSHNW6Q3Put5mZ7Sjbz0JLGgJcB5wBdAFLJLVFxGOlZlOA8WmaAMxNrwA3AdcCC8r9RsR5pW18BdiYym8Gbk7lxwF3R0RHadXpEeHfeTYzGwQ5z2xOATojYnVEvAwsAqbWtJkKLIjCQ8AISYcBRMT9wPM9dS5JwIeBhXWqz++h3MzMBkHOZDMaeLq03JXKmm3Tk0nAMxHxRJ2689g52dyYLqFdnhLVTiTNlNQuqb27u7vBMMzMrDc5k029D/ToQ5ue1D17kTQB2BwR5Xs90yPiOIoENQm4oF6HEXF9RFQiojJq1KgGwzAzs97kTDZdwOGl5THAuj602YmkocC5wK11qqdRk4QiYm163QTcQnGJz8zMBkjOZLMEGC9pnKRhFEmgraZNGzAjjUqbCGyMiPUN9H068HhEdJULJe0DfIji/lC1bKikkWl+X+AsYIcRbmZmlle20WgRsU3SbGAxMASYHxErJc1K9fOAe4AzgU5gM3BRdX1JC4FTgZGSuoArI+JrqXqns5fknUBXRKwulQ0HFqdEMwT4HnBDv+2omZn1ShGN3iL53VKpVKK93SOlzcyaIWlpRFRqy/0EATMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCy7rMlG0mRJqyR1Srq0Tr0kzUn1yyWdWKqbL2mDpBU169wqqSNNayR1pPKxkraU6uaV1jlJ0qNpO3MkKeNum5lZjWzJRtIQ4DpgCnAMcL6kY2qaTQHGp2kmMLdUdxMwubbfiDgvIk6IiBOAbwF3lKqfrNZFxKxS+dzUf3VbO/VrZmb55DyzOQXojIjVEfEysAiYWtNmKrAgCg8BIyQdBhAR9wPP99R5Ojv5MLBwV0Gk/g6OiAcjIoAFwDl93CczM+uDnMlmNPB0abkrlTXbpieTgGci4olS2ThJyyT9UNKk0ja6GtmGpJmS2iW1d3d3NxiGmZn1JmeyqXdfJPrQpifns+NZzXrgTRHxduATwC2SDm5mGxFxfURUIqIyatSoBsMwM7PeDM3YdxdweGl5DLCuD212ImkocC5wUrUsIrYCW9P8UklPAkelbYxpdhtmZtZ/cp7ZLAHGSxonaRgwDWiradMGzEij0iYCGyNifQN9nw48HhG/vTwmaVQalICkIykGAqxO/W2SNDHd55kB3L3be2dmZg3LdmYTEdskzQYWA0OA+RGxUtKsVD8PuAc4E+gENgMXVdeXtBA4FRgpqQu4MiK+lqqnsfPAgHcCV0vaBrwCzIqI6gCDiylGt+0P3JsmMzMbICoGaFmtSqUS7e3tgx2GmdkeRdLSiKjUlvsJAmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2WZONpMmSVknqlHRpnXpJmpPql0s6sVQ3X9IGSStq1rlVUkea1kjqSOVnSFoq6dH0elppnftSHNX1Ds2422ZmVmNoro4lDQGuA84AuoAlktoi4rFSsynA+DRNAOamV4CbgGuBBeV+I+K80ja+AmxMi88CZ0fEOklvBRYDo0urTo+I9v7ZOzMza0bOM5tTgM6IWB0RLwOLgKk1baYCC6LwEDBC0mEAEXE/8HxPnUsS8GFgYWq/LCLWpeqVwH6ShvfrHpmZWZ/kTDajgadLy13seKbRaJueTAKeiYgn6tR9EFgWEVtLZTemS2iXp0S1E0kzJbVLau/u7m4wDDMz603OZFPvAz360KYn55POanboUDoW+BLwsVLx9Ig4jiJBTQIuqNdhRFwfEZWIqIwaNarBMMzMrDc5k00XcHhpeQywrg9tdiJpKHAucGtN+RjgTmBGRDxZLY+Itel1E3ALxSU+MzMbIDmTzRJgvKRxkoYB04C2mjZtwIw0Km0isDEi1jfQ9+nA4xHRVS2QNAL4DvDpiHigVD5U0sg0vy9wFrACMzMbMNmSTURsA2ZTjAr7GXBbRKyUNEvSrNTsHmA10AncAPx5dX1JC4EHgaMldUn6aKn7aex8CW028Bbg8pohzsOBxZKWAx3A2rQtMzMbIIpo9BbJ75ZKpRLt7R4pbWbWDElLI6JSW+4nCJiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXX8M9CS3o/cCywX7UsIq7OEZSZme1dGjqzkTQPOA+4hOIHzz4EHJExLjMz24s0ehntv0TEDOCFiPgs8Afs+KNnZmZmPWo02WxJr5slvRH4DTAuT0hmZra3afSezbfTL2H+HfATIPAPkJmZWYMaSjYR8bk0+y1J3wb2i4iN+cIyM7O9SUPJRtJ+FD/Z/A6Ks5r/J2luRPw6Z3BmZrZ3aPQy2gJgE/B/0vL5wDcoRqWZmZntUqPJ5uiIeFtp+d8l/TRHQGZmtvdpdDTaMkkTqwuSJgAP9LaSpMmSVknqlHRpnXpJmpPql0s6sVQ3X9IGSStq1rlVUkea1kjqKNV9OvW1StL7SuUnSXo01c2RpAb328zM+kGjyWYC8OP04b4GeBB4V/oAX15vBUlDgOuAKcAxwPmSjqlpNgUYn6aZwNxS3U3A5Np+I+K8iDghIk4AvgXckbZ3DDCN4ikHk4F/TDGQ+p1Z2tZO/Zq1uti+nZ/84GZ+1HYtL295abDDMWtKo5fR+vLhfArQGRGrASQtAqYCj5XaTAUWREQAD0kaIemwiFgfEfdLGttT5+ns5MPAaaW+FkXEVuDnkjqBU1JyPDgiHkzrLQDOAe7twz6ZDZqO+2/lK9+5jIig+7lfcO5FXx7skMwa1tCZTUQ8BbyO4gP9A8DrIuKp6tTDaqOBp0vLXams2TY9mQQ8ExFP9NLX6DTf6zYkzZTULqm9u7u7wTDMBsbWX/+KINhH+/CrLb8c7HDMmtLo0OcrKEae3ZGKbpT0LxHx+V2tVqcs+tCmJ+cDCxvoq+FtRMT1wPUAlUql0TjMBsRJp36EaRt+zkubX+TsD1022OGYNaXRy2jnA2+vfq9G0hcpniSwq2TTxY7PTxsDrOtDm51IGgqcC5zUQF9dab6pbZi1mn33O4APzLhmsMMw65NGBwisofTTAsBw4Mle1lkCjJc0TtIwipv3bTVt2oAZaVTaRGBjRKxvIJ7Tgccjonx5rA2YJmm4pHEUAwEeSf1tkjQx3eeZAdzdwDbMzKyfNHpmsxVYKenfKC5BnUHxFIE5ABHx8doVImKbpNnAYmAIMD8iVkqalernAfcAZwKdwGbgour6khYCpwIjJXUBV0bE11L1NHa8hEbq+zaKAQjbgL+IiFdS9cUUo9v2pxgY4MEBZmYDSMVAsF4aSRfuqj4ivt5vEbWISqUS7e3tgx2GmdkeRdLSiKjUljf6IM69LpmYmdnAaXQ02njgCxRfziz/LPSRmeIyM7O9SKMDBG6k+Bb+NuDdFA/m/EauoMzMbO/SaLLZPyK+T3GP56mIuIpXv7lvZma2S42ORvu1pH2AJ9IIs7XAofnCMjOzvUmjZzZ/BRwAfJzii5QXAN/MFJOZme1lGk02/wSMi4iuiLgI+BfgrHxhmZnZ3qTRy2j/Dbhd0nSKn4a+AHhvtqjMzGyv0uj3bFZLmgbcRfFk5fdFxJacgZmZ2d5jl8lG0qPs+ITk11I8euZhSUTE8TmDMzOzvUNvZza+L2NmZrttl8lmFz+MZmZm1rBGR6OZmZn1mZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZZk42kyZJWSeqUdGmdekmak+qXSzqxVDdf0gZJK+qsd0nqd6WkL6ey6ZI6StN2SSekuvtS+2qdf4vHzGwANfrU56ZJGgJcB5wBdAFLJLVFxGOlZlOA8WmaQPHT0xNS3U3AtRQ/QV3u993AVOD4iNhaTRwRcTNwc2pzHHB3RHSUVp0eEe39uY9mZtaYnGc2pwCdEbE6Il4GFlEkibKpwIIoPASMkHQYQETcDzxfp9+LgS9GxNbUbkOdNucDC/tpP8zMbDflTDajKX6OoKorlTXbptZRwCRJD0v6oaST67Q5j52TzY3pEtrlklSvY0kzJbVLau/u7u4lDDMza1TOZFPvAz360KbWUOAQYCLwKeC2cvKQNAHYHBHlez3TI+I4YFKaLqjXcURcHxGViKiMGjWqlzDMzKxROZNNF3B4aXkMsK4Pber1e0e69PYIsB0YWaqfRs1ZTUSsTa+bgFsoLvGZmdkAyZlslgDjJY2TNIwiCbTVtGkDZqRRaROBjRGxvpd+7wJOA5B0FDAMeDYt7wN8iOL+EKlsqKSRaX5fit/o2WmEm5mZ5ZNtNFpEbJM0G1hM8eue8yNipaRZqX4ecA9wJtAJbAYuqq4vaSFwKjBSUhdwZUR8DZgPzE9Dol8GLoyI6qW3dwJdEbG6FMpwYHFKNEOA7wE3ZNptMzOrQ69+TltZpVKJ9naPlDYza4akpRFRqS33EwTMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7LImG0mTJa2S1Cnp0jr1kjQn1S+XdGKpbr6kDZJW1FnvktTvSklfTmVjJW2R1JGmeaX2J0l6NG1njiTl2mczM9tZtmQjaQhwHTAFOAY4X9IxNc2mAOPTNBOYW6q7CZhcp993A1OB4yPiWODvS9VPRsQJaZpVKp+b+q9ua6d+zcwsn5xnNqcAnRGxOiJeBhZRJImyqcCCKDwEjJB0GEBE3A88X6ffi4EvRsTW1G7DroJI/R0cEQ9GRAALgHN2Y7/MzKxJOZPNaODp0nJXKmu2Ta2jgEmSHpb0Q0knl+rGSVqWyieVttHVyDYkzZTULqm9u7u7lzDMzKxRQzP2Xe++SPShTa2hwCHAROBk4DZJRwLrgTdFxHOSTgLuknRsM9uIiOuB6wEqlUpvcZiZWYNyntl0AYeXlscA6/rQpl6/d6RLb48A24GREbE1Ip4DiIilwJMUZ0Fdqd9mtmFmZv0oZ7JZAoyXNE7SMGAa0FbTpg2YkUalTQQ2RsT6Xvq9CzgNQNJRwDDgWUmj0qAE0pnOeGB16m+TpIlpFNoM4O7+2UUzM2tEtstoEbFN0mxgMTAEmB8RKyXNSvXzgHuAM4FOYDNwUXV9SQuBU4GRkrqAKyPia8B8YH4aEv0ycGFEhKR3AldL2ga8AsyKiOoAg4spRrftD9ybJjMzGyAqBmhZrUqlEu3t7YMdhpnZHkXS0oio1Jb7CQJmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdlmTjaTJklZJ6pR0aZ16SZqT6pdLOrFUN1/SBkkr6qx3Sep3paQvp7IzJC2V9Gh6Pa3U/r7UviNNh+baZzMz29nQXB1LGgJcB5wBdAFLJLVFxGOlZlOA8WmaAMxNrwA3AdcCC2r6fTcwFTg+IraWEsezwNkRsU7SW4HFwOjSqtMjor0fd9HMzBqU88zmFKAzIlZHxMvAIookUTYVWBCFh4ARkg4DiIj7gefr9Hsx8MWI2JrabUivyyJiXWqzEthP0vB+3yszM2tazmQzGni6tNzFjmcajbapdRQwSdLDkn4o6eQ6bT4ILKsmpOTGdAntckmq17GkmZLaJbV3d3f3EoaZmTUqZ7Kp94EefWhTayhwCDAR+BRwWzl5SDoW+BLwsdI60yPiOGBSmi6o13FEXB8RlYiojBo1qpcwzMysUTmTTRdweGl5DLCuD23q9XtHuvT2CLAdGAkgaQxwJzAjIp6srhARa9PrJuAWikt8ZmY2QHImmyXAeEnjJA0DpgFtNW3agBlpVNpEYGNErO+l37uA0wAkHQUMA56VNAL4DvDpiHig2ljSUEnVZLQvcBaw0wg3MzPLJ1uyiYhtwGyKUWE/A26LiJWSZkmalZrdA6wGOoEbgD+vri9pIfAgcLSkLkkfTVXzgSPTkOhFwIUREWlbbwEurxniPBxYLGk50AGsTdsyM7MBouJz2mpVKpVob/dIaTOzZkhaGhGV2nI/QcDMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy84/ntYDSd3AU4Mcxkjg2UGOoVl7Wsx7WrzgmAfKnhZzK8T7LEBETK6tcLJpYZLa6/3iXSvb02Le0+IFxzxQ9rSYWz1eX0YzM7PsnGzMzCw7J5vWdv1gB9AHe1rMe1q84JgHyp4Wc0vH63s2ZmaWnc9szMwsOycbMzPLzskmI0mTJa2S1Cnp0jr1kjQn1S+XdGIq30/SI5J+KmmlpM+W1vk7SY+n9ndKGpHKx0raIqkjTfNaKObPpbYdkr4r6Y2luk+nvlZJel8rx9vKx7i07iclhaSRpbLdOsYDHXMrH2dJV0laW4rtzFJdK76X68bbX8e4KRHhKcMEDAGeBI4EhgE/BY6paXMmcC8gYCLwcCoXcGCa3xd4GJiYlt8LDE3zXwK+lObHAitaNOaDS+t/HJiX5o9J2xgOjEvbHtLC8bbsMU5lhwOLKb6MPLI/jvEgxdyyxxm4Cvhkne216nu5p3h3+xg3O/nMJp9TgM6IWB0RLwOLgKk1baYCC6LwEDBC0mFp+aXUZt80BUBEfDcitqW6h4Axe0DMvyyt/5pqeeprUURsjYifA50phlaNtz9kiTn5KvDXNWW7e4wHI+b+kDPmelryvdxKnGzyGQ08XVruSmUNtZE0RFIHsAH4t4h4uM42/oTifzpV4yQtk/RDSZNaKWZJ10h6GpgOXNHE9lopXmjRYyzpA8DaiPhpH7bXajFDix7nZHa6jDVf0iFNbK+V4oXdP8ZNcbLJR3XKav+30WObiHglIk6gOHM5RdJbd1hRugzYBtycitYDb4qItwOfAG6RdHCrxBwRl0XE4Sne2U1sr5XibcljLOkA4DJ2TIrNbK83Ax1zSx7nVD8XeDNwQorzK01sr5Xi7Y9j3BQnm3y6KK5HV40B1jXbJiJeBO4DfvtgO0kXAmcB0yOi+mbbGhHPpfmlFNd/j2qVmEtuAT7YxPZaJt4WPsZvprhP8FNJa1L7n0h6Q4Pba6mYW/g4ExHPpA/27cANvHqprCXfyz3F20/HuDkxgDeIfpcmYCiwmuIfVPWG37E1bd7Pjjf8Hknlo4ARaX5/4EfAWWl5MvAYMKqmr1GkG5IUNxnXAq9tkZjHl9a/BLg9zR/LjjdVV9PcTdWBjrdlj3HN+mt49Wb7bh3jQYq5ZY8zcFhp/f9OcZ+mld/LPcW728e42Slbx55+O3rkPyj+13BZKpsFzErzAq5L9Y8ClVR+PLAMWA6sAK4o9dlJcd22I03VkVIfBFamN+lPgLNbKOZvpbLlwL8Co0t1l6W+VgFTWjneVj7GNf2vIX1w98cxHuiYW/k4A99IbZcDbez4Yd6K7+W68fbXMW5m8uNqzMwsO9+zMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMWoCkl3pv1VA/V0n6ZH/0ZdafnGzMzCw7JxuzFiLpQEnfl/QTSY9KmprKx6r4HaN/lrRC0s2STpf0gKQnJJWfMPw2ST9I5X82SLtitgN/qdOsBUh6KSIOlDQUOCAifqnix8QeAsYDR1A8PeLtFN/8XkLx7e+PAh8ALoqIcyRdBfxXiseZvIbim+UTIqLZ56GZ9Suf2Zi1FgF/K2k58D2KR8i/PtX9PCIejeKhiiuB70fxv8VHKX4Mq+ruiNgSEc8C/07zv19j1u+GDnYAZraD6RQPSTwpIn6Tnoi8X6rbWmq3vbS8nR3/LddervDlCxt0PrMxay2/B2xIiebdFJfPmjU1/S7964BTKS65mQ0qn9mYtZabgX+V1E7xVO/H+9DHI8B3gDcBn/P9GmsFHiBgZmbZ+TKamZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXb/H6p1juLpzJoAAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lamb xi\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeiUlEQVR4nO3df5RdZX3v8feHDAkg0NAmaEwCCRpYDUIxHEju0igi1ISCSXEpwZRQahuDjfVer/aiFKEqrdhab7Og4YIGTA0JWQgyrdB41Yu4lEAmZswPIGUI0QxJyQCCwcRgyPf+sZ+BnZMzmXMm88yc6Oe11l5n7+d59rOfvefkfGb/yBlFBGZmZjkdNtgDMDOz33wOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmvyEknSOpc7DHUSZpg6RzDlD/aUlfGbgR2WBx2FhTkLRZ0i5JL0l6RtJtko4e7HEdiKRxkkJSSz/1d4SkFySdW6Puy5Lu6o/t9EXaz1+mn8/Tkv5J0pDe1ouIUyPigQPU/11E/Hm/DtaaksPGmslFEXE0MAk4C/ibRlZW4ZB5T1eHVET8CrgTmFPVbghwKfC1gRtdTX+Qfj7vBj4I/MXBdNZfIW2HhkPmH6b99oiIp4H7gbdIOk7Sv0vqkvTzND+mu62kByRdL+mHwE7gJElXSHpM0g5JmyR9uNT+HEmdkv5a0nZJ2yTNlHSBpP+U9LykT5faHybpKklPSnpO0nJJv5uqH0yvL6Tf+P9bWufP0vZ/LmmFpBNL/YWkv5T0BPBEjd3/GvA+SUeVyt5D8W/1/gPtW7W0rTeXlm+X9PnS8oWS2tPZ1I8knd7zT+U1EfE48AOKn8+bJH0vHZtnJS2RNLy0jc2Szkvz10m6S9LXJf0C+NNU9vVU332meLmkn6X+ri71daSkr6Xj+lj6GXaW6v9XOuvaIWmjpHfXsz82MBw21nQkjQUuANZQvEdvA04ETgB2ATdWrXIZMBc4BvgpsB24EDgWuAL4sqRJpfZvAI4ARgOfAW4F/gQ4E5gKfEbSSantXwEzgXcCbwR+DtyU6t6RXodHxNER8ZCkmcCngYuBkRQfykurxjsTmAxMrN73iPgRsC2tX96/OyJiTx37Vpe0ziLgw8DvAf8HaJU0rI51J1IcpzWAgL+nODa/D4wFrjvA6jOAu4DhwJIe2rwdOIXiDOozkn4/lV8LjANOAs6n+Jl1j+kUYD5wVkQcQxHQm3vbFxtAEeHJ06BPFB8MLwEvUATGvwBH1mh3BvDz0vIDwGd76fubwMfS/DkUgTUkLR8DBDC51H41MDPNPwa8u1Q3Cvg10ELxwRdAS6n+fuBDpeXDKM64TkzLAZzby3j/Bvh2mj82rf/WOvets1QXwJtLy7cDn0/zC4HPVfW1EXhnD9sJ4BcUYfsk8HngsBrtZgJrqn6u56X564AHq9pfB3w9zXcfzzGl+keAWWl+E/CeUt2fd+8v8GaKID4POHyw38+e9p98zdSaycyI+E65IF1O+jIwDTguFR8jaUhEvJKWt1StM53it+CTKT7sjwLWlZo8V1p3V3p9plS/C+h+OOFE4B5Je0v1rwCv72EfTgT+WdKXykOiOIv6aa3x1rAYuFbSaIrf0DsiYk2d+1avE4HLJX20VDaU4gylJ5MioqNcIOl4YAHFmc4xaUw/P0Afve07wH+V5nfy2s/ijVXrvzofER2S/jtFeJ0qaQXw8YjYWsf2bAD4Mpo1u/9JcUllckQcy2uXrlRq8+pXl6fLQN8A/hF4fUQMB+6rat+ILcD0iBhemo6I4r5Sra9M3wJ8uKr9kVFcHttvvLVExM8oLr/NpriEtriP+7aTIoy6vaFqnNdXjfOoiKi+5Nebv0/7c3r6+fzJAcYDvex7L7YBY0rLY/fpOOKOiHg7RZAGcMNBbMv6mcPGmt0xFGcaL6Qb89f20n4oMAzoAvakM4E/PIjt3wxc332TX9JISTNSXRewl+IeQrn9pySdmtr/jqT392G7X6O4B/E2Xru30ei+tQMflDRE0jSK+07dbgXmSZqswusk/ZGkYxoc5zGky5/pTOyTDa7fiOUUx/a4tK353RWSTpF0bgrkX1G8Z17poR8bBA4ba3b/GzgSeBZYCfzHgRpHxA6Km/rLKS7nfBBoPYjt/3Na/9uSdqQxTE7b2glcD/wwPdE1JSLuofiNell64mo9ML0P272L4rLhdyNiWx/37WPARRT3wWZT3N8h9dVG8ejyjamvDuBP+zDOv6V4VP1F4FvA3X3oo16fBTqBp4DvUByj3aluGPAFivfJfwHHUzyoYU1CEf7jaWZ26JF0JcXDA+/stbENOp/ZmNkhQdIoSW9L//fpFIr7efcM9risPn4azcwOFUMp/j/QeIpLg8soHpG3Q4Avo5mZWXa+jGZmZtn5MloPRowYEePGjRvsYZiZHTJGjBjBihUrVkTEtOo6h00Pxo0bR1tb22APw8zskCJpRK1yX0YzM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PssoaNpGmSNkrqkHRVjXpJWpDq10qaVKpbJGm7pPVV69wpqT1NmyW1p/LZpfJ2SXslnZHqHkjj6K47Pud+m5nZvrL9WWhJQ4CbgPOBTmCVpNaIeLTUbDowIU2TgYXpFeB24EZgcbnfiLiktI0vAS+m8iXAklR+GnBvRLSXVp0dEf47z2ZmgyDnmc3ZQEdEbIqIl4FlwIyqNjOAxVFYCQyXNAogIh4Enu+pc0kCPgAsrVF9aQ/lZmY2CHKGzWhgS2m5M5U12qYnU4FnIuKJGnWXsH/Y3JYuoV2Tgmo/kuZKapPU1tXVVecwzMysNznDptYHevShTU9qnr1ImgzsjIjyvZ7ZEXEaRUBNBS6r1WFE3BIRlYiojBw5ss5hmJlZb3KGTScwtrQ8Btjahzb7kdQCXAzcWaN6FlUhFBFPp9cdwB0Ul/jMzGyA5AybVcAESeMlDaUIgdaqNq3AnPRU2hTgxYjYVkff5wGPR0RnuVDSYcD7Ke4PdZe1SBqR5g8HLgT2ecLNzMzyyvY0WkTskTQfWAEMARZFxAZJ81L9zcB9wAVAB7ATuKJ7fUlLgXOAEZI6gWsj4quper+zl+QdQGdEbCqVDQNWpKAZAnwHuLXfdtTMzHqliHpvkfx2qVQq0dbmJ6XNzBohaXVEVKrL/Q0CZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8sua9hImiZpo6QOSVfVqJekBal+raRJpbpFkrZLWl+1zp2S2tO0WVJ7Kh8naVep7ubSOmdKWpe2s0CSMu62mZlVyRY2koYANwHTgYnApZImVjWbDkxI01xgYanudmBadb8RcUlEnBERZwDfAO4uVT/ZXRcR80rlC1P/3dvar18zM8sn55nN2UBHRGyKiJeBZcCMqjYzgMVRWAkMlzQKICIeBJ7vqfN0dvIBYOmBBpH6OzYiHoqIABYDM/u4T2Zm1gc5w2Y0sKW03JnKGm3Tk6nAMxHxRKlsvKQ1kr4vaWppG531bEPSXEltktq6urrqHIaZmfUmZ9jUui8SfWjTk0vZ96xmG3BCRLwV+Dhwh6RjG9lGRNwSEZWIqIwcObLOYZiZWW9aMvbdCYwtLY8BtvahzX4ktQAXA2d2l0XEbmB3ml8t6Ung5LSNMY1uw8zM+k/OM5tVwARJ4yUNBWYBrVVtWoE56am0KcCLEbGtjr7PAx6PiFcvj0kamR5KQNJJFA8CbEr97ZA0Jd3nmQPce9B7Z2Zmdct2ZhMReyTNB1YAQ4BFEbFB0rxUfzNwH3AB0AHsBK7oXl/SUuAcYISkTuDaiPhqqp7F/g8GvAP4rKQ9wCvAvIjofsDgSoqn244E7k+TmZkNEBUPaFm1SqUSbW1tgz0MM7NDiqTVEVGpLvc3CJiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsu6xhI2mapI2SOiRdVaNekhak+rWSJpXqFknaLml91Tp3SmpP02ZJ7an8fEmrJa1Lr+eW1nkgjaN7veMz7raZmVVpydWxpCHATcD5QCewSlJrRDxaajYdmJCmycDC9ApwO3AjsLjcb0RcUtrGl4AX0+KzwEURsVXSW4AVwOjSqrMjoq1/9s7MzBqR88zmbKAjIjZFxMvAMmBGVZsZwOIorASGSxoFEBEPAs/31LkkAR8Alqb2ayJia6reABwhaVi/7pGZmfVJzrAZDWwpLXey75lGvW16MhV4JiKeqFH3PmBNROwuld2WLqFdk4JqP5LmSmqT1NbV1VXnMMzMrDc5w6bWB3r0oU1PLiWd1ezToXQqcAPw4VLx7Ig4jSKgpgKX1eowIm6JiEpEVEaOHFnnMMzMrDc5w6YTGFtaHgNs7UOb/UhqAS4G7qwqHwPcA8yJiCe7yyPi6fS6A7iD4hKfmZkNkJxhswqYIGm8pKHALKC1qk0rMCc9lTYFeDEittXR93nA4xHR2V0gaTjwLeBTEfHDUnmLpBFp/nDgQmA9ZmY2YLKFTUTsAeZTPBX2GLA8IjZImidpXmp2H7AJ6ABuBT7Svb6kpcBDwCmSOiV9qNT9LPa/hDYfeDNwTdUjzsOAFZLWAu3A02lbZmY2QBRR7y2S3y6VSiXa2vyktJlZIyStjohKdbm/QcDMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2WUNG0nTJG2U1CHpqhr1krQg1a+VNKlUt0jSdknrq9a5U1J7mjZLai/VfSr1tVHSe0rlZ0pal+oWSFKmXTYzsxqyhY2kIcBNwHRgInCppIlVzaYDE9I0F1hYqrsdmFbdb0RcEhFnRMQZwDeAu9P2JgKzgFPTev+SxkDqd25pW/v1a9bsYu9efvy9Jfyg9UZe3vXSYA/HrCEtPVVIWh4RH5C0DohyFRARcXovfZ8NdETEptTfMmAG8GipzQxgcUQEsFLScEmjImJbRDwoadwBxifgA8C5pb6WRcRu4ClJHcDZkjYDx0bEQ2m9xcBM4P5exm/WVNofvJMvfetqIoKu537GxVd8cbCHZFa3HsMG+Fh6nQVU/xr1rjr6Hg1sKS13ApPraDMa2FZH/1OBZyLiiVJfK2v09es0X12+H0lzKc6AOOGEE+oYgtnA2f2rXxIEh+kwfrnrF4M9HLOG9Bg2EdH9gX8nsBj4B+AI4ItAheIy14HUui8SfWjTk0uBpXX0Vfc2IuIW4BaASqVS7zjMBsSZ53yQWduf4qWdL3DR+68e7OGYNeRAZzbdJgM3AD8CjgGWAG+rY71OYGxpeQywtQ9t9iOpBbgYOLOOvjrTfEPbMGs2hx9xFO+dc/1gD8OsT+p5QODXwC7gSIozm6ciYm8d660CJkgaL2koxeW41qo2rcCc9FTaFODF0hnVgZwHPB4R5ctjrcAsScMkjad4EOCR1N8OSVPSfZ45wL11bMPMzPpJPWGziiJszgLeTvFU2V29rRQRe4D5wArgMWB5RGyQNE/SvNTsPmAT0AHcCnyke31JS4GHgFMkdUr6UKn7Wex7CY2I2AAsp3gA4T+Av4yIV1L1lcBX0naexA8HmJkNKBUPgh2ggVSJiLaqsssi4l+zjmyQVSqVaGtr672hmZm9StLqiKhUl/d6ZlMdNKnsNzpozMysf/nraszMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7LKGjaRpkjZK6pB0VY16SVqQ6tdKmlSqWyRpu6T1Ndb7aOp3g6QvprLZktpL015JZ6S6B1L77rrjM+62mZlVacnVsaQhwE3A+UAnsEpSa0Q8Wmo2HZiQpsnAwvQKcDtwI7C4qt93ATOA0yNid3dwRMQSYElqcxpwb0S0l1adHRFt/bmPZmZWn5xnNmcDHRGxKSJeBpZRhETZDGBxFFYCwyWNAoiIB4Hna/R7JfCFiNid2m2v0eZSYGk/7YeZmR2knGEzGthSWu5MZY22qXYyMFXSw5K+L+msGm0uYf+wuS1dQrtGkmp1LGmupDZJbV1dXb0Mw8zM6pUzbGp9oEcf2lRrAY4DpgCfBJaXw0PSZGBnRJTv9cyOiNOAqWm6rFbHEXFLRFQiojJy5MhehmFmZvXKGTadwNjS8hhgax/a1Or37nTp7RFgLzCiVD+LqrOaiHg6ve4A7qC4xGdmZgMkZ9isAiZIGi9pKEUItFa1aQXmpKfSpgAvRsS2Xvr9JnAugKSTgaHAs2n5MOD9FPeHSGUtkkak+cOBC4H9nnAzM7N8sj2NFhF7JM0HVgBDgEURsUHSvFR/M3AfcAHQAewEruheX9JS4BxghKRO4NqI+CqwCFiUHol+Gbg8Irovvb0D6IyITaWhDANWpKAZAnwHuDXTbpuZWQ167XPayiqVSrS1+UlpM7NGSFodEZXqcn+DgJmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyyxo2kqZJ2iipQ9JVNeolaUGqXytpUqlukaTtktbXWO+jqd8Nkr6YysZJ2iWpPU03l9qfKWld2s4CScq1z2Zmtr9sYSNpCHATMB2YCFwqaWJVs+nAhDTNBRaW6m4HptXo913ADOD0iDgV+MdS9ZMRcUaa5pXKF6b+u7e1X79mZpZPzjObs4GOiNgUES8DyyhComwGsDgKK4HhkkYBRMSDwPM1+r0S+EJE7E7tth9oEKm/YyPioYgIYDEw8yD2y8zMGpQzbEYDW0rLnams0TbVTgamSnpY0vclnVWqGy9pTSqfWtpGZz3bkDRXUpuktq6url6GYWZm9WrJ2Het+yLRhzbVWoDjgCnAWcBySScB24ATIuI5SWcC35R0aiPbiIhbgFsAKpVKb+MwM7M65Tyz6QTGlpbHAFv70KZWv3enS2+PAHuBERGxOyKeA4iI1cCTFGdBnanfRrZhZmb9KGfYrAImSBovaSgwC2itatMKzElPpU0BXoyIbb30+03gXABJJwNDgWcljUwPJZDOdCYAm1J/OyRNSU+hzQHu7Z9dNDOzemS7jBYReyTNB1YAQ4BFEbFB0rxUfzNwH3AB0AHsBK7oXl/SUuAcYISkTuDaiPgqsAhYlB6Jfhm4PCJC0juAz0raA7wCzIuI7gcMrqR4uu1I4P40mZnZAFHxgJZVq1Qq0dbWNtjDMDM7pEhaHRGV6nJ/g4CZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsssaNpKmSdooqUPSVTXqJWlBql8raVKpbpGk7ZLW11jvo6nfDZK+mMrOl7Ra0rr0em6p/QOpfXuajs+1z2Zmtr+WXB1LGgLcBJwPdAKrJLVGxKOlZtOBCWmaDCxMrwC3AzcCi6v6fRcwAzg9InaXguNZ4KKI2CrpLcAKYHRp1dkR0daPu2hmZnXKeWZzNtAREZsi4mVgGUVIlM0AFkdhJTBc0iiAiHgQeL5Gv1cCX4iI3and9vS6JiK2pjYbgCMkDev3vTIzs4blDJvRwJbScif7nmnU26baycBUSQ9L+r6ks2q0eR+wpjuQktvSJbRrJKlWx5LmSmqT1NbV1dXLMMzMrF45w6bWB3r0oU21FuA4YArwSWB5OTwknQrcAHy4tM7siDgNmJqmy2p1HBG3REQlIiojR47sZRhmZlavnGHTCYwtLY8BtvahTa1+706X3h4B9gIjACSNAe4B5kTEk90rRMTT6XUHcAfFJT4zMxsgOcNmFTBB0nhJQ4FZQGtVm1ZgTnoqbQrwYkRs66XfbwLnAkg6GRgKPCtpOPAt4FMR8cPuxpJaJHWH0eHAhcB+T7iZmVk+2cImIvYA8ymeCnsMWB4RGyTNkzQvNbsP2AR0ALcCH+leX9JS4CHgFEmdkj6UqhYBJ6VHopcBl0dEpG29Gbim6hHnYcAKSWuBduDptC0zMxsgKj6nrVqlUom2Nj8pbWbWCEmrI6JSXe5vEDAzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnP57WA0ldwE8HeRgjgGcHeQyNOtTGfKiNFzzmgXKojbkZxvssQERMq65w2DQxSW21/uJdMzvUxnyojRc85oFyqI252cfry2hmZpadw8bMzLJz2DS3WwZ7AH1wqI35UBsveMwD5VAbc1OP1/dszMwsO5/ZmJlZdg4bMzPLzmGTkaRpkjZK6pB0VY16SVqQ6tdKmpTKj5D0iKSfSNog6W9L6/yDpMdT+3skDU/l4yTtktSeppubaMyfS23bJX1b0htLdZ9KfW2U9J5mHm8zH+PSup+QFJJGlMoO6hgP9Jib+ThLuk7S06WxXVCqa8b3cs3x9tcxbkhEeMowAUOAJ4GTgKHAT4CJVW0uAO4HBEwBHk7lAo5O84cDDwNT0vIfAi1p/gbghjQ/DljfpGM+trT+XwE3p/mJaRvDgPFp20OaeLxNe4xT2VhgBcV/Rh7RH8d4kMbctMcZuA74RI3tNet7uafxHvQxbnTymU0+ZwMdEbEpIl4GlgEzqtrMABZHYSUwXNKotPxSanN4mgIgIr4dEXtS3UpgzCEw5l+U1n9dd3nqa1lE7I6Ip4CONIZmHW9/yDLm5MvAX1eVHewxHowx94ecY66lKd/LzcRhk89oYEtpuTOV1dVG0hBJ7cB24P9GxMM1tvFnFL/pdBsvaY2k70ua2kxjlnS9pC3AbOAzDWyvmcYLTXqMJb0XeDoiftKH7TXbmKFJj3MyP13GWiTpuAa210zjhYM/xg1x2OSjGmXVv2302CYiXomIMyjOXM6W9JZ9VpSuBvYAS1LRNuCEiHgr8HHgDknHNsuYI+LqiBibxju/ge0103ib8hhLOgq4mn1DsZHt9Wagx9yUxznVLwTeBJyRxvmlBrbXTOPtj2PcEIdNPp0U16O7jQG2NtomIl4AHgBe/WI7SZcDFwKzI6L7zbY7Ip5L86sprv+e3CxjLrkDeF8D22ua8TbxMX4TxX2Cn0janNr/WNIb6txeU425iY8zEfFM+mDfC9zKa5fKmvK93NN4++kYNyYG8AbRb9MEtACbKP5Bdd/wO7WqzR+x7w2/R1L5SGB4mj8S+AFwYVqeBjwKjKzqayTphiTFTcangd9tkjFPKK3/UeCuNH8q+95U3URjN1UHerxNe4yr1t/MazfbD+oYD9KYm/Y4A6NK6/8Pivs0zfxe7mm8B32MG52ydezp1adH/pPit4arU9k8YF6aF3BTql8HVFL56cAaYC2wHvhMqc8Oiuu27WnqflLqfcCG9Cb9MXBRE435G6lsLfBvwOhS3dWpr43A9GYebzMf46r+N5M+uPvjGA/0mJv5OAP/mtquBVrZ98O8Gd/LNcfbX8e4kclfV2NmZtn5no2ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bsyYg6aXeW9XVz3WSPtEffZn1J4eNmZll57AxayKSjpb0XUk/lrRO0oxUPk7F3zH6iqT1kpZIOk/SDyU9Ian8DcN/IOl7qfwvBmlXzPbh/9Rp1gQkvRQRR0tqAY6KiF+o+GNiK4EJwIkU3x7xVor/+b2K4n9/fwh4L3BFRMyUdB3wxxRfZ/I6iv9ZPjkiGv0+NLN+5TMbs+Yi4O8krQW+Q/EV8q9PdU9FxLoovlRxA/DdKH5bXEfxx7C63RsRuyLiWeD/0fjfrzHrdy2DPQAz28dsii9JPDMifp2+EfmIVLe71G5vaXkv+/5brr5c4csXNuh8ZmPWXH4H2J6C5l0Ul88aNSP9XfrfA86huORmNqh8ZmPWXJYA/yapjeJbvR/vQx+PAN8CTgA+5/s11gz8gICZmWXny2hmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll9/8BvJcb4joyr8AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lamb sigma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAf2ElEQVR4nO3df5xddX3n8debhPCbBpugMQkkSKAFQYQLyT5qEBE0QTAsrBJMCaW2MbSx7braRRGhKlbdUrdZaNJQAmaFBFZBxhUaFy3iWgKZmDE/kJQhokwSyQASwGAw5NM/zvfCyc2dzL2T+c7c4Pv5eJzH3Pv9fs/3fM+ZybxzzvnOuYoIzMzMctpnsAdgZmavfw4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmavE5LOkNQ12OMok7RW0hm7qf+UpH8euBHZYHHYWEuQ9ISklyS9KOkpSTdLOniwx7U7ksZJCklD+6m//SU9J+nMOnVfkfT1/thOX6T9/FX6/myQ9PeShvS2XkQcHxH376b+CxHxJ/06WGtJDhtrJedFxMHAycCpwKebWVmFveZnujakIuLXwO3AzJp2Q4CLga8O3Ojqelv6/rwb+BDwp3vSWX+FtO0d9pp/mPbbIyI2APcCb5V0mKT/K6lb0i/T6zHVtpLul3StpB8CW4GjJF0m6SeSXpC0XtJHSu3PkNQl6a8lbZa0SdL5ks6R9O+SnpX0qVL7fSRdIelxSc9IukPSG1L1A+nrc+l//P8prfPHafu/lLRU0pGl/kLSn0t6DHiszu5/FbhQ0oGlsvdS/Fu9d3f7Vitt6+jS+1skfb70/lxJHels6t8kndjzd+U1EfEo8AOK789bJH0vHZunJd0qaXhpG09IOiu9vkbS1yV9TdLzwB+lsq+l+uqZ4qWSfp76u7LU1wGSvpqO60/S97CrVP/f01nXC5LWSXp3I/tjA8NhYy1H0ljgHGAlxc/ozcCRwBHAS8D1NatcAswCDgF+BmwGzgUOBS4DviLp5FL7NwH7A6OBzwA3An8InAJMBj4j6ajU9i+A84F3Am8GfgnckOpOT1+HR8TBEfGgpPOBTwEXACMpfikvrhnv+cBE4LjafY+IfwM2pfXL+3dbRGxvYN8aktZZCHwE+F3gn4A2Sfs1sO5xFMdpJSDgbymOze8DY4FrdrP6NODrwHDg1h7avAM4luIM6jOSfj+VXw2MA44Czqb4nlXHdCwwBzg1Ig6hCOgnetsXG0AR4cXLoC8UvxheBJ6jCIx/BA6o0+4k4Jel9/cDn+2l728Cf5len0ERWEPS+0OAACaW2q8Azk+vfwK8u1Q3CvgNMJTiF18AQ0v19wIfLr3fh+KM68j0PoAzexnvp4HvpNeHpvXf3uC+dZXqAji69P4W4PPp9TzgczV9rQPe2cN2AnieImwfBz4P7FOn3fnAyprv61np9TXAAzXtrwG+ll5Xj+eYUv3DwPT0ej3w3lLdn1T3FziaIojPAvYd7J9nL7suvmZqreT8iLivXJAuJ30FmAIclooPkTQkIl5J75+sWWcqxf+Cj6H4ZX8gsLrU5JnSui+lr0+V6l8CqpMTjgTukrSjVP8K8MYe9uFI4B8kXVceEsVZ1M/qjbeORcDVkkZT/A+9MyJWNrhvjToSuFTSR0tlwyjOUHpyckR0lgskHQ7MpTjTOSSN6Ze76aO3fQf4Ren1Vl77Xry5Zv1XX0dEp6S/ogiv4yUtBT4WERsb2J4NAF9Gs1b33yguqUyMiEN57dKVSm1efXR5ugz0DeDvgDdGxHDgnpr2zXgSmBoRw0vL/lHcV6r3yPQngY/UtD8gistju4y3noj4OcXltxkUl9AW9XHftlKEUdWbasZ5bc04D4yI2kt+vfnbtD8npu/PH+5mPNDLvvdiEzCm9H7sTh1H3BYR76AI0gC+tAfbsn7msLFWdwjFmcZz6cb81b20HwbsB3QD29OZwHv2YPvzgWurN/kljZQ0LdV1Azso7iGU239S0vGp/e9I+kAftvtVinsQf8Br9zaa3bcO4EOShkiaQnHfqepGYLakiSocJOl9kg5pcpyHkC5/pjOxTzS5fjPuoDi2h6VtzalWSDpW0pkpkH9N8TPzSg/92CBw2Fir+5/AAcDTwDLgX3bXOCJeoLipfwfF5ZwPAW17sP1/SOt/R9ILaQwT07a2AtcCP0wzuiZFxF0U/6NekmZcrQGm9mG7X6e4bPjdiNjUx337S+A8ivtgMyju75D6aqeYunx96qsT+KM+jPNvKKaqbwG+DdzZhz4a9VmgC/gpcB/FMdqW6vYDvkjxc/IL4HCKiRrWIhThD08zs72PpMspJg+8s9fGNuh8ZmNmewVJoyT9Qfrbp2Mp7ufdNdjjssZ4NpqZ7S2GUfw90HiKS4NLKKbI217Al9HMzCw7X0YzM7PsfBmtByNGjIhx48YN9jDMzPYaI0aMYOnSpUsjYkptncOmB+PGjaO9vX2wh2FmtleRNKJeuS+jmZlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdlnDRtIUSeskdUq6ok69JM1N9asknVyqWyhps6Q1NevcLqkjLU9I6kjlM0rlHZJ2SDop1d2fxlGtOzznfpuZ2c6yfSy0pCHADcDZQBewXFJbRDxSajYVmJCWicC89BXgFuB6YFG534i4qLSN64AtqfxW4NZUfgJwd0R0lFadERH+nGczs0GQ88zmNKAzItZHxMvAEmBaTZtpwKIoLAOGSxoFEBEPAM/21LkkAR8EFtepvriHcjMzGwQ5w2Y08GTpfVcqa7ZNTyYDT0XEY3XqLmLXsLk5XUK7KgXVLiTNktQuqb27u7vBYZiZWW9yhk29X+jRhzY9qXv2ImkisDUiyvd6ZkTECRQBNRm4pF6HEbEgIioRURk5cmSDwzAzs97kDJsuYGzp/RhgYx/a7ELSUOAC4PY61dOpCaGI2JC+vgDcRnGJz8zMBkjOsFkOTJA0XtIwihBoq2nTBsxMs9ImAVsiYlMDfZ8FPBoRXeVCSfsAH6C4P1QtGyppRHq9L3AusNMMNzMzyyvbbLSI2C5pDrAUGAIsjIi1kman+vnAPcA5QCewFbisur6kxcAZwAhJXcDVEXFTqt7l7CU5HeiKiPWlsv2ApSlohgD3ATf2246amVmvFNHoLZLfLpVKJdrbPVPazKwZklZERKW23E8QMDOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2WcNG0hRJ6yR1SrqiTr0kzU31qySdXKpbKGmzpDU169wuqSMtT0jqSOXjJL1UqptfWucUSavTduZKUsbdNjOzGtnCRtIQ4AZgKnAccLGk42qaTQUmpGUWMK9UdwswpbbfiLgoIk6KiJOAbwB3lqofr9ZFxOxS+bzUf3Vbu/RrZmb55DyzOQ3ojIj1EfEysASYVtNmGrAoCsuA4ZJGAUTEA8CzPXWezk4+CCze3SBSf4dGxIMREcAi4Pw+7pOZmfVBzrAZDTxZet+Vyppt05PJwFMR8VipbLyklZK+L2lyaRtdjWxD0ixJ7ZLau7u7GxyGmZn1JmfY1LsvEn1o05OL2fmsZhNwRES8HfgYcJukQ5vZRkQsiIhKRFRGjhzZ4DDMzKw3QzP23QWMLb0fA2zsQ5tdSBoKXACcUi2LiG3AtvR6haTHgWPSNsY0uw0zM+s/Oc9slgMTJI2XNAyYDrTVtGkDZqZZaZOALRGxqYG+zwIejYhXL49JGpkmJSDpKIqJAOtTfy9ImpTu88wE7t7jvTMzs4ZlO7OJiO2S5gBLgSHAwohYK2l2qp8P3AOcA3QCW4HLqutLWgycAYyQ1AVcHRE3perp7Dox4HTgs5K2A68AsyOiOsHgcorZbQcA96bFzMwGiIoJWlarUqlEe3v7YA/DzGyvImlFRFRqy/0EATMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZlllzVsJE2RtE5Sp6Qr6tRL0txUv0rSyaW6hZI2S1pTs87tkjrS8oSkjlR+tqQVklanr2eW1rk/jaO63uEZd9vMzGoMzdWxpCHADcDZQBewXFJbRDxSajYVmJCWicC89BXgFuB6YFG534i4qLSN64At6e3TwHkRsVHSW4GlwOjSqjMior1/9s7MzJqR88zmNKAzItZHxMvAEmBaTZtpwKIoLAOGSxoFEBEPAM/21LkkAR8EFqf2KyNiY6peC+wvab9+3SMzM+uTnGEzGniy9L6Lnc80Gm3Tk8nAUxHxWJ26C4GVEbGtVHZzuoR2VQqqXUiaJaldUnt3d3eDwzAzs97kDJt6v9CjD216cjHprGanDqXjgS8BHykVz4iIEygCajJwSb0OI2JBRFQiojJy5MgGh2FmZr3JGTZdwNjS+zHAxj602YWkocAFwO015WOAu4CZEfF4tTwiNqSvLwC3UVziMzOzAZIzbJYDEySNlzQMmA601bRpA2amWWmTgC0RsamBvs8CHo2IrmqBpOHAt4FPRsQPS+VDJY1Ir/cFzgXWYGZmAyZb2ETEdmAOxaywnwB3RMRaSbMlzU7N7gHWA53AjcCfVdeXtBh4EDhWUpekD5e6n86ul9DmAEcDV9VMcd4PWCppFdABbEjbMjOzAaKIRm+R/HapVCrR3u6Z0mZmzZC0IiIqteV+goCZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmll3DHwudPmr5OGD/allELOp5DTMzs0JDYSPpauAMirC5B5gK/H/AYWNmZr1q9DLafwHeDfwiIi4D3kbx6H4zM7NeNRo2L0XEDmC7pEOBzcBR+YZlZmavJ43es2lPn4R5I7ACeBF4ONegzMzs9aWhsImI6idozpf0L8ChEbEq37DMzOz1pJnZaCcC46rrSDo6Iu7MNC4zM3sdaXQ22kLgRGAtsCMVB+CwMTOzXjV6ZjMpIo7LOhIzM3vdanQ22oOSmg4bSVMkrZPUKemKOvWSNDfVr5J0cqluoaTNktbUrHO7pI60PCGpo1T3ydTXOknvLZWfIml1qpsrSc3ui5mZ9V2jYfNVisBZl0JhtaTdThCQNAS4geIPQI8DLq4TWFOBCWmZBcwr1d0CTKntNyIuioiTIuIk4BukS3mp7+nA8Wm9f0xjIPU7q7StXfo1a3WxYwc/+t6t/KDtel5+6cXBHo5ZUxq9jLYQuARYzWv3bHpzGtAZEesBJC0BpgGPlNpMAxZFRADLJA2XNCoiNkXEA5LG9dR5Ojv5IHBmqa8lEbEN+KmkTuA0SU9QzJ57MK23CDgfuLfB/TBrCR0P3M51376SiKD7mZ9zwWVfHuwhmTWs0bD5eUS0Ndn3aODJ0vsuYGIDbUYDmxrofzLwVEQ8VuprWZ2+fpNe15bvQtIsijMgjjjiiAaGYDZwtv36VwTBPtqHX730/GAPx6wpjYbNo5JuA74FbKsW9jL1ud59kehDm55cDCxuoK+GtxERC4AFAJVKpdFxmA2IU874ENM3/5QXtz7HeR+4crCHY9aURsPmAIqQeU+prLepz13A2NL7McDGPrTZhaShwAXAKQ301ZVeN7UNs1az7/4H8v6Z1w72MMz6pNEnCFzWh76XAxMkjQc2UNy8/1BNmzZgTrqfMxHYEhGNXEI7C3g0IsqXx9qA2yT9PfBmiokAD0fEK5JekDQJeAiYCfyvPuyPmZn1UaN/1Dm3TvEWoD0i7q63TkRslzQHWAoMARZGxFpJs1P9fIqPKzgH6AS2Aq+GmqTFFB9rMEJSF3B1RNyUqqez8yU0Ut93UExA2A78eUS8kqovp5jddgDFxABPDjAzG0AqJoL10khaAPwe8H9S0YUUTxMYC6yPiL/KNcDBUqlUor29fbCHYWa2V5G0IiIqteWN3rM5GjgzIranzuYB3wHOppgObWZm1qNG/6hzNHBQ6f1BwJvTZapt9VcxMzMrNHpm82WgQ9L9FFOJTwe+IOkg4L5MYzMzs9eJRmej3STpHoqnAgj4VERUpw9/ItfgzMzs9WG3l9Ek/V76ejIwiuKv/X8OvKn80EwzM7Pd6e3M5mMUj2+5rlRWnr52JmZmZr3Y7ZlNRMxKL+cB0yLiXcC/UvyNzcczj83MzF4nGp2N9umIeF7SOyimO9/Czh8HYGZm1qNGw6b6l/jvA+anpwYMyzMkMzN7vWk0bDZI+ieKz4+5R9J+TaxrZma/5RoNjA9SPONsSkQ8B7wBT3k2M7MGNfp3NlspfZxAejJzI09nNjMz86UwMzPLz2FjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdlnDRtIUSeskdUq6ok69JM1N9avKn5EjaaGkzZLW1Fnvo6nftZK+nMpmSOooLTsknZTq7k/tq3WHZ9xtMzOr0ejHQjdN0hDgBoqnRHcByyW1RcQjpWZTgQlpmUjxJOmJqe4W4HpgUU2/7wKmASdGxLZqcETErcCtqc0JwN0R0VFadUZEtPfnPpqZWWNyntmcBnRGxPqIeBlYQhESZdOARVFYBgyXNAogIh4Anq3T7+XAFyNiW2q3uU6bi4HF/bQfZma2h3KGzWiKj5Gu6kplzbapdQwwWdJDkr4v6dQ6bS5i17C5OV1Cu0qS6nUsaZakdknt3d3dvQzDzMwalTNs6v1Cjz60qTUUOAyYRPHk6TvK4SFpIrA1Isr3emZExAnA5LRcUq/jiFgQEZWIqIwcObKXYZiZWaNyhk0XMLb0fgywsQ9t6vV7Z7r09jCwAxhRqp9OzVlNRGxIX18AbqO4xGdmZgMkZ9gsByZIGi9pGEUItNW0aQNmpllpk4At6eMLduebwJkAko6h+MTQp9P7fYAPUNwfIpUNlTQivd4XOBfYZYabmZnlk202WkRslzSH4kPXhgALI2KtpNmpfj5wD3AO0AlsBS6rri9pMXAGMEJSF3B1RNwELAQWpinRLwOXRkT10tvpQFdErC8NZT9gaQqaIcB9wI2ZdtvMzOrQa7+nraxSqUR7u2dKm5k1Q9KKiKjUlvsJAmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLLmvYSJoiaZ2kTklX1KmXpLmpfpWkk0t1CyVtlrSmznofTf2ulfTlVDZO0kuSOtIyv9T+FEmr03bmSlKufTYzs11lCxtJQ4AbgKnAccDFko6raTYVmJCWWcC8Ut0twJQ6/b4LmAacGBHHA39Xqn48Ik5Ky+xS+bzUf3Vbu/RrZmb55DyzOQ3ojIj1EfEysIQiJMqmAYuisAwYLmkUQEQ8ADxbp9/LgS9GxLbUbvPuBpH6OzQiHoyIABYB5+/BfpmZWZNyhs1o4MnS+65U1mybWscAkyU9JOn7kk4t1Y2XtDKVTy5to6uRbUiaJaldUnt3d3cvwzAzs0YNzdh3vfsi0Yc2tYYChwGTgFOBOyQdBWwCjoiIZySdAnxT0vHNbCMiFgALACqVSm/jMDOzBuU8s+kCxpbejwE29qFNvX7vTJfeHgZ2ACMiYltEPAMQESuAxynOgrpSv81sw8zM+lHOsFkOTJA0XtIwYDrQVtOmDZiZZqVNArZExKZe+v0mcCaApGOAYcDTkkamSQmkM50JwPrU3wuSJqVZaDOBu/tnF83MrBHZLqNFxHZJc4ClwBBgYUSslTQ71c8H7gHOATqBrcBl1fUlLQbOAEZI6gKujoibgIXAwjQl+mXg0ogISacDn5W0HXgFmB0R1QkGl1PMbjsAuDctZmY2QFRM0LJalUol2tvbB3sYZmZ7FUkrIqJSW+4nCJiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsu6xhI2mKpHWSOiVdUadekuam+lWSTi7VLZS0WdKaOut9NPW7VtKXU9nZklZIWp2+nllqf39q35GWw3Pts5mZ7Wporo4lDQFuAM4GuoDlktoi4pFSs6nAhLRMBOalrwC3ANcDi2r6fRcwDTgxIraVguNp4LyI2CjprcBSYHRp1RkR0d6Pu2hmZg3KeWZzGtAZEesj4mVgCUVIlE0DFkVhGTBc0iiAiHgAeLZOv5cDX4yIband5vR1ZURsTG3WAvtL2q/f98rMzJqWM2xGA0+W3nex85lGo21qHQNMlvSQpO9LOrVOmwuBldVASm5Ol9CukqR6HUuaJaldUnt3d3cvwzAzs0blDJt6v9CjD21qDQUOAyYBnwDuKIeHpOOBLwEfKa0zIyJOACan5ZJ6HUfEgoioRERl5MiRvQzDzMwalTNsuoCxpfdjgI19aFOv3zvTpbeHgR3ACABJY4C7gJkR8Xh1hYjYkL6+ANxGcYnPzMwGSM6wWQ5MkDRe0jBgOtBW06YNmJlmpU0CtkTEpl76/SZwJoCkY4BhwNOShgPfBj4ZET+sNpY0VFI1jPYFzgV2meFmZmb5ZAubiNgOzKGYFfYT4I6IWCtptqTZqdk9wHqgE7gR+LPq+pIWAw8Cx0rqkvThVLUQOCpNiV4CXBoRkbZ1NHBVzRTn/YClklYBHcCGtC0zMxsgKn5PW61KpRLt7Z4pbWbWDEkrIqJSW+4nCJiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLLzh6f1QFI38LNBHsYI4OlBHkOz9rYx723jBY95oOxtY26F8T4NEBFTaiscNi1MUnu9T7xrZXvbmPe28YLHPFD2tjG3+nh9Gc3MzLJz2JiZWXYOm9a2YLAH0Ad725j3tvGCxzxQ9rYxt/R4fc/GzMyy85mNmZll57AxM7PsHDYZSZoiaZ2kTklX1KmXpLmpfpWkk1P5/pIelvRjSWsl/U1pnf8h6dHU/i5Jw1P5OEkvSepIy/wWGvPnUtsOSd+R9OZS3SdTX+skvbeVx9vKx7i07sclhaQRpbI9OsYDPeZWPs6SrpG0oTS2c0p1rfizXHe8/XWMmxIRXjIswBDgceAoYBjwY+C4mjbnAPcCAiYBD6VyAQen1/sCDwGT0vv3AEPT6y8BX0qvxwFrWnTMh5bW/wtgfnp9XNrGfsD4tO0hLTzelj3GqWwssJTij5FH9McxHqQxt+xxBq4BPl5ne636s9zTePf4GDe7+Mwmn9OAzohYHxEvA0uAaTVtpgGLorAMGC5pVHr/Ymqzb1oCICK+ExHbU90yYMxeMObnS+sfVC1PfS2JiG0R8VOgM42hVcfbH7KMOfkK8Nc1ZXt6jAdjzP0h55jracmf5VbisMlnNPBk6X1XKmuojaQhkjqAzcD/i4iH6mzjjyn+p1M1XtJKSd+XNLmVxizpWklPAjOAzzSxvVYaL7ToMZb0fmBDRPy4D9trtTFDix7nZE66jLVQ0mFNbK+Vxgt7foyb4rDJR3XKav+30WObiHglIk6iOHM5TdJbd1pRuhLYDtyaijYBR0TE24GPAbdJOrRVxhwRV0bE2DTeOU1sr5XG25LHWNKBwJXsHIrNbK83Az3mljzOqX4e8BbgpDTO65rYXiuNtz+OcVMcNvl0UVyPrhoDbGy2TUQ8B9wPvPpgO0mXAucCMyKi+sO2LSKeSa9XUFz/PaZVxlxyG3BhE9trmfG28DF+C8V9gh9LeiK1/5GkNzW4vZYacwsfZyLiqfSLfQdwI69dKmvJn+WexttPx7g5MYA3iH6bFmAosJ7iH1T1ht/xNW3ex843/B5O5SOB4en1AcAPgHPT+ynAI8DImr5Gkm5IUtxk3AC8oUXGPKG0/keBr6fXx7PzTdX1NHdTdaDH27LHuGb9J3jtZvseHeNBGnPLHmdgVGn9/0pxn6aVf5Z7Gu8eH+Nml2wde3l19si/U/yv4cpUNhuYnV4LuCHVrwYqqfxEYCWwClgDfKbUZyfFdduOtFRnSl0IrE0/pD8CzmuhMX8jla0CvgWMLtVdmfpaB0xt5fG28jGu6f8J0i/u/jjGAz3mVj7OwP9ObVcBbez8y7wVf5brjre/jnEzix9XY2Zm2fmejZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhuzFiDpxd5bNdTPNZI+3h99mfUnh42ZmWXnsDFrIZIOlvRdST+StFrStFQ+TsXnGP2zpDWSbpV0lqQfSnpMUvkJw2+T9L1U/qeDtCtmO/EfdZq1AEkvRsTBkoYCB0bE8yo+TGwZMAE4kuLpEW+n+Mvv5RR//f1h4P3AZRFxvqRrgP9M8TiTgyj+snxiRDT7PDSzfuUzG7PWIuALklYB91E8Qv6Nqe6nEbE6iocqrgW+G8X/FldTfBhW1d0R8VJEPA38K81/fo1Zvxs62AMws53MoHhI4ikR8Zv0ROT9U922Ursdpfc72Pnfcu3lCl++sEHnMxuz1vI7wOYUNO+iuHzWrGnpc+l/FziD4pKb2aDymY1Za7kV+Jakdoqnej/ahz4eBr4NHAF8zvdrrBV4goCZmWXny2hmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll9x9dD4y7t0InDAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lamb tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaH0lEQVR4nO3dfbRddX3n8feHREAEGixBkaeARlZDfSjeArNsK1XRxKqh47gWSAeqtpgqttPWtlgdi7W2OlNLyyrFEUeF+sCwbBnjiEWltXRZqdwIBFJAYnwgkkLwAUUpCHznj71vOZzc3Htu8ju5N/J+rXXW2Xv/fr+9v3vfk/u5e+9zTlJVSJLUwh7zXYAk6UeHoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVpN5PkxCSb57uOQUk2JDlxhvbfT/LeXVeR5ouhol0qyVeT3JvkniR3JHl/kn3nu66ZJFmWpJIsbrS+vZN8J8lzp2k7N8lHW2xnR/T7+f3+5/ONJH+WZNFs46rqmKr67Aztf1xVv9K0WC1Ihormw0uqal/gWOCngTfPZXA6u81rdziMqurfgf8DnD7UbxFwKnDRrqtuWs/ofz7PA14B/OrOrKxVGGv3sNv8w9SPnqr6BvBJ4CeTHJDk/yXZmuTb/fShU32TfDbJ25N8DvgBcFSSVya5Kcn3kmxK8pqB/icm2Zzkd5PcmWRLkpOTvCjJl5J8K8nvD/TfI8nZSb6c5JtJLk3y+L75qv75O/1f8P+pH/OqfvvfTnJFkiMG1ldJXpfkVuDWaXb/IuBlSfYZWPZCun+Tn5xp34b123rKwPwHkvzRwPyLk1zXnx39c5Knb/+n8rCquhn4J7qfz5OT/H1/bO5K8qEkSwa28dUkz++nz0ny0SQfTPJd4Jf7ZR/s26fO/M5I8vV+fW8aWNdjk1zUH9eb+p/h5oH23+vPor6X5JYkzxtlf7RrGCqaN0kOA14EXEv3Wnw/cARwOHAv8JdDQ/4rcCawH/A14E7gxcD+wCuBc5McO9D/icDewCHAW4ALgV8CngX8LPCWJEf1fX8dOBl4DvAk4NvA+X3bz/XPS6pq36r6fJKTgd8H/jOwlO6X70eG6j0ZOB5YMbzvVfXPwJZ+/OD+fbiqHhhh30bSj3kf8Brgx4H/BaxNstcIY1fQHadrgQB/QndsfgI4DDhnhuGrgY8CS4APbafPzwBH050RvSXJT/TL/wBYBhwFnET3M5uq6WjgLOCnq2o/uiD+6mz7ol2oqnz42GUPul8A9wDfoQuGvwIeO02/ZwLfHpj/LPCHs6z7/wK/0U+fSBdMi/r5/YACjh/ovw44uZ++CXjeQNvBwA+BxXS/4ApYPND+SeDVA/N70J1BHdHPF/DcWep9M/Cpfnr/fvxPjbhvmwfaCnjKwPwHgD/qpy8A3ja0rluA52xnOwV8ly5Uvwz8EbDHNP1OBq4d+rk+v58+B7hqqP85wAf76anjeehA+xeAU/rpTcALB9p+ZWp/gafQBe7zgcfM9+vZx7YPr3VqPpxcVZ8ZXNBfBjoXWAkc0C/eL8miqnqwn79taMwqur9qn0r3S30f4IaBLt8cGHtv/3zHQPu9wNSbBI4ALkvy0ED7g8ATtrMPRwB/keRdgyXRnRV9bbp6p3Ex8AdJDqH7i3tjVV074r6N6gjgjCSvH1i2J90Zx/YcW1UbBxckOQg4j+7MZb++pm/PsI7Z9h3g3wamf8DDP4snDY3/j+mq2pjkv9GF1DFJrgB+q6puH2F72gW8/KWF4rfpLoUcX1X78/Alpwz0+Y+v1O4v3/wN8KfAE6pqCXD5UP+5uA1YVVVLBh57V3ffZ7qv8r4NeM1Q/8dWd1lrm3qnU1Vfp7tsdhrdpa+Ld3DffkAXOlOeOFTn24fq3Keqhi/VzeZP+v15ev/z+aUZ6oFZ9n0WW4BDB+YPe8SKqz5cVT9DF5gFvHMntqXGDBUtFPvRnTl8p79B/gez9N8T2AvYCjzQ/2X/gp3Y/ruBt0/dbE+yNMnqvm0r8BDdNf7B/m9Mckzf/8eSvHwHtnsR3T2CZ/PwvYe57tt1wCuSLEqyku6+0JQLgTVJjk/ncUl+Icl+c6xzP/rLlv2Z1e/McfxcXEp3bA/ot3XWVEOSo5M8tw/ef6d7zTy4nfVoHhgqWij+HHgscBdwNfB3M3Wuqu/R3Vy/lO4yzCuAtTux/b/ox38qyff6Go7vt/UD4O3A5/p3UJ1QVZfR/YV8Sf8OpxuBVTuw3Y/SXe67sqq27OC+/QbwErr7VKfR3X+hX9ck3VuC/7Jf10bgl3egzrfSvQX8buATwN/uwDpG9YfAZuArwGfojtF9fdtewDvoXif/BhxE94YJLRCp8j/pkrRwJfk1upv4z5m1s+adZyqSFpQkByd5dv/ZoaPp7rddNt91aTS++0vSQrMn3edpjqS7pHcJ3VvPtRvw8pckqRkvf0mSmnlUX/468MADa9myZfNdhiTtVtatW3dXVS2dru1RHSrLli1jcnJyvsuQpN1Kkq9tr83LX5KkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZsYaKklWJrklycYkZ0/TniTn9e3rkxw70Pa+JHcmuXFozOOTfDrJrf3zAUPthye5J8kbxrdnkqTpjC1UkiwCzgdWASuAU5OsGOq2CljeP84ELhho+wCwcppVnw1cWVXLgSv7+UHnAp/c2folSXM3zjOV44CNVbWpqu4HLgFWD/VZDVxcnauBJUkOBqiqq4BvTbPe1cBF/fRFwMlTDUlOBjYBGxruhyRpROMMlUOA2wbmN/fL5tpn2BOqagtA/3wQQJLHAb8HvHWmwUnOTDKZZHLr1q2z7oQkaXTjDJVMs6x2oM+o3gqcW1X3zNSpqt5TVRNVNbF06dId3JQkaTqLx7juzcBhA/OHArfvQJ9hdyQ5uKq29JfK7uyXHw/8lyT/A1gCPJTk36vqL3d0ByRJczPOM5VrgOVJjkyyJ3AKsHaoz1rg9P5dYCcAd09d2prBWuCMfvoM4GMAVfWzVbWsqpYBfw78sYEiSbvW2EKlqh4AzgKuAG4CLq2qDUnWJFnTd7uc7sb6RuBC4LVT45N8BPg8cHSSzUle3Te9Azgpya3ASf28JGkBSNWO3sLY/U1MTNTk5OR8lyFJu5Uk66pqYro2P1EvSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzYw2VJCuT3JJkY5Kzp2lPkvP69vVJjh1oe1+SO5PcODTm8Uk+neTW/vmAfvlJSdYluaF/fu44902StK2xhUqSRcD5wCpgBXBqkhVD3VYBy/vHmcAFA20fAFZOs+qzgSurajlwZT8PcBfwkqp6GnAG8Ndt9kSSNKpxnqkcB2ysqk1VdT9wCbB6qM9q4OLqXA0sSXIwQFVdBXxrmvWuBi7qpy8CTu77X1tVt/fLNwB7J9mr5Q5JkmY2zlA5BLhtYH5zv2yufYY9oaq2APTPB03T52XAtVV135wqliTtlMVjXHemWVY70GduG02OAd4JvGA77WfSXWrj8MMP35lNSZKGjPNMZTNw2MD8ocDtO9Bn2B1Tl8j65zunGpIcClwGnF5VX55ucFW9p6omqmpi6dKlI+2IJGk04wyVa4DlSY5MsidwCrB2qM9a4PT+XWAnAHdPXdqawVq6G/H0zx8DSLIE+ATwxqr6XKN9kCTNwdhCpaoeAM4CrgBuAi6tqg1J1iRZ03e7HNgEbAQuBF47NT7JR4DPA0cn2Zzk1X3TO4CTktwKnNTP02/rKcB/T3Jd/5jufoskaUxStVO3MHZrExMTNTk5Od9lSNJuJcm6qpqYrs1P1EuSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKmZxbN1SPKW6ZZX1R+2L0eStDubNVSA7w9M7w28GLhpPOVIknZns17+qqp3DTzeDpwIHDLKypOsTHJLko1Jzp6mPUnO69vXJzl2oO19Se5McuPQmMcn+XSSW/vnAwba3tiv65YkLxylRklSOztyT2Uf4KjZOiVZBJwPrAJWAKcmWTHUbRWwvH+cCVww0PYBYOU0qz4buLKqlgNX9vP06z4FOKYf91d9DdJu5XvfvJ1/+Ns/4+YvXD7fpUhzNso9lRuA6mcXAUuBUe6nHAdsrKpN/XouAVYD/zrQZzVwcVUVcHWSJUkOrqotVXVVkmXTrHc13dkSwEXAZ4Hf65dfUlX3AV9JsrGv4fMj1CotGO+98NeY3Ho9e+UxvG3JQRzy1In5Lkka2Sj3VF48MP0AcEdVPTDCuEOA2wbmNwPHj9DnEGDLDOt9QlVtAaiqLUkOGljX1dOs6xGSnEl3VsThhx8++15Iu9j377+HPfMYHuQh7rv3nvkuR5qTUe6pfK2qvgbcS3em8qQko/w2znSr24E+oxppXVX1nqqaqKqJpUuX7uCmpPH5lV86l+cc8XO88tmv58in/dx8lyPNySiXv14KvAt4EnAncATdu7+OmWXoZuCwgflDgdt3oM+wO6YukSU5uK9pR9clLThPPOrp/PLr//d8lyHtkFFu1L8NOAH4UlUdCTwP+NwI464Blic5MsmedDfR1w71WQuc3r8L7ATg7qlLWzNYC5zRT58BfGxg+SlJ9kpyJN3N/y+MUKckqZFRQuWHVfVNYI8ke1TVPwDPnG1Qf9/lLOAKujObS6tqQ5I1Sdb03S4HNgEbgQuB106NT/IRupvsRyfZnOTVfdM7gJOS3Aqc1M9TVRuAS+neCPB3wOuq6sER9k+S1Ei6N17N0CH5DHAy8CfAgXSXmyaq6tljr27MJiYmanJycr7LkKTdSpJ1VTXt2xJHeffX9cAPgN8ETgN+DNi3XXmSpB8Vo4TKz1fVQ8BDdJ8LIcn6sVYlSdotbTdUkvwa3T2OJw+FyH6MdqNekvQoM9OZyoeBT9LdSxn83q7vVdW3xlqVJGm3tN1Qqaq7gbuBU3ddOZKk3Zn/SZckqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqZmxhkqSlUluSbIxydnTtCfJeX37+iTHzjY2yTOSfD7JDUk+nmT/fvljklzUL78pyRvHuW+SpG2NLVSSLALOB1YBK4BTk6wY6rYKWN4/zgQuGGHse4Gzq+ppwGXA7/TLXw7s1S9/FvCaJMvGs3eSpOmM80zlOGBjVW2qqvuBS4DVQ31WAxdX52pgSZKDZxl7NHBVP/1p4GX9dAGPS7IYeCxwP/DdMe2bJGka4wyVQ4DbBuY398tG6TPT2BuBl/bTLwcO66c/Cnwf2AJ8HfjTqvrWzu2CJGkuxhkqmWZZjdhnprGvAl6XZB2wH90ZCXRnNw8CTwKOBH47yVHbFJWcmWQyyeTWrVtn3wtJ0sjGGSqbefgsAuBQ4PYR+2x3bFXdXFUvqKpnAR8Bvtz3eQXwd1X1w6q6E/gcMDFcVFW9p6omqmpi6dKlO7xzkqRtjTNUrgGWJzkyyZ7AKcDaoT5rgdP7d4GdANxdVVtmGpvkoP55D+DNwLv7dX0deG6/rscBJwA3j3H/JElDxhYqVfUAcBZwBXATcGlVbUiyJsmavtvlwCZgI3Ah8NqZxvZjTk3yJbrAuB14f7/8fGBfunsu1wDvr6r149o/SdK2UjV8m+PRY2JioiYnJ+e7DEnarSRZV1Xb3F4AP1EvSWrIUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqZmxhkqSlUluSbIxydnTtCfJeX37+iTHzjY2yTOSfD7JDUk+nmT/gban920b+va9x7l/kqRHGluoJFkEnA+sAlYApyZZMdRtFbC8f5wJXDDC2PcCZ1fV04DLgN/pxywGPgisqapjgBOBH45r/yRJ2xrnmcpxwMaq2lRV9wOXAKuH+qwGLq7O1cCSJAfPMvZo4Kp++tPAy/rpFwDrq+p6gKr6ZlU9OK6dkyRta5yhcghw28D85n7ZKH1mGnsj8NJ++uXAYf30U4FKckWSLyb53emKSnJmkskkk1u3bp3jLkmSZjLOUMk0y2rEPjONfRXwuiTrgP2A+/vli4GfAU7rn38xyfO2WUnVe6pqoqomli5dOvteSJJGtniM697Mw2cRAIcCt4/YZ8/tja2qm+kudZHkqcAvDKzrH6vqrr7tcuBY4MoG+yJJGsE4z1SuAZYnOTLJnsApwNqhPmuB0/t3gZ0A3F1VW2Yam+Sg/nkP4M3Au/t1XQE8Pck+/U375wD/Osb9kyQNGduZSlU9kOQsul/2i4D3VdWGJGv69ncDlwMvAjYCPwBeOdPYftWnJnldP/23wPv7Md9O8md0gVTA5VX1iXHtnyRpW6kavs3x6DExMVGTk5PzXYYk7VaSrKuqiena/ES9JKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM6mq+a5h3iTZCnxtnss4ELhrnmuYK2veNXa3mne3esGad9QRVbV0uoZHdagsBEkmq2pivuuYC2veNXa3mne3esGax8HLX5KkZgwVSVIzhsr8e898F7ADrHnX2N1q3t3qBWtuznsqkqRmPFORJDVjqEiSmjFUGkiyMsktSTYmOXua9iQ5r29fn+TYfvneSb6Q5PokG5K8dWDM/0xyc9//siRL+uXLktyb5Lr+8e4FUu/b+r7XJflUkicNtL2xX9ctSV4413p3dc0tjvG4ah4Y+4YkleTAgWUL8jhvr+YF/Fo+J8k3Bup60UDbgjzG26u51Wt5TqrKx048gEXAl4GjgD2B64EVQ31eBHwSCHAC8C/98gD79tOPAf4FOKGffwGwuJ9+J/DOfnoZcOMCrHf/gfG/Dry7n17Rb2Mv4Mh+24sWeM07dYzHWXO/7DDgCroP7h640I/zDDUv1NfyOcAbptnegj3GM9S806/luT48U9l5xwEbq2pTVd0PXAKsHuqzGri4OlcDS5Ic3M/f0/d5TP8ogKr6VFU90LddDRy6wOv97sD4x00t79d1SVXdV1VfATb2NSzkmlsYS829c4HfHVq2YI/zDDXvrHHWO52FfowXBENl5x0C3DYwv7lfNlKfJIuSXAfcCXy6qv5lmm28iu4vlylHJrk2yT8m+dmFUm+Stye5DTgNeMsctrfQaoadO8ZjqznJS4FvVNX1O7C9hVYzLNDXMnBWf+npfUkOmMP2FlrNsPOv5TkxVHZeplk2/NfDdvtU1YNV9Uy6M5HjkvzkIwYmbwIeAD7UL9oCHF5VPwX8FvDhJPsvhHqr6k1VdVhf61lz2N5Cq3lnj/FYak6yD/AmHhl+c9nebHZ1zQv1tXwB8GTgmX2N75rD9mazq2tu8VqeE0Nl522mu1485VDg9rn2qarvAJ8FVk4tS3IG8GLgtKqaelHdV1Xf7KfX0V2ffepCqHfAh4GXzWF7C6rmBsd4XDU/me5a/vVJvtr3/2KSJ464vQVV80J9LVfVHf0v74eAC3n4EtdCPcbbrbnRa3luahfewPlRfACLgU10/3CmbrwdM9TnF3jkjbcv9MuXAkv66ccC/wS8uJ9fCfwrsHRoXUvpbw7S3ez7BvD4BVDv8oHxrwc+2k8fwyNvbm5i7jc3d3XNO3WMx1nz0Piv8vBN7wV7nGeoeaG+lg8eGP+bdPdRFvQxnqHmnX4tz/UxthU/mh5079b4Et1fAW/ql60B1vTTAc7v228AJvrlTweuBdYDNwJvGVjnRrrrqtf1j6l3Jr0M2NC/GL8IvGSB1Ps3/bL1wMeBQwba3tSv6xZg1QI6xtPW3OIYj6vmofV/lf4X9EI+ztureQG/lv+677seWMsjf2EvyGO8vZpbvZbn8vBrWiRJzXhPRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKtIukuSe2XuNtJ5zkryhxbqk1gwVSVIzhoq0iyXZN8mVSb6Y5IYkq/vly9L9HzrvTXJjkg8leX6SzyW5NcngN+I+I8nf98t/dZ52RdqGH36UdpEk91TVvkkWA/tU1XfT/YdVVwPLgSPovknhp+g+BX0N3SehXw28FHhlVZ2c5BzgF+m+wuNxdJ+yPr6q5vo9VFJznqlIu16AP06yHvgM3deaP6Fv+0pV3VDdFwNuAK6s7i+/G+j+w6UpH6uqe6vqLuAfmPv/6yGNxeL5LkB6FDqN7ov+nlVVP+y/vXfvvu2+gX4PDcw/xCP/vQ5fYvCSgxYEz1SkXe/HgDv7QPl5ustec7W6/z/Lfxw4ke5SmTTvPFORdr0PAR9PMkn3DdQ378A6vgB8AjgceJv3U7RQeKNektSMl78kSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNfP/AeX05UuZRg3eAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rho kappa\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfdElEQVR4nO3df5xV9X3n8ddbEMRGiwnYECCCCfooRGv0KnQbjDGagNHgw2wihoq16RJsMe1mm9bE+iMmNj/abLasBqobVBIFrVEzm+iSpl01m4gyhAmCSh0JxgEq4y9CgsGin/3jfG88XO4wd4b5ztwh7+fjcR5zzvfX+Zwzl/vhnPOdexURmJmZ5XTQQAdgZmYHPicbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbsACHpNEkdAx1HmaT1kk7bR/1nJP2v/ovIBoqTjTUFSZskvSzpF5KelXSTpDcMdFz7ImmCpJA0tI/GO0TSS5JOr1P3VUl39sV+eiMd5y/T72ezpP8uaUh3/SJiSkTcv4/6v42IP+nTYK0pOdlYMzknIt4AnAicDPxNTzqrMGhe07VJKiJ+BdwOzK1pNwS4ALil/6Kr6/fS7+e9wEeB/7I/g/VVkrbBYdD8w7TfHBGxGbgPeIekIyR9R1KnpBfT+rhqW0n3S7pW0g+BncDRki6W9LikHZI2Svp4qf1pkjok/ZWkbZK2SjpX0lmS/k3SC5I+U2p/kKTLJD0l6XlJd0h6Y6p+MP18Kf2P//dTnz9O+39R0gpJR5XGC0l/JulJ4Mk6h38L8CFJh5bK3k/xb/W+fR1brbSvt5e2b5b0+dL22ZLa0tXUjyQd3/Vv5XUR8QTwA4rfz9sk/Ws6N89JulXSyNI+Nkk6I61fLelOSd+U9HPgj1LZN1N99UrxIkk/S+NdXhprhKRb0nl9PP0OO0r1f52uunZI2iDpvY0cj/UPJxtrOpLGA2cBayheozcBRwFvBV4GrqvpciEwDzgMeBrYBpwNHA5cDHxV0oml9m8GDgHGAlcCNwJ/CJwETAeulHR0avsJ4Fzg3cBbgBeB61PdqennyIh4Q0Q8JOlc4DPAecBoijflZTXxngtMBSbXHntE/AjYmvqXj++2iNjdwLE1JPVZAnwceBPwj0CLpOEN9J1McZ7WAAK+QHFufhcYD1y9j+6zgDuBkcCtXbR5F3AsxRXUlZJ+N5VfBUwAjgbOpPidVWM6FlgAnBwRh1Ek6E3dHYv1o4jw4mXAF4o3hl8AL1EkjK8BI+q0OwF4sbR9P3BNN2PfA/x5Wj+NImENSduHAQFMLbVfDZyb1h8H3luqGwP8BzCU4o0vgKGl+vuAj5W2D6K44joqbQdwejfx/g3wvbR+eOr/zgaPraNUF8DbS9s3A59P64uAz9WMtQF4dxf7CeDnFMn2KeDzwEF12p0LrKn5vZ6R1q8GHqxpfzXwzbRePZ/jSvWPALPT+kbg/aW6P6keL/B2ikR8BnDwQL+evey9+J6pNZNzI+L75YJ0O+mrwAzgiFR8mKQhEfFq2n6mps9Miv8FH0PxZn8o8GipyfOlvi+nn8+W6l8GqpMTjgLulvRaqf5V4He6OIajgH+Q9JVySBRXUU/Xi7eOpcBVksZS/A+9PSLWNHhsjToKuEjSpaWyYRRXKF05MSLaywWSjgQWUlzpHJZienEfY3R37AD/Xlrfyeu/i7fU9P/1ekS0S/oLiuQ1RdIK4JMRsaWB/Vk/8G00a3b/jeKWytSIOJzXb12p1ObXH12ebgN9C/h74HciYiRwb037nngGmBkRI0vLIVE8V6r3kenPAB+vaT8iittje8VbT0T8jOL22xyKW2hLe3lsOymSUdWba+K8tibOQyOi9pZfd76Qjuf49Pv5w33EA90ceze2AuNK2+P3GDjitoh4F0UiDeBL+7Ev62NONtbsDqO40ngpPZi/qpv2w4DhQCewO10JvG8/9r8YuLb6kF/SaEmzUl0n8BrFM4Ry+09LmpLa/7akD/div7dQPIP4A15/ttHTY2sDPippiKQZFM+dqm4E5kuaqsJvSfqApMN6GOdhpNuf6UrsUz3s3xN3UJzbI9K+FlQrJB0r6fSUkH9F8Zp5tYtxbAA42Viz+x/ACOA5YCXwf/bVOCJ2UDzUv4Pids5HgZb92P8/pP7fk7QjxTA17WsncC3wwzSja1pE3E3xP+rlacbVOmBmL/Z7J8Vtw3+JiK29PLY/B86heA42h+L5DmmsVoqpy9elsdqBP+pFnJ+lmKq+HfgucFcvxmjUNUAH8FPg+xTnaFeqGw58keJ18u/AkRQTNaxJKMJfnmZmg4+kSygmD7y728Y24HxlY2aDgqQxkv4g/e3TsRTP8+4e6LisMZ6NZmaDxTCKvweaSHFrcDnFFHkbBHwbzczMsvNtNDMzy8630bowatSomDBhwkCHYWY2aIwaNYoVK1asiIgZtXVONl2YMGECra2tAx2GmdmgImlUvXLfRjMzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7LImG0kzJG2Q1C7psjr1krQw1a+VdGKpbomkbZLW1fS5XVJbWjZJakvlc0rlbZJek3RCqrs/xVGtOzLncZuZ2Z6yfS20pCHA9cCZQAewSlJLRDxWajYTmJSWqcCi9BPgZuA6YGl53Ig4v7SPrwDbU/mtwK2p/Djg2xHRVuo6JyL8Pc9mZgMg55XNKUB7RGyMiFeA5cCsmjazgKVRWAmMlDQGICIeBF7oanBJAj4CLKtTfUEX5WZmNgByJpuxwDOl7Y5U1tM2XZkOPBsRT9apO5+9k81N6RbaFSlR7UXSPEmtklo7OzsbDMPMzLqTM9nUe0OPXrTpSt2rF0lTgZ0RUX7WMycijqNIUNOBC+sNGBE3REQlIiqjR49uMAwzM+tOzmTTAYwvbY8DtvSizV4kDQXOA26vUz2bmiQUEZvTzx3AbRS3+MzMrJ/kTDargEmSJkoaRpEEWmratABz06y0acD2iNjawNhnAE9EREe5UNJBwIcpng9Vy4ZKGpXWDwbOBvaY4WZmZnllm40WEbslLQBWAEOAJRGxXtL8VL8YuBc4C2gHdgIXV/tLWgacBoyS1AFcFRFfT9V7Xb0kpwIdEbGxVDYcWJESzRDg+8CNfXagZmbWLUU0+ojkN0ulUonWVs+UNjPrCUmrI6JSW+5PEDAzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyy5psJM2QtEFSu6TL6tRL0sJUv1bSiaW6JZK2SVpX0+d2SW1p2SSpLZVPkPRyqW5xqc9Jkh5N+1koSRkP28zMamRLNpKGANcDM4HJwAWSJtc0mwlMSss8YFGp7mZgRu24EXF+RJwQEScA3wLuKlU/Va2LiPml8kVp/Oq+9hrXzMzyyXllcwrQHhEbI+IVYDkwq6bNLGBpFFYCIyWNAYiIB4EXuho8XZ18BFi2ryDSeIdHxEMREcBS4NxeHpOZmfVCzmQzFnimtN2RynrapivTgWcj4slS2URJayQ9IGl6aR8djexD0jxJrZJaOzs7GwzDzMy6kzPZ1HsuEr1o05UL2POqZivw1oh4J/BJ4DZJh/dkHxFxQ0RUIqIyevToBsMwM7PuDM04dgcwvrQ9DtjSizZ7kTQUOA84qVoWEbuAXWl9taSngGPSPsb1dB9mZtZ3cl7ZrAImSZooaRgwG2ipadMCzE2z0qYB2yNiawNjnwE8ERG/vj0maXSalICkoykmAmxM4+2QNC0955kLfHu/j87MzBqW7comInZLWgCsAIYASyJivaT5qX4xcC9wFtAO7AQurvaXtAw4DRglqQO4KiK+nqpns/fEgFOBayTtBl4F5kdEdYLBJRSz20YA96XFzMz6iYoJWlarUqlEa2vrQIdhZjaoSFodEZXacn+CgJmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpZd1mQjaYakDZLaJV1Wp16SFqb6tZJOLNUtkbRN0rqaPrdLakvLJkltqfxMSaslPZp+nl7qc3+Ko9rvyIyHbWZmNYbmGljSEOB64EygA1glqSUiHis1mwlMSstUYFH6CXAzcB2wtDxuRJxf2sdXgO1p8zngnIjYIukdwApgbKnrnIho7ZujMzOznsh5ZXMK0B4RGyPiFWA5MKumzSxgaRRWAiMljQGIiAeBF7oaXJKAjwDLUvs1EbElVa8HDpE0vE+PyMzMeiVnshkLPFPa7mDPK41G23RlOvBsRDxZp+5DwJqI2FUquyndQrsiJaq9SJonqVVSa2dnZ4NhmJlZd3Imm3pv6NGLNl25gHRVs8eA0hTgS8DHS8VzIuI4igQ1Hbiw3oARcUNEVCKiMnr06AbDMDOz7uRMNh3A+NL2OGBLL9rsRdJQ4Dzg9pryccDdwNyIeKpaHhGb088dwG0Ut/jMzKyf5Ew2q4BJkiZKGgbMBlpq2rQAc9OstGnA9ojY2sDYZwBPRERHtUDSSOC7wKcj4oel8qGSRqX1g4GzgXWYmVm/yZZsImI3sIBiVtjjwB0RsV7SfEnzU7N7gY1AO3Aj8KfV/pKWAQ8Bx0rqkPSx0vCz2fsW2gLg7cAVNVOchwMrJK0F2oDNaV9mZtZPFNHoI5LfLJVKJVpbPVPazKwnJK2OiEptuT9BwMzMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLLuGvxZa0geAKcAh1bKIuCZHUGZmdmBp6MpG0mLgfOBSii88+zBwVMa4zMzsANLobbT/FBFzgRcj4rPA77Pnl56ZmZl1qdFk83L6uVPSW4D/ACbmCcnMzA40jT6z+U76Jsy/A34MBP4CMjMza1BDySYiPpdWvyXpO8AhEbE9X1hmZnYgaSjZSDqE4iub30VxVfP/JC2KiF/lDM7MzA4Mjd5GWwrsAP5n2r4A+AbFrDQzM7N9ajTZHBsRv1fa/r+SfpIjIDMzO/A0OhttjaRp1Q1JU4EfdtdJ0gxJGyS1S7qsTr0kLUz1ayWdWKpbImmbpHU1fW6X1JaWTZLaSnWfTmNtkPT+UvlJkh5NdQslqcHjNjOzPtBospkK/Ci9uW8CHgLend7A19brIGkIcD0wE5gMXCBpck2zmcCktMwDFpXqbgZm1I4bEedHxAkRcQLwLeCutL/JwGyKTzmYAXwtxUAad15pX3uNa9bs4rXX+PG/3soPWq7jlZd/MdDhmPVIo7fRevPmfArQHhEbASQtB2YBj5XazAKWRkQAKyWNlDQmIrZGxIOSJnQ1eLo6+Qhwemms5RGxC/ippHbglJQcD4+Ih1K/pcC5wH29OCazAdP24O185buXExF0Pv8zzrv4ywMdklnDGrqyiYingTdRvKF/EHhTRDxdXbroNhZ4prTdkcp62qYr04FnI+LJbsYam9a73YekeZJaJbV2dnY2GIZZ/9j1q18SBAfpIH758s8HOhyzHml06vOVFDPP7kpFN0n6p4j4/L661SmLXrTpygXAsgbGangfEXEDcANApVJpNA6zfnHSaR9l9raf8oudL3HOhy8f6HDMeqTR22gXAO+s/l2NpC9SfJLAvpJNB3t+fto4YEsv2uxF0lDgPOCkBsbqSOs92odZszn4kEP54NxrBzoMs15pdILAJkpfLQAMB57qps8qYJKkiZKGUTy8b6lp0wLMTbPSpgHbI2JrA/GcATwREeXbYy3AbEnDJU2kmAjwSBpvh6Rp6TnPXODbDezDzMz6SKNXNruA9ZL+meIW1JkUnyKwECAiPlHbISJ2S1oArACGAEsiYr2k+al+MXAvcBbQDuwELq72l7QMOA0YJakDuCoivp6qZ7PnLTTS2HdQTEDYDfxZRLyaqi+hmN02gmJigCcHmJn1IxUTwbppJF20r/qIuKXPImoSlUolWltbBzoMM7NBRdLqiKjUljf6QZwHXDIxM7P+0+hstEnAFyj+OLP8tdBHZ4rLzMwOII1OELiJ4q/wdwPvofhgzm/kCsrMzA4sjSabERHxLxTPeJ6OiKt5/S/3zczM9qnR2Wi/knQQ8GSaYbYZODJfWGZmdiBp9MrmL4BDgU9Q/CHlhcA3M8VkZmYHmEaTzT8CEyOiIyIuBv4JODtfWGZmdiBp9DbafwbulDSH4quhLwTely0qMzM7oDT6dzYbJc0G7qH4ZOX3R8TLOQMzM7MDxz6TjaRH2fMTkt9I8dEzD0siIo7PGZyZmR0Yuruy8XMZMzPbb/tMNvv4YjQzM7OGNTobzczMrNecbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyy5psJM2QtEFSu6TL6tRL0sJUv1bSiaW6JZK2SVpXp9+ladz1kr6cyuZIaistr0k6IdXdn9pX6/xdPGZm/ajRT33uMUlDgOuBM4EOYJWkloh4rNRsJjApLVMpvnp6aqq7GbiO4iuoy+O+B5gFHB8Ru6qJIyJuBW5NbY4Dvh0RbaWucyKitS+P0czMGpPzyuYUoD0iNkbEK8ByiiRRNgtYGoWVwEhJYwAi4kHghTrjXgJ8MSJ2pXbb6rS5AFjWR8dhZmb7KWeyGUvxdQRVHamsp21qHQNMl/SwpAcknVynzfnsnWxuSrfQrpCkegNLmiepVVJrZ2dnN2GYmVmjciabem/o0Ys2tYYCRwDTgE8Bd5STh6SpwM6IKD/rmRMRxwHT03JhvYEj4oaIqEREZfTo0d2EYWZmjcqZbDqA8aXtccCWXrSpN+5d6dbbI8BrwKhS/WxqrmoiYnP6uQO4jeIWn5mZ9ZOcyWYVMEnSREnDKJJAS02bFmBumpU2DdgeEVu7Gfce4HQASccAw4Dn0vZBwIcpng+RyoZKGpXWD6b4jp69ZriZmVk+2WajRcRuSQuAFRTf7rkkItZLmp/qFwP3AmcB7cBO4OJqf0nLgNOAUZI6gKsi4uvAEmBJmhL9CnBRRFRvvZ0KdETExlIow4EVKdEMAb4P3JjpsM3MrA69/j5tZZVKJVpbPVPazKwnJK2OiEptuT9BwMzMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8sua7KRNEPSBkntki6rUy9JC1P9WkknluqWSNomaV2dfpemcddL+nIqmyDpZUltaVlcan+SpEfTfhZKUq5jNjOzvWVLNpKGANcDM4HJwAWSJtc0mwlMSss8YFGp7mZgRp1x3wPMAo6PiCnA35eqn4qIE9Iyv1S+KI1f3dde45qZWT45r2xOAdojYmNEvAIsp0gSZbOApVFYCYyUNAYgIh4EXqgz7iXAFyNiV2q3bV9BpPEOj4iHIiKApcC5+3FcZmbWQzmTzVjgmdJ2RyrraZtaxwDTJT0s6QFJJ5fqJkpak8qnl/bR0cg+JM2T1CqptbOzs5swzMysUUMzjl3vuUj0ok2tocARwDTgZOAOSUcDW4G3RsTzkk4C7pE0pSf7iIgbgBsAKpVKd3GYmVmDcl7ZdADjS9vjgC29aFNv3LvSrbdHgNeAURGxKyKeB4iI1cBTFFdBHWncnuzDzMz6UM5kswqYJGmipGHAbKClpk0LMDfNSpsGbI+Ird2Mew9wOoCkY4BhwHOSRqdJCaQrnUnAxjTeDknT0iy0ucC3++YQzcysEdluo0XEbkkLgBXAEGBJRKyXND/VLwbuBc4C2oGdwMXV/pKWAacBoyR1AFdFxNeBJcCSNCX6FeCiiAhJpwLXSNoNvArMj4jqBINLKGa3jQDuS4uZmfUTFRO0rFalUonW1taBDsPMbFCRtDoiKrXl/gQBMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLLusyUbSDEkbJLVLuqxOvSQtTPVrJZ1YqlsiaZukdXX6XZrGXS/py6nsTEmrJT2afp5ean9/at+WliNzHbOZme1taK6BJQ0BrgfOBDqAVZJaIuKxUrOZwKS0TAUWpZ8ANwPXAUtrxn0PMAs4PiJ2lRLHc8A5EbFF0juAFcDYUtc5EdHah4doZmYNynllcwrQHhEbI+IVYDlFkiibBSyNwkpgpKQxABHxIPBCnXEvAb4YEbtSu23p55qI2JLarAcOkTS8z4/KzMx6LGeyGQs8U9ruYM8rjUbb1DoGmC7pYUkPSDq5TpsPAWuqCSm5Kd1Cu0KS6g0saZ6kVkmtnZ2d3YRhZmaNypls6r2hRy/a1BoKHAFMAz4F3FFOHpKmAF8CPl7qMycijgOmp+XCegNHxA0RUYmIyujRo7sJw8zMGpUz2XQA40vb44AtvWhTb9y70q23R4DXgFEAksYBdwNzI+KpaoeI2Jx+7gBuo7jFZ2Zm/SRnslkFTJI0UdIwYDbQUtOmBZibZqVNA7ZHxNZuxr0HOB1A0jHAMOA5SSOB7wKfjogfVhtLGiqpmowOBs4G9prhZmZm+WRLNhGxG1hAMSvsceCOiFgvab6k+anZvcBGoB24EfjTan9Jy4CHgGMldUj6WKpaAhydpkQvBy6KiEj7ejtwRc0U5+HACklrgTZgc9qXmZn1ExXv01arUqlEa6tnSpuZ9YSk1RFRqS33JwiYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtn5y9O6IKkTeHqAwxgFPDfAMfTUYIt5sMULjrm/DLaYmyHe5wAiYkZthZNNE5PUWu8b75rZYIt5sMULjrm/DLaYmz1e30YzM7PsnGzMzCw7J5vmdsNAB9ALgy3mwRYvOOb+Mthibup4/czGzMyy85WNmZll52RjZmbZOdlkJGmGpA2S2iVdVqdekham+rWSTkzlh0h6RNJPJK2X9NlSn7+T9ERqf7ekkal8gqSXJbWlZXETxfy51LZN0vckvaVU9+k01gZJ72/meJv5HJf6/qWkkDSqVLZf57i/Y27m8yzpakmbS7GdVaprxtdy3Xj76hz3SER4ybAAQ4CngKOBYcBPgMk1bc4C7gMETAMeTuUC3pDWDwYeBqal7fcBQ9P6l4AvpfUJwLomjfnwUv9PAIvT+uS0j+HAxLTvIU0cb9Oe41Q2HlhB8cfIo/riHA9QzE17noGrgb+ss79mfS13Fe9+n+OeLr6yyecUoD0iNkbEK8ByYFZNm1nA0iisBEZKGpO2f5HaHJyWAIiI70XE7lS3Ehg3CGL+ean/b1XL01jLI2JXRPwUaE8xNGu8fSFLzMlXgb+qKdvfczwQMfeFnDHX05Sv5WbiZJPPWOCZ0nZHKmuojaQhktqAbcA/R8TDdfbxxxT/06maKGmNpAckTW+mmCVdK+kZYA5wZQ/210zxQpOeY0kfBDZHxE96sb9mixma9DwnC9JtrCWSjujB/popXtj/c9wjTjb5qE5Z7f82umwTEa9GxAkUVy6nSHrHHh2ly4HdwK2paCvw1oh4J/BJ4DZJhzdLzBFxeUSMT/Eu6MH+minepjzHkg4FLmfPpNiT/XWnv2NuyvOc6hcBbwNOSHF+pQf7a6Z4++Ic94iTTT4dFPejq8YBW3raJiJeAu4Hfv3BdpIuAs4G5kRE9cW2KyKeT+urKe7/HtMsMZfcBnyoB/trmnib+By/jeI5wU8kbUrtfyzpzQ3ur6libuLzTEQ8m97YXwNu5PVbZU35Wu4q3j46xz0T/fiA6DdpAYYCGyn+QVUf+E2pafMB9nzg90gqHw2MTOsjgB8AZ6ftGcBjwOiasUaTHkhSPGTcDLyxSWKeVOp/KXBnWp/Cng9VN9Kzh6r9HW/TnuOa/pt4/WH7fp3jAYq5ac8zMKbU/79SPKdp5tdyV/Hu9znu6ZJtYC+/nj3ybxT/a7g8lc0H5qd1Aden+keBSio/HlgDrAXWAVeWxmynuG/blpbqTKkPAevTi/THwDlNFPO3Utla4H8DY0t1l6exNgAzmzneZj7HNeNvIr1x98U57u+Ym/k8A99IbdcCLez5Zt6Mr+W68fbVOe7J4o+rMTOz7PzMxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7Ixa3LpE3rXDXQcZvvDycas+Qn/W7VBzi9gsyaUrmYel/Q1ij+6GyHpxvR9Jd+TNCK1O0HSSr3+/UZH7Htks4HhZGPWvI4FlgLvpPhMrOsjYgrwEq9/vtxS4K8j4niKvxS/agDiNOuWk41Z83o6iu8tAfhpRLSl9dXABEm/TfGZWA+k8luAU/s5RrOGONmYNa9fltZ3ldZfpfjgRrNBw8nGbJCKiO3Ai6UvvroQeGAfXcwGjP93ZDa4XQQsTl9GthG4eIDjMavLn/psZmbZ+TaamZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXb/HwrpX/6t+CgqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rho xi\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeIklEQVR4nO3df5RV5X3v8fdHRtA0WuxlbAigYIKuQvQSPAp3JRhjtAGrxWVWIoaKteklmJLm3tymNbFGm8bbaJubW5YGrzZoaBRkGU3m3mjJze1SsxJRhjBBUKkjmjBAZfxFSDAY5Hv/2M/RzeEMc2aYZ+ZM8nmttdfZ+3me/exn7zmcz+wfnFFEYGZmltMRQz0AMzP79eewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWP2a0LS2ZK6hnocZZI2STr7EPWfk/RPgzciGyoOG2sKkp6T9Kqkn0t6XtLtkt461OM6FEkTJYWklgHq7yhJr0g6p07dVyTdMxDb6Y+0n79IP59tkv6HpBG9rRcRUyPiwUPU//eI+NMBHaw1JYeNNZMLI+KtwHTgDOCv+7KyCsPmPV0bUhHxS+BuYEFNuxHApcDXB290df3H9PP5APBR4D8fTmcDFdI2PAybf5j2myMitgEPAO+SdJyk/yOpW9LLaX58ta2kByVdL+kHwB7gJElXSHpS0m5JWyR9vNT+bEldkv5S0k5JOyRdJOl8Sf8m6SVJnyu1P0LSVZKekfSipFWSfidVP5xeX0m/8f+ntM6fpO2/LGm1pBNL/YWkP5P0NPB0nd3/OvAhSW8plX2Q4t/qA4fat1ppW+8sLd8h6Yul5QskdaSzqR9KOq3nn8qbIuIp4PsUP593SPrXdGxekHSnpNGlbTwn6dw0f52keyR9Q9LPgD9OZd9I9dUzxcsl/TT1d3Wpr6MlfT0d1yfTz7CrVP9X6axrt6TNkj7QyP7Y4HDYWNORNAE4H1hP8R69HTgROAF4FbipZpXLgIXAMcBPgJ3ABcCxwBXAVyRNL7V/G3AUMA74PHAb8EfA6cAs4POSTkpt/xy4CHgf8HbgZeDmVHdWeh0dEW+NiEckXQR8DrgYaKX4UF5RM96LgBnAlNp9j4gfAjvS+uX9uysi9jWwbw1J6ywDPg78B+B/AW2SRjWw7hSK47QeEPB3FMfm94AJwHWHWH0ucA8wGrizhzbvBU6hOIP6vKTfS+XXAhOBk4DzKH5m1TGdAiwGzoiIYygC+rne9sUGUUR48jTkE8UHw8+BVygC46vA0XXaTQNeLi0/CHyhl76/BXwqzZ9NEVgj0vIxQAAzSu3XARel+SeBD5TqxgK/AlooPvgCaCnVPwB8rLR8BMUZ14lpOYBzehnvXwPfTfPHpvXf3eC+dZXqAnhnafkO4ItpfinwtzV9bQbe18N2AvgZRdg+A3wROKJOu4uA9TU/13PT/HXAwzXtrwO+kearx3N8qf4xYF6a3wJ8sFT3p9X9Bd5JEcTnAkcO9fvZ08GTr5laM7koIr5XLkiXk74CzAaOS8XHSBoREa+n5a0168yh+C34ZIoP+7cAj5eavFha99X0+nyp/lWg+nDCicB9kvaX6l8HfreHfTgR+EdJXy4PieIs6if1xlvHcuBaSeMofkPvjIj1De5bo04ELpf0yVLZSIozlJ5Mj4jOcoGk44ElFGc6x6QxvXyIPnrbd4B/L83v4c2fxdtr1n9jPiI6Jf0XivCaKmk18OmI2N7A9mwQ+DKaNbv/RnFJZUZEHMubl65UavPGV5eny0DfBP4B+N2IGA3cX9O+L7YCcyJidGk6Kor7SvW+Mn0r8PGa9kdHcXnsoPHWExE/pbj8Np/iEtryfu7bHoowqnpbzTivrxnnWyKi9pJfb/4u7c9p6efzR4cYD/Sy773YAYwvLU84oOOIuyLivRRBGsANh7EtG2AOG2t2x1CcabySbsxf20v7kcAooBvYl84Efv8wtn8LcH31Jr+kVklzU103sJ/iHkK5/WclTU3tf1vSh/ux3a9T3IN4D2/e2+jrvnUAH5U0QtJsivtOVbcBiyTNUOG3JP2BpGP6OM5jSJc/05nYZ/q4fl+soji2x6VtLa5WSDpF0jkpkH9J8Z55vYd+bAg4bKzZ/U/gaOAFYA3wL4dqHBG7KW7qr6K4nPNRoO0wtv+Paf3vStqdxjAjbWsPcD3wg/RE18yIuI/iN+qV6YmrjcCcfmz3HorLhv8vInb0c98+BVxIcR9sPsX9HVJf7RSPLt+U+uoE/rgf4/wbikfVdwHfAe7tRx+N+gLQBTwLfI/iGO1NdaOAL1G8T/4dOJ7iQQ1rEorwH08zs+FH0pUUDw+8r9fGNuR8ZmNmw4KksZLek/7v0ykU9/PuG+pxWWP8NJqZDRcjKf4/0CSKS4MrKR6Rt2HAl9HMzCw7X0YzM7PsfBmtB2PGjImJEycO9TDMzIaNMWPGsHr16tURMbu2zmHTg4kTJ9Le3j7UwzAzG1YkjalX7stoZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWXdawkTRb0mZJnZKuqlMvSUtS/QZJ00t1yyTtlLSxZp27JXWk6TlJHal8fqm8Q9J+SdNS3YNpHNW643Put5mZHSjbn4WWNAK4GTgP6ALWSmqLiCdKzeYAk9M0A1iaXgHuAG4Clpf7jYhLStv4MrArld8J3JnKTwW+HREdpVXnR4T/zrOZ2RDIeWZzJtAZEVsi4jVgJTC3ps1cYHkU1gCjJY0FiIiHgZd66lySgI8AK+pUX9pDuZmZDYGcYTMO2Fpa7kplfW3Tk1nA8xHxdJ26Szg4bG5Pl9CuSUF1EEkLJbVLau/u7m5wGGZm1pucYVPvAz360aYndc9eJM0A9kRE+V7P/Ig4lSKgZgGX1eswIm6NiEpEVFpbWxschpmZ9SZn2HQBE0rL44Ht/WhzEEktwMXA3XWq51ETQhGxLb3uBu6iuMRnZmaDJGfYrAUmS5okaSRFCLTVtGkDFqSn0mYCuyJiRwN9nws8FRFd5UJJRwAfprg/VC1rkTQmzR8JXAAc8ISbmZnlle1ptIjYJ2kxsBoYASyLiE2SFqX6W4D7gfOBTmAPcEV1fUkrgLOBMZK6gGsj4mup+qCzl+QsoCsitpTKRgGrU9CMAL4H3DZgO2pmZr1SRKO3SH6zVCqVaG/3k9JmZn0haV1EVGrL/Q0CZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8sua9hImi1ps6ROSVfVqZekJal+g6TppbplknZK2lizzt2SOtL0nKSOVD5R0qulultK65wu6fG0nSWSlHG3zcysRrawkTQCuBmYA0wBLpU0pabZHGBymhYCS0t1dwCza/uNiEsiYlpETAO+Cdxbqn6mWhcRi0rlS1P/1W0d1K+ZmeWT88zmTKAzIrZExGvASmBuTZu5wPIorAFGSxoLEBEPAy/11Hk6O/kIsOJQg0j9HRsRj0REAMuBi/q5T2Zm1g85w2YcsLW03JXK+tqmJ7OA5yPi6VLZJEnrJT0kaVZpG12NbEPSQkntktq7u7sbHIaZmfUmZ9jUuy8S/WjTk0s58KxmB3BCRLwb+DRwl6Rj+7KNiLg1IioRUWltbW1wGGZm1puWjH13ARNKy+OB7f1ocxBJLcDFwOnVsojYC+xN8+skPQOcnLYxvq/bMDOzgZPzzGYtMFnSJEkjgXlAW02bNmBBeiptJrArInY00Pe5wFMR8cblMUmt6aEEJJ1E8SDAltTfbkkz032eBcC3D3vvzMysYdnObCJin6TFwGpgBLAsIjZJWpTqbwHuB84HOoE9wBXV9SWtAM4GxkjqAq6NiK+l6nkc/GDAWcAXJO0DXgcWRUT1AYMrKZ5uOxp4IE1mZjZIVDygZbUqlUq0t7cP9TDMzIYVSesiolJb7m8QMDOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2WcNG0mxJmyV1SrqqTr0kLUn1GyRNL9Utk7RT0saade6W1JGm5yR1pPLzJK2T9Hh6Pae0zoNpHNX1js+422ZmVqMlV8eSRgA3A+cBXcBaSW0R8USp2RxgcppmAEvTK8AdwE3A8nK/EXFJaRtfBnalxReACyNiu6R3AauBcaVV50dE+8DsnZmZ9UXOM5szgc6I2BIRrwErgbk1beYCy6OwBhgtaSxARDwMvNRT55IEfARYkdqvj4jtqXoTcJSkUQO6R2Zm1i85w2YcsLW03MWBZxqNtunJLOD5iHi6Tt2HgPURsbdUdnu6hHZNCqqDSFooqV1Se3d3d4PDMDOz3uQMm3of6NGPNj25lHRWc0CH0lTgBuDjpeL5EXEqRUDNAi6r12FE3BoRlYiotLa2NjgMMzPrTc6w6QImlJbHA9v70eYgklqAi4G7a8rHA/cBCyLimWp5RGxLr7uBuygu8ZmZ2SDJGTZrgcmSJkkaCcwD2mratAEL0lNpM4FdEbGjgb7PBZ6KiK5qgaTRwHeAz0bED0rlLZLGpPkjgQuAjZiZ2aDJFjYRsQ9YTPFU2JPAqojYJGmRpEWp2f3AFqATuA34RHV9SSuAR4BTJHVJ+lip+3kcfAltMfBO4JqaR5xHAaslbQA6gG1pW2ZmNkgU0egtkt8slUol2tv9pLSZWV9IWhcRldpyf4OAmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLLLGjaSZkvaLKlT0lV16iVpSarfIGl6qW6ZpJ2SNtasc7ekjjQ9J6mjVPfZ1NdmSR8slZ8u6fFUt0SSMu2ymZnVkS1sJI0AbgbmAFOASyVNqWk2B5icpoXA0lLdHcDs2n4j4pKImBYR04BvAvem7U0B5gFT03pfTWMg9buwtK2D+jVrdrF/Pz/61zv5fttNvPbqz4d6OGZ90tJThaRVEfERSY8DUa4CIiJO66XvM4HOiNiS+lsJzAWeKLWZCyyPiADWSBotaWxE7IiIhyVNPMT4BHwEOKfU18qI2As8K6kTOFPSc8CxEfFIWm85cBHwQC/jN2sqHQ/fzZe/czURQfeLP+XiK24c6iGZNazHsAE+lV7nAbW/Rr2/gb7HAVtLy13AjAbajAN2NND/LOD5iHi61NeaOn39Ks3Xlh9E0kKKMyBOOOGEBoZgNnj2/vIXBMEROoJfvPqzoR6OWZ/0GDYRUf3AvxtYDvw9cBRwI1ChuMx1KPXui0Q/2vTkUmBFA301vI2IuBW4FaBSqTQ6DrNBcfrZH2Xezmf5+Z5XuPDDVw/1cMz65FBnNlUzgBuAHwLHAHcC72lgvS5gQml5PLC9H20OIqkFuBg4vYG+utJ8n7Zh1myOPOot/OGC64d6GGb90sgDAr8CXgWOpjizeTYi9jew3lpgsqRJkkZSXI5rq2nTBixIT6XNBHaVzqgO5VzgqYgoXx5rA+ZJGiVpEsWDAI+l/nZLmpnu8ywAvt3ANszMbIA0EjZrKcLmDOC9FE+V3dPbShGxD1gMrAaeBFZFxCZJiyQtSs3uB7YAncBtwCeq60taATwCnCKpS9LHSt3P48BLaETEJmAVxQMI/wL8WUS8nqqvBP4pbecZ/HCAmdmgUvEg2CEaSJWIaK8puywi/jnryIZYpVKJ9vb23huamdkbJK2LiEptea9nNrVBk8p+rYPGzMwGlr+uxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLLmvYSJotabOkTklX1amXpCWpfoOk6aW6ZZJ2StpYZ71Ppn43Sboxlc2X1FGa9kualuoeTO2rdcdn3G0zM6vRkqtjSSOAm4HzgC5graS2iHii1GwOMDlNM4Cl6RXgDuAmYHlNv+8H5gKnRcTeanBExJ3AnanNqcC3I6KjtOr8iGgfyH00M7PG5DyzORPojIgtEfEasJIiJMrmAsujsAYYLWksQEQ8DLxUp98rgS9FxN7UbmedNpcCKwZoP8zM7DDlDJtxwNbSclcq62ubWicDsyQ9KukhSWfUaXMJB4fN7ekS2jWSVK9jSQsltUtq7+7u7mUYZmbWqJxhU+8DPfrRplYLcBwwE/gMsKocHpJmAHsionyvZ35EnArMStNl9TqOiFsjohIRldbW1l6GYWZmjcoZNl3AhNLyeGB7P9rU6/fedOntMWA/MKZUP4+as5qI2JZedwN3UVziMzOzQZIzbNYCkyVNkjSSIgTaatq0AQvSU2kzgV0RsaOXfr8FnAMg6WRgJPBCWj4C+DDF/SFSWYukMWn+SOAC4KAn3MzMLJ9sT6NFxD5Ji4HVwAhgWURskrQo1d8C3A+cD3QCe4ArqutLWgGcDYyR1AVcGxFfA5YBy9Ij0a8Bl0dE9dLbWUBXRGwpDWUUsDoFzQjge8BtmXbbzMzq0Juf01ZWqVSivd1PSpuZ9YWkdRFRqS33NwiYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLLusYSNptqTNkjolXVWnXpKWpPoNkqaX6pZJ2ilpY531Ppn63STpxlQ2UdKrkjrSdEup/emSHk/bWSJJufbZzMwOli1sJI0AbgbmAFOASyVNqWk2B5icpoXA0lLdHcDsOv2+H5gLnBYRU4F/KFU/ExHT0rSoVL409V/d1kH9mplZPjnPbM4EOiNiS0S8BqykCImyucDyKKwBRksaCxARDwMv1en3SuBLEbE3tdt5qEGk/o6NiEciIoDlwEWHsV9mZtZHOcNmHLC1tNyVyvraptbJwCxJj0p6SNIZpbpJktan8lmlbXQ1sg1JCyW1S2rv7u7uZRhmZtaolox917svEv1oU6sFOA6YCZwBrJJ0ErADOCEiXpR0OvAtSVP7so2IuBW4FaBSqfQ2DjMza1DOM5suYEJpeTywvR9t6vV7b7r09hiwHxgTEXsj4kWAiFgHPENxFtSV+u3LNszMbADlDJu1wGRJkySNBOYBbTVt2oAF6am0mcCuiNjRS7/fAs4BkHQyMBJ4QVJreiiBdKYzGdiS+tstaWZ6Cm0B8O2B2UUzM2tEtstoEbFP0mJgNTACWBYRmyQtSvW3APcD5wOdwB7giur6klYAZwNjJHUB10bE14BlwLL0SPRrwOUREZLOAr4gaR/wOrAoIqoPGFxJ8XTb0cADaTIzs0Gi4gEtq1WpVKK9vX2oh2FmNqxIWhcRldpyf4OAmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLLLGjaSZkvaLKlT0lV16iVpSarfIGl6qW6ZpJ2SNtZZ75Op302Sbkxl50laJ+nx9HpOqf2DqX1Hmo7Ptc9mZnawllwdSxoB3AycB3QBayW1RcQTpWZzgMlpmgEsTa8AdwA3Actr+n0/MBc4LSL2loLjBeDCiNgu6V3AamBcadX5EdE+gLtoZmYNynlmcybQGRFbIuI1YCVFSJTNBZZHYQ0wWtJYgIh4GHipTr9XAl+KiL2p3c70uj4itqc2m4CjJI0a8L0yM7M+yxk244CtpeUuDjzTaLRNrZOBWZIelfSQpDPqtPkQsL4aSMnt6RLaNZJUr2NJCyW1S2rv7u7uZRhmZtaonGFT7wM9+tGmVgtwHDAT+AywqhwekqYCNwAfL60zPyJOBWal6bJ6HUfErRFRiYhKa2trL8MwM7NG5QybLmBCaXk8sL0fber1e2+69PYYsB8YAyBpPHAfsCAinqmuEBHb0utu4C6KS3xmZjZIcobNWmCypEmSRgLzgLaaNm3AgvRU2kxgV0Ts6KXfbwHnAEg6GRgJvCBpNPAd4LMR8YNqY0ktkqphdCRwAXDQE25mZpZPtrCJiH3AYoqnwp4EVkXEJkmLJC1Kze4HtgCdwG3AJ6rrS1oBPAKcIqlL0sdS1TLgpPRI9Erg8oiItK13AtfUPOI8ClgtaQPQAWxL2zIzs0Gi4nPaalUqlWhv95PSZmZ9IWldRFRqy/0NAmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+z8x9N6IKkb+MkQD2MM8MIQj6GvhtuYh9t4wWMeLMNtzM0w3hcAImJ2bYXDpolJaq/3F++a2XAb83AbL3jMg2W4jbnZx+vLaGZmlp3DxszMsnPYNLdbh3oA/TDcxjzcxgse82AZbmNu6vH6no2ZmWXnMxszM8vOYWNmZtk5bDKSNFvSZkmdkq6qUy9JS1L9BknTU/lRkh6T9GNJmyT9TWmdv5f0VGp/n6TRqXyipFcldaTpliYa89+mth2Svivp7aW6z6a+Nkv6YDOPt5mPcWndv5AUksaUyg7rGA/2mJv5OEu6TtK20tjOL9U143u57ngH6hj3SUR4yjABI4BngJOAkcCPgSk1bc4HHgAEzAQeTeUC3prmjwQeBWam5d8HWtL8DcANaX4isLFJx3xsaf0/B25J81PSNkYBk9K2RzTxeJv2GKeyCcBqiv+MPGYgjvEQjblpjzNwHfAXdbbXrO/lnsZ72Me4r5PPbPI5E+iMiC0R8RqwEphb02YusDwKa4DRksam5Z+nNkemKQAi4rsRsS/VrQHGD4Mx/6y0/m9Vy1NfKyNib0Q8C3SmMTTreAdCljEnXwH+sqbscI/xUIx5IOQccz1N+V5uJg6bfMYBW0vLXamsoTaSRkjqAHYC/zciHq2zjT+h+E2napKk9ZIekjSrmcYs6XpJW4H5wOf7sL1mGi806TGW9IfAtoj4cT+212xjhiY9zsnidBlrmaTj+rC9ZhovHP4x7hOHTT6qU1b720aPbSLi9YiYRnHmcqakdx2wonQ1sA+4MxXtAE6IiHcDnwbuknRss4w5Iq6OiAlpvIv7sL1mGm9THmNJbwGu5sBQ7Mv2ejPYY27K45zqlwLvAKalcX65D9trpvEOxDHuE4dNPl0U16OrxgPb+9omIl4BHgTe+GI7SZcDFwDzI6L6ZtsbES+m+XUU139PbpYxl9wFfKgP22ua8TbxMX4HxX2CH0t6LrX/kaS3Nbi9phpzEx9nIuL59MG+H7iNNy+VNeV7uafxDtAx7psYxBtEv0kT0AJsofgHVb3hN7WmzR9w4A2/x1J5KzA6zR8NfB+4IC3PBp4AWmv6aiXdkKS4ybgN+J0mGfPk0vqfBO5J81M58KbqFvp2U3Wwx9u0x7hm/ed482b7YR3jIRpz0x5nYGxp/f9KcZ+mmd/LPY33sI9xX6dsHXt64+mRf6P4reHqVLYIWJTmBdyc6h8HKqn8NGA9sAHYCHy+1GcnxXXbjjRVn5T6ELApvUl/BFzYRGP+ZirbAPxvYFyp7urU12ZgTjOPt5mPcU3/z5E+uAfiGA/2mJv5OAP/nNpuANo48MO8Gd/Ldcc7UMe4L5O/rsbMzLLzPRszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2Zk0ufUPvxqEeh9nhcNiYNT/hf6s2zPkNbNaE0tnMk5K+SvGf7o6WdFv6eyXflXR0ajdN0hq9+feNjjt0z2ZDw2Fj1rxOAZYD76b4TqybI2Iq8Apvfr/ccuCvIuI0iv8pfu0QjNOsVw4bs+b1kyj+bgnAsxHRkebXARMl/TbFd2I9lMq/Dpw1yGM0a4jDxqx5/aI0v7c0/zrFFzeaDRsOG7NhKiJ2AS+X/vDVZcBDh1jFbMj4tyOz4e1y4Jb0x8i2AFcM8XjM6vK3PpuZWXa+jGZmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2/x8dC+zvVos2QgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rho sigma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfc0lEQVR4nO3df5xV9X3n8ddbEDWJFrNgQwAFI9pKtESvwj4ajDGagNHiQ5uIoWJtugRb0nazSWtijDaNbZKtzZbVQHVFpVHQTTSZbrS42a6aTUUdwgRBpY6EhAEi4y+iwWCRz/5xvlcPlzvMvcN8Z+6Y9/PxOI859/v9nu/5njPDvDnnfOdeRQRmZmY5HTDYAzAzszc/h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bszcJSadL6hrscZRJWifp9H3Uf07S/xi4EdlgcdhYS5C0UdIrkl6W9IykmyW9bbDHtS+SJkgKScP7qb+DJb0o6Yw6dV+T9M3+2E9fpOP8Rfr+bJb0d5KG9bZdREyOiPv3Uf/XEfGH/TpYa0kOG2sl50bE24CTgFOAzzezsQpD5me6NqQi4pfAHcDcmnbDgIuAWwdudHX9Vvr+fAD4GPCf9qez/gppGxqGzD9M+9UREZuBe4F3Szpc0v+S1C3phbQ+rtpW0v2SrpH0A2AHcLSkSyU9IeklSRskfaLU/nRJXZL+XNI2SVslnSfpbEn/Jul5SZ8rtT9A0uWSnpb0nKQ7Jb09VT+Yvr6Y/sf/H9M2f5D2/4KkFZKOKvUXkv5Y0lPAU3UO/1bgAklvKZV9iOLf6r37OrZaaV/HlF7fIulLpdfnSOpIV1P/KunEnr8rb4iIJ4HvU3x/3iXpX9K5eVbSbZJGlvaxUdKZaf1qSd+U9A1JPwd+P5V9I9VXrxQvkfTT1N8Vpb4OkXRrOq9PpO9hV6n+L9JV10uS1kv6QCPHYwPDYWMtR9J44GxgNcXP6M3AUcCRwCvAdTWbXAzMAw4FfgJsA84BDgMuBb4m6aRS+3cABwNjgS8ANwK/B5wMTAe+IOno1PZPgPOA9wHvBF4Ark91p6WvIyPibRHxkKTzgM8B5wOjKX4pL6sZ73nAVOD42mOPiH8Ftqbty8d3e0TsauDYGpK2WQJ8AvgPwD8AbZIOamDb4ynO02pAwN9QnJvfBMYDV+9j81nAN4GRwG09tHkvcBzFFdQXJP1mKr8KmAAcDZxF8T2rjuk4YAFwSkQcShHQG3s7FhtAEeHFy6AvFL8YXgZepAiMrwOH1Gk3BXih9Pp+4Iu99P1t4E/T+ukUgTUsvT4UCGBqqf0q4Ly0/gTwgVLdGODfgeEUv/gCGF6qvxf4eOn1ARRXXEel1wGc0ct4Pw/cl9YPS9u/p8Fj6yrVBXBM6fUtwJfS+iLgr2r6Wg+8r4f9BPBzirB9GvgScECdducBq2u+r2em9auBB2vaXw18I61Xz+e4Uv0jwOy0vgH4UKnuD6vHCxxDEcRnAgcO9s+zl70X3zO1VnJeRHyvXJBuJ30NmAEcnooPlTQsIl5LrzfVbDOT4n/Bx1L8sn8L8FipyXOlbV9JX58p1b8CVCcnHAXcLWl3qf414Nd7OIajgL+XdG15SBRXUT+pN946lgJXSRpL8T/0zohY3eCxNeoo4BJJnyyVjaC4QunJSRHRWS6QdASwkOJK59A0phf20Udvxw7ws9L6Dt74XryzZvvX1yOiU9KfUYTXZEkrgE9FxJYG9mcDwLfRrNX9F4pbKlMj4jDeuHWlUpvX37o83Qb6FvC3wK9HxEjgnpr2zdgEzIyIkaXl4CieK9V7y/RNwCdq2h8Sxe2xvcZbT0T8lOL22xyKW2hL+3hsOyjCqOodNeO8pmacb4mI2lt+vfmbdDwnpu/P7+1jPNDLsfdiKzCu9Hr8Hh1H3B4R76UI0gC+sh/7sn7msLFWdyjFlcaL6cH8Vb20HwEcBHQDu9KVwAf3Y/+LgWuqD/kljZY0K9V1A7spniGU239W0uTU/tckfaQP+72V4hnEb/PGs41mj60D+JikYZJmUDx3qroRmC9pqgpvlfRhSYc2Oc5DSbc/05XYZ5rcvhl3Upzbw9O+FlQrJB0n6YwUyL+k+Jl5rYd+bBA4bKzV/TfgEOBZYCXwz/tqHBEvUTzUv5Pids7HgLb92P/fp+3vk/RSGsPUtK8dwDXAD9KMrmkRcTfF/6iXpxlXa4GZfdjvNyluG/6fiNjax2P7U+Bciudgcyie75D6aqeYunxd6qsT+P0+jPMvKaaqbwe+C9zVhz4a9UWgC/gx8D2Kc7Qz1R0EfJni5+RnwBEUEzWsRSjCH55mZkOPpMsoJg+8r9fGNuh8ZWNmQ4KkMZJ+O/3t03EUz/PuHuxxWWM8G83MhooRFH8PNJHi1uByiinyNgT4NpqZmWXn22hmZpadb6P1YNSoUTFhwoTBHoaZ2ZAxatQoVqxYsSIiZtTWOWx6MGHCBNrb2wd7GGZmQ4qkUfXKfRvNzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyyxo2kmZIWi+pU9LldeolaWGqXyPppFLdEknbJK2t2eYOSR1p2SipI5XPKZV3SNotaUqquz+No1p3RM7jNjOzPWX7WGhJw4DrgbOALuBRSW0R8Xip2UxgUlqmAovSV4BbgOuApeV+I+LC0j6uBban8tuA21L5CcB3IqKjtOmciPDnPJuZDYKcVzanAp0RsSEiXgWWA7Nq2swClkZhJTBS0hiAiHgQeL6nziUJ+CiwrE71RT2Um5nZIMgZNmOBTaXXXams2TY9mQ48ExFP1am7kL3D5uZ0C+3KFFR7kTRPUruk9u7u7gaHYWZmvckZNvV+oUcf2vSk7tWLpKnAjogoP+uZExEnUATUdODieh1GxA0RUYmIyujRoxschpmZ9SZn2HQB40uvxwFb+tBmL5KGA+cDd9Spnk1NCEXE5vT1JeB2ilt8ZmY2QHKGzaPAJEkTJY2gCIG2mjZtwNw0K20asD0itjbQ95nAkxHRVS6UdADwEYrnQ9Wy4ZJGpfUDgXOAPWa4mZlZXtlmo0XELkkLgBXAMGBJRKyTND/VLwbuAc4GOoEdwKXV7SUtA04HRknqAq6KiJtS9V5XL8lpQFdEbCiVHQSsSEEzDPgecGO/HaiZmfVKEY0+IvnVUqlUor3dM6XNzJohaVVEVGrL/Q4CZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8sua9hImiFpvaROSZfXqZekhal+jaSTSnVLJG2TtLZmmzskdaRlo6SOVD5B0iulusWlbU6W9Fjaz0JJynjYZmZWI1vYSBoGXA/MBI4HLpJ0fE2zmcCktMwDFpXqbgFm1PYbERdGxJSImAJ8C7irVP10tS4i5pfKF6X+q/vaq18zM8sn55XNqUBnRGyIiFeB5cCsmjazgKVRWAmMlDQGICIeBJ7vqfN0dfJRYNm+BpH6OywiHoqIAJYC5/XxmMzMrA9yhs1YYFPpdVcqa7ZNT6YDz0TEU6WyiZJWS3pA0vTSProa2YekeZLaJbV3d3c3OAwzM+tNzrCp91wk+tCmJxex51XNVuDIiHgP8CngdkmHNbOPiLghIioRURk9enSDwzAzs94Mz9h3FzC+9HocsKUPbfYiaThwPnBytSwidgI70/oqSU8Dx6Z9jGt2H2Zm1n9yXtk8CkySNFHSCGA20FbTpg2Ym2alTQO2R8TWBvo+E3gyIl6/PSZpdJqUgKSjKSYCbEj9vSRpWnrOMxf4zn4fnZmZNSzblU1E7JK0AFgBDAOWRMQ6SfNT/WLgHuBsoBPYAVxa3V7SMuB0YJSkLuCqiLgpVc9m74kBpwFflLQLeA2YHxHVCQaXUcxuOwS4Ny1mZjZAVEzQslqVSiXa29sHexhmZkOKpFURUakt9zsImJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCy7rGEjaYak9ZI6JV1ep16SFqb6NZJOKtUtkbRN0tqabe6Q1JGWjZI6UvlZklZJeix9PaO0zf1pHNXtjsh42GZmVmN4ro4lDQOuB84CuoBHJbVFxOOlZjOBSWmZCixKXwFuAa4Dlpb7jYgLS/u4FtieXj4LnBsRWyS9G1gBjC1tOici2vvn6MzMrBk5r2xOBTojYkNEvAosB2bVtJkFLI3CSmCkpDEAEfEg8HxPnUsS8FFgWWq/OiK2pOp1wMGSDurXIzIzsz7JGTZjgU2l113seaXRaJueTAeeiYin6tRdAKyOiJ2lspvTLbQrU1DtRdI8Se2S2ru7uxschpmZ9SZn2NT7hR59aNOTi0hXNXt0KE0GvgJ8olQ8JyJOoAio6cDF9TqMiBsiohIRldGjRzc4DDMz603OsOkCxpdejwO29KHNXiQNB84H7qgpHwfcDcyNiKer5RGxOX19Cbid4hafmZkNkJxh8ygwSdJESSOA2UBbTZs2YG6alTYN2B4RWxvo+0zgyYjoqhZIGgl8F/hsRPygVD5c0qi0fiBwDrAWMzMbMNnCJiJ2AQsoZoU9AdwZEeskzZc0PzW7B9gAdAI3An9U3V7SMuAh4DhJXZI+Xup+NnvfQlsAHANcWTPF+SBghaQ1QAewOe3LzMwGiCIafUTyq6VSqUR7u2dKm5k1Q9KqiKjUlvsdBMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Br+WOj0UcvHAwdXyyJiac9bmJmZFRoKG0lXAadThM09wEzg/wEOGzMz61Wjt9F+F/gA8LOIuBT4LYq37jczM+tVo2HzSkTsBnZJOgzYBhydb1hmZvZm0ugzm/b0SZg3AquAl4FHcg3KzMzeXBoKm4iofoLmYkn/DBwWEWvyDcvMzN5MmpmNdiIwobqNpGMi4q5M4zIzszeRRmejLQFOBNYBu1NxAA4bMzPrVaNXNtMi4visIzEzszetRmejPSSp6bCRNEPSekmdki6vUy9JC1P9GkknleqWSNomaW3NNndI6kjLRkkdpbrPpr7WS/pQqfxkSY+luoWS1OyxmJlZ3zUaNrdSBM76FAqPSdrnBAFJw4DrKf4A9HjgojqBNROYlJZ5wKJS3S3AjNp+I+LCiJgSEVOAb5Fu5aW+ZwOT03ZfT2Mg9TuvtK+9+jVrdbF7Nz/8l9v4ftt1vPrKy4M9HLOmNHobbQlwMfAYbzyz6c2pQGdEbACQtByYBTxeajMLWBoRAayUNFLSmIjYGhEPSprQU+fp6uSjwBmlvpZHxE7gx5I6gVMlbaSYPfdQ2m4pcB5wb4PHYdYSOh68g2u/ewURQfdzP+X8S7862EMya1ijYfPTiGhrsu+xwKbS6y5gagNtxgJbG+h/OvBMRDxV6mtlnb7+Pa3Xlu9F0jyKKyCOPPLIBoZgNnB2/vIXBMEBOoBfvPLzwR6OWVMaDZsnJd0O/BOws1rYy9Tnes9Fog9tenIRsKyBvhreR0TcANwAUKlUGh2H2YA4+fSPMXvbj3l5x4uc+5ErBns4Zk1pNGwOoQiZD5bKepv63AWML70eB2zpQ5u9SBoOnA+c3EBfXWm9qX2YtZoDD34LvzP3msEehlmfNPoOApf2oe9HgUmSJgKbKR7ef6ymTRuwID3PmQpsj4hGbqGdCTwZEeXbY23A7ZL+DngnxUSARyLiNUkvSZoGPAzMBf57H47HzMz6qNE/6lxYp3g70B4R36m3TUTskrQAWAEMA5ZExDpJ81P9YoqPKzgb6AR2AK+HmqRlFB9rMEpSF3BVRNyUqmez5y00Ut93UkxA2AX8cUS8lqovo5jddgjFxABPDjAzG0AqJoL10ki6AfgN4H+mogso3k1gPLAhIv4s1wAHS6VSifb29sEehpnZkCJpVURUassbfWZzDHBGROxKnS0C7gPOopgObWZm1qNG/6hzLPDW0uu3Au9Mt6l21t/EzMys0OiVzVeBDkn3U0wlPg34a0lvBb6XaWxmZvYm0ehstJsk3UPxrgACPhcR1enDn8k1ODMze3PY5200Sb+Rvp4EjKH4a/+fAu8ov2mmmZnZvvR2ZfMpirdvubZUVp6+dgZmZma92OeVTUTMS6uLgFkR8X7g/1L8jc2nM4/NzMzeJBqdjfb5iPi5pPdSTHe+hT0/DsDMzKxHjYZN9S/xPwwsTu8aMCLPkMzM7M2m0bDZLOkfKD4/5h5JBzWxrZmZ/YprNDA+SvEeZzMi4kXg7XjKs5mZNajRv7PZQenjBNI7Mzfy7sxmZma+FWZmZvk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8sua9hImiFpvaROSZfXqZekhal+TfkzciQtkbRN0to6230y9btO0ldT2RxJHaVlt6Qpqe7+1L5ad0TGwzYzsxqNfix00yQNA66neJfoLuBRSW0R8Xip2UxgUlqmUryT9NRUdwtwHbC0pt/3A7OAEyNiZzU4IuI24LbU5gTgOxHRUdp0TkS09+cxmplZY3Je2ZwKdEbEhoh4FVhOERJls4ClUVgJjJQ0BiAiHgSer9PvZcCXI2JnaretTpuLgGX9dBxmZrafcobNWIqPka7qSmXNtql1LDBd0sOSHpB0Sp02F7J32NycbqFdKUn1OpY0T1K7pPbu7u5ehmFmZo3KGTb1fqFHH9rUGg4cDkyjeOfpO8vhIWkqsCMiys965kTECcD0tFxcr+OIuCEiKhFRGT16dC/DMDOzRuUMmy5gfOn1OGBLH9rU6/eudOvtEWA3MKpUP5uaq5qI2Jy+vgTcTnGLz8zMBkjOsHkUmCRpoqQRFCHQVtOmDZibZqVNA7anjy/Yl28DZwBIOpbiE0OfTa8PAD5C8XyIVDZc0qi0fiBwDrDXDDczM8sn22y0iNglaQHFh64NA5ZExDpJ81P9YuAe4GygE9gBXFrdXtIy4HRglKQu4KqIuAlYAixJU6JfBS6JiOqtt9OArojYUBrKQcCKFDTDgO8BN2Y6bDMzq0Nv/J62skqlEu3tniltZtYMSasiolJb7ncQMDOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2WcNG0gxJ6yV1Srq8Tr0kLUz1aySdVKpbImmbpLV1tvtk6nedpK+msgmSXpHUkZbFpfYnS3os7WehJOU6ZjMz21u2sJE0DLgemAkcD1wk6fiaZjOBSWmZBywq1d0CzKjT7/uBWcCJETEZ+NtS9dMRMSUt80vli1L/1X3t1a+ZmeWT88rmVKAzIjZExKvAcoqQKJsFLI3CSmCkpDEAEfEg8Hydfi8DvhwRO1O7bfsaROrvsIh4KCICWAqctx/HZWZmTcoZNmOBTaXXXams2Ta1jgWmS3pY0gOSTinVTZS0OpVPL+2jq5F9SJonqV1Se3d3dy/DMDOzRg3P2He95yLRhza1hgOHA9OAU4A7JR0NbAWOjIjnJJ0MfFvS5Gb2ERE3ADcAVCqV3sZhZmYNynll0wWML70eB2zpQ5t6/d6Vbr09AuwGRkXEzoh4DiAiVgFPU1wFdaV+m9mHmZn1o5xh8ygwSdJESSOA2UBbTZs2YG6alTYN2B4RW3vp99vAGQCSjgVGAM9KGp0mJZCudCYBG1J/L0malmahzQW+0z+HaGZmjch2Gy0idklaAKwAhgFLImKdpPmpfjFwD3A20AnsAC6tbi9pGXA6MEpSF3BVRNwELAGWpCnRrwKXRERIOg34oqRdwGvA/IioTjC4jGJ22yHAvWkxM7MBomKCltWqVCrR3t4+2MMwMxtSJK2KiEptud9BwMzMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZZQ0bSTMkrZfUKenyOvWStDDVr5F0UqluiaRtktbW2e6Tqd91kr6ays6StErSY+nrGaX296f2HWk5Itcxm5nZ3obn6ljSMOB64CygC3hUUltEPF5qNhOYlJapwKL0FeAW4DpgaU2/7wdmASdGxM5ScDwLnBsRWyS9G1gBjC1tOici2vvxEM3MrEE5r2xOBTojYkNEvAospwiJslnA0iisBEZKGgMQEQ8Cz9fp9zLgyxGxM7Xblr6ujogtqc064GBJB/X7UZmZWdNyhs1YYFPpdRd7Xmk02qbWscB0SQ9LekDSKXXaXACsrgZScnO6hXalJNXrWNI8Se2S2ru7u3sZhpmZNSpn2NT7hR59aFNrOHA4MA34DHBnOTwkTQa+AnyitM2ciDgBmJ6Wi+t1HBE3REQlIiqjR4/uZRhmZtaonGHTBYwvvR4HbOlDm3r93pVuvT0C7AZGAUgaB9wNzI2Ip6sbRMTm9PUl4HaKW3xmZjZAcobNo8AkSRMljQBmA201bdqAuWlW2jRge0Rs7aXfbwNnAEg6FhgBPCtpJPBd4LMR8YNqY0nDJVXD6EDgHGCvGW5mZpZPtrCJiF3AAopZYU8Ad0bEOknzJc1Pze4BNgCdwI3AH1W3l7QMeAg4TlKXpI+nqiXA0WlK9HLgkoiItK9jgCtrpjgfBKyQtAboADanfZmZ2QBR8XvaalUqlWhv90xpM7NmSFoVEZXacr+DgJmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDt/eFoPJHUDPxnkYYwCnh3kMTRrqI15qI0XPOaBMtTG3ArjfRYgImbUVjhsWpik9nqfeNfKhtqYh9p4wWMeKENtzK0+Xt9GMzOz7Bw2ZmaWncOmtd0w2APog6E25qE2XvCYB8pQG3NLj9fPbMzMLDtf2ZiZWXYOGzMzy85hk5GkGZLWS+qUdHmdeklamOrXSDoplR8s6RFJP5K0TtJflrb5r5KeTO3vljQylU+Q9IqkjrQsbqEx/1Vq2yHpPknvLNV9NvW1XtKHWnm8rXyOS9t+WlJIGlUq269zPNBjbuXzLOlqSZtLYzu7VNeKP8t1x9tf57gpEeElwwIMA54GjgZGAD8Cjq9pczZwLyBgGvBwKhfwtrR+IPAwMC29/iAwPK1/BfhKWp8ArG3RMR9W2v5PgMVp/fi0j4OAiWnfw1p4vC17jlPZeGAFxR8jj+qPczxIY27Z8wxcDXy6zv5a9We5p/Hu9zludvGVTT6nAp0RsSEiXgWWA7Nq2swClkZhJTBS0pj0+uXU5sC0BEBE3BcRu1LdSmDcEBjzz0vbv7VanvpaHhE7I+LHQGcaQ6uOtz9kGXPyNeDPa8r29xwPxpj7Q84x19OSP8utxGGTz1hgU+l1VyprqI2kYZI6gG3A/46Ih+vs4w8o/qdTNVHSakkPSJreSmOWdI2kTcAc4AtN7K+Vxgsteo4l/Q6wOSJ+1If9tdqYoUXPc7Ig3cZaIunwJvbXSuOF/T/HTXHY5KM6ZbX/2+ixTUS8FhFTKK5cTpX07j02lK4AdgG3paKtwJER8R7gU8Dtkg5rlTFHxBURMT6Nd0ET+2ul8bbkOZb0FuAK9gzFZvbXm4Eec0ue51S/CHgXMCWN89om9tdK4+2Pc9wUh00+XRT3o6vGAVuabRMRLwL3A6+/sZ2kS4BzgDkRUf1h2xkRz6X1VRT3f49tlTGX3A5c0MT+Wma8LXyO30XxnOBHkjam9j+U9I4G99dSY27h80xEPJN+se8GbuSNW2Ut+bPc03j76Rw3JwbwAdGv0gIMBzZQ/IOqPvCbXNPmw+z5wO+RVD4aGJnWDwG+D5yTXs8AHgdG1/Q1mvRAkuIh42bg7S0y5kml7T8JfDOtT2bPh6obaO6h6kCPt2XPcc32G3njYft+neNBGnPLnmdgTGn7/0zxnKaVf5Z7Gu9+n+Nml2wde3l99si/Ufyv4YpUNh+Yn9YFXJ/qHwMqqfxEYDWwBlgLfKHUZyfFfduOtFRnSl0ArEs/pD8Ezm2hMX8rla0B/gkYW6q7IvW1HpjZyuNt5XNc0/9G0i/u/jjHAz3mVj7PwD+mtmuANvb8Zd6KP8t1x9tf57iZxW9XY2Zm2fmZjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhuzFpfeoXftYI/DbH84bMxan/C/VRvi/ANs1oLS1cwTkr5O8Ud3h0i6MX1eyX2SDkntpkhaqTc+3+jwffdsNjgcNmat6zhgKfAeivfEuj4iJgMv8sb7yy0F/iIiTqT4S/GrBmGcZr1y2Ji1rp9E8bklAD+OiI60vgqYIOnXKN4T64FUfitw2gCP0awhDhuz1vWL0vrO0vprFG/caDZkOGzMhqiI2A68UPrgq4uBB/axidmg8f+OzIa2S4DF6cPINgCXDvJ4zOryuz6bmVl2vo1mZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdv8fvXRd154f6s0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rho tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZtklEQVR4nO3df5QlZX3n8feHQX6okMFlUOTXgI6cDJEY0gH2mKirQWeMOuy6ngOaQNQsThSTzU8xuv6IMdHdGBJOCKy4KsQoyzFhM9lg0LBRcoxEe8IPIYiMo8jIBEZFFCUg8N0/7tPhcunpuT3z3Olueb/OqXOr6nmeqm9V3+lPV9XtnlQVkiT1sMdCFyBJ+sFhqEiSujFUJEndGCqSpG4MFUlSN4aKJKkbQ0VaYpI8J8mWha5jWJIbkjxnjvbfSvK+3VeRFoqhot0qyVeS3JPk7iS3J/lAkscvdF1zSbIySSXZs9P29knyrSTPnaXt7CQf7bGfndGO87vt6/O1JH+QZNmOxlXVMVX1yTnaf7eqfqFrsVqUDBUthBdX1eOB44CfAN48n8EZWDLv3dEwqqp/Bf43cNpIv2XAqcCFu6+6Wf1o+/o8D3g58F92ZWO9wlhLw5L5h6kfPFX1NeBjwI8kOSDJ/02yLcmdbf7Qmb5JPpnknUk+DXwPOCrJK5PcmOQ7STYnec1Q/+ck2ZLkN5PckWRrkpOTvDDJF5N8M8lvDfXfI8lZSb6U5BtJLknyhNZ8ZXv9VvsJ/t+3Ma9q+78zyeVJjhjaXiV5XZKbgZtnOfwLgZcmeezQuhcw+Df5sbmObVTb11OHlj+Y5HeGll+U5Jp2dfQPSY7d/lflIVX1BeDvGXx9npLk/7Vz8/Ukf5Zk+dA+vpLkp9v825J8NMmHknwb+Pm27kOtfebK7/QkX23be9PQtvZNcmE7rze2r+GWofY3tKuo7yS5Kcnzxjke7R6GihZMksOAFwJXM3gvfgA4AjgcuAf445EhPwecAewH3ALcAbwI2B94JXB2kuOG+j8J2Ac4BHgLcAHws8CPAz8FvCXJUa3vLwEnA88GngzcCZzb2p7VXpdX1eOr6jNJTgZ+C/hPwAoG33w/MlLvycAJwOrRY6+qfwC2tvHDx/fhqrp/jGMbSxvzfuA1wL8D/iewIcneY4xdzeA8XQ0E+D0G5+aHgcOAt80xfB3wUWA58Gfb6fOTwNEMrojekuSH2/q3AiuBo4CTGHzNZmo6GjgT+Imq2o9BEH9lR8ei3aiqnJx228TgG8DdwLcYBMOfAPvO0u8ZwJ1Dy58EfnsH2/4/wC+3+ecwCKZlbXk/oIAThvpvBE5u8zcCzxtqOxj4PrAng29wBew51P4x4NVDy3swuII6oi0X8Nwd1Ptm4ONtfv82/sfGPLYtQ20FPHVo+YPA77T584B3jGzrJuDZ29lPAd9mEKpfAn4H2GOWficDV498XX+6zb8NuHKk/9uAD7X5mfN56FD7Z4FT2vxm4AVDbb8wc7zAUxkE7k8Dj1no97PTIyfvdWohnFxVfzu8ot0GOhtYAxzQVu+XZFlVPdCWbx0Zs5bBT7VPY/BN/bHA54e6fGNo7D3t9fah9nuAmQ8JHAFcmuTBofYHgCdu5xiOAP4oyXuGS2JwVXTLbPXO4iLgrUkOYfAT96aqunrMYxvXEcDpSV4/tG4vBlcc23NcVW0aXpHkIOAcBlcu+7Wa7pxjGzs6doB/GZr/Hg99LZ48Mv7f5qtqU5L/yiCkjklyOfCrVXXbGPvTbuDtLy0Wv8bgVsgJVbU/D91yylCff/uT2u32zZ8Dvw88saqWA5eN9J+PW4G1VbV8aNqnBs99ZvtT3rcCrxnpv28Nbms9ot7ZVNVXGdw2ewWDW18X7eSxfY9B6Mx40kid7xyp87FVNXqrbkd+rx3Pse3r87Nz1AM7OPYd2AocOrR82MM2XPXhqvpJBoFZwLt3YV/qzFDRYrEfgyuHb7UH5G/dQf+9gL2BbcD97Sf75+/C/s8H3jnzsD3JiiTrWts24EEG9/iH+78xyTGt/w8ledlO7PdCBs8InslDzx7me2zXAC9PsizJGgbPhWZcAKxPckIGHpfkZ5LsN88696PdtmxXVr8xz/HzcQmDc3tA29eZMw1Jjk7y3Ba8/8rgPfPAdrajBWCoaLH4Q2Bf4OvAVcDfzNW5qr7D4OH6JQxuw7wc2LAL+/+jNv7jSb7Tajih7et7wDuBT7dPUJ1YVZcy+An54vYJp+uBtTux348yuN13RVVt3clj+2XgxQyeU72CwfMX2ramGXwk+I/btjYBP78Tdb6dwUfA7wL+GviLndjGuH4b2AJ8GfhbBufo3ta2N/AuBu+TfwEOYvCBCS0SqfI/6ZK0eCX5RQYP8Z+9w85acF6pSFpUkhyc5Jntd4eOZvC87dKFrkvj8dNfkhabvRj8Ps2RDG7pXczgo+daArz9JUnqxttfkqRuHtW3vw488MBauXLlQpchSUvKxo0bv15VK2Zre1SHysqVK5menl7oMiRpSUlyy/bavP0lSerGUJEkdWOoSJK6MVQkSd0YKpKkbgwVSVI3hookqRtDRZLUjaEiSerGUJEkdWOoSJK6MVQkSd0YKpKkbgwVSVI3hookqRtDRZLUjaEiSerGUJEkdWOoSJK6MVQkSd0YKpKkbgwVSVI3hookqRtDRZLUjaEiSepmoqGSZE2Sm5JsSnLWLO1Jck5rvy7JcUNt709yR5LrR8Y8IcknktzcXg8YaT88yd1Jfn1yRyZJms3EQiXJMuBcYC2wGjg1yeqRbmuBVW06AzhvqO2DwJpZNn0WcEVVrQKuaMvDzgY+tqv1S5Lmb5JXKscDm6pqc1XdB1wMrBvpsw64qAauApYnORigqq4EvjnLdtcBF7b5C4GTZxqSnAxsBm7oeBySpDFNMlQOAW4dWt7S1s23z6gnVtVWgPZ6EECSxwFvAN4+1+AkZySZTjK9bdu2HR6EJGl8kwyVzLKudqLPuN4OnF1Vd8/VqareW1VTVTW1YsWKndyVJGk2e05w21uAw4aWDwVu24k+o25PcnBVbW23yu5o608A/nOS/w4sBx5M8q9V9cc7ewCSpPmZ5JXK54BVSY5MshdwCrBhpM8G4LT2KbATgbtmbm3NYQNweps/HfhLgKr6qapaWVUrgT8EftdAkaTda2KhUlX3A2cClwM3ApdU1Q1J1idZ37pdxuDB+ibgAuC1M+OTfAT4DHB0ki1JXt2a3gWclORm4KS2LElaBFK1s48wlr6pqamanp5e6DIkaUlJsrGqpmZr8zfqJUndGCqSpG4MFUlSN4aKJKkbQ0WS1I2hIknqxlCRJHVjqEiSujFUJEndGCqSpG4MFUlSN4aKJKkbQ0WS1I2hIknqxlCRJHVjqEiSujFUJEndGCqSpG4MFUlSN4aKJKkbQ0WS1I2hIknqxlCRJHVjqEiSujFUJEndGCqSpG4MFUlSN4aKJKkbQ0WS1I2hIknqZqKhkmRNkpuSbEpy1iztSXJOa78uyXFDbe9PckeS60fGPCHJJ5Lc3F4PaOtPSrIxyefb63MneWySpEeaWKgkWQacC6wFVgOnJlk90m0tsKpNZwDnDbV9EFgzy6bPAq6oqlXAFW0Z4OvAi6vq6cDpwJ/2ORJJ0rgmeaVyPLCpqjZX1X3AxcC6kT7rgItq4CpgeZKDAarqSuCbs2x3HXBhm78QOLn1v7qqbmvrbwD2SbJ3zwOSJM1tkqFyCHDr0PKWtm6+fUY9saq2ArTXg2bp81Lg6qq6d14VS5J2yZ4T3HZmWVc70Wd+O02OAd4NPH877WcwuNXG4Ycfviu7kiSNmOSVyhbgsKHlQ4HbdqLPqNtnbpG11ztmGpIcClwKnFZVX5ptcFW9t6qmqmpqxYoVYx2IJGk8kwyVzwGrkhyZZC/gFGDDSJ8NwGntU2AnAnfN3NqawwYGD+Jpr38JkGQ58NfAG6vq052OQZI0DxMLlaq6HzgTuBy4Ebikqm5Isj7J+tbtMmAzsAm4AHjtzPgkHwE+AxydZEuSV7emdwEnJbkZOKkt0/b1VOC/JbmmTbM9b5EkTUiqdukRxpI2NTVV09PTC12GJC0pSTZW1dRsbf5GvSSpG0NFktSNoSJJ6sZQkSR1Y6hIkroxVCRJ3RgqkqRuDBVJUjeGiiSpG0NFktSNoSJJ6sZQkSR1Y6hIkroxVCRJ3RgqkqRuDBVJUjeGiiSpG0NFktSNoSJJ6sZQkSR1Y6hIkroxVCRJ3RgqkqRuDBVJUjeGiiSpG0NFktSNoSJJ6sZQkSR1Y6hIkrrZc0cdkrxltvVV9dv9y5EkLWU7DBXgu0Pz+wAvAm6cTDmSpKVsh7e/quo9Q9M7gecAh4yz8SRrktyUZFOSs2ZpT5JzWvt1SY4bant/kjuSXD8y5glJPpHk5vZ6wFDbG9u2bkrygnFqlCT1szPPVB4LHLWjTkmWAecCa4HVwKlJVo90WwusatMZwHlDbR8E1syy6bOAK6pqFXBFW6Zt+xTgmDbuT1oN0pLynW/cxt/9xR/whc9ettClSPM2zjOVzwPVFpcBK4BxnqccD2yqqs1tOxcD64B/HuqzDrioqgq4KsnyJAdX1daqujLJylm2u47B1RLAhcAngTe09RdX1b3Al5NsajV8ZoxapUXjfRf8ItPbrmXvPIZ3LD+IQ542tdAlSWMb55nKi4bm7wdur6r7xxh3CHDr0PIW4IQx+hwCbJ1ju0+sqq0AVbU1yUFD27pqlm09TJIzGFwVcfjhh+/4KKTd7Lv33c1eeQwP8CD33nP3Qpcjzcs4z1RuqapbgHsYXKk8Ock4340z2+Z2os+4xtpWVb23qqaqamrFihU7uStpcn7hZ8/m2Uc8i1c+8/Uc+fRnLXQ50ryMc/vrJcB7gCcDdwBHMPj01zE7GLoFOGxo+VDgtp3oM+r2mVtkSQ5uNe3stqRF50lHHcvPv/5/LXQZ0k4Z50H9O4ATgS9W1ZHA84BPjzHuc8CqJEcm2YvBQ/QNI302AKe1T4GdCNw1c2trDhuA09v86cBfDq0/JcneSY5k8PD/s2PUKUnqZJxQ+X5VfQPYI8keVfV3wDN2NKg9dzkTuJzBlc0lVXVDkvVJ1rdulwGbgU3ABcBrZ8Yn+QiDh+xHJ9mS5NWt6V3ASUluBk5qy1TVDcAlDD4I8DfA66rqgTGOT5LUSQYfvJqjQ/K3wMnA7wEHMrjdNFVVz5x4dRM2NTVV09PTC12GJC0pSTZW1awfSxzn01/XAt8DfgV4BfBDwOP7lSdJ+kExTqj8h6p6EHiQwe+FkOS6iVYlSVqSthsqSX6RwTOOp4yEyH6M96BekvQoM9eVyoeBjzF4ljL8d7u+U1XfnGhVkqQlabuhUlV3AXcBp+6+ciRJS5n/SZckqRtDRZLUjaEiSerGUJEkdWOoSJK6MVQkSd0YKpKkbgwVSVI3hookqRtDRZLUjaEiSerGUJEkdWOoSJK6MVQkSd0YKpKkbgwVSVI3hookqRtDRZLUjaEiSerGUJEkdWOoSJK6MVQkSd0YKpKkbgwVSVI3hookqZuJhkqSNUluSrIpyVmztCfJOa39uiTH7Whskh9N8pkkn0/yV0n2b+sfk+TCtv7GJG+c5LFJkh5pYqGSZBlwLrAWWA2cmmT1SLe1wKo2nQGcN8bY9wFnVdXTgUuB32jrXwbs3db/OPCaJCsnc3SSpNlM8krleGBTVW2uqvuAi4F1I33WARfVwFXA8iQH72Ds0cCVbf4TwEvbfAGPS7InsC9wH/DtCR2bJGkWkwyVQ4Bbh5a3tHXj9Jlr7PXAS9r8y4DD2vxHge8CW4GvAr9fVd/ctUOQJM3HJEMls6yrMfvMNfZVwOuSbAT2Y3BFAoOrmweAJwNHAr+W5KhHFJWckWQ6yfS2bdt2fBSSpLFNMlS28NBVBMChwG1j9tnu2Kr6QlU9v6p+HPgI8KXW5+XA31TV96vqDuDTwNRoUVX13qqaqqqpFStW7PTBSZIeaZKh8jlgVZIjk+wFnAJsGOmzATitfQrsROCuqto619gkB7XXPYA3A+e3bX0VeG7b1uOAE4EvTPD4JEkjJhYqVXU/cCZwOXAjcElV3ZBkfZL1rdtlwGZgE3AB8Nq5xrYxpyb5IoPAuA34QFt/LvB4Bs9cPgd8oKqum9TxSZIeKVWjjzkePaampmp6enqhy5CkJSXJxqp6xOMF8DfqJUkdGSqSpG4MFUlSN4aKJKkbQ0WS1I2hIknqxlCRJHVjqEiSujFUJEndGCqSpG4MFUlSN4aKJKkbQ0WS1I2hIknqxlCRJHVjqEiSujFUJEndGCqSpG4MFUlSN4aKJKkbQ0WS1I2hIknqxlCRJHVjqEiSujFUJEndGCqSpG4MFUlSN4aKJKkbQ0WS1I2hIknqxlCRJHUz0VBJsibJTUk2JTlrlvYkOae1X5fkuB2NTfKjST6T5PNJ/irJ/kNtx7a2G1r7PpM8PknSw00sVJIsA84F1gKrgVOTrB7pthZY1aYzgPPGGPs+4KyqejpwKfAbbcyewIeA9VV1DPAc4PuTOj5J0iNN8krleGBTVW2uqvuAi4F1I33WARfVwFXA8iQH72Ds0cCVbf4TwEvb/POB66rqWoCq+kZVPTCpg5MkPdIkQ+UQ4Nah5S1t3Th95hp7PfCSNv8y4LA2/zSgklye5J+S/OZsRSU5I8l0kult27bN85AkSXOZZKhklnU1Zp+5xr4KeF2SjcB+wH1t/Z7ATwKvaK//McnzHrGRqvdW1VRVTa1YsWLHRyFJGtueE9z2Fh66igA4FLhtzD57bW9sVX2Bwa0ukjwN+JmhbX2qqr7e2i4DjgOu6HAskqQxTPJK5XPAqiRHJtkLOAXYMNJnA3Ba+xTYicBdVbV1rrFJDmqvewBvBs5v27ocODbJY9tD+2cD/zzB45MkjZjYlUpV3Z/kTAbf7JcB76+qG5Ksb+3nA5cBLwQ2Ad8DXjnX2LbpU5O8rs3/BfCBNubOJH/AIJAKuKyq/npSxydJeqRUjT7mePSYmpqq6enphS5DkpaUJBuramq2Nn+jXpLUjaEiSerGUJEkdWOoSJK6MVQkSd0YKpKkbgwVSVI3hookqRtDRZLUjaEiSerGUJEkdWOoSJK6MVQkSd0YKpKkbgwVSVI3hookqRtDRZLUjaEiSerGUJEkdWOoSJK6MVQkSd0YKpKkbgwVSVI3hookqZtU1ULXsGCSbANuWeAyDgS+vsA1zJc17x5LrealVi9Y8846oqpWzNbwqA6VxSDJdFVNLXQd82HNu8dSq3mp1QvWPAne/pIkdWOoSJK6MVQW3nsXuoCdYM27x1KreanVC9bcnc9UJEndeKUiSerGUJEkdWOodJBkTZKbkmxKctYs7UlyTmu/Lslxbf0+ST6b5NokNyR5+9CY/5HkC63/pUmWt/Urk9yT5Jo2nb9I6n1H63tNko8nefJQ2xvbtm5K8oL51ru7a+5xjidV89DYX09SSQ4cWrcoz/P2al7E7+W3JfnaUF0vHGpblOd4ezX3ei/PS1U57cIELAO+BBwF7AVcC6we6fNC4GNAgBOBf2zrAzy+zT8G+EfgxLb8fGDPNv9u4N1tfiVw/SKsd/+h8b8EnN/mV7d97A0c2fa9bJHXvEvneJI1t3WHAZcz+MXdAxf7eZ6j5sX6Xn4b8Ouz7G/RnuM5at7l9/J8J69Udt3xwKaq2lxV9wEXA+tG+qwDLqqBq4DlSQ5uy3e3Po9pUwFU1cer6v7WdhVw6CKv99tD4x83s75t6+KqureqvgxsajUs5pp7mEjNzdnAb46sW7TneY6ad9Uk653NYj/Hi4KhsusOAW4dWt7S1o3VJ8myJNcAdwCfqKp/nGUfr2Lwk8uMI5NcneRTSX5qsdSb5J1JbgVeAbxlHvtbbDXDrp3jidWc5CXA16rq2p3Y32KrGRbpexk4s916en+SA+axv8VWM+z6e3leDJVdl1nWjf70sN0+VfVAVT2DwZXI8Ul+5GEDkzcB9wN/1lZtBQ6vqh8DfhX4cJL9F0O9VfWmqjqs1XrmPPa32Gre1XM8kZqTPBZ4Ew8Pv/nsb0d2d82L9b18HvAU4BmtxvfMY387srtr7vFenhdDZddtYXC/eMahwG3z7VNV3wI+CayZWZfkdOBFwCuqauZNdW9VfaPNb2Rwf/Zpi6HeIR8GXjqP/S2qmjuc40nV/BQG9/KvTfKV1v+fkjxpzP0tqpoX63u5qm5v37wfBC7goVtci/Ucb7fmTu/l+and+ADnB3EC9gQ2M/iHM/Pg7ZiRPj/Dwx+8fbatXwEsb/P7An8PvKgtrwH+GVgxsq0VtIeDDB72fQ14wiKod9XQ+NcDH23zx/Dwh5ubmf/Dzd1d8y6d40nWPDL+Kzz00HvRnuc5al6s7+WDh8b/CoPnKIv6HM9R8y6/l+c7TWzDj6aJwac1vsjgp4A3tXXrgfVtPsC5rf3zwFRbfyxwNXAdcD3wlqFtbmJwX/WaNs18MumlwA3tzfhPwIsXSb1/3tZdB/wVcMhQ25vatm4C1i6iczxrzT3O8aRqHtn+V2jfoBfzed5ezYv4vfynre91wAYe/g17UZ7j7dXc6708n8k/0yJJ6sZnKpKkbgwVSVI3hookqRtDRZLUjaEiSerGUJEWgfbXZK9f6DqkXWWoSItD8N+jfgD4JpYWSLs6uTHJnzD4xbR9k1zQ/q+MjyfZt/V7RpKr8tD/rXPA3FuWFo6hIi2so4GLgB9j8Peezq2qY4Bv8dDfT7sIeENVHcvgt6bfugB1SmMxVKSFdUsN/s8MgC9X1TVtfiOwMskPMfh7T59q6y8EnrWba5TGZqhIC+u7Q/P3Ds0/wOCPD0pLiqEiLWJVdRdw59B/rvRzwKfmGCItKH8Skha/04Hz2394tRl45QLXI22Xf6VYktSNt78kSd0YKpKkbgwVSVI3hookqRtDRZLUjaEiSerGUJEkdfP/AXXxtmeI7f5aAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "kappa xi\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfXklEQVR4nO3dfZRV1Z3m8e8jJWg62pgBuw2owARdjdExeAWyEowS7YCtA0s7CiFinPQQTJPJTM/KjHlRM+mkkzidyYSlwcEOGjoKMr6yOhp6Mj1qt9FI0VQjRGkLYkIBLaVGQwKBIL/54+wbj7duVd0qaldd4vNZ66x7z9777LPPqcN96rxwSxGBmZlZTkcN9QDMzOy3n8PGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjdlvCUnnS+oY6nGUSdos6fwe6j8j6a8Gb0Q2VBw21hQkPS9pn6RfSHpB0u2S3jrU4+qJpHGSQlLLAPV3jKRXJM2oU/d1SfcMxHr6I23nL9PPZ4ek/yFpWG/LRcQZEfFID/V/ERF/MqCDtabksLFmcmlEvBWYDJwLfK4vC6twxBzTtSEVEb8C7gYW1LQbBswDvj14o6vr36Sfz/uBDwH//nA6G6iQtiPDEfMP0948ImIH8DDwTkknSPobSZ2Sfpbej622lfSIpC9JehzYC0yQdI2kZyTtkbRN0sdK7c+X1CHpv0jaLWmXpDmSLpb0z5JelvSZUvujJF0naauklyStlvS2VP1Yen0l/cb/7rTMv0vr/5mktZJOLfUXkv5U0nPAc3U2/9vA5ZLeUir7AMW/1Yd72rZaaV3vKM3fIemLpflLJLWls6kfSDqr+5/K6yLiWeDvKX4+/1rS36V986KkOyWNLK3jeUkXpvefl3SPpO9I+jnwkVT2nVRfPVO8WtJPU3+fLfV1rKRvp/36TPoZdpTq/2s669ojaYuk9zeyPTY4HDbWdCSdDFwMbKA4Rm8HTgVOAfYBN9cschWwEDgO+AmwG7gEOB64Bvi6pMml9r8PHAOMAW4AbgM+DJwDTAdukDQhtf0PwBzgfcDbgZ8Bt6S689LryIh4a0Q8IWkO8BngMmA0xYfyyprxzgGmApNqtz0ifgDsSsuXt++uiDjYwLY1JC2zHPgY8K+A/wWskTSigWUnUeynDYCAL1Psmz8ATgY+38Pis4F7gJHAnd20eS9wOsUZ1A2S/iCV3wiMAyYAF1H8zKpjOh1YDJwbEcdRBPTzvW2LDaKI8ORpyCeKD4ZfAK9QBMY3gWPrtDsb+Flp/hHgC730/QDwyfT+fIrAGpbmjwMCmFpqvx6Yk94/A7y/VHcS8GugheKDL4CWUv3DwEdL80dRnHGdmuYDmNHLeD8H/G16f3xa/l0NbltHqS6Ad5Tm7wC+mN4vBf68pq8twPu6WU8AP6cI263AF4Gj6rSbA2yo+blemN5/Hnispv3nge+k99X9ObZU/xQwN73fBnygVPcn1e0F3kERxBcCRw/18eyp6+RrptZM5kTE98sF6XLS14GZwAmp+DhJwyLitTS/vWaZWRS/BZ9G8WH/FuDpUpOXSsvuS68vlOr3AdWHE04F7pd0qFT/GvB73WzDqcA3JH2tPCSKs6if1BtvHSuAGyWNofgNvT0iNjS4bY06Fbha0idKZcMpzlC6Mzki2ssFkk4EllCc6RyXxvSzHvrobdsB/qX0fi+v/yzeXrP8b95HRLuk/0gRXmdIWgv8WUTsbGB9Ngh8Gc2a3X+muKQyNSKO5/VLVyq1+c1Xl6fLQPcCfwn8XkSMBB6qad8X24FZETGyNB0TxX2lel+Zvh34WE37Y6O4PNZlvPVExE8pLr/Np7iEtqKf27aXIoyqfr9mnF+qGedbIqL2kl9vvpy256z08/lwD+OBXra9F7uAsaX5k9/QccRdEfFeiiAN4KuHsS4bYA4ba3bHUZxpvJJuzN/YS/vhwAigEziYzgT+8DDWfyvwpepNfkmjJc1OdZ3AIYp7COX2n5Z0Rmr/u5I+2I/1fpviHsR7eP3eRl+3rQ34kKRhkmZS3Hequg1YJGmqCr8j6Y8kHdfHcR5HuvyZzsQ+1cfl+2I1xb49Ia1rcbVC0umSZqRA/hXFMfNaN/3YEHDYWLP7n8CxwIvAk8D3emocEXsobuqvpric8yFgzWGs/xtp+b+VtCeNYWpa117gS8Dj6YmuaRFxP8Vv1KvSE1ebgFn9WO89FJcN/29E7Orntn0SuJTiPth8ivs7pL5aKR5dvjn11Q58pB/j/G8Uj6q/CnwXuK8ffTTqC0AH8GPg+xT7aH+qGwF8heI4+RfgRIoHNaxJKMJ/PM3MjjySrqV4eOB9vTa2IeczGzM7Ikg6SdJ70v99Op3ift79Qz0ua4yfRjOzI8Vwiv8PNJ7i0uAqikfk7Qjgy2hmZpadL6OZmVl2vozWjVGjRsW4ceOGehhmZkeMUaNGsXbt2rURMbO2zmHTjXHjxtHa2jrUwzAzO6JIGlWv3JfRzMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsu6xhI2mmpC2S2iVdV6dekpak+o2SJpfqlkvaLWlTzTJ3S2pL0/OS2lL5/FJ5m6RDks5OdY+kcVTrTsy53WZm9kbZ/iy0pGHALcBFQAewTtKaiPhRqdksYGKapgJL0yvAHcDNwIpyvxFxZWkdXwNeTeV3Anem8jOBByOirbTo/Ijw33k2MxsCOc9spgDtEbEtIg4Aq4DZNW1mAyui8CQwUtJJABHxGPByd51LEnAFsLJO9bxuys3MbAjkDJsxwPbSfEcq62ub7kwHXoiI5+rUXUnXsLk9XUK7PgVVF5IWSmqV1NrZ2dngMMzMrDc5w6beB3r0o0136p69SJoK7I2I8r2e+RFxJkVATQeuqtdhRCyLiEpEVEaPHt3gMMzMrDc5w6YDOLk0PxbY2Y82XUhqAS4D7q5TPZeaEIqIHel1D3AXxSU+MzMbJDnDZh0wUdJ4ScMpQmBNTZs1wIL0VNo04NWI2NVA3xcCz0ZER7lQ0lHABynuD1XLWiSNSu+PBi4B3vCEm5mZ5ZXtabSIOChpMbAWGAYsj4jNkhal+luBh4CLgXZgL3BNdXlJK4HzgVGSOoAbI+JbqbrL2UtyHtAREdtKZSOAtSlohgHfB24bsA01M7NeKaLRWyRvLpVKJVpb/aS0mVlfSFofEZXacn+DgJmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyyxo2kmZK2iKpXdJ1deolaUmq3yhpcqluuaTdkjbVLHO3pLY0PS+pLZWPk7SvVHdraZlzJD2d1rNEkjJutpmZ1cgWNpKGAbcAs4BJwDxJk2qazQImpmkhsLRUdwcws7bfiLgyIs6OiLOBe4H7StVbq3URsahUvjT1X11Xl37NzCyfnGc2U4D2iNgWEQeAVcDsmjazgRVReBIYKekkgIh4DHi5u87T2ckVwMqeBpH6Oz4inoiIAFYAc/q5TWZm1g85w2YMsL0035HK+tqmO9OBFyLiuVLZeEkbJD0qaXppHR2NrEPSQkmtklo7OzsbHIaZmfUmZ9jUuy8S/WjTnXm88axmF3BKRLwL+DPgLknH92UdEbEsIioRURk9enSDwzAzs960ZOy7Azi5ND8W2NmPNl1IagEuA86plkXEfmB/er9e0lbgtLSOsX1dh5mZDZycZzbrgImSxksaDswF1tS0WQMsSE+lTQNejYhdDfR9IfBsRPzm8pik0emhBCRNoHgQYFvqb4+kaek+zwLgwcPeOjMza1i2M5uIOChpMbAWGAYsj4jNkhal+luBh4CLgXZgL3BNdXlJK4HzgVGSOoAbI+JbqXouXR8MOA/4gqSDwGvAooioPmBwLcXTbccCD6fJzMwGiYoHtKxWpVKJ1tbWoR6GmdkRRdL6iKjUlvsbBMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWncPGzMyyc9iYmVl2DhszM8vOYWNmZtk5bMzMLDuHjZmZZeewMTOz7Bw2ZmaWXdawkTRT0hZJ7ZKuq1MvSUtS/UZJk0t1yyXtlrSpZpm7JbWl6XlJban8IknrJT2dXmeUlnkkjaO63IkZN9vMzGq05OpY0jDgFuAioANYJ2lNRPyo1GwWMDFNU4Gl6RXgDuBmYEW534i4srSOrwGvptkXgUsjYqekdwJrgTGlRedHROvAbJ2ZmfVFzjObKUB7RGyLiAPAKmB2TZvZwIooPAmMlHQSQEQ8BrzcXeeSBFwBrEztN0TEzlS9GThG0ogB3SIzM+uXnGEzBthemu/gjWcajbbpznTghYh4rk7d5cCGiNhfKrs9XUK7PgVVF5IWSmqV1NrZ2dngMMzMrDc5w6beB3r0o0135pHOat7QoXQG8FXgY6Xi+RFxJkVATQeuqtdhRCyLiEpEVEaPHt3gMMzMrDc5w6YDOLk0PxbY2Y82XUhqAS4D7q4pHwvcDyyIiK3V8ojYkV73AHdRXOIzM7NBkjNs1gETJY2XNByYC6ypabMGWJCeSpsGvBoRuxro+0Lg2YjoqBZIGgl8F/h0RDxeKm+RNCq9Pxq4BNiEmZkNmmxhExEHgcUUT4U9A6yOiM2SFklalJo9BGwD2oHbgI9Xl5e0EngCOF1Sh6SPlrqfS9dLaIuBdwDX1zziPAJYK2kj0AbsSOsyM7NBoohGb5G8uVQqlWht9ZPSZmZ9IWl9RFRqy/0NAmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLLmvYSJopaYukdknX1amXpCWpfqOkyaW65ZJ2S9pUs8zdktrS9LyktlLdp1NfWyR9oFR+jqSnU90SScq0yWZmVke2sJE0DLgFmAVMAuZJmlTTbBYwMU0LgaWlujuAmbX9RsSVEXF2RJwN3Avcl9Y3CZgLnJGW+2YaA6nfhaV1denXrNnFoUP849/dyd+vuZkD+34x1MMx65OW7iokrY6IKyQ9DUS5CoiIOKuXvqcA7RGxLfW3CpgN/KjUZjawIiICeFLSSEknRcSuiHhM0rgexifgCmBGqa9VEbEf+LGkdmCKpOeB4yPiibTcCmAO8HAv4zdrKm2P3c3XvvtZIoLOl37KZdfcNNRDMmtYt2EDfDK9zgVqf426oIG+xwDbS/MdwNQG2owBdjXQ/3TghYh4rtTXk3X6+nV6X1vehaSFFGdAnHLKKQ0MwWzw7P/VLwmCo3QUv9z386EejlmfdBs2EVH9wL8bWAH8d+AY4CagQnGZqyf17otEP9p0Zx6wsoG+Gl5HRCwDlgFUKpVGx2E2KM45/0PM3f1jfrH3FS794GeHejhmfdLTmU3VVOCrwA+A44A7gfc0sFwHcHJpfiywsx9tupDUAlwGnNNAXx3pfZ/WYdZsjj7mLfzbBV8a6mGY9UsjDwj8GtgHHEtxZvPjiDjUwHLrgImSxksaTnE5bk1NmzXAgvRU2jTg1dIZVU8uBJ6NiPLlsTXAXEkjJI2neBDgqdTfHknT0n2eBcCDDazDzMwGSCNhs44ibM4F3kvxVNk9vS0UEQeBxcBa4BlgdURslrRI0qLU7CFgG9AO3AZ8vLq8pJXAE8DpkjokfbTU/VzeeAmNiNgMrKZ4AOF7wJ9GxGup+lrgr9J6tuKHA8zMBpWKB8F6aCBVIqK1puyqiPjrrCMbYpVKJVpbW3tvaGZmvyFpfURUast7PbOpDZpU9lsdNGZmNrD8dTVmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eNmZll57AxM7PsHDZmZpadw8bMzLJz2JiZWXZZw0bSTElbJLVLuq5OvSQtSfUbJU0u1S2XtFvSpjrLfSL1u1nSTalsvqS20nRI0tmp7pHUvlp3YsbNNjOzGi25OpY0DLgFuAjoANZJWhMRPyo1mwVMTNNUYGl6BbgDuBlYUdPvBcBs4KyI2F8Njoi4E7gztTkTeDAi2kqLzo+I1oHcRjMza0zOM5spQHtEbIuIA8AqipAomw2siMKTwEhJJwFExGPAy3X6vRb4SkTsT+1212kzD1g5QNthZmaHKWfYjAG2l+Y7Ullf29Q6DZgu6YeSHpV0bp02V9I1bG5Pl9Cul6R6HUtaKKlVUmtnZ2cvwzAzs0blDJt6H+jRjza1WoATgGnAp4DV5fCQNBXYGxHlez3zI+JMYHqarqrXcUQsi4hKRFRGjx7dyzDMzKxROcOmAzi5ND8W2NmPNvX6vS9densKOASMKtXPpeasJiJ2pNc9wF0Ul/jMzGyQ5AybdcBESeMlDacIgTU1bdYAC9JTadOAVyNiVy/9PgDMAJB0GjAceDHNHwV8kOL+EKmsRdKo9P5o4BKgyxNuZmaWT7an0SLioKTFwFpgGLA8IjZLWpTqbwUeAi4G2oG9wDXV5SWtBM4HRknqAG6MiG8By4Hl6ZHoA8DVEVG99HYe0BER20pDGQGsTUEzDPg+cFumzTYzszr0+ue0lVUqlWht9ZPSZmZ9IWl9RFRqy/0NAmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLLmvYSJopaYukdknX1amXpCWpfqOkyaW65ZJ2S9pUZ7lPpH43S7oplY2TtE9SW5puLbU/R9LTaT1LJCnXNpuZWVfZwkbSMOAWYBYwCZgnaVJNs1nAxDQtBJaW6u4AZtbp9wJgNnBWRJwB/GWpemtEnJ2mRaXypan/6rq69GtmZvnkPLOZArRHxLaIOACsogiJstnAiig8CYyUdBJARDwGvFyn32uBr0TE/tRud0+DSP0dHxFPREQAK4A5h7FdZmbWRznDZgywvTTfkcr62qbWacB0ST+U9Kikc0t14yVtSOXTS+voaGQdkhZKapXU2tnZ2cswzMysUS0Z+653XyT60aZWC3ACMA04F1gtaQKwCzglIl6SdA7wgKQz+rKOiFgGLAOoVCq9jcPMzBqU88ymAzi5ND8W2NmPNvX6vS9densKOASMioj9EfESQESsB7ZSnAV1pH77sg4zMxtAOcNmHTBR0nhJw4G5wJqaNmuABemptGnAqxGxq5d+HwBmAEg6DRgOvChpdHoogXSmMxHYlvrbI2laegptAfDgwGyimZk1IttltIg4KGkxsBYYBiyPiM2SFqX6W4GHgIuBdmAvcE11eUkrgfOBUZI6gBsj4lvAcmB5eiT6AHB1RISk84AvSDoIvAYsiojqAwbXUjzddizwcJrMzGyQqHhAy2pVKpVobW0d6mGYmR1RJK2PiEptub9BwMzMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZZQ0bSTMlbZHULum6OvWStCTVb5Q0uVS3XNJuSZvqLPeJ1O9mSTelsoskrZf0dHqdUWr/SGrflqYTc22zmZl11ZKrY0nDgFuAi4AOYJ2kNRHxo1KzWcDENE0FlqZXgDuAm4EVNf1eAMwGzoqI/aXgeBG4NCJ2SnonsBYYU1p0fkS0DuAmmplZg3Ke2UwB2iNiW0QcAFZRhETZbGBFFJ4ERko6CSAiHgNertPvtcBXImJ/arc7vW6IiJ2pzWbgGEkjBnyrzMysz3KGzRhge2m+gzeeaTTaptZpwHRJP5T0qKRz67S5HNhQDaTk9nQJ7XpJqtexpIWSWiW1dnZ29jIMMzNrVM6wqfeBHv1oU6sFOAGYBnwKWF0OD0lnAF8FPlZaZn5EnAlMT9NV9TqOiGURUYmIyujRo3sZhpmZNSpn2HQAJ5fmxwI7+9GmXr/3pUtvTwGHgFEAksYC9wMLImJrdYGI2JFe9wB3UVziMzOzQZIzbNYBEyWNlzQcmAusqWmzBliQnkqbBrwaEbt66fcBYAaApNOA4cCLkkYC3wU+HRGPVxtLapFUDaOjgUuALk+4mZlZPtnCJiIOAospngp7BlgdEZslLZK0KDV7CNgGtAO3AR+vLi9pJfAEcLqkDkkfTVXLgQnpkehVwNUREWld7wCur3nEeQSwVtJGoA3YkdZlZmaDRMXntNWqVCrR2uonpc3M+kLS+oio1Jb7GwTMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZOWzMzCw7h42ZmWXnsDEzs+wcNmZmlp3DxszMsnPYmJlZdg4bMzPLzmFjZmbZ+Y+ndUNSJ/CTIR7GKODFIR5DXx1pYz7Sxgse82A50sbcDON9ESAiZtZWOGyamKTWen/xrpkdaWM+0sYLHvNgOdLG3Ozj9WU0MzPLzmFjZmbZOWya27KhHkA/HGljPtLGCx7zYDnSxtzU4/U9GzMzy85nNmZmlp3DxszMsnPYDDBJMyVtkdQu6bo69ZK0JNVvlDS5VLdc0m5Jm+os94nU72ZJN6WyiyStl/R0ep1Rav9Iat+WphObYLzjJO0rjenWUvtz0na0p/WpSfbx/NJ42yQdknR2X/ZxrjFLuru07ucltZXqPp362iLpA82yn7sbc7Meyz2Mt2mP5R7GPCDHcr9FhKcBmoBhwFZgAjAc+CdgUk2bi4GHAQHTgB+W6s4DJgObapa5APg+MCLNn5he3wW8Pb1/J7CjtMwjQKXJxjuutm1pmaeAd6f1PAzMaoYx17Q5E9jWl32cc8w1y38NuCG9n5TWMQIYn9Y9rBn2cw9jbspjuYfxNu2x3N2YB+JYPpzJZzYDawrQHhHbIuIAsAqYXdNmNrAiCk8CIyWdBBARjwEv1+n3WuArEbE/tdudXjdExM7UZjNwjKQRzTre7qT+jo+IJ6I48lcAc5pwzPOAlT1tyyCPGSh++wWuKI1tNrAqIvZHxI+BdmBKk+znumNu4mO57nh7aNe0+7hGf4/lfnPYDKwxwPbSfEcq62ubWqcB0yX9UNKjks6t0+ZyYEP1wzK5PZ0SX9/NqfxQjHe8pA2pfHppHR0NrmMo9/GVdP0H2ts+zjnmqunACxHxXC99NcN+7m7MZc10LPc03mY9lnsac1V/j+V+axnoDt/k6v2Aap8tb6RNrRbgBIrT6HOB1ZImpN+ckHQG8FXgD0vLzI+IHZKOA+4FrqL4LWvIxgvsAk6JiJcknQM8kMbel3UM1T6eCuyNiPL18Ub2cc4xV9X+ltpdX82wn6vq/mbdhMdyd+Nt5mO5qrt9fDjHcr/5zGZgdQAnl+bHAjv70aZev/elU+mngEMUX7qHpLHA/cCCiNhaXSAidqTXPcBdFKfsQzredFnnpTSu9RTXq09L7cc2uI5B38fJXGr+4Ta4j3OOGUktwGXA3Q301Qz7ubsxN+uxXHe8TX4sd7uPk8M5lvsvMt4QerNNFL8db6O4KVu94XdGTZs/4o03/J6qqR9H15vXi4AvpPenUZxWCxiZ1nF5nXGMSu+PBu4BFjXBeEfz+o3qCcAO4G1pfl3qv3pT9eJm2Mdp/iiKf/QT+rqPc445lc8EHq0pO4M3PiCwrbTfh3Q/9zDmkTThsdzDeJv2WO5uzANxLB/ONGgfxG+WieLpkX+m+E3ns6lsUfWHlw6aW1L905SeAKH4bWMX8Ot0QHw0lQ8HvgNsAv4RmJHKPwf8EmgrTScCvwOsBzZS3Gz9RvUfxhCP9/I0nn9K5ZeW+qqk9luBm0kf9EM95lR3PvBkzRga3se5xpzq7qD+h+9nU19bKD0NNdT7ubsx06THcg/jbdpjuZfj4nwO81ju7+SvqzEzs+x8z8bMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsO4eN2RBJ3xzc5dunzX4bOWzMzCw7h41ZE5A0IX2p41RJP0jvfyDp9FT/EUkPSvpe+rsjN6bycZKelfTt9PdO7pH0llR3g6R1kjZJWpbjyxXNGuWwMRtiKVDuBa4BngHOi4h3ATcAf1FqOgWYD5wNfFBSJZWfDiyLiLOAnwMfT+U3R8S5EfFO4FjgktzbYtYdh43Z0BoNPAh8OCLagN8F/ne6l/N1iu85q/o/EfFSROwD7gPem8q3R8Tj6f13SuUXpD+Z8DQwo6Yvs0HlsDEbWq9SfOnne9L8nwP/L52NXAocU2pb+91S0V25pGOAbwJ/HBFnArfV9GU2qBw2ZkPrAMVfclwg6UMUZzY7Ut1HatpeJOltko5Ny1TPZk6R9O70fh7wD7weLC9Keivwx1lGb9Ygh43ZEIuIX1LcT/lPFN92/GVJj1P8jfqyfwD+OrW5NyJaU/kzwNWSNgJvA5ZGxCsUZzNPAw9QfO292ZDxtz6bHQEkfYTi6+UX15SPA/4mXXYza1o+szEzs+x8ZmNmZtn5zMbMzLJz2JiZWXYOGzMzy85hY2Zm2TlszMwsu/8P6uSv5AoKCkgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "kappa sigma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgr0lEQVR4nO3df5gV1Z3n8fdHEDSJDmbBiQEUWNEZjY7Bq5AnwUGiCRhdfDRRlIhxM0swQ3Zms5td80PNZvLTZ5xsWA0OrqhsFHT8yU40ZN0ZdWL8QTP08CPK2BITG4igRkICwSDf/aPOjeXt2923mz7dF/y8nqeee+ucU6e+VV19v11Vp+sqIjAzM8vpgIEOwMzM9n9ONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZON2X5C0hRJ7QMdR5mkdZKmdFH/BUn/q/8isoHiZGNNQdLzknZK+rWkFyXdLOkdAx1XVySNkRSSBvdRfwdJelXS1Dp135Z0V1+spzfSdv4m/Xw2SvobSYO6Wy4ijo+Ih7uo/3pE/FmfBmtNycnGmsk5EfEOYAJwCvClniyswj5zTNcmqYj4LXAHMLum3SDgIuDW/ouurj9JP58PAhcD/2FvOuurJG37hn3mF9PeOiJiI/Ag8B5Jh0n6e0lbJf0yvR9VbSvpYUlfk/QYsAMYJ+kySU9L2i5pg6RPldpPkdQu6b9K2iJps6RzJZ0l6V8lvSLpC6X2B0i6QtJzkl6WdKekd6bqR9Prq+kv/velZf59Wv8vJS2XdFSpv5D055KeBZ6ts/m3AudLelup7MMUv6sPdrVttdK6ji7N3yLpq6X5syW1prOpH0s6sfOfyhsi4hngnyh+Pv9W0j+kffOSpNskDSut43lJZ6T3X5Z0l6TvSfoV8IlU9r1UXz1TvFTSz1N/Xyz1dbCkW9N+fTr9DNtL9f8tnXVtl7Re0gcb2R7rH0421nQkjQbOAlZRHKM3A0cBRwI7getqFrkEmAMcAvwM2AKcDRwKXAZ8W9KEUvt3AQcBI4GrgBuBjwMnA5OBqySNS23/I3Au8KfAu4FfAtenutPS67CIeEdEPC7pXOALwHnACIoP5SU18Z4LTASOq932iPgxsDktX96+2yNidwPb1pC0zCLgU8C/Af4WWCZpaAPLHkexn1YBAr5BsW/+GBgNfLmLxWcAdwHDgNs6afMB4FiKM6irJP1xKr8aGAOMA86k+JlVYzoWmAecEhGHUCTo57vbFutHEeHJ04BPFB8MvwZepUgY3wUOrtPuJOCXpfmHga900/d9wF+k91MoEtagNH8IEMDEUvuVwLnp/dPAB0t1RwC/AwZTfPAFMLhU/yDwydL8ARRnXEel+QCmdhPvl4AfpveHpuXf2+C2tZfqAji6NH8L8NX0fgHwVzV9rQf+tJP1BPArimT7HPBV4IA67c4FVtX8XM9I778MPFrT/svA99L76v4cVap/CpiZ3m8APlyq+7Pq9gJHUyTiM4ADB/p49tRx8jVTaybnRsRD5YJ0OenbwDTgsFR8iKRBEfF6mn+hZpnpFH8FH0PxYf82YE2pyculZXem1xdL9TuB6uCEo4B7Je0p1b8O/GEn23AU8B1J15ZDojiL+lm9eOtYDFwtaSTFX+htEbGqwW1r1FHApZI+UyobQnGG0pkJEdFWLpB0ODCf4kznkBTTL7voo7ttB/hF6f0O3vhZvLtm+d+/j4g2SX9JkbyOl7Qc+GxEbGpgfdYPfBnNmt1/prikMjEiDuWNS1cqtfn9o8vTZaC7gb8G/jAihgEP1LTviReA6RExrDQdFMV9pXqPTH8B+FRN+4OjuDzWId56IuLnFJffZlFcQlvcy23bQZGMqt5VE+fXauJ8W0TUXvLrzjfS9pyYfj4f7yIe6Gbbu7EZGFWaH/2mjiNuj4gPUCTSAL61F+uyPuZkY83uEIozjVfTjfmru2k/BBgKbAV2pzOBD+3F+m8Avla9yS9phKQZqW4rsIfiHkK5/eclHZ/a/4Gkj/VivbdS3IN4P2/c2+jptrUCF0saJGkaxX2nqhuBuZImqvB2SR+RdEgP4zyEdPkznYl9rofL98SdFPv2sLSuedUKScdKmpoS8m8pjpnXO+nHBoCTjTW7/wEcDLwEPAH8oKvGEbGd4qb+nRSXcy4Glu3F+r+Tlv+hpO0pholpXTuArwGPpRFdkyLiXoq/qJemEVdrgem9WO9dFJcN/19EbO7ltv0FcA7FfbBZFPd3SH21UAxdvi711QZ8ohdx/neKoerbgO8D9/Sij0Z9BWgHfgo8RLGPdqW6ocA3KY6TXwCHUwzUsCahCH95mpnteyRdTjF44E+7bWwDzmc2ZrZPkHSEpPen/306luJ+3r0DHZc1xqPRzGxfMYTi/4HGUlwaXEoxRN72Ab6MZmZm2fkympmZZefLaJ0YPnx4jBkzZqDDMDPbZwwfPpzly5cvj4hptXVONp0YM2YMLS0tAx2Gmdk+RdLweuW+jGZmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2WVNNpKmSVovqU3SFXXqJWl+ql8taUKpbpGkLZLW1ixzh6TWND0vqTWVzyqVt0raI+mkVPdwiqNad3jO7TYzszfL9rXQkgYB1wNnAu3ACknLIuInpWbTgfFpmggsSK8AtwDXAYvL/UbEhaV1XAtsS+W3Abel8hOA+yOitbTorIjw9zybmQ2AnGc2pwJtEbEhIl4DlgIzatrMABZH4QlgmKQjACLiUeCVzjqXJOACYEmd6os6KTczswGQM9mMBF4ozbensp626cxk4MWIeLZO3YV0TDY3p0toV6ZE1YGkOZJaJLVs3bq1wTDMzKw7OZNNvQ/06EWbztQ9e5E0EdgREeV7PbMi4gSKBDUZuKRehxGxMCIqEVEZMWJEg2GYmVl3ciabdmB0aX4UsKkXbTqQNBg4D7ijTvVMapJQRGxMr9uB2yku8ZmZWT/JmWxWAOMljZU0hCIJLKtpswyYnUalTQK2RcTmBvo+A3gmItrLhZIOAD5GcX+oWjZY0vD0/kDgbOBNI9zMzCyvbKPRImK3pHnAcmAQsCgi1kmam+pvAB4AzgLagB3AZdXlJS0BpgDDJbUDV0fETam6w9lLchrQHhEbSmVDgeUp0QwCHgJu7LMNNTOzbimi0Vskby2VSiVaWjxS2sysJyStjIhKbbmfIGBmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZlllzXZSJomab2kNklX1KmXpPmpfrWkCaW6RZK2SFpbs8wdklrT9Lyk1lQ+RtLOUt0NpWVOlrQmrWe+JGXcbDMzq5Et2UgaBFwPTAeOAy6SdFxNs+nA+DTNARaU6m4BptX2GxEXRsRJEXEScDdwT6n6uWpdRMwtlS9I/VfX1aFfMzPLJ+eZzalAW0RsiIjXgKXAjJo2M4DFUXgCGCbpCICIeBR4pbPO09nJBcCSroJI/R0aEY9HRACLgXN7uU1mZtYLOZPNSOCF0nx7Kutpm85MBl6MiGdLZWMlrZL0iKTJpXW0N7IOSXMktUhq2bp1a4NhmJlZd3Imm3r3RaIXbTpzEW8+q9kMHBkR7wU+C9wu6dCerCMiFkZEJSIqI0aMaDAMMzPrzuCMfbcDo0vzo4BNvWjTgaTBwHnAydWyiNgF7ErvV0p6DjgmrWNUT9dhZmZ9J+eZzQpgvKSxkoYAM4FlNW2WAbPTqLRJwLaI2NxA32cAz0TE7y+PSRqRBiUgaRzFQIANqb/tkial+zyzgfv3euvMzKxh2c5sImK3pHnAcmAQsCgi1kmam+pvAB4AzgLagB3AZdXlJS0BpgDDJbUDV0fETal6Jh0HBpwGfEXSbuB1YG5EVAcYXE4xuu1g4ME0mZlZP1ExQMtqVSqVaGlpGegwzMz2KZJWRkSlttxPEDAzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyy5psJE2TtF5Sm6Qr6tRL0vxUv1rShFLdIklbJK2tWeYOSa1pel5Sayo/U9JKSWvS69TSMg+nOKrLHZ5xs83MrMbgXB1LGgRcD5wJtAMrJC2LiJ+Umk0HxqdpIrAgvQLcAlwHLC73GxEXltZxLbAtzb4EnBMRmyS9B1gOjCwtOisiWvpm68zMrCdyntmcCrRFxIaIeA1YCsyoaTMDWByFJ4Bhko4AiIhHgVc661ySgAuAJan9qojYlKrXAQdJGtqnW2RmZr2SM9mMBF4ozbfz5jONRtt0ZjLwYkQ8W6fufGBVROwqld2cLqFdmRJVB5LmSGqR1LJ169YGwzAzs+7kTDb1PtCjF206cxHprOZNHUrHA98CPlUqnhURJ1AkqMnAJfU6jIiFEVGJiMqIESMaDMPMzLqTM9m0A6NL86OATb1o04GkwcB5wB015aOAe4HZEfFctTwiNqbX7cDtFJf4zMysn+RMNiuA8ZLGShoCzASW1bRZBsxOo9ImAdsiYnMDfZ8BPBMR7dUCScOA7wOfj4jHSuWDJQ1P7w8EzgbWYmZm/SZbsomI3cA8ilFhTwN3RsQ6SXMlzU3NHgA2AG3AjcCnq8tLWgI8DhwrqV3SJ0vdz6TjJbR5wNHAlTVDnIcCyyWtBlqBjWldZmbWTxTR6C2St5ZKpRItLR4pbWbWE5JWRkSlttxPEDAzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8uu4a+FTl+1fBxwULUsIhZ3voSZmVmhoWQj6WpgCkWyeQCYDvwIcLIxM7NuNXoZ7aPAB4FfRMRlwJ9QPLrfzMysW40mm50RsQfYLelQYAswLl9YZma2P2n0nk1L+ibMG4GVwK+Bp3IFZWZm+5eGkk1EVL9B8wZJPwAOjYjV+cIyM7P9SU9Go50IjKkuI+noiLgnU1xmZrYfaXQ02iLgRGAdsCcVB+BkY2Zm3Wr0zGZSRByXNRIzM9tvNToa7XFJPU42kqZJWi+pTdIVdeolaX6qXy1pQqlukaQtktbWLHOHpNY0PS+ptVT3+dTXekkfLpWfLGlNqpsvST3dFjMz671Gk82tFAlnfUoKayR1OUBA0iDgeop/AD0OuKhOwpoOjE/THGBBqe4WYFptvxFxYUScFBEnAXeTLuWlvmcCx6flvptiIPU7p7SuDv2aNbvYs4d//ofb+Kdl1/Hazl8PdDhmPdLoZbRFwCXAGt64Z9OdU4G2iNgAIGkpMAP4SanNDGBxRATwhKRhko6IiM0R8aikMZ11ns5OLgCmlvpaGhG7gJ9KagNOlfQ8xei5x9Nyi4FzgQcb3A6zptD66B1c+/0vEhFsffnnnHfZNQMdklnDGk02P4+IZT3seyTwQmm+HZjYQJuRwOYG+p8MvBgRz5b6eqJOX79L72vLO5A0h+IMiCOPPLKBEMz6z67f/oYgOEAH8JudvxrocMx6pNFk84yk24H/A+yqFnYz9LnefZHoRZvOXAQsaaCvhtcREQuBhQCVSqXROMz6xclTLmbmlp/y6x2vcs7HvjjQ4Zj1SKPJ5mCKJPOhUll3Q5/bgdGl+VHApl606UDSYOA84OQG+mpP73u0DrNmc+BBb+Pfzf7aQIdh1iuNPkHgsl70vQIYL2kssJHi5v3FNW2WAfPS/ZyJwLaIaOQS2hnAMxFRvjy2DLhd0t8A76YYCPBURLwuabukScCTwGzgf/Zie8zMrJca/afO+XWKtwEtEXF/vWUiYrekecByYBCwKCLWSZqb6m+g+LqCs4A2YAfw+6QmaQnF1xoMl9QOXB0RN6Xqmbz5Ehqp7zspBiDsBv48Il5P1ZdTjG47mGJggAcHmJn1IxUDwbppJC0E/gj4u1R0PsXTBEYDGyLiL3MFOFAqlUq0tLQMdBhmZvsUSSsjolJb3ug9m6OBqRGxO3W2APghcCbFcGgzM7NONfpPnSOBt5fm3w68O12m2lV/ETMzs0KjZzbXAK2SHqYYSnwa8HVJbwceyhSbmZntJxodjXaTpAcongog4AsRUR0+/LlcwZmZ2f6hy8tokv4ovU4AjqD4b/+fA+8qPzTTzMysK92d2XyW4vEt15bKysPXpmJmZtaNLs9sImJOersAmBERpwP/SPE/Nv8lc2xmZrafaHQ02pci4leSPkAx3PkW3vx1AGZmZp1qNNlU/xP/I8AN6akBQ/KEZGZm+5tGk81GSX9L8f0xD0ga2oNlzczsLa7RhHEBxTPOpkXEq8A78ZBnMzNrUKP/Z7OD0tcJpCczN/J0ZjMzM18KMzOz/JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLLLmmwkTZO0XlKbpCvq1EvS/FS/uvwdOZIWSdoiaW2d5T6T+l0n6ZpUNktSa2naI+mkVPdwal+tOzzjZpuZWY1Gvxa6xyQNAq6neEp0O7BC0rKI+Emp2XRgfJomUjxJemKquwW4Dlhc0+/pwAzgxIjYVU0cEXEbcFtqcwJwf0S0lhadFREtfbmNZmbWmJxnNqcCbRGxISJeA5ZSJImyGcDiKDwBDJN0BEBEPAq8Uqffy4FvRsSu1G5LnTYXAUv6aDvMzGwv5Uw2Iym+RrqqPZX1tE2tY4DJkp6U9IikU+q0uZCOyebmdAntSkmq17GkOZJaJLVs3bq1mzDMzKxROZNNvQ/06EWbWoOBw4BJFE+evrOcPCRNBHZERPlez6yIOAGYnKZL6nUcEQsjohIRlREjRnQThpmZNSpnsmkHRpfmRwGbetGmXr/3pEtvTwF7gOGl+pnUnNVExMb0uh24neISn5mZ9ZOcyWYFMF7SWElDKJLAspo2y4DZaVTaJGBb+vqCrtwHTAWQdAzFN4a+lOYPAD5GcX+IVDZY0vD0/kDgbKDDCDczM8sn22i0iNgtaR7Fl64NAhZFxDpJc1P9DcADwFlAG7ADuKy6vKQlwBRguKR24OqIuAlYBCxKQ6JfAy6NiOqlt9OA9ojYUAplKLA8JZpBwEPAjZk228zM6tAbn9NWVqlUoqXFI6XNzHpC0sqIqNSW+wkCZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZZk42kaZLWS2qTdEWdekman+pXS5pQqlskaYuktXWW+0zqd52ka1LZGEk7JbWm6YZS+5MlrUnrmS9JubbZzMw6ypZsJA0CrgemA8cBF0k6rqbZdGB8muYAC0p1twDT6vR7OjADODEijgf+ulT9XESclKa5pfIFqf/qujr0a2Zm+eQ8szkVaIuIDRHxGrCUIkmUzQAWR+EJYJikIwAi4lHglTr9Xg58MyJ2pXZbugoi9XdoRDweEQEsBs7di+0yM7MeyplsRgIvlObbU1lP29Q6Bpgs6UlJj0g6pVQ3VtKqVD65tI72RtYhaY6kFkktW7du7SYMMzNr1OCMfde7LxK9aFNrMHAYMAk4BbhT0jhgM3BkRLws6WTgPknH92QdEbEQWAhQqVS6i8PMzBqU88ymHRhdmh8FbOpFm3r93pMuvT0F7AGGR8SuiHgZICJWAs9RnAW1p357sg4zM+tDOZPNCmC8pLGShgAzgWU1bZYBs9OotEnAtojY3E2/9wFTASQdAwwBXpI0Ig1KIJ3pjAc2pP62S5qURqHNBu7vm000M7NGZLuMFhG7Jc0DlgODgEURsU7S3FR/A/AAcBbQBuwALqsuL2kJMAUYLqkduDoibgIWAYvSkOjXgEsjIiSdBnxF0m7gdWBuRFQHGFxOMbrtYODBNJmZWT9RMUDLalUqlWhpaRnoMMzM9imSVkZEpbbcTxAwM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMssuabCRNk7ReUpukK+rUS9L8VL9a0oRS3SJJWyStrbPcZ1K/6yRdk8rOlLRS0pr0OrXU/uHUvjVNh+faZjMz62hwro4lDQKuB84E2oEVkpZFxE9KzaYD49M0EViQXgFuAa4DFtf0ezowAzgxInaVEsdLwDkRsUnSe4DlwMjSorMioqUPN9HMzBqU88zmVKAtIjZExGvAUookUTYDWByFJ4Bhko4AiIhHgVfq9Hs58M2I2JXabUmvqyJiU2qzDjhI0tA+3yozM+uxnMlmJPBCab6dN59pNNqm1jHAZElPSnpE0il12pwPrKompOTmdAntSkmq17GkOZJaJLVs3bq1mzDMzKxROZNNvQ/06EWbWoOBw4BJwOeAO8vJQ9LxwLeAT5WWmRURJwCT03RJvY4jYmFEVCKiMmLEiG7CMDOzRuVMNu3A6NL8KGBTL9rU6/eedOntKWAPMBxA0ijgXmB2RDxXXSAiNqbX7cDtFJf4zMysn+RMNiuA8ZLGShoCzASW1bRZBsxOo9ImAdsiYnM3/d4HTAWQdAwwBHhJ0jDg+8DnI+KxamNJgyVVk9GBwNlAhxFuZmaWT7ZkExG7gXkUo8KeBu6MiHWS5kqam5o9AGwA2oAbgU9Xl5e0BHgcOFZSu6RPpqpFwLg0JHopcGlERFrX0cCVNUOchwLLJa0GWoGNaV1mZtZPVHxOW61KpRItLR4pbWbWE5JWRkSlttxPEDAzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsvOXp3VC0lbgZwMcxnDgpQGOoaf2tZj3tXjBMfeXfS3mZoj3JYCImFZb4WTTxCS11PvGu2a2r8W8r8ULjrm/7GsxN3u8voxmZmbZOdmYmVl2TjbNbeFAB9AL+1rM+1q84Jj7y74Wc1PH63s2ZmaWnc9szMwsOycbMzPLzsmmj0maJmm9pDZJV9Spl6T5qX61pAmlukWStkhaW2e5z6R+10m6JpWdKWmlpDXpdWqp/cOpfWuaDm+CeMdI2lmK6YZS+5PTdrSl9alJ9vGsUrytkvZIOqkn+zhXzJLuKK37eUmtpbrPp77WS/pws+znzmJu1mO5i3ib9ljuIuY+OZZ7LSI89dEEDAKeA8YBQ4B/AY6raXMW8CAgYBLwZKnuNGACsLZmmdOBh4Chaf7w9Ppe4N3p/XuAjaVlHgYqTRbvmNq2pWWeAt6X1vMgML0ZYq5pcwKwoSf7OGfMNctfC1yV3h+X1jEUGJvWPagZ9nMXMTflsdxFvE17LHcWc18cy3sz+cymb50KtEXEhoh4DVgKzKhpMwNYHIUngGGSjgCIiEeBV+r0eznwzYjYldptSa+rImJTarMOOEjS0GaNtzOpv0Mj4vEojvzFwLlNGPNFwJKutqWfYwaKv36BC0qxzQCWRsSuiPgp0Aac2iT7uW7MTXws1423i3ZNu49r9PZY7jUnm741EnihNN+eynraptYxwGRJT0p6RNIpddqcD6yqflgmN6dT4is7OZUfiHjHSlqVyieX1tHe4DoGch9fSMdf0O72cc6YqyYDL0bEs9301Qz7ubOYy5rpWO4q3mY9lruKuaq3x3KvDe7rDt/i6v2AaseWN9Km1mDgMIrT6FOAOyWNS385Iel44FvAh0rLzIqIjZIOAe4GLqH4K2vA4gU2A0dGxMuSTgbuS7H3ZB0DtY8nAjsionx9vJF9nDPmqtq/Ujvrqxn2c1Xdv6yb8FjuLN5mPparOtvHe3Ms95rPbPpWOzC6ND8K2NSLNvX6vSedSj8F7KF46B6SRgH3ArMj4rnqAhGxMb1uB26nOGUf0HjTZZ2XU1wrKa5XH5Paj2pwHf2+j5OZ1PziNriPc8aMpMHAecAdDfTVDPu5s5ib9ViuG2+TH8ud7uNkb47l3ouMN4TeahPFX8cbKG7KVm/4HV/T5iO8+YbfUzX1Y+h483ou8JX0/hiK02oBw9I6zq8Tx/D0/kDgLmBuE8Q7gjduVI8DNgLvTPMrUv/Vm6pnNcM+TvMHUPzSj+vpPs4ZcyqfBjxSU3Y8bx4gsKG03wd0P3cR8zCa8FjuIt6mPZY7i7kvjuW9mfrtg/itMlGMHvlXir90vpjK5lZ/eOmguT7Vr6E0AoTir43NwO/SAfHJVD4E+B6wFvhnYGoq/xLwG6C1NB0OvB1YCaymuNn6neovxgDHe36K519S+Tmlviqp/XPAdaQP+oGOOdVNAZ6oiaHhfZwr5lR3C/U/fL+Y+lpPaTTUQO/nzmKmSY/lLuJt2mO5m+NiCnt5LPd28uNqzMwsO9+zMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMBkh6cnCHp0+b7Y+cbMzMLDsnG7MmIGlceqjjREk/Tu9/LOnYVP8JSfdL+kH63pGrU/kYSc9IujV938ldkt6W6q6StELSWkkLczxc0axRTjZmAywllLuBy4CngdMi4r3AVcDXS01PBWYBJwEfk1RJ5ccCCyPiROBXwKdT+XURcUpEvAc4GDg797aYdcbJxmxgjQDuBz4eEa3AHwB/l+7lfJviOWdV/zciXo6IncA9wAdS+QsR8Vh6/71S+enpKxPWAFNr+jLrV042ZgNrG8VDP9+f5v8K+Md0NnIOcFCpbe2zpaKzckkHAd8FPhoRJwA31vRl1q+cbMwG1msU3+Q4W9LFFGc2G1PdJ2raninpnZIOTstUz2aOlPS+9P4i4Ee8kVhekvQO4KNZojdrkJON2QCLiN9Q3E/5TxRPO/6GpMcovqO+7EfA/05t7o6IllT+NHCppNXAO4EFEfEqxdnMGuA+isfemw0YP/XZbB8g6RMUj5efV1M+Bvj7dNnNrGn5zMbMzLLzmY2ZmWXnMxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy+7/A4tcIMzpTKG0AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "kappa tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAa2klEQVR4nO3df7xldV3v8debQX6o2MB1MOTXQAKPhjTDI9DDX4ShjGnDjbwXxECzi6Pi7Xa7FZapaab1yCgeEgZeFTIlLkpOBZJyM24IyZlAfoTIMKkMTDCgIgqJwOf+sb4ntnvOnNnnzNrnnJHX8/HYj73W+n6/a33WPmvOe6+19tmTqkKSpD7ssNAFSJJ+cBgqkqTeGCqSpN4YKpKk3hgqkqTeGCqSpN4YKtJ2JslRSTYsdB2DktyU5KgZ2n8zyQfnryItFENF8yrJV5I8mOTbSe5K8uEkT17oumaSZHmSSrJjT+vbJck3kxw9TdsZSS7qYztz0fbzO+3nc0eSP0qyZGvjqurQqvrcDO2/V1W/1GuxWpQMFS2EV1TVk4HDgOcCb53N4HS2m2N3OIyq6t+BvwROHuq3BDgROG/+qpvWj7efz4uBVwH/bVtW1lcYa/uw3fzD1A+eqroDuBT4sSS7J/mbJJuSfKNN7zPVN8nnkrw7yZXAA8CBSV6b5OYk9ydZn+T1A/2PSrIhya8nuTvJxiTHJXlZki8n+XqS3xzov0OS05PcluTeJBcm2aM1X9Gev9newf9kG/OLbfvfSHJZkv0H1ldJ3pTkVuDWaXb/POD4JE8cWPZSun+Tl860b8Patp4xMP+RJL87MP/yJNe1s6PPJ3nWln8qj6mqLwH/j+7n8yNJ/m97be5J8hdJlg5s4ytJfrpNvyPJRUk+muRbwGvaso+29qkzv1OSfK2t77cG1rVrkvPa63pz+xluGGj/jXYWdX+SW5K8eJT90fwwVLRgkuwLvAy4lu5Y/DCwP7Af8CDw/qEhvwCcCuwGfBW4G3g58BTgtcAZSQ4b6P/DwC7A3sDbgHOBVwPPAV4AvC3Jga3vfweOA14EPB34BnBWa3the15aVU+uqquSHAf8JvBzwDK6X74fH6r3OOAIYMXwvlfV54GNbfzg/n2sqh4eYd9G0sZ8CHg98J+APwPWJNl5hLEr6F6na4EA76F7bX4U2Bd4xwzDVwEXAUuBv9hCn+cDh9CdEb0tyY+25W8HlgMHAsfQ/cymajoEOA14blXtRhfEX9navmgeVZUPH/P2oPsF8G3gm3TB8KfArtP0ezbwjYH5zwHv3Mq6/wr45TZ9FF0wLWnzuwEFHDHQfy1wXJu+GXjxQNtewPeAHel+wRWw40D7pcDrBuZ3oDuD2r/NF3D0Vup9K/B3bfopbfxPjLhvGwbaCnjGwPxHgN9t02cD7xpa1y3Ai7awnQK+RReqtwG/C+wwTb/jgGuHfq4/3abfAVwx1P8dwEfb9NTruc9A+xeAE9r0euClA22/NLW/wDPoAvengScs9PHsY/OH1zq1EI6rqs8OLmiXgc4AjgV2b4t3S7Kkqh5p87cPjVlJ9672YLpf6k8Ebhjocu/A2Afb810D7Q8CUx8S2B+4OMmjA+2PAE/bwj7sD/xJkvcNlkR3VvTV6eqdxvnA25PsTfeOe11VXTvivo1qf+CUJG8eWLYT3RnHlhxWVesGFyTZEziT7sxlt1bTN2ZYx9b2HeDfBqYf4LGfxdOHxv/HdFWtS/I/6ELq0CSXAf+zqu4cYXuaB17+0mLxq3SXQo6oqqfw2CWnDPT5j6/UbpdvPgH8IfC0qloKXDLUfzZuB1ZW1dKBxy7V3feZ7qu8bwdeP9R/1+oua21W73Sq6mt0l81Oorv0df4c9+0ButCZ8sNDdb57qM4nVtXwpbqteU/bn2e1n8+rZ6gHtrLvW7ER2Gdgft/vW3HVx6rq+XSBWcDvb8O21DNDRYvFbnRnDt9sN8jfvpX+OwE7A5uAh9s7+5dsw/Y/ALx76mZ7kmVJVrW2TcCjdNf4B/u/Jcmhrf8PJXnlHLZ7Ht09gufx2L2H2e7bdcCrkixJcizdfaEp5wKrkxyRzpOS/EyS3WZZ5260y5btzOrXZjl+Ni6ke213b9s6baohySFJjm7B++90x8wjW1iPFoChosXij4FdgXuAq4FPz9S5qu6nu7l+Id1lmFcBa7Zh+3/Sxv9dkvtbDUe0bT0AvBu4sn2C6siqupjuHfIF7RNONwIr57Ddi+gu911eVRvnuG+/DLyC7j7VSXT3X2jrmqT7SPD727rWAa+ZQ52/Q/cR8PuAvwU+OYd1jOqdwAbgX4HP0r1G321tOwPvpTtO/g3Yk+4DE1okUuV/0iVp8UryBrqb+C/aamctOM9UJC0qSfZK8rz2t0OH0N1vu3ih69Jo/PSXpMVmJ7q/pzmA7pLeBXQfPdd2wMtfkqTeePlLktSbx/Xlr6c+9am1fPnyhS5DkrYra9euvaeqlk3X9rgOleXLlzM5ObnQZUjSdiXJV7fU5uUvSVJvDBVJUm8MFUlSbwwVSVJvDBVJUm8MFUlSbwwVSVJvDBVJUm8MFUlSbwwVSVJvDBVJUm8MFUlSbwwVSVJvDBVJUm8MFUlSbwwVSVJvDBVJUm8MFUlSbwwVSVJvDBVJUm8MFUlSbwwVSVJvDBVJUm8MFUlSbwwVSVJvxhoqSY5NckuSdUlOn6Y9Sc5s7dcnOWyg7UNJ7k5y49CYPZJ8Jsmt7Xn3ofb9knw7yf8a355JkqYztlBJsgQ4C1gJrABOTLJiqNtK4KD2OBU4e6DtI8Cx06z6dODyqjoIuLzNDzoDuHRb65ckzd44z1QOB9ZV1fqqegi4AFg11GcVcH51rgaWJtkLoKquAL4+zXpXAee16fOA46YakhwHrAdu6nE/JEkjGmeo7A3cPjC/oS2bbZ9hT6uqjQDteU+AJE8CfgP4nZkGJzk1yWSSyU2bNm11JyRJoxtnqGSaZTWHPqP6HeCMqvr2TJ2q6pyqmqiqiWXLls1xU5Kk6ew4xnVvAPYdmN8HuHMOfYbdlWSvqtrYLpXd3ZYfAfx8kj8AlgKPJvn3qnr/XHdAkjQ74zxTuQY4KMkBSXYCTgDWDPVZA5zcPgV2JHDf1KWtGawBTmnTpwCfAqiqF1TV8qpaDvwx8HsGiiTNr7GFSlU9DJwGXAbcDFxYVTclWZ1kdet2Cd2N9XXAucAbp8Yn+ThwFXBIkg1JXtea3gsck+RW4Jg2L0laBFI111sY27+JiYmanJxc6DIkabuSZG1VTUzX5l/US5J6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSejPWUElybJJbkqxLcvo07UlyZmu/PslhA20fSnJ3khuHxuyR5DNJbm3Pu7flxyRZm+SG9nz0OPdNkrS5sYVKkiXAWcBKYAVwYpIVQ91WAge1x6nA2QNtHwGOnWbVpwOXV9VBwOVtHuAe4BVV9UzgFODP+9kTSdKoxnmmcjiwrqrWV9VDwAXAqqE+q4Dzq3M1sDTJXgBVdQXw9WnWuwo4r02fBxzX+l9bVXe25TcBuyTZuc8dkiTNbJyhsjdw+8D8hrZstn2GPa2qNgK05z2n6XM8cG1VfXdWFUuStsmOY1x3pllWc+gzu40mhwK/D7xkC+2n0l1qY7/99tuWTUmShozzTGUDsO/A/D7AnXPoM+yuqUtk7fnuqYYk+wAXAydX1W3TDa6qc6pqoqomli1bNtKOSJJGM85QuQY4KMkBSXYCTgDWDPVZA5zcPgV2JHDf1KWtGayhuxFPe/4UQJKlwN8Cb6mqK3vaB0nSLIwtVKrqYeA04DLgZuDCqropyeokq1u3S4D1wDrgXOCNU+OTfBy4CjgkyYYkr2tN7wWOSXIrcEybp23rGcBvJ7muPaa73yJJGpNUbdMtjO3axMRETU5OLnQZkrRdSbK2qiama/Mv6iVJvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvTFUJEm92XFrHZK8bbrlVfXO/suRJG3PthoqwHcGpncBXg7cPJ5yJEnbs61e/qqq9w083g0cBew9ysqTHJvkliTrkpw+TXuSnNnar09y2EDbh5LcneTGoTF7JPlMklvb8+4DbW9p67olyUtHqVGS1J+53FN5InDg1jolWQKcBawEVgAnJlkx1G0lcFB7nAqcPdD2EeDYaVZ9OnB5VR0EXN7maes+ATi0jfvTVoO0Xbn/3jv5+0/+EV/6wiULXYo0a6PcU7kBqDa7BFgGjHI/5XBgXVWtb+u5AFgF/MtAn1XA+VVVwNVJlibZq6o2VtUVSZZPs95VdGdLAOcBnwN+oy2/oKq+C/xrknWthqtGqFVaND547huY3PRFds4TeNfSPdn74ImFLkka2Sj3VF4+MP0wcFdVPTzCuL2B2wfmNwBHjNBnb2DjDOt9WlVtBKiqjUn2HFjX1dOs6/skOZXurIj99ttv63shzbPvPPRtdsoTeIRH+e6D317ocqRZGeWeyler6qvAg3RnKk9PMspv40y3ujn0GdVI66qqc6pqoqomli1bNsdNSePzS68+gxft/0Je+7w3c8AzX7jQ5UizMsrlr58F3gc8Hbgb2J/u01+HbmXoBmDfgfl9gDvn0GfYXVOXyJLs1Wqa67qkReeHD3wWr3nz/17oMqQ5GeVG/buAI4EvV9UBwIuBK0cYdw1wUJIDkuxEdxN9zVCfNcDJ7VNgRwL3TV3amsEa4JQ2fQrwqYHlJyTZOckBdDf/vzBCnZKknowSKt+rqnuBHZLsUFV/Dzx7a4PafZfTgMvozmwurKqbkqxOsrp1uwRYD6wDzgXeODU+ycfpbrIfkmRDkte1pvcCxyS5FTimzVNVNwEX0n0Q4NPAm6rqkRH2T5LUk3QfvJqhQ/JZ4DjgPcBT6S43TVTV88Ze3ZhNTEzU5OTkQpchSduVJGuratqPJY7y6a8vAg8AvwKcBPwQ8OT+ypMk/aAYJVR+qqoeBR6l+7sQklw/1qokSdulLYZKkjfQ3eP4kaEQ2Y3RbtRLkh5nZjpT+RhwKd29lMHv7bq/qr4+1qokSdulLYZKVd0H3AecOH/lSJK2Z/4nXZKk3hgqkqTeGCqSpN4YKpKk3hgqkqTeGCqSpN4YKpKk3hgqkqTeGCqSpN4YKpKk3hgqkqTeGCqSpN4YKpKk3hgqkqTeGCqSpN4YKpKk3hgqkqTeGCqSpN4YKpKk3hgqkqTeGCqSpN4YKpKk3hgqkqTeGCqSpN4YKpKk3ow1VJIcm+SWJOuSnD5Ne5Kc2dqvT3LY1sYm+fEkVyW5IclfJ3lKW/6EJOe15Tcnecs4902StLmxhUqSJcBZwEpgBXBikhVD3VYCB7XHqcDZI4z9IHB6VT0TuBj4tbb8lcDObflzgNcnWT6evZMkTWecZyqHA+uqan1VPQRcAKwa6rMKOL86VwNLk+y1lbGHAFe06c8Ax7fpAp6UZEdgV+Ah4Ftj2jdJ0jTGGSp7A7cPzG9oy0bpM9PYG4GfbdOvBPZt0xcB3wE2Al8D/rCqvr5tuyBJmo1xhkqmWVYj9plp7C8Cb0qyFtiN7owEurObR4CnAwcAv5rkwM2KSk5NMplkctOmTVvfC0nSyMYZKht47CwCYB/gzhH7bHFsVX2pql5SVc8BPg7c1vq8Cvh0VX2vqu4GrgQmhouqqnOqaqKqJpYtWzbnnZMkbW6coXINcFCSA5LsBJwArBnqswY4uX0K7EjgvqraONPYJHu25x2AtwIfaOv6GnB0W9eTgCOBL41x/yRJQ8YWKlX1MHAacBlwM3BhVd2UZHWS1a3bJcB6YB1wLvDGmca2MScm+TJdYNwJfLgtPwt4Mt09l2uAD1fV9ePaP0nS5lI1fJvj8WNiYqImJycXugxJ2q4kWVtVm91eAP+iXpLUI0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUm7GGSpJjk9ySZF2S06dpT5IzW/v1SQ7b2tgkP57kqiQ3JPnrJE8ZaHtWa7upte8yzv2TJH2/sYVKkiXAWcBKYAVwYpIVQ91WAge1x6nA2SOM/SBwelU9E7gY+LU2Zkfgo8DqqjoUOAr43rj2T5K0uXGeqRwOrKuq9VX1EHABsGqozyrg/OpcDSxNstdWxh4CXNGmPwMc36ZfAlxfVV8EqKp7q+qRce2cJGlz4wyVvYHbB+Y3tGWj9Jlp7I3Az7bpVwL7tumDgUpyWZJ/TvLr0xWV5NQkk0kmN23aNMtdkiTNZJyhkmmW1Yh9Zhr7i8CbkqwFdgMeast3BJ4PnNSe/3OSF2+2kqpzqmqiqiaWLVu29b2QJI1sxzGuewOPnUUA7APcOWKfnbY0tqq+RHepiyQHAz8zsK5/qKp7WtslwGHA5T3siyRpBOM8U7kGOCjJAUl2Ak4A1gz1WQOc3D4FdiRwX1VtnGlskj3b8w7AW4EPtHVdBjwryRPbTfsXAf8yxv2TJA0Z25lKVT2c5DS6X/ZLgA9V1U1JVrf2DwCXAC8D1gEPAK+daWxb9YlJ3tSmPwl8uI35RpI/ogukAi6pqr8d1/5JkjaXquHbHI8fExMTNTk5udBlSNJ2JcnaqpqYrs2/qJck9cZQkST1xlCRJPXGUJEk9cZQkST1xlCRJPXGUJEk9cZQkST1xlCRJPXGUJEk9cZQkST1xlCRJPXGUJEk9cZQkST1xlCRJPXGUJEk9cZQkST1xlCRJPXGUJEk9cZQkST1xlCRJPXGUJEk9cZQkST1xlCRJPUmVbXQNSyYJJuAry5wGU8F7lngGmbLmufH9lbz9lYvWPNc7V9Vy6ZreFyHymKQZLKqJha6jtmw5vmxvdW8vdUL1jwOXv6SJPXGUJEk9cZQWXjnLHQBc2DN82N7q3l7qxesuXfeU5Ek9cYzFUlSbwwVSVJvDJU5SHJskluSrEty+jTtSXJma78+yWEDbR9KcneSG6cZ9+a23puS/EFbdkyStUluaM9HD/T/XOt/XXvsuUhqXp7kwYG6PjDQ/zltX9a17WWR1HzSQL3XJXk0ybMXw+uc5C8Htv2VJNcNtL2lreuWJC+d7es8n/Uu5mN5hpoX7bE8Q829HMtzVlU+ZvEAlgC3AQcCOwFfBFYM9XkZcCkQ4EjgnwbaXggcBtw4NOangM8CO7f5PdvzTwBPb9M/BtwxMOZzwMQirHn5cN+BMV8AfrJt51Jg5WKoeajPM4H1i+V1Hhr/PuBtbXpF28bOwAFt20tGfZ0XoN5FeyzPUPOiPZa3VHMfx/K2PDxTmb3DgXVVtb6qHgIuAFYN9VkFnF+dq4GlSfYCqKorgK9Ps943AO+tqu+2fne352ur6s7W5yZglyQ7L+aat6St7ylVdVV1R/j5wHGLsOYTgY/PtC/zXDPQvZsF/stAbauAC6rqu1X1r8A64PBZvM7zWu8iP5anrXmGfovhWB6l5rkey3NmqMze3sDtA/Mb2rLZ9hl2MPCCJP+U5B+SPHeaPscD1079Qmw+3E5jf3uG0++FqPmAJNe25S8Y2MaGEbexkK/zf2Xzf4gL+TpPeQFwV1XdupV1jfo6z3e9gxbbsTxTzYv1WJ6p5ilzPZbnbMe+V/g4MN0PYfhz2aP0GbYjsDvdqe9zgQuTHNjeBZHkUOD3gZcMjDmpqu5IshvwCeAX6N4xLWjNwEZgv6q6N8lzgL9q9c9mGwv1Oh8BPFBVg9evF/p1njL8rnNL6xp1G/Ndb7fCxXksTxmueTEfy1O29Dpvy7E8Z56pzN4GYN+B+X2AO+fQZ7r1frKd/n4BeJTui+NIsg9wMXByVd02NaCq7mjP9wMfozvNXvCa2+WYe1tta+muJx/c+u8z4jbm/XVuTmDoH+gieJ1JsiPwc8BfjrCuUV/n+a53MR/L09a8yI/lLb7OzbYcy3NXY7xh84P4oHunu57uxujUTbdDh/r8DN9/0+0LQ+3L2fwG8mrgnW36YLpT4QBL2zaOn6aOp7bpJwAXAasXSc3LeOyG8YHAHcAebf6atv6pm5svWww1t/kd6P5xH7iYXue2/FjgH4aWHcr336hfP/C6b/V1XoB6l7JIj+UZal60x/KWau7jWN6Wx7z8Iv5Be9B9UuPLdO9afqstWz31A2oHxlmt/QYGPm1B985hI/C99kN/XVu+E/BR4Ebgn4Gj2/K3At8Brht47Ak8CVgLXE930/NPpg7+RVDz8a2mL7blrxhY10Trfxvwftov9IWuubUdBVw9VMOCv86t7SNM8wsA+K22rlsY+PTRqK/zfNbLIj6WZ6h50R7LWzkujmIbj+W5PvyaFklSb7ynIknqjaEiSeqNoSJJ6o2hIknqjaEiSeqNoSKNUfuW282+KVn6QWWoSJJ6Y6hI8yTJge2LCY9I8vk2/fkkh7T21yT5VJJPt//z4u1t+fIkX0pyXvu/Ni5K8sTW9rYk1yS5Mck54/iCQGk2DBVpHrTg+ATwWuBm4IVV9RPA24DfG+h6OHAS8GzglUkm2vJDgHOq6lnAt4A3tuXvr6rnVtWPAbsCLx/3vkgzMVSk8VsGfAp4dVVdB/wQ8H/avZYz6L7Da8pnqureqnoQ+CTw/Lb89qq6sk1/dGD5T7Wv8b8BOHpoXdK8M1Sk8buP7osrn9fm3wX8fTu7eAWwy0Df4e9Nqi0tT7IL8KfAz1fVM4Fzh9YlzTtDRRq/h+j+V8CTk7yK7kzljtb2mqG+xyTZI8mubczU2cl+SX6yTZ8I/COPBcg9SZ4M/PxYqpdmwVCR5kFVfYfufsev0H0773uSXEn3/5cP+kfgz1ufT1TVZFt+M3BKkuuBPYCzq+qbdGcnNwB/RfdV7NKC8luKpUUiyWvovvL8tKHly4G/aZfLpEXNMxVJUm88U5Ek9cYzFUlSbwwVSVJvDBVJUm8MFUlSbwwVSVJv/j8VfXlc/0GtbgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "xi sigma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfz0lEQVR4nO3df5QV5Z3n8fdHEDRGF7PgBAEFVnRG1DF4FWYnGEI0AaOLRzeKYSTjZpbgjNmZk93smh/GbDaZSTzjZMPqwOCKhBMFXaOmd6JDjjurzib+oBl6EBIZW2JiA5FWo8FgMMh3/6jnxuL27e7bTT/dt/XzOqfOvfU8Tz31rerq++2qerquIgIzM7OcDhvqAMzM7K3PycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMXuLkDRHUsdQx1EmaaukOT3Uf1bS/xy8iGyoONlYU5D0rKTXJL0q6XlJt0l651DH1RNJkyWFpJED1N8Rkl6WNLdO3dcl3T0Q6+mPtJ2/TD+fHZL+StKI3paLiOkR8VAP9X8eEX80oMFaU3KysWZyUUS8E5gBnA18vi8LqzBsjunaJBURvwLuBBbXtBsBXAF8c/Ciq+t308/nA8BHgX9/KJ0NVJK24WHY/GLa20dE7AAeAE6TdKykv5XUKenn6f3EaltJD0n6iqTvA3uBqZKukvQjSXskbZf0iVL7OZI6JP1nSbsl7ZJ0saQLJP2zpJckfbbU/jBJ10p6RtKLku6S9K5U/Uh6fTn9xf97aZl/l9b/c0nrJZ1Y6i8k/Ymkp4Gn62z+N4FLJb2jVPYhit/VB3ratlppXSeV5ldL+nJp/kJJbels6geSzuj+p/KmiHgK+AeKn8+/kvT3ad+8IOl2SWNK63hW0nnp/Rcl3S3pW5J+AfxhKvtWqq+eKX5M0k9Tf58r9XWkpG+m/fqj9DPsKNX/l3TWtUfSNkkfaGR7bHA42VjTkTQJuADYRHGM3gacCJwAvAbcVLPIlcAS4GjgJ8Bu4ELgGOAq4OuSZpTavxs4ApgAfAG4BfgD4CxgNvAFSVNT2/8AXAy8Dzge+Dlwc6o7N72OiYh3RsSjki4GPgtcAoyj+FBeWxPvxcBM4NTabY+IHwC70vLl7bsjIvY3sG0NScusAj4B/Evgb4AWSaMbWPZUiv20CRDwFxT75neAScAXe1h8AXA3MAa4vZs27wVOoTiD+oKk30nl1wOTganA+RQ/s2pMpwDXAGdHxNEUCfrZ3rbFBlFEePI05BPFB8OrwMsUCeOvgSPrtDsT+Hlp/iHgS730fR/wp+n9HIqENSLNHw0EMLPUfiNwcXr/I+ADpbrxwK+BkRQffAGMLNU/AHy8NH8YxRnXiWk+gLm9xPt54Hvp/TFp+fc0uG0dpboATirNrwa+nN4vB/5bTV/bgPd1s54AfkGRbJ8BvgwcVqfdxcCmmp/reen9F4FHatp/EfhWel/dnxNL9U8AC9P77cCHSnV/VN1e4CSKRHwecPhQH8+euk6+ZmrN5OKIeLBckC4nfR2YBxybio+WNCIi3kjzz9UsM5/ir+CTKT7s3wE8WWryYmnZ19Lr86X614Dq4IQTgXslHSjVvwH8VjfbcCLwDUk3lkOiOIv6Sb1461gDXC9pAsVf6O0RsanBbWvUicDHJH2yVDaK4gylOzMior1cIOk4YBnFmc7RKaaf99BHb9sO8LPS+728+bM4vmb537yPiHZJf0aRvKZLWg98KiJ2NrA+GwS+jGbN7j9SXFKZGRHH8OalK5Xa/ObR5eky0LeBvwR+KyLGAPfXtO+L54D5ETGmNB0RxX2leo9Mfw74RE37I6O4PNYl3noi4qcUl98WUVxCW9PPbdtLkYyq3l0T51dq4nxHRNRe8uvNX6TtOSP9fP6gh3igl23vxS5gYml+0kEdR9wREe+lSKQBfO0Q1mUDzMnGmt3RFGcaL6cb89f30n4UMBroBPanM4EPHsL6VwBfqd7klzRO0oJU1wkcoLiHUG7/GUnTU/t/Iekj/VjvNynuQfw+b97b6Ou2tQEflTRC0jyK+05VtwBLJc1U4ShJH5Z0dB/jPJp0+TOdiX26j8v3xV0U+/bYtK5rqhWSTpE0NyXkX1EcM290048NAScba3b/HTgSeAF4DPi7nhpHxB6Km/p3UVzO+SjQcgjr/0Za/nuS9qQYZqZ17QW+Anw/jeiaFRH3UvxFvS6NuNoCzO/Heu+muGz4fyJiVz+37U+Biyjugy2iuL9D6quVYujyTamvduAP+xHnf6UYqv4K8F3gnn700agvAR3Aj4EHKfbRvlQ3GvgqxXHyM+A4ioEa1iQU4S9PM7PhR9LVFIMH3tdrYxtyPrMxs2FB0nhJv5/+9+kUivt59w51XNYYj0Yzs+FiFMX/A02huDS4jmKIvA0DvoxmZmbZ+TKamZll58to3Rg7dmxMnjx5qMMwMxs2xo4dy/r169dHxLzaOiebbkyePJnW1tahDsPMbFiRNLZeuS+jmZlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2WZONpHmStklql3RtnXpJWpbqN0uaUapbJWm3pC01y9wpqS1Nz0pqS+WLSuVtkg5IOjPVPZTiqNYdl3O7zczsYNm+FlrSCOBm4HygA9ggqSUiflhqNh+YlqaZwPL0CrAauAlYU+43Ii4vreNG4JVUfjtweyo/HfhORLSVFl0UEf6eZzOzIZDzzOYcoD0itkfE68A6YEFNmwXAmig8BoyRNB4gIh4BXuquc0kCLgPW1qm+optyMzMbAjmTzQTgudJ8Ryrra5vuzAaej4in69RdTtdkc1u6hHZdSlRdSFoiqVVSa2dnZ4NhmJlZb3Imm3of6NGPNt2pe/YiaSawNyLK93oWRcTpFAlqNnBlvQ4jYmVEVCKiMm7cuAbDMDOz3uRMNh3ApNL8RGBnP9p0IWkkcAlwZ53qhdQkoYjYkV73AHdQXOIzM7NBkjPZbACmSZoiaRRFEmipadMCLE6j0mYBr0TErgb6Pg94KiI6yoWSDgM+QnF/qFo2UtLY9P5w4ELgoBFuZmaWV7bRaBGxX9I1wHpgBLAqIrZKWprqVwD3AxcA7cBe4Krq8pLWAnOAsZI6gOsj4tZU3eXsJTkX6IiI7aWy0cD6lGhGAA8CtwzYhpqZWa8U0egtkreXSqUSra0eKW1m1heSNkZEpbbcTxAwM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMssuabCTNk7RNUruka+vUS9KyVL9Z0oxS3SpJuyVtqVnmTkltaXpWUlsqnyzptVLditIyZ0l6Mq1nmSRl3GwzM6uRLdlIGgHcDMwHTgWukHRqTbP5wLQ0LQGWl+pWA/Nq+42IyyPizIg4E/g2cE+p+plqXUQsLZUvT/1X19WlXzMzyyfnmc05QHtEbI+I14F1wIKaNguANVF4DBgjaTxARDwCvNRd5+ns5DJgbU9BpP6OiYhHIyKANcDF/dwmMzPrh5zJZgLwXGm+I5X1tU13ZgPPR8TTpbIpkjZJeljS7NI6OhpZh6QlkloltXZ2djYYhpmZ9SZnsql3XyT60aY7V3DwWc0u4ISIeA/wKeAOScf0ZR0RsTIiKhFRGTduXINhmJlZb0Zm7LsDmFSanwjs7EebLiSNBC4BzqqWRcQ+YF96v1HSM8DJaR0T+7oOMzMbODnPbDYA0yRNkTQKWAi01LRpARanUWmzgFciYlcDfZ8HPBURv7k8JmlcGpSApKkUAwG2p/72SJqV7vMsBr5zyFtnZmYNy3ZmExH7JV0DrAdGAKsiYqukpal+BXA/cAHQDuwFrqouL2ktMAcYK6kDuD4ibk3VC+k6MOBc4EuS9gNvAEsjojrA4GqK0W1HAg+kyczMBomKAVpWq1KpRGtr61CHYWY2rEjaGBGV2nI/QcDMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLLmuykTRP0jZJ7ZKurVMvSctS/WZJM0p1qyTtlrSlZpk7JbWl6VlJban8fEkbJT2ZXueWlnkoxVFd7riMm21mZjVG5upY0gjgZuB8oAPYIKklIn5YajYfmJammcDy9AqwGrgJWFPuNyIuL63jRuCVNPsCcFFE7JR0GrAemFBadFFEtA7M1pmZWV/kPLM5B2iPiO0R8TqwDlhQ02YBsCYKjwFjJI0HiIhHgJe661ySgMuAtan9pojYmaq3AkdIGj2gW2RmZv2SM9lMAJ4rzXdw8JlGo226Mxt4PiKerlN3KbApIvaVym5Ll9CuS4mqC0lLJLVKau3s7GwwDDMz603OZFPvAz360aY7V5DOag7qUJoOfA34RKl4UUScTpGgZgNX1uswIlZGRCUiKuPGjWswDDMz603OZNMBTCrNTwR29qNNF5JGApcAd9aUTwTuBRZHxDPV8ojYkV73AHdQXOIzM7NBkjPZbACmSZoiaRSwEGipadMCLE6j0mYBr0TErgb6Pg94KiI6qgWSxgDfBT4TEd8vlY+UNDa9Pxy4ENiCmZkNmmzJJiL2A9dQjAr7EXBXRGyVtFTS0tTsfmA70A7cAvxxdXlJa4FHgVMkdUj6eKn7hXS9hHYNcBJwXc0Q59HAekmbgTZgR1qXmZkNEkU0eovk7aVSqURrq0dKm5n1haSNEVGpLfcTBMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJr+Guh01ctnwocUS2LiDXdL2FmZlZoKNlIuh6YQ5Fs7gfmA/8PcLIxM7NeNXoZ7d8CHwB+FhFXAb9L8eh+MzOzXjWabF6LiAPAfknHALuBqfnCMjOzt5JG79m0pm/CvAXYCLwKPJErKDMze2tpKNlERPUbNFdI+jvgmIjYnC8sMzN7K+nLaLQzgMnVZSSdFBH3ZIrLzMzeQhodjbYKOAPYChxIxQE42ZiZWa8aPbOZFRGnZo3EzMzeshodjfaopD4nG0nzJG2T1C7p2jr1krQs1W+WNKNUt0rSbklbapa5U1Jbmp6V1Faq+0zqa5ukD5XKz5L0ZKpbJkl93RYzM+u/RpPNNykSzraUFJ6U1OMAAUkjgJsp/gH0VOCKOglrPjAtTUuA5aW61cC82n4j4vKIODMizgS+TbqUl/peCExPy/11ioHU75LSurr0a9bs4sAB/vHvb+cfWm7i9ddeHepwzPqk0ctoq4ArgSd5855Nb84B2iNiO4CkdcAC4IelNguANRERwGOSxkgaHxG7IuIRSZO76zydnVwGzC31tS4i9gE/ltQOnCPpWYrRc4+m5dYAFwMPNLgdZk2h7ZE7ufG7nyMi6Hzxp1xy1Q1DHZJZwxpNNj+NiJY+9j0BeK403wHMbKDNBGBXA/3PBp6PiKdLfT1Wp69fp/e15V1IWkJxBsQJJ5zQQAhmg2ffr35JEBymw/jla78Y6nDM+qTRZPOUpDuA/w3sqxb2MvS53n2R6Eeb7lwBrG2gr4bXERErgZUAlUql0TjMBsVZcz7Kwt0/5tW9L3PRRz431OGY9UmjyeZIiiTzwVJZb0OfO4BJpfmJwM5+tOlC0kjgEuCsBvrqSO/7tA6zZnP4Ee/g3yz+ylCHYdYvjT5B4Kp+9L0BmCZpCrCD4ub9R2vatADXpPs5M4FXIqKRS2jnAU9FRPnyWAtwh6S/Ao6nGAjwRES8IWmPpFnA48Bi4H/0Y3vMzKyfGv2nzmV1il8BWiPiO/WWiYj9kq4B1gMjgFURsVXS0lS/guLrCi4A2oG9wG+SmqS1FF9rMFZSB3B9RNyaqhdy8CU0Ut93UQxA2A/8SUS8kaqvphjddiTFwAAPDjAzG0QqBoL10khaCfw28L9S0aUUTxOYBGyPiD/LFeBQqVQq0draOtRhmJkNK5I2RkSltrzRezYnAXMjYn/qbDnwPeB8iuHQZmZm3Wr0nzonAEeV5o8Cjk+XqfbVX8TMzKzQ6JnNDUCbpIcohhKfC/y5pKOABzPFZmZmbxGNjka7VdL9FE8FEPDZiKgOH/50ruDMzOytocfLaJJ+O73OAMZT/Lf/T4F3lx+aaWZm1pPezmw+RfH4lhtLZeXha3MxMzPrRY9nNhGxJL1dDiyIiPcD/5fif2z+U+bYzMzsLaLR0Wifj4hfSHovxXDn1Rz8dQBmZmbdajTZVP8T/8PAivTUgFF5QjIzs7eaRpPNDkl/Q/H9MfdLGt2HZc3M7G2u0YRxGcUzzuZFxMvAu/CQZzMza1Cj/2ezl9LXCaQnMzfydGYzMzNfCjMzs/ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyy5psJM2TtE1Su6Rr69RL0rJUv7n8HTmSVknaLWlLneU+mfrdKumGVLZIUltpOiDpzFT3UGpfrTsu42abmVmNRr8Wus8kjQBupnhKdAewQVJLRPyw1Gw+MC1NMymeJD0z1a0GbgLW1PT7fmABcEZE7Ksmjoi4Hbg9tTkd+E5EtJUWXRQRrQO5jWZm1picZzbnAO0RsT0iXgfWUSSJsgXAmig8BoyRNB4gIh4BXqrT79XAVyNiX2q3u06bK4C1A7QdZmZ2iHImmwkUXyNd1ZHK+tqm1snAbEmPS3pY0tl12lxO12RzW7qEdp0k1etY0hJJrZJaOzs7ewnDzMwalTPZ1PtAj360qTUSOBaYRfHk6bvKyUPSTGBvRJTv9SyKiNOB2Wm6sl7HEbEyIioRURk3blwvYZiZWaNyJpsOYFJpfiKwsx9t6vV7T7r09gRwABhbql9IzVlNROxIr3uAOygu8ZmZ2SDJmWw2ANMkTZE0iiIJtNS0aQEWp1Fps4BX0tcX9OQ+YC6ApJMpvjH0hTR/GPARivtDpLKRksam94cDFwJdRriZmVk+2UajRcR+SddQfOnaCGBVRGyVtDTVrwDuBy4A2oG9wFXV5SWtBeYAYyV1ANdHxK3AKmBVGhL9OvCxiKheejsX6IiI7aVQRgPrU6IZATwI3JJps83MrA69+TltZZVKJVpbPVLazKwvJG2MiEptuZ8gYGZm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWWXNdlImidpm6R2SdfWqZekZal+s6QZpbpVknZL2lJnuU+mfrdKuiGVTZb0mqS2NK0otT9L0pNpPcskKdc2m5lZV9mSjaQRwM3AfOBU4ApJp9Y0mw9MS9MSYHmpbjUwr06/7wcWAGdExHTgL0vVz0TEmWlaWipfnvqvrqtLv2Zmlk/OM5tzgPaI2B4RrwPrKJJE2QJgTRQeA8ZIGg8QEY8AL9Xp92rgqxGxL7Xb3VMQqb9jIuLRiAhgDXDxIWyXmZn1Uc5kMwF4rjTfkcr62qbWycBsSY9LeljS2aW6KZI2pfLZpXV0NLIOSUsktUpq7ezs7CUMMzNr1MiMfde7LxL9aFNrJHAsMAs4G7hL0lRgF3BCRLwo6SzgPknT+7KOiFgJrASoVCq9xWFmZg3KeWbTAUwqzU8EdvajTb1+70mX3p4ADgBjI2JfRLwIEBEbgWcozoI6Ur99WYeZmQ2gnMlmAzBN0hRJo4CFQEtNmxZgcRqVNgt4JSJ29dLvfcBcAEknA6OAFySNS4MSSGc604Dtqb89kmalUWiLge8MzCaamVkjsl1Gi4j9kq4B1gMjgFURsVXS0lS/ArgfuABoB/YCV1WXl7QWmAOMldQBXB8RtwKrgFVpSPTrwMciIiSdC3xJ0n7gDWBpRFQHGFxNMbrtSOCBNJmZ2SBRMUDLalUqlWhtbR3qMMzMhhVJGyOiUlvuJwiYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWnZONmZll52RjZmbZOdmYmVl2TjZmZpadk42ZmWXnZGNmZtk52ZiZWXZONmZmlp2TjZmZZedkY2Zm2WVNNpLmSdomqV3StXXqJWlZqt8saUapbpWk3ZK21Fnuk6nfrZJuSGXnS9oo6cn0OrfU/qHUvi1Nx+XaZjMz62pkro4ljQBuBs4HOoANkloi4oelZvOBaWmaCSxPrwCrgZuANTX9vh9YAJwREftKieMF4KKI2CnpNGA9MKG06KKIaB3ATTQzswblPLM5B2iPiO0R8TqwjiJJlC0A1kThMWCMpPEAEfEI8FKdfq8GvhoR+1K73el1U0TsTG22AkdIGj3gW2VmZn2WM9lMAJ4rzXdw8JlGo21qnQzMlvS4pIclnV2nzaXApmpCSm5Ll9Cuk6R6HUtaIqlVUmtnZ2cvYZiZWaNyJpt6H+jRjza1RgLHArOATwN3lZOHpOnA14BPlJZZFBGnA7PTdGW9jiNiZURUIqIybty4XsIwM7NG5Uw2HcCk0vxEYGc/2tTr95506e0J4AAwFkDSROBeYHFEPFNdICJ2pNc9wB0Ul/jMzGyQ5Ew2G4BpkqZIGgUsBFpq2rQAi9OotFnAKxGxq5d+7wPmAkg6GRgFvCBpDPBd4DMR8f1qY0kjJVWT0eHAhUCXEW5mZpZPtmQTEfuBayhGhf0IuCsitkpaKmlpanY/sB1oB24B/ri6vKS1wKPAKZI6JH08Va0CpqYh0euAj0VEpHWdBFxXM8R5NLBe0magDdiR1mVmZoNExee01apUKtHa6pHSZmZ9IWljRFRqy/0EATMzy87JxszMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCw7JxszM8vOycbMzLJzsjEzs+ycbMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsO395WjckdQI/GeIwxgIvDHEMfTXcYh5u8YJjHizDLeZmiPcFgIiYV1vhZNPEJLXW+8a7ZjbcYh5u8YJjHizDLeZmj9eX0czMLDsnGzMzy87JprmtHOoA+mG4xTzc4gXHPFiGW8xNHa/v2ZiZWXY+szEzs+ycbMzMLDsnmwEmaZ6kbZLaJV1bp16SlqX6zZJmlOpWSdotaUud5T6Z+t0q6YZUdr6kjZKeTK9zS+0fSu3b0nRcE8Q7WdJrpZhWlNqflbajPa1PTbKPF5XibZN0QNKZfdnHuWKWdGdp3c9KaivVfSb1tU3Sh5plP3cXc7Meyz3E27THcg8xD8ix3G8R4WmAJmAE8AwwFRgF/BNwak2bC4AHAAGzgMdLdecCM4AtNcu8H3gQGJ3mj0uv7wGOT+9PA3aUlnkIqDRZvJNr25aWeQL4vbSeB4D5zRBzTZvTge192cc5Y65Z/kbgC+n9qWkdo4Epad0jmmE/9xBzUx7LPcTbtMdydzEPxLF8KJPPbAbWOUB7RGyPiNeBdcCCmjYLgDVReAwYI2k8QEQ8ArxUp9+rga9GxL7Ubnd63RQRO1ObrcARkkY3a7zdSf0dExGPRnHkrwEubsKYrwDW9rQtgxwzUPz1C1xWim0BsC4i9kXEj4F24Jwm2c91Y27iY7luvD20a9p9XKO/x3K/OdkMrAnAc6X5jlTW1za1TgZmS3pc0sOSzq7T5lJgU/XDMrktnRJf182p/FDEO0XSplQ+u7SOjgbXMZT7+HK6/oL2to9zxlw1G3g+Ip7upa9m2M/dxVzWTMdyT/E267HcU8xV/T2W+23kQHf4NlfvB1Q7tryRNrVGAsdSnEafDdwlaWr6ywlJ04GvAR8sLbMoInZIOhr4NnAlxV9ZQxYvsAs4ISJelHQWcF+KvS/rGKp9PBPYGxHl6+ON7OOcMVfV/pXaXV/NsJ+r6v5l3YTHcnfxNvOxXNXdPj6UY7nffGYzsDqASaX5icDOfrSp1+896VT6CeAAxUP3kDQRuBdYHBHPVBeIiB3pdQ9wB8Up+5DGmy7rvJji2khxvfrk1H5ig+sY9H2cLKTmF7fBfZwzZiSNBC4B7mygr2bYz93F3KzHct14m/xY7nYfJ4dyLPdfZLwh9HabKP463k5xU7Z6w296TZsPc/ANvydq6ifT9eb1UuBL6f3JFKfVAsakdVxaJ46x6f3hwN3A0iaIdxxv3qieCuwA3pXmN6T+qzdVL2iGfZzmD6P4pZ/a132cM+ZUPg94uKZsOgcPENhe2u9Dup97iHkMTXgs9xBv0x7L3cU8EMfyoUyD9kH8dpkoRo/8M8VfOp9LZUurP7x00Nyc6p+kNAKE4q+NXcCv0wHx8VQ+CvgWsAX4R2BuKv888EugrTQdBxwFbAQ2U9xs/Ub1F2OI4700xfNPqfyiUl+V1P4Z4CbSB/1Qx5zq5gCP1cTQ8D7OFXOqW039D9/Ppb62URoNNdT7ubuYadJjuYd4m/ZY7uW4mMMhHsv9nfy4GjMzy873bMzMLDsnGzMzy87JxszMsnOyMTOz7JxszMwsOycbs2FI0vGS7h7qOMwa5aHPZmaWnc9szJqcpLPTd5kcIekoFd+3c1rt95iYNTM/iNOsyUXEBkktwJeBIymedPDq0EZl1je+jGY2DEgaRfHMrV8B/5ri4Yx/GxGnDWlgZg3ymY3Z8PAu4J0UD0o8YohjMesz37MxGx5WAtcBt1N834vZsOIzG7MmJ2kxsD8i7pA0AvgBMHeIwzLrE9+zMTOz7HwZzczMsnOyMTOz7JxszMwsOycbMzPLzsnGzMyyc7IxM7PsnGzMzCy7/w/AP8ur8+EkNgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "xi tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZ8klEQVR4nO3df5QlZX3n8feHGQf8gRlcB8PvgThwMvgjwRbIGpVgUMZohg3rLqiBGLM4Km52N5sEE2OM0ag5MSYciS64KqxRwiGSTBIIUTaGPQYiPQH5EUSGicrIBEZUAoIi8N0/qjpc7/R03+557nS3vF/n3HOr6nmeqm9V1/Snq+p2T6oKSZJa2GOhC5Akff8wVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSItMUmOS7J1oesYlOSmJMfN0P5rST60+yrSQjFUtFsl+VKSB5Lcl+TOJB9J8qSFrmsmSVYnqSTLG61vryTfTHL8NG3vS3Jxi+3MR7+f3+q/Pl9N8vtJls02rqqOrKrPzND+O1X1C02L1aJkqGghvLyqngQcBTwXeMtcBqezZM7d4TCqqm8DfwKcNtRvGXAqcP7uq25az+6/Pi8CXgn8l11ZWasw1tKwZP5h6vtPVX0VuAx4RpJ9kvxlku1JvtFPHzjVN8lnkrwzyWeB+4HDkrwmyc1J7k2yJcnrBvofl2Rrkl9JcleSbUlOSvLSJF9M8vUkvzbQf48kZyW5LcndSS5K8pS++cr+/Zv9T/A/1o/5+X7730hyeZJDBtZXSd6Y5Fbg1ml2/3zg5CRPGFj2Erp/k5fNtG/D+m09fWD+o0neMTD/siTX9VdHf5/kWTv/qjyqqr4A/D+6r88PJfm//bH5WpI/TrJyYBtfSvKT/fTbklyc5GNJ/hX4uX7Zx/r2qSu/05N8pV/frw+s6/FJzu+P683913DrQPuv9ldR9ya5JcmLRtkf7R6GihZMkoOAlwLX0p2LHwEOAQ4GHgDePzTkZ4EzgL2BLwN3AS8Dngy8BnhfkqMG+v8gsBdwAPBW4Dzg1cBzgOcDb01yWN/3vwInAS8E9ge+AZzTt72gf19ZVU+qqquSnAT8GvAzwCq6b76fGKr3JOAYYO3wvlfV3wPb+vGD+/fxqnpohH0bST/mw8DrgH8H/C9gY5I9Rxi7lu44XQsEeBfdsflh4CDgbTMMXw9cDKwE/ngnfX4cOILuiuitSX64X/6bwGrgMOAEuq/ZVE1HAGcCz62qvemC+Euz7Yt2o6ry5Wu3vei+AdwHfJMuGP4IePw0/X4E+MbA/GeAt8+y7j8DfrGfPo4umJb183sDBRwz0H8TcFI/fTPwooG2/YDvAsvpvsEVsHyg/TLgtQPze9BdQR3Szxdw/Cz1vgX4m376yf34Hx1x37YOtBXw9IH5jwLv6Kc/APz20LpuAV64k+0U8K90oXob8A5gj2n6nQRcO/R1/cl++m3AlUP93wZ8rJ+eOp4HDrR/Djiln94CvGSg7Rem9hd4Ol3g/iTwuIU+n33t+PJepxbCSVX16cEF/W2g9wEnAvv0i/dOsqyqHu7nbx8as47up9rD6b6pPwG4YaDL3QNjH+jf7xxofwCY+pDAIcAlSR4ZaH8YeNpO9uEQ4A+TvHewJLqroi9PV+80LgB+M8kBdD9xb66qa0fct1EdApye5E0Dy1bQXXHszFFVtXlwQZJ9gbPprlz27mv6xgzrmG3fAf5lYPp+Hv1a7D80/t+mq2pzkv9GF1JHJrkc+B9VdccI29Nu4O0vLRa/RHcr5JiqejKP3nLKQJ9/+5Pa/e2bPwV+D3haVa0ELh3qPxe3A+uqauXAa6/qnvtM96e8bwdeN9T/8dXd1tqh3ulU1Vfobpu9iu7W1wXz3Lf76UJnyg8O1fnOoTqfUFXDt+pm865+f57Vf31ePUM9MMu+z2IbcODA/EHfs+Kqj1fVj9MFZgHv2YVtqTFDRYvF3nRXDt/sH5D/5iz9VwB7AtuBh/qf7F+8C9v/IPDOqYftSVYlWd+3bQceobvHP9j/zUmO7Pv/QJJXzGO759M9I3gejz57mOu+XQe8MsmyJCfSPReach6wIckx6TwxyU8l2XuOde5Nf9uyv7L65TmOn4uL6I7tPv22zpxqSHJEkuP74P023Tnz8E7WowVgqGix+APg8cDXgKuBv56pc1XdS/dw/SK62zCvBDbuwvb/sB//N0nu7Ws4pt/W/cA7gc/2n6A6tqouofsJ+cL+E043Auvmsd2L6W73XVFV2+a5b78IvJzuOdWr6J6/0K9rku4jwe/v17UZ+Ll51PlbdB8Bvwf4K+CT81jHqN4ObAX+Gfg03TH6Tt+2J/BuuvPkX4B96T4woUUiVf4nXZIWrySvp3uI/8JZO2vBeaUiaVFJsl+S5/W/O3QE3fO2Sxa6Lo3GT39JWmxW0P0+zaF0t/QupPvouZYAb39Jkprx9pckqZnH9O2vpz71qbV69eqFLkOSlpRNmzZ9rapWTdf2mA6V1atXMzk5udBlSNKSkuTLO2vz9pckqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqZmxhkqSE5PckmRzkrOmaU+Ss/v265McNdD24SR3JblxaMxTknwqya39+z5D7QcnuS/J/xzfnkmSpjO2UEmyDDgHWAesBU5Nsnao2zpgTf86A/jAQNtHgROnWfVZwBVVtQa4op8f9D7gsl2tX5I0d+O8Ujka2FxVW6rqQeBCYP1Qn/XABdW5GliZZD+AqroS+Po0610PnN9Pnw+cNNWQ5CRgC3BTw/2QJI1onKFyAHD7wPzWftlc+wx7WlVtA+jf9wVI8kTgV4HfmmlwkjOSTCaZ3L59+6w7IUka3ThDJdMsq3n0GdVvAe+rqvtm6lRV51bVRFVNrFq1ap6bkiRNZ/kY170VOGhg/kDgjnn0GXZnkv2qalt/q+yufvkxwH9M8rvASuCRJN+uqvfPdwckSXMzziuVa4A1SQ5NsgI4Bdg41GcjcFr/KbBjgXumbm3NYCNwej99OvDnAFX1/KpaXVWrgT8AfsdAkaTda2yhUlUPAWcClwM3AxdV1U1JNiTZ0He7lO7B+mbgPOANU+OTfAK4CjgiydYkr+2b3g2ckORW4IR+XpK0CKRqvo8wlr6JiYmanJxc6DIkaUlJsqmqJqZr8zfqJUnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqZqyhkuTEJLck2ZzkrGnak+Tsvv36JEcNtH04yV1Jbhwa85Qkn0pya/++T7/8hCSbktzQvx8/zn2TJO1obKGSZBlwDrAOWAucmmTtULd1wJr+dQbwgYG2jwInTrPqs4ArqmoNcEU/D/A14OVV9UzgdOD/tNkTSdKoxnmlcjSwuaq2VNWDwIXA+qE+64ELqnM1sDLJfgBVdSXw9WnWux44v58+Hzip739tVd3RL78J2CvJni13SJI0s3GGygHA7QPzW/tlc+0z7GlVtQ2gf993mj4nA9dW1XfmVLEkaZcsH+O6M82ymkefuW00ORJ4D/DinbSfQXerjYMPPnhXNiVJGjLOK5WtwEED8wcCd8yjz7A7p26R9e93TTUkORC4BDitqm6bbnBVnVtVE1U1sWrVqpF2RJI0mnGGyjXAmiSHJlkBnAJsHOqzETit/xTYscA9U7e2ZrCR7kE8/fufAyRZCfwV8Oaq+myjfZAkzcHYQqWqHgLOBC4HbgYuqqqbkmxIsqHvdimwBdgMnAe8YWp8kk8AVwFHJNma5LV907uBE5LcCpzQz9Nv6+nAbyS5rn9N97xFkjQmqdqlRxhL2sTERE1OTi50GZK0pCTZVFUT07X5G/WSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqZvlsHZK8dbrlVfX29uVIkpayWUMF+NbA9F7Ay4Cbx1OOJGkpm/X2V1W9d+D1TuA44IBRVp7kxCS3JNmc5Kxp2pPk7L79+iRHDbR9OMldSW4cGvOUJJ9Kcmv/vs9A25v7dd2S5CWj1ChJamc+z1SeABw2W6cky4BzgHXAWuDUJGuHuq0D1vSvM4APDLR9FDhxmlWfBVxRVWuAK/p5+nWfAhzZj/ujvgZpSbn37jv420/+Pl/43KULXYo0Z6M8U7kBqH52GbAKGOV5ytHA5qra0q/nQmA98E8DfdYDF1RVAVcnWZlkv6raVlVXJlk9zXrX010tAZwPfAb41X75hVX1HeCfk2zua7hqhFqlReND572eye2fZ888jt9euS8HHD6x0CVJIxvlmcrLBqYfAu6sqodGGHcAcPvA/FbgmBH6HABsm2G9T6uqbQBVtS3JvgPrunqadX2PJGfQXRVx8MEHz74X0m72rQfvY0Uex8M8wnceuG+hy5HmZJRnKl+uqi8DD9BdqeyfZJTvxpludfPoM6qR1lVV51bVRFVNrFq1ap6bksbnF179Pl54yAt4zfPexKHPfMFClyPNySi3v34aeC+wP3AXcAjdp7+OnGXoVuCggfkDgTvm0WfYnVO3yJLs19c033VJi84PHvYsfu5N/3uhy5DmZZQH9b8NHAt8saoOBV4EfHaEcdcAa5IcmmQF3UP0jUN9NgKn9Z8COxa4Z+rW1gw2Aqf306cDfz6w/JQkeyY5lO7h/+dGqFOS1MgoofLdqrob2CPJHlX1t8CPzDaof+5yJnA53ZXNRVV1U5INSTb03S4FtgCbgfOAN0yNT/IJuofsRyTZmuS1fdO7gROS3Aqc0M9TVTcBF9F9EOCvgTdW1cMj7J8kqZF0H7yaoUPyaeAk4F3AU+luN01U1fPGXt2YTUxM1OTk5EKXIUlLSpJNVTXtxxJH+fTX54H7gf8OvAr4AeBJ7cqTJH2/GCVUfqKqHgEeofu9EJJcP9aqJElL0k5DJcnr6Z5x/NBQiOzNaA/qJUmPMTNdqXwcuIzuWcrg3+26t6q+PtaqJElL0k5DparuAe4BTt195UiSljL/ky5JUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjNjDZUkJya5JcnmJGdN054kZ/ft1yc5araxSZ6d5KokNyT5iyRP7pc/Lsn5/fKbk7x5nPsmSdrR2EIlyTLgHGAdsBY4NcnaoW7rgDX96wzgAyOM/RBwVlU9E7gE+OV++SuAPfvlzwFel2T1ePZOkjSdcV6pHA1srqotVfUgcCGwfqjPeuCC6lwNrEyy3yxjjwCu7Kc/BZzcTxfwxCTLgccDDwL/OqZ9kyRNY5yhcgBw+8D81n7ZKH1mGnsj8NP99CuAg/rpi4FvAduArwC/V1Vf37VdkCTNxThDJdMsqxH7zDT254E3JtkE7E13RQLd1c3DwP7AocAvJTlsh6KSM5JMJpncvn377HshSRrZOENlK49eRQAcCNwxYp+djq2qL1TVi6vqOcAngNv6Pq8E/rqqvltVdwGfBSaGi6qqc6tqoqomVq1aNe+dkyTtaJyhcg2wJsmhSVYApwAbh/psBE7rPwV2LHBPVW2baWySffv3PYC3AB/s1/UV4Ph+XU8EjgW+MMb9kyQNGVuoVNVDwJnA5cDNwEVVdVOSDUk29N0uBbYAm4HzgDfMNLYfc2qSL9IFxh3AR/rl5wBPonvmcg3wkaq6flz7J0naUaqGH3M8dkxMTNTk5ORClyFJS0qSTVW1w+MF8DfqJUkNGSqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDUz1lBJcmKSW5JsTnLWNO1Jcnbffn2So2Ybm+TZSa5KckOSv0jy5IG2Z/VtN/Xte41z/yRJ32tsoZJkGXAOsA5YC5yaZO1Qt3XAmv51BvCBEcZ+CDirqp4JXAL8cj9mOfAxYENVHQkcB3x3XPsnSdrROK9UjgY2V9WWqnoQuBBYP9RnPXBBda4GVibZb5axRwBX9tOfAk7up18MXF9Vnweoqrur6uFx7ZwkaUfjDJUDgNsH5rf2y0bpM9PYG4Gf7qdfARzUTx8OVJLLk/xjkl+ZrqgkZySZTDK5ffv2Oe6SJGkm4wyVTLOsRuwz09ifB96YZBOwN/Bgv3w58OPAq/r3/5DkRTuspOrcqpqoqolVq1bNvheSpJEtH+O6t/LoVQTAgcAdI/ZZsbOxVfUFultdJDkc+KmBdf1dVX2tb7sUOAq4osG+SJJGMM4rlWuANUkOTbICOAXYONRnI3Ba/ymwY4F7qmrbTGOT7Nu/7wG8Bfhgv67LgWcleUL/0P6FwD+Ncf8kSUPGdqVSVQ8lOZPum/0y4MNVdVOSDX37B4FLgZcCm4H7gdfMNLZf9alJ3thPfxL4SD/mG0l+ny6QCri0qv5qXPsnSdpRqoYfczx2TExM1OTk5EKXIUlLSpJNVTUxXZu/US9JasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktRMqmqha1gwSbYDX17gMp4KfG2Ba5gra949llrNS61esOb5OqSqVk3X8JgOlcUgyWRVTSx0HXNhzbvHUqt5qdUL1jwO3v6SJDVjqEiSmjFUFt65C13APFjz7rHUal5q9YI1N+czFUlSM16pSJKaMVQkSc0YKvOQ5MQktyTZnOSsadqT5Oy+/fokRw20fTjJXUlunGbcm/r13pTkd/tlJyTZlOSG/v34gf6f6ftf17/2XSQ1r07ywEBdHxzo/5x+Xzb328siqflVA/Vel+SRJD+yGI5zkj8Z2PaXklw30Pbmfl23JHnJXI/z7qx3MZ/LM9S8aM/lGWpuci7PW1X5msMLWAbcBhwGrAA+D6wd6vNS4DIgwLHAPwy0vQA4CrhxaMxPAJ8G9uzn9+3ffxTYv59+BvDVgTGfASYWYc2rh/sOjPkc8GP9di4D1i2Gmof6PBPYsliO89D49wJv7afX9tvYEzi03/ayUY/zAtS7aM/lGWpetOfyzmpucS7vyssrlbk7GthcVVuq6kHgQmD9UJ/1wAXVuRpYmWQ/gKq6Evj6NOt9PfDuqvpO3++u/v3aqrqj73MTsFeSPRdzzTvTr+/JVXVVdWf4BcBJi7DmU4FPzLQvu7lmoPtpFvhPA7WtBy6squ9U1T8Dm4Gj53Ccd2u9i/xcnrbmGfothnN5lJrney7Pm6EydwcAtw/Mb+2XzbXPsMOB5yf5hyR/l+S50/Q5Gbh26hti7yP9ZexvzHD5vRA1H5rk2n758we2sXXEbSzkcf7P7PgPcSGP85TnA3dW1a2zrGvU47y76x202M7lmWperOfyTDVPme+5PG/LW6/wMWC6L8Lw57JH6TNsObAP3aXvc4GLkhzW/xREkiOB9wAvHhjzqqr6apK9gT8FfpbuJ6YFrRnYBhxcVXcneQ7wZ339c9nGQh3nY4D7q2rw/vVCH+cpwz917mxdo25jd9fbrXBxnstThmtezOfylJ0d5105l+fNK5W52wocNDB/IHDHPPpMt95P9pe/nwMeofvDcSQ5ELgEOK2qbpsaUFVf7d/vBT5Od5m94DX3t2Pu7mvbRHc/+fC+/4EjbmO3H+feKQz9A10Ex5kky4GfAf5khHWNepx3d72L+VyetuZFfi7v9Dj3duVcnr8a4wOb78cX3U+6W+gejE49dDtyqM9P8b0P3T431L6aHR8gbwDe3k8fTncpHGBlv42Tp6njqf3044CLgQ2LpOZVPPrA+DDgq8BT+vlr+vVPPdx86WKouZ/fg+4f92GL6Tj3y08E/m5o2ZF874P6LQPHfdbjvAD1rmSRnssz1Lxoz+Wd1dziXN6V1275Rvz99qL7pMYX6X5q+fV+2YapL1B/YpzTt9/AwKct6H5y2AZ8t/+iv7ZfvgL4GHAj8I/A8f3ytwDfAq4beO0LPBHYBFxP99DzD6dO/kVQ88l9TZ/vl798YF0Tff/bgPfTf0Nf6Jr7tuOAq4dqWPDj3Ld9lGm+AQC/3q/rFgY+fTTqcd6d9bKIz+UZal605/Is58Vx7OK5PN+Xf6ZFktSMz1QkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiLWJJ9k9y8ULXIY3KjxRLkprxSkVaJJI8t/+/NPZK8sR0/9/LM4b/Hw1pMfMPSkqLRFVdk2Qj8A7g8XS/+X/fwlYlzY23v6RFJMkKur8p9W3g39P9kcG/rKpnLGhh0oi8UpEWl6cAT6L7g397LXAt0pz5TEVaXM4FfgP4Y7r/c0RaUrxSkRaJJKcBD1XVx5MsA/4eOH6By5LmxGcqkqRmvP0lSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqZn/D3VkJEo9pYbsAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sigma tau\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAa6klEQVR4nO3df5QlZX3n8feHGQF/QAbXwfB7IAKbIWCCLZBjFIKijNEMG9YENIEYszgqbjabZIOJMWpi1GwMCUeCKy4Ca5SwRpJxBYmyMewxEJgJv4PIMP5gZAIjIAEhIvDdP+rpcL3T0327p+50j7xf59xzq+p5nqpv3a7uT1fV7dupKiRJ6sMO812AJOn7h6EiSeqNoSJJ6o2hIknqjaEiSeqNoSJJ6o2hIm1nkhyTZMN81zEoyS1Jjpmm/beSfGTbVaT5Yqhom0ry1SSPJHkoyd1JPprkWfNd13SSLEtSSRb3tL6dk3wrybFTtJ2Z5JN9bGcu2n5+u319vpHkj5MsmmlcVR1SVV+Ypv0PquqXey1WC5Khovnw6qp6FnA48ELg7bMZnM52c+wOh1FV/SvwF8ApQ/0WAScDF2y76qb0/Pb1eSnwWuA/bc3K+gpjbR+2m29Mff+pqm8AlwE/kmS3JP8nyaYk97fpvSf7JvlCkvck+SLwMHBAktcnuTXJg0nWJ3njQP9jkmxI8t+S3JNkY5ITkrwyyZeT3Jfktwb675DkjCR3JLk3ycVJnt2ar2zP32q/wf94G/NLbfv3J7k8yX4D66skb0lyO3D7FLt/AXBikmcMLHsF3ffkZdPt27C2recNzJ+f5PcH5l+V5Pp2dvT3SQ7b8lflSVX1JeD/0X19fijJ/22vzTeT/HmSJQPb+GqSl7Xpdyb5ZJKPJfkX4Bfbso+19skzv1OTfL2t77cH1vX0JBe01/XW9jXcMND+m+0s6sEktyV56Sj7o23DUNG8SbIP8ErgOrpj8aPAfsC+wCPAB4eG/AJwGrAL8DXgHuBVwK7A64Ezkxw+0P8HgZ2BvYB3AOcCPw+8AHgx8I4kB7S+/xk4ATga2BO4Hzi7tb2kPS+pqmdV1VVJTgB+C/gZYCndD99PDNV7AnAksHx436vq74GNbfzg/n28qh4bYd9G0sacB7wR+HfA/wBWJ9lphLHL6V6n64AA76V7bX4Y2Ad45zTDVwKfBJYAf76FPj8BHEx3RvSOJD/clv8usAw4ADiO7ms2WdPBwOnAC6tqF7og/upM+6JtqKp8+NhmD7ofAA8B36ILhj8Dnj5Fvx8F7h+Y/wLw7hnW/VfAr7TpY+iCaVGb3wUo4MiB/muBE9r0rcBLB9r2AL4LLKb7AVfA4oH2y4A3DMzvQHcGtV+bL+DYGep9O/A3bXrXNv7HRty3DQNtBTxvYP584Pfb9DnA7w2t6zbg6C1sp4B/oQvVO4DfB3aYot8JwHVDX9eXtel3AlcO9X8n8LE2Pfl67j3Qfg1wUpteD7xioO2XJ/cXeB5d4L4MeNp8H88+Nn94rVPz4YSq+vzggnYZ6EzgeGC3tniXJIuq6vE2f+fQmBV0v9UeRPdD/RnATQNd7h0Y+0h7vnug/RFg8k0C+wGXJHlioP1x4Llb2If9gD9N8oHBkujOir42Vb1TuBD43SR70f3Gva6qrhtx30a1H3BqkrcOLNuR7oxjSw6vqnWDC5LsDpxFd+ayS6vp/mnWMdO+A/zzwPTDPPm12HNo/L9NV9W6JP+FLqQOSXI58F+r6q4RtqdtwMtfWih+je5SyJFVtStPXnLKQJ9/+0jtdvnmL4E/Ap5bVUuAS4f6z8adwIqqWjLw2Lm6+z5TfZT3ncAbh/o/vbrLWpvVO5Wq+jrdZbPX0V36unCO+/YwXehM+sGhOt8zVOczqmr4Ut1M3tv257D29fn5aeqBGfZ9BhuBvQfm9/meFVd9vKp+gi4wC3j/VmxLPTNUtFDsQnfm8K12g/x3Z+i/I7ATsAl4rP1m//Kt2P6HgPdM3mxPsjTJyta2CXiC7hr/YP+3JTmk9f+BJK+Zw3YvoLtH8CKevPcw2327HnhtkkVJjqe7LzTpXGBVkiPTeWaSn0qyyyzr3IV22bKdWf3GLMfPxsV0r+1ubVunTzYkOTjJsS14/5XumHl8C+vRPDBUtFD8CfB04JvA1cBnp+tcVQ/S3Vy/mO4yzGuB1Vux/T9t4/8myYOthiPbth4G3gN8sb2D6qiquoTuN+SL2jucbgZWzGG7n6S73HdFVW2c4779CvBquvtUr6O7/0Jb1xq6twR/sK1rHfCLc6jzXXRvAX8A+AzwqTmsY1TvBjYAXwE+T/cafae17QS8j+44+Wdgd7o3TGiBSJX/pEvSwpXkTXQ38Y+esbPmnWcqkhaUJHskeVH726GD6e63XTLfdWk0vvtL0kKzI93f0+xPd0nvIrq3nms74OUvSVJvvPwlSerNU/ry13Oe85xatmzZfJchSduVtWvXfrOqlk7V9pQOlWXLlrFmzZr5LkOStitJvralNi9/SZJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6M9ZQSXJ8ktuSrEtyxhTtSXJWa78xyeEDbecluSfJzUNjnp3kc0lub8+7DbXvm+ShJL8+vj2TJE1lbKGSZBFwNrACWA6cnGT5ULcVwIHtcRpwzkDb+cDxU6z6DOCKqjoQuKLNDzoTuGxr65ckzd44z1SOANZV1fqqehS4CFg51GclcGF1rgaWJNkDoKquBO6bYr0rgQva9AXACZMNSU4A1gO39LgfkqQRjTNU9gLuHJjf0JbNts+w51bVRoD2vDtAkmcCvwm8a7rBSU5LsibJmk2bNs24E5Kk0Y0zVDLFsppDn1G9Czizqh6arlNVfbiqJqpqYunSpXPclCRpKovHuO4NwD4D83sDd82hz7C7k+xRVRvbpbJ72vIjgf+Y5A+BJcATSf61qj441x2QJM3OOM9UrgUOTLJ/kh2Bk4DVQ31WA6e0d4EdBTwweWlrGquBU9v0qcBfA1TVi6tqWVUtA/4E+AMDRZK2rbGFSlU9BpwOXA7cClxcVbckWZVkVet2Kd2N9XXAucCbJ8cn+QRwFXBwkg1J3tCa3gccl+R24Lg2L0laAFI111sY27+JiYlas2bNfJchSduVJGuramKqNv+iXpLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1JuxhkqS45PclmRdkjOmaE+Ss1r7jUkOH2g7L8k9SW4eGvPsJJ9Lcnt73q0tPy7J2iQ3tedjx7lvkqTNjS1UkiwCzgZWAMuBk5MsH+q2AjiwPU4DzhloOx84fopVnwFcUVUHAle0eYBvAq+uqkOBU4H/1c+eSJJGNc4zlSOAdVW1vqoeBS4CVg71WQlcWJ2rgSVJ9gCoqiuB+6ZY70rggjZ9AXBC639dVd3Vlt8C7Jxkpz53SJI0vXGGyl7AnQPzG9qy2fYZ9tyq2gjQnnefos+JwHVV9Z1ZVSxJ2iqLx7juTLGs5tBndhtNDgHeD7x8C+2n0V1qY999992aTUmShozzTGUDsM/A/N7AXXPoM+zuyUtk7fmeyYYkewOXAKdU1R1TDa6qD1fVRFVNLF26dKQdkSSNZpyhci1wYJL9k+wInASsHuqzGjilvQvsKOCByUtb01hNdyOe9vzXAEmWAJ8B3lZVX+xpHyRJszC2UKmqx4DTgcuBW4GLq+qWJKuSrGrdLgXWA+uAc4E3T45P8gngKuDgJBuSvKE1vQ84LsntwHFtnrat5wG/k+T69pjqfoskaUxStVW3MLZrExMTtWbNmvkuQ5K2K0nWVtXEVG3+Rb0kqTeGiiSpN4aKJKk3hookqTeGiiSpN4aKJKk3hookqTeGiiSpN4aKJKk3hookqTeGiiSpN4aKJKk3hookqTeGiiSpN4aKJKk3hookqTeGiiSpN4aKJKk3hookqTeGiiSpN4aKJKk3hookqTeGiiSpN4aKJKk3hookqTeGiiSpN4aKJKk3hookqTeGiiSpN4tn6pDkHVMtr6p391+OJGl7NmOoAN8emN4ZeBVw63jKkSRtz2a8/FVVHxh4vAc4BthrlJUnOT7JbUnWJTljivYkOau135jk8IG285Lck+TmoTHPTvK5JLe3590G2t7W1nVbkleMUqMkqT9zuafyDOCAmTolWQScDawAlgMnJ1k+1G0FcGB7nAacM9B2PnD8FKs+A7iiqg4ErmjztHWfBBzSxv1Zq0Harjx471387af+mC9dc+l8lyLN2ij3VG4Cqs0uApYCo9xPOQJYV1Xr23ouAlYC/zTQZyVwYVUVcHWSJUn2qKqNVXVlkmVTrHcl3dkSwAXAF4DfbMsvqqrvAF9Jsq7VcNUItUoLxkfOfRNrNt3ATnkav7dkd/Y6aGK+S5JGNso9lVcNTD8G3F1Vj40wbi/gzoH5DcCRI/TZC9g4zXqfW1UbAapqY5LdB9Z19RTr+h5JTqM7K2LfffedeS+kbezbjz7Ejnkaj/ME33nkofkuR5qVUe6pfK2qvgY8QnemsmeSUX4aZ6rVzaHPqEZaV1V9uKomqmpi6dKlc9yUND6//PNncvR+L+H1L3or+x/6kvkuR5qVUS5//TTwAWBP4B5gP7p3fx0yw9ANwD4D83sDd82hz7C7Jy+RJdmj1TTXdUkLzg8ecBi/+Nb/Od9lSHMyyo363wOOAr5cVfsDLwW+OMK4a4EDk+yfZEe6m+irh/qsBk5p7wI7Cnhg8tLWNFYDp7bpU4G/Hlh+UpKdkuxPd/P/mhHqlCT1ZJRQ+W5V3QvskGSHqvpb4EdnGtTuu5wOXE53ZnNxVd2SZFWSVa3bpcB6YB1wLvDmyfFJPkF3k/3gJBuSvKE1vQ84LsntwHFtnqq6BbiY7o0AnwXeUlWPj7B/kqSepHvj1TQdks8DJwDvBZ5Dd7lpoqpeNPbqxmxiYqLWrFkz32VI0nYlydqqmvJtiaO8++sG4GHgV4HXAT8APKu/8iRJ3y9GCZWfrKongCfo/i6EJDeOtSpJ0nZpi6GS5E109zh+aChEdmG0G/WSpKeY6c5UPg5cRncvZfBzux6sqvvGWpUkabu0xVCpqgeAB4CTt105kqTtmf+kS5LUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUm7GGSpLjk9yWZF2SM6ZoT5KzWvuNSQ6faWyS5ye5KslNST6dZNe2/GlJLmjLb03ytnHumyRpc2MLlSSLgLOBFcBy4OQky4e6rQAObI/TgHNGGPsR4IyqOhS4BPiNtvw1wE5t+QuANyZZNp69kyRNZZxnKkcA66pqfVU9ClwErBzqsxK4sDpXA0uS7DHD2IOBK9v054AT23QBz0yyGHg68CjwL2PaN0nSFMYZKnsBdw7Mb2jLRukz3dibgZ9u068B9mnTnwS+DWwEvg78UVXdt3W7IEmajXGGSqZYViP2mW7sLwFvSbIW2IXujAS6s5vHgT2B/YFfS3LAZkUlpyVZk2TNpk2bZt4LSdLIxhkqG3jyLAJgb+CuEftscWxVfamqXl5VLwA+AdzR+rwW+GxVfbeq7gG+CEwMF1VVH66qiaqaWLp06Zx3TpK0uXGGyrXAgUn2T7IjcBKweqjPauCU9i6wo4AHqmrjdGOT7N6edwDeDnyorevrwLFtXc8EjgK+NMb9kyQNGVuoVNVjwOnA5cCtwMVVdUuSVUlWtW6XAuuBdcC5wJunG9vGnJzky3SBcRfw0bb8bOBZdPdcrgU+WlU3jmv/JEmbS9XwbY6njomJiVqzZs18lyFJ25Uka6tqs9sL4F/US5J6ZKhIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEiSemOoSJJ6M9ZQSXJ8ktuSrEtyxhTtSXJWa78xyeEzjU3y/CRXJbkpyaeT7DrQdlhru6W17zzO/ZMkfa+xhUqSRcDZwApgOXBykuVD3VYAB7bHacA5I4z9CHBGVR0KXAL8RhuzGPgYsKqqDgGOAb47rv2TJG1unGcqRwDrqmp9VT0KXASsHOqzEriwOlcDS5LsMcPYg4Er2/TngBPb9MuBG6vqBoCqureqHh/XzkmSNjfOUNkLuHNgfkNbNkqf6cbeDPx0m34NsE+bPgioJJcn+cck/22qopKclmRNkjWbNm2a5S5JkqYzzlDJFMtqxD7Tjf0l4C1J1gK7AI+25YuBnwBe157/Q5KXbraSqg9X1URVTSxdunTmvZAkjWzxGNe9gSfPIgD2Bu4asc+OWxpbVV+iu9RFkoOAnxpY199V1Tdb26XA4cAVPeyLJGkE4zxTuRY4MMn+SXYETgJWD/VZDZzS3gV2FPBAVW2cbmyS3dvzDsDbgQ+1dV0OHJbkGe2m/dHAP41x/yRJQ8Z2plJVjyU5ne6H/SLgvKq6Jcmq1v4h4FLglcA64GHg9dONbas+Oclb2vSngI+2Mfcn+WO6QCrg0qr6zLj2T5K0uVQN3+Z46piYmKg1a9bMdxmStF1JsraqJqZq8y/qJUm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb0xVCRJvUlVzXcN8ybJJuBr81zGc4BvznMNs2XN28b2VvP2Vi9Y81ztV1VLp2p4SofKQpBkTVVNzHcds2HN28b2VvP2Vi9Y8zh4+UuS1BtDRZLUG0Nl/n14vguYA2veNra3mre3esGae+c9FUlSbzxTkST1xlCRJPXGUJmDJMcnuS3JuiRnTNGeJGe19huTHD7Qdl6Se5LcPMW4t7b13pLkD9uy45KsTXJTez52oP8XWv/r22P3BVLzsiSPDNT1oYH+L2j7sq5tLwuk5tcN1Ht9kieS/OhCeJ2T/MXAtr+a5PqBtre1dd2W5BWzfZ23Zb0L+ViepuYFeyxPU3Mvx/KcVZWPWTyARcAdwAHAjsANwPKhPq8ELgMCHAX8w0DbS4DDgZuHxvwk8Hlgpza/e3v+MWDPNv0jwDcGxnwBmFiANS8b7jsw5hrgx9t2LgNWLISah/ocCqxfKK/z0PgPAO9o08vbNnYC9m/bXjTq6zwP9S7YY3mamhfssbylmvs4lrfm4ZnK7B0BrKuq9VX1KHARsHKoz0rgwupcDSxJsgdAVV0J3DfFet8EvK+qvtP63dOer6uqu1qfW4Cdk+y0kGvekra+XavqquqO8AuBExZgzScDn5huX7ZxzUD32yzwswO1rQQuqqrvVNVXgHXAEbN4nbdpvQv8WJ6y5mn6LYRjeZSa53osz5mhMnt7AXcOzG9oy2bbZ9hBwIuT/EOSv0vywin6nAhcN/kDsfloO439nWlOv+ej5v2TXNeWv3hgGxtG3MZ8vs4/x+bfiPP5Ok96MXB3Vd0+w7pGfZ23db2DFtqxPF3NC/VYnq7mSXM9ludscd8rfAqY6osw/L7sUfoMWwzsRnfq+0Lg4iQHtN+CSHII8H7g5QNjXldV30iyC/CXwC/Q/cY0rzUDG4F9q+reJC8A/qrVP5ttzNfrfCTwcFUNXr+e79d50vBvnVta16jb2Nb1ditcmMfypOGaF/KxPGlLr/PWHMtz5pnK7G0A9hmY3xu4aw59plrvp9rp7zXAE3QfHEeSvYFLgFOq6o7JAVX1jfb8IPBxutPsea+5XY65t9W2lu568kGt/94jbmObv87NSQx9gy6A15kki4GfAf5ihHWN+jpv63oX8rE8Zc0L/Fje4uvcbM2xPHc1xhs2348Put9019PdGJ286XbIUJ+f4ntvul0z1L6MzW8grwLe3aYPojsVDrCkbePEKep4Tpt+GvBJYNUCqXkpT94wPgD4BvDsNn9tW//kzc1XLoSa2/wOdN/cByyk17ktPx74u6Flh/C9N+rXD7zuM77O81DvEhbosTxNzQv2WN5SzX0cy1vz2CY/iL/fHnTv1Pgy3W8tv92WrZr8ArUD4+zWfhMD77ag+81hI/Dd9kV/Q1u+I/Ax4GbgH4Fj2/K3A98Grh947A48E1gL3Eh30/NPJw/+BVDzia2mG9ryVw+sa6L1vwP4IO0H+nzX3NqOAa4eqmHeX+fWdj5T/AAAfrut6zYG3n006uu8LetlAR/L09S8YI/lGY6LY9jKY3muDz+mRZLUG++pSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknpjqEjbWJKPJFk+33VI4+BbiiVJvfFMRRqjJM9M8pkkNyS5OcnPtf9pMdHa35Dky23ZuUk+2Jafn+ScJH+bZH2So9v/1bg1yfkD6z8nyZp0/xvmXfO0m9K/MVSk8ToeuKuqnl9VPwJ8drIhyZ7A79B9LMdxwL8fGrsbcCzwq8CngTPpPprl0Ml/ukT319kTwGHA0UkOG+O+SDMyVKTxugl4WZL3J3lxVT0w0HYE3ec23VdV3wX+99DYT1d3ffomuo82v6mqnqD7iI1lrc/PJvlH4Dq6wPFejeaVH30vjVFVfbl9ZPorgfcm+ZuB5pn+l8Xk/xp5YmB6cn5xkv2BXwdeWFX3t8tiO/dTuTQ3nqlIY9QucT1cVR8D/oju38JOuobuktVu7SPMT5zl6nel+4DGB5I8F1jRR83S1vBMRRqvQ4H/nuQJuk+ZfRNduFDdP0v6A+Af6P53xj8BD2xpRcOq6oYk19FdDlsPfLHn2qVZ8y3F0jxK8qyqeqidqVwCnFdVl8x3XdJceflLml/vTHI93f/l+ArwV/NajbSVPFORJPXGMxVJUm8MFUlSbwwVSVJvDBVJUm8MFUlSb/4/D8uD1EtGiJoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_choices = list(param_choices_true_false[0].keys())\n", + "parameter_list = ([elt for elt in param_choices if elt != 'assignment'])\n", + "for i in range(len(parameter_list)):\n", + " for j in range(i+1, len(parameter_list)):\n", + " param1 = parameter_list[i]\n", + " param2 = parameter_list[j]\n", + " print(param1, param2)\n", + " xsample = [result[param1] for result in param_choices_true_false]\n", + " ysample = [result[param2] for result in param_choices_true_false]\n", + " colors = ['green' if result['assignment'] == '1' else 'red' for result in param_choices_true_false]\n", + " plt.title(\"Parameter Value Pairings\")\n", + " plt.xlabel(param1)\n", + " plt.ylabel(param2)\n", + "\n", + " area = 5 # 0 to 15 point radii\n", + "\n", + " plt.scatter(xsample, ysample, s=area, c=colors, alpha=0.5)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/notebooks/sidarthe-query-positional-2d.ipynb b/scratch/notebooks/sidarthe-query-positional-2d.ipynb new file mode 100644 index 00000000..19ac9ecb --- /dev/null +++ b/scratch/notebooks/sidarthe-query-positional-2d.ipynb @@ -0,0 +1,208 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import scipy\n", + "from scipy.integrate import odeint\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import sir_model\n", + "import json\n", + "from random import randint" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# initialize recording of parameter choices and true/false\n", + "\n", + "\n", + "# USER: set bounds\n", + "beta_search_bounds = [0.08,0.1]\n", + "gamma_search_bounds = [0.02,0.03]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# USER: list how many points for each parameter you'd like to synthesize\n", + "\n", + "beta_values_to_synthesize = 10\n", + "gamma_values_to_synthesize = 10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "search_points_beta = np.linspace(beta_search_bounds[0], beta_search_bounds[1], beta_values_to_synthesize)\n", + "search_points_gamma = np.linspace(gamma_search_bounds[0], gamma_search_bounds[1], gamma_values_to_synthesize)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "alpha_val = 0.57\n", + "# beta_val = 0.011\n", + "delta_val = 0.011\n", + "# gamma_val = 0.456\n", + "\n", + "epsilon_val = 0.05 #0.171\n", + "theta_val = 0.371\n", + "\n", + "zeta_val = 0.125\n", + "eta_val = 0.125\n", + "\n", + "mu_val = 0.017\n", + "nu_val = 0.027\n", + "lamb_val = 0.034\n", + "rho_val = 0.034\n", + "\n", + "kappa_val = 0.017\n", + "xi_val = 0.017\n", + "sigma_val = 0.017\n", + "\n", + "tau_val = 0.01" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# set parameters\n", + "def ps(param_synth_method):\n", + " param_choices_true_false = []\n", + " for i in range(len(search_points_beta)):\n", + " beta_val = search_points_beta[i]\n", + " for j in range(len(search_points_gamma)):\n", + " gamma_val = search_points_gamma[j]\n", + "\n", + " # parameters\n", + " # set parameter values\n", + " def alpha(t): return np.piecewise(t, [t>=0], [alpha_val])\n", + " def beta(t): return np.piecewise(t, [t>=0], [beta_val])\n", + " def delta(t): return np.piecewise(t, [t>=0], [delta_val])\n", + " def gamma(t): return np.piecewise(t, [t>=0], [gamma_val])\n", + "\n", + " def epsilon(t): return np.piecewise(t, [t>=0], [epsilon_val])\n", + " def theta(t): return np.piecewise(t, [t>=0], [theta_val])\n", + "\n", + " def zeta(t): return np.piecewise(t, [t>=0], [zeta_val])\n", + " def eta(t): return np.piecewise(t, [t>=0], [eta_val])\n", + "\n", + " def mu(t): return np.piecewise(t, [t>=0], [mu_val])\n", + " def nu(t): return np.piecewise(t, [t>=0], [nu_val])\n", + " def lamb(t): return np.piecewise(t, [t>=0], [lamb_val])\n", + " def rho(t): return np.piecewise(t, [t>=0], [rho_val])\n", + "\n", + " def kappa(t): return np.piecewise(t, [t>=0], [kappa_val])\n", + " def xi(t): return np.piecewise(t, [t>=0], [xi_val])\n", + " def sigma(t): return np.piecewise(t, [t>=0], [sigma_val])\n", + "\n", + " def tau(t): return np.piecewise(t, [t>=0], [tau_val])\n", + "\n", + "\n", + " # USER: set initial conditions\n", + " I0, D0, A0, R0, T0, H0, E0 = 0.01, 0, 0, 0, 0, 0, 0\n", + " S0 = 1-I0-D0-A0-R0-T0-H0-E0\n", + " y0 = S0, I0, D0, A0, R0, T0, H0, E0 # Initial conditions vector\n", + " # USER: set simulation parameters\n", + " dt = 1\n", + " tstart = 0\n", + " tend = 100\n", + " tvect = np.arange(tstart, tend, dt)\n", + " # simulate/solve ODEs\n", + " sim = odeint(sir_model.SIDARTHE_model, y0, tvect, args=(alpha, beta, gamma, delta, epsilon, mu, zeta, lamb, eta, rho, theta, kappa, nu, xi, sigma, tau))\n", + " S, I, D, A, R, T, H, E = sim.T\n", + "\n", + " # plot results - uncomment next line to plot time series. not recommended for large numbers of points\n", + " # sir_model.plotSIR(tvect, S, I, R)\n", + " # USER: write query condition.\n", + " query_condition = 0.15 <= max(I) <= 0.3 #((0.15 <= I[10]) and I[10] <= 1.0)\n", + " query = '1' if query_condition else '0'\n", + " param_assignments = {'beta': beta_val, 'gamma': gamma_val, 'assignment': query} # for \"all\", go through every option. for \"any\", only need one good parameter choice.\n", + " param_choices_true_false.append(param_assignments)\n", + " if param_synth_method == \"any\" and query == '1':\n", + " return param_choices_true_false\n", + " return param_choices_true_false\n", + " \n", + "param_choices_true_false = ps(\"all\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(param_choices_true_false)\n", + "\n", + "id_number = randint(10**5, 10**6 - 1)\n", + "\n", + "with open(f'sidarthe_query_auto_2_param_{id_number}.json', 'w', encoding='utf-8') as f:\n", + " json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot \"true/false\" points. Is there any way of characterizing these regions?\n", + "\n", + "sir_model.plot_two_params(\"gamma\", \"beta\", param_choices_true_false)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "funman_venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/notebooks/sidarthe-query-positional-all-dimensions.ipynb b/scratch/notebooks/sidarthe-query-positional-all-dimensions.ipynb new file mode 100644 index 00000000..2487c696 --- /dev/null +++ b/scratch/notebooks/sidarthe-query-positional-all-dimensions.ipynb @@ -0,0 +1,445 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import scipy\n", + "from scipy.integrate import odeint\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import sir_model\n", + "import json\n", + "from random import randint" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# initialize recording of parameter choices and true/false\n", + "\n", + "\n", + "# USER: set bounds\n", + "search_bounds = [0,1]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# USER: list how many points for each parameter you'd like to synthesize\n", + "\n", + "values_to_synthesize = 5\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "search_points = np.linspace(search_bounds[0], search_bounds[1], values_to_synthesize)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "alpha_val = 0.57\n", + "# beta_val = 0.011\n", + "delta_val = 0.011\n", + "# gamma_val = 0.456\n", + "\n", + "epsilon_val = 0.05 #0.171\n", + "theta_val = 0.371\n", + "\n", + "zeta_val = 0.125\n", + "eta_val = 0.125\n", + "\n", + "mu_val = 0.017\n", + "nu_val = 0.027\n", + "lamb_val = 0.034\n", + "rho_val = 0.034\n", + "\n", + "kappa_val = 0.017\n", + "xi_val = 0.017\n", + "sigma_val = 0.017\n", + "\n", + "tau_val = 0.01" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.0 0.0 0.0\n", + "0.0 0.0 0.25\n", + "0.0 0.0 0.5\n", + "0.0 0.0 0.75\n", + "0.0 0.0 1.0\n", + "0.0 0.25 0.0\n", + "0.0 0.25 0.25\n", + "0.0 0.25 0.5\n", + "0.0 0.25 0.75\n", + "0.0 0.25 1.0\n", + "0.0 0.5 0.0\n", + "0.0 0.5 0.25\n", + "0.0 0.5 0.5\n", + "0.0 0.5 0.75\n", + "0.0 0.5 1.0\n", + "0.0 0.75 0.0\n", + "0.0 0.75 0.25\n", + "0.0 0.75 0.5\n", + "0.0 0.75 0.75\n", + "0.0 0.75 1.0\n", + "0.0 1.0 0.0\n", + "0.0 1.0 0.25\n", + "0.0 1.0 0.5\n", + "0.0 1.0 0.75\n", + "0.0 1.0 1.0\n", + "0.25 0.0 0.0\n", + "0.25 0.0 0.25\n", + "0.25 0.0 0.5\n", + "0.25 0.0 0.75\n", + "0.25 0.0 1.0\n", + "0.25 0.25 0.0\n", + "0.25 0.25 0.25\n", + "0.25 0.25 0.5\n", + "0.25 0.25 0.75\n", + "0.25 0.25 1.0\n", + "0.25 0.5 0.0\n", + "0.25 0.5 0.25\n", + "0.25 0.5 0.5\n", + "0.25 0.5 0.75\n", + "0.25 0.5 1.0\n", + "0.25 0.75 0.0\n", + "0.25 0.75 0.25\n", + "0.25 0.75 0.5\n", + "0.25 0.75 0.75\n", + "0.25 0.75 1.0\n", + "0.25 1.0 0.0\n", + "0.25 1.0 0.25\n", + "0.25 1.0 0.5\n", + "0.25 1.0 0.75\n", + "0.25 1.0 1.0\n", + "0.5 0.0 0.0\n", + "0.5 0.0 0.25\n", + "0.5 0.0 0.5\n", + "0.5 0.0 0.75\n", + "0.5 0.0 1.0\n", + "0.5 0.25 0.0\n", + "0.5 0.25 0.25\n", + "0.5 0.25 0.5\n", + "0.5 0.25 0.75\n", + "0.5 0.25 1.0\n", + "0.5 0.5 0.0\n", + "0.5 0.5 0.25\n", + "0.5 0.5 0.5\n", + "0.5 0.5 0.75\n", + "0.5 0.5 1.0\n", + "0.5 0.75 0.0\n", + "0.5 0.75 0.25\n", + "0.5 0.75 0.5\n", + "0.5 0.75 0.75\n", + "0.5 0.75 1.0\n", + "0.5 1.0 0.0\n", + "0.5 1.0 0.25\n", + "0.5 1.0 0.5\n", + "0.5 1.0 0.75\n", + "0.5 1.0 1.0\n", + "0.75 0.0 0.0\n", + "0.75 0.0 0.25\n", + "0.75 0.0 0.5\n", + "0.75 0.0 0.75\n", + "0.75 0.0 1.0\n", + "0.75 0.25 0.0\n", + "0.75 0.25 0.25\n", + "0.75 0.25 0.5\n", + "0.75 0.25 0.75\n", + "0.75 0.25 1.0\n", + "0.75 0.5 0.0\n", + "0.75 0.5 0.25\n", + "0.75 0.5 0.5\n", + "0.75 0.5 0.75\n", + "0.75 0.5 1.0\n", + "0.75 0.75 0.0\n", + "0.75 0.75 0.25\n", + "0.75 0.75 0.5\n", + "0.75 0.75 0.75\n", + "0.75 0.75 1.0\n", + "0.75 1.0 0.0\n", + "0.75 1.0 0.25\n", + "0.75 1.0 0.5\n", + "0.75 1.0 0.75\n", + "0.75 1.0 1.0\n", + "1.0 0.0 0.0\n", + "1.0 0.0 0.25\n", + "1.0 0.0 0.5\n", + "1.0 0.0 0.75\n", + "1.0 0.0 1.0\n", + "1.0 0.25 0.0\n", + "1.0 0.25 0.25\n", + "1.0 0.25 0.5\n", + "1.0 0.25 0.75\n", + "1.0 0.25 1.0\n", + "1.0 0.5 0.0\n", + "1.0 0.5 0.25\n", + "1.0 0.5 0.5\n", + "1.0 0.5 0.75\n", + "1.0 0.5 1.0\n", + "1.0 0.75 0.0\n", + "1.0 0.75 0.25\n", + "1.0 0.75 0.5\n", + "1.0 0.75 0.75\n", + "1.0 0.75 1.0\n", + "1.0 1.0 0.0\n", + "1.0 1.0 0.25\n", + "1.0 1.0 0.5\n", + "1.0 1.0 0.75\n", + "1.0 1.0 1.0\n" + ] + } + ], + "source": [ + "from itertools import product\n", + "\n", + "for i,j, k in product(search_points, search_points, search_points):\n", + " print(i,j, k)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# set parameters\n", + "def ps(param_synth_method):\n", + " param_choices_true_false = []\n", + " for alpha_val, beta_val, gamma_val, delta_val, \n", + " # parameters\n", + " # set parameter values\n", + " def alpha(t): return np.piecewise(t, [t>=0], [alpha_val])\n", + " def beta(t): return np.piecewise(t, [t>=0], [beta_val])\n", + " def delta(t): return np.piecewise(t, [t>=0], [delta_val])\n", + " def gamma(t): return np.piecewise(t, [t>=0], [gamma_val])\n", + "\n", + " def epsilon(t): return np.piecewise(t, [t>=0], [epsilon_val])\n", + " def theta(t): return np.piecewise(t, [t>=0], [theta_val])\n", + "\n", + " def zeta(t): return np.piecewise(t, [t>=0], [zeta_val])\n", + " def eta(t): return np.piecewise(t, [t>=0], [eta_val])\n", + "\n", + " def mu(t): return np.piecewise(t, [t>=0], [mu_val])\n", + " def nu(t): return np.piecewise(t, [t>=0], [nu_val])\n", + " def lamb(t): return np.piecewise(t, [t>=0], [lamb_val])\n", + " def rho(t): return np.piecewise(t, [t>=0], [rho_val])\n", + "\n", + " def kappa(t): return np.piecewise(t, [t>=0], [kappa_val])\n", + " def xi(t): return np.piecewise(t, [t>=0], [xi_val])\n", + " def sigma(t): return np.piecewise(t, [t>=0], [sigma_val])\n", + "\n", + " def tau(t): return np.piecewise(t, [t>=0], [tau_val])\n", + "\n", + "\n", + " # USER: set initial conditions\n", + " I0, D0, A0, R0, T0, H0, E0 = 0.01, 0, 0, 0, 0, 0, 0\n", + " S0 = 1-I0-D0-A0-R0-T0-H0-E0\n", + " y0 = S0, I0, D0, A0, R0, T0, H0, E0 # Initial conditions vector\n", + " # USER: set simulation parameters\n", + " dt = 1\n", + " tstart = 0\n", + " tend = 100\n", + " tvect = np.arange(tstart, tend, dt)\n", + " # simulate/solve ODEs\n", + " sim = odeint(sir_model.SIDARTHE_model, y0, tvect, args=(alpha, beta, gamma, delta, epsilon, mu, zeta, lamb, eta, rho, theta, kappa, nu, xi, sigma, tau))\n", + " S, I, D, A, R, T, H, E = sim.T\n", + "\n", + " # plot results - uncomment next line to plot time series. not recommended for large numbers of points\n", + " # sir_model.plotSIR(tvect, S, I, R)\n", + " # USER: write query condition.\n", + " query_condition = 0.15 <= max(I) <= 0.3 #((0.15 <= I[10]) and I[10] <= 1.0)\n", + " query = '1' if query_condition else '0'\n", + " param_assignments = {'beta': beta_val, 'gamma': gamma_val, 'alpha': alpha_val, 'delta': delta_val, 'epsilon': epsilon_val, 'assignment': query} # for \"all\", go through every option. for \"any\", only need one good parameter choice.\n", + " param_choices_true_false.append(param_assignments)\n", + " if param_synth_method == \"any\" and query == '1':\n", + " return param_choices_true_false\n", + " return param_choices_true_false\n", + " \n", + "param_choices_true_false = ps(\"all\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'beta': 0.0, 'gamma': 0.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.0, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.0, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.0, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.0, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.0, 'alpha': 0.5555555555555556, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.1111111111111111, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.1111111111111111, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.1111111111111111, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.1111111111111111, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.1111111111111111, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.1111111111111111, 'alpha': 0.5555555555555556, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.1111111111111111, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.1111111111111111, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.1111111111111111, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.1111111111111111, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.2222222222222222, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.2222222222222222, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.2222222222222222, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.2222222222222222, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.2222222222222222, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.2222222222222222, 'alpha': 0.5555555555555556, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.2222222222222222, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.2222222222222222, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.2222222222222222, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.2222222222222222, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.3333333333333333, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.3333333333333333, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.3333333333333333, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.3333333333333333, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.3333333333333333, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.3333333333333333, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.3333333333333333, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.3333333333333333, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.3333333333333333, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.3333333333333333, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.4444444444444444, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.4444444444444444, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.4444444444444444, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.4444444444444444, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.4444444444444444, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.4444444444444444, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.4444444444444444, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.4444444444444444, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.4444444444444444, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.4444444444444444, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.5555555555555556, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.5555555555555556, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.5555555555555556, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.5555555555555556, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.5555555555555556, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.5555555555555556, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.5555555555555556, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.5555555555555556, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.5555555555555556, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.5555555555555556, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.6666666666666666, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.6666666666666666, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.6666666666666666, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.6666666666666666, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.6666666666666666, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.6666666666666666, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.6666666666666666, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.6666666666666666, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.6666666666666666, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.6666666666666666, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.7777777777777777, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.7777777777777777, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.7777777777777777, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.7777777777777777, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.7777777777777777, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.7777777777777777, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.7777777777777777, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.7777777777777777, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.7777777777777777, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.7777777777777777, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.8888888888888888, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.8888888888888888, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.8888888888888888, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.8888888888888888, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.0, 'gamma': 0.8888888888888888, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.8888888888888888, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.8888888888888888, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.8888888888888888, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.8888888888888888, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.0, 'gamma': 0.8888888888888888, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 1.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.0, 'gamma': 1.0, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.0, 'gamma': 1.0, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.0, 'gamma': 1.0, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.0, 'gamma': 1.0, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.0, 'gamma': 1.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.0, 'gamma': 1.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.0, 'gamma': 1.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.0, 'gamma': 1.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.0, 'gamma': 1.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.0, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.0, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.0, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.0, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.0, 'alpha': 0.5555555555555556, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.1111111111111111, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.1111111111111111, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.1111111111111111, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.1111111111111111, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.1111111111111111, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.1111111111111111, 'alpha': 0.5555555555555556, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.1111111111111111, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.1111111111111111, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.1111111111111111, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.1111111111111111, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.2222222222222222, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.2222222222222222, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.2222222222222222, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.2222222222222222, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.2222222222222222, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.2222222222222222, 'alpha': 0.5555555555555556, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.2222222222222222, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.2222222222222222, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.2222222222222222, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.2222222222222222, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.3333333333333333, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.3333333333333333, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.3333333333333333, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.3333333333333333, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.3333333333333333, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.3333333333333333, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.3333333333333333, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.3333333333333333, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.3333333333333333, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.3333333333333333, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.4444444444444444, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.4444444444444444, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.4444444444444444, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.4444444444444444, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.4444444444444444, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.4444444444444444, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.4444444444444444, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.4444444444444444, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.4444444444444444, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.4444444444444444, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.5555555555555556, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.5555555555555556, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.5555555555555556, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.5555555555555556, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.5555555555555556, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.5555555555555556, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.5555555555555556, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.5555555555555556, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.5555555555555556, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.5555555555555556, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.6666666666666666, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.6666666666666666, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.6666666666666666, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.6666666666666666, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.6666666666666666, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.6666666666666666, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.6666666666666666, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.6666666666666666, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.6666666666666666, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.6666666666666666, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.7777777777777777, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.7777777777777777, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.7777777777777777, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.7777777777777777, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.7777777777777777, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.7777777777777777, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.7777777777777777, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.7777777777777777, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.7777777777777777, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.7777777777777777, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.8888888888888888, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.8888888888888888, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.8888888888888888, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.8888888888888888, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 0.8888888888888888, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.8888888888888888, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.8888888888888888, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.8888888888888888, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.8888888888888888, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 0.8888888888888888, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 1.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 1.0, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 1.0, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 1.0, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.1111111111111111, 'gamma': 1.0, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 1.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 1.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 1.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 1.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.1111111111111111, 'gamma': 1.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.0, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.0, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.0, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.0, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.0, 'alpha': 0.5555555555555556, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.1111111111111111, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.1111111111111111, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.1111111111111111, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.1111111111111111, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.1111111111111111, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.1111111111111111, 'alpha': 0.5555555555555556, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.1111111111111111, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.1111111111111111, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.1111111111111111, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.1111111111111111, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.2222222222222222, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.2222222222222222, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.2222222222222222, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.2222222222222222, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.2222222222222222, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.2222222222222222, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.2222222222222222, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.2222222222222222, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.2222222222222222, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.2222222222222222, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.3333333333333333, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.3333333333333333, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.3333333333333333, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.3333333333333333, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.3333333333333333, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.3333333333333333, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.3333333333333333, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.3333333333333333, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.3333333333333333, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.3333333333333333, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.4444444444444444, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.4444444444444444, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.4444444444444444, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.4444444444444444, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.4444444444444444, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.4444444444444444, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.4444444444444444, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.4444444444444444, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.4444444444444444, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.4444444444444444, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.5555555555555556, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.5555555555555556, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.5555555555555556, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.5555555555555556, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.5555555555555556, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.5555555555555556, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.5555555555555556, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.5555555555555556, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.5555555555555556, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.5555555555555556, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.6666666666666666, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.6666666666666666, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.6666666666666666, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.6666666666666666, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.6666666666666666, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.6666666666666666, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.6666666666666666, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.6666666666666666, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.6666666666666666, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.6666666666666666, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.7777777777777777, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.7777777777777777, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.7777777777777777, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.7777777777777777, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.7777777777777777, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.7777777777777777, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.7777777777777777, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.7777777777777777, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.7777777777777777, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.7777777777777777, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.8888888888888888, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.8888888888888888, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.8888888888888888, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.8888888888888888, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 0.8888888888888888, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.8888888888888888, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.8888888888888888, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.8888888888888888, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.8888888888888888, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 0.8888888888888888, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 1.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 1.0, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 1.0, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 1.0, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.2222222222222222, 'gamma': 1.0, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 1.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 1.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 1.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 1.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.2222222222222222, 'gamma': 1.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.0, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.0, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.0, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.0, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.0, 'alpha': 0.5555555555555556, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.1111111111111111, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.1111111111111111, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.1111111111111111, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.1111111111111111, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.1111111111111111, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.1111111111111111, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.1111111111111111, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.1111111111111111, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.1111111111111111, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.1111111111111111, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.2222222222222222, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.2222222222222222, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.2222222222222222, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.2222222222222222, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.2222222222222222, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.2222222222222222, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.2222222222222222, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.2222222222222222, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.2222222222222222, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.2222222222222222, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.3333333333333333, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.3333333333333333, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.3333333333333333, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.3333333333333333, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.3333333333333333, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.3333333333333333, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.3333333333333333, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.3333333333333333, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.3333333333333333, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.3333333333333333, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.4444444444444444, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.4444444444444444, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.4444444444444444, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.4444444444444444, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.4444444444444444, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.4444444444444444, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.4444444444444444, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.4444444444444444, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.4444444444444444, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.4444444444444444, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.5555555555555556, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.5555555555555556, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.5555555555555556, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.5555555555555556, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.5555555555555556, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.5555555555555556, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.5555555555555556, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.5555555555555556, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.5555555555555556, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.5555555555555556, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.6666666666666666, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.6666666666666666, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.6666666666666666, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.6666666666666666, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.6666666666666666, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.6666666666666666, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.6666666666666666, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.6666666666666666, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.6666666666666666, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.6666666666666666, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.7777777777777777, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.7777777777777777, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.7777777777777777, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.7777777777777777, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.7777777777777777, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.7777777777777777, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.7777777777777777, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.7777777777777777, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.7777777777777777, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.7777777777777777, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.8888888888888888, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.8888888888888888, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.8888888888888888, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.8888888888888888, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 0.8888888888888888, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.8888888888888888, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.8888888888888888, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.8888888888888888, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.8888888888888888, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 0.8888888888888888, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 1.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 1.0, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 1.0, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 1.0, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.3333333333333333, 'gamma': 1.0, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 1.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 1.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 1.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 1.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.3333333333333333, 'gamma': 1.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.0, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.0, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.0, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.0, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.0, 'alpha': 0.5555555555555556, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.1111111111111111, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.1111111111111111, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.1111111111111111, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.1111111111111111, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.1111111111111111, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.1111111111111111, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.1111111111111111, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.1111111111111111, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.1111111111111111, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.1111111111111111, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.2222222222222222, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.2222222222222222, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.2222222222222222, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.2222222222222222, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.2222222222222222, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.2222222222222222, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.2222222222222222, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.2222222222222222, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.2222222222222222, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.2222222222222222, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.3333333333333333, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.3333333333333333, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.3333333333333333, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.3333333333333333, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.3333333333333333, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.3333333333333333, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.3333333333333333, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.3333333333333333, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.3333333333333333, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.3333333333333333, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.4444444444444444, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.4444444444444444, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.4444444444444444, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.4444444444444444, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.4444444444444444, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.4444444444444444, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.4444444444444444, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.4444444444444444, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.4444444444444444, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.4444444444444444, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.5555555555555556, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.5555555555555556, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.5555555555555556, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.5555555555555556, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.5555555555555556, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.5555555555555556, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.5555555555555556, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.5555555555555556, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.5555555555555556, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.5555555555555556, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.6666666666666666, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.6666666666666666, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.6666666666666666, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.6666666666666666, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.6666666666666666, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.6666666666666666, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.6666666666666666, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.6666666666666666, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.6666666666666666, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.6666666666666666, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.7777777777777777, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.7777777777777777, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.7777777777777777, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.7777777777777777, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.7777777777777777, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.7777777777777777, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.7777777777777777, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.7777777777777777, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.7777777777777777, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.7777777777777777, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.8888888888888888, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.8888888888888888, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.8888888888888888, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.8888888888888888, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 0.8888888888888888, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.8888888888888888, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.8888888888888888, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.8888888888888888, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.8888888888888888, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 0.8888888888888888, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 1.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 1.0, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 1.0, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 1.0, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.4444444444444444, 'gamma': 1.0, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 1.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 1.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 1.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 1.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.4444444444444444, 'gamma': 1.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.0, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.0, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.0, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.0, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.1111111111111111, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.1111111111111111, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.1111111111111111, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.1111111111111111, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.1111111111111111, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.1111111111111111, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.1111111111111111, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.1111111111111111, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.1111111111111111, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.1111111111111111, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.2222222222222222, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.2222222222222222, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.2222222222222222, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.2222222222222222, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.2222222222222222, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.2222222222222222, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.2222222222222222, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.2222222222222222, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.2222222222222222, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.2222222222222222, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.3333333333333333, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.3333333333333333, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.3333333333333333, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.3333333333333333, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.3333333333333333, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.3333333333333333, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.3333333333333333, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.3333333333333333, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.3333333333333333, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.3333333333333333, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.4444444444444444, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.4444444444444444, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.4444444444444444, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.4444444444444444, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.4444444444444444, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.4444444444444444, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.4444444444444444, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.4444444444444444, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.4444444444444444, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.4444444444444444, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.5555555555555556, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.5555555555555556, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.5555555555555556, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.5555555555555556, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.5555555555555556, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.5555555555555556, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.5555555555555556, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.5555555555555556, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.5555555555555556, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.5555555555555556, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.6666666666666666, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.6666666666666666, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.6666666666666666, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.6666666666666666, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.6666666666666666, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.6666666666666666, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.6666666666666666, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.6666666666666666, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.6666666666666666, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.6666666666666666, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.7777777777777777, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.7777777777777777, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.7777777777777777, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.7777777777777777, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.7777777777777777, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.7777777777777777, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.7777777777777777, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.7777777777777777, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.7777777777777777, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.7777777777777777, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.8888888888888888, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.8888888888888888, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.8888888888888888, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.8888888888888888, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 0.8888888888888888, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.8888888888888888, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.8888888888888888, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.8888888888888888, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.8888888888888888, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 0.8888888888888888, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 1.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 1.0, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 1.0, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 1.0, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.5555555555555556, 'gamma': 1.0, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 1.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 1.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 1.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 1.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.5555555555555556, 'gamma': 1.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.0, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.0, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.0, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.0, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.1111111111111111, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.1111111111111111, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.1111111111111111, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.1111111111111111, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.1111111111111111, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.1111111111111111, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.1111111111111111, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.1111111111111111, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.1111111111111111, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.1111111111111111, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.2222222222222222, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.2222222222222222, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.2222222222222222, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.2222222222222222, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.2222222222222222, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.2222222222222222, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.2222222222222222, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.2222222222222222, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.2222222222222222, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.2222222222222222, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.3333333333333333, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.3333333333333333, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.3333333333333333, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.3333333333333333, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.3333333333333333, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.3333333333333333, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.3333333333333333, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.3333333333333333, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.3333333333333333, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.3333333333333333, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.4444444444444444, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.4444444444444444, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.4444444444444444, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.4444444444444444, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.4444444444444444, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.4444444444444444, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.4444444444444444, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.4444444444444444, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.4444444444444444, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.4444444444444444, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.5555555555555556, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.5555555555555556, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.5555555555555556, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.5555555555555556, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.5555555555555556, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.5555555555555556, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.5555555555555556, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.5555555555555556, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.5555555555555556, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.5555555555555556, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.6666666666666666, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.6666666666666666, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.6666666666666666, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.6666666666666666, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.6666666666666666, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.6666666666666666, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.6666666666666666, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.6666666666666666, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.6666666666666666, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.6666666666666666, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.7777777777777777, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.7777777777777777, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.7777777777777777, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.7777777777777777, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.7777777777777777, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.7777777777777777, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.7777777777777777, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.7777777777777777, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.7777777777777777, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.7777777777777777, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.8888888888888888, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.8888888888888888, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.8888888888888888, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.8888888888888888, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 0.8888888888888888, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.8888888888888888, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.8888888888888888, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.8888888888888888, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.8888888888888888, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 0.8888888888888888, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 1.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 1.0, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 1.0, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.6666666666666666, 'gamma': 1.0, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 1.0, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 1.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 1.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 1.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 1.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.6666666666666666, 'gamma': 1.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.0, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.0, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.0, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.0, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.1111111111111111, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.1111111111111111, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.1111111111111111, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.1111111111111111, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.1111111111111111, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.1111111111111111, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.1111111111111111, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.1111111111111111, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.1111111111111111, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.1111111111111111, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.2222222222222222, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.2222222222222222, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.2222222222222222, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.2222222222222222, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.2222222222222222, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.2222222222222222, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.2222222222222222, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.2222222222222222, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.2222222222222222, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.2222222222222222, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.3333333333333333, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.3333333333333333, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.3333333333333333, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.3333333333333333, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.3333333333333333, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.3333333333333333, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.3333333333333333, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.3333333333333333, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.3333333333333333, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.3333333333333333, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.4444444444444444, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.4444444444444444, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.4444444444444444, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.4444444444444444, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.4444444444444444, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.4444444444444444, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.4444444444444444, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.4444444444444444, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.4444444444444444, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.4444444444444444, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.5555555555555556, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.5555555555555556, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.5555555555555556, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.5555555555555556, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.5555555555555556, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.5555555555555556, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.5555555555555556, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.5555555555555556, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.5555555555555556, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.5555555555555556, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.6666666666666666, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.6666666666666666, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.6666666666666666, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.6666666666666666, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.6666666666666666, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.6666666666666666, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.6666666666666666, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.6666666666666666, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.6666666666666666, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.6666666666666666, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.7777777777777777, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.7777777777777777, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.7777777777777777, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.7777777777777777, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.7777777777777777, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.7777777777777777, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.7777777777777777, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.7777777777777777, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.7777777777777777, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.7777777777777777, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.8888888888888888, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.8888888888888888, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.8888888888888888, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.8888888888888888, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 0.8888888888888888, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.8888888888888888, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.8888888888888888, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.8888888888888888, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.8888888888888888, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 0.8888888888888888, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 1.0, 'alpha': 0.0, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 1.0, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 1.0, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.7777777777777777, 'gamma': 1.0, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 1.0, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 1.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 1.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 1.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 1.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.7777777777777777, 'gamma': 1.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.0, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.0, 'alpha': 0.2222222222222222, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.0, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.0, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.1111111111111111, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.1111111111111111, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.1111111111111111, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.1111111111111111, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.1111111111111111, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.1111111111111111, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.1111111111111111, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.1111111111111111, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.1111111111111111, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.1111111111111111, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.2222222222222222, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.2222222222222222, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.2222222222222222, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.2222222222222222, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.2222222222222222, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.2222222222222222, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.2222222222222222, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.2222222222222222, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.2222222222222222, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.2222222222222222, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.3333333333333333, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.3333333333333333, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.3333333333333333, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.3333333333333333, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.3333333333333333, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.3333333333333333, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.3333333333333333, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.3333333333333333, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.3333333333333333, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.3333333333333333, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.4444444444444444, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.4444444444444444, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.4444444444444444, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.4444444444444444, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.4444444444444444, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.4444444444444444, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.4444444444444444, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.4444444444444444, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.4444444444444444, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.4444444444444444, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.5555555555555556, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.5555555555555556, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.5555555555555556, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.5555555555555556, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.5555555555555556, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.5555555555555556, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.5555555555555556, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.5555555555555556, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.5555555555555556, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.5555555555555556, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.6666666666666666, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.6666666666666666, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.6666666666666666, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.6666666666666666, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.6666666666666666, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.6666666666666666, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.6666666666666666, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.6666666666666666, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.6666666666666666, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.6666666666666666, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.7777777777777777, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.7777777777777777, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.7777777777777777, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.7777777777777777, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.7777777777777777, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.7777777777777777, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.7777777777777777, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.7777777777777777, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.7777777777777777, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.7777777777777777, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.8888888888888888, 'alpha': 0.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.8888888888888888, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.8888888888888888, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 0.8888888888888888, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.8888888888888888, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.8888888888888888, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.8888888888888888, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.8888888888888888, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.8888888888888888, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 0.8888888888888888, 'alpha': 1.0, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 1.0, 'alpha': 0.0, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 1.0, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 1.0, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 0.8888888888888888, 'gamma': 1.0, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 1.0, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 1.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 1.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 1.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 1.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 0.8888888888888888, 'gamma': 1.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.0, 'alpha': 0.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.0, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.0, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.0, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.0, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.0, 'alpha': 1.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.1111111111111111, 'alpha': 0.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.1111111111111111, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.1111111111111111, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.1111111111111111, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.1111111111111111, 'alpha': 0.4444444444444444, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.1111111111111111, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.1111111111111111, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.1111111111111111, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.1111111111111111, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.1111111111111111, 'alpha': 1.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.2222222222222222, 'alpha': 0.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.2222222222222222, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.2222222222222222, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.2222222222222222, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.2222222222222222, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.2222222222222222, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.2222222222222222, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.2222222222222222, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.2222222222222222, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.2222222222222222, 'alpha': 1.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.3333333333333333, 'alpha': 0.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.3333333333333333, 'alpha': 0.1111111111111111, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.3333333333333333, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.3333333333333333, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.3333333333333333, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.3333333333333333, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.3333333333333333, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.3333333333333333, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.3333333333333333, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.3333333333333333, 'alpha': 1.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.4444444444444444, 'alpha': 0.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.4444444444444444, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.4444444444444444, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.4444444444444444, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.4444444444444444, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.4444444444444444, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.4444444444444444, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.4444444444444444, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.4444444444444444, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.4444444444444444, 'alpha': 1.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.5555555555555556, 'alpha': 0.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.5555555555555556, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.5555555555555556, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.5555555555555556, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.5555555555555556, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.5555555555555556, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.5555555555555556, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.5555555555555556, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.5555555555555556, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.5555555555555556, 'alpha': 1.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.6666666666666666, 'alpha': 0.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.6666666666666666, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.6666666666666666, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.6666666666666666, 'alpha': 0.3333333333333333, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.6666666666666666, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.6666666666666666, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.6666666666666666, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.6666666666666666, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.6666666666666666, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.6666666666666666, 'alpha': 1.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.7777777777777777, 'alpha': 0.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.7777777777777777, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.7777777777777777, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.7777777777777777, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.7777777777777777, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.7777777777777777, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.7777777777777777, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.7777777777777777, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.7777777777777777, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.7777777777777777, 'alpha': 1.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.8888888888888888, 'alpha': 0.0, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.8888888888888888, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.8888888888888888, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 1.0, 'gamma': 0.8888888888888888, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.8888888888888888, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.8888888888888888, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.8888888888888888, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.8888888888888888, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.8888888888888888, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 1.0, 'gamma': 0.8888888888888888, 'alpha': 1.0, 'assignment': '0'}, {'beta': 1.0, 'gamma': 1.0, 'alpha': 0.0, 'assignment': '1'}, {'beta': 1.0, 'gamma': 1.0, 'alpha': 0.1111111111111111, 'assignment': '1'}, {'beta': 1.0, 'gamma': 1.0, 'alpha': 0.2222222222222222, 'assignment': '1'}, {'beta': 1.0, 'gamma': 1.0, 'alpha': 0.3333333333333333, 'assignment': '0'}, {'beta': 1.0, 'gamma': 1.0, 'alpha': 0.4444444444444444, 'assignment': '0'}, {'beta': 1.0, 'gamma': 1.0, 'alpha': 0.5555555555555556, 'assignment': '0'}, {'beta': 1.0, 'gamma': 1.0, 'alpha': 0.6666666666666666, 'assignment': '0'}, {'beta': 1.0, 'gamma': 1.0, 'alpha': 0.7777777777777777, 'assignment': '0'}, {'beta': 1.0, 'gamma': 1.0, 'alpha': 0.8888888888888888, 'assignment': '0'}, {'beta': 1.0, 'gamma': 1.0, 'alpha': 1.0, 'assignment': '0'}]\n" + ] + } + ], + "source": [ + "print(param_choices_true_false)\n", + "\n", + "id_number = randint(10**5, 10**6 - 1)\n", + "\n", + "with open(f'sidarthe_query_auto_all_param_{id_number}.json', 'w', encoding='utf-8') as f:\n", + " json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# # Plot \"true/false\" points. Is there any way of characterizing these regions?\n", + "\n", + "# sir_model.plot_two_params(\"gamma\", \"beta\", param_choices_true_false)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta gamma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAt/klEQVR4nO3deZxcdZn3/c9VvXf2kH0PEFYFJB1ABERBWRQBB+cGlW1GGFQc7xkdQccbeGAc9HmE8VZQBAfBDW5GgUEFcYAbUZaBDkIWsnW2XtJJutNN0ulOp7uqr+ePc1IpQ3dSHar6R+d8369XvfpUnV+d8z1Vp+rqs9T5mbsjIiLJlQodQEREwlIhEBFJOBUCEZGEUyEQEUk4FQIRkYRTIRARSTgVApEhYGanm1lj6By5zGypmZ2+l/FfM7MfDV0iCUWFQPbJzNaZ2Q4z225mm8zsx2Y2MnSuvTGzOWbmZlZaoOlVmtmbZvbBfsb9m5n9shDz2R/xcnbG70+Tmd1uZiX7ep67H+3uz+5l/L+6+2cKGlbekVQIJF/nuftI4HhgAfD1wTzZIsNmfduzgLh7N/B/gMv2aFcCXALcP3Tp+nVs/P6cAXwSuOrtTKxQBVSGh2HzwZR3BndvAp4A3mVm48zsN2bWYmbt8fCMXW3N7Fkz+4aZPQ90AQeb2ZVmtszMOsxsjZn9XU77082s0cy+YmabzazZzC4ws3PNbKWZtZnZ13Lap8zsejNbbWZbzOwhMxsfj34u/vtm/J/ye+Pn/E08/3Yze9LMZudMz83s82a2CljVz+LfD/yVmVXnPHYW0efoib0t257ieR2ac/8+M/uXnPsfNbPX4q2QF8zsmIHfld3cfTnwR6L35xAzeyZ+bVrN7OdmNjZnHuvM7Mx4+CYz+6WZ/czMtgFXxI/9LB6/awvrcjOrj6f3zznTqjKz++PXdVn8HjbmjL8u3lrpMLMVZnZGPssjQ0OFQAbFzGYC5wJ/Jlp/fgzMBmYBO4A79njKpcDVwChgPbAZ+CgwGrgS+DczOz6n/RSgEpgO3ADcA3wamA+cCtxgZgfHbf8euAB4PzANaAfujMedFv8d6+4j3f1FM7sA+BrwcWAi0RfmA3vkvQA4EThqz2V39xeA5vj5ucv3C3dP57FseYmfcy/wd8BBwA+Bx8ysIo/nHkX0Ov0ZMOBWotfmSGAmcNNenn4+8EtgLPDzAdqcAhxOtOVxg5kdGT9+IzAHOBj4ENF7tivT4cC1wAJ3H0VUPNfta1lkCLm7brrt9Ub0od0OvEn0Zf59oKqfdscB7Tn3nwVu3se0HwW+GA+fTlRMSuL7owAHTsxpvxC4IB5eBpyRM24q0AuUEn0pOVCaM/4J4G9z7qeItlRmx/cd+OA+8n4d+H08PDp+/nvyXLbGnHEOHJpz/z7gX+LhHwC37DGtFcD7B5iPA9uICuFq4F+AVD/tLgD+vMf7emY8fBPw3B7tbwJ+Fg/vej1n5Ix/Gbg4Hl4DnJUz7jO7lhc4lKhIngmUhV6fdXvrTfsBJV8XuPtTuQ/Eu0j+DTgbGBc/PMrMStw9E99v2OM55xD993gY0RdxNbA4p8mWnOfuiP9uyhm/A9h1oHo28IiZ9eWMzwCTB1iG2cD/NrPbciMRbX2s7y9vP34C3Ghm04n+s61z9z/nuWz5mg1cbmZfyHmsnOg/+4Ec7+51uQ+Y2STgu0RbCKPiTO17mca+lh1gY85wF7vfi2l7PD877O51ZvY/iQrL0Wb2JPCP7r4hj/nJENCuIXk7vkS0m+BEdx/N7t0xltMme3nbeNfGr4BvA5PdfSzw+B7tB6MBOMfdx+bcKj06jtHfZXUbgL/bo32VR7t83pK3P+5eT7RL6VNEu4V+sp/L1kVUKHaZskfOb+yRs9rd99yNtS+3xstzTPz+fHoveWAfy74PzcCMnPsz/2LC7r9w91OIipwD33ob85ICUyGQt2MU0X/ob8YHaW/cR/tyoAJoAdLxf9Affhvzvwv4xq4DvmY20czOj8e1AH1E+6xz23/VzI6O248xs0/sx3zvJ9rn/T5270sf7LK9BnzSzErM7Gyi4xy73ANcY2YnWmSEmX3EzEYNMuco4l168RbMPw3y+YPxENFrOy6e17W7RpjZ4Wb2wbhYdhOtM5kBpiMBqBDI2/EdoApoBV4Cfre3xu7eQXSA9yGiXRSfBB57G/P/3/Hzf29mHXGGE+N5dQHfAJ6Pz7w5yd0fIfpP9MH4zJglwDn7Md9fEu0Ke9rdm/dz2b4InEd03OVTRMcTiKdVS3T65x3xtOqAK/Yj5/9DdLrvVuC3wMP7MY183Qw0AmuBp4heo53xuArgm0TryUZgEtFBe3mHMHd1TCMihWVmnyU6kPz+fTaW4LRFICJvm5lNNbP3xb/tOJzo+NEjoXNJfnTWkIgUQjnR7x3mEu3uepDoNGMZBrRrSEQk4bRrSEQk4YbdrqEJEyb4nDlzQscQERlWFi5c2OruE/sbN+wKwZw5c6itrQ0dQ0RkWDGz9QON064hEZGEUyEQEUk4FQIRkYRTIRARSTgVAhGRhCtaITCzey3qbnDJAOPNzL5rZnVmtmh/enISEZG3r5hbBPcRdVgykHOAefHtaqJemYqm+bZbaDzuENqeCHv5k8bPXUrDgiPprlseNMfyi05n+Yfnk+nqCpahp72VFae/m+WXfiRYBoC2V19g1YnzWPnPnw2ao+GBe1i54BDW/eTOfTcuoo3Xf4GNx81j+ysv7LtxEdVd/jHWnvpuetpbg2XIdHWx+sMnUPex0/bduIh2NNWz9qQjqfv7S4szg2J2f0bUvd2SAcb9ELgk5/4KYOq+pjl//nwfrPanHvc0eAa8x/BMZ+egp1EIDZ/9tGfiHNvKCZLB3X1FzcHZHOunjQyWo3lsWTbHsrMXBMuxvSTKkAav+/YNQTJ0Na733vi16AXvWL0sSI7m/+/m7Huy08Kto3UfOTmbo31kabAcTdPHZHOsO2p6sBwd5ZbNseqqi/ZrGkCtD/C9GvIYwXT+smu7xvixtzCzq82s1sxqW1paBj2jrqcfx4i6RSpx6OsO9F/wy69kByt7wkQAGLm2KTs8qq0zWI5RHb3Z4coVq4PlqIy7SDGg97mn9tq2WNqWLiRFtI6mgK2v/XeQHH1/eBqIXovSgJchq1q6KpujujMdLMeolo7s8MjGwX/3FEplj2e7liutfbXg0w9ZCPrrMq/fVc/d73b3GnevmTix319I79WUr3+L9tFlONA8ZyKl4ycMehqFMOHBR+kqj7pm2nj2yUEyAPTcfhs7S6DXYMt1nw+Wo/Gai+k12FECZXf9KFiOVSfNIwNsrUpx8H3/GSTD9A9fSOO0ETjQNHkE0z9+eZAck+7/JTsqUvQBm449NEgGgNSP76cnFX1W6q+4IFiOln/+BzIGaYPt3741WI51551KH7CzFMb95D8KPv2iXn3UzOYAv3H3d/Uz7ofAsx73w2pmK4DTPe7xaSA1NTWuS0yIiAyOmS1095r+xoXcIngMuCw+e+gkYOu+ioCIiBRe0S46Z2YPAKcDE8yskahj8zIAd78LeBw4l6g/1i7gymJlERGRgRWtELj7JfsY70C4HdQiIgLol8UiIomnQiAiknAqBCIiCadCICKScCoEIiIJp0IgIpJwKgQiIgmnQiAiknAqBCIiCadCICKScCoEIiIJp0IgIpJwKgQiIgmnQiAiknCJKQTNN3yZDUfOYvND9wfN0XDZhTS9aw5diwrf72i++rq6aPjAfBpPOpq+rkD9NwPptlYajp9Hw0dPC5YBoOWFZ6g7bjYrvnhp0Bxrf/BNVh87i7U/+GbQHCu+dCV1x81m47NPBM2x/KLTWbngEHY01QfL0NfVxcYFR9N8ynuCfla2LnmV9cfMoe7yjxVnBgP1av9Ovc2fP98Ha8vjD3saPAPeA57p7Bz0NAqh4YqLPBPn6CgjSAZ398bDp2dzbJxQHSzHlpGl2Rz1px0XLEdXSZQhDb7q1uvCZGhc773xa9EL3rF6WZAcdd++IftZ6UqFW0eXnb0gu260jCwJlqN1wshsjk1zpgTLsb2MbI5Vl523X9MAan2A79VEbBHsfPF5LB5OAX3dgSr74sXZwYp0mAgA5Zu3ZIerOnYEy1G5I82uHrNL1zcEy1Geif4a0PvfLwTJ0LZ0ISnAidbRjqWvBcnR+/Luz0p5X5AIAFSsXp8drt6RCZajctvu74qKLe3BcpT3kn1fShcvLfj0E1EIJl9/M63jK8kYbDx8GqXjJwTJMenR37O9wqIc558RJAOA33UX3SXQk4LOr38lWI62z11B2mBHGVT9+0+D5Vj1oeNJG7SNLOGwn/8uSIbpH76QdXPGkjFYP3MMU8+7OEiOeT9+jC2jSkkbrDrliCAZAEbe9wCd5dBr0PD5TwfL0fGNm0hblKPnzu8Fy7Hur88iDXSVGxN++duCT9+iLYbho6amxmtra0PHEBEZVsxsobvX9DcuEVsEIiIyMBUCEZGEUyEQEUk4FQIRkYRTIRARSTgVAhGRhFMhEBFJOBUCEZGEUyEQEUk4FQIRkYRTIRARSTgVAhGRhCtqITCzs81shZnVmdn1/YwfY2a/NrPXzWypmV1ZzDwiIvJWRSsEZlYC3AmcAxwFXGJmR+3R7PPAG+5+LHA6cJuZlRcrk4iIvFUxtwhOAOrcfY279wAPAufv0caBUWZmwEigDQjYZYuISPIUsxBMB3K7nWqMH8t1B3AksAFYDHzR3d/SL5KZXW1mtWZW29LSUqy8IiKJVMxCYP08tmcvOGcBrwHTgOOAO8xs9Fue5H63u9e4e83EiRMLnVNEJNGKWQgagZk592cQ/eef60rg4bhv5TpgLVCU/vHeuP4qlh01mbX/fnsxJp+3xZecydJjp9Hy0jPBMvR1ddF40tE0HTOXdFtrsBw9jfVsOHIWDR+YHywDQNsTj9B86BQaLrswaI7Vt93I2sMmU/fNt5xXMaSW/90nWHP4FJp//WDYHOecwOpjZ7F9zfJgGXraW1m54BBWvO9IMl2B+joHtr/yApsPncaG804vzgwG6tX+7d6AUmANMBcoB14Hjt6jzQ+Am+LhyUATMGFv050/f74P1obfPOA9hqfBd6TwdGfnoKdRCIuvusDTRDlaKwmSwd298ZApngHPgG8aXxUsR9uIkmyOhpPfFSxHd4psjqavXhskQ8fqZd4bZ0iDv7l4YZAcq269ztNxjm4Lt44uO/O47HvSOiIVLEf95Opsjrp5E4Ll2FGSs45+4tz9mgZQ6wN8rxZti8Dd08C1wJPAMuAhd19qZteY2TVxs1uAk81sMfA0cJ27F/xf1I4lr5Fy6ANK+yCzM0xl71se/WfjQFVvkAgAlLe/mR2u7OwOlqOiO5MdLtmwKViOkpyjUpmli4Nk2F6/lhTRumFA19qVQXL0Ln4tu0+3NGB35uX1zdnhyu63HDYcMiM6dn8+qrZ0BMtRmtm9rz21sgjrxkAV4p16258tAnf35TNHeEcJ/vqJB+/X8wuhq3G9N4xJ+bYyfPGV5wXL0fLIA769DO8swTd8++ZgOZq+eq3vSOHbys07Xn4+WI76s0/2nYa3ji7zTKCtRXf3VYdN9G7D6w4J959nurPTm8eVebfhy85eECzHloXPe1uleVcJvuJr1wTLseb7t/r2UryjDG/81X3BcjR9+gLvAe+oSPnOhvX7NQ32skVg0fjho6amxmtra0PHEBEZVsxsobvX9DdOl5gQEUk4FQIRkYRTIRARSTgVAhGRhFMhEBFJOBUCEZGEUyEQEUk4FQIRkYRTIRARSTgVAhGRhFMhEBFJOBUCEZGEUyEQEUk4FQIRkYRTIRARSTgVAhGRhFMhEBFJuMQUgvVXX0L97HFsuP2WoDkWffQElh8xgY3PPhEsQ6ariyUnzmXpsdPY0VQfLEfXoldpPngyDQuOpK8rTD/SAJsfup+NM8fTcOGZwTIAbPjaF9g4YxxNX/ls0BzLPnU26+eOp+GBe4JlyHR1sfK0o1l72GS2Lnk1WI6e9lbq3j2dVcfPIRNwHd347BOsO2QCyz88vzgzGKgPy3fqbX/6LN70f+7zXvA0eLcRrF/aRZed6+k4R1sFQTK4uy85coKnwTPgdZMqguVor0p5Js5RX3NEsBzdRjZH4z+F6R93x6pl2fckDd75+sIgOVbd8qXsa9Ft4dbR5e9/VzbHlupUsBwNE6uyOVbPHR8sR0fZ7nV02V+fsV/TYC99FidiiyC9ahkGOFDi0NcdqLKvXwdxjvJ0mAgAFVs7s69H1Y7eYDnKe/qyw6Vb2oLlKMnptrtv1aogGbrXr8XiYQO6m9YHyZFesSw7XBqwO/PSTa3Z4Yqc9WSoVe3YmR2u7OgMlqMs5/siVd9Y8OknohBM++dv0jB7LN1lUH/i4ZSOnxAkx+GP/IHGg8rYXg7rPntxkAwAI3/+KzaNMNqrYOed3w2WY+tN19FdAh1VKcY8Gm5XWfMFZ9CTgi3jKpj+88eCZBh7xjlsOGIGvSloPnwa48+5MEiOeT/8DzZMqmJnCaz6q/cHyQAw+bf/l/YRKbrKoPnGLwXL0XX3XXSWw7YKw3/+QLAc677waXaUQOvoUuY8/qeCT9+iLYbho6amxmtra0PHEBEZVsxsobvX9DcuEVsEIiIyMBUCEZGEUyEQEUk4FQIRkYRTIRARSTgVAhGRhFMhEBFJuKIWAjM728xWmFmdmV0/QJvTzew1M1tqZn8oZh4REXmr0mJN2MxKgDuBDwGNwCtm9pi7v5HTZizwfeBsd683s0nFyiMiIv0r5hbBCUCdu69x9x7gQeD8Pdp8EnjY3esB3H1zEfOIiEg/ilkIpgMNOfcb48dyHQaMM7NnzWyhmV3W34TM7GozqzWz2paWliLFFRFJpmIWAuvnsT0vbFQKzAc+ApwF/C8zO+wtT3K/291r3L1m4sSJhU8qIpJgRTtGQLQFMDPn/gxgQz9tWt29E+g0s+eAY4GVRcwlIiI5irlF8Aowz8zmmlk5cDGw5zV+/xM41cxKzawaOBFYhoiIDJmibRG4e9rMrgWeBEqAe919qZldE4+/y92XmdnvgEVAH/Ajd19SrEwiIvJWefVHYGYnAd8DjgTKib7YO919dHHjvZX6IxARGbxC9EdwB3AJsAqoAj5DVBhERGSYy/sYgbvXASXunnH3HwMfKF6swlv3yY/QOGM0TTd+OWiOtae+m4aZY2h99MFgGXraW1l67DSWHzGB7WuWB8vR9uoLLJ83nsUL5pDpCtSPNLD2329n5dzRLPrYScEyADT+/ZVsnjKaxs9dGjRHwznvY/PU0Wy+6/ZgGfq6umg6Zi4bZ4xj25+eCZZjR1M9a+dNYvWRU+lpb933E4qk6feP0DBzDCtPO7o4MxioV/vcG/Ac0S6hnwD/L/APwOv5PLfQt/nz5/tgbf7p3d4LngbfaXims3PQ0yiENR8/w9Nxjq1lBMng7r70sPGeAc+Ar5lYHixH06iUZ+LXY/HJhwbL0VEaZegFX3rdZ4Jk6Hx9oafj9yQN3vHy80FyNP7TNdl1o8fCraP1NUdkc2ytsGA5GidU7P6szB4bLMf2UrI53rjg1P2aBlDrA3yv5rtFcCnRcYFrgU6i00L/qtBFqVh6mxoxoh8xpBz6usP89+mt0Y/hHCjtCxIBgLLO7myOip3pYDkqevtwoh+cpLZ2BMtR1kc2R7qpYV/NiyK97c3ssAE9rZuC5OhrbNqdI2B35qltW7PDpelwQSq6e7PD5fHnJoTSzO7h1OYi/Kh2oArxTr3tzxaBu/uawyb5m+X42g8t2K/nF0Kms9MbJ1R4ewW+/u+vCJZj84tPe+OYlG8YYb7+gbuD5Vj13Zt9czW+fnypd6xeFizH4ivP89ZKfPnMEZ4OtLXo7l7/nkO9qwSvP/bgYBkynZ2+Yepo7yzB6//63GA5djas9y0jS72jDN/wzRuC5Wj81X3eVmm+pTrlm59/OliOFV+7xreV403jKnxnW8t+TYO9bBHke9bQR4FbgNlEp5xaVEN01pCIyHCwt7OG8v0dwXeAjwOLPZ/KISIiw0a+xwgagCUqAiIiB558twi+Ajwedxyzc9eD7h7u/DIRESmIfAvBN4DtQCXRaaQiInKAyLcQjHf3Dxc1iYiIBJHvMYKnzEyFQETkAJRvIfg88Dsz22Fm28ysw8y2FTOYiIgMjbx2Dbn7qGIHERGRMPLuj8DMjgHm5D7H3R8uQiYRERlCeRUCM7sXOAZYStSBDESXZ1EhEBEZ5vLdIjjJ3Y8qahIREQki34PFL5qZCoGIyAEo3y2C+4mKwUaiXxbvuujcMUVLJiIiQyLfQnAvUZ8Ei9l9jEBERA4A+RaCend/rKhJREQkiHwLwXIz+wXwa/7yonM6a0hEZJjLtxBUERWA3MtM6PRREZEDQF5nDbn7lf3c/qbY4Qpp7QWn0zShkvovXRU0x5qaeTROrqLlZ/cEy5Bua2X93IOonz6arkWvBsvx5tNP0Dh1BGsPn0xfV5h+pAHqvncLq6dUsvhDxwbLALDkc59g9ZRKllx9YdAcDe9/D63jKmn+1o3BMvR1ddF06FQ2TxzBm08/ESxHd91yNk4dTfPMcfQ01gfL0fTw/TRNqmLlgkOKM4OB+rDMvRFdfvrzwPeJDhzfC9ybz3MLfdufPos333uH94KnwXsMzwTql3bNR0/1dJxjWxlBMri7r5091jPgGfDmMWXBcrRUm2fi12PtcXOC5dheSvZ9WfoPnw6S4c3FC73Hdq+jWxY+HyRHwz98Jrtu9Fi4dbT+PYdmc2wrt2A5WsaU7/6sTB0dLMf2ErI5ln3kxP2aBnvpszjf3xH8FJgCnAX8AZgBdBS6KBVLb3sbFg9bwD7WfPvulywV8NyrVE8vEO3bS/VlguUo6XOc6FxkdnQHy1Ga815ktrQFydCz/U3Mo/fEHHq2bQ2Sg/Y3s4MhPyupnC3Ekky4ICXp3Z+Pkp09wXKkcl4C295Z+BkMVCFyb8Cf47+L4r9lwDP5PLfQt/3ZInB3X330DG+rxNd89NT9en4hZDo7ff2UEd5aZd7wtWuD5eh8faE3jyn1TSNT3vLIA8FybLzrNm8ZYd40vtx3NqwPlmPJtRf7pmp86bxxwTK4u7/+4eO8pQp/7dTDg+ZomnWQd5TjDVdcFCzDzob1vnlMhW+tMN/0g9uC5djy+MPeXpXythGl3vFymK00d/dVt3zJ2yvM6ydXe3o/92iwly0C8zy6ITazl939BDN7DvgcsBF42d0PLnxp2ruamhqvra0d6tmKiAxrZrbQ3Wv6G5fvWUN3m9k44OvAY8BI4H8VKJ+IiASUbyEYA1wZD98Z/02b2XHu/lrBU4mIyJDJ92DxfOAaYDowDbgKOB24x8y+UpxoIiIyFPItBAcBx7v7l9z9S0ANMBE4DbhioCeZ2dlmtsLM6szs+r20W2BmGTO7aBDZRUSkAPItBLOA3HOneoHZ7r6DnEtO5DKzEqLdSOcARwGX9Hcp67jdt4AnB5FbREQKJN9jBL8AXjKz/4zvnwc8YGYjgDcGeM4JQJ27rwEwsweB8/tp/wXgV8CCwQQXEZHCyLfz+lvM7HHgFKLf/1zj7rvO4fzUAE+bDjTk3G8ETsxtYGbTgQuBD7KXQmBmVwNXA8yaNSufyCIikqe8O69394XAwkFM2/p5bM8fLXwHuM7dM2b9Nc/O+27gboh+RzCIDCIisg95F4L90AjMzLk/A9iwR5sa4MG4CEwAzjWztLs/WsRcIiKSo5iF4BVgnpnNBZqAi4FP5jZw97m7hs3sPuA3KgIiIkOraIXA3dNmdi3R2UAlRFcrXWpm18Tj7yrWvEVEJH/F3CLA3R8HHt/jsX4LgLtfUcwsIiLSv3x/RyAiIgcoFQIRkYRTIRARSTgVAhGRhFMhEBFJuMQUgnUfPoGNY8tYf/UlwTL0dXWx9ohpNI8vZ9MPbw+Wo6exnvXTR9E0qYrtr7wQLEfbE4/QNKGSdXPGkW5rDZZjwzeup3lcGWuOm7vvxkW06NKzqT+ojMWXnBk2x/vmUX9QGStu/kKwDJmuLpbNG8+aKZU0//bBYDm2v/ICLQdVsWnySLrrlgfL0XrvnWwZXU7ToZPpy+nPuWAG6sPynXrbnz6LN951m/eCp8F7DM/sZ5+fb9eac0/2dJyjo5QgGdzd180Y7RnwDHjzmNJgObZUWfb1WPvuWcFydKXI5lh31cVBMmxZ+Lz3xBl6wTe/+HSQHEu/fEX2tegqCbeOLj5hTjbH5upwOVpHle3+rEwaGSzHjhKyORo+uGC/psFe+ixOxBZBX09Pvxc+GnI7u7ODIfNYX3S5Jgesry9ckLi/bAM8nQ4WI/e98J7uAdsNRY5dF9LKdPd7dfei8+7dy58KeVWvTF/2fQn6Wcnp0z3l4T4rlvNe+M7CrxuJKARTv3A96+cfSnu10XTxuaSqq4PkmP3YH6mfPZa2kSm23nRdkAwAk/7wMs0TKmgZU0rFI78JliNzz920ji6haXI1M//0erAcm//nZ2gfkaL+sEnMue+RIBnGH38yb5x3Ii0jjTc+soApp58TJMfR33uApcdMZdOoFKv/8YogGQAO+6+FrJ5RzcaxKTruuiNYjtSjj/HmyFLaxlQw8qk/BsvR9q83sK0qxaapo5n++xcLPn1zH14X86ypqfHa2tp9NxQRkSwzW+juNf2NS8QWgYiIDEyFQEQk4VQIREQSToVARCThVAhERBJOhUBEJOFUCEREEk6FQEQk4VQIREQSToVARCThVAhERBJOhUBEJOFUCEREEk6FQEQk4VQIREQSToVARCThVAhERBIuMYVg+SlHsH5cCasv/1iwDJmuLl45ejzLJ5Wy4js3BsvRXbecpolVbBhXzptPPxEsx+aH7mfT2DIapo0g3dYaLEfDdZ9l86gS1hw5LVgGgLXnnUbLyBLWnn1S0ByL3zOdprElvHH9VcEy9LS3snLWSOoPKqP+wXuC5Wh56RnWTSxn9dRKti55NViO5ttu4c0RpWyYOY6+rq7Cz2CgXu3fqbf58+f7YDV991bfafhOw7tSeKazc9DTKISXz1/gOw3vMXxTFUEyuLuvnz7KM+AZ8I2jS4Ll2FKJp+Mca46cFizHjlSUIw2+9vILgmToePl5740z9IJv/dPTQXIsufbi7GuxIxVuHV08f5Zn4hwt1eFyrDuoNPtZWTGjOliOHSmyOepPO26/pgHU+gDfq4nYIkhVlANgDljIILtf7r6AOdxyZm7hgnhujFRJuBw5w1ZSGizHO4GV7V7+kL2Zu1l2/qFz9Dc85HJnnSr813ZRC4GZnW1mK8yszsyu72f8p8xsUXx7wcyOLUaOKVf/I+vOPJ6m8SU0X3kRqerqYsxmn47/2TO8duxEVk0pZfvttwbJADD1xcU0Ta1mw4QKqn77ZLAc/osH2DS+jIaZo5nxXLjN7ravf4nW0aXUHzOL2f/+H0EyjFxwMg0fP4PW0SU0nP9+Rr/vg0FyHHX7T1m6YA5N40upv/HaIBkAjvrDG6w8eDQNE8pIP/RAsByjn3yWtVMqWD2jmunP1gbLse2O22gfWUrznAlM/+0fCz59i7YYCs/MSoCVwIeARuAV4BJ3fyOnzcnAMndvN7NzgJvc/cS9TbempsZra8O9ISIiw5GZLXT3mv7GFXOL4ASgzt3XuHsP8CBwfm4Dd3/B3dvjuy8BM4qYR0RE+lHMQjAdaMi53xg/NpC/Bfo9hcXMrjazWjOrbWlpKWBEEREpZiHo78hKv/uhzOwDRIXguv7Gu/vd7l7j7jUTJ04sYEQRESnmKRKNwMyc+zOADXs2MrNjgB8B57j7liLmERGRfhRzi+AVYJ6ZzTWzcuBi4LHcBmY2C3gYuNTdVxYxi4iIDKBoWwTunjaza4EngRLgXndfambXxOPvAm4ADgK+b9E5uumBjmqLiEhxFO300WLR6aMiIoMX6vRREREZBlQIREQSToVARCThVAhERBJOhUBEJOFUCEREEk6FQEQk4VQIREQSToVARCThVAhERBIuMYVgec1cmkYZq/76zGAZ+rq6WDFnNA1jUzTc9OVgOboWvcrqSeWsG19C2+OPBMvR8uM7aRlVQtPESnoa64PlqP/cpbRVp1h3yIRgGQDWnjmftmpjzQfeEzbHvEm0VadYf/UlwTKk21ppmlhFy6gSNv3w9mA5Nj77BI3jS1k3sZy2V18IlmPlt66neXSKFbNHkenqKvwMBurV/p16mz9/vg9W03dv9Z2G7zR8RwrPdHYOehqFsOJDx3tPnGNLBUEyuLsvnzXCewzvMXzt2FSwHG2VeBo8A77miKnBcnSn8F6iLGs/fV6QDFv/9HQ2Qy94+1OPB8mx7m8u8nSco9vCraNrj57pmThHe8DPSv240uw6unJ6dbAcW0vJvi+vf/Bd+zUNoNYH+F5NxBZB6chReNxNTl9/3eUMERsxAifqsacv4CvvZWXZ4b6ykmA5+lKGEfdWVF4eLge7e1GyqhFBMpSOGvsX91OVFUFy2NjdOUJ+VryiLNuLVSbgZyVdmsquG5mAn5W/eA1GFH4dTUQhmHTl51n/0ZOpn1TO5s9fQaq6OkiOeY88x+rjZrB+cgV9d94RJAPAwc++zpq5o1k7vZopT70ULEfJY79lw6RKGg4+iNkvvhEsR/u/3sDGgyqof+9RzL77gSAZqo85nsZPn8emcWU0XnIuo9/3wSA5Zt12D/WnvItN48tpv7nfDgOHxOw/Lqbh0Ak0T6rEfvVwsBzjn3mRVTNHsGLuaGb/aUmwHB333836yRW8cdx0jn7wmYJPX5ehFhFJAF2GWkREBqRCICKScCoEIiIJp0IgIpJwKgQiIgmnQiAiknAqBCIiCadCICKScCoEIiIJp0IgIpJwKgQiIgmnQiAiknAqBCIiCadCICKScCoEIiIJp0IgIpJwRS0EZna2ma0wszozu76f8WZm343HLzKz44uZR0RE3qpohcDMSoA7gXOAo4BLzOyoPZqdA8yLb1cDPyhWnmXvnsbGkcbKj5xUrFnsU19XF6umV9M8ylj35auC5dj+ygusG19Cw9gUmx+6P1iODd/7Jo2jU6yZVE533fJgOf782QtZP8aoPXwMma6uYDlWLziMNyuNNTXzgmUAWDdrLO1VxrpLPxYsQ09jPc3jytlSbWy4/ZZgOVoffZDWkSVsHl3CtucL30Vkvlbc/AVaRxirp1QVZx0dqFf7t3sD3gs8mXP/q8BX92jzQ+CSnPsrgKl7m+78+fN9sBpvv9l3Gt5t+I4U3rulZdDTKITlHzjGewzfaXhbBUEyuLuvmFntveA9hq8bmwqWo2lklKHH8OVHTg6WY2tZtG7sNLz2srPCZPjT094L2duWxx8OkmPt5Rd4GjxN9JqEsuaIqZ6Jc7QH/KxsHF3iafAMeOPEymA5tpWSfV8Wvf+o/ZoGUOsDfK8Wc9fQdKAh535j/Nhg22BmV5tZrZnVtrS0DDpI+aQpuEWbP30GqcowndenJkzEAQPSAY/OeEUlbtFwuqwkWI5MSQrb1WX2yBHBcvSWxJvGBmVTpgbJUDpqLG7RuuEG5RMmB8lRMnlKdrjPgkSIjBqd/axkSsIFSZeXsmvu6crycDlyPqY+dmzBp1/Mr6P+3j3fjza4+93uXuPuNRMnThx0kImfuor6T5zFumlVtH71WlLVYQrBvIeeYs17j2Dd9Gr8vvuCZAA45L9XsObIKayZO4bpLywKlmPMb/+LNbNHsebYWcx7dnGwHFvvvI0lc6p4/dzjOeZbPw6SofqY49nwmYtpnlzFhisvYuSCk4PkmPmtH9DwoQU0T67ize/cGiQDwOxnX6X+mNk0TRtJ2e+fCpbjoBdfo2H2GBoOm8z011YHy9H9qwdYPXMEb5xyOMc8+nzBp2/RFkPhmdl7gZvc/az4/lcB3P3WnDY/BJ519wfi+yuA0929eaDp1tTUeG1tbVEyi4gcqMxsobvX9DeumFsErwDzzGyumZUDFwOP7dHmMeCy+Oyhk4CteysCIiJSeKXFmrC7p83sWuBJoAS4192Xmtk18fi7gMeBc4E6oAu4slh5RESkf0UrBADu/jjRl33uY3flDDvw+WJmEBGRvdMvi0VEEk6FQEQk4VQIREQSToVARCThivY7gmIxsxZg/X4+fQLQWsA4w4GWORm0zMnwdpZ5trv3+4vcYVcI3g4zqx3oBxUHKi1zMmiZk6FYy6xdQyIiCadCICKScEkrBHeHDhCAljkZtMzJUJRlTtQxAhEReaukbRGIiMgeVAhERBLugCwEZna2ma0wszozu76f8WZm343HLzKz40PkLKQ8lvlT8bIuMrMXzOzYEDkLaV/LnNNugZllzOyiocxXDPkss5mdbmavmdlSM/vDUGcstDzW7TFm9mszez1e5mF9FWMzu9fMNpvZkgHGF/77a6A+LIfrjeiS16uBg4Fy4HXgqD3anAs8QdRD2knAf4fOPQTLfDIwLh4+JwnLnNPuGaKr4F4UOvcQvM9jgTeAWfH9SaFzD8Eyfw34Vjw8EWgDykNnfxvLfBpwPLBkgPEF//46ELcITgDq3H2Nu/cADwLn79HmfOAnHnkJGGtmYTqrLYx9LrO7v+Du7fHdl4AZQ5yx0PJ5nwG+APwK2DyU4Yokn2X+JPCwu9cDuPtwX+58ltmBUWZmwEiiQpAe2piF4+7PES3DQAr+/XUgFoLpQEPO/cb4scG2GU4Guzx/S/QfxXC2z2U2s+nAhcBdHBjyeZ8PA8aZ2bNmttDMLhuydMWRzzLfARwJbAAWA190976hiRdEwb+/itoxTSDWz2N7niObT5vhJO/lMbMPEBWCU4qaqPjyWebvANe5eyb6Z3HYy2eZS4H5wBlAFfCimb3k7iuLHa5I8lnms4DXgA8ChwD/ZWZ/dPdtRc4WSsG/vw7EQtAIzMy5P4PoP4XBthlO8loeMzsG+BFwjrtvGaJsxZLPMtcAD8ZFYAJwrpml3f3RIUlYePmu263u3gl0mtlzwLHAcC0E+SzzlcA3PdqBXmdma4EjgJeHJuKQK/j314G4a+gVYJ6ZzTWzcuBi4LE92jwGXBYffT8J2OruzUMdtID2ucxmNgt4GLh0GP93mGufy+zuc919jrvPAX4JfG4YFwHIb93+T+BUMys1s2rgRGDZEOcspHyWuZ5oCwgzmwwcDqwZ0pRDq+DfXwfcFoG7p83sWuBJojMO7nX3pWZ2TTz+LqIzSM4F6oAuov8ohq08l/kG4CDg+/F/yGkfxlduzHOZDyj5LLO7LzOz3wGLgD7gR+7e72mIw0Ge7/MtwH1mtphot8l17j5sL09tZg8ApwMTzKwRuBEog+J9f+kSEyIiCXcg7hoSEZFBUCEQEUk4FQIRkYRTIRARSTgVAhGRhFMhENkHM5sz0JUgB2h/hZlNK2YmkUJSIRApvCsAFQIZNlQIRPJTamb3x9d//6WZVZvZfDP7Q3xxtyfNbGrc50EN8PO4T4AqM7vBzF4xsyVmdrcdIBc+kgOHflAmsg9mNgdYC5zi7s+b2b1El224EDjf3VvM7H8AZ7n735jZs8CX3b02fv54d2+Lh38KPOTuvw6xLCL9OeAuMSFSJA3u/nw8/DOizlDeRXSlS4gufzDQ9V4+YGZfAaqB8cBSQIVA3jFUCETys+emcwew1N3fu7cnmVkl8H2gxt0bzOwmoLI4EUX2j44RiORnlpnt+tK/hKiXt4m7HjOzMjM7Oh7fAYyKh3d96bea2Uhg2PebLAceFQKR/CwDLjezRUS7d75H9KX+LTN7nahjlJPjtvcBd5nZa8BO4B6inrMeJbqsssg7ig4Wi4gknLYIREQSToVARCThVAhERBJOhUBEJOFUCEREEk6FQEQk4VQIREQS7v8HFKK7+ne9k4MAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta alpha\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqo0lEQVR4nO3deZQU5dn+8e/dPTPsqyCryCIqghsziMGoKCYCRoG85hdQMfK6BBU1iSZiFhRMojl51cRoxCUGYhKIG4oRlwTXgCYMiiuiiGFzY1QUZ2SZmfv3RzVMM8wwPdg9D0Ndn3P69FNd1dVXdVfX3VXdXY+5OyIiEl+J0AFERCQsFQIRkZhTIRARiTkVAhGRmFMhEBGJORUCEZGYUyEQaQBmNtTM1oTOkc7MXjOzoTsZ/2Mzu6PhEkkoKgRSJzP7r5l9YWafm9kHZvZHM2sZOtfOmFlPM3Mzy8vS/Jqa2XozO76GcTeY2b3ZeJxdkVrO0tTrs9bMrjezZF33c/f+7v7UTsb/0t3PyWpY2S2pEEimTnb3lsBAYBDw0/rc2SKNZn2rXkDcfSPwN+DMatMlgXHAzIZLV6NDU6/PMOA04NwvM7NsFVBpHBrNG1N2D+6+FngEGGBm7czs72a2zsw+SbW7b53WzJ4ys1+Y2QKgDOhtZhPMbKmZbTCzFWb23bTph5rZGjP7kZl9aGbvmdloMxtpZm+a2cdm9uO06RNmNtnM3jazj8zsbjNrnxr9TOp6feqT8ldS9/nf1ON/YmaPmdm+afNzM7vQzN4C3qph8WcC/2NmzdNuO5HoffTIzpatutRj7Zc2PMPMfp42/A0zW5LaC1loZofU/qpUcfc3gGeJXp8+ZvZE6rkpMbO/mFnbtMf4r5mdkGpfZWb3mtmfzewz4KzUbX9Ojd+6h/UdM1uVmt9P0ubVzMxmpp7XpanXcE3a+MtTeysbzGyZmQ3LZHmkYagQSL2Y2T7ASOBFovXnj8C+QA/gC+CmancZD5wHtAJWAh8C3wBaAxOAG8xsYNr0nYGmQDdgCnA7cAZQCBwNTDGz3qlpLwZGA8cCXYFPgJtT445JXbd195bu/pyZjQZ+DHwT6Ei0wZxVLe9oYDBwUPVld/eFwHup+6cv31/dvTyDZctI6j53At8F9gJuBeaaWZMM7nsQ0fP0ImDANUTPTT9gH+Cqndx9FHAv0Bb4Sy3TfBU4gGjPY4qZ9UvdfiXQE+gNfI3oNdua6QBgEjDI3VsRFc//1rUs0oDcXRdddnohetN+Dqwn2pj/HmhWw3SHAZ+kDT8FTKtj3g8Al6TaQ4mKSTI13ApwYHDa9IuB0an2UmBY2rguwBYgj2ij5EBe2vhHgLPThhNEeyr7poYdOL6OvD8FHk+1W6fuf3iGy7YmbZwD+6UNzwB+nmrfAlxdbV7LgGNreRwHPiMqhG8DPwcSNUw3Gnix2ut6Qqp9FfBMtemvAv6cam99Prunjf8PMDbVXgGcmDbunK3LC+xHVCRPAPJDr8+67HjRcUDJ1Gh3/2f6DalDJDcAw4F2qZtbmVnS3StSw6ur3WcE0afH/Yk2xM2BV9Im+Sjtvl+krj9IG/8FsPWL6n2BOWZWmTa+AuhUyzLsC/zWzK5Lj0S097Gyprw1+BNwpZl1I/pku9zdX8xw2TK1L/AdM7so7bYCok/2tRno7svTbzCzvYEbifYQWqUyfbKTedS17ADvp7XLqHotula7/7a2uy83s+8RFZb+ZvYY8AN3fzeDx5MGoEND8mVcSnSYYLC7t6bqcIylTbPt9LapQxv3Af8HdHL3tsC8atPXx2pghLu3Tbs09eh7jJpOq7sa+G616Zt5dMhnh7w1cfdVRIeUTic6LPSnXVy2MqJCsVXnajl/US1nc3evfhirLteklueQ1Otzxk7yQB3LXof3gO5pw/tsN2P3v7r7V4mKnAO/+hKPJVmmQiBfRiuiT+jrU1/SXlnH9AVAE2AdUJ76BP31L/H404FfbP3C18w6mtmo1Lh1QCXRMev06a8ws/6p6duY2bd24XFnEh3zPoqqY+n1XbYlwGlmljSz4UTfc2x1OzDRzAZbpIWZnWRmreqZsxWpQ3qpPZgf1vP+9XE30XPbLvVYk7aOMLMDzOz4VLHcSLTOVNQyHwlAhUC+jN8AzYAS4Hng0Z1N7O4biL7gvZvoEMVpwNwv8fi/Td3/cTPbkMowOPVYZcAvgAWpX94c6e5ziD6Jzk79MuZVYMQuPO69RIfC5rv7e7u4bJcAJxN973I60fcJpOZVTPTzz5tS81oOnLULOacS/dz3U+Bh4P5dmEempgFrgHeAfxI9R5tS45oA1xKtJ+8DexN9aS+7CXNXxzQikl1mdj7RF8nH1jmxBKc9AhH50sysi5kdlfpvxwFE3x/NCZ1LMqNfDYlINhQQ/d+hF9HhrtlEPzOWRkCHhkREYk6HhkREYq7RHRrq0KGD9+zZM3QMEZFGZfHixSXu3rGmcY2uEPTs2ZPi4uLQMUREGhUzW1nbOB0aEhGJORUCEZGYUyEQEYk5FQIRkZhTIRARibmcFQIzu9Oi7gZfrWW8mdmNZrbczF7elZ6cRETky8vlHsEMog5LajMC6Ju6nEfUK1PuXH019OkDcwKf/mT8eOjXD954I2yOoUOhsBDKysJlKCmBgw+Gk04KlwFg4ULo2xfOPz9sjttvj9bRm2+ue9pcuuii6PlYuLDuaXPplFOi9aOkJFyGsjI44gg45pi6p82lVaui7cb48bmZfy67PyPq3u7VWsbdCoxLG14GdKlrnoWFhV5v8+a5Q9WltLT+88iGM87YPkcovXtXZWjZMlyO/PyqHIMGhcuR/ppMmRImw8qV2+dYujRMjmnTdo91dMiQqgx5eeFytGlTlaNbt3A5zKpynHrqLs0CKPZatqshvyPoxvZd261J3bYDMzvPzIrNrHjdunX1f6R587YfDvUpeNGiMI9b3dq1Ve3S0nA5tmypar/9drgc6f75z7qnyYXFi7cf/ve/w+SYPz/M41b31ltV7fLycDk2bKhq78q2J1vSzwn3wgtZn33IQlBTl3k1ngHP3W9z9yJ3L+rYscZ/SO/cr34F+flRu2NH6NCh/vPIhgceqGoPGRImA8B1aV32XnhhuBxjx1a177gjXI6+faPrRAIefDBMhjFjoEWLqN2iBXznO2Fy3Htv9DwA7LdfmAwAM2dWtUePDhaD73+/qn3NNeFyHH10Vfuee7I++5yefdTMegJ/d/cBNYy7FXjKU/2wmtkyYKinenyqTVFRkesUEyIi9WNmi929qKZxIfcI5gJnpn49dCTwaV1FQEREsi9nJ50zs1nAUKCDma0h6tg8H8DdpwPzgJFE/bGWARNylUVERGqXs0Lg7uPqGO9AwAPUIiIC+mexiEjsqRCIiMScCoGISMypEIiIxJwKgYhIzKkQiIjEnAqBiEjMqRCIiMScCoGISMypEIiIxJwKgYhIzKkQiIjEnAqBiEjMqRCIiMRcfArBZZdBjx7bd4EXwpgx0LNnTvodzVhZGRQWQv/+4fpvBigpibqJPOaYcBkAnngC9t0Xxo8Pm+Paa6N19Nprw+aYMCF6Ph55JGyOoUOhTx9YtSpchrKy6H1y+OFh3ysvvBBtN045JTfzr61X+931UlhY6PV2//3uUffP0aW0tP7zyIZTT90+RyjdulVlaN48XI68vKochx0WLkf6a3L55WEyrFy5fY6lS8PkmDJl91hHBw2qypBMhsvRsmVVjs6dw+VIf01OPnkXZ0Gx17JdjccewYIF2w+HquyvvBLmcav76KOq9hdfhMtRXl7VXr06XI50CxeGedzFi7cfXrIkSIwd3iuhrFxZ1a6oCJcjfVvxySfhcqR77bWszzIehWDaNGjaNGp37QodOoTJ8fjjYBa1hw0LkwFg+vSq9o9+FC7HWWdVte+6K1gMBg6MrpNJePTRMBnGjIG2baN2mzYwdmyYHHPnQl6q48IDDwyTAWDWrKr2GWeEy3HVVVXt3/0uWAxOPDG6NoOHH8767C3aY2g8ioqKvLi4OHQMEZFGxcwWu3tRTePisUcgIiK1UiEQEYk5FQIRkZhTIRARiTkVAhGRmFMhEBGJORUCEZGYUyEQEYk5FQIRkZhTIRARiTkVAhGRmFMhEBGJuZwWAjMbbmbLzGy5mU2uYXwbM3vIzF4ys9fMbEIu84iIyI5yVgjMLAncDIwADgLGmdlB1Sa7EHjd3Q8FhgLXmVlBrjKJiMiOcrlHcASw3N1XuPtmYDYwqto0DrQyMwNaAh8D5YiISIPJZSHoBqR3O7UmdVu6m4B+wLvAK8Al7l5ZfUZmdp6ZFZtZ8bp163KVV0QklnJZCKyG26r3gnMisAToChwG3GRmrXe4k/tt7l7k7kUdO3bMdk4RkVjLZSFYA+yTNtyd6JN/ugnA/am+lZcD7wC56R/v3HOhUye4/vqczD5jJ5wQdZf5xBPhMpSVQf/+0KsXlJSEy7FqFfToAYWF4TIAzJkDnTtH3UWGdOWV0To6eYffVTSsb30rej5mzw6b44gjovXjjTfCZSgpgT59oF+/cH2dQ9SXdteuMHRobuZfW6/2X/YC5AErgF5AAfAS0L/aNLcAV6XanYC1QIedzbewsNDrbdYsd6i6lJbWfx7ZMHr09jlC6dy5KkOzZuFyJJNVOQYMCJcj/TWZNClMhqVLt8+xeHGYHJdfvnuso4cdVpUhkQiXo3nzqhwdOoTLkf6ajBy5i7Og2GvZruZsj8Ddy4FJwGPAUuBud3/NzCaa2cTUZFcDQ8zsFWA+cLm7Z/8j6pIl2w+HquwhP9mkW7++qr1xY7AYVFRUtT/4IFyOdK+8EuZx33ln++E33wyTo/p7JZT33qtqV+7wtWHDSX9/bNgQLke6XKwbtVWI3fWyS3sE7u4tWkTVtHfvXbt/NqxcGX26AfeTTw6XI30Padq0cDkmTYoymLkvWBAux5AhUY78/HB7i+7uHTuG/+RZWho9D+A+aFC4HAsWROsFuE+cGC7HNddUvVdmzAiXY+vRhEQi2o7sAnayR2DR+MajqKjIi4uLQ8cQEWlUzGyxuxfVNE6nmBARiTkVAhGRmFMhEBGJORUCEZGYUyEQEYk5FQIRkZhTIRARiTkVAhGRmFMhEBGJORUCEZGYUyEQEYk5FQIRkZhTIRARiTkVAhGRmFMhEBGJORUCEZGYUyEQEYm5+BSCceOgXTu4+uqwOY44Ajp0gEceCZehrAx69YKuXWHVqnA5XngBOnWCfv3C9SMNMHMmtG8PJ5wQLgPARRdF6+j554fNMXx49Hzcfnu4DGVl0L9/tH688EK4HCUl0K0b9OwZdh195JFou1FYmJv519aH5e562aU+i2fMqOp3FML1Szty5PY5QunQoSpDkybhcmztvxncDzwwXI701yRU/7hLl26fY/HiMDkuvXT3WEcHDKjKkEiEy9GsWVWO9u3D5Uh/TYYN28VZ1N5ncTz2CJYu3X44VGX/73/DPG51paVV7S1bwuWorKxqf/xxuBzp3norzOO+8872wytXhslR/b0SSklJVTt9PWlomzZVtdPfNyGtWZP1WcajEFx7LbRtG7UPOCDaxQrh6achPz9qjx0bJgPAffeBWdS+8cZwOS6/PLpOJMIeKhs2LLpu0gTmzg2TYcQI6N49anftCmPGhMlxzz3QrFnUPvbYMBkAnnwyWi8ALr00XI7p06NrM5g1K1yOM86IrvPy4F//yvrsLdpjaDyKioq8uLg4dAwRkUbFzBa7e1FN4+KxRyAiIrVSIRARiTkVAhGRmFMhEBGJORUCEZGYUyEQEYk5FQIRkZjLaSEws+FmtszMlpvZ5FqmGWpmS8zsNTN7Opd5RERkR3m5mrGZJYGbga8Ba4BFZjbX3V9Pm6Yt8HtguLuvMrO9c5VHRERqlss9giOA5e6+wt03A7OBUdWmOQ24391XAbj7hznMIyIiNchlIegGrE4bXpO6Ld3+QDsze8rMFpvZmTXNyMzOM7NiMytet25djuKKiMRTLguB1XBb9RMb5QGFwEnAicDPzGz/He7kfpu7F7l7UceOHbOfVEQkxnL2HQHRHsA+acPdgXdrmKbE3UuBUjN7BjgUeDOHuUREJE0u9wgWAX3NrJeZFQBjgern+H0QONrM8sysOTAY2E1OiC4iEg852yNw93IzmwQ8BiSBO939NTObmBo/3d2XmtmjwMtAJXCHu7+aq0wiIrIj9UcgIhID6o9ARERqFZtCsPz0k/iwc2tWTLssaI53jj6YD7q24b2HZgfLUP5xCR/37sr6bh3YuPyNYDk2/3shmzq2p2y/nniofqSBz268nk3tWvP50UcGywDAhAnQujWMHx82x1FHRTmuvz5chrIy6NUL2rWDJ54Il2PVKth7b+jSZft+lBvanDnQpg3075+b+dfWq/3ueiksLPT6Wv2X27wCvAK8HLy8tLTe88iGt04dti3HFwmCZHB3/7hL+205NrQoCJZjSzKxLUfpAfsFy7E1QwX4Z+efEybE4sXuUHVZsCBMjokTt88RyoEHVmUwC5ejSZOqHG3bhsuR/pocffQuzoJir2W7Gos9gi3vrgGiPzYYULEpzKfPxAdVf4ZLVgaJAEBe2caq9ubyYDmsoupJSGzYECwHpP3pZdXqnU2WO+vXbz/8wQdBYrB2bZjHre7TT6vaIb/H3LKlqr1xY+3TNaQc/Kk2o0JgZn3N7F4ze93MVmy9ZD1NjvS6bCpr++zNpiS887VBFLTrECTHvo8+x0dtm7A5CSsvOStIBgB/6CE25SfYkjQ2/GF6sByf/3IalQblBXnkPflUsByl3zyZSmBL6xa0vPv+MCGOPx722y9q9+4NY8aEyTF7dnRYCGDkyDAZAJ5/HvJSP2qcMiVcjjvvBDNIJODhh8PlmDgxum7SBJ59Nuuzz+hXQ2b2L+BK4AbgZGBC6r5XZj1RHfSrIRGR+svGr4aauft8oo3/Sne/Cjg+WwFFRCScTP9QttHMEsBbqT+JrQV0ymgRkT1ApnsE3wOaAxcTnSRuPPCdHGUSEZEGlNEegbsvSjU/J/p+QERE9hAZFYLUqaF/COybfh931/cEIiKNXKbfEdwDTAduBypyF0dERBpapoWg3N1vyWkSEREJYqeFwMzap5oPmdkFwBxg09bx7v5xDrOJiEgDqGuPYDFR95Jb/4H/w7RxDvTORSgREWk4Oy0E7t6roYKIiEgYmf5qqClwAfBVoj2BZ4Hp7r6bnIVJRER2VaZfFv8J2AD8LjU8DrgL+FYuQomISMPJtBAc4O6Hpg0/aWYv5SKQiIg0rExPMfGimW3rvsnMBgMLchNJREQaUqZ7BIOBM81sVWq4B7DUzF4h6sXokJykExGRnMu0EAzPaQoREQkm0z+U1diPoP5QJiLS+NX1HcFioDh1vbVdnNZuNH46dShTv96UG24/N2iOH57flytHNGPuU7cHy/DZhhKmn7AXdx7TmreXvxAsx+uLHuEfB7dgztGd2FwWph9pgPl3Xc2TBzblnnGH1j1xDj156bd4dZ+mzP9+oG4qU14ccTirOjXltRsbvAPCbcrLynhtQBdWdGvByn89EizH5yve4P0urXl3n3Z8sXZV3XfIkQ9nz+TzNs0oGdAnNw9QW6/21S9Ae6LvCo7desn0vtm8FBYWen3d9/hN/moHfHlb/N9d8C9KS+s9j2z4yZVH+5vt8BVt8L/1I0gGd/dbjm/rn+Xhn+Xj9x6cHyzHy53NNxu+2fD7hvcMluODZlGGjQl8ztVnBMnw7tLFvtnwcqIsK19eECTHCz85xyvAK8A3Wbh19KUh+23L8VFTC5ajpHXBthzvdmkdLMeWVIYK8PePG7xL8wCKvZbtaqZ/KDsHuAToDiwBjgQWAsOyX5qy7/Oyj8mrhM0JaBLw3KlbSjeQcCg3aFYeLkeTTVuik4Y4FGwJ94QUbK7qLztZFu6/ifkVUJlql68Pc7SzbMN6zFPnc3Eo//zTIDn4ZP22ZqLu7sxzJu/zqj3EvIpwQfLS3h95mzYHy5Eu8Xlp9ueZ4XSXAIOAle5+HHA4UJL1NDly5qifcduo7izYF+45/2iaNm8eJMfUqQu486stmN/XWPmzSUEyABwz4xkePyCPZ/okaH/HX4LleP/W63i9k/F8nwKO/tu/g+V4cvJYVrSHfxS149T/ezhIhj6DjufZ0YdR0gKe+foB9P7KiCA5Dr/5Ht7suxefNYFXLjg1SAaAHo88x9oOTVjf3Fh7+3XBcnw+5x4+b5bgsxZ5JP8xP1iOj352KVuSxudtmrPXU9l/r1i0x1DHRGaL3H2QmS0BBrv7JjNb4u6HZT1RHYqKiry4uFF9PSEiEpyZLXb3oprGZfrz0TVm1hZ4APiHmX0CvJudeCIiElKmfRZv/RnDVWb2JNAGeDRnqUREpMFkukewjbs/nYsgIiISRqZfFu8SMxtuZsvMbLmZTd7JdIPMrMLMwn07JSISUzkrBGaWBG4GRgAHAePM7KBapvsV8FiusoiISO1yuUdwBLDc3Ve4+2ZgNjCqhukuAu4DPsxhFhERqUUuC0E3YHXa8JrUbduYWTdgDDB9ZzMys/PMrNjMitetW5f1oCIicZbLQmA13Fb9Twu/AS53953+vdXdb3P3Incv6tixY7byiYgIu/CroXpYA+yTNtydHf97UATMNjOADsBIMyt39wdymEtERNLkshAsAvqaWS9gLTAWOC19AnfvtbVtZjOAv6sIiIg0rJwVAncvN7NJRL8GSgJ3uvtrZjYxNX6n3wuIiEjDyOUeAe4+D5hX7bYaC4C7n5XLLCIiUrOc/qFMRER2fyoEIiIxp0IgIhJzKgQiIjGnQiAiEnOxKQTf/vUR7PWTfH5827hgGTaWldF/WldaX1XAjPnXB8vx/oer6DK1FR2mNmPJ8oXBcsx7ZQ4tpzal09Xt+Lg0XM+nkx+fTP7UfHpd36vuiXNo+F3DyZ+azwkzTwiaY/SP+/LN0/OZeu9FwTJ8UVbGyAvaM+rMpsx9YXawHC8vX8iU4c34yckt+e/7bwTL8di8m7n70AJ+f1InNpWV1X2Hesqoq8rdya50VXn3o9fz7ecu3dZh+8bLS2kSoN/iUTcexdyPog2vAZVTwzz33ae2YW3lZwC09Dw2TNsSJEfe1AQVldFzsH/LHiz74cogOWxq1dlQxvYby6z/N6vBMyxctZCj/njUtuH5Z8zn+D7HN3iOyXdNYP/rZ5BXCcvbw7Qnw6yjoyb34tR5/8WAf/SBmXPC5Pj5sAJOX7wFHG4f2pJfPrghSI4Xuhh9S8ANZp47iItu/k+957GzripjsUewpWJz6AgAbKzYuK0dsvxWpj16BZXBcnhaji1eHixHuo2VG+ueqAFsqtgU5HE3b96IOVQY5IVbNaCycuvnNhIB3yx5FakHN0hWhHtCkpVREQBgU/bXjVgUgtNPmsywxH60KDcmdRwZZG8A4MHvPkuPRFuaeoJfD7w8SAaAhd/9D+0STWjpeTz+//4eLMeME2+jIJGkTaI5xRe+FCzHOYeeQ4IEezfdmzlj5wTJMKTHEAZ3HYxhDOoyiBH7jwiS4/qzZ3HvcV14vG+CsnPOCpIB4I9XLmb2Ec2Z2y/Bcd+/KViOY26cy98Oy+PPRU04/cZng+V4+4YpPNs7wd+Oas15Nz6X9fnH4tCQiEjcxf7QkIiI1E6FQEQk5lQIRERiToVARCTmVAhERGJOhUBEJOZUCEREYk6FQEQk5lQIRERiToVARCTmVAhERGJOhUBEJOZUCEREYk6FQEQk5lQIRERiToVARCTmVAhERGIuNoXglvEH8o3xSf5+6SnBMpSXlTH+7PYcMTGPZ/5wZbAcJaveoOiSZvS/pIBl/3kkWI5Fj8+k3/fyOeqiFpR9WhIsxy1/OJ9OlycZNrlrsAwAZ11/DK1/mmTcr48MmmPA1d1oPiXJj2edGyzD+s9L6Dy1JS2n5HPvv24PluNfbz1Bs6kFtJzalFdWvRAsx9VPXU3e1DzaXdOOsrKyrM8/Fl1VvnrntRz15hVUGjQth/enlpIM0G/xr793BD9uvQh36FAG718X5rkfenFrnm63AYC+nyV584YwHcd3ucx4v0XUPvXTrtzzm7VBcuRNMSpSHYNf2XY0V32/4fstfn3ZQvr/9Si29tj+4rfnc9hBxzd4jotnjuN3K2ZvG/apYdbRw365Ly9tWgVAnsOWaWFyNJ2az6bK6P3RJtmc9VNKg+SwqbatfVinw3hx4ov1n0fcu6pM5hVEDYveZ6EkEgm21t2QT3wi7VmwgM9I+iMnLRksR7r8ZF7oCEHlJXaP5TcL+U6tYrvJeyVdwrK/9cjp9sjMhpvZMjNbbmaTaxh/upm9nLosNLNDc5Gj35k/4LfrBnLCyiR3JU8NsjcAcMnPn2DCex058sM87jv8miAZAOZc8QpDPm7OwPVNmDf+sWA55n1jFgPW53Pcx62586pwu9139L2UrhvzOKm8Bz+5+J4gGQ46YAjnthtG2y1JJrQ9NsjeAMD14+9iYEFPWngeUw+eFCQDwHOXvE63RGtaWT5zT54VLMczZz5Fi0QT2iSbs2hi/Y5EZNN1J1xHHnl0aNKBZ8c/m/X55+zQkJklgTeBrwFrgEXAOHd/PW2aIcBSd//EzEYAV7n74J3Nd1cODYmIxF2oQ0NHAMvdfYW7bwZmA6PSJ3D3he7+SWrweaB7DvOIiEgNclkIugGr04bXpG6rzdlAjT9hMbPzzKzYzIrXrVuXxYgiIpLLQlDTNys1Hocys+OICsHlNY1399vcvcjdizp27JjFiCIiksufCKwB9kkb7g68W30iMzsEuAMY4e4f5TCPiIjUIJd7BIuAvmbWy8wKgLHA3PQJzKwHcD8w3t3fzGEWERGpRc72CNy93MwmAY8BSeBOd3/NzCamxk8HpgB7Ab9P/W64vLZvtUVEJDdi8c9iEZG4i/0/i0VEpHYqBCIiMadCICIScyoEIiIxp0IgIhJzKgQiIjGnQiAiEnMqBCIiMadCICIScyoEIiIxF59C0KsXmMEJJ4TLUFYGrVtDIgGXXRYsxpaXXuDh/gXcPyDJF39v+I7at9pw+83cc3CSx/s3pWL1qmA5Xr5sPBecnOCOr3UIlgFgxtmFHDfB+MPZhwfN8b9n782ACxPM/vm4YBk2ri9h+DnNGHhBkkWzrw+WY9l/HmH/7+fR/3sFrHp1YbAcd/11MntNTnDIj1qxuaws6/OPx7mGrr0Wrriiari0FEL0W1xYCC+k9c0b6Ll/un9Lbj2wFAP+Z1mCb75aESTHjMONf/YCN/jByi4UFu9wlvIGMXSCsbZV1FnGrM0nM2j63Drvk23rnnuC/R8cRiVRRx5vjJxH52NGNHiOv079Ft8pvxcHmpfDZ9eEWUcv+m4Pbtk76teq52ew/Ldhchzw/XzebF0OwJGfNOe5G0uD5GjyU2NzMmqflhjAX658pd7z0LmGWrUKnSDSokXoBADkJ/Mxog1fAclgOQoqDbdow5eXVxAuRzmUG5hDftMwr1FB27YkK6EiAclKSOY3CZKjRfO229rJyiARAGiayI9WDIOCMJ9TAGhSWbWJbBLwvZJMq4OtktlfR+NRCC68EIYMgYICOOusMHsDAM88A927Q5MmcNNNYTIAgx9+iQvebM25y5pz4l+eD5bjm//3MBOWNeXit/fikCdeD5bj1oFTOOf1Jtyw5iAO+82sIBna9BvIjIqTGfVOPn8sH0nHrxwfJMeoH97OTz8ZwLHvF3Bf7xo7DGwQ11z3Cme914Gvv9uUuafeHyzHYxc/x1Eft+C4T1rz4BWvBsvx96G30aesCV/f0o0bf/BE1ucfj0NDIiIxp0NDIiJSKxUCEZGYUyEQEYk5FQIRkZhTIRARiTkVAhGRmFMhEBGJORUCEZGYUyEQEYk5FQIRkZhTIRARiTkVAhGRmFMhEBGJORUCEZGYUyEQEYk5FQIRkZjLaSEws+FmtszMlpvZ5BrGm5ndmBr/spkNzGUeERHZUc4KgZklgZuBEcBBwDgzO6jaZCOAvqnLecAtucpD165gBkcembOHqFNZWdRNphmce264HAsXQjIJiQTMnBkux7XXRhkKCuCNN8LlGDMmek3atIleo1D23z/K0bdvuAwAbdtGOU45JViEitWreLh/AXcdZqz/9dXBcpTdN5u/HZLkvoOTbHom+11EZmrZ1Is4Z7Rx7deaUZmLddTdc3IBvgI8ljZ8BXBFtWluBcalDS8DuuxsvoWFhV5v06a5Q9Vl3br6zyMbDjlk+xyhNG9elSGRCJcj/bno1Gn3yHHiiWEyzJ+/fY777w+TY/To3WIdLS7s4qd9Ez9jNH7bwHA57h+Q9NPG4OP+B/9H/6bBcpzybbz3RXivi/GHRh+0S/MAir2W7WouDw11A1anDa9J3VbfaTCz88ys2MyK161bV/8knTtvPxyq8/qOHcM8bnVNm1a1k8lwORJpq1+LFuFypOvSJczjtm27/XCnTkFi7PBeCaRps9YkHCqS0KLcguVoXpmHJ8AcmllBsBwtt0B5KkfLZm2z/wC1VYgvewG+BdyRNjwe+F21aR4Gvpo2PB8o3Nl8d2mPwD36pNesmfukSbt2/2w58MDoE/mMGeEyrFvn3rmze5s27kuXhssxf757q1buPXq4l5aGy3HdddG6MXBguAzu7mPHRjlOPTVsjkGDohzXXBMsQmVpqS8ZvK8/3b+lb3x6frAcW5Yt9QUD2vh/BnbyipJARxLcfd2Ds/w3w1r4A6ccsMvzYCd7BBaNzz4z+wpwlbufmBq+IlV4rkmb5lbgKXeflRpeBgx19/dqm29RUZEXFxfnJLOIyJ7KzBa7e1FN43J5aGgR0NfMeplZATAWmFttmrnAmalfDx0JfLqzIiAiItmXl6sZu3u5mU0CHgOSwJ3u/pqZTUyNnw7MA0YCy4EyYEKu8oiISM1yVggA3H0e0cY+/bbpaW0HLsxlBhER2Tn9s1hEJOZUCEREYk6FQEQk5lQIRERiLmf/I8gVM1sHrNzFu3cASrIYpzHQMseDljkevswy7+vuNZ7eoNEVgi/DzIpr+0PFnkrLHA9a5njI1TLr0JCISMypEIiIxFzcCsFtoQMEoGWOBy1zPORkmWP1HYGIiOwobnsEIiJSjQqBiEjM7ZGFwMyGm9kyM1tuZpNrGG9mdmNq/MtmNjBEzmzKYJlPTy3ry2a20MwODZEzm+pa5rTpBplZhZmd2pD5ciGTZTazoWa2xMxeM7OnGzpjtmWwbrcxs4fM7KXUMjfqsxib2Z1m9qGZvVrL+Oxvv2rrsaaxXohOef020BsoAF4CDqo2zUjgEcCAI4F/h87dAMs8BGiXao+IwzKnTfcE0VlwTw2duwFe57bA60CP1PDeoXM3wDL/GPhVqt0R+BgoCJ39SyzzMcBA4NVaxmd9+7Un7hEcASx39xXuvhmYDYyqNs0o4E8eeR5oa2aBOqvNijqX2d0XuvsnqcHnge4NnDHbMnmdAS4C7gM+bMhwOZLJMp8G3O/uqwDcvbEvdybL7EArMzOgJVEhKG/YmNnj7s8QLUNtsr792hMLQTdgddrwmtRt9Z2mManv8pxN9ImiMatzmc2sGzAGmM6eIZPXeX+gnZk9ZWaLzezMBkuXG5ks801AP+Bd4BXgEnevbJh4QWR9+5XTjmkCsRpuq/4b2UymaUwyXh4zO46oEHw1p4lyL5Nl/g1wubtXRB8WG71MljkPKASGAc2A58zseXd/M9fhciSTZT4RWAIcD/QB/mFmz7r7ZznOFkrWt197YiFYA+yTNtyd6JNCfadpTDJaHjM7BLgDGOHuHzVQtlzJZJmLgNmpItABGGlm5e7+QIMkzL5M1+0Sdy8FSs3sGeBQoLEWgkyWeQJwrUcH0Jeb2TvAgcB/GiZig8v69mtPPDS0COhrZr3MrAAYC8ytNs1c4MzUt+9HAp+6+3sNHTSL6lxmM+sB3A+Mb8SfDtPVuczu3svde7p7T+Be4IJGXAQgs3X7QeBoM8szs+bAYGBpA+fMpkyWeRXRHhBm1gk4AFjRoCkbVta3X3vcHoG7l5vZJOAxol8c3Onur5nZxNT46US/IBkJLAfKiD5RNFoZLvMUYC/g96lPyOXeiM/cmOEy71EyWWZ3X2pmjwIvA5XAHe5e488QG4MMX+ergRlm9grRYZPL3b3Rnp7azGYBQ4EOZrYGuBLIh9xtv3SKCRGRmNsTDw2JiEg9qBCIiMScCoGISMypEIiIxJwKgYhIzKkQiNTBzHrWdibIWqY/y8y65jKTSDapEIhk31mACoE0GioEIpnJM7OZqfO/32tmzc2s0MyeTp3c7TEz65Lq86AI+EuqT4BmZjbFzBaZ2atmdpvtISc+kj2H/lAmUgcz6wm8A3zV3ReY2Z1Ep20YA4xy93Vm9m3gRHf/XzN7CrjM3YtT92/v7h+n2ncBd7v7QyGWRaQme9wpJkRyZLW7L0i1/0zUGcoAojNdQnT6g9rO93Kcmf0IaA60B14DVAhkt6FCIJKZ6rvOG4DX3P0rO7uTmTUFfg8UuftqM7sKaJqbiCK7Rt8RiGSmh5lt3eiPI+rlrePW28ws38z6p8ZvAFql2ls3+iVm1hJo9P0my55HhUAkM0uB75jZy0SHd35HtFH/lZm9RNQxypDUtDOA6Wa2BNgE3E7Uc9YDRKdVFtmt6MtiEZGY0x6BiEjMqRCIiMScCoGISMypEIiIxJwKgYhIzKkQiIjEnAqBiEjM/X/PKgOHE8j10AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamma alpha\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqmElEQVR4nO3deZgU5bn+8e/TswAzrAZEFtmUuMZtBjAYlYj5CRgVEswBFZe4BCMeY1wgG4iYaM6JyzEaiRgjMQYSFRSjaAxINKDGARdUQHFhUaNMFEIYUYZ5fn9UQTfDDLPYPS9j3Z/r6qurut6uvqu7up6u6u56zd0REZHkSoUOICIiYakQiIgknAqBiEjCqRCIiCScCoGISMKpEIiIJJwKgUgTMLNBZrY2dI5MZvaKmQ3axfQfmtkdTZdIQlEhkDqZ2dtm9rGZ/cfM3jez35pZ69C5dsXMepmZm1l+lubX0szWm9lxNUy70czuy8bjNEa8nJvi1+cdM7vBzPLqup+7H+TuC3Yx/Wfufl5Ww8puSYVA6uskd28NHAH0A37ckDtbpNmsb9ULiLtvBv4InFmtXR4wGpjedOlqdGj8+gwGTgPO/ywzy1YBleah2bwxZffg7u8Ac4GDzayDmf3ZzNaZ2UfxcPdtbc1sgZn91MwWAhVAHzM7x8yWmdlGM3vTzL6T0X6Qma01syvN7AMze8/MhpvZMDN7zcw+NLMfZrRPmdkEM3vDzP5lZn8ysz3iyU/G1+vjT8pfju/z7fjxPzKzx8ysZ8b83MwuMrPXgddrWPzpwDfNrCjjthOI3kdzd7Vs1cWPtW/G+F1mdk3G+NfN7IV4L2SRmR1S+6uS5u7LgaeIXp99zGx+/NyUm9k9ZtY+4zHeNrPj4+GrzOw+M/u9mf0bODu+7ffx9G17WGeZ2ep4fj/KmFcrM5seP6/L4tdwbcb08fHeykYzW2Fmg+uzPNI0VAikQcxsb2AY8DzR+vNboCfQA/gYuKXaXcYAFwBtgFXAB8DXgbbAOcCNZnZERvu9gJZAN2AiMA04AygBjgYmmlmfuO1/A8OBY4GuwEfArfG0Y+Lr9u7e2t2fNrPhwA+BbwCdiDaYM6rlHQ4MAA6svuzuvgh4L75/5vL9wd0r67Fs9RLf507gO8AXgF8Dc8ysRT3ueyDR8/Q8YMC1RM/NAcDewFW7uPspwH1Ae+CeWtp8BdiPaM9jopkdEN8+CegF9AG+RvSabcu0HzAO6OfubYiK59t1LYs0IXfXRZddXojetP8B1hNtzH8FtKqh3WHARxnjC4Cr65j3A8Al8fAgomKSF4+3ARwYkNF+MTA8Hl4GDM6Y1gXYAuQTbZQcyM+YPhc4N2M8RbSn0jMed+C4OvL+GPhLPNw2vv/h9Vy2tRnTHNg3Y/wu4Jp4+DZgSrV5rQCOreVxHPg3USF8A7gGSNXQbjjwfLXX9fh4+CrgyWrtrwJ+Hw9vez67Z0z/BzAqHn4TOCFj2nnblhfYl6hIHg8UhF6fddn5ouOAUl/D3f2vmTfEh0huBIYAHeKb25hZnrtvjcfXVLvPUKJPj18k2hAXAUszmvwr474fx9fvZ0z/GNj2RXVPYLaZVWVM3wp0rmUZegL/Z2bXZ0Yi2vtYVVPeGvwOmGRm3Yg+2a509+fruWz11RM4y8wuzritkOiTfW2OcPeVmTeY2Z7AzUR7CG3iTB/tYh51LTvAPzOGK0i/Fl2r3X/7sLuvNLPvERWWg8zsMeD77v5uPR5PmoAODclncRnRYYIB7t6W9OEYy2iz/fS28aGN+4FfAJ3dvT3wSLX2DbEGGOru7TMuLT36HqOm0+quAb5TrX0rjw757JS3Ju6+muiQ0ulEh4V+18hlqyAqFNvsVS3nT6vlLHL36oex6nJtvDyHxK/PGbvIA3Usex3eA7pnjO+9w4zd/+DuXyEqcg78/DM8lmSZCoF8Fm2IPqGvj7+knVRH+0KgBbAOqIw/Qf+/z/D4U4GfbvvC18w6mdkp8bR1QBXRMevM9j8ws4Pi9u3M7NRGPO50omPeR5E+lt7QZXsBOM3M8sxsCNH3HNtMA8aa2QCLFJvZiWbWpoE52xAf0ov3YK5o4P0b4k9Ez22H+LHGbZtgZvuZ2XFxsdxMtM5srWU+EoAKgXwWNwGtgHLgGeDRXTV2941EX/D+iegQxWnAnM/w+P8X3/8vZrYxzjAgfqwK4KfAwviXN0e6+2yiT6Iz41/GvAwMbcTj3kd0KGyeu7/XyGW7BDiJ6HuX04m+TyCeVxnRzz9viee1Eji7ETknE/3cdwPwMDCrEfOor6uBtcBbwF+JnqNP4mktgOuI1pN/AnsSfWkvuwlzV8c0IpJdZnYh0RfJx9bZWILTHoGIfGZm1sXMjor/27Ef0fdHs0PnkvrRr4ZEJBsKif7v0JvocNdMop8ZSzOgQ0MiIgmnQ0MiIgnX7A4NdezY0Xv16hU6hohIs7J48eJyd+9U07RmVwh69epFWVlZ6BgiIs2Kma2qbZoODYmIJJwKgYhIwqkQiIgknAqBiEjCqRCIiCRczgqBmd1pUXeDL9cy3czsZjNbaWYvNaYnJxER+exyuUdwF1GHJbUZCvSNLxcQ9cqUO1OmwD77wOzApz8ZMwYOOACWLw+bY9AgKCmBiopwGcrL4UtfghNPDJcBYNEi6NsXLrwwbI5p06J19NZb626bSxdfHD0fixbV3TaXTj45Wj/Ky8NlqKiA/v3hmGPqbptLq1dH240xY3Iz/1x2f0bUvd3LtUz7NTA6Y3wF0KWueZaUlHiDPfKIO6QvmzY1fB7ZcMYZO+YIpU+fdIbWrcPlKChI5+jXL1yOzNdk4sQwGVat2jHHsmVhclx99e6xjg4cmM6Qnx8uR7t26RzduoXLYZbOMXJko2YBlHkt29WQ3xF0Y8eu7dbGt+3EzC4wszIzK1u3bl3DH+mRR3YcD/Up+Lnnwjxude+8kx7etClcji1b0sNvvBEuR6a//rXuNrmwePGO488+GybHvHlhHre6119PD1dWhsuxcWN6uDHbnmzJPCfckiVZn33IQlBTl3k1ngHP3W9391J3L+3UqcZ/SO/az38OBQXRcKdO0LFjw+eRDQ88kB4eODBMBoDrM7rsveiicDlGjUoP33FHuBx9+0bXqRQ8+GCYDCNGQHFxNFxcDGedFSbHffdFzwPAvvuGyQAwfXp6ePjwYDG49NL08LXXhstx9NHp4Xvvzfrsc3r2UTPrBfzZ3Q+uYdqvgQUe98NqZiuAQR73+FSb0tJS1ykmREQaxswWu3tpTdNC7hHMAc6Mfz10JLChriIgIiLZl7OTzpnZDGAQ0NHM1hJ1bF4A4O5TgUeAYUT9sVYA5+Qqi4iI1C5nhcDdR9cx3YGAB6hFRAT0z2IRkcRTIRARSTgVAhGRhFMhEBFJOBUCEZGEUyEQEUk4FQIRkYRTIRARSTgVAhGRhFMhEBFJOBUCEZGEUyEQEUk4FQIRkYRTIRARSbjkFILLL4cePXbsAi+EESOgV6+c9DtabxUVUFICBx0Urv9mgPLyqJvIY44JlwFg/nzo2RPGjAmb47rronX0uuvC5jjnnOj5mDs3bI5Bg2CffWD16nAZKiqi98nhh4d9ryxZEm03Tj45N/OvrVf73fVSUlLiDTZrlnvU/XN02bSp4fPIhpEjd8wRSrdu6QxFReFy5Oencxx2WLgcma/J+PFhMqxatWOOZcvC5Jg4cfdYR/v1S2fIywuXo3XrdI699gqXI/M1OemkRs6CMq9lu5qMPYKFC3ccD1XZly4N87jV/etf6eGPPw6Xo7IyPbxmTbgcmRYtCvO4ixfvOP7CC0Fi7PReCWXVqvTw1q3hcmRuKz76KFyOTK+8kvVZJqMQXH01tGwZDXftCh07hsnxl7+AWTQ8eHCYDABTp6aHr7wyXI6zz04P3313sBgccUR0nZcHjz4aJsOIEdC+fTTcrh2MGhUmx5w5kB93XLj//mEyAMyYkR4+44xwOa66Kj38y18Gi8EJJ0TXZvDww1mfvUV7DM1HaWmpl5WVhY4hItKsmNlidy+taVoy9ghERKRWKgQiIgmnQiAiknAqBCIiCadCICKScCoEIiIJp0IgIpJwKgQiIgmnQiAiknAqBCIiCadCICKScCoEIiIJl9NCYGZDzGyFma00swk1TG9nZg+Z2Ytm9oqZnZPLPCIisrOcFQIzywNuBYYCBwKjzezAas0uAl5190OBQcD1ZlaYq0wiIrKzXO4R9AdWuvub7v4pMBM4pVobB9qYmQGtgQ+BSkREpMnkshB0AzK7nVob35bpFuAA4F1gKXCJu1dVn5GZXWBmZWZWtm7dulzlFRFJpFwWAqvhtuq94JwAvAB0BQ4DbjGztjvdyf12dy9199JOnTplO6eISKLlshCsBfbOGO9O9Mk/0znArLhv5ZXAW0Bu+sc7/3zo3BluuCEns6+344+PusucPz9chooKOOgg6N0bysvD5Vi9Gnr0gJKScBkAZs+GvfaKuosMadKkaB2dsNPvKprWqadGz8fMmWFz9O8frR/Ll4fLUF4O++wDBxwQrq9ziPrS7toVBg3Kzfxr69X+s16AfOBNoDdQCLwIHFStzW3AVfFwZ+AdoOOu5ltSUuINNmOGO6QvmzY1fB7ZMHz4jjlC2WuvdIZWrcLlyMtL5zj44HA5Ml+TcePCZFi2bMccixeHyTF+/O6xjh52WDpDKhUuR1FROkfHjuFyZL4mw4Y1chaUeS3b1ZztEbh7JTAOeAxYBvzJ3V8xs7FmNjZuNgUYaGZLgXnAeHfP/kfUF17YcTxUZQ/5ySbT+vXp4c2bg8Vg69b08Pvvh8uRaenSMI/71ls7jr/2Wpgc1d8robz3Xnq4aqevDZtO5vtj48ZwOTLlYt2orULsrpdG7RG4uxcXR9W0T5/G3T8bVq2KPt2A+0knhcuRuYd09dXhcowbF2Uwc1+4MFyOgQOjHAUF4fYW3d07dQr/yXPTpuh5APd+/cLlWLgwWi/AfezYcDmuvTb9XrnrrnA5th1NSKWi7UgjsIs9AoumNx+lpaVeVlYWOoaISLNiZovdvbSmaTrFhIhIwqkQiIgknAqBiEjCqRCIiCScCoGISMKpEIiIJJwKgYhIwqkQiIgknAqBiEjCqRCIiCScCoGISMKpEIiIJJwKgYhIwqkQiIgknAqBiEjCqRCIiCScCoGISMIlpxCMHg0dOsCUKWFz9O8PHTvC3LnhMlRUQO/e0LUrrF4dLseSJdC5MxxwQLh+pAGmT4c99oDjjw+XAeDii6N19MILw+YYMiR6PqZNC5ehogIOOihaP5YsCZejvBy6dYNevcKuo3PnRtuNkpLczL+2Pix310uj+iy+6650v6MQrl/aYcN2zBFKx47pDC1ahMuxrf9mcN9//3A5Ml+TUP3jLlu2Y47Fi8PkuOyy3WMdPfjgdIZUKlyOVq3SOfbYI1yOzNdk8OBGzqL2PouTsUewbNmO46Eq+9tvh3nc6jZtSg9v2RIuR1VVevjDD8PlyPT662Ee9623dhxftSpMjurvlVDKy9PDmetJU/vkk/Rw5vsmpLVrsz7LZBSC666D9u2j4f32i3axQvjb36CgIBoeNSpMBoD77wezaPjmm8PlGD8+uk6lwh4qGzw4um7RAubMCZNh6FDo3j0a7toVRowIk+Pee6FVq2j42GPDZAB44olovQC47LJwOaZOja7NYMaMcDnOOCO6zs+Hv/8967O3aI+h+SgtLfWysrLQMUREmhUzW+zupTVNS8YegYiI1EqFQEQk4VQIREQSToVARCThVAhERBJOhUBEJOFUCEREEi6nhcDMhpjZCjNbaWYTamkzyMxeMLNXzOxvucwjIiI7y8/VjM0sD7gV+BqwFnjOzOa4+6sZbdoDvwKGuPtqM9szV3lERKRmudwj6A+sdPc33f1TYCZwSrU2pwGz3H01gLt/kMM8IiJSg1wWgm7AmozxtfFtmb4IdDCzBWa22MzOrGlGZnaBmZWZWdm6detyFFdEJJlyWQishtuqn9goHygBTgROAH5iZl/c6U7ut7t7qbuXdurUKftJRUQSLGffERDtAeydMd4deLeGNuXuvgnYZGZPAocCr+Uwl4iIZMjlHsFzQF8z621mhcAooPo5fh8EjjazfDMrAgYAu8kJ0UVEkiFnewTuXmlm44DHgDzgTnd/xczGxtOnuvsyM3sUeAmoAu5w95dzlUlERHam/ghERBJA/RGIiEitElMI5n/3RJ7v25aFN14eNMdbR3+J97u2472HZgbLUPlhOR/26cr6bh3ZvHJ5sBwsWgR77AG9eoXrRxrghhugbVs48shwGQDOOSfKMWZM2BxHHRXluOGGcBkqKqB3b+jQAebPD5dj9WrYc0/o0mXHfpSb2uzZ0K4dHHRQbuZfW6/2u+ulpKTEG+rF2bf7FsMrwTen8E83bWrwPLLh9ZGDfSv4VvCPUwTJ4O7+YZc9tufYWFwYLIenUu4QXfbdN1yObRnA/bzzwmRYvHjHHAsXhskxduyOOULZf/90BrNwOVq0SOdo3z5cjszX5OijGzkLyryW7Woi9ggq/rkW8+hPDCmHLVvCfPpMvZ/+M1xeVZAIAORXbE4Pf1oZLkhVxpOwcWO4HJnWrKm7TS6sX7/j+PvvB4nBO++EedzqNmxID4f8HnPLlvTw5s21t2tKOfhTbb0KgZn1NbP7zOxVM3tz2yXraXLkyLGTebpkT9a3gqe+2Y+idh2D5Oj56NP8q30LPs2DVZecHSQDgD/0EJ8UpNiSZ2z8zdRgObj66ug6Px8WLAiX46STouviYpg1K0yG446DffeNhvv0gREjwuSYOTM6LAQwbFiYDADPPBOtFwATJ4bLceedYAapFDz8cLgcY8dG1y1awFNPZX329frVkJn9HZgE3AicBJwT33dS1hPVQb8aEhFpuGz8aqiVu88j2vivcvergOOyFVBERMKp7x/KNptZCng9/pPYO4BOGS0i8jlQ3z2C7wFFwH8TnSRuDHBWjjKJiEgTqtcegbs/Fw/+h+j7ARER+ZyoVyGITw19BdAz8z7uru8JRESaufp+R3AvMBWYBmzNXRwREWlq9S0Ele5+W06TiIhIELssBGa2Rzz4kJl9F5gNfLJturt/mMNsIiLSBOraI1hMdGaGbd1OXpExzYE+uQglIiJNZ5eFwN17N1UQEREJo76/GmoJfBf4CtGewFPAVHffTc7CJCIijVXfL4t/B2wEfhmPjwbuBk7NRSgREWk69S0E+7n7oRnjT5jZi7kIJCIiTau+p5h43sy2d99kZgOAhbmJJCIiTam+ewQDgDPNbHU83gNYZmZLiXoxOiQn6UREJOfqWwiG5DSFiIgEU98/lNXYj6D+UCYi0vzV9R3BYqAsvt42XJYx3GwM+u0gWk5pyfkPnB80R9//60urKa2YVjYtWIYPN5Uz7KIvcOL5bVn69pJgORa9NJcff72Yy0/vzOaKMP1IA8y7ewpP7N+Se0cfWnfjHHrislN5ee+WzLs0UDeVsTe+ejjlHVry1i+avAPC7aoqKviwVxc2dihm/by5wXKwfHnUdWeHDrB6dd3tc2X6dGjVCvbZJyezr1dXlbB976Av0HLbbe7+t5yk2oXGdFV56zO3Mu6xcdvHN12xiaKiomxHq9Mxdx7DU2vS/Y36pDCdcg/7bgdO//t6cLjvkAJm3/NpkBy3DEhx4grHgdtO7cX/TnsrSI4PiowOm6HKYO7kMxj+47ubPMN7y5fQ8cASUh7leO/FhfT40sAmz7HyivPp84s7gOgPQ3mBOo4vP6QveyxdCcCWPKNFZVWQHLRoAZ/G74+2bWHDhjA5zNLDAwZEfTo3eBa1d1VZ3z+UnQdcAnQHXgCOBBYBgxucJoAPN+8eR7A2flrjEbamt2ULOLhBfmW4k8m22uK4gTmkPgn338SCrbBtM1O5Psy6UrFxPebx+VwcKv8TaIOzYT0QnVMmTAmIpDL2EFNVAZNszXh/fBrmA9NONm3K+izr+/PRS4B+wCp3/ypwOFCe9TQ58pNBP6F76+4AHL330UH2BgAWnrmQ4rxiDGNcv3F13yFHfv6jJ7n/kHwe2j/FmPH3BMvR+mfX8+f9jN+XFnLpL54NluOJCaN4cw94vLQDI3/xcJAM+/Q7jqeGH0Z5MTz5//ajz5eHBsmx7+338m6PL/BxPrx1/sggGQBaL3iaiuIWbMk3Ntx6fbAc3HsvpFKQnw/z5oXLcdll0V5BURE8m/33Sr0ODZnZc+7ez8xeAAa4+ydm9oK7H5b1RHVozKEhEZGk+8yHhoC1ZtYeeAB43Mw+At7NTjwREQmpvn0Wb/sZw1Vm9gTQDng0Z6lERKTJ1HePYLsQvxQSEZHcqe+XxY1iZkPMbIWZrTSzCbto18/MtppZuG+nREQSKmeFwMzygFuBocCBwGgzO7CWdj8HHstVFhERqV0u9wj6Ayvd/U13/xSYCZxSQ7uLgfuBD3KYRUREapHLQtANWJMxvja+bTsz6waMAKbuakZmdoGZlZlZ2bp167IeVEQkyXJZCKyG26r/aeEmYLy77/Lvre5+u7uXuntpp06dspVPRERoxK+GGmAtsHfGeHd2/u9BKTDTovNodASGmVmluz+Qw1wiIpIhl4XgOaCvmfUG3gFGAadlNnD33tuGzewu4M8qAiIiTStnhcDdK81sHNGvgfKAO939FTMbG0/f5fcCIiLSNHK5R4C7PwI8Uu22GguAu5+dyywiIlKznP6hTEREdn8qBCIiCadCICKScCoEIiIJp0IgIpJwiSkEF0zpT/crC7jul6ODZfikooL+k7vS6UeF/OnRG4LleGfdava4ug1tJ7fiubcWBcsx+5XZtJzSkg4/60B5RbieTyf8ZQIFkwvofUPvuhvn0JC7h1AwuYDjpx8fNEffm/pSMLmAix+5OFiGjysqGPbdPTjlzJbMWTIzWI6XVi5i4pBW/Oik1rz9z+XBcix84Fb+3qeQ2cd05tOM/pyzpV5dVe5OGtNV5Z8fuoGTyi6DuKP0zeM3URig3+IzfnEU92yMNrx5VVA5Jcxz3+nqdpRv/TcALVL5bJ60JUiO1OQUHp91pEebHqz6/qogOWxy+mwoow4YxYxvzWjyDItWL+Ko3x61fXzeGfM4bp/jmjzHObPP4a6X7to+7pPCrKOnTOjNyEfexoDH94Hps8PkuGZwIacv3gIO0wa15mcPbgySY01bY6//ROfoeWBMP741/R8NnseuuqpMxB5BZeWnoSMAsHnr5u3DXtOZmJpIVcYpn6qoCpbDM3JUemWwHJk2V22uu1ET+GTrJ0Eed/OW3WP5qarCiDZ8qYCfVfO3xg9ukLc13HvFqtInarNPs79uJKIQDB8xgW9U7ssem40ftBkWZG8A4J6Ln2L/qva02ZrilkPGB8kA8OzYf1CcakGLVD5zv/XnYDluP/F28sijKK+IFy98MViO8w49jxQp9my5J7NHzQ6SYWCPgQzoOgDD6NelH0O/ODRIjhnfmkGXVl1IkeLsQ84OkgHgt5MWM7N/EXMOSPHVS28JluOYm+fwx8Py+X1pC06/+algOZbfPJGXu6T46+FtOeU3T2d9/ok4NCQiknSJPzQkIiK1UyEQEUk4FQIRkYRTIRARSTgVAhGRhFMhEBFJOBUCEZGEUyEQEUk4FQIRkYRTIRARSTgVAhGRhFMhEBFJOBUCEZGEUyEQEUk4FQIRkYRTIRARSTgVAhGRhEtMIVh29P7c+6U81p5xcrAMVRUV3P61PbhyaD5v3TgpWI71by9nyHmtOOaCQt5eNDdYjuf+Mp0DvlfAURcXU7GhPFiO235zIZ3H5zF4QtdgGQC+ecsxtJqYx9dvOjJojn2u7Ubh5Dwuuff8YBnKK8ppfU1rCiYXMK1sWrAc89+YT+HkQlpOacmSNUuC5ZiyYAr5k/PpcG0HKioqsj7/RHRVueGm67hs/g/YmoJ2m+HGWZuwAP0Wz/uv/lyw13NUAYe8Dw/ODPPcn3puW2Z32whA6Qd5PDM1TMfxXS43/lkcDY/c0JV7b3onSI78icZWi4YntR/OVZc2fb/FL6xcxOF3H8W2HtufPW0e/fc7rslznHvPaO58beb2cZ8cZh3teUNPVm9cnc4xKUyOgskFVBK9P4ryitj0401Bcthk2z58WOfDeH7s8w2fR9K7qrSCwuj9ZWAB656lUhA/fl7AHCnSK1XKbRctcyvzkfMsL1iOTAV5+aEjBJWfufzhVg0s5INnyMyxu2RKWfY32zktBGY2xMxWmNlKM5tQw/TTzeyl+LLIzA7NRY62F32fKzcfwSkr87ii28ggewMAg34zn4nLO3HG8nxuGnRtkAwAv5mylK+/W8Tgd1vwp3MfC5bjka/P4OD1BXz1w7bceVW43e47+l5G1835nFjZgx/9971BMhy270BGdR5MUVUeI/c8NsjeAMCvR93N/sW9aJHK58rDxwXJAPDq2FdpW9CWAgqY8Y0ZwXIsOGcBLVItKMoromxsw45EZNP1x19PPvl0bNGRp8Y8lfX55+zQkJnlAa8BXwPWAs8Bo9391Yw2A4Fl7v6RmQ0FrnL3Abuab2MODYmIJF2oQ0P9gZXu/qa7fwrMBE7JbODui9z9o3j0GaB7DvOIiEgNclkIugFrMsbXxrfV5lygxp+wmNkFZlZmZmXr1q3LYkQREcllIajpm5Uaj0OZ2VeJCsH4mqa7++3uXurupZ06dcpiRBERyeVPJNYCe2eMdwferd7IzA4B7gCGuvu/cphHRERqkMs9gueAvmbW28wKgVHAnMwGZtYDmAWMcffXcphFRERqkbM9AnevNLNxwGNAHnCnu79iZmPj6VOBicAXgF+ZGUBlbd9qi4hIbiTin8UiIkmX+H8Wi4hI7VQIREQSToVARCThVAhERBJOhUBEJOFUCEREEk6FQEQk4VQIREQSToVARCThVAhERBIuOYWgd28wg+OPD5ehogLatoVUCi6/PFyOJUugsBDy8mB203fUvt2tt0YZWraE1avrbp8j/7xwDPccmuKZwzoGywDw+LdK+M7JxmMjDw+a49vn7snBF6WYec3oYBkqNpRTekkren8/jydm3RAsx0tL5tJlfD49rixk5auLguX4xYMTaDExRZfJbdhcUZH1+SfjXEPXXQc/+EF6fNMmCNFvcUlJtBHeJtRz37p19BxAVJS2bg2TwzK6rOjSBd7d6SzlTeKqrxqr2oEbXFN8Et1/P6fuO2XZvxfO58g/DGarQcrh6W8+QvvjhjZ5jj9MPpWzKu/DgaJK+Pe1YdbRUZf24I9t14BDp4/hg/8Nk6PrlQW816oSgAMqinj1fzcFyZGaZNs7czm2zcEsuHxpg+ehcw21aRM6QaS4OHSCSEFBejgvL1yOzEJQWBgsRmElbElBqgryWoV5jfLbtSe/CrbkQb5DqkWLIDmKi9pvH86rChIBgJYWr6MWPR+hFGZsIgst3Hsls5ev1vnZX0eTUQguuggGDow2NmefHWZvAODJJ6F7d2jRAm65JUwGgBdfjA5RFRXBM8+Ey/Hww9FhoS98AV59NViMC4dNZMyKFlyx4UC6TJsRJEPRwUfwGz+Js5YVcEflMNoedVyQHKdcMY0ff3Qwx/6zkPv71NhhYJOYds1STt7QkX7rW/KXEbOC5Xhy7NMc/HExh3/clvnffzlYjj9+7XY6pFpwcH437rtgftbnn4xDQyIiCadDQyIiUisVAhGRhFMhEBFJOBUCEZGEUyEQEUk4FQIRkYRTIRARSTgVAhGRhFMhEBFJOBUCEZGEUyEQEUk4FQIRkYRTIRARSTgVAhGRhFMhEBFJOBUCEZGEy2khMLMhZrbCzFaa2YQappuZ3RxPf8nMjshlHhER2VnOCoGZ5QG3AkOBA4HRZnZgtWZDgb7x5QLgtlzloWvXqI/cI4/M2UPUqaIi6h7SDM4/P1yORYuivopTKZg+PVyO666LMhQWwvLl4XKMGBG9Ju3aRa9RKF/8YpSjb99wGQDat49ynHxyuAyrV0frhRlMmRIsRsX9M/njIXnc/6U8Pnky+11E1tcz/3Mxx3zbOPe/WrE1F+uou+fkAnwZeCxj/AfAD6q1+TUwOmN8BdBlV/MtKSnxBrv6andIX9ata/g8suGQQ3bMEUpRUTpDKhUuR+Zz0bnz7pHjhBPCZJg3b8ccs2aFyTF8+O6xjnbpslvkmHVwnp82Ah/9Tfzxg1oGy3HghXjrCXjxBPxXZx7YqHkAZV7LdjWXh4a6AWsyxtfGtzW0DWZ2gZmVmVnZunXrGp5kr712HA/VeX2nTmEet7qWLdPDeXnhcqQyVr/i4nA5MnXpEuZx27ffcbxz5yAxdnqvhNK2bXrYLFiMoqp8PAXm0MoKg+Uo3gJVBga0a9k+6/PPZSGo6dXzRrTB3W9391J3L+3UmI3p+efDCSdAq1Ywbly4QvDXv8L++0ePf9ddYTIArFgRveHbtYOXXgqX4/HHoU0b6NEDli4Nl+P666N144gj4Le/DZPhiCNg1Kgox8iRMHBgmBy33Qb9+kU5rr02TAaAJUugZ09o3Tp63wQyePYLjFvRju+93ZkvL3gjWI77Rszg2yuL+dk7+3Harxdmff4W7TFkn5l9GbjK3U+Ix38A4O7XZrT5NbDA3WfE4yuAQe7+Xm3zLS0t9bKyspxkFhH5vDKzxe5eWtO0XO4RPAf0NbPeZlYIjALmVGszBzgz/vXQkcCGXRUBERHJvvxczdjdK81sHPAYkAfc6e6vmNnYePpU4BFgGLASqADOyVUeERGpWc4KAYC7P0K0sc+8bWrGsAMX5TKDiIjsmv5ZLCKScCoEIiIJp0IgIpJwKgQiIgmXs/8R5IqZrQNWNfLuHYHyLMZpDrTMyaBlTobPssw93b3Gf+Q2u0LwWZhZWW1/qPi80jIng5Y5GXK1zDo0JCKScCoEIiIJl7RCcHvoAAFomZNBy5wMOVnmRH1HICIiO0vaHoGIiFSjQiAiknCfy0JgZkPMbIWZrTSzCTVMNzO7OZ7+kpkdESJnNtVjmU+Pl/UlM1tkZoeGyJlNdS1zRrt+ZrbVzEY2Zb5cqM8ym9kgM3vBzF4xs781dcZsq8e63c7MHjKzF+NlbtZnMTazO83sAzN7uZbp2d9+1daHZXO9EJ3y+g2gD1AIvAgcWK3NMGAuUQ9pRwLPhs7dBMs8EOgQDw9NwjJntJtPdBbckaFzN8Hr3B54FegRj+8ZOncTLPMPgZ/Hw52AD4HC0Nk/wzIfAxwBvFzL9Kxvvz6PewT9gZXu/qa7fwrMBE6p1uYU4HceeQZob2aBOqvNijqX2d0XuftH8egzQPcmzpht9XmdAS4G7gc+aMpwOVKfZT4NmOXuqwHcvbkvd32W2YE2ZmZAa6JCUNm0MbPH3Z8kWobaZH379XksBN2ANRnja+PbGtqmOWno8pxL9ImiOatzmc2sGzACmMrnQ31e5y8CHcxsgZktNrMzmyxdbtRnmW8BDgDeBZYCl7h7VdPECyLr26+cdkwTiNVwW/XfyNanTXNS7+Uxs68SFYKv5DRR7tVnmW8Cxrv71ujDYrNXn2XOB0qAwUAr4Gkze8bdX8t1uBypzzKfALwAHAfsAzxuZk+5+79znC2UrG+/Po+FYC2wd8Z4d6JPCg1t05zUa3nM7BDgDmCou/+ribLlSn2WuRSYGReBjsAwM6t09weaJGH21XfdLnf3TcAmM3sSOBRoroWgPst8DnCdRwfQV5rZW8D+wD+aJmKTy/r26/N4aOg5oK+Z9TazQmAUMKdamznAmfG370cCG9z9vaYOmkV1LrOZ9QBmAWOa8afDTHUus7v3dvde7t4LuA/4bjMuAlC/dftB4GgzyzezImAAsKyJc2ZTfZZ5NdEeEGbWGdgPeLNJUzatrG+/Pnd7BO5eaWbjgMeIfnFwp7u/YmZj4+lTiX5BMgxYCVQQfaJotuq5zBOBLwC/ij8hV3ozPnNjPZf5c6U+y+zuy8zsUeAloAq4w91r/Blic1DP13kKcJeZLSU6bDLe3Zvt6anNbAYwCOhoZmuBSUAB5G77pVNMiIgk3Ofx0JCIiDSACoGISMKpEIiIJJwKgYhIwqkQiIgknAqBiEjCqRCIiCTc5+4PZSKNYWY/AU4nOplXObAY2ABcQHT645VE/8quMLO7gI+JTmPQk+gPPWcBXyY6JfDZ8Tz/A9wKHA98RHS65P8BegDfc/c5ZtYLuBsojqOMc/dFOV5ckR1oj0ASz8xKgW8ChwPfIDpHEUSnc+7n7ocSnabh3Iy7dSA6ydmlwEPAjcBBwJfM7LC4TTGwwN1LgI3ANcDXiM6IenXc5gPga+5+BPBfwM25WEaRXdEegUh0JtYH3f1jADN7KL79YDO7hqizl9ZEpznY5iF39/i0Bu+7+9L4vq8AvYjOhvkp8Gjcfinwibtvie/TK769ALglLh5biU4jLdKkVAhEaj6tL8BdwHB3f9HMziY6/8s2n8TXVRnD28a3va+2ePocLtvbuXuVmW1rcynwPtEZQlPA5kYvhUgj6dCQCPwdOMnMWppZa+DE+PY2wHtmVkD0/UEutAPeiztSGUN0YjWRJqU9Akk8d3/OzOYQ9Ye7Cigj+qL4J8Cz8W1LiQpDtv0KuN/MTgWeADbl4DFEdklnHxUBzKy1u/8nPof/k8AF7r4kdC6RpqA9ApHI7WZ2INASmK4iIEmiPQIRkYTTl8UiIgmnQiAiknAqBCIiCadCICKScCoEIiIJ9/8Ba4R8BvK80i4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_choices = list(param_choices_true_false[0].keys())\n", + "parameter_list = ([elt for elt in param_choices if elt != 'assignment'])\n", + "for i in range(len(parameter_list)):\n", + " for j in range(i+1, len(parameter_list)):\n", + " param1 = parameter_list[i]\n", + " param2 = parameter_list[j]\n", + " print(param1, param2)\n", + " xsample = [result[param1] for result in param_choices_true_false]\n", + " ysample = [result[param2] for result in param_choices_true_false]\n", + " colors = ['green' if result['assignment'] == '1' else 'red' for result in param_choices_true_false]\n", + " plt.title(\"Parameter Value Pairings\")\n", + " plt.xlabel(param1)\n", + " plt.ylabel(param2)\n", + "\n", + " area = 5 # 0 to 15 point radii\n", + "\n", + " plt.scatter(xsample, ysample, s=area, c=colors, alpha=0.5)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/notebooks/sidarthe_check_BIOMD0000000955_askenet_request.ipynb b/scratch/notebooks/sidarthe_check_BIOMD0000000955_askenet_request.ipynb new file mode 100644 index 00000000..d413cab3 --- /dev/null +++ b/scratch/notebooks/sidarthe_check_BIOMD0000000955_askenet_request.ipynb @@ -0,0 +1,715 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import scipy\n", + "from scipy.integrate import odeint\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import sir_model\n", + "import json\n", + "from random import randint" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# initialize recording of parameter choices and true/false\n", + "\n", + "\n", + "# USER: set bounds\n", + "theta_search_bounds = [0.2968,0.4452]\n", + "epsilon_search_bounds = [0.1368,0.20520000000000002]" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# USER: list how many points for each parameter you'd like to synthesize\n", + "\n", + "theta_values_to_synthesize = 5\n", + "epsilon_values_to_synthesize = 5" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "search_points_theta = np.linspace(theta_search_bounds[0], theta_search_bounds[1], theta_values_to_synthesize)\n", + "search_points_epsilon = np.linspace(epsilon_search_bounds[0], epsilon_search_bounds[1], epsilon_values_to_synthesize)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "alpha_val = 0.57\n", + "beta_val = 0.011\n", + "delta_val = 0.011\n", + "gamma_val = 0.456\n", + "\n", + "# epsilon_val = 0.05 #0.171\n", + "# theta_val = 0.371\n", + "\n", + "zeta_val = 0.125\n", + "eta_val = 0.125\n", + "\n", + "mu_val = 0.017\n", + "nu_val = 0.027\n", + "lamb_val = 0.034\n", + "rho_val = 0.034\n", + "\n", + "kappa_val = 0.017\n", + "xi_val = 0.017\n", + "sigma_val = 0.017\n", + "\n", + "tau_val = 0.01" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAClcklEQVR4nOydd3hU1daH35MeUumEmiAhIaSRkNAJoQUEaVJFFBRRFET9ROFeC9bLxQIi9gKKXEBAFBEUkI4iNXQIBEIgCSQhvZFksr8/dmYy6YUUyn6fZz8zZ5+2zplJzm/WXnstTQiBQqFQKBQKhaJmMalrAxQKhUKhUCjuBZToUigUCoVCoagFlOhSKBQKhUKhqAWU6FIoFAqFQqGoBZToUigUCoVCoagFlOhSKBQKhUKhqAXM6tqAitCoUSPh7Oxc12YoFAqFQqFQlMvhw4fjhRCNi/bfEaLL2dmZQ4cO1bUZCoVCoVAoFOWiadrlkvrV8KJCoVAoFApFLaBEl0KhUCgUCkUtoESXQqFQKBQKRS1wR8R0KRRVRafTkZCQQE5OTl2bolAo7hDMzc1p0KABpqamdW2K4i6jxkSXpmnfAkOBWCGEZwnrNeAj4H4gA5gshDhSU/Yo7k0SEhKwsrKiUaNGyK+cQqFQlI4QgrS0NBISEmjcuNjkM4XilqjJ4cVlwKAy1g8GXPPbNOCzGrRFcY+Sk5ODra2tElwKhaJCaJqGra2t8o4raoQa83QJIXZrmuZcxibDge+FEALYr2mao6ZpTkKImJqyqTROnoS8vNo5V3nP/oquN96upPfGr8bvTUwK9+v7jJc1DUxNC68zNZXNxKTgvX6b2x0luBQKRWVQ/zMUNUVdxnS1AK4YLV/N76t10fX225CeXttnvTvQNDA3lwLMzEy+NzMDCwv5Xv9qZSWbpaV8tbaGevXAxka2evXA1hYcHGSrV+/OEHQV5Z133uF///sfpqammJiY8MUXX9ClS5datyM0NJTo6Gjuv/9+ADZs2MDp06eZM2cOkydPZujQoYwePbrQPjt37uT9999n48aNtW6vQqFQ3E3Upegq6ZEqat0KwMMDbt6s2LbiFiys6L6lbafvL7q+pH4hCvcbL+u9esb9eXnF3+flyabTyWWdTjZ9n74/O7ti11UZzMzA0VG2Ro2gaVNo3Fi+NmkCLVpIAXcn8Pfff7Nx40aOHDmCpaUl8fHxZNfETasAoaGhHDp0yCC6hg0bxrBhw+rEFoVCobjXqEvRdRVoZbTcEoiuC0Nee60uznrnoxdmubmy6XSQk1O4ZWfLlpUlhW1WVkHLyIC0NPmani7fJydDUpJcHx8v24ULxc+tadCsGbRpA87O8rV9eynIbjdiYmJo1KgRlvkqsVGjRkBBpYVGjRpx6NAhXnzxRXbu3MmuXbuYNWsWIIc5du/ejZ2dHQsWLGD58uWYmJgwePBg5s+fT3h4OM888wxxcXHUq1ePr776Cnd3dyZPnoyVlRWnTp3i+vXrfPjhhwwcOJDXXnuNzMxM9u7dy9y5c8nMzOTQoUMsWbIEgG3btvHRRx8Z9hk6dGiha0lPT2fmzJmcOHGC3Nxc5s2bx/Dhw2vxbioUCsWdS12Krg3ADE3TVgFdgOS6iOdSVB3jWK/q9jrdvCkFWGIixMVBbGxBu3YNoqMhJka2/fsL9mvSBLy8wNNTvhp7/x54oHpt1PPrr2WvHzhwIG+++Sbt27enf//+jBs3jqCgoFK3f//99/nkk0/o0aMHaWlpWFlZsXnzZn7++Wf++ecf6tWrR0JCAgDTpk3j888/x9XVlX/++Yenn36a7du3AxAREcGuXbsIDw8nODiYCxcu8OabbxYSWcuWLSt07pL2Meadd96hb9++fPvttyQlJREYGEj//v2xsbGp5F1TKBSKe4+aTBmxEugDNNI07SrwOmAOIIT4HNiETBdxAZkyYkpN2aK487C0lAKqSRNwcyu+PjcXrl6FyEiIiIBLl+DMGSnK/vxTNoDJk8HVVXrD6gpbW1sOHz7Mnj172LFjB+PGjWP+/Pmlbt+jRw9eeOEFJk6cyKhRo2jZsiXbtm1jypQp1KtXD4AGDRqQlpbGX3/9xZgxYwz73jQaJx87diwmJia4urrStm1bzp49W66t5e2zZcsWNmzYwPvvvw9AVlYWkZGRdOjQoVL3RKFQKO5FanL24oRy1gvgmZo6v+LuxsxMCilnZ+jdW/bl5UkBduKEnJF68qQcutS/f/rpguHIfO1Sa5iamtKnTx/69OmDl5cX3333HWZmZuTlB9hlZWUZtp0zZw5Dhgxh06ZNdO3alW3btiGEKDajKi8vD0dHR0JDQ0s8Z9HtKzIjq7x9hBCsW7cOt5KUsEKhUCjKRJUBUtw1mJhA27YwfDj8+9/www/QqZPss7CQQ5WhobBhA/zzD6Sm1o5d586d4/z584bl0NBQ2rRpg7OzM4cPHwZg3bp1hvXh4eF4eXnx8ssv07lzZ86ePcvAgQP59ttvycjIAGTSV3t7e1xcXFizZg0gBdGxY8cMx1mzZg15eXmEh4dz8eJF3NzcsLOzI7WMCy9pH2NCQkL4+OOPEfnjtkePHr3Fu6NQKBT3DqoMkOKuxdQUGjSQ8V06nYz/ioiAK1cgPBwuXpSer44dZZqKmiItLY2ZM2eSlJSEmZkZ7dq148svv+TMmTM8/vjjvPvuu4XSRyxatIgdO3ZgamqKh4cHgwcPxtLSktDQUDp37oyFhQX3338/7777LitWrGD69Om8/fbb5OTkMH78eHx8fABwc3MjKCiI69ev8/nnn2NlZUVwcDDz58/H19eXuXPnFrO1pH2MefXVV3nuuefw9vZGCIGzs7NKJaFQKBQVRBO3kgOhlujcubM4dOhQXZuhuAOJjo6mefPmhfpSU+H0aRkHpk+f0bo1+PvL/GF3A6Xl3FIoFBWjpP8dCkVF0TTtsBCic9F+NbyouOews4MuXeRsRldXOSwZGQm//SaF2B3wO0ShUCgUdyBqeFFxz2JjAwEBcnjxwAGZhuLvv6UACwy8s71eRVNBKBQKhaLuUZ4uxT1PvXoQFARdu8qSRVFR0usVEVHXlikUCoXibkKJLoUCmei1bVsYMgSaN5dZ9P/6C44eVcONCoVCoagelOhSKIzQe70CA2Ws15kzMuO9PuBeoVAoFIqqokSXQlEETYN27aT4MjOTwfW7d8ss+AqFQqFQVBUluhSKUnBygn79ZEmi6GjYvl3WhKwstra25W6zZ88eOnbsiK+vL5mZmZU6/s8//8zp06erza7MzEyCgoLQ6XSGvoULF2JlZUVycnKlz1MdhIaGsmnTpho/z7Jly4iOjjYsT506tUr3NiIiAk9Pz3K3W7NmDR06dCA4OLjS5yhqa3XZVdI28+bNM5R+qih9+vShvFQ/ixYtMiT8rSxV/U4Y29W/f38SExOrdH6Foioo0aVQlEHDhjBggJzpGB8PW7dCJTVRhVixYgUvvvgioaGhWFdy2mRVRVdpfPvtt4waNQpTU1ND38qVKwkICGD9+vXVdp7KUFei6+uvv8bDw6PGzvfNN9/w6aefsmPHjkrvWxXRdbtRF6LLmEmTJvHpp5/e0jEUisqgRJdCUQ729jBwIDg6QkoK7NpVtaHGnTt30qdPH0aPHo27uzsTJ05ECMHXX3/Njz/+yJtvvsnEiRMBeO+99wgICMDb25vXX3/dcIzvv/8eb29vfHx8mDRpEn/99RcbNmxg9uzZ+Pr6Eh4eTnh4OIMGDcLf359evXoZilZfunSJbt26ERAQwKuvvlqqnStWrGD48OGG5fDwcNLS0nj77bdZuXKlof/UqVMEBgbi6+uLt7c358+f59VXX+Wjjz4ybPPvf/+bxYsXs3PnToKCghg7dizt27dnzpw5rFixgsDAQLy8vAgPDwdkUtennnqKXr160b59ezZu3Eh2djavvfYaq1evxtfXl9WrV5OQkMCIESPw9vama9euHD9+HJAemUcffZSBAwfi7OzMTz/9xEsvvYSXlxeDBg0iJycHgDfffJOAgAA8PT2ZNm0aQgjWrl3LoUOHmDhxosHjaOwV+f333/Hz88PHx4d+/fpV+HNftmwZo0aNYtCgQbi6uvLSSy8ZbNi7dy9PPfUUs2fPRqfTMXv2bMPn/sUXXxiOsWDBAry8vPDx8WHOnDkl2nr48GGCgoLw9/cnJCSEmJgYAA4fPoyPjw/dunXjk08+qbDdpdGnTx9efvllAgMDad++PXv27AGkh3T8+PF4e3szbty4Qh7bLVu20K1bN/z8/BgzZgxpaWksXryY6OhogoODDZ6+krYDOHjwIN27d8fHx4fAwECSk5OLfSfS09N57LHHCAgIoFOnTvzyyy/l2jVs2LBC32mFosYRQtz2zd/fXygUVSEqKqpgYejQW2q59w8VMQFDxdVOQ8WN7kNFnn5dOdjY2AghhNixY4ewt7cXV65cETqdTnTt2lXs2bNHCCHEo48+KtasWSOEEOKPP/4QTzzxhMjLyxM6nU4MGTJE7Nq1S5w8eVK0b99exMXFCSGEuHHjRrF9hRCib9++IiwsTAghxP79+0VwcLAQQogHHnhAfPfdd0IIIZYsWWKwy5ibN2+Kpk2bFup76623xJtvvil0Op1o06aNuH79uhBCiBkzZogffvjBsF9GRoa4dOmS6NSpkxBCCJ1OJ9q2bSvi4+PFjh07hIODg4iOjhZZWVmiefPm4rXXXhNCCLFo0SIxa9Ysw7WEhIQInU4nwsLCRIsWLURmZqZYunSpeOaZZww2zZgxQ8ybN08IIcSff/4pfHx8hBBCvP7666JHjx4iOztbhIaGCmtra7Fp0yYhhBAjRowQ69evL3TvhBDi4YcfFhs2bBBCCBEUFCQOHjxoWKdfjo2NFS1bthQXL14stn9JXLp0SXTs2FEIIcTSpUuFi4uLSEpKEpmZmaJ169YiMjKy2Pm++OIL8dZbbwkhhMjKyhL+/v7i4sWLYtOmTaJbt24iPT290LmN983OzhbdunUTsbGxQgghVq1aJaZMmSKEEMLLy0vs3LlTCCHEiy++aLCrIrbref3118V7771nOO8LL7wghBDit99+E/369RNCCPHBBx8Yznns2DFhamoqDh48KOLi4kSvXr1EWlqaEEKI+fPnizfeeEMIIUSbNm0M3+fStrt586ZwcXERBw4cEEIIkZycLHJycop9J+bOnSuWL18uhBAiMTFRuLq6irS0tFLt0tOuXTsRHx9f7D4U+t+hUFQS4JAoQc+o5KgKRQUxNYGGDSAuTg4xmqWCvV3ljhEYGEjLli0B8PX1JSIigp49exbaZsuWLWzZsoVOnToBsnbj+fPnOXbsGKNHj6ZRo0YANGjQoNjx09LS+OuvvxgzZoyh72Z+INq+ffsMhbUnTZrEyy+/XGz/+Ph4HB0dC/WtWrWK9evXY2JiwqhRo1izZg3PPPMM3bp145133uHq1auMGjUKV1dXnJ2dadiwIUePHuX69et06tSJhg0bAhAQEICTkxMA9913HwMHDgTAy8ur0PDa2LFjMTExwdXVlbZt2xo8dcbs3bvXcC19+/blxo0bhnizwYMHY25ujpeXFzqdjkGDBhnOE5GffG3Hjh0sWLCAjIwMEhIS6NixIw888ECx8+jZv38/vXv3xsXFpdR7Xxb9+vXDIb/Ap4eHB5cvX6ZVq1aFttmyZQvHjx9n7dq1ACQnJ3P+/Hm2bdvGlClTqFevXqnnPnfuHCdPnmTAgAEA6HQ6nJycSE5OJikpiaCgIEB+7ps3by7TVk3Tyu0fNWoUAP7+/oZ7unv3bp599lkAvL298fb2BuS9O336ND169AAgOzubbt26FTt+adudO3cOJycnAgICALC3ty/Rvi1btrBhwwZD7FlWVhaRkZGl2qWnSZMmREdHG76nCkVNokSX4t7h119v+RDmgIiSsxmFgJ49oXUl9re0tDS8NzU1JbeEcUohBHPnzuXJJ58s1L948eJSH4h68vLycHR0JDQ0tMT15e1vbW1NVlaWYfn48eOcP3/e8DDPzs6mbdu2PPPMMzz00EN06dKF3377jZCQEL7++mv69u3L1KlTWbZsGdeuXeOxxx4r8dpNTEwMyyYmJoXuQ1EbS7JZlJA8Tb+d8XHNzc0N/frzZGVl8fTTT3Po0CFatWrFvHnzCl1zSQghyr13ZVHRz/3jjz8mJCSkUP/vv/9e7rmFEHTs2JG///67UH9SUlKl7W7YsGGx4PKEhASD4ISC6yl6LaV9VgMGDCh3GK+07Y4fP16haxBCsG7dOtzc3IqtK2v/rKysSsdRKhRVRcV0KRSVpEUL8PWV7//+GxISqvf4ISEhfPvtt4Z4lqioKGJjY+nXrx8//vgjN27cAOSDEMDOzo7U1FRAegFcXFxYs2YNIB9Ex44dA6BHjx6sWrUKkHFbJVG/fn10Op1BhKxcuZJ58+YRERFBREQE0dHRREVFcfnyZS5evEjbtm159tlnGTZsmCGuauTIkfz+++8cPHiwmICoCGvWrCEvL4/w8HAuXryIm5tboWsE6N27t+Eadu7cSaNGjUr1gBRFf22NGjUiLS3N4FkCip1HT7du3di1axeXLl0CCu79gQMHeOSRRyp9jSUREhLCZ599Zog7CwsLIz09nYEDB/Ltt98aAs5L+tzd3NyIi4sziK6cnBxOnTqFo6MjDg4O7N27Fyj8uUdFRZUYm2Zra4uTkxN//vmn4Xy///57MY9sUYw/k5MnTxq+D127dmXfvn1cuHABgIyMDMLCwopdQ2nbubu7Ex0dzcGDBwFITU0lNze32GcVEhLCxx9/bBDkR48eLdMukH8f165dw9nZucxrUyiqCyW6FIoq4O4uM9jrdNLrVZ0zGgcOHMhDDz1Et27d8PLyYvTo0aSmptKxY0f+/e9/ExQUhI+PDy+88AIA48eP57333qNTp06Eh4ezYsUKvvnmG3x8fOjYsaMhoPijjz7ik08+ISAgoMzUDwMHDjQ8pFetWsXIkSMLrR85ciSrVq1i9erVeHp64uvry9mzZw3iw8LCguDgYMaOHVtoBmRFcXNzIygoiMGDB/P5559jZWVFcHAwp0+fNgRNz5s3j0OHDuHt7c2cOXP47rvvKnx8R0dHnnjiCby8vBgxYoRh2AoKAvmLpu5o3LgxX375JaNGjcLHx4dx48YBEBkZWW1ekqlTp+Lh4YGfnx+enp48+eST5ObmMmjQIIYNG0bnzp3x9fU1DJ8Z26rT6Vi7di0vv/wyPj4++Pr68tdffwGwdOlSw3Cwsa0xMTGYmZU82PH999/z9ttv4+vrS9++fXn99de57777yrR/+vTppKWl4e3tzYIFCwgMDATkvVu2bBkTJkwwTHzQDxlPmzaNwYMHExwcXOp2FhYWrF69mpkzZ+Lj48OAAQPIysoq9p149dVXycnJwdvbG09PT8NkkdLsAjnJoGvXrqXeB4WiutFKctPfbnTu3FmUl+9FoSiJ6OhomjdvXiPH1ulk7q64OFk6KChIJla90zl69Cgffvghy5cvr9L+eXl5+Pn5sWbNGlxdXSu17+TJkxk6dCijR4+u0rlrm9mzZzNp0qRicUJ3AkuWLKF169YMGzasrk2pM2bNmsWwYcNK9PjV5P8Oxd2PpmmHhRCdi/YrT5dCUUVMTWVMl4WFTJ56+XJdW1Q9dOrUieDg4ELJUSvK6dOnadeuHf369au04LoTee+99+5IwQUwY8aMe1pwAXh6elYq/YdCcasoT5firqY2fq2Gh8M//8jM9UOGgJVVjZ5OoVDUAsrTpbgVlKdLoagh2raFZs1kiaAjR+raGoVCoVDcrijRpVDcIpoGgYFyuDEiAqKi6toihUKhUNyOKNGlUFQDtragD+05eBDyZ/0rFAqFQmFAiS6Foppwc5MFsjMyID81lkKhUCgUBpToUiiqCRMT6NJFvoaFyVQSILN2+/r60rFjR3x8fPjwww/Jy8sD4NChQ4YSJbc7kydPLpRI1JjnnnuO3bt3G5bj4uIwNzcvVLS5tnn33Xdr/ByhoaFs2rTJsLxhwwbmz59fpWMZF9cujbi4OLp06UKnTp0Mhaaramt12jV58mRcXFzw8fGhffv2PPLII0RVYJx90aJFhqSvlaU6rqd///7Fsu8rFDWJEl0KRTXi6AgeHvL94cOyVJC1tTWhoaGcOnWKrVu3smnTJt544w0AOnfuzOLFi+vO4GogISHBUJtQz5o1a+jatWu5pV9qkroQXcOGDWPOnDk1dr4///wTd3d3jh49Sq9evSq1b1VFSkV57733OHbsGOfOnTOkHcnOzi5zn7oQXcZMmjSJTz/99JaOoVBUBiW6FIqinD0La9bI1yrg4QHW1rI80NWrhdc1adKEL7/8kiVLliCEYOfOnQwdOhSQJWW6d+9Op06d6N69O+fOnQNkOZSxY8fi7e3NuHHj6NKli+GXuq2tLf/+97/x8fGha9euXL9+HYDLly/Tr18/vL296devH5GRkYAUQ56envj4+BhEkk6nY/bs2QQEBODt7W3wTgkhmDFjBh4eHgwZMoTY2NgSr3ft2rWGotJ6Vq5cyQcffMDVq1cNHg+dTsfkyZPx9PTEy8uLhQsXEh4ejp+fn2G/8+fP4+/vD4CzszP/+te/6NatG507d+bIkSOEhIRw33338fnnnwOyBFDv3r0ZOXIkHh4ePPXUU+Tl5TFnzhwyMzPx9fVl4sSJAHz44Yd4enri6enJokWLAIiIiMDd3Z2pU6fi6enJxIkT2bZtGz169MDV1ZUDBw6U+tlkZ2fz2muvsXr1akNW9GXLljFjxgwArl+/zsiRI/Hx8cHHx8eQIb4ilPS5hoaG8tJLL7Fp0yZDxvwtW7bQrVs3/Pz8GDNmjKF01MGDB+nevTs+Pj4EBgaSnJxczNb09HQee+wxAgIC6NSpk6FyQWZmJuPHjzd83zIrWW5B0zSef/55mjVrZiiuXZKdixcvJjo6muDgYIKDg0vdriavZ9iwYXX6w0BxDyKEuO2bv7+/UCiqQlRUVOV2OHNGiC5dhOjUSb6eOVOl8547J8SKFUJs3CiEjY1NsfWOjo7i2rVrYseOHWLIkCFCCCGSk5NFTk6OEEKIrVu3ilGjRgkhhHjvvffEtGnThBBCnDhxQpiamoqDBw8KIYQAxIYNG4QQQsyePVu89dZbQgghhg4dKpYtWyaEEOKbb74Rw4cPF0II4enpKa5evSqEECIxMVEIIcQXX3xh2C8rK0v4+/uLixcvinXr1on+/fuL3NxcERUVJRwcHMSaNWuKXcsjjzxisEEIISIjI0W7du2EEELMnTtXfPDBB0IIIQ4dOiT69+9v2E5//j59+oijR48atl+8eLEQQog2bdqITz/9VAghxHPPPSe8vLxESkqKiI2NFY0bNxZCCLFjxw5haWkpwsPDRW5urujfv7/BRuP7fujQIeHp6SnS0tJEamqq8PDwEEeOHBGXLl0Spqam4vjx40Kn0wk/Pz8xZcoUkZeXJ37++WfDfSvts1m6dKl45plnDOcxXh47dqxYuHChEEKI3NxckZSUVOzeGRMUFFTu52p8/Li4ONGrVy+RlpYmhBBi/vz54o033hA3b94ULi4u4sCBA4VsL2rr3LlzxfLlyw2fhaurq0hLSxMffPCBmDJlihBCiGPHjhX6vpXGo48+Wuy7MWvWLDF//vxS7RRCfsZxcXF1ej3t2rUT8fHxxa6p0v87FAojgEOiBD2jCk4pFMacOAHZ2bKqdXS0XHZ3r/Rh2rWDM2cgOVkOMRZFlNCZnJzMo48+yvnz59E0zVD4eO/evcyaNQuQGbSNM6BbWFgYPGX+/v5s3boVgL///puffvoJkEMoL730EiCLXk+ePJmxY8cyatQoQHoXjh8/bojXSk5O5vz58+zevZsJEyZgampK8+bN6du3b4nXGhMTQ+PGjQ3Lq1atYuzYsYCsC/n444/zwgsv0LZtWy5evMjMmTMZMmQIAwcOBGTNwaVLl/Lhhx+yevVqg3cJMGRM9/LyIi0tDTs7O+zs7LCysiIpKQmAwMBA2rZtC8CECRPYu3dvsTJCe/fuZeTIkdjY2AAwatQo9uzZw7Bhw3BxccHLywuAjh070q9fPzRNw8vLi4iIiDI/m7LYvn0733//PSDj+hwcHMrdR09pn6sx+/fv5/Tp0/To0QOA7OxsunXrxrlz53BycjLUlCytEPiWLVvYsGGDoZZjVlYWkZGR7N692xBn6O3tXeWM+/rveGl23i7X06RJE6Kjo2nYsGGVrlOhqAxKdCkUxnh5FdT1MTeXy1XAxETuun8/5OXJZpI/mH/x4kVMTU1p0qQJZ86cMezz6quvEhwczPr164mIiKBPnz5AyQJNj7m5OVp+wUdTU1Nyc3NL3E6/zeeff84///zDb7/9hq+vL6GhoQgh+PjjjwkJCSm0z6ZNmwz7lYW1tTVZWVmG5ZUrV3L9+nVWrFgByMze58+fx9XVlWPHjvHHH3/wySef8OOPP/Ltt9/y4IMP8sYbb9C3b1/8/f0LPfwsLS3z76eJ4b1+WX+tRW0syeay7mHR4xqfU3+O0j6bmqIin6sQggEDBhQbHjt+/HiFPjchBOvWrcPNza3YuorsXx5Hjx6lX79+pdpZkj11cT1ZWVnVVrRcoSgPFdOlUBjj7g7LlsGcOfK1Cl4uPc7OYG8vPV0XL8q+uLg4nnrqKWbMmFHsQZCcnEyLFi0AWLZsmaG/Z8+e/Pjjj4CsbXjixIlyz929e3dWrVoFwIoVK+jZsycA4eHhdOnShTfffJNGjRpx5coVQkJC+Oyzzwzem7CwMNLT0+nduzerVq1Cp9MRExPDjh07SjxXhw4duHDhAgDnzp0jPT2dqKgoIiIiiIiIYO7cuaxatYr4+Hjy8vJ48MEHeeuttziSn77fysqKkJAQpk+fzpQpUypwZwtz4MABLl26RF5eHqtXrzZcq7m5ueGaevfuzc8//0xGRgbp6emsX7++UoHopX02dnZ2pKamlrhPv379+OyzzwAZz5aSkmLor8jMvvLo2rUr+/btM9z7jIwMwsLCcHd3Jzo6moMHDwKQmppKbm5uMVtDQkL4+OOPDYL06NGjgLxXesF88uRJjh8/btjnkUceKeSJLAkhBIsXLyYmJoZBgwaVaicUvn91cT1CCK5du4azs3MF7rhCcevUqOjSNG2QpmnnNE27oGlasSk9mqY5aJr2q6ZpxzRNO6VpWuX/4yoU1Y27O4wZc0uCCwq8XdnZmQwYIFNG9O/fn4EDB/L6668X2/6ll15i7ty59OjRo1Cx6aeffpq4uDi8vb3573//i7e3d7lDVYsXL2bp0qV4e3uzfPlyPvroIwBmz56Nl5cXnp6e9O7dGx8fH6ZOnYqHhwd+fn54enry5JNPkpuby8iRI3F1dcXLy4vp06cTFBRU4rmGDBnCzp07AenlGjlyZKH1Dz74ICtXriQqKoo+ffrg6+vL5MmT+c9//mPYZuLEiWiaZhhyrAzdunVjzpw5eHp64uLiYjj/tGnT8Pb2ZuLEifj5+TF58mQCAwPp0qULU6dOpVOnThU+R2mfTXBwMKdPnzYEcxvz0UcfsWPHDry8vPD39+fUqVPk5eVx4cIFGjRoUOnrLErjxo1ZtmwZEyZMwNvbm65du3L27FksLCxYvXo1M2fOxMfHhwEDBpCVlVXM1ldffZWcnBy8vb3x9PTk1VdfBWD69OmkpaXh7e3NggULCAwMNJzz+PHjODk5lWjP7NmzDSkjDh48yI4dO7CwsCjVTpCf0eDBgwkODq6T6zl8+DBdu3bFzEwN+ihqhxoreK1pmikQBgwArgIHgQlCiNNG2/wLcBBCvKxpWmPgHNBMCFFonrEqeK2oKnVdtFYI2LwZkpLAz69qOk6n05GTk4OVlRXh4eH069ePsLAwLCwsqt3eqtKzZ082btyIo6NjlfZ///33SU5O5q233qrUfjt37uT9999n48aNVTpvbXPy5Em+/fZbPvzww7o2pdKkpKTw+OOPs2bNmro2pdqYNWsWw4YNo1+/fsXW1fX/DsWdTWkFr2tS3gcCF4QQF/MNWAUMB04bbSMAO02Os9gCCUDJQSkKxR2IpsnyQLt3w+nTMsC+sj+qMzIyCA4OJicnByEEn3322W0luAA++OADIiMjqyS6Ro4cSXh4ONu3b69+w24zPD0970jBBTKA/W4SXCA/j5IEl0JRU9Skp2s0MEgIMTV/eRLQRQgxw2gbO2AD4A7YAeOEEL8VPZbydCmqyu3wa1UI2LIFbtwAHx/o2LFOzVEoFBXgdvjfobhzKc3TVZMxXSVNFymq8EKAUKA54Ass0TSt5PnACsUdiqZJsQVw7hwYhQQpFAqF4h6iJkXXVaCV0XJLILrINlOAn/JziV0ALiG9XgrFXUXTplC/PmRlweXLdW2NQqFQKOqCmhRdBwFXTdNcNE2zAMYjhxKNiQT6AWia1hRwAy7WoE0KRZ2gaaBPH3T2bMkJUxUKhUJxd1NjoksIkQvMAP4AzgA/CiFOaZr2lKZpT+Vv9hbQXdO0E8CfwMtCiPiaskmhqEvatAErKzmTsZQyhgqFQqG4i6nRPF1CiE1CiPZCiPuEEO/k930uhPg8/320EGKgEMJLCOEphPihJu1RKOqK9evXY2amYWYm8xOdOycDdfXlaowLX2/YsIH58+dX27mfe+45du/eDcDGjRvp1KkTPj4+eHh4GIpb1xSLFi0iIyOjRs8RERHB//73P8PyoUOHDGVfKsvkyZMN5ZBK4+bNm/Tv37/E3FyVtbU67SppG1tb20qdx/h7WBqhoaFs2rSpUsc1pirfCWO7Nm7cWGKeO4XiTkBlpFcoaoGVK1fSs2dPDhxYhYkJREWBnV3zEh+kw4YNY86cYrmEq0RCQgL79++nd+/e5OTkMG3aNH799VeOHTvG0aNHa7ycTV2Irs6dO7N48eIaO9/Ro0fJyckhNDSUcePGVWrfqoqu24m6EF3GDBkyhA0bNtT490qhqAnKFV2apvXQNG2rpmlhmqZd1DTtkqZpKu5KoaggaWlp7Nu3j2+++Ya1a1fh7CxjunbujMDT07PY9suWLWPGDJlZZfLkyTz77LN0796dtm3bGkRaXl4eTz/9NB07dmTo0KHcf//9JQq4tWvXMmjQIKCgfIq+tqGlpSVubm6kpqbi4uJiKJmTkpKCs7MzOTk59OnTh+eff57evXvToUMHDh48yKhRo3B1deWVV14BpJBwd3fn0Ucfxdvbm9GjR5ORkcHixYuJjo4mODiY4OBgQIpPfUb8l19+2WCnra0tL7/8Mv7+/vTv358DBw7Qp08f2rZty4YNGwzn6dWrF35+fvj5+fHXX38BMGfOHPbs2YOvry8LFy4s5BVJS0tjypQpeHl54e3tzbp16yr8uTk7O/P666/j5+eHl5cXZ8+eJTY2locffpjQ0FB8fX0JDw/n8OHDBAUF4e/vT0hICDExMQBcuHCB/v374+Pjg5+fH+Hh4cVs1el0zJ49m4CAALy9vQ2eRyEEM2bMwMPDgyFDhhB7i+PRO3fupE+fPowePRp3d3cmTpxoKJfz+++/4+7uTs+ePQ1F0gHS09N57LHHCAgIoFOnTvzyyy9kZ2fz2muvsXr1aoOnr6TtQCb1ffHFFw33/uOPPy7xO7Flyxa6deuGn58fY8aMIS0trUy7NE2jT58+d0xCXIWiEEKIMhtwFhgMNAEa6lt5+1Vn8/f3FwpFVYiKiircMXSobMa88Ybs++efgr7Nm2Xfxx8X9N24IfseeaRSNixfvlw89thjQgghunXrJnbsOCxWrBBiyZJLwsOjoxBCiB07doghQ4YIIYRYunSpeOaZZ4QQQjz66KNi9OjRQqfTiVOnTon77rtPCCHEmjVrxODBg4VOpxMxMTHC0dFRrFmzpti5H3nkEbFhwwbD8uOPPy4aN24sxo8fL3744Qeh0+mEEEJMnjxZrF+/XgghxBdffCFeeOEFIYQQQUFB4qWXXhJCCLFo0SLh5OQkoqOjRVZWlmjRooWIj48Xly5dEoDYu3evEEKIKVOmiPfee08IIUSbNm1EXFycEEJ+Fq1atRKxsbEiJydHBAcHG84JiE2bNgkhhBgxYoQYMGCAyM7OFqGhocLHx0cIIUR6errIzMwUQggRFhYm9P8XjO9d0eWXXnpJzJo1y7AuISGhzM/q0UcfNdzHNm3aiMWLFwshhPjkk0/E448/Xuz42dnZolu3biI2NlYIIcSqVavElClThBBCBAYGip9+kpOzMzMzRXp6ejFbv/jiC/HWW28JIYTIysoS/v7+4uLFi2LdunWif//+Ijc3V0RFRQkHB4cSP9/SbNdjY2NjsNne3l5cuXJF6HQ60bVrV7Fnzx6RmZkpWrZsKcLCwkReXp4YM2aMwb65c+eK5cuXCyGESExMFK6uriItLa3Q97Os7T799FMxatQokZOTI4QQ4saNG4b7qv9OxMXFiV69eom0tDQhhBDz588Xb7zxRpl2CSHEDz/8IGbMmFHm/bhViv3vUCgqAXBIlKBnKjK8mCyE2CyEiBVC3NC3GtKACsVdx8qVKxk/fjwA48eP57ffVtKkCeTmQnZ2OTsDI0aMwMTEBA8PD65fvw7A3r17GTNmDCYmJjRr1szgNShKTEwMjRs3Nix//fXX/PnnnwQGBvL+++/z2GOPATB16lSWLl0KwNKlSwsVnh42bBgAXl5edOzYEScnJywtLWnbti1XrlwBoFWrVvTo0QOAhx9+mL179xaz5eDBg/Tp04fGjRtjZmbGxIkTDbFmFhYWBo+cl5cXQUFBmJub4+XlRUREBAA5OTk88cQTeHl5MWbMGE6fPl3sHEXZtm0bzzzzjGG5fv365e5jzKhRowDw9/c32GHMuXPnOHnyJAMGDMDX15e3336bq1evkpqaSlRUlKEOpJWVFfXq1Su2/5YtW/j+++/x9fWlS5cu3Lhxg/Pnz7N7924mTJiAqakpzZs3p2/fvuXaWrSAetG+wMBAWrZsiYmJCb6+vkRERHD27FlcXFxwdXVF0zQefvjhQrbNnz8fX19f+vTpQ1ZWFpGRkSVeQ0nbbdu2jaeeespQ17CkepP79+/n9OnT9OjRA19fX7777jsuX75cpl0ATZo0ITq6aAYiheL2pyIFSXZomvYe8BNwU98phDhSY1YpFDXFr78W73vtteJ9gwbJZkyDBiXvXwY3btxg+/btnDx5Ek3T0Ol0aJrGs88u4NQpKbrKSx9haWlpeC/yNxbl7ZSPtbU1WVlZhfq8vLzw8vJi0qRJuLi4sGzZMnr06EFERAS7du1Cp9MVGvbUn9/ExKSQLSYmJuTmyqpdRR/4JQmAsmw2Nzc37GN8HuNzLFy4kKZNm3Ls2DHy8vKwsrIq9/qFECXaUlH0dpiamhrsKHr8jh078vfffxfqT0lJqdDxhRB8/PHHhISEFOrftGlTpe1u2LAhiYmJhuWEhAQaNWpkWDb+7Iyvp7TzCCFYt24dbvpcJ/n8888/FdquIvdeCMGAAQNYuXJlof7Q0NAy983KysLa2rrMYysUtyMV8XR1AToD7wIf5Lf3a9IoheJuYe3atTzyyCNcvnyZiIgIrly5gouLC5cu7aVePcjLk0H1laVnz56sW7eOvLw8rl+/zs6dO0vcrkOHDly4cAGQ8U3G24WGhtKmTRvD8iOPPMKECRMKebkqSmRkpEF46CcNANjZ2ZGamgpAly5d2LVrF/Hx8eh0OlauXElQUFCFz5GcnIyTkxMmJiYsX74cXX5qf+NzFGXgwIEsWbLEsKwXJY888ggHDhyo9HUWxc3Njbi4OMO15+TkcOrUKezt7WnZsiU///wzIGc8ZmRkFLM1JCSEzz77zBBPFxYWRnp6Or1792bVqlXodDpiYmLYsWOHYZ+5c+eyfv36Yrb06dOH1atXk53vPl22bFmpHlA97u7uXLp0ifDwcIBC4ickJISPP/7YIJaPHj0KFL/fpW03cOBAPv/8c4O4S0hIKLZ/165d2bdvn+E7mpGRQVhYWJl26e9TSfGQCsXtTrmiSwgRXEIr39etUChYuXKlYYhJz4MPPsjKlf+jbVu5fO5c5Y/74IMP0rJlSzw9PXnyySfp0qULDg4OxbYbMmSIQWgJIViwYAFubm74+vry+uuvs2zZMsO2EydOJDExkQkTJlTang4dOvDdd9/h7e1NQkIC06dPB2DatGkMHjyY4OBgnJyc+M9//kNwcLAhuHz48OEVPsfTTz/Nd999R9euXQkLC8PGxgYAb29vzMzM8PHxYeHChYX2eeWVV0hMTMTT0xMfHx+DeDl+/DhOTk6Vvs6iWFhYsHbtWl5++WV8fHzw9fU1BPgvX76cxYsX4+3tTffu3bl27VoxW6dOnYqHhwd+fn6GzzI3N5eRI0fi6uqKl5cX06dPLyROT5w4QbNmzYrZMnToUHr16oW/vz++vr7s27eP//73v2Xab2VlxZdffsmQIUPo2bNnIRH+6quvkpOTg7e3N56enrz66qsABAcHc/r0aUMgfWnbTZ06ldatW+Pt7Y2Pj49h1qbxd6Jx48YsW7aMCRMm4O3tTdeuXTl79myZdgHs2LGDIUOGVOETUyjqlnILXmua5gC8DvTO79oFvCmESK5h2wyogteKqnI7F63Nzoaff5axXUOHgn0lq46mpaVha2vLjRs3CAwMZN++fSU+jHv27MnGjRtxdHQs83hr167ll19+Yfny5ZWyIyIigqFDh3Ly5MlK7VdXpKSk8Pjjj7NmzZq6NqVKhISE8Mcff9S1GXXG9evXeeihh/jzzz9r9Dy38/8Oxe1PaQWvKxLT9S1wEhibvzwJWAqMqj7zFIp7DwsLaN0aLl6Uzde3cvsPHTqUpKQksrOzefXVV0sUXAAffPABkZGRZYqumTNnsnnz5lvKv3SnYG9vf8cKLuCeFlwgh7I/+OCDujZDoagSFfF0hQohfMvrq0mUp0tRVW73X6txcbB1K1hbw/DhYKLSFSsUtwW3+/8Oxe1NaZ6uivyLz9Q0rafRgXoAmdVpnEJxr9KokRxWzMwENQNeoVAo7m4qMrw4HfguP7ZLAxKAyTVplEJxr6BpcN99cPSoHGJs2bKuLVIoFApFTVGu6BJChAI+mqbZ5y9XLAGNQqGoEC4ucOyYTB2RmSmHGhUKhUJx91Gq6NI07WEhxA+apr1QpB8AIcSHNWybQnFPYGUFzZvD1atw6RJ4eNS1RQqFQqGoCcqK6bLJf7UrodnWsF0KxV2Dqakpvr6+eHp68sADD5CUlFRsm/vuk68XL5afof5WOXToEM8+++wtH2fy5MklFtkGeO655wwlfjZu3EinTp3w8fHBw8PDUNS5pli0aBEZGRk1eo6IiAhD3im4tXta1n3Uc/PmTfr372/IjXUrtlanXfPmzaNFixb4+vri6urKqFGjKlSeadmyZVUu41Md1zN+/HjOnz9fpfMrFLdCqaJLCKH/z7hNCPGGcQNqNkGKQnEXYW1tTWhoKCdPnqRBgwZ88sknxbZxcpLDiikpckZjTdK5c2cWL15cY8dPSEhg//799O7dm5ycHKZNm8avv/7KsWPHOHr0KH369Kmxc0PdiK6avqdHjx4lJyeH0NBQxo0bV6l9qypSKsrzzz9PaGgo58+fZ9y4cfTt25e4cr7EdSG6jJk+fToLFiy4pWMoFFWhIrMXP65gn0KhKIdu3boRlV/3Jzw8nEGDBuHv709QUC807SwAhw5dZ+TIkfj4+ODj42PIcP7hhx/i6emJp6cnixYtMhzzrbfewt3dnQEDBjBhwgTef19W6erTpw8vv/wygYGBtG/fnj179gCwc+dOhg4dCsD999+Pr68vvr6+ODg48N1336HT6Zg9ezYBAQF4e3sbPFNCCGbMmIGHhwdDhgwhNja2xGtcu3atoXh1amoqubm5NGzYEJD1/9zc3EhNTcXFxcVQ/iYlJQVnZ2dycnLo06cPzz//PL1796ZDhw4cPHiQUaNG4erqyiuvvALIB6+7uzuPPvoo3t7ejB49moyMDBYvXkx0dDTBwcGGEjgrV67Ey8sLT09PXn75ZYOdtra2vPzyy/j7+9O/f38OHDhAnz59aNu2LRs2bDCcp1evXvj5+eHn52f4LObMmcOePXvw9fVl4cKFhe5pWloaU6ZMwcvLC29vb9atW1fh74ezszOvv/46fn5+eHl5cfbsWWJjY3n44YcJDQ3F19eX8PBwDh8+TFBQEP7+/oSEhBATEwPAhQsX6N+/vyHjf3h4eDFbb/XzLYtx48YxcOBAgygqyc61a9dy6NAhJk6ciK+vL5mZmbV+Pb169WLbtm0l1tNUKGoUIUSJDegG/B9wBXjBqM0DjpW2X000f39/oVBUhaioqMIdQ4eW3jZvLthu8+ayt60ENjY2QgghcnNzxejRo8Xm/PP07dtXhIWFCSGE2L9/v+jdO1isWCFEt25jxfvvLzTsk5SUJA4dOiQ8PT1FWlqaSE1NFR4eHuLIkSPi4MGDwsfHR2RkZIiUlBTRrl078d577wkhhAgKChIvvPCCEEKI3377TfTr108IIcSOHTvEkCFDCtl46NAh4eXlJZKSksQXX3wh3nrrLSGEEFlZWcLf319cvHhRrFu3TvTv31/k5uaKqKgo4eDgINasWVPseh955BGxYcMGw/Ljjz8uGjduLMaPHy9++OEHodPphBBCTJ48Waxfv14IIcQXX3xhsDUoKEi89NJLQgghFi1aJJycnER0dLTIysoSLVq0EPHx8eLSpUsCEHv37hVCCDFlyhTDdbdp00bExcUJIeTn36pVKxEbGytycnJEcHCw4ZyA2LRpkxBCiBEjRogBAwaI7OxsERoaKnx8fIQQQqSnp4vMzEwhhBBhYWFC/7+o6D00Xn7ppZfErFmzDOsSEhKK3SNjHn30UcN9bNOmjVi8eLEQQohPPvlEPP7448WOn52dLbp16yZiY2OFEEKsWrVKTJkyRQghRGBgoPjpp5+EEEJkZmaK9PT0Yrbe6udrzOuvv26473oWLlwonnrqqTLtDAoKEgcPHqzT6+nfv784dOhQqddW7H+HQlEJgEOiBD1T1uxFC2TslhkyjktPCjC6mrWfQnHXkpmZia+vLxEREfj7+zNgwADS0tL466+/GDNmjGG7mzdv0qQJnDy5na+++h6Q8WAODg7s3buXkSNHGuoNjho1ij179pCXl8fw4cOxzp/y+MADDxQ696hRsnCEv78/ERERJdoXHx/PpEmT+PHHH3FwcGDLli0cP37cEP+SnJzM+fPn2b17NxMmTMDU1JTmzZvTt2/JJVhjYmJo3LixYfnrr7/mxIkTbNu2jffff5+tW7eybNkypk6dyoIFCxgxYgRLly7lq6++MuwzbNgwALy8vOjYsaOhTmLbtm25cuUKjo6OtGrVih49egDw8MMPs3jxYl588cVCthw8eJA+ffoY7Jk4cSK7d+9mxIgRWFhYGDxyXl5eWFpaYm5ujpeXl+Fe5eTkMGPGDEJDQzE1NSUsLKzEazZm27ZtrFq1yrBcv379cvcxxvgz++mnn4qtP3fuHCdPnmTAgAEA6HQ6nJycSE1NJSoqylDr08rKqsTj3+rnWx4iPyixNDtvl+tp0qQJ0dHR+Pv7V+k6FYqqUKroEkLsAnZpmrZMCHG5Fm1SKGqOX3+t2HaDBslWDehjupKTkxk6dCiffPIJkydPxtHRkdDQ0ELbXrokXy9ehI4dC/r1D7KilNavx9LSEpDiraShFJ1Ox/jx43nttdfw9PQ0HPPjjz8mJCSk0LabNm0yzF4uC2tra7Kysgr1eXl54eXlxaRJk3BxcWHZsmX06NGDiIgIdu3ahU6nM5zf2G4TExPDe/2y/jqK2lKSbWXdH3Nzc8M+xucxPsfChQtp2rQpx44dIy8vr9QHf9FzVuQ+lUZ5n5kQgo4dO/L3338X6k9JqVg2n1v9fMvj6NGjdO7cuVQ7S7KnLq4nKyvL8GNFoagtKhLTlaFp2nuapm3SNG27vtW4ZQrFXYaDgwOLFy/m/fffx9raGhcXF0MNQCEEx44do1Ur8PLqx48/fkZyshRFKSkp9O7dm59//pmMjAzS09NZv349vXr1omfPnvz6669kZWWRlpbGb7/9Vimb5syZg7e3N+PHjzf0hYSE8NlnnxnircLCwkhPT6d3796sWrUKnU5HTEwMO3bsKPGYHTp04MKFC4CMb9q5c6dhXWhoKG3atDEsP/LII0yYMIEpU6ZUym6QNfj0D+qVK1fSs6csnGFnZ0dqaioAXbp0YdeuXcTHx6PT6Vi5ciVBQUEVPkdycjJOTk6YmJiwfPlydDpdsXMUZeDAgSxZssSwnJiYaLjWAwcOVPo6i+Lm5kZcXJzh2nNycjh16hT29va0bNmSn3/+GZCe04yMjGK2VuXznTt3LuvXry/XtnXr1rFlyxYmTJhQqp1Q+P7VxfXot+to/MtGoagFKiK6VgBnARfgDSACOFiDNikUdy361AmrVq1ixYoVfPPNN/j4+NCxY0d++eUXzMzg3//+iNOnd9C5sxf+/v6cOnUKPz8/Jk+eTGBgIF26dGHq1Kl06tSJgIAAhg0bho+PD6NGjaJz5844ODhU2J7333+fLVu2GILpN2zYwNSpU/Hw8MDPzw9PT0+efPJJcnNzGTlyJK6urnh5eTF9+vRSxcuQIUMMQksIwYIFC3Bzc8PX15fXX3+dZcuWGbadOHEiiYmJTJgwodL3skOHDnz33Xd4e3uTkJDA9OnTAZg2bRqDBw8mODgYJycn/vOf/xAcHGwIxh4+fHiFz/H000/z3Xff0bVrV8LCwgzDu97e3piZmeHj48PChQsL7fPKK6+QmJiIp6cnPj4+hof98ePHSxxeqywWFhasXbuWl19+GR8fH3x9fQ0B/suXL2fx4sV4e3vTvXt3rl27VszWqny+J06cKLWg+sKFCw0pI3744Qe2b99O48aNy7Rz8uTJPPXUU/j6+qLT6Wr9eq5fv461tXW1fB4KRWWoSMHrw0IIf03TjgshvPP7dgkhKv5z8RZRBa8VVeVOLFobGwvbtoGNDQwbJksFlUVaWhq2trZkZGTQu3dvvvzyS/z8/GrH2FLo2bMnGzduxNHRsczt1q5dyy+//MLy5csrdfyIiAiGDh3KyZMnb8HK2iMlJYXHH3/c4Nm80wgJCeGPP/6oazOqjYULF2Jvb8/jjz9e6jZ34v8Oxe1DaQWvK1J7MSf/NUbTtCFANKAqxCkUNUTjxlJwpafLnF1NmpS9/bRp0zh9+jRZWVk8+uijdS64AD744AMiIyPLFF0zZ85k8+bNbNq0qfYMqyPs7e3vWMEF3FWCC8DR0ZFJkybVtRmKe5CKeLqGAnuAVsj8XPbAG0KIDTVvnkR5uhRV5U79tXrsGJw6JTPVd+lS19YoFPced+r/DsXtQWmernJjuoQQG4UQyUKIk0KIYCGEf20KLoXiXsTZWb5GRkJ+7LZCoVAo7nDKKnj9MVCqG0wIcevF2xQKRYk4OECDBpCQAFFR0Lp1XVukUCgUilulrJguNZ6nUNQhLi5SdF26pESXQqFQ3A2UlRz1u9o0RKFQFKZNGzhyBGJiICsLKpCXU6FQKBS3MeXGdGmatsM4KapKjqpQVJwbN24YcmA1a9aMFi1a4Ovri6OjIx4eHmXua2UFTk6QlydjuyrKzz//zOnTp2/R8vKZN2+eobh2URYtWsT3339vWM7NzaVRo0bMnTu3yudLSkri008/rdC2tra2FT5uXl4ezz77LJ6ennh5eREQEMAlfWmAGiAiIsJQELomKfo9eO2119i2bVup2584cYLJkyfXuF0Kxb1MRZKjvgjMzm+vAqFUcOhR07RBmqad0zTtgqZpc0rZpo+maaGapp3SNG1XBe1WKO4IGjZsSGhoKKGhoTz11FM8//zzhmUTk/L//Fq1kmVgKqMBakt0lUZubi7ffvstDz30kKFvy5YtuLm58eOPP5Zbuqg0KiO6KsPq1auJjo7m+PHjnDhxgvXr15ebX+xWqCvR9eabb9K/f/9St/fy8uLq1atEVkbhKxS3OUII4jPiOXH9BH9c+INlocuITo2uM3sqMnvxsFHbJ4R4ASh3ErumaabAJ8BgwAOYoGmaR5FtHIFPgWFCiI7AmKLHUSjuVnQ6HU888QQdO3Zk4MCBZGZmAtCnTx/+9a9/ERQUxE8/fcSVK4d57rkgfH39CQkJISYmBoCvvvqKgIAAfHx8ePDBB8nIyOCvv/5iw4YNzJ49G19fX8LDwwkPD2fQoEH4+/vTq1cvzp49C8is4M8++yzdu3enbdu2hoLBAO+99x4BAQF4e3vz+uuvG/rfeecd3Nzc6N+/P+fOnSvxurZv346fnx9mZgXRCytXrmTWrFm0bt2a/fv3G/p///13/Pz88PHxoV+/fkBxD5qnpycRERHMmTOH8PBwfH19mT17dpl26pk0aRK//PKLYXnixIls2FB48nVMTIyh1A9Ay5YtqV+/Pt988w3PP/+8YbuvvvqKF154gYiICNzd3Zk6dSqenp5MnDiRbdu20aNHD1xdXQ2lfubNm8ekSZPo27cvrq6uhoLec+bMYc+ePfj6+rJw4UKysrKYMmUKXl5edOrUyZDBftmyZYwYMYIHHngAFxcXlixZwocffkinTp3o2rUrCQkJlfoeTJ482fAZHzx4kO7du+Pj40NgYKChrM4DDzxQqFi3QnEnoBdWx68f5/cLv/Pt0W95e/fbPPPbM4xeM5opv0zhX9v/xZKDS1h3Zh0XEi7Uma3lJkfVNK2B0aIJ4A+UXA+iMIHABSHExfzjrAKGA8Y/wR8CfhJCRAIIIWIraLdCUTUeeKBy2993HyxaVHz/ihbOLoPz58+zcuVKvvrqK8aOHcu6det4+OGHAenV2bVrFzk5Ofj5BTFr1i90796YM2dW8+9//5tvv/2WUaNG8cQTTwCy9Mw333zDzJkzGTZsGEOHDmX06NEA9OvXj88//xxXV1f++ecfnn76abZvlxECMTEx7N27l7NnzzJs2DBGjx7Nli1bOH/+PAcOHEAIwbBhw9i9ezc2NjasWrWKo0ePkpubi5+fH/7+/sWua9++fYX6MzMz+fPPP/niiy9ISkpi5cqVdOvWjbi4OJ544gl2796Ni4uLQUSUxvz58zl58qShSHhpdvbu3duwz9SpU1m4cCHDhw8nOTmZv/76i+++KxyuOnbsWHr27MmePXvo168fDz/8MJ06dWL8+PF4e3uzYMECzM3NWbp0KV988QUAFy5cYM2aNXz55ZcEBATwv//9j71797JhwwbeffddQ73A48ePs3//ftLT0+nUqRNDhgxh/vz5vP/++2zcuBGQiWRBDu+dPXuWgQMHEhYWBsDJkyc5evQoWVlZtGvXjv/+978cPXqU559/nu+//57nnnuuwt8DPdnZ2YwbN47Vq1cTEBBASkqKofBz586dmT9/Pi+99FKZn4VCURekZacRlRJFVGoUUSlRRKdGE5UqX2/qbpa6n4OlA83tmuNk60Rzu+a0cWhT6rY1TUUy0h9Gpo7QgFzgElB67YQCWgBXjJavUtxD1h4w1zRtJ2AHfCSE+B6F4h7AxcUFX19fAPz9/YmIiDCsGzduHADnzp0jIuIk//nPAExNwcZGZ6gXd/LkSV555RWSkpJIS0sjJCSk2DnS0tL466+/GDOmwIl882bBP6cRI0ZgYmKCh4cH169fB6SY2bJlC506dTIc4/z586SmpjJy5Ejq1asHwLBhw0q8rpiYGDp06GBY3rhxI8HBwdSrV48HH3yQt956i4ULF7J//3569+6Ni4sLAA0aNCjxeKVRmp3GoisoKIhnnnmG2NhYfvrpJx588MFCHjiQnq1z586xfft2tm/fTr9+/VizZg39+vWjb9++bNy4kQ4dOpCTk4OXlxcRERG4uLjg5eUFQMeOHenXrx+aphnW6xk+fDjW1tZYW1sTHBzMgQMHig1d7t27l5kzZwLg7u5OmzZtDKIrODgYOzs77OzscHBw4IF80e/l5cXx48eBin0PjDl37hxOTk4EBAQAMlu+niZNmhAdXXdDLwpFbl4u19OuczXlKlGpUfI1X2gl30wudT97S3ua2zanuV3h5mTnRD3zerV4BWVTrugSQrhU8dglVYwrGsxhhvSc9QOsgb81TdsvhAir4jkVirK5VQ9VNXi49FhaWhrem5qaGoYXAUNhZSEEnp4defnlv8nIgAEDZJkgkMODP//8Mz4+PixbtsxQZNqYvLw8HB0dDd6hsmzQx1oJIZg7dy5PPvlkoW0XLVqEVl4hSMDa2pqsrCzD8sqVK9m3bx/O+Rlfb9y4wY4dOxBClHg8MzMz8vLyDMvGxzKmNDuLMmnSJFasWMGqVav49ttvS9zG0tKSwYMHM3jwYJo2bcrPP/9Mv379mDp1Ku+++y7u7u5MmTKl0PZ6TExMDMsmJibk5uYa1hW9vpKut6wYt4qcpyLfg6LnK+1zzMrKMni9FIqaJDMnk6spV7mScoUryVe4mnKVqylXiUmLQSdKzghtaWpJC7sWNLdrTkv7ljS3a04Le7lsa1HxyTN1SUWGF62Ap4GeSNG0F/hMCFHyf8ICriJLB+lpiazbWHSbeCFEOpCuadpuwAdQokuhANzc3IiLiyM5+W/Mzbtx4UIOsbFhdOzYkdTUVJycnMjJyWHFihW0aNECADs7O0OMjr29PS4uLqxZs4YxY8YghOD48eP4+PiUes6QkBBeffVVJk6ciK2tLVFRUZibm9O7d28mT57MnDlzyM3N5ddffy1R8HTo0IELF2TMREpKCnv37uXKlSsGwbB06VJWrlzJ/PnzeeaZZ7h06ZJheLFBgwY4Ozsbht6OHDlimElofF1l2dmkSLHKyZMnExgYSLNmzejYsWMxe48cOUKzZs1o3rw5eXl5HD9+HG9vbwC6dOnClStXOHLkiMGzVBl++eUX5s6dS3p6Ojt37mT+/PnExMQUuo7evXuzYsUK+vbtS1hYGJGRkbi5uXHkyJEKnaMi3wNj3N3diY6O5uDBgwQEBJCamoq1tTVmZmaEhYXh6elZ6etUKEoj9WYqkcmRBnEVmRzJ1dSrxGfEl7pPk3pNaGHfgpb2LWlp35IWdi1oYd+ChtYNK/TD73amIsOL3wOpyLqLABOA5ZQf9H4QcNU0zQWIAsYjY7iM+QVYommaGWCBHH5cWDHTFYq7HwsLC9auXcvTTz9LVFQyeXm5vPLKc3Ts2JG33nqLLl260KZNG7y8vAwP2PHjx/PEE0+wePFi1q5dy4oVK5g+fTpvv/02OTk5jB8/vkzRNXDgQM6cOUO3bt0AmX7hhx9+wM/Pj3HjxuHr60ubNm3o1atXifsPHjzYUEz4p59+om/fvoU8NsOHD+ell17i008/5csvv2TUqFHk5eXRpEkTtm7dyoMPPsj333+Pr68vAQEBtG/fHpAzQXv06IGnpyeDBw/mvffeK9HOoqKradOmdOjQgREjRpRob2xsLE888YRh2DUwMJAZM2YY1o8dO5bQ0FDq169f6j0rjcDAQIYMGUJkZCSvvvoqzZs3p3HjxpiZmeHj48PkyZN5+umneeqpp/Dy8sLMzIxly5YVul/lUdHvgR4LCwtWr17NzJkzyczMxNramm3btmFra8uOHTsYMmRIpa9ToUi9mcrl5MtEJkdKkZV8hcvJl0sdEjQzMaOlXUuDsGrl0MogsCzNKv79v9OoSMHrY0IIn/L6Stn3fmARYAp8K4R4R9O0pwCEEJ/nbzMbmALkAV8LIRYVPY4qeK2oKndT0drNmyExEXr3hpYt69qashk5ciQLFizA1dW1rk0hIyMDLy8vjhw5goODQ6X3Hzp0KM8//7xhdmVFmTdvHra2trz44ouVPmddcPPmTYKCgti7d2+xuLd7kbvpf0d1kpmTSWRyJJeTL3M56bJBaCVmJZa4vZWZFa3sW8nmUPDazLYZJlpFslbdmZRW8Loif1lHNU3rKoTYn3+gLsC+ipxUCLEJ2FSk7/Miy+8B71XkeArFvYyzsxRdly7d/qJLP4xW16Jr27ZtPPbYY7zwwguVFlxJSUkEBgYWSmdxNxMZGcn8+fOV4FIAMqA9OjWaiKQIIpIiuJx0mYikCGIzSk4yoBdXrR1a08ahDa0c5PvG9Rrf8UOC1UlFPF1nADdAnzGvNXAG6ZkSQgjvGrUQ5elSVJ276ddqRgb88gtoGowaBRYWdW2RQnH3cjf97yiP5KxkLiVd4lLiJS4lXeJy0mUiUyLJzcsttq2ZiZlBXDk7OtPGoQ2tHVrTxKaJEldG3Iqna1AN2KNQKCpJvXrQtClcuwZXrsgUYgqFQlFRdHk6olOjuZh4kUtJlwyvSVlJJW7f1KYpzo7OhtbGoQ1Odk6YmShvaFWpSMqIy5qm+QD6qNk9QohjNWuWQqEoCWdnKbouXVKiS6FQlM7N3JtEJEUQnhjOxcSLXEy8yOXky2Trsotta21mjbOjMy6OLvK1vgttHNpgba7Sh1Q3FUkZMQt4Avgpv+sHTdO+FEJ8XMZuCoWiBmjVCg4ehNhYSE+H/HReCoXiHiY9O53wxHDCE8INIutqylVEsdSYMh2DS30X2tZvi4ujCy71XWhq01QNDdYSFfERPg50yc+lhaZp/wX+piCFhEKhqCXMzWUQ/eXLEBEBJaSdUigUdzGpN1MJTwznQsIFLiRcIDwhnGvp14ptZ6KZ0Ma+DW3rt6Vt/bbc1+A+nB2d75gkoncrFRFdGmCcHlZHydnmFQpFCdja2pKWlmZYXrZsGYcOHWLJkiWVPtbOnTt5++33eeyxjUREgIeHDKwviz59+vD+++/TuXOxmE6FQnEbo/dgnb9xnvMJ57mQcIHr6deLbWduYo6Lowv3NbhPCqz699HGsQ0Wpmq2ze1GRUTXUuAfTdPWI8XWcOCbGrVKoVCUiqUlWFlBcjIkJUEVcnYqFIrbjGxdNhcTL3L+xnnCboRxPuE8UalRxbazMLXAxdGFdg3aGVpL+5YquP0OoSKB9B/mF6Tumd81RQhxtEatUijuEeLi4njqqaeIjJQZWRYtWkSPHj04cOAAzz33nCFj+NKlS3FzcwOkZ6tNGzh2LJ3Jk2cSHX2C3Nxc5s2bx/Dhw8nMzGTKlCmcPn2aDh06FKrpqFAo6p48kcfVlKuciz9H2I0wwm6EcTn5crGag2YmZrg4uuDawBXXhq60a9COVvatMDUxrSPLFbdKZaSxhszNpYYWFXckD6x8oEaO++uEsotgZ2Zm4uvra1hOSEhg2LBhAMyaNYvnn3+enj17EhkZSUhICGfOnMHd3Z3du3djZmbGtm3b+Ne//sW6desMx3B2hjfffAcXl76sX/8tKSkykWf//v354osvqFevHsePH+f48eP4+fnVxGUrFIoKkpSVxLn4c5y7cY5z8ec4n3CezNzCP4Y0NJwdnHFt6GoQWc6OzsqDdZdRkdmLryHrLK5DCq6lmqatEUK8XdPGKRR3A9bW1oSGhhqW9TFdIDOmnz592rAuJSWF1NRUkpOTefTRRzl//jyappGTk1PomA0awOnTWzhyZANbt76PuTlkZWURGRnJ7t27efbZZwHw9vY2FG9WKBQ1T25eLhcTL3Iu/hxn489y7sa5EuOwGtdrjFtDN9o3bG/wYlmZWdWBxYrapCISegLQSQiRBaBp2nzgCKBEl+KOojyPVF2Ql5fH33//jbV14Xw4M2fOJDg4mPXr1xMREUGfPn0Krdc0MDcXPPnkOrp1c6NHD4qsVw5phaI2SM5K5kz8Gc7Gn+VM3BkuJF4olgvLysyK9g3a49bIDbeGbrg2dKWBdYM6slhRl1REdEUAVkBW/rIlEF5TBikU9xIDBw5kyZIlzJ49G4DQ0FB8fX1JTk6mRYsWgPSMlcSQISFs2fIxLVt+THa2xqlTR+nUqRO9e/dmxYoVBAcHc/LkSY4fP15bl6NQ3NUIIbiScoXTcac5E3eGM/FniEmLKbZdC7sWuDdyN7TWDq3v6uLOiopTEdF1EziladpWQAADgL2api0GEEI8W4P2KRR3NYsXL+aZZ57B29ub3Nxcevfuzeeff85LL73Eo48+yocffkjfvn1L3PfNN19lzJjnmD3bm9deE7Rv78zGjRuZPn06U6ZMwdvbG19fXwIDA2v5qhSKu4NsXTYXEi5wOu60FFrxZ0jLTiu0jd6L5d7InQ6NO+DW0A07S7s6slhxu1ORgtePlrVeCPFdtVpUAqrgtaKq3O1Fay9fhn37oGFDCAmpa2sUijubbF028RnxxKXHEXk1km/Dvy1W9LlRvUZ0aNSBDo064NHYA2dHZzWbUFGMKhe8rg1RpVAoqkbLlmBhATduyJxdjo51bZFCcedwM/cmsemxxKbHEpcRR2JmoqF0ju6mDl2eDmcHZzwae+DR2IMOjTvQxKZJHVutuJNRc1EVijsYU1No3RouXJBFsDt1qmuLFIrbl6zcLGLTY7medp3Y9FiSbyYXWm+imdDQuiFNbJpgYmXCyICRqmyOolpRokuhuMNp27ZAdPn4gImK11UogPJFlqmJKY2sG9HYpjFNbZrSsF5DQ16s6LxoJbgU1U6pokvTtOVCiEmaps0SQnxUm0YpFIqK07AhODjIskDR0XLIUaG4F8nWZRtE1vX06yRlJRVab2piSuN6jWli04QmNk1oaN1QxWMpapWyPF3+mqa1AR7TNO17imSiF0Ik1KhlCoWiQmia9HYdPQoXLyrRpbh3yM3LJS49juvp17medp2EzARDTBYUFll6T5ZK3aCoS8oSXZ8DvwNtgcMUFl0iv1+hUNwGODtDaKj0dGVlyYLYCsXdRp7IIyEzgWtp17iedp24jDjyRJ5hvYlmQuN6cqiwqW1T5clS3HaUKrqEEIuBxZqmfSaEmF6LNikUikpibQ3Nm0NUFEREgLt7XVukUNw6QgjSstO4lnaNmLQYYtNjC2V719BoYN2AZrbNaGrTlMY2jVWtQsVtTbl+ViHEdE3TfDRNm5HfVCE3haISmJqa4uvra2jz588vc/t333230HL37t0rdJ62+b7nixdBCJndftOmTaVuf/ToUaZOnQrIrPeNGzemU6dOuLq6EhISwl9//VWh81YEZ2dn4uPjyc7Opnfv3uTm5pa/k+KeJFuXzZXkKxyIOsCGcxv4NexXDkYf5GrKVbJ12dhZ2OHawJVerXsxqsMoBrUbhG8zX5zsnJTgUtz2VKTg9bPANOCn/K4VmqZ9KYT4uEYtUyjuEooWvC6Pd999l3/961+G5YqKnxYtwNJS5utKTJSi69ChQ9x///2lnueVV14xLI8bN44lS5YAsGPHDkaNGsWOHTvo0KFDhW0vDwsLC/r168fq1auZOHFitR1XcecihCAhM4GYtBhiUmOIz4zHOGm3paklTW2b0sy2GU62TthY2NShtQrFrVGRnwVTgS5CiHQATdP+C/wNKNGluKN44IEHauS4v/5a+ULaycnJBAYGsmHDBtzc3JgwYQJ9+/YlPDyczMxMfH196dixIytWrMDW1pa0tDR27tzJvHnzaNSoESdPnsTf358ffvgBTdM4ePAgs2bNIj4+HZ3OkmbNtvLaa6+RmZnJ3r17mTt3LuPGjTOcPzU1lePHj+Pj41OifcHBwUybNo0vv/yShQsXEh4ezjPPPENcXBz16tXjq6++wt3dnV9//ZW3336b7OxsGjZsyIoVK2jatCk3btxgwoQJxMXFERgYWOghOmLECObOnatE1z1MVm4WMakxUmilxXAz96ZhnYlmQmObxjjZOtHMthkNrBuoAu6Ku4aKiC4N0Bkt6ygyk1GhUJSOXkTp0QugJUuWMHnyZGbNmkViYiJPPPEEAEuWLCnVM3b06FFOnTpF8+bN6dGjB/v27SMwMJBx48axevVq2rcPYM2aFK5fr8drr71JaOghg/fKmEOHDuHp6Vmm3X5+fnzxxRcATJs2jc8//xxXV1f++ecfnn76abZv307Pnj3Zv38/mqbx9ddfs2DBAj744APeeOMNevbsyWuvvcZvv/3Gl19+aTiup6cnBw8erORdVNzJCCG4kXmD6NRoYlJjuJF5o9B6G3Mbmts1x8nOiaY2TTE3Na8jSxWKmqUiomsp8I+maevzl0cA39SYRQpFDVEVj1R1UNrw4oABA1izZg3PPPMMx44dq9CxAgMDaZmfE8LX15eIiAgcHBxwcnIiICAAABcXe65fh7i40o8TExND48aNyzyX3juVlpbGX3/9xZgxYwzrbt6UnomrV68ybtw4YmJiyM7OxsXFBYDdu3fz008yImHIkCHUr1/fsK+pqSkWFhakpqZiZ6cKA9+tZOuyiUmNITo1mui06ELeLFPNlCY2TXCyc6K5XXPsLOyUN0txT1CR2osfapq2E+iJ9HBNEUIcrWnDFIq7nby8PM6cOYO1tTUJCQkGMVUWlpaWhvempqbk5uYihCj0wGrfHq5fl620evbW1tZkZWWVea6jR4/SoUMH8vLycHR0LFE4zpw5kxdeeIFhw4YZhj/1lPUQvXnzJlYqr8VdhRCClJspRKdGE5UaRVxGXKFhZRtzG1rYt6C5XXOa2DRRQe+Ke5IKZYkTQhwRQiwWQnykBJdCUT0sXLiQDh06sHLlSh577DFycnIAMDc3N7yvCO7u7kRHRxuG7OztU7G0zAXsiItLLXGfDh06cOHChVKPuWvXLr788kueeOIJ7O3tcXFxYc2aNYB8uOo9c8nJybRo0QKA7777zrB/7969WbFiBQCbN28mMTHRsO7GjRs0btwYc3M1hHSnkyfyuJ52ncPRh/k17Fd+O/8bR68dJTY9Fg2NpjZN6dSsE0PbD2WY2zA6N+9Mc7vmSnAp7lnUN1+hqGGKxnQNGjSIxx57jK+//poDBw5gZ2dH7969efvtt3njjTeYNm0a3t7e+Pn5GYRLWVhYWLB69WpmzpxJZmYm1tbWLF68DQ+PYH7/fT6+vr7FAund3d1JTk4uNMS3evVq9u7dS0ZGBi4uLqxbt84wc3HFihVMnz6dt99+m5ycHMaPH4+Pjw/z5s1jzJgxtGjRgq5du3Lp0iUAXn/9dSZMmICfnx9BQUG0bt3acO4dO3aUOqNScfujHza8mnKVmLSYQnmzLM0saWEnvVnNbJthYWpRh5YqFLcfmiht/OE2onPnzuLQoUN1bYbiDiQ6OprmzZvXtRm1TmYm/PKLHF4cPhzq1Su+zcKFC7GzszPk6qotRo0axX/+8x/c3Nxq9byKqpORk8HVlKtcTblKbHpsoSzwDpYOtLBvQQu7FjSq1+iuic26V/93KKoHTdMOCyE6F+1Xni6F4i7E2hpatYLLl+H8eSgpM8T06dMNQ4a1RXZ2NiNGjFCC6w4gOSuZqylXuZJyhYTMglK7miaHDfVCy85STYZQKCpKRZKjjgL+CzRBBtJrgBBC2Fdg30HAR4Ap8LUQosRU3JqmBQD7gXFCiLUVN1+hUJSGq6sUXeHh4OkJpkVK0FlZWTFp0qRatcnCwoJHHnmkVs+pqBj6JKVXUq5wNeUqKTdTDOvMTMxwsnWipX1Lmts1x9LMsowjKRSK0qiIp2sB8IAQ4kxlDqxpminwCTAAuAoc1DRtgxDidAnb/Rf4ozLHVygqStHZffcKjRuDo6PMUH/liiyKrVAYI4QgPiOeKylXuJJ8hfScdMM6S1NLWti3oKV9S5xsne6pwtF3QtiN4s6kIqLremUFVz6BwAUhxEUATdNWAcOB00W2mwmsAwKqcA6FokzMzc1JS0vD1tb2nhNemibTRxw4IIcYlehSgBQUcRlxRCZHciXlCpk5mYZ11ubWtLJvRSv7VjS2aYyJVqEJ7ncVQgjS0tLU7FpFjVAR0XVI07TVwM+AIbudEOKnUveQtACuGC1fBboYb6BpWgtgJNAXJboUNUCDBg1ISEggNbXk1Al3O5aWUnxduwbnzoHKRXpvIoQgKSuJ2PRYYjNiC804tDK1oolNE5rYNMHe0h4NDV2Kjmsp1+rQ4rrF3NycBg0a1LUZiruQiogueyADGGjUJygogF0aJbkVivpsFwEvCyF095oXQlE7mJqalpt5/W4nNRV+/RVu3IDnnqtraxS1hRCCs/Fn2RO5h72Re0nMKsiV1symGT1b96R7q+60a9DunvMCKxR1RUUy0k+p4rGvAq2MllsC0UW26Qysyv+DbwTcr2larhDi5yqeU6FQFGHYMNi4EXbsgIcegiZN6toiRU0hhOBCwgX2RO5hT+Qe4jPiDev0QqtH6x7cV/8+JbQUijqgIrMXWwIfAz2Qnqq9wCwhxNVydj0IuGqa5gJEAeOBh4w3EEK4GJ1nGbBRCS6Fonpp1gyCgmDnTli3DqZPr2uLFNVNVEoUOyN2suvyLmLSYgz9jeo1olfrXvRq3Ut5tBSK24CKFrz+H6Cvdvtwft+AsnYSQuRqmjYDOSvRFPhWCHFK07Sn8td/XmWrFQpFpRgzRoqurVth/Hgwqj+tuEO5kXGD3Zd3s+vyLsITww39jlaOBqHl3shdCS2F4jaiIqKrsRBiqdHyMk3TnqvIwYUQm4BNRfpKFFtCiMkVOaZCoag8rVtD166wf7/MVD95cl1bpKgKmTmZ/HXlL3ZG7OTY9WOI/DDZeub16N6yO0HOQXg39b4nZx0qFHcCFRFd8ZqmPQyszF+eANyoOZMUCkVNMHasFF2//QYPPniPz2S8dg3S0iAvD3Q6OcWzXj3ZbG3ByqquLTSgy9Nx9NpRdlzawf6o/YaZh2YmZgQ2D6SPcx/8m/urOocKxR1ARUTXY8ASYCEypuuv/D6FQnEH4eoKvr4QGiqF1/jxdW1RDZCVBZcuyXbxIly/DomJkJAAX3xRoDS//hr++afkY3h7wzvvyPc5OfDf/8pMs02ayNfWraF5czCr2SpqEUkR/HnxT3Ze3klSVpKh37OxJ32c+9CjdQ9sLWxr1AaFQlG9VGT2YiQwrBZsUSgUNczYsVJ0bdgAI0bcVg6dqiGE9FKBvLDXXpN9JZGQUCC6nJygbVtZG8nUVHq8MjJkMw54i48vWZyZmUGLFvD00+DhUdyWKpKclczOiJ1sv7Sdi0kXDf0t7FrQ16UvfZz70MRGTT9VKO5UShVdmqa9JIRYoGnaxxTPr4UQ4tkatUyhUFQ7np7QoQOcOQObN8PIkXVtUSURQqbXP3gQDh+G++6DZ56R61q0kAKqdWtwcZGtZUspoho0AAeHguM8/njFzufgAHPnQlycbNeuQWSkfL18WVYW17N0qUz/7+4uSwF07ChtKUeI6fJ0HIk5wtaLWzkYfZDcvFwAbC1s6d26N31d+tK+YXsVEK9Q3AWU5enSl/45VBuGKBSKmkfT5EzGN9+E9ethyBCwuBNCgVJTYft2+OMPWUhST3pBrUAaNYI1a6p32K9ePejevXh/Vpa0o5VRKsLz5yEqSrY//5R9Dg7g5QU9ekDPnoUOEZUSxdaLW9l+abshcamGRkDzAPq59COwRSDmpqoUjUJxN1HqfychxK/5bzOEEGuM12maNqaEXRQKxR1A587SCXTpEmzbBvffX9cWlcPWrfDpp5ArPUA4OEgB07mzFDR6NK3G46wMWFnJIDlj3npL3tSzZ2U7eVIOae7dK4c1e/bkZu5N/jq3jS2HVnHS5AaYySLSLexa0L9tf/q69KWBtSo/o1DcrWjlVVPXNO2IEMKvvL6apHPnzuLQIeVwUyiqi717ZXx4/foyvtx4lKzOEQIyM6WXCeDCBXjhBfDzg4EDITCw9sTVrSAEREfDiRNENDbnd3GenRE7SY+5DBcvYilM6W3bkQEdhuDeaxRaq1a3HBOmUChuDzRNOyyE6Fy0v6yYrsHA/UALTdMWG62yB3Kr30SFQlFb9OgBbm6yCPbatTBpUl1blM/x47BihYzNevdd2deunYyXatiwbm2rJDd12ey9eZbNJts4F3bO0N/e3oWB1q3odTqdejoTOPYnrPpTzojs3h0eeUSJL4XiLqWsn4vRyHiuYcBho/5U4PmaNEqhUNQsmgZTp8Ls2TK2KySkjmsyXrwI33wjRRfI4bj4eBmnBXeU4LqSfIXNFzaz/dJ20nNkzFk983oEOwczqN0gnB2d5Ybp6XLG5YEDcmJAdDScPl0guISQ96NjxzvDs6dQKMqlrJiuY8AxTdPWA+lCCB2ApmmmgGUt2adQKGoId3fo3Rt274bvvpMCrNbJypKerV9+kSLDxgZGjYKhQwuGF+8AcvNy2X91P5vOb+JE7AlDv1tDN0LuC6FXm15YmRXJz2FjI12OPXrIBK1nzhROdxEeDq+8IpO1dukit/P1BXMVXK9Q3KlU5OfTFqA/kJa/bJ3fV8KUHoVCcSfx6KMyS/3u3fDAA1KI1Rq5ufDcc3K2n6bB8OEwYYIUI3cICZkJ/H7hd/4I/4OEzAQArMys6NOmD4NdB9O2ftuKHcjUVObzMCY9XaaciIyUsyH//FPem65doVcv6NQJTFS5H4XiTqIigfShQgjf8vpqEhVIr1DUHMuXw48/yhiv996r5XCiVatk8tEZM2TOrTsAIQRn48+yMWwj+67sQycHAWhl34r7Xe8n2DkYG4tqFI5Xr8K+fXL2Q0SE7LOzg++/Lxh2rIbErAqFovqodCC9EemapvkJIY7kH8gfyKxuAxUKRd0werTMynDunPR4BQXV4MkOH5bZ3wMCCk4+duwd4bHJ1mWz5/Iefg37lfDEcABMNBO6t+zO0PZD8WziWTMJTFu2hHHjZLt6VYovE5MCwZWRAbNmySHI3r1lKgslwBSK25KKeLoCgFXIwHoAJ2CcEOJw6XtVL8rTpVDULFu3wuLFMm7988/BsrqjNnNzpWdm/XoZo/TJJzJL/B1AUlYSm89v5rfzv5F8MxkAOws7BrUbxP2u99OoXqO6NXDPHliwoGDZyUkq56AgKdgUCkWtU5qnq1zRlb+zOeAGaMBZIURO9ZtYOkp0KRQ1S14ePP+8nEQ4cWI1F8O+dk2OW4aFSQ/NpEnw4IO3vTfmUuIlNpzbwM7LOw2leVwcXRjmNozebXpjYXqbpPIXQt7b3bulAEtMLFjXrh3Mn18DKlqhUJTFrQwvghRcHoAV0EnTNIQQ31engQqFou4wMZHlCP/9b1i9Grp1gzZtquHAf/8NixbJIbAmTeQUyVqN1q8cQgiOxBzh57M/E3o9FJClebq06MJwt+E1N4R4K2iaDMhzc5Mf4okTsGuXjAMzMysQXELIPj+/O2pmqEJxN1GR4cXXgT5I0bUJGAzsFUKMrnHr8lGeLoWidliyRJY3bNsWPvjgFtND/forfPmlfN+9O8ycKYcWb0NydDnsvryb9WfXczn5MiBnIQ5oO4AH2j+Ak51THVtYBbKzZRmiZs3k8sWLMvbLwkJm9e/TB/z9VQ4whaIGuBVP12jABzgqhJiiaVpT4OvqNlChUNQ9jz8u83VevCgnFj788C0c7L775AN+4kQYOfK2HE5Mz07n9wu/syFsgyHlQwPrBjzQ/gEGtxtcvbMQaxsLiwLBBZCTI9NSnDwpg/GNakISHCw9kLfhZ6RQ3E1UxNN1QAgRqGnaYSAYmZH+pBCiY20YCMrTpVDUJidPwr/+Jd+/954ctaowOTmFk3cmJNyWAfOJmYlsOLeBTRc2kZGTAUAbhzaMdB9JkHMQZiZ3sfcnPl4OP+7cWZCCwsZG5g5RiVcVimrhVjxdhzRNcwS+QpYDSgMOVK95CoXidsHTE0aMkBMNFy6Ejz6qYBz2lSvw1lvSXdali+y7zQTXtbRr/HTmJ7Zd3EZOnpwP5NnYk9Eeo/Fz8rv94rVqgkaN5ESGBx+UomvnTjnEqBdcmZnw+utySLh379vuM1Qo7mTK9HRp8j9QSyHElfxlZ8BeCHG8dsyTKE+XQlG7ZGfL2YyRkTJT/bRp5exw7hzMmwdpaVK1vfvubTVUdSX5CmtOr2HX5V3kiTwAurboymiP0bg1qowr7x5gxw748EP5XtPA21vGf3XrdkdVC1Ao6pIqp4zI39G/xiyrAEp0KRS1T3g4/N//ybKAb78NPj6lbBgaCu+8I+sodukiZyjeJikKLiZeZPXJ1fx99W8EAlPNlD7OfXiww4O0cmhV1+bdnmRnw6FD0gN28KDMsQbSExYYCC++qILvFYpyuJXhxf2apgUIIQ7WgF0KheI25b77ZCnEH36Qjo8PP4SGDYts9PffMjFnbq4Mxp41S9YRrGPO3zjPypMrORgt/22ZmZgxsO1AHvR4kCY2TerYutscCws5tNi9u/Rc/vWXFGAnT0JcXGHBdfq0DMC/AyoKKBS3AxXxdJ1G5umKANKRCVKFEMK7xq3LR3m6FIq6QaeDV16Rz9v77pN5Nq2s8lfu2iWVWF4eDB0qxyDreEgx7EYYK0+s5FCM/H9haWrJ4HaDGdlhJA2sVWzSLREfD0lJMuEqyHiwmTPB0VEW4O7dW866uI2GlRWKuqLSni5N01oLISKRebkUCsU9iKkpzJ0rR5TCw2Vg/Zw5+c/VZs2kV2TECHjooTp92BYVW1ZmVgx1HcoI9xE4WDnUmV13FY0ayaYnKUmWHIqJkTnZfv1VJsDt3VuKMBcXJcAUiiKU6unSNO2IEMIv//06IcSDtWqZEcrTpVDULVevSuGVng5jxsAjj+SviI8v/CCuZS4mXmTF8RUciJYTqpXYqmWEgAsXCkoQ3bgh+1UKCsU9TlViuox/orStfpMUCsWdQsuW0sP125MbOPFFI/5s0Z1+/agzwXUl+QorTqxg35V9gBxGHNp+KCPdRyqxVZtoGri6yvbYY3DqlBRflpYFgisrSyZ+CwyUiVhVEW7FPUxZokuU8l6hUNyD+EZuoDlfER5uxhcffEGzZk3oWGspkiXX0q7xvxP/Y2fETgQCcxNz7ne9n9Eeo3G0cqxdYxSF0TSZLsTTs3D/oUNw/rxsK1bIop49e0KPHtBKzSBV3FuUNbyooyBw3hrI0K9CBtLb14qFqOFFhaLOMaqjuNnlaT69NBhbW3jzTenkqGkSMxNZfWo1v1/4HZ3QGWYjju04lob1ik6pVNxW5ObCsWOy7NDff8sxaj2tWsnJGIbZGQrF3UGlhxeFEHU/71uhUNQ9v/1WULh6+nRCBg3m8Lvwzz9yZuO8edChQ82cOj07nZ/O/MQv537hpu4mGhp9nfvykNdDNLVtWjMnVVQvZmaysLa/PzzzjMzrtnev/AJZWhYWXOvWyWSs7dqpIHzFXUm5KSNu6eCaNgj4CDAFvhZCzC+yfiLwcv5iGjBdCHGs6HGUp0uhqCO2bIGPP5bvn3oKhgwBpPPigw/ks9PSEl57TT4rq4scXQ6bzm9i9anVpGanAtClRRcmeU+ijWOb6juRou7IzZW1OZvk5027cgWeflq+b9RIZsDv1g08PG6L3G8KRWWockb6WzihKRAGDACuAgeBCUKI00bbdAfOCCESNU0bDMwTQnQpeiwluhSKW0AIWYjawqJy+6WmwhNPyOGgadNkPSAjdDpYvBi2b5cx03PnQkDArZoq2BO5h+9CvyM2IxaQtREf9X0U90but3Zwxe3NtWvwyy9yCFI/CxLAzk4G4U+ZAg5qkoTizqAuRFc3pIgKyV+eCyCE+E8p29cHTgohWhRdp0SXQlEBEhNl5vDQUCmY0tIKmhAyr5abm8wg7uYm8yiVV84lLAzOnIHhw0tcLQR89hls3iwPNXu2TGReFY5fP87So0u5kHgBgFb2rZjiO4XOzTvfG4WoFRIh5Pdu/36ZDT86GqytZRC+fkbk0aPg7Az169epqQpFadSF6BoNDBJCTM1fngR0EULMKGX7FwF3/fbGKNGlUJRCbi4cOAB//ilnieXllbydiUnxdRYWcvhmxIiCLOMgBZudXYVNEAK+/RZ+/lmG4Tz8sMzlVVGdFJUSxbdHvzXk2mpg3YCHvR6mr0tfTE3UsNI9jRAySdzVq/K7CrI25IQJ8rV9e+kF69JFzopU4lxxm3ArtRerfM4S+kpUeJqmBQOPAz1r0B6F4u5Bp4P16+Gnn6RIAhn30qUL9Okj42RsbMDWVr5qGly+DOfOyXb2LERFyVI+u3bJaf4jRkiPwttvy/IuvXpVyBRNkymabG1lncbly+Xhn3++bO2WejOVlSdXsun8JnRCh5WZFQ92eJAR7iOwMlOz2RTIL1erVoVTS6SkyOrroaHSIxYWJr94jRtD584wahQ0bVr4GArFbUJNiq6rgHESlpZAdNGNNE3zBr4GBgshbhRdr1AoihARAYsWybo8IIdZ+veXYqusmJe2bWUbnF/ZKzYWNm6EP/6QxRX375fCrGlTOcW/gqIL5HNt3DjpMPvgAzh4EJ57TsZ5GTvRAHLzcvkt7DdWnlxJek46Ghoh94Uw0Wsi9a3VcNEdjRCQmQkZGTIWMCNDtsxMmSRV/zp6dIEYWrECIiNlmYMW+dEla9fKofLcXBmPqNMVtNxc6bXV6eQPjhs35NB6u3ayIPeoUfDVVzLNSUgIPPigLFe0Y4f8uzExKWimpgWvZmbFX0eOlH9XIP9Gfv0VvLxkrVGQAnDDBuk1trQs3qysCpqlpfxRY2WlJgbcw9Sk6DoIuGqa5gJEAeOBh4w30DStNfATMEkIEVaDtigUdz65ufJhtHq1fN+4sfRI+fpW7dd8kybSRTV+vPQUzJ8vH5TJyXDpkhR1991XqUP6+8vn2vz5Mhfm7Nnw5JPy2QeCQ9GH+PrI10Snyd9fvk19edzvcZwdnStvv6JmEQJu3iyc0mHzZvn9GDeu4Du3aBGcPi0FUHq63K88hg2TIgTgxAmZyf6BBwpEV1KS/AFQHnZ2sjk7w/TpUqA1ayZt0zRp7x9/SNFlYyNnS9rbS6FVEfReZIDr12WMmbV1QV9Cgvx7rAx9+sD//Z98HxMD774LrVvLPxY9330nhVy9egXNxqbg1dZWvldllu44akx0CSFyNU2bAfyBTBnxrRDilKZpT+Wv/xx4DWgIfJofKJtb0hioQnHPExEhq01fvCiX778fJk8u/ACoKomJsnSLh4cUYtnZcsjm+edh0CCYNKlSMV5NmsB//yudDZs3wyefwOa/rmAa8DXn044A0MKuBY93elwFydcVWVmybmZ8vPQUGbfExILWpAl88UXBft99J4XVkCEF34mEBCke9FhZFRYJ9erJ76ney1P0Ozt+vJzsYTyEOGIE9OsnRYWZmWwmJgVeKL2HysREiiv9q54nnpCzHT/4QAbdx8RIMWhvL4/RoYOcHOLlVdyLpn/NzS1c5srLC15+Wf7Y0ePgABMnSnFatGVlFbzq32dmyvuhJy1N/m0be76EkPnKKiJeLSzkfXZ1hVdfLej/6it5nydMKDh2RIS8T7a28rNTgq1OqNE8XdWFCqRX3NMcPChVzM2bcujv2WerLylWbKx8kMTHS4/Zq6/Kh83KlXLYJC9P/oOeMkUOYVZSIG3+M43X16wk0mojmkkeLi1t+L+QCQzvMAQzk5p0tN/j5OXJmL3ExMLflX//Wz58U1IqdpyGDWHZsoLl5cvl68iR8uENUtDovyc2Nrff0JlOJ92uhw/LduGCFDSvvVaQ4+TECfm34ONTu/VEb96Un5OJifTW6e3dsKFgaDY9XYq1tLSCZX3T6eQ+HTrAggXyfXa2HFI1M5Mxn/q/2Zkz5Wevx9KywFNo3OztC16Dgwv2z8qS+6gfSRWiLgLpFQrFrbJpE3z+uXxIBAfL5JHVWTIlMVH+Q+/QQT6QLSxke/xxGDBAejmOH5cJufbtk4KvQYNyD5sn8tgavpUfkr+nQfcU0iM1TC4Owv7iw2w770D7p6XjQHEL5OTIdApRUfLV3LwgtUdWlvyuWFjIIWn9gzI1VQouMzPpsWnYUIqMhg0LWoMGMhWDo2PBEKCeSZOK2+HkVKOXecuYmso0Ke7u0iuVkiKD8I2/gJs3S28vyCFOHx/5I8TLq0Bc1gSWljLOsqi9I0eWv69++Dc9vfjM5GnT5PfDWCA1b14QB5eaWuCRi48v+fjW1tC3b8Hyc89Jgf3ppwXDwL/+KuPx7O1lc3AoeNW/r2x+wLsc5elSKG5HhJAehp9+kssTJshWE78yIyLkA9jGpmQ7du2S4istTW7z5JMyLqUUW87Fn+PzQ58b8m15NvbkCf8nSLvSlk8/lRoB5Ez/CROKB9orinDzpnywRUbKrO36du1a4SEoJ6eCck0g44ZsbGDOnIIhrago+TCtX195LIzZtk0mZT1xQv4I0aNpcuLJ9Ol1Z1tNIIQU5noBVrSlpMhrn2qUwenxx6U38IcfCibsvPGGTFVTFlZWBSLMwQFmzSrY/+RJ+f1u375SIQx3ArWep6s6UaJLcU+RnS3jt/bulb96Z8yQQ3vVRXq6zOng71/xfRISYMkSOdQJMmfSM88Umi2ZlJXEstBl/HnpTwAaWjfksU6P0at1L0PcVna2DFdZu1a+ByW+DAhRWAh9+KH8nIqKKz2aJoPGW7aUXoyWLWUMnqLq5ObK4cfQUDmD9+xZeOghmXgOZKLgr76SKVY8PaFjx5J/rNyt5ObK/0n67+mxY1LIp6TIlpxc0PR9ubmFj7F6dcGPgH//W3rS33pLehYBfvxRimB7e+ltdXAo/urgIH842NlVfFJELaNEl0JxJ5CRIf8BnTwpPRL/+lfBP6PqOv6rr8oYlzlzKpc+Xgj5z/Crr6Q3wN4enn0WXUBnfjv/GytOrCAjJwMzEzNGuY9iTMcxpebbSkqSTrzffissvkaOlM+xu94JYyywcnJk5fBr12Dp0oKHyP/9n5zQYGoqBVXr1rK1bCmDzps3V8HQNc3Nm1I06IXVjz8WxLWB/AxdXOSXtmNH+fd01395K4EQ8n9OSor8o09JkX/o+nv0/fdS5D75ZMGQ5ZIlcsZpRdA0+X/o9dflZAKQhdQjI2XONhcX2af/J1OLQ51KdCkUtzvp6fKfx7lzMq7mjTcKgmurg6wsGTx85kzBFMOqBA3HxsJHH8Hx45y0SuELf4hoaQumJnR26sw0/2k42VUszqck8aV32PTte5eMOAghY67CwqTYPX9efhb6QuIgJyrEx8v4Pf3DJyxMxvy0aFF+uSZF7ZCVJf9+Tp6UQ5Hnzxd4cho0kCEBekGxb5/8+23eXAmxypCZKT3rKSky5lQv2JKT5avxe31Kj08/LZj9+uGHMifbrFkFIwSbNsl6ZdbWcuSgd+8avwwluhSK25nUVCm4zp+Xgujddwtn1b5Vbt6UIu7ECSm05s+/peMnZiSwdMWL7DizGUQeTc3rM234mwT2GFul4yUlSeG1ZYv8fwvyR2nPnnL+gJfX7TcprlTS0wsy/587J8WTcb4nPatWFXhQwsNlELujY62aqrhFbt6Un/Hp09JDOTb/+5+eLlNhgPzl0KGDbO7u0iNTdIKComrk5kpRpk8FAjKXWlgYBAUVeLrWr5detdxc6VXu0qXGTVOiS6G4XUlJkUN+Fy/KGJ133pHCq7rIzpZDlqGh8tf4/PlVnnGmy9MVGko0z8phzEnBg+fNsMBUJs0cN67KnpncXBk2tnmzTK+kx85OhpH17CkF2G3n+Dl0SNbAPHNGJvUs+n+1fn1ZZNzVVQYN33ffXeLGU5RIbCx8840UY0lJhdeZmMhSW/rZkyoVQ+0ghBTD+hnaNYwSXQrF7UhysgwmvXxZDkO880715wlasEBOh3d0hP/8R47fVYazZ+HECU63tuazG38QkRwBaWkE5DRhWrcZNPPsKmc0ff+9FJCenvKh0qqVYV+8vOSv/EoQEyNDyPbtK5jxCHIGv78/dOpU+2mVAGnMiRNSBeonEhjHoZiZyVkB7u5SaLm5SSPVQ/XeQwiZyf7MGdnOnZOzhb//vuC78/77Mn9Y+/aFW1klvRS3PUp0KRS3GwkJ0tV95YoUQu+8U6EcWJXm/HmZmXvuXGjTpuxti4qks2dJmvowS5tdY3vTdPD1pYllA55ccY7AuPxfjPrkmWPHytglnU4GsQ4bJuvqZWcXbJd/zMoIMSFkXOzevVKAXblSeH3LllKAeXrKw1XrLdTHYzVtWuBemzdPPiRnzy6IDTl+XA5peHhIwaVyEylKIyurcK692bPl30RRGjWS6SrGVm3IXlG3qOSoCsXtRHy89HBFR0sh9Pbb1RvPo9MVBEG5uspaPOUFRZ09K0sL5Ysk3bffsGn/96zoEE66rQXmmYIHNS/GWHXDIu49GeAdHS0FFEhREhgolxMSpMi6elVmRE9IKNjO6BwGIVYGmiZvUZs2Mrfl1aty6PHoUXnIq1dl+/VXuX2TJtK5pA+fcXauZLWk+Hg5Ff7YMSmmbtyQkw48POT6Ll0Kcl3p8fauvioBirubosmNFyyQ37mwsIJ24YLsM063cOqUDBJv104OT+ubigO8o1CiS6GobWJjZSqI69dlNuq33pKBoNVFSor0xgwbJpOYQsmCq6jH6cQJKYZatOB0SjifbXuRCOsssAD/6yY8GdUWp+eelvtaWBRkQdfHplhYyGtq0UKmO/jhBxmnduiQVEIdOxY6h0Gw6UVXBT1gLVvK9sAD8pl07pwMVztzRj6vYmNl0ycYBxnC5uIiW5s2cv9mzfIzLmRkyPMeOyaV3NWrhU/o4CBnUekZPFg2haI60DSZnLhxY+jRQ/bpyzgZ/1q4cKHgy/3XXwX9DRrIL/bcuQUB+kVzviluG9TwokJRm8TESA9XXJx0w7zxRvUGVCcmyqD8y5elsvj445Kjzot4tfRDhElTH2aZ03X+bJImhxKbtGVao4EERmlo3t5lC6Sifamp8vp27JCislMnWaj7lVdkbipz88JDjiV5wCo5FJmXJ4ciz52Tu4aHy+HIQvkZhcApI5z7Uo7glXuUtllnsLbQYWkpn1kW9laY+3thEeArvVdt2qgHmKLu0emkEAsPL9wyM+UPg+XLC76nzz9fUM/RxUW+OjvXbEkjRSHU8KJCUddERUkPV0KCFBDz5lVvNusrV+QxY2NlEPvbbxcIrjK8WkRHk3s8lN+8rVn5WBPSEwXmDu48GDiZ0R6jsTQrYXq7vpZdWX12djJI+J9/ZI6c8+dlwPmIEVLIdOpUsH1JHjCotBDTP2ecnSEkRPbl5sLVyzouRZpy6RJkHA2j14YXuXkTEJCkmXDKpgOXzHwJN+tEtOZKXqgZtheg4RYZWtOgQUFpQn1ZQn1Ts/8VtYKpaUGC3OBg2SeETKqbkFAguLKzpRgTQrp+jWnQQP5N6ffPzJT7VWc9V0WZKNGlUNQGFy/KPFxJSTLi+7XXKhloVA4nT0qRlZ4uPWivv14w+6kkL5KXl2GIMLRBNl9m/8KVo2lgbUrntsMqleC0XLp0kef7/nuZpHDfPnk/2rcv2MbIHsOQZWWEWGlcvozZ4sU416uH81tvyWeNrh1oLujua098az8uO/pgkmSD7XVodh2063KUNC1NtsuXy748fWk5fc1fOzv5amtbvNWrJ3W2tbV8rxxoiltC0+TYuXEKGAsLOYElIkK2S5fk6+XLUpwZ/0rYuhW+/loO/+sFXatWsrVsWVCuR1FtKNGlUNQ0oaFyZmJWlsxx8Mor1fvL8u+/ZTBubq6MEevcWQ5j6kVXSeJlzBhiP/+Ab/7+hL/MYsA0DSdbJ57we4KAFgHVZ5ueevXgqadkjNnixQVeuc6dZVFdd3cpoIp6sCoixPTer4MHpauradOCTNQNGkgPm5VVwZCmqSksXowp0DS/FUUIGRp340bxpk+KnZgoX7OyZLt+vfK3RS++rKwKXq2t5auVlXw+Gr8v2vQph0pq+ktVwu4exM5O/r3o4y1Bjr1fv144FUVqqvySXM//paGvrQryb+e77wqW//xTunpbtpSv6otVJVRMl0JRk2zfLkWGTifTCzz3XPXXy7tyRU479/CQad1zcooPx02ebBAdmV9/zlrdCX4+9zPZumyszKwY13Ecw92GY25aC7X8cnPlVMNVq2QQu6mpDPofN674cGsJKSyMr4X//leu/89/pJdP02Qm6vXrZWDXiRNSnQwcWCNDKMal5fQtNVW+6j1lxi0jo6BlZla7OcXQNHmb9M3MrOz3ZmYFzdS08Hu9iDNeZ2pa0Iou65uJSel9FXkt+t7ERD3vq5XcXPkjLTJStitXZGvUSHrMQf7QGT26IOmvlZXMK9iihWy9ekkvWS0ghCArK4v09HQyMjJIT08v9j4zM7NQX9F1zz//PAEBNfDj0giVp0uhqE2EgDVrCorjjholxUJ1PS2ys+VTUH+8+HgZsP6f/xR4gebMgTFj5PqzZ8k7foxtTdJYnriTpKwkAILaBDHFdwoN6zWsHrsqQ1KSvD9bt8r75eAghVdISOl5rnJzpbDcvFm6mjIy5LVeuFAwXDtxorzXTzxRqdQUtU1enhReRVtWlrysmzdl03vS9Ms3b8rLMn7NySn+mpMjtf7diKYVFmEVbUX3K2u56Hv9cnn9xq9F+6Ds/Yz79dsW3ae0ZrxNSfsYH8/4HKUeEzkDUtPANCOVxr8twyL2KuZxUZilJefvLF/invg3Gd5d0TSw27MJ23/+JLexE7lNnNA1aU5uo2bomjgh7B0QCDIz0w0tKyudjIy0Qn0ZGemFljMzM/K3ySAzM52SdEvRf60l/avV973wwgsMHBhcyW9d5VCB9ApFbaHTwRdfSGGgafLh/8AD1Xf8K1ekuPLxkUMAei9QSXFR+Ryvn83Xdvu4FHMJALeGbkz1m4p7ozoUIo6OMHOmnNH45ZeyZMqXX8oK2GPHwoAB0n2SmirTThw8CEeOSI+WHltbOZSYmSmv3cpK3u+yhiGrmCG/ujExkY696pxLUZS8vAIBVlLT6aSOzc0tuU/fr+8r6bW0lpsrz69/1ffr3xv3Ga8zXl/SeyFk0++jqCmMVYsdMBMAYSKwsIrFLv0iNhmXqJd5mZOLE0gy2YZOl47ntfU0Sz5CptCRKXLJEjoyhY4MkUuyiSVhth0MR3XIjiNXMyfH1JIczRKhmVTIMhMTS8zMbDA1tcHUtF6xV7muXonrTE3rYWFRg3905aA8XQpFdXLjBrz3nkxkaG4OL74I3btX3/F37JCJTm/ckImpnJzk8FkpM/suJl7k+2PfczjmMACN6zVmsu9kerXuhXY7jdEIIWsX/vCDDPwFGZs1frycifXbbwXbtmoFAQEyEau7uxx7Km8YUp81vxrSUijqFr3o0gsxYzFm3Fe06deXti0UFnVF9yvaV9qyXhBCwXGLbld0/6LXVXQ742OWtM74PCWt17cCWwQ3b6Zz82ZaoZaVJV9zcgrWZWcX9OnfgzDYYvy5AJjk5WCWm4VZ7k3MdVmY5r83090kx7wesQ06YGZWD3NTK3yv7sLaxAxrzRQrzRRzC3uEVQOEVWOinXqRWr8D5ua2WAkTTMxs0KwaYWpqjaaZFTqv8fUZvy9tecYM+e+jJlGeLoWipjlyRJbbSUmRHqg5c6BDh/L3qwjHj8OiRVKQ2NrK+InERBnUauzJyW/RqdH8sG8BeyJlhlBrM2tGe4xmhPsILEzLKFGTlSWH/SwtC2dcz8yUXqSaEmqaJmc5JifLtBJ5eTL1xeLFUlRZWcmYkt69Sy7WXTRdRUmB+WvW3PpsSEWdU3QI7l5FCMHNmzdJS0sjLS2N1NRUUlNTSU9PJzU1tVB/Wlpaof709JKH6IzRZ5IoKRTSysoKGxsbbG1tDc3GxsbQZ7yuXr16BevNzann6Ch/8KWmyhnN167JIP7YWCPX5Q14zVv+uAL48cf8UA27gkSyTZrIuLNmzar3h20No0SXQnGr6HTwv//Jh7oQ4OsrPVzVVbB240Z4/HEpiExNpSete3eYMqXYUGJ8RjyrT65my8Ut5Ik8zE3MGeI6hDEuQ7C/kQbC6En1ww8ybfv48QV5e06cgDfflEOXb79dsO2UKfL8P/xQkGBx61Y51BkcLBMwVpakJFnD0MVFzrqEgp+lvXpJEbZqlcxvptPB2rXyH/WwYfIfbnkUFWIVTUuhvF+KWkQIUUgQGb8WFU9Ft8ktlPW3cujFUFHhVLSvaL+NjQ1mJSVcrix2dvDMMwXLeXkypYVegLVrV7Du5k35N5uaKtvFiwXrnJwKi66nn5bxnY0aFSTXa9hQLrduXb3VP6qAEl0Kxa0QFyfroZ08KX8aTpwo45Gq62e4EDKPTlaWjIHSJ4Hq0KGQJyemhQNr//mY7RHbyc3NQcvOZoDHUB7yeohG1g3h0UelZ+zzz6XA0B87OloOVeqpX18O6xl7uYzHYIwDkP76S8ZaeXgUiK69e+Wv1/79Cwr1CiEDe8zMZMD74cMyPkufuPGBB2DaNPm+e3f5j9HNTd7DoCB5jp9/lt6+X36BDRvk2MCAAeDvX3LG/ZKoaFqK0rLjgxJjilIRQhQTSMatpH799lUN87GwsMDW1hY7O7tCIkm/XLRf31evXj1My6vFWtuYmEhh1KiRLBlmzKRJ8PDD0hMeGyv/78bHy1fjXGJZWfKHIBRPDAtSkNVxCS8luhSKqpCbK4XAypXy4ezoKNM2VEfR4zNn5FClv798sM+aJUWdnZ0c9tMHyLu7c8XJhjWn17Dz6E4EAi07h15/R/FQeltaTp5ZMBzYsaOcDp6RUXCeBx6QXqoGDQr62rWTIs8YExPp3s/NLTy8OGSIFH/33VfQFxEhp5/fvCmXU1Nlfp9XX5XLzs4F25qaSq9g0Sz2xkOymiaHGAIC5K/bn3+G3btllvt//pH3vW9fKcBatiz/3lZ1GLIaSxUpbm+EEGRkZJCWlkZKSopBLOnfl/Z6K+JJ70kyFkn29valiij9q0Vps3zvRjStoAyEcWJlYywt4dtvpSDTN+Mke/ofnHWICqRXKCrL8eOyrI2+MHLPntJTY+wdqiq//y6Thep00uPz3XfFHuzCzY1j14+x8dD/OBC6EaFpmN7nSh/nPozpMJoWL7wuvT///a/8BwW1VwA3J0eKorAw6dU6f14OI4aFSQ9dz55SQPn5yRg1OzsZB6evP6nTlVyc25jERDmhYOvWwsWpXV1lweDu3UuO+6ooJQXh68VY0ZQcXl5KiN3GZGdnk5KSUszDVJJwMvY+6ao4LdJYPBVtJfVX63Cd4rZCBdIrFLdKXJwUQbt2yeXmzWH6dOmtqSr6h7Ojo/TcrF8vvUO2tjJ4Xe9lcXMjy1xje+QuNoYv5krKFcjOxjw+kQGZTjw441OaODSXx/zss+J5rmpKcAkh3f1N8/O6m5nJuK/4+ILlXr1k7Ia7u/QEapoUTjdvyvfGRXjfeksG1j7/vBxi1J/D2P769WXes5EjZQLUrVul0Dt/XrZly2SMWI8e0K2b9IBV5vpLG4a81VJFSohVmdzcXNLT00sUScZCqmhfdnZ2lc5nZWVVonAybnpPlLGAuu2G7BS3HUp0KRTlERkJ69ZJsaXTyQfpuHHyoX8r2eXPnoUJE2TgaGamFG8NG0rPkJ0dWFkhPD05fyOMHdu/YcfeH0h3sIYOHWhg3YD7ve5nUAsbHDp0AvsitddqAyHgySflcOIPP8iJA5omh/rS0mRBay+vkqc/1a8vhyzj4wsLosuXZZ+x1/B//5OiauJEOXtRf25NKxgunDZNxort2yfjxS5elG35chkj0qmT9K75+hYWeaVRWkHvqpYqAiXEgLy8PEPQeFmtqCcqw3hYvBKYmZkZxJG9vb1BHOnfl9Rna2uLeXVXjVAo8lGiS6EojXPn5JDSP//IZX2JmUmTCjw7laHoA/boURkDpRdJbm4wfz7s30/s/75ih6cNO8I/Iio0CnJ1YGVCBxtnHug2m26tu2NmYgae1Xa1JSOEFFWnTknbL1yQaRzMzOT9aNJExokZ13p86KGKHdvMTE73Nuarr6TIbdy4oC88XIoX48kJ//wjJwUMGCDFmKWl9Gp16SKFcWioFGCHD0sRt3WrbJom49Y6dpSxYx4eBUOwFaEiMWFw1wuxouKpaJB40Xgo43QGVQlp0TStkDAqzwOlf29paXl75aNT3PMo0aVQGJOQINMo7NwpBQbIB2L//tKzVVQkVJQzZ6RXKzFRCrbvv5fel/r1+f/2zj1Ijuq+95/fTO/s7MzuavWWVhIIoRcSIAHiFfvyjAMYAikH/MTXkIrLrms7EKAcwE4uTiXx9U3KF2xjh5RthWtjHGI7QPmCwcaG2NggItBjxUoyQkJIrJ6LpN157Lx+949ft3q0j0KAdlfS/j5VXd39m9Pdp8/pOefbv3P6HAoFdOYMXv/kB1nxxi9YsfendE78DezLQM+ptKXbuPDEC7nkyq8zZ8LJb32td0OxaPfd2WmV//r1Nu5YPZs2xU1/f/VX5jk6UhVbEMTDR0TceacJsXqhu2WLdYwtl2Pbnj3m8Vq0yCYYP+ccE40vvGDjm61ebfcVNUM+/LAdN326CbC5c+3ac+bEUwodDqMlxN6lOFNVSqXSIUMQ9B/baaihC3L1swK8TbLZ7JB9noYSVdls1sWTc1zgostxenrguees+XDNmnj44mzWpqi5+uq35w0BqxBXrbKmtV274N/+zSr+dNqE3dq1FP7kKjo/8wH+69l/Z8VpDezc+H/Cg2ukZp/MeQvfxyWnXc3SaUtJJoapr8j27RbP3//exNbWrYcO3wx274sWwamn2lL/BWLUAX44GUyIfehD1tRY3wzU1WVfWNbHX8Q8cz09sHy5fV6+fj08+aR17t+zx47r6rLJyaNj2tvtmiecYCPgz5pltrczPMVwCrHQpn19FBsa6L37bnLt7Tbw5bp19K5bR+/UqfS2tZHL5Q4RVEdinCcRIZPJHNKvqf9Xd/37PEXiyfs9OWMZF13O2KNYtOay1att2bw5rqiDwL6uu/BCWx9O/6j+HofOTrj88thDFHa03x9UebllH+vmKi9X/h+bfvx9aq0HYKFAa5LWxlbObj+bc2acwxnTzqCp4W14Ww6Hzk6737POsi/9wJrpli+PwyQSNubWwoXm/TnlFGtCPNq8DJEwquf0062fWG9vbOvrM6FbKplXUcTy45FHrC/d7bebB23jRvNuPv98PEDr9u3xHCvJpKXN9OnxMnWqradNs+bQt/KODSLEqt/5DvmVK8nPmUMulSLf2EiuVCK/YQO9IuS2biX/y1/Su20buZYWcl1d5G69lVxfH70bN5JLpagVCjaHZXu73fuqVRbnRCLuw9bba89ja2vcp623l4Z8nuZp02ieMcNEU6FAy4EDtMydS/O8eYeIqf5f3CXG+pDwjvMOcNHlHN8UiyaqNm+OO1e/+uqhM+UGgfXxufBC6xc0VEfrenE1Z45Vyr/5Ddx1l03CfOKJcP/9VNauZkdpD1smlnl1SgObl+V4dXE73W/MtoH72icCe0mQYP4JZ3L62TdwzoxzWDBpAYnDnPB1ALWaNbft3GnL9u22fOQjsWfq2WdNbCQSseg69VS49FJrWps3zwTXsTz2T1PToeKnsdHGHes/xtjJJ9uzEXmy5s41UdLZaV9GXnhh3CR5332WJiedBNu3o9u2UX7jDQqq5NvaKIhQqNXIJxIUmpvJt7ZSSKfJp1IUGhrIJxLkRcirklclVyySLxTI5/MUi8WB9zB5ciyQnn7aBFMuZ966RCIea00VCgXSQUD2hBPItrfTvG0b2XSa5gkTaO7tJXvaaTQvWEDzN75Bc61Gc7lM8xe/SHMmQ/NNN9FYqdjz8pWv2Dkjj9qGDYM3bUZDcQxDc6fjjAWGVXSJyOXAPUAS+Laq/q9+v0v4+/uBPHCDqr44nHFyjjMqFRuluLvbmvG6uqwS2bHDtnftGthcJmJ9kk4/3aa7EbFKZtasWHB1dtoEzKecYn2D1q+3Eda7uihphb3LFrG3JaB7Xxd7Mq+xYwp0nVDljSf+B7szoJdXoVqDtMD8LDRWSc+ey7yll7F45pksnrKYhZMWkg4G+bJvKHbvtmbAvXvtfru7rXls505bDza20LnnxqJr2TKrtBctin+fP3/ogQaPcWq1GqVSib6+voNLsVikr6+PwoIF9M2eTXHDBoqrV1MsFil2dVE8+WSKmzdT3LuXYrFI4fXXKdZqFBoaKIwfT6G7m2JPD9UtW+zZmzLF+pWVSiaOSiVrwoyEa6Vi3rYgMAEI9rzVahAESHMzmXSaTCZDNp0m09JCtr2d7MKFZFtbbWlrI/v+95Pt7qZ5yRKyZ5xBtqWF7PbtZDdtIqgfYLZ+jLGWFhuBe+1aE6JRk2X07FQqA5sx30bT5lva3m5ftMMN64LPOYYZNtElIkngXuB9wDbgBRF5VFVfrgt2BTAvXM4FvhWuR5bh+LMf6XMeb3Fcs8Yq/zlzrIKIvo6bPdsK/ULBlo0bLfzEifbm39trnai3bIm/oFMd2HxSq5kY6+21a5xyCrXJkyjv3kFpfzd913+Avjkn0rfxZfpu/DjFUp58poHCsqXkiz3kO9eQlwoH2po48Okb6Ol6jQOnvcb+U3rJNSi0rrOv9ZJJ2BqmZ6YEGUWaW5hy7sWceCDBnJOXcdLJZzEnPZ1piXFIqWT39UovrP21eVtyOVv++I/jOQUfeMC+tvv4x80TBdYh/FvfGvo5njDBjp8yxdJw5sxDBdbSpe9uTLG3QFWpVCpUq9WD62g72i+Xywf3K5XKwf1yuXzIdqlUOmiL9iNbtF2/9PX1HbLd19f3rualO4SFC+N54QBaWwnmzqVJhKbFi8lkszSl02RefJGmrVtpWraMzJQpZCoVMlu2kFmzhsykSTTNmkWmWCRbKpFZt46MKk3z58cdxDs7zZu1cGE8P9zu3SaqJ0+25syODmsO7uqy53zhQvOGNTbaQLFR82lPj+X/D35gHs+9e+0jjiAwT29Pj/1fenrMls/bM5jPm7BvaLDlkUfsfzR1qgn7p54y4Z7LWbPqrl3mQU0k7Llub7cXnhdesGf7U5+Khdjy5Ra/G28cXJy9U3E3mO3tCL5jpcz0OA5ffEaQYRuRXkTOB+5S1cvC/TsAVPXLdWHuA55W1QfD/Q3ARaraVX+uYR2Rfv16brz2bIrR1zjNLSBArhdqYdq0tVm/kL17zHtRq9nbbGur2WpqXobGRsvIctmaJopFEwTZbFhQ9UINQK3AzGahe298fLoRWtvgzb2g2DABqRRMm2qFr6qdOxlAkIRiwcIBNKQgmYBK2WwCJJK2Xa2gImZrbLTztjRDbw60ZteWhMWx1BenTWCdlFVr8bhIQQDVKlqt2DEATWko9tl5GhpQwfrP1HlfFOxeqtWD8dGEQLoJLZcOfoVWSwg0plEUSiVqah4BFdDWVnTfm6gqKlAT0GSCGorWlFpSqCWT1NpaqZX6qOVzVBNQTSaoZprsnFHTTDptnq1orq4ozZLhe0hUYUeDdwZJONAD1RoJIDP/VLLjp5BNZcmsfplxu3toXfYexi0+k5bGFhK/fc6EZR06xLalscJVV6FR883zz6Nr1sCyZeiSJWbr6kI7OtCmJjSTgXCt2awtYR8bVT241Go1S9e6dWSP1vVLva1arR7yW7Rfv65fjsbZLVKpFOl0mnQ6TWNj48El2q//rampiXQ6TVNT08HfmpqaDi71+0OOIB71B4v6O+3caV7USZNiAbx3r3Xur1Tguuvi5sP77rMPGa6+2jxThYLNO7l2rTVtzphhz2t3t4mvTMaahyNWrTLhsXRp7GnbsiUevLahwcqsSsVeZpqa4peZ5mYTSpWKNbmOG2e2jg4Tc6mULUuX2vU7O+2FI502W6USD62SzZrtwAF7mYrKjcij2tlpaxGL/8yZVl6uW2fnSybjtFq50o4NgniKrRdftGNFrH+iiNmi+UHPO89eQJ5+2kSliL3QJBL2sUQ+b+EuucTu8xe/sHStVMyrPWsWPPGE7ReL5u2+4ALLtyeeiPsMXnml5cHjj1teVavWLD1tGjz2mOVFX5+ND7dggU1cX63aORcssHt88kmLS6lk6TNzps1pWgvL3JNOsjh2dMSzNZx4Ypy3UX/D00+3+E6darM11MJyfd48y+OVK80mYi+hDQ0mrqNzLlpk6bJpk507mbSuFjt2mFAJArNdcYU9zx0dVpcEAfzpn9ozunKl2VIps23daukdBPasXXutba9YYXmdStk5r7vO8m/VKgsXBGbbtMk+bkql7Lwf/KDVKY88YsdlMmYrl+1rcFVLq2jO1+XLLU2am62bBdi4fWB59MMfDqvwGo0R6WcAr9ftb2OgF2uwMDOALkaKtWt5qidHXyWsMLoPDAyz+01ADm2mKuVgfz4UI1gtWirC6nXhBL/VOHypd+A5u3vgzd6Bx/fsiAVAZNv8ugkzIRSCg7zB9xXj7ehYygNtudDWW6y7jg5UAXbStzhnzWyF3vj4Uim8zi4TqPUU686H2lLIH3p9USgUrXCIjg8wcVguQk4PjY+E5zm4XYU3D4SFThhOFBrKttkHCYVEskKi+00SqUYS24VETUmqkGwMSGqCZKFGsgaBQpARgkSChkoLQblGkAxg0gw4EFCjRu9W6D2gbN+0B3Y/Z/Hbts0qp0Ri4BJ1yq5fB4GN2/Vy6Agul60A3rPHCtGIILDf9u+35SgjCAKSyeTBJdpvaGg4ZDtaR/b6dbSkUimCICCVSpFKpQ7aonUqlaKxsXHI7YaGhpEfZiASAxFTpw4c023iRPjSlwYee9lltq4fgX//fqvsx42z4yLbb39rz8KSJVaxl0pWGe3bZ57RZNKek2efNYG1ZImJiXLZBqBNp80jev75VjFVKuY9q1bhmmvs/1OpmGip1ezYOXMsHps320tgS4uJptZWq7DHj7e4L1tmFV19E2sqFXvvRGKvVCZj2w0Ndp1i0WzRV6nVqh2fycRCtlq1+2hsjEVuJJCCwLZfecX2q1U778aNdt1Cwfb7+syWzVrcRSz8xo2Whvm8xa9YtMp/6lRrcs3l7Pzlsr1UpdNmAzt3R4eF6+21uBQK9p/u6TFbOm3nXr/ezl1ve/llS9fIlsuZLZu17ShcR0f8nDQ1mW3VKrvX8ePtWum0nWftWkv3yFYoWLyjdIqus2pVnF7R9V54wcqwqKk6l7Pn7vXX47TO5Wzg4i1b4nvev99s0b1ks5bHzzxj+bhmjaX/uHH2+9NPW37l85bvuZzZurrs95YWu96vfmVCPkqfctlslUp87X374q+Qe3ri5y+yHThgz039bB8jzHCKrsFKu/5V++GEGV5OO41PtU2kfGC/ReeEEyxW28MBKcEKm5ZmWL8BqhWzT58OUyabTWtQKtvb7Hvfaw/Nc8/Zg6AKM2eYB2XbNqhV7Q5nzYIJ4w895+TJpsA3boy9WhMn2vU7O+3YvnBy5VTK3qIjYTdhgj2w3d1xod02zkRaVDmLwPRpcVy3bEFqNbvOuHHm2dq5w7SLYGEQe5BVISEwZSqUS1YRSMKWuXOQ7jdh125oakKSSUuH1auRbdtisbFoEZKztykJmy/kvf8N6e6G/1qJJBNIugm57DKkKUPipZegsxNpbkESAfKxjyHPP4+sXEkCIZEISFx8EVKukXjmGRIKyWRA4qqrSJIg8ehPTThlsiRvupkECeQf/sEKlkwzfO4Wy4cVK6wiaW+39E8kLG27usy70N5uNhFIJOz+Jk2K5wjM561yb2x8y3kD60VAtN1fGAxm728TkQFLf3v0dVn9OrLXh6m3D7Ukk8mD6/7b9TbnCFD/PIwbFw86W2+74oqBx91yy0DbxRcPfo077xxou+22w4tf5EWJPFiRLSrv6uP73HNWuZ13njXpROOmrVhhHqBly8xWLFpFu3mzTRs1f76d8+c/t/LwggvM46RqQnLVKvNKnXmmhXvpJfjd78xjc8EF5sW55RarZIMA/vEf43vs7bX/85e/bOLw85+PPVV33mll++23xxPZf+5z8Ed/ZM2yd9xhx4uYcE6n4QtfMMGgar9Pngxf/GJ8/Gc/a2X4X/+1CYCWFmtinTcP/u7vrPxta4Prr7ey5p57zDZhgnlomptjr00QmMcIbODmatVsN9wQ9yW8+24LO368eX0mTIg/Jpk40bxQQWDHR+f86EctDX70I7uPIIBPftKE00MPWXoFgaXppk3w4INxE/Rtt5mIvP9+229shFtvtTr03nvt2KYmO3bcOMu/hx6KPZi33GLPyIMP2rENDTYN2Guvwb/8i4VJp+Hmm61+++pXLf2zWbOVy5YXtZoJzJtvtvT5m7+x37JZuOkms/3t39r9NTfb8zgKePMiHP9t1h7Ho6pN33GcEeBYLY88jsdFn66hmheHU3QFwEbgUmA78ALwUVVdVxfmSuCz2NeL5wJfU9Vz+p9r2EWX4ziO4zjOEWLE+3SpakVEPgs8gQ0Z8V1VXScinw5//2fgMUxwvYINGXHjcMXHcRzHcRxnNBnWcbpU9TFMWNXb/rluW4HPDGccHMdxHMdxjga856vjOI7jOM4I4KLLcRzHcRxnBHDR5TiO4ziOMwK46HIcx3EcxxkBhm3IiCOJiOwGXhvteDiO4ziO4xwGJ6rq5P7GY0J0OY7jOI7jHOt486LjOI7jOM4I4KLLcRzHcRxnBHDRBYjI5SKyQUReEZHbRzs+YxURmSUivxKRThFZJyI3hfYJIvJzEfl9uB4/2nEdi4hIUkReEpGfhvueL0cBItImIj8SkfXhf+d8z5vRR0T+MizHOkTkQRFJe76MDiLyXRHZJSIddbYh80JE7gj1wAYRuexIxmXMiy4RSQL3AlcAi4CPiMii0Y3VmKUC3KqqpwDnAZ8J8+J24ClVnQc8Fe47I89NQGfdvufL0cE9wM9UdSGwBMsjz5tRRERmAH8BLFPVU7Gp8D6M58to8a/A5f1sg+ZFWOd8GFgcHvPNUCccEca86ALOAV5R1VdVtQT8ELhmlOM0JlHVLlV9MdzuwSqPGVh+3B8Gux/4k1GJ4BhGRGYCVwLfrjN7vowyItIKXAB8B0BVS6q6D8+bo4EAaBKRAMgAb+D5Miqo6n8C3f3MQ+XFNcAPVbVPVTdjc0Ofc6Ti4qLLKvXX6/a3hTZnFBGR2cAZwPPAVFXtAhNmwJRRjNpY5W7g80Ctzub5MvrMAXYDy8Om32+LSBbPm1FFVbcD/wRsBbqA/ar6JJ4vRxND5cWwagIXXSCD2HwcjVFERJqBHwM3q+qB0Y7PWEdErgJ2qerK0Y6LM4AAOBP4lqqeAeTwJqtRJ+wfdA1wEtAOZEXk+tGNlXOYDKsmcNFlKnZW3f5MzA3sjAIi0oAJrgdU9SeheaeITA9/nw7sGq34jVHeA1wtIluw5vdLROT7eL4cDWwDtqnq8+H+jzAR5nkzuvwhsFlVd6tqGfgJ8Ad4vhxNDJUXw6oJXHTBC8A8ETlJRFJYB7pHRzlOYxIREaxvSqeqfrXup0eBT4TbnwAeGem4jWVU9Q5Vnamqs7H/xy9V9Xo8X0YdVd0BvC4iC0LTpcDLeN6MNluB80QkE5Zrl2J9VD1fjh6GyotHgQ+LSKOInATMA1YcqYv6iPSAiLwf67OSBL6rqn8/ujEam4jIe4FfA2uJ+w7difXregg4ASvMrlPV/p0inRFARC4CblPVq0RkIp4vo46ILMU+cEgBrwI3Yi/UnjejiIh8CfgQ9lX2S8CfA814vow4IvIgcBEwCdgJ/E/gYYbICxH5AvBnWN7drKqPH7G4uOhyHMdxHMcZfrx50XEcx3EcZwRw0eU4juM4jjMCuOhyHMdxHMcZAVx0OY7jOI7jjAAuuhzHcRzHcUYAF12O44w6IjJRRFaFyw4R2R5u94rIN4fpmjeLyH8fxD5bRDqO4HVSIvKf4Rx8juOMYbwQcBxn1FHVvcBSABG5C+hV1X8aruuFAujPsNHbhxVVLYnIU9iYTQ8M9/Ucxzl6cU+X4zhHLSJykYj8NNy+S0TuF5EnRWSLiHxARP63iKwVkZ+FU0ghImeJyDMislJEnoim+ujHJcCLqlqpO2a1iPwO+Ezd9WeLyK9F5MVw+YPQ/j0RuaYu3AMicrWILBaRFaGXbo2IzAuDPAx8bDjSyHGcYwcXXY7jHEucDFyJTSb8feBXqnoaUACuDIXX14FrVfUs4LvAYDNMvAeon8B7OfAXqnp+v3C7gPep6pmYp+prof3b2MjviMg4bF69x4BPA/eo6lJgGTaPG0AHcPY7vGfHcY4TvHnRcZxjicdVtSwia7Fpu34W2tcCs4EFwKnAz23KO5JA1yDnmY7NhReJpjZVfSb87XvAFeF2A/CNcKqdKjAfQFWfEZF7RWQK8AHgx6paCT1lXxCRmcBPVPX3YfiqiJREpEVVe45QWjiOc4zhostxnGOJPgBVrYlIWeN5zGpYeSbAukE8Vv0pAOlwW4Ch5kP7S2yutiVYy0Cx7rfvYU2GH8b6h6GqPxCR5zFv3BMi8ueq+sswfGO/4x3HGWN486LjOMcTG4DJInI+gIg0iMjiQcJ1AnMBVHUfsD+ccB0O7Xs1DuhS1RrwccxzFvGvwM3hOdaF15sDvKqqXwMeBU4P7ROB3apafve36DjOsYqLLsdxjhtUtQRcC3xFRFYDq7D+Vv15HLigbv9G4N6webBQZ/8m8AkReQ5rWszVXWsnJt6W14X/ENAhIquAhcD/De0XY32+HMcZw0jsnXccxxk7iMh/AJ+P+l29g+MzWF+yM1V1/1uE/Qlwh6pueCfXchzn+MA9XY7jjFVuxzrUv21E5A+B9cDXD0NwpYCHXXA5juOeLsdxHMdxnBHAPV2O4ziO4zgjgIsux3Ecx3GcEcBFl+M4juM4zgjgostxHMdxHGcEcNHlOI7jOI4zArjochzHcRzHGQH+P8vBRXyFUid6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.2968, 'epsilon': 0.1368, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACkJElEQVR4nOydeXxO1/b/3yeTzDETY4JIyCgh5iGmUKooRVXRqlud219V3dtWp9vr24nS+balVRdFtaq0quapxlBjCBESJITIPK7fH9vzZI4kEhH2+/Xar+c55+xzzjrnmT7P2muvZYgIGo1Go9FoNJrKxaKqDdBoNBqNRqO5G9CiS6PRaDQajeYWoEWXRqPRaDQazS1Aiy6NRqPRaDSaW4AWXRqNRqPRaDS3AC26NBqNRqPRaG4BVlVtQGmoW7euuLm5VbUZGo1Go9FoNDdk7969l0SkXsH11UJ0ubm5sWfPnqo2Q6PRaDQajeaGGIZxpqj1enhRo9FoNBqN5hagRZdGo9FoNBrNLUCLLo1Go9FoNJpbQLWI6dJoykt2djbx8fFkZmZWtSkajaaaYG1tTe3atbG0tKxqUzR3GJUmugzD+AYYDMSKiE8R2w3gI+AeIAWYICL7Kssezd1JfHw8tra21K1bF/WW02g0muIREZKSkoiPj6devUKTzzSam6IyhxfnAwNK2D4Q8LjeJgOfVaItmruUzMxMHB0dteDSaDSlwjAMHB0dtXdcUylUmqdLRDYbhuFWQpf7gO9ERICdhmHUNAzDVUTOV5ZNxXHoEOTk3Jpzlfa3v7h+pvV5txfV1zAK98m7b0nNwiL3uaVl/vWWluox73PT4+2qa7Tg0mg0ZUF/Z2gqi6qM6WoMnM2zfO76ulsuut5+G5KTb/VZ7zwsLMDKqnCztgYbm8LN1hbs7KBGDfVoawuOjuDgoB5NzcVF9anO/Pvf/+Z///sflpaWWFhY8MUXX9CxY8dbbkdYWBgxMTHcc889AKxcuZIjR47w8ssvM2HCBAYPHsyIESPy7bNx40bef/99Vq1adcvt1Wg0mjuJqhRdRf2VkFtuBdC2LaSnl66v3ISF5dk37z6m50Udp6R+eR9NreCyqZk8fjk5qpnWFdeys1UzLWdkqFbR2NlBzZqq1aoF9epBgwbQsKF6rF9fibbbkR07drBq1Sr27dtHjRo1uHTpEhmVcZNKQVhYGHv27DGLriFDhjBkyJAqsUWj0WjuNqpSdJ0DmuZZbgLEVIUhr71WFWe9szCJs6ys3JaZmfuYmZkryDIzlchNS1MtNVU9pqQoj2NSUu5jUhJcvar6pKbC+RL8oHXrgrs7uLmp5u5+ewx5nj9/nrp161Ljuruubt26QG6lhbp167Jnzx5efPFFNm7cyKZNm3j22WcBNcyxefNmnJycePfdd1mwYAEWFhYMHDiQmTNnEhERwZNPPklcXBz29vb897//xcvLiwkTJmBra8vhw4e5ePEiH374If379+e1114jNTWVrVu3Mn36dFJTU9mzZw8ff/wxAOvWreOjjz4y7zN48OB815KcnMzTTz/N33//TVZWFq+//jr33XffLbybGo1GU32pStG1EnjKMIzFQEcgoSriuTQVgyn+y9Ky4ocCRZQgu3JFCbD4eIiNhYsXVTM9v3RJtd27c/cdMwYaNVLesOeeU0OdFS3Efvml5O39+/fnzTffpHXr1vTt25dRo0bRs2fPYvu///77fPLJJ3Tt2pWkpCRsbW1Zs2YNP/30E3/99Rf29vbEx8cDMHnyZD7//HM8PDz466+/eOKJJ1i/fj0AkZGRbNq0iYiICEJCQjh58iRvvvlmPpE1f/78fOcuap+8/Pvf/6Z379588803XL16leDgYPr27YuDg0MZ75pGo9HcfVRmyohFQC+grmEY54AZgDWAiHwOrEaliziJShkxsbJs0VRvDEPFeTk4QJMmRffJyVFesMhI1U6fVi07G2JiVIuLU8eqUQPs7dVw5K3whDk6OrJ37162bNnChg0bGDVqFDNnziy2f9euXXnhhRcYO3Ysw4cPp0mTJqxbt46JEydib28PQO3atUlKSmL79u2MHDnSvG96nnHyBx54AAsLCzw8PGjRogXHjh27oa032mft2rWsXLmS999/H4C0tDSioqJo06ZNme6JRqPR3I1U5uzFMTfYLsCTlXV+zd2FhQU0bqxa166560+dUtsuXoQ33oDExNxtVlaqf/Pm4OqqvHSVhaWlJb169aJXr174+vry7bffYmVlRc71ILq0tDRz35dffplBgwaxevVqOnXqxLp16xCRQjOqcnJyqFmzJmFhYUWes2D/0szIutE+IsLy5cvx9PS84bE0Go1Gkx9dBkhzR2Nrq+K7OnaEe++FoUMhKEjFf2VlwZkzsHkz/PSTSh1SGfHtx48f58SJE+blsLAwmjdvjpubG3v37gVg+fLl5u0RERH4+voybdo02rdvz7Fjx+jfvz/ffPMNKSkpgEr66uzsjLu7O0uXLgWUIDpw4ID5OEuXLiUnJ4eIiAhOnTqFp6cnTk5OJOZVngUoap+8hIaGMnfuXOT6bIz9+/ff5N3RaDSauwddBkhzV2FvD56eqiUlQVSUGo68ehUOHoSjR8HDA7y8Km42ZFJSEk8//TRXr17FysqKVq1a8eWXX3L06FEeffRR3nnnnXzpI2bPns2GDRuwtLSkbdu2DBw4kBo1ahAWFkb79u2xsbHhnnvu4Z133mHhwoVMmTKFt99+m8zMTEaPHo2/vz8Anp6e9OzZk4sXL/L5559ja2tLSEgIM2fOJCAggOnTpxeytah98vLqq6/y3HPP4efnh4jg5uamU0loNBpNKTHkZnIg3CLat28ve/bsqWozNNWQmJgYGjVqVGIfERWMf/gwXLig1llaQsuW4OtbPXOEFZdzS6PRlI7SfHdoNMVhGMZeEWlfcL32dGnuegxDzW5s0AAuX1bi69w5CA9XnrD27aFp09sj/YRGo9Foqi9adGk0eahTB3r0UMONe/YoD9jWrWrWZIcOKklrdaBgKgiNRqPRVD06kF6jKYKaNaFPHyW0rK2V5+vXXyEi4uaqEmg0Go3m7kWLLo2mGAxDBdUPGqRSS2RkwF9/wc6dt65Aukaj0WjuHLTo0mhugL29GnLs0kXl9jp9GjZsqJz0EhqNRqO5c9GiS6MpBYah8n317aviui5ehLVrVdoJjUaj0WhKgxZdGk0ZqF0b+vdXMV/Xrinhdflyyfs4Ojre8LhbtmzB29ubgIAAUlNTy2TTTz/9xJEjR8q0T0l2paam0rNnT7Kzs83rZs2aha2tLQkJCWU+T0UQFhbG6tWrK/088+fPJyYmxrw8adKkct3byMhIfHx8bthv6dKltGnThpCQkDKfo6CtFWVXUX1ef/11c+mn0tKrVy9ulOpn9uzZ5oS/ZaW874m8dvXt25crV66U6/waTXnQokujKSMODsrj1bAhpKXBunWq7uPNsHDhQl588UXCwsKwK+MUyfKKruL45ptvGD58OJZ56iItWrSIDh06sGLFigo7T1moKtH11Vdf0bZt20o739dff82nn37Khg0byrxveUTX7UZViK68jBs3jk8//fSmjqHRlAUtujSacmBjA716qQSq2dmwZQvEx5e8z8aNG+nVqxcjRozAy8uLsWPHIiJ89dVX/PDDD7z55puMHTsWgPfee48OHTrg5+fHjBkzzMf47rvv8PPzw9/fn3HjxrF9+3ZWrlzJ1KlTCQgIICIigoiICAYMGEBQUBDdu3c3F60+ffo0nTt3pkOHDrz66qvF2rlw4ULuu+8+83JERARJSUm8/fbbLFq0yLz+8OHDBAcHExAQgJ+fHydOnODVV1/lo48+Mvf517/+xZw5c9i4cSM9e/bkgQceoHXr1rz88sssXLiQ4OBgfH19iYiIAFRS18cff5zu3bvTunVrVq1aRUZGBq+99hpLliwhICCAJUuWEB8fz9ChQ/Hz86NTp04cPHgQUB6Z8ePH079/f9zc3Pjxxx956aWX8PX1ZcCAAWRmZgLw5ptv0qFDB3x8fJg8eTIiwrJly9izZw9jx441exzzekV+++03AgMD8ff3p0+fPjd6i5iZP38+w4cPZ8CAAXh4ePDSSy+Zbdi6dSuPP/44U6dOJTs7m6lTp5pf9y+++MJ8jHfffRdfX1/8/f15+eWXi7R179699OzZk6CgIEJDQzl//Z/A3r178ff3p3PnznzyySeltrs4evXqxbRp0wgODqZ169Zs2bIFUB7S0aNH4+fnx6hRo/J5bNeuXUvnzp0JDAxk5MiRJCUlMWfOHGJiYggJCTF7+orqB7B79266dOmCv78/wcHBJCQkFHpPJCcn88gjj9ChQwfatWvHzz//fEO7hgwZku89rdFUOiJy27egoCDRaMpDdHR07sLgwRXecgYPlu3bRRYuFFm+XCQxsbANDg4OIiKyYcMGcXZ2lrNnz0p2drZ06tRJtmzZIiIi48ePl6VLl4qIyO+//y6PPfaY5OTkSHZ2tgwaNEg2bdokhw4dktatW0tcXJyIiFy+fLnQviIivXv3lvDwcBER2blzp4SEhIiIyL333ivffvutiIh8/PHHZrvykp6eLg0aNMi37q233pI333xTsrOzpXnz5nLx4kUREXnqqafk+++/N++XkpIip0+flnbt2omISHZ2trRo0UIuXbokGzZsEBcXF4mJiZG0tDRp1KiRvPbaayIiMnv2bHn22WfN1xIaGirZ2dkSHh4ujRs3ltTUVJk3b548+eSTZpueeuopef3110VE5M8//xR/f38REZkxY4Z07dpVMjIyJCwsTOzs7GT16tUiIjJ06FBZsWJFvnsnIvLQQw/JypUrRUSkZ8+esnv3bvM203JsbKw0adJETp06VWj/ojh9+rR4e3uLiMi8efPE3d1drl69KqmpqdKsWTOJiooqdL4vvvhC3nrrLRERSUtLk6CgIDl16pSsXr1aOnfuLMnJyfnOnXffjIwM6dy5s8TGxoqIyOLFi2XixIkiIuLr6ysbN24UEZEXX3zRbFdpbDcxY8YMee+998znfeGFF0RE5Ndff5U+ffqIiMgHH3xgPueBAwfE0tJSdu/eLXFxcdK9e3dJSkoSEZGZM2fKG2+8ISIizZs3N7+fi+uXnp4u7u7usmvXLhERSUhIkMzMzELvienTp8uCBQtEROTKlSvi4eEhSUlJxdplolWrVnLp0qVC9yHfd4dGU0aAPVKEntHJUTWam8BAFdNOTVUlhDZuhH79ii8dFBwcTJMmTQAICAggMjKSbt265euzdu1a1q5dS7t27QBVu/HEiRMcOHCAESNGULduXQBq165d6PhJSUls376dkSNHmtelp6cDsG3bNnNh7XHjxjFt2rRC+1+6dImaNWvmW7d48WJWrFiBhYUFw4cPZ+nSpTz55JN07tyZf//735w7d47hw4fj4eGBm5sbderUYf/+/Vy8eJF27dpRp04dADp06ICrqysALVu2pH///gD4+vrmG1574IEHsLCwwMPDgxYtWpg9dXnZunWr+Vp69+7N5cuXzfFmAwcOxNraGl9fX7KzsxkwYID5PJGRkQBs2LCBd999l5SUFOLj4/H29ubee+8tdB4TO3fupEePHri7uxd770uiT58+uLi4ANC2bVvOnDlD06ZN8/VZu3YtBw8eZNmyZQAkJCRw4sQJ1q1bx8SJE7G3ty/23MePH+fQoUP069cPgOzsbFxdXUlISODq1av07NkTUK/7mjVrSrTVKKb0Qt71w4cPByAoKMh8Tzdv3swzzzwDgJ+fH35+foC6d0eOHKFr164AZGRk0Llz50LHL67f8ePHcXV1pUOHDgA4OzsXad/atWtZuXKlOfYsLS2NqKioYu0yUb9+fWJiYszvU42mMtGiS3P38MsvlXJYC6BbNxXbdfUqbN4MvXur+o0FqZFHjVlaWpKVlVWoj4gwffp0/vGPf+RbP2fOnGJ/EE3k5ORQs2ZNwsLCitx+o/3t7OxIS0szLx88eJATJ06Yf8wzMjJo0aIFTz75JA8++CAdO3bk119/JTQ0lK+++orevXszadIk5s+fz4ULF3jkkUeKvHYLCwvzsoWFRb77UNDGomyWIjLUmvrlPa61tbV5vek8aWlpPPHEE+zZs4emTZvy+uuv57vmohCRG967kijt6z537lxCQ0Pzrf/tt99ueG4Rwdvbmx07duRbf/Xq1TLbXadOnULB5fHx8WbBCbnXU/Bainut+vXrd8NhvOL6HTx4sFTXICIsX74cT0/PQttK2j8tLa3McZQaTXnRMV0aTQVgivGyt4e4ONi+vfyZ60NDQ/nmm2/M8SzR0dHExsbSp08ffvjhBy5fny4Zfz2IzMnJicTEREB5Adzd3Vm6dCmgfogOHDgAQNeuXVm8eDGg4raKolatWmRnZ5tFyKJFi3j99deJjIwkMjKSmJgYoqOjOXPmDKdOnaJFixY888wzDBkyxBxXNWzYMH777Td2795dSECUhqVLl5KTk0NERASnTp3C09Mz3zUC9OjRw3wNGzdupG7dusV6QApiura6deuSlJRk9iwBhc5jonPnzmzatInTp08Dufd+165dPPzww2W+xqIIDQ3ls88+M8edhYeHk5ycTP/+/fnmm2/MAedFve6enp7ExcWZRVdmZiaHDx+mZs2auLi4sHXrViD/6x4dHV1kbJqjoyOurq78+eef5vP99ttvhTyyBcn7mhw6dMj8fujUqRPbtm3j5MmTAKSkpBAeHl7oGorr5+XlRUxMDLt37wYgMTGRrKysQq9VaGgoc+fONQvy/fv3l2gXqM/HhQsXcHNzK/HaNJqKQosujaaCsLdXwsvGBs6ehTzf7WWif//+PPjgg3Tu3BlfX19GjBhBYmIi3t7e/Otf/6Jnz574+/vzwgsvADB69Gjee+892rVrR0REBAsXLuTrr7/G398fb29vc0DxRx99xCeffEKHDh1KTP3Qv39/84/04sWLGTZsWL7tw4YNY/HixSxZsgQfHx8CAgI4duyYWXzY2NgQEhLCAw88kG8GZGnx9PSkZ8+eDBw4kM8//xxbW1tCQkI4cuSIOWj69ddfZ8+ePfj5+fHyyy/z7bfflvr4NWvW5LHHHsPX15ehQ4eah60gN5C/YOqOevXq8eWXXzJ8+HD8/f0ZNWoUAFFRURXmJZk0aRJt27YlMDAQHx8f/vGPf5CVlcWAAQMYMmQI7du3JyAgwDx8ltfW7Oxsli1bxrRp0/D39ycgIIDt27cDMG/ePPNwcF5bz58/j5VV0YMd3333HW+//TYBAQH07t2bGTNm0LJlyxLtnzJlCklJSfj5+fHuu+8SHBwMqHs3f/58xowZY574YBoynjx5MgMHDiQkJKTYfjY2NixZsoSnn34af39/+vXrR1paWqH3xKuvvkpmZiZ+fn74+PiYJ4sUZxeoSQadOnUq9j5oNBWNUZSb/najffv2cqN8LxpNUcTExNCoUaNbes6LF2H9evW8Tx+oX/+Wnv6m2b9/Px9++CELFiwo1/45OTkEBgaydOlSPDw8yrTvhAkTGDx4MCNGjCjXuW81U6dOZdy4cYXihKoDH3/8Mc2aNWPIkCFVbUqV8eyzzzJkyJAiPX5V8d2huXMwDGOviLQvuF57ujSaCqZBA2jbVg0v7twJ10eLqg3t2rUjJCQkX3LU0nLkyBFatWpFnz59yiy4qiPvvfdetRRcAE899dRdLbgAfHx8ypT+Q6O5WbSnS3NHU1X/VnNy4Pff4coVlcurY8dbboJGo7kJtKdLczNoT5dGcwuxsFAFsi0tISICzp2raos0Go1GU9Vo0aXRVBIuLuDvr57v2qVKBmk0Go3m7kWLLo2mEvH0VDFeaWlKeFWD0XyNRqPRVBJadGk0lYhhQKdOYG2thhivp3nSaDQazV2IFl0aTSXj7GzJjBkBvPSSN717+/Puux+Sk5MDwJ49e8wlSm53JkyYkC+RaF6ee+45Nm/ebF6Oi4vD2to6X9HmW80777xT6ecICwtj9erV5uWVK1cyc+bMch0rb3Ht4oiLi6Njx460a9fOXGi6vLZWpF0TJkzA3d0df39/WrduzcMPP0x0dPQNjz179mxz0teyUhHX07dv30LZ9zWaykSLLo2mkrGzs+Pw4TDmzz/MtGl/sHz5at544w0A2rdvz5w5c6rYwpsjPj7eXJvQxNKlS+nUqdMNS79UJlUhuoYMGcLLL79caef7888/8fLyYv/+/XTv3r1M+5ZXpJSW9957jwMHDnD8+HFz2pGMjIwS96kK0ZWXcePG8emnn97UMTSasqBFl0ZTkGPHYOlS9VhBGAYEBoKLS30efPBL5s79GBFh48aNDB48GFAlZbp06UK7du3o0qULx48fB1Q5lAceeAA/Pz9GjRpFx44dzf/UHR0d+de//oW/vz+dOnXi4sWLAJw5c4Y+ffrg5+dHnz59iIqKApQY8vHxwd/f3yySsrOzmTp1Kh06dMDPz8/snRIRnnrqKdq2bcugQYOIjY0t8tqWLVtmLiptYtGiRXzwwQecO3fO7PHIzs5mwoQJ+Pj44Ovry6xZs4iIiCAwMNC834kTJwgKCgLAzc2Nf/7zn3Tu3Jn27duzb98+QkNDadmyJZ9//jmgSgD16NGDYcOG0bZtWx5//HFycnJ4+eWXSU1NJSAggLFjxwLw4Ycf4uPjg4+PD7NnzwYgMjISLy8vJk2ahI+PD2PHjmXdunV07doVDw8Pdu3aVexrk5GRwWuvvcaSJUvMWdHnz5/PU089BcDFixcZNmwY/v7++Pv7mzPEl4aiXtewsDBeeuklVq9ebc6Yv3btWjp37kxgYCAjR440l47avXs3Xbp0wd/fn+DgYBISEgrZmpyczCOPPEKHDh1o166duXJBamoqo0ePNr/f8mbmLw2GYfD888/TsGFDc3HtouycM2cOMTExhISEEBISUmy/yryeIUOGVOkfA81diIjc9i0oKEg0mvIQHR1dth2OHhXp2FGkXTv1ePToTdvg4OBgfr59u8jChSKOjjXlwoULsmHDBhk0aJCIiCQkJEhmZqaIiPzxxx8yfPhwERF57733ZPLkySIi8vfff4ulpaXs3r1bREQAWblypYiITJ06Vd566y0RERk8eLDMnz9fRES+/vprue+++0RExMfHR86dOyciIleuXBERkS+++MK8X1pamgQFBcmpU6dk+fLl0rdvX8nKypLo6GhxcXGRpUuXFrq+hx9+2GyDiEhUVJS0atVKRESmT58uH3zwgYiI7NmzR/r27WvuZzp/r169ZP/+/eb+c+bMERGR5s2by6effioiIs8995z4+vrKtWvXJDY2VurVqyciIhs2bJAaNWpIRESEZGVlSd++fc025r3ve/bsER8fH0lKSpLExERp27at7Nu3T06fPi2WlpZy8OBByc7OlsDAQJk4caLk5OTITz/9ZL5vxb028+bNkyeffNJ8nrzLDzzwgMyaNUtERLKysuTq1auF7l1eevbsecPXNe/x4+LipHv37pKUlCQiIjNnzpQ33nhD0tPTxd3dXXbt2pXP9oK2Tp8+XRYsWGB+LTw8PCQpKUk++OADmThxooiIHDhwIN/7rTjGjx9f6L3x7LPPysyZM4u1U0S9xnFxcVV6Pa1atZJLly4VuqYyf3doNHkA9kgRekYXnNJo8vL335CRAY0bQ0yMWvbyqrDD+/tDVBTk5AiXLuXflpCQwPjx4zlx4gSGYZgLH2/dupVnn30WUBm082ZAt7GxMXvKgoKC+OOPPwDYsWMHP/74I6CGUF566SVAFb2eMGECDzzwAMOHDweUd+HgwYPmeK2EhAROnDjB5s2bGTNmDJaWljRq1IjevXsXeU3nz5+nXr165uXFixfzwAMPAKou5KOPPsoLL7xAixYtOHXqFE8//TSDBg2if//+gKo5OG/ePD788EOWLFli9i4B5ozpvr6+JCUl4eTkhJOTE7a2tly9ehWA4OBgWrRoAcCYMWPYunVroTJCW7duZdiwYTg4OAAwfPhwtmzZwpAhQ3B3d8fX1xcAb29v+vTpg2EY+Pr6EhkZWeJrUxLr16/nu+++A8DS0hIXF5cb7mOiuNc1Lzt37uTIkSN07doVgIyMDDp37szx48dxdXU115QsrhD42rVrWblypbmWY1paGlFRUWzevNkcZ+jn51fujPtyfapucXbeLtdTv359YmJiqFOnTrmuU6MpC1p0aTR58fVVFatjYtSUw+s/xhWFvT04OZ3CwsKSs2frU6PGUfO2V199lZCQEFasWEFkZCS9evUCcn+8isLa2hrDMAD1w56VlVVkP1Ofzz//nL/++otff/2VgIAAwsLCEBHmzp1LaGhovn1Wr15t3q8k7OzsSMuThGzRokVcvHiRhQsXAiqz94kTJ/Dw8ODAgQP8/vvvfPLJJ/zwww9888033H///bzxxhv07t2boKCgfD9+NWrUAMDCwsL83LRsutaCNhZlc0n3sOBx857TdI7iXpvKojSvq4jQr1+/QsNjBw8eLNXrJiIsX74cT0/PQttKs/+N2L9/P3369CnWzqLsqYrrSUtLq7Ci5RrNjdAxXRpNXry8YP58ePll9ViBXi5Qs89mzXqce+55ivh4g+shWIDypjRu3BiA+fPnm9d369aNH374AVC1Df/+++8bnqdLly4sXrwYgIULF9KtWzcAIiIi6NixI2+++SZ169bl7NmzhIaG8tlnn5m9N+Hh4SQnJ9OjRw8WL15MdnY258+fZ8OGDUWeq02bNpw8eRKA48ePk5ycTHR0NJGRkURGRjJ9+nQWL17MpUuXyMnJ4f777+ett95i3759ANja2hIaGsqUKVOYOHFiGe6mYteuXZw+fZqcnByWLFlivlZra2vzNfXo0YOffvqJlJQUkpOTWbFiRZkC0Yt7bZycnEhMTCxynz59+vDZZ58BKp7t2rVr5vWlmdl3Izp16sS2bdvM9z4lJYXw8HC8vLyIiYlh9+7dACQmJpKVlVXI1tDQUObOnWsWpPv37wfUvTIJ5kOHDnHw4EHzPg8//HA+T2RRiAhz5szh/PnzDBgwoFg7If/9q4rrEREuXLiAm5tbKe64RnPzVKroMgxjgGEYxw3DOGkYRqEpPYZhuBiG8YthGAcMwzhsGEbZv3E1morGywtGjqwwwWUK6Pb29qZv376Ehvbn7bdnAHDyZG7C1Jdeeonp06fTtWvXfMWmn3jiCeLi4vDz8+P//u//8PPzu+FQ1Zw5c5g3bx5+fn4sWLCAjz76CICpU6fi6+uLj48PPXr0wN/fn0mTJtG2bVsCAwPx8fHhH//4B1lZWQwbNgwPDw98fX2ZMmUKPXv2LPJcgwYNYuPGjYDycg0bNizf9vvvv59FixYRHR1Nr169CAgIYMKECfznP/8x9xk7diyGYZiHHMtC586defnll/Hx8cHd3d18/smTJ+Pn58fYsWMJDAxkwoQJBAcH07FjRyZNmkS7du1KfY7iXpuQkBCOHDliDubOy0cffcSGDRvw9fUlKCiIw4cPk5OTw8mTJ6ldu3aZr7Mg9erVY/78+YwZMwY/Pz86derEsWPHsLGxYcmSJTz99NP4+/vTr18/0tLSCtn66quvkpmZiZ+fHz4+Prz66qsATJkyhaSkJPz8/Hj33XcJDg42n/PgwYO4uroWac/UqVPNKSN2797Nhg0bsLGxKdZOUK/RwIEDCQkJqZLr2bt3L506dcLKSg/6aG4NlVbw2jAMSyAc6AecA3YDY0TkSJ4+/wRcRGSaYRj1gONAQxHJN89YF7zWlJfbtWitCKxZA1evQkAAtG1bfN/s7GwyMzOxtbUlIiKCPn36EB4ejo2Nza0y94Z069aNVatWUbNmzXLt//7775OQkMBbb71Vpv02btzI+++/z6pVq8p13lvNoUOH+Oabb/jwww+r2pQyc+3aNR599FGWLl1a1aZUGM8++yxDhgyhT58+hbbdrt8dmupBcQWvK1PeBwMnReTUdQMWA/cBR/L0EcDJUAPujkA8UHRQikZzB2FKIbF+PRw5Aq1aqVCyokhJSSEkJITMzExEhM8+++y2ElwAH3zwAVFRUeUSXcOGDSMiIoL169dXvGG3GT4+PtVScIEKYL+TBBeo16MowaXRVBaV6ekaAQwQkUnXl8cBHUXkqTx9nICVgBfgBIwSkV8LHkt7ujTl5Xb/t7puHcTG3tjbpdFobi23+3eH5vamOE9XZcZ0FTVdpKDCCwXCgEZAAPCxYRhFzwfWaO5ATELr2DHIEyqk0Wg0mjuQyhRd54CmeZabADEF+kwEfryeS+wkcBrl9dJo7gpcXaFWLUhLg1OnqtoajUaj0VQmlSm6dgMehmG4G4ZhA4xGDSXmJQroA2AYRgPAE9A/PZq7BsMAb2/1/OhRuF4HW6PRaDR3IJUmukQkC3gK+B04CvwgIocNw3jcMIzHr3d7C+hiGMbfwJ/ANBG5VPQRNZo7k6ZNwckJkpJUtnqNRqPR3JlUap4uEVktIq1FpKWI/Pv6us9F5PPrz2NEpL+I+IqIj4h8X5n2aDRVxYoVKzAMw5yfCFSg7ogRIzAMuHZtI++9N5gjR+Dnn1cyc+bMCjv3c889x+bNmwFYtWoV7dq1w9/fn7Zt25qLW1cWs2fPJiUlpVLPERkZyf/+9z/z8p49e8xlX8rKhAkTzOWQiiM9PZ2+ffsWmZurrLZWpF1F9XF0dCzTefIWYC+OsLAwVq9eXabj5qU874m8dq1atYoZM2aU+/waTVWiM9JrNLeARYsW0a1bN3OWeIBGjRqZfyRdXcHSUuXtCgoawssvF8olXC7i4+PZuXMnPXr0IDMzk8mTJ/PLL79w4MAB9u/fX+nlbKpCdLVv3545c+ZU2vn2799PZmYmYWFhjBo1qkz7lld03U5UhejKy6BBg1i5cmWlv680msrghqLLMIyuhmH8YRhGuGEYpwzDOG0Yho670mhKSVJSEtu2bePrr7/OJ7oiIyPx8fEBwMICTE6J2bPn8+STKrPKhAkTeOaZZ+jSpQstWrQwi7ScnByeeOIJvL29GTx4MPfcc0+RnpBly5YxYMAAILd8iqm2YY0aNfD09CQxMRF3d3dzyZxr167h5uZGZmYmvXr14vnnn6dHjx60adOG3bt3M3z4cDw8PHjllVfM1+Hl5cX48ePx8/NjxIgRpKSkMGfOHGJiYggJCSEkJARQ4tOUEX/atGlmOx0dHZk2bRpBQUH07duXXbt20atXL1q0aMHKlSvN5+nevTuBgYEEBgayfft2AF5++WW2bNlCQEAAs2bNyucVSUpKYuLEifj6+uLn58fy5ctL/bq5ubkxY8YMAgMD8fX15dixY8TGxvLQQw8RFhZGQEAAERER7N27l549exIUFERoaCjnz58H4OTJk/Tt2xd/f38CAwOJiIgoZGt2djZTp06lQ4cO+Pn5mT2PIsJTTz1F27ZtGTRoELGxsaW2uyg2btxIr169GDFiBF5eXowdO9ZcLue3337Dy8uLbt26mYukAyQnJ/PII4/QoUMH2rVrx88//0xGRgavvfYaS5YsMXv6iuoHKqnviy++aL73c+fOLfI9sXbtWjp37kxgYCAjR44kKSmpRLsMw6BXr17VJiGuRpMPESmxAceAgUB9oI6p3Wi/imxBQUGi0ZSH6Ojo/CsGD1YtL2+8odb99VfuujVr1Lq5c3PXXb6s1j38cJlsWLBggTzyyCMiItK5c2fZu3eviIicPn1avL29RURkw4YNcs89g2TZMpHJk+fJxIlPiojI+PHjZcSIEZKdnS2HDx+Wli1biojI0qVLZeDAgZKdnS3nz5+XmjVrytKlSwud++GHH5aVK1ealx999FGpV6+ejB49Wr7//nvJzs4WEZEJEybIihUrRETkiy++kBdeeEFERHr27CkvvfSSiIjMnj1bXF1dJSYmRtLS0qRx48Zy6dIlOX36tACydetWERGZOHGivPfeeyIi0rx5c4mLixMR9Vo0bdpUYmNjJTMzU0JCQsznBGT16tUiIjJ06FDp16+fZGRkSFhYmPj7+4uISHJysqSmpoqISHh4uJi+FzZs2CCDBg0yX2Pe5ZdeekmeffZZ87b4+PgSX6vx48eb72Pz5s1lzpw5IiLyySefyKOPPlro+BkZGdK5c2eJjY0VEZHFixfLxIkTRUQkODhYfvxRTc5OTU2V5OTkQrZ+8cUX8tZbb4mISFpamgQFBcmpU6dk+fLl0rdvX8nKypLo6GhxcXEp8vUtznYTDg4OZpudnZ3l7Nmzkp2dLZ06dZItW7ZIamqqNGnSRMLDwyUnJ0dGjhxptm/69OmyYMECERG5cuWKeHh4SFJSksybN0+efPJJ8zmK6/fpp5/K8OHDJTMzU0RELl++bL6vpvdEXFycdO/eXZKSkkREZObMmfLGG2+UaJeIyPfffy9PPfVUiffjZin03aHRlAFgjxShZ0ozvJggImtEJFZELptaJWlAjeaOY9GiRYwePRqA0aNHs2jRoiL7GQa0bq2ex8fnrh86dCgWFha0bduWi9crZG/dupWRI0diYWFBw4YNzV6Dgpw/f5569eqZl7/66iv+/PNPgoODef/993nkkUcAmDRpEvPmzQNg3rx5+QpPDxkyBABfX1+8vb1xdXWlRo0atGjRgrNnzwLQtGlTunbtCsBDDz3E1q1bC9mye/duevXqRb169bCysmLs2LHmWDMbGxuzR87X15eePXtibW2Nr68vkZGRAGRmZvLYY4/h6+vLyJEjOXLkSKFzFGTdunU8+eST5uVatWrdcJ+8DB8+HICgoCCzHXk5fvw4hw4dol+/fgQEBPD2229z7tw5EhMTiY6ONteBtLW1xd7evtD+a9eu5bvvviMgIICOHTty+fJlTpw4webNmxkzZgyWlpY0atSI3r1739BWVdij+HXBwcE0adIECwsLAgICiIyM5NixY7i7u+Ph4YFhGDz00EP5bJs5cyYBAQH06tWLtLQ0ooqY6VFcv3Xr1vH444+b6xoWVW9y586dHDlyhK5duxIQEMC3337LmTNnSrQLoH79+sTEFMxApNHc/pSmDNAGwzDeA34E0k0rRWRfpVml0VQWv/xSeN1rrxVeN2CAanmpXbvo/Uvg8uXLrF+/nkOHDmEYBtnZ2RiGwbvvvltk/9atVWxXSgokJKh1NWrUMG+X60NCpscbYWdnR1paWr51vr6++Pr6Mm7cONzd3Zk/fz5du3YlMjKSTZs2kZ2dbR72zHt+CwuLfLZYWFiQlaWqdhX8wS9KAJRks7W1tXmfvOfJe45Zs2bRoEEDDhw4QE5ODra2tje8fhEp0pbSYrLD0tLSbEfB43t7e7Njx458669du1aq44sIc+fOJTQ0NN/61atXl9nuOnXqcOXKFfNyfHw8devWNS/nfe3yXk9x5xERli9fjqenZ771f/31V6n6lebeiwj9+vUr9EckLCysxH3T0tKws7Mr8dgaze1IaTxdHYH2wDvAB9fb+5VplEZzp7Bs2TIefvhhzpw5Q2RkJGfPnsXd3b1ITxBAjRpgckyFhxd/3G7durF8+XJycnK4ePEiGzduLLJfmzZtOHnyJKDim/L2CwsLo3nz5ublhx9+mDFjxuTzcpWWqKgos/AwTRoAcHJyIjExEYCOHTuyadMmLl26RHZ2NosWLaJnz56lPkdCQgKurq5YWFiwYMECsq+n8M97joL079+fjz/+2LxsEiUPP/wwu3btKvN1FsTT05O4uDjztWdmZnL48GGcnZ1p0qQJP/30E6BmPKakpBSyNTQ0lM8++8wcTxceHk5ycjI9evRg8eLFZGdnc/78eTZs2GDeZ/r06axYsaKQLb169WLJkiVkZGQAMH/+/GI9oCa8vLw4ffo0ERERAPnET2hoKHPnzjWL5f379wOF73dx/fr378/nn39uFnfx1923effv1KkT27ZtM79HU1JSCA8PL9Eu033K+8dAo6ku3FB0iUhIEe3Gvm6NRsOiRYvMQ0wm7r///hJnsDVooB5Pny4+Wer9999PkyZN8PHx4R//+AcdO3bExcWlUL9BgwaZhZaI8O677+Lp6UlAQAAzZsxg/vz55r5jx47lypUrjBkzpkzXCErcffvtt/j5+REfH8+UKVMAmDx5MgMHDiQkJARXV1f+85//EBISYg4uv++++0p9jieeeIJvv/2WTp06ER4ejoODAwB+fn5YWVnh7+/PrFmz8u3zyiuvcOXKFXx8fPD39zeLl4MHD+Lq6lrm6yyIjY0Ny5YtY9q0afj7+xMQEGAO8F+wYAFz5szBz8+PLl26cOHChUK2Tpo0ibZt2xIYGGh+LbOyshg2bBgeHh74+voyZcqUfOL077//pmHDhoVsGTx4MN27dycoKIiAgAC2bdvG//3f/5Vov62tLV9++SWDBg2iW7du+UT4q6++SmZmJn5+fvj4+PDqq68CEBISwpEjR8yB9MX1mzRpEs2aNcPPzw9/f3/zez7ve6JevXrMnz+fMWPG4OfnR6dOnTh27FiJdgFs2LCBQYMGleMV02iqlhsWvDYMwwWYAfS4vmoT8KaIJFSybWZ0wWtNeamuRWtNhbDbt8+N8ypIUlISjo6OXL58meDgYLZt21bkj3G3bt1YtWoVNWvWLPGcy5Yt4+eff2bBggVlsjUyMpLBgwdz6NChMu1XVVy7do1HH32UpUuXVrUp5SI0NJTff/+9qs2oMi5evMiDDz7In3/+Wannqa7fHZrbg+IKXpcmpusb4BDwwPXlccA8YHjFmafRaPLSurUSXSdOgIeHCrIvyODBg7l69SoZGRm8+uqrRQougA8++ICoqKgSRdfTTz/NmjVrbir/UnXB2dm52gou4K4WXKCGsj/44IOqNkOjKRel8XSFiUjAjdZVJtrTpSkv1fXfak4O/PwzpKZCnz65Q44ajebWUF2/OzS3B8V5ukoTSJ9qGEa3PAfqCqRWpHEajSY/FhbQqpV6XlJAvUaj0WiqD6UZXpwCfHs9tssA4oEJlWmURqNRouvwYTh3TqWQKCLNk0aj0WiqETcUXSISBvgbhuF8fbl0CWg0Gs1NYWcHTZpAVBScPAl+flVtkUaj0WhuhmJFl2EYD4nI94ZhvFBgPQAi8mEl26bR3PW0bp0runx81LCjRqPRaKonJX2FO1x/dCqiOVayXRrNHYOlpSUBAQH4+Phw7733cvXq1VLvW68e1KwJaWlwveLOTbNnzx6eeeaZmz7OhAkTiiyyDfDcc8+ZS/ysWrWKdu3a4e/vT9u2bc1FnSuL2bNnk5KSUqnniIyMzJdr7WbuaUn30UR6ejp9+/Y158a6GVsr0q7XX3+dxo0bExAQgIeHB8OHDy9Veab58+eXu4xPRVzP6NGjOXHiRLnOr9HcDMWKLhExfTOuE5E38jagchOkaDR3EHZ2doSFhXHo0CFq167NJ598Uup9DUOljICKC6hv3749c+bMqZiDFUF8fDw7d+6kR48eZGZmMnnyZH755RcOHDjA/v376dWrV6WdG6pGdFX2Pd2/fz+ZmZmEhYUxatSoMu1bXpFSWp5//nnCwsI4ceIEo0aNonfv3sTFxZW4T1WIrrxMmTKl2FJcGk1lUprBirmlXKfRaG5A586diY6OBiAiIoIBAwYQFBRE9+7dOXbsGKCSPw4bNgx/f3/8/f05f3471tbw7bcf0qaNDz4+PsyePdt8zLfeegsvLy/69evHmDFjeP99VaWrV69eTJs2jeDgYFq3bs2WLVsA2LhxI4MHDwbgnnvuISAggICAAFxcXPj222/Jzs5m6tSpdOjQAT8/P7NnSkR46qmnaNu2LYMGDSI2NrbIa1y2bJm5eHViYiJZWVnUqVMHUPX/PD09SUxMxN3d3Vz+5tq1a7i5uZGZmUmvXr14/vnn6dGjB23atGH37t0MHz4cDw8PXnnlFUD98Hp5eTF+/Hj8/PwYMWIEKSkpzJkzh5iYGEJCQswlcBYtWoSvry8+Pj5MmzbNbKejoyPTpk0jKCiIvn37smvXLnr16kWLFi1YuXKl+Tzdu3cnMDCQwMBAc7b5l19+mS1bthAQEMCsWbPy3dOkpCQmTpyIr68vfn5+LF++vNTvDzc3N2bMmEFgYCC+vr4cO3aM2NhYHnroIcLCwggICCAiIoK9e/fSs2dPgoKCCA0N5fz58wCcPHmSvn37mjP+R0REFLL1Zl/fkhg1ahT9+/c3i6Ki7Fy2bBl79uxh7NixBAQEkJqaesuvp3v37qxbt67IepoaTaUiIkU2oDPw/4CzwAt52uvAgeL2q4wWFBQkGk15iI6Ozr9i8ODi25o1uf3WrCm5bxlwcHAQEZGsrCwZMWKErLl+nt69e0t4eLiIiOzcuVNCQkJEROSBBx6QWbNmmfe5evWqfPvtHmnSxEe2bEmSxMREadu2rezbt092794t/v7+kpKSIteuXZNWrVrJe++9JyIiPXv2lBdeeEFERH799Vfp06ePiIhs2LBBBg0alM/GPXv2iK+vr1y9elW++OILeeutt0REJC0tTYKCguTUqVOyfPly6du3r2RlZUl0dLS4uLjI0qVLC13vww8/LCtXrjQvP/roo1KvXj0ZPXq0fP/995KdnS0iIhMmTJAVK1aIiMgXX3xhtrVnz57y0ksviYjI7NmzxdXVVWJiYiQtLU0aN24sly5dktOnTwsgW7duFRGRiRMnmq+7efPmEhcXJyLq9W/atKnExsZKZmamhISEmM8JyOrVq0VEZOjQodKvXz/JyMiQsLAw8ff3FxGR5ORkSU1NFRGR8PBwMX0XFbyHeZdfeuklefbZZ83b4uPjC92jvIwfP958H5s3by5z5swREZFPPvlEHn300ULHz8jIkM6dO0tsbKyIiCxevFgmTpwoIiLBwcHy448/iohIamqqJCcnF7L1Zl/fvMyYMcN8303MmjVLHn/88RLt7Nmzp+zevbtKr6dv376yZ8+eYq+t0HeHRlMGgD1ShJ4pafaiDSp2ywoVx2XiGjCigrWfRnPHkpqaSkBAAJGRkQQFBdGvXz+SkpLYvn07I0eONPdLT08HYP369Xz33XeAigdzcXEhOnorHToM4+JFB+zsYPjw4WzZsoWcnBzuu+8+7OzsALj33nvznXv4cFU4IigoiMjIyCLtu3TpEuPGjeOHH37AxcWFtWvXcvDgQXP8S0JCAidOnGDz5s2MGTMGS0tLGjVqRO/eRZdgPX/+PPVMVbuBr776ir///pt169bx/vvv88cffzB//nwmTZrEu+++y9ChQ5k3bx7//e9/zfsMGTIEAF9fX7y9vc11Elu0aMHZs2epWbMmTZs2pWvXrgA89NBDzJkzhxdffDGfLbt376ZXr15me8aOHcvmzZsZOnQoNjY2Zo+cr68vNWrUwNraGl9fX/O9yszM5KmnniIsLAxLS0vCSzHGu27dOhYvXmxerlWr1g33yUve1+zHH38stP348eMcOnSIfv36AZCdnY2rqyuJiYlER0eba33a2toWefybfX1vhFxPuF2cnbfL9dSvX5+YmBiCgoLKdZ0aTXkoVnSJyCZgk2EY80XkzC20SaOpPH75pXT9BgxQrQIwxXQlJCQwePBgPvnkEyZMmEDNmjUJCwsr5TEEW1tIT1d5u0yYfuCKo0aNGoASb0UNpWRnZzN69Ghee+01fHx8zMecO3cuoaGh+fquXr3aPHu5ZFvtSEtLy7fO19cXX19fxo0bh7u7O/Pnz6dr165ERkayadMmsrOzzefPa7eFhYX5uWnZdB0FbSnKtpLuj7W1tXmfvOfJe45Zs2bRoEEDDhw4QE5OTrE//AXPWZr7VBw3es1EBG9vb3bs2JFv/bVrpcvmc7Ov743Yv38/7du3L9bOouypiutJS0sz/1nRaG4VpYnpSjEM4z3DMFYbhrHe1CrdMo3mDsPFxYU5c+bw/vvvY2dnh7u7u7kGoIhw4MABAPr06cNnn30GKFF07do1evTowd69P5GensKhQ8msWLGC7t27061bN3755RfS0tJISkri119/LZNNL7/8Mn5+fowePdq8LjQ0lM8++8wcbxUeHk5ycjI9evRg8eLFZGdnc/78eTZs2FDkMdu0acPJkycBFd+0ceNG87awsDCaN29uXn744YcZM2YMEydOLJPdoGrwmX6oFy1aRLduqnCGk5MTiYmJAHTs2JFNmzZx6dIlsrOzWbRoET179iz1ORISEnB1dcXCwoIFCxaQnZ1d6BwF6d+/Px9//LF5+cqVK+Zr3bVrV5mvsyCenp7ExcWZrz0zM5PDhw/j7OxMkyZN+OmnnwDlOU1JSSlka3le3+nTp7NixYob2rZ8+XLWrl3LmDFjirUT8t+/qrgeUz9vb+/S3XSNpoIojehaCBwD3IE3gEhgdyXapNHcsZhSJyxevJiFCxfy9ddf4+/vj7e3Nz///DMAH330ERs2bMDX15egoCAOHz5MYGAgjz46gddeC+bxxzsybtwk2rVrR4cOHRgyZAj+/v4MHz6c9u3b4+LiUmp73n//fdauXWsOpl+5ciWTJk2ibdu2BAYG4uPjwz/+8Q+ysrIYNmwYHh4e+Pr6MmXKlGLFy6BBg8xCS0R499138fT0JCAggBkzZjB//nxz37Fjx3LlyhXGjBlT5nvZpk0bvv32W/z8/IiPj2fKlCkATJ48mYEDBxISEoKrqyv/+c9/CAkJMQdj33fffaU+xxNPPMG3335Lp06dCA8Px8FBZdLx8/PDysoKf39/Zs2alW+fV155hStXruDj44O/v7/5x/7gwYNFDq+VFRsbG5YtW8a0adPw9/cnICDAHOC/YMEC5syZg5+fH126dOHChQuFbC3P6/v3338XW1B91qxZ5pQR33//PevXr6devXol2jlhwgQef/xxAgICyM7OvuXXc/HiRezs7Crk9dBoykJpCl7vFZEgwzAOiojf9XWbRKT0fxdvEl3wWlNe7rSitTt2wOnTKlGqKUN9UlISjo6OpKSk0KNHD7788ksCAwOr1M5u3bqxatUqatasWWK/ZcuW8fPPP7NgwYIyHT8yMpLBgwdz6NChm7Dy1nHt2jUeffRRs2ezuhEaGsrvv/9e1WZUGLNmzcLZ2ZlHH3202D532neH5tZSXMHr0tRezLz+eN4wjEFADNCkIo3TaDSlo0ULJbpOnQJfX5XHa/LkyRw5coS0tDTGjx9f5YIL4IMPPiAqKqpE0fX000+zZs0aVq9efesMqyKcnZ2rreAC7ijBBVCzZk3GjRtX1WZo7kJK4+kaDGwBmqLyczkDb4jIyso3T6E9XZrycqf9WxWBVasgMRF69YI76NI0mtuKO+27Q3NrKbenS0RWXX+aAIRUtGEajab0GAa0bAlhYRARoUWXRqPRVCdKKng9FyjWDSYiN1+8TaPRlBl3dzhwAKKjVU3GUmQx0Gg0Gs1tQEmeLj2ep9HchtjZQePGKl/X6dPQpk1VW6TRaDSa0lBSctRvb6UhGo2m9LRsqURXRAR4ealhR41Go9Hc3twwT5dhGBvyJkXVyVE1mtJz+fJlcw6shg0b0rhxYwICAqhZsyZt27Yt93FdXZXH69o1iIvLv+2nn37iyJEjN2n5jXn99dfNxbULMnv2bHMpI4CsrCzq1q3L9OnTy32+q1ev8umnn5aqr6OjY6mPm5OTwzPPPIOPjw++vr506NCB06dPl9fMGxIZGWkuCF2ZFHwfvPbaa6xbt67Y/n///TcTJkyodLs0mruZ0iRHfRGYer29CoRRyqFHwzAGGIZx3DCMk4ZhvFxMn16GYYQZhnHYMIxNpbRbo6kW1KlTh7CwMMLCwnj88cd5/vnnzcsWFjf++BVVBgbAwkLFdoFKH5GXWyW6iiMrK4tvvvmGBx980Lxu7dq1eHp68sMPP9ywdFFxlEV0lYUlS5YQExPDwYMH+fvvv1mxYsUN84vdDFUlut5880369u1bbH9fX1/OnTtHVFRUpdum0dyt3PBbX0T25mnbROQFoOON9jMMwxL4BBgItAXGGIbRtkCfmsCnwBAR8QZGFjyORnOnkp2dzWOPPYa3tzf9+/cnNTUVgF69evHPf/6Tnj178tFHH7F371569uxJUFAQoaGhnD9/HoDNm//Lq692YNQof4YNu5+UlBS2b9/OypUrmTp1KgEBAURERBAREcGAAQMICgqie/fuHDt2DFBZwZ955hm6dOlCixYtzAWDAd577z06dOiAn58fM2bMMK//97//jaenJ3379uX48eNFXtf69esJDAzEyio3emHRokU8++yzNGvWjJ07d5rX//bbbwQGBuLv70+fPn2Awh40Hx8fIiMjefnll4mIiCAgIICpU6eWaKeJcePGmTP9g8qAv3Jl/mw358+fN5f6AWjSpAm1atXi66+/5vnnnzf3++9//8sLL7xAZGQkXl5eTJo0CR8fH8aOHcu6devo2rUrHh4e5lI/r7/+OuPGjaN37954eHiYC3q//PLLbNmyhYCAAGbNmkVaWhoTJ07E19eXdu3amTPYz58/n6FDh3Lvvffi7u7Oxx9/zIcffki7du3o1KkT8fHxZrs6dOiAv78/999f/PtgwoQJ5td49+7ddOnSBX9/f4KDg81lde699958xbo1Gk0FIyIlNqB2nlYXCAWOl2K/zsDveZanA9ML9HkCePtGxwoKChKNpjxER0fnXzF4cNnas88WvX85mDFjhrz33nsiInL69GmxtLSU/fv3i4jIyJEjZcGCBSIi0rNnT5kyZYqIiGRkZEjnzp0lNjZWREQWL14sEydOFBGRS5cuydq1IgsXijzxxL9kzpw5IiIyfvx4Wbp0qfm8vXv3lvDwcBER2blzp4SEhJj7jRgxQrKzs+Xw4cPSsmVLERH5/fff5bHHHpOcnBzJzs6WQYMGyaZNm2TPnj3i4+MjycnJkpCQIC1btjRfT15ee+01sy0iIikpKeLq6irJycnyxRdfyNNPPy0iIrGxsdKkSRM5deqUiIhcvny50H0SEfH29pbTp0/L6dOnxdvb27y+ODtFRBwcHEREZOPGjXLfffeJiMjVq1fFzc1NMjMz89l79uxZad68ufj7+8sLL7wg+/btExGRpKQkadGihWRkZIiISOfOneXgwYPm1+7gwYOSnZ0tgYGBMnHiRMnJyZGffvrJfL4ZM2aIn5+fpKSkSFxcnDRp0kSio6Nlw4YNMmjQIPP533//fZkwYYKIiBw9elSaNm0qqampMm/ePGnZsqVcu3ZNYmNjxdnZWT777DMREXnuuedk1qxZ5veBiX/9q/j3gWk5PT1d3N3dZdeuXSIikpCQYL4nW7dulcHlfH/faRT67tBoygCwR4rQM6XJSL8XlTrCALKA00DxtRNyaQyczbN8jsIestaAtWEYGwEn4CMR+Q6N5i7A3d2dgIAAAIKCgoiMjDRvGzVqFADHjx/n0KFD9OvXD1DeMVO9uEOHDvHPf77ChQtXycxMYujQ0ELnSEpKYvv27YwcmetETk9PNz8fOnQoFhYWtG3blosXLwJqKHDt2rW0a9fOfIwTJ06QmJjIsGHDsLe3B2DIkCFFXtf58+dpk2dK5apVqwgJCcHe3p7777+ft956i1mzZrFz50569OiB+/Vx0tq1a5f+5pVgZ48ePcx9evbsyZNPPklsbCw//vgj999/fz4PHCjP1vHjx1m/fj3r16+nT58+LF26lD59+tC7d29WrVpFmzZtyMzMxNfXl8jISNzd3fH19QXA29ubPn36YBiGebuJ++67Dzs7O+zs7AgJCWHXrl2Fhi63bt3K008/DYCXlxfNmzcnPDwcgJCQEJycnHBycsLFxYV7770XUEOBBw8eBNT74JVXXuHq1askJSURGlr4fZCX48eP4+rqSocOHQCVLd9E/fr1iYmJKdX912iqAyLC5dTLxCTGmNuAVgNo5FQ1SQ5LkxzVvZzHLmo+VcFgDisgCOgD2AE7DMPYKSLh5TynRlMyv/xStfvnoUaNGubnlpaW5uFFwFxYWUTw9vZmx44dhfZXw0U/ERHhz59/zicxcWOhPjk5OdSsWZOwsLAb2iDXY61EhOnTp/OPf/wjX9/Zs2djlGKapJ2dHWlpaeblRYsWsW3bNtzc3AA1uWDDhg2ISJHHs7KyIicnx7yc91h5Kc7OgowbN46FCxeyePFivvnmmyL71KhRg4EDBzJw4EAaNGjATz/9RJ8+fZg0aRLvvPMOXl5eTJw4MV9/ExYWFuZlCwuLfHF4Ba+vqOs13ffi7LrReSZMmMBPP/2Ev78/8+fPNxcbL47i7juoe21nZ1fi/hrN7YaIkJCeQExiDNHXos3iKjoxmvNJ58nIzsjXv1XtVlUmukoze9HWMIwXDMP40TCM5YZhPG8YRmnSMZ5DlQ4y0QRVt7Fgn99EJFlELgGbAf/SGq/R3Ol4enoSFxdnFl2ZmZkcPnwYgMTERJo2daVx40y2b1/I9bAcnJyczDE6zs7OuLu7m+v+iQgHDhwo8ZyhoaF88803JCUlARAdHU1sbCw9evRgxYoVpKamkpiYyC/FCNA2bdpw8uRJQBV63rp1K1FRUURGRhIZGcknn3zCokWL6Ny5M5s2bTLPFDTFKLm5ubFv3z4A9u3bZ96e97pKsrMgEyZMYPbs2YDyShVk3759Zu9OTk4OBw8epHnz5gB07NiRs2fP8r///Y8xY8aUeN+K4ueffyYtLY3Lly+zceNGOnToUOg6evTowcKFCwEIDw8nKioKT0/PUp8jMTERV1dXMjMzzceBwvfLhJeXFzExMezevdu8v0nAhYeH4+PjU+br1GhuBelZ6Zy+cpqtUVtZfGgxH2z/gBd+f4HRy0czbsU4pq2bxpxdc1h2dBnbz23nTMIZMrIzcKnhQpu6bejj3odxfuNwq+lWZddQmuHF74BEVN1FgDHAAm4c9L4b8DAMwx2IBkYDDxbo8zPwsWEYVoANavhxVulM12jufGxsbFi2bBnPPPMMCQkJZGVl8dxzz+Ht7c1bb71Fx44dadSoOY0a+ZKUlEhODowePZrHHnuMOXPmsGzZMhYuXMiUKVN4++23yczMZPTo0fj7F//fpn///hw9epTOnTsDKv3C999/T2BgIKNGjSIgIIDmzZvTvXv3IvcfOHCguZjwjz/+SO/evfN5bO677z5eeuklPv30U7788kuGDx9OTk4O9evX548//uD+++/nu+++IyAggA4dOtC6dWtAzQTt2rUrPj4+DBw4kPfee69IO+vXr5/PngYNGtCmTRuGDh1apL2xsbE89thj5mHX4OBgnnrqKfP2Bx54gLCwMGrVqlXSS1UkwcHBDBo0iKioKF599VUaNWpEvXr1sLKywt/fnwkTJvDEE0/w+OOP4+vri5WVFfPnz893v26E6X3QvHlzfH19zUKr4PvAhI2NDUuWLOHpp58mNTUVOzs71q1bh6OjIxs2bGDQoEFlvk6NpqIQEa6mXeXstbOcu3bO3KKvRRObUvhPlQkHawcaOTWisVNjGjs3ppFTI3Ozt7a/hVdQMqUpeH1ARPxvtK6Yfe8BZgOWwDci8m/DMB4HEJHPr/eZCkwEcoCvRGR2wePogtea8nI3FK0VgV9/VTm7evZU2eqrmmHDhvHuu+/i4eFR1aaQkpKCr68v+/btw8XFpcz7Dx48mOeff948u7K0vP766zg6OvLiiy+W+ZxVQXp6Oj179mTr1q2F4t7uRu6G746qJEdyuJh0kXPXzhGVEJVPZCVnJhe5j6VhiaujK42dG9PYqTFNnJvQyKkRTZyb4FzDuVThD7eKche8BvYbhtFJRHZeP1BHYFtpTioiq4HVBdZ9XmD5PeC90hxPo9EUxjCgRQtVBPvUqdtDdM2cOZPz589Xuehat24djzzyCC+88EKZBdfVq1cJDg7Ol87iTiYqKoqZM2dqwaWpULJzsrmQdMEsrKISojibcJZziecKxVqZcLB2oKlzU5o4N8nXGjg2wMqier8/S+PpOgp4AqaMec2AoyjPlIiIX6VaiPZ0acrP3fJvNTUVfvpJCbChQ3URbI3mZrlbvjsqChExi6szCWfU49UznEs8R1ZO0Ume69jVoalzU5q6KIHVzKUZTZyb4FLD5bbyWpWHm/F0DagEezQaTQViZweNGkF0NERGqnqMGo1GU9GICFfSrnDm6hnOJJwxP0YlRJGenV7kPvXs69HMpRnNXJrR1LmpWVw52DjcYuurntKkjDhjGIY/YIqa3SIiJU9/0mg0t5wWLZToiogAT09dBFuj0dwcGdkZnLl6hsirkbktIZJr6deK7F/brjbNXZrTzKWZ+bGZSzPsrHUaEhM3FF2GYTwLPAb8eH3V94ZhfCkic0vYTaPR3GIaN4YaNSAhAeLjoU6dqrZIo9FUB0wJRE9fOc3pq6fNjzGJMUih9Joq5qqZSzPcarrhVtPNLLCcajhVgfXVi9IMLz4KdBSRZADDMP4P2EFuCgmNRnMbYCqCfeyY8nZp0aXRaAqSlZPFuWvnOHXlFKevnFaPV0+TmFE4p5uFYUFTp6a41XTDvZY7zV2a41bTjbr2dat9zFVVURrRZQDZeZazKTrbvEajKQJHR0dzAk9QhYz37NnDxx9/XOZjbdy4kffff59Vq1YVub1lSyW6IiMhMBCsrFQB7ffff5/27QvFdGo0mjuY9Kx0Iq9GEnElgoj4CE5dOcWZhDNk5mQW6utk44R7TXfca7mbH5s4N8HG0qYKLL9zKY3omgf8ZRjGCpTYug/4ulKt0mg05cLFBerVg7g4OHNGiTCNRnPnk5KZwqkrp4iIjyDiSgQn409y7tq5IocHGzo0pEWtFubmXsudOnZ1tPfqFlCaQPoPrxek7nZ91UQR2V+pVmk0dwlxcXE8/vjjREWpjCyzZ8+ma9eu7Nq1i+eee86cMXzevHmFSsMkJyfz9NNP8/fff5OVlcXrr7/OfffdR+PGqbz22kT+9a8jBAe3yVfTUaPRVH9SM1PNwsrUioq/sjAsaO7cnBa1WtCydkslsGq635WzBm8XypJlzEDl5tJSWFMtuXfRvZVy3F/GlFwEOzU1lYCAAPNyfHw8Q4YMAeDZZ5/l+eefp1u3bkRFRREaGsrRo0fx8vJi8+bNWFlZsW7dOv75z3+yfPnyfMf997//Te/evfnmm2/MiTz79u3Lr79+gZ2dPf/+90GaNTtIr16BFX7NGo3m1pCRncGpK6c4cfkEJ+JPFOvBsrKworlLc1rVbkWr2q1oUasFbjXd9PDgbUZpZi++hqqzuBwluOYZhrFURN6ubOM0mjsBOzs7wsLCzMummC5QGdOPHDli3nbt2jUSExNJSEhg/PjxnDhxAsMwyMwsHIOxdu1aVq5cyfvvvw9AWloaUVFRbNu2mREjngHA1tYPP79Kz1+s0WgqgBzJISohihOXTxB+OZzwy+GcSThDtmTn62dpWOJW080ssFrVbkVzl+ZYW1pXkeWa0lIaT9cYoJ2IpAEYhjET2Ado0aWpVtzII1UV5OTksGPHDuzs8uexefrppwkJCWHFihVERkbSq1evQvuKCMuXLy807AjQpIlBUpIKqNdoNLcnl1IuEX45nOOXjhN+OZyTV06SlpWWr4+BQXOX5njU9sCjjgcetT1oXrO59mBVU0ojuiIBW8D0TqgBRFSWQRrN3UT//v35+OOPmTp1KgBhYWEEBASQkJBA4+tFFOfPn1/kvqGhocydO5e5c+diGAb79++nXbt29OjRg5UrFzJyZAhhYYc4ePDgrbocjUZTDOlZ6ZyMP0n45XCOXTrG8cvHuZx6uVC/+vb1aV2nNa3rtMajjgetarfC1krX9bpTKI3oSgcOG4bxByBAP2CrYRhzAETkmUq0T6O5o5kzZw5PPvkkfn5+ZGVl0aNHDz7//HNeeuklxo8fz4cffkjv3r2L3PfVV1/lueeew8/PDxHBzc2NVatWMWXKFCZOnMizz/pRr14Anp7Bt/iqNJq7GxEhLiWOo3FHOXbpGMcuHeP01dOFhgkdrB1oXac1nnU8zULLxbZshdk11YvSFLweX9J2Efm2Qi0qAl3wWlNe7uaitZmZsGIFZGXBoEEqnYRGoykdZfnuyMzO5NSVUxy9dFQJrcvHiE+Nz9fHwMCtphuedTzxquuFZ11PGjs11mka7lDKXfD6VogqjUZT8VhbQ/PmKjt9RIRKlqrRaG6epIwkjsYd5UjcEY7EHeFE/IlCCUedbJzwqutlbq3rtNbDhJoypYzQaDTVjFatlOA6fRr8/cHSsqot0miqH3HJcRyOO8zh2MMciTtC1LWoQn2aOjelTd02tKnXhjZ129DIqZH2YmkKoUWXRnMHU7s21KwJV6/CuXPK86XRaIpHRLiWfo3oa9EsilzE4bjDxKXE5etjbWFN6zqtaVO3DW3rtcWrrpcu9qwpFcWKLsMwFojIOMMwnhWRj26lURqNpmIwDOXt2rMHTpzQokujKYiIcDXtKrHJscQmxxKXEkdaVhrZ17LZGLURUAHvbeu1pW29tnjX86ZV7VY6J5amXJTk6QoyDKM58IhhGN9RIBO9iMQXvZtGo7mdcHeHAwcgNhauXIFataraIo2m6sgrsi4mXyQ2OZaM7Ix8feys7LC3t+fxoMfxru9Nc5fmeqhQUyGUJLo+B34DWgB7yS+65Pp6jUZzm2NtDS1awPHjEB4OHTtWtUUaza3DNFx4IelCsSLL3tqeBg4NqO9Qn/oO9XG0ceT8+fN37cxnTeVRrOgSkTnAHMMwPhORKbfQJo1GU8G0bq1EV2QkBARAjRpVbZFGUzmICEkZSVxMvsjFpItcTL5YKMu7SWQ1cFRCy8HaQXuyNLcEixt1EJEphmH4G4bx1PWmC7lpNGXA0tKSgIAAc5s5c2aJ/d955518y126dCnXecPCwli9ejUATk7QqBFkZ6vZjAD79+9n0qRJgMp6X69ePdq1a4eHhwehoaFs3769XOctCjc3Ny5dukRGRgY9evQgKyurwo6t0aRmphJ5NZKd53ay8vhKfgn/hV3RuziTcIa0rDTsrO1wq+lGx8YdGeI5hPs876Nz0860qNUCRxtHLbg0t4zSFLx+BpgM/Hh91ULDML4UkbmVaplGc4dQsOD1jXjnnXf45z//aV4ur/gJCwtjz5493HPPPYDydsXEqCFGLy91nldeecXcf9SoUXz88ccAbNiwgeHDh7NhwwbatGlTrvMXhY2NDX369GHJkiWMHTu2wo6rubvIyskiNjmWC0kXuJB0gatpV/Ntr2FZgwaODczeLCcbJy2sNLcFpUkZMQnoKCLJAIZh/B+wA9CiS1OtuPfeeyvluL/8UvZC2gkJCQQHB7Ny5Uo8PT0ZM2YMvXv3JiIigtTUVAICAvD29mbhwoU4OjqSlJTExo0bef3116lbty6HDh0iKCiI77//HsMw2L17N88++yzJycnUqFGDP/74g9dee43U1FS2bt3K9OnTeeCBUTg5QWIiHD+eyMGDB/H39y/SvpCQECZPnsyXX37JrFmziIiI4MknnyQuLg57e3v++9//4uXlxS+//MLbb79NRkYGderUYeHChTRo0IDLly8zZswY4uLiCA4OJm/li6FDhzJ9+nQtujSlRkSIT43nQtIFzied51LKJXIkx7zdysKK+g71aeDQgIaODalpW1OLLM1tSWlElwHkLRiVTYGZjBqNpnhMIsrE9OnTzV6lCRMm8Oyzz3LlyhUee+wxAD7++ONiPWP79+/n8OHDNGrUiK5du7Jt2zaCg4MZNWoUS5YsoUOHDly7dg17e3vefPNN9uzZY/ZegfJ27d0Lv/66Bx8fnxLtDgwM5IsvvgBg8uTJfP7553h4ePDXX3/xxBNPsH79erp168bOnTsxDIOvvvqKd999lw8++IA33niDbt268dprr/Hrr7/y5Zdfmo/r4+PD7t27y3k3NXcLKZkpnE88z/mk81xMukh6drp5m4FBXfu6NHRsSEPHhtSxq4Olhc78q7n9KY3omgf8ZRjGiuvLQ4GvK80ijaaSKI9HqiIobnixX79+LF26lCeffJIDBw6U6ljBwcE0adIEgICAACIjI3FxccHV1ZUOHToA4OzsXOz+LVqo9BGnT5/H2bleiecyeaeSkpLYvn07I0eONG9LT1c/gOfOnWPUqFGcP3+ejIwM3N3dAdi8eTM//qgiEgYNGkStPHkqLC0tsbGxITExEScnnVBSo8jOySYuJY7zieeJSYwhIT0h33ZHG0dcHV1p6NiQBo4NsLG0qSJLNZryU5raix8ahrER6IbycE0Ukf2VbZhGc6eTk5PD0aNHsbOzIz4+3iymSqJGnmmHlpaWZGVlISKlHkqxtoaWLWHHDjsiI9NK7Lt//37atGlDTk4ONWvWLFI4Pv3007zwwgsMGTLEPPxpoiSb0tPTsbXVdejudpIykswi62LyRbJycidYWFlYmT1Zro6uOuBdc0dQqjJAIrIP2FfJtmg0dxWzZs2iTZs2vPPOOzzyyCPs2LEDa2trrK2tyczMxNq6dBmvvby8iImJYffu3XTo0IHExETs7OxwcnIiMTGxUH8PD2jcuA1r1nxAenrR6SM2bdrEl19+yYYNG3B2dsbd3Z2lS5cycuRIRMQcD5aQkEDjxo0B+Pbbb8379+jRg4ULF/LKK6+wZs0arly5Yt52+fJl6tWrV+rr09w55EgOscmxxCTGEJMYw7X0a/m217KthauTK66OrtRzqIeFccMJ9hpNtULXXtRoKpmCMV0DBgzgkUce4auvvmLXrl04OTnRo0cP3n77bd544w0mT56Mn58fgYGBLFy48IbHt7GxYcmSJTz99NOkpqZiZ2fHunXrCAkJYebMmQQEBJjjyACcnaF9ey8++iiBgwcT6dBBDfEtWbKErVu3kpKSgru7O8uXLzfPXFy4cCFTpkzh7bffJjMzk9GjR+Pv78/rr7/OyJEjady4MZ06deL06dMAzJgxgzFjxhAYGEjPnj1p1qyZ2d4NGzaYZ1Rq7nxSM1PNIutC0gUyczLN26wtrXF1VCKrkVMj7KztqtBSjabyMfLOKrpdad++vezZs6eqzdBUQ2JiYnRW6SKIiYFp02bh5OTE3LmTsLyFMcjDhw/nP//5D56enrfupJpbhqnMTnRiNNHXormcejnf9pq2NWnk1IhGTo2oa1/3tvVm6e8Ozc1gGMZeEWlfcL32dGk0dyGurjBixBR++20pp06pIcdbQUZGBkOHDtWC6w4jOyebi8kXib4WTXRiNCmZKeZtlhaWNHRoaBZaDjYOVWipRlO1lCY56nDg/4D6qEB6AxARKX6KVO6+A4CPAEvgKxEpMhW3YRgdgJ3AKBFZVnrzNRpNeTAMaNfOluTkcRw5ooLrLW6Bw8HGxoaHH3648k+kqXTSs9KJSYzh3LVznE86ny8I3s7ajsZOjWns1JgGjg2wstD/7zUaKJ2n613gXhE5WpYDG4ZhCXwC9APOAbsNw1gpIkeK6Pd/wO9lOb5GU1rKMrvvbqJpU3BxgYQEVZOxhS5hr7kByRnJnLt2jnPXzhGbEpsv6W0t21o0dm5ME+cm1LKtVa0/c9Uh7EZTPSmN6LpYVsF1nWDgpIicAjAMYzFwH3CkQL+ngeVAh3KcQ6MpEWtra5KSknB01NPNC2IY0LYt7NgBhw+Du7tap9GYEBGupV/j7LWznLt2jvjUePM2C8OCBo4NaOykhNadMmwoIiQlJenZtZpKoTSia49hGEuAnwBzSmAR+bHYPRSNgbN5ls8BHfN2MAyjMTAM6I0WXZpKoHbt2sTHxxeZOkGj8nbZ2MDVqxAWBg0aVLVFmqpGREjMSCQuOY7YlNj88VmGJXXs6lDPoR517OpgbWkNGZBwKYEEEko4avXC2tqa2rVrV7UZmjuQ0oguZyAF6J9nnZBbALs4ivrPXNBnOxuYJiLZ2guhqQwsLS2pV6/kzOt3O46O8O23sGsXzJmjvV13IyLC8cvH2Ra1je1ntxObEmve5mTjRMfGHenctDMBDQN0JniN5iYoTUb6ieU89jmgaZ7lJkBMgT7tgcXXBVdd4B7DMLJE5KdynlOj0ZSRPn1g8WIV17VrF3TseMNdNHcAIsKxS8fYdnYb285u41LKJfO22na16dS4E12adsGnvo+ua6jRVBClmb3YBJgLdEV5qrYCz4rIuRvsuhvwMAzDHYgGRgMP5u0gIu55zjMfWKUFl0Zza7G2hmHD4Kuv4IcfIDhYe7vuVESE8MvhbInawtaorflyaNW1r0vXpl3p2rQrXnW9dAykRlMJlLbg9f8AU7Xbh66v61fSTiKSZRjGU6hZiZbANyJy2DCMx69v/7zcVms0mgolNBSWLoXwcFUQO08CfU01R0SIuBLBljNKaOUdOqxnX49uzbrRtWlXWtdprYWWRlPJ3DAjvWEYYSIScKN1lYnOSK/RVD5Ll8J330GbNvB//6e9XdWdswln2XxmM5vPbCYmKTeyo45dHbo160b3Zt210NJoKombyUh/yTCMh4BF15fHAJdL6K/RaKohgwbBzz/D0aMqjUSXLlVtkaasxCXHsfnMZjad2cTpq6fN62va1qRb0250b96dNnXbaKGl0VQRpRFdjwAfA7NQMV3br6/TaDR3EPb28OCD8NlnMG8edOig4r00tzdJGUlsi9rGxsiNHIo7ZF7vYO1Al6Zd6NG8B771fXUwvEZzG1Ca2YtRwJBbYItGo6liQkNh1So4exZ+/RWGDq1qiyqRq1fh9Gm4dAmuXIH0dMjIUC0zE555Jrfv6tWqv62tSuNfpw7UqgW1a6ucG7fYc5SZncmemD1siNzA7pjd5hI8NpY2BDcKpqdbT4Jcg1QeLY1Gc9tQrOgyDOMlEXnXMIy5FM6vhYg8U8RuGo2mGmNpCY88Am+8odJI9OkDTk5VbdVNIAIxMWqGwMmT0K2bCloD2L5dufWK48kn1Q0B+OMPtX9R9OkDzz2nniclwc6d0LgxNGsGDhWXpd0083D96fVsidpCYoZK+Gtg4N/AnxC3EDo37Yy9tX2FnVOj0VQsJXm6TKV/dAS7RnMXERSkZi+GhcGiRTB5clVbVEYuXVIJx3btUgFqKbkZ1bG3zxVdTZuCnx/Uq6e8VjVqqPT8NjbqeV7uuQdiYyEtTXnFrlyB+Hj1WLNmbr9Tp+Cjj3KXGzVS1cRbtVKPbdqo45flclIuseH0Bv48/SfRidHm9W4ubvR2702P5j2oY1+nTMfUaDRVQ2lmL44UkaU3WleZ6NmLGs2tJTJSja5ZWMAnnyjHTbVABCZNUgLJRJ064OGhWmCgEkAVfU7T8OKJE2o2wtmzEBUFWVn5+86bB3Xr5vatVSt3OQ8Z2RnsPLeTdafWEXYhDLk+2FDLtha93HoR4haCey33QvtpNJrbg5uZvTgdKCiwilqn0WjuENzcoG9fNao2bx688kpVW1QEaWmwZQusW6cMdHJS4qdHDzWkGBwM7dqpuKvKJG88l4cHvPiiep6VpYRXRIQamoyPzy+wPvgAoqOhYUMICED8/DjZzJE/Ynew+cxmkjOTAbCysKJT4070bdGXgIYBOiBeo6nGlBTTNRC4B2hsGMacPJucgayi99JoNHcKDz2kNM1ff8GhQ+DjU9UWXefsWVizBtavh2QlTNiwAYZcn+8zfnzV2ZYXKyto0UK1fgVySWdlKbF15QqJsefYuOMAaw/HEVkjFeztoHFjPFoG07dFX7o3645TjeocWKfRaEyU5OmKQcVzDQH25lmfCDxfmUZpNJqqp3ZtuP9+WLgQ/vtf5ZixKo1vvLI4exb+9z/YujV3nZcXDByoAuSrEWJpyaEp9/PbiTXsOL6OzKvZcM0KpwRresc403fANNy636s6HzwIcXEq2C5v/JhGo6l2FPsVKiIHgAOGYawAkkUkG8AwDEugRnH7aTSaO4dhw9QQ46lTsHw5jBpVhcbMnasC462t1YzBe+4B9+oV15SQlsD60+v57eRv5izxhr0tgS0G069lPzrWDcD6+Anw9s7d6ddf1UxLwwBPT1WRvFMnaNKkiq5Co9GUl9IE0u8E+opI0vVlR2CtiNyyfNU6kF6jqToOHFAhU1ZWMGuWive6JSQkqEcXF/V48CBs2wYPPKCC46sJIsLhuMOsPrGaHed2mHNq1bGrQ78W/ejXsh/1HeoXf4A//lDXffCgyh9monFjlUhtwIDKvQCNRlNmbiaQ3tYkuABEJMkwDJ0IRqO5S/D3VyN4a9bA7Nnw/vuVPMwokhvBHxAA06ap9X5+qlUTkjOSWX96PWtOruHstbOAyqnVoVEHBrQaQJBrUOmC4vv1Uy0tDfbtU3nAdu9WQfipqbn9YmPVMGSbNmraqUajue0ozVdnsmEYgSKyD8AwjCAg9Qb7aDSaO4iJE2HvXjUR78cflbOpUjh7Fj7+GI4cUcspKSpDfBlzW1Ulp6+c5tcTv7IxciPp2emASvUQ2jKU/i37U8+hXvkObGurCmJ26QLZ2XD4sMo1ZuL33+GHH1TcV5cu0L07tG2rBZhGcxtRGtH1HLDUMAxTmXpXoCojOzQazS3Gzk7l7XrlFZUwNTi4gocZMzJgyRKl6LKylHB47DElHKpBceasnCx2ntvJqvBVHI47bF7vV9+PezzuoWOTjlhZVKB70NKysNfP2RkaNICLF1XZotWrVR6wLl2gVy816UCj0VQpN4zpAjAMwxrwBAzgmIhk3mCXCkXHdGk0tweffqqGGVu2rMBhxowMmDpVReuDilGaMKFCS+hUFlfTrvLbyd9Yc3IN8anxANhZ2dG3RV/u8biHJs63ONhdRN3HrVtVu3BBrc9bqignRwnZaiBmNZrqys3EdIESXG0BW6CdYRiIyHcVaaBGo7n9qZRhRhsblQQsNRWefz63TM9tzKkrp1h5fCWbzmwyB8Y3dW7K4NaDCXELwc7armoMMwyliFu2hIcfVi/U1q3QPs93//btKl6ue3eVSNbdXQswjeYWUZrZizOAXijRtRoYCGwVkRGVbt11tKdLo7l9OHgQ/vUvNcL173/nz25QalJS4PLl3JikzEw1rGhXRWKlFORIDjvP7eSX479wKO4QoALjgxsHc2/re/Fr4IdRHcTLnDlqooKJxo2V+OrZsxrVe9Jobm+K83SVRnT9DfgD+0XE3zCMBsBXInJv5ZhaGC26NJrbi2++gRUrVDaH2bOLLB9YPKdOwcyZKhj8o4/A0bGyzKwQ0rLS+CPiD34+/jMXky8Cagixf8v+DPIYhKuTaxVbWEZE1ESFzZtVKgpTag5QsV//7/9VmWkazZ3CzQwvpopIjmEYWYZhOAOxQIsKt1Cj0VQbxo+H06chLEx5u/7v/0o5wXDrVpXsKyNDlcdJSbltRVd8ajy/HP+FNSfXmOsgNnRoyBDPIfRp0Qd762qaOccwlHvS2xsmT1auy82bYceO/Mlmz59XY8nduulM+BpNBVEaT9enwD+B0cD/A5KAMBGZWPnmKbSnS6O5/UhMVCFYFy9CSIh6XuzomggsXqzK+ICqpj1lym2ZCuJswlmWH12eL16rTd02DPUaSqcmnbAw7tAUDJmZyvtoa6uW//c/NVXVMFSyth491EzIajDBQaOpaso1vGioAIUmInL2+rIb4CwiByvL0KLQokujuT2JjIQXX4T0dJg0Ce67r4hO6elqDHLrVvUD/uijqjj1bRb/dCTuCMuPLGdXzC5AxWt1adqFYV7D8KzrWcXWVQF79qi0E/v2KTEGarpqUJASzZ06Va19Gs1tTLmGF0VEDMP4CQi6vhxZKdZpNJpqiZub8nDNnKnivNzclFMkHwcPKsFlbw8vvaR+tG8TRIRd0btYfnQ5Ry8dBcDG0oa+7n0Z1mYYDR0bVrGFVUj79qolJqqhx02b4O+/4a+/1GtpEl1ZWcqTaW1dtfZqNNWA0gwvfgLMF5Hdt8akwmhPl0Zze7NggUqG7uQE//kPNG9eoMMvv6iSPnkzqFch2TnZbDu7jaWHlxKZEAmAo40jgzwGcW/re3GxdalaA29X4uNV8H2rVrmpPbZvVzMiO3VSQ5B+fpVcJ0qjuf25mdmLR1B5uiKBZFSCVBGRW1YETYsujeb2JidHBdTv2qVmNL736DFc3W1vYXXs0pGZncmGyA0sO7KM80nnAahtV5vhXsMJbRWKrZVtFVtYDTFNZTXh5ARdu6o8YD4+ugyR5q6kzKLLMIxmIhJlGEbB/6wAiMiZCraxWLTo0mhufzIy4K23IHHjXsaeeQfvjo7Yf/4h1KlT1aaRkZ3BHxF/sOzoMi6lXALUTMQRbUfQ27031pZ6aOymOHdOzYDcskU9NxEQoN4UGs1dRnliun4CAkXkjGEYy0Xk/kqzTqPRVHtsbOC17hs48cNHJKVn8+OZIHqn1KRRFWqujOwMfjv5G8uPLjeX6Wnu0pwHvB+ga9OuWFpYVp1xdxJNmsCDD8KYMXDmjBJfW7bkrw8ZE6OGmbt1U4W4b7OJFBrNraAk0ZX3E6Hzcmk0mpL5+Wesv/oKz1bwozGCJTzMulcN/vMfcL3F+UPTs9JZc3INy48u52raVQDca7oz2mc0nZt0rh6Z46sjhqGGlN3c4KGHcmc9gvKErVqlWu3aKv1E165KgOkhSM1dQkmiS4p5rtFoNPn54QcVTQ9YTp7EvaH3sfd1OHwY/vlPePPNWxNDn5Gdwe8nf2fpkaVcSbsCQKtarRjtM5rgxsFabN1KDCN/QH2nTpCWpjxgsbG5AszFRRXknnjLUj9qNFVGSTFd2eQGztsBKaZNqEB651tiITqmS6O5rYmIgOeeUz+yTz8N/foBqn71jBlw9GjlZ4vIzM7kj1N/8MPhH7icehlQYutB3wdp36i9Flu3EyJw8qSa9bhtm8p836MHTJ2qtqenqzQj/v63ZfJcjaY0lHv24u2AFl0azW3O6tWqWHVISL7VaWkqL+q2bUqTTZwIQ4dWXDhPdk4260+vZ9GhRcSlxAFqGHGs71jt2aoOiKh6UpaWuXlGduyAd95R76cOHaBzZwgMVMpdo6kmVInoMgxjAPARYIkqkj2zwPaxwLTri0nAFBE5UPA4WnRpNLcZInD5cqkqXResANSnDzz55M3l0hQRtp3dxvcHvyc6MRqAZs7NGOs3VsdsVXf++ku9WU6dyl1nZaU8X506QWioDsLX3PbcctFlGIYlEA70A84Bu4ExInIkT58uwFERuWIYxkDgdRHpWPBYWnRpNLcRIvDFFyrL/H/+U+pgrW3b4MMPVWqJNm3UcGMpNFuBUwt7Yvaw4OACTl89DYCroytjfcfSvXn3O7cu4t3IhQvK67VzpxqjFlEFuefMye0THQ2NGmkRprntKFcZoJskGDgpIqeuG7AYuA8wiy4R2Z6n/06gSSXao9FobhaT4Pr1V+Wqio0ttejq2hUaNoS331a/oU89BZMnqxHJ0vxmHrt0jPlh8zkcdxiAOnZ1GO0zmr4t+mJloTOg33E0bAjDhqmWkKAy79aokbs9Ohoef1xNjQ0OVq1tW50NX3NbU5nvzsbA2TzL54BCXqw8PAqsqUR7NBrNzSACX36ZK7j+9a8yR8a3bAmzZilnxe7d6vm2bUqA1apV9D7nrp3juwPfsePcDgCcbJwY2XYkg1oPwsZSB1rfFbi4mCdomLlwQWW/P38efv5ZNQcHaNdOCbCuXXUgvua2ozJFV1H/XYscyzQMIwQlurpVoj0ajaa8iMB//6um+FtZlUtwmahZE159FdavV4fctUvFeD3+uKocY/J6xafG87+//8faiLUIgo2lDUM9hzK8zXAcbBwq7to01ZOgIPj+ezh2TMWB7d4NZ8+qYe89e1QSVhMXLkCDBnoYUlPlVKboOgfkHXdoAsQU7GQYhh/wFTBQRC5Xoj0ajSYtTQXAx8erIZuaNVU2cReXkn+Qvv5aZRO/ScFlwjBUQL2/P3z8MezdC++9B2vXwtjxaexP+5Efj/5IenY6FoYFA1oOYLTPaGrb1b6p82qqKSKQlaUCAjMz1fPMTJV81d5eqfVhw1Sekj174OJFlSSuZk0V8/XUU8rr1bAheHlB69bKK2bCwkK9KS0scpulpdrflNk3M1MNp9eokT8YMSNDeX61oNOUgsoUXbsBD8Mw3IFoYDTwYN4OhmE0A34ExolIeCXaotHcnZw9q1xKf/0Fly6pH6WicHCAxo2VAPP1VdnC807Rb9JE/bBMnw7tC8WGlpu6dVUurz/+gK++yeaP038wf87/cGlwhcZNoFfLzoz3H09j58YVdk7NLSIjAxITVUtJgeTk3Na1qxI0AOvWKXdn//65760tW+Crr1TOLpPQuhGTJ8O996q2bp1yp/buDSNGgKOj+iz8+afqaxjqPe/iAvXrFz+VNiQEXnhBPT9/XrlkmzaFTz/N7TNmjLLRykodx8ZGPVpbK4FmY6NajRqqNWyYPxHsihVq34EDc+PRIiOVoLS1Vakz7O3VvlrYVXsqTXSJSJZhGE8Bv6NSRnwjIocNw3j8+vbPgdeAOsCn16d4ZxUV7a/RaMpAQoIqubJ+vUpCmRcbG1WCpVYt9YMTH68CkpOTITxctfXr4bPPoGNH9aPTrh0MGKB+EMs63bBUCHV89uE8+mvSj58l6yKkRXuSfegRGvZvi5N/JZxSUz4uX1bivUmTXE/R5s1K1F+9CteuQVKSeszIKP44zZvniq7ISDVLsU2bXNGVna3em3mxssovaCwt1TorK/XcxSW3b506yo3arJkSSfPm5bpTz5+HuDjIyVHve29vJcpyctT6GjWU0MnOVl4yExYWyutVv37R15SVpVpxf2xMuLvnii4RmD9fnXvgwNw+H38Mx4/n388wlF0mEWZvn/vcwQGeeCJXtO3dq+6/r6+6NsgVhrrkUpWik6NqNHcKSUkqxuW333Jr3jk4qNiWXr1UPTwHh8L/lkWUUDt3ThUr3roV/v5b/TiZhlf69lXDN3l/2CqAM1fP8PX+r9l/YT8ADR0aMqT5eI6t7crmzcpOGxs1FHnffcoZp6kE0tLU0FlsrBJVly/nCqxXXskNSP/Xv1S2+LfegoAAte6772Dp0sLHtLJSge6Ojqo5OCiB4OgIgwfnzno9dUrFXLm75w7lpaWp97PJO1TRw3epqeo6wsNh3Ljc9U8/rUSgq6v6s+Hvr4SLk1PJx8s7/Gl6zNtMHruMDHU9puF5EXX/0tOVp87E7NkqaWxqam5LTy/+/IahJhKY7tGzz6r7OmsWtGql1n3yifpuML0GDg65r03e5uSU+7p5eiphpykzOiO9RnOnIgIbNsA33yjxZBjKY9C7t5rFVdYZXCLqn/b8+eqHr2VL5UmwtVU/lsOH3/hH6AZcTbvKwoML+T3idwTBwdqB0T6jGeQxCGtLNdRz8iQsXKhCdEwEB6uM9j4+eqSlXBw/rso2Xbig2sWLyruTmFj8Pl9+mSuGvvxSBa5PmAB+fmrdqVMQFaUEurNz7o92dRsOy8pSnrADB5QHzIRhqM/A6NHK+1tV5OTkCrCUlNwhW5Mg69Mnt++8ebkpNUze6dmzc4dXS8snnyhvIcDcucqjOWWKGh4G9eds9+7c193ZOX9zdFTfHXchWnRpNHciZ86oocDDKncV3t7qi9bNrXzHE1Hesh9+UF+WL72khmqWLFFfrqDE1333KfVjGrooJZnZmaw8vpIlh5eQmpWKhWHBPa3uYYzvGJxrFF3O9exZWLlSjXqaRqyaNlWaslevShrxrI6I5Bc5ixYpgfTkk7lDYrNmqRtZEBsbqFdPtbp1VatTRzUfn7vL25GdrRR/WJgSYEePKkH2yiu5omv3bnVvfX3VsGje/GG3MybhlpSkWnKyEtymZVMzxeK99FKud/utt1Ts3b/+pSoDgPpe+P77ks/p6JhfiI0cqSYzgPpwX7ighF2DBpV33VWAFl0azZ1ETo76Uf3hB/XcxQUeeaT0mUaLQkSVX1m8WMV9TJumAupNHD+utu/bp5YdHdXQzIABN4wTERH+iv6Lr/d9zYXkCwC0d23PI+0eoalL6ZKrJiTAmjUqa0VCglpnGMrhEhKiTL0rtIGI8lCdOaPa2bOqxcSoH8CCQ4Gvv547nLVhAxw6pDxXDRsqMVa//o1nr97NpKcr4ZV3qO3992HTJvXcygo8PJQ49fFRIuxOfCNmZioh5uCQKzKPH1feLpNIu3Ytt5nWFdQYb7yhamkCLFigvsMefFBNSAAVjzZnjnpPOjurx5JaUSETtwFadGk0dwrXrqlhkLAw9WVzzz1K/OSdAl9W8nq4LCxg6tT8eY7ycvSo+rL8+2+13KKF8q61aVNk98irkfx37385GHsQgKbOTZkUOIlA18BymZqVBfv3507KNE1ss7JSjocOHZRDorh452pFcrKKMTp1SsX4nDmjhvLS0oru//HHuYWjw8KUYGjTRv14aSqOgwfVuPfBg+q1yfs7GhCgvEKg3qzJyRUeC1ltyMnJ9ZyZxJiXV+79+PNPFUPat2/ukOW6dfDRR6U/h5WV+sN5771q+cQJJYjbtMk9ZmamilGsWfOWDXtr0aXR3AmEh6t6h5cuqS+uqVNVsO/NcuIE/L//p76MXnxR5T0qCRE14+y//1W2gBrvmzDBnFo+MT2R7w9+z5qTaxAERxtHxvqOZWCrgVhaVEycR3Ky+s7esAGOHMn/29e8uQptM40A5c2AcVuSkKA8JCZP1X//q8ZVi6J2bXWBzZrlztBr0uSmY+005SA5Wb35Dh9WXsSOHdUQGqghyKlT1QyQtm3VG7FNG7V8G3pnbguystRM2ISE3BmxCQm5reBySgo880xuxYI1a1RKj9BQlZ8NlDB+9ln1/Lnn8se/VRJadGk01RkRNfPoyy/Vl5KnJ7z8csUGNK1dq4YM8w4p3oj0dDVzbflyZZe9PdkPP8Tqljn87/BikjKSsDAsGOQxiDE+Y3CqUXmi4No15XzYtUuNgOaduW8YahKXj48Ke/PwULqlykhNVf+4TcOy//d/Sj3OmJGbNmHFCjWzzc1Nzexr0UI9b95ci6vqwubNaqis4MxDJyfl8XnxxWrwb+A2xxToafqzEhmpXOHNm+cOYx4/Du++q0Tcyy8rd3glo0WXRlNdycpS/9z++EMtDxoEkybdfGFfETVzrTzjcMeOqeFFX1/143H+PLzzDgcOreNLj2tENbAFNzcCnFvzWKYfzQJDcoNnbwFZWcrpcOCAMvPkydwsGibq1FHiy8NDCTI3N+Wkq3AHhIhKx3H0qLpv4eFqiPCjj5SYApXxf80a+Mc/cv+xp6fn5qLSVF+ystTQ8OHDue+B+HjlqV6wIPcN9+67KkTA01O1Jk20N6yiMekdPbxYMlp0ae5akpLgnXeUcrCxUXmEevW6+ePm5Kjp4Dt2qOOXZbajKWVARoayaf58LqTG8c17D7LD8QpkZNCwRl0mXXAl+NAVDGcX5dWZP18Jr4KCLe9xi1pfAaSlqd+7v/9Wpzl5sugclo6O6g+yaeSuUSPV6tUrQ07JjAz1z/ro0dwf2aSk/H0sLdWwkynmpKDnS3PnYvqzExurXK+g3qAPPJB/fNzOTv0jaN0aevYs/4xkTZVQnOjSf6E0mtuVCxfUzLPoaOWCee213ESHN0NmJnz4oRrOsrHJnQpYHAXF0N9/K2HRuDFpF86xdMsnrEjcRabLNWxtnHkgugb3Ne6NTfQBuHQZMrPUP3hT4H0BwWYWYkWtryBsbVWuy3bt1LKIuq0nTqgWEaFi1JOSlEPClIHDhJWVmuzXqJGa2V6vXu7Ev/r1wTkxGuPPdWrHEyeUdyMvtWurmB5T3b+WLfPnT7sTZ7tpisYwct84Jqys1BDzsWNKsB8/rmIlDx5UzcMjV3Tt3q28pa1aqVa7tvaIVSO06NJobkeOHoW331aBSm5uSnDVq3fzx01NVZ6tsDAVS/Lqq7n/tqGwwCpKDPn6IjbWbEo/zryAK8RzCJzsCblSk/GRNamDHXwwVQ2pTJyoRF1iovKqJSaaBRsxMepcBYRcvvWV5P0yDDV606SJSjcBSohduZKbiSEqSo2axsSo0aBz51SzyU6lWeJh0i3tOevUFgCPpFgejlimqtTYGKS7upPRsi3Znm2x8vHC0b0eNWsZuLiUPVet5i7Ayio3yN7ElStKwIeH53/vb9+uZviZqFlTifiWLfOXUtLclmjRpdHcbmzZopJYZmaq/EovvVQxwbYJCSpHzokT6ov6jTdUcLaJogRWEWLoRO8AvnzOh2PRYeDcGI9m7ZgcNBmv7uQXSF5eakr4/Pnq3/qJE8oTlJys3Ew2NqovqEcbG3UOa2u1XJz3qxKFWO3aqpk8YgBkZJCWkE5MohPnz4Os3UrTFXM4Vb8TK9zbEhsLZ7K92Fj7fqKcvIlybEu6lQOcR7WN+c9jY5ObJzJvxZWClVns7NSyg0NuiT07O+3UuGuoVUuVYAgOzr++Z0/1+T1xQo2TX72qclvt3avSVZhEV0aG+syYJmE0baoV/22AFl0aze2CiMqTZcrwPHCgCqyuiDIaWVkwfbpKotmwIbz5phJhS5cWOWxo9jblEUPx9gbf2ezjz7XfAeDi3oYJARPo494HwzCgLoVFkLe3yikWF6dmXu7cqcbo7O1VpnRTfy+vXJFnsmfp0sL2QOULsZwcNd64f785I7ntgAG0mDxZadSWvpDiRfOOnoSMULukpdlx5coELl9WXrHLl5WjwjTr3dRMdaAvXcrNtFFWbG2V+Cr4WKOGem5rm1uy0NRsbdXtKthMZQ1Ny6Za0lZWWtzdtgQE5Na9FFGxYRERqpnKNYFy1/7yS+6yhYX6LLm5qdavnzm9i+bWoUWXRnM7kJmpEluuX69+7R55RJXaqahfPisruP9+lfdpxgz1RV3EsGEhb5OXFxlff8nPO+fzA0dISzmElYUV93nexwPeD2BvXUoPXL16KkP6X3/B558rxfHZZyp2Zfx45V4yecdMFGVPUcIQbj4eLC5OiSyT0CpYi/DKldznDRsqIZkHW1v1e5f3N68oRFTMdN5ckQUrsCQn57bUVPVoKrWXlpbbKhuTAMvbrKwKL5fULC1VP9MkzJIe8zbTOguL3GXT84LNwiL/NtNz06Nh3MEC0jBUkGGDBoVTvdSqpT5bp0+rPFXR0bnVC7ZsyZ+Lb+lSVeUgb+63mjXv4BtXdWjRpdFUNYmJKs7q0CHlepg6teIK6yYk5GZ/7tNHDU1YWalhv4LiZeTIfN4m8fRkW9RW5kfM56L9RcCaTo078Ui7R3B1uoG6KI6OHVUy16VL4ccflcjcvl0VEx4yRP1CmyjK+wWlE2I38n5lZKht+/erYZlz5/Jvr19f5fjx91d1hiooo7thKK+UnV35MnWIKCGWlpZb9zg9PVeImZ6np+c203JGhnrMzCz8PG/LzFTpNTIzc7P9V3fyCjPT86LWFbW9qGYYxa83Cb2ilova3yQKC24raX3e7Xn75X+si1FzBEYgWLQHIzMDu7go7C5GYhsbRezJhlicVvfH/ccd2J49kauxDMixcyTTtRnJgd1J7DlYnQdRjxaGeaJtQTtK20yvi+nRtK6ofsXtX1yf4raZnuc9361Gp4zQaKqS6GgVW3X+vPL2vPaaCoi9WURUMdoff1T5f9LSig6Qz8xU4qWAd+jYpWN8ve9rjl0+BkBzl+Y8FvgY/g0rIPu9ifPnVX6qv/5Sy66uKvC+U6eSvxGLC/bPey1QsvfrH/9QAs2EnZ0SV4GBKqCrYcO7+l++SK7oyshQo9Om5bzPTeIsKyt3fXZ27rKpmdYV9Vjwed5mWp+Tk39dTk7J6/I+rwY/cVVOs8TDNEg5Rf2UM9RLjaJeWhS2WckA7Gg4jHXNHgGgcdJxHjr+CpdtG3PJtimXbRtz2a6JeqzRiCzL6lH4e9q04qucVRQ6T5dGc7uxd68qnJuUpAJdX321YjLMp6WpxJtbtyrhcO+9StyUIg7qYtJFvj3wLVuitgDgUsOFcX7j6Nuib4WV7inE/v0q3svkbfL0VIIp76zKG1HwWpYuVeWSGjfOnXL/44+5nrADB9S4XWCgap6eOgnpHYpIfjGWV5QVJdTK00znKPj8RstFPc/7WHBfKLxf3mssat+C6/Juy3u8vP0QoUbKFZyvRpFiW5urzs0QAbczm+j+1/sIQB7pYFpe1H8eSbZ1EYEmF/YgAgkOjbhmW59sw6qQDQXPb1pXsF9x6wuuy7uce1+yycpKud6SycpK4eWXmzJgQOXWw9R5ujSa2wURWLQIFi9Wzzt2VOVAbG1v/tjbtsG//63GnurVU0OVkZFFD7/liaG6ln6NHw7/wK8nfiUrJwsbSxuGeg5lRNsR2FlXcg6pdu1g7lxV5mjxYhXnNX26mrn58MP5Z1gWh+lazp+HVatUTizTMKTJXfLzzyohbEaG8oh9+22u+FyxolKSsmqqHtMQX0XMR7l7MIDa11teekJiYG7+lHPnlLf+3Dm4coW3P6ujdgV47nsV3J+KGs9r0CA38DEoqFSleESElJQUkpOT8zXTupSUFJKSkvItF3zMzEzDMHLjEAGcnacDZSh3VoFo0aXR3EoSE+GDD5SXyzDgoYdUJuqKGMr6/ntV1DUrS8WGLVmivticnArHQV0nLSuNn4/9zI/HfiQlMwWAXs178bD/w9RzqIC8YKXFygoGD4a+feGnn5RXyjQNvmtXdY+KEl+ZmSoNxZ49Kmmkacjw3Xdz48Hs7VUSybCwygnC12juJpycCucUA+Wyyvs95udHjoMDyVFRJF+8SNLJkyQfP05yVhbJEREknTunRNTJkyT/+ivJtrYk29iQbGVFsmGQjNJrkjfOsxwYhoG9vT329vY4ODiYn1cVWnRpNLeKiAgVMB8bq764pk4tkBDqJrh6VXlxsrJUPJKdXW5OgiIC0rNyslgbsZZFhxZxNe0qAEGuQTzs/zAtapXCs1RZ2NqqoPqBA9UQ4a+/Ku/dtm3q3/EDD6gI9D17VDtwIP9UPgcHNVxoY6Ni4/IKKJGKCcLXaO4SRIT09HSSkpJISkoiOTm50HOT96mo7ammWlvW1kqUmYIEd+9WnzFQ31NRUcXaYNelCw41a+Lg4IDDhQs4WFhgX7s2DvXq4dCgAfb16uHg7GwWVAUf7ezsVEqb2wQd06XRVDbZ2Wr4auFCJYo8PFSl+/JMX8tLQWEwfz7MnKk8O8V4bbJyslh3ah0/HP6BuJQ4AFrXbs34gPH4NfC7OXsqg8uXYflyWLZMidWEBDVO5OqqZmUahso51KGDEmVeXiWPI91sEL4WY5pqRl7hlJiYaBZFRbW8osm0nFWwpFUZMHmZHBwccHR0ND/a29vj6Oiontva4pCVhUNqKo6pqdgnJuJ47Rr2V65gn5iIxTff5HrQnn1Wpb/IfxJVvb5/fxgzRq0z1fOqW1c1Z+dbPjFGx3RpNFXB2bMwe7Yq5QHKg/PYY/lTI5SHgwdh+HD1vG5dJQwmTFAz/4oQBUWJrabOTXnI7yE6N+l8W/0TBJQ4tbJSX6bduyvRamGhhJCpYLC9PYwaBSNGlD6lQ8FcYKVNylpSfUgtxDS3gKysrELCKTExsUghVXBddnZ2uc9rY2OTTzCZWt5lBwcHc8u7zt7evmK/W4YMUfFjsbGqxcWpbMSXLqnPpYlTp1QZNRNWVrkCbORI5Q2vIrTo0mgqA5N363//U16UunXhqaeUN+Zm2bVLBZrHxanhNFM6iALB8aBitv6I+IMVx1bkE1sP+j5I16ZdVcxrWlpuweWsLJW0NDVVlR8yYYpD+3//L/catm9XwqN7dxg3Lnf/JUtUEH///mW/tshIVQLJ2Rneekuta91aZba//371eO4crF2rCoKvWKEC57t3V4LW07Ps/2hLk5QVKi8xq+auweR1yiuWCgqn4kRV2k1kxDUJJ0dHR5ycnPKJp6IEVd5mfbN/ECuSPn0Kr8vKUqIrb4mjGjVUOaRLl5S3PDFRfV9cuKCEWxWiRZdGU9EcP65SIJi8W/36waOPKoFUXo4dg82b1Q99ZKSKj7CzU1mjbW3zBccDxKfG82v4r6w+uZqkjCQAmtq78qDXSLq27qv+fe7fr/4N+vur/GCghubWr1dfZM89l/tFlpKivrjyDjVcuaJmCyYl5V+3eLHKOZZXdL3xhoo7e/55le0aVIzboUPqX+igQWpd7doqg7a9fa63y9JSpdbIy4gRSgSuWgX79imb169Xw44hIdCr143TwxdHcUlZS5shX3u/7nhEhNTUVJKSkrh27VohgWR6XnBdUlJSuYfrLC0t84khk3hycnLCwcEhn5gyPTeJKZs7ueailZWKY82Lp6eqvGEiLU2Jr8uXVdb9KkSLLo2mooiJge++U0HfUHHercOH1b+zy5eVF6dTJyVeWraEI0fy/bCfvnKaX8J/YcPpDWTlZIEBbeq2YVi0E50W7cJ46Ap4XvcE1aypBENe0WQYymZb29x00QAvvKC8d3ln/fTurWrA1ciTENHGRgXCF4yrOnFC2X/kCKxerQTfX38p0ebtDffck5sq+plnVEmTkvJmGYb6J9u+vTrGmjWwaZN6/r//qeblpTLwd+pU9vxnBb1fpnWlyZCvhyGrDSbxlFccFSWiilpX3iE7GxsbnJycComkguucnZ3zbbe1tb39wgCqC7a26o9R48ZVbYkWXRrNTXP1qsq79fvvSpjY2Ki6ifffXz7vVsEf58OHlTAyVSd+4IFcF7m3N2lZaWyJ+IPfTv5GeHw4nIvGuHSJLu2HMbTX47Sp10Z5gSz35RdYzZqpocCC06eLcuEXdR12doW/xFxcYOxY9TwjQ13LgQOqDlxMjJphacLSUomhe+9V983KSomxjz5ShbFfeUX1E1HpHtzcii7Q6+qqalVOmKBi3davhx071LmPHYMvvlACtVMnlRPNza38QbXljQkDLcQqEREhLS2tkIepONGUt+WYsoSWEVtb23zepoLCqbjnd7TXSXNDtOjSaMpLTIwa3vrjD+W+Ngw1lDh2rAoALw/Hjqn94+LUMRYtUuVpXF1VbJiTE3TujIhwIv4Ef/75FRtOrSO1SUOwtMTB2oHe1t4MPnGBRkFdod71XDrduqm4p7zxGZaWhQVXRfDbb7BxoxpmzTuU4uyshEVAgBrSbN06N3W0yauVna2u1d09d7+LF9XwZ61aypNoYu9eta5Zs9yKyAEBqqWlKeG2Y4cafoyIUG3hQiX0TDb4+xct5MpCRRfqvouFWN5hu+KG6IoTVOX1PNna2ubzLJkeCwqpvALqtot10lQbtOjSaMqCiPoR/+UX9aNvokMH9QNqilcqLaYfWC8vlQ7ho4/g5EnlDo+NzS1EvXgxsm8fp+3S2JL2F1t+eZ+LyRfVcF1SEm0aezOg00S6Nu1Kjbh4GJqeP3ahsv5dh4Up79TAgblxFefOKe+cYaiEpr6+SuT4+Nw4636vXqrlTWWTlqaGIPOKIxEV3J+YqMSKSeSGhan4M2/v3GNlZChv219/qXbpEqxbpxpA06ZKfLVpo16HevVubnr5zRTqhtILsdtYnOXk5JCcnFwonqmo4PGCz8vreapRo0axIimvkDIJKy2eNFWBFl0aTWk4e1bFam3YkJv13MZGxQwNHly6UjVF5YgaM0bFOqWk5AbDW1qqH+a6dcnybsOx2EPsS93D9l1vE20kQmI7sLamtl1tunsNpR8taN7n/lzRU94A8pL4/+2deZQd1X3nP7967/Vb+kktJLShhRYSIMkIJJABmeUQGwLYJh5vx8RkzDixzxiTODgmBHBOBm/JzITxiXHsZM5hDIzwxhji0ckxFjZOAGvYZO27UDfalxZqtbr77e/95o9fPdXrVssSsrpbon+fc+pU1a9uVd2qW3Xvt3731r2VijVw37LFrjmbNfvSpTbG43nnRee/8Ua7lrlzzTN3KjSKntZW63+skVLJhFJHhzW+r/PMMyYC//qvrSoRrD3Z1q1WbXr33XYdq1fbtG6dpe3Onea1BGvrNnu2NcadOdO8bmPGvL34n0w1JJy6EBvIdprFWOMQLAP16dS/W4LG9d7e3lM+b3/P00BCqr+I8mo752zBRZfjDISqFc7LllnXCPXBmME8Ie9/P9x888mLinrj6kLBCtjFi61g7OyEYtGqDlMp9K672J+usvrJh1kxqpdVG752dHgeWgJGl8dw7fhruO6KDzN3/FwCCX7raU+JUgm2b7fquLa2aCqXbfukSdHPAddfb4Lrooui/VtbbRpMkkn4q7861j5vnlUzNlZPrlgBTz1lf3zOmWMCOZ22XrFvu82uZf16qw5dv97a6L3yik11xoyx/WbMMM/Y1KkmjOri82Q43ULsJPoSqzz6KLnp0+lZtYreVavonTaNnvHjTRxt3kzvli30jB1LTzY7YOeYp9p5togc94+6geaNf+C558l5J+Oiy3HARNb27eb5WL/e5ocPR9tHjbKG2O95jw3dc6LRc+vehpkzzWvz+OPW1YOItaMKC9pyNkNbcIgNFzax6bNz2Fj9CZ0dh2B8u7Vv6p3E1HEzuOK8K1h43XzmnbeAWHAaR+7t7ISNG20Yju3bbb5rlwmU/kyZYuKqUWguWmTTmcLHP25TI/PnW/rOnx/ZduywNEgk4M47repT1fYNArjrLrsf7e1WjdzWZl61FSv6HrulxQTYpEk2TZwYTeec0/cP0IH4LUJML7mE/PTp5Do76VUlt20bvUFArlCgN5+nt7ub3rVryYnQ89pr5DZsoHfFCnq2bSOXStHb00PhzjutLd2qVZam9XZvcKwtm7UfLY4csX2yWfM6Vatk83my06aRPf/8Abst6L/c3NxMcKJrd5wRiIsuZ+RRKpmwaG+PCtatW6F/lcg555jQuuYaK5S3brWCOpvtW1Bu2mR/zV16aeRt+OAHrY1WpQLz51NFOUgPO1Il2ifm2J54jTe3/Tu7PzeW6vrdkE5AcSsAo5KjmXvVR1l40Q1cPus6JjT/DsMFqUZVdWvXmvdm/nxrgwZW8H7zm333ETFvzsyZ5t2pz9+OV+dMYt68Y/oxY+5c6zussUqqnv7pNNxyS2R/8EEb5/H2283DtmuXNdBfs8aqNru6TKhXq2hnJ6VEgkImQ06V/KhR5LNZcs3N5DMZ8skkuUSCfCxGLgjIi5BTJVcsksvl+kz5xYsjT9OYMZEYeuops02dGtnq49j19Ngzd+QIBAHS0kK2VKI5FiN7zjk05/M0T55MNpWiua2N7Lnnku3qInvDDTRfcgnZr37VRFZ3N83f/jbxeDzynHV2WtchjW3MLrigb7Xmr3994nZnZ3BbNMcZbAZVdInILcC3gBjwqKr+137bJdz+fiAH/CdVXXHMgRzn7VAqmZeqs9O8E/v22R9w9fn+/X09OfWv+9bWSGAlkxauUUh96lPW9grgz/7MGoWvWwdPPEG+nOPQ3Bm89T++zqFNKzk0Zi/7JpTYN1rYN6uNA9PGUr1+Muw/AOeOg/wmyIOMPYdp865hzvQrmDPneuaMn8t5o847cX885bI1Iq9fZ2enDYdRn9eHyPj85807B9Yea8kSE2J10TVrlvV1NX1636mx7613GKpKNZ2mePHFFItFinv3UigUKBaLFL78ZYqdnRRffJFCoWBTPk+xpYXCwYMUkkkKQF6EggiF0aPJp1IUurrIHzhAfts2akFg3sB6dWx3t93zbDbyfJXL5slMJMxrGotF25qa7P7H46RSKZozGTLZ7NGBfTPZLNmWFjKjR9tAwGPGkGlpIdvSYkOv7N1L9s03ab7iClKXXYZs3hyNLzlhQtQR7oYN0WgJn/iECaFYzNJ/zx7zgMKptzE7WdvbFWin2+Y4Q8igiS4RiQHfAW4CdgGvi8gSVd3QEOxW4MJwugr4p3A+tAzGSzxcGcjZHMfVq229tdUy5VLJMv61a60gmDTJ2kRt2WLtb8aNs8Ktp8eqi958M+rBHMze1WVhMhkTWt3dJrDmzqV2+QJKiYDyd/+RMlWKmw9SXDiL4ktvUPyX/0OhUiDXkiH3d18l176F/Jjt9CY66Y7XOPLCQ3SPSdNdOMKR9x6iEAcy7bDsq+Z5uLQGZYVUE1x6ATQ3M1ZTTJsap3XibM6fPJvW5ESmJ8aTrKhd14TZUdXda6/ZdV99tf2JB+ZFeOwxi//JDgnS0REtL1hg87lzI9u0aX17bh4EVJVKpUK1Wh1wPtBULpf7LNen/uulUolSqXR0uVwuUywWj87r2xuXS6XSqf0h98IL0XKlYvcuCCwtkklr61cskkinSc2eTTqZJBMEpH/1K9KVCulrryUjQqZSIb1xI5n9+8lMnUo6k6FZhExPD+mdO2lOp0m3tpKJxQhUzcsWj9t4cfm8fQxs324fANOnR32o9fTY8z1hgnnBVq40r+WePfbu1DuIfPZZE+WXXWbvxKxZFnbbtki4J5P2nKmaB3DTpkiIL1liYn/CBPsTdOlSuw89PXae/fvtXgWBxXHyZPvgefVV279QsHaAe/dade0FF9g7/ZnPnD4hd7K2t/tn6JmWZ3ocT098hhA51YaSJzywyCLgIVW9OVx/AEBV/64hzP8E/l1VfxiubwZuUNW9jcdauHChLl++fFDiyaZNfPpj76ZQr1rIjgIBenug1uDaT6XgrYNQrVlGlclY4frWQQtXrVqmNHu2fT22t1vmomqZYhCExwQIv3qbm+HQW9H+qSSMHgOdb4EClbCjzUkTrfBUtWPH4hCPQSFv4QASTRALoFI2mwBBzJarFVTEbMmkHbcuVrRm55YgHFC4GN2beNigtVazOIuYrVpBK5WjX+aaTkOxEMY3YScfOxbt6LDCScL4NCXRagXK4b6BoJk0WgwFloAGASRTKIoWixa/eBwV0NGj0cOH0VoNDY9Zi8VQVVTNVguEWiqF1irUymVUoBozWy0QavkcVYFqcwqdNs3SaOfOhmsOv0MqlfA+it2reAy6jti9Ahh/LqTSFr89e4hVoTmWovldC8iMGU/zpm1kd+yjJZZhtKQZVY0R02O9V41vn952W/Tn4csvo2vWwNVXo/WqsbY29PnnLayIpWUqhWYyaDgnnUbTabS5GZqbqSWTIBLeo4GnWq3WZ66qVKvVPtur1Sq1Wu3oNJC9vlytVvtMg5XH/C7E43GSyeTRqampiVQq1ceWSqWOmZLJJJlM5hh7Op0mnU6TSqWsSq6R3l4TMJMmRVW9y5dbHnHVVSbe8nmrsnzqKRNS111ngqWjw7rGiMfNG5XP2/SLX9i2yy6z6tBCAXbvtmd50qSo65J83gqZVMq8tnXWrLF95s2Lxt3cscOO0dJi+2ezFu/16+38c+ZE7b6WLYvytrqYf+UVe29SKfOe1q+z/vNI/W/SlSvt2kTMC5vNmjBcvz7MFwLLR0Xso6teRV5/DzZssPewVjMhKnK0epdSyeKTSJgXWsTONXu25eNr1lieeviwfdzNm2d9ylWrFs/WVvsoeeEFO365bPfikkssXr/8pZ2jXLZzn3++pUW1avf64ost7NKltn+xGFXPL1tm4apVO8+ECVa9X61aPOse5rY2s8Vitl+pZGmjarYFCyzt29oiL+kNN5iwDQK7P/W2eq2ttrxjh81jMXtmOjtNZAeB2a6/3oT85s2R9/W22+zZWbfOyrsggA9/2JpZvPyypXNTk9n277drrvf995GP2P388Y8tzUaNss6ix4+3+/3669H+H/2oVdn/8pf2nKXTZuvuhqef7rs/mFiu1az8rbffXLzY7lMmA5/8pNl+8ANL+6Ymq6UAe79KJXtHfvzjQRVeIvIbVV3Y3z6Y1YtTgIbSjF0c68UaKMwUYC9Dxdq1PN/dS7ESFgyHjhwbpqMTUwQNhUepF7pyYYaAlZ6lAqxeb7ZKNQpf6jn2mIe6obPn2P2790WiqW5r32nCTAiF4ABjdxUbPB/1fSkfa+sNbT2FhvNo39I/OugJjlkzW7472r9UCs+zzwRqI/lG70y4LddrB9YGez4fLobGWHieYi8U+h1TQhFUvxaAeNleynATARAP71kpCiMHDyCJBMFBu5RAIRYXAoWgLASqxBRiySqxAGLVFLFylXgQJz7qIuLVpC3vD4h1dlkj846xVDuqHNkT40hHwB4KQMEy1fowN/WpcT0WM09A3Wtx5IhlPu3t5pUAy4inTOnrzWskl4uqP88w4vE4sVjs6Ly+fKIpkUgcnTdOTU1NA9qSyeTR5capUVw1NTURO9GPEKeTUAD3oT6EUZ1Mxrq0GGg0gDvusPeqsY+zu+6yZ2TGDDu2qnmL1qwxL9KMGbbP/v027FIyaWNSlss2Pf20Fby33mrHLZft+duwwcTZzJkmoHbvNpE1frxVvddFw86dJiZvusmqJ6tVEzK7dpmQmTXLbOWyCadJk+zZrdWsUK8XumPHmq3eJUe5bM993eOrateRSPS9/mLR3pv6n46qlm/U89wgsOMWCnYd5bJtq1btvpXLFv833rAwqZQdc+dOO2bdViiYGMlmbXs+H3k3t22ze5PL2f2t21TNlkpZ+DfesHlvr9lyORMuBw9Gtt5eEzxNTVFa9/TYvSuXow/9nh4TQocPR50l9/SYx/DQIctT8vnoPHUBpmr3NZczoVdv+5fNmm35cntWikUT3bmcCav29uj6envtT+7du80Wj9s1L1tmz1Jvr53jyBHzypdKZkskzPbSS/Zsrlxp9njc4vrii3YvenrsWS6VzJbLma2pyWosXnzR0ranx9JANfI+16vwKxUTdWDnrFTsmuq2ri7LOwuF6I/fIWYwRddAjVL6F+0nE2ZwmTeP/zxmHOUjXRad6dMtVrt3m3AC+9oYlYVNm6FaMfvkyTBhvNm0BqWwbcS119oD9coroSdJYeoU807t2gW1ql3htGkw9py+xxw/3jKnLVsir9a4cXb+jRtt32LJMqimJntJ6pnM2LH2cB86FH0Zjmkx4dLVZWFE7Pj149YHTq5U7KshHoeOA0gt3P/ccXZPurqQ+pfThAkWh0OHjnqruGCmeew63oJ0ConFkKuvtod6z15r0CtiX4G9Odj+JiQSSDyBLFpkx1q1GonFCFIpuPEmJJWE1auRrVuhOUsQiyF/+Enk1/8P1qxGJEYQBMg11xCUyvDyKwQixOJNyO/fTFCtEix9jqAGsWyW4HOfJ0ZA8PDDxCs1YqkswRe+hEyfbmnV3m5pOnGiXdeBA1b9MWVK1P9Uo1CaMiUSPp2ddn9Gj44aZpdKSP3LtLG9zgA0tt860fJvs4nI0cmiGxxj7z8FYdrU5/1t/ZeDICAWix21xWKxPvP6cuPUGCfnFAiCYzuV7d8Jb/39uvjivvbW1sjD1MjxxN3J8rWvHWurVCJvSv3dKJWsYI3HI+GpGlV7T2j4SWTZMhONixaZ8KvV7N1cvty8Sldeaba1a62wnT076kh30ybrQ2/6dBOXiYQJm2XLLF9997stj9yyxURHc7N9JNVqNo5puWw/ztxzjwnG++6L8sm77zaP3MGDZs/n7ZgPPGB5xv33W9iWFhu39KKLbFu5bHn1Zz9rHrGvf93u0bhxVs05bhw88kjU1u6OOyz/eOIJs8Xj5qEplcxrUzOvP3fdZXnmk0/afUskLF7FouX1jz9u+ycS5glSNQ9PfaitP/kTC/ejH9n+8biNd7p7t43YEI/bdP/9Vu4sXmzxSiSsm5a2NhtaKx43MXbffXZv/v7v7VnNZOAv/9KEzUMP2flHjYJ777Xn8bnnrJlEImH733uv5bWPPBLtf++9Vn5+4xvR/l/6ksX3wQejMusv/sJsf/M3dv3NzZHtK1+JBOMXv2i2v/1bCzdq1LE/1wwRXr0I7/w6a4/jGVWn7zjOGcSZlh+dDXnmOymOg8TxqhcHU3TFgS3A+4DdwOvAJ1V1fUOYDwB/iv29eBXwiKpe2f9Ygy66HMdxHMdxThND3qZLVSsi8qfAUqzLiO+p6noR+Vy4/Z+Bn2GC6w2sy4hPD1Z8HMdxHMdxhpNB7adLVX+GCatG2z83LCtw92DGwXEcx3Ec50zAx2lwHMdxHMcZAlx0OY7jOI7jDAEuuhzHcRzHcYYAF12O4ziO4zhDwKB1GXE6EZEOYPtwx8NxHMdxHOckOF9Vx/c3nhWiy3Ecx3Ec52zHqxcdx3Ecx3GGABddjuM4juM4Q4CLLkBEbhGRzSLyhojcP9zxGamIyDQR+TcR2Sgi60Xkz0P7WBH5hYhsDefnDHdcRyIiEhORlSLyr+G6p8sZgIiMEZGfiMim8N1Z5Gkz/IjIF8N8bJ2I/FBEUp4uw4OIfE9EDojIugbbcdNCRB4I9cBmEbn5dMZlxIsuEYkB3wFuBeYCfygic4c3ViOWCvAlVZ0DXA3cHabF/cDzqnoh8Hy47gw9fw5sbFj3dDkz+Bbwc1WdDVyGpZGnzTAiIlOALwALVfUSbCi82/F0GS4eB27pZxswLcIy53bgXeE+3w11wmlhxIsu4ErgDVVtU9US8CPgQ8McpxGJqu5V1RXhcjdWeEzB0uOJMNgTwH8YlgiOYERkKvAB4NEGs6fLMCMio4Hrgf8FoKolVT2Mp82ZQBxIi0gcyAB78HQZFlT1ReBQP/Px0uJDwI9Utaiq7djY0Feerri46LJCfWfD+q7Q5gwjItIKLABeBSaq6l4wYQZMGMaojVT+AbgPqDXYPF2GnwuADuCxsOr3URFpxtNmWFHV3cDDwA5gL9Clqs/h6XImcby0GFRN4KILZACb96MxjIhIFngauEdVjwx3fEY6IvJB4ICq/ma44+IcQxy4HPgnVV0A9OJVVsNO2D7oQ8AM4DygWUT+aHhj5Zwkg6oJXHSZip3WsD4VcwM7w4CIJDDB9X1VfSY07xeRyeH2ycCB4YrfCOUa4A9E5E2s+v29IvIkni5nAruAXar6arj+E0yEedoMLzcC7araoapl4BngPXi6nEkcLy0GVRO46ILXgQtFZIaINGEN6JYMc5xGJCIiWNuUjar6zYZNS4A7w+U7gf871HEbyajqA6o6VVVbsffjV6r6R3i6DDuqug/YKSIXh6b3ARvwtBludgBXi0gmzNfeh7VR9XQ5czheWiwBbheRpIjMAC4EXjtdJ/Ue6QEReT/WZiUGfE9VvzG8MRqZiMi1wEvAWqK2Qw9i7bqeAqZjmdnHVbV/o0hnCBCRG4B7VfWDIjIOT5dhR0TmYz84NAFtwKexD2pPm2FERL4CfAL7K3sl8Bkgi6fLkCMiPwRuAM4F9gP/Bfgpx0kLEfky8MdY2t2jqs+etri46HIcx3Ecxxl8vHrRcRzHcRxnCHDR5TiO4ziOMwS46HIcx3EcxxkCXHQ5juM4juMMAS66HMdxHMdxhgAXXY7jDDsiMk5EVoXTPhHZHS73iMh3B+mc94jIpwawt4rIutN4niYReTEcg89xnBGMZwKO4ww7qvoWMB9ARB4CelT14cE6XyiA/hjrvX1QUdWSiDyP9dn0/cE+n+M4Zy7u6XIc54xFRG4QkX8Nlx8SkSdE5DkReVNEPiIi/11E1orIz8MhpBCRK0TkBRH5jYgsrQ/10Y/3AitUtdKwz2oReRm4u+H8rSLykoisCKf3hPbFIvKhhnDfF5E/EJF3ichroZdujYhcGAb5KXDHYNwjx3HOHlx0OY5zNjET+AA2mPCTwL+p6jwgD3wgFF7fBj6mqlcA3wMGGmHiGqBxAO/HgC+o6qJ+4Q4AN6nq5Zin6pHQ/ijW8zsi0oKNq/cz4HPAt1R1PrAQG8cNYB3w7lO8Zsdx3iF49aLjOGcTz6pqWUTWYsN2/Ty0rwVagYuBS4Bf2JB3xIC9AxxnMjYWXl00jVHVF8Jti4Fbw+UE8I/hUDtV4CIAVX1BRL4jIhOAjwBPq2ol9JR9WUSmAs+o6tYwfFVESiIySlW7T9O9cBznLMNFl+M4ZxNFAFWtiUhZo3HMalh+JsD6ATxW/ckDqXBZgOONh/ZFbKy2y7CagULDtsVYleHtWPswVPUHIvIq5o1bKiKfUdVfheGT/fZ3HGeE4dWLjuO8k9gMjBeRRQAikhCRdw0QbiMwC0BVDwNd4YDr0LftVQuwV1VrwH/EPGd1HgfuCY+xPjzfBUCbqj4CLAEuDe3jgA5VLf/ul+g4ztmKiy7Hcd4xqGoJ+Bjw30RkNbAKa2/Vn2eB6xvWPw18J6wezDfYvwvcKSKvYFWLvQ3n2o+Jt8cawn8CWCciq4DZwP8O7b+HtflyHGcEI5F33nEcZ+QgIv8C3Fdvd3UK+2ewtmSXq2rXCcI+AzygqptP5VyO47wzcE+X4zgjlfuxBvVvGxG5EdgEfPskBFcT8FMXXI7juKfLcRzHcRxnCHBPl+M4juM4zhDgostxHMdxHGcIcNHlOI7jOI4zBLjochzHcRzHGQJcdDmO4ziO4wwBLrocx3Ecx3GGgP8Pd3hlUlqt+fcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.2968, 'epsilon': 0.1539, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACjSklEQVR4nOydeVyV1fb/3w/IpAzOiiNoCMooKM4DzqaZmmNmaZk3m6x+19R7b9l07+2Wpdk8W+ZXTU0zszJz1swRZ0VRRAEFRZBR4LB+f2zP4TAKCOKw36/Xfp3z7Gdaz3MO5/mw9tprGSKCRqPRaDQajaZysalqAzQajUaj0WjuBrTo0mg0Go1Go7kJaNGl0Wg0Go1GcxPQokuj0Wg0Go3mJqBFl0aj0Wg0Gs1NQIsujUaj0Wg0mptAtao2oDTUrVtXPDw8qtoMjUaj0Wg0muuyZ8+eiyJSr2D/bSG6PDw82L17d1WbodFoNBqNRnNdDMM4U1S/Hl7UaDQajUajuQlo0aXRaDQajUZzE9CiS6PRaDQajeYmcFvEdGk05cVkMpGYmEh2dnZVm6LRaG4T7OzsqF27Nra2tlVtiuYOo9JEl2EYXwGDgXgR8StivQG8B9wLpAMTRGRvZdmjuTtJTEzE0dGRunXror5yGo1GUzwiQmpqKomJidSrV2jymUZzQ1Tm8OJ8YEAJ6wcCXtfaZODjSrRFc5eSnZ2Ns7OzFlwajaZUGIaBs7Oz9o5rKoVK83SJyGbDMDxK2OR+4FsREWCHYRg1DcNwF5G4yrKpOA4dgtzcm3Ou0j77r7ed9Xrz+4L7GEbh7Ypatm4ANjb5+8zLNjb519na5vWZ35tfbyWNowWXRqMpC/o3Q1NZVGVMV2PgrNXyuWt9N110vfEGpKXd7LPe2dja5rVq1cDOLu/V3Ozt8zcHB3ByUs3RMe+9szPUqAEuLuq9i4va/nbi3//+N//3f/+Hra0tNjY2fPrpp3To0OGm2xEeHk5sbCz33nsvAKtWreLIkSPMmDGDCRMmMHjwYEaMGJFvn40bNzJ79mxWr1590+3VaDSaO4mqFF1F/SshN90KoE0buHq1dNvKDVh4I/ta7299nKKOKVJ4m4L7FuwrqeXmFn61biZT3qvJpLYxv68snJygVq38rW5daNAAGjZUr87OlXf+svDnn3+yevVq9u7di4ODAxcvXiQrK6tKbAkPD2f37t0W0TVkyBCGDBlSJbZoNBrN3UZViq5zQFOr5SZAbFUY8vLLVXHWOxdr0ZWTo5rJBNnZ6n12tmpXr0JWVl67ehUyMiAzU71mZEB6uvJCpqRAaqpqKSl562NL+MbUqAFjxyoRVrOmEmZubsqjdjOJi4ujbt26OFw7cd26dYG8Sgt169Zl9+7d/P3vf2fjxo1s2rSJqVOnAmqYY/Pmzbi4uPDWW2+xYMECbGxsGDhwIG+++SaRkZE89dRTJCQkUL16dT7//HN8fHyYMGECjo6OHD58mAsXLvDuu+/Sr18/Xn75ZTIyMti6dSszZ84kIyOD3bt388EHHwCwbt063nvvPcs+gwcPznctaWlpPPPMMxw8eJCcnBxeeeUV7r///pt4NzUajeb2pSpF1yrgacMwFgMdgOSqiOfSVDyGoYYSq1WrHIEjosTY5cv5W3w8XLgA58+r17Q0uHIlb+h49mz1Wq1a3nCmvb1avhF++qnk9f369eO1116jVatW9OnTh9GjR9OjR49it589ezYffvghXbp0ITU1FUdHR3755RdWrlzJX3/9RfXq1UlMTARg8uTJfPLJJ3h5efHXX3/x5JNPsn79egCioqLYtGkTkZGRhIWFcfLkSV577bV8Imv+/Pn5zl3UPtb8+9//plevXnz11VckJSURGhpKnz59qFGjRhnvmkaj0dx9VGbKiEVAT6CuYRjngFmAHYCIfAKsQaWLOIlKGTGxsmzR3FkYhvJi1agBTZoUvY2IElznzilRlZSkBJbZ25aTo4QbqLgzczyZg0PFTwJwdnZmz549bNmyhQ0bNjB69GjefPPNYrfv0qULL7zwAuPGjWP48OE0adKEdevWMXHiRKpXrw5A7dq1SU1NZfv27YwcOdKy71WrcfJRo0ZhY2ODl5cXLVq04NixY9e19Xr7rF27llWrVjH7moLNzMwkOjqa1q1bl+meaDQazd1IZc5eHHud9QI8VVnn19zdGIYaSkxLg0aNVN+OHUqMJSUpT1h8vGrW4VX29krINWumhiVtKiipiq2tLT179qRnz574+/vzzTffUK1aNXKvTZvNzMy0bDtjxgwGDRrEmjVr6NixI+vWrUNECs2oys3NpWbNmoSHhxdzD4wSl8uzj4iwfPlyvL29r3ssjUaj0eRHlwHS3FUYhort8vGB7t3hgQdg4EAICFBxX1lZcOoUbNwIK1bAgQMqxuxGOH78OCdOnLAsh4eH07x5czw8PNizZw8Ay5cvt6yPjIzE39+f6dOn065dO44dO0a/fv346quvSL/mnktMTMTV1RVPT0+WLl0KKEG0f/9+y3GWLl1Kbm4ukZGRnDp1Cm9vb1xcXEhJSSnW1qL2saZ///68//77yLVZGPv27buxm6PRaDR3EboMkOauxizCatUCPz9IToazZ+HMGfX+0CE4ehQ8PaF1a5WuoqykpqbyzDPPkJSURLVq1bjnnnv47LPPOHr0KI899hj/+c9/8qWPmDt3Lhs2bMDW1pY2bdowcOBAHBwcCA8Pp127dtjb23Pvvffyn//8h4ULFzJlyhTeeOMNsrOzGTNmDIGBgQB4e3vTo0cPLly4wCeffIKjoyNhYWG8+eabBAUFMXPmzEK2FrWPNS+99BLPPfccAQEBiAgeHh46lYRGo9GUEkNuNI/BTaBdu3aye/fuqjZDcxsSGxtLI/P4YhkQgYQEJbhiYlSfYaihx8BAcHWtYEMrmOJybmk0mtJR3t8OjQbAMIw9ItKuYL/2dGk0RWAYUL++asnJcOwYnD6tvGAxMcrr5et74zMfNRqNRnP3oB8ZGs11cHODDh1U3NeBAxAZCYcPQ1QUtGsHjRtXtYWFKZgKQqPRaDRVjw6k12hKiZOTEl99+6qg+7Q02LQJtmxRiVo1Go1GoykJLbo0mjJSrx4MGADBwWp48exZ+PVXuHixqi3TaDQaza2MFl0aTTmwsVFpJwYPVnFfGRmwbp1KN6HRaDQaTVFo0aXR3ADVq0OvXtCqlSr6vWMH7Nmj3ms0Go1GY40WXRrNDWJjowLqO3RQ748fhw0bVAFvUGWArseWLVvw9fUlKCiIjDIGiK1cuZIjR46U2e7i7MrIyKBHjx6YTCZL35w5c3B0dCQ5ObnM56kIwsPDWbNmTaWfZ/78+cRaVVGfNGlSue5tVFQUfn5+191u6dKltG7dmrCwsDKfo6CtFWVXUdu88sorltJPpaVnz55cL9XP3LlzLQl/y0p5vxPWdvXp04fLly+X6/waTXnQokujqSBatoQ+fVTA/YUL8McfecLreixcuJC///3vhIeH4+TkVKbzlld0FcdXX33F8OHDsbW1tfQtWrSI9u3bs2LFigo7T1moKtH1xRdf0KZNm0o735dffslHH33Ehg0byrxveUTXrUZViC5rxo8fz0cffXRDx9BoyoIWXRpNBVK3LvTvr9JMJCUpj5eZjRs30rNnT0aMGIGPjw/jxo1DRPjiiy/4/vvvee211xg3bhwAb7/9Nu3btycgIIBZs2ZZjvHtt98SEBBAYGAg48ePZ/v27axatYpp06YRFBREZGQkkZGRDBgwgJCQELp162YpWn369Gk6depE+/bteemll4q9hoULF3L//fdbliMjI0lNTeWNN95g0aJFlv7Dhw8TGhpKUFAQAQEBnDhxgpdeeon33nvPss0///lP5s2bx8aNG+nRowejRo2iVatWzJgxg4ULFxIaGoq/vz+RkZGASur6xBNP0K1bN1q1asXq1avJysri5ZdfZsmSJQQFBbFkyRISExMZOnQoAQEBdOzYkQMHDgDKI/PII4/Qr18/PDw8+OGHH3jxxRfx9/dnwIABZGdnA/Daa6/Rvn17/Pz8mDx5MiLCsmXL2L17N+PGjbN4HK29Ir/++ivBwcEEBgbSu3fvUn8n5s+fz/DhwxkwYABeXl68+OKLFhu2bt3KE088wbRp0zCZTEybNs3yuX/66aeWY7z11lv4+/sTGBjIjBkzirR1z5499OjRg5CQEPr3709cXBwAe/bsITAwkE6dOvHhhx+W2u7i6NmzJ9OnTyc0NJRWrVqxZcsWQHlIx4wZQ0BAAKNHj87nsV27di2dOnUiODiYkSNHkpqayrx584iNjSUsLMzi6StqO4Bdu3bRuXNnAgMDCQ0NJTk5udB3Ii0tjUcffZT27dvTtm1bfvzxx+vaNWTIkHzfaY2m0hGRW76FhISIRlMeYmJi8hYGD66cVgTp6SI//iiycKGIo2MNyc4W2bBhg7i6usrZs2fFZDJJx44dZcuWLSIi8sgjj8jSpUtFROS3336Txx9/XHJzc8VkMsmgQYNk06ZNcujQIWnVqpUkJCSIiMilS5cK7Ssi0qtXL4mIiBARkR07dkhYWJiIiNx3333yzTffiIjIBx98IDVq1Chk99WrV6VBgwb5+l5//XV57bXXxGQySfPmzeXChQsiIvL000/Ld999Z9kvPT1dTp8+LW3bthUREZPJJC1atJCLFy/Khg0bxM3NTWJjYyUzM1MaNWokL7/8soiIzJ07V6ZOnWq5lv79+4vJZJKIiAhp3LixZGRkyNdffy1PPfWUxaann35aXnnlFRER+eOPPyQwMFBERGbNmiVdunSRrKwsCQ8PFycnJ1mzZo2IiAwdOlRWrFiR796JiDz00EOyatUqERHp0aOH7Nq1y7LOvBwfHy9NmjSRU6dOFdq/KE6fPi2+vr4iIvL111+Lp6enJCUlSUZGhjRr1kyio6MLne/TTz+V119/XUREMjMzJSQkRE6dOiVr1qyRTp06SVpaWr5zW++blZUlnTp1kvj4eBERWbx4sUycOFFERPz9/WXjxo0iIvL3v//dYldpbDcza9Ysefvtty3nfeGFF0RE5Oeff5bevXuLiMg777xjOef+/fvF1tZWdu3aJQkJCdKtWzdJTU0VEZE333xTXn31VRERad68ueX7XNx2V69eFU9PT9m5c6eIiCQnJ0t2dnah78TMmTNlwYIFIiJy+fJl8fLyktTU1GLtMnPPPffIxYsXC92HfL8dGk0ZAXZLEXpGJ0fVaCoBJyfo3Rt+/12VFNq8Wb2GhobSpEkTAIKCgoiKiqJr16759l27di1r166lbdu2gKrdeOLECfbv38+IESOoW7cuALVr1y503tTUVLZv387IkSMtfVevjXFu27bNUlh7/PjxTJ8+vdD+Fy9epGbNmvn6Fi9ezIoVK7CxsWH48OEsXbqUp556ik6dOvHvf/+bc+fOMXz4cLy8vPDw8KBOnTrs27ePCxcu0LZtW+rUqQNA+/btcXd3B6Bly5b069cPAH9//3zDa6NGjcLGxgYvLy9atGhh8dRZs3XrVsu19OrVi0uXLlnizQYOHIidnR3+/v6YTCYGDBhgOU9UVBQAGzZs4K233iI9PZ3ExER8fX257777Cp3HzI4dO+jevTuenp7F3vuS6N27N25ubgC0adOGM2fO0LRp03zbrF27lgMHDrBs2TIAkpOTOXHiBOvWrWPixIlUr1692HMfP36cQ4cO0bdvXwBMJhPu7u4kJyeTlJREjx49APW5//LLLyXaahjGdfuHDx8OQEhIiOWebt68mWeffRaAgIAAAgICAHXvjhw5QpcuXQDIysqiU6dOhY5f3HbHjx/H3d2d9u3bA+BaTA2utWvXsmrVKkvsWWZmJtHR0cXaZaZ+/frExsZavqcaTWWiRZfm7uGnn27q6WrUUDMbDQPOn4f4eLC3d7Cst7W1JScnp9B+IsLMmTP529/+lq9/3rx5xT4QzeTm5lKzZk3Cw8OLXH+9/Z2cnMjMzLQsHzhwgBMnTlge5llZWbRo0YKnnnqKBx98kA4dOvDzzz/Tv39/vvjiC3r16sWkSZOYP38+58+f59FHH7Ucy8Eh79ptbGwsyzY2NvnuQ0Ebi7JZiqgZa97O+rh2dnaWfvN5MjMzefLJJ9m9ezdNmzbllVdeyXfNRSEi1713JWF97SV97u+//z79+/fP1//rr79e99wigq+vL3/++We+/qSkpDLbXadOnULB5YmJiRbBCXnXU/Baivus+vbte91hvOK2O3DgQKmuQURYvnw53t7ehdaVtH9mZmaZ4yg1mvKiY7o0mkrE1RVsbcHBQSVPTUpSHq+S6N+/P1999ZUlniUmJob4+Hh69+7N999/z6VLlwD1IARwcXEhJSXl2vlc8fT0ZOnSpYB6EO3fvx+ALl26sHjxYkDFbRVFrVq1MJlMFhGyaNEiXnnlFaKiooiKiiI2NpaYmBjOnDnDqVOnaNGiBc8++yxDhgyxxFUNGzaMX3/9lV27dhUSEKVh6dKl5ObmEhkZyalTp/D29s53jQDdu3e3XMPGjRupW7dusR6QgpivrW7duqSmplo8S0Ch85jp1KkTmzZt4vTp00Devd+5cycPP/xwma+xKPr378/HH39siTuLiIggLS2Nfv368dVXX1kCzov63L29vUlISLCIruzsbA4fPkzNmjVxc3Nj69atQP7PPSYmpsjYNGdnZ9zd3fnjjz8s5/v1118LeWQLYv2ZHDp0yPJ96NixI9u2bePkyZMApKenExERUegaitvOx8eH2NhYdu3aBUBKSgo5OTmFPqv+/fvz/vvvWwT5vn37SrQL1N/H+fPn8fDwKPHaNJqKQosujeYmEBamxFd6uqrdWBL9+vXjwQcfpFOnTvj7+zNixAhSUlLw9fXln//8Jz169CAwMJAXXngBgDFjxvD222/Ttm1bIiMjWbhwIV9++SWBgYH4+vpaAorfe+89PvzwQ9q3b19i6od+/fpZHtKLFy9m2LBh+dYPGzaMxYsXs2TJEvz8/AgKCuLYsWMW8WFvb09YWBijRo3KNwOytHh7e9OjRw8GDhzIJ598gqOjI2FhYRw5csQSNP3KK6+we/duAgICmDFjBt98802pj1+zZk0ef/xx/P39GTp0qGXYCvIC+Qum7qhXrx6fffYZw4cPJzAwkNGjRwMQHR1dYV6SSZMm0aZNG4KDg/Hz8+Nvf/sbOTk5DBgwgCFDhtCuXTuCgoIsw2fWtppMJpYtW8b06dMJDAwkKCiI7du3A/D1119bhoOtbY2Li6NaMRXbv/32W9544w2CgoLo1asXs2bNomXLliXaP2XKFFJTUwkICOCtt94iNDQUUPdu/vz5jB071jLxwTxkPHnyZAYOHEhYWFix29nb27NkyRKeeeYZAgMD6du3L5mZmYW+Ey+99BLZ2dkEBATg5+dnmSxSnF2gJhl07Nix2Pug0VQ0RlFu+luNdu3ayfXyvWg0RREbG0ujRo2q2gxAFcjevl2Jr379oFatqraoaPbt28e7777LggULyrV/bm4uwcHBLF26FC8vrzLtO2HCBAYPHsyIESPKde6bzbRp0xg/fnyhOKHbgQ8++IBmzZoxZMiQqjalypg6dSpDhgwp0uN3K/12aG4/DMPYIyLtCvZrea/R3CQ8PFRc18mTsHWrqt9oZ1fVVhWmbdu2hIWFYTKZyuypOnLkCIMHD2bYsGFlFly3I2+//XZVm1Bunn766ao2ocrx8/MrU/oPjeZG0Z4uzR3NrfbfqskEa9fC5cvQrBl06aIC7TUaza3Frfbbobm9KM7TpWO6NJqbiK0tdO2qPFzR0XDiRFVbpNFoNJqbhRZdGs1NxsVF1WkE2LsXrk1G02g0Gs0djhZdGk0V0KwZtGoFubmwbZsadtRoNBrNnY0WXRpNFdG2LdSsCSkpcPhwVVuj0Wg0mspGiy6NppKxtbUlKCgIX19fAgMDeffdd8nNzcXWFuzsdvPNN89y5AhcuVLVlpbMhAkT8iUStea5555j8+bNluWEhATs7OzyFW2+2fznP/+p9HOEh4ezZs0ay/KqVat48803y3Us6+LaxZGQkECHDh1o27atpdB0eW2tSLsmTJiAp6cngYGBtGrViocffpiYmJjrHnvu3LmWpK9lpSKup0+fPoWy72s0lYkWXRpNJePk5ER4eDiHDx/m999/Z82aNbz66qsA9O3bjtdem0duLuzeff1s9bciiYmJltqEZpYuXUrHjh2vW/qlMqkK0TVkyBBmzJhRaef7448/8PHxYd++fXTr1q1M+5ZXpJSWt99+m/3793P8+HFL2pGsrKwS96kK0WXN+PHj+eijj27oGBpNWdCiS6MpyLFjsHSpeq1g6tevz2effcYHH3yAiLBx40ZefXUwDg6wbdtO2rXrTNu2bencuTPHjx8HVDmUUaNGERAQwOjRo+nQoYPlP3VnZ2f++c9/EhgYSMeOHblw4QIAZ86coXfv3gQEBNC7d2+io6MBJYb8/PwIDAy0iCSTycS0adNo3749AQEBFu+UiPD000/Tpk0bBg0aRHx8fJHXtGzZMktRaTOLFi3inXfe4dy5cxaPh8lkYsKECfj5+eHv78+cOXOIjIwkODjYst+JEycICQkBwMPDg3/84x906tSJdu3asXfvXvr370/Lli355JNPAFUCqHv37gwbNow2bdrwxBNPkJuby4wZM8jIyCAoKIhx48YB8O677+Ln54efnx9z584FICoqCh8fHyZNmoSfnx/jxo1j3bp1dOnSBS8vL3bu3Amocj+dO+f/bLKysnj55ZdZsmSJJSv6/PnzLfmvLly4wLBhwwgMDCQwMNCSIb40FPW5hoeH8+KLL7JmzRpLxvy1a9fSqVMngoODGTlypKV01K5du+jcuTOBgYGEhoaSnJxcyNa0tDQeffRR2rdvT9u2bS2VCzIyMhgzZozl+2admb80GIbB888/T8OGDS3FtYuyc968ecTGxhIWFkZYWFix21Xm9QwZMqRK/zHQ3IWIyC3fQkJCRKMpDzExMWXb4ehRkQ4dRNq2Va9Hj96wDTVq1CjUV7NmTTl//rxs2LBBBg0aJCdPinz+ebJ8/322XL0q8vvvv8vw4cNFROTtt9+WyZMni4jIwYMHxdbWVnbt2iUiIoCsWrVKRESmTZsmr7/+uoiIDB48WObPny8iIl9++aXcf//9IiLi5+cn586dExGRy5cvi4jIp59+atkvMzNTQkJC5NSpU7J8+XLp06eP5OTkSExMjLi5ucnSpUsLXcvDDz9ssUFEJDo6Wu655x4REZk5c6a88847IiKye/du6dOnj2U78/l79uwp+/bts2w/b948ERFp3ry5fPTRRyIi8txzz4m/v79cuXJF4uPjpV69eiIismHDBnFwcJDIyEjJycmRPn36WGy0vu+7d+8WPz8/SU1NlZSUFGnTpo3s3btXTp8+Lba2tnLgwAExmUwSHBwsEydOlNzcXFm5cqXlviUnJ0t2draI5P9svv76a3nqqacs57FeHjVqlMyZM0dERHJyciQpKanQvbOmR48e1/1crY+fkJAg3bp1k9TUVBERefPNN+XVV1+Vq1eviqenp+zcuTOf7QVtnTlzpixYsMDyWXh5eUlqaqq88847MnHiRBER2b9/f77vW3E88sgjhb4bU6dOlTfffLNYO0XUZ5yQkFCl13PPPffIxYsXC11TmX87NBorgN1ShJ7RGek1GmsOHoSsLGjcGGJj1bKPT4WfRgqMI7ZoATt2JPPWW48wY8YJqlc3LIWPt27dytSpUwGVQdu65Iy9vT2DBw8GICQkhN9//x2AP//8kx9++AFQQygvvvgioIpeT5gwgVGjRjF8+HBAeRcOHDhgiddKTk7mxIkTbN68mbFjx2Jra0ujRo3o1atXkdcSFxdHvXr1LMuLFy9m1KhRgKoL+dhjj/HCCy/QokULTp06xTPPPMOgQYPo168foGoOfv3117z77rssWbLE4l0CLCVq/P39SU1NxcXFBRcXFxwdHUlKSgIgNDSUFi1aADB27Fi2bt1aqIzQ1q1bGTZsGDVq1ABg+PDhbNmyhSFDhuDp6Ym/vz8Avr6+9O7dG8Mw8Pf3JyoqynJPHnnkEU6cOIFh5H02JbF+/Xq+/fZbQMX1ubm5XXcfM8V9rtbs2LGDI0eO0KVLFwCysrLo1KkTx48fx93d3VJTsrhC4GvXrmXVqlWWWo6ZmZlER0ezefNmnn32WQACAgLKXeLI/B0vzs5b5Xrq169PbGwsderUKdd1ajRlQYsujcYaf3+wt1eCy85OLVcwp06dwtbWlvr163P06FFAZaX/+eeXaNMmjAEDVuDjE8WwYT2BwgLNGjs7O4xrKe1tbW3JyckpcjvzNp988gl//fUXP//8M0FBQYSHhyMivP/++/Tv3z/fPmvWrLHsVxJOTk5kZmZalhctWsSFCxdYuHAhoDJ7nzhxAi8vL/bv389vv/3Ghx9+yPfff89XX33FAw88wKuvvkqvXr0ICQnJ9/BzcHAAwMbGxvLevGy+1oI2FmVzSfew4HGtz2k+x0svvURYWBgrVqwgKiqKnj17Xve+3Ail+VxFhL59+xYaHjtw4ECpPjcRYfny5Xh7exdaV5r9r8e+ffvo3bt3sXYWZU9VXE9mZmaFFS3XaK6HjunSaKzx8YH582HGDPVawV6uhIQEnnjiCZ5++ulCD4KMjGT8/RsjAu+8M9/S37VrV77//ntA1TY8ePDgdc/TuXNnFi9eDMDChQvp2rUrAJGRkXTo0IHXXnuNunXrcvbsWfr378/HH39s8d5ERESQlpZG9+7dWbx4MSaTibi4ODZs2FDkuVq3bs3JkycBOH78OGlpacTExBAVFUVUVBQzZ85k8eLFXLx4kdzcXB544AFef/119u7dC4CjoyP9+/dnypQpTJw4sQx3U7Fz505Onz5Nbm4uS5YssVyrnZ2d5Zq6d+/OypUrSU9PJy0tjRUrVpQpED05OZnGjRsDMH/+fEu/i4sLKSkpRe7Tu3dvPv74Y0DFs125Nj21d+/epZrZdz06duzItm3bLPc+PT2diIgIfHx8iI2NZdeuXQCkpKSQk5NTyNb+/fvz/vvvWwTpvn37AHWvzIL50KFDHDhwwLLPww8/nM8TWRQiwrx584iLi2PAgAHF2gn5719VXI+IcP78eTw8PEpxxzWaG6dSRZdhGAMMwzhuGMZJwzAKTekxDMPNMIyfDMPYbxjGYcMwyv6Lq9FUND4+MHJkhQkuc0C3r68vffr0oV+/fsyaNavQdi+++CKffTaT11/vQlqaCbNz48knnyQhIYGAgAD+97//ERAQcN2hqnnz5vH1118TEBDAggULeO+99wCYNm0a/v7++Pn50b17dwIDA5k0aRJt2rQhODgYPz8//va3v5GTk2MpWu3v78+UKVPo0aNHkecaNGgQGzduBJSXa9iwYfnWP/DAAyxatIiYmBh69uxJUFAQEyZM4L///a9lm3HjxmEYhmXIsSx06tSJGTNm4Ofnh6enp+X8kydPJiAggHHjxhEcHMyECRMIDQ2lQ4cOTJo0ibZt25b6HC+++CIzZ86kS5cumKwy2YaFhXHkyBFLMLc17733Hhs2bMDf35+QkBAOHz5Mbm4uJ0+epHbt2mW+zoLUq1eP+fPnM3bsWAICAujYsSPHjh3D3t6eJUuW8MwzzxAYGEjfvn3JzMwsZOtLL71EdnY2AQEB+Pn58dJLLwEwZcoUUlNTCQgI4K233iI0NNRyzgMHDuDu7l6kPdOmTbOkjNi1axcbNmzA3t6+WDtBfUYDBw4kLCysSq5nz549dOzYkWrV9KCP5uZQaQWvDcOwBSKAvsA5YBcwVkSOWG3zD8BNRKYbhlEPOA40FJF884x1wWtNebkdi9aePAk7d4KrK9x7L4iYyM7OxtHRkcjISHr37k1ERAT29vZVbaqFrl27snr1amrWrFmu/WfPnk1ycjKvv/56mfbbuHEjs2fPZvXq1eU6783m0KFDfPXVV7z77rtVbUqZuXLlCo899hhLly6talMqjKlTpzJkyBB69+5daN3t+NuhuXUoruB1Zcr7UOCkiJy6ZsBi4H7giNU2ArgYapzFGUgEig5K0WjuElq0gKNHVbLU06ehfv10wsLCyM7ORkT4+OOPbynBBfDOO+8QHR1dLtE1bNgwIiMjWb9+fcUbdovh5+d3WwouUAHsd5LgAvV5FCW4NJrKojI9XSOAASIy6dryeKCDiDxttY0LsArwAVyA0SLyc8FjaU+Xprzcrv+tRkXB9u1QowYMHgy2tlVtkUZzd3G7/nZobg2K83RVZkxXUdNFCiq8/kA40AgIAj4wDKPo+cAazV1E8+bg5gZpaRAZWdXWaDQajaYiqEzRdQ5oarXcBIgtsM1E4IdrucROAqdRXi+N5q7GMMCcTujwYSgmE4RGo9FobiMqU3TtArwMw/A0DMMeGIMaSrQmGugNYBhGA8AbOFWJNmk0tw1NmkDt2pCRASdOVLU1Go1Go7lRKk10iUgO8DTwG3AU+F5EDhuG8YRhGE9c2+x1oLNhGAeBP4DpInKxsmzSaG4nrL1dR45AKZKgazQajeYWplLzdInIGhFpJSItReTf1/o+EZFPrr2PFZF+IuIvIn4i8l1l2qPRVBUrVqzAMAxLfiJQgbrmcjUbN260lH1ZtWoVb775JgDu7lCvHly9Wv7628899xybN28GYPXq1bRt25bAwEDatGljKW5dWcydO5f09PRKPUdUVBT/93//Z1nevXu3pexLWZkwYYKlHFJxXL16lT59+hSZm6ustlakXUVt4+zsXKbzWH8PiyM8PJw1a9aU6bjWlOc7YW3X6tWri8xzp9HcDuiM9BrNTWDRokV07drVkiUeoFGjRkU+SIcMGcKMGSqXsGFAYKDqP3ZMia+ykJiYyI4dO+jevTvZ2dlMnjyZn376if3797Nv375KL2dTFaKrXbt2zJs3r9LOt2/fPrKzswkPD2f06NFl2re8outWoipElzWDBg1i1apVlf690mgqg+uKLsMwuhiG8bthGBGGYZwyDOO0YRg67kqjKSWpqals27aNL7/8Mp/oioqKws/Pr9D28+fP5+mnVWaVCRMm8MYbz/Lvf3fmqada8NFHSqTl5uby5JNP4uvry+DBg7n33nuLFHDLli1jwIABQF75FHNtQwcHB7y9vUlJScHT09NSMufKlSt4eHiQnZ1Nz549ef755+nevTutW7dm165dDB8+HC8vL/71r39ZrsPHx4dHHnmEgIAARowYQXp6OvPmzSM2NpawsDDCwsIAJT7NGfGnT59usdPZ2Znp06cTEhJCnz592LlzJz179qRFixasWrXKcp5u3boRHBxMcHAw27dvB2DGjBls2bKFoKAg5syZk88rkpqaysSJE/H39ycgIIDly5eX+nPz8PBg1qxZBAcH4+/vz7Fjx4iPj+ehhx4iPDycoKAgIiMj2bNnDz169CAkJIT+/fsTFxcHwMmTJ+nTpw+BgYEEBwcTGRlZyFaTycS0adNo3749AQEBFs+jiPD000/Tpk0bBg0aRHx8fKntLoqNGzfSs2dPRowYgY+PD+PGjbOUy/n111/x8fGha9euliLpAGlpaTz66KO0b9+etm3b8uOPP5KVlcXLL7/MkiVLLJ6+orYDVfro73//u+Xev//++0V+J9auXUunTp0IDg5m5MiRpKamlmiXYRj07NnztkmIq9HkQ0RKbMAxYCBQH6hjbtfbryJbSEiIaDTlISYmJn/H4MGqWfPqq6rvr7/y+n75RfW9/35e36VLqu/hh8tkw4IFC+TRRx8VEZFOnTrJnj17RETk9OnT4uvrKyIiGzZskEGDBomIyNdffy1PPfWUiIg88sgjMmLECImJMcn//ndYGjZsKTk5IkuXLpWBAweKyWSSuLg4qVmzpixdurTQuR9++GFZtWqVZfmxxx6TevXqyZgxY+S7774Tk8kkIiITJkyQFStWiIjIp59+Ki+88IKIiPTo0UNefPFFERGZO3euuLu7S2xsrGRmZkrjxo3l4sWLcvr0aQFk69atIiIyceJEefvtt0VEpHnz5pKQkCAi6rNo2rSpxMfHS3Z2toSFhVnOCciaNWtERGTo0KHSt29fycrKkvDwcAkMDBQRkbS0NMnIyBARkYiICDH/Lljfu4LLL774okydOtWyLjExscTP6pFHHrHcx+bNm8u8efNEROTDDz+Uxx57rNDxs7KypFOnThIfHy8iIosXL5aJEyeKiEhoaKj88IOanJ2RkSFpaWmFbP3000/l9ddfFxGRzMxMCQkJkVOnTsny5culT58+kpOTIzExMeLm5lbk51uc7WZq1KhhsdnV1VXOnj0rJpNJOnbsKFu2bJGMjAxp0qSJRERESG5urowcOdJi38yZM2XBggUiInL58mXx8vKS1NTUfN/Pkrb76KOPZPjw4ZKdnS0iIpcuXbLcV/N3IiEhQbp16yapqakiIvLmm2/Kq6++WqJdIiLfffedPP300yXejxul0G+HRlMGgN1ShJ4pzfBisoj8IiLxInLJ3CpJA2o0dxyLFi1izJgxAIwZM4ZFixaVaf+hQ4fi7m6Dv38bkpIuEBUFW7duZeTIkdjY2NCwYUOL16AgcXFx1KtXz7L8xRdf8McffxAaGsrs2bN59NFHAZg0aRJff/01AF9//XW+wtNDhgwBwN/fH19fX9zd3XFwcKBFixacPXsWgKZNm9KlSxcAHnroIbZu3VrIll27dtGzZ0/q1atHtWrVGDdunCXWzN7e3uKR8/f3p0ePHtjZ2eHv709UVBQA2dnZPP744/j7+zNy5EiOHDlS6BwFWbduHU899ZRluVatWtfdx5rhw4cDEBISYrHDmuPHj3Po0CH69u1LUFAQb7zxBufOnSMlJYWYmBhLHUhHR0eqV69eaP+1a9fy7bffEhQURIcOHbh06RInTpxg8+bNjB07FltbWxo1akSvXr2ua2vBAuoF+0JDQ2nSpAk2NjYEBQURFRXFsWPH8PT0xMvLC8MweOihh/LZ9uabbxIUFETPnj3JzMwkOjq6yGsoart169bxxBNPWOoaFlVvcseOHRw5coQuXboQFBTEN998w5kzZ0q0C6B+/frExhbMQKTR3PqUpgzQBsMw3gZ+ACwRJSKyt9Ks0mgqi59+Ktz38suF+wYMUM2a2rWL3r8ELl26xPr16zl06BCGYWAymTAMg7feeqvUx3BwcMAwoHVr5Zk+ehRyc0tXScLJyYnMzMx8ff7+/vj7+zN+/Hg8PT2ZP38+Xbp0ISoqik2bNmEymfINezo4OABgY2NjeW9ezrmWQKzgA78oASAlVL+ws7Oz7GN9HutzzJkzhwYNGrB//35yc3NxdHS87vWLSJG2lBazHba2thY7Ch7f19eXP//8M1//lStXSnV8EeH999+nf//++frXrFlTZrvr1KnD5cuXLcuJiYnUrVvXsmz92VlfT3HnERGWL1+Ot7d3vv6//vqrVNuV5t6LCH379i30j0h4eHiJ+2ZmZuLk5FTisTWaW5HSeLo6AO2A/wDvXGuzK9MojeZOYdmyZTz88MOcOXOGqKgozp49i6enZ5GeoOvRrJkKrL9yBdq06cry5cvJzc3lwoULbNy4sch9WrduzcmTJwEV32S9XXh4OM2bN7csP/zww4wdOzafl6u0REdHW4SHedIAgIuLCykpKQB06NCBTZs2cfHiRUwmE4sWLaJHjx6lPkdycjLu7u7Y2NiwYMECTCZToXMUpF+/fnzwwQeWZbMoefjhh9m5c2eZr7Mg3t7eJCQkWK49Ozubw4cP4+rqSpMmTVi5ciWgZjymp6cXsrV///58/PHHlni6iIgI0tLS6N69O4sXL8ZkMhEXF8eGDRss+8ycOZMVK1YUsqVnz54sWbKErKwsQMUGFucBNePj48Pp06eJvFb2wFr89O/fn/fff98ilvft2wcUvt/FbdevXz8++eQTi7hLTEwstH/Hjh3Ztm2b5Tuanp5OREREiXaZ71NR8ZAaza3OdUWXiIQV0a7v69ZoNCxatMgyxGTmgQceKNcMNhsb1QA8PR+gSZMm+Pn58be//Y0OHTrg5uZWaJ9BgwZZhJaI8NZbb+Ht7U1QUBCzZs1i/vz5lm3HjRvH5cuXGTt2bJlta926Nd988w0BAQEkJiYyZcoUACZPnszAgQMJCwvD3d2d//73v4SFhVmCy++///5Sn+PJJ5/km2++oWPHjkRERFCjRg0AAgICqFatGoGBgcyZMyffPv/617+4fPkyfn5+BAYGWsTLgQMHcHd3L/N1FsTe3p5ly5Yxffp0AgMDCQoKsgT4L1iwgHnz5hEQEEDnzp05f/58IVsnTZpEmzZtCA4OtnyWOTk5DBs2DC8vL/z9/ZkyZUo+cXrw4EEaNmxYyJbBgwfTrVs3QkJCCAoKYtu2bfzvf/8r0X5HR0c+++wzBg0aRNeuXfOJ8Jdeeons7GwCAgLw8/PjpZdeAiAsLIwjR45YAumL227SpEk0a9aMgIAAAgMDLd956+9EvXr1mD9/PmPHjiUgIICOHTty7NixEu0C2LBhA4MGDSrHJ6bRVC3XLXhtGIYbMAvofq1rE/CaiCRXsm0WdMFrTXm504rWZmfDjz9CVhZ07pyKh4czly5dIjQ0lG3bthX5MO7atSurV6+mZs2aJR572bJl/PjjjyxYsKBMNkVFRTF48GAOHTpUpv2qiitXrvDYY4+xdOnSqjalXPTv35/ffvutqs2oMi5cuMCDDz7IH3/8UannudN+OzQ3l+IKXpcmpusr4BAw6tryeOBrYHjFmafRaEqDnR3cc4/KUD9s2GBEksjKyuKll14qUnABvPPOO0RHR5coup555hl++eWXG8q/dLvg6up62wou4K4WXKCGst95552qNkOjKRel8XSFi0jQ9foqE+3p0pSXO/G/1YwM5e0SgcGDwcWlqi3SaO487sTfDs3NozhPV2kC6TMMw+hqdaAuQEZFGqfRaEqPkxN4eirRVd7SQBqNRqO5+ZRGdE0BPjQMI8owjDPAB8AT19lHo9FUIj4+6vXUKSiQEUKj0Wg0tyjXjekSkXAg0DAM12vLpUtAo9FoKg03N2jcGGJiIDISfH2r2iKNRqPRXI9iRZdhGA+JyHeGYbxQoB8AEXm3km3TaDQl4O2tRNeJEypxqo0uX6/RaDS3NCX9TNe49upSRHOuZLs0mjsGW1tbgoKC8PPz47777iMpKalCjtugAbi6Qnq6El+lZffu3Tz77LM3fP4JEyYUWWQb4LnnnrOU+Fm9ejVt27YlMDCQNm3aWIo6VxZz584lPT29Us8RFRWVL9fajdzTku6jmatXr9KnTx9LbqwbsbUi7XrllVdo3LgxQUFBeHl5MXz48FKVZ5o/f365y/hUxPWMGTOGEydOlOv8Gs2NUKzoEhHzL+M6EXnVugGVmyBFo7mDcHJyIjw8nEOHDlG7dm0+/PDDCjmuYYCXl3ofEVH6/dq1a8e8efMqxIaiSExMZMeOHXTv3p3s7GwmT57MTz/9xP79+9m3bx89e/astHND1Yiuyr6n+/btIzs7m/DwcEaPHl2mfcsrUkrL888/T3h4OCdOnGD06NH06tWLhISEEvepCtFlzZQpU8pUikujqShKMyDxfin7NBrNdejUqRMx19xSkZGRDBgwgJCQELp168axa1MRL1y4wLBhwwgMDCQwMNCS4fzdd9/Fz88PPz8/5s6dC0CLFvDjj68zfrwPYWF9GTt2LLNnqypdPXv2ZPr06YSGhtKqVSu2bNkCwMaNGxk8eDAA9957L0FBQQQFBeHm5sY333yDyWRi2rRptG/fnoCAAItnSkR4+umnadOmDYMGDSI+Pr7Ia1y2bJmleHVKSgo5OTnUqVMHUPX/vL29SUlJwdPT01L+5sqVK3h4eJCdnU3Pnj15/vnn6d69O61bt2bXrl0MHz4cLy8v/vWvfwHqwevj48MjjzxCQEAAI0aMID09nXnz5hEbG0tYWJilBM6iRYvw9/fHz8+P6dOnW+x0dnZm+vTphISE0KdPH3bu3EnPnj1p0aIFq1atspynW7duBAcHExwcbPksZsyYwZYtWwgKCmLOnDn57mlqaioTJ07E39+fgIAAli9fXurvh4eHB7NmzSI4OBh/f3+OHTtGfHw8Dz30EOHh4QQFBREZGcmePXvo0aMHISEh9O/fn7i4OABOnjxJnz59LBn/IyMjC9l6o59vSYwePZp+/fpZRFFRdi5btozdu3czbtw4goKCyMjIuOnX061bN9atW1dkPU2NplIRkSIb0An4f8BZ4AWr9gqwv7j9KqOFhISIRlMeYmJi8ncMHlx8++WXvO1++aXkbctAjRo1REQkJydHRowYIb9cO0+vXr0kIiJCRER27NghYWFhIiIyatQomTNnjmWfpKQk2b17t/j5+UlqaqqkpKRImzZtZO/evbJr1y7x8gqUr79Olw0brsg999wjb7/9toiI9OjRQ1544QUREfn555+ld+/eIiKyYcMGGTRoUD4bd+/eLf7+/pKUlCSffvqpvP766yIikpmZKSEhIXLq1ClZvny59OnTR3JyciQmJkbc3Nxk6dKlha734YcfllWrVlmWH3vsMalXr56MGTNGvvvuOzGZTCIiMmHCBFmxYoWIiHz66acWW3v06CEvvviiiIjMnTtX3N3dJTY2VjIzM6Vx48Zy8eJFOX36tACydetWERGZOHGi5bqbN28uCQkJIqI+/6ZNm0p8fLxkZ2dLWFiY5ZyArFmzRkREhg4dKn379pWsrCwJDw+XwMBAERFJS0uTjIwMERGJiIgQ829RwXtovfziiy/K1KlTLesSExML3SNrHnnkEct9bN68ucybN09ERD788EN57LHHCh0/KytLOnXqJPHx8SIisnjxYpk4caKIiISGhsoPP/wgIiIZGRmSlpZWyNYb/XytmTVrluW+m5kzZ4488cQTJdrZo0cP2bVrV5VeT58+fWT37t3FXluh3w6NpgwAu6UIPVPS7EV7VOxWNVQcl5krwIgK1n4azR1LRkYGQUFBREVFERISQt++fUlNTWX79u2MHDnSst3Vq1cBWL9+Pd9++y2g4sHc3NzYunUrw4YNs9QbHD58OFu2bCE3N5dhw+7H3t6J+Hi499778p17+HBVOCIkJISoqKgi7bt48SLjx4/n+++/x83NjbVr13LgwAFL/EtycjInTpxg8+bNjB07FltbWxo1akSvXkWXYI2Li6NevXqW5S+++IKDBw+ybt06Zs+eze+//878+fOZNGkSb731FkOHDuXrr7/m888/t+wzZMgQAPz9/fH19bXUSWzRogVnz56lZs2aNG3alC5dugDw0EMPMW/ePP7+97/ns2XXrl307NnTYs+4cePYvHkzQ4cOxd7e3uKR8/f3x8HBATs7O/z9/S33Kjs7m6effprw8HBsbW2JKMU47rp161i8eLFluVatWtfdxxrrz+yHH34otP748eMcOnSIvn37AmAymXB3dyclJYWYmBhLrU9HR8cij3+jn+/1kGsJt4uz81a5nvr16xMbG0tISEi5rlOjKQ/Fii4R2QRsMgxjvoicuYk2aTSVx08/lW67AQNUqwDMMV3JyckMHjyYDz/8kAkTJlCzZk3Cw8NLdQzzg6yofkdHFVR/4QIkJ0PTpnnrHRwcACXeihpKMZlMjBkzhpdffhk/Pz/LMd9//3369++fb9s1a9ZYZi9f73ozCyQP8/f3x9/fn/Hjx+Pp6cn8+fPp0qULUVFRbNq0CZPJZDm/td02NjaW9+Zl83UUtKUo24q7bwB2dnaWfazPY32OOXPm0KBBA/bv309ubm6xD/6C5yzNfSqO631mIoKvry9//vlnvv4rV0qXzedGP9/rsW/fPtq1a1esnUXZUxXXk5mZiZOTU6nOodFUFKWJ6Uo3DONtwzDWGIax3twq3TKN5g7Dzc2NefPmMXv2bJycnPD09LTUABQR9u/fD0Dv3r35+OOPASWKrly5Qvfu3Vm5ciXp6emkpaWxYsUKunXrRteuXfnpp59o1iyTzMxU1q37metU9srHjBkzCAgIYMyYMZa+/v378/HHH1virSIiIkhLS6N79+4sXrwYk8lEXFwcGzZsKPKYrVu35uTJk4CKb9q4caNlXXh4OM2bN7csP/zww4wdO5aJEyeW3uhrREdHWx7UixYtomtXVTjDxcWFlJQUADp06MCmTZu4ePEiJpOJRYsW0aNHj1KfIzk5GXd3d2xsbFiwYAEmk6nQOQrSr18/PvjgA8vy5cuXLde6c+fOMl9nQby9vUlISLBce3Z2NocPH8bV1ZUmTZqwcuVKQHlO09PTC9lans935syZrFix4rq2LV++nLVr1zJ27Nhi7YT8968qrse8na9OcKe5yZRGdC0EjgGewKtAFLCrEm3SaO5YzKkTFi9ezMKFC/nyyy8JDAzE19eXH3/8EYD33nuPDRs24O/vT0hICIcPHyY4OJgJEyYQGhpKhw4dmDRpEm3btqV9+/YMGTKEwYMDmTdvOM2bt8Mw3Eptz+zZs1m7dq0lmH7VqlVMmjSJNm3aEBwcjJ+fH3/729/Iyclh2LBheHl54e/vz5QpU4oVL4MGDbIILRHhrbfewtvbm6CgIGbNmsX8+fMt244bN47Lly8zduzYMt/L1q1b88033xAQEEBiYiJTpkwBYPLkyQwcOJCwsDDc3d3573//S1hYmCUY+/777y/1OZ588km++eYbOnbsSEREhGV4NyAggGrVqhEYGMicOXPy7fOvf/2Ly5cv4+fnR2BgoOVhf+DAgSKH18qKvb09y5YtY/r06QQGBhIUFGQJ8F+wYAHz5s0jICCAzp07c/78+UK2lufzPXjwYLEF1efMmWNJGfHdd9+xfv166tWrV6KdEyZM4IknniAoKAiTyXTTr+fChQs4OTlVyOeh0ZSF0hS83iMiIYZhHBCRgGt9m0Sk9P8u3iC64LWmvNwNRWtTU1NxdnZm9+50Ro3qzsyZn/H448FValPXrl1ZvXo1NWvWLHG7ZcuW8eOPP7JgwYIyHT8qKorBgwdz6NChG7Dy5nHlyhUee+wxi2fzdqN///789ttvVW1GhTFnzhxcXV157LHHit3mbvjt0FQexRW8vm4ZICD72mucYRiDgFigSUUap9Foys/kyZM5cuQIGRmZhIY+grNzMKmp4FyFKYzfeecdoqOjSxRdzzzzDL/88gtr1qy5eYZVEa6urret4ALuKMEFULNmTcaPH1/VZmjuQkrj6RoMbAGaovJzuQKvisiqyjdPoT1dmvJyt/23+uefcPo0tGkDQUFVbY1Gc/tyt/12aCqWcnu6RGT1tbfJQFhFG6bRaCoOLy8luiIjwd8fbG2r2iKNRqPRmCmp4PX7QLFuMBG58eJtGo2mQqlTB2rVgsuX4dw5sJooqNFoNJoqpiRPlx7P02huM8z1GHfuhBMntOjSaDSaW4mSkqN+czMN0Wg0FUPz5rB3L8THq2SpbqXPIKHRaDSaSuS6eboMw9hgnRRVJ0fVaErPpUuXLDmwGjZsSOPGjQkKCqJmzZq0adOmUs75888rETkCKG9XZfHKK69YimsXZO7cuZZSRgA5OTnUrVuXmTNnlvt8SUlJfPTRR6Xa1rkMUzdzc3N59tln8fPzw9/fn/bt23P69OnymnldoqKiLAWhK5OVK1dy5MgRy/LLL7/MunXrit3+4MGDTJgwodLt0mjuZkqTHPXvwLRr7SUgnFIOPRqGMcAwjOOGYZw0DGNGMdv0NAwj3DCMw4ZhbCql3RrNbUGdOnUIDw8nPDycJ554gueff96ybGNz/T+/osrAXI+VK1eSmaketqdPQzkOcUPk5OTw1Vdf8eCDD1r61q5di7e3N99//32JpXlKoiyiqywsWbKE2NhYDhw4wMGDB1mxYsV184vdCFUlul577TX69OlT7Pb+/v6cO3eO6OjoSrdNo7lbue6vvojssWrbROQFoMP19jMMwxb4EBgItAHGGobRpsA2NYGPgCEi4guMLHgcjeZOxWQy8fjjj+Pr60u/fv3IyMgAoGfPnvzjH/+gR48evPfee+zZs4cePXoQEhJC//79iYuLA+Dzzz+nffv2BAYG8sADD5Cens727dtZtWoVr7wyjZdeCuLcuUg2b45kwIABhISE0K1bN44dOwaorODPPvssnTt3pkWLFpaCwQBvv/027du3JyAggFmzZln6//3vf+Pt7U2fPn04fvx4kde1fv16goODqVYtL3ph0aJFTJ06lWbNmrFjxw5L/6+//kpwcDCBgYH07t0bKOxB8/PzIyoqihkzZhAZGUlQUBDTpk0r0U4z48ePt2T6B5UBf9Wq/Nlu4uLiLKV+AJo0aUKtWrX48ssvef755y3bff7557zwwgtERUXh4+PDpEmT8PPzY9y4caxbt44uXbrg5eVlKfXzyiuvMH78eHr16oWXl5eloPeMGTPYsmULQUFBzJkzh8zMTCZOnIi/vz9t27a1ZLCfP38+Q4cO5b777sPT05MPPviAd999l7Zt29KxY0cSExOv+z2YNm0aQUFBREZGMmHCBMtnvGvXLjp37kxgYCChoaGWsjr33XdfvmLdGo2mghGREhtQ26rVBfoDx0uxXyfgN6vlmcDMAts8CbxxvWOFhISIRlMeYmJi8ncMHly2NnVq0fuXg1mzZsnbb78tIiKnT58WW1tb2bdvn4iIjBw5UhYsWCAiIj169JApU6aIiEhWVpZ06tRJ4uPjRURk8eLFMnHiRBERuXjxouXY//znP2XevHkiIvLII4/I0qVL5dQpkYULRQIDe8nx4xEiIrJjxw4JCwuzbDdixAgxmUxy+PBhadmypYiI/Pbbb/L4449Lbm6umEwmGTRokGzatEl2794tfn5+kpaWJsnJydKyZUvL9Vjz8ssvW2wREUlPTxd3d3dJS0uTTz/9VJ555hkREYmPj5cmTZrIqVOnRETk0qVLhe6TiIivr6+cPn1aTp8+Lb6+vpb+4uwUEalRo4aIiGzcuFHuv/9+ERFJSkoSDw8Pyc7Ozmfv2bNnpXnz5hIYGCgvvPCC7N27V0REUlNTpUWLFpKVlSUiIp06dZIDBw5YPrsDBw6IyWSS4OBgmThxouTm5srKlSst55s1a5YEBARIenq6JCQkSJMmTSQmJkY2bNgggwYNspx/9uzZMmHCBBEROXr0qDRt2lQyMjLk66+/lpYtW8qVK1ckPj5eXF1d5eOPPxYRkeeee07mzJlTqu+BGfPy1atXxdPTU3bu3CkiIsnJyZZ7snXrVhlczu/3nUah3w6NpgwAu6UIPVOajPR7UKkjDCAHOA0UXzshj8bAWavlcxT2kLUC7AzD2Ai4AO+JyLdoNHcBnp6eBF3LYBoSEkJUVJRl3ejRowE4fvw4hw4dom/fvoDyjpnrxR06dIh//etfJCUlkZqaSv/+/fMdv1kz2LYtlSNHtvPAAyMtObuuXr1q2Wbo0KHY2NjQpk0bLly4AKihwLVr19K2bVtAlRk6ceIEKSkpDBs2jOrVqwMwZMiQIq8rLi6O1q1bW5ZXr15NWFgY1atX54EHHuD1119nzpw57Nixg+7du+Pp6QlA7dq1y3T/irOze/fulm169OjBU089RXx8PD/88AMPPPBAPg8cKM/W8ePHWb9+PevXr6d3794sXbqU3r1706tXL1avXk3r1q3Jzs7G39+fqKgoPD098ff3B8DX15fevXtjGIZlvZn7778fJycnnJycCAsLY+fOnYWGLrdu3cozzzwDgI+PD82bNyciIgKAsLAwXFxccHFxwc3Njfvuuw9QQ4EHDhwArv89KMjx48dxd3enffv2gMqWb6Z+/frExsaW6v5rNJqyU5rkqJ7lPLZR1OGKOH8I0BtwAv40DGOHiESU85waTcn89FPV7m+Fg4OD5b2tra1leBGwFFYWEXx9ffnzzz8L7T9hwgRWrlxJYGAg8+fPtxSZzjsmNG+eS40aNfn883A6dizZBrkWayUizJw5k7/97W/5tp07dy6GUdSfdX6cnJzIzMy0LC9atIht27bh4eEBqMkFGzZsQESKPF61atXIzc21LFsfy5ri7CzI+PHjWbhwIYsXL+arr74qchsHBwcGDhzIwIEDadCgAStXrqR3795MmjSJ//znP/j4+DBx4sR825uxsbGxLNvY2OSLwyt4fUVdr/m+F2fX9c5zve9BUecr7nPMzMzEycmpxP01Gk35Kc3sRUfDMF4wDOMHwzCWG4bxvGEYjqU49jlU6SAzTVB1Gwtu86uIpInIRWAzEFha4zWaOx1vb28SEhIsois7O5vDhw8DkJKSgru7O9nZ2SxcuNCyj4uLiyVGJyjIlXr1PFmyZClZWeqBu3///hLP2b9/f7766itSU1MBiImJIT4+nu7du7NixQoyMjJISUnhp2IEaOvWrTl58iSgCj1v3bqV6OhooqKiiIqK4sMPP2TRokV06tSJTZs2WWYKmmOUPDw82Lt3LwB79+61rLe+rpLsLMiECROYO3cuoLxSBdm7d6/Fu5Obm8uBAwdofi3BWYcOHTh79iz/93//x9ixY0u8b0Xx448/kpmZyaVLl9i4cSPt27cvdB3du3e3fH4RERFER0fj7e1d6nOU5ntgjY+PD7Gxsezatcuyv1nARURE4OfnV+br1Gg0paM0sxe/BXxRdRc/AFoDC0qx3y7AyzAMT8Mw7IExQMF6jT8C3QzDqGYYRnXU8OPR0hqv0dzp2Nvbs2zZMqZPn05gYCBBQUFs374dgNdff50OHTrQt29ffHx8LPuMGTOGt99+m7Zt2xIfH8msWQtZv/5LAgIC8fX1zRdYXhT9+vXjwQcfpFOnTvj7+zNixAhSUlIIDg5m9OjRBAUF8cADD9CtW7ci9x84cCCbN28G4IcffqBXr175PDb3338/q1atwtXVlc8++4zhw4cTGBhoGVJ94IEHSExMJCgoiI8//phWrVoBaiZoly5d8PPzY9q0acXaWZAGDRrQunXrfJ4qa+Lj47nvvvvw8/MjICCAatWq8fTTT1vWjxo1ii5dulCrVq0S71tRhIaGMmjQIDp27MhLL71Eo0aNLOcIDAxkzpw5PPnkk5hMJvz9/Rk9ejTz58/Pd7+uR2m+B5GRkZZ+e3t7lixZwjPPPENgYCB9+/a1eBM3bNjAoEGDynydGs2tTnp2OicTT7L5zGYuZ1yuMjtKU/B6v4gEXq+vmH3vBeYCtsBXIvJvwzCeABCRT65tMw2YCOQCX4jI3ILH0QWvNeVFF62Fs2dhyxZwdYVBg1TW+spm2LBhvPXWW3h5eVX+ya5Deno6/v7+7N27F7dyZIodPHgwzz//vGV2ZWl55ZVXcHZ25u9//3uZz1kVXL16lR49erB169ZCcW93I/q34/Yj25TN+dTzxKTEEHMlhpiUGGJTYolNieVyZp7Q+kfXf9CpaadKtaXcBa+BfYZhdBSRHdcO1AHYVpqTisgaYE2Bvk8KLL8NvF2a42k0mrLTuDE4OcGVK3DhAjRsWPnnfPPNN4mLi6ty0bVu3ToeffRRXnjhhTILrqSkJEJDQ/Ols7iTiY6O5s0339SCS3NLIyIkZSYRkxLDuSvnLC02JZbzqeeRYkpG29va4+7sTmOXxjjblz55ckVTGk/XUcAbMGfMa4YaAswFREQCKtVCtKdLU370f6uKQ4fgwAFo2hSKGRXUaDRW6N+OqsWUa+J86nnOXTnH2Stn8wmstOy0IvcxMGhQowGNXRvT2KUxjV0b08ilEY1dGlO3et1STQSqKG7E0zWgEuzRaDQ3kZYtlfA6dw7S0+Fa1geNRqOpUrJMWcSmxBKdHM3Z5LOcvXKW6ORo4lLjyMktupxGDbsaNHFtYmmNXRrTxLUJDZ0bYmdrd5OvoGyUJmXEGcMwAgHz/8dbRKTk6U8ajeaWwskJmjSB6Gg4eRICKt0/rdFoNHlkmbKIuRLDmeQzRCdHW0RWXGpcsUOC9arXo5lbs3wCq6lrU1wdXG+q16oiua7oMgxjKvA48MO1ru8Mw/hMRN6vVMs0Gk2F0qqVEl2RkeDnB6Uo/ajRaDRlwpRrIjYlljPJZziTpATWmeQzxKbEFimuDAwauzSmqWtTi8Bq6taUJq5NcKxWmuxUtxelGV58DOggImkAhmH8D/gTlUJCo9HcJtSrB25ukJyshhmbNatqizQaze2KiHAp4xJRSVFEJUVxJukMZ5LPcPbK2SKHBc3iqrlbc5q5NaOZWzOaujWlsUvjW35IsCIpjegyAJPVsomis81rNJoicHZ2tiTwBFXIePfu3XzwwQdlPtbGjRuZPXs2q1evLvU+PXv2ZPbs2bRr1w4vL9i9GyIitOjSaDSlIzMnk+jkaE5fPk1UUhSnk9RrcQHt9avXp3nN5haB5VHTg8aujbG3tb/Jlt96lEZ0fQ38ZRjGCpTYuh/4slKt0mg0lYKnJ4SHQ3y88niVI22VRqO5QzF7r05fPs3ppNOW1+KGBl3sXWju1hzPWp40d2uOR00Pmrk1w8lOl5IqjtIE0r97rSB112tdE0VkX6VapdHcJSQkJPDEE08QHa0yssydO5cuXbqwc+dOnnvuOTIyMnBycuLrr78uVBomLS2NZ555hoMHD5KTk8Mrr7zC/fffT0ZGBhMnTuTIkSO0bt06X01HOzslvE6cUK1doQnNGo3mbsAcexV5OZJTl09x+vJpTiWd4srVK4W2tTVsaeraFI+aHvlabafat21Ae1VRlix4Bio3l77DmtuS+xbdVynH/WlsyUWwMzIyCAoKsiwnJiYyZMgQAKZOncrzzz9P165diY6Opn///hw9ehQfHx82b95MtWrVWLduHf/4xz9Yvnx5vuP++9//plevXnz11VeWRJ59+vTh008/pXr16hw4cIADBw4QHBycbz8vLyW4Tp+GwEAlxDQazZ1LlimLM0lnOHX5VJ7ISjpNlimr0LYu9i541vTEs5an5bWpa9O7Ku6qMinN7MWXgZHAcpTg+towjKUi8kZlG6fR3Ak4OTkRHh5uWTbHdIHKmH7kyBHLuitXrpCSkkJycjKPPPIIJ06cwDAMsrOzCx137dq1rFq1itmzZwOQmZlJdHQ0mzdv5tlnnwUgICCAgAL5IWrWhPr11RBjVJQSYRqN5s4gy5TF6cunibwcycnEk5xMPEl0cjQmMRXatn71+rSo1YKWtVviWdOTlrVbUsepjvZeVSKl8XSNBdqKSCaAYRhvAnsBLbo0txXX80hVBbm5ufz55584OeWPgXjmmWcICwtjxYoVREVF0bNnz0L7igjLly8vNOwIXPdH08tLia6ICLjnnptTj1Gj0VQs2aZsopKiOJF4gpOJJzlx6QTRV6LJldx82xkYNHFpQsvaLWlZq6VFZLk4uFSR5XcvpRFdUYAjkHlt2QGILHZrjUZTavr168cHH3zAtGnTAAgPDycoKIjk5GQaN24MKM9YUfTv35/333+f999/H8Mw2LdvH23btqV79+4sXLiQsLAwDh06xIEDBwrt27SpykqfnAznz4O7e6VdokajqQBMuSbOXjnLiUsniLgUwYnEE5xJPlMoPYOBQXO35rSs1ZJ7at/DPbXvwbOW5x2Z8+p2pDSi6ypw2DCM3wEB+gJbDcOYByAiz1aifRrNHc28efN46qmnCAgIICcnh+7du/PJJ5/w4osv8sgjj/Duu+/Sq1evIvd96aWXeO655wgICEBE8PDwYPXq1UyZMoWJEycSEBBAUFAQoaGhhfa1sVHJUsPD4dgxLbo0mlsJESEhPYGISxGWdjLxJFdNV/NtZ2DQ1LUp99S+B6/aXtxT+x5a1GqBQzWHKrJccz1KU/D6kZLWi8g3FWpREeiC15ryoovWFs/Vq7ByJZhMMGiQTh+h0VhzM3870rPTOXHpBMcvHef4xeMcv3Sc5KvJhbZrUKMBXrW9aFWnFV51vGhZq6VOz3CLUu6C1zdDVGk0mpuPgwO0aKFmMh4/DkU4xDQaTQUjIpy9cpZjF49Z2rkr5wrlwXKxd6FVnVZ41/G2iCxXB9cqslpTUZQlZYRGo7nD8PbOnz7CQY9KaDQVSlpWGhGXIjh68ShHE44SkRhBenZ6vm2q2VSjRc0WeNf1toishs4N9SzCOxAtujSauxhXV2jUCGJj4eRJ8PWtaos0mtsXEeFC2gWOJBzhaMJRjl08xpnkM4W8WHWr18Wnjg8+dVXzrOWpS+TcJRQrugzDWCAi4w3DmCoi791MozQazc3Dx0eJrogIaN1aBdlrNJrrY8o1ceryKSWyLh7lSMIRLmdezrdNNZtqtKzVktZ1W1tEVp3qdarIYk1VU5KnK8QwjObAo4ZhfEuBTPQikliplmk0mptCgwYqiD45Gc6cUWWCNBpNYTJzMom4FMHh+MMcSTjCsUvHyMzJzLeNi70Lbeq1oXXd1rSp14aWtVtqL5bGQkmi6xPgV6AFsIf8okuu9Ws0mtscw1Derr/+UgH1Hh46WapGAyoe60jCEQ4nHOZQ/CFOJp4slNm9kXMj2tRrY2mNXBrpWCxNsRQrukRkHjDPMIyPRWTKTbRJo9HcZDw8VM6uxERISFBlgjSau42rOVdJSE8gPi2e6Jhovtr0Vb54LAODlrVa4lvPF9/6vrSp14aajjWrzmDNbUdpUkZMMQwjEOh2rWuziBROca3RaIrE1tYWf39/y/KYMWOYMWNGsdv/5z//4R//+IdluXPnzmzfvr3M5w0PDyc2NpZ77723yPX79u3jww8/5IsvvmDBgvm88MI0XF2b8OKLqfj6tmDWrFl07ty5zOctCg8PD3bv3o2rqyt9+vRh/fr1VKum5/FoqparOVeJT4snPi2eC2kXSM5MtogsU5YJWxtbvGp74VffD996vrSu15rqdtWr2GrN7UxpCl4/C0wGfrjWtdAwjM9E5P1KtUyjuUMoWPD6ehQUXeURXKBE1+7du4sVXf/5z3/417/+ZVkeNWo0YWEfYDKBi8sGhg8fzoYNG2jdunW5zl8U9vb29O7dmyVLljBu3LgKO65GUxqyTFkkpCVwIe0CF1IvkJSZlM+TZWvYUqd6HRrUaIBR3WB0x9E6HktToZTmX81JQAcRSQMwDON/wJ+AFl2a24r77ruvUo77009lL6SdnJxMaGgoq1atwtvbm7Fjx9KrVy8iIyPJyMggKCgIX19fFi5ciLOzM6mpqWzcuJFXXnmFunXrcujQIUJCQvjuu+8wDINdu3YxdepU0tLScHBw4Pfff+fll18mIyODrVu3MnPmTEaPHm05f0pKCgcOHCAwMNDSV60atGypZjHWrh3G5MmT+eyzz5gzZw6RkZE89dRTJCQkUL16dT7//HN8fHz46aefeOONN8jKyqJOnTosXLiQBg0acOnSJcaOHUtCQgKhoaFYV74YOnQoM2fO1KJLU+mYck0kpCdwIfUC51PPk5iRmE9k2Rg21KtejwY1GtDAuQF1nOpga2MLQKwpVgsuTYVTGtFlANaRgyYKzGTUaDTFYxZRZswC6IMPPmDChAlMnTqVy5cv8/jjjwPwwQcfFOsZ27dvH4cPH6ZRo0Z06dKFbdu2ERoayujRo1myZAnt27fnypUrVK9enddee43du3fzwQcfFDrO7t278fPzK9TfurXK1xUdDT4+wSxY8CkAkydP5pNPPsHLy4u//vqLJ598kvXr19O1a1d27NiBYRh88cUXvPXWW7zzzju8+uqrdO3alZdffpmff/6Zzz77zHIOPz8/du3adQN3VKMpGhEhMSOR86nnOZ96noT0BHIl17LexrChrlNdGjg3oEGNBtStXtcisjSam0FpRNfXwF+GYay4tjwU+LLSLNJoKonyeKQqguKGF/v27cvSpUt56qmn2L9/f6mOFRoaSpMmTQAICgoiKioKNzc33N3dad++PQCurtcvFRIXF0e9evUK9deooVJGREZCdLTyCKSmprJ9+3ZGjhxp2e7qVVV499y5c4wePZq4uDiysrLwvJZvYvPmzfzwg4pIGDRoELVq1bLsa2tri729PSkpKbi4uJTqujWaohARUrNSLSLrQtoFskxZlvUGBrWdals8WfVr1KeajY4l1FQdpQmkf9cwjI1AV5SHa6KI7KtswzSaO53c3FyOHj2Kk5MTiYmJFjFVEg5WdXpsbW3JyclBRMo8Rd3JyYnMzMwi1/n6wqlTsHPnPu65pzW5ubnUrFmzSOH4zDPP8MILLzBkyBDL8KeZkmy6evUqjo6OZbJZowEVl3Uh9QJxqXHEpcSRlp2Wb72LvQsNnRvS0Lkh9WvUx6Garm2luXUoVe5pEdkrIvNE5D0tuDSaimHOnDm0bt2aRYsW8eijj5KdnQ2AnZ2d5X1p8PHxITY21jJkl5KSQk5ODi4uLqSkpBS5T+vWrTl58mSR65yd4fLlTaxf/xnduj2Oq6srnp6eLF26FFDeBbNnLjk5mcaNGwPwzTffWI7RvXt3Fi5cCMAvv/zC5ct5WbovXbpEvXr1sLOzK/U1au5eRISL6Rc5eOEgayPXsvzIcrZEb+Fk4knSstNwsHWgmVszOjTuwP3e93Of9320b9yepm5NteDS3HJoP6tGU8kUjOkaMGAAjz76KF988QU7d+7ExcWF7t2788Ybb/Dqq68yefJkAgICCA4OtgiXkrC3t2fJkiU888wzZGRk4OTkxLp16wgLC+PNN98kKCioUCC9j48PycnJ+Yb4lixZwtatW0lPT6dpU0+ee245ubmtSU+HhQsXMmXKFN544w2ys7MZM2YMgYGBvPLKK4wcOZLGjRvTsWNHTp8+DcCsWbMYO3YswcHB9OjRg2bNmlnOvWHDhmJnVGo0ABnZGcSlxhGbEsv51PP5hgzNwe/uzu40dG5IbafaOhmp5rbBsJ5VdKvSrl072b17d1WbobkNiY2NpVGjRlVtxi3JnDlzcHFxYdKkSUWu37pVBdR7e0NISMWdd/jw4fz3v//F29u74g6qua3JlVwupl8kNiWWuJS4QvULzUOG7i7uNKjRADvbyveS6t8OzY1gGMYeEWlXsF97ujSau5QpU6ZYhgyLws9Pia6TJ1WcV0WEYGVlZTF06FAtuDRk5mQSl6K8WXGpcfm8WbY2tjSsoUSWu7M7Lg56woXmzqA0yVGHA/8D6qMC6Q1AROS6U6QMwxgAvAfYAl+IyJvFbNce2AGMFpFlpTdfo9GUF0dHR8aPH1/s+po1oUkTOHcOjh0DqxHScmNvb8/DDz984wfS3HaICEmZScSkxBCbEsul9Ev5cma5OrjSyKUR7s7u1K9RX6dy0NyRlMbT9RZwn4gcLcuBDcOwBT4E+gLngF2GYawSkSNFbPc/4LeyHF+jKS3lmd2nUfj6KtEVEaGGGZ2cqtoize2EKdfE+dTzFqGVnp1uWWdr2FK/Rn0auTSikUujW8qbdTuE3WhuT0ojui6UVXBdIxQ4KSKnAAzDWAzcDxwpsN0zwHKgfTnOodGUiJ2dHampqTg7O2vhVQ7q1IGmTeHsWTh4EEJDq9oiza1OZk4mMVdiiEmJIS41DlNuXm5tJzsnGrs0ppFLIxo6N7wlc2aJCKmpqXp2raZSKM03frdhGEuAlcBVc6eI/FDsHorGwFmr5XNAB+sNDMNoDAwDeqFFl6YSqF27NomJicWmTtBcn4YN4cwZOH5cDTk6O1e1RZpbjfTsdBLSEkhITyD5anK+dS72LtStXpe61eviYu+i/vlJhfjU+Cqy9vrY2dlRu3btqjZDcwdSGtHlCqQD/az6hLwC2MVRlFuhoM92LjBdREzaC6GpDGxtbYvMvK4pG+vXw+rVKlO9Vf5TzV2KiHAy8SQ7zu3gz3N/cvZK3v/X1WyqEdggkA6NO9C+cXvqVq9bhZZqNLcWpclIP7Gcxz4HNLVabgLEFtimHbD4muCqC9xrGEaOiKws5zk1Gk0lMGaMEl579kB4eMUE1WtuL0y5Jo4kHOHPc3/y57k/uZh+0bKuhl0NQhuH0qFxB4Ldg3Gy08F/Gk1RlGb2YhPgfaALylO1FZgqIueus+suwMswDE8gBhgDPGi9gYh4Wp1nPrBaCy6N5tbDzQ1GjoRvvoGvvoK5c8GmVPUsNLczObk5hJ8PZ/vZ7fwV8xdXrl6xrKtbvS4dG3ekY5OO+Nb3vSXjszSaW43SFrz+P8Bc7faha319S9pJRHIMw3gaNSvRFvhKRA4bhvHEtfWflNtqjUZz0xkyBH7+GU6fhg0boHfvqrZIUxlkmbLYF7ePbWe3sTNmZ77aho2cG9G5aWc6N+3MPbXv0ZNTNJoyct2M9IZhhItI0PX6KhOdkV6juTXYsAHefVfNavz0U3DQpe3uCMxCa0v0Fv6K+YvMnLxi6B5uHnRp1oXOTTvT1LWpFloaTSm4kYz0Fw3DeAhYdG15LHCpIo3TaDS3Bz17wsqVcOoU/PgjjBpV1RZpyku2KZt95/exNXorO87tICMnw7KuZa2WdGmqhFZj18ZVaKVGc2dRGtH1KPABMAcV07X9Wp9Go7nLMAx47DH45z9h6VLo1Qvq6slptw2mXBMH4w+yKWoTf577M9/QYctaLenarCtdmnbB3cW9Cq3UaO5cSjN7MRoYchNs0Wg0twEBAdC5M2zfDh99BC+9pMSY5tZERDh68Sibz2xma/TWfHm0PNw86Na8G92addNCS6O5CRQrugzDeFFE3jIM430K59dCRJ6tVMs0Gs0ty9/+Bvv3w65dsGULdO9e1RZpCnIm6Qwbozay+cxm4tPzEpE2dmlM9+bd6d68O01cm1ShhRrN3UdJni5z6R8dwa7RaPJRuzY8+ii8/74KqA8KAlfXqrbqBsnNhYQEiI2FuDiIj4euXeGee9T6P/5QY6qGoZqNTd5r9erwxhtge61I86ZNIAINGqhWq9ZNcQdeTL/IpqhNbIzaSFRylKW/bvW6dG/WnR4ePfCs6amD4TWaKqJY0SUiP117my4iS63XGYYxsohdNBrNXUTfvkpbHDgAn38O/+//VbVF5SAjAz74QKXav3ABcnLyr2/UKE90ZWdDTEzRx7G3zxNcAEuWqIKVZqpVg/r1oXFj5Rbs2bPiLiE7g+1nt7P+9HoOxh9Erg1MONs707VpV3p49MC3nq8WWhrNLUBpAulnAktL0afRaO4iDAOeflq1jRuVjggJqWqrSiAuDrZtU96sKVNUn6Mj7NsH5tqctWsroeXuropOennl7d+lC/j6qvciyjMmAiYTXL2a/1zdu6uClRcuKI9ZcrLyoMXG5j/mwYPw8cfQqlVe8/BQIq0EciWX/ef388fpP/jz3J9kmbIAsLOxI7RxKGEeYQS7B2Nnq4s2azS3EiXFdA0E7gUaG4Yxz2qVK5BT9F4ajeZuwt0dHnpIZan/4AMVWO90K1WAOXtWCa3t21VWV1DDgRMnKsFlGMpFV6uWEluOjsUfy8VFtdIwZkz+5cxMJb7OnoWmVtXRoqJU39mzavgSwM5Oedd8fWHsWOVFu8a5K+f449QfbIjawKWMvMw9vvV8CfMIo2uzrtSwr1E6GzUazU2npH+nYlHxXEOAPVb9KcDzlWmURqO5fRgyBDZvhpMnVZmgJ56oaotQxsyblye0QKnBDh1Us65hdDPcc46O0KyZatb076+8WxERcOKEeo2JgaNHlWfu4YdJy0pjS/QW1q39hONGohJ+tjY0rNGQ3i16E+YRRgPnBpV/DRqN5oYpKaZrP7DfMIwVQJqImAAMw7AFdB5qjUYDqFCmZ5+F559XZYLat6+iYcasrDyvUO3aEB0Nzs7QsaPKcREUpLxItxL29uDtrZqZlBTk2DEOXzjI2h1z2HZ2G1lXM+DEXhxzbeiWXpc+9TvSOrAPhkNbqFG/6uzXaDRlojRlgHYAfUQk9dqyM7BWRDrfBPsAXQZIo7kd+P57WLBAOWLeew/q1btJJ46Kgv/7P/X6ySd5XqwjR1T81K0mtEogMSORP079we+nficuNc7S71/Tm77RdnQ6nobjySgVS2bGzU1lq23d+uYbrNFoiuRGygA5mgUXgIikGoZRvUKt02g0tz0jRyqds2cPvPkm/O9/140HvzHOn4eFC/PSM1SrpoYTW7ZU69u0qcSTVxy5ksu+uH38evJXdsbuJFdyAajjVIfenr3p06JP/sSlKSkqSVp4OOzdCxcvqng0M6tWqeD+jh1V0J1Go7llKI2naxvwjIjsvbYcAnwgIp1ugn2A9nRpNLcLKSkwdaqaIDh4sEqiWuEkJqqUDL/9psRFtWowcKBSfbVqVcIJK4dL6Zf4/dTvrI1cS0J6AgA2hg0dGnegX8t+BLsHY2PYlHwQESU+zeJKRCVQu3hRLTdtmhfH5u2tSwdoNDeJ4jxdpRFd7YHFqMB6AHdgtIjsKX6vikWLLo3m9iEiAqZPVymvpk2r4Gz1JhNMnqxmAhqGKv744IMqB9ZtgIiw/8J+1pxYw18xf1m8Wg1rNKRfy370btGb2k61y3+C3Fw1W/Ovv2D3bkjLq61IrVpKBXfpcoNXodForke5hxdFZJdhGD6AN2AAx0QkuxJs1Gg0dwCtWsHjj6v0U++/D56e+bMk3BC2tjBunEoB8fDDhWcD3qKkXE1h3al1/HLyF0uslq1hS5emXRhwzwACGwRWTPJSGxvo1k21nBw13rtjhxJh8fFQs2betgcOQHo6BAfnS0uh0Wgqj+t6ugAMw/AD2gCWJDYi8m0l2pUP7enSaG4vRGD2bJVKomlTeOedcubvysxUcVtubjBiRN7Bb5NhshOXTvDziZ/ZEr3FksC0XvV6DLhnAH1a9Lkxr1ZZEFHxbh4eeRMNXn5ZJYZ1dFRTTrt0UdNOS8pVptFoSkW5PV2GYcwCeqJE1xpgILAVuGmiS6PR3F4YBjzzjHrOnz2ryhLOmlVGh8qhQzBnjvLQODionFYuLre84Mo2ZbM1eis/n/iZ45eOW/pD3EO41+te2jVqd/1YrYrGMKBFi/x9bdtCaqrKD7Zli2r29tCuHQwaBAEBN9dGjeYuoDQxXQeBQGCfiAQahtEA+EJE7rsZBoL2dGk0tyvnz8OLL8Lly9Cpk4r1si5RWCQmkwqUX7xYeWhatFAKzlwD8RblcsZlfjn5C7+c/IWkzCQAatjVoG+LvtzrdW/+GYi3EhcuqOHabdvg+DWROGUK3Huvep+crESv9oBpNKXmRgLpd4pIqGEYe4AwVEb6QyLiWzmmFkaLLo3m9iUqCmbMUDHdffsq/VSss+riRTUuefiw2mjkSBUof12lVnWcuHSCnyJ+Ykv0FnJyVYU0DzcP7vO+jx7Ne+BQ7TbKJX3xohJfPXrkxX99+SWsWaM8YF27qqFILcA0mhK5kTxduw3DqAl8jioHlArsrFjzNBrNnYqHhxpa/Ne/4PffwdUVJkwoZuMPP1SCq3ZtVRPxFh3iypVc/jr3FyuPreTIxSMAGBh0atKJId5D8K3nWzGB8TebunXh/vvz9126pLL9b9+umnkIsls39aoFmEZTakr0dBnqV6OJiJy9tuwBuIrIgZtjnkJ7ujSa2589e+D119Xo4YQJ8MADRWwUH68KOE6erILnbzEysjNYd2odq46v4nzaeUANIfZr2Y/BrQZT/04tyWP2gG3bpupCmqm0ZGwaze3NjQwv7hGRqqikZkGLLo3mzmDzZjV6aM7hOaxvKvz6q1Jgt7BnKDEjkVXHV/HryV9Jy1a5rxrWaMgQ7yH0bdkXx2p3kbfHLMC2boVHHgE/P9W/eTP8+acagmzXTsWBaTR3KTcyvLjDMIz2IrKrEuzSaDR3Ed27qwlzH38Mqz48i8/cN/BxjcWwtYVhw6ravEKcTT7LD0d/YOOZjZZ4rTZ12zDUZygdmnS4+bMQbwXMQ5AFhyHXr1fuzK1bleBq314LMI2mAKXxdB1BJUaNAtJQCVJFRG5asIX2dGk0dxZ7P9tN+mtvY5+dju09ngR8/y/sGt86Q3NHE46y9MhSdsWq/zXN8VrDWw/Hu653FVt3ixIfn+cBi4jI63dwUDnWxoypOts0mptMmT1dhmE0E5FoVF4ujUajqRh+/JHg1V+S3FJYfbkLy92eo/VHjvzjH1CjRtWZJSLsidvD0sNLLcHx9rb29PHsw1Cfobduyodbhfr1lbdy2LDCAszZOW+7mBg4dUrPgtTclRTr6TIMY6+IBF97v1xEigp7vSloT5dGcwcgotIP/PijWh43jlPtR/PKqwaXL+fNcqxb9+aaZco1se3sNpYeXkpUchSgguMHtxrMfa3uw83x1gvov62Ij4fq1fOE19dfww8/qFmQwcHQuTOEhlat4tZoKpjyxHRZR7W2KHYrjUajKQ1ZWaoWYLVq8Nxz0KMHLVCB9S+/rPJ5PfssTJ0KHTpUvjk5uTlsOL2BpUeWWuoh1naqzVDvoQy4ZwBOduWpW6QpRMFi5B4e0Lq1mgW5Y4dq1apBUBD07q3iwDSaO5TSeros76sC7enSaO4QkpNVXSDzjLdrpKSo+ox79qjl++6DiRPBzq7iTcgyZbHu1DqWHVlGQnoCAO7O7gxvPZzenr2xs62Ek2oKc+mSmu24fbsq+SQCAwbAU0+p9ZmZatbFzXZ9ajQVQJlTRhiGYSIvcN4JSDevQgXSu1aSrYXQokujuU25eBF+/hkefvi6KSFE1MjjN99ATo6q/vPii9C4ccWYkmXK4reTv7Hs6DISMxIBaOralFG+o+jWrBu2Nrdu1vs7nuRkJcBatgQvL9W3fr2qvdmqFXTsqOpINWlStXZqNKWk3Hm6bgW06NJobkNiYlQa+osXVT6nESNKtduJE/DWW6puo6OjyufVvz/YlDM7Q1Fiy7OmJ6N9R9O5aefbM3P83cCyZbBokRqWNtO4sRJfnTopMabR3KJUiegyDGMA8B5giyqS/WaB9eOA6dcWU4EpIrK/4HG06NJobjNOnVKBWsnJKn7npZfAxaXUu6elqYpAW7aoZS8vVYPZ7AQpDUWJrRY1W/Cg/4OENg7VYut2IDMTwsNV3NfOnWocGsDXF9689jgRgexsFZiv0dwi3HTRZRiGLRAB9AXOAbuAsSJyxGqbzsBREblsGMZA4BURKRRCq0WXRnMbcfQovPqqUk5t28I//lGu1AAiKuvAF1+o8B/DUCE/48eXrN9ycnNYG7mWJYeXaLF1J2EyqbqcO3aAp6eqng7KNTpzpvquhYaqZKy1alWtrZq7nqoQXZ1QIqr/teWZACLy32K2rwUcEpFCERxadGk0twnh4fDGG3D1qkoF8Pe/33A0fEaGGmVatUo9d11dYdw49cy1PrQp18T60+tZfGgx8enxgBZbdwU//wyffJK/r1UrlQcsNFQJNP3Za24yVSG6RgADRGTSteXxQAcRebqY7f8O+Ji3t0aLLo3mNkBExXAdOKCm/j/zDNhWXHB6dLQqH3TokFquW1eFifXpI+yI28zCgwstqR+aujbloYCH6NSkkxZbdwMXL8KuXWoIcv9+NdwIqmj6ggV5oisrSw9Dam4KVSG6RgL9C4iuUBF5pohtw4CPgK4icqngei26NJrbhLQ0WLsWhg6tFO+CiMowsGgRRJ0Rkmrs4lKjBbg0jaJefWjs6s44/3F0a97t7qyLqFFxYPv3KwFWo4aaiQHqu/nIIyrGMCREtSZNtBdMUyncSMHr8nIOaGq13ASILcKwAOALYGBRgkuj0dziHDig8m7Z2KiHXCUWrjYM6NIFXO85xJu/fMvhE0dJT4fUU3VxPvIgHTv3wtvRFhv9HL17cXRU2XULZtg9cUJ5usLDVfvyS6hXL0+ABQdrL5im0qlMT1c1VCB9byAGFUj/oIgcttqmGbAeeFhEthd3LO3p0mhuUczxNL17q1Tylew1OH35NN/s/4Y9cSqLqqu9KwHVRnFuw0CiItUD0zDU83PgQBXWU95UE5pbDBElmjIzVcxgVlb+5uYGzZurbVNSVMC9k1P+DPfffgsnT6rZtadPQ3q6Oi7A5MmqXBHAlSuqbFHt2spra2bJErX9iBEqiz6o+pJJSWrZ1jb/q52datbv7e1V6gvz30pOjtpee9zuKG66p0tEcgzDeBr4DZUy4isROWwYxhPX1n8CvAzUAT66FneRU5SRGo3mFuSHH1QdPaj0YOX4tHi+O/AdG6M2IghO1ZwY5jOMoT5DcbJzQoaouspr1qg0E3v2qFa7tvKMdesGPj76uVZliCihlJKiBE2tWurDASWAtm5VgqlHD9UXE6OStWVkqGYWWiU5CXr3VuWlQE13nTcPmjXLL7pWrFAiB9T5HRxUWpOrV+GXX/K2279fzdpo1kx5zgIDwd0dFi9W+z9gVYr4xx/h2LGy3Y/ly/O8av/8p5rx++ab0KaN6lu2TH2RHR2VjY6OhZuTU96rk5Pa1zytNyNDfdkdHPSX/hajMocXEZE1wJoCfZ9YvZ8EFAqc12g0tzAi6j/+hQvV8pNPKrdSJZByNYUlh5fw84mfycnNoZpNNe69515G+Y7KV4jaMMDbW7VJk2DdOvUMjYuDn35SrW5dJcC6dlWT27QHrIK4ckUJp8REuHxZiZikpPyvKSn5k5xOmgT336/enz0LS5dC9+55ossw1DELYmeXJ0Ts7VUzv7fOVu/qqqa3FiwhNGIE5OaqD9/sXTKM/F+G9HTVkpLUd/3DD1V/gwZQs6YSYNYTRLp0UeUTTCYlyMyv5padnfeana3uQ75ptyZ1Huu+CxeKvv6SmD1b/QGAKuvw88/Ke3fffapv504l5qpXV61GDdXMxcjNfc7Oea8uLpVTi+suRmek12juVi5eVA+82FjVYmJUGngbGzVU4+qa15o2VQWJ3dzUD/ry5ephNXWq8jBUMFmmLFYdX8WyI8tIy04DoGfznjwU8BANnBuU6hgiaiRpyxbVLl7MW+fioi4nJESldzI7XTRWpKWph3/9+uoBDKo0z9q16jM358nati0vUWlJ2Nmp75KLCwwZkrf/2bOqBJCnpxoPBiVOoqPzvDnmdjOVclyc8niFh6vX1FTV/9//5tUOPXBACTRf3zIl/y1Ebm6eAATlqUtMVB44c8vIUK+ZmXnev8xMdf7MTCWwGlz72/j0U/j9d5VR2Pz3+dNP8NlnZbPrqadUcjxQM1hWrFBu4yFDVN/ly+qPy8UlT6SZW40aFTp7+XajKgLpNRrNrUZKivqRXL8ejh8vfruzZ4vuF4Fz59Tw0EsvQa9eFWqeiLAxaiPfHviWi+lKJQU1CGJi24m0qNWiTMcyDJXB3stLFc8+flxd+s6dSluaxRiAh4d6brZpo9pdUWM5Oxvi49XNiItTr+fPK6EVH68e5qASj3burN4nJ6sEpS1b5h3H3R0CAtR3olYt5Q2qWVMJdDc39d7FpfihrqZNVbPGzi7/OaoCd3fVBgxQoujUKSXAzN4kUEPse/ao6/L0BH9/1ayH+kpDQTFZp45q5eVvf1PN2qnSrZu6p2lp6rO1fi3YUlPVq6tVieW4ODWM2rp1Xl9MDHz+efF21KiRX4i5uKg6muYh35QUiIxUf3B3SV1N7enSaO50RGD3bvjjD/jrr7yYFkdHuOceaNRItcaNoWFDte7KlbyWlKQUy6FD6j/siAi1XZMm6r/oe++tkKrU+8/v56t9X3EqSQ2reNb05NG2jxLUMOiGj12QuDj1rNy7Vzkrrl7Nv75+ffVs8fJSzylPT/X8uO0QUcNX5qDv8HBYuVI9LC9cKDlGytFR3Yhx4/JEl1mkNW58Y6LgTuGHH5SKP3487+8KlAgbOjQvXYXI7R9bdfmy+sOpWVP9XoD652zNGiWeUlPV70VqqlpOSyv6+zVqlCorAeqP8JVXlNv59ddVX1oaPP10fk+7q2th77u5z8Ul7/t9C6ELXms0dyMHD6o6Oub4EMNQP3C9eqmiwQ4O1z9GTo7az2RS/+nu3Qv79uWPOQkKUuIrNLTMQwpnk8/ydfjX7IrdBUDd6nV5yP8hwjzDbkqurawspSOPHFHt6NE8J481jRopAda8uXLMNG+utOctMYIiooakatRQQ3Kg4ne+/16JJnP81PbtangM1Gdar16eR6dBg7zXBg3UcNHtLhRuFllZ6m/j4EH1z8mxY/DYYzB4sFq/Z48a2vP1VWq+TRv1hbqT729urhJQKSn5W7NmeV7MI0dUbGirViqHGihhN3ly2c7VtStMv1bGOSVFTfBp2FAJPDNRUSpurVatmxKnpkWXRnM3ERurfnh27FDLdeqoB0DPnmUbO8vKUrPIHB3hhRfyD4OcOqWCdTduzAuSrldP/dD16XPd/z6TMpP4v4P/x2+Rv5EruThVc2Jkm5Hc73M/9rZVly8pN1eFEx07pkY+IiNVdgFrR4aZatWU06dxY6VXGjZUz9KGDdVtrpQQpKtX1QPk9GnVoqLgzBn1gJs+PW/oxhzDc999eQ+x5GR1YY0bK2Glg6Qrh6ws9UUy1xxdsEAJYGvc3PIEWCUlE74tMZnUPxDW3nZzS04u+n2vXnkzV8+cUZ6yJk1UCQszI0eq2LfnnquUONSCaNGl0dwNpKWpdO0//6xUgoODmrE1bFjpvFrWpKerOooHDyqvx7vvKmVR1Dn/+EMNM8TEqL769WHMGAgLKyS+skxZrDy2kmVHlpGRk4GNYcOAlgN40P/BfDMSbyVycpQQO3VKvZ49q17j44vfx9ZWad369ZUWNbfatfNazZrXEWZpaXnK7+RJJbLOnSt62MbFRQWvmQPU09KU4W635j29qzCZ1JfH7E49ckQN24MSwNa1IxcuVG5Ub2+l3LUYKxkRFZ9oTsFx5YqamGFnlxdzmpMD/+//KaH27LMqkV8lo0WXRnOnc+AAzJmjpukZhvpvbvz48k3NS06GWbPUw752bXj1VRVtXhJHj6ohrSNH8mZ6OTqq/+bHjEFat2bTmU18s2keFy+eAVdX2rcKY2LQRJq6Nc0bnvH3V0m1bgMyM5UAi4sr3C5fvv7+NjZ5cee1nbOoUz2D6u5uuLlBk7hdtFr8GtWu5dasdi3fpmFro4ZoPD1V8/BQD+latfQD+nZBRMXGHTmils2el0uXYMKEvO1q1VJDbz4+6rVVqzzvmeaWRosujeZOJStLDV+sXKmWvbyUe71F2Wb7WYiPVzMTY2OVZ+v11/OmopspKJCOHVMPC3NB4SefVN62tWshN5cjjez44qlOnLBPhf3heKba8VhsAwLfX1r0/vPn5/XfZkLMTFaW0r8JCeqWxsfnZQJIvCQkXczhcqoa3vO/uIEhp99jf93erPZU5WlrXr3Akwee4EJ1T2JreHG+RkvOV29BSu1mOLna4+ycP72SOZzLnHrJnDPT/N46n+bNzr6gKSVJSSrB3PHjqpn/eTHzn/+ovwVQZY1ElOjW5YtuOXTKCI3mTuTUKXjnHTXWZWOjhvRGjiz/bJ64OJgxQykDT0947TXlhrGmKIF08KBabtxYiTUnJxg+nLijO5nf7DLbayfD4c3Utq/J+KNu9Krhh01inNrPx6fw/gcPqnPdxkLM3j5vYihZWWp48OhRuHIULh+DIYPIHjGW5GRI3dWQmv/NpU6rNOoMuJZP9Ep91nVaSnJaNUsi97Q0kKuQmqDE3I3aZ53w3PrVnHPU+r29vRqxsc5Laq5qY2+vvnLmvqKauTqOdsaVQM2aMHasei+i/h7NAiwiQs02NrNkiZqNbGurPJ0tW6p/uO65Ry1rIXZLokWXRnM7IqI8W99+q+IVGjVSMQutWt3YcWvXVl6tRo3gX/9SbpOCIqcogeTvr37kY2PBzo4UnxYsiV7Dz12SyUFwyHJkeKonw2Ndcdx3EJz3q/OY/2svsD/+/re3EEtLUzYdPqzaiRMq7sSaM2ews1NhO3X7ekHY99R0dMTLsoFBwZ9oERVql5qa14pKu2SunpORofqsc2mac2yaSxbeTAwjrwxhtWr539vZ5S9ZaF5v7iu4XNRrwfcF+8yJ6KtVy3tv3az7zO9L+1rhYtIw8lR7WFjh9Y0aqWm0586pf75OnVIJUUFl9582Tb1PT1frbtu8J3cWWnRpNLcbKSkwd67KDwQqVcPEiTcW62EujeLgoGK5zC6MorxaRQkkHx+YP5+cA+H8XOcSiyNmk5qVihEcRG9TM8Z3+ht1Wvip/86NxSrgqXZt2LVL/Vd+bf9CwulGhNjNxGRSqTQOHlQtMrJwsHvz5nmz1Xx88nKiQZ6iuA6GkTeUWHDEtyyYSyGam1mQZWbmiTHr9QVrS5v7zJVtzNVtils2V8HJzc3ruxOxFmIFW3H9xW1jrk5k3fL3PYrR9FHsGmVSO+kUtRNPUvPSSWpdOsnZY/cQ9YHavv65o4T+/AoAmW4NSKnrSWr9FqTV9yStvidX3epjY2tYjm1dGak0fUUtl2Yb8/C29WvBYxS1rXXifvOy9XGKOnbB47m5VV1onBZdGs3txPHj8L//qbGlGjXg+eehQ4fyH08E/u//1Ky4f/xDDWFcz6s1cmQhgSQi/FkjkflO64mLjwMgsEEgjw54NH8m+UmTYNAg5aHbulVNo//tN3joITXrzlos3YgQq2zvV2ammppunZ387beVGwnU0/Oee1ReJnNuphspE1PBGEZebNfNJDe3cDnCgiUKrUsXZmfnXzaZ8vdZv5qb9bL5fW5u0cvWraS+3Nzi35u3NV9fbu7NvafgCLS51oBaQDzwm1q8J0mwT72HehlnqHbhAkRcoDo7qA7UA94KXszVasoD5pW0i6u21Yl3ak5mNeebfSE3DevMKjcbHUiv0dwOiMCqVSr3lsmkhhGnT1f5CMpLVha89x5s3qyewo8/Dv/+d36PESgvUna2EjlFeJGOJhzlq31fcezSMQCaujZlYtBE2jVqh1HSmMvRo/Dll3nliJo2Vedq377ksZrigvitbTTbXVHDkNYZxdPTVcJRw4DFi/NiZ+bPV2LLfGw9y+yuwpz8vyiBZr0sUrr+4lrB7Yraz9xnvU5yTDheisEp7hRO509T/fwpbK+mET7+Xct2oZ8+huOVeOUJda5Nau3mpNRpTmqtZlxy9yPdzb3I40N+wWm93roVtY/5teC21tuXZlvrVnA7s03m9sQTeWU+KwsdSK/R3K6kpChx9Ndfavn++5WguJHSF0lJaibU0aNKHEyfrrxdpfBqmYm5EsM3+7/hz3N/AuDm4MaD/g/Sv2V/bG1Kkaa9dWvlHdq2TZ3j7Fk1U7J1azVcal3jzRofn+t7xJYuvbFhSBHlyQoPVy0+Hj78UAmt6tXVUGG1amqY1DzOZz3VX3PXYY5Xu3WxBZpdaz0tvRZfbW4uxPurSTlnzkBWIkgiXNwHF4EuE+CBB9S25kKmTZqo1rSpzgdXSm7pr4hGc9dz9KjKCH/xohpOnDpVle+5EQ4fVseMjlbLU6dCu3Yq/0DBoTsoJHIuZ1xm8aHF/Bb5GyYx4WDrwDCfYQxvPRwnO6ey2WIYys/foYNKrrpkibrmF19UJYUeflgJnOtRUIiVNjDf2vvVvLmKQt+3Twmtgom24uPzBNY779wi9X80mgrCxiYvq3turqrNGR2tKh5ER+cfSj90CH78Mf/+Li55Auzpp/M8w3dC3ckKRA8vajS3IiIq0eh336kfQG9vNRvpRqKnQf1Y/vOfKv/A8eNq6lz16qUafkvLSuOHoz/w4/EfuWq6ioFB3xZ9GRcwjtpO5UjAWhTp6bBihZqZmZmpfqx79IDRo9UPelm43jDk55+rWV0vvKC8idnZqoaks7OaFpibqwo99+sHgYHlSzKr0dyJREaqiSPnzikP9blzefGM9eursAEzjz2m/kExz8Rs3Djvfb16d2zCOJ0cVaO5XUhKUiV39u1Ty8OHq8zyNzJ2YRYgbdooIZecrEplNGmivD4zZqihxCLIMmWxOmI1S48sJTVLJWvs0LgDDwc+TDO3ZuW3qSSSkpTX69df8wpud+um8pA1bVr+45rvw+XLKnHr6dMqf5ajo/KC9emj6lN+8YXa3sGhamZDajS3EyIqt9+5c+qfJfPknqtX1e9KcTpj0qS8YuynTikvfMOGqjVoUOZcYyLC1atXSU1NJT09nbS0NNLT0wu979GjB01v5HekFOiYLo3mdmDHDvjgAyWKXFyUF6Zdob/bsvHrryrnVm6u+hH74gsl4PbuLTyUaEWWKYu1kWtZemQpiRmJAPjV82NC0AS863oX2r5CqVkT/vY3VTNy6VJYt04F/G/ZAl26KM/X9coSmTl+HNavV16sTp2UgNq5UxWEbt1aCTx7e3W/X39diTLDKDwMCbdePjCN5lbAMFSh0Tp18vc7OCiP/fnz6m8pJka9xsaqxK+NGuVtu2cP2fPnk2YykZaTQ5rJRLqLC6kuLqS7uZHWty9paWmqXbxIem4uadfElLWgyi3F9FEPD49KF13FoUWXRnMrkJICn30GGzeqZX9/ley04I9YWcjOVukg3n9f/Qfarp36oTt6tMQA+WxTNr+f+p3vD3/PpYxLALSo2YJHgh6hbcO2Jc9IrGjq14ennoJRo9SP99q1KtXE1q1KRA0dqorXWsePnDmjMuKbh2JPnFDxYleu5MXDBQXBN9+oIcOihFRRsW13YKkijaYiyc7OJi0tjdTU1Hyv1i3Vxoa0WrVIs7cnbckSUr/8UnmiYmLIio/PnyDO7CFzcFDDmGb27VMecOvSCddKJdjXrk2NOnWoXr06NWrUKPRao0aNKhNcoEWXRlP17NqlvFuJiepHZMIEGDy4fMGnZgHg4qJSTJw9C66uKm4rNlYdv5gA+SxTFn+c+oPvj3zPxfSLAHi4eTDWfyydmnS6uWKrIPXqwZQpSiz+8IPKvG2eWdiggcqFlZurin4nJqoh2YkT1b6hoUrUWs8Rt7fPi9EqzWxIuHUTs2o0FYSIWIbiUlNTLc16uShRZX7NupESB9WrY9uypUUY1XByojrgLEINe3uq+/jg7OxMdXt7amRmUiMjg+q2ttSwtc33Wu3JJ1UuQFAhFMuW5RUkrVsXQkLKHh9agWjRpdFUFcnJKu/WH3+o5dat1UzCxo3Ld7xjx9RsvwsXlFcnKEgF4E+dqgRcCQHyv5z8hR+P/0hSZhIAzd2aM9ZvLJ2bdq5asVWQunVVYG5IiEqwum6dEq0//aSGTOvWVfXnrHNk1a+fV8+utBQUYlC+GZHa+6W5yZiFk7VoKqkVFFg3Eudta2uLs7OzRTiZ31v3FVxnbtWrV8fBwaF0vzfDh6u/u4QE9XtnriifkAAtrJIxnz2rEj5HROT1ublp0aXR3FXk5MDPP8OiRSpFgZ2dCpS///4bm8kTHq4Cw21slFvex0fl9zIHoxZ4+F/OuMyq46tYc3IN6dnpAHjW9GSU7yi6NO1ya4mt+Hg1pGBO55CWpvo9PaFWLTUUkZurYsEyM9V29eurdBQODhVjQ2kz5OthSE0FkJWVRUpKCqmpqaSkpJCWlkZKSoqlz9wKLt+ocHJ0dMTZ2dnSzAKp4LJ1v1k4lVo0VQT29uqfnZL+Se3fH/z8VMqdhGtV4j09b459xaBFl0ZzM9mzR6UqiIlRyyEhKhN8ebxbBR/iQUFqKDElReWcmjq1yNk/Jy6dYHXEajZHbyYnNwcA//r+jGgzoviYrWPHlNgxnwdUfNjs2UrcTJ+et+1//6tmB06bpoYFzdcdGQlt2ypPFOSlmC5KaGZm5nmrRFR8W1JS3np3dxXLFRwMAQFKWJ08qUoKbdqk4taOHoVPPlFxXN26qXPfaPbKik7MqoXYHY2IWMSStUAq+Gp+by2usm+gQKWjoyMuLi75xFJRrShBVe3WzvBaNtzcbrmkrXfQ3dVobmFOnFBB7ebUJ40aqenS7dqVP3brwQeVa93VVeW28vFRr0ePqrxSBeK1tkVvY3XEaiISlavdwKBTk06M8LiXVk2D8o49Z44SSbNm5Qmkw4dh4UI1m9AsunJylNve7HWyvtaEhPzTxHfuVMHsTk55xzxyRM2q7NABZs5UfSLK63fhgordcnFR96dLFyXk2rZV57cuFm3Gy0u1SZPUTMffflP2bdigmouLyrvVtav677eiHi7lTcwKWojdJuTk5BQSS6URUjfidbKzsysknIoSUgX77jjhdIehPxmNprIQUclIv/9eeYlAiY6xY+G++8r20Ld+EAO8+qryHDk6Ktf5gQPqAR0QoNo1Tl0+xfrT69kYtZHkq8mQKzg7utCvRT/u9ehDg+f+BSm7lXfGnGE9I0PFm8XF5QmkNm3UDEJf3zybGjRQnq6CNQZfekklOa1VK6+vXTsVyGrOap2drYRddLTadvp05fHKzlZpM9LSVN6ewEC1vYeHOl+7dipuqyQcHVVC03791DVs2aJE2JkzSoj99pv6HIKDVXB9u3YV+9/wjRTqBi3EKgkRISsrq1ihVNL7zMzMcp/X7E2yFkcuLi6Flgu+d6ioYXHNLYUWXRpNRZObqzxaS5eqhyUoITBokEpxULNm2Y537Bg88ogaXktJyRMutrbqwVy/fj6hdTnjMhujNrL+9HqikqNUZ3o6LY7HM9i2Dd1fn49DtWs/6NWqqeNcupRXPPuxx2Dy5PzpKlq3LlwL0d4+f2kQM0XFTPj5KbGxa5cSEsePK2Hh7q7u1+nT0LKlEnwjR6ptzYILVAxcVJQ6jll0bdyo7nOvXkpAFYW7uxKLo0Yp0bV5s6pheeaMqvm4bZvypHl55QnW1q1vvFh1aWdEaiFWZqwDxYsSSiV5oso7ZGcYhkUMmQVTUSLKus/V1ZXq1atjq8tFaazQokujqShiYlQSzvXrlfcJ1JDWkCEqBYSzc+mOU/BhevCg8jwlJalYp6wslTi0VSs1O8ffn4vN6vLn8Z/YcW4Hh079SW5sLNSogYunN92bd6d3/Q7cs/IlDGcbsLHLO9e776rhSeshzhstNSSihhePHVPt6FHltSqYtLB5cyVy/PzykiS6uamYsIIMHqyEmfWsowMHVPxWmzZ5fUePqvQbHTuqYUozWVnqfOPHqxYfrwTgrl2wf3/eDKdly5QIbdUq7/63alUxnrCbIcTgthFjZq9TUUNyRQWQW/eXd8iuWrVqhQTS9cSUs7Mz1atXv7UmlmhuW7To0mhuhORkFa/0++/qgW/G3R3uvRcGDCjZa1JUfcCHHlLxS4YBq1erdW5uqq9BA/jwQyQwkNNJp9md+hc7fv2SE04ZSjwBtrlChxjoXdOb9i98SzWba3/m895XJXSsA9crQkykpKhXFxf1unIlfPVV/m1sbJQ3yddXtTZtLPaWiv79C/cNGaK8UtZDnubivOZhUVBCddQo9Zl88om6r/Xrq33btVN2Hz2qRNzBgyog3xyIb6Z+feXVa9VKTUn38Cib/cVRkULMur5kabxiFSDOzMKpYNqBgn1FzbC7kZxOTk5OhURTUcN2Zo+TeZ29vb0WT5oqRYsujaYsiCivza5damgrIiIvYNzRUQVp9+6thMD1ftzND8irV8FkUoHxmzerQHRzLcBdu2D8eGT+fOLWrWC/xLE//gcO/PAWKVkp6oF77hwODRoT0mYAHZt0pH0df5y9DihhY2P1J36jU6VFlAevenWVbBBUHcclS9Tw54gRqq9FCyVkvL3Vw9z8eqNDdgXx8ChcCqhXLyW4rONhEhKU6LO1zf+ZzJ6tPIXvvadmkYaEqNJIJ06oa7x0SX2+J07k5QHasiVv/9q11fmbN1ditkkTJYLMwf/lpbxCDErvFbvWZ7p6lfRq1Uh95x3SGjUi7dAh1dzdSa1dWwmkkydJO3WKtJo1SXV0rLBkmNWqVSs2GLwob9P/b+/Moyypqzz/uS/emvlyKWrNpHasomyBAppmEQ/QCKOgQjeNyow9Y+PpOdMtnBZGsEG7WzhzOLPpnAHF7jlHULFdelod4bSyOOgACiUIVFnURq3UllTWmpkvX779zh83IuNVZpUgVubLIu/nnDgv4r5f/OIX8Yv4xTfub4t+vaG4czLjd67j/CZqNWuwvnGjtUNat85GPI9IJu2Fd+ml1sPuzXi1zjjDvCxRteHAgDUc/+d/Nu9JEDCUrLO5N8PmU/p49an/xKuHXuXI4RdCD9hSmDWLWW2zOHvF2VyYh3Muuo70WefEx7r88rd+zqomOHbvNlGye7e1gdqxw9J5yy0mLMG8R+m0tcWKOOss6+nYCo9CJgPveMfRtgULrNpwcPBo++zZdj49PbHt6adtsNqbbjKhAtYJ4t57zcu4YIFdh+3b7XfvXusQ0Hyu+byJnp4e85DNm2e/c+bYMd+KYDiGEKs/8AAjL71EcelShjMZiuvWUQSGSyWKGzYwLEJx61aGH3+c4V27KObzDO/ZQ+FTn6JYLjO8aROldNo8gbfeavfe6tVWDZxIxL1Ux9ryeSgUYHCQ5IwZtM+bZwKpUiE/NET74sV0nHbaGw5XMKljOjnOFMFFl+OACY2BAaua2rXLfrdtM8E1tvHtzJlxr7eVK+3lu3at/TZX3axZYy/ebNZ65H3xi9ZTL5+HRx+FM8+kmEuyZ+gwOxcG7Lx2IbuWz+W1Ujf9Lz4D1GDfEzCYA6BjZi8rU6excsUHWXnhHzEvP+93f2kdOGAeu74+m5Q2mpj2eL21OjvNMxdxySVw2WVxz0dojdh6I5LJeNqfiLvvHh/uvPNMuC1fHttef92u0znnmBgDE3B/8icmRj72MWvPt2ePzQk5PGzhN22ysOWy3UOZDPVkklI+z0hHhy35PCPZrC2pFCNBQDEIGBFhpNGgWCqNTuQbLSMjIwwPD1Nuzodm5s619HV2WkeBQsHuu0LBhFOlMppHUi7TnkrRvmQJ7cUi7ZkM+e5u2oeHaT/9dPLZLO07d5KfM4f84cO0X3MN+ZUrab/9dtrrdTJDQ8iXv2zHjbxpu3ZZZ4zmas35849+Nn72s/HVmhNUBeo4U4kJFV0i8n7gXiAAvqqq/2XM/xL+fzVQBP5MVV+ayDQ505RazV5ER47YC7F52oj+fhMdUdskGP2Sp7PTvFIrVliVU7VqIuOd7zRh8sILcPPN5unp7rapaQDe9z7Kg4c4nBMOn7OCQ5UBDnXvY3+Psi8/RP9PPs2+3i6G/n03rElBJgvvqIHugQyk5y/itEYXyxb9K5afdgHLZy5/Y5GlamkaGjKP2JEj8VALYFVj3/ueVYF++MNm27MH7r9/fFxdXXGV2fz5tr5kiZ1jcxpSqfH7nsToxRdTu+ACKpUK5UOHKJfLlBcupHzzzZRFKL/wAqVSidK+fZQ7OykB5UaD0owZlHI5SqtWUapWKc2ZY78DA4xs3Uqpv5+RbJZKEFg+1esmhILA7quIUsmubzodV4mC/WYydr2DAIIASSZpC6dPacvnacvnae/ooK2zk7aODtq7umjr7KS9s5O2gwfJ791L+5ln0nbGGdY4fNcucps3I2eddXR7sGrV8vmWW+zYq1aZmOruhquuMhGkavdEcxXmb1Gtecw2Z79N2Dcjzk60zXFOABMmukQkAO4HrgR2Ay+IyCOqur4p2FXAsnC5APj78HdymYiHs1UFw9spjapmW7PG2uksXmwF8Pr1Vs23cKFV3ZRK1u5m0yYbTqCjw0TTzp1WLZZK2YtM1ewDAyYqoobfBw7AkSPoKTOoLl5INQG1Xz9PRZRyrZ3yJ+6kXK9Qvv0/Utq/l5GvQPFdyymmhZHBgxTb9jB0ijA0u5PCTz7NYGOEoff0MSI1e3HO3mXibWfoZUglIVOEkpDunknvwpUsbOthwelXs3DOchZ0LqBnsEFy334TPNFAoNu2mXAqFuNleNjEYaFgYqtWO/re/uQn7UUJ5nHZts3aIEUsWABXXGHH6OkxgdbbG1+bCURVqdfrRy21Wo16vU61Wh3dPtZSrVbHrVerVSqVCtVq9ailUqmM2qPfcrk8ai+Xy6O2crn82/eM++534/V02u7BI0cs79Np84yqwrx5yMyZ5JJJskeOkNuwgVxXF7nTTyfXaNBWr5N78UVy9Tq5JUtoV6UtCMjt3Uvb0BC5mTNpmznTJvYdGCCzYwcye7bdW6WS3QvPPGNeveaOBPv2mUdu0SLrJPCjH9m9MzRkVZ7r11s6Va393dCQVSM++6w9O5dfbt6+s86yNm6HDtn9tm6d7VepxB60V181WzptxxkctHtq/36bJ1PE0jlvnqXrmWfMA/mLX9iHS0+PHev55y1suWz3Y1+fTe1Uq9ngt28kzk60rdVl4dupXJ+K6ZlE5HeZo+k3RixyEXCXqr4v3L4TQFX/c1OY/wX8P1X9Tri9CbhMVfua4zrvvPP0V9FI3ieajRu58fo/oBSNqp3vAAGGC9AIr013t1URHTwA9YYVYG1tVtgdPGDh6nX7El2xwr4Ut2+3glDVGh0nEmGcAGpVTO3tcOhgvH82A53dcPggKFCr20M/b248wne1CkESkgGURiwcQCoNQQJqVbMJkAhsvV5DRcyWyVrBFQkTbdixJREWnE1VFsnQi6ENO7aI2ep1tF6zbRHI5qBcgloNTYcCZ+ZM8yBVayBhMrPhsWu2rybErkOpDOUSiqCBWDgFLZfsWieTqICGPfi00QCBhggEAaoNtNFAE6CSQLMZGvUaWq2iQCMhaCqgIYLWqjSAejZFo2cejSCgsXOH2RLYS0Y1Fi8isQApFCz/o3OJptgZGrQTTKfiht1bt5GoN2irCW0dp9CWyNA2UiM/VKEzyNGRbKejniTbSBD5jfRDHxodOkGffdYKhwsvjMfg2rwZ/elPCe+gUbT5Nwggm0WzWTSXQ5cvh4ULUVU0rGLSfB7NZMw2ZgFoNBpH2Zq36/X6UfZ6vT76f6PRGF0ie/N6JKyabVORIAjIZDKk02kymQyZTIZsNjtqy2azo9vRby6XO+o3m82Sy+XI5XKj61FcEomJ/n67v6JhMFStU0KxCDfeaPd+oWDTRr38so3z1ttrouUXv7AR/pctg/PPN8Fy+DA8/LDdAxdfbOVPuWwfLcPD1rEiGrYkqg7t7Y2PXyzaYL5tbdbuMGL1ahMgK1fGHRQ2bTLRtGhRLOL37jVRN2OGvdQKBdu3ULDzfPe77Xf1aktvo2HhenstzK9+ZelNJm2WArDzLhatbLroIhNxW7ZYmVWpmEjMZu2jS8TiXbTIhNzGjfaMDgyYmDv1VBOYuZwJx1mz7MNt40Y75yNHbL9Zs6ypQHu7CdDubotzzhwbG67RsOMsXmwdZp56ymyVisW3aJGdS71u9vnz7Zps3GjbIpaeVMraS9brlmdLl1q8u3dbmCAw8btvn6UnGlPv0kvtfLdssfwIAusp/dprcRMJu5Etzw4csP0jz+kll9jH1+bNdn2CwIZkWbPGeuzmcma75hp7jz33nIXLZMx28CA89ljspb32Wisvo4+Pjg4bjxBsFo5aza7l9ddbm8a1a+GJJ+z8s1mb5aJYNC98VN7+8R/b+kMP2fXp6Ig76nz723afRANNQ/zcRPPYAnz/+3Y9Egnr6CNitmrV8vKf/mlChZeIvKiq5421T2T14qnArqbt3Yz3Yh0rzKlAH5PF2rU8OTRMuRa+ug4Njg+z/zCmHJpedZVhGCiGYgR741VKsGZd+NKux+ErhfFxHhqCw4Xx+w+9HoumyLZ9lwkzIRSCtfHxlUvxerQv1fG24dBWKDUdR49+i8eRvrk4i9V4/0rF1gt9sUCJKDU1to52KA7aukY2heJI07kCQSj6SoNQaRwdh9TiYwtAAwoVE4qNJnsyDB8lP9mAwoCth0lAQKROAiFRB2lAAiWRrhAAiZKSaECgQmJxL0Gig0ACgte3kxwukVywiOSBHoJEQOqIEPS9HlYHJYAqRaBIin5qwEAsWhOh4H3uuVjg7d9vhcOGDVboghXI2exo9dLokkzGy9h5DHfssGWKEgTB6JJMJo/7m0qlSCaTRy2pVOooezqdHt2O1lOpFOl0enQ7Wv9Ny6T0jMtkzMvYjAjccEPzxTGP7G23jd//6qvh7/7OnouctfmjWrW2VKpxb0YwobBvnwmZXM6e0RdfNEGzbJkJl2rVPEwPP2wfk1deGX8gpVImPj70IUt3rWbp2rTJBqVdutRsu3bZi2/ePDt+vW5V0j/6kcVxxhmWtrlzrVp+ZMQE16xZJnZGRsxT1tNjcTQaFv/LL1u6u7vjZyX6oG1rsyUSspGAiTq0FItmq1bjD6pCwWxR549Gw8RcvW7itKvLbAMD9js0FDc/KJfjnsW7d9v1iOYJLZdN8FSr8bNaLNrzd+hQbBsZMTGTTNp1i8Jt2WJx1esmUoaH7fk/dMji7Ogw29q1dq1LJTv+8LBdo/5+O4/IKVAomIgeGIj3LxQsbF+fpTeVigXv1q2WjkzG0vj88xYuqgYfGrKBhQcHzZbNmm3VKjuPKBxYWQbxFGGNhnlOe3stTcVi3Fzj2WctLZFoGhy0j4po/6iW4uc/N1uhYPHVanFv4qEhi6tUss4wYOddCj/cn37a4hkYiPMsGmZlkpnI0uVYjU/GvtrfTJiJ5cwz+Q/dM6kODlhyFi60VO3ZY8IJwi7wedi4Ceo1s/f0wJzZZtMGVKpWeLznPXajrFoVepIU5p9q3qndu6FRtzNcsABOmXF0nLNnW2ETDUNQrZrHaOlSe/gadbs5u2fYl0dUbSBihVYqZQ9o5JXq6oobiIPZ5s2L492xI755OzutENjfjzQ09lYJcGQAUTVv2JzZVuAcPBQXgIsXx22lclmzXXABsnYdvN4HiQQiCetVVhxGdu0Ov9qScP75yOHD8MpaJBFALotc+odILof8+tf2RZbPI0GAfOQG+PkzyLp1JBAIksgFFyAjJXjpJRKSIJFKIVdcSaJcQf7vkyag8nkSf/YJEkGA3PslEo0GQXsHwU03k5AEwX//IolqjWQiQD56g30F7d9vL6HoBSASt/3q7TUPVFTA9PdbvsyeHRf2hQJSLsdfl+G1kuhrNbKNobnN1rHabx3r/99kE5HRZex2ZEskEkf9H21H61GYyH6s9eYlCIJx62N/o3XvvfYWERnfUzYSNmO57LLxtgULYm9EM9ddN972kY+Mt33yk28mlUatZuVQc/u/UsnKoVwu7s1ZKlmZmcnEHx/1uj2HiUTcy3TjRnuJLl1q5W0qZR6sVavsWT33XCu7NmywIUC6uqxjxJIltu/69fbC7+21Mmn7dqsqnTXLws6da+Xo+vXmpQoCS0+1au3cqlXzXN16q4nW226Ly9SbbjKP2t1323nPnm0DGXd12Zym1arFd+ON9vvAAxYumbRZIEZGrDqz0bDzuvVWK4seeMCuQTJp02xt3Wq2ZNLC3XWXXbvXXrOew/W62f/yL80D+tBDYU1FEj7zGROHX/96/LH2N39j1+DBB+Pq4c99zsLdd18sZD/7WYvvnnssvvZ2s1WrNn9qo2HvkjvusLy68057X+TzZlu82MTcF74Q7//Xf23n/fnP233S0WFpBNsnqpm5/Xaz/e3f2r3S1hZ/kNx9t7130+nYds899u4LArOJmK1SsfiaP0wmEa9ehLd/nbWnccrX8zuOcxIwlcrHqVZmnqxpnCCOV704kaIrCbwKvBfYA7wA/BtVXdcU5gPAzVjvxQuA+1T1/LFxTbjochzHcRzHOUFMepsuVa2JyM3A49iQEQ+q6joR+Yvw/38AfowJri3YkBE3TlR6HMdxHMdxWsmEthhV1R9jwqrZ9g9N6wrcNJFpcBzHcRzHmQqMb8nrOI7jOI7jnHBcdDmO4ziO40wCLrocx3Ecx3EmARddjuM4juM4k8CEDRlxIhGR/cBrrU6H4ziO4zjOm2CRqs4eazwpRJfjOI7jOM7JjlcvOo7jOI7jTAIuuhzHcRzHcSYBF12AiLxfRDaJyBYRuaPV6ZmuiMgCEfmZiGwQkXUi8qnQfoqI/ERENoe/M1qd1umIiAQi8rKI/Eu47fkyBRCRbhH5nohsDJ+dizxvWo+I3BqWY6+IyHdEJOv50hpE5EER6ReRV5psx80LEbkz1AObROR9JzIt0150iUgA3A9cBfwe8K9F5Pdam6ppSw34tKq+E7gQuCnMizuAJ1V1GfBkuO1MPp8CNjRte75MDe4FHlPVFcBKLI88b1qIiJwK/BVwnqqegU2FdwOeL63i68D7x9iOmRfhO+cG4F3hPl8JdcIJYdqLLuB8YIuqblPVCvBd4NoWp2laoqp9qvpSuD6EvTxOxfLjG2GwbwB/1JIETmNEZD7wAeCrTWbPlxYjIp3AJcADAKpaUdUjeN5MBZJATkSSQBuwF8+XlqCqTwOHxpiPlxfXAt9V1bKqbsfmhj7/RKXFRZe91Hc1be8ObU4LEZHFwDnAL4G5qtoHJsyAOS1M2nTlfwKfARpNNs+X1rMU2A98Laz6/aqItON501JUdQ/wBWAn0AcMqOoTeL5MJY6XFxOqCVx0gRzD5uNotBARyQPfB25R1cFWp2e6IyIfBPpV9cVWp8UZRxI4F/h7VT0HGMarrFpO2D7oWmAJ0Au0i8iftjZVzptkQjWBiy5TsQuatudjbmCnBYhIChNc31LVH4TmfSLSE/7fA/S3Kn3TlIuBa0RkB1b9frmI/COeL1OB3cBuVf1luP09TIR53rSWK4DtqrpfVavAD4B34/kylTheXkyoJnDRBS8Ay0RkiYiksQZ0j7Q4TdMSERGsbcoGVf0fTX89Anw8XP848PBkp206o6p3qup8VV2MPR8/VdU/xfOl5ajq68AuETk9NL0XWI/nTavZCVwoIm1hufZerI2q58vU4Xh58Qhwg4hkRGQJsAx4/kQd1EekB0TkaqzNSgA8qKr3tDZF0xMReQ/wDLCWuO3QZ7F2Xf8bWIgVZh9W1bGNIp1JQEQuA25T1Q+KyEw8X1qOiJyNdXBIA9uAG7EPas+bFiIidwMfxXplvwz8OZDH82XSEZHvAJcBs4B9wOeBH3KcvBCRzwGfwPLuFlV99ISlxUWX4ziO4zjOxOPVi47jOI7jOJOAiy7HcRzHcZxJwEWX4ziO4zjOJOCiy3Ecx3EcZxJw0eU4juM4jjMJuOhyHKfliMhMEVkdLq+LyJ5wvSAiX5mgY94iIv/uGPbFIvLKCTxOWkSeDufgcxxnGuOFgOM4LUdVDwJnA4jIXUBBVb8wUccLBdAnsNHbJxRVrYjIk9iYTd+a6OM5jjN1cU+X4zhTFhG5TET+JVy/S0S+ISJPiMgOEblORP6biKwVkcfCKaQQkd8XkadE5EUReTya6mMMlwMvqWqtaZ81IvIccFPT8ReLyDMi8lK4vDu0f1NErm0K9y0RuUZE3iUiz4deul+LyLIwyA+Bj03ENXIc5+TBRZfjOCcTpwEfwCYT/kfgZ6p6JjACfCAUXl8CrlfV3wceBI41w8TFQPME3l8D/kpVLxoTrh+4UlXPxTxV94X2r2IjvyMiXdi8ej8G/gK4V1XPBs7D5nEDeAX4g7d4zo7jvE3w6kXHcU4mHlXVqoisxabteiy0rwUWA6cDZwA/sSnvCIC+Y8TTg82FF4mmblV9Kvzvm8BV4XoK+HI41U4dWA6gqk+JyP0iMge4Dvi+qtZCT9nnRGQ+8ANV3RyGr4tIRUQ6VHXoBF0Lx3FOMlx0OY5zMlEGUNWGiFQ1nsesgZVnAqw7hsdqLCNANlwX4Hjzod2KzdW2EqsZKDX9902syvAGrH0YqvptEfkl5o17XET+XFV/GobPjNnfcZxphlcvOo7zdmITMFtELgIQkZSIvOsY4TYA7wBQ1SPAQDjhOhzd9qoL6FPVBvBvMc9ZxNeBW8I41oXHWwpsU9X7gEeAs0L7TGC/qlZ/91N0HOdkxUWX4zhvG1S1AlwP/FcRWQOsxtpbjeVR4JKm7RuB+8PqwZEm+1eAj4vIKqxqcbjpWPsw8fa1pvAfBV4RkdXACuCh0P6HWJsvx3GmMRJ75x3HcaYPIvJ/gM9E7a7ewv5tWFuyc1V14A3C/gC4U1U3vZVjOY7z9sA9XY7jTFfuwBrU/9aIyBXARuBLb0JwpYEfuuByHMc9XY7jOI7jOJOAe7ocx3Ecx3EmARddjuM4juM4k4CLLsdxHMdxnEnARZfjOI7jOM4k4KLLcRzHcRxnEnDR5TiO4ziOMwn8fzloQxEuL7xkAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.2968, 'epsilon': 0.171, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAClNElEQVR4nOydeXgUVfa/38oGIQn7vocdsicQ9iVsAVkEBAGRTRFUQNHfqDBfFUadkUFURB3BUcEFAQFlEFER2TchQAh7IBACSYBAIGQlSef8/rh0p7OSQDbgvs9zn+6qulV1qrrT9cm5555jiAgajUaj0Wg0muLFprQN0Gg0Go1Go3kY0KJLo9FoNBqNpgTQokuj0Wg0Go2mBNCiS6PRaDQajaYE0KJLo9FoNBqNpgTQokuj0Wg0Go2mBLArbQMKQvXq1aVx48albYZGo9FoNBrNHTlw4MBVEamRff19IboaN25MUFBQaZuh0Wg0Go1Gc0cMwzif23o9vKjRaDQajUZTAmjRpdFoNBqNRlMCaNGl0Wg0Go1GUwJo0aXRaDQajUZTAhSb6DIM4yvDMK4YhnE0j+2GYRgLDcM4YxhGiGEYvsVli0aj0Wg0Gk1pU5yerqVAv3y29wea326Tgc+K0RaNRqPRaDSaUqXYUkaIyHbDMBrn0+VR4BsREWCvYRiVDcOoIyLRxWVTXhw9ChkZJXMuwyjaftZ9rffJ7X1+r+YGYGOT+Wq9zdzM661frZutbdbXwlyLRqPRaDQPKqWZp6secMFq+eLtdSUuut55BxITS/qsDw82NmBnp0SY9au9fearuZUrBw4OWV8dHXM2Z2dwcVGvzs6qnxZ3Go1GoynLlKboyu0RKSVuBdCmDdy6VbC+cg8W3su+ee1vXpfXNuv1eS1bH8P8PiMj63brlpGR6RnMyACTKbO/+b3JpJq5f2rqvV37nbCzg8qVoUqVzNeqVaFaNahdG2rVgho1VD+NRqPRaEqD0nwEXQQaWC3XB6JKw5A33yyNsz4cmIWYdUtPVy0tLWdLTVUC2Px66xYkJ+dsiYkQH69aQoLqf/WqanlhGEqE1a0LjRpB48bqtVEjKF++xG6JRqPRaB5SSlN0rQOmGYaxAmgPxJVGPJemeDEM5V0qbg9TaircuAHXr2e22FiIiYHLl1Uzi7KrVyEkJOv+detC69bg5qZanTp6uFKj0Wg0RUuxPQoNw1gO9ACqG4ZxEZgN2AOIyCJgA/AIcAZIAiYWly2aBx8HB6hZU7W8SE9XguvCBTh/XrXwcLh4EaKiVPvzT9W3ShUlvjp0gLZtwcmpRC5Do9FoNA8whtxroFEJ0LZtW9EFrzXFRXo6nDsHx4+rduwYxMVlbrezAy8v6NhRibBKlUrPVo1Go9GUfQzDOCAibXOs16JLo8mKiPJ6HTwIe/aolCLmPxPDUMJr0CBwd9dDkBqNRqPJiRZdGs1dEhcH+/bB7t1w6JCaDAAqEH/AAAgIUCkrNBqNRqMBLbo0miIhNhZ++w1+/VUF7oPKEzZsGDz6qIot02g0Gs3DjRZdGk0Rkp4Ou3bBzz/DqVNqXc2aMH48dO2qhx01Go3mYUaLLo2mmAgOhi+/VDMhAVq2hGeeUa8ajUajefjIS3QVZ8FrjeahwNsbPvoIpk1TMxtPnYK//Q0+/bT4M/FrNBqN5v5Biy6NpgiwsYHAQPj8cxgxQqWZ+O03ePlllRdMo9FoNBotujSaIqRCBRg3Dt5/X2W5P38eZsyAP/6499qbGo1Go7m/0aJLoykGmjSBBQtUOonUVFi4UAmx5OTStkyj0Wg0pYUWXRpNMeHoqIYXX3pJFdTetg1efTUz1YRGo9FoHi606NJoipmePZXXq149NcPxtddUIW6NRqPRPFxo0aXRlAD16sG//62GHaOilPCKji5tqzQajUZTkmjRpdGUEJUqwb/+Ba1aKU/Xa6+pQHuNRqPRPBxo0aXRlCBOTvD22+DlBdevw6xZcPp0aVul0Wg0mpJAiy6NpoQpXx7efBP8/SE+Xr2PiiptqzQajUZT3GjRpdGUAg4Oysvl7w8JCfDWW+pVo9FoNA8uWnRpNKWEnR288go0bgyRkTB3riqkrdFoNJoHEy26NJpSxDzUWLkyHD6sygjpzPUajUbzYKJFl0ZTytSoAa+/Dvb28OuvsH59aVuk0Wg0muJAiy6NpgzQsqWq0Qjw3//CgQOlao5Go9FoigEtujSaMkK3bjBqlBpenDdPZ63XaDSaBw0tujSaMsQTT0D79pCUpEoH6fgujUajeXDQokujKUMYBkyfrrLXh4To+C6NRqN5kNCiS6MpY1SqBNOmqfdLl6p0EhqNRqO5/9GiS6Mpg3ToAL16QWoqfPABmEylbZFGo9Fo7hUtujSaMsozz0D16hAaCqtXl7Y1Go1Go7lXtOjSaMooTk6ZaSSWL4ezZ0vVHI1Go9HcI1p0aTRlGC8vGDRIDS++/z6kpZW2RRqNRqO5W7To0mjKOOPHQ926EBGhZzNqNBrN/YwWXRpNGadcOZgyRb1fvhxu3ChVczQajUZzl2jRpdHcB/j6Qrt2kJwM33xT2tZoNBqN5m4oVtFlGEY/wzBOGYZxxjCMmblsr2QYxs+GYRw2DOOYYRgTi9MejeZ+5umnwc4ONm2CM2dK2xqNRqPRFBa74jqwYRi2wKdAH+AisN8wjHUictyq21TguIgMMgyjBnDKMIxlIpJ6p+ObTCZiY2NJ05HFmocEw1CzGSMi4PhxcHRU6zQFx97enqpVq2Jra1vapmg0moeQYhNdgD9wRkTOAhiGsQJ4FLAWXQK4GIZhAM5ALJBekIPHxsZSvnx5qlevjqGfPJqHhOrV4do1SEiA9HRo1Ki0Lbp/EBESEhKIjY2lRo0apW2ORqN5CCnO4cV6wAWr5Yu311nzCdAaiAKOAC+KSEZBDp6Wloazs7MWXJqHCgcHlUYC4NAhJbw0BcMwDJydnbV3XKPRlBrFKbpyU0OSbTkQCAbqAt7AJ4ZhVCzwCbTg0jyENGkCVatCUhKcOFHa1txf6N8MjUZTmhSn6LoINLBaro/yaFkzEfhRFGeAc0CrYrSpSPnnP/+Jm5sbnp6eeHt789dff5WKHcHBwWzYsMGyvG7dOubOnQvAhAkTWJ1LDZmtW7cycODAErNRU3QYBvj5qffHj0NiYunao9FoNJqCUZwxXfuB5oZhuAKRwCjgiWx9IoBewA7DMGoBLYH7otjJnj17WL9+PQcPHqRcuXJcvXqV1NQ7xv8XC8HBwQQFBfHII48AMHjwYAYPHlwqtmhKhho1oGFDFVR/7Bj4+5e2RRqNRqO5E8Xm6RKRdGAa8DtwAvhBRI4ZhvGsYRjP3u72NtDJMIwjwJ/AayJytbhsKkqio6OpXr065cqVA6B69erUrVuXxo0bc/WquoSgoCB69OgBwLZt2/D29sbb2xsfHx/i4+MBmDdvHh4eHnh5eTFzpsqqERYWRr9+/fDz86Nr166cPHkSUF6rZ599lq5du9KiRQvWr19Pamoqb775JitXrsTb25uVK1eydOlSpk2bZrF106ZNWfbJTmJiIk899RTt2rXDx8eH//3vf8V23zRFh6en8nqdPau9XRqNRnM/UJyeLkRkA7Ah27pFVu+jgL7FaUNx0bdvX9566y1atGhB7969GTlyJN27d8+z//z58/n000/p3LkzCQkJlC9fnl9//ZW1a9fy119/UaFCBWJjYwGYPHkyixYtonnz5vz11188//zzbN68GYDw8HC2bdtGWFgYAQEBnDlzhrfeeougoCA++eQTAJYuXZrl3LntY80///lPevbsyVdffcWNGzfw9/end+/eODk5FeEd0xQ1FStC48Zw7hwcPQrt25e2RRqNRqPJj2IVXSXFoEHFc9yff857m7OzMwcOHGDHjh1s2bKFkSNHWuKocqNz5868/PLLjBkzhmHDhlG/fn02bdrExIkTqVChAgBVq1YlISGB3bt3M2LECMu+t27dsrx//PHHsbGxoXnz5jRp0sTiBcuPO+2zceNG1q1bx/z58wFISUkhIiKC1q1b3/HYmtLF3R3Cw5W3q00bcHEpbYs0Go1Gkxd3FF2GYXQG5gCNbvc3ABGRJsVrWtnH1taWHj160KNHDzw8PPj666+xs7MjI0NlvUhJSbH0nTlzJgMGDGDDhg106NCBTZs2ISI5ZlNlZGRQuXJlgoODcz1n9v4FmY11p31EhDVr1tCyZcs7HktTtnBxAVdXJbqOHYMOHUrbIo1Go9HkRUE8XV8CLwEHAFPxmnN35OeRKi5OnTpl8R6BCmZv1KgRycnJHDhwgP79+7NmzRpL/7CwMDw8PPDw8GDPnj2cPHnSMkT5xBNPWIYXq1atiqurK6tWrWLEiBGICCEhIXjdTs60atUqxo8fz7lz5zh79iwtW7bkzJkzlhix3Mhtn71791q2BwYG8vHHH/Pxxx9jGAaHDh3Cx8enmO6cpqhxd1dDjOfOgZub9nZpNBpNWaUggfRxIvKriFwRkWvmVuyWlXESEhIYP348bdq0wdPTk+PHjzNnzhxmz57Niy++SNeuXbOUGlmwYAHu7u54eXnh6OhI//796devH4MHD6Zt27Z4e3tbhveWLVvGl19+iZeXF25ublkC21u2bEn37t3p378/ixYtonz58gQEBHD8+HFLIH12ctvHmjfeeIO0tDQ8PT1xd3fnjTfeKKa7pikOnJ1V7i4RFdul0Wg0mrKJIZI9X2m2DoYxF7AFfgQswUUicrB4Tcukbdu2EhQUlGVdVFQUdevWLSkTygQTJkxg4MCBDB8+vLRN0ZQxEhOVx1cEBgxQQfaa3HkYfzs0Gk3JYhjGARFpm319QYYXzXOirHcWoGdRGKbRaO4dJyfl7TpzBo4cgc6dS9sijUaj0WTnjqJLRAJKwhDNncmeCkKjscbNTQXUR0SoOK9KlUrbIo1Go9FYc8eYLsMwKhmG8YFhGEG32/uGYeifc42mjOHkBE2bqiHG48dL2xqNRqPRZKcggfRfAfHA47fbTWBJcRql0WjujtatVZb68+dVQWyNRqPRlB0KIrqaishsETl7u/0DeOhzdGk0ZRFnZ1WTMSMDCpA3V6PRaDQlSEFEV7JhGF3MC7eTpSYXn0kajeZeaNNGvZ45A6VUg12j0Wg0uVAQ0fUc8KlhGOGGYZwHPgGevcM+DwXOzs537LNjxw7c3Nzw9vYmOblwWnXt2rUcv4vgnLzsSk5Opnv37phMmTluP/zwQ8qXL09cXFyhz1MUBAcHs2HDhjt3vEeWLl1KVFSUZXnSpEl3dW/Dw8Nxd3e/Y79Vq1bRunVrAgIKPw8lu62FtatKFahdG9LT4fTp3PuYmTNnjiU/XEHp0aMH2VO4ZGfBggUk3eX45t1+J6zt6t27N9evX7+r82s0Gk1xcUfRJSLBIuIFeAIeIuIjIoeL37QHg2XLlvG3v/2N4OBgHB0dC7Xv3YquvPjqq68YNmxYlqSty5cvp127dvz0009Fdp7CUFqi64svvqCN2SVUDHz55Zf85z//YcuWLYXe925EV3bMl3bqFJhKoY5EaYgua8aOHct//vOfezqGRqPRFDV5ii7DMJ68/fqyYRgvA5OASVbLmtts3bqVHj16MHz4cFq1asWYMWMQEb744gt++OEH3nrrLcaMGQPAe++9R7t27fD09GT27NmWY3zzzTd4enri5eXF2LFj2b17N+vWreOVV17B29ubsLAwwsLC6NevH35+fnTt2tVSuPrcuXN07NiRdu3a5ZtNftmyZTz66KOW5bCwMBISEnjnnXdYvny5Zf2xY8fw9/fH29sbT09PTp8+zRtvvMFHH31k6fN///d/LFy4kK1bt9K9e3cef/xxWrRowcyZM1m2bBn+/v54eHgQFhYGqMSuzz77LF27dqVFixasX7+e1NRU3nzzTVauXGnJph8bG8uQIUPw9PSkQ4cOhISEAMojM378ePr27Uvjxo358ccfefXVV/Hw8KBfv36kpaUB8NZbb9GuXTvc3d2ZPHkyIsLq1asJCgpizJgxFo+jtVfkt99+w9fXFy8vL3r16lXgz33p0qUMGzaMfv360bx5c1599VWLDTt37uTZZ5/llVdewWQy8corr1g+98WLF1uOMW/ePDw8PPDy8mLmzJm52nrgwAG6d++On58fgYGBREdHA3DgwAG8vLzo2LEjn376aRbbatVSHq+UFFUeqCD06NGD1157DX9/f1q0aMGOHTsA5SEdNWoUnp6ejBw5MovHduPGjXTs2BFfX19GjBhBQkICCxcuJCoqioCAAIunL7d+APv376dTp054eXnh7+9PXFxcju9EYmIiTz31FO3atcPHx8dSoSE/uwYPHpzlO63RaDRlAhHJtQFTbr/OzqW9mdd+xdH8/PwkO5GRkTnWlTROTk4iIrJlyxapWLGiXLhwQUwmk3To0EF27NghIiLjx4+XVatWiYjI77//Ls8884xkZGSIyWSSAQMGyLZt2+To0aPSokULiYmJERGRa9eu5dhXRKRnz54SGhoqIiJ79+6VgIAAEREZNGiQfP311yIi8sknn1jssubWrVtSq1atLOvefvtteeutt8RkMkmjRo3k8uXLIiIybdo0+e677yz7JSUlyblz58THx0dEREwmkzRp0kSuXr0qW7ZskUqVKklUVJSkpKRI3bp15c033xQRkQULFsiLL75ouZbAwEAxmUwSGhoq9erVk+TkZFmyZIlMnTrVYtO0adNkzpw5IiLy559/ipeXl4iIzJ49Wzp37iypqakSHBwsjo6OsmHDBhERGTJkiPz0009Z7p2IyJNPPinr1q0TEZHu3bvL/v37LdvMy1euXJH69evL2bNnc+yfG+fOnRM3NzcREVmyZIm4urrKjRs3JDk5WRo2bCgRERE5zrd48WJ5++23RUQkJSVF/Pz85OzZs7Jhwwbp2LGjJCYmZjm39b6pqanSsWNHuXLlioiIrFixQiZOnCgiIh4eHrJ161YREfnb3/5msctMeLjIsmUi69aJZGRktd3M7Nmz5b333rOc9+WXXxYRkV9++UV69eolIiLvv/++5ZyHDx8WW1tb2b9/v8TExEjXrl0lISFBRETmzp0r//jHP0REpFGjRpbvc179bt26Ja6urrJv3z4REYmLi5O0tLQc34lZs2bJt99+KyIi169fl+bNm0tCQkKedplp1qyZXL16NcdnWBZ+OzQazYMNECS56Jk8k6OKiPnf8U0isst62+1g+rLDoEHFc9xCVNL29/enfv36AHh7exMeHk6XLl2y9Nm4cSMbN260FJNOSEjg9OnTHD58mOHDh1O9enUAqlatmuP4CQkJ7N69mxEjRljW3bqlqjLt2rXLUlx77NixvPbaazn2v3r1KpUrV86ybsWKFfz000/Y2NgwbNgwVq1axdSpU+nYsSP//Oc/uXjxIsOGDaN58+Y0btyYatWqcejQIS5fvoyPjw/VqlUDoF27dtSpUweApk2b0rdvXwA8PDyyDK89/vjjliLhTZo0sXjqrNm5c6flWnr27Mm1a9cs8Wb9+/fH3t4eDw8PTCYT/fr1s5wnPDwcgC1btjBv3jySkpKIjY3Fzc2NQfl8P/bu3Uu3bt1wdXXN897nR69evah0OwtpmzZtOH/+PA0aNMjSZ+PGjYSEhLB69WoA4uLiOH36NJs2bWLixIlUqFAhz3OfOnWKo0eP0qdPHwBMJhN16tQhLi6OGzdu0L17d0B97r/++muWfRs0ULm74uPh4kUwDCPXa7BeP2zYMAD8/Pws93T79u288MILAHh6euLp6Qmoe3f8+HE6305/n5qaSseOHXMcP69+p06dok6dOrRr1w6AinnULtq4cSPr1q2zxJ6lpKQQERGRp11matasSVRUlOV7qtFoNKVNQcoAfQz4FmDdQ025cuUs721tbUlPT8/RR0SYNWsWU6ZMybJ+4cKFeT4QzWRkZFC5cmWCg4Nz3X6n/R0dHUlJSbEsh4SEcPr0acvDPDU1lSZNmjB16lSeeOIJ2rdvzy+//EJgYCBffPEFPXv2ZNKkSSxdupRLly7x1FNP5XrtNjY2lmUbG5ss9yG7jbnZLLnUAjX3sz6uvb29Zb35PCkpKTz//PMEBQXRoEED5syZk+Wac0NE7njv8qOgn/vHH39MYGBglvW//fbbHc8tIri5ubFnz54s62/cuHHHfW1sVN6uoCCVLLVTp2o5gstjY2MtgtP6erJfS16fVZ8+fe44jJdXv5CQkALdexFhzZo1tGzZMse2/PZPSUkpdBylRqPRFCf5xXR1NAzj/wE1zHFct9scVAHsssPPPxdPK2ICAwP56quvLPEskZGRXLlyhV69evHDDz9w7do1QD0IAVxcXIiPjweUF8DV1ZVVq1YB6kF0+LCaz9C5c2dWrFgBqLit3KhSpQomk8kiQpYvX86cOXMIDw8nPDycqKgoIiMjOX/+PGfPnqVJkya88MILDB482BJXNXToUH777Tf279+fQ0AUhFWrVpGRkUFYWBhnz56lZcuWWa4RoFu3bpZr2Lp1K9WrV8/TA5Id87VVr16dhIQEi2cJyHEeMx07dmTbtm2cux34ZL73+/btY9y4cYW+xtwIDAzks88+s8SdhYaGkpiYSN++ffnqq68sAee5fe4tW7YkJibGIrrS0tI4duwYlStXplKlSuzcuRPI+rlHRkZaYtOaNIFy5eDaNUhKcqZOnTr8+eeflvP99ttvOTyy2bH+TI4ePWr5PnTo0IFdu3Zx5swZAJKSkggNDc1xDXn1a9WqFVFRUezfvx+A+Ph40tPTc3xWgYGBfPzxxxZBfujQoXztAvX3cenSJRo3bpzvtWk0Gk1Jkt/sRQfAGeUNc7FqN4HhxW/ag0ffvn154okn6NixIx4eHgwfPpz4+Hjc3Nz4v//7P7p3746Xlxcvv6zmKYwaNYr33nsPHx8fwsLCWLZsGV9++SVeXl64ublZAoo/+ugjPv30U9q1a5dv6oe+fftaHtIrVqxg6NChWbYPHTqUFStWsHLlStzd3fH29ubkyZMW8eHg4EBAQACPP/54lhmQBaVly5Z0796d/v37s2jRIsqXL09AQADHjx+3BE3PmTOHoKAgPD09mTlzJl9//XWBj1+5cmWeeeYZPDw8GDJkiGXYCjID+bOn7qhRowaff/45w4YNw8vLi5EjRwIQERFRZF6SSZMm0aZNG3x9fXF3d2fKlCmkp6fTr18/Bg8eTNu2bfH29rYMn1nbajKZWL16Na+99hpeXl54e3uze/duAJYsWWIZDra2NTo6Gjs75cS2s4MWLdT6kyfVhI133nkHb29vevbsyezZs2natGm+9j/33HMkJCTg6enJvHnz8Pf3t9y7pUuXMnr0aMvEB/OQ8eTJk+nfvz8BAQF59nNwcGDlypVMnz4dLy8v+vTpQ0pKSo7vxBtvvEFaWhqenp64u7tbJovkZReoSQYdOnSw3AeNRqMpCxi5Dedk6WAYjUTkfAnZkytt27aV7HmBoqKiqFu3bilZdH9y6NAhPvjgA7799tu72j8jIwNfX19WrVpF8+bNC7XvhAkTGDhwIMOH3x96/ZVXXmHs2LE54oTuBz755BMaNmzI4MGDATWD8X//U1nqBw4EF5dSNrAEePHFFxk8eHCus1H1b4dGoyluDMM4ICJts68vyL+BSYZhvAe4AeXNK0WkZxHapykBfHx8CAgIwGQyFdpTdfz4cQYOHMjQoUMLLbjuR957773SNuGumTZtWpbl8uWhcWMIC1N5u9rm+Bl48HB3dy9U+g+NRqMpCQri6doIrAT+hspEPx6IEZGcU+SKCe3p0mjujRs3YMMGNdw4ZAg4OJS2RaWH/u3QaDTFTV6eroKUAaomIl8CaSKyTUSeAjoUuYUajabYqFw5szTQ7Xy1Go1GoylhCiK60m6/RhuGMcAwDB+gfjHapNFoigFzxoVTp1R8l0aj0WhKloLEdL1jGEYl4P+h8nNVBF4qVqs0Gk2RU7cuVKwIN2+qZKkNG5a2RRqNRvNwcUfRJSLrb7+NAwKK1xyNRlNcGIbydu3fr9JHaNGl0Wg0JUt+yVE/NgxjYV6tJI0sq9ja2uLt7Y2bmxteXl588MEHZNwetwkKCrKUKCnrTJgwIUsiUWtmzJjB9u3bLcsxMTHY29tnKdpc0vzrX/8q9nMEBwezYcMGy/K6deuYO3fuXR3Lurh2XsTExNC+fXt8fHwshabv1tb8cHVVQfRXr0Lnzne2a8KECbi6uuLl5UWLFi0YN24ckZGRdzzPggULLElfC0thrsca6/vcu3fvHNn3NRqNprTJL6YrCDiQT3vocXR0JDg4mGPHjvHHH3+wYcMG/vGPfwDQtm1bFi68v7VpbGyspTahmVWrVtGhQ4c7ln4pTkpDdA0ePJiZM2cW2/n+/PNPWrVqxaFDh+jatWuh9i2MSLGzg2bN1PuCaqL33nuPw4cPc+rUKUvakdTU1Hz3KQ3RZc3YsWP5z3/+c0/H0Gg0miIntyrYZa35+fnlqOAdGRlZmILfxYKTk1OW5bCwMKlatapkZGTIli1bZMCAASIi8tdff0nHjh3F29tbOnbsKCdPnhQRkcTERBkxYoR4eHjI448/Lv7+/rJ//37Lsf/+97+Lp6entG/fXi5duiQiIuHh4dKzZ0/x8PCQnj17yvnz50VE5IcffhA3Nzfx9PSUrl27iohIenq6/O1vf5O2bduKh4eHLFq0SEREMjIyZOrUqdK6dWt55JFHpH///rJq1aoc17d48WKZPXt2lnVdunSRv/76S5o2bSoXL160nGf8+PHi5uYm7u7u8sEHH8iZM2fEx8fHsl9oaKj4+vqKiEijRo1k1qxZ0qFDB/Hz85MDBw5I3759pUmTJvLZZ5+JiMiWLVuka9euMmTIEGndurVMmTJFTCaTvPbaa2JjYyNeXl7yxBNPiIjI+++/L25ubuLm5iYffvihiIicO3dOWrZsKU8//bS4ubnJE088IX/88Yd06tRJmjVrJn/99Veen82tW7ekQYMGUr16dfHy8pIVK1bIkiVLZOrUqSIicunSJRkyZIh4enqKp6en7Nq1K9/vSffu3fP9XA8dOpTlfElJSfL7779Lhw4dxMfHR4YPHy7x8fEiIrJv3z7p2LGjeHp6Srt27eTGjRs5bE1ISJCJEydK27ZtxdvbW9auXSsiIklJSTJy5Ehxc/OQDh0el6ZN/WX79v352j5+/Pgc342uXbtajpmbnR999JHY29uLu7u79OjRI89+RXU9uf39xMbGipubW67XVBZ+OzQazYMNECS56Jk7Ch5gC7A5e7vTfkXZikx0nTgh8sMP6rUIyC66REQqV64sly5dyiK64uLiJC0tTURE/vjjDxk2bJiIiLz33nsyefJkERE5cuSI2NraWh4agKxbt05ERF555RV5++23RURk4MCBsnTpUhER+fLLL+XRRx8VERF3d3eLCLp+/bqIKNFk3i8lJUX8/Pzk7NmzsmbNGundu7ekp6dLZGSkVKpUKVfRNW7cOIsNIiIRERHSrFkzERGZNWuWvP/++yIiEhQUJL1797b0M5+/R48ecujQIUv/hQsXiogSXf/5z39ERGTGjBni4eEhN2/elCtXrkiNGjVERImucuXKSVhYmKSnp0vv3r0tNlrf96CgIHF3d5eEhASJj4+XNm3ayMGDB+XcuXNia2srISEhYjKZxNfXVyZOnCgZGRmydu1ay33L67OxFlnZlx9//HGLuEtPT5cbN27kuHfWWIuuvD5X6+PHxMRI165dJSEhQURE5s6dK//4xz/k1q1b4urqKvv27ctie3ZbZ82aJd9++63ls2jevLkkJCTI+++/LxMnThQRkaVLD4uNja18913hRdeLL74oc+fOzdNOEfUZx8TElNj1HD58OMvfj4hIs2bN5OrVqzmuSYsujUZT3OQlugoye/FvVu/LA48B6QXxohmG0Q/4CFUg+wsRyREUYxhGD2ABYA9cFZHuBTl2oTl5EiZMgNRUFdSydCm0alXkp5Fcks3GxcUxfvx4Tp8+jWEYlsLHO3fu5MUXXwRUBm3rkjMODg4MHDgQAD8/P/744w8A9uzZw48//gioIZRXX30VUEWvJ0yYwOOPP86wYcMA2LhxIyEhIZZ4rbi4OE6fPs327dsZPXo0tra21K1bl549cy8uEB0dTY0aNSzLK1as4PHHHwdUXcinn36al19+mSZNmnD27FmmT5/OgAED6Nu3L6BqDi5ZsoQPPviAlStXsm/fPsuxzCVqPDw8SEhIwMXFBRcXF8qXL8+NGzcA8Pf3p0mTJgCMHj2anTt35igjtHPnToYOHYqTkxMAw4YNY8eOHQwePBhXV1c8PDwAcHNzo1evXhiGgYeHB+Hh4fl+NvmxefNmvvnmG0DF9VWqVOmO+5jJ63O1Zu/evRw/fpzOnTsDkJqaSseOHTl16hR16tSx1JTMqxD4xo0bWbdunaWWY0pKChEREWzfvt0SZzhwoCcNG3py8aLK3VWYEoXm73hedpbG9Xh6euYo2VSzZk2ioqKoVq1awS9Oo9FoipGCzF7MHr+1yzCMbXfazzAMW+BToA9wEdhvGMY6ETlu1acy8B+gn4hEGIZRszDGF4ojR5TgqlcPoqLUchGLrrNnz2Jra0vNmjU5ceKEZf0bb7xBQEAAP/30E+Hh4fTo0QPIXaCZsbe3xzAMQD3Y09Nz17nmPosWLeKvv/7il19+wdvbm+DgYESEjz/+mMDAwCz7bNiwwbJffjg6OpKSkmJZXr58OZcvX2bZsmWAyux9+vRpmjdvzuHDh/n999/59NNP+eGHH/jqq6947LHH+Mc//kHPnj3x8/PL8vArV64cADY2Npb35mXztWa3MTeb87uH2Y9rfU7zOfL6bIqLgnyuIkKfPn1yxM2FhIQU6HMTEdasWUNLc2IuK8z7V6umhFZaGpw7B4Wp7HTo0CF69eqVp52lcT25kZKSUmRFyzUajaYouGNyVMMwqlq16oZhBAK1C3Bsf+CMiJwVkVRgBfBotj5PAD+KSASAiFwppP0Fx8NDebiiosDeXi0XITExMTz77LNMmzYtx4MgLi6OevXqAbB06VLL+i5duvDDDz8AqrbhkSNH7nieTp06sWLFCgCWLVtGly5dAAgLC6N9+/a89dZbVK9enQsXLhAYGMhnn31m8d6EhoaSmJhIt27dWLFiBSaTiejoaLZs2ZLruVq3bs2ZM2cAOHXqFImJiURGRhIeHk54eDizZs1ixYoVXL16lYyMDB577DHefvttDh48CED58uUJDAzkueeeY+LEiQW9lRb27dvHuXPnyMjIYOXKlZZrtbe3t1xTt27dWLt2LUlJSSQmJvLTTz8VKhA9r8/GxcWF+Pj4XPfp1asXn332GQAmk4mbN29a1hdkZt+d6NChA7t27bLc+6SkJEJDQ2nVqhVRUVHs378fgPj4eNLT03PYGhgYyMcff2wRpIcOHQLUvTIL5qNHj3LuXAigkqWOGzcuiycyN0SEhQsXEh0dTb9+/fK0E7Lev5K6npCQkCy2Xrp0icaNGxfwrms0Gk3xU5CM9AfInMm4B5Uk9ekC7FcPuGC1fPH2OmtaAFUMw9hqGMYBwzDGFeC4d0erVmpIcebMIhtaTE5OtqSM6N27N3379mX27Nk5+r366qvMmjWLzp07YzKZLOuff/55YmJi8PT05N///jeenp53HKpauHAhS5YswdPTk2+//ZaPPvoIgFdeeQUPDw/c3d3p1q0bXl5eTJo0iTZt2uDr64u7uztTpkwhPT3dUrTaw8OD5557ju7dcx/RHTBgAFu3bgWUl2vo0KFZtj/22GMsX76cyMhIevTogbe3NxMmTODdd9+19BkzZgyGYViGHAtDx44dmTlzJu7u7ri6ulrOP3nyZDw9PRkzZgy+vr5MmDABf39/2rdvz6RJk/Dx8SnwOfL6bAICAjh+/Dje3t6sXLkyyz4fffQRW7ZswcPDAz8/P44dO0ZGRgZnzpyhatWqhb7O7NSoUYOlS5cyevRoPD096dChAydPnsTBwYGVK1cyffp0vLy86NOnDykpKTlsfeONN0hLS8PT0xN3d3feeOMNAJ577jkSEhLw9PRk3rx5+Pv7U768SpZ64EAIderUydWeV155xZIyYv/+/WzZsgUHB4c87QT1GfXv35+AgIASvR4zBw4coEOHDtgVZtxUo9Foipk7Fry+6wMbxgggUEQm3V4eC/iLyHSrPp8AbYFegCNK1A0QkVDrYz2oBa9NJhNpaWmUL1+esLAwevXqRWhoKA5lqBpxly5dWL9+PZUrV76r/efPn09cXBxvv/12ofbbunUr8+fPZ/369XfuXAY4evQoX331FR988EFpm1IoTpyAXbtu8u23T7Nt26rSNqfIePHFFxk8eDC9evXKse1B+O3QaDRlm7wKXt/x30DDMMoDzwNdAAF2Ap+JSEq+OyrPVgOr5fpAVC59ropIIpBoGMZ2wAsI5SEgKSmJgIAA0tLSEBE+++yzMiW4AN5//30iIiLuSnQNHTqUsLAwNm/eXPSGlTHc3d3vO8EF0LQpHDlSkSlTVnHjhiqM/SDg7u6eq+DSaDSa0uSOni7DMH4A4oHvbq8aDVQRkRF32M8OJZ56AZHAfuAJETlm1ac18AkQCDgA+4BRInLU+lgPqqdLoykLBAVBaKgSYO3bl7Y1xY/+7dBoNMXNXXu6gJYi4mW1vMUwjMN32klE0g3DmAb8jkoZ8ZWIHDMM49nb2xeJyAnDMH4DQoAMVFqJo3kfVaPRFDUtWijRFR4OXl5QvnxpW6TRaDQPJgURXYcMw+ggInsBDMNoD+wqyMFFZAOwIdu6RdmW3wPeK5i5Go2mqKlYUWVSiYyEsDBwcyttizQajebBpCCzF9sDuw3DCDcMIxwV7N7dMIwjhmGE5L+rRqO5HzCnwAoNhds12zUajeaBw5wZvrQoiKerX7FbodFoSpVatVQQ/Y0bcP48uLqWtkUajUZz96SkpxAVH0XkzUgi4yOJio/i4s2LRMVH8feuf8ezluedD1IM3NHTJSLngcrAoNutsoicN7ditq/M89NPP2EYhiU/EahAXXO5mq1bt1rKvqxbt465c3NUQrprZsyYwfbt2wFYv349Pj4+eHl50aZNGxYvXlxk58mNBQsWkJSUVKznCA8P5/vvv7csBwUFWcq+FJYJEyZYyiHlxa1bt+jdu3euubkKa2tR2pVbH2dn50Kdx/p7mBuGASZTMMHBGzh5Eu7mH8G7+U5Y27V+/fpc89xpNBpNbogIV5OuEnwpmPWh61kUtIg3Nr/BxP9NZMSqEbz424vM2z2PZUeWsSV8C6djT5OYlkh0fHSp2VyQlBEvAs8AP95e9Z1hGJ+LyMfFatl9wvLly+nSpQsrVqxgzpw5ANStWzfXB+ngwYMtNQfvldjYWPbu3cuCBQtIS0tj8uTJ7Nu3j/r163Pr1i1LbcHiYsGCBTz55JNUqFCh2M5hFjJPPPEEAG3btqVt2xyTQYqMQ4cOkZaWRnBwcKH3zW7r/UhMTDBHjgTh7f0IV64o71dhuNfvxIABA3jjjTd47bXXivV7pdFo7i/SM9KJjo/mws0LXLx5kYs3L3Ih7gIX4y+Skp579io7GztqO9WmXsV61HOpR/2K9anrUpf6FetTsVzudV5LgoIMLz4NtL+dSwvDMP6Niut66EVXQkICu3btYsuWLQwePNgiusLDwxk4cCBHj2adiLl06VKCgoL45JNPmDBhAhUrViQoKIhLly4xb948hg8fTkZGBtOmTWPbtm24urqSkZHBU089laPQ8+rVq+nXT438msunmGsblitXjpYtWxIfH4+npyehoaHY29tz8+ZNPD09OX36NH369MHHx4cDBw4QExPDN998w7vvvsuRI0cYOXIk77zzDuHh4fTr14/27dtz6NAhWrRowTfffMMXX3xBVFQUAQEBVK9enS1btrB8+XL+9a9/ISIMGDCAf//734DyyEydOpVNmzZRpUoV/vWvf/Hqq68SERHBggULGDx4MOHh4YwdO5bExEQAPvnkEzp16sTMmTM5ceIE3t7ejB8/Hh8fH0vC1ISEBKZPn05QUBCGYTB79mwee+yxAn1ujRs3Zvz48fz888+kpaWxatUqqlatypNPPklMTAze3t6sWbOGGzdu8PLLL5OQkED16tVZunQpderU4cyZMzz77LPExMRga2vLqlWrctj6wgsvMHPmTLZu3cqtW7eYOnUqU6ZMQUSYPn06mzdvxtXV9Z5jC7Zu3cqcOXOoXr06R48exc/Pj++++w7DMPjtt9+YMWMG1atXx9fX17JPYmIi06dP58iRI6SnpzNnzhz69+/PnDlvkpCQzPHjOxk/fhavvTYwR79HH30Uk8nEa6+9xu+//45hGDzzzDOISI7vxMaNG5k9eza3bt2iadOmLFmyBGdn5zztMgyDHj16sH79ekthdY1G8/CQakol8mYkF25eICIuggtx6jU6IRqTmHLdp1K5StSvWN8irOpXrE+9ivWo5VQLWxvbEr6CAmAOKsurAUeA8lbL5YEjd9qvKJufn59kJzIyMse6kubbb7+Vp556SkREOnbsKAcOHBARkXPnzombm5uIiGzZskUGDBggIiJLliyRqVOniojI+PHjZfjw4WIymeTYsWPStGlTERFZtWqV9O/fX0wmk0RHR0vlypVl1apVOc49btw4WbdunWX56aeflho1asioUaPku+++E5PJJCIiEyZMkJ9++klERBYvXiwvv/yyiIh0795dXn31VRERWbBggdSpU0eioqIkJSVF6tWrJ1evXpVz584JIDt37hQRkYkTJ8p7770nIiKNGjWSmJgYEVGfRYMGDeTKlSuSlpYmAQEBlnMCsmHDBhERGTJkiPTp00dSU1MlODhYvLy8REQkMTFRkpOTRUQkNDRUzJ+39b3Lvvzqq6/Kiy++aNkWGxub72c1fvx4y31s1KiRLFy4UEREPv30U3n66adzHD81NVU6duwoV65cERGRFStWyMSJE0VExN/fX3788UcREUlOTpbExMQcti5evFjefvttERFJSUkRPz8/OXv2rKxZs0Z69+4t6enpEhkZKZUqVcr1883LdjNOTk4WmytWrCgXLlwQk8kkHTp0kB07dkhycrLUr19fQkNDJSMjQ0aMGGGxb9asWfLtt9+KiMj169elefPmkpCQIEuWLJFnn50qK1eKLFsm8tJLuff7z3/+I8OGDZO0tDQREbl27Zrlvpq/EzExMdK1a1dJSEgQEZG5c+fKP/7xj3ztEhH57rvvZNq0afnej3ulLPx2aDQPM7fSb8nZ2LOy9dxW+Sb4G3l729syed1kGfT9IBn4/cAcbdD3g+Tp/z0tc7bMkS8Pfikbz2yU41eOy82Um6V9KXkCBEkueqYgnq4lwF+GYfwEGKii1V8WhwC8JwYNUq8//5y57q23YP9+eOMNMNdl++03+PRTCAyEadPUuthYGD8eqlaFr78u8CmXL1/OjBkzABg1ahTLly/P8p/7nRgyZAg2Nja0adOGy5cvA7Bz505GjBiBjY0NtWvXJiAgINd9o6OjqVGjhmX5iy++4MiRI2zatIn58+fzxx9/sHTpUiZNmsS8efMYMmQIS5Ys4b///a9lH/NQp4eHB25ubpbae02aNOHChQtUrlyZBg0a0LlzZwCefPJJFi5cyN/+9rcstuzfv58ePXpY7BkzZgzbt29nyJAhODg4WDxyHh4elCtXDnt7ezw8PCxDoGlpaUybNo3g4GBsbW0tRZPzY9OmTZbC3wBVqlS54z7WDBs2DAA/Pz9+/PHHHNtPnTrF0aNH6dOnD6BKNtWpU4f4+HgiIyMtdSDL55HUauPGjYSEhFiGmePi4jh9+jTbt29n9OjR2NraUrduXXr27HlHW7MXUM++zt/fn/r16wPg7e1NeHg4zs7OuLq60rx5c0B9dp9//rnFtnXr1jF//nwAUlJSiIiIAMDWFpo0UbMYf/11Ixs35uy3adMmnn32WUtdw9zqTe7du5fjx49bvjupqal07NiRkydP5mkXQM2aNYmKyl64QqPR3I+YMkxcSrhE+I1wzsed5/yN85yPO09UfBRCTi+/jWFDXee6NKzUkAYVG6jXSg2o51KPcnblSuEKip47ii4R+cAwjK2oMkAAE0XkULFadR9w7do1Nm/ezNGjRzEMA5PJhGEYzJs3r8DHKFcu80skt4eZzK93wtHRkZSUrGPZHh4eeHh4MHbsWFxdXVm6dCmdO3cmPDycbdu2YTKZcHd3z3F+GxubLLbY2NiQnp4O5Hzg5yYA8rPZ3t7eso/1eazP8eGHH1KrVi0OHz5MRkZGnkIm+zlzs6WgmO2wtbW12JH9+G5ubuzZsyfL+ps3bxbo+CLCxx9/TGBgYJb1GzZsKLTd1apV4/r165bl2NhYqlevblm2/uysryev84gIa9asoaU5T8Rt/vrrL0DVgj99Gm7dEn78cQ3e3i1z7H+naxAR+vTpw/Lly7OsDw4OznfflJQUHB0d8z22RqMpW4gI11OuK3F14zzhN8IJvxHOhZsXSMtIy9HfwKCeSz0aVmqYpdVzqYe9rX0pXEHJUZA8XWYMVO3Fu3/SFSc//5zVywXw5ptqndnLBdCvn1pn9nKB8nD9/HOhvFyrV69m3LhxnD9/nvDwcC5cuICrqys7d+68p8vo0qULa9asISMjg8uXL7N169Zc+7Vu3ZozZ84AKrbMul9wcDCNGjWyLI8bN47Ro0czceLEQtsTERFhER7mSQMALi4uxMfHA9C+fXu2bdvG1atXMZlMLF++nO7duxf4HHFxcdSpUwcbGxu+/fZbTCZTjnNkp2/fvnzyySeWZbMoGTduHPv27Sv0dWanZcuWxMTEWK49LS2NY8eOUbFiRerXr8/atWsBNeMxKSkph62BgYF89tlnpKWpH5zQ0FASExPp1q0bK1aswGQyER0dzZYtWyz7zJo1i59++imHLT169GDlypWkpqYCKjYwLw+omVatWnHu3DnCwsIAsoifwMBAPv74Y4tYPnRI/Q9lvgZnZ2jQADw8Apk7N2e/vn37smjRIou4i42NzbI/QIcOHdi1a5flO5qUlERoaGi+dpnvk/U/BhqNpmyRZkrj7PWz/Hn2T744+AWvb36dJ396kvFrxzN762y+Cv6KzeGbOXvjLGkZaVSvUJ22ddoyvPVwXu7wMh/1+4jVj69m0cBF/L3r33nS80m6NepG48qNH3jBBQWbvfgmMAJYgxJcSwzDWCUi7xS3cWWZ5cuXM3PmzCzrHnvsMb7//ntee+21uz7uY489xp9//om7uzstWrSgffv2VKpUKUe/AQMGsHjxYiZNmoSIMG/ePKZMmYKjoyNOTk4sXbrU0nfMmDG8/vrrjB49utD2tG7dmq+//popU6bQvHlznnvuOQAmT55M//79qVOnDlu2bOHdd98lICAAEeGRRx7h0UcfLfA5nn/+eR577DFWrVpFQEAATk5OAHh6emJnZ4eXlxcTJkzAx8fHss/rr7/O1KlTcXd3x9bWltmzZzNs2DBCQkIsw6T3goODA6tXr+aFF14gLi6O9PR0ZsyYgZubG99++y1TpkzhzTffxN7enlWrVuWw9cUXXyQ8PBxfX19EhBo1arB27VqGDh3K5s2b8fDwoEWLFlnE6ZEjR3Kd3Tpw4EAOHDiAn58ftra2NG3alEWLFuXoZ0358uX5/PPPGTBgANWrV6dLly6WiR1vvPEGM2bMwNPTExGhcePGrF+/noCAAObOnYu3tzfTps1i6NA3WLZsBh4enkBmv0mTJhEaGoqnpyf29vY888wzTJs2Lcd3YunSpYwePZpbt24B8M4779CiRYs87QIs3yWNRlP6xKXEce7GOc5eP8u56+c4d+McF29ezDWo3cneiUaVGtG4cmMaVb79WqkRTg5OpWB52aUgBa9PAD4iknJ72RE4KCKtS8A+4OEreJ2QkICzszPXrl3D39+fXbt2Ubt27Rz9unTpwvr166lcuXK+x1u9ejX/+9//+PbbbwtlR16zMMsqN2/e5Omnn2bVqlWlbcpdERgYyO+//17aZljYtAmuXAFfXzXkWNxcvnyZJ554gj///LNYz/Mg/3ZoNHeDiHAp4RJnr59VAuu20LqWfC1HXwODui51ca3simsVVxpXbkzjyo2pUaHGPYV8PGjcS8HrcNSMRXMAUTkgrOhM02Rn4MCB3Lhxg9TUVN54441cBRfA+++/T0RERL6ia/r06fz6669s2LAhzz4PChUrVrxvBRdQpgQXQOvWSnSdPKmKYtsUJhjhLoiIiOD9998v3pNoNA85GZJB5M1IzsSeIex6GGGxYZy7cY7EtMQcfcvblVfi6rbAalKlCY0qNXpggtpLg4J4utYC7YA/UDFdfYCdwBUAEbm7FOGF4GHzdGk0ZQER2LAB4uKgUydo3Li0LSoa9G+H5mHBlGHiws0LhMWGWUTW2etnuWW6laNv5fKVaVqlKU2qNLG0Os51tPfqLrkXT9dPt5uZrUVllEajKbsYhhpW/OsvOHECGjVS6zQaTdlDRLh48yKnY09zJvaMRWSlmlJz9K1RoQbNqjaziKymVZtS1TFn6hdN0VOQlBEFn9Kn0WgeKBo3hpAQuH4doqKgXr3Stkij0YgIMUkxhF4LJfRaKKevnebM9TO5lsSpWaEmzao2s7SmVZuWahmch52CeLo0Gs1Diq0ttGkDBw7A0aNQt672dmk0JU38rXglrmJPW4RW3K24HP2qV6hO86rNaVa1meXVpZxLKVisyQstujQaTb40bQrHjsG1axAdrYSXRqMpHtIz0jl3/Rynrp0i9Foop66eIiohZ5WGiuUq0rxqc5pXbU6Lai1oVrUZVRwLV5lDU/LkOR/JMIxvb7++WHLm3F/Y2tri7e2Nu7s7gwYN4saNG6VqT1BQEC+8cO/zGiZMmGApX5OdGTNmsH37dgDWr1+Pj48PXl5etGnThsWLF9/zufNjwYIFJCUlFes5wsPD+f777y3L93JP87uPZm7dukXv3r3x9vZm5cqV92RrUdo1Z84c6tWrh7e3N61bN+ezz4Zx8eJxjh5VAfZ5sXTp0rsu41MU1zNq1ChOnz59V+fXaEqDa0nX2H1hN18d+opX/3iVkatH8vLGl1l8YDFbwrcQlRCFg60Drau35tGWj/JKp1f4YtAXfDf0O+b0mMMYzzG0q9dOC677hPw8XX6GYTQCnjIM4xuyZaIXkdhitew+wNHRkeDgYADGjx/Pp59+yv/93/+Vmj1t27albdsckyWKjNjYWPbu3cuCBQtIS0tj8uTJ7Nu3j/r163Pr1i1LLcXiYsGCBTz55JNUqFCh2M5hfvA/8cQTQPHf00OHDpGWlmb5HhWG7LYWNS+99JKlzub3369k6tSevPvuES5frkEeWUxYunQp7u7udzU7sCiu57nnnmPevHlZaoxqNGUFsxfr5NWTnLh6gpNXTxKTFJOjXz2XerSs1pKW1VvSoloLGldujJ2NHph6EMgv884i4DegFXAgWwvKZ7+Hko4dOxIZGQlAWFgY/fr1w8/Pj65du3Ly5ElAJX8cOnQoXl5eeHl5sXv3bgA++OAD3N3dcXd3Z8GCBZZjvv3227Rq1Yo+ffowevRoS+HhHj168Nprr+Hv70+LFi3YsWMHAFu3bmXgwIEAPPLII3h7e+Pt7U2lSpX4+uuvMZlMvPLKK7Rr1w5PT0+LZ0pEmDZtGm3atGHAgAFcuXIl12tcvXq1pXh1fHw86enpVKtWDVD1/1q2bEl8fDyurq6W8jc3b96kcePGpKWl0aNHD1566SW6detG69at2b9/P8OGDaN58+a8/vrrgHrwtmrVivHjx+Pp6cnw4cNJSkpi4cKFREVFERAQYCmBs3z5cjw8PHB3d89SBcDZ2ZnXXnsNPz8/evfuzb59++jRowdNmjRh3bp1lvN07doVX19ffH19LZ/FzJkz2bFjB97e3nz44YdZ7mlCQgITJ07Ew8MDT09P1qxZU+DvR+PGjZk9eza+vr54eHhw8uRJrly5wpNPPklwcDDe3t6EhYVx4MABunfvjp+fH4GBgURHRwNw5swZevfujZeXF76+voSFheWw9V4/3/x44omRdOvWl927v+fIEQgKymnn6tWrCQoKYsyYMXh7e5OcnFzi19O1a1c2bdqUaz1NjaakSUhNYH/kfr45/A2zNs2yeLE+P/g5OyJ2EJMUQwX7CnjX8maU2yjmdJ/D98O+Z9HARbzU8SUeaf4Izao204LrQUJE8m3AZ3fqU9zNz89PshMZGZljXUnj5OQkIiLp6ekyfPhw+fXXX0VEpGfPnhIaGioiInv37pWAgAAREXn88cflww8/tOxz48YNCQoKEnd3d0lISJD4+Hhp06aNHDx4UPbv3y9eXl6SlJQkN2/elGbNmsl7770nIiLdu3eXl19+WUREfvnlF+nVq5eIiGzZskUGDBiQxcagoCDx8PCQGzduyOLFi+Xtt98WEZGUlBTx8/OTs2fPypo1a6R3796Snp4ukZGRUqlSJVm1alWO6x03bpysW7fOsvz0009LjRo1ZNSoUfLdd9+JyWQSEZEJEybITz/9JCIiixcvttjavXt3efXVV0VEZMGCBVKnTh2JioqSlJQUqVevnly9elXOnTsngOzcuVNERCZOnGi57kaNGklMTIyIqM+/QYMGcuXKFUlLS5OAgADLOQHZsGGDiIgMGTJE+vTpI6mpqRIcHCxeXl4iIpKYmCjJyckiIhIaGirm71j2e2i9/Oqrr8qLL75o2RYbG5vjHlkzfvx4y31s1KiRLFy4UEREPv30U3n66adzHD81NVU6duwoV65cERGRFStWyMSJE0VExN/fX3788UcREUlOTpbExMQctt7r52vN7NmzLffdzPz5H0rfvs/K11+nStu2udvZvXt32b9/f6leT+/evSUoKCjPaysLvx2aB4+MjAy5nHBZNp/dLJ/89Yk8v/55Gfj9wBxtys9T5MM9H8qvp3+V8OvhYsowlbbpmmIACJJc9ExBUkY8ZxiGF9D19qrtIhJSbCrwbhk0KO9tU6eqQtcAv/0Gn36ad9/sRbPzITk5GW9vb8LDw/Hz86NPnz4kJCSwe/duRowYYelnrj23efNmvvnmG0DFg1WqVImdO3cydOhQS73BYcOGsWPHDjIyMnj00UdxdHS8fXlZr2/YsGEA+Pn55Tmsd/XqVcaOHcsPP/xApUqV2LhxIyEhIZb4l7i4OE6fPs327dsZPXo0tra21K1bl549e+Z6vOjoaGrUqGFZ/uKLLzhy5AibNm1i/vz5/PHHHyxdupRJkyYxb948hgwZwpIlS7IM9ZhrC3p4eODm5mapk9ikSRMuXLhA5cqVadCgAZ07dwbgySefZOHChZZhLjP79++nR48eFnvGjBnD9u3bGTJkCA4ODhaPnIeHB+XKlcPe3h4PDw/LvUpLS2PatGkEBwdja2tLaGhortdszaZNm1ixYoVluUqVwsVQWH9mP/74Y47tp06d4ujRo/Tp0wcAk8lEnTp1iI+PJzIykqFDhwKqrmJu3OvneydsbITKlSE6+hTHj+e0s6xcT82aNYmKisLPz++urlOjKQgiwvm48xy7cozjMcc5FnMsR9kcOxs7mldtTuvqrWlTow2tqreiUvmctXQ1Dw8FKXj9AjAZMD8llhmG8bmIfFyslt0HmGO64uLiGDhwIJ9++ikTJkygcuXKBY7RkTyikvNab6ZcOVWGwdbWNtehFJPJxKhRo3jzzTdxd3e3HPPjjz8mMDAwS98NGzYUKOuwo6MjKSlZ88B4eHjg4eHB2LFjcXV1ZenSpXTu3Jnw8HC2bduGyWSynN/abhsbG8t787L5OrLbkptt+d0fe3t7yz7W57E+x4cffkitWrU4fPgwGRkZeT74s5/zXrIz3+kzExHc3NzYs2dPlvU3b94s0PHv9fO9E4cOHaJ9+7aICHXrurFx4x5q1szfntK4npSUFMs/KxpNUWHKMHH2+lmOXjnKsZhjHIs5RkJqQpY+zg7OtKnehjY1VGtatSkOtg6lZLGmLFKQamqTgPYi8qaIvAl0AJ4pXrPugp9/zruZvVyg3ufX9y6oVKkSCxcuZP78+Tg6OuLq6mqpASgiHD58GIBevXrx2WefAUoU3bx5k27durF27VqSkpJITEzkp59+omvXrnTp0oWff/6ZlJQUEhIS+OWXXwpl08yZM/H09GTUqFGWdYGBgXz22WeWeKvQ0FASExPp1q0bK1aswGQyER0dzZYtW3I9ZuvWrTlz5gyg4pu2bt1q2RYcHEyjRo0sy+PGjWP06NFMnDixUHaDqsFnflAvX76cLl26AODi4kJ8fDwA7du3Z9u2bVy9ehWTycTy5cvp3r17gc8RFxdHnTp1sLGx4dtvv8VkMuU4R3b69u3LJ598Ylm+fv265Vr37dtX6OvMTsuWLYmJibFce1paGseOHaNixYrUr1+ftWvXAspzmpSUlMPWu/l8Z82axU8/WRecyJ01a9awceNGxo4dTY8eLYmPj2Hlyqx2Qtb7VxrXY+7n5uZWsJuu0eRBekY6J6+eZNWxVczeMptRa0bx8saX+Sr4K/6K/IuE1ASqV6hO90bdmdpuKp8+8infD/ueN7q/wWNtHqN1jdZacGlyUJDoPAMwWS2byDaTUYMldcKKFStYtmwZzz33HO+88w5paWmMGjUKLy8vPvroIyZPnsyXX36Jra0tn332GR07dmTChAn4+/sDMGnSJHx8fAA1FOfl5UWjRo1o27YtlSoV3C09f/583Nzc8Pb2BuCtt95i0qRJhIeH4+vri4hQo0YN1q5dy9ChQ9m8eTMeHh60aNEiT/EyYMAAFi9ezKRJkxAR5s2bx5QpU3B0dMTJyYmlS5da+o4ZM4bXX3+d0aNHF/petm7dmq+//popU6bQvHlznnvuOQAmT55M//79qVOnDlu2bOHdd98lICAAEeGRRx7h0UcfLfA5nn/+eR577DFWrVpFQECAZXjX09MTOzs7vLy8mDBhguWzAHj99deZOnUq7u7u2NraMnv2bIYNG0ZISEiuw2uFxcHBgdWrV/PCCy8QFxdHeno6M2bMwM3NjW+//ZYpU6bw5ptvYm9vz6pVq3LY+uKLLxb68z1y5IhlyDc7H374Id999x2JiYm4u7uzefNmatSoQcWK8P/+32o+/fQFFi2KAzLtnDBhAs8++yyOjo7s2bOnxK/n8uXLODo6FsnnoXm4SM9IJyw2jJDLIYRcDuHE1RM5ahTWca6De013S6tRoYauTagpFAUpeP0yMJ7M+otDgKUisqBYLbPiYS14nZCQgLOzM0lJSXTr1o3PP/8cX1/fUrWpS5curF+/nsqVK+fbb/Xq1fzvf//j22+/LdTxw8PDGThwIEePHr0HK0uOmzdv8vTTT1s8m/cbgYGB/P7774Xe79gxOHwYqlaFwMCyk6X+ww8/pGLFijz99NN59nkYfjs0dyZDMjh7/axFZB2LOZajjE59l/q413THo5YH7jXddX1CTYG564LXIvKBYRhbgS4oD9dEETlU9CZqsjN58mSOHz9OSkoK48ePL3XBBfD+++8TERGRr+iaPn06v/76Kxs2bCg5w0qJihUr3reCC7grwQXQsiWEhkJsLEREqGLYZYHKlSszduzY0jZDUwaR2wWhgy8FE3I5hCNXjpCYlpilTz2XenjU9MCzlifuNd11wlFNkXNHT1dZ4GH1dGk0ZZmwMPjrL3BygoEDVZ3G+wH92/HwcDXpKocvHebwZdVik7Pm9K7lVAvPWp6Wpj1ZmqLirj1dGo1GkxuurnDyJMTFwenT0KpVaVukedhJTkvmyJUjBF8K5lD0IS7GX8yyvUr5KnjW8sSrlhdetb2o6ZTP9FuNphjQokuj0dwVNjbg7Q3btsHRo9CkCTjoyVqaEiRDMjgTe4aD0QcJvhTMyasnMUnmvC9HO0c8anrgVdsL79reNKjYQAe+a0oVLbo0Gs1dU7cu1KoFly/D8eNKhGk0xcm1pGscjD7IweiDHL58mPjUzDQjNoYNrau3xru2Nz61fWherbkuoaMpUxQkOeow4N9ATVQgvQGIiFQswL79gI8AW+ALEZmbR792wF5gpIisLrj5Go2mNDEMJbR+/x1OnYLmzVWMl0ZTVKSZ0jhx9QQHog5wMPog4XHhWbbXdqqNbx1ffOr44FHTAycH/QXUlF0K8i/APGCQiJwozIENw7AFPgX6ABeB/YZhrBOR47n0+zdwd9OoSolr167Rq1cvAC5duoStrS01atQgPDycunXrcvz48TscofCsXbuWFi1a0KZNmyI/tjVz5szB2dk5R+kdgAULFlC1alXGjRsHQHp6OrVr1+aZZ57h3Xffvavz3bhxg++//57nn3/+jn2dnZ1JSEi4Yz+AjIwMZsyYwebNmzEMg/Lly/PDDz/g6up6V3beifDwcHbv3s0TTzxRLMc3k/178Oabb9KtWzd69+6da/8jR47w/vvvZ8mjVpRUq6ZmL54/DyEh0LFjsZxG8xARkxjDgegDBEUFcfjy4SypHMrblcezpie+dXzxreNLHRedk01z/1AQ0XW5sILrNv7AGRE5C2AYxgrgUSC7GpkOrAHa3cU5So1q1apZSv1YixRznqk7kZ6ejp1d4dzea9euZeDAgcUuuvIiPT2dr776ioMHD1rWbdy4kZYtW/LDDz/wr3/9667iJW7cuMF//vOfAomuwrBy5UqioqIICQnBxsaGixcvWpKgFgfh4eF8//33JSK6rL8Hb731Vr79PTw8uHjxIhERETRs2LBYbPLyggsXIDxcebuqVy+W02geUEwZJos3KygqKIc3q3GlxvjW8cWvrh9tarTRQ4aa+5aClAEKMgxjpWEYow3DGGZuBdivHnDBavni7XUWDMOoBwwFFhXY4vsAk8nEM888g5ubG3379iU5ORmAHj168Pe//53u3bvz0UcfceDAAbp3746fnx+BgYFER0cD8N///pd27drh5eXFY489RlJSErt372bdunW88soreHt7ExYWRlhYGP369cPPz4+uXbty8uRJACZMmMALL7xAp06daNKkiaVgMMB7771Hu3bt8PT0ZPbs2Zb1//znP2nZsiW9e/fm1KlTuV7X5s2b8fX1zSIWly9fzosvvkjDhg3Zu3evZf1vv/2Gr68vXl5eFo/gnDlzmD9/vqWPu7s74eHhzJw5k7CwMLy9vXnllVfytdPM2LFj+d///mdZHjNmDOvWrcvSJzo62lLqB6B+/fpUqVKFL7/8kpdeesnS77///S8vv/wy4eHhtGrVikmTJuHu7s6YMWPYtGkTnTt3pnnz5pZSP3PmzGHs2LH07NmT5s2bWwp6z5w5kx07duDt7c2HH35ISkoKEydOxMPDAx8fH0u5mqVLlzJkyBAGDRqEq6srn3zyCR988AE+Pj506NCB2NjYQn0PJkyYYPmM9+/fT6dOnfDy8sLf399SVmfQoEFZinUXNc7OavaiCOzbBxkZxXYqzQNC/K14toZv5b1d7zHmxzHM+nMWq0+sJjwunPJ25elYvyPT/aez5NElfPzIx0z0mYhnLU8tuDT3NyKSbwOW5NK+KsB+I1BxXOblscDH2fqsAjrcfr8UGJ7bsfz8/CQ7kZGROdaVFrNnz5b33ntPRETOnTsntra2cujQIRERGTFihHz77bciItK9e3d57rnnREQkNTVVOnbsKFeuXBERkRUrVsjEiRNFROTq1auWY//f//2fLFy4UERExo8fL6tWrbJs69mzp4SGhoqIyN69eyUgIMDSb/jw4WIymeTYsWPStGlTERH5/fff5ZlnnpGMjAwxmUwyYMAA2bZtmwQFBYm7u7skJiZKXFycNG3a1HI91rz55psWW0REkpKSpE6dOpKYmCiLFy+W6dOni4jIlStXpH79+nL27FkREbl27VqO+yQi4ubmJufOnZNz586Jm5ubZX1edoqIODk5iYjI1q1b5dFHHxURkRs3bkjjxo0lLS0ti70XLlyQRo0aiZeXl7z88sty8OBBERFJSEiQJk2aSGpqqoiIdOzYUUJCQiyfXUhIiJhMJvH19ZWJEydKRkaGrF271nK+2bNni6enpyQlJUlMTIzUr19fIiMjZcuWLTJgwADL+efPny8TJkwQEZETJ05IgwYNJDk5WZYsWSJNmzaVmzdvypUrV6RixYry2WefiYjIjBkz5MMPPyzU98C8fOvWLXF1dZV9+/aJiEhcXJzlnuzcuVMGDhyY4zMtStLSRP73P5Fly0SOHy/WU90TZem342EiIyNDLsRdkNXHVsurG1+VQd8PkoHfD7S0KT9PkS8OfCHB0cGSZkq78wE1mjIMECS56JmCZKQvfMVixUWggdVyfSAqW5+2wIrbQ1LVgUcMw0gXkbWFPtugQYXr37QpLFiQc/+7LHptjaurq6XmoZ+fH+Hh4ZZtI0eOBODUqVMcPXqUPn36AMo7Zq4Xd/ToUV5//XVu3LhBQkICgYGBOc6RkJDA7t27GTFihGXdrVuZdcKGDBmCjY0Nbdq04fLly4AaCty4caOlnmBCQgKnT58mPj6eoUOHUqFCBYA8a/FFR0fTunVry/L69esJCAigQoUKPPbYY7z99tt8+OGH7N27l27dullip6pWLVzCwbzs7Natm6VP9+7dmTp1KleuXOHHH3/kscceyzFcW79+fU6dOsXmzZvZvHkzvXr1YtWqVfTq1YuePXuyfv16WrduTVpaGh4eHoSHh+Pq6oqHhwcAbm5u9OrVC8MwLNvNPProozg6OuLo6EhAQAD79u3LkaV/586dTJ8+HYBWrVrRqFEjQkNDAQgICMDFxQUXFxcqVarEoNvfPw8PD0JCQoCCfQ+sOXXqFHXq1KFdOzVSX7Fi5lyXmjVrEhWV/c+vaLGzg7ZtYetWOHIEGjbUQfUPO+Zhw78u/sW+yH1EJWR+B+1s7HCv4U67eu1oV7edjs3SPBQUZPZifeBjoDMgwE7gRRG5mO+OsB9obhiGKxAJjAKyBLuIiCWi2TCMpcD6uxJcZYxy5cpZ3tva2lqGFwFLTJGI4Obmxp49e3LsP2HCBNauXYuXlxdLly5l69atOfpkZGRQuXJlS1xZfjbI7aoDIsKsWbOYMmVKlr4LFiwoUCyWo6MjKSmZAa3Lly9n165dNG7cGFCTC7Zs2YKI5Ho8Ozs7MqzGnayPZU1edmZn7NixLFu2jBUrVvDVV1/l2qdcuXL079+f/v37U6tWLdauXUuvXr2YNGkS//rXv2jVqhUTJ07M0t+MjY2NZdnGxob09HTLtuzXl9v1mu97Xnbd6TwF+R5kP19en2NKSgqOjo757l8U1K2bGVS/fz9071526jJqSoaU9BQORR9i78W97I/anyWlg4uDC+3qtsO/nj8+dXyoYF+hFC3VaEqeggyOLwG+Rw0XAjx5e12f/HYSkXTDMKahZiXaooYkjxmG8ezt7UUbx3WvHqoi8HAVhpYtWxITE8OePXvo2LEjaWlphIaG4ubmRnx8PHXq1CEtLY1ly5ZRr54KhXNxcbHE6FSsWBFXV1dWrVrFiBEjEBFCQkLw8vLK85yBgYG88cYbjBkzBmdnZyIjI7G3t6dbt25MmDCBmTNnkp6ezs8//5yr4GndujVnzpwBVKHnnTt3cuHCBYtgWLJkCcuXL2fu3LlMnTqVc+fO4erqSmxsLFWrVqVx48asX78egIMHD3Lu3Lkc15WfnTVrZs0ePWHCBPz9/alduzZubm457D148CC1a9embt26ZGRkEBISgqenJwDt27fnwoULHDx40OJZKgz/+9//mDVrFomJiWzdupW5c+cSHR2d5Tq6devGsmXL6NmzJ6GhoURERNCyZcssExHyoyDfA2tatWpFVFQU+/fvp127dsTHx+Po6IidnR2hoaG4u7sX+jrvBl9fiI6GqCgVXF9MsfuaMsTNWzfZF7mPPRf2EHw5mFRTqmVbPZd6+Nfzp3299rSq3gpbm/ukXpRGUwwURHTVEJElVstLDcOYUZCDi8gGYEO2dbmKLRGZUJBjPig4ODiwevVqXnjhBeLi4khPT2fGjBm4ubnx9ttv0759exo1aoSHh4flATtq1CieeeYZFi5cyOrVq1m2bBnPPfcc77zzDmlpaYwaNSpf0dW3b19OnDhBx9tz+p2dnfnuu+/w9fVl5MiReHt706hRI7p27Zrr/v3797cUE/7xxx/p2bNnFo/No48+yquvvsp//vMfPv/8c4YNG0ZGRgY1a9bkjz/+4LHHHuObb77B29ubdu3a0aJFC0DNBO3cuTPu7u7079+f9957L1c7s4uuWrVq0bp1a4YMGZKrvVeuXOGZZ56xDLv6+/szbdo0y/bHH3+c4OBgqlQpfFFbf39/BgwYQEREBG+88QZ169alRo0a2NnZ4eXlxYQJE3j++ed59tln8fDwwM7OjqVLl2a5X3eioN8DMw4ODqxcuZLp06eTnJyMo6MjmzZtwtnZmS1btjBgwIBCX+fd4Oiocnft2wcHDkDt2jpT/YPI1aSr7Lmwhz0X93D0ylGETM9uy2ot6VC/Ax3qd6B+xfqlaKVGU7a4Y8FrwzA2oYLcl99eNRqYKCK9ite0THTB67LD0KFDmTdvHs2bNy9tU0hKSsLDw4ODBw9SqVKlQu8/cOBAXnrpJcvsyoKSXx6zssitW7fo3r07O3fuLHSakrtFBDZtgpgYlUKiXRlKCKN/O+6e6Phodl/Yze4LuwmNDbWstzVs8arlRccGHfGv568LR2seeu6l4PVTwCfAh6iYrt2312keQszDaKUtujZt2sRTTz3Fyy+/XGjBdePGDfz9/bOks3iQiYiIYO7cuSUmuEDFcbVrB7/9BmfOqDivmrq28H1J5M1Idl3Yxa6IXZy9cday3sHWgbZ12tKxQUfa1W2nM8FrNAXgjp6usoD2dGk09ychIaoYdoUK0L8/FGJ0tdjQvx13JvJmJDsjdrIzYmeWRKWOdo60q9uOzg0741fHj3J2ZeAD1WjKIIX2dBmG8aqIzDMM42MghzITkReK2EaNRvOA4e4Oly7B1avw11/QtauezVhWiY6PZkfEDnZG7OTcjXOW9U72TrSv154uDbvgVdsLB1sdoKfR3C35jTeYS/8E5dNHo9Fo8sTGBjp3hl9/hYsX4fRpuD1/QlMGuJp0lR3nd7AjYgenY09b1lewr0CHeh3o0rAL3rW9sbe1L0UrNZoHhzxFl4iYcygkicgq622GYYzIZReNRqPJgZMT+PvDzp1w6BDUqAF3MWFUU0TcvHWTXRG72Bq+leNXM0vhlrcrT4d6HejaqCs+tX200NJoioGCRNbOQpXrudM6jUajyZWGDaFZMxVUv2sX9OunMtjfd6SnK7fd9etZ261batu4cWCunLBjB3z1lQpkMzdnZ6U4q1SBxx/PzKWRmlqseTVS0lP46+JfbDu/jYPRBzGJCVDB8O3qtqNbo260rdtWDx1qNMVMfjFd/YFHgHqGYSy02lQRSM99r4cLZ2dnEhISLMtLly4lKCiITz75pNDH2rp1K/Pnz7ckDy0IPXr0YP78+bRtmyNWT6Mpc/j6qhQScXEqf1f79qVtUR6kp6tx0BMnIDxcqcMXboew2trCl1+CyZT7vtZJa+PjVTBbbtjYwBNWBTr+/neIjIQ6dVRa//r1oXFj1WrVuqtAOFOGicOXD7Pl3Bb2XNzDLZPKV2dj2OBXx4/ujbrTvn57nRVeoylB8vtfMwoVzzUYOGC1Ph54qTiN0mg0Dx52diq+6/ffISwMqldXJVDLBJcuqUj/w4dV4UjrElVOTjB9uhI+hgHDhimvVNWqymNVubLKCGtnB9bpS3r1Unkzbt3KbPHxyjOWlKSEl5nr1yEhQYm905mxVQAMHgzPPKPeJybCjRtKmOVReurcjXNsPreZ7ee3cz3lumVbq2qt6N64O10bdqVS+cLntdNoNPdOfjFdh4HDhmH8BCSKKH+0YRi2gJ4nfAdiYmJ49tlniYiIAFR9w86dO7Nv3z5mzJhhyRi+ZMkSWrZsmWXfxMREpk+fzpEjR0hPT2fOnDk8+uijJCcnM3HiRI4fP07r1q2z1HTUaO4HKlcGPz+VrX7/fqVnatcuJWNMJuW5Ajh4EL74InNbvXrg4aFUYaNGWfcbN65gxy9XTgWwFYQvvlAuQHP9pIgIOHdOtQYNMvsFBcH8+eDiomYktGwJbm7ENqzBtui9/HnuT87Hnbd0r+tclwDXALo36q4LSms0ZYCCRFVsBHoD5nE0x9vrOhWXUfcLycnJeHt7W5ZjY2MZPHgwAC+++CIvvfQSXbp0ISIigsDAQE6cOEGrVq3Yvn07dnZ2bNq0ib///e+sWbMmy3H/+c9/0rNnT7766itLIs/evXuzePFiKlSoQEhICCEhIfj6+pbk5Wo0RUKzZsrhc+KECq7v0yerg6hYSU5Wgubf/4a2beF2WSt8fCAgALy8VKtevYQMuo1hKEVauTK0bp11m3UuxVu3lHft+nVSD+5n36k/+HPLVQ4430ScnaFVS1zKVaR7o+70aNyDFtVaFKiYvUajKRkKIrrKi4glcElEEgzDKFNBAIOWDyqW4/48Ov8i2I6OjgQHB1uWzTFdoDKmHz+eOTPo5s2bxMfHExcXx/jx4zl9+jSGYZCWlpbjuBs3bmTdunXMnz8fgJSUFCIiIti+fTsv3I4t8fT0tBRv1mjuN7y91WjahQuwdSv07atG6IqNGzfg5EkVo5WWBmdvZ1Y3i646deDll4vRgHvASjRJnz6c9WvCHyE/se3U7yTcSID4VGyThHZptejV7XXa1m2LnWELc+cqT52Pj3q1Hs7UaDSlQkFEV6JhGL4ichDAMAw/QI9r3YGMjAz27NmDY7YnyfTp0wkICOCnn34iPDycHj165NhXRFizZk2OYUdA/9eqeSAwDOjYUYU2XbsG27erEKgin9F47ZpKix8dnXniGjVU4Pp9NAEl/lY8W8O38sfZPzITl1ZypEmjHvRu0ptu1X2plJQB9W8PRYaHw+7dqn37rZo16e2trtnXV+fs0GhKiYL8xM0AVhmGEXV7uQ4wstgsugvu5JEqDfr27csnn3zCK6+8AkBwcDDe3t7ExcVRr149QHnGciMwMJCPP/6Yjz/+GMMwOHToED4+PnTr1o1ly5YREBDA0aNHCQkJKanL0WiKHDs76N5dBdZfu6b0QZFnrE9LU4LLzg6aNFExUPHxKhC9jCMihFwOYWPYRnZf3E16hpo07uLgQo/GSmw1qdIkc4dqVjvXqgUzZ0JwsEqOdvmyGsvduVNtX7CgDM1i0GgeHu4oukRkv2EYrYCWgAGcFJGcY2KaLCxcuJCpU6fi6elJeno63bp1Y9GiRbz66quMHz+eDz74gJ49e+a67xtvvMGMGTPw9PRERGjcuDHr16/nueeeY+LEiXh6euLt7Y2/v38JX5VGU7SULw89esAff6iM9fv2qUSqdy28rl+HK1eUuAIlPtq1U4nCzIUfrdM6lEFik2PZdHYTf4T9waXESwAYGPjW9qVP0z60r9f+zolLHR3VVNHOndVydLTK03HggBpabdw4s+/776sJBf7+aiiyWMd5NZqHmwIVvDYMwx1oA5Q3rxORb4rRrizogtcazYPNlSuwZYuaUOjqqnJ4FSoEKTFRDSOGh6vl/v1VUHoulMXfDhHh8OXD/Hr6V/6K/MuSvLR6her0adKH3k16U9OpZtGcLCMj8+ampMDo0So3GSiPoIcHdOigRFhJTyjQaB4QCl3w2mrH2UAPlOjaAPQHdgIlJro0Gs2DTc2ayuO1bZvKkmAyQadOBRBeGRlw6pQSXCaT2qFFi/vGWxOXEsems5v47cxvFq+WjWFDx/odCWwaiE8dH2yMIg6At76p5crBRx8pF+O+fWqywaFDqn32GbzySmaGfY1Gc88UJKZrOOAFHBKRiYZh1AK+uMM+Go1GUyhq1VJZG7ZuVVkdMjLU6Jg5lVYOrl9XCU1jY9Vyw4YqWNzZuYQsvjtEhFPXTvFL6C/svLDTEqtVvUJ1ApsG0rdpX6o6Vi0ZYwxD3beGDWH4cLh5UyVQ27tXCa82bTL7rl2r7nnHjmr4Vk/q0WgKTUFEV7KIZBiGkW4YRkXgCtDkTjtpNBpNYalRA3r2VEONFy+q8oVdu+YhvI4fV4LLyUnFbZWxIcPspKSnsP38dn4J/YWzN1TKCgODdnXb0b9Zf/zq+hW9V6uwVKyoppH26qUmIdjfjh0TgV9+UZn7f/xRZePv0EEJMHf3+7SQpkZT8hTkLyXIMIzKwH9R5YASgH3FaZRGo3l4qVZNPfM3b1bJ2f/8UwkvR0fUw9/sYfH1hQoVVAxSGX7oX064zC+nf2Fj2EYS0xIBqFiuIn2b9KV/8/5FF6tV1NhnC9Z/8UXYs0e1mBjYsEE1Z2eYNEl9aBqNJl/y/aUyVFKod0XkBrDIMIzfgIoionMVaDSaYqNKFejdW3m8rl6F334TetU9QcWbkerhbmOjVJiPT2mbmivmwPj1oevZF7kPQU1YalmtJQOaD6Bzw8442DqUspWFwDCUR8vdXQmssLBMAXbhglLKZo4eVcOQbdveN7F1Gk1Jka/oEhExDGMt4Hd7ObwEbNJoNBoqVYJ+/WDv1mSqn95LfFg0tpXBKTpa1UYsg6SaUtl8bjPrTq3jws0LANjZ2NGtYTcGthhI82rNS9nCIsAwVC2nZs1URv8LF1RGfzM//aSC8u3tlSju1EnNhHRxKT2bNZoyQkF88nsNw2gnIvuL3RqNRqOxovz1aLon7iHONoUbRjl22nSg+qV6+NQpW1VtYpNj+SX0F3498yvxqSoPWFXHqjzS7BH6NetHpfIlVVyyFLAuyA2qonlCgiquaZ4VaWurhoEHDVICTKN5SCnIz1YASniFGYYRYhjGEcMw9PAiYGtri7e3t6XNnTs33/7/+te/six36nR3NcODg4PZsGFDntsPHTrEpEmTAJX1vkaNGvj4+NC8eXMCAwPZvXv3XZ03Nxo3bszVq1dJTU2lW7dupJvz/Wg094IIHDkCW7Zg3EqhcstaSP9HuF6hHqdOwaZNaqJdaXP2+lk+2PMBT697mh+O/0B8ajzNqzbnbx3/xpeDv2Sk+8gHW3DlxiOPqILiS5fC88+rGaUiKju+uRwTqEkQV66UkpEaTemQp6fLMIyGIhKBysulyYXsBa/vxL/+9S/+/ve/W5bvVvwEBwcTFBTEI488kud5Xn/9dcvyyJEj+eSTTwDYsmULw4YNY8uWLbRu3fquzp8bDg4O9OrVi5UrVzJmzJgiO67mISUiQokuwwBPT2jTBlfDwLmGqmRz9Sr8+it4eZV89gIR4dClQ/x04ieCLwcDahZip/qdGNJqCK2qt9I1UkHNcOzfX7X4eOXx8vbO3L5+PaxapcoRdeqkZkJm95ppNA8Y+Xm61gKIyHngAxE5b91KxLr7kLi4OFq2bMmpU6cAGD16NP/973+ZOXMmycnJeHt7W0SJ8+18Qlu3bqVHjx4MHz6cVq1aMWbMGMyVAvbv30+nTp3w8vLC39+fuLg43nzzTVauXIm3tzcrV67Mcv74+HhCQkLw8vLK1b6AgAAmT57M559/DkBYWBj9+vXDz8+Prl27cvLkSQB+/vln2rdvj4+PD7179+by5csAXLt2jb59++Lj48OUKVOwrmgwZMgQli1bVlS3UvMw07Chehj36AFubhZVVaMGDBigstabTHDwoPJ6lURln/SMdP48+yfTf53O7K2zCb4cTHm78gxuMZj/Dvovs7rOonWN1lpw5YaLi5oAYR1wbzKpOlBhYaoo9/PPw7PPwtdfq1JFGs0DSH4xXda/HGU6L9egQYOK5bg//5x/IW2ziDIza9Ysi1dpwoQJvPjii1y/fp1nnnkGgE8++SRPz9ihQ4c4duwYdevWpXPnzuzatQt/f39GjhzJypUradeuHTdv3qRChQq89dZbBAUFWbxX1gQFBeHu7p6v3b6+vixevBiAyZMns2jRIpo3b85ff/3F888/z+bNm+nSpQt79+7FMAy++OIL5s2bx/vvv88//vEPunTpwptvvskvv/xiEW8A7u7u7N+vQ/80d0lUlCrdU6GCElnt2+fazcFBOUUaNlTOE3P2Ak9PlYw+z2Sqd0lKegq/n/mdtafWcjXpKqDitQa1GES/Zv1wdijbyVjLLBMnwpgxathx926V6DYyElavVmPH06erftYlijSa+5z8vsWSx3vNbfIaXuzTpw+rVq1i6tSpHD58uEDH8vf3p379+gB4e3sTHh5OpUqVqFOnDu3atQOgYsWKdzxOdHQ0NWrUyLeP2TuVkJDA7t27GTFihGXbrVu3ALh48SIjR44kOjqa1NRUXF1dAdi+fTs//vgjAAMGDKBKlSqWfW1tbXFwcCA+Ph4XPVNJU1BEVPmZ4GA1JNW7d4GUU716Knzo4EFVOujQITh9Wo1gNWhw70OOcSlxrA9dz/rT60lITQCgQcUGPNb6Mbo16nbnotOaO+PgoALr/f2VuDp+XAkwc6FuUOPJixerBLgdOqj8bOXL531MjaYMk5/o8jIM4ybK4+V4+z23l0VE7qwASog7eaRKmoyMDE6cOIGjoyOxsbEWMZUf5cqVs7y3tbUlPT0dESn0UIWjoyMpKSn59jl06BCtW7cmIyODypUr5yocp0+fzssvv8zgwYPZunUrc+bMsWzLz6Zbt25RXv8gagpKRgYcOKDUEiglVYhpieXKKa9Xo0ZKdMXFqWd09erq2Xw39ZqvJl3lxxM/8nvY76SaUgFoXb01w9sMp13ddnr4sLiws1PuSk/PrOtDQ9VsyC1bVLO3V8q6fXslxKqWUMkkjaYIyPPXTURsRaSiiLiIiN3t9+blMiO4yiIffvghrVu3Zvny5Tz11FOkpaUBYG9vb3lfEFq1akVUVJRlyC4+Pp709HRcXFyIzyOIpXXr1pw5cybPY27bto3PP/+cZ555hooVK+Lq6sqqVauA2wkdb3vm4uLiqHc7F9LXX39t2b9bt26WuK1ff/2V69evW7Zdu3aNGjVqYJ89k7VGkxtpabB9uxJctrbQpYtKvnkXoqZuXRWv7e+vnCBXr8LGjaqM0LVrBTtGdHw0C/9ayDM/P8PPoT+TakqlXd12/Lv3v5nXZx7+9fy14CoNJk+GRYvUcGTr1sojtn8/fPIJWM8YF1FNoynDFOsguWEY/YCPAFvgCxGZm237GOC124sJwHMiUrDxuDJA9piufv368dRTT/HFF1+wb98+XFxc6NatG++88w7/+Mc/mDx5Mp6envj6+hYo4NzBwYGVK1cyffp0kpOTcXR0ZNOmTQQEBDB37ly8vb0tcWRmWrVqRVxcXJYhvpUrV7Jz506SkpJwdXVlzZo1lpmLy5Yt47nnnuOdd94hLS2NUaNG4eXlxZw5cxgxYgT16tWjQ4cOnDt3DoDZs2czevRofH196d69Ow0bNrSce8uWLXnOqNRospCUBNu2qczl5cpBt24qSv4esLFR+TobNVKjVCdPqrydFy6oYtqtW2fN4Wnm/I3z/HDsB3ZE7EAQDAy6NezGCLcRNK7c+J5s0hQR9erBsGGqXb+eWZTbejbk2bPw7ruZw5W6JqSmDGJIMf1nYBiGLRAK9AEuAvuB0SJy3KpPJ+CEiFw3DKM/MEdEckTPtm3bVoKCgrKsi4qKom4ZL3BbWnz44Ye4uLhYcnWVFMOGDePdd9+lZcuWJXpezX3IyZMqGMvFRc1QLIYYwORkOHVKOdLMDubKlaFWrSg8POoSmXiOFUdXsPuiSt1ia9jS07Unw9sMp66L/m2571i1Cr75JnPZ0VGNMbdrpxK2Vq5caqZpHj4MwzggIm2zry/OfwP8gTMicva2ASuARwGL6BIR60RVe4E7Bz9p7shzzz1nGTIsKVJTUxkyZIgWXJqC0bKlGgpq0kR5uooBR0flCGnTBs6cUQLsxg24fOMmE79agtTfS43qULmiPX2b9uWx1o9Rw+nevG2aUuSxx1TWe3MW/PPnYdcu1SpVUmkpzMPD1oXTNZoSpDhFVz3ggtXyRSD3OeCKp4Ffi9Geh4by5cszduzYEj2ng4MD48aNK9Fzau4zLl5UQc/mlBBFmJw3PxwclPCq2SiWHaFHuBYVwWWHvdhcdsAmtD9NXYZRp3xVjMaAU4mYpCkObGygVSvVxo1T2e7371etevVMkZWUBFOnqsy6fn6qPqSzTvuhKRmKU3Tl9m9ErmOZhmEEoERXl8Kc4G5m92k0mlIgNFTNUqxYEQIDSzTW5nrydY5cOcLFmxfBFqpUNvh/jwyl3Lmh/LW1CpeuwhdfqNaihZoN2amTCs7X3MfUrKky6Q4YkDXA/uhRNdPizz9VMwwl1Hx9VWvWrGwV9tQ8UBRnTFdHVIxW4O3lWQAi8m62fp7AT0B/EQnN7Vi5xXTFxMRQvnx5nJ2dtfDSaMoqIhASAseOqWUvL+V2KoG/2RspNzhy+QgXbiqHu61hSzPnZtR0qEmDuqrcTHq6ysm5fTsEBUFqaub+jRqpZ7C3t0qKX0yjoJqSRkTNrggKUv8IHD+emYAVVFyYOf9gSorOCaa5K/KK6SpO0WWHCqTvBUSiAumfEJFjVn0aApuBcdniu7KQm+gymUzExsYWKgWDRqMpQTIyVCBVVFTmcGJu0weLmKS0JM7GnuVykipdZYMN9SvWp1HlRjiVd6Jq1arY5pJ89dYtFdu/Z48KCUpMzNxmb6/M9/FRAqxpUzVsqXkASE5W/xgcPKjyi5jr1orApElKbfv4KPXt4aFFmKZAlLjoun3SR4AFqJQRX4nIPw3DeBZARBYZhvEF8BhgruWYnpuRuYkujUZThklNhXnzlBvJwQFmzlSzyIqRK4lXWHF0BX+e+5MMycDOxo7ApoE87vY4VR0Ll0DTnBz90CGVKD8sLOsIlZ2dEl7mEKIWLVTGC+10L0FElCcqOVm9iqjUEma2b1ffw169Mj+Y33+HS5fUB2wyqWmtJlPmckaGaiaTUt3r1kHjxpnDjRcvqpjEUaPg8cdVLpLfflPpK2xsVDOMzPe2tlmbjY368gwcmPkPSEiI+oJ5eqovFajhz7Aw9bdjb69eHRyUADS/liunjqW/dGWS0pi9iIhsADZkW7fI6v0koGTzGmg0muJn1y4luJycYPbsYg2av558nR+O/cBvYb+RnpGOjWFD3yZ9Gek+kppONe/qmNbJ0cePV6UAQ0Lg8GGV7eL8eeXEO3UK/vc/tY+zs5qMaW6NGysNoD1idyAtTYmZ9HRo3lytE1HDfDdvKvGTmKgC4M2vZqFlTcOG8OmnmcsffaREV7dumR/C5s1KTRcUV1d4661MBX7ihPLcrlkD3bsr0XXhghJ4hqEEWUHo3DlTdO3dCz//rLxqZtF15Ah88MGdj2MYSnyVLw9PPqniJUF9WdetU8P55trE8fGqOryjY2arUEE183tHRyXytJArNnTmOI1GU/T06KFmj3XooIKjioGE1AR+PPEj606t45bpFgYGPRr1YLTH6CLPs1WxokqY3+X2VJ/ERDU34MQJJcLOnlUliEJCVDNjGFC7tqoF2bChEmG1a6sg/SpVHtBnW3q6ys0RG5vZrl9X68yvbdrAU0+p/pcvwwsvKBHy+edqnWHAr79mHePNjfLlVXN0zJlct3t35bWydlH27atmLNrbK8+TnZ1q1p4o86vZa+XlpYL7nnxStcOH1YfdqpU6Zr9+aobk8eNqX1dXpbpdXZVN1t4zs1etdu1Mmzw9MzP7mqlSRSV4TU1VLS1NjX+npmZ9TU9X4jMlRR3bzKVL6p8e63q9MTHw1Vd3/vzs7DLFWLduYJ4JHxuripHXqZMp5EAJxAoV1D9Yzs7qvZ6IkCfFOrxYVOjhRY3mPiA6Wv3Y1qpVrKdJSU9hfeh6Vh9fTWKaeii3r9eesZ5jaVS5eATenRBRz6SzZ9Wo0NmzEBGhbklGRu77ODio51etWmqiXc2a6hltbpUrl8Fnl4gSTqmpmcIhLk6V5Ll6VbW4uDuX4/HzA3M91/h4mDVLHc8cTwWwYYO6AU5OmQ918/sKFZSHp6zcoM8/Vx6rmJis611cVP6wxx4rnvOaTEp8paRkeq9A/cMTFqZSZZi9hzExyvuVnJy1JSVlbdaTCh55BJ57Tr0/dQr+9jc1lv7++2pdRgY8+mhWm8weP7MIMzcXF/Varx706ZPZ/+xZtc06rccDQKnEdBUVWnRpNGWcsDA1jFihgorlKobs3+kZ6WwM28iKoyu4nqJqfnrW9GSc1zhaVi+bSXnT0pTwiohQo1BRUWo5OlqNnOWHjY1yeFStCtWqqdfKlXO2ihUzU58VCbduKU/JpUvK4AYNoO3tZ8fBg+pz9vSEf/5TrUtJgREjMvc3jEzDza1yZbXObLRZWT5IiCiv3ZEjyt1pTk0xeXKmZygkBH76Sc3GcHNT3q2yVqs2LS1zKLdcOfXlAzXJYOdO9YULCFDrUlLU8GtioipKbh4Kzg83t8yamampSpDa26shW/OX+F//Un8gLi6ZrWJF1bIvOzsrD2MZo1RiujQazX2KiHpgnD2rWm4/pC4uKnApPh4WL1Y/wK6uRZ5bQUTYGbGTb0O+JTohGoDmVZszzmscXrW8ynTKGHt7NaxoVaLUQmKiEl9XrignhPWr2WF07Zpqp0/nfx47u8xnkPk5ZHYsmN9bj/44OWbgnHSFCrEXsbsciREVCZG3W/YK4b16ZYquWrXUwaxjl8qXV56qatWUt6Jy5TL5ECx2zGPJtWsrT45ZhFnfq+BglarC7ERwcFCeo9at1ZBr2xzP6JLH3l5l8K9UKev6atVyerXKl1cCyZqMjEwRZhZi5vfx8UqEm0lJyZyoYP13fOqUch0XlBo1sg6dLlmi7Hj88cwSY5GRal2NGqU6A1V7ujQajeLCBVWE+tQp5bmKj7/zPlevwrlz6kezeXMYOVJlFi2iYsPBl4L5Ovhrzlw/A0A9l3qM9RxLpwadyrTYKgrS09VI3rVr6vlz7ZoKhzK369eVMLt5M2dMuQURHE0JJNupB0/F1KuMDH2b6ikXsctQSckMI+sEO+ztSKlYi5TKtUmtVof4Ru7c9OhsCZ8yh1CZJ9Dl1WxtH6jRoqLh2jXlATt2TLWIiMxt9erBokWZy9u2qdiw+vUfvht5/rz6YsfHZ77m9v7mTSXmatZU2Y3NPPGE6vPdd5nicc4clZftpZegZ89ivwTt6dJoNDlJTIQdO9SsplOnsm5zcVGzqZo0yUwWaUZEZfM+dUqJq2rVVP9ff1XN2Rnat1fp3X18CjaF7+RJNTTj4UFYTXuWBi8l+HIwAFUdqzLafTS9m/TGzubh+Nmysyv4KFxqKtyMTiThago3bKuRkABy7DiuS97kWvWWbOvzTxITIeVmRZqcOYfJQYizqcpl+/rElKvPtfL1LC2uXE3EuB0rlQScuN0KiXlinTnLQW7NnA3B+vVOzc4u53vr17xamdAt1aqpAP/u3dVyfLyajXHihHJFmrl2DebPV++dnVWtUnNukhYtHvyyRYWZfCOiYtOsefpp9R+J9X2qVk0JW2tPWymgPV0azcNIRASsWgW7d2emYXd0hK5dVT6tpk3zD2w9cQJefVW9f+opNQQVHq5mdu3Zo7xmoP4LTUlRs8aeflqNs1mJK8sMsJMnYcIEoo1Evmscx/aeTcHZGadkE8OlNYM6jKecm2dm3+z7P2xcv66qeJuj9s+eVUNZAQHw8suqT0yM+mwaN4aPP87cNyxMDYE5OSGiQnis46mtY6zNabCSk1Wol3md+X1qauayOZ7bPLEurwkEpYU5RVb2SYvWwix7H+vX7O+tm3l9Xqm58nuffcKkrS04XI2i2vqvKRd+ErubsaqmnqH+HA3g5uvzyGjZWh3r5nUMF2dsytlnOY51yjDtdSx5dCC9RqNRAUPLlsGWLZkzzDw9oXdv5ZUqTKzDsmVq6MP8X7s1Fy+q6eX//rd6ktvYqIzeLVqoHF5mV8fSpdCqFXErvmbFyjf4tVEqplvJ2DdvxcBWgxnxz7W4JJsy+wJMmKCe7Fb7P9BCLD5e5ac4fVoJrTNncsZdgbofHTuqGWagPt+EhMyYlhImPT0z44F1M2c8SEvL+Zr9vXVLT8//fXp6/u2+RISKqVepn3CS+omnqJsQSq3kc3zo/Q2ptmqm4sjQt2kad5ArFRoT5dScKKfmRDs1I6Z8AzKyeYWtBVle4ix7ftfsy7m9z2/dnV7N783LZjtz659Xn/yWc9uvbduseXSLAz28qNE8zNy4AStXquzZ6enq1zUwEIYNK3iKh9hYJaDq11fLY8Zk3Z5d+NSrp3IiVK2qRENKigogvnBBRXs7OJC8fw9r0w7xY+JyUurGY9wSel2vzJieH1LjdCQkm9RxoqLUsUE9lbOve1CEmEimSyI9HaZNUwHA2XF0VN7IZs3U8G/TpuqeWAewG0apCS7I9B4VNF9ocSKiPG/WIsw6Eb31uuzrs6/L3tLTs6bhMrfc1mVPem+2Kfu6zFeDjIwapJhqEJrRlRMmkHQT1bC17FPpfArl7E00SD1D/Vtn4NqvCJBu2LO39lC21B9LRgbYZKRDBqQ/JMPz+WEeaSwN9N3XaB5k0tNh7VpYsUK5GAxDDUE98UTWBI13Ijwc/vEP9W/i++/nTAlxe3gwi/Dx8FDvr19X2UA//VQlbJwzh/T4OH53zWD5vteJu1QLateiXc8nGZfSisZ+vZRIKn9S7R8VpQJ2PDzUubKvO3Kk4EKsrJKQAO+8oyYm/Pe/6nMyqxYHByWqWrRQkxWaNVP3U48XFRjryQL3f+Hy7DND/6n+GTp7VnlDQ0PVEHJ0NB2ecmbGUNVL9gcj//wn0qAh4toUU6MmqjVoTEb5ChYRZxaouS3ntS17n9z6Ze9bFOuyb7NehrzX1y3a3MmFQosujeZB5cQJlbTSPEOqfXuVUbtx48Id5+BBlVcnOVkJF8PI6UXKTfiMGKHEjlU/8fFhh5sz3237mOjES3DrFi3PxjEhuBruAV4wdGhmXqBWrXLsD+S+riBCrLS9XyIq99Xx42rmWnIyvPaa2ubkpD6n+Hg1dFi9ulo/Z44SuEUwE1TzAFOhgpox7O6euS4hIUsX48pljAwThJ+F8LNZH/516qh/isw5w27cULP+tLAvcnRMl0bzoBEfD19/rYr7gvpBff55FVNVGERUIselS9X7rl1hxgz1H3V2LxKodWlp6oc7m2dJRDgYfZBvDn/D2RtnAajvUp/xFbvSfvMpjAMHVUd7exV0P3x4pvAoCNnFlNnzZm2P2caSGoYUUUOpR4+q4x87prx+Zmxs1JCvOY7u9GnlfSzFIUHNA05ysvJanzmj/o7PnVPpGapVy5pyYeJEJdoaNVL/pJlfGzbMmb9Lkys6pkujedARUekfPv9cTZe2s1PZnh9/vPBVl1NSVMHgnTvVj6+7u8qq7eBQYK+WmVNXT7E0eClHY44CUM2xGk94PEEv117Y2thCN9QD4Icf1GzKX35RgrF3b3XcmgUoWt2qVVbBlJuXbNWq4h2GFFHeKnM28iNHcuY6q1RJJcFs00Zl5rb+XMzlWjSa4sLRUSVitS5Ab66VacY89TQlJbOquzXWGfYvX1azZBs10v8sFBAtujSaB4HYWPjPf1TMFKgH+tSpqoTL3XDsmBJc6elqxuOuXaqor3WsVvZYq2zCJ/xGON+FfMdfkcomZwdnHm/zOANaDMDBNpsIbNIEZs5UomXlSiUef/sN/vhDJTIcMUJ57ApDdiGWm933MgxpHiUwD8EsXKjynVlTtaoSrB4e6jN5GBNdaso2dnZZvcrlyilP+c2byisWHq68YeZmHRC1fTt88416X6mS8oQ1aKC+5w0aFN67/hCghxc1mvsZEdi8WQVfJyaq/2SfekrNTLybh7u12Dh9WgmRxYszRcnMmUoA5SNKIm9G8v2R79kRsQNBcLB1YEjLIQxrPQwnB6c8TpyNixeV52vr1swZfd27K6/d3QrJ7NdX2GFI6/0vXlQ5yaZNyyzdsmGDEoyenqq5u6vhQi2yNA8K5oh0c/6F336DjRvVMHr2sgi1a6vfJTOffqqSLNevr35P6tbNLND9AKLzdGk0DxpXr6pA+QMH1LKfnxIBhYmFMpOaqnJqrVqVOWOuALFa1lxJvMKKoyv489yfZEgGdjZ29G/WnxFtRlDFsUqu+9yRqCiV72vzZjWP3jBUmaERI9SMvqIguxBbtQrefVc9GC5cUEKvWjW17bXX1L2Ki1P/1U+cCOPGqeOYTDlryGk0DwPmWq0REeofkosXVTb48ePV9sREGDUq535Vqqi/s9Gj1T8q5r62tqVaH7Eo0DFdGs2DQkaGinv65hv136WTk4qzCAi4uwd+eDi89x7s3atETocOqhLzHWK1zFxJvMKqY6vYdG4T6Rnp2Bg29G3Sl1Huo6jhVIAaNvlRty688IL6wV6zRv1XvWuXal5eKs+Yj8+9CR3rYcj0dPVjf/Omyo+VmqqGOJ2d1TR881BkeroK9h879v7MB6bRFCWGkVmzys8v53ZbWzUJ5+JF9Xd18aKayXv9umrW2Wt//lklXq5aVYUU1K6tXs3tPo991J4ujeZ+IjxcebfMwa2dOsGUKXdXT+zECfjqKzh0SLn5nZyUgLC1vaNXC5TY+uHYD2w6uwmTmDAw6NaoG094PEFdl2JKhBMbq2ZU/vZb5nBG48ZKfHXtWvjUCiLqIXDokGpHjqjjJiQo4VWlinqIeHurgP7/+7/SnRGp0TwoZGQo71hUlMo9Z66T+NVXSnjlVkagfn347DPLosybR6qLC4mVKpHk4kJihQokVahAoslEYmIiSUlJllfr92PGjKFNmzbFenna06XR3M+kpqp4oTVr1DBW1arw3HPKK3U37NihvEcJCWpIbPp0+Pvflai7g1iIvBnJmhNr2Hxus0Vs9WjUg5HuI6lfsf7dX2NBqFpV1XAcNUoV1l63Ttn8wQdK8PTvr+LZshfozs716/Dtt0poXb2adZs5ANjHR8VlWced1KtXsjMiNZoHFRsbMqpXJ9HRkaTERBKvXCEhIYGkNm1IbNCAhKgokqKiSLx8mcQrV0i8do3E8+dJnDFDCai4OJK2bSM9N8eRnR24umb+DpiLhjo4QPnyBAYGluy1WptWamfWaDR3RkTNSPzyS+WONwx45BEVR+RUwKB0yOp5adFCZZc31+Vzdlbry5fPOePPitPXTrP6+Gr2XNyDIBgYBDQOYKTbSOpVLOGaGk5Oanjv0UdVsP1PP6n4q2XLlDjt1AkGDFBT49PTVULS2Fg1BAsqmeSWLWpbpUpqqNLXV73mFxNX3DMiNZr7iIyMDJKSkkhISCAxMZHExMQs7/NaZ15OTk4u+MnM6VXCwswnh6ZNsU9Pp4IITiYTTmlpVEhNxckwqNCpE04tWlChQgWcgoKosHs3TiJUePxxGpvjx0oBLbo0mrLK+fNq9s/hw2q5YUMVKG+dY6cgmGfo3bqlpoMvXaqWT59W2c4dHTPTPmRDRDh8+TCrj6/m8GVlh52NHb1cezGs9bDiG0YsKPb20KePyukVEqJi3fbsUakbtm9XQ49t28Ly5epau3XLrAXz0ktquMLV9e5jwvLKmp9diOVWJkkLMU0ZIDU11SKCEhISLM162VooZRdQ94JhGEoUOTlRoUIFnJ2dcXJysjTzNmdnZ8t7674VKlTA3pxF34yImuhSoUKmUKtTR3m9rlyBLl1yljErQbTo0mjKGvHx8N13avhMRHmixoxRQ2fWBY0Lys6dygtUs6aKRzpyRJUDats2zwd+SnoKW85t4efQn7lw8wIA5e3K80izR3i01aNUdbyLGLLiJCZG/aDa2ytBlZysPFjWeYYcHdWwapcuavihW7eiOXdRJ2bVQkxTCETEIpzyatkFlXVLS0u7p/NbiySzQLJ+NQuk7ILKvM0o6tm+hpFTVAUEZHq5SxktujSaskJ8vCpO/fPPSjTY2KghsieeKHi2Z+sHds2amXFgSUlKeDRtmmcyU1DB8etD17MxbCOJaeq/2KqOVRnQfACPNH8EZwfnIrzgeyAuTnm2Dh9Wr9HRWbc3aKCSlR45orxeNjZqKPH991XG/g4dlPjy9CyeuoZ3OwwJOh7sISUtLS1XURQfH5+voIqPjyc9t6DzAmJnZ5dFKGV/n9s262ZjztmlKRBadGk0pU12sQUqiPvpp1V5jYJiHsJKTlbHbNZMeX0qVIBJk1QsV9euOR7iaaY0/or8i41hGwm+FIygAlNbVmvJ4JaD6dSgE3Y2ufxUZGSosj0JCdCvX+b6FStUDNXo0ZlDofv3KwHYrh2MHKnWpabCokXKI2XO5wNKHNrYqKni5qGDmzdVaZ2jR5XIOn8+qy1OTiro3cdHBcHXrZuZ06tTJxU4v3WrEmARESoNhDkVRIcOqo+XV+HLJRWUgg5D6niw+xoRITExMYdQsl7Oa9utW7fu+rz29vZZRFJegim35uDgUPTeJk2eaNGl0ZQWV66oLOa//JKZ/sDbW3m2ChK3lf1BfOSIElwxMSrBYJUqKtj8iSdyFW/hN8L5I+wPtoRvIT5V1Qi0s7GjS4MuDGoxkBaVmmSKntOnYckSJQamTlXrDEN5jtLTVakes2A5d07NCuzbN/NkN26oNBcNG2auS0xUwie76PrkEyWs5s5VIgpg9mzVt0oVNXTg4KDukZeXumdNm2Zmyc6NKlVg6FAYMkSJrl27ModdN21SzcFB3cu2bVWaiMKWHboTBRmGhHuPB9MC7Z4QEW7dulUg0RQfH28ZujO/v9s0TLa2trmKIhcXl3xFk4uLCw7F9c+CpsjRokujKUkyMlQG+Q0b1Kv5B9rXV3mGCvqQtA6OT09XJXM8PFTckogajpw7VwWZWxF5M5IdETvYcX4HETcjLDa5VnalT7NAejTugcsvf8CHryt7hg3L3Dl7AWfDUHESdnbKBvMP//DhSnA1aZLZ198f5s/POkxavryaGACZpX4AQkPV9YWHZ4qucuXUtbZtqzyALVuq7TNnwpkzMGtW5nGPH1czEGvUyBkgbxhKgDZqpMTohQtKfP31l5oVdeBAZob/unUzy/m4u6us9EVNccSD6TgxANLT07PEMpnFklkcWS9n73Mvw3XmYTcXF5dcBVNe68qXL689Tg8BWnRpNCVBdLQK4v79d+XhAiVWunSBgQOViMgP64dmy5aqLM6lS0rExcWpTO0vvqgesgcPKhHXqhUiwvm48+yL3MeO8zsIv34ObNQPu7ODM11PpdA3+CZN35iC0fJ2rFeFCsrzZrYTlIfqrbdyen9eeCGnrblljK5USTVQ8WVnzqhrMrd69ZSwATVpwMEh66SByZOhRw917a6ual1MjBIX1phMKt+YyaRi2cxCcPt2dV5//6yJZBs0UOJy9Gg1BHnwIAQFKU9dVJRqv/2m+tapo2xs1UpdY8OGdzex4U7cS1qKwsSJ/f/2zj3Ijuq+85/ffb/mjjTSMHo/RigIMCBkGSwUO4BxwIaFDbaB4GCvXSFOFQ4hWQcbO4lZXFRsV8q1GINxhYV4HRuW4uGlUrYxS4ghKV4CJKQZSYMeo2GENHrO475fZ//4dc+985AQoJmRmN+nquv2/fXp7tN9+p7zvb/f6XNOAiFWq9XGFU7v1Mcpk8lQGD0X4LsgHA6PEEfjrTc1NQ2H7tLp9HAoz/o4GUfDRJdhTBS9vfUpa3burNvnzNE+UJdcUhcijRxpUuZMRsXQRz6igmtgQEVXNKpDHwCsWEFu2SI27N3Aqy/dzat7X+NA7gA4YHMnyUyJj159Mx9bdjHnzDmH0L33QeG3IwXWxz6mfZzS6botGq17nd4NxaJe+5tv1pfdu+sePp/t2+ui68or4TOfGSlo2ttHes5A8/jIIyMn2s1mNexYLI7sn/XkkxreXLiwLrqee069XBddBGvWaAjyootU3IEKw40btR9ZZ6cK5z17NMwJevxly7SvXHu7Dk+xcGE9JHu8ONYwJLz/DvvjCbH3Kc78DuKjhx042pt1vi2Xy73n2yYiR/UwjRZPjZ4pC9cZE4WJLsM4XmSz9Y7er7+uoSufRALOPx/+4A/UC3WkMEJjeCgY1FHTN25UEdHfr+G9ri71+KxdC83NDF16EZtbqnS8/iAd+zvYtreT6ptbVdiceSYzYzNZNXcVa9clWbk9Q7jtKpj3e3q+G26AG29UUeXzbgZdHY/ubhVDO3eOL7D80aJ9j86KFRoK9Hk3E93G4yNHjE+ndbLq0Xz84ypMfXEKOg3SCy+M7D/X1aUhy/POU4/ZaadpuPQ//1NFbzarArGrS4Xv5s26+AQCKm6WLFFP2Lx5es55897fBL7H2h/s/XTYh7FCDCh94QvkCgWyoRCZO+8kN2cO2c5OMp2dZNvayM6YoSJpxw6y3d1k02my0eiwcCqN9ka+C0TkqB3B/W2jPVETNhyBYbxPTHQZxnvBOejrU29IV5c2Wtu3jxQYyaS+Gbd2rXb2Hs8D4nsRzjxT+zs99JA2gsGghrteeknFWjQKoRD5WWl23vJ5tn+4nR2Du+jqeoGe/3OvnssLu0kwwOkHA6zONrP6q99nadsKbXwW7lZvTiJRP/94nrajUalo6M4XaevW6duKK1fq2F9+muef1/VgUL0/y5frcuqpKkiOtzfonbjyyrG2K65QwbVsWd128KBeX6OXrVKB731P1x9/vD7ExP33Q0eHermyWRWbPT36HPT0jBXWLS0qvk45RZe2Nv1sbdX+Yu/Wu3Kk2QM8u3OOYqFA7pRTyH33u+Q2bCC3aBHZgwfJDQ6Sy2TIbtpEToTs66+Te+IJct3dZBMJskNDZG+8kWyxSGXrVhWMhQL87d+qsF2/Xr2sgYCWPYy1pVKQyRDKZknOmUNq3jwVSvk8yYEBUu3tpE499aiiyoST8UHDRJdhHA3ndLiCt99Wr43fqG7frg1tI6GQhprOPlsFVC6njU9jmOaNNzTNypX6/frr9biViu4HMDTEUKDC7hmO3bXt7C4Ku2+9gF3r/h9vZ/fiDjwEG+Zo2mKGcLbAaZUWzjjjGs5oPYMVs1eQXNWjHpbGjuvzj2GqHv969+0buezZo/egr0+nIPrMZzR9taphu0Yht2iR9i9rb5+YcNvxYv78sfdk7Vp49NGRIctCQcOPxeLIMb06O1V0/9mf1b1lDz+s44Cdeaa+Wbl7t4ZUX3lF79+hQ/X9s9n66Pgi0NREdeZMCs3NFFIp8vE4+ViMfDRKPhzWRYS8CLlSiXw+Tz6fJ5fLDX+OXj/qm3Tz52tZp9Mq/DMZvUZ/jLhQCEIhQsEgyXKZZCxG8qyzSA4NkYzHSbS0kBoaIrVypW7r7VVxdfAgyWuuIXXuuSRvvplIuYzs2wff/76e1/embdumz/94Ycy2trG2o4U7T4L+aYYBEyy6ROQy4C4gCNzvnPvuqO3ibf80kAP+m3PutYnMk2GMoFDQhufwYe2YffBg/bOvTxtKX1xlMvVGKpVSL9Gpp9YFx6WXakO7ZYt2zM5k1P75z2tj+8gjuEKewRlx+h/7Of2dr9Hf3M+BwBD7w2X2L+5m/7K57LtkCdm93puF5eeg83Vdb40RygVYVG1mWfsnaZ/ZzrLUQk79/SDhpaeODF+NN+RENqviKR6vi43eXvjFLzR/hw7pdR8tHCSi98DnjDPgzjtHDkkRiWh/tZOVaHRkuDWVGn470h9OoFQqUbz6akq9vRQrFYqbN1MsFil2d1MMhymk0xRmzqSYSFAIBCi++iqFRILC8uUUDh2icPgwhY4OCoUC+dZWCsUihUqFUi6nswbEYnWxWqvVw82+ze+sHQoNe0EJBuufwSAEAkRiMZLJJPFkkmQqRaKpqb6k0ySamtTuT8XS16fi6ZxzdEkmCW/fjmzaNLaPYbms9+YrX9G8PPus/tFIp7Vv3MaN+mdiwYKRIcwjjUM2TmjzPdveTf+0dyPiTAQa75MJE10iEgTuAT4J9AKviMiTzrnOhmSfApZ7y/nAj73PyeVE+3FOhu1Ey8+x5rFa1ZDO+vXqMVq8WCv/zk61L16sHdULBfUwdHVp+CadVtGxa5d6q/xGtVRSETEwoCG6REIbOU9gVdNNlJcuohyPUu58lUoxT7E/RPGP/gvFGSmKezdSfPZp8q5M/pkfk//aLeS7t5Fv3kamuUQm7Mhs/zFDoRqZjx9mMFyjFsjCv9+qeTr9MGRKKmbWLBruvB4TmDdQZUHzOcw/43wWpBewIBdi0YEyoUhMPRK7ipDfpZ6Jl9Zpg5fP63VmMrpce632IwMN+d1zjw7n8Bd/obZyuR4K9Ekm6yEwPwzW1qahsTlzRobBmprqHrrjSK1Wo1qtDi+VSmXMeqVSGV4vl8vD3/3Ft5XL5XGXUqk0nKZUKg1/99cbF19oHdOUKZHIyKEnymW9p87pM+mTSulzuGKFln+5jLz5JrHBQeKLFxOfOZO4c8QOHCDe00O8qYlEWxvxcpm4c8S7u4kHgyQWLiQRDOp6dzfxfJ7E8uXEm5sJBQJw4ID+DmbN0vIEfe7fflvPv2SJ5jkaVa+miHpyn3pKRd7QkP6eNm3SEGk4rKJ62zb1Zr72moq966/X3+uSJdqfb3BQ99uyRbf7LzeUy3of/CmbNm/Wt2+HhvT56uvTt3NF9FmeM0fz9R//obZ8Xt8k3bsXXn5ZbYWCPp979mh/ynJZBwQul/WcDz6o6d6viDuRROAHqV6f6vxMIvJeB3J7xwOLrAFud85d6n2/DcA59w8NaX4C/Ltz7iHv+1bgQufciDk9Vq9e7datWzch+WTLFr702Y9Q8L0ZqSYQIJuBmndvZszQf54HD0C1po1yIqEN5MEDms7v57Jihf7Qd+7UisA5rXADAe+YAN58eqnUyP1jUUjPgMMH9W2zSlV/tHPa1PvinB47GIJQEAp58IsvHIFgACpltQkQCOp6rarJBIjG9N9nU5M2ys5BtQIS0DyWGkZFDnn/ql2tPo5SKKx5rVb0gCK4eNwbL6qMi0Q0XWurVoqlMgS8k8e8c5fLuIDo+dJNkC9APo8T0WtIJMHVcPk8rlbTa0Vwzc1w+BCuVsMJeu5QEGo1zyZ63FgMV6ngSiWcgAsItUgYh8OVyjiBWihArakJF4Ba/wA1gVoAauGQrlcrVL19aWnRfA8NafmD54kIQblSD0WFQzBnLsRjsG27Pici+qwIkMtDrUa0KsSbWogHwiSKjuRAjhQRUp/4FKkF7TRFmoi+9CqycSNuzZphUeO6utSbMAr/Nzz6l+wAt3q1et8A99ZbsG4dbtEinNcPx5VKuJ4eiMdx/hIK4Zx7x6VWq41Zr9Vqw4v/vVqtjrD7i28f73Oi6qXjQSQSIRqNEo1GiUQiRCIRYrEY0Wh0+PNI67FYjFgsRjweJxqNDn8mEglisRiRwUHk0CEVFf7bo9u3a0f+JUv0hQDnVIR8+9u6ftNNKk6yWbj7bn2B4+qr1RObz6swWb9e+64tXaq/1f37tT9ePF5/axQ0Xamkz4z/x6S7W8+3eHE97Nffr0KuuXnkcCevvKJ5Wr1af9+ZjKYrFjVdS4vaenvVu9zWpsItk1GxlM3qfhdcUM9PLqfHPPdc/S2tX6/Hq1a1n2Brq9oqFc37vHl6nm3b9Hfa36/5nDtXryUe199yU5Om27NH02WzWifH4+r1TST0/iWTWhYzZ+qfu0RCj9nSoiJ25061DQ1pW9HUpMdMJPSY6bTa/CFegkENwefzahOvLvzQh7Rcenvr3sq1a/U6du6sezQvuaQ+1Eo0quL1D/9Qz+/3K/Q8naxdq/vu2FEfhuWyy7SbQ1eXXncopPO67tqlz0okosvll+t9ePpp3S+RUFuloiF40Ou64gpdf+QR3ZZM6iDEIprOF9uf+5yOn/fWW/DEE7o9ldL+liLqca9W1eaPD/jww1qmsRhcc43aHn1Un4lwWIU+6PH8MQRvuEGv/Ykn9P7XanDVVVo2jz+u52ht1RkyJlB4icirzrnVo+0TGV6cDzS8vkUvY71Y46WZD4yaSG0C2biRZ4ayFCteJX9ocGya/YcBGdlJupSFAa8yELSFKxVgQ4faKtV6+lJm7DEPDcHhzNj9h/bWRZNv2/mWCjPBE4LjDNxXLNTX/X0pj7VlPVum0HAeN7bF1oMe2zHz5fr+paKuZ3rrAgU0YSE38js1yPXruvNtVcgNNVwrEKjqpkI/lEcdUyr1c4tTW9YTu7UGe8ATiVXPFhIoezsOUj9GwEtQ8y/RIXsHCEgAKTukqrFyaUkSjEQJVB2BvXsJ1BzBUIBgNUEwniRwsJXQ4QGCwTChUJiQCxCqRAiVq0go7HXUrlEFBokzCLChB3b264nfflsr9g0btGIGrVSKRa1Q/ErVX28IKY0IM+3bN1KozZihHojnnuNEJxQKEQgECIVCBINBgsHg8HooFBpeD4fDw7ZwODzi019vXEKhEJFIZPjTt/sCyl/C4fAIYRWNRgmHwxPbsbu1deSbnKBiqbGzv4iKlfvuG7v/hRfqM+I30KCerj17tMHzx1kbGFAhl0joyx7Foi6PPKLbPv1pbdRKJX1WOjpUSLW36x+/HTvUOzV3rgrBalUb3P5+Xb/0Uu8PXRWeeUYb2rPP1vS1mjb4r7yi308/XdO1tamHK5lUW62m9+LFF/Wc8+ergEmntR/h4cPa6Le16csmfX0qWAIBFUjBYP0PUa2mjXkgoGLHOc2vf498Yed7p0CFoJ++VNK8OOf9+arqPjXvT/jgoNoyGb1v1areRxFNPzDg/bGOaZ56evSzWtXrLRT0nh46pOdKp/W8W7fqvSsUVAzmcir8urvVFoupbdMm3a+nR++V36e0o0PrkkJBryub1Tpl+3Y9vi8216/XZySf13uSzaoHc3Cwni6TUe9ttaq2YFBtvkPEH97DOS1b0ONUq5qnl19WQbxzZ100DQ3py0J+WvHa2RdeqNtqNS0r35bJ6PGKRZ2GDOreWH9qMr8bRLWq6V58Uct/cLBeBn5oe5KZSNE1Xs00umk/ljQTy1ln8ZUZsygPDmh2Fi3SXO3ercIJtKJpSsGWrerhqVS1sjilVW2uph6d2bN1sMtsVgvZ9yQtmK/eqd5eqHkCYuFCaJk58pitrepK7+qqe7VmtUD7MnXB17wHaMZM/QH19dW9Kb7b/9Chulcqna53jIZ6ZV2paPpdu+oPdDqtP7Z9+5Ca0wE0W1p0n4EBPU4goNdYLsGhw4gENN2SJVoBHjykD3QgoGNJdXbA3j4IiKZtb0dyedjd63nrQrBqFXL4MGzeovvFYsgFa5BoDDo3Q88upCmFBEPI566B555HNm9GggGQALJ6NZIvIBs2IIEgEo7AxRcTyBfg2WcJIEgqReC6PwYgcP8DiKsRTKUJ3PgVAhIgcNddBMpVgoEggT+6miABgo89poIqGEKuuVbv2759KoDmzdN/kP4bbuvWaSV4zjn1gUH7+7X8/X+xgQCIII3CyLNLY3+ccRr0xkZ+vAZ/vO3HYvOX0d9HLwCBQGDcbYFAYHjb6M9gMDgijb8Eg8Ex642foVDI3lh7r3id30cwe7YujTQ3q7Dy8fsD+jMENLJq1fjnGi/tl7881vbXfz3+/v6fUr+sndP6zY8k+AwNaV3o11FQD6EnEvWXRUolrRNDIa2f/VDS7Nlary9apGHNN97Qenb2bPVU7dmjomXpUhWryaQev6ND+yz6IeUVK7Ru7uzUPy+zZml/tb4+tc2dq/exuVlFxZYtKpbLZW1PfvQjXQ+H9UWTXE6Fc62mtq9/XQXyvffWX2S44w4VKffeq9/DYR0SpatLJ3QPhbQtuPNO3bZ+PTzwgOY3HNZhT3p64J/+qf5s3HGH5vcnP9E0kQjcfruKux/8QM8dj6sn9fBh+M536hGbv/97vYavf10FTToNf/d3er6/+Rstg1RK33IF7QuZz+vxvvUtvcednbrdnznjm9/UtLfeWheMvu2221QgJRI6lAtoHrJZzbdvu+MObaeCQT2OiObb71f7ta9pXr/zHW3vUqn62HaTjIUX4YMfs7Y8npSxf8MwPkBMxzrzZMjjBHGk8OJEiq4Q0AV8AtgNvAJc75zraEhzOfBV9O3F84EfOufOG32sCRddhmEYhmEYx4lJ79PlnKuIyFeBp9BuMA845zpE5M+97fcBv0IF1zZ0yIgvTVR+DMMwDMMwppIJHafLOfcrVFg12u5rWHfATROZB8MwDMMwjBMBmw7dMAzDMAxjEjDRZRiGYRiGMQmY6DIMwzAMw5gETHQZhmEYhmFMAhM2ZMTxRET2A7umOh+GYRiGYRjHwGLnXOto40khugzDMAzDME52LLxoGIZhGIYxCZjoMgzDMAzDmARMdAEicpmIbBWRbSLyjanOz3RFRBaKyLMisllEOkTkLz17i4g8LSJvep8zpzqv0xERCYrI6yLyr953K5cTABGZISKPisgW77ezxspm6hGRv/LqsU0i8pCIxKxcpgYReUBE9onIpgbbEctCRG7z9MBWEbn0eOZl2osuEQkC9wCfAs4A/lhEzpjaXE1bKsB/d86dDnwUuMkri28AzzjnlgPPeN+Nyecvgc0N361cTgzuAn7jnFsBnIOWkZXNFCIi84GbgdXOuQ+hU+Fdh5XLVPHPwGWjbOOWhdfmXAec6e1zr6cTjgvTXnQB5wHbnHM7nHMl4GHgqinO07TEObfHOfeatz6ENh7z0fL4qZfsp8B/nZIMTmNEZAFwOXB/g9nKZYoRkTTwceB/ATjnSs65fqxsTgRCQFxEQkACeBsrlynBOfcccGiU+UhlcRXwsHOu6Jzbic4Nfd7xyouJLm3U32r43uvZjClERJYA5wIvAW3OuT2gwgw4ZQqzNl35n8CtQK3BZuUy9bQD+4EHvdDv/SKSxMpmSnHO7Qb+EegB9gADzrnfYuVyInGksphQTWCiC2Qcm42jMYWISAp4DLjFOTc41fmZ7ojIFcA+59yrU50XYwwhYBXwY+fcuUAWC1lNOV7/oKuApcA8ICkifzK1uTKOkQnVBCa6VMUubPi+AHUDG1OAiIRRwfVz59zjnrlPROZ62+cC+6Yqf9OUtcCVItKNht8vFpF/wcrlRKAX6HXOveR9fxQVYVY2U8slwE7n3H7nXBl4HLgAK5cTiSOVxYRqAhNd8AqwXESWikgE7UD35BTnaVoiIoL2TdnsnPtBw6YngS96618E/u9k520645y7zTm3wDm3BP19/Jtz7k+wcplynHN7gbdE5DTP9AmgEyubqaYH+KiIJLx67RNoH1UrlxOHI5XFk8B1IhIVkaXAcuDl43VSG5EeEJFPo31WgsADzrk7pzZH0xMR+X3geWAj9b5D30T7dT0CLEIrs88550Z3ijQmARG5EPiac+4KEZmFlcuUIyIr0RccIsAO4EvoH2ormylERP4HcC36VvbrwJ8CKaxcJh0ReQi4EJgN9AHfBn7JEcpCRL4FfBktu1ucc78+bnkx0WUYhmEYhjHxWHjRMAzDMAxjEjDRZRiGYRiGMQmY6DIMwzAMw5gETHQZhmEYhmFMAia6DMMwDMMwJgETXYZhTDkiMktE1nvLXhHZ7a1nROTeCTrnLSLyhXHsS0Rk03E8T0REnvPm4DMMYxpjlYBhGFOOc+4gsBJARG4HMs65f5yo83kC6Mvo6O0TinOuJCLPoGM2/Xyiz2cYxomLeboMwzhhEZELReRfvfXbReSnIvJbEekWkatF5PsislFEfuNNIYWIfFhEficir4rIU/5UH6O4GHjNOVdp2GeDiLwA3NRw/iUi8ryIvOYtF3j2n4nIVQ3pfi4iV4rImSLysuele0NElntJfgl8fiLukWEYJw8mugzDOJlYBlyOTib8L8CzzrmzgDxwuSe87gY+65z7MPAAMN4ME2uBxgm8HwRuds6tGZVuH/BJ59wq1FP1Q89+PzryOyLSjM6r9yvgz4G7nHMrgdXoPG4Am4CPvMdrNgzjA4KFFw3DOJn4tXOuLCIb0Wm7fuPZNwJLgNOADwFP65R3BIE94xxnLjoXni+aZjjnfudt+xnwKW89DPzIm2qnCvwegHPudyJyj4icAlwNPOacq3iesm+JyALgcefcm176qoiURKTJOTd0nO6FYRgnGSa6DMM4mSgCOOdqIlJ29XnMamh9JkDHOB6r0eSBmLcuwJHmQ/srdK62c9DIQKFh28/QkOF1aP8wnHO/EJGXUG/cUyLyp865f/PSR0ftbxjGNMPCi4ZhfJDYCrSKyBoAEQmLyJnjpNsMnArgnOsHBrwJ12Fk36tmYI9zrgbcgHrOfP4ZuMU7Rod3vnZgh3Puh8CTwNmefRaw3zlXfv+XaBjGyYqJLsMwPjA450rAZ4HvicgGYD3a32o0vwY+3vD9S8A9Xngw32C/F/iiiLyIhhazDefqQ8Xbgw3prwU2ich6YAXwvz37RWifL8MwpjFS984bhmFMH0TkCeBWv9/Ve9g/gfYlW+WcG3iHtI8Dtznntr6XcxmG8cHAPF2GYUxXvoF2qH/XiMglwBbg7mMQXBHglya4DMMwT5dhGIZhGMYkYJ4uwzAMwzCMScBEl2EYhmEYxiRgosswDMMwDGMSMNFlGIZhGIYxCZjoMgzDMAzDmARMdBmGYRiGYUwC/x8rb8JzsFy/1gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.2968, 'epsilon': 0.18810000000000002, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACjMUlEQVR4nOydd3gV1daH30klkBA6hJqgIYFUEgg9EFpAilQRUQFF7Ip+V8V7FaxXrg3FiteCIgICwkVERaQLSCgh9BISShIIEAjp5WR9f2zOyUklgRTKfp9nP+fMzJ6ZNTMn5/yy9tprGSKCRqPRaDQajaZysaluAzQajUaj0WhuBbTo0mg0Go1Go6kCtOjSaDQajUajqQK06NJoNBqNRqOpArTo0mg0Go1Go6kCtOjSaDQajUajqQLsqtuAstCgQQNxd3evbjM0Go1Go9ForsiOHTvOiUjDwutvCNHl7u7O9u3bq9sMjUaj0Wg0mitiGMbx4tbr4UWNRqPRaDSaKkCLLo1Go9FoNJoqQIsujUaj0Wg0mipAiy6NRqPRaDSaKqDSRJdhGF8bhpFoGMbeErYbhmHMMgzjqGEYUYZhBFWWLRqNRqPRaDTVTWV6uuYAA0rZPhDwvNwmA59Voi0ajUaj0Wg01UqlpYwQkQ2GYbiX0uVO4DsREWCrYRh1DMNwE5GEyrKpJPbuhby8qjmXYVRsP+u+1vsUt39J/azXl7RcuNnYFHwtvM662drmv5bnujQajUajuZmozjxdzYCTVsunLq+rctH1xhuQllbVZ701MYx8EWZnl99sbdWrvX3B5uCgmqNjfnNwACengq1mTahVC5ydwcVFvbfREYsajUajuY6oTtFVnM9DqtwKoF07yMoqW1+5BguvZd+S9jevK21bSe+tX83Netn83uwFNK/Pyyu4j/WyyaSWzevy8vLXmUxqXW6uOl529tXdh7JSqxbUrg116kDduvmv9etDo0aqNWyoxJ5Go9FoNJVNdf7cnAJaWC03B+Krw5Bp06rjrLce1sLM3HJzVTOZICcnv+XmKlGWk6Nes7IKtsxMSE+HjIz8lpYGKSmQmqrem1tCKb5Tw1AirEkTaNECWrbMb66uejhUo9FoNBVHdYqu5cAThmEsADoBydURz6WpOqxjv+ztK/dcIkpwJSfDhQtw8aJ6vXABzp2DxETVzp3Lb3sLzbN1dYU2bcDbW7U2baBGjcq1W6PRaDQ3L5UmugzDmA/0AhoYhnEKmA7YA4jI58BK4A7gKJAOTKwsWzS3Hoah4rucnaFZs5L75ebC+fMQFwcnT8Lx43DihHqfnAwREaqZj+nhAcHB0LEjeHnpuDGNRqPRlB1DrjXQqAro0KGD6ILXmqpEBM6cgYMH81tMTMFZri4u0KGDEmAdO2ovmEaj0WgUhmHsEJEORdZr0aXRlI2sLDhwQHm+tm2D06fzt9WsCaGh0L8/3H67jgXTaDSaWxktujSaCkREDUlGRMBff8GhQ/nbPDyU+OrdW4kxjUaj0dxaaNGl0VQiJ07AqlWwZo2aQQlq+HHECBg8WA89ajQaza2EFl0aTRWQkwN//w0//wz796t1rq4wciTccYdK7qrRaDSamxstujSaKkQEdu+G77/PH3qsWxfuvRf69dMxXxqNRnMzo0WXRlMNiMCOHTBvHhw9qtYFBsKTT6qM+BqNRqO5+ShJdOksQxpNJWIYKq3E++/Dc8+pOK/ISHj8cfjll2svDaXRaDSaGwctujSaKsAwVEqJzz6D7t1VGaPPP4d//rP0MkUajUajuXnQokujqUJcXeGFF+DFF9X7vXvhmWeU90uj0Wg0NzdadGk01UDXrvDpp9C5s6oROX06rFxZ3VZpNBqNpjLRokujqSZq11bDi3fdpcoLffYZfPEFmEzVbZlGo9FoKgMtujSaasQw4L774Nlnwc5O5fd67TXl/dJoNBrNzYUWXRrNdUBYGPz738r7tXOnivtKTq5uqzQajUZTkWjRpdFcJ7Rtq1JLtGgBx4/DtGna46XRaDQ3E1p0aTTXEY0bw5tvgpsbHDsGr76q0ktoNBqN5sZHiy6N5jqjbl0lvBo2hAMH4PXXITu7uq3SaDQazbWiRZdGcx3SsCG88YYSYFFRMGMG5OZWt1UajUajuRa06NJorlOaNlVeLhcXiIhQ8V66bJBGo9HcuGjRpdFcx7RqpeK6nJxg40ZYuLC6LdJoNBrN1aJFl0ZznePpCVOnqpxeP/wAO3ZUt0UajUajuRq06NJobgCCguCee9Tw4rvvQmJidVuk0Wg0mvKiRZdGc4MwZgx07AipqfDWW3pGo0aj0dxoaNGl0dwgGIYqF9S4MRw9CrNnV7dFGo1GoykPWnRpNDcQzs6qSLaDA6xaBX/8Ud0WaTQajaasaNGl0dxgtG4Njz2m3n/2GcTGVqs5Go1GoykjWnRpNDcgffpA//6QkwOzZoHJVN0WaTQajeZKaNGl0dygPPggNGgAR47AsmXVbY1Go9ForoQWXRrNDUrNmvDEE+r9vHkQF1e99mg0Go2mdLTo0mhuYIKD1VBjTg58+KEuE6TRaDTXM1p0aTQ3OA8+qApjHzgAK1ZUtzUajUajKQktujSaGxwXF3j0UfX+u+/gzJnqtUej0Wg0xVOposswjAGGYRwyDOOoYRhTi9nuahjGz4Zh7DYMY59hGBMr0x6N5malSxfo3h0yM+Gjj/Qwo0aj0VyP2FXWgQ3DsAU+AfoBp4AIwzCWi8h+q26PA/tFZIhhGA2BQ4ZhzBORKxY4MZlMJCUlkZOTUyn2azQ3GmPGQKtWKr5r505wc6tui64/7O3tqVevHra2ttVtikajuQWpNNEFhABHReQYgGEYC4A7AWvRJYCLYRgG4AwkAbllOXhSUhI1atSgQYMGqN01Go0IbNkCJ05AQADYVeZf+A2GiJCamkpSUhINGzasbnM0Gs0tSGUOLzYDTlotn7q8zpqPgbZAPLAHeFpE8spy8JycHJydnbXg0miscHeH+vUhIwP2779i91sKwzBwdnbW3nGNRlNtVKboKk4NFY40CQcigaZAIPCxYRi1y3wCLbg0mgIYBgQFqfcHDkBaWvXac72hvzM0Gk11Upmi6xTQwmq5OcqjZc1E4CdRHAViAO9KtKlCefPNN/Hx8cHf35/AwED+/vvvarEjMjKSlStXWpaXL1/OjBkzAJgwYQKLFy8uss+6desYPHhwldmoqToaNlSxXSYTREZWtzUajUajMVOZER8RgKdhGB5AHHA3cE+hPieAPsBGwzAaA17AsUq0qcLYsmULK1asYOfOnTg6OnLu3Dmys68Y/18pREZGsn37du644w4Ahg4dytChQ6vFFs31QWAgnDoFx4+Dl5cqF6TRaDSa6qXSPF0ikgs8AfwOHAB+FJF9hmE8YhjGI5e7vQ50NQxjD/An8IKInKssmyqShIQEGjRogKOjIwANGjSgadOmuLu7c+6cuoTt27fTq1cvANavX09gYCCBgYG0b9+elJQUAN5++238/PwICAhg6lSVVSM6OpoBAwYQHBxMjx49OHjwIKC8Vo888gg9evSgTZs2rFixguzsbKZNm8bChQsJDAxk4cKFzJkzhyfM9WGA1atXF9inMGlpaTzwwAN07NiR9u3b87///a/S7pumaqhVC7wv+4x37tQpJDQajeZ6oFLnNonISmBloXWfW72PB/pXpg2VRf/+/Xnttddo06YNffv2ZcyYMfTs2bPE/u+++y6ffPIJ3bp1IzU1lRo1avDrr7+ybNky/v77b2rWrElSUhIAkydP5vPPP8fT05O///6bxx57jDVr1gAQGxvL+vXriY6OJiwsjKNHj/Laa6+xfft2Pv74YwDmzJlT4NzF7WPNm2++Se/evfn666+5ePEiISEh9O3bl1q1alXgHdNUNT4+cOwYnDunPF7u7tVtkUaj0dza3BQTyocMqZzj/vxzyducnZ3ZsWMHGzduZO3atYwZM8YSR1Uc3bp149lnn2XcuHGMGDGC5s2bs3r1aiZOnEjNmjUBqFevHqmpqWzevJnRo0db9s3KyrK8v+uuu7CxscHT05PWrVtbvGClcaV9Vq1axfLly3n33XcByMzM5MSJE7Rt2/aKx9Zcv9jZqbQRW7eq2K7mzXUKCY1Go6lOrvgVbBhGN+AVoNXl/gYgItK6ck27/rG1taVXr1706tULPz8/vv32W+zs7MjLU1kvMjMzLX2nTp3KoEGDWLlyJZ07d2b16tWISJHZVHl5edSpU4fIEiKgC/cvy2ysK+0jIixZsgQvL68rHktzY+HhAYcOwYULcPAg+PpWt0UajUZz61KW/3u/Ap4BdgCmyjXn6ijNI1VZHDp0yOI9AhXM3qpVKzIyMtixYwcDBw5kyZIllv7R0dH4+fnh5+fHli1bOHjwoGWI8p577rEML9arVw8PDw8WLVrE6NGjERGioqIICAgAYNGiRYwfP56YmBiOHTuGl5cXR48etcSIFUdx+2zdutWyPTw8nI8++oiPPvoIwzDYtWsX7du3r6Q7p6lKzCkk/vxTia42bcDBobqt0mg0mluTsgTSJ4vIryKSKCLnza3SLbvOSU1NZfz48bRr1w5/f3/279/PK6+8wvTp03n66afp0aNHgVIjH3zwAb6+vgQEBODk5MTAgQMZMGAAQ4cOpUOHDgQGBlqG9+bNm8dXX31FQEAAPj4+BQLbvby86NmzJwMHDuTzzz+nRo0ahIWFsX//fksgfWGK28eal19+mZycHPz9/fH19eXll1+upLumqQ4aN1YtO1sJL41Go9FUD4ZcYVqTYRgzAFvgJ8ASXCQiOyvXtHw6dOgg27dvL7AuPj6epk2bVpUJ1wUTJkxg8ODBjBo1qrpN0dxgnD0Lf/yhYrruvBMuT7q9JbkVvzs0Gk3VYhjGDhHpUHh9WYYXO11+td5ZgN4VYZhGo6l8GjaEpk0hPl6VB9KjxxqNRlP1XFF0iUhYVRiiuTKFU0FoNOXBz0+JrsOHVQ4vJ6fqtkij0WhuLa4Y02UYhqthGO8bhrH9cnvPMAzXqjBOo9FUHPXrq7QRJpMuhq3RaDTVQVkC6b8GUoC7LrdLwDeVaZRGo6kc/P3V65EjkJ5evbZoNBrNrUZZRNdtIjJdRI5dbq8Ct3yOLo3mRqROHWjZEvLyYN++6rZGo9Fobi3KIroyDMPobl64nCw1o/JM0mg0lYmfn8rfFR0NqanVbY1Go9HcOpRFdD0KfGIYRqxhGMeBj4FHrrDPLYGzs/MV+2zcuBEfHx8CAwPJyCifVl22bBn7ryL4piS7MjIy6NmzJyZTfo7bmTNnUqNGDZKTk8t9noogMjKSlStXXrnjNTJnzhzi4+Mty5MmTbqqexsbG4tvGdK6L1q0iLZt2xIWVv55KIVtrSi7zH1cXVUdxrw8mDLlFUt+uLLSq1cvCqdwKcwHH3xA+lWOX17tZ8Larr59+3LhwoWrOr9Go9FUFlcUXSISKSIBgD/gJyLtRWR35Zt2czBv3jz+8Y9/EBkZiVM5p4tdregqia+//poRI0YUSNo6f/58OnbsyNKlSyvsPOWhukTXl19+Sbt27SrtfF999RWffvopa9euLfe+VyO6youvr/J2XbyokqZWNNUhuqy57777+PTTT6/pGBqNRlPRlCi6DMO49/Lrs4ZhPAtMAiZZLWsus27dOnr16sWoUaPw9vZm3LhxiAhffvklP/74I6+99hrjxo0D4J133qFjx474+/szffp0yzG+++47/P39CQgI4L777mPz5s0sX76c5557jsDAQKKjo4mOjmbAgAEEBwfTo0cPS+HqmJgYunTpQseOHUvNJj9v3jzuvPNOy3J0dDSpqam88cYbzJ8/37J+3759hISEEBgYiL+/P0eOHOHll1/mww8/tPT517/+xaxZs1i3bh09e/bkrrvuok2bNkydOpV58+YREhKCn58f0dHRgErs+sgjj9CjRw/atGnDihUryM7OZtq0aSxcuNCSTT8pKYlhw4bh7+9P586diYqKAuCVV15h/Pjx9O/fH3d3d3766Seef/55/Pz8GDBgADk5OQC89tprdOzYEV9fXyZPnoyIsHjxYrZv3864ceMsHkdrr8hvv/1GUFAQAQEB9OnTp8zPfc6cOYwYMYIBAwbg6enJ888/b7Fh06ZNPPLIIzz33HOYTCaee+45y3OfPXu25Rhvv/02fn5+BAQEMHXq1GJt3bFjBz179iQ4OJjw8HASEhIA2LFjBwEBAXTp0oVPPvmkzHYDuLio2C4ROHNGrevVqxcvvPACISEhtGnTho0bNwLKQ3r33Xfj7+/PmDFjCnhsV61aRZcuXQgKCmL06NGkpqYya9Ys4uPjCQsLs3j6iusHEBERQdeuXQkICCAkJITk5OQin4m0tDQeeOABOnbsSPv27S0VGkqza+jQoQU+0xqNRnNdICLFNuDhy6/Ti2nTStqvMlpwcLAUJi4ursi6qqZWrVoiIrJ27VqpXbu2nDx5Ukwmk3Tu3Fk2btwoIiLjx4+XRYsWiYjI77//Lg899JDk5eWJyWSSQYMGyfr162Xv3r3Spk0bOXv2rIiInD9/vsi+IiK9e/eWw4cPi4jI1q1bJSwsTEREhgwZIt9++62IiHz88ccWu6zJysqSxo0bF1j3+uuvy2uvvSYmk0latWolZ86cERGRJ554Qr7//nvLfunp6RITEyPt27cXERGTySStW7eWc+fOydq1a8XV1VXi4+MlMzNTmjZtKtOmTRMRkQ8++ECefvppy7WEh4eLyWSSw4cPS7NmzSQjI0O++eYbefzxxy02PfHEE/LKK6+IiMiff/4pAQEBIiIyffp06datm2RnZ0tkZKQ4OTnJypUrRURk2LBhsnTp0gL3TkTk3nvvleXLl4uISM+ePSUiIsKyzbycmJgozZs3l2PHjhXZvzhiYmLEx8dHRES++eYb8fDwkIsXL0pGRoa0bNlSTpw4UeR8s2fPltdff11ERDIzMyU4OFiOHTsmK1eulC5dukhaWlqBc1vvm52dLV26dJHExEQREVmwYIFMnDhRRET8/Pxk3bp1IiLyj3/8w2JXWWwXEblwQWTEiOkybtw7kpGhzvvss8+KiMgvv/wiffr0ERGR9957z3LO3bt3i62trURERMjZs2elR48ekpqaKiIiM2bMkFdffVVERFq1amX5PJfULysrSzw8PGTbtm0iIpKcnCw5OTlFPhMvvviizJ0797LNF8TT01NSU1NLtMvM7bffLufOnStyH66H7w6NRnNzA2yXYvRMiclRRcT87/hqEfnLetvlYPrrhyFDKue45aikHRISQvPmzQEIDAwkNjaW7t27F+izatUqVq1aZSkmnZqaypEjR9i9ezejRo2iQYMGANSrV6/I8VNTU9m8eTOjR4+2rMvKUlWZ/vrrL0tx7fvuu48XXnihyP7nzp2jTp06BdYtWLCApUuXYmNjw4gRI1i0aBGPP/44Xbp04c033+TUqVOMGDECT09P3N3dqV+/Prt27eLMmTO0b9+e+vXrA9CxY0fc3NwAuO222+jfvz8Afn5+BYbX7rrrLkuR8NatW1s8ddZs2rTJci29e/fm/PnzlnizgQMHYm9vj5+fHyaTiQEDBljOExsbC8DatWt5++23SU9PJykpCR8fH4aU8vnYunUroaGheHh4lHjvS6NPnz64uqq0de3ateP48eO0aNGiQJ9Vq1YRFRXF4sWLAUhOTubIkSOsXr2aiRMnUrNmzRLPfejQIfbu3Uu/fv0AMJlMuLm5kZyczMWLF+nZsyegnvuvv/5aqq2GYRRYrlMHateG7GzDUpNxxIgRAAQHB1vu6YYNG3jqqacA8Pf3x/9y3omtW7eyf/9+unVTXwfZ2dl06dKlyHlL6nfo0CHc3Nzo2LEjALVr1y7W7lWrVrF8+XJL7FlmZiYnTpwo0S4zjRo1Ij4+3vI51Wg0muqmLGWAPgKCyrDulsbRqpidra0tubm5RfqICC+++CIPP/xwgfWzZs0q8oNYmLy8POrUqUNkZGSx26+0v5OTE5mZmZblqKgojhw5Yvkxz87OpnXr1jz++OPcc889dOrUiV9++YXw8HC+/PJLevfuzaRJk5gzZw6nT5/mgQceKPbabWxsLMs2NjYF7kNhG4uzWYqpBWruZ31ce3t7y3rzeTIzM3nsscfYvn07LVq04JVXXilwzcUhIle8d6VR1uf+0UcfER4eXmD9b7/9dsVziwg+Pj5s2bKlwPqLFy+W2+769esXCS63t0/C0dGDw4dVYL35egpfS0nPql+/flccxiupX1RUVJmuQURYsmQJXl5eRbaVtn9mZma54yg1Go2mMiktpquLYRj/BzQ0x3Fdbq+gCmBfP/z8c+W0CiY8PJyvv/7aEs8SFxdHYmIiffr04ccff+T8+fMAJCUlAeDi4kJKSgqgvAAeHh4sWrQIUD9Eu3er+QzdunVjwYIFgIrbKo66detiMpksImT+/Pm88sorxMbGEhsbS3x8PHFxcRw/fpxjx47RunVrnnrqKYYOHWqJqxo+fDi//fYbERERRQREWVi0aBF5eXlER0dz7NgxvLy8ClwjQGhoqOUa1q1bR4MGDUr0gBTGfG0NGjQgNTXV4lkCipzHTJcuXVi/fj0xMTFA/r3ftm0b999/f7mvsTjCw8P57LPPLHFnhw8fJi0tjf79+/P1119bAs6Le+5eXl6cPXvWIrpycnLYt28fderUwdXVlU2bNgEFn3tcXFyxsWnOzs64ubnx559/Ws63bt1vdO/endxcKGlyrfUz2bt3r+Xz0LlzZ/766y+OHj0KQHp6OocPHy5yDSX18/b2Jj4+noiICABSUlLIzc0t8qzCw8P56KOPLIJ8165dpdoF6u/j9OnTuLu7F39RGo1GUw2UNnvRAXBGecNcrNolYFTlm3bz0b9/f+655x66dOmCn58fo0aNIiUlBR8fH/71r3/Rs2dPAgICePZZNU/h7rvv5p133qF9+/ZER0czb948vvrqKwICAvDx8bEEFH/44Yd88skndOzYsdTUD/3797f8SC9YsIDhw4cX2D58+HAWLFjAwoUL8fX1JTAwkIMHD1rEh4ODA2FhYdx1110FZkCWFS8vL3r27MnAgQP5/PPPqVGjBmFhYezfv98SNP3KK6+wfft2/P39mTp1Kt9++22Zj1+nTh0eeugh/Pz8GDZsmGXYCvID+Qun7mjYsCFffPEFI0aMICAggDFjxgBw4sSJCvOSTJo0iXbt2hEUFISvry8PP/wwubm5DBgwgKFDh9KhQwcCAwMtw2fWtppMJhYvXswLL7xAQEAAgYGBbN68GYBvvvnGMhxsbWtCQgJ2dsU7sb/77jveeOMNAgMD6d27N9OnT6d//9sAlaG+GEcdjz76KKmpqfj7+/P2228TEhJiuXdz5sxh7NixlokP5iHjyZMnM3DgQMLCwkrs5+DgwMKFC3nyyScJCAigX79+ZGZmFvlMvPzyy+Tk5ODv74+vr69lskhJdoGaZNC5c+cS74NGo9FUB0ZxwzkFOhhGKxE5XkX2FEuHDh2kcF6g+Ph4mjZtWk0W3Zjs2rWL999/n7lz517V/nl5eQQFBbFo0SI8PT3Lte+ECRMYPHgwo0bdGHr9ueee47777isSJ3Qj8PHHH9OyZUuGDh1apv4isHo1nD0L7dtD27aVbGAV8PTTTzN06NBiPX76u0Oj0VQ2hmHsEJEOhdeX5d/AdMMw3gF8gBrmlSLSuwLt01QB7du3JywsDJPJVG5P1f79+xk8eDDDhw8vt+C6EXnnnXeq24Sr5oknnihXf8MAHx9Ytw4OHIA2beAqHJnXFb6+vuVK/6HRaDRVQVk8XauAhcA/UJnoxwNnRaToFLlKQnu6NJrKRQR+/x2SkqBDByW8blb0d4dGo6lsSvJ0laUMUH0R+QrIEZH1IvIA0LnCLdRoNNWG2dsFytuVl1e99mg0Gs3NSFlEV87l1wTDMAYZhtEeaF6JNmk0mmqgeXOVtystDY5XaxSnRqPR3JyURXS9YRiGK/B/qCHGL4FnKtUqjUZT5RgGmMtR7t+vhhw1Go1GU3FcMZBeRFZcfpsMhFWuORqNpjpxd4eoKEhOhvh4aNasui3SaDSam4fSkqN+ZBjGrJJaVRp5vWJra0tgYCA+Pj4EBATw/vvvk3c5GGb79u2WEiXXOxMmTCiQSNSaKVOmsGHDBsvy2bNnsbe3L1C0uar597//XenniIyMZOXKlZbl5cuXM2PGjKs6lnVx7ZI4e/YsnTp1on379pZC01dr67XYZWMD3t7q/b596rPh4eFBQEAAbdq04f777ycuLu6Kx/7ggw8sSV/LS0VcT9++fYtk39doNJrqprThxe3AjlLaLY+TkxORkZHs27ePP/74g5UrV/Lqq68C0KFDB2bNurG1aVJSkqU2oZlFixbRuXPnK5Z+qUyqQ3QNHTqUqVOnVtr5/vzzT7y9vdm1axc9evQo175XK1JK4vbbwdERzp2DzEyVPmP37t0cOnTIknYkOzu71GNUh+iy5r777uPTTz+9pmNoNBpNRVOi6BKRb0trVWnkjUCjRo344osv+PjjjxER1q1bx+DBgwFVUqZr1660b9+erl27cujQIUCVQ7nrrrvw9/dnzJgxdOrUyfKfurOzM//6178ICAigc+fOnDlzBoDjx4/Tp08f/P396dOnDydOnACUGPL19SUgIMAikkwmE8899xwdO3bE39/f4p0SEZ544gnatWvHoEGDSExMLPaaFi9ebCkqbWb+/Pm89957nDp1yuLxMJlMTJgwAV9fX/z8/Jg5cybR0dEEBeWX5zxy5AjBwcEAuLu7889//pMuXbrQoUMHdu7cSXh4OLfddhuff/45oEoAhYaGMnz4cNq1a8cjjzxCXl4eU6dOJSMjg8DAQMaNGwfA+++/j6+vL76+vnzwwQcAxMbG4u3tzaRJk/D19WXcuHGsXr2abt264enpybZt20p8NtnZ2UybNo2FCxdasqLPmTPHkv/qzJkzDB8+nICAAAICAiwZ4stCcc81MjKS559/npUrV1oy5q9atYouXboQFBTE6NGjLaWjIiIi6Nq1KwEBAYSEhJCcnFzE1rS0NB544AE6duxI+/btLZULMjIyuPvuuy2ft4wS6v7Y2eWnjLh4MX+9YRg888wzNGnSxFJcuzg7Z82aRXx8PGFhYYSFhZXYrzKvZ+jQodX6j4FGo9EUi4iU2oC1wJrC7Ur7VWQLDg6WwsTFxRVZd0UOHBD58Uf1WgHUqlWryLo6derI6dOnZe3atTJo0CAREUlOTpacnBwREfnjjz9kxIgRIiLyzjvvyOTJk0VEZM+ePWJraysREREiIgLI8uXLRUTkueeek9dff11ERAYPHixz5swREZGvvvpK7rzzThER8fX1lVOnTomIyIULF0REZPbs2Zb9MjMzJTg4WI4dOyZLliyRvn37Sm5ursTFxYmrq6ssWrSoyLXcf//9FhtERE6cOCG33367iIi8+OKL8t5774mIyPbt26Vv376Wfubz9+rVS3bt2mXpP2vWLBERadWqlXz66aciIjJlyhTx8/OTS5cuSWJiojRs2FBERNauXSuOjo4SHR0tubm50rdvX4uN1vd9+/bt4uvrK6mpqZKSkiLt2rWTnTt3SkxMjNja2kpUVJSYTCYJCgqSiRMnSl5enixbtsxy30p6Nt988408/vjjlvNYL991110yc+ZMERHJzc2VixcvFrl31vTs2fOKz9X6+GfPnpUePXpIamqqiIjMmDFDXn31VcnKyhIPDw/Ztm1bAdsL2/riiy/K3LlzLc/C09NTUlNT5b333pOJEyeKiMju3bsLfN4Kk5kpsnChSI8e4+Wbbwp+Np5++mmZMWNGiXaKqGd89uzZar2e22+/Xc6dO1fk2q7qu0Oj0WjKAbBditEzZclI/w+r9zWAkUAxFdqKYhjGAOBDVIHsL0WkSFCMYRi9gA8Ae+CciPQsy7HLzcGDMGECZGeDgwPMmZMfvFKBSDFTvpKTkxk/fjxHjhzBMAxL4eNNmzbx9NNPAyqDtnXJGQcHB4unLDg4mD/++AOALVu28NNPPwFqCOX5558HVNHrCRMmcNdddzFixAhAeReioqIs8VrJyckcOXKEDRs2MHbsWGxtbWnatCm9exdfXCAhIYGGDRtalhcsWMBdd90FqLqQDz74IM8++yytW7fm2LFjPPnkkwwaNIj+/fsDqubgN998w/vvv8/ChQst3iXAUqLGz8+P1NRUXFxccHFxoUaNGly87F4JCQmhdevWAIwdO5ZNmzYVKSO0adMmhg8fTq1atQAYMWIEGzduZOjQoXh4eODn5weAj48Pffr0wTAM/Pz8iI2NLfXZlMaaNWv47rvvABXX5+rqesV9zJT0XK3ZunUr+/fvp1u3bgBkZ2fTpUsXDh06hJubm6WmZEmFwFetWsXy5csttRwzMzM5ceIEGzZssMQZ+vv7l1riyNFRDTMCnDpVcJv5M16SndfL9TRq1Ij4+Hjq169f4nVqNBpNVVKW2YuF47f+Mgxj/ZX2MwzDFvgE6AecAiIMw1guIvut+tQBPgUGiMgJwzAalcf4crFnjxJczZqpaVl79lS46Dp27Bi2trY0atSIAwcOWNa//PLLhIWFsXTpUmJjY+nVqxdQvEAzY29vj2EYgPphzy2uEjFY+nz++ef8/fff/PLLLwQGBhIZGYmI8NFHHxEeHl5gn5UrV1r2Kw0nJycyMzMty/Pnz+fMmTPMmzcPUJm9jxw5gqenJ7t37+b333/nk08+4ccff+Trr79m5MiRvPrqq/Tu3Zvg4OACP36Ojo4A2NjYWN6bl83XWtjG4mwu7R4WPq71Oc3nKOnZVBZlea4iQr9+/YoMj0VFRZXpuYkIS5YswcvLq8i2suxvxttbpZE4dw5SU8HZWa3ftWsXffr0KdHO6+V6MjMzK6xouUaj0VQEV8zTZRhGPavWwDCMcKBJGY4dAhwVkWMikg0sAO4s1Oce4CcROQEgIsUHF1UEfn7KwxUfD/b2arkCOXv2LI888ghPPPFEkR+C5ORkml2eez9nzhzL+u7du/Pjjz8Cqrbhnj17rnierl27smDBAgDmzZtH9+7dAYiOjqZTp0689tprNGjQgJMnTxIeHs5nn31m8d4cPnyYtLQ0QkNDWbBgASaTiYSEBNauXVvsudq2bcvRo0cBOHToEGlpacTFxREbG0tsbCwvvvgiCxYs4Ny5c+Tl5TFy5Ehef/11du7cCUCNGjUIDw/n0UcfZeLEiWW9lRa2bdtGTEwMeXl5LFy40HKt9vb2lmsKDQ1l2bJlpKenk5aWxtKlS8sViF7Ss3FxcSElJaXYffr06cNnn30GqHi2S5cuWdaXZWbflejcuTN//fWX5d6np6dz+PBhvL29iY+PJyIiAoCUlBRyc3OL2BoeHs5HH31kEaS7du0C1L0yC+a9e/cSFRVl2ef+++8v4IkEqFlTCS0RlaVeRJg1axYJCQkMGDCgRDuh4P2rjusREU6fPo27u/tVPAGNRqOpHMqSHHUH+TMZt6CSpD5Yhv2aASetlk9dXmdNG6CuYRjrDMPYYRjG/WU47tXh7a2GFKdOrbChRXNAt4+PD3379qV///5Mnz69SL/nn3+eF198kW7dumEymSzrH3vsMc6ePYu/vz//+c9/8Pf3v+JQ1axZs/jmm2/w9/dn7ty5fPjhhwA899xz+Pn54evrS2hoKAEBAUyaNIl27doRFBSEr68vDz/8MLm5uZai1X5+fjz66KP07Fn8iO6gQYNYt24doLxcw4cPL7B95MiRzJ8/n7i4OHr16kVgYCATJkzgrbfesvQZN24chmFYhhzLQ5cuXZg6dSq+vr54eHhYzj958mT8/f0ZN24cQUFBTJgwgZCQEDp16sSkSZNo3759mc9R0rMJCwtj//79lmBuaz788EPWrl2Ln58fwcHB7Nu3j7y8PI4ePUq9evXKfZ2FadiwIXPmzGHs2LH4+/vTuXNnDh48iIODAwsXLuTJJ58kICCAfv36kZmZWcTWl19+mZycHPz9/fH19eXll18G4NFHHyU1NRV/f3/efvttQkJCLOeMiorCzc2tiC2urjB//nOMGhWAp2cbIiIiWLt2LQ4ODiXaCeoZDRw4kLCwsGq5nh07dtC5c2fs7MoSQaHRaDRVRHGBXhXRgNGoOC7z8n3AR4X6fAxsBWoBDYAjQJvCx6qwQPrrjNzcXMnIyBARkaNHj0qrVq0kKyurmq0qSLdu3SyB8VfDO++8Iy+99FK597OeiHAjsGfPHnnmmWeq24yrIjk5WUaNGlXi9g0bRObNE7k8J+KG4KmnnpLVq1cXu+1m+O7QaDTXN1xtIL1hGDWAx4DugACbgM9EJLPUHZVnq4XVcnMgvpg+50QkDUgzDGMDEAAcvpJdNwPp6emEhYWRk5ODiPDZZ5/h4OBQ3WYV4L333uPEiRPUqVOn3PsOHz6c6Oho1qxZU/GGXWf4+vry/vvvV7cZV0Xt2rVZtGhRidvbtYOTJ+HwYfX+OvuIFouvry99+vSpbjM0Go2mAIZcocCaYRg/AinA95dXjQXqisjoK+xnhxJPfYA4IAK4R0T2WfVpi/J2hQMOwDbgbhHZa32sDh06SOHM2fHx8TRt2vRK16fRaCqAtWshIQH8/cHXt7qtuTb0d4dGo6lsDMPYISIdCq8vS8CDl4gEWC2vNQxj95V2EpFcwzCeAH5HpYz4WkT2GYbxyOXtn4vIAcMwfgOigDzUcOTeko+q0WiqAx8fJboOHVLhkDpUSqPRaMpPWb46dxmG0VlEtgIYhtEJ+KssBxeRlcDKQus+L7T8DvBO2czVaDTVQcOG0KCBSh9x9GilpLjTaDSam56yzF7sBGw2DCPWMIxY1AzGnoZh7DEMI6r0XTUazc2AYShvF6j0EVYTPTUajUZTRsri6Rpw5S4ajeZmp2lTqFNH1WOMicnPWK/RaDSasnFFT5eIHAfqAEMutzoictzcKtm+656lS5diGIYlPxGoQF1zuRrrwtfLly9nxowilZCumilTprBhwwYAVqxYQfv27QkICKBdu3aW4taVxQcffEB6enqlniM2NpYffvjBsrx9+3ZL2ZfyMmHCBEs5pJLIysqib9++xebmKq+tFWlXcX2czenhy4j157AkIiMjWblyZYnbC3u78vIKbr+az4S1XStWrCg2z51Go9HcLJQlI/3TwDyg0eX2vWEYT1a2YTcK8+fPp3v37pYs8QBNmzYt9od06NChTJ06tULOm5SUxNatWwkNDSUnJ4fJkyfz888/s3v3bnbt2lXp5WyqQ3R16NCBWbNmVdr5du3aRU5ODpGRkYwZM6Zc+16t6LqeuJLoAmjZElxcICVFpZGw5lo/E4MGDWL58uWV/rnSaDSa6qIsMV0PAp1EZJqITAM6Aw9Vrlk3Bqmpqfz111989dVXBURXbGwsvsXMq58zZw5PPPEEoLwXTz31FF27dqV169YWkZaXl8djjz2Gj48PgwcP5o477ihWwC1evJgBA9TIr7l8irm2oaOjI15eXqSkpODh4WEpmXPp0iXc3d3JycmhV69ePPPMM4SGhtK2bVsiIiIYMWIEnp6evPTSS5br8Pb2Zvz48fj7+zNq1CjS09OZNWsW8fHxhIWFERYWBijxac6I/8ILL1jsdHZ25oUXXiA4OJi+ffuybds2evXqRevWrVm+fLnlPD169CAoKIigoCA2b94MwNSpU9m4cSOBgYHMnDmzgFckNTWViRMn4ufnh7+/P0uWLCnzc3N3d2f69OkEBQXh5+fHwYMHSUxM5N577yUyMpLAwECio6PZsWMHPXv2JDg4mPDwcBISEgA4evQoffv2JSAggKCgIKKjo4vYajKZeO655+jYsSP+/v4Wz6OI8MQTT9CuXTsGDRpEYuK1Vb5at24dvXr1YtSoUXh7ezNu3DhLuZzffvsNb29vunfvbimSDpCWlsYDDzxAx44dad++Pf/73//Izs5m2rRpLFy40OLpK66fYYCXl4l58/5Bz57q3n/00UfFfiZWrVpFly5dCAoKYvTo0aSmppZql2EY9OrVixUrVlzTPdFoNJrC5JhyOJl8ks0nN5OcmVx9hhSXMVUKZo3fA9SwWq4B7LnSfhXZrteM9HPnzpUHHnhARES6dOkiO3bsEBGRmJgY8fHxEZGCmdW/+eYbefzxx0VEZPz48TJq1CgxmUyyb98+ue2220REZNGiRTJw4EAxmUySkJAgderUkUWLFhU59/333y/Lly+3LD/44IPSsGFDufvuu+X7778Xk8kkIiITJkyQpUuXiojI7Nmz5dlnnxURkZ49e8rzzz8vIiIffPCBuLm5SXx8vGRmZkqzZs3k3LlzEhMTI4Bs2rRJREQmTpwo77zzjoiItGrVSs6ePSsi6lm0aNFCEhMTJScnR8LCwiznBGTlypUiIjJs2DDp16+fZGdnS2RkpAQEBIiISFpamiUz/+HDh8X8vAtnpbdefv755+Xpp5+2bEtKSir1WY0fP95yH1u1aiWzZs0SEZFPPvlEHnzwwSLHz87Oli5dukhiYqKIiCxYsEAmTpwoIiIhISHy008/iYhIRkaGpKWlFbF19uzZ8vrrr4uISGZmpgQHB8uxY8dkyZIl0rdvX8nNzZW4uDhxdXUt9vmWZLuZWrVqWWyuXbu2nDx5Ukwmk3Tu3Fk2btwoGRkZ0rx5czl8+LDk5eXJ6NGjLfa9+OKLMnfuXBERuXDhgnh6ekpqamqBz2dp/T7++FPp3HmEfPddjpw4IXL+/HnLfTV/Js6ePSs9evSQ1NRUERGZMWOGvPrqq6XaJSLy/fffyxNPPFHq/bhWrofvDo1GU/Hk5eXJxYyLsvfMXvntyG/y5Y4v5dV1r8pDyx+SIT8MkcE/DJbBPwyWLSe3VLotXG1GeuAb4G/DMJYCBqpo9VeVIQCviSFD1OvPP+eve+01iIiAl18Gc122336DTz6B8HC47HUiKQnGj4d69eDbb8t8yvnz5zNlyhQA7r77bubPn09QUFCZ9x82bBg2Nja0a9eOM2fOALBp0yZGjx6NjY0NTZo0sXgNCpOQkEDDhg0ty19++SV79uxh9erVvPvuu/zxxx/MmTOHSZMm8fbbbzNs2DC++eYb/vvf/1r2GTp0KAB+fn74+PhYau+1bt2akydPUqdOHVq0aEG3bt0AuPfee5k1axb/+Mc/CtgSERFBr169LPaMGzeODRs2MGzYMBwcHCweOT8/PxwdHbG3t8fPz4/Y2FgAcnJyeOKJJ4iMjMTW1tZSNLk0Vq9eXcC7WLdu3SvuY82IESMACA4OLuBtMXPo0CH27t1Lv379AFXY2s3NjZSUFOLi4ix1IGvUqFHs8VetWkVUVJTFS5mcnMyRI0fYsGEDY8eOxdbWlqZNm9K7d+8r2lq4gHrhdSEhITRv3hyAwMBAYmNjcXZ2xsPDA09PT0A9uy+++MJi2/Lly3n33XcByMzM5MSJE8VeQ3H91qxZzcMPP4KtrR179sDAgUXrTW7dupX9+/dbPjvZ2dl06dKFgwcPlmgXQKNGjYiPL1y4QqPRaPIRERLTEjl56SQnk09y8tJJTl06xalLp0jJTil2HwMDN2c3mrk0w8nOqYotzueKoktE3jcMYx2qDBDARBHZValW3QCcP3+eNWvWsHfvXgzDwGQyYRgGb7/9dpmP4ejoaHkvl4eEzK9XwsnJiczMgpWY/Pz88PPz47777sPDw4M5c+bQrVs3YmNjWb9+PSaTqcCwp/n8NjY2BWyxsbEhNzcXKPqDX5wAKM1me3t7yz7W57E+x8yZM2ncuDG7d+8mLy+vRCFT+JzF2VJWzHbY2tpa7Ch8fB8fH7Zs2VJg/aVLl8p0fBHho48+Ijw8vMD6lStXltvu+vXrc+HCBctyUlISDRo0sCxbPzvr6ynpPCLCkiVL8PLyKrD+77//LlM/EcHNzSAjQ81kPHUKWrSgSJ9+/foxf/78AusjIyNLvf7MzEycnKrvC1Gj0Vw/mPJMnE49zclLJzmRfIKTyer1VMopsk3Zxe7jZOdE89rNaVG7Bc1qN6N57eY0r90cN2c37G3tq/gKilKWmC4zBqr24tX/0lUmP/9c0MsFMG2aWmf2cgEMGKDWmb1coDxcP/9cLi/X4sWLuf/++zl+/DixsbGcPHkSDw8PNm3adE2X0b17d5YsWUJeXh5nzpxh3bp1xfZr27YtR48eBVR8k3W/yMhIWrVqZVm+//77GTt2LBMnTiy3PSdOnLAID/OkAQAXFxdSUtR/FJ06dWL9+vWcO3cOk8nE/Pnz6dmzZ5nPkZycjJubGzY2NsydOxfT5SRQ1ucoTP/+/fn4448ty2ZRcv/997Nt27ZyX2dhvLy8OHv2rOXac3Jy2LdvH7Vr16Z58+YsW7YMUDMe09PTi9gaHh7OZ599ZomnO3z4MGlpaYSGhrJgwQJMJhMJCQmsXbvWss+LL77I0qVLi9jSq1cvFi5cSHa2+pKZM2dOiR5QM97e3sTExBAdHQ1QQPyEh4fz0UcfWcTyrl3qf6jirqG4fv379+e///0cLy8l7jZvTkKk4P6dO3fmr7/+snxG09PTOXz4cKl2me9TcfGQGo3m5iVP8khISWDrqa38uO9H3vnrHZ5c+SSjFo3ikV8e4c2NbzI3ai7rjq/j2MVjZJuyqVujLv6N/Lnj9jt4OPhh3gh7g2+HfcvCUQt5P/x9nunyDHf53EXXFl1p6dryuhBcUAZPl2EY04DRwBKU4PrGMIxFIvJGZRt3PTN//vwiMxFHjhzJDz/8UCCQvLyMHDmSP//8E19fX9q0aUOnTp1wdXUt0m/QoEHMnj2bSZMmISK8/fbbPPzwwzg5OVGrVi3mzJlj6Ttu3Dheeuklxo4dW2572rZty7fffsvDDz+Mp6cnjz76KACTJ09m4MCBuLm5sXbtWt566y3CwsIQEe644w7uvPPOMp/jscceY+TIkSxatIiwsDBq1aoFgL+/P3Z2dgQEBDBhwgTat29v2eell17i8ccfx9fXF1tbW6ZPn86IESOIioqyDJNeCw4ODixevJinnnqK5ORkcnNzmTJlCj4+PsydO5eHH36YadOmYW9vz6JFi4rY+vTTTxMbG0tQUBAiQsOGDVm2bBnDhw9nzZo1+Pn50aZNmwLidM+ePZYhX2sGDx7Mjh07CA4OxtbWlttuu43PP/+8SD9ratSowRdffMGgQYNo0KAB3bt3Z+9eVWHr5ZdfZsqUKfj7+yMiuLu7s2LFCsLCwpgxYwaBgYG8+OKLJfabNGkShw8fZuRIfzIy7OnZ8yG6dHmiyGdizpw5jB07lqysLADeeOMN2rRpU6JdgOWzpNFobj5EhPMZ5zl+8TjHk49bXk9eOlmi56pBzQa0cm1Fi9otaOnakhauLWhRuwW1HGpVsfUVQ1kKXh8A2otI5uVlJ2CniLStAvuAW6/gdWpqKs7Ozpw/f56QkBD++usvmjRpUqRf9+7dWbFiBXXq1Cn1eIsXL+Z///sfc+fOLZcdsbGxDB48uMCP4vXMpUuXePDBB1m0aFF1m3JVhIeH8/vvv1e3GeXiyBEVNlmnDgwcqHJ5XS1nzpzhnnvu4c8//6ww+4rjZv7u0GiuF9Jz0jl+8TixF2OJvRjL8WT1Pi0nrdj+ZnHV0rWlRWC1dG2Jk/2NGW5wLQWvY1EzFs0BRI5AdMWZpinM4MGDuXjxItnZ2bz88svFCi6A9957jxMnTpQqup588kl+/fXXK+ZfuhmoXbv2DSu4gBtOcAG0bg379qnYrpMnVR6vq+XEiRO89957FWabRqOpfESEhNQEYi7EEHsxlpiL6vVM2pli+7s4uOBexx33Ou60dG1pEVo3queqvJTF07UM6Aj8gYrp6gdsAhIBROTqUoSXg1vN06XR3EiYvV2urnDHHdfm7aoK9HeHRnN1ZOVmEXsxlmMXjnHswjFiLsZwPPk4mbmZRfra2djRsnZLi8Byr+NOqzqtqFuj7jVNgrpRuBZP19LLzcy6ijJKo9Hc+Ji9XcnJ1+7t0mg01wfJmckcu3CM6AvRxFyI4diFY8SlxCEUddTUd6qPRx0P3Ou441HXA486HjR1aYqtjW01WH59U5aUEWWf0qfRaG45bG3B1xe2bYM9e1T6iFvgH1mN5qbAHNwenRRN9IVoopOiOXbxGOfSzxXpa2vY0qJ2C1rXbY1HXQ9a122Nex13ajvWrgbLb0zK4unSaDSaUrH2dsXGgodHdVuk0WgKYxZYR5OOcuT8EaIvRHM06SjJWUXL4tSwq4FHHSWsbqt7G63rtqaFawscbB2qwfKbBy26NBrNNWNjA35+sHUrREWpIUZbPbKg0VQrSRlJHDl/RImspCMlCqxa9rW4vd7t3Fb3Nm6rdxu31b0NNxc3bIzypPLUlIUS76hhGHMvvz5ddebcWNja2hIYGIivry9Dhgzh4sWL1WrP9u3beeqpa5/XMGHChGKLbANMmTKFDRs2ALBixQrat29PQEAA7dq1sxR1riw++OAD0tPTK/UcsbGx/PDDD5bla7mnpd1HM1lZWfTt29dSZPpabK1Iu1555RWaNWtGYGAgnp6ejBgxgv3795e6j4cHRETM4dSpeMpQyakIFXE9d999N0eOHCn/yTWaG5zU7FQiT0fy474feWPDG4xfNp7xy8bzxsY3WLBvATsSdpCclYyLgwuBjQMZ1XYUU7tN5cshXzJ/5Hze6P0GE9tPJLRVKM1qN9OCq5IozdMVbBhGK+ABwzC+o1AmehFJqlTLbgCcnJyIjIwEYPz48XzyySf861//qjZ7OnToQIcORSZLVBhJSUls3bqVDz74gJycHCZPnsy2bdto3rw5WVlZllqKlcUHH3zAvffeS82aNSvtHOYf/nvuuQeo/Hu6a9cucnJyLJ+j8lDY1ormmWeesdTZXLhwIb1792bPnj0Fan5aYxjw999zqF/fl337mtK6NVhVKLoiFXE9jz76KG+//XaBGqMazc1GjimHYxeOcfj8YUuLTy1as7SmfU1ur3s7nvU98aznye31bqdRrUa3xOzB65XSpOznwG+AN7CjUNteyn63JF26dCEuLg6A6OhoBgwYQHBwMD169ODgwYOASv44fPhwAgICCAgIYPPmzQC8//77+Pr64uvrywcffGA55uuvv463tzf9+vVj7NixlsLDvXr14oUXXiAkJIQ2bdqwceNGANatW8fgwYMBuOOOOwgMDCQwMBBXV1e+/fZbTCYTzz33HB07dsTf39/imRIRnnjiCdq1a8egQYNITEws9hoXL15sKV6dkpJCbm4u9evXB1T9Py8vL1JSUvDw8LCUv7l06RLu7u7k5OTQq1cvnnnmGUJDQ2nbti0RERGMGDECT09PXnrpJUD98Hp7ezN+/Hj8/f0ZNWoU6enpzJo1i/j4eMLCwiwlcObPn4+fnx++vr4FqgA4OzvzwgsvEBwcTN++fdm2bRu9evWidevWLF++3HKeHj16EBQURFBQkOVZTJ06lY0bNxIYGMjMmTML3NPU1FQmTpyIn58f/v7+LFmypMyfD3d3d6ZPn05QUBB+fn4cPHiQxMRE7r33XiIjIwkMDCQ6OpodO3bQs2dPgoODCQ8PJyEhAYCjR4/St29fAgICCAoKIjo6uoit1/p8S2PMmDH079/f4okqzs7FixcTFbWd2bPH8X//F8jOnRlVfj09evRg9erVxdbT1GhuRESEhJQE1sasZfb22Tz7+7Pctfgu/vHHP/hi5xesO76O+NR47G3s8a7vzZA2Q/i/Lv/H54M+Z8HIBbzZ500mBE6gW8tuNHZurAVXdSMipTbgsyv1qewWHBwshYmLiyuyrqqpVauWiIjk5ubKqFGj5NdffxURkd69e8vhw4dFRGTr1q0SFhYmIiJ33XWXzJw507LPxYsXZfv27eLr6yupqamSkpIi7dq1k507d0pERIQEBARIenq6XLp0SW6//XZ55513RESkZ8+e8uyzz4qIyC+//CJ9+vQREZG1a9fKoEGDCti4fft28fPzk4sXL8rs2bPl9ddfFxGRzMxMCQ4OlmPHjsmSJUukb9++kpubK3FxceLq6iqLFi0qcr3333+/LF++3LL84IMPSsOGDeXuu++W77//Xkwmk4iITJgwQZYuXSoiIrNnz7bY2rNnT3n++edFROSDDz4QNzc3iY+Pl8zMTGnWrJmcO3dOYmJiBJBNmzaJiMjEiRMt192qVSs5e/asiKjn36JFC0lMTJScnBwJCwuznBOQlStXiojIsGHDpF+/fpKdnS2RkZESEBAgIiJpaWmSkZEhIiKHDx8W82es8D20Xn7++efl6aeftmxLSkoqco+sGT9+vOU+tmrVSmbNmiUiIp988ok8+OCDRY6fnZ0tXbp0kcTERBERWbBggUycOFFEREJCQuSnn34SEZGMjAxJS0srYuu1Pl9rpk+fbrnvZmbOnCmPPPJIqXb27NlTVq+OkHnzRObOzZZOnar+evr27Svbt28v8dquh+8OjaYk0rPTZffp3bJw70J5dd2rcs+Se2TwD4MLtCE/DJFHVzwqH2z5QFYeXilHzx+VHFNOdZuusQLYLsXombKkjHjUMIwAoMflVRtEJKrSVODVMmRIydsef1wVugb47Tf45JOS+xYuml0KGRkZBAYGEhsbS3BwMP369SM1NZXNmzczevRoSz9z7bk1a9bw3XffASoezNXVlU2bNjF8+HBLvcERI0awceNG8vLyuPPOO3Fycrp8eQWvb8SIEQAEBweXOKx37tw57rvvPn788UdcXV1ZtWoVUVFRlviX5ORkjhw5woYNGxg7diy2trY0bdqU3r17F3u8hISEAkNLX375JXv27GH16tW8++67/PHHH8yZM4dJkybx9ttvM2zYML755psCQz3m2oJ+fn74+PhY6iS2bt2akydPUqdOHVq0aEG3bt0AuPfee5k1a5ZlmMtMREQEvXr1stgzbtw4NmzYwLBhw3BwcLB45Pz8/HB0dMTe3h4/Pz/LvcrJyeGJJ54gMjISW1tbDpchCGn16tUsWLDAsly3bt0r7mON9TP76aefimw/dOgQe/fupV+/fgCYTCbc3NxISUkhLi6O4cOHA6quYnFc6/O9EnI5kXJJdppxdQUnJ9i48RB79lT99TRq1Ij4+HiCg4Ov6jo1mqpCRDidepqD5w5y8NxBDpw7QOzF2CK5sFwdXfFu4E2b+m3wqu+FZ31PatpXXpiFpvIoS8Hrp4DJgPlXYp5hGF+IyEeVatkNgDmmKzk5mcGDB/PJJ58wYcIE6tSpU+YYHfMPWVnXm3G8HCxja2tb7FCKyWTi7rvvZtq0afj6+lqO+dFHHxEeHl6g78qVK8vkcnZyciIzs2DmYT8/P/z8/Ljvvvvw8PBgzpw5dOvWjdjYWNavX4/JZLKc39puGxsby3vzsvk6CttSnG2l3R97e3vLPtbnsT7HzJkzady4Mbt37yYvL6/EH/7C57wW1/yVnpmI4OPjw5YtWwqsv3TpUpmOf63P90rs2rWLDh06lGinNf7+sGmT0LSpD2vXbsFan1b29WRmZlr+WdForidyTDlEX4jmwNkD7D+7nwPnDhSZTWhr2NK6bmu8G3jjVd8L7wbeOg7rJqIs0xMmAZ1EZJqITAM6Aw9VrllXwc8/l9zMXi5Q70vrexW4uroya9Ys3n33XZycnPDw8LDUABQRdu/eDUCfPn347LPPACWKLl26RGhoKMuWLSM9PZ20tDSWLl1Kjx496N69Oz///DOZmZmkpqbyyy+/lMumqVOn4u/vz913321ZFx4ezmeffWaJtzp8+DBpaWmEhoayYMECTCYTCQkJrF27tthjtm3blqNHjwIqvmndunWWbZGRkbRq1cqyfP/99zN27FgmTpxYLrtB1eAz/6DPnz+f7t27A+Di4kJKSgoAnTp1Yv369Zw7dw6TycT8+fPp2bNnmc+RnJyMm5sbNjY2zJ07F5PJVOQchenfvz8ff/yxZfnChQuWa922bVu5r7MwXl5enD171nLtOTk57Nu3j9q1a9O8eXOWLVsGKM9penp6EVuv5vm++OKLLF1qXXCieJYsWcKqVasYO3ZsiXZC/v1zdoaePb1ISTnL999X3fWY+/n4+JT5vms0lUVadhrb47fz3e7vmLp6KmMWj+G5P57j68iv2Rq3leSsZFwdXenUrBPjA8Yzo88MFo5ayPvh7zM5eDI93XvqOKybjLLk6TIAk9WyiUIzGTVYUicsWLCAefPm8eijj/LGG2+Qk5PD3XffTUBAAB9++CGTJ0/mq6++wtbWls8++4wuXbowYcIEQkJCAJg0aRLt27cH1FBcQEAArVq1okOHDri6upbZnnfffRcfHx8CAwMBeO2115g0aRKxsbEEBQUhIjRs2JBly5YxfPhw1qxZg5+fH23atClRvAwaNIjZs2czadIkRIS3336bhx9+GCcnJ2rVqsWcOXMsfceNG8dLL73E2LFjy30v27Zty7fffsvDDz+Mp6cnjz76KACTJ09m4MCBuLm5sXbtWt566y3CwsIQEe644w7uvPPOMp/jscceY+TIkSxatIiwsDDL8K6/vz92dnYEBAQwYcIEy7MAeOmll3j88cfx9fXF1taW6dOnM2LECKKiogoMr10tDg4OLF68mKeeeork5GRyc3OZMmUKPj4+zJ07l4cffphp06Zhb2/PokWLitj69NNPl/v57tmzxzLkW5iZM2fy/fffk5aWhq+vL2vWrLEM55Zk54QJE3jkkUdwcnJi3bot/N//LeaTT57is8+SMYzKv54zZ87g5ORUIc9Doykv59PPs+/sPvYl7mP/2f0cTz5eZKiwRe0WtG3QlnYN29G2YVvcnN20qLqFKEvB62eB8eTXXxwGzBGRDyrVMitu1YLXqampODs7k56eTmhoKF988QVBQUHValP37t1ZsWIFderUKbXf4sWL+d///sfcuXPLdfzY2FgGDx7M3r17r8HKquPSpUs8+OCDFs/mjUZ4eDi///57pR3/4EHYuROcnWHQoMpPmDpz5kxq167Ngw8+WGKfW+G7Q1P5mOOx9ibutQit02mnC/Sxs7HDs54nPg19aNewHd4NvHFxdKkmizVVyVUXvBaR9w3DWAd0R3m4JorIroo3UVOYyZMns3//fjIzMxk/fny1Cy6A9957jxMnTpQqup588kl+/fVXVq5cWXWGVRO1a9e+YQUXUKmCC6BNGzh2DC5eVGWC/P0r9XTUqVOH++67r3JPorklERHiU+LZk7iHvYl72Zu4l/MZ5wv0cbJzol3DdpbWpn4bXTZHU4ArerquB25VT5dGczNw9iz88YcqFTRoELhU8z/6+rtDUxasRdaeM3vYk7iHC5kXCvRxcXDBp6EPvo188W3ki3sdd2xtdP0rzTV4ujQajeZaaNhQFcQ+dgy2b4devVT2eo3meuNM6hmizkSplhhFUkbBwiuujq74NfKziKyWri11PJamXGjRpdFoKp3AQDh1ChIS4ORJVRBbo6luLmRcYPeZ3USdiWL36d0kphes1mAWWX6N/fBr5Efz2s21yNJcE1p0aTSaSqdGDSW8tm2DHTvAzQ3s7avbKs2tRnpOOnsT97L79G4iT0dy4tKJAttr2dfCv7E/fo388G/srz1ZmgqnLMlRRwD/ARqhAukNQESkdhn2HQB8CNgCX4rIjBL6dQS2AmNEZHHZzddoNDcKt90G0dFw/jzs2QPXwbwQzU1Obl4uR84fIfJ0JLtO7+LQ+UPkSZ5lu6OtIz4NfQhoEkBA4wA86npgY5QlfaVGc3WUxdP1NjBERA6U58CGYdgCnwD9gFNAhGEYy0VkfzH9/gNU7jSqCub8+fP06dMHgNOnT2Nra0vDhg2JjY2ladOm7N+//wpHKD/Lli2jTZs2tGvXrsKPbc0rr7yCs7NzkdI7AB988AH16tXj/vvvByA3N5cmTZrw0EMP8dZbb13V+S5evMgPP/zAY489dsW+zs7OpKamlum4eXl5TJkyhTVr1mAYBjVq1ODHH3/Ew8Pjquy8ErGxsWzevJl77rmnUo5vpvDnYNq0aYSGhtK3b99i++/Zs4f33nuvQB616sAwoGNH+P13OHQIPDygnJWUNJorkpCSwK7Tu9iZsJOoM1Fk5GZYttkYNrRt0JaAxgEENAnAu4E3djZ6wEdTdZTl03amvILrMiHAURE5BmAYxgLgTqCwGnkSWAJ0vIpzVBv169e3lPqxFinmPFNXIjc3Fzu78v2xL1u2jMGDB1e66CqJ3Nxcvv76a3bu3GlZt2rVKry8vPjxxx/597//fVWu+IsXL/Lpp5+WSXSVh4ULFxIfH09UVBQ2NjacOnXKkgS1MoiNjeWHH36oEtFl/Tl47bXXSu3v5+fHqVOnOHHiBC2rOZiqXj2VRuLQIdiyBcLDKz93l+bmJj0nnagzUexKUEKrcK6sZi7NaN+kPYFNAvFr7KdrFmqqlbL4UbcbhrHQMIyxhmGMMLcy7NcMOGm1fOryOguGYTQDhgOfl9niGwCTycRDDz2Ej48P/fv3JyND/afVq1cv/vnPf9KzZ08+/PBDduzYQc+ePQkODiY8PJyEhAQA/vvf/9KxY0cCAgIYOXIk6enpbN68meXLl/Pcc88RGBhIdHQ00dHRDBgwgODgYHr06MHBgwcBmDBhAk899RRdu3aldevWloLBAO+88w4dO3bE39+f6dOnW9a/+eabeHl50bdvXw4dOlTsda1Zs4agoKACYnH+/Pk8/fTTtGzZkq1bt1rW//bbbwQFBREQEGDxCL7yyiu8++67lj6+vr7ExsYydepUoqOjCQwM5LnnnivVTjP33Xcf//vf/yzL48aNY/ny5QX6JCQkWEr9ADRv3py6devy1Vdf8cwzz1j6/fe//+XZZ58lNjYWb29vJk2ahK+vL+PGjWP16tV069YNT09PS6mfV155hfvuu4/evXvj6elpKeg9depUNm7cSGBgIDNnziQzM5OJEyfi5+dH+/btLeVq5syZw7BhwxgyZAgeHh58/PHHvP/++7Rv357OnTuTlJRUrs/BhAkTLM84IiKCrl27EhAQQEhIiKWszpAhQwoU665OAgJU2oiLFyEqqrqt0dxoiAgxF2JYvH8x//zzn9yz5B7e3PgmK4+u5HTaaZwdnOneojtPhTzF10O/5vPBn/Nwh4fp1LyTFlya6kdESm3AN8W0r8uw32hUHJd5+T7go0J9FgGdL7+fA4wq7ljBwcFSmLi4uCLrqovp06fLO++8IyIiMTExYmtrK7t27RIRkdGjR8vcuXNFRKRnz57y6KOPiohIdna2dOnSRRITE0VEZMGCBTJx4kQRETl37pzl2P/6179k1qxZIiIyfvx4WbRokWVb79695fDhwyIisnXrVgkLC7P0GzVqlJhMJtm3b5/cdtttIiLy+++/y0MPPSR5eXliMplk0KBBsn79etm+fbv4+vpKWlqaJCcny2233Wa5HmumTZtmsUVEJD09Xdzc3CQtLU1mz54tTz75pIiIJCYmSvPmzeXYsWMiInL+/Pki90lExMfHR2JiYiQmJkZ8fHws60uyU0SkVq1aIiKybt06ufPOO0VE5OLFi+Lu7i45OTkF7D158qS0atVKAgIC5Nlnn5WdO3eKiEhqaqq0bt1asrOzRUSkS5cuEhUVZXl2UVFRYjKZJCgoSCZOnCh5eXmybNkyy/mmT58u/v7+kp6eLmfPnpXmzZtLXFycrF27VgYNGmQ5/7vvvisTJkwQEZEDBw5IixYtJCMjQ7755hu57bbb5NKlS5KYmCi1a9eWzz77TEREpkyZIjNnzizX58C8nJWVJR4eHrJt2zYREUlOTrbck02bNsngwYOLPNPq4uxZkR9+UO306ao99/X03aEpG6lZqbLp+Cb5cOuHcv/S+2XwD4MtbcgPQ+S5Vc/J/D3z5dC5Q2LKM1W3uRqNANulGD1Tloz05a9YrDgFtLBabg7EF+rTAVhweUiqAXCHYRi5IrKs3GcbMqR8/W+7DT74oOj+V1n02hoPDw9LzcPg4GBiY2Mt28aMGQPAoUOH2Lt3L/369QOUd8xcL27v3r289NJLXLx4kdTUVMLDw4ucIzU1lc2bNzN69GjLuqysLMv7YcOGYWNjQ7t27Thz5gyghgJXrVplqSeYmprKkSNHSElJYfjw4dSsqf4LLKkWX0JCAm3btrUsr1ixgrCwMGrWrMnIkSN5/fXXmTlzJlu3biU0NNQSO1WvXr2y37xS7AwNDbX06dmzJ48//jiJiYn89NNPjBw5sshwbfPmzTl06BBr1qxhzZo19OnTh0WLFtGnTx969+7NihUraNu2LTk5Ofj5+REbG4uHhwd+fn4A+Pj40KdPHwzDsGw3c+edd+Lk5ISTkxNhYWFs27atSJb+TZs28eSTTwLg7e1Nq1atOHz4MABhYWG4uLjg4uKCq6srQy5//vz8/Ii67P4py+fAmkOHDuHm5kbHjmqkvnbt/LkujRo1Ij6+8J9f9dGgAfj4wN69apjxjjvAQSfu1lxGRDh56SQRcRFsj9/OgXMHMEl+CeB6TvUIdgsm2C2YgCYBODs4V6O1Gk3ZKcvsxebAR0A3QIBNwNMicuoKu0YAnoZheABxwN1AgWAXEbFENBuGMQdYcVWC6zrD0dHR8t7W1tYyvAhYYopEBB8fH7Zs2VJk/wkTJrBs2TICAgKYM2cO69atK9InLy+POnXqWOLKSrNBLlcdEBFefPFFHn744QJ9P/jggzLFYjk5OZGZmWlZnj9/Pn/99Rfu7u6Amlywdu1aRKTY49nZ2ZGXlz9zyPpY1pRkZ2Huu+8+5s2bx4IFC/j666+L7ePo6MjAgQMZOHAgjRs3ZtmyZfTp04dJkybx73//G29vbyZOnFigvxkbGxvLso2NDbm5uZZtha+vuOs13/eS7LrSecryOSh8vpKeY2ZmJk5OTqXuX9X4+qq8XefPqzQSXbpUt0Wa6iTblM2eM3uIiI8gIi6iQM4sG8MG34a+BDcNpkPTDrRybaVTOWhuSMoSyf0N8ANquBDg3svr+pW2k4jkGobxBGpWoi1qSHKfYRiPXN5esXFc1+qhqgAPV3nw8vLi7NmzbNmyhS5dupCTk8Phw4fx8fEhJSUFNzc3cnJymDdvHs2aqVA4FxcXS4xO7dq18fDwYNGiRYwePRoRISoqioCAgBLPGR4ezssvv8y4ceNwdnYmLi4Oe3t7QkNDmTBhAlOnTiU3N5eff/65WMHTtm1bjh49CqhCz5s2beLkyZMWwfDNN98wf/58ZsyYweOPP05MTAweHh4kJSVRr1493N3dWbFiBQA7d+4kJiamyHWVZmejRo0K2DNhwgRCQkJo0qQJPj4+RezduXMnTZo0oWnTpuTl5REVFYX/5eJ/nTp14uTJk+zcudPiWSoP//vf/3jxxRdJS0tj3bp1zJgxg4SEhALXERoayrx58+jduzeHDx/mxIkTeHl5FZiIUBpl+RxY4+3tTXx8PBEREXTs2JGUlBScnJyws7Pj8OHD+Pr6lvs6KxMbGyW0fv0VYmKgWTOdNPVW40LGBbbHb+fvuL+JPB1JlinfW+/q6EqHph3o0LQD7Zu0p5ZD5U2C0WiqirKIroYi8o3V8hzDMKaU5eAishJYWWhdsWJLRCaU5Zg3Cw4ODixevJinnnqK5ORkcnNzmTJlCj4+Prz++ut06tSJVq1a4efnZ/mBvfvuu3nooYeYNWsWixcvZt68eTz66KO88cYb5OTkcPfdd5cquvr378+BAwfoctml4OzszPfff09QUBBjxowhMDCQVq1a0aNHj2L3HzhwoKWY8E8//UTv3r0LeGzuvPNOnn/+eT799FO++OILRowYQV5eHo0aNeKPP/5g5MiRfPfddwQGBtKxY0fatGkDqJmg3bp1w9fXl4EDB/LOO+8Ua2dh0dW4cWPatm3LsGHDirU3MTGRhx56yDLsGhISwhNPPGHZftdddxEZGUndq8hbEBISwqBBgzhx4gQvv/wyTZs2pWHDhtjZ2REQEMCECRN47LHHeOSRR/Dz88POzo45c+YUuF9XoqyfAzMODg4sXLiQJ598koyMDJycnFi9ejXOzs6sXbuWQYMGlfs6K5vatVW+rogIlTi1QQOoqWOdb1pEhOPJx9kWt41tcds4dL7gpJ3WdVoT0iyEDk070KZ+G+3N0tx0XLHgtWEYq1FB7vMvrxoLTBSRPpVrWj664PX1w/Dhw3n77bfx9PSsblNIT0/Hz8+PnTt34urqWu79Bw8ezDPPPGOZXVlWSstjdj2SlZVFz5492bRpU7nTlFQFIrB+PcTHqzqNffooL1hlob87qhZTnokD5w6w9dRW/j71d4GUDvY29gQ0DqBT8050bNqR+jXrV6OlGk3FcS0Frx8APgZmomK6Nl9ep7kFMQ+jVbfoWr16NQ888ADPPvtsuQXXxYsXCQkJKZDO4mbmxIkTzJgx47oUXKCSpnbuDL/9BmfPqqLYISHVbZXmWsg2ZbMrYRdbTm1hW9w2UrLzh8NdHV3p2LQjnZt3JqBJADXsalSjpRpN1XJFT9f1gPZ0aTQ3P+fPw+rVYDKpzPWVpev1d0flkJadxvb47Ww5tYUdCTvIzM2fKNPUuSmdmneic/POeDfw1qV2NDc95fZ0GYbxvIi8bRjGRygPVwFE5KkKtlGj0dzC1K+vPFxbtqjZjK6uUCiMT3OdkZKVwtZTW9l8cjORZyLJzcuf4Xt73dvp0qILXZp3oXnt5jo+S6Oh9OFFc+mf7aX00Wg0mgrDwwMuXICDB2HTJhgwQAfWX28kZyaz+eRmNp/cTFRilKWAtIGBb0NfurboSufmnWlYq2E1W6rRXH+UKLpExJxDIV1EFllvMwxjdDG7aDQazTUTGKhKBJ0+DRs2QL9+uj5jdWMWWptObGJP4h7k8uCHrWFL+ybt6daiG52bd8a1RvkntGg0txJliax9EVWu50rrNBqN5pqxsYFu3eD33yEpCTZvVsuVOaNRU5RLWZfYfHIzG49vLCC07GzsLEIrpFkILo4u1WypRnPjUFpM10DgDqCZYRizrDbVBnKL3+vWwtnZmdTUVMvynDlz2L59Ox9//HG5j7Vu3TreffddS/LQstCrVy/effddOnQoEqun0dzQODpCaKgKrD95UuXw6tRJzXTUVB5p2WlsPbWVjSc2Enk60lJ6x1podW7eWScq1WiuktI8XfGoeK6hwA6r9SnAM5VplEaj0dSpAz17wtq1cOwY2NlBcPB1KrxEICVF1TXKyFBjpGbeeksFqqWmQm6h/1eHD4eBA9X7w4dhyRIVxObiomYWWLcGDSrF3ZdtyiYiLoL1x9cTER9hCYa3MWwIahJEaKtQLbQ0mgqitJiu3cBuwzCWAmki6l8ewzBsgbKn1b5FOXv2LI888ggnTpwAVH3Dbt26sW3bNqZMmWLJGP7NN9/g5eVVYN+0tDSefPJJ9uzZQ25uLq+88gp33nknGRkZTJw4kf3799O2bdsCNR01mpuRhg2Vx2vdOqVJ7OwK6plqIzER9uyBQ4fg6FGIi4P0dLWtYUOwrgW6bx8kJxd/HCtPOadPq7HUkvj+ezWlE5QLMCsLmjcHd/f89WXElGdi95ndrI9dz5ZTW8jIVd8lBgZ+jfwIbRVK1xZdqe1Y+wpH0mg05aEsMV2rgL6A+dvB6fK6rpVl1I1CRkYGgVa/AElJSQwdOhSAp59+mmeeeYbu3btz4sQJwsPDOXDgAN7e3mzYsAE7OztWr17NP//5T5YsWVLguG+++Sa9e/fm66+/tiTy7Nu3L7Nnz6ZmzZpERUURFRVFUFBQVV6uRlMtNGkC3bvDxo2wfz/Y20MxpTYrl7g4qFVLud9AqcC5cwv2cXICNzdo2lR5vswuuX/8Q6lFZ2dwcMjvbxhqnZl27eCFF5R4u3RJJS4zt4sXVc0kM8uXq4KVZurVU1M/PTyUO7CYOpsiQvSFaNbGrGX98fUkZ+ULQc96nvRs1ZMerXpQz6neVd0ijUZzZcoiumqIiOXfMRFJNQzjuprEPWT+kEo57s9jSy+C7eTkRGRkpGXZHNMFKmP6/v37LdsuXbpESkoKycnJjB8/niNHjmAYBjk5OUWOu2rVKpYvX867774LQGZmJidOnGDDhg089ZRKj+bv728p3qzR3Ow0bw5duypH0O7dapStbdtKPGFenlJ427apFhcHEybAyJFqu5+fMsjLC9q0gRYtlCgqbuyzrK65Bg2UuiwL/fpBbKwKeIuJUTMOkpJUgjPIF11xcSSuXcG6usmszT3CqfT8EjxNnZvSy70XPd170tRFJ4vVaKqCsoiuNMMwgkRkJ4BhGMGAHte6Anl5eWzZsgUnJ6cC65988knCwsJYunQpsbGx9OrVq8i+IsKSJUuKDDsCOsGg5palVSsVEvX337BrF2RmKj1ToX8SZ86oobvVq+Hcufz1zs4F47Hatq1k1XcFhlj9oymihiZjYlQLDCQjJ4PNJzfz5+ov2HNg3eWOBq416xLaqCNhPoO5vWM4xlXULNVoNFdPWUTXFGCRYRjxl5fdgDGVZtFVcCWPVHXQv39/Pv74Y5577jkAIiMjCQwMJDk5mWbNmgHKM1Yc4eHhfPTRR3z00UcYhsGuXbto3749oaGhzJs3j7CwMPbu3UtUVFRVXY5Gc11w223Ky/X333DggBqJ69y5AvN4ffGF8myBGtfs0kWlyW/b9vpNFmYY4OaGNGlCVOta/BnzO5uXbibLlAVGKg5NmtHpojO9Yw0CU52x4wKsngtOi2H+/Pzrys4uOPyp0WgqnCuKLhGJMAzDG/ACDOCgiBQdE9MUYNasWTz++OP4+/uTm5tLaGgon3/+Oc8//zzjx4/n/fffp3fv3sXu+/LLLzNlyhT8/f0REdzd3VmxYgWPPvooEydOxN/fn8DAQEJ0VWDNLYiHB9SooWK8jh9XHq8ePa5CL2Rmqirbfn5KzYGaSVizJvTvr4bobgDPcmJaIquPrebPY3+SmJ5oWd+uQTv6hPShW4tuauZhZqYK/N+7Vw2durgUFFzjxil3YmAgBAWpodPrVWhqNDcoZSp4bRiGL9AOsJSDF5HvKtGuAuiC1xqNpjAXLqh49owMFd/eq1fZSgbFHz9O0y1bVDB6Sopylf3rX5VsbcWSbcpm88nN/BH9B1GJ+R7vhjUb0sejD709euPm4lb6QayD/Y8ehf/7PxXLZqZmTQgIUAKsWzcl0jQaTZkod8Frqx2nA71QomslMBDYBFSZ6NJoNJrC1K2rHFJr16rJfb//rmLbGzcuYYecHDUmuXevGlYD5c3p37+qTL5mYi7EsCp6FWtj15KWkwaAg60DXZt3pW/rvvg39i973Kd1v9tvhwUL1L3ZtQt27lSTB7ZsUc3fP190JSaq2ZJ2ZYlO0Wg01pTlr2YUEADsEpGJhmE0Br6sXLM0Go3mytSqpSbybdyotMCaNWq00Men0MjgmTNq6mNGBphMagjtrrtuiCHEjJwM1h9fz6roVRxJOmJZ71nPk36t+xHaKrRiEpc6OUHHjqqBuqE7d6rMtNajCm+8oe5nYKCKd+vQodx5wjSaW5WyiK4MEckzDCPXMIzaQCLQupLt0mg0mjLh6Ai9e6tcpfv3Q1SU0gtdu6rYL0DNPszOVmkZmjeH++6rVpvLQnRSNL8d/Y11x9eRmZsJQC37WoS5h9Hvtn60rlvJX8ONGsGAAQXXZWWpWZzp6UrEbt6sRGubNkqA9eql9tNoNMVSFtG13TCMOsB/UeWAUoFtlWmURqPRlAcbGxV+1Lix0gFJcRnsm3eIZoMCaNLEUC6x8HDlkUlIqG5zSyQzN5MNxzfw29HfCni1fBr6EH5bON1adsPBthpnGDo6wqefKk/X9u1qpmdUlArQP3QIWrbMF13Jyeq+62FIjcZCqX8NhgoOeEtELgKfG4bxG1BbRHSuAo1Gc93RpLEwyPsYF9fuIjc9m30ranPcrzWBgeBoziZ/HXLq0il+PfIrf8b8aYnVqmVfiz4efRhw+wBauLaoZgsL0bgxDBqkWmYmREYqAWadCPa//4WICJUhv1MnNQxZS9dv1NzalCq6REQMw1gGBF9ejq0CmzQajab8pKXB33/jePo0jerC2YZNuZTThDPRcOqUmoTn7l7dRuZjyjPxd9zf/HL4lwIzEL3qe3GH5x10b9m9er1aZaVGDTUDtHPnguvPnVPDkBs3qmZrq2LoOnVS+c8aNKgeezWaaqQsft+thmF0FJGISrdGo9FoyosIHDmivC25ueDoiBEURCN3d/qkGGzbpmK8tmxRCdtbtqxec5Mzk/k9+nd+Pfor59JV1ntHW0d6uffiDs87Kj9Wq6qYMUNlyt+2TWWz3btX1XDavVuJsTGXc2zn5KghyOt8QoNGUxHYlKFPGEp4RRuGEWUYxh7DMPTwImBra0tgYKClzZgxo9T+//73vwssd+16dTXDIyMjWblyZYnbd+3axaRJkwCV9b5hw4a0b98eT09PwsPD2bx581Wdtzjc3d05d+4c2dnZhIaGkmtdKkWjqQpiYlR8UW6uUlSDBqkMqoZB7drQp49ywjg6Kg2wdatKPH/xYtWaeeT8EWZumcmE/01gbtRczqWfo5lLMyYHTebbYd/yRMgTN4/gMtOkCQwdCm++Cd9/D88+q3J+WXvFli6FBx6Azz9X6Sr0d4jmJqbE5KiGYbQUkROGYbQqbruIHK9Uy6y4XpOjOjs7k5qaeuWOV9m/JMyFtT/++ONit48ePZqXXnqJgICAIn3Xrl3L2LFjWbt2LW0roHacu7s727dvp0GDBrz66qvcfvvtjBs37pqPq9GUmbw8NXzVurUqPF0C5tCjI0fi+fHHpjg6wp13wvDhanJjZWDKM7Hl1BaWH1rOgXMHADAw6NC0A0PaDCGwSaCup/raayr2y0zNmioOrHNn9arjwDQ3ICUlRy3N07UMLOLqfRE5bt0qyc4bnuTkZLy8vDh06BAAY8eO5b///S9Tp04lIyODwMBAiyhxvvxNv27dOnr16sWoUaPw9vZm3LhxmMVwREQEXbt2JSAggJCQEJKTk5k2bRoLFy4kMDCQhQsXFjh/SkoKUVFRBAQEFGtfWFgYkydP5osvvgAgOjqaAQMGEBwcTI8ePTh48CAAP//8M506daJ9+/b07duXM2fOAHD+/Hn69+9P+/btefjhh7EW7cOGDWPevHkVdSs1muLJy1NDVZkqjQI2NtCzZ6mCC/JDjzp1Ui0rC378ESZNUq9paRVnYmp2Kj8d+IlJP0/iP3/9hwPnDlDLvhbDvIYxe/BspvWcRnu39lpwAbz8Mrz3nsqb1rJlfhzYO++omZJmylA9RaO53iktpsv62+C69nkPGTKkUo7788+lF9I2iygzL774ImPGjOHjjz9mwoQJPP3001y4cIGHHnoIgI8//pjIyMhij7Vr1y727dtH06ZN6datG3/99RchISGMGTOGhQsX0rFjRy5dukTNmjV57bXXSvR0bd++HV9f31LtDgoKYvbs2QBMnjyZzz//HE9PT/7++28ee+wx1qxZQ/fu3dm6dSuGYfDll1/y9ttv89577/Hqq6/SvXt3pk2bxi+//GIRbwC+vr5EROjQP00lkp4OmzapIO2kJAgNLfchnJ3hpZdUhoPvvlMZD+bOhUWLoG9fGDKkYC7Q8pCQksDyQ8v549gfquA00NS5KUO9htKndR9q2NW4whFuQcx5vtq0UfnTEhJUDNjff6uAezPbtsEPP6h8YJ06qXqZWrRqbjBKE11SwnvNZZycnIoVUf369WPRokU8/vjj7N69u0zHCgkJoXnz5gAEBgYSGxuLq6srbm5udLycIbp27dpXPE5CQgINGzYstY/ZO5WamsrmzZsZPXq0ZVtWlvqhOHXqFGPGjCEhIYHs7Gw8PDwA2LBhAz/99BMAgwYNom7dupZ9bW1tcXBwICUlBRddp01T0Zw5A3/9pTxcNWuCt/c1Hc7LS4Ua7d4NixeroccVK+CXX1R2gzvvVNVvyvK7fuDsAZYdXMaWU1uQy1+XgY0DudP7ToLdgrVHqzy4ucGwYapZExGhsuMfO6ZKFtWvr7Lnd+qkHlS5K55rNFVPaaIrwDCMSyiPl9Pl91xeFhG5sgKoIq7kkapq8vLyOHDgAE5OTiQlJVnEVGk4Ojpa3tva2pKbm4uIlPvL2snJiUzzsEsJ7Nq1i7Zt25KXl0edOnWKFY5PPvkkzz77LEOHDmXdunW88sorlm2l2ZSVlUWNGvq/eU0FIqLcUrt2qfdNmqhgbKu/mWshIEC148fhf/9TRbQjIlRr3Fhluw8LU1rAmjzJY+uprfx04CcOnVfhBHY2dvRs1ZNh3sNwr+NeIfZpLjN5svJ8bd2qvF7nz8Nvv6nm5QXvvlvdFmo0V6RE0SUitlVpyM3EzJkzadu2Lf/+97954IEH2LJlC/b29tjb25OTk4O9vX2ZjuPt7U18fDwRERF07NiRlJQUnJyccHFxISUlpdh92rZty3vvvVfiMdevX88XX3zB2rVrqV27Nh4eHixatIjRo0cjIpZ4sOTkZJo1awbAt99+a9k/NDSUefPm8dJLL/Hrr79y4cIFy7bz58/TsGHDMl+fRnNFRFSK+eOXw0jbtVMKqRI8R61awVNPwfjx8Ouv6rf8zBlVG3v+fHXq3r0hOCSb7efXsPTAUuJT4wFwdnDmjtvvYFCbQdRzqlfhtmlQnqzgYNUee0x5vP7+u2hS1rg4FSMWEqI8Ya1b62FIzXVDpdZnMAxjAPAhYAt8KSIzCm0fB7xweTEVeFREyjYedx1QOKZrwIABPPDAA3z55Zds27YNFxcXQkNDeeONN3j11VeZPHky/v7+BAUFlSng3MHBgYULF/Lkk0+SkZGBk5MTq1evJiwsjBkzZhAYGGiJIzPj7e1NcnJygSG+hQsXsmnTJtLT0/Hw8GDJkiWWmYvz5s3j0Ucf5Y033iAnJ4e7776bgIAAXnnlFUaPHk2zZs3o3LkzMTExAEyfPp2xY8cSFBREz549aWmV9Gjt2rXccccdFXFrNRqFYaihRDs75eW4QrB8ReDqCnffreK6o6JUEe3NmyHqYBqrE37hzC8/U6PORerWBU+3RtwTNJy+rfvqeK2qxDBUTNdtt8E99xQMso+IUHnbjhyBefOgXj0l1Dp2VOLMyanazNZoSkwZcc0HNgxb4DDQDzgFRABjRWS/VZ+uwAERuWAYxkDgFRHpVPhY12vKiOuVmTNn4uLiYsnVVVWMGDGCt956Cy8vryo9r+YmJC9PzUo0v09LgwqKEyzvd0dSRhJL9i7n+20rSTibwaVL4JTZGrcLI6mX2g0Pd1uCg5UDrl27Chv11FwtWVlKLW/bpgTY+fP521xc1KwJWz2Qo6lcSkoZUZmerhDgqIgcu2zAAuBOwCK6RMQ6S+dW4MrBT5or8uijj7Jo0aIqPWd2djbDhg3Tgktz7Rw7Bvv2Qb9+Ks+DjU2FCa7ycDr1ND8d+InVx1aTk5dD7XrQo20AgzxGkX0igL//Nti+HWJjVVuyRDnk2rZVDhUfH/D01PHdVY6jo/JqdeyoPGCxsflBevXq5Quu7GyVrNXXV3nC/P21YtZUOpUpupoBJ62WTwFFvFhWPAj8Won23DLUqFGD++67r0rP6eDgwP3331+l59TcZIioKYQHVBJRTpxQaQSqmJPJJ1m0fxHrYtdZZiJ2ad6F0e1G41nfU3XyUKnBcnKUPoyMVO3YMdizRzVQv++tW6uJlm3bKhHWuLEOMaoyDENVJ/DwUOPFeXn52/bvV7GCx4+rKav29kopBwUpEdaihX5QmgqnMkVXcZ/WYscyDcMIQ4mu7uU5wdXM7tNoNNchOTkqcCouTnm2OnSA22+v8NOUFk5x7MIxftz3I5tPbkYQbA1bern3YmTbkbRwLT6WzN5eebXMoZ0pKWpka/dupR2PH88PLzJPsq5VS2mA1q1V8/CA5s21R6xKsLHKB+7vr2Y8bt8OO3bA0aP56vnrr1WtKPOU1dxc5cbUaK6RyvwUnQKsv6maA/GFOxmG4Q98CQwUkfOFt5eEvb09qampODs7a+Gl0dzIpKfD+vVw4YIa3uneXbmDKhgRITU1tcjs2sPnD7Ng7wIi4lViXzsbO/q37s/IdiNpVKtRuc7h4qKyWXTrppYzMuDwYSXADh6E6GhV83HvXtXMGIbKhNGihUrK3ry5+r13c4M6dbTDpVKwsVGpJry8YNw4uHRJCa4dO1SCVuscIc88oxR2+/ZKYXt7q2WNppxUZiC9HSqQvg8Qhwqkv0dE9ln1aQmsAe4vFN9VgOIC6U0mE0lJSeTk5FSG+RqNpirIyVHT/rOy1CzFgAD1WknY29tTr149bG1tOXjuIPP3zGfn6Z0AONg6MPD2gYxoO6JS0z4kJeXn+IyOVt6whISCI1/W1KihMuQ3aQKNGhVtNWtqUVappKSoPCLWvzWOjioWLCBA/ZNwhYTUmluPKg+kF5FcwzCeAH5HpYz4WkT2GYbxyOXtnwPTgPrAp5e9VbnFGVkctra2V8y8rtFobgA2bVLxNf/8Z5UEzB84e4Af9vxA5JlIAGrY1WCw52CGeQ/DtYZrpZ+/Xj3VOlh90+XmQny8CmM7eVKNssbHq5aWli/SiqNGDZWc3brVrVuw1amjxdlV4+Kiyg/t26cS9O7erYLzd+xQrVmzfNF18qQK5HNz0zdbUyyV5umqSIrzdGk0mhuYS5fAXNZKBEymSo+ZKSy2nOycGNJmCHd630ltx+umwEYRUlKUJ+z0aUhMLNouV+66InZ2KgeZq6u69eZXF5eCzdk5v9WqdQNnV0hKUjevcWOlTEEF18XEqJuWnZ3fsrKUJ8vccnPVa14eTJyoMucCLF2qShb06aNuXmSkGnL84Qf1Od69Wz2sGjXy1XX9+io3mGGoZmMDI0aoQp+ghNy8eSqA/5578m3/9FP10KybvX3BZmenvG729kr8+fmp/bOzlRu1Zs18283r7e21IKwCqiNlhEaj0RQkLw+++kp5t957Dxo0UD8AlSi4Dp07xA97frAMI9a0r6nElteduDhe/zVCzWKouImcIiok7vz5gu3Chfx28aJ6zczM314enJyU+KpVS/2GW786Oan31q81aqhX6/c1aihtUK7f+tRUZfylS0o8Xbqk1plfU1OVGzAtTb1PT1efLfOMhP/8R3lQ33pLDQWCih383//KdwNGjMh/bx4b7tUrv23YoFySoGwwmSA5WbXLSaVxdFTir0mT/Gszc/GiKnNlHUOWnq6G3ctDaGi+6Dp7Fp5/Xo1Lz56d32fcOCUwHR1Vs35A5mb98Bo0UBXgzezere5vmzb5alxEi7hyoEWXRqOpGjIz4Z13VNJKOzv1n3iDBpV2uiPnj/DDnh/YnqC85E52Tgz1GnrDiK2yYBj5gsiqOESxZGfna4HkZKVdzHqmcDPrmLQ0NRkgIwPOnbt2e2vZZtLI5hzONmlcbORlEWOhkbOonZXI9vCXsHOugaMjhCx/i/pxUdjYgM1lB5G5Geb3htWyAZkJ6dg1cFCOoCZuGCkpBV113t5K0Dg4qObomP/e2ntk/d7DI3//O+9UQqt+/fx1HTrA55/nPxBQw4wHDuTPoEhLg9GjYdAgJVLOnVMzJ3191YP7z3+U69FMvXrwr3/le9xMpoIeOHPLzlbrsrNVPhIzNjbqWq3/vkTyW2amasnJpT+wli0Liq5XXlHnW7Ik/75OnaqEaM2aRVW5+dW6OTurlBzmmaQ5Oeo+3yLCTYsujUZT+SQlwWuvKaHl7Kx+UMzehwom5kIM8/bM4+845SmoYVeDIW2GMNx7+E0jtq4GBwcVelSeUFizJy0trfjX9PR8UZaRkotx7iy2SWexv6hajUuJOKWepUb6eWplnMfRlA5Amr0r77f/3nKesH27sc9KZLtdMhcd1VCgKaYJrVLOkW5Xmww7F0tLt6tNhq0zmXbOZNrWIsuuFhmGM1k2NUl7vDZi+e2eovTTdOsRue7Y23cvoqsKvxZ4H2W93ABb2waWZVtbsLOriZ1dTWxtrdY5NcW2YyfsuoCtkUeN07EYdVyxsa2PrS047dxCjdXrMf5cr7SGa22Mdu0wfFSjTRvo3PnqH7abm/oHxxrDgMWLlYDLzs4XXtYtIyP/NSNDiSQzeXnKk5aVVXDmpnmfzEz1d14WrL2NL7ygRNs77+QLx5UrVQyds3P+mLf12Lf1uhtsFqkWXRqNpnKJjYVXX1X/3Tdpov5bvlxMvSI5mXySeXvm8dfJvwBwtHVkcJvBDPceXiUB8jcj1p40QP3wHjkC2efgjm75HZ9/Xnl0rGOEHYAGlxsqSWOejT25deqTU7sBH/+fkJllkJUFdrseISvXlgeaupIh5jCrJzmbXTT8Kicb8rLByAHbbLDLBoesy8uFHEDmlpFRNfereGyA1gXW1M3sQetkZ9xT9tAidT8u2UmwZiuwlVTH+nzS4Rts7ZSAa3VpDxdc3cmp4YKtrVpnY4PlvXUzewIL9ym4zhYbGydsbZ0KrC/83sYGbFLBZol52QbbkNfU+9+t+g77ELvcTOyy07HNSsc+Ow277DTsstKxzUzDLisN26x0bDNTsc1MwyY3h6RDNpZzNDqbjV2KiaTzNRHHywUoNu/D8e8NSpAal5N+ml+h4HpHR3BxwfTK69i0bK48n+vWYpw8oYZczZ7KixeVG7dhw/wYv2pAiy6NRlN5JCer/2TT01VK9n/9q+AwSgUQnxLP/D3zWX98PYJgb2PPHZ53MKrdKOrUqFOh57olyM5WMUqnTqkmAmPHqm0i6nmaTMprYi6bY47Ja9hQ5bEwu9QaNVJDXA0aYNSvj62zM7aGgSPgbH1O/44VfhkiRePii1su/N562TyqZzLlrzf3sR7xM28v6dXc8vLM69042tiNg7l3YMoVXNLP0PTCPlqk7CfDzpnsHANyoEZuKiN2/hOAc04tOOXszalaXsQ5e3HWqSVi2FzhLlQFBuB0udW/Qt/LPG+98DG2NXIwvWFnUVVuqcNokNmBGqZUauSm4ZSbgpMpBafcVGrkpuJkSlXrclOwkSwgiw9PO3Lp8sdx1NGttE3azJLbb+NQQw8MA7omrCbs+Lf80uYZ+r3Vm65dK+r6y4cWXRqNpvJwdVXlV6KjYcqUCk27npiWyIK9C/gz5k/yJM+S1PQun7uoX7OMX/63MpmZKvboxIn8XBUnTqgpkdYeKxeXfNFla6timOzs1P5m0TV1qorfuY6ythtGfrjW9Y0BNAGaINIHkwkeuSzQ8k4mY/dpO4zoI5B9EpGTCH+AgEmcOPf4q2S1bkteHpiycsmzsbOIO5Mp/9X8vvD60tYV3lbScmnNPDFZpOCy+X1+X/tC6zw5K55FjmX9XgTyTIKdKQvH7BQy7Opji9oeVb83p2vexumarTGZ1F1Oz3PirEMzzku9EnPiVcnT1ikjNBpNucjNVSIqPr5gJPalS+obr1Yt9Y3YurUSXXXrqpI+Tk6lH/fgQVW00M9PBQGXsC5p91Z+3PoVv9vGkFvLCRvDhj41fbk7zYNG7bvn76tRFJ5d9skn+akNisPWVg0DN2+uhoGbN1fpDW6RQOfrEvPf3KFD6m/i0CEljr//Pt9z/M47KnDfy0vFRt1+u2qVmGz4esZa6FlE2uVlc7xeZaJTRmg0mqsjM1N9me/bp9rhw2oIqjhyc1XMT2YmtGuX7wkxDHB3Vz8INWuq/UND1ZAjqB+SCRPUegcHmDNHrbdad+m/H7P45O/88vN7ZGPCMGzo2f8hxrYcRLPHXrjc70u1r7d38SLuZicvL39WmIhKOBsTA99+m/8sEhOV4LKzU6KqZcuCrUmT68pjpUE9D3PJoqFD1bqLFwsO1Z84oVJFnD2rUrKYadYMBgyAYcOq0uJqxzCuzxxz+i9Lo9EURUQJltWr4a+/ioqsFi1UgGrt2vkZNjMz4bvv1HR6Bwfo0UO9JiSoYPqYGHXMyEglDmrUgGefhVGjVJXo7Gz1AxEfr/oBZGeT1qIxy+Qgy/54kkzJBkx0yXVj3AE7WoV1hOjE4vctLOJuNiGWm6t+aI8eVUL36FE1e2zOnPxEnOa8DydO5M8MGz8eHnhA3S8trm5c6tQpuPzhhyoG79Ch/M9ETIwqb2A9k2DfPvj4Y+UFu+22/Mrrzs5oKh/9F6fRaPI5d04JrdWr4cyZ/PWenirFg4+P8k6Zs8mb2bIFZs5UYq1LF3jpJRVAbRY5Dzyg/u385hv1o2AWBD/+qP4rd3BQQfc5OWp40s+PTFMWP7dM4aeGsaQ6CLi4E1w3mHt/MXF78uX5+eZkkA4OSnCZ1+3Zc3MJMRH1PA4fzm/R0UXFsGEo4WXOI/Xcc/lp6M20LjiTTnOTYGOT763s10+ty8lR//BYP/8jR/InSaxbl7++USP12XjuuRshEO6GRYsujUaj/htetAjWrs2vvNyggYrl6dtXZdMujrw8mDtXzWQDVfz36aeVF6u4IcNJk5TIys5WwmDwYPXf+IUL6sfi0iWy27Zh5a75LLY7TPKg5nCpNr4tgrkvbArtGrYD32JE0pw5RdddixC7XtiwQbWDB4tPZOnmpgSxOYandeuCMTxXypiqubmxty+YNBVUglZfX+UNMxf1jIlRw87mvwMz//iHOoa7e35r1apaUy7c6GjRpdHcypw8qbxN69crb4qNjRJO/ftDQEB+fFBJREer7NQ2NvniLDZWCZfiRM7o0UUFkggcOEDOujX8vvNHFjmtJWnb72Bji1dDb+7tPY2AjkMxzIHc3t5FhVHhdd7eVy/Eqsv7tXOnKqB8xx35ecyOHcsvB+PqqpJmmpunZ5UUCNfcZNjb5wfZmzGZ1OffOrlpVpbyqIrA3r0Fj9GkCdx/vwohMPdVmWIr3/4bHH2HNJpbkfh4NfNp0yb1pWprq4r4jh6dXx+uLHh6wqOPqmGMf/+7oMfIz6+oyIEiAilXTKx2OMGPzXZy1tUFkprTOjGHew870eFwTYy/vgSvjaocSbduZf9iv1ohVpyHrpTZlOVGRMW57dunhmLNsTRr16rhnmbN8kVXaKjyLHh7q+eiZxBqKgNbWxWn2aJF/jrzZz8mRv0jZW6nTqnq69Z/h7/9pkIHmjZV3tUWLdTntkULte4GyxpfmWjRpdHcSly6BAsWqDIbJpP64uzXTwWzN2p05f1FVAmP7GwlAPz8YOBANTRZFq+WFbl5uayJWcPCvQtJTE8EoGUdd8aF/osuzbtgxMfD77/DqlUqDuzQIVXQeMAAdc66dct//WURYsVdi9n7dTVDkSIqkH3PnvwZoBcuqG21a0OnTup9aKg6Z7t2+fuag5w1mqrGMFQNyHr1VK1EM7m5KhzBuq7jxYsq1ODkSdWsadgQvv46f3njRvVd06zZLRm8r0WXRnMrkJ0NK1aoocS0NPWF2q8f3HNP2YtOX7igguU3blQConlzFdtRDq8WKLG1NmYtC/YusIitFrVbcLfv3XRv2R0bc5btZs1UAP499ygP0IoVcPw4zJ+vhFGPHsr7VThmpbwUtrGkaynrUKSIsnPPHjUss2ePymNmjaurmpRg/aPTsaNqGs31jJ2d8mJZM3483H13vuiyTrpr7TnPylL5xMz5QV1dC+aD69xZxSnexOjkqBrNzYyIEknffqsCZQHat1dixt29bMc4eBCWLlUzFEWU+Dp7VsUVxcerbOSjR19x6C3HlMPqY6tZvH+xRWw1d2nOWL+xBcVWadeydy/8/DNs3Zr/xd22rcpd1LlzxcWUlJSodcIENZRqb180l5gIhIWpoZeEBOVVrF1bCav69dWxfHzUa9OmeqhQc2tgnZw3ORm++EINUcbFKRFmzUsv5Xt+V61S4Q9Nmyoh1rSpao0a3RDDlSUlR9WiS6O5WTl8GL78UiU2BSWyJk6EoKCyH2P3bpVUMSlJBcuPGaNExpQpBcVHKcNsWblZ/B79O0sOLCEpQwXqNnNpxljfsfRo1ePKYqs4EhOV52vVKuW5AyVsBgyA8PCrG3osC2Yx5u6uxOdffykR2KyZ8m7Z2yuhtXevpRAvs2crr5wWWRpNPiJw/ny+AIuLU9815jCHWbPgjz+K7mcY6p+Xt97KX7d1q/LYN26s/sm5Dv7WtOjSaG4Vzp1Tni1zDh5XV7jvPjWceKXZiIUZOVLl7HJyUqkIZsxQtRTLEFCelp3Gr0d/ZdnBZSRnqXQH7q7ujPEdQ9cWXa9ObBUmMxPWrIHly9WXNihvV9euKh2Ft3fFfAEnJami3c2bq+W9e+HFF9W9PXpUCVA7O3jkEeX1+vxz1bccnkCNRmNFYqIK4j99Wv0dxccrD3JioppZ/frrql9mpvr7MlOzphrSbNxYtT598r36hUtiVSJadGk0NztpafDTT7Bsmfrht7eHO+9UX0hlrb9WWBgsXw4PP6y8SM7OZQoeP5d+juWHlvPr0V/JzM0EwLOeJ2N8xhDSLCQ/9UNFIqK8cr/8olIsmL/X3N2V56tXr/IF7aamKmG1e7dqJ0+qeKtp09T2nBx4/311nzw8VF/zPbvSMOSNlphVo7mOkJwcsi5cIN3OjrS0NNLi40mbM4f0xETSEhNJz8ggzWQi3WRSr6GhpNWpQ3p6Oml79pAOPPOf/9CxkuMnde1FjeZmJScHfv1VzUo0B2x3765+5EtKalocBw7AiBHKo+PmpoTB0KEqUN1aVJTA8YvHWXpwKeti12ESEwABjQMY2XYkgU0CK0dsmTEMCAxU7exZdT9+/11NcZ89W01n79ZN5R/z8Sn6325Wlrp+s8g6ejRfuIEaKjTXLgQlpl54IX/ZXEMSyj4jErQQ09xymEwmJYDS0q7YiuuXnp6OyWQq/uB16qiKFtnZ6m86K0vlujMnfD17FurWJTU1tcqutzBadGk0NyoiKqnp3Ln5QfLt2qm4rbL8WFv/uGdnq+Gy+Hg1IzE1NX92Xtu2BUWFFXmSx7a4bfx86GeiEqMAMDDo0bIHI9qO4PZ6txe7X6XSsKFK3Dh2rPJ6/f67qve4dq1qbm4q4N0sgHbvVvciNzf/GOYCwwEBqrVpU74g/bLMiLwRM+Rrbnny8vIKiKDU1NRi35e0nJmZec02ODg4UKtWLWrWrFnsa4nbatakppMTtaoxqbAWXRrNjUZenprV8+OPKngbVBLCCRPUEFhZPErmIbDUVJVjx5x2wcFBxSldrn9YEqnZqfwR/QcrDq+wzESsYVeD3u69GeY9DDeX62Dat7298vh1765Ezbx5qrB2QgL88IO6B3l5aui0fn0lbgICwN9fideKLHVyI2bI19yUiAjZ2dkFRFFqaqqlWS8X7mP2NF0LhmFYhJCzs3MBoVRcK2673Q2c+f7GtVyjudXIzVWerUWL8oPGGzRQeaz69Ck9SL7wj/aePepHPTsbMjJUMOozzyjvzuHDxf64iwj7zu5jVfQq/jr5F9kmVWy5Sa0mDG4zmL6t+1LLoVZlXX35yMsreD/eeUcNGf7nP2rIYd06JTaTk5XwMQw1WaB+fZVRuzJqy1V0hnwtxG5ZRISMjIxiRVPhVpyIyrX26l4FZvHj7Oxc4LXw+8LratasSc2aNSs31OA6R4sujeZ6JyNDDYv99BOcOaPWNW6sAuR7975yzhrrH217ezWz0c9PiZLMTJVxetas/MScAQEFdr+YeZE1MWtYFb2KuJQ4y/rAxoEM8RpCh6YdKmYm4rWQm6tE1d69qh04AJ98kp/49fbb1USDjAyVXbt9e3jsMTX8uG4d7NqlBMyePSqPkKenKtHToYMKxq+sH4mrzZAPlVuqSFPpiIglZqk00VSSkMozF6a/Cuzt7XF2dra04oRT4fXmdU5OTtiUdxa0xoIWXRrN9crJk2o23po1SiyA+uG96y5VMqY4F3txP7hRUfllOgwjv0TPvHlKoPTsWeTHOT0nnS0nt7Dh+AYiz0SSJ+oLvp5TPfp69KXfbf1o4lxCjcbTp1UmausagidPqvO5uans1Waef14Ncb7zjhrSBFi8WImgESPyy4/ExamcWO7uEBKi7sfBg6rf0aOqRFB2dkE7Dh/OF10PP1z0fjk6qvsYGqoEWUSESgC7YwccOaLad9+pnF9BQaq1b1/5RaavNh6stFJFWohVCtYep5K8S6mpqaSkpFS4cKpRo0YBMVS4FbfNvM7BHFiuqXK06NJorieysmDbNlVANioqf72vLwwapPJPlfRfZuEf3PffV2JnyRLlIcvLKxir1a2bapfJyMlgZ8JONhzfQER8BDl5OQDYGrZ0ataJ/rf1J7hRILb2Vl/Y336rxM2UKSqAHVTg+uLFKjfYXXepdenpSjQVLtlz6pSacWk9G+n4cXXtffvmr4uKUiWIGjdWJUhiYtT1RESoYr3BwUqAmCcFNGqkgt/NXCkGpFYtlVaiVy/1DHbtUl6wnTtVjq4//1TNMJTw8/VVzcdHxcBVJmUdhoTyBedrIQYo4ZSZmVkuT5NZRFWEcCpJGLm4uJQqqG7kuKZbGf3UNJrqJjdX/bhv2KB+6M2ze2rUULPs7rij+JI9xcVpZWerfFRHjsBTT+XXMevVS+WTGjeuwA/s2bSzbIvbxra4bUQlRpGbp2I9DAFfV096evWnW4tuuGQJ/OMf6vjmvFOghvH27VM/8GbR5eGhhuWsC2g3a6ZSLBTOFP+f/+SLQTNDhqj+1h6llBTl3TpzRgk0W1s1eeDMGXXe77/PFz/PPqu8g0FB+Z6ulStVGzxYZa0HJa7i45WQs85j5uioSgp17pxfR3HnTtX27VOCLyZGZaIHlQTV21sJyjZt1LOq6B/EssaDXessyZLKH13n4iwvL4/09PQSPU2leaEqWjgV52EqTkBp4XRrop+4RlMdpKSoVAU7dqgSFtZ5Y7y8lEgKCysoRqyx9moZBnz0UcEf3MxMJXB69FAeo8BAsLEhPSedfXERRJ2JIvJ0JLEXY1WeLwMMewfaNmhLl6xGhH6zhvqBdWHQZYHiIMrjk5OjhuLMdt1zjxKNt92Wb5t5yM4aZ2c1i7AwLi4qj46tbX6290OH1FBk375KvIGaKHDoUL748PTMD3Y3Cwczffuq7daFc0+dUuLJerr6sWNqeNPTU3kFzSxcqOzq21cd191dtREj1LkOHVLiyxw7duqUaqtXq/3t7KB1a9U8PJRnzt295Gd5tRRTTPyaZklCUSFW3LpK8JKJCFlZWUXSCxSeOVfcjDvzjLprSfTt6OhYQBiVNmxnLaS0cNKUF/1p0WiqgpwcFXsUGamE1uHDBZNvurvni5XiEppa/8i1aKEKUCckKLFy/rz6MfziC/UaEaGG88aN44JtDofPH+Zg1Fyi4ndyNH4veTUc1X5AjfgzBB1KIaTLSDrc9RyuNVzVkGTOhoICxSzsGjQoGLjv71+268/OVsc9flzFe8XGKtFz4YLaftddajgS8nOD/X97Zx5lR33d+c+tt/R7r1+3Wt3aJbQAQiAsEBbGxk58GAxeMEEm4zlmBmY8Ik4mc8jEOCbGu+EkPmMTZ4IXiOccB8eDPY59HBZNxsZJwAOEsFhIwhLaLKmRaCGpJbXUy3v9Xr/lzh+3SvV6kS2DultS3885dV7VrV9V/er3e/Wrb93ftnBhfHxHB3zuc2Ofe2T7lOuuGx3m5ptNRDVWBVYqlpaN16lUTPCBDaQacd995t36vd+zPFixwtL9yBEToV1d5l3cscPan+3YYUsjM2fataK2btHS0XFqG+q/3l6SJxJiJyHO6hdcQHHDBoobNlBYvJjCnDkmhrZtY2DLFoqzZ1Noa2NgYGDYgJeNYuqEA16eJLlc7lc2APeqOud0wP9pjnOqUbXBSrdvj5ddu0YPvrl8uTXMvuKK4S/+kV6EyKvV3W1iavlyu0Zfn1XNJRLovLn0FI+wd9ognatybN+2nh0PfpDDbQ0Caes2En39XLTq3axYfi2XzL6E5ZsPklr3ADRdBJlQkCxYYGOAjRw2Ye5Jjr01MGDtt6JJbF991RrXj+WJyGbNIxRVTYJ5nu655+SudbI0N9t1GrnkErj//uG2Wg1uucXuofFFvHOnLY3t6Z580ka6X70aPvIRs/X0mPhNp83719lpAnPnTkuDQ4dMdDeSTpvQnjXLfufMsfSYMcME2fTpb7y68gRCTH/xC8rLljE4ezbFgwcp1usM7txJIQgoDgxQLJUY7O8/Pn1K4fnnKf7whxQ6OylksxT7+ymsWUMpk7EPimiojpUr7Tojbfm8pW1fn00M3jA1U7pcJl8u0zxvHs0LFlhPukKB/LFj5M8/n+alS8cUVFGPO+9R55wJuOhynNdLtWqTSx84YB6cyIuzd2/c2zBCxKqsmptt4ukbbjBRs22bteM6dsxerv/6r+bRKRbt/A8+aPuGhqClhaGjhzlQPcL+t6/gwDXnsG/oMHuSBfbk/5nCo+vtWgqsfxFqNbJveTtLZy/ngo4LeFPvLpYfPUT2wlvh0nB4iJk1eNe1wz0tImOPUxUJPYg9Rr/8pU0/FA3OChb3b3xj+LFBYGJu0SJbFi60qrc5cyZsAtqTIpOJG/838tnPWvuxRYuGh120KO6hCeZ9fOYZqyL+kz+J7TffbKL59tstDV97DZ5+2gRZPh97AiuV2IMUeRRFbHqT9na0rY1qayulXI7BbNZ+UykGEwlbgoDBapXBUonBwcFRS7FYpFgsDlsfVi03fXosiB56yGwLFsS27dtNNA0NmSc0CCwd+vrIAbnWVvLlMrnWVpozGRsBvL2dfH8/zatWkVu2jPy995Kr1chXqzTfdRf5lSvJ7d1L6vd/387b2Qlf+IJdO/Kobdo0dtXmnLAH7cm2RTsD2qc5ZzfjKrpE5L3AV4EE8C1V/dKI/RLuvw4oAv9ZVdePZ5wc56SoVGzgzKNHzXsRLUeO2Mv3wAETXPX6Cb/cyWbNi/Xbv23777jDXlTPPhtXy91yC3R2Uq/X6F+1gt7SMY7VXuPY9IAjiTKH//kejrztEo6sOEB3vY+elWU4rwxLe+34wQps2gaFJvILF7J42mIWTlvIBfsWcAEzmH/tfyOYGTZoXznGfQZBHP++PmtrduyY3Xf0e/RoXJVWrcKNN8Ktt8bp9MILFjZi5kyryps7d3g12q8bT+x0Jhq1vpHrrhtVlalz51K57TbKQcDQkSOUy2WGSiXK5TLlep1yayvlXI7y9OmU1q2jrErpyitt+9Ahyps3U9q6lVJzM+X2dgYHBigNDFDq6aEkQqm5mVokkoaG7P+XTsceuKhBeCpl9kQiXpLJ4duJBAQB6aYmsrkcuXye3OzZNLe0kM3nybW02DJiKpVcLkfzwYPk9uyh+bLLyF16Kbm9e5E1a+JJvr/8ZYtHNPH3nDnmDdy0yToqRNWV3d0m4Ldte91Vm2/I9pt2Hngj4s5FoMM4ii4RSQD3AdcCXcDPRWStqm5pCPY+YGm4vBX46/B3YhmPh2YiHk6Po9lUbfull8zDsHixFfRbtlhj58WLYd48EzxRu5tZs8x7UCyah+qVV6wHWyJh4uPQoVhItbXZdXt7obubWi5LNZOmInUq1Kns2sFQAoaq0yn/1zspd7QxdOcdlAq9lLb9XwafO5fB8gCl7H4K06CQgsLjn6NQLzHwplfoO6+XgWQd7dgK+RborkNlCLQOMw5DaQf81jLo6iJ5uIdZmmduyzLmNLUzN2hj0YGLWNhxLtPnvw2pVOBYCS5cYN62nqMQia716234iEsvjb05O3cO98j8OkaOUbVokc3ZOG9ebBOBj3705M/5G6Kq1Gq1UUu1Wh31G61XKpVR69FvtP6rlqGhoWHr0VKpVExYNdhOSC4HX/xivN3XZ2Jp3bp4Mu3eXvMctbZaVePs2fa/3bjRRNN555Go18mKkNm9m2ypRHb+fDKpFNlqleyRI2SOHjUR1d5ONpEgV6mQ3bOHbHMzufPPN1siQXb3brL1OsllyyzPCgV7Dvr7TThHeV2rWbxaW82jmUrZsn+/dQI57zyL2zveYV6qjg7rKZrPW0/UPXusqvSZZ0zgFwr2bAaBfcA8/rg9h+WyedJSKROPyaSJ/F27bD2TsYnM+/stXbq742E8CgUTdgcPmgdRxP7/c+bYB9Jzz5mtVLKPgQMHrJq3XIY/+INYiD3wgIW79daxxdmpFHxj2X4TEXi2l+sTGZ8JRN5Ij49feWKRK4G7VPU94fanAFT1vzeE+Z/A/1PV74fb24GrVHV/47kuv/xyXbdu3bjEk23bWPPBt1AqFGw73wICFAagHqZNW5s98EcOQ61uBUIuZ4XQkcMWrlazgvPCC+2F39lpD7iqVSkFQXhOALUCKZ8ffnymCVrb4OgRqyKq1uxhnDPbRICqnTuRhGQCSoMWDiCVhkQA1YrZBAgStl4PG6gK0JSxgqy1Be0fsHPWqhY2CKBcitMmmbICqF6zcCJWIFZrdoxIOH1Kzu61WkGjKVVmzYL9B6AyhEbVR7lsWH1SsWsFgrZOs/soDlr8Egk032zxLhagWkPTSUDQjg5Lh2o1PmcqidbraK1m5xOBbIZ6rQblsiVPIGg6jQI6VEYF6skE2movlfqxY7ZPoJ4IqItSV7WkC6Ceb6aeEOrFIjWto4J5sRIJS8vBMM1Sqbi6Y19X/P9JJu1+K5W4XVNUPTcwcHyMqqZF55KdOY9suU52207yvYM0X3QJzZe+heZUM82dXeSffM6uG97/r3p6VRV961tjr9quXegTT6BLlthI9oD298PDD6OZDNrUBE1Ntp7JQDYbr+dyaDaLJhLHq6NUFVU93t2+Xq8ft0X26LdxX61WG2Yfa6nVasPWo+3o2NOZZDJJU1PTqCWdTh9fz2Qyo/ZnMpnjy7DtZJJMXx8ZEbLLl8eNvh97zITH6tXx/+mxx2yctHe+08YuKxRsjLN77zWP0U03mRgZHIRvftN+b7zR/oOlknktu7psBP/p0+0/29Nj4ry93exgZeC6dfY/jGYyABNNvb328RPF6eBBE17RGGsDA+Y1fe01K0ejGRAGBuwjSdVsuZzZOjvtPhYtMiG4cWNcDTtvnlVTR23Hol67S5fauep1C9vWZs9mNL5bvW7ldzJpXtpMxtIik4nFWSZjv21tFi6XsyrgbNbilc/bObq7zVYoWPwSCROG2ayds63N4tDfb8cMDlq8e3vt2tOmmW3pUtvu6rJ3SRDYwMVRm9BMxuJx1VUW5qWXYo/m1Vdbum3ZYmkdeTmvvtp62u7ebccnEta8obPTjk+nbXn3u81z/9RTscB9z3ssjaOhUVpazAbWkadatXfb9deb7ZFHTMRmMvCBD1g6rl1rgjqZtAGZOzos73/wA8uDlhYT5mBj+w0NWbrdeKMd//DDljbJJHzoQxbu0Uct/UWs93R0nULBznnDDZYvjz5q+VepWE/wBQssjrWavZ9+8INxFV4i8qKqXj7SPp7Vi/OBVxu2uxjtxRorzHxgPxPFpk083l+gXA0L8p6+0WEOHQVkeEPgoQL0FkMxgr39hkrw0stmq9bi8EMDo8/Z0w9HB0Yf338gFk2RrfNVe4EL4Yt8jHmzGsVSdCyV0bZCaBsoNVxHQRvCxic9uXMWe+O3/1DZ1gdeNYEKHN9ZKjScOxSCxR7bfzxpq1Dsa7hXYKhq+wcPQSW693DfYGO81QaYKg6G9xTFUyGoDLssCYVy6JVojJZE6dxwj0fDdKjW7RKAZJQgHSD1FNJXIlAIEkpQhgAh6AoIqjUSCIlME0GQIFFNkRiqkgiSJFMBCQ1I1FpIDtVIJlJIbgGUWwGoF+fSd3g/fa+UoLzTrn/0qBXcQWAFTfQbibAgiJew6ojdu02oghU+M2ZYwfizn8X3fM45DEM1fjGfpgRBQDKZPP6bSCRIJBLH1xt/U6nUqPVUKkUymTxuSyaTpNPp49vRkk6nR62n0+lhy0jbhDXojsYbG2kbab/oIvNs1mrDG+Rfe639F5YuPd6b9fiYaxdfbMKgXjfv8JNPmmi64gp7MQ4M2MC49boJuUrFlrVrTRBcc4292KpVE0TPPmtCbNUqi0dPj71km5ttOJBazcKWyyY8Vq60F3KtZkJl61YTjUuXmvjavduW9na7v1mz7Jzbt9t9LF5s//WoSUDUZnLePHuOajVrexmJk3LZfqNZG6IpsqK8HBiw40VMREQfwBHRR3upZEJI1Y4JAjt3uWy26PmtVu08tVrs8azV4vlQc+GH7O7dlp6Ntp07TciWy3atUsm895mMCa5I+AwOWrq98oqFyeXMtmVLPKxMKmXx2LzZ0qhUMtFTLJpHqFIxWzIZC3iw/VFabNwY2yJBu2FDnC6RQH7xRUv/116zsFHThsihUihYGkWCPkr3atWOf+GF2FYuW7jI1t8fh1u3zu61vz+O44YNJpj7+2MxHc3iMMGMp+gaq3XsyE/UkwkzvqxYwX9p66DS12vRWbjQYrVvnwknsF5PLXnYtt08PNWauahnzTSb1s17M2OGjUVUKMRjL6nCgvnmnerqCr1G2Iuuffrwc86caV9j0XAClQp0tMO559nDUzfvDW3TrbCIRhkXscInmbQCJfJKtbYOb/wsYgVntWrh9+yx46vV+Kuvuzs+vr3djuvrQ1TtIZkxw/7YPT1IEIAEsHhR3PYpk7Vwl6+Cl7dA90ELEwgsORcpFGCfdVOXZMIK16PHYMd2kABparKCPZWCHTuQrn1IvhmCJKz+HeSZZ5FdO5HIM3fZm5HSILJ5MwQJJJVGrrrKrvPU0wQi0Jwn+IB9OQUPfhep15FpbciaNQQEyH33EVQqBMk0wfXXIwQk1v4fglqdIAhI3PhvCSRB4kc/IqgpQSKJfPyT8YClL7xgX46XXRaPgr5pk70A5s+Pe/0FAdIokCJPYSSQWlridk+Vij0cUdubETROGDvW5LFj7T8ZW7Q0bp9oXUSOC4zoN7IFQTAqXKO9cbvRlkgkjttGrkdLY1yck0RkdA/IJUtGh7v4YlsigsDE0rJlo8OO1cN05PhsYOObjcUnPjHaduedo23Rizx6VsAEyuCg2RrHP+vpsbCNw3D09tqLd9q0eBDcYtHEWDZrHp5Nm2yGgaiad2jIBMaKFXb+gQF7lvfsMWG6YIE9r21tVvZt3mzPfpTO9bqFW77czlcuW5x37zaRmM/bx1CxaFWdF15oguSJJ2zMuETCyoK/+isTvV/5itnSafjLvzThcvfdlj/ZrE2j1dEB//IvNrxJ1IbvnnusSu3rX487Z3zpSybE/uIvLFxTk1V79/RYBwYRS6c//3NLhzvusLi3tMCf/Zm9H26/3d4b+bzFA+BP/9TyJJuNO0J8+tOWdum02ZYssbLyYx+Lz/n5z8fHR56uz37WbJ/5jL1Pm5pi2+c/b3maStn5Ae66Kx7r8M477bx33WXxmT4dPv5xe7fefXfsoYtmcZhgvHoRzv46a4/jWdMewHGcs5ypUGaebvEZB05UvTieoisJ7ADeBewDfg78B1V9uSHM+4E/wnovvhX4mqpeMfJc4y66HMdxHMdxThET3qZLVasi8kfAT7EhIx5Q1ZdF5A/D/d8EfowJrp3YkBFrxis+juM4juM4k8m4jtOlqj/GhFWj7ZsN6wrcNp5xcBzHcRzHOR3weRMcx3Ecx3EmABddjuM4juM4E4CLLsdxHMdxnAnARZfjOI7jOM4EMG5DRpxKROQQsGey4+E4juM4jnMSLFLVmSONZ4TochzHcRzHOdPx6kXHcRzHcZwJwEWX4ziO4zjOBOCiCxCR94rIdhHZKSKfnOz4TFVE5BwR+ZmIbBWRl0Xko6G9XUT+SUR+Gf5On+y4TkVEJCEiG0TkH8Jtz5fTABFpE5Efici28Nm50vNm8hGRj4Xl2GYR+b6IZDxfJgcReUBEukVkc4PthHkhIp8K9cB2EXnPqYzLlBddIpIA7gPeBywH/r2ILJ/cWE1ZqsDHVfUi4G3AbWFefBJ4XFWXAo+H287E81Fga8O258vpwVeBx1T1QuBSLI88byYREZkP/DFwuaq+CZsK7yY8XyaLvwXeO8I2Zl6E75ybgIvDY+4PdcIpYcqLLuAKYKeq7lbVIeDvgNWTHKcpiaruV9X14Xo/9vKYj+XHd8Jg3wE+MCkRnMKIyALg/cC3GsyeL5OMiLQC7wT+BkBVh1T1GJ43pwNJICsiSSAHvIbny6Sgqk8BPSPMJ8qL1cDfqWpZVTuxuaGvOFVxcdFlL/VXG7a7QpsziYjIYuAy4HlgtqruBxNmwKxJjNpU5V7gE0C9web5MvmcCxwCvh1W/X5LRJrxvJlUVHUf8BVgL7Af6FXVf8Tz5XTiRHkxrprARRfIGDYfR2MSEZE88PfA7araN9nxmeqIyPVAt6q+ONlxcUaRBN4M/LWqXgYU8CqrSSdsH7QaWALMA5pF5JbJjZVzkoyrJnDRZSr2nIbtBZgb2JkERCSFCa7vqepDofmgiMwN988FuicrflOUdwA3iMgrWPX71SLyXTxfTge6gC5VfT7c/hEmwjxvJpdrgE5VPaSqFeAh4O14vpxOnCgvxlUTuOiCnwNLRWSJiKSxBnRrJzlOUxIREaxtylZV/R8Nu9YCHw7XPww8OtFxm8qo6qdUdYGqLsaejydU9RY8XyYdVT0AvCoiy0LTu4AteN5MNnuBt4lILizX3oW1UfV8OX04UV6sBW4SkSYRWQIsBV44VRf1EekBEbkOa7OSAB5Q1S9OboymJiLyW8DTwCbitkOfxtp1/RBYiBVm/05VRzaKdCYAEbkKuENVrxeRDjxfJh0RWYl1cEgDu4E12Ae1580kIiJ3Ax/CemVvAD4C5PF8mXBE5PvAVcAM4CDwBeARTpAXIvIZ4FYs725X1Z+csri46HIcx3Ecxxl/vHrRcRzHcRxnAnDR5TiO4ziOMwG46HIcx3Ecx5kAXHQ5juM4juNMAC66HMdxHMdxJgAXXY7jTDoi0iEiG8PlgIjsC9cHROT+cbrm7SLyn8awLxaRzafwOmkReSqcg89xnCmMFwKO40w6qnoEWAkgIncBA6r6lfG6XiiAbsVGbx9XVHVIRB7Hxmz63nhfz3Gc0xf3dDmOc9oiIleJyD+E63eJyHdE5B9F5BUR+V0RuUdENonIY+EUUojIKhF5UkReFJGfRlN9jOBqYL2qVhuOeUlEngVua7j+YhF5WkTWh8vbQ/uDIrK6Idz3ROQGEblYRF4IvXS/EJGlYZBHgJvHI40cxzlzcNHlOM6ZxHnA+7HJhL8L/ExVVwCDwPtD4fV14IOqugp4ABhrhol3AI0TeH8b+GNVvXJEuG7gWlV9M+ap+lpo/xY28jsiMg2bV+/HwB8CX1XVlcDl2DxuAJuBt7zOe3Yc5yzBqxcdxzmT+ImqVkRkEzZt12OhfROwGFgGvAn4J5vyjgSwf4zzzMXmwotEU5uqPhnuexB4X7ieAr4RTrVTAy4AUNUnReQ+EZkF/C7w96paDT1lnxGRBcBDqvrLMHxNRIZEpEVV+09RWjiOc4bhostxnDOJMoCq1kWkovE8ZnWsPBPg5TE8ViMZBDLhugAnmg/tY9hcbZdiNQOlhn0PYlWGN2Htw1DV/y0iz2PeuJ+KyEdU9YkwfNOI4x3HmWJ49aLjOGcT24GZInIlgIikROTiMcJtBc4HUNVjQG844ToMb3s1DdivqnXgP2Kes4i/BW4Pz/FyeL1zgd2q+jVgLXBJaO8ADqlq5Y3fouM4ZyouuhzHOWtQ1SHgg8CXReQlYCPW3mokPwHe2bC9BrgvrB4cbLDfD3xYRJ7DqhYLDdc6iIm3bzeE/xCwWUQ2AhcC/yu0/xuszZfjOFMYib3zjuM4UwcReRj4RNTu6nUcn8Pakr1ZVXt/TdiHgE+p6vbXcy3Hcc4O3NPlOM5U5ZNYg/rfGBG5BtgGfP0kBFcaeMQFl+M47ulyHMdxHMeZANzT5TiO4ziOMwG46HIcx3Ecx5kAXHQ5juM4juNMAC66HMdxHMdxJgAXXY7jOI7jOBOAiy7HcRzHcZwJ4P8DNXITA812/kYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.2968, 'epsilon': 0.20520000000000002, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAClrElEQVR4nOydeVhV1frHP5sZBcF5HlBRVCZBcRZxQtMsLVMzS8u8WZbVr0Fv1+a63ibL5m6lZV41NUvNyizHyhxxVhRFFFBQlHk6h/f3x/IcDpMCgoiuz/Osh7PXWXvvd+9zOOd73vWu9zVEBI1Go9FoNBpN5WJX1QZoNBqNRqPR3Axo0aXRaDQajUZzDdCiS6PRaDQajeYaoEWXRqPRaDQazTVAiy6NRqPRaDSaa4AWXRqNRqPRaDTXAIeqNqA01KtXT1q1alXVZmg0Go1Go9FckZ07d54TkfqF+6uF6GrVqhU7duyoajM0Go1Go9ForohhGCeL69fTixqNRqPRaDTXAC26NBqNRqPRaK4BWnRpNBqNRqPRXAOqRUyXRlNezGYzSUlJ5ObmVrUpGo2mmuDo6EidOnWwt7evalM0NxiVJroMw/gSGA4kiIhvMc8bwHvALUAGMFFEdlWWPZqbk6SkJFxcXKhXrx7qLafRaDQlIyKkpaWRlJRE/fpFFp9pNFdFZU4vzgeGXOb5oYD3pTYF+LgSbdHcpOTm5uLm5qYFl0ajKRWGYeDm5qa945pKodI8XSKyyTCMVpcZchvwtYgIsNUwDE/DMBqLSHxl2VQS+/dDXt61OVdpv/tLGmfpt32+uMcl/bWzK9hnGPl9ttuWPstje/uijy1/r3c9owWXRqMpC/ozQ1NZVGVMV1PglM326Ut911x0vfoqpKdf67PeODg4KPHl4KCaoyM4ORV87OICzs75zcUFXF2hZk2oUUO1mjWhVi3w8FB/nZ2vf0FXWl577TX+97//YW9vj52dHZ9++indunW75nZEREQQFxfHLbfcAsDKlSs5ePAgM2bMYOLEiQwfPpw777yzwD4bNmzgrbfeYvXq1dfcXo1Go7mRqErRVdzXqVxzK4COHSE7u3Rj5SosLM++tvtYHhc+TnH9IsVv2zZLf15efp/lcV5e0cdmc/5fSxMBk0kdKyen7Nd3OZyclPiqV0+1+vXzW5MmqjlUg6Ugf/31F6tXr2bXrl04Oztz7tw5cir6ZpWSiIgIduzYYRVdI0aMYMSIEVVii0aj0dxsVOVX1mmguc12MyCuKgx5/vmqOOuNgUV0WURYbm7RlpOjWlaWErfZ2ZCZqVpGhvIyZmRAWhqkpkJyMqSkqH3OnVOtOOzslPBq3ly1Nm2UgPb0vKa34IrEx8dTr149nJ2dAahXrx6QX2mhXr167Nixg6eeeooNGzawceNGpk+fDqhpjk2bNuHu7s4bb7zBggULsLOzY+jQocyePZuoqCgeeeQREhMTqVGjBv/973/x8fFh4sSJuLi4cODAAc6ePcs777zD4MGDef7558nMzGTLli3MnDmTzMxMduzYwQcffADAunXreO+996z7DB8+vMC1pKen8+ijj7Jv3z5MJhMvvvgit9122zW8mxqNRlN9qUrRtRKYZhjGYqAbkFwV8Vyaq8Mw1BSio2PFHldEibOLF/OF17lzkJgICQkQGwtnzsDp06r99Vf+vo0bQ4cOqrVtm99/660Va6OFVasu//zgwYN5+eWXadeuHQMHDmTMmDGEhoaWOP6tt97iww8/pFevXqSlpeHi4sJPP/3E999/z99//02NGjVISkoCYMqUKXzyySd4e3vz999/8/DDD/P7778DEB0dzcaNG4mKiiIsLIxjx47x8ssvFxBZ8+fPL3Du4vax5bXXXqN///58+eWXXLx4kZCQEAYOHEjNmjXLeNc0Go3m5qMyU0YsAvoB9QzDOA28ADgCiMgnwBpUuohjqJQRkyrLFk31wzBU3FejRqoVR06OEl+nTsHJk3DkiGrx8ar9/jvcdRdERipPWG5uxYvD0uDm5sbOnTvZvHkz69evZ8yYMcyePbvE8b169eLJJ59k/PjxjBo1imbNmrFu3TomTZpEjRo1AKhTpw5paWn8+eefjB492rpvts08+V133YWdnR3e3t60bt2aw4cPX9HWK+2zdu1aVq5cyVtvvQVAVlYWMTExdOjQoUz3RKPRaG5GKnP14rgrPC/AI5V1fs2Nj5MTeHmpZsFshuhoOHQIDhxQMV8XL6p2773g7g4tW4K3twrkv1bY29vTr18/+vXrh5+fH1999RUODg7kXVo2m5WVZR07Y8YMhg0bxpo1a+jevTvr1q1DRIqsqMrLy8PT05OIiIhiz1l4fGlWZF1pHxFh+fLltG/f/orH0mg0Gk1BdBkgzQ2Fvb2K7Ro+HJ59Fvr0gX79VJ+zs4oZ278ffvgBtm5VYqyyOXLkCEePHrVuR0RE0LJlS1q1asXOnTsBWL58ufX5qKgo/Pz8ePbZZ+nSpQuHDx9m8ODBfPnll2RkZAAq6WutWrXw8vJi6dKlgBJEe/bssR5n6dKl5OXlERUVxfHjx2nfvj3u7u6kpqaWaGtx+9gSHh7O+++/j1xaibF79+6rvDsajUZz81AN1n5pNOXHEmzfpAl07apiwiIjVRzY8eOqNWqkAvBLmsa8WtLS0nj00Ue5ePEiDg4OtG3bls8++4xDhw7xwAMP8PrrrxdIH/Huu++yfv167O3t6dixI0OHDsXZ2ZmIiAi6dOmCk5MTt9xyC6+//joLFy5k6tSpvPrqq+Tm5jJ27FgCAgIAaN++PaGhoZw9e5ZPPvkEFxcXwsLCmD17NoGBgcycObOIrcXtY8usWbN4/PHH8ff3R0Ro1aqVTiWh0Wg0pcSQq8mBcI3o0qWL7Nixo6rN0FRD4uLiaNKkSZH+1FQlvqKi8lNeNG8OwcEqZ1h1p6ScWxqNpnSU9Nmh0ZQGwzB2ikiXwv3a06W5KXF3VwLLzw+OHlXxX6dOqQB8f39o1055yTQajUajqSi06NLc1Dg5QadOKhh/504lvHbtghMn1HTkpZRa1Y7CqSA0Go1GU/Xo3/IaDWpKsU8fCA1V5YguXIBff1WrIKvBDLxGo9FoqgFadGk0NjRtCsOGqcB6Edi9G/7++9oVRNdoNBrNjYsWXRpNIRwcIDAQevdWKSiOH1eJVktbn1Oj0Wg0muLQokujKYEWLWDQIJVENSEBfvlF1YXUaDQajaY8aNGl0VyGOnVgyBD1Ny0N1q5Vub7Kgpub2xXHbN68mU6dOhEYGEhmZmaZjv/9999z8ODBshl1GbsyMzMJDQ3FbDZb++bMmYOLiwvJVaQ6IyIiWLNmTaWfZ/78+cTFxVm3J0+eXK57Gx0dja+v7xXHLV26lA4dOhAWFlbmcxS2taLsKm7Miy++aC39VFr69evHlVL9vPvuu9aEv2WlvO8JW7sGDhzIhQsXynV+jaY8aNGl0VwBV1cYOFB5vnJzYePGivd4LVy4kKeeeoqIiAhcy1ifqLyiqyS+/PJLRo0ahb29vbVv0aJFdO3alRUrVlTYecpCVYmuzz//nI4dO1ba+b744gs++ugj1q9fX+Z9yyO6rjeqQnTZMmHCBD766KOrOoZGUxa06NJoSoGDA/TsCc2aqULb69dDWb8rNmzYQL9+/bjzzjvx8fFh/PjxiAiff/453377LS+//DLjx48H4M0336Rr1674+/vzwgsvWI/x9ddf4+/vT0BAABMmTODPP/9k5cqVPP300wQGBhIVFUVUVBRDhgwhODiYPn36WItWnzhxgh49etC1a1dmzZpVop0LFy7ktttus25HRUWRlpbGq6++yqJFi6z9Bw4cICQkhMDAQPz9/Tl69CizZs3ivffes4557rnnmDt3Lhs2bCA0NJS77rqLdu3aMWPGDBYuXEhISAh+fn5ERUUBKqnrQw89RJ8+fWjXrh2rV68mJyeH559/niVLlhAYGMiSJUtISkri9ttvx9/fn+7du7N3715AeWTuu+8+Bg8eTKtWrfjuu+945pln8PPzY8iQIeTm5gLw8ssv07VrV3x9fZkyZQoiwrJly9ixYwfjx4+3ehxtvSI///wzQUFBBAQEMGDAgFK/7vPnz2fUqFEMGTIEb29vnnnmGasNW7Zs4aGHHuLpp5/GbDbz9NNPW1/3Tz/91HqMN954Az8/PwICApgxY0axtu7cuZPQ0FCCg4MJDw8nPj4egJ07dxIQEECPHj348MMPS213SfTr149nn32WkJAQ2rVrx+bNmwHlIR07diz+/v6MGTOmgMd27dq19OjRg6CgIEaPHk1aWhpz584lLi6OsLAwq6evuHEA27dvp2fPngQEBBASEkJycnKR90R6ejr3338/Xbt2pXPnzvzwww9XtGvEiBEF3tMaTaUjItd9Cw4OFo2mPMTGxuZvDB9+1c08bLgkdBsupzsPlzMhw8V8y/Ar2lCzZk0REVm/fr3UqlVLTp06JWazWbp37y6bN28WEZH77rtPli5dKiIiv/zyizz44IOSl5cnZrNZhg0bJhs3bpT9+/dLu3btJDExUUREzp8/X2RfEZH+/ftLZGSkiIhs3bpVwsLCRETk1ltvla+++kpERD744AOrXbZkZ2dLw4YNC/S98sor8vLLL4vZbJaWLVvK2bNnRURk2rRp8s0331j3y8jIkBMnTkjnzp1FRMRsNkvr1q3l3Llzsn79evHw8JC4uDjJysqSJk2ayPPPPy8iIu+++65Mnz7dei3h4eFiNpslMjJSmjZtKpmZmTJv3jx55JFHrDZNmzZNXnzxRRER+e233yQgIEBERF544QXp1auX5OTkSEREhLi6usqaNWtEROT222+XFStWFLh3IiL33HOPrFy5UkREQkNDZfv27dbnLNsJCQnSrFkzOX78eJH9i+PEiRPSqVMnERGZN2+eeHl5ycWLFyUzM1NatGghMTExRc736aefyiuvvCIiIllZWRIcHCzHjx+XNWvWSI8ePSQ9Pb3AuW33zcnJkR49ekhCQoKIiCxevFgmTZokIiJ+fn6yYcMGERF56qmnrHaVxnYLL7zwgrz55pvW8z755JMiIvLjjz/KgAEDRETk7bfftp5zz549Ym9vL9u3b5fExETp06ePpKWliYjI7Nmz5aWXXhIRkZYtW1rfzyWNy87OFi8vL9m2bZuIiCQnJ0tubm6R98TMmTNlwYIFIiJy4cIF8fb2lrS0tBLtstC2bVs5d+5ckftQ4LNDoykjwA4pRs/o5KgaTRmwM6BOXTiXCKZcOJ8EdcxqlWNpCAkJoVmzZgAEBgYSHR1N7969C4xZu3Yta9eupXPnzoCq3Xj06FH27NnDnXfeSb1LGVvr1KlT5PhpaWn8+eefjB492tqXfWnZ5R9//GEtrD1hwgSeffbZIvufO3cOT0/PAn2LFy9mxYoV2NnZMWrUKJYuXcojjzxCjx49eO211zh9+jSjRo3C29ubVq1aUbduXXbv3s3Zs2fp3LkzdevWBaBr1640btwYgDZt2jB48GAA/Pz8Ckyv3XXXXdjZ2eHt7U3r1q2tnjpbtmzZYr2W/v37c/78eWu82dChQ3F0dMTPzw+z2cyQIUOs54mOjgZg/fr1vPHGG2RkZJCUlESnTp249dZbi5zHwtatW+nbty9eXl4l3vvLMWDAADw8PADo2LEjJ0+epHnz5gXGrF27lr1797Js2TIAkpOTOXr0KOvWrWPSpEnUuFSfqrhzHzlyhP379zNo0CAAzGYzjRs3Jjk5mYsXLxIaGgqo1/2nn366rK2GYVyxf9SoUQAEBwdb7+mmTZt47LHHAPD398ff3x9Q9+7gwYP06tULgJycHHr06FHk+CWNO3LkCI0bN6Zr164A1KpVq1j71q5dy8qVK62xZ1lZWcTExJRol4UGDRoQFxdnfZ9qNJWJFl2am4dVqyrkMPaAW7oKqs/MhBZ/Qa9eUMJ3VQGcnZ3zj2Nvj8lS+NEGEWHmzJn84x//KNA/d+7cEr8QLeTl5eHp6UlERESxz19pf1dXV7Kysqzbe/fu5ejRo9Yv85ycHFq3bs0jjzzC3XffTbdu3fjxxx8JDw/n888/p3///kyePJn58+dz5swZ7r///mKv3c7OzrptZ2dX4D4UtrE4m6WYjLWWcbbHdXR0tPZbzpOVlcXDDz/Mjh07aN68OS+++GKBay4OEbnivbscpX3d33//fcLDwwv0//zzz1c8t4jQqVMn/vrrrwL9Fy9eLLPddevWLRJcnpSUZBWckH89ha+lpNdq0KBBV5zGK2nc3r17S3UNIsLy5ctp3759kecut39WVlaZ4yg1mvKiY7o0mnJQsyaEhakyQjExcCmkqEIIDw/nyy+/tMazxMbGkpCQwIABA/j22285f/48oL4IAdzd3UlNTQWUF8DLy4ulS5cC6otoz549APTq1YvFixcDKm6rOGrXro3ZbLaKkEWLFvHiiy8SHR1NdHQ0cXFxxMbGcvLkSY4fP07r1q157LHHGDFihDWuauTIkfz8889s3769iIAoDUuXLiUvL4+oqCiOHz9O+/btC1wjQN++fa3XsGHDBurVq1eiB6QwlmurV68eaWlpVs8SUOQ8Fnr06MHGjRs5ceIEkH/vt23bxr333lvmayyO8PBwPv74Y2vcWWRkJOnp6QwePJgvv/zSGnBe3Ovevn17EhMTraIrNzeXAwcO4OnpiYeHB1u2bAEKvu6xsbHFxqa5ubnRuHFjfvvtN+v5fv755yIe2cLYvib79++3vh+6d+/OH3/8wbFjxwDIyMggMjKyyDWUNM7Hx4e4uDi2b98OQGpqKiaTqchrFR4ezvvvv28V5Lt3776sXaD+P86cOUOrVq0ue20aTUWhRZdGU048PVXpIMOAgwfLnkqiJAYPHszdd99Njx498PPz48477yQ1NZVOnTrx3HPPERoaSkBAAE8++SQAY8eO5c0336Rz585ERUWxcOFCvvjiCwICAujUqZM1oPi9997jww8/pGvXrpdN/TB48GDrl/TixYsZOXJkgedHjhzJ4sWLWbJkCb6+vgQGBnL48GGr+HByciIsLIy77rqrwArI0tK+fXtCQ0MZOnQon3zyCS4uLoSFhXHw4EFr0PSLL77Ijh078Pf3Z8aMGXz11VelPr6npycPPvggfn5+3H777dZpK8gP5C+cuqN+/fp89tlnjBo1ioCAAMaMGQNATExMhXlJJk+eTMeOHQkKCsLX15d//OMfmEwmhgwZwogRI+jSpQuBgYHW6TNbW81mM8uWLePZZ58lICCAwMBA/vzzTwDmzZtnnQ62tTU+Ph4Hh+InO77++mteffVVAgMD6d+/Py+88AJt2rS5rP1Tp04lLS0Nf39/3njjDUJCQgB17+bPn8+4ceOsCx8sU8ZTpkxh6NChhIWFlTjOycmJJUuW8OijjxIQEMCgQYPIysoq8p6YNWsWubm5+Pv74+vra10sUpJdoBYZdO/evcT7oNFUNEZxbvrrjS5dusiV8r1oNMURFxdHkyZNKvUcERFKdLm5wS23qJWO1Zndu3fzzjvvsGDBgnLtn5eXR1BQEEuXLsXb27tM+06cOJHhw4dz5513luvc15qnn36aCRMmFIkTqg588MEHtGjRghEjRlS1KVXG9OnTGTFiRLEev2vx2aG5cTEMY6eIdCncX82/HjSaqsfPD+LjVZHsXbvA5od0taRz586EhYVhNpvL7Kk6ePAgw4cPZ+TIkWUWXNWRN998s6pNKDfTpk2rahOqHF9f3zKl/9Borhbt6dLc0FyrX6sXL8LPP6vC2KGhqnC2RqOpvmhPl+ZqKMnTpWO6NJoKwNMTAgLU47//hisshtNoNBrNTYgWXRpNBeHjAw0bKsG1bRtUAyeyRqPRaK4hWnRpNBWEYUD37uDoCKdPw6XsAhqNRqPRAFp0aTQVSs2aEBysHkdEqALZGo1Go9GAFl0aTYXj5QX16qlpxkOHVNbuwMBAOnXqREBAAO+88w55eXkA7Nixw1qi5Hpn4sSJBRKJ2vL444+zadMm63ZiYiKOjo4FijZfa15//fVKP0dERARr1qyxbq9cuZLZs2eX61i2xbVLIjExkW7dutG5c2droeny2lqRdk2cOBEvLy8CAgJo164d9957L7GxsVc89rvvvmtN+lpWKuJ6Bg4cWCT7vkZTmWjRpdFUMIYBl8omcuiQKq0TERHBgQMH+PXXX1mzZg0vvfQSAF26dGHu3LlVaO3Vk5SUZK1NaGHp0qV07979iqVfKpOqEF0jRoxgxowZlXa+3377DR8fH3bv3k2fPn3KtG95RUppefPNN9mzZw9Hjhyxph3Jycm57D5VIbpsmTBhAh999NFVHUOjKQtadGk0hTl8GJYuVX/LSf360KIFmM0qjYSFBg0a8Nlnn/HBBx8gImzYsIHhw4cDqqRMz5496dy5Mz179uTIkSOAKody11134e/vz5gxY+jWrZv1l7qbmxvPPfccAQEBdO/enbNnzwJw8uRJBgwYgL+/PwMGDCAmJgZQYsjX15eAgACrSDKbzTz99NN07doVf39/q3dKRJg2bRodO3Zk2LBhJCQkFHuty5YtsxaVtrBo0SLefvttTp8+bfV4mM1mJk6ciK+vL35+fsyZM4eoqCiCgoKs+x09epTgS/OzrVq14p///Cc9evSgS5cu7Nq1i/DwcNq0acMnn3wCqBJAffv2ZeTIkXTs2JGHHnqIvLw8ZsyYQWZmJoGBgYwfPx6Ad955B19fX3x9fXn33XcBiI6OxsfHh8mTJ+Pr68v48eNZt24dvXr1wtvbm23btpX42uTk5PD888+zZMkSa1b0+fPnW/NfnT17lpEjRxIQEEBAQIA1Q3xpKO51jYiI4JlnnmHNmjXWjPlr166lR48eBAUFMXr0aGvpqO3bt9OzZ08CAgIICQkhOTm5iK3p6encf//9dO3alc6dO1srF2RmZjJ27Fjr+802M39pMAyDJ554gkaNGlmLaxdn59y5c4mLiyMsLIywsLASx1Xm9YwYMaJKfxhobkJE5LpvwcHBotGUh9jY2LLtcOiQSLduIp07q7+HDpX73CkpIosWiTg715SkpILPeXp6ypkzZ2T9+vUybNgwERFJTk6W3NxcERH59ddfZdSoUSIi8uabb8qUKVNERGTfvn1ib28v27dvFxERQFauXCkiIk8//bS88sorIiIyfPhwmT9/voiIfPHFF3LbbbeJiIivr6+cPn1aREQuXLggIiKffvqpdb+srCwJDg6W48ePy/Lly2XgwIFiMpkkNjZWPDw8ZOnSpUWu895777XaICISExMjbdu2FRGRmTNnyttvvy0iIjt27JCBAwdax1nO369fP9m9e7d1/Ny5c0VEpGXLlvLRRx+JiMjjjz8ufn5+kpKSIgkJCVK/fn0REVm/fr04OztLVFSUmEwmGThwoNXGmjVrWs+1Y8cO8fX1lbS0NElNTZWOHTvKrl275MSJE2Jvby979+4Vs9ksQUFBMmnSJMnLy5Pvv//eet9Kem3mzZsnjzzyiPU8ttt33XWXzJkzR0RETCaTXLx4sci9syU0NPSKr6vt8RMTE6VPnz6SlpYmIiKzZ8+Wl156SbKzs8XLy0u2bdtWwPbCts6cOVMWLFhgfS28vb0lLS1N3n77bZk0aZKIiOzZs6fA+60k7rvvviLvjenTp8vs2bNLtFNEvcaJiYlVej1t27aVc+fOFbmmMn92aDQ2ADukGD2jM9JrNLbs2wc5OSq7aVyc2vbxKdeh3N3BkpR9925VINsw1LYUk08iOTmZ++67j6NHj2IYhrXw8ZYtW5g+fTqgMmjblpxxcnKyesqCg4P59ddfAfjrr7/47rvvADWF8swzzwCq6PXEiRO56667GDVqFKC8C3v37rXGayUnJ3P06FE2bdrEuHHjsLe3p0mTJvTv37/Y64yPj6d+/frW7cWLF3PXXXcBqi7kAw88wJNPPknr1q05fvw4jz76KMOGDWPw4MGAqjk4b9483nnnHZYsWWL1LgHWEjV+fn6kpaXh7u6Ou7s7Li4uXLx4EYCQkBBat24NwLhx49iyZUuRMkJbtmxh5MiR1KxZE4BRo0axefNmRowYgZeXF35+fgB06tSJAQMGYBgGfn5+REdHX/a1uRy///47X3/9NaDi+jw8PK64j4WSXldbtm7dysGDB+nVqxcAOTk59OjRgyNHjtC4cWNrTcmSCoGvXbuWlStXWms5ZmVlERMTw6ZNm6xxhv7+/uUucWR5j5dk5/VyPQ0aNCAuLo66deuW6zo1mrKgRZdGY4ufHzg5KcHl6Ki2rwJfX/X3zBlVKqhJEzh+/Dj29vY0aNCAQ4cOWcfOmjWLsLAwVqxYQXR0NP369QOKF2gWHB0dMS4pOXt7e0wmU7HjLGM++eQT/v77b3788UcCAwOJiIhARHj//fcJDw8vsM+aNWus+10OV1dXsmyywS5atIizZ8+ycOFCQGX2Pnr0KN7e3uzZs4dffvmFDz/8kG+//ZYvv/ySO+64g5deeon+/fsTHBxc4MvP2dkZADs7O+tjy7blWgvbWJzNl7uHhY9re07LOUp6bSqL0ryuIsKgQYOKTI/t3bu3VK+biLB8+XLat29f5LnS7H8ldu/ezYABA0q0szh7quJ6srKyKqxouUZzJXRMl0Zji48PzJ8PM2aov+X0cllwdga7S/9lERGQkJDIQw89xLRp04p8ESQnJ9P0Uv2g+fPnW/t79+7Nt99+C6jahvv27bvieXv27MnixYsBWLhwIb179wYgKiqKbt268fLLL1OvXj1OnTpFeHg4H3/8sdV7ExkZSXp6On379mXx4sWYzWbi4+NZv359sefq0KEDx44dA+DIkSOkp6cTGxtLdHQ00dHRzJw5k8WLF3Pu3Dny8vK44447eOWVV9i1axcALi4uhIeHM3XqVCZNmlSKu1qQbdu2ceLECfLy8liyZIn1Wh0dHa3X1LdvX77//nsyMjJIT09nxYoVZQpEL+m1cXd3JzU1tdh9BgwYwMcffwyoeLaUlBRrf2lW9l2J7t2788cff1jvfUZGBpGRkfj4+BAXF8f27dsBSE1NxWQyFbE1PDyc999/3ypId+/eDah7ZRHM+/fvZ+/evdZ97r333gKeyOIQEebOnUt8fDxDhgwp0U4oeP+q4npEhDNnztCqVatS3HGN5uqpVNFlGMYQwzCOGIZxzDCMIkt6DMPwMAxjlWEYewzDOGAYRtk/cTWaisbHB0aPvmrBZSE7O5PnngtkypROhIYOZPDgwbzwwgtFxj3zzDPMnDmTXr16YTabrf0PP/wwiYmJ+Pv785///Ad/f/8rTlXNnTuXefPm4e/vz4IFC3jvvfcAePrpp/Hz88PX15e+ffsSEBDA5MmT6dixI0FBQfj6+vKPf/wDk8lkLVrt5+fH1KlTCQ0NLfZcw4YNY8OGDYDyco0cObLA83fccQeLFi0iNjaWfv36ERgYyMSJE/n3v/9tHTN+/HgMw7BOOZaFHj16MGPGDHx9ffHy8rKef8qUKfj7+zN+/HiCgoKYOHEiISEhdOvWjcmTJ9PZssS0FJT02oSFhXHw4EFrMLct7733HuvXr8fPz4/g4GAOHDhAXl4ex44do06dOmW+zsLUr1+f+fPnM27cOPz9/enevTuHDx/GycmJJUuW8OijjxIQEMCgQYPIysoqYuusWbPIzc3F398fX19fZs2aBcDUqVNJS0vD39+fN954gxCbCu579+6lcePGxdrz9NNPW1NGbN++nfXr1+Pk5FSinaBeo6FDhxIWFlYl17Nz5066d++Og4Oe9NFcGyqt4LVhGPZAJDAIOA1sB8aJyEGbMf8EPETkWcMw6gNHgEYiUmCdsS54rSkv10vR2pMn4Y8/oEYNGDEi3/tVGsxmM7m5ubi4uBAVFcWAAQOIjIzEycmp8gwuI71792b16tV4enqWa/+33nqL5ORkXnnllTLtt2HDBt566y1Wr15drvNea/bv38+XX37JO++8U9WmlJmUlBQeeOABli5dWtWmVBjTp09nxIgRDBgwoMhz18tnh6Z6UlLB68qU9yHAMRE5fsmAxcBtwEGbMQK4G2qexQ1IAooPStFoqjEtWqiY/JQUJcC8vEq/b0ZGBmFhYeTm5iIifPzxx9eV4AJ4++23iYmJKZfoGjlyJFFRUfz+++8Vb9h1hq+vb7UUXKAC2G8kwQXq9ShOcGk0lUVlerruBIaIyORL2xOAbiIyzWaMO7AS8AHcgTEi8mPhY2lPl6a8XE+/VqOi4O+/wdMThg7NX8mo0WiuP66nzw5N9aMkT1dlxnQV95VSWOGFAxFAEyAQ+MAwjOLXA2s01ZxWrcDVFS5eVCsZNRqNRnNzUZmi6zTQ3Ga7GRBXaMwk4LtLucSOASdQXi+N5obD3h4sq9ltMkVoNBqN5iahMkXXdsDbMAwvwzCcgLGoqURbYoABAIZhNATaA8cr0SaNpkpp21al/zp7Fs6fr2prNBqNRnMtqTTRJSImYBrwC3AI+FZEDhiG8ZBhGA9dGvYK0NMwjH3Ab8CzInKusmzSaKoaJ6f8LPXa26XRaDQ3F5Wap0tE1ohIOxFpIyKvXer7REQ+ufQ4TkQGi4ifiPiKyDeVaY9GU1WsWLECwzA4fPgw7durlBF798Zx++2qXI1t4euVK1cye/bsCjv3448/zqZNmwBYvXo1nTt3JiAggI4dO1qLW1cW7777LhkZGZV6jujoaP73v/9Zt3fs2GEt+1JWJk6caC2HVBLZ2dkMHDiw2NxcZbW1Iu0qboybm1uZzmP7PiyJiIgI1qxZU6bj2lKe94StXatXry42z51GUx3QGek1mmvAokWL6N27N4sXL8bVVaWM8PRswj//WfSLdMSIEcyYUSSXcLlISkpi69at9O3bl9zcXKZMmcKqVavYs2cPu3fvrvRyNlUhurp06cLcuXMr7Xy7d+8mNzeXiIgIxowZU6Z9yyu6rieqQnTZMmzYMFauXFnp7yuNpjK4ougyDKOXYRi/GoYRaRjGccMwThiGoeOuNJpSkpaWxh9//MEXX3xhLc3j4wOJidHccYcvNmULAVVmZto0lVll4sSJPPbYY/Ts2ZPWrVtbPRl5eXk8/PDDdOrUieHDh3PLLbcU6wlZtmwZQ4YMAfLLp1hqGzo7O9O+fXtSU1Px8vKylsxJSUmhVatW5Obm0q9fP5544gn69u1Lhw4d2L59O6NGjcLb25t//etfgBISPj4+3Hffffj7+3PnnXeSkZHB3LlziYuLIywsjLCwMECJT0tG/GeffdZqp5ubG88++yzBwcEMHDiQbdu20a9fP1q3bs3KlSut5+nTpw9BQUEEBQXx559/AjBjxgw2b95MYGAgc+bMKeAVSUtLY9KkSfj5+eHv78/y5ctL/bq1atWKF154gaCgIPz8/Dh8+DAJCQncc889REREEBgYSFRUFDt37iQ0NJTg4GDCw8OJv7Q09dixYwwcOJCAgACCgoKIiooqYqvZbObpp5+ma9eu+Pv7Wz2PIsK0adPo2LEjw4YNIyEhodR2F8eGDRvo168fd955Jz4+PowfP95aLufnn3/Gx8eH3r17W4ukA6Snp3P//ffTtWtXOnfuzA8//EBOTg7PP/88S5YssXr6ihsHKqnvU089Zb3377//frHvibVr19KjRw+CgoIYPXo0aWlpl7XLMAz69etXbRLiajQFEJHLNuAwMBRoANS1tCvtV5EtODhYNJryEBsbW7Bj+HDVbHnpJdX399/5fT/9pPrefz+/7/x51XfvvWWyYcGCBXL//feLiEiPHj1k586dIiKyePEJadask0REiKxfv16GDRsmIiLz5s2TRx55RERE7rvvPrnzzjvFbDbLgQMHpE2bNiIisnTpUhk6dKiYzWaJj48XT09PWbp0aZFz33vvvbJy5Urr9gMPPCD169eXsWPHyjfffCNms1lERCZOnCgrVqwQEZFPP/1UnnzySRERCQ0NlWeeeUZERN59911p3LixxMXFSVZWljRt2lTOnTsnJ06cEEC2bNkiIiKTJk2SN998U0REWrZsKYmJiSKiXovmzZtLQkKC5ObmSlhYmPWcgKxZs0ZERG6//XYZNGiQ5OTkSEREhAQEBIiISHp6umRmZoqISGRkpFg+F2zvXeHtZ555RqZPn259Likp6bKv1X333We9jy1btpS5c+eKiMiHH34oDzzwQJHj5+TkSI8ePSQhIUFERBYvXiyTJk0SEZGQkBD57ju1ODszM1PS09OL2Prpp5/KK6+8IiIiWVlZEhwcLMePH5fly5fLwIEDxWQySWxsrHh4eBT7+pZku4WaNWtaba5Vq5acOnVKzGazdO/eXTZv3iyZmZnSrFkziYyMlLy8PBk9erTVvpkzZ8qCBQtEROTChQvi7e0taWlpBd6flxv30UcfyahRoyQ3N1dERM6fP2+9r5b3RGJiovTp00fS0tJERGT27Nny0ksvXdYuEZFvvvlGpk2bdtn7cbUU+ezQaMoAsEOK0TOlmV5MFpGfRCRBRM5bWiVpQI3mhmPRokWMHTsWgLFjx7Jo0SJArWQEOHoUbMr5FeH222/Hzs6Ojh07cvbsWQC2bNnC6NGjsbOzo1GjRlavQWHi4+OpX7++dfvzzz/nt99+IyQkhLfeeov7778fgMmTJzNv3jwA5s2bV6Dw9IgRIwDw8/OjU6dONG7cGGdnZ1q3bs2pU6cAaN68Ob169QLgnnvuYcuWLUVs2b59O/369aN+/fo4ODgwfvx4a6yZk5OT1SPn5+dHaGgojo6O+Pn5ER0dDUBubi4PPvggfn5+jB49moMHDxY5R2HWrVvHI488Yt2uXbv2FfexZdSoUQAEBwdb7bDlyJEj7N+/n0GDBhEYGMirr77K6dOnSU1NJTY21loH0sXFhRo1ahTZf+3atXz99dcEBgbSrVs3zp8/z9GjR9m0aRPjxo3D3t6eJk2a0L9//yvaWriAeuG+kJAQmjVrhp2dHYGBgURHR3P48GG8vLzw9vbGMAzuueeeArbNnj2bwMBA+vXrR1ZWFjExMcVeQ3Hj1q1bx0MPPWSta1hcvcmtW7dy8OBBevXqRWBgIF999RUnT568rF0ADRo0IC6ucAYijeb6pzRlgNYbhvEm8B2QbekUkV2VZpVGU1msWlW07/nni/YNGaKaLXXqFL//ZTh//jy///47+/fvxzAMzGYzhmHwxhtvULeuyt2VkwOXmz1ydna2PpZLU0KWv1fC1dWVrELzl35+fvj5+TFhwgS8vLyYP38+vXr1Ijo6mo0bN2I2m/H19S1yfjs7uwK22NnZYTKpql2Fv/CLEwCXs9nR0dG6j+15bM8xZ84cGjZsyJ49e8jLy8PFxeWK1y8ixdpSWix22NvbW+0ofPxOnTrx119/FehPSUkp1fFFhPfff5/w8PAC/WvWrCmz3XXr1uXChQvW7aSkJOrVq2fdtn3tbK+npPOICMuXL6e9JbncJf7+++9SjSvNvRcRBg0aZP0hYiEiIuKy+2ZlZeHq6nrZY2s01yOl8XR1A7oArwNvX2pvVaZRGs2NwrJly7j33ns5efIk0dHRnDp1Ci8vL6snyFJCMTa2bMft3bs3y5cvJy8vj7Nnz7Jhw4Zix3Xo0IFjx44BKr7JdlxERAQtW7a0bt97772MGzeugJertMTExFiFh2XRAIC7uzupqakAdOvWjY0bN3Lu3DnMZjOLFi0iNDS01OdITk6mcePG2NnZsWDBAsyX3IO25yjM4MGD+eCDD6zbFlFy7733sm3btjJfZ2Hat29PYmKi9dpzc3M5cOAAtWrVolmzZnz//feAWvGYkZFRxNbw8HA+/vhjazxdZGQk6enp9O3bl8WLF2M2m4mPj2f9+vXWfWbOnMmKFSuK2NKvXz+WLFlCTk4OoGIDS/KAWvDx8eHEiRNERUUBFBA/4eHhvP/++1axvHv3bqDo/S5p3ODBg/nkk0+s4i4pKanI/t27d+ePP/6wvkczMjKIjIy8rF2W+2T7w0CjqS5cUXSJSFgx7cq+bo1Gw6JFi6xTTBbuuOMO6wo2JyeVLPXiRbj0vVsq7rjjDpo1a4avry//+Mc/6NatGx4eHkXGDRs2zCq0RIQ33niD9u3bExgYyAsvvMD8+fOtY8ePH8+FCxcYN25cWS+TDh068NVXX+Hv709SUhJTp04FYMqUKQwdOpSwsDAaN27Mv//9b8LCwqzB5bfddlupz/Hwww/z1Vdf0b17dyIjI6lZsyYA/v7+ODg4EBAQwJw5cwrs869//YsLFy7g6+tLQECAVbzs3buXxo0bl/k6C+Pk5MSyZct49tlnCQgIIDAw0Brgv2DBAubOnYu/vz89e/bkzJkzRWydPHkyHTt2JCgoyPpamkwmRo4cibe3N35+fkydOrWAON23bx+NGjUqYsvw4cPp06cPwcHBBAYG8scff/Cf//znsva7uLjw2WefMWzYMHr37l1AhM+aNYvc3Fz8/f3x9fVl1qxZAISFhXHw4EFrIH1J4yZPnkyLFi3w9/cnICDA+p63fU/Ur1+f+fPnM27cOPz9/enevTuHDx++rF0A69evZ9iwYeV4xTSaquWKBa8Nw/AAXgD6XuraCLwsIsmVbJsVXfBaU16qQ9Ha7dtVXFe7dtClSHnUkklLS8PNzY3z588TEhLCH3/8UeyXce/evVm9ejWenp6XPd6yZcv44YcfWLBgQZnsj46OZvjw4ezfv79M+1UVKSkpPPDAAyxdurSqTSkX4eHh/PLLL1VtRpVx9uxZ7r77bn777bdKPU91+OzQXL+UVPC6NDFdXwL7gbsubU8A5gGjKs48jebmpW1bJbpOnIDAQHAozX8lyrNx8eJFcnJymDVrVrGCC+Dtt98mJibmsqLr0Ucf5aeffrqq/EvVhVq1alVbwQXc1IIL1FT222+/XdVmaDTlojSerggRCbxSX2WiPV2a8lJdfq2uXQvnzkG3btCmTVVbo9Foqstnh+b6pCRPV2kC6TMNw+htc6BeQGZFGqfR3OxY0kdciifWaDQazQ1IaSYypgJfXYrtMoAkYGJlGqXR3Gy0bAm7dsH583DhApQxnZRGo9FoqgGlWb0YISIBgD/gJyKdRWRP5Zum0dw82Nureoyg4rs0Go1Gc+NRoqfLMIx7ROQbwzCeLNQPgIi8U8m2aTQ3FW3bwpEjEB0NnTurVBIajUajuXG4nKer5qW/7sU0t0q2S6O5YbC3tycwMBBfX19uvfVWLl68WOw4Dw9o0ABMJjh5svLs2bFjB4899thVH2fixInFFtkGePzxx60lflavXk3nzp0JCAigY8eO1qLOlcW7775LRkZGpZ4jOjramncKru6eXu4+WsjOzmbgwIHW3FhXY2tF2vXiiy/StGlTAgMD8fb2ZtSoUaUqzzR//vxyl/GpiOsZO3YsR7VLWVMFlCi6RMTyybhORF6ybUDlJkjRaG4gXF1diYiIYP/+/dSpU4cPP/ywxLG29RhLWemnzHTp0oW5c+dWzsFRmce3bt1K3759yc3NZcqUKaxatYo9e/awe/du+vXrV2nnhqoRXZV9T3fv3k1ubi4RERGMGTOmTPuWV6SUlieeeIKIiAiOHj3KmDFj6N+/P4mJiZfdpypEly1Tp07ljTfeuKpjaDTloTSrF98vZZ9Go7kCPXr0IPZSzZ+oqCiGDBlCcHAwffr04fDhwzRvDpmZZ3n++ZH4+QUQEBBgzXD+zjvv4Ovri6+vL++++671mK+88go+Pj4MGjSIcePG8dZbqkpXv379ePbZZwkJCaFdu3Zs3rwZgA0bNjB8+HAAbrnlFgIDAwkMDMTDw4OvvvoKs9nM008/TdeuXfH397d6pkSEadOm0bFjR4YNG0ZCCQUjly1bZi1enZqaislkom7duoCq/9e+fXtSU1Px8vKylr9JSUmhVatW5Obm0q9fP5544gn69u1Lhw4d2L59O6NGjcLb25t//etfgPri9fHx4b777sPf358777yTjIwM5s6dS1xcHGFhYdYSOIsWLcLPzw9fX1+effZZq51ubm48++yzBAcHM3DgQLZt20a/fv1o3bo1K1eutJ6nT58+BAUFERQUZH0tZsyYwebNmwkMDGTOnDkF7mlaWhqTJk3Cz88Pf39/li9fXur3R6tWrXjhhRcICgrCz8+Pw4cPk5CQwD333ENERASBgYFERUWxc+dOQkNDCQ4OJjw8nPj4eACOHTvGwIEDrRn/o6Kiith6ta/v5RgzZgyDBw+2iqLi7Fy2bBk7duxg/PjxBAYGkpmZec2vp0+fPqxbt67YepoaTaUiIsU2oAfwf8Ap4Emb9iKwp6T9KqMFBweLRlMeYmNjC3YMH15y++mn/HE//XT5sWWgZs2aIiJiMpnkzjvvlJ8unad///4SGRkpIiJbt26VsLAwEREZNOguueeeObJjh9rn4sWLsmPHDvH19ZW0tDRJTU2Vjh07yq5du2T79u0SEBAgGRkZkpKSIm3btpU333xTRERCQ0PlySefFBGRH3/8UQYMGCAiIuvXr5dhw4YVsHHHjh3i5+cnFy9elE8//VReeeUVERHJysqS4OBgOX78uCxfvlwGDhwoJpNJYmNjxcPDQ5YuXVrkeu+9915ZuXKldfuBBx6Q+vXry9ixY+Wbb74Rs9ksIiITJ06UFStWiIjIp59+arU1NDRUnnnmGREReffdd6Vx48YSFxcnWVlZ0rRpUzl37pycOHFCANmyZYuIiEyaNMl63S1btpTExEQRUa9/8+bNJSEhQXJzcyUsLMx6TkDWrFkjIiK33367DBo0SHJyciQiIkICAgJERCQ9PV0yMzNFRCQyMlIsn0WF76Ht9jPPPCPTp0+3PpeUlFTkHtly3333We9jy5YtZe7cuSIi8uGHH8oDDzxQ5Pg5OTnSo0cPSUhIEBGRxYsXy6RJk0REJCQkRL777jsREcnMzJT09PQitl7t62vLCy+8YL3vFubMmSMPPfTQZe0MDQ2V7du3V+n1DBw4UHbs2FHitRX57NBoygCwQ4rRM5dLGeGEit1yQMVxWUgB7qxg7afR3LBkZmYSGBhIdHQ0wcHBDBo0iLS0NP78809Gjx5tHZednQ3Arl2/8/bbX18KqLfHw8ODLVu2MHLkSGu9wVGjRrF582by8vK47bbbcHV1BeDWW28tcO5Ro1ThiODgYKKjo4u179y5c0yYMIFvv/0WDw8P1q5dy969e63xL8nJyRw9epRNmzYxbtw47O3tadKkCf37F1+CNT4+nvr161u3P//8c/bt28e6det46623+PXXX5k/fz6TJ0/mjTfe4Pbbb2fevHn897//te4zYsQIAPz8/OjUqZO1TmLr1q05deoUnp6eNG/enF69egFwzz33MHfuXJ566qkCtmzfvp1+/fpZ7Rk/fjybNm3i9ttvx8nJyeqR8/Pzw9nZGUdHR/z8/Kz3Kjc3l2nTphEREYG9vT2RkZHFXrMt69atY/Hixdbt2mXM/2H7mn333XdFnj9y5Aj79+9n0KBBAJjNZho3bkxqaiqxsbHWWp8uLi7FHv9qX98rIZfmxUuy83q5ngYNGhAXF0dwcHC5rlOjKQ8lii4R2QhsNAxjvohUYlivRnMNWbWqdOOGDFGtArDEdCUnJzN8+HA+/PBDJk6ciKenJxEREUXGGwZ4ekJ6OsTFQbNm+V9khSmp34KzszOggvmLm0oxm82MHTuW559/Hl9fX+sx33//fcLDwwuMXbNmjXX18pWuNysrq0Cfn58ffn5+TJgwAS8vL+bPn0+vXr2Ijo5m48aNmM1m6/lt7bazs7M+tmxbrqOwLcXZdrn74+joaN3H9jy255gzZw4NGzZkz5495OXllfjFX/icpblPJXGl10xE6NSpE3/99VeB/pSUlFId/2pf3yuxe/duunTpUqKdxdlTFdeTlZVl/bGi0VwrShPTlWEYxpuGYawxDON3S6t0yzSaGwwPDw/mzp3LW2+9haurK15eXtYagCLCnj0q/d2AAQPYuvVjAI4eNZOSkkLfvn35/vvvycjIID09nRUrVtCnTx969+7NqlWryMrKIi0tjR9//LFMNs2YMQN/f3/Gjh1r7QsPD+fjjz+2xltFRkaSnp5O3759Wbx4MWazmfj4eNavX1/sMTt06MCxS6n109LS2LBhg/W5iIgIWrZsad2+9957GTduHJMmTSqT3aBq8Fm+qBctWkTv3qpwhru7O6mpqQB069aNjRs3cu7cOcxmM4sWLSI0NLTU50hOTqZx48bY2dmxYMECzGZzkXMUZvDgwXzwwQfW7QsXLlivddu2bWW+zsK0b9+exMRE67Xn5uZy4MABatWqRbNmzfj+++8B5TnNyMgoYmt5Xt+ZM2eyYsWKK9q2fPly1q5dy7hx40q0Ewrev6q4Hsu4Tp06le6mazQVRGlE10LgMOAFvAREA9sr0SaN5obFkjph8eLFLFy4kC+++IKAgAA6derEDz/8AMB7773Hvn3rmTHDj0mTgtm16wBBQUFMnDiRkJAQunXrxuTJk+ncuTNdu3ZlxIgRBAQEMGrUKLp06YKHh0ep7XnrrbdYu3atNZh+5cqVTJ48mY4dOxIUFISvry//+Mc/MJlMjBw5Em9vb/z8/Jg6dWqJ4mXYsGFWoSUivPHGG7Rv357AwEBeeOEF5s+fbx07fvx4Lly4wLhx48p8Lzt06MBXX32Fv78/SUlJTJ06FYApU6YwdOhQwsLCaNy4Mf/+978JCwuzBmPfdtttpT7Hww8/zFdffUX37t2JjIy0Tu/6+/vj4OBAQEAAc+bMKbDPv/71Ly5cuICvry8BAQHWL/u9e/cWO71WVpycnFi2bBnPPvssAQEBBAYGWgP8FyxYwNy5c/H396dnz56cOXOmiK3leX337dtXYkH1OXPmWFNGfPPNN/z+++/Ur1//snZOnDiRhx56iMDAQMxm8zW/nrNnz+Lq6lohr4dGUxZKU/B6p4gEG4axV0T8L/VtFJHS/1y8SnTBa015qc5FazduhNhYCA6G9u1LHpeWloabmxsZGRn07duXzz77jKCgoGtnaDH07t2b1atX4+npedlxy5Yt44cffmDBggVlOn50dDTDhw9n//79V2HltSMlJYUHHnjA6tmsboSHh/PLL79UtRkVxpw5c6hVqxYPPPBAiWOq82eHpuopqeB1aWov5l76G28YxjAgDmhWkcZpNJqieHkp0XX8+OVF15QpUzh48CBZWVncd999VS64AN5++21iYmIuK7oeffRRfvrpJ9asWXPtDKsiatWqVW0FF3BDCS4AT09PJkyYUNVmaG5CSuPpGg5sBpqj8nPVAl4SkZWVb55Ce7o05aU6/1o1m2HFCsjJgaFDdRFsjeZaUp0/OzRVT7k9XSKy+tLDZCCsog3TaDTFY28PLVuq7PQnTmjRpdFoNNWdyxW8fh8o0Q0mIldfvE2j0VyW1q2V6IqOhsBAsCvN0heNRqPRXJdcztOl5/M0miqmTh1VCDs5GeLjoWnTqrZIo9FoNOXlcslRv7qWhmg0mqIYhgqoj4hQAfVadGk0Gk315YqTFYZhrLdNiqqTo2o0pef8+fPWHFiNGjWiadOmBAYG4unpSceOHUt1jFatlPiKjYVLlYIuy/fff8/BgwevzvBS8OKLL1qLaxfm3Xff5euvv7Zum0wm6tWrx8yZM8t9vosXL/LRRx+Vaqybm1upj5uXl8djjz2Gr68vfn5+dO3alRMnTpTXzCsSHR1tLQhdmRR+Hzz//POsW7euxPH79u1j4sSJlW6XRnMzU5oIkaeApy+1WUAEpZx6NAxjiGEYRwzDOGYYxowSxvQzDCPCMIwDhmFsLKXdGk21oG7dukRERBAREcFDDz3EE088Yd22K0WAlslkokYNaNQI8vLgZCkKcl0r0VUSJpOJL7/8krvvvtvat3btWtq3b8+33357xdJFJVEW0VUWlixZQlxcHHv37mXfvn2sWLHiivnFroaqEl0vv/wyAwcOLHG8n58fp0+fJiYmptJt02huVq74qS8iO23aHyLyJNDtSvsZhmEPfAgMBToC4wzD6FhojCfwETBCRDoBowsfR6O5UTGbzTz44IN06tSJwYMHk5mZCUC/fv345z//SWhoKO+99x47d+5kxoxQnnsumLvvDic+Ph6A//73v3Tt2pWAgADuuOMOMjIy+PPPP1m5ciVPP/00gYGBREVFERUVxZAhQwgODqZPnz4cPnwYUFnBH3vsMXr27Enr1q2tBYMB3nzzTbp27Yq/vz8vvPCCtf+1116jffv2DBw4kCNHjhR7Xb///jtBQUE4OORHLyxatIjp06fTokULtm7dau3/+eefCQoKIiAggAEDBgBFPWi+vr5ER0czY8YMoqKiCAwM5Omnn76snRYmTJhgzfQPKgP+ypUFs93Ex8dbS/0ANGvWjNq1a/PFF1/wxBNPWMf997//5cknnyQ6OhofHx8mT56Mr68v48ePZ926dfTq1Qtvb29rqZ8XX3yRCRMm0L9/f7y9va0FvWfMmMHmzZsJDAxkzpw5ZGVlMWnSJPz8/OjcubM1g/38+fO5/fbbufXWW/Hy8uKDDz7gnXfeoXPnznTv3p2kpKQyvQ8mTpxofY23b99Oz549CQgIICQkxFpW59Zbby1QrFujuRFIz0nnWNIxNp3cxJL9SzibdrbqjBGRyzagjk2rB4QDR0qxXw/gF5vtmcDMQmMeBl690rGCg4NFoykPsbGxBTuGDy9bmz69+P3LwQsvvCBvvvmmiIicOHFC7O3tZffu3SIiMnr0aFmwYIGIiISGhsrUqVNFRCQnJ0d69OghcXEJsmSJyLRpi+WeeyaJiMi5c+esx37uuedk7ty5IiJy3333ydKlS63P9e/fXyIjI0VEZOvWrRIWFmYdd+edd4rZbJYDBw5ImzZtRETkl19+kQcffFDy8vLEbDbLsGHDZOPGjbJjxw7x9fWV9PR0SU5OljZt2livx5bnn3/eaouISEZGhjRu3FjS09Pl008/lUcffVRERBISEqRZs2Zy/PhxERE5f/58kfskItKpUyc5ceKEnDhxQjp16mTtL8lOEZGaNWuKiMiGDRvktttuExGRixcvSqtWrSQ3N7eAvadOnZKWLVtKQECAPPnkk7Jr1y4REUlLS5PWrVtLTk6OiIj06NFD9u7da33t9u7dK2azWYKCgmTSpEmSl5cn33//vfV8L7zwgvj7+0tGRoYkJiZKs2bNJDY2VtavXy/Dhg2znv+tt96SiRMniojIoUOHpHnz5pKZmSnz5s2TNm3aSEpKiiQkJEitWrXk448/FhGRxx9/XObMmVOm94FlOzs7W7y8vGTbtm0iIpKcnGy9J1u2bJHh5Xx/32gU+ezQXNekZadJ5LlI2Ri9URbtWyRv//m2/N8v/yd3L79bhv9veIG2+eTmSrcH2CHF6JnSZKTfiUodYQAm4ARQcu2EfJoCp2y2T1PUQ9YOcDQMYwPgDrwnIl+j0dwEeHl5ERgYCEBwcDDR0dHW58aMGQPAkSNH2L9/P0OHDiIjAzIzzTRrpurF7d+/n3/9619cvHiRtLQ0wsPDi5wjLS2NP//8k9Gj853I2TaBYbfffjt2dnZ07NiRs2fVr7+1a9eydu1aOnfubD3G0aNHSU1NZeTIkdSoUQOAESNGFHtd8fHxdOjQwbq9evVqwsLCqFGjBnfccQevvPIKc+bMYevWrfTt2xcvLy8A6tSpU6b7V5Kdffv2tY4JDQ3lkUceISEhge+++4477rijgAcOlGfryJEj/P777/z+++8MGDCApUuXMmDAAPr378/q1avp0KEDubm5+Pn5ER0djZeXF35+fgB06tSJAQMGYBiG9XkLt912G66urri6uhIWFsa2bduKTF1u2bKFRx99FAAfHx9atmxJZGQkAGFhYbi7u+Pu7o6Hhwe33noroKYC9+7dC5TufWDLkSNHaNy4MV27dgVUtnwLDRo0IC4urlT3X6O51uSaczmTdobY1FhOp5wmLjWO2JRYYlNjSc5OLnE/J3snmrg1obF7Y5q4N6GJe9UlvS1NclSvch7bKO5wxZw/GBgAuAJ/GYaxVUQiy3lOjebyrFpVtfvb4OzsbH1sb29vnV4ErIWVRYROnTrx119/cfYs/PYb1KwJImp68PvvvycgIID58+dbi0zbkpeXh6enJxEREVe0QS7FWokIM2fO5B//+EeBse+++y6GUdy/dUFcXV3Jysqybi9atIg//viDVq1aAWpxwfr16xGRYo/n4OBAXl6eddv2WLaUZGdhJkyYwMKFC1m8eDFffvllsWOcnZ0ZOnQoQ4cOpWHDhnz//fcMGDCAyZMn8/rrr+Pj48OkSZMKjLdgZ2dn3bazs8NkMlmfK3x9xV2v5b6XZNeVzlOa90Hh85X0OmZlZeHq6nrZ/TWaykREuJB1gdgUJawsAis2JZaz6WeREtKHOtk70dgtX1TZttoutUv12XUtuKLoMgzDBTUN2BslmrYAH4tI8Z+E+ZxGlQ6y0AxVt7HwmHMikg6kG4axCQgAtOjSaID27duTmJjIX3/9RffuPXByyuXIkUgSEzuRmppK48aNyc3NZeHChTS9lE/C3d3dGqNTq1YtvLy8WLp0KaNHj0ZE2Lt3LwEBASWeMzw8nFmzZjF+/Hjc3NyIjY3F0dGRvn37MnHiRGbMmIHJZGLVqlXFCp4OHTpw7NgxQBV63rJlC6dOnbIKhnnz5rFo0SJmz57NI488wokTJ/Dy8iIpKYk6derQqlUrVq9WhTB27dplXUloe12Xs7NBgwYF7Jk4cSIhISE0atSITp06FbF3165dNGrUiCZNmpCXl8fevXvx9/cHoFu3bpw6dYpdu3ZZPUtl4YcffmDmzJmkp6ezYcMGZs+eTXx8fIHr6Nu3LwsXLqR///5ERkYSExND+/bt2bVrV6nOUZr3gS0+Pj7ExcWxfft2unbtSmpqKq6urjg4OBAZGYmvr2+Zr1OjKSvmPDNn0s5wKuUUp5JPcTrltGqpp8nIzSh2HwPDKqya1WpGE/cmNHVvStNaTanrWve6EVaXozTTi18Dqai6iwDjgAVcOeh9O+BtGIYXEAuMBe4uNOYH4APDMBwAJ9T045zSma7R3Pg4OTmxbNkyHnvsMZKTk0lLMxEW9jgnTnTilVdeoVu3brRs2RI/Pz/rF+zYsWN58MEHmTt3LsuWLWPhwoVMnTqVV199ldzcXMaOHXtZ0TV48GAOHTpEjx49AJV+4ZtvviEoKIgxY8YQGBhIy5Yt6dOnT7H7Dx061FpM+LvvvqN///4FPDa33XYbzzzzDB999BGfffYZo0aNIi8vjwYNGvDrr79yxx138PXXXxMYGEjXrl1p164doFaC9urVC19fX4YOHcqbb75ZrJ2FRVfDhg3p0KEDt99+e7H2JiQk8OCDD1qnXUNCQpg2bZr1+bvuuouIiAhql6MOU0hICMOGDSMmJoZZs2bRpEkT6tevj4ODAwEBAUycOJGHH36Yhx56CD8/PxwcHJg/f36B+3UlSvs+sODk5MSSJUt49NFHyczMxNXVlXXr1uHm5sb69esZNmxYma9ToymJHHMOsSmxVnEVkxzDqZRTxKfFY8ozFbtPTceaNK/VnKa1mtKsVjOa1WpGU/emNHJrhKO94zW+goqlNAWv94hIwJX6Stj3FuBdwB74UkReMwzjIQAR+eTSmKeBSUAe8LmIvFv4OLrgtaa83GhFa5OT4ccfwdERRo1S9RmvR0aOHMkbb7yBt7d3VZtCRkYGfn5+7Nq1Cw8PjzLvP3z4cJ544gnr6srS8uKLL+Lm5sZTTz1V5nNWBdnZ2YSGhrJly5YicW83IzfaZ0dlk2PO4XTKaauwOpl8klPJSlyVNCXYoEYDmtVqRnOP5lZx1bxWc2o516oWXqvLUe6C18BuwzC6i8jWSwfqBvxRmpOKyBpgTaG+Twptvwm8WZrjaTQ3Ox4eqjRQUpJKltqiRVVbVDyWabSqFl3r1q3j/vvv58knnyyz4Lp48SIhISEF0lncyMTExDB79mwtuDSXxZxnJi41jpPJJzl58aRVYMWlxhUrruwMO5q4NaF5rea08GhRQGS5OLhUwRVULaXxdB0C2gOWjHktgEMoz5SIiH+lWoj2dGnKz434a/XIEdi5U5UECg2tams0mhuTG/GzoyyICOczz3Py4klOXDxBTHIM0RejOZVyqthpQQODJu5NaOHRokBr6t602k8Jloer8XQNqQR7NBpNOWnZEnbtgrg4yMoCl5vvx6JGo6lAsk3ZxCTHcOLiCaIvRnPiwgmik6NJy0krdnyDGg1o6dmSVp6taOHRgpYeLWlaqylO9k7X2PLqR2lSRpw0DCMAsETNbhaRPZVrlkajKQkXF2jSRE0vnjwJ7dtXtUUajaY6YEnHcPzCcU5cOKH+XjxR4tSgu5M7rTxb0cqzFS098kWWq6NOK1JeSpMyYjrwIPDdpa5vDMP4TETev8xuGo2mEvHyUqLrxAktujQaTVHyJI+41DiOXzhOVFKUVWAVl0TUzrCjRa0WeHl60dKzJV6eXnjV9rqu8lvdKJRmevEBoNulXFoYhvEf4C/yU0hoNJprTNOm4OSkAuqTk1WAvUajuTkx5ZmISY4hKimKY0nHrAIr25xdZGxNx5q0rt2a1rVbW8VV81rNb8q4q6qgNKLLAMw222aKzzav0WiKwc3NjbS0/NiI+fPns2PHDj744IMyH2vDhg289dZbrF69mhYt4Ngx5e26VE2oWPr168dbb71Fly5FYjo1Gk01I9ecS/TFaI4lHeNY0jGiLkRxMvlkscHt9WrUo03tNrSu3Zo2tdvgVduL+jXqa+9VFVIa0TUP+NswjBUosXUb8EWlWqXRaK6Il1e+6PL3Bzu7qrZIo9FUJBYPVuT5SKvIKklgNXFrQts6bZXAqqOEVi3nWsUcVVOVlCaQ/p1LBal7X+qaJCK7K9UqjeYmITExkYceeoiYGJWR5d1336VXr15s27aNxx9/3JoxfN68ebQvFLzl6prOvHmPcvz4PmbNMvHaay9y2223kZmZyaRJkzh48CAdOnQoUNNRo9Fcn4gIp1NOczTpqFVkHb9wnNy83ALjDAyauTejbZ22tK3T1iqwajjWqCLLNWWhLFnwDFRuLu2X1FRLbl10a6Ucd9W4yxfBzszMJNBm/i8pKYkRI0YAMH36dJ544gl69+5NTEwM4eHhHDp0CB8fHzZt2oSDgwPr1q3jn//8J8uXLy9w3Ndff42BA/vTvPmX1K59kenTQxg4cCCffvopNWrUYO/evezdu5egoKAKv2aNRnN1JGUmceTcESLPRyqRdeFYsTUHm7o3pW2dtnjX8bZ6svTqwepLaVYvPo+qs7gcJbjmGYaxVERerWzjNJobAVdXVyIiIqzblpguUBnTDx48aH0uJSWF1NRUkpOTue+++zh69CiGYZCbm1v4sKxdu5aMjJVkZLwFgNmcRUxMDJs2beKxxx4DwN/f31q8WaPRVA3ZpmyOJR3jyPkjSmglRXIu41yRcfVq1KNdnXZ41/W2iqyaTjWrwGJNZVEaT9c4oLOIZAEYhjEb2AVo0aWpVlzJI1UV5OXl8ddff+HqWvCX66OPPkpYWBgrVqwgOjqafv36FdlXRFixYjnx8e2Ji4MuXeBSbWgdKKvRVBEiQnxaPEfOHeHwucMcOX+EExdPkCd5BcbVcKxBuzrtaFdXNe+63tRxrVNFVmuuFaURXdGAC5B1adsZiKosgzSam4nBgwfzwQcf8PTTTwMQERFBYGAgycnJNG3aFFCeseIIDw/n/fff56mn3icuzmDt2t20a9eZvn37snDhQsLCwti/fz979+69Vpej0dx0ZJuyOZp0lMPnDnMo8RCHzx8mJTulwBg7w47Wnq1pX6897eu2p13ddjSr1Uz/OLoJKY3oygYOGIbxKyDAIGCLYRhzAUTksUq0T6O5oZk7dy6PPPII/v7+mEwm+vbtyyeffMIzzzzDfffdxzvvvEP//v2L3XfWrFk8/vjj3HqrP8nJQt26rbjnntVMnTqVSZMm4e/vT2BgICEhIdf4qjSaG5ekzCQOJh7kUOIhDp07xPELxzGLucAYD2cPfOr5WFvbOm1vyuLOmqKUpuD1fZd7XkS+qlCLikEXvNaUl5ulaO327XD0KPj4gI6b12iunri4OBo3bszplNMcSDzAwcSDHEg4QEJGQoFxBgZenl5WgdWhfgca1myovVg3OeUueH0tRJVGo7k6WrdWois6WiVK1Tm7NJqykyd5JGUmkZieyMkzJ3nqr6dIzUktMMbVwZX2ddvTsX5HOtTvQPu67fVqQk2pKUvKCI1Gc51Sp44qBZScDHFx0KxZVVuk0Vz/mPPMnMs4R0J6AokZiZzLOGdNPGrONJOak0od1zp0qt+JjvU70rF+R1p5tsLO0L9qNOVDiy6N5gbAMJS3a/duOH5ciy6NpjhMeSaryEpIT+BcxrkiqwprOdeifo36ODg58EXgF7psjqZCKVF0GYaxQEQmGIYxXUTeu5ZGaTSastOqFUREKE9XVha46LhdzU2OOc9MYkYiCekJnE07y/nM8wVEloFBbZfaNKjZgAY1G1C/Zn1rwHtcXBwNajaoKtM1NyiX83QFG4bRErjfMIyvKZSJXkSSKtUyjUZTJlxdoUkTiI1V9Rg7dKhqizSaa4s5z8z5zPOcTTvL2fSzRTxZBgZ1XOtYRVaDmg1wsneqQos1NxuXE12fAD8DrYGdFBRdcqlfo9FcR7Rtq0TXsWNqJaOeFdHcyIgISZlJnE0/y5m0MyRmJGLOy0/fYCuyGtZsSP2a9bXI0lQpJYouEZkLzDUM42MRmXoNbdJoNOWkSROoWRNSU+HMGWjcuKot0mgqDhEhNSeVs2lKZJ1NP0uOOafAGE8XTxrWbEhDt4bak6W57rjiEgwRmWoYRoBhGNMuNV3ITaMpA/b29gQGBlrb7NmzLzv+9ddfL7Dds2fPUp/LMJS3C2DNmgjWrFlT4tjdu3czefJkQGW9r1+/Pp07d8bb25vw8HD+/PPPUp/3SrRq1Ypz586Rk5ND3759MZlMFXZszY1NlimLkxdP8vfpv/nhyA+sjlzN9rjtnEo5RY45BzcnN9rUbkOv5r0Y1WEUt3jfQnCTYJrVaqYFl+a6ozQFrx8DpgDfXepaaBjGZyLyfqVaptHcIBQueH0lXn/9df75z39at8sqflq3hn37YPv2CGAHt9xyS4nn+de//mXdHjNmDB988AEA69evZ9SoUaxfv54OFRgc5uTkxIABA1iyZAnjx4+vsONqbhzyJI/E9ETi0+I5k3aGpMyC4cPODs40rNmQRm6NaOTWCDcntyqyVKMpO6VJGTEZ6CYi6QCGYfwH+AvQoktTrbj11lsr5birVpW9kHZycjIhISGsXLmS9u3bM27cOPr3709UVBSZmZkEBgbSqVMnFi5ciJubG2lpaWzYsIEXX3yRevXqsX//foKDg/nmm28wDIPt27czffp00tPTcXZ25uWXf2XZsufJy8tk69YtzJw5kzFjxljPn5qayt69ewkICCjWvrCwMKZMmcJnn33GnDlziIqK4pFHHiExMZEaNWrw3//+Fx8fH1atWsWrr75KTk4OdevWZeHChTRs2JDz588zbtw4EhMTCQkJwbbyxe23387MmTO16NJYSc1OJT4tnvjUeM6mn7XmygKwN+ypX7O+VWTVdqmtUzhoqi2lEV0GYFtYykyhlYwajaZkLCLKgkUAffDBB0ycOJHp06dz4cIFHnzwQQA++OCDEj1ju3fv5sCBAzRp0oRevXrxxx9/EBISwpgxY1iyZAldu3YlJSWF1NQa3HHHy5w6tYPVqz8okqF+x44d+Pr6XtbuoKAgPv30UwCmTJnCJ598gre3N3///TcPP/wwv//+O71792br1q0YhsHnn3/OG2+8wdtvv81LL71E7969ef755/nxxx/57LPPrMf19fVl+/btZb+RmhsGU56Js2lnrUKrcNZ3D2cPGrs3prFbYxrUbIC9nX0VWarRVCylEV3zgL8Nw1hxaft24ItKs0ijqSTK45GqCEqaXhw0aBBLly7lkUceYc+ePaU6VkhICM0uZT4NDAwkOjoaDw8PGjduTNeuXQGoVasW7u4qhYTJpFYzNm9e8Djx8fHUr1//sueyeKfS0tL4888/GT16tPW57OxsAE6fPs2YMWOIj48nJycHLy8vADZt2sR336mIhGHDhlG7dm3rvvb29jg5OZGamoq7u3uprltT/UnNTiUuNY641DjOpp8tkMrByd6JRm6NaOLehEZujajhWKMKLdVoKo/S1F58xzCMDUBvlIdrkojsrmzDNJobnby8PA4dOoSrqytJSUlWMXU5nJ2drY/t7e0xmUyISJHpFsOAhg3h4EFVk7Gw6HJ1dSUrK+uy59q9ezcdOnQgLy8PT0/PYoXjo48+ypNPPsmIESOs05/5NpTsEM/OzsZFZ2+9oTHnmUlIT7AKLVtvloFBXde6NHZvTBP3JtRxraNL62huCkr1LheRXSIyV0Te04JLo6kY5syZQ4cOHVi0aBH3338/ubm5ADg6OloflwYfHx/i4uKsU3apqamYTCZat3YnOzuVM2dUCglbOnTowLFjx0o85saNG/nss8948MEHqVWrFl5eXixduhRQHjCLZy45OZmmTZsC8NVXX1n379u3LwsXLgTgp59+4sKFC9bnzp8/T/369XF0dCz1NWqqB5m5mUQlRbHp5CaWH1rO+uj1HDl/hNScVJzsnWjp0ZIezXowssNIwtuG49/Qn3o16mnBpblp0LUXNZpKpnBM15AhQ7j//vv5/PPP2bZtG+7u7vTt25dXX32Vl156iSlTpuDv709QUJBVuFwOJycnlixZwqOPPkpmZiaurq6sW7eOQYPCeOml2cycGUhMzExmzMgPpPfx8SE5ObnAFN+SJUvYsmULGRkZeHl5sXz5cuvKxYULFzJ16lReffVVcnNzGTt2LAEBAbz44ouMHj2apk2b0r17d06cOAHACy+8wLhx4wgKCiI0NJQWLVpYz71+/foSV1RqqhciwsWsi8SmxhKbEsv5zPMFnq/tUpsm7k1o4t6EejXq6QB4zU2PYbuq6HqlS5cusmPHjqo2Q1MNiYuLo0mTJlVtRpVx/jz88gs4OcHIkWBvE488Z84c3N3drbm6rhWjRo3i3//+N+3bt7+m59VUDHmSx9m0s5xOOU1saiwZuRnW5+zt7GlUsxFNazWliXuTah2bdbN/dmiuDsMwdopIl8L92tOl0dzA1K2r2vnzcPKkyuFlYerUqdYpw2tFTk4Ot99+uxZc1Ywccw7xqfGcTjlNXFocueb86W9XB1ea1mpKU/emNHRriIOd/lrRaEqiNMlRRwH/ARqgAukNQESkVin2HQK8B9gDn4tIsam4DcPoCmwFxojIstKbr9ForoS3txJdhw+Dl1d+PUYXFxcmTJhwTW1xcnLi3nvvvabn1JSPzNxMTqec5nTK6SKrDT1dPGnq3pRmtZpRx7WOnjbUaEpJaX6SvAHcKiKHynJgwzDsgQ+BQcBpYLthGCtF5GAx4/4D/FKW42s0paW41X03Ey1bwp49cPEixMer+owaTXGk5aRxKvkUp1NOcy7jHIIKPzEwaFCzAc1qNaNZrWY3fBb46hB2o6melEZ0nS2r4LpECHBMRI4DGIaxGLgNOFho3KPAcqBrOc6h0VwWR0dH0tLScHNzu2mFl709+PjA7t0qhYQWXRpbUrJTOJV8ipjkGC5k5a8ytTfsaeTWiOYezWnq3hRnB+fLHOXGQURIS0vTq2s1lUJpRNcOwzCWAN8D2ZZOEfmuxD0UTYFTNtungW62AwzDaAqMBPqjRZemEqhTpw5JSUmkFs6ZcJNRs6aaVoyPh0OHwMOjqi3SVBUiQnpuOglpCSRkJJCem259zt6wp55rPerXrE+9GvVUJvhMiqxKvNFxdHSkTp06VW2G5gakNKKrFpABDLbpE/ILYJdEcW6Fwj7bd4FnRcR8s3ohNJWLvb39FTOv3yxs2ABLl0JMDDz3XFVbo7mWiAgxyTFsidnCH6f+4FRK/u9hNyc3ujXtRq/mvQhsFIijvfbwaDSVRWky0k8q57FPA7Z5sJsBcYXGdAEWXxJc9YBbDMMwicj35TynRqMpgREj4Pvv4e+/4fRpKEUCfE0153TKaTaf3MzmmM0FhJa7kzs9mvWgV4te+Df01ysONZprRGlWLzYD3gd6oTxVW4DpInL6CrtuB7wNw/ACYoGxwN22A0TEy+Y884HVWnBpNJWDpycMGAA//wzffQePPVbVFmkqg7NpZ9kcs5lNJzdx4uIJa79FaPVu0Ru/hn5aaGk0VUBpC17/D7BUu73nUt+gy+0kIibDMKahViXaA1+KyAHDMB669Pwn5bZao9GUi1GjVLLU9eth/HiVw0tT/bmYdZHNJzez8eRGjpw/Yu2v6ViTHs160KdlH+3R0miuA0rzH1hfRObZbM83DOPx0hxcRNYAawr1FSu2RGRiaY6p0WjKT+PG0KsXbNkCP/wA999f1RZpyktGbgZ/nfqLDdEb2HN2jzW9g4uDCyFNQujbsi9BjYN0jJZGcx1RGtF1zjCMe4BFl7bHATfXUhaN5gbijjuU6Pr5ZxgzRq1svOnIzISsLDCZVANwcYEaNVTNpOt0YY8pz8Tu+N2sj17P37F/k2POAdSqw+DGwYS2CiWkaQguDi5VbKlGoymO0oiu+4EPgDmomK4/L/VpNJpqSNu2EBCgEqb++CPcdVdVW1TBZGXB8eMQFaVyZJw/r9pzz0Ht2mrMBx/Apk3F7+/jA2++qR6LwDvvqP3q14cGDdQKhEaNChayrEREhKNJR1l/Yj2bYjaRkp1ifc63vi+hrULp1bwX7s7u18QejUZTfkqzejEGGHENbNFoNNeI0aOV6PruOxg6FNxvhO/r48fhjTcgLk6JpcKcO5cvutzcVLIyR8d88ZSVpTxgLjZeopQUlWujMA4OSnw98AAEBqo+kQr1kJ3LOMf6E+v5/cTvnE7NX7fUvFZzwlqFEdoqlAY1G1TY+TQaTeVTougyDOMZEXnDMIz3KZpfCxHRa580mmpKQIDSChERKndXtYrtMptVhtdt25R4srjqPD0hNlYJohYtoE0baN4c6tVTKwaa22SwmTpVteKwFWzOzvDkk5CYqERbQoJKdJaYCNHRSrRZ+N//YONGaNcO2reHjh1VsUs7u1JfWrYpmz9P/cnvJ34vEKfl4exBv1b96O/VHy9Pr5u2uoJGU925nKfLUvpnx7UwRKPRXFsmToTHH4dVq2D4cDVzdl0TF6cC0datA0uFgXr1lNvOMKBOHXjvPSWurqaEi62gcXGBsLCiYzIzlfhq2TK/zzKdGR+vxBeogLlOnaB7dxhU/IJvESHyfCTrjq9jU8wmMnIzAHCwc6B70+709+pP58ad9cpDjeYGoMT/YhFZdelhhogstX3OMIzRxeyi0WiqEW3aQGio0gfffKMcOtclR47AggVqPtRC06YQEqKaLa1bXxubXF2VN8uWf/5TCbHISDh8GPbvh7NnlUeuRo180ZWRAX/9RXLHNvx+cTe/Hv+1QOLSdnXaMaD1APq27HvDF5bWaG42SvPTaSawtBR9Go2mmjFhAvzxhwpbuv32a6dZykRenhJcTk5KJQ4dCt7eVW1VURwc1A1s3RqGDFF9CQlKfF1yI+ZJHhGbv+WXZf/h75oXMNd0BQ8PPBq0oL//bQxsM4gWHi2q8CI0Gk1lcrmYrqHALUBTwzDm2jxVCzBVtmEajabyadgQhg1TObvmzYNXXqlig0wm+P13FS81ZYrq8/FR86Ddu1e//BYNGkD//pzLOMe6/YtZG7WWxDNR0CwPI8UgJNGJwVFuBKebcVi3HkLS4ZFHrtnKSI1Gc225nKcrDhXPNQLYadOfCjxRmUZpNJprx5gxKkwqIkI1y2K8a4oIbN6s5jnj41XfoEEqEN0wVP2iakae5LErfhc/H/uZbbHbrEHxDRt7M7j3Iwxo2oe60ZemH//+W3nFoqIKCq6//wZf3+onNjUaTbEYUtzSatsBhlELSBcR86Vte8BZRDKugX0AdOnSRXbs0PH8Gk1lsWwZfPWVmhl7991rnBv01CmVN+vgQbXdpImqUdSnz3WbpPRyXMi8wK/Hf+WXY7+QkJEA5AfFD2k7BP+G/kVXH4rAyZOQlqZEFqiVmA89pKYtAwOhZ0/l7bsh8ntoNDc2hmHsFJEuhftLE9O1FhgIpF3adr3U17PizNNoNFXJiBEqUerx4yq+q7gFexWOCHz7LSxerKYVPT1VkNmAAdVuek1EOJB4gDVH1/DnqT8xq9+oNKzZkCFthzCw9UA8XTxLPoBhQKtWBfsyMpQAO3AAduxQ7cMPlQDr00c1J6fKuiSNRlMJlEZ0uYiIRXAhImmGYdSoRJs0Gs01xslJOZfeew/mz1eLAit9RsswVO4rk0lNJd5/v8q7VY3IzM1kffR6foz8kZiUGAAMDLo37c5Q76F0btS5/Dm1vL3h3/+G5GT46y+14mHvXti5UwmxPn3yx5rN1U6oajQ3I6URXemGYQSJyC4AwzCCgczKNUuj0Vxr+veHX35R2Q6++AIeq4z0xyYTXLigSuqAShbWty/4+VXCySqP+NR4VkeuZt2Jdda8Wp4unoS3CWdI2yHUq1Gv4k7m4aFWQw4Zki/A0tLyvVw5OTB5ssoH1rcvBAdrD5hGc51SmpiursBiVGA9QGNgjIjsLHmvikXHdGk014ZTp5TYMpnUSsYKDapPTFRlelJTYc4cleuqGiEi7D6zm1VHVrEzfqc1ML5jvY4MazeMns17Vk0C0717VV1JCzVqqPiv0FDw9y9TRnyNRlMxlBTTdUXRdWlnR6A9YACHRSS34k0sGS26NJprx7ffqlykDRqoECLbUoTlZvt2JbRSU1VJnpdfVqV6qgHZpmzWR6/nh8M/WGsgOto50q9VP4a3G07r2tdBcrPERLX6c+NGFZhnoXZteP995S3TaDTXjKsJpAcluDoCLkBnwzAQka8r0kCNRnN9MGqUCh86fhy+/jo/XVa5MJlUGojly9V2cLBKfV+rVoXYWpmczzjP6sjV/BL1C6k5quxQvRr1GOY9jMFtBlPL+Tq6hvr11Qs3apRa9bhhgxJgzs4FBdfPP6vCm40bV5mpGs3NTGmmF18A+qFE1xpgKLBFRO6sdOsuoT1dGs215fhxpY3y8mD2bFW7ucykpqpA8H371BTXhAlwxx3XfRqI4xeO8/3h79l0cpN1FWL7uu25rf1t9Gjeo/rUQBSBlJR80RUXB//4h3rcvr2afuzbV3vBNJpK4Go8XXcCAcBuEZlkGEZD4POKNlCj0Vw/tG6t9NG338LcuaqVOTZ7504luGrXhhkzyqncrg0iQsSZCL479B0RZyMAtQqxd/Pe3OZzGz71fKrWwPJgGEUFVf/+8Oefqp7lkSPw+efQuTP066fiwHQAvkZTqZRGdGWKSJ5hGKZLiVITgOsgiEGj0VQmY8eqhXKnTsH//qcWGpaJfv2Up6VnT6hXgav5KhBTnonNJzfz3aHviE6OBsDFwYXwNuGMaD+CBjUbVK2BFUmTJvDEE/DwwyrT/YYNsGuXEsf796vEqxZErnuPpEZTHSmN6NphGIYn8F9UOaA0YFtlGqXRaKoeR0eYPh2eflqFZHXqBF27XmGnzZtVks/mzdX2iBGVbWa5yDZlszZqLSsOryAxIxGAOq51uLXdrQxpOwQ3p+qVL6xMODuracW+fZUo3rJFTQVbVkzk5sKjj+Z7wNq10wJMo6kgLhvTZaisfs1E5NSl7VZALRHZe23MU+iYLo2m6li6VAXU16gB77wDTZsWM0hE1RL6+mu17PH999UO1xmp2an8ePRHVkWuIiU7BYCm7k25o8Md9GvVD0d7xyq28Dpg50548cX87UaNVPxXaGi+mNZoNJel3CkjLu0YXGmWlQItujSaqkME/vMftaKxeXN4661CekoE5s2DFSuUR+SBB5SH6zryjiRnJfP94e9ZfXQ1WaYsALzreDO642i6N+te/qzxNyIi+fWgNm2CpKT851q3htdeq3aVAzSaa83VBNJvNQyjq4hsrwS7NBrNdY5hwOOPq9iumBiVbuuf/7ykqUTgo49UKgJ7e3jqKejdu6pNtnIu4xwrDq3g56ifyTHnABDYMJDRnUbj18BPi63iMAxo00a1SZNUvNeGDSoA32QqWB9qyxaVgLUapADRaK4HSuPpOojK0xUNpKMSpIqI+Fe6dZfQni6NpuqJi1NpJNLTVfaHu+4ww7vvqi9kJye1QvGKQV/XhoT0BJYeWMq6E+sw5ZkA6Na0G3d1uot2ddtVsXXVlNxclYS1SRO1HR+vkrjZ26vSBaGhKhi/mlUa0GgqgzJ7ugzDaCEiMai8XBqN5ianSRP4v/9T5YG++QY6ZUXQacMGFYD9/PPXRf3EwmLLkvbhrk534VXbq6rNq944OuYLLoDsbJXsdvduFQe2c6cS3126qGLc3bqpfTQajZUSPV2GYewSkaBLj5eLyB3X1DIbtKdLo7l+WLJEiS5XV5jTfxVNw9qpZJtVSHFiq2/LvozpNIbmHjr4u1JJTlYBf5s2wYEDqs/JCRYuzF8RqVNQaG4yyhPTZfsfovNyaTQayMnhrn4XOXmyAZs3w/9tuJVXB0LbKjLnfMZ5vj3wLWuPr7WKrX4t+zHGdwzNajWrIqtuMjw84JZbVDt3TgmwtLR8wWUyqWlIX18V79e5s/aAaW5aLie6pITHGo3mZiQ3F15/HePECZ58+XVMpqb89RfMmqUWtLW+hj/NkrOSWXpwKWuOriE3LxcDg9CWoYz1HavFVlVSrx7cdlvBvkOHVCzY+vWq1aihph579VICTGfB19xEXG560Ux+4LwrkGF5ChVIf82Wq+jpRY2misnNVXUUt29XK9Vefx1T05bMnq2Sm7u7w+uvq7yolUlaThrfHfqOVZGrrKkfejXvxXi/8Xoa8XomLk6tdLRUUrfg4gKffAJ161adbRpNJVDuPF3XA1p0aTRViMlESerKVot5eKinWrSoeBOyTdmsilzFsoPLSM9NB6Brk67c438PrWvr6IdqhUWA/fknZGXBxx/nx3vNmwdeXmoVrG1qCo2mmlElosswjCHAe4A98LmIzC70/Hjg2UubacBUEdlT+DhadGk0VYTJBG+8oYowurkVO4+Yk6O6d+1SwmvWrIqLqzflmVh3fB2L9i8iKVMl6fRr4Md9AffRvl7VBu9rKoDMzPwUE4mJcP/96rGDg8r/1aOHSkPh6VllJmo05eGaiy7DMOyBSGAQcBrYDowTkYM2Y3oCh0TkgmEYQ4EXRaRb4WNp0aXRVAEi8PbbsHGj8jq89ppKmFkMtsLLwQGmTYMBA67m1MJfp//iq4iviEuLA6C1Z2smBk4ksFGgTmp6I5KWpmK+/vpLJWS1fDcZhlLxjz9eQg0qjeb642oy0peXEOCYiBy/ZMBi4DbAKrpE5E+b8VsBHQGr0VQUaWkQG6vauXNQuzY0bqxq6dWte+Ul/Iahih1v2wYvvVSi4AIVCz1rFnz+Ofz4o8qZevIkTJwIdnZlM/tg4kG+3P0lR84fAaCJWxMmBEygV/NeWmzdyLi5wa23qpacrN53f/0FERFw7BjUqZM/dtMmFbTv41P2N5hGU4VUpuhqCpyy2T4NFPFi2fAA8FMl2qPR3NhkZsKvv6pg5dOnISWl5LFOTkp8BQXBwIHQsmXx40aMUJnGPTyueHoHB3joIRXu9cknqhRjTAw8/XTpwnNOp5xmfsR8/o79GwAPZw/u9rubwW0G42BXmR9VmusODw8YNEi1rCwVfG+ZhjSbVRxYWpqKMezSBUJC1Hv5OiyyrtHYUpnTi6OBcBGZfGl7AhAiIo8WMzYM+AjoLSLnCz+vpxc1mstw7hysWgW//KJq9FhwdlbTMU2bKq/AxYuqdEt8vPIk2NK2rZoPDA2F339XX2RXMZWzf78KsE9JUYf5v/8Db+/ixyZnJfO/ff/j56ifyZM8nO2dGekzklEdRuHqqEvKaAqRng6LFilPWHx8fr+DA3TsCPfeW+XJejWaqphePA3YruFuBsQVY5g/8DkwtDjBpdFoSiA2FhYvhs2b1a9/UF86I0aoaZc6dUqeQszIgOhoVTdx0yY1fXPsmKrxk56uElnOn5+f4LKM+PqqwtivvKJO89RTcMcdMG5cfl7MXHMuqyJXseTAEjJyMzAwCG8Tzt1+d1PHtc5lj6+pRoioZa6ZmfmtZcv8acGICEhIUJ6qevVU386dqrxQbq5azGE2q8dms9rOy1NT5a6uyqsbF6ce792r3mC//ALr1im3a7duqkRVVBR8/bX6n7CzU83eXm3b2+c3Bwf1nIOD2tdST9Sy6rJZM+jZU/Xl5MCOHcpz7OSkfugU1xy0p1ajqMx3wnbA2zAMLyAWGAvcbTvAMIwWwHfABBGJrERbNJobBxH4+WcVQJWTo740eveGkSNVDFZpqFFDCbSOHWHyZJUO4pNPVO4HEfUFs2QJ3HlnuZfuN2gAb72lSgb98AMsXQpbt8L06UKi6x/Mj5jP2fSzAAQ3Dub+zvfTwqMS8k1oKo6UFOUlbdo0XzRt3KgETVoapKYqQZ+Wpv6mp6uWl1fwON98kz9l/f33SmS98EK+6Dp8WL1pSku9ekrZ29urlBN//qmOcfiw+l9xdFQrIPftU39L+2OiXr180RUTAwsWKCFmEV0pKcqleyUcHJT4cnFRx3vkEdWfmqqmSuvWhQceyB+/YYO6vzVqFGw1aypxqePYqi2VJrpExGQYxjTgF1TKiC9F5IBhGA9dev4T4HmgLvDRpQBZU3HuOI1Gc4nkZJg7V02tAISFwT33KIVTXpyclPcgJUV5BJo1U1OWy5Ypj8GYMarESzlKtzg7q++Snj3hvffgcEIUw9/9LzVbHaBpU2hZuzkPdH6A4CbB5bdfc3WYTJCUpF7zc+fU4wsXVDObVVCehWnTVP/8+fkJTbdsUWr6cjg4KLHg6qrEg8mU/1znzsoraxsob4nPcnRU+9o2i0fK4q2yNC8vFeMFMHiwOsbmzXDkCBw9qn5I1Kihfqi4usLQoUoAiajrtDSLZ81kKjgn3qSJ+hHS3GYCx8FBpbTIzVUFwLOz1fFzctTjrCzVTCbVLCLUQlqasrFhw4Ki65NPCo4rjKurEmCW1rixWt1p4aeflG2hofkZ/1NT1f10dtZ1MKsQnRxVo6ku7NyplgVevKg+aB95BPr0ufrj/vmnSn4qApMmwahR6otq/nwVnAXqC+fRR9W8YTm4kHmBebsWsOCPdcTHC/bmWrTPvofHbx3MLUPs9ezLteLXX9Wy0oQElRcrMbFofJ8tDg7w3Xf5X9IzZqj33/PPq/cEKNF15owSPO7u6r1p8cpYHld1rcXkZDVdaZm2TE5WnrHQUPX83r2wZw8EBKip+YosTWQRdRYBZm+vVhKD8gbu2KH6evXK3+ejj5RIysxUYyxeQ8vjwjRvrvaxcMcdSvgtXZrv1Zs5U/0/Ozio18Xyerm5qSoTbm75fbVqqb++vso2TZnRGek1muqKCHz1FSxfrrZ9feHJJ6F+/as/dkIC/OMf6lf4mDHKa2Z73h074MsvVdwMwJAhKg9EKaccc825rDyykiUHlpBpysTesCfEYwRn1o3hRKQ6RqNGMGGC0o/6B3g5SU1VYsjihTGZ4Jln4Px5leXdMh315JPK62OLnZ3yMtWtm99q185vnTvfWNNZInDihPIuWd7HH36opiFBCa6OHZUACwhQqVKup+vPy1NizOI1S09X/zidOqnnReCLL1T/Y4/l/1PNmqXqYGZnl/5c33+fL7qee055C2fNyk+Q/OefSsTXqlWweXiovzfxryktujSa6khuLrzzjvIm2NsrUTRqVMV+Cfz0kwrKf+CB4lVPbq76xbx0qfoyr1MHHn5YxbZchu2x2/nvrv8Sn6ZWmHVt0pUHOj9A01pNEVEpmL7+Wp0a1Of46NFqtuYm/qwumbw8JZJPnVItJiY/iDw1VanX//43f/yECUqIzZuXHyu1dq0a27ChEu3166sYp+tJVFQF+/eruMY9e5Qgs8XfX2X+hYIJW6srOTn58XdpaaqlpBT9m5urPJoWpkxRq0U/+SR/ZfM776iEtiVRo0ZBEebhAePH578fY2KUCGzS5IYr+6RFl0ZT3UhPh1dfVV8INWqoX5r+/hVz7Ly8sn/RxsSoeLIjKmkpvXvD1Knqw9SG2JRYPt/1OTvi1f9sM/dmPBj8IEGNg4oc0mxWGSoWLlROGVCfx7fcAuHhRQ59c7Fvn1pRevKkEgKnT6svzOJwcVFFL996K18QREerG1i7dvUWCdea5GQlviIi1GvQuzfcd5967uRJNcXaqZOKf/T1VbFkN4NozcxUQq1OnfxfRX//rTynqan5iyxs/xZeQAHKC2eJQZ09W+UVfOaZ/FCJX39VXkcPD9U8PYt/7OFxXf8606JLo6lOnDunVnPFxKgPuZdeshaZvmqiolR5n5kzCwYFl4a8PJVy/uuvVXyKp6eK9QoJITM3kyUHlvDDkR8w5Zmo4ViDu33vZli7YVdMbpqTo1b4r1qVP5Pp5KRCbsLD1aLMG1Y3iKhg6pMnlSfTcqH/938QWWhRd5066jVr0UIteGjeXHkdtLCqPMzm/Cm2tWvh/fcLPl+zpooD69RJpWtxdr72Nl6PiKgfjhYBZhFj/frlx8zNm6fE7UMPQYcOqm/+/PxQiivh5qbE17Rp+fGmBw+qHxwdO+Z/Zublqf+Pa/g/okWXRlNdiI6GF19Urp/mzZXgqoj4LVAek3/+U00hhIerD6vycPasCurfvx9B2NTPiy9bJpGUq7LgD2o9iHsD7sXTxbNMhxVRcc6rVqlwMguNGikBFhpadp143SCiAs6PHlXThHfemf/cffepVYOffpofoP7dd+o+t2ypvjxatrzhpmCqHSLqtdu/X3nB9u9XrxGoFYWLF+d7vX76Kb9UkWVVpebKXLig7mlyspoeT07Of5ySUrDP4kl744180fb55yrdyAMPwO23q77Nm9VUqKcnPPhgfsqPSqQqkqNqNJqycuSI8nClp6tfzs89V3Ef2CdPwr/+pQRXSIj6dVleGjaE118neul/+XTD2+w/vR0SnPH2C+WhobNoV7eU+cIKYRhqpX9QkIr1+ukn9Xl55oxKG7ZkiYr96tlTJc1v3fo6dvCkpytP1ZEjKl9UZKSahgFl9C235JetGTpUeVRsvSSjRl17mzWXxzDUe79hw/yK7ufOwYEDShBYBFduroqvy81V282bK1Hg46Nas2bX8Ru3irEs4LgSIur/KTm5YMocHx8VJ2ZbKzY1VcWjnjtX5asxtadLo7le2L9febWyslQ0+dNPV9zS9VOn1HRicrJSK//851Ut40/PSWfhvoX8ePRH8jLSqRUVy8RoDwam1MO4dYQqxVLObPaFyctTt2bDBrVYyjZ9kacnBAerSwoIqEKHgogKMj50SE1vHDqk7nlhPD1V7idvbxg+XHtAblTS01Weu4MHlWfTIr4sPPmkyrEHysPp6KjfC5VNTo7yktWqVWGfTZdDTy9qNNczERGqZk5OjppDe+KJivtFFhurBNeFC2r5/7/+VW4xJyL8duI35m+aS/L5WIxaHgwPGsvdHe7C7eMv1PSKm5sSFU88ke/yryByc2HXLjX1uGOH+uFqS/PmykHYsaP6W79+JTkU8vJUswTyfvwxrFlTcIyjo6pp2b69aj4+Kh2D9nDcXJhMKo7y4MF8r+frr+dPI1veO40bq+DF9u3VXy+vis0Xprmm6OlFjeZ6Zds2VUrEZIJBg1ScVUWuhoqMVILL3798guvwYdi3j2OtavHJhV85cnInRETQMdmJh2LNePXpCzFnVEqJzMx8D8+zzyqPnZeXEns+PgWOh59ffl8pcXRUmSq6dVPOpZMnVb7LnTvVYS3ZFCwpl+rUUbMMbdqoqcg2bSpAiC1YoBYTTJ8OPXqoPi8vFdBrKa3UoYM62XW8ukpzjXBwyBfeFmydHWaz+p+0FKPfuFH129kpb5gl07yI+oyo6kSzmqtCfyJoNFXJli1qmb/ZrKabpkypeE9IWJhyp3fufGXBVVgQHT5M6gMT+LrRGX5pmIZ0DqR2eh73R9Yj1KU9Rkq8Gg/KS2f5dd6pk4pzefNN9aXTpIkKyAKVXDUnR42bP7/cYswwVHx5q1YqAXdursqwcPBgfktKUm379vz9atZUHjFLsywErFfPxrloUXR796p29935CSHt7dX00fHj+aJr0CC1MEF7sTSlwfZ9Mm2aiq+MiVE/kCwtJqbgwomTJ5X3uEULJejbtlV/W7XSKyarEVp0aTRVxbp1Ku+ViAqanjix4r609+9X03yWJdMWcWBLMQLLVhDlzfuSX/76hgUdo0h1c8QuU7hNfBg3cAo1Fk+FpHj1q9vPTx3PyUkl6nRyUl8kv/yijm9np1ZkzpkDffuq4zdtqsbu21fsuQuIsVLi6KgcTB06KBFmWSwYFVWwpaTk10K2xdN0jiC7CDpm78YrZQ/ueck4OStzpFlHarZsrUTZ0KFKZNmuKNWlUjRXg4ODEvWtW6uqD6BiO23zssXFqR9nx4+r9uuvqt8w1P/Ta6/l16/MyromcUuasqNFl0ZTFfzwg1raDMqLMnZsxQmunTtVzIirq0rrYMn+bEtxImffPqsgOpQSxSfrnuK4SyY4Cf4JBv+I9aLF49OVGLKMt/VKFdf3v/+p5d85OerXe0KCcknFxRUUbDbnLiLGyjkVaRgqTKZxY5XfEpQQu3hRTUHGRmWR8fc+7PfuxiNqFzUvxlr3vQiccqrDiVoBRLv7c3xRZ9K+s1TIqU3t2ur7zdNT/bVNuO3hofTuzZAvU1OJuLgUFE49e8K336q0L8eO5f+KiIlR/1eenvljZ81SU5VeXqpZXMLNmuk4sSpGiy6N5loiooTI4sVq+8EHVULFimLLFpX41GRS04qWX76FxUtxIsfPj6Sadsx32c36Fung0pB6DVrxwNjJ9Ip3xPD3zxc+lqXvthTu8/FRNSP37VNfCGvWqC+LevXUh/+0afnj/fzyPWUWMVaS9+sqhVhtUyK1l7yL/8GD6j7ZA+3A7OxKmpc/ZxsHcNIzkGhTM86dN8hIBIdzwEUVuF84eL+k81jqB9v+dXMrvh60q2v+X0tzcNCzlZpCuLjku3Mt5OQo0WVR+SLqTZqcrBboRETkjzUMVYZnzBi1bUm50KiRjj+8Rui7rNFcK0RU7p5Vq9SH3/Tp+bl+KuLYy5apTPEAt92WX0uxOPFSSOTkdvLhh7z9LJlYj6yLgqNHHUaF3MedHe/ExeEqpilshVj//uraFyxQ7qa334Zx4+DWW4v3ni1dWlQYQtmmIbOzlefvwgUYNkz1eXioe2I2q1VilxKD2Xt74+HggAdQXJYxkyk/RuzChfyWlFQ06baltJ0lLVd5sLfPd3bYNmfngs3JqehfJyelXW0fW5rttoNDwcf29lroVTucnNSPGAuGoYrUJyYqr1h0tPp78qRayWybA2v7djXt7+Cg/s9atChY7aBFC/2GqGC06NJorgUmkyof8vvv6gPumWeKj7Mq77E//FDFiBkGTJqkMjFbPiyL82qNHg3z5yN797K1iZkvj83lTPoZqOFIN++RTA6aTCO3RhVjnwV7e2VXjx7w2Wdq1eaXX6rYrylTlPixFVDFeb+uNA3p66uesxRtTE1VK0NdXFSgu4ODOuZLL6kM72XIjeTgoHIw2uZhLAmTScXa29YVTk1VfZaWkZH/NyNDLfy0/M3MVJrQMvZaYRjqOi3N0VG9bLZ9lmbpL+6v5bGdXcE+22ZnV3K/5bnL/bVtxe1XmmYYRbdvCI1hGPlvVtvC9Dk5BVdO5uWpMQkJSpSdPJn/nJOT+iFnYeVK5YJt1kw1nVesXGjRpdFUNqmpqrDr3r3qy/+55yAwsOKOf/gw/PabcnPceaf6xj9y5PJTd0B0Ixf+G7uHvaf2AtC8VnOmBE8hsFEF2lYcDRuqmJOdO5XnLzZWZeHv1k0JxqZN1biSYscKX8vevWrK5OJF5dnq319N39oKsc6dVSyZZQrFUqetknBwyI/vKi8mkxJfWVn5LTu7YLPEWmdnq7+Wx7m56rHlr+VxSc1kUn/z8vL7blaKE2KlfWwRbcX1F36+NH2FnyuulW28U6HtgRi9B+JgyqJm0incL8RQI+kUbkmnwDA4sMhQ4xB6vbcA+9ws630yubqTVbcpmXWbcs6vP6le/kqwimBnb1jvpa2QtcyAFu6/0uOSnhMRcnIyycrKICsrnZwc9TcrK4Ps7IKPMzPzHz/44D306NGxEt9FJaOTo2o0lUlsLLz8shIJtWurPFntylci57L88ov6+8ILV0zHkNSyAQv3LuTX478iCO5O7oz3G8+QtkOwt7vGq/BMJjXl+L//KQVhGDBwoJp2LKne5OHDKjW92ayWJ65erfpcXNQx/P3VlMm0aVe1GvJmJC9PvSS2zSLKzOb8PrNZ9Vv6bP/atuL6bFteXvHbtv2F+yx5aUt6XFKzHSNS9HmRgk4gTT52eSZ6xS+jblYs9bJOUzfrNE7mfAG2yusxIuoPAiAw8Vf6xX7DBefGJLk0Icm5MRdcGnPBuREXnBuR5eBm3S8vz4TZnI7ZnI7JlG59XPJ2BmZz2qW/ars8GmbWrKeZNq3v1d+Yy6CTo2o015qICOXhSk9XS8FnzSp+JWF52LRJBcuazcrbEx5efAyUTeB7ZpuWfHfoO1asWkG2ORt7w55bvG9hnO843J2raKrAwQFGjlRZ+BctgrVr1VL49etVbcLRo1UQvogqp7J9u5qWPH48/xg1aqjm4qICgj/7TKXMqODVkDcDdnb5cWA3IxbhVViMFbdt21/SfoX7LY+h6LEKH7e4/W1tLO5Yxe1rO65wf3HjLBqm4PEdgLFq9a/ARREcU5NwOheDXeJxGtWrR3fno2Rnp1NvxwZOnz1MRu4BMrLMmPJM2OWZcc0zkWcYnPHuT3ZOBtnZaThfiEEMO8wOLpgcnDDbO4NhFCt+Ld7Dwrlh7e2dcXSsiaNjDZycauLgUMO6bftX9avHwcEtK/R9Uxa06NJoKoM1a+DTT9WnVvfu8H//VzF5c7Kzlaj47jslHpo2VXEWxQTHW6YRTXkm1kat5X/7/kdydjIAPZv15N6Ae2laq+nV21QR1KkDjzyi8pUtXKhE5cqVSoS1bKmWxWdm5o93dlZTtCEhqvBiQkJBMWUY12Q1pObGwnZ67mYhJyeHtLQ00tPTSUtLK9AK9xXezsq65O2yLTNqJ+DtkT//nZUH2bmq2dvjWft0/tDEWGoaBm44UEPscRMHarq7U7N2bWp07UpNf39q1qxJTcOgJlCzaVNqenpSo0YNatasiaurKw7VbNVl9bJWo7neSU9XtdQspTxGj4YJEyomOjcmBv7zH/U3I0MFDDVvrvLx2ATHWwSEuZ03G47/xuL9i1WQPOBT14f7O99Ph/oVWxOxwrCUTPH1zfdq/fWXykfUsqVKrzFkSL7AtFCnTtF0FVezGlILMU01wmQykZ6eTmpqKmlpada/hZttv0VA5dgmYC0jhmHg5uamhNGlZtl2c3PDzc2NGjVqFOirWbOm6nNxwXnVKoyzZ1UuvzNn4Pz5fFfbwIH5q7vXrFGfq6A83w0aqFmD+vVVGzEi/zNW5LpeDaFFl0ZTUezbB++8o6b9nJ2V5yYs7OqPK6K8W19+qabRfHxUPbbnnlOCyzbJqI8Pee3bsSVmC/9b8y6xqSrhZ1P3ptwbcC89mvXAuJ4+kEwmJXhq1FDbf/wBX3wB/fqp6dijR1X5oA0blKdw69ZLubXsISDg8h+uhfOGlXY1JFx1dnyNpqyICNnZ2aSmphYRT8WJKds+q8epHDg4OBQQScW1ws9bBFaNGjWu7vNk3LiC2yaT+vxMSCiYBsPOTgmtc+fUgpmLF1WyZVCrKG+7LX/sI48oD1u9eiqbsW1r2za/0HgVoUWXRnO15OaqKbHvvlMCqV07NZ1YUf/cM2fmT1V6eqos8wEBSijYeGPMeWb+OPUHS/YvISYlBoBGNRsxzm8coS1DiwbJnzqlxEyTJvm/KEVUfTdQ57Hwv/8pb9Ndd+UX7k1IUDmAmjdXad9Ly4ULauXi9u0q7m34cOUNBDVdeORIfjoNb2+1+GDyZPj+exXvtWOHag0bqli2AQPyk8BejtKuhiwpLQVoD5jmiogImZmZRcRT4cfFiSuTyVSuc1o8Tu7u7ta/FqFk6SupOTs7Xz8/xBwcVFxmo0LpaoYMUS0vTyXGS0zMb5bAM1CfX5YKGImJRY8/YYL6DKtCtOjSaK6Go0fhgw9UYLdhqHI+Y8ZUbHbnevXUL72OHdUvuMhIJboueXKyTdn8GrmaFYdWkJCRAED9GvUY22ks/VsPwMHOQSUk/f13uPfefO/bmTOqrEhwcMEkrVFRRW04dEgJpFtuye/bsUO5/AcNgsceU32Zmcrb16qVSuMAKtj/8GEltHbuLBgED3A6P8aDJk3g2WeLnr9RI1UU+O674aef1GrNs2dVMthvvlHpJgYOVKkhCkfa2lJc1vzSCDHQMWE3GRbxVJxQshVMKSkpRcbk2QqBMuDk5FRAONk+LiygbB9ftcepumBnpz4P69UrmJXfgmGoBTlJSfnlI86fz2+WovVViBZdGk15OHdOfeGvX6+2GzVS3q2r/dLNy1MCads2ePRRdbzhw5U4ysoqIAKSs5JZc3QNqyJXkZqjUp83cWvCyD3ZDNiXhuO7/mB36V/c3l7ZHJtfX5AWLZQwat68oA1z5hRdOz9xovrl2LZtfl/t2kqweXvn98XGqinAY8eUO3/3btizR4ktUB96bm7qGrp0ga5dlceqtNSqpUTt6NHq2L/8An//reK+/vpL1dXp3h369FHCtDTit7RCrCxTkVqIXVfYTtulpqZahdKV/prN5nKdz8XFxSqaCoun4gRUrVq1cHNzw+lmXTZakTg5Fe8tu07Qebo0mrKQlQXLl6upxJwc9aV+221KCLi6lv+4ZrMKvv/sMyUk8vJUodrFiwt8iYuvLwfqmvnp6E/8eXILplgVVO/d7Rbu7DSa7s26Y/fqa0q0zZypiuSCqk2TmamCTu0rMRdXaqqqJ3nqVP6UnwgcOKAE06efqszzTk4qQ/+BA2p8cHD+fbBkdiwtSUnKi7dxo5rutODurgRYly5qpaMlbqy8WDxdublK/FqE2b//nS/EZsxQQksLsUrBZDKV6HUqrlnEU3mDxV1cXIqIpVq1ahURVIXFVHVbUaepeHSeLo3makhPV2V2li9XMUkAvXurL9eyeGoKs3+/ChQ/fFgJurg4JYrat1df2pfiiVJbNWHDuT/4aessTrlkAyqOo+upPEaeaYTv/U9iWDxWkyerYFLbOKerTY9eHCLK2xcRAa+9pkSNu7sSVaA8TZ07K8FjZ6euzTYT/4kTyjNmK1Z/+UVNF44apbLrQ35my5KmDevUUWPvvFOJvS1bVMqJ06dVDNivv6p72qmTEndBQWolZFmnY64mJgy0ELPBstquuKm5y7XyBow7OjqWKJQuJ6C050lT0WjRpdFcjthYlTH9t9+UKAIVKD95cvExBWXh4EEVS5WVpUTJoEEqi/onn0BuLpnO9vzdMJNNG19md/RWTBE7wd6B2j37M7htOIPbDKZB44NqSs02e3tZgtpLS3Ky8kpFRsJ99+UnNNq/X00lHjigpgoBpk5VNhVOdlS4aOF//qNEku0qpdOnlbfMVmBFRcHTT6sg+3/+M7///HkluGzFU/PmakXU2LGqjty2bWpq89AhVS5o716YN0+Jw44dVWoKX1/lVSyNB7C8MWE3qBCzeJ5sV9QVFyReuGXa5lwrA3Z2dsUKJMv0XHF/3d3dcXJyujlinjTXPVp0af6/vXMPjqu68/zn1091qyUZC4m1hY1sXn5gj8FAAhjGGzIzEJKYCmSGZLKBUCEzk7DhEQpIUrUEpnaZ7ExtLSEPdsZLBjJeAjuQhGEIkDJZQwYwYMfGBltgbINtbMmxbD261Q91//aP323fliwH8FiSbf0+Vaf63l+fe+/pe26f872/83KGUyhYRf3MM2FfJLDlZT79aav8D6UAf+01+NnPzIszb54JlXjcPD2JBFxxBX2Xf4I1TT288K8/4uXWEsUd/xcAScRYUH8ylzadzbkfv4tY4yQ75+IPsPryh6VcNsGycaONJOzoGNoXbPFi6ygP1idMZKgA/aAL4cbjB3Zsve46uz+1HoZdu8zbVWsrleDaa20aiWXLwr5bb78dzkzf3m7hT//UhNyaNdb5f+1aE2wrV1oAO+aUUyyceqp9TpnywfJ5vITYYRJnqkoulxtxbqda4TTSPFCH6nmqjrYbLpLez/uUSqVcPDlHNS66HAdsstFXX7V5ol591So9sIpv8WL41KdCofFBqFaI06ZBb6+NuHvwQZuH5pFHrJly3jwqzZPZVN7N6qlFVukzdDy2DC0VoXEfDMaY0zyLi9oXc8H0C5j0uUmH/3eXy+Zt2rzZBMumTfZZKAyNl0xak+fcudYRvsrhXLgbTOQMXyrpwgtN6NZ6R/butT5iqdTQzvL33mvp/9u/HdoBfvt2EycXXmjNol1d5qVbv97E786d4X6V+nobbHDSSUM/m5reX4yNthAbZhtcupTc9Ok24eXatWTXraN/6lT6m5ttIsxNm+h/6y36J02iP50+YJbxQ+3bG41GR+wgPtKou9o+URNmtJ3jDMNFlzMxKRTMg/PGG1bprl9vgqjKaadZn62LL7bK/fcx3OOwcaONOOztNY/MggW2XSySa0rzZt0+Nv7mPjac3ETHNQ1k33zHKnLtIhaJMadtIWdPvYwLz7mS45sOY1Phvn0mrqZODUf2PPqojZYczpQp9ltOP91Ce/vhnQbjw5JMWqjS2mrpHu5paW21ptC2muWNnnsOnnoKvvIVa8oUsXvx7LPW5+yGG2x/0yZrjty1yzrk791rzZIbNgy9Rjpt92fKFLuXU6fadVtaTDAe7D4dRIjpa69RnDWLbGsruZYWsuUyuU2byEYiZHt6yC5dSnbXLrKNjeS6uui/4w6y+TzZt98mW1dnHqerr7Z09PebR69SsebdqigebstkLG5vLzQ2kmppsZF0pRIN2SyZ9nYyM2YcMEXB8Dmf3PPkOB8OF13OsU8+b0vnvPNO2Gz29ttDRZaIeXHOP9/CSAtT14qr00+3Svn55+HWW62jfVsbPPCAjTLs3sOuukHePa7CO6cU2Dq7na2vvMX2eDeaiIOuhV0ZOL6RVl3A2TMv5KyzP8X8E+aTih/iKEhVExydneYlee89m5OrOknrI49Y/7RrroErrjDbKaeYADv5ZAszZ1rz2vsJzSOF4etZ1vb5qjJvnnn0TjsttG3bZs29zc22P2mS9e26807zOj36qAmxd9+1EaTbttk96e62vO7ooPzGG+RFGAAGymVy5TIDlQq5dJqBTIZcKsVAMslAIkEuGrUA5CoVcuUy2XyeXC5HLpcbOjXB5Mn7xRC/+IWJo54ee94iEfPSgT2/vb0QiSBNTdRnMmRyOerjcTJNTdTncmRmzKA+mSSzdSuZlhYy+/aRueQSMvPnk/n2t8mUy9TnckTvusvOWfWevfeeidTaps329qFNmytWjEpzp+Mcy4yq6BKRS4B7gCiwVFX/Ztj3Enz/CSAHXKOqq0czTc4xSLlslc/u3VYhVUNnpzUr7dp14DEiJjCqzWWlkk2wWVuBrFpl+wsX2v7nPmfnLJcpLlzAvqSyd88O9pS30nk8dJ5QofPZ/0JnY5TOT+YoahlSdXBOEjJFOHcWsZ2dnDxtPrMWLmHW8bOYdfwsjk+PIPBGoq/PKsPubquA9+61vknV3717t/2OWtraQtF12mkmLI47Lvz+rLPgH/7hw9/zowRVpfTRj1I480wKhQKFHTsoFArkGxrIX3UVhXic/K9/TaFQYKCzk0I2ywCQv+8+8vm8heXLGdizh/yiReQbGsipMrBhA8Vt28xDmU6bUMnl7DmMRoeKwWLRnrfawQGqJqDicYjHSSSTpFMp6tNp0pkM9TNm2GdDA/VNTdQvXEh9Xx/1s2dTP2cO9ZMnk9m3j/TWrWQWLiS1YIF5nGqntWhuthcCsDnNSiUTdEuWhM2W06cPbcY8hKbNg9o+bF+0Dxp3FPu3Oc5oM2qiS0SiwA+APwK2A6+IyOOq+kZNtEuBU4PwEeBHwefYMhp/9sN9zmMxjWecYV6VYtGa+NauNW9LW5t5pwoFi7txozXfTJpkXobNmy3U1VnF1dtrgqTqHchkrCmlt9dCQ4MJrJYWKvkBirk+Cn/xZYrz5lDseIPCFz9PoZhjoC7GwHnnMJDvY+C1VeQo0T8pTd+NX6V/xxb6TtlK37ReulOQnfySXef0KOwoAwr1WYjvhmgG5s6muXuAk2aeyUmzL+Ck1BSmz2vlpFgziVIl8L4VoOO3VlnncjZ6sephe+wxW6LnyivhoovM9vzz4aKvB6OhwZq5qs1e06eH3y1ebGEUUVXK5TKDg4OUy+X929X96nY1lEqlIdvVMHy/VCpRLBYpFotDtmtDoVAYsl0oFCiVSh+uv1J9vX0++WRoi8ft2evqCpsO43Gkvp66adNIzZxJKpUinc2SevFF0q2tpBYtIl2pkB4cJP3EE6SLRVLnn2+2fJ70xo2ku7tJT5tGurWVeCQSetaOO876AhYKJqQ3b7brtrebGFq+3Ca6LRatifPZZ63ptVSyY046ybbb2myR774+e3EoFu15WLnSpuuormEXj5uAV7XnsKPDhFOlYksv9fTY/2/3bmumjUTM+3bCCXZPVqwwUZnLWXp27bKJavv6bOqSqhBbutTu3XXXWfqGi7NDFXcj2T6M4DuaykxP41EvzkdtclQROQ/4jqr+SbD/TQBVvbsmzv8C/p+qPhTsdwCLVXVn7blGdXLUjRv50pXnkM9mbT/TAAJk+6ES3JtJk6yC3/M7KFesMEqnrYLf8zuLVy5bwTdrlhUoW7ZYxaoaDp/P9kMFQK3Crq+H7j3h8XVJaJwEe/eAAoPlYHbdE6zAU7VzR2MQi0J+wOIBxBMQjcBgyWwCRKK2XR5ERcyWTNp5GzLQnwUN5kCSiKWxWNOBOmZv5qqVcOX2WAzKZbQ8aMeAeXMKBTtvPI4KVnH87nd2boJkJhMWJ0iPRgTqUlAqooGHRiOCJusARYtFVCtoLGbnbGxE9+2loooKFqIR21elEhEq0Qja2EClVKQykKMsUIlFKNenKKNoLmdprquzii2ft6ajKtGgUi0PBvdR7F5FoybgyhUQQdpnkJ7UQjqeJr1+Iw09eRrnnU3D6fNpTDaSWb2exLra94swq4Zv77dddtl+r5S+9JI1f517Ljp/vtm2bYNVq9BUykJdHdTXo+k0Wv0MRIGq7l+KRIP7Uw2VSmX/5+/brlQqlMvlg+5Xt6viqrp/pBGPx0kmkySTSerq6kgkEtTV1e3fr34eLKRSKVKp1AH7B6xZ19dnU2okk/ZCAfa/+f737WXhttvCDvj33GPziV1zjb149Pfb6gaPPGJlyOLFJmK6u23eskjEljkqFGxAwcsvm2CaPTscLfree+bZnTIlXGUgl7P+iqlUuJwR2AtOLmfPW3OzlUfvvGPnaGoycZbJ2ACDtWvt+U+lwj5i//ZvYdl25plmW7nSmjyTSZuQtrfXKjlVC3PmWLy33rJ45bLdp7a2cCBDJBLOqQZWQVbvWfXa69bZsZWKXUfEbJWK3Z+FC00QPvec/b/LZVvLs7nZXmRKJRNo8+bZVCHPPmtx8nl7OTvjjNBWKpnYnT/frvP003ZssWie8WnTzDY4aMfPmWPhqafs+EIhHA27YkU459zMmSZkV6/eX0bS3m7l0ltvmS0atZfQUimc9DcSMe/0nj3WBzEatbB4sQngSMTuY/X4GTPs3m/ZYteuLhTf02PHR4Jy/6KLrBzcsMHqnGjUBg+tX2/3NpUy22c+Y8/4iy9aPicSZuvstN8ci1ndeMUV9pw+/LBdv7HRbK2t9py/8kp4/BVX2LWXL7cXgLo6e9ns7bVmfhF7Fj/7WbsH999vv6WxMVxH8cEHLU/S6XD5sWXL7BlPJm35M7D0FIvWpeLhh0dVeI3H5KhtQE1txnYO9GKNFKcN2MlYsW4dy/uyFAaDarC798A4u/cCMnRplGIWenKBGMFq0WIe1r5utsFyGL/Yf+A5u/tgb/+Bx/ftCkVT1bZlmwkzIRCCIyyKWsiH29VjKR1oywa2/nzNdXRkFUCNABvxnBWzDfSHxxeLwXW6TKDUkq8dEacWBnJDry8KA3n7o1WPjwWFdnEAcjo0PRKcZ/92Bfb1B4VbEE8U4pZuKVT16CCRPXuIJJJEdgqRihJVIZqIEUGIDlSIVpSYCtE0xCJCbLCBWKlMPBon1nwaDAR/n/fq6e8t099UgH0dZtu2zQrG6uzq1cKtGqLRodvRqBXAbwRCrVCwimPXLhOvVap9rQYHraLuH+HZGmei0ej+EIvF9n/Whmg0SjweJxaLjfhZGxKJxIi2ZDK5X1DVCqtEIrH/+0QiQWT4fGGjRUNDOLN+FRFbzmk4N9xgoZbZs21lg7q60ONZLMIf/qFtVz2eYKNhd+4072hjoz0vL7xgYmjuXBMopZKJqGXLLM7ll9tzUypZ38OeHqvcUimzP/+8nfvss00oDA7ac7x7t8VZtMheQCsVq7ALBeszWLV1ddnzOneuCan6ehMQAwNWuTY3hxX/wIDdm8ZG+29nMsF/vGjXqjbPqtp1EonQy1iphHPbVfO2UjFhq2rbW7aEI3CLxXBgRD5v1y8UzFYsWlrq6uy7rVvt+1zObAMD5mlMp+37XM6umc+bR3DvXrtuImFx33zT7m82Gx7/5pt2XNWWzZoY7ey0/29dnX2/YYMJhELBbP39Vh6USuGLfi5nIrinx+wNDWZbtcoEeiQSpj2XM8FUFb2plNnWrLFzDw7afc9mTQR1ddm1m5rM9sILdh9zOft92ay9KGzfbtvRqN2H3/wmvA+plKXruefsXP39JqR6esw2daqVc/39lp9V++7dZquvt+NWrLDr9vfbtctlE8xgtkjEflPV1tcX1LuD4dJsvb22XyiEtp6eMN21C9mPIaMpukYa0jK8av8gcUaXefP4i0nNlHp7LDnTp1uqduww4QT2VtKQgY0d5gEZLNvbZGuL2bQCxZIVlIsW2cP30kv2cKjCiW3mQdm+HSpl+4XTpsHk44aes6XFFPibb4ZereZmu/6GDXZsoWiFXCJhf9qqsJs82R7u7u7QKzWpyURaT4/FEYEp/yFM69atSKVi12lqsj9BZ6dpFyEo+IORXhqMfGo9AUpFExQSsXDKTKR7L3RZ4SzRKFxwAby2Ftm+IxAeEZg7B+nPwua3kXjC0rvoQqR7D/LqaohGiNSlkD/+Y0iliPx2DbJxI2QaiESi8OdfIPLSi7BqNZFIBIlEiCz+GJFiCXnueRNL0RiRT3ySqELkX54gqhCtzxD7zzcSkQjR/3a3/YFTGfj6zZYPL79sBWtbWziqr6vLKrUTTwznawoElMRiQ5fTyWYRVSsU32eCzVrPSHX7YKO/ROSA72pt1e3acDB7NUQikf2fYJNNVkPV/vtCNBodsl0VVLXf+Wi2QySVGjpRLNj/vFZsVbn00gNtl19uYThLlhxoq3oNavnqVw+0VSsyGNon7c47Q29DNb+rS01VWwbAKtiVK00Ennee2davt0pw9mwbHVwVSr/6lXUzuPBC8yypWsX/8ssmBD/yEbOtWWOV8qxZ4ULtHR22YsSJJ5oQ3boVbropFGLf/a6l6+abrcJtabElm6ZPh1tuCcvA66+38952W9gH7rrrrFzv7rZj8nkrG2+7zcqM228Pj/+rv7Ljv/Wt0HbttebFuvvu8Jxf/KKd49577f62tFif0UTCRuVWl5r6/Odt++GHw1UZvvIVK39/+lP77bGYrftaKJj4eOABO2csZl4kVfMYlctmu+YaEySPPBIef/31Vj899JDtx2I2IfGGDSbak0mz3XqrDUL6+7+3tCSTdv+6umzNVhETTrfcYs/CXXeFz8ktt1jT99NPWxqrx3/jG/ZycO+9oUf15pvtt9wdNIxlMmYDu7flsp3zppvMdscd9vvr6+HGG832138derqqtrvvtngNDUM9v2OINy/Csd9m7Wk8otr0HccZA47W8sjTeEz06TpY8+Joiq4Y8CZwMbADeAX4vKq+XhPnMuB6bPTiR4Dvqeq5w8/lC147juM4jnO0MOZ9ulR1UESuB57Gpoy4X1VfF5G/DL6/D3gSE1ybsCkjvjRa6XEcx3EcxxlPRnWeLlV9EhNWtbb7arYV+NpopsFxHMdxHOdIYIyG9TiO4ziO40xsXHQ5juM4juOMAS66HMdxHMdxxgAXXY7jOI7jOGPAqE0ZcTgRkd3AO+OdDsdxHMdxnA/ASaraMtx4VIgux3Ecx3Gcox1vXnQcx3EcxxkDXHQ5juM4juOMAS66ABG5REQ6RGSTiNw+3umZqIjINBH5tYhsEJHXReSGwD5ZRH4lIm8Fn8eNd1onIiISFZHfisgTwb7nyxGAiEwSkX8WkY3Bf+c8z5vxR0RuCsqx9SLykIjUeb6MDyJyv4h0icj6GttB80JEvhnogQ4R+ZPDmZYJL7pEJAr8ALgUmAN8TkTmjG+qJiyDwDdUdTbwUeBrQV7cDixX1VOB5cG+M/bcAGyo2fd8OTK4B3hKVWcBf4DlkefNOCIibcDXgbNV9QxsKbyr8HwZL/4RuGSYbcS8COqcq4C5wTE/DHTCYWHCiy7gXGCTqm5W1SLwU2DJOKdpQqKqO1V1dbDdh1UebVh+PBBEewC4fFwSOIERkROBy4ClNWbPl3FGRBqBi4D/DaCqRVXdh+fNkUAMSIlIDEgD7+H5Mi6o6nNA9zDzwfJiCfBTVS2o6hZsbehzD1daXHRZpb6tZn97YHPGERFpB84EVgInqOpOMGEGtI5j0iYq/xO4FajU2Dxfxp+ZwG7gx0HT71IRqcfzZlxR1R3A3wHvAjuBHlV9Bs+XI4mD5cWoagIXXSAj2HwejXFERDLAo8CNqto73umZ6IjIJ4EuVV013mlxDiAGnAX8SFXPBLJ4k9W4E/QPWgLMAKYC9SLyhfFNlfMBGVVN4KLLVOy0mv0TMTewMw6ISBwTXMtU9bHA3CkiU4LvpwBd45W+CcoFwKdFZCvW/P4xEfknPF+OBLYD21V1ZbD/z5gI87wZXz4ObFHV3apaAh4Dzsfz5UjiYHkxqprARRe8ApwqIjNEJIF1oHt8nNM0IRERwfqmbFDV/1Hz1ePA1cH21cAvxjptExlV/aaqnqiq7dj/41lV/QKeL+OOqu4CtonI6YHpYuANPG/Gm3eBj4pIOijXLsb6qHq+HDkcLC8eB64SkaSIzABOBV4+XBf1GekBEfkE1mclCtyvqv91fFM0MRGRRcDzwDrCvkPfwvp1PQJMxwqzz6rq8E6RzhggIouBW1T1kyLSjOfLuCMiC7ABDglgM/Al7IXa82YcEZE7gT/DRmX/FvgykMHzZcwRkYeAxcDxQCdwB/BzDpIXIvJt4Fos725U1V8etrS46HIcx3Ecxxl9vHnRcRzHcRxnDHDR5TiO4ziOMwa46HIcx3EcxxkDXHQ5juM4juOMAS66HMdxHMdxxgAXXY7jjDsi0iwia4KwS0R2BNv9IvLDUbrmjSLyxRHs7SKy/jBeJyEizwVr8DmOM4HxQsBxnHFHVfcACwBE5DtAv6r+3WhdLxBA12Kzt48qqloUkeXYnE3LRvt6juMcubiny3GcIxYRWSwiTwTb3xGRB0TkGRHZKiKfEZH/LiLrROSpYAkpRGShiKwQkVUi8nR1qY9hfAxYraqDNcesFZEXga/VXL9dRJ4XkdVBOD+w/0REltTEWyYinxaRuSLycuCle01ETg2i/Bz489G4R47jHD246HIc52jiZOAybDHhfwJ+rarzgAHgskB43QtcqaoLgfuBkVaYuACoXcD7x8DXVfW8YfG6gD9S1bMwT9X3AvtSbOZ3RKQJW1fvSeAvgXtUdQFwNraOG8B64JxD/M2O4xwjePOi4zhHE79U1ZKIrMOW7XoqsK8D2oHTgTOAX9mSd0SBnSOcZwq2Fl5VNE1S1RXBdz8BLg2248D3g6V2ysBpAKq6QkR+ICKtwGeAR1V1MPCUfVtETgQeU9W3gvhlESmKSIOq9h2me+E4zlGGiy7HcY4mCgCqWhGRkobrmFWw8kyA10fwWA1nAKgLtgU42HpoN2Frtf0B1jKQr/nuJ1iT4VVY/zBU9f+IyErMG/e0iHxZVZ8N4ieHHe84zgTDmxcdxzmW6ABaROQ8ABGJi8jcEeJtAE4BUNV9QE+w4DoM7XvVBOxU1QrwnzDPWZV/BG4MzvF6cL2ZwGZV/R7wODA/sDcDu1W19O//iY7jHK246HIc55hBVYvAlcB3RWQtsAbrbzWcXwIX1ex/CfhB0Dw4UGP/IXC1iLyENS1ma67ViYm3H9fE/zNgvYisAWYBDwb2/4j1+XIcZwIjoXfecRxn4iAiPwNurfa7OoTj01hfsrNUted94j4GfFNVOw7lWo7jHBu4p8txnInK7ViH+g+NiHwc2Ajc+wEEVwL4uQsux3Hc0+U4juM4jjMGuKfLcRzHcRxnDHDR5TiO4ziOMwa46HIcx3EcxxkDXHQ5juM4juOMAS66HMdxHMdxxgAXXY7jOI7jOGPA/weZxoM5zS2TGAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.3339, 'epsilon': 0.1368, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACkoklEQVR4nOydd3gV1daH30kjPaETagKEBEgjoffQkSKgCFwEQRHFrp8F7lXBcr1eG4i9giICAoLIRUWUIiKdUIVASAgkgSQE0uvJ+v7YnJMOSSAkwH6fZz/nzJw9M2vmlPmdtddeyxARNBqNRqPRaDRVi1V1G6DRaDQajUZzK6BFl0aj0Wg0Gs11QIsujUaj0Wg0muuAFl0ajUaj0Wg01wEtujQajUaj0WiuA1p0aTQajUaj0VwHbKrbgPJQr1498fT0rG4zNBqNRqPRaK7Inj17EkWkfvH1N4To8vT0ZPfu3dVthkaj0Wg0Gs0VMQzjVGnr9fCiRqPRaDQazXVAiy6NRqPRaDSa64AWXRqNRqPRaDTXgRsipkujqSwmk4mkpCRyc3Or2xSNRnODYGtrS506dbC2tq5uUzQ3GVUmugzD+BIYDsSLiF8prxvAu8BtQAYwRUT2VpU9mluTpKQk7O3tqVevHuojp9FoNGUjIqSlpZGUlET9+iUmn2k0V0VVDi8uBIZc5vWhgPelNh34qApt0dyi5Obm4uzsrAWXRqMpF4Zh4OzsrL3jmiqhyjxdIrLFMAzPy3S5HfhaRATYbhiGu2EYHiISV1U2lcWhQ5Cff32OVd57f1n9SltvGCXXF19XeNn83LxsZVXwWPg183Lhx8LN2lo18/PS7KgJaMGl0Wgqgv7N0FQV1RnT1QQ4XWj5zKV11110vfoqpKdf76PenNjYKAFmY1PQbG0Lmp2dara2YG+vWq1a6tHBARwdwcmpaHNzU83mBo5A/Pe//823336LtbU1VlZWfPLJJ3Tp0uW62xEWFkZsbCy33XYbAGvWrOHIkSPMnDmTKVOmMHz4cO68884i22zatIm33nqLtWvXXnd7NRqN5maiOm9jpf2VkOtuBdCuHWRnl6+vXIWFldm28DalbV/a65d7NLfCy6A8fYVfN7f8/ILX8vPBZCpYV3jZZFJ98vJUK+/1rAiFBVi9elC/vmoNGqhHDw8l3moaf/31F2vXrmXv3r3UqlWLxMREcnJyqsWWsLAwdu/ebRFdI0eOZOTIkdVii0aj0dxqVKfoOgM0K7TcFIitDkNefLE6jnrzYRZdJhPk5qrHvDz1PDcXcnIKHnNyICuroGVnq8eMDEhLU4/p6ep5SgokJ6vl9HSIvcynpEEDaN68oDVtquyqztGCuLg46tWrR61atQCoV68eUFBpoV69euzevZunn36aTZs2sXnzZh5//HFADXNs2bIFFxcX3njjDRYtWoSVlRVDhw7l9ddfJyIigocffpiEhAQcHR357LPP8PX1ZcqUKdjb23P48GHOnTvHO++8w6BBg3jxxRfJzMxk69atzJo1i8zMTHbv3s37778PwIYNG3j33Xct2wwfPrzIuaSnp/Poo49y8OBB8vLymDNnDrfffvt1vJoajUZz41KdomsN8IhhGEuBLkBydcRzaa4dhlEwjHitPU4iBQLswgVITIT4eEhIUC0+HuLi1GN8PJirRt11Fxw4oDxjL71UMLx5LUXYjz9e/vVBgwbx8ssv06ZNGwYMGMC4cePo06dPmf3feustPvjgA3r06EFaWhr29vb89NNPrF69mh07duDo6EhSUhIA06dP5+OPP8bb25sdO3bw0EMP8fvvvwMQFRXF5s2biYiIIDQ0lBMnTvDyyy8XEVkLFy4scuzStinMv//9b/r168eXX37JxYsX6dy5MwMGDMDJyamCV02j0WhuPaoyZcQSoC9QzzCMM8BswBZARD4G1qHSRZxApYyYWlW2aG58DANcXFRr0qT0Pnl5cPYsREerduqUEn+5uUqQpaQU7KtWLRVDZm9fMJGgqnB2dmbPnj388ccfbNy4kXHjxvH666+X2b9Hjx489dRTTJw4kTFjxtC0aVM2bNjA1KlTcXR0BKBOnTqkpaWxbds2xo4da9k2u9C47l133YWVlRXe3t60bNmSo0ePXtHWK22zfv161qxZw1tvvQVAVlYW0dHRtG3btkLXRKPRaG5FqnL24oQrvC7Aw1V1fM2th42NGk5s2hS6d1frYmPB3V15xnx8lFfskpMIUAKsYUM1FOnpWXXB+tbW1vTt25e+ffvi7+/PV199hY2NDfmXps1mZWVZ+s6cOZNhw4axbt06unbtyoYNGxCREjOq8vPzcXd3JywsrNRjFu9fnhlZV9pGRFi5ciU+Pj5X3JdGo9FoiqLLAGluehwdlagKCYEhQ2D0aOjUCRo1UqLr7FnYuRNWr4Z9+679TNZjx45x/Phxy3JYWBgtWrTA09OTPXv2ALBy5UrL6xEREfj7+/Pcc8/RsWNHjh49yqBBg/jyyy/JyMgAVNJXV1dXvLy8WL58OaAE0f79+y37Wb58Ofn5+URERHDy5El8fHxwcXEhNTW1TFtL26YwgwcP5r333kMuzcDYt2/fVV4djUajuXW4gSfhazSVw8EBvL1Vy86GmBiIiFBesL//hqNHoVkz5Rm7Fgmp09LSePTRR7l48SI2Nja0bt2aTz/9lL///pv77ruP1157rUj6iHnz5rFx40asra1p164dQ4cOpVatWoSFhdGxY0fs7Oy47bbbeO2111i8eDEzZszg1VdfJTc3l/HjxxMYGAiAj48Pffr04dy5c3z88cfY29sTGhrK66+/TlBQELNmzSpha2nbFOaFF17giSeeICAgABHB09NTp5LQaDSacmLI1eRAuE507NhRdpsjozWaChAbG0vjxo3L1ff8eTh2TMWDmZPlNmsGwcEqXcWNRFk5tzQaTfmoyG+HRlMcwzD2iEjH4uu1p0ujuUTduioWrEMHCA9XAuz0aRUX1r49tG2rEr9qNBqNRlMZtOjSaIrh4ACBgWr4cd8+NQvywAE4eVLFhZU1e7ImUTwVhEaj0WiqHx1Ir9GUgaMj9OgB/furGZBpabB5swq6N5mq2zqNRqPR3Gho0aXRXIGGDdWsx5AQNbx44gT89pvKmq/RaDQaTXnRokujKQdWVmo248CBKqg+MRF+/lllv9doNBqNpjxo0aXRVIA6dZTXq1EjVSvy999VwP0NMAlYo9FoNNWMFl0aTQWpVQv69lWzGfPzYc8eFXBflvBydna+4j7/+OMP2rdvT1BQEJmZmRWyZ/Xq1Rw5cqRC21zOrszMTPr06YOpUODa3Llzsbe3Jzk5ucLHuRaEhYWxbt26Kj/OwoULiS1UUX3atGmVurZRUVH4+fldsd/y5ctp27YtoaGhFT5GcVuvlV2l9ZkzZ46l9FN56du3L1dK9TNv3jxLwt+KUtnPRGG7BgwYwIULFyp1fI2mMmjRpdFUAisrlVqiRw/1/OhRNcOxsixevJinn36asLAwHBwcKrRtZUVXWXz55ZeMGTMG60L5MZYsWUKnTp1YtWrVNTtORagu0fX555/Trl27KjveF198wYcffsjGjRsrvG1lRFdNozpEV2EmTZrEhx9+eFX70GgqghZdGs1V0KKFEl6GAYcPq1YWmzZtom/fvtx55534+voyceJERITPP/+c7777jpdffpmJEycC8Oabb9KpUycCAgKYPXu2ZR9ff/01AQEBBAYGMmnSJLZt28aaNWt45plnCAoKIiIigoiICIYMGUJISAi9evWyFK2OjIykW7dudOrUiRdeeKFMOxcvXsztt99uWY6IiCAtLY1XX32VJUuWWNYfPnyYzp07ExQUREBAAMePH+eFF17g3XfftfT517/+xfz589m0aRN9+vThrrvuok2bNsycOZPFixfTuXNn/P39iYiIAFRS1wcffJBevXrRpk0b1q5dS05ODi+++CLLli0jKCiIZcuWkZSUxKhRowgICKBr164cuKR458yZwz333MOgQYPw9PTk+++/59lnn8Xf358hQ4aQm5sLwMsvv0ynTp3w8/Nj+vTpiAgrVqxg9+7dTJw40eJxLOwV+fnnnwkODiYwMJD+/fuX6/MBShyNGTOGIUOG4O3tzbPPPmuxYevWrTz44IM888wzmEwmnnnmGcv7/sknn1j28cYbb+Dv709gYCAzZ84s1dY9e/bQp08fQkJCGDx4MHFxcQDs2bOHwMBAunXrxgcffFBuu8uib9++PPfcc3Tu3Jk2bdrwxx9/AMpDOn78eAICAhg3blwRj+369evp1q0bwcHBjB07lrS0NObPn09sbCyhoaEWT19p/QB27dpF9+7dCQwMpHPnziQnJ5f4TKSnp3PvvffSqVMnOnTowA8//HBFu0aOHFnkM63RVDkiUuNbSEiIaDSVISYmpmBh+PCqaSISGSny7bciixeLHD1a1AYnJycREdm4caO4urrK6dOnxWQySdeuXeWPP/4QEZF77rlHli9fLiIiv/zyi9x///2Sn58vJpNJhg0bJps3b5ZDhw5JmzZtJCEhQUREzp8/X2JbEZF+/fpJeHi4iIhs375dQkNDRURkxIgR8tVXX4mIyPvvv2+xqzDZ2dnSsGHDIuteeeUVefnll8VkMkmLFi3k3LlzIiLyyCOPyDfffGPZLiMjQyIjI6VDhw4iImIymaRly5aSmJgoGzduFDc3N4mNjZWsrCxp3LixvPjiiyIiMm/ePHn88cct5zJ48GAxmUwSHh4uTZo0kczMTFmwYIE8/PDDFpseeeQRmTNnjoiI/PbbbxIYGCgiIrNnz5YePXpITk6OhIWFiYODg6xbt05EREaNGiWrVq0qcu1ERO6++25Zs2aNiIj06dNHdu3aZXnNvBwfHy9NmzaVkydPlti+NCIjI6V9+/YiIrJgwQLx8vKSixcvSmZmpjRv3lyio6NLHO+TTz6RV155RUREsrKyJCQkRE6ePCnr1q2Tbt26SXp6epFjF942JydHunXrJvHx8SIisnTpUpk6daqIiPj7+8umTZtEROTpp5+22FUe283Mnj1b3nzzTctxn3rqKRER+d///if9+/cXEZG3337bcsz9+/eLtbW17Nq1SxISEqRXr16SlpYmIiKvv/66vPTSSyIi0qJFC8vnuax+2dnZ4uXlJTt37hQRkeTkZMnNzS3xmZg1a5YsWrRIREQuXLgg3t7ekpaWVqZdZlq3bi2JiYklrkOR3w6NpoIAu6UUPaOTo2o01wBPT5W7a8cOFeNlYwOtWpXs17lzZ5o2bQpAUFAQUVFR9OzZs0if9evXs379ejp06ACo2o3Hjx9n//793HnnndSrVw+AOnXqlNh/Wloa27ZtY+zYsZZ12dnZAPz555+WwtqTJk3iueeeK7F9YmIi7u7uRdYtXbqUVatWYWVlxZgxY1i+fDkPP/ww3bp149///jdnzpxhzJgxeHt74+npSd26ddm3bx/nzp2jQ4cO1K1bF4BOnTrh4eEBQKtWrRg0aBAA/v7+RYbX7rrrLqysrPD29qZly5YWT11htm7dajmXfv36cf78eUu82dChQ7G1tcXf3x+TycSQIUMsx4mKigJg48aNvPHGG2RkZJCUlET79u0ZMWJEieOY2b59O71798bLy6vMa385+vfvj5ubGwDt2rXj1KlTNGvWrEif9evXc+DAAVasWAFAcnIyx48fZ8OGDUydOhVHR8cyj33s2DEOHTrEwIEDATCZTHh4eJCcnMzFixfp06cPoN73n3766bK2GoZxxfVjxowBICQkxHJNt2zZwmOPPQZAQEAAAQEBgLp2R44coUePHgDk5OTQrVu3Evsvq9+xY8fw8PCgU6dOALi6upZq3/r161mzZo0l9iwrK4vo6Ogy7TLToEEDYmNjLZ9TjaYq0aJLc+vw449VuvtWrSAvT4munTuV8GrRomifWrVqWZ5bW1uTl5dXYj8iwqxZs3jggQeKrJ8/f36ZN0Qz+fn5uLu7ExYWVurrV9rewcGBrKwsy/KBAwc4fvy45Waek5NDy5Ytefjhh/nHP/5Bly5d+N///sfgwYP5/PPP6devH9OmTWPhwoWcPXuWe++9t9Rzt7KysixbWVkVuQ7FbSzNZill1oK5X+H92traWtabj5OVlcVDDz3E7t27adasGXPmzClyzqUhIle8dpejvO/7e++9x+DBg4us//nnn694bBGhffv2/PXXX0XWX7x4scJ2161bt0RweVJSkkVwQsH5FD+Xst6rgQMHXnEYr6x+Bw4cKNc5iAgrV67Ex8enxGuX2z4rK6vCcZQaTWXRMV0azTXExweCgtRMxh07oDKT/QYPHsyXX35piWeJiYkhPj6e/v37891333H+/HlA3QgBXFxcSE1NBZQXwMvLi+XLlwPqRrR//34AevTowdKlSwEVt1UatWvXxmQyWUTIkiVLmDNnDlFRUURFRREbG0tMTAynTp3i5MmTtGzZkscee4yRI0da4qpGjx7Nzz//zK5du0oIiPKwfPly8vPziYiI4OTJk/j4+BQ5R4DevXtbzmHTpk3Uq1evTA9IccznVq9ePdLS0iyeJaDEccx069aNzZs3ExkZCRRc+507dzJ58uQKn2NpDB48mI8++sgSdxYeHk56ejqDBg3iyy+/tAScl/a++/j4kJCQYBFdubm5HD58GHd3d9zc3Ni6dStQ9H2PiYkpNTbN2dkZDw8PfvvtN8vxfv755xIe2eIUfk8OHTpk+Tx07dqVP//8kxMnTgCQkZFBeHh4iXMoq5+vry+xsbHs2rULgNTUVPLy8kq8V4MHD+a9996zCPJ9+/Zd1i5Q34+zZ8/i6el52XPTaK4VWnRpNNeYtm3VcGNeHvz5Z8W3HzRoEP/4xz/o1q0b/v7+3HnnnaSmptK+fXv+9a9/0adPHwIDA3nqqacAGD9+PG+++SYdOnQgIiKCxYsX88UXXxAYGEj79u0tAcXvvvsuH3zwAZ06dbps6odBgwZZbtJLly5l9OjRRV4fPXo0S5cuZdmyZfj5+REUFMTRo0ct4sPOzo7Q0FDuuuuuIjMgy4uPjw99+vRh6NChfPzxx9jb2xMaGsqRI0csQdNz5sxh9+7dBAQEMHPmTL766qty79/d3Z37778ff39/Ro0aZRm2goJA/uKpO+rXr8+nn37KmDFjCAwMZNy4cQBER0dfMy/JtGnTaNeuHcHBwfj5+fHAAw+Ql5fHkCFDGDlyJB07diQoKMgyfFbYVpPJxIoVK3juuecIDAwkKCiIbdu2AbBgwQLLcHBhW+Pi4rCxKX2w4+uvv+bVV18lKCiIfv36MXv2bFqVNl5eiBkzZpCWlkZAQABvvPEGnTt3BtS1W7hwIRMmTLBMfDAPGU+fPp2hQ4cSGhpaZj87OzuWLVvGo48+SmBgIAMHDiQrK6vEZ+KFF14gNzeXgIAA/Pz8LJNFyrIL1CSDrl27lnkdNJprjVGam76m0bFjR7lSvheNpjRiY2Np3LjxdT9ubi788gukpKhhxy5drrsJlWbfvn288847LFq0qFLb5+fnExwczPLly/H29q7QtlOmTGH48OHceeedlTr29eaZZ55h0qRJJeKEbgTef/99mjdvzsiRI6vblGrj8ccfZ+TIkaV6/Krrt0Nzc2AYxh4R6Vh8vZb3Gk0VYGsLPXsq4RURoeo33igjGB06dCA0NBSTyVRhT9WRI0cYPnw4o0ePrrDguhF58803q9uESvPII49UtwnVjp+fX4XSf2g0V4v2dGluaqr73+qJEwVB9UOGQDnDjjQaTTVT3b8dmhubsjxdOqZLo6lCWrVSMxjz8mDrVpVWQqPRaDS3Jlp0aTRViGFA587g4gIXL8LevdVtkUaj0WiqCy26NJoqxhzfZWWlhhsTE6vbIo1Go9FUB1p0aTTXgdq1wddX5e/avVs9ajQajebWQosujaaKsba2JigoiIkT2/OvfwXyzTfvEB6eD8Du3bstJUpqOlOmTCmSSLQwTzzxBFu2bLEsJyQkYGtrW6Ro8/Xmtddeq/JjhIWFsW7dOsvymjVreP311yu1r8LFtcsiISGBLl260KFDB0uh6craei3tmjJlCl5eXgQGBtKmTRsmT55MTEzMFfc9b948S9LXinItzmfAgAElsu9rNFWJFl0aTRXj4OBAWFgYhw8f5vvvfyUsbB3PP/8SWVnQsWNH5s+fX90mXhVJSUmW2oRmli9fTteuXa9Y+qUqqQ7RNXLkSGbOnFllx/vtt9/w9fVl37599OrVq0LbVlaklJc333yT/fv3c+zYMUvakZycnMtuUx2iqzCTJk3iww8/vKp9aDQVQYsujaY4R4/C8uXq8RoTFNSAWbM+5eef3ycsTNi0aRPDhw8HVEmZ7t2706FDB7p3786xY8cAVQ7lrrvuIiAggHHjxtGlSxfLP3VnZ2f+9a9/ERgYSNeuXTl37hwAp06don///gQEBNC/f3+io6MBJYb8/PwIDAy0iCSTycQzzzxDp06dCAgIsHinRIRHHnmEdu3aMWzYMOLj40s9pxUrVliKSptZsmQJb7/9NmfOnLF4PEwmE1OmTMHPzw9/f3/mzp1LREQEwcHBlu2OHz9OSEgIAJ6envzzn/+kW7dudOzYkb179zJ48GBatWrFxx9/DKgSQL1792b06NG0a9eOBx98kPz8fGbOnElmZuYlD+NEAN555x38/Pzw8/Nj3rx5AERFReHr68u0adPw8/Nj4sSJbNiwgR49euDt7c3OnTvLfG9ycnJ48cUXWbZsmSUr+sKFCy35r86dO8fo0aMJDAwkMDDQkiG+PJT2voaFhfHss8+ybt06S8b89evX061bN4KDgxk7dqyldNSuXbvo3r07gYGBdO7cmeTk5BK2pqenc++999KpUyc6dOhgqVyQmZnJ+PHjLZ+3wpn5y4NhGDz55JM0atTIUly7NDvnz59PbGwsoaGhhIaGltmvKs9n5MiR1frHQHMLIiI1voWEhIhGUxliYmIqtsHff4t06SLSoYN6/Pvvq7bBycmpyHJysoiTk7t8+OFZWb16owwbNuzS+mTJzc0VEZFff/1VxowZIyIib775pkyfPl1ERA4ePCjW1taya9cuEREBZM2aNSIi8swzz8grr7wiIiLDhw+XhQsXiojIF198IbfffruIiPj5+cmZM2dEROTChQsiIvLJJ59YtsvKypKQkBA5efKkrFy5UgYMGCB5eXkSExMjbm5usnz58hLnN3nyZIsNIiLR0dHSunVrERGZNWuWvP322yIisnv3bhkwYICln/n4ffv2lX379ln6z58/X0REWrRoIR9++KGIiDzxxBPi7+8vKSkpEh8fL/Xr1xcRkY0bN0qtWrUkIiJC8vLyZMCAARYbC1/33bt3i5+fn6SlpUlqaqq0a9dO9u7dK5GRkWJtbS0HDhwQk8kkwcHBMnXqVMnPz5fVq1dbrltZ782CBQvk4Ycfthyn8PJdd90lc+fOFRGRvLw8uXjxYolrV5g+ffpc8X0tvP+EhATp1auXpKWliYjI66+/Li+99JJkZ2eLl5eX7Ny5s4jtxW2dNWuWLFq0yPJeeHt7S1pamrz99tsydepUERHZv39/kc9bWdxzzz0lPhuPP/64vP7662XaKaLe44SEhGo9n9atW0tiYmKJc6rwb4dGUwhgt5SiZ3RGeo2mMAcPQk4ONGkCsbFq2df3mh7C1RUMQ0XSF3amJScnc88993D8+HEMw7AUPt66dSuPP/44oDJoFy45Y2dnZ/GUhYSE8OuvvwLw119/8f333wNqCOXZZ58FVNHrKVOmcNdddzFmzBhAeRcOHDhgiddKTk7m+PHjbNmyhQkTJmBtbU3jxo3p169fqecTFxdH/fr1LctLly7lrrvuAlRdyPvuu4+nnnqKli1bcvLkSR599FGGDRvGoEGDAFVzcMGCBbzzzjssW7bM4l0CLCVq/P39SUtLw8XFBRcXF+zt7bl48SIAnTt3pmXLlgBMmDCBrVu3ligjtHXrVkaPHo2TkxMAY8aM4Y8//mDkyJF4eXnh7+8PQPv27enfvz+GYeDv709UVNRl35vL8fvvv/P1118DKq7Pzc3tituYKet9Lcz27ds5cuQIPXr0ACAnJ4du3bpx7NgxPDw8LDUlyyoEvn79etasWWOp5ZiVlUV0dDRbtmyxxBkGBARUusSRXJotUpadNeV8GjRoQGxsLHXr1q3UeWo0FUGLLo2mMP7+YGenBJetrVq+xpw8eRI7O2s8PBoQE/M36elq/QsvvEBoaCirVq0iKiqKvn37AgU3r9KwtbXFMAxA3djz8vJK7Wfu8/HHH7Njxw7+97//ERQURFhYGCLCe++9x+DBg4tss27dOst2l8PBwYGsrCzL8pIlSzh37hyLFy8GVGbv48eP4+3tzf79+/nll1/44IMP+O677/jyyy+54447eOmll+jXrx8hISFFbn61atUCwMrKyvLcvGw+1+I2lmbz5a5h8f0WPqb5GGW9N1VFed5XEWHgwIElhscOHDhQrvdNRFi5ciU+Pj4lXivP9ldi37599O/fv0w7S7OnOs4nKyvrmhUt12iuhI7p0mgK4+sLCxfCzJnq8Rp7uRISEnjwwQd55JFHCAlRN4KUFFUgOzk5mSZNmgCwcOFCyzY9e/bku+++A1Rtw4MHD17xON27d2fp0qUALF68mJ49ewIQERFBly5dePnll6lXrx6nT59m8ODBfPTRRxbvTXh4OOnp6fTu3ZulS5diMpmIi4tj48aNpR6rbdu2nDhxAoBjx46Rnp5OTEwMUVFRREVFMWvWLJYuXUpiYiL5+fnccccdvPLKK+y9lCnW3t6ewYMHM2PGDKZOnVrRS8rOnTuJjIwkPz+fZcuWWc7V1tbWck69e/dm9erVZGRkkJ6ezqpVqyoUiF7We+Pi4kJqamqp2/Tv35+PPvoIUPFsKSkplvXlmdl3Jbp27cqff/5pufYZGRmEh4fj6+tLbGwsu3btAiA1NZW8vLwStg4ePJj33nvPIkj37dsHqGtlFsyHDh3iwIEDlm0mT55cxBNZGiLC/PnziYuLY8iQIWXaCUWvX3Wcj4hw9uxZPG+UwqiaG54qFV2GYQwxDOOYYRgnDMMoMaXHMAw3wzB+NAxjv2EYhw3DqPgvrkZzrfH1hbFjr5ngMgd0t2/fngEDBjBo0CBmz55N06Yqf1d+PoSHw7PPPsusWbPo0aMHpkL1gh566CESEhIICAjgv//9LwEBAVccqpo/fz4LFiwgICCARYsW8e677wLwzDPP4O/vj5+fH7179yYwMJBp06bRrl07goOD8fPz44EHHiAvL89StNrf358ZM2bQp0+fUo81bNgwNm3aBCgv1+jRo4u8fscdd7BkyRJiYmLo27cvQUFBTJkyhf/85z+WPhMnTsQwDMuQY0Xo1q0bM2fOxM/PDy8vL8vxp0+fTkBAABMnTiQ4OJgpU6bQuXNnunTpwrRp0+jQoUO5j1HWexMaGsqRI0cswdyFeffdd9m4cSP+/v6EhIRw+PBh8vPzOXHiBHXq1KnweRanfv36LFy4kAkTJhAQEEDXrl05evQodnZ2LFu2jEcffZTAwEAGDhxIVlZWCVtfeOEFcnNzCQgIwM/PjxdeeAGAGTNmkJaWRkBAAG+88QadO3e2HPPAgQN4eHiUas8zzzxjSRmxa9cuNm7ciJ2dXZl2gnqPhg4dSmhoaLWcz549e+jatSs2NnrQR3N9qLKC14ZhWAPhwEDgDLALmCAiRwr1+SfgJiLPGYZRHzgGNBKRIvOMdcFrTWWp6UVrz52D335TI5ojR6rH4phMJnJzc7G3tyciIoL+/fsTHh6OXWmdq4mePXuydu1a3N3dK7X9W2+9RXJyMq+88kqFttu0aRNvvfUWa9eurdRxrzeHDh3iyy+/5J133qluUypMSkoK9913H8uXL69uU64Zjz/+OCNHjqR///4lXqvpvx2amk1ZBa+rUt53Bk6IyMlLBiwFbgeOFOojgIuhBtydgSSg9KAUjeYmpEED1eLjlbfLz69kn4yMDEJDQ8nNzUVE+Oijj2qU4AJ4++23iY6OrpToGj16NBEREfz+++/X3rAahp+f3w0puEAFsN9MggvU+1Ga4NJoqoqq9HTdCQwRkWmXlicBXUTkkUJ9XIA1gC/gAowTkf8V35f2dGkqy43wb7U83i6NRnN9uRF+OzQ1l7I8XVUZ01XadJHiCm8wEAY0BoKA9w3DKH0+sEZzk9KwoWo5OXApH6pGo9FobkKqUnSdAZoVWm4KxBbrMxX4/lIusRNAJMrrpdHcUpgzUxw7psSXRqPRaG4+qlJ07QK8DcPwMgzDDhiPGkosTDTQH8AwjIaAD3CyCm3SaGokDRpob5dGo9Hc7FSZ6BKRPOAR4Bfgb+A7ETlsGMaDhmE8eKnbK0B3wzAOAr8Bz4lIYlXZpNHUZMzerqNHtbdLo9FobkaqNE+XiKwTkTYi0kpE/n1p3cci8vGl57EiMkhE/EXET0S+qUp7NJrqYtWqVRiGYclPBCpQ11yuZtOmTdx773AaNYLt29fwzDOvX7NjP/HEE2zZsgWAtWvX0qFDBwIDA2nXrp2luHVVMW/ePDIyMqr0GFFRUXz77beW5d27d1vKvlSUKVOmWMohlUV2djYDBgwoNTdXRW29lnaV1sfZ2blCxylcgL0swsLCWLduXYX2W5jKfCYK27V27Vpmz55d6eNrNNWJzkiv0VwHlixZQs+ePS1Z4gEaN25c4ibp7w8hISPp2XPmNfF2JSUlsX37dnr37k1ubi7Tp0/nxx9/ZP/+/ezbt6/Ky9lUh+jq2LEj8+fPr7Lj7du3j9zcXMLCwhg3blyFtq2s6KpJVIfoKsywYcNYs2ZNlX+uNJqq4IqiyzCMHoZh/GoYRrhhGCcNw4g0DEPHXWk05SQtLY0///yTL774oojoioqKwq9YYq769WHfvoV89tkjnDypvBePPfYY3bt3p2XLlhaRlp+fz0MPPUT79u0ZPnw4t912W6mekBUrVjBkyBCgoHyKubZhrVq18PHxITU1FS8vL0vJnJSUFDw9PcnNzaVv3748+eST9O7dm7Zt27Jr1y7GjBmDt7c3zz//vOU8fH19ueeeewgICODOO+8kIyOD+fPnExsbS2hoKKGhoYASn+aM+M8995zFTmdnZ5577jlCQkIYMGAAO3fupG/fvrRs2ZI1a9ZYjtOrVy+Cg4MJDg5m27ZtAMycOZM//viDoKAg5s6dW8QrkpaWxtSpU/H39ycgIICVK1eW+33z9PRk9uzZBAcH4+/vz9GjR4mPj+fuu+8mLCyMoKAgIiIi2LNnD3369CEkJITBgwcTFxcHwIkTJxgwYACBgYEEBwcTERFRwlaTycQzzzxDp06dCAgIsHgeRYRHHnmEdu3aMWzYMOLj48ttd2ls2rSJvn37cuedd+Lr68vEiRMt5XJ+/vlnfH196dmzp6VIOkB6ejr33nsvnTp1okOHDvzwww/k5OTw4osvsmzZMounr7R+oJL6Pv3005Zr/95775X6mVi/fj3dunUjODiYsWPHkpaWdlm7DMOgb9++N0xCXI2mCCJy2QYcBYYCDYC65nal7a5lCwkJEY2mMsTExBRdMXy4aoV56SW1bseOgnU//aTWvfdewbrz59W6yZMrZMOiRYvk3nvvFRGRbt26yZ49e0REJDIyUtq3by8iIhs3bpRhw4aJiMjbby+QgQMfltWrRe655x658847xWQyyeHDh6VVq1YiIrJ8+XIZOnSomEwmiYuLE3d3d1m+fHmJY0+ePFnWrFljWb7vvvukfv36Mn78ePnmm2/EZDKJiMiUKVNk1apVIiLyySefyFNPPSUiIn369JFnn31WRETmzZsnHh4eEhsbK1lZWdKkSRNJTEyUyMhIAWTr1q0iIjJ16lR58803RUSkRYsWkpCQICLqvWjWrJnEx8dLbm6uhIaGWo4JyLp160REZNSoUTJw4EDJycmRsLAwCQwMFBGR9PR0yczMFBGR8PBwMf8uFL52xZefffZZefzxxy2vJSUlXfa9uueeeyzXsUWLFjJ//nwREfnggw/kvvvuK7H/nJwc6datm8THx4uIyNKlS2Xq1KkiItK5c2f5/ns1OTszM1PS09NL2PrJJ5/IK6+8IiIiWVlZEhISIidPnpSVK1fKgAEDJC8vT2JiYsTNza3U97cs2804OTlZbHZ1dZXTp0+LyWSSrl27yh9//CGZmZnStGlTCQ8Pl/z8fBk7dqzFvlmzZsmiRYtEROTChQvi7e0taWlpsmDBAnn44Yctxyir34cffihjxoyR3NxcERE5f/685bqaPxMJCQnSq1cvSUtLExGR119/XV566aXL2iUi8s0338gjjzxy2etxtZT47dBoKgCwW0rRM+UZXkwWkZ9EJF5EzptbFWlAjeamY8mSJYwfPx6A8ePHs2TJksv2r10bbG0hPV21UaNGYWVlRbt27Th37hwAW7duZezYsVhZWdGoUSOL16A4cXFx1K9f37L8+eef89tvv9G5c2feeust7r33XgCmTZvGggULAFiwYEGRwtMjR44EwN/fn/bt2+Ph4UGtWrVo2bIlp0+fBqBZs2b06NEDgLvvvputW7eWsGXXrl307duX+vXrY2Njw8SJEy2xZnZ2dhaPnL+/P3369MHW1hZ/f3+ioqIAyM3N5f7778ff35+xY8dy5MiREscozoYNG3j44YcLXdvaV9ymMGPGjAEgJCTEYkdhjh07xqFDhxg4cCBBQUG8+uqrnDlzhtTUVGJiYix1IO3t7XF0dCyx/fr16/n6668JCgqiS5cunD9/nuPHj7NlyxYmTJiAtbU1jRs3pl+/fle0VRX2KHtd586dadq0KVZWVgQFBREVFcXRo0fx8vLC29sbwzC4++67i9j2+uuvExQURN++fcnKyiI6OrrUcyit34YNG3jwwQctdQ1Lqze5fft2jhw5Qo8ePQgKCuKrr77i1KlTl7ULoEGDBsTGFs9ApNHUfMpTBmijYRhvAt8D2eaVIrK3yqzSaKqKH38sue7FF0uuGzJEtcLUqVP69pfh/Pnz/P777xw6dAjDMDCZTBiGwRtvvFHmNoYB5mo6yclqGNCMXBoSMj9eCQcHB7Kysoqs8/f3x9/fn0mTJuHl5cXChQvp0aMHUVFRbN68GZPJVGTY03x8KyurIrZYWVmRl5d3yeaiN/zSBMDlbLa1tbVsU/g4hY8xd+5cGjZsyP79+8nPz8fe3v6K5y8ipdpSXsx2WFtbW+wovv/27dvz119/FVmfkpJSrv2LCO+99x6DBw8usn7dunUVtrtu3bpcuHDBspyUlES9evUsy4Xfu8LnU9ZxRISVK1fi4+NTZP2OHTvK1a88115EGDhwYIk/ImFhYZfdNisrCwcHh8vuW6OpiZTH09UF6Ai8Brx9qb1VlUZpNDcLK1asYPLkyZw6dYqoqChOnz6Nl5dXqZ6gwri5KW9XVhZcCnEpQs+ePVm5ciX5+fmcO3eOTZs2lbqftm3bcuLECUDFNxXuFxYWRosWLSzLkydPZsKECUW8XOUlOjraIjzMkwYAXFxcSE1NBaBLly5s3ryZxMRETCYTS5YsoU+fPuU+RnJyMh4eHlhZWbFo0SJMJlOJYxRn0KBBvP/++5ZlsyiZPHkyO3furPB5FsfHx4eEhATLuefm5nL48GFcXV1p2rQpq1evBtSMx4yMjBK2Dh48mI8++sgSTxceHk56ejq9e/dm6dKlmEwm4uLi2Lhxo2WbWbNmsWrVqhK29O3bl2XLlpFzaQbGwoULy/SAmvH19SUyMpKIiAiAIuJn8ODBvPfeexaxvG/fPqDk9S6r36BBg/j4448t4i4pKanE9l27duXPP/+0fEYzMjIIDw+/rF3m61Q8HlKjuRG4ougSkdBS2pV93RqNhiVLlliGmMzccccdV5zBZmUFrVqp5zExJV+/4447aNq0KX5+fjzwwAN06dIFNze3Ev2GDRtmEVoiwhtvvIGPjw9BQUHMnj2bhQsXWvpOnDiRCxcuMGHChAqdIyhx99VXXxEQEEBSUhIzZswAYPr06QwdOpTQ0FA8PDz4z3/+Q2hoqCW4/Pbbby/3MR566CG++uorunbtSnh4OE5OTgAEBARgY2NDYGAgc+fOLbLN888/z4ULF/Dz8yMwMNAiXg4cOICHh0eFz7M4dnZ2rFixgueee47AwECCgoIsAf6LFi1i/vz5BAQE0L17d86ePVvC1mnTptGuXTuCg4Mt72VeXh6jR4/G29sbf39/ZsyYUUScHjx4kEaNGpWwZfjw4fTq1YuQkBCCgoL4888/+e9//3tZ++3t7fn0008ZNmwYPXv2LCLCX3jhBXJzcwkICMDPz48XXngBgNDQUI4cOWIJpC+r37Rp02jevDkBAQEEBgZaPvOFPxP169dn4cKFTJgwgYCAALp27crRo0cvaxfAxo0bGTZsWCXeMY2merliwWvDMNyA2UDvS6s2Ay+LSHIV22ZBF7zWVJYbuWhtejqsWaOGG2+/HYqPpqSlpeHs7Mz58+fp3Lkzf/75Z6k34549e7J27VrczWOWZbBixQp++OEHFi1aVCE7o6KiGD58OIcOHarQdtVFSkoK9913H8uXL69uUyrF4MGD+eWXX6rbjGrj3Llz/OMf/+C3336r0uPcyL8dmuqnrILX5Ynp+hI4BNx1aXkSsAAYc+3M02g0xXFygqZN4fRpCA+HwMCirw8fPpyLFy+Sk5PDCy+8UKrgAnj77beJjo6+rOh69NFH+emnn64q/9KNgqur6w0ruIBbWnCBGsp+++23q9sMjaZSlMfTFSYiQVdaV5VoT5emstzo/1YTEuDXX6FWLRg1Cqytq9sijebW4Eb/7dBUL2V5usoTSJ9pGEbPQjvqAWReS+M0Gk3p1KsHdetCdjZERla3NRqNRqO5GsojumYAHxiGEWUYxingfeDBK2yj0WiuAYYB5pn4x45BOTNFaDQajaYGcsWYLhEJAwINw3C9tFy+BDQajeaa0Lw57NuncnbFx0PDhtVtkUaj0WgqQ5miyzCMu0XkG8Mwniq2HgAReaeKbdNoNKj0Ea1bw8GDcPy4Fl0ajUZzo3K54UWnS48upTTnKrZLo7lpsLa2JigoCD8/P0aMGMHFixcrvI9WrdRQ45kzKmHq1bB7924ee+yxq9sJqhh3aUW2AZ544glLiZ+1a9fSoUMHAgMDadeunaWoc1Uxb948MjIyqvQYUVFRRXKtXc01vdx1NJOdnc2AAQMsubGuxtZradecOXNo0qQJQUFBeHt7M2bMmHKVZ1q4cGGly/hci/MZP348x48fr9TxNZqroUzRJSLmX8YNIvJS4QZUbYIUjeYmwsHBgbCwMA4dOkSdOnX44IMPKrwPR0do0gTy8+Hkyauzp2PHjsyfP//qdnIZkpKS2L59O7179yY3N5fp06fz448/sn//fvbt20ffvn2r7NhQPaKrqq/pvn37yM3NJSwsjHHjxlVo28qKlPLy5JNPEhYWxvHjxxk3bhz9+vUjISHhsttUh+gqzIwZMy5bikujqSrKE0j/XjnXaTSaK9CtWzdiLqWYj4iIYMiQIYSEhNCrVy+OHj0KqOSPo0ePJjAwkMDAQEuG899+e4fnnvNj6FA/5s6dZ9nnK6+8gq+vLwMHDmTChAm89Zaq0tW3b1+ee+45OnfuTJs2bfjjjz8A2LRpE8OHDwfgtttuIygoiKCgINzc3Pjqq68wmUw888wzdOrUiYCAAItnSkR45JFHaNeuHcOGDSM+Pr7Uc1yxYoWleHVqaip5eXnUrVsXUPX/fHx8SE1NxcvLy1L+JiUlBU9PT3Jzc+nbty9PPvkkvXv3pm3btuzatYsxY8bg7e3N888/D6gbr6+vL/fccw8BAQHceeedZGRkMH/+fGJjYwkNDbWUwFmyZAn+/v74+fnx3HPPWex0dnbmueeeIyQkhAEDBrBz50769u1Ly5YtWbNmjeU4vXr1Ijg4mODgYMt7MXPmTP744w+CgoKYO3dukWualpbG1KlT8ff3JyAggJUrV5b78+Hp6cns2bMJDg7G39+fo0ePEh8fz913301YWBhBQUFERESwZ88e+vTpQ0hICIMHDyYuLg6AEydOMGDAAEvG/4iIiBK2Xu37eznGjRvHoEGDLKKoNDtXrFjB7t27mThxIkFBQWRmZl738+nVqxcbNmwotZ6mRlOliEipDegG/B9wGniqUJsD7C9ru6poISEhotFUhpiYmKIrhg8vu/30U0G/n366fN8K4OTkJCIieXl5cuedd8pPl47Tr18/CQ8PFxGR7du3S2hoqIiI3HXXXTJ37lzLNhcvXpTdu3eLn5+fLF2aJl98kSpt2rSTvXv3yq5duyQwMFAyMjIkJSVFWrduLW+++aaIiPTp00eeeuopERH53//+J/379xcRkY0bN8qwYcOK2Lh7927x9/eXixcvyieffCKvvPKKiIhkZWVJSEiInDx5UlauXCkDBgyQvLw8iYmJETc3N1m+fHmJ8508ebKsWbPGsnzfffdJ/fr1Zfz48fLNN9+IyWQSEZEpU6bIqlWrRETkk08+sdjap08fefbZZ0VEZN68eeLh4SGxsbGSlZUlTZo0kcTERImMjBRAtm7dKiIiU6dOtZx3ixYtJCEhQUTU+9+sWTOJj4+X3NxcCQ0NtRwTkHXr1omIyKhRo2TgwIGSk5MjYWFhEhgYKCIi6enpkpmZKSIi4eHhYv4tKn4NCy8/++yz8vjjj1teS0pKKnGNCnPPPfdYrmOLFi1k/vz5IiLywQcfyH333Vdi/zk5OdKtWzeJj48XEZGlS5fK1KlTRUSkc+fO8v3334uISGZmpqSnp5ew9Wrf38LMnj3bct3NzJ07Vx588MHL2tmnTx/ZtWtXtZ7PgAEDZPfu3WWeW4nfDo2mAgC7pRQ9c7nZi3ao2C0bVByXmRTgzmus/TSam5bMzEyCgoKIiooiJCSEgQMHkpaWxrZt2xg7dqylX3Z2NgC///47X3/9NaDiwdzc3Ni6dSujR4+mfXsnDhyArl3H8Mcff5Cfn8/tt9+Ow6UaQSNGjChy7DFjVOGIkJAQoqKiSrUvMTGRSZMm8d133+Hm5sb69es5cOCAJf4lOTmZ48ePs2XLFiZMmIC1tTWNGzemX7/SS7DGxcVRv359y/Lnn3/OwYMH2bBhA2+99Ra//vorCxcuZNq0abzxxhuMGjWKBQsW8Nlnn1m2GTlyJAD+/v60b9/eUiexZcuWnD59Gnd3d5o1a0aPHj0AuPvuu5k/fz5PP/10EVt27dpF3759LfZMnDiRLVu2MGrUKOzs7CweOX9/f2rVqoWtrS3+/v6Wa5Wbm8sjjzxCWFgY1tbWhIeHl3rOhdmwYQNLly61LNeuXfuK2xSm8Hv2/fffl3j92LFjHDp0iIEDBwJgMpnw8PAgNTWVmJgYS61Pe3v7Uvd/te/vlZBLeU3KsrOmnE+DBg2IjY0lJCSkUuep0VSGMkWXiGwGNhuGsVBETl1HmzSaquPHH8vXb8gQ1a4B5piu5ORkhg8fzgcffMCUKVNwd3cnLCysXPsw38hatVKzGFNSIDcXrKwun7irVq1agBJvpQ2lmEwmxo8fz4svvoifn5/lWO+99x6DBw8u0nfdunWW2cuXw8HBgaxi0f7+/v74+/szadIkvLy8WLhwIT169CAqKorNmzdjMpksxy9st5WVleW5edl8HsVtKc0283UrDVtbW8s2hY9T+Bhz586lYcOG7N+/n/z8/DJv/MWPWZ7rVBZXes9EhPbt2/PXX38VWZ+SUr5sPlf7/l6Jffv20bFjxzLtLM2e6jifrKwsy58VjeZ6UZ6YrgzDMN40DGOdYRi/m1uVW6bR3GS4ubkxf/583nrrLRwcHPDy8rLUABQR9u/fD0D//v356KOPACWKUlJS6N27N6tXr0Ykg7p109m9exXNm/eiZ8+e/Pjjj2RlZZGWlsb//ve/Ctk0c+ZMAgICGD9+vGXd4MGD+eijjyzxVuHh4aSnp9O7d2+WLl2KyWQiLi6OjRs3lrrPtm3bcuLECUDFN23atMnyWlhYGC1atLAsT548mQkTJjB16tQK2Q2qBp/5Rr1kyRJ69lSFM1xcXEhNTQWgS5cubN68mcTEREwmE0uWLKFPnz7lPkZycjIeHh5YWVmxaNEiTCZTiWMUZ9CgQbz//vuW5QsXLljOdefOnRU+z+L4+PiQkJBgOffc3FwOHz6Mq6srTZs2ZfXq1YDynGZkZJSwtTLv76xZs1i1atUVbVu5ciXr169nwoQJZdoJRa9fdZyPuV/79u3Ld9E1mmtEeUTXYuAo4AW8BEQBu6rQJo3mpsWcOmHp0qUsXryYL774gsDAQNq3b88PP/wAwLvvvsvGjRvx9/cnJCSEw4cPExwczJQpU+jcuTOPPdaFvn2nYWfXgY4dOzFy5EgCAwMZM2YMHTt2xM3Nrdz2vPXWW6xfv94STL9mzRqmTZtGu3btCA4Oxs/PjwceeIC8vDxGjx6Nt7c3/v7+zJgxo0zxMmzYMIvQEhHeeOMNfHx8CAoKYvbs2SxcuNDSd+LEiVy4cIEJEyZU+Fq2bduWr776ioCAAJKSkpgxYwYA06dPZ+jQoYSGhuLh4cF//vMfQkNDLcHYt99+e7mP8dBDD/HVV1/RtWtXwsPDcXJSmXQCAgKwsbEhMDCQuXPnFtnm+eef58KFC/j5+REYGGi52R84cKDU4bWKYmdnx4oVK3juuecIDAwkKCjIEuC/aNEi5s+fT0BAAN27d+fs2bMlbK3M+3vw4MEyC6rPnTvXkjLim2++4ffff6d+/fqXtXPKlCk8+OCDBAUFYTKZrvv5nDt3DgcHh2vyfmg0FaE8Ba/3iEiIYRgHRCTg0rrNIlL+v4tXiS54raksN2PRWhE1SpqWBn37gqtrGs7OzmRkZNC7d28+/fRTgoODq9XGnj17snbtWtzd3S/bb8WKFfzwww8sWrSoQvuPiopi+PDhHDp06CqsvH6kpKRw3333WTybNxqDBw/ml19+qW4zrhlz587F1dWV++67r8w+N+Nvh+b6UVbB6yuWAQJyLz3GGYYxDIgFml5L4zQaTfkxDJWhPiwMTpyAjz+ezpEjR8jKyuKee+6pdsEF8PbbbxMdHX1Z0fXoo4/y008/sW7duutnWDXh6up6wwou4KYSXADu7u5MmjSpus3Q3IKUx9M1HPgDaIbKz+UKvCQia6rePIX2dGkqy836bzUrC1avVl6v229XyVM1Gs2142b97dBcHyrt6RKRtZeeJgOh19owjUZTceztoWlTiI5WGeoLTfzTaDQaTQ3lcgWv3wPKdIOJyNUXb9NoNJWmdWsluiIioH17Neyo0Wg0mprL5TxdejxPo6nBNGwITk6Qng7nzkEZk8s0Go1GU0O4XHLUr66nIRqNpmIYhkqWeuCA8nZp0aXRaDQ1myvm6TIMY2PhpKg6OapGU37Onz9vyYHVqFEjmjRpQlBQEO7u7rRr1+6q99+ypRJfp0/DpSpCrF69miNHjlz1vq/EnDlzLMW1izNv3jxLKSOAvLw86tWrx6xZsyp9vIsXL/Lhhx+Wq6+zs3O595ufn89jjz2Gn58f/v7+dOrUicjIyMqaeUWioqIsBaGrkuKfgxdffJENGzaU2f/gwYNMmTKlyu3SaG5lypMc9WngmUvtBSCMcg49GoYxxDCMY4ZhnDAMY2YZffoahhFmGMZhwzA2l9NujeaGoG7duoSFhREWFsaDDz7Ik08+aVm2srry16+0MjCFcXQEDw/IzwdzacXrJbrKIi8vjy+//JJ//OMflnXr16/Hx8eH77777rKleS5HRURXRVi2bBmxsbEcOHCAgwcPsmrVqivmF7saqkt0vfzyywwYMKDM/v7+/pw5c4bo6Ogqt02juVW54q++iOwp1P4UkaeALlfazjAMa+ADYCjQDphgGEa7Yn3cgQ+BkSLSHhhbfD8azc2KyWTi/vvvp3379gwaNIjMzEwA+vbtyz//+U/69OnDu+++y549e+jTpw8hISEMHjyYuLg4AD777DM6derEQw8FMm/eHRw+nMGff25jzZo1PPPMMwQFBREREUFERARDhgwhJCSEXr16cfToUUBlBX/sscfo3r07LVu2tBQMBnjzzTfp1KkTAQEBzJ4927L+3//+Nz4+PgwYMIBjx46Vel6///47wcHB2NgURC8sWbKExx9/nObNm7N9+3bL+p9//png4GACAwPp378/UNKD5ufnR1RUFDNnziQiIoKgoCCeeeaZy9ppZtKkSZZM/6Ay4K9ZUzTbTVxcnKXUD0DTpk2pXbs2X3zxBU8++aSl32effcZTTz1FVFQUvr6+TJs2DT8/PyZOnMiGDRvo0aMH3t7ellI/c+bMYdKkSfTr1w9vb29LQe+ZM2fyxx9/EBQUxNy5c8nKymLq1Kn4+/vToUMHSwb7hQsXMmrUKEaMGIGXlxfvv/8+77zzDh06dKBr164kJSUV+RwEBgZyxx13kJGRwbZtJT8HU6ZMsbzHu3btonv37gQGBtK5c2dLWZ0RI0YUKdat0WiuMSJy2QbUKdTqAYOBY+XYrhvwS6HlWcCsYn0eAl690r5CQkJEo6kMMTExRVcMH16x9vjjpW9fCWbPni1vvvmmiIhERkaKtbW17Nu3T0RExo4dK4sWLRIRkT59+siMGTNERCQnJ0e6desm8fHxIiKydOlSmTp1qoiIJCYmioiIySRyxx3/ksmT50tCgsg999wjy5cvtxy3X79+Eh4eLiIi27dvl9DQUBFR/e68804xmUxy+PBhadWqlYiI/PLLL3L//fdLfn6+mEwmGTZsmGzevFl2794tfn5+kp6eLsnJydKqVSvL+RTmxRdflPnz51uWMzIyxMPDQ9LT0+WTTz6RRx99VERE4uPjpWnTpnLy5EkRETl//nyJ6yQi0r59e4mMjJTIyEhp3769ZX1ZdoqIODk5iYjIpk2b5PbbbxcRkYsXL4qnp6fk5uYWsff06dPSokULCQwMlKeeekr27t0rIiJpaWnSsmVLycnJERGRbt26yYEDByzv3YEDB8RkMklwcLBMnTpV8vPzZfXq1ZbjzZ49WwICAiQjI0MSEhKkadOmEhMTIxs3bpRhw4ZZjv/WW2/JlClTRETk77//lmbNmklmZqYsWLBAWrVqJSkpKRIfHy+urq7y0UcfiYjIE088IXPnzi3yORAR+de//mW59sU/B+bl7Oxs8fLykp07d4qISHJysuWabN26VYZX8vN9s1Hit0OjqQDAbilFz5QnI/0eVOoIA8gDIoGyaycU0AQ4XWj5DCU9ZG0AW8MwNgEuwLsi8jUazS2Al5cXQUFBAISEhBBlHh8Exo0bB8CxY8c4dOgQAwcOBJR3zFwv7tChQzz//PNcvHiRpKQ0fH0HExFR9BhpaWls27aNsWMLnMjZ5uAvYNSoUVhZWdGuXTvOnTsHqKHA9evX06FDB8s+jh8/TmpqKqNHj8bxUibWkSNHlnpecXFxtG3b1rK8du1aQkNDcXR05I477uCVV15h7ty5bN++nd69e+Pl5QVAnTp1KnT9yrKzd+/elj59+vTh4YcfJj4+nu+//5477rijiAcOlGfr2LFj/P777/z+++/079+f5cuX079/f/r168fatWtp27Ytubm5+Pv7ExUVhZeXF/7+/gC0b9+e/v37YxiG5XUzt99+Ow4ODjg4OBAaGsrOnTtLDF1u3bqVRx99FABfX19atGhBeHg4AKGhobi4uODi4oKbmxsjRowA1FDggQMHgKKfg7S0NAYPHnzZ63bs2DE8PDzo1KkToLLlm2nQoAGxsbHluv4ajabilCc5qlcl911a1qDiwRw2QAjQH3AA/jIMY7uIhFfymBrN5fnxx+rdvhC1atWyPLe2trYMLwKWwsoiQvv27fnrr79KbD9lyhRWr15NYGAgH320kCVLNnHqlIrvMpOfn4+7uzthYWFXtEEuxVqJCLNmzeKBBx4o0nfevHkY5UgG5uDgQFZWlmV5yZIl/Pnnn3h6egJqcsHGjRsRkVL3Z2NjQ36hkyi8r8KUZWdxJk2axOLFi1m6dClffvllqX1q1arF0KFDGTp0KA0bNmT16tX079+fadOm8dprr+Hr68vUqVOL9DdjZWVlWbaysioSh1f8/Eo7X/N1L8uuKx2n8Odg4cKFlmLjZVHWdQd1rR0cHC67vUZzoyEipGSnEJsaS2xqLB08OlDHoWJ/8q4V5Zm9aG8YxlOGYXxvGMZKwzCeNAzDvhz7PoMqHWSmKapuY/E+P4tIuogkAluAwPIar9Hc7Pj4+JCQkGARXbm5uRw+fBiA1NRUPDw8yM3N5fvvF2NvD+o+7GKJ0XF1dcXLy8tS909E2L9//2WPOXjwYL788kvS0tIAiImJIT4+nt69e7Nq1SoyMzNJTU3lxzIEaNu2bTlx4gSgCj1v3bqV6OhooqKiiIqK4oMPPmDJkiV069aNzZs3W2YKmmOUPD092bt3LwB79+61vO7iUnBel7OzOFOmTGHevHmA8koVZ+/evRbvTn5+PgcOHKBFixYAdOnShdOnT/Ptt98yYcKEy1630vjhhx/Iysri/PnzbNq0iU6dOpU4j969e7N48WIAwsPDiY6OxsfHp9zHKPw5MO8HSl4vM76+vsTGxrJr1y7L9mYBFx4ejp8ub6C5QUnPSef4+eNsjtrMtwe/5c0/3+SpX55iwsoJ3L3qbp7d8CzzdszjaOLRarOxPMOLXwOpqLqLABOARVw56H0X4G0YhhcQA4wH/lGszw/A+4Zh2AB2qOHHueUzXaO5+bGzs2PFihU89thjJCcnk5eXxxNPPEH79u155ZVX6NKlCy1atMDf35/YWHWD7dBhPG++eT/z589nxYoVLF68mBkzZvDqq6+Sm5vL+PHjCQws+7/NoEGD+Pvvv+nWrRug0i988803BAcHM27cOIKCgmjRogW9evUqdfuhQ4daigl///339OvXr4jH5vbbb+fZZ5/lww8/5NNPP2XMmDHk5+fToEEDfv31V+644w6+/vprgoKC6NSpE23atAHUTNAePXrg5+fH0KFDefPNN0u1s0GDBkXsadiwIW3btmXUqFGl2hsfH8/9999vGXbt3LkzjzzyiOX1u+66i7CwMGrXrl3mNSuLzp07M2zYMKKjo3nhhRdo3Lgx9evXx8bGhsDAQKZMmcJDDz3Egw8+iL+/PzY2NixcuLDI9boSxT8HZqE1fvx47r+/4HNgxs7OjmXLlvHoo4+SmZmJg4MDGzZswNnZmY0bNzJs2LAKn6dGc73Iy8/jbNpZYlJiOJNyhpjUGGJSYohJjSE5O7nM7RxsHGjs0pjGLo1xq+V2HS0uSnkKXu8XkcArrStj29uAeYA18KWI/NswjAcBROTjS32eAaYC+cDnIjKv+H50wWtNZbmVitbm5cGqVZCbC8OGgVv1/a4wevRo3njjDby9vavPiEtkZGTg7+/P3r17cavERRk+fDhPPvmkZXZleZkzZw7Ozs48/fTTFT5mdZCdnU2fPn3YunVribi3W5Fb6bejJpKancqZlDOcSTnD6ZTTFpF1Nv0s+ZJf6jZ21nY0dlbCqolrE4vIMgut8oRHXCsqXfAa2GcYRlcR2X5pR12AP8tzUBFZB6wrtu7jYstvAm+WZ38ajaZsbGygRQs4cUJlqA8Orj5bXn/9deLi4qpddG3YsIF7772Xp556qsKC6+LFi3Tu3LlIOoubmejoaF5//XUtuDTXDREhMSOR0ymnOZ182iKwzqScKdNrZWDQ0KkhTV2b0tilMU1dm9LEpQlNXJtQ16HudRVWlaE8nq6/AR/AnDGvOfA3yjMlIhJQpRaiPV2aynOr/VtNSoKff4ZatWDUKLC2rm6LNJobk1vtt6MqERHOpZ8jOjma6ORoTiefVkIr5TRZeaVPlLG3saepS1OauhY0s/fKztruOp9BxbkaT9eQKrBHo9FUAXXqqJaUpEoDXZowqNFoNFWOiJCQkcCpi6eITo7mVLJ6PJ1ymhxTTqnbuNVyo5lrM5q5NbM8NnVtekN4rSpDeVJGnDIMIxAwR83+ISKXn/6k0WiqjVatlOiKiNCiS6PRVA3JWcmcSj5F1MUoTl08xalk1cryXNVxqENz1+Y0c2tGc7fmFoHlWsu11P43K1cUXYZhPA7cD3x/adU3hmF8KiLvXWYzjUZTTXh6wr59cO4cpKSA6631m6bRaK4hOaYcopOjiboYVaSVFXPlbu9Oc9fmtHBvQXO35rRwa0Ezt2Y425W/CP3NTHmGF+8DuohIOoBhGP8F/qIghYRGo6lB2NqqgPqICNUuJWzXaDSaMhERzmeeJ/JCJFEXo4i8GEnkhUhiUmOQEnnNVQqGFm4t8HT3pLlbczzdPWnh3uKW81xVlPKILgMwFVo2UXq2eY1GUwrOzs6WBJ6gChnv3r2b999/v8L72rRpE2+99RZr1669bL9WrZTgioyEJ5/sy1tvvUXHjiViOjUazS1IXn4eZ1LOEHkhkpMXTnLywkkiL0aSmlMyma6VYUVTl6Z4unsWafUd69+UMVdVTXlE1wJgh2EYq1Bi63bgiyq1SqPRXBV164K7O1y8CIVKLWo0mluMrLwsi7iKuBBB5IVITiWfIjc/t0RfFzsXvNy98Krthae7J17uXjRza3ZDzBa8UShPIP07lwpS97y0aqqI7KtSqzSaW4SEhAQefPBBoqNVRpZ58+bRo0cPdu7cyRNPPGHJGL5gwYISpWHS09N59NFHOXjwIHl5ecyZM4fbb7+dzMxMpk6dyr59R6hduy3JyZmlHVqj0dxkpOekE3EhgoikCCIuRHDywknOpJwpdXjQw9kDL3cvWtZuScvaLfGq7XXTzhisSVQkC56Bys2l3xHNDcmIJSOqZL8/Trh8EezMzEyCgoIsy0lJSYwcORKAxx9/nCeffJKePXsSHR3N4MGD+fvvv/H19WXLli3Y2NiwYcMG/vnPf7Jy5coi+/33v/9Nv379+PLLLy2JPAcMGMAnn3yCo6MjBw8eYN68A8yaFUxGxjU/bY1GU42YBdaJpBOWFpcWV6KftWFNM9dmtKrTila1W+FV2wsvdy+c7JyqwWpNeWYvvoiqs7gSJbgWGIaxXERerWrjNJqbAQcHB8LCwizL5pguUBnTjxw5YnktJSWF1NRUkpOTueeeezh+/DiGYZCbW3IoYP369axZs4a33noLgKysLKKjo9myZQuPPfYYdnbQq1cAzZsHcOZM1Z6jRqOpOrLysohIUgLreNJxjp8/TmxabIl+tla2eLp70rpOa1rWbkmr2q1o4d5CDw/WIMrj6ZoAdBCRLADDMF4H9gJadGluKK7kkaoO8vPz+euvv3BwcCiy/tFHHyU0NJRVq1YRFRVF3759S2wrIqxcubLEsCNgGSJo3Votx8RAfj5YWV3zU9BoNNeQvPw8oi5Gcfz8ccLPh3M86TjRydElhgjNAsu7jjet67SmVZ1WNHdrjo2VLuNUkynPuxMF2APmjGe1gIiqMkijuZUYNGgQ77//Ps888wwAYWFhBAUFkZycTJMmTQDlGSuNwYMH89577/Hee+9hGAb79u2jQ4cO9O7dm8WLFxMaGsrZs4eIjj5AdrYSXs2aXa8z02g0V0JEOJt2lvDz4YSfD+fY+WOcvHCyRJC7tWFNC7cWtKnbhtZ1WuNd11sLrBuU8rxj2cBhwzB+BQQYCGw1DGM+gIg8VoX2aTQ3NfPnz+fhhx8mICCAvLw8evfuzccff8yzzz7LPffcwzvvvEO/fv1K3faFF17giSeeICAgABHB09OTtWvXMmPGDKZOnUpAQABBQUEEBHQG4PhxLbo0muokIzdDiavEYxw7r1pKdkqJfk1cmtCmbhu863jTpm4bvGp76SHCm4TyFLy+53Kvi8hX19SiUtAFrzWVRRethZwcWL0a8vJg2DBwc6tuizSams/V/naICDGpMfyd8DdHE49yNPEop1NOlxgmdKvlRpu6bfCp66OEVl1vnb39JqDSBa+vh6jSaDRVh52dKg104oTydukcqRrNtScrL4vw8+EcTTzKkYQjHDt/jLSctCJ9bKxsaOneEp96PvjW88Wnrg8NnBroNA23EHpAWKO5BWjTRomukychMFCVCtJoNJXnfMZ5/k78myMJR/g74W9OXjxJvuQX6VPHoQ6+dX3xradaqzqt9DDhLY4WXRrNLYC7OzRoAPHxqjRQmzbVbZFGc+MgIpxJOcPhhMMcSTjC4fjDxGfEF+ljZVjRunZr2tZvS9t6bfGt50s9x3rai6UpQpmiyzCMRSIyyTCMx0Xk3etplEajufa0aaNEV3g4eHuDvhdoNKWTL/mkZKWw8+hODsUf4kjCkRJ1CR1tHfGt60vb+m1pV78dbeq2wd7Gvpos1twoXM7TFWIYRgvgXsMwvqZYJnoRSapSyzQazTWlaVNwdISUFDh3Dho1qm6LNJqagSnfRFJmEvHp8cSnx5OQkUD2xWy+i/7O0qeOQx3a129P+/rtaVe/HS3cW2Bl6MR3mopxOdH1MfAz0BLYQ1HRJZfWazSaGwQrK5Us9cAB5e3Soktzq2LKN3E+8zzx6fGcSztHYmYipnxTkT6ONo4MbDlQCa0G7Wno1FAPFWqumjJFl4jMB+YbhvGRiMy4jjZpNJoqonVrOHRIJUpNTwcnXX5NcwuQL/mczzjPufRzZYost1puNHBqQEPnhtR3rM+FhAu3fLoZzbXnir5REZlhGEagYRiPXGoB18MwjeZmwdramqCgIEt7/fXXL9v/tddeK7LcvXv3Sh03LCyMdevWFVlnbw/Nm4MI/PjjPqZNmwaorPf169enQ4cOeHt7M3jwYLZt21ap45aGp6cniYmJ5OTk0Lt3b/Ly8q7ZvjWa4ogI5zPOcyThCBsjN7LiyAp+PfkrB84d4Fz6OUz5Jtzt3fGp60Ov5r24o+0dDGszjE5NOtHcrTkOtg5XPohGUwnKU/D6MWA68P2lVYsNw/hURN6rUss0mpuE4gWvr8Rrr73GP//5T8tyZcVPWFgYu3fv5rbbbiuyvk0biIqCd999jQ8+eN6yfty4cbz//vsAbNy4kTFjxrBx40batm1bqeOXhp2dHf3792fZsmVMnDjxmu1Xc2sjIqRkp3A27Szn0s8Rnx5PjimnSB+3Wm40dG5IQ6eGNHBqQC2bWtVkreZWpjwpI6YBXUQkHcAwjP8CfwFadGluKEaMGFEl+/3xx4oX0k5OTqZz586sWbMGHx8fJkyYQL9+/YiIiCAzM5OgoCDat2/P4sWLcXZ2Ji0tjU2bNjFnzhzq1avHoUOHCAkJ4ZtvvsEwDHbt2sXjjz9Oeno6tWrV4tdff+XFF18kMzOTrVu3MmvWLMaNGwdA3brg4JDKqVMHcHcPLNW+0NBQpk+fzqeffsrcuXOJiIjg4YcfJiEhAUdHRz777DN8fX358ccfefXVV8nJyaFu3bosXryYhg0bcv78eSZMmEBCQgKdO3emcOWLUaNGMWvWLC26NFdFZm4mZ9POqpZ+lszczCKvu9i5FBFZ2nulqQmUR3QZQOHBbxPFZjJqNJqyMYsoM2YB9P777zNlyhQef/xxLly4wP333w/A+++/X6ZnbN++fRw+fJjGjRvTo0cP/vzzTzp37sy4ceNYtmwZnTp1IiUlBUdHR15++WV2795t8V6ZMQzIyNhN06Z+HD0KXl6l2x0cHMwnn3wCwPTp0/n444/x9vZmx44dPPTQQ/z+++/07NmT7du3YxgGn3/+OW+88QZvv/02L730Ej179uTFF1/kf//7H59++qllv35+fuzatavyF1RzS5KXn0d8ejxxqXGcTTtLcnZykdftbexp5NyIhk4NaeTcCCc7HbCoqXmUR3QtAHYYhrHq0vIo4Isqs0ijqSIq45G6FpQ1vDhw4ECWL1/Oww8/zP79+8u1r86dO9O0aVMAgoKCiIqKws3NDQ8PDzp16gSAq6vrFfcjEkft2vW5eBFiY8vqo7xTaWlpbNu2jbFjx1pey87OBuDMmTOMGzeOuLg4cnJy8Lqk4LZs2cL336uIhGHDhlG7dm3LttbW1tjZ2ZGamoqLi0u5zltz6yEiXMi6wNm0s8SlxpGQkVAk47uNlQ0NnBrQyLkRjZwb4VbLTc8u1NR4ylN78R3DMDYBPVEerqkisq+qDdNobnby8/P5+++/cXBwICkpySKmLketWgVxKNbW1uTl5SEiFb7ZODk54OiYBcCRI6X32bdvH23btiU/Px93d/dSheOjjz7KU089xciRIy3Dn2YuZ1N2djb29jqRpKYoWXlZFpEVlxZHVl6W5TUDg7oOdfFw8aCRcyPqOdbTebI0NxzlKgMkInuBvVVsi0ZzSzF37lzatm3La6+9xr333stff/2Fra0ttra25ObmYlvOAom+vr7Exsaya9cuOnXqRGpqKg4ODri4uJCamlrqNm3btiU+/m3s7CAhAYp327x5M59++ikbN27E1dUVLy8vli9fztixYxERDhw4QGBgIMnJyTRp0gSAr776yrJ97969Wbx4Mc8//zw//fQTFy5csLx2/vx56tevX+7z09y8iAjnM88TmxpLXGocSZlJCAXxf462jng4e+Dh4kFDp4Y6+F1zw6NrL2o0VUzxmK4hQ4Zw77338vnnn7Nz505cXFzo3bs3r776Ki+99BLTp08nICCA4OBgFi9efMX929nZsWzZMh599FEyMzNxcHBgw4YNhIaG8vrrrxMUFFQkkB6UUEtJSaZJk1QiI12IiYFly5axdetWMjIy8PLyYuXKlZaZi4sXL2bGjBm8+uqr5ObmMn78eAIDA5kzZw5jx46lSZMmdO3alcjISABmz57NhAkTCA4Opk+fPjRv3txy7I0bN5aYUam5dcjKyyIuNY7Y1FjOpp0l25Rtec3asKaBUwM8XDzwcPbAtZarHjLU3FQYhWcV1VQ6duwou3fvrm4zNDcgsbGxOsFhGcydOxd7exfq1JmGyQS33aYKY1c1Y8aM4T//+Q8+Pj5VfzBNtSMiXMy6SExqDLGpsZzPOF/Em+Vs50xjl8Y0dmlMA6cG2FjVDF+A/u3QXA2GYewRkY7F19eMT7dGo7nuzJgxg+XLl9O6NRw7pmK7KpmHtdzk5OQwatQoLbhucvLy8ziXdo6Y1BhiUmOKpHOwMqxo6NSQJi5N8HDxwMXORXuzNLcM5UmOOgb4L9AAFUhvACIiV5wiZRjGEOBdwBr4XERKTcVtGEYnYDswTkRWlN98jUZTWezt7Zk0aRLp6XD8OJw6BQEB4Oxcdce0s7Nj8uTJVXcATbWRmZupRFZKDGfTzxYps+Ng60ATlyY0dmlMI+dGNcabpdFcb8rzyX8DGCEif1dkx4ZhWAMfAAOBM8AuwzDWiMiRUvr9F/ilIvvXaMpLZWb33Uo4OYGnJ5w8CX//DZcyT2g0l0VESM5OJiYlhjMpZzifeb7I63Ud6tLEtQlNXJrgbu9+Q30Hb4SwG82NSXlE17mKCq5LdAZOiMhJAMMwlgK3A8UnqD8KrAT0T73mmmNra0taWhrOzs431I/+9aZtWyW6Tp4Ef39Vo1GjKY6IkJCRwJmUM5xJOUNaTprlNWsraxo5NbIIrRs1A7yIkJaWpmfXaqqE8oiu3YZhLANWA5ZpJiLyfZlbKJoApwstnwG6FO5gGEYTYDTQDy26NFVAnTp1SEpKKjN1gqaAOnVU+ohdu6BVq+q2RlNTMOWbuJB5gYSMBBIzEsnJL6hpaGdlR13HutR3rE8dhzpYW1lDFlzIusAFLlxmrzUbW1tb6tSpU91maG5CyiO6XIEMYFChdUJBAeyyKM2tUNxnOw94TkRM2guhqQqsra2pX79+dZtxQ5CaCh98oLxcn312fWYyamomWXlZ7I7dzV+n/2JX7C4y8woC4Rs5NaJbs250bdoV33q+OkGpRlMBypORfmol930GaFZouSlQvOBIR2DpJcFVD7jNMIw8EVldyWNqNJpK4uMDXbrAjh2wdCk8+GB1W6S5nqTnpLMzZifbTm9j79m95JgKPFot3VtahFYLtxZ6qF6jqSTlmb3YFHgP6IHyVG0FHheRM1fYdBfgbRiGFxADjAf+UbiDiFhK7RqGsRBYqwWXRlN9TJ4MO3fCzz/D7beDh0d1W6SpStJz0tkRs4Ot0VvZd3Yfefl5ltd86/rSvVl3ujXrRiPnRtVopUZz81DegtffAuZqt3dfWjfwchuJSJ5hGI+gZiVaA1+KyGHDMB689PrHlbZao9FUCc2bw4AB8Ouv8PXX8Nxz1W2R5lpTltAyMPCr70eP5j3o1rQbdR3rVrOlGs3NxxUz0huGESYiQVdaV5XojPQazfUjMREeeABycuCdd8Dbu7ot0lwtWXlZ7IzZyZZTW9gTt6eI0PJv4G8RWrUdalezpRrNzcHVZKRPNAzjbmDJpeUJwPnL9NdoNDcw9erBiBGwciUsXAivvgo6hOfGI9eUy564PWyO2szO2J2WGC2zR6tXi150b9Ydd3v36jVUo7mFKI/ouhd4H5iLiunadmmdRqO5SbnzThXXdeAA7NsHwcHVbZGmPORLPgfOHWBz1Gb+OvMX6bnpltfa1mtLr+a96NG8B3UcdDoEjaY6KM/sxWhg5HWwRaPR1BCcneGuu2DBAuXt6tDhJvV2icCFC5CUBFlZkJmpHrOyoFevgiyxx46pPnZ24OoKtWurnBo21V/ORkSIuBDBpqhNbDm1hQtZBfmxWrq3pI9nH3o170V9J506RaOpbsr8xTAM41kRecMwjPcomV8LEXmsSi3TaDTVyvDh8OOPEBkJmzdD377VbdFVkJenTsTBAZo2Vev27lVjp7m5pW/j7w+NLs3aW70atm4t2cfJSfX717/UsohyDXp4QMOGYFV1OazOpZ1jU9QmNkZtJCY1xrLew9mDPi360MezD01dm1bZ8TUaTcW53N80c+kfHcGu0dyC2NnBxInw7rvw1VfQtesNVB4oJ0eJn0OHlJcqIkKtu+02mDFD9XF3V4LLzQ3q1gVHR6hVSwmzWrXUBTDTpo3qm50NKSlw8aJq6elFhdWFCzB7tnpub6+KWrZsqVL8t2wJLVrAVZSXSc9JZ9vpbfwe+TuHEg5Z1rvVcqN3i970adGHNnXb6DxaGk0NpUzRJSI/XnqaISLLC79mGMbYUjbRaDQ3Gf36wdq1SrN88w1Mm1bdFpWDL76An35SAqkwTZqoYUEzLVrA8uXlU5KjR6tWGBElwArPAM/KUp6vmBg1HHn0qGpmXnkFgoLU87NnlcBzc7vsofMln7CzYfx28je2x2y3BMTbWdvRtUlX+nn1I7BRIDZW1T/UqdFoLk95vqWzgOXlWKfRaG4yrKzg0UfhqadgzRro06eGpZDIz4c9e6BdOzXUB8ro7Gxo3Ro6dgRfX+WpcnEpuq21tWqVxTBKCqbGjeG119TzlJSCKuIREWp4s02bgr5ffgl//QXNmkFAAAQGgp+fxc6YlBh+i/yN3yN/53xmwYRx/wb+9PPqR/dm3XG0day8/RqN5rpTZp4uwzCGArcBdwHLCr3kCrQTkc5Vb55C5+nSaKqXL7+EVavUaNncuTUgfjw1FTZsgHXrlMfo/vth5KX5PufPKzFW02tu/ve/Kv1/TkG5nUyrfP5oU4sNbWz427mg3qGHswf9vfoT6hVKA6cG1WGtRqOpAJXJ0xWLiucaCewptD4VePLamqfRaGoyEyfCtm0QFaViyu+8s5oMiY9XQ4K//14gVho0KPBygYrPuhF47jnIy0PCwzm66yfWH/+Jrel/k5WXB6nNsXf3pFfzXvR3aEe7OBOGR0dwukHOTaPRlEp5MtK7AukiYrq0bA3UEpGM62AfoD1dGk1NYN8+ePFFFV/+/vvVUJdx9WoV0Z93qT5ghw5qimXHjlU6S7CqSMlO4beTv7E+Yj1nUi+VsjXl095owMB2I+jhfxv2NvaweLGqQA5qyLRLF+jcGby8btI8HhrNjc/VZKRfDwwA0i4tO1xa1/3amafRaGo6HTpAaChs3AgffKBiwq/rPb9BAyW4+vSB8eMLUj/cQIgIB+MP8suJX9h2ZpulHI+7vTsDvAYwoOUAmrg2KbpRq1ZKZO3fDydOqLZ4sRo+7d9fuSE1Gs0NQXlEl72ImAUXIpJmGIaO3tRobkHuuw9271b3/99/V/f8KkEENm2CM2dg0iS1rls3+PBDFXh+g5GancqGkxv4+cTPxKbFAqocT6fGnRjUahAdG3cse/Zh166q5eSoC79jh4oFS0hQhTLNZGaqFBlBQVeVlkKj0VQd5RFd6YZhBIvIXgDDMEKAzCtso9FobkLc3FTM+jvvwOefq+wIDa51XPe5c8qVtm+fGjYcPFgdxDBuKMElIhw7f4x1x9exNXorufkqCWtdh7oMajWIgS0HVixLvJ0ddOqkmggcP65STpjZtQvefFOt69QJevaEkJCi+cY0Gk21Uh7R9QSw3DCM2EvLHsC4KrNIo9HUaPr2hT/+UPf4//5XtWsymzE/X6XAX7RIpXxwdlaJwWr6LMRiZOVlsSlqE+uOryPyYiSgvFohHiEMbT2Ujo07Ym11FakqQAnQwuknQL0JLVuqFBVbtqhmb6+GJnv2VN4yHQOm0VQrVwykBzAMwxbwAQzgqIiUUTejatCB9BpNzSI1FR5/XI1wjRgB06df5Q7PnFHus+PH1XLv3sql5u5+taZeN+JS4/jf8f+x4eQGS6Fp11quDGo5iCGth9DQueF1MiQO/vxTtRMn1Dpvb3V9zeTl1YC8HxrNzcvVBNKDElztAHugg2EYiMjX19JAjUZz4+DiAjNnqqwHP/6ocpP27HkVO1y4UAmuevXgoYfU8NgNgIiwN24va8PXsiduD3KpTG3bem25zfs2ejTrga31dY6v8vBQOT3uvFPlMNu2rWgajehoePZZ5fnq1UslZdUCTKO5LpQnZcRsoC9KdK0DhgJbReS6ZerRni6Npmaydi188okaxZo3T1XaqRQXLsCyZTB5sqqBWMPJysvit5O/8WP4j5Zi07ZWtvRp0YfhbYbTqk6rarbwMvz4I3z6acGyiwv06KEEmJ/fDZl+Q6OpaZTl6SqP6DoIBAL7RCTQMIyGwOciMqJqTC2JFl0aTc1EBN54A7ZuVaUM335b1Yq+ItHR6uY/Y8YNdZOPT49nbfha1kestwwh1nOsxzDvYQxuNRiXWi5X2EMNISZGBeZt2QKnTxesb9pUzRDVsV8azVVxNcOLmSKSbxhG3qVEqfFAy2tuoUajueEwDHjsMVVW8NQpdb9+4okr3LM3b4b581UKhKZN4fbbr5e5leZY4jFWH13Nn6f/tAwhtqvXjpE+I+natOvVB8Zfb5o0UbnOxo1Tb5xZgLVpU/DmZWcr72OvXqr+kxZiGs1VUx7RtdswDHfgM1Q5oDRgZ1UapdFobhwcHFR81//9n8rd5eGh7uclEIFvvy3Irt6/v0oHUUPJl3x2nNnBqqOr+DvxbwCsDWt6t+jNiDYj8K5bkyp/VxLDUILK0xPuvlsJLTO7dqmSS8uXK3Hcu7dqlR5D1mg0lx1eNAzDAJqKyOlLy56Aq4gcuD7mKfTwokZT89m2DV5/XWmrGTPgttsKvZidrYK+tm5VN/rp01UJnxpIjimHDSc3sProauLS4gBwsnViaOuhDG8znLqOt0j9w6go+Okn9Z6lpBSsb9lSia/Ro2+ooWGN5npyNTFde0QkpMosKwdadGk0Nwbr18N77yld9X//pyr2kJoKs2er2YmOjmrmXEi1/qSUSmp2KuuOr+PH8B9Jzk4GoKFTQ273uZ2BrQaqOoi3Inl5cOCAGn786y/IyFDC6913C/okJ6vMuRqNBri6mK7thmF0EpFdVWCXRqO5iRg0SGmshQth7lxwcoKOQQ7qScOGSnzVsKzyiRmJrD66ml8ifiErLwsA7zrejGk7hu7NumNl3OLeHBsbCA5W7aGHYO/eoh6uM2fUej8/Ff/VvbsWYBpNGZTH03UElacrCkhHJUgVEQmocusuoT1dGs2NxcKFsHKFYFfL4JVXoF2LdOUxqUE349jUWFYcWcHGqI2WwtPBjYK5o90d+Dfwx9CB4+VjyxalsPPUNcTKCgIClADr1k2lpNBobjEqPLxoGEZzEYk2DKNFaa+LyKlrbGOZaNGl0dxYyPYdbH/1V16XmTi42DB7NrRtW91WKaIuRrH88HL+iP4DQTAw6NW8F3e0u4OWtfXE7EqRng7bt6tZkGFhYDKp9S4u8PXXOvmq5pajMsOLq4FgETllGMZKEbmjyqzTaDQ3D7/9hjF/Pl3JZ4LHJhafG8C//gVPP61GnqqL4+ePs+zwMnbE7ADAxsqGfp79uKPdHTR2aVx9ht0MODmp2aj9+6vxZbMAq1OnQHDl5KiC3F26qGz4zs7Va7NGUw1cztO1T0Q6FH9eHWhPl0Zzg7B6NXzxhXo+bhym8RP59DODdetUcP20aTBy5PU16VjiMZYeWsruOPUbYmdtx5BWQxjddjT1HOtdX2NuNUQK8ntt2wb/+Y96bm2tyg/16KEEmKtr9dmo0VQBlRle3CsiwcWfVwdadGk0NRwR+OYb+O47tTxtmiXpqQisXAlffaVeGjUK7r236nNt/p3wN0sOLWHf2X0A2NvYM8x7GKN9R+NmX3Niy24ZUlMLCnEfOAD5+Wq9lRX4+8MLL5SznIFGU/OpzPBioGEYKajAeYdLz6EgkF7/NdFoNEpVLVgAq1apG+jjj0O/fpaXDUPVXq5bVyWiX70aEhNV5vqquMceSzzGtwe/Ze/ZvQA42Dgwos0Ibve9Hdda+mer2nBxgSFDVEtOhh07lPcrLEwtF/4w/Pqr8oQ1aFBt5mo0VUGZoktEbrC6FhqNplowmVT9PhsblYOrW7dSu4WGKuH173+rfJunTqnunp7XxowTSSf49uC37IpV2W0cbBy43ed2RvqMvHFqIt4quLmp/CKDBkFaGiQkFLwWE6PUOah8YN26qSHIFi10KSLNDc8VU0Zc1c4NYwjwLmCNKpL9erHXJwLPXVpMA2aIyP7i+9HDixpNDScnB06cgHbtrtj11CkV2hMTA7a2MHWqSk5f2ftp1MUovjnwjSVA3t7GnhFtRjDad7QWWzcip0/DkiWqDFFWVsH6Ro2U+LrrLp2GQlPjqXRG+qs4oDUQDgwEzgC7gAkicqRQn+7A3yJywTCMocAcEelSfF9adGk0NQwRWLtW1U60s6vw5llZKt7+55/VcseOarixImm84lLjWHxwMVtObUEQ7KztGO49nDFtx+iYrZuBnBw19Lh9O+zcqYYg7e1h8eKCz9yxY8oDZn+LVgvQ1FiqQ3R1Q4mowZeWZwGIyH/K6F8bOCQiJaqpatGl0dQg8vPV8M9vv6nZZzNnVnpX27apskFpaeDuDg88oHZ5Oa9XYkYiyw4tY/3J9eRLPjZWNgxtPZSx7cZS26F2pW3R1GDy8+HoUYiLU2kpQImyiRPV8HZgIHTuDJ06QT09I1VT/VxNGaDK0gQ4XWj5DFDCi1WI+4CfqtAejUZztRQWXLVqFatqXXG6d4c2beCdd+DgQfjvf9VEtunTS8Z6pWansuLICn4M/5Hc/FwMDAa2HMh4v/E0cNIB1zc1VlZq6Lrw8PXFi+pDcuwY7N6tGoCXlxJfQ4dqAaapcVSl6Crtv2qpbjXDMEJRoqtnFdqj0WiuBhHlljILrjlzVL29q6RePXj1VfjlF1i0SImvxx6DYcPgH/8AO4dsfgz/kRVHVpCemw5Az2Y9mRgwkaauTa/6+JoblAYNVLLVixdV/NeuXbBvH0RGqlZoBi1RUWoWh44F01QzVSm6zgCFK9s2BWKLdzIMIwD4HBgqIuer0B6NRlNZzIJrwwYVTzN79jURXGasrJRjomdP+PZb+N//4Me1Jpbu+g0CFuNYJwkrawhsGMiUoCm0rtP6mh1bc4Pj7g4DB6qWmwuHDsGRI9C4UJWBuXPh5EnlVjUX727dumAc2zAKinjrGZKaKqQqRdcuwNswDC8gBhgP/KNwB8MwmgPfA5NEJLwKbdFoNHl5cOaM+tcfGame29qqf/+FW8uWaoim8M1n3TqVO8ksuPz9q8REFxeYPl1oFLKbl9YsICb1NESC+8mWTA2ayiOdg3T1mBsZEcjIUJ8jW1u17vRp9Zls1qxgTDkqSn3esrJU7FbxlpurPs95eQXPx4xRCXk7dFB9xoxRw4zPPKMy3ptMKoHvN9+oY9jYqJkbDRsWLUlkGAUirHNnmDVLrb9wQeWgq1tXiTgzc+ao2pO2tiVbrVrqXAs3V1clEM0cOaKO17p1wTXJzVX2aQF401FloktE8gzDeAT4BZUy4ksROWwYxoOXXv8YeBGoC3xoqA9XXmmBZxqNppKkp8P69bBpE0RHq5tTeahTR00p7NgRgoJUPqVDh1Riy4CAKjP3RNIJFuxbwIH4AzTxhWaZDXEIn0zakV78GWGwd50adhwxQpmoqQEkJioBf/GimmGYmgopKQWPaWmqpacrwSWihEpIiNp+yxZYulSNJZtF17lzsGZNxezIyCi6nJenYhBtbeGVV5SN//iHsvHiRcjOhqQkNb5tFjdpaWo7FxclusxZ8837u3BBlTAqzPHj6jzLS716RUXXa68pm77+Gmpfmgjyn/+o4VJ7e9UcHEpvjo4FbfDgglmccXHK9vr1KzW7WFN1VGnpdxFZB6wrtu7jQs+nAdOq0gaN5pYkJkbdtH7/vSDXkWGAh4fyYnl6QvPm6oc5NbWgXbigxFVSkgqy+vln9aMdEqLq97RvXyXmJqQn8PX+r9l0ahMAznbOjG8/ntu8b8PGypaDB2H5cpVBYMUK+P575cQYNEiZVvw+qLkKRJQoSUyE8+fVUJz5xr1okcokP22aEuOghpwXLy7//h0di4p/T081rtysWdF106YpT1Fxb1Fxb5KNjWpOTgXbd+pUUCHBTNOmSuCZzzE2FvbuVbFf5m3ffBM2b1b78/VV35Vjx5QXqm5dVcuq+Iz/l19WAi43t2QrzUtXPL1FmzZKtDk4FKwzmdRjVpZqFy9e+bqaZ3UCfPih+rK8/LLy/IH64mzYoLx6Tk4Fzdm5YJ2zc4HH29m5aMFyzTVBX02N5mbi+HF1A9yzp2BdUJByDQUElC+fkYiKf/nPf9TQR5066ka7Y4e6QYweraYdFr6hVZKM3AxWHFnBD8d+IMeUg42VDSPajOCu9nfhbFcw5BMQoNqxY0pwmc3ZsUOZN2CAunc2KZFwRlOC/Hwlps6ehfh45VWKjy94npRUVBR98IES6KBeO3VK9TPTvLlK2eDmppqra8GN2/zcfFN3dCz5uenRQ7XCNGxoqd1ZKaysLv/5NAz1YSn+gWnVSnmJTpyAw4dVW7JE2T1iBNx9d8l9tWpVeTsBXnyx5LqXXlLfw+xs5cHLyoLMzIKWkaEe09MLlh0dC7avU0f9wSpcSDwhQf0Zqwj/+U9B7Ob338Nff6k/X+b36/RpNfOl+Pvt4qLEsh4eLUGVZqS/Vug8XRrNFcjOVmJr9Wr1Y21np+rujBihkkdWBBH4+GMVx2Vrq2JawsNVdHtqqurTsKGKmRk0qFL/hE35Jn49+SvfHPiG5OxkAHo37809QfeUK/3DxYtqEuX69cphYaZFC6UHu3fXVWNITFQ3xdatC2btff218gBdaZjZ1VUNg9Wtq0oGmL1QMTHqs9aoUdGb/M1Gaqoqyr1/v2qxsUpwjRunXo+IUMXd/f3Vv4FmzWr+hy0tTXmy09NVMw/5mod/Cy+npqrHOXMKBPe77ypP2aOPqu89KE/4Bx+Ufjw7u6JCzNVVtdBQ5UUEZc+FC+qzVlgg3gRc9+So1xItujSay3DwoJpZGBenfvhHjlQ3h8pMjy8uuF54oWB4IjtbKZ3Vq9WxQHkKpk5VAcflvOmEnQ3j872fcyr5FAC+dX2ZFjwNn3o+lTL38GEVc71jh7pnmPHwUGZ16KBGRW/KpOW5uUoInTmjYvbuvLNgKPD555VgmD1bxeaBEgqLFqnYoUaNlHhu0EC1hg1VDJCOAypJQoL6Pri7q+UVK9RQoxlXV+URat9ePRafiHIzkJiorkPDhgUBlQcPqiFbc3iCOZYvNVUNpZbGU08p4QUqBOKzz1QdsAceUOsiI9Xvmatrgee0sBe18HNHxxp7nbXo0mhuNtLTYeHCglo6LVqoBFdt2lRufyLwySfKo2Vrq27awcEl++Xnq2GGr78ucDP5+cG994K3d5m7j0mJ4Yt9X1gKUjdwbMDUDlPp0awHxjX44czLUxrjr79U5Zjk5ILXzCE6gYGqtWp1g+kKETWkd+qUmtlnbrGxRYO9589XN3xQ4urIESXAzfFXGRlq2O2mVKDXkcREFQ924IASHklJBa+5ualrb/5MnzihvEU31AfuGpCdrURY4UkVyckqCNOczuPXX5XwGjCgYDh51y4Vi1YebGyU+Bo1SoU9gPpD+McfKi6wc2e1TkQN0drbXzeRpkWXRnMzERWlZj3FxakfnnHjlJejskGvIir49uefleD6178KZpeVRV4e/PSTinkxDzuGhsKUKUWmFqblpLH00FLWhq/FJCYcbBy4q/1djPQZiZ111dyI8vOV3ti7V8UTnzhRNP7ZxkZpE19f1dq0UX/ga9Sf5kOHVJ2kkydVy8ws2cc8OaJZM9WGDlVeK831Q0TFxx06pNyujo6qpAKoP0YTJqiZHt7eKqN+27bqQ1eRQqO3EunpynNrFmnmx+LPk5MLJgndc4/6/QP1nfnPf1Rx9H/9S61LTFQeeVtblfajT58qP43qKAOk0Wiqgi1blEcjO1vl1Pq//yuIu6gsJpOKrbCzUz9UpXm4imNjo2LG+vVTw1Zr1sDGjcrNNHEiptuG8nPkryw+uJjUnFQMDAa3GszdAXfjbu9+dfZeASsr5Xzz84PJk1V4ysGDSoAdPqxG4o4fV+3HH9U2jo7qz7GXV8EEz6ZNi06KqzJ271b/8Pv1A59Lw6xHjxYYB2pI0NOzaGva9NbzoNQ0zMLXw6NoKghQHrAWLZSH8u+/VTPj4QHPPqti7jQFODkVfAeuRE5OQSF0M40awR13FJ0Nm5Gh+pi9XdWI9nRpNDcKeXlqOPGHH9Ryv37w8MPX7qabm6tuDpW9CWzdCu+/D+fOEVbfxGctLxLdyB5MJvybdWTawOdoWbvltbH1KsnIUILr6FE1IzI8vOhwZGFq11bapkkT9WgOhWrYsOgs/3KRlKQOGh6uvFING6r1n36qBNakSXDXXWpdZKSahdqypWrmeCLNjUdamhJcR4+qx/Bw9aepcG6ujz5SEx98fJTr1cdHJ6O71mRlKa+jOQltFaI9XRrNjczFi6oa9KFD6kdj+nR1076a8bDcXBUQfMcdBfmPyiu4jh5VriN/fzVUcvQoPP00sVbpfNkknh3NrCA9l0ZbU7n3pCtdrQ2MgByoXcq2Ze2zCnF0LIjvMnPxYkHZvsjIgpAp8wSrgwdL7sfVtSD+vF69ggl/9epBHTcTtZOjqBVxpMDLkZhYsHGzZgWiq3t3tVFhD6PZ5aa58XF2VrnDOnVSy3l5SmCZBRcoN2xsbNEPWt26SoD17q1ymWmujhoQy6hFl0ZT04mMVIGliYnqn+/MmSou5GrIzlZxD3v2qPiJZ54pu29pAmvKFOXat7ODhQtJ37+LZY3i+NEzm7zsLOwb+zIuri63//4ntrZWkHtSBRfffbeKrSi0bVn7rGrhVRx3dzXT0TxZE1S4TkKCukRnzqiJgufOFaS2MscJHz8ONqZsmqYfo3nqYVqkHqJxejh2pizLH2tbWxBHRzKatCHb04fMyFbYblbCzdnZD+dufri4gJPUsNgyzbXHHFRYmDfeUG5Xczt+XOVT++svNURpFl0nTqicWd7e6k9Sy5bXaQxccy3Qokujqcns3KmyZGdlKREya9bVDzmkpioRd/SoCuY1B6CWRmli6OBBtdykCfmxMaz/axHfGAdJbpKCkS0MTKrNpIHzqW3nBhsnqn/vIirA9cABNdTi5VXwr97Xt8g+i6y/jt6v0jCMgowKxcPcJF+4cNHg3DnI3HWIRh+8QF5Wnko8ng85NhBfy4Nox7acdm7LaZd2JNhfyud0BtXKOGbhhOGFm6Nj0Qow5ufmSjHmqjH29gXJ3LWAu0Fwc1Oz7QrPuIuNVUORhQXakSNqdt4ffxSs8/BQU3JbtlSz+HQW+RqLfmc0mpqIiMqHtWCBeh4aCo88cvXxW/HxKgN2TIwaznr55aIBp8VFTmliyN8f7Ow4kHaCzwIuEJW3DZydadf7Du7PC6R1yMACgbR4sRJaeXkqk+mpU+rYqalqaM1cOPvSPomNVS4hf/+yvV/VLMQ4dgy++AKjcWPqPPGE0sBNW8DKfPBsqXI1tW8P7doh7rXJyFDDk0lJpU/EMuehND9mZBTkqrwWmMVX4Yo6xavr1KpVUJ/Z1rZotZ3SKu+Yq++UtmyuymNu1tZa+FWKsrLmd+miFPbx48rrFRWlZjHHxanvReE/UR98ULSIvYfHNakkoak8WnRpNDWNvDyVvuHXX9XypEkwduzV37kiI1WG6aQkNfNtzhwVM2KmNJFTihiKa+LGgme78VfkFnBtRIMGLcvOt2XOyQDqH/i336rzSE5W7qPoaBWz4utb4EUzi6nly0sKPrh+QsxkUje1/fsLag2BciP9/bcadzTj4qKKNheLrDco8FI1bVr+w5qThptrRJvFmLniS+Hn5goxhR+zstQIck6OeszOvjaXpLIUFmDFn5e1ztyKL5fVrKwK+lpZFV1f3sfizwu3staX1cxi08pKPV4z8dmwoZolaZ4pmZenxr4jItQbbT5ITo6qn1p4spydnRqq9PRUBbLLO0tQc83QokujqUmkpMDrrysBYWensjcXr0tXWdatU4LL31+lhTh9WhXEvpxXa+xYixhKb9uKpRl/snbdWvLy87Bv3pKx7cYyyndU+fJtOTjAffepwryffKImBbz3nsr1NX16Qf4iM6V5v0qzEa5dPFhcHOzbp9rBgwUp7tu0KRBdzZurLO/F4+oqPJWxdKytCyqmXC3m8n1ZWQUCrPDz0uox5+QUrddcVh3n3Fx1v8/LK3heeJ25mUwFzzVFBVhxQVZ82bzOvL7wo/m5YdhgZeWJYXiqdRvVeluBpm4zqZtykroXT+KeHIVzRgIcOo7Bcf482JGYS6WyWkb8SovITaTUbkFq7eak1G5BWp3mmOydithhfm5ehpLry+pjPvfKtML7MB+v8P4ut7605+3aqckv1YEWXRpNTSEqCl55RQ0B1qmjMsJfJsN7hXnggYJCwhER5fJqAeS1ac3PVif49uBblnxbA7wGMClwEnUcKhFf5umpErtu3Qpffqm8Sc8+q4ZQJ09Ww55QuvcLyifEyuv9Sk9Xniyz0CpcyBnUcExgYNHoesMoKKtTwzGMghiv6kKkbBFmfm4yKcGWn1+wXPi1wi0vT/Ura11+fsHz4uuLPxbej3m5+OtlbSdy+W2Kv24uHGC+HlWPHQfoDnQHV8AVauWl0zAzigYZURyN9iXtrOpZL/IoNgkHqMMBCn+jU+3qcMrFn1Wtnrasc8hNIdPG5YYeM37uOS26NJpbm23b4J13lPvB21t5ogoP/VWGvDw1y2nYMDW+ZWNTEO9xBa8W/v6Ijw87z+xgYdhCzqSqqG+/+n5MC55Gqzqtrs42w4BevdQU+hUrlJ0bN8Kff6rakXfeqWwuPDwJ5RdiV4oHS0xUIvfo0aJldFxcCkRWUJDO7n4NMIyCuK9bHbMQKy7ICi8Xfy5SIOig7P7mvpdf54RIe0TaM6RQP5vkf2B3pit2caeodS6aWueisYs/jVVuEi1bXqTZlEv2Z+cQ9Ord5Nk7kVm3GVl1m5BZpwmZdZuSUbsJme4eiLWNZb9mews/Fn7NbF95WuFzL7yurL5l9YHqE1ygk6NqNNWLiIpzWrpULV+rgPnkZDVMeeiQygE1enTpaR9yc9XdsNiQ3LHEY3y570uOJB4BwMPZg3s73EuXJl2uSZ3EEpw9qwoIb92qll1cVJLQYcPKd7cu7tVavlylxGjSRA2jjh6t6rM98IASYomJaraXq6saJgwOVkKrVSsdaKzRgFI48fHq+2KueBEbC08+qYIJS+P551WgPygPckyMqrPYuLHyYFfzd0tEyMnJwdraGpsqnuGpk6NqNDWNtDSYNw927FDugKlTlTC4WlETEQH//rcK9K5dGwICSvf6lOIxik2N5ev9X/Pn6T8BcK3lyvj24xnqPRQbqyr8uWjUSPn8R49WMzYPHYIvvlBZ2sePV2L0cj+ShT1iIqr+j9n7de4cbNqkls3evawsFVv25JNKlB08qNwJWnBpNAorK/W9LEzjxuoP4oULRZPXxcSo54Vni2zeXDAZCNT3t2FDtY+2bZVn3Uxe3hXTXIgI2dnZpKenk5GRQXp6uqWZlws/lrXOZDLx/PPP08UsDq8zWnRpNNXB33+r/FsJCWoY7dlny1fv8HKIKKHy2WcqiVNICPzzn/Dbb6XHPBUSKokZiSw7tIxfT/6KSUzYWdsxymcUY9qOwcnuOiZebNNGxXvt2aNE4alTqs7k0qVqyHHAgNI9X6mpKiZr925V5frf/y4QlWfOqAkE7doVCDFXV7W/06drZloKjaamYhgq5rROHfWHriyCgtRjbCzExSHnz5Nx6hTpJ0+SlpBAuq+vEk1JSaTPmUO6gwPpTk6k16qlmo0N6VZWpFtbk35JbOUXDgWoJLa2tuTk5Fz1fiqLFl0azfUkP1/FMC1erJ57e6ts8B4eV7/fJ59Utdzy85WHa/589cNYRoA8wMWsiyw/vJyfTvxEbn4uBgYDWw7kH/7/oJ5jvas82UpiDlQPDlb/lr/7TgmnDz+EZctU2aKBA9W/6927lUA7erTo1PiDB2H48JKCycen8mkpNJpbGLOnKS0tjbS0NNLT0y2PhZ8Xft3SsrPJAMQ8bXb/fvWHEFSek+joot/fwvj4qMSxgF1yMk5ZWTi6ueFUuzaOdergVL8+jnXr4uTigpOTE46OjmU+Ojo6YlvNwYVadGk014ukJHj7bZUsFNRQ2uTJ1yZ7tJWVGjIDlZgzK0sJEbO4KDaUmJKdwuqjq1lzbA3ZJpXEqVfzXvzD/x80dS1nQqmqxspKDSv26aMmGnzzjTqHmTPhscfUD3HDhkoY2dgoT1bHjqqVlRSreGB+edNSmLfRHjDNDYyIWIbbzOKorFa8T3p6OiaTqfIHNwwc69XDyckJJycnnJ2dLWLI+Y47cDSZcM7NxSkzE6eMDBxTU3FKScHp0UdxatUKJycnbN5/X3nuQYk189CmlZXyur3yivlE4eef1XpnZ+X5d3WtETMutejSaKoaERVT9PnnKg+Xm5vySoWEXN1+9+5Vddn691cC4OGHlecnO1sJiUIeLbPYSMpM4vu9n/PziZ8tYqtz487cHXA3XrVraHHlhAQV2xUXp340zVlBzfkAevVS+b86dKj4j2p5Z0NCzc2Qr7mlKO5xSk1NLSGYSltnblczec7Ozs4ilpydnS3NLKQKiynza46OjpZHq6uNmRw6VI0OxMerlpCgWlJS0XjMjAzlGS+MjY0K5r/3XujW7ersuAq06NJoqpKYGPXlN3u3goKU4Lqa+okiKr/Vc8+p5wsXqmLSAQFq2LIUAXAu7RwrjqxgQ+QG8vJVkqCOHh0Z7zcen3o1KCt1VpaqN5mcDCNGqHW1a6tcXuY0E8HB6vrt2aM8YNHRKlmpp6eK+erb1zIcUS7Km5aiIolZtRDTXAGTyUR6enoRgZSamlpiuTQxlXcVib4cHByKCKbCwqmsZfPz6h6aw8en9Cz6ubkFnn5Qf8iGDFGC7Px5NVs5LU3Nkq7myTJadGk0VUFOjooXWrFC/QC4uChvTL9+lXNxm2/ijo6wYQNs2aJ+aOrVU56tUoLjRYSjiUdZc2wN285sI1/yMTDo0awHd7W/i5a1W5Z+rF271I9T794F4uXPP5W3rnt3NeQH6t/lF1+oIb7Jkwu237NH/av09VXF/C5HXp76QTTPkkpJURMMHB3Vv1obGyVmXnlFiSpHx4Jt+/dXP6jr1qmhhKgo5U1csEANMQ4YoB4rM3xbXIjB1WfI10LspiQ3N5fU1FSLgDILo8s9Nw/XVRazx8nZ2RkXF5cyn5cmpKo6VUK1UDwRnJub8vwXJitL/V7Urn19bSvGTXj1NZpqJD9fCZRFi9RwGKig76lTlfCqDEePwsSJSghlZChvWfPmapjN3r7EUGJefh5/nPqDNcfWcOLCCQCsDCv6efbjTt8xNKvdQnVMTVW5vHJylNAxs2yZKurcunWB6IqJge3bi8ZKXbyoxJ+nZ1HR9eGHyvX/2WcFYuqHH5QYGzFCrQsLU0Ohhw6pBKQffaT6NWigxFLz5kWnkbdrV/q1qVtX1aYcP16Jxd9+U/vdsUM1Z2eVN6hbNzX8eDX5z64mQz5oIVbDycnJIS0tjZSUlCLiyCyYyhJRWYU9LBXAMAyLKHJxcSkimJydnXF1dS1VTDk7O2N3tXn8bkXs7UsWD68GtOjSaK4FZrG1ZIlKQwDQrJn6t9W+fcX2VfxGfPCg2qfZQ+bvD2+8oTw7hfrFpMTwW+RvbDi5gQtZFwBwsXNhaOuhDM1uRr3PFkObPDVbElStwEOH1BClWQwAdO1akDjUTI8e6nwK/2jVrw9PP13Sm+Xvr0SXu7tajo9XMVnbtikhZD7OhQtw/LgSd5mZyh4R5cFq1uzKXrLC2NoqL1z37koMbtqkBFhUlHr87Tf1o9uxY4EAq4wIrmyGfC3Erhs5OTlFhFNxD1Npr6WkpFQ6jYC1tXWpwsksmoqvNz93cnK6+hgnzQ2Hzkiv0VwNJpMSW0uXFoitBg1UNvX+/Ss+tGUO1k5JUSJk8WK1fswYta5hQ7Xu0s04IzeDrdFb2XByA38n/q36nj+PZ2wmI/3vpM9dz6hi1BER8MQTyiv13nsFxzt4UHmLPDyu3cye+HgVw3bokGrnzinXflaWGh5s0EDFn+XlKU/Z6NGq4DWoIct77lG5y5YsKbBp+3Z1PcozZFmYM2eU2Nu2TV0DM4ahxF6HDqr5+l6bWaRmigun0ioAHDxYkDU/NlbNyvT310KMgmDxKw3XlfZaZcWTjY2NRRCZhVJhwVTWa/b29lVTpUFzQ6Mz0ms015K4OBVbtWGDEgpQObFV+GbapInKsxUZqV6rVaugJuL331v6ZbZqwe5Tf7Dt9DZ2HvqZnPMJ0Kgh9q516NmsJwNq2dPulx8x3G3B+pJXqUULeP/9ku71wjMcK4PJpLxJDRoUeI6WL1cxVmacnNQQX2Cgas2aFYipZ59VAsNMeroSFU5ORUXgxx+reIxPPy3IabZjhxJ4HTuWneesaVP1ntx1l+q7bZsafjx8WHnZjh9XecDs7VVi1nbtVPPxKRo/VlG0RwyA/Pz8IsHi5Yl9MgeNVzZY3MbGpsTQXGkCqrgnqlatWlo8aaocLbo0mvJinlm3fr1K7memSRPlramoZ+voUeXVuXhRxWr5+CgRk5OjBIerq0UUJXt6sCtpN9u2vELYvnRyuZQvJykBv9NZDGjWmx6jn8Pexl4N27XupqZWm7GxUcLrahBRwsfVtWCI8I03lJD5v/9TswZBpcK4eFGV4vHzAy+vsmcMWVsrD5aZZs2KxpeBGrrt2FHFlTVsWLB+wwblAXNzKxBdBw+q0iOdO0PPnkX306CBKrM0apSafHDokMpiv2+fmgF54EDBLFPDUF7B1q1Va9VKLVfEy1ac6yHEoHQxdhUCzZzb6Up5nYrPwDMnxqwstWrVKiGaShNSxZft7Oy0eNLUWLTo0mguR0KCCtDeuVPdkHNz1Xo7O3VT///2zjzIjuq6/5/zlnnzlhkto31D22hfiBwWgSsx2DG2wYbCuGLy888OlINJiNefk1hO4hhXkTipBAds7LgKgwFvuLDjUCkwTgBjbISACLSOVrQN2jWa7W3zlvP743TrPY1GRAbNjMScT1XX6z59u/t23+57v+/ec+9997utZuRMMvmw4FuyxOYe27DBmt7yeRN0nZ3wvvfBTTdRKPSysTnPK7lfs+6xe9jdtdtEQi6HLFzEolkXc9n0y1g5dxQT9ncFvfQa7Tpjxrz5HjqqFrfdu63mLawV6uy0KXbC6T9aW21//aCJl15qy9kiErFJwPtz2WXmNzZ3bs22ZQs8/bQJsVB0HTliNWoLFtgwG2DiadIkuPFG+PjH7b7a2mDzZvvdscPua9eu2vxxIlZzdsEFJg5nzLDfKVPObFLugTibQqy+GbNejAF9H/0ouUKBbCxG7x13kJ04kd5Nm8i2tdE7YQLZ0aNPOzBmNpt9w2M7iQipVGpAn6b+gimdTp9UQ+XO4s5bERddjhOiasMXbNliy/r1JjpCRKw26sorbZT09OvMSVgvsFparOD+27+1HoNjx1pvvqVLobkZ7e1h/9Qmtt3+x2yf1MC2wy+z4xc/ooJCeQVEozREG1gyeQUrcy1c8vZbGbPoTc7TWH/PHR3mj7Zvn/lA7dpl953Pnxo+kzGBEvLBD9ochsPBFVfUhq8IWbnSauJmzqzZ9u+3dA2bgUP+6q9sPLD777ehN1auNPE4diz82Z+ZEN65s7bs3Vt7TvVEItapYPJkE3KTJtn6+PG2jBr12/nL9RNildZWcvfcQ27tWrIzZ5Irl8lWq+TyebJtbeREyG7fTvYb3yC7ejXZPXvIpVL0dneTveUWssUipa1brQm1UIC/+Rt7Rq+8YrWIkYj1iM1kbCyj7m7bn8lYBHp7aSwUaJoyhczUqSaK8nkynZ1k5s4l09p6Us+6eoHlzuKOczIuupyRSaViQzCEBenOnSaU+hfMjY02GOfFF1uzWdgjr56BnKavu84Kr74+s3d3o0eP0JWOsTdyhPbnHmDvsgvY++nFvLqmnewohe4noNtOKU0Z5utYls94L8vn/z4Lxi0wh/g3w2uvWS3O9Om1AQZ/+Uu4886Bw48ebU2Ds2ZZ81prqwmKegFxrjXjTJt26hRAS5aYL1ixWLOVy1YbWK2aKA55+mmr1Vy1ymrSFi0y20svwQc+YGOXtbfb+/L00yZSwlrBQ4dsXQRVJV+tkq9UyIuQb24m39REPp0ml0iQb2ggF4+Tj8XIRyLkgLwquULhxDQt+XyebDZLsT7e9UyaVBNIq1ebrbfXhFUuZ2IqGoVUilg0SrpUItPYSHrZMtI9PaRTKTJjx5Lp6SG9YgWZBQtIf+1rZKpV0uUymdtvJ5NKkb7tNqKlkr0/d9xh1wlr09raBvYxC5t7z3JTp+Oc7wyq6BKR9wB3AVHgXlX9ar/9Eux/H5AD/lhV1w5mnJwRQrlsBdKxY9a8FE4Zcfiw1Xzs329h4OR/95MmmSBparIC9Kqras7mmzbBT35iYZqa7HwbN9p4VLkcfbMvoPPeb3B840t0xA5weEIfR1LKoWmvcnjKaA4tKpMlDw1xqDwP2zdCogqjkoxNtjBvyiXMGzef1pZWWq+fSzqRef17rFat5qyz0/y4Ojtt6eiwmp2jR238qhVBrdjq1fDAAyYIQ9E1dardy7RpJsamT7fms1mzBhaY5yPR6KmO9rEYevfdFAsFit3dFItFW2bPplCtmu255ygUChT++78pbtlCMZ2mEI2Sz+cpHj5Mfu1aCskk+SuuoHD8OIXjx8m98AKFXI7i2LGWPn19VmNYLlvTYOjzp2q2UBiFRCK1cLEYRKNILGaT9QbTrKQyGdJNTaSamkg3N5MeNYpUczPp0aNJjxlDuqOD9L59pJcvJ718uY0kvnMnsnHjwL0pJ02CP/kTE0LhWEb795uIBAvT35/sTHzMztT22/qiDYXNcQaJQRNdIhIF7gH+AGgHXhSRR1V1c12w9wKtwXIJ8K3gd2gZjA/2XMpAzpc4rl9vNQtz5limXCqZ0NmwwZqLJk+22oqtWy38hAkmDLLZWpNYImEFV0+PiamuLhMVqZQVdD09JrBaWmDOHKrJRkr/8e+UtExfbyPF91xOsdBF333folgukn/4TvL/8lXylSL5f/gKuWOH6G2A3rkz6ElF6M110fO2o3Q2Qm7UdnjyUybeLipCuQSJRrh4NjRlYHKC1K7XmD5hDjPmvJvpjROZkZjAzGXjaJE0zJ5da7Jct87u8cILawLpxRdtaIqeHluyWbun16O9vSa65s0zZ/d6B/vWVvjBD17/HGcBVaVSqVCpVCiXy6f89l8Pl1KpRKlUOu16qVSir6/vpPVwu1gsnrAVi8UT+8L1UuifNxD1Q9SoWvPjnj0mMsDez3jc9m3bVgsbiZiYmDuXxuZmkskkyR07SLa3k5w/n+TUqSSrVVJHjpBct45UUxPJOXNI9/WRKhZJbd5MslQitWwZqXicdDRKor0dOXrUBBHYe33ggInqpiaLG1jt7eHDdv3p021uzkTC3vdIxL6f9ettf1gDm83aO/DrX1vNb0eHLQ0Ndq5o1MK0tdn9Fotm6+szv7d43MI+9phdZ9IkO+7JJ60WNJs126FDdo1w7szJk+16L7xgcd22DW69tSbGvvMdi/PNN78xIfdmbK/XM/RcyzM9jmcnPkPIoI3TJSIrgS+r6lXB9ioAVf2HujDfBn6pqj8MtrcC71DVA/XnGtRxurZs4aYbLqIQ9rLJNIEA2V6oBs9m9GjL8I4dhUrV/sGGs5YfO2rhKhXL4BYsMLGwa5dV86taQRqJBOcEUPOXSKeh41jt+MYENI+G48dAgXLFMoJJE61WRdXOHY1BLAqFvIUDiDdANGIFvWL3EInaeqWMipgtkbDzNjUFTSNVu7ZELI59dU0ZscA5uFq1OIuYrVJBy6UTPdI0mYRiwc4Tj9vFW1os8y2XUQni05CAShlKZTQSgYhAKoX29aHFooWRCNrYCChaLKJahWjMzjGqmWpnJ1SrqNitaSyKqqJapSqgImhjgmoQx6pANSpUEwmqEagWClQFKukklRnT0UL+ZB+dsCaiXA6eo9SGQsj2WvqD+elk0pZ2Bw+CKpGGBpKzF5JqHkty+26aDhylKZamKZ6hqSSkK1GS1Sj1DXL1X5++//21GpnVq2HDBvSSS044reuOHfDUU3bf4UENDWgyaWnQ2Gi/ySSaStkyahQa9LhTVarV6on1+qVarZ6yHdrC9dMtlUplwO1QZIXb5yINDQ0kEolTlsbGxhO//dcbGxtJJpMkEomTfpPJJI2JBElVGseORUJfprY2yw8WL671IN261QT0nDnwkY+YrVQy/7hCAe66y5oIe3vh29+2wuLqq03A5PPmj7V6tdVQLlhgx3R1mS0eN7EesmmTiZ/Fi2uivr3dBOTUqbVhRHp7rUCKRCxs6NP14ot2zaVLax00tm617/uCC6xDQW+vCdVCwb6hsCPFyy/bfYhYcy1Y3AsFy1eWLbN72r/f7jEsjxYutN/t22sTmy9daufZtq1Wi7h4seWRW7bUBOKcORbPTZssv+vstOc0ZYrVTKdSJizHj7e4b95sts5OE7Bz5pg4rVQsPlOmWBzHjYOnnjJ7oWDhli61XrSViqXfrFn2TNasMVu1atdoabFrh9/BtGmWTnv3Wrho1M6Xr8uPolEbQ+7IEXj1VduORs2PcccOew6JhNmuucb+dHZ12Z8DVbMvX2614Dt32nYkYv6ou3fbMwuPf//7a2PrpVJmu/Zae29/8xt7xomE1ZIfPQqPP36i6ZrrrrN7f/hhi3cmY725wcYULJfNdsMN9szXrzcf11jMei5ff72l2yOPWPpmMuYrClYzX61aHvyhD9XOWSzasTfeaLaHH7ZzNDTUvqdHHqn94bjpppqtXLZ4PPzwoAqv4RinaypQ73Hazqm1WAOFmQocYKjYsIEne7IUy8HH3tF9apgjxwE5uVahLwtducCHAysF+wqwblPQdFCphe/rPfWcHT1wvPfU43sO1kRTaNu1zwp3IRCCA4xfUyzU1sNjKZ1qywa23kLddfTk0r920v/lnFWz5Xtqxxf7guscqAmUkHxdHAn25XrtxFpnLwQO3KHojVaDUdOzUOh3Tgl6zYX3gkJvORCTQZgIEK3Y/nBIqFgfHDuIxOPIUYgEjzcSgQhCpASRqrWLRxNlokAkB9GqEFMhunAGMRlFLBIjeliId/YSm9sKnZOhEzjcTPZwlixVDp5w1BJbIoHArV+PRCyjDgvFzk7LlHfutMINLGObMOGkpqdTfKqKRVvqnd3PEaLR6ElLLBYjFoudtB4u8Xj8xL5wPR6Pn7Te0NBwwhZu1y8D2epFVjweH5qhBRYurImIkPnzbZLueuJx62ARFsIhra1WeEyZUvsDsG+fiYWpU81nDUz4/PjH9m588IO1d+HBB80f6/rr7c9CXx88+6wJtBUrrGAul02IhT5u11xj8SiXrdDP5aypvaHB7GFv1SVLTGRUKlYAv/SS/XFYssRs48eb71s8boJE1eKwdq3FbcwYe+fHjbNvoFCwsKNHW1xE7L0PC2Ow9WLR9sfjtRrAbLYm0GKxWs12uWznjURsX3e3nbO317YrFRMroUvC7t0WvrHRwuzda+E7OsyeSNj19+yx64TTcRUKJo7yeXtejY32u3OnCZV6244ddmy5bLZs1oRseF+plNk2b7brlkqW9tmsidb2drteQ0NN8B46ZPeraoIkFNHd3TXhk8vZsz9wwK4Vj5ttzRqLZ30cn3/ewuVy9j729Ng709VVCxfaymWLW/jcn3uuliZgtt/8piZ8s1m7x1LJakALBbPF43b/zz5bO16CsvdXvzJbT4+FCQdXhlr6FYsn28Ln+cwzNVsiYdcLe/wOMYMpugbKzfoX7WcSZnBZupRPjG6h1N1l0Zkxw2L12msmnMCafZoysGWr1dSUK5axTBhvNq1CXzD58Nvfbi/K88/XnGynTbXaqfZ2qFbsDqdPh7FjTj7n+PH2j2rbtlqtVkuLXb+tzY4t9lmG1NBQc9wF63EVj9sHGjjzMmqUrXd1WRgRO3943t27ay9vc7N9MEcOI9Xg+JYWexZd3Ui1arVhEydYHDo6ArEglpkePw5HjkEygUSisHIlsmGD/YONmDiQefPsY92z54Tfilx6KXLsOKxfB9EokcYk8q53QWMCeXkd7NyBpDNINErkxj+yD3T9BiISQSJR5PLLiRSLyPNrkEiESDRO5N1XIeUy8sQviKoQaWoiesutRBCi//I1IpUqsWSG6Kc+S2T6BciaNfaPbvJkEzWRiAmdgwctk5g4sWYLawcuuqhWMHZ0IKFjdtjNvVCwZxb+Ow3/ZQ5AfcF/uvV6W/8w4Xb9b/0ykK1+CXuXRSKRE9vhb39bNBo9yR5u19tjsdhJtvDXx046Q+oFF9h72d8nLfS/qyeTsea4kFDAh8Nk1HPJabw4Bhqa40//9FRbKFbqfdLqC97w2qom2sC+rZCjR02cjB9fE00vvWT55ooVtVqxjRutJmnBApvDVNWEyFNP2f1feaUVom1tVqhPmGDf5rhxJmLWrrXCfd48G1pk+3Y7Phazb3vhQvv229osv2xqsvzx9tvtd+JEa/ZctMju+fOfN9E6ejR88pN2/F/8hYUdOxY+8QmrxbrjjtqE9DffbOG//vWgpSJqc5XGYtacWSrZ+s03mxh46KGaoPzkJ+35Pfig5cnxuHXy2LUL7ruv5v/3pS9ZPr9vn83kEArPW26xvDl0IYjH4XOfszz4e9+r/YH74hetZvC737X0CG27d9ugyrGY2VetMj/Zr37V4pNO20wKfX3WK7ZSsecYvnOrVtm+TMaGbZk50wTenXfau5NK2fPL5eArX7H0bWqy5wwWh1LJyqfQ9qUv2buTTtdst99u5W0iYWMGgqVBV5c97899zmx///c1AftmB4Z+g3jzIrz126w9judUm77jOOc4nmeOnDgOEqdrXhxM0RUDtgHvBF4DXgT+SFU31YW5GvhzrPfiJcDdqnpx/3P53IuO4ziO45wvDLlPl6qWReTPgScw15j7VHWTiNwa7P834DFMcO3Ahoy4abDi4ziO4ziOM5wM6jhdqvoYJqzqbf9Wt67AbYMZB8dxHMdxnHMBn5/BcRzHcRxnCHDR5TiO4ziOMwS46HIcx3EcxxkCXHQ5juM4juMMAYM2ZMTZRESOAHuGOx6O4ziO4zhnwAWqOr6/8bwQXY7jOI7jOOc73rzoOI7jOI4zBLjochzHcRzHGQJcdAEi8h4R2SoiO0TkC8Mdn5GKiEwXkadFpE1ENonIpwP7WBH5LxHZHvyOGe64jkREJCoiL4vIfwbbni7nACIyWkQeEZEtwbez0tNm+BGRzwb52EYR+aGINHq6DA8icp+IHBaRjXW206aFiKwK9MBWEbnqbMZlxIsuEYkC9wDvBRYBN4rIouGN1YilDPw/VV0IXArcFqTFF4AnVbUVeDLYdoaeTwNtddueLucGdwE/V9UFwHIsjTxthhERmQp8CvhdVV2CTYX3YTxdhovvAu/pZxswLYIy58PA4uCYbwY64aww4kUXcDGwQ1VfVdU+4EfAtcMcpxGJqh5Q1bXBeg9WeEzF0uOBINgDwHXDEsERjIhMA64G7q0ze7oMMyLSDPwe8B0AVe1T1U48bc4FYkBSRGJACtiPp8uwoKq/Ajr6mU+XFtcCP1LVoqruwuaGvvhsxcVFlxXq++q22wObM4yIyEzgd4A1wERVPQAmzIAJwxi1kcq/An8JVOtsni7Dz2zgCHB/0PR7r4ik8bQZVlT1NeCfgb3AAaBLVX+Bp8u5xOnSYlA1gYsukAFsPo7GMCIiGeAnwGdUtXu44zPSEZFrgMOq+j/DHRfnFGLACuBbqvo7QBZvshp2Av+ga4FZwBQgLSIfGd5YOWfIoGoCF12mYqfXbU/DqoGdYUBE4pjg+r6q/jQwHxKRycH+ycDh4YrfCOVy4AMishtrfr9SRL6Hp8u5QDvQrqprgu1HMBHmaTO8vAvYpapHVLUE/BS4DE+Xc4nTpcWgagIXXfAi0Cois0SkAXOge3SY4zQiERHBfFPaVPXOul2PAh8L1j8G/MdQx20ko6qrVHWaqs7Evo+nVPUjeLoMO6p6ENgnIvMD0zuBzXjaDDd7gUtFJBXka+/EfFQ9Xc4dTpcWjwIfFpGEiMwCWoEXztZFfUR6QETeh/msRIH7VPWO4Y3RyERE3g48C2yg5jv0Rcyv68fADCwz+5Cq9neKdIYAEXkH8HlVvUZEWvB0GXZE5EKsg0MD8CpwE/aH2tNmGBGR24E/xHplvwx8HMjg6TLkiMgPgXcA44BDwN8BP+M0aSEifw3cjKXdZ1T18bMWFxddjuM4juM4g483LzqO4ziO4wwBLrocx3Ecx3GGABddjuM4juM4Q4CLLsdxHMdxnCHARZfjOI7jOM4Q4KLLcZxhR0RaROSVYDkoIq8F670i8s1BuuZnROSjA9hnisjGs3idBhH5VTAHn+M4IxjPBBzHGXZU9RhwIYCIfBnoVdV/HqzrBQLoZmz09kFFVftE5ElszKbvD/b1HMc5d/GaLsdxzllE5B0i8p/B+pdF5AER+YWI7BaR60Xkn0Rkg4j8PJhCChF5m4g8IyL/IyJPhFN99ONKYK2qluuOWSciq4Hb6q4/U0SeFZG1wXJZYH9IRK6tC/d9EfmAiCwWkReCWrr1ItIaBPkZ8H8G4xk5jnP+4KLLcZzziTnA1dhkwt8DnlbVpUAeuDoQXl8HblDVtwH3AQPNMHE5UD+B9/3Ap1R1Zb9wh4E/UNUVWE3V3YH9Xmzkd0RkFDav3mPArcBdqnoh8LvYPG4AG4GL3uA9O47zFsGbFx3HOZ94XFVLIrIBm7br54F9AzATmA8sAf7LprwjChwY4DyTsbnwQtE0WlWfCfY9BLw3WI8D3wim2qkA8wBU9RkRuUdEJgDXAz9R1XJQU/bXIjIN+Kmqbg/CV0SkT0SaVLXnLD0Lx3HOM1x0OY5zPlEEUNWqiJS0No9ZFcvPBNg0QI1Vf/JAY7AuwOnmQ/ssNlfbcqxloFC37yGsyfDDmH8YqvoDEVmD1cY9ISIfV9WngvCJfsc7jjPC8OZFx3HeSmwFxovISgARiYvI4gHCtQFzAVS1E+gKJlyHk32vRgEHVLUK/F+s5izku8BngnNsCq43G3hVVe8GHgWWBfYW4Iiqlt78LTqOc77iostxnLcMqtoH3AD8o4isA17B/K368zjwe3XbNwH3BM2D+Tr7N4GPicjzWNNitu5ahzDxdn9d+D8ENorIK8AC4MHAfgXm8+U4zghGarXzjuM4IwcR+XfgL0O/qzdwfArzJVuhql3/S9ifAqtUdesbuZbjOG8NvKbLcZyRyhcwh/rfGhF5F7AF+PoZCK4G4GcuuBzH8Zoux3Ecx3GcIcBruhzHcRzHcYYAF12O4ziO4zhDgIsux3Ecx3GcIcBFl+M4juM4zhDgostxHMdxHGcIcNHlOI7jOI4zBPx/t712K0lC51AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.3339, 'epsilon': 0.1539, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACi8UlEQVR4nOydd3gV1fa/30kjIZVuaEmAkEAqCYROCB1BmiJwEQTFgoLtJwr3qmC9XhuI3WtBkS9wAUFEVESaIEgNvQZCSSJJCIRUkpys3x+bc3JSSQIhlP0+z35yZmbPzJo5J2c+Z+211zJEBI1Go9FoNBpN1WJT3QZoNBqNRqPR3A5o0aXRaDQajUZzHdCiS6PRaDQajeY6oEWXRqPRaDQazXVAiy6NRqPRaDSa64AWXRqNRqPRaDTXAbvqNqA81K1bV7y9vavbDI1Go9FoNJorsmPHjmQRqVd0/U0hury9vdm+fXt1m6HRaDQajUZzRQzDOFnSej28qNFoNBqNRnMd0KJLo9FoNBqN5jqgRZdGo9FoNBrNdeCmiOnSaCqLyWQiJSWF3Nzc6jZFo9HcJNjb21O7dm1sbW2r2xTNLUaViS7DML4CBgKJIhJYwnYDeB+4E8gExonIzqqyR3N7kpKSgqOjI3Xr1kV95DQajaZ0RIT09HRSUlKoV6/Y5DON5qqoyuHFOUC/Mrb3B3wvt4eBT6rQFs1tSm5uLi4uLlpwaTSacmEYBi4uLto7rqkSqszTJSIbDMPwLqPLYOBbERFgi2EYHoZheIpIQlXZVBr79kF+/vU5V3mf/VfqZ73d/LqkfQyjeF/r/kUbgI1NydtsbAq2mV8Xbba2YGdX/uu8HmjBpdFoKoL+ztBUFdUZ09UIOG21fObyuusuul57DTIyrvdZb20MQwkwGxslwqybvX1Bq1FD/XVwUK9r1AAnJ3B0LGjOzgXNxUU1Nze1z83C66+/zv/93/9ha2uLjY0Nn332Ge3bt7/udkRHRxMfH8+dd94JwPLlyzlw4ABTp05l3LhxDBw4kHvuuafQPuvWreOdd95hxYoV191ejUajuZWoTtFV0k8Jue5WAK1bw6VL5esrV2Hh1exrvb/1cUo6Zmn9rNeXtlxWy89Xzfq1uZlMBa/z8lSfvDx1/Jycq7vu0nByAg8PcHdXf+vUgfr1oV69gr9Xe8+vBZs3b2bFihXs3LmTGjVqkJycTE5V3ZQrEB0dzfbt2y2ia9CgQQwaNKhabNFoNJrbjeoUXWeAJlbLjYH46jDkpZeq46y3NmbRZTIV/M3NVa/z8tTrnBz199Klgr/Z2YVbZqZqGRmQnl7w9+JFyMpSLaEM3+ioUUqMubkpcWYWaDVrXr8h0ISEBOrWrUuNGjUAqFu3LlBQaaFu3bps376dZ599lnXr1rF+/XqefPJJQA1zbNiwAVdXV9566y3mzp2LjY0N/fv358033yQmJobHH3+cpKQkatasyX//+1/8/f0ZN24cjo6O7N+/n7Nnz/Lee+/Rp08fXnrpJbKysti4cSPTpk0jKyuL7du38+GHHwKwevVq3n//fcs+AwcOLHQtGRkZTJ48mb1795KXl8eMGTMYPHjw9bmRGo1Gc5NTnaJrOTDJMIwFQHsgtTriuTRVg2EUDCFWBSJKjF24AKmp6m9SkmqJiQXNZIJz51R7552C/W1t1fCkudnbV16E/fhj2dv79OnDK6+8QsuWLenVqxcjRowgMjKy1P7vvPMOH330EZ07dyY9PR1HR0d+/vlnli1bxl9//UXNmjVJSUkB4OGHH+bTTz/F19eXv/76i8cee4w1a9YAEBsby/r164mJiSEqKopjx47xyiuvFBJZc+bMKXTukvax5vXXX6dHjx589dVXXLhwgYiICHr16oWzs3MF75pGo9HcflRlyoj5QHegrmEYZ4DpgD2AiHwKrESliziGShkxvqps0dx6GEZBnFejRqX3O3lSebVSU1UsWG6uaiZTgafMfDzrODKbaziv18XFhR07dvDHH3+wdu1aRowYwZtvvllq/86dO/PMM88wevRohg0bRuPGjVm9ejXjx4+nZs2aANSuXZv09HT+/PNPhg8fbtn3ktU4+b333ouNjQ2+vr40a9aMQ4cOXdHWK+2zatUqli9fzjuXFWx2djanTp2iVatWFbonGo1GcztSlbMXR11huwCPV9X5NRpQHqx69VTbsEGtE1HDk8nJqiUlqWUzhqH6N2kC3t4quP9qsbW1pXv37nTv3p2goCC++eYb7OzsyL88bTY7O9vSd+rUqQwYMICVK1fSoUMHVq9ejYgUm1GVn5+Ph4cH0dHRJZ6zaP/yzMi60j4iwpIlS/Dz87visTQajUZTGF0GSHPbYRgqtqt5c2jfHgYOhMGDoW1buOMOtT0xEXbsgGXLYMsWNTxZWQ4fPszRo0cty9HR0Xh5eeHt7c2OHTsAWLJkiWV7TEwMQUFBPP/887Rt25ZDhw7Rp08fvvrqKzIzMwGV9NXNzQ0fHx8WLVoEKEG0e/duy3EWLVpEfn4+MTExHD9+HD8/P1xdXUlLSyvV1pL2saZv37588MEHyOUZCrt27ar8jdFoNJrbDF0GSKNBDVO2bKlaTo4Kzj9xAuLj4fhx1erUAV9f5f2qyPBjeno6kydP5sKFC9jZ2dGiRQs+//xzDh48yIMPPsgbb7xRKH3ErFmzWLt2Lba2trRu3Zr+/ftTo0YNoqOjadu2LQ4ODtx555288cYbzJs3j4kTJ/Laa6+Rm5vLyJEjCQkJAcDPz4/IyEjOnj3Lp59+iqOjI1FRUbz55puEhoYybdq0YraWtI81L774Ik899RTBwcGICN7e3jqVhEaj0ZQTQ26EOfVXoG3btrJ9+/bqNkNzExIfH0/Dhg0rvX9aGhw7BjExBakv3NwgNFTFkt2oORRLy7ml0WjKx9V+d2hubwzD2CEibYuu154ujaYMXF2hTRsIDlZB+fv3q/ivDRtULrA2bZQHTKPRaDSaK6FFl0ZTDmxtoVkzNbR49KgqHZWYCL/+Cj4+yvPl5FTdVhZQNBWERqPRaKofHUiv0VQAGxvw84O77oJWrdTyiRPw889lJ2nVaDQajUaLLo2mEjg4qKHFgQOhQQOVPX/tWoiOvn7F0zUajUZzc6FFl0ZzFbi4QI8eKubLMODAAVi9WhdQ12g0Gk1xtOjSaK4Sw4DAQOjZU2W/T05Ww43x1VJJVKPRaDQ3Klp0aTTXiPr1oX9/aNxYpZfYsAFOnVJlgK7EH3/8QUBAAKGhoWSZaxOVk2XLlnHgwIEK21uaXVlZWURGRmIymSzrZs6ciaOjI6mpqRU+z7UgOjqalStXVvl55syZQ7yVWp4wYUKl7m1sbCyBgYFX7Ldo0SJatWpFVFRUhc9R1NZrZVdJfWbMmGEp/VReunfvzpVS/cyaNcuS8LeiVPYzYW1Xr169OH/+fKXOr9FUBi26NJprSI0a0LWrCrLPz4dNm1TZoSsxb948nn32WaKjo3Gq4DTIyoqu0vjqq68YNmwYtra2lnXz58+nXbt2LF269JqdpyJUl+j64osvaN26dZWd78svv+Tjjz9m7dq1Fd63MqLrRqM6RJc1Y8aM4eOPP76qY2g0FUGLLo3mGmMYKoVEUJASXCaTSjOxbt06unfvzj333IO/vz+jR49GRPjiiy/43//+xyuvvMLo0aMBePvtt2nXrh3BwcFMnz7dcuxvv/2W4OBgQkJCGDNmDH/++SfLly9nypQphIaGEhMTQ0xMDP369SM8PJyuXbtailafOHGCjh070q5dO1588cVS7Z83bx6DBw+2LMfExJCens5rr73G/PnzLev3799PREQEoaGhBAcHc/ToUV588UXef/99S59//etfzJ49m3Xr1hEZGcm9995Ly5YtmTp1KvPmzSMiIoKgoCBiYmIAldT10UcfpWvXrrRs2ZIVK1aQk5PDSy+9xMKFCwkNDWXhwoWkpKQwZMgQgoOD6dChA3v27AGUR+b++++nT58+eHt78/333/Pcc88RFBREv379yM3NBeCVV16hXbt2BAYG8vDDDyMiLF68mO3btzN69GiLx9HaK/LLL78QFhZGSEgIPXv2LPfnYc6cOQwbNox+/frh6+vLc889Z7Fh48aNPProo0yZMgWTycSUKVMs7/tnn31mOcZbb71FUFAQISEhTJ06tURbd+zYQWRkJOHh4fTt25eEy9Npd+zYQUhICB07duSjjz4qt92l0b17d55//nkiIiJo2bIlf/zxB6A8pCNHjiQ4OJgRI0YU8tiuWrWKjh07EhYWxvDhw0lPT2f27NnEx8cTFRVl8fSV1A9g27ZtdOrUiZCQECIiIkhNTS32mcjIyOCBBx6gXbt2tGnThh9++OGKdg0aNKjQZ1qjqXJE5IZv4eHhotFUhri4uIKFgQOrppXBgQMiNWo4y7x5It98s1bc3Nzk9OnTYjKZpEOHDvLHH3+IiMj9998vixYtEhGRX3/9VR566CHJz88Xk8kkAwYMkPXr18u+ffukZcuWkpSUJCIi586dK7aviEiPHj3kyJEjIiKyZcsWiYqKEhGRu+66S7755hsREfnwww/F2dm5mL2XLl2SBg0aFFr36quvyiuvvCImk0m8vLzk7NmzIiIyadIk+e677yz7ZWZmyokTJ6RNmzYiImIymaRZs2aSnJwsa9euFXd3d4mPj5fs7Gxp2LChvPTSSyIiMmvWLHnyySct19K3b18xmUxy5MgRadSokWRlZcnXX38tjz/+uMWmSZMmyYwZM0RE5Pfff5eQkBAREZk+fbp07txZcnJyJDo6WpycnGTlypUiIjJkyBBZunRpoXsnInLffffJ8uXLRUQkMjJStm3bZtlmXk5MTJTGjRvL8ePHi+1fEidOnJCAgAAREfn666/Fx8dHLly4IFlZWdK0aVM5depUsfN99tln8uqrr4qISHZ2toSHh8vx48dl5cqV0rFjR8nIyCh0but9c3JypGPHjpKYmCgiIgsWLJDx48eLiEhQUJCsW7dORESeffZZi13lsd3M9OnT5e2337ac95lnnhERkZ9++kl69uwpIiLvvvuu5Zy7d+8WW1tb2bZtmyQlJUnXrl0lPT1dRETefPNNefnll0VExMvLy/J5Lq3fpUuXxMfHR7Zu3SoiIqmpqZKbm1vsMzFt2jSZO3euiIicP39efH19JT09vVS7zLRo0UKSk5OL3YdC3x0aTQUBtksJekYnR9VoqpBWrVRiVYAjRyAgIILGjRsDEBoaSmxsLF26dCm0z6pVq1i1ahVt2rQBVO3Go0ePsnv3bu655x7q1q0LQO3atYudLz09nT///JPhw4db1l26dAmATZs2WQprjxkzhueff77Y/snJyXh4eBRat2DBApYuXYqNjQ3Dhg1j0aJFPP7443Ts2JHXX3+dM2fOMGzYMHx9ffH29qZOnTrs2rWLs2fP0qZNG+pcTtnfrl07PD09AWjevDl9+vQBICgoqNDw2r333ouNjQ2+vr40a9bM4qmzZuPGjZZr6dGjB+fOnbPEm/Xv3x97e3uCgoIwmUz069fPcp7Y2FgA1q5dy1tvvUVmZiYpKSkEBARw1113FTuPmS1bttCtWzd8fHxKvfdl0bNnT9zd3QFo3bo1J0+epEmTJoX6rFq1ij179rB48WIAUlNTOXr0KKtXr2b8+PHUrFmz1HMfPnyYffv20bt3bwBMJhOenp6kpqZy4cIFIiMjAfW+//zzz2XaapRS28p6/bBhwwAIDw+33NMNGzbwxBNPABAcHExwcDCg7t2BAwfo3LkzADk5OXTs2LHY8Uvrd/jwYTw9PWnXrh0Abm5uJdq3atUqli9fbok9y87O5tSpU6XaZaZ+/frEx8dbPqcaTVWiRZfm9uHHH6vltIYBHTrAwYOQlVWD06ehSROwtbUlLy+vWH8RYdq0aTzyyCOF1s+ePbvUB6KZ/Px8PDw8iI6OLsWWsvd3cnIiOzvbsrxnzx6OHj1qeZjn5OTQrFkzHn/8cf7xj3/Qvn17fvrpJ/r27csXX3xBjx49mDBhAnPmzOHvv//mgQcesByrRo0altc2NjaWZRsbm0L3oaiNJdksJQTKmftZH9fe3t6y3nye7OxsHnvsMbZv306TJk2YMWNGoWsuCRG54r0rC+trL+t9/+CDD+jbt2+h9b/88ssVzy0iBAQEsHnz5kLrL1y4UGG769SpUyy4PCUlxSI4oeB6il5Lae9V7969rziMV1q/PXv2lOsaRIQlS5bg5+dXbFtZ+2dnZ1c4jlKjqSw6pkujuQ40awYtWqjXmzdDWROm+vbty1dffWWJZ4mLiyMxMZGePXvyv//9j3PnzgHqQQjg6upKWloaoLwAPj4+LFq0CFAPot27dwPQuXNnFixYAKi4rZKoVasWJpPJIkLmz5/PjBkziI2NJTY2lvj4eOLi4jh58iTHjx+nWbNmPPHEEwwaNMgSVzV06FB++eUXtm3bVkxAlIdFixaRn59PTEwMx48fx8/Pr9A1AnTr1s1yDevWraNu3bqlekCKYr62unXrkp6ebvEsAcXOY6Zjx46sX7+eEydOAAX3fuvWrYwdO7bC11gSffv25ZNPPrHEnR05coSMjAz69OnDV199ZQk4L+l99/PzIykpySK6cnNz2b9/Px4eHri7u7Nx40ag8PseFxdXYmyai4sLnp6e/P7775bz/fLLL8U8skWxfk/27dtn+Tx06NCBTZs2cezYMQAyMzM5cuRIsWsorZ+/vz/x8fFs27YNgLS0NPLy8oq9V3379uWDDz6wCPJdu3aVaReo/4+///4bb2/vMq9No7lWaNGl0VwnmjZVebzy8lQ6iRKcHQD06dOHf/zjH3Ts2JGgoCDuuece0tLSCAgI4F//+heRkZGEhITwzDPPADBy5Ejefvtt2rRpQ0xMDPPmzePLL78kJCSEgIAAS0Dx+++/z0cffUS7du3KTP3Qp08fy0N6wYIFDB06tND2oUOHsmDBAhYuXEhgYCChoaEcOnTIIj4cHByIiori3nvvLTQDsrz4+fkRGRlJ//79+fTTT3F0dCQqKooDBw5YgqZnzJjB9u3bCQ4OZurUqXzzzTflPr6HhwcPPfQQQUFBDBkyxDJsBQWB/EVTd9SrV4/PP/+cYcOGERISwogRIwA4derUNfOSTJgwgdatWxMWFkZgYCCPPPIIeXl59OvXj0GDBtG2bVtCQ0Mtw2fWtppMJhYvXszzzz9PSEgIoaGh/PnnnwB8/fXXluFga1sTEhKwsyt5sOPbb7/ltddeIzQ0lB49ejB9+nSaN29epv0TJ04kPT2d4OBg3nrrLSIiIgB17+bMmcOoUaMsEx/MQ8YPP/ww/fv3JyoqqtR+Dg4OLFy4kMmTJxMSEkLv3r3Jzs4u9pl48cUXyc3NJTg4mMDAQMtkkdLsAjXJoEOHDqXeB43mWmOU5Ka/0Wjbtq1cKd+LRlMS8fHxNGzYsLrNsGAyqYz1586pvF49eqj6jTcSu3bt4r333mPu3LmV2j8/P5+wsDAWLVqEr69vhfYdN24cAwcO5J577qnUua83U6ZMYcyYMcXihG4GPvzwQ5o2bcqgQYOq25Rq48knn2TQoEElevxutO8Ozc2FYRg7RKRt0fU32Ne9RnNrY2sL3bqBkxMkJsL27eXL43U9adOmDVFRUYWSo5aXAwcO0KJFC3r27FlhwXUz8vbbb9+Uggtg0qRJt7XgAggMDKxQ+g+N5mrRni7NLc2N+mv13Dnl8TKZoG1baNmyui3SaDTW3KjfHZqbA+3p0mhuIOrUgfbt1eudO+HChWo1R6PRaDTXAS26NJpqwttbzWjMz4e//lJ/NRqNRnProkWXRlONtGkDzs5quPHgweq2RqPRaDRViRZdGk01Ym9fMMy4dy+UkclBo9FoNDc5WnRpNFWMra0toaGhBAQEEBISwnvvvUf+5bHE7du388YbT1iGGbdsuXGHGceNG1cokag1Tz31FBs2bLAsJyUlYW9vX6ho8/XmjTfeqPJzREdHs3LlSsvy8uXLefPNNyt1LOvi2qWRlJRE+/btadOmjaXQdGVtvZZ2jRs3Dh8fH0JCQmjZsiVjx44lLi7uiseeNWuWJelrRbkW19OrV69i2fc1mqpEiy6NpopxcnIiOjqa/fv389tvv7Fy5UpefvllANq2bcvs2bNp00YlTj13DkooNXhDk5KSYqlNaGbRokV06NDhiqVfqpLqEF2DBg1i6tSpVXa+33//HX9/f3bt2kXXrl0rtG9lRUp5efvtt9m9ezeHDx+2pB3Jyckpc5/qEF3WjBkzho8//viqjqHRVAQtujSaohw6BIsWVYn6qV+/Pp9//jkffvghIsK6desYOHAg9vbg4LCVGTM6ceedbWjfvhOHDx8GVDmUe++9l+DgYEaMGEH79u0tv9RdXFz417/+RUhICB06dODs2bMAnDx5kp49exIcHEzPnj05deoUoMRQYGAgISEhFpFkMpmYMmUK7dq1Izg42OKdEhEmTZpE69atGTBgAImJiSVe0+LFiy1Fpc3Mnz+fd999lzNnzlg8HiaTiXHjxhEYGEhQUBAzZ84kJiaGsLAwy35Hjx4lPDwcAG9vb/75z3/SsWNH2rZty86dO+nbty/Nmzfn008/BVQJoG7dujF06FBat27No48+Sn5+PlOnTiUrK4vQ0FBGjx4NwHvvvUdgYCCBgYHMmjULgNjYWPz9/ZkwYQKBgYGMHj2a1atX07lzZ3x9fdm6dSugyv106tSJNm3a0KmTem9ycnJ46aWXWLhwoSUr+pw5c5g0aRIAZ8+eZejQoYSEhBASEmLJEF8eSnpfo6Ojee6551i5cqUlY/6qVavo2LEjYWFhDB8+3FI6atu2bXTq1ImQkBAiIiJITU0tZmtGRgYPPPAA7dq1o02bNpbKBVlZWYwcOdLyebPOzF8eDMPg6aef5o477rAU1y7JztmzZxMfH09UVBRRUVGl9qvK6xk0aFC1/jDQ3IaIyA3fwsPDRaOpDHFxcRXb4eBBkfbtRdq0UX8PHrxqG5ydnYut8/DwkL///lvWrl0rAwYMEBGR1NRU2bgxV+bNE3njjd9k2LBhIiLy9ttvy8MPPywiInv37hVbW1vZtm2biIgAsnz5chERmTJlirz66qsiIjJw4ECZM2eOiIh8+eWXMnjwYBERCQwMlDNnzoiIyPnz50VE5LPPPrPsl52dLeHh4XL8+HFZsmSJ9OrVS/Ly8iQuLk7c3d1l0aJFxa5l7NixFhtERE6dOiUtWrQQEZFp06bJu+++KyIi27dvl169eln6mc/fvXt32bVrl6X/7NmzRUTEy8tLPv74YxEReeqppyQoKEguXrwoiYmJUq9ePRERWbt2rdSoUUNiYmIkLy9PevXqZbHR+r5v375dAgMDJT09XdLS0qR169ayc+dOOXHihNja2sqePXvEZDJJWFiYjB8/XvLz82XZsmWW+5aamiq5ubkiIvLbbwXvzddffy2PP/645TzWy/fee6/MnDlTRETy8vLkwoULxe6dNZGRkVd8X62Pn5SUJF27dpX09HQREXnzzTfl5ZdflkuXLomPj49s3bq1kO1FbZ02bZrMnTvX8l74+vpKenq6vPvuuzJ+/HgREdm9e3ehz1tp3H///cU+G08++aS8+eabpdopot7jpKSkar2eFi1aSHJycrFrqvB3h0ZjBbBdStAzuuCURmPN3r2QkwONGkF8vFr297/mp5ESkhKnpqby1lv3s2vXUUQMHBxU4eONGzfy5JNPAiqDtnUGdAcHBwYOHAhAeHg4v/32GwCbN2/m+++/B9QQynPPPQeootfjxo3j3nvvZdiwYYDyLuzZs8cSr5WamsrRo0fZsGEDo0aNwtbWloYNG9KjR48SryUhIYF69epZlhcsWMC9994LqLqQDz74IM888wzNmjXj+PHjTJ48mQEDBtCnTx9A1Rz8+uuvee+991i4cKHFuwRYMqYHBQWRnp6Oq6srrq6uODo6cuFycrOIiAiaNWsGwKhRo9i4cWOxMkIbN25k6NChODs7AzBs2DD++OMPBg0ahI+PD0FBQQAEBATQs2dPDMMgKCiI2NhYyz25//77OXr0KIZhWIpSl8WaNWv49ttvARXX5+7ufsV9zJT2vlqzZcsWDhw4QOfOnQHIycmhY8eOHD58GE9PT0tNydIKga9atYrly5dbajlmZ2dz6tQpNmzYwBNPPAFAcHBwpTPumz/jpdl5o1xP/fr1iY+Pp06dOpW6To2mImjRpdFYExQEDg5KcNnbq+VrzPHjx7G1taV+/foctMoT8eKLL9KzZxSzZi1l+fJYXn+9O3l5JQs0M/b29hiGAagHe14pVbTNfT799FP++usvfvrpJ0JDQ4mOjkZE+OCDD+jbt2+hfVauXGnZryycnJzIzs62LM+fP5+zZ88yb948QGX2Pnr0KL6+vuzevZtff/2Vjz76iP/973989dVX3H333bz88sv06NGD8PDwQg+/GjVqAGBjY2N5bV42X2tRG0uyuax7WPS41uc0n+PFF18kKiqKpUuXEhsbS/fu3a94X66G8ryvIkLv3r2LDY/t2bOnXO+biLBkyRL8/PyKbSvP/ldi165d9OzZs1Q7S7KnOq4nOzv7mhUt12iuhI7p0mis8feHOXNg6lT19xp7uZKSknj00UeZNGlSsQdBamoqjRo1wtsbtm6dgwgcPgxdunThf//7H6BqG+7du/eK5+nUqRMLFiwAYN68eXTp0gWAmJgY2rdvzyuvvELdunU5ffo0ffv25ZNPPrF4b44cOUJGRgbdunVjwYIFmEwmEhISWLt2bYnnatWqFceOHQPg8OHDZGRkEBcXR2xsLLGxsUybNo0FCxaQnJxMfn4+d999N6+++io7d+4EwNHRkb59+zJx4kTGjx9f4Xu6detWTpw4QX5+PgsXLrRcq729veWaunXrxrJly8jMzCQjI4OlS5dWKBDd/N4AzJkzx7Le1dWVtLS0Evfp2bMnn3zyCaDi2S5evGhZX56ZfVeiQ4cObNq0yXLvMzMzOXLkCP7+/sTHx7Nt2zYA0tLSyMvLK2Zr3759+eCDDyyCdNeuXYC6V2bBvG/fPvbs2WPZZ+zYsYU8kSUhIsyePZuEhAT69etXqp1Q+P5Vx/WICH///Tfe3t7luOMazdVTpaLLMIx+hmEcNgzjmGEYxab0GIbhbhjGj4Zh7DYMY79hGBX/xtVorjX+/jB8+DUTXOaA7oCAAHr16kWfPn2YPn16sX7PPfcc06ZNo0uXzjRooIpN798PDzzwGElJSQQHB/Of//yH4ODgKw5VzZ49m6+//prg4GDmzp3L+++/D8CUKVMICgoiMDCQbt26ERISwoQJE2jdujVhYWEEBgbyyCOPkJeXx9ChQ/H19SUoKIiJEycSGRlZ4rkGDBjAunXrAOXlGjp0aKHtd999N/PnzycuLo7u3bsTGhrKuHHj+Pe//23pM3r0aAzDsAw5VoSOHTsydepUAgMD8fHxsZz/4YcfJjg4mNGjRxMWFsa4ceOIiIigffv2TJgwgTZt2pT7HOb3pnPnzoUKgUdFRXHgwAFLMLc177//PmvXriUoKIjw8HD2799Pfn4+x44do3bt2hW+zqLUq1ePOXPmMGrUKIKDg+nQoQOHDh3CwcGBhQsXMnnyZEJCQujduzfZ2dnFbH3xxRfJzc0lODiYwMBAXnzxRQAmTpxIeno6wcHBvPXWW0RERFjOuWfPHjw9PUu0Z8qUKZaUEdu2bWPt2rU4ODiUaieo96h///5ERUVVy/Xs2LGDDh06YGenB30014cqK3htGIYtcAToDZwBtgGjROSAVZ9/Au4i8rxhGPWAw8AdIlJonrEueK2pLDdz0dr16yEuDpo1MxEamoujoyMxMTH07NmTI0eO4ODgUN0mWujSpQsrVqzAw8OjUvu/8847pKam8uqrr1Zov3Xr1vHOO++wYsWKSp33erNv3z6++uor3nvvveo2pcJcvHiRBx98kEWLFlW3KdeMJ598kkGDBtGzZ89i227m7w5N9VNaweuqlPcRwDEROX7ZgAXAYOCAVR8BXA01zuICpAAlB6VoNLcZoaEqtOzAgUwmTowiPz8XEeGTTz65oQQXwLvvvsupU6cqJbqGDh1KTEwMa9asufaG3WAEBgbelIILVAD7rSS4QL0fJQkujaaqqEpP1z1APxGZcHl5DNBeRCZZ9XEFlgP+gCswQkR+Knos7enSVJab/dfqtm1w9KiaTFnK6J5Go6kCbvbvDk31UpqnqypjukqaLlJU4fUFooGGQCjwoWEYJc8H1mhuQ4KCwM5ODTP+/Xd1W6PRaDSaq6EqRdcZoInVcmMgvkif8cD3l3OJHQNOoLxeGo0GcHSEgAD1etcuqCLHtEaj0WiuA1UpurYBvoZh+BiG4QCMRA0lWnMK6AlgGEYDwA84XoU2aTQ3HX5+qi7j+fNw+nR1W6PRaDSaylJloktE8oBJwK/AQeB/IrLfMIxHDcN49HK3V4FOhmHsBX4HnheR5KqySaO5GbGzK/B27d+vvV0ajUZzs1KlebpEZKWItBSR5iLy+uV1n4rIp5dfx4tIHxEJEpFAEfmuKu3RaKqLpUuXYhiGJT8RqEBdc7kac+FrgOXLl/Pmm28W2r9ZM3ByUt6u+KKD9FfgqaeeYsOGDQCsWLGCNm3aEBISQuvWrS3FrauKWbNmkZmZWaXniI2N5f/+7/8sy9u3b7eUfako48aNs5RDKo1Lly7Rq1evEnNzVdTWa2lXSX1cXFwqdB7rz2FpREdHs3Llygod15rKfCas7VqxYkWJee40mpsBnZFeo7kOzJ8/ny5duliyxAM0bNiwxAfpoEGDmDq1cC5hW1to1Uq9roi3KyUlhS1bttCtWzdyc3N5+OGH+fHHH9m9eze7du2q8nI21SG62rZty+zZs6vsfLt27SI3N5fo6GhGjBhRoX0rK7puJKpDdFkzYMAAli9fXuWfK42mKrii6DIMo7NhGL8ZhnHEMIzjhmGcMAxDx11pNOUkPT2dTZs28eWXXxYSXbGxsQQGBhbrP2fOHCZNUplVxo0bxxNPPEGnTp24885m7Ny5mORkSEjI57HHHiMgIICBAwdy5513lijgFi9eTL9+/YCC8inm2oY1atTAz8+PtLQ0fHx8LCVzLl68iLe3N7m5uXTv3p2nn36abt260apVK7Zt28awYcPw9fXlhRdesFyHv78/999/P8HBwdxzzz1kZmYye/Zs4uPjiYqKIioqClDi05wR//nnn7fY6eLiwvPPP094eDi9evVi69atdO/enWbNmrF8+XLLebp27UpYWBhhYWH8+eefAEydOpU//viD0NBQZs6cWcgrkp6ezvjx4wkKCiI4OJglS5aU+33z9vZm+vTphIWFERQUxKFDh0hMTOS+++4jOjqa0NBQYmJi2LFjB5GRkYSHh9O3b18SEhIAOHbsGL169SIkJISwsDBiYmKK2WoymZgyZQrt2rUjODjY4nkUESZNmkTr1q0ZMGAAiYmJ5ba7JNatW0f37t2555578Pf3Z/To0ZZyOb/88gv+/v506dLFUiQdICMjgwceeIB27drRpk0bfvjhB3JycnjppZdYuHChxdNXUj9QpY+effZZy73/4IMPSvxMrFq1io4dOxIWFsbw4cNJT08v0y7DMOjevftNkxBXoymEiJTZgENAf6A+UMfcrrTftWzh4eGi0VSGuLi4wisGDlTNmpdfVuv++qtg3c8/q3UffFCw7tw5tW7s2ArZMHfuXHnggQdERKRjx46yY8cOERE5ceKEBAQEiIjI2rVrZcCAASIi8vXXX8vjjz8uIiL333+/3HPPPWIymWT//v3SpElzmTdP5KWXFkn//v3FZDJJQkKCeHh4yKJFi4qde+zYsbJ8+XLL8oMPPij16tWTkSNHynfffScmk0lERMaNGydLly4VEZHPPvtMnnnmGRERiYyMlOeee05ERGbNmiWenp4SHx8v2dnZ0qhRI0lOTpYTJ04IIBs3bhQRkfHjx8vbb78tIiJeXl6SlJQkIuq9aNKkiSQmJkpubq5ERUVZzgnIypUrRURkyJAh0rt3b8nJyZHo6GgJCQkREZGMjAzJysoSEZEjR46I+XvB+t4VXX7uuefkySeftGxLSUkp8726//77LffRy8tLZs+eLSIiH330kTz44IPFjp+TkyMdO3aUxMREERFZsGCBjB8/XkREIiIi5Pvv1eTsrKwsycjIKGbrZ599Jq+++qqIiGRnZ0t4eLgcP35clixZIr169ZK8vDyJi4sTd3f3Et/f0mw34+zsbLHZzc1NTp8+LSaTSTp06CB//PGHZGVlSePGjeXIkSOSn58vw4cPt9g3bdo0mTt3roiInD9/Xnx9fSU9Pb3Q57Osfh9//LEMGzZMcnNzRUTk3Llzlvtq/kwkJSVJ165dJT09XURE3nzzTXn55ZfLtEtE5LvvvpNJkyaVeT+ulmLfHRpNBQC2Swl6pjzDi6ki8rOIJIrIOXOrIg2o0dxyzJ8/n5EjRwIwcuRI5s+fX6H9hwwZgo2NDa1bt+b8+bM4OMDWrRvp1284NjY23HHHHRavQVESEhKoV6+eZfmLL77g999/JyIignfeeYcHHngAgAkTJvD1118D8PXXXxcqPD1o0CAAgoKCCAgIwNPTkxo1atCsWTNOX55O2aRJEzp37gzAfffdx8aNG4vZsm3bNrp37069evWws7Nj9OjRllgzBwcHi0cuKCiIyMhI7O3tCQoKIjY2FoDc3FweeughgoKCGD58OAcOHCh2jqKsXr2axx9/3LJcq1atK+5jzbBhwwAIDw+32GHN4cOH2bdvH7179yY0NJTXXnuNM2fOkJaWRlxcnKUOpKOjIzVr1iy2/6pVq/j2228JDQ2lffv2nDt3jqNHj7JhwwZGjRqFra0tDRs2pEePHle0tWgB9aLrIiIiaNy4MTY2NoSGhhIbG8uhQ4fw8fHB19cXwzC47777Ctn25ptvEhoaSvfu3cnOzubUqVMlXkNJ/VavXs2jjz5qqWtYUr3JLVu2cODAATp37kxoaCjffPMNJ0+eLNMugPr16xNf0eBGjeYGoDxlgNYahvE28D1wybxSRHZWmVUaTVXx44/F1730UvF1/fqpZk3t2iXvXwbnzp1jzZo17Nu3D8MwMJlMGIbBW2+9Ve5j1KhRw/JaRGjZUv2Ni7vyvk5OTmRnZxdaFxQURFBQEGPGjMHHx4c5c+bQuXNnYmNjWb9+PSaTqdCwp/n8NjY2hWyxsbEhL09V7Sr6wC9JAEgZgWj29vaWfazPY32OmTNn0qBBA3bv3k1+fj6Ojo5XvH4RKdGW8mK2w9bW1mJH0eMHBASwefPmQusvXrxYruOLCB988AF9+/YttH7lypUVtrtOnTqcP3/espySkkLdunUty9bvnfX1lHYeEWHJkiX4+fkVWv/XX3+Vq1957r2I0Lt372I/RKKjo8vcNzs7GycnpzKPrdHciJTH09UeaAu8Abx7ub1TlUZpNLcKixcvZuzYsZw8eZLY2FhOnz6Nj49PiZ6g8uLnB61adWHVqiUkJeVz9uxZ1q1bV2LfVq1acezYMUDFN1n3i46OxsvLy7I8duxYRo0aVcjLVV5OnTplER7mSQMArq6upKWlAdC+fXvWr19PcnIyJpOJ+fPnE1mB2kapqal4enpiY2PD3LlzMZlMxc5RlD59+vDhhx9als2iZOzYsWzdurXC11kUPz8/kpKSLNeem5vL/v37cXNzo3HjxixbtgxQMx4zMzOL2dq3b18++eQTSzzdkSNHyMjIoFu3bixYsACTyURCQgJr16617DNt2jSWLl1azJbu3buzcOFCcnJyABUbWJoH1Iy/vz8nTpwgJiYGoJD46du3Lx988IFFLO/atQsofr9L69enTx8+/fRTi7hLSUkptn+HDh3YtGmT5TOamZnJkSNHyrTLfJ9KiofUaG50rii6RCSqhHZlX7dGo2H+/PmWISYzd99991XNYKtRA+67725q125Mu3aBPPLII7Rv3x53d/difQcMGGARWiLCW2+9hZ+fH6GhoUyfPp05c+ZY+o4ePZrz588zatSoCtvUqlUrvvnmG4KDg0lJSWHixIkAPPzww/Tv35+oqCg8PT3597//TVRUlCW4fPDgweU+x2OPPcY333xDhw4dOHLkCM7OzgAEBwdjZ2dHSEgIM2fOLLTPCy+8wPnz5wkMDCQkJMQiXvbs2YOnp2eFr7MoDg4OLF68mOeff56QkBBCQ0MtAf5z585l9uzZBAcH06lTJ/7+++9itk6YMIHWrVsTFhZGYKB6L/Py8hg6dCi+vr4EBQUxceLEQuJ079693HHHHcVsGThwIF27diU8PJzQ0FA2bdrEf/7znzLtd3R05PPPP2fAgAF06dKlkAh/8cUXyc3NJTg4mMDAQF588UUAoqKiOHDggCWQvrR+EyZMoGnTpgQHBxMSEmL5zFt/JurVq8ecOXMYNWoUwcHBdOjQgUOHDpVpF8DatWsZMGBAJd4xjaZ6uWLBa8Mw3IHpQLfLq9YDr4hIahXbZkEXvNZUllu1aG1WFvzvf+nY27vQseM5evWKYNOmTSU+jLt06cKKFSvw8PAo85iLFy/mhx9+YO7cuRWyJTY2loEDB7Jv374K7VddXLx4kQcffJBFixZVtymVom/fvvz666/VbUa1cfbsWf7xj3/w+++/V+l5btXvDs31obSC1+WJ6foK2Afce3l5DPA1MOzamafRaCqCkxPMnj2Q5OQL2NjkMH36iyUKLoB3332XU6dOlSm6Jk+ezM8//3xV+ZduFtzc3G5awQXc1oIL1FD2u+++W91maDSVojyermgRCb3SuqpEe7o0leVW/rV68SKsWKESpw4erIpjazSaa8Ot/N2hqXpK83SVJ5A+yzCMLlYH6gxkXUvjNBpNxXFzg0aNwGSCy3HIGo1Go7mBKc/w4kTgm8uxXQaQAoyrSqM0Gk358PODuDg4elSVCbK1rW6LNBqNRlMaVxRdIhINhBiG4XZ5uXwJaDQaTZXToAF4eMCFC3DqFPj4VLdFGo1GoymNUkWXYRj3ich3hmE8U2Q9ACLyXhXbptForoBhgL8/bNkChw6Bt7dap9FoNJobj7Jiupwv/3UtoblUsV0azS2Dra0toaGhBAYGctddd3HhwoVrenwvLxVEf/48JCVduf/27dt54oknrvq848aNK7HINsBTTz1lKfGzYsUK2rRpQ0hICK1bt7YUda4qZs2aRWZmZpWeIzY2tlCutau5p2XdRzOXLl2iV69eltxYV2PrtbRrxowZNGrUiNDQUHx9fRk2bFi5yjPNmTOn0mV8rsX1jBw5kqNHj1bq/BrN1VCq6BIR8zfjahF52boBVZsgRaO5hXByciI6Opp9+/ZRu3ZtPvroo2t6fFtb8PVVrw8dunL/tm3bMnv27GtqgzUpKSls2bKFbt26kZuby8MPP8yPP/7I7t272bVrF927d6+yc0P1iK6qvqe7du0iNzeX6OhoRowYUaF9KytSysvTTz9NdHQ0R48eZcSIEfTo0YOkK6j/6hBd1kycOLFCpbg0mmtFeWYvflDOdRqN5gp07NiRuMtFE2NiYujXrx/h4eF07dqVQ5cV09mzZxk6dCghISGEhIRYMpy/9957BAYGEhgYyKxZsyzHfPXVV7nnHn/+/e/eTJ06itdfV1W6unfvzvPPP09ERAQtW7bkjz/+AGDdunUMHDgQgDvvvJPQ0FBCQ0Nxd3fnm2++wWQyMWXKFNq1a0dwcLDFMyUiTJo0idatWzNgwAASExNLvMbFixdbilenpaWRl5dHnTp1AFX/z8/Pj7S0NHx8fCzlby5evIi3tze5ubl0796dp59+mm7dutGqVSu2bdvGsGHD8PX15YUXXgDUg9ff35/777+f4OBg7rnnHjIzM5k9ezbx8fFERUVZSuDMnz+foKAgAgMDef755y12uri48PzzzxMeHk6vXr3YunUr3bt3p1mzZixfvtxynq5duxIWFkZYWJjlvZg6dSp//PEHoaGhzJw5s9A9TU9PZ/z48QQFBREcHMySJUvK/fnw9vZm+vTphIWFERQUxKFDh0hMTOS+++4jOjqa0NBQYmJi2LFjB5GRkYSHh9O3b18SEhIAOHbsGL169bJk/I+JiSlm69W+v2UxYsQI+vTpYxFFJdm5ePFitm/fzujRowkNDSUrK+u6X0/Xrl1ZvXp1ifU0NZoqRURKbEBH4P8Bp4FnrNoMYHdp+1VFCw8PF42mMsTFxRVeMXBg6e3nnwv6/fxz2X0rgLOzs4iI5OXlyT333CM/Xz5Pjx495MiRIyIismXLFomKihIRkXvvvVdmzpxp2efChQuyfft2CQwMlPT0dElLS5PWrVvLzp07Zdu2bRISEiKZmZmyevVFadCghTz55NsiIhIZGSnPPPOMiIj89NNP0rNnTxERWbt2rQwYMKCQjdu3b5egoCC5cOGCfPbZZ/Lqq6+KiEh2draEh4fL8ePHZcmSJdKrVy/Jy8uTuLg4cXd3l0WLFhW73rFjx8ry5cstyw8++KDUq1dPRo4cKd99952YTCYRERk3bpwsXbpUREQ+++wzi62RkZHy3HPPiYjIrFmzxNPTU+Lj4yU7O1saNWokycnJcuLECQFk48aNIiIyfvx4efttdd1eXl6SlJQkIur9b9KkiSQmJkpubq5ERUVZzgnIypUrRURkyJAh0rt3b8nJyZHo6GgJCQkREZGMjAzJysoSEZEjR46I+buo6D20Xn7uuefkySeftGxLSUkpdo+suf/++y330cvLS2bPni0iIh999JE8+OCDxY6fk5MjHTt2lMTERBERWbBggYwfP15ERCIiIuT7778XEZGsrCzJyMgoZuvVvr/WTJ8+3XLfzcycOVMeffTRMu2MjIyUbdu2Vev19OrVS7Zv317qtRX77tBoKgCwXUrQM2XNXnRAxW7ZoeK4zFwE7rnG2k+juWXJysoiNDSU2NhYwsPD6d27N+np6fz5558MHz7c0u/SpUsArFmzhm+//RZQ8WDu7u5s3LiRoUOHWuoNDhs2jD/++IP8/HwGDx6Mk5MTYWEQFnYX587B5ZrHDBumCkeEh4cTGxtbon3JycmMGTOG//3vf7i7u7Nq1Sr27NljiX9JTU3l6NGjbNiwgVGjRmFra0vDhg3p0aPkEqwJCQnUq1fPsvzFF1+wd+9eVq9ezTvvvMNvv/3GnDlzmDBhAm+99RZDhgzh66+/5r///a9ln0GDBgEQFBREQECApU5is2bNOH36NB4eHjRp0oTOnTsDcN999zF79myeffbZQrZs27aN7t27W+wZPXo0GzZsYMiQITg4OFg8ckFBQdSoUQN7e3uCgoIs9yo3N5dJkyYRHR2Nra0tR44cKfGarVm9ejULFiywLNeqVeuK+1hj/Z59//33xbYfPnyYffv20bt3bwBMJhOenp6kpaURFxdnqfXpWEq23Kt9f6+EXE64XZqdN8r11K9fn/j4eMLDwyt1nRpNZShVdInIemC9YRhzROTkdbRJo6k6fvyxfP369VPtGmCO6UpNTWXgwIF89NFHjBs3Dg8PD6Kjo8t1DPODrKz1tWpBzZqQnw/Hj6t1NWrUAJR4K2koxWQyMXLkSF566SUCAwMtx/zggw/o27dvob4rV660zF4uCycnJ7KzswutCwoKIigoiDFjxuDj48OcOXPo3LkzsbGxrF+/HpPJZDm/td02NjaW1+Zl83UUtaUk20q7bwD29vaWfazPY32OmTNn0qBBA3bv3k1+fn6pD/6i5yzPfSqNK71nIkJAQACbN28utP7ixfJl87na9/dK7Nq1i7Zt25ZqZ0n2VMf1ZGdn4+TkVK5zaDTXivLEdGUahvG2YRgrDcNYY25VbplGc4vh7u7O7Nmzeeedd3BycsLHx8dSA1BE2L17NwA9e/bkk08+AZQounjxIt26dWPZsmVkZmaSkZHB0qVL6dq1K126dOHHH38kOzub9PR0du36CVDJUsvD1KlTCQ4OZuTIkZZ1ffv25ZNPPrHEWx05coSMjAy6devGggULMJlMJCQksHbt2hKP2apVK45dTpGfnp7OunXrLNuio6Px8vKyLI8dO5ZRo0Yxfvz48hlsxalTpywP6vnz59Oliyqc4erqSlpaGgDt27dn/fr1JCcnYzKZmD9/PpGRkeU+R2pqKp6entjY2DB37lxMJlOxcxSlT58+fPjhh5bl8+fPW65169atFb7Oovj5+ZGUlGS59tzcXPbv34+bmxuNGzdm2bJlgPKcZmZmFrO1Mu/vtGnTWLp06RVtW7JkCatWrWLUqFGl2gmF7191XI+5X0BAQPluukZzjSiP6JoHHAJ8gJeBWGBbFdqk0dyymFMnLFiwgHnz5vHll18SEhJCQEAAP/zwAwDvv/8+a9euJSgoiPDwcPbv309YWBjjxo0jIiKC9u3bM2HCBNq0aUO7du0YNGgQISEhDBs2jPbt2+Lh4U5aWsEQY1m88847rFq1yhJMv3z5ciZMmEDr1q0JCwsjMDCQRx55hLy8PIYOHYqvry9BQUFMnDixVPEyYMAAi9ASEd566y38/PwIDQ1l+vTpzJkzx9J39OjRnD9/nlGjRlX4XrZq1YpvvvmG4OBgUlJSmDhxIgAPP/ww/fv3JyoqCk9PT/79738TFRVlCcYePHhwuc/x2GOP8c0339ChQweOHDliGd4NDg7Gzs6OkJAQZs6cWWifF154gfPnzxMYGEhISIjlYb9nz54Sh9cqioODA4sXL+b5558nJCSE0NBQS4D/3LlzmT17NsHBwXTq1Im///67mK2VeX/37t1bakH1mTNnWlJGfPfdd6xZs4Z69eqVaee4ceN49NFHCQ0NxWQyXffrOXv2LE5OTtfk/dBoKkJ5Cl7vEJFwwzD2iEjw5XXrRaT8PxevEl3wWlNZboeitenp6bi4uJCZmUm3bt14/vnPyc0No1EjqIBT55rSpUsXVqxYgYeHR5n9Fi9ezA8//MDcuXMrdPzY2FgGDhzIvn37rsLK68fFixd58MEHLZ7Nm42+ffvy66+/VrcZ14yZM2fi5ubGgw8+WGqf2+G7Q1N1lFbwujy1F3Mv/00wDGMAEA80vpbGaTSayvPwww9z4MABsrOzuf/++7nrrjCWLYP4eEhPB5dqSGX87rvvcurUqTJF1+TJk/n5559ZuXLl9TOsmnBzc7tpBRdwSwkuAA8PD8aMGVPdZmhuQ8rj6RoI/AE0QeXncgNeFpHlVW+eQnu6NJXldv21unkznDgBrVtDaGh1W6PR3Hzcrt8dmmtDpT1dIrLi8stUIOpaG6bRaK49vr5KdMXEQFCQylqv0Wg0muqlrILXHwClusFE5OqLt2k0miqhTh2oXRtSUuDkSWjWrLot0mg0Gk1Zni49nqfR3KQYBrRsCVu2wJEj4OOj1mk0Go2m+igrOeo319MQjUZzbfHygl27lLfr3DmoW7e6LdJoNJrbmyvm6TIMY611UlSdHFWjKT/nzp2z5MC64447aNSoEaGhoXh4eNC6desqOeeyZcs4cOAAtrYFw4rlTZZaEWbMmME777xT4rZZs2ZZShkB5OXlUbduXaZNm1bp8124cIGPP/64XH1dKjBlMz8/nyeeeILAwECCgoJo164dJ06cqKyZVyQ2NtZSELoqMX8OzLz00kusXr261P579+5l3LhxVW6XRnM7U57kqM8CUy63F4Foyjn0aBhGP8MwDhuGccwwjKml9OluGEa0YRj7DcNYX067NZqbgjp16hAdHU10dDSPPvooTz/9tGXZxubK/34llYG5EtYPW19fNax48iQUqcxTZeTl5fHVV1/xj3/8w7Ju1apV+Pn58b///a/M0jxlURHRVREWLlxIfHw8e/bsYe/evSxduvSK+cWuhuoSXa+88gq9evUqtX9QUBBnzpzh1KlTVW6bRnO7csVvfRHZYdU2icgzQPsr7WcYhi3wEdAfaA2MMgyjdZE+HsDHwCARCQCGFz2ORnOrYjKZeOihhwgICKBPnz5kZWUB0L17d/75z38SGRnJ+++/z44dO4iMjCQ8PJy+ffuSkJAAwH//+1/atWtHSEgId999N5mZmfz5558sX76cKVOmEBoaytmzMYjE8O9/9yM8PJyuXbty6NAhQGUFf+KJJ+jUqRPNmjWzFAwGePvtt2nXrh3BwcFMnz7dsv7111/Hz8+PXr16cfjw4RKva82aNYSFhWFnVxC9MH/+fJ588kmaNm3Kli1bLOt/+eUXwsLCCAkJoWfPnkBxD1pgYCCxsbFMnTqVmJgYQkNDmTJlSpl2mhkzZowl0z+oDPjLlxfOdpOQkGAp9QPQuHFjatWqxZdffsnTTz9t6fff//6XZ555htjYWPz9/ZkwYQKBgYGMHj2a1atX07lzZ3x9fS2lfmbMmMGYMWPo0aMHvr6+loLeU6dO5Y8//iA0NJSZM2eSnZ3N+PHjCQoKok2bNpYM9nPmzGHIkCHcdddd+Pj48OGHH/Lee+/Rpk0bOnToQEpKSrk/BzExMYwbN87yHm/bto1OnToREhJCRESEpazOXXfdVahYt0ajucaISJkNqG3V6gJ9gcPl2K8j8KvV8jRgWpE+jwGvXelY4eHhotFUhri4uMIrBg6sWHvyyZL3rwTTp0+Xt99+W0RETpw4Iba2trJr1y4RERk+fLjMnTtXREQiIyNl4sSJIiKSk5MjHTt2lMTERBERWbBggYwfP15ERJKTky3H/te//iWzZ88WEZH7779fFi1aZNnWuXMPeffdI7JsmcjmzVskKirK0u+ee+4Rk8kk+/fvl+bNm4uIyK+//ioPPfSQ5Ofni8lkkgEDBsj69etl+/btEhgYKBkZGZKamirNmze3XI81L730ksUWEZHMzEzx9PSUjIwM+eyzz2Ty5MkiIpKYmCiNGzeW48ePi4jIuXPnit0nEZGAgAA5ceKEnDhxQgICAizrS7NTRMTZ2VlERNatWyeDBw8WEZELFy6It7e35ObmFrL39OnT4uXlJSEhIfLMM8/Izp07RUQkPT1dmjVrJjk5OSIi0rFjR9mzZ4/lvduzZ4+YTCYJCwuT8ePHS35+vixbtsxyvunTp0twcLBkZmZKUlKSNG7cWOLi4mTt2rUyYMAAy/nfeecdGTdunIiIHDx4UJo0aSJZWVny9ddfS/PmzeXixYuSmJgobm5u8sknn4iIyFNPPSUzZ86s0OfAvHzp0iXx8fGRrVu3iohIamqq5Z5s3LhRBlby832rUey7Q6OpAMB2KUHPlCcj/Q5U6ggDyANOAKXXTiigEXDaavkMxT1kLQF7wzDWAa7A+yLyLRrNbYCPjw+hlzOXhoeHExsba9k2YsQIAA4fPsy+ffvo3bs3oLxj5npx+/bt44UXXuDChQukp6fTt2/fYudIT09nx44/iY8fjsmkstPn51+ybB8yZAg2Nja0bt2as2fPAmoocNWqVbRp08ZyjKNHj5KWlsbQoUOpWbMmAIMGDSrxuhISEmjVqpVlecWKFURFRVGzZk3uvvtuXn31VWbOnMmWLVvo1q0bPj4+ANSuXbtC9680O7t162bpExkZyeOPP05iYiLff/89d999dyEPHCjP1uHDh1mzZg1r1qyhZ8+eLFq0iJ49e9KjRw9WrFhBq1atyM3NJSgoiNjYWHx8fAgKCgIgICCAnj17YhiGZbuZwYMH4+TkhJOTE1FRUWzdurXY0OXGjRuZPHkyAP7+/nh5eXHkyBEAoqKicHV1xdXVFXd3d+666y5ADQXu2bMHKN/nwJrDhw/j6elJu3btAJUt30z9+vWJj48v1/3XaDQVpzzJUX0qeeySJqgXDeawA8KBnoATsNkwjC0icqSS59RoyubHH6t3fytq1KhheW1ra2sZXgQshZVFhICAADZv3lxs/3HjxrFs2TJCQkKYM2eOpci0Nfn5+Xh4eLByZTQ7d8Idd0CPHiXbIJdjrUSEadOm8cgjjxQ61qxZszDKkXfCycmJbKsAsvnz57Np0ya8vb0BNblg7dq1iEiJx7OzsyM/P9+ynF1KMFppdhZlzJgxzJs3jwULFvDVV1+V2KdGjRr079+f/v3706BBA5YtW0bPnj2ZMGECb7zxBv7+/owfP75QfzM2NjaWZRsbm0JxeEWvr6TrNd/30uy60nnK8zkoer7S3sfs7GycnJzK3F+j0VSe8sxedDQM4xnDML43DGOJYRhPG4bhWI5jn0GVDjLTGFW3sWifX0QkQ0SSgQ1ASHmN12hudfz8/EhKSrKIrtzcXPbv3w9AWloanp6e5ObmMm/ePMs+rq6ulhgdNzc3fHx82LVrEba2kJAgbNq0u8xz9u3bl6+++or09HQA4uLiSExMpFu3bixdupSsrCzS0tL4sRQB2qpVK44dOwaoQs8bN27k1KlTxMbGEhsby0cffcT8+fPp2LEj69evt8wUNMcoeXt7s3PnTgB27txp2W59XWXZWZRx48Yxa9YsQHmlirJz506Ldyc/P589e/bg5eUFQPv27Tl9+jT/93//x6hRo8q8byXxww8/kJ2dzblz51i3bh3t2rUrdh3dunWzvH9Hjhzh1KlT+Pn5lfsc5fkcWOPv7098fDzbtm2z7G8WcEeOHCEwMLDC16nRaMpHeYYXvwXSUHUXAUYBc7ly0Ps2wNcwDB8gDhgJ/KNInx+ADw3DsAMcUMOPM8tnukZz6+Pg4MDixYt54oknSE1NJS8vj6eeeoqAgABeffVV2rdvj5eXF0FBQZYH7MiRI3nooYeYPXs2ixcvZt68eUycOJGYmNfIzMzlrrtG0rlz6b9t+vTpw8GDB+nYsSOg0i989913hIWFMWLECEJDQ/Hy8qJr164l7t+/f39LMeHvv/+eHj16FPLYDB48mOeee46PP/6Yzz//nGHDhpGfn0/9+vX57bffuPvuu/n2228JDQ2lXbt2tGzZElAzQTt37kxgYCD9+/fn7bffLtHO+vXrF7KnQYMGtGrViiFDhpRob2JiIg899BCXLqlh14iICCZNmmTZfu+99xIdHU2tWrVKvWelERERwYABAzh16hQvvvgiDRs2pF69etjZ2RESEsK4ceN47LHHePTRRwkKCsLOzo45c+YUul9XoryfAzMODg4sXLiQyZMnk5WVhZOTE6tXr8bFxYW1a9cyYMCACl+nRqMpH+UpeL1bREKutK6Ufe8EZgG2wFci8rphGI8CiMinl/tMAcYD+cAXIjKr6HF0wWtNZdFFaws4fx5+/hns7WHoULArz0+uSjJ06FDeeustfH19q+4k5SQzM5OgoCB27tyJu7t7hfcfOHAgTz/9tGV2ZXmZMWMGLi4uPPvssxU+Z3Vw6dIlIiMj2bhxY7G4t9sR/d1xa5Kdl42djR12NlX7Ga90wWtgl2EYHURky+UDtQc2leekIrISWFlk3adFlt8G3i7P8TQaTeWpVQvq1YOkJIiNhRYtqu5cb775JgkJCdUuulavXs0DDzzAM888U2HBdeHCBSIiIgqls7iVOXXqFG+++aYWXJqbnrz8PM6mnyUuLY64i3HEp8UTnxZPXFoc57LO8Ur3V2jj2aZabCuPp+sg4AeYM+Y1BQ6iPFMiIsFVaiHa06WpPPrXamFiY+HPP8HDA/r31/UYNZrS0N8dNzYiQuqlVM5cPMOZi2eIuxhnEVl/Z/xNvuSXuJ+djR1PRDxBlE9Uldp3NZ6uflVgj0ajqQaaNoWdO+HCBeXxKhL+pNFoNDcUZq/V6YunLQLL3DJyM0rcx8Cgfs36NHJrRCPXRjR0bUgjN/W3Xs162NrYXuerKKA8KSNOGoYRApijZv8QkbKnP2k0mhsSGxs1rLhvHxw5okWXRqO5MbiUd4kzF89w+uJpTqeetrxOSE8gL7/kcmjO9s40dmtMI9dGNHJrZHnt6eqJg63Ddb6C8nFF0WUYxpPAQ8D3l1d9ZxjG5yLyQRm7aTSaG5QWLWD/fjhzBrKyQKdl0mg014vsvGxOp57mVOopTl9Uf0+lniIxIxEplsqzwGvVxL0Jjd0aF2ruNdzLlTvwRqI8w4sPAu1FJAPAMIz/AJspSCGh0WhuImrWhMaN4fRpOHYMLidW12g0mmtGjimHMxfPcPLCSU6lnuJkqvp7NuNsif1tDVsaujakiVsTmrg3sfxt5NqIGnblT6Fyo1Me0WUAJqtlEyVnm9doNCXg4uJiSeAJqpDx9u3b+fDDDyt8rHXr1vHOO++wYsWKcu/TvXt33nnnHdq2LYjpbNlSia6jR6F1a7CtvhAHjUZzE5Mv+fyd/jexF2I5eeEkJ1NPEnshlvi0+BI9V3Y2djRybURT96Y0dW9KE7cmNHVviqerZ5WncbgRKM8Vfg38ZRjGUpTYGgx8WaVWaTSaKqV+fTWD8cIFOHUKfCpb7Euj0dw2pF1K48SFE5w4f0KJrFQlsnJMOcX6Ghg0dm1MU/emeHl44eXudVuJq9IoTyD9e5cLUne5vGq8iOyqUqs0mtuEpKQkHn30UU6dUhlZZs2aRefOndm6dStPPfWUJWP4119/Xaw0TEZGBpMnT2bv3r3k5eUxY8YMBg8eTFZWFuPHj+fAgQO0atWqUE1HM4YB/v6wZQscOgTe3jp9hEajUZjyTcSnxVsE1okLqqVkpZTYv27Nuni5e+Ht4Y2XuxdeHl40dmt8wwazVycVkZsGKjeX/mrW3JTcNf+uKjnuj6PKLoKdlZVFaGioZTklJYVBgwYB8OSTT/L000/TpUsXTp06Rd++fTl48CD+/v5s2LABOzs7Vq9ezT//+U+WLFlS6Livv/46PXr04KuvvrIk8uzVqxefffYZNWvWZM+ePezZs4ewsLAS7fLyguholalep4/QaG5PsvOyLcIqJiWGExdOlOq9crRzxMvdCx8PH7w8lMjy9vDGxcGlGiy/OSnP7MWXUHUWl6AE19eGYSwSkdeq2jiN5lbAycmJ6Ohoy7I5pgtUxvQDBw5Ytl28eJG0tDRSU1O5//77OXr0KIZhkJubW+y4q1atYvny5bzzzjsAZGdnc+rUKTZs2MATTzwBQHBwMMHBJecvtrUtSB9x+LAWXRrNrc7FSxc5fv44MSkxxJyP4fj546XGXtWvWR+fWj74ePhY/t7hcsdNN1vwRqM8nq5RQBsRyQYwDONNYCegRZfmpuJKHqnqID8/n82bN+NUJG/D5MmTiYqKYunSpcTGxtK9e/di+4oIS5YsKTbsCJT7i9HXFw4cUOkj0tPBRf9g1WhuCc5nnedYyjFizsdY/iZnJhfrZ2vY0tS9Kc1qNaNZrWYWkaW9V1VDeURXLOAIZF9ergHEVJVBGs3tRJ8+ffjwww+ZMmUKANHR0YSGhpKamkqjRo0A5Rkrib59+/LBBx/wwQcfYBgGu3btok2bNnTr1o158+YRFRXFvn372LNnT6nnd3JSw4wnTqhkqaWMRGo0mhuYC9kXOJZyjGMpxzh67ijHzh8rMf6qhm0NfDx8aF67Oc1rNadZrWY0dW+Kva19NVh9e1Ie0XUJ2G8Yxm+AAL2BjYZhzAYQkSeq0D6N5pZm9uzZPP744wQHB5OXl0e3bt349NNPee6557j//vt577336NGjR4n7vvjiizz11FMEBwcjInh7e7NixQomTpzI+PHjCQ4OJjQ0lIiIiDJt8PNToismRuXsstffvxrNDUt6TjrHUo5x5NwRJbJSjpbowXKyc6J5rea0qN3CIrIauTXCxrCpBqs1ZspT8Pr+sraLyDfX1KIS0AWvNZVFF60tH6tXQ2IihIcrEabR3O7cCN8dOaYcjp8/zpFzRywtIT2hWD9HO0da1GqBbx1fWtRuQYvaLfB08dTxV9VIpQteXw9RpdFoqhc/PyW6jhxRiVP1d7VGc30REeLS4jicfJjD5w5z5NwRYi/EYhJToX4Otg4082iGbx1ffGv74lvHl0aujbTAukm4fTOUaTQaC40bg7MzpKVBXJxa1mg0VUfapTQOnztcSGRl5GYU6mNg4O3ujW8dX1rWaUnLOi1p6t70tk4uerOj3zmNRoNhKG/Xzp0qWaoWXRrNtSNf8jmVeopDyYcsLS4trli/2k618a/jT8s6LfGr60eL2i1wtHOsBos1VUWposswjLkiMsYwjCdF5P3raZRGo7n+NG+ucnYlJqpkqfXqVbdFGs3NSWZuJkfOHeFg0kEOJh/k8LnDZOZmFurjYOtAi1ot8Kvrh39dJbTq1qxbTRZrrhdlebrCDcPwAh4wDONbimSiF5GS6wFoNJqbEnt7lbdr/36Vuysysrot0mhuDpIykjiYfJD9ifs5mHyQ2AuxxRKO1q9ZH/+6/pbmU8tHDxPehpT1jn8K/AI0A3ZQWHTJ5fUajeYWws9PDS/GxanyQLVqVbdFGs2NhYhwKvUU+5P2sz9xPweSDxRL2WBr2NK8VnNa1WtFq7qt8K/rT52adarJYs2NRKmiS0RmA7MNw/hERCZeR5s0Gk014eioSgMdPqy8XZ07V7dFGk31kpefx/Hzx9mfuJ99ifs4kHyA9Jz0Qn2c7Z1pVbcVreq1onW91vjW9qWGXY1qslhzI1OelBETDcMIAbpeXrVBREpPca3RaApha2tLUFCQZXnkyJFMnTq11P5vvPEG//znPy3LnTp14s8//6zweaOjo4mPj+fOO+8scfuuXbv46KOP+OKLL5gzZw5TpkyhcePGpKWl4+zcjGHDphMc3AlX1wqfuhje3t5s374dNzc3evXqxZo1a7Cz00MrmhsPU76Jc1nniD0fyyeHPuHQuUNk52UX6lO3Zl1a121NQP0AWtdrjZe7l07ZoCkX5Sl4/QTwMPD95VXzDMP4XEQ+qFLLNJpbhKIFr69EUdFVGcEFSnRt3769VNH1xhtv8MILL1iWR4wYwYcffgjAxx+v5Z//HIa//1pGjGhVqfOXhIODAz179mThwoWMHj36mh1Xo6ksZpGVmJHI2fSzJGclY8o3YbpoIvpsNACNXBsRUC+AgPoBBNYPpF7NelpkaSpFeX5qTgDai0gGgGEY/wE2A1p0aW4q7rrrrio57o8/VryQdmpqKhERESxfvhw/Pz9GjRpFjx49iImJISsri9DQUAICApg3bx4uLi6kp6ezbt06ZsyYQd26ddm3bx/h4eF89913GIbBtm3bePLJJ8nIyKBGjRr89ttvvPTSS2RlZbFx40amTZvGiBEjLOdPS0tjz549hISElGjfffdFsXr1w3zzzefcdddMEhJiePzxx0lKSqJmzZr897//xd/fnx9//JHXXnuNnJwc6tSpw7x582jQoAHnzp1j1KhRJCUlERERgXXliyFDhjBt2jQtujTVQr7kcy7zHGczzhYSWdZ4OHrgJE483/l5AuoFUMtJBzdqrg3lEV0GYP2JNFFkJqNGoykds4gyYxZAH374IePGjePJJ5/k/PnzPPTQQwB8+OGHpXrGdu3axf79+2nYsCGdO3dm06ZNREREMGLECBYuXEi7du24ePEiNWvW5JVXXmH79u0W75U127dvJzAwsFSb3dygbdswFi78jEOHYMqUh/n000/x9fXlr7/+4rHHHmPNmjV06dKFLVu2YBgGX3zxBW+99RbvvvsuL7/8Ml26dOGll17ip59+4vPPP7ccOzAwkG3btlXuZmo0FUREOJ99nr/T/+Zs+lmSMpPIy88r1MfD0YMGzg2o71yfes71cLRzvCHKAGluPcojur4G/jIMY+nl5SHAl1VmkUZTRVTGI3UtKG14sXfv3ixatIjHH3+c3bt3l+tYERERNL6cuTQ0NJTY2Fjc3d3x9PSkXbt2ALi5uV3xOAkJCdS7QiKuJk2Ud2rfvnT+/PNPhg8fbtl26dIlAM6cOcOIESNISEggJycHHx8fADZs2MD336uIhAEDBlDLahqkra0tDg4OpKWl4XotAsY0GitEhLScNIvIOptxlhxTTqE+7jXcqe9cnwYuSmjpBKSa60V5AunfMwxjHdAF5eEaLyK7qtowjeZWJz8/n4MHD+Lk5ERKSopFTJVFjRoFM6JsbW3Jy8tDRCocX+Lk5ER2dnaZfY4e3UXLlq3IycnHxcWjROE4efJknnnmGQYNGmQZ/jRTlk2XLl3C0VE/6DTXhqzcLCWyMs7yd/rfxRKRuji40MC5AXe43EF95/o42TtVk6Wa251yTR8SkZ3Aziq2RaO5rZg5cyatWrXijTfe4IEHHmDz5s3Y29tjb29Pbm4u9vb25TqOv78/8fHxbNu2jXbt2pGWloaTkxOurq6kpaWVuE+rVq149913Sz3m+vXr+fzzz1myZC0nT7pRu7YP//d/i/jHP4YjIpZ4sNTUVBo1agTAN998Y9m/W7duzJs3jxdeeIGff/6Z8+fPW7adO3eOevXqlfv6NJqi5OXnkZSRREJ6An+n/82F7AuFtjvaOVpEVgOXBrg4uFSPoRpNEfScbY2miika09WvXz8eeOABvvjiC7Zu3YqrqyvdunXjtdde4+WXX+bhhx8mODiYsLAw5s2bd8XjOzg4sHDhQiZPnkxWVhZOTk6sXr2aqKgo3nzzTUJDQ4sF0vv7+5OamlpoiG/hwoVs3LiRzMxMfHx8WLJkCZ07t+LSJZg4cR4ffjiR//znNXJzcxk5ciQhISHMmDGD4cOH06hRIzp06MCJEycAmD59OqNGjSIsLIzIyEiaNm1qOffatWtLnVGp0ZSEiJB6KZWEtAQS0hNIykjCJAWhxrY2thaRdYfLHbjXcNezCzU3JIb1rKIblbZt28r27dur2wzNTYgOhi2dmTNn4urqyoQJE8rsl5ICv/wCtrZw111Qs+bVnXfYsGH8+9//xs/P7+oOpLmluZR3ib/T/yYhXQmtrNwsyzYDg1pOtbjD5Q48XTypW7Mutja21/T8+rtDczUYhrFDRNoWXa89XRrNbcrEiRNZtGjRFfvVrg1Nm8KpU7B3L7RvX/lz5uTkMGTIEC24NMUQEVKyUkhITyA+LZ5zmecK1S90snPC09UTTxdPGrg00MHvmpuS8iRHHQb8B6iPCqQ3ABGRK06RMgyjH/A+YAt8ISJvltKvHbAFGCEii8tvvkajqSyOjo6MGTOmXH1DQuDMGTh+HPz9wd29cud0cHBg7NixldtZc8uRY8ohIU2JrIT0hEKZ320MG+rXrE9D14Z4unrqIUPNLUF5PF1vAXeJyMGKHNgwDFvgI6A3cAbYZhjGchE5UEK//wC/VuT4Gk15qczsPk1hXF2heXM4ehR274Zu3arbIs3NiIhw8dJF4tLiiE+LJykzqVDiXGd7ZzxdPWno2pAGzg2wt62eyRY3Q9iN5uakPKLrbEUF12UigGMichzAMIwFwGDgQJF+k4ElQLtKnEOjKRN7e3vS09NxcXHRwusqCQyEEyeUxys5GerWrW6LNDcDpnwTiRmJxKfFE5cWV6hYtI1hQ31n5c1q6NoQtxpu1f5/KiKkp6fr2bWaKqE8omu7YRgLgWXAJfNKEfm+1D0UjYDTVstngELRIIZhNAKGAj3QoktTBdSuXZuUlJRSUydoKoanJ8TGwubNEBYGWsdqSiLHlMO5zHMkZyZzLutcoZmG9jb21HWqS52adajtVFt5s3IhIyWDDDKq0eoC7O3tqV27dnWbobkFKY/ocgMygT5W64SCAtilUdLXcVGf7SzgeRExVfevG82tia2t7RUzr2vKj7s7fPIJpKXB9OnQttjcHM3tSkJaAlvObGFr3Fb2J+0vFATv7e5NRKMI2jVqR8s6LbExbKrRUo2m+ihPRvrxlTz2GaCJ1XJjIL5In7bAgsuCqy5wp2EYeSKyrJLn1Gg0VYizMwwfDl99Bd98A23aqFQSmtsPEeFYyjG2nNnCljNbOHXxlGWbnY0dgfUCad+4PRGNIqjvXL8aLdVobhzKM3uxMfAB0BnlqdoIPCkiZ66w6zbA1zAMHyAOGAn8w7qDiPhYnWcOsEILLo3mxmbAAPjxRzXMuHKlyt2luT0w5ZvYn7Sfzac3syVuC8mZyZZtzvbOtG3Ylg6NO9DmjjY4OzhXo6UazY1JeQte/x9grnZ73+V1vcvaSUTyDMOYhJqVaAt8JSL7DcN49PL2TytttUajqTYcHOCRR+C112DuXOjUCerUqW6rNFVFrimX6L+j2XxmM1vObCEtpyA+so5THTo07kCHxh0IrB+InY1O/ajRlMUVM9IbhhEtIqFXWleV6Iz0Gs2Nx2uvwV9/QZcu8Pzz1W2N5lqSY8phR/wONp3exNa4rWTlFWSDb+TaiE5NOtGxcUda1G5R7bMNNZobkavJSJ9sGMZ9wPzLy6OAc9fSOI1Gc/PxyCMQHQ0bN0KvXhAeXt0Waa6GS3mX2JGwg42nNrItfluhRKXNPJrRqUknOjXpRGO3xlpoaTSVpDyi6wHgQ2AmKqbrz8vrNBrNbUy9ejB6tAqq/+QT+PhjNfSouXkwe7Q2ntrI1vithYSWb21fOjfpTKcmnfB09axGKzWaW4fyzF48BQy6DrZoNJqbjLvugjVrVFD9woVQzqpCmmokLz+PXQm72HByA1vithQSWi1rt6RL0y50btpZzzjUaKqAUkWXYRjPichbhmF8QPH8WojIE1VqmUajueGxs4PHH4cpU+D776F7d2jS5Iq7aa4z+ZLP3rN72XByA3+e+bNQVnjf2r50adqFLk27aKGl0VQxZXm6zKV/dAS7RqMpFX9/6NcPfvlFDTG+8cYtkKleBFJT1YWYq3snJcH69ZCfr7ZbT0JydFQFKc1ZzJMvp1KoXRtsqicRqDmP1rrYdfxx6g/OZ5+3bPN296arV1e6Nu2qhw41mutIqaJLRH68/DJTRBZZbzMMY3gJu2g0mtuUsWNVaaB9+2D5chg8uLotqgDJyXDkiCoqaW6nT0N2tkpK9uijql9KisoIWxrBwQWia/58WLVKCa46dVShynr1oGFDaNEC2rcv/ThXSXxaPOtj17Mudh3x6QX5qD1dPOnm1Y1uXt1o6t60ys6v0WhKpzyB9NOAReVYp9FoblNcXWHyZJVGYs4cCAhQ2uKGJClJiSCzO+7ll1VQWlFcXNT4qZkGDWDYMJWC37yv+W92duFkZa6uUKsWnD+vzpeUBAcvDx4EBhaIrrw8eOstdbPMzc2twpeUdimNDSc3sDZ2LYfPHbas93D0oFvTbkR6R+Jb21fPOtRoqplS83QZhtEfuBO4F1hotckNaC0iEVVvnkLn6dJobg4+/RR++kkVxn7/fXByqm6LLnPmDGzYAH/8oV7/979wxx1q29y5cOwYNG2qAtIaN1atEuKnGLm5cO6cEl2JiRAfrzxe/fqp7adPw2OPFd6nfn1o2RJat4auXcHDo+RDm3LZFr+NNSfWsCNhB3n5eQA42jnSqXEnunt3J7hBMLY2uk6TRnO9qUyernhUPNcgYIfV+jTg6WtrnkajuRV44AHYv185jj79FJ6uzm+KxEQltDZsgBMnCtY7O8PffxeIrqqccmlvr85jPldRateGZ56BmBg4elT9TUxUbeNGCAoqEF179iAODhyrA7+fXMf6k+stAfEGBuGe4fTw6UH7Ru2pYVej6q5Jo9FUmvJkpHcDMkTEdHnZFqghIpnXwT5Ae7o0mpuJ06fhqacgJ0fpiaioajAiI0MFmuXkqGVnZ1WvqFs3JWRu1Crd+fnqBh4+rOLMHn8cDIPzWedZ9/J4VqdFc8opB1zdwM0Nn8YB9AwaTDevSGo51apu6zUazWWuJiP9KqAXYJ5j7HR5XadrZ55Go7lVaNJEZav/4AM1m9HfXw03VikmE2zbpmKlDEOJrG7d4NIllceiTRvldbrRsbEBLy/w8iKvVw92xG3lt+O/sS1+G/kesWAI7hk2dI+tQY+LLjTLSYa6P8BoF1UWQKPR3NCUR3Q5ioglqYuIpBuGUbMKbdJoNDc5vXvDrl1qhOytt1SrEs0jooYPv/1WDcm98EJBkPoTT9yUuSviLsaxKmYVa2LXcCH7AgC2hi0dOt1Lr2a9CLdvit3e/aoGU3S0mn1pHfC/f78aqoyIULMlNRrNDUN5RFeGYRhhIrITwDCMcCDrCvtoNJrbGMOASZPUCNmxY8rr9fTT11gD7dmjahDFxKjlhg0Ln+AmElw5phw2ndrErzG/sj9pv2V9E7cm9G7WmyifKDwcPQp2aOCpPFsi6vqtXYm//w6//QZffgmNGinx1b49tGpVbTnDNBqNojwxXe2ABajAegBPYISI7Ch9r2uLjunSaG5OYmJg6lSVUWHkSFWr8ao5eRK+/hp2XP4Kql0b7rsPeva86UTFyQsn+TXmV9acWENGbgagZh92bdqVvs370rJOy4qnedi2TSVx3b5dxbaZcXODgQNh1KhreAUajaYkKh3TJSLbDMPwB/wAAzgkIrlVYKNGo7nFaN4cnn8eXnkFFixQ2RB6977Kg/7xhxJcTk4wfDgMGgQ1bp7ZejmmHP48/Scrj67kYPJBy3rf2r70ad6HSK9InOyvItdGu3aq5eWp3GBbt8Jff0FCglpnJjlZZbNt107FwGk0mirnip4uAMMwAoHWgKN5nYh8W4V2FUJ7ujSam5uff1ZB9ba2MGMGhIZW8AAZGQXCIDcXFi+GO+8sKNFzE5CQlsAvx37ht+O/kZaTBiivVpR3FP1a9KNZrWZVd3IRNSuyZk2VGBZg2TI1BGlnByEh0LmzGoa8FvnJNJrbnNI8XeUZXpwOdEeJrpVAf2CjiNxTBXaWiBZdGs3Nz5w5sGSJeu7/5z/g7V2OnTIy1I5//QUffaQyvd9E5Es+O+J38NPRn9iRUBCR0cyjGf19+1+9V+tq+PNP+PFHFXhvfg4Yhkqp0b37NXBJajS3L1eTMuIeIATYJSLjDcNoAHxxrQ3UaDS3NvffD2fPqhmNL7+sZjTWq1fGDnv2wHvvqYzudnZw4ECV1iy8lqRdSuO347+x8uhKzmacBcDexp5uXt3o36J/5WK1rjWdOqmWmqoKZ27eDLt3q/vu5FQguvLy4OLFgrqSGo2m0pRHdGWJSL5hGHmXE6UmAlXoB9doNLcihqFmMJ47p0KNpk5VtRqL5fDKz1cBYAsWKA9My5Yq/YOXV7XYXRFiL8Ty4+EfWXdyHTkmlZi1gXMD7vS9k97NeuNa4wb01Lm7q7JE/fpBerqKATMPQQLs3QvTp6vZj126KKFmXWdSo9GUm/KIru2GYXgA/0WVA0oHtlalURqN5tbEwUE9v6dPV0nXzcKrSZPLHVJS4N13lbfFMGDECDXb7kbNII8aQtwWt43lh5ezJ3GPZX3YHWEMbDmQ8Ibh2Bg3yaxKFxfo0aPwuoSEAk/jgQPw+eeFBZi1QNNoNGVSZkyXofzfjUXk9OVlb8BNRPaUulMVoGO6NJpbi6wsePVV5URxc1OzG5s3R81KnDFDeV+efbYSEffXj6zcLH47/hvLDy+3DCE62jnSy6cXA1sOpJFbo2q28BqSmalSUGzcqN4jc3klT0/47LObKieaRnM9uJpA+h0iEl5llpUDLbo0mluPnBz497/Vs9zZuWAEi99+g/DwGzaGKCkjiR+P/MivMb+SmatK0N7hfAcDWw6kV7NeODvc4ukXsrJULrBNm9RsCHPer3Pn1AyJzp1V0x4wzW3M1Yiuj4A5IrKtqoy7Elp0aTS3JnmZOay792OWpPcluV4rnn8e2hb7mroxOHruKMsOLWPj6Y3kSz4AgfUCGeI/hHaN2t08Q4hVxfLl8N//Fiz7+akhyM6drzBjQqO59bga0XUAlRg1FshAJUgVEQmuAjtLRIsujeYWJCUFXnsNOXKUfec8eaHOJ4iNLaNGqez1N8KIlYiwM2EnSw4uYW/iXkDVQezStAuD/QbjW8e3mi28gcjOVh6wjRuV+9I8BAkQEKDcmjfCm6rRXAcqnDLCMIymInIKlZdLo9Forh1Hj6oI+pQUjAb1CfzwX4zeast338H//Z/a/P/+X/UlSs/Lz2N97HqWHlrKydSTADjZOdGvRT8G+Q2ibk09dFYMR0fo2lW17OyCGLBt21RyNrPgMpmUV6x9e12QW3PbUaqnyzCMnSISdvn1EhG5+7paZoX2dGk0txB//qlmKObkQGCgmsJ4ObP8zp3wzjuQlqZitP/5z3ImUb1GZOdlsypmFUsPLSU5MxmA2k61Gew3mL7N+9768VpVQXa2yvNVv75a3rMH/vUv9drbuyBfWNOm2hOmuWWo8PCiYRi7RKRN0dfVgRZdGs0tws8/wyefqPxbvXvDY4+pdARWnD0Lb7wBx4+rFBOPPKK6VuXzOD0nnRVHVrD88HJLiZ4mbk24u9XdRHpHYmdTnuw6mnJx/LgqQfTXX2pWpJlGjaBjRxWY7+BQbeZpNNeCymSkl1JeazQaTeWoWxdsbGD0aLjnnhKVVIMG8Pbbqlbj77/DBx/A+vUwaVIJiVSvkgvZF1h6cCkrj60kOy8bgJa1WzI8YDjtG7Wv/qzxtyLNmsEzz6gamrt3K8/nli0QFwcbNsDYsQV9jx0DH58bOk+bRlMRyvJ0mSgInHcCzD9JzIH0160qqvZ0aTS3EAkJ5VJPIuoZ/PnnanTKwQHGjIFBg5RuuxrOZZ5jycEl/BrzqyVzfGiDUIYHDCeofpAWW9cbkwn27VO1Njt1UutSUlTtKFdXFf/VoQO0aaO9YJqbgkrPXrwR0KJLo7lJyc5W8VuDBqlCypUgNVVlIli/Xi37+iqvV7NKFCNLzEhk0f5FrD6xmrz8PADaN2rPiIAReibijcbhw+qzk5BQsK5GDQgLUwKsc2e1rNHcgFSL6DIMox/wPmALfCEibxbZPhp4/vJiOjBRRHYXPY4WXRrNTUhamqpsffiw8mx98slVDRNt26aGHJNVfDuRkWqUsjxDjmax9dvx3zCJCQODzk06c2/AvfjU8qm0TZoqRgTOnFHFuLdsUdNaQX2O5s0rmN6alqY8YhrNDcJ1F12GYdgCR4DewBlgGzBKRA5Y9ekEHBSR84Zh9AdmiEj7osfSokujuck4fx5eegliY9WstVdfvSbpATIzYf58WLEC8vLUs7dvX5XXq1at4v1LEluRXpHcG3AvTdybFN9Bc2OTnKwC8JOT1dAjqALpY8cq0RURAe3aqdIGOg5MU41Uh+jqiBJRfS8vTwMQkX+X0r8WsE9EihUs06JLo7mJSEyEF15Qw0KNGyvBdY1LwiQmqnxea9YoZ0iNGjBgANx1lzpVcmYyC/ctLCS2unt3Z0TAiFurJqIG4uNVYH5GRsE6FxdVSioiQpU4qFmz+uzT3JZUh+i6B+gnIhMuL48B2ovIpFL6Pwv4m/tbo0WXRnOTEBenBFdysgq6euUVSw6uquDUKfj2W+X8AMizT6Fmu8VcrPczjs55WmzdLuTlwcGDagx661b1OTTz3nsqEBDUMKSLi84HpqlyKpMy4qrPWcK6EhWeYRhRwINAlyq0R6PRVDWJiXDhArRurYYXqzilfNOmSuPt2JfKf35cwsazP2FKzMFINPBz6sakyFEMDm+sJ7zd6tjZqYkaQUHwwANKdG3bpoRYixYF/V57TSWCCwtTnrDQ0Oore6C5Lan24UXDMIKBpUB/ETlS0rG0p0ujuYnYuxdatrwuM8syczNZenApyw4vIzsvm5wccLvQiUvb/4Fc8ALAyUlNdIuKUs9k7eS4TcnNhYcfLpiJASr3SKtWSoR17XrtE8FpbluqY3jRDhVI3xOIQwXS/0NE9lv1aQqsAcaKyJ+lHUuLLo3mBmbfPpVnKSTkup0yx5TDT0d+YtGBRZYM8uGe4dwXfB8tarcgOxvWroXVq+GI1U+5unWhWzeVccDP7+rzfWluUESUyDKZlOo2c/YsxMSoUkS7d6vZkPn5qv/48SofGMC5c+rDUbduYU9ZbKzq37RpQSWFlBRV0srWtqDZ2RX+q5X+bUd1pYy4E5iFShnxlYi8bhjGowAi8qlhGF8AdwMnL++SV5KRWnRpNDcoO3fC66+rh8rMmdCkamcEmvJNrD6+mvn75nMu6xwAAfUCGBsyltb1Wpe4T1ycEmBr16rRTzNubirGOiJC5dzUsdbVRF6eGpKGggkXWVmwbp0Kjs/OVi0rq+DvpUuq5eQU/A0OhqefVvsnJysRVbs2fPNNwbnuu08lfjNjMqnMu6mpqgyRvb1aHxurPiweHqryekiIcpM++qiamTtnDtSpo/q+8ooayiwLOzvV7O1VmzlT2QbKviNHlG2tWql1O3ao/60aNQqao2PB36LNyUnFqtlVZcSQpiJUR0wXIrISWFlk3adWrycAxQLnNRrNTcBff8Gbb6qHZp8+6qFVRYgIm89s5tvd3xKXpoKkm3k0Y2zIWMI8w8rMIN+okXqejR4NBw6olE9bt6rJlWvWqGZrq2Ktg4LUs9vfXz3LNBUkL0+JmAsXClpqaoGwuXhRtago6N9f7bNjh4q1atdOxQGCElcff1yxc1uLKXv7ApFjjaenUte2tsqTZd3MnyHDULlJLl1Syz/+qJqNDSQlqRQo1setVUvVrjKZVMvLK/46L0+1bFVqqlA6i+PHlefNug7lgQOwfHnFrv/FF9UvCFD7/vyzSkpsvs+xsfDrr+r6zc3ZueCv+bWLixJ32jtXJWhZrNFoCjh/vuDBYE2tWoVVyIYNKlt4fr7K0/DQQ1X2Jb337F7mRM/hSIoaJ/R08WRM8Bi6NO1SoXI9hgEBAao9+KDKufnXX0qAHTpU0BYtKhBhfn4qPK1lS/Vcve2fQykpSiTUrl1QEuDwYfjoI7XNWviURcuWBa/d3NTxXFwK1jk7Q79+yoNTs2Zhj475tYNDgRfIwaHwMKK7OyxdWvy8b79d/mvNy1PXFh2thiIPH1beraFDlc2glHuDBvDss2oYsiRPk4g6Vm5uwV/rRK4PPADDhqkak2batVPnMHv0zM3a02ftAczKKuyqTU5WH/CsrIJ1p0+rBHflwcZGvQejRqn/b1BDsb/+qrxxPXuqdTk5SiA6O6v3z9VVvb7t/1FKR5cB0mhuV3JyVHzLoUPqgXL4cOEgY2sMQ7mMWrRQ0+7Xr1df8iNGqIKIVfAlG3shljnRc9iRsAMAD0cPRgWOok/zPtjZXNvfi5mZsH+/mgOwb5+qs1z0q9HVVWkFHx/w9gYvL5WG7JYZ0cnIgL//VnFPZ8+q4bWzZ1UCtPBw1efHH1UxzDvvhIkT1bpjxwqG9QxDiYVatZTw8fBQzc2tcLvjjmueu63KycxUHw5Pz4JhdPP9ACX+WrUqmEXp61t9H460NOVldHVV9x/UOPuOHeo6MjPV+13aX7OX7+GHC0TX77/DrFnKS/nMM2rd6dPw2GOFz20YSoCZRZirq3rt5qb+tmypxvVBCdBz59S2W2x8X9de1Gg0iuPH1cNiwwYlvKypWbN4Xq38fPXFmJen+u/Zo9Z5e8M990D37ioo6ho9YJIzk/luz3esObEGQXCyc+LuVncz2H8wjnbXZ8wvI0Np0aNHVbjNkSMlO3Hs7JQWbdJE/bVuN2QmgkuXVHKz+Hj1EE5IKGgXL5a8z9ixMHy4er17NyxerIaxzA/jnBx1zNq11WfndsoEf/CgChbct08JEGtq1VLxWuYfJHl5N49Cz8tT/wTWHsS4OPWr5I47VKoN87qPP4b0dNXS0gp710qiTx+YPFm9Pn4cnnxSfZd88IFaJ6LywJhFm1moW782t5o1b1ivmhZdGs3tjMmkgplWrFAuHTPe3iqAyc9PtcaNS/4Sy81VMSExMeoX76FDhbe7uUGXLmrYwXroqAJk5GSw+MBilh9ZTo4pB1vDljt972REwAjcHasuwWp5EFHhPEePqtsQGwsnTyrHUGlfoa6uKvynQYOCVr++GqGqW1dtr9LnxZkzamisaVMVqAbqM/DGGyX3d3BQXhxrgxs0UMOI9etXoaG3CBcuKPG1d2+BODHHqOXkqKBCLy/lDWvdWrUqTBxcbZhMSrClpSkhdvFiwd+0NOUt79BB9T18GP7zH3Vfpk9X67Ky4N57y3cuOzv13RMYCFOmqHX5+bBggfLw3XlnQd+0NCUgr5Pw1aJLo7kdEVGR4t99VzB0WLMm9O6tho3Kk5fIXHS46MzExEQ1w2zdusK/8lu3Vh6wtm3LpSry8vP4+ejPzN8335L+oUuTLowNGYun642dNyk7Wzl54uKKt6JOxKLY2yvxVbu2corUqqWeE+a/7u4FrdS45uxspf5OnFB/O3dWDyAoGPrq1w8ef1ytO3NGTX5o1EgJ7IYNlTjw9FQnvkG9Bjcl1p6tY8fUkFzR523DhkqEjRihc4SZMVcXME+6SEsreF10QoY5/jQ8HGbMUK8vXlQC18VFFWo189BD6lfS009Djx5VfhnVMntRo9FUIzEx8OmnBV6pRo3UkFCPHoWDjssiP18NH6xdq77UgoIKttWvr36RDh+uHvpr18Jvv6nA2ldeUb9e775bJZ0s4deliPDn6T/5Zvc3JKQnACr9w/jQ8fjV9bvKi78+ODoWBNpbI6IcH+awKHOo1LlzSvsmJytngHlk70o4OMAdNc7jnX+cxpdiuCPrBPXTYnDLSMDWDuwup4dKTXYl1z5QTUJr4I9z997YB4cUlAdp3Bg+/PAa3wVNiVh/5lu0UN6Xw4fV/8eBA+p1fLxqI0cW9F2xQgkH8ywO66D72wFzdYHykJOjRFl+fsE6W1t1P4v+gDAMNUHAesJGNaA9XRrNrUZamvJs/fyzevrXqqVyFnXvXjFPRk6OmqH455/qqf/PfxYEVJdGVhb88gv88INSGOnpav1998G4ceoL8dAhDm3/hS/t9nJIVOKsRq6NGF8riog4A8Ocs+EWJztbia+UFCXQzp8vaBcuQO7ZFJocXIV78jEaXDyKa05KsWOYDDuSnZpwtqY3iU7enHAL4W/n5oX6GIZybpon/jk5FbSSUj5Zp4Qq2hwcCiYNml/fTiFc15S8PPVj5ehRldbB/L85ebIavzbTsGHB8H9wcJXnwrulEVHtOmRF1sOLGs3twPr18NlnSnjZ2Kg8PaNGVXxmUEaGyp20b5+KCH/hhYJhq9I4dEjFsgQFqV/2334L06YpdWFjA336kHBnV7759S02uaeCjQ3u7bryj86P0ie3KXYPTFBCz8FBJZ/09y98zFtZiCUlwaZN6ld4r15qXVwcPPoogvohn2tXkyzPZqTVb0Zq7Wac82hOUo3GpGfbkZGh3rL09IJJaFlZ6m9JGUCuJTY2BULM3l69Nv+1sytYLqlZ5wst+rq8raQE8NZ/b7qqA3/+qYbXDh9W3mrrcephw9QPKFBu1L171SzJxo1vwgu9tdHDixrNrUx6OnzyiZqRCAXZs5s2rfixUlJUUGtsrAo4evllFXBvTVExdOiQ8mRZiyZXVzWk6ehI2onDLMjZwsrNv5LnkIWDjStDzrhwd7d7qel7p0qOlZOj+sfHq2ND8WPeCkIsOVldg6trQemkhAT48kv1ADWLroYN4e67MZo1w7ZFC2w9PXE0DGpV8HQmU0Eqp+zsAkFmXrZO+WRu1mmhrJO/mxPAWy/n5xfsdyNiGIWr89jYFIiykpq5T9H11utKel3S39LWlb3cCRv/Tti0Bpv8PJzOxuJ0+ghOpw6TUbMNOXtVP9dNO6k9/yMwAIca5DVtRp53C/KbtcDk3Rxp0hQbW6NQ7lfzvTC/LpobtmhfzbVHiy6N5mZnzx5VViQ5WY0LPfSQCpSvzLdmfr6acXXypPr1/PLLxWeulSSw9u4tLpqCgsipYcdPtc6yMAgyfDwwEnPoeeQS9+2/RF27GvDo5VIqQUHqWPHxytURFFTyMeHmEmIi6l4eOKBmjR44UDChoX37AtHl66um0re2KmVkGOparxJb24K0SdcaESXqcnMLBFlubkHLySl9uWi+UHOpxKLbrRO6l9SstxdNAm8yFeQmzcsrSD9182AHtLjc7lTVjC/T/EI92iR3wjPjGB6XEmHXQeAgAJdsa/JW2ALMwXytUjZxwaE+STW9yLNxKPfZzUKsqCCzFmZXWgeFtxXtW9JyaevKWl+0j/m85uuwbnfeqUZrqwMtujSam5WcHDWE98MPatnPT9WJu5pZUDY2Kl37//6nYrhcXYsLmlIElrVoksBA1jv+zdyJTUhMMoFbU0Kbd+GBwPvwWbgKchYqcfXxx0o0jh1bIN6shdPNJsRMJjUktG+fagcPFsS1mXF2VvZYFwh3cirIXXQTYRgFw3zlnZtxvTGLrpKq9JS0Lj+/YJ35dWnrim63fl3atrJaSce1biLWy+HsyQ8nOh/ss9Ooc/4Ydc4fo+6FY5hs7PFsaKj48rw8Rux+BxvJQ8QgpWZjEp19OFtTtTjnlmTauhY6tjnqyCyqbzXatas+0aVjujSam5EzZ+Ctt1Qgro2NitsaPrzyUc1xcYVrJ4qoJ2pJXi1Q63JzlRgqInJ2N7bnqwtrOX7hOABe7l6MDx1fuEZiRoZKsrl8uTq2ra0KJh45snDuotKGMa3PvXcv/PvfBUJs6lTVvyQhVlWIKBuio4snh6xbV8XDBQSo9ABNm+qxG831Iy1NpQ45cUKldrGe6Qcqv1W3bur1wYOqj5cX0qQp4uhUSIiZhZn13/Ksg5L7lLS9pH2L9rdeLnqc0vpZbwsMVCnoqhId06XR3AqIqOSkn36qxko8PZV3q7I/2/Lz4euvVU6nV15RAuVKXq3hw0v0SsXe4cicv/ezI1aV7antVJsxwWPo4dMDG6NIkK+zM9x/v8oVNm+euqYVK2D1ahgyRNW3q1lTHdtaLPn7V94jdq28X/n56n4dOqQeWObxDnM27oYN1be6WWjpxKKa6sTVVX1HQEH1gBMnCpq5hiaonHsrVwJqZNKoXx8bLy/1Q8HXV+WB01wV2tOl0dwsZGWpwsLr16vl7t1V3bPKjutkZqoCwNu3q/GhIUNUMH55vFpWJGYk8t2e71gXu85Stuee1vcw2G8wNexqlM+W2Fg1VLptm1p2c1M5wPr3V7ZcifJ4xMzXUtFhyMREVQeoS5eCdeZEi++9px5G5mswF2/WaG5G1q9X9RlPnlTiLC+vYFtgoPLmglr/xhsq7rNJE/W3cePbL6dYGWhPl0ZzM3PsmBpOTEhQc/MnTlRJTis7TBUXB6+/roYSXF1V/NbBg+X2agFcvHSR/+3/Hz8d/Ym8/DzsbOzo36J/5cr2eHurAP4DB9T5Dh6EL75Q8WojR6prLat8R3k8YuWdIdm4sYoz27VL1Ro0Zy8NCFA5z0BlELexUdncra9Bo7mZiYxUDVQwV0KC+jFx+rSqX2UmPl79QDL/SDLj7q7+fx56CJpfzheXmVmQP0SjRZdGc0OTnw9LlqghOJMJfHzguefUF1tlWbtWBbAnJ6svw4kT1a9Yc1Il62E6KCZosnKz+OHwD3x/8Huy8lT8UqRXJPcF38cdLneUdMby07q1qsW2fbsqFnzypCqEu3ChEl9RUeX/8i4qxEqbIXnpknpYnDyphgvNQ4UXLyrPVYMGKug9K6tAdJnTOmg0tyq2tgUerKLUqaNy8J05owTZmTOqpaaqZm9f0Pfrr1WligYN1NB7o0bqr/l1vXrX75puAPTwokZzo5KYqDLCHziglu+6S3llyjPcVhoZGfDII8rTFROjhsIcHcs11HYp7xIrj65k0YFFlhqJ4Z7hjA0ZS7NazUo42VWSnw9//KHKp5w5o9bVr19x8WWN+foaN1ap31etgrlz1XCJjQ2EhqqHzYEDyqPo5qbqt5lTOdyoqSk0mupGRFWhOHOm4EccqB9RmzaVXBk+JEQlYQaV6O3bb5X32FwPtEGDq/q+ExGysrLIzMwkMzOTjIwMMjMzadasGbXMP6CqCJ2RXqO5WRBRAa2ffqpc87VqwVNPQVhY5Y9pLRayspT37KeflPgwz/gbPrzEXXNNufxy7BcWHVjE+ezzALSq24oxwWMIalDOGmlXg1l8zZ+vxCKoGYFDhqjcVuWJacvOLuypWrtWxWOBSulgb69itvr3V/Fb775beDbk8OElz+TUwkujuTI5OWqoMj5e/Q/Hx6vl1q1hzBjVJza2UNoUEeFSfj4Zrq5k1qpF+t13k1m7NhkZGWTExysBZWtLRlaWRUwV/ZuZmUlJGmfatGl06tSpSi9Zx3RpNDcD58+r6d0bN6rljh1h0iTlcakM+fkqOP7991V2TLNYuO8+NVOw6FCiFTmmHH499ivfH/qe5EyV0NO3ti/3Bd9HmzvaFKR/qGpsbFScSdeuhT1fX3yhhFj//soLWFoA+5o1aoiyVy94/HG1rk0b6NRJCdmwsMJDHK6uJQ+zVuWMSI3mFkNELALI0mxsSK9ViwwHBzLq1SMjI4P0WbNUv+Rk0kXIPH+ejNRUMtLTyc/OLvCQHTtW8APrxAlVOsswChcDrVFDzXq28mI5OjpSs2ZNnJ2dqVmzJjVr1sSlGotea9Gl0dwIiMCvvypBlJGhhvweeQR69qx8sHxsLMyerWYknT2rpn2fP3/FAPms3Cx+PvYzSw8t5UL2BQC83b25L/g+IhpFXD+xVRSz+OrWTQXwfv+9yvK+eDEsW6YyHjZurL6MW7VSaadBza4ymQonKfXwUDEpJVFaWoqSYsJK835pIaa5yRERcnNzSU9PJz09XQmky6/Ny+Z1RV+np6eX6mUqE8NQP54u/4BysLfH2c4OZ8C5cWOcXV0tAsr59Gmcs7OpaWuLs61twd+QEJz/9S8lsESwfewxFYNWr57ykHfvXjDjuBrQokujqW5On4YPPyyI3QoPV6kgKpPf6dAhNevu1CnYvFmJDS8vFSx+/nyZAfIXL11k5dGVLD+83BKz1aJWC0YEjqB9o/bVJ7aKYhgQEaE8VCtXqpisHTtUoWBQv3QjIlTcl5OTKr49b17FprMXDcI3r6vsjEgtvDTVgIiQnZ1dSCyV1qxFlfl1nnXKiErg5OSEs7MzLi4uSiiV0FxcXAqEVJFmd6W4zZwcNSHo7FkVA5uYWBALBuqHpzm4/+hRtc7fX4sujea2xBxbtWSJCuT28ICHH1axRZUROIcOKQ9WQoISW23aqNQGY8YoEVaK5yXuYhw/HP6B30/8To4pB1AxWyMCRhTOIl/diKhhxehoJSz37i2ostyihQrizclRXsJz51RpochIJb6saxpeDeWdEamHITXXCBEhJyeHtLS0EsWS9Xpr4ZSWlkZGRgamq6jjY2dnZxFMLi4ulma9bC2qzEN3ZiFlW9kKGeXFwaFgJmRJNG2qfvQkJSlxlpRUrYILtOjSaK4/eXnw888qDUJqqlrXt6/yjlQk1qCkmogpKWr2nWGoOKdHHlF9i4gFEWFv4l6WHVrGtviCXDvhnuEMazWMoPpBN47YAvjsM+W5O3eu8HovLyUu27RRebRsbFS/n39WtQ9//VW1evXUsEL37uqL+FpR3gz5ehjytsdkMpGRkVFIJKWlpVnEkfl1SaLqajxONWrUKCSYirayBJXD1cyUvhGwsVFDi9Y5xqoZLbo0muuFCGzYoIbDzp5V6/z8VIHpVq0qdizzQzw9XU3NXrBAPbgbNIALF1TsQv/+xXZLu5TG7yd+55djvxCXpmYC2tvY08OnB4P9BtPEvUnJ57twQZ3T2blgeFJEBejn5akyI2aRtnSpCnodMqTgV+WZMyrhqJeXEkfm/aG4V++vv1RSUuv0GGfPKsHl7q7SOpiFVknB8926qXb6tAqiX7dO/cJdtEg1b2/o0EG1Zs2uvg7itUzMqoXYDY2IcOnSpXKJpqLLmZmZlT6vvb19IWHk6upa6HVR4WS93t46Z5am2tGiS6OpavLy1Ky7779XMQaggrvHjoX27cv30C/6IP71VyUqTCYlXvbsUWVz/u//ij2wRYT9Sfv55dgvbDq9ibx89au5tlNt+jXvx53N++Hu5FFgxy+/qOD7u+5SM/xAxUO8/rqKNzOLLsNQqRfy8+HppwuKbe/bB1u3FhTRBRWv9sknagahWXRlZKicW46OSpSYz//ee0qYhISo+wMwerS6X15e5RdJTZqo+o5jx6qA+3Xr1KzQ2FjVFixQ4rR9e9UCAq4uB5o1lR2GBC3ErgMiUqLXqbS/1q8r63UyDKNM4WT919nZudC6m97jpLGgRZdGU1WkpqphrpUrVRA7qIf8P/6hytqUN97B7NW6dEm1Dh3UlOnMTCW4PDwKHsSXH/Yiwonzx9lwcgMbTm4gKTMJAEOgbcO29GvRj7YN22L76muwZ7EK5Pf0VMdISlLCKSioQHQ1aKCC04vGQzzxRMFwpplhw1RcmrkMCKiYi3791OzCTZuUCNu8WWWer1FDiY5GjVTftDQlyGysimSfOqVs6t69xPQWZWIYBQWoH3lECdQtW5QwTE5W+cp++kmJodatldgLDVX2W9twNVxNoW7QQqwUcnJySoxtKiqciq7LyMio+My6y9jb2+Pq6lpMNFkvu7i44ObmZhFPrpdn3d1QQ/aaakGLLo3mWpKfr7wqa9Yob1Furlrv7Q2DBqnA7iv9ai0pVis9XYm4ixfV0JuvLzz7rBJDXbpYhNbJ1JNsPr2ZDSc3cObiGbj8HV/X3p1ef56ld4oH9b9+qUAkmUzqYR4XVyC6oqLUua1jn5o2hRdfLG5rz57F1wUEqGYyKXF4+LASWQcOKC+aNe3bq3tjPfQyZIjy4gUGFqyLjlb3tGXLAtG1e7dKidG5MzzwQEHfxEQlbksSTPb2yltnniF69Kgazty+Xdm6e7dq336rhlLNHqtWrdS5K1tcHMo3DAlXJ8SgZDF2Aws0c6xT0QDwksSTtXcqLS2NnJycSp/XHPRt7VEqSUwV9UrVqFHOIu4aTQlo0aXRXC0iSlj88YcavkpJUesNQ4mKQYPUw668w4jjxilPj4jKQRUUpNIgxMWpobiHH1bDZo6OXMq7xJ6ze9i69SO2J2xXSUwzMuFkLO72rnTu/wiR3pG0quOPsXSMEm/nzxfEQk2apMSFs3OBDaXVWysvO3ao4cJjx5RnzhpHR/XQb91aCTN//+Ii9OGHix9zwAAleqyF2JkzSmBlZBSsS09XMXKuripNhPme79ihREzLlsoGUNtatlRtzBglaPfsUaIrOhr+/lvtt2NHQX8vLzVTslkz5Qnz8blxhJjZ+1VUjEGVe8ry8vIK5WoqazZd0SDxrKysSp/XPLuuLJFUkhfKxcWl6mfWaTQloEWXRlMZ0tLUAys6Wj2UExMLtt1xh4pn6tWrwHtUGuYHn5+f8pL9979w/Lh6wOfmqtQIo0Ypz8uaNVzq1pnD9Qz2H13K/qT9HDz6Jznxp8HNHRp64uHoQbt6Hejy26+E2DXC9sVHC4THf/6jcn9Zi5zK5AKzZtMmNXzatasaPgTl4dq/v+BetGypPEWtWyvRUpmHnVkcWdO3rxoGtPZomQWlu3thkfv550qcfPRRgQdv/Xollrt2Vfa5uSmvWZcuantSknp/Dh2CgwfV+2KOB7PG01Mds0mTgta4ceXFWGWFGJTuFbuCpyz/q6/IbNqUjOhoMqKjSW/ShIz69ZWQOnyY9MOHyahbl3QXlxITYmabU3dUAsMwSgwEL0s0mZdr1Kihh+w0NxVadGk0V0JEea+OHVMP4N271WvrmJA6ddTDu1s35Qkp6UFQ1LNw6JASVAkJ6uEXEqL6XR6SzHdzJa6hCzGx64jJjOGw7RqOLpxFXsM7wMNd9c27hG+iiXZ40Xbcm7So3UKNKNa/S3lirO2oqPcqJ6egVtrp03DypGr/+EeBMDF7h+rUKRBdAQEwfboaAnV3r9g5K4KdXUEcmJkmTeCbb9TkBWsCA5Utd9xRsG77dhVc7+NTMHt0+3Z45x01DPzYYyrVRJcuqp+bmxJSx48XtJMn1fuXkKCGKa2pVaugeG+DBupv/fpq6LNuXSWWyksZQszUujVZjRuTmZioatPl5ZF59CiZNjZkpKSQmZ1NRmoqmcnJZBgGGRs2kPHdd2TGxJDh6EhGejpZY8ao64uOVuLfXPwbiq9zcVEexYsX1T4uLipIPD8f56ys/9/euQfZUd13/vPrvnfuvXPvaEavkcQI8bCF5MhIGAuEYsVhg12YiMIbh9gkGxvjcmqdkHJM7cbBkGC2YipxErtsE0g2ARMveHEcTLzEwa8C27ETICAZGA2S0EgaLAlpZqQZzfO+72//+HXr3nkoVrBmRmJ+n6qu7v716dOn+3Sf8+3zJLdyJblVq0wgjY6SGxgge9FF5NasOemQBS6cnPmCiy7HaaRYrAuNV16BvXut3c/x4xPdJRKWUV9yiVVljYzA+vX1huaNJVitrTZa+h13WFVYNgv/9E92vFymSo3eVIlDS0scuvKtHPqN1fTs+CH7g2GK+++GV6M2JEMHkNFhLixewJsvuo517etYlz6X1o2v2nUbh09Yv/7U7rdQsEbqfX02LENvrwmIQ4espGc69u+vi67LLrP7amw0n83CxinzvM4uk0eybphI9wRXX23VhI0Dp/b31zsoxIyMWI/KbNZ6PMbuP/MZ6wRw3XUmSg4cMEG+b5/F8+CgLTt3Trl0pVajkMtRaGsj39LCeCZDPpMh39REPpUin0gwLkJehHytxnihQD6fPzGJ7/j4+In9KaVMixfXBdE3vmG2Vavqtp4eE02VitmCAGltpblYpDkIyLW1kc3nyS5bRi6dJrt3L82LF5MbHib3C79Abt06snfdRbZaJQdkP/tZMuk0ctNNJtTHxupTLMWladu2TazW/PGP7eejUQSfZW3RHOe1MKOiS0TeBXweCIH7VPVPJx2X6PgvA+PAB1V1+0yGyZnHqNYzw6NHbTl2zDLa3l4TGkdtYufJf/Jks9ZLMAyt5+HWrZbhbt8Ov/VbllEvWGDVgADXXguDg1S1ytBb38xQ4TjH9VWOLoH+7DD93/80/YtT9F/WS195kEoYwJYmyO2389sqMFyhvZrhDSs3ceHCC1m9toW15Tayay+eOAH20klja1WrFvahISttiUubnn/eJrnesAHe+U6z7do1fQN5sHtdvtx6Hq5caVWD551npUkxcanN2Ujco7GRa66BLVvQSoVyqUSxWKTY20tpwwaKQHHXLgqFgtm//32K/f0U1q41AVWt2v7OneQ3bKC4ahX5o0cpHjhA/vnnKSST5FtaKIyNUS4WbUYCqLcxg/oQIJN7hCYS9SUMbYm2JZGweeayWVsWL6Y5lyO7YAHNCxbYurWVbGsrzdH0Ks3NzWSPHCHb00P20ktpfstbkN27TSSVy1YKd+eddu1du8y2dKmVcnZ22rXPO89+ULq7zd1rqNacIMR+lrZos2H7j+yOc4rMmOgSkRC4B3gncBB4VkQeU9WXGpxdA6yOlk3AX0Xr2WW2Ps4zyXamhedkYdy508TCmjVWDVQuW3uhzk7r9dbRYaU1L79sfrS3m9AYG7MSmZ4ea4QeBCZEjh83MdLaWp+Lb2DA7M3NaLaZSiKgvPNFylKjNJqj9Jefo9jWQumWj1LqO0z+ew+R/8eLyQc18gNHyAcHGVscMLq0ldEnP8lorcDohoMcD8uMpAQW7Tbhdrhq4U8kIOyBSg42r4MXXmBJ2MLKVZfTsfgCOlo6WLVshAtrbbSs31hvd3XggE30vKfHRF4+b/c5OjpxaewJePPN9Wq//n5rx5RI1EXX8uVW2rNsmV2nvd1EVkeHbc9wY2NVRVWpVqtUq1UqlcqEdbw93VIulydsn8pSKpUolUoTtuOlWCyeWJfL5emHFHjhhfp2oWDC+5FH6u3K+vstjl95xd43qHeKaG4+USIoQPO2bWRUSW/aREaEjCqZ3bvJHDtGZtUqmltayJRKNB87Rqa3l8zChWQ7OsiEIc1A8759NDc1kV6zpl49t3+/iZTly+tiLn4vcjkrDU2lLLwjIxamnTut40Myad/ZwIB9g9/5jtmuuspE0xvfaN9ib6/519Vlx4eG7D2Jv8Nk0kr+wtBK0/buNVtzs40vNzJi4evrs3Hecjl7L8fGrH1cb6+VDIvYO37OOdap4dlnbf8jH6kLsfvvt3v50Id+umD7WWwnE4ZzKQLP5nT9TAvPLCKvdaySn+qxyGbgTlW9Otr/BICq/kmDm/8NfF9VH472dwNXqurhRr82btyozz333IyEk127uOn6yyjEPaByLZYijo1CLXo2bW3RfG5HoVqzBKW52Uobjh01d9WqJWZr11qiu3+/JUKqVkoSBJGfAGoJTS438fx0Cha0weAxUKBStY97+TJLzFXN7zABiRAKeXMHkGyCMIBK2WwCBKFtVyuoiNlSaUsIW1os4VSFagUksDCWGnqbJaI2J1ozdyJmq1bRasX2RSCdgWIBKhW0qcmus2SJJZ7lCkgUzHTGwleJzg0CNJe1Kr1CARA0FDSdsWdUKKC1mokEgVprKwwOmk1AETQRgtbQag0NQIMATafRSplauYwKqAi1ZIgCtWrF1qkktfYl1MKQ2qGD1ASqAVSbknavcZsgEWhZYOEZHbX4B3sfkgm7sdFRszUlTQiCZTRVaweTbl5Ac5AiXaiQGy6QkzS5zAJylYBsNaSlEpIksGqqaA4x/dd/hc5O9Ior6lWF3d3w5JMTxICebJ1Oo6kUrF+PRhm9Dg2hvb2wcCG6aNEJf1SVWq12Yrtxv1arndhvPBav4yXer1arE+yNSyyiGt39rBPqziSJRIJUKnXSJZ1OT9iO9zOZzIl1Op0mk0qRKpdJJ5NkzjmHTCZDMpFAHn/cBPJ731u/6IMPWqbwwQ/WqzH/+Z/h7rutSvf6602cHDpkg9WmUtZbMxbhjzxiacWWLdb+rFCwjGb/fhM6cbu+sTETTc3NU4fmKJWs2jzucNHTYwLpvPPqEwnHJVyLFtXPHx21asNEwsaSEzHbnj3m55o1diy+Rrlsgn/16vq54+OWDm3eXA9PPm/f5KWX2nnd3XVBdu659gPV3W3CbmTEfhaWL7frZjL2Q7Vwof1IdHebbXjY0vVFi6wXbCZjYWhttWfS12fp9vi4pZVtbbZ0dpp9cNBK/i66yEq7azVLwzs67Fovv2w2MCGZSFicxWL0ggss/IdsVgjC0Eqg+/qsuj8uzdyyxdKSvXstzQkCqxbftcuGYEml7L6vvtruKW53GQR2/tveZvHX3W3xGYZWSv/ii+ZHOm1h27rV3D3zjPmXSllp/bFj8N3vmn/NzTZgcrls7xlYHnbddbb9la/YM8hm4Vd+xeLoq1+19D2Vsnlglyyx+/va1+x4LmdDxID1Nq5Wzfarv2q2hx+2OM9k6t/JP/yDPbtk0kpeRWzg6eFh277xRnP36KP2ntdqFp7WVrtutWpx9/d/P6PCS0S2qeqUdhYzWb3YARxo2D/I1FKs6dx0AIeZLTo7eWJkjGIlyq4Ghqe66R/EcvkGgVoag6Go7YdguV2pAC90RZl2te6+NDrVz4ERGBydev7Ikbpoim37D5gwEyIhOE1GVSzUt+NzKU+1jUW20ULDdbSeW0/09NT8HC/Xzy8VIyHyal2gxBQap8FQoAbjw7atsU0toTtxr0BQM3thGEq1iX5IpX5twfwcjcRu7FQUwkg0xsFP1GA8EtpREEyoVuMVUoMAJWgqEKgQFJWgBoEK4cp2wlwLYZAgOLKfMF8k0XEuYV87CUmQGKyQ6D1KIpFEwkR0gZASWQaAAaJrx8I1CKwnYFxt2NdnGeZLL9WnDBoftwQyTlAnVTNNWMccOlRP2GOOHOFMQkQIw5AwDEkkEifWQRCQSCROuiSTyRPrMAxJJpPTLk1NTTQ1NU2xpVIpksnkhHXstqmpieB0DYx6Mq69dqrt/e+fatu61ao9q9V64/v1661NYa1mYiZm82YrqdqypV6tvG2bCZoNG+wPv1i0jO+hh0xIvOc9lrGVSnDvvSZcPvABy6TLZSud6uy0jiIXXWQ/JHv22JhrHR3WS7dSseXIEfv2Nm2y8MbLq6/aD0l7u7Uv6+qytoPt7eZHrWaZ9dNPW+a+alXdtn27+bFwYX3st2LRrpNK2TcTBPa91KIfxFzOvqvx8fpYdPH4WnFGHLeF0+iHqlYz92Fotqi9G6OjlskvXGhuhobq7eF6eiws6bS5OXDAjhcKddsrr9g3WanUbXv32nnxD3w+b0JtYMCeeUuLheWll0wUxv6Nj1tc9PTYOamU3c+LL9o9/uQndp1czuydnfaci0WLz7Exe57d3eZXOm33t22buYtF5uiodSoZGpro7tlnzf84LRodtUGGoV7CrlrvVDI2Zs+/UrHBkM85x9o8jo/XRfJTT9XdxiW2//ZvE+OqWq3bRkftGRWLlmaCxUUc/z/6Ud1WrZq7p56yd2l42O6lUKgPszLLzKTomq47yuSs/VTczCwXX8x/b1tMeXjIgrNqlYXq0CETTmB/Yy052LXbSoUqVft7aV9qNq1BqWwqfssWe1GefrpekrSyw0qnDh6EWtXu8NxzYdHCiX4uXWp/aC+/XC/VWrwILnyDVQHUoheobaF9QL299pKJ2B9bMmkfbVwqFWfg8aTKIuZ/uWyNbXt67PxKxdwmEtDfh1QVAjE3AhwfQlStNKx9qYVhYNASpCCwxHRw0P6KMtHf2OWbkB1dcOSwNdSVwKonxsaQAwcsrGECLtsIg4NIVxcEIZJJw9t/EUmnkc4dyL590NKChCG8933ID38EXTsIJDDbpiuQfB7Zth0JQySRJLjqHUixiDzxJIIQ5loIbvwgQRAgd99DUKsR5hYQ/PbvEEpA8JnPEpQqJIKQ8L03IMuWmeg5csTieflye3Z9fZYwdXTYn3xc9dbba8+kvb1epTMyghQK9WcUtdGRZHKiaPoPMva4yqixZ9d0vbxEZIqbyedOtk3eblxisREEwQTbdMeCICAIAsIwnLDfaJ+8Ha9jgeU9106B+D2KSSanzg4A9RKiRuLBYGPSaRNfn/70VLf33z/VtnXr9GG6666J+6o2YG9cOh1TKFiak8nU7YWCpY+pVL2av1q1bykIJjawj0XDihXmftcuy0RXrLCOHIsXm+255+qzM5x/vqWZO3ZYZtvRYYKxu9tsS5aY2xUrrB1nV5el/WFo7stlEzxvepMJhFrNROuePWbPZusi7I47zH17u/V4bWuDP//zqFYihA9/2NZ/8zeW1iYS5i6fh/vuMz+SSXt2fX1mEzF3n/ykCbS//Vtzk0jApz5l93vPPZYPJJPwx39s57z4ovXejc//gz8wIfbAAxaGZNL87OoyP+OSrjvuMHH4uc/ZfjptbT0HBux6YELuD//Q7uvWWy2+Wlvh9tvt+Mc/bsIvl4PbbjPbbbfZfWYyth3Hyx/9kb0vLS3mF1hY41qY2Hb77XZ+NmvHod4hqanJrgl2/3E19+//vtk+9al6LcQtt1ged9dddVH6n53Z4jTh1Yvw+q+z9jCe8fX8juOcpXiaeXaHcYY4WfXiTIquBPAycBVwCHgW+A1V7WpwsxX4Xaz34ibgC6p6+WS/Zlx0OY7jOI7jnCZmvU2XqlZE5HeBb2NDRnxRVbtE5CPR8b8GHscEVzc2ZMRNMxUex3Ecx3GcuWRGx+lS1ccxYdVo++uGbQVunskwOI7jOI7jnAnMcPccx3Ecx3EcB1x0OY7jOI7jzAouuhzHcRzHcWYBF12O4ziO4zizwIwNGXE6EZF+4JW5DofjOI7jOM4pcJ6qLp1sPCtEl+M4juM4ztmOVy86juM4juPMAi66HMdxHMdxZgEXXYCIvEtEdotIt4jcOtfhma+IyLki8j0R2SkiXSLye5F9kYh8V0T2ROuFcx3W+YiIhCLyYxH5RrTv8XIGICJtIvKIiOyKvp3NHjdzj4jcEqVjO0TkYRFJe7zMDSLyRRHpE5EdDbaTxoWIfCLSA7tF5OrTGZZ5L7pEJATuAa4Bfg74dRH5ubkN1bylAvwPVX0TcAVwcxQXtwJPqOpq4Ilo35l9fg/Y2bDv8XJm8HngW6q6FtiAxZHHzRwiIh3AR4GNqvpmbCq8G/B4mSv+DnjXJNu0cRHlOTcA66Jz7o10wmlh3osu4HKgW1X3qWoJ+Arw7jkO07xEVQ+r6vZoewTLPDqw+PhS5OxLwH+dkwDOY0RkJbAVuK/B7PEyx4jIAuDtwP0AqlpS1eN43JwJJICMiCSAZuBVPF7mBFX9F2BgkvlkcfFu4CuqWlTV/djc0JefrrC46LJM/UDD/sHI5swhInI+8BbgGWCZqh4GE2ZA+xwGbb7yOeDjQK3B5vEy91wI9AMPRFW/94lIFo+bOUVVDwF/AfwEOAwMqep38Hg5kzhZXMyoJnDRBTKNzcfRmENEJAd8DfiYqg7PdXjmOyJyLdCnqtvmOizOFBLApcBfqepbgDG8ymrOidoHvRu4ADgHyIrIb85tqJxTZEY1gYsuU7HnNuyvxIqBnTlARJKY4Pqyqj4amXtFZEV0fAXQN1fhm6e8DbhORHqw6vdfEpGH8Hg5EzgIHFTVZ6L9RzAR5nEzt7wD2K+q/apaBh4Ffh6PlzOJk8XFjGoCF13wLLBaRC4QkSasAd1jcxymeYmICNY2Zaeqfrbh0GPAjdH2jcD/m+2wzWdU9ROqulJVz8e+jydV9TfxeJlzVPUIcEBE1kSmq4CX8LiZa34CXCEizVG6dhXWRtXj5czhZHHxGHCDiKRE5AJgNfDvp+uiPiI9ICK/jLVZCYEvqupdcxui+YmIbAF+CHRSbzt0G9au66vAKiwx+zVVndwo0pkFRORK4H+q6rUishiPlzlHRC7BOjg0AfuAm7Afao+bOURE/hfwPqxX9o+BDwM5PF5mHRF5GLgSWAL0Ap8Evs5J4kJEbgc+hMXdx1T1m6ctLC66HMdxHMdxZh6vXnQcx3Ecx5kFXHQ5juM4juPMAi66HMdxHMdxZgEXXY7jOI7jOLOAiy7HcRzHcZxZwEWX4zhzjogsFpHno+WIiByKtkdF5N4ZuubHROQD09jPF5Edp/E6TSLyL9EcfI7jzGM8EXAcZ85R1WPAJQAicicwqqp/MVPXiwTQh7DR22cUVS2JyBPYmE1fnunrOY5z5uIlXY7jnLGIyJUi8o1o+04R+ZKIfEdEekTkPSLyZyLSKSLfiqaQQkTeKiI/EJFtIvLteKqPSfwSsF1VKw3nvCAiTwE3N1z/fBH5oYhsj5afj+wPisi7G9x9WUSuE5F1IvLvUSndiyKyOnLydeC/zcQzchzn7MFFl+M4ZxNvALZikwk/BHxPVS8G8sDWSHjdDVyvqm8FvghMN8PE24DGCbwfAD6qqpsnuesD3qmql2IlVV+I7PdhI78jIq3YvHqPAx8BPq+qlwAbsXncAHYAl73Ge3Yc53WCVy86jnM28U1VLYtIJzZt17cieydwPrAGeDPwXZvyjhA4PI0/K7C58GLR1KaqP4iOPQhcE20ngb+MptqpAhcBqOoPROQeEWkH3gN8TVUrUUnZ7SKyEnhUVfdE7qsiUhKRFlUdOU3PwnGcswwXXY7jnE0UAVS1JiJlrc9jVsPSMwG6pimxmkweSEfbApxsPrRbsLnaNmA1A4WGYw9iVYY3YO3DUNX/KyLPYKVx3xaRD6vqk5H71KTzHceZZ3j1ouM4ryd2A0tFZDOAiCRFZN007nYCbwRQ1ePAUDThOkxse9UKHFbVGvB+rOQs5u+Aj0V+dEXXuxDYp6pfAB4D1kf2xUC/qpZ/9lt0HOdsxUWX4zivG1S1BFwPfFpEXgCex9pbTeabwNsb9m8C7omqB/MN9nuBG0XkaaxqcazhWr2YeHugwf37gB0i8jywFvg/kf2/YG2+HMeZx0i9dN5xHGf+ICL/CHw8bnf1Gs5vxtqSXaqqQz/F7aPAJ1R192u5luM4rw+8pMtxnPnKrViD+v80IvIOYBdw9ykIribg6y64HMfxki7HcRzHcZxZwEu6HMdxHMdxZgEXXY7jOI7jOLOAiy7HcRzHcZxZwEWX4ziO4zjOLOCiy3Ecx3EcZxZw0eU4juM4jjML/H8ffhkUMpKfXgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.3339, 'epsilon': 0.171, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACkjUlEQVR4nOydeXxN5/b/3zsTISTmKUQoCRklxDzEFGooilZVUaoDHX+3Lfe2uG3vvf3qQNF50kFRs6q2qqYqShAxhxAhCUEkMg8n6/fH45zMkZBI8Lxfr+d19t7n2XuvvffJOZ+sZz1rGSKCRqPRaDQajaZ8sapoAzQajUaj0WjuBbTo0mg0Go1Go7kNaNGl0Wg0Go1GcxvQokuj0Wg0Go3mNqBFl0aj0Wg0Gs1tQIsujUaj0Wg0mtuATUUbUBLq1q0rzZs3r2gzNBqNRqPRaG7Ivn37LotIvfzb7wjR1bx5c4KDgyvaDI1Go9FoNJobYhjG2cK26+FFjUaj0Wg0mtuAFl0ajUaj0Wg0twEtujQajUaj0WhuA1p0aTQajUaj0dwGyk10GYbxlWEYsYZhHC7ifcMwjPmGYZwyDCPUMAy/8rJFo9FoNBqNpqIpT0/XImBAMe8PBFpdb1OAj8vRFo1Go9FoNJoKpdxSRojIdsMwmhfT5QHgWxERYLdhGE6GYTQSkZjysqkoDh+G7Ozbcy7DKNt+ufvm3qew5eJezS3/urlZXZfnVlY567nfK6xZW+csl+Z6NBqNRqO5G6nIPF1NgHO51s9f33bbRddbb0Fy8u0+672FlRXY2CghZm2tlm1swNY259XcqlQBO7ucZm8PVavmfa1WDapXBwcH1apXV9u0uNNoNBpNZaUiRVdhP49y260A2raF9PSS9ZVbsPBW9i1qf/O2ot7Lvb2o9dzHyL1s9v4V9pqdndPH/GpuJlPeZfP7GRk3f+0lwdoaHB3BySnntXZtqFcP6tdXr/XqaXGm0Wg0moqhIkXXeaBprnVnILoiDJk5syLOeu8gosSXyQRZWUqAZWaq5aysnOXMTCXMzC09Xb2mpeW01FTVkpNVS0rKeU1Nhbg41YrDwQGcnaFpU9WcncHFRQkyLcY0Go1GU15UpOhaB0wzDGMp0BFIqIh4Lk35Yxg5w4lVqpTfeTIzISEB4uNzXq9cgUuXVIuNVa9JSXD8uGq5cXQEN7ec1qqV8oppNBqNRlMWlJvoMgxjCdALqGsYxnlgFmALICKfABuA+4FTQAowsbxs0dwb2NpC3bqqFYWIEmPnzsH58+r13Dk4fVoJtT17VAMVh9amDbRvr5qLi/aEaTQajebmMeRWA41uA+3btxdd8FpTnojAhQtw4gSEhanX8HA1JGqmTh3o0AF69VJxgFqAaTQajaYwDMPYJyLtC2zXokujKZzkZDh4EIKDVbt6Nee9Jk2gXz/o3Rtq1ao4GzUajUZT+dCiS6O5BUTUEOSOHbB5c06wvpWV8n6NGKG8XxqNRqPRaNGl0ZQRJhPs2wcbN8LevTmpNNq1g0cfhdatK9Y+jUaj0VQsRYmuipy9qNHckVhbQ0CAalevwoYNsHYtHDigWocOSny1aFHRlmo0Go2mMqE9XRpNGZCYCKtWwU8/5STa7dMHnnhCZcvXaDQazb1DUZ6u8ix4rdHcM9SoAePHw5dfwrBhKn3FH3/AM8+oIHyNRqPRaLTo0mjKEEdHmDQJFixQCVbj4uDf/4Z583R9T41Go7nX0aJLoykHmjSBOXPg8cdzvF5Tp6oUFBqNRqO5N9GiS6MpJ6ysYPhwmD9feb2uXFF1Pn/9taIt02g0Gk1FoEWXRlPOODsrr9eoUSq9xIcfwqJFKveXRqPRaO4dtOjSaG4DVlbw2GPw3HMq5cTKlfD225CRUdGWaTQajeZ2oUWXRnMb6dcPZs+GatVg50745z9VAW6NRqPR3P1o0aXR3GZ8feGdd6B+fVVY+9VXtfDSaDSaewEtujSaCqBZM3jvPZW1PjoaZs3SKSU0Go3mbkeLLo2mgnBygjfegMaNVTHtt97SMV4ajUZzN6NFl0ZTgTg6wptvQu3acPiwmuVoMlW0VRqNRqMpD7To0mgqmPr1lcfLwQH+/ltls9fpJDQajebuQ4sujaYS4OKi4rqqVFHZ6xctqmiLNBqNRlPWaNGl0VQS3N1VCgkbG1i1Cv78s6It0mg0Gk1ZokWXRlOJ8PODJ55QywsWQExMxdqj0Wg0mrJDiy6NppIxcCB06wapqTprvUaj0dxNaNGl0VQyDAOmTYOGDVUqiS+/rGiLNBqNRlMWaNGl0VRCqldXmeptbGDDBvjrr4q2SKPRaDS3ihZdGk0l5b77YNIktTx/vo7v0mg0mjsdLbo0mkrMoEHQpQukpMD//R9kZVW0RRqNRqO5WbTo0mgqMYYBzz2nEqiGh8Pq1RVtkUaj0WhuFi26NJpKTvXq8OyzannpUj3MqNFoNHcqWnRpNHcAvr4QGKjSR3z8sS4TpNFoNHciWnRpNHcIkyap+owHDuhs9RqNRnMnokWXRnOH4OgIjz+ulj//HJKSKtYejUaj0ZQOLbo0mjuIvn3BwwPi4+GbbyraGo1Go9GUhnIVXYZhDDAM44RhGKcMw5heyPuOhmH8ZBjGQcMwjhiGMbE87dFo7nQMA6ZOVUlTf/0Vjh2raIs0Go1GU1JsyuvAhmFYAx8C/YDzwF7DMNaJyNFc3aYCR0VkiGEY9YAThmEsFpEbVpszmUzExcWRmZlZLvZrNJUVa2v4f/8PzpxRoqtGDbDSPusSYWtrS+3atbG2tq5oUzQazT1IuYkuIAA4JSKnAQzDWAo8AOQWXQLUMAzDAByAOKBE6R/j4uKoWrUqdevWRe2u0dw7NGgAV69CYiIkJ4ObW0VbVPkREZKSkoiLi6NevXoVbY5Go7kHKc//j5sA53Ktn7++LTcLgTZANHAIeF5Eskty8MzMTBwcHLTg0tyTWFtDu3Zq+fBh0A7fG2MYBg4ODto7rtFoKozyFF2FqaH82YWCgBCgMeALLDQMo2aJT6AFl+YepkkTqFcP0tN1bFdJ0d8ZGo2mIilP0XUeaJpr3Rnl0crNRGCVKE4BZwD3crSpTPnPf/6Dh4cH3t7e+Pr68vfff1eIHSEhIWzYsMGyvm7dOt5++20AJkyYwIoVKwrss3XrVgYPHnzbbNSUPYahkqYCHD8OqakVao5Go9FobkB5xnTtBVoZhuEKRAEPA4/k6xMJ9AH+NAyjAeAGnC5Hm8qMXbt2sX79evbv30+VKlW4fPkyGRk3jP8vF0JCQggODub+++8HYOjQoQwdOrRCbNHcXurVA2dnOH9eDTN26FDRFmk0Go2mKMrN0yUiWcA04DfgGPCjiBwxDOMpwzCeut7tTaCLYRiHgD+AV0XkcnnZVJbExMRQt25dqlSpAkDdunVp3LgxzZs35/JldQnBwcH06tULgG3btuHr64uvry/t2rUjMTERgDlz5uDl5YWPjw/Tp6usGuHh4QwYMAB/f3+6d+/O8ePHAeW1euqpp+jevTutW7dm/fr1ZGRkMHPmTJYtW4avry/Lli1j0aJFTJs2zWLrpk2b8uyTn+TkZB5//HE6dOhAu3btWLt2bbndN03Z4+OjvF6nTsG1axVtjUaj0WiKojw9XYjIBmBDvm2f5FqOBvqXpw3lRf/+/XnjjTdo3bo1ffv25aGHHqJnz55F9n/33Xf58MMP6dq1K0lJSVStWpVffvmFNWvW8Pfff1OtWjXi4uIAmDJlCp988gmtWrXi77//5plnnmHz5s0AREREsG3bNsLDwwkMDOTUqVO88cYbBAcHs3DhQgAWLVqU59yF7ZOb//znP/Tu3ZuvvvqK+Ph4AgIC6Nu3L9WrVy/DO6YpLxwdoUULCA+H0FDo1q2iLdJoNBpNYZSr6LpdDBlSPsf96aei33NwcGDfvn38+eefbNmyhYceesgSR1UYXbt25aWXXmLs2LGMGDECZ2dnNm3axMSJE6lWrRoAtWvXJikpiZ07dzJq1CjLvunp6Zbl0aNHY2VlRatWrWjRooXFC1YcN9pn48aNrFu3jnfffReAtLQ0IiMjadOmzQ2PrakceHlBRARERsLly1C3bkVbpNFoNJr83FB0GYbRFZgNuFzvbwAiIi3K17TKj7W1Nb169aJXr154eXnxzTffYGNjQ3a2ynqRlpZm6Tt9+nQGDRrEhg0b6NSpE5s2bUJECsymys7OxsnJiZCQkELPmb9/SWZj3WgfEWHlypW46WRPdyzVqoG7Oxw5AiEh0KePGnLUaDQaTeWhJJ6uL4EXgX2AqXzNuTmK80iVFydOnLB4j0AFs7u4uJCamsq+ffsYOHAgK1eutPQPDw/Hy8sLLy8vdu3axfHjxy1DlI888ohleLF27dq4urqyfPlyRo0ahYgQGhqKj48PAMuXL2f8+PGcOXOG06dP4+bmxqlTpywxYoVR2D67d++2vB8UFMSCBQtYsGABhmFw4MAB2pmTQGnuGNq0UXFdsbEQEwONG1e0RRqNRqPJTUkC6RNE5BcRiRWRK+ZW7pZVcpKSkhg/fjxt27bF29ubo0ePMnv2bGbNmsXzzz9P9+7d85QamTdvHp6envj4+GBvb8/AgQMZMGAAQ4cOpX379vj6+lqG9xYvXsyXX36Jj48PHh4eeQLb3dzc6NmzJwMHDuSTTz6hatWqBAYGcvToUUsgfX4K2yc3r7/+OpmZmXh7e+Pp6cnrr79eTndNU57Y2UHbtmr58GGQ/FnxNBqNRlOhGHKDb2bDMN4GrIFVgCW4SET2l69pObRv316Cg4PzbIuOjqbxPfav/IQJExg8eDAjR46saFM0lZSsLFi7ViVM7d0bGjasaIsqH/fid4dGo7m9GIaxT0Ta599ekuHFjtdfc+8sQO+yMEyj0ZQdNjYqtuvgQeXt0qJLo9FoKg83FF0iEng7DNHcmPypIDSawmjVSpUFio1VrX79irZIo9FoNFCCmC7DMBwNw3jfMIzg6+09wzAcb4dxGo2m9NjZQevWavnIkYq1RaPRaDQ5lCSQ/isgERh9vV0Dvi5PozQaza3h5qaGGmNi4Mo9P+1Fo9FoKgclEV0tRWSWiJy+3v4N3PM5ujSaykyVKtrbpdFoNJWNkoiuVMMwLIVFridLTS0/kzQaTVng7g7W1qoY9tWrFW2NRqPRaEoiup4GPjQMI8IwjLPAQuCpG+xzT+Dg4HDDPn/++SceHh74+vqSmlo6rbpmzRqOHj1aZnalpqbSs2dPTKacHLdz586latWqJCQklPo8ZUFISAgbNmy4ccdbZNGiRURHR1vWJ0+efFP3NiIiAk9Pzxv2W758OW3atCEwsPTzUPLberN2Va2qgupBebsK6zN79mxLfriS0qtXL/KncMnPvHnzSElJKdVxzdzsZyK3XX379uWqVpoajaaScUPRJSIhIuIDeANeItJORA6Wv2l3B4sXL+Yf//gHISEh2Nvbl2rfmxVdRfHVV18xYsSIPElblyxZQocOHVi9enWZnac0VJTo+uKLL2hrziRaDnz55Zd89NFHbNmypdT73ozoKgp3d7CygnPn4Nq1MjlkiagI0ZWbcePG8dFHH93SMTQajaasKVJ0GYbx6PXXlwzDeAmYDEzOta65ztatW+nVqxcjR47E3d2dsWPHIiJ88cUX/Pjjj7zxxhuMHTsWgHfeeYcOHTrg7e3NrFmzLMf49ttv8fb2xsfHh3HjxrFz507WrVvHyy+/jK+vL+Hh4YSHhzNgwAD8/f3p3r27pXD1mTNn6Ny5Mx06dCg2m/zixYt54IEHLOvh4eEkJSXx1ltvsWTJEsv2I0eOEBAQgK+vL97e3pw8eZLXX3+dDz74wNLnX//6F/Pnz2fr1q307NmT0aNH07p1a6ZPn87ixYsJCAjAy8uL8PBwQCV2feqpp+jevTutW7dm/fr1ZGRkMHPmTJYtW2bJph8XF8ewYcPw9vamU6dOhIaGAsojM378ePr370/z5s1ZtWoVr7zyCl5eXgwYMIDMzEwA3njjDTp06ICnpydTpkxBRFixYgXBwcGMHTvW4nHM7RX59ddf8fPzw8fHhz59+pT4uS9atIgRI0YwYMAAWrVqxSuvvGKxYceOHTz11FO8/PLLmEwmXn75Zctz//TTTy3HmDNnDl5eXvj4+DB9+vRCbd23bx89e/bE39+foKAgYmJiANi3bx8+Pj507tyZDz/8sFAbq1WDli1Vdvrrj6JIevXqxauvvkpAQACtW7fmzz//BJSH9OGHH8bb25uHHnooj8d248aNdO7cGT8/P0aNGkVSUhLz588nOjqawMBAi6evsH4Ae/fupUuXLvj4+BAQEEBCQkKBz0RycjKPP/44HTp0oF27dpYKDcXZNXTo0DyfaY1Go6kUiEihDXjy+uusQtrMovYrj+bv7y/5iYqKKrDtdlO9enUREdmyZYvUrFlTzp07JyaTSTp16iR//vmniIiMHz9eli9fLiIiv/32mzzxxBOSnZ0tJpNJBg0aJNu2bZPDhw9L69at5dKlSyIicuXKlQL7ioj07t1bwsLCRERk9+7dEhgYKCIiQ4YMkW+++UZERBYuXGixKzfp6enSoEGDPNvefPNNeeONN8RkMomLi4tcvHhRRESmTZsm33//vWW/lJQUOXPmjLRr105EREwmk7Ro0UIuX74sW7ZsEUdHR4mOjpa0tDRp3LixzJw5U0RE5s2bJ88//7zlWoKCgsRkMklYWJg0adJEUlNT5euvv5apU6dabJo2bZrMnj1bRET++OMP8fHxERGRWbNmSdeuXSUjI0NCQkLE3t5eNmzYICIiw4YNk9WrV+e5dyIijz76qKxbt05ERHr27Cl79+61vGdej42NFWdnZzl9+nSB/QvjzJkz4uHhISIiX3/9tbi6ukp8fLykpqZKs2bNJDIyssD5Pv30U3nzzTdFRCQtLU38/f3l9OnTsmHDBuncubMkJyfnOXfufTMyMqRz584SGxsrIiJLly6ViRMnioiIl5eXbN26VURE/vGPf1jsyk9iosgPP4jMn39G2rTJ22fWrFnyzjvvWM770ksviYjIzz//LH369BERkffee89yzoMHD4q1tbXs3btXLl26JN27d5ekpCQREXn77bfl3//+t4iIuLi4WD7PRfVLT08XV1dX2bNnj4iIJCQkSGZmZoHPxIwZM+S7774TEZGrV69Kq1atJCkpqUi7zNx3331y+fLlAvejMnx3aDSauxsgWArRM0UmRxUR87/jm0Tkr9zvXQ+mrzwMGVI+xy1FJe2AgACcnZ0B8PX1JSIigm7duuXps3HjRjZu3GgpJp2UlMTJkyc5ePAgI0eOpG7dugDUrl27wPGTkpLYuXMno0aNsmxLT1dVmf766y9Lce1x48bx6quvFtj/8uXLODk55dm2dOlSVq9ejZWVFSNGjGD58uVMnTqVzp0785///Ifz588zYsQIWrVqRfPmzalTpw4HDhzg4sWLtGvXjjp16gDQoUMHGjVqBEDLli3p378/AF5eXnmG10aPHm0pEt6iRQuLpy43O3bssFxL7969uXLliiXebODAgdja2uLl5YXJZGLAgAGW80RERACwZcsW5syZQ0pKCnFxcXh4eDCkmM/H7t276dGjB66urkXe++Lo06cPjo4qbV3btm05e/YsTZs2zdNn48aNhIaGsmLFCgASEhI4efIkmzZtYuLEiVSrVq3Ic584cYLDhw/Tr18/AEwmE40aNSIhIYH4+Hh69uwJqOf+yy+/FGqjgwM0bQqxsQYZGQXfNwzDsjxixAgA/P39Lfd0+/btPPfccwB4e3vj7e0NqHt39OhRunZVXwcZGRl07ty5wPGL6nfixAkaNWpEhw4dAKhZs2ah9m/cuJF169ZZYs/S0tKIjIws0i4z9evXJzo62vI51Wg0moqmJGWAFgB+Jdh2T1OlShXLsrW1NVlZWQX6iAgzZszgySefzLN9/vz5eX74CiM7OxsnJydCQkIKff9G+9vb25OWlmZZDw0N5eTJk5Yf84yMDFq0aMHUqVN55JFH6NixIz///DNBQUF88cUX9O7dm8mTJ7No0SIuXLjA448/Xui1W1lZWdatrKzy3If8NhZmsxRSC9TcL/dxbW1tLdvN50lLS+OZZ54hODiYpk2bMnv27DzXXBgicsN7Vxwlfe4LFiwgKCgoz/Zff/31hucWETw8PNi1a1ee7fHx8aWyu00bCAurQ1zcVTIzwdZWbY+Li7MIztzXk/9ainpW/fr1u+EwXlH9QkNDS3QNIsLKlStxc3Mr8F5x+6elpZU6jlKj0WjKk+JiujobhvH/gHrmOK7rbTaqAHbl4aefyqeVMUFBQXz11VeWeJaoqChiY2Pp06cPP/74I1euZ7GMi4sDoEaNGiQmJgLKC+Dq6sry5csB9UN08KCaz9C1a1eWLl0KqLitwqhVqxYmk8kiQpYsWcLs2bOJiIggIiKC6OhooqKiOHv2LKdPn6ZFixY899xzDB061BJXNXz4cH799Vf27t1bQECUhOXLl5OdnU14eDinT5/Gzc0tzzUC9OjRw3INW7dupW7dukV6QPJjvra6deuSlJRk8SwBBc5jpnPnzmzbto0zZ84AOfd+z549PPbYY6W+xsIICgri448/tsSdhYWFkZycTP/+/fnqq68sAeeFPXc3NzcuXbpkEV2ZmZkcOXIEJycnHB0d2bFjB5D3uUdFRRWITatTB5o1c8DJqRHfffeH5Xy//vprAY9sfnI/k8OHD1s+D506deKvv/7i1KlTAKSkpBAWFlbgGorq5+7uTnR0NHv37gUgMTGRrKysAs8qKCiIBQsWWAT5gQMHirUL1N/HhQsXaN68ebHXptFoNLeT4mYv2gEOKG9YjVztGjCy/E27++jfvz+PPPIInTt3xsvLi5EjR5KYmIiHhwf/+te/6NmzJz4+Prz0kpqn8PDDD/POO+/Qrl07wsPDWbx4MV9++SU+Pj54eHhYAoo/+OADPvzwQzp06FBs6of+/ftbfqSXLl3K8OHD87w/fPhwli5dyrJly/D09MTX15fjx49bxIednR2BgYGMHj06zwzIkuLm5kbPnj0ZOHAgn3zyCVWrViUwMJCjR49agqZnz55NcHAw3t7eTJ8+nW+++abEx3dycuKJJ57Ay8uLYcOGWYatICeQP3/qjnr16vHZZ58xYsQIfHx8eOihhwCIjIwsMy/J5MmTadu2LX5+fnh6evLkk0+SlZXFgAEDGDp0KO3bt8fX19cyfJbbVpPJxIoVK3j11Vfx8fHB19eXnTt3AvD1119bhoNz2xoTE4ONTUEndps28NRT3zJ37lv4+vrSu3dvZs2aRcuWLYu1/+mnnyYpKQlvb2/mzJlDQECA5d4tWrSIMWPGWCY+mIeMp0yZwsCBAwkMDCyyn52dHcuWLePZZ5/Fx8eHfv36kZaWVuAz8frrr5OZmYm3tzeenp6WySJF2QVqkkGnTp0KvQ8ajUZTURiFDefk6WAYLiJy9jbZUyjt27eX/HmBoqOjady4cQVZdGdy4MAB3n//fb777rub2j87Oxs/Pz+WL19OK3MCqBIyYcIEBg8ezMiRd4Zef/nllxk3blyBOKE7gYULF9KsWTOGDh2aZ7sIbNgACQnQuTPkGlW863j++ecZOnRoobNR9XeHRqMpbwzD2Cci7fNvL8m/gSmGYbwDeABVzRtFpHcZ2qe5DbRr147AwEBMJlOpPVVHjx5l8ODBDB8+vNSC607knXfeqWgTbppp06YVut0wVN6uv/+GY8egeXO17W7E09OzVOk/NBqN5nZQEk/XRmAZ8A9UJvrxwCURKThFrpzQni6NpmwwmWDdOkhNhcBAuD7p9J5Cf3doNJrypihPV0nKANURkS+BTBHZJiKPA53K3EKNRlPuWFuDeRLgsWMVa4tGo9Hca5REdGVef40xDGOQYRjtAOdytEmj0ZQj990HNjZw4QJcnzCp0Wg0mttASUTXW4ZhOAL/DzXE+AXwYrlapdFoyg07OyW8AArJT6vRaDSacuKGgfQisv76YgIQWL7maDSa24GbG5w4AZGR4OurajRqNBqNpnwpLjnqAsMw5hfVbqeRlRVra2t8fX3x8PDAx8eH999/n+zsbACCg4MtJUoqOxMmTMiTSDQ3L7zwAtu3b7esX7p0CVtb2zxFm283//3vf8v9HCEhIWzYsMGyvm7dOt5+++2bOlbu4tpFcenSJTp27Ei7du0shaZv1taSUL06zJnTi1Ongjlxouh+EyZMwNXVFR8fH1q3bs1jjz1GVFTUDY8/b948S9LX0nIz1wN573Pfvn25evXqTZ1fo9FoyovihheDgX3FtHsee3t7QkJCOHLkCL///jsbNmzg3//+NwDt27dn/vw7W5vGxcVZahOaWb58OZ06dbph6ZfypCJE19ChQ5k+fXq5ne+PP/7A3d2dAwcO0L1791Lte7MixezdCg+HzMyi+73zzjscPHiQEydOWNKOZBRWxDEXFSG6cjNu3Dg++uijWzqGRqPRlDVFii4R+aa4djuNvBOoX78+n332GQsXLkRE2Lp1K4MHDwZUSZkuXbrQrl07unTpwonrroWUlBRGjx6Nt7c3Dz30EB07drT8p+7g4MC//vUvfHx86NSpExcvXgTg7Nmz9OnTB29vb/r06UNkZCSgxJCnpyc+Pj4WkWQymXj55Zfp0KED3t7eFu+UiDBt2jTatm3LoEGDiI2NLfSaVqxYYSkqbWbJkiW89957nD9/3uLxMJlMTJgwAU9PT7y8vJg7dy7h4eH4+eWU5zx58iT+/v4ANG/enH/+85907tyZ9u3bs3//foKCgmjZsiWffPIJoEoA9ejRg+HDh9O2bVueeuopsrOzmT59Oqmpqfj6+jJ27FgA3n//fTw9PfH09GTevHkARERE4O7uzuTJk/H09GTs2LFs2rSJrl270qpVK/bs2VPks8nIyGDmzJksW7bMkhV90aJFlvxXFy9eZPjw4fj4+ODj42PJEF8SCnuuISEhvPLKK2zYsMGSMX/jxo107twZPz8/Ro0aZSkdtXfvXrp06YKPjw8BAQEkJCQUsDU5OZnHH3+cDh060K5dO0vlgtTUVB5++GHL5y0rK5VatSAjA06fvrHthmHw4osv0rBhQ0tx7cLsnD9/PtHR0QQGBhIYGFhkv7K+ntyVBoYOHVqh/xhoNBpNoYhIsQ3YAmzO3260X1k2f39/yU9UVFSBbTfk2DGRH39Ur2VA9erVC2xzcnKSCxcuyJYtW2TQoEEiIpKQkCCZmZkiIvL777/LiBEjRETknXfekSlTpoiIyKFDh8Ta2lr27t0rIiKArFu3TkREXn75ZXnzzTdFRGTw4MGyaNEiERH58ssv5YEHHhAREU9PTzl//ryIiFy9elVERD799FPLfmlpaeLv7y+nT5+WlStXSt++fSUrK0uioqLE0dFRli9fXuBaHnvsMYsNIiKRkZFy3333iYjIjBkz5L333hMRkeDgYOnbt6+ln/n8vXr1kgMHDlj6z58/X0REXFxc5KOPPhIRkRdeeEG8vLzk2rVrEhsbK/Xq1RMRkS1btkiVKlUkPDxcsrKypG/fvhYbc9/34OBg8fT0lKSkJElMTJS2bdvK/v375cyZM2JtbS2hoaFiMpnEz89PJk6cKNnZ2bJmzRrLfSvq2Xz99dcydepUy3lyr48ePVrmzp0rIiJZWVkSHx9f4N7lpmfPnjd8rrmPf+nSJenevbskJSWJiMjbb78t//73vyU9PV1cXV1lz549eWzPb+uMGTPku+++szyLVq1aSVJSkrz33nsyceJEERE5ePCgWFtby08/7ZXFi0XWrhXJzi5o+/jx4wt8Np5//nl5++23i7RTRD3jS5cu3fbrMd9nEZH77rtPLl++XOCabuq7Q6PRaEoBECyF6JmSZKT/R67lqsCDQFZJBJ1hGAOAD1AFsr8QkQJBMYZh9ALmAbbAZRHpWZJjl5rjx2HCBPVvvZ0dLFqk0nOXMVJIstmEhATGjx/PyZMnMQzDUvh4x44dPP/884DKoJ275IydnZ3FU+bv78/vv/8OwK5du1i1ahWghlBeeeUVQBW9njBhAqNHj2bEiBGA8i6EhoZa4rUSEhI4efIk27dvZ8yYMVhbW9O4cWN69y68uEBMTAz16tWzrC9dupTRo0cDqi7kpEmTeOmll2jRogWnT5/m2WefZdCgQfTv3x9QNQe//vpr3n//fZYtW2bxLgGWEjVeXl4kJSVRo0YNatSoQdWqVYmPjwcgICCAFi1aADBmzBh27NhRoIzQjh07GD58ONWrVwdgxIgR/PnnnwwdOhRXV1e8vLwA8PDwoE+fPhiGgZeXFxEREcU+m+LYvHkz3377LaDi+hwdHW+4j5minmtudu/ezdGjR+natSsAGRkZdO7cmRMnTtCoUSNLTcmiCoFv3LiRdevWWWo5pqWlERkZyfbt2y1xht7e3nh7e9OggSoPlJgI589D06Y3vgbzZ7woOyvyenJTv359oqOjqVOnzo0vSqPRaG4DJZm9mD9+6y/DMLbdaD/DMKyBD4F+wHlgr2EY60TkaK4+TsBHwAARiTQMo35pjC8Vhw4pwdWkCURHq/UyFl2nT5/G2tqa+vXrcyxX5snXX3+dwMBAVq9eTUREBL169QIKF2hmbG1tMa7XaLG2tiYrq3Cda+7zySef8Pfff/Pzzz/j6+tLSEgIIsKCBQsICgrKs8+GDRss+xWHvb09aWlplvUlS5Zw8eJFFi9eDKjM3idPnqRVq1YcPHiQ3377jQ8//JAff/yRr776igcffJB///vf9O7dG39//zw/flWqVAHAysrKsmxeN19rfhsLs7m4e5j/uLnPaT5HUc+mvCjJcxUR+vXrV2B4LDQ0tETPTURYuXIlbuYsqLkoeE/VTMbgYJUstSSi68CBA/Tp06dIOyvyenKTlpZWZkXLNRqNpiy4YZ4uwzBq52p1DcMIAhqW4NgBwCkROS0iGcBS4IF8fR4BVolIJICIFB5cVBZ4eSkPV3Q02Nqq9TLk0qVLPPXUU0ybNq3AD0FCQgJNmjQBYNGiRZbt3bp148cffwRUbcNDhw7d8DxdunRh6dKlACxevJhu3boBEB4eTseOHXnjjTeoW7cu586dIygoiI8//tjivQkLCyM5OZkePXqwdOlSTCYTMTExbNmypdBztWnThlOnTgFw4sQJkpOTiYqKIiIigoiICGbMmMHSpUu5fPky2dnZPPjgg7z55pvs378fgKpVqxIUFMTTTz/NxIkTS3orLezZs4czZ86QnZ3NsmXLLNdqa2truaYePXqwZs0aUlJSSE5OZvXq1aUKRC/q2dSoUYPExMRC9+nTpw8ff/wxoOLZrl27Ztlekpl9N6JTp0789ddflnufkpJCWFgY7u7uREdHs3fvXgASExPJysoqYGtQUBALFiywCNIDBw4A6l6ZBfPhw4cJDQ0FoEUL+PTTx/j77z1cvly0XSLC/PnziYmJYcCAAUXaCXnv3+2+HrOtFy5coHnz5iW/8RqNRlPOlCQ56j5yZjLuQiVJnVSC/ZoA53Ktn7++LTetgVqGYWw1DGOfYRiPleC4N4e7uxpSnD69zIYWzQHdHh4e9O3bl/79+zNr1qwC/V555RVmzJhB165dMZlMlu3PPPMMly5dwtvbm//7v//D29v7hkNV8+fP5+uvv8bb25vvvvuODz74AICXX34ZLy8vPD096dGjBz4+PkyePJm2bdvi5+eHp6cnTz75JFlZWZai1V5eXjz99NP07Fn4iO6gQYPYunUroLxcw4cPz/P+gw8+yJIlS4iKiqJXr174+voyYcIE/ve//1n6jB07FsMwLEOOpaFz585Mnz4dT09PXF1dLeefMmUK3t7ejB07Fj8/PyZMmEBAQAAdO3Zk8uTJtGvXrsTnKOrZBAYGcvToUUswd24++OADtmzZgpeXF/7+/hw5coTs7GxOnTpF7dq1S32d+alXrx6LFi1izJgxeHt706lTJ44fP46dnR3Lli3j2WefxcfHh379+pGWllbA1tdff53MzEy8vb3x9PTk9ddfB+Dpp58mKSkJb29v5syZQ0BAAGDOTh+Kk1OjQpOlvvzyy5aUEXv37mXLli3Y2dkVaSeoZzRw4EACAwNv+/UA7Nu3j06dOmFjU5IICo1Go7k93LDg9U0f2DBGAUEiMvn6+jggQESezdVnIdAe6APYo0TdIBEJy32su7XgtclkIjMzk6pVqxIeHk6fPn0ICwvDzs6uok2z0K1bN9avX4+Tk9NN7f/uu++SkJDAm2++War9tm7dyrvvvsv69etv3LkScPjwYb766ivef//9ijal1Fy7do0JEyYxevRyRGDIEHBwqGirbo3nn3+eoUOH0qdPnwLv3Q3fHRqNpnJTVMHrG/4baBhGVeAZoBsgwA7gYxFJK3ZH5dnKHSHiDEQX0ueyiCQDyYZhbAd8gDDuAVJSUggMDCQzMxMR4eOPP65UggvgvffeIzIy8qZE1/DhwwkPD2fz5s1lb1glw9PT844UXKAC2FetWs6uXXDmjMpUfz27xx2Lp6dnoYJLo9FoKpIberoMw/gRSAS+v75pDFBLREbdYD8blHjqA0QBe4FHRORIrj5tgIVAEGAH7AEeFpHDuY91t3q6NJrKxNWr8Msvarhx2DAVAnk3or87NBpNeXPTni7ATUR8cq1vMQzj4I12EpEswzCmAb+hUkZ8JSJHDMN46vr7n4jIMcMwfgVCgWxUWonDRR9Vo9GUF7VqQcOGcOECnDwJHh4VbZFGo9HcXZREdB0wDKOTiOwGMAyjI/BXSQ4uIhuADfm2fZJv/R3gnZKZq9FoypM2bZToCgtTc02srSvaIo1Go7l7KMnsxY7ATsMwIgzDiEAFu/c0DOOQYRihxe+q0WjuJBo2BCcnSE2F6/ljNRqNRlNGlMTTNeDGXTQazd2AYShv165dKllqixZqm0aj0WhunRt6ukTkLOAEDLnenETkrLmVs32VntWrV2MYhiU/EahAXXO5mtyFr9etW8fbbxeohHTTvPDCC2zfvh2A9evX065dO3x8fGjbtq2luHV5MW/ePFJSUsr1HBEREfzwww+W9eDgYEvZl9IyYcIESzmkokhPT6dv376F5uYqra1laVdhfRxKmdMh9+ewKEJCQtiwYQMuLlCtGly7pnIJl5Sb+Uzktmv9+vWF5rnTaDSaWyEtK43TV0+zI3IHSw8v5WLSxQqzpSQpI54HngBWXd/0vWEYn4nIgnK17A5hyZIldOvWjaVLlzJ79mwAGjduXOgP6dChQy01B2+VuLg4du/ezbx588jMzGTKlCns2bMHZ2dn0tPTLbUFy4t58+bx6KOPUq1atXI7h1nIPPLIIwC0b9+e9u0LTAYpMw4cOEBmZiYhISGl3je/rXciISEhBAcHc//99+PmBgcOKG9Xk/wpjYvgVj8TgwYN4vXXX+fVV18t18+VRqO5+xARLqVc4lzCOaISo4i6FsX5a+eJTormckreUhvONZ1p4NCgQuwsSUzXJKCjiMwUkZlAJ5QIu+dJSkrir7/+4ssvv7SU5gH1A+zp6Vmg/6JFi5g2bRqgvBfPPfccXbp0oUWLFhaRlp2dzTPPPIOHhweDBw/m/vvvL1TArVixggED1MivuXyKubZhlSpVcHNzIzExEVdXV0vJnGvXrtG8eXMyMzPp1asXL774Ij169KBNmzbs3buXESNG0KpVK1577TXLdbi7uzN+/Hi8vb0ZOXIkKSkpzJ8/n+joaAIDAwkMDASU+DRnxH/11Vctdjo4OPDqq6/i7+9P37592bNnD7169aJFixasW7fOcp7u3bvj5+eHn58fO3fuBGD69On8+eef+Pr6Mnfu3DxekaSkJCZOnIiXlxfe3t6sXLmyxM+tefPmzJo1Cz8/P7y8vDh+/DixsbE8+uijhISE4OvrS3h4OPv27aNnz574+/sTFBRETEwMAKdOnaJv3774+Pjg5+dHeHh4AVtNJhMvv/wyHTp0wNvb2+J5FBGmTZtG27ZtGTRoELGxt1b5auvWrfTq1YuRI0fi7u7O2LFjLeVyfv31V9zd3enWrZulSDpAcnIyjz/+OB06dKBdu3asXbuWjIwMZs6cybJly/D19WX//mWYTMm89dbjtGuX0w9UUt9//OMflnu/YMGCQj8TGzdupHPnzvj5+TFq1CiSkpKKtcswDHr16nXHJMTVaDS3nwxTBqevnmb72e38cOgH/m/H//HshmcZuXwkk9ZNYva22Xy+/3M2nNpAaGwol1MuY2NlQ9OaTenYpCMPtnmQxjUqMGWMiBTbgENA1VzrVYFDN9qvLJu/v7/kJyoqqsC22813330njz/+uIiIdO7cWfbt2yciImfOnBEPDw8REdmyZYsMGjRIRES+/vprmTp1qoiIjB8/XkaOHCkmk0mOHDkiLVu2FBGR5cuXy8CBA8VkMklMTIw4OTnJ8uXLC5z7sccek3Xr1lnWJ02aJPXq1ZOHH35Yvv/+ezGZTCIiMmHCBFm9erWIiHz66afy0ksviYhIz5495ZVXXhERkXnz5kmjRo0kOjpa0tLSpEmTJnL58mU5c+aMALJjxw4REZk4caK88847IiLi4uIily5dEhH1LJo2bSqxsbGSmZkpgYGBlnMCsmHDBhERGTZsmPTr108yMjIkJCREfHx8REQkOTlZUlNTRUQkLCxMzM87973Lv/7KK6/I888/b3kvLi6u2Gc1fvx4y310cXGR+fPni4jIhx9+KJMmTSpw/IyMDOncubPExsaKiMjSpUtl4sSJIiISEBAgq1atEhGR1NRUSU5OLmDrp59+Km+++aaIiKSlpYm/v7+cPn1aVq5cKX379pWsrCyJiooSR0fHQp9vUbabqV69usXmmjVryrlz58RkMkmnTp3kzz//lNTUVHF2dpawsDDJzs6WUaNGWeybMWOGfPfddyIicvXqVWnVqpUkJSXl+XyKiDz++Ax5+unv5M8/8/b76KOPZMSIEZKZmSkiIleuXLHcV/Nn4tKlS9K9e3dJSkoSEZG3335b/v3vfxdrl4jI999/L9OmTSv2ftwqleG7Q6PRFE9SepIcu3RMNp7aKF/u/1Jmb5ktk9ZOkiE/DJHBPwwutD22+jGZsWmGLPx7oaw5tkb2Ru2V6GvRkmXKuu32A8FSiJ4pSSD918DfhmGsBgxU0eovy0MA3hJDhqjXn37K2fbGG7B3L7z+Opjrsv36K3z4IQQFwXWvE3FxMH481K4N33xT4lMuWbKEF154AYCHH36YJUuW4OfnV+L9hw0bhpWVFW3btuXiRTXGvGPHDkaNGoWVlRUNGza0eA3yExMTQ7169SzrX3zxBYcOHWLTpk28++67/P777yxatIjJkyczZ84chg0bxtdff83nn39u2cc81Onl5YWHhweNGjUCoEWLFpw7dw4nJyeaNm1K165dAXj00UeZP38+//jHP/LYsnfvXnr16mWxZ+zYsWzfvp1hw4ZhZ2dn8ch5eXlRpUoVbG1t8fLysgyBZmZmMm3aNEJCQrC2trYUTS6OTZs25fEu1qpV64b75GbEiBEA+Pv75/G2mDlx4gSHDx+mX79+gPLuNGrUiMTERKKioix1IKtWrVro8Tdu3EhoaKjFS5mQkMDJkyfZvn07Y8aMwdramsaNG9O7d+8b2pq/gHr+bQEBATg7OwPg6+tLREQEDg4OuLq60qpVK0A9u88++8xi27p163j33XcBSEtLIzIyssA5DhzYyKVL69iw4V1q1szpt2nTJp566ilLXcPC6k3u3r2bo0ePWj47GRkZdO7cmePHjxdpF0D9+vWJLk0gmUajuaNJykgiMiHS0s4lnCPyWiRxqXGF9rc2rGnk0Iimjk1xrumMc01nmtZsSuMajaluV/02W196bii6ROR9wzC2osoAAUwUkQPlatUdwJUrV9i8eTOHDx/GMAxMJhOGYTBnzpwSH6NKlSqWZbk+JGR+vRH29vakpeWtxOTl5YWXlxfjxo3D1dWVRYsW0bVrVyIiIti2bRsmkynPsKf5/FZWVnlssbKyIisrCyj4g1+YACjOZltbW8s+uc+T+xxz586lQYMGHDx4kOzs7CKFTP5zFmZLSTHbYW1tbbEj//E9PDzYtWtXnu3Xrl0r0fFFhAULFhAUFJRn+4YNG0ptd506dbh69aplPS4ujrp161rWcz+73NdT1HlEhJUrV+Lm5pZn+99//51n3TCEd99dicnkRqtW0KFDzv43ugYRoV+/fixZsiTP9pCQkGL3TUtLw97evthjazSaO4/UzFSLsDqbcJaz8WeLFVd21nY413CmmWMzi8BqWrMpjWo0wsbqzi1kX5KYLjMGqvZi5ZxA/tNPeb1cADNnqm1mLxfAgAFqm9nLBcrD9dNPpfJyrVixgscee4yzZ88SERHBuXPncHV1ZceOHbd0Gd26dWPlypVkZ2dz8eJFtm7dWmi/Nm3acOrUKUDFN+XuFxISgouLi2X9scceY8yYMUycOLHU9kRGRlqEh3nSAECNGjVITEwEoGPHjmzbto3Lly9jMplYsmQJPXv2LPE5EhISaNSoEVZWVnz33XeYTKYC58hP//79WbhwoWXdLEoee+wx9uzZU+rrzI+bmxuXLl2yXHtmZiZHjhyhZs2aODs7s2bNGkDNeExJSSlga1BQEB9//LElni4sLIzk5GR69OjB0qVLMZlMxMTEsGXLFss+M2bMYPXq1QVs6dWrF8uWLSMjIwNQsYFFeUDNuLu7c+bMGcLDwwHyiJ+goCAWLFhgEcsHDqj/oQq7hk2bVL/Tp2H3btWvf//+fPLJJxZxFxcXV2D/Tp068ddff1k+oykpKYSFhRVrl/k+FRYPqdFo7gyysrM4G3+W7We38+3Bb3lj2xtMWjuJ0StG84/f/8H8PfNZe2ItIRdDiEuNw87ajvtq3Ufv5r2Z4DOBmT1m8vmQz1k+ajkfDPyA/9fl/zHaYzRdmnahqWPTO1pwQclmL84ERgErUYLra8MwlovIW+VtXGVmyZIlTJ8+Pc+2Bx98kB9++CFPIHlpefDBB/njjz/w9PSkdevWdOzYEUdHxwL9Bg0axKeffsrkyZMREebMmcOTTz6Jvb091atXZ9GiRZa+Y8eO5bXXXmPMmDGltqdNmzZ88803PPnkk7Rq1Yqnn34agClTpjBw4EAaNWrEli1b+N///kdgYCAiwv33388DDzxQ4nM888wzPPjggyxfvpzAwECqV1cuYm9vb2xsbPDx8WHChAm0a9fOss9rr73G1KlT8fT0xNramlmzZjFixAhCQ0Mtw6S3gp2dHStWrOC5554jISGBrKwsXnjhBTw8PPjuu+948sknmTlzJra2tixfvryArc8//zwRERH4+fkhItSrV481a9YwfPhwNm/ejJeXF61bt84jTg8dOlTo7NbBgwezb98+/P39sba2pmXLlnzyyScF+uWmatWqfPbZZwwaNIi6devSrVs3Dh9WFbZef/11XnjhBby9vRERmjdvzvr16wkMDOTtt9/G19eXGTNmWPq9/ro3mZmCq2tztm9fz+TJkwkLC8Pb2xtbW1ueeOIJpk2bVuAzsWjRIsaMGUN6ejoAb731Fq1bty7SLsDyWdJoNJUbEeFq2lUi4iOIiI/gzNUzRMRHcD7xPFnZBUcPbKxscK7hjIuTC80cm+HiqF4bODTAyiiN/+fOpiQFr48B7UQk7fq6PbBfRNrcBvuAe6/gdVJSEg4ODly5coWAgAD++usvGjZsWKBft27dWL9+PU5OTsUeb8WKFaxdu5bvvvuuVHZEREQwePDgPD+KlZlr164xadIkli9fXtGm3BRBQUH89ttvFW1GAa5cgd9+U4WwH3gAco1mlikXL17kkUce4Y8//iifE1znbv7u0GjKg6zsLM4lnONM/BnOXD2jXuPPcC298HCLhtUb4uLkgquTKy5OLrg4utzxw4Kl5VYKXkegZiyaA4iqAOFlZ5omP4MHDyY+Pp6MjAxef/31QgUXwHvvvUdkZGSxouvZZ5/ll19+YcOGDUX2uVuoWbPmHSu4gEopuADq1IFGjSAmBk6cAG/v8jlPZGQk7733XvkcXKPRlIjkjGTOxJ/h9NXTlnbu2rlCvVfVbavT3Kk5zZ2a4+rkSnOn5jRzbIa9rY7LLIqSeLrWAB2A31ExXf2AHUAsgIjcXIrwUnCvebo0msrGpUvw++9gZwdDh6rXOxX93aHRKOJS4yzCKjwunPCr4VxMLjxbeyOHRrg6ueJay5UWtVrQ3Kk59arVu6UJTXczt+LpWn29mdlaVkZpNJo7g3r1oH59iI2FkyfBw6OiLdJoNCVFRLiSeoXwuHBOxZ0i/Kp6vZp2tUBfWytbi+eqZe2WFg+W9l6VDSVJGVHyKX0ajeauxdMTNm+G48fBzU3FeGk0mspFboF1Mu4kp+JOcSruFAnpCQX6VrOtRgunFrSs3ZIWtVrQslZLnGs6Y21lXQGW3xvor02NRlMiGjSAunXh8mU4dQrc3SvaIo1Gk5CWYBFXYVfCOBl3kvi0+AL9HOwcuK/WfbSs3ZL7at9Hy1otaejQUA8P3ma06NJoNCXCMNSw4rZtqhB2q1Zgrf8h1mhuG2lZaZyKO8XJKycJuxJG2JUwYlMK1m+tblud+2rfR6varbiv9n3cV/s+6levrwVWJaDI5BiGYXx3/fX522fOnYW1tTW+vr54enoyZMgQ4uPjK9Se4OBgnnvu1uc1TJgwodAi2wAvvPAC27dvB2D9+vW0a9cOHx8f2rZtaynqXF7MmzePlJSUcj1HREQEP/zwg2X9Vu5pcffRTHp6On379sXX15dly5bdkq1ladfs2bNp0qQJvr6+tGrVihEjRnD06FEaN4ZatSA1FcILmcO8aNGimy7jUxbX8/DDD3Py5MmbOr9GU5nIlmzOxp9lY/hGFvy9gGc3PMvo5aOZ8ccMvgr5ih3ndhCbEktVm6p41PNgmNswXu7yMp8N/owlDy7hrd5vMd53PF2bdaWBQwMtuCoJxXm6/A3DcAEeNwzjW/JloheRwnP330PY29sTEhICwPjx4/nwww/517/+VWH2tG/fnvbtC0yWKDPi4uLYvXs38+bNIzMzkylTprBnzx6cnZ1JT0+31FIsL+bNm8ejjz5KtWrVyu0c5h/+Rx55BCj/e3rgwAEyMzMtn6PSkN/WsubFF1+01NlctmwZvXv35tChQ3h61uPPP+HoUWjZMq+3a9GiRXh6et7U7MCyuJ6nn36aOXPm5KkxqtHcCSSkJXDiygmOXz7OicsnCIsLIy0rb6k3K8MKV0dXWtdpjVtdN1rVbkVTx6b3VHLRO53intQnwK+AO7AvXwsuZr97ks6dOxMVFQVAeHg4AwYMwN/fn+7du3P8+HFAJX8cPnw4Pj4++Pj4sHPnTgDef/99PD098fT0ZN68eZZjvvnmm7i7u9OvXz/GjBljKVDcq1cvXn31VQICAmjdujV//vknAFu3bmXw4MEA3H///fj6+uLr64ujoyPffPMNJpOJl19+mQ4dOuDt7W3xTIkI06ZNo23btgwaNIjY2ILualBJVs3FqxMTE8nKyqJOnTqAqv/n5uZGYmIirq6ulvI3165do3nz5mRmZtKrVy9efPFFevToQZs2bdi7dy8jRoygVatWvPbaa4D64XV3d2f8+PF4e3szcuRIUlJSmD9/PtHR0QQGBlpK4CxZsgQvLy88PT3zVAFwcHDg1Vdfxd/fn759+7Jnzx569epFixYtWLduneU83bt3x8/PDz8/P8uzmD59On/++Se+vr7MnTs3zz1NSkpi4sSJeHl54e3tzcqVK0v8+WjevDmzZs3Cz88PLy8vjh8/TmxsLI8++ighISH4+voSHh7Ovn376NmzJ/7+/gQFBRETEwPAqVOn6Nu3Lz4+Pvj5+REeHl7A1lt9vsXx0EMP0b9/f3744QecneHSpX3MmNETb+8cO1esWEFwcDBjx47F19eX1NTU23493bt3Z9OmTYXW09RoKgumbBOnr57m57CfeW/nezyx7gkeXf0ob25/k+VHlxMaG0paVhr1q9WnW9NuTGo3iTl951hK40wNmErfFn1xcXLRgutOQ0SKbcDHN+pT3s3f31/yExUVVWDb7aZ69eoiIpKVlSUjR46UX375RUREevfuLWFhYSIisnv3bgkMDBQRkdGjR8vcuXMt+8THx0twcLB4enpKUlKSJCYmStu2bWX//v2yd+9e8fHxkZSUFLl27Zrcd9998s4774iISM+ePeWll14SEZGff/5Z+vTpIyIiW7ZskUGDBuWxMTg4WLy8vCQ+Pl4+/fRTefPNN0VEJC0tTfz9/eX06dOycuVK6du3r2RlZUlUVJQ4OjrK8uXLC1zvY489JuvWrbOsT5o0SerVqycPP/ywfP/992IymUREZMKECbJ69WoREfn0008ttvbs2VNeeeUVERGZN2+eNGrUSKKjoyUtLU2aNGkily9fljNnzgggO3bsEBGRiRMnWq7bxcVFLl26JCLq+Tdt2lRiY2MlMzNTAgMDLecEZMOGDSIiMmzYMOnXr59kZGRISEiI+Pj4iIhIcnKypKamiohIWFiYmD9j+e9h7vVXXnlFnn/+ect7cXFxBe5RbsaPH2+5jy4uLjJ//nwREfnwww9l0qRJBY6fkZEhnTt3ltjYWBERWbp0qUycOFFERAICAmTVqlUiIpKamirJyckFbL3V55ubWbNmWe67mblz58pTTz0lGRkZ4u/fWT7+OFZWrBD5/vscO3v27Cl79+6t0Ovp27evBAcHF3ltleG7Q3NvkZieKHuj9sq3Id/KPzf9U0b+OFIG/zA4T3tw2YMyY9MMWXRgkew+t1viUor/ftFUboBgKUTPlCRlxNOGYfgA3a9v2i4ioeWmAm+WIUOKfm/qVFXoGuDXX+HDD4vum79odjGkpqbi6+tLREQE/v7+9OvXj6SkJHbu3MmoUaMs/cy15zZv3sy3334LqHgwR0dHduzYwfDhwy31BkeMGMGff/5JdnY2DzzwAPb29tcvL+/1jRgxAgB/f/8ih/UuX77MuHHj+PHHH3F0dGTjxo2EhoZa4l8SEhI4efIk27dvZ8yYMVhbW9O4cWN69+5d6PFiYmKoV6+eZf2LL77g0KFDbNq0iXfffZfff/+dRYsWMXnyZObMmcOwYcP4+uuv8wz1mGsLenl54eHhYamT2KJFC86dO4eTkxNNmzala9euADz66KPMnz/fMsxlZu/evfTq1ctiz9ixY9m+fTvDhg3Dzs7O4pHz8vKiSpUq2Nra4uXlZblXmZmZTJs2jZCQEKytrQkLCyv0mnOzadMmli5dalmvVavWDffJTe5ntmrVqgLvnzhxgsOHD9OvXz8ATCYTjRo1IjExkaioKIYPHw6ouoqFcavP90bI9UTKJ06cICzsMO+804+sLLCzM+HqWrDeZUVdT/369YmOjsbf3/+mrlOjuRVEhIvJFzl26RhHLx3l6KWjRF6LLNCvkUMj3Ou6W5qLo4tO1XAPUJKC188BUwDzr8RiwzA+E5EF5WrZHYA5pishIYHBgwfz4YcfMmHCBJycnEoco2P+ISvpdjNVrhfAs7a2LnQoxWQy8fDDDzNz5kw8PT0tx1ywYAFBQUF5+m7YsKFEQZb29vakpeWNMfDy8sLLy4tx48bh6urKokWL6Nq1KxEREWzbtg2TyWQ5f267raysLMvmdfN15LelMNuKuz+2traWfXKfJ/c55s6dS4MGDTh48CDZ2dlF/vDnP+etBKPe6JmJCB4eHuzatSvP9mvXCq9vVtj+t/J8b8SBAwdo3769xc61a3exaZPK11VIne4Ku560tDTLPysaTXmTLdlExEdwJPaIElmXjxKXmjfk2cbKhla1W9Gmbhva1GuDe113nKo6VYzBmgqlJIPBk4GOIjJTRGYCnYAnytesm+Cnn4puZi8XqOXi+t4Ejo6OzJ8/n3fffRd7e3tcXV0tNQBFhIMHDwLQp08fPv74Y0CJomvXrtGjRw/WrFlDSkoKycnJrF69mu7du9OtWzd++ukn0tLSSEpK4ueffy6VTdOnT8fb25uHH37Ysi0oKIiPP/7YEm8VFhZGcnIyPXr0YOnSpZhMJmJiYtiyZUuhx2zTpg2nTp0CVHzT1q1bLe+FhITg4uJiWX/ssccYM2YMEydOLJXdoGrwmX+olyxZQrdu3QCoUaMGiYmJAHTs2JFt27Zx+fJlTCYTS5YsoWfPniU+R0JCAo0aNcLKyorvvvsOk8lU4Bz56d+/PwsXLrSsX7161XKte/bsKfV15sfNzY1Lly5Zrj0zM5MjR45Qs2ZNnJ2dWbNmDaA8pykpKQVsvZnnO2PGDFavzl1wonBWrlzJxo0bGTNmjMXO8PBdNGkCaWmZrFt3BMh7/yriesz9PHTKfE05kWnK5NilYyw/spzZW2fz8IqHef7X5/ls/2fsOLeDuNQ4atjVoGOTjkz0ncicvnP4ceSPzOk3h4ntJtLJuZMWXPcwJcnTZQCmXOsm8s1k1GBJnbB06VIWL17M008/zVtvvUVmZiYPP/wwPj4+fPDBB0yZMoUvv/wSa2trPv74Yzp37syECRMICAgAYPLkybRr1w5QQ3E+Pj64uLjQvn17HB0dS2zPu+++i4eHB76+vgC88cYbTJ48mYiICPz8/BAR6tWrx5o1axg+fDibN2/Gy8uL1q1bFyleBg0axKeffsrkyZMREebMmcOTTz6Jvb091atXZ9GiRZa+Y8eO5bXXXmPMmDGlvpdt2rThm2++4cknn6RVq1Y8/fTTAEyZMoWBAwfSqFEjtmzZwv/+9z8CAwMREe6//34eeOCBEp/jmWee4cEHH2T58uUEBgZahne9vb2xsbHBx8eHCRMmWJ4FwGuvvcbUqVPx9PTE2tqaWbNmMWLECEJDQy3DpLeCnZ0dK1as4LnnniMhIYGsrCxeeOEFPDw8+O6773jyySeZOXMmtra2LF++vICtzz//fKmf76FDhyxDvvmZO3cu33//PcnJyXh6erJ582bLcK7Zzri4BOLjsxg48AUGDfJgwoQJPPXUU9jb27Nr167bfj0XL17E3t6+TJ6HRgOQYcrg+OXjHLp4iCOXjnDiygkyTBl5+jSs3pC29drStl5bPOp70KRGE52iQVMoJSl4/RIwnpz6i8OARSIyr1wty8W9WvA6KSkJBwcHUlJS6NGjB5999hl+fn4ValO3bt1Yv349Tk5OxfZbsWIFa9eu5bvvvivV8SMiIhg8eDCHDx++BStvH9euXWPSpEkWz+adRlBQEL/99tstHWPnToiIAFdX6Ny5bOy6WebOnUvNmjWZNGlSkX3uhe8Ozc2TnpXOscvHOHTxEIdjDxMWF0ZWdt5wgGY1m+FZ3xOP+h541POgTrU6FWStprJy0wWvReR9wzC2At1QHq6JInKg7E3U5GfKlCkcPXqUtLQ0xo8fX+GCC+C9994jMjKyWNH17LPP8ssvv7Bhw4bbZ1gFUbNmzTtWcAG3LLgAvL0hMlIJrzZt4AZ6vFxxcnJi3LhxFWeA5o4jtyfrUOwhTlw5kUdkGRi0cGqBZ31Pi9CqWaVmBVqsuZO5oaerMnCvero0mjuF4GAIC4MmTaAUoXUVgv7uuLfJys7iVNwpQi+GcvDCQY5dPkZmdqblfQODFrVa4FXfC68GXrSt1xYHO4cKtFhzJ3LTni6NRqO5EZ6ecPo0REXBxYuqOLZGUxkQEc4mnOXghYMcvHiQQ7GHCmR6b+7YHJ+GPnjV98KjvocWWZpyQ4sujUZzy1StqophHzyovF4DB4KVTpStqSAup1zmQMwBQi6EcPDiQRLSE/K836RGE3wa+ODdwBuvBl56uFBz29CiS6PRlAnu7srblZAAJ06o+C6N5naQmpnKodhDHIg5wIELB4hKjMrzfm372vg28MW3oS/eDbx14LumwihJctQRwP8B9VGB9AYgInLDfw0MwxgAfABYA1+IyNtF9OsA7AYeEpEVJTdfo9FUFqytoX172LIFDh0CFxcox9rkmnsYEeFU3CkOXDjAgZgDHLt8DJPkZDayt7HHu4E3Pg18aNeonU7hoKk0lMTTNQcYIiLHSnNgwzCsgQ+BfsB5YK9hGOtE5Ggh/f4PuPVpVLeRK1eu0KdPHwAuXLiAtbU19erVIyIigsaNG3P06NEbHKH0rFmzhtatW9O2bdsyP3ZuZs+ejYODQ4HSOwDz5s2jdu3aPPbYYwBkZWXRsGFDnnjiCf73v//d1Pni4+P54YcfeOaZZ27Y18HBgaSkpBIdNzs7mxdeeIHNmzdjGAZVq1blxx9/xNXV9absvBERERHs3LmTRx55pFyObyb/52DmzJn06NGDvn37Ftr/0KFDvPfee3nyqJUXjRpB06Zw7hzs3w/X89pqNLdMfFo8B2IOsC9mHwcuHOBaek5lAwMD9zru+Db0xa+RH63qtMLGSg/kaCofJflUXiyt4LpOAHBKRE4DGIaxFHgAyK9GngVWAh1u4hwVRp06dSylfnKLFHOeqRuRlZWFjU3pvhTWrFnD4MGDy110FUVWVhZfffUV+/fvt2zbuHEjbm5u/Pjjj/z3v/+9qf8m4+Pj+eijj0okukrDsmXLiI6OJjQ0FCsrK86fP29JgloeRERE8MMPP9wW0ZX7c/DGG28U29/Ly4vz588TGRlJs2bNytU2AD8/iIlRaSQuXICGDcv9lJq7EFO2iRNXTrAveh/7YvYRfjU8z/v1q9XHr5Ef7Rq1w6eBD9Xtyu9vW6MpK0oS6hpsGMYywzDGGIYxwtxKsF8T4Fyu9fPXt1kwDKMJMBz4pMQW3wGYTCaeeOIJPDw86N+/P6mpqQD06tWLf/7zn/Ts2ZMPPviAffv20bNnT/z9/QkKCiImJgaAzz//nA4dOuDj48ODDz5ISkoKO3fuZN26dbz88sv4+voSHh5OeHg4AwYMwN/fn+7du3P8+HEAJkyYwHPPPUeXLl1o0aKFpWAwwDvvvEOHDh3w9vZm1qxZlu3/+c9/cHNzo2/fvpw4caLQ69q8eTN+fn55xOKSJUt4/vnnadasGbt377Zs//XXX/Hz88PHx8fiEZw9ezbvvvuupY+npycRERFMnz6d8PBwfH19efnll4u108y4ceNYu3atZX3s2LGsW7cuT5+YmBhLqR8AZ2dnatWqxZdffsmLL75o6ff555/z0ksvERERgbu7O5MnT8bT05OxY8eyadMmunbtSqtWrSylfmbPns24cePo3bs3rVq1shT0nj59On/++Se+vr7MnTuXtLQ0Jk6ciJeXF+3atbOUq1m0aBHDhg1jyJAhuLq6snDhQt5//33atWtHp06diIuLK9XnYMKECZZnvHfvXrp06YKPjw8BAQGWsjpDhgzJU6y7PKleXc1mBBVUn519W06ruQtISEtg85nNzPlrDmNXjeXVTa/y49EfCb8ajp21Hf6N/HnC7wk+GfQJXwz9gqkBU+nStIsWXJo7BxEptgFfF9K+KsF+o1BxXOb1ccCCfH2WA52uLy8CRhZ2LH9/f8lPVFRUgW0VxaxZs+Sdd94REZEzZ86ItbW1HDhwQERERo0aJd99952IiPTs2VOefvppERHJyMiQzp07S2xsrIiILF26VCZOnCgiIpcvX7Yc+1//+pfMnz9fRETGjx8vy5cvt7zXu3dvCQsLExGR3bt3S2BgoKXfyJEjxWQyyZEjR6Rly5YiIvLbb7/JE088IdnZ2WIymWTQoEGybds2CQ4OFk9PT0lOTpaEhARp2bKl5XpyM3PmTIstIiIpKSnSqFEjSU5Olk8//VSeffZZERGJjY0VZ2dnOX36tIiIXLlypcB9EhHx8PCQM2fOyJkzZ8TDw8OyvSg7RUSqV68uIiJbt26VBx54QERE4uPjpXnz5pKZmZnH3nPnzomLi4v4+PjISy+9JPv37xcRkaSkJGnRooVkZGSIiEjnzp0lNDTU8uxCQ0PFZDKJn5+fTJw4UbKzs2XNmjWW882aNUu8vb0lJSVFLl26JM7OzhIVFSVbtmyRQYMGWc7/7rvvyoQJE0RE5NixY9K0aVNJTU2Vr7/+Wlq2bCnXrl2T2NhYqVmzpnz88cciIvLCCy/I3LlzS/U5MK+np6eLq6ur7NmzR0REEhISLPdkx44dMnjw4ALPtLwwmUR++klk8WKRI0du22lLRGX67rjXyc7OlvC4cFlyaIm89OtLMuSHITL4h8GWNmXdFPk0+FMJjgqW9Kz0ijZXoykxQLAUomdKkpG+9BWLFeeBprnWnYHofH3aA0uvD0nVBe43DCNLRNaU+mxDhpSuf8uWMG9ewf1vsuh1blxdXS01D/39/YmIiLC899BDDwFw4sQJDh8+TL9+/QDlHTPXizt8+DCvvfYa8fHxJCUlERQUVOAcSUlJ7Ny5k1GjRlm2paenW5aHDRuGlZUVbdu25eLFi4AaCty4caOlnmBSUhInT54kMTGR4cOHU+161HNRtfhiYmJok2tK2vr16wkMDKRatWo8+OCDvPnmm8ydO5fdu3fTo0cPS+xU7dq1S37zirGzR48elj49e/Zk6tSpxMbGsmrVKh588MECw7XOzs6cOHGCzZs3s3nzZvr06cPy5cvp06cPvXv3Zv369bRp04bMzEy8vLyIiIjA1dUVLy8vADw8POjTpw+GYVjeN/PAAw9gb2+Pvb09gYGB7Nmzp0CW/h07dvDss88C4O7ujouLC2FhYQAEBgZSo0YNatSogaOjI0Ouf/68vLwIDQ0FSvY5yM2JEydo1KgRHTqokfqaNXPmutSvX5/o6Px/fuWHlZUKqt+8GQ4fVkH15Tiyq7mDSM9KJ+RCCHuj97I3ei9xqXGW92ytbPGq70X7xu3xb+xP4xo6ia3m7qIksxedgQVAV0CAHcDzInL+BrvuBVoZhuEKRAEPA3mCXUTEEtFsGMYiYP1NCa5KRpUqVSzL1tbWluFFwBJTJCJ4eHiwa9euAvtPmDCBNWvW4OPjw6JFi9i6dWuBPtnZ2Tg5OVniyoqzQa5XHRARZsyYwZNPPpmn77x580oUi2Vvb09aWk5SwSVLlvDXX3/RvHlzQE0u2LJlCyJS6PFsbGzIzjXWlPtYuSnKzvyMGzeOxYsXs3TpUr766qtC+1SpUoWBAwcycOBAGjRowJo1a+jTpw+TJ0/mv//9L+7u7kycODFPfzNWVlaWdSsrK7KycpUGyXd9hV2v+b4XZdeNzlOSz0H+8xX1HNPS0rC3ty92/7KmYUNo1kzFdu3aBX36gJ5Adm8SlxrHnqg97Inaw8GLB/MUjK5jX4cOjTvQvnF7fBr6UNWmagVaqtGULyWJ5P4a+AE1XAjw6PVt/YrbSUSyDMOYhpqVaI0akjxiGMZT198v2ziuW/VQlYGHqzS4ublx6dIldu3aRefOncnMzCQsLAwPDw8SExNp1KgRmZmZLF68mCZNVChcjRo1LDE6NWvWxNXVleXLlzNq1ChEhNDQUHx8fIo8Z1BQEK+//jpjx47FwcGBqKgobG1t6dGjBxMmTGD69OlkZWXx008/FSp42rRpw6lTpwBV6HnHjh2cO3fOIhi+/vprlixZwttvv83UqVM5c+YMrq6uxMXFUbt2bZo3b8769esB2L9/P2fOnClwXcXZWb9+/Tz2TJgwgYCAABo2bIiHh0cBe/fv30/Dhg1p3Lgx2dnZhIaG4u3tDUDHjh05d+4c+/fvt3iWSsPatWuZMWMGycnJbN26lbfffpuYmJg819GjRw8WL15M7969CQsLIzIyEjc3tzwTEYqjJJ+D3Li7uxMdHc3evXvp0KEDiYmJ2NvbY2NjQ1hYGJ7mQKvbSPv2EBur2vHjOnfXvYKIEJkQye7zu/k76m9Oxp3M837r2q0JaBJAhyYdcHVy1ekcNPcMJRFd9UTk61zriwzDeKEkBxeRDcCGfNsKFVsiMqEkx7xbsLOzY8WKFTz33HMkJCSQlZXFCy+8gIeHB2+++SYdO3bExcUFLy8vyw/sww8/zBNPPMH8+fNZsWIFixcv5umnn+att94iMzOThx9+uFjR1b9/f44dO0bnzp0BlX7h+++/x8/Pj4ceeghfX19cXFzo3r17ofsPHDjQUkx41apV9O7dO4/H5oEHHuCVV17ho48+4rPPPmPEiBFkZ2dTv359fv/9dx588EG+/fZbfH196dChA61btwbUTNCuXbvi6enJwIEDeeeddwq1M7/oatCgAW3atGHYsGGF2hsbG8sTTzxhGXYNCAhg2rRplvdHjx5NSEgItWrVKvKeFUVAQACDBg0iMjKS119/ncaNG1OvXj1sbGzw8fFhwoQJPPPMMzz11FN4eXlhY2PDokWL8tyvG1HSz4EZOzs7li1bxrPPPktqair29vZs2rQJBwcHtmzZwqBBg0p9nbdK1arQsSNs26ay1TdqVLEFsTXlR7Zkc+zSMYvQikmKsbxnZ22HbwNfOjp3pH3j9tS2L13IgUZzt3DDgteGYWxCBbkvub5pDDBRRPqUr2k56ILXlYfhw4czZ84cWrVqVdGmkJKSgpeXF/v378fR0bHU+w8ePJgXX3zRMruypBSXx6wykp6eTs+ePdmxY0ep05SUFXv2wKlTSnAFBalEqhWF/u4oOzJNmRy8eJBd53bxd9Tfecrt1KxSk45NOtKxSUd8G/pSxabk/3BoNHc6t1Lw+nFgITAXFdO18/o2zT2IeRitokXXpk2bePzxx3nppZdKLbji4+MJCAjIk87ibiYyMpK33367wgQXqNxdFy9CfDyEhsL1ORKaO5C0rDT2Re9j57md7I3eS2pWTsxqI4dGdHLuRCfnTrjXdcfK0AU4NZrc3NDTVRnQni6N5s7n8mX4/Xe13KcP5Bstvm3o747Sk5KZwt6ovew8t5PgmOA8gfCuTq50adqFTs6dcHF00fFZGg034ekyDOMVEZljGMYClIcrDyLyXBnbqNFo7mLq1gUPD5VCYtcuGDgQ7Owq2ipNUSRnJLMnag87Inew/8J+srJzZu+613GnS9MudG7amYYOuuSARlNSihtvMJf+CS6mj0aj0ZQYT0+Ijoa4OCW8evTQaSQqEymZKfx9/u8CQsvAwLOep0Vo1a1Wt4It1WjuTIoUXSJizqGQIiLLc79nGMaoQnbRaDSaYrGygq5d4bffICpKxXcVM+FWcxtIy0ojODqY7We3ExwdTGZ2JpAjtLq7dKezc2dq2Zd+lq9Go8lLSSJrZ6DK9dxom0aj0dyQGjWU8Nq6FY4cgVq1VBLVO46MDBWoduUKpKRAerqannk9FxxpaUpdWluDjQ3Y2oK9PTg6Qs2aKqitFClEypJMUyb7Y/az/ex29kTvIS1LJSo2C61uzbrRuWlnndpBoyljiovpGgjcDzQxDGN+rrdqAlmF73Vv4eDgQFJSkmV90aJFBAcHs3DhwlIfa+vWrbz77ruW5KEloVevXrz77ru0b18gVk+jqdQ0aqRmMO7fr4YZa9RQ4qvSIaJEVZ06OeOg8+fD33/DtWsF+3fsmCO6kpLgiy+KPva//gWdOqnlHTvUMRs0UK1RI1U7qUaNMrwU4XDsYbad3cZf5/4iKSPnu8utjhvdm3WnW7Nu1KlWp8zOqdFo8lKcpysaFc81FNiXa3si8GJ5GqXRaO5+3NxUConTp2H7dpW/q2pFV4ARgYgI2LcPDh2C8HBISIAvv8yZbpmergSXtbUSY3XrqsKSVatC7lQqVarAAw9AZiZkZanXlBS177VrkLsm6ZEjyvWXn9q1oW1bePXVvDaWMBBORDgTf4atEVvZfnY7V1KvWN5r7ticns170r1Zdxo4NCj5PdJoNDdNcTFdB4GDhmGsBpJFxARgGIY1oLPc3YBLly7x1FNPERkZCaj6hl27dmXPnj288MILlozhX3/9NW5ubnn2TU5O5tlnn+XQoUNkZWUxe/ZsHnjgAVJTU5k4cSJHjx6lTZs2eWo6ajR3GoYBHToo/XH5snL29O6t4r5uO3Fx8O23cOCAWs6NgwNcupQjuiZOhEmT1FBiccbWqAGTJ5fs/EFB0LKlSmZ28aIKeDt7VtkSH5/TLysLHnsMmjZVAq91ayXK6uYNbL+ccpltEdvYErGFswlnLdvrV6tPr+a96OHSAxcnl5LZptFoyoySxHRtBPoCZl+0/fVtXcrLqDuF1NRUfH19LetxcXEMHToUgOeff54XX3yRbt26ERkZSVBQEMeOHcPd3Z3t27djY2PDpk2b+Oc//8nKlSvzHPc///kPvXv35quvvrIk8uzbty+ffvop1apVIzQ0lNDQUPz8/G7n5Wo0ZY61NXTvDr/+quoz7toFXbrchhmN2dlw4QKY83XZ26taRVlZynvl56da69ZQr15eg+qWw8y95s1Vy42IEmC5C8OfPw+JiXD0qGpm6tcnrU0r/urRnM2JhzgUewi5numnhl0NujfrTq/mvXCv667zaGk0FUhJRFdVEbEM/otIkmEY1crRplIzZMmQcjnuT2OKL4Jtb29PSEiIZd0c0wUqY/rRXF+K165dIzExkYSEBMaPH8/JkycxDIPMzMwCx924cSPr1q3j3XffBSAtLY3IyEi2b9/Oc8+p9Gje3t6W4s0azZ2Mvb1KHfHHH8q5Y22tQqPKRRskJakhw3/9SwXCf/ONCnK3t4cXX1QR/S4ulSOPhWFAw3w5sJo3h++/VzWVTp5Ejh/j0Jm/+cPYzc5zv5B22APsq2JjZUPH9HoEVvPAv/OD2DR2rpBL0Gg0eSmJ6Eo2DMNPRPYDGIbhD+hxrRuQnZ3Nrl27sLe3z7P92WefJTAwkNWrVxMREUGvXr0K7CsirFy5ssCwI6D/S9XcldSpA716qbCm06eV8Grfvgy1T3y88gydPau8WZcvq+HCixehSRPVp0ePMjpZOePoyAW3Jvxhe5zN9ueJbW0DqQ0hyYE2zr70btGH7s26U/3lf8LpTfDNJnWt7dop752Pj4pB02g0t52SiK4XgOWGYURfX28EPFRuFt0EN/JIVQT9+/dn4cKFvPzyywCEhITg6+tLQkICTa5/yS9atKjQfYOCgliwYAELFizAMAwOHDhAu3bt6NGjB4sXLyYwMJDDhw8TGhp6uy5Hoyl36tdXumfbNjh5Ugmvdu1uUXilp8Pu3SpGClQMVsOG8L//qfT4d9A/MelZ6ew8t5NNpzcRGpvzt1+ven16e/amt2tvGte4PlwqAgMGQEiISoYWG6vSV/z2m7oH48bByJEVcyEazT3MDUWXiOw1DMMdcAMM4LiIFBwT0+Rh/vz5TJ06FW9vb7KysujRoweffPIJr7zyCuPHj+f999+nd+/ehe77+uuv88ILL+Dt7Y2I0Lx5c9avX8/TTz/NxIkT8fb2xtfXl4CAgNt8VRpN+dKwoYrx2r4djh9X+sDH5xa0kZ2dGlK0tob77gN3dzUb8Q6qvXgq7hQbwzey7ew2UjJTALCztqNr0670bdEXr/peBT3ghqHqLA0cqARYeLjKz7F/Pxw7lvf69+xRwrRDB/D1VUOtGo2mXChRwWvDMDyBtoBlQreIfFuOduVBF7zWaO4tzp9Xsxmzs9XkvBILr5QUlerB2ztHPFy9CtWqWRKR3gnfHckZyWw7u43fTv3G6fjTlu2ta7emX8t+avjQ7iaHCJOTVaJWc+HLd99V7kVQ8W2eniqoLiCg4qqSazR3OKUueJ1rx1lAL5To2gAMBHYAt010aTSaewtnZzWL8a+/VChWcrLKI2ptXcQOWVnKg3PsmFoGJRygkmZdLYiIEHYljF9O/cKfkX+SYcoA1OzDwOaB9G/Zv2zSPOSP5xo1Sk0gCA5W7sWQENU+/RQCA+Gll279nBqNBihZTNdIwAc4ICITDcNoABSTZlmj0WhunWbNlENmxw4V/56SomK+ClTOiY5WQ2QpauiNpk2Ve+wOISUzha0RW/n11K+ciT9j2e5d35ug+4Lo5NwJO2u78jPAxUW10aNV0rTgYHU/9+1T6tfM+fOwfr1Sv56eyium0WhKRUn+alJFJNswjCzDMGoCsUCLcrZLo9FoaNQI+vVTsxovXYKNG9Usxxo1UCkf9u9X0x1BebT8/e+YIbEzV8+w4eQGtp7daql96FjFkb4t+hLUMohGNRrdfqNq1lQZanv3zsmkb+avv+Dnn1WrXl3FgHXqpO55hZcS0GjuDEoiuoINw3ACPkeVA0oC9pSnURqNRmPGyUklbN+6VYVnbdwI3bpBA+trcOaMGnP08lJB8hWSzr7kZJoy2XluJz+f/Jljl49ZtnvV92LAfQPo7NwZW2vbCrQwF7a2qpnp1EkJ3d27ITJSPZCtW1VsWNeuehhSoykBxYouQ02J+Z+IxAOfGIbxK1BTRHSuAo1Gc9uwt1cer7/+zCYqxorNm8HDoy6e/u2xathAeWgqMZdTLvPLyV/4Lfw3EtITAKhmW40+rn0YeN9Amjo2rWALS4CLi0o1MW6cGtLdvVuVEDh+XM14MJOeDr//rkRaeWTv12juYIoVXSIihmGsAfyvr0fcBps0Go2mADYJV+iRuJOTTdqzL7oRhw/Dhbqt6NIYHCrauEIQEY5eOsr6sPXsPL+TbFHCpLljcwa1HkSv5r2oanOHDss1bgwjRqgWF6eElpn9+1UQ/qefqqrmnTqpWRGVfMaoRnM7KMnw4m7DMDqIyN5yt0aj0WjyIwInTkBICEZ2Nq1rnsCxdyN27VKJ5X/5RWU3cKkk9ZszTBlsP7udn078ZEn3YGVY0b1Zdwa3Hkybum3ursoStWvnXXdygs6dVSD+iROqffONekCdO8OYMZV+GFijKS9K8skPRAmvcMMwQg3DOGQYhh5eBKytrfH19bW0t99+u9j+//3vf/Osd+lyczXDQ0JC2LBhQ5HvHzhwgMmTJwMq6329evVo164drVq1IigoiJ07d97UeQujefPmXL58mYyMDHr06EFW7sBbjeZWSU+HP/9U3pPsbOU56d6dBg1U3s+mTVW8919/qZZagQXK4tPi+eHQDzy+9nE++PsDTsefxrGKIw95PMRXQ7/ila6v0LZe27tLcBVGmzbwz3/CDz+o18BAFXh/9qwakswtuE6ezDs0qdHc5RTp6TIMo5mIRKLycmkKIX/B6xvx3//+l3/+85+W9ZsVPyEhIQQHB3P//fcXeZ7XXnvNsv7QQw+xcOFCALZs2cKIESPYsmULbdq0uanzF4adnR19+vRh2bJljB07tsyOq7mHuXJF5YtITlbB2h07KpV1nSpVVEB9eLhyqpw9q0KNvLygdevb50yJiI9gzfE1bDu7jaxs9U9HC6cWDHUbSneX7uWb7qEyU6WK8mx17qxmQR4+rBSymagoFXzv6KiGIDt3VkltbSvJRAKNphwobnhxDeAnImcNw1gpIg/eJpvuaBISEggICGDdunW4ubkxZswYevfuTXh4OKmpqfj6+uLh4cHixYtxcHAgKSmJrVu3Mnv2bOrWrcvhw4fx9/fn+++/xzAM9u7dy/PPP09ycjJVqlTh999/Z+bMmaSmprJjxw5mzJjBQw/llMJMTEwkNDQUHx+fQu0LDAxkypQpfPbZZ8ydO5fw8HCmTp3KpUuXqFatGp9//jnu7u789NNPvPXWW2RkZFCnTh0WL15MgwYNuHLlCmPGjOHSpUsEBASQu6LBsGHDmDFjhhZdmlsnOztHcNWpo9RVIUWaDUNV92nYUAmvqCjlFAsPVwWzGzQoH/NEhJALIaw6toqQiyHKFgw6NunIMPdheNTzuPs9WqXBxkaVGMrNlSvqwV24kFMXslo19eA6dVJNCzDNXUZxoiv3N0alzss1ZMiQcjnuTz8VX0jbLKLMmAXQwoULmTBhAs8//zxXr17liSeeAGDhwoVFesYOHDjAkSNHaNy4MV27duWvv/4iICCAhx56iGXLltGhQweuXbtGtWrVeOONNwgODrZ4r3ITHByMp6dnsXb7+fnx6aefAjBlyhQ++eQTWrVqxd9//80zzzzD5s2b6datG7t378YwDL744gvmzJnDe++9x7///W+6devGzJkz+fnnn/nss88sx/X09GTvXh36pykDrKyU5+PsWZUH6gZuKwcH6NkzR3QlJMAff6gEq15eyplSFmRlZ7H97HZWH1tNREIEAFVtqtKvRT+GtB5SMbm17lS8veGzzyAiQs2C3LVLLW/frpKzmisKgBo31jUhNXcBxYkuKWJZc52ihhf79evH8uXLmTp1KgcPHizRsQICAnC+nv3Z19eXiIgIHB0dadSoER06dACgZgmmxcfExFCvXr1i+5i9U0lJSezcuZNRo0ZZ3ku/Pgvp/PnzPPTQQ8TExJCRkYGrqysA27dvZ9WqVQAMGjSIWrlKrFhbW2NnZ0diYiI1atQo0XVrNBYyMpTXo1kztV6/fqkTnTZpopwnx47BkSMqndS5c+qQnp43L75SMlP47dRvrD2xliupVwCobV+bIa2HMOC+ATjYVcb5k3cAhgGurqo98oh6/rt35wwpg/pcjB+vHqLZA5Y7U75GcwdRnOjyMQzjGsrjZX99mevrIiKVJjHOjTxSt5vs7GyOHTuGvb09cXFxFjFVHFVy1TaxtrYmKysLESn1EIW9vT1paWnF9jlw4ABt2rQhOzsbJyenQoXjs88+y0svvcTQoUMtw59mirMpPT2dqjo7taa0XLumPByJiSrZaZMmN30oa2slsFq0UMIrPFw5zCIjVUhYaXRcfFo8606sY8PJDSRnJgPQrGYzRrQZQQ+XHpUnkendQsOGMGxY3m1nz6qYsNwzIZs0UVNWO3ZUgft6NqTmDqHIT6qIWItITRGpISI215fN65VGcFVG5s6dS5s2bViyZAmPP/44mdeDR21tbS3LJcHd3Z3o6GjLkF1iYiJZWVnUqFGDxMTEQvdp06YNp06dKvKY27Zt47PPPuOJJ56gZs2auLq6snz5ckB5wMyeuYSEBJpc/+H75ptvLPv36NGDxYsXA/DLL79w9epVy3tXrlyhXr162Oo4DE1puHRJJdO8dk25opycyuSw1aqpSjVDh6rAesNQwuvvv2HGDBUyVtRk2wtJF/ho70c8vvZxlh9dTnJmMp71PJnVcxYL719InxZ9tOC6XbRqpWZCzpihyhPVqKHGkVevhunTISYmp6+eCamp5JRrxVLDMAYAHwDWwBci8na+98cCr15fTQKeFpGSjcdVAvLHdA0YMIDHH3+cL774gj179lCjRg169OjBW2+9xb///W+mTJmCt7c3fn5+FuFSHHZ2dixbtoxnn32W1NRU7O3t2bRpE4GBgbz99tv4+voWCKR3d3cnISEhzxDfsmXL2LFjBykpKbi6urJy5UrLzMXFixfz9NNP89Zbb5GZmcnDDz+Mj48Ps2fPZtSoUTRp0oROnTpx5owqxDtr1izGjBmDn58fPXv2pJl5KAg1M7KoGZUaTaGY0wiYTMp70bVrmRdSNsdmt22rhh1PnFAT6Q4fVuUag4JUq1sXIhMiWXF0BdvObrMkM+3YpCMj247Eva57mdqlKQVVq6oEq126qM/KsWNKPZ87l9cr+o9/qAkXAQGqlddMCo3mJjFyzz4r0wMbhjUQBvQDzgN7gTEicjRXny7AMRG5ahjGQGC2iHTMf6z27dtLcHBwnm3R0dE01hmOC2Xu3LnUqFHDkqvrdjFixAj+97//4ebmdlvPq7kDEVE/nOah7VatShQwXxZERkZz6FBjfv5Z/WYDpFQ9hcn9R9Lq7qJWbbCztaKXSy9Gth15Z5To0UB8PDz2mPpsmWnWTLk727dXtTnLWNBrNEVhGMY+EWmff3t5fgIDgFMicvq6AUuBBwCL6BKR3ImqdgM6OrIMePrppy1DhreLjIwMhg0bpgWXpmRkZCiXE0C7duoH8TalWLCxgUGD4P774addx5m/eSlH4vYhSWCVaEvqoX4ENX0Q3wb1cdKhQncOTk7w/fcQHAx796ocIpGRqq1cCa+9ljMjMjtbx4FpKoTy9HSNBAaIyOTr6+OAjiIyrYj+/wDczf1zoz1dGs1dSFwcJCXlzFa8TURHR3PV5ipLDy+15NiyoSotswdinBhG2MHaltAgw1B6sH171Vxdb5s21NwqWVlw9KgSYCEh8M47apgS1HJ0tPKutm9/e7Ppau4JKsLTVdhXU6EKzzCMQGAS0K00J7iZ2X0ajaaCSE9XP3TX049Qu3bBun3lzIXEC+yL2cdnYSq/nL2NPUNaD+EB9weoWUXND0pIUCWFdu5Usx+PHVPtu+9UDJiXl5od6empMhfor6BKio2NygXm7Z13u4gK6IuLg1OnYNkylejN1xf8/JQQu82fS829Q3mKrvNA7mAIZyA6fyfDMLyBL4CBInKlpAe3tbUlKSkJBwcHLbw0mspOcjJs2aJmKFpZ3fbq1LHJsRy6cIj4xHhOx52mum11hroNZajb0AI5thwd1dDj/fernJwHD6oRq+BglUR9+3bVzH09PFRJyFatVHZ8ncOzkmMYKinr4cNqCDI4WM2A3LFDtfHjYeRI1Tc5WYm3XCl9NJpboTyHF21QgfR9gChUIP0jInIkV59mwGbgsXzxXXkobHjRZDIRFxdXqhQMGo2mAkhKUsM76ek5HoXb9CMWnxbP6aunuZp2FRHhasZVGtVrxCC3QVS3K1hWqDhEVOC9eebj4cOQK2MKoH7PnZ2VAGvRQmlLFxcVbqT/N6zExMTAgQNKhI0bB82bq+1LlypPWNu2KvawXTv1YPXD1NyAooYXy010XT/p/cA8VMqIr0TkP4ZhPAUgIp8YhvEF8CBw9vouWYUZWZjo0mg0dwCHD8Obb0JKihqX+9e/Cq2hWNacuHyC70O/t8RsVbetzjD3YQxpPaTUYqsoRNRv9ZEjcPKkahERhef+qllT/Y43baoyHDRurMRZvXo6lOi2kpSk3JeZmepBZWXlLJtMKsDeZMpZX75cPVizyLp2TXm+OneG/v2hRw/10M+cUX3MD9PKKmfd3Kytc1qzZupDYT5mUpJad7judRVRTX847lgqRHSVFVp0aTR3IDt3qoDlrCyVf+ull3JKu5QTp6+e5vvQ79kbrRIKV7OtxtDWQxnmPqzMxFZxZGaq32CzAIuIUKnIUlIK729jo5KwN2iQt9Wvr/KG3dMesuRkVaEgKUndwKQktS05Wa2npuZttrYqgaqZZ56B2Fg1lGiO0XrjDRVYXxrmz1fJWA8cgEWL4Px55cocMUJ9ppctU9vj45VwKsln/J//VMIN4McfVcDgqFEq5QWoAqKzZimBZmub06pUUce3s8tZrlJFTRDo1EnlMQN13bt3K3Xf/vrvvskEp0+r8e+qVdWrvb0WduVERQTSazSae5WMDPjySyW47r8fnnyyXL/cIxMiWRy6mJ3nVZRCVZuqFrFVo8rtqwNqa6t+j1u1ytkmomLBIiLUb/f582o+QVSU2n7+vGqFYWOj9ELdulCnjlquVSvntVYtFVdWo4b6fa60iCiPztWrSpzY2KiZCKBE1Pvvqz4zZ+bsM3WqukElJb8HNSNDDWlnZORsq1VL3UxbW2WD+dXaOufV2jqvd6p2bTX5o1s35ao8cEB5qszpJ5o3V8F8f/yhZmE4OCjl3LChOpe9fY4HzfyauwiovT00apR3m8mk1LbJpNoNSrsB6nxm0RURAZ9/npOjDNT9f+mlgvvZ2akMwmYRVq1aTmvdGoYMybmfO3cqO9u1y9k/LU0Jv3v2v4PSoT1dGo2mfDh3TnkVhg8vty/kC0kX+OHQD2yN2Iog2Fnbcf999zOy7Ugcq95kdevbSFqaqvF88WLeFhsLly8rR09JMAz1W+/klCPCatRQjhfzco0aqk/uVia/leZx1kuXlNFXruS0uDj1Gh+ft0SPhwe8fb1ASUYGPPigEj2rVuUY9Moral8HByWocjezKDALBbNYMAs5UDfPxkZ5dcpbEISGwpo1aqw5v1uzUSP48EMl8EqDiBJcmZmqZWTkNLOYNC+np6vgwRYt1L5nzqjSWk2bwsCBatuVK/DWW3m9g2lpeZPJ5qdLlxzvYWwsTJqkhOTXX+f0efRRJeiqVct5PuZnZv6g5V6uVQt8fHL2v0tzpunhRY1GU75kZ6tA5A4dyv1UcalxLDu8jN/Cf8MkJmysbOjfoj+jPUZTp1qdcj//7SIjQ/1WXr6sWny80jFxcTnLCQklF2f5sbLK0S/m38vcGsbeHqrZC/bVDOztoUbGFRr+vRab6lVIHzmWqlWhqk0WTo+PwMoQDKvCcwUBSvU5Oakf3ZYt4fHHc977+2/1fps2d7bHxDyEFxqq4hmPHlUeqA8+UO+LwP/7f0qIeXioAH0Xl4q7ZhEl2MzDtbmHbVNSlJfPLJCuXIGvvlLC6emnc47xyCOl+wA2aqSGfM08/LD67vj66xxv5bJl6gOf+z+G/M3BoVJXGNCiS6PRlB3maHHzl156Orz7roojmToVBgwol9Mmpiey4ugK1p9cT4YpAwOD3q69GeM5hgYO926dPZNJ/e7Fxyunw7Vraj0xMWc5KalgM4+8WWVnUTs9hjppUdROi6ZWegx1rr+ereHF2hYvAuCUdoFnQ5/gml1dPvDN8XY8fvT/kWXYkVilLqnV65BevQ7pDnXIqFGHrJq1ya7phI29bYFQJHOYUu5Xc8iSjU3OsnkU0LxcWKuUWi07Ww2p1rn+j0BMDEyZkrePg4PKwNumDfTqpQL67jRMJiXSzDF3yck5MXj5P3SOjjn3IDtbecJFYO3anIf44osqh9qNqFYtx6U7Z07O99Eff6jvpK5dc4ZtU1PVcHE5x5Wa0TFdGo2mdMTFqf/YDx1SQwu5f8XT0tQXpKOj+tE4dEi5XBwd1RdoGQ8ZpGWlsfb4WlYdX0VKphq+6eLchUe9H9W1EVG/JU5OqhWL2RMTGQlnz2KKPI/pbBTZ0RcwZWdjsgZTVTDZgqma6t64fjTZQ9QjT0uqy1mncVyxa0SLuup3LS0NlnV4j/T0QmZuJl5vUeVx1XmxsioYqpX/tbhmDuvKv17ca/7l/NusrKywsamDdeL196waYjtrIXYnj2AbdgSbsKNYxV3G+DsYY08w2W28sK5XX2mP/fuVaHF3V0N6lVJVXsfaOscDVRqsrNSwbEpK3ut75BE1XG3+zsnfzDM+U1JUu3o1r9dr1Sr1GW/bNkd0ff65GnJ98UXo3fuWL/lm0aJLo9EoTCY1PLh/vxJb5mrQhWFlpcTVhQsQFpYTTNugAXz0EXzzjUoR4e2t8nI1vTlhlGnK5NdTv7LsyDIS0hMAaNewHY/5PMZ9te+7qWPeMyQnq8Sf6ekqvQGoZ/z//p8ljsf6eqOKAc711XNq3FgNATVuDI0b07hePTwsvxQ2wOgiT5mVlRNilL8VFo5UWMsfwmReN28zZ3jIvT0zU+l887kqLwbgcr3dDyI4mi7hnHScpknH2DS9JVnXs02MDVtLy4T9YEByldpccHTngmNrYp3cuOR4H1KlqiXWP39mitzrhW3P3yd3dgtr64LZLvJvN4yi+xlG3vfzLxc8p4FhVM+7v1UHrBqB0TjvMXPvZyBYpSZjk5qIVVoK2RE579l798am8QVS02tDjNpePSEbO5MNqaYa2KdXXL5bPbyo0dzrJCTAb7/BL7+oOAozVauquBNvbxV3kjsqu1o1OH5czTa7fFklnBo2TC2Hhqpo8Ny0aKH+u+zVSw2xHDqkRJm7e06f48ct27PdWrMtYhvf/7mQ2EsRULMmbi7+jPcZj9dV28L3v1dJTlaB0+Hh6rn066e2mwOfnZxUSgIzb7yhnm2zZnkTh92mYZfywBxznjvtllmMFbbdvC1/M8et507VlfvVvGxu+ddzb8vOLnw59yTG3C33NoCOF9bSIuEATZJPYJ+VlOd6Q+sGsraFmolYxZSCU/pFLtk3I9uozFNYKwHX9c6r0w26laroYOnRw4sajSYvp07B+vWqpo25skOTJkoY+fiovAdFBaqKKI9WWhp0765mOOWuf3PxohJfmzap0ipJSWpY64MPlGesenUlBr75Rgmn48dhwgQkI5299TL59jEfzqZEQ0gITZNtGB/TgIB5kzCuGjBhgnJ52Nmp/Ejm/e8FIZacrMTVyZPq+Z06pbyNZlq0yBFd9eqp5J2NG6tfcnNOidxpGe4SDCNnWNBc0/pOxZwXNTv7AUymBzBlCdnnoiDsBMaJE1idPEHrwDYM6qWEms2+Q9T44C0ky44M5xakN2tFerNWpDnfR3rdJmRjRXZ23qwVN2pmEZt/W2H9itqW+72SLJsnt+bfXtg28z3Kf67c2/Lvp94zEKnYqk5adGk09xpRUWqm0N9/q3XDUDMOhwxRQ4EliR0xDCW0fv4ZJk4sKM4aNFBelG3b1HhPQoKazr97t4rJyMxUs6E+/xxmz4ZDhzhSJYFv2mVwjMtwoQr1bRwZe7Iuvaq4YXU5Rs0GAyW4mjRRya4OHVLb7lYhFhYGJ06odvKkuub82NqqXFGuriqvkhnDgJdfvm2masqG3ENpNjaooV93Z9XoA4A94GTe4XQGtGwEMTFUv3gcLh5XRfdA/SP0/fc5XszYWBXUX6mTut3daNGl0dwrJCTADz/Ar7+qf/2qVFGzDAcNUjE8NyIrS3mtevZUvwqNG8MTT+S8n1/kHDqkhJCzsxILPXqojNuPPqqC9E0m2L+f01NG8V3rNILbKkFRM9uWh3wnMbBRd2yXPAGZMUpYeHmp89jZqeOZt5nPUxIhVpm5fFl5scxJN0HNCI2JyVm3tVXi6r77cipsOztX6qnzmnKme3fVEhOV59PsBT15Urn9cg8bv/yy6te8uUrb4eqa0+50F+Edgv5L1WjudjIy1AyhFSvUtGnDgKAgNUPIXB7lRly7Bv/7n/I2JScroZab68ODeUSOl1dBgeTurqaGh4YSk32N748tZfu1A3ANqlpVYXhWS4YPfRX7PsPUcRctKuitKmxbSYRYZfJ+mUxqWLBJE7Wena1yH6WlwbffqlxWoLKgx8WBm5tqzZppgaUpnBo1copym8mdyT4lRf2dZGbmFAs1Yxjw7LM5Q9NXr6q/n/r1K/esyTsQ/der0dzNHDgAH3+c4y3p0EGJo2bNSn6MyEgVfH3xohJprVsX7dXKLXJGjSpUIF1pVo+l1y7x++nfMbnbY5PWjkGXazHq7yQc04FPvoRdwTB6dOHiyN097zZ395IJscKE4e0SYhkZaojwyBHVjh9XQmvZMiWirKzAzy8nUaVZdJlr8Wk0N0Nu71W1amo4PzlZxVeePq0mYJw+rWYqN8iV5+6332DxYjU86eKiPGMuLjnNXKxbU2q06NJo7kauXoUvvlBB8qC+KKdMUTMRS8OOHargb2qqGs76179U/pySeLUgj0BKSEtgxdEVbDi1wZLYtF+LfozxHEO96vWUzWvXqjixgwdVa91aia+AgOL/4y6JEFu+/PYNQ6al5Yi5w4dVbFb+JFYNG6ohxYYN1XruYs0aTXlRvbr6mzD/jUIhCdZQE13i49Xn+PjxnO3OzuofOVDR6b//rkINmjXTYqwEaNGl0dxNiKjUD99+q/6jtbODMWNUOofSDEtlZamSHz/9pGYeOjsrcVKnDmzeXGKvFkByRjJrjq9hzYk1pGWp4Y5CE5vWqqXOMXKkEl5r1yqx8tZbSjSOGqWG20oaBJxfiBUmDMtyGDI8XBUEPnRI2W2e+w9KMLZokVP6pW3bkg/tajTlTf7vhocfVi0hQRXPPns2pzk75/S7dg0WLMhZd3RUE2icnVXr0kXNotVY0Hm6NJq7hbNn1RfgiRNqvX17eOqpvMMGJSU9Hf7xDzh2TA09VKumAu8XLVLvT5igYkNsbYv0DqVmprI+bD2rjq8iKUPlGfJv5M8473G0rN3yxjakpalhjtWr1UxHUF6hBx+EPn1KX0AYCoop85Bj7msxX19h3i/z/uYagfXq5ZRtWbFCpcAA9d5996kZm56eSmQ5OJTeXo2mMnP5spodee6cCkPIHUMG8J//5HjXN2xQfzvOzuqfHHN+OHO9xbsMXXtRo7lbychQsUErVyrvSu3aaiixS5fSB8EeO6aGw7y8VGCuWUiYPUHTpyuPUzGeoLSsNCW2jq0iMUMVwvWs58ljPo/Rpl6b0l9fZiZs3aqGB82xabVqwdChMHDgrX9p57+W5cvVpIHc1zxypIrFmjxZ3e/4eOV9e/JJ5REA5RHYvFkdx8NDCVWN5l5BRImw8+dVO3cOxo7NKcPz9tvw118F93N0VP8gvvBCznFOn1Yzqu/gvyEtujSau5FDh2Dhwpz8Tfffr4KvSytE0tKU0Fi0SIm2Unq1QImtn8N+ZtXxVVxLvwZAm7pteMTrEXwa+GDc6iwok0l9aS9frgQOqEDhgQOVAKtb99aOb+b4cRg/XsWxZWSomZoxMcpztX69EmNhYSq4+Lnn1NT7yjAjUqOpzEREKDEVFaVEWXS0ahkZqjD19OmqX1yc+vsDJcgaNlQCrGFD1fz9S1BktOLRGek1mruJhASV4PSPP9R606Zqynebm/AkHTkC8+apmosJCUpEJCTcMFbLTHJGMuvD1rP2xFqLZ8u9jjtjvceWjdgyY22tcn11765mZa5apYLtV6+GdevUe4MH500QWhquXVPHCwlRQyARESqGLSxMvW9jkxMT5uSksuvD3ZuYVaMpS5o3Vy03Iip0IHcgf3Ky8iLHxKjvoYSEnJAJgP/7vxzRtWaN+ptt0MDSsurUIcXBgWTDICU1leTkZFKvv5qXu3btShNzupbbjBZdGs2dhMmkAuW//159OdnYwEMPqTin0sY4hYaqUj7msjxt2qjjJyQUOQMxNwlpCaw9sZafT/5MSmYKAG513HjE6xHaNWxXdmIrP4ah0iv4+ang9VWr4M8/YcsW1Vq3VuKrW7fi70lGBhw9qkTWgQPqv/DcuLnlFOz28VH/ZY8effMzIrUQ02jyYhh5PNTZ2dmk1q5N8syZJCUmkhIdTfK5cySfP0/yhQukXLxI8ubNJP/xBykpKST/9hvJZ8+SnJVFislEsslEhrkGUI0aOf+Eiqi8eHZ2UKMGjRs31qJLo9HcgGPH4JNPcsSBn5+KKWrcuPTHWrtWxX2lpakcUTNmwEsvqUzWNxAGF5IusO7EOn4L/40MUwYA3vW9ecjzIbzqe5Wf2CqMli1Vlu3x49WMx40blYh8/3348kuVBLZfv5y0DGZSUmDcOCWMzNjaqoB3X1/VWrRQ9yY3NzsjEu68DPkaTSkxmUykpKSQlJRk8SyZW/5tSUlJSjjlWk5JSbnxSX77LWfZ2loNPaanq5aRgZGeTnWTiWq1alHd1ZXq1atTDah+5gz26elU7969wgQXaNGl0VR+YmOVZ2vLFrVer54qv9OpU8kD5fN7WTZuVIKrVi3l5XJ1VV6zIrxaAMcuHWPN8TXsOr8LQcWCdmjcgYc8HsKtrltZXOnNU7++qgH5yCMq6H79ejU8+OOPqvRRerq61h9+UPFq1arlTH03iywPj7wlU0pCSROzVvYM+RoNICKWoTizSMr9mn9b/vfT8s9evAmqVatG9erVlVjKtVzYtsKWq1SpggFqyNLs6Y6LUzGZsbEqZMLV9ZbtvFl0IL1GU1m5dk2Jhp9/Vl8gNjYwYoQa4qpSpeTHOX5cBdcnJyuX+6JFSnCNHq0ElzlovpAf/azsLHaf382a42s4cUXFVdhY2dDTpSfD3IfR3Kl5mVxqmREfr4ZNL1xQXquNG1WC17//VvewUydVb7JHD5XstbQiq6TcSmoKLcQ0t0B2dnahIil3K+r95ORkss3DczeBYRh5BJKDgwPVqlXDwcGhgHgybzO/X61aNapVq4ZVfu/yHYoOpNdo7hTS0lSA6KpVObUSe/VS06/zD5PdiIwMlfIhPFx5d+zscgLk160r8sf9UvIlfgv/jY3hG7madhUABzsHBt43kMGtB1PbvpIk9kxKUikuQkNVO3tWbbe2hiVL1JDpk0+qSQehocrLtGGDanXqqLgvswAry2HRss6Qr4XYPUV+4ZSUlERiYmKx4im39+lWqFKlCg4ODpaWWySZ14t6tbe3v73hBXcgWnRpNJWFhAQ1LPbzz5CoZgHi76/ilUrqDjf/OLu5qbpqq1appIXZ2eqH3MqqyAB5U7aJ/TH7+fXUr+yN3msZQmxasymDWg2iT4s+VLWpWthZbx/JySr43SyyzpxRQbJm7OzUMKGPj7pmUN68adPUckQEbNumyiPFxqrYtrVr1fBkx46q3JCnZ/kUlS7reDAtxCo1ImKJWcovmBITEy2Cyfye+bUshFN+oZS/5X8vt3Cy0QXVyxV9dzWaiiYqSnm2zOV1QP2Ijh+vBEBJMeeXio1Vos3LS2VB9/JSST1tbdVsvFw/0CJC+NVwtkZsZdvZbcSnxQNqCLGLcxcGthqIRz2Pov97PXlSTfn29c0prrtjB+zdq7xIHTqobZGRqtiui4uyxcxXX6kZk2PH5iRCjIxU4srZWQ2HgkqNsW5dQZFljkPz8lLX5uZW/IxF87T1xx5TAffbtyt7Y2NVyaOfflJFfv38lO2+vsojVh7cSjwY3DhrvhZjt4yIkJ6eXsDDVJjXqbBtNxu+YxiGZditJC2/J+puGaK7G9GiS6OpCLKyIDhYFYvduzdHSHTsCMOHq3ikG7npzT+unp5qarT5xxlU7JCDA8ycqbI95ztW1LUodp7byZaILZy7ds6yvUmNJvRt0Zd+LfrhaFM9x+MTF6dEk7W1Kg9k5v33VaLDDz9UBW9BDWVu3qxEgll0JSWp1Azp6Xmv4bff1EzCRx7J2TZ3rorFeuEFNWHAfK0//6wStwYGqmv28lICydm59MlgDUMJNDc3mDRJ5QHauxf27FFDlH/9lZM9u0kT5Tnz9lbnLMuiviUZhoTSBeZrr1gBMjMzCwiikoqnrMKKQZcQe3t7ixiqUaNGAYFk3laYiNLC6e5Eiy6N5nZhLm/xxx9qiOuaytqOrS307q2KUucuJpubwgKzH31UiaHkZBUf5OWlguKrVFECaM4cS54aEeFU3Cl2nd/F7vO78witmtbV6NmsB4Gt+nNf7fsw/voL/vOMKiM0darqZGenPEJVq6rrMIs4b2/1w5/7B6JLF3UdLXPVV2zWDN54I29Zj6Qk6NlT3ZPLl3OEU1qaahcv5vStX1+d54EHVJwWKG/eI48o4bVsWY5Nv/6qvGfduuWUICkOKyt1n9q0UR6wixeV+Nq3TyWOjYpSbcMG1d/ZOUcsubmpayvLH8ibFWJwVw9PFiWcigoWzy2eMnKnBikldnZ2BURRYWIp/zY9VKcpDP2J0GjKk+xsNYy1dy/s3q2Gzsy4uKjCzYGBxZe1yO29ALX8++9qaK9qVSVQVq5UGdJz/TjHN2/IwYhthFwI4cCFA1xJuQLpaVClCtXtHAhoEkD34FjabTyEzfNuUKeVOn716koQ/v/2zjzKjuq+85/f2/q9fq+7RUutBS20BFrCYiQjEYQ9HAwYRDAGYjBObIeBMDEOmcSEibExJ2ATju2xz5xhs8OJA2EcYpIYgQkHAw6rHSODkEGtnbYkULfUklot9fL25c4fv6qu14uMsNT9JPr3OafOq/q9W1W36lbd+63f3bq6gjgkk+rh8id39vniF0fGd/58XaoRUa/Zhg1ahdferkLGp61N7weoqFqxApYsCf6/8EIVOH51I6jYnD1bhVy1J2/lSh3N+rTTAtH1k5/o/b/0UhWFoF63dFqHkqjef9o0DXfppeqRbG/X9mNvvaVjpflzy/3nf2r4REIF5rx5usydq0LsSBa4hyrExqKd2BESZ/5wBAcbbuC9etodjnAKh8OjepQORTzFxqqHqzEhMdFlGEeanh71kKxerYvv0QIVDeeeq2Jr3rzRqxCHF3JtbSoQ+vrUI/Tww1rFFQ7rMns2/NmfsS+zj83JHjac2MtbW+5m+y+2QDLwLE1p+w1ndUU4639+i1MWX0gkFIGOf4folqFxPPlk7e1X3ZZJRL1Sh8LAQNCTcPt2bYflT1RdTSymYmXBgqEibTTR1tSkXrVqpk/XEfWHc/HFKuiqBWJ7u/ZyPP/8wLZ2rXrfli6F229Xm3Mq2lpadLqh6rHLPv1pFWG/+Y1WR27apMvevXrsdeuCY0ciOmjt7Nm6zJqlv8cfH7R9O1xGG1PtSLcTq7JVolGy3/8+6VmzSK9dS/qtt3S9pUVF1JYtDLz9NunmZtKp1KgDYh7OEEWjCaff1li8WkTV1dVZrzrjqMBEl2EcDuWyej02blQvzsaNQz1EoJ6TM88cvWdctcBauFCns/niF7XqrFjUdkx+tWE+r/t+/OP0Xnwe2+UAWze9yubwATavvo3utV7bk1IZ1rxBTCKc+ok/ZfGMJZw+/XTmbnsU2bkZQsdDyIvDJz+pY3+Fw0Gc/CrKQ2HHDvjlL3VU6HPOCWzf/ObQcNGoNmA/6SQVWieeqNtjUf1yxRUjbddco4LLb3cGOhxHQ8PQibL7+1VsJJPB9QB85zsqrv78z4O2YMuW6bhgiYR2Jti6VZdt21TIvPvuUM+mz/BJfKdOVZE3ebL+Hq4oG8UrVvyHfyCzZg2ZuXPJxmKk6+rIFApkNm8mI0K6o4PMSy+R6ewk3dBApquL9C23kMnnSb/9Npm6OjLptLaxa2zU9nmVilarLl6s5xluS6VUgPf16T6pFPF4nFS5TDKTITV7Nsk5cw46FMHwdRNOxgcBE12GcSiUy1ro7twZeHC2b1eBUSwODRuPa0GeTMIll6hnS0QF1uOPj2yXtWePelA+9CE9R0cHxONUclm6n3mMndddRdc3/5SOXz7Ddull+7Q2eneu13O5Pli3CVIN1J9+BguaF7BoyiI+tCrJouh0omfcHFSx/c3fjOzZdzBxVSqpx667W+O0e7d6q7q6tDr0wgs13I4dOlr+smWBSDnhBO395/cUnDtXPT21bN8yZcpQcQUa33POCYaWAPV0XX75yP3ffluvv/oannsOfvxjTcOrr9bhPd55R6dqWrpU033HDk3PVav0XhYKo0/iW00yiZs8mVxDA9lUimwiQa6+nmxdHdlIRJdwmKwI2VKJbC5HJpMhm82SzWYH1/1pVTKZzOiNwVtaAkH0wgsqkHyRFAoF3s9KRathQyHqp06lPpcjFYlQ39Sk4mnOHJJ1dSS3bSM5ZQqp3l6S559P8tRTSd5xB8lymdTAAPX33Uc4HA68aQcOwM03j6zGXLBgqO3119+7uvMYa59mTFzGNBcUkRXA3UAY+IFz7lvD/hfv/z8AMsB/d86tGcs4GcYInNMCZv9+9Vj09Oj63r0qMrq6VBj19Q35ah8kFtN2RWefrXP9ZbPaIDuTUU/VF76gx3vwQW1/lUhQ+OlT9K59nd5oPz2pXvaF8+yr28S+DzfSPcuxJ9rLnvoKpcTP4MW1ep7ELi3Ew9NJzFvICU0n0DpjKgu3HMfClqXM+tTXAk/AfX88suoyElFPjnNBD7zubm0ftn9/sHR36z04WFVQtbfopJPUs1Rd0NXXw9e/fnhpMp5UN4JvatLejMP5xjf0eZg2DdD2SYWGBvKtrRSSSfKdneTzefKrV5P/r/+i0N1NbsEC8qUSuaYm8q+/Tr5YJHfDDeQOHCDX3U3ulVfIdXWRa2khB+QGBsj29pLLZsmHQkMFcqmk6VntkYSgrVwkov/5v8OWcCymI34nkyRTKeobGkikUtSnUiSbmqhvbNT1nh7qd+0iecop1J98so4Y3tlJcutWEmecQejkk4eOrj9lis7bCVpdWyyqx+7KK1UEhUJarbpzp3qC4dB7XcLvbns/7dPej4g73P2NCc+YiS4RCQP3Ax8HOoDXReRJ59yGqmAXA/O95feB73u/48vR9nKOh+1oi8/7iePGjVqVsWCBtosqFjVDb2tTr8rxx2tV3JYt6k2YNk2HGshktOpn2zYVTdGoiqjOTvU8pFIqGCqV4Iu/qQk3ZTLFdD/F9WspuTL5ujCFCz5G4fhpFAZ6KfzsGXKVArnOX5JdFCW3bQvZeDuZugIDkQqZV79DOlxhYHE3fVFHb3w/+WeuVeGzZA/0D2jhedYsbdQ9MBk2b4Fcjub4JGa0nMKM1AyOT+U4IbOd1llLaGldghSLKuLOP0Wv7ZFHdDuTUc9EOq2etuXL9b49+6wO7XDRRcFgoX19Oh/hcET0nrW06DJ1alAdNnt2EG7qVLjuupH7HwGcczjnKJVKVCoVSqUS5XKZcrk8uF4qlQaX6u1isTjkP3+7WCyOWAqFwuD/hUJhcNtfP9gyyAMPBOu+OGpv1ypJ0Oepr0+9pU89FYTt6dH0SiYDEbx7t3pQjzuO+OzZxEVIFAok1q8nHo2SmD+fRLlMolQisW0biVyO+jlzSNTXUx8OkzhwgERfH8mWFhJTpqitWCS6axeSzapn88ABXbq6VFhPnRoItlwu6PzxwgsqYpzTD4k1a1RQRaPqIdy+XT2Yr7yi+15xhXr65sxRAbZ3rz6LGzcGgj8SCd5NX1SuWaM9evv6NC579+qzKqLv4bRp+tHz4osq4tJpfRZ379ZhPUIhjd+MGXpNr72m573hBs0bYjEd7kREx4jzbQ89pLb3I+KOJhH4QcvXaxmfcWTM5l4UkeXAHc65i7ztrwI4575ZFeYB4CXn3I+87c3Auc65Ia1ux3TuxU2buPbKZeT8EYBTDSBAegAq3r2ZNEmrjPZ1Q7mimVJ9vWaU+7o1XLmsGdqiRfpSb9umGZhzmqmGQt4xAZwW8KnU0P3jddA4CfbvA4e2zYnFYPo0zYic02OHIxAJQy4LfvJFYxAOQamoNgFCYV2vlDWYAHVxLRgaGjRDcw7KJZCQ7l89jlLEyxRdJRgmIBLVuJZLekARqE9ALg+lIi4WAxFcS4tmgMWinhfRe1gqQbGIC4nek8ZGyOYgl9U4hkN6v5zDZbK4SlkzagE3aRL07INyBQc4EYiGcZWK2kRwIcEl9DyuUNBwIcFFo1RE758DKpEwriFFRcD19lIRdImEqIhQcWUqQDksVI6bpOk+0B9URcXjGq9SSeMPEI3A9BmQiEP7bzSsiG6LVzB4tlBDIwmJEi846g+kSboIybPPJTljDslYktSqN2ncsp3IR/7bYC8+5xWEo72x1e9x9f9u2TI4/XT9f/t2+PnPcfPm4ZYvV1s+j1u3DpdIQCKBi8d1vb6eStVx/fnYqn99UeScG9yuVCoj1kfbrlQqlMvlIb/DbeVy+be8uLUnFosNLvF4nLq6usGl2lb9XzweH1zqnCNeLBKfOpV4UxOJRIJ4VxfxzZupmz+f0Bln6Im6u7VnaioFt9wSRODGGzVNv/1tfZ/TaRXQzz+vQ5AsXqzio71de7dOnqxVntms5k1PP63CYNkyfaf9IU26u/Vjxq+O3bdPOw80N6tnEzT8G2/oO7y0anq5TZtUPC1apO/2wIC2a+vt1Y+hE05Q2759Wl2bSmk7R38ct0xG47F0qean/thu5bK2o5s8WW3Foi5+RwW/PVk+r/FuadFriccD73Rzs3rX4nG9V8mk5uM9PdouL5sNesJms0HP4ObmwJu9dav+9verV7SxUa+jvl6voalJxeT+/WrLZvVDKhLRPBz0ni1cqOfduVMFbyikbT7feUeXWEzt552norW9XeMTDmvbxM5OFauRiN6nCy7QY69fr89ENDpy/0RCz3PRRXodv/617huLqa27W4eyCYc17IoV+nw8+aQeO5XSTioiWq1eKqnt0kvVtnKl3v94XAW4iPYaTqc1PlddpWnT3Q2PPqrpnEppu1IRnWe2WNT9P/UptT32mN7DWEyr8EEHku7v12v53OcCWzqtz8Dll+v78MQTmn6lkt6HmTO1eUelos/Hv/7rmAqvWsy9OBPYUbXdwUgv1mhhZgKjdHUaI9raeL4/Tb7kFVU9fSPD7N2PlvpVxVkhDb1eBiFoSVfIwVvr1VYqB+ELAyOP2dMP+wdG7t/fFYgm37ZthwozwROCo7TPyOeCdX9fiiNtac82kKs6j2PUkpwqAfbbjpktBvsX8ro+0KFCZRAHuczQbSqQ2a/rg+cvQ6a/6lqBUMk7z34oDjumlKr2dSAO0rmh1yROj+EdHoCw02OJQB9B2JDTjUrVvnv6ERFCBYdUIASEmuKEYnWEKg7ZkydccYQjQqhURzieINTdTLi3j0g4SjgSI+yEcClCpFAiGo4R9gUtAI1avbSpj307vYbXHXuhz+sFuGeP2vr6tFAKhTRjFAnW/Wolf9u37dqlBZzPrFmakb78MkM4zGlHxgoRIRwOE4lECIfDhEKhwXX/NxqNDm5Ho9Eh/0ej0UGb/xuJRIjFYiP+q6urIxqNDgqpSCQyKKCqFz/cmDTqnjFj6FAZoAXVnXeODHv//SpGQqGgKvmmm7Rqe/LkoPdpT4/2PG1s1ILd55FHtJD8/OeDD4jHH9eC+7zzVHgVCjpUxn/8h3Z+uOACLRjTabjnHn3Orr9e41EqacHZ0aHhpk9X25o18OqrOg7a0qVa6PX0aKGYSun1lsvaY/W553T91FNVtMycqYJq/369N62tej/eeUfFXCKhnrVUSr137e2B9+7ddzX+IsGHcjisBbFIcO98T5mI95Ho3Uv/XSuVVFD5TQoGBnRfX6Q5F0zblU6rQPC9m75nzhcE9fV6/nff1fgWiyoQcjkVQp2dmiaJhNq2bNFrzeeDfTdvVi9fLqdxymZVWNXV6THyeY1DJqM1AFu3aphEQm1tbXqeXE7DpdOazxw4EIRLpzXdCwW1RSJqe/PN4N6IqG3NmuDaK5VAkPv3qljU46xercJ7587g3oK22fP3d54D4rXXgv1LJd1/1Sq19ffrNVYq+lz5Nj/ca68FwtiP4xtv6H3s7w/EtF+1Pc6MpegaLUcaXrQfSpix5bTT+MKkyRT7ejU6c+ZorDo7VTiBZj4NKdi0WT08pbJmAFNb1OYqUPDaN3z0o5rIq1YFnqRZM9U71dEBlbJe4ezZ0Hzc0GO2tGhGtWVL4NWa3AzzTtSXqlLWh23Scfqy7N4deFOam/Vrwm+LI6KZrN9eCdQ2bZo+nM3N+hBWKrrd2Kgv1p49SMVByDumiH6lOqcvyZQp+mD39CChsIZrbQ3aQ8UTwdfvhg0ax5BoATXvRCSdgc4O9ZhFIrBkMbL/gH4hh8IQjyPLlyOxGGzcADs6kFQKCYeRK6/S3n2bNum2eOdJZ5C2tYTCESQSRT52HmSzyEsvIRIilEwhn74aCQnyjw8SKlcINTYh1/8Pwgihe+5FiiXC4Qihy64gLCFk5eOEyxUioQihK69Gpk0L2nhNn67DCfjta1avVs/m4sXBUAf79wdfY744EkF8YVQlnMQXTP7X6W/BL+irC/zRCv+DhRttuzqsv+6Phl0dxrdV/xcKhQiFQiPCVdurt6vt4XB4UEhV/1avW2+192D481IttnyamwNPSDWf/ezQ7WhUh8UYzoknag/X4axYMdI22v4+1YPqOhe0+6vurdnfr4VuQ0Nwbf39WvAnk8EAuvm8fozU1Q0dGmT7ds3TWls1H21r0/fVXzo71dbaqoKloUHzx7Y2FYXVItaf7SEc1jy9tVXz8PXr9ViJhOaH/f1qmzdP9/e9VBs26DGLRRWD992ncYtEtB3cvn0qnEFtf/d3Gv9779XtaBS++13N++++W7djMR30uKMD7rpL45pIwLe+pR61X/xCq7v9/OSuuzQeDzyg98o/z7ZtOptEJKL3/8471QP1jW94tRf1up7PawecSkXLiDvu0Pj+9V8HgtEfbuXLXw5E29/+rdpuvVXLwVhMba2teu6bb9b9m5rgtts07C23BNXtt96qtttu03tfVxfYbr9d08y/j6DP0sBAEI9USuPvexpvuknT7M47g9k6/AGFxxmrXoQPfp21xfGYrPs3DOMDxETMM4+FOI4RB6teHEvRFQG2AOcDncDrwB8759ZXhbkE+Au09+LvA/c4584cfqwxF12GYRiGYRhHiHFv0+WcK4nIXwDPokNGPOicWy8iN3j//z3wNCq42tEhI64dq/gYhmEYhmHUkjEdp8s59zQqrKptf1+17oAbxzIOhmEYhmEYRwOh9w5iGIZhGIZhHC4mugzDMAzDMMYBE12GYRiGYRjjgIkuwzAMwzCMcWDMhow4kojIXuCdWsfDMAzDMAzjEDjBOdcy3HhMiC7DMAzDMIxjHateNAzDMAzDGAdMdBmGYRiGYYwDJroAEVkhIptFpF1EvlLr+ExURGS2iLwoIhtFZL2I/JVnbxaRn4nI297vcbWO60RERMIi8msRecrbtnQ5ChCRSSLyYxHZ5L07yy1tao+I3OTlY+tE5EciErd0qQ0i8qCI7BGRdVW2g6aFiHzV0wObReSiIxmXCS+6RCQM3A9cDJwM/JGInFzbWE1YSsDNzrnfA84CbvTS4ivA8865+cDz3rYx/vwVsLFq29Ll6OBu4Bnn3CLgdDSNLG1qiIjMBP4SWOqcOxWdCu8zWLrUin8CVgyzjZoWXpnzGeAUb5/veTrhiDDhRRdwJtDunNvqnCsAjwKX1ThOExLn3C7n3BpvvR8tPGai6fGwF+xh4PKaRHACIyKzgEuAH1SZLV1qjIg0AucA/wjgnCs45w5gaXM0EAESIhIB6oGdWLrUBOfcK0DPMPPB0uIy4FHnXN45tw2dG/rMIxUXE11aqO+o2u7wbEYNEZFWYAnwK2Cac24XqDADptYwahOV/wt8GahU2Sxdas88YC/wkFf1+wMRSWJpU1Occ53Ad4F3gV1Ar3PuOSxdjiYOlhZjqglMdIGMYrNxNGqIiKSAx4AvOef6ah2fiY6IfALY45x7o9ZxMUYQAT4MfN85twRIY1VWNcdrH3QZMBc4HkiKyOdqGyvjEBlTTWCiS1Xs7KrtWagb2KgBIhJFBdcjzrmVnnm3iMzw/p8B7KlV/CYoHwE+KSLb0er380Tkn7F0ORroADqcc7/ytn+MijBLm9pyAbDNObfXOVcEVgJnY+lyNHGwtBhTTWCiC14H5ovIXBGJoQ3onqxxnCYkIiJo25SNzrn/U/XXk8A13vo1wE/GO24TGefcV51zs5xzrej78YJz7nNYutQc51wXsENEFnqm84ENWNrUmneBs0Sk3svXzkfbqFq6HD0cLC2eBD4jInUiMheYD7x2pE5qI9IDIvIHaJuVMPCgc+6u2sZoYiIiHwV+DrQRtB26FW3X9W/AHDQzu8o5N7xRpDEOiMi5wP9yzn1CRCZj6VJzRGQx2sEhBmwFrkU/qC1taoiIfB24Gu2V/WvgeiCFpcu4IyI/As4FpgC7gduBJzhIWojI14Dr0LT7knPup0csLia6DMMwDMMwxh6rXjQMwzAMwxgHTHQZhmEYhmGMAya6DMMwDMMwxgETXYZhGIZhGOOAiS7DMAzDMIxxwESXYRg1R0Qmi8ib3tIlIp3e+oCIfG+MzvklEfmTUeytIrLuCJ4nJiKveHPwGYYxgbFMwDCMmuOc2wcsBhCRO4AB59x3x+p8ngC6Dh29fUxxzhVE5Hl0zKZHxvp8hmEcvZinyzCMoxYROVdEnvLW7xCRh0XkORHZLiJ/KCL/W0TaROQZbwopROQMEXlZRN4QkWf9qT6GcR6wxjlXqtrnLRF5Fbix6vytIvJzEVnjLWd79h+KyGVV4R4RkU+KyCki8prnpVsrIvO9IE8Anx2Le2QYxrGDiS7DMI4lTgQuQScT/mfgRefcaUAWuMQTXvcCVzrnzgAeBEabYeIjQPUE3g8Bf+mcWz4s3B7g4865D6Oeqns8+w/Qkd8RkSZ0Xr2ngRuAu51zi4Gl6DxuAOuAZb/jNRuG8QHBqhcNwziW+Klzrigibei0Xc949jagFVgInAr8TKe8IwzsGuU4M9C58HzRNMk597L33w+Bi731KHCfN9VOGVgA4Jx7WUTuF5GpwB8CjznnSp6n7GsiMgtY6Zx72wtfFpGCiDQ45/qP0L0wDOMYw0SXYRjHEnkA51xFRIoumMesguZnAqwfxWM1nCwQ99YFONh8aDehc7WdjtYM5Kr++yFaZfgZtH0Yzrl/EZFfod64Z0XkeufcC174umH7G4YxwbDqRcMwPkhsBlpEZDmAiERF5JRRwm0ETgJwzh0Aer0J12Fo26smYJdzrgJ8HvWc+fwT8CXvGOu9880Dtjrn7gGeBD7k2ScDe51zxcO/RMMwjlVMdBmG8YHBOVcArgS+LSJvAW+i7a2G81PgnKrta4H7verBbJX9e8A1IrIKrVpMV51rNyreHqoKfzWwTkTeBBYB/8+zfwxt82UYxgRGAu+8YRjGxEFEHge+7Le7+h32r0fbkn3YOdf7HmFXAl91zm3+Xc5lGMYHA/N0GYYxUfkK2qD+fSMiFwCbgHsPQXDFgCdMcBmGYZ4uwzAMwzCMccA8XYZhGIZhGOOAiS7DMAzDMIxxwESXYRiGYRjGOGCiyzAMwzAMYxww0WUYhmEYhjEOmOgyDMMwDMMYB/4/5ASTCgpkatYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.3339, 'epsilon': 0.18810000000000002, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACjVUlEQVR4nOydd3hVVdaH35NGEgIJJUBoISAQ0kkgEHroCKI0BVEBRRQb6jcqzihgmRnGBmJ3VHAUAQFFRFREepMECKGXQAgkgQCBkF5u1vfH5t70BimU/T7Pfu4p+5yzzrk39/6y9tprGSKCRqPRaDQajaZqsappAzQajUaj0WhuB7To0mg0Go1Go6kGtOjSaDQajUajqQa06NJoNBqNRqOpBrTo0mg0Go1Go6kGtOjSaDQajUajqQZsatqA8tCwYUNp1apVTZuh0Wg0Go1GUya7du26ICKuhbffFKKrVatWhIeH17QZGo1Go9FoNGViGMap4rbr4UWNRqPRaDSaakCLLo1Go9FoNJpqQIsujUaj0Wg0mmpAiy6NRqPRaDSaaqDKRJdhGF8ZhpFgGMb+EvYbhmHMMwzjuGEYkYZhBFaVLRqNRqPRaDQ1TVV6uhYAg0vZPwRoe7VNAT6pQls0Go1Go9FoapQqSxkhIpsMw2hVSpe7gf+JiAA7DMNwMQzDTUTiq8qmkti/H3Jzq+dahlG5/fL3zX9McceX1K+4dfM2K6ui283Nyqrgq3k5/3YrK7C2LrhckXvTaDQajeZWoSbzdDUDTudbP3N1W7WLrjffhNTU6r7q7YthKPFlbQ02NgWXbWzA1jbv1dYW7OzyWq1a6tXBAezt85qDAzg6Qu3a4OSU92prq0WeRqPRaG4MalJ0FfdTKNVuBeDlBZmZ5esr12Hh9Rxb0vHmbaXtK2m58DZzy78OyguYf7nwq0jB1/xNBEymvHWTSW3LyVGtvM/9WrGzA2fnvObiAvXqQYMG4OoKDRuqVreuFmcajUajqVpqUnSdAVrkW28OxNWEITNm1MRVb0/MYs5kUi0np+BrdrZqOTl5y1lZBVtmpmrp6ZCRoV7T0yEtTXksU1LyXrOy4Px51UqjVi1o1qxga9ECWrZU3jKNRqPRaK6XmhRdK4GnDMNYDHQBkmoinktTveSP/apqMSOixNnly5CUlNcSE+HCBSXELlxQLTUVTpxQLT82NuDuDnfcoVrbtuDhkRfrptFoNBpNeaky0WUYxiKgD9DQMIwzwEzAFkBEPgVWA3cCx4E0YFJV2aK5PTEMFe/VpIlqpZGcDHFxEBub106dUq9RUar9/rvq6+QEfn4QEKBakyZ6aFKj0Wg0ZWPI9QYaVQOdOnUSXfBaUxOkp+eJrmPH4PBhOHeuYJ9GjaBbN+jdG9q00QJMo9FobncMw9glIp2KbNeiS6OpGGfPQkQE7N2rWnJy3r5mzZT46tVLLWs0Go3m9kOLLo2mChCBI0dg0ybVkpLy9vn4wKhREBSkvV8ajUZzO6FFl0ZTxZhMsG8fbNgAW7eqmZWgZkCOHKk8YDY1OXVFo9FoNNWCFl0aTTWSmqoC73/6Sc2WBJUbbMwYGDxYJYPVaDQaza2JFl0aTQ2QkwMbN8IPP0BMjNrWqhU8/jh4e9eoaRqNRqOpIrTo0mhqEBHYvh2+/BISEtS2Pn1g0iSoX79GTdNoNBpNJVOS6NIpHjWaasAwVFqJjz+GceNUYtgNG+Cxx2DlyusvEaXRaDSaGx8tujSaaqRWLbj/fiW+unRRwfb//S/885+qbJFGo9Fobl206NJoaoAmTeCVV+Dvf4fateGvv+DZZ1UCVo1Go9HcmmjRpdHUICEh8P77qqbjuXPw4ovwyy96uFGj0WhuRbTo0mhqmMaN4T//gWHD1GzHTz+Fd96B7Oyatkyj0Wg0lYkWXRrNDYCtrQqqf+klcHBQ2e3feAMyM2vaMo1Go9FUFlp0aTQ3ED16KK+XszPs2QMzZ0JaWk1bpdFoNJrKQIsujeYGw8NDCa8GDeDAARVwn7+otkaj0WhuTrTo0mhuQJo1U8KrSRM1o/Hll+HSpZq2SqPRaDTXgxZdGs0NijnAvkULOHUKpk+HpKSatkqj0Wg014oWXRrNDUz9+vDvf0Pr1hAXp4Lrs7Jq2iqNRqPRXAtadGk0NzjOzjBrFri6wpEjMGeOzuOl0Wg0NyNadGk0NwH16qmZjI6OsGULfPttTVuk0Wg0moqiRZdGc5Pg7q7iuqys4PvvYe3amrZIo9FoNBVBiy6N5iaiY0eYOlUtf/ghREbWrD0ajUajKT9adGk0NxmDB8OIEWAywb/+BfHxNW2RRqPRaMqDFl0azU3IpEnQpQukpqo6jTk5NW2RRqPRaMpCiy6N5ibEMODZZ6FhQzh6FBYtqmmLNBqNRlMWWnRpNDcpTk7wf/+nBNjSpbB/f01bpNFoNJrS0KJLo7mJ8fGBMWNU3q5334WUlJq2SKPRaDQloUWXRnOTM24ctG8PFy7ARx/pxKkajUZzo6JFl0Zzk2Njo4YZ7e1V4tR162raIo1Go9EUhxZdGs0tgJsbPP64Wv70U51GQqPRaG5EtOjSaG4R+vaFHj0gIwM++UQPM2o0Gs2NhhZdGs0tgmEob5eTE+zZA1u31rRFGo1Go8lPlYouwzAGG4ZxxDCM44ZhTC9mv7NhGD8bhrHXMIwDhmFMqkp7NJpbHWdnmDBBLf/3v5CWVrP2aDQajSYPm6o6sWEY1sBHwADgDBBmGMZKETmYr9uTwEERucswDFfgiGEYC0Ukq6zzm0wmEhMTyc7OrhL7NZqbFV9fePRRSEqCnTuhXbuatujGwdbWlvr162NtbV3Tpmg0mtuQKhNdQDBwXEROABiGsRi4G8gvugSoYxiGATgBiUC5CpokJiZib29Pw4YNUYdrNBozjo7w228qoN7fH+rVq2mLah4RISUlhcTERFxdXWvaHI1GcxtSlcOLzYDT+dbPXN2Wnw+BDkAcsA+YJiK55Tl5dnY2Tk5OWnBpNMVQr57K3SWivF06qB4Mw8DJyUl7xzUaTY1RlaKrODVU+Kt/EBABNAUCgA8Nw6hb7gtowaXRlIivLzg4wMWLcPx4TVtzY6C/MzQaTU1SlaLrDNAi33pzlEcrP5OAH0RxHDgJeFahTZXKP//5T7y9vfHz8yMgIIC//vqrRuyIiIhg9erVlvWVK1cye/ZsACZOnMiyZcuKHLNhwwaGDRtWbTZqqh9bWwgKUst796pUEhqNRqOpOaoypisMaGsYhgcQC4wF7i/UJwboB2w2DKMx0B44UYU2VRrbt29n1apV7N69m1q1anHhwgWyssqM/68SIiIiCA8P58477wRg+PDhDB8+vEZs0dxYtGihEqfGxyvh1aVLTVuk0Wg0ty9V5ukSkRzgKeB34BDwvYgcMAzjccMwrubO5g2gm2EY+4A/gZdE5EJV2VSZxMfH07BhQ2rVqgVAw4YNadq0Ka1ateLCBXUL4eHh9OnTB4CNGzcSEBBAQEAAHTt2JDk5GYC33noLX19f/P39mT5dZdWIiopi8ODBBAUF0bNnTw4fPgwor9Xjjz9Oz549adeuHatWrSIrK4sZM2awZMkSAgICWLJkCQsWLOCpp56y2Lp27doCxxQmNTWVhx9+mM6dO9OxY0d++umnKntumurFMJS3yzDgxAk1o1Gj0Wg0NUNVeroQkdXA6kLbPs23HAcMrEobqoqBAwfy+uuv065dO/r37899991H7969S+z/zjvv8NFHH9G9e3dSUlKwt7fn119/ZcWKFfz11184OjqSmJgIwJQpU/j0009p27Ytf/31F0888QTrrhbUi46OZuPGjURFRREaGsrx48d5/fXXCQ8P58MPPwRgwYIFBa5d3DH5+ec//0nfvn356quvuHz5MsHBwfTv35/atWtX4hPT1BR168Idd8CxYxARAaV8TDUajUZThVSp6Kou7rqras77888l73NycmLXrl1s3ryZ9evXc99991niqIqje/fuPP/884wfP56RI0fSvHlz1q5dy6RJk3B0dASgfv36pKSksG3bNsaMGWM5NjMz07J87733YmVlRdu2bWndurXFC1YaZR2zZs0aVq5cyTvvvANARkYGMTExdOjQocxza24OfH3h5EmIjYWEBGjUqKYt0mg0mtuPMkWXYRjdgVmA+9X+BiAi0rpqTbvxsba2pk+fPvTp0wdfX1++/vprbGxsyM1VWS8y8kUuT58+naFDh7J69Wq6du3K2rVrEZEis6lyc3NxcXEhIiKi2GsW7l+e2VhlHSMiLF++nPbt25d5Ls3Nib09eHlBZKQqETRwoBpy1Gg0Gk31UR5P15fAc8AuwFS15lwbpXmkqoojR45YvEeggtnd3d1JT09n165dDBkyhOXLl1v6R0VF4evri6+vL9u3b+fw4cOWIcr777/fMrxYv359PDw8WLp0KWPGjEFEiIyMxN/fH4ClS5cyYcIETp48yYkTJ2jfvj3Hjx+3xIgVR3HH7Nixw7J/0KBBfPDBB3zwwQcYhsGePXvo2LFjFT05TU3h6amGGC9ehNOnoWXLmrZIo9Fobi/KE0ifJCK/ikiCiFw0tyq37AYnJSWFCRMm4OXlhZ+fHwcPHmTWrFnMnDmTadOm0bNnzwKlRubOnYuPjw/+/v44ODgwZMgQBg8ezPDhw+nUqRMBAQGW4b2FCxfy5Zdf4u/vj7e3d4HA9vbt29O7d2+GDBnCp59+ir29PaGhoRw8eNASSF+Y4o7Jz6uvvkp2djZ+fn74+Pjw6quvVtFT09QkNjZqmBFUbFduudIQazQajaayMKSMVNWGYcwGrIEfAEtwkYjsrlrT8ujUqZOEh4cX2BYXF0fTpk2ry4QbgokTJzJs2DBGjx5d06ZoblJyc2H1arhyRc1qvB1HlG/H7w6NRlO9GIaxS0Q6Fd5enuFFc2af/AcL0LcyDNNoNNWHlRUEBMCmTbB/P3h4gJ1dTVul0Wg0twdlii4RCa0OQzRlUzgVhEZzLTRrpmYvJiTAoUOqILZGo9Foqp4yY7oMw3A2DOM9wzDCr7Z3DcNwrg7jNBpN5WMYytsFcOQI5MtIotFoNJoqpDyB9F8BycC9V9sVYH5VGqXRaKqWhg2haVPIyVHeLo1Go9FUPeURXW1EZKaInLjaXgNu+xxdGs3Njnkm49Gjuhi2RqPRVAflEV3phmH0MK9cTZaaXnUmaTSa6qBBAxXfpb1dGo1GUz2UR3RNBT4yDCPaMIxTwIfA42Ucc1vg5ORUZp/Nmzfj7e1NQEAA6ekV06orVqzg4MGDlWZXeno6vXv3xmTKy3E7Z84c7O3tSaqhSsgRERGsXr267I7XyYIFC4iLi7OsT548+ZqebXR0ND4+PmX2W7p0KR06dCA0tOLzUArbWll2Fddn9epZ/PLLOxXydvXp04fCKVwKM3fuXNLS0sp3wkJc62civ139+/fn0qVL13R9jUajqSrKFF0iEiEi/oAf4CsiHUVkb9WbdmuwcOFC/va3vxEREYGDg0OFjr1W0VUSX331FSNHjiyQtHXRokV07tyZH3/8sdKuUxFqSnR98cUXeHl5Vdn1vvzySz7++GPWr19f4WOvRXRdKw4O4OwMJhNU4ketRkRXfh588EE+/vjj6zqHRqPRVDYlii7DMB64+vq8YRjPA5OByfnWNVfZsGEDffr0YfTo0Xh6ejJ+/HhEhC+++ILvv/+e119/nfHjxwPw9ttv07lzZ/z8/Jg5c6blHP/73//w8/PD39+fBx98kG3btrFy5UpeeOEFAgICiIqKIioqisGDBxMUFETPnj0thatPnjxJSEgInTt3LjWb/MKFC7n77rst61FRUaSkpPDmm2+yaNEiy/YDBw4QHBxMQEAAfn5+HDt2jFdffZX333/f0ucf//gH8+bNY8OGDfTu3Zt7772Xdu3aMX36dBYuXEhwcDC+vr5ERUUBKrHr448/Ts+ePWnXrh2rVq0iKyuLGTNmsGTJEks2/cTERO655x78/Pzo2rUrkZGRAMyaNYsJEyYwcOBAWrVqxQ8//MCLL76Ir68vgwcPJjs7G4DXX3+dzp074+Pjw5QpUxARli1bRnh4OOPHj7d4HPN7RX777TcCAwPx9/enX79+5X7fFyxYwMiRIxk8eDBt27blxRdftNiwZcsWHn/8cV544QVMJhMvvPCC5X3/7LPPLOd466238PX1xd/fn+nTpxdr665du+jduzdBQUEMGjSI+Ph4AHbt2oW/vz8hISF89NFH5ba7ME2aqNcHHujD//3fSwQHB9OuXTs2b94MKA/p2LFj8fPz47777ivgsV2zZg0hISEEBgYyZswYUlJSmDdvHnFxcYSGhlo8fcX1AwgLC6Nbt274+/sTHBxMUlJSkc9EamoqDz/8MJ07d6Zjx46WCg2l2TV8+PACn2mNRqO5IRCRYhvw2NXXmcW0GSUdVxUtKChIChMbG1tkW3VTu3ZtERFZv3691K1bV06fPi0mk0m6du0qmzdvFhGRCRMmyNKlS0VE5Pfff5dHH31UcnNzxWQyydChQ2Xjxo2yf/9+adeunZw/f15ERC5evFjkWBGRvn37ytGjR0VEZMeOHRIaGioiInfddZd8/fXXIiLy4YcfWuzKT2ZmpjRu3LjAtjfeeENef/11MZlM4u7uLufOnRMRkaeeekq+/fZby3FpaWly8uRJ6dixo4iImEwmad26tVy4cEHWr18vzs7OEhcXJxkZGdK0aVOZMWOGiIjMnTtXpk2bZrmXQYMGiclkkqNHj0qzZs0kPT1d5s+fL08++aTFpqeeekpmzZolIiJ//vmn+Pv7i4jIzJkzpXv37pKVlSURERHi4OAgq1evFhGRe+65R3788ccCz05E5IEHHpCVK1eKiEjv3r0lLCzMss+8npCQIM2bN5cTJ04UOb44Tp48Kd7e3iIiMn/+fPHw8JDLly9Lenq6tGzZUmJiYopc77PPPpM33nhDREQyMjIkKChITpw4IatXr5aQkBBJTU0tcO38x2ZlZUlISIgkJCSIiMjixYtl0qRJIiLi6+srGzZsEBGRv/3tbxa7ymO7mZkzZ8rbb78tGzeKdOjQW8aPf15ERH755Rfp16+fiIi8++67lmvu3btXrK2tJSwsTM6fPy89e/aUlJQUERGZPXu2vPbaayIi4u7ubvk8l9QvMzNTPDw8ZOfOnSIikpSUJNnZ2UU+Ey+//LJ88803IiJy6dIladu2raSkpJRol5k77rhDLly4UOQ53AjfHRqN5tYGCJdi9EyJyVFFxPzv+FoR2Zp/39Vg+huHu+6qmvNWoJJ2cHAwzZs3ByAgIIDo6Gh69OhRoM+aNWtYs2aNpZh0SkoKx44dY+/evYwePZqGDRsCUL9+/SLnT0lJYdu2bYwZM8ayLfNqgqWtW7daims/+OCDvPTSS0WOv3DhAi4uLgW2LV68mB9//BErKytGjhzJ0qVLefLJJwkJCeGf//wnZ86cYeTIkbRt25ZWrVrRoEED9uzZw7lz5+jYsSMNGjQAoHPnzri5uQHQpk0bBg4cCICvr2+B4bV7773XUiS8devWFk9dfrZs2WK5l759+3Lx4kVLvNmQIUOwtbXF19cXk8nE4MGDLdeJjo4GYP369bz11lukpaWRmJiIt7c3d5Xy+dixYwe9evXCw8OjxGdfGv369cPZWaWt8/Ly4tSpU7Ro0aJAnzVr1hAZGcmyZcsASEpK4tixY6xdu5ZJkybh6OhY4rWPHDnC/v37GTBgAAAmkwk3NzeSkpK4fPkyvXv3BtT7/uuvv5Zqq2EYJW43z2Rs124k6ekQFBRkeaabNm3imWeeAcDPzw8/Pz9APbuDBw/Svbv6OsjKyiIkJKTI+Uvqd+TIEdzc3OjcuTMAdevWLda+NWvWsHLlSktt0oyMDGJiYkq0y0yjRo2Ii4uzfE41Go2mpilPGaAPgMBybLutqVWrlmXZ2tqanJycIn1EhJdffpnHHnuswPZ58+aV+INoJjc3FxcXFyIiIordX9bxDg4OZOSLlI6MjOTYsWOWH/OsrCxat27Nk08+yf3330+XLl345ZdfGDRoEF988QV9+/Zl8uTJLFiwgLNnz/Lwww8Xe+9WVlaWdSsrqwLPobCNxdksxdQCNffLf15bW1vLdvN1MjIyeOKJJwgPD6dFixbMmjWrwD0Xh4iU+exKo7zv+wcffMCgQYMKbP/tt9/KvLaI4O3tzfbt2wtsv3z5coXtbtCgQZHg8sTERDw8PKhXD2rVAiurWhw8CO7u1qW+d2bbBgwYUOYwXkn9IiMjy3UPIsLy5ctpX0yhyNKOz8jIqHAcpUaj0VQlpcV0hRiG8X+AqzmO62qbhSqAfePw889V0yqZQYMG8dVXX1niWWJjY0lISKBfv358//33XLx4EVA/hAB16tQhOTkZUF4ADw8Pli5dCqgfor171XyG7t27s3jxYkDFbRVHvXr1MJlMFhGyaNEiZs2aRXR0NNHR0cTFxREbG8upU6c4ceIErVu35plnnmH48OGWuKoRI0bw22+/ERYWVkRAlIelS5eSm5tLVFQUJ06coH379gXuEaBXr16We9iwYQMNGzYs0QNSGPO9NWzYkJSUFItnCShyHTMhISFs3LiRkydPAnnPfufOnTz00EMVvsfiGDRoEJ988okl7uzo0aOkpqYycOBAvvrqK0vAeXHve/v27Tl//rxFdGVnZ3PgwAFcXFxwdnZmy5YtQMH3PTY2ttjYNCcnJ9zc3Pjzzz8t1/vtt98sHtnatVW/48ch/0Tb/O/J/v37LZ+Hrl27snXrVo4fPw5AWloaR48eLXIPJfXz9PQkLi6OsLAwAJKTk8nJySnyXg0aNIgPPvjAIsj37NlTql2g/j7Onj1Lq1atSnlnNBqNpnopbfaiHeCE8obVydeuAKOr3rRbj4EDB3L//fcTEhKCr68vo0ePJjk5GW9vb/7xj3/Qu3dv/P39ef55NU9h7NixvP3223Ts2JGoqCgWLlzIl19+ib+/P97e3paA4vfff5+PPvqIzp07l5r6YeDAgZYf6cWLFzNixIgC+0eMGMHixYtZsmQJPj4+BAQEcPjwYYv4sLOzIzQ0lHvvvbfADMjy0r59e3r37s2QIUP49NNPsbe3JzQ0lIMHD1qCpmfNmkV4eDh+fn5Mnz6dr7/+utznd3Fx4dFHH8XX15d77rnHMmwFeYH8hVN3uLq68vnnnzNy5Ej8/f257777AIiJiak0L8nkyZPx8vIiMDAQHx8fHnvsMXJychg8eDDDhw+nU6dOBAQEWIbP8ttqMplYtmwZL730Ev7+/gQEBLBt2zYA5s+fbxkOzm9rfHw8NjbFO7H/97//8eabbxIQEEDfvn2ZOXMmbdq0AcDGRtVkNJng2LG8Y6ZOnUpKSgp+fn689dZbBAcHW57dggULGDdunGXig3nIeMqUKQwZMoTQ0NAS+9nZ2bFkyRKefvpp/P39GTBgABkZGUU+E6+++irZ2dn4+fnh4+NjmSxSkl2gJhl07dq1xOeg0Wg0NYFR3HBOgQ6G4S4ip6rJnmLp1KmTFM4LFBcXR9OmTWvIopuTPXv28N577/HNN99c0/G5ubkEBgaydOlS2rZtW6FjJ06cyLBhwxg9+ubQ6y+88AIPPvhgkTihm4EPP/yQli1bMnz48Aofe/Ei/P67EmB3362GHG9Gpk2bxvDhw4v1+OnvDo1GU9UYhrFLRDoV3l6efwPTDMN4G/AG7M0bRaRvJdqnqQY6duxIaGgoJpOpwp6qgwcPMmzYMEaMGFFhwXUz8vbbb9e0CdfMU089dc3HNmigajLGxali2Deh5gTAx8enQuk/NBqNpjooj6drDbAE+BsqE/0E4LyIFJ0iV0VoT5dGU32cPw9//AF2djB8uHq9ldDfHRqNpqopydNVnjJADUTkSyBbRDaKyMNA10q3UKPR3BC4uqrYrqysgrFdGo1Go7k+yiO6sq++xhuGMdQwjI5A8yq0SaPR1DDmEo2HD6uC2BqNRqO5fsojut40DMMZ+D/UEOMXwHNVapVGo6lRGjeGhg0hM1OlkNBoNBrN9VOegterRCRJRPaLSKiIBInIyuowTqPR1AyGAd7eavnQIZVGQqPRaDTXR2nJUT8wDGNeSa06jbxRsba2JiAgAG9vb/z9/XnvvffIzc0FIDw83FKi5EZn4sSJBRKJ5ufZZ59l06ZNlvXz589ja2tboGhzdfOvf/2ryq8RERHB6tWrLesrV65k9uzZ13Su/MW1S+L8+fN06dKFjh07WgpNX6utlWVX06Ywf/5EHnvMA29vf9q1a8dDDz1EbGxsmeeeO3euJelrRamM++nfv3+R7PsajUZT05Tm6QoHdpXSbnscHByIiIjgwIED/PHHH6xevZrXXnsNgE6dOjFv3s2tTRMTEy21Cc0sXbqUrl27lln6pSqpCdE1fPhwpk+fXmXX+/PPP/H09GTPnj307NmzQsdeq0gpC8MAFxcYN+5t/vOfvRw6dMSSdiQrK6vUY2tCdOXnwQcf5OOPP76uc2g0Gk1lU6LoEpGvS2vVaeTNQKNGjfj888/58MMPERE2bNjAsGHDAFVSplu3bnTs2JFu3bpx5MgRQJVDuffee/Hz8+O+++6jS5culv/UnZyc+Mc//oG/vz9du3bl3LlzAJw6dYp+/frh5+dHv379iImJAZQY8vHxwd/f3yKSTCYTL7zwAp07d8bPz8/inRIRnnrqKby8vBg6dCgJCQnF3tOyZcssRaXNLFq0iHfffZczZ85YPB4mk4mJEyfi4+ODr68vc+bMISoqisDAvPKcx44dIygoCIBWrVrx97//nZCQEDp16sTu3bsZNGgQbdq04dNPPwVUCaBevXoxYsQIvLy8ePzxx8nNzWX69Omkp6cTEBDA+PHjAXjvvffw8fHBx8eHuXPnAhAdHY2npyeTJ0/Gx8eH8ePHs3btWrp3707btm3ZuXNnie9NVlYWM2bMYMmSJZas6AsWLLDkvzp37hwjRozA398ff39/S4b48lDc+xoREcGLL77I6tWrLRnz16xZQ0hICIGBgYwZM8ZSOiosLIxu3brh7+9PcHAwSUlJRWxNTU3l4YcfpnPnznTs2NFSuSA9PZ2xY8daPm/5M/OXRO3a4OgIqalw6pTBc889R5MmTSzFtYuzc968ecTFxREaGkpoaGiJ/aryfoYPH16j/xhoNBpNsYhIqQ1YD6wr3Mo6rjJbUFCQFCY2NrbItjI5dEjk++/VayVQu3btIttcXFzk7Nmzsn79ehk6dKiIiCQlJUl2draIiPzxxx8ycuRIERF5++23ZcqUKSIism/fPrG2tpawsDAREQFk5cqVIiLywgsvyBtvvCEiIsOGDZMFCxaIiMiXX34pd999t4iI+Pj4yJkzZ0RE5NKlSyIi8tlnn1mOy8jIkKCgIDlx4oQsX75c+vfvLzk5ORIbGyvOzs6ydOnSIvfy0EMPWWwQEYmJiZE77rhDRERefvlleffdd0VEJDw8XPr372/pZ75+nz59ZM+ePZb+8+bNExERd3d3+fjjj0VE5NlnnxVfX1+5cuWKJCQkiKurq4iIrF+/XmrVqiVRUVGSk5Mj/fv3t9iY/7mHh4eLj4+PpKSkSHJysnh5ecnu3bvl5MmTYm1tLZGRkWIymSQwMFAmTZokubm5smLFCstzK+m9mT9/vjz55JOW6+Rfv/fee2XOnDkiIpKTkyOXL18u8uzy07t37zLf1/znP3/+vPTs2VNSUlJERGT27Nny2muvSWZmpnh4eMjOnTsL2F7Y1pdfflm++eYby3vRtm1bSUlJkXfffVcmTZokIiJ79+4t8HkriQkTJsiHHy6VhQtFVq4Uyc0VmTZtmsyePbtEO0XUe3z+/PkavZ877rhDLly4UOSerum7Q6PRaCoAEC7F6JnyZKT/W75le2AUUK5J5IZhDAbeRxXI/kJEigTFGIbRB5gL2AIXRKR3ec5dYQ4fhokTVfIhOztYsAA8PSv9MlJMstmkpCQmTJjAsWPHMAzDUvh4y5YtTJs2DVAZtPOXnLGzs7N4yoKCgvjjjz8A2L59Oz/88AOghlBefPFFQBW9njhxIvfeey8jR44ElHchMjLSEq+VlJTEsWPH2LRpE+PGjcPa2pqmTZvSt2/xxQXi4+NxdXW1rC9evJh7770XUHUhH3nkEZ5//nlat27NiRMnePrppxk6dCgDBw4EVM3B+fPn895777FkyRKLdwmwlKjx9fUlJSWFOnXqUKdOHezt7bl8+TIAwcHBtG7dGoBx48axZcuWImWEtmzZwogRI6h9tVrzyJEj2bx5M8OHD8fDwwNfX18AvL296devH4Zh4OvrS3R0dKnvTWmsW7eO//3vf4CK63N2di7zGDMlva/52bFjBwcPHqR79+4AZGVlERISwpEjR3Bzc7PUlCypEPiaNWtYuXKlpZZjRkYGMTExbNq0yRJn6OfnV+4SR66uYG8PyckQE5P3GS/Jzhvlfho1akRcXBwNGjQo131qNBpNVVOm6BKRwvFbWw3D2FjWcYZhWAMfAQOAM0CYYRgrReRgvj4uwMfAYBGJMQyjUUWMrxD79inB1ayZqnGyb1+li64TJ05gbW1No0aNOHTokGX7q6++SmhoKD/++CPR0dH06dMHKF6gmbG1tcUwDED9sOeUkCzJ3OfTTz/lr7/+4pdffiEgIICIiAhEhA8++IBBgwYVOGb16tWW40rDwcGBjIwMy/qiRYs4d+4cCxcuBFRm72PHjtG2bVv27t3L77//zkcffcT333/PV199xahRo3jttdfo27cvQUFBBX78al0t6mdlZWVZNq+b77WwjcXZXNozLHze/Nc0X6Ok96aqKM/7KiIMGDCgyPBYZGRkud43EWH58uW0b9++yL7yHF8YKyvw8oKdO+HAAVXDs1+/fiXaWZw9NXE/GRkZlVa0XKPRaCqDMlNGGIZRP19raBjGIKBJOc4dDBwXkRMikgUsBu4u1Od+4AcRiQEQkeKDiyoDX1/l4YqLA1tbtV6JnD9/nscff5ynnnqqyA9BUlISzZo1A2DBggWW7T169OD7778HVG3Dffv2lXmdbt26sXjxYgAWLlxIjx49AIiKiqJLly68/vrrNGzYkNOnTzNo0CA++eQTi/fm6NGjpKam0qtXLxYvXozJZCI+Pp7169cXe60OHTpw/GqSpiNHjpCamkpsbCzR0dFER0fz8ssvs3jxYi5cuEBubi6jRo3ijTfeYPfu3QDY29szaNAgpk6dyqRJk8r7KC3s3LmTkydPkpuby5IlSyz3amtra7mnXr16sWLFCtLS0khNTeXHH3+sUCB6Se9NnTp1SE5OLvaYfv368cknnwAqnu3KlSuW7eWZ2VcWXbt2ZevWrZZnn5aWxtGjR/H09CQuLo6wsDAAkpOTycnJKWLroEGD+OCDDyyCdM+ePYB6VmbBvH//fiIjIy3HPPTQQwU8kYXx8AAHB2Hx4nmcPh3P4MGDS7QTCj6/mrgfEeHs2bO0atWqnE9do9Foqp7yJEfdRd5Mxu2oJKmPlOO4ZsDpfOtnrm7LTzugnmEYGwzD2GUYxkPlOO+14emphhSnT6+0oUVzQLe3tzf9+/dn4MCBzJw5s0i/F198kZdffpnu3btjypfw6IknnuD8+fP4+fnxn//8Bz8/vzKHqubNm8f8+fPx8/Pjm2++4f333wfghRdewNfXFx8fH3r16oW/vz+TJ0/Gy8uLwMBAfHx8eOyxx8jJybEUrfb19WXq1Kn07l38iO7QoUPZsGEDoLxcI0aMKLB/1KhRLFq0iNjYWPr06UNAQAATJ07k3//+t6XP+PHjMQzDMuRYEUJCQpg+fTo+Pj54eHhYrj9lyhT8/PwYP348gYGBTJw4keDgYLp06cLkyZPp2LFjua9R0nsTGhrKwYMHLcHc+Xn//fdZv349vr6+BAUFceDAAXJzczl+/Dj169ev8H0WxtXVlQULFjBu3Dj8/Pzo2rUrhw8fxs7OjiVLlvD000/j7+/PgAEDyMjIKGLrq6++SnZ2Nn5+fvj4+PDqq68CMHXqVFJSUvDz8+Ott94iODjYcs3IyEjc3NyKteeFF14gMNCf555rx4kTYbzxxnpsbe1KtBPUezRkyBBCQ0Nr5H527dpF165dsbEpTwSFRqPRVA9lFry+5hMbxhhgkIhMvrr+IBAsIk/n6/Mh0AnoBzigRN1QETma/1y3asFrk8lEdnY29vb2REVF0a9fP44ePYrdDVRhuEePHqxatQoXF5drOv6dd94hKSmJN954o0LHbdiwgXfeeYdVq1Zd03Wrm/379/PVV1/x3nvv1bQpFebKlSs88sgjLF26tNR+OTmwciVkZEBoKJSg0W4Ipk2bxvDhw+nXr1+RfbfCd4dGo7mxKangdZn/BhqGYQ88AfQABNgCfCIiGaUeqDxbLfKtNwfiiulzQURSgVTDMDYB/sBRbgPS0tIIDQ0lOzsbEeGTTz65oQQXwLvvvktMTMw1ia4RI0YQFRXFunXrKt+wGwwfH5+bUnCBCmAvS3AB2NgoB3FEhIrtupFFl4+PT7GCS6PRaGqSMj1dhmF8DyQD317dNA6oJyJjyjjOBiWe+gGxQBhwv4gcyNenA/AhMAiwA3YCY0Vkf/5z3aqeLo3mZiM7G376Sc1J6d8fGlXd1JcqQ393aDSaquaaPV1AexHxz7e+3jCMvWUdJCI5hmE8BfyOShnxlYgcMAzj8av7PxWRQ4Zh/AZEArmotBL7Sz6rRqOpSWxtoX17Nfn3wIGbU3RpNBpNTVEe0bXHMIyuIrIDwDCMLsDW8pxcRFYDqwtt+7TQ+tvA2+UzV6PR1DTt2qki2PHxcOECNGxY0xZpNBrNzUF5Zi92AbYZhhFtGEY0Kti9t2EY+wzDiCz9UI1Gc6tRq5bydgHs135pjUajKTfl8XQNLruLRqO5nfD0hCNHVNo77e3SaDSa8lGmp0tETgEuwF1Xm4uInDK3KrbvhufHH3/EMAxLfiJQgbrmcjX5C1+vXLmS2bOLVEK6Zp599lk2bdoEwKpVq+jYsSP+/v54eXlZiltXFXPnziUtLa1KrxEdHc13331nWQ8PD7eUfakoEydOtJRDKonMzEz69+9fbG6uitpamXYV18fJyalC18n/OSyJiIgIVq9eXWofM8V5u67lM5HfrlWrVhWb506j0WhuFcqTkX4asBBodLV9axjG06UfdfuwaNEievToYckSD9C0adNif0iHDx/O9OnTK+W6iYmJ7Nixg169epGdnc2UKVP4+eef2bt3L3v27KnycjY1Ibo6derEvHnzqux6e/bsITs7m4iICO67774KHXutoutGoiKiC5S3y8Ymz9t1vZ+JoUOHsnLlyir/XGk0Gk1NUZ6YrkeALiIyQ0RmAF2BR6vWrJuDlJQUtm7dypdffllAdEVHR+Pj41Ok/4IFC3jqqacA5b145pln6NatG61bt7aItNzcXJ544gm8vb0ZNmwYd955Z7ECbtmyZQwerEZ+zeVTzLUNa9WqRfv27UlOTsbDw8NSMufKlSu0atWK7Oxs+vTpw3PPPUevXr3o0KEDYWFhjBw5krZt2/LKK69Y7sPT05MJEybg5+fH6NGjSUtLY968ecTFxREaGkpoaCigxKc5I/5LL71ksdPJyYmXXnqJoKAg+vfvz86dO+nTpw+tW7dm5cqVluv07NmTwMBAAgMD2bZtGwDTp09n8+bNBAQEMGfOnAJekZSUFCZNmoSvry9+fn4sX7683O9bq1atmDlzJoGBgfj6+nL48GESEhJ44IEHiIiIICAggKioKHbt2kXv3r0JCgpi0KBBxMfHA3D8+HH69++Pv78/gYGBREVFFbHVZDLxwgsv0LlzZ/z8/CyeRxHhqaeewsvLi6FDh5KQcH2VrzZs2ECfPn0YPXo0np6ejB8/3lIu57fffsPT05MePXpYiqQDpKam8vDDD9O5c2c6duzITz/9RFZWFjNmzGDJkiUWT19x/UAl9f3b3/5Gp06+vPKKH7///gGvvVb0M7FmzRpCQkIIDAxkzJgxpKSklGqXYRj06dPnpkmIq9FoNBVGREptwD7APt+6PbCvrOMqswUFBUlhYmNji2yrbr755ht5+OGHRUQkJCREdu3aJSIiJ0+eFG9vbxERWb9+vQwdOlRERObPny9PPvmkiIhMmDBBRo8eLSaTSQ4cOCBt2rQREZGlS5fKkCFDxGQySXx8vLi4uMjSpUuLXPuhhx6SlStXWtYfeeQRcXV1lbFjx8q3334rJpNJREQmTpwoP/74o4iIfPbZZ/L888+LiEjv3r3lxRdfFBGRuXPnipubm8TFxUlGRoY0a9ZMLly4ICdPnhRAtmzZIiIikyZNkrfffltERNzd3eX8+fMiot6LFi1aSEJCgmRnZ0toaKjlmoCsXr1aRETuueceGTBggGRlZUlERIT4+/uLiEhqaqqkp6eLiMjRo0fF/H7nf3aF11988UWZNm2aZV9iYmKp79WECRMsz9Hd3V3mzZsnIiIfffSRPPLII0XOn5WVJSEhIZKQkCAiIosXL5ZJkyaJiEhwcLD88MMPIiKSnp4uqampRWz97LPP5I033hARkYyMDAkKCpITJ07I8uXLpX///pKTkyOxsbHi7Oxc7Ptbku1mateubbG5bt26cvr0aTGZTNK1a1fZvHmzpKenS/PmzeXo0aOSm5srY8aMsdj38ssvyzfffCMiIpcuXZK2bdtKSkpKgc9naf0+/vhjGTlypGRnZ0tGhsiXX16UhQtFWrTI+0ycP39eevbsKSkpKSIiMnv2bHnttddKtUtE5Ntvv5Wnnnqq1OdxvdwI3x0ajebWBgiXYvRMeTxd84G/DMOYZRjGa8AO4MsqUYDXw113qZaf119X2/IX8v3tN7Xtww/ztiUmqm0TJlTokosWLWLs2LEAjB07lkWLFlXo+HvuuQcrKyu8vLw4d+4cAFu2bGHMmDFYWVnRpEkTi9egMPHx8bi6ulrWv/jiC/7880+Cg4N55513ePjhhwGYPHky8+fPB2D+/PkFCk8PHz4cAF9fX7y9vXFzc6NWrVq0bt2a06dV2cwWLVrQvXt3AB544AG2bNlSxJawsDD69OmDq6srNjY2jB8/3hJrZmdnZ/HI+fr60rt3b2xtbfH19SU6OhqA7OxsHn30UXx9fRkzZgwHDx4s89mtXbuWJ5980rJer169Mo/Jz8iRIwEICgqy2JGfI0eOsH//fgYMGEBAQABvvvkmZ86cITk5mdjYWEsdSHt7exwdHYscv2bNGv73v/8REBBAly5duHjxIseOHWPTpk2MGzcOa2trmjZtSt++fcu0tXAB9cLbgoODad68OVZWVgQEBBAdHc3hw4fx8PCgbdu2GIbBAw88UMC22bNnExAQQJ8+fcjIyCAmJqbYeyiu39q1a3n88cexsbGhVi0IClL1JrOy8o7dsWMHBw8epHv37gQEBPD1119z6tSpUu0CaNSoEXFxhQtXaDQaTcURES6kXWDv2b2sPraaz3d9zoz1Mzhx6USN2VTm7EURec8wjA2oMkAAk0RkT5VadRNw8eJF1q1bx/79+zEMA5PJhGEYvPXWW+U+R61atSzLcnVIyPxaFg4ODmRkFKzE5Ovri6+vLw8++CAeHh4sWLCA7t27Ex0dzcaNGzGZTAWGPc3Xt7KyKmCLlZUVOTk5QNEf/OIEQGk229raWo7Jf53815gzZw6NGzdm79695ObmYm9vX+b9i0ixtpQXsx3W1tYWOwqf39vbm+3btxfYfuXKlXKdX0T44IMPGDRoUIHtq1evrrDdDRo04NKlS5b1xMREGuabLpj/vct/PyVdR0RYvnw57c2R8Ff566+/ytWv8LM3z2Q0meDiRTWTUUQYMGBAkX9EIiIiSr3/jIwMHBwcStyv0Wg0hck2ZROfEs/ppNOcuXImryWfISOnaMXC3pd607pe6xqwtHwxXWYMVO3Fa/+lq0p+/lm1/MyYobYFB+dtGzxYbbsaWwVA/fpq29dfl/tyy5Yt46GHHuLUqVNER0dz+vRpPDw8ivUEVYQePXqwfPlycnNzOXfuHBs2bCi2X4cOHTh+/Dig4pvy94uIiMDd3d2y/tBDDzFu3LgCXq7yEhMTYxEe5kkDAHXq1CE5ORmALl26sHHjRi5cuIDJZGLRokX07t273NdISkrCzc0NKysrvvnmG0wmU5FrFGbgwIF8mM9baRYlDz30EDvzezavkfbt23P+/HnLvWdnZ3PgwAHq1q1L8+bNWbFiBaBmPKalpRWxddCgQXzyySeWeLqjR4+SmppKr169WLx4MSaTifj4eNavX2855uWXX+bHH38sYkufPn1YsmQJWVddSQsWLCjRA2rG09OTkydPEhUVBVBA/AwaNIgPPvjAIpb37FH/QxV3D8X1GzhwIJ9++qlF3KWmJtK+Pdjb12H3bnV8165d2bp1q+UzmpaWxtGjR0u1y/yciouH1Gg0moycDI5dPMafJ/7k64iveXPTmzz282OM+n4UT65+ktlbZ/Ptvm/ZcGoDxy8dJyMng7q16tKhYQcGtB7ApIBJvNLzFYKaBtXYPZSn4PUMYAywHCW45huGsVRE3qxq425kFi1aVGQm4qhRo/juu+8KBJJXlFGjRvHnn3/i4+NDu3bt6NKlC87OzkX6DR06lM8++4zJkycjIrz11ls89thjODg4ULt2bRYsWGDpO378eF555RXGjRtXYXs6dOjA119/zWOPPUbbtm2ZOnUqAFOmTGHIkCG4ubmxfv16/v3vfxMaGoqIcOedd3L33XeX+xpPPPEEo0aNYunSpYSGhlK7dm0A/Pz8sLGxwd/fn4kTJ9KxY0fLMa+88gpPPvkkPj4+WFtbM3PmTEaOHElkZCRulVCJ2c7OjmXLlvHMM8+QlJRETk4Ozz77LN7e3nzzzTc89thjzJgxA1tbW5YuXVrE1mnTphEdHU1gYCAigqurKytWrGDEiBGsW7cOX19f2rVrV0Cc7tu3zzLkm59hw4axa9cugoKCsLa2pk2bNnz66adF+uXH3t6ezz//nKFDh9KwYUN69OjB/qu5HV599VWeffZZ/Pz8EBFatWrFqlWrCA0NtQwnvvzyyyX2mzx5MkePHsXPzw9bW1seffRRHn30Kfr3n8L//d8QPvrIjS1b1rNgwQLGjRtHZmYmAG+++Sbt2rUr0S7A8lnSaDS3L+nZ6cQkxRCTFMPpK6cty+fTzhfb38DAzcmN5nWb07xuc1rUbWFZrlOrTjVbXzrlKXh9COgoIhlX1x2A3SLSoRrsA26/gtcpKSk4OTlx8eJFgoOD2bp1K02aNCnSr0ePHqxatQoXF5dSz7ds2TJ++uknvvnmmwrZER0dzbBhwwr8KN7IXLlyhUceeYSlS5fWtCnXxKBBg/j9999r2oxrJjJS5exydVXFsCs6+nvu3Dnuv/9+/vzzz6ox8Cq38neHRnMzkZmTaRFVpy6f4lTSqVLFlY2VDc3rXBVWzi1oUbcFLZxb0LROU+ys7arZ+tK5noLX0agZi+aB0VpAVOWZpinMsGHDuHz5MllZWbz66qvFCi6Ad999l5iYmFJF19NPP82vv/5aofxLNyt169a9aQUXcFMLLoAOHeDYMTh/XuXuatasYsfHxMTw7rvvVo1xGo2mxjDlmohPiSf6cjSnLp9Sr0mnOJtyFqGo48csrlo6t8TdxZ2Wzi1pUbcFTZyaYG1lXQN3UHmUx9O1AugM/IGK6RoAbAESAETk2lKEV4DbzdOl0dysHD4Mu3eDszPceWfFvV3Vgf7u0GiqjqSMJE5ePkn05WiiL0dz8tJJTl85TXZudpG+VoYVzeo0w93ZHXcXd9ydlcC6JcTVdXi6frzazGyoLKM0Gs2tRdu2aiZjUhKcPAmta2aCkEajqWJycnOIvRLLycsnOXnpJCcunSA6KZrLGZeL7e/q6Eorl1a4O7urVxd3mtVphq21bfUaXsOUJ2VE+af0aTSa2xpra/Dzg+3bYd8+cHdX2zQazc1LWnYa0ZejOXHphKXFJMUU671ysHGglUsrPFw8aOXSilYurWjp3JLadrVrwPIbj/J4ujQajabctGoFhw7B5csqxsvTs6Yt0mg05eVyxmWiEqMs4irqUhTxKfHF9m1Suwke9TzwcPGwvDaq3ei6cije6mjRpdFoKhXDAH9/2LgRDhxQQ4x2N9bEIo3mtkdESExP5HjicaIuRRGVGEXUpSgupl8s0tfGygZ3Z3da12ttaa1cWuFoW7Qah6Z0SkyOahjGN1dfp1WfOTcX1tbWBAQE4OPjw1133cXly5dr1J7w8HCeeeb65zVMnDix2CLbAM8++6ylxM+qVavo2LEj/v7+eHl5WYo6VxVz584lLS2tSq8RHR3Nd999Z1m/nmda2nM0k5mZSf/+/S1Fpq/H1sq0a9asWTRr1oyAgADatm3LyJEjy1WeacGCBVcD1VXqiMxMFVxfHirjfsaOHcuxY8cqfA6N5lZGRLiYdpG/zvzFwsiFvLbhNR788UEm/jSRNze/yaL9i9gZt5OL6RdxsHHA29Wbu9rdxbNdnmXe4HksHbOUuYPn8kyXZxjWbhherl5acF0jpXm6ggzDcAceNgzjfxTKRC8iiVVq2U2Ag4MDERERAEyYMIGPPvqIf/zjHzVmT6dOnejUqchkiUojMTGRHTt2MHfuXLKzs5kyZQo7d+6kefPmZGZmFlvDsDKZO3cuDzzwQLG1DisL8w///fffD1T9M92zZw/Z2dmWz1FFKGxrZfPcc8/xt7/9DYAlS5bQt29f9u3bV6DmZ2EWLFiAj48PTZs2JSAA/vhDia62baGs6j6VcT9Tp07lrbfe4r///e81n0OjudlJykjiWOIxjice5+jFoxxPPM6ljEtF+jnZOdGmXhva1GvDHfXvoE39Nrg5uenhwSqktDJAnwK/AZ7ArkItvJTjbktCQkKIjY0FICoqisGDBxMUFETPnj05fPVf/XPnzjFixAj8/f3x9/dn27ZtALz33nv4+Pjg4+PD3LlzLed844038PT0ZMCAAYwbN4533nkHUGVhXnrpJYKDg2nXrh2bN28GYMOGDQwbNgyAO++8k4CAAAICAnB2dubrr7/GZDLxwgsv0LlzZ/z8/CyeKRHhqaeewsvLi6FDh5KQkFDsPS5btsxSvDo5OZmcnBwaNGgAqPp/7du3Jzk5GQ8PD0v5mytXrtCqVSuys7Pp06cPzz33HL169aJDhw6EhYUxcuRI2rZtyyuvvAKoH15PT08mTJiAn58fo0ePJi0tjXnz5hEXF0doaKilBM6iRYvw9fXFx8enQBUAJycnXnrpJYKCgujfvz87d+6kT58+tG7dmpUrV1qu07NnTwIDAwkMDLS8F9OnT2fz5s0EBAQwZ86cAs80JSWFSZMm4evri5+fH8uXLy/356NVq1bMnDmTwMBAfH19OXz4MAkJCTzwwANEREQQEBBAVFQUu3btonfv3gQFBTFo0CDi41UsxfHjx+nfvz/+/v4EBgYSFRVVxNbrfX9L47777mPgwIEWT1Rxdi5btozw8HDGjx9PQEAATk7ppKbuYubM3nTsWD3307NnT9auXVtsPU2N5lYkIyeD/Qn7+fHQj/xny3945KdHeODHB3ht42ss3LeQsLgwLmVcorZtbfwb+zOqwyhe6v4S/73rv3w38jve7PsmkzpOoqd7T5rWaaoFV1UjIqU24JOy+lR1CwoKksLExsYW2Vbd1K5dW0REcnJyZPTo0fLrr7+KiEjfvn3l6NGjIiKyY8cOCQ0NFRGRe++9V+bMmWM55vLlyxIeHi4+Pj6SkpIiycnJ4uXlJbt375awsDDx9/eXtLQ0uXLlitxxxx3y9ttvi4hI79695fnnnxcRkV9++UX69esnIiLr16+XoUOHFrAxPDxcfH195fLly/LZZ5/JG2+8ISIiGRkZEhQUJCdOnJDly5dL//79JScnR2JjY8XZ2VmWLl1a5H4feughWblypWX9kUceEVdXVxk7dqx8++23YjKZRERk4sSJ8uOPP4qIyGeffWaxtXfv3vLiiy+KiMjcuXPFzc1N4uLiJCMjQ5o1ayYXLlyQkydPCiBbtmwREZFJkyZZ7tvd3V3Onz8vIur9b9GihSQkJEh2draEhoZargnI6tWrRUTknnvukQEDBkhWVpZERESIv7+/iIikpqZKenq6iIgcPXpUzJ+xws8w//qLL74o06ZNs+xLTEws8ozyM2HCBMtzdHd3l3nz5omIyEcffSSPPPJIkfNnZWVJSEiIJCQkiIjI4sWLZdKkSSIiEhwcLD/88IOIiKSnp0tqamoRW6/3/c3PzJkzLc/dzJw5c+Txxx8v1c7evXtLWFiY5X6Cg0Pks88SZOFCkc8/r5776d+/v4SHh5d4bzfCd4dGcy2Yck1y8tJJ+e3Yb/L+jvflqV+ekru+u0uGfTesQBv9/Wh56Y+X5L+7/isbozdK7JVYyc3NrWnzbyuAcClGz5QnZcRUwzD8gZ5XN20SkcgqU4HXyl13lbzvySdVoWuA336Djz4quW/hotmlkJ6eTkBAANHR0QQFBTFgwABSUlLYtm0bY8aMsfQz155bt24d//vf/wAVD+bs7MyWLVsYMWKEpd7gyJEj2bx5M7m5udx99904XB2TuavQ/Y0cORKAoKCgEof1Lly4wIMPPsj333+Ps7Mza9asITIy0hL/kpSUxLFjx9i0aRPjxo3D2tqapk2b0rdv32LPFx8fX2Bo6YsvvmDfvn2sXbuWd955hz/++IMFCxYwefJk3nrrLe655x7mz59fYKjHXFvQ19cXb29vS53E1q1bc/r0aVxcXGjRogXdu3cH4IEHHmDevHmWYS4zYWFh9OnTx2LP+PHj2bRpE/fccw92dnYWj5yvry+1atXC1tYWX19fy7PKzs7mqaeeIiIiAmtra44ePVrsPedn7dq1LF682LJer169Mo/JT/737Icffiiy/8iRI+zfv58BAwYAYDKZcHNzIzk5mdjYWEaMGAGouorFcb3vb1nI1UTKJdlZ3P0cOrSfd98dQEYGWFmZaNu26u+nUaNGxMXFERRUc0VtNZrK4HLGZY5cOMLhC4c5fOGwpYhzfqwNa1q5tKJdg3a0rd+Wtg3a0tK5JVZGaQNZmpqiPAWvnwGmAOZfiYWGYXwuIh9UqWU3AeaYrqSkJIYNG8ZHH33ExIkTcXFxKXeMjvmHrLzbzdSqVQtQ4q24oRSTycTYsWOZMWMGPj4+lnN+8MEHDBo0qEDf1atXl8ul7ODgQEZGwT94X19ffH19efDBB/Hw8GDBggV0796d6OhoNm7ciMlkslw/v91WVlaWZfO6+T4K21KcbaU9H1tbW8sx+a+T/xpz5syhcePG7N27l9zc3BJ/+Atf83pc72W9ZyKCt7c327dvL7D9ypUr5Tr/9b6/ZbFnzx46depUop3F2ePt7c3mzdtZtQrS0iA4GESq9n4yMjIs/6xoNDcLObk5nLx00iKwDl84TEJa0VCAxrUb075Be9o1aEf7hu1pXa/1DVd3UFMy5ZHCk4EuIjJDRGYAXYFHq9asa+Dnn0tuZi8XqOXS+l4Dzs7OzJs3j3feeQcHBwc8PDwsNQBFhL179wLQr18/PvnkE0CJoitXrtCrVy9WrFhBWloaqamp/Pjjj/Ts2ZMePXrw888/k5GRQUpKCr/88kuFbJo+fTp+fn6MHTvWsm3QoEF88sknlniro0ePkpqaSq9evVi8eDEmk4n4+HjWr19f7Dk7dOjA8ePHARXftGHDBsu+iIgI3N3dLesPPfQQ48aNY9KkSRWyG1QNPvMP+qJFi+jRowcAderUITk5GYAuXbqwceNGLly4gMlkYtGiRfTu3bvc10hKSsLNzQ0rKyu++eYbTCZTkWsUZuDAgXz44YeW9UuXLlnudefOnRW+z8K0b9+e8+fPW+49OzubAwcOULduXZo3b86KFSsA5TlNS0srYuu1vL8vv/wyP/6Yv+BE8Sxfvpw1a9Ywbty4Eu2Egs/P3C8sbDuBgZCTk82qVQeoVavq7sfcz9vbu9zPXaOpCa5kXmFn7E6+jvial9e+zH3L7uP5Nc/z+e7P2RSziYS0BOxt7PFr5Me9Xvfyaq9X+XbEt3wx/Ate6P4Cd3vejWdDTy24bjLKk6fLAEz51k0UmsmowZI6YfHixSxcuJCpU6fy5ptvkp2dzdixY/H39+f9999nypQpfPnll1hbW/PJJ58QEhLCxIkTCQ4OBmDy5Ml07NgRUENx/v7+uLu706lTJ5ydncttzzvvvIO3tzcBAQEAvP7660yePJno6GgCAwMREVxdXVmxYgUjRoxg3bp1+Pr60q5duxLFy9ChQ/nss8+YPHkyIsJbb73FY489hoODA7Vr12bBggWWvuPHj+eVV15h3LhxFX6WHTp04Ouvv+axxx6jbdu2TJ06FYApU6YwZMgQ3NzcWL9+Pf/+978JDQ1FRLjzzju5++67y32NJ554glGjRrF06VJCQ0Mtw7t+fn7Y2Njg7+/PxIkTLe8FwCuvvMKTTz6Jj48P1tbWzJw5k5EjRxIZGVns8FpFsbOzY9myZTzzzDMkJSWRk5PDs88+i7e3N9988w2PPfYYM2bMwNbWlqVLlxaxddq0aRV+f/ft22cZ8i3MnDlz+Pbbb0lNTcXHx4d169ZZhnNLsnPixIk8/vjjODg4sH379gL9kpJy6N//Wfbtq7r7OXfuHA4ODpXyfmg0lYWIEJccx8HzBzl04RAHzx8kNjm2SL9mdZrh2dDT0vQw4a1HeQpePw9MIK/+4j3AAhGZW6WW5eN2LXidkpKCk5MTaWlp9OrVi88//5zAwMAatalHjx6sWrUKFxeXUvstW7aMn376iW+++aZC54+OjmbYsGHs37//OqysPq5cucIjjzxi8WzebAwaNIjff/+9Wq51+TL8+qtaHjwYKhgSVy7mzJlD3bp1eeSRR0rsczt8d2hqlpzcHE5cOsHB8wctLSkzqUAfO2s72tVvh2dDT7xcvWjfsD11a9WtIYs1lc01F7wWkfcMw9gA9EB5uCaJyJ7KN1FTmClTpnDw4EEyMjKYMGFCjQsugHfffZeYmJhSRdfTTz/Nr7/+yurVq6vPsBqibt26N63gAqpNcAG4uEC7dqog9q5d0K+fyl5fuddw4cEHH6zck2o0ZZCZk8mRi0c4kHCA/Qn7OXLxCJmmzAJ9XOxd8GrohZerFx1cO9C6XmtsrHRRmNuNMj1dNwK3q6dLo7nVyMqCVasgIwO6dlUlgqob/d2huV7SstM4dP4Q+xP2sz9hP8cvHScnt+DkmGZ1muHl6oW3qzderl40cWqic2DdRlyzp0uj0WgqCzs7CAiAHTtg925wcys7U71GU9OkZqVy8PxB9iXsUyIr8ThCnsPCwKBNvTZ4u3rj3cgbb1dvnO3LH4OruX3Qokuj0VQrHh4QEwNxcbBzJ/TqVfnDjBrN9ZCWncaBhAMliixrw5o76t+BbyNfvBt506FhB2rb1a5BizU3C1p0aTSaasUwVL6u1ashNhaio5UQ02hqiixTFofOHyLyXCR7z+3lWOIxciXXst/asKZdg3b4NvLFt7Evng09sbcpO7efRlOY8iRHHQn8B2iECqQ3ABGRMqdZGIYxGHgfsAa+EJHZJfTrDOwA7hORZeU3X6PR3Iw4OkJgoBpm3LULmjTRw4ya6sOUa+JY4jH2nt3L3nN7OXThUIGYLCvDivYN2uPf2F+LLE2lUh5P11vAXSJyqCInNgzDGvgIGACcAcIMw1gpIgeL6fcfoPqmUVUCFy9epF+/fgCcPXsWa2trXF1diY6OpmnTphw8eLCMM1ScFStW0K5dO7y8vCr93PmZNWsWTk5ORUrvAMydO5f69evz0EMPAZCTk0OTJk149NFH+fe//31N17t8+TLfffcdTzzxRJl9nZycSElJKdd5c3NzefbZZ1m3bh2GYWBvb8/333+PRxW5VaKjo9m2bRv3339/lZzfTOHPwYwZM+jVqxf9+/cvtv++fft49913C+RRuxHQw4ya6kJEOHPlDBFnI4g4G8H+8/tJy06z7DfHZPk19sO/sT9erl442Or/AjSVT3lE17mKCq6rBAPHReQEgGEYi4G7gcJq5GlgOdD5Gq5RYzRo0MBS6ie/SDHnmSqLnJwcbGwqNrq7YsUKhg0bVuWiqyRycnL46quv2L17t2XbmjVraN++Pd9//z3/+te/rml2zuXLl/n444/LJboqwpIlS4iLiyMyMhIrKyvOnDljSYJaFURHR/Pdd99Vi+jK/zl4/fXXS+3v6+vLmTNniImJoWXLllVqW0XQw4yaqiQpI4k9Z/dYhNbF9IsF9jer0wz/xv74N/HHt5EvdWrVqSFLNbcT5Ul1G24YxhLDMMYZhjHS3MpxXDPgdL71M1e3WTAMoxkwAvi03BbfBJhMJh599FG8vb0ZOHAg6enpAPTp04e///3v9O7dm/fff59du3bRu3dvgoKCGDRoEPHx8QD897//pXPnzvj7+zNq1CjS0tLYtm0bK1eu5IUXXiAgIICoqCiioqIYPHgwQUFB9OzZk8OHDwMwceJEnnnmGbp160br1q0tBYMB3n77bTp37oyfnx8zZ860bP/nP/9J+/bt6d+/P0eOHCn2vtatW0dgYGABsbho0SKmTZtGy5Yt2bFjh2X7b7/9RmBgIP7+/haP4KxZs3jnnXcsfXx8fIiOjmb69OlERUUREBDACy+8UKqdZh588EF++ukny/r48eNZuXJlgT7x8fGWUj8AzZs3p169enz55Zc899xzln7//e9/ef7554mOjsbT05PJkyfj4+PD+PHjWbt2Ld27d6dt27aWUj+zZs3iwQcfpG/fvrRt29ZS0Hv69Ols3ryZgIAA5syZQ0ZGBpMmTcLX15eOHTtaytUsWLCAe+65h7vuugsPDw8+/PBD3nvvPTp27EjXrl1JTEys0Odg4sSJlvc4LCyMbt264e/vT3BwsKWszl133VWgWPeNgnmYEdQw49U/FY2mwmSbsok8F8nXEV8z7ddpPPDjA7y7/V3+PPknF9Mv4mLvQh/3Pjzb5Vnm3z2fT4d9ytTOU+nWopsWXJrqQ0RKbcD8YtpX5ThuDCqOy7z+IPBBoT5Lga5XlxcAo4s7V1BQkBQmNja2yLaaYubMmfL222+LiMjJkyfF2tpa9uzZIyIiY8aMkW+++UZERHr37i1Tp04VEZGsrCwJCQmRhIQEERFZvHixTJo0SURELly4YDn3P/7xD5k3b56IiEyYMEGWLl1q2de3b185evSoiIjs2LFDQkNDLf1Gjx4tJpNJDhw4IG3atBERkd9//10effRRyc3NFZPJJEOHDpWNGzdKeHi4+Pj4SGpqqiQlJUmbNm0s95OfGTNmWGwREUlLSxM3NzdJTU2Vzz77TJ5++mkREUlISJDmzZvLiRMnRETk4sWLRZ6TiIi3t7ecPHlSTp48Kd7e3pbtJdkpIlK7dm0REdmwYYPcfffdIiJy+fJladWqlWRnZxew9/Tp0+Lu7i7+/v7y/PPPy+7du0VEJCUlRVq3bi1ZWVkiIhISEiKRkZGW9y4yMlJMJpMEBgbKpEmTJDc3V1asWGG53syZM8XPz0/S0tLk/Pnz0rx5c4mNjZX169fL0KFDLdd/5513ZOLEiSIicujQIWnRooWkp6fL/PnzpU2bNnLlyhVJSEiQunXryieffCIiIs8++6zMmTOnQp8D83pmZqZ4eHjIzp07RUQkKSnJ8ky2bNkiw4YNK/Ke3gjk5oqsXy+ycKHI2rVqvSq5kb47NNdObm6uxF6JlZWHV8qs9bNk1JJRMuy7YZY2cslIeXXdq/LDwR/k5KWTklvVHyyNJh9AuBSjZ8qTkb7iFYsVZ4AW+dabA3GF+nQCFl8dkmoI3GkYRo6IrKjw1e66q2L927SBuXOLHn+NRa/z4+HhYal5GBQURHR0tGXffffdB8CRI0fYv38/AwYMAJR3zFwvbv/+/bzyyitcvnyZlJQUBg0aVOQaKSkpbNu2jTFjxli2ZWbmZUC+5557sLKywsvLi3PnzgFqKHDNmjWWeoIpKSkcO3aM5ORkRowYgaOjI0CJtfji4+Pp0KGDZX3VqlWEhobi6OjIqFGjeOONN5gzZw47duygV69eltip+vXrl//hlWJnr169LH169+7Nk08+SUJCAj/88AOjRo0qMlzbvHlzjhw5wrp161i3bh39+vVj6dKl9OvXj759+7Jq1So6dOhAdnY2vr6+REdH4+Hhga+vLwDe3t7069cPwzAs+83cfffdODg44ODgQGhoKDt37iySpX/Lli08/fTTAHh6euLu7s7Ro0cBCA0NpU6dOtSpUwdnZ2fuuvr58/X1JTIyEijf5yA/R44cwc3Njc6d1Uh93bp5c10aNWpEXFzhP78bA8OALl1UiaBz52DfPvDzq2mrNDciGTkZRJ6LZFfcLnbH7+Zs6tkC+1s5t6KjW0cC3QLxcvXSxaA1Nxzlmb3YHPgA6A4IsAWYJiJnyjg0DGhrGIYHEAuMBQoEu4iIJYLDMIwFwKprElw3GLVq1bIsW1tbW4YXAUtMkYjg7e3N9u3bixw/ceJEVqxYgb+/PwsWLGDDhg1F+uTm5uLi4mKJKyvNBrladUBEePnll3nssccK9J07d265YrEcHBzIyMiwrC9atIitW7fSqlUrQE0uWL9+PSJS7PlsbGzIzc2bhp3/XPkpyc7CPPjggyxcuJDFixfz1VdfFdunVq1aDBkyhCFDhtC4cWNWrFhBv379mDx5Mv/617/w9PRk0qRJBfqbsbKysqxbWVmRk5M3u6nw/RV3v+bnXpJdZV2nPJ+Dwtcr6X3MyMjA4QaeHujgAN27w7p1sH8/NGwIOmm8Rq4Wig6PCyc8Lpz95/cXmGVYx64OHZsokdXRrSP1HSr2D55GU92UJ5J7PvAdargQ4IGr2waUdpCI5BiG8RRqVqI1akjygGEYj1/dX7lxXNfroaoED1dFaN++PefPn2f79u2EhISQnZ3N0aNH8fb2Jjk5GTc3N7Kzs1m4cCHNmqlQuDp16lhidOrWrYuHhwdLly5lzJgxiAiRkZH4+/uXeM1Bgwbx6quvMn78eJycnIiNjcXW1pZevXoxceJEpk+fTk5ODj///HOxgqdDhw4cP34cUIWet2zZwunTpy2CYf78+SxatIjZs2fz5JNPcvLkSTw8PEhMTKR+/fq0atWKVatWAbB7925OnjxZ5L5Ks7NRo0YF7Jk4cSLBwcE0adIEb2/vIvbu3r2bJk2a0LRpU3Jzc4mMjMTvqgulS5cunD59mt27d1s8SxXhp59+4uWXXyY1NZUNGzYwe/Zs4uPjC9xHr169WLhwIX379uXo0aPExMTQvn37AhMRSqM8n4P8eHp6EhcXR1hYGJ07dyY5ORkHBwdsbGw4evQoPj4+Fb7P6qRxY+Xh2rsXtm9XRbGrcN6D5gYl25TNgfMH2Bm7k/C4cOJT4i37DAza1W9HUNMggtyCaNugLVZGeUKTNZobg/KILlcRmZ9vfYFhGM+W5+QishpYXWhbsWJLRCaW55y3CnZ2dixbtoxnnnmGpKQkcnJyePbZZ/H29uaNN96gS5cuuLu74+vra/mBHTt2LI8++ijz5s1j2bJlLFy4kKlTp/Lmm2+SnZ3N2LFjSxVdAwcO5NChQ4SEhAAq/cK3335LYGAg9913HwEBAbi7u9OzZ89ijx8yZIilmPAPP/xA3759C3hs7r77bl588UU+/vhjPv/8c0aOHElubi6NGjXijz/+YNSoUfzvf/8jICCAzp07065dO0DNBO3evTs+Pj4MGTKEt99+u1g7C4uuxo0b06FDB+65555i7U1ISODRRx+1DLsGBwfz1FNPWfbfe++9REREUK9evRKfWUkEBwczdOhQYmJiePXVV2natCmurq7Y2Njg7+/PxIkTeeKJJ3j88cfx9fXFxsaGBQsWFHheZVHez4EZOzs7lixZwtNPP016ejoODg6sXbsWJycn1q9fz9ChQyt8n9WNlxecP6/SSGzZAv37g7V1TVulqWoupV8iPC6csLgw9pzdQ0ZOnhfc7M3q1LQTgW6BuryO5qamzILXhmGsRQW5L7q6aRwwSUT6Va1peeiC1zcOI0aM4K233qJt27Y1bQppaWn4+vqye/dunJ0r/kU8bNgwnnvuOcvsyvJSWh6zG5HMzEx69+7Nli1bKpympCbIzITffoPUVGjXDjoVKRl7fejvjppHRDiVdIqdsTv568xfHE08WmB/K+dWBDcLplPTTrRv2F57szQ3HddT8Pph4ENgDiqma9vVbZrbEPMwWk2LrrVr1/Lwww/z/PPPV1hwXb58meDg4ALpLG5lYmJimD179k0huABq1YIePeCPP+DoUWjQQOfvuhXIyc3hQMIB/or9i7/O/EVCWoJln521Hf6N/enctDOdm3WmoWPDGrRUo6k6yvR03QhoT5dGc/tx7BiEhYGVFYSGqpivykB/d1Qf6dnp7IrfxY4zOwiPCyc1O9Wyz8Xehc5NO9OlWRf8m/jrMjuaW4oKe7oMw3hRRN4yDOMDoIgyE5FnKtlGjUajsXDHHXDlChw5Aps2wYABUCgrh+YGJCkjiZ2xO9l2ehsR5yIKzDZsUbcFXZp1oWvzrrRr0O6aKlhoNDczpY03mEv/hJfSR6PRaKoEw1DZ6tPTVY3G9eth4EA9o/FG5ELaBbad3sb209s5cP4AcvX/dAODDg07ENI8hC7Nu9C0jvYwam5vShRdImLOoZAmIkvz7zMMY0wxh2g0Gk2lYhgQEgIZGZCQABs2qBmNFZgEqqki4pPj2XZ6G9tObysQCG9jZYN/Y3+6Nu9K1+ZdcbF3qTkjNZobjPJE1r6MKtdT1jaNRqOpdKytoVcvWLsWLl9WQ419++pUEjVBXHIcW2K2sDVmKycun7Bsr2VdiyC3ILq16Eanpp2obafdkRpNcZQW0zUEuBNoZhjGvHy76gI5xR91e+Hk5ERKSoplfcGCBYSHh/Phhx9W+FwbNmzgnXfesSQPLQ99+vThnXfeoVNlz6nXaG4w7OygTx9Ys0bl8dqyRc1w1MKr6olPjmdzzOYiQsvBxoHgZsF0a9GNILcgatlo96NGUxalebriUPFcw4Fd+bYnA89VpVEajUZTGEdHNYtx7VqIjYWNG5UH7IbPhJGbC8nJkJSkxklzcvJarVqQv5rC6dNga6tutk4dNb5aAySkJrD51GY2x2wm6lKUZbujrSNdmnWhR8sedGzSEVtr2xqxT6O5WSktpmsvsNcwjB+BVBExARiGYQ3of2nK4Pz58zz++OPExMQAqr5h9+7d2blzJ88++6wlY/j8+fNp3759gWNTU1N5+umn2bdvHzk5OcyaNYu7776b9PR0Jk2axMGDB+nQoUOBmo4aze2AszP066eC6s+eVbUa+/RRnrAaQ0SNe54+DWfOqDZ6NJgLvX/4oUo6VhytWsEHH+StT5sG2dlq2cpK3bCLi2qDB0O3bmpfWprqV7dupQmzxPREtsRsYdOpTRy5eMSy3cHGga7Nu2qhpdFUAuX5H3EN0B8wj6M5XN3WraqMullIT08nICDAsp6YmMjw4cMBmDZtGs899xw9evQgJiaGQYMGcejQITw9Pdm0aRM2NjasXbuWv//97yxfvrzAef/5z3/St29fvvrqK0siz/79+/PZZ5/h6OhIZGQkkZGRBAYGVuftajQ3BC4uKpj+zz/hwgX1GhoK9tWZ5ik5WY11HjgAhw+r9fx06pQnulxclNfK2VlV9raxUc3aGpo0yTtGBNzcVEr+1FRISYFLl1QD5dYzs2WLEmv29tCyJbi7F2zlLG2VmpXKttPb2HhqI5HnIi2zDmtZ1yK4WTC93HsR6BaInXVNqlqN5tahPKLLXkQsgUsikmIYhmMV2lRh7lp0V5Wc9+dxpRfBdnBwICIiwrJujukClTH94MGDln1XrlwhOTmZpKQkJkyYwLFjxzAMg2zzf7X5WLNmDStXruSdd94BICMjg5iYGDZt2sQzz6j0aH5+fpbizRrN7UadOipv17p1SpP8+acKrndwqKILJiQo11r+v7kFC/KWa9eG5s2hRQvV8idfffBBeOihsq9hGPDRR3nrOTnKg2ZurVvn7cvMVNdMTVVp+4/mK6NjZwfff58X8HbkiBJ3Vys3ZJmyCI8LZ0P0BsLiwix5tGysbOjk1ole7r3o3KyzTlaq0VQB5RFdqYZhBIrIbgDDMIIAPa5VBrm5uWzfvh2HQr8CTz/9NKGhofz4449ER0fTp0+fIseKCMuXLy8y7AjoZIIazVVq11Yer/XrlSZZswZ69sxzMF03sbGwbZtqx49Dw4bw1VdKHNWpA2PHKnHl7Q2uriUP813r36yNjbpmw2JK4tx1l2pJSSqJ2alTec3RMU9wmUzwj38gmRkcaGHPevdcttZOJNXRBuwdMAwDv0Z+9GnVh5AWITjZOV2brRqNplyUR3Q9Cyw1DCPu6robcF+VWXQNlOWRqgkGDhzIhx9+yAsvvABAREQEAQEBJCUl0axZM0B5xopj0KBBfPDBB3zwwQcYhsGePXvo2LEjvXr1YuHChYSGhrJ//34iIyOr63Y0mhsSBwcV47Vxoxpq/OMP6NJFhUpdE1lZsHkz/Pqr8hCZsbcHT08VS2XOzjp+/PWaf/04O4Ovr2rFEBt/hHXtMlifup/zVulwVm1vk1mb0Jzm9Jwwg/rd+1ejwRrN7U2ZoktEwgzD8ATaAwZwWESKjolpCjBv3jyefPJJ/Pz8yMnJoVevXnz66ae8+OKLTJgwgffee4++ffsWe+yrr77Ks88+i5+fHyJCq1atWLVqFVOnTmXSpEn4+fkREBBAcHBwNd+VRnPjUauWEl7h4RAVpRxTiYkQEKBi0SvEgQMwd65arl1bKbhu3aBjxxqO1i8/yZnJbI7ZzLqT61RAvK8B4oOryZ5QU0v6nK1Fi8PxcPEitMznTf/+e1Xw0t9f3W/TpjU2e1KjuVUpV8FrwzB8AC/AMsgvIv+rQrsKoAteazSashBRo4C7dqksDU2aQPfuRbPXF/juiIpSgfBDh+adZPZsFQjfq9dNk/o+V3LZE7+HtSfWsiN2hyVOy97Gnh4tetDXoy8+jXzywhNEVMKz/MOizz+vRJeZhg2V+AoIUELsakyYRqMpm5IKXpcpugzDmAn0QYmu1cAQYIuIjK4CO4tFiy6NRlNezp9XI4QZGSq8qWvXgpME4+LiaJqeDosWwV9/KXfYp5+qmYM3GbFXYvnz5J+sO7mOi+kXAVXvMKBJAH09+hLSPKT8SUvPnoV9+yAiQrUrV/L2DRwITz+tlnNylFDTmWk1mhIpSXSVJ6ZrNOAP7BGRSYZhNAa+qGwDNRqNpjJwdVUprbZsUXFe69ZB27bKaWOTfAkiI/NmCdrZKS/XTVRFOzMnk62nt7Imag0Hzh+wbHdzcqN/6/709ehLQ8digu/LokkT1QYMUJ6wkyeV+NqzRw2zmtm6VYnUgADo3BmCgrQXTKMpJ+URXekikmsYRo5hGHWBBKB1WQdpNBpNTeHoqGY2HjqknDfHjwm1IsNpb30crHPyxNbIkSqP1g2OiBB1KYo1UWvYeGojadlpgBo+7N6iOwNaD8DL1avyZjcbhkpR0bq1ekb5OX5c5RDbskU1w1CqtnNn1dq0qRwbNJpbkPKIrnDDMFyA/6LKAaUAO6vSKI1Go7lerKxUNodmzWD7doPcxEzOZ0BCixY4z/uS2s1catrEMknPTmfjqY38euzXAnUP2zdoz8A2A+nZsicOtlWVnKwEHnkE7rxTzVwID1eq1pwrLDwcruYXRETNBr1J4uI0muqg1JguQ/3b1FxETl9dbwXUFZFqzVWgY7o0Gk2FSUhQua7q1yc3Fw7vTuP4oWySSOXXX5syfrwahrwRQ5OOJx7nt+O/sfHURjJyMgCoY1eHvh59GdB6AO4u7jVsYT4yMmDvXiW4WreGIUPU9pMn4W9/Uwllu3RRXrAGDWrWVo2mmrimmC4REcMwVgBBV9ejq8Q6jUajqSxyclQs0tGj6kd+4ECsrAy8Ojni1ga2bEklOVmFJf3yCzz8sApLqunsCJk5mWw6tYlfj//KscS8WYQ+rj4MvmMwIS1CbsxyPPb2SlTlj/sCNRMyKyvPIwZq6LFLFwgOVgKtph+6RlPNlGf24kfAAhEJqx6TiqI9XRqNplwkJMCOHSrmyMoKvLzAx6dAwq7Y2DhiYpoyfz7Ex6ttAQFw//3QoUP1mxx7JZZfj//K2hNrSc1OBcDJzol+Hv0Y1GYQLZxbVL9RlcWlS0pw/fWXEsKZmWp77drw7bfKEwkqx0eFk6ppNDcu1zN7MRR43DCMaCAVlSBVROS2L/xnbW2Nb75M0GPHjmX69Okl9v/Xv/7F3//+d8t6t27d2LZtW4WvGxERQVxcHHfeeWex+/fs2cNHH33EF198wYIFC3jhhRdo3rw5KSkptG7dmpkzZ9KtW+XUK2/VqhXh4eHUrVuX/v37s27dOmxsyvOx0mgqkZwcNcRlziLv4gIhIcUWfjYMtatTJ1i1CpYsycuS4OMDY8aomY5V6YTJlVzCYsNYdXQVEeciLNvbN2jPkDuG0NO9543p1aoo9eqp2ZADBiiv1969sHOnivMyf09kZKg4MV9f5QXr1EmVWdJobkFK9HQZhtFSRGIMwyg2eEBETlWpZfm4UT1dTk5OpKSklN3xGvuXhLmw9ocffljs/jFjxvDKK6/g7+9fpO/69esZN24c69evp0Ml/FtvFl0NGzbktdde44477mD8jVAeRXP7IKLK9ly+XKJ3Kz+FvzuuXIGfflJDjanK0USbNkp8de1auTFfyZnJ/HHiD345+gsJaQkA2Fnb0du9N3e2vZM76t9ReRe7WdizB2bMyFs3DPUemochr5ZN02huJkrydJXmz10BFnH1noicyt+qyM6bnqSkJNq3b8+Rq/9xjxs3jv/+979Mnz6d9PR0AgICLKLEyUkVl92wYQN9+vRh9OjReHp6Mn78eMxiOCwsjG7duuHv709wcDBJSUnMmDGDJUuWEBAQwJIlSwpcPzk5mcjISPz9/Yu1LzQ0lClTpvD5558DEBUVxeDBgwkKCqJnz54cPnwYgJ9//pkuXbrQsWNH+vfvz7lz5wC4ePEiAwcOpGPHjjz22GPkF+333HMPCxcurKxHqdGUD8OAdu2Ud2vgQBW4XYGhqrp14cEHVS3rCRNUyqmoKJWY/pFHYOFClXD1eoi+HM28v+Yx8aeJzI+YT0JaAm5ObkzuOJmv7/maZ7o8c3sKLlBuxS+/hClT1DivtbUqx/TVV/D44yrZmkZzi1DaOFB+5/oNnZfrrrvuqpLz/vxz6YW0zSLKzMsvv8x9993Hhx9+yMSJE5k2bRqXLl3i0UcfBeDDDz8kIiKi2HPt2bOHAwcO0LRpU7p3787WrVsJDg7mvvvuY8mSJXTu3JkrV67g6OjI66+/XqKnKzw8HB8fn1LtDgwM5LPPPgNgypQpfPrpp7Rt25a//vqLJ554gnXr1tGjRw927NiBYRh88cUXvPXWW7z77ru89tpr9OjRgxkzZvDLL79YxBuAj48PYWE1FvqnuZ3IzFSercaN1XqbNiow+zrighwdYfRoGD4c1q6FlSshNhYWL1ZDkEFBarZjUFDeyFhpiAhhcWH8dPgnIhPyJnwHuQUxrN0wgtyCKi+v1s1Oo0Zw112qpaYq79dff6n6kA3zJXp98UVVOSA4WIk1R8eas1mjuQZK++qQEpY1V3FwcChWRA0YMIClS5fy5JNPsnfv3nKdKzg4mObNmwMQEBBAdHQ0zs7OuLm50blzZwDq1q1b5nni4+NxdXUttY/ZO5WSksK2bdsYM2aMZV/m1UDXM2fOcN999xEfH09WVhYeHh4AbNq0iR9++AGAoUOHUi9fzIy1tTV2dnYkJydTR8dkaKqK8+dVVevMTKWC6tZV3q5KEjB2dioN1ZAhsH8//Pabupx5Ep6Tk4oJ69FDOdUKC7D07HTWnljLz0d/Jj5FRerb29gzoPUAhrYdSrO6erisVGrXVg+3R4+C2+PjVbbbQ4dUmQEbGzWMHBysmlmAazQ3MKWJLn/DMK6gPF4OV5chL5C+bAVQTZTlkapucnNzOXToEA4ODiQmJlrEVGnUypdA0NrampycHESkwv8JOzg4kJGRUWqfPXv20KFDB3Jzc3FxcSlWOD799NM8//zzDB8+nA0bNjBr1izLvtJsyszMxN7evsT9Gs01I6LSQOzerZYbNKjSJFuGoWK7fX1V3NeffyoPWEwM/PGHanXqKAHWtSu4tbnAH6d+5veo3y2zEBs5NuKu9ncxoPUAatvdPKWGbkiaNIFPPlEesJ07lfgyz4D4/HP497+VCNNobmBKFF0icgOmDLw5mDNnDh06dOBf//oXDz/8MNu3b8fW1hZbW1uys7OxtbUt13k8PT2Ji4sjLCyMzp07k5ycjIODA3Xq1CE5ObnYYzp06MC7775b4jk3btzI559/zvr166lbty4eHh4sXbqUMWPGICKWeLCkpCSaXQ1g/frrry3H9+rVi4ULF/LKK6/w66+/cunSJcu+ixcv4urqWu7702jKjcmkfmhPnlTrnp4q/qea0gzUrQsjRqgWE6Oq32zeDGfOwI8bTvDJ3h+5VHczdeqYcHaBTu5ePNDpbkJadMXK0KkQKgXDgObNVRs1SinhXbvU5+LgQRXXZ+b99yE7WyVkDQzUsyE1NwxVOrffMIzBwPuANfCFiMwutH888NLV1RRgqoiUbzzuBqBwTNfgwYN5+OGH+eKLL9i5cyd16tShV69evPnmm7z22mtMmTIFPz8/AgMDyxVwbmdnx5IlS3j66adJT0/HwcGBtWvXEhoayuzZswkICLDEkZnx9PQkKSmpwBDfkiVL2LJlC2lpaXh4eLB8+XLLzMWFCxcydepU3nzzTbKzsxk7diz+/v7MmjWLMWPG0KxZM7p27crJqz92M2fOZNy4cQQGBtK7d29atmxpufb69etLTGOh0VwzqalK4SQmqiGlrl0h3+euumnZEsaNEzz7RDD/r+VsjdpL5mWQVCus43ridOAezqxrx+c/wTYfVYrI21sdp0O4KpG6dSE0VDWRvIebna1UcUYGbNyotnt6qlQUnTtDq1b6jdDUGGUmR73mExuGNXAUGACcAcKAcSJyMF+fbsAhEblkGMYQYJaIdCl8rhs1ZcSNypw5c6hTpw6TJ0+u1uuOHDmSf//737Rv375ar6u5xbl0CdasAQcH6NXrugtUX893R05uDltjtrL80HJOXlb/iNjb2DOozSD6uA3nzJFG7NqlRkCvXCl4bJ066re/bVu44w7lmHF2vq5b0ZREbCyEhal28KDK42Zm6lQVtKfRVCHXkxz1WgkGjovIiasGLAbuBiyiS0TyZwbdAZQd/KQpk6lTp7J06dJqvWZWVhb33HOPFlyayqdePejdG+rXV1HuNUBmTiZrotaw4vAKS36tevb1GN5+OEPuGGKJ17rDDfr0UY6XM2dUIP6BA+r14sU8HWDG1VVNvGzVCtzd1aub241ZD/Kmolkz1e65B9LSVFLWsDA1HJk/nc5336mC3UFBahjSw0N7wTRVSlV6ukYDg0Vk8tX1B4EuIvJUCf3/Bnia++dHe7o0mtuI3Fz149iokVIilUxFvjtSslL45egvrDy6kiuZynXVrE4zRnUYRZ9WfbC1Ll/8ooiqUHT0qCpJeOwYHD+uRsAKY2sLLVrk6YbmzfOWHRzKfZua4jD/3pmF1XPPqTfCTL16KhVFUJCKGSzHjHGNpjhqwtNV3L8LxSo8wzBCgUeAHsXtL4lrmd2n0WhuYLKyVDzO2bNw6pRy+1Sid6u8/2ReSr/EisMr+PX4r6TnpAPQtn5bRnuNJqR5SIW/dwxDZTRo3Bh69lTbcnOVN+zkSYiOVrcbHa0yYpw4oVphnJ3VOZo0Ua1xY5XGytVVvWpRVgaF37c331Q5wXbvVu3iRZWOYt06GDQInrrqI8jKUpM2dIkzzXVSlZ+gM0D+Sq3NgbjCnQzD8AO+AIaIyMXyntzW1paUlBScnJy08NJobgWuXIFNm9Srvb2K36pkwZWSklLq7NrzqedZfmg5a6LWkJ2bDUBA4wBGe43Gr7FfpX7XWFmp4PqWLdXoqZnUVDh9WoUlmduZMypNVVKSakePFn/O2rWVAKtfP681aKBeXVzyms7qcpX8OcFE1NRUswC7mh8RgK1b4eOPVf6QgAA1RKlnRmiugaocXrRBBdL3A2JRgfT3i8iBfH1aAuuAhwrFdxWguOFFk8lEYmIi2dnZVWG+RqOpThITVWxNTo7KPurvXyXKwNbWlvr162NdKGgqLjmOZQeXse7kOkxiAiCkeQhjvMbQtkHbSrfjWhBRcwrOnlXt3DnVzp9XlXLOn1cT98pDrVpKfDk7qxG0/K1Onbzm5JTXHBxuY43x9dewbFnBbfXqqc9pYKCaQanR5KOk4cUqE11XL3onMBeVMuIrEfmnYRiPA4jIp4ZhfAGMAsy1HHOKM7I40aXRaG4RNm2C995Tubi6dIG//a3aXDGnk06z5MASNp3ahCAYGPRy78UYrzG4u1R+PFlVIqKchBcuKA2bv128qKomJSWp16ysip/fMJT4ql07rzk65r2am4ODavmXzc3eXrVqSq9WuSQmqqHIvXtVS0xU2zt0gLfeUssiyivm66unpt7m1Ijoqiy06NJobmFOnlQ19e68EyZOrBZ3SvTlaJbsX8LW01sRBBsrG0JbhTLGawxuddyq/Po1iYgK4L98WYm0/C0pCZKTISVFvZpbamrxQf/Xip1dngCrVStv2bxeXLOzK/paeNncbG3Vq7V1GR+nnBxVTiorS7kJC7/m5KgppeY0JdHRqhp6y5bK2IiIvOB8ETUG/MUXat3VNW/8uGXLvDqRVlYqb4g5e/6FCyrBq6tr3pBmTg7s2KFuwMYm79XGRt2cednGpuCN56tsoqlZaiKQXqPRaIrHZMrLi+Dhocq75C9sXEWcvHSSxfsXs+2MimawsbJhYOuBjPYajWvt0muW3ioYRp7nya0C+jInR2VfSE1Voiw1Va2bt5mX09NVy7+cnq5Em/k1K0u1wrnMyoUItUxp2JtSsc9JwcGUgkNOMrVMaRyo35Nsa+UlDT67kpYpBwlvMYLz9dtjZwdB8avocmoJdpKFrWRijQkrK7AywLBSz8a8bH49MGw6l727Y2MDLXeG0Wrj/zjXczTn75yATd0WOJ+MwP2LVzGswDojFbvzV7BOS4bo0xhhu/OmlDk4ktu2PYadLbkjR0M7H2xswOrMGfX59/fPE10ZGfCf/1Tsufj5wT//qZbT0uDRR9V48Sef5PWZM0ep6PxqtrDiNbskzR+S/GmA8v/daq4JLbo0Gk31kpioZo3deSf076+2VbHgOnHpBIv3L2b7me0A2FrZMviOwYzsMJKGjlUv9m4FbGzy4r6uBxHlXMrMVNoiIwMyE1MxnU8ktU4T0nNsycyE2mEbsI86gFXKFYzkK1inJmGdegWbtGTElEuuqBmgkgumq6+p7l4k2DYjKwtaph+hQ+JWDrt0JbpWe1JTIfmyCauky+QAOUCuYUW2lT05VrZkW9XCZNiSY2VLjpUdJsMGk2HLls11iL5aJ6Xt5VZ4pfbl2I42HLw6maF+uiudr9yFoIqu57pYYeVswiXrHA3Sz9Aw4wz1M+Ix5Vjz+4XRgEH0/7zwmvseOYYdV2q54pbRnbiLnuwZqzSNI1YMiu+ODTlYY8LGyMFGri6Tg41kYyPZWEu22p6bzYWs2oS9rY53yMxi8N4rZDsarP9MbbOygl4/RGKfckF5/wylBy214q++mrdhQK5jHY7M/E4JUyu4Y/YUbK8kEvOPzxDXRlhZQb3VC7E/fQxxcCw4zny1GbXVGLRVHTUmbeXkiOFcFytrQ4lcqzz7zOvm5VsRPbyo0Wiqj5Mn4fXX1ZBKs2bw4YdVOg2/sNiys7ZjyB1DGNlhJPUd6lfZdTVXMZmUyL5wQQWWnT+vXq9cgeefz+s3daqaovnBB2o4D2DePFVVvDjs7QtG+depo37kH3ggT8AfOkTu+Ytkt25PtourGjFMSiMnJYMsoxZZRi2yxYbsbCwtJ6f418LbzK3wenHNZILcjCyckuNJcHAnJweMrEym7RiLVW6OJZHSFbuGxNTxIsbJm2MunblS6zo8ryI45lzBWnJItmtg2dzyyn7sTanY5mZebRnYmtSyXW4GtrkZ2JkysMtNx86UQZa1Pd+3fcVy/HN7HsIp+xLvdvyWNFsVszbuyCzuSNpVIfPmBiyw2DXo1Oe4pR5nbYtJnKnTwWJn09RjZNo6kWVbm0xbJ0vLruVEjq0DhpVhEWjFCbbiXs3LDz2kJqFWJXp4UaPR1Cw7d8LbbyvXRocO8I9/VJngir4czXf7visitkZ1GEU9h3pVcs3bmiNHVLqFs2eVsEpIUO3iReWOKo4nnsibMNG0qVIn+adf9u6t6iU5OytRlX+KZXk+Nx06YNUBaqEaAPUdAcdrv89rxg7INzEj1xaOzYb9+8ndfwA5eAiSLyCyCZFNpE11JDOkj6peFB0Nly+T3rI9ObYO5OaqR2URdPnWc3PNrwYmkzMmE5am+vlY+uc/Nv+29FxIzbe9Z76+Wzt/DdnZeBq2mHKv5ppr9hAXUodik52OdWYatlmp2GSlYZOVhm22WrfNScMuKxW7nFTsstOoVb+28qTlQrPsk7RIO4S9dTY2Nmpb26QwusX/UOLTzDWsyLB2It2mDhk2TqRbO7Gu+UOcq90agGYpR6iXEUds7XYkOjQDwEpMCAZiWJGSUnXvdFloT5dGo6laROCnn+Crr9RyaCg8/bQKCK5kYpJiWLRvEVtObwG0Z6tSyF9MGtT7GBMD06fniaZXX1VB5YUxDJVaoWFD1Ro0UAHjDRqowuU1VNbphsOcI+zgQdUefFBVZACVH+zXX9WzdHdXBTw9PVWsVbNmN/84XFycmtXh7q6mwgKEhSERe5HkFCQlBVJSkeQUFUyYkgIZGYhcdRJelTDJM94mu40nImD/v8+x/+Nnksc+Slr/4YiA3bYNOH/1HpcmPo/LPX2oU6dqb0t7ujQaTc2waJFqoH5Mxoyp9B+KM1fOsGjfIjbHbEYQS8zWaK/RWmyVl8xMlZX1zBnVzMspKSpPlZmwMLX97Nm8ocDAQCWuGjdWYsHcGjasEnF9y2EWVO7uMGRIwX1Nm6rZjidOKK9XdDT89pvaFxQEs2ap5dxcFSR/s6WqaNpUtfx07ozRuXOxZW0A5c4zC7Cr020beLWAq5qNTm3AqhcOnd2h1dVth9PBUXBq5wBVLLhKQ3u6NBpN5SBXI5sLR8GeOaOGEh99VGX+rgiHD6ukqb6+6r/7QtvimzmzaP8iNuxfhVxJwsa5HoMCRjPGawwNHBuUfu7blZwclebeXHsoJiZvaLCk34PvvsPiGti2TUU++/jkeSY0VU9WlqoTeeSI+hs4fFhVbXjkEbU/Olp5kBs3ViKtXTs1PHvHHbo+lBmTSnxcHTMwtadLo9FUDiLqxzoqSg0NxMfnvaalqT5ZWeqL3tpaDUE1bqyKWJ89q6o5t2ih8hXkF2eFBdbhwypvV1aWGoZasED1mziRc0Yqi1sms65/G3LJxWb3Xvon1Oa+BGjYow84NihesN1uJCcrD4m3d14c1BtvqDI3hbG2Vh4H8/vTvHley5+stlu36rFdUxA7O/DyUg3U36FZRICKoatVK69UwRY1xI5hqPfwzTdVPSjI++foduMGSHehRZdGoymbjAyVhTssDMLDVYB0cRiG2nfihPrhbtw4LyHTsWOqT0qKWm/RAvr0UdOIHB3hmWcKCqx9+9R6s2ZK1O3bx/mcK3zfLJY/WmRjykzH6soVBtT2YeyeCzRybQVpqh9QVLCZhdytKsSSktTs0PzTsl54QXm15s6FNm3UNnd3JZDd3dXwYMuWarlpU13Q+WbCMAq+X8HBsGSJGhY+diyvmauomxO8Arz8svobbNNGtdatVavqQCeNFl0ajaYEcnOVd+rXX1X5k5ycvH316yvvSbNm6sfazU21n36CpUtVfE///mqGWkpKXtXm8HD47DPlETtxQgmFP/9UoiomRgmAtLQ8YWRnB3FxXHCEpQ77WXN2KzlNUjAyhX6XXLiv77u4OTSCBRPVOWxt1XHFCDbg1hFiqanqB/XoUTXkdOyYSssA8L//qecPyivi5FSw7s+kSfDww9Vvs6bqsbZWQrpVKxgwQG3LzlYeZrNny+ypTk1Vf5MbN+Yd7+oKY8fCwIFqPSenHGn9NRVBiy6NRlOQ5GSVH2n1ajVMAepLt3176NRJZc1u3brgF3FysqqfGB6uvtwfeQTuukvFn5gFzZAhSoA1aqTEUHS0Op+jowriPnFCCQgrK3XtWrVIfPt1lh1azq9WUeQk78ao7UjvAY8yLq0NzQJ754kks2csv3C6KthueiFmMqkfycOHlcg6ckT9WBbG3l7F76Sk5ImuZ54p2k//gN5e2Noqr7IZw4BvvlGfqRMnVJhAVFSeRyz/sOPGjfDpp6pqhFnMtWpVcKahpkJo0aXRaBRxcbBsmfqiNXtGGjVSmeP79Ss4PJGfI0dg9mzlaalTR9VRDAgoPiYrn/eK2rWVOPP0VH1+/hlWroSzZ0m8FMcPP77Kr84JZNWrC66u9Gjfj/v9HqCFc4uiNpin0edfr2whVl3kT9GwcqX6gSxc+NDGRg0LtWungqbvuEPdw+0Yp6OpOLa2eUH2ZnJzlUc6/995fLz67B06pFp+WrSAjz7K+6yeOaO+L3QakFLRokujud2Jj1exIOvX5yWyDAqCoUPVa2k/5CJquPDCBTU00a1bXtB1cYJmzJiSxdCoUSTeGcoP+5bwa/gSss5nQpIQcsbg/shatNp5BAZsUkMfruXI1l2ZQqyYmZOVLsRWr4ZVq9QzCg1V2+rWVT96bm7K09i+vRJaHh46FYOmcrGyKugRA5Xhf9iwvFQV5nb6tPo7NwsuEZg2TQ1lNmmizmMu9G2emKGLcQM6ZYRGc/ty7pwSW3/+mTebqV8/GD26aN6c0oiLU3mcVqxQX7qFZhqSna0EQikeo8T0RH449AO/Hv+VLJPysoU0D2Gs+1Ba7zqh8hLFxanOhqGGJYcNg44dr3+4rKRZk4XtLs5zV9GhSHM8zf79cOAA3HNPXkHh5cvVOYcMUbFwoCpEZ2XdfLmXNLc2ubkqEN/sFUtKUsH5sbHFVyB49ln13QLKM37ypJpR2ayZOsctOOStU0ZoNBpFUhIsXqwC5E2mPLF1333Ko1IW+/erYUgvL/DzU0LjjjuUSCmPVysfF9IusOzgMtZErSE7V5WACWkewlifsbSup0p60NJfiZN9++D331WeqLAw1dzclEeuXz8VMH4tlNcjdi1DkSaTipvZv1/1P3hQBTCbcXfPE129e6vcV+ZZhqDSbugcS5obDSurgsOQzs4qc745B9zp02pizOnT6p8M93wlkLZsUf+gmXF0VH9TzZurz/7dd1fXXdQIWnRpNLcLGRlqduHy5cqDYhjQt6+arVQesZWVBd9+q9qePWqIr379orFa5mE6KCpornI25SzLDi7jz5N/kpOrZkUWEVv5MQwl8Pz8lGhcs0aJxvh4+OILNWOvTx8lwFoXc3xFKc7u4u6xsBDbu1fN9vr1V/XjkpxcNA1Dw4ZKXHl7K09d/u3mYs0azc2IjU1eZv2S8PRU/ySdOaMEWkpKXnqL2Ng80ZWbqxIqu7qq7yfzLGnz6036z4geXtRobnVMJjWEuHAhJCaqbZ07w4QJpX85mjl8WM1m3L5diQhzUWNvb7U8fbryapVjmO3U5VMsP7Scjac2kiu5GBj0bNmTe73vxd2lHLYUvq/wcBUHlb/un6enCv7v3r3yg3pLG4oUUXnJMjKUPeYh2/79oWdPFZ+Vk6Oy8tf0jEiN5kZARA1TxsaqVquWyrIPKvxh8uSSj3355bxEveYZvY0bq5iyBg1qfMiypOFFLbo0mlsVEdi5U8VbnT6ttrVtq/I0mT1RZbFvH4wcqUSWYcCgQUqsvfZauWK1zBw8f5BlB5cRFhcGgJVhRR/3PtzrfS/N6ja7jpu8SmysCkT/88+84bu6dVWuooEDKxajVh7OnlUeNsOAUaPUc/LygtdfV8lhjxxRwyVpafDKK+p51+SMSI3mZkNEfe+Yq12YK1/ExSlBNnu2+j4D+PxzNfvZjI2NmknZuLEKfXjoobx9GRkFKyxUETqmS6O5nTh0CObPz5vm3aSJKjbds2fF/gP89ltVXsTeXrXhw1Wgt4dHmV6tXMklLDaM5YeWc+iCssPO2o6BrQcyosMIGtVudL13mUezZmoo4sEHYdMm+OUXFUu1fLlqfn5KMHbtWjHvl4j6ko+MVJ61YcPU9tq1laC1tlZZ383P4IsvlAA0CywHh9JnRN5I+cA0mhsJw8grnJ6/ygIUqREqd9xBWkgIabGxpMbFkX7pEqkXLpC2bx+pBw+S6uhIWloaqVeukH7gAMP/7/+4I3+6jGpEe7o0mluJmBiV12nHDrVet66K2RoypHwlXg4fVkNjAQFKBERGqqG6OnVUsGw5PDQZORn8EfUHPx/9mfiUeACc7JwY1nYYw9oNw9m+GmbiiShv02+/webNeXnH6tRR6Rj69i2a4NVMQoK6b3Mzlzwyx6+Zj9m2Tf0X3agY8VieGZFw4ydm1WiqGBEhMzNTiaLU1AItLS2NlJQUy778ffIvp6enU0DL5OaqhMuZmerv1Tz7NysLMjN54fXX6WUexqwi9PCiRnMrc/o0LFqkgrdFVGzEiBGqOTqW7xyRkSpdRGKi8mR9802FREBCagKrjq5iTdQaUrPVEF/j2o25q91dDLpjEPY2Ve/SL5bUVJXw9ffflffLTMuWSoD5++cFwUdG5mXhN+PsrO7d318NV15r0dzCz3HpUvj3v/O8X9OnlzwMqYWY5gZFRMjIyCA1NZWUlJQCoqnweknNlL9w9zVib29P7dq1cXR0pHbt2tSuXRsHB4cC2xwdHXF0dMTHx4fGjRtXwt2XjB5e1GhuRWJjldjatEmJLRsbFcN0333KM1Ma5h/yDh1UEOrs2Upw2NvDpUt5Q2AlzEAENYQYHhfOr8d+ZVf8LgT1T5xXQy/u9rybrs27YmXUcJb02rWVt27IEFVmaN06JcJ27FBB+JmZygNWv74qn+PiomYXmmdLurtXTlBu4edYntmQN0upIs1Ni4iQnZ1tEUgpKSkFlgsLqOKE1fU6b+zs7CzCyMnJqYBwyr9c0rqjoyNWN0k1Bi26NJqbkWPH4Mcf8zxbNjbKC3PvveVLO3D4sAqIT0xUKRi8vZWwcHBQwsPs3SmBxPRE/oj6g9+ifuNCmiq0bGNlQ48WPRjefjhtG7StrDutHHbuVHm9Ro6Exx5T5YdmzFDPMCdH3bvJpIb/WreGwEAV/1WWcL0eqqpUkRZjtx0iUqwwKiygSlrOyV/M/hrI72VycnLCycmpgDAyr5v3m1/N22xvo+oKWnRpNDcLubnw118qseDBg2qbtbUSW2PGFB9bZKbwD/G+feoH/GqMAzY2MHOmmmq9f3+xP9iZOZn8FfsX606uY3f8botXy83JjSF3DKFf637UrVW3im6+nIgob92BAxASkje0un69Eqht2qgcPzY28OSTSng2bgy7dqn9ERHq2ezbpwr93nGHSq/RqZNaruxp6JVdqqgysuZragSTyWQRQ4XFUXHr+belpaVdl7fJxsamgFgq/FraNkdHR2zKEy+qAbTo0mhufJKSYMMGNSMvXgWmU7s2DB6sZtOV5dky/xCnpqof7e++Uz++Li7qfE2bwty5ytsFarjxKrmSy/6E/WyI3sCWmC2k56QDyqsV3DSYIW2H4N/YH6OmcuKYTCrj9aFDSmgdOJCXi8zZWYklUIHzbdqoYUMzzfKlqujXT7XUVOUV27oVdu/OS9r43XfqeQUFqUkGfn5V5wW7ViEGeniyhsnJySlRGJXVMgoXNa8g+b1HJQmokpbtdJHqakOLLo3mRiQnR3lf1q5Vw2LmQNPGjVXG5v79i8/IXPiHNCdHecZiYpSnzNo6r0TP99+r4HHzTEXzpXNz2Ht2L9tOb+Ov2L9Iykyy7GvfoD19PfrSs2VP6tSqU7ztly8rIeTsDK1aqW1JSfDllyrA/8kn8/r++9/Ktr//Pa/Y7m+/qTZ4sGqgCmovWaKET/v2SmQdPqyEUXZ2weK7deqonFn5n0/nzqqVRe3aKrg+NFTl89m3L6/k0IULKg/Yn3+qvs2a5cV9eXlV/VBkeYSYjhO7brKyssr0LJXUMjMzr/m6hmEUK4xK2pZ/3dHREetrneChqVa06NJobhRMJiUmduxQgd6XL6vtVlZKMAwYAF26qPXiMHu0MjPVuUaMUF6a+HhV9kdECSGzt6dDB4tXKykjiT1n97A7fjc7Y3daZh+CGj7s2bInoR6hNK/lqoSTmR9/VENy48dDu3Zq27Zt8MknSjCZBVZurhric3EpKLrOnVNB/Pl/rC5cgKgoFcxvZvt2+M9/lJDw8srbvm+fEpJTpigvlLe3EkgHDyrBaSY1VT3Phg0L2l8a9vZ5Yk1EicNdu9QMxwMH8rJo//qr6u/qqgShWSB5eFR+Rvz8FDfBoSrixG4yISYilnQCpcUxlbQ/Ozv7mq9tZWVVRCyVJpzyb3d0dKw5j7Gm2tCiS6OpSTIzlWjZsUMNa125kreveXPl0QoNLd6LUlycVlaWilc6cULNzGvaVAmr4cOV4AkJAU9PskxZHL14lD3xSmhFXYqyxGgh0LKWK91cfOkeNAJ3Z3cMUCU5zp9Xxa7NYuLkSeVt6tkzT3Q1bapsyp8Fvk4deO65okWpX3pJiaP88WhNmihxePZs3rZWrfLqrXl7q/vt0EF561JT4cUXlaAAldD1r79UAen/b+/Mg+yqrzv/Ofet/fp1q5G6JWS1doMAIRYRs8Xj0YATm80QCiqOBw+GpDxJcBxiG8fguIyTOI4dajI4AewqDF7w4HElmC3GGAOBkALjQZIlgTa0gFq01FJv6u63v3fmj3Ov3utWy8hG3a3lfKpu3d897y6/e3/v/n7fe35bxCuvwD/8g00N9LnPma1SscFMZ80ygRqhemDbLZH6nHJXX23HbtlinsK1a2HTJns2e/ZY2zAwcRxN4rtwoTXQX7CgPmbQRHE424nBoQuxwyTOonGbxht64O1600Xhd9q+6WDi6O1EVDqdduHk/EpcdDnOZFIq1Qundess3OiRmT3bhNGFF5qIiTLwsQXaunVw3XUm0opFEzSXX24FYy5n3pxrrrGBURcsYKg0zIa9G3htz8959an72Ny32SaaLpVheJhEOsPSheexfPZyzi22M+cLX4MFW+HiBfW4JRLmVdqzp94e6rLLTHAtXlzf76yzDhxBOh63dlXlslU97thhgm37dluiYS7AvFGDg/X2a2DeuQcfNNHTWI1y3nkHPuOPfMQE15Ilo+0nnjh6Yu++PmsnN2PGaNH1l39pA6J+4Qv16tGtW+2+Fy+2+MXjdv4lS6zHaK1mHrsNG2zZuNHu8c03bXn22fr5W1qsKjVa5syxeM2cWReOh5uJFmINtkoiQe6uuxiZM8dGBF+zhlxnJyMdHTao5ebNDG/eTG7GDEay2VGDX0bhdzpuUzqdPqg4ers2T8lk0oWTM2G46HKciaJWs+qn1183r8jmzeYRaRRZIjZ/2Pnnm9jq7LQCe80a87g09kgbHLSC7uKLzcOybZtVgRUKNvbUZz4D3/42A6tfYsvcLFvaamzd+X/ZsnYLu0Z2WfXaviFon4Fkmpk/bT5n9gjLn1/N6Rd+kNRFn7I45XLmFZs+fbTX56tfNcHQWL05VtiAHdPfX58vbedOEyA7dpj3qlY78Jg33qiHTzkF7rjDvEONz2nRokN77pFHqpH3va8+kW5EOj3+hLq7dln8G71yP/uZze32h38IV11lts2bzVN25pkm9ObNs+Vd7zIRN3Om3dfWrZZWW7bYMxgasurPqAdq4z22t5sAmzXLqis7OswWrQ+1avRQGCPEdMkS8vfcQ27lSvKLFpETIReLkSsWyW3YQE6EkTfeIPf00+S6usi1tDDS3U3ullsYKRTIbdrESCpFKZezYTlaW0dP/B0J8bG26DkPD9tHRGsryenTra1SsUg2l6N53jya58//lb3qGsPevsk5UnHR5TjvlEqlLi66uuoiY/v20W2VhoetwD31VPPELFtWrwpctswK2xdegD/9UxM+1apNVt3TY2IrkTBvwyuvUGhrpmdGnO5pSteMLDuvnUfXU5+la18XQzoEz2yBQt6uFYuRCBKcNJBk6UbhtMuv5JQP3Ug2mTWBt/1BWHxyPZ6ZjI1GP5bxqsV6eqy9VUuLebLARMvHPz7+sxKx+5w717xICxfWqw4j0unxxdzhprXVOiWM5d57zdPVWKXb2WltxhrFXHe3CacTTqjbKhW49VYTFA8/bN7Kk0+2TgQtLfB3f2eCdscOEx/r19t/ZHjYnmVURXkwMhm73vTpaFsbhWyWfFMThXSaQipFPh6nkEiQj8XIq5IrFCgUCuTz+f1LLpc7IJzL5Q7ee27mzP1iiOees7iOjNh/OQhsG0xs53JIENB84olk8nmaEwmaW1tpzuXIzJtHNp0ms20bze3tNA8O0nzRRTRfcQXNu3aRue02stUqmZEREvfcY+eMPGo9PfCJT4yu2pw/f3TV5n/+59tXdx5l7dOcY48JFV0i8kHgTiAG3Kuqfz/mdwl/vxTIAR9T1ZUTGSfHOWTCQoSBAVsGB61Kau/eeuG4Z4+Jq6hQGvvVvmCBFdaJBNx3n/22Zg18/vMW/uhHrQCu1WDZMsqD/Qz1vMFgS5K+eJ6Bp75J3389l/7FA/SWBti9uETPWWWGFmageIbF5a1u2PQEpM8AIJPIsGgozaI9cRZd+gcsXvpf6GztJP7/VsLCrbD8XEiG8VyyBG6/3cTC4KAVpIODtgwM2D0MDJjnp7fXlosusniDNYS/914Td5Ho6ugwYTFrlompSGTNnWteoCO9e3oyOVoEgo1of+mlo21nnw1f/vLoXpL5PCxdilYqVKtVisUipVKJ4ssvU9qyheL551OcM4ditUqxq4vi889TvOACildcQWFkhOLmzRR++EOKqRSFk0+mODhIYd8+Cm++SbFQIJ9OU1ClUK1SLJfrPVIbvY+N3sl43H6P1gdbggBiMdJNTTRns2Sam8lkszRls2RaWmjKZmluaTF7JkOmt5fm7m4yp51GZulSawje1UXz1q2kli9HTj119HyT7e0mRsG8tOWyVetee219SiQwT2FjNeavWbX5a9t+3fZph7rv4bY5xwwTJrpEJAbcBfwO0AX8QkQeVdVGn/olwEnhch5wT7ieXCbiBZmql/N4jeP69ZaZR73GymXzQqxbZ9VSnZ3mUdi0yY6fPdsKgny+XvUzbZp5WYaGzGPV3W2ehcjDs2+fiaxMBk0lqWiVSm6E8htbKcWFckuG0vUfpdTeRukbd1MojVDcsJlC8AaF4QGKTTvJJYVcAkb+/e/Ja4mRd7/J0Ox+huJVhjpWUmhOw0AJKmFvw+a1sHcIfnc+dMVM9AVlEkGCjraZzJpxOp0bnqWzOpvOeR+jMzadE2op5NSNsKQGHedB2wKLf3Oz3Vc2W6+q274dbrnFqigPlZ6eenjOHGtL1ugBisfH95QdZlSVarV6wFIJBc946yhcLpf3b1cqlf3b5XL5gHCpVNofjrYjW7QuFosHrLWxnVguZ/+/O++st0nr7bX0fPFFq6oEE+t791oajYzYs5w+3aopg6DuASyX4c03SQ8Oku7ooKmtjaZajfS+faR37qSpqYmm9naagsCWnTttvXAhTfG4hXt7yRSLZGbPpqmlhaYgQEZG7D+RzZpwBvO49vVZXE480QRLMmnxW7fORHZTk9kqFetY0dJS9352d9s+Tz1lHyZXX20ias4ce2c3bLBnkc9bOJGwcBCYQNq82Wwi8Oij9kEwc6a9i088YfsNDVncdu+2qnYRi19ke+EFs+Xz9u53d1vnlaEh600bCbFvftPO9/GP123f+pZ9VGzaBDfccPgE36HajhZheLTGcZKZsAmvReQC4HZV/UC4fSuAqn6lYZ9vAv+uqg+G2xuBFara3XiuCZ3wesMGbrjmPRRGwi7y2RYQYGQYauGzaWuzwrh3L1Rr9nWZyVgG0rvX9qtWrb3FKadYhrhtmxVkqlbYBUF4TgC1TC2bHX18OgWtbdDfCwpUqvbinTjLMhhVO3csDvGYVR9FyZdIQiyAStlsAgQxC9fCRqkCpNKWMba2oEPDds5qxfYNAig2FL7xMKOrVetfz4mExasaTp0iAk0Zu9dKGU0mzTZzJnTvgnIJjb66M01QrliGEgQQCDptGuQLVigJViC1tKC1mmWa1SokE4Cg7e1oz+7907YoQCIOtRq1atWuGwjalIZKFS0VUUADgWTS9i8WqQloPIa2ttrvA/32mAQ0Fti6VqMmUAtAM03UAqFWyFNVNXtTyuJarUIhrEJMJCyTB9jZVf//xGMggcVb1e6zrc3CQ8P1MbjmzkXa2kiVlaatO8gMFcgsOInMaWeSSWTIbOui5aVVtMTSNCWaEerJP95brKrWVuyMMyy8ZQs88wy6aBFcdJHZ9u3b72XQZBJNpdB0GtJpNJ1GUykLNzWhTU0QrjUIUNUDFoBarYaqUgvbbjVuR+FIMDXax1uq1eoB4UhcTVTedbgIgoBUKkUqlSKZTO4Pj2dLp9O2TqVIqZKKxUh3dJBOp+23VatIl0qkL7mEptZWsz35JLJqlbUxi9pLvfgi/OM/2jAXn/60vUO9vXDjjfZ+/M3f2LuWy8H991s+dcklJoryeRNBr7xiHqeTTjKhODBgvUGTSWu/FrF2rR1z+un1kf937DBB09lZ7706NGQfRdns6OE+Vq60d2L5chN0w8PW/jGft2u3t5utu9tEX0eH5SurV4fvXcG8ZaecUm8nVirZuzV3rom1Ws32nTbN7G+9VW9T2NJi4ZGRetvIbNbilMvZPRUKdl1Ve9+juUlzOcvXUykTgem0PavmZjtndHw+b3GOPOatrWabP9/EdX+/xSuXs2ezY4fl9TNmmO2MM+wdjcRoMmkdV/r7LU1iMbv2ihUmfFeuNNGcCvOnFSus+cL69WaLx61N6O7d1ls6Ov7977fn8LOf2f+kudlsAI88YveUzcIHPmC/P/JIfXy8K66w/f7t3yzOyaRV24uYKI6qoa+91u6rtxceesiOz2SsZ7WIVccXChbPq6+2cz72mP0HYrF6R5vHH69XaV91ld33Y4+FZVDF7m/WLBPo5bKly7nn2owSjz1m/4eZM23cvwkUXlMx4fUcYEfDdhcHerHG22cO0M1ksXYtTw+NUKyEGXjfvgP32dMPiL14EaURGMzVC1EFSgX45atmq1Tr+5eGDzxn3xD0Dx94/NCuumiKbNt2WAEuhAX5OPNkNYql/aVx+UDbSGgbLjRcR0HHG5umoT3SrzpnbrBe6peKFh7eYQIV2P9joT72E4RCI9dnv+9/tBXIDTTcK9bDToH8bhNtjefMN8ZbbcmFXqLonKIgJYtwFKWY1p9ZruEUUht1egSIh9eoNJwzDZIICGoBMlwkUAiCGlKoEhAQvCUEVSVQIZZOEQQxgkqVWKlMTOLEkhAjIFbJEi+WiQdx4qm5xMphO6KRGOzuppxMMaiDDDII/ftgBJAiBOVQZAa2NIajJRazgifyTBWLlukPD5s3AOw5je0RuD+JqvUC+gglFosRi8UIgoB4PL5/e2w4kUjsD49dot8SiQSJRGK/beySTCbHXScSif0iKlqi8xw2xvYGBSvYxrZJu+ACWyJaWqywfOABK4AaPZKLFpmYWbas3i5t40ZYtcpEzznnmG1gAL77XSsgr7vOhE2pZNMk7d5tY7RNm2bnf+op8yBdeKHFuVIxYfeDH9gHSTTcRqViwiGftx6w0QfM00+bR+nMM81jXauZaHj++XrP3pNPtnaDq1ZZoX/22Say9u61nqLDw3afCxdaAZ/LmYd32jQ7tq/PCvbXXjMRkkhY3KMq2FJp9DqZtGNmzLD3qlCw961Ssd8iD1rkmYtE3ciI2arV+jh5w8P1quB83n6LREksZsdUKia0ov2i6bpSKXuHt2+3NCmVTHAUi/ZBNX263X+xWBeMr79et0XCcuNGey6FQl0Yrl9v60Kh3gM66ugR3VsuZ57NyKZqy5o19fuN0rbRFlWDr15tQvytt+p5Si5n6RjtW63WB4YGe16lkl0ncrwMD9s5y2UTmcmk2VQtXqtX2/95eNjSNJez+PT12bOOnkM0ddYkM5Gia7w+t2M/TQ9ln4ll2TL+Z9sMyvsGLTrz5lmsdu404QSWObVkYcNG8/BUqmEX7w6zac2EQXs7vPe99ud56aX6H6FzjnmnurpCrxGWSUw/YfQ5OzosY9q0qe7VmjEdFi22l6JWtZen7QT7o+3ebX9mEXvh4nHLyCKvVGurhaOxn0TsC6BSqVdZ1Gqh56vVju/pqR8fNSTetw9RtRevvd1egr4+JAjMg7Ngvl23rw/STbbfOcvhtfXQs9v2CQQWLkRGcrDTuqRLPGaZa3+/3XMQQ1JJeM+5lhFu3ARvvUWQbTZP3OWXw0svIVteR4KYXf+ss5F8AV59FYkFkEghK1Ygw8PICy8gCNKchSuvRESQB76P1JSgbRpc/zECCQjuuhspVwjiCeTSS00gPfY4QaVCECQIfu/3iBEQ/OhHBOUq8Vic4NO3IdFwAi+/bAXD8uX1sarWrrWv02g4gMjb1yiQQk+hRG1qpk2rt3cqFpFazZ7D2wwjEHVvb+zmPl6X91+131hbtDRujxcOgmBcWxAWGI3raN/GdePSaIuE1MHC0dq79h8CIqPHTItonBIpIhoGo5G2NvjkJ+vb6bSt/+qvDjz+jDPGj8N4HSuuu+5A2003WcEbfTiA5U/FYt0rA/UesjC6w0Nfn+07fXq9p+fQkImUbLYuLstl8yolEpZfR1VOTU2Wv+XzJk6WLbNz9fZa/rx3rxXgixfbsZHoWbvWxo+LRIOIvf/RzAj9/VbQd3XZfu3tJp76+y1up55q51yzxuJVqdix7363eZ++9CXLn1Mpm7Krt7c+3lxzs3k358yBn/7UqrCjfOOOO0x43XFH/fivfc3Kjttvt2fc1GQ9k4eHramBqon1r3zFwn/2Z/a8WlutDSPAzTfXxd3f/q3ZbrnFzpFKwV//tdluvdXKn3jcbAsXWl75qU/Zc25utjlfwYZqyeUsPpHtttss/RIJm6AebCiXoSF7xrfdZv+JL37R0lHVzjNzptkKBctX/+RPrByP2q82N9enzppkvHoRjv06a4/jMdMewHGc45BjLc880uIzARysenEiRVcc2ARcDOwEfgF8RFVfbdjnMuATWO/F84Cvq+q5Y8814aLLcRzHcRznMDHpbbpUtSIinwCexIaMuE9VXxWRPw5//wbwY0xwvY61rLlhouLjOI7jOI4zlUzoOF2q+mNMWDXavtEQVuCmscc5juM4juMcawRvv4vjOI7jOI7zTnHR5TiO4ziOMwm46HIcx3Ecx5kEXHQ5juM4juNMAhM2ZMThRET2AG9MdTwcx3Ecx3EOgfmq2jHWeFSILsdxHMdxnKMdr150HMdxHMeZBFx0OY7jOI7jTAIuugAR+aCIbBSR10Xkc1Mdn+MVEZkrIs+KyHoReVVE/jy0TxeRp0Rkc7g+YarjejwiIjERWSUij4fbni5HACLSJiL/IiIbwnfnAk+bqUdE/iLMx9aJyIMikvZ0mRpE5D4R6RGRdQ22g6aFiNwa6oGNIvKBwxmX4150iUgMuAu4BDgN+AMROW1qY3XcUgE+raqnAucDN4Vp8TngaVU9CXg63HYmnz8H1jdse7ocGdwJ/ERVTwHOxNLI02YKEZE5wCeB31LV07Gp8D6Mp8tU8W3gg2Ns46ZFWOZ8GFgaHnN3qBMOC8e96ALOBV5X1a2qWgJ+AFw5xXE6LlHVblVdGYaHsMJjDpYe3wl3+w5w1ZRE8DhGRDqBy4B7G8yeLlOMiLQC7wO+BaCqJVUdwNPmSCAONIlIHMgAb+HpMiWo6vNA3xjzwdLiSuAHqlpU1W3Y3NDnHq64uOiyQn1Hw3ZXaHOmEBFZAJwN/ByYpardYMIMmDmFUTte+d/AZ4Fag83TZepZBOwB7g+rfu8VkWY8baYUVd0J3AG8CXQDg6r6UzxdjiQOlhYTqglcdIGMY/NxNKYQEckC/wrcrKr7pjo+xzsicjnQo6qvTHVcnAOIA8uBe1T1bGAEr7KacsL2QVcCC4F3Ac0ict3Uxso5RCZUE7joMhU7t2G7E3MDO1OAiCQwwfV9VX0oNO8Wkdnh77OBnqmK33HKbwMfEpHtWPX7RSLyAJ4uRwJdQJeq/jzc/hdMhHnaTC3vB7ap6h5VLQMPARfi6XIkcbC0mFBN4KILfgGcJCILRSSJNaB7dIrjdFwiIoK1TVmvqv+r4adHgevD8PXAI5Mdt+MZVb1VVTtVdQH2fjyjqtfh6TLlqOouYIeILAlNFwOv4Wkz1bwJnC8imTBfuxhro+rpcuRwsLR4FPiwiKREZCFwEvDy4bqoj0gPiMilWJuVGHCfqn55amN0fCIi7wX+A1hLve3QbVi7rh8C87DM7FpVHdso0pkERGQF8BlVvVxEZuDpMuWIyFlYB4cksBW4Afug9rSZQkTkS8DvY72yVwF/BGTxdJl0RORBYAXQDuwGvgg8zEHSQkQ+D9yIpd3NqvrEYYuLiy7HcRzHcZyJx6sXHcdxHMdxJgEXXY7jOI7jOJOAiy7HcRzHcZxJwEWX4ziO4zjOJOCiy3Ecx3EcZxJw0eU4zpQjIjNEZHW47BKRnWF4WETunqBr3iwi/2Mc+wIRWXcYr5MUkefDOfgcxzmO8UzAcZwpR1V7gbMAROR2YFhV75io64UC6EZs9PYJRVVLIvI0NmbT9yf6eo7jHLm4p8txnCMWEVkhIo+H4dtF5Dsi8lMR2S4iV4vI10RkrYj8JJxCChE5R0SeE5FXROTJaKqPMVwErFTVSsMxvxSRF4GbGq6/QET+Q0RWhsuFof17InJlw37fF5EPichSEXk59NKtEZGTwl0eBv77RDwjx3GOHlx0OY5zNLEYuAybTPgB4FlVXQbkgctC4fVPwDWqeg5wHzDeDBO/DTRO4H0/8ElVvWDMfj3A76jqcsxT9fXQfi828jsiMg2bV+/HwB8Dd6rqWcBvYfO4AawD3vMb3rPjOMcIXr3oOM7RxBOqWhaRtdi0XT8J7WuBBcAS4HTgKZvyjhjQPc55ZmNz4UWiqU1Vnwt/+x5wSRhOAP8cTrVTBU4GUNXnROQuEZkJXA38q6pWQk/Z50WkE3hIVTeH+1dFpCQiLao6dJieheM4RxkuuhzHOZooAqhqTUTKWp/HrIblZwK8Oo7Haix5IB2GBTjYfGh/gc3VdiZWM1Bo+O17WJXhh7H2Yajq/xGRn2PeuCdF5I9U9Zlw/9SY4x3HOc7w6kXHcY4lNgIdInIBgIgkRGTpOPutB94NoKoDwGA44TqMbns1DehW1RrwUcxzFvFt4ObwHK+G11sEbFXVrwOPAmeE9hnAHlUtv/NbdBznaMVFl+M4xwyqWgKuAb4qIr8EVmPtrcbyBPC+hu0bgLvC6sF8g/1u4HoReQmrWhxpuNZuTLzd37D/7wPrRGQ1cArw3dD+37A2X47jHMdI3TvvOI5z/CAiPwI+G7W7+g2Oz2BtyZar6uDb7PsQcKuqbvxNruU4zrGBe7ocxzle+RzWoP7XRkTeD2wA/ukQBFcSeNgFl+M47ulyHMdxHMeZBNzT5TiO4ziOMwm46HIcx3Ecx5kEXHQ5juM4juNMAi66HMdxHMdxJgEXXY7jOI7jOJOAiy7HcRzHcZxJ4P8DSSd6m7e20AQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.3339, 'epsilon': 0.20520000000000002, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACmV0lEQVR4nOydeXhN5/bHPzuThCRinocgEmSSELOIKZQqSlGllGp1bn9Xy71tdb5uq9Xq3NuWVl0UparaqpqraoyZEGJIQkLIPJ6s3x+vczJHEpnwfp7nfXL23u/ee+29T875nvWudy1DRNBoNBqNRqPRlC9WlW2ARqPRaDQazZ2AFl0ajUaj0Wg0FYAWXRqNRqPRaDQVgBZdGo1Go9FoNBWAFl0ajUaj0Wg0FYAWXRqNRqPRaDQVgE1lG1Ac6tatKy1btqxsMzQajUaj0WhuyN69ey+LSL28628J0dWyZUv27NlT2WZoNBqNRqPR3BDDMM4WtF4PL2o0Go1Go9FUAFp0aTQajUaj0VQAWnRpNBqNRqPRVAC3REyXRlNaTCYTsbGxZGRkVLYpGo3mFsHW1pbatWtjbW1d2aZobjPKTXQZhvE1MBSIFhHPArYbwAfAXUAyMElE9pWXPZo7k9jYWOzt7albty7qLafRaDSFIyIkJiYSGxtLvXr5Jp9pNDdFeQ4vLgQGFbF9MOB2vU0DPi1HWzR3KBkZGTg6OmrBpdFoioVhGDg6OmrvuKZcKDdPl4hsNQyjZRFd7gG+FREBdhqG4WIYRiMRiSovmwrj8GHIyqqYcxX3u7+wfub1ObcX9Lqwv1ZWudeZm5VV7u1WVrlfGwZYW2evt7ZWzcam+NdUWWjBpdFoSoL+zNCUF5UZ09UEOJ9j+cL1dRUuut54A5KSKvqstw9mQWZjo5qtrWrm13Z2UK1a/r/Vq6vm4JD92slJNWdn1ezsKvvqyoY333yT//3vf1hbW2NlZcXnn39Oly5dKtyOkJAQIiMjueuuuwBYs2YNR48eZebMmUyaNImhQ4cyatSoXPts3ryZuXPnsnbt2gq3V6PRaG4nKlN0FfRTQircCqB9e0hLK15fuQkLS7Nvzn3Mr/Mep6D1IgUv52zm9WYvX1ZW9jbz66ys7GYy5X+dman6ZWaqVtZUqwa1a0PduqrVqaNao0bQpAnUr5/tpauq/PXXX6xdu5Z9+/ZRrVo1Ll++THp6eqXYEhISwp49eyyia9iwYQwbNqxSbNFoNJo7jcoUXReAZjmWmwKRlWHIyy9XxllvD8zCzGRSLTMTMjKy/2ZkQHq6amlp2S01FVJSVEtOVn+TkiAhQbX4eNXS0iAqSrWCsLVVAqxpU3B1hbZtVXN0rNj7UBRRUVHUrVuXatWqAVC3bl0gu9JC3bp12bNnD//4xz/YvHkzW7Zs4emnnwbUMMfWrVtxcnLi7bffZtGiRVhZWTF48GDmzJlDWFgYjz/+ODExMVSvXp3//ve/eHh4MGnSJOzt7Tly5AiXLl3ivffeY+DAgbz88sukpKSwfft2Zs2aRUpKCnv27OGjjz4CYMOGDXzwwQeWfYYOHZrrWpKSknjyySc5dOgQmZmZvPLKK9xzzz0VeDc1Go3m1qUyRdca4AnDMJYCXYC4yojn0twc5qHF8phZLaIEWWwsXLmS3WJiIDISLlxQ286dU23Hjux9GzcGd3fo3Rtq1VJDmHffXfY2Avz0U9HbBw4cyGuvvUbbtm3p378/Y8aMITAwsND+c+fO5eOPP6ZHjx4kJiZib2/PL7/8wurVq/n777+pXr06sbGxAEybNo3PPvsMNzc3/v77bx577DE2btwIQHh4OFu2bCEsLIygoCBOnTrFa6+9lktkLVy4MNe5C9onJ2+++SZ9+/bl66+/5tq1awQEBNC/f39q1KhRwrum0Wg0dx7lmTJiCdAHqGsYxgVgNmALICKfAetQ6SJOoVJGTC4vWzS3JoYBNWqo1qxZwX1SUiAiQgmwU6cgNBTCwpQoi4yEevXUutq1lefMwUF5xyoSR0dH9u7dy7Zt29i0aRNjxoxhzpw5hfbv0aMHzz33HOPHj2fkyJE0bdqUDRs2MHnyZKpXrw5A7dq1SUxMZMeOHYwePdqyb1qOcfL77rsPKysr3NzcaNWqFcePH7+hrTfaZ/369axZs4a5c+cCkJqayrlz52jXrl2J7olGo9HciZTn7MVxN9guwOPldX7NnYGDA7Rpo1qfPmpdZiaEh8OJEyreKz5eecQeeURtd3RU/Vu3VjFjFYG1tTV9+vShT58+eHl58c0332BjY0PW9YC61NRUS9+ZM2cyZMgQ1q1bR9euXdmwYQMikm9GVVZWFi4uLoSEhBR4zrz9izMj60b7iAgrV67E3d39hsfSaDQaTW6qeAiyRlNybGyUqBoyBHx84N57ITBQrXNwgMRECAmB1avhr7/g8uWbmyBxI06cOMHJkyctyyEhIbRo0YKWLVuyd+9eAFauXGnZHhYWhpeXFy+88AKdOnXi+PHjDBw4kK+//prk5GRAJX11dnbG1dWV5cuXA0oQHThwwHKc5cuXk5WVRVhYGKdPn8bd3R0nJycSEhIKtbWgfXISHBzMhx9+iFy/Yfv377/Ju6PRaDR3DroMkOa2x8ZGzXRs0kSJq6goNeQYFQVnzqhWpw507KhmQ5Y1iYmJPPnkk1y7dg0bGxvatGnDF198wbFjx5gyZQpvvfVWrvQR77//Pps2bcLa2pr27dszePBgqlWrRkhICJ06dcLOzo677rqLt956i8WLFzN9+nTeeOMNMjIyGDt2LD4+PgC4u7sTGBjIpUuX+Oyzz7C3tycoKIg5c+bg6+vLrFmz8tla0D45eemll3jmmWfw9vZGRGjZsqVOJaHRaDTFxJDy/IlfRnTq1En27NlT2WZobkEiIyNp3LhxgdsSE+HkSTh9OjtlSPPm4OtbtWY/lobCcm5pNJriUdRnh0ZzIwzD2CsinfKu154uzR2Lo6Pybnl5wfHjcOSImgUZEQEeHip/W0UH3Ws0Go3m9kWLLs0dj40NeHpCq1Yq1is8XAmw06ehe3do0KCyLSw5eVNBaDQajaby0YH0Gs11qldXImvgQJX9PiUFNm6Eo0fLN9Beo9FoNHcGWnRpNHmoWxcGDIAOHZTYCgmBbdtUVn2NRqPRaEqLFl0aTQEYhko3ERioim5fuAC//QbXrlW2ZRqNRqO5VdGiS6MpgiZNIDhYlRJKSID161Wme41Go9FoSooWXRrNDXByUsONrq4q2/22bXDpUvH3dyxG/olt27bRoUMHfH19SUlJKZF9q1ev5ujRoyXapyi7UlJSCAwMxGQyWdbNmzcPe3t74uLiSnyesiAkJIR169aV+3kWLlxIZA5VPXXq1FLd2/DwcDw9PW/Yb/ny5bRr146goKASnyOvrWVlV0F9XnnlFUvpp+LSp08fbpTq5/3337ck/C0ppX1P5LSrf//+XL16tVTn12hKgxZdGk0xsLGBrl1VVnuTCbZsUYW3y4rFixfzj3/8g5CQEBwcHEq0b2lFV2F8/fXXjBw5EuscVcyXLFlC586dWbVqVZmdpyRUluj68ssvad++fbmd76uvvuKTTz5h06ZNJd63NKKrqlEZoisnEyZM4JNPPrmpY2g0JUGLLo2mmBgGdO6sUktkZsLmzXDlSvH337x5M3369GHUqFF4eHgwfvx4RIQvv/yS77//ntdee43x48cD8M4779C5c2e8vb2ZPXu25Rjffvst3t7e+Pj4MGHCBHbs2MGaNWuYMWMGvr6+hIWFERYWxqBBg/D396dXr16WotVnzpyhW7dudO7cmZdeeqlQOxcvXsw999xjWQ4LCyMxMZE33niDJUuWWNYfOXKEgIAAfH198fb25uTJk7z00kt88MEHlj7/+te/mD9/Pps3byYwMJD77ruPtm3bMnPmTBYvXkxAQABeXl6EhYUBKqnro48+Sq9evWjbti1r164lPT2dl19+mWXLluHr68uyZcuIjY1l+PDheHt707VrVw4ePAgoj8yDDz7IwIEDadmyJT/88APPP/88Xl5eDBo0iIyMDABee+01OnfujKenJ9OmTUNEWLFiBXv27GH8+PEWj2NOr8ivv/6Kn58fPj4+9OvXr9jPfeHChYwcOZJBgwbh5ubG888/b7Fh+/btPProo8yYMQOTycSMGTMsz/3zzz+3HOPtt9/Gy8sLHx8fZs6cWaCte/fuJTAwEH9/f4KDg4mKigJg7969+Pj40K1bNz7++ONi210Yffr04YUXXiAgIIC2bduybds2QHlIx44di7e3N2PGjMnlsV2/fj3dunXDz8+P0aNHk5iYyPz584mMjCQoKMji6SuoH8Du3bvp3r07Pj4+BAQEEBcXl+89kZSUxEMPPUTnzp3p2LEjP/744w3tGjZsWK73tEZT7ohIlW/+/v6i0ZSGiIiI7IWhQ8ukZQ0dKle6D5ULHYdKhP9QiY0t2oYaNWqIiMimTZvE2dlZzp8/LyaTSbp27Srbtm0TEZEHH3xQli9fLiIiv/32mzz88MOSlZUlJpNJhgwZIlu2bJHDhw9L27ZtJSYmRkRErly5km9fEZG+fftKaGioiIjs3LlTgoKCRETk7rvvlm+++UZERD766COLXTlJS0uTBg0a5Fr3+uuvy2uvvSYmk0latGghly5dEhGRJ554Qr777jvLfsnJyXLmzBnp2LGjiIiYTCZp1aqVXL58WTZt2iQ1a9aUyMhISU1NlcaNG8vLL78sIiLvv/++PP3005ZrCQ4OFpPJJKGhodKkSRNJSUmRBQsWyOOPP26x6YknnpBXXnlFRET++OMP8fHxERGR2bNnS48ePSQ9PV1CQkLEwcFB1q1bJyIiw4cPl1WrVuW6dyIiDzzwgKxZs0ZERAIDA2X37t2Wbebl6Ohoadq0qZw+fTrf/gVx5swZ6dChg4iILFiwQFxdXeXatWuSkpIizZs3l3PnzuU73+effy6vv/66iIikpqaKv7+/nD59WtatWyfdunWTpKSkXOfOuW96erp069ZNoqOjRURk6dKlMnnyZBER8fLyks2bN4uIyD/+8Q+LXcWx3czs2bPlnXfesZz3ueeeExGRn3/+Wfr16yciIu+++67lnAcOHBBra2vZvXu3xMTESK9evSQxMVFERObMmSOvvvqqiIi0aNHC8n4urF9aWpq4urrKrl27REQkLi5OMjIy8r0nZs2aJYsWLRIRkatXr4qbm5skJiYWapeZNm3ayOXLl/Pdh1yfHRpNCQH2SAF6RidH1WhKiIEKrBeB1FSVy2vAAHB2vvG+AQEBNG3aFABfX1/Cw8Pp2bNnrj7r169n/fr1dOzYEVC1G0+ePMmBAwcYNWoUdevWBaB27dr5jp+YmMiOHTsYPXq0ZV3a9RpHf/75p6Ww9oQJE3jhhRfy7X/58mVcXFxyrVu6dCmrVq3CysqKkSNHsnz5ch5//HG6devGm2++yYULFxg5ciRubm60bNmSOnXqsH//fi5dukTHjh2pU6cOAJ07d6ZRo0YAtG7dmoEDBwLg5eWVa3jtvvvuw8rKCjc3N1q1amXx1OVk+/btlmvp27cvV65cscSbDR48GFtbW7y8vDCZTAwaNMhynvDwcAA2bdrE22+/TXJyMrGxsXTo0IG7774733nM7Ny5k969e+Pq6lrovS+Kfv36UbNmTQDat2/P2bNnadasWa4+69ev5+DBg6xYsQKAuLg4Tp48yYYNG5g8eTLVq1cv9NwnTpzg8OHDDBgwAACTyUSjRo2Ii4vj2rVrBAYGAuq5//LLL0XaahjGDdePHDkSAH9/f8s93bp1K0899RQA3t7eeHt7A+reHT16lB49egCQnp5Ot27d8h2/sH4nTpygUaNGdO7cGQDnQv7R1q9fz5o1ayyxZ6mpqZw7d65Qu8zUr1+fyMhIy/tUoylPtOjS3Dn89FOZHcoAXEwqqD4tUv0NDlaxX0VRrVo1y2tra2syMzPz9RERZs2axSOPPJJr/fz58wv9QjSTlZWFi4sLISEhBdt9g/0dHBxITU21LB88eJCTJ09avszT09Np1aoVjz/+OPfffz9dunTh559/Jjg4mC+//JK+ffsydepUFi5cyMWLF3nooYcKvHYrKyvLspWVVa77kNfGgmyWArLVmvvlPK6tra1lvfk8qampPPbYY+zZs4dmzZrxyiuv5LrmghCRG967oijuc//www8JDg7Otf7XX3+94blFhA4dOvDXX3/lWn/t2rUS212nTp18weWxsbEWwQnZ15P3Wgp7VgMGDLjhMF5h/Q4ePFisaxARVq5cibu7e75tRe2fmppa4jhKjaa06JgujaaUWFtDz55QsybExcHevWVz3ODgYL7++mtLPEtERATR0dH069eP77//nivXA8liY2MBcHJyIiEhAVBeAFdXV5YvXw6oL6IDBw4A0KNHD5YuXQqouK2CqFWrFiaTySJClixZwiuvvEJ4eDjh4eFERkYSERHB2bNnOX36NK1ateKpp55i2LBhlriqESNG8Ouvv7J79+58AqI4LF++nKysLMLCwjh9+jTu7u65rhGgd+/elmvYvHkzdevWLdQDkhfztdWtW5fExESLZwnIdx4z3bp1Y8uWLZw5cwbIvve7du1i4sSJJb7GgggODubTTz+1xJ2FhoaSlJTEwIED+frrry0B5wU9d3d3d2JiYiyiKyMjgyNHjuDi4kLNmjXZvn07kPu5R0REFBib5ujoSKNGjfjjjz8s5/v111/zeWTzkvOZHD582PJ+6Nq1K3/++SenTp0CIDk5mdDQ0HzXUFg/Dw8PIiMj2b17NwAJCQlkZmbme1bBwcF8+OGHFkG+f//+Iu0C9f9x8eJFWrZsWeS1aTRlhRZdGs1NYGMDPXooARYWBte/k2+KgQMHcv/999OtWze8vLwYNWoUCQkJdOjQgX/9618EBgbi4+PDc889B8DYsWN555136NixI2FhYSxevJivvvoKHx8fOnToYAko/uCDD/j444/p3LlzkakfBg4caPmSXrp0KSNGjMi1fcSIESxdupRly5bh6emJr68vx48ft4gPOzs7goKCuO+++3LNgCwu7u7uBAYGMnjwYD777DPs7e0JCgri6NGjlqDpV155hT179uDt7c3MmTP55ptvin18FxcXHn74Yby8vBg+fLhl2AqyA/nzpu6oV68eX3zxBSNHjsTHx4cxY8YAcO7cuTLzkkydOpX27dvj5+eHp6cnjzzyCJmZmQwaNIhhw4bRqVMnfH19LcNnOW01mUysWLGCF154AR8fH3x9fdmxYwcACxYssAwH57Q1KioKm0Jcs99++y1vvPEGvr6+9O3bl9mzZ9O6desi7Z8+fTqJiYl4e3vz9ttvExAQAKh7t3DhQsaNG2eZ+GAeMp42bRqDBw8mKCio0H52dnYsW7aMJ598Eh8fHwYMGEBqamq+98RLL71ERkYG3t7eeHp6WiaLFGYXqEkGXbt2LfQ+aDRljVGQm76q0alTJ7lRvheNpiAiIyNp3LhxuZ8nLAz+/luJsEGDihffVVXZv38/7733HosWLSrV/llZWfj5+bF8+XLc3NxKtO+kSZMYOnQoo0aNKtW5K5oZM2YwYcKEfHFCtwIfffQRzZs3Z9iwYZVtSqXx9NNPM2zYsAI9fhX12aG5PTEMY6+IdMq7Xst7jaYMaNUKLl6Es2dh+3YV31UKJ0+VoGPHjgQFBWEymUrsqTp69ChDhw5lxIgRJRZctyLvvPNOZZtQap544onKNqHS8fT0LFH6D43mZtGeLs1tTUX+Ws3IgF9/VeWC3NxUTi+NRnNroj1dmpuhME+XjunSaMoIW1sVWG9lBSdPwrlzlW2RRqPRaKoSWnRpNGVIrVrg56de79mjvF8ajUaj0YAWXRpNmePmBnXrqsSphw9XtjUajUajqSpo0aXRlDGGAZ06qb8nTqgcXhqNRqPRaNGl0ZQDtWtD69aQlQW1a1vj6+tLhw4d8PHx4b333iMrKwuAPXv2WEqUVHUmTZqUK5FoTp555hm2bt1qWY6JicHW1jZX0eaK5q233ir3c4SEhLBu3TrL8po1a5gzZ06pjpWzuHZhxMTE0KVLFzp27GgpNF1aW8vSrkmTJuHq6oqPjw9t27Zl4sSJRERE3PDY77//viXpa0kpi+vp379/vuz7Gk15okWXRlNO+PiAnR3Y2jrw008hHDlyhN9//51169bx6quvAtCpUyfmz59fyZbeHLGxsZbahGaWL19O165db1j6pTypDNE1bNgwZs6cWW7n++OPP/Dw8GD//v306tWrRPuWVqQUl3feeYcDBw5w4sQJS9qR9PT0IvepDNGVkwkTJvDJJ5/c1DE0mpKgRZdGk5fjx2H5cvX3JqhWDcw5M/ftA5NJFdf94osv+OijjxARNm/ezNChQwFVUqZ79+507NiR7t27c+LECUCVQ7nvvvvw9vZmzJgxdOnSxfJL3dHRkX/961/4+PjQtWtXLl26BMDZs2fp168f3t7e9OvXj3PXp1IuX74cT09PfHx8LCLJZDIxY8YMOnfujLe3t8U7JSI88cQTtG/fniFDhhAdHV3gda5YscJSVNrMkiVLePfdd7lw4YLF42EymZg0aRKenp54eXkxb948wsLC8DPPPABOnjyJv78/AC1btuSf//wn3bp1o1OnTuzbt4/g4GBat27NZ599BqgSQL1792bEiBG0b9+eRx99lKysLGbOnElKSgq+vr6MHz8egPfeew9PT088PT15//33AQgPD8fDw4OpU6fi6enJ+PHj2bBhAz169MDNzY1du3YV+mzS09N5+eWXWbZsmSUr+sKFCy35ry5dusSIESPw8fHBx8fHkiG+OBT0XENCQnj++edZt26dJWP++vXr6datG35+fowePdpSOmr37t10794dHx8fAgICiIuLy2drUlISDz30EJ07d6Zjx46WygUpKSmMHTvW8n7LmZm/OBiGwbPPPkvDhg0txbULsnP+/PlERkYSFBREUFBQof3K83qGDRtWqT8MNHcgIlLlm7+/v2g0pSEiIqJkOxw7JtKli0jHjurvsWM3dX6TScTevoYsXixy8GD2ehcXF7l48aJs2rRJhgwZIiIicXFxkpGRISIiv//+u4wcOVJERN555x2ZNm2aiIgcOnRIrK2tZffu3SIiAsiaNWtERGTGjBny+uuvi4jI0KFDZeHChSIi8tVXX8k999wjIiKenp5y4cIFERG5evWqiIh8/vnnlv1SU1PF399fTp8+LStXrpT+/ftLZmamRERESM2aNWX58uX5rnHixIkWG0REzp07J23atBERkVmzZsm7774rIiJ79uyR/v37W/qZz9+nTx/Zv3+/pf/8+fNFRKRFixbyySefiIjIM888I15eXhIfHy/R0dFSr149ERHZtGmTVKtWTcLCwiQzM1P69+9vsbFGjRqWc+3Zs0c8PT0lMTFREhISpH379rJv3z45c+aMWFtby8GDB8VkMomfn59MnjxZsrKyZPXq1Zb7VtizWbBggTz++OOW8+Rcvu+++2TevHkiIpKZmSnXrl3Ld+9yEhgYeMPnmvP4MTEx0qtXL0lMTBQRkTlz5sirr74qaWlp4urqKrt27cple15bZ82aJYsWLbI8Czc3N0lMTJR3331XJk+eLCIiBw4cyPV+K4wHH3ww33vj6aefljlz5hRqp4h6xjExMZV6PW3atJHLly/nu6YSf3ZoNDkA9kgBekZnpNdocnLoEKSnQ5MmEBmplj08Sn04KyvVAI4eVZnra9TAUpQ3J3FxcTz44IOcPHkSwzAshY+3b9/O008/DagM2jlLztjZ2Vk8Zf7+/vz+++8A/PXXX/zwww+AGkJ5/vnnAVX0etKkSdx3332MHDkSUN6FgwcPWuK14uLiOHnyJFu3bmXcuHFYW1vTuHFj+vbtW+A1RkVFUa9ePcvy0qVLue+++wBVF3LKlCk899xztGrVitOnT/Pkk08yZMgQBg4cCKiagwsWLOC9995j2bJlFu8SYClR4+XlRWJiIk5OTjg5OWFvb8+1a9cACAgIoFWrVgCMGzeO7du35ysjtH37dkaMGEGNGjUAGDlyJNu2bWPYsGG4urri5eUFQIcOHejXrx+GYeDl5UV4eHiRz6YoNm7cyLfffguAtbU1NWvWvOE+Zgp7rjnZuXMnR48epUePHgCkp6fTrVs3Tpw4QaNGjSw1JQsrBL5+/XrWrFljqeWYmprKuXPn2Lp1qyXO0Nvbu9Qljszv8cLsrCrXU79+fSIjI6lTp06prlOjKQladGk0OfHyUoFYkZEq2+n1L+ObwTCgRQtVImj/fmjc+DTW1tbUr1+fY8eOWfq99NJLBAUFsWrVKsLDw+nTpw9QsEAzY2tri2EYgPpiz8zMLMQG1eezzz7j77//5ueff8bX15eQkBBEhA8//JDg4OBc+6xbt86yX1E4ODiQmppqWV6yZAmXLl1i8eLFgMrsffLkSdzc3Dhw4AC//fYbH3/8Md9//z1ff/019957L6+++ip9+/bF398/15dftWrVALCysrK8Ni+brzWvjQXZXNQ9zHvcnOc0n6OwZ1NeFOe5iggDBgzINzx28ODBYj03EWHlypW4u7vn21ac/W/E/v376devX6F2FmRPZVxPampqmRUt12huhI7p0mhy4uEBCxfCzJnq7014uXLSsaOqxXj4cAxTpz7KE088ke+LIC4ujiZNmgCwcOFCy/qePXvy/fffA6q24aFDh254vu7du7N06VIAFi9eTM+ePQEICwujS5cuvPbaa9StW5fz588THBzMp59+avHehIaGkpSURO/evVm6dCkmk4moqCg2bdpU4LnatWvHqVOnADhx4gRJSUlEREQQHh5OeHg4s2bNYunSpVy+fJmsrCzuvfdeXn/9dfbt2weAvb09wcHBTJ8+ncmTJxf3llrYtWsXZ86cISsri2XLllmu1dbW1nJNvXv3ZvXq1SQnJ5OUlMSqVatKFIhe2LNxcnIiISGhwH369evHp59+Cqh4tvj4eMv64szsuxFdu3blzz//tNz75ORkQkND8fDwIDIykt27dwOQkJBAZmZmPluDg4P58MMPLYJ0//79gLpXZsF8+PBhDh48aNln4sSJuTyRBSEizJ8/n6ioKAYNGlSonZD7/lXG9YgIFy9epGXLlsW44xrNzVOuosswjEGGYZwwDOOUYRj5pvQYhlHTMIyfDMM4YBjGEcMwSv6Jq9GUNR4eMHp0mQmulJQUunf3ZdasDvz73/1p124gs2fPztfv+eefZ9asWfTo0QOTyWRZ/9hjjxETE4O3tzf/+c9/8Pb2vuFQ1fz581mwYAHe3t4sWrSIDz74AIAZM2bg5eWFp6cnvXv3xsfHh6lTp9K+fXv8/Pzw9PTkkUceITMz01K02svLi+nTpxMYGFjguYYMGcLmzZsB5eUaMWJEru333nsvS5YsISIigj59+uDr68ukSZP497//bekzfvx4DMOwDDmWhG7dujFz5kw8PT1xdXW1nH/atGl4e3szfvx4/Pz8mDRpEgEBAXTp0oWpU6fSsWPHYp+jsGcTFBTE0aNHLcHcOfnggw/YtGkTXl5e+Pv7c+TIEbKysjh16hS1a9cu8XXmpV69eixcuJBx48bh7e1N165dOX78OHZ2dixbtownn3wSHx8fBgwYQGpqaj5bX3rpJTIyMvD29sbT05OXXnoJgOnTp5OYmIi3tzdvv/02AQEBlnMePHiQRo0aFWjPjBkzLCkjdu/ezaZNm7CzsyvUTlDPaPDgwQQFBVXK9ezdu5euXbtiY6MHfTQVQ7kVvDYMwxoIBQYAF4DdwDgROZqjzz+BmiLygmEY9YATQEMRyTXPWBe81pSWqlS0NjkZ1qwBERgyBAoJTcmHyWQiIyMDe3t7wsLC6NevH6GhodjZ2ZWvwSWgZ8+erF27FhcXl1LtP3fuXOLi4nj99ddLtN/mzZuZO3cua9euLdV5K5rDhw/z9ddf895771W2KSUmPj6eKVOmsHz58so2pcx4+umnGTZsGP369cu3rSp9dmhuPQoreF2e8j4AOCUip68bsBS4Bziao48AToYaZ3EEYoGCg1I0mluc6tVVIP2pUyqovmvX4u2XnJxMUFAQGRkZiAiffvpplRJcAO+++y7nzp0rlegaMWIEYWFhbNy4sewNq2J4enrekoILVAD77SS4QD2PggSXRlNelKenaxQwSESmXl+eAHQRkSdy9HEC1gAegBMwRkR+znss7enSlJaq9ms1MRF++km9vvtucHSsXHs0Gk3BVLXPDs2tRWGervKM6SpoukhehRcMhACNAV/gI8MwijnootHcejg6gqurGmI8evTG/TUajUZz+1CeousC0CzHclMgMk+fycAP13OJnQLOoLxeGs1tS/v2Ko3E6dOQlFTZ1mg0Go2moihP0bUbcDMMw9UwDDtgLGooMSfngH4AhmE0ANyB0+Vok0ZT6Tg7Q/Pmqhh2jjRdGo1Go7nNKTfRJSKZwBPAb8Ax4HsROWIYxqOGYTx6vdvrQHfDMA4BfwAviMjl8rJJo6kqdOig/oaFQQlL22k0Go3mFqVc83SJyDoRaSsirUXkzevrPhORz66/jhSRgSLiJSKeIvJdedqj0VQWq1atwjAMS34iFxdwcIjk3XdHcewYuQpfr1mzhjlz5pTZuZ955hm2bt0KwNq1a+nYsSM+Pj60b9/eUty6vHj//fdJTk4u13OEh4fzv//9z7K8Z88eS9mXkjJp0iRLOaTCSEtLo3///gXm5iqprWVpV0F9HEs4UyPn+7AwQkJCWLduXYmOm5PSvCdy2rV27doC89xpNLcCOiO9RlMBLFmyhJ49e1qyxAP06dOYZ55ZwalTkLOU37Bhw5g5M18u4VIRGxvLzp076d27NxkZGUybNo2ffvqJAwcOsH///nIvZ1MZoqtTp07Mnz+/3M63f/9+MjIyCAkJYcyYMSXat7SiqypRGaIrJ0OGDGHNmjXl/r7SaMqDG4ouwzB6GIbxu2EYoYZhnDYM44xhGDruSqMpJomJifz555989dVXuURXXFw4//qXJ5mZEBWV3X/hwoU88YTKrDJp0iSeeuopunfvTqtWrSyejKysLB577DE6dOjA0KFDueuuuwr0hKxYsYJBgwYB2eVTzLUNq1Wrhru7OwkJCbi6ulpK5sTHx9OyZUsyMjLo06cPzz77LL1796Zdu3bs3r2bkSNH4ubmxosvvggoIeHh4cGDDz6It7c3o0aNIjk5mfnz5xMZGUlQUBBBQUGAEp/mjPgvvPCCxU5HR0deeOEF/P396d+/P7t27aJPnz60atWKNWvWWM7Tq1cv/Pz88PPzY8eOHQDMnDmTbdu24evry7x583J5RRITE5k8eTJeXl54e3uzcuXKYj+3li1bMnv2bPz8/PDy8uL48eNER0fzwAMPEBISgq+vL2FhYezdu5fAwED8/f0JDg4m6vrDPHXqFP3798fHxwc/Pz/CwsLy2WoymZgxYwadO3fG29vb4nkUEZ544gnat2/PkCFDiI6OLrbdBbF582b69OnDqFGj8PDwYPz48ZZyOb/++iseHh707NnTUiQdICkpiYceeojOnTvTsWNHfvzxR9LT03n55ZdZtmyZxdNXUD9QSX3/8Y9/WO79hx9+WOB7Yv369XTr1g0/Pz9Gjx5NYmJikXYZhkGfPn1umYS4Gk0uRKTIBhwHBgP1gTrmdqP9yrL5+/uLRlMaIiIicq8YOlS1nLz6qlr399/Z6375Ra378MPsdVeuqHUTJ5bIhkWLFslDDz0kIiLdunWTvXv3iojImTNnpG3bDrJ4schbb22SIUOGiIjIggUL5PHHHxcRkQcffFBGjRolJpNJjhw5Iq1btxYRkeXLl8vgwYPFZDJJVFSUuLi4yPLly/Ode+LEibJmzRrL8pQpU6RevXoyduxY+e6778RkMomIyKRJk2TVqlUiIvL555/Lc889JyIigYGB8vzzz4uIyPvvvy+NGjWSyMhISU1NlSZNmsjly5flzJkzAsj27dtFRGTy5MnyzjvviIhIixYtJCYmRkTUs2jWrJlER0dLRkaGBAUFWc4JyLp160REZPjw4TJgwABJT0+XkJAQ8fHxERGRpKQkSUlJERGR0NBQMX8ubNqUfe/yLj///PPy9NNPW7bFxsYW+awefPBBy31s0aKFzJ8/X0REPv74Y5kyZUq+46enp0u3bt0kOjpaRESWLl0qkydPFhGRgIAA+eEHNTk7JSVFkpKS8tn6+eefy+uvvy4iIqmpqeLv7y+nT5+WlStXSv/+/SUzM1MiIiKkZs2aBT7fwmw3U6NGDYvNzs7Ocv78eTGZTNK1a1fZtm2bpKSkSNOmTSU0NFSysrJk9OjRFvtmzZolixYtEhGRq1evipubmyQmJuZ6fxbV75NPPpGRI0dKRkaGiIhcuXLFcl/N74mYmBjp1auXJCYmiojInDlz5NVXXy3SLhGR7777Tp544oki78fNku+zQ6MpAcAeKUDPFGd4MU5EfhGRaBG5Ym7lpAE1mtuOJUuWMHbsWADGjh3LkiVLLNtsbVWm+qQkSEsreP/hw4djZWVF+/btuXTpEgDbt29n9OjRWFlZ0bBhQ4vXIC9RUVHUq1fPsvzll1/yxx9/EBAQwNy5c3nooYcAmDp1KgsWLABgwYIFuQpPDxs2DAAvLy86dOhAo0aNqFatGq1ateL8+fMANGvWjB49egDwwAMPsH379ny27N69mz59+lCvXj1sbGwYP368JdbMzs7O4pHz8vIiMDAQW1tbvLy8CA8PByAjI4OHH34YLy8vRo8ezdFiJDrbsGEDjz/+uGW5Vq1aN9wnJyNHjgTA39/fYkdOTpw4weHDhxkwYAC+vr688cYbXLhwgYSEBCIiIix1IO3t7alevXq+/devX8+3336Lr68vXbp04cqVK5w8eZKtW7cybtw4rK2tady4MX379r2hrXkLqOddFxAQQNOmTbGyssLX15fw8HCOHz+Oq6srbm5uGIbBAw88kMu2OXPm4OvrS58+fUhNTeXcuXMFXkNB/TZs2MCjjz5qqWtYUL3JnTt3cvToUXr06IGvry/ffPMNZ8+eLdIugPr16xMZmTcDkUZT9SlOGaBNhmG8A/wAWL4WRGRfuVml0ZQX5nTwOXn55fzrBg1SLSe1axe8fxFcuXKFjRs3cvjwYQzDwGQyYRgGb7/9tqWPmxvs2aOy1RdEtWrVLK/l+pCQ+e+NcHBwIDU1Ndc6Ly8vvLy8mDBhAq6urixcuJAePXoQHh7Oli1bMJlMeHp65ju/lZVVLlusrKzIzFRVu/J+4RckAIqy2dbW1rJPzvPkPMe8efNo0KABBw4cICsrC3t7+xtev4gUaEtxMdthbW1tsSPv8Tt06MBff/2Va318fHyxji8ifPjhhwQHB+dav27duhLbXadOHa5evWpZjo2NpW7dupblnM8u5/UUdh4RYeXKlbi7u+da//fffxerX3HuvYgwYMCAXD9EQMWNFbVvamoqDg4ORR5bo6mKFMfT1QXoBLwFvHu9zS1PozSa24UVK1YwceJEzp49S3h4OOfPn8fV1TWXJ6h1a7CyUp6uwoRXXnr27MnKlSvJysri0qVLbN68ucB+7dq149SpU4CKb8rZLyQkhBYtWliWJ06cyLhx43J5uYrLuXPnLMLDPGkAwMnJiYSEBAC6dOnCli1buHz5MiaTiSVLlhAYGFjsc8TFxdGoUSOsrKxYtGgRJpMp3znyMnDgQD766CPLslmUTJw4kV27dpX4OvPi7u5OTEyM5dozMjI4cuQIzs7ONG3alNWrVwNqxmNycnI+W4ODg/n0008t8XShoaEkJSXRu3dvli5dislkIioqik2bNln2mTVrFqtWrcpnS58+fVi2bBnp6emAig0szANqxsPDgzNnzhAWFgaQS/wEBwfz4YcfWsTy/v37gfz3u7B+AwcO5LPPPrOIu9jY2Hz7d+3alT///NPyHk1OTiY0NLRIu8z3KecPA43mVuGGoktEggpoN/Z1azQalixZYhliMnPvvffmmsFmbw8NGqjSQCdPFu+49957L02bNsXT05NHHnmELl26ULNmzXz9hgwZYhFaIsLbb7+Nu7s7vr6+zJ49m4ULF1r6jh8/nqtXrzJu3LgSX2e7du345ptv8Pb2JjY2lunTpwMwbdo0Bg8eTFBQEI0aNeLf//43QUFBluDye+65p9jneOyxx/jmm2/o2rUroaGh1KhRAwBvb29sbGzw8fFh3rx5ufZ58cUXuXr1Kp6envj4+FjEy8GDB2nUqFGJrzMvdnZ2rFixghdeeAEfHx98fX0tAf6LFi1i/vz5eHt70717dy5evJjP1qlTp9K+fXv8/PwszzIzM5MRI0bg5uaGl5cX06dPzyVODx06RMOGDfPZMnToUHr16oW/vz++vr78+eef/Oc//ynSfnt7e7744guGDBlCz549c4nwl156iYyMDLy9vfH09OSll14CICgoiKNHj1oC6QvrN3XqVJo3b463tzc+Pj6W93zO90S9evVYuHAh48aNw9vbm65du3L8+PEi7QLYtGkTQ4YMKcUT02gqlxsWvDYMoyYwG+h9fdUW4DURiStn2yzogtea0nKrFK29cgV++w3s7GD4cLApxsB/YmIijo6OXLlyhYCAAP78888Cv4x79uzJ2rVrcXFxKfJ4K1as4Mcff2TRokUlsj08PJyhQ4dy+PDhEu1XWcTHxzNlyhSWL19e2aaUiuDgYH777bfKNqPSuHTpEvfffz9//PFHuZ7nVvns0FRNCit4XZyYrq+Bw8B915cnAAuAkWVnnkZzZ1OnjmpXrsDZs2rI8UYMHTqUa9eukZ6ezksvvVSg4AJ49913OXfuXJGi68knn+SXX365qfxLtwrOzs63rOAC7mjBBWoo+913361sMzSaUlEcT1eIiPjeaF15oj1dmtJyK/1aPXMG/voLatVSMfw3Ef+t0Whuklvps0NT9SjM01WcQPoUwzB65jhQD0BXi9NoypjmzVV819WrcFlXINVoNJrbjuIML04Hvrke22UAscCk8jRKo7kTsbZWw4pHjkBoKORIr6XRaDSa24Abii4RCQF8DMNwvr5cvAQ0Go2mxLi5wdGjcP48pKYqz5dGo9Fobg8KFV2GYTwgIt8ZhvFcnvUAiMh75WybRnPHUb06NG4MEREqxqtdu8q2SKPRaDRlRVExXTWu/3UqoDmWs10azW2DtbU1vr6+eHp6cvfdd3Pt2rUi+5tnLp4+rXJ3lTV79uzhqaeeuunjTJo0qcAi2wDPPPOMpcTP2rVr6dixIz4+PrRv395S1Lm8eP/990lOTi7Xc4SHh+fKtXYz97So+2gmLS2N/v37W3Jj3YytZWnXK6+8QpMmTfD19cXNzY2RI0cWqzzTwoULS13GpyyuZ+zYsZwsblI8jaYMKVR0iYj5k3GDiLyaswHlmyBFo7mNcHBwICQkhMOHD1O7dm0+/vjjIvs3bqyGFePiVAqJsqZTp07Mnz+/7A98ndjYWHbu3Env3r3JyMhg2rRp/PTTTxw4cID9+/fTp0+fcjs3VI7oKu97un//fjIyMggJCWHMmDEl2re0IqW4PPvss4SEhHDy5EnGjBlD3759iYmJKXKfyhBdOZk+fXquUlwaTUVRnNmLHxZznUajuQHdunUjIiICgLCwMAYNGoS/vz+9evXi+PHjAMTEXOKjj0Ywa5YP3br5WDKcv/fee3h6euLp6cn7779vOebrr7+Oh4cHAwYMYNy4ccydq6p09enThxdeeIGAgADatm3Ltm3bANi8eTNDhw4F4K677sLX1xdfX19q1qzJN998g8lkYsaMGXTu3Blvb2+LZ0pEeOKJJ2jfvj1DhgwhOjq6wGtcsWKFpXh1QkICmZmZ1KlTB1D1/9zd3UlISMDV1dVS/iY+Pp6WLVuSkZFBnz59ePbZZ+nduzft2rVj9+7djBw5Ejc3N1588UVAffF6eHjw4IMP4u3tzahRo0hOTmb+/PlERkYSFBRkKYGzZMkSvLy88PT05IUXXrDY6ejoyAsvvIC/vz/9+/dn165d9OnTh1atWrFmzRrLeXr16oWfnx9+fn6WZzFz5ky2bduGr68v8+bNy3VPExMTmTx5Ml5eXnh7e7Ny5cpivz9atmzJ7Nmz8fPzw8vLi+PHjxMdHc0DDzxASEgIvr6+hIWFsXfvXgIDA/H39yc4OJioqCgATp06Rf/+/S0Z/8PCwvLZerPPtyjGjBnDwIEDLaKoIDtXrFjBnj17GD9+PL6+vqSkpFT49fTq1YsNGzYUWE9ToylXRKTABnQD/g84DzyXo70CHChsv/Jo/v7+otGUhoiIiNwrhg4tvP3yS3a/X34pum8JqFGjhoiIZGZmyqhRo+SX6+fp27evhIaGiojIzp07JSgoSERE7rvvPvn3v+fJ4sUiS5ZkyuXL12TPnj3i6ekpiYmJkpCQIO3bt5d9+/bJ7t27xcfHR5KTkyU+Pl7atGkj77zzjoiIBAYGynPPPSciIj///LP069dPREQ2bdokQ4YMyWXjnj17xMvLS65duyaff/65vP766yIikpqaKv7+/nL69GlZuXKl9O/fXzIzMyUiIkJq1qwpy5cvz3e9EydOlDVr1liWp0yZIvXq1ZOxY8fKd999JyaTSUREJk2aJKtWrRIRkc8//9xia2BgoDz//PMiIvL+++9Lo0aNJDIyUlJTU6VJkyZy+fJlOXPmjACyfft2ERGZPHmy5bpbtGghMTExIqKef7NmzSQ6OloyMjIkKCjIck5A1q1bJyIiw4cPlwEDBkh6erqEhISIj4+PiIgkJSVJSkqKiIiEhoaK+bMo7z3Mufz888/L008/bdkWGxub7x7l5MEHH7TcxxYtWsj8+fNFROTjjz+WKVOm5Dt+enq6dOvWTaKjo0VEZOnSpTJ58mQREQkICJAffvhBRERSUlIkKSkpn603+3xzMnv2bMt9NzNv3jx59NFHi7QzMDBQdu/eXanX079/f9mzZ0+h15bvs0OjKQHAHilAzxQ1e9EOFbtlg4rjMhMPjCpj7afR3LakpKTg6+tLeHg4/v7+DBgwgMTERHbs2MHo0aMt/dLS0gDYuHEj3377LVu3QkyMNXFxNdm+fTsjRoyw1BscOXIk27ZtIysri3vuuQcHBwcA7r777lznHjlSFY7w9/cnPDy8QPsuX77MhAkT+P7776lZsybr16/n4MGDlviXuLg4Tp48ydatWxk3bhzW1tY0btyYvn0LLsEaFRVFvRz5Lr788ksOHTrEhg0bmDt3Lr///jsLFy5k6tSpvP322wwfPpwFCxbw3//+17LPsGHDAPDy8qJDhw6WOomtWrXi/PnzuLi40KxZM3r06AHAAw88wPz58/nHP/6Ry5bdu3fTp08fiz3jx49n69atDB8+HDs7O4tHzsvLi2rVqmFra4uXl5flXmVkZPDEE08QEhKCtbU1oaGhBV5zTjZs2MDSpUsty7Vq1brhPjnJ+cx++OGHfNtPnDjB4cOHGTBgAAAmk4lGjRqRkJBARESEpdanfSFTX2/2+d4IuR6IWJidVeV66tevT2RkJP7+/qW6To2mNBQqukRkC7DFMIyFInK2Am3SaMqPn34qXr9Bg1QrA8wxXXFxcQwdOpSPP/6YSZMm4eLiQkhISKH7tWoFMTEQFpb9RZaXwtabqVatGqCC+QsaSjGZTIwdO5aXX34ZT09PyzE//PBDgoODc/Vdt26dZfZyUTg4OJCampprnZeXF15eXkyYMAFXV1cWLlxIjx49CA8PZ8uWLZhMJsv5c9ptZWVleW1eNl9HXlsKsq2o+2Nra2vZJ+d5cp5j3rx5NGjQgAMHDpCVlVXoF3/ecxbnPhXGjZ6ZiNChQwf++uuvXOvj44uXzedmn++N2L9/P506dSrUzoLsqYzrSU1NtfxY0WgqiuLEdCUbhvGOYRjrDMPYaG7lbplGc5tRs2ZN5s+fz9y5c3FwcMDV1dVSA1BEOHDgAAD9+vXj008/pXlzsLIycfZsPH5+vVm9ejXJyckkJSWxatUqevXqRc+ePfnpp59ITU0lMTGRn3/+uUQ2zZw5E29vb8aOHWtZFxwczKeffmqJtwoNDSUpKYnevXuzdOlSTCYTUVFRbNq0qcBjtmvXjlOnTgEqvmnz5s2WbSEhIbRo0cKyPHHiRMaNG8fkyZNLZDeoGnzmL+olS5bQs6cqnOHk5ERCQgIAXbp0YcuWLVy+fBmTycSSJUsIDAws9jni4uJo1KgRVlZWLFq0CJPJlO8ceRk4cCAfffSRZfnq1auWa921a1eJrzMv7u7uxMTEWK49IyODI0eO4OzsTNOmTVm9ejWgPKfJycn5bC3N8501axarVq26oW0rV65k/fr1jBs3rlA7Iff9q4zrMffr0KFD8W66RlNGFEd0LQaOA67Aq0A4sLscbdJoblvMqROWLl3K4sWL+eqrr/Dx8aFDhw78+OOPAHzwwQds2rQJPz8vXn7Zn4iIIzg7+zFp0iQCAgLo0qULU6dOpWPHjnTu3Jlhw4bh4+PDyJEj6dSpEzVr1iy2PXPnzmX9+vWWYPo1a9YwdepU2rdvj5+fH56enjzyyCNkZmYyYsQI3Nzc8PLyYvr06YWKlyFDhliElojw9ttv4+7ujq+vL7Nnz2bhwoWWvuPHj+fq1auMGzeuxPeyXbt2fPPNN3h7exMbG8v06dMBmDZtGoMHDyYoKIhGjRrx73//m6CgIEsw9j333FPsczz22GN88803dO3aldDQUMvwrre3NzY2Nvj4+DBv3rxc+7z44otcvXoVT09PfHx8LF/2Bw8eLHB4raTY2dmxYsUKXnjhBXx8fPD19bUE+C9atIj58+fj7e1N9+7duXjxYj5bS/N8Dx06VGhB9Xnz5llSRnz33Xds3LiRevXqFWnnpEmTePTRR/H19cVkMlX49Vy6dAkHB4cyeR4aTUkoTsHrvSLibxjGQRHxvr5ui4gU/+fiTaILXmtKy61etDYmBn7/HRwc4J57wKqAn0mJiYk4OjqSnJxM7969+eKLL/Dz86t4Y3PQs2dP1q5di4uLS5H9VqxYwY8//siiRYtKdPzw8HCGDh3K4cOHb8LKiiM+Pp4pU6ZYPJu3GsHBwfz222+VbUaZMW/ePJydnZkyZUqhfW71zw5N5VJYwevi1F7MuP43yjCMIUAk0LQsjdNoNAVTty44O0N8PERFQZMm+ftMmzaNo0ePkpqayoMPPljpggvg3Xff5dy5c0WKrieffJJffvmFdevWVZxhlYSzs/MtK7iA20pwAbi4uDBhwoTKNkNzB1IcT9dQYBvQDJWfyxl4VUTWlL95Cu3p0pSW2+HX6rFjsH8/NG0KvXtXtjUazZ3B7fDZoak8Su3pEpG111/GAUFlbZhGoymali0hJETVY0xJUUONGo1Go7n1KKrg9YdAoW4wEbn54m0ajeaGODioYcULF+DsWfDwqGyLNBqNRlMaivJ06fE8jaaK4OqqRNfp01p0aTQaza1KUclRv6lIQzQaTeE0bgzVqsG1a3D1KpQwyblGo9FoqgA3zNNlGMamnElRdXJUjab4XLlyxZIDq2HDhjRp0gRfX19cXFxo3759sY9jbQ3mnKJnzhTdd/Xq1Rw9evQmrC4er7zyiqW4dl7ef/99vv32W8tyZmYmdevWZdasWaU+37Vr1/jkk0+K1dfR0bHYx83KyuKpp57C09MTLy8vOnfuzJkb3eSbIDw83FIQujzJ+z54+eWX2bBhQ6H9Dx06xKRJk8rdLo3mTqY4yVH/Acy43l4CQijm0KNhGIMMwzhhGMYpwzBmFtKnj2EYIYZhHDEMY0sx7dZobgnq1KlDSEgIISEhPProozz77LOWZauCkm7lIWcZGFdX9Tc8HLKyCt+nokRXYWRmZvL1119z//33W9atX78ed3d3vv/++xuWLiqMkoiukrBs2TIiIyM5ePAghw4dYtWqVTfML3YzVJboeu211+jfv3+h/b28vLhw4QLnzp0rd9s0mjuVG37qi8jeHO1PEXkO6HKj/QzDsAY+BgYD7YFxhmG0z9PHBfgEGCYiHYDReY+j0dyumEwmHn74YTp06MDAgQNJSUkBoE+fPvzzn/8kMDCQDz74gL179xIYGMjAgf7MnRtMVFQUUVHw3//+l86dO+Pj48O9995LcnIyO3bsYM2aNcyYMQNfX1/CwsIICwtj0KBB+Pv706tXL44fPw6orOBPPfUU3bt3p1WrVpaCwQDvvPMOnTt3xtvbm9mzZ1vWv/nmm7i7u9O/f39OnDhR4HVt3LgRPz8/bGyyoxeWLFnC008/TfPmzdm5c6dl/a+//oqfnx8+Pj7069cPyO9B8/T0JDw8nJkzZxIWFoavry8zZswo0k4zEyZMsGT6B5UBf82a3NluoqKiLKV+AJo2bUqtWrX46quvePbZZy39/vvf//Lcc88RHh6Oh4cHU6dOxdPTk/Hjx7NhwwZ69OiBm5ubpdTPK6+8woQJE+jbty9ubm6Wgt4zZ85k27Zt+Pr6Mm/ePFJTU5k8eTJeXl507NjRksF+4cKFDB8+nLvvvhtXV1c++ugj3nvvPTp27EjXrl2JjY212FWc98GkSZMsz3j37t10794dHx8fAgICLGV17r777lzFujUaTRkjIkU2oHaOVhcIBk4UY79uwG85lmcBs/L0eQx440bH8vf3F42mNEREROReMXRoydrTTxe8fymYPXu2vPPOOyIicubMGbG2tpb9+/eLiMjo0aNl0aJFIiISGBgo06dPFxGR9PR06datm0RHR4uIyNy5SyUwcLJs3Spy+fJly7H/9a9/yfz580VE5MEHH5Tly5dbtvXt21dCQ0NFRGTnzp0SFBRk6Tdq1CgxmUxy5MgRad26tYiI/Pbbb/Lwww9LVlaWmEwmGTJkiGzZskX27Nkjnp6ekpSUJHFxcdK6dWvL9eTk5ZdfttgiIpKcnCyNGjWSpKQk+fzzz+XJJ58UEZHo6Ghp2rSpnD59WkRErly5ku8+iYh06NBBzpw5I2fOnJEOHTpY1hdmp4hIjRo1RERk8+bNcs8994iIyLVr16Rly5aSkZGRy97z589LixYtxMfHR5577jnZt2+fiIgkJiZKq1atJD09XUREunXrJgcPHrQ8u4MHD4rJZBI/Pz+ZPHmyZGVlyerVqy3nmz17tnh7e0tycrLExMRI06ZNJSIiQjZt2iRDhgyxnH/u3LkyadIkERE5duyYNGvWTFJSUmTBggXSunVriY+Pl+joaHF2dpZPP/1URESeeeYZmTdvnogU/31gXk5LSxNXV1fZtWuXiIjExcVZ7sn27dtlaCnf37cb+T47NLckpiyTXEq8JPuj9su60HXy5d4v5ULchXI/L7BHCtAzxclIvxeVOsIAMoEzQOG1E7JpApzPsXyB/B6ytoCtYRibASfgAxH5Fo3mDsDV1RVfX18A/P39CQ8Pt2wbM2YMACdOnODw4cMMGDAAgIwME9bWjYiIgNTUw7z22otcu3aNxMREgoOD850jMTGRHTt2MHp0thM5LS3N8nr48OFYWVnRvn17Ll26BKihwPXr19OxY0fLMU6ePElCQgIjRoygevXqAAwbNqzA64qKiqJdu3aW5bVr1xIUFET16tW59957ef3115k3bx47d+6kd+/euF4fN61du3aJ7l9hdvbOkUE2MDCQxx9/nOjoaH744QfuvffeXB44UJ6tEydOsHHjRjZu3Ei/fv1Yvnw5/fr1o2/fvqxdu5Z27dqRkZGBl5cX4eHhuLq64uXlBUCHDh3o168fhmFYtpu55557cHBwwMHBgaCgIHbt2pVv6HL79u08+eSTAHh4eNCiRQtCQ0MBCAoKwsnJCScnJ2rWrMndd98NqKHAgwcPAnD48GFefLHo90FOTpw4QaNGjejcuTOgsuWbqV+/PpGRkcW6/xpNVUFEiEmOITIhMleLSojiYtJFMrMyc/V3q+NGE+cCyntUAMVJjupaymMbBR2ugPP7A/0AB+AvwzB2ikhoKc+p0RTNTz9V7v45qFatmuW1tbW1ZXgRsBRWFhE6dOjAX3/9Zdm2aZMqCfTQQ5NYu3Y1Pj4+LFy40FJkOidZWVm4uLgQEhJyQxvkeqyViDBr1iweeeSRXH3ff/99DKOgf+vcODg4kJqaallesmQJf/75Jy1btgTU5IJNmzYhIgUez8bGhqwcQWs5j5WTwuzMy4QJE1i8eDFLly7l66+/LrBPtWrVGDx4MIMHD6ZBgwasXr2afv36MXXqVN566y08PDyYPHlyrv5mrKysLMtWVla54vDyXl9B12u+74XZdaPzTJo0idWri34f5D1fYc8xNTUVB519V1NFiU+LJyI+goiECCLiI4hMiCQiIYKoxCjSTemF7lfboTaNHRvTyKkRjZ0a4+pSWllz89xQdBmGYY8aBuyJEk3bgU9FpOBPwmwuoEoHmWmKqtuYt89lEUkCkgzD2Ar4AFp0aTSAu7s7MTEx/PXXX3Tr1o2MjAwyM0OBDsTHJ9CoUSMyMjJYvHgxTa4XZnRycrLE6Dg7O+Pq6sry5csZPXo0IsLBgwfx8fEp9JzBwcG89NJLjB8/HkdHRyIiIrC1taV3795MmjSJmTNnkpmZyU8//VSg4GnXrh2nTp0CVKHn7du3c/78eYtgWLBgAUuWLGHOnDk8/vjjnDlzBldXV2JjY6lduzYtW7Zk7VpVCGPfvn2WmYQ5r6soO+vXr5/LnkmTJhEQEEDDhg3p0KFDPnv37dtHw4YNady4MVlZWRw8eBBvb28AunTpwvnz59m3b5/Fs1QSfvzxR2bNmkVSUhKbN29mzpw5REVF5bqO3r17s3jxYvr27UtoaCjnzp3D3d2dffv2FescCQk3fh/kxMPDg8jISHbv3k3nzp1JSEjAwcEBGxsbQkND8fT0LPF1ajRlRWZWJhcTLxIRH8H5+PNciL9gEVoJ6fnfz2Zc7F1o7NiYJs5NaOzU2NIaOjbE3sa+Aq+gaIozvPgtkICquwgwDljEjYPedwNuhmG4AhHAWOD+PH1+BD4yDMMGsEMNP84rnukaze2PnZ0dK1as4KmnniIuLo7MzEyeeuoZatfuwL33vk7nzl1wdW2Bl5eX5Qt27NixPPzww8yfP58VK1awePFipk+fzhtvvEFGRgZjx44tUnQNHDiQY8eO0a1bN0ClX/juu+/w8/NjzJgx+Pr60qJFC3r16lXg/oMHD7YUE/7hhx/o27dvLo/NPffcw/PPP88nn3zCF198wciRI8nKyqJ+/fr8/vvv3HvvvXz77bf4+vrSuXNn2rZtC6iZoD169MDT05PBgwfzzjvvFGhnXtHVoEED2rVrx/Dhwwu0Nzo6mocfftgy7BoQEMATTzxh2X7fffcREhJCrVIkRwsICGDIkCGcO3eOl156icaNG1OvXj1sbGzw8fFh0qRJPPbYYzz66KN4eXlhY2PDwoULc92vG/H666/TpUsXWrQo+n1gxs7OjmXLlvHkk0+SkpKCg4MDGzZswNHRkU2bNjFkyJASX6dGU1KSM5K5EH+B83FKWJkF1sXEi5jEVOA+9jb2NHVqSmOnxjR1bppLYFW3rV7BV1A6ilPw+oCI+NxoXSH73gW8D1gDX4vIm4ZhPAogIp9d7zMDmAxkAV+KyPt5j6MLXmtKy+1atPbvvyEsDNq3h+thYVWKESNG8Pbbb+Pm5lbZppCcnIyXlxf79u2jZs2aJd5/6NChPPvss5bZlcXllVdewdHRkX/84x8lPmdlkJaWRmBgINu3b88X93Yncrt+dlQ08WnxnIs7x4X4C5yLO8f5uPOcjz/PlZQrBfY3MKhXvR7NajajiVMTi7hq6tyUWva1ihXiUBUodcFrYL9hGF1FZOf1A3UB/izOSUVkHbAuz7rP8iy/A7xTnONpNBpFq1ZKdJ05Az4+UNU+h8zDaJUtujZs2MBDDz3Ec889V2LBde3aNQICAnKls7idOXfuHHPmzNGCS1MqEtISOBt3lnNx53K1uLS4AvvbWtlaRFWzms1o5tyMZjWb0dipMXbWdhVsfcVRHE/XMcAdMGfMaw4cQ3mmRES8y9VCtKdLU3pu11+rIrB2LSQkQFAQNGpU2RZpNLcXt+tnx82SmpnK2WtKXJ2NO6tex58jNiW2wP72NvZKUF0XVc1rNqeZczMaODbAyihOfvZbk5vxdA0qB3s0Gs1NYBgqQ/3Bg6oIthZdGo2mLDFlmYhKjCL8Wjhnrp7hbNxZwq+FcynpUoH9zeKqec3mtKjZwiKw6lWvd8sMCVYExUkZcdYwDB/AHDW7TUQOlK9ZGo3mRri6wqFDcOECpKeD3e3rkddoNOVIfFq8RVyduXaG8GvhnIs7R0ZWRr6+NlY2NHVqSguXFrR0aUmLmi1oXrM59WvU1+KqGBQnZcTTwMPAD9dXfWcYxhci8mERu2k0mnKmRg1o0AAuXoSzZ6EKxKxrNJoqTJZkEZUQxemrpzlz7Yzlb2FDg/Wr16elS0slrq6LrMZOjbGx0nF/paU4d24K0OV6Li0Mw/gP8BfZKSQ0Gk0l0aqVEl2nT2vRpdFoskk3pXP22lnCroZx+uppTl89Tfi1cNJMafn62tvY07JmS1xrudLSpSWuLq40r9mcGnY1KsHy25viiC4DyJk0w0TB2eY1Gk0BODo6kpiYaFleuHAhe/bs4aOPPirxsTZv3szcuXMtyUObNgVbW7hyBeLioKAJen369GHu3Ll06pQvplOj0dwGpGSkcPrqacKuhhEWq0TWufhzZElWvr51q9ellUsrWtVqhWstV1xdXGno2FAPDVYQxRFdC4C/DcNYhRJb9wBflatVGo2mWNjYQIsWcOqU8nZdL0Oo0WhuU5IzkgmLDeNU7ClOxZ4i7GoYkQmRSJ4qewYGzZyb0bpWa1rVakXr2q1xdXHFqZpTJVmugeIF0r93vSB1z+urJovI/nK1SqO5Q4iJieHRRx/l3DmVkeX999+nR48e7Nq1i2eeecaSMXzBggW4u7vn2jcpKYknn3yS/fsPcfVqJmPHvoKPzz2kpaUwefJkjh49Srt27XLVdNRoNLcOqZmpFoEVeiWUsKthRCRE5OtnY2VDi5otaF2rNa1rt6Z1rda0dGlJNZviVzbQVAwliYYzULm5tA9Sc0ty95K7y+W4P40rugh2SkoKvjnSxsfGxjJs2DAAnn76aZ599ll69uzJuXPnCA4O5tixY3h4eLB161ZsbGzYsGED//znP1m5cmWu47755pv07duXr776mmXLrvHsswFMmdKfn376nOrVq3Pw4EEOHjyIn59fmV+zRqMpWzKzMgm/Fk7olVBCr4Ry8spJzsefz+fBsrGywdXFlda1WtOmdhva1G5D85rNsbW2rSTLNSWhOLMXX0bVWVyJElwLDMNYLiJvlLdxGs3tgIODAyEhIZZlc0wXqIzpR48etWyLj48nISGBuLg4HnzwQU6ePIlhGGRk5J+6vX79etasWcPcuXNJTYWMjFR27jzH1q1beeqppwDw9va2FG/WaDRVAxEhKjGKE5dPcDL2JKFXQjl99XS+FA3WhjUtarbArY4bbWq3wa22Gy1cWujZg7cwxXly44COIpIKYBjGHGAfoEWX5pbiRh6pyiArK4u//voLBweHXOuffPJJgoKCWLVqFeHh4fTp0yffviLCypUrcXd3JyUFVq9WSVOzstBBsRpNFSIhLYHQK6GcuHLC4slKSE/I16+pU1Pc6rjhVtuNtnXa4lrL9bYuiXMnUhzRFQ7YA6nXl6sBYeVlkEZzJzFw4EA++ugjZsyYAUBISAi+vr7ExcXRpEkTQHnGCiI4OJgPP/yQDz/8EAcHg8TE/dSo0ZH27XuzePFigoKCOHz4MAcPHqyoy9Fo7niyJIuz185y4soJjl8+zvHLxwuMw6plX4u2ddriXsedtnXa0qZ2G52i4Q6gOKIrDThiGMbvgAADgO2GYcwHEJGnytE+jea2Zv78+Tz++ON4e3uTmZlJ7969+eyzz3j++ed58MEHee+99+jbt2+B+7700ks888wzeHt7IyI0aNCSKVPW0rXrdJYunYy3tze+vr4EBARU8FVpNHcOiemJnLisBNaxy8c4ceUEqZmpufrYWdvRulZrPOp6WIRW3ep1tUf6DqQ4Ba8fLGq7iHxTphYVgC54rSktd1LRWpNJDTGmpcHgwVCrVmVbpNHcuhT02SEiXEy8yNGYoxy7fIyjMUc5H38+374NajTAo64HHnU9cK/jjmstVx2HdYdR6oLXFSGqNBrNzWNtDS1bwokTKm9X586VbZFGc2tjyjJx+uppjsYcVe3yUa6lXsvVx9bKlja12+BR14N2ddvhUdeDWg76F4+mYLT01mhuI1q3VqIrPFwlSrXR/+EaTbHJzMrkSvIVYpJjOBt1loV/Lsw3VOhczZl2ddvRvl572tVtR5vabXS6Bk2x0R/JGs1thIsL1KsHMTGqCHbr1pVtkUZTdckwZRCTHEN0UjQxSTFcSbliKZ1jSjWRmplKY8fGtK/X3tIaOzXWsViaUlOo6DIMY5GITDAM42kR+aAijdJoNKWnTRsluk6e1KJLo8lJuimdmCQlsqKToolNic2VfNTAoJZ9LerXqI9VNSvu9r8bF3uXyjNYc9tRlKfL3zCMFsBDhmF8S55M9CISW66WaTSaUtG8OezbB7GxqhB2nTqVbZFGUznkFFmXki5xNeVqLpFlZVhRx6EO9WvUp36N+tStXteSFysyMlILLk2ZU5To+gz4FWgF7CW36JLr6zUaTRXD2hpcXeH4cRVQr0WX5k4hMyuTmKQYLiVd4lLipXyeLCvDiroOdalfoz4NHBtQt3pdPatQU6EU+m4TkfnAfMMwPhWR6RVok0ajuUnatFGi6+xZFVBvp5Naa25DsiSLK8lXuJh4kUtJl7icfNkSkwVaZGmqHlY36iAi0w3D8DEM44nrTRdy02hKgLW1Nb6+vpY2Z86cIvu/9dZbuZa7d+9e4nM6O0NCQgh79qwjPLzgPvv372fq1KmAynpfr149OnbsiJubG8HBwezYsaPE5y2Mli1bcvnyZdLT0+nduzeZmZlldmzNnYOIcC31GscvH2dz+GZWHF3B76d/51D0IaKTohER6jjUoX299gS1DGJU+1EMaD0An4Y+NHRsqAWXptIpTsHrp4BpwA/XVy02DOMLEfmwXC3TaG4T8ha8vhFvvfUW//znPy3LpRU/iYkhhITs4dSpu3BzU3UZ857nxRdftCyPGTOGjz76CIBNmzYxcuRINm3aRLt27Up1/oKws7OjX79+LFu2jPHjx5fZcTW3L8kZyVxMvGhpeVM41KxWk4aODWng2ID6NerrWoWaKk1xZP9UoIuIJAEYhvEf4C9Aiy7NLcXdd99dLsf96aeSF9KOi4sjICCANWvW4O7uzrhx4+jbty9hYWGkpKTg6+tLhw4dWLx4MY6OjiQmJrJ582ZeeeUV6taty+HDh/H39+e7777DMAx2797N008/TVJSEtWqVeP333/ngw9eJi4uhenTt/Pii7N4+OExlvMnJCRw8OBBfHx8CrQvKCiIadOm8cUXXzBv3jzCwsJ4/PHHiYmJoXr16vz3v//Fw8ODn376iTfeeIP09HTq1KnD4sWLadCgAVeuXGHcuHHExMQQEBBAzsoXw4cPZ9asWVp0aQokMyuT6KRoLiZeJCohiri0uFzbHWwdaFijIQ0dVXOwdSjkSBpN1aM4ossATDmWTeSZyajRaArHLKLMzJo1y+JVmjRpEk8//TRXr17l4YcfBuCjjz4q1DO2f/9+jhw5QuPGjenRowd//vknAQEBjBkzhmXLltG5c2fi4+OpXr06r732Gr/+uodhwz7C1TX3cfbs2YOnp2eRdvv5+fH5558DMG3aND777DPc3Nz4+++/eeyxx9i4cSM9e/Zk586dGIbBl19+ydtvv827777Lq6++Ss+ePXn55Zf5+eef+eKLLyzH9fT0ZPfu3SW/kZrbEhEhPi2eyIRIohKjiEmKwSTZXzk2VjY0qNHAIrKcqznrPFmaW5biiK4FwN+GYay6vjwc+KrcLNJoyonSeKTKgsKGFwcMGMDy5ct5/PHHOXDgQLGOFRAQQNOmTQHw9fUlPDycmjVr0qhRIzpfr/vj7Oxs6V+zphpWPHcO/PygWjW1Pioqinr16hV5LrN3KjExkR07djB69GjLtrS0NAAuXLjAmDFjiIqKIj09Hdfr6m7r1q388IOKSBgyZAi1chSCtLa2xs7OjoSEBJycnIp13Zrbi3RTOpcSL1mEVnJGcq7ttR1q08ixEY2cGlG3el2sjBuGH2s0twTFqb34nmEYm4GeKA/XZBHZX96GaTS3O1lZWRw7dgwHBwdiY2MtYqooqplVE0q8ZGZmIiKF/vK3tYWGDSEqCk6fBnN4loODA6mpqQXuY2b//v20a9eOrKwsXFxcChSOTz75JM899xzDhg2zDH+aKcobkZaWhr29fZHn19w+iAhxaXFEJkQSmRBJTHJMriFnext7Gjk2orFTYxo4NsDeRr83NLcnxfr5ICL7RGS+iHygBZdGUzbMmzePdu3asWTJEh566CEyMjIAsLW1tbwuDh4eHkRGRlqG7BISEsjMzMTJyYmEhATatlX9QkMh6/ps+nbt2nHq1KlCj7llyxa++OILHn74YZydnXF1dWX58uWA+gI1e+bi4uJo0qQJAN98841l/969e7N48WIAfvnlF65evWrZduXKFerVq4etra5XdzuTmZVJRHwEuyJ28eOJH1l3ch0hF0OITooGoH6N+vg08GFwm8GM8BhBt2bdaOHSQgsuzW2Nnj+r0ZQzeWO6Bg0axEMPPcSXX37Jrl27cHJyonfv3rzxxhu8+uqrTJs2DW9vb/z8/CzCpSjs7OxYtmwZTz75JCkpKTg4OLBhwwaCgoKYM2cOQ4b4Ehw8Cx+fMZw/Dy1aKKEWFxeXa4hv2bJlbN++neTkZFxdXVm5cqVl5uLixYuZPn06b7zxBhkZGYwdOxYfHx9eeeUVRo8eTZMmTejatStnzpwBYPbs2YwbNw4/Pz8CAwNp3ry5xd5NmzZx1113leEd1lQVktKTiEyIJCIhgktJlzBlZcdm2dvY09ipMY2dGtPQsaGeZai5IzFyunirKp06dZI9e/ZUthmaW5DIyEgaN25c2WZUOqdOwa5dULs2BAerOK958+bh5ORkydVVUYwcOZJ///vfuLu7V+h5NWWPiBCbEsuF+AtEJERwLfWaZZuBQW2H2jRxbkJjp8bUsq91SwXA688Ozc1gGMZeEemUd732dGk0dwCurnDwoKrHGB0NDRrA9OnTLUOGFUV6ejrDhw/XgusWxpRl4mLiRS7EXyAyIZKUzBTLNhsrGxo5NrIILT1UqNHkpjjJUUcC/wHqowLpDUBExLnIHdW+g4APAGvgSxEpMBW3YRidgZ3AGBFZUXzzNRpNcbC2hrZtlfA6dkyJLnt7eyZMmFChdtjZ2TFx4sQKPafm5knLTCMiIYKI+AiiEqPIzMquKFDDtgZNnJvQxKkJ9WvUx9rKuhIt1WiqNsXxdL0N3C0ix0pyYMMwrIGPgQHABWC3YRhrRORoAf3+A/xWkuNrNMWlqNl9dxJubnDkCERGwrVr4OJS2RZpqjJJ6UlciL/A+fjzxCTF5CocXcehDk2cm9DUuSk1q9W87f6/boWwG82tSXFE16WSCq7rBACnROQ0gGEYS4F7gKN5+j0JrAQ6l+IcGk2R2NrakpiYiKOj4233xVBSqlWDVq3g5ElVDLtr18q2SFPViE+L53zceS7EX+BKyhXLeivDigY1GtDMuRlNnJtQ3bZ6JVpZvogIiYmJenatplwojujaYxjGMmA1kGZeKSI/FLqHoglwPsfyBaBLzg6GYTQBRgB90aJLUw7Url2b2NhYEhISKtuUKkGtWmAyqcD6Bg2yk6Vq7kxEhKSMJKITo4lOjiYpI8myzdqwpo5DHerVqEcdhzrYWttCGlyLucY1rlWe0RWAra0ttWvXrmwzNLchxRFdzkAyMDDHOiG7AHZhFORWyOuzfR94QURMd7oXQlM+WFtb3zDz+p3G8uWwY4fK2aXDq+48RITTV0+z/dx2/jz/J1GJUZZtNWxr0KVJF7o3607HRh11WgeNpowpTkb6yaU89gWgWY7lpkBknj6dgKXXBVdd4C7DMDJFZHUpz6nRaG7AiBFKdK1bB/fdBzox/O2PiHDm2hm2nd2WT2g5V3OmW9NudG/WHe8G3thY6UntGk15UZzZi02BD4EeKE/VduBpEblwg113A26GYbgCEcBY4P6cHUTEUobXMIyFwFotuDSa8sXDQ5UDOnYM1q+HYcMq2yJNeXH22lm2nt3KtnPbcgmtmtVq0qNZD3o070GHeh30jEONpoIobsHr/wHmarcPXF83oKidRCTTMIwnULMSrYGvReSIYRiPXt/+Wamt1mg0N8XIkfDmm7BihUqWqmO7bh8i4iPYdm4bW89u5Xx8dlhtTqHlWd9TF5HWaCqB4oiueiKyIMfyQsMwninOwUVkHbAuz7oCxZaITCrOMTUazc3TpQu0aaMC6n/6CUaNqmyLNDfDleQrbDu3jS3hWzh1NbumppOdEz2a9aBXi15aaGk0VYDiiK7LhmE8ACy5vjwOuFJEf41GU8UxDBVE//LLsHIlDB4MNWpUtlWakpCYnsiO8zvYEr6FQ9GHLHm0HGwc6Na0G71b9ManoY+O0dJoqhDF+W98CPgImIeK6dpxfZ1Go7mF8fUFT084fBh++AEqODl9+ZKVBRcuQEQExMTA5cswdCjUr6+2L1kCP/8MGRmQng4iaozV3h4aN4Z//zv7WMuWgZ0d1K2rWpMm4HzDghzlQmZWJnsi97DpzCZ2Re6yZIa3sbIhoHEAgS0D6dS4k551qNFUUYoze/EcoENtNZrbDLO36/nnYc0auPvuWzxLfXy8ClI7eVKNm6am5t7u7Z0tutLTIS4u9/bkZNWq50j8KaJEV0ZG7r7OztCsGQwfXu5ZZkWEE1dOsOnMJrad20ZCuso5Z2DgXd+bPi370L1Zd2rYaVelRlPVKVR0GYbxvIi8bRjGh+TPr4WIPFWulmk0mnKnXTvo3Bl274bvv4dp0yrbomIiAmfOKC9Wl+s5l21tYfVqtQ2UwGrRAurVUx6qxo2z9x81Cu65R+1jZ6cUaFqaEmpZWdn9TCZ44AHlKbtyRZ3vwgUl8I4cUbMQzPzxh3IZurmpQpceHqrSeClzEEYnRbPpzCY2ntlIZGJ2tp2WNVsS5BpE7xa9qVu9bqmOrdFoKoeiPF3m0j97KsIQjUZTOUycCHv2wC+/KMeN2RlUJTl/Hn79Ff76SwmgmjWVarSyAgcHePhhaNRICZ+aNQs/TkEBbDY2+dfb2KipnjkRUQLswgUl6syEhsK5c6r98Uf2eTp0UGO5d999w8tLzUxlx/kd/HH6Dw5GH7Ssr+1Qm8AWgfR17UtLl5Y3PI5Go6maFCq6ROSn6y+TRWR5zm2GYYwuYBeNRnML0rIl9O4NW7aoUKenn65si/JgMsHff6sYrIPZQoRatZSXKyUlWywVQ9jcNIaRHd+VkylToG9fJb5OnlSesOho2LULEhKybROBDRvAxwfq17cMH/4e9jvbzm0jJTMFADtrO7o26Upf1774NvTVubQ0mtuA4gTSzwKWF2OdRqO5RRk/HrZvVw6ae++Fpk0r26IcHD+eHdhubw9BQdCvnxrCq0rlw+zswN1dNTPR0Up85UyEduYMzJ/PNesMNrbM4vcm6VxwEnByAisDjzoe9GvVj17Ne+k4LY3mNqOomK7BwF1AE8Mw5ufY5AxklrdhGo2m4mjUCAYMUCN333wD//pXJRqTng6HDoG/v1pu3x66dQMvL+VJupVyW9Svn2u8Nkuy2H/lEOsD0vn72mFMWZkQCS4mW/qlNqZfq340GzKr0mZHajSa8qUoT1ckKp5rGLA3x/oE4NnyNEqj0VQ848bB5s2wc6caEQsIqGADsrJg40ZYvFjFTH38sZohaBjwz39WsDFly+Xky6wPW8/vp3/ncvJlaGOHlfjTxa4lA2Nr4XcgGpuoC5B4Nreo/PtvlcW2Tp3KM16j0ZQZRcV0HQAOGIaxCkgSEROAYRjWgC4aotHcZtSurSbqffklfPaZyrBQYcWwDx1SJz13Ti23bKlitW5hsiSLvZF7+fXUr+yO3G1JXtqwRkMGth5Iv1b9qO1QO3uHixchMhKsr8duJSfDnDmQmamGLLt1g549oUGDSrgajUZTFhQnpms90B9IvL7scH1d9/IySqPRVA533628XadOKYfTlCnlfMKkJFi4UI1rghqKe+ABCAxUMxJvQa6mXGV92Hp+C/uNmOQYQCUv7da0G4PaDMKrvhdGQbFoDRuqZiYxUc3M3LsXTpxQbeFCNTOzZ081HuzkVDEXpdFoyoTiiC57ETELLkQk0TCM6kXtoNFobk2srODxx+G55+DHH1XMeqtW5XjCr76C339XqRnGjFFR/La25XjC8kFEOBJzhHUn17Hj/A5MamCAhjUaEtwmmAGtBlDTvogUFgVRv74aVk1NhX374M8/1bjvyZOq9e6dLbrS01Ugv0ajqdIUR3QlGYbhJyL7AAzD8Adubb+/RqMplDZtYNgwJbo++gjmzi1Hp9P48Srf1tSpuXNe3SKkZqay8cxG1p1cx9m4s4DKFN+taTcGtxmMb0Pfgr1aJcHeHrp3Vy09XXm+wsKyU1aIwFNPqXICvXtDjx5F5yjTaDSVhiGSL9l87g6G0RlYigqsB2gEjBGRvYXvVbZ06tRJ9uzROVo1mooiJQUee0wlYp82rQzTX504obKwPvXULTt8CBCVEMXPJ3/m99O/k5yRDICLvQvBrYMZ1GZQxWaKj46G6dOVIAM18cDXVw3RduuWu6yRRqOpEAzD2CsinfKtv5Hour6zLeAOGMBxEcm4wS5lihZdGk3F8/ff8MYbytHy6af5c4GWCBFYuxa+/loFhk+fDnfdVWa2VgQiQsjFEH4K/Yk9kXssgfHt6rZjaNuhdG/WHRur4gwelAMpKeqBbd2qhiJNangTW1t4+23lvtRoNBVGYaKruJ8Q7kB7wB7oaBgGIvJtWRqo0WiqFl26KEfJX38p0fXii6XMRZqcDB9+qLKvghq7HDiwTG0tT9JN6Ww8s5E1J9ZwPv48ALZWtvRu0Zu7295N69qtK9lCVAmkPn1US0hQ8V9bt8LZs2omqJl166BJE5Xz7Bb2NGo0tyo3FF2GYcwG+qBE1zpgMLAd0KJLo7nNmTYNDhxQ8ds//aT0Uok4e1Zlk4+IUMLgqafUzLtbgNiUWH4O/ZlfTv1CQnoCoGogDnEbQnDr4JIHxlcUTk4waJBqKSlqkgIo8fvVV2oYsnZt6NVLibTWratWZn+N5jamODFdhwAfYL+I+BiG0QD4UkQqoMiZQg8vajSVx44dSjdZW8N//pO7yk2RhIfD88+rL/6WLWHmTOVlqeKEXwtn9fHVbDm7hcwsVXzDrbYb97jfQ4/mPSpvCPFmSUiANWtUTpCLF7PXN2mixNfgwToAX6MpI25meDFFRLIMw8g0DMMZiAbKcxK5RqOpQnTvrjxca9Yo0fXBB8VMD9W0KXh4qAzrzzyTu/5gFUNEOHjpIKuOr2JvlJojZGDQvWl3hnsMx6Oux83PQqxsnJzUbNH771dFuTdvhm3blBdy8WIlvMyiKzMz20Om0WjKjOL8V+0xDMMF+C+qHFAisKs8jdJoNFWLyZNV3enQUHjvPXj55UJGpETU8FW1aupL+1//UvmjqqhgMWWZ+PP8n6w8upLT104DUM26GgNbD2SY+zAaOja8wRFuQQwjuzD31KkQEqIerDkxqwg8+6wqPRQYCF27qqFhjUZz0xQ5vGion3ZNReT89eWWgLOIHKwY8xR6eFGjqXyio+Hpp1Wi9AcfhFGj8nTIyID58yE2Fl59tUp7StJN6fxx+g9+OPYDF5PUUFvNajUZ5j6MwW0G41TtDs70fvEiPPpo9gxIOzslvAIDwc+vSj9XjaaqUOqUEdd39C83y4qBFl0aTdVg92547TXlLHnrLfD0vL4hJUXllzh4UOWYmDNHBWhXMZLSk/jl1C/8eOJHrqVeA6CRYyNGthtJX9e+2FnrrO4AxMer2aabN8OxY9nrHR3Vg3d1rTTTNJpbgZuJ6dppGEZnEdldDnZpNJpbiM6dlYdrxQoV3/XOO9DQKQlmz1aJT2vVgldeKefaQSUnPi2eNSfWsDZ0LUkZSQC0cmnF6A6j6d6sO1aGTp+QC2dnlUftrruUi3PrVtiyRVUPaNo0u9/GjdCsmcoDVkWHkDWaqkRxPF1HUXm6woEkVIJUERHvcrfuOtrTpdFUHUwmpbEOHIAWteKZ6/AS9pGnVa3AN96ARo0q20QLV1Ousur4Kn459QupmakAeNbzZHSH0XRs2PHWD46vaK5eVcIaVE3I8eNVDF+jRioFRWAgNG9euTZqNFWAEg8vGobRXETOGYZRYEE0ETlbxjYWihZdGk3VIiUFXvtHPL1+nkkz4zzuQY2x+88bUK9eZZsGwJXkK6w8tpLfwn4j3aTK4/g38ue+DvfRvl77SrbuNiEuDpYtU8OQV69mr2/eXAmwQYNUPUiN5g6kNKJrn4j4XX+9UkTuLWcbC0WLLo2m6hEfm8nmwf/B6lIUfw99nX/NrYW9feXaZBZbv576lYwsVa2sa5Ou3NfhPtzquFWucbcrWVlw+LAafvzrL5UPDOCLL7K9nqmpVPqbQ6OpQEojuvaLSMe8rysDLbo0mqrJ5agMZr+QyrmrTvj6qlQStrYVb0dsSiwrjq7IJbZ6NOvBWM+xtHRpWfEG3alkZqpx5+PH1dCjmccfV7Mge/ZUrUGDyrNRo6kAbtbTZXldGWjRpdFUEWJi4H//UykFric7jYpSieevXVO1Gp9/vuKyCsSlxrH86HLWnVynxVZVJTYWHnlEebvMuLmprLs9elSpGECNpqwojegykR047wAkmzehAumdy8nWfGjRpdFUAa5cgVmzlMq6+25VmPE6Z86oTUlJ4O0N//ynSkRfXiSkJbDq+Cp+Cv3JEiDfvWl3xnmN02KrKpKeDnv3qvivXbtyC7A33gAfn8qzTaMpB0qdp6sqoEWXRlPJxMYqVRUZqdIDvPFGPlV16pTK4XX1qsoi8MorakJjWZKSkcKPJ35k1fFVJGeo34EBjQMY7z2eVrWqVpoKTSGYBdiOHXDokIr9srueH23BAuUm7dZNF+LW3NJUiugyDGMQ8AFgjSqSPSfP9vHAC9cXE4HpInIg73G06NJoKpFr15TgunBB5d96441Ciy9GRyuxdf68yizw8stKo90sGaYMfjn1C8uOLCM+LR4A3wa+POD9AO51i1uBW1PlEMkWVunpKg7M7AWrV0+Jr27doF07VXFdo7lFqHDRZRiGNRAKDAAuALuBcSJyNEef7sAxEblqGMZg4BUR6ZL3WFp0aTSVREKCElxnz0LLlvDmmypxZhEkJamk5QcPqrCvF15QSVVLQ5ZksTl8M4sPLiY6ORoAjzoeTPSZiFcDr9IdVFM1MZnULMgdO2DnTuVdNePkpOpBlvaNpNFUMJUhurqhRFTw9eVZACLy70L61wIOi0iTvNu06NJoKomFC2HlSjVe+O9/Q82axdotMxM+/FAlLDcMGD0axo0rfoC9iLAncg/fHPiGs3EqJWBz5+ZM9JlIQJMAndT0dkdEFeE2C7DISPjsM2hy/ethyxaVLC4gAGrXrlxbNZoCuJkyQKWlCXA+x/IFIJ8XKwdTgF/K0R6N5s4hLQ1OnlRT948dg/BwlcvB0RGqV1fxWI6O4OGhvAeFea8eeEDlYRo+vNiCC5S4euYZNTHtf/+D77+H/fvh//4v+3uzME5eOcmCkAUcij4EQP3q9RnvPZ4+Lfvocj13CoYB7u6qTZqkJm80bpy9feVKNXvj44/V+HVAgHof6zgwTRWnPD1do4FgEZl6fXkCECAiTxbQNwj4BOgpIlfybteeLo2mGGRkwO+/w4YNcPq0Gq4pDoYBHTpAly6q1a2rPA12ZVP8+cgReO89Fe9lZwdTpsDgwfm/Gy8mXmTRgUVsPbcVAEc7R8Z2GMtdbndha10Jyb80VRMR9R7/+2+l5NPTs7fVqgUPPgj9+lWefRoNVXh40TAMb2AVMFhEQgs6lhZdGk0RZGaqcbylS1UeLVCKxtVVebLatVPeABEVcGVusbFqFtmhQ9kCLStLxXG1bQvz5yuvWBmQlKQmqW3cqJY7d4bp01WsdGJ6IssOL2PtybVkZmVia2XLMPdhjGo/Ckc7xzI5v6YKk5io3iDOzuDgoNZFRcG5c+qHREaGeo/nbCaTaunpyuN16hQkJysP76xZyou7a5fKgl+jBvj5KU/vr7+q4xsGWFnlbtbW6q+NjXptba0mjnh4qH3i41VR95o11f8HqP+piAj1a6JaNfXXzk4H/WsqRXTZoALp+wERqED6+0XkSI4+zYGNwEQR2VHYsbTo0mgKwGRSsS1LlsDFi2pds2YqeKpz5+KXXUlKyp7Cbz6WjQ0MHapycfn5ldmQzfbtakQoMRFs7DJxHfgLEbWWkGxKwMCgT8s+TPCeQL0aVaOGo6YYXLqkxH58fLaAMv81t+RkFYOVkqJev/dedj6Rf/9bvfdeeEFlqwdYsQK++aZkdsyYoeo+NmwIP/+s4hGrV1fnAyWowsJUPUhn5+IJoxEj4KGH1OuDB+Ff/wIvLzVTBNSxx4zJv5+1tRJheZu9vRJsDz6o+mVkqPqVjo5qCN/MiRPqf6569exWrZoeOr2FqPCYLhHJNAzjCeA3VMqIr0XkiGEYj17f/hnwMlAH+OR6YGxmQUZqNJo8REfD22+rD2dQgVL336++tKxKGPdUo4YqUHzwoDpO9epQp44KXn7lFfUl8cAD0PHmK4H17Anu7sJrX+1izfkF7DgegZ0t9HL34rXhU2hTp/VNn0NzE2RmqkRrsbGqJSbCgAHZ2+fMUUPXr7+eXcrn229h69aSnccshEAFwtevn1sENWmifjjY2irPkY1NdrO2zv6b00Pl6qp+dIDK0PvQQ0rkXbqkflRERyvRk5qqPGI+PurasrKym9mDZjKpe2H2coESRp06qVm8ZrKyVKxZenp2S0tT+ycn575OMzlnkyQnK9Hl5JRbdL39trI3JzlFWI0auf/WqqXG7c3s3avuSYcO2WECOdNzaCoNnRxVo7nV+PtvmDdPeRDq1oUJEyAwsPRDGiLw1Vfw44/qA/rVV9Vw5Lp18MMPEBen+nXvDg8/rM5ZSsKvhfPfvf/lYPRBEhPgytnGOIc9hEtSAG1aG4wfr77X9HdDOREXp0RIdLRqly8rL9WVK+rvtWu5+xsGrFqV/d567jk1QeOdd7IFyfffqy95JyfVHB2VGDBP1qhRQw0bOjgogeDgUHxPU1khooYh9+xRcWDHjsHYsaqBEpJLloCvr2qNG9/cmzAzU4mvnM0s9hwcsocnk5NhzRolkO67L3v/t95Sz8Ys3MxDp4VRu3Zuz+DEiUo8L1yofkCByq936JB6JuaW85mZX5uXnZ2V+NVDpaVCZ6TXaG51MjNVxu41a9RyQICaIlhIotJis3ixigezsYEXXwR//+xtqamwdq36NZ6aqjwF99+vygCVoMBiXGociw8t5tdTvyIIjnaO3O95P4PaDGb7Vhu++UZ974NyVtx7r9KRFVXD8bZDRD23qCjlATF/cc6YoWa0FoZhKK9J7drZf6dOzR6qPndOHat+/cqpbF5WJCcrb5T5fyfvcGadOkp8eXurdhM/NMqMnN6z5OTcQ7cAQUHZfefOVQL6pZcsNVKZNUvlQSsJ//tf9j364AM1C/rRR9WsUlDHO3tWCbS87VZ+f5QBWnRpNLcyly7Bf/6jvAzW1moa/T333LxLKCtLHXfnTpg5U2X/LojLl+HLL+HPP9Vy8+bw2GNq+KIIMrMy+Tn0Z5YcXkJSRhJWhhVD3IYwznMcTtWyxWJamnKsrVmjTgXq+/6ee2DgQPXDW5ODuDiV9v/8eRXIHRGhbqI51gjUe+TKFfXczEOBH3+s8l81aKCEU716SlDUrauERq1ad6Zn4/Jl5QELCYEDB7K9u6AExHffZf+vJSTc/A+dysA8kSYxUV1DztcJCeq1OS7P/Pejj7LDFcxezrlzs0XX558rcV8QZo+ms7OafFCzpno9dGh2PN/lyyqurXbtbHF4m6BFl0ZzqxIaqob84uPVl+QLL2R/6JUFJpOKDWvf/sZ99+5VH7RRUWp56FAVFFxA0P7eyL38d99/iUiIAMCvoR9T/abSrGazQg+fmanCg1auVE4VUN6url2hf3/lfLijNEFSkvIunD2r2rlzqsXH5+9rGMpjY47hWbVK/e3bt0Q51u54RNS9DglRcY4uLvDUU2pbcrKaqNKokQqo9/RUzTyEdzsTE6OGLJs3z/5/375d3aP4+PytsJQ1H3ygZoWCyqC8fr36ATd4sFr3999KyLm4ZIs1czNPgnBxUTZU4TgELbo0mluRvXvV7K60NBXIPmNG2fzK3r1bfWkUd4ZjTtLTYfly1Uwm5TV56ik1DANEJUTx5b4v2RW5C4DGjo2Z6jeVTo07FTuTvIi69B9/VI4H88dU7drQp48aenR1rdKfuSVDRHkzGzTIvqjXX1dpDwrCwUF9+TVtqlqTJtl/SzqRQlN8Tp6Ef/4zuz6kmQYNlNf3/vuzvYp3MiJKoMbHK69hzr/Bwdmu66+/Vt7zadNUjkAo/sxVO7tsITZxovpFBio+7+xZlSi3efPyuLpioUWXRnOr8ccfKldWVpbyVjz5ZNkEOf3xh/q12aGD+mIv7TFPn1bHOX0agNTBA1jW2YHVp9eRmZWJg40D4zzHcbf73dhYld7uy5dVfq+NG9Uompm6dbPzuXp53ULxXyLqourlSIsxfboqKP7FF8qLAurZb9mivjhatlSteXMV9Fanzm2kOG8xMjNV6olDh1RM09GjapYkqJmctWqp1z//rH6gtG+vBMAt8watZGJilDc3Li5/u3Yt+2/OpLgvv5xdl3PJEhWLNmaMmnUNauj47beVSJs8OVvglSOVUQZIo9GUBhHlRVq0SC2PHq1mKJbFl+zGjUooiahpgjfzRdCqFbz7LrJ8OVvWfcyCY+8Qe86Alq708x3Bgz4PUsuh1k2bXLeumtg1erQaBd24UY1AXL6svtd+/lk5fnx8lLPNywtatKhCmiQuThl+4oQaKj51Sg0bfv99tqexQQMVQxMbmy26pkyBJ57Qnquqho1NdomiUaOUtzc8XP34qJXj/f7jj9nD8La24OamEhWbExbrId+CqVcv9w+SwkhNzRZgOWuLtWihXOFubtnrrl1T/1+Jidlu80pCe7o0mqqEiPJ2rF2rVMO0aSpuqizYtEmlmhBRcVijRt30IU9fPc3nez7n6Lk9cPoMbrHwSEwL3Pvdp35Rlmb4shiIKO2yc6cagQsPz73dyUmF2nTooD57W7UqN1Nyk5WljDl2TM0SPHEi+4s3Jy4u8Oab2cMfaWm3XSDxHY2I+nVw5Ih6H5w/n3v72LEwfrx6feWK+gXh6lpmpbc0eRBRkwXi4lSMQo0a5X5KPbyo0VR1MjOVF2rzZvXL+P/+D3r0KJtjb9kC776rPnwmTMidE6gUJKQl8N3B7/jl1C8IQs1qNXmwZm/6rz2Kceiwcj3Vrw9PP22J9SpPoqNV7NehQ6qZZ0CaMQz1A9jNTaUga9FCtTKbFfnXX6rEzLFj2UNNZqpVUyf28FD5mdzc9PDgnUZCghJf5nbffco1C8oj9uWXyoPm6qreI+b3iY7Ru2XRokujqcqkp6uYg7//Vi6Zl14qO7Fy/Dg8/7wSXOPHZyeELMn+hw6BlxdZ7m357dRvLNr+MQmxUVg5u3C3/zjG2flRY+pj6jpElJvJ7NJv0wYefzw70DXH8XJl/C4jRFQlo0OH1KlOnVJxtVlZ+fvWrq3EV/PmKh+mudWtW8R3XWioek4BAdmzSH/+GT77TL2uX1/F8ZiHklq0uMOmXGpKxK+/wk8/KW9Y3u/jRo2U59vMpUvq/aUFe5VHx3RpNFWV1FSVLfrAAeV6eeWVsk0J0bat8pg1a3ZjwZVXEB0/rvI9padztHYmnz/ky+mk8xASgve1ajwSkUXzXj3VPunp6pd5ZCQMGaKi3t98E/btg9Wr4dNPlRi7fjzs7FTGbLPwKiMxZhjqu6pRI5XjC9To3enTavLZ6dMqTvfs2exqN/v35z6GjY0q4deoTjpts45j36YpLq1qU78+NNnwF06/rcAqKyv7OQUEqBiddu3ujPQBmrJj0CDVkpPVL4TQUPVGPXlSzUg1k5qqKkLY26vAfHNr1Ur108L+lkCLLo2mMklMVDm4jh9XcT6vv567tltpEVFJB+3slMtmxowbD1PkEFgWQXToELGSzAK/TDbbRkCULfVsnJlyoh7dHdpiJERlCyU7OyW4bG2zE2o1bqy+TK5cUakv2rdXw2/Nm6u+hw7lE3f5xFgZUK2a0kPt2uW+RRcvZqe+ioqCqIgsTKFh1D4XQqvDITRNPIZNVga/tniE3Q1UbF3TxC54xJo4/30AaXtU7HStWvWoWbMeLtG50wmZq6pUr66dE5obUL16dgZ8MxkZ2a8vX1ZvtthYNWsyZ3Z5W1v1OeLlpZZjY5U4q169YmzXFBstujSayiI2FmbPVoHX9esrb5d55trNIKLy3Bw5okScvX3BgiuvZymPtyrj4H5+rBXNso4RpBqZ2GLNvR3GMqpZMNWWTIOrUerD3rz/dZGWy1Pl6KhElK2t8gBduKA8YCkpamzP/CWR11OWU4yV01CkxSNmdYkuV/fDqf1w7iBkJmJqCGkukJYO11xc6ezuQLV6ajZ7bKwHm2p6qNyP4fmD+AvC2jp3ybuc5QnNNYtzNnOpQgcH9fjMf7Uz4w4jZymdpk3V//XVq8pdGxaW3S5dUq5ZM998owL5GzRQP+JcXbPTjjRsqN9IlYgWXRpNZRARoXLLREcrofHGG2VT3y0rSw3j/fqr+mA9cSI7YDcnBXmWrnurJDKCXXXT+SptFVGXU8Dfm64ZDZna/XEa+PZU+xcksDw8cgujvELMxUWVoQGVJNHbW6kJyO8p8/Iq3Pt1s0IsI0NlG9+3T2VgzTu7sEEDrDt2pLqPD9W9vanl7IwrMDhHFxF1CbGxyomXN4XQtWtqe0KC+mue3Z6zukxpsLFR4sveXnnvzH+rVVO3KOdr87KtbfZfW9tsDXyjZmOjmvm19tRVEWrVUvVRc9ZITUrK7dXKzFQP7dIl1f7+O3tbQICKGQX1xjx8WHme69XTD7kC0KJLo6loTpxQQwEJCSom6OWX1VjUzZKaqmYo7typvllnzcoWXDfwanHoEIwezflP/s0Xf31EiF0s2KTQzLkZ04Km4dvQN/e58gqswsjb77XX1C/wr79WYuepp1RKjPvvzy/kli/PbyOUXIiJKO9A7dpqOSNDxZqZy5TUqKHuU8eOalg0p8egEAwjuzKJq+uNb0NGRu5yd+ZaxebXKSm5axknJ6vHmZKS3VJT1XepOd1QRWNtrZpZhFlbZwszczOvK+hv3mZeb2WVvWx+bW45l82vraxyvy5qW85W0LrCmmHk3se8bH5d5cibAmHGDPVmiYyEM2dUO3tWuWWb5SjDdfas+iwCpeDNyXfNzdu7gnKt3Dlo0aXRVCS7d8OcOUo0dO6sZhWWxYfa5ctqKPH0afUB/OKLKmgdivRqmT1L8R6u/G/PZ/xy6heyamdRw7YB473Gc5fbXVhbleFQhGFAv34qI/TixWrW35o1KqXFpEkqd5j5W60g71dBYhEKjweLi4NnnlHbzEWLq1dXpUicnZW3wM2t3IdbbG2V5jPrvtJgDtNLTVUtLS37b3q6+pvzdUaGep2zmdfl/JuRob6fzcuZmaqZX5v/mkyq5UwEfqeSV5wZhnoLFbScc13O/fKuz/m3JOvybstuNhhGcwyjOVZWgRjOYPiAcU0w5qv+tS4J7uneOF89i11KHMaJUCAUDDCAbZO/Js3ZHsOAZgd+wi4lnpQ6TUmu3ZSU2k2QavaW+2H+t81rV97t5kiHwrbnXJ/3OAUdu6h+hb02Z22pDLTo0mgqit9/h48+UkOAAwaoNApl8WV/+TI8+6wa02rcWHnOcmZoLsSrxcKFZBzcz9ral1l2Yi5JGUkYGAxuM5gHvB/AuVoZeN8Kw9ERHnlETS/87DNVSuWDD9TU+YkTwc+v8DixwoRY7drqF/2778J//6vEprkYr4ODGso118WbPr38rq2cMIzsYcOycIyWBJFs0ZVTlOVcNjfzupx/87bMTPVvkLePeV3OlpWVf715Oeffol4X1kwmdW1F9TFvN/eF7G23JjlddR5g9yY0AIeMeOqlnKNe6nnqppynVtpFlm6oa+n+8OENOCefxh4w591PsKvNFfsmHK3di7311QC8lZgwJAuTlS0ViUgWJlNyjpaEyZRMZmZSvnUvvTSI++4rhou6HNCiS6Mpb0wmJR5Wr1bLY8aofFllNU5Rp44aGrtyBUaOhB07couUAjxGIsKO6ldYYP8Hl2IuAeDX0I+HOj5EC5cWZWNXcXB1VZ6/LVvUPTp9WqXM8PJSWfOLihNr1065eo4fVwH6YWHqJ7M5Vb3Zw2UYysvVoEG55wi7XTGM7CHEOz1xvlmE5RVrhS2LZItW8+u8/aF068zHK2i5JOvVcZ0R8bze1PqHcvR1PjYKiQ7H4fIFHGIv4BAbiWGKBWJp6utOm16qb80Lx+n4/SxSneqR7NKY5JqNVHNuSJJzI5JqNcVk2FjupTq+kJGRRmpqIunpyaSlJeV6nZ6eRFpa8vW/ajk9PfdyZmaq5ZgFPbOcpKV5ApUjunRyVI2mPImLg//8R33RW1vDo4+qnDw3S2am8myZg+8zMlSs2NSpN8yBdahWBt8c+IYTV04A0My5GVM6TsG/sX+Bp6ow0tPVcOP332cHLXXrpuK9zGk0rl6FPXtU27dPiS5Q/dPToXv37Bxh776b7d2bOVMJrXJMS6HR3FFkZanpvBERSN26pNWvT2JiIkmbN5P48cckZWSQZDKRaDKRlJlJksmk2siRal1SEklHj5KUmEgSkJVz5kcpfpAahoGDgwPVq1enRo0aVK9ePdfrnOv8/Pxo3Lhx2d+T3Pbo5KgaTYVy8iS89VZ2fp2ZM1WeqpslMhLmzlVJpu6+W3m5PDxUCZqC0i4AeHhwuoEd3x74lr379wJQs1pN7ve6n+DWwWUbt1Va7OxgxAg15LhypSqP8tdfqmaki4uKVbtyJfc+LVqo2LiAAJUE1jxce/x48eLByjkthUZzq5CVlUVSUhKJiYlKPOV4XdRyUlISSUlJmMwTU0D9r5qDDs1jyOaAw5yZiE+eVLNGADsrKxxtbKhhY0MNJydquLtTvXNnatSoodYlJFCjUSOqN2xIDWfnAsWUUSVnOeRGiy6Npjz4/XeVuiEjQ32Rz5p1c1HUoHzkf/wBn3+uhNyRIypmydGxwOB4cw6syIRI/nfof2w5uwUABxsHRrYbyXCP4djbVMGZSVZWSkwOHQorVsCiRbB1q9rm4gJ9+sCwYUps1a9f8DGKGw9WXmkpNJpKIK9wytsSEhIKFFCJiYkkXxc/pcXOzg5HR0dq1KiBo6Oj5XX16tVzLedsjocPU/3yZWpcvYpNTIyKu4yNVQccNkzViQX1Ofevf6nXhqE+S+vWVWku6tXLPQEnNVV5zKqoANOiS6MpS+LilNj680+1PHgwTJumgmFuhsREleNq+3a13LSp+nDKmdn9enC8WSxcaOzI93+9x+bwzQiCjZUNQ9yGMLr9aGra17w5e8qLjRvhww/VRIPHHlP3btAglVfILJYiI9UwZFYW9O2bf7q8mRvlDStpWgrQYkxT7ogI6enpuUSS+W9h68zLycnJlDZkyDCMfAKpoNcFLVevXh1b21IEzru55V+Xnq6GLXMGD1pZqRjOmBjl7Ta3EypEglGjsvu+/bbyptWpo4RZnTrZrXXr7FndlYQWXRpNWSAC27apmXgJCSoNxLRpSjzcLDt2qLiwCxfUr7rnn1ep1CdPzufVwsOD841qsPTwUrbt34YgWBvW9HXty1jPsdSvUYhnqKJJT1fiZe9eFa9lLpLYrJkajkhIyO7bvLnKsJ2crJK+/vijKg78xRdqfWAg3HWX+kC9EXmFWHHTUlRAqSLN7YWIkJKSYhFEOcVSYa/NfzNylv8pIXkFkZOTU6FiKa9wsrpRqbCKwM4u9+xrUELp7bfV68xM9YMzOlp5/C9fVrW2zCQnqz7mxLA5CQrSokujueWJjYVPPsnO+uzrC08+WfjQV0k5dUoNr9nZKXHXuHE+r424u3M0+girj6/m74i/LZ6t/q79Gd1hdMFiKzk52yOXUxx+9ZVKXDplSnZZor//Vq1LF9VAufGPHVPXmfdDMi8iSsCYs8CbhQ1Ahw7ZoqtNGzXTsKCcCNWrq9mZw4YpW9atU8MO69er1rq1EmC9exc/CU9xhyFBx4TdoZjFU06BFB8fn0s0FSakcsU5lQAbGxucr8ctOTk55RJO5tdOTk75tteoUaNqCKfyxMZGfeYU9vk6Z46KH7t8ObdX7MoVFfdZyWjRpdGUlvR0+OUXWLpUDf9Vr66EyoABNxdPsHcv/PabEhgeHsprVr++csVHRWV/2Xt4kNm2DTvO72D1+i84GXsSABsrGwa2GsiodvdSz/H6B9Pu3bBsmcp/df/9al1KCsyfr4L8c4qugwdV6oaxY7PXhYaqOLX69bNF14ULKieYq6s6jpkPP1RiZfhwlTdr/3412zAmJvd1tm4NnTqp2CwzhnHjJFQ2NtCjh2oREeoZ/PFHdh26BQvUr9nAQDWbMeev4IIozjAkVGypIk2ZIyKkpaVZBFNhwqmgllXKpFz29vYWgZRTLOV8XdA6Ozu7WyIovMpSrZr6cXSjH4OVgBZdGk1JMZnUl/ySJerXFKjM5k88cXP1E83xYO+8o86xYgX873+qFEetWkpwXf+yv5x8mT9O/8GvYb9yOVnZ4FzNmbva3MVdB5Op9fGfMM0Hul8XXeaUEi4u2edzcoL+/XOvAyUck5Jyl8Pp3l3luco5hGdlpWzLOfU6K0sFvl+5AmvXZovPM2fUr88hQ5SnqmNHlbDUMG4u8VOTJipNxsSJStht2aIE5qFDqn3yiZoxGhCgWnE/hAsqc3SzMWFaiJUZaWlp+bxON/qbkJBAZmZmqc5nb2+fSxQ5OzvnEkuFCalSxTlpbmu06NJoios5bmvxYvUFC8rLM2GC8tiU5pfp8eMqOD4iQnmYwsNVPEKDBkoo5QiQzzwYwq7GwvqLS9m3fx+CwIULNLuaxT2jXyLIexh21nYQ8q0SPWfOKLEEyvMzZ05ugWRnB08/nd8mb+/861q3zh8z1aoVPPBA9rCbefjT1xcOHFAC0cPj/9s78+g4qjvff35drd7UkrwvYBnb2Nhg/GyCw2IMmDAsgckkTGDC9l6AZE6YkMdAgBnIzJyEJAwzOTmPB3nJkDMJCYE8SEgIYRIIZBgg8GwwxjaWjWXhDQvb2PKmpVvdre6+749flaslS3jBkmz0+5xTp6p+Xcu9davv/dbvbrr//PPavuKLXwzbVPz+99oT87LLtH0aaJw3b1YRczAFViymcZ03TwXja6/BSy9p2Fau1OWhhzT+c+dqHE8+ue9G+H1xqG3CwIRYLxQKhT69S315ozo6Oigc4lxEsVhsr0AKhFNf60ohZeLJOFyY6DKM/bF7t1atPfecNt4ELbyvvRbmzz/0qsTVq7V34549eo05c7TKrFjUKrSqKsonz+Tt7StZ2PYKf9r9G1rfbYEJE4hGopxx7Blc+PZa5jRsRS4dD15Mr3vJJTq/YaXAqq3VtlMfhs5OHVdn1qwwzg8+qFWRM2aokPE8ncQ6l1NRE8wredllKqYqw9Tert6ySk/bxo3w1a/uW2W5ZIlWbU6YEE7e1hfV1Rr/889XAbZ0KSxerNfYskXnenz6aY3D8cdrfGbN0snHD3Z+nYOdquhQhdgRLM6CaruDbSze3t5+yOIpaPPU08vUlwcqWGKx2GGOvWEcHCa6DKM3nFNvzbPPaqPtoEHs2LHwV3+lQxUc7DAQjY1a/TV/vgqglSu1wE0k9FqXXw433UTx7ZU0vPwEC+PbWLT6n2nNt4ID1q7iuGwVF5xzC+fNuUznRhy2Eq4od28g+mGqOCvjv2WLtuVqatK5ETdsUPsPfxiKpwULVATUVQxB0VvvoFhMhVQlV16pca6s8slm9doTJ4a2YhG+/W2tunziibA68tVX9fmdemr3+1dSXQ1nn61LqaRCd/lyFTBNTdpJYe1a+M1v9Phx4/RZBsukSVoN+kEcaJuwQxVivdn6wUtWLBZ7HdOpL1sgnDKZzCFX2wXiqbKR+P6EUzqdJh6PW5sn46jERJdhBORyWiAvXqztgvbsUXskotPRXHyxtkU6kMw+KBBnzlTvz3/8h05Lk83qsAi/+pUWlmPH4opdNA+LsHyG8NbL36KheQmdTa9BtApOOYXxNeOZVz+PswrnMTVxDHLCRRBMRn04uj87p6Pbr1+vS1OTerQyme7HeZ56hoIpekA9WB+GYEK/gNmzVdRVjjWUyaiwCgY9DHjySQ3nd74Tiq5XX1WP1jnnaKeBIH5B+E8+OXxmwbyNDQ060Ozatfoc3n8/HIwVVGhPmhQuEyZor84Paot2uIXYAYgzN306+XyejmXLyCxbRmbiRDrGjNGBMBsb6WhsJDNqFB01Nb0OnJnP5/ebXH0Rj8cPqqF4sDbxZAw1THQZQ5euLu3t1tioYmvFCrUFjBmjQxlccMEHjybf0+PQ2KhipK1NG4/PmqXb2SxUV5PPZ1m/5Fma5k6h6cuzaXjj9+wenYbtz+r1IlBfNYqzqmcw79xvMumYk7RgmvMh4+ucNtb3vLBH3x//CP/+71p12JMRI0KPz/Tpug6qC/ubyoK4rk4HR+3JvHnqmZowIbQ1NGgnh8mTQ9H19ttw991wxhladRmwfLl2ULjmGhXWpRJs2qSic80aFWHNzeF4P8GQIAGjRoU9pMaN0zHUxo7V96a2dl9xvh8hVpo2jWwmQ1aEzIYNZCIRsuUymc5OnWpl5UqyInQsX072qafIbNxIJpWio62NzF//NZmRIym1tmq8ymWN05w5YVwrbem0iue2Ng1rOk0kEiFdLlOTy5Guryc9cWK3cZ16eqQq19bmyTAODBNdxtAgl9MhDpqbQ6G1bl33qi0RFRdBT7fjjutecPYUV4WCNqy/+Wb1xowdq4N1NjTAjh04HC3RPJvqMjSfO5Xm1zewNr6Td0dFKXc+DcvSUJWH6gjDSTJn0nnMHjub2eNmM+qqkYfWVsw5LUy3blWPzcyZ4ZhVDz0ETz0FN9wQeqhqa1VwjRihDeMnT9axsk444fBUU/YnlaNQB1x0kcahsv3a9u0ax8oxkwoFuOceFaBPPqk2z9MR8bdsUSE2ZYq+HytWaJpmMtpbdcsWfbY7duBaWsgvXUpnqURnuazrUolOzyObTtOZTJJNJMjG43RWVZH1PLIiZMtlss6RLRbJdnaS+cUvQk9TbW0ohh59VG3HHBPaVqzQNM7nNV6RiHoLSyVi2SzpSITqujrSnZ1Ujx5NOpGget060iNHUt3WRnr+fNInnUT63ntJl0qkgfR995GIx5Hrr9dn096ug/BWVmNOn969jdnrr+t/Yfjw0HYUtUUzjMGgX0WXiFwM3A94wI+cc//S43fxf78EyALXOeeW9meYjI8o5bIOUrpjh44HFaw3b1ah1XOMKFBRM3GiNuT2PJ3r77TT9LfGRvjlL7WgmD1b96++Wq9bKsEZZ9DVlae1pZndretpSUfYPsyx/U/30TIqyfazO9icKJCvTsJp1ZDOQvVxsH49kdFjmXTsyZww8gSmjZjKiedPYOKEk/dfzdLVpY36d+/Wqs9gu6UljPOOHSowA+64Q6vaQL0xqVR3b96cOVqw99Um6mhjyhRdKnDnnktpzhzyHR3kd+0in8+T27GD/PHHk8vnyb/xhtpyOXK//S25zZvJxePkhg1T2+LF5N54g85p08hNm0Yn0Ol5dC5fTi4SwY0cqUIln9f06OpSERSkZzDGk8i+QlpE371oFIlGSSWTOl9dMKFvdTXp2lrdr62luq6OVG0t6eHDqW5vJ/X++6Q//nHSp5yiU7GsW6fVjl1dWmX5zW/qfZqa1DZ6tArKhgYN43HHqYh8R8d4O+Q2Zgdq+6C2aAcq2j6MzTAGmX4TXSLiAd8HLgDeA94Qkaedc29XHPZJYJq/nA78m78eWPrjjz0QGchHIYzTp2thsHKlNlyfOlXbPOXzuqxZo+1txo9Xb0w2q9U+69ZpFUk0qlVmW7Z0qyrBOd1vbdXG1On0Xo9PKZ+jcNUVFM5fQGHTRgrXfI58oZPckz+k89x55DrbyS15jazrIjMsRcedX6WjeR0dx71Lx5hW9sQde0a+SCYdgxMisM3vgVW9G6QJ8mmYPRF27mR4/QnUT5hLfWoc9fXDmXLOGKbUTiLeVdb4bctD5/uwdL029g6qMZ95RkeL/9SntFoMwkm090cyqQJr/PjuYurii7VnY2XBH49/uHGyesE5R6lU6rYUi8W9S8/9YrFIV1fX3nXP7a6uLgqFwj77wdLV1UU+n9+739v2Bw5u+e1vh9vZrD6/l15SMQQqaEslHYYjeHbt7eplqqkhNnEiyWSSVCpF8uWXSZZKJD/zGVLxOMlSidTixaQ2bCA5cyapceNI5fOktm4ltXo1qXSa5KRJVHseCRHknXf0XsFo25mM9ujM59XzGFTvdnbqb8lkOFtBNKrHjRyp7/+4cTpmWqGgPUszGRVZL76onrrdu/VDpapKPaOep/FvbFRbZ6d2XNi9W8OzY4e2TYxE9L81dqw+m//8T30uwdhu27Zp2zoRvcb48Xq/xYv1+jfeqP/5WExnPzjxRBWFgZftcIi73mwH0zP0SM4zLYxHtRCXQ50cc78XFjkT+IZz7iJ//y4A59y9Fcf8EHjJOfeYv78GWOCc21p5rblz57olS5b0SzhpbOT6yz9OLmg0nK4BATIdUPafzbBhmtnt3AGlsn65plJawO/coceVSlp4zZihGcqGDepxcE4L/UjEvyaAUxFQXQ27dobnJ+JQOwx279TeasWSZhjj/MzNOb22F4WoB7lOPQ6gKgZeBIpdahMg4ul2qYgTUVs8rtetqdEqClfWe0tEw1ioaEwb9dtplMt6bxFcVZVer1TUcwCSCc3sSyU9RwQ3Yji07NDqGb+ccvGY3rtU1GNEcMkkdBVwgfclIpTjCX1GhQLOlXFeFCfg6mphz25c2VEWcALlaARXdjjnKEcE5wnldJpysUA5l6PsH1NOpSiJo5TN4ARNz/p6TaPm5oo4R/c+M32OAjVpLZDa2jT9BThuEpKuIRlLknx7LTXtedIzZlMzbSbpWJqaVe9Q9/Y64s7bOwFtb/+0brZPfQrnD0jqXntNq5FOOw3nj5vlNm6ERYtwySQukYBgnU7jUilcKgXV1bhoFIeKn0BsVK572ittwbqvpVQq7bMfLOVymWKxeMijd/cnnucRj8eJx+PEYjESiQSJRGKvLR6Pk0wm99qSyWQ3W+WSTCZJeh7JtjYS8TheZa/Mxx/X9+SGG8IOAj/9KSxapLZgNP+XXtKOFWefDV/6kv4XW1p0+qhIBG67TQVKJqPXfO899VjW1amQWb1aC5DKKZhyOX1nEonuY62tWKG/zZoV9sTctEm9wLW1KsTSaQ33qlUa7hNPDNt9LVyoeUB1tXYkAa1aLBY1P5k7V21Llmg+EI2G8Vy2TOMRdEZpa9OPpnJZBdHUqeqZ3LJF4xMwc6b+9xobNV8plcJOLKtX636hoF7oqioNt+dpeGfM0Dx7xQoN35492gFi5kztPVwu6/OYPFk/+l55RW1dXer5rq/XWSFKJc33JkzQZfhwFZjFop4/fbpe8/nn9fx8XuMzebJ+MAXhnjxZBfNbb/l5re9hj8f147FU0rBPnapxevddva/nabvEHTv0mXmeLgsWaPnS2KjXiER0wOENG/T5btwYnj97tsZ/7Vo9zvP0Pdq0KRTXnqcfd8GYdqmUHnvZZXreokV6n6oqtW3frsPneJ4ee9llGvdf/ELTrqZGZ9MAFf2lkr5LV1yhntbly/UDsqpK38fPflY/Yn796/D8z35Wtx9+WM+vrQ2bEzz6qD6nVAquukptjz2m71kspgMlg9ZUtLVpOINxAJ94QtN5zBgNbz8KLxF50zk3t6e9P6sXjwUqSjPeY18vVm/HHAtsZaBoaOCF9gz5ol/87Wrb95iW3YB071FVyEBr1hcjaOlZyMFbq9RWLIXHFzr2veaudtjdse/57e+HoimwbWhWYSb4QrCX7tn5XLgdnEvXvraMb+vIVdzH9a4IqBBgvV6zrLbOjvD8SMG/zzYVKJXkKntHOV06s7oOzhcHnTm9YVB4R50vODsh2yOgUg4vJ/5vrVk9t+SHWxxEC7qdD/RoEdm5g0hVnMg2IVJ2eE6IxDxd50pEHESdEE06PIFoKY1XKFHlVVE1fCrRnO91eH8XtLXRURelI+O/us3NsH2XZrCRSLiuXDwvXHueFlqVnoxRo7QwCka9B/UuBJRKWij37GV4BBCJRIhGo3vXweJ53t51VVUV0Wh077pyu6qqqtclFovt3Y7H43ttlUsgrCr3owc7vMeBUDnmWEDl1EkB112nSyXz52vVbiSiBUpdnabtffdpup5ekVVOmaLeo098IvSAvfmmCohTT9VCNJ9XYfa972kBd/31Wrjk82rbtk1FX02N2p9/Xj1PZ52lAq1Y1MJ61y71Vl1yidpKJX2Xs1mtfh89Wv9bmYyKgzlzVHwEYqKhQc+fPDkUagsXaqE9bpy+3xs36vnOaXiCZwBamFZVdR+0Np/XYwKPrHP6/3AubM8WtGUsFsPq83JZC92uLr3f+vV6rYT/kbhpk56by6ktl9M45XJ6/URCr7lhg4YrmdTnEI/rMevW6X2zWT02GMcuEMuJhG43NalQCWyZjHrwY7FwyJhMRsVkoRB+1Hd0qHDcs0fjEHwoL1umgjmX02eVzWpabt0aPtcgrG+9pYKmWNT3IpvVfGbbNn0GdXVqe+01fT5B/DIZTbfNm3Xb8/R+CxdqeAIva1ubCsxCQW1BWrz6qqZBR4e+F+WyittjjtE4ZTKaxoWCemo7O/XYWExrJ4Lew8FYfs51tzmncXr5ZbW1tel+Pq8fNKDXyef13pW2WEzjEkynNsD0p+jqrYFKz6L9QI7pX2bN4kvDRtLV1qrBmThRQ7V5swon0EyvJg2Na9QDUiypy3zMaLW5MhS6tJCcPz8cEbvDF1UTjlXv1HvvQbmkMayvhxHDu19z9GjNmJqaQq/WyJF6/9Wr9dx8Qb/iYjH94wTCbsQI/QPu2rXXK8WwOhVpra16jIhev8sP68aNSKmkL2tdnf5hKmdlHzVSn0lrKxL0fBozVv8ou3aqp0sicPwUZPdu2N4CyQTiRWHembCiQZ9jJIJEIvr17Gd+UlWFRKtg/nxk127kzaXgRYgkknDhhUgiAcuWI01riFTXIJ6HXH0NLFyILF9ORCJEIhHk3AVIoYvIK/+PCOBFq4h88lKkXMb73TNEEKKpNN5X/ieeeET+5V+JFItIsgZu/qqmw+LFmuEcc4w+HxHNJLduVS/C+PFhe5xAJI0ZE1Y/tbcjgUczKNzLZY1zjzY8vbXbCmw9fxOR/dqC/cpr9FyCCXAjkUivvwXrntuV+57n7bX13K5cApsNA7AfotF9p1+KRkOvUSXnnbev7dRTdQlIJNRTcv/9+x774x/va7vkkt7D9Y1vaCEVvNug3rdyWQvtntWrtbXhh0I2q1WwqVTYeaNcVpElEo7T1tioVZyTJun8mKmU2hcu1GXuXM1Hy2X1irzwghaOF16oeduaNeppqa9XWyymtldf1Xzw9NP1/9nUpOI0Hte8B+DWWzX/GjZMZ2OYPl3bPQZ57Y03qlfrW98KPSJf+IIOM+Kcdi4oFDS//Ju/0Smm7rxT89Bhw3TGhcmT9fxiUcNz3XWa3z7wQHjNq6/WcP/sZ2H7u2uv1Ws/9pjGPRqFL39ZP7oefTQUmHfcoULwkUf2DqLMP/6jPvvNm9WbUyrpb1/4goqkxx/XNIhGNd7NzTrFWDBky9//vfbyfeSRcNzAO+/UfPHBB3U/kdDjWlrgu9/V66VS+kxyOfj610Mhfccd+ry/9rVQMN5+u6b5okX6LCIRPf/227WsvOee8Pzbb9fz77orLJ9uu01t//RPKqZSqbA38t13h4IxsN1zT+jpuvVWtd17bxieYCL7AcaqF+GjX2dtYTyi6vQNwxgkjob8yML4kWjT1Vf1Yn+KrijQBJwPbAbeAK52zq2qOOZS4Cto78XTgQecc6f1vFa/iy7DMAzDMIzDxIC36XLOFUXkK8Bz6JARDznnVonIjf7vDwLPoIJrLTpkxPX9FR7DMAzDMIzBpF/H6XLOPYMKq0rbgxXbDripP8NgGIZhGIZxJBAZ7AAYhmEYhmEMBUx0GYZhGIZhDAAmugzDMAzDMAYAE12GYRiGYRgDQL8NGXE4EZEW4N3BDodhGIZhGMYBcJxzbnRP41EhugzDMAzDMI52rHrRMAzDMAxjADDRZRiGYRiGMQCY6AJE5GIRWSMia0XkzsEOz1BFROpF5EURWS0iq0Tkb337CBH5o4i846+HD3ZYhyIi4onIMhH5nb9v6XIEICLDRORXItLo/3fOtLQZfETkVj8fWykij4lIwtJlcBCRh0Rku4isrLD1mRYicpevB9aIyEWHMyxDXnSJiAd8H/gkcBJwlYicNLihGrIUgduccycCZwA3+WlxJ/CCc24a8IK/bww8fwusrti3dDkyuB/4g3NuBjAbTSNLm0FERI4FbgbmOudORqfCuxJLl8Hip8DFPWy9poVf5lwJzPTP+YGvEw4LQ150AacBa51z651zBeBx4NODHKYhiXNuq3Nuqb/djhYex6Lp8bB/2MPAZwYlgEMYEZkAXAr8qMJs6TLIiEgtcA7wYwDnXME5twdLmyOBKJAUkSiQArZg6TIoOOf+BOzqYe4rLT4NPO6cyzvnNqBzQ592uMJioksL9eaK/fd8mzGIiMgk4BTgdWCsc24rqDADxgxi0IYq/xv4O6BcYbN0GXymAC3AT/yq3x+JSDWWNoOKc24z8F1gE7AVaHXOPY+ly5FEX2nRr5rARBdILzYbR2MQEZE08GvgFudc22CHZ6gjIn8ObHfOvTnYYTH2IQp8DPg359wpQAarshp0/PZBnwYmA8cA1SJy7eCGyjhA+lUTmOhSFVtfsT8BdQMbg4CIVKGC6+fOuSd98zYRGe//Ph7YPljhG6KcBfyFiGxEq98/ISKPYulyJPAe8J5z7nV//1eoCLO0GVz+DNjgnGtxznUBTwLzsHQ5kugrLfpVE5jogjeAaSIyWURiaAO6pwc5TEMSERG0bcpq59z/qvjpaeDz/vbngd8OdNiGMs65u5xzE5xzk9D/x385567F0mXQcc69DzSLyHTfdD7wNpY2g80m4AwRSfn52vloG1VLlyOHvtLiaeBKEYmLyGRgGrD4cN3URqQHROQStM2KBzzknLtncEM0NBGR+cArQANh26Gvoe26fglMRDOzK5xzPRtFGgOAiCwAbnfO/bmIjMTSZdARkTloB4cYsB64Hv2gtrQZRETkbuBzaK/sZcAXgTSWLgOOiDwGLABGAduArwNP0UdaiMg/ADegaXeLc+7ZwxYWE12GYRiGYRj9j1UvGoZhGIZhDAAmugzDMAzDMAYAE12GYRiGYRgDgIkuwzAMwzCMAcBEl2EYhmEYxgBgosswjEFHREaKyHJ/eV9ENvvbHSLyg3665y0i8j96sU8SkZWH8T4xEfmTPwefYRhDGMsEDMMYdJxzO4E5ACLyDaDDOffd/rqfL4BuQEdv71eccwUReQEds+nn/X0/wzCOXMzTZRjGEYuILBCR3/nb3xCRh0XkeRHZKCJ/KSLfEZEGEfmDP4UUInKqiLwsIm+KyHPBVB89+ASw1DlXrDjnLRFZBNxUcf9JIvKKiCz1l3m+/RER+XTFcT8Xkb8QkZkistj30q0QkWn+IU8B1/THMzIM4+jBRJdhGEcTxwOXopMJPwq86JybBXQCl/rC63vA5c65U4GHgN5mmDgLqJzA+yfAzc65M3sctx24wDn3MdRT9YBv/xE68jsiUofOq/cMcCNwv3NuDjAXnccNYCXw8UOMs2EYHxGsetEwjKOJZ51zXSLSgE7b9Qff3gBMAqYDJwN/1Cnv8ICtvVxnPDoXXiCahjnnXvZ/ewT4pL9dBfwff6qdEnACgHPuZRH5voiMAf4S+LVzruh7yv5BRCYATzrn3vGPL4lIQURqnHPth+lZGIZxlGGiyzCMo4k8gHOuLCJdLpzHrIzmZwKs6sVj1ZNOIOFvC9DXfGi3onO1zUZrBnIVvz2CVhleibYPwzn3f0XkddQb95yIfNE591/+8fEe5xuGMcSw6kXDMD5KrAFGi8iZACJSJSIzezluNTAVwDm3B2j1J1yH7m2v6oCtzrky8N9Rz1nAT4Fb/Gus8u83BVjvnHsAeBr4b759JNDinOv68FE0DONoxUSXYRgfGZxzBeBy4F9F5C1gOdreqifPAudU7F8PfN+vHuyssP8A+LyIvIZWLWYq7rUNFW8/qTj+c8BKEVkOzAB+5tvPQ9t8GYYxhJHQO28YhjF0EJHfAH8XtLs6hPNTaFuyjznnWvdz7JPAXc65NYdyL8MwPhqYp8swjKHKnWiD+oNGRP4MaAS+dwCCKwY8ZYLLMAzzdBmGYRiGYQwA5ukyDMMwDMMYAEx0GYZhGIZhDAAmugzDMAzDMAYAE12GYRiGYRgDgIkuwzAMwzCMAcBEl2EYhmEYxgDw/wGbzPnzdWU3+wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.371, 'epsilon': 0.1368, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACkZklEQVR4nOydeViV1fbHPy8g8+CsOKMiKKOgOIs4oWmmlqnXLC0brGz6ZeW9t2y693bLsmzudtMyr5qaZmZllmNajjgriOIAKCiCjMI5rN8f23OYFRAEdX+eZz/nvPud1vseOO/3rL32WoaIoNFoNBqNRqOpXmxq2gCNRqPRaDSaWwEtujQajUaj0WiuA1p0aTQajUaj0VwHtOjSaDQajUajuQ5o0aXRaDQajUZzHdCiS6PRaDQajeY6YFfTBpSHhg0bSps2bWraDI1Go9FoNJqrsnPnznMi0qh4/w0hutq0acOOHTtq2gyNRqPRaDSaq2IYxonS+vXwokaj0Wg0Gs11QIsujUaj0Wg0muuAFl0ajUaj0Wg014EbIqZLo6ksZrOZlJQU8vLyatoUjUZzg1CnTh3q16+Pra1tTZuiucmoNtFlGMYXwHAgSUT8S1lvAO8BtwFZwCQR2VVd9mhuTVJSUnB0dKRhw4aoPzmNRqMpGxEhIyODlJQUGjUqMflMo7kmqnN4cR4w5ArrhwLel9tDwMfVaIvmFiUvLw9XV1ctuDQaTbkwDANXV1ftHddUC9Xm6RKRjYZhtLnCJncAX4mIAH8YhlHXMAxPEUmsLpvKYv9+yM+/Pucq77O/rO1K6zeMkv2W5cL9hbezvC+r2diUfG9jU7LZ2qpmeV8btY0WXBqNpiLo7wxNdVGTMV3NgVOFlk9f7rvuouv11yEz83qf9ebEMMDOTgkwy2udOgXN3r7gvaMjODgUfXVyAhcXcHZWzcUF3NzAwwNcXdUxb0T+8Y9/8L///Q9bW1tsbGz49NNP6dat23W3IyoqioSEBG677TYAVq5cycGDB3nhhReYNGkSw4cP56677iqyz/r165k1axarVq267vZqNBrNzURNPsJK+ykh190KoFMnuHSpfNvKNVhYmX0L71Pa/qWtv1KfSEErvly85ecXvFpa8WWzueDVbFbr8/JUqw5cXMDdHRo0gIYNi7amTcHTUwm72sTWrVtZtWoVu3btwsHBgXPnzpGbm1sjtkRFRbFjxw6r6BoxYgQjRoyoEVs0Go3mVqMmRddpoGWh5RZAQk0Y8tJLNXHWmxOL+DKZCl4tIqxwy81VQtfScnIgO1u1rCzVMjPV68WLBS0zU7XEMvyhhgFNmkDz5tCiBXTuXCDUamrEIDExkYYNG+Lg4ABAw4YNgYJKCw0bNmTHjh08++yzrF+/ng0bNvDkk09evh6DjRs34ubmxptvvsn8+fOxsbFh6NChvPHGG8TGxvLYY4+RnJyMs7Mz//nPf/D19WXSpEk4Ojpy4MABzp49yzvvvMPgwYN56aWXyM7OZvPmzcyYMYPs7Gx27NjBBx98AMDatWt57733rPsMHz68yLVkZmYybdo09u3bh8lk4uWXX+aOO+64jndTo9FoblxqUnStBB43DGMR0A1Iq4l4Lk3VYonxqg5vkwhkZEBqKqSkwLlzRVtCApw5U9B27lTDlkeOqOHMd95Rdtnbq/6qEmHff3/l9YMHD+bVV1+lQ4cODBw4kLFjxxIeHl7m9rNmzeLDDz+kV69eZGRk4OjoyI8//siKFSv4888/cXZ2JiUlBYCHHnqITz75BG9vb/78808effRRfvvtNwDi4uLYsGEDsbGxREREcPToUV599dUiImvevHlFzl3aPoX5xz/+Qf/+/fniiy9ITU0lLCyMgQMH4uLiUsG7ptFoNLce1ZkyYiHQD2hoGMZpYCZQB0BEPgFWo9JFHEWljJhcXbZobg4MQ8V3ublBy5alb2MyKS/Y6dOqubsXeM8sXjXLsSxxZI6OSihWF66uruzcuZNNmzaxbt06xo4dyxtvvFHm9r169eKZZ55hwoQJjB49mhYtWrB27VomT56Ms7MzAPXr1ycjI4MtW7YwZswY676XCo2T33333djY2ODt7U3btm05fPjwVW292j5r1qxh5cqVzJo1C4CcnBxOnjxJx44dK3RPNBqN5lakOmcvjr/KegEeq67za25N7OyUILOIsoQEaNZMCa++fZVH7MwZ5SkrTP360K4dtGmjvGJVja2tLf369aNfv34EBATw5ZdfYmdnR/7labM5OTnWbV944QWGDRvG6tWr6d69O2vXrkVESsyoys/Pp27dukRFRZV6zuLbl2dG1tX2ERGWLVuGj4/PVY+l0Wg0mqLoMkCaWwInJxXjFRwMQ4bAqFHQrZsSZ3Z2SoRt3w7Ll8O2bSVF2bVw5MgRYmJirMtRUVG0bt2aNm3asHPnTgCWLVtmXR8bG0tAQADPP/88Xbp04fDhwwwePJgvvviCrKwsQCV9dXd3x8vLiyVLlgBKEO3Zs8d6nCVLlpCfn09sbCzHjh3Dx8cHNzc30tPTy7S1tH0KExkZyfvvv49cnomxe/fua7w7Go1Gc+twg07A12iuDScn5dlq104F/J8+DUePwtmz6vXoUTVDMjBQzYi8FjIyMpg2bRqpqanY2dnRvn17PvvsMw4dOsQDDzzAP//5zyLpI959913WrVuHra0tnTp1YujQoTg4OBAVFUWXLl2wt7fntttu45///CcLFixg6tSpvP766+Tl5TFu3DiCgoIA8PHxITw8nLNnz/LJJ5/g6OhIREQEb7zxBsHBwcyYMaOEraXtU5gXX3yRp556isDAQESENm3a6FQSGo1GU04MuZYcCNeJLl26yI4dO2raDM0NSEJCAs2aNSv39hcvKsF17JiaYQkqFUXnzlCvXjUZWQ2UlXNLo9GUj4p+d2g0hTEMY6eIdCner4cXNZpCuLtDSIgafuzcWc10PHMGfvoJtm7VSXQ1Go1GU3n08KJGUwq2ttCxI7RtCwcOQHQ0HD8OJ0+quLAOHWpnySMLxVNBaDQajabm0Z4ujeYKODgoz9fw4dC6tYr/2rkTNm4sfxUDjUaj0WhAiy6Nply4ukKvXtCnjxpyjI+HH3+EpKSatkyj0Wg0NwpadGk0FaBlSxg6FBo1UglXf/0V9u27tpqcGo1Go7k10KJLo6kgLi4wYAD4+anlfftg82ZV+Fuj0Wg0mrLQokujqQQ2NhAUBBERarjx1CnYtEnFfBXH1dX1qsfbtGkTfn5+BAcHk52dXSFbVqxYwcGDByu0z5Xsys7OJjw8HHOhi5k9ezaOjo6kpaVV+DxVQVRUFKtXr67288ybN4+EhATr8pQpUyp1b+Pi4vD397/qdkuWLKFjx45ERERU+BzFba0qu0rb5uWXX7aWfiov/fr142qpft59911rwt+KUtm/icJ2DRw4kAsXLlTq/BpNZdCiS6O5Bpo2VV4vBwcV57Vhg6r/WFEWLFjAs88+S1RUFE5OThXat7Kiqyy++OILRo8ejW2hgpQLFy6ka9euLF++vMrOUxFqSnR9/vnndOrUqdrO99///pePPvqIdevWVXjfyoiu2kZNiK7CTJw4kY8++uiajqHRVAQtujSaa6RePSW8HB1VTq/16yEvr+R269evp1+/ftx11134+voyYcIERITPP/+cb775hldffZUJEyYA8NZbb9G1a1cCAwOZOXOm9RhfffUVgYGBBAUFMXHiRLZs2cLKlSuZPn06wcHBxMbGEhsby5AhQwgNDaVPnz7WotXHjx+nR48edO3alRdffLHM61mwYAF33HGHdTk2NpaMjAxef/11Fi5caO0/cOAAYWFhBAcHExgYSExMDC+++CLvvfeedZu//e1vzJkzh/Xr1xMeHs7dd99Nhw4deOGFF1iwYAFhYWEEBAQQGxsLqKSujzzyCH369KFDhw6sWrWK3NxcXnrpJRYvXkxwcDCLFy8mJSWFkSNHEhgYSPfu3dm7dy+gPDL33XcfgwcPpk2bNnz77bc899xzBAQEMGTIEPIufzCvvvoqXbt2xd/fn4ceeggRYenSpezYsYMJEyZYPY6FvSI//fQTISEhBAUFMWDAgHL/fcybN4/Ro0czZMgQvL29ee6556w2bN68mUceeYTp06djNpuZPn269XP/9NNPrcd48803CQgIICgoiBdeeKFUW3fu3El4eDihoaFERkaSmJgIwM6dOwkKCqJHjx58+OGH5ba7LPr168fzzz9PWFgYHTp0YNOmTYDykI4bN47AwEDGjh1bxGO7Zs0aevToQUhICGPGjCEjI4M5c+aQkJBARESE1dNX2nYA27dvp2fPngQFBREWFkZaWlqJv4nMzEzuv/9+unbtSufOnfnuu++uateIESOK/E1rNNWOiNT6FhoaKhpNZYiPjy9YGD68etpl0tJEli8XWbBA5OefRS5dUv0uLi4iIrJu3Tpxd3eXU6dOidlslu7du8umTZtEROS+++6TJUuWiIjIzz//LA8++KDk5+eL2WyWYcOGyYYNG2T//v3SoUMHSU5OFhGR8+fPl9hXRKR///4SHR0tIiJ//PGHREREiIjI7bffLl9++aWIiHzwwQdWuwpz6dIladKkSZG+1157TV599VUxm83SunVrOXv2rIiIPP744/L1119b98vKypLjx49L586dRUTEbDZL27Zt5dy5c7Ju3Trx8PCQhIQEycnJkWbNmslLL70kIiLvvvuuPPnkk9ZriYyMFLPZLNHR0dK8eXPJzs6WuXPnymOPPWa16fHHH5eXX35ZRER+/fVXCQoKEhGRmTNnSq9evSQ3N1eioqLEyclJVq9eLSIiI0eOlOXLlxe5dyIi99xzj6xcuVJERMLDw2X79u3WdZblpKQkadGihRw7dqzE/qVx/Phx8fPzExGRuXPnipeXl6Smpkp2dra0atVKTp48WeJ8n376qbz22msiIpKTkyOhoaFy7NgxWb16tfTo0UMyMzOLnLvwvrm5udKjRw9JSkoSEZFFixbJ5MmTRUQkICBA1q9fLyIizz77rNWu8thuYebMmfLWW29Zz/vMM8+IiMgPP/wgAwYMEBGRt99+23rOPXv2iK2trWzfvl2Sk5OlT58+kpGRISIib7zxhrzyyisiItK6dWvr33NZ2126dEm8vLxk27ZtIiKSlpYmeXl5Jf4mZsyYIfPnzxcRkQsXLoi3t7dkZGSUaZeF9u3by7lz50rchyLfHRpNBQF2SCl6RidH1WiqCHd3GDhQzWg8d07l8urfv+g2YWFhtGjRAoDg4GDi4uLo3bt3kW3WrFnDmjVr6Ny5M6BqN8bExLBnzx7uuusuGjZsCED9+vVL2JCRkcGWLVsYM2aMte/S5YRiv//+u7Ww9sSJE3n++edL7H/u3Dnq1q1bpG/RokUsX74cGxsbRo8ezZIlS3jsscfo0aMH//jHPzh9+jSjR4/G29ubNm3a0KBBA3bv3s3Zs2fp3LkzDRo0AKBr1654Xi5k2a5dOwYPHgxAQEBAkeG1u+++GxsbG7y9vWnbtq3VU1eYzZs3W6+lf//+nD9/3hpvNnToUOrUqUNAQABms5khQ4ZYzxMXFwfAunXrePPNN8nKyiIlJQU/Pz9uv/32Euex8Mcff9C3b1+8vLzKvPdXYsCAAXh4eADQqVMnTpw4QcuWLYtss2bNGvbu3cvSpUsBSEtLIyYmhrVr1zJ58mScnZ3LPPeRI0fYv38/gwYNAsBsNuPp6UlaWhqpqamEh4cD6nP/8ccfr2irUUbW38L9o0ePBiA0NNR6Tzdu3MgTTzwBQGBgIIGBgYC6dwcPHqRXr14A5Obm0qNHjxLHL2u7I0eO4OnpSdeuXQFwd3cv1b41a9awcuVKa+xZTk4OJ0+eLNMuC40bNyYhIcH6d6rRVCdadGluHb7/vtpP4eqqhNeaNSqH165dRdc7ODhY39va2mIqJQBMRJgxYwYPP/xwkf45c+aU+UC0kJ+fT926dYmKiip1/dX2d3JyIicnx7q8d+9eYmJirA/z3Nxc2rZty2OPPcZf/vIXunXrxg8//EBkZCSff/45/fv3Z8qUKcybN48zZ85w//33l3rtNjY21mUbG5si96G4jaXZLKXk6LBsV/i4derUsfZbzpOTk8Ojjz7Kjh07aNmyJS+//HKRay4NEbnqvbsS5f3c33//fSIjI4v0//TTT1c9t4jg5+fH1q1bi/SnpqZW2O4GDRqUCC5PSUmxCk4ouJ7i11LWZzVo0KCrDuOVtd3evXvLdQ0iwrJly/Dx8Smx7kr75+TkVDiOUqOpLDqmS6OpYlxcVBJVGxtVPqiiObwiIyP54osvrPEs8fHxJCUlMWDAAL755hvOnz8PqAchgJubG+np6YDyAnh5ebFkyRJAPYj27NkDQK9evVi0aBGg4rZKo169epjNZqsIWbhwIS+//DJxcXHExcWRkJBAfHw8J06c4NixY7Rt25YnnniCESNGWOOqRo0axU8//cT27dtLCIjysGTJEvLz84mNjeXYsWP4+PgUuUaAvn37Wq9h/fr1NGzYsEwPSHEs19awYUMyMjKsniWgxHks9OjRgw0bNnD8+HGg4N5v27aNe++9t8LXWBqRkZF8/PHH1riz6OhoMjMzGTx4MF988YU14Ly0z93Hx4fk5GSr6MrLy+PAgQPUrVsXDw8PNm/eDBT93OPj40uNTXN1dcXT05Nff/3Ver6ffvqphEe2OIU/k/3791v/Hrp3787vv//O0aNHAcjKyiI6OrrENZS1na+vLwkJCWzfvh2A9PR0TCZTic8qMjKS999/3yrId+/efUW7QP1/nDlzhjZt2lzx2jSaqkKLLo2mGmjYEC6PhmA2q+HG8jJ48GD+8pe/0KNHDwICArjrrrtIT0/Hz8+Pv/3tb4SHhxMUFMQzzzwDwLhx43jrrbfo3LkzsbGxLFiwgP/+978EBQXh5+dnDSh+7733+PDDD+natesVUz8MHjzY+pBetGgRo0aNKrJ+1KhRLFq0iMWLF+Pv709wcDCHDx+2ig97e3siIiK4++67i8yALC8+Pj6Eh4czdOhQPvnkExwdHYmIiODgwYPWoOmXX36ZHTt2EBgYyAsvvMCXX35Z7uPXrVuXBx98kICAAEaOHGkdtoKCQP7iqTsaNWrEZ599xujRowkKCmLs2LEAnDx5ssq8JFOmTKFTp06EhITg7+/Pww8/jMlkYsiQIYwYMYIuXboQHBxsHT4rbKvZbGbp0qU8//zzBAUFERwczJYtWwCYO3eudTi4sK2JiYnY2ZU+2PHVV1/x+uuvExwcTP/+/Zk5cybt2rW7ov1Tp04lIyODwMBA3nzzTcLCwgB17+bNm8f48eOtEx8sQ8YPPfQQQ4cOJSIioszt7O3tWbx4MdOmTSMoKIhBgwaRk5NT4m/ixRdfJC8vj8DAQPz9/a2TRcqyC9Qkg+7du5d5HzSaqsYozU1f2+jSpYtcLd+LRlMaCQkJNGvWrMbOv307xMSAkxMMGaJeazu7d+/mnXfeYf78+ZXaPz8/n5CQEJYsWYK3t3eF9p00aRLDhw/nrrvuqtS5rzfTp09n4sSJJeKEbgQ++OADWrVqxYgRI2ralBrjySefZMSIEaV6/Gr6u0NzY2MYxk4R6VK8X8t7jaYaCQ2FtDQV37Vpk0otUQnnz3Wlc+fOREREYDabK+ypOnjwIMOHD2fUqFEVFlw3Im+99VZNm1BpHn/88Zo2ocbx9/evUPoPjeZa0Z4uzU1Nbfi1mpMDP/2kajV6excMO2o0mtpLbfju0Ny4lOXp0jFdGk014+gIffuqwPqYGDh7tqYt0mg0Gk1NoEWXRnMdqF+/oED2tm2l12jUaDQazc2NFl0azXXCzw88PCA9Hfbtq2lrNBqNRnO90aJLo7lO2NhAt25gGHDoEFxOt6TRaDSaWwQtujSaasbW1pbg4GD8/PwYMCCIbdvewWzO588/Ydu2HdYSJbWdSZMmFUkkWpinnnqKjRs3WpeTk5OpU6dOkaLN15t//vOf1X6OqKgoVq9ebV1euXIlb7zxRqWOVbi4dlkkJyfTrVs3OnfubC00XVlbq9KuSZMm4eXlRVBQEB06dODee+8lPj7+qsd+9913rUlfK0pVXM/AgQNLZN/XaKoTLbo0mmrGycmJqKgoDhw4wC+//MLevatZteoVLlwAV9cuzJkzp6ZNvCZSUlKstQktLFmyhO7du1+19Et1UhOia8SIEbzwwgvVdr5ff/0VX19fdu/eTZ8+fSq0b2VFSnl566232LNnD0eOHLGmHcnNzb3iPjUhugozceJEPvroo2s6hkZTEbTo0miKc/gwLFmiXquYxo0b85//fMaaNR8gIixatJ4hQ4YDqqRMz5496dy5Mz179uTIkSOAKody9913ExgYyNixY+nWrZv1l7qrqyt/+9vfCAoKonv37py9PDXyxIkTDBgwgMDAQAYMGMDJkycBJYb8/f0JCgqyiiSz2cz06dPp2rUrgYGBVu+UiPD444/TqVMnhg0bRlJSUqnXtHTpUmtRaQsLFy7k7bff5vTp01aPh9lsZtKkSfj7+xMQEMDs2bOJjY0lJCTEul9MTAyhoaEAtGnThr/+9a/06NGDLl26sGvXLiIjI2nXrh2ffPIJoEoA9e3bl1GjRtGpUyceeeQR8vPzeeGFF8jOziY4OJgJEyYA8M477+Dv74+/vz/vvvsuAHFxcfj6+jJlyhT8/f2ZMGECa9eupVevXnh7e7Nt27YyP5vc3FxeeuklFi9ebM2KPm/ePGv+q7NnzzJq1CiCgoIICgqyZogvD6V9rlFRUTz33HOsXr3amjF/zZo19OjRg5CQEMaMGWMtHbV9+3Z69uxJUFAQYWFhpKWllbA1MzOT+++/n65du9K5c2dr5YLs7GzGjRtn/XsrnJm/PBiGwdNPP03Tpk2txbVLs3POnDkkJCQQERFBREREmdtV5/WMGDGiRn8YaG5BRKTWt9DQUNFoKkN8fHzFdjh0SKRbN5HOndXroUPXbIOLi0uJvrp168qqVWfkb39bJ926DZP8fJG0tDTJy8sTEZFffvlFRo8eLSIib731ljz00EMiIrJv3z6xtbWV7du3i4gIICtXrhQRkenTp8trr70mIiLDhw+XefPmiYjIf//7X7njjjtERMTf319Onz4tIiIXLlwQEZFPP/3Uul9OTo6EhobKsWPHZNmyZTJw4EAxmUwSHx8vHh4esmTJkhLXcu+991ptEBE5efKktG/fXkREZsyYIW+//baIiOzYsUMGDhxo3c5y/n79+snu3but28+ZM0dERFq3bi0fffSRiIg89dRTEhAQIBcvXpSkpCRp1KiRiIisW7dOHBwcJDY2VkwmkwwcONBqY+H7vmPHDvH395eMjAxJT0+XTp06ya5du+T48eNia2sre/fuFbPZLCEhITJ58mTJz8+XFStWWO9bWZ/N3Llz5bHHHrOep/Dy3XffLbNnzxYREZPJJKmpqSXuXWHCw8Ov+rkWPn5ycrL06dNHMjIyRETkjTfekFdeeUUuXbokXl5esm3btiK2F7d1xowZMn/+fOtn4e3tLRkZGfL222/L5MmTRURkz549Rf7eyuK+++4r8bfx5JNPyhtvvFGmnSLqM05OTq7R62nfvr2cO3euxDVV+LtDoykEsENK0TM6I71GU5h9+yA3F5o3h4QEtezrW+WnERECAmDHDrh0SZ0qPz+N++67j5iYGAzDsBY+3rx5M08++SSgMmgXLjljb2/P8OHKUxYaGsovv/wCwNatW/n2228BNYTy3HPPAaro9aRJk7j77rsZPXo0oLwLe/futcZrpaWlERMTw8aNGxk/fjy2trY0a9aM/v37l3otiYmJNGrUyLq8aNEi7r77bkDVhXzggQd45plnaNu2LceOHWPatGkMGzaMwYMHA6rm4Ny5c3nnnXdYvHix1bsEWEvUBAQEkJGRgZubG25ubjg6OpKamgpAWFgYbdu2BWD8+PFs3ry5RBmhzZs3M2rUKFxcXAAYPXo0mzZtYsSIEXh5eREQEABwOe5uAIZhEBAQQFxcnPWelPbZXInffvuNr776ClBxfR4eHlfdx0JZn2th/vjjDw4ePEivXr0AyM3NpUePHhw5cgRPT09rTcmyCoGvWbOGlStXWms55uTkcPLkSTZu3GiNMwwMDKx0iSO5nHi7LDtry/U0btyYhIQEGjRoUKnr1GgqghZdGk1hAgLA3l6poDp11HIVc+zYMWxtbWnZsjFeXocA2LMHvvnmRSIiIli+fDlxcXH069cPKHh4lUadOnUwDANQD3aTyVTqdpZtPvnkE/78809++OEHgoODiYqKQkR4//33iYyMLLLP6tWrrftdCScnJ3JycqzLCxcu5OzZsyxYsABQmb1jYmLw9vZmz549/Pzzz3z44Yd88803fPHFF9x555288sor9O/fn9DQ0CIPPwcHBwBsbGys7y3LlmstbmNpNl/pHhY/buFzWs7x4oulfzbVRXk+VxFh0KBBJYbH9u7dW67PTURYtmwZPj4+JdaVZ/+rsXv3bgYMGFCmnaXZUxPXk5OTU2VFyzWaq6FjujSawvj6wrx58MIL6rWKvVzJyck88sgjPP744xiGQfPmqhZjaiokJqbRvHlzAObNm2fdp3fv3nzzzTeAqm24rxxJvnr27MmiRYsAWLBgAb179wYgNjaWbt268eqrr9KwYUNOnTpFZGQkH3/8sdV7Ex0dTWZmJn379mXRokWYzWYSExNZt25dqefq2LEjR48eBeDIkSNkZmYSHx9PXFwccXFxzJgxg0WLFnHu3Dny8/O58847ee2119i1axcAjo6OREZGMnXqVCZPnlzhe7pt2zaOHz9Ofn4+ixcvtl5rnTp1rNfUt29fVqxYQVZWFpmZmSxfvrxCgehpaaV/Nm5ubqSnp5e6z4ABA/j4448BFc928eJFa395ZvZdje7du/P7779b731WVhbR0dH4+vqSkJDA9u3bAUhPT8dkMpWwNTIykvfff98qSHfv3g2oe2URzPv372fv3r3Wfe69994insjSEBHmzJlDYmIiQ4YMKdNOKHr/auJ6RIQzZ87Qpk2bctxxjebaqVbRZRjGEMMwjhiGcdQwjBJTegzD8DAM43vDMPYYhnHAMIyKf+NqNFWNry+MGVNlgssS0O3n58fAgQMZPHgwM2fOBJTgsoyW9O//HDNmzKBXr16YC6Wsf/TRR0lOTiYwMJB///vfBAYGXnWoas6cOcydO5fAwEDmz5/Pe++9B8D06dMJCAjA39+fvn37EhQUxJQpU+jUqRMhISH4+/vz8MMPYzKZrEWrAwICmDp1KuHh4aWea9iwYaxfvx5QXq5Ro0YVWX/nnXeycOFC4uPj6devH8HBwUyaNIl//etf1m0mTJiAYRjWIceK0KNHD1544QX8/f3x8vKynv+hhx4iMDCQCRMmEBISwqRJkwgLC6Nbt25MmTKFzp07l/sczz1X+mcTERHBwYMHrcHchXnvvfdYt24dAQEBhIaGcuDAAfLz8zl69Cj169ev8HUWp1GjRsybN4/x48cTGBhI9+7dOXz4MPb29ixevJhp06YRFBTEoEGDyMnJKWHriy++SF5eHoGBgfj7+/Piiy8CMHXqVDIyMggMDOTNN98kLCzMes69e/fi6elZqj3Tp0+3pozYvn0769atw97evkw7QX1GQ4cOJSIiokauZ+fOnXTv3h07Oz3oo7k+VFvBa8MwbIFoYBBwGtgOjBeRg4W2+SvgISLPG4bRCDgCNBWRIvOMdcFrTWW5EYrWisDq1ZCWBqGhUHx0xGw2k5eXh6OjI7GxsQwYMIDo6Gjs7e1rxuBS6N27N6tWraJu3bqV2n/WrFmkpaXx2muvVWi/9evXM2vWLFatWlWp815v9u/fzxdffME777xT06ZUmIsXL/LAAw+wZMmSmjalynjyyScZMWIEAwYMKLHuRvju0NReyip4XZ3yPgw4KiLHLhuwCLgDOFhoGwHcDDXg7gqkAKUHpWg0NymGAUFBsHEjHDgAbduqcDILWVlZREREkJeXh4jw8ccf1yrBBfD2229z8uTJSomuUaNGERsby2+//Vb1htUy/P39b0jBBSqA/WYSXKA+j9IEl0ZTXVSnp+suYIiITLm8PBHoJiKPF9rGDVgJ+AJuwFgR+aH4sbSnS1NZbpRfqyKwdi0kJ6vY/WqI39doNBXgRvnu0NROyvJ0VWdMV2nTRYorvEggCmgGBAMfGIZR+nxgjeYmxuLtAlWXsdBkQI1Go9HcJFSn6DoNtCy03AJIKLbNZODby7nEjgLHUV4vjeaWo3FjlR7MZFLDjBqNRqO5uahO0bUd8DYMw8swDHtgHGoosTAngQEAhmE0AXyAY9Vok0ZTqwkKUl6vmBioYPUVjUaj0dRyqk10iYgJeBz4GTgEfCMiBwzDeMQwjEcub/Ya0NMwjH3Ar8DzInKuumzSaGo7detCy5aQnw+XSy9qNBqN5iahWvN0ichqEekgIu1E5B+X+z4RkU8uv08QkcEiEiAi/iLydXXao9HUFMuXL8cwDGt+IlCBupZyNevXr7eWfYmLW8nKlW8QE6MqEl0rTz31FBs3bgRg1apVdO7cmaCgIDp16mQtbl1dvPvuu2RlZVXrOeLi4vjf//5nXd6xY4e17EtFmTRpkrUcUllcunSJgQMHlpqbq6K2VqVdpW3j6upaofMU/jssi6ioKFavXl2h4xamMn8The1atWqVNc+dRnOjoTPSazTXgYULF9K7d29rlniAZs2alfogveeeETz44Avk5cHl5NyVJiUlhT/++IO+ffuSl5fHQw89xPfff8+ePXvYvXt3tZezqQnR1aVLF+bMmVNt59u9ezd5eXlERUUxduzYCu1bWdFVm6gJ0VWYYcOGsXLlymr/u9JoqoOrii7DMHoZhvGLYRjRhmEcMwzjuGEYOu5KoyknGRkZ/P777/z3v/8tIrri4uLw9/cvsf28efP4+muVWeXxxycxbdoT9OzZk7Zt21pFWn5+Po8++ih+fn4MHz6c2267rVQBt3TpUoYMGQIUlE+x1DZ0cHDAx8eH9PR0vLy8rCVzLl68SJs2bcjLy6Nfv348/fTT9O3bl44dO7J9+3ZGjx6Nt7c3f//7363X4evry3333UdgYCB33XUXWVlZzJkzh4SEBCIiIoiIiACU+LRkxH/++eetdrq6uvL8888TGhrKwIED2bZtG/369aNt27asXLnSep4+ffoQEhJCSEgIW7ZsAeCFF15g06ZNBAcHM3v27CJekYyMDCZPnkxAQACBgYEsW7as3J9bmzZtmDlzJiEhIQQEBHD48GGSkpK45557iIqKIjg4mNjYWHbu3El4eDihoaFERkaSmJgIwNGjRxk4cCBBQUGEhIQQGxtbwlaz2cz06dPp2rUrgYGBVs+jiPD444/TqVMnhg0bRlJSUrntLo3169fTr18/7rrrLnx9fZkwYYK1XM5PP/2Er68vvXv3thZJB8jMzOT++++na9eudO7cme+++47c3FxeeuklFi9ebPX0lbYdqKS+zz77rPXev//++6X+TaxZs4YePXoQEhLCmDFjyMjIuKJdhmHQr1+/GyYhrkZTBBG5YgMOA0OBxkADS7vaflXZQkNDRaOpDPHx8UU7hg9XrTCvvKL6/vyzoO/HH1Xf++8X9J0/r/ruvbdCNsyfP1/uv/9+ERHp0aOH7Ny5U0REjh8/Ln5+fiIism7dOhk2bJiIiMydO1ceffQx+eEHkT597pMhQ+4Ss9ksBw4ckHbt2omIyJIlS2To0KFiNpslMTFR6tatK0uWLClx7nvvvVdWrlxpXX7ggQekUaNGMm7cOPn666/FbDaLiMikSZNk+fLlIiLy6aefyjPPPCMiIuHh4fLcc8+JiMi7774rnp6ekpCQIDk5OdK8eXM5d+6cHD9+XADZvHmziIhMnjxZ3nrrLRERad26tSQnJ4uI+ixatmwpSUlJkpeXJxEREdZzArJ69WoRERk5cqQMGjRIcnNzJSoqSoKCgkREJDMzU7Kzs0VEJDo6WizfC4XvXfHl5557Tp588knrupSUlCt+Vvfdd5/1PrZu3VrmzJkjIiIffvihPPDAAyWOn5ubKz169JCkpCQREVm0aJFMnjxZRETCwsLk22/V5Ozs7GzJzMwsYeunn34qr732moiI5OTkSGhoqBw7dkyWLVsmAwcOFJPJJPHx8eLh4VHq51uW7RZcXFysNru7u8upU6fEbDZL9+7dZdOmTZKdnS0tWrSQ6Ohoyc/PlzFjxljtmzFjhsyfP19ERC5cuCDe3t6SkZEhc+fOlccee8x6jrK2++ijj2T06NGSl5cnIiLnz5+33lfL30RycrL06dNHMjIyRETkjTfekFdeeeWKdomIfP311/L4449f8X5cKyW+OzSaCgDskFL0THmGF9NE5EcRSRKR85ZWTRpQo7npWLhwIePGjQNg3LhxLFy48Kr7GAZ07Kje+/mNxDBs6NSpE2fPngVg8+bNjBkzBhsbG5o2bWr1GhQnMTGRRo0aWZc///xzfv31V8LCwpg1axb3338/AFOmTGHu3LkAzJ07t0jh6REjRgAQEBCAn58fnp6eODg40LZtW06dOgVAy5Yt6dWrFwD33HMPmzdvLmHL9u3b6devH40aNcLOzo4JEyZYY83s7e2tHrmAgADCw8OpU6cOAQEBxMXFAZCXl8eDDz5IQEAAY8aM4eDBgyXOUZy1a9fy2GOPWZfr1at31X0KM3r0aABCQ0OtdhTmyJEj7N+/n0GDBhEcHMzrr7/O6dOnSU9PJz4+3loH0tHREWdn5xL7r1mzhq+++org4GC6devG+fPniYmJYePGjYwfPx5bW1uaNWtG//79r2qrKuxRdl9YWBgtWrTAxsaG4OBg4uLiOHz4MF5eXnh7e2MYBvfcc08R29544w2Cg4Pp168fOTk5nDx5stRrKG27tWvX8sgjj1jrGpZWb/KPP/7g4MGD9OrVi+DgYL788ktOnDhxRbsAGjduTEJC8QxEGk3tpzxlgNYZhvEW8C1wydIpIruqzSqNprr4/vuSfS+9VLJvyBDVClO/fun7X4Hz58/z22+/sX//fgzDwGw2YxgGb7755lX3bd0a7OwgL8+B+Hho0QLrkJDl9Wo4OTmRUyzTakBAAAEBAUycOBEvLy/mzZtHr169iIuLY8OGDZjN5iLDng4ODgDY2NhY31uWTSZVtav4A780AXAlm+vUqWPdp/B5Cp9j9uzZNGnShD179pCfn4+jo+NVr19ESrWlvFjssLW1tdpR/Ph+fn5s3bq1SP/FixfLdXwR4f333ycyMrJI/+rVqytsd4MGDbhw4YJ1OSUlhYYNG1qXC392ha+nrPOICMuWLcOnWDHQP//8s1zblefeiwiDBg0q8UMkKirqivvm5OTg5OR0xWNrNLWR8ni6ugFdgH8Cb19us6rTKI3mZmHp0qXce++9nDhxgri4OE6dOoWXl1epnqDi2NiAh4d6f+hQ0XW9e/dm2bJl5Ofnc/bsWdavX1/qMTp27MjRy9H4GRkZRbaLioqidevW1uV7772X8ePHF/FylZeTJ09ahYdl0gCAm5sb6enpAHTr1o0NGzZw7tw5zGYzCxcuJDw8vNznSEtLw9PTExsbG+bPn4/ZbC5xjuIMHjyYDz74wLpsESX33nsv27Ztq/B1FsfHx4fk5GTrtefl5XHgwAHc3d1p0aIFK1asANSMx6ysrBK2RkZG8vHHH1vj6aKjo8nMzKRv374sWrQIs9lMYmIi69ats+4zY8YMli9fXsKWfv36sXjxYnIvT3mdN29emR5QC76+vhw/fpzY2FiAIuInMjKS999/3yqWd+/eDZS832VtN3jwYD755BOruEtJSSmxf/fu3fn999+tf6NZWVlER0df0S7LfSotHlKjqe1cVXSJSEQp7eq+bo1Gw8KFC61DTBbuvPPOcs9gc3NT3q7kZNUKH6NFixb4+/vz8MMP061bNzwsCq0Qw4YNswotEeHNN9/Ex8eH4OBgZs6cybx586zbTpgwgQsXLjB+/PgKX2fHjh358ssvCQwMJCUlhalTpwLw0EMPMXToUCIiIvD09ORf//oXERER1uDyO+64o9znePTRR/nyyy/p3r070dHRuLi4ABAYGIidnR1BQUHMnj27yD5///vfuXDhAv7+/gQFBVnFy969e/H09KzwdRbH3t6epUuX8vzzzxMUFERwcLA1wH/+/PnMmTOHwMBAevbsyZkzZ0rYOmXKFDp16kRISIj1szSZTIwaNQpvb28CAgKYOnVqEXG6b98+mjZtWsKW4cOH06dPH0JDQwkODub333/n3//+9xXtd3R05LPPPmPYsGH07t27iAh/8cUXycvLIzAwEH9/f1588UUAIiIiOHjwoDWQvqztpkyZQqtWrQgMDCQoKMj6N1/4b6JRo0bMmzeP8ePHExgYSPfu3Tl8+PAV7QJYt24dw4YNq8QnptHULFcteG0YhgcwE+h7uWsD8KqIpFWzbVZ0wWtNZbkZitbu3Qv796vhxb59C/ozMjJwdXXl/PnzhIWF8fvvv5f6MO7duzerVq2ibt26VzzP0qVL+e6775g/f36F7IuLi2P48OHs37+/QvvVFBcvXuSBBx5gyZIlNW1KpYiMjOTnn3+uaTNqjLNnz/KXv/yFX3/9tVrPczN8d2hqjrIKXpcnpusLYD9w9+XlicBcYHTVmafRaMqiQwc1vHj6NFy8CO6XS8IPHz6c1NRUcnNzefHFF0sVXABvv/02J0+evKLomjZtGj/++OM15V+6UXB3d79hBRdwSwsuUEPZb7/9dk2bodFUivJ4uqJEJPhqfdWJ9nRpKsvN8mv1zz8hNhZ8fCA0tKat0Whufm6W7w5NzVCWp6s8gfTZhmH0LnSgXoAuxavRXEc6dFCvx45BKZPoNBqNRnMDUJ7hxanAl5djuwwgBZhUnUZpNJqi1KsHDRvCuXMQFwft29e0RRqNRqOpKFcVXSISBQQZhuF+ebl8CWg0Gk2V0qGDEl3R0dCunUqgqtFoNJobhzJFl2EY94jI14ZhPFOsHwAReaeabdNoNIVo2RIcHSE1VaWPaNy4pi3SaDQaTUW4UkyXy+VXt1KaazXbpdHcNNja2hIcHIy/vz+33347qamplTyO8nABxMRU3p4dO3bwxBNPVP4Al5k0aVKpRbYBnnrqKWuJn1WrVtG5c2eCgoLo1KmTtahzdfHuu++SlZVVreeIi4srkmvtWu7ple6jhUuXLjFw4EBrbqxrsbUq7Xr55Zdp3rw5wcHBeHt7M3r06HKVZ5o3b16ly/hUxfWMGzeOmGv5J9JoKkmZoktELN+Ma0XklcINqN4EKRrNTYSTkxNRUVHs37+f+vXr8+GHH1b6WN7ealjx1CnIruR0li5dujBnzpxK23A1UlJS+OOPP+jbty95eXk89NBDfP/99+zZs4fdu3fTr1+/ajs31Izoqu57unv3bvLy8oiKimLs2LEV2reyIqW8PP3000RFRRETE8PYsWPp378/yYUz+ZZCTYiuwkydOrVcpbg0mqqmPLMX3y9nn0ajuQo9evQgPj4egNjYWIYMGUJoaCh9+vTh8OHDgEr+OGrUKIKCgggKCrJmOH/nnXcIC/Pnb3/z54cf3uVyhRRee+01fH19GTRoEOPHj2fWLFWlq1+/fjz//POEhYXRoUMHNm3aBMD69esZPnw4ALfddhvBwcEEBwfj4eHBl19+idlsZvr06XTt2pXAwECrZ0pEePzxx+nUqRPDhg0jKSmp1GtcunSptXh1eno6JpOJBg0aAKr+n4+PD+np6Xh5eVnL31y8eJE2bdqQl5dHv379ePrpp+nbty8dO3Zk+/btjB49Gm9vb/7+978D6sHr6+vLfffdR2BgIHfddRdZWVnMmTOHhIQEIiIirCVwFi5cSEBAAP7+/jz//PNWO11dXXn++ecJDQ1l4MCBbNu2jX79+tG2bVtWrlxpPU+fPn0ICQkhJCTE+lm88MILbNq0ieDgYGbPnl3knmZkZDB58mQCAgIIDAxk2bJl5f77aNOmDTNnziQkJISAgAAOHz5MUlIS99xzD1FRUQQHBxMbG8vOnTsJDw8nNDSUyMhIEhMTATh69CgDBw60ZvyPjY0tYeu1fr5XYuzYsQwePNgqikqzc+nSpezYsYMJEyYQHBxMdnb2db+ePn36sHbt2lLraWo01YqIlNqAHsD/AaeAZwq1l4E9Ze1XHS00NFQ0msoQHx9ftGP48LLbjz8WbPfjj1fetgK4uLiIiIjJZJK77rpLfrx8nv79+0t0dLSIiPzxxx8SEREhIiJ33323zJ4927pPamqq7NixQ/z9/SUjI0OOHk2X5s07yaxZu+TPP7dLUFCQZGVlycWLF6V9+/by1ltviYhIeHi4PPPMMyIi8sMPP8iAAQNERGTdunUybNiwIjbu2LFDAgICJDU1VT799FN57bXXREQkJydHQkND5dixY7Js2TIZOHCgmEwmiY+PFw8PD1myZEmJ67333ntl5cqV1uUHHnhAGjVqJOPGjZOvv/5azGaziIhMmjRJli9fLiIin376qdXW8PBwee6550RE5N133xVPT09JSEiQnJwcad68uZw7d06OHz8ugGzevFlERCZPnmy97tatW0tycrKIqM+/ZcuWkpSUJHl5eRIREWE9JyCrV68WEZGRI0fKoEGDJDc3V6KioiQoKEhERDIzMyU7O1tERKKjo8XyXVT8HhZefu655+TJJ5+0rktJSSlxjwpz3333We9j69atZc6cOSIi8uGHH8oDDzxQ4vi5ubnSo0cPSUpKEhGRRYsWyeTJk0VEJCwsTL799lsREcnOzpbMzMwStl7r51uYmTNnWu+7hdmzZ8sjjzxyRTvDw8Nl+/btNXo9AwcOlB07dpR5bSW+OzSaCgDskFL0zJVmL9qjYrfsUHFcFi4Cd1Wx9tNoblqys7MJDg4mLi6O0NBQBg0aREZGBlu2bGHMmDHW7S5dugTAb7/9xldffQWoeDAPDw82b97MqFGjcHFxoW1b6N17NHv2bOLixXzuuOMOnJycALj99tuLnHv0aFU4IjQ0lLi4uFLtO3fuHBMnTuSbb77Bw8ODNWvWsHfvXmv8S1paGjExMWzcuJHx48dja2tLs2bN6N+/9BKsiYmJNGrUyLr8+eefs2/fPtauXcusWbP45ZdfmDdvHlOmTOHNN99k5MiRzJ07l//85z/WfUaMGAFAQEAAfn5+1jqJbdu25dSpU9StW5eWLVvSq1cvAO655x7mzJnDs88+W8SW7du3069fP6s9EyZMYOPGjYwcORJ7e3urRy4gIAAHBwfq1KlDQECA9V7l5eXx+OOPExUVha2tLdHR0aVec2HWrl3LokWLrMv16tW76j6FKfyZffvttyXWHzlyhP379zNo0CAAzGYznp6epKenEx8fb6316ejoWOrxr/XzvRpyOeF2WXbWlutp3LgxCQkJhOpsw5rrSJmiS0Q2ABsMw5gnIieuo00aTfXx/ffl227IENWqAEtMV1paGsOHD+fDDz9k0qRJ1K1bl6ioqHIdw/IgAxXTVb8+ZGRAUpJccRajg4MDoMRbaUMpZrOZcePG8dJLL+Hv72891/vvv09kZGSRbVevXm2dvXwlnJycyMnJKdIXEBBAQEAAEydOxMvLi3nz5tGrVy/i4uLYsGEDZrPZev7CdtvY2FjfW5Yt11HcltJsK3zfilOnTh3rPoXPU/gcs2fPpkmTJuzZs4f8/PwyH/zFz1me+1QWV/vMRAQ/Pz+2bt1apP/ixfJl87nWz/dq7N69my5dupRpZ2n21MT15OTkWH+saDTXi/LEdGUZhvGWYRirDcP4zdKq3TKN5ibDw8ODOXPmMGvWLJycnPDy8rLWABQR9uzZA8CAAQP4+OOPASWKLl68SN++fVmxYgVZWVlkZmayYcNy/Pz60KxZb1as+J6cnBwyMjL44YcfKmTTCy+8QGBgIOPGjbP2RUZG8vHHH1vjraKjo8nMzKRv374sWrQIs9lMYmIi69atK/WYHTt25OjRo4CKb1q/fr11XVRUFK1bt7Yu33vvvYwfP57JkydXyG5QNfgsD+qFCxfSu7cqnOHm5kZ6ejoA3bp1Y8OGDZw7dw6z2czChQsJDw8v9znS0tLw9PTExsaG+fPnYzabS5yjOIMHD+aDDz6wLl+4cMF6rdu2bavwdRbHx8eH5ORk67Xn5eVx4MAB3N3dadGiBStWrACU5zQrK6uErZX5fGfMmMHy5cuvatuyZctYs2YN48ePL9NOKHr/auJ6LNv5+fmV76ZrNFVEeUTXAuAw4AW8AsQB26vRJo3mpsWSOmHRokUsWLCA//73vwQFBeHn58d3330HwHvvvce6desICAggNDSUAwcOEBISwqRJkwgLC6Nbt248+OAUIiI6065dV7p1G0FQUBCjR4+mS5cueHh4lNueWbNmsWbNGmsw/cqVK5kyZQqdOnUiJCQEf39/Hn74YUwmE6NGjcLb25uAgACmTp1apngZNmyYVWiJCG+++SY+Pj4EBwczc+ZM5s2bZ912woQJXLhwgfHjx1f4Xnbs2JEvv/ySwMBAUlJSmDp1KgAPPfQQQ4cOJSIiAk9PT/71r38RERFhDca+4447yn2ORx99lC+//JLu3bsTHR2Ni4vKpBMYGIidnR1BQUHMnj27yD5///vfuXDhAv7+/gQFBVkf9nv37i11eK2i2Nvbs3TpUp5//nmCgoIIDg62BvjPnz+fOXPmEBgYSM+ePTlz5kwJWyvz+e7bt6/MguqzZ8+2poz4+uuv+e2332jUqNEV7Zw0aRKPPPIIwcHBmM3m6349Z8+excnJqUo+D42mIpSn4PVOEQk1DGOviARe7tsgIuX/uXiN6ILXmspyMxetvXABfvwRzOYM/vIXVy5dyqJv37589tlnhISE1KhtvXv3ZtWqVdStW/eK2y1dupTvvvuO+fPnV+j4cXFxDB8+nP3791+DldePixcv8sADD1g9mzcakZGR/PzzzzVtRpUxe/Zs3N3deeCBB8rc5mb+7tBUP2UVvC5P7cW8y6+JhmEMAxKAFlVpnEajqTj16kGDBvDKKw/xr38dJD8/h/vuu6/GBRfA22+/zcmTJ68ouqZNm8aPP/7I6tWrr59hNYS7u/sNK7iAm0pwAdStW5eJEyfWtBmaW5DyeLqGA5uAlqj8XO7AKyKysvrNU2hPl6ay3Oy/Vo8ehW3bVEmggQNr2hqN5ubhZv/u0FQvlfZ0iciqy2/TgIiqNkyj0VSe1q1h1y5ISoK0NKhAOJdGo9ForjNXKnj9PlCmG0xErr14m0ajuSbq1IE2bZTHKzYWasHIokaj0WjK4EqeLj2ep9HcALRvr0TX8eMQFKQKY2s0Go2m9nGl5KhfXk9DNBpN5ahfX7WUFFUIu02bmrZIo9FoNKVx1TxdhmGsK5wUVSdH1WjKz/nz5605sJo2bUrz5s0JDg6mbt26dOrUqcrO0769ej16FFasWMHBgwer7Nhl8fLLL1uLaxfn3XfftZYyAjCZTDRs2JAZM2ZU+nypqal89NFH5drW1dW13MfNz8/niSeewN/fn4CAALp27crx48cra+ZViYuLsxaErk6K/x289NJLrF27tszt9+3bx6RJk6rdLo3mVqY8yVGfBaZfbi8CUZRz6NEwjCGGYRwxDOOoYRgvlLFNP8MwogzDOGAYxoZy2q3R3BA0aNCAqKgooqKieOSRR3j66aetyzY2V//3K60MTGm0bg12diqgfsmS6yO6ysJkMvHFF1/wl7/8xdq3Zs0afHx8+Oabb65YmudKVER0VYTFixeTkJDA3r172bdvH8uXL79qfrFroaZE16uvvsrAK0xxDQgI4PTp05w8ebLabdNoblWu+q0vIjsLtd9F5Bmg29X2MwzDFvgQGAp0AsYbhtGp2DZ1gY+AESLiB4wpfhyN5mbFbDbz4IMP4ufnx+DBg8nOzgagX79+/PWvfyU8PJz33nuPnTt3Eh4eTmhoKJGRkSQmJgLwn//8h65duxIUFMS4cXfSpEkW0dFbWLVqJdOnTyc4OJjY2FhiY2MZMmQIoaGh9OnTh8OHDwMqK/gTTzxBz549adu2rbVgMMBbb71F165dCQwMZObMmdb+f/zjH/j4+DBw4ECOHDlS6nX99ttvhISEYGdXEL2wcOFCnnzySVq1asUff/xh7f/pp58ICQkhKCiIAQMGACU9aP7+/sTFxfHCCy8QGxtLcHAw06dPv6KdFiZOnGjN9A8qA/7KlUWz3SQmJlpL/QC0aNGCevXq8d///penn37aut1//vMfnnnmGeLi4vD19WXKlCn4+/szYcIE1q5dS69evfD29raW+nn55ZeZOHEi/fv3x9vb21rQ+4UXXmDTpk0EBwcze/ZscnJymDx5MgEBAXTu3NmawX7evHmMHDmS22+/HS8vLz744APeeecdOnfuTPfu3UlJSSnxd3DnnXeSlZXFli1bWLmy6N/BpEmTrJ/x9u3b6dmzJ0FBQYSFhVnL6tx+++1FinVrNJoqRkSu2ID6hVpDIBI4Uo79egA/F1qeAcwots2jwOtXO1ZoaKhoNJUhPj6+aMfw4RVrTz5Z+v6VYObMmfLWW2+JiMjx48fF1tZWdu/eLSIiY8aMkfnz54uISHh4uEydOlVERHJzc6VHjx6SlJQkIiKLFi2SyZMni4jIuXPnrMf+29/+Jv/61xxZsECkX7/7ZPHiJdZ1/fv3l+joaBER+eOPPyQiIkJERO677z656667xGw2y4EDB6Rdu3YiIvLzzz/Lgw8+KPn5+WI2m2XYsGGyYcMG2bFjh/j7+0tmZqakpaVJu3btrNdTmJdeeknmzJljXc7KyhJPT0/JzMyUTz/9VKZNmyYiIklJSdKiRQs5duyYiIicP3++xH0SEfHz85Pjx4/L8ePHxc/Pz9pflp0iIi4uLiIisn79ernjjjtERCQ1NVXatGkjeXl5Rew9deqUtG7dWoKCguSZZ56RXbt2iYhIRkaGtG3bVnJzc0VEpEePHrJ3717rZ7d3714xm80SEhIikydPlvz8fFmxYoX1fDNnzpTAwEDJysqS5ORkadGihcTHx8u6detk2LBh1vPPmjVLJk2aJCIihw4dkpYtW0p2drbMnTtX2rVrJxcvXpSkpCRxd3eXjz/+WEREnnrqKZk9e3apfweWe3/ffffJkiUFfweW5UuXLomXl5ds27ZNRETS0tKs92Tz5s0yvJJ/3zcbJb47NJoKAOyQUvRMeTLS70SljjAAE3AcKLt2QgHNgVOFlk9T0kPWAahjGMZ6wA14T0S+QqO5BfDy8iI4OBiA0NBQ4uLirOvGjh0LwJEjR9i/fz+DBg0ClHfMUi9u//79/P3vfyc1NZWMjAwGD44kKAjMZjh/Xh0nIyODLVu2MGZMgRP50qVL1vcjR47ExsaGTp06cfbsWUANBa5Zs4bOnTtbjxETE0N6ejqjRo3C2dkZgBEjRpR6XYmJiXTs2NG6vGrVKiIiInB2dubOO+/ktddeY/bs2fzxxx/07dsXLy8vAOrXr1+h+1eWnX379rVuEx4ezmOPPUZSUhLffvstd955ZxEPHCjP1pEjR/jtt9/47bffGDBgAEuWLGHAgAH079+fVatW0bFjR/Ly8ggICCAuLg4vLy8CAgIA8PPzY8CAARiGYV1v4Y477sDJyQknJyciIiLYtm1biaHLzZs3M23aNAB8fX1p3bo10dHRAERERODm5oabmxseHh7cfvvtgBoK3Lt3L1Dy7yAyMvKK9+3IkSN4enrStWtXQGXLt9C4cWMSEhLKdf81Gk3FKU9yVK9KHtso7XClnD8UGAA4AVsNw/hDRKIreU6N5sp8/33N7l8IBwcH63tbW1vr8CJgLawsIvj5+bF169YS+0+aNIkVK1YQFBTEvHnzWL9+vTWg/swZ9Zqfn0/dunWJioq6qg1yOdZKRJgxYwYPP/xwkW3fffddDKO0f+uiODk5kZOTY11euHAhv//+O20uT6s8f/4869atQ0RKPZ6dnR35+fnW5cLHKkxZdhZn4sSJLFiwgEWLFvHFF1+Uuo2DgwNDhw5l6NChNGnShBUrVjBgwACmTJnCP//5T3x9fZk8eXKR7S3Y2NhYl21sbIrE4RW/vtKu13Lfy7Lraucp7e/gSpR130Hdaycnpyvur9FoKk95Zi86GobxjGEY3xqGscwwjKcNw3Asx7FPo0oHWWiBqttYfJufRCRTRM4BG4Gg8hqv0dzs+Pj4kJycbBVdeXl5HDhwAID09HQ8PT3Jy8tjwYIFgAqod3Z248yZdC5eVF4MLy8va90/EWHPnj1XPGdkZCRffPEFGRkZAMTHx5OUlETfvn1Zvnw52dnZpKen830ZArRjx44cPXoUUIWeN2/ezMmTJ4mLiyMuLo4PP/yQhQsX0qNHDzZs2GCdKWiJUWrTpg27du0CYNeuXdb1bm5u1tijK9lZnEmTJvHuu+8CyitVnF27dlm9O/n5+ezdu5fWrVsD0K1bN06dOsX//vc/xo8ff8X7VhrfffcdOTk5nD9/nvXr19O1a9cS19G3b1/r5xcdHc3Jkyfx8fEp9zlK+zuAkvfLgq+vLwkJCWzfvt26v0XARUdH4+/vX+Hr1GhqO5dMl4hLjWPLqS2k5qTWmB3lGV78CkhH1V0EGA/M5+pB79sBb8MwvIB4YBzwl2LbfAd8YBiGHWCPGn6cXT7TNZqbH3t7e5YuXcoTTzxBWloaJpOJp556Cj8/P1577TW6detG69atCQgIID09HXt7GD16HK+88iAbNszhhx+WsmDBAqZOncrrr79OXl4e48aNIyio7N82gwcP5tChQ/To0QNQ6Re+/vprQkJCGDt2LMHBwbRu3Zo+ffqUuv/QoUOtxYS//fZb+vfvX8Rjc8cdd/Dcc8/x0Ucf8dlnnzF69Gjy8/Np3Lgxv/zyC3feeSdfffUVwcHBdO3alQ4dOgBqJmivXr3w9/dn6NChvPXWW6Xa2bhx4yL2NGnShI4dOzJy5MhS7U1KSuLBBx+0DruGhYXx+OOPW9fffffdREVFUa9evSt9VKUSFhbGsGHDOHnyJC+++CLNmjWjUaNG2NnZERQUxKRJk3j00Ud55JFHCAgIwM7Ojnnz5hW5X1ejtL8DgHHjxvHggw8yZ86cIpMk7O3tWbx4MdOmTSM7OxsnJyfWrl2Lq6sr69atY9iwYRW+To2mNmDKN3Em4wzxF+NJSE8gPl29JqQncD77vHW7v/b+Kz1a9qgRG8tT8HqPiARdra+MfW8D3gVsgS9E5B+GYTwCICKfXN5mOjAZyAc+F5F3ix9HF7zWVJZbsWjt+fPw88/g4AAjR9ZMhvpRo0bx5ptv4u3tff1PXoysrCwCAgLYtWsXHpUoTjl8+HCefvpp6+zK8vLyyy/j6urKs88+W+Fz1gSXLl0iPDyczZs3l4h7uxW5Fb87bgREhPPZ50lIT+D0xdPEX4wnPj2e+IvxnM08i5RRvdDWsKWpa1OauTVjpO9IApsEVqudlS54Dew2DKO7iPxx+UDdgN/Lc1IRWQ2sLtb3SbHlt4C3ynM8jUZzderXh3r14MIFOH1aDTleb9544w0SExNrXHStXbuW+++/n2eeeabCgis1NZWwsLAi6SxuZk6ePMkbb7yhBZemVpBrzrUKq8ItPj2eHFPpcZ4GBk1cmtDcrTnN3Zvj6epJM7dmNHNrRmOXxtja1HyNtPJ4ug4BPoAlY14r4BDKMyUiUr1yEe3p0lSeW/XXakwMbN8OTZrALaAXNJoq51b97rjeZORmcCrtFKcvnubUxVPW91fyWrk7uCthdVlctXBvQTO3ZjR1bYq9rf11voLSuRZP15BqsEej0VQjrVvD7t1w9iyXA+pr2iKNRnMrc/HSRU6mneRk2klOpZ1SrxdPcSHnQqnb2xg2NHNtRgv3FtbW3E0JLDcHt+tsfdVRnpQRJwzDCAIsUbObROTK0580Gk2NYm+vhFdsrGqXU1lpNBpNtZJ+Kd0qrk6knbC+T7uUVur29rb2tHBrQUuPlrTyaEUL9xa0dG+Jp5sndjY331D3Va/IMIwngQeBby93fW0Yxmci8v4VdtNoNDVMu3ZKcB07BoGBNRNQr9Fobk4umS5ZBVVcahxxqXGcvHiSlOyUUrd3tHOklXsrWnmoZhFZjZwblSv/381CeWTkA0A3EckEMAzj38BWClJIaDSaWkiDBlC3LqSm1lxAvUajubEREc5knOF46nFOpJ6wCqzEjMRSY67sbe1p7dGaVh6trK+tPFrR0LnhLSWuyqI8ossAzIWWzZSebV6j0ZSCq6urNYEnqELGO3bs4IMPPqjwsdavX8+sWbNYtWrVVbc1DGjfHkaO7Mfjj8/i0UdLxHRqNBqNlay8LKuoOn7hOMdTjxOXGscl86US29oatjR3a07ruq1pU7eNVWA1dW2qxdUVKI/omgv8aRjGcpTYugP4b7VapdFoqoTLlXdISYH0dHC7ceNPNRpNFSEinMs6x7ELxzieepzjF45z7MIxzmSeKXX7+k718arrZRVXXvW8aO7WnDq2da6z5Tc+5Qmkf+dyQerel7smi8juarVKo7lFSE5O5pFHHuHkSZWR5d1336VXr15s27aNp556ypoxfO7cuSVKw2RmZjJt2jT27duHyWTi5Zdf5o477iA7O5vJkydz8OBBOnbsiGGomo5Hj+qAeo3mViNf8om/GE/shViOXThmbem5JUtE2dnY0cq9FV71vPCq64VXPSW03B309OeqoiJTAwxUbi7tN9TckNy+8PZqOe73469cBDs7O5vg4GDrckpKCiNGjADgySef5Omnn6Z3796cPHmSyMhIDh06hK+vLxs3bsTOzo61a9fy17/+lWXLlhU57j/+8Q/69+/PF198YU3kOXDgQD799FOcnZ3Zu3cve/fuJSQkBFBB9QEBoHNfajQ3J6Z8EyfTThKbEkvshVhiU2I5nnq81OFBN3s32tZrS9t6bfGq60Xbem1p7t78ppwxWJsoz+zFl1B1FpehBNdcwzCWiMjr1W2cRnMz4OTkRFRUlHXZEtMFKmP6wYMHresuXrxIeno6aWlp3HfffcTExGAYBnl5eSWOu2bNGlauXMmsWbMAyMnJ4eTJk2zcuJEnnngCgMDAQAIDA/HwgNxcOHFCzWrUaDQ3NhaBdTTlKDHnY4i9oASWKd9UYttGzo1oV68d7eq3w6uuF+3qt6OBUwMde1UDlEfSjgc6i0gOgGEYbwC7AC26NDcUV/NI1QT5+fls3boVJyenIv3Tpk0jIiKC5cuXExcXR79+/UrsKyIsW7asxLAjUOLLtGVLyMpSmerbtlVB9hqN5sYgX/I5lXaKoylHiT4fzdGUoxxPPU5efskfY81cm9G+fnva1mtLu/rtaFev3Q2dTPRmozyiKw5wBCzFjhyA2OoySKO5lRg8eDAffPAB06dPByAqKorg4GDS0tJo3rw5oDxjpREZGcn777/P+++/j2EY7N69m86dO9O3b18WLFhAREQE+/fvZ+/evXh6qrQRKSmqIHbDhtfrCjUaTUUQEZIyk4g+H01MSgzR56OJvRBbar1BT1dPvOt7075+e6vQcrF3qQGrNeWlPKLrEnDAMIxfAAEGAZsNw5gDICJPVKN9Gs1NzZw5c3jssccIDAzEZDLRt29fPvnkE5577jnuu+8+3nnnHfr371/qvi+++CJPPfUUgYGBiAht2rRh1apVTJ06lcmTJxMYGEhwcDBhYWHY2qphxYMHITpaiy6NpraQfindKrCOnDtCdEo0Fy9dLLFdY+fGdGjQgfb12+PdwJt29dppgXUDUp6C1/ddab2IfFmlFpWCLnitqSy6aG0BmZmwcqUaWhw5Ehwda9oijab2Uh3fHaZ8EydST3Dk/BEOnztM9Plo4tPjS2zn7uBOh/od6NCgA94NvPGu742Ho0eV2qKpXipd8Pp6iCqNRlP9uLhA8+ZqmDE2Fvz8atoijebmJjUnlcPnDltbTEoMuebcItvY29rTrl47OjTogE8DHzo06EBjl8Y6yP0mRc8N1WhuIby9leiKiYGOHcHGpqYt0mhuDvIlnxOpJzh07hCHkg9x+NzhUpONNnNthk9DH3wb+uLTwIfWdVvrNA23EPqT1mhuIZo2BXd3uHgR4uPVrEaNRlNxckw5HDl3hIPJBzmYfJAj54+Qbcouso2jnSMd6nfAt6GvElkNfXSi0VucMkWXYRjzRWSiYRhPish719MojUZTPRiG8nbt3KkC6rXo0mjKR2pOKgeSDlhF1rHUY+RLfpFtGjs3plOjTnRs1BHfhr609miNrY1tDVmsqY1cydMVahhGa+B+wzC+olgmehFJqVbLNBpNteDlBXv2wNmzkJYGHjo+V6MpgoiQlZfFr8d+5UDyAQ4kHSAhI6HINjaGDd71venYsKNVaNV3ql9DFmtuFK4kuj4BfgLaAjspKrrkcr9Go7nBsLdXhbCPHlXerq5da9oijaZmEREuXrpIUmaSallJZJzP4JuT31i3cbRzxLeBL36N/ejUqBMdGnTA0U5PAdZUjDJFl4jMAeYYhvGxiEy9jjZpNJpqxsdHia5jxyAwEBwcatoijeb6YRFZZzPPWoVW8eSjdWzq0L15d/wa++HXyA+vel464F1zzZQnZcRUwzCCgD6XuzaKyN7qNUujuXmwtbUlICDAujxu3DheeOGFMrf/5z//yV//+lfrcs+ePdmyZUuFzxsVFUVCQgK33XZbiXUeHpCZuZv//e9DOnX6nJ075zF9+nRatGhBRkYGbdu2ZebMmfTs2bPC5y2NNm3asGPHDtzd3Rk4cCC//fYbdrrytuY6ISKk56ZzNuOsVWgVF1lOdk40dmlsbRnnMxjXfFwNWay5WSlPwesngIeAby93LTAM4zMReb9aLdNobhKKF7y+GsVFV2UEFyjRtWPHjlJFF8D33/+TwYP/TnQ0mM0wduxYPvjgAwDWrVvH6NGjWbduHR07dqzU+UvD3t6eAQMGsHjxYiZMmFBlx9VoCiMiZORmkJSZxJmMMyRlJpWYWehUx4kmLk2sIsvN3q1IbqxMI/N6m625BSjPT80pQDcRyQQwDOPfwFZAiy7NDcXtt99eLcf9/vuKF9JOS0sjLCyMlStX4uPjw/jx4+nfvz+xsbFkZ2cTHByMn58fCxYswNXVlYyMDNavX8/LL79Mw4YN2b9/P6GhoXz99dcYhsH27dt58sknyczMxMHBgV9++YWXXnqJ7OxsNm/ezIwZMxg7dqz1/Onp6Rw5spfHHgvi/HlITi5qX0REBA899BCfffYZs2fPJjY2lscee4zk5GScnZ35z3/+g6+vL99//z2vv/46ubm5NGjQgAULFtCkSRPOnz/P+PHjSU5OJiwsjMKVL0aOHMmMGTO06NJUKTmmHM5knOFsxlnOZJwhM6+oaHK0c6SJSxOauDahiUsTXO1ddQJSzXWnPKLLAMyFls0Um8mo0WjKxiKiLFgE0AcffMCkSZN48sknuXDhAg8++CAAH3zwQZmesd27d3PgwAGaNWtGr169+P333wkLC2Ps2LEsXryYrl27cvHiRZydnXn11VfZsWOH1XtVmB07duDv70+nTrBpEyQmQvGKYCEhIXz66acAPPTQQ3zyySd4e3vz559/8uijj/Lbb7/Ru3dv/vjjDwzD4PPPP+fNN9/k7bff5pVXXqF379689NJL/PDDD3z22WfW4/r7+7N9+/Zru6maWx5TvsnqyTqTcYbUnNQi6+1t7YuILHcHdy2yNDVOeUTXXOBPwzCWX14eCfy32izSaKqJynikqoKyhhcHDRrEkiVLeOyxx9izZ0+5jhUWFkaLFi0ACA4OJi4uDg8PDzw9Pel6eRqiu/vVky8mJibSqFEjWrQANzfIyVGtMBbvVEZGBlu2bGHMmDHWdZcuXQLg9OnTjB07lsTERHJzc/Hy8gJg48aNfPutikgYNmwY9erVs+5ra2uLvb096enpuLm5leu6NRoRISU7hcSMRM5knOFc1rkiebJsbWxp7NyYJq5NaOralHqO9bTI0tQ6yhNI/45hGOuB3igP12QR2V3dhmk0Nzv5+fkcOnQIJycnUlJSrGLqSjgUmmZoa2uLyWRCRCr8cHFyciInJwfDAF9fWLUKLlxQ3i7LoXbv3k3Hjh3Jz8+nbt26pQrHadOm8cwzzzBixAjr8KeFK9l06dIlHHXFbc1VyMzN5EzGGavQKly30MCggVMDmro2palrUxo6N9SJSDW1nnJNHxKRXcCuarZFo7mlmD17Nh07duSf//wn999/P1u3bqVOnTrUqVOHvLw86tSpU67j+Pr6kpCQwPbt2+natSvp6ek4OTnh5uZGenp6qft07NiRt99+G4C2baFOHeXpSkqCJk1gw4YNfPbZZ6xbtw53d3e8vLxYsmQJY8aMQUTYu3cvQUFBpKWl0bx5cwC+/PJL6/H79u3LggUL+Pvf/86PP/7IhQsXrOvOnz9Po0aNyn19mlsHc76ZpMwkEjMSSUxPJO1SWpH1rvaueLp60tS1KU1cm2Bva19Dlmo0lUPP2dZoqpniMV1Dhgzh/vvv5/PPP2fbtm24ubnRt29fXn/9dV555RUeeughAgMDCQkJYcGCBVc9vr29PYsXL2batGlkZ2fj5OTE2rVriYiI4I033iA4OLhEIL2vry9paWnWIb6mTeGrrxbTq9dmbGyy8PLyYtmyZdaZiwsWLGDq1Km8/vrr5OXlMW7cOIKCgnj55ZcZM2YMzZs3p3v37hw/fhyAmTNnMn78eEJCQggPD6dVq1bWc69bt67MGZWaW4/0S+kkpCeQmJHI2cyzmPMLQojr2NShiWsTq9Byc9DD0ZobG0OKR8/WQrp06SI7duyoaTM0NyAJCQk0a9asps2olcyePRs3NzemTJnCpUvw3XdgMsHQoVAoBKvKGT16NP/617/w8fGpvpNoai3mfDNnM8+SmJ5IQnoC6blFvbH1HOvRzK0Znm6eNHRuiI1hUyN26u8OzbVgGMZOEelSvF97ujSaW5SpU6eyZMkSQGWkb9cOjhyBgwehV6/qOWdubi4jR47UgusWIysvi4T0BOIvxnM28yymfJN1nb2tPZ6unni6eeLp6olTHacatFSjqV7Kkxx1NPBvoDEqkN4ARESuOkXKMIwhwHuALfC5iLxRxnZdgT+AsSKytPzmazSayuLo6MjEiROty76+EBMDJ0+Cnx/UrVv157S3t+fee++t+gNrahUiwvns88RfjCc+Pb5EOgeLN6uZWzMaODeoMW+WRnO9KY+n603gdhE5VJEDG4ZhC3wIDAJOA9sNw1gpIgdL2e7fwM8VOb5GU14qM7vvVsTFBdq3V0Ww9+2DPn2uvo9GY8GUbyIxPZH49HgS0hOKlNmxs7GjqWtTmrs1p5lbs1rvzboRwm40NyblEV1nKyq4LhMGHBWRYwCGYSwC7gAOFttuGrAM6FqJc2g0V6ROnTpkZGTg6qqzT5cHPz+IjYVTp+D8eWjQoKYt0tRmsvOyiU+P5/TF05zNOItZCoLgXeq40Ny9Oc3dmtPYpfENk85BRMjIyNCzazXVQnlE1w7DMBYDK4BLlk4R+bbMPRTNgVOFlk8D3QpvYBhGc2AU0B8tujTVQP369UlJSSkzdYKmJJ6ecOIE/PEHdO5c09ZoahuZuZkkZyZzLvtciZQOHg4eNHRqSEOXhrjUccHAQNKFs+lna8jaylGnTh3q169f02ZobkLKI7rcgSxgcKE+oaAAdlmU5lYo7rN9F3heRMzaC6GpDmxtbWnUqFFNm3FD4eYGH34IWVnwj39AYGBNW6SpSUSEoylH2Xp6K1tPbeV0+mnrOntbe4KaBNG9RXe6NutKPadqnPaq0dwElCcj/eRKHvs00LLQcgsgodg2XYBFlwVXQ+A2wzBMIrKikufUaDTXiJsbjB4NX38N8+fDm28WZKnX3BrkSz4Hkw+y5dQWtp7eyrmsc9Z1rvauhDULo3uL7nT27Iyjna4soNGUl/LMXmwBvA/0QnmqNgNPisjpK+4I2wFvwzC8gHhgHPCXwhuIiFeh88wDVmnBpdHUPCNGwPffw+HDsGMHdNWD/zc9pnwT+87uswqtwkOHDZ0b0r15d3q07EGnRp2ws9HZhjSaylDegtf/AyzVbu+53DfoSjuJiMkwjMdRsxJtgS9E5IBhGI9cXv9Jpa3WaDTVipMTjBkDn3+uvF1dumhv182IKd/EnjN7+P3U7/xx+o8iiUo9XT3p2bInPVv2xLu+t56IotFUAVfNSG8YRpSIBF+trzrRGek1mutPbi48/DCcOwfPPadTSNwsWITWppOb+DP+TzJyM6zrWrq3pFfLXvRs2ZM2ddtooaXRVJJryUh/zjCMe4CFl5fHA+er0jiNRlP7sLeHcePggw+Ut6tbN9WnufHIl3z2nd3HppOb2HJqSxGPViv3VvRu1ZterXrRyqPVFY6i0WiulfKIrvuBD4DZqJiuLZf7NBrNTc6AAaom46lT8O23SoRpbgxEhCPnj7AhbgObT20ukhW+pXtL+rTqQ+9WvWnp0bLsg2g0miqlPLMXTwIjroMtGo2mlmFnB48+CjNmwDffQHi4yuN10yICeXmQmalS9Ftcezk5qt/ODhwda3WAW1xqHBviNrDxxEaSspKs/Z6unvRp1Yc+rfvQ2qO1HjrUaGqAMkWXYRjPicibhmG8T8n8WojIE9VqmUajqRX4+0NEBKxbB59+CjNn1mrNcWVECoxPS4OvvoLERBW4lpmpkpOZLhdjfumlgmmbK1eqMVYAW1twd1fNw0MVqXz22YLjpqSodXbXb4bfuaxzrI9bz/q49ZxIO2Htb+DUgL6t+9K3dV/a1WunhZZGU8Nc6VvBUvpHR7BrNLc4998P27bBzp2wdSv07FnTFpWTixfh0CHVDh6Exo2VQAIlitasKbmPnR04O0N+fkFfnToqgVlenvJ6XbigGkCjRkVV6NNPQ2oqNG8ObdqAl5dqbdqoukpVJHwyczP5/dTvrDu+jv3J+639bvZu9GrZi/A24fg18tNCS6OpRZQpukTk+8tvs0RkSeF1hmGMKWUXjUZzk1K3Ltx7L3z8MfznPxASokbZaiWJibBxI/z+Oxw/XnTd2bMF3i4XF3j8cSWamjRRy87Opc8WGDVKNVDC6+JF1dKKlsHBZAIbG3WOU6dU27SpYP3kySrzLCivmq0tODiU+9JM+SZ2J+7mt+O/8Wf8n+Tl5wEqM3xYszAivCII8QzRebQ0mlpKef4zZwBLytGn0WhuYoYMgbVrISYG/vc/5f2qNRQeNty4UaXTByWgOnSATp1U8/Ut6mmKjKz4uerUUR6r0qqB29nB3Lkq38bJkxAXp4SfpbVrV7Dtjz+q4c127SAgQNVb6tRJJUkrxvELx/n1+K+sj1tvTVpqYBDYOJD+Xv3p0bIHznWcK34tGo3munKlmK6hwG1Ac8Mw5hRa5Q6YqtswjUZTu7CxgalT4f/+T81oHDAAWreuQYNEICpKGRMSotLoA/TuDQkJ6jU4WImk6429PbRvr1phewtz4YLqi4lR7dtv1U329obu3bl4+2A2xG1g7bG1HEs9Zt2thVsLBrQdQL82/Wjo3PA6XZBGo6kKykyOahhGEBAMvAq8VGhVOrBORC5Uu3WX0clRNZrawyefwA8/QMeO8MYbSidcVy5dUlH9K1eq4TuAVq1UQrEbLX4pJ0fFm+3dC3v3Yo6JZpdTKmsDnNnm7Ywp3wTmfFxTMwn3H86AgDtoX7+9jtPSaGo5FU6OKiJ7gD2GYSwHMkXEfPlAtkD5gxA0Gs1NxcSJKlzq0CFYtkyVC7oumEywejUsXqziqUAN8Q0bpsY+b0Qh4ugInTuT2L4pa4NtWBtzhpTkVLDNxch3oItnFwbktaDbN99S5+cN4HUSwsLUrMoOHW7Ma9ZobmHKE9O1BhgIWGpFOF3uu1HmL2k0mirExUVN0Js5U4VOBQaCj891OPHvv6soflBDcCNHqmmU1zE1Q1WSZ85j6+mt/Hz0Z/Ym7bX2N2vRiUHtBtHfqz/1neorddvtjBpKtcSGLV6sZjd07QqPPKJLBWg0Nwjl+bZyFBFrcS4RyTAMQ0dsajS3MCEhajLf8uXw5pswZ44SY1VOcrKaXQiq+OMff0D//jd0Be7TF0/z89Gf+fX4r9ZyPPa29vRu2ZvB7QbTqVGnosOHHTvC3/6mZk3u26dyd2zbpu7NwYNFBdf27SoYv1o+DI1Gc62Up+D178A0Edl1eTkU+EBEelwH+wAd06XR1EZMJpg+HY4eVXpo+vQq1EHp6fD557B5s8rI2vDGDhjPM+ex5dQWfjr6U5GcWm3rtiWyfSThrcNxsa+AUBKBEydUyoqgINWXlAQPPKA8f507Q69eaijSza2Kr0aj0VyNayl4/RSwxDCMhMvLnsDYKrRNo9HcgNjZKaH15JMqFVXnzjBoUBUceOtW+OgjlWDU3h5iY29Y0XU24yw/Hf2JX479Yk314GjnSHjrcCLbRVY+KN4wVLLVwmRkqPIBBw4oj9f27SoPWFCQGoYND6/FydU0mluDq3q6AAzDqAP4AAZwWETyqtuwwmhPl0ZTe1m3Dt55R+X4fPddaNGikgdKS1NTIzdvVsudOsETT6jM7jcQ+ZLPzoSd/BDzA7sSdyGXq6h51fViaPuhhLcJr96cWmlpSrj+/ruaFZmfr9JmfP21Sv4KKo+YjgPTaKqNa/F0gRJcnQBHoLNhGIjIV1VpoEajuTGJiIDdu5X4evNNeOutCiVZV+zaBW+/rWYlOjrCffepWYk3UNxW+qV01h5byw8xP3A28ywAdjZ29GnVh9u8b8Ongc/1SfXg4aFmcw4ZooZp//wTzp8vEFwmk8ps266dGhfu3h1cXavfLo1Gc3XRZRjGTKAfSnStBoYCmwEtujQaDaAm0B0+rCbWvfUW/PWvFczf5eamyuIEBcG0aaoszw1CXGoc3x/5nvUn1pNrzgWgsXNjbvO+jUHtBuHu4F5zxrm5wcCBRfuOH1dibNcu1T78UI0NWwRYKRnxNRpN1VCeQPp9QBCwW0SCDMNoAnwuIrdfDwNBDy9qNDcCp07Bc8+p0KJhw+Dhh6/iqMrKKvC+ABw7pgpD3wDerXzJZ3v8dr478h37kvZZ+zs37czwDsPp0qwLNsb1zhpbAS5eVEOQmzapIUjLc8DeXomwpk1r1j6N5gbnWoYXs0Uk3zAMk2EY7kAS0LbKLdRoNDc0LVvC3/+u2g8/KGeVpUZ0CaKiYNYs5SLr3Vv1ta39XytZeVn8EvsLq6JXcSbzDKAC4wd6DWRYh2G0cK9sQNt1xt1d1Z2MjFQTFrZsUTUrU1OLehkXLlSfS0hIzZRT0mhuMsojunYYhlEX+A+wE5UkdVt1GqXRaG5M/PzgmWdUbNcXX6hJh336FNpABJYuhfnz1fvNmwtEVy0mKTOJlUdWsiZ2DdmmbACauDTh9g63M7DtwIqle6ht1K0Lt92mWm5ugafx3DlV2RxU3q/u3aFvX5UN9wZNSKvR1DRXHF40VNRnCxE5dXm5DeAuInvL3Kka0MOLGs2NxfLlSnTZ2cFrr6lMBphMqj7ir7+qB/v48TB2bA0Ubyw/MedjWH54Ob+f+p18yQcgoHEAd/jcQdfmXWv3EOK1kp4OP/+sPGDHjxf0u7mpHGDjx0P9+jVnn0ZTiylreLE8MV07RSS02iwrB1p0aTQ3FiLw2WewapVykvxzRjptF/9LZVR3cIBnn1Wek1qIiLAjYQffHvrWmsjU1rClT6s+jOo4irb1av8waJVz+rSK/9q4Ub23s1MpKCyZ78+ehcaNb4h4PI3menAtMV1/GIbRVUS2V4NdGo3mJsQw4MEHVaaCrVshavy/adR4H26t68OLL0L79jVtYglM+SY2xG3g20PfcvLiSQCc6zgT2S6SET4jaOh8YyZorRJatFCerXHjVCb8Y8cKBJfZDP/3fyrmq3dvNZ7s7a0FmEZTCuXxdB1E5emKAzJRCVJFRAKr3brLaE+XRnNjYjKp9FsxPx9j+OlPaPPRcwQPrF3iJceUw89Hf2bFkRWcyzoHQAOnBtzhcweR7SOrN5HpzUBiosoRcu5cQV/jxgUCrF07LcA0txwVHl40DKOViJw0DKN1aetF5EQV21gmWnRpNDcgSUnQuDH5+aqqz88/CbZ2Bv/3f8WC62uI9Evp/BDzAyuPrLQWnm7p3pI7O95JeJtw7Gx0sHi5EVGJ2jZvVi0lpWDd7Nm10rOp0VQnlRleXAGEiMgJwzCWicid1WadRqO5udi4UT1sH30Um0GDeOwxcHEx+PZblTw1M1MlTK8JUnNSWXF4BT/E/ECOKQcA3wa+3NXpLsKah12frPE3G4YBHTuqNmUKHDyoxNfRo8rTZeGdd1Twfa9eSojpe625xbiS6Cr833ALRo5qNJpKsXq1qqEoooaeUM/WSZNUtZmvvlL5NxMTYeLE65d94FzWOb499C0/x/5szRwf3CSYu/3uxr+xvxZbVYVhqNwhfn5F+1NSYP169XexbJkaguzVSxXj9vHRAkxzS3Cl4cVdIhJS/H1NoIcXNZobABFYskTl4AJVP/Guu0ps9uOPSpPl56ua1s8/X72ZB5Izk1l6cClrjq3BlG8CoHvz7ozxG0OHBh2q78SaouTnKw/Y77+rZKyFhyAbNFBxYR3056G5OahMTJeZgsB5JyDLsgoVSH/dCopp0aXR1HJEYO5claDLMOCxx1S28zI4eBD+/W/13PXwgOnTVdnFqiQpM4lvDnzDr8d/xZRvwsCgd6ve3O13N23qtqnak2kqhiUG7PffVbtwQaWgsBTeXrdOZc0PDNSZ8DU3JJXO01Ub0KJLo6nlLFgAixapscL/+79yZZlPS1PxXXv2KJ02YQLcffe1jzIlZybzzYFv+OXYL5jFjIFB39Z9Ges3lpYeLa/t4JqqRwTi41VaClAesfvuUyWJnJyga1eV0y00tGitTo2mFlMjosswjCHAe4Atqkj2G8XWTwCev7yYAUwVkT3Fj6NFl0ZTyzl5EmbOhEcfVQ/JcpKfr8r7LV6snr2+vspJ1qZNxU04n3Webw58Yx1GNDDo16YfY/3G0ty9ecUPqKkZLl1SHtMtW4pmwrezU+7Q8eNVDJhGU4u57qLLMAxbIBoYBJwGtgPjReRgoW16AodE5IJhGEOBl0WkW/FjadGl0dRCRIq6pXJzwd6+UofauRPmzFHDjba2qlD2uHEqef3VSM1JZcmBJfx49Efy8vOsnq3x/uO12LrROXMG/vwT/vgDDhxQf3OzZhWIriNH1N9cmzY6EF9Tq6gJ0dUDJaIiLy/PABCRf5WxfT1gv4iU+JbUokujqWXk58P776vA56FDq+SQmZkqBn/1avVsbdxYOc5CyyhClpGbwfJDy/nuyHdcMl8CoHfL3vwl4C96GPFmJC1NqfOIiAKB9de/qtJSjRpBWJjysgYEVFr8azRVxbWUAaoszYFThZZPAyW8WIV4APixGu3RaDRVQX4+vPuuCnbevFnF29Srd82HdXGBRx5Rz9QPPoC4OHj5ZejSRcV7WfJr5phyWHlkJd8e+pbMvEwAujXvxj2B9+gA+ZsZDw/o379gWUTFgZ06BcnJ8MMPqjk4QHAwDB+uXjWaWkR1iq7SfL2lutUMw4hAia6rR99qNJqao7DgcnRUcVxVILgK4+Oj8qp+/z3873+wY4dqXbuZaB7+E+uSF5F2KQ2AwMaB3Bt0Lz4NdYzPLYdhKFfo1KkQHQ3bt6t27JgakixcUP3UKcjIUJ5ZW9uas1lzy1Odous0UNjH3wJIKL6RYRiBwOfAUBE5X432aDSaa6G44HrlFZVoqxqws1NxXf37w9KlwlcbNvH5mflc+vaMSmju04Fpfe8lqGkV55nQ3HgYhlLqPj5wzz2qBuSOHUUndFi8YC4u0LmzGrMOCaneBHEaTSlUp+jaDngbhuEFxAPjgL8U3sAwjFbAt8BEEYmuRls0Gk1xTCYwm9X7wrGdDg4lg5Lz81Wku0VwvfxytQmuwhzL2s3eZvNwGnCMeolwMb45DQ7cx5lt3VmwwyBtuEpofr2y2muqCZNJ/Y1ZYrEyMpTHKidHzWbMzVWvlvd5eaqZTAXvO3eGvn2hYcMCd2nr1jB5supr0kRlxN++veC8Hh5qG0tJosLNxga8vFRZI1DnnTVL/f0/80zBMRYtgvR0lU/Mzk69Fm729qrVqaP+txwcVLkkC5Z9S/u/09x0VNtXlYiYDMN4HPgZlTLiCxE5YBjGI5fXfwK8BDQAPrpcgsNUWuCZRqOpArKzVVbS/ftV8HFMjHrQFcfDQ+Vu6NhRvXp7w8WLKojZwUENKRYv8VLFHLtwjLm75xJ1NgqAph4NeKb3Xwh2H8B3K2xZuxYOHVLNw0PlYY2MVMH3mhoiP18JiIsXVdC75X16uhJRhdvdd6vEp6BKAs2bB6NHK4EESnD97W8VO7+LixJdoGZl7NypRBqoygjDhsGIEco2i30ZGcpuk6pUQG6umkLr7q5yghX+MZKXB1u3qtxhhfntN2u5q3Lh6KgqN1iYPl3lKfv444JcZZ9/Drt3q20dHdU5La/Fm7Ozan5+ahvLddjZKeGoqVVU6+9DEVkNrC7W90mh91OAKdVpg0ZzS2M2q1/3P/5YUmQZRtFZXoah1qelqZiYP/9U/ba24O8Pd9yhihf7+1ebueeyzjF/z3zWxa1DEFzquHBXp7u4vcPtONip/BEPPqhqNq5bp0aMTpyAb75RrWNH6NNH5Wat4lAzDSjBHhOjvEqWZGpr1yrRdPFiUZFyJfr2LRBdTk5KHFi8rgB166pZiI6OSuhbvEWF3xf3KrVuXbB/69bw0ktKPFlwcFDD4xZPVl6eEnd16yovmAhs2KA8VyaTWjab4ZdflK0NGsCMGSWvZfx4de3FPW95eQVeudzcglY8w77lugrnRzl7VuW+qwj/+Q80barez56tJrk8/3xBouKNG5VAdHFRmf9dXAqaq2tBX+H3WrRVOTojvUZzM2Iywa+/ql/UZ8+qPhsb5bUKCFDCqVOnkr/aLUWqDx8uqJOXmVnwMHV3hwEDlFupedXlwMrMzWTpwaWsjF5JrjkXOxs7hnkPY6zfWNwc3MrcT0SZuXq1SuWUq+pYYxjqMnv1UuE7TZpUmak3FyKqBM/Zs5CUpF6Tk1Vc1Llz6v0//wlt26rtP/pICfiHH1azA0E9yGfPVjfd1VX9jRRubm4FD3JLa926IJ4qP79ACNU0+/crERkVBeeLhRi3bq3SpFwPO1NSlCcuJ0d5qC2vxVtWVsHrc88VlFH6xz/UP8TLLxfkXPn6a5WFuLwYBvz97yoVByjRtnWrEsw9ehTYGROjPmNLc3XV4/3UTMoIjUZzvcnLU7/MlyxRD02AZs3UcE7PniVFVnEMQ23ftCns3auGXx54QP0a//FHlcdh+XLVgoNVLgdf30qba8o38fPRn/nf/v9x8dJFAPq26svEoIk0dW161f0NQ42q+Pmp59K2berZsHOnMn/vXrVd8+Yq9URIiNKbt2wap6go5cFMTFQtKalgaK0skpMLRFdwcEEyUgs9eqh+D4/KzQysTd4Uf3/VLKWJ9uxRbe9e5emyCC6TSZW78vEp+BFTla7V+vWvLcj/b39T11DYqTJggLI3M1O1jIySr8X7Cn9fHD2qvGeW3C1QUES1OM7OSoBZRHfh15CQgsLmFvHo5nbL1NjUni6N5mYhNlZ5HE6cUMstW6q07r17V+zBVniWooOD+rVseRBFR8PPPytlY4mX6dpVzRqzPJjLgYiwPWE7c3fP5XT6aQD8Gvlxf+f76dCgQ/ltLYPMTPVDf9s2pTOysgrW2dmp7/xOnVTr2LHAQXBDk5GhHpIW4bNggRoue/jhAm/H0qXw5ZdF9/PwUMFwTZqoJKONG6vXBg3Uq7t77fBC1SSWeDUPD7V88KAauitM8+bq/8TPT3mHXFyuv51ViSUUwfLdceKEal5e6rsFlBhdsULdm8LtSrrioYfg9tvV+3Xr4J13IDwcnn1W9SUnK49qYW+ph0fJVxeXWv13qT1dGs3NismkPFuLF6sYFE9PVTC4Z8+KfymVlofLEsNVeGr+/fcrb9fKlQX5kXr2VOKrZcsrnuLYhWP8d9d/2Zuk3FCerp5MDp5M9xbdMaroS9TFRf2wHzBA3Z4jR2DXLpVJ4Phx9cw8eLBg+1at1A/4du1Ua9v26k7BGiMnRz38jh9XcT+WduGCmmHq5aW2S09X3qyTJwtEV+fOSpR5eipvZtOmBcHXmrKxsSkQXKBU+6xZSnTs26dmdMTHq/bzz/DppwWi69Ah9b5ly1otEkpQ/Ida69ZF4+ZAxbpZYvMsiKgfABYBZplMYXnt0KHotnXrFvUSWlJ+XA1b2wIB1q8f3Hmn6k9NVXU7PT3V33vhc9WC+689XRrNjczJk+qXYmysWr79diW4ylO0sDhmM7z3XtG0EFebpZiWprwnP/yghjYNQ5UFuuceNWRQiJTsFL7e+zVrj61FEFztXRnvP57bvG/Dzub6/f7LyFDPQYvwio4ufYStWTMlxlq1Us/LVq2UM6Myt7ZSiKi4othY1Y4fV8O7Z86Uvr2Dgwr0tgisxEQV5ObpeQuPp14nTCb1GR04oILz/+//Ch7wTz6p+lxdlVvV0ry9r+Mf0w1Eerr6B7XMgi38anmflqaGJS0Unvm6d68aXvXzgzfeUH25uTBmjBJpjzyigj2rmetee7Eq0aJLoymGiErZPneu+sJv3Fh9uRf/1VkRPvlEiafKJD49f1552n7+WXnLXF2V8BoyhFzMrDi8giUHl5BjysHWsGV4h+FXDZK/XlgmsR07VqBv4uJKF2KGoUbdLI4iT0/VLCNzHh6V/DEtooZVHBwKPCrLl8MXX5Tc1s5OqcA2bQq8D61aKQNqwS95TSFE1I+ifftKBubb2qofSKNGqWWzWXmX9GdYPnJzC4SYq2tBvpgTJ9R3o6dngffr3LkCUfb3v0O3K1UkrBq06NJobhYuXVKzqDZsUMuRkWq4z9n52o57+jS89ho89VTR5I0V4cQJNXV9zx4EYVN7e+YF5pPsqNIBdGvejfs7308zt2bXZms1YzKp23HypKogY3lNSCia2aA4deqoPJyWkChLPLSl1aunNJWTOQOjjl3B0N4XXyiRNWlSwYNi5054+2011mlpXl7K3aZnh91YWES1JbncoUPKc/n88wVel59/VhXffX3VEJyPjxrzvtFjw2oLJpMSaM7O12VIXYsujeZm4MwZNR08Lk59cTz11LW5yk2mog9ws7nytekOH1a/6P39ORK/h89//CeHcxPAlIdXvbZMufddAn3DC7YLCLimmY81gcmknp2JieqjsEwCTE5WLT29lJ1EaJx9gpYZh2iecYQWGYdpmBvPr8HPctY3HHd38EtcS0jUF5zpMZLUQXermfcuotImuRnWtEm3yASvW4PsbPW/Zhn6tXiai9OiBQQFqWExzQ2DFl0azY3Ozp3w1ltqal6zZspNfpWg9SuSkaHitsLDC2YTlZfiwunwYZg0iXNk8WWbNNYPaAv5+dTdspuJUfkMPGmHTVg3uO02VcU6L089bObNKxBepYmxG0yg5eTAuYRc0nccwbTvEDaHD+IQdxjJyCTPUr3GBLlSh3Ut7uWPpiMBsBEz+Vx9aMnOTokvSxJyZ+fSk5RbEpkXb5YcnIVbnTp6RKtWIKKU/JEjqsXEqLFuk0mFDfzjH2o7k0nl5GrTRsWFtW+vhph13F6tQs9e1GhuVETU7MSvv1bvu3WDp5++tmGHCxfUzMTjx9Vsn0GDyna5lyGwyM21CqecPTtZ1vgM37a9RO6lLOqkZzHSrStjDqTh1LQJnNuv4iq++koNQfr5KdG3b1+ZxwRK9tVW4ZWSAqtW4bh/Py1iYooGhDVFjTl26qTs9/XlUjMv2mfaMSbVMqnL1jq5yzLRq7R0SiZTQRxxVWJJ8l486Xvx0oHFE8Fb+gs3y/rCr5ZWp45y7hR/b2dX8N7W9hYVgoZRECTYr5/qM5nU/2jhMe0TJ5Qgi4lROflAxYK1aqWm3o4ZU6WJizVVixZdGk1t5tIlNaNw0yb1pXzPPSrR6bU8kU6dUh6upCT15fz661cWXMWFz759arl5cyQhnt+2/o+vbPaS0jINLuXTO82Dyf3fobFjA/jvDiW2WrZU8SuLFqmI9agoFdzk6anOU+iYJCSoZSjZZxFoNen9unRJzVLLyVFpMixY6ukZhoq98vNTsXGdOinRVQgHoLFLxWpFiihPWVaWapmZJROTW5qlTrTlvWW5cMvJKVmlpjZhGAUirLAgK/6+cLOUGyz+vnCz9JXntbzvr9R3pWYYBftYamwXXmdjY4dNY2/Vl3m5r1FLbF5/E5vYGIzYo9gcj4XTpzDi4lTYwZgxBTfxf/8ryK1laXrCRY2iRZdGU1s5d04JothYNWY0fbpKRHot7N+vhikyMlSg7osvFs0/VFzQlCaGAgLA3p796bF8HniBWNMmcHXFu/cdTDEH0anL0AIxZBFpluPdfjt8+KESX46OamZXXJz1mCQkKDdHQIDav3hfaSKwuoVYXp5yLVmEU1yc8hJ6ehaIrvr14d571ZBPp07VEvxsKZVpb69SG1UVIup2XrpUtERgXl5BX2nlBMtqJlNBCcLCr8X7zWb13mwuut6ybBGZeXlVd603B/ZAx8tNYWe+RNOcODyzYtn9WDOMy6Ltvn27aJ5xBIwtWGRWrp0z593aENOkN3ta3V5E8FmqMVla8XWW1F3Fty1t3+Lbl7bflfa52nZltcL7Fj5n4f4+fYoWVbieaNGl0dRGDh9W4ig1VeUmePFFNXxwLWzfruromUxqiHL69KJ5gkoTNKWIofhmbnz5XA+2Ht8I7k1o0Kg19wXdR782/UomN708nGbFzk6ltrjnHpUZfd06lWri11/hsceUPYGBZYu2JUtK94hVpRATUUM6UVGqBMz+/Wp/S0xN+/YqYayPT9GJB4U9DDcQhlGy3nJNI6Iyj5jNBSKs8GvxZjKV3D4/v2S/5X3hvsLrCq8v631Z66/ULNtZrqt4K63fUm+78DrL++J9JlsHTrv4cNrFB8yoBixv9SSemUdpmnWMxtlxNMk6jktOGo1yDnLMpj3nLk94bpJ5jLtjXiPJqTXJTq1Icm5NsmMrzjm1JM/25kue6+WlRZdGo7Gwdq3yBlkCaF94oUSi0UrRurU6Tq9e8OCDKivo1bxaY8ZYhc9FXy8WZW5k9erVmMWMQ0sv7up0F6N8R+FgV8EndoMG8MwzKpHqp58qb9433yghY8mADyVFW2kesbKGJisSD5aSArt3qxYVVTJoKju7IKO1rS38618Vu15NhbDc5spOpL3VsMyHKynOWpKf35L8/AjrermQinEijvZudRnXUm1rt+kEzp+cQzgH7ITLx5NLYG7QmHPPv4XZo776FziTSL6zK2ZnN+t5Cp/bYk/h/uKvlrKQhZulv7R9im9XvK94K2u9pb94Yv3riRZdGk1tIS9P5bj68Ue1fPvtKv/WteRkys0tiEpu3FiVifHwULOjyuHVAsj1bsvK/P0sOfgWWXlZGBgMajuIewLvob7TNRTlBRXz9M47Smh+9ZWy6/nnoXt3lTiyRYui2/v6lvR+QfmEWGHvl4+P+vbetUvNCj15suh5GjZUJUSCg5XwrcrxPI2mirE4mMslVD3qQpvgon2jwqF7BxX/Vbi0VHw8mC7g1rkuWKoCfTJL/WDz8FCxms2bq//T5s1VLrkGDar02m42tOjSaGoDycmqZEV0tBIOjzwCgwdf2zHPnFEemZ49YexY1WcRD1fxahEQQL5PB9Yd+5UF+xaQnJUMQKhnKJOCJ9Gmbptrs60wNjbqWvv0gW+/VUlCLdWqIyNV0e76hcRdce9XeYSYv79KSDl5srru5GQ1TOjqquLbcnKgSxdlR+fO6r7oYGPNrYKNjfqbb9686OQQs1nFlhauw2jJPWKZRrt/f8G6UaPUD0VQ2YXXrFHpbSytQYNb/v9K5+nSaGqaqCh4802VK6BxY1U/r337azvmjh2qIK8lp9djjykvUvG0D3l5SpQUGn4TEf6M/5Ov9nzFqYunAGjj0Yb7O99PZ8/OZZ+zqkhJgYULVYZuESWeIiPhrruKiq+rYfFqxcerB0PHjrBggXqwHDyovF19+6oZXra26kFSm9NSaDS1BRElxuLj1WxoS7HvQYPU/xSoeM133im6n719Qf2s//u/gqryqanqB1A5vfoiQl5eHpmZmdaWlZVlfS38vrR1U6dOJTg4uMpuR2noPF0aTW0jP18Vi7bk3woJgWefvbb4rfx8JVgWLVLLYWEwbBg89FDJ+KZSvEP7k/YzL2oeR84fAaCxc2PuCbyH8Dbh2Bg2pZ+zqqlfX4nEESPUvdmyRdVS++mnAvFV2hCGiPp1vXMn9O5d4BH7/HM4e1aJLIv3q2HDgpp4dna1Ly2FRlObMQyVeqJRIzUEXxpt28LEier/KiFBlW5ITYWTJ8lPSCDLZCLz7Fklml56icwTJ8h0dVXN2ZlMR0cyHRzUe1tbq3CyiCdTacVRy0lqamql971WtOjSaGqCM2dg9mzlcQE1hDZ+fFE3fmWO+dJLSnR4eKghyjFjlLArLb6p0DDdweSDLNi7gL1JewHwcPBgrN9YhnoPxc6mhr4mWrZUXr+4OCUif/8dVq1S4mvgQCXKGjVSMwx37VLevaQkta+DgwrSByU6+/RR2btvv/3q8WBlpaUALcY0GpSnySKCMjIyirwWf5+ZmUmmrS0ZdeuSaRhknj9P1vnz8Je/FBxw//6CySrF8fQsqLyRmal+WDk4YOfkhIuHBy716uFSvz7O9evj4uaGs7MzLi4uODs7F3nv4uKCk5MTLi4uNCyWN+96okWXRnM9EVFZpP/zHxVHVK+eSqEQGnrtx37zTZVSwTCUwAoMVO/LyoEFHEo+xIJ9C9hzdg8ALnVcGOk7kjt87sCpjtO121QVtGmjZnBaxNfatTB3Lrz7rvJSNW4M7u5qW3d3dS8Ll0eyZPmG8sWDlZaWoqys+Vp4aW5QTCaTVSBZ2pWWi4upSocm2diAhwcuLi5WQeTq74+zgwOugIvJhEtuLs7Z2bhkZuLSrZtqLi4479qFy9y5ONvaYm/5gZqdrYY2ExOVZ9wyUvDrr+o71t1debYbNlTvazimTIsujeZ6ceECvP++ypcFagjs0UevbTjRksYAVAZ0FxcVNJ6cXNSjVUhYiI8P+87uZcmBJUSdjQLAuY4zIzqMYKTvSFzsqz6x5zWRm6u8d7t2qYkGoLJ2ZmQUZPZs315l6h83ruKJScuTlgKuPiNSe7801xmz2VxEGKWnp1uX09PTiwio4i0nJ+eazu3o6Iirq6u1WURU8ffOzs7WPsurk5MTNpXx6jdsqIYtk5IKWnKyes3OVnFhFlasUD/UCmPJE2gps1QDaNGl0VQ3ZrOaxTN/vgqWd3FRYqtPn8r/6jKZVH6r9evhlVdUFvRevdTU7eTkEh4tfH3J9+nAllNb+HbNZ8SkxADgZOfEHT53cIfvHbjau5Z+ruuNJUi3USO1nJurZmFaflk3baoKZ3fsqL5sf/tNBd+vWKHSbfTurWK/fH0rd3/Lmg1ZmhiriQz5mpsKESEnJ6eIUCr8mpmZWaLf0rKysip9XsMwSoimspaLr3N2dsa2JpKo1atXdlUOk6no//vAgWoo8ty5gpaRUS3VIiqCnr2o0VQne/eqoUTLL67OneGJJ0rU4is3Iiqw/L331DBlfr4aSlu6tMyH/SXTJX47/hvLDy8nMSMRAHcHd27vcDvDvIfh5lAFiVeripQUdX8MQ+XtsnyJfvyxCrAPDVVFfQt/uZpMqjblmjVFp683b66+eHv3VkKtKih+f5csUYLQ4v164QW1TguxW478/PwiXqbSBFRpfRkZGZgLF7SuAIZhWAWRm5tbEXHk5uZWRCgVF1TOzs4lK0jc7OTkFFRUr2b07EWN5npy5oyKO9qyRS03bgwPPAA9elTO+3L4sAog37dPeXcSEpSr3NdXVTsuJTj+9MXT/BjzI78e/5XMvEwAmro0ZVTHUQxsOxB7W/vSzxUToxIjduyo0k1Y+r77TgmeUaMKtn3nHWXH448XTALYt0/9ouzYseykotnZSiBFRakZTdOnq/569dTxDEMJMMssxalTy743dnYQEaFaQoISo7/9puI8vvxStfbtlSfwWgVYVWfI10Ks1mEyma4olsoSU1lZWZWOc3JwcCghkizLhfstwsrS5+LicusJp2vBseZLGmnRpdFUJfHxKrnnr78qD4yDg4o1GjlSPWwrw+HDaiZeSooSNn36qBQQX3yhBFehoURTvolt8dv4IfoH60xEAJ8GPoz0HUlPzzBs6hSy4403VJ6dWbMKcub8+KMSLo8/XiC6UlJgwwb1S9EiukwmlYvHxgamTSs45rJlKgbrpZcKhgLWroXPPoMmTdQXX0yM2j8zU533kUdUbJthKC9eZQNemzVTmezvuUfFgG3cqBKtHj2q2pdfqpiQLl1U8/G5thmj15IhH7QQq0Zyc3PL7XUq3Cob62QZritLLJW2bPFM2Vf2u0Fzw6FFl0ZTFURHK7GxdWtBcHu/fuqhWtGyGIcPqzQIHTuqGYj79qnjOTsXiLh77oHwcNi3D/H353ADYf32j9l0chPpuekAONjY088rgtu8b6NtloMqmu2yWAXzW4iLU0Lx7NmCCrAdOypB1KRJwXbt2qlkhoWHRQ1D1U80m4sKpE6d1D1ITlaziQ4cUKLr5Eklilq0UEKnRQv480/l3XIqNFNy61Z1rWFhlf9lamurBF/XrkrU7NqlhiC3bYNjx1T75hsVeNu5sxq2DAhQcWQVFXuVyZCvhVi5EBEuXbpURCSVR0hdvHiR3NzcSp3TMIwiIqkswVR8GxcXl8oFh2tuKbTo0mgqy6VLSjRYhv1ADXX17w+jR6uHaUXZskV5alJSlBhZtUo9aBs2VOdzcoIuXRARTjR1ZHPuJTbEvMOZqDPWQ7TKcWDI9lT6d+yHy9jHVadTjhJBGRkqDszycHjySSXkCts6aJBqhWnYsOSMH1tbNaQHRWdR5uWpYcNduwq2bdxYXUdgoBrm8/NTQ7DvvafWWTJRi6hh2awsJdgsouv775VHLjJSCcCKYG+vajl2767EzL59yhO3Y4eaZr5pk2qW6/T3V/b5+SlhWNlgfC3ErFhm2RUXToWDwksTUhkZGZVOgmlnZ4eLiwvu7u64urpaXwu/L+xxsvTdkrFOmuuGFl0aTUXIz1fB8evWKYFkGYpwdlYz6m6/veKlav78Ux3n2DHlEUpKUmIjI0Od6+674auvyNu7m/0tHfgzYz3bVr6p6iEmJ8PZs9Rv7k14j3FEtImgTXwmxrczwPVswXkcHdXwXuPGRYfTOna8tvvxzTdqOHLKFCWmoMAb5u2thItFxBSezg1qmO+994r2mc3qPiYnF+TeAnWP9uxRniuL6Nq4ERYvVvUS77ijYP+LF1UsWWkPTnt75dUKDVVDtImJSnzt2aM8cufOqRmh69er7Z2cVDyYt7dq7dsrD2BtFWJQuhirAoFWOFD8SrmdSktVcC2z7ArHO13J+1TcC+Xg4KDFk6bWoUWXRnM1MjPVQ3n3bjU8lZJSsM7HR3l7+vW7+lTk4g++w4dVrNeZM+ohHhyshiKTk8HZGbOHO8e83Nl/aDkHkg+wJ/FHcg4kQavW4OyEh4MHYc5N6RfjgH/j27DpfLnQrEsufPSR8tIUxpIgtCJkZKghyNhY1Y4eVfFbFrFmMimhEhPz/+2de5Qc9XXnP7e7p6e756kZJKHHSKMnGIQx2CaACbENODwMXif4WPZ6DTiwSY7tBB8cjrDYYzgnPuvsiXcXAs7jGMsYY+wEWMyJbdmsE8s4MUI20QsN0gjJEnpLo9HMdE93Tz/u/nGrVD0zkqOwmmmJuZ9z6nTVrV9V/ap+1b/ft+7vFYmu3/kdW95M1WAiYZ6+sSxfboKrdk7KXbusyjKbjWz79tlwHAsWwMMPR/YXX7Q2YxdcMLpt3axZJpRvvtm8bLt2mfjavNkmyO7rszQLhQ7Yfc2fD/Pm2e/8+SaIzjmnvlWTJxvAFeD229FikWJDA7mHHiI3Zw7ZjRvJbdpEdvZscp2dJp56e8m9/rqNHp7JTNjwBKfa9snbOzlvNVx0Oc5YslkTF1u2mNDaunX09BTnnmsi633vixqaj6VWYC1ZYp6Tz3zGvDBtbfDss1FBnkqBCMeuvozXb7+F13vXsuX/foct8aPktz0CsaAgH+qn+3CZyxZfwmXX3cnSzqVIXx9cfmC0GEkmR4/Ifirkcta2a88eEx67dpnY6usbH7a3NxJdH/iA9Qisvd5E9BBatsyWWj7yEesNWusRGxgwj1qtt1HVPGrFos1LGRbi//APdo+33GLiWcQ8ge3t5m0Le1C+/rrdc2+vvRfHjtk7sXXr6PjUTuY7e7ath/PTzZhh3tBT4QRCTFetorR+PcOLFpFraWG4pYXhUonctm0Mx2LkDh1i+KmnyK1ZQ27PHoZbWsju28fwPfeQKxbJbtvGcDJJJZ+397C11aqAw6rmcP68sbbmZvs/DA5CaytNM2da4+9SieZslpYFC2hesOCkQxPUDlHgXifHcdHlTGXCxt779lnhGxas+/ePDhePm8i45BJbFi8e7dE4kQfr1lutoCqXTSz09dl1Uily2aPs/eWP2NvVzp6lBXZWc7zeXuXo3JfhpWAuxvhBKBSYRTPLFl7JhdMv5O3np5heiJm3pq3NwoXTW5wK4bxlra2R12vdOvMInWwC2GTSPDnd3XbfixdHDe7D69eLVGq02AR71k89ZZ6ekFLJenweOza6inP9equ+ff/7I9vPfgaPPmpi8rOfNfGWTJqH86KL4ItftHTdvduOP3DAqoNrJvNl9+7o0tUqhWqVfKXCcGMj+eZm8k1N5DMZ8qkU+cZG8g0NDIvYospwpUK+WGR4eHjUMq5t0znnHBdDrF5ttmzW0nloyIRT6J1ShXyeZDxOc1cXTfk8Tckkze3tNtXK4sU0p1I07dpF84wZNPX303zjjTS9/e0033cfTZUKTcPDxB54wM4XetP27YO77hrdxqy7e3S15osvnlpV51nURs1x3iwTKrpE5HrgISAOfE1VvzxmvwT7bwSGgdtV9ZVxJ3KcN0O1agVhX180InFfnxWUe/dagXGiHk7JpBVkySRcc41VPaXTVt300ktWqLa327k2boRHHrFxp7q6KH/zGwxuXMexwn6OZEY43FjhSGYbhxa2cLirzL7GPgaaGiD/HOxrhhvnwYZ+SKZIt53Doo7FLOpYxJKmD7CsbQmd7/rt31xtqWoF7cCA3Wu49PXZcv31JtIAvv99GxX/wx+GTwVVkc3NFj6ZjHoWdnVZwdndbd6as7FHVm2VVDJpHQbGcttt6J49lOfPZySXo1gsUjx8mKIIxWKRwoYN9rtzJ8UnnqDQ2UmxWiWfz5t91Sry/f0UP/hB8vPmUZg2jfzGjRT27aOQTpMHyvm8vRu5nAn1RE2WW62abawHSMSEfiIR/SYSJJJJmoJJfDPNzWRmzyZz3nk0tbTQ1NpKU3s7mdZWmrJZmo4coemii2xpaqJp714y27fTcMklo6shSyXrsHHPPXbtdesiWzg5OFhVam17slNpY3aqtt80r+Wptk873TbHmSAmTHSJSBx4FLgO2AOsE5HnVXVLTbAbgCXB8lvAXwe/k8tE/GHrlVmc7XFctsyq40ZGLPPfssWEzYIFJggKBavW6ekxQdDRYV/zO3ZYNVBzs7V7GRiwAmFgwNryNDVZITc0ZN6Bzk6zT5tGNTtEKTfEyNKFjCxZxMjAUUaeeoJiqUDhl9+nMAcKlSL5B/8bhcP7yTYKuSXzyWYS5HL9ZM8/yEBKGOjIk/3hbSbYfjtrXq5kI7xrHrS3wf5G6O0l2dbJnBnnMSczk7lzZzAvcx2Lz1nKuVffhISemHSPVWUdPGgNzsE8K889ZyKrdvlNo1kvXRqJrq4uO9e0adH+RYvgscfe3FAJ/0FUlWq1SqVSoVKpUC6XT/pbKpUol8ujllKpdNwertcuIyMjx3/HrtcuxWJx1PoJB7Rcs8YWsPdQ1aoaH388CrN/v1VZbtoUianDh+2d6+iA6dOJx+Okh4dJ9fSQnj6dzDvfSVqVdKVC+oUXyKiSvvJKMqUSmZER0r29ZIaGSJ97Lk1tbWTicTK5HJmjR2lIp6PhR4pFqwJuaBg9tMexY/Y+tLVZ79HGRnvvVe29XLvWRE3ovR0ctHdi9Wo717XX2ju3aJG9bwcP2jvW02P3ODBgxxYKNkxKQ4Od+3vfs30zZtgzWL3axHo2a/E7dCga0y2XM0/rwYPWGWXmzKgzyaxZ9lH0q19ZHnDXXfb8k0nr1Qpwxx1vTtydqu039Qytd/54tubrZ3IcJ5kJmwZIRK4AHlDV3w227wNQ1f9eE+ZvgZ+q6lPB9lbgvao6qn5nQqcBeu017rj13RRyNmI3zS0gQC4L1eDZtLdbVUbfEahULRPLZCwT6zti4SoVy+DOP98yiZ07LRNRtQI/FgvOCaAmDpqa4GhfdHyqEVrbob8PFChXgnYiMy0jU7VzxxOQiEMhb+EAGpIQj0G5ZDYBYnFbr5RREbM1Ntp5W1qCCYOrwThLMYvjSDF6NolgqoRq1eIsYrZKBa1E81xpOgPFAlTKwfQKAud0WkZbKqMSxCfZaGFKZTQWs7ZKTU1QKKIjRbuVWAxSKRSFYhGtVtFEAgS0rRU9dgytVu26ApqIo6oWTqAaEzTViFYqVEul47ZqY5JqDKrFIlWBajpFpXseFQHt7eX4gwwLkXI5eI4STUidy1r6A7QGQk4VDh6y32QSmd9Nurmd1I7dNB0ZoDmRoaWxleZyjKYStI7EaaKBUN6M+vfdfPPxNmL6r/9qmcPll6PBwKe6fbuNtF5znAIkk2gqZc8tnUYbGyGTQTMZdPp0aGuzZ3QKS7VaHbUebp9oPRRQtdu1tlBc1a6fiSQSCZLJJKlUisbGxhMuqVTq+P5wfeySTqdJ9/eTGhggtWQJ6a4uEokEsn279fBcsMDSGEw0/fEfR0NkhKxcaZ02Vqyw8NmsDRvyzDNw6aVw9dX2kbF/v3ktUykbRqNQMI/aT39qHxbLlkXevjfesPBz50ZtEIeGTEg1N0eiHEyolct2rVBI9vSYl7i7O2q7t3evVcl3dJh4y2at/ePwsP1nrrzSwq1fb/FShYsvtv/M+vUmcsplqx5euNCOf+UVu49YzIb3GBy0D49q1cKfd579P7dvtzD5vMWprc0EYCJh9xW2p+vpsXz66FH7qOjqimwDAyZgOzvtPjIZO3baNBOBO3ZEnsiZM23/ggX2fCsVy4fDThQvv2xhKxXzCHZ02MdiOH7dnDmWFrt3my0et3MVi1bdD3Y/F19sz3nnzsjLedVVtr19eySWb7jBOnts2WLpn0hYG8SBAUvrHTvsfPG4dW55441IIMfjFnbzZjs+k7GwN99sx61da2VEQ4O1dTx82AZKjsct7C23WFo8/bSlaUuLdQYCePJJu7+mJvj93zfbd79r95lKwUc/aumwc6cNIC1B/v/hD9v6E0/Yc2xpiY7/9rfteum0HR+eM5+3OH7iE2Z7+umoSv322832zDNmAztfS4vZymWLx3e/O6HCqx7TAM0B3qjZ3sN4L9aJwswBxjSqmUA2beInQzmK5aAYOzo4PszhfqzUrykiR3IwMByMT4SVfiMF2PBqUGhXovAj2fHnPDoE/dnxxw8diERTaNv5hgkzIRCCJxi3pliI1sNjKY235QJbtlBzHR1T+h8/6amdMz8YHV8cCa6zPxIoIfmaOBLsGx6yk2iNvZAPVgNjPPhSL2ahOOacEhTk4b2gkA08E2EZHwPiQQYY1iYmSnDsgK0PKjHFllgVESFWglg1OLSxRFyFWB7iVSGuQmJpF3FaicfiJA4oiaFhGhYuJjE0F4aAI0XYXyUP5Mlx6Hh8g+qkWCBya9dfeilqc9Tfb7beXvMIgGU+HR2jq53i8fHVf+WyFViDg+Y1OIOIxWLE4/HjSyKRGPfb0NBAIpE4voTbtfaGhoYTLslkkmQyeXy9oaGBxsbGcb+NjY3Hw074xL3hcBO1NDbajAJj+bM/M09QZ2fUIaGlxQaKPffc6DyDg1bgp9Ojp2Vatco+du6808TIyIiNcbZmjfUovfRSEwy9vRZ21iwrzEolW77yFRNOH/uYvVvlsom+rVvt+EWLzNbbe7xKnXe/2wrbRYssbCplQ3JUqyb0wqFV5s83UdPZaecLhwVpb7ffWMyEWyZj7dUaGqKP12rVCuhUysIVCpGACTso5PNmC2eCgMgTPDxsYVWtIC6XbV97u517cDDyhI+MREIhnzfRksnYeQoFsw8NmaexVIpsuZzFt7/fjkulIi98Q4OFDW29vXad8AN+eNi8MP39Fq6lxc63ebMJ3ELBRFcuZ6J1587oGrmcPbdCwURcuRx1gNiwwfKAYtHeh2zWhkjZscOuGcZn3Tq7TvicikUTk8eOmS2dtnteu9bil8tFIvcXv7BnHVahq0a2cFzActneg9mzrUYil7P7qVajqdKyWUtbVfj5z802NBR9BNfaymWLYzi+3uCgbVer1i4TTISWy/ac/+VfIrGdStmzCnv8TjITKbpOVFcxtmg/lTATy0UX8YftnZQGByw68+ZZrPbuNeEE9iXW0gyvbTVPTblimdWM6WbTKoyULKO46ip7oV56KfAkKcydY96pPXugWrE77OqCjmmjzzl9umWs27ZFXq3OTrt+T48dWxyxjCKZtMI4FHYdHfbHPno0Gqiyrc3WBwYsjIidPzzvr38d/SFaW+1PdPgQUg2O7+y0ZzEwiFSr5g2bMcNe4nBKGhFYuMAyi8NHIJ1CYnG4/Apk00b7wo7FQQRZutSeze7dx7+65PIrkKP9sHGDbafTxK651jLNDRuQ7dutyi0WJ7b8Y8jPfw6bNiESQ2IJ5D1XIoUi8vLLxESIJZLIdR8gViohP37BxFJLK7H/+ofEgNhX/hfxapV4ppXEZ+8mJjFiX/4LpFQy7+Hy5VEVyYED0VczRA2m58yxQjAsrI8cQcplS4Mws8/nkbBQCL86w98xnKxXl4iM23cqtnA7tNVuh7ZYLDbOHi6xWGzU/trtcD3cjsfjx7fHrofbtSLLe7D9O7S3j5+vcvbs8b1kW1vh4x8ff/wdd4zeTiRMVIVegpALLojGNqvlxhvH2z75yShPCdOvXLaCK5GIxKFq1Nu1toPFkSNWINYKyYEBy0NaW6Mq05ERy5MaGswTBCZEXnjBtq+7zv5fPT0mImfMsN6rnZ1m++UvTWy87W0mAF97zTxC8biJv2XLrMB/9VW7bmur5fdHj5rXZ/Zsu7/+fpsWq1Sy+7vrLju+tRU+9zmzd3TY0CTz58MDD5ht+nQL29Fhc5KWSnbt22+3e3rsseicf/AH9kwef9yeWyJhE70fOWJVnGH7v/vvN4H02GN2jkQCHnzQ7uHv/s7KgWTSOniACYlvfSs6/p57TDR+85vH2wZy//12v6tWRV6t++83IffII1Garlxp8fnyl6MZMb7wBYv3ypVWdrS2mg3g3nsjwbhihdlWrrT3JJ02W3e3xf3BByNP2b33WtgVK6KyKLStXGnXy2Si+VkfeMDKkcZG+Pznzfbnf27vVCIR2b70JRNoIpZuLS1mC+MY1CBMNl69CG/9OmuP4xlfz+84zhnEmZYfnQ155tkaxwniZNWLEym6EsA24BpgL7AO+LiqvloT5ibgM1jvxd8CHlbVy8aea8JFl+M4juM4zmli0tt0qWpZRD4D/AgbMuLrqvqqiPxRsP9vgB9ggms7NmTEHSc7n+M4juM4ztnMhI7Tpao/wIRVre1vatYV+PRExsFxHMdxHOdM4Cwc9dBxHMdxHOfsw0WX4ziO4zjOJOCiy3Ecx3EcZxJw0eU4juM4jjMJTNiQEacTETkM7Kp3PBzHcRzHcU6B+ao6fazxrBBdjuM4juM4Zzteveg4juM4jjMJuOhyHMdxHMeZBFx0ASJyvYhsFZHtIrKi3vGZqohIl4j8s4j0iMirIvKngb1DRF4Qkd7gd1q94zoVEZG4iPybiPxjsO3pcgYgIu0i8rSIvBb8d67wtKk/IvK5IB/bLCJPiUjK06U+iMjXReSQiGyusZ00LUTkvkAPbBWR3z2dcZnyoktE4sCjwA3ABcDHROSC+sZqylIG7lHVtwGXA58O0mIF8BNVXQL8JNh2Jp8/BXpqtj1dzgweAlar6vnAxVgaedrUERGZA/wJ8C5VXYZNhbccT5d68Q3g+jG2E6ZFUOYsBy4MjvlqoBNOC1NedAGXAdtVdYeqjgDfAT5U5zhNSVR1v6q+EqwPYYXHHCw9Hg+CPQ78p7pEcAojInOBm4Cv1Zg9XeqMiLQCVwOPAajqiKoew9PmTCABpEUkAWSAfXi61AVV/RlwdIz5ZGnxIeA7qlpU1Z3Y3NCXna64uOiyQv2Nmu09gc2pIyLSDVwCrAVmqup+MGEGzKhj1KYq/xu4F6jW2Dxd6s9C4DCwKqj6/ZqINOFpU1dUdS/wl8BuYD8woKo/xtPlTOJkaTGhmsBFF8gJbD6ORh0RkWbgGeBuVR2sd3ymOiLyQeCQqv6q3nFxxpEALgX+WlUvAXJ4lVXdCdoHfQhYAMwGmkTkE/WNlXOKTKgmcNFlKrarZnsu5gZ26oCINGCC60lVfTYwHxSRWcH+WcChesVvivIe4BYR+TVW/f5+EfkWni5nAnuAPaq6Nth+GhNhnjb15Vpgp6oeVtUS8CxwJZ4uZxInS4sJ1QQuumAdsEREFohIEmtA93yd4zQlERHB2qb0qOr/rNn1PHBbsH4b8L3JjttURlXvU9W5qtqN/T/+SVU/gadL3VHVA8AbInJeYLoG2IKnTb3ZDVwuIpkgX7sGa6Pq6XLmcLK0eB5YLiKNIrIAWAK8fLou6iPSAyJyI9ZmJQ58XVW/VN8YTU1E5CrgRWATUduhL2Dtuv4emIdlZh9R1bGNIp1JQETeC3xeVT8oIp14utQdEXkH1sEhCewA7sA+qD1t6oiIPAh8FOuV/W/AnUAzni6Tjog8BbwXOAc4CHwReI6TpIWIrAQ+haXd3ar6w9MWFxddjuM4juM4E49XLzqO4ziO40wCLrocx3Ecx3EmARddjuM4juM4k4CLLsdxHMdxnEnARZfjOI7jOM4k4KLLcZy6IyKdIrI+WA6IyN5gPSsiX52ga94tIp88gb1bRDafxuskReRnwRx8juNMYTwTcByn7qhqH/AOABF5AMiq6l9O1PUCAfQpbPT2CUVVR0TkJ9iYTU9O9PUcxzlzcU+X4zhnLCLyXhH5x2D9ARF5XER+LCK/FpHfE5H/ISKbRGR1MIUUIvJOEVkjIr8SkR+FU32M4f3AK6parjlmg4j8Avh0zfW7ReRFEXklWK4M7E+IyIdqwj0pIreIyIUi8nLgpdsoIkuCIM8B/3kinpHjOGcPLrocxzmbWATchE0m/C3gn1X1IiAP3BQIr78CblXVdwJfB040w8R7gNoJvFcBf6KqV4wJdwi4TlUvxTxVDwf2r2EjvyMibdi8ej8A/gh4SFXfAbwLm8cNYDPw7jd5z47jvEXw6kXHcc4mfqiqJRHZhE3btTqwbwK6gfOAZcALNuUdcWD/Cc4zC5sLLxRN7aq6Jtj3BHBDsN4APBJMtVMBlgKo6hoReVREZgC/BzyjquXAU7ZSROYCz6pqbxC+IiIjItKiqkOn6Vk4jnOW4aLLcZyziSKAqlZFpKTRPGZVLD8T4NUTeKzGkgdSwboAJ5sP7XPYXG0XYzUDhZp9T2BVhsux9mGo6rdFZC3mjfuRiNypqv8UhG8cc7zjOFMMr150HOetxFZguohcASAiDSJy4QnC9QCLAVT1GDAQTLgOo9tetQH7VbUK/BfMcxbyDeDu4ByvBtdbCOxQ1YeB54G3B/ZO4LCqlv7/b9FxnLMVF12O47xlUNUR4FbgL0RkA7Aea281lh8CV9ds3wE8GlQP5mvsXwVuE5GXsKrFXM21DmLibVVN+I8Cm0VkPXA+8M3A/j6szZfjOFMYibzzjuM4UwcR+T/AvWG7qzdxfAZrS3apqg78O2GfBe5T1a1v5lqO47w1cE+X4zhTlRVYg/r/MCJyLfAa8FenILiSwHMuuBzHcU+X4ziO4zjOJOCeLsdxHMdxnEnARZfjOI7jOM4k4KLLcRzHcRxnEnDR5TiO4ziOMwm46HIcx3Ecx5kEXHQ5juM4juNMAv8PJYdjRA+EvKUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.371, 'epsilon': 0.1539, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACjZElEQVR4nOydeVxVVff/34cZAXFWHFJUBJVJEJwHnE3TNE3NTC3rabLpl6VPT2lzT1ma1tOclvlVM9PMrMycpxxxHhBFFFBAlBmBy/r9sb2Xy6SAIg77/XrtF/ecu88565xzuedz1157LUNE0Gg0Go1Go9FULDaVbYBGo9FoNBrNnYAWXRqNRqPRaDQ3AC26NBqNRqPRaG4AWnRpNBqNRqPR3AC06NJoNBqNRqO5AWjRpdFoNBqNRnMDsKtsA0pDrVq1pEmTJpVthkaj0Wg0Gs1V2bVrV6KI1C68/pYQXU2aNGHnzp2VbYZGo9FoNBrNVTEM41Rx6/Xwokaj0Wg0Gs0NQIsujUaj0Wg0mhuAFl0ajUaj0Wg0N4BbIqZLoykvJpOJpKQkcnJyKtsUjUZzi2Bvb0+NGjWwtbWtbFM0txkVJroMw/gWGAjEi4hvMe8bwMfA3UAGME5EdleUPZo7k6SkJJycnKhVqxbqI6fRaDQlIyKkpaWRlJRE7dpFJp9pNNdERQ4vzgX6XeH9/oDX5fYY8FkF2qK5Q8nJycHV1VULLo1GUyoMw8DV1VV7xzUVQoV5ukRkg2EYTa7QZTDwvYgIsM0wjGqGYXiISFxF2VQSBw5AXt6NOVZpn/1X62f9vvl1cdsYRtG+xS1frdnYFPxrfm1rW/A9W9v8drPoHC24NBpNWdDfGZqKojJjuhoAp62Wz1xed8NF11tvQXr6jT7q7Y9hKPFlZ6earS3Y2+cvOzioZXv7/NeOjuDkVLBVqaKai4v66+oKbm5Qtara5lbg7bff5v/+7/+wtbXFxsaGL774gnbt2t1wO8LDw4mNjeXuu+8GYPny5Rw6dIjJkyczbtw4Bg4cyLBhwwpss27dOqZPn86KFStuuL0ajUZzO1GZoqu4nxJyw60AWrWCS5dK11euwcJr2dZ6e+v9FLfPkvoVt2zdt6Rm9gLm5eUvF24iYDKp1yaTaiKQm6taReHsDO7uSoDVqAG1ahVszs7Kjsr84bp161ZWrFjB7t27cXR0JDExkezs7EqxJTw8nJ07d1pE16BBgxg0aFCl2KLRaDR3GpUpus4AjayWGwKxlWHIa69VxlFvb8yCzSzAzOIrNxdycvL/ZmerlpOjhK+5ZWXlt4wM5Yk0/01Ph9RUSEmBzEzVzp4t3o7774edO/M9Y1WrKpFWs6bymt0IMRYXF0etWrVwdHQEoFatWkB+pYVatWqxc+dOXnzxRdatW8f69et59tlnATXMsWHDBtzc3Hj//feZN28eNjY29O/fn/fee4/IyEieeuopEhISqFKlCl999RU+Pj6MGzcOJycnDh48yLlz5/joo4/o06cPr732GpmZmWzatIkpU6aQmZnJzp07+eSTTwBYvXo1H3/8sWWbgQMHFjiX9PR0Jk6cyP79+8nNzWXatGkMHjy44i+iRqPR3AZUpuhaDjxtGMZCoB2QXBnxXJqKwTruq6KGAEWUAEtJgeRkOH9etYSE/L/29krgXbgAr7xScHsbm/xhTQcHNbRZHhH2669Xfr9Pnz688cYbtGjRgl69ejFixAi6detWYv/p06fz6aef0qlTJ9LS0nBycuL3339n2bJl/PPPP1SpUoWkpCQAHnvsMT7//HO8vLz4559/ePLJJ1mzZg0AUVFRrF+/nsjISMLCwjh+/DhvvPFGAZE1d+7cAscubhtr3n77bXr06MG3337LxYsXCQ0NpVevXri4uJTxqmk0Gs2dR0WmjFgAdAdqGYZxBpgK2AOIyOfASlS6iOOolBHjK8oWze2JYaj4LldXqF+/+D6xscqrlZoK33xT0MOWl5fvTTPvz9ExP67M7jr9d7i6urJr1y42btzI2rVrGTFiBO+9916J/Tt16sQLL7zA6NGjGTp0KA0bNmT16tWMHz+eKlWqAFCjRg3S0tLYsmULw4cPt2x7yWqc/P7778fGxgYvLy+aNm3KkSNHrmrr1bZZtWoVy5cvZ/r06QBkZWURHR1Ny5Yty3RNNBqN5k6kImcvjrrK+wI8VVHH12jMmIXU33/nrzN7yczesfh4uOw8suDmBk2aQNOmKoj/WrC1taV79+50794dPz8/vvvuO+zs7Mi7HDCXZVZ+wOTJkxkwYAArV66kffv2rF69GhEpMqMqLy+PatWqER4eXuwxC/cvzYysq20jIixZsgRvb++r7kuj0Wg0BdFlgDR3JGYvWePGEBQE/frB0KHQoYNa5+iovGP798Py5bBmDZw6peLTysrRo0eJiIiwLIeHh9O4cWOaNGnCrl27AFiyZInl/cjISPz8/Hj55Zdp27YtR44coU+fPnz77bdkZGQAKulr1apV8fT0ZPHixYASRHv37rXsZ/HixeTl5REZGcmJEyfw9vbGzc2N1NTUEm0tbhtr+vbty+zZs5HLMzD27NlT9gui0Wg0dyi6DJBGcxknJ/D0VE0Ezp2DyEg4c0YF6p89q2K/vL1Vc3Ao3X7T0tKYOHEiFy9exM7OjubNm/Pll19y+PBhHnnkEd55550C6SNmzpzJ2rVrsbW1pVWrVvTv3x9HR0fCw8Np27YtDg4O3H333bzzzjvMnz+fJ554grfeeoucnBxGjhxJQEAAAN7e3nTr1o1z587x+eef4+TkRFhYGO+99x6BgYFMmTKliK3FbWPNq6++ynPPPYe/vz8iQpMmTXQqCY1GoyklhhSXc+Amo23btrJz587KNkNzCxIbG0v9kgK+Skl2tvJynTihhiJBCa6WLZX4ul6xX9eTknJuaTSa0nE9vjs0dy6GYewSkbaF19+EjwuN5ubCwQG8vFSLj4d9+9TfvXvh6FElvlq0UMlfNRqNRqMpCS26NJoyUKcO9Oyphh737YPERNizR3nBOnRQCVpvBgqngtBoNBpN5aNFl0ZTRgwD6tWDunUhLg5271Z5wv78E1q3Bl9flQNMo9FoNBpr9KNBoyknhqHyg/XvDz4+at2BA0p8XbxYqaZpNBqN5iZEiy6N5hqxtVVpJ3r2VGkoLlyAP/5Q8V4ajUaj0ZjRokujuU7UqQN3360C7vPyYNcuNfR4C0wQ1mg0Gs0NQIsujeY6YmcHISEqqN7GBo4cARcX16smVd24cSOtW7cmMDCQzMzMMh1z2bJlHDp0qMy2urq6Frs+MzOTbt26YbIyesaMGTg5OZGcnFzm41wPwsPDWblyZYUfZ+7cucTGxlqWJ0yYUK5rGxUVha+v71X7LV68mJYtWxIWFlbmYxS29XrZVVyfadOmWUo/lZbu3btztVQ/M2fOtCT8LSvl/UxY29WrVy8uXLhQruNrNOVBiy6NpgLw9ISwMFVMOy9PZbS3KotYhPnz5/Piiy8SHh6Os7NzmY5VXtFVEt9++y1Dhw7F1ioHxoIFCwgJCWHp0qXX7ThlobJE19dff02rVq0q7HjffPMN//vf/1i7dm2Zty2P6LrZqAzRZc2YMWP43//+d0370GjKghZdGk0FUbcu9O6tAu4TEuCjj9bRpUt3hg0bho+PD6NHj0ZE+Prrr/nxxx954403GD16NAAffPABISEh+Pv7M3XqVMs+v//+e/z9/QkICGDMmDFs2bKF5cuXM2nSJAIDA4mMjCQyMpJ+/foRHBxMly5dLEWrT548SYcOHQgJCeHVV18t0e758+czePBgy3JkZCRpaWm89dZbLFiwwLL+4MGDhIaGEhgYiL+/PxEREbz66qt8/PHHlj6vvPIKs2bNYt26dXTr1o3777+fFi1aMHnyZObPn09oaCh+fn5ERkYCKqnr448/TpcuXWjRogUrVqwgOzub1157jUWLFhEYGMiiRYtISkri3nvvxd/fn/bt27Nv3z5AeWTGjh1Lnz59aNKkCT///DMvvfQSfn5+9OvXj5ycHADeeOMNQkJC8PX15bHHHkNE+Omnn9i5cyejR4+2eBytvSJ//PEHQUFBBAQE0LNnz1J/DubOncvQoUPp168fXl5evPTSSxYbNm3axOOPP86kSZMwmUxMmjTJct+/+OILyz7ef/99/Pz8CAgIYPLkycXaumvXLrp160ZwcDB9+/YlLi4OgF27dhEQEECHDh349NNPS213SXTv3p2XX36Z0NBQWrRowcaNGwHlIR05ciT+/v6MGDGigMd21apVdOjQgaCgIIYPH05aWhqzZs0iNjaWsLAwi6evuH4AO3bsoGPHjgQEBBAaGkpycnKRz0R6ejoPP/wwISEhtGnThl9++eWqdg0aNKjAZ1qjqXBE5KZvwcHBotGUh5iYmPyFgQMrpl0FFxcX+e03kVdeWStVqlSVY8dOi8lkkvbt28vGjRtFRGTs2LGyePFiERH5888/5dFHH5W8vDwxmUwyYMAAWb9+vRw4cEBatGghCQkJIiJy/vz5ItuKiPTo0UOOHTsmIiLbtm2TsLAwERG555575LvvvhMRkU8++URcXFyK2Hrp0iWpW7dugXVvvvmmvPHGG2IymaRx48Zy7tw5ERF5+umn5YcffrBsl5GRISdPnpQ2bdqIiIjJZJKmTZtKYmKirF27Vtzd3SU2NlaysrKkfv368tprr4mIyMyZM+XZZ5+1nEvfvn3FZDLJsWPHpEGDBpKZmSlz5syRp556ymLT008/LdOmTRMRkb///lsCAgJERGTq1KnSqVMnyc7OlvDwcHF2dpaVK1eKiMi9994rS5cuLXDtREQefPBBWb58uYiIdOvWTXbs2GF5z7wcHx8vDRs2lBMnThTZvjhOnjwprVu3FhGROXPmiKenp1y8eFEyMzPlrrvukujo6CLH++KLL+TNN98UEZGsrCwJDg6WEydOyMqVK6VDhw6Snp5e4NjW22ZnZ0uHDh0kPj5eREQWLlwo48ePFxERPz8/WbdunYiIvPjiixa7SmO7malTp8oHH3xgOe4LL7wgIiK//fab9OzZU0REPvzwQ8sx9+7dK7a2trJjxw5JSEiQLl26SFpamoiIvPfee/L666+LiEjjxo0tn+eS+l26dEk8PT1l+/btIiKSnJwsOTk5RT4TU6ZMkXnz5omIyIULF8TLy0vS0tJKtMtM8+bNJTExsch1KPDdodGUEWCnFKNndJ4ujeYG0KsXHDwITZuGcvx4Q5o0gcDAQKKioujcuXOBvqtWrWLVqlW0adMGULUbIyIi2Lt3L8OGDaNWrVoA1CgmE2taWhpbtmxh+PDhlnWXLo9rbt682VJYe8yYMbz88stFtk9MTKRatWoF1i1cuJClS5diY2PD0KFDWbx4MU899RQdOnTg7bff5syZMwwdOhQvLy+aNGlCzZo12bNnD+fOnaNNmzbUrFkTgJCQEDw8PABo1qwZffr0AcDPz6/A8Nr999+PjY0NXl5eNG3a1OKps2bTpk2Wc+nRowfnz5+3xJv1798fe3t7/Pz8MJlM9OvXz3KcqKgoANauXcv7779PRkYGSUlJtG7dmnvuuafIccxs27aNrl274unpWeK1vxI9e/bE3d0dgFatWnHq1CkaNWpUoM+qVavYt28fP/30EwDJyclERESwevVqxo8fT5UqVUo89tGjRzlw4AC9e/cGwGQy4eHhQXJyMhcvXqRbt26Auu+///77FW01DOOq64cOHQpAcHCw5Zpu2LCBZ555BgB/f3/8/f0Bde0OHTpEp06dAMjOzqZDhw5F9l9Sv6NHj+Lh4UFISAgAVatWLda+VatWsXz5ckvsWVZWFtHR0SXaZaZOnTrExsZaPqcaTUWiRZfmzuHXXyvt0A4OEBAATk6OXLgAGzeCjY0tubm5RfqKCFOmTOFf//pXgfWzZs0q8YFoJi8vj2rVqhEeHl7s+1fb3tnZmaysLMvyvn37iIiIsDzMs7Ozadq0KU899RQPPPAA7dq147fffqNv3758/fXX9OjRgwkTJjB37lzOnj3Lww8/bNmXo6Oj5bWNjY1l2cbGpsB1KGxjcTZLMVNCzf2s92tvb29Zbz5OVlYWTz75JDt37qRRo0ZMmzatwDkXh4hc9dpdCetzt7Ut+b7Pnj2bvn37Flj/xx9/XPXYIkLr1q3ZunVrgfUXL14ss901a9YsElyelJRkEZyQfz6Fz6Wke9W7d++rDuOV1G/fvn2lOgcRYcmSJXh7exd570rbZ2VllTmOUqMpLzqmS6O5QTg4QM2a4OQEZ8+qVlw6ib59+/Ltt99a4lliYmKIj4+nZ8+e/Pjjj5y/XHU7KSkJADc3N1JTUwHlBfD09GTx4sWAehDt3bsXgE6dOrFw4UJAxW0VR/Xq1TGZTBYRsmDBAqZNm0ZUVBRRUVHExsYSExPDqVOnOHHiBE2bNuWZZ55h0KBBlriqIUOG8Mcff7Bjx44iAqI0LF68mLy8PCIjIzlx4gTe3t4FzhGga9eulnNYt24dtWrVKtEDUhjzudWqVYu0tDSLZwkochwzHTp0YP369Zw8eRLIv/bbt2/noYceKvM5Fkffvn357LPPLHFnx44dIz09nT59+vDtt99aAs6Lu+/e3t4kJCRYRFdOTg4HDx6kWrVquLu7s2nTJqDgfY+JiSk2Ns3V1RUPDw/+/vtvy/H++OOPIh7ZwljfkwMHDlg+D+3bt2fz5s0cP34cgIyMDI4dO1bkHErq5+PjQ2xsLDt27AAgNTWV3NzcIveqb9++zJ492yLI9+zZc0W7QP1/nD17liZNmlzx3DSa64UWXRrNDcTODrp3V39TU+H06aJ9+vTpwwMPPECHDh3w8/Nj2LBhpKam0rp1a1555RW6detGQEAAL7zwAgAjR47kgw8+oE2bNkRGRjJ//ny++eYbAgICaN26tSWg+OOPP+bTTz8lJCTkiqkf+vTpY3lIL1y4kCFDhhR4f8iQISxcuJBFixbh6+tLYGAgR44csYgPBwcHwsLCuP/++wvMgCwt3t7edOvWjf79+/P555/j5OREWFgYhw4dsgRNT5s2jZ07d+Lv78/kyZP57rvvSr3/atWq8eijj+Ln58e9995rGbaC/ED+wqk7ateuzZdffsnQoUMJCAhgxIgRAERHR183L8mECRNo1aoVQUFB+Pr68q9//Yvc3Fz69evHoEGDaNu2LYGBgZbhM2tbTSYTP/30Ey+//DIBAQEEBgayZcsWAObMmWMZDra2NS4uDju74gc7vv/+e9566y0CAwPp0aMHU6dOpVmzZle0/4knniAtLQ1/f3/ef/99QkNDAXXt5s6dy6hRoywTH8xDxo899hj9+/cnLCysxH4ODg4sWrSIiRMnEhAQQO/evcnKyirymXj11VfJycnB398fX19fy2SRkuwCNcmgffv2JV4HjeZ6YxTnpr/ZaNu2rVwt34tGUxyxsbHUr1+/ss0oQmwsbNig0km0bQstWlS2Rfns2bOHjz76iHnz5pVr+7y8PIKCgli8eDFeXl5l2nbcuHEMHDiQYcOGlevYN5pJkyYxZsyYInFCtwKffPIJd911F4MGDapsUyqNZ599lkGDBhXr8btZvzs0twaGYewSkbaF12t5r9FUAvXrQ2gobNumstbXrKnazUCbNm0ICwvDZDKV2VN16NAhBg4cyJAhQ8osuG5FPvjgg8o2odw8/fTTlW1CpePr61um9B8azbWiPV2a25qb/dfq7t0qa72bG/Trp5KpajSayudm/+7Q3NyU5OnSMV0aTSUSEADVq6v4rl27KtsajUaj0VQkWnRpNJWIrS107Kj+njgBp05VtkUajUajqSi06NJoKhl3dwgKUq937ID09Mq1R6PRaDQVgxZdGs1NQPPm0LAhZGfD1q3F5+/SaDQaza2NFl0aTQVja2tLYGAgrVu3JiAggI8++oi8vDwAdu7cyTPPPINhQLt24OwM8fGqZNDNxrhx4wokErXmueeeY8OGDZblhIQE7O3tCxRtvtG88847FX6M8PBwVq5caVlevnw57733Xrn2ZV1cuyQSEhJo164dbdq0sRSaLq+t19OucePG4enpSUBAAC1atOChhx4iJibmqvueOXOmJelrWbke59OrV68i2fc1mopEiy6NpoJxdnYmPDycgwcP8tdff7Fy5Upef/11ANq2bcusWbMAcHQEc0m6/fvhCvlLbyqSkpIstQnNLF68mPbt21+19EtFUhmia9CgQUyePLnCjvf333/j4+PDnj176NKlS5m2La9IKS0ffPABe/fu5ejRo5a0I9nZ2VfcpjJElzVjxozhf//73zXtQ6MpC1p0aTSFOXIEFi9Wf68zderU4csvv+STTz5BRFi3bh0DBw4EVEmZoUM78vrrbZg6tSNLlx5FRJVDuf/++/H392fEiBG0a9fO8kvd1dWVV155hYCAANq3b8+5c+cAOHXqFD179sTf35+ePXsSHR0NKDHk6+tLQECARSSZTCYmTZpESEgI/v7+Fu+UiPD000/TqlUrBgwYQHx8fLHn9NNPP1mKSptZsGABH374IWfOnLF4PEwmE+PGjcPX1xc/Pz9mzJhBZGQkQeaANiAiIoLg4GAAmjRpwr///W86dOhA27Zt2b17N3379qVZs2Z8/vnngCoB1LVrV4YMGUKrVq14/PHHycvLY/LkyWRmZhIYGMjo0aMB+Oijj/D19cXX15eZM2cCEBUVhY+PDxMmTMDX15fRo0ezevVqOnXqhJeXF9u3b7fcm44dO9KmTRs6duzI0aNHyc7O5rXXXmPRokWWrOhz58615L86d+4cQ4YMISAggICAAEuG+NJQ3H0NDw/npZdeYuXKlZaM+atWraJDhw4EBQUxfPhwS+moHTt20LFjRwICAggNDSU5ObmIrenp6Tz88MOEhITQpk0bS+WCzMxMRo4cafm8WWfmLw2GYfD8889Tr149S3Ht4uycNWsWsbGxhIWFERYWVmK/ijyfQYMGVeoPA80diIjc9C04OFg0mvIQExNTtg0OHxZp106kTRv19/Dha7bBxcWlyLpq1arJ2bNnZe3atTJgwAAREUlOTpacnBzJyhJ57bW/JCRkqJw6JfLBBx/IY489JiIi+/fvF1tbW9mxY4eIiACyfPlyERGZNGmSvPnmmyIiMnDgQJk7d66IiHzzzTcyePBgERHx9fWVM2fOiIjIhQsXRETkiy++sGyXlZUlwcHBcuLECVmyZIn06tVLcnNzJSYmRtzd3WXx4sVFzuWhhx6y2CAiEh0dLc2bNxcRkSlTpsiHH34oIiI7d+6UXr16WfqZj9+9e3fZs2ePpf+sWbNERKRx48byv//9T0REnnvuOfHz85OUlBSJj4+X2rVri4jI2rVrxdHRUSIjIyU3N1d69eplsdH6uu/cuVN8fX0lLS1NUlNTpVWrVrJ79245efKk2Nrayr59+8RkMklQUJCMHz9e8vLyZNmyZZbrZr43IiJ//fWXDB06VERE5syZI0899ZTlONbL999/v8yYMUNERHJzc+XixYtFrp013bp1u+p9td5/QkKCdOnSRdLS0kRE5L333pPXX39dLl26JJ6enrJ9+/YCthe2dcqUKTJv3jzLvfDy8pK0tDT58MMPZfz48SIisnfv3gKft5IYO3Zskc/Gs88+K++9916Jdoqoe5yQkFCp59O8eXNJTEwsck5l/u7QaKwAdkoxekZnpNdorNm/X0WzN2igavXs3w8+Ptf9MFJMpHxycjJjx44lIiKCnByD1NQcdu+GjRs38dxzzwIqg7Z1yRkHBweLpyw4OJi//voLgK1bt/Lzzz8DagjlpZdeAlTR63HjxnH//fczdOhQQHkX9u3bZ4nXSk5OJiIigg0bNjBq1ChsbW2pX78+PXr0KPZc4uLiqF27tmV54cKF3H///YCqC/nII4/wwgsv0LRpU06cOMHEiRMZMGAAffr0AVTNwTlz5vDRRx+xaNEii3cJsJSo8fPzIy0tDTc3N9zc3HBycuLixYsAhIaG0rRpUwBGjRrFpk2bipQR2rRpE0OGDMHFxQWAoUOHsnHjRgYNGoSnpyd+fn4AtG7dmp49e2IYBn5+fkRFRRW5N4ZhWIpSX4k1a9bw/fffAyquz93d/arbmCnpvlqzbds2Dh06RKdOnQDIzs6mQ4cOHD16FA8PD0tNyZIKga9atYrly5dbajlmZWURHR3Nhg0beOaZZwDw9/cvd4kj82e8JDtvlvOpU6cOsbGx1LxZSkJobmu06NJorPHzAwcHJbjs7dXydebEiRPY2tpSp04dDh8+bFn/6quvEhYWxtKlSzl5Mor27buTkQEpKSVPZbS3t8cwDEA92HNzc4vtZ+7z+eef888///Dbb78RGBhIeHg4IsLs2bPp27dvgW1Wrlxp2e5KODs7k5WVZVlesGAB586dY/78+YDK7B0REYGXlxd79+7lzz//5NNPP+XHH3/k22+/5b777uP111+nR48eBAcHF3j4OTo6AmBjY2N5bV42n2thG4uzuTiRW/gYhY9jfQzrexMVFUX37t2vel2uhdLcVxGhd+/eRYbH9u3bV6r7JiIsWbIEb2/vIu+VZvursWfPHnr27FmincXZUxnnk5WVdd2Klms0V0PHdGk01vj4wNy5MHmy+nudvVwJCQk8/vjjPP3000UeBMnJyTRo0ACA776bi1kL1K/fmR9++BFQtQ33799/1eN07NiRhQsXAjB//nw6d+4MQGRkJO3ateONN96gVq1anD59mr59+/LZZ59ZvDfHjh0jPT2drl27snDhQkwmE3Fxcaxdu7bYY7Vs2ZLjx48DcPToUdLT04mJiSEqKoqoqCimTJnCwoULSUxMJC8vj/vuu48333yT3bt3A+Dk5ETfvn154oknGD9+fFkuJ6DirU6ePEleXh6LFi2ynKu9vb3lnLp27cqyZcvIyMggPT2dpUuXlikQ3frezJ0717Lezc2N1NTUYrfp2bMnn332GaDi2VJSUizrSzOz72q0b9+ezZs3W659RkYGx44dw8fHh9jYWHbs2AFAamoqubm5RWzt27cvs2fPtgjSPXv2AOpamQXzgQMH2Ldvn2Wbhx56qIAnsjhEhFmzZhEXF0e/fv1KtBMKXr/KOB8R4ezZszRp0qQUV1yjuXYqVHQZhtHPMIyjhmEcNwyjyJQewzDcDcP41TCMvYZhHDQMo+zfuBrN9cbHB4YPv26CyxzQ3bp1a3r16kWfPn2YOnVqkX4vvfQSU6ZMoVOnTphMJmxsoGlT6NnzSY4fT8Df35///ve/+Pv7X3WoatasWcyZMwd/f3/mzZvHxx9/DMCkSZPw8/PD19eXrl27EhAQwIQJE2jVqhVBQUH4+vryr3/9i9zcXEvRaj8/P5544gm6detW7LEGDBjAunXrAOXlGjJkSIH377vvPhYsWEBMTAzdu3cnMDCQcePG8e6771r6jB49GsMwLEOOZaFDhw5MnjwZX19fPD09Lcd/7LHH8Pf3Z/To0QQFBTFu3DhCQ0Np164dEyZMoE2bNqU+RuF7YyYsLIxDhw5Zgrmt+fjjj1m7di1+fn4EBwdz8OBB8vLyOH78ODVq1CjzeRamdu3azJ07l1GjRuHv70/79u05cuQIDg4OLFq0iIkTJxIQEEDv3r3JysoqYuurr75KTk4O/v7++Pr68uqrrwLwxBNPkJaWhr+/P++//z6hoaGWY+7btw8PD49i7Zk0aZIlZcSOHTtYu3YtDg4OJdoJ6h7179+fsLCwSjmfXbt20b59e+zs9KCP5sZQYQWvDcOwBY4BvYEzwA5glIgcsurzb8BdRF42DKM2cBSoJyIF5hnrgtea8nKrF63NyoJffjGRmZlDr15OXLoUSc+ePTl27BgODg6VbZ6Fzp07s2LFCqpVq1au7adPn05ycjJvvvlmmbZbt24d06dPZ8WKFeU67o3mwIEDfPvtt3z00UeVbUqZSUlJ4ZFHHmHx4sWVbcp149lnn2XQoEH07NmzyHu3+neHpnIpqeB1Rcr7UOC4iJy4bMBCYDBwyKqPAG6GGmdxBZKA4oNSNJo7ECcnaN48g+HDw3j99Rzc3ITPPvvsphJcAB9++CHR0dHlEl1DhgwhMjKSNWvWXH/DbjJ8fX1vScEFKoD9dhJcoO5HcYJLo6koKtLTNQzoJyITLi+PAdqJyNNWfdyA5YAP4AaMEJHfCu9Le7o05eV2+LWalwd//AEXL0JwMBQTJ6zRaK4zt8N3h6byKMnTVZExXcVNFyms8PoC4UB9IBD4xDCM4ucDazR3KDY2YJ7lfvAglDBBUaPRaDQ3ORUpus4AjayWGwKxhfqMB36+nEvsOHAS5fXSaDRWNGgANWuqGK+IiMq2RqPRaDTloSJF1w7AyzAMT8MwHICRqKFEa6KBngCGYdQFvIETFWiTRnNLYhj5KcMOHYJS5ObUaDQazU1GhYkuEckFngb+BA4DP4rIQcMwHjcM4/HL3d4EOhqGsR/4G3hZRBIryiaN5lbGwwNq1YJLl+BymiONRqPR3EJUaJ4uEVkpIi1EpJmIvH153eci8vnl17Ei0kdE/ETEV0R+qEh7NJrKYunSpRiGYclPBCpQ11yuxrrw9fLly3nvvfeK7MMw8mO7Dh9W1YpKw3PPPceGDRsAWLFiBW3atCEgIIBWrVpZiltXFDNnziQjI6NCjxEVFcX//d//WZZ37txpKftSVsaNG2cph1QSly5dolevXsXm5iqrrdfTruL6uLq6luk41p/DkggPD2flypVl2q815flMWNu1YsWKYvPcaTS3AjojvUZzA1iwYAGdO3e2ZIkHqF+/frEP0kGDBjF5cpFcwgDUrQt16ijBZaXfSiQpKYlt27bRtWtXcnJyeOyxx/j111/Zu3cve/bsqfByNpUhutq2bcusWbMq7Hh79uwhJyeH8PBwRowYUaZtyyu6biYqQ3RZM2DAAJYvX17hnyuNpiK4qugyDKOTYRh/GYZxzDCME4ZhnDQMQ8ddaTSlJC0tjc2bN/PNN98UEF1RUVH4+voW6T937lyeflplVhk3bhzPPPMMHTt2pGnTpixZ8hP+/pCXl8ekSU/SqlVrBg4cyN13312sgPvpp5/o168fkF8+xVzb0NHREW9vb1JTU/H09LSUzElJSaFJkybk5OTQvXt3nn/+ebp27UrLli3ZsWMHQ4cOxcvLi//85z+W8/Dx8WHs2LH4+/szbNgwMjIymDVrFrGxsYSFhREWFgYo8WnOiP/yyy9b7HR1deXll18mODiYXr16sX37drp3707Tpk1Zvny55ThdunQhKCiIoKAgtmzZAsDkyZPZuHEjgYGBzJgxo4BXJC0tjfHjx+Pn54e/vz9Lliwp9X1r0qQJU6dOJSgoCD8/P44cOUJ8fDwPPvgg4eHhBAYGEhkZya5du+jWrRvBwcH07duXuLg4AI4fP06vXr0ICAggKCiIyMjIIraaTCYmTZpESEgI/v7+Fs+jiPD000/TqlUrBgwYQHx8fKntLo5169bRvXt3hg0bho+PD6NHj7aUy/njjz/w8fGhc+fOliLpAOnp6Tz88MOEhITQpk0bfvnlF7Kzs3nttddYtGiRxdNXXD9QpY9efPFFy7WfPXt2sZ+JVatW0aFDB4KCghg+fDhpaWlXtMswDLp3737LJMTVaAogIldswBGgP1AHqGluV9vuerbg4GDRaMpDTExMwRUDB6pmzeuvq3X//JO/7vff1brZs/PXnT+v1j30UJlsmDdvnjz88MMiItKhQwfZtWuXiIicPHlSWrduLSIia9eulQEDBoiIyJw5c+Spp54SEZGxY8fKsGHDxGQyycGDB6VZs2YiIvLaa4slIKC/7Nplkri4OKlWrZosXry4yLEfeughWb58uWX5kUcekdq1a8vIkSPlhx9+EJPJJCIi48aNk6VLl4qIyBdffCEvvPCCiIh069ZNXnrpJRERmTlzpnh4eEhsbKxkZWVJgwYNJDExUU6ePCmAbNq0SURExo8fLx988IGIiDRu3FgSEhJERN2LRo0aSXx8vOTk5EhYWJjlmICsXLlSRETuvfde6d27t2RnZ0t4eLgEBASIiEh6erpkZmaKiMixY8fE/L1gfe0KL7/00kvy7LPPWt5LSkq64r0aO3as5To2btxYZs2aJSIin376qTzyyCNF9p+dnS0dOnSQ+Ph4ERFZuHChjB8/XkREQkND5eef1eTszMxMSU9PL2LrF198IW+++aaIiGRlZUlwcLCcOHFClixZIr169ZLc3FyJiYkRd3f3Yu9vSbabcXFxsdhctWpVOX36tJhMJmnfvr1s3LhRMjMzpWHDhnLs2DHJy8uT4cOHW+ybMmWKzJs3T0RELly4IF5eXpKWllbg83mlfv/73/9k6NChkpOTIyIi58+ft1xX82ciISFBunTpImlpaSIi8t5778nrr79+RbtERH744Qd5+umnr3g9rpUi3x0aTRkAdkoxeqY0w4vJIvK7iMSLyHlzqyANqNHcdixYsICRI0cCMHLkSBYsWFCm7e+9915sbGxo1aoV586dA+Ds2U20azec48dtqFatnsVrUJi4uDhq165tWf7666/5+++/CQ0NZfr06Tz88MMATJgwgTlz5gAwZ86cAoWnBw0aBICfnx+tW7fGw8MDR0dHmjZtyunTpwFo1KgRnTp1AuDBBx9k06ZNRWzZsWMH3bt3p3bt2tjZ2TF69GhLrJmDg4PFI+fn50e3bt2wt7fHz8+PqKgoAHJycnj00Ufx8/Nj+PDhHDp0qMgxCrN69Wqeeuopy3L16tWvuo01Q4cOBSA4ONhihzVHjx7lwIED9O7dm8DAQN566y3OnDlDamoqMTExljqQTk5OVKlSpcj2q1at4vvvvycwMJB27dpx/vx5IiIi2LBhA6NGjcLW1pb69evTo0ePq9pauIB64XWhoaE0bNgQGxsbAgMDiYqK4siRI3h6euLl5YVhGDz44IMFbHvvvfcIDAyke/fuZGVlER0dXew5FNdv9erVPP7445a6hsXVm9y2bRuHDh2iU6dOBAYG8t1333Hq1Kkr2gVQp04dYmMLZyDSaG5+SlMGaK1hGB8APwOXzCtFZHeFWaXRVBS//lp03WuvFV3Xr59q1tSoUfz2V+D8+fOsWbOGAwcOYBgGJpMJwzB4//33S70PR0dHy2u5PCTk5CQ4O6tEqVeayejs7ExWVlaBdX5+fvj5+TFmzBg8PT2ZO3cunTp1IioqivXr12MymQoMe5qPb2NjU8AWGxsbci9nai38wC9OAJhtLw57e3vLNtbHsT7GjBkzqFu3Lnv37iUvLw8nJ6eST9zqmMXZUlrMdtja2lrsKLz/1q1bs3Xr1gLrU1JSSrV/EWH27Nn07du3wPqVK1eW2e6aNWty4cIFy3JSUhK1atWyLFvfO+vzKek4IsKSJUvwLlQC4Z9//ilVv9JcexGhd+/eRX6IhIeHX3HbrKwsnJ2dr7hvjeZmpDSernZAW+Ad4MPLbXpFGqXR3C789NNPPPTQQ5w6dYqoqChOnz6Np6dnsZ6gstC5c2d2715CXl4e27efY926dcX2a9myJcePHwdUfJN1v/DwcBo3bmxZfuihhxg1alQBL1dpiY6OtggP86QBADc3N1JTUwFo164d69evJzExEZPJxIIFC+jWrVupj5GcnIyHhwc2NjbMmzcPk8lU5BiF6dOnD5988oll2SxKHnroIbZv317m8yyMt7c3CQkJlnPPycnh4MGDVK1alYYNG7Js2TJAzXjMyMgoYmvfvn357LPPLPF0x44dIz09na5du7Jw4UJMJhNxcXGsXbvWss2UKVNYunRpEVu6d+/OokWLyL48rXXu3LklekDN+Pj4cPLkSSIjIwEKiJ++ffsye/Zsi1jes2cPUPR6l9SvT58+fP755xZxl5SUVGT79u3bs3nzZstnNCMjg2PHjl3RLvN1Ki4eUqO52bmq6BKRsGLa1X3dGo2GBQsWWIaYzNx3333XPIPtvvvuo2nThrzyii+ff/4vfH3b4e7uXqTfgAEDLEJLRHj//ffx9vYmMDCQqVOnMnfuXEvf0aNHc+HCBUaNGlVme1q2bMl3332Hv78/SUlJPPHEEwA89thj9O/fn7CwMDw8PHj33XcJCwuzBJcPHjy41Md48skn+e6772jfvj3Hjh3DxcUFAH9/f+zs7AgICGDGjBkFtvnPf/7DhQsX8PX1JSAgwCJe9u3bh4eHR5nPszAODg789NNPvPzyywQEBBAYGGgJ8J83bx6zZs3C39+fjh07cvbs2SK2TpgwgVatWhEUFISvry//+te/yM3NZciQIXh5eeHn58cTTzxRQJzu37+fevXqFbFl4MCBdOnSheDgYAIDA9m8eTP//e9/r2i/k5MTX375JQMGDKBz584FRPirr75KTk4O/v7++Pr68uqrrwIQFhbGoUOHLIH0JfWbMGECd911F/7+/gQEBFg+89afidq1azN37lxGjRqFv78/7du358iRI1e0C2Dt2rUMGDCgHHdMo6lcrlrw2jAMd2Aq0PXyqvXAGyKSXMG2WdAFrzXl5XYuWpuWlsbFi6789tt5pk4NZffuzdSvX/Rh3LlzZ1asWEG1atWuuL+ffvqJX375hXnz5pXJjqioKAYOHMiBAwfKtF1lkZKSwiOPPMLixYsr25Ry0bdvX/7888/KNqPSOHfuHA888AB///13hR7ndv7u0FQ8JRW8Lk1M17fAAeD+y8tjgDnA0OtnnkajKSsDBw7k4sWLJCVlM3jwq2RnFxVcAB9++CHR0dFXFF0TJ07k999/v6b8S7cKVatWvWUFF3BHCy5QQ9kffvhhZZuh0ZSL0ni6wkUk8GrrKhLt6dKUlzvh1+rx47B9O1SvrmL/ryFuXKPRXOZO+O7QVBwlebpKE0ifaRhGZ6sddQIyr6dxGo2m/Hh6gpMTXLgAlzNKaDQajeYmpDTDi08A312O7TKAJGBcRRql0WhKj60teHvD3r1w6BAUE2Ot0Wg0mpuAq4ouEQkHAgzDqHp5uXQJaDQazQ3DywsOHoSzZ5XHq4w5QDUajUZzAyhRdBmG8aCI/GAYxguF1gMgIh9VsG0ajaaUODhA8+aqCPahQ3A5ObxGo9FobiKuFNPlcvmvWzHNtYLt0mhuG2xtbQkMDMTX15d77rmHixcvVshxvL1VEH10NKSnl9xv586dPPPMM9d8vHHjxhVbZBvgueees5T4WbFiBW3atCEgIIBWrVpZijpXFDNnziQjI6NCjxEVFVUg19q1XNMrXUczly5dolevXpbcWNdi6/W0a9q0aTRo0IDAwEC8vLwYOnRoqcozzZ07t9xlfK7H+YwcOZKIiIhyHV+juRZKFF0iYv5mXC0ir1s3oGITpGg0txHOzs6Eh4dz4MABatSowaefflohx3FxgSZNQASOHi25X9u2bZk1a1aF2AAq8/i2bdvo2rUrOTk5PPbYY/z666/s3buXPXv20L179wo7NlSO6Kroa7pnzx5ycnIIDw9nxIgRZdq2vCKltDz//POEh4cTERHBiBEj6NGjBwkJCVfcpjJElzVPPPFEmUpxaTTXi9LMXpxdynUajeYqdOjQgZiYGAAiIyPp168fwcHBdOnShSNHjgAq+eOQIUMICAggICDAkuH8o48+wtfXF19fX2bOnGnZ55tvvomPjw+9e/dm+vRR/PbbdE6cgG7duvPyyy8TGhpKixYt2LhxIwDr1q1j4MCBANx9990EBgYSGBiIu7s73333HSaTiUmTJhESEoK/v7/FMyUiPP3007Rq1YoBAwYQHx9f7Dn+9NNPluLVqamp5ObmUrNmTUDV//P29iY1NRVPT09L+ZuUlBSaNGlCTk4O3bt35/nnn6dr1660bNmSHTt2MHToULy8vPjPf/4DqAevj48PY8eOxd/fn2HDhpGRkcGsWbOIjY0lLCzMUgJnwYIF+Pn54evry8svv2yx09XVlZdffpng4GB69erF9u3b6d69O02bNmX58uWW43Tp0oWgoCCCgoIs92Ly5Mls3LiRwMBAZsyYUeCapqWlMX78ePz8/PD392fJkiWl/nw0adKEqVOnEhQUhJ+fH0eOHCE+Pp4HH3yQ8PBwAgMDiYyMZNeuXXTr1o3g4GD69u1LXFwcAMePH6dXr16WjP+RkZFFbL3W+3slRowYQZ8+fSyiqDg7f/rpJ3bu3Mno0aMJDAwkMzPzhp9Ply5dWL16dbH1NDWaCkVEim1AB+D/AaeBF6zaNGBvSdtVRAsODhaNpjzExMQUXDFwYMnt99/z+/3++5X7lgEXFxcREcnNzZVhw4bJ75eP06NHDzl27JiIiGzbtk3CwsJEROT++++XGTNmWLa5ePGi7Ny5U3x9fSUtLU1SU1OlVatWsnv3btmxY4cEBARIRkaGpKSkSPPmzeXRRz+Q+fNFQkO7yQsvvCAiIr/99pv07NlTRETWrl0rAwYMKGDjzp07xc/PTy5evChffPGFvPnmmyIikpWVJcHBwXLixAlZsmSJ9OrVS3JzcyUmJkbc3d1l8eLFRc73oYcekuXLl1uWH3nkEaldu7aMHDlSfvjhBzGZTCIiMm7cOFm6dKmIiHzxxRcWW7t16yYvvfSSiIjMnDlTPDw8JDY2VrKysqRBgwaSmJgoJ0+eFEA2bdokIiLjx4+XDz74QEREGjduLAkJCSKi7n+jRo0kPj5ecnJyJCwszHJMQFauXCkiIvfee6/07t1bsrOzJTw8XAICAkREJD09XTIzM0VE5NixY2L+Lip8Da2XX3rpJXn22Wct7yUlJRW5RtaMHTvWch0bN24ss2bNEhGRTz/9VB555JEi+8/OzpYOHTpIfHy8iIgsXLhQxo8fLyIioaGh8vPPP4uISGZmpqSnpxex9VrvrzVTp061XHczM2bMkMcff/yKdnbr1k127NhRqefTq1cv2blzZ4nnVuS7Q6MpA8BOKUbPXGn2ogMqdssOFcdlJgUYdp21n0Zz25KZmUlgYCBRUVEEBwfTu3dv0tLS2LJlC8OHD7f0u3TpEgBr1qzh+++/B1Q8mLu7O5s2bWLIkCGWeoNDhw5l48aN5OXlMXjwYJydnQG45557uPySjAwYMkQVjggODiYqKqpY+xITExkzZgw//vgj7u7urFq1in379lniX5KTk4mIiGDDhg2MGjUKW1tb6tevT48exZdgjYuLo3bt2pblr7/+mv3797N69WqmT5/OX3/9xdy5c5kwYQLvv/8+9957L3PmzOGrr76ybDNo0CAA/Pz8aN26taVOYtOmTTl9+jTVqlWjUaNGdLo8Y+DBBx9k1qxZvPjiiwVs2bFjB927d7fYM3r0aDZs2MC9996Lg4ODxSPn5+eHo6Mj9vb2+Pn5Wa5VTk4OTz/9NOHh4dja2nLs2LFiz9ma1atXs3DhQsty9TJOJR06NP+e/fzzz0XeP3r0KAcOHKB3794AmEwmPDw8SE1NJSYmxlLr08nJqdj9X+v9vRpyOeF2SXbeLOdTp04dYmNjCQ4OLtd5ajTloUTRJSLrgfWGYcwVkVM30CaNpuL49dfS9evXT7XrgDmmKzk5mYEDB/Lpp58ybtw4qlWrRnh4eKn2YX6QlWZ9tWpQpQqYTJCW5ggo8VbcUIrJZGLkyJG89tpr+Pr6WvY5e/Zs+vbtW6DvypUrLbOXr4SzszNZWVkF1vn5+eHn58eYMWPw9PRk7ty5dOrUiaioKNavX4/JZLIcH9QwJICNjY3ltXnZfB6FbSnOtpKuG4C9vb1lG+vjWB9jxowZ1K1bl71795KXl1fig7/wMUtznUrCbEdJ90xEaN26NVu3bi2wPiWldNl8rvX+Xo09e/bQtm3bEu0szp7KOJ+srCzLjxWN5kZRmpiuDMMwPjAMY6VhGGvMrcIt02huM9zd3Zk1axbTp0/H2dkZT09PSw1AEWHv3r0A9OzZk88++wxQoiglJYWuXbuybNkyMjIySE9PZ+nSpXTp0oXOnTvz66+/kpWVRVpaGr/99huGofJ2AZy6ys+lyZMn4+/vz8iRIy3r+vbty2effWaJtzp27Bjp6el07dqVhQsXYjKZiIuLY+3atcXus2XLlhw/fhxQ8U3r1q2zvBceHk7jxo0tyw899BCjRo1i/Pjxpb+Ql4mOjrY8qBcsWEDnzqpwhpubG6mpqQC0a9eO9evXk5iYiMlkYsGCBXTr1q3Ux0hOTsbDwwMbGxvmzZuHyWQqcozC9OnTh08++cSyfOHCBcu5bt++vcznWRhvb28SEhIs556Tk8PBgwepWrUqDRs2ZNmyZYDynGZkZBSxtTz3d8qUKSxduvSqti1ZsoRVq1YxatSoEu2EgtevMs7H3K9169alu+gazXWiNKJrPnAE8AReB6KAHRVok0Zz22JOnbBw4ULmz5/PN998Q0BAAK1bt+aXX34B4OOPP2bt2rX4+fkRHBzMwYMHCQoKYty4cYSGhtKuXTsmTJhAmzZtCAkJYdCgQQQEBDB06FDatm2Lu7s7zZur4yUkwJUcBtOnT2fVqlWWYPrly5czYcIEWrVqRVBQEL6+vvzrX/8iNzeXIUOG4OXlhZ+fH0888USJ4mXAgAEWoSUivP/++3h7exMYGMjUqVOZO3eupe/o0aO5cOECo0aNKvO1bNmyJd999x3+/v4kJSXxxBNPAPDYY4/Rv39/wsLC8PDw4N133yUsLMwSjD148OBSH+PJJ5/ku+++o3379hw7dswyvOvv74+dnR0BAQHMmDGjwDb/+c9/uHDhAr6+vgQEBFge9vv27St2eK2sODg48NNPP/Hyyy8TEBBAYGCgJcB/3rx5zJo1C39/fzp27MjZs2eL2Fqe+7t//37qlVDqYMaMGZaUET/88ANr1qyhdu3aV7Rz3LhxPP744wQGBmIymW74+Zw7dw5nZ+frcj80mrJQmoLXu0Qk2DCMfSLif3ndehEp/c/Fa0QXvNaUlzuhaG1aWhqurq5kZGTQtWtXvvzyS4KCgvjnH4iMhBYtoG2RsqsVS+fOnVmxYgXVqlW7Yr+ffvqJX375hXnz5pVp/1FRUQwcOJADBw5cg5U3jpSUFB555BGLZ/NWo2/fvvz555+VbcZ1Y8aMGVStWpVHHnmkxD53wneHpuIoqeB1aWov5lz+G2cYxgAgFmh4PY3TaDTl57HHHuPQoUNkZWUxduxYgoKCAJUsNTISTpwAf3+Vtf5G8eGHHxIdHX1F0TVx4kR+//13Vq5ceeMMqySqVq16ywou4LYSXADVqlVjzJgxlW2G5g6kNJ6ugcBGoBEqP1dV4HURWV7x5im0p0tTXu70X6t//w3nzkFQEPj4VLY1Gs2tw53+3aG5Nsrt6RKRFZdfJgNh19swjUZTcXh7K9F17Fh+mSCNRqPRVA5XKng9GyjRDSYi1168TaPRVCgNGqjyQGlpEBMDDXVggEaj0VQaV/J06fE8jeYWxzBUIP2ePcrbpUWXRqPRVB5XSo763Y00RKPRVAzNmsG+fXD2LCQng7t7ZVuk0Wg0dyZXzdNlGMZa66SoOjmqRlN6zp8/b8mBVa9ePRo0aEBgYCDVqlWjVatWFXLMZcuWcejQIcuygwN4eqrXERHX7zjTpk1j+vTpxb43c+ZMSykjgNzcXGrVqsWUKVPKfbyLFy/yv//9r1R9XV1dS73fvLw8nnnmGXx9ffHz8yMkJISTJ0+W18yrEhUVZSkIXZEU/hy89tprrF69usT++/fvZ9y4cRVul0ZzJ1Oa5KgvApMut1eBcEo59GgYRj/DMI4ahnHcMIzJJfTpbhhGuGEYBw3DWF9KuzWaW4KaNWsSHh5OeHg4jz/+OM8//7xl2cbm6v9+xZWBuRqFH7aghhhBpY/IySlmo+tIbm4u3377LQ888IBl3apVq/D29ubHH3+8YmmeK1EW0VUWFi1aRGxsLPv27WP//v0sXbr0qvnFroXKEl1vvPEGvXr1KrG/n58fZ86cITo6usJt02juVK76rS8iu6zaZhF5AWh3te0Mw7AFPgX6A62AUYZhtCrUpxrwP2CQiLQGhhfej0Zzu2IymXj00Udp3bo1ffr0ITMzE4Du3bvz73//m27duvHxxx+za9cuunXrRnBwMH379iUuLg6Ar776ipCQEAICArjvvvvIyMhgy5YtLF++nEmTJhEYGEhkZCSRkZGMHNmPadOCee21LqxefQRQWcGfeeYZOnbsSNOmTS0FgwE++OADQkJC8Pf3Z+rUqZb1b7/9Nt7e3vTq1YujR48We15r1qwhKCgIO7v86IUFCxbw7LPPctddd7Ft2zbL+j/++IOgoCACAgLo2bMnUNSD5uvrS1RUFJMnTyYyMpLAwEAmTZp0RTvNjBkzxpLpH1QG/OXLC2a7iYuLs5T6AWjYsCHVq1fnm2++4fnnn7f0++qrr3jhhReIiorCx8eHCRMm4Ovry+jRo1m9ejWdOnXCy8vLUupn2rRpjBkzhh49euDl5WUp6D158mQ2btxIYGAgM2bMICsri/Hjx+Pn50ebNm0sGeznzp3Lvffeyz333IOnpyeffPIJH330EW3atKF9+/YkJSWV6XMwbtw4yz3esWMHHTt2JCAggNDQUEtZnXvuuadAsW6NRnOdEZErNqCGVasF9AWOlmK7DsCfVstTgCmF+jwJvHW1fQUHB4tGUx5iYmIKrhg4sGzt2WeL374cTJ06VT744AMRETl58qTY2trKnj17RERk+PDhMm/ePBER6datmzzxxBMiIpKdnS0dOnSQ+Ph4ERFZuHChjB8/XkREEhMTLft+5ZVXZNasWSIiMnbsWFm8eLHlvR49esixY8ckOlrk9de3iZ9fmOTlqX7Dhg0Tk8kkBw8elGbNmomIyJ9//imPPvqo5OXliclkkgEDBsj69etl586d4uvrK+np6ZKcnCzNmjWznI81r732msUWEZGMjAzx8PCQ9PR0+eKLL2TixIkiIhIfHy8NGzaUEydOiIjI+fPni1wnEZHWrVvLyZMn5eTJk9K6dWvL+pLsFBFxcXEREZF169bJ4MGDRUTk4sWL0qRJE8nJySlg7+nTp6Vx48YSEBAgL7zwguzevVtERNLS0qRp06aSnZ0tIiIdOnSQffv2We7dvn37xGQySVBQkIwfP17y8vJk2bJlluNNnTpV/P39JSMjQxISEqRhw4YSExMja9eulQEDBliOP336dBk3bpyIiBw+fFgaNWokmZmZMmfOHGnWrJmkpKRIfHy8VK1aVT777DMREXnuuedkxowZZfocmJcvXboknp6esn37dhERSU5OtlyTTZs2ycByfr5vN4p8d2g0ZQDYKcXomdJkpN+FSh1hALnASaDk2gn5NABOWy2foaiHrAVgbxjGOsAN+FhEvkejuQPw9PQkMDAQgODgYKKioizvjRgxAoCjR49y4MABevfuDSjvmLle3IEDB/jPf/7DxYsXSUtLo2/fvkWOkZaWxpYtWxg+XDmRk5MhO/sSZ8+q9++9915sbGxo1aoV586dA9RQ4KpVq2jTpo1lHxEREaSmpjJkyBCqVKkCwKBBg4o9r7i4OFq2bGlZXrFiBWFhYVSpUoX77ruPN998kxkzZrBt2za6du2K5+WAsxo1apTp+pVkZ9euXS19unXrxlNPPUV8fDw///wz9913XwEPHCjP1tGjR1mzZg1r1qyhZ8+eLF68mJ49e9KjRw9WrFhBy5YtycnJwc/Pj6ioKDw9PfHz8wOgdevW9OzZE8MwLO+bGTx4MM7Ozjg7OxMWFsb27duLDF1u2rSJiRMnAuDj40Pjxo05duwYAGFhYbi5ueHm5oa7uzv33HMPoIYC9+3bB5Tuc2DN0aNH8fDwICQkBFDZ8s3UqVOH2NjYUl1/jUZTdkqTHNWznPsuLg1j4WAOOyAY6Ak4A1sNw9gmIsfKeUyN5sr8+mvlbm+Fo6Oj5bWtra1leBGwFFYWEVq3bs3WrVuLbD9u3DiWLVtGQEAAc+fOtRSZtiYvL49q1aoRHh4OwMGDsHevSh9R2Aa5HGslIkyZMoV//etfBfY1c+ZMjFJkV3V2diYrK8uyvGDBAjZv3kyTJk0ANblg7dq1iEix+7OzsyMvL8+ybL0va0qyszBjxoxh/vz5LFy4kG+//bbYPo6OjvTv35/+/ftTt25dli1bRs+ePZkwYQLvvPMOPj4+jB8/vkB/MzY2NpZlGxubAnF4hc+vuPM1X/eS7LracUrzOSh8vJLuY1ZWFs7OzlfcXqPRlJ/SzF50MgzjBcMwfjYMY4lhGM8bhuFUin2fQZUOMtMQVbexcJ8/RCRdRBKBDUBAaY3XaG53vL29SUhIsIiunJwcDh48CEBqaioeHh7k5OQwf/58yzZubm6WGJ2qVavi6elpqfvXtKlw5sxeYmNLDqjv27cv3377LWlpaQDExMQQHx9P165dWbp0KZmZmaSmpvJrCQK0ZcuWHD9+HFCFnjdt2kR0dDRRUVFERUXx6aefsmDBAjp06MD69estMwXNMUpNmjRh9+7dAOzevdvyvvV5XcnOwowbN46ZM2cCyitVmN27d1u8O3l5eezbt4/GjRsD0K5dO06fPs3//d//MWrUqOIv2BX45ZdfyMrK4vz586xbt46QkJAi59G1a1fL/Tt27BjR0dF4e3uX+hil+RxY4+PjQ2xsLDt27LBsbxZwx44dw9fXt8znqdFoSkdpZi9+D7RG1V38BGgJzCvFdjsAL8MwPA3DcABGAoXrNf4CdDEMw84wjCqo4cfDpTVeo7ndcXBw4KeffuLll18mICCAwMBAtmzZAsCbb75Ju3bt6N27Nz5WhRVHjhzJBx98QJs2bYiMjGT+/Pl88803BAQEEBzcmoiIXxCBlJTij9mnTx8eeOABOnTogJ+fH8OGDSM1NZWgoCBGjBhBYGAg9913H126dCl2+/79+7NhwwYAfv75Z3r06FHAYzN48GCWL19O1apV+fLLLxk6dCgBAQGWIdX77ruPpKQkAgMD+eyzz2hxeeplzZo16dSpE76+vkyaNKlEOwtTt25dWrZsWcBTZU18fDz33HMPvr6++Pv7Y2dnx9NPP215//7776dTp05Ur169pNtUIqGhoQwYMID27dvz6quvUr9+fcsxAgICmDFjBk8++SQmkwk/Pz9GjBjB3LlzC1yvq1Haz4EZBwcHFi1axMSJEwkICKB3794Wb+LatWsZMGBAmc9To9GUjtIUvN4rIgFXW1fCtncDMwFb4FsRedswjMcBROTzy30mAeOBPOBrEZlZeD+64LWmvOiitUVJSoI//lD5u+69F+xKE9lZRoYMGcL777+Pl5fX9d95GcnIyMDPz4/du3fjXo7MsAMHDuT555+3zK4sLdOmTcPV1ZUXX3yxzMesDC5dukS3bt3YtGlTkbi3OxH93aG5FkoqeF0aT9cewzDaW+2oHbC5NAcVkZUi0kJEmonI25fXfW4WXJeXPxCRViLiW5zg0mg015caNaBWLcjOhorKAfree+9ZUltUJqtXr8bHx4eJEyeWWXBdvHiRFi1a4OzsXGbBdSsSHR3Ne++9pwWXRlOBlMbTdRjwBswZ8+5CDQHmASIi/hVqIdrTpSk/+tdq8URFwZYtqiTQ3XerGo0ajSYf/d1xa5MnecSnxxOTEkNsaiyxqbHEpMYQkxLD8x2ex7dOxcYuluTpKs1Pmn4VYI9Go6lE7rpLFcFOTlY1GS9nodBoNJpbipRLKcSkxHAm5YxFVMWkxhCXFkduXvEVPWJSYipcdJVEaVJGnDIMIwAwR81uFJG9FWuWRqOpSGxsVGmgvXvh6FEtujQazc2LKc9EfHo8p1NOcyblTIGWml108oyZms41aeDWgPpu9anvVp8GVRvQwK0BdV3r3kDrC3JV0WUYxrPAo8DPl1f9YBjGlyIyu0It02g0FUrz5nDgAMTGqpmMVjkyNRqN5oaTbcomJiWG0ymnOZ182vI3Ni22RK+Vk50TDd0a0qBqAxpWbUgDtwY0qKqElpNdabJb3VhKM7z4CNBORNIBDMP4L7AVlUJCo9Hcojg6gqcnHD+uvF2XE5RrNBpNhZKVm8WZlDOcTj5NdHI00cnRnE45zdm0s0iRHOqKWlVq0dCtIY3cG9GwakOLwKrhXKNUSZtvFkojugzAZLVsovhs8xqNphhcXV0tCTxBFTLeuXMnn3zySZn3tW7dOqZPn86KFStKvU337t2ZPn06bdsWienE21uJrpMnISBApZHQaDSa60G2KZszKWc4dfGURVydSj5FfHp8seLKxrChvmt9GlVtRCP3RjSqmi+wnO1vj0oJpRFdc4B/DMNYihJbg4FvKtQqjUZzQ3B3h3r1VDB9ZCRYlUzUaDSaUpEnecSlxnEq+RSnLp7iVPIpoi5GEZsaW6y4sjVsaeDWgLvc76KReyP1t2oj6rvVx97WvhLO4MZRmkD6jy4XpO58edV4EdlToVZpNHcICQkJPP7440RHq4wsM2fOpFOnTmzfvp3nnnuOzMxMnJ2dmTNnTpHSMOnp6UycOJH9+/eTm5vLtGnTGDx4MJmZmYwfP55Dhw7RsmXLAjUdi8PHR4muo0eV58umNNn7NBrNHUnKpRROXjhJ1MUooi5GKaGVfIpsU3aRvgYGDdwa0Ni9MXe530Xjao1p7N4YDzcP7GzuzHxwZTlrA5WbSw8tam5J7llwT4Xs99dRVy6CnZmZSWBgoGU5KSmJQYMGAfDss8/y/PPP07lzZ6Kjo+nbty+HDx/Gx8eHDRs2YGdnx+rVq/n3v//NkiVLCuz37bffpkePHnz77bdcvHiR0NBQevXqxRdffEGVKlXYt28f+/btIygo6Ir2eXioIPqUFDhzRqWT0Gg0dzamPBMxqTGcvHCSkxeVyDp58SRJmUnF9q9VpRaN3RvTpFoTGrs3pnG1xjSs2hAHWx2zYE1pZi++BgwHlqAE1xzDMBaLyFsVbZxGczvg7OxMeHi4Zdkc0wUqY/qhQ4cs76WkpJCamkpycjJjx44lIiICwzDIKaY69apVq1i+fDnTp08HICsri+joaDZs2MAzzzwDgL+/P/7+V85fbBjKw7Vjh/J2adGl0dxZZORkEHUxisikSE5ePMnJCyc5lXyKnLyi3ztOdk40cW9Ck2r5rXG1xrg6uFaC5bcepfF0jQLaiEgWgGEY7wG7AS26NLcUV/NIVQZ5eXls3boVZ+eCQaITJ04kLCyMpUuXEhUVRffu3YtsKyIsWbKkyLAjUObZPJ6eKmdXQgKcPw81a5Zpc41Gc4twMesikUmRRF6I5MSFE5y4cIK4tOJLdtWpUgfP6p54VvO0/K3nWu+Wmi14s1Ea0RUFOAFZl5cdgcgSe2s0mlLTp08fPvnkEyZNmgRAeHg4gYGBJCcn06BBA0B5xoqjb9++zJ49m9mzZ2MYBnv27KFNmzZ07dqV+fPnExYWxoEDB9i3b99V7bCzg2bN4PBhOHIEOnW6bqeo0WgqARHhfOZ5IpMiOZ50nMgLSmgVNzxoZ2PHXVXvolmNZgUElouDSyVYfntTGtF1CThoGMZfgAC9gU2GYcwCEJFnKtA+jea2ZtasWTz11FP4+/uTm5tL165d+fzzz3nppZcYO3YsH330ET169Ch221dffZXnnnsOf39/RIQmTZqwYsUKnnjiCcaPH4+/vz+BgYGEhoaWypYWLdTwYnS0Sh/hqkcLNJpbArPAOp50nIjzEUReUEIr+VJykb7Ods40rd6UZtWb0bR6U5pWb0oj90Z3bGD7jaY0Ba/HXul9EfnuulpUDLrgtaa86KK1ZWPrVpWzq0ULKCatl0Zzx3Azf3ckZyVz7PwxJbKSIjiedJwLWReK9HN1cKVZ9WY0r9GcZtWb0axGMzxcPfTw4A2g3AWvb4So0mg0NwetWinRFRkJvr7gdPNV0dBo7igyczI5nnScY+ePcez8MSKSIkjISCjSz8XeBa8aXjSv0dzS6rjU0QLrJkP7EzUajQV3d2jYUKWOOHpUDTNqNJobgynPxKnkUxaBdTTxKKdTThdJMOpk50Tz6s3xqullEVo6wP3WQIsujUZTgFatlOiKiFCv7W/vBNEaTaWRlJnEkcQjFoEVkRTBJdOlAn3sbOzwrOaJVw0vWtRsgVdNLxpWbYiNobMY34qUKLoMw5gnImMMw3hWRD6+kUZpNJrKo1YtqFMH4uNVXUZdGkijuXZy83KJTIrkSOIRjp4/ypHEI8UOE3q4etCiZgu8a3rTomYLPKt76gSjtxFX8nQFG4bRGHjYMIzvKZSJXkSKT0ur0WhueVq1UqLryBEVVG9rW9kWaTS3FslZyRxJPMLhxMMcTjhMRFJEkWSjznbOeNf0xruWt0VkuTu5V5LFmhvBlUTX58AfQFNgFwVFl1xer9FobkM8PKBaNbh4EaKiVA4vjUZTPCJCTGoMhxIOWVpxCUcbujXEp5aPpTVyb6SHCe8wShRdIjILmGUYxmci8sQNtEmj0VQyhgGtW8PmzXDoEDRtqtZpNJr8ocKDCQctIis1O7VAH0dbR7xreuNTy4eWtVviXdMbN0e3SrJYc7NQmpQRTxiGEQB0ubxqg4hcPcW1RqMBwNbWFj8/P8vyyJEjmTx5con933nnHf79739bljt27MiWLVvKfNzw8HBiY2O5++67i31/z549fPrpp3z99dfMnTuXSZMm0bBhQ9LS0mjatCmvvjoVV9eOpKbC6dPXVpOxSZMm7Ny5k6pVq9KrVy/WrFmDnZ2ex6O5NcjKzeJo4lEOxB/gUMIhjpw/QrYpu0CfGs41aFWrFS1rt6RV7VY0qdZEJxzVFKE0Ba+fAR4Dfr68ar5hGF+KyOwKtUyjuU0oXPD6ahQWXeURXKBE186dO0sUXe+88w7/+c9/LMsjRozgk08+AWDt2rUMGzaUOXPWAi05eBAaNbp2b5eDgwM9e/Zk0aJFjB49+tp2ptFUENmmbBIzElkVvooD8Qc4nnQck5gK9Gno1pDWdVrTunZrWtVupXNiaUpFaWT4BKCdiKQDGIbxX2AroEWX5pbinnvuqZD9/vpr2QtpJycnExoayvLly/H29mbUqFH06NGDyMhIMjMzCQwMpHXr1syfPx9XV1fS0tJYt24d06ZNo1atWhw4cIDg4GB++OEHDMNgx44dPPvss6Snp+Po6Mhff/3Fa6+9RmZmJps2bWLKlCmMGDHCcvzU1FT27dtHQAmJuMLCwnjsscf4448v6d59BkeORPLf/z5FamoCVapU4auvvsLHx4dff/2Vt956i+zsbGrWrMn8+fOpW7cu58+fZ9SoUSQkJBAaGop15Yt7772XKVOmaNGluWnINmWTkJ5AfHo859LPcSHzArkpuSyJXgKAgUHz6s0LiCwd8K4pD6URXQZgLfFNFJrJqNFoSsYsosyYBdAnn3zCuHHjePbZZ7lw4QKPPvooAJ988kmJnrE9e/Zw8OBB6tevT6dOndi8eTOhoaGMGDGCRYsWERISQkpKClWqVOGNN95g586dFu+VNTt37sTX1/eKdgcFBfHFF1/w1FPw6quP8cwzn/Poo15s3/4PTz75JGvWrKFz585s27YNwzD4+uuvef/99/nwww95/fXX6dy5M6+99hq//fYbX375pWW/vr6+7Nixo+wXUqO5TuSYcohPjy8gsqwTkNoYNrg7ujO81XBa125Ny9otqWJfpRIt1twulEZ0zQH+MQxj6eXle4FvKswijaaCKI9H6npQ0vBi7969Wbx4MU899RR79+4t1b5CQ0Np2LAhAIGBgURFReHu7o6HhwchISEAVK1a9ar7iYuLo3bt2lfsY/ZO1auXRkTEFt5+ezgzZ4KDA1y6pBI4njlzhhEjRhAXF0d2djaenp4AbNiwgZ9/VhEJAwYMoHr16pb92tra4uDgQGpqKm5uOrBYU/Hk5uWSmJHI2bSznEs7R1JWUgHvq41hQy3nWtR1rUsdlzrUqlKL+LPxN23tRc2tS2kC6T8yDGMd0Bnl4RovInsq2jCN5nYnLy+Pw4cP4+zsTFJSkkVMXQlHR0fLa1tbW3JzcxGRMseSODs7k5WVdcU+e/bsoWXLlkAe7u7VePfdcFxdYeBAsLk8y33ixIm88MILDBo0yDL8aeZKNl26dAknXdhRU0HkSR7nM85zLv0cZ9POkpiRSJ7kWd63MWyoWaUmdV3qUte1LrWq1NJB75obQqk+ZSKyG9hdwbZoNHcUM2bMoGXLlrzzzjs8/PDDbN26FXt7e+zt7cnJycG+lPV3fHx8iI2NZceOHYSEhJCamoqzszNubm6kpqYWu03Lli358MMPS9zn+vXr+fLLL1m7di1Vq1aleXNP9u1bjL//cCIjhYwMFQ+WnJxMgwYNAPjuu+8s23ft2pX58+fzn//8h99//50LFy5Y3jt//jy1a9cu9flpNFdDREi5lMLZtLOcTTtLfHp8gUSkBgY1nGtYRFYdlzpaZGkqBf2p02gqmMIxXf369ePhhx/m66+/Zvv27bi5udG1a1feeustXn/9dR577DH8/f0JCgpi/vz5V92/g4MDixYtYuLEiWRmZuLs7Mzq1asJCwvjvffeIzAwsEggvY+PD8nJyQWG+BYtWsSmTZvIyMjA09OTJUuWXPZ0wfz58xk//gkWLHiLvLwcHnlkJAEBAUybNo3hw4fToEED2rdvz8mTJwGYOnUqo0aNIigoiG7dunGXVb6JtWvXljijUqMpLVm5WRaRFZcWR2ZOZoH3qzpWpZ5rPeq6KJHlaOdYwp40mhuHYT2ufbPStm1b2blzZ2WbobkFiY2N1XEZJTBjxgzc3NyYMGFCqfqLwB9/wIULEBQEPj7lO+7QoUN599138fb2Lt8ONHckpjwTiRmJxKXFEZcax4WsCwXed7Jzop5rPUu71sB3/d2huRYMw9glIm0Lr9eeLo3mDuWJJ55g8eLFpe5vGODvD+vXw8GDqjRQWUcIs7Ozuffee7Xg0pSK1EupFpF1Lv0cuXm5lvdsbWypU6UO9Vzr4eHmgbuju86TpbnpKU1y1KHAf4E6qEB6AxARueoUKcMw+gEfA7bA1yLyXgn9QoBtwAgR+an05ms0mvLi5OTEmDFjyrRN/fpQuzYkJMDRo3CVrBNFcHBw4KGHHirbRpo7hty8XM6lnbMIrcKldao5VcPD1QMPNw9qV6mNrY2uxK65tSiNp+t94B4ROVyWHRuGYQt8CvQGzgA7DMNYLiKHiun3X+DPsuxfoykt5Zndpykes7fr77/h8GFo3hz0JETNtZB6KZXY1FhiU2OJT48vkPnd0dbR4snycPXA2d75hth0K4TdaG5NSiO6zpVVcF0mFDguIicADMNYCAwGDhXqNxFYAoSU4xgazRWxt7cnLS0NV1dXLbyuE3XrKo9XbCyEh0P79pVtkeZWIk/yiE+PJzY1lpiUmALeLAODms418XDzoL5bfWo617zh/7ciQlpamp5dq6kQSiO6dhqGsQhYBlwyrxSRn0vcQtEAOG21fAZoZ93BMIwGwBCgB1p0aSqAGjVqkJSUVGLqBE35aNgQzpyBiAhwd1dNoymJbFM25zPOk5iRyPnM8wW8WXY2dtR0qknNKqo52DqACbIvZhN3Ma5S7LW3t6dGjRqVcmzN7U1pRFdVIAPoY7VOyC+AXRLF/Twp7LOdCbwsIibthdBUBLa2tlfNvK4pH1u3wo8/wq5d8NFH+QlTNRoR4XTKaf458w//xPzDsfPHCpTZaezemJD6IYQ0CMG7preOzdLcMZQmI/34cu77DNDIarkhEFuoT1tg4WXBVQu42zCMXBFZVs5jajSaG8Tw4bBmDURGwp9/Qv/+lW2RpjIx5Zk4mHCQ7THb+efMP5xNP2t5z87GjoC6ARahVcelTiVaqtFUHqWZvdgQmA10QnmqNgHPisiZq2y6A/AyDMMTiAFGAg9YdxART6vjzAVWaMGl0dwaODnBhAnw3nswbx507gy6lOKdRVZuFnvi9rD1zFZ2xO4gLTvN8p67ozsh9UMIbRBKG482ONnpGRcaTWkLXv8fMPzy8oOX1/W+0kYikmsYxtOoWYm2wLcictAwjMcvv/95ua3WaDQ3BR07QkAA7N0L338PTz1V2RZpKprUS6lsj9nO1jNb2XN2D9mmbMt7Ddwa0KFhB0IbhOJdyxsbQ485azTWXDUjvWEY4SISeLV1FYnOSK/R3LycPg0TJ0JeHnz4IXh5VbZFmutNUmYS285sY8vpLeyP31+geLR3TW/aN2xP+4btaVj16kXbNZo7gWvJSJ9oGMaDwILLy6OA89fTOI1Gc+vSqBEMGgRLl8IXX8AHH6h8Xppbm4T0BLac3sLm05s5knjEEghva9jSpl4bOjTsQLuG7ajhrGf5aTSlpTSi62HgE2AGKqZry+V1Go1GA8CoUao80NGjsGwZDBlS2RZpykN8ejybozez+fRmjp4/alnvYOtAm3pt6NioIyH1Q3Bz1MF7Gk15KM3sxWhg0A2wRaPR3KI4O6t4rjffVLFdbdpAkyaVbZWmNJiF1sbojUQkRVjWO9o6ElI/hE53daJt/bY6EF6juQ6UKLoMw3hJRN43DGM2RfNrISLPVKhlGo3mliI0FPr2VekjPvxQ5e7SSb1vTs5nnGdT9CY2Rm8s4NFysnMitH4one7qRLBHMI52jpVopUZz+3ElT5e59I+OYNdoNKViwgTYtw+iomD+fBg3rrItuo6IQHY25OSAyaRabq6aQeDgAK6u6u9NSsqlFDZHb2bDqQ0cTDhoidEye7S6NO5C2/ptVUZ4jUZTIZQoukTk18svM0RksfV7hmEML2YTjUZzh+PkBC+8AC+9BD//DG3bgq9vZVtVBpKTlWI8dQpiYqBKFRg7Vr1nMsGwYSVv+/DD+cFs27ap5GU1akDNmvmtTh1o0ADq1bshsw2ycrPYenor60+tJ/xsuKX8jr2NPW3rt6Vr46566FCjuYGUJpB+CrC4FOs0Go0GHx+4/35YtAhmzIDZs5V2uWlZuxZWr1ZCKzm54Ht16+aLLjs7qFULMjNVzSM7O7C1Va9zcpSny0xKCkRHq1YcixcrhQpqBoK9PTRvDrVrX7MYy83LZU/cHtZFreOfmH+4ZFIlc20MG4I9gulyVxfaN2yPi4PLNR1Ho9GUnSvFdPUH7gYaGIYxy+qtqkBuRRum0WhuXUaOVDUZjx+HL7+E556rbIsuc+YM7NgBgYHgebkgxsWLakwU1IyAxo3VLICGDZXosmbOnNIdp2tXlbDs/HlISlJ/z5+HuDgl2pysPEvffw/x8eq1qys0baoEWMuW0KoVVK161cOJCBFJEaw5uYaN0RtJuZRiea9lrZZ0b9KdTo064e6kK5NrNJXJlTxdsah4rkHALqv1qcDzFWmURqO5tbGzU8OMzz0Hf/8N/v7Qo0clGXPxovImrVunVCAoVWgWXZ07Q/36avk6eJoAJao8PfOPURIiSqBFRsKJE8rTtm9fvggcM0a5Dc3nkZEBHh4WG+PT41kXtY41J9cQkxpj2W2jqo3o3qQ73Rp3o65rIeGo0WgqjSvFdO0F9hqGsRRIF1HBAIZh2AJ6SotGo7kijRrBo4/Cp5+qIcYGDcDb+wYasGULrFoFe/aoYHdQ45wdOkDr1vn9atdWrTIwjPzhSxHlDTtxAo4dg8OHC9r5998wdy5ZtaqxuaULf9dMZr/teXBUX8fVnKrRrXE3enj2wLOaJ4bOUKvR3HSUJqZrFdALMFcydb68rmNFGaXRaG4P+vWDkydh5Up46y0V41Wr1g06+NataozT1hbatYPu3VVei5t1hqFhqItTq5ay0woR4WD6SVbfFctmu11kxZkgDhzEhva2jenRagCBI/6NrY1tJRmv0WhKQ2lEl5OIWErHi0iaYRg3c1isRqO5iXj0URVKtW+fEl7//a/FOXP9SE2F335TUfyBgWrdsGHKtda1a6niom5GEjMS+fvE36w+sZqz9mehU33IrEbLbHd6JVal08FUXNKzobY9mAXXpUvwxx8QEqKGTTUazU1DaURXumEYQSKyG8AwjGAgs2LN0mg0twt2djB5Mvy//6dCl2bOVCklrsvoV3Y2/PIL/PgjZGWp4Tiz6GrcWLVbjNy8XP458w9/nfiL3XG7Lfm0alWpRY8mPejZtCf13S6LKZNJDUVaZ6Hdtw++/lq1Bg1U3o7QUBWUb1ear3yNRlNRlOY/8DlgsWEYsZeXPYARFWaRRqO57XBzg1dfVcJr0yalhUaOvIYdisDGjfDdd/kz/9q0geG3bgrBmJQY/oz8k79P/m2ZfWhnY0f7Bu3p3aw3gfUCsTFsCm5ka6tmOVrj7g7duqmh1ZgY1X75BVxcIDgYnn325h1i1Whuc0pTe3GHYRg+gDdgAEdEJKfCLdNoNLcVjRopD9cbb6hs9XXqlHNGY1ycqjN09HL5miZN4JFH8j1ctxDZpmy2nN7Cn8f/5EDCAcv6Ju5N6NOsD92bdC97cekWLeDFF5UX7MgR2LkT/vkHTp9WAXbWgmvDBvDzg+rVr9MZaTSaK1FaX7M30ApwAtoYhoGIfF9xZmk0mtuRtm2VPvr6azXMaGOj4tvLhKur8t5Uq6ZSKvTqpXZ0CxGbGssfx/9g9YnVpGanAqruYZe7utCveT+8anhd++xDW1s13Nq6tZohGRencoaZOXcOPvhAjfP6+KhZnR06qGz5Go2mQjBEitSyLtjBMKYC3VGiayXQH9gkIleoh3F9adu2rezcqUtAajS3C4sWwQ8/qOf9iy+qWPcrcuSIShhqjkk6fFh5uJydK9rU60ZuXi7bY7azMmIle8/ttaxvVr0Z/Zr3o2vjrlSxv4FzlE6dUolZ9+xRGfXNNG2qxNc996ghSY1GU2YMw9glIm2LrC+F6NoPBAB7RCTAMIy6wNcick/FmFoULbo0mtuPhQvVMKNhwKRJ0KVLMZ2yslQW+JUrCyYKvYVIykziz+N/8kfkHyRlKk+Tg60D3Rp3o3/z/njV9KpcAzMzVfzX1q0qW39mphqCnD8/P3N+YqKqHalzf2k0paIk0VWa4cVMEckzDCPXMIyqQDzQ9LpbqNFo7ihGjlRhRwsXwvTp6nneubNVh6NH4f33VaC8re0t9cAXEQ4lHOK3iN/YcnqLpdB0o6qN6N+8Pz08e9w8tQ+dndWF79xZebzCw9XQo1lw5ebC00+rtBudOqnWrNktdT80mpuF0oiunYZhVAO+QpUDSgO2V6RRGo3mzuCBB9RExEWLVHhRTg6EdRdYvlx5uEwmNdz13HNXL6lzE5BtymZ91HqWH11OVHIUoApNd2zYkQEtBuBXx+/mzhRvb6/ye1kTF6eGdePi4KefVKtTR4mvzp1Vjcmb+Zw0mpuIKw4vGurboaGInL683ASoKiL7box5Cj28qNHcvoio+K4ffwR7UxavunxEYNZWDIDBg2HcuJs+v1RiRiIrI1byx/E/LIHx7o7u9Gvej37N+1Gryo1Kw19B5OXBwYOwebMqr3ThQv57n3xyS+ZD02gqknINL4qIGIaxDAi+vBxVIdZpNJo7FsNQ4Vo1asBXXzgQEZ6Oo3MVms16DsfuHSrbvCtyNPEoy44sY8uZLeSJqu/YvHpzBnkPovNdnbG3tb/KHm4RbGxUagk/P3jsMTh0SImvU6fgrrvy+737ripj1KmTyh+mPWAaTQFK8/Nxm2EYISKyo8Kt0Wg0dya5uQwYYEf9+jZ88uaLrEjNovpSD171vYG1GktJnuSx7cw2lh1ZxuHEw4AaQuzcqDODvAfhU8vn5h5CvFZsbMDXVzVrEhKUEAM1PFyjhpoF2amTSltxi6X10GgqgtLMXjyEytMVBaSjEqSKiPhXuHWX0cOLGs1tiojKKn/iBEydCra2nDmjEqjGxalUXFOmqAo2lU1WbharIlex/OhyzqWfA8DF3oX+zfszoMWAW38I8VoRgYgIVXJg8+b8SgGgsuRPnarivzSaO4Ayp4wwDOMuEYk2DKPYwXoROXWdbSwRLbo0mtuQrCw1bfGff5QX5J13lEcEVb/63Xdh/341QnXffTB6dOWEdl3IvMCKYyv4LeI30nPSAfBw9WCw92B6Nu2Jk53TjTfqZkdEFdrcvFm1xEQVuFflch6y1auVEAsMLFg3UqO5TSiP6NotIkGXXy8Rkfsq2MYS0aJLo7nNSExU7qyTJ1UCzn//G/wLOs9zc1WqqCVL1DPc01PVbrxRMdsxKTEsPbKUv0/+TW5eLgAta7VkaMuhhDYILVoHUVM8ImrosU4dtZybCw89pJS1s7OaLdmpEwQF5aep0GhuccojuvaISJvCrysDLbo0mtuIiAh48001A65+fXjtNWjQoMTuhw/DRx/B2bPK0/XQQ2pSY0WFCEWcj2DxocVsO7MNQTAwaN+wPUNbDsWnlk/FHPROIisLli1T8V8nT+avd3BQwmvUKJUmRKO5hblWT5fldWWgRZdGc5tw4oSqen3pkvJsTZ4Mblcv6JyVBd98A3/8oZZbtIBHH1UlA68HIsK+c/tYfGixpUSPvY09PT17cq/PvTSoWrIo1FwDcXEqE/6WLfkFzD/+OF90nTyphiFr1Kg8GzWaclAe0WUiP3DeGcgwv4UKpK9aQbYWQYsujeY2ITcX3n5bZTefOLHMQVo7d8Ls2fl1m7t2VbWczSNXZUVE+CfmH348+CMRSREAONs5c7fX3QzyHkQNZ/2wv2EkJqo6kL165aeaeOkl5eps0QLat1etYUOdikJz01Pu2os3A1p0aTS3MCJKbJkDprOz1etyPjizslRS9KVL1a4cHODee2H48NKHBOVJHpujN/PjwR8tmeOrOlZlsPdg7va6G1cH13LZprmOmEzw3nuwe7e60WYaNIB27aBnz4I5wjSam4hKEV2GYfQDPgZsUUWy3yv0/mjg5cuLacATIrK38H606NJoblFE1LjgiRMwbZpSSNeJ+HiVbWLDBrVctSrccw8MGFDyiKUpz8SGUxv48eCPnEk9A0BN55oMbTmUvs364mjneN3s01wnsrJUPcht22D7dhWAD2pWRffu6vWFCyooXwfia24SbrjoMgzDFjgG9AbOADuAUSJyyKpPR+CwiFwwDKM/ME1E2hXelxZdGs0tSG4uzJoFa9eqYcQ33yyaUPM6cPgwfPstHDmilp2coF8/5f2qWVOtM+WZWBe1jkUHFxGXFgdAnSp1GN56OD09e94+meNvd0wmdcO3bYMRI/LV9ezZ6nPm769mQ4aElH/MWaO5DlSG6OqAElF9Ly9PARCRd0voXx04ICJFIla16NJobjGys+H991UOLicneOUVlZOpghCBAwdg8WIVFgRK53XpaqJam3VsTV3E2ctiy8PVgxGtR9CtSTfsbG7umo6aUvL22+qzZv08a9xYia/OnaFZs8qzTXNHUq7ai9dIA+C01fIZoIgXy4pHgN8r0B6NRnMjyMqCt96CvXvB1VUNK3p7V+ghDSO/NGBkJPy42MTy/ev4OHIRWdFxODtBi/r1mRg2krtbdcXWxrZC7dHcYF55BZKT1UyL7dtVHNipU6rZ2OSLrrQ05S1zd69cezV3LBUpuoqLki3WrWYYRhhKdHWuQHs0Gk1Fk5Gh8m4dPapq+Lz5JjRpcsMOLyLE2G3klO//4Vo3huoJkHG2PjVPjcThQFe++duWfZdzcYaEqLysmtsEd3cVXN+zJ+TkwMGDSoR17Jjf5++/VYxh8+YQHKxaixa6LqTmhlGRousM0MhquSEQW7iTYRj+wNdAfxE5X4H2aDSaisbRUQVS1amjvF0eHjfksCLC1jNbmb9vPtEp0QB41vJgSveRdGrQjfA9tqxaBTt2qHCgbdvU8GNAgBJgoaHa+XFbYW+vhrMLD2knJ6sbHxGh2sKFyhsbGKiKc3ftWgnGau4kKjKmyw4VSN8TiEEF0j8gIget+twFrAEeEpEtJe1Lx3RpNLcQOTlqhtkNSGgpIuyO2833e7/nxMUTANSuUptRvqMI8wwrErOVlKRKAW7Zohwh5q8/w1DOD/NzumVLXRLwtiUrSwUA7t6tPGFxKtaPDh1UOSpQMYn79qmJH3pGpKYcVFbKiLuBmaiUEd+KyNuGYTwOICKfG4bxNXAfYC6enVuckVp0aTQ3MXFxqkji00/f0AfUoYRDfBf+HYcS1YToGs41GNF6BL2b9i7VbMTkZOXx2rJFPV9zc/Pfc3BQtbdbtVJZ7729VUYCzQ1CRAmf9HTIzFQtKyv/9aVLavnSpfxWqxYMGqS2v3RJ5fgyDDXcbebNNyE2FvLyVGxXXp6K80pMVJ/d6tXVsZOSVLV1Gxt48EHlEg0MhK++Up/3999XSVoBvv5aZdW3tVX9bW1Vs7PL/2v92t4eHn4YatdW22/apDLvd+qUn4n/zBmVZsXRUX0YHR3zm5NT/utryHenqVgqI5AeEVkJrCy07nOr1xOACRVpg0ajqUCio+HVV9VDqkYN9TCpYE5cOMH3e79nV9wuANwc3BjeajgDWgzAwbb0ecDc3aFvX9WysuDQIZUOas8eiIpSf80zIQ1Dhab5+CiPmKenmhx3HdOO3Z6IKAGUnKxaSor6W6+eUrWgLvY336h1Tz2l1mVlwf33l+1YLVvmiy4bG+XFKlzxIC5OCZrCmIP7UlLU34wMJWoyM5VX7MAB9cPi8GG1z0uX8rdNTlZJ48rCAw/kv962DdavVyLOLLp27VJi7moYRn5+sn/9Kz9+bccOlUIjNDQ/l1lSkppkUKVK0ebiovajY9sqHD1fWqPRlI/jx5UXITVV5UeyfpBUAHGpcfyw7wc2RKtsqE52TgzxGcK9PvdSxb7KNe3byUnVWg66XGH24kXl6DhyRD1nT5xQzgjr+sw2NtCokXpO3nWXet2wodIOtnfS5MiUFJWu4fx5laTU3C5eVH+tBYqZfv3yRZfJpNSudZFrszfHyUmJAmdn9dfJKV9kWHt8HB3zPUeghNFrrxUdI37lFeXdMnukbGwKNsMo2NLS1M3fu1fZmJurbrD15BA7Oxg5UrlD69bN96KZTKp/bq56nZOjXufkKK+cmS5d8j9IZurXV/Fl1p4865aVpVpurhKIGRkF02VERcHGjeqamEXX6dPw6adXvpdOTirGzSzEevRQ9wqUsNy0SX3IQ0PVOhE4d05t4+KivW6lQJcB0mg0isxMFeiUmKgeNqmpqqWlqS/jevXUQ6VePfXr/uOP1Zd9SIgqXF1Bbp8LmRdYeGAhf0b+iUlM2NvYc7fX3QxvNRx3pxsT/X7pktKYR4+qZ/CJE8phUtzXp52demY2aKAulYeH+luvnnoGlrHcZOVgMikRde6cEgjmCRE7diivVJs2yrMCyttp9lAVh4ODcitWrZr/NzBQzTIE9bk7fFgN7Xl6VuhpXTMJCeq6mCutnz8P48blv+/unp+7xM+v4utEmkz5AszFJX943zw82aBBfrqMqCj49Vf1P5uZmS/W0tPzXxdm5EgYPVq93rED3nhDzficNk2tS05Ww6+gzrNKFZWw1tVVNTe3/GXz6/r1lVcS1D+QyXSL/FOUjUoZXtRoNDcxIiqP0a5dKqj40KGCgU0lkZysZn7Z2KiHb9euarvrLLoycjL4+fDPLDuyjEumSxgY9PLsxQN+D1DbpfbVd3AdcXRUjhmzcwaUEDt1Sj3bTp/Ob4mJSodERxfdj2GoUdjatZWWMf+tUUNN+qxRQ2mPGzJsmZ0NZ8+qIbfYWNXi4tS6xET1MAT10B05Mv8EYmIKZnuvWVN5RGrUyG/VqqkTqV5dCYErCQ9n53wX481O7doFPWpOTvDkk2r4cf9+5dnbtEk1UDFk5hmUKSlKGF1PN6itrdpn4dwnDRvmx5yZadJEFZkvCZGCQiw9Pb+kA6h7fu+9SsiZuXRJrU9LK7jdlejQIV90nT8P48erfX7+eX6fzz5T3y9ubkqkF9du0bF97enSaO40MjLg999hxQr1cDVjGCpn0V13FfyF6uqqfhmfPavaypVKdLm7K8+EYahfqr6+0L69Gs64hgRYuXm5/B7xOwsPLiTlkoqxadegHQ8FPMRd7jd/gePMTOVoMOsXs645e1Y9Y0rzlevionRLtWrqMpv/mp835meR+RY5O5egawoXG4+KgjlzlIEJCVc2pkYN5dm0HmLKyFCfmdq19cyCwogo4bp/f/7Y9Cef5F+nd99VP258fNQMjZYt1evbZXakyaQ+H2YveVpaUY95Sgp4eakiqaB+tUycqL5zPvlErROB++5Tw7BXwsEh/x+iSRN4/vn89/76S1339u3zvWgiN3T4s1JmL14vtOjSaK4DycmwfDn89lv+r9EaNZSXIThYzdAqqVK0Nbm5Kslky5b5GcAPHcp/gDs5qQf1gAHqy7SUiAgbozcyb+88zqafBaBlrZaMDxxPy9oty3q2NyW5uSqeOSEhv50/r9YlJeWHRZmdTKXFxgZqOabi4gL2NdyoUgVaJGwmdMennPfpSPQ9T+PsDNXTTuP7vydVOJO9LdSti1HfA5tG9bFv5IFdIw8Mj3rKe3GLehJuWiZNyi8QasbGRv1wuftu6NOncuyqbMyTLcziUwTWrVMCzSzYUlIKttTUgqLMyws++ki9zstTHjkRWLYs37P44ovqx8ZTT6k4ugpGDy9qNHcqycnw44/wxx9qSAmUV2r4cDU8WJpff2vXql+Nzs7ql2Pfvmr9XXfB0KHqS3DnTli9WuVfWLlSNT8/GDhQbXuFmVH7zu1jzp45HL9wHIBGVRsxNmAsoQ1CMW6j4Fw7O6VnrlSLWST/2XLxorp9Fy6ov6mpkJKsPCpOMZG4xJ/ELSmKmilRVM1OZF2D0WxsoIYCL6a44n0mlejUc8y/PCnPJs+D5sZ/SHRoyEXHuuSl2sFRVEPdInP8unUse+GYdXMmA3M2A+vX9vb5fx0civ9rbnZ2d1Ds9QcfqBt5+LD6kXLokKpZFRmpvEBmDh1SYsHbW7XmzW8fb1hxGEbB8zMMCAu78jZmoWb+R7EmN1d9P126VHAoNyVF/dis5B8T2tOl0dyuiCg3+5w5+V/qISFKbLUspedIBH74QYm2gAAVo3K1p2R0tPKmrVmjAnxBzc4aOVIVHz52TA2/+PkRVc+JueFzVfqHtDRqpOcxOvAhenYdp+sjgvrVfuaMGs49flw9oE+ezL+u5m4CubaOpHUbSPzd41R6q+RsLiWmctGmBhmZhiV22vpv4fRXpQnpu95YizCzECv8t7h1trZFX1unxSopTZb138IptayXbWzy11u/tk7HZZ7wWG6ystS9rVs3X4kvXKjSU5ixsVH5Sby91fB/r153kFK9joio70Hzr4QKRg8vajR3EqdOqenhhw+r5cBAlUOrLLPDcnPVPlavVl/8zz139V+g1qSnw/ffK8EG+dPK9+0jsaod8xun8HevpoirC86ZuQxbfpzBZ1xwtHOCuXNVvMuRIxaBZpkxdrsiopRPlcvpL86dUwlnCwksQAU4N22qZqZ5eqqYlnr1rjnPUm5uwYwEhXOQZmcXXJednd/MfXJyVDO/Nv/NzVX9cnLUX3M2hVsd63yo1lkoCudKLSzWiutrYwNumfHUS9hPraRj1Eo8gvvFKGwkDwzIqFqPtaO+svT32rWQzOr1SavXnKzqHtjYGkWyYJiFobVILPxecf0Lv77SX/P+za+Le7+064rrY77OV1q+2XSoHl7UaO4ELl2CBQvU8ITJpCKwH31UxTCU5VspM1Nl9N69W/0yfPll5SW7EoUF0unT8N136gmbmQmtWpF+4gg/uZ9kuY9Btr0Ntim1uTtoJCMiHHGP/ljNYjIHI4Oajp+drX6Z3m5CzDqwNzISpk5V0+nff1+tM8+Sq1NHDTF5eSmR1bRphRWKNHuFblQhcJF8kWZOYVX4tXnZ3AovWzdzaixzWizr5av9LdzM6/PyCvaxTsOVl5ffrhb3XXrqoKrn9YQaYOd+ifoZx6mfdoy8XFu2/6V6VclJJnjPfKoCdYFLtlWIc2lOXJVmxLk052TVADLs76yCosUJtcJ/DQOeeaZgHfQbiRZdGs3tQkQEfPihmtJvGCo496GHyv4ETUqC119XuRDc3VWSyRYtCvYpLHyOHCkqkPbvV8sNGpATF8PKfp4sunCG1EN5YMqj8xk7Hsq+C49uQRDgoraLjVXjRH5+Bba/LYTY+fMqXufwYdUaNYIXXlDv1amjgrbs7fPFmI2NOr8bpYAqAcPIjwe7FTGnmTILL2vRZl1pqLBIu5J4s35fNUdMptbk5bUmLw9CL6+3SQXb7Q9QJfY4LnHHsUtNopnsQ9gHWbB3wBucv6sNeXngfjIcx9REUmo1JaVaI0yGPXl5Be0XyT+m+fXV1kHx71v3sV5n/V5x/YtbZz5G4X6F15vvh/V2JXG19ysSLbo0mlsdkwkWL1Yerrw8Fdz+zDMqBqQ8rFypBJeHhxJf5sSYZq4isCwCyc8PcbBnY9ZRvg+8yDl2QaM6tG70IOMP2OOdeg7OZ6tjtGoF//mP8ohZC6dbVYiZ0wccPJjfzp0r2Mc6ANjNTSUdrV27oEfyNhZctwPmbCmVgzvcPyp/MSlJxf1FRMCJEzR4uimYHV3//RN2bYJjqHHARo3UsLSnp/rfKG2M501MScKuOIFWmfMStOjSaG5l4uKUd+vo5elngwcr79a1uA5GjVLfUIMHK09XYfFSgsAqLJD2VrvE3Gd9OB57AKo2oFH9lowLHEdI/RA1IzE7WwXcL16cP5urbVuVvgLUscyC7noJsYrk9On8HE0HDqiph9ZUqaIebuZW2Ht4pSmNGs3VqFFDlecxl+ixxjxL+eRJ5QmPilJt7Vo1zmYWXWlpKpC/cWPV7rrrlpk5aR5avNnRokujuRUxz0z86isV1Vyrlgp0Dwgo377++EN9+bq7q1/CDz2k3ivOq1WMwLIWSJGe7syNnU/4nnAAajTzZbTfaHp69iw4I9HBAYYMUdO7ly5VcWg7d6rWtavKhO7jU1AsXYsQu57eLxGV7bRevfxv+o8+Up4GM+7uKjWHOZV9kya6oLCmcujTJz8PWFaWmmhjLiZqLf5PnIBffim4bb16SnzddZf6IVat2g0z+3ZEz17UaG41UlNh9mzYulUtd+0KTzyhZgeWlexslQl67VolRMaMUV4asyhZvFhl0jaLl8mTVcqJYsRL4YLULvYu3NfyPgZ5D8LRzvHqtiQnq+P99puKXLaxgd69VaoJ6wLBxVFSjFlOjhJic+eqftdrGPKFF9Qwzuef55dF+fFH9TDz81Niq0GDW+Ont0Zj5uxZ2LBBfY6jo1W6Eusppj/8kD+J44sv1JB5w4b51d4bNSrf99BtiJ69qNHcDoSHw4wZKn6jShUltrp3L9++EhPh7beVd8bRUQmF8eOv7tWCAh6o8xnnWXRwEasiV2ESE3Y2dtzT4h6GtxqOm2MpMtybcXeHCRPUr+kFC1Sqij//VNnv+/RRYq8k8VUaj9jixWUbhkxPV33Cw9XfDz7IT+fg4aEeOOfO5Yuu++8v/blqNDcj9eoV/Bzn5qr/leho9bdq1fz39u5VQ+o7dhTch7u7msTzwANqOStLTSKpW/e2LGxdVvQV0GhuBXJyYN48NQwHKgbjxRfLHwcUHg7TpyvvUt26Koh9x46iomT48OKH84CUSyn8dOgnfov4jWxTNgYGPT17Mtpv9LUVpK5dW00EuO8+lSRy0yYV3L9qlRqKHD68YCHekigsxIoTkNbDkDExqiblrl1K6O3bl1/cEFTfdu3U6yefVAJMe7I0tzN2dvlDi4WZMqVgpffTp9X/UHJywX5HjsCrryrPdd266n+tfn3VPDzUj71bdfpqOdCiS6O52TlxQnm3oqLUF9cDD8CwYQVLXJSF776Dn35SQbPVqytvWZMm6hfpVbxaAOnZ6Sw7soxfjv5CZm4mAJ0bdWa0/2gaVm14bedqTYMG8NJLanhx4UIlvn77TXm/+vRR9dUKz6y8EoW9X97eEB+vPFq7dqkcZ8uXq77h4Spuq0oV+H//T/1y9/K6NVJTaDQ3gkaNVLNGRHm1rD1a2dnqx2FCgpr4ExdXcJsFC/JF1/z5KnzCw0N53Tw8lFBzLEV4QikwmUxkZGTg6OiIQyUJPR3TpdHcrOTmwqJFaljMZFJfQP/v/5U/FYSZ+fPh22/VkIGrq/pCK0V8U1p2Gr8c+YXlx5aTkZMBQLBHMGP8x9CsRrNrs6k0nDqlxNfmzfm5rDp1Uh6x5s3Ltq/9+2HmTCW60tJU+oaqVdU55+WpgrvNmqnhQ+s4ths9I1KjuV3IzlYxYzExqp09q8IkXnstv8/jj6v3ClO9Orn9+pExcCDp6emkx8eTERFBupMTGQ4OpGdlkZGRod5LT7e8Nv/NzMwkPT2dS5cuAfDKK6/Qvn37Cj1dHdOl0dxKnDihRMHJk2r5nnvUjMLyTN8WgW3bVFCsn5/yHF24oIRX4dl9hYfkKF5sBdQNYJTvKFrXaX2NJ1oGGjdWmfFPn4aff1bCaNMm1QIC1EzIoKCiQ37nzqk6kNWqQf/+al3NmkpwubmpbP1t2qhWq5YSV3v3qu2sPX4VPSNSo7lNEREu5eWR7uJCRsOGpFWrRnqTJkokrVxpEUvpVauSnplJemIi6UlJZCQnk56WRnpODpcOHlReMVBDmOY0OdYZds11FT088kcCrCo/GIZBlSpVMJlMlXAVLpurPV0azU1EdrbybJm9W/XqwbPPqriH8hAbC2+9pWbW1a+vhsusZ/JZz+4rJBiSMpNYfnQ5KyNWWoYRK0VslURiohoO/P33/PqEHh4q9UW7dvm5h/buVTFrTZqoWZ+gvohPnFDJIYtL41CckKroGZEazU1MdnY26enppKWl5Yuky8vFrSvct9xC53KtKMPGBtfq1alSpQoumZlUOXECl0uXqHLpEi62tlSxtc3/+9ZbVKlRAxcXF1z+9z+qxMTgUq8ejvXqYQweDP7+1/fiFIP2dGk0NzMiKgXEN98oDwxcm3crOxuWLFHi7dQpJeCqV1dDaVcJkI9JieHnwz+zJmoNuXlqunhg3UBG+Y2iVe1W1+FkrxO1aqki3vfcA19/Db/+qoLff/lFebIef1zFYvn4wMCBypNlxjDU8GFJFOPxu+YZkVqIaSoRESEzM7OAILIWTMUtW//Nzs6+puM7ODgoEXS5ubq64uLiQpUqVXB1dVVi6vJ682vr9x0dHVVS5cLk5qp4sfh41S5cUKlm8k9c/S9GR6vWo8c1nce1okWXRlPZnD4NX36pgrdBeV8ef1yVxikrR44o8bFjhyqpAyro/K+/lOAqIUBeRDiUcIjlR5ez9cxWBMHAoGPDjgxrNQyvml7Xfp7XC5NJ5cgKD4c9e9Qwg8mkMnLb2KgvXVDn/NdfauZVz55lj/sqjrLOiNRCTHMdERGysrJITU0tIJJK09LT08m7hqKDdnZ2BcSS9eurrXNxccHe3v46XokChikPd0mTambNUsORCQmqVfL/mRZdGk1lcfGimkW4YoUSDa6uKjlp377lm5l45Ijy6CQkKPHRrx+88ooamhw7ttiHe7Ypm/VR6/n12K+cvKjix+xs7OjRpAdDWw6lQdUG1+lkr5EzZ5TA2rtXJW9NT89/z8ZGnVNgoIrpatFCBen+/rtK+hodDXPmKKHTpo3KaxYaen3qGt5qpYo0NwXZ2dmkpaUVEU/mZfNfaw9UamrqtQ3TAU5OTgVEkXUrLJis17u4uJTsabrZMQwVz1mtmpqBXMlo0aXR3GguXFCB4CtXqgeuYSiBNGZMweSDV8PsJWnVSpWZ2b9fPeSrVAFnZ5Vk1BwLVshDE5MSw18n/mJV5CpSs1MBcHd0p1/zftztdTc1nGtczzMuGyJqmKBWrXzx+emnSmyZqV9fiaw2bZSoKSygGjRQiVbHjVPpINasge3bYfdu1ezsVPC9Of7LnGW7PNyspYo0FUpeXl4RUVSSeCosrq5lqM4snMraXFxcsNPJSSsdHUiv0dwokpKU2Pr9d/WwBfXAf+ABaNq0bPs6ckTNQkxIUMJk1Sq1ftw4FVTu5FTEc5KRk8Gm6E2sPrGaw4mHLeu9anhxT4t76HxXZ+xtSxgCSE9XXibDgA4d8td/9ZUKaH/8cRUzBsqWLVvUsGbHjmpdfLw67wYNoFev/O3j4pSHz9U1f9bhv/+tRMdHH+X/Mv31VzWMGBCgWnmSwqamwsaNarbjgQNK3IE6buvWyksWFKTuRUX8or/RpYo0V0VEivU6lUZAZWRkUN7np52dHa6urri5uRUQRoWXi1unhdOtgQ6k12gqAxE4eFAJji1b8uuYtW8Po0aVXmyZH7re3ir54IwZKp2EkxNkZKgg/PHji3hYckw5hJ8NZ2P0Rjaf3ky2SYk9JzsnOjfqTL/m/fB2bayEm1lwbdqkik936qTSMIDyzr37rvIwWYuuXbtUXp0xY/JFV3S0Wh8YmN8vLk4Npfr5qfiq6Gh1XaZMUWJ040Y1uxBU/EV8vAqKN4uugQNVwPy14OamAuvvvlsdY/t2dU/Cw5UIO3AAvv9eeb2svWi1a18fEXa9SxWVJMTuQIFmMpksXifrobniPE2FX+fk5JT7uOaht6pVqxYRSdZiqbBwumWH6jTXjBZdGk1FkJqqhrT++EPFI4F6cHfsCCNGlM2zdeSIEjXm7OnmQHg7OyW6GjbMF0I+PmR7NWV33G62bP2If2L+seTWQgTfKk3o5T+ETnd1wsnOCd5/XwmeadMgOFj1y8xUXqX69fNtqFZNCcW6dQva9sgjSgzUsBqO7NtXeaPM2arT05XtTZuqSQOjRql1IiquLS9PrTeLrmrVlNCxzna9Zo3KK9a/Pzz4oFqXmwuHD6sA2qsVxC6Mu7ua4dS7t7IlPDx/6DExEdavVw3UTMjWrfOHcRs1Kn81gMJURGD+LeopExEyMjKKHY4rLKIK98nIyCj3ce3s7IoIpcKCyc3NzRLrZBZYLi4u2BSXbkSjuQJadGk014uLF+Gff5TXae/efK9WjRrq4d6nT+mGxY4cUV6exo3V8KP5oXvpkhqKcnaG555TAujYMcTXl7MN3NkTsZLdcbvZe24vWZcy1DbOTnhW86Rjww50e/9HPC6egv8LBbvLaSjc3JR4M8/4AyW+zF4tM66uKii/MCEhRdc5OKhA9o0bVTHtM2fyh/LM1KqlRMxTT+ULGTODByvR5umZv+7cOZU13no/Z8+qoch69dQwp5klS5QNPXqULljexUV59Tp1Uvs/c0aJr717lag7fx42bFDNfH5Nm6rZkM2bq9QTDRten2K+1xoPdq0zJ69RnBWOc7paaoLC75V3uM6c9NLa43Qlz5P1soODg/Y6aW4YWnRpNOVFRNVD3LtXCa3DhwvGCQUFqQD5kJCSH8jWD7m77lLB9S+9pAQGqAe9n58SWi4uULcuMn06CY1rcSTxCPsbx7PnwDuc++dcfn2yzCy8dp6go50nnd7+Eg+3y1Op6+4ChwtKRLi5qXVjx8JjjxX03NSoUdBzdSXMQ4menvnDiRERKgWGGTs7JUysM95fyTMVGqqaNaNGqWtpbWdOjtqXtZAVUaWTMjPVLEUz33+vhg8feCDfztRUlUajdu38+2MY+TXlBg9W+zt9Gg4dUsOhhw8rAXjkiGpmbG2VSG3cOL9AcMOGShCWtW5ceQPz4do8ZUDe2LFkZGWRbmdH+nvvkV6vHukHD5J+6BBpdeuSXr16kaSX1mIq05ympJw4OzsXEUXFzbQr7IlycXHRwklzS6AD6TWa0pKdreKoDh1SD65DhwqmLjDPiOvQQXmoqlUruH1xgdSjR6vhrOxs5fm5eFF5h5yclKh4911Sxz3AqT1riQj/myN2FznikkUSl4dTEs////bOPcqOqs73n1/VOadPnz6dB90JeUJIzJCEh4AJyshlCcEBZXgsFoJ3GMeL15nFjKg4Og7IzIjjI+pyORcHcK7XC+NFBZ0BFLwKzMQHXhYveYSkQ3ilA2nSeT+6T59Hn8fv/vGrSp10J4iY7pPQv89ae1XV7+zatU/tql3f+u1de8P6l+g8YiYnnfUnnDzjZE6efiLdH7rKHvhf/7o9fME8b7+rN0bVvGB9fSY+Nm40j1D8kL/3XhNY7343fOxjUZ622/yOCxdamDcvycNYU6/b4Kjbt8Of/3nSF+vv/96aED/7WVga9W194AEbof7MM+Gv/9pspZLlfdYs6/vVnG4s+AYH4aWXrJxeesnC5s2jvXkxXV2WXjx577RpJhSnTTNx+0Y9ZCOup1qtRqlUorhqFcVVqxiaO5fijBkU162j+KUvMTQ8TFGEocsvZ6i3l+J//idDuRxDAwMUjz+eQrlMee1au/bKZfPiTZpk563RsKE5TjrJvJ7N81Xm85afQgEZHCQ3fTr5WbNMLFUq5AcG6DjmGPILFvzWr+vCg9Vs6zgtxjvSO87rpdGwh3Zfn4msOPT12W/NTJtmwzIsXWohlzP7unU2MGfswfr1r+ETnzCR1t5uHdVXr7aHW7mMlksMFHfSv3Q+/W39vJKrsmESbEj9hO13/cTS3P2yeVnmzqXz6D9gUfciFh05lZMf+xkL5pxF8M5PJfm6/fbRD/MDPdzLZfu/8YjOW7aYR6S/30I8xU7MpEmJ6DruOBMnzaO9d3fb1EWtIAzh4otH2z/+cftPzU2WYOXX3Iy6dauJttmz9xVdV11lne+/9rVkuIq4A/all5qg6uuzqYV6e02E9ffbcscOC7GHKUJVqQGlzk7KkyZRzOUo5fOUslnK2SzFVIpSGFIKAkpBQLHRoBRN7FsqlUxgFYsU7733t48YPnNmIpKeespEU7lsH2HE/ZKyWSQIyFWrdLS1kVu8mPzQEB3t7eSmTiVfKNBxwgnkjz2WjhtvpKPRIF+t0vGZz5DP5ei4+mpy9Tqyc6eJfUi8aevXW7/E5mbN6dNtTLWY19vceRj0T3OcAzGmoktEzgVuAELg26r65RG/S/T7e4Ei8N9U9cmxzJPjUC7bQ3DnziRs25aIjC1bzOO0nzd50mlr+lq+3ARHd7c1rz36qHm2TjzRHgoXXGAP6XodPeF4ikO72bN7IzvzIduzu9nx0P9ix4zJ7DhhD5vLu+nPQ+n0STB5GJYea81YVYXaAJmwm6MnH8382jwWbX+VxW+5mFnnX27NKapw5lWjv64LQ/PIpNPJNEIvvGD5XLAg6Xj/9NPmBXotOjtNhMTNbs3zls2fD3/5lwehUMaY7u7RTZp/9EcWmunsNKGQyQDRRL2VCpVt2xgeGKAyMEClVKJcLlP5wQ+oPPII5QsuoHLiiVQqFco9PZR/+EMqRx1F+eyzKc+bR3nHDsorV1IeHqY0bRrlwUFKhQLl3bupDw+bGI7Lr7l5eiQiVq6pVLKM18MQSaXI5XI2hUo+Ty4OnZ3kJk2iY/LkZJnP07FtGx19fXS89a10nHii7fvKK8iaNfsf1qKzE/7qr0zwtLcnzZW7d1uo161JtbkJ8/f5AGB/cV9r/zcq2H4XYeeCz/k9GTPRJSIhcBPwbqAPeFxE7lHVtU3R3gMsjMLbgW9Gy/FlvG7OQ8l2qOXntfL4zDNmW7DAKv+eHrPNn2+VfLkMzz+ffMnW1WVv8OvXW8jnrV/NwIANb7B9u4mpuF/Tzp0mkKJBRbUwSP2lF6mFwnBHluHrrqEyo5vqV1ZQeXUz5Y2/odz3KJVQKe3eRvml5xgKGxQfmE7hv3+AoVc3MHRsHwMyzEBWGOhaRT2fg+3D1sQXpqDxJAzk4ayF8HQBgpCOqdOZNWUuM4+ayazaIo7Z0WDeyZcyY9mZBBKYIJy2yprA7rjDlqWSicGhoSTETT+q1lH93HPtf65fb/2dli9PRFdXlz24p01LwowZSXPYzJmJ6BxDVJV6vb5PqNVq+yyr1ere7ZGhWq1SrVb3WR+5PTw8vM96vF2pVPYuY/vw8DDDt96673ACQQB/8zfJ9q5ddq7vu888mfG1tHWrXaexgKrX7boLQ/O0xefz2WcJCwWyS5bQPmUK7UCuv5/23l6y06eTmzOH9lqN9qEh2l98kfYwpOOoo2iPJvXNbd5Me7VKbsYMctksbUGAxMNtVCoWduwwgTIwYCIlHnw3lbJrp63NmsnvvNPWazUTd6tW2f2QTsMZZ5jH7uij4aGHLP09e+z/p1L2khKGds+tW2f7lEpmGx42sZ9O2/a991pepk+3F53777c0Vq60czljhqX34IOWj2LRrsHNm63fZBBY2rNmme2JJ+x//sVfJELsllss3hVXvDERtz/b7/plaKvrzEMlP4dDHseZMevTJSKnAder6jnR9rUAqrqiKc7/BH6pqrdH288B71LV/ua0xrRP17p1XHHJMspx35x8JwgwVIBGdG6mTDFvwY7tUG9YE1MuZxXYju0Wr163SmvRIqtwe3tNDKhaB+ggiNIE0GRAyOb9s20waQrs2gEK1Op2c8840iqoaLZ1whSkQiiXLB5AOgNhALWq2QQIQluv11ARs7VlrWLt7LRKThXqNZDA8jhcSc5NKuqHow2LJ2K2eh2tR5WzCGTbreKrVdFMxo7T3W2VZ7Vm2wiazVr+qjUIBIIA7cxDqQyVssUJBW3P2fHKJWg00DAFAejkyeiuXVBvoEGUZipEtWE2AQ0DGm1ZqFfRapUGoIGg6RQNFK3WaASg6RT1riPQMKSxpZ8GUA+hkU5TF02+PBSxclagMGjlD3Y9pFP2X+Lmt3TaHhrtWevnU2/Y/8x3kg7StJdrtA+WyNNGR8dUOuoBHVUhX6wxWTO0XXQJMmeOnfKHHoLVq9F3vCPxLL3wAvziF/t84dV89+rIZToNb3sbunix7bNzJ7phA9rVBXPnoqpo1FyqmPA5UGg0GqPWG43GqPXXCvV6fdQyDodq31IRIZPJ0NbWtnfZHLLZLJlMhmw2uze0tbWRzWTI5nJmS6XI9vbSJkL76aeTzWZpb2+n/Z57SG3caM1us6Pplu6915qGzz/fPh4A+1jjox+1ZuoVK+y+HRy0Dy62bbOmz0zGxMh995n38pRTrC9dqWT98B5+2IbJWLTI7lVV+M1vrC5bujRpYnzxRROOb3lL8jHF9u0m2Lu7k6FOdu+2F59sNvnooVCwh1q9bl7guO/XK6/Yy8Ds2UkfsVrNxMvMmfYALBTMHg/9sGyZ3U9PP235rdetz+OUKWarVi2No4+248T9IHfvtjizZ9s9mM3auZo82V4w+vrMS1coJF7srVvNVixavRgEtk97u52/ri6r77NZO04uZ6Kzq8uO8/zzSbeDI4+050DcFSEI7MWwWk36/YUhLF5sonXjRtsOAhuS5eWXrbxjkXr22SaKX3jBjp9KmW3jRhOc6bQd75xz7Hhr11pZxfsvX25l8vzztn8Y2kvY+vX2hW4mY+G977Xz8Mtf2jHa2+G886xu+/GP7b/l8zZeHtjLWzx12QUXmO3OO62s2tutiV/EBoMulSzNyy6za2jHDvj+9y2/nZ1w0UW2/x132HnK5eCSS8z2b/9m+2cyNhg0wN13W/mJ2L0T2+JhaC6+2PJ19922b61mfU5nzbL81Ov2cvmDH4yp8GpFn67ZwMam7T5Ge7H2F2c20M94sXo1KweHqNSiSn/nwOg423YBsm9H2eEh2FOMxAj21Bouw6oes9XqSfzhwug0dw7CrsLo/Qc3J6IptvVuNGEmREKwNjq9SjlZj/elOto2FNkK5abj6L5P7yTR15dmsZrsP1yJBMqmRKCARSwX992mAcU9tq6xTaE41PRfgaBuy/IADI9IU2rJsQVLM4jEbhxVFMJoIz51KU3E0gDJuZA6SLRQCFCCdJkACCqKNCBUCGZ1EeY6CGp1gvW9pOpKmA4JmUoq10m4o0xq+05SYZpUKkOgYK3sbdSBAcrsvdJEQKr2YIw9EZs3WyXS02PiFZJO+3GTUhDsbVrap8kpXook/bSaKRSscj/ECIKAVCpFGIakUqm923GI7WEYkk6nSaVSe5exrTnEv2cymVG/ZTKZvWHkdiyw4t8Oyldx8cj8zVx++Wjb+eePHgR2zhz7WEHVro/4Gvm7v7OyPO20pAl58WJ7yC5bZgPpgr0A3nWXibb3vS95ebvuOrsHrrkmEUG33WbX3EUXJZ7lxx83MbhkiTXH1mrmrbrpJnsYXnih2ep1e/Bu2WJCrqvLbKtWWZgzx/o/LlxoeVq3zgTS/Pn2AJ4xwzxcquYRzGTs954eO14spjo6THT099s90NVl6cVisl5PxFP84lutWnqx90w1EQhg95ZI4qFTtXMbpzEwYAKv0bD1et2EWV+fpRMPUtzXZyIotpXLJjqr1eRlvVw20bNnT9JsG3vrN22y9bY2y8uzz1rccjkRhmvXWv1QLpu4KhbNe5PJmDirVExkDg2ZvbfX4mSzycwSfX2WfjpttqeeMhFYKiWiNPYiFosWr1AwoQ5mE9nXNjRk/7Fet2smtlWrls5jj5nw2bTJ7LHQf+SRJG5cfg8/bLZCIbk2Y9vgoKXXaNjgxrGtWrXw6KP2X+MvwItFy09Xl9nicomHWRlnxtLT9T7gHFX9cLT9AeBUVf1oU5z/C6xQ1f8Xba8EPq2qTzSnNdaeri9e9l+oDuwBxComwZoDatHDfv586MzDuufMK1Sr2xva9Glm0wYMV03Fn366XTyPPJJ4kubMNu9UXx806vaAnzsXjpi6b5px087zzycVRdcRMH+B3XyNul1sU6baDbZli114IvZWmk7bW2rslYor5z174hNub2K1ml2AGzbY/rWaxU2lYNtWpK7moenqsnOxew+iat6w6dMsDzt32U0TBPZGvSsaiqA9a7Zlb0d61ljlIIIEgb09DxWhbyOkUkgqBUuXWZ7XrkWCEMlm4YwzkLY2WNODbOhF8p3WZ+XSy5AHH4ziBhZ/2alQLiNPPokEKYJ0GpYvJyhXkJ//nABB8p0EH/gzgiBEbr6ZoN4gyE8ivPJKAgkJ/umfCIdrhEFIeMmlhEfORLZts7zHX5zFAmbz5mRU9vhLq6eesorthBOSEdQHBpBSKTlHUZCRgin+bT8P9vhh3/zQ358AEJFR9pG2eLs5zZHrrxWCINi7BPbZbg6xLQzDfezxdrM9DMO9YX//wTkMiOuamNgr1daW3B9xh/1sNvnQpFo1D1rctB3z6qtWH82enXz4sX271WHd3ckcmUNDVp/mclaXxs1GuZzVR0uW2AC/zzxjMyV0d1vdvmmTDR0ye7blccoUy9uaNSZSKxXLdyZjYm/JEqsjCwW7tzdtMvu0abb/0BB88YuW5yCw6bAyGbjxxmR6pyuvtPVvfcvOTToNn/yk1Xvx0CqplH1Z+/LL8M1v2nY6bYMX9/QkAjeTgS9/2eJ99avJAMkrVlgd/tBD1rwahrb/P/6jnZtvfcvym0rBl75kXsAbbkj2/8IX7HmyYoWVZ0cHfP7zJsKuvdbKubPTbGBf+8YtJl/4gtn+9m8tfkeHHQNM2BcKduyvfMXKprcXPvUpOxeTJsHnPmdxr7nGzn98bLAXi2LR9o/TvP56E1mplKUJ9j8HBqwM/uEf7Dr4/Odt30bDPmKaMcNstZp5wr773ZZ4urx5Ed78bdaex0O+nd9xnMMUrzMP7zyOEa0QXSngeWA58CrwOPAnqtrTFOc84Crs68W3A99Q1VNHpuXjdDmO4ziOc7gw7n26VLUmIlcB92OdWW5R1R4RuTL6/V+An2KC60VsyIgrxio/juM4juM4rWRMx+lS1Z9iwqrZ9i9N6wp8ZCzz4DiO4ziOcyjgU6Q7juM4juOMAy66HMdxHMdxxgEXXY7jOI7jOOOAiy7HcRzHcZxxYMyGjDiYiMg24NAbQttxHMdxHGc0R6vqtJHGw0J0OY7jOI7jHO5486LjOI7jOM444KLLcRzHcRxnHHDRBYjIuSLynIi8KCLXtDo/ExURmSsivxCRZ0WkR0Q+HtmPEJH/EJEXouXUVud1IiIioYg8JSI/iba9XA4BRGSKiPy7iKyL7p3TvGxaj4h8IqrH1ojI7SKS9XJpDSJyi4hsFZE1TbYDloWIXBvpgedE5JyDmZcJL7pEJARuAt4DLAH+q4gsaW2uJiw14JOquhh4B/CRqCyuAVaq6kJgZbTtjD8fB55t2vZyOTS4AbhPVRcBb8XKyMumhYjIbOBjwFJVPR6bCu/9eLm0in8Fzh1h229ZRM+c9wPHRfvcHOmEg8KEF13AqcCLqrpeVYeBO4ALW5ynCYmq9qvqk9H6IPbwmI2Vx3eiaN8BLmpJBicwIjIHOA/4dpPZy6XFiMgk4AzgfwOo6rCq7sbL5lAgBbSLSArIAZvwcmkJqvogsHOE+UBlcSFwh6pWVLUXmxv61IOVFxdd9lDf2LTdF9mcFiIi84CTgUeBI1W1H0yYAdNbmLWJyv8APg00mmxeLq1nPrANuDVq+v22iHTgZdNSVPVV4GvAK0A/sEdVH8DL5VDiQGUxpprARRfIfmw+jkYLEZE8cCdwtaoOtDo/Ex0R+WNgq6o+0eq8OKNIAacA31TVk4EhvMmq5UT9gy4EjgFmAR0i8qetzZXzOhlTTeCiy1Ts3KbtOZgb2GkBIpLGBNf3VPWuyLxFRGZGv88EtrYqfxOUdwIXiMgGrPn9LBH5Ll4uhwJ9QJ+qPhpt/zsmwrxsWsvZQK+qblPVKnAX8Id4uRxKHKgsxlQTuOiCx4GFInKMiGSwDnT3tDhPExIREaxvyrOq+vWmn+4BPhitfxD48XjnbSKjqteq6hxVnYfdHz9X1T/Fy6XlqOpmYKOIHBuZlgNr8bJpNa8A7xCRXFSvLcf6qHq5HDocqCzuAd4vIm0icgywEHjsYB3UR6QHROS9WJ+VELhFVb/Y2hxNTETkdODXwGqSvkOfwfp1/RA4CqvM3qeqIztFOuOAiLwL+JSq/rGIdOHl0nJE5CTsA4cMsB64Anuh9rJpISLyOeAy7Kvsp4APA3m8XMYdEbkdeBfQDWwBPgv8iAOUhYhcB3wIK7urVfVnBy0vLrocx3Ecx3HGHm9edBzHcRzHGQdcdDmO4ziO44wDLrocx3Ecx3HGARddjuM4juM444CLLsdxHMdxnHHARZfjOC1HRLpE5OkobBaRV6P1gojcPEbHvFpE/mw/9nkisuYgHicjIg9Gc/A5jjOB8UrAcZyWo6o7gJMAROR6oKCqXxur40UC6EPY6O1jiqoOi8hKbMym74318RzHOXRxT5fjOIcsIvIuEflJtH69iHxHRB4QkQ0icrGIfFVEVovIfdEUUojI20TkVyLyhIjcH0/1MYKzgCdVtda0zyoReRj4SNPx54nIr0XkySj8YWS/TUQubIr3PRG5QESOE5HHIi/dMyKyMIryI+DysThHjuMcPrjochzncGIBcB42mfB3gV+o6glACTgvEl7/DFyiqm8DbgH2N8PEO4HmCbxvBT6mqqeNiLcVeLeqnoJ5qr4R2b+NjfyOiEzG5tX7KXAlcIOqngQsxeZxA1gDLHuD/9lxnDcJ3rzoOM7hxM9UtSoiq7Fpu+6L7KuBecCxwPHAf9iUd4RA/37SmYnNhReLpimq+qvot9uA90TraeDGaKqdOvAHAKr6KxG5SUSmAxcDd6pqLfKUXScic4C7VPWFKH5dRIZFpFNVBw/SuXAc5zDDRZfjOIcTFQBVbYhIVZN5zBpYfSZAz348ViMpAdloXYADzYf2CWyutrdiLQPlpt9uw5oM34/1D0NVvy8ij2LeuPtF5MOq+vMoftuI/R3HmWB486LjOG8mngOmichpACKSFpHj9hPvWeAtAKq6G9gTTbgO+/a9mgz0q2oD+ADmOYv5V+DqKI2e6HjzgfWq+g3gHuDEyN4FbFPV6u//Fx3HOVxx0eU4zpsGVR0GLgG+IiKrgKex/lYj+RlwRtP2FcBNUfNgqcl+M/BBEXkEa1ocajrWFky83doU/zJgjYg8DSwC/k9kPxPr8+U4zgRGEu+84zjOxEFE7gY+Hfe7egP757C+ZKeo6p7fEvcu4FpVfe6NHMtxnDcH7ulyHGeicg3Wof53RkTOBtYB//w6BFcG+JELLsdx3NPlOI7jOI4zDriny3Ecx3EcZxxw0eU4juM4jjMOuOhyHMdxHMcZB1x0OY7jOI7jjAMuuhzHcRzHccYBF12O4ziO4zjjwP8HmSs4bqYTjrgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.371, 'epsilon': 0.171, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACkZElEQVR4nOydd3hU1fa/35NGAgmE3gkBQ0slgUBoIbSAIAJKExVQLCiK+rsq3KuA7erXBoL9qqCIgAFBQFREehMChNBLIJQESCAQUkkyWb8/NjOZVBJIoez3efYzc/o658zM+czaa69liAgajUaj0Wg0mrLFpqIN0Gg0Go1Go7kb0KJLo9FoNBqNphzQokuj0Wg0Go2mHNCiS6PRaDQajaYc0KJLo9FoNBqNphzQokuj0Wg0Go2mHLCraAOKQ61ataRp06YVbYZGo9FoNBrNddm5c+cFEamdd/5tIbqaNm1KeHh4RZuh0Wg0Go1Gc10MwzhZ0HzdvajRaDQajUZTDmjRpdFoNBqNRlMOaNGl0Wg0Go1GUw5o0aXRaDQajUZTDpSZ6DIM4zvDMOIMw9hXyHLDMIyZhmEcMwwj0jAM/7KyRaPRaDQajaaiKUtP1xygbxHL+wEe19qTwBdlaItGo9FoNBpNhVJmKSNEZINhGE2LWOV+4AcREWCbYRiuhmHUF5GzZWVTYezbB9nZ5XMswyjd9azXtd6moPdFzTOMnAZgY5Mz3/ze+tU83/rV1jbn1cYmp5nnl+ScNBqNRqO506jIPF0NgdNW02euzSt30fX225CSUt5Hvfuws1MizM5OCTF7e/Xeujk4qGZvD5Uq5bw6OuZulSurVqVKzquzs2pa3Gk0Go3mVqQiRVdBj0YpdyuANm3g6tXirSs3YeHNbFvY9uZ5hS3LOz/vPPO09X7M77Oz8y83zzN7BrOzc5oImEy552Vnq3kikJWltsnIuLHzLw42NlC1qmrVqkH16lCzpmq1aqlWu7aar8WZRqPRaMqTihRdZ4DGVtONgNiKMGTKlIo46t2FWZBlZeV/NbfMTCXIzK/mlp6uRHF6ek5LTVXeSfNrSgokJanpy5dVKwpHR2jQABo2VK+NGkHz5mraRo/p1Wg0Gk0ZUJGiaxkwwTCMBUAHILEi4rk05YNh5HQhliVZWXDlCiQmqnbpEly8CBcuqHbxIpw/rwTa8eOqWePoCO7ucM894OEBPj7KS6bRaDQazc1SZo9AwzDmA92BWoZhnAGmAvYAIvIlsBK4FzgGpAJjy8oWzd2DnR3UqKFaUSQlQWwsxMSoduoUHDumhNnBg6qZadQI/PxU8/JS8WMajUaj0ZQUQ2420KgcaNeuneiC15ryIDERoqJUO3gQ9u5V3ZlmbGygbVsIDoaOHcHJqeJs1Wg0Gs2tiWEYO0WkXb75WnRpNIWTlQVHj8KePRARAYcOqVg0UKMsO3RQAqxdOzUiU6PRaDQaLbo0mlLgyhXYtAnWr4cDB3Lm160LgwdDr14qxYVGo9Fo7l606NJoSpm4ONiwAf76S8WHgUpTcd99cO+94OJSsfZpNBqNpmLQokujKSOys2HbNli0SHVFghoFOXgwPPig6obUaDQazd2DFl0aTRkjogLvFy2C3bvVvPr14amnICCgYm3TaDQaTfmhRZdGU47s3w9ffAEnT6rpTp3giSdURnyNRqPR3NkUJrp07m2Npgzw9IQZM+Cxx1RX45YtMH48/PbbzZeD0mg0Gs3tiRZdGk0ZYWen4rq++AI6d1b5vr78Ej76KHfuL41Go9HcHWjRpdGUMbVqwaRJ8Oqryuu1fj28/DKc1UWvNBqN5q5Ciy6Nppzo0gU+/lgV1Y6OhhdfhB07KtoqjUaj0ZQXWnRpNOVI48ZKeAUFQUoKvPkmLFyo47w0Go3mbkCLLo2mnKlcGSZPhtGjwTDgxx9h7lwtvDQajeZOR4sujaYCMAyVOPXVV1UR7bAw+OEHLbw0Go3mTkaLLo2mAuncWQkvW1uVVPX777Xw0mg0mjsVLbo0mgqmUyd45RUlvBYvhjlztPDSaDSaOxEtujSaW4BOnXI8Xr/8ooSXRqPRaO4stOjSaG4RgoJUPi+z8Pr994q2SKPRaDSliRZdGs0tRMeO8Pzz6v1XX6kajhqNRqO5M9CiS6O5xejRAwYNApMJ3n0X4uMr2iKNRqPRlAZadGk0tyBjxoCfHyQmwjvvwNWrFW2RRqPRaG4WLbo0mlsQW1s1orFePYiKgpkz9YhGjUajud3RokujuUVxcYHXX1dFsjdsUMH1Go1Go7l90aJLo7mFadIE/t//U++//x4OHKhYezQajUZz42jRpdHc4nTsqEoGicCMGZCeXtEWaTQajeZG0KJLo7kNeOghaNoUzp5VNRo1Go1Gc/uhRZdGcxtgbw8vvKAC7Jcvh337KtoijUaj0ZQULbo0mtuE5s1h2DD1XnczajQaze2HFl0azW3EsGHQrBmcPw+zZ1e0NRqNRqMpCVp0aTS3EXZ28OKL6nXlSoiIqGiLNBqNRlNctOjSaG4zmjaFkSPV+5kzITW1Qs3RaDQaTTHRokujuQ154AHw8FB1GRcurGhrNBqNRlMcylR0GYbR1zCMw4ZhHDMMY1IBy6sZhrHcMIw9hmHsNwxjbFnao9HcKdjawvjx6v2yZRAbW7H2aDQajeb62JXVjg3DsAU+A3oDZ4AdhmEsExHrnNrPAgdE5D7DMGoDhw3DmCciGdfbv8lkIiEhgczMzDKxX6O51alSBSZOVLm7IiMr2prbA3t7e2rUqIGtrW1Fm6LRaO5Cykx0AYHAMRE5DmAYxgLgfsBadAngYhiGATgDCUBWcXaekJCAo6MjtWrVQm2u0dx9VK+u8nYlJICNjSqQrSkYESE5OZmEhARq165d0eZoNJq7kLLsXmwInLaaPnNtnjWfAq2BWGAvMFFEsouz88zMTJydnbXg0tzVODmBl5d6v3MnZBfr23N3YhgGzs7O2juu0WgqjLIUXQWpIckzHQpEAA0AP+BTwzCqFvsAWnBpNLRsCc7OkJgIx45VtDW3Nvo3Q6PRVCRlKbrOAI2tphuhPFrWjAV+EcUx4ATQqgxtKlXeeecdPD098fHxwc/Pj3/++adC7IiIiGDlypWW6WXLlvHee+8BMGbMGBYtWpRvm3Xr1jFgwIBys1FTdtjagr+/eh8ZCVevVqw9Go1GoymYsozp2gF4GIbhDsQAI4CH8qxzCugJbDQMoy7QEjhehjaVGlu3bmXFihXs2rWLSpUqceHCBTIyrhv/XyZEREQQHh7OvffeC8DAgQMZOHBghdiiqRgaNlTxXOfOwd690K5dRVuk0Wg0mryUmadLRLKACcCfwEHgZxHZbxjG04ZhPH1ttbeAToZh7AX+Bl4VkQtlZVNpcvbsWWrVqkWlSpUAqFWrFg0aNKBp06ZcuKBOITw8nO7duwOwfv16/Pz88PPzo23btiQlJQHw/vvv4+3tja+vL5MmqawaUVFR9O3bl4CAALp27cqhQ4cA5bV6+umn6dq1Ky1atGDFihVkZGQwZcoUFi5ciJ+fHwsXLmTOnDlMmDDBYuvq1atzbZOXlJQUHnvsMdq3b0/btm359ddfy+y6acoGw1DeLsOAo0dVV6NGo9Fobi3K0tOFiKwEVuaZ96XV+1igT1naUFb06dOHN998kxYtWtCrVy+GDx9OcHBwoet/+OGHfPbZZ3Tu3Jnk5GQcHR35/fffWbp0Kf/88w+VK1cmISEBgCeffJIvv/wSDw8P/vnnH5555hnWrFkDQHR0NOvXrycqKoqQkBCOHTvGm2++SXh4OJ9++ikAc+bMyXXsgrax5p133qFHjx589913XL58mcDAQHr16kWVKlVK8YppyhpXV7jnHiW6IiOha9eKtkij0Wg01pSp6Cov7ruvbPa7fHnhy5ydndm5cycbN25k7dq1DB8+3BJHVRCdO3fmpZdeYtSoUQwZMoRGjRqxevVqxo4dS+XKlQGoUaMGycnJbNmyhaFDh1q2vWoVpDNs2DBsbGzw8PCgWbNmFi9YUVxvm1WrVrFs2TI+/PBDANLT0zl16hStW7e+7r41txZeXnD8OJw+rdJI1KhR0RZpNBqNxsx1RZdhGJ2BaYDbtfUNQESkWdmadutja2tL9+7d6d69O97e3nz//ffY2dmRfW3cfnp6umXdSZMm0b9/f1auXEnHjh1ZvXo1IpJvNFV2djaurq5EFFLJOO/6xRmNdb1tRITFixfTsmXL6+5Lc2vj5AQtWsDBgyq2qwjnq0aj0WjKmeJ4ur4FXgR2AqayNefGKMojVVYcPnzY4j0CFczu5uZGWloaO3fupF+/fixevNiyflRUFN7e3nh7e7N161YOHTpk6aJ86KGHLN2LNWrUwN3dnbCwMIYOHYqIEBkZia+vLwBhYWGMHj2aEydOcPz4cVq2bMmxY8csMWIFUdA227ZtsywPDQ1l1qxZzJo1C8Mw2L17N23bti2jK6cpa1q3Vl2MMTFw4QLUqlXRFmk0Go0GihdInygiv4tInIhcNLcyt+wWJzk5mdGjR9OmTRt8fHw4cOAA06ZNY+rUqUycOJGuXbvmKjUyY8YMvLy88PX1xcnJiX79+tG3b18GDhxIu3bt8PPzs3TvzZs3j2+//RZfX188PT1zBba3bNmS4OBg+vXrx5dffomjoyMhISEcOHDAEkifl4K2seb1118nMzMTHx8fvLy8eP3118voqmnKA0dHlbsLdHkgjUajuZUwRPLmK82zgmG8B9gCvwCW4CIR2VW2puXQrl07CQ8PzzUvNjaWBg0alJcJtwRjxoxhwIABPPjggxVtiuYW5+pVVQg7MxN69YI6dSraoluHu/G3Q6PRlC+GYewUkXzJe4rTvdjh2qv1xgL0KA3DNBpN6VOpErRqpeK6IiOhZ0+VTkKj0Wg0Fcd1RZeIhJSHIZrrkzcVhEZTFC1bwuHDEBcH58/rYtgajUZT0Vw3psswjGqGYXxsGEb4tfaRYRjVysM4jUZz4zg4QJs26n1kJFwnkkCj0Wg0ZUxxAum/A5KAYdfaFWB2WRql0WhKhxYtVGD9hQsQm7fyqUaj0WjKleKIruYiMlVEjl9rbwB3fY4ujeZ2wM4ux9u1f7/2dmk0Gk1FUhzRlWYYRhfzxLVkqWllZ5JGoylN7rlHBdZfuKDiuzQajUZTMRRHdI0HPjMMI9owjJPAp8DT19nmrsDZ2fm662zcuBFPT0/8/PxISyuZVl26dCkHDhwoNbvS0tIIDg7GZMrJcTt9+nQcHR1JrKAKyREREaxcufL6K94kc+bMIdaqf23cuHE3dG2jo6Px8vK67nphYWG0bt2akJCSj0PJa+vN2mVnp4Lq4+Oj6dgx9zrTpk2z5IcrLt27dydvCpe8zJgxg9TU1BLt18yNfias7erVqxeXLl26oeNrNBpNWXFd0SUiESLiC/gA3iLSVkT2lL1pdwbz5s3jX//6FxERETg5OZVo2xsVXYXx3XffMWTIkFxJW+fPn0/79u1ZsmRJqR2nJFSU6Prmm29oY+53KwO+/fZbPv/8c9auXVvibW9EdF0PDw+wtYWsLLhYDqmNK0J0WfPII4/w+eef39Q+NBqNprQpVHQZhvHwtdeXDMN4CRgHjLOa1lxj3bp1dO/enQcffJBWrVoxatQoRIRvvvmGn3/+mTfffJNRo0YB8MEHH9C+fXt8fHyYOnWqZR8//PADPj4++Pr68sgjj7BlyxaWLVvGyy+/jJ+fH1FRUURFRdG3b18CAgLo2rWrpXD1iRMnCAoKon379kVmk583bx7333+/ZToqKork5GTefvtt5s+fb5m/f/9+AgMD8fPzw8fHh6NHj/L666/zySefWNb5z3/+w8yZM1m3bh3BwcEMGzaMFi1aMGnSJObNm0dgYCDe3t5ERUUBKrHr008/TdeuXWnRogUrVqwgIyODKVOmsHDhQks2/YSEBAYNGoSPjw8dO3Yk8lpK9WnTpjF69Gj69OlD06ZN+eWXX3jllVfw9vamb9++ZGZmAvDmm2/Svn17vLy8ePLJJxERFi1aRHh4OKNGjbJ4HK29In/88Qf+/v74+vrSs2fPYt/3OXPmMGTIEPr27YuHhwevvPKKxYZNmzbx9NNP8/LLL2MymXj55Zct9/2rr76y7OP999/H29sbX19fJk2aVKCtO3fuJDg4mICAAEJDQzl79iwAO3fuxNfXl6CgID777LMiba1UCdzd1fvCdHz37t159dVXCQwMpEWLFmzcuBFQHtIRI0bg4+PD8OHDc3lsV61aRVBQEP7+/gwdOpTk5GRmzpxJbGwsISEhFk9fQesB7Nixg06dOuHr60tgYCCJiYn5PhMpKSk89thjtG/fnrZt21oqNBRl18CBA3N9pjUajeaWQEQKbMBT116nFtCmFLZdWbSAgADJS0xMTL555U2VKlVERGTt2rVStWpVOX36tJhMJunYsaNs3LhRRERGjx4tYWFhIiLy559/yhNPPCHZ2dliMpmkf//+sn79etm3b5+0aNFC4uPjRUTk4sWL+bYVEenRo4ccOXJERES2bdsmISEhIiJy3333yffffy8iIp9++qnFLmuuXr0qdevWzTXvrbfekjfffFNMJpO4ubnJ+fPnRURkwoQJ8uOPP1q2S01NlRMnTkjbtm1FRMRkMkmzZs3kwoULsnbtWqlWrZrExsZKenq6NGjQQKZMmSIiIjNmzJCJEydaziU0NFRMJpMcOXJEGjZsKGlpaTJ79mx59tlnLTZNmDBBpk2bJiIif//9t/j6+oqIyNSpU6Vz586SkZEhERER4uTkJCtXrhQRkUGDBsmSJUtyXTsRkYcffliWLVsmIiLBwcGyY8cOyzLzdFxcnDRq1EiOHz+eb/uCOHHihHh6eoqIyOzZs8Xd3V0uX74saWlp0qRJEzl16lS+43311Vfy1ltviYhIenq6BAQEyPHjx2XlypUSFBQkKSkpuY5tvW1GRoYEBQVJXFyciIgsWLBAxo4dKyIi3t7esm7dOhER+de//mWxqzAOHjwhjRp5yk8/iVy+LJbr+sEHH1iO+9JLL4mIyG+//SY9e/YUEZGPPvrIcsw9e/aIra2t7NixQ+Lj46Vr166SnJwsIiLvvfeevPHGGyIi4ubmZvk8F7be1atXxd3dXbZv3y4iIomJiZKZmZnvMzF58mSZO3euiIhcunRJPDw8JDk5uVC7zNxzzz1y4cKFfNfhVvjt0Gg0dzZAuBSgZwpNjioi5r/jq0Vks/Wya8H0tw733Vc2+y1BJe3AwEAaNWoEgJ+fH9HR0XTp0iXXOqtWrWLVqlWWYtLJyckcPXqUPXv28OCDD1LrWmXiGjVq5Nt/cnIyW7ZsYejQoZZ5V6+qqkybN2+2FNd+5JFHePXVV/Ntf+HCBVxdXXPNW7BgAUuWLMHGxoYhQ4YQFhbGs88+S1BQEO+88w5nzpxhyJAheHh40LRpU2rWrMnu3bs5f/48bdu2pWbNmgC0b9+e+vXrA9C8eXP69OkDgLe3d67utWHDhlmKhDdr1sziqbNm06ZNlnPp0aMHFy9etMSb9evXD3t7e7y9vTGZTPTt29dynOjoaADWrl3L+++/T2pqKgkJCXh6enJfEZ+Pbdu20a1bN9yvuYEKuvZF0bNnT6pVU2nr2rRpw8mTJ2ncuHGudVatWkVkZCSLFi0CIDExkaNHj7J69WrGjh1L5cqVCz324cOH2bdvH7179wbAZDJRv359EhMTuXz5MsHBwYC677///nuRtjo5GTg4qBGMBw9Cx45qvmGVqn7IkCEABAQEWK7phg0beP755wHw8fHBx8cHUNfuwIEDdO6sfg4yMjIICgrKd9zC1jt8+DD169enffv2AFStWrVAu1etWsWyZcsssWfp6emcOnWqULvM1KlTh9jYWMvnVKPRaCqa4pQBmgX4F2PeXU2lSpUs721tbcnKysq3jogwefJknnrqqVzzZ86cmevBVxDZ2dm4uroSERFR4PLrbe/k5ER6erplOjIykqNHj1oe5hkZGTRr1oxnn32Whx56iA4dOvDbb78RGhrKN998Q48ePRg3bhxz5szh3LlzPPbYYwWeu42NjWXaxsYm13XIa2NBNksBOQ3M61nv197e3jLffJz09HSeeeYZwsPDady4MdOmTct1zgUhIte9dkVR3Ps+a9YsQkNDc83/448/rntsEcHT05OtW7fmmn/58uUS212zZk3S0i5hGBAdDd7ekJCQYBGc1ueT91wKu1e9e/e+bjdeYetFRkYW6xxEhMWLF9PSXMXbiqK2T09PL3EcpUaj0ZQlRcV0BRmG8f+A2uY4rmttGqoA9q3D8uVl00qZ0NBQvvvuO0s8S0xMDHFxcfTs2ZOff/6Zi9cinBMSEgBwcXEhKSkJUF4Ad3d3wsLCAPUg2rNHjWfo3LkzCxYsAFTcVkFUr14dk8lkESHz589n2rRpREdHEx0dTWxsLDExMZw8eZLjx4/TrFkznn/+eQYOHGiJqxo8eDB//PEHO3bsyCcgikNYWBjZ2dlERUVx/PhxWrZsmescAbp162Y5h3Xr1lGrVq1CPSB5MZ9brVq1SE5OtniWgHzHMRMUFMT69es5ceIEkHPtt2/fzqOPPlricyyI0NBQvvjiC0vc2ZEjR0hJSaFPnz589913loDzgu57y5YtiY+Pt4iuzMxM9u/fj6urK9WqVWPTpk1A7vseExNTYGyas7MzDRrUJz7+b7KzYdu2BP744498Htm8WN+Tffv2WT4PHTt2ZPPmzRw7dgyA1NRUjhw5ku8cCluvVatWxMbGsmPHDgCSkpLIysrKd69CQ0OZNWuWRZDv3r27SLtAfT/OnTtH06ZNizw3jUajKU+KGr3oADijvGEuVu0K8GDZm3bn0adPHx566CGCgoLw9vbmwQcfJCkpCU9PT/7zn/8QHByMr68vL72kximMGDGCDz74gLZt2xIVFcW8efP49ttv8fX1xdPT0xJQ/Mknn/DZZ5/Rvn37IlM/9OnTx/KQXrBgAYMHD861fPDgwSxYsICFCxfi5eWFn58fhw4dsogPBwcHQkJCGDZsWK4RkMWlZcuWBAcH069fP7788kscHR0JCQnhwIEDlqDpadOmER4ejo+PD5MmTeL7778v9v5dXV154okn8Pb2ZtCgQZZuK8gJ5M+buqN27dp8/fXXDBkyBF9fX4YPHw7AqVOnSs1LMm7cONq0aYO/vz9eXl489dRTZGVl0bdvXwYOHEi7du3w8/OzdJ9Z22oymVi0aBGvvvoqvr6++Pn5sWXLFgBmz55t6Q62tvXs2bPY2RXsxP7hhx8IC3ubyZP9ePzxHkyePJXmzZsXaf/48eNJTk7Gx8eH999/n8DAQEBduzlz5jBy5EjLwAdzl/GTTz5Jv379CAkJKXQ9BwcHFi5cyHPPPYevry+9e/cmPT0932fi9ddfJzMzEx8fH7y8vCyDRQqzC9Qgg44dOxZ6HTQajaYiMArqzsm1gmG4icjJcrKnQNq1ayd58wLFxsbSoEGDCrLo9mT37t18/PHHzJ0794a2z87Oxt/fn7CwMDw8PEq07ZgxYxgwYAAPPnh76PWXX36ZRx55JF+c0O3Ap59+SpMmTRg4cGCh66xfDzEx4OkJvr7laFw5MXHiRAYOHFigx0//dmg0mrLGMIydItIu7/zi/A1MNQzjA8ATcDTPFJEepWifphxo27YtISEhmEymEnuqDhw4wIABAxg8eHCJBdftyAcffFDRJtwwEyZMuO46bdoo0XX0qHpvb18OhpUjXl5eJUr/odFoNOVBcTxdq4CFwL9QmehHA/Eikn+IXBmhPV0aTenz118QHw/+/tCqVUVbU37o3w6NRlPWFObpKk4ZoJoi8i2QKSLrReQxoGOpW6jRaMqV1q3V66FDkJ1dsbZoNBrN3UBxRFfmtdezhmH0NwyjLdCoDG3SaDTlQMOGULUqpKbCqVMVbY1Go9Hc+RRHdL1tGEY14P+huhi/AV4sU6s0Gk2ZYxg53YoHD6qkqRqNRqMpO64bSC8iK669TQRCytYcjUZTnri7Q2QkXLoE589DvXoVbZFGo9HcuRSVHHWWYRgzC2vlaeStiq2tLX5+fnh6euLr68vHH39M9rXgmPDwcEuJkludMWPG5Eokas0LL7zAhg0bLNPx8fHY29vnKtpc3vz3v/8t82NERESwcuVKy/SyZct47733bmhf1sW1CyM+Pp4OHTrQtm1bS6HpG7W1JHbt3h2OOdF7QYWwx4wZg7u7O76+vrRo0YJHH32UmJiY6+57xowZlqSvJeVmzsd8nXv16sWlS5du6PgajUZTVhTVvRgO7Cyi3fU4OTkRERHB/v37+euvv1i5ciVvvPEGAO3atWPmzNtbmyYkJFhqE5oJCwujY8eO1y39UpZUhOgaOHAgkyZNKrPj/f3337Rq1Yrdu3fTtWvXEm17oyLFjIcH2NnBuXPK45WXDz74gD179nD48GFL2pGMjIwi91kRosuaRx55hM8///ym9qHRaDSlTaGiS0S+L6qVp5G3A3Xq1OHrr7/m008/RURYt24dAwYMAFRJmU6dOtG2bVs6derE4cOHAVUOZdiwYfj4+DB8+HA6dOhg+afu7OzMf/7zH3x9fenYsSPnz58H4OTJk/Ts2RMfHx969uzJqWsR0GFhYXh5eeHr62sRSSaTiZdffpn27dvj4+Nj8U6JCBMmTKBNmzb079+fuLi4As9p0aJFlqLSZubPn89HH33EmTNnLB4Pk8nEmDFj8PLywtvbm+nTpxMVFYW/f055zqNHjxIQEABA06ZN+fe//01QUBDt2rVj165dhIaG0rx5c7788ktAlQDq1q0bgwcPpk2bNjz99NNkZ2czadIk0tLS8PPzY9SoUQB8/PHHeHl54eXlxYwZMwCIjo6mVatWjBs3Di8vL0aNGsXq1avp3LkzHh4ebN++vdB7k5GRwZQpU1i4cKElK/qcOXMs+a/Onz/P4MGD8fX1xdfX15IhvjgUdF8jIiJ45ZVXWLlypSVj/qpVqwgKCsLf35+hQ4daSkft2LGDTp064evrS2BgIImJiflsTUlJ4bHHHqN9+/a0bdvWUrkgLS2NESNGWD5v5sz8Dg5gTkp/8GDhthuGwYsvvki9evUsxbULsnPmzJnExsYSEhJCSEhIoeuV1fmAEskV+cdAo9FoCkREimzAWmBN3na97UqzBQQESF5iYmLyzbsuBw+K/Pyzei0FqlSpkm+eq6urnDt3TtauXSv9+/cXEZHExETJzMwUEZG//vpLhgwZIiIiH3zwgTz55JMiIrJ3716xtbWVHTt2iIgIIMuWLRMRkZdfflneeustEREZMGCAzJkzR0REvv32W7n//vtFRMTLy0vOnDkjIiKXLl0SEZGvvvrKsl16eroEBATI8ePHZfHixdKrVy/JysqSmJgYqVatmoSFheU7l0cffdRig4jIqVOn5J577hERkcmTJ8tHH30kIiLh4eHSq1cvy3rm43fv3l12795tWX/mzJkiIuLm5iaff/65iIi88MIL4u3tLVeuXJG4uDipXbu2iIisXbtWKlWqJFFRUZKVlSW9evWy2Gh93cPDw8XLy0uSk5MlKSlJ2rRpI7t27ZITJ06Ira2tREZGislkEn9/fxk7dqxkZ2fL0qVLLdetsHsze/ZsefbZZy3HsZ4eNmyYTJ8+XUREsrKy5PLly/munTXBwcHXva/W+4+Pj5euXbtKcnKyiIi899578sYbb8jVq1fF3d1dtm/fnsv2vLZOnjxZ5s6da7kXHh4ekpycLB999JGMHTtWRET27NmT6/OWnCzy00+qXTusiIiMHj0632dj4sSJ8t577xVqp/kex8fHV9j5iIjcc889cuHChXz344Z+OzQajaYEAOFSgJ4pTkb6f1m9dwQeALKKI+gMw+gLfIIqkP2NiOQLijEMozswA7AHLohIcHH2XWIOHYIxYyAjQ/21nzOnTDJCSgFDwBITExk9ejRHjx7FMAxL4eNNmzYxceJEQGXQti454+DgYPGUBQQE8NdffwGwdetWfvnlF0B1obzyyiuAKno9ZswYhg0bxpAhQwDlXYiMjLTEayUmJnL06FE2bNjAyJEjsbW1pUGDBvToUXBxgbNnz1K7dm3L9IIFCxg2bBig6kI+/vjjvPTSSzRr1ozjx4/z3HPP0b9/f/r06QOomoOzZ8/m448/ZuHChRbvEmApUePt7U1ycjIuLi64uLjg6OjI5cuXAQgMDKRZs2YAjBw5kk2bNuUrI7Rp0yYGDx5MlSpVABgyZAgbN25k4MCBuLu74+3tDYCnpyc9e/bEMAy8vb2Jjo4u8t4UxZo1a/jhhx8AFddXrVq1625jprD7as22bds4cOAAnTt3BiAjI4OgoCAOHz5M/fr1LTUlCysEvmrVKpYtW2ap5Ziens6pU6fYsGGDJc7Qx8cn1+etShVwc4PoaDh8WCVMLQzzZ7wwO2+F8wHlfY6NjaVmzZqFn4xGo9GUI8UZvZg3fmuzYRjrr7edYRi2wGdAb+AMsMMwjGUicsBqHVfgc6CviJwyDKNOSYwvEXv3KsHVsCHExqrpUhZdx48fx9bWljp16nDQqp/m9ddfJyQkhCVLlhAdHU337t2BggWaGXt7ewzDANSDPSurYJ1rXufLL7/kn3/+4bfffsPPz4+IiAhEhFmzZhEaGpprm5UrV1q2KwonJyfS09Mt0/Pnz+f8+fPMmzcPUJm9jx49ioeHB3v27OHPP//ks88+4+eff+a7777jgQce4I033qBHjx4EBATkevhVqlQJABsbG8t787T5XPPaWJDNRV3DvPu1Pqb5GIXdm7KiOPdVROjdu3e+7rHIyMhi3TcRYfHixbQ0R8hbUdT2rVsr0XXsGHh5qf8mBbF792569uxZqJ23yvmkp6eXWtFyjUajKQ2um6fLMIwaVq2WYRihQHEGlgcCx0TkuIhkAAuA+/Os8xDwi4icAhCRgoOLSgNvb/UUiY1VheaueUBKi/j4eJ5++mkmTJiQ70GQmJhIw4YNAZgzZ45lfpcuXfj5558BVdtw79691z1Op06dWLBgAQDz5s2jS5cuAERFRdGhQwfefPNNatWqxenTpwkNDeWLL76weG+OHDlCSkoK3bp1Y8GCBZhMJs6ePcvatWsLPFbr1q05duwYAIcPHyYlJYWYmBiio6OJjo5m8uTJLFiwgAsXLpCdnc0DDzzAW2+9xa5duwBwdHQkNDSU8ePHM3bs2OJeSgvbt2/nxIkTZGdns3DhQsu52tvbW86pW7duLF26lNTUVFJSUliyZEmJAtELuzcuLi4kJSUVuE3Pnj354osvABXPduXKFcv84ozsux4dO3Zk8+bNlmufmprKkSNHaNWqFbGxsezYsQOApKQksrKy8tkaGhrKrFmzLIJ09+7dgLpWZsG8b98+IiMjLds8+uijHD26nXr1ICtL1WTMi4gwc+ZMzp49S9++fQu1E3Jfv4o4HxHh3LlzNG3atGQXX6PRaMqQ4iRH3UnOSMatqCSpjxdju4bAaavpM9fmWdMCqG4YxjrDMHYahvFoMfZ7Y7RqpboUJ00qta5Fc0C3p6cnvXr1ok+fPkydOjXfeq+88gqTJ0+mc+fOmEwmy/xnnnmG+Ph4fHx8+L//+z98fHyu21U1c+ZMZs+ejY+PD3PnzuWTTz4B4OWXX8bb2xsvLy+6deuGr68v48aNo02bNvj7++Pl5cVTTz1FVlaWpWi1t7c348ePJzi44B7d/v37s27dOkB5uQYPHpxr+QMPPMD8+fOJiYmhe/fu+Pn5MWbMGN59913LOqNGjcIwDEuXY0kICgpi0qRJeHl54e7ubjn+k08+iY+PD6NGjcLf358xY8YQGBhIhw4dGDduHG3bti32MQq7NyEhIRw4cMASzG3NJ598wtq1a/H29iYgIID9+/eTnZ3NsWPHqFGjRonPMy+1a9dmzpw5jBw5Eh8fHzp27MihQ4dwcHBg4cKFPPfcc/j6+tK7d2/S09Pz2fr666+TmZmJj48PXl5evP766wCMHz+e5ORkfHx8eP/99wkMDLQcMzIykvr169OmjZo+fBjMl+Pll1+2pIzYsWMHa9euxcHBoVA7Qd2jfv36ERISUiHns3PnTjp27IidXXEiKDQajaacKCjQqzQaMBQVx2WefgSYlWedT4FtQBWgFnAUaJF3X6UWSH+LkZWVJWlpaSIicuzYMXFzc5OrV69WsFW56dy5syUw/kb44IMP5LXXXivxdtYDEW4H9u7dKy+++GJFm3FDJCYmyoMPPigiItnZIitXisybJ3L0aAUbdhM8//zzsnr16gKX3Qm/HRqN5taGGw2kNwzDEXgG6AIIsAn4QkTSi9xQebYaW003AmILWOeCiKQAKYZhbAB8gSPXs+tOIDU1lZCQEDIzMxERvvjiCxwKC6SpID766CNOnTqFq6tribcdPHgwUVFRrFmzpvQNu8Xw8vLi448/rmgzboiqVasSFhYGqNJAbdrA5s1q7Enz5mre7YaXlxc9e/asaDM0Go0mF4Zcp+CaYRg/A0nAj9dmjQSqi8jQ62xnhxJPPYEYYAfwkIjst1qnNcrbFQo4ANuBESKyz3pf7dq1k7wZvWNjY2nQoMH1zk+j0ZSQ7GxYvhxSUqBrV2jc+Prb3E7o3w6NRlPWGIaxU0Ta5Z1fnICHliLiazW91jCMPdfbSESyDMOYAPyJShnxnYjsNwzj6WvLvxSRg4Zh/AFEAtmo7sh9he9Vo9GUNTY2KuRx506VLLVRo9vT26XRaDS3GsURXbsNw+goItsADMPoAGwuzs5FZCWwMs+8L/NMfwB8UDxzNRpNedC8OezbBxcuQHw81Cm7ZC4ajUZz11Cc0YsdgC2GYUQbhhGNGsEYbBjGXsMwIoveVKPR3I7Y2amajFB0aSCNRqPRFJ/ieLr6Xn8VjUZzp9GihRJcMTGQmAglSLyv0Wg0mgK4rqdLRE4CrsB915qriJw0tzK275ZnyZIlGIZhyU8EKlDXXK7GuvD1smXLeO+9fJWQbpgXXniBDRs2ALBixQratm2Lr68vbdq0sRS3LitmzJhBampqmR4jOjqan376yTIdHh5uKftSUsaMGWMph1QYV69epVevXgXm5iqpraVpV0HrODs7l+g41p/DwoiIiGDlypxoAEdHuFaFqVjerhv5TFjbtWLFigLz3Gk0Gs2dQnEy0k8E5gF1rrUfDcN4rqwNu12YP38+Xbp0sWSJB2jQoEGBD9KBAwcyadKkUjluQkIC27Zto1u3bmRmZvLkk0+yfPly9uzZw+7du8u8nE1FiK527doxc+bMMjve7t27yczMJCIiguHDh5do2xsVXbcSeUUXqIB6w1DlgVJSit7+Zj8T/fv3Z9myZWX+udJoNHcnaZlpHEs4RkrGdX7MypDixHQ9DnQQkSkiMgXoCDxRtmbdHiQnJ7N582a+/fbbXKIrOjoaLy+vfOvPmTOHCRMmAMp78fzzz9OpUyeaNWtmEWnZ2dk888wzeHp6MmDAAO69994CBdyiRYvo21f1/JrLp5hrG1aqVImWLVuSlJSEu7u7pWTOlStXaNq0KZmZmXTv3p0XX3yRbt260bp1a3bs2MGQIUPw8PDgtddes5xHq1atGD16ND4+Pjz44IOkpqYyc+ZMYmNjCQkJISQkBFDi05wR/9VXX7XY6ezszKuvvkpAQAC9evVi+/btdO/enWbNmrFs2TLLcbp27Yq/vz/+/v5s2bIFgEmTJrFx40b8/PyYPn16Lq9IcnIyY8eOxdvbGx8fHxYvXlzs+9a0aVOmTp2Kv78/3t7eHDp0iLi4OB5++GEiIiLw8/MjKiqKnTt3EhwcTEBAAKGhoZw9exaAY8eO0atXL3x9ffH39ycqKiqfrSaTiZdffpn27dvj4+Nj8TyKCBMmTKBNmzb079+fuLibq3y1bt06unfvzoMPPkirVq0YNWqUpVzOH3/8QatWrejSpYulSDpASkoKjz32GO3bt6dt27b8+uuvZGRkMGXKFBYuXGjx9KWkpDBx4mO8+WZ7Jk1qy5df/gqo0kf/+te/LNd+1qxZBX4mVq1aRVBQEP7+/gwdOpTk5OQi7TIMg+7du7NixYqbuiYajebuJVuyOZt0lh0xO1h6aCmfbf+Mf//9b0YvHc2wRcN48c8XORB/4Po7KisKypgqubPG7wUcraYdgb3X2640262akX7u3Lny2GOPiYhIUFCQ7Ny5U0RETpw4IZ6eniKSO7P67Nmz5dlnnxURkdGjR8uDDz4oJpNJ9u/fL82bNxcRkbCwMOnXr5+YTCY5e/asuLq6SlhYWL5jP/roo7Js2TLL9OOPPy61a9eWESNGyI8//igmk0lERMaMGSNLliwREZGvvvpKXnrpJRERCQ4OlldeeUVERGbMmCH169eX2NhYSU9Pl4YNG8qFCxfkxIkTAsimTZtERGTs2LHywQcfiIiIm5ubxMfHi4i6F40bN5a4uDjJzMyUkJAQyzEBWblypYiIDBo0SHr37i0ZGRkSEREhvr6+IiKSkpJiycx/5MgRMd/vvFnpradfeeUVmThxomVZQkJCkfdq9OjRluvo5uYmM2fOFBGRzz77TB5//PF8+8/IyJCgoCCJi4sTEZEFCxbI2LFjRUQkMDBQfvnlFxERSUtLk5SUlHy2fvXVV/LWW2+JiEh6eroEBATI8ePHZfHixdKrVy/JysqSmJgYqVatWoH3tzDbzVSpUsVic9WqVeX06dNiMpmkY8eOsnHjRklLS5NGjRrJkSNHJDs7W4YOHWqxb/LkyTJ37lwREbl06ZJ4eHhIcnJyrs+n9XqXLol8/fUlqVfPQ+Ljk+Xzzz+XIUOGSGZmpoiIXLx40XJdzZ+J+Ph46dq1qyQnJ4uIyHvvvSdvvPFGkXaJiPz4448yYcKEIq/HzXIr/HZoNJqbIyUjRY5cOCJrjq+RHyJ+kP9u+K88s+IZGbRgkAz4aUCBbfCCwfLsb8/KttPbytw+bjQjPTAb+McwjCWAgSpa/W1ZCMCb4r771Ovy5Tnz3nwTduyA118Hc122P/6Azz6D0FC45nUiIQFGj4YaNeD774t9yPnz5/PCCy8AMGLECObPn4+/v3+xtx80aBA2Nja0adOG8+fPA7Bp0yaGDh2KjY0N9erVs3gN8nL27Flq165tmf7mm2/Yu3cvq1ev5sMPP+Svv/5izpw5jBs3jvfff59BgwYxe/Zs/ve//1m2GThwIADe3t54enpSv359AJo1a8bp06dxdXWlcePGdO7cGYCHH36YmTNn8q9//SuXLTt27KB79+4We0aNGsWGDRsYNGgQDg4OFo+ct7c3lSpVwt7eHm9vb6KjowHIzMxkwoQJREREYGtraymaXBSrV6/O5V2sXr36dbexZsiQIQAEBATk8raYOXz4MPv27aN3796A8u7Ur1+fpKQkYmJiLHUgHR0dC9z/qlWriIyMtHgpExMTOXr0KBs2bGDkyJHY2trSoEEDevTocV1b8xZQzzsvMDCQRo0aAeDn50d0dDTOzs64u7vjcW0I4sMPP8zXX39tsW3ZsmV8+OGHAKSnp3Pq1KkCz8G8XkoKZGams379KVavXs3TTz9tqWtYUL3Jbdu2ceDAActnJyMjg6CgIA4dOlSoXQB16tQhNjZv4QqNRnM3IiIkXk3kdOJpTl85bXk9c+UMF9MuFrpdrcq1aOjSkIYuDWlUtRENq6r3tavUxsYoTgdf2XFd0SUiHxuGsQ5VBghgrIjsLlOrbgMuXrzImjVr2LdvH4ZhYDKZMAyD999/v9j7qFSpkuW9XOsSMr9eDycnJ9LTc1di8vb2xtvbm0ceeQR3d3fmzJlD586diY6OZv369ZhMplzdnubj29jY5LLFxsaGrKwsIP8DvyABUJTN9vb2lm2sj2N9jOnTp1O3bl327NlDdnZ2oUIm7zELsqW4mO2wtbW12JF3/56enmzdujXX/CtXrhRr/yLCrFmzCA0NzTV/5cqVJba7Zs2aXLp0yTKdkJBArVq1LNPW9876fAo7joiwePFiWrZsmWv+P//8U+h6Fy/Cn3+qItgm0/WvvYjQu3dv5s+fn2t+REREkdump6fj5ORU5L41Gs2dhYhwKf0SpxJPcSrxFKcTT6vXK6dJykgqcBt7G3uLqLJuDas2xNHu+s+QiqIkks9A1V68NXNTL1+e28sFMGWKmmf2cgH07avmmb1coDxcy5eXyMu1aNEiHn30UU6ePEl0dDSnT5/G3d2dTZs23dRpdOnShcWLF5Odnc358+dZt25dgeu1bt2aY8eOASq+yXq9iIgI3NzcLNOPPvooI0eOZOzYsSW259SpUxbhYR40AODi4kJSkvoydOjQgfXr13PhwgVMJhPz588nODi42MdITEykfv362NjYMHfuXEwmU75j5KVPnz58+umnlmmzKHn00UfZvn17ic8zLy1btiQ+Pt5y7pmZmezfv5+qVavSqFEjli5dCqgRj6mpqflsDQ0N5YsvvrDE0x05coSUlBS6devGggULMJlMnD17lrVr11q2mTx5MkuWLMlnS/fu3Vm4cCEZGRmAig0szANqplWrVpw4cYKoqCiAXOInNDSUWbNmWcTy7t3qP1RB52Ber2ZNSE7eTVYWeHn14csvv7SIu4SEhHzbd+zYkc2bN1s+o6mpqRw5cqRIu8zXqaB4SI1Gc2eQmJ5I5PlIlh9ezmfbP+OVv15h5OKRjF46mtfXvs7/dv2PP6L+4MCFAyRlJFHFvgota7akl3svxvqNZUq3KXw94GsWDVvErHtn8WqXVxnlM4rgpsE0r9H8lhZcUAxPl2EYU4ChwGKU4JptGEaYiLxd1sbdysyfPz/fSMQHHniAn376KVcgeUl54IEH+Pvvv/Hy8qJFixZ06NCBagUkSOrfvz9fffUV48aNQ0R4//33eeqpp3BycqJKlSrMmTPHsu6oUaN47bXXGDlyZIntad26Nd9//z1PPfUUHh4ejB8/HoAnn3ySfv36Ub9+fdauXcu7775LSEgIIsK9997L/fffX+xjPPPMMzzwwAOEhYUREhJClSpVAPDx8cHOzg5fX1/GjBlD27ZtLdu89tprPPvss3h5eWFra8vUqVMZMmQIkZGRlm7Sm8HBwYFFixbx/PPPk5iYSFZWFi+88AKenp7MnTuXp556iilTpmBvb09YWFg+WydOnEh0dDT+/v6ICLVr12bp0qUMHjyYNWvW4O3tTYsWLXKJ071791q6fK0ZMGAAO3fuJCAgAFtbW5o3b86XX36Zbz1rHB0d+frrr+nfvz+1atWiS5cu7NunKmy9/vrrvPDCC/j4+CAiNG3alBUrVhASEsJ7772Hn58fkydPzrde/fpNGTt2Bd7e40hOPoKPjw/29vY88cQTTJgwId9nYs6cOYwcOZKrV68C8Pbbb9OiRYtC7QIsnyWNRnN7k5aZxsnEk0RfjuZU4ilOXj7JycSTJF5NLHB9ZwdnmlRtQpNqqjWu1pgm1ZpQ3bH6TfVq3GoUp+D1QaCtiKRfm3YCdolI63KwD7j7Cl4nJyfj7OzMxYsXCQwMZPPmzdSrVy/fel26dGHFihW4uroWub9Fixbx66+/Mnfu3BLZER0dzYABA3I9FG9lrly5wuOPP05YWFhFm3JDhIaG8ueff1a0GUWyejXExYGfH7RpU7r7Pn/+PA899BB///136e44D3fyb4dGU95kSzaxSbFEX47mxKUTFqF1PuV8ges72TnRpFoT3Kq54ebqZhFZd5y4uomC19GoEYvmAKJKQFTpmabJy4ABA7h8+TIZGRm8/vrrBQougI8++ohTp04VKbqee+45fv/993z5l+5EqlatetsKLuCWF1wAnp5KdB06pDLW2xXnF6SYnDp1io8++qj0dqjRaEqVlIwUTlw+wYlLJzhx+QTRl6M5mXiSDFNGvnXtbOxoXLWxRVw1dW2KWzU3alWudUeJq5JSHE/XUqA98Bcqpqs3sAmIAxCRG0sRXgLuNk+XRnOrIgKrVsHFixAQAHli8W8L9G+HRlM0IkJ8ajzHLx0nKiHKIrTiUgvOK1i7cm2aujbF3dXdIrAauDTAzqYU/5XdZtyMp2vJtWZmXWkZpdFobi8MQ3m7NmxQpYHuuQdsbSvaKo1Gc6OYsk2cuXJGCaxLURy/dJzjl46Tkpk/a7uDrQNu1dxwd3VXIqu6O+6u7lRxqFIBlt+eFCdlRPGH9Gk0mjuehg3B1RUuX4Zjx25Pb5dGczeSacrkZOJJohKiOJZwjOOXjhOdGF1g92C1StVoVr2Zpbm7utPApQG2Nvpf1s1w9/r+NBrNDWEY4OOjvF3790Pz5qUb26XRaG6erOwsoi9HcyzhmKWdTDxJVnb+vIR1q9SlefXmNK/RHHdXd5rXaH7HBbbfKuifSo1GU2IaNoSaNVVs1+HDqstRo9FUDKZsE6evnOboxaMcuXiEqEsqDiuvwDIwaOjSkObVm3NPjXtoXqM5zao3w9nBuYIsv/soNDmqYRhzr71OLD9zbi9sbW3x8/PDy8uL++67j8uXL1eoPeHh4Tz//M2PaxgzZkyBRbYBXnjhBTZs2ADAihUraNu2Lb6+vrRp08ZS1LmsmDFjBqmpqWV6jOjoaH766SfL9M1c06Kuo5mrV6/Sq1cvS5Hpm7G1NO2aNm0aDRs2xM/PDw8PD4YMGcKBAzlFYg0DfH3V+4MH4VreVubMmXPDZXxK43xGjBjB0aNHb+j4Gs3tgIhwNuks66PX87+d/+OVv15h2KJhPPf7c8zcPpM/ov7gaMJRsrKzaOjSkO5u3RnXdhzv9nyXhQ8u5MsBX/Jy55cZ3HowPnV9tOAqZ4rydAUYhuEGPGYYxg/kyUQvIgllatltgJOTExEREQCMHj2azz77jP/85z8VZk+7du1o1y7fYIlSIyEhgW3btjFjxgwyMzN58skn2b59O40aNeLq1auWWoplxYwZM3j44YepXLlymR3D/OB/6KGHgLK/prt37yYzM9PyOSoJeW0tbV588UVLnc2FCxfSo0cP9u7da6mxWa8e1K0L588r4eXrq0SXl5fXDY0OLI3zGT9+PO+//36uGqMaze3MlatXOHLxCIcvHOZogvJkFVQap16VenjU9MCjhgceNT1oVr0Zle3L7rdSc2MUVQboS+APoBWwM08LL2K7u5KgoCBiYmIAiIqKom/fvgQEBNC1a1cOHToEqOSPgwcPxtfXF19fX7Zs2QLAxx9/jJeXF15eXsyYMcOyz7feeotWrVrRu3dvRo4caSlQ3L17d1599VUCAwNp0aIFGzduBGDdunUMGDAAgHvvvRc/Pz/8/PyoVq0a33//PSaTiZdffpn27dvj4+Nj8UyJCBMmTKBNmzb079+fuLiChwUvWrTIUrw6KSmJrKwsatasCaj6fy1btiQpKQl3d3dL+ZsrV67QtGlTMjMz6d69Oy+++CLdunWjdevW7NixgyFDhuDh4cFrr70GqAdvq1atGD16ND4+Pjz44IOkpqYyc+ZMYmNjCQkJsZTAmT9/Pt7e3nh5eeWqAuDs7Myrr75KQEAAvXr1Yvv27XTv3p1mzZqxbNkyy3G6du2Kv78//v7+lnsxadIkNm7ciJ+fH9OnT891TZOTkxk7dize3t74+PiwePHiYn8+mjZtytSpU/H398fb25tDhw4RFxfHww8/TEREBH5+fkRFRbFz506Cg4MJCAggNDSUs2fPAnDs2DF69eqFr68v/v7+REVF5bP1Zu9vUQwfPpw+ffpYPFFmO196KYD33gtl27az/PTTIsLDwxk1ahR+fn6kpaWV+/l07dqV1atXF1hPU6O51cnKzuLIxSMsP7ycD7d8yJPLn2TUL6N4Y/0bLNi/gJ1nd5KUkYSroysdGnbgYe+HeaP7G/w05Cf+N/B/vNL5FQa3HoxXHS8tuG5VRKTIBnxxvXXKugUEBEheYmJi8s0rb6pUqSIiIllZWfLggw/K77//LiIiPXr0kCNHjoiIyLZt2yQkJERERIYNGybTp0+3bHP58mUJDw8XLy8vSU5OlqSkJGnTpo3s2rVLduzYIb6+vpKamipXrlyRe+65Rz744AMREQkODpaXXnpJRER+++036dmzp4iIrF27Vvr375/LxvDwcPH29pbLly/LV199JW+99ZaIiKSnp0tAQIAcP35cFi9eLL169ZKsrCyJiYmRatWqSVhYWL7zffTRR2XZsmWW6ccff1xq164tI0aMkB9//FFMJpOIiIwZM0aWLFkiIiJfffWVxdbg4GB55ZVXRERkxowZUr9+fYmNjZX09HRp2LChXLhwQU6cOCGAbNq0SURExo4dazlvNzc3iY+PFxF1/xs3bixxcXGSmZkpISEhlmMCsnLlShERGTRokPTu3VsyMjIkIiJCfH19RUQkJSVF0tLSRETkyJEjYv6M5b2G1tOvvPKKTJw40bIsISEh3zWyZvTo0Zbr6ObmJjNnzhQRkc8++0wef/zxfPvPyMiQoKAgiYuLExGRBQsWyNixY0VEJDAwUH755RcREUlLS5OUlJR8tt7s/bVm6tSplutuZvr06fL000/ns3PKlAUSHDxWwsPVPd6xY0eFnk+vXr0kPDy80HO7FX47NBoRkYupF2Xzqc3y7a5v5eVVL8vgBYNlwE8DcrUHFj4gr/71qny761vZdHKTxCXHSXZ2dkWbrrkOQLgUoGeKkzJivGEYvkDXa7M2iEhkmanAG+W++wpf9uyzqtA1wB9/wGefFb5u3qLZRZCWloafnx/R0dEEBATQu3dvkpOT2bJlC0OHDrWsZ649t2bNGn744QdAxYNVq1aNTZs2MXjwYEu9wSFDhrBx40ays7O5//77cXJyunZ6uc9vyJAhAAQEBBTarXfhwgUeeeQRfv75Z6pVq8aqVauIjIy0xL8kJiZy9OhRNmzYwMiRI7G1taVBgwb06NGjwP2dPXvW0rUE8M0337B3715Wr17Nhx9+yF9//cWcOXMYN24c77//PoMGDWL27Nm5unrMtQW9vb3x9PS01Els1qwZp0+fxtXVlcaNG9O5c2cAHn74YWbOnGnp5jKzY8cOunfvbrFn1KhRbNiwgUGDBuHg4GDxyHl7e1OpUiXs7e3x9va2XKvMzEwmTJhAREQEtra2HDlypMBztmb16tUsWLDAMl29evXrbmON9T375Zdf8i0/fPgw+/bto3fv3gCYTCbq169PUlISMTExDB48GFB1FQviZu/v9ZBriZTz2pmRYcLWtj5Hj8K1WuUVej516tQhNjaWgICAGzpPjaYsMGWbOHH5BIcuHOJg/EEOXThUYLLRRi6NaFmrJa1qtaJFzRa4VXPTaRruIIpT8Pp54EnA/JSYZxjG1yIyq0wtuw0wx3QlJiYyYMAAPvvsM8aMGYOrq2uxY3TMD7LizjdTqVIlQIm3grpSTCYTI0aMYMqUKXh5eVn2OWvWLEJDQ3Otu3LlymINDXZyciI9PT3XPG9vb7y9vXnkkUdwd3dnzpw5dO7cmejoaNavX4/JZLIc39puGxsby3vztPk88tpSkG1FXR97e3vLNtbHsT7G9OnTqVu3Lnv27CE7O7vQB3/eY97MEOrr3TMRwdPTk61bt+aaf+XKlWLt/2bv7/XYvXs37dq1K9DOzZvh5ElIscqnWFHnk56ebvmzotFUFCkZKUpgXTjIwfiDHL54mKumq7nWqWxfmRY1WtCqViuLyHKp5FJBFmvKg6JiusyMAzqIyBQRmQJ0BJ4oW7NugOXLC29mLxeo90WtewNUq1aNmTNn8uGHH+Lk5IS7u7ulBqCIsGfPHgB69uzJF198AShRdOXKFbp168bSpUtJTU0lJSWFJUuW0LVrV7p06cLy5ctJT08nOTmZ3377rUQ2TZo0CR8fH0aMGGGZFxoayhdffGGJtzpy5AgpKSl069aNBQsWYDKZOHv2LGvXri1wn61bt+bYsWOAim9at26dZVlERARubm6W6UcffZSRI0cyduzYEtkNqgaf+UE9f/58unTpAoCLiwtJSSqAtEOHDqxfv54LFy5gMpmYP38+wcHBxT5GYmIi9evXx8bGhrlz52K65qKxPkZe+vTpw6effmqZvnTpkuVct2/fXuLzzEvLli2Jj4+3nHtmZib79++natWqNGrUiKVLlwLKc5qamprP1hu5v5MnT2bJEuuCEwWzePFiVq1axciRIwu0085uP0oHuXD2bFKFnY95PU+dw0JTzlxIvcCGkxv4MvxLnlv5HCMXj2Ta+mks3L+QyLhIrpquUt+5Pj2a9uDZ9s8yq98s5j8wn7d6vMUon1EENAjQgusuoDh5ugzAqtMAE3lGMmqwpE5YsGAB8+bNY/z48bz99ttkZmYyYsQIfH19+eSTT3jyySf59ttvsbW15YsvviAoKIgxY8YQGBgIwLhx42jbti2guuJ8fX1xc3OjXbt2VKtWrdj2fPjhh3h6euLn5wfAm2++ybhx44iOjsbf3x8RoXbt2ixdupTBgwezZs0avL29adGiRaHipX///nz11VeMGzcOEeH999/nqaeewsnJiSpVqjBnzhzLuqNGjeK1115j5MiRJb6WrVu35vvvv+epp57Cw8OD8ePHA/Dkk0/Sr18/6tevz9q1a3n33XcJCQlBRLj33nu5//77i32MZ555hgceeICwsDBCQkIs3bs+Pj7Y2dnh6+vLmDFjLPcC4LXXXuPZZ5/Fy8sLW1tbpk6dypAhQ4iMjLR0k94MDg4OLFq0iOeff57ExESysrJ44YUX8PT0ZO7cuTz11FNMmTIFe3t7wsLC8tk6ceLEEt/fvXv3Wrp88zJ9+nR+/PFHUlJS8PLyYs2aNZbu3ILs9PPzpFu3MTzzzNO8/roTW7duLffzOX/+PE5OTqVyPzSawhARYpNi2Re3j/3x+9kftz9fV6GdjR3NqzenTe02tK7Vmta1W+Pq6FoxBmtuGYpT8PolYDQ59RcHAXNEZEaZWmbF3VrwOjk5GWdnZ1JTU+nWrRtff/01/v7+FWpTly5dWLFiBa6urkWut2jRIn799Vfmzp1bov1HR0czYMAA9u3bdxNWlh9Xrlzh8ccft3g2bzdCQ0P5888/S2VfV68qZ3FGBnTrBo0alcpuS8T06dOpWrUqjz/+eKHr3A2/HZrSRUSIvhxtEVn74vaReDUx1zqV7SvTulZr2tRuQ5vabWhRswUOtg4VZLGmornhgtci8rFhGOuALigP11gR2V36Jmry8uSTT3LgwAHS09MZPXp0hQsugI8++ohTp04VKbqee+45fv/9d1auXFl+hlUQVatWvW0FF1BqggugUiXw9oadO2HXLqhfv/yLYbu6uvLII4+U70E1dxzZks2JSyfYF7ePvXF72R+/n+SM5FzruDq64lXbiza12+BVxws3VzdsjOJE7GjuZq7r6boVuFs9XRrN7UZ2Nvz+OyQmqmSpt2Jolf7t0ORFRDhx+QR7z+9lb9xe9sXtIyUzJdc6tSvXxquOF951vGlTuw0NXBro2oSaQrlhT5dGo9EUFxsbCAiANWtUMWx3dyjDAgIazQ0hIpy5cobI85FEno9kb9zefFne61Sug3ddb7zreONd15s6VepUkLWaOwktujQaTalSr56K5zpzBvbsgaCgirZIo4H4lHgizkWw5/weIs9Hcin9Uq7ltSvXxqeujxZZmjJFiy6NRlPq+PvD2bNw4gR4eECtWhVtkeZuI+lqEnvj9hJxLoKIcxGcTT6ba7mroys+dXzwreeLdx1v6jnX092FmjKnOMlRhwD/B9RBBdIbgIhI1WJs2xf4BLAFvhGR9wpZrz2wDRguIouKb75Go7kVcXaGVq1UF2N4OISGgn6eacqSrOwsDsYfJOJcBLvP7eZYwjGEnJjlyvaV8a7jjW9dX/zq+dGoaiMtsjTlTnE8Xe8D94nIwZLs2DAMW+AzoDdwBthhGMYyETlQwHr/B5TeMKpy4OLFi/Ts2ROAc+fOYWtrS+3atYmOjqZBgwYcOHDgOnsoOUuXLqVFixa0adOm1PdtzbRp03B2ds5XegdgxowZ1KhRg0cffRSArKws6tWrxxNPPMG77757Q8e7fPkyP/30E88888x113V2diY5Ofm66wFkZ2fzwgsvsGbNGgzDwNHRkZ9//hl3d/cbsvN6REdHs2XLFh566KEy2b+ZvJ+DKVOm0K1bN3r16lXg+nv37uWjjz7KlUetPPD0VJ6uhAQ4cgRatizXw2vucMy5snad3cWus7vYG7c3V8Z3Oxs7WtVsRdv6bfGt68s9Ne7R5XQ0FU5xRNf5kgquawQCx0TkOIBhGAuA+4G8auQ5YDHQ/gaOUWHUrFnTUurHWqSY80xdj6ysLOzsSta7u3TpUgYMGFDmoqswsrKy+O6779i1a5dl3qpVq2jZsiU///wz//3vf2/on+Ply5f5/PPPiyW6SsLChQuJjY0lMjISGxsbzpw5Y0mCWhZER0fz008/lYvosv4cvPnmm0Wu7+3tzZkzZzh16hRNmjQpU9ussbNTQfUbN6rYroYNlQdMo7lRUjJS2HN+D7vO7mL32d35EpI2qdqEtvXb0rZeWzzreOJod/3yXhpNeVKcpCLhhmEsNAxjpGEYQ8ytGNs1BE5bTZ+5Ns+CYRgNgcHAl8W2+DbAZDLxxBNP4OnpSZ8+fUhLSwOge/fu/Pvf/yY4OJhPPvmEnTt3EhwcTEBAAKGhoZw9q2IO/ve//9G+fXt8fX154IEHSE1NZcuWLSxbtoyXX34ZPz8/oqKiiIqKom/fvgQEBNC1a1cOHToEwJgxY3j++efp1KkTzZo1sxQMBvjggw9o3749Pj4+TJ061TL/nXfeoWXLlvTq1YvDhw8XeF5r1qzB398/l1icP38+EydOpEmTJmzbts0y/48//sDf3x9fX1+LR3DatGl8+OGHlnW8vLyIjo5m0qRJREVF4efnx8svv1yknWYeeeQRfv31V8v0qFGjWLZsWa51zp49ayn1A9CoUSOqV6/Ot99+y4svvmhZ73//+x8vvfQS0dHRtGrVinHjxuHl5cWoUaNYvXo1nTt3xsPDw1LqZ9q0aTzyyCP06NEDDw8PS0HvSZMmsXHjRvz8/Jg+fTrp6emMHTsWb29v2rZtaylXM2fOHAYNGsR9992Hu7s7n376KR9//DFt27alY8eOJCQklOhzMGbMGMs93rFjB506dcLX15fAwEBLWZ377rsvV7Hu8qJxY3Bzg6ws2LYNboMMNZpbCBEhKiGKn/f/zKTVk3jol4d4d9O7/Bn1J3GpcVStVJVuTbrxQocX+H7Q93zW/zPG+Y8joEGAFlyaWxMRKbIBswto3xVju6GoOC7z9CPArDzrhAEdr72fAzxY0L4CAgIkLzExMfnmVRRTp06VDz74QERETpw4Iba2trJ7924RERk6dKjMnTtXRESCg4Nl/PjxIiKSkZEhQUFBEhcXJyIiCxYskLFjx4qIyIULFyz7/s9//iMzZ84UEZHRo0dLWFiYZVmPHj3kyJEjIiKybds2CQkJsaz34IMPislkkv3790vz5s1FROTPP/+UJ554QrKzs8VkMkn//v1l/fr1Eh4eLl5eXpKSkiKJiYnSvHlzy/lYM2XKFIstIiKpqalSv359SUlJka+++kqee+45ERGJi4uTRo0ayfHjx0VE5OLFi/muk4iIp6ennDhxQk6cOCGenp6W+YXZKSJSpUoVERFZt26d3H///SIicvnyZWnatKlkZmbmsvf06dPi5uYmvr6+8tJLL8muXbtERCQ5OVmaNWsmGRkZIiISFBQkkZGRlnsXGRkpJpNJ/P39ZezYsZKdnS1Lly61HG/q1Kni4+MjqampEh8fL40aNZKYmBhZu3at9O/f33L8Dz/8UMaMGSMiIgcPHpTGjRtLWlqazJ49W5o3by5XrlyRuLg4qVq1qnzxxRciIvLCCy/I9OnTS/Q5ME9fvXpV3N3dZfv27SIikpiYaLkmmzZtkgEDBuS7p+VBerrI4sUi8+aJHD5cISbk4lb67dDkJ/lqsmw8uVGmb50uD//ysAz4aYClDZw/UCb9NUkW7lsoRy8elezs7Io2V6MpECBcCtAzxclIX/KKxYozQGOr6UZAbJ512gELrnVJ1QLuNQwjS0SWlvho991XsvWbN4cZM/Jvf4NFr61xd3e31DwMCAggOjrasmz48OEAHD58mH379tG7d29AecfM9eL27dvHa6+9xuXLl0lOTiY0NDTfMZKTk9myZQtDhw61zLt6NSeeYdCgQdjY2NCmTRvOnz8PqK7AVatWWeoJJicnc/ToUZKSkhg8eDCVryVUKqwW39mzZ2ndurVlesWKFYSEhFC5cmUeeOAB3nrrLaZPn862bdvo1q2bJXaqRo0axb94RdjZrVs3yzrBwcE8++yzxMXF8csvv/DAAw/k665t1KgRhw8fZs2aNaxZs4aePXsSFhZGz5496dGjBytWrKB169ZkZmbi7e1NdHQ07u7ueHt7A+Dp6UnPnj0xDMOy3Mz999+Pk5MTTk5OhISEsH379nxZ+jdt2sRzzz0HQKtWrXBzc+PIkSMAhISE4OLigouLC9WqVeO+a58/b29vIiMjgeJ9Dqw5fPgw9evXp3171VNftWrOWJc6deoQG5v361c+VKoE7durbsaICGjQQHczanKQazmztsdsJzw2nAMXDpAt2ZblNZ1qElA/gIAGAfjW9aWKQ9mFCGg0ZU1xRi82AmYBnQEBNgETReTMdTbdAXgYhuEOxAAjgFzBLiJiiWg2DGMOsOKGBNctRqVKlSzvbW1tLd2LgCWmSETw9PRk69at+bYfM2YMS5cuxdfXlzlz5rBu3bp862RnZ+Pq6mqJKyvKBrnWpyMiTJ48maeeeirXujNmzChWLJaTkxPp6emW6fnz57N582aaNm0KqMEFa9euRUQK3J+dnR3Z2Tk/ptb7sqYwO/PyyCOPMG/ePBYsWMB3331X4DqVKlWiX79+9OvXj7p167J06VJ69uzJuHHj+O9//0urVq0YO3ZsrvXN2NjYWKZtbGzIysqyLMt7fgWdr/m6F2bX9Y5TnM9B3uMVdh/T09NxcnIqcvuyxNzNePIk/PMP9OihRzPezWSYMtgXt48dMTvYEbuD8ynnLctsDBu8ansR0CCAdg3a4VbNTY8y1NwxFCeSezbwE6q7EODha/N6F7WRiGQZhjEBNSrRFtUlud8wjKevLS/dOK6b9VCVgoerJLRs2ZL4+Hi2bt1KUFAQmZmZHDlyBE9PT5KSkqhfvz6ZmZnMmzePhg1VKJyLi4slRqdq1aq4u7sTFhbG0KFDEREiIyPx9fUt9JihoaG8/vrrjBo1CmdnZ2JiYrC3t6dbt26MGTOGSZMmkZWVxfLlywsUPK1bt+bYsWOAKvS8adMmTp8+bREMs2fPZv78+bz33ns8++yznDhxAnd3dxISEqhRowZNmzZlxYoVAOzatYsTJ07kO6+i7KxTJ3eywjFjxhAYGEi9evXwLKDezK5du6hXrx4NGjQgOzubyMhIfHx8AOjQoQOnT59m165dFs9SSfj111+ZPHkyKSkprFu3jvfee4+zZ8/mOo9u3boxb948evTowZEjRzh16hQtW7bMNRChKIrzObCmVatWxMbGsmPHDtq3b09SUhJOTk7Y2dlx5MgRvLy8SnyepUm7dnD+vGrHjqn8XZq7h8T0RMJjw/kn5h92n9tNelbOn65qlaoRUD+A9g3b07ZeW+3N0tyxFEd01RaR2VbTcwzDeKE4OxeRlcDKPPMKFFsiMqY4+7xTcHBwYNGiRTz//PMkJiaSlZXFCy+8gKenJ2+99RYdOnTAzc0Nb29vywN2xIgRPPHEE8ycOZNFixYxb948xo8fz9tvv01mZiYjRowoUnT16dOHgwcPEnQtRbizszM//vgj/v7+DB8+HD8/P9zc3OjatWuB2/fr189STPiXX36hR48euTw2999/P6+88gqff/45X3/9NUOGDCE7O5s6derw119/8cADD/DDDz/g5+dH+/btadGiBaBGgnbu3BkvLy/69evHBx98UKCdeUVX3bp1ad26NYMGDSrQ3ri4OJ544glLt2tgYCATJkywLB82bBgRERFUr1690GtWGIGBgfTv359Tp07x+uuv06BBA2rXro2dnR2+vr6MGTOGZ555hqeffhpvb2/s7OyYM2dOrut1PYr7OTDj4ODAwoULee6550hLS8PJyYnVq1fj7OzM2rVr6d+/f4nPszSx7mbcvVtlrndxqVCTNGXMmStn2HZmG9tjtnPowqFcebOauTajfcP2tG/QnhY1W2hvluau4LoFrw3DWI0Kcp9/bdZIYKyI9Cxb03LQBa9vHQYPHsz777+Pxy3gpkhNTcXb25tdu3ZRrVq1Em8/YMAAXnzxRcvoyuJSVB6zW5GrV68SHBzMpk2bSpympCzYvFl1M1avDn36gG05p07Svx1lh4hw6MIh/on5h21nthGTFGNZZmdjh29dXwIbBhLYMJBalXWZAs2dy80UvH4M+BSYjorp2nJtnuYuxNyNVtGia/Xq1Tz22GO89NJLJRZcly9fJjAwMFc6izuZU6dO8d57790SgguUtyshAS5dUtnqO3SoaIs0N0NWdhZ7zu1h25ltbIvZxuX0y5ZlLg4utG/Qng6NOtC2Xluc7CsurlCjuRW4rqfrVkB7ujSaO4tLl2DVKjCZlOhq3rz8jq1/O26e9Kx0dp3dxdbTW9kRu4OUzBTLsjqV69CxUUc6NupIm9ptdBZ4zV1JiT1dhmG8IiLvG4YxC8inzETk+VK2UaPR3CVUr648Xtu2KW9X9epQwswimnImNTOVHTE72HJ6C+Fnw8kwZViWuVVzI6hREEGNg3B3ddfxWRpNIRTV32Au/RNexDoajUZzQzRrBhcuqJGMGzdC374q2F5z65CSkcI/Mf+w+dRmdp3bRVZ2TtqUljVbWoRWAxftOdRoikOhoktEzDkUUkUkzHqZYRhDC9hEo9FoSkRAgOpqvHgRtm6F4GCdv6uiSclIYXvMdjae2sjuc7stQsvAwLO2J50bdyaocZAOhNdoboDiRNZORpXrud48jUajKRG2ttClC/zxB8TGqsLY14o5aMqR9Kx0tsdsZ8PJDew8uzOX0PKp40PnJp0JahREdaeSp1fRaDQ5FBXT1Q+4F2hoGMZMq0VVgayCt7q7cHZ2Jjk52TI9Z84cwsPD+fTTT0u8r3Xr1vHhhx9akocWh+7du/Phhx/Srl2+WD2N5rahShXo1AnWrYMDB8DREVq1qmiriiAxEU6cgHPncrK9JiVBaipkZsJMq5/Ll1+G48fBxka58CpVUifs7KxOesgQtV5qqkpeVru2aq6uZe7yyzBlEB4bzsaTG9keu90So2Vg4FXbi65uXbXQ0mhKmaI8XbGoeK6BwE6r+UnAi2VplEajubuoXx86dlRdjLt2KW3i7n797coUEeV+O3JEGXOt3BWbN8MXXxS+XVYWmNNzZGSoZiYtDS5fVu+t066cPg3vvZcz7eAADRuq+kmNGkG/fkqI3SSmbBN74/ayLnodW89sJTUz1bKsda3WdG3Slc5NOlPDSY9q0GjKgqJiuvYAewzDWAKkiIgJwDAMW0CHu16H+Ph4nn76aU6dOgWo+oadO3dm+/btvPDCC5aM4bNnz6Zly5a5tk1JSeG5555j7969ZGVlMW3aNO6//37S0tIYO3YsBw4coHXr1rlqOmo0tzvu7nD1qhJd//yjhFe5Z3ZISlLDKbdvV9W5zZ7sESNyRFeTJuDpqVLq16sHdetCtWrKg1W5cu5srx98AOZ6oyaTOsGUFLVfq4Lk2Nur3BkXLkBcnLLjxAnVAHr1yln3559VENw996hcG25uRWaYFRGOJhxlffR6NpzakCuPVvPqzQl2C6ZLky7UrlL7hi+bRqMpHsWJ6VoF9ALM/WhO1+Z1KiujbhfS0tLwswpASUhIYODAgQBMnDiRF198kS5dunDq1ClCQ0M5ePAgrVq1YsOGDdjZ2bF69Wr+/e9/s3jx4lz7feedd+jRowffffedJZFnr169+Oqrr6hcuTKRkZFERkbi7+9fnqer0ZQ5rVpBerrqZty4EXr2hFrlFa/9f/+nvFjWuQtr1IAWLZSwMePlldsrVRQODrmnq1QpODdGs2bw2ms50ykpcOaMajExuS/Cxo0QHZ0z7eiobGzdWuXhuPYn7lzyOdZFr2PtibXEJsdaVq/vXJ/uTbsT7BZMw6oNi3ceGo2mVCiO6HIUEUvgkogkG4ZRuQxtKjH3zb+vTPa7fGTRRbCdnJyIiIiwTJtjukBlTD9w4IBl2ZUrV0hKSiIxMZHRo0dz9OhRDMMgMzMz335XrVrFsmXL+PDDDwFIT0/n1KlTbNiwgeefV+nRfHx8LMWbNZo7CV9f5RCKilJxXr16lUrPWm6ysmDHDvD3z8lTUbmyir3y9obAQCVg6tatmOGUVaoo8ZTHCw7AE0+oPBtRUarr89w5iIyEyEiSM5LZaHOctdFrORi7R4k3FxdcnWsR7BZMsFsw99S4R+fR0mgqiOKIrhTDMPxFZBeAYRgBgO7Xug7Z2dls3boVJ6fcZS+ee+45QkJCWLJkCdHR0XTv3j3ftiLC4sWL83U7AvrHUnPHYxhK71y9qhw9f/8N3btDzZqlsPOUFCVWJk1SuSpefBF69FDLRo2Cxx5TgudWxsdHtWuYEi6ya8evrDn0O9tMYWSFq//ElRJTCIpMICTJBt9692DrawNGMrhk5vfAaTSacqE4ousFIMwwDLN/uj4wvMwsugGu55GqCPr06cOnn37Kyy+/DEBERAR+fn4kJibSsKFy6c+ZM6fAbUNDQ5k1axazZs3CMAx2795N27Zt6datG/PmzSMkJIR9+/YRGRlZXqej0ZQrNjbQuTNs2qR61/7+G7p1UyFUN0RSEuzfr2KksrKU4GrcOHc21tssJf7Jyyf5+8TfrI1eq+K06oBBFfzq+tLDvQdBpwXHs3/BxUNwPFq1JUtU/Ji/P/znPzopmkZTzlxXdInIDsMwWgEtAQM4JCL5+8Q0uZg5cybPPvssPj4+ZGVl0a1bN7788kteeeUVRo8ezccff0wP8z/sPLz++uu88MIL+Pj4ICI0bdqUFStWMH78eMaOHYuPjw9+fn4EBgaW81lpNOWHrS107aqC6k+cUF2NnTqpOPYSEREBBw+qWC3DUMrt/fdVANltJjpSMlLYeGojf0X9xZGEI5b5DV0a0tO9JyHuITlJS92Bbj3U6MmDB9V12L1befqysnLOPSsLvv5aJUjz81PdrBqNpkwoVsFrwzC8gDaAo3meiPxQhnblQhe81mjuXkSUVjh0SOmEdu1yZ1u4LlFRKn7L3R3atCE2Kem2+u0QEfbF7eOv43+x+fRmSz6tyvaV6dakG72a9aJFzRbFDz1ITFSjJ6953Nm3DyZPVu9tbdXIzPbtVVzbbXSdNJpbiRIXvLbacCrQHSW6VgL9gE1AuYkujUZz92IY0LatGqQXEaH0U2qqCmvKpzNMphx11qaNmufurrxb5litpKTyNP+GuZR2ib9P/M2qqFWcTT5rme9Tx4fezXsT1CiISnY3kL2nWjXVzNSrB48+qlJlHDpkCcrn22+VMPu//8u9vkajuWGKE9P1IOAL7BaRsYZh1AW+KVuzNBqNJgezhnJwUKJr/36VqqpTJyXGEFHBX7t2KS+Ora1Kw+DoqALEbvXg+GuICLvO7uLPqD/ZHrMdk0qPSK3Ktejl3otezXpR17lu6R60Vi0YOlS15GR1Dbdvh507VYZ963xiP/2k0mf4+0OeQUIajeb6FEd0pYlItmEYWYZhVAXigGZlbJdGo9Hk4557VAWdLVtUpoQ//oCu/inUjNoOZ695g1xdVSVtR8ci93UrcTn9Mn9F/cUfx/4gLjUOABvDho4NO9KneR8CGgRgY9iUvSHOzmrEQrduymsYH5/jTrx0CRYsUALXzk7l9ujYUXVD3maDEDSaiqI4oivcMAxX4H+ockDJwPayNEqj0WgKo1496NsXNm8S7E4dJyVsF5WqZlKlugOGj49SZjblIFBuEhFhb9xefj/6O1vPbLV4tepUrkPfe/rSs1nPii3HY2ube7ionR2MGQPbtqluyJ07VfvsM5VPbOJENSJUo9EUSpGiy1CRme+KyGXgS8Mw/gCqiojOVaDRaCqMypVVtvq4BdGYLmUSdbUxKTXa07axI063uN5KyUhhzYk1rDy6kjNJZwBVZLpjw470vacv/vX9b818fC4uqkD3kCEqGH/7diXAdu9WyVqrWxXG3rJFdVt6eNx2I0Q1mrKkSNElImIYxlIg4Np0dDnYpNFoNAUjorq97OywsTWod38H4g5c4Ei0G5nnDGJ/U0H3zZrdes/66MvR/HbkN9adXEd6VjoANZxqENo8lD7N++SkergdqFYNevdWLT1diS5nZ7UsOxs+/1wJs5o1VU3JoCBVPsmuOJ0rGs2dS3G+AdsMw2gvIjvK3BqNRqMpDHPpnrQ0CAlRqsrZmTqBztzrqRbFxqq8XtHRKtTIxaViTTZlm/gn5h+WH17Ovvh9lvk+dXzo36I/gQ0DsbO5zYWIo6MSVGbS01WCtW3bVAHvlStVc3ZWqSiGDMkpHq7R3GUUxxEfghJeUYZhRBqGsdcwDN29CNja2uLn52dp712nCO5///vfXNOdOt1YzfCIiAhWrlxZ6PLdu3czbtw4QGW9r127Nm3btsXDw4PQ0FC2bNlyQ8ctiKZNm3LhwgUyMjLo1q0bWVlZpbZvjcZCYiL8+afKkhofD1eu5FpcpQoEB6ss9o6OcP68es7v26e0WnmTdDWJRQcWMW75ON7d9C774vfhaOdIf4/+fH7v57zT8x06Ne50+wuugqhcGZ56Cr77Dj7+GIYNU7Feycmwdq1K1mrm9OnbJoWHRlMaFPqNNwyjiYicQuXl0hRA3oLX1+O///0v//73vy3TNyp+IiIiCA8P59577y30OK+99pplevjw4Xz66acArF27liFDhrB27Vpat259Q8cvCAcHB3r27MnChQsZNWpUqe1Xo+HECeXGyspS3VpduhSYN8owVDaDevVUmNHx4yrd1NGjqoZ1s2ZlH19/OvE0yw4vY030GksS0wbODRjQYgA9m/Wksv1dlO3dMFRMl4cHPPKISukRHp47s+3nn8OBAyoha1CQ6oqsU6fibNZoypii/mYtBfxF5KRhGItF5IFysum2JjExkcDAQJYtW0bLli0ZOXIkPXr0ICoqirS0NPz8/PD09GTevHk4OzuTnJzMunXrmDZtGrVq1WLfvn0EBATw448/YhgGO3bsYOLEiaSkpFCpUiX++usvpkyZQlpaGps2bWLy5MkMH55TCjMpKYnIyEh8fX0LtC8kJIQnn3ySr7/+munTpxMVFcWzzz5LfHw8lStX5n//+x+tWrVi+fLlvP3222RkZFCzZk3mzZtH3bp1uXjxIiNHjiQ+Pp7AwECsKxoMGjSIyZMna9GlKR1MJjU67tgxNe3urrqnrhMXVKmSymTg7q7EV0KCivk+eFAlVC3tsCIRIeJcBL8e/pWdZ3da5vvX82dgy4G3bmB8edOwYU4WfFCxX5UqKXG2d69qX3+t1HFQkHJd1q9fcfZqNGVAUT8/1r8St3Rervvuu69M9rt8edGFtM0iyoxZAH366aeMGTOGiRMncunSJZ544gkAPv3000I9Y7t372b//v00aNCAzp07s3nzZgIDAxk+fDgLFy6kffv2XLlyhcqVK/Pmm28SHh5u8V5ZEx4ejpd1fEUB+Pv789VXXwHw5JNP8uWXX+Lh4cE///zDM888w5o1a+jSpQvbtm3DMAy++eYb3n//fT766CPeeOMNunTpwpQpU/jtt9/4+uuvLfv18vJixw4d+qcpJY4eVYLL1lbV/ilhdHzduhAaqnqw9uxRvVibN6ver6NHlcPsZgRYpimT9SfXs+TgEk5dOQWAg60DPd17cl+L+2hcTadPKBIbG5g2DVJSlCdz61aVmPX4cdVq184RXSkpqt/Y1rZCTdZobpaifnKkkPeaaxTWvdi7d2/CwsJ49tln2bNnT7H2FRgYSKNGjQDw8/MjOjqaatWqUb9+fdq3bw9AVevM0IVw9uxZateuXeQ6Zu9UcnIyW7ZsYejQoZZlV69eBeDMmTMMHz6cs2fPkpGRgbu7OwAbNmzgl19+AaB///5Utxombmtri4ODA0lJSbhUdASz5vanRQu4fFnlgLJOR1ACDEMVyG7USD3H9+5V4uvbb2HOHBgwQAmzknxckzOS+f3o7yw/spxL6ZcANQpxgMcA+t7TF5dK+rNfIqpUge7dVcvIUAp561bl1TTzww+wYYOa16GDzoivuW0pSnT5GoZxBeXxcrr2nmvTIiLXVwDlxPU8UuVNdnY2Bw8exMnJiYSEBIuYKopKlXJqqNna2pKVlYWIlLhbwsnJifT09CLX2b17N61btyY7OxtXV9cCheNzzz3HSy+9xMCBAy3dn2aKsunq1as43kaZwDW3GKdPq5ieSpWUJ6Rjx1LZrY2Nyplq7nJs3Fgd6vvvVZL1nj1V9oPmzQt3psWlxLH00FL+Ov6XJeWDu6s7g1sNpqtb1zszKL68cXBQwspacAGcOZMTiL92bU5G/MBA1WrdRuk2NHc1hYaVioitiFQVERcRsbv23jx9ywiuW5Hp06fTunVr5s+fz2OPPUZmZiYA9vb2lvfFoVWrVsTGxlq67JKSksjKysLFxYWkQkb8tG7dmmPmGJgCWL9+PV9//TVPPPEEVatWxd3dnbCwMEB5wMyeucTERBpei7/4/vvvLdt369aNefPmAfD7779z6dIly7KLFy9Su3Zt7O3ti32OGg2g8m/t2QMbN8KmTSrepwywtYUGDVQS9WnTVE6vq1fVSMcXX4QJE+CXX1QcmJnoy9F8tOUjnlj+BMuPLCc9K5229dryVshbfNL3E0LcQ7TgKmveeQe++EJlxG/dOife74svwPpPd2am+ixpNLcoZfpLYRhGX+ATwBb4RkTey7N8FPDqtclkYLyIFK8/7hYgb0xX3759eeyxx/jmm2/Yvn07Li4udOvWjbfffps33niDJ598Eh8fH/z9/S3CpSgcHBxYuHAhzz33HGlpaTg5ObF69WpCQkJ477338PPzyxdI36pVKxITE3N18S1cuJBNmzaRmpqKu7s7ixcvtoxcnDdvHuPHj+ftt98mMzOTESNG4Ovry7Rp0xg6dCgNGzakY8eOnDhxAoCpU6cycuRI/P39CQ4OpkmTJpZjr127ttARlRpNoZhMqjvp1CnlZmrUqMwzmxqGKs8YEAAnT6psFOvXKxNmz4bZc4TG/vtJbryYOPtw7O1VLcSQpiEMaT2Epq5Ny9Q+TQE0aqTaAw+oFCLh4SopW1BQzjp//gk//6xiAAMDwc/vtqrBqbnzMaSM/hUYhmELHAF6A2eAHcBIETlgtU4n4KCIXDIMox8wTUQ65N1Xu3btJDw8PNe82NhYGjRoUCa23+5Mnz4dFxcXS66u8mLIkCG8++67tGzZslyPq7mNSU9XsToXLqiupS5dctf7KwMK++3IyoLwcOGH1Tv5K/ZnrlQ6CICNOOBTOZQRfoPo07lOrgF4mluMjz6Cdetypu3sVL6Qdu1Ul6UeDakpJwzD2Cki7fLOL0tPVyBwTESOXzNgAXA/YBFdImKdqGobcP3gJ811GT9+vKXLsLzIyMhg0KBBWnBpik9SknpAJiXlBFMXkH+rPMiWbLbFbiHsUhinmx/nniaQdsWZWhcHcHXvfXC1Kr/shV/mqpAzX1/lRPHxAVfXCjFZUxAvvaQ8Ydu3q3bkiAri270bIiJgyhS1nsmkmoNDhZqrufsoS9HVEDhtNX0GyOfFsuJx4PcytOeuwdHRkUceeaRcj+ng4MCjjz5arsfU3OacOKEEV40aKidTBYxGy8rOYn30esIOhBGTFANAdcfqDPYbTN97+uJk70Ramspk8M8/KrNBXBz89ZdqoBKytmkDrVqpgZYNGtx6dR/vGgxDlRhq2lRlwk9MVDcvPFz1JZvZvx/eeEOpZnM/s/aCacqBshRdBf3sFNiXaRhGCEp0dSnJAW5kdJ9Go7lF8PZW3T8tWpRbIWRzOEVWdhZrTqzh5/0/cz7lPAB1KtfhgTYP0KtZLxxsczwgTk6qvFDnziq+//hxFfO/Z496dp88qdrv1/4yurgo8XXPPSq1WLNmyjumf6oqgGrVVJ3OkJDc86OiVHqK8HDVQImutm1VOorAQH3DNGVCWcZ0BaFitEKvTU8GEJF386znAywB+onIkYL2VVBMV3x8PI6Ojjg7O2vhpdHcLhw/rlxBFRDcLCJcSbrC3pi9fHfkO+JT4wFVpmeY5zCCmwaXeBRiZqbqwTp0CA4fVq9WA3otVKmi0lU0aaLSVZhb9er62V5hJCSobsfwcPWakqLm160L//tfzo2JjlY3rqxrSGnuKAqL6SpL0WWHCqTvCcSgAukfEpH9Vus0AdYAj+aJ78pFQaLLZDKRkJBQohQMGo2mghBR3oWTJ6FqVdWdU44PsezsbGKSY9h5bidrzq/havZVGldtzHDP4XR164qNUTq2iKh63IcP5yRWj4pSvVwFUaWK0qD16+e0evVUq1FDC7JyIztblSnYtUu5NgcNUvMTEmD0aOW+9PFRgXx+fmU+2ENz+1PuouvaQe8FZqBSRnwnIu8YhvE0gIh8aRjGN8ADwMlrm2QVZGRBokuj0dwmZGXBrFmwZo0SWs8/r7KRlgOZpkxWH1/Nzwd+5kLqBQDcqrkxwmsEnRt3Ljcv+aVLSoCdOqWSsp45o16Tkwvfxs4OatZUXZO1a6v8nzVrqlajhnp1ddUOmDLl8GH44AM4r7qgLfnj6tRRXZEPP6z+RGRlqfmGkaOUbWzUe/Or5q6iQkRXaaFFl0Zzm5KeDu++qzwIjo4waVLugOYyIis7i9XHV7Nw/8JcYmuk10g6Ne50S4QkiCgPWGwsnD2b086dU8/4wrxj1hiGCltydVWtenX1WrWqml+1au5WpcodINKysiA1NXdLS1NZbrtYhQUvWaLcjg8+qFQqqMy34eGqXzgzU+3L/JqVpUY0Wr9mZ8Mnn6gKCRERKquuuaRBvXowf776M/Hll+pYdnbKK1ZQjKKNjWq2tjB+fM4fj7VrYd48FXc2apSad+aMOpadnRphaW+vmoNDzrT5faVKqrm5qcSxoL53p04pW6wHCIhoAVhOVETKCI1Gczdz+TK8+abqtqlWDaZOBQ+PMj2kKdvE2ui1zN87n7jUOACaVG3CSO+R5erZKg6GkSOW2rTJvzwjQz3HzS0uTnnMLl5UvV4XLyphdvmyasWlShX1LHZxUe/NzdlZvVaunPNq3ZycVHNwKOXndnY2HDyo3H4drAa4f/+9Eg5JSSreKjlZvV6rD5sPw1CjHczGrVun3Is9e+aIrpgYVYCzpPaZ+36PH1eCZ9AgJbycnJQwqlRJ7dvs8apcWalcZ2fV7OzUfrKzc9Yxk5ysVLa12zMpCfbtK5md996bI7pOnoR//UsNUvnoIzXPZILBg9WfH3Mz31Qnp5xp882uXFnFt3XqpLYXUfutXFm5Xm+h79LthBZdGo2mbFizRgmuevWU+CrDIfnZks2GkxuYv3c+scmxADRyacRD3g/RpUmXW0psFRcHB2jYkCKTsWZlwZUrSnRdupTzeuVK/mbWLuZ27tyN2WVjk/85XalSzqtjJaGqJFIt8wLOGRdxTr9I5auXcEpLwDHtEpVSE6B6dRInTlXOGnuDWv9vMraGkBW2BIfKdsobt3ev6t4ryIAqVXKEgbk5OiphYfYy3X9/TkoSM/ffD926qYtrZ5fjQbK3Vx4oOzv1am5mz5SZZ59VzZrQUOWl+uUXiIxUoymsY41F4LnnoEcPJbpMJnU8Mz17qsSt1ilTmjSB//43xyNnbhkZqpnfX72a8+rpmbO9nZ36g9O4cc689HRlS1qaasXB0zNHdGVkqPOwt1fnaub119W/AGsFb63irafN7S6OidOiS6PRlA2DB6uHQ2homWUQFRG2ntnKj5E/cvqKSgtY37k+I71GEtw0uNQC5G9V7OyUprDWFUWRnZ3jNLpyJbcIMzuS8vbcpaTkPKfT0iA7PQPbhEQuVKpt2e99xz+hxtWzVM2IxyUjAVvJ7c3JuNbMPaZXHGrxiSWLo8GIE+3INmxYOiyTDFs7lUkkZRSONlfJdnImu7IzJidnpIozNk6VsLM3cvW6Wdoc9ap65Xqo95ut9VUT7OyaYJ+h5lk3a91l/d66FardHRxgxAjVMjKU8Nq7V3mrDh9WecPMYnDePFVzytMzp9Wrl3vnVaqolCo3SvPm8PHHuedVqQK//qrEV3p6zg21fm/uqjW/r1PH6iZmKBGXt+v0zBlVUaK4VK4MCxfmTP/nP+rD9/rrOYXLN25Url0XFyXSzK5Zc7uNk9rqmC6NRlN67N6tYkuKqwJuEBFh19ldzI2cS9SlKEDl2RrhNYIe7j2wtbG9zh40RZKSkhNsZm+fU9/wwgWyxz6GyaU6l2Z8z9Wr6pld85XHMS7EkW1Swu5qJRfSKtci1akmKY41SXGoTpJ9DZLsa3DFxpXLtjW5bFcrl6PG7MTJyKjYUy8Kw8gtwqydY3Z2yjGWd5m9ZGDjYIeNnQ22thC8dhr1YndaYu4NAzIqu5JYvzUX7ulAnFfPXM62vE4382tB8wp6Ley99by8y8zx/wWtZz1WAFCCy6zYC2rmZcnJqjk6wv/9X872Dz2kPJI//phTkWLaNFXQvDAcHJQYq1o1R4hNmKBeQXkc09JUxuIKqnKhY7o0Gs3NYTKpH1hzxHd6ek4QrznQeMkS9UP30UdllotrX9w+ftjzAwcvqNqINZxqMNxzOH2a9ylxnq27GpNJeRPOnMkZTnnmjBJb1lH8Hh45oqtGDWwc7LGp4kCdGlk5Xo//jFcPwlq1VLsJT4SI6jY1izHz+7y9a3l73azj4q2bOUY+b9x83mUmU84883tzPL25ieTst/jkvhbbHV+nbt3juCXvp0nSfhonHaBy3GWI3krsUUd+PawC7CtnJtLp7GLOOLfijHMrkh3K9o9MSTAMa4FWCxubWvkEnLVwyzWdCTYTcqarOX+MY6UkLr3pgmGr5t9zqhs1pQmOGVeolJmsWkYSDhnJVMq4gm12BhgJGCRcMwhWyESyHdU+O61cSO3YSP4Z8BYXG/thGNBy+1zc9q9kf8izeD/dhWbNKuba6V8ojUZTMElJOTXsoqNVsK/JlH89ERVEHKtiqUhIUDXw7rlHtRYtVLvJYXNHLx5lbuRcdp/bDYCLgwtD2wylf4v+uTLIa/JgPWJNBKZPV/fz9On8Qd1mHBxUDF6DBuR6OtnYQFhY/nvZLt8f+hvGMHK6C6tUKbXd3jQiOSUbCxroaD3g0TxtvSyn2WIyeZCV5UF29iDSMoWsC2epfPIgTV3qMrqR2qbG4QO0WboESQFJgTTnOlyq04JLtVtysVZLLtbwwGTYYTLlxOibj2E9XdBr3vdFzcvbRHKEcelQTzWrHsoD9FA1bSpda3luhH32VZyyklQzJVE5K4kDW5wsdXCy4ttQP7MSq8Jrk3AtM6jNiURc4pPZsMWemgOpMNGluxc1Gk0OFy7A1q2wbZuKRzHnJTJTs2bOSK7KlVXcx19/wbFj6pe4RQv11My7XbVqylvSsaOqFl3QkHpzHIy3t/KWXZt3etdafnQ8yparRwGobF+Zwa0Gc3/L+3GyL/96jbc0JlNO4HdSkqovmJysUhqYefJJ5akE5ZVq1Ch3a9hQ3efbcPDBHcXp07Bhg/peHDqkPMtmDAMWLFDfQVBeZlfXcsmcL5JbgOUVawUtL+l03n0UNd/cTKaC17XMyzRhm5ZMlr0TAUEONGhQppdJdy9qNJoiOHoUFi+GLVvULxSoh7efnxJLnp5KaFl3G125Au+8o957eeXk4MrIUJ6UqCglxiIj1VC5P/5QzWRSQ86HDIGBA9UD5NAhGDNGbevgAHPmcD79Aj+9N4q1rpcRWxsc/NtzX8BDPGDrjcvB42B3Mpc4yyfY7nSSknKusTn1vYsLfPihWu7srIb4p6erdc3xLs88o0bKNW6c89DW3Ho0bpyTtys7W6XPOHJEBeYnJ+fcOxHVnX/5surmb95cdQk3b648zQ0blqoQM3ctWg/qvD2wBSomvssaLbo0mrsVEZW0dPHinNxFdnYqV1JQkOoyKqp/Z9MmOHBAeUWmTlXFBUGJJnOX4qFDKtdPzZqqe3LlSvjtN/UQWbYM+vRRgbSJiUpwNWxIQvwpFq7/iFUpe8iqfhm7Sk70Oe3A8CojqeHYMZ84A/LPa9XqzhJiaWlKXB09mtPMWdKtqVxZXVtzEM1//6uuv1lwgRLSmtsLGxs1ArJpU/WdsSYzU/3pOXJExegdOKCamXHjVKoMyAl6b9z4dlRNdwRadGk0dxsiamTQ998rjxSoh3W/fsrzVNyRh/36qVFJPXooUZWXArxX2NvDnj3q9eRJJSS++QbS00lKjGdx/fMsb5tGhk0NDBdnelxy5aFT1aibXRn8gpSIuibOiI3NEYsFzbsThNjcufDPP8rLkTcUxMFBeTOaN1cBKs2b5+9eKuNktJpbAAcHePVV9T4xUX2nrFvz5jnr/vUX/PST2sbNTX1umjVTf5iaNs2dK0xTJmjRpdHcTURHw7ffqhgQUALr/vtVLq3rRS2LKC9VQIDqajQMGDo0Z3leQVOQQPL2VsfJzFSC4MUXST0YybITf7CkxVVSs6+CqyudnNvwcL9Xadw1Nb9IcnBQ+7O3z8lllHdeYeKsICF2qxAWprpiJ03KuRcxMUqc2tqqh6OHh+oyMie+1N4KjTXVqqnvp3WpLWux7uCgcoKdO5fjMTXTsGHu2L/t23PKHen4vlJDiy6N5m7g8mWVlPHPP9WPcJUqKpFj//65s2MXRkYGfPqpqhPXtKkaAWcdDF+QV8vbO78YatVKLdu7l6ttWvKbzTEW2Z0gya0mxJloeyqDR47WxWPfKdjwrkqwev/9ObFkVtvnEmIFzSuOEKsI79eFC6r758gRePzxnAfa9u3KlsOHwd9fzXvwQVVyplmz2zohpKYCsRZMDzygWkqKigM8fhxOnFDNzS1nvcuX4a231HtHR7XMurVoob1iN4gevajR3MmYTLBihRJcaWmq6+nee2HkSJVYsDhcuKBig44eVYG6L7ygRr1ZC5WwMFXY2ixoJk1SXrACBE1WdhZ/HvuTnw/8TEKayrPTulZrHvV9FC/nZrBqlcqcbc5y7eqqhFe/fiXLIZD32GZhmJmphFh5xIOJqJGC+/aptn+/irsxM2uWErGgRFdWljqmdQyWRlMeWKcWOXsWvvpKibGEhPzr/ve/OV7m7dtVfKGbm/KMubpqzxh69KJGc/dx8CB8/nlO3Fa7dvDYY7nrsV2PiIickVF16sBrr6mMlcXxaoESLFZi6+/jf7Nw/0LiU+MBaF69OY/4PIJ/ff+c+oiDBsGAAbB5s6rxdvy4ij8LCytZ3JnVsS3TeT1iYWGl2w1pzlm2d69q+/fnf2hVrqwKE7dpk1tcBQYW7xgaTVlgLZTq11dZ4UGNUj55Mndr0iRn3b//VqOezVSpon5jGjdW37OQkHIx/3ZBiy6N5k4jKUkJhVWr1HSdOvD006qobkmYP181c9Hg8eNVwG1BQmXo0IK7+ABTtom10WtZsG8B51PUiLvGVRvzsM/DBDUKKrgYtZ0dBAer4sQREbBokYp3WrxYecF69FBdj40aleyc8gqxgsRiYd2QULQHbONG+N//VMVpa6pVUyk3vLzUa9OmZZ5LSaMpNapWVZ/3wmpBduyo0pOcOqVyi6Wk5OQWS0vLEV0JCepPW8OGOfngGjZUCXirVr1rvGNadGk0dwoi6l/n7Nnq36mdncqFNWyY6hYsKdWrq+HlZ84oT9eECcX2aoHybK2PXs/C/Qs5m6yScTZyacRI75F0adKleMWoDQPatlXtyBElurZuVYJy1SqV3mLIEOU5upEf7cJixAo6P+u4taws1U3bp496aOzdq673pUuqe8XbW4ksb2/1gLlLHiiau5CQkBxhJaJ+K8wlpawLZptLTZ0+nX8fVaqo8ARz2pmoKPUdq19feYPvoO+PjunSaO4EoqNVV+JBVY8QHx/lmSqpJ+jCBRWvBeoH9MsvlfemGLFaZrKys1h9fDWLDiyyeLYaODdgpPdIurl1K57YKoqYGFi6VAlMcxG8li2V56tjx9IZ0Wd9fg0bKi/b7t3w3Xdq+tAh9e+8SxeV0iEjQ4mu//s/6N79jnpIaDSlQkZGTp3PmJic0mExMaqyxbx5OXGmb7+tvleguuPr1cuphNGqlfqzdYujY7o0mjuRtDSVd2fZMpUU09VVjYgLDi7Zgz8xEb7+WgmZwYPV9q1aqX+w339/Xa8WQIYpg1VRq1h8cDEXUlUQfEOXhgzzHEawWzC2NqWU3qBhQ3j2WZWte8UKlcbi8GF47z0lGPv3VykwbjQY/epV9RBISoIvvlDBxCIqJs7sAatWDcaOVdd448YcUXrhQk6G/dspH5hGU9Y4OOTkBbNGRP3+WH9fGzRQ+cViY9V30TzSEtRvk1l0xcXBv/+tEgDXravEWZ06OdPVq2PKziY1NZXU1FRSUlJITU2lcePGVKtWMdnptadLo7kdEVEP+2+/VbEShqGCz0eNKtkIPxFYt055s86eVYlLa9VSMVzFHMmXnJHMyqMrWX5kOZfTLwPQpGoThnsNL3434s2Qng6rV8Py5TlFtx0clMdpwICcLovCMJlUEsmICHX+Bw/mruZrZ6eC3oODVQBxRY+I1GjuEkxZWaSeO0dKdDSpp0+Tcvo0KdWrk9KsmRJRBw6Q8tNPpJhMpJpMlldzS/H05Ko5Jc7Fi+q3onp1Jr/1Fp06dSpT27WnS6O5Uzh8WImkw4fVdIsWqp6edebp4rB5M8yYobwzzs5KaDVsqAK9rQPIC/BqAVxIvcCvh37lj6g/SM9SxXibuTZjuNfwwgPkywJHRyWu+vdXZY2WL1cZ981xXy1aKM9Xt25qXVBewd9+UyJr7171b9qMYajko76+qrVpkztHVmmOiNRCTHOHIiJkZmaSnJxMSkpKiVtqairp1kW+Cz6I8mxdvZq/ZWWBYWAYBpUrV6ZKTAyVL12icqtWVK7AmqNadGk0twtxcaqrb8MGNe3qCo8+Cr16lTyGaP58FRiflaU8OR9+qOKhxo7N35WYh6MXj7L8yHI2nNyASUwA+NX144E2D+Bb17f8xFZeDCMnG3dMjOp6XLtWBeDv26cCdYcMUcHvHh4qLsycM6t+fRWs7+tb8jxZNzoiEm7tDPmau57MzEyLCEpOTi5QQBU03zydZe0xvgEsgqlKFUuznja/z/tqfl+5cmUcHR3Vb9KWLcqj3bOn+h5WEFp0aTS3OomJsGSJ8uBkZKgH+eDBKlt5cbNC5/WoXLmiutUaNFAPfGdnNQKwkLQPWdlZbD61meVHlnP4ovKwGRh0a9KNIa2H0LxGCb1sZU3NmvDUU0rUbNigBObly2oU56pVSmTVrg29e6sf4dq1S+/YxR0ReatkyNfcsYgI6enpFmFkLZDyvi9oXkZGxk0d387OjipVquDs7Iyzs3MuUWSezjvfulkEU2nQqZNqFYwWXRrNrUpiokoO+ttvyl0Oqots9OjcQ7Gvx8GDKm3EpUvqAf/99yo+qVkz5R0qIkA+PiWev47/xR/H/uBSuso/VcW+Cn2a96G/R3/qOtctrbO9OVJSlDdr717VZXjunPLmVaqkhNXYsRAfr8TWnj0qfu3sWZW89J9/1HUNClKBuKVBcRKzQn4hVlA5JS3E7mpEJJcgKkw8FSaosrOzb/jYtra2uURSXgFlPS/velWqVMFBl67KhxZdGs2txuXLSmytXJkjttq3V6V7PDyKv5/sbNi2TXWrnTql4pkSE3OSmf70U4EP8kxTJv/E/MOqqFVEnItAUINt3Kq5MaDFALo37Y6jnWMpnvANkJysBNPevUpsHT+ev7BvTExOPblJk3KWmUxqu3Xrcrocjh1T6SCaNlXdrB075ojS0qK0M+RrIXbbICKkpqbmE0hJSUn5hJJ5nrmlpqZyMwPeHB0dLUIpr0gqaJ71/EqVKlVcuMAdihZdGs2tgIgKjP/tN9i0KWf0XGCgKkxdXLF16JDKJ5WcDOHh6sGdnKw8KVWq5GSXhlwiQEQ4cvEI60+uZ130OpIykgCwt7EnqFEQofeE4l3Hu+J+gC9fVuLqwAEltsxpHMzY2eUEv/v4qLxdhf3LtrUFPz/VnnkGduxQgwrCw1W+s+hoWLBAjeI0J2b19S1+rcqSUBbxYFqMlQnWXXV5hVFBgimvF+pmhJOTk1Mu4VRYsxZM5mk7O/2Yv5XQd0OjqUiuXlUxRytW5OShMQzlaRk+HO65p/BtCyvofPy4SmHg56dGND71lKqDduRIrgexiBB1KYqNJzey6dQm4lJzCjG7u7rTu1lvujftjkulIoLK9+1T3XQBATn1EP/5B37/XQnGe+9V8y5ehP/8R8VavfNOzvaffKKC2Z99VsWXgUpEunmzEjsdO6p5f/4JP/yQUz7Hzk4JK3Pm91atbizrvoMDdO6sWmamup7btqlzuHAB/vpLNcNQnq+2bXOOV5LUHMWlNOLBtFesUAqLcSqq687aG2UymW742MUVTgUJKdvSSPiruSXQokujKW+yslROqI0b1QPenK7AxUWlNujX7/oxW+aHa1qaEm7ff6+6EK0fxCEhSuiYf7B9fcnKzmLfuQjCY8PZHrPdUp4HoKZTTbo06UL3pt1p7tgAIzUVzIIrI0MVwL1yBWbNyul2CwtTaRqmTcsRXRcvqpQN1sHpJpPq7ssbmHv4sCr5ceVKjuiaMUN5/EaOzBFd1avD0aNKMPz3vyoNhIMD/PyzOu/SEBL29uDvr9r48Uq87t6t2oEDys6oKFUH0jBU16W5cLWHh7K/NDyBNxoPBiXzihUkxG4DcWbuqsvrSbpefJO53YxwqlSpEs7Ozri4uBQqklxcXLTHSVMo+lOg0ZQHGRnKK7Rpk6odmJycs6xFC5VjqkuXwrvErB+GNWsqkXXypOpiS0tTQuDxx9X2V6+q2KRhwxAbG+KSzxN5PpIdsTvYfW63JacWQDWbynRx9KBr8x608QxR3Yc7d8K0F5VX58031Yr29iruKS1N2W5OqeDnpwSRdddbu3YwdWruoPQaNVR296Qktf+oKCWizp9XCQujonIe8kFBapk5HguUCPX2Vt18Xl5qnoiKSzOZlFg1M3OmEklPPaXOAZTX6tw5JUaqV7/+/TIM5SVs3lyNEr16VXVrmpOnHj2a0xX5++9qm8qVlTfsnntUa9pUHa80HrbFFWI30z1Z0Lwy8pIVlYqgOKPqbqarzsHBoUSCySywqlSpgr050aZGc4No0aXRlAUi6oFs7Smx9vK4uUHXrkpo5c0ZU1i34fnzSvS0bq3WS09Xx3FxUR6hVq2Q2bOJ3b2BffVt2X9pJXuX/Z+lJA9JyZCSgpubD+2bdaVdg3a0/nMnNj+GwfBW4HXNS1OvnnpgW3ttDAPeeEOJK+tutcGD85/7/2/v3KPsqOp8//lVnXP6nO7T6YSQhM4DSEgmQBSiBAEfswI6Cr4YH1y8ilfx4uhaoMPoDAOKI65xFiKDAwrodXlhHPU64wyoGS4oDHqBUXkGzDsQAiQd8ug8+nH6vM/53T9+VanTnY6Dku5O6N9nrVqn6nd2Ve1du2rvb/32rr1nzrQxxLZtgwcesOvw3HMmrPr6Dgw/a1YyhyLAJZfAxz8+PMzSpSYsW8f9qdfhgx80IdcqVuO53VrFzm9+Y9McnXee9eMC8659+9uWFxdckIQtl62psjX9bW2JFwwsLzdtsnxdv97W9+41Yb1mTbJfGJoH7NhjbZk717a7u19+8+Rog9a+nObJOF3/hTjTxYuprFrF0BNPUJw/n6HubhNM69YxtH49Q7NmMTR16qjjNsXLyx2K4GCdww+23bq4cHImEhddjnMoGBw078fTTydLf//wMAsWWD+nN73JKmAwQfWv/5pUkOvXw0UX2fHqdfuK8ZlnrNJra7OKvVyGd78bvegidukgzyyewbOdBTb94gts2reJAoPw5A4om8cr35ZnyYwlnPYf61i2ejczrvw4LI3mLls4YOeNmwbBRMEddxzYVBaLvVZKJfO4pdPJiPgbN8Jf/dXwju4xsTdo/nxrklu0yCr5kQJvNOLhLWLSaRsKYyRf+pIND9HaRJvPWzqPPz6x7dhhonDBguGi69JLTZDdcktyjCeeMNG7dGkyttnJJ9sSs3dv0gS5aZNdl507YetWW371q+Hx7Ooy8RXPFzdjhi3xejx6/u/L7/CKNU4+meKcOZT27KGoSvHZZxkKAkrlMkOlEsVCgeLq1RRFTFTdcQfF559nKJdjaHCQ4iWXMNTWRnPlSvs6NgjsmoA1mbfa8nnzig4MmFjP5y1coUBYKJDv7qajuzv5Yq5YJN/XR8fCheQXLTrol3bt7e3eVOccsfid6zi/D6VSUon29Njvli3WmXwk06cP//pt+/bhU85s2AAf/rBV1s0mnHNO4jXJZk1c3Xcf5be/lV1TlBc7Kmw9tpOtF59Oz1G9bB1YSXlwH/zHFkin9oueruxUljy7lVf153j1B/+W446LRokfuAtmPj9cYJ11li2ttIqectn6aO3aZQJi505YssSaEMG+/Lv+ejvG5z5ntrhZcc4cE5fHHWcia8EC82qN9ReQuVwiamPOPtuWVmbNgssvHy7kVC1/ymXz1sXcf7/1wfvMZ5K+Z7/+Ndx8s83x+Gd/Ztd1yhTz6p1xBlx9tTVL9vSYEN250+6BF1+03/5+WzZsOGg6dNo0Kl1dlPJ5yvk8pbY2SpkMpUyGcjpNKQwpAqVmk1K5TLFYpFQq7V/i7XjC32EepqlTE0H0ox+Zbc6cxLZ2rYmmSsXu+yCwa9XXR0aVjs5OOioVOvJ52tva6Ghvp2PaNDoKBTqWLiV/4ol03HQT7Y0G+Xqd/N/8DR25HB2f/jSZeh3ZtQu++tUDPwBYu3b0ps34ur/UvmhHQP80Z/IxpqJLRM4FbgJC4Duq+pUR/0v0/9uBIvBRVV05lnFynFFRtYp23z5rAtu3z8TQrl3J8swzVlm2vrWDVUzFovU1Ouss66NVKpl46u62prPbb7cv9cplE1T33IOuWkWhWaKPfvZJib1bH2LfnAx7Uw12ZwfZ2QG7MnfRv+pB+NBUeGEA+suw5UFgHgBdbV0s3AEL00ez8KOfZ+FRC5mem46EK8wbc/TCROS885322zpY4sCAdYTv6zMBEKd79277HRo68FpVKonoOvZYE1Pd3cn/XV3WFHi4D4zY1WWj0bciYv3EisXh8T/tNGsObJ08e88edGCAarlMdXCQSqVCZccOKt/6FpV8nsqMGWarVKjcdhvlLVuoXHQR5TPPpFwqUXn8ccrr1lGeMoVyJkO5v5/yvn1U9uyhVK1SDgLKcafvZtPi9ru8gGFoTaqplK3HS8u2hKFNj9LRQe6YY+hYtIj2fJ72zk46pkwhF/22t0yj0rFrF+1bttBx6qm0n3oqHVu3krrkkmSS7+uvtzjEE3/n89afbvVqu9fj5srdUTN3vW7NrK1fXb6cfmcv1fb7fDxwMMH2cvZ3EegwhqJLRELgFuBPgB7gMRFZoarrWoKdByyKljOAb0a/48tYPEiH+pgex+FhV62y7RNOsIJ+3ToLt2CBFeiVijXxrV9vb8hHH21CaPNma/6ZOtU8IoWCeapefNGa79rbTYANDpog6eqC6dPRwiCNJ1dSa9aotaWpnnk61e6ZVCtFaht+S1kaVDbtpfzRc6g0n6X8xb+kWC1QbAsoLphHsVZkaFEvhbQykFEG7/k4g/k0esY2GBywdL1misWzMsM8I5UKhDVSQYpZ3YuZJbOZ96s1zGu8lnnz/5R54XQ6awKF1SYIntgJpedN2BWLJphmzjTBADYP4c03m8fnssvM1tsLN9ww2lNhZDLmsZsxwzxDM2cOb1I7/ngTk6Ptd4hQVRqNBs1mk0ajQb1ep9Fo7F/i7Xq9PupSq9UO+jvaUq1Wh60PW558MlmvVKjV6zaI7X33WWTrdROr+/bBF76QJGLtWsuTf//3pNlw61YT8fPmJX28mk27F/N5GxKjWqVNhOzq1WTrdXJLlpALQ9qbTbI9PeT6+8lNn04ulyMXBLRXq+T6+2nPZMjNnGm2ICC3cyftqRRtc+ea11PVPHC1mt3jcX7FkwV3dNgzksmYaKtW7Zm76y4TWsuWWdy7u82WydjHDC++aEL8kUfs3hoctLSn0ya6wtCeww0bzFYuW7Nro2Fx2bTJ7JmMfcE6MGD3XW9vMnRHoWDe1J07rXlYxO717m6z/frXZiuVEttjj9n1/+Qn7TyZjE0aL2J9CGPb7beb7WCC7XASga/Ecn2i4jOOyMv5CuR3HljkLOAaVX1btH0VgKpe2xLmfwH/T1V/GG1vBJar6rC2mmXLlunjjz8+JvFkwwYufv/plOM3+nwnCDBUgGZ0baZOtYJyz25oNK1gbG83j8ee3Rau0bBK+8QT7QF+7rmko3NHh7nmhwrQBFArVPP54ftn22DKVNi3BxSoN+wBPSYqdFTt2GEKUiGUSxBnXzoDYQD1mtkECEJbb0ZvywK0Za1i6OxECwU7ZqMOEtj+lUqyfyrqTN1sWLi4T029Ee0jFrA9Z/2H6jU0kwERdMYM6zNTqyVv57mcxa9aQwOxazJlCpTKlhZAwyDpYDxURBsNNJ2y+Eybhu7ZY9cKUBE0FUKziUaegGYgkM2ijTpUqyiggaDpNIqitRoq0EyFaGfeLs9Av/0KNMOAZgDNZpMm0AyhObWLRrNhhXbsJcpmrTKq1y3+YE18x0Qen209lq8ilodhYPdDbOucAmFAut6kvW+I9kZA+2ln0j5jDu3pdtoffZIpm7fRuewNtL9hOSKCbtwIv/wloz2xrc/xsP/POANOOQVVRZ991oTX/Pno2WebrVSChx9Gs1k0m7Vrl8uh7e3Q3h5dNzv+yAXsOqnq/t/W9WazecB6qy0WUrGYal1vFVkvZxqT8SCTydDW1kZbW9v+9UwmQzab3W9va2sjk06TzWbJ5nL238AA2b4+ssceS/a44+y/vXvJ3n8/2TlzyH3oQ7S1tREEgTVfFgpWWccC6dprTWBccYV5WIeGbDyzb37T+lS95z12z+7ZYxOah6E1Z5fLJkjuucc8uKefbs9cuWwvJc8/b6ImbqItlRKv1SmnJAlftcr2efWrkzlAt2yx5/7YY+0YhYKJnt5e+2p08eKkn9e2bRanU0+130LBXohqNXuZSqetn1i1as/Z/Pkmop56ysqASsUE2QknJP3JajVr5p07115cmk0LO22alc+9vZaOYtHSnEqZMIyb8zs77VxDQ8k1mTkz8SRu325hh4as7Mpm7fq2t9t16uxMXto6Ouw8s2bZf/v22T7FoqVlaMiuQTptx379682b/sILdtwgsKbrF16wjzMyGVuWL7dzPvyw7ZfNWteEXM681ps3W1rDEN7yFjvmunVmS6fNtn27CeNUyvZ/61uT+ycILD3nnmt5escddh07O80mYpPFV6sW7l3vsnArVtj1SqdtYnkRE+SFgh3zwgvtBW7PHvOE12p2jc4/3/a/887kI5b3vc/2/+lPLV5haINEx+eJv/5+3/ss/itW2DVuNGzar1mzkjhWq/ah0cKFZms0LE//5V/GVHiJyBOqumykfSybF+cAW1u2ezjQizVamDnAKB1kxojVq7l/cIhKPaqq9g4cGKZ3HyDDOwZXh6C/GIkRrKarluG3a81WbyThq4UDj7l3EPYVDtx/cEciemLbc1ujyppICI4yc3ulnKzH+1I70DYU2QrllvMoo9bkVF7aMUu1ZP9qJNoKPSZQgf1/llubqhRoQnGfre8/fwOKgy1pBar16Dx7odYYcYz68G1RGCoNT5MoBPX9hwcgVKg07MEebDlEEO0UR12A3UMggtQUaUIABJ0ZgkwGaSjBngpBUwlTQlBNEUhA8HxIWGsQIoS5DGEQEtbTpCo1UmGaVDpDSgWTozaoZ+NZGOwdZJBB2NWAArDpBRi61+LS358UYEFgcQ8CK5Baf4PACtMgMG9Kb2+UpqZ5pkRsCpz9aQ6SwmlglPv/MCAIAlKpFEEQEIYhqVSKMAyHradSqQOWMAxJp9Ok0+n9tng7tsXrbW1tw/5Lp9NkMplhSxyudfuQj9L/xjceaPv2tw+0XXaZeU+6uiy/u7qs8p03z4TH4sUWrlKxyjoIrJKKWbLEKv0LLki+oH3oIat4zzjDKvdKxe6hf/gHEy6f+IRVlrUafO1r5r36xCcSsXL33eZVWr7cxFSjYULqxz+2c5x7rtkaDZt2qdEwwShi62Fowm3+fAu/YIEJhp6eZNiQ2bNN2K1fbxX8okWW3r17LT2lUvJRwr59tr1jh4mS2GsXhna+uOm1XLbr02xaOoIg6ccmYs3v8UcVcZ/McjkZAy9+LotRnRALr/jZKhTs2AMDZqvXzStYrVq8ymUTuz09iacxHkolHt8uFoabNlm6KpVk36eftvyJX/ZzOYv/+vUm2mIxUyza9dy922yxMFyzJunLmMnY+qpVlrb4OgwNJbY4nUNDJnhjW71u98aTT5ptaMji3mzaxyizZ1u6YyeHqs0EEYdtNOwYsa1QsP1V4dFHh9vicOm0Xet4+JyVK81RMjho+RPHMfa8xtcxbtoeZ8bS03UB8DZVvSTa/jDwOlX9VEuY/wtcq6r/GW3fD1yhqk+0HmusPV1/d+GbqA30A2JvaILd6PWohl6wADrzsGGjeXjqDXvjmjnDbNqEas2aht74Rsvkhx+2m0MV5s4x71RPT+Q1IioYpw0/5owZ9nb49NOJV2v6UbDgBHt4mtHb3dRp9mDs3Jn09TjqKLv59u5NvFJTpth6XJGK2BtAvW7hX3ghKWSmTLECaNeuZP+jjrLf/n5E1R68o4+2G37vXiQIIRDrKN3XZ28w2ZyFW7bMHu6dO0ACJBCYf4INuLmtx7xoqRQsXYr09ZnbNwytYDjzTCSTgfUbkJ4e6MgjqQB5z3uR//yVXZ8wRCRATlsGxSFYvZowCCGTQZafjRRL8MADBCLQkSe44AJEQuS225Bmk2DKVOR/foxAQoJv3ExQrRGk04TvOh+RgPDHPyGoNUiFKcL/diHBzGOQ3l4rvLu77QvEuMB9/HEr7JYuTabrWbPG4jl3roWPCm9pFUattjC0gjI+ZpwHI4gr+NaKfrRKf7Rwo9lFZP/Suj1yPQiCUcMGQWCemChM/BuG4f7/W8OJyP7/wjDcb4/XR/62Hss5QlFNhvpo/Wghrig7O5N7fXAw8TjFzbDFoomMXC75CKTZNHEWD1Ibs22bhZ87N/G+7dljFW4szFavtn6XqZSVo/FcnPEAs/F8pxs2mDDN523/2bNNrKxZk3wFm89b2tautbBxmZ/LWZl90kn2TPf1JQMEn3SSxeXBB61pPu53d8MNds4bb7R4pdMmdjdvtgGBY6/UDTdYfK6+2tLf0WH96mbPhnvvhVtvTZqFr7/ePH433mjHa2uD664z4fPlLyflzle+Ytf+qquSdF0bNUp96lNJHRHbPvOZRBxed53ZrrjC6r5sNunnd/XV9rKYTptInz/fysrPftbqkXze0gbw139toimbtfiANdEPDFh64mN+8YuJeP3yly1N11yTtERceaXVU9dcY3Gs1Wyw4wUL7Mvmet3i/f3vT4iny5sX4ZXfZu1xPCLb/h3HeYXzSi8zj4Q4jhETIbpSwNPAm4FtwGPAB1V1bUuYdwCXYV8vngF8XVVfN/JYYy66HMdxHMdxDhHj3qdLVesichnwc2zIiNtUda2IfDL6/1vA3Zjg2oQNGXHxWMXHcRzHcRxnIhnTcbpU9W5MWLXavtWyrsClYxkHx3Ecx3Gcw4FgoiPgOI7jOI4zGXDR5TiO4ziOMw646HIcx3EcxxkHXHQ5juM4juOMA2M2ZMShRER6gRcmOh6O4ziO4zgvgeNUdcZI4xEhuhzHcRzHcY50vHnRcRzHcRxnHHDR5TiO4ziOMw646AJE5FwR2Sgim0TkyomOz2RFROaJyC9FZL2IrBWRP4/sR4nIfSLyTPQ7baLjOhkRkVBEnhSRu6Jtz5fDABGZKiL/JiIbomfnLM+biUdE/iIqx9aIyA9FJOv5MjGIyG0isktE1rTYDpoXInJVpAc2isjbDmVcJr3oEpEQuAU4DzgZ+O8icvLExmrSUgc+q6onAWcCl0Z5cSVwv6ouAu6Ptp3x58+B9S3bni+HBzcBP1PVE4FTsTzyvJlARGQO8Glgmaq+CpsK7wN4vkwU/wicO8I2al5Edc4HgCXRPrdGOuGQMOlFF/A6YJOqblbVKvDPwPkTHKdJiapuV9WV0fogVnnMwfLju1Gw7wJ/OiERnMSIyFzgHcB3WsyeLxOMiEwB/hj43wCqWlXVPjxvDgdSQE5EUkA78CKeLxOCqj4I7B1hPlhenA/8s6pWVPU5bG7o1x2quLjoskp9a8t2T2RzJhAROR54DfAIMEtVt4MJM2DmBEZtsnIjcAXQbLF5vkw8C4Be4Pao6fc7ItKB582EoqrbgL8HtgDbgX5VvRfPl8OJg+XFmGoCF10go9h8HI0JRETywB3A5ao6MNHxmeyIyDuBXar6xETHxTmAFPBa4Juq+hpgCG+ymnCi/kHnA/OB2UCHiFw0sbFyXiJjqglcdJmKndeyPRdzAzsTgIikMcH1A1W9MzLvFJHu6P9uYNdExW+S8gbg3SLyPNb8fo6IfB/Pl8OBHqBHVR+Jtv8NE2GeNxPLW4DnVLVXVWvAncDr8Xw5nDhYXoypJnDRBY8Bi0RkvohksA50KyY4TpMSERGsb8p6Vf1ay18rgI9E6x8BfjrecZvMqOpVqjpXVY/Hno9fqOpFeL5MOKq6A9gqIosj05uBdXjeTDRbgDNFpD0q196M9VH1fDl8OFherAA+ICJtIjIfWAQ8eqhO6iPSAyLydqzPSgjcpqp/N7ExmpyIyBuBh4DVJH2HPof16/oRcCxWmF2gqiM7RTrjgIgsB/5SVd8pItPxfJlwRGQp9oFDBtgMXIy9UHveTCAi8iXgQuyr7CeBS4A8ni/jjoj8EFgOHA3sBL4I/ISD5IWIfB74GJZ3l6vqPYcsLi66HMdxHMdxxh5vXnQcx3EcxxkHXHQ5juM4juOMAy66HMdxHMdxxgEXXY7jOI7jOOOAiy7HcRzHcZxxwEWX4zgTjohMF5GnomWHiGyL1gsicusYnfNyEfkfo9iPF5E1h/A8GRF5MJqDz3GcSYwXAo7jTDiqugdYCiAi1wAFVf37sTpfJIA+ho3ePqaoalVE7sfGbPrBWJ/PcZzDF/d0OY5z2CIiy0Xkrmj9GhH5rojcKyLPi8h7ReSrIrJaRH4WTSGFiJwmIg+IyBMi8vN4qo8RnAOsVNV6yz6/FZHfAJe2nP94EXlIRFZGy+sj+/dE5PyWcD8QkXeLyBIReTTy0q0SkUVRkJ8AHxqLa+Q4zpGDiy7HcY4kTgDegU0m/H3gl6r6aqAEvCMSXt8A3q+qpwG3AaPNMPEGoHUC79uBT6vqWSPC7QL+RFVfi3mqvh7Zv4ON/I6IdGHz6t0NfBK4SVWXAsuwedwA1gCn/4FpdhznFYI3LzqOcyRxj6rWRGQ1Nm3XzyL7auB4YDHwKuA+m/KOENg+ynG6sbnwYtE0VVUfiP77HnBetJ4Gbo6m2mkAfwSgqg+IyC0iMhN4L3CHqtYjT9nnRWQucKeqPhOFb4hIVUQ6VXXwEF0Lx3GOMFx0OY5zJFEBUNWmiNQ0mcesiZVnAqwdxWM1khKQjdYFONh8aH+BzdV2KtYyUG7573tYk+EHsP5hqOr/EZFHMG/cz0XkElX9RRS+bcT+juNMMrx50XGcVxIbgRkichaAiKRFZMko4dYDCwFUtQ/ojyZch+F9r7qA7araBD6Mec5i/hG4PDrG2uh8C4DNqvp1YAVwSmSfDvSqau3lJ9FxnCMVF12O47xiUNUq8H7gOhH5LfAU1t9qJPcAf9yyfTFwS9Q8WGqx3wp8REQexpoWh1rOtRMTb7e3hL8QWCMiTwEnAv8U2c/G+nw5jjOJkcQ77ziOM3kQkR8DV8T9rv6A/duxvmSvVdX+/yLsncBVqrrxDzmX4zivDNzT5TjOZOVKrEP9742IvAXYAHzjJQiuDPATF1yO47iny3Ecx3EcZxxwT5fjOI7jOM444KLLcRzHcRxnHHDR5TiO4ziOMw646HIcx3EcxxkHXHQ5juM4juOMAy66HMdxHMdxxoH/D+hhtEPnOZ+LAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.371, 'epsilon': 0.18810000000000002, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACjC0lEQVR4nOydeXxNV/f/3ydzDBFzESSIJDJKiFnErFRRWqqKVrU6t78OfJ+2dHj69Gm1VOc+bWlVUZSqaqtqLkoQMQ8hQkKESGSU5Gb9/tjuzTyRSLDfr9d+3XvO2eecdc69ueeTtddeyxARNBqNRqPRaDSVi1VVG6DRaDQajUZzO6BFl0aj0Wg0Gs0NQIsujUaj0Wg0mhuAFl0ajUaj0Wg0NwAtujQajUaj0WhuAFp0aTQajUaj0dwAbKragLLQoEEDcXV1rWozNBqNRqPRaEpl165dF0SkYcH1N4XocnV1JSwsrKrN0Gg0Go1GoykVwzBOFbVeDy9qNBqNRqPR3AC06NJoNBqNRqO5AWjRpdFoNBqNRnMD0KJLo9FoNBqN5gZQaaLLMIxvDMM4bxjG/mK2G4ZhzDEM47hhGBGGYQRWli0ajUaj0Wg0VU1lerrmAQNL2D4IcL/aJgOfVaItGo1Go9FoNFVKpaWMEJFNhmG4ltDlbuA7ERFgu2EYzoZhNBGRs5VlU3Hs3w85OTf6rLkYRtnWXcv+ebcVt66o5bx98763uirTrazy9827bGWVvxkGWFvnLltbl+/6NBqNRqO5FajKPF3NgNN5ls9cXXfDRddbb0Fq6o0+6+2NWYhZW4ONTe5rwWZrq5qdXf5mbw8ODqqZ39eokdtq1lSvtWurbVrkaTQajaaqqUrRVdRjUG64FUC7dnDlStn6SgVbWJ7jFdW3tHXm92VZZ255lwtuK6rl5BR+n5NTuJlMue9FIDtbtbLe+2vFxgacnHJbnTpQrx7Ur69avXrQoAE0bKjEn0aj0Wg0lUFViq4zQPM8yy5AbFUY8tprVXHW2xezQMvOVgIsO1sJMvNrVlauIMvKgszM/K9XrkBGRu6ruaWnK49lWlrua3Ky6peQoFpJWFtDo0bQpAnccQc0bQquruDmpsSaRqPRaDTXQ1WKrpXAk4ZhLAI6AUlVEc+lufGYY7/s7G7M+TIz4fLl3JaYCBcvKhFmfj1/Xr0/e1a1gtSrp8RXq1bg5aW8ozVr3hj7NRqNRnNrUGmiyzCMhUAvoIFhGGeA6YAtgIh8DqwG7gSOA2nAxMqyRXN7Y2enhg8bNCi5X2YmxMVBbCycOwdnzsDJk3DqVK6nbNcu1dcwlAjz9gYfH/D31yJMo9FoNCVjSEUHKVUCHTp0EF3wWlNViCgRdvIkHDsGBw6o1+zs3D42Nkp4dekCnTqBs3OVmavRaDSaKsYwjF0i0qHQei26NJryk5kJR44oAbZ3r3o1/ykZhhqC7N0bQkLU7EmNRqPR3D5o0aXRVCJJSbBjB2zbBnv25HrBataEPn3gzjuhWbOqtVGj0Wg0NwYtujSaG0RaGvzzD6xeDYcP564PCIBhwyAwUOcN02g0mlsZLbo0mirgxAn49VfYsEENSQL4+sKECdC2bVVaptFoNJrKQosujaYKSU2F336DZcsgJUWt69oVHnxQDztqNBrNrUZxoqsyC15rNJqr1KwJI0fCV1+pVzs72LoVHn8cvvhCJXfVaDQaza2NFl0azQ2kZk0YPx7+9z8YOFCtW7UKnn4aDh2qWts0Go1GU7lo0aXRVAH16sETT8CHH6pSQ2fPwssvw7ffqlJHGo1Go7n10KJLo6lCXF3hgw9g1Ci1vHQpPP+8SsSq0Wg0mlsLLbo0mirG1lYF1P/3v6rYdlQUvPCCivnSaDQaza2DFl0aTTXBywvmzIF+/VR6iXfegeXLczPdazQajebmRosujaYa4eAATz2l8niJwDffwGefgclU1ZZpNBqN5nrRokujqWYYBtxzjwqst7VV+b3efBPS06vaMo1Go9FcD1p0aTTVlO7d4d//Bicn2LVLibDk5Kq2SqPRaDTXihZdGk01xssLZs6Epk3VjMbp01VtR41Go9HcfGjRpdFUc5o0gf/8B+64A44dU0ON5jqOGo1Go7l50KJLo7kJqFdPia169WD/fjWzMTu7qq3SaDQaTXnQokujuUm44w4lvGrXhp07YdYsyMmpaqs0Go1GU1a06NJobiJatIDXX1epJTZtUukkdB4vjUajuTnQokujuclwd4fXXlPpJH7/HX7+uaot0mg0Gk1Z0KJLo7kJ8fVVpYIA5s5VcV4ajUajqd5o0aXR3KR07QojRqi4rnffhYSEqrZIo9FoNCWhRZdGcxPz4IPK63XpkiqYrWc0ajQaTfVFiy6N5ibG2hpeekmlkjh4EObNq2qLNBqNRlMcWnRpNDc5zs4wdaoSYD//DFu2VLVFGo1GoykKLbo0mlsALy94+GH1/sMPISamau3RaDQaTWG06NJobhGGDIGePSEjQydO1Wg0muqIFl0azS2CYcDjj6v4riNHYOXKqrZIo9FoNHnRokujuYWoWROefFK9nz9fDzNqNBpNdUKLLo3mFqNjR+jdGzIzVXyXHmbUaDSa6oEWXRrNLcikSVC3Lhw6BKtWVbU1Go1Go4FKFl2GYQw0DOOIYRjHDcOYWsT2OoZh/GIYxl7DMA4YhjGxMu3RaG4XateGJ55Q77/9Fs6erVp7NBqNRgM2lXVgwzCsgU+AfsAZYKdhGCtF5GCebk8AB0XkLsMwGgJHDMNYICKZpR3fZDKRkJBAVlZWpdiv0dzsNG8OTz8N585BWBgEBqpg+9sZW1tb6tWrh7W1dVWbotFobkMqTXQBwcBxETkBYBjGIuBuIK/oEqC2YRgGUAtIAMpUyCQhIQEHBwcaNGiAcbs/STSaYqhfH379FZKTIS0N3N2r2qKqQ0RISUkhISGBhg0bVrU5Go3mNqQyhxebAafzLJ+5ui4vHwNeQCywD3hGRMoU9puVlUWtWrW04NJoSsDeHjp0UO8jIuDKlaq1pyoxDINatWpp77hGo6kyKlN0FaWGpMDyACAcaAoEAB8bhuFU5hNowaXRlErz5tC4sRJc+/ZVtTVVi/7N0Gg0VUlliq4zQPM8yy4oj1ZeJgI/ieI4cBLwrESbKpR///vfeHt74+fnR0BAAP/880+V2BEeHs7q1astyytXruSdd94BYMKECSxdurTQPhs2bGDIkCE3zEZN1WEYEBSkXo8dg8TEqrZIo9Fobk8qM6ZrJ+BuGIYbEAOMBu4v0Cca6ANsNgyjMeABnKhEmyqMbdu2sWrVKnbv3o29vT0XLlwgM7PU+P9KITw8nLCwMO68804Ahg4dytChQ6vEFk31xNlZxXMdPQq7dqk8Xtrpo9FoNDeWSvN0iUg28CTwB3AI+FFEDhiG8ZhhGI9d7fYm0NUwjH3AX8DLInKhsmyqSM6ePUuDBg2wt7cHoEGDBjRt2hRXV1cuXFCXEBYWRq9evQDYuHEjAQEBBAQE0L59e5KTkwF499138fX1xd/fn6lTVVaNyMhIBg4cSFBQED169ODw4cOA8lo99thj9OjRg7Zt27Jq1SoyMzN57bXXWLx4MQEBASxevJh58+bxpDktObB27dp8+xQkNTWVhx56iI4dO9K+fXt+/vnnSrtvmqrD11fFeMXFwZkzVW2NRqPR3H5UpqcLEVkNrC6w7vM872OB/pVpQ2XRv39/3njjDdq2bUvfvn257777CAkJKbb/zJkz+eSTT+jWrRspKSk4ODjw22+/sWLFCv755x9q1KhBQkICAJMnT+bzzz/H3d2df/75h8cff5x169YBEBUVxcaNG4mMjCQ0NJTjx4/zxhtvEBYWxscffwzAvHnz8p27qH3y8u9//5vevXvzzTffkJiYSHBwMH379qVmzZoVeMc0VY29Pfj5wc6dsHs3NG0KOnOCRqPR3DgqVXTdKO66q3KO+8svxW+rVasWu3btYvPmzaxfv5777rvPEkdVFN26deP5559n7NixjBgxAhcXF9auXcvEiROpUaMGAPXq1SMlJYWtW7cyatQoy75X8kw5u/fee7GyssLd3Z1WrVpZvGAlUdo+a9asYeXKlcycOROAjIwMoqOj8fLyKvXYmpuL1q1z47oOHQIfn6q2SKPRaG4fShVdhmF0A2YALa/2NwARkVaVa1r1x9raml69etGrVy98fX359ttvsbGxIedqsbuMjAxL36lTpzJ48GBWr15N586dWbt2LSJSaDZVTk4Ozs7OhIeHF3nOgv3LMhurtH1EhGXLluHh4VHqsTQ3N1ZWKoXE2rVw4AC0agVXNb9Go9FoKpmyeLq+Bp4DdgGmyjXn2ijJI1VZHDlyxOI9AhXM3rJlS9LT09m1axeDBg1i2bJllv6RkZH4+vri6+vLtm3bOHz4sGWI8v7777cML9arVw83NzeWLFnCqFGjEBEiIiLw9/cHYMmSJYwfP56TJ09y4sQJPDw8OH78uCVGrCiK2mf79u2W7QMGDOCjjz7io48+wjAM9uzZQ/v27SvpzmmqmkaNoEULiI6GvXuhS5eqtkij0WhuD8oSSJ8kIr+JyHkRuWhulW5ZNSclJYXx48fTrl07/Pz8OHjwIDNmzGD69Ok888wz9OjRI1+pkdmzZ+Pj44O/vz+Ojo4MGjSIgQMHMnToUDp06EBAQIBleG/BggV8/fXX+Pv74+3tnS+w3cPDg5CQEAYNGsTnn3+Og4MDoaGhHDx40BJIX5Ci9snLq6++SlZWFn5+fvj4+PDqq69W0l3TVBfat1der6gonUJCo9FobhSGSMF8pQU6GMY7gDXwE2AJLhKR3ZVrWi4dOnSQsLCwfOtiY2Np2rTpjTKhWjBhwgSGDBnCyJEjq9oUzS3Arl1w5Ag0awYlzAG55bgdfzs0Gs2NxTCMXSLSoeD6sgwvdrr6mndnAXpXhGEajaZq8PaGyEiIiYH4eNDlCDUajaZyKVV0iUjojTBEUzoFU0FoNNeDgwN4esL+/RAeDn376oSpGo1GU5mUGtNlGEYdwzA+MAwj7Gp73zCMOjfCOI1GU7l4ean8XfHxcPZsVVuj0Wg0tzZlCaT/BkgG7r3aLgNzK9MojUZzY7C1VcOMoGYylhLiqdFoNJrroCyiq7WITBeRE1fb68Btn6NLo7lVcHdXubouXVJpJDQajUZTOZRFdKUbhtHdvHA1WWp65Zmk0WhuJNbWqi4jKG/X1dy+Go1Go6lgyiK6pgCfGIYRZRjGKeBj4LFS9rktqFWrVql9Nm/ejLe3NwEBAaSnl0+rrlixgoMHD1aYXenp6YSEhGAy5ea4nTVrFg4ODiQlJZX7PBVBeHg4q1evLr3jdTJv3jxiY2Mty5MmTbqmexsVFYVPGWrnLFmyBC8vL0JDyz8PpaCtFWVXUX1mzJjBzJkzcXMDJydISVEzGkuiV69eFEzhUpDZs2eTlpZWJtsLcq3fibx29e3bl0uXLl3T+TUajaayKFV0iUi4iPgDfoCviLQXkb2Vb9qtwYIFC3jhhRcIDw/H0dGxXPteq+gqjm+++YYRI0bkS9q6cOFCOnbsyPLlyyvsPOWhqkTXV199Rbt27SrtfF9//TWffvop69evL/e+1yK6rhcrK7ha9ID9+8F0nbUnqkJ05WXcuHF8+umn13UMjUajqWiKFV2GYTxw9fV5wzCeByYBk/Isa66yYcMGevXqxciRI/H09GTs2LGICF999RU//vgjb7zxBmPHjgXgvffeo2PHjvj5+TF9+nTLMb777jv8/Pzw9/dn3LhxbN26lZUrV/Liiy8SEBBAZGQkkZGRDBw4kKCgIHr06GEpXH3y5Em6dOlCx44dS8wmv2DBAu6++27LcmRkJCkpKbz11lssXLjQsv7AgQMEBwcTEBCAn58fx44d49VXX+XDDz+09PnXv/7FnDlz2LBhAyEhIdx77720bduWqVOnsmDBAoKDg/H19SXyqttkwoQJPPbYY/To0YO2bduyatUqMjMzee2111i8eLElm35CQgLDhg3Dz8+Pzp07ExERASiPzPjx4+nfvz+urq789NNPvPTSS/j6+jJw4ECysrIAeOONN+jYsSM+Pj5MnjwZEWHp0qWEhYUxduxYi8cxr1fk999/JzAwEH9/f/r06VPmz33evHmMGDGCgQMH4u7uzksvvWSxYcuWLTz22GO8+OKLmEwmXnzxRcvn/sUXX1iO8e677+Lr64u/vz9Tp04t0tZdu3YREhJCUFAQAwYM4OzVaYa7du3C39+fLl268Mknn5TZ7uIYN64Xy5e/zAsvBNO6dVs2b94MKA/p6NGj8fPz47777svnsV2zZg1dunQhMDCQUaNGkZKSwpw5c4iNjSU0NNTi6SuqH8DOnTvp2rUr/v7+BAcHk5SUVOg7kZqaykMPPUTHjh1p3769pUJDSXYNHTo033dao9FoqgUiUmQDHr36Or2I9lpx+1VGCwoKkoLExMQUWnejqVmzpoiIrF+/XpycnOT06dNiMpmkc+fOsnnzZhERGT9+vCxZskRERP744w955JFHJCcnR0wmkwwePFg2btwo+/fvl7Zt20p8fLyIiFy8eLHQviIivXv3lqNHj4qIyPbt2yU0NFRERO666y759ttvRUTk448/ttiVlytXrkjjxo3zrXvzzTfljTfeEJPJJC1btpS4uDgREXnyySfl+++/t+yXlpYmJ0+elPbt24uIiMlkklatWsmFCxdk/fr1UqdOHYmNjZWMjAxp2rSpvPbaayIiMnv2bHnmmWcs1zJgwAAxmUxy9OhRadasmaSnp8vcuXPliSeesNj05JNPyowZM0RE5K+//hJ/f38REZk+fbp069ZNMjMzJTw8XBwdHWX16tUiIjJs2DBZvnx5vnsnIvLAAw/IypUrRUQkJCREdu7cadlmXj5//ry4uLjIiRMnCu1fFCdPnhRvb28REZk7d664ublJYmKipKenS4sWLSQ6OrrQ+b744gt58803RUQkIyNDgoKC5MSJE7J69Wrp0qWLpKam5jt33n0zMzOlS5cucv78eRERWbRokUycOFFERHx9fWXDhg0iIvLCCy9Y7CqL7WamT58u7733nuW8jzzyvCxYIPKvf/0qvXv3ERGR999/33LOvXv3irW1tezcuVPi4+OlR48ekpKSIiIi77zzjrz++usiItKyZUvL97m4fleuXBE3NzfZsWOHiIgkJSVJVlZWoe/EtGnTZP78+SIicunSJXF3d5eUlJRi7TLTpk0buXDhQqH7UB1+OzQaza0NECZF6Jlik6OKiPnf8bUi8nfebVeD6asPd91VOcctRyXt4OBgXFxcAAgICCAqKoru3bvn67NmzRrWrFljKSadkpLCsWPH2Lt3LyNHjqRBgwYA1KtXr9DxU1JS2Lp1K6NGjbKsu3JFVWX6+++/LcW1x40bx8svv1xo/wsXLuDs7Jxv3aJFi1i+fDlWVlaMGDGCJUuW8MQTT9ClSxf+/e9/c+bMGUaMGIG7uzuurq7Ur1+fPXv2EBcXR/v27alfvz4AHTt2pEmTJgC0bt2a/v37A+Dr65tveO3ee++1FAlv1aqVxVOXly1btliupXfv3ly8eNESbzZo0CBsbW3x9fXFZDIxcOBAy3mioqIAWL9+Pe+++y5paWkkJCTg7e3NXSV8P7Zv307Pnj1xc3Mr9t6XRJ8+fahTR6Wta9euHadOnaJ58+b5+qxZs4aIiAiWLl0KQFJSEseOHWPt2rVMnDiRGjVqFHvuI0eOsH//fvr16weAyWSiSZMmJCUlkZiYSMjV+j3jxo3jt99+K9FWo5jMp3nXP/jgCJKToVmzII4fjwJg06ZNPP300wD4+fnh5+cHqHt38OBBunVTPweZmZl0KaJ6dnH9jhw5QpMmTejYsSMATk5ORdq3Zs0aVq5caalNmpGRQXR0dLF2mWnUqBGxsbGW76lGo9FUNWUpA/QREFiGdbc19vb2lvfW1tZkZ2cX6iMiTJs2jUcffTTf+jlz5hT7QDSTk5ODs7Mz4eHhRW4vbX9HR0cyMjIsyxERERw7dszyMM/MzKRVq1Y88cQT3H///XTq1Ilff/2VAQMG8NVXX9G7d28mTZrEvHnzOHfuHA899FCR125lZWVZtrKyyncfCtpYlM1SRKIoc7+8x7W1tbWsN58nIyODxx9/nLCwMJo3b86MGTPyXXNRiEip964kyvq5f/TRRwwYMCDf+t9//73Uc4sI3t7ebNu2Ld/6xMTEcttdv379QsHlCQkJFsEJ4OBgj6srREdbk56ebYntKu6z6tevX6nDeMX1i4iIKNM1iAjLli3Dw8Oj0LaS9s/IyCh3HKVGo9FUJiXFdHUxDOP/AQ3NcVxX2wxUAezqwy+/VE6rYAYMGMA333xjiWeJiYnh/Pnz9OnThx9//JGLFy8C6kEIULt2bZKTkwHlBXBzc2PJkiWAehDt3avmM3Tr1o1FixYBKm6rKOrWrYvJZLKIkIULFzJjxgyioqKIiooiNjaWmJgYTp06xYkTJ2jVqhVPP/00Q4cOtcRVDR8+nN9//52dO3cWEhBlYcmSJeTk5BAZGcmJEyfw8PDId40APXv2tFzDhg0baNCgQbEekIKYr61BgwakpKRYPEtAofOY6dKlCxs3buTkyZNA7r3fsWMHDz74YLmvsSgGDBjAZ599Zok7O3r0KKmpqfTv359vvvnGEnBe1Ofu4eFBfHy8RXRlZWVx4MABnJ2dqVOnDlu2bAHyf+4xMTFFxqbVqlWLJk2a8Ndff1nO9/vvvxfyyDZrBnXqqESpx4/n/0z2799v+T507tyZv//+m+PHjwOQlpbG0aNHC11Dcf08PT2JjY1l586dACQnJ5OdnV3osxowYAAfffSRRZDv2bMHKN4uUH8f586dw9XVtZRPR6PRaG4cJc1etANqobxhtfO0y8DIyjft1qN///7cf//9dOnSBV9fX0aOHElycjLe3t7861//IiQkBH9/f55/Xs1TGD16NO+99x7t27cnMjKSBQsW8PXXX+Pv74+3t7cloPjDDz/kk08+oWPHjiWmfujfv7/lIb1o0SKGDx+eb/vw4cNZtGgRixcvxsfHh4CAAA4fPmwRH3Z2doSGhnLvvffmmwFZVjw8PAgJCWHQoEF8/vnnODg4EBoaysGDBy1B0zNmzCAsLAw/Pz+mTp3Kt99+W+bjOzs788gjj+Dr68uwYcMsw1aQG8hfMHVHw4YN+fLLLxkxYgT+/v7cd999AERHR1eYl2TSpEm0a9eOwMBAfHx8ePTRR8nOzmbgwIEMHTqUDh06EBAQYBk+y2uryWRi6dKlvPzyy/j7+xMQEMDWrVsBmDt3rmU4OK+tZ8+excamaCf2d999x1tvvUVAQAC9e/dm+vTptG7dOl8fwwDzxM6DB2Hy5CmkpKTg5+fHu+++S3BwsOXezZs3jzFjxlgmPpiHjCdPnsygQYMIDQ0ttp+dnR2LFy/mqaeewt/fn379+pGRkVHoO/Hqq6+SlZWFn58fPj4+lskiU6YUbReoSQadO3cu9j5oNBpNVWAUNZyTr4NhtBSRUzfIniLp0KGDFMwLFBsbS9OmTavIopuTPXv28MEHHzB//vxr2j8nJ4fAwECWLFmCu7t7ufadMGECQ4YMYeTIm0Ovv/jii4wbN65QnNDNwMcff0yLFi0YOnToNR9DBH7/XWWpDwqCIkb2qjXPPPMMQ4cOLdLjp387NBpNZWMYxi4R6VBwfVn+DUwzDOM9wBtwMK8Ukd4VaJ/mBtC+fXtCQ0MxmUzl9lQdPHiQIUOGMHz48HILrpuR9957r6pNuGaefPLJ6z6GYags9Zs2KW9XmzYqc/3Ngo+PT7nSf2g0Gs2NoCyerjXAYuAFVCb68UC8iBSeIldJaE+XRnPjEYE//oCEhJvT21Uc+rdDo9FUNsV5uspSBqi+iHwNZInIRhF5COhc4RZqNJpqhdnbBcrbdb1Z6jUajeZ2pyyiK+vq61nDMAYbhtEecKlEmzQaTTWhaVOoWxfS09VMRo1Go9FcO2URXW8ZhlEH+H+oIcavgOcq1SqNRlMt0N4ujUajqThKDaQXkVVX3yYBoZVrjkajqW40awbOzpCYCCdOwG0wj0Kj0WgqhZKSo35kGMac4tqNNLK6Ym1tTUBAAN7e3vj7+/PBBx+Qk5MDQFhYmKVESXVnwoQJ+RKJ5uXZZ59l06ZNluX4+HhsbW3zFW2+0bz99tuVfo7w8HBWr15tWV65ciXvvPPONR0rb3Ht4oiPj6dTp060b9/eUmj6Wm2tSLsmTJhAq1ZuvPCCP//v/7Vl8uQHOX06ptRjz54925L0tbxUxPX07du3UPZ9jUajqWpKGl4MA3aV0G57HB0dCQ8P58CBA/z555+sXr2a119/HYAOHTowZ87NrU0TEhIstQnNLFmyhM6dO5da+qUyqQrRNXToUKZOnVpp5/vrr7/w9PRkz5499OjRo1z7XqtIKSvvvfceBw7s5X//O4KLS3t69gwlMzOzxH2qQnTlZdy4cXz66afXdQyNRqOpaIoVXSLybUntRhp5M9CoUSO+/PJLPv74Y0SEDRs2MGTIEECVlOnatSvt27ena9euHDlyBFDlUO699178/Py477776NSpk+U/9Vq1avGvf/0Lf39/OnfuTFxcHACnTp2iT58++Pn50adPH6KjowElhnx8fPD397eIJJPJxIsvvkjHjh3x8/OzeKdEhCeffJJ27doxePBgzp8/X+Q1LV261FJU2szChQt5//33OXPmDDExMZbzTJgwAR8fH3x9fZk1axaRkZEEBuaW5zx27BhBQUEAuLq68n//93906dKFDh06sHv3bgYMGEDr1q35/PPPAVUCqGfPngwfPpx27drx2GOPkZOTw9SpU0lPTycgIICxY8cC8MEHH+Dj44OPjw+zZ88GICoqCk9PTyZNmoSPjw9jx45l7dq1dOvWDXd3d3bs2FHsZ5OZmclrr73G4sWLLVnR582bZ8l/FRcXx/Dhw/H398ff39+SIb4sFPW5hoeH89JLL7F69WpLxvw1a9bQpUsXAgMDGTVqlKV01M6dO+natSv+/v4EBweTlJRUyNbU1FQeeughOnbsSPv27S2VC9LT0xk9erTl+5Y3M39pqNgug0GDnqNGjTv49VdVXLsoO+fMmUNsbCyhoaGEhoYW268yr2fo0KFV+o+BRqPRFImIlNiA9cC6gq20/SqyBQUFSUFiYmIKrSuVQ4dEfvxRvVYANWvWLLTO2dlZzp07J+vXr5fBgweLiEhSUpJkZWWJiMiff/4pI0aMEBGR9957TyZPniwiIvv27RNra2vZuXOniIgAsnLlShERefHFF+XNN98UEZEhQ4bIvHnzRETk66+/lrvvvltERHx8fOTMmTMiInLp0iUREfniiy8s+2VkZEhQUJCcOHFCli1bJn379pXs7GyJiYmROnXqyJIlSwpdy4MPPmixQUQkOjpa2rRpIyIi06ZNk/fff19ERMLCwqRv376Wfubz9+rVS/bs2WPpP2fOHBERadmypXz66aciIvLss8+Kr6+vXL58Wc6fPy8NGzYUEZH169eLvb29REZGSnZ2tvTt29diY977HhYWJj4+PpKSkiLJycnSrl072b17t5w8eVKsra0lIiJCTCaTBAYGysSJEyUnJ0dWrFhhuW/FfTZz586VJ554wnKevMv33nuvzJo1S0REsrOzJTExsdC9y0tISEipn2ve48fHx0uPHj0kJSVFRETeeecdef311+XKlSvi5uYmO3bsyGd7QVunTZsm8+fPt3wW7u7ukpKSIu+//75MnDhRRET27t2b7/tWHOPHj7fc95wckV9+ERk48Bl56aV3irVTRH3G8fHxVXo9bdq0kQsXLhS6pmv67dBoNJpyAIRJEXqmLBnpX8jz3gG4B8gui6AzDGMg8CGqQPZXIlIoKMYwjF7AbMAWuCAiIWU5drk5fBgmTIDMTLCzg3nzwNOzwk8jRSSbTUpKYvz48Rw7dgzDMCyFj7ds2cIzzzwDqAzaeUvO2NnZWTxlQUFB/PnnnwBs27aNn376CVBDKC+99BKgil5PmDCBe++9lxEjRgDKuxAREWGJ10pKSuLYsWNs2rSJMWPGYG1tTdOmTendu+jiAmfPnqVhw4aW5UWLFnHvvfcCqi7kww8/zPPPP0+rVq04ceIETz31FIMHD6Z///6Aqjk4d+5cPvjgAxYvXmzxLgGWEjW+vr6kpKRQu3ZtateujYODA4mJiQAEBwfTqlUrAMaMGcOWLVsKlRHasmULw4cPp2bNmgCMGDGCzZs3M3ToUNzc3PC9OvXO29ubPn36YBgGvr6+REVFlfjZlMS6dev47rvvABXXV6dOnVL3MVPc55qX7du3c/DgQbp16wZAZmYmXbp04ciRIzRp0sRSU7K4QuBr1qxh5cqVllqOGRkZREdHs2nTJkucoZ+fX7lLHBkGeHur73hcHGzdWrSd1eV6GjVqRGxsLPXr1y/XdWo0Gk1lUZbZiwXjt/42DGNjafsZhmENfAL0A84AOw3DWCkiB/P0cQY+BQaKSLRhGI3KY3y52LdPCa5mzSA2Vi1XsOg6ceIE1tbWNGrUiEOHDlnWv/rqq4SGhrJ8+XKioqLo1asXULRAM2Nra4thGIB6sGdnF61zzX0+//xz/vnnH3799VcCAgIIDw9HRPjoo48YMGBAvn1Wr15t2a8kHB0dycjIsCwvXLiQuLg4FixYAKjM3seOHcPd3Z29e/fyxx9/8Mknn/Djjz/yzTffcM899/D666/Tu3dvgoKC8j387O3tAbCysrK8Ny+br7WgjUXZXNI9LHjcvOc0n6O4z6ayKMvnKiL069ev0PBYREREmT43EWHZsmV4FJFCviz7l0TLlnD69B68vftw/nzRdhZlT1VcT0ZGRoUVLddoNJqKoNQ8XYZh1MvTGhiGMQC4owzHDgaOi8gJEckEFgF3F+hzP/CTiEQDiEjRwUUVga+v8nDFxoKtbW7yoQoiPj6exx57jCeffLLQgyApKYlmzZoBMG/ePMv67t278+OPPwKqtuG+fftKPU/Xrl1ZtGgRAAsWLKB79+4AREZG0qlTJ9544w0aNGjA6dOnGTBgAJ999pnFe3P06FFSU1Pp2bMnixYtwmQycfbsWdavX1/kuby8vDh+NSPmkSNHSE1NJSYmhqioKKKiopg2bRqLFi3iwoUL5OTkcM899/Dmm2+ye/duABwcHBgwYABTpkxh4sSJZb2VFnbs2MHJkyfJyclh8eLFlmu1tbW1XFPPnj1ZsWIFaWlppKamsnz58nIFohf32dSuXZvk5OQi9+nTpw+fffYZoOLZLl++bFlvjnO7Hjp37szff/9tufdpaWkcPXoUT09PYmNj2blzJwDJyclkZ2cXsnXAgAF89NFHFkG6Z88eQN0rs2Dev38/ERERln0efPDBfJ7IohARPv54DqmpZ/H3H4ijY9F2Qv77VxXXIyKcO3cOV1fXMtxxjUajuTGUJTnqLnJnMm5DJUl9uAz7NQNO51k+c3VdXtoCdQ3D2GAYxi7DMB4sw3GvDU9PNaQ4dWqFDS2aA7q9vb3p27cv/fv3Z/r06YX6vfTSS0ybNo1u3bphypNd8vHHHyc+Ph4/Pz/++9//4ufnV+pQ1Zw5c5g7dy5+fn7Mnz+fDz/8EIAXX3wRX19ffHx86NmzJ/7+/kyaNIl27doRGBiIj48Pjz76KNnZ2Zai1b6+vkyZMoWQkKJHdAcPHsyGDRsA5eUaPnx4vu333HMPCxcuJCYmhl69ehEQEMCECRP4z3/+Y+kzduxYDMOwDDmWhy5dujB16lR8fHxwc3OznH/y5Mn4+fkxduxYAgMDmTBhAsHBwXTq1IlJkybRvn37Mp+juM8mNDSUgwcPWoK58/Lhhx+yfv16fH19CQoK4sCBA+Tk5HD8+HHq1atX7ussSMOGDZk3bx5jxozBz8+Pzp07c/jwYezs7Fi8eDFPPfUU/v7+9OvXj4yMjEK2vvrqq2RlZeHn54ePjw+vvvoqAFOmTCElJQU/Pz/effddgoODLeeMiIigSZMmRdrz4osv4u/vT9u2bdm5cyebNq3H2dkOw2jIf/5T2E5Qn9GgQYMIDQ2tkuvZtWsXnTt3xsamLBEUGo1Gc2MoteD1NR/YMEYBA0Rk0tXlcUCwiDyVp8/HQAegD+CIEnWDReRo3mPdqgWvTSYTWVlZODg4EBkZSZ8+fTh69Ch2dnZVbZqF7t27s2rVKpydna9p/5kzZ5KUlMSbb75Zrv02bNjAzJkzWbVqVemdqwH79+/nm2++4YMPPqhqU8rN5cuXefjhh1myZEmZ94mMhH/+AScnuPNOsCrLv283kGeeeYahQ4fSp0+fQttuhd8OjUZTvSmu4HWp/wYahuEAPA50BwTYAnwmIhkl7qg8W83zLLsAsUX0uSAiqUCqYRibAH/gKLcBaWlphIaGkpWVhYjw2WefVSvBBfD+++8THR19TaJr+PDhREZGsm7duoo3rJrh4+NzUwouUAHs5RFcAG5ucOAAXL4Mp06p5eqEj49PkYJLo9FoqpJSPV2GYfwIJAPfX101BqgrIqNK2c8GJZ76ADHATuB+ETmQp48X8DEwALADdgCjRWR/3mPdqp4ujeZm5sQJ2L4dateGwYOrn7erOPRvh0ajqWyu2dMFeIiIf57l9YZh7C1tJxHJNgzjSeAPVMqIb0TkgGEYj13d/rmIHDIM43cgAshBpZXYX/xRNRpNdcHVVXm7kpOrp7dLo9FoqhtlEV17DMPoLCLbAQzD6AT8XZaDi8hqYHWBdZ8XWH4PeK9s5mo0muqClZXK27V9O+zfr9JJ3CzeLo1Go6kKyvIT2QnYahhGlGEYUahg9xDDMPYZhhFR8q4ajeZWxtVVDS8mJ8PVfLMajUajKYayeLoGlt5Fo9HcjuT1dh04oESY9nZpNBpN0ZT68ygipwBn4K6rzVlETplbJdtX7Vm+fDmGYVjyE4EK1DWXq8lb+HrlypW8806hSkjXzLPPPsumTZsAWLVqFe3bt8ff35927dpZiltXFrNnzyYtLa1SzxEVFcUPP/xgWQ4LC7OUfSkvEyZMsJRDKo4rV67Qt2/fInNzldfWirSrqD61atUq13nyfg+LIzw8nNWrV5fYpyjM3q4ff5zNoUPl+07ktWvVqlVF5rnTaDSaW4WyZKR/BlgANLravjcM46mS97p9WLhwId27d7dkiQdo2rRpkQ/SoUOHMnXq1Ao5b0JCAtu3b6dnz55kZWUxefJkfvnlF/bu3cuePXsqvZxNVYiuDh06MGfOnEo73549e8jKyiI8PJz77ruvXPteq+iqTlyr6LKyAh8f+P332ezZk0ZOzrWdf/DgwaxcubLSv1cajUZTVZRlIOBhoJOIvCYirwGdgUcq16ybg5SUFP7++2++/vrrfKIrKioKHx+fQv3nzZvHk08+CSjvxdNPP03Xrl1p1aqVRaTl5OTw+OOP4+3tzZAhQ7jzzjuLFHBLly5l4EA18msun2KubWhvb4+HhwfJycm4ublZSuZcvnwZV1dXsrKy6NWrF8899xw9e/bEy8uLnTt3MmLECNzd3XnllVcs1+Hp6cn48ePx8/Nj5MiRpKWlMWfOHGJjYwkNDSU0NBRQ4tOcEf/ll1+22FmrVi1efvllgoKC6Nu3Lzt27KBXr160atWKlStXWs7To0cPAgMDCQwMZOvWrQBMnTqVzZs3ExAQwKxZs/J5RVJSUpg4cSK+vr74+fmxbNmyMn9urq6uTJ8+ncDAQHx9fTl8+DDnz5/ngQceIDw8nICAACIjI9m1axchISEEBQUxYMAAzp49C8Dx48fp27cv/v7+BAYGEhkZWchWk8nEiy++SMeOHfHz87N4HkWEJ598knbt2jF48GDOn7++ylcbNmygV69ejBw5Ek9PT8aOHWspl/P777/j6elJ9+7dLUXSAVJTU3nooYfo2LEj7du35+effyYzM5PXXnuNxYsXWzx9RfUDldT3hRdesNz7jz76iJUr55CYGMu0aaF07aq+E2vWrKFLly4EBgYyatQoUlJSSrTLMAx69ep10yTE1Wg0mnIjIiU2YB/gkGfZAdhX2n4V2YKCgqQgMTExhdbdaObPny8PPfSQiIh06dJFdu3aJSIiJ0+eFG9vbxERWb9+vQwePFhERObOnStPPPGEiIiMHz9eRo4cKSaTSQ4cOCCtW7cWEZElS5bIoEGDxGQyydmzZ8XZ2VmWLFlS6NwPPvigrFy50rL88MMPS8OGDWX06NHy/fffi8lkEhGRCRMmyPLly0VE5IsvvpDnn39eRERCQkLkpZdeEhGR2bNnS5MmTSQ2NlYyMjKkWbNmcuHCBTl58qQAsmXLFhERmThxorz33nsiItKyZUuJj48XEfVZNG/eXM6fPy9ZWVkSGhpqOScgq1evFhGRYcOGSb9+/SQzM1PCw8PF399fRERSU1MlPT1dRESOHj0q5s87770ruPzSSy/JM888Y9mWkJBQ4mc1fvx4y31s2bKlzJkzR0REPvnkE3n44YcLHT8zM1O6dOki58+fFxGRRYsWycSJE0VEJDg4WH766ScREUlPT5fU1NRCtn7xxRfy5ptviohIRkaGBAUFyYkTJ2TZsmXSt29fyc7OlpiYGKlTp06Rn29xtpupWbOmxWYnJyc5ffq0mEwm6dy5s2zevFnS09PFxcVFjh49Kjk5OTJq1CiLfdOmTZP58+eLiMilS5fE3d1dUlJS8n0/S+r36aefyogRIyQrK0tERC5evCgiIs2atZTPP4+Xn34SOXcuXnr06CEpKSkiIvLOO+/I66+/XqJdIiLff/+9PPnkkyXej+ulOvx2aDSaWxsgTIrQM2XxdM0F/jEMY4ZhGK8D24GvK0UBXg933aVaXt54Q63LW8j399/Vuo8/zl2XkKDWjR9frlMuXLiQ0aNHAzB69GgWLlxYrv2HDRuGlZUV7dq1Iy4uDoAtW7YwatQorKysuOOOOyyepIKcPXuWhg0bWpa/+uor/vrrL4KDg5k5cyYPPfQQAJMmTWLu3LkAzJ07N1/h6aFDhwLg6+uLt7c3TZo0wd7enlatWnH6tCqb2bx5c7p16wbAAw88wJYtWwrZsnPnTnr16kXDhg2xsbFh7NixllgzOzs7i0fO19eXkJAQbG1t8fX1JerqdLesrCweeeQRfH19GTVqFAcPHiz13q1du5YnnnjCsly3bt1S98nLiBEjAAgKCrLYkZcjR46wf/9++vXrR0BAAG+99RZnzpwhOTmZmJgYSx1IBwcHatSoUWj/NWvW8N133xEQEECnTp24ePEix44dY9OmTYwZMwZra2uaNm1K7969S7W1YAH1guuCg4NxcXHBysqKgIAAoqKiOHz4MG5ubri7u2MYBg888EA+29555x0CAgLo1asXGRkZREdHF3kNRfVbu3Ytjz32mKWuobnepI0N1KkD6enw00/bOXjwIN26dSMgIIBvv/2WU6dOlWgXQKNGjYiNLVi4QqPRaG4NSp29KCIfGIaxAVUGCGCiiOypVKtuAi5evMi6devYv38/hmFgMpkwDIN33323zMewt7e3vJerQ0Lm19JwdHQkIyN/JSZfX198fX0ZN24cbm5uzJs3j27duhEVFcXGjRsxmUz5hj3N57eysspni5WVFdnZ2UDhB35RAqAkm21tbS375D1P3nPMmjWLxo0bs3fvXnJycnBwcCj1+kWkSFvKitkOa2trix0Fj+/t7c22bdvyrb98+XKZji8ifPTRRwwYMCDf+tWrV5fb7vr163Pp0iXLckJCAg0aNLAs5/3s8l5PcecREZYtW4aHh0e+9f/880+Z+pV07318ICICoqOFPn36sXhx/n9EwsPDS7z+jIwMHB0di92u0Wg014Ipx8S5lHPEJMfgUd+DOg51qsSO8kzuNlC1F6/9SVeZ/PKLanl57TW1Ljg4d93AgWrd1dgqAOrVU+u+/bbMp1u6dCkPPvggp06dIioqitOnT+Pm5lakJ6g8dO/enWXLlpGTk0NcXBwbNmwosp+XlxfHjx8HVHxT3n7h4eG0bNnSsvzggw8yZsyYfF6ushIdHW0RHuZJAwC1a9cmOTkZgE6dOrFx40YuXLiAyWRi4cKFhISElPkcSUlJNGnSBCsrK+bPn4/JZCp0joL079+fj/N4K82i5MEHH2RHXs/mNeLh4UF8fLzl2rOysjhw4ABOTk64uLiwYsUKQM14TEtLK2TrgAED+OyzzyzxdEePHiU1NZWePXuyaNEiTCYTZ8+eZf369ZZ9pk2bxvLlywvZ0qtXLxYvXkxmZiagYgOL84Ca8fT05OTJk0RGRgLk88IOGDCAjz76yCKW9+xR/0MVdQ1F9evfvz+ff/65RdwlJCRY9q9RI5lGjaBly85s2vS35TualpbG0aNHS7TLfJ+KiofUaDSaspCamcqRC0f468RffBv+LW9teospq6YwcslIHvv1Md7c9CaHLxwu/UCVRFlmL74GfAvUBRoAcw3DeKWyDavuLFy40DLEZOaee+657hls99xzDy4uLvj4+PDoo4/SqVMn6tQprMgHDx5sEVoiwrvvvouHhwcBAQFMnz6defPmWfqOHTuWS5cuMWbMmHLb4+Xlxbfffoufnx8JCQlMmTIFgMmTJzNo0CBCQ0Np0qQJ//nPfwgNDbUEl999991lPsfjjz/Ot99+S+fOnTl69Cg1a9YEwM/PDxsbG/z9/Zk1a1a+fV555RUuXbqEj48P/v7+FvESERFBkyZNyn2dBbGzs2Pp0qW8/PLL+Pv7ExAQYAnwnz9/PnPmzMHPz4+uXbty7ty5QrZOmjSJdu3aERgYaPkss7OzGT58OO7u7vj6+jJlypR84nTfvn3ccccdhWwZMmQIPXr0ICgoiICAAP7++2/++9//lmi/g4MDX375JYMHD6Z79+75RPirr75KVlYWfn5++Pj48OqrrwIQGhrKwYMHLYH0xfWbNGkSLVq0wM/PD39/f8t3fvLkydx55yBmzAjFyakhjzwyj/vuG4Ofnx+dO3fm8OHDJdoFsH79egYPHnwNn5hGo7ldEBEupl0k/Fw4vxz5hc92fsb//fV/PLj8QUYvG80Lf77A7H9ms/TQUv6J+YczyWfIzsmmYY2GtL+jPfY29qWfpJIoS8HrQ0B7Ecm4uuwI7BYRrxtgH3D7FbxOSUmhVq1aXLx4keDgYP7+++8iH8bdu3dn1apVODs7l3i8pUuX8vPPPzN//vxy2REVFcWQIUPYv//mKId5+fJlHn74YZYsWVLVplwTAwYM4I8//qhqMyqETZvgzBnw8ICgoLLtExcXx/33389ff/1Vqbbdyr8dGs2thIgQnxbP6aTTRCdFE50UzenLpzl9+TRpWUWnlrGztsOltgsuTrmtmVMzmtVudkPF1vUUvI5CzVg0BxDZA5EVZ5qmIEOGDCExMZHMzExeffXVIgUXwPvvv090dHSJouupp57it99+u6b8SzcbTk5ON63gAm4ZwQXg5wcxMXDsmBJeZcnlGh0dzfvvv1/5xmk0mmqFiHAx/SKnEk8RnRTNqaRTFoGVkZ1R5D617WrT3Kk5zes0p7lTc1ycXGhepzkNazS8rnjfyqYsnq4VQEfgT1RMVz9gC3AeQESuLUV4ObjdPF0aza3Atm1w8iS4uUGXLlVtTS76t0OjqTouX7lMVGJUPoF1KulUsZ4rZwdnWji1oEWdFjSv01y9OjWvskD4snI9nq7lV5uZDRVllEajuXXx9YVTp1QhbC8vKGUUXKPR3EJkmjI5c/kMJy+dJCoxSgmtpFNcyrhUZH8neyda1mlJizotLK1lnZbUtq99gy2vXMqSMqLsU/o0Go3mKrVqgbs7HDkCu3ZB795Qjb3+Go3mGhAREtITOHHphEVcnUw8SUxyDDlSuCaYg40DLeu0VM0599XZwfnGG18FlMXTpdFoNNeEj4/ydMXFqRgvF5eqtkij0Vwr2TnZnLl8hhOXTnDi0glOXjrJycSTJGcWTu1jYOBS2wVXZ1dLa+ncksY1G1frmKvKRosujUZTadjbq2HGsDDYvRuaNAFr66q2SqPRlEZGdgYnL50k8lKkRWSdSjpFdk7hZNK17Grh5uyGq7Mrbs5uuNV1o0WdFthZ21WB5dWbYvN0GYYx/+rrMzfOnJsLa2trAgIC8PHx4a677iIxMbFK7QkLC+Ppp69/XsOECROKLLIN8Oyzz1pK/KxatYr27dvj7+9Pu3btLEWdK4vZs2eTllZ0sGVFERUVlS/X2vXc05Luo5krV67Qt29fS26s67G1Iu2aMWMGzZo1IyAgAHd3d0aMGFGm8kzz5s0rVManTRtVHiglRQ01FkdFXM/o0aM5duxYuY+h0dzOpGSmEBEXwfJDy3nv7/d4bNVj3LvkXl5a+xJf7PqCP0/8SeSlSLJzsmlSqwldXboy1ncsr/Z8lW+GfsMPI37g7T5vMzloMv1a96NNvTZacBVDSZ6uIMMwWgIPGYbxHQUy0YtIQqVadhPg6OhIeHg4AOPHj+eTTz7hX//6V5XZ06FDBzp0KDRZosJISEhg+/btzJ49m6ysLCZPnsyOHTtwcXHhypUrRdYwrEhmz57NAw88UGStw4rC/OC///77gcq/p3v27CErK8vyPSoPBW2taJ577jleeOEFABYvXkzv3r3Zt29fvpqfBZk3bx4+Pj75ZgdaWalcXevWwf79ajZjUZV+KuJ6pkyZwrvvvsv//ve/az6GRnMrk3wlmchLkRy7eIzIS5EcTzhOXGpcoX7WhjUt6rSgVd1WtK7bmlZ1W+Hq7EpNu5pVYPWtQ0kZ6T8Hfgc8gV0FWlgJ+92WdOnShZiYGAAiIyMZOHAgQUFB9OjRg8OHVcmBuLg4hg8fjr+/P/7+/pYM5x988AE+Pj74+Pgwe/ZsyzHffPNNPD096devH2PGjGHmzJmAKgvz8ssvExwcTNu2bdm8eTMAGzZsYMiQIQDceeedBAQEEBAQQJ06dfj2228xmUy8+OKLdOzYET8/P4tnSkR48sknadeuHYMHD+b8+fNFXuPSpUstxauTk5PJzs6mfv36gKr/5+HhQXJyMm5ubpbyN5cvX8bV1ZWsrCx69erFc889R8+ePfHy8mLnzp2MGDECd3d3XnlFFTmIiorC09OT8ePH4+fnx8iRI0lLS2POnDnExsYSGhpqKYGzcOFCfH198fHx4eWXX7bYWatWLV5++WWCgoLo27cvO3bsoFevXrRq1YqVK1daztOjRw8CAwMJDAy0fBZTp05l8+bNBAQEMGvWrHz3NCUlhYkTJ+Lr64ufnx/Lli0r8/fD1dWV6dOnExgYiK+vL4cPH+b8+fM88MADhIeHExAQQGRkJLt27SIkJISgoCAGDBjA2bNnATh+/Dh9+/a1ZPyPjIwsZOv1fr4lcd9999G/f3+LJ6ooO5cuXUpYWBhjx44lICCA9PR0S7/Bg4OYPXsA8fFn2bu38q6nR48erF27tsh6mhrN7UZqZioRcREsO7iM/275L5NWTuL+n+7n1fWv8l3Ed/x9+m/iUuOws7bDo74Hd7a5k6eCn2L2gNksGbWEOYPm8GznZ7nL4y68G3lrwVURiEiJDfistD6V3YKCgqQgMTExhdbdaGrWrCkiItnZ2TJy5Ej57bffRESkd+/ecvToURER2b59u4SGhoqIyL333iuzZs2y7JOYmChhYWHi4+MjKSkpkpycLO3atZPdu3fLzp07xd/fX9LS0uTy5cvSpk0bee+990REJCQkRJ5//nkREfn111+lT58+IiKyfv16GTx4cD4bw8LCxNfXVxITE+WLL76QN998U0REMjIyJCgoSE6cOCHLli2Tvn37SnZ2tsTExEidOnVkyZIlha73wQcflJUrV1qWH374YWnYsKGMHj1avv/+ezGZTCIiMmHCBFm+fLmIiHzxxRcWW0NCQuSll14SEZHZs2dLkyZNJDY2VjIyMqRZs2Zy4cIFOXnypACyZcsWERGZOHGi5bpbtmwp8fHxIqI+/+bNm8v58+clKytLQkNDLecEZPXq1SIiMmzYMOnXr59kZmZKeHi4+Pv7i4hIamqqpKeni4jI0aNHxfwdK3gP8y6/9NJL8swzz1i2JSQkFLpHeRk/frzlPrZs2VLmzJkjIiKffPKJPPzww4WOn5mZKV26dJHz58+LiMiiRYtk4sSJIiISHBwsP/30k4iIpKenS2pqaiFbr/fzzcv06dMt993MrFmz5LHHHivRzpCQENm5c2eR1zN37iIJCZkoCxaIBAZW3vX07dtXwsLCir226vDbodFUNFeyr8ih+EPy8+GfZebfM+XRXx6VIT8MKdRGLB4hL655Ub4I+0LWRq6VqEtRkm3KrmrzbzmAMClCz5QlZcQUwzD8gR5XV20SkYhKU4HXyl13Fb/tiSdUoWuA33+HTz4pvm/BotklkJ6eTkBAAFFRUQQFBdGvXz9SUlLYunUro0aNsvS7cuUKAOvWreO7774DVDxYnTp12LJlC8OHD7fUGxwxYgSbN28mJyeHu+++G8er4zB3Fbi+ESNGABAUFFTssN6FCxcYN24cP/74I3Xq1GHNmjVERERY4l+SkpI4duwYmzZtYsyYMVhbW9O0aVN69+5d5PHOnj2bb2jpq6++Yt++faxdu5aZM2fy559/Mm/ePCZNmsS7777LsGHDmDt3br6hnqFDhwLg6+uLt7e3pU5iq1atOH36NM7OzjRv3pxu3boB8MADDzBnzhzLMJeZnTt30qtXL4s9Y8eOZdOmTQwbNgw7OzuLR87X1xd7e3tsbW3x9fW13KusrCyefPJJwsPDsba25ujRo0Vec17Wrl3LokWLLMt169YtdZ+85P3Mfvrpp0Lbjxw5wv79++nXrx8AJpOJJk2akJycTExMjKXWp4ODQ5HHv97PtzTkaiLl4uwsy/XUqtWE9PRkoqNjGDascq6nUaNGxMbGElTW+kMazU2GiHD68mmOXjxqaVGJUZjElK+fjZUNbs5uuNdzx72+O23qtaG5U3OsrfRslqqiVNFlGMbTwGTA/JRYYBjGlyLyUaVadhNgjulKSkpiyJAhfPLJJ0yYMAFnZ+cyx+iYH2RlXW/G3l7VkLK2ti5yKMVkMjF69Ghee+01fHx8LMf86KOPGDBgQL6+q1evLtMUXkdHRzIy8pdk8PX1xdfXl3HjxuHm5sa8efPo1q0bUVFRbNy4EZPJZDl/XrutrKws783L5usoaEtRtpV0f2xtbS375D1P3nPMmjWLxo0bs3fvXnJycop98Bc85/VMdS7tMxMRvL292bZtW771ly9fLtPxr/fzLY09e/bQoUOHYu0syp6C/TIz4ccfL2MyqVQSbm4l738t15ORkWH5Z0WjuRVIzEjkyIUjHLl4hCMXjnAs4Rjp2en5+hgYuNZxxb2+O23rt6VNvTa4OrtiY6WTFFQnSorpMjMJ6CQir4nIa0Bn4JHKNesa+OWX4pvZywXqfUl9r4E6deowZ84cZs6ciaOjI25ubpYagCLC3r17AejTpw+fffYZoETR5cuX6dmzJytWrCAtLY3U1FSWL19Ojx496N69O7/88gsZGRmkpKTw66+/lsumqVOn4ufnx+jRoy3rBgwYwGeffWaJtzp69Cipqan07NmTRYsWYTKZOHv2LOvXry/ymF5eXhw/fhxQ8U0bNmywbAsPD6dly5aW5QcffJAxY8YwceLEctkNqgaf+UG9cOFCunfvDkDt2rVJTlb5YDp16sTGjRu5cOECJpOJhQsXEhISUuZzJCUl0aRJE6ysrJg/fz4mk6nQOQrSv39/Pv74Y8vypUuXLNe6Y8eOcl9nQTw8PIiPj7dce1ZWFgcOHMDJyQkXFxdWrFgBKM9pWlpaIVuv5fOdNm0ay5fnLThRNMuWLWPNmjWMGTOmWDsh//0rqt+xYwfo2tWJevVc+PzzFWRkVOz1mPt5e3uX/cZrNNWI7Jxsjl08xi9HfuG9v99j0spJjFs+jrc2v8WSg0uIOB9BenY6DWs0pHvz7jwU8BD/6fMffhz1Ix/d+RFPd3qagW0G0qZeGy24qiFl+UQMIK/P0kSBmYwaLKkTFi1axIIFC5gyZQpvvfUWWVlZjB49Gn9/fz788EMmT57M119/jbW1NZ999hldunRhwoQJBAcHAzBp0iTat28PqKE4f39/WrZsSYcOHahTp+y1pmbOnIm3tzcBAQEAvPHGG0yaNImoqCgCAwMRERo2bMiKFSsYPnw469atw9fXl7Zt2xYrXgYPHswXX3zBpEmTEBHeffddHn30URwdHalZsybz5s2z9B07diyvvPIKY8aMKfe99PLy4ttvv+XRRx/F3d2dKVOmADB58mQGDRpEkyZNWL9+Pf/5z38IDQ1FRLjzzju5++67y3yOxx9/nHvuuYclS5YQGhpqGd718/PDxsYGf39/JkyYYPksAF555RWeeOIJfHx8sLa2Zvr06YwYMYKIiIgih9fKi52dHUuXLuXpp58mKSmJ7Oxsnn32Wby9vZk/fz6PPvoor732Gra2tixZsqSQrc8880y5P999+/ZZhnwLMmvWLL7//ntSU1Px8fFh3bp1luHc4uycMGECjz32GI6Ojmzbtq3IfpMmefPqq/N5991HWbbsNerUqbjriYuLw9HRsUI+D43mRpCUkcThC4c5dOEQhy8c5ljCMTJNmfn6ONg44F7PHY/6Hng08KBt/bbUc6xXRRZrroeyFLx+HhhPbv3FYcA8EZldqZbl4XYteJ2SkkKtWrVIS0ujZ8+efPnllwQGBlapTd27d2fVqlU4l1JIb+nSpfz888/Mnz+/XMePiopiyJAh7N+//zqsvHFcvnyZhx9+2OLZvNkYMGAAf/zxxw0/b3IyrF4NJhP06gUV9ac8a9YsnJycePjhh4vtczv8dmiqJ+ZYrIPxBzkUf4hDFw5xNuVsoX7NajfDs4Enng088ajvQYs6LXQc1k3GNRe8FpEPDMPYAHRHebgmisieijdRU5DJkydz8OBBMjIyGD9+fJULLoD333+f6OjoEkXXU089xW+//cbq1atvnGFVhJOT000ruIAqEVwAtWuDnx/s2QM7dsDgwWBre/3HdXZ2Zty4cdd/II2mAsg0ZXI84TgH4w8qoXXhECmZKfn62Fvb41HfwyKyPBt43nJFnjW5lOrpqg7crp4ujeZWJicH1qyBhATw8FAJVG8E+rdDU1mkZqZaBNaB+AMcSzhWqGxOgxoN8GrgpVpDL9yc3bQX6xbkmj1dGo1GUxlYWUGnTiqLy9Gj0LIlNGhQ1VZpNGUnKSOJ/ef3cyD+AAfOH+Bk4kmEXEeGeUZhu4bt8G7kjVcDLxrWLL6ig+bWR4sujUZTZdStC15ecPAg/PMPDBqkxJhGUx1JSE9g//n9lnb68ul8222sbHCv5453Q2/aNWyHV0MvatnVqiJrNdURLbo0Gk2V4usLp09DUhLs2wf+/lVtkUajMIusfXH72Hd+HzHJMfm221nb4VnfE9/Gvng39KZt/bbY29gXczSNpmzJUUcA/wUaoQLpDUBExKkM+w4EPgSsga9E5J1i+nUEtgP3icjSspuv0Whudqyt1TDjX38pj9cdd0DjxlVtleZ25PKVy+yL20dEXAR74/YWElkONg60a9AOn0Y++DTywb2+u86FpSkXZfm2vAvcJSKHynNgwzCsgU+AfsAZYKdhGCtF5GAR/f4LVM00qmvk4sWL9OnTB4Bz585hbW1Nw4YNiYqKomnTphw8eLCUI5SfFStW0LZtW9q1a1fhx87LjBkzqFWrVqHSOwCzZ8+mXr16PPjggwBkZ2dzxx138Mgjj/Cf//znms6XmJjIDz/8wOOPP15q31q1apGSklJqP4CcnByeffZZ1q1bh2EYODg48OOPP+JWUhr06yAqKoqtW7dy//33V8rxzRT8Hrz22mv07NmTvn37Ftl/3759vP/++/nyqFU3GjUCb2/Yvx+2blXDjGUoEqDRXBfpWensP7+fvXF7iYiL4GTiyXzbzSLLt7Evvo18aV2vtRZZmuuiLN+euPIKrqsEA8dF5ASAYRiLgLuBgmrkKWAZ0PEazlFl1K9f31LqJ69IMeeZKo3s7GxsbMr3x7tixQqGDBlS6aKrOLKzs/nmm2/YvXu3Zd2aNWvw8PDgxx9/5O23376mcjOJiYl8+umnZRJd5WHx4sXExsYSERGBlZUVZ86csSRBrQyioqL44Ycfbojoyvs9eOONN0rs7+vry5kzZ4iOjqZFixaVatv14OMD58+rtn07hIRABVQv0mgsZOdkc/jCYfae28veuL0cuXiEHMmxbLeztsOrgRd+jf3wbeSrPVmaCqcsIathhmEsNgxjjGEYI8ytDPs1A/JGGZ65us6CYRjNgOHA52W2+CbAZDLxyCOP4O3tTf/+/UlPVzWyevXqxf/93/8REhLChx9+yK5duwgJCSEoKIgBAwZw9qxKkve///2Pjh074u/vzz333ENaWhpbt25l5cqVvPjiiwQEBBAZGUlkZCQDBw4kKCiIHj16cPjwYQAmTJjA008/TdeuXWnVqpWlYDDAe++9R8eOHfHz82P69OmW9f/+97/x8PCgb9++HDlypMjrWrduHYGBgfnE4sKFC3nmmWdo0aIF27dvt6z//fffCQwMxN/f3+IRnDFjBjNnzrT08fHxISoqiqlTpxIZGUlAQAAvvvhiiXaaGTduHD///LNleezYsaxcuTJfn7Nnz1pK/QC4uLhQt25dvv76a5577jlLv//97388//zzREVF4enpyaRJk/Dx8WHs2LGsXbuWbt264e7ubin1M2PGDMaNG0fv3r1xd3e3FPSeOnUqmzdvJiAggFmzZpGRkcHEiRPx9fWlffv2lnI18+bNY9iwYdx11124ubnx8ccf88EHH9C+fXs6d+5MQkJCub4HEyZMsHzGO3fupGvXrvj7+xMcHGwpq3PXXXflK9ZdHbGygq5dwc4OYmOhmK+hRlNmRIRTiaf4+fDPzNgwg9FLRzPtr2ksOrCIQxeUL8Gzvif3ed/H273fZuE9C3mr91vc630vXg29tODSVDwiUmID5hbRvinDfqNQcVzm5XHARwX6LAE6X30/DxhZ1LGCgoKkIDExMYXWVRXTp0+X9957T0RETp48KdbW1rJnzx4RERk1apTMnz9fRERCQkJkypQpIiKSmZkpXbp0kfPnz4uIyKJFi2TixIkiInLhwgXLsf/1r3/JnDlzRERk/PjxsmTJEsu23r17y9GjR0VEZPv27RIaGmrpN3LkSDGZTHLgwAFp3bq1iIj88ccf8sgjj0hOTo6YTCYZPHiwbNy4UcLCwsTHx0dSU1MlKSlJWrdubbmevLz22msWW0RE0tLSpEmTJpKamipffPGFPPXUUyIicv78eXFxcZETJ06IiMjFixcL3ScREW9vbzl58qScPHlSvL29LeuLs1NEpGbNmiIismHDBrn77rtFRCQxMVFcXV0lKysrn72nT5+Wli1bir+/vzz//POye/duERFJSUmRVq1aSWZmpoiIdOnSRSIiIiyfXUREhJhMJgkMDJSJEydKTk6OrFixwnK+6dOni5+fn6SlpUl8fLy4uLhITEyMrF+/XgYPHmw5/8yZM2XChAkiInLo0CFp3ry5pKeny9y5c6V169Zy+fJlOX/+vDg5Oclnn30mIiLPPvuszJo1q1zfA/PylStXxM3NTXbs2CEiIklJSZZ7smXLFhkyZEihz7Q6cvq0yIIFIgsXiuS5BRVGdfrt0FQ8l9IvyboT6+T9re/LuJ/GyZAfhuRrj696XL4M+1J2nNkhqZmpVW2u5hYFCJMi9ExZMtKXv2Kx4gzQPM+yCxBboE8HYNHVIakGwJ2GYWSLyIpyn+2uu8rXv3VrmD278P7XWPQ6L25ubpaah0FBQURFRVm23XfffQAcOXKE/fv3069fP0B5x8z14vbv388rr7xCYmIiKSkpDBgwoNA5UlJS2Lp1K6NGjbKsu3LliuX9sGHDsLKyol27dsTFxQFqKHDNmjWWeoIpKSkcO3aM5ORkhg8fTo0aNQCKrcV39uxZvLy8LMurVq0iNDSUGjVqcM899/Dmm28ya9Ystm/fTs+ePS2xU/Xqla9GWHF29uzZ09InJCSEJ554gvPnz/PTTz9xzz33FBqudXFx4ciRI6xbt45169bRp08flixZQp8+fejduzerVq3Cy8uLrKwsfH19iYqKws3NDV9fXwC8vb3p06cPhmFYtpu5++67cXR0xNHRkdDQUHbs2FEoS/+WLVt46qmnAPD09KRly5YcPXoUgNDQUGrXrk3t2rWpU6cOd139/vn6+hIREQGU7XuQlyNHjtCkSRM6dlQj9U5OuXNdGjVqRGxswT+/6omLC7Rtq3J3bd2qatRXRLZ6za1Jdk42B+MPsufsHnaf3c2JxBP5ttdzrId/Y3/a39Ee/zv8dc1CTZVSltmLLsBHQDdAgC3AMyJyppRddwLuhmG4ATHAaCBfsIuIWCKaDcOYB6y6JsFVzbC3z50ybG1tbRleBCwxRSKCt7c327ZtK7T/hAkTWLFiBf7+/sybN48NGzYU6pOTk4Ozs7MlrqwkG+Rq1QERYdq0aTz66KP5+s6ePbtMsViOjo5kZGRYlhcuXMjff/+Nq6sroCYXrF+/HhEp8ng2Njbk5OTGT+Q9Vl6Ks7Mg48aNY8GCBSxatIhvvvmmyD729vYMGjSIQYMG0bhxY1asWEGfPn2YNGkSb7/9Np6enkycODFffzNWVlaWZSsrK7KzczNLF7y+oq7XfN+Ls6u085Tle1DwfMV9jhkZGTg6Opa4f3WifXuIj4dLl1R8V/fuOr5Lk0tcShy7zu5i99nd7I3bS0Z27m+JnbUdvo18aX9HewLuCKBFnRbXFGuq0VQGZRmwngv8gBouBHjg6rp+Je0kItmGYTyJmpVojRqSPGAYxmNXt1dsHNf1eqgqwMNVHjw8PIiPj2fbtm106dKFrKwsjh49ire3N8nJyTRp0oSsrCwWLFhAs2YqFK527dqWGB0nJyfc3NxYsmQJo0aNQkSIiIjAv4QkRwMGDODVV19l7Nix1KpVi5iYGGxtbenZsycTJkxg6tSpZGdn88svvxQpeLy8vDh+/DigCj1v2bKF06dPWwTD3LlzWbhwIe+88w5PPPEEJ0+exM3NjYSEBOrVq4erqyurVq0CYPfu3Zw8ebLQdZVkZ6NGjfLZM2HCBIKDg7njjjvw9vYuZO/u3bu54447aNq0KTk5OURERODn5wdAp06dOH36NLt377Z4lsrDzz//zLRp00hNTWXDhg288847nD17Nt919OzZkwULFtC7d2+OHj1KdHQ0Hh4e+SYilERZvgd58fT0JDY2lp07d9KxY0eSk5NxdHTExsaGo0eP4uPjU+7rrCqsraFbN/jjD5XDKyJC5++6nck0ZXLg/AF2nd1FWGxYoVQOrnVcad+kPYFNAmnXsB121nZVZKlGUzJlEV0NRWRunuV5hmE8W5aDi8hqYHWBdUWKLRGZUJZj3irY2dmxdOlSnn76aZKSksjOzubZZ5/F29ubN998k06dOtGyZUt8fX0tD9jRo0fzyCOPMGfOHJYuXcqCBQuYMmUKb731FllZWYwePbpE0dW/f38OHTpEly5dAJV+4fvvvycwMJD77ruPgIAAWrZsSY8ePYrcf9CgQZZiwj/99BO9e/fO57G5++67eemll/j000/58ssvGTFiBDk5OTRq1Ig///yTe+65h++++46AgAA6duxI27ZtATUTtFu3bvj4+DBo0CDee++9Iu0sKLoaN26Ml5cXw4YNK9Le8+fP88gjj1iGXYODg3nyySct2++9917Cw8OpW7dusfesOIKDgxk8eDDR0dG8+uqrNG3alIYNG2JjY4O/vz8TJkzg8ccf57HHHsPX1xcbGxvmzZuX736VRlm/B2bs7OxYvHgxTz31FOnp6Tg6OrJ27Vpq1arF+vXrGTx4cLmvsypxclIerg0b4MABVSS7Vauqtkpzo4hPjScsNoyw2DD2xu3liik3fKKmbU3a36FEVmCTQOrXqF+Flmo0ZafUgteGYaxFBbkvvLpqDDBRRPpUrmm56ILX1Yfhw4fz7rvv4u7uXtWmkJaWhq+vL7t376ZOnTrl3n/IkCE899xzltmVZaWkPGbVkStXrhASEsKWLVvKnaakOnDsGOzcqWY39u6tcnpdD/q3o3qSIzkcuXCEHTE7CIsNIyopKt/2Vs6tCGoaRIemHfCo76GLRGuqNddT8Poh4GNgFiqma+vVdZrbEPMwWlWLrrVr1/LQQw/x/PPPl1twJSYmEhwcnC+dxa1MdHQ077zzzk0puADc3eHyZZVCYvNm6N9feb00Nz9pWWnsPrvbIrSSM3OHzR1sHGh/R3s6NO1AUJMg7c3S3BKU6umqDmhPl0ZzeyMCGzeq/F1OTkp42V1j2I7+7ahazqee558z/7AjZgf74/eTnZM7QaVJrSZ0bNqRjs064t3QG1trPW1Vc3NSbk+XYRgvici7hmF8hPJw5UNEnq5gGzUajaZIDEMF1v/5JyQmwqZN0KsX3KTOu9sKEeFk4km2n9nOP2f+yZfSwcCgXYN2dHLpRHCzYJrVbqZnGmpuaUr6yTKX/gkroY9Go9HcEGxtVWmgNWtUqaCNG9WyFl7VD1OOiQPxB9h+Zjvbz2wnPi3ess3BxoHAOwLp7NKZoKZBONk7lXAkjebWotifKxEx51BIE5ElebcZhjGqiF00Go2mUqlZE/r0gb/+grg4LbyqE5mmTMLPhbPt9Db+ifknX3xWXYe6dGrWiU4unfBr7KdTOmhuW8ryUzUNVa6ntHUajUZT6Tg55RdemzYp4WWtJ7PdcDKyMwiLDWPr6a3sjN2ZL0lp01pN6dK8C11cutC2fls9bKjRUHJM1yDgTqCZYRhz8mxyArKL3uv2olatWqSkpFiW582bR1hYGB9//HG5j7VhwwZmzpxpSR5aFnr16sXMmTPp0KFQrJ5Gc0vj5KTSR/z1F5w7p4RXz55aeN0I0rLS2BGzg62nt7Lr7C4yTZmWba2cW9G1eVe6NO9Cc6fmWmhpNAUoydMVi4rnGgrsyrM+GXiuMo3SaDSa0qhTJ9fjdfasGmrs3v3aZzVqiscstLZEb2H32d1k5WRZtnnW96Rr8650bd6VxrUaV6GVGk31p6SYrr3AXsMwlgOpImICMAzDGih7Wu3blPj4eB577DGio6MBVd+wW7du7Nixg2effdaSMXzu3Ll4eHjk2zc1NZWnnnqKffv2kZ2dzYwZM7j77rtJT09n4sSJHDx4EC8vr3w1HTWa25G8wuvcOTW7sVcvFftVbbh0CXbvhosXISUFrlzJbRkZMHkyXC12zx9/qPT79vYqGVneVr8+tGlzw8zOyM5gR8wONp3alE9oGRh4N/SmW/NudG3eVefP0mjKQVliutYAfQHzOJrj1XVdK8uom4X09HQCAgIsywkJCQwdOhSAZ555hueee47u3bsTHR3NgAEDOHToEJ6enmzatAkbGxvWrl3L//3f/7Fs2bJ8x/33v/9N7969+eabbyyJPPv27csXX3xBjRo1iIiIICIigsDAwBt5uRpNtaROHZW3a+NGSEpSuiUkRGmUG0JGBpw6BVFRuS0oCEaOVNvPnYPZs4vff8KE3PcHD8L69UX3a9MGZs1S70Xg1VehQQNo1gyaN1etcePrmlWQacokLDaMzac2syN2h2Xo0Cy0urfoTtfmXannWO+az6HR3M6U5a/TQUQsgUsikmIYRo1KtKnc3LXwrko57i9jSi6C7ejoSHh4uGXZHNMFKmP6wYMHLdsuX75McnIySUlJjB8/nmPHjmEYBllZWQUPy5o1a1i5ciUzZ84EICMjg+joaDZt2sTTT6v0aH5+fpbizRrN7U6tWtCvH2zZojTO2rXQtavSIZXG8uXw99+qTlFOTv5tNfL8RDZurNxv9esrj5W9PTg4qFd7e7XdzMCB4OenvGDJyapdvqxeW7bM7XfpEuzdW9gmGxvlNZs8Gcz/EObkqBpKxWDKMbE3bi8bozay7cw20rNzPeheDbzo0aIH3Vp000JLo6kAyiK6Ug3DCBSR3QCGYQQBelyrFHJycti2bRuOjo751j/11FOEhoayfPlyoqKi6NWrV6F9RYRly5YVGnYEdGCqRlMMdnZK2+zcCZGRqmRQQAB4eankqtdFUpISWH375gaNRUaq2kRWVkoQubmBq6t6zVuZu149+H//r2zn8fJSrTRq1YI331QK88wZ1U6fVgnMTp+GvL878+erquFt24KnJ3h6Iq1acST5JBujNrI5ejNJV5Is3dvUbUPPlj3p3qI7DWs2LJvdGo2mTJRFdD0LLDEMI/bqchPgvkqz6BoozSNVFfTv35+PP/6YF198EYDw8HACAgJISkqiWbNmgPKMFcWAAQP46KOP+OijjzAMgz179tC+fXt69uzJggULCA0NZf/+/URERNyoy9FobgqsrCA4WDmUwsNVO38eOndWzqVykZoK27erqZHh4cpj5OysXGgAd92lxjF9fPKLnBuBnV2uJysvV64o0ZXXK3bqFFy4ABcuELPzLzbUvsiGOpc452QFdetB0yY0q92MXq696NmyJ01r6xJJGk1lUaroEpGdhmF4Ah6AARwWkcJjYpp8zJkzhyeeeAI/Pz+ys7Pp2bMnn3/+OS+99BLjx4/ngw8+oHfv3kXu++qrr/Lss8/i5+eHiODq6sqqVauYMmUKEydOxM/Pj4CAAIKDg2/wVWk01R/DgHbtVFqJf/5R9RpXr1bCq0wlF48dg19+UWOV5uF/a2vo2FEd1EwRnugqx96+ULB90gtPsWnPcjYcXM3R+ChITYG0DOol2RLi5E6vgf/GzdkN4/Jl+O57Nbzp56eC5TQaTYVSpoLXhmH4AO0Ay/+KIvJdJdqVD13wWqPRXAtpabBtm0qiCmp0rVGjWFxcivntEIEpUyAmRqk3X1+VAKxrV+U+u0nIMmWxM3Yn606uIyw2DJOafI6DjQPdmncj9I7O+F6yw8qpDrRurXb6+294553cg7i6gr+/at7e+ePUNBpNiRRX8LpU0WUYxnSgF0p0rQYGAVtEZGQl2FkkWnRpNJprRURNCoyIUO8dHWPx9m5K27ZAZib89puqpt2ggdph7VqIjoYhQ6BRoyq1vTyICMcTjrP2xFo2R2+2lOGxMqxof0d7erv1plOzTtjbFJPx5+xZ5d2LiFA3LDM36Sk2NvDDD7nDqCIVECin0dy6FCe6yhLTNRLwB/aIyETDMBoDX1W0gRqNRlMZGIZy1DRuDFu3qpj4l57P5uGWaxmYtBjbpAuQmAjjx6sd+vatUnvLS1JGEhuiNvDniT85lXTKst61jit9WvUhpGUIdR3rln6gJk1g1CjVsrLg8GElwMyzJPMKrqefBhcX6NABAgOhbhmOr9FoyiS60kUkxzCMbMMwnIDzQKvSdtJoNJrqRIMGcOcgYc/v53h8/wycd55lnw006OhGcx9fbia/jSnHxO6zu1kTuYadsTstw4dO9k6EuobSx60PbnXdrv0EtrZqaNXXF8aOBZMpd9uZM7n5yLZsUetatVICLChIxbrpekwaTZGURXSFGYbhDPwPVQ4oBdhRmUZpNBpNhXPxIjY7dtAs8QI+bc4SkdCMxY4PcDC7G56LDMbbq4mI1ZlzKef4M/JP1p5cS0J6AqCGD4ObBtO3VV86NuuIjdW1J0ctlrwiysUFvvhCZdnftUt5w06cUO3HH1VcmLe36ltKjjCN5najxL9OQyWF+o+IJAKfG4bxO+AkIjpXgUajubnIzlZJRe3tcZz6DMG9QknfYk3s12okbdo0lYXhgQeq18TELFMW289s54/IP9gbl5sQtVntZvRr1Y/ebr3LNnxYURiGmgbatKmKe8vMhP37lQA7dEjNVjDzxhtqNkPHjqq1bKljwTS3NWUJpN8lIkE3yJ4i0YH0Go2m3IioJF15M75HRxNrGDTNk6o+NRV+/lm1tDS1rkMHuP9+cHe/wTbn4WzyWX4//jtrT67l8pXLANhZ29G9eXf6t+5Pu4btqney5KwsNTSZt0Zso0a5AszXV1cn19yyXM/sxU+AeSKys7KMKw0tujQaTbm4fFklNr1wQdUHapibWb24347kZFixAlauVOUUQaWrGjpUaYQbMUqWnZPN9jPb+e3Yb0Sczx1QcK3jysA2A+nl2ouadtWpmncppKfDnj0QFqZKBSQm5m6bMgXuvFO917MhNbcY1zN7MRR4zDCMKCAVlSBVROS2L/xnbW2Nr6+vZXn06NFMnTq12P5vv/02//d//2dZ7tq1K1u3bi33ecPDw4mNjeVO8w9WAfbs2cMnn3zCV199xbx583jxxRdxcXEhJSWFVq1aMX36dLqas2pfJ66uroSFheHk5ETfvn1Zt24dNtdRcFejuS5E4OhRlUHeZFIz7rKzy7Rr7dowbpwSWcuWqUwSERGqNWqkRtL69VMVeCqaC2kX+OP4H/wR+QeXMi4ByqvVs0VPBrYZSNv6bau3V6s4HB1VjrOuXdVnc+yYEl87dqjSAWbmzoUDB9S64GCVI+xmvF6NphSK9XQZhtFCRKINw2hZ1HYROVXU+sqgunq6atWqRUpKSukdr7F/cZgLa3/88cdFbh81ahSvvPIK/v7+hfquX7+eMWPGsH79erzKUuOtFMyiq0GDBrz++uu0adOGsWPHXvdxNZpyYy7bY86E6uamZtMVGMIq629HaqpK2bVqlSpxCCrhe9eu0Lu38oJdj/dLRNgbt5dfj/7Kjtgd5Igqmt3cqTl3ut9JqGvozeXVuh6efFKVKzLTsKFyLwYHqxtta1t1tmk018C1eLpWAIEicsowjGUick+lWXcLkZSURHBwMCtXrsTDw4MxY8bQu3dvIiMjSU9PJyAgAG9vbxYsWGARYRs2bGDGjBk0aNCA/fv3ExQUxPfff49hGOzcuZNnnnmG1NRU7O3t+fPPP3nttddIT09ny5YtTJs2jfvuyy2FmZycTEREBP7+/kXaFxoayuTJk/nyyy+ZNWsWkZGRPPHEE8THx1OjRg3+97//4enpyS+//MJbb71FZmYm9evXZ8GCBTRu3JiLFy8yZswY4uPjCQ4OJq9oHzZsGNOmTdOiS3PjiYtTNRKzslSRxY4dIU/c1rVQsybcfbcqsbhrlxp2DA+H9etVq1dPlV4MDVX6rqykZ6Wz7uQ6Vh1dxZnkMwBYG9Z0b96dwW0H493Q++b0al0PM2eqfGD//KM8YfHxqnbT6tXqA5g8uaot1GgqhJJEV96/+mqdl+uuu+6qlOP+8kvJhbTNIsqMWQB9/PHHTJgwgWeeeYZLly7xyCOPAPDxxx8THh5e5LH27NnDgQMHaNq0Kd26dePvv/8mODiY++67j8WLF9OxY0cuX75MjRo1eOONN4r1dIWFheFTyrz3wMBAvvjiCwAmT57M559/jru7O//88w+PP/4469ato3v37mzfvh3DMPjqq6949913ef/993n99dfp3r07r732Gr/++itffvml5bg+Pj7s3FlloX+a25k6dVRag8aNlXek3NWti8fKKjf2++xZ2LBBia6zZ2H5ctWaNVOn7dQJvLyK9oDFXI7h12O/svbEWtKzVXB5fcf6DGwzkAGtB9zYGYjVDQcHdfM6dcodhtyxQ7UOeZwFa9fC77+rm92xox6G1Nx0lCS6pJj3mqs4OjoWKaL69evHkiVLeOKJJ9i7d2/hHYsgODgYFxcXAAICAoiKiqJOnTo0adKEjh07AuCUt9huMZw9e5aGeYKGi8LsnUpJSWHr1q2MGjXKsu3KlSsAnDlzhvvuu4+zZ8+SmZmJ29V/5Tdt2sRPP/0EwODBg6mbJxO1tbU1dnZ2JCcnU/smqlOnuUm5fFkFWFlZqYf2wIEqhqgSH8JNmsCYMTB6NBw5osTX5s2qVKNZgNWurTRBYCD4+Qkn08P5+cjP7Dq7y3Icn4Y+DG47mM4unSsnr9bNjGFA27aqPfBA/m07d6obf+QIzJ+vMt6aBZifn54Nqan2lPTX7m8YxmWUx8vx6nvIDaQvXQHcIErzSN1ocnJyOHToEI6OjiQkJFjEVEnY2+fWQ7O2tiY7OxsRKfcwg6OjIxnmqVfFsGfPHry8vMjJycHZ2blI4fjUU0/x/PPPM3ToUMvwp5mSbLpy5QoOFehl0GgKIaIScYaFKbeS39U5PTewILNhqHRUnp5q5OvQIeWU2b5decDWrMtg4c71xDn/guF8GqfaUM/ZjsHevbjHZ8j1ZYu/nXnuOTWeu2OH+vwvXMgdhgwMhNdfr2oLNZoSKVZ0iYiu43CNzJo1Cy8vL95++20eeughtm3bhq2tLba2tmRlZWFbxqBQT09PYmNj2blzJx07diQ5ORlHR0dq165NcnJykft4eXnx/vvvF3vMjRs38uWXX7J+/XqcnJxwc3NjyZIljBo1ChGxxIMlJSXRrFkzAL799lvL/j179mTBggW88sor/Pbbb1y6dMmy7eLFizRs2LDM16fRlJvsbOXtOHlSLaenV3m6AWtrlcnexwfuHp3Ad9tXsWzvb1xKTOFKCthcrofN6SHYJw1g469OnGieK9g8PKBFCz1CVmYcHKBzZ9VE4Pjx3NmQgYG5/Y4cgY8/VkOTHTqom61LE2mqAZXq1zYMYyDwIWANfCUi7xTYPhZ4+epiCjBFRMo2HlcNKBjTNXDgQB566CG++uorduzYQe3atenZsydvvfUWr7/+OpMnT8bPz4/AwEAWLFhQ6vHt7OxYvHgxTz31FOnp6Tg6OrJ27VpCQ0N55513CAgIKBRI7+npSVJSUr4hvsWLF7NlyxbS0tJwc3Nj2bJllpmLCxYsYMqUKbz11ltkZWUxevRo/P39mTFjBqNGjaJZs2Z07tyZk1cfctOnT2fMmDEEBgYSEhJCixYtLOdev359sWksNJrrJiVFBcsnJoKNjRpSKk8EeyUSlRjFisMr2HhqI9k52dS9Azp7e3Bn66HUS+3KgX027N2rQpVOn1btzz/Vvg4O6jJatcptLVrokbJSMQyVvdbdXWWyzTsTPywstz7k0qVqVkRgYG59yDp1qspqzW1OqclRr/nAhmENHAX6AWeAncAYETmYp09X4JCIXDIMYxAwQ0Q6FTxWdU0ZUV2ZNWsWtWvXZtKkSTf0vCNGjOA///kPHtWphorm1uDcOfj7b7hyRQVN9ex5zQ/OivrtEBHCz4Xz06GfCI8LB8DAoItLF4Z7DcezgWehfbKy1Mjo4cO57cKFwsc2DBU/1ry5EmDNm6uSh02bKv2gKYWsLJX3KyxMtZiY3G3166u8YGb3ok7MqqkEric56rUSDBwXkRNXDVgE3A1YRJeI5M0Muh0oPfhJUypTpkxhyZIlN/ScmZmZDBs2TAsuTcUjAgcPKsHVrBl06VKlbqDsnGy2RG/hp0M/cTJReYAdbBzo16ofQz2GcketO4rd19ZWDSl6eKh0FABJSWq0NDIyt250TAzExqr2zz/5j+HkpMRXkyaqNW6skrc2aqT0hB5FQ93ogADVJk1SgXa7dikB1rhxrshKTobHHlNxgYGBqtWvX5WWa25xKtPTNRIYKCKTri6PAzqJyJPF9H8B8DT3z4v2dGk0tzkZGUqNeHldt1fiWn87MrIz+OP4H/x85Gfi0+IBqOtQl6EeQxnYZiC17CouVX1mphJcp09DdDScOaPenz2rthWHlZXSDA0aFH6tW1e1evUqNKPGzc0//8Bbb+Vf16JFrgDz9VVD2RpNOakKT1dRv4xFKjzDMEKBh4Hu5TnBtczu02g0NwFpaSoY2t8/NyVEu3bXfdhr+Sfz8pXLrDq6ilVHV5GcqSawuNR2YYTXCHq59sLWuuInjtjZqRRUrq7514tAQoISX7Gx6vX8+dyWkKDyisbHl3x8BwclwJydlefM2VmN1ppb7dqqOTmp10rOxFF1dOoEX34Ju3erFhGhVG50tKqAvmCBugEAFy8qxXpL3gjNjaIyRdcZIG9KaBcgtmAnwzD8gK+AQSJysawHt7W1JSUlhVq1amnhpdHcSly8qALm09PVMFEpyX7LioiQkpJS5tm1F9IusPzQcv6I/IMrJpW/zquBF/d43UNws+Aq+d0xDOW5ql+/6NuSlaVixC5ezH01t0uXlCi7dEk5Ds+eVa0sWFurlGgFW82ahVuNGqo5OuZ/X22HPZs0gcGDVcvOVkPZe/aom2YWXCLw/POQk6P+ETAPXTZoUJWWa25CKlN07QTcDcNwA2KA0cD9eTsYhtEC+AkYJyJHy3PwevXqkZCQUGzqBI1GcxMSF6ceejk5yv1Sq5Zy6VQQtra21KtXr8Q+MZdjWHpwKeuj1mMSEwAdmnRgZLuReDfyrjBbKgNb29xYr+IQUXr20iU1ETQpKbclJqowp8uXVTO/v3Ilt8+1YmenxFfB5uBQuNnb53+ft5nX2dnlvlaYoLOxUfFd5txvZhITleJNTISNG1UDFWPo76+qoV9n2SnN7UGliS4RyTYM40ngD1TKiG9E5IBhGI9d3f458BpQH/j06n+N2UWNgRaFtbV1qZnXNRrNTYIILFyoGkD//ir1+w2Mp4lKjOLHAz+yJXoLgmBg0LNFT0a2G3lLJTM1jFwP1NVUfKWSlaUydhRsqamFW3q6ek1LU+/Nr5mZql2PcCsOa2slvvIKsaKarW3+V/P7vM28zsYmd52NTV1sp87F4cIZahwNx+HIXuyO7MMqKgYjOoacrr2wdbk68hgRoVSqt/cNTdiruTmotED6iqSoQHqNRnOLkJkJs2bBli3qqfXwwzB06A2LnTl68SiL9y9mR+wOAGysbOjt2puR7UbSpHYJLiNNmRFROiQ9PbdlZKhmfp+ervqY15vfX7mSv2VkqK9M3nVV8RizEhNNUo/jlrSHsEZ3IoY1NlY53HfsTdyS92IYBhecWhFX14u4+l5crN8WcaiBtY2B2DuQ41hTCTrDhGNOKlZ2NohjDWxslIi0tTJhZWOFja2BtTWW9XnfF1xnZZW7Lu/7opqVVdHr8q43L+sInvJTFYH0Go1GUzpWVspt4ugIL7+sklfeAA7GH2TR/kXsObcHADtrOwa0HsAIrxE0qKFjdSoSw8gdLsxTrrVCEFGhWGZPmrllxSWQE3+RjFoNSHeoS2YmWEVH4XBwN5KulJ1kXLE0I/MKkpmFkXkFMjMxsjIhO5vd7R7gWJOeZGdDq8g/6R7xKfvv6MufbZ/gspMHpx1seCl8LJKj7KmXEUvN7EQcslNpcXEPnLTcBRIcmnDRwYXwhv34xe1pABqnnmLygWeIq+HGlz5zLNf1ys7hGCLkGFbkGNbkGNaYDJurr7aYDBtMVjZkGTaYDFviHVuwstWzlv3vPjGLHMOaX12fIMdQ46++F9ZTI/sy2VZ2ZFnZW1qmlYN6b+2Qu2ztQLZhC4ZhEWJFCbKyvM/biltfXDP3N4yitxdcX5Zlf/+Sh+ArEy26NBpN1WBOSmljA1OnqijvSo6LERH2nd/H4v2LiTgfAagcW0PchzDMcxh1HHSm8mqDSG5wmTmgzPw+JUUFnCUnY6SkYJucjG1KCjVff12l9AdYuRB+/x2mTIEeVytlpB2D8LnFn9P2asuTgDbovssw5OrCn8CcbAL6ZvPAM1fXRVnDS46IlRViWCHiSQ4GYhIkKQkjMREj6RIkJ2PvWp8GjerRNKgWIa124rzyOzKbNqZ2cgZNW1rx7BQwmSA7S2h53kByBJGcqy0LyVEpAETI/17gUj3hQle1vylb6HFkHSJw0ucpsk1qff8zP1M/MRIEcgS4um/e41jWCeRgxdsdfiInx5qcHBh6YjbOV+JY7fo4FxzV36rHpW3ckXaSK1aOXLGuka9lWqt1GdY1ybR2RAyrCvlqXC8vv6xFl0ajuZ3Yvl3VwZk2TYku89S3SkJE2Bu3l4X7FnLwgsrPXNO2Jne1vYuhHkOpbV+70s6tKYDJpKL469fPHbdatUrVURw1KjfQ7Isv4Ndfy3fslJTc902aQOvW+b9Xrq4wbFj+aH3za3EBYHkrH/TuDb165Y81dHWFH3/EIDdPUpFx/RkZ2AI4OFAH4JtvIC1KtTsccL4SicvCSSo1io8PbF+h9svJuaqkTMqlV7BlZalma0uHq3qTHIGQ5yE7m//0yzM2+HMonPdWY7J5x2gLjueax3iBFcusMZmUGVZPH4PoaAa9ayLbRa2z+/QfbDf9ZRFvBYUcWSBZV0WcnQM5DjU58+gbXGnUgpwcqL1tDQ6nj3EpqC+pLh6YTGBz4Ry252PIsq9Ftn1NsuxrkWlbE5OVLTk5V4+Vk9vKu9y4cRm/T5WAFl0ajebGIQLLlsF336n3GzdCnz6VeDphz7k9LNq/iEMXDgFQy64Wd3vczV1t76Kmna6pU+GkpqpEYXFxuQnELlxQ6y5cUB5NEfjhh9yUDGFhKmN81665oss8e9WcPMzJKffVnECsVq3cpGI1a6r1ZkaMUC0v5lqN14p5bO1aKJiR9oEHIDhYzdY9eBAOHVL3LC5OJQLu31/1s7KClSuVgGzbNveelYSVFYSGFl5vLoNQVkwmizMagKkvQnIytdrcAebL6dcF3BrmnzWRlla4paeDZIBkUC/QFsyepo3hcHQzDPWBnlcrmqzYDr9/XdgeO7vcXCXmvCXm70GfPrlezvh49T1r1Kjix7OvEy26NBrNjSEzEz76CDZsUMvjxinPQSUgIuw+u5uF+xdy5OIRAGrb1Wa453CGtB2Co61jpZz3tkBE5bByds59Gv/4I2zdqmpkpqaWvL9hqCSjKSm5AmLwYOjWLX8B8/vug9GjK+USqgV2dsqjZU64lpOjCnQfPJi/zFV8vPKKgbp3LVuCp2dua9q08iLdCwrMgtl6QSWY7VSoZHJhzLlK0tLUd8fMoEHqHrRtm7uuQQNo3z7/FNmUFPUbkpCgWkF8fHJF1/r1MH8+jBwJ48erdfv3w+zZ8MgjZbO3ktCiS6PRVD4JCfD22yrLvIODSjTZpUuFn6Y4sTXCawSD3QdrsVUe0tJU/aGYGDWkZn6wP/us8sR8+GHuQ+7iRVU8EpRgMBeEbNwYGjZUrUED9VqvXuFUIB07Fj7/7TZlzspK3U/zPc3LXXcpT9jJk0qYRUWpeDWA//43t1pDbKzyAl1jMfhKJW+ukrz4+qqWl+7dVcuLeQpsUblLUlLyC/Y6dZSIuyNPHdTEROVFrOKMDVp0aTSayiU+Hl58UT2YGzaEV1/N/wNZAZiHEX/Y94NFbDnZOzHCcwSD2w7GwUYXGyyW1FRV9ubUqdwSOKdP5/cmBAXlDt01bKi25Y2fGjJEeS0bN1YPvNtNMFUmjRrB5Mnq/ZUrStweOQKHD8OxY2rY0cyXX6ph2kaN1DBqmzZKfBSMbbsZyTsFtrRKAAMGqJaX4GB1f/J62aoALbo0Gs31k5OjPCLnz+cmYjLHcZgDfuvUUTPJatRQwwR5h1CK4/Bh2LdP/Sfs6VlonXh4KLG18WOOxOwFJyec6jdVYkva4HDgKFhF5e6rUck79+xRXpNTp1ScVVHY2qr4qubN81fZnjq1sKdKZ2O/MdjbK69WcXVIzZMCzLF0f/+du23YMJUDD67m1Mi6+YVYebCzq7opi3nQokuj0ZQfc7me48dVO3HCMtsJyJ0mZH44m0zqP9U33lDLhgEtWqj/wj091WtaGhw4kCuwDh+GCRNyBdq8eWrfCROQzCuEN8jmh4eCOZx8AsLDcbpiMCK+AYPfno2DlX3hfc3HLCjibmU2bYK9e1Vsi/mBs307/PJLbh87OyWaWrZUrXlz1Ro1UkNeBbmBVQI05WTaNPV3d+aM8oKZ24kT+b1De/bAW2+p74R5SLN1a9Wq2BN0q6P/ejQaTdk4f15ljd+yRf2QF6RBA3BxUQ/qv/9Wr/feqx7SSUkqTcClS8rDcuaMyrN06pRKHZGSojww9vbqR3/+fPWgyMxU3pbYWNi3T6V+cEjkh/ZZHOICxNjhZFWDEVF1GWztiUNMHBy8Wsa1wL7ArSnEMjPVPTU/YB95RM3mAvU5bN2qgozNois4WHk43NxUYPQddxQtrjQ3J1ZW6h+aFi1yZwabvc1mLl1Snkxz1fO8HrH69eGrr3LF9YULagZgta1YfnOhRZdGoyme1FT46y+V2uFonpr0Dg4qrbM5XqRNGzV8eOSICph3dFQB0/375y/wZ/ZeZWeruKCRI9U5fv9drbOxUcOUjz0GgYGWeCNxdGBPMysWRq/msHcc5ORQO8eWEX4PMqRpLxwWPwpZcepBYg7KtbNTgsu8bt++m1+Imb0YR46oz+PoUSVcTabcPr17q88G1EPX2zv/NQQEqKa5fbCxye+hHDgQ+vZV36XISNVOnFDN3j5/3//3/9Q/Rc2bK5Hu5qY8om5u1TNgv5qjRZdGoynMuXNqCGrNmtxhQwcH5SXp3l0FVueNyRKB1avhf/9T4qldO5X2+fx5WLIkV7yYhY+LixI+jRqphJhDh6q8RYmJ6gffyQliY5GmTdhtFcfCIIMju98H57rU7tCNETkeDOn8IA7eV8XFvHmFRVJR665HiMGNF2OpqWoY9/Dh3MDp9PT8fcxpBMxB03lFbnBw5duouTmxsVEiytU11yNmrgJgJiND9cvMzBVneXnsMZXuA1TIQUKC8rDdTrFi5USLLo1Gk8uhQ7BiBWzblju12s9P5dLp2FH9F1yQ5GSVf2vbNrV8113w0EMq1qugePH1LSx8QAmY77/PDZB3cSFs/QIWhX/P0UuXIEtwOmrD8DQY4nsPDv3vzC96zDmL8lJwnafntQux4mLMKlJ4iSgvn52dEqMAmzfDJ5/k79egAXh4qGb2NBZMvKnRXAuGkd975eAAX3+txP+pUypVhTltxalT+QX++vWwYIF6X6+eEl/Nm6vXli3By+tGXkm1RYsujUajxNaCBSroGtR/tyEhygNVVN6gvGzZogRXdjZ07gw9e6r9ixIvo0YVLXwAPD0RDw+2ndnG4s2fcSLlBLRxxsmqJ/dkuXNneCoOJyMhbgOs3aB+zAcOVJm3zTFMpXGtQgxKFmPX4v0yx9mYBdPixeozGD5ciVZQHkPz8KBZaNWrV/ZzaDQVQc2ahWdNWoo1XqV2bfVbceZMbgLT8HC1rVkz+Pzz3L7/+59KPdKsmfJ6N2p028SMGVLFicLKQocOHSQsLKyqzdBobj2OHlUP+t271XLNmmq4YPDgsj/cReCdd2DpUvW+wExDc124kjxDOZLDlugt/HjgR04lnQLA2cGZEZ4jGOQ+KDfP1pkzKsZs7Vo1FAnqfN27KwHm6VkxOaKKS1VR8HrM11iWmLCMDBWLtX9/7pDhgw/mlmbZtQvmzIF+/dRQq0ZzM5KTo8IKzDnfoqNVIP7EiWr75cswdmz+fWxs1EQPFxe45x71zwWof0qsrW/KvG+GYewSkQ4F12tPl0ZzO3LihBrO27lTLTs6qof/3XeX7jWKiVEiy99fiR1PTxVPJFJ2r9ZVskxZrI9az7KDy4hNiQWgQY0G3ON1D/1b98fOukAuLxcXVdZj7Fj45x8VgB8eDuvWqebqqoZCe/UqnPm6PBQ3XFnwepYsKT4mLCNDBbiPHatmgB0/nj/gHVQcjJnAQHX8m/ABo9FYsLJSM2LvuKPomEJra5Xs1VztICZG/X2cPq2aOUYMlPf355+VIGvaVLUmTXLbTej11Z4ujeZ24uxZJbY2bVLLDg4qm/iIEaUX0jWZ1A/g558rseboqIb4yunVAsjIzuD347+z/PByEtJV5vPGNRszst1I+rj1wdbatnzXtGaNSj2RlJR7Xb16KQFW2vDo9ZDX+2VjozLvr1unvH5WVirovU0b9bBITVX3rHNnNXOsXTs9+0ujAfUPilmAtW+f+1s0e7bybBdFy5bw8cfqvYj6zWnYUFVFuOMO9VqWBMyVRHGeLi26NJrbgYQE9V/jH38o8WRjo/6jHDWqbA/+U6dUrb1jx5RHJy5OeXvOn1cZykeNKlNs06X0S/x67FdWH1tNcmYyAK51XBnZbiTdW3TH2uo64jqyslRs2W+/qSE8M61bq5IgISHX5/0qSHq6uhdZWeq6PTxg+nQ17Bkerh4Ejo7w9NOqJMt//6vu/c2QmkKjqQ6IqIk6Z8+qvzVzi4tTXu9nn1X9kpKKHpKvV0+JrwcfzC0sfoPQw4saze1IcjIsW6bSP2RmqqGrvn1hzJjcGXIlkZmpZiYuXqzivVxdlWfnvfeU4Co4A7EY4RCdFM2KwytYH7We7ByVpNGrgRej2o2iQ9MOGBUxpGZrq4L4e/ZUwxS//aZmVEVGwqefqllYPXqo3GHXEvuVk5ObRPTSJXUfHB3hhx9yr7t/f3WfatVSoiwoKHcY0mS6uXOEaTQ3GsNQ6WOcnHLjvIrCykqFHcTFqXQ3cXFknjtHWlwcqTExpPXsSZrJRGpqKunp6fj6+tKoLL9/lYAWXRrNrUhqqkr98PPPuXmdunSBcePKVyfvn3/g3/9WgqFuXfjgA+X+9/YuVRiICOHnwvn5yM/sOrsLAAODzs06M9xrOO0aFlM/riJo3lzFjUyYoDKy//GH8n6tXata06YqiWhoaPHiMzNTCaCICNWuXFHePlD3onFj9TBISlLLoGpLFkVRqTLKmyNMo7lNyMrKIi0tjZSUFNLS0khNTbW8mlvB9QVfs82lyLKz1T9deWZHTp06VYsujUZTAaSnK6/W8uUqizQob8vYsWqIqzQOH1YxSaGhKq/OuXNKULi4qOMdP65EVwlerdTMVNadXMevx34lJjkGADtrO/q69eVuz7tpWrtpRV1t6djZqdiuXr1UvMiaNcr7FRurYtu+/17lIevdWwWynzmjxM++fepe5C2dYmWlPIfmeJNPPy17HcKKyBGmvV+amwARIT093SKa8gqlgi1vn7wiKysr67rtsLG1pUadOtSsWZMaNWrka/Xr16+AK702dEyXRnMrkJSkxNaqVcrLBeoBPW5c2ZMSbt6cmxW+WTP46Se1vowB8lGJUaw+tpr1UevJyFZZ7BvUaMCgNoMY1GYQte1LCdS/UZhMKuZqzRoVpJuQoKaxp6UpQVWvnhKaNjaq1Imfn7qX3t4Vn2m7oJi63rQUGs11IiJcuXKFlJSUQqLJvFzcenO7Xl1hY2NDjRo1LIKpZs2a+d6XtM78amtrWzFhC9eIjunSaG5F4uOVV+uPP9RDGZQ4uP9+JRZKwvzQbthQ5elauFAJLkdHNZuoDGkfUjNT2XhqI39G/snxS8ct6/0a+TGk7RCCmwVfX3B8RZKRobxVdnbK+/f33+q9nZ2KHcnJUfcwNVVl3u/RQ3nIOnSovFmGZUnWWlJaiupQqkhT7cjKyrKIobyCyLxcmpjKycm5rvM7ODhYRFFRrUaNGtSqVavQOvN7Ozu7KhVMlYkWXRrNzYaISq65erUSDubcTx07KpFUFs/W4cMqmP78eeXhCQhQ8UnOzkpg1KhRbIB8juQQERfBXyf+YuuZrWSalNiraVuTXq69GOw+mOZ1yhE3diP48kv49Vd44QUlpkBd3/Hj6tXHR4ma/fuVx+/AAeUNCw9XgszDQ+UcCg5WaTIq84FQUIiVNR6spFJFWojdVIgIGRkZhURS3teC7/MuZ5r/AbtG7O3tqVmzZj5hZH5f1LqC4smmrMPutyH6zmg0NwtpaSoeafVqleUZlOemVy+VxdnVtfh9Cz509+1TQ2rZ2UrEtWoFb7+tZuUV8XAWEQ5fOMzm6M1sjt5MYkaiZZt/Y3/6t+5PZ5fOhZOZ3ihE1LTyQ4eUID10CJ58MrdsibOz6nPuXO4+oaGq5aVFC7jzTjXkuH077NihSiOZC05/9x3Ur69Eqr+/apWdoPF6SxWBFmJVQE5OTpkEUnHbrsfbZG1tXUgkFfVanIDSoqny0HdWo6nOmEzqwbhxo6pxmKFipXB2VrmnBgxQw4MlcfiwGm68eFE9dH/5RT1o69dXx3dxUUk9GzdW7eoD2JRj4tCFQ+yI2cGW6C3Ep8VbDtmkVhNCWobQt1VfGtdqfH3XaI7/MHuPzDXdDKN4j1J6usoZdviwKq1z5EhuYlQzBw/miq4771SFuB0dy2ZTvXpqnzvvVPd8zx41kzMsTN3Hv/7KTdrYooXylHl5qfM1bFjxnrCy1oy83lmSWojlIysrq0SRVJKQSktLu65z29vbW4RRUUKpuHW1atXC3t7+lh2eu9nRokujqW6IqIefWWjlFRO+vkoIdO5c9My5vA/NevXU8OM336hcVQ4Oavbdnj1qaPG77wo9YFMzU9lzbg87YnYQFhtmSWAKKii+R4se9GzZk9Z1Wxf/o37+vBqWq1tXDXmCeri/8oryrH3wQW7fGTNUzcHXX1ezB0Hl1/rsM5VN/vHH1bpTp+DRR5VI9PBQnj6z58pkUmkfGjRQwsfNTc3UzBvTVtaC2EXh4KDSbXTpos556lTu0OP+/bn15VavVv3r1VPiq21bZUerVhWblNVMWUsVQcULsZtEnImIJYVAUfFNpYmn6xmmMwzDEqdUnHgqbp32Nt266E9Vo6kOpKSoh/iuXSqoPSEhd1vTpirhZ0iI8kqZKW7mW1KSCoj39FRiIyVF5aixs1PlMQIC1P6enmS6t+JQ/CEi9s5nb9xejiUcI0dyhzWa1mpKJ5dOdHbpjJdVY4y4OHByzfXkLFqk8l6NG6fsAzh5UiVU7dgxV3TZ2ir7RPInGTUfJ29NwkuXlHCLjMxdFxOjxKK9vRJB1tZKzCQnK5Hw5psq4N0wYP58eOMN5d0bM0btf+4c/PijKslz5525x01OVveorF4Bw1DDuK6uMGyYEpFHjuQf1kxIUGJ5y5bc/Zo1U5nxW7VS5UtatlQisTK8EWX1il2rECtqXSV5ycyiKa9wKph2oKSg8LS0tOuaSWcepivJq1Tc+xo1amBl/p5rNFfRokujqQrS0uDoUfWQ3rMnV5CYadBABXyHhKgH9ZEjqsRNQYGVmqoe/K+9pjxfmZmqEGxsrBoWGzQIunVTwuLoURLaNudo7SSOhH/L4QuHOXzxsCVDPICVYYW3c1s6JdYk2K4Vze6akGvTww8rMfTFF0oIgjqHOQu0mWbNVNb7vHnBDEOVwXF0VO+zs5WQ6tVLXV9e0eXurjxX9va56wIDldereXPo2lXtY2en0j7ExysPl1nAWFmp1A/mhKWgzvXnn6qvWXSJwMSJ6tw//JA79LhpkxpC7NLl/7d39lF2VeX9/zzn3pn7NjOZCSEwySSEkEggJSAIopU28qJgoFQWFiv2hyJdq6uUiv250NiypO2qiqUv4A+pa6HUn1JbW8Qib6EL0BZUcAUIIYaEmGTynkkyk8zc97enfzzn5N6ZTBAlMzdhns9ae51znrPPOfucfe/e3/PsffY2kRrFHU8gxeP2tejixY1427aZANuwwcLmzY155aI5L6Exd+WcOY3JfGfPtvxrvvcjwZEWYm9AnOmpp1JZvZrcypXk588n19trYzGtWUN+7VpyJ5xArqfnkEEvx47j9GaHH0ilUq/bNNfcp8mb6ZyJxkWX40w0lYpNS7Npk4mnV1+1iri5MonFTDicc4711xoctOaxU05pCKxCwbxE119v/Ytee80q/WLRPE63324V3v796Jw+Bu78Aptnpek/0M+moU2sa1/HnjUDoEBgFYmMZJm/u8SZJ57FkmXXs/j4xaSyRZurLLMerrquITYWLLC0lUqNdF9+uU19M2NGw9bXB5/8pN3f4KB1cN++3cRIJD6iZsGI977Xmkyj61xyyeivMJNJm9dwLO9736G2a6+10MycOSbamod+KJXseVUqdv6IJ56wzvNz5zZE14oV1hy7bFnj3Pm89es68cSGR0/ErjVnjvW3AxOY/f0mwPr7G+HAgUZ/tLFMn27Cszkcf7z1wzvuOBOVb1YMHEaI6csvU1m0iEJvL/mBAQr1Ovlf/IJCEJAvFMgVCuRHRiisXk1OhPzKleQfeIDc5s3kUynyIyPkbriBQjJJdeXKhmcz8rC+9NJoW9T0m83axx1dXaNsyWKRjt5eMrNmmUDK5+kYHiYzfz6ZU045KJLGDkMQ2WJNI5E7Tqtx0eU4R4pczgRGFPr7TWht326VTDOxmAmq7m6rfD7wARvpfe1aa6rL5Uy03HefiZVy2c6xZYuNot7VBfU6OS2zoy/Fzkvexs7qKnYsX8r2LWvo1yGKz33OKu+oiaN/C6lde1l4xlJOfcf7OfW4Uzl9S57OH/w9vH0GzArH8etOmuiZOdOuGVVay5cfes8dHSYgR0Yac6Pt2we33moesMP1iRExj87cudbU1jwZ7fTpNkn0kWTmTPP6NZNMmoerUhktYJYutTQ1T5e0b5/dYzO7d9tQFHPmNEQXwE03mSC7/XYTo/G4ic9czoTYSSdZvD17zNs5NGTniibz3bXL4g8OmuAej3jcntP06ei0aVQ6Oymm0xRTKQrJJIV4nGI8TiEWoxgEFGo18vk8hUKBQqFAsVg8uB7Zm/dXm0fi7+lpiKF//3ez9fU1bGvWmGAqlezFIAjMUzY0RFyVTGcn6WKRjkyGdCJBJpUi3dNDJpsls2QJmYsuIrNvH+k77iBTr9NRq5H+q78ik06T/uM/Jlap2HP5whfs2pFHbd268Zs2FyyweG+0L9ox0j/NeWswoaJLRC4F7gRiwL2q+qUx+yXc/wEgD3xMVV+YyDQ5zq9MrWYV7oEDFvbtGx3WrzcvRlvb+G/tnZ3WFJNIWGXxzndaf6ONG82jtHOnTSnznvfApk3oa+spZZLs1wL7n7ifAxdfwP5ZeQYLQ+ydWWPveW3smd/Fvg+9nfzIPjgwDIMPw+qwgp4BrNpKT67GSRefx7w5S5jXPY+FxZfpe/ZJgvd8EM682uJ2HrAvF+fOte1KxdJ9xRW2/PGPbbl/v4mAoSFr6rv8cou/bp11kF+8GL4U/r07O00oqtr9n3ii3X8U+vqsKa29RcNLjKWtbfT2xRcfGucjH7F7bu6jk0qZWO7qGh131y7zPobNlbVajfJTT1F++mlKn/gEpSCgXC5Tev55yvfcQ+m00yhdey2luXMp5vOU7ruPUhBQPPtsivv2URoaorRxI8XhYYpAsVSyUK1aAH7p4AJBYOI5Hh+9jEK0P1yPt7eTSqdJZzKkZ8wglcmQ6ewk1dFBurOTdGfnwWa7aGqVzMAAqf5+MmedRebMM0lv2ULbH/5hY3T9O+6wtEQj7nd22lyV0QCwiUSjyTJqrq5Ufq2mzTdle73+aW9GyLkIdJhA0SUiMeBu4BJgG/AzEXlIVX/eFO0yYGEY3gncEy4nl4n4g7TqzzmV0/jyy/bV2IIFVlivWWPxFiwwb0T0drx2rVX8M2da5fiLX5hoipptslnzKG3dagVxVCkPD8PevfYlWjKJ1mvUczmqmzZQ0RrlVDvVS99H+bhuyj/4CeVqiVIuRunEJZT27qK0/ucUpErhxW+TP2EnhS0bKczdTrZnH9mgSjb1FNlzYmQXlaiQt2bA+NOwpR+u7IVtNRisQscIpKZDMkEiPYvejYPMUug9/wJ623rojfdw0uofM61WhFkfhbNDL8zIDCgkRo8rNTJiTZPZrHli3sjXWs1fAp5wgvXBirw3YM/sK1+x5rCJ+GpvDKpKrVY7JFSr1cMuxwuVSmXUerQdrTeHcrncWN+yhcqnP02pVLLtVIpyvU7pYx+jXC7beEuDg/aM77nHminBbJs323LHDrNVq/YhRTw+2ju6e7fl1Wmn2W+0XjcP6tat0NND28yZJIFkqURy82ZS7e2kZs8mWauRrlZJ7t1LqlIhNX06qUSCVCxGKpcjVSiQ7u4mNW0aqSAgVa2SHh6mLRJhxaKF116zdHR3m1cwCOxlRKQxmG5bm22vXWsTrXd02AvGnj32O3noIZtG6bLL7EVj7lwbB+2FF+z+slnrCxd5BmMx85ytW9forxgEttywoSEcf/AD+2/OnGnXWrHC0jEyYoJ/YMDGtwP7jZ94ol3vmWcsXqFgXtedO21stpERuPHGhhD72tfsua9bZ5OoR/avf92O/8QnjpzgG8/2q35BejSV4cdCGieZCZt7UUTeBdymqu8Pt5cDqOoXm+J8Dfihqn4n3F4HLFXVnc3nmtC5F199lY9ffS7FaL66jk4QIJeFevhsurutKWLfXqiFM5en0/aGu2+vxavV7E1t0SKr8DdtssJK1QqaIAjPCaBWIHV0jD4+mYCubhjaZxVutRZ+cXaCFSaqdu5YHOIxKBYsHkBbO8QCqFbMJkAQs/V62HdGgETSCvauTnQka+esVS1uEECp2Hg28bAQrdcaHYnb2ixdtWpjHKV0GgpFqFbQaEqVmTNh5y6olNGo6SaVsmuXypbWQGBaN1ooWHOMYIVoZ6ddL5dFqzVob7PEHz8D3b0brVYPNgdpW1g51WqoCBqICaJaDUolVLDrJ9pRQMP+SPV4DJ3WZbb9Q7YUqAeBLbXesCUT1AOhXilRryv1AOrJduqxAI2mjomeV++Jtr5tW+P3E49bntdqjbzp6DD7cNaeJZj3p7sbKhVi23aQypVI9c4ltWARqXiKVP8OOl58hY5Ymkyqi456nPa6IPmCnSv0HI36R59/PixZYp2RN2xAn3rKmjUvvNBsw8Pod797MLpK+PwSCTT8UlATCTSZhFQKTSbRzk7o7kZVDw7gGC1V9WCo1+ujtpttzcux61Go1Wqva4vE1dE+f6yIkEgkaG9vH7WMQntbG8lUyrbjcZKDg7SLkDz9dBKJBMlkkuRzz5EYHCR5+eUk+/rM9swzJB9/nMSyZcSvDj2XGzdaf7p580z4gv2XrrvOxMeXvmTlVC5nTavPPgsXXWSeykjgPPKI/X/f/e6G6HrkEfv9nn++lUH1ugmfwUF7qYmE/J49VvbNmGEfO4DFf/FF+41Gw4KACaxs1l6Uoq9s+/tt2ddn3qxs1l50BgasvF20qOFF3hOOGzd3rr1g1etWvkybZunv7zebqpUpmYwdE/Un6+iwfdmwHAwCE4dDQ/Z8Mhm7995euwdV82wnk/as0umwXM+ZrVi0/280lVQ63Th+eNi85J2dZps/34Tf4KA13xYKJuyirglR38nFi+18r7xiZWMiYR/G5HLmhRaxcvWCC+yY55+35x994fvbv23ifNWqxpRXS5ea5/rZZy1OMmkTvlerNlwL2L1HHt+HH7Z96XSjn+Jjj1n6Egnr5wjw+ONWjsdi8MEPmm3FisZcsFdcYYJ3cNAEeKlkab/iisZ18nmrY666yu7t0UdNBIvA7/2ePe9HHml0v7j0Urvvhx+281Uq9nzmzGmku1i0/rGnn262et1+H//2bxMqvFox9+JsYGvT9jYO9WKNF2c2sJPJYvVqnhzJUaqGBffg8KFx9gwBMrrjczkHB/KhGMFqunIRVq0xW7XWiF/OHnrOwREYyh56/MiuRsUc2TZttQpcCCvy6qHnaxZL0bFUDrXlQlu22HQdBR1vVvemDtOvd878gUZNXy7ZenarCVTg4M5iruncoRDM77P9Bx9tFfL7m+4VKIdCsrAbKtG9h/sKzelWC/lCeE9ROhXyoTCKkhTUoVQIz9F0CqmPOj0AbWFaq03nTABtMUQDJFcmUJCgTlCoIAQEu4SgpgQqBIk4AUJQKBGrKzGFIA2xQIlV08RKZeISI9Y2i3hlOvEgTjDYboUy3SABJUqUBoX9Iyl7NiPZhugNAitIKhVbbw6vvhqeByt80mkrcKOBPVWtUoianMb7xL1atYopO87v+CghCALi8fjBZSwWOxji8fhBW7Rsa2s7aI9Csy1ab2trO2xob28ftd4cIlsikSAWi735L+AuvPBQ2zXXWGhm3jwTU81eMhHrj5fPW8UTNeu2t1ulvGSJjW0G5uFduNBET/PQGl/8ov2+br218fXpvfea1+Caa0x4lcv2he0DD9g5ly2zeEND8OUvW+V+4412nmrVxo/bscPizZxptp/+1MKSJfZRSa3WmF+0p8e+KK3V7P4efNDu6dxz7b527zZxNjBg93PGGSbYonHvurqs3+TevXau55+3e1u61NI4bZoJNbD/Q6Vi/4mODktnV5fZSyVbVquNptloXs/ofwiN/m1BYMeoWnqjPm/Fot1LNtuYE7RQaPzf4nEL/f32bDMZW27daueJvGHlssWpVBr9PzMZu+bGjSbiymUTSMWiieXhYdsficX16y0t0b0Vi43+hNGAzIWCeTGj9VrNwpo1DVulYteKmn3z+UZ+R7Ng7Nhh9nrowFi1anTcSsU+toCG971eN4+oiD2bKK0vvdQQ7EFg51i9uuE5bW8325o1tsxmG/ccTZ01yUykp+tDwPtV9YZw+w+A81T1pqY4jwBfVNVnwu0ngVtUdWXzuSba0/U311xAZfgAIOG8atjbQTWsbOfPh84OeHWdeSWqNauoZh5vNq2bMJgxw/rl5HJWcERvUH2zzTu1bVvoNcKU+PSe0ec8/nh7E1i/vuHVOm46zD/Ffuz18IfW3WM/pt277ccoYm+a8bgVHpFXqqvL1oeHowdub3LVqsWP3gSrVYsbj1uBFR0fvb0ODyPRm+CMGZaGoSEkCEACa1raP2RvMMmUxTv7bEvz7t1hwSMw72T74e/YAfE2JB6DJWci+4fsnoMYkmiHd5xrhdL69bBjJ9KRQYKYFc4/+Qls3IjEYkgQIEvONI/fz9earS18k8vmkGefIVCBjg7kiisQAvjO/QR1kGnTkOuuQxCCu+9BqlWCeBty2WWIBMQefRSp1AhicWJX/q7ZHvxPgmqVIIgR+8xyYvNOJpDA0rR5s1USb3ubPbNVq8xrMHu25amIPYudO61C6+09KJokKrh7ehoVYrGIVKtWUEa2sSO3E20eWqFHtsPtG2sfL34Ur3nf2HUROTgWUbMtskfxgyA4uB3Fj2zN9tcLsVhs1HoUxrsf5xhh7G+6WrUQiZDIlss1yrSIvXut8p0xo/Gxx/79FnfatEYzeD5v5Voy2fgaFUx8qJpgjK6/fbt5VnI5EyxnnGFl5o4d5lEZGbHK+rTT7Nh43I5dvdo+BonF7NhKxY5fvNjSsmuXeboGBszW12eiZtcuEyvRYLovv2zpqlbt2gsXwg9/CJ/7nD2TVMo8mCMj5tGs1+0+77rL4j74oA0+HHm1/uEfrJz/67+2tKVSZhschM98xu65owP+7u9M3Nx0kz3Trq5GH7wbb7Qyv7PT4gHcfLM91+h8qtY3NJu1svvOOy3e8uV237GYHbtokT2XT32q8RL4t39rcW+5xY5PJBrX+Yu/sDyNx+2+RMwWvQDedps931tvbQjBP/szq19vvdXyoVSCG26wPPv8582WydgHSS3wdHnzIrz126w9jW+Z/gCO40xB3mpl5tGWngmgFaIrDqwHLgK2Az8DPqKqa5riLAP+BPt68Z3AXap63thzTbjochzHcRzHOUJMep8uVa2KyJ8AK7AhI76hqmtE5I/C/f8EPIoJrg3YkBEfn6j0OI7jOI7jtJIJHadLVR/FhFWz7Z+a1hW4cSLT4DiO4ziOczTgs3E6juM4juNMAi66HMdxHMdxJgEXXY7jOI7jOJOAiy7HcRzHcZxJYMKGjDiSiMgeoL/V6XAcx3Ecx3kDnKSqx481HhOiy3Ecx3Ec51jHmxcdx3Ecx3EmARddjuM4juM4k4CLLkBELhWRdSKyQUQ+2+r0TFVEZI6IPC0ia0VkjYh8MrRPF5H/EpHXwmVPq9M6FRGRmIi8KCIPh9ueL0cBItItIv8hIq+G/513ed60HhH5VFiOvSIi3xGRpOdLaxCRb4jIgIi80mQ7bF6IyPJQD6wTkfcfybRMedElIjHgbuAy4HTg90Xk9NamaspSBf6vqp4GnA/cGObFZ4EnVXUh8GS47Uw+nwTWNm17vhwd3Ak8rqqLgDOxPPK8aSEiMhv4U+Adqvob2FR4H8bzpVX8M3DpGNu4eRHWOR8GFofHfDXUCUeEKS+6gPOADaq6UVXLwL8CV7Y4TVMSVd2pqi+E6yNY5TEby49vhtG+CfxuSxI4hRGRPmAZcG+T2fOlxYhIF/BbwNcBVLWsqvvxvDkaiAMpEYkDaWAHni8tQVX/GxgcYz5cXlwJ/KuqllR1EzY39HlHKi0uuqxS39q0vS20OS1EROYBbweeA05Q1Z1gwgyY2cKkTVX+EbgFqDfZPF9az3xgD3Bf2PR7r4hk8LxpKaq6HbgD2ALsBA6o6hN4vhxNHC4vJlQTuOgCGcfm42i0EBHpAB4AblbV4VanZ6ojIpcDA6q6stVpcQ4hDpwN3KOqbwdyeJNVywn7B10JnAzMAjIi8tHWpsp5g0yoJnDRZSp2TtN2H+YGdlqAiLRhgut+Vf1eaN4tIr3h/l5goFXpm6L8JvA7IrIZa36/UES+jefL0cA2YJuqPhdu/wcmwjxvWsvFwCZV3aOqFeB7wLvxfDmaOFxeTKgmcNEFPwMWisjJItKOdaB7qMVpmpKIiGB9U9aq6t837XoIuC5cvw74z8lO21RGVZerap+qzsP+H0+p6kfxfGk5qroL2Coip4ami4Cf43nTarYA54tIOizXLsL6qHq+HD0cLi8eAj4sIgkRORlYCDx/pC7qI9IDIvIBrM9KDPiGqv5Na1M0NRGR9wD/A6ym0Xfoc1i/ru8Cc7HC7EOqOrZTpDMJiMhS4NOqermIHIfnS8sRkbOwDxzagY3Ax7EXas+bFiIifwlcg32V/SJwA9CB58ukIyLfAZYCM4DdwOeB73OYvBCRPweux/LuZlV97IilxUWX4ziO4zjOxOPNi47jOI7jOJOAiy7HcRzHcZxJwEWX4ziO4zjOJOCiy3Ecx3EcZxJw0eU4juM4jjMJuOhyHKfliMhxIvJSGHaJyPZwPSsiX52ga94sIv9nHPs8EXnlCF6nXUT+O5yDz3GcKYwXAo7jtBxV3QecBSAitwFZVb1joq4XCqDrsdHbJxRVLYvIk9iYTfdP9PUcxzl6cU+X4zhHLSKyVEQeDtdvE5FvisgTIrJZRK4SkS+LyGoReTycQgoROUdEfiQiK0VkRTTVxxguBF5Q1WrTMatE5CfAjU3Xnyci/yMiL4Th3aH9WyJyZVO8+0Xkd0RksYg8H3rpXhaRhWGU7wPXTsQzchzn2MFFl+M4xxKnAMuwyYS/DTytqmcABWBZKLy+AlytqucA3wDGm2HiN4HmCbzvA/5UVd81Jt4AcImqno15qu4K7fdiI78jItOwefUeBf4IuFNVzwLegc3jBvAKcO6vec+O47xF8OZFx3GOJR5T1YqIrMam7Xo8tK8G5gGnAr8B/JdNeUcM2DnOeXqxufAi0dStqj8K930LuCxcbwP+XzjVTg14G4Cq/khE7haRmcBVwAOqWg09ZX8uIn3A91T1tTB+TUTKItKpqiNH6Fk4jnOM4aLLcZxjiRKAqtZFpKKNeczqWHkmwJpxPFZjKQDJcF2Aw82H9ilsrrYzsZaBYtO+b2FNhh/G+oehqv8iIs9h3rgVInKDqj4Vxk+MOd5xnCmGNy86jvNWYh1wvIi8C0BE2kRk8Tjx1gILAFR1P3AgnHAdRve9mgbsVNU68AeY5yzin4Gbw3OsCa83H9ioqncBDwFLQvtxwB5Vrbz5W3Qc51jFRZfjOG8ZVLUMXA3cLiKrgJew/lZjeQz4rabtjwN3h82DhSb7V4HrROSnWNNirulauzHxdl9T/GuAV0TkJWAR8P9D+3uxPl+O40xhpOGddxzHmTqIyIPALVG/q1/j+DTWl+xsVT3wS+J+D1iuqut+nWs5jvPWwD1djuNMVT6Ldaj/lRGRi4FXga+8AcHVDnzfBZfjOO7pchzHcRzHmQTc0+U4juM4jjMJuOhyHMdxHMeZBFx0OY7jOI7jTAIuuhzHcRzHcSYBF12O4ziO4ziTgIsux3Ecx3GcSeB/AYmUGiwte05fAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.371, 'epsilon': 0.20520000000000002, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACk8UlEQVR4nOydd3RV1da3n50eSKFD6AECAdJIIPQSWkCQJgiICCiiqIj6qcBVxHa9vIqC2L2KIHIBAVFEVERCF6WFDoFAKAmQkEB6z/z+WJyT3gmhrGeMNc7ue+59yv6dueaa0xARNBqNRqPRaDQVi0VlG6DRaDQajUZzL6BFl0aj0Wg0Gs0tQIsujUaj0Wg0mluAFl0ajUaj0Wg0twAtujQajUaj0WhuAVp0aTQajUaj0dwCrCrbgJJQq1Ytadq0aWWbodFoNBqNRlMs+/btuyoitfMuvyNEV9OmTdm7d29lm6HRaDQajUZTLIZhnCtoue5e1Gg0Go1Go7kFaNGl0Wg0Go1GcwvQokuj0Wg0Go3mFnBHxHRpNGUlMzOTmJgY0tPTK9sUjUZzh2BtbU2NGjWwtLSsbFM0dxkVJroMw1gEDAYiRcSjgPUG8CFwH5AETBSR/RVlj+beJCYmBjs7O2rVqoX6yGk0Gk3hiAgJCQnExMRQu3a+wWcaTbmoyO7FxcCAItYPBNxutCnAZxVoi+YeJT09HQcHBy24NBpNiTAMAwcHB+0d11QIFebpEpFthmE0LWKTocC3IiLAbsMwqhmG4SIilyrKpsI4cgSysm7NuUr67C9sO9PynOsLmi7q1dQALCyyX3Ous7DIXmaaNjVLy/yvt7Om0YJLo9GUBv2boakoKjOmqwFwIcf8xRvLbrnoevttSEy81We9u7C0VM3KSjVr6+xXa2uwsQFbW/Vqmra3hypV1KudnZp2dMxuDg7q1eouiDz897//zf/+9z8sLS2xsLDgiy++oGPHjrfcjuDgYCIiIrjvvvsAWLduHceOHWPmzJlMnDiRwYMHM3LkyFz7bNmyhXnz5rF+/fpbbq9Go9HcTVTm46ygvxJyy60A2rSB1NSSbSvlsLAs++bcxzSd9zgFLRcpeD7ntqbprKzc603zWVnZLed8Zmb2a97ptLTSX2NxODpCzZpQvTrUqKGm69aF+vXBxUUtu53/mP7111+sX7+e/fv3Y2try9WrV0mriBtVAoKDg9m7d69ZdA0ZMoQhQ4ZUii0ajUZzr1GZousi0CjHfEMgojIMee21yjjr3YNItujKyFAtPT37NT1dibHU1OzX1FRITs7dkpIgPh4SEiAuTr3Gx2e3sLCCz29rq8RXkybQooVqzZopz9ntwKVLl6hVqxa2trYA1KpVC8iutFCrVi327t3Liy++yJYtW9i6dSvTp08HVDfHtm3bcHR05N1332Xp0qVYWFgwcOBA5s6dS2hoKE8//TRRUVFUqVKF//73v7i7uzNx4kTs7Ow4evQoV65c4YMPPqB///689tprJCcns2PHDmbNmkVycjJ79+7l448/BmDTpk18+OGH5n0GDx6c61oSExOZNm0ahw8fJiMjg9dff52hQ4fewrup0Wg0dy6VKbrWAc8YhrEC6AjEVkY8l6b8GEZ2t+INXXHTEIHYWIiJyW7R0XDpEkREqNe4OCXIwsJg69Zsm+rXh5EjlfirW1dNVwQ//1z0+v79+/Pmm2/SsmVL+vbty+jRo+nZs2eh28+bN49PPvmErl27kpCQgJ2dHb/++is//vgjf//9N1WqVCEmJgaAKVOm8Pnnn+Pm5sbff//NU089xebNmwEICwtj69athIaGEhAQwOnTp3nzzTdziazFixfnOndB++Tk3//+N71792bRokVcv34df39/+vbtS9WqVUt51zQajebeoyJTRiwHegG1DMO4CMwBrAFE5HNgAypdxGlUyohJFWWL5s7FMKBaNdWaNSt4m8RECA+HM2cgNBROn1YCLDxcibLISHWcqKjsWDJr61t3DQ4ODuzbt4/t27cTFBTE6NGjmTt3bqHbd+3alRdeeIFx48YxYsQIGjZsyKZNm5g0aRJVbrjvatSoQUJCArt27WLUqFHmfVNz9JM/+OCDWFhY4ObmRrNmzThx4kSxtha3z8aNG1m3bh3z5s0DICUlhfPnz9O6detS3RONRqO5F6nI0Ytji1kvwNMVdX7NvUPVqtCypWom0tOV8Lp6VXVbRkXBs89mr69eHZo3h6ZNVWB/RWNpaUmvXr3o1asXnp6eLFmyBCsrK7JuDJtNSUkxbztz5kwGDRrEhg0b6NSpE5s2bUJE8o2oysrKolq1agQHBxd4zrzbl2REVnH7iAhr1qyhVatWxR5Lo9FoNLnRZYA0dyXW1uDmpuK8+vRRXYs9e6pltrZw7Rrs3Qtr18LOncobVlGcPHmSU6dOmeeDg4Np0qQJTZs2Zd++fQCsWbPGvD40NBRPT09mzJhB+/btOXHiBP3792fRokUkJSUBKumrk5MTrq6urFq1ClCC6ODBg+bjrFq1iqysLEJDQzlz5gytWrXC0dGR+Pj4Qm0taJ+cBAYG8tFHHyE3RmEcOHCgnHdHo9Fo7h3ugsH4Gk3xWFlBgwaq+fqqrsfQULh8Gc6dU61ePfD2VqMjbyYJCQlMmzaN69evY2VlRYsWLfjyyy85fvw4jz32GO+8806u9BELFiwgKCgIS0tL2rRpw8CBA7G1tSU4OJj27dtjY2PDfffdxzvvvMOyZcuYOnUqb7/9Nunp6YwZMwZvb28AWrVqRc+ePbly5Qqff/45dnZ2BAQEMHfuXHx8fJg1a1Y+WwvaJyezZ8/mueeew8vLCxGhadOmOpWERqPRlBBDypMD4RbRvn172bt3b2WbobkDiYiIoH79+oWuT0xU4iskJDvdRePG4OUFTk63yMgKoLCcWxqNpmQU99uh0RSFYRj7RKR93uXa06W5p6laVQksd3c4dgxOnoTz5+HCBRXz5eNza2K+NBqNRnP3o0WXRoMSVj4+Khj/yJHsUZCXLkGXLnCn1b3NmwpCo9FoNJWPDqTXaHJQpQr4+8N996nYrsRE2LRJCbE7oCdeo9FoNLcxWnRpNAXg7Az9+qkSUSJw6BD8+adKP6HRaDQaTVnQokujKQQLC9Xl2Lu3SqgaGQm//lqx6SU0Go1Gc/eiRZdGUwz16sHAgaqsUGoqBAWpVBMajUaj0ZQGLbo0mhJgZ6eSqzZvrgp7b92qcn2VBAcHh2K32b59O23btsXHx4fk5ORS2fbjjz9y7NixUu1TlF3Jycn07NmTzMxM87L58+djZ2dHbGxsqc9zMwgODmbDhg0Vfp7FixcTERFhnp88eXKZ7m1YWBgeHh7Fbrdq1Spat25NQEBAqc+R19abZVdB27z++uvm0k8lpVevXhSX6mfBggXmhL+lpayfiZx29e3bl2vXrpXp/BpNWdCiS6MpIYahguzd3JTw2r5dpZa4GSxbtowXX3yR4OBg7O3tS7VvWUVXYSxatIgRI0ZgaWlpXrZ8+XI6dOjA2rVrb9p5SkNlia6vvvqKNm3aVNj5vv76az799FOCgoJKvW9ZRNftRmWIrpyMHz+eTz/9tFzH0GhKgxZdGk0pMAxo3x5at4asLNixQ2WzLwlbtmyhV69ejBw5End3d8aNG4eI8NVXX/H999/z5ptvMm7cOADee+89OnTogJeXF3PmzDEf49tvv8XLywtvb2/Gjx/Prl27WLduHS+99BI+Pj6EhoYSGhrKgAED8PPzo3v37uai1WfPnqVz58506NCB2bNnF2rnsmXLGDp0qHk+NDSUhIQE3n77bZYvX25efvToUfz9/fHx8cHLy4tTp04xe/ZsPvzwQ/M2r7zyCgsXLmTLli307NmTBx98kJYtWzJz5kyWLVuGv78/np6ehIaGAiqp65NPPkn37t1p2bIl69evJy0tjddee42VK1fi4+PDypUriYmJYdiwYXh5edGpUycOHToEKI/MhAkT6N+/P02bNuWHH37g5ZdfxtPTkwEDBpCeng7Am2++SYcOHfDw8GDKlCmICKtXr2bv3r2MGzfO7HHM6RX57bff8PX1xdvbmz59+pTsTUeJoxEjRjBgwADc3Nx4+eWXzTbs2LGDJ598kpdeeonMzExeeukl8/v+xRdfmI/x7rvv4unpibe3NzNnzizQ1n379tGzZ0/8/PwIDAzk0qVLAOzbtw9vb286d+7MJ598UmK7C6NXr17MmDEDf39/WrZsyfbt2wHlIR0zZgxeXl6MHj06l8d248aNdO7cGV9fX0aNGkVCQgILFy4kIiKCgIAAs6evoO0A9uzZQ5cuXfD29sbf35/Y2Nh8n4nExEQeffRROnToQLt27fjpp5+KtWvIkCG5PtMaTYUjIrd98/PzE42mLISHh2fPDB5801rW4MES22OwXGw3WP73P5Fz5wq3oWrVqiIiEhQUJE5OTnLhwgXJzMyUTp06yfbt20VEZMKECbJq1SoREfn999/l8ccfl6ysLMnMzJRBgwbJ1q1b5ciRI9KyZUuJiooSEZHo6Oh8+4qI9O7dW0JCQkREZPfu3RIQECAiIvfff78sWbJEREQ+/vhjs105SU1Nlbp16+Za9tZbb8mbb74pmZmZ0qRJE7ly5YqIiDzzzDPy3XffmfdLSkqSs2fPSrt27UREJDMzU5o1ayZXr16VoKAgcXZ2loiICElJSZH69evLa6+9JiIiCxYskOnTp5uvJTAwUDIzMyUkJEQaNGggycnJ8s0338jTTz9ttumZZ56R119/XURE/vzzT/H29hYRkTlz5kjXrl0lLS1NgoODxd7eXjZs2CAiIsOGDZO1a9fmunciIg8//LCsW7dORER69uwpe/bsMa8zzUdGRkrDhg3lzJkz+fYviLNnz0rbtm1FROSbb74RV1dXuX79uiQnJ0vjxo3l/Pnz+c73xRdfyFtvvSUiIikpKeLn5ydnzpyRDRs2SOfOnSUxMTHXuXPum5aWJp07d5bIyEgREVmxYoVMmjRJREQ8PT1ly5YtIiLy4osvmu0qie0m5syZI++99575vC+88IKIiPzyyy/Sp08fERF5//33zec8ePCgWFpayp49eyQqKkq6d+8uCQkJIiIyd+5ceeONN0REpEmTJubPc2Hbpaamiqurq/zzzz8iIhIbGyvp6en5PhOzZs2SpUuXiojItWvXxM3NTRISEgq1y0SLFi3k6tWr+e5Drt8OjaaUAHulAD2jk6NqNGXA4EaZIEOllNi9W81Xq1b0fv7+/jRs2BAAHx8fwsLC6NatW65tNm7cyMaNG2nXrh2gajeeOnWKgwcPMnLkSGrVqgVAjRo18h0/ISGBXbt2MWrUKPOy1NRUAHbu3GkurD1+/HhmzJiRb/+rV69SLc9FrFixgrVr12JhYcGIESNYtWoVTz/9NJ07d+bf//43Fy9eZMSIEbi5udG0aVNq1qzJgQMHuHLlCu3ataPmjWKWHTp0wMXFBYDmzZvTv39/ADw9PXN1rz344INYWFjg5uZGs2bNzJ66nOzYscN8Lb179yY6OtocbzZw4ECsra3x9PQkMzOTAQMGmM8TFhYGQFBQEO+++y5JSUnExMTQtm1b7r///nznMbF792569OiBq6trofe+KPr06YOzszMAbdq04dy5czRq1CjXNhs3buTQoUOsXr0agNjYWE6dOsWmTZuYNGkSVapUKfTcJ0+e5MiRI/Tr1w+AzMxMXFxciI2N5fr16/Ts2RNQ7/uvv/5apK2GYRS7fMSIEQD4+fmZ7+m2bdt49tlnAfDy8sLLywtQ9+7YsWN07doVgLS0NDp37pzv+IVtd/LkSVxcXOjQoQMAToXU59q4cSPr1q0zx56lpKRw/vz5Qu0yUadOHSIiIsyfU42mItGiS3Pv8PPPN/2QjgLN/oYzZ2DbNggMBFvbwre3zbHS0tKSjIyMfNuICLNmzeKJJ57ItXzhwoWFPhBNZGVlUa1aNYKDgwtcX9z+9vb2pKSkmOcPHTrEqVOnzA/ztLQ0mjVrxtNPP81DDz1Ex44d+eWXXwgMDOSrr76id+/eTJ48mcWLF3P58mUeffTRAq/dwsLCPG9hYZHrPuS1sSCbpYBMtabtch7X2travNx0npSUFJ566in27t1Lo0aNeP3113Ndc0GISLH3rihK+r5/9NFHBAYG5lr+22+/FXtuEaFt27b89ddfuZZfv3691HbXrFkzX3B5TEyMWXBC9vXkvZbC3qt+/foV241X2HaHDh0q0TWICGvWrKFVq1b51hW1f0pKSqnjKDWasqJjujSacmAY0KED1KgBCQnw11/lz1wfGBjIokWLzPEs4eHhREZG0qdPH77//nuio6MB9SAEcHR0JD4+HlBeAFdXV1atWgWoB9HBgwcB6Nq1KytWrABU3FZBVK9enczMTLMIWb58Oa+//jphYWGEhYURERFBeHg4586d48yZMzRr1oxnn32WIUOGmOOqhg8fzm+//caePXvyCYiSsGrVKrKysggNDeXMmTO0atUq1zUC9OjRw3wNW7ZsoVatWoV6QPJiurZatWqRkJBg9iwB+c5jonPnzmzdupWzZ88C2ff+n3/+4ZFHHin1NRZEYGAgn332mTnuLCQkhMTERPr378+iRYvMAecFve+tWrUiKirKLLrS09M5evQo1apVw9nZmR07dgC53/fw8PACY9McHBxwcXHhzz//NJ/vt99+y+eRzUvO9+TIkSPmz0OnTp3YuXMnp0+fBiApKYmQkJB811DYdu7u7kRERLBnzx4A4uPjycjIyPdeBQYG8tFHH5kF+YEDB4q0C9T34/LlyzRt2rTIa9NobhZadGk05cTSErp3Vx6uiAiVvb489O/fn4ceeojOnTvj6enJyJEjiY+Pp23btrzyyiv07NkTb29vXnjhBQDGjBnDe++9R7t27QgNDWXZsmV8/fXXeHt707ZtW3NA8Ycffsgnn3xChw4dikz90L9/f/NDesWKFQwfPjzX+uHDh7NixQpWrlyJh4cHPj4+nDhxwiw+bGxsCAgI4MEHH8w1ArKktGrVip49ezJw4EA+//xz7OzsCAgI4NixY+ag6ddff529e/fi5eXFzJkzWbJkSYmPX61aNR5//HE8PT0ZNmyYudsKsgP586buqF27Nl9++SUjRozA29ub0aNHA3D+/Pmb5iWZPHkybdq0wdfXFw8PD5544gkyMjIYMGAAQ4YMoX379vj4+Ji7z3LampmZyerVq5kxYwbe3t74+Piwa9cuAL755htzd3BOWy9duoSVVcGdHd9++y1vv/02Pj4+9O7dmzlz5tC8efMi7Z86dSoJCQl4eXnx7rvv4u/vD6h7t3jxYsaOHWse+GDqMp4yZQoDBw4kICCg0O1sbGxYuXIl06ZNw9vbm379+pGSkpLvMzF79mzS09Px8vLCw8PDPFikMLtADTLo1KlTofdBo7nZGAW56W832rdvL8Xle9FoCiIiIoL69evfknNduQKbNytPV48ecCN0647jwIEDfPDBByxdurRM+2dlZeHr68uqVatwc3Mr1b4TJ05k8ODBjBw5skznvtW89NJLjB8/Pl+c0J3Axx9/TOPGjRkyZEhlm1JpTJ8+nSFDhhTo8buVvx2auw/DMPaJSPu8y7WnS6O5SdStq8oGgepmrKQ8ouWmXbt2BAQE5EqOWlKOHTtGixYt6NOnT6kF153Ie++9d0cKLoBnnnnmnhZcAB4eHqVK/6HRlBft6dLc1dzqf6sisGuXyt1Vowb0769qOGo0mjsL7enSlAft6dJobgGGAR07QpUqEBMDp05VtkUajUajuV3QokujuclYWakRjQAHD0IZq5xoNBqN5i5Diy6NpgJo0AAaNYKMDNA94xqNRqMBLbo0mgrDzw+sreHixZtXGFuj0Wg0dy5adGk0FUSVKuDtDQ8/bEmPHj60adMWb29vPvjgA7KysgDYu3evuUTJ7c7EiRNzJRLNyXPPPce2bdvM81FRUVhbW+cq2nyreeeddyr8HMHBwWzYsME8v27dOubOnVumY+Usrl0YUVFRdOzYkXbt2pkLTZfV1ptp18SJE3F1dcXb25uWLVvyyCOPEB4eXuyxFyxYYE76WlpuxvX07ds3X/Z9jaYi0aJLo6lA3NzA1taef/87mKVLj/LHH3+wYcMG3njjDQDat2/PwoULK9nK8hETE2OuTWhi1apVdOrUqdjSLxVJZYiuIUOGMHPmzAo7359//om7uzsHDhyge/fupdq3rCKlpLz33nscPHiQkydPmtOOpKWlFblPZYiunIwfP55PP/20XMfQaEqDFl0aTV5OnIBVq9RrOTEMlbHeMCAkBCwt6/Dll1/y8ccfIyJs2bKFwYMHA6qkTJcuXWjXrh1dunTh5MmTgCqH8uCDD+Ll5cXo0aPp2LGj+Z+6g4MDr7zyCt7e3nTq1IkrV64AcO7cOfr06YOXlxd9+vTh/PnzgBJDHh4eeHt7m0VSZmYmL730Eh06dMDLy8vsnRIRnnnmGdq0acOgQYOIjIws8BpXr15tLiptYvny5bz//vtcvHjR7PHIzMxk4sSJeHh44Onpyfz58wkNDcXX19e836lTp/Dz8wOgadOm/Otf/6Jz5860b9+e/fv3ExgYSPPmzfn8888BVQKoR48eDB8+nDZt2vDkk0+SlZXFzJkzSU5OxsfHh3HjxgHwwQcf4OHhgYeHBwsWLAAgLCwMd3d3Jk+ejIeHB+PGjWPTpk107doVNzc3/vnnn0Lfm7S0NF577TVWrlxpzoq+ePFinnnmGQCuXLnC8OHD8fb2xtvb25whviQU9L4GBwfz8ssvs2HDBnPG/I0bN9K5c2d8fX0ZNWqUuXTUnj176NKlC97e3vj7+xMbG5vP1sTERB599FE6dOhAu3btzJULkpOTGTNmjPnzljMzf0kwDIPnn3+eevXqmYtrF2TnwoULiYiIICAggICAgEK3q8jrGTJkSKX+MdDcg4jIbd/8/PxEoykL4eHhpdvh+HGRjh1F2rVTr8ePl9uGqlWryoEDIsuWifz2m0hWlki1atXk8uXLEhQUJIMGDRIRkdjYWElPTxcRkT/++ENGjBghIiLvvfeeTJkyRUREDh8+LJaWlrJnzx4REQFk3bp1IiLy0ksvyVtvvSUiIoMHD5bFixeLiMjXX38tQ4cOFRERDw8PuXjxooiIXLt2TUREvvjiC/N+KSkp4ufnJ2fOnJE1a9ZI3759JSMjQ8LDw8XZ2VlWrVqV7/oeeeQRsw0iIufPn5cWLVqIiMisWbPk/fffFxGRvXv3St++fc3bmc7fq1cvOXDggHn7hQsXiohIkyZN5NNPPxURkeeee048PT0lLi5OIiMjpXbt2iIiEhQUJLa2thIaGioZGRnSt29fs41Vq1Y1n2vv3r3i4eEhCQkJEh8fL23atJH9+/fL2bNnxdLSUg4dOiSZmZni6+srkyZNkqysLPnxxx/N962w9+abb76Rp59+2nyenPMPPvigzJ8/X0REMjIy5Pr16/nuXU569uxZ7Pua8/hRUVHSvXt3SUhIEBGRuXPnyhtvvCGpqani6uoq//zzTy7b89o6a9YsWbp0qfm9cHNzk4SEBHn//fdl0qRJIiJy8ODBXJ+3wpgwYUK+z8b06dNl7ty5hdopot7jqKioSr2eFi1ayNWrV/NdU6l/OzSaHAB7pQA9owtOaTQ5OXwY0tLU8MOICDXv7l7uw3p4wNmzEB0N4eGYi/LmJDY2lgkTJnDq1CkMwzAXPt6xYwfTp0+/cRyPXBnQbWxszJ4yPz8//vjjDwD++usvfvjhB0B1obz88suAKno9ceJEHnzwQUaMGAEo78KhQ4fM8VqxsbGcOnWKbdu2MXbsWCwtLalfvz69e/cu8NouXbpE7dq1zfMrVqzgwQcfBFRdyMcee4wXXniBZs2acebMGaZNm8agQYPo378/oGoOfvPNN3zwwQesXLnS7F0CzBnTPT09SUhIwNHREUdHR+zs7Lh+/ToA/v7+NGvWDICxY8eyY8eOfGWEduzYwfDhw6latSoAI0aMYPv27QwZMgRXV1c8PT0BaNu2LX369MEwDDw9PQkLCyvyvSmKzZs38+233wJgaWmJs7NzsfuYKOx9zcnu3bs5duwYXbt2BSAtLY3OnTtz8uRJXFxczDUlCysEvnHjRtatW2eu5ZiSksL58+fZtm2bOc7Qy8urzBn3TZ/xwuy8Xa6nTp06REREULNmzTJdp0ZTGrTo0mhy4ukJNjZKcFlbq/mbgJUVtGkD+/bB77+fwdLSkjp16nD8+HHzNrNnzyYgIIC1a9cSFhZGr169gIIFmglra2sMwwDUgz0jI6PA7UzbfP755/z999/88ssv+Pj4EBwcjIjw0UcfERgYmGufDRs2mPcrCnt7e1JSUszzy5cv58qVKyxbtgxQmb1PnTqFm5sbBw8e5Pfff+eTTz7h+++/Z9GiRTzwwAO88cYb9O7dGz8/v1wPP1tbWwAsLCzM06Z507XmtbEgm4u6h3mPm/OcpnMU9t5UFCV5X0WEfv365eseO3ToUIneNxFhzZo1tGrVKt+6kuxfHAcOHKBPnz6F2lmQPZVxPSkpKTetaLlGUxw6pkujyYm7OyxeDDNnqteb4OUy0aIFpKdHsWDBk4wf/0y+B0FsbCwNGjQAYPHixebl3bp14/vvvwdUbcPDhw8Xe64uXbqwYsUKAJYtW0a3bt0ACA0NpWPHjrz55pvUqlWLCxcuEBgYyGeffWb23oSEhJCYmEiPHj1YsWIFmZmZXLp0iaCgoALP1bp1a06fPg3AyZMnSUxMJDw8nLCwMMLCwpg1axYrVqzg6tWrZGVl8cADD/DWW2+xf/9+AOzs7AgMDGTq1KlMmjSppLfTzD///MPZs2fJyspi5cqV5mu1trY2X1OPHj348ccfSUpKIjExkbVr15YqEL2w98bR0ZH4+PgC9+nTpw+fffYZoOLZ4uLizMtLMrKvODp16sTOnTvN9z4pKYmQkBDc3d2JiIhgz549AMTHx5ORkZHP1sDAQD766COzID1w4ACg7pVJMB85coRDhw6Z93nkkUdyeSILQkRYuHAhly5dYsCAAYXaCbnvX2Vcj4hw+fJlmjZtWoI7rtGUnwoVXYZhDDAM46RhGKcNw8g3pMcwDGfDMH42DOOgYRhHDcMo/S+uRnOzcXeHUaNumuAyBXR7ebVl7ty+eHn1p3fvOdzIGmHm5ZdfZtasWXTt2jVXsemnnnqKqKgovLy8+L//+z+8vLyK7apauHAh33zzDV5eXixdupQPP/wQgJdeeglPT088PDzo0aMH3t7eTJ48mTZt2uDr64uHhwdPPPEEGRkZDB8+HDc3Nzw9PZk6dSo9e/Ys8FyDBg1iy5YtgPJyDR8+PNf6Bx54gOXLlxMeHk6vXr3w8fFh4sSJ/Oc//zFvM27cOAzDMHc5lobOnTszc+ZMPDw8cHV1NZ9/ypQpeHl5MW7cOHx9fZk4cSL+/v507NiRyZMn065duxKfo7D3JiAggGPHjpmDuXPy4YcfEhQUhKenJ35+fhw9epSsrCxOnz5NjRo1Sn2dealduzaLFy9m7NixeHl50alTJ06cOIGNjQ0rV65k2rRpeHt7069fP1JSUvLZOnv2bNLT0/Hy8sLDw4PZs2cDMHXqVBISEvDy8uLdd9/F39/ffM5Dhw7h4uJSoD0vvfSSOWXEnj17CAoKwsbGplA7Qb1HAwcOJCAgoFKuZ9++fXTq1AkrK93po7k1VFjBa8MwLIEQoB9wEdgDjBWRYzm2+RfgLCIzDMOoDZwE6olIrnHGuuC1pqzcbkVrs7Jg/XpISIDOncHVtfh9MjMzSU9Px87OjtDQUPr06UNISAg2NjYVb3AJ6datG+vXr6datWpl2n/evHnExsby1ltvlWq/LVu2MG/ePNavX1+m895qjhw5wqJFi/jggw8q25RSExcXx2OPPcaqVasq25SbxvTp0xkyZAh9+vTJt+52++3Q3FkUVvC6IuW9P3BaRM7cMGAFMBQ4lmMbARwN1c/iAMQABQelaDR3ARYWKkzsr79UjH6TJmpZUSQlJREQEEB6ejoiwmeffXZbCS6A999/n/Pnz5dJdA0fPpzQ0FA2b9588w27zfDw8LgjBReoAPa7SXCBej8KElwaTUVRkZ6ukcAAEZl8Y3480FFEnsmxjSOwDnAHHIHRIvJL3mNpT5emrNyO/1ZF4JdfIC4O/P1VrJdGo7m9uB1/OzR3DoV5uioypqug4SJ5FV4gEAzUB3yAjw3DKHg8sEZzl2AY2YMijxyBHCFCGo1Go7mLqUjRdRFolGO+IRCRZ5tJwA83comdBs6ivF4azV1N48ZQrRokJUFoaGVbo9FoNJpbQUWKrj2Am2EYroZh2ABjUF2JOTkP9AEwDKMu0Ao4U4E2aTS3BYYBphyNR4+SbySjRqPRaO4+Kkx0iUgG8AzwO3Ac+F5EjhqG8aRhGE/e2OwtoIthGIeBP4EZInK1omzSaG4nGjRQ3q7kZDh3rrKt0Wg0Gk1FU6F5ukRkg4i0FJHmIvLvG8s+F5HPb0xHiEh/EfEUEQ8R+a4i7dFoKou1a9diGIY5PxHApUsRLFyoytV8/3124et169Yxd+7cm3bu5557jm3btgGwfv162rVrh7e3N23atDEXt64oFixYQFJSUoWeIywsjP/973/m+b1795rLvpSWiRMnmsshFUZqaip9+/YtMDdXaW29mXYVtI2Dg0OpzpOzAHthBAcHs2HDhlIdNydl+UzktGv9+vXMmTOnzOfXaCoTnZFeo7kFLF++nG7dupmzxAPUr1+fX35ZjZ0dxMdDaqpaPmTIEGbOzJdLuEzExMSwe/duevToQXp6OlOmTOHnn3/m4MGDHDhwoMLL2VSG6Grfvj0LFy6ssPMdOHCA9PR0goODGT16dKn2Lavoup2oDNGVk0GDBrFu3boK/1xpNBVBsaLLMIyuhmH8YRhGiGEYZwzDOGsYho670mhKSEJCAjt37uTrr7/OJbrCwsLw9vYwp4xITFSvixcv5plnVGaViRMn8uyzz9KlSxeaNWtm9mRkZWXx1FNP0bZtWwYPHsx9991XoCdk9erVDBgwAMgun2KqbWhra0urVq2Ij4/H1dXVXDInLi6Opk2bkp6eTq9evXj++efp0aMHrVu3Zs+ePYwYMQI3NzdeffVV83W4u7szYcIEvLy8GDlyJElJSSxcuJCIiAgCAgIICAgAlPg0ZcSfMWOG2U4HBwdmzJiBn58fffv25Z9//qFXr140a9aMdevWmc/TvXt3fH198fX1ZdeuXQDMnDmT7du34+Pjw/z583N5RRISEpg0aRKenp54eXmxZs2aEr9vTZs2Zc6cOfj6+uLp6cmJEyeIjIzk4YcfJjg4GB8fH0JDQ9m3bx89e/bEz8+PwMBALl26BMDp06fp27cv3t7e+Pr6Ehoams/WzMxMXnrpJTp06ICXl5fZ8ygiPPPMM7Rp04ZBgwYRGRlZYrsLYsuWLfTq1YuRI0fi7u7OuHHjzOVyfvvtN9zd3enWrZu5SDpAYmIijz76KB06dKBdu3b89NNPpKWl8dprr7Fy5Uqzp6+g7UAl9X3xxRfN9/6jjz4q8DOxceNGOnfujK+vL6NGjSIhIaFIuwzDoFevXndMQlyNJhciUmQDTgADgTpATVMrbr+b2fz8/ESjKQvh4eG5FwwerFpO3nhDLfv77+xlv/6qln30Ufay6Gi17JFHSmXD0qVL5dFHHxURkc6dO8u+fftEROTs2bPStm1bSU4WmT07SNq1GyRxcSLffPONPP300yIiMmHCBBk5cqRkZmbK0aNHpXnz5iIismrVKhk4cKBkZmbKpUuXpFq1arJq1ap8537kkUdk3bp15vnHHntMateuLWPGjJHvvvtOMjMzRURk4sSJsnbtWhER+eKLL+SFF14QEZGePXvKyy+/LCIiCxYsEBcXF4mIiJCUlBRp0KCBXL16Vc6ePSuA7NixQ0REJk2aJO+9956IiDRp0kSioqJERL0XjRo1ksjISElPT5eAgADzOQHZsGGDiIgMGzZM+vXrJ2lpaRIcHCze3t4iIpKYmCjJyckiIhISEiKm34WgoCAZNGiQ+Rpzzr/88ssyffp087qYmJgi36sJEyaY72OTJk1k4cKFIiLyySefyGOPPZbv+GlpadK5c2eJjIwUEZEVK1bIpEmTRETE399ffvhBDc5OTk6WxMTEfLZ+8cUX8tZbb4mISEpKivj5+cmZM2dkzZo10rdvX8nIyJDw8HBxdnYu8P0tzHYTVatWNdvs5OQkFy5ckMzMTOnUqZNs375dkpOTpWHDhhISEiJZWVkyatQos32zZs2SpUuXiojItWvXxM3NTRISEnJ9Pova7tNPP5URI0ZIenq6iIhER0eb76vpMxEVFSXdu3eXhIQEERGZO3euvPHGG0XaJSLy3XffyTPPPFPk/Sgv+X47NJpSAOyVAvRMSboXY0XkVxGJFJFoU6sgDajR3HUsX76cMWPGADBmzBiWL1+ea72dHdSrp5Km3qgDnIthw4ZhYWFBmzZtuHLlCgA7duxg1KhRWFhYUK9ePbPXIC+XLl2idu3a5vmvvvqKP//8E39/f+bNm8ejjz4KwOTJk/nmm28A+Oabb3IVnh4yZAgAnp6etG3bFhcXF2xtbWnWrBkXLlwAoFGjRnTt2hWAhx9+mB07duSzZc+ePfTq1YvatWtjZWXFuHHjzLFmNjY2Zo+cp6cnPXv2xNraGk9PT8LCwgBIT0/n8ccfx9PTk1GjRnHs2LF858jLpk2bePrpp83z1atXL3afnIwYMQIAPz8/sx05OXnyJEeOHKFfv374+Pjw9ttvc/HiReLj4wkPDzfXgbSzs6NKlSr59t+4cSPffvstPj4+dOzYkejoaE6dOsW2bdsYO3YslpaW1K9fn969exdra94C6nmX+fv707BhQywsLPDx8SEsLIwTJ07g6uqKm5sbhmHw8MMP57Jt7ty5+Pj40KtXL1JSUjh//nyB11DQdps2beLJJ5801zUsqN7k7t27OXbsGF27dsXHx4clS5Zw7ty5Iu0CqFOnDhEReTMQaTS3PyUpAxRkGMZ7wA9AqmmhiOyvMKs0mori55/zL3vttfzLBgxQLSc1ahS8fxFER0ezefNmjhw5gmEYZGZmYhgG7777bq7tGt3IaBcaChl5CmHZ2tqap+VGl5DptTjs7e1JSUnJtczT0xNPT0/Gjx+Pq6srixcvpmvXroSFhbF161YyMzPx8PDId34LC4tctlhYWJBxw9i8D/yCBEBRNltbW5v3yXmenOeYP38+devW5eDBg2RlZWFnZ1fs9YtIgbaUFJMdlpaWZjvyHr9t27b89ddfuZbHxcWV6PgiwkcffURgYGCu5Rs2bCi13TVr1uTatWvm+ZiYGGrVqmWez/ne5byews4jIqxZs4ZWrVrlWv7333+XaLuS3HsRoV+/fvn+iAQHBxe5b0pKCvb29kUeW6O5HSmJp6sj0B54B3j/RptXkUZpNHcLq1ev5pFHHuHcuXOEhYVx4cIFXF1d83mCHB3B1lYJrpKE73Tr1o01a9aQlZXFlStX2LJlS4HbtW7dmtOnTwMqvinndsHBwTRp0sQ8/8gjjzB27NhcXq6Scv78ebPwMA0aUNflSHx8PAAdO3Zk69atXL16lczMTJYvX07Pnj1LfI7Y2FhcXFywsLBg6dKlZN5I5Z/zHHnp378/H3/8sXneJEoeeeQR/vnnn1JfZ15atWpFVFSU+drT09M5evQoTk5ONGzYkB9//BFQIx6TkpLy2RoYGMhnn31mjqcLCQkhMTGRHj16sGLFCjIzM7l06RJBQUHmfWbNmsXatWvz2dKrVy9WrlxJWloaoGIDC/OAmnB3d+fs2bOE3sjQm1P8BAYG8tFHH5nF8oEDB4D897uw7fr378/nn39uFncxMTH59u/UqRM7d+40f0aTkpIICQkp0i7Tfcr5x0CjuVMoVnSJSEABrXhft0ajYfny5eYuJhMPPPBAgSPYTKP7L19WXY1F8cADD9CwYUM8PDx44okn6NixI87Ozvm2GzRokFloiQjvvvsurVq1wsfHhzlz5rB48WLztuPGjePatWuMHTu2VNcIStwtWbIELy8vYmJimDp1KgBTpkxh4MCBBAQE4OLiwn/+8x8CAgLMweVDhw4t8TmeeuoplixZQqdOnQgJCaFq1aoAeHl5YWVlhbe3N/Pnz8+1z6uvvsq1a9fw8PDA29vbLF4OHTqEi4tLqa8zLzY2NqxevZoZM2bg7e2Nj4+POcB/6dKlLFy4EC8vL7p06cLly5fz2Tp58mTatGmDr6+v+b3MyMhg+PDhuLm54enpydSpU3OJ08OHD1OvXr18tgwePJju3bvj5+eHj48PO3fu5P/+7/+KtN/Ozo4vv/ySQYMG0a1bt1wifPbs2aSnp+Pl5YWHhwezZ88GICAggGPHjpkD6QvbbvLkyTRu3BgvLy+8vb3Nn/mcn4natWuzePFixo4di5eXF506deLEiRNF2gUQFBTEoEGDyvCOaTSVS7EFrw3DcAbmAD1uLNoKvCkisRVsmxld8FpTVu6korU5C2F366ZKBRVFQkICDg4OREdH4+/vz86dOwt8GHfr1o3169dTrVq1Io+3evVqfvrpJ5YuXVoqu8PCwhg8eDBHjhwp1X6VRVxcHI899hirVq2qbFPKRGBgIL///ntlm1FpXLlyhYceeog///yzQs9zJ/12aG4/Cit4XZKYrkXAEeDBG/PjgW+AETfPPI1GYxjQqhXs2QMnThQvugYPHsz169dJS0tj9uzZBQougPfff5/z588XKbqmTZvGr7/+Wq78S3cKTk5Od6zgAu5pwQWqK/v999+vbDM0mjJREk9XsIj4FLesItGeLk1ZudP+rWZkwI8/QloaDBwIpRxsp9FobhJ32m+H5vaiME9XSQLpkw3D6JbjQF2B5JtpnEajUVhZgaurmr4RW6zRaDSau4SSiK6pwCeGYYQZhnEO+Bh4sph9NBpNGWneXL2GheVPH6HRaDSaO5diY7pEJBjwNgzD6cZ8yRLQaDSaMlGtGtSqBVevwvnz0KxZZVuk0Wg0mptBoaLLMIyHReQ7wzBeyLMcABH5oIJt02juWVq0UKLr9GktujQajeZuoajuxao3Xh0LaA4VbJdGc9dgaWmJj48PHh4e3H///Vy/fr3YfRo3BhsbJbxKsHmp2Lt3L88++2y5jzNx4sQCi2wDPPfcc+YSP+vXr6ddu3Z4e3vTpk0bc1HnimLBggUkJSVV6DnCwsJy5Vorzz0t6j6aSE1NpW/fvubcWOWx9Wba9frrr9OgQQN8fHxwc3NjxIgRJSrPtHjx4jKX8bkZ1zNmzBhOnTpVpvNrNOWhUNElIqZfxk0i8kbOBlRsghSN5i7C3t6e4OBgjhw5Qo0aNfjkk0+K3cfKCpo2VdM3O6C+ffv2LFy48OYeNAcxMTHs3r2bHj16kJ6ezpQpU/j55585ePAgBw4coFevXhV2bqgc0VXR9/TAgQOkp6cTHBzM6NGjS7VvWUVKSXn++ecJDg7m1KlTjB49mt69exMVFVXkPpUhunIyderUfKW4NJpbQUkC6T8q4TKNRlMMnTt3Jjw8HIDQ0FAGDBiAn58f3bt358SJE4BK/jh8+HAmTvRm1ixvfv99FxkZ8MEHH+Dh4YGHhwcLFiwwH/Ott97C3d2dfv36MXbsWObNU1W6evXqxYwZM/D396dly5Zs374dgC1btjB48GAA7rvvPnx8fPDx8cHZ2ZklS5aQmZnJSy+9RIcOHfDy8jJ7pkSEZ555hjZt2jBo0CAiC6lXtHr1anPx6vj4eDIyMqhZsyag6v+1atWK+Ph4XF1dzeVv4uLiaNq0Kenp6fTq1Yvnn3+eHj160Lp1a/bs2cOIESNwc3Pj1VdfBdSD193dnQkTJuDl5cXIkSNJSkpi4cKFREREEBAQYC6Bs3z5cjw9PfHw8GDGjBlmOx0cHJgxYwZ+fn707duXf/75h169etGsWTPWrVtnPk/37t3x9fXF19fXnG1+5syZbN++HR8fH+bPn5/rniYkJDBp0iQ8PT3x8vJizZo1Jf58NG3alDlz5uDr64unpycnTpwgMjKShx9+mODgYHx8fAgNDWXfvn307NkTPz8/AgMDuXTpEgCnT5+mb9++5oz/oaGh+Wwt7/tbFKNHj6Z///5mUVSQnatXr2bv3r2MGzcOHx8fkpOTb/n1dO/enU2bNhVYT1OjqVBEpMAGdAb+H3ABeCFHex04WNh+FdH8/PxEoykL4eHhuRcMHlx4+/XX7O1+/bXobUtB1apVRUQkIyNDRo4cKb/eOE/v3r0lJCRERER2794tAQEBIiLy4IMPyvz580VE5JdfMuS//70uP/20Vzw8PCQhIUHi4+OlTZs2sn//ftmzZ494e3tLUlKSxMXFSYsWLeS9994TEZGePXvKCy+8cOM4v0ifPn1ERCQoKEgGDRqUy8a9e/eKp6enXL9+Xb744gt56623REQkJSVF/Pz85MyZM7JmzRrp27evZGRkSHh4uDg7O8uqVavyXe8jjzwi69atM88/9thjUrt2bRkzZox89913kpmZKSIiEydOlLVr14qIyBdffGG2tWfPnvLyyy+LiMiCBQvExcVFIiIiJCUlRRo0aCBXr16Vs2fPCiA7duwQEZFJkyaZr7tJkyYSFRUlIur9b9SokURGRkp6eroEBASYzwnIhg0bRERk2LBh0q9fP0lLS5Pg4GDx9vYWEZHExERJTk4WEZGQkBAx/RblvYc5519++WWZPn26eV1MTEy+e5STCRMmmO9jkyZNZOHChSIi8sknn8hjjz2W7/hpaWnSuXNniYyMFBGRFStWyKRJk0RExN/fX3744QcREUlOTpbExMR8tpb3/c3JnDlzzPfdxPz58+XJJ58s0s6ePXvKnj17KvV6+vbtK3v37i302vL9dmg0pQDYKwXomaJGL9qgYresUHFcJuKAkTdZ+2k0dy3Jycn4+PgQFhaGn58f/fr1IyEhgV27djFq1CjzdqmpqQBs3ryZb7/9FoBWrSy5ft2Z337bwfDhw831BkeMGMH27dvJyspi6NCh2NvbA3D//ffnOveIEapwhJ+fH2FhYQXad/XqVcaPH8/333+Ps7MzGzdu5NChQ+b4l9jYWE6dOsW2bdsYO3YslpaW1K9fn969Cy7BeunSJWrXrm2e/+qrrzh8+DCbNm1i3rx5/PHHHyxevJjJkyfz7rvvMmzYML755hv++9//mvcZMmQIAJ6enrRt29ZcJ7FZs2ZcuHCBatWq0ahRI7p27QrAww8/zMKFC3nxxRdz2bJnzx569epltmfcuHFs27aNYcOGYWNjY/bIeXp6Ymtri7W1NZ6enuZ7lZ6ezjPPPENwcDCWlpaEhIQUeM052bRpEytWrDDPVy9lhtuc79kPP/yQb/3Jkyc5cuQI/fr1AyAzMxMXFxfi4+MJDw831/q0s7Mr8PjlfX+LQ24k3C7MztvleurUqUNERAR+fn5luk6NpiwUKrpEZCuw1TCMxSJy7hbapNFUHD//XLLtBgxQ7SZgiumKjY1l8ODBfPLJJ0ycOJFq1aoRHBxc5L5NmsD+/RAfL+aC2DkxPeAKw9bWFlDB/AV1pWRmZjJmzBhee+01PDw8zMf86KOPCAwMzLXthg0bzKOXi8Le3p6UlJRcyzw9PfH09GT8+PG4urqyePFiunbtSlhYGFu3biUzM9N8/px2W1hYmKdN86bryGtLQbYVdX+sra3N++Q8T85zzJ8/n7p163Lw4EGysrIKffDnPWdJ7lNhFPeeiQht27blr7/+yrU8Lq5k2XzK+/4Wx4EDB2jfvn2hdhZkT2VcT0pKivnPikZzqyhJTFeSYRjvGYaxwTCMzaZW4ZZpNHcZzs7OLFy4kHnz5mFvb4+rq6u5BqCIcPDgQQD69OnDZ599BoBhZFKzZhzu7j1Yu/ZHkpKSSExMZO3atXTv3p1u3brx888/k5KSQkJCAr/88kupbJo5cyZeXl6MGTPGvCwwMJDPPvvMHG8VEhJCYmIiPXr0YMWKFWRmZnLp0iWCgoIKPGbr1q05fSP6PyEhgS1btpjXBQcH06RJE/P8I488wtixY5k0aVKp7AZVg8/0oF6+fDnduqnCGY6OjsTHxwPQsWNHtm7dytWrV8nMzGT58uX07NmzxOeIjY3FxcUFCwsLli5dSmZmZr5z5KV///58/PHH5vlr166Zr/Wff/4p9XXmpVWrVkRFRZmvPT09naNHj+Lk5ETDhg358ccfAeU5TUpKymdrWd7fWbNmsXbt2mJtW7NmDRs3bmTs2LGF2gm5719lXI9pu7Zt25bspms0N4mSiK5lwAnAFXgDCAP2VKBNGs1diyl1wooVK1i2bBlff/013t7etG3blp9++gmADz/8kKCgIDw9PfHz8yM9/Siurr506TIRf39/OnbsyOTJk2nXrh0dOnRgyJAheHt7M2LECNq3b4+zs3OJ7Zk3bx4bN240B9OvW7eOyZMn06ZNG3x9ffHw8OCJJ54gIyOD4cOH4+bmhqenJ1OnTi1UvAwaNMgstESEd999l1atWuHj48OcOXNYvHixedtx48Zx7do1xo4dW+p72bp1a5YsWYKXlxcxMTFMnToVgClTpjBw4EACAgJwcXHhP//5DwEBAeZg7KFDh5b4HE899RRLliyhU6dOhISEmLt3vby8sLKywtvbm/nz5+fa59VXX+XatWt4eHjg7e1tftgfOnSowO610mJjY8Pq1auZMWMG3t7e+Pj4mAP8ly5dysKFC/Hy8qJLly5cvnw5n61leX8PHz5caEH1+fPnm1NGfPfdd2zevJnatWsXaefEiRN58skn8fHxITMz85Zfz5UrV7C3t78p74dGUxpKUvB6n4j4GYZxSES8bizbKiIl/7tYTnTBa01ZuVuK1v72G8TEQNeuqssxJwkJCTg4OJCUlESPHj348ssv8fX1rRxDb9CtWzfWr19PtWrVitxu9erV/PTTTyxdurRUxw8LC2Pw4MEcOXKkHFbeOuLi4njsscfMns07jcDAQH7//ffKNuOmMX/+fJycnHjssccK3eZu+e3QVA6FFbwutgwQkH7j9ZJhGIOACKDhzTROo9EUTbNmSnSdOZNfdE2ZMoVjx46RkpLChAkTKl1wAbz//vucP3++SNE1bdo0fv31VzZs2HDrDKsknJyc7ljBBdxVggugWrVqjB8/vrLN0NyDlMTTNRjYDjRC5edyAt4QkXUVb55Ce7o0ZeVu+beamgpr14IIDB0KVapUtkUazd3N3fLboakcyuzpEpH1NyZjgYCbbZhGoykeW1to2FAVwD57FnT8r0aj0dx5FFXw+iOgUDeYiJS/eJtGoykxzZop0XXmDLRpAzdhdL9Go9FobiFFebp0f55Gcxvh4gL29hAfrwph58g/qtFoNJo7gKKSoy65lYZoNJqiMQxwdYVjx5S3S4sujUajubMoNk+XYRhBOZOi6uSoGk3JiY6ONufAqlevHg0aNMDHx4dq1arRpk2bUh+vWTP1eu4cFFar98cff+TYsWPlsLpkvP766+bi2nlZsGCBuZQRQEZGBrVq1WLWrFllPt/169f59NNPS7StQ0Hp+wshKyuLZ599Fg8PDzw9PenQoQNnz54tq5nFEhYWZi4IXZHk/Ry89tprbNq0qdDtDx8+zMSJEyvcLo3mXqYkyVFfBF660WYDwZSw69EwjAGGYZw0DOO0YRgzC9mml2EYwYZhHDUMY2sJ7dZo7ghq1qxJcHAwwcHBPPnkkzz//PPmeQuL4r9+ecvAODkpD1dGhorvKohbJboKIyMjg0WLFvHQQw+Zl23cuJFWrVrx/fffF1u6qDBKI7pKw8qVK4mIiODQoUMcPnyYtWvXFptfrDxUluh688036du3b6Hbe3p6cvHiRc4X9sHSaDTlpthffRHZl6PtFJEXgI7F7WcYhiXwCTAQaAOMNQyjTZ5tqgGfAkNEpC0wKu9xNJq7lczMTB5//HHatm1L//79SU5OBqBXr17861//omfPnnz44Yfs27ePnj174ufnR2BgIA4OlwD4+OP/0qFDB7y9vXnggQdISkpi165drFu3jpdeegkfHx9CQ0MJDQ1lwIAB+Pn50b17d06cOAGorODPPvssXbp0oVmzZuaCwQDvvfceHTp0wMvLizlz5piX//vf/6ZVq1b07duXkydPFnhdmzdvxtfXFyur7OiF5cuXM336dBo3bszu3bvNy3/77Td8fX3x9vamT58+QH4PmoeHB2FhYcycOZPQ0FB8fHx46aWXirTTxPjx482Z/kFlwF+3Lne2m0uXLplL/QA0bNiQ6tWr8/XXX/P888+bt/vvf//LCy+8QFhYGO7u7kyePBkPDw/GjRvHpk2b6Nq1K25ubuZSP6+//jrjx4+nd+/euLm5mQt6z5w5k+3bt+Pj48P8+fNJSUlh0qRJeHp60q5dO3MG+8WLFzNs2DDuv/9+XF1d+fjjj/nggw9o164dnTp1IiYmxmxXST4HEydONL/He/bsoUuXLnh7e+Pv728uq3P//ffnKtat0WhuMiJSZANq5Gi1gEDgZAn26wz8nmN+FjArzzZPAW8Xdyw/Pz/RaMpCeHh47gWDB5euTZ9e8P5lYM6cOfLee++JiMjZs2fF0tJSDhw4ICIio0aNkqVLl4qISM+ePWXq1KkiIpKWliadO3eWyMhIERFZsWKFTJgwSVasEPn886sSH6+O/corr8jChQtFRGTChAmyatUq83l79+4tISEhIiKye/duCQgIMG83cuRIyczMlKNHj0rz5s1FROT333+Xxx9/XLKysiQzM1MGDRokW7dulb1794qHh4ckJiZKbGysNG/e3Hw9OXnttdfMtoiIJCUliYuLiyQmJsoXX3wh06ZNExGRyMhIadiwoZw5c0ZERKKjo/PdJxGRtm3bytmzZ+Xs2bPStm1b8/LC7BQRqVq1qoiIbNmyRYYOHSoiItevX5emTZtKenp6LnsvXLggTZo0EW9vb3nhhRdk//79IiKSkJAgzZo1k7S0NBER6dy5sxw6dMj83h06dEgyMzPF19dXJk2aJFlZWfLjjz+azzdnzhzx8vKSpKQkiYqKkoYNG0p4eLgEBQXJoEGDzOefN2+eTJw4UUREjh8/Lo0aNZLk5GT55ptvpHnz5hIXFyeRkZHi5OQkn332mYiIPPfcczJ//nwREbl69ar5WEV9Dkzzqamp4urqKv/884+IiMTGxprvyY4dO2RwGT/fdxv5fjs0mlIA7JUC9ExJMtLvQ6WOMIAM4CxQeO2EbBoAF3LMXyS/h6wlYG0YxhbAEfhQRL5Fo7kHcHV1xcfHBwA/Pz/CwsLM60aPHg3AyZMnOXLkCP369QOUd8zFxYXGjeHIkSP06PEq6enXSUhIIDAwMN85EhIS2LVrF6NGZTuRU1NTzdPDhg3DwsKCNm3acOXKFUB1BW7cuJF27dqZj3Hq1Cni4+MZPnw4VW5kZh0yZEiB13Xp0iVat25tnl+/fj0BAQFUqVKFBx54gLfeeov58+eze/duevTogaurKwA1atQo1f0rzM4ePXqYt+nZsydPP/00kZGR/PDDDzzwwAO5PHCgPFsnT55k8+bNbN68mT59+rBq1Sr69OlD7969Wb9+Pa1btyY9PR1PT0/CwsJwdXXF09MTgLZt29KnTx8MwzCvNzF06FDs7e2xt7cnICCAf/75J1/X5Y4dO5g2bRoA7u7uNGnShJCQEAACAgJwdHTE0dERZ2dn7r//fkB1BR46dAhQn4NXX32V69cL/xzk5OTJk7i4uNChQwdAZcs3UadOHSIiIkp0/zWa252MrAwiEyO5FH+JiPgILiWo1/Fe42leo3ml2FSS5KiuZTx2QVmE8gZzWAF+QB/AHvjLMIzdIhJSxnNqNEXz88+Vu38ObG1tzdOWlpbm7kXAXFhZRGjbti1//fVXrn2vXIEvvpjIv/71I9One7NkyWJzkemcZGVlUa1aNYKDg4u1QW7EWokIs2bN4oknnsi17YIFCzBKkBzM3t6elJQU8/zy5cvZuXMnTZs2BdTggqCgIESkwONZWVmRlZVlns95rJwUZmdexo8fz7Jly1ixYgWLFi0qcBtbW1sGDhzIwIEDqVu3Lj/++CN9+vRh8uTJvPPOO7i7uzNp0qRc25uwsLAwz1tYWOSKw8t7fQVdr+m+F2ZXceeZOHEiP/74I97e3ixeXPDnIO/5CnsfU1JSsLe3L3J/jeZ2IkuyiEqMIjw+nIj4iFztSuIVsiQr3z7dG3evNNFVktGLdoZhvGAYxg+GYawxDON5wzDsSnDsi6jSQSYaouo25t3mNxFJFJGrwDbAu6TGazR3O61atSIqKsosutLT0zl69Ch16kBKSjy2ti5cvJjOsmXLzPs4OjqaY3ScnJxwdXU11/0TEQ4ePFjkOQMDA1m0aBEJCQkAhIeHExkZSY8ePVi7di3JycnEx8fzcyECtHXr1pw+fRpQhZ537NjB+fPnCQsLIywsjE8++YTly5fTuXNntm7dah4paIpRatq0Kfv37wdg//795vU5r6soO/MyceJEFixYACivVF72799v9u5kZWVx6NAhmtwocNmxY0cuXLjA//73P8aOHVvkfSuIn376iZSUFKKjo9myZQsdOnTIdx09evQwv38hISGcP3+eVq1alfgc8fHxuLi4kJ5e+OcgJ+7u7kRERLBnzx7z/iYBFxISgoeHR6mvU6OpSESE2JRYjkUd44/QP1gcvJh/b/s3T/3yFA98/wCTf57MnC1z+GLfF/wc8jP7Lu3jUsIlRITaVWrjXdebAc0H8KjPo7za/VXaubSrtGspSffit0A8qu4iwFhgKcUHve8B3AzDcAXCgTHAQ3m2+Qn42DAMK8AG1f04v2SmazR3PzY2NqxevZpnn32W2NhYMjIyeO6552jbti3PPvsWc+Z05L//bULXrp7mB+yYMWN4/PHHWbhwIatXr2bZsmVMnTqVt99+m/T0dMaMGYO3d+H/bfr378/x48fp3LkzoNIvfPfdd/j6+jJ69Gh8fHxo0qQJ3bt3L3D/gQMHmosJ//DDD/Tu3TuXx2bo0KG8/PLLfPrpp3z55ZeMGDGCrKws6tSpwx9//MEDDzzAt99+i4+PDx06dKBly5aAGgnatWtXPDw8GDhwIO+9916BdtapUyeXPXXr1qV169YMGzasQHsjIyN5/PHHzd2u/v7+PPPMM+b1Dz74IMHBwVSvXr3Qe1YY/v7+DBo0iPPnzzN79mzq169P7dq1sbKywtvbm4kTJ/LUU0/x5JNP4unpiZWVFYsXL851v4rjrbfeomPHjjRp0gRPz8I/ByZsbGxYuXIl06ZNIzk5GXt7ezZt2oSDgwNBQUEMGjSo1Nep0dwMMrIyuJJwhYtxF7kQd4GLcRe5GHeR8PhwEtISCt2vpn1N6jvWz9fqOdTDxtLmFl5B8ZSk4PVBEfEublkh+94HLAAsgUUi8m/DMJ4EEJHPb2zzEjAJyAK+EpEFeY+jC15rysrdXLQ2MRF++gksLWH4cLC5jX5bhg8fzrvvvoubm1tlm0JSUhKenp7s378fZ2fnUu8/ePBgnn/+efPoypLy+uuv4+DgwIsvvljqc1YGqamp9OzZkx07duSLe7sXuZt/Oyqb5PRks6C6EHeBC7FKYF1KuESmZBa4j72VPQ2dGtLAsQENnBqYX+s71sfOqiSdb7eWMhe8Bg4YhtFJRHbfOFBHYGdJTioiG4ANeZZ9nmf+PeC9khxPo9FkU7Uq1K2r4rvOn4cWLSrbomzmzp3LpUuXKl10bdq0iUcffZQXXnih1ILr+vXr+Pv750pncTdz/vx55s6dqwWX5qaRmJbI+djzXIi7wPnY81yMu8j52PNEJUUVuk+dKnVo5NzILLAaOjWkgVMDqttVL1FM6e1OSTxdx4FWgCljXmPgOMozJSLiVaEWoj1dmrJzt/9bPXsW/voLatWC/v0r2xqN5u7hbv/tuJkkpSdxIfYC52LPcT72POeun+N83HlikmMK3N7KwsosqBo5NcolsmytSt61fjtTHk/XgAqwR6PR3AQaNYK9e1UB7NhYKEPvmUaj0ZSItMw0LsZd5Nz1c5yLPWd+LcxzZWNpQ0PHhjSp1oSGTg1p7NyYRk6NqOdQD0sLy1ts/e1BSVJGnDMMwxswRc1uF5Gihz9pNJpbgpUVNGkCp0+rItjtKm9QjkajuUsQEaKSojh77Sxh18PMLSIhosAUDNYW1jRyakRj58a5Wl2HulgYJak2eO9QrOgyDGM68Djww41F3xmG8aWIfFTEbhqN5hbRrJkSXWfPgrc3lKCko0aj0QCQkpHCuevnOHv9LGevneXs9bOciz1HUnpSvm0NDBo4NqCJcxOaVGtC02pNaeLc5J72XJWWknQvPgZ0FJFEAMMw/g/4i+wUEhqNphKpWVMVwo6Lg0uXoEGDyrZIo9HcbogIMckxnLl2xiywzlw7o/JZ5ctbDs62zrhWc6VptaZKXFVrQmPnxrddCoY7jZKILgPIOYYzk4KzzWs0mgJwcHAwJ/AEVch47969fPzxx6U+1pYtW5g3bx7r1683LzMMaN4cDhyA0ND8oqtXr17MmzeP9u3zxXRqNJq7kCzJIiI+gjPXzhAaE8qZa2c4c/0Mcalx+ba1srCioWNDXKu7mkWWa3VXqtlVu/WG3wOURHR9A/xtGMZalNgaCnxdoVZpNJpS0bQpBAdDRASkpIDd7Ze2RqPRVAAZWRlcjLvI6ZjThMaEEnotlLPXz5KSkb98loONA82qNcO1uivNqjfDtZorjZwbYWWh04TcKkoSSP/BjYLU3W4smiQiByrUKo3mHiEqKoonn3yS8+dVRpYFCxbQtWtX/vnnH5577jlzxvBvvvkmX2mYxMREpk2bxuHDh8nIyGDkyNdxdR3KiRPJzJ07iWPHjtG6detcNR01Gs2dS0ZWBudjzxMaE8qpmFOcjjlN2PUw0rPS821bq0otmldvTrPqzcyvtarUuityXd3JlEbeGqjcXPod09yR3L/8/go57s9jiy6CnZycjI+Pj3k+JiaGIUOGADB9+nSef/55unXrxvnz5wkMDOT48eO4u7uzbds2rKys2LRpE//6179Ys2ZNruP++9//pnfv3ixatIjr16/j6+vPq6/25ZNPvsDevgqHDh3i0KFD+Pr63vRr1mg0FUuWZHEx7iKnok9xKuYUp6JPcfb62QIFlouDC82rN6d5jebmVydbp0qwWlMcJRm9+BqqzuIalOD6xjCMVSLydkUbp9HcDdjb2xMcHGyeN8V0gcqYfuzYMfO6uLg44uPjiY2NZcKECZw6dQrDMEhPz/9Du3HjRtatW8e8efMAyMhIIT7+PAcObOOVV54FwMvLCy+vCs9frNFoyoEpRUNIdAgh0SGcij7F6WunC+widHFwoUWNFubWrHozHGwcKsFqTVkoiadrLNBORFIADMOYC+wHtOjS3FEU55GqDLKysvjrr7+wt7fPtXzatGkEBASwdu1awsLC6NWrV759RYQ1a9bk6nbcvx+WLoVLl7RDWqO5XUlISzALLFOLTY3Nt13tKrVxq+GGW0033Gq40aJGC6raVK0EizU3i5KIrjDADjBJblsgtKIM0mjuJfr378/HH3/MSy+9BEBwcDA+Pj7ExsbS4MYwxMWLFxe4b2BgIB999BEfffQRhmFw4MABmjdvh7t7D1avXsbjjwdw8uQRDh06dKsuR6PR5CEzK5Ow62GcjD7JiasnCIkOITw+PN92jjaOtKzZkpY1W+JWw42WNVvibKdLTNxtlER0pQJHDcP4AxCgH7DDMIyFACLybAXap9Hc1SxcuJCnn34aLy8vMjIy6NGjB59//jkvv/wyEyZM4IMPPqB3794F7jt79myee+45vLy8EBGaNm3K+vXrGTt2Km+/PQlPTy/8/X3w9/e/xVel0dy7XE+5zomrJzh5VYmsUzGnSM1MzbWNtYU1zas3p1WtVrSs2ZJWNVtRp2odHeR+D1CSgtcTilovIktuqkUFoAtea8rKvVi0NiwMdu2CGjVggK6cqtGUiZL8dmRJFmHXwzhx9QQnrp7geNRxLidezredi4ML7rXcaVVTiSzX6q46TcNdTpkLXt8KUaXRaG4ejRqBrS3ExEB0tMpYr9Foyk9yejIno09yPOo4x6KOcTL6JMkZuVOy2FnZ0bJGS9xruSuhVauVHkmoMaOltkZzl2FpCa6ucOKEqsmoRZdGUzauJV/jWNQxjkUd42jUUc5cO5OvZE6dKnVoU7sNrWu3xr2WO02cm+g6hJpC0aJLo7kLadFCia5z58DXF6ytK9sijeb2RkRITE8kMjGSyMRILoZfZMnW3B09loYlzao3UyKrVmta125NDfsalWSx5k6kUNFlGMZSERlvGMZ0EfnwVhql0WjKh5MT1K0LV66oGC83t8q2SKO5vRAR4lLjzCIrMimS5PTsrsLMjEzsrOxwr+lO2zptaVO7DS1rtsTOStfY0pSdojxdfoZhNAEeNQzjW/JkoheRmAq1TKPRlIsWLZToOn1aTeuBUZp7GREhNjU2W2QlRuZLPmpraUudqnWoXbU2VIWHOj+kuwo1N5WiRNfnwG9AM2AfuUWX3Fiu0WhuUxo2VAH1166pgPpatSrbIo3m1pHTk3Ul8UqBIsve2p46VepQp6pqTrZO5rQNEWkRWnBpbjqFii4RWQgsNAzjMxGZegtt0mg0NwFLS2jWDI4fV94uLbo0dzOmmKwrCVe4nHCZK4lXChRZdavWpU7VOtStWhcHGwedG0tzS7EobgMRmWoYhrdhGM/caLqQm0ZTCiwtLfHx8TG3uXPnFrn9O++8k2u+S5cuZTpvcHAwoaEbABVQn5aWe/2BAweYPHkyoLLe165dm3bt2uHm5kZgYCC7du0q03kLomnTply9epW0tDR69OhBRkbGTTu25t4lOT2ZsOth7L64m3Un17Hu5Dr+Dv+bc7HnSMlIwd7KnibOTfBv4M/9Le9nWKthdGnUhRY1WuBo66gFl+aWU5KC188CU4AfbixaZhjGlyLyUYVaptHcJeQteF0c77zzDv/617/M82UVP8HBwezdu5fhw+/jyhU4exZylGnknXfe4dVXXzXPjx49mo8//hiAoKAgRowYQVBQEK1bty7T+QvCxsaGPn36sHLlSsaNG3fTjqu5N0jPTCcyMZLLCZe5nHA5X71CU0xWPYd61HWoi6ONFlaa24uSpIyYDHQUkUQAwzD+D/gL0KJLc0dx//33V8hxf/659IW0Y2Nj8ff3Z926dbRq1YqxY8fSu3dvQkNDSU5OxsfHh7Zt27Js2TIcHBxISEhgy5YtvP7669SqVYsjR47g5+fHd999h2EY7Nmzh+nTp5OYmIitrS1//PEHr732GsnJyQQF7aB371k4Oo6mZUsVUB8fH8+hQ4fw9vYu0L6AgACmTJnCl19+yfz58wkNDeXpp58mKiqKKlWq8N///hd3d3d+/vln3n77bdLS0qhZsybLli2jbt26REdHM3bsWKKiovD39ydn5Ythw4Yxa9YsLbo0xZIlWcQkx5hF1tWkq2RJlnm9lYWVuauwnkM9qtlV0yJLc1tTEtFlAJk55jPJM5JRo9EUjklEmZg1a5bZqzRx4kSmT5/OtWvXePzxxwH4+OOPC/WMHThwgKNHj1K/fn26du3Kzp078ff3Z/To0axcuZIOHToQFxdHlSpVePPNN9m7dy8LF37Mzz9DfDyEh6sA+7179+Lh4VGk3b6+vnzxxRcATJkyhc8//xw3Nzf+/vtvnnrqKTZv3ky3bt3YvXs3hmHw1Vdf8e677/L+++/zxhtv0K1bN1577TV++eUXvvzyS/NxPTw82LNnT/luquauJTEtkUsJl7gUf4kriVdIy8zuFzcwqFWlFvUc6lHPoR417WvqYHfNHUVJRNc3wN+GYay9MT8M+LrCLNJoKoiyeKRuBoV1L/br149Vq1bx9NNPc/DgwRIdy9/fn4YNGwLg4+NDWFgYzs7OuLi40KFDBwCcnHKXHLGwUN2K+/erhKkNG8KlS5eoXbt2kecyeacSEhLYtWsXo0aNMq9LTVUFfC9evMjo0aO5dOkSaWlpuLq6ArBt2zZ++EFFJAwaNIjq1aub97W0tMTGxob4+HgcHR1LdN2au5fMrEyuJF7hUvwlLiVcIi41Ltd6RxtHs8iq61AXG0ubSrJUoyk/Jam9+IFhGFuAbigP1yQROVDRhmk0dztZWVkcP34ce3t7YmJizGKqKGxtbc3TlpaWZGRkICLFdqk0bw6HD0NkpKrJaG9vT0pKSpH7HDhwgNatW5OVlUW1atUKFI7Tpk3jhRdeYMiQIebuTxNF2ZSamoqdnU4yeS8iIsSnxZtF1pXEK2RmZXemWFtYU9ehLi4OLrg4uuBg41CJ1mo0N5diRy8CiMh+EVkoIh9qwaXR3Bzmz59P69atWb58OY8++ijp6ekAWFtbm6dLgru7OxEREeYuu/j4eDIyMnB0dCQ+Pv7GMZXwAuXtat26NadPny70mFu3buXLL7/k8ccfx8nJCVdXV1atWgWoh6bJMxcbG0uDBg0AWLIku2RKjx49WLZsGQC//vor165dM6+Ljo6mdu3aWOvaRPcMmVmZRMRHsC9iH+tD1rM+ZD37Lu0jIj6CzKxMatjXoG3ttvRr1o8H2jxAjyY9cKvppgWX5q5D117UaCqYvDFdAwYM4NFHH+Wrr77in3/+wdHRkR49evD222/zxhtvMGXKFLy8vPD19TULl6KwsbFh5cqVTJs2jeTkZOzt7dm0aRMBAQHMnTsXHx8fZs2axeDBozl5Es6fBx8fd2JjY3N18a1cuZIdO3aQlJSEq6sra9asMY9cXLZsGVOnTuXtt98mPT2dMWPG4O3tzeuvv86oUaNo0KABnTp14uzZswDMmTOHsWPH4uvrS8+ePWncuLHZ3qCgIO67776beIc1tyOJaYlExEcQER/B5cTLubxZtpa21HOoR33H+rg4uujSOpp7BiPnqKLblfbt28vevXsr2wzNHUhERAT169evbDNuG3bsUKKrTRsICpqPo6OjOVfXrWLEiBH85z//oVXO/BWaOx4R4WrSVSLiIwiPD+d6yvVc62vY16C+Y33qO9anpn3N236Uof7t0JQHwzD2iUj7vMu1p0ujuYdwd1ei6/RpePzxqaxdu+qWnj8tLY1hw4ZpwXWXkJGVwaX4S4THhxMeH05qRqp5nZWFFS4OLmahZW9tX4mWajS3ByVJjjoC+D+gDiqQ3gBERJyK3FHtOwD4ELAEvhKRAlNxG4bRAdgNjBaR1SU3X6PRlIZatVS7ehUiIuwYP378LT2/jY0NjzzyyC09p+bmkpyezMW4i4THh3M54XKuvFkONg40cGxAA6cG1K5SW6dz0GjyUBJP17vA/SJyvDQHNgzDEvgE6AdcBPYYhrFORI4VsN3/Ab+X5vgaTUkpyei+ewl3d9XNePIkuLmpZKkaTWGYCkdfjLvIxbiLRCdHm9cZGNSuUpsGTg1o4NggV8HoO5k7IexGc2dSEtF1pbSC6wb+wGkROQNgGMYKYChwLM9204A1QIcynEOjKRJra2sSEhJwcNCFbU00bAhVq+ZOlqrR5EREiE6O5mLcRS7EXiA+Ld68ztLCEhcHF7NH624LghcREhIS9OhaTYVQEtG11zCMlcCPgLnDXkR+KHQPRQPgQo75i0DHnBsYhtEAGA70RosuTQVQo0YNYmJizKkTNIq6deHUKZUw1TC0t0ujSu5cT7lOVGIUUUlRpGZmx2dZW1hTq0otalepTQ37GqrbMAViUmIq0eKKw9ramho1alS2GZq7kJKILicgCeifY5mQXQC7MAr6Gc/rs10AzBCRTO2F0FQElpaWxWZevxepUQM+/hhiY6F+fWifb4yN5l4gIyuDQ1cOsfP8TnaH786VDb5WlVp0btiZLo260LpWax2fpdHcBEqSkX5SGY99EWiUY74hEJFnm/bAihuCqxZwn2EYGSLyYxnPqdFoSoCdHTzwACxaBMuWgZ+f9nbdK2RkZXDg0gF2XtjJ7ou7SUxPNK9r4NiALo260LlhZ1rUaKG75DWam0xJRi82BD4CuqI8VTuA6SJysZhd9wBuhmG4AuHAGOChnBuIiGuO8ywG1mvBpdHcGu67D9auVekj/vkHOnYsfh/NnUlGVgbBl4PZcX5HPqHVxLkJXRp1oWujrjR2bqyFlkZTgZS04PX/AFO124dvLOtX1E4ikmEYxjOoUYmWwCIROWoYxpM31n9eZqs1Gk25sbWFUaPgyy/hu+/A3197u+4mMrMyORx5mG3ntrHrwq5cQqupc1O6Ne5G18ZdaeikR1JoNLeKYjPSG4YRLCI+xS2rSHRGeo2mYkhLgylTIDoaZs6Erl0r2yJNeRARjkUdY9u5bey8sJPY1FjzOpPQ6ta4Gw2cGlSilRrN3U95MtJfNQzjYWD5jfmxQHQR22s0mjsEGxt48EH47DMV29W5M1hYVLZVmtIgIpy9fpatYVvZdn4bV5Oumtc1cGxA98bd6dGkB42cGxVxFI1Gcysoieh6FPgYmI+K6dp1Y5lGo7kL6N8fVq+GCxdU0tQePSrboptIRoZKvx8ZCQ0aQM2aavm+ffD775CSAqmpkJkJ1tZKhdrYwKxZ2erzn3/UcWrUUK1WrdtCmV5JuMLWc1vZEraFC3HZ2XlqV6lNzyY96d6kO67VXHWMlkZzG1GS0YvngSG3wBaNRlMJWFnBmDHw0Ufwv/+pLkbLOzE7gAicPQsnTqh0+ydPQkSEWg7wzDMQGKimo6Lgr78KPk7exGXLlsGZM9nz1tYqz0aDBupm3UKVmpCWwI7zOwg6G8Sxq9l5pp1snejWqBu9mvbCvZa7FloazW1KoaLLMIyXReRdwzA+In9+LUTk2Qq1TKPR3DJ694ZVq1SG+q1b1fwdQXIy2N8opCwCM2Yo75UJw1Ceqbp1VRp+Ez4+yptla6ualZUKcEtPV16tnKLF1xdq14aYGOU1u3YNzp1TrUGDbNF16hR88QW0aKFaq1Yq3X85BVBGVgZ7I/ay+exm9kTsISMrAwAbSxs6N+xMr6a98Knng5VFSTouNBpNZVLUt9RU+kdHsGs0dzkmb9eCBbB0KXTponJ53ZZERsLOnbBrl+oTXbpUeZ8sLJTnKStLCZ5WraBpU3VxealXT7WSMGFC7vmkJKVOw8OhcePs5SEh2R42E87O0KYNtG0LAweqrssSICKEXgtl89nNbD231Zy01MDAp64PAa4BdG7YGXtr+5Jdg0ajuS0oyejFUSKyqrhlFYkevajRVDxZWfD886onbdQoeOSRyrYoByJw8CCsWwd792Z3GdrYwP/9n/IsVTaJiSrp2alT6vXYMeUVA3BwUH23Jq/XX38pQVivXi5P2PWU6wSdDWLTmU2cjztvXt7EuQm9XXvTq2kvatjr8jQaze1OYaMXSyK69ouIb3HLKhItujSaW8PJk/Dii8o59PHHqves0omNVV2BF24Ei1tbQ6dOyh3Xvv3t65ITgcuX4ehR5R0bciM0NiUFxo5V3Zh16pDRzpt9rRz5w/IceyODyZRMQMVp9WzSkz6ufWhWvZmO09Jo7iBKnTLCMIyBwH1AA8MwFuZY5QRk3HwTNRpNZdOqFfTrB3/8AZ9/Dm++WUkJU0WyT+zkpCL7a9SAQYNUMLyzcyUYVUoMA1xcVMtJQgJ06kT4kV1szNzH5pDfuR6aDhYWWDg509H3fvq2e4D29dvrOC2N5i6jqG90BCqeawiwL8fyeOD5ijRKo9FUHhMmqN6v4GAVNnVLE6aKwJYtsGIFvPFGdvfbq6+qdA8FxWfdQaRlprEz/jC/+13jaKNMSKwBsRY0ismk3wVreoXWpPrTM1TwP8ChQ1CtGjRqpMsFaDR3AYX+gonIQeCgYRhrgUQR5fM2DMMSsL1F9mk0mluMs7OK5/r0U/jqK1UM+5b04B08qCpwm9Iz/PorTJqkpuvWvQUGVBxh18P4/fTvBIUFmcvx2Fnb092rP4HNA2lZsyXG9etw/Hi24BKBTz5RaS/q11eZa7t2VfFrWoBpNHckJfnbuBHoCyTcmLe/saxLRRml0Wgql8BA1cV46hSsXJl/AN9NJS5OpVrYtk3N16wJ48dDQEAFnrTiSctMY+f5nfx6+leOXz1uXt6yRksCWwTSvXH33KMPq1dXcWom0tPVyMf4eCW81qxRrU4dJb4GDFBiTKPR3DGURHTZiYhJcCEiCYZhVKlAmzQaTSVjYQFTp8L/+3+wdq3K29WoIqrIBAfDvHkqWN7WVtUkGjpUTd+hhMeF8+vpX/nz7J8kpKmfzirWVQhoGsCAFgNoWq1pyQ5kYwPTp6ts+ceOqb7eXbtUyoy1a8HbO1t0JSWpfGXaA6bR3NaURHQlGobhKyL7AQzD8AOSK9YsjUZT2bi5KY/Xb7+prsZ33qmAZ3r16irVgqcnPPtsyXNn3WZkZmWyJ2IPv4T8QvCVYPNytxpuDGwxkO5NumNnVcY+WktLdX88PVV18hMnVNCdt3f2Nh9+qLplu3VTyVqbNtUCTKO5DSlJyogOwApUYD2ACzBaRPYVvtfNRaeM0Ggqh/h45fGKjVVdjCNH3oSDhoUpUWAiNBSaNbsjRUJsSiy/h/7Or6d/NReatrG0oWeTntzndh8tatyC/GGZmfDEE3DlSvayhg2hZ0/V8o6e1Gg0FU6Z83Td2NkaaAUYwAkRSb/5JhaOFl0aTeWxd68aSGhpCe++Cy1blvFAWVmqjuH338MLL9zRMVunY06zPmQ9W89tNZflcXFwYZDbIPo064ODjcOtNSgrC44cge3bVbb++Pjsdc8+q/KAaDSaW0ap83TloRXQBrAD2hmGgYh8ezMN1Gg0tyft26swq59+gvfeUz1ZVUob1Rkbq2K3goOVRysuriJMrVAysjLYfXE3606uMwfGGxj41/dncMvB+NTzqbwEphYW4OWl2hNPqJGgW7fC33/n7oYMClIB+l26qCz5Go3mllKS7sU5QC+U6NoADAR2iMjN6GgoEdrTpdFULunpKlP9mTOqx+r//b9S9AaePAlz56pi0c7O8PLLShzcISSkJfD76d9Zf2q9uQuxqnVV+jXrx31u9+HieBt332VkZOc2E1F9xeHhapmfH/TqBf7+Ja4JqdFoSkZ5ygAdBryBAyLibRhGXeArEbm/YkzNjxZdGk3lEx6uBtOlpqoajb17l2CnjRvhs8/Uw9/dHWbOVCkh7gAi4iNYd3Idf579k5SMFAAaODZgSKsh9HbtXfbA+MoiKws2b1YesIMHs+tX2turHGBDh6rYOo1GU27K072YLCJZhmFkGIbhBEQC+pup0dxjNGigeq4WLlQ6yt29mDRRqamwapUSXPffD48+ekdklD8edZwfjv/A3+F/Iyhh4lPXh2Huw/B18b1zayBaWEDfvqrFxKj4r23bICREibFu3bJFl05BodFUCCX5BdxrGEY14L+ockAJwD8VaZRGo7k96dsX9u+HHTtUUP3cuUVkq7e1hddfVykO+vS5lWaWmizJ4u+Lf/PD8R84EX0CACsLKwKaBjCk1ZCS59a6U6hRQ3m2hg5ViVd37IB27bLXf/QRnD6dPQKyQpK0aTT3HkV2LxrqL11DEblwY74p4CQih26NeQrdvajR3D4kJqpuxitXVDjQv/6lRjaaV27frrKl3wGkZaax+exm1h5fS0SCyorjYOPAfS3uY3DLwVS3r17JFlYCWVnw5JNw6VL2smbNVP6vHj2gdu3Ks02juUMoT0zXPhHxqzDLSoAWXRrN7cXFiyoePj5e6aunngIj+qrybJ07pxYMHFjZZhZKUnoSv576lZ9O/sS1lGsA1KlSh2Huw+jXvN+dF691szGloNiyRWXBT0zMXvfcc7e951KjqWzKE9O12zCMDiKypwLs0mg0dyANG8Ls2fDKKypjfSPLCIb8/YoaodiwoRoZdxsSmxLLupPr+OXUL+bC067VXBnZZiRdG3XF0sKymCPcI+RMQTF1qupT3rIF9uyBtm2zt9u2TQ1t7dQJqlatNHM1mjuFkni6jqHydIUBiagEqSIit2zMt/Z0aTS3J7t2wVdzLvDw8VfwanSNWt1bKzXm6FjZpuUiOimatSfW8uvpX0nLTAPAo7YHI9uMvLOD4281qanZdTFF4Omn4cIFsLZWCd169FCvhQb6aTT3BqX2dBmG0VhEzqPycmk0Gk0+utQ7Q+P02USkxxEU7UXLB2bj7Xj7PHAjEyNZc2wNG89sNGeO71C/A6PajKJ17daVbN0dSM5C5CIwZIjydh05oupB/vWX2sbfH4YNK0f5Ao3m7qSo7sUfAV8ROWcYxhoReeAW2aTRaO4EROCTT2joGEdUJz/+l/EvrObZMHt25ec+vZxwme+Pfs/ms5vJlEwMDLo16saotqNoVl1nvLkpWFiogL4BA7JTUGzfrpLhbt+uRj2auHZNZcC3tq48ezWa24BCuxcNwzggIu3yTlcGuntRo7lNiYqC1auRxyYz/2NrgoJUKq6XX1b5Nm81JrH159k/yZIsDAx6Ne3FqDajaOSs0x7cEiIjVf3HwYOzRda778K+fdCxo8oH1q6dFmCau5pSj140DGO/iPjmna4MtOjSaG4jrl6FWrXyLRaBL76AX35ROTWfeQb69781Jl1JuMLKoyvNni0Lw4KApgGMbjv69i7Tcy8goioRHDuWvaxKFdUF2bUr+PrqMkSau46yiK5MsgPn7YEk0ypUIL1TBdmaDy26NJrbhJMnVaD80KHw0EP5MpaLwIoV8L//qfkJE+CBByousfnVpKusPLKSP878Ye5G7O3aW4ut2xFTEtadO1URTxOPPAKjRlWeXRpNBVDqQHoR0WOnNRpNNqdOwZw5kJysHqAFYBgwdqyqa/3557BkCVy/rioAWVjcPFOup1xn1dFV/Hr6V9Kz0pXYatqb0R6jqe9YVG0iTaVRvz48+KBqly4p8bVrF3Tpkr3NmjXKI9a5s+qKvM1GwWo05aXYlBHlOrhhDAA+BCxRRbLn5lk/DphxYzYBmCoiB/MeR3u6NJpK5swZlZQrIUE9JF9+OUca+oLZvh0++ECVXvTxgf/3/6BatfKZkZCWwJpja/g55GdSM1MB6N64Ow95PkRDp4blO7im8pk+PdsLZmEBHh4qB1inTjoTvuaOoswZ6ctxQksgBOgHXAT2AGNF5FiObboAx0XkmmEYA4HXRaRj3mNp0aXRVCLnzsGsWSr9fMeOKj6nhIWrDx6E996D2FgluF58Eby9S29CakYqP4f8zOpjq81JTTs26Mg4z3G4Vnct/QE1tycxMfD33yr1xKFDkJmZve7BB2H8+MqzTaMpBZUhujqjRFTgjflZACLyn0K2rw4cEZEGeddp0aXRVBLh4TBjhlJNHToo8VXKUWcxMTBvHhw+rLofR4+GMWOKdZQBkJGVwaYzm1h+ZDkxyTEAeNXxYoLPBFrW1Dmg7moSElQG/L//ViMfn38+uyty3z61zt8fPD31SEjNbUd5ygCVlQbAhRzzF4F8XqwcPAb8WoH2aDT3JmlpEBqqyrVkZWU3gMaNoU6dwve1tlYjzZo1Ux6uMjzcatSAt99WAfamduSI6kmqV6/gfUSEXRd28e3Bb82FqFtUb8EEnwn41PMptQ2aOxAHBwgIUC0tLXdQ4NatEBSkhsra2akRkP7+qvxUefuwNZoKpCJFV0HjlQp0qxmGEYASXd0q0B6N5t4hKgr27lXegIMH1UOrMGrXVrEzHh6qrl79+tnDDevUgf/7PyW8yjGs38JCDXb08FBeryNHVAWZUaNgxIjchz4aeZRvgr/hZPRJAOo71Ge893i6Nuqqy/Xcq+T97A0dqj63//wDYWEqIH/XLrWub1+l6DWa25BK7140DMMLWAsMFJGQgo6luxc1mhKQlQV//gnr1qkHUU6aNlUjwSwssltGBpw+DYmJubetV09t/+KLucu+3CRiY+Hrr5WjwnS6J56Aei0vsjh4MX+H/w1ANbtqPOTxEP2a98PKoiL/H2puOzIy1CjZtDTloc3IyH41tcxM1aKilIq/ckUF4Y8cqWpAnjqljrV/v6oH2bw5hNx4xFhYqD8Wpu+CYaj+bgsL9WqarlkTXG6kHklLg+ho5VmrXj3bVpGKy4miuWOpjJguK1QgfR8gHBVI/5CIHM2xTWNgM/CIiOwq7FhadGk0xRAcrJSMSWzZ2akhgx06qAdOjRoF7yeiAuUPH4ajR9UDas8eSEoCd3elhu67r0K6bI4cgc8+g9DwWMJr/I+MJr/RsFEW1RztGO4+nBGtR2BndfvUcdQUgYgqhh0fr2KxTC0xUbWkpNztsceyE+x+843qLnz0USWWAH7+Gb78snQ2PPus2j8jQx3vs8+Uor98Wa1PTFSfdWdn1apWLV4sDRigXLKgRNwLLyjxtmBB9nUPGaIGltjaqu53G5vsZmubvzVooJLXmfjjD/V97dYt256rV5Xws7dX+2hRd8dxy2O6RCTDMIxngN9RKSMWichRwzCevLH+c+A1oCbw6Y1ug4yCjNRoNIVw8SIsWqSEEqgul0ceUZm+SxJ/ZRjKq9W0KfTrp9JCXLigHph2drB8OaxapdaNG6ceVjeJlq3T6PHkOg5uXkX0+SSyrhtYnR9A15Zj6epfAzvt3KpcMjKUW7Jmzexlv/0G58+rPmGTaPrqK9iwQXmiSkrO/ZOTlQcpISF7fZUqShTZ2KjPsalZWWU3k0fK5JWqXTtb2NSvr2o/NmqkjrFvn2q2tpCSopqDAwwfrs6XmZkd62iazshQAsmEhQXUrZu7GoPpmk3et5Lg7p4tujIyYOFCdQ3dckTXvPFG9h8ow1D3w95evZrujb29ejW1UaOyxdmZM+qY9evrQQa3GRWap+tmoT1dGk0eMjNV2vfVq9UDwt5eDakfMqRssVdpaeqH/tAhFcc1d67qrvnxRxU3I6J+7MeMyV1TrwyICNvPb2dJ8BIikyIBaFutPQ6nHmVfUCPzs6tzZzXSsXnzMp9KUxgZGapbLipKeVWuXs2ejolRIiguTr3vP/yQ/X7PmKGSl/7nPypAD5ToX7tWfe4cHZWYqVpVvZqmq1bNLRx8fMDpRlGT2Fj1+XNyqpDubDMpKerzvX+/aqbBIaZ1L7ygYhp9fFTF9pImZhVR4istLX9LTc1uKSnq1ckpexRmWhp8+qk6xvPPZx/zX/9S4tbUxVocdnbqz5GJJ59UI48//VQJT1A1uvbvz35fcjZHx+z3zjTt6KhsvZlZje8hbnn34s1Eiy6NJgexsaqA8KFD6p9tYKDyQpW1CzA9Hf79b+UJqFFDCS6XHCV0LlxQD1bTd9DFRXUP+fuXutsjJDqE/+77LyeiTwDQ1Lkpj/k+Zh6RePWqSkr+++/ZTgRPT9XL07mz/tNeKq5fV5nfW7bMzs/x+ecqBUN0tHrQF4VhqM/UggXZ3dNBQUqMde6cPeo1OVk9mCtSMFUEaWnZf1D27YPXX89eZxhK7Xt5qebpWXn1IU3xbcnJqmvW1F2bnJzdfZuVpf50mXjrLfXev/NO9u/Cm29me8RLypdfZv8WfPut6mJ96CFo3VotO3NGedtzijSTeL7Hu0S16NJo7gaOH1ejCaOj1Y/pjBnZHoey8uWXKobGyUkJLtM/47zs26fixi7cyATj4wNPPZVboBVCdFI0Sw4uIShMRc9Xs6vGeK/x9G3WFwsj/z/pmBjlPPn1V+UcAPWb3ru30piFmXjPkZSkPBoXL8K1a6rbzsSkSUrF5nxwfvCBEk6GobrJatfO/VqrlupOrFlTdSWXJJna3UBmpkqrEhysRvseO5a7u3Dx4uxu1osXs7sy7yTi49Uftpwxd6YWH587Hi8uTr1+8YXyUgK8+qq6N2+8oVJ0ACxdCt9/n/9cNjbZAszUnJ3Va69e2bli4uOVYHRwuOs+a1p0aTR3MiKwfr0SPZmZ6p/mzJmFB8iXhuhoJbamTlVdLkWRkaHiev73P/WDaWOj/vkOG1bgj2ZqRiprT6xl9bHVpGamYmVhxbBWw3iw7YPYW9sXa1piooqJ/v333DWS3dxUD03XriXSfHc+SUkqCPzCBdXtZJqOjs7exjBUd7PJI/POO0p0TZsGrjey9l+5ol5r1ixxVYF7ktRUJbwOHVKB+DNmZK974gmIjFQfQlOqldatVdfp3cz586oLumXL7K7Xbdtg924l0nK2ouL7CuqanjgxO87tyBE1Ats04KGg5uR024s0Lbo0mjsVU7CtKcfC0KHqR6o8D828w9xLO+w9Lk4FUJtsatZMjR67EYAlIuy8sJNFBxYRlRQFQJeGXZjUbhL1HArJiFqMuadPK/G1dasKjzHh6qoEWMeOajzAXdOr8dtvqks3LCxbLOXF2loFe5vaiBHZngnNzSc1VQmwM2dyd89aWKjP/rhxKkHrvYxpJKtJgMXGZnvZ4uLUaGiT13DJEvWlfuwx6NNHLduwQY08LQ5HRyXAqlVTn/sOHdTy8HA4exaaNKlUl7gWXRrNnUhSkvpnGBysgmWnT889yqksiKjYHgcHePjh8qmU/fvhk0/UP3/DgGHDODOoC/89vIQjUUcAcK3myhS/KXjUKWc36A1SU9Vpd+5UMf7JydnrnJ1VbUcfH9XumBrJK1aorpvnn8+OlfrwQ9i0SU1bWanqAXlb3bo60LkySExUnrDDh5VnJjRUdZPl7HoLClLrW7eGNm1yJx3WFE5kpMqnFhen4hJNYs00bRJxObXLiy+q0aoAP/2k/hDefz9MmaKWhYSoshjOzmp0t0mgVSCVUQZIo9GUh2vXVHDvmTPqx+KNN8o/lM8kuDZsUF6SgABo2LDsx/P1VaLru++IW7+GpTvm8/upNxBXV5xqNWC813j6N+9fYNxWWbG1VXHcnTurXozgYFUfef9+1du2bZtqoEJH3N2hVSvVXF0rqVdNRHXNhISoFhoKc+ZkdwUeP64e3qdPZ4uu/v2hXTtltIuL7g68nahaVT24TQ/vlBQ4cUJ92Ezs3q2y5P/xh5p3clLr3d1VYH7ObTXZ1KlTdGkyUALX5D27fj23R6tuXfXjkPO38tq17JaziHoloD1dGs3tSHi4eihfuaIeuG++WXihwpKSV3DNnq0e6uUkMyuTDac2sGzX5ySeOoplUgqDY+sypuNjOEycojx0twARdduCg1U7dCi3FwyUxmneXOmYpk2zX2+6iWlpaqTXiROqnTypfvBz8t572Q/eQ4fUPu7uygOpufM5c0Z5uo4dU6I65/vfsaMKTAcl2HbuVLFSDRtqb1hFkJGR7SmrW/eWfMd096JGc6dw8qQSWXFxKlh3zpzyJyXNKbhsbNQP/k0QXIeuHOLLfV9yLvYcAD61PZlysS6N1m5W/0br1lWxXl5e5T5XacnMVPHmJ09m657w8PzbGYbSs6awqIYNs6erVy/hMzA+XmX0P3ZMtdOn8/+jdnRUD1Y3N/Xatq3KWaW5+xFRf6BMH0Q3NzUUF5TgfuUVNV2lCrRoodyyLVqoz0nNmlqI3YFo0aXR3Ans369GnaWmqoDcmTPL74apAMEVGbyTr//6hF1Wl8DBgXpV6zG5Zl/8ww0MLy91ng8/VA+UuDgYOFBdi4ODevAcPlwpXSzx8apn7+xZFZ9+9qwaBFhYMnEbG9XTUbdudqtVC+pYRlOjlgXVm1VXucN+/FGNLDVhyvTfqlV2l5KO6dEUxMmTKgFtSIgabZqXb7/NrvUYGqqmb8aoZU2FokWXRnO7s20bzJ+vFECfPvDMMzcnjicpSQWaXrlSNsGVQySltnBl9aaF/PDTf0gjE1sseXD4bIY16IPNY1OyE04uXqyuY/hwFctkGNC9u8pov3Bh7u1MwquSxFhGBkREqPRL4eHZaa8iIpRIA3KN7uwevoJe4cvYVn8MWxuOw9kZ3IzT9Dr7DYlN2pDWog0WrVvhUKdKvlRF9vZad2mKICZGdUubYv+uXYOPP85eb8o0X7266idv0UKNHG7WTP070B+u2wYdSK/R3M5s2KC8USJKqEyadPN+QKtUUd2VERHFd/PlFT4nTsDEiUhaKjvqprJojDtXr54DMumR3oBJR62p1bshxJ5UQqpBA3Wew4fV8Rwd1dDtw4fVw+L991WmbE9P9a/+8OFc58knxm6BEMs5MNBMQgIcOkTa3kOk/HOQCP/hhDTtT2Qk2B5oiu0me6o5ZGBpqcJE9tKCvdX/DXHA/hutACwtC67CYqqSY3o1VcwxNdO8nZ1qesDiXUqNGireq2PH/OsyM5Wb9fp1Jcb27s2uEgFqJPLo0Wo6JkZt17Bh5WXS1xSIFl0aTWUioopKL1+u5nMmCSwPiYmwebOqk2jKPp6zUG9BFCR8Dh/mjFU8//VJ5YgRBVftaebSlid+TafNtRtFiD091f42Nkpw5V127ZqKWJ80SSVCPHNG5XqoU0cNpQclrAoSbQUJsYogPV1df3AwHDigYrJEsAFsAKeMI7gP6a+2zWgPxnK8LS15NEs920zPwZyvOXNFmka9p6Rkj3ovDzY22QLM1jb7NWezsVHNNG9tnb3MVEc6bz3pvLWl805rR0olYmmp0h6IqIStoaGqnTmjXps2zd52+3aVNsHCQgkv04iRJk3U6x2TS+XuQ4sujaayyMpSJVp++UU9zaZNg379yn/c69dV8P2ZM0pM5CwNk5O8XqQ8wud68G6+qxrKRq8IRLJwyrLmEd+p9Ov1KBa+Ifk9UDdEWpHLHnhA1YXbsUP1t33+ucrwbaptl1O0FSTEbpb3yzTUcf9+JbIOH86uNwRKZbi7q6Rf3t4q8DnnuhtYWCjnRElDbDIysquu5KzCkrOkXs7SeqZye6ZpU81kUz3luLiyXX5ZsbRUl29qJkFmaammc67PO22az/mad9rULCzyL8u7vKBpC4vCpwtbX1SztLwNhaZhqBHNLi65c/blDBWysVFiKzxcZZI/f15lFQb1YV2yJHvbP/9UIqxxYzVg57a74LsLHdOl0VQGKSkwb54qPmxtDS+9pHLLlJfLl+G111QXnouL+mdcUM6bgrxaABMnkp6RxroGCawc2pxkeyssE5MZlNWch7o8QVUP3/LbKKI8XV9+qRIhgsoX1qWLimrP07VJerq6RzlsLFc3ZFqaqhmZN8t7kyYqo2q7dmpk4S1KdVFaRNQlpKQoIWaaTk3NbmlpuadNLT09ezo1Vc3nbKZt0tOVQMw5Xdhgg3sBw8gt1AyjYJGWd3nO+ZJOm+Zzvha3rLBtLDNScbp+HqeYszhFh+EYc460KtU4MvAlJSozUun1ySgMlA7IsHcksVZjkms1IqlGI6639CelWj1zd3be8xXVCtretMx0Twvbx7Q+77aFTRe1rqDtGjRQ//kqEh3TpdHcLsTEqBir0FAV0PPKK+UvWg1qpODcucqN0qyZOocp1UQxXi0OH0ZGjmT3vOks2vcVl6s4g70VHep34NF2j9LQqRwJVPNiGCpmpV07VStw9WqVvXv3bnjwwez6j+7u+T1lq1aVrhsyLU3VcQsNhZdfVue2sVGxZsnJSmT5+ipb7pARYYaR3WVY3kwipUFEhRXlFGOm+bzNtLyg17zTeeezsnIvy8rKXmZannNZVlbBy/LuW9B03lbQOtO135mi0xZwu9EACyAFWKtm7dNTSUrvR+3k89ROPo9tZjyEHgWOYgdsdatLSHWVH9Dj6haax+0n2q4hV+0aEm3XgGt2LmRY3HkxYzNmlL+wR1nRokujuZWEhanM8levquRQr7+uBER5EIFff4UvvlBPCT8/5Tkz1eAryKuVpzvvZBMHFm2aybGrx6BOFRo5NWKy72R8XW6CZ6swTMWye/eG//5Xeb+WLFGFvceNUyM4TekWTBTXDXnxouquNXm/Dh2C775T92js2Oxo+ddeUzXbdFdKiTGM7O7C29QJWCGI5BZhJvGZd1lB00WtE8k+lmk65zalXZbzeFDw9jmbWuaEyDTSBcKzBOu4aOyvXqBK9AXsoy/Qyd8VLwe1vfvGQ9Q/FgQZQAJIPGAYJDvUJrq+J4d6P2c+tl3sFZKr1iLLsMx33py2me5vYetzLitourB1GRnppKcnkZaWSFpaIunpyaSnJ5KenkR6ehIpKe0Blwr+5BSMFl0aza1i/37liUpOVvXYXnnl5rgqMjNVjb6sLNVF16yZ6qYziZWCYqNGjYLFi7l8YDtL7E6wI/RTABxtHHnI8yEGthiIpYVl+W0rCfXqqez4wcHwzTcqFm3hQpX7auJEaN8+Wxzl9X61aqW6CRMS1Eiu1FQ1EjQgQHUhpqWpoKjZs1U3a06Pnyn3kUZTBKauRctb9HWoPAyg1o2m0srkGkPZ83443Vr9tly8qNqVK5AVCa1j6Dr1xnYpKTBqsrphdeuqMIf69dX33MVFfYcdHQu1IiMjg6SkJBITE3O1nMtM00lJSSQkJOSaT0xMJKMYt6SdXXW06NJo7lZEYM0aWLpUCaPu3eG5527eUG4rK/jXv5S365NP8nezFeAdikuN4/ukHfxisYGMlAxsLG0Y0nIII9uMpKpN1ZtjV2nx8YEFC1TA79KlKvj3zTeVsBo9Olt8NW+ufti3b4cPPlDxaw0aqKhyZ2fl6fv779xC08ZGeRlv1WhIjeZuw9VVtZxkZCjhlUPkZERFkeDoSGJkJAmxsSQeP05iRgaJmZkkZGSQeP/9JNapowTUkSMkXrhAoqUliRYWJAKpUO7fRisrK6pUqWJuVatWzTVdt27dch2/XLZV2pk1mnuB2FiV8HTfPjX/4IMqn055u7X27FGi4/nns1NC2NkVPNovh3cosXVzfkzbx4/rZpOSkYKBQe+mvRnvPZ5aVYpJKXErMAzo1Qu6dlUeq5UrVcbuV19Viarq1FE5GVJSsvdxdISePZUo8/NT8ydOqK7KWzUaUqO5SxARs8coISHB3Ezzxb2mpaWpA9na5h6tYRrtsWuXWgfKq50nC79hGDhYW1Oldm2qdu9uFkwOly9TpVYtqtatS5U6dXBwcsolqHK+WltbY9ymoQNadGk0FcWxY/DuuxAdrYTACy8oYVAeUlJg0SLl1UpIUPkFRo0q1KNl3q1FU9ZnHWHN8fdISEsAwM/Fj0e8H6FZ9Wbls6kisLaGoUMhMFAlVP38cyWYQIkvHx+4/37VndqyZf6+n4KC8CH//anEpKwaTUVhEk45RVNCQgLx8fG5BFJBLTExkfJkNbC0tKRq1ao4ODhQtWrVfNO5WkwMDtHRVImPp2psLA6xsdhGRWHExak/UK+/rg6amKiqWZxTNV7NuVpq11Zt6NDs2Nj4eBXC4eR0W8ZsatGl0dxssrJULTVTd2Lr1mrkXHHJSYvj5MnsjO7JySoHzw8/qMBxk1jIIzRSMlL49dSv/HDiB66nXAfAo7YH473H06Z2m/Je6c3nzBkVy9WwofIK2tnB5MkqXsvBITvFhCmOzTBUbFa9evmPlTcI/2aMhtRiTHMLSUtLIz4+3iyWcgqnwuZNrTzCyc7ODgcHB3MzCaec8zmX5Zy3tbUtv5cpNVX9xmXfCBWWERmpyorFxCgP2dWrcPw49O2bve26dbBihfpjVauWKhhuavXrqz9ylYgWXRrNzeTMGVUr7dQpNT9ypBqJV54aiikpKtZpzRolPDw81AP/668L7kp0dyc+NZ5fjqxg3cl1xKepAoJuNdwY7zUen3o+t4frXUSlchDJTj6amKjSRzRqpEQXqGDc779XP6IZGapb9ZdflAhdu1aJtPbtVVHtdu2KvtelHQ2ZtxtSe8U0pURESE5ONgskk0gqatoknMxddWXA3t4+l1AqaatSpQpWN6Pma3kw5UQxUb26+uNqIj1d9SBERanWLIe3XkSN3E5MVH9QL13KXte4sRZdGs1dQXIyLFum/mWJqH9V06YpF3l5WbIE/u//lNesZk348EP10F+6NF9XYkxyDOtOruOXU7+QkqHinlrVbMXotqNpX7995Yut2Fg1SnH/fhXnFhubuxuhdWvl2cp736yt1auVlRqZGBCghO0vv6hC4Xv2qObsDD16qPUtWhTfvVDSbkio/FJFmkrF1GVnEkgmcRQXF1esiMoyJfwqJVZWVjg6OpoFkaOjY65507K8wqlq1aqVL5wqEmtr5d0uyMP98MOqpaQoT1h0tGpXr6oippXMXfyuaDS3ABH46y+VXT06Wj3khw5V3i17+7IfNzY2O52Es7P6sWjZUo3QO3nSnPKBw4cRDw9O1BR+3vkuuy7sIlNUoh6fuj482PZBPOp4FCy2RFROrIQEFS9h2ub77+HgQTVi0FQg+9gxlcTU01MV5Dbtv3Gjynfl71+wwDHVNDSV2wkNzb2+Vq3cecqsrNT9KwlubmoU6KRJ8McfqtbkhQvw88+qNWyoAuw7dVLZ5gsTYCXphoRbX6pIUyGYxFNesVSUiDItK2uXnZ2dXS7BlFc8OTk55RNRjo6O2NjYVP4fpTsVOzv1G9DwJiZ2vglo0aXRlAURJSRWrFAPWFAi4Jlncru6S0toKHz6qcrOvmABdOiggsYbNVKCK4fnJc2tGdttwll38nPOBJ8BwMKwoGujroxwG0JL52bZWSxPnVKjKOvXVyMBQYmQpUuVl27IkOxkqufOqaSiOetAXrmiPEk5/ykmJ6uuVFtbJchMvPIKHDmiXPkREdm1ZURU92jbtqob0M9PXVd5HyrOzqob94EH1P0LClJpJy5eVN7HZcvUP+KOHZUAa926+KRLeYWYaZkOzr9tMHXb5RRNBbWChFRZxZO9vb1ZMBUkogoTVne110lTKvQnQaMpDaa6gStXZsdtOToqz9bAgdnFwkp7zP37VVD8rl2q+01EeXBWr871sBcPD47XzOLPvz9ix4UdJKUngQhONk4McBvIQLeB1PpjJ7z/ivJUjRmjzmFnp7xApnTVJu6/P3dRMlBetP79s7O3gxIKr76aO6FoZqYKYI2JUbFWpgfLb78pwZOQoERakyZKdB0/rmx69FG1XXy8EkdNm6pWXgxDdSm2aKHuXXCwup///KNqUv70k2oODsqDZypmXb9+yYXfzQ7OL0iI3WPiLG+3Xc64poIEVM75snbb5RVPOb1Npte8Ququ77LT3BL0J0ijKQnJybBjh+q2OntWLXN2Vt6VgQPLXhdlyRLlLUtJUWIgJUUNdXZ3VzEIN7qrwus7sjU9naBTH3A5+LJ5d7eLyQw6mkb3p1/FxruTWujkpERQTEz2eVxcVJb3vMWvx4/Pb1NBAqhWLdVMHivDUGLzwgXV3Xn6dLZAmDFDdSX27au8WdWqwfLlSoQ1apR9zJAQNRrT0xPeeSd7+eLFys7+/cs+AMHKSgXXt2+vYuFOnlTew927lRDatUs107V5eSkPmLu7EpulEc9lDc6HQouO34lesqysLBITE4sNEC9oWVnFk52dXaEiKafHKec22vOkqUz0J0+jKQwR1c3255/qAZ2aqpbXqKHEVmBg7hE2xXHihPK+eHurB/yJE6orLj5ePWBffVUNi37qKbKuRnGyWiZ/O5xm9/onCY8PVxnV4+Ko6duNALf+9HbtTaNVv0P0TxB+GTrcOE/nziouK2dMmZVV/mzSJbn+6Gjl0TtxQnmqTp9WNR5r11bbuLoqcRcXl73fgw9mjzw0MXasajm7dapUUUlQc3bHxserUZp2dkrMmvjqKxXnNmZMdgyYSfwVh4WFut+tWysP2OXLKmYtOFi9v1evqniwzZvV9vb2Kn6uVSuV/d7VVXVPlsYbVpJuyMKEWHm8ZOUk50i74tIS5BROpvIsZcU00q4kXXe6205zJ6M/sRpNTtLSVDzS/v1KaEVFZa/z8FBFmP9/e2ceZUd13/nP7y3db+uWkJCE0IIkEAghQCAgbCYYQjBLgkfHsTwQD9hDjDMwYMfLAduJSBwnkzmEDPbYjk9ssA0yZOzYDJOAjUPMZgsBEhLaW0sL7Rstdav79dt/88evinrdaoHA6n4S/fucU+dV/d6tW7fqvnfvt353u+yyd7dMRXe3ecjuucfEycSJJoqWLzfv1qRJaLHA7rEZVozcx/IvfIBXF/8/OhMV2G/emFxTjgu6x/LBDcdx1n+6k9jsYFW0uXOtObB+Dcf34nULBVZ7uwmrdets27//4LDt7ZHo+tSnopGFh0O9cAmFUP/vP/lJ8/jVh120yMRSvZj70Y+sI/+NN0bDwHt6TKyccMKh13cLRz1dfbXd96ZNludr1ti2e7eJsmXLonNSqWgZlMmTow66o0YNLMYOt3P+QKMk36uXLIizsmIF+cWL6Zk6le7x420izJUr6V61iu6xY+kZOXLAmcbD/ffqdRIRstlsH7H0Th3FW1tbvdnOGVb4L90Z3lQqtsbf8uUmtFasiGY+B2vmuvJKuOKKgYcnH4onnrARdd3dJma2bbPla1Ip6Oqi/PprbJ42mvVTq6yKrWX56Cp7un8Ei3ImBIpdjOtKcOHk3+eCU36XmWNmkpi57mCP1ahR7/6e6z1Er75qnqVNmyyt/cnlrI/UqafCzJnm/cnlou/fjeA6HHK5aHRkPX/2Z9ZPrD4Pdu40L1t9hb1yJXz1q9ZR/6/+ymyq8E//ZNNtzJ0b3Xv4HEIx9Qd/YPaODmuObGszgdnebrbVq22rJxwhFQq5ceOiz9Gj+4rzwxBiqkrxO9+hZ/Fi8lOn0gO2Jl2hQH71atvfsIGep5+2NetyOXq2baPnrrvoGT+enp07KSxaZE2qsZgNwgDz6tXbcjnL764ua44O87S7m1ShQG78eHITJphQ6u0l19lJyymnkJs+fcDpCsI+Tz7SznHeHhddzvChWLSJ8trbzYsTVqr9JyA8+WTrizRnjnliwoqkf3OOqlVazz0Hv/61eR7CZsNPfQp6e9GYsPfCs9h24RS2pbawMdPL+jFlNnd9j8q6NFx7PKzaDZkMuVEnMGvMLM4cdyZnpzuYPHY6MmdO5Lnq7xU6FKpWoe7c2dfj87OfmcD66EdttCJEnj2wcFOn2v1Pn25i6900qw0mA3nFPvtZm48nHHUJkYiq75fW1WWexmzWmoVDvvxlE9x//ucmJiFqQp0505ppwcTK/v0Wtr3dxN/WrSakOzth/XrKbW30Vqv01mr2Wa2Sr1bpTaXozeXIp9P0NjeTb2oiH4+TFyEP5FXJ12rkn3ySfG8v+Xx+4JF148ZFAunXv7b8zeftMxazfAwmi5RazeZqKhbJZjLkUimy6TS5UaPIHjhAbvZscjNmkHvgAbK1GrlKhdy995LLZMjecQeJctk8amE/u9Cjtnr1wE2b48dbOB8U4DjvyKCKLhH5EPAAEAe+q6r/o9/3Enx/LZAHblHVJYOZJud9TNh5vH4yvB07rALZtq1vU2E96bRtV1xhc0SNHGmVxeuvW4U7a5Yd33STxatqk2/29lLZs5POlUvY21Rlz+Kf8eY9d7Fnw3L2zD7A9nSV7SPjlGZ2w8QRcNKJVmmPPg7JZpjQciInT7yU05jDmadcwpSr5yFhB+7TDnGPhYJV9Pv327ZvX3S/4T3v3WsVMlin9ksvtf143M7dvj2Kb9Ysm5h0ypRDN5UdrcRiJkbqOf982+pJJODWW6kUi5TyeYrFom1vvEFx+3aKmzdT6OqiWCxSeOIJCs8+S+GSSyjMmUOhUKCweTOFn/yEwpgxFD7wAQqFAvl8nsLGjRSKRXpHjKASLubb1WWftZr9Hg93agIRS2ciQXNzM9lMJlrEN5cjO3kymZYWsi0tZEeMsO3668l2dJA980yy55xjomrbNlK33YZUKuaF/Pu/t/hvucUGQeRycNttJoRSqajJMlxeqVx+b33MDtf2dn3RDle0/TY2x2kwgya6RCQOfBO4CtgKvCIiT6jqqrpg1wDTg+13gG8Hn0PLYPyxh6IAeb+ksVYzb8uyZeZhmTzZKq5i0d6uV62yQv/4401MbNhgnqrWVuvIfuCAjaLbvj1qKgm9UJ2ddhx2Ko/H0VqV6jUfonTZJZQrJUr/9RaKpTyFV5+m8OqTFArdFBa+QKFWomdkhp75XyL/xnq6T9xM93GddCVrdMq/0XlCEz1jeuHEPMQEUjtg6YOWhokKpSok4owYNZ6JI6ZzYuZMprTkOXnCmUw7+TzSVbF7nF2w++rqMsEH1nn/5ZdtrqxwkeynnrI5vA6HdNq8VPWj8D74QVsgevToyNbaemRmze+HqlKtVqnValQqFarV6luf5XL5reP+W7lcplwuv7VfbyuXy5RKpT774XG4XywWD7lfrVZtXrIokfb7eeCBSGzu22cjVZcsMY8X2G8onBajvp/Xxo0WxwknEG9tJZ1Ok163jvTevaQvvpjM9OmkRUhv3EjmpZdIT5hAZvZsMqUSmXyezKJFZID01Klkq1Uy8TiZXbuIVyrWZy4cpLFvn3nWstmoGbBatd9LImEvBwsWmL1SsTCViuX/t79t9tNPt//JpEnm9evoiNavSybtZSAeN8/ZqlVm27/fbIWCeYWTSfuvPv64PZOxY+1F5qmn7HfW3W0iePdumystFrM+duPH2zxvCxdamm+/3cRdU5NNKjxjhsX/J38S2R96yPLkvYq7gWzvZoqOo73M9DQes0JcfptFMd82YpGLgHtV9erg+B4AVf3bujDfAZ5V1UeD47XA5aq6oz6u8847T1999dVBSSdr1vCJj5xPIRx5k2sBAXq6oRY8m5Ej7a3wzb1QrVnBk8lYhfXmXgtXrVohOWOGFRzt7VZYhetAxWJBnADBJJHZLHS8GZ2faobWkbDvTVCgUrUC44RxVripWtzxBCTiUOi1cADJJojHoFI2mwCxuO1XK6iI2ZqbLd6WFisktWbXlljQTFGMnk0i6K9Tq9m1Y4ImkhZftWLnCPZsCkWLpylpFx91HLpnrxX+YRea5ia7drUCIqgImk5DuQSlMirYNZpTKArFEkoN4glqArS2op370VoNFWyLx6lpDVVFBWrxGJrNUKtUqBUL1ARqiRi1TJqqQC3fQ1VA0ymrgAoFE2xv3XPwHlKpBM9RoCVnlU/XgeBZAZMmQy6LVKo0r1lPrqTkEllyF15GdvR4Wl5ZRuu6zYxI5GhutglF6/9r2u8TsD5FQVONLlyIvv66TegZzAqvGzeiv/oVpNP23FIpNJVCMxnIZtF0OtpPJtHgmv23Wq120HFoG2j/7bZqtdpnC0XWe+2MPZiICM3NzX22VCrVZz88DvdTqRTpdJrmZJJ0IkFqxAjS6TSp5mbSS5aQLpdJzZ1LMuzb9s//bC8QN94YNYf+8pfwjW/YFBh33GG2jg64+WYrWx5+2P7XBw7Y+nLr1sGf/qm9ZPT02PnPP2+/gzPOMIG+Y4ct+J3JWB+tYtEExtKl9jl7dtSfbNMmE0InnRR5BvfvtxeaZNLKrFDMLVpkaTn77KhZevVqE35Tp9rvs7vb+gIWi3b+BRdYuNdes7TFYlHT7NKl0cLF55xjaVu/3sLk8/aCNWOGvTC1tVlZU6tZ866IPYtazdJ0xhn2/2xrs+/yeetr2NIS3UtXl8U5bpzlQzZrHuBx4+yefvMbi69UigZELFkSXXfiRMuTtWvtWMTmcWtpsfDPPGNlQKlko26nTbM4q1XbpkwxwbxsWVRunnSSlZEbNliYeNxslYqVPapmO+ss+120t9vzicdtNPMbb9g9NzWZ7brrTDisWmXxJhJw/fV27tat9jIQC8rziy82L//atXZ+LGajgsOX2VTK4rzhBnvWL79s4Zqa4MMfti4K//7vFiadNltvr3VTELHnG/bBfOQRu+dcLmrGf/RRe1aplI08HjPG8v/xxy0t2WzUz/L737dn0dpqkx2HcZZKFm7evCjO3l6ry266yWw//rH9f+JxE9tgcxx2d1uc8+ZZHD/+seXB8cfbf3UQhZeILFbV8/rbB7N5cQJQV5uxlYO9WAOFmQDsYKhYvpxnDvRQrATVX0fXwWH27AOkb1NBqQc680FnXKz2LBVg2UqzVapR+NIAHZQ7DsC+7oPPP7AzEk2hrX2LCTMhEIKVg+MrFqL98FzKB9t6Alt3oe462q/2fyvSd4izZrZ8d3R+qRRcZ5cJ1HoKdfGZJIDevH2G54tCb3AvoehNqKWxlIfefnFKNYpOgp2ugv35q4FNFBIl+2MHSZBEmdibe4glm5FdQkyVmArxZIwYQrxQJaYQVyGRUuIxJV7JkChVSMQTJEZMI1lIkYglYG/BKrFTT6V7a4zurbvYtasMPYD0gAQVkUhUmIaFYrjF4zbje+iRy+et8N+ypW+zaP85tGo1K1gG6gTfYGKxGIlE4q3PeDze5zOZTJJIJPpsoa3+M9yampresjc1NfXZwu/Drbm5mWQy2UdgxePxI9vRe6D5zObNiyqHkKuusjnL6iembW2F+++3/AMTDKNG2cjNN9+0EbLhiNSJE+3N/Nxzo6bT7dtNBIwdC5/+tNlqNeuntnevNSs3N5sweuwx8zJde62JsXLZBMmCBSak5s41AVAuRyLgox+NmkhLJevPdv75JkCqVRN7ixfb+XPmWNgxY+DZZ+27006L1goNhdy4cXbuG29EL6TptFXwo0bZ/6BQsM/WVrunWMwq2DBsKG57e6Pn2dRk3/f0ROmNxyNvdyhoN2+255FKWZgtWyx8aOvttbTt22fpCG3t7Sa68nk7TqXs+40bLZ58Pgq7fr2Jn3pbW1uUF6mUpbOtza4dvsD39JgI6uy09La0mG3ZMhPYocDt7rbnvmGDXaO5ORLB4QLPobcznzfRu3u3pTORMNsrr5gQ7+21Z5fP2/x1W7daHPG4Pa+FC+1eenosjaGtWDRb6PkM57vr6bEyrlazfodgaQtF84sv2u9n3ToL29xsefjii9H5sZjl2/PPm+3AgaA+rfS1hfkc2sJmfVXrYwvRsyyX4YUX7Nl3dkb5Fy7ZNcQMpqfrj4CrVfXW4PjjwAWq+t/rwvwb8Leq+mJw/AzwRVVdXB/XYHu6vjbvA5S7OgGxgkywt4NK8KeeNs28HWvWmpemUrU3vrFjzKY1KJVNPV96qf14XnopUtkTJ5h3autWqFVNIEyaBKOO6xvnmDHWJNDWFnm1Ro+2669ebecWS1YZNzWZyz7Mv1Gj7E/Q0RGNyhoxwvY7O8MHbvGXg7Ru2oRUq/YDHjHC/pRhnCJw/Gh7Jp2dSDjyaexYS0NHRyAkYnDyNDvesxfSKSQeRy662H7U27ZBLGaV3emnQ08e2jciySSSSNo8Tfs6kMWv2XnpNHLV70Mqhbz2GrS1Ecu1ILE4cuONyG8WwtLXiEmcWCyG/O7lxHoLsHAhcYRYPEnsmmuIVWvIkz8nUVPiuVZi/+124iLE/+4+4pUqsWwOPvc5y4dFi6xgPfFEqxhETOhs327NmuPHR4IJrFA64YRoKZnOTtN72WxUKVSrds9vs9xMKADqhUB/UXCoMAMd14c91BYL8iIMGwqRenssFuuzhbZ4PH7Qd/F4vM9Wb/ORbMcYqlF/tPrlnrq7rYLL5SLvWT5vLxqZTNQkXqlYGReP950Ed8sWq+QmTbIKb80aq5THjTMvWThh79Kl5lWZNSuaAmTlSmu+nDLFPDSJhJ3/7LNWXl58sZVla9ZEy1TNnGmDQNra7HxVE665HNx1l6WzUrFmzsmTYf78aDDNbbfZ/dx/f9CqEHhOTjrJhODnPx9V5LfdZoNO7r03mjT4llvsfv7hHwIvv9gExKkUfO970coNH/+47S9YYM87kTDvZkeHeXfAypIvfMEE0g9/+FafP776VStbH3zQhEsyabZwsMNjj1lakkm4804rgxcssHtJJuFLX7JwDz9s5ycSdg/r1tkcfMmk2efPt/rgvvus7Mtk4C/+wsTa/PmW7tZWG4gCcPfdkWCcP99sX/mK5X0mY6OJp0yx5vCvfc2+z+XsRQFsSp2wLgqXKvvKV+w3mctFcd57r9WxqVQ0Qvmv/zpqbg/j/pu/MYEmYvFkMmarVCyNjzzSEE+XNy/C+7/N2tN4VLXpO47TII6F8sjT+L7o09UI0ZUA2oArgW3AK8CNqrqyLsx1wB3Y6MXfAb6uqhf0j2vQRZfjOI7jOM4RYsj7dKlqRUTuAH6BTRnxoKquFJFPB9//I/AkJrjWY1NGfGKw0uM4juM4jtNIBnWeLlV9EhNW9bZ/rNtX4PbBTIPjOI7jOM7RQOydgziO4ziO4zi/LS66HMdxHMdxhgAXXY7jOI7jOEOAiy7HcRzHcZwhYNCmjDiSiMge4I1Gp8NxHMdxHOcwOElVx/Q3HhOiy3Ecx3Ec51jHmxcdx3Ecx3GGABddjuM4juM4Q4CLLkBEPiQia0VkvYjc3ej0DFdEZJKI/EpEVovIShG5K7CPEpFfisi64PO4Rqd1OCIicRF5TUT+NTj2fDkKEJGRIvITEVkT/Hcu8rxpPCLy2aAcWyEij4pIyvOlMYjIgyKyW0RW1NkOmRcick+gB9aKyNVHMi3DXnSJSBz4JnANMBP4zyIys7GpGrZUgM+p6unAhcDtQV7cDTyjqtOBZ4JjZ+i5C1hdd+z5cnTwAPBzVZ0BnI3lkedNAxGRCcCdwHmqOgtbCu9jeL40iu8DH+pnGzAvgjrnY8AZwTnfCnTCEWHYiy7gAmC9qm5U1RLwGHBDg9M0LFHVHaq6JNg/gFUeE7D8+EEQ7AfAhxuSwGGMiEwErgO+W2f2fGkwItIKXAZ8D0BVS6q6H8+bo4EEkBaRBJABtuP50hBU9Xmgo5/5UHlxA/CYqhZVtR1bG/qCI5UWF11WqW+pO94a2JwGIiJTgHOARcA4Vd0BJsyAsQ1M2nDlfwFfBGp1Ns+XxjMN2AM8FDT9fldEsnjeNBRV3QbcB2wGdgCdqvo0ni9HE4fKi0HVBC66QAaw+TwaDUREcsC/AJ9R1a5Gp2e4IyLXA7tVdXGj0+IcRAI4F/i2qp4D9OBNVg0n6B90AzAVOBHIisgfNzZVzmEyqJrARZep2El1xxMxN7DTAEQkiQmuBar608C8S0TGB9+PB3Y3Kn3DlEuAPxSRTVjz+xUi8gieL0cDW4GtqrooOP4JJsI8bxrL7wHtqrpHVcvAT4GL8Xw5mjhUXgyqJnDRBa8A00Vkqog0YR3onmhwmoYlIiJY35TVqnp/3VdPADcH+zcD/3eo0zacUdV7VHWiqk7B/h//oap/jOdLw1HVncAWETktMF0JrMLzptFsBi4UkUxQrl2J9VH1fDl6OFRePAF8TESaRWQqMB14+Uhd1GekB0TkWqzPShx4UFW/1tgUDU9E5FLgBWA5Ud+hL2H9uv4PMBkrzP5IVft3inSGABG5HPi8ql4vIqPxfGk4IjIbG+DQBGwEPoG9UHveNBAR+UtgHjYq+zXgViCH58uQIyKPApcDxwO7gPnA4xwiL0Tky8Ansbz7jKo+dcTS4qLLcRzHcRxn8PHmRcdxHMdxnCHARZfjOI7jOM4Q4KLLcRzHcRxnCHDR5TiO4ziOMwS46HIcx3EcxxkCXHQ5jtNwRGS0iCwNtp0isi3Y7xaRbw3SNT8jIv9lAPsUEVlxBK/TJCLPB2vwOY4zjPFCwHGchqOqbwKzAUTkXqBbVe8brOsFAuiT2Oztg4qqlkTkGWzOpgWDfT3HcY5e3NPlOM5Ri4hcLiL/GuzfKyI/EJGnRWSTiMwVkf8pIstF5OfBElKIyBwReU5EFovIL8KlPvpxBbBEVSt15ywTkYXA7XXXnyIiL4jIkmC7OLA/LCI31IVbICJ/KCJniMjLgZfudRGZHgR5HLhpMJ6R4zjHDi66HMc5ljgZuA5bTPgR4FeqeibQC1wXCK9vAB9R1TnAg8BAK0xcAtQv4P0QcKeqXtQv3G7gKlU9F/NUfT2wfxeb+R0RGYGtq/ck8GngAVWdDZyHreMGsAI4/z3es+M47xO8edFxnGOJp1S1LCLLsWW7fh7YlwNTgNOAWcAvbck74sCOAeIZj62FF4qmkar6XPDdw8A1wX4S+N/BUjtV4FQAVX1ORL4pImOBucC/qGol8JR9WUQmAj9V1XVB+KqIlESkRVUPHKFn4TjOMYaLLsdxjiWKAKpaE5GyRuuY1bDyTICVA3is+tMLpIJ9AQ61HtpnsbXazsZaBgp13z2MNRl+DOsfhqr+SEQWYd64X4jIrar6H0H45n7nO44zzPDmRcdx3k+sBcaIyEUAIpIUkTMGCLcaOAVAVfcDncGC69C379UIYIeq1oCPY56zkO8DnwniWBlcbxqwUVW/DjwBnBXYRwN7VLX829+i4zjHKi66HMd536CqJeAjwN+JyDJgKdbfqj9PAZfVHX8C+GbQPNhbZ/8WcLOIvIQ1LfbUXWsXJt4eqgs/D1ghIkuBGcAPA/sHsT5fjuMMYyTyzjuO4wwfRORnwBfDflfv4fwM1pfsXFXtfIewPwXuUdW17+VajuO8P3BPl+M4w5W7sQ717xoR+T1gDfCNwxBcTcDjLrgcx3FPl+M4juM4zhDgni7HcRzHcZwhwEWX4ziO4zjOEOCiy3Ecx3EcZwhw0eU4juM4jjMEuOhyHMdxHMcZAlx0OY7jOI7jDAH/H1jaZ66b1TBPAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.4081, 'epsilon': 0.1368, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACkD0lEQVR4nOydd3hU1daH35NACin03hIgJJBKAqGX0AKCCCgCIgKKBRVRPxW49yq2q14bCvargCIXEBFEREWkSy+hQyAQSgIkENL7ZH1/bGYyqSSBkAD7fZ79zJx92jpnJnN+WXvttQwRQaPRaDQajUZTvthUtAEajUaj0Wg0dwJadGk0Go1Go9HcBLTo0mg0Go1Go7kJaNGl0Wg0Go1GcxPQokuj0Wg0Go3mJqBFl0aj0Wg0Gs1NoEpFG1AS6tSpI25ubhVthkaj0Wg0Gs012b179yURqZu//5YQXW5ubuzatauizdBoNBqNRqO5JoZhnC6sXw8vajQajUaj0dwEtOjSaDQajUajuQlo0aXRaDQajUZzE7glYro0mrJiMpmIi4sjKyurok3RaDS3CFWrVqVWrVrY2tpWtCma24xyE12GYcwBBgMxIuJTyHoD+Bi4C0gFxovInvKyR3NnEhcXh4ODA3Xq1EF95TQajaZoRITk5GTi4uKoW7fA5DON5rooz+HFecCAYtYPBDyutseAz8vRFs0dSlZWFs7OzlpwaTSaEmEYBs7Ozto7rikXys3TJSIbDcNwK2aTe4DvRESAbYZh1DAMo6GInC8vm4ri4EHIybk55yrps/9a21mvN4yC25uXi9rO/L6oZnNVjtvY5C7nf29utraqWW9TmdCCS6PRlAb9m6EpLyoypqsxcNZq+dzVvpsuut58E1JSbvZZb1/MIqxKldzXqlULNnv7gs3REapVU8383sUlb7O5Bad//Pvf/+Z///sftra22NjY8OWXX9KxY8ebbkdYWBjR0dHcddddAKxYsYLDhw8zbdo0xo8fz+DBg7nvvvvy7LN+/Xref/99Vq5cedPt1Wg0mtuJihRdhf0rITfdCqBtW8jIKNm2ch0WXs++1vtbH6ew98X1ieS2/Mv5m9n7ZzLl7cvfTKaCryYTZGZe3/UWhbMz1KwJtWtDrVq5r/XrQ6NG6rVKJZoisnXrVlauXMmePXuwt7fn0qVLZJbXzbkGYWFh7Nq1yyK6hgwZwpAhQyrEFo1Go7nTqMhH0zmgqdVyEyC6Igx55ZWKOOvtiYgSXNnZua/mlpkJWVm5LSND9WVkqJaeDmlpkJqa+5qaCklJuS05ObedPVu4DTY2uQIsJESdo1Yt5SWriFGD8+fPU6dOHezt7QGoU6cOkFtpoU6dOuzatYsXXniB9evXs2HDBqZMmQKoYY6NGzfi4uLCu+++y/z587GxsWHgwIG88847RERE8NRTTxEbG0u1atX473//i5eXF+PHj8fBwYFDhw5x8eJFPvzwQ/r3788rr7xCWloamzdvZvr06aSlpbFr1y4++eQTANasWcPHH39s2Wfw4MF5riUlJYXJkydz4MABsrOzefXVV7nnnntu4t3UaDSaW5eKFF0rgKcNw1gEdAQSKiKeS3NjMQzlZSovT1NOjhJfV67A5csQF6deL1+G8+dVi43Nfd+yJURFqX0/+ADs7FSzt1evN0KE/fJL8ev79+/P66+/TuvWrenbty8jR46kZ8+eRW7//vvv8+mnn9K1a1eSk5NxcHDgt99+Y/ny5Wzfvp1q1aoRFxcHwGOPPcYXX3yBh4cH27dv58knn2Tt2rUAREZGsmHDBiIiIggJCeHEiRO8/vrreUTWvHnz8py7sH2s+fe//03v3r2ZM2cO8fHxBAcH07dvX5ycnEp51zQajebOozxTRiwEegF1DMM4B8wAqgKIyBfAKlS6iBOolBETyssWze2DjQ1Ur65aUTXQMzPh4kUltsxDnXFxygtn9qolJSnBZY4lc3AoP6Ho7OzM7t272bRpE+vWrWPkyJG88847RW7ftWtXnn/+ecaMGcPw4cNp0qQJa9asYcKECVSrVg2AWrVqkZyczJYtWxgxYoRl3wyrcfL7778fGxsbPDw8aNGiBUePHr2mrdfaZ/Xq1axYsYL3338fgPT0dM6cOUObNm1KdU80Go3mTqQ8Zy+OvsZ6AZ4qr/Nr7lzs7KBpU9Wio9UwI0BoqBJfMTFw4YLylllTuza0aAHNmikhdiOxtbWlV69e9OrVC19fX7799luqVKlCztXAufT0dMu206ZNY9CgQaxatYpOnTqxZs0aRKTAjKqcnBxq1KhBWFhYoefMv31JZmRdax8RYenSpXh6el7zWBqNRqPJyy04D0yjKRuOjtC4MbRrBwMHwrBh0Lmz8phVraqGKHfuhGXLYPNmJdiud/IDwLFjxzh+/LhlOSwsjObNm+Pm5sbu3bsBWLp0qWV9REQEvr6+TJ06lfbt23P06FH69+/PnDlzSE1NBVTSV1dXV9zd3VmyZAmgBNG+ffssx1myZAk5OTlERERw8uRJPD09cXFxISkpqUhbC9vHmtDQUGbPno1cvTF79+69zruj0Wg0dw6VaI6XRnNzcXQEd3fVsrPh3Dk4eVINTZ45o1qtWuDrq7xlZY3/Sk5OZvLkycTHx1OlShVatWrFV199xZEjR3jkkUd466238qSP+Oijj1i3bh22tra0bduWgQMHYm9vT1hYGO3bt8fOzo677rqLt956iwULFjBp0iTefPNNsrKyGDVqFP7+/gB4enrSs2dPLl68yBdffIGDgwMhISG88847BAQEMH369AK2FraPNS+//DLPPvssfn5+iAhubm46lYRGo9GUEENuxL/y5Uz79u1l165dFW2G5hYkOjqaRubxxRKSmgqnTkF4uJpFCWro0dcXGjasfMlfC6OonFsajaZklOW3Q6MxYxjGbhFpn79fe7o0mnxUqwbe3uDlBcePw+HDauhx/XqoWxfat1d5wjQajUajKQ1adGk0RWBrq4RXq1a54is2Fv74Q3m92rSpvNnx86eC0Gg0Gk3FU0kfGRpN5aFKFSWwhgyB1q1VrrB9++DPPyExsaKt02g0Gs2tghZdGk0JqVpVDS327q2GIC9fht9+g6NHb8wsR41Go9Hc3mjRpdGUkgYN4K67VE4vkwn27FEpJkymirZMo9FoNJUZLbo0mjJgZwedOkHPnur92bOwdm35FfnWaDQaza2PFl0azXXQuDH07auGG2NjVZzX1fylFpydna95nE2bNuHt7U1AQABp5jwVJWT58uUcPny4VPsUZ1daWho9e/bEZOW6mzlzJg4ODiQkJJT6PDeCsLAwVq1aVe7nmTdvHtHR0ZbliRMnluneRkZG4uPjc83tlixZQps2bQgJCSn1OfLbeqPsKmybV1991VL6qaT06tWLa6X6+eijjywJf0tLWb8T1nb17duXK/lLU2g05YgWXRrNdVKjBvTvr+pBJiTA6tUQH1+6YyxYsIAXXniBsLAwHB0dS7VvWUVXUcyZM4fhw4dja2tr6Vu4cCEdOnRg2bJlN+w8paGiRNfXX39N27Zty+1833zzDZ999hnr1q0r9b5lEV2VjYoQXdaMHTuWzz777LqOodGUBi26NJobQLVqyuNVt67ydK1Zozxf1qxfv55evXpx33334eXlxZgxYxARvv76a3744Qdef/11xowZA8B7771Hhw4d8PPzY8aMGZZjfPfdd/j5+eHv78/YsWPZsmULK1as4MUXXyQgIICIiAgiIiIYMGAAQUFBdO/e3VK0+tSpU3Tu3JkOHTrw8ssvF3ktCxYs4J577rEsR0REkJyczJtvvsnChQst/YcOHSI4OJiAgAD8/Pw4fvw4L7/8Mh9//LFlm3/+85/MmjWL9evX07NnT+6//35at27NtGnTWLBgAcHBwfj6+hIREQGopK5PPPEE3bt3p3Xr1qxcuZLMzExeeeUVFi9eTEBAAIsXLyYuLo6hQ4fi5+dHp06d2L9/P6A8MuPGjaN///64ubnx008/8dJLL+Hr68uAAQPIysoC4PXXX6dDhw74+Pjw2GOPISL8+OOP7Nq1izFjxlg8jtZekd9//53AwED8/f3p06dPib8b8+bNY/jw4QwYMAAPDw9eeukliw2bN2/miSee4MUXX8RkMvHiiy9aPvcvv/zScox3330XX19f/P39mTZtWqG27t69m549exIUFERoaCjnz58HYPfu3fj7+9O5c2c+/fTTEttdFL169WLq1KkEBwfTunVrNm3aBCgP6ahRo/Dz82PkyJF5PLarV6+mc+fOBAYGMmLECJKTk5k1axbR0dGEhIRYPH2FbQewc+dOunTpgr+/P8HBwSQkJBT4TqSkpPDwww/ToUMH2rVrx88//3xNu4YMGZLnO63RlDsiUulbUFCQaDRlISoqKndh8ODyaVZkZ4ts3CiyYIHIkiUiCQkiTk5OIiKybt06cXV1lbNnz4rJZJJOnTrJpk2bRERk3LhxsmTJEhER+eOPP+TRRx+VnJwcMZlMMmjQINmwYYMcPHhQWrduLbGxsSIicvny5QL7ioj07t1bwsPDRURk27ZtEhISIiIid999t3z77bciIvLJJ59Y7LImIyND6tevn6fvjTfekNdff11MJpM0b95cLl68KCIiTz/9tHz//feW/VJTU+XUqVPSrl07ERExmUzSokULuXTpkqxbt06qV68u0dHRkp6eLo0aNZJXXnlFREQ++ugjmTJliuVaQkNDxWQySXh4uDRu3FjS0tJk7ty58tRTT1lsevrpp+XVV18VEZG//vpL/P39RURkxowZ0rVrV8nMzJSwsDBxdHSUVatWiYjI0KFDZdmyZXnunYjIgw8+KCtWrBARkZ49e8rOnTst68zLMTEx0qRJEzl58mSB/Qvj1KlT4u3tLSIic+fOFXd3d4mPj5e0tDRp1qyZnDlzpsD5vvzyS3njjTdERCQ9PV2CgoLk5MmTsmrVKuncubOkpKTkObf1vpmZmdK5c2eJiYkREZFFixbJhAkTRETE19dX1q9fLyIiL7zwgsWukthuZsaMGfLee+9Zzvv888+LiMivv/4qffr0ERGRDz74wHLOffv2ia2trezcuVNiY2Ole/fukpycLCIi77zzjrz22msiItK8eXPL97mo7TIyMsTd3V127NghIiIJCQmSlZVV4Dsxffp0mT9/voiIXLlyRTw8PCQ5OblIu8y0atVKLl26VOA+5Pnt0GhKCbBLCtEzOjmqRnMDsbWFbt1g0yZVy3H9+rzrg4ODadKkCQABAQFERkbSrVu3PNusXr2a1atX065dO0DVbjx+/Dj79u3jvvvuo06dOgDUqlWrwPmTk5PZsmULI0aMsPRlZGQA8Pfff1sKa48dO5apU6cW2P/SpUvUqFEjT9+iRYtYtmwZNjY2DB8+nCVLlvDUU0/RuXNn/v3vf3Pu3DmGDx+Oh4cHbm5u1K5dm71793Lx4kXatWtH7dq1AejQoQMNGzYEoGXLlvTv3x8AX1/fPMNr999/PzY2Nnh4eNCiRQuLp86azZs3W66ld+/eXL582RJvNnDgQKpWrYqvry8mk4kBAwZYzhMZGQnAunXrePfdd0lNTSUuLg5vb2/uvvvuAucxs23bNnr06IG7u3uR9744+vTpQ/Xq1QFo27Ytp0+fpmnTpnm2Wb16Nfv37+fHH38EICEhgePHj7NmzRomTJhAtWrVijz3sWPHOHjwIP369QPAZDLRsGFDEhISiI+Pp2fPnoD63H/77bdibTWKqHNl3T98+HAAgoKCLPd048aNPPPMMwD4+fnh5+cHqHt3+PBhunbtCkBmZiadO3cucPyitjt27BgNGzakQ4cOALi6uhZq3+rVq1mxYoUl9iw9PZ0zZ84UaZeZevXqER0dbfmeajTliRZdmjuHX365KacxDOjSBf76S+XyMply00nY29tbtrO1tSU7O7vA/iLC9OnTefzxx/P0z5o1q8gHopmcnBxq1KhBWFhYEbYVv7+joyPp6emW5f3793P8+HHLwzwzM5MWLVrw1FNP8cADD9CxY0d+/fVXQkND+frrr+nduzcTJ05k3rx5XLhwgYcffthyLOtrt7GxsSzb2NjkuQ/5bSzMZikkMZp5O+vjVq1a1dJvPk96ejpPPvkku3btomnTprz66qt5rrkwROSa9644Svq5z549m9DQ0Dz9v//++zXPLSJ4e3uzdevWPP3x8fGltrt27doFgsvj4uIsghNyryf/tRT1WfXr1++aw3hFbbd///4SXYOIsHTpUjw9PQusK27/9PT0UsdRajRlRcd0aTTlQJUq0KMHODmpxKlbt5Y8gWpoaChz5syxxLNERUURExNDnz59+OGHH7h8+TKgHoQALi4uJCUlAcoL4O7uzpIlSwD1INq3bx8AXbt2ZdGiRYCK2yqMmjVrYjKZLCJk4cKFvPrqq0RGRhIZGUl0dDRRUVGcPn2akydP0qJFC5555hmGDBliiasaNmwYv//+Ozt37iwgIErCkiVLyMnJISIigpMnT+Lp6ZnnGgF69OhhuYb169dTp06dIj0g+TFfW506dUhOTrZ4loAC5zHTuXNnNmzYwKlTp4Dce79jxw4eeuihUl9jYYSGhvL5559b4s7Cw8NJSUmhf//+zJkzxxJwXtjn7unpSWxsrEV0ZWVlcejQIWrUqEH16tXZvHkzkPdzj4qKKjQ2zdnZmYYNG/LXX39Zzvf7778X8Mjmx/ozOXjwoOX70KlTJ/7++29OnDgBQGpqKuHh4QWuoajtvLy8iI6OZufOnQAkJSWRnZ1d4LMKDQ1l9uzZFkG+d+/eYu0C9fdx4cIF3Nzcir02jeZGoUWXRlNOODpCr17q/ZkzcDVW/Jr079+fBx54gM6dO+Pr68t9991HUlIS3t7e/POf/6Rnz574+/vz/PPPAzBq1Cjee+892rVrR0REBAsWLOCbb77B398fb29vS0Dxxx9/zKeffkqHDh2KTf3Qv39/y0N60aJFDBs2LM/6YcOGsWjRIhYvXoyPjw8BAQEcPXrUIj7s7OwICQnh/vvvzzMDsqR4enrSs2dPBg4cyBdffIGDgwMhISEcPnzYEjT96quvsmvXLvz8/Jg2bRrffvttiY9fo0YNHn30UXx9fRk6dKhl2ApyA/nzp+6oW7cuX331FcOHD8ff35+RI0cCcObMmRvmJZk4cSJt27YlMDAQHx8fHn/8cbKzsxkwYABDhgyhffv2BAQEWIbPrG01mUz8+OOPTJ06FX9/fwICAtiyZQsAc+fOtQwHW9t6/vx5qlQpfLDju+++48033yQgIIDevXszY8YMWrZsWaz9kyZNIjk5GT8/P959912Cg4MBde/mzZvH6NGjLRMfzEPGjz32GAMHDiQkJKTI7ezs7Fi8eDGTJ0/G39+ffv36kZ6eXuA78fLLL5OVlYWfnx8+Pj6WySJF2QVqkkGnTp2KvA8azY3GKMxNX9lo3769XCvfi0ZTGNHR0TRq1KhCbbhwQcV25eRAcLAqoF2Z2bt3Lx9++CHz588v0/45OTkEBgayZMkSPDw8SrXv+PHjGTx4MPfdd1+Zzn2zefHFFxk7dmyBOKFbgU8++YRmzZoxZMiQijalwpgyZQpDhgwp1ONXGX47NLcuhmHsFpH2+fu1vNdoypkGDaBDB9i+HXbvVmklrsZUV0ratWtHSEgIJpOp1J6qw4cPM3jwYIYNG1ZqwXUr8t5771W0CWXm6aefrmgTKhwfH59Spf/QaK4X7enS3NZUpv9Wt22DkyehVi2VTNVGD+5rNJWWyvTbobn1KMrTpX/2NZqbRFCQCqyPi4NDhyraGo1Go9HcbLTo0mhuElWrqiLZAAcPqnQSGo1Go7lz0KJLo7mJ1K8PXl65aSSsakprNBqN5jZHiy6N5ibj768C6RMToYgcphqNRqO5DdGiS6MpZ2xtbQkICMDb2xt/f38+/vhDOnbMwcYGfvttFxMnPlPRJpaI8ePH50kkas2zzz7Lxo0bLcuxsbFUrVo1T9Hmm81bb71V7ucICwtj1apVluUVK1bwzjvvlOlY1sW1iyI2NpaOHTvSrl07S6Hpstp6I+0aP3487u7u+Pv707p1ax566CGioqKueeyPPvrIkvS1tNyI6+nbt2+B7PsaTXmiRZdGU844OjoSFhbGoUOH+PPPP1m1ahWzZ7+Gjw+0aNGeu++edUsPM8bFxVlqE5pZsmQJnTp1umbpl/KkIkTXkCFDmDZtWrmd76+//sLLy4u9e/fSvXv3Uu1bVpFSUt577z327dvHsWPHLGlHMjMzi92nIkSXNWPHjuWzzz67rmNoNKVBiy6NJj9Hj8KSJer1BlOvXj2++uorPvnkE9q0Ec6cWc+rrw7m6FFVUqZLly60a9eOLl26cOzYMUCVQ7n//vvx8/Nj5MiRdOzY0fKfurOzM//85z/x9/enU6dOXLx4EYDTp0/Tp08f/Pz86NOnD2fOnAGUGPLx8cHf398ikkwmEy+++CIdOnTAz8/P4p0SEZ5++mnatm3LoEGDiImJKfSafvzxR0tRaTMLFy7kgw8+4Ny5cxaPh8lkYvz48fj4+ODr68vMmTOJiIggMDDQst/x48cJCgoCwM3NjX/84x907tyZ9u3bs2fPHkJDQ2nZsiVffPEFoEoA9ejRg2HDhtG2bVueeOIJcnJymDZtGmlpaQQEBDBmzBgAPvzwQ3x8fPDx8eGjjz4CIDIyEi8vLyZOnIiPjw9jxoxhzZo1dO3aFQ8PD3bs2AEU/tlkZmbyyiuvsHjxYktW9Hnz5lnyX128eJFhw4bh7++Pv7+/JUN8SSjscw0LC+Oll15i1apVloz5q1evpnPnzgQGBjJixAhL6aidO3fSpUsX/P39CQ4OJiEhoYCtKSkpPPzww3To0IF27dpZKhekpaUxatQoy/fNOjN/STAMg+eee44GDRpYimsXZuesWbOIjo4mJCSEkJCQIrcrz+sZMmRIhf5joLkDEZFK34KCgkSjKQtRUVGl2+HIEZGOHUXatVOvR45ctw1OTk4F+mrUqCEXLlyQpUvXSUDAIFm8WOTChQTJysoSEZE///xThg8fLiIi7733njz22GMiInLgwAGxtbWVnTt3iogIICtWrBARkRdffFHeeOMNEREZPHiwzJs3T0REvvnmG7nnnntERMTHx0fOnTsnIiJXrlwREZEvv/zSsl96eroEBQXJyZMnZenSpdK3b1/Jzs6WqKgoqV69uixZsqTAtTz00EMWG0REzpw5I61atRIRkenTp8sHH3wgIiK7du2Svn37WrYzn79Xr16yd+9ey/azZs0SEZHmzZvLZ599JiIizz77rPj6+kpiYqLExMRI3bp1RURk3bp1Ym9vLxEREZKdnS19+/a12Gh933ft2iU+Pj6SnJwsSUlJ0rZtW9mzZ4+cOnVKbG1tZf/+/WIymSQwMFAmTJggOTk5snz5cst9S0go/LOZO3euPPXUU5bzWC/ff//9MnPmTBERyc7Olvj4+AL3zpqePXte83O1Pn5sbKx0795dkpOTRUTknXfekddee00yMjLE3d1dduzYkcf2/LZOnz5d5s+fb/ksPDw8JDk5WT744AOZMGGCiIjs27cvz/etKMaNG1fguzFlyhR55513irRTRH3GsbGxFXo9rVq1kkuXLhW4plL/dmg0VgC7pBA9ozPSazTWHDgAmZnQuDFER6tlL68bfhq5mpS4Vi1VozE7G7ZvT2Du3HEcP34cwzAshY83b97MlClTAJVB27rkjJ2dHYMHDwYgKCiIP//8E4CtW7fy008/AWoI5aWXXgJU0evx48dz//33M3z4cEB5F/bv32+J10pISOD48eNs3LiR0aNHY2trS6NGjejdu3eh13L+/Hnq1q1rWV60aBH3338/oOpCPvLIIzz//PO0aNGCkydPMnnyZAYNGkT//v0BVXNw7ty5fPjhhyxevNjiXQIsJWp8fX1JTk7GxcUFFxcXHBwciI+PByA4OJgWLVoAMHr0aDZv3lygjNDmzZsZNmwYTk5OAAwfPpxNmzYxZMgQ3N3d8fX1BcDb25s+ffpgGAa+vr5ERkZa7sm4cQU/m+JYu3Yt3333HaDi+qqXogxBUZ+rNdu2bePw4cN07doVgMzMTDp37syxY8do2LChpaZkUYXAV69ezYoVKyy1HNPT0zlz5gwbN27kmWdUnKGfn1+ZSxyZv+NF2VlZrqdevXpER0dTu3btMl2nRlMatOjSaKzx9QU7OyW4qlZVyzeYkydPYmtrS7169Thy5Aiurio7/QcfvMzAgSEsW7aMyMhIel2tlm1+eBVG1apVMQwDUA/27OzsQrczb/PFF1+wfft2fv31VwICAggLC0NEmD17NqGhoXn2WbVqlWW/4nB0dCQ9Pd2yvHDhQi5evMiCBQsAldn7+PHjeHh4sG/fPv744w8+/fRTfvjhB+bMmcO9997La6+9Ru/evQkKCsrz8LO3twfAxsbG8t68bL7W/DYWZnNx9zD/ca3PaT7Hyy+/TEhIwc+mvCjJ5yoi9OvXr8Dw2P79+0v0uYkIS5cuxdPTs8C6kux/Lfbu3UufPn2KtLMweyrietLT029Y0XKN5lromC6NxhovL5g3D6ZNU6832MsVGxvLE088wdNPP215EFSpAq1bQ2pqAmlpjRGBefPmWfbp1q0bP/zwA6BqGx44cOCa5+nSpQuLFi0CYMGCBXTr1g2AiIgIOnbsyOuvv06dOnU4e/YsoaGhfP755xbvTXh4OCkpKfTo0YNFixZhMpk4f/4869atK/Rcbdq04cSJEwAcO3aMlJQUoqKiiIyMJDIykunTp7No0SIuXbpETk4O9957L2+88QZ79uwBwMHBgdDQUCZNmsSECRNKfU937NjBqVOnyMnJYfHixZZrrVq1quWaevTowfLly0lNTSUlJYVly5aVKhA9ISGBxo0bA3k/GxcXF5KSkgrdp0+fPnz++eeAimdLTEy09JdkZt+16NSpE3///bfl3qemphIeHo6XlxfR0dHs3LkTgKSkJLKzswvYGhoayuzZsy2CdO/evYC6V2bBfPDgQfbv32/Z56GHHsrjiSwMEWHWrFmcP3+eAQMGFGkn5L1/FXE9IsKFCxdwc3MrwR3XaK6fchVdhmEMMAzjmGEYJwzDKDClxzCM6oZh/GIYxj7DMA4ZhlH6X1yN5kbj5QUjRtwwwWUO6Pb29qZv377079+fGTNm5NnG2xuGDn2Jr76aTnBwV0xW0xmffPJJYmNj8fPz4z//+Q9+fn7XHKqaNWsWc+fOxc/Pj/nz5/Pxxx8D8OKLL+Lr64uPjw89evTA39+fiRMn0rZtWwIDA/Hx8eHxxx8nOzvbUrTa19eXSZMm0bNnz0LPNWjQINavXw8oL9ewYcPyrL/33ntZuHAhUVFR9OrVi4CAAMaPH8/bb79t2WbMmDEYhmEZciwNnTt3Ztq0afj4+ODu7m45/2OPPYafnx9jxowhMDCQ8ePHExwcTMeOHZk4cSLt2rUr8Tleeuklpk+fTteueT+bkJAQDh8+bAnmtubjjz9m3bp1+Pr6EhQUxKFDh8jJyeHEiRPUqlWr1NeZn7p16zJv3jxGjx6Nn58fnTp14ujRo9jZ2bF48WImT56Mv78//fr1Iz09vYCtL7/8MllZWfj5+eHj48PLL78MwKRJk0hOTsbPz493332X4OBgyzn3799Pw4YNC7XnxRdftKSM2LlzJ+vWrcPOzq5IO0F9RgMHDiQkJKRCrmf37t106tSJKlX0oI/m5lBuBa8Nw7AFwoF+wDlgJzBaRA5bbfMPoLqITDUMoy5wDGggInnmGeuC15qycisVrT12DHbvBhcXGDQotyC2yWQiKysLBwcHIiIi6NOnD+Hh4djZ2VWswVZ069aNlStXUqNGjTLt//7775OQkMAbb7xRqv3Wr1/P+++/z8qVK8t03pvNwYMHmTNnDh9++GFFm1JqEhMTeeSRR1iyZElFm3LDmDJlCkOGDKFPnz4F1t1Kvx2aykdRBa/LU94HAydE5ORVAxYB9wCHrbYRwMVQ4yzOQBxQeFCKRnOb4+EBx4+rTPXh4bmOttTUVEJCQsjKykJE+PzzzyuV4AL44IMPOHPmTJlE17Bhw4iIiGDt2rU33rBKho+Pzy0puEAFsN9OggvU51GY4NJoyovy9HTdBwwQkYlXl8cCHUXkaattXIAVgBfgAowUkV/zH0t7ujRl5Vb7bzUqCjZsULH8Q4aoV41Gc/O51X47NJWLojxd5RnTVdh0kfwKLxQIAxoBAcAnhmEUPh9Yo7kDaNQI6tVTWSuOH69oazQajUZzIylP0XUOaGq13ASIzrfNBOCnq7nETgCnUF4vjeaOxDDAx0e9P3pU5e/SaDQaze1BeYqunYCHYRjuhmHYAaNQQ4nWnAH6ABiGUR/wBE6Wo00aTaWnfn2oUwcyMrS3S6PRaG4nyk10iUg28DTwB3AE+EFEDhmG8YRhGE9c3ewNoIthGAeAv4CpInKpvGzSaG4FDEOlkADl7bqVi2FrNBqNJpdyzdMlIqtEpLWItBSRf1/t+0JEvrj6PlpE+ouIr4j4iMj35WmPRlNRLFu2DMMwLPmJQAXqmsvVrF+/3lL2ZcWKFXz33TvUrAlpaRARcX3nfvbZZ9m4cSMAK1eupF27dvj7+9O2bVtLcevy4qOPPiI1NbVczxEZGcn//vc/y/KuXbssZV9Ky/jx4y3lkIoiIyODvn37Fpqbq7S23ki7CtvG2dm5VOex/h4WRVhYGKtWrSrVca0py3fC2q6VK1cWyHOn0dwq6Iz0Gs1NYOHChXTr1s2SJR6gUaNGhT5IhwwZwvTp0yyxXYcPQ05O2c4bFxfHtm3b6NGjB1lZWTz22GP88ssv7Nu3j71795Z7OZuKEF3t27dn1qxZ5Xa+vXv3kpWVRVhYGCNHjizVvmUVXZWJihBd1gwaNIgVK1aU+/dKoykPrim6DMPoahjGn4ZhhBuGcdIwjFOGYei4K42mhCQnJ/P333/zzTff5BFdkZGR+JiVlRXz5s3j6aefpkkTmDNnPJ9//gzt23ehRYsWFpGWk5PDk08+ibe3N4MHD+auu+4qVMD9+OOPDBgwAMgtn2KubWhvb4+npydJSUm4u7tbSuYkJibi5uZGVlYWvXr14rnnnqNHjx60adOGnTt3Mnz4cDw8PPjXv/5luQ4vLy/GjRuHn58f9913H6mpqcyaNYvo6GhCQkIICQkBlPg0Z8SfOnWqxU5nZ2emTp1KUFAQffv2ZceOHfTq1YsWLVqwYsUKy3m6d+9OYGAggYGBbNmyBYBp06axadMmAgICmDlzZh6vSHJyMhMmTMDX1xc/Pz+WLl1a4s/Nzc2NGTNmEBgYiK+vL0ePHiUmJoYHH3yQsLAwAgICiIiIYPfu3fTs2ZOgoCBCQ0M5f/48ACdOnKBv3774+/sTGBhIREREAVtNJhMvvvgiHTp0wM/Pz+J5FBGefvpp2rZty6BBg4iJiSmx3YWxfv16evXqxX333YeXlxdjxoyxlMv5/fff8fLyolu3bpYi6QApKSk8/PDDdOjQgXbt2vHzzz+TmZnJK6+8wuLFiy2evsK2A5XU94UXXrDc+9mzZxf6nVi9ejWdO3cmMDCQESNGkJycXKxdhmHQq1evWyYhrkaTBxEptgFHgYFAPaC2uV1rvxvZgoKCRKMpC1FRUXk7Bg9WzZrXXlN927fn9v32m+qbPTu37/Jl1ffQQ6WyYf78+fLwww+LiEjnzp1l9+7dIiJy6tQp8fb2FhGRdevWyaBBg0REZO7cufLUU0+JiMi9946T4OD7ZPlykxw4cEhatmwpIiJLliyRgQMHislkkvPnz0uNGjVkyZIlBc790EMPyYoVKyzLjzzyiNStW1dGjRol33//vZhMJhERGT9+vCxbtkxERL788kt5/vnnRUSkZ8+e8tJLL4mIyEcffSQNGzaU6OhoSU9Pl8aNG8ulS5fk1KlTAsjmzZtFRGTChAny3nvviYhI8+bNJTY2VkTUZ9G0aVOJiYmRrKwsCQkJsZwTkFWrVomIyNChQ6Vfv36SmZkpYWFh4u/vLyIiKSkpkpaWJiIi4eHhYv5dsL53+ZdfeuklmTJlimVdXFxcsZ/VuHHjLPexefPmMmvWLBER+fTTT+WRRx4pcPzMzEzp3LmzxMTEiIjIokWLZMKECSIiEhwcLD/9pCZnp6WlSUpKSgFbv/zyS3njjTdERCQ9PV2CgoLk5MmTsnTpUunbt69kZ2dLVFSUVK9evdDPtyjbzTg5OVlsdnV1lbNnz4rJZJJOnTrJpk2bJC0tTZo0aSLh4eGSk5MjI0aMsNg3ffp0mT9/voiIXLlyRTw8PCQ5OTnP97O47T777DMZPny4ZGVliYjI5cuXLffV/J2IjY2V7t27S3JysoiIvPPOO/Laa68Va5eIyPfffy9PP/10sffjeinw26HRlAJglxSiZ0oyvJggIr+JSIyIXDa3ctKAGs1tx8KFCxk1ahQAo0aNYuHChSXe18kJunUbSkqKDc7Obbl48SIAmzdvZsSIEdjY2NCgQQOL1yA/58+fp27dupblr7/+mr/++ovg4GDef/99Hn74YQAmTpzI3LlzAZg7d26ewtNDhgwBwNfXF29vbxo2bIi9vT0tWrTg7NmzADRt2pSuXbsC8OCDD7J58+YCtuzcuZNevXpRt25dqlSpwpgxYyyxZnZ2dhaPnK+vLz179qRq1ar4+voSGRkJQFZWFo8++ii+vr6MGDGCw4cPFzhHftasWcNTTz1lWa5Zs+Y197Fm+PDhAAQFBVnssObYsWMcPHiQfv36ERAQwJtvvsm5c+dISkoiKirKUgfSwcGBatWqFdh/9erVfPfddwQEBNCxY0cuX77M8ePH2bhxI6NHj8bW1pZGjRrRu3fva9pqLqBeVF9wcDBNmjTBxsaGgIAAIiMjOXr0KO7u7nh4eGAYBg8++GAe29555x0CAgLo1asX6enpnDlzptBrKGy7NWvW8MQTT1jqGhZWb3Lbtm0cPnyYrl27EhAQwLfffsvp06eLtQugXr16REfnz0Ck0VR+SlIGaJ1hGO8BPwEZ5k4R2VNuVmk05cUvvxTse+WVgn0DBqhmTa1ahe9fDJcvX2bt2rUcPHgQwzAwmUwYhsG7775bov0NA9zd7QE4dAjLkJD59Vo4OjqSnp6ep8/X1xdfX1/Gjh2Lu7s78+bNo2vXrkRGRrJhwwZMJlOeYU97e3V+Gxsby3vzcvbVRGL5H/iFCYDibK5ataplH+vzWJ9j5syZ1K9fn3379pGTk4ODg8M1r19ECrWlpJjtsLW1tdiR//je3t5s3bo1T39iYmKJji8izJ49m9DQ0Dz9q1atKrXdtWvX5sqVK5bluLg46tSpY1m2/uysr6eo84gIS5cuxdPTM0//9u3bS7RdSe69iNCvX78C/4iEhYUVu296ejqOjo7FHlujqYyUxNPVEWgPvAV8cLW9X55GaTS3Cz/++CMPPfQQp0+fJjIykrNnz+Lu7l6oJ6go6tVTHq+EBDDrlm7durF06VJycnK4ePEi69evL3TfNm3acOLECUDFN1lvFxYWRvPmzS3LDz30EKNHj87j5SopZ86csQgP86QBABcXF5KSkgDo2LEjGzZs4NKlS5hMJhYuXEjPnj1LfI6EhAQaNmyIjY0N8+fPx3Q1l4b1OfLTv39/PvnkE8uyWZQ89NBD7Nixo9TXmR9PT09iY2Mt156VlcWhQ4dwdXWlSZMmLF++HFAzHlNTUwvYGhoayueff26JpwsPDyclJYUePXqwaNEiTCYT58+fZ926dZZ9pk+fzrJlywrY0qtXLxYvXkxmZiagYgOL8oCa8fLy4tSpU0RcnSJrLX5CQ0OZPXu2RSzv3bsXKHi/i9quf//+fPHFFxZxFxcXV2D/Tp068ffff1u+o6mpqYSHhxdrl/k+FRYPqdFUdq4pukQkpJB2bV+3RqNh4cKFliEmM/fee2+pZrDZ2EDr1uq9eRbjvffeS5MmTfDx8eHxxx+nY8eOVK9evcC+gwYNsggtEeHdd9/F09OTgIAAZsyYwbx58yzbjhkzhitXrjB69OhSXSMocfftt9/i5+dHXFwckyZNAuCxxx5j4MCBhISE0LBhQ95++21CQkIsweX33HNPic/x5JNP8u2339KpUyfCw8NxcnICwM/PjypVquDv78/MmTPz7POvf/2LK1eu4OPjg7+/v0W87N+/n4YNG5b6OvNjZ2fHjz/+yNSpU/H39ycgIMAS4D9//nxmzZqFn58fXbp04cKFCwVsnThxIm3btiUwMNDyWWZnZzNs2DA8PDzw9fVl0qRJecTpgQMHaNCgQQFbBg8eTPfu3QkKCiIgIIC///6b//znP8Xa7+DgwFdffcWgQYPo1q1bHhH+8ssvk5WVhZ+fHz4+Prz88ssAhISEcPjwYUsgfVHbTZw4kWbNmuHn54e/v7/lO2/9nahbty7z5s1j9OjR+Pn50alTJ44ePVqsXQDr1q1j0KBBZfjENJqK5ZoFrw3DqA7MAHpc7doAvC4iCeVsmwVd8FpTVm6XorWZmbB8uSoLdNddUKOG8lw5Oztz+fJlgoOD+fvvvwt9GHfr1o2VK1dSo0aNYs/x448/8vPPPzN//vxS2RYZGcngwYM5ePBgqfarKBITE3nkkUdYsmRJRZtSJkJDQ/njjz8q2owK4+LFizzwwAP89ddf5Xqe2+W3Q1MxFFXwuiQxXXOAg8D9V5fHAnOB4TfOPI1GUxx2duDursoChYdDcLDybMTHx5OZmcnLL79cqOAC+OCDDzhz5kyxomvy5Mn89ttv15V/6VbB1dX1lhVcwB0tuEANZX/wwQcVbYZGUyZK4ukKE5GAa/WVJ9rTpSkrt9N/q4mJsHIl2NrC0KFgFRet0WhuMLfTb4fm5lOUp6skgfRphmF0szpQVyDtRhqn0WiujasrNGqkajFeb2kgjUaj0dx8SjK8OAn49mpslwHEAePL0yiNRlM4np4QHa2GGL28VJC9RqPRaG4Nrim6RCQM8DcMw/XqcskS0Gg0mhtOgwbK45WYCGfPQr5JXRqNRqOpxBQpugzDeFBEvjcM4/l8/QCIyIflbJtGo8mHYShv186dcOyYFl0ajUZzK1Hc4ITT1VeXQppzOdul0dw22NraEhAQgI+PD3fffTfx8fHXdTx3dzWb8dIluFyGgly7du3imWeeuS4bAMaPH19okW2AZ5991lLiZ+XKlbRr1w5/f3/atm1rKepcXnz00UekpqaW6zkiIyPz5Fq7nnta3H00k5GRQd++fS25sa7H1htp16uvvkrjxo0JCAjAw8OD4cOHl6g807x588pcxudGXM+oUaM4fvx4mc6v0VwPRYouETH/Mq4RkdesG1C+CVI0mtsIR0dHwsLCOHjwILVq1eLTTz+9ruNVqQItW6r3x46Vfv/27dsza9as67KhOOLi4ti2bRs9evQgKyuLxx57jF9++YV9+/axd+9eevXqVW7nhooRXeV9T/fu3UtWVhZhYWGMHDmyVPuWVaSUlOeee46wsDCOHz/OyJEj6d27N7GxscXuUxGiy5pJkyaVuBSXRnMjKUkY7uwS9mk0mmvQuXNnoqKiAIiIiGDAgAEEBQXRvXt3jh49Cqjkj8OGDcPf3x9/f39LhvMPP/wQHx8ffHx8+PPPjzAMOHMGXnnlDby8vOjXrx+jR4/m/fdVla5evXoxdepUgoODad26NZs2bQJg/fr1DB48GIC77rqLgIAAAgICqF69Ot9++y0mk4kXX3yRDh064OfnZ/FMiQhPP/00bdu2ZdCgQcTExBR6jT/++KOleHVSUhLZ2dnUrl0bUPX/PD09SUpKwt3d3VL+JjExETc3N7KysujVqxfPPfccPXr0oE2bNuzcuZPhw4fj4eHBv/71L0A9eL28vBg3bhx+fn7cd999pKamMmvWLKKjowkJCbGUwFm4cCG+vr74+PgwdepUi53Ozs5MnTqVoKAg+vbty44dO+jVqxctWrRgxYoVlvN0796dwMBAAgMDLZ/FtGnT2LRpEwEBAcycOTPPPU1OTmbChAn4+vri5+fH0qVLS/z9cHNzY8aMGQQGBuLr68vRo0eJiYnhwQcfJCwsjICAACIiIti9ezc9e/YkKCiI0NBQzp8/D8CJEyfo27evJeN/REREAVuv9/MtjpEjR9K/f3+LKCrMzh9//JFdu3YxZswYAgICSEtLu+nX0717d9asWVNoPU2NplwRkUIb0Bn4P+As8LxVexXYV9R+5dGCgoJEoykLUVFReTsGDy66/fZb7na//Vb8tqXAyclJRESys7Plvvvuk9+unqd3794SHh4uIiLbtm2TkJAQERG5//77ZebMmZZ94uPjZdeuXeLj4yPJycmSlJQkbdu2la+/3iNvvLFTPD39JTU1VRITE6VVq1by3nvviYhIz5495fnnnxcRkV9//VX69OkjIiLr1q2TQYMG5bFx165d4uvrK/Hx8fLll1/KG2+8ISIi6enpEhQUJCdPnpSlS5dK3759JTs7W6KioqR69eqyZMmSAtf70EMPyYoVKyzLjzzyiNStW1dGjRol33//vZhMJhERGT9+vCxbtkxERL788kuLrT179pSXXnpJREQ++ugjadiwoURHR0t6ero0btxYLl26JKdOnRJANm/eLCIiEyZMsFx38+bNJTY2VkTU59+0aVOJiYmRrKwsCQkJsZwTkFWrVomIyNChQ6Vfv36SmZkpYWFh4u/vLyIiKSkpkpaWJiIi4eHhYv4tyn8PrZdfeuklmTJlimVdXFxcgXtkzbhx4yz3sXnz5jJr1iwREfn000/lkUceKXD8zMxM6dy5s8TExIiIyKJFi2TChAkiIhIcHCw//fSTiIikpaVJSkpKAVuv9/O1ZsaMGZb7bmbmzJnyxBNPFGtnz549ZefOnRV6PX379pVdu3YVeW0Ffjs0mlIA7JJC9ExxsxftULFbVVBxXGYSgftusPbTaG5b0tLSCAgIIDIykqCgIPr160dycjJbtmxhxIgRlu0yMjIAWLt2Ld999x2g4sGqV6/O5s2bGTZsmKXe4PDhwzl/fhPHjuXg738P9vaOODrC3Xffnefcw4erwhFBQUFERkYWat+lS5cYO3YsP/zwA9WrV2f16tXs37/fEv+SkJDA8ePH2bhxI6NHj8bW1pZGjRrRu3fhJVjPnz9P3bp1Lctff/01Bw4cYM2aNbz//vv8+eefzJs3j4kTJ/Luu+8ydOhQ5s6dy3//+1/LPkOGDAHA19cXb29vS53EFi1acPbsWWrUqEHTpk3p2rUrAA8++CCzZs3ihRdeyGPLzp076dWrl8WeMWPGsHHjRoYOHYqdnZ3FI+fr64u9vT1Vq1bF19fXcq+ysrJ4+umnCQsLw9bWlvDw8EKv2Zo1a9awaNEiy3LNmjWvuY811p/ZTz/9VGD9sWPHOHjwIP369QPAZDLRsGFDkpKSiIqKstT6dHBwKPT41/v5Xgu5mnC7KDsry/XUq1eP6OhogoKCynSdGk1ZKFJ0icgGYINhGPNE5PRNtEmjKT9++aVk2w0YoNoNwBzTlZCQwODBg/n0008ZP348NWrUICwsrETHMD/IrHFxAXt7ISVF5e5q0qTgfvZX09bb2toWOpRiMpkYNWoUr7zyCj4+PpZzzZ49m9DQ0Dzbrlq1yjJ7uTgcHR1JT0/P0+fr64uvry9jx47F3d2defPm0bVrVyIjI9mwYQMmk8lyfmu7bWxsLO/Ny+bryG9LYbYVdt/MVK1a1bKP9XmszzFz5kzq16/Pvn37yMnJKfLBn/+cJblPRXGtz0xE8Pb2ZuvWrXn6ExNLls3nej/fa7F3717at29fpJ2F2VMR15Oeno6jo2OJzqHR3ChKEtOVahjGe4ZhrDIMY625lbtlGs1tRvXq1Zk1axbvv/8+jo6OuLu7W2oAigj79u0DoE+fPnz++eeAEkWJiYn06NGD5cuXk5qaSkpKCsuWLaNHj+7079+NvXt/4fDhdJKTk/n1119LZdO0adPw8/Nj1KhRlr7Q0FA+//xzS7xVeHg4KSkp9OjRg0WLFmEymTh//jzr1q0r9Jht2rThxIkTgIpvWr9+vWVdWFgYza3yXDz00EOMHj2aCRMmlMpuUDX4zA/qhQsX0q2bKpzh4uJCUlISAB07dmTDhg1cunQJk8nEwoUL6dmzZ4nPkZCQQMOGDbGxsWH+/PmYTKYC58hP//79+eSTTyzLV65csVzrjh07Sn2d+fH09CQ2NtZy7VlZWRw6dAhXV1eaNGnC8uXLAeU5TU1NLWBrWT7f6dOns2zZsmvatnTpUlavXs3o0aOLtBPy3r+KuB7zdt7e3iW76RrNDaIkomsBcBRwB14DIoGd5WiTRnPbYk6dsGjRIhYsWMA333yDv78/3t7e/PzzzwB8/PHHrFu3Dl9fX4KCgjh06BCBgYGMHz+e4OBgOnbsyMSJE2nXrh333NOBoKAhjB/vzz33DKd9+/ZUr169xPa8//77rF692hJMv2LFCiZOnEjbtm0JDAzEx8eHxx9/nOzsbIYNG4aHhwe+vr5MmjSpSPEyaNAgi9ASEd599108PT0JCAhgxowZzJs3z7LtmDFjuHLlCqNHjy71vWzTpg3ffvstfn5+xMXFMWnSJAAee+wxBg4cSEhICA0bNuTtt98mJCTEEox9zz33lPgcTz75JN9++y2dOnUiPDzcMrzr5+dHlSpV8Pf3Z+bMmXn2+de//sWVK1fw8fHB39/f8rDfv39/ocNrpcXOzo4ff/yRqVOn4u/vT0BAgCXAf/78+cyaNQs/Pz+6dOnChQsXCthals/3wIEDRRZUnzlzpiVlxPfff8/atWupW7dusXaOHz+eJ554goCAAEwm002/nosXL+Lo6HhDPg+NpjSUpOD1bhEJMgxjv4j4Xe3bICIl/3fxOtEFrzVl5U4oWvvXX8lcvOiMu3sqkyf34KuvviIwMLBCberWrRsrV66kRo0axW73448/8vPPPzN//vxSHT8yMpLBgwdz8ODB67Dy5pGYmMgjjzxi8WzeaoSGhvLHH39UtBk3jJkzZ+Lq6sojjzxS5DZ3wm+HpvwoquB1SWovZl19PW8YxiAgGigkekSj0VQEn332GLt2HSY7O50nnxxX4YIL4IMPPuDMmTPFiq7Jkyfz22+/sWrVqptnWAXh6up6ywou4LYSXAA1atRg7NixFW2G5g6kJJ6uwcAmoCkqP5cr8JqIrCh/8xTa06UpK3fCf6si8PvvcOUKdO2qSwNpNDeCO+G3Q1N+lNnTJSIrr75NAEJutGEajeb6MAxo1UrVYzx+XIsujUajqawUV/B6NlCkG0xErr94m0ajuSG4ucHevRATAwkJUIpYeo1Go9HcJIrzdOnxPI3mFqFqVVUI+/hx1doXcGprNBqNpqIpLjnqtzfTEI1Gc314eCjBdeoUBASowtgajUajqTxcM0+XYRjrrJOi6uSoGk3JuXz5siUHVoMGDWjcuDEBAQHUqFGDtm3b3tBz1agBdevC1q3LWbPm8A09dmG8+uqrluLa+fnoo48spYwAsrOzqVOnDtOnTy/z+eLj4/nss89KtK2zs3OJj5uTk8MzzzyDj48Pvr6+dOjQgVOnTpXVzGsSGRlpKQhdnixfvpzDh3O/B6+88gpr1qwpcvsDBw4wfvz4crdLo7mTKUly1BeAF6+2l4EwSjj0aBjGAMMwjhmGccIwjGlFbNPLMIwwwzAOGYaxoYR2azS3BLVr1yYsLIywsDCeeOIJnnvuOcuyjc21//wKKwNTHK1awa5dy9m8ufxFV1FkZ2czZ84cHnjgAUvf6tWr8fT05Icffii2NE9xlEZ0lYbFixcTHR3N/v37OXDgAMuWLbtmfrHroaJE1+uvv07fvn2L3N7X15dz585x5syZcrdNo7lTueavvojstmp/i8jzQMdr7WcYhi3wKTAQaAuMNgyjbb5tagCfAUNExBsYkf84Gs3tislk4tFHH8Xb25v+/fuTlpYGQK9evfjHP/5Bz549+fjjj9m9ezc9e/YkKCiI0NBQzp8/D8B///tfOnTogL+/P/feey+pqamcO7eFPXtW8NVXL+LrG0BERAQREREMGDCAoKAgunfvztGjRwGVFfyZZ56hS5cutGjRwlIwGOC9996jQ4cO+Pn5MWPGDEv/v//9bzw9Penbty/Hjh0r9LrWrl1LYGAgVazGNxcuXMiUKVNo1qwZ27Zts/T//vvvBAYG4u/vT58+fYCCHjQfHx8iIyOZNm0aERERBAQE8OKLLxZrp5mxY8daMv2DyoC/YkXebDfnz5+3lPoBaNKkCTVr1uSbb77hueees2z33//+l+eff57IyEi8vLyYOHEiPj4+jBkzhjVr1tC1a1c8PDwspX5effVVxo4dS+/evfHw8LAU9J42bRqbNm0iICCAmTNnkp6ezoQJE/D19aVdu3aWDPbz5s1j6NCh3H333bi7u/PJJ5/w4Ycf0q5dOzp16kRcXFyR34MtW7awYsUKXnzxRQIC1Pdg/Pjxls94586ddOnSBX9/f4KDgy1lde6+++48xbo1Gs0NRkSKbUAtq1YHCAWOlWC/zsAfVsvTgen5tnkSePNaxwoKChKNpixERUXl7Rg8uHRtypTC9y8DM2bMkPfee09ERE6dOiW2trayd+9eEREZMWKEzJ8/X0REevbsKZMmTRIRkczMTOncubPExMSIiMiiRYtkwoQJIiJy6dIly7H/+c9/yqxZs66aOE6eeWaJbN+u1vXu3VvCw8NFRGTbtm0SEhIiIiLjxo2T++67T0wmkxw6dEhatmwpIiJ//PGHPProo5KTkyMmk0kGDRokGzZskF27domPj4+kpKRIQkKCtGzZ0nI91rzyyisWW0REUlNTpWHDhpKSkiJffvmlTJ48WUREYmJipEmTJnLy5EkREbl8+XKB+yQi4u3tLadOnZJTp06Jt7e3pb8oO0VEnJycRERk/fr1cs8994iISHx8vLi5uUlWVlYee8+ePSvNmzcXf39/ef7552XPnj0iIpKcnCwtWrSQzMxMERHp3Lmz7N+/3/LZ7d+/X0wmkwQGBsqECRMkJydHli9fbjnfjBkzxM/PT1JTUyU2NlaaNGkiUVFRsm7dOhk0aJDl/O+//76MHz9eRESOHDkiTZs2lbS0NJk7d660bNlSEhMTJSYmRlxdXeXzzz8XEZFnn31WZs6cWez3YNy4cbJkyRLLOvNyRkaGuLu7y44dO0REJCEhwXJPNm/eLIPL+P2+3Sjw26HRlAJglxSiZ0oSarsblTrCALKBU0DRtRNyaQyctVo+R0EPWWugqmEY6wEX4GMR+Q6N5g7A3d2dgIAAAIKCgoiMjLSsGzlyJADHjh3j4MGD9OvXD1DeMXO9uIMHD/Kvf/2L+Ph4kpOTCQ0NBcDVVR0jMhI8PJLZsmULI0bkOpEzMjIs74cOHYqNjQ1t27bl4sWLgBoKXL16Ne3atQNU0erjx4+TlJTEsGHDqFatGgBDhgwp9LrOnz9PmzZtLMsrV64kJCSEatWqce+99/LGG28wc+ZMtm3bRo8ePXB3dwegVq1apbp/RdnZo0cPyzY9e/bkqaeeIiYmhp9++ol77703jwcOlGfr2LFjrF27lrVr19KnTx+WLFlCnz596N27NytXrqRNmzZkZWXh6+tLZGQk7u7u+Pr6AuDt7U2fPn0wDMOy3sw999yDo6Mjjo6OhISEsGPHjgJDl5s3b2by5MkAeHl50bx5c8LDwwEICQnBxcUFFxcXqlevzt133w2oocD9+/cDRX8PiuLYsWM0bNiQDh06ACpbvpl69eoRHR1dovuv0WhKT0mSo7qX8dhGYYcr5PxBQB/AEdhqGMY2EQkv4zk1muL55ZeK3d8Ke3t7y3tbW1vL8CJgKawsInh7e7N169YC+48fP57ly5fj7+/PvHnzLEWmq1ZVebqysyEyMocaNWoQFhZ2TRvkaqyViDB9+nQef/zxPNt+9NFHGEZhf9Z5cXR0JD093bK8cOFC/v77b9zc3AA1uWDdunWISKHHq1KlCjk5OZZl62NZU5Sd+Rk7diwLFixg0aJFzJkzp9Bt7O3tGThwIAMHDqR+/fosX76cPn36MHHiRN566y28vLyYMGFCnu3N2NjYWJZtbGzyxOHlv77Crtd834uy61rnKep7UBRF3XdQ99rR0bHY/TUaTdkpyexFB8MwnjcM4yfDMJYahvGcYRgOJTj2OVTpIDNNUHUb82/zu4ikiMglYCPgX1LjNZrbHU9PT2JjYy2iKysri0OHDgGQlJREw4YNycrKYsGCBZZ9lGdExehcuOCKu7u7pe6fiLBv375izxkaGsqcOXNITk4GICoqipiYGHr06MGyZctIS0sjKSmJX4oQoG3atOHEiROAKvS8efNmzpw5Q2RkJJGRkXz66acsXLiQzp07s2HDBstMQXOMkpubG3v27AFgz549lvUuLi6W2KPi7MzP+PHj+eijjwDllcrPnj17LN6dnJwc9u/fT/Oraf07duzI2bNn+d///sfo0aOLvW+F8fPPP5Oens7ly5dZv349HTp0KHAdPXr0sHx+4eHhnDlzBk9PzxKfo7jvgfV5zHh5eREdHc3OnTst+5sFXHh4OD4+PqW+To1GUzJKMnvxO8AbVXfxE6ANML8E++0EPAzDcDcMww4YBeSv1/gz0N0wjCqGYVRDDT8eKanxGs3tjp2dHT/++CNTp07F39+fgIAAtmzZAsAbb7xBx44d6devH15eXpZ9Ro0axdy57/HPf7bj6NEIZs9ewDfffIO/vz/e3t55AssLo3///jzwwAN07twZX19f7rvvPpKSkggMDGTkyJEEBARw77330r1790L3HzhwIBs3bgTgp59+onfv3nk8Nvfccw8rVqzA1dWVr776iuHDh+Pv728ZUr333nuJi4sjICCAzz//nNatWwNqJmjXrl3x8fHhxRdfLNLO/NSvX582bdrk8VRZExMTw913342Pjw9+fn5UqVKFp59+2rL+/vvvp2vXrtSsWbPY+1YYwcHBDBo0iE6dOvHyyy/TqFEjyzn8/f2ZOXMmTz75JCaTCV9fX0aOHMm8efPy3K9rUdz34L333qNdu3ZERERY+u3s7Fi8eDGTJ0/G39+ffv36WbyJ69atY9CgQaW+To2mMiMiXEm7wqGYQ/wZ8SdxaXEVZktJCl7vExH/a/UVse9dwEeALTBHRP5tGMYTACLyxdVtXgQmADnA1yLyUf7j6ILXmrJyJxet3bsXjhyBFi2gU6ebe+5hw4bx7rvv4uHhcXNPXAipqan4+vqyZ88eqpehPtLgwYN57rnnLLMrS8qrr76Ks7MzL7zwQqnPWRFkZGTQs2dPNm/eXCDu7U7kTv7tuFVJzkwmKjGK6KRoopKiLO/PJ58nLTs3fGN6t+l0adqlXG0pc8FrYK9hGJ1EZNvVA3UE/i7JSUVkFbAqX98X+ZbfA94ryfE0Gk3JadVKia7TpyEwEOzsbt6533nnHc6fP1/homvNmjU8/PDDPP/886UWXPHx8QQHB+dJZ3E7c+bMGd555x0tuDSVmuycbM4nnScqKYpzieeISoxSAispisSMxCL3c7ZzppFzIxq5NKKGQ42bZ3A+SuLpOgJ4AuaMec1QQ4A5gIiIX7laiPZ0acrOnf7f6tq1cOECBAVBKcKENJo7njv9t6OiScxI5FziuQLtYspFciSn0H3sbe1p7NKYRi6NaOx69fXqsou9y021/3o8XQPKwR6NRnMTaNVKia4TJ6B1ayjB5EONRqO5KYgIl9MucybhDGcTznIu8RxnE89yNvFskV4rA4MGTg1o7NqYJq5NaOzS2CKwajvWLtEM64qkJCkjThuG4Q+Yo2Y3iUjx0580Gk2loEkTcHCAhAS4dEnVZtRoNJqbiYgQkxLDmYQzSmAlnrW8pmcXnhLGoYoDTV2b0sS1iaU1dmlMQ5eG2NnexFiJG8w1RZdhGFOAR4GfrnZ9bxjGVyIyu1wt02g0142NDbRsCYcOwfHjWnRpNJryw+y5Oh1/mjMJZzidcPqa4qq6fXWLuGpWvRlNXJvQtHrTW8JrVRZKMrz4CNBRRFIADMP4D7AVlUJCo9FUclq1gsOH4cwZFVDvUJIsexqNRlMMSRlJRMZHcjrhNKfjTxMZH8mZxDOkZqUWun1Nh5o0dW1K8xrNaeralKbVm9LUtSnVHUo/o/hWpiSiywBMVssmCs82r9FoCsHZ2dmSwBNUIeNdu3bxySeflPpY69ev5/3332flypUl3mfQoF488MD7ODu3JyICCskPqtFoNIWSZcriXOI5IuMjc1tCZJG5rlztXWlevTnNqjezvDar3uymB7JXVkoiuuYC2w3DWIYSW/cA35SrVRqN5obSrBnExakhxjZt1LCjRqPRWHMl7Qqn4k8RGR/JqSunOBV/inOJ5zCJqcC2DlUcaObajOY1mtO8enPcarjRvEbzCk3HcCtQkkD6D68WpO52tWuCiOwtV6s0mjuE2NhYnnjiCc6cURlZPvroI7p27cqOHTt49tlnSUtLw9HRkblz5xYoDZOSksLkyZM5cOAA2dnZvPrqq9xzzz2kpaUxYcIEDh8+TJs2bUhLS6N2bVWLMTERoqKgadPCrNFoNHcCOZJDVGIUp+JPcerKKU5eOcnJ+JPEp8cX2NbAoJFzI9xquOFe0x23Gm641XCjvlP92zLmqrwpTRY8A5WbS99lzS3J3QvvLpfj/jK6+CLYaWlpBAQEWJbj4uIYMmQIAFOmTOG5556jW7dunDlzhtDQUI4cOYKXlxcbN26kSpUqrFmzhn/84x8sXbo0z3H//e9/07t3b+bMmWNJ5Nm3b1++/PJLqlWrxv79+9m/fz+BgYEYBnh4wO7dEB6uRZdGc6eQacrkdPxpJayunCTiSgSR8ZFkmDIKbOtYxRH3Gu6413THvYa7xXvlUEUHgt4oSjJ78RVgBLAUJbjmGoaxRETeLG/jNJrbAUdHR8LCwizL5pguUBnTDx8+bFmXmJhIUlISCQkJjBs3juPHj2MYBllZWQWOu3r1alasWMH7778PQHp6OmfOnGHjxo0888wzAPj5+eHnp/IXu7vDvn1w8aJKIVGGijgajaYSk56dzqkrp4i4EkFEXAQRVyI4k3Cm0OHBOtXq0KJGC1rUVM29prv2Xt0ESuLpGg20E5F0AMMw3gH2AFp0aW4pruWRqghycnLYunUrjo6OefonT55MSEgIy5YtIzIykl69ehXYV0RYunRpgWFHoNAfTjs7cHNTiVKPH4f2BXIlazSaW4WM7AxOXjnJibgTlnY28SxC3iozBgZNXJrQslZLWtZsiXtNd1rUbIGrvWsFWX5nUxLRFQk4AOYkG/ZARJFbazSaEtO/f38++eQTXnzxRQDCwsIICAggISGBxo0bA8ozVhihoaHMnj2b2bNnYxgGe/fupV27dvTo0YMFCxYQEhLCwYMH2b9/v2Wf1q2V6Dp1Cvz9oWrVcr9EjUZznWSZsoiMj+R43HGOXz7OibgTnE44XUBg2Rg2NHdtTqtarfKILD08WHkoiejKAA4ZhvEnIEA/YLNhGLMAROSZcrRPo7mtmTVrFk899RR+fn5kZ2fTo0cPvvjiC1566SXGjRvHhx9+SO/evQvd9+WXX+bZZ5/Fz88PEcHNzY2VK1cyadIkJkyYgJ+fHwEBAQQHB1v2qVFDJUiNjYXISBXnpdFoKg/mIPfwy+GEXw7neNxxTsWfIjsnO8921gLL3Nxrut/S2drvBEpS8HpccetF5NsbalEh6ILXmrKii9YW5PRp+PtvFdN11126HqNGUxg367cjLi2O8MvhHLt0zCKy0rLT8mxjYNDEtQketTxoVasVHrU9cK/hjn0V+3K3T1M2ylzw+maIKo1Gc/No2hQcHVUwfWws1KtX0RZpNHcGmaZMIuIiOHb5GMcuHePY5WPEpsYW2K5OtTq0rtWa1rVb41FbCa1qVatVgMWaG01pUkZoNJrbAHM9xoMH4dgxLbo0mvJARLiUeomjl45y9NJRjlw6UugwoWMVRzxqeeBZxxPP2p541PaglmOtCrJaU95o0aXR3IF4eKh6jOfOQVISuOgKHRrNdZGdk83JKyc5EnuEI5eOcPTSUS6nXc6zjYFB8+rN8aztiVcdLzzreNLEtQk2hi4RcadQpOgyDGO+iIw1DGOKiHx8M43SaDTli6OjSh9x8qTydun0ERpN6UjOTObopaMcjj3MkdgjhMeFk2nKzLONs52zRWB51fGide3WepjwDqc4T1eQYRjNgYcNw/iOfJnoRaTwapcajeaWoE0bJboiIsDXF+x1TK5GUySxKbEcij3E4djDHI49zOmE0wW2aezSmLZ129KmThu86njRxLWJTjaqyUNxousL4HegBbCbvKJLrvZrNJpblOrVoVEjiI5WyVJ9fCraIo2mciAipGSm8PuJ3zkUc4hDsYcKBLxXsamCRy0P2tZtS9u6bfGq46UTjmquSZGiS0RmAbMMw/hcRCbdRJs0Gs1Nok0bJbrCw9V7W9uKtkijufmICAkZCVxMvkhMSgyxqbGkxKXww5kfLNs4VXWiTZ02eNfzpm3dtrSq1UrnxNKUmpKkjJhkGIY/0P1q10YR2V/cPhqNJhdbW1t8fX0ty6NGjWLatGlFbv/WW2/xj3/8w7LcpUsXtmzZUurzhoWFER0dzV133VXo+r179/LJJ59y331fs3z5PCZOfJHmzZuQnJxMixYtmDFjBl26dCn1eQvDzc2NXbt24erqSt++fVm7di1Vquh5PJqKQUSIT4/nYooSWTEpMQXisexs7ejWtBve9bzxrutN8xrNdcC75ropScHrZ4DHgJ+udi0wDOMrEZldrpZpNLcJ+QteX4v8oqssgguU6Nq1a1eRouutt97iX//6F9Wrw/Ll0KXLSH755RMMA9atW8fw4cNZt24dbdq0KdP5C8POzo4+ffqwePFixowZc8OOq9EUh7Unyyy08ousalWrUd+pPvWc6lHPqR6JlxIZ2XhkBVmsuV0pyb+aE4GOIpICYBjGf4CtgBZdmluKu+++u1yO+8svpS+knZCQQHBwMCtWrMDT05PRo0fTu3dvIiIiSEtLIyAgAG9vbxYsWICzszPJycmsX7+eV199lTp16nDw4EGCgoL4/vvvMQyDnTt3MmXKFFJSUrC3t+fPP//klVdeIS0tjc2bNzN9+nRGjsx9gCQlJbF//378/f3JyVFB9JmZaqixcWMICQnhscce46uvvmLmzJlERETw1FNPERsbS7Vq1fjvf/+Ll5cXv/zyC2+++SaZmZnUrl2bBQsWUL9+fS5fvszo0aOJjY0lODgY68oXQ4cOZfr06Vp0acoNESEpM8kisi6mXCQjOyPPNk5VnajvnCuynO2c86xPMpJupsmaO4SSiC4DMFktm8g3k1Gj0RSNWUSZMQugTz75hPHjxzNlyhSuXLnCo48+CsAnn3xSpGds7969HDp0iEaNGtG1a1f+/vtvgoODGTlyJIsXL6ZDhw4kJiZSrVo1Xn/9dXbt2sUnn3xS4Di7du3C52rkvI0NNGwIR4/CkSNKdAEEBgby5ZdfAvDYY4/xxRdf4OHhwfbt23nyySdZu3Yt3bp1Y9u2bRiGwddff827777LBx98wGuvvUa3bt145ZVX+PXXX/nqq68s5/bx8WHnzp034M5qNLmkZaVxIfkCF5IvcDHlIqlZqXnWmz1Z9Z3rU9+pPk52ThVkqeZOpiSiay6w3TCMZVeXhwLflJtFGk05URaP1I2gqOHFfv36sWTJEp566in27dtXomMFBwfTpEkTAAICAoiMjKR69eo0bNiQDh06AODqeu0ZVOfPn6du3bqW5Xr1lPiKiYHLl6F2bSzeqeTkZLZs2cKIESMs22dkKK/BuXPnGDlyJOfPnyczMxN3d3cANm7cyE8/qYiEQYMGUbNmTcu+tra22NnZkZSUhIvOyqopI1mmLOXFSr7I+eTzJGYk5lnvUMUhj8hytnPW6Rs0FU5JAuk/NAxjPdAN5eGaICJ7y9swjeZ2JycnhyNHjuDo6EhcXJxFTBWHvVUyLVtbW7KzsxGRUj9MHB0dSU9PtzqWSiEBytvVrZvyqrVp04acnBxq1KhRqHCcPHkyzz//PEOGDLEMf5opzqaMjAwcHBxKZbPmziZHcricetnizbqUdinPsHUVmyoWkdXAuQHV7atrkaWpdJRo+pCI7AH2lLMtGs0dxcyZM2nTpg1vvfUWDz/8MFu3bqVq1apUrVqVrKwsqlatWqLjeHl5ER0dzc6dO+nQoQNJSUk4Ojri4uJCUlLhcSlt2rThgw8+yNNXs6bydp09C7/+uoGvvvqKdevW4erqiru7O0uWLGHEiBGIiCUeLCEhgcZXxyO//fZby7F69OjBggUL+Ne//sVvv/3GlStXLOsuX75M3bp1S3x9mjuX5MxkziedV0Ir5QJZpizLOsMwqFutLg2cG9DAuQG1q9XWsws1lR49Z1ujKWfyx3QNGDCAhx9+mK+//podO3bg4uJCjx49ePPNN3nttdd47LHH8PPzIzAwkAULFlzz+HZ2dixevJjJkyeTlpaGo6Mja9asISQkhHfeeYeAgIACgfReXl4kJCTkGeJbunQxa9duJikplaZN3Vm6dKll5uKCBQuYNGkSb775JllZWYwaNQp/f39effVVRowYQePGjenUqROnTp0CYMaMGYwePZrAwEB69uxJs2bNLOdet25dkTMqNXc22TnZxKTEcD7pPNFJ0SRl5v2nwdXe1SKy6jvVp6qtFu6aWwvD2j1bWWnfvr3s2rWros3Q3IJER0fTqFGjijajUjJz5kxcXFyYOHGipS8tDVasAJMJBg5U3q8bzfDhw3n77bfx9PS88QfX3FKYZxlGJ0UTnRRNbEosJsmdt2Vna0d9p/o0dGlIA+cGBWYYlif6t0NzPRiGsVtEClS11Z4ujeYOZdKkSSxZsiRPn6MjeHiomYwHDkCPHjf2nJmZmQwdOlQLrjuY7JxsS/B7dFI0yZnJlnUGBrUda9PQpSENnRvqIUPNbUdJkqMOB/4D1EMF0huAiMg1p0gZhjEA+BiwBb4WkXeK2K4DsA0YKSI/ltx8jUZTVhwcHBg7dmyB/rZtVS3Gc+dyZzLeKOzs7HjooYdu3AE1twQpmSlEJ0UTlRTFxZSLmHJyvVn2tvY0dGlII5dGNHBugEMVPcFCc/tSEk/Xu8DdInKkNAc2DMMW+BToB5wDdhqGsUJEDhey3X+AP0pzfI2mpJRldt+djIMDtG6tZjEeOAC9elW0RZpbDRHhUuolopKiiE6KJj49Ps/6Wo61aOTSiEYujajtWLvS/X3eCmE3mluTkoiui6UVXFcJBk6IyEkAwzAWAfcAh/NtNxlYCnQowzk0mmKpWrUqycnJODvrHD2loU0b5e2KjoZLl6BOnYq2SFPZyTJlcSH5AlFJUUQlReXJAF/FpgoNnRtahJZjVccKtLR4RITk5GQ9u1ZTLpREdO0yDGMxsByw/BWJyE9F7qFoDJy1Wj4HdLTewDCMxsAwoDdadGnKgVq1ahEXF1dk6gRN0TRsCJGRsH07tGtX0dZoKiMZ2RlcSr1EbGoscWlxCLkeIscqjtRxrEMdpzrUcKihYrPS4Ur6Fa5wpZijVjxVq1alVq1aFW2G5jakJKLLFUgF+lv1CbkFsIuiMLdCfp/tR8BUETFpL4SmPLC1tc2TeV1TclxcYPZsNaPxnXfA27uiLdJUBs4mnGXrua1sP7ed8LhwS7+BgVcdL4IbBxPcOJimrk21d1mjyUdJMtJPKOOxzwFNrZabANH5tmkPLLr6h1kHuMswjGwRWV7Gc2o0mhuEiwvccw8sWgTffw9vvQX6GXrnISKEXw5n27ltbD23laikKMs6O1s72jVoR8fGHQluHEx1h+oVaKlGU/kpyezFJsBsoCvKU7UZmCIi566x607AwzAMdyAKGAU8YL2BiLhbnWcesFILLo2m8jB0KPz6Kxw8CFu2QNeuFW2R5maQIzkcjj3MlrNb2HJ2C5fTLlvWudi5ENw4mE5NOtGuQTvsq9gXcySNRmNNSQte/w8wV7t98Gpfv+J2EpFswzCeRs1KtAXmiMghwzCeuLr+izJbrdFobgpOTvDgg/D55/DNN9C+PdjrZ+xtSXZONgcuHuDvs3+z7dw2EjISLOvqVKtD5yad6dSkE951vbG1sa1ASzWaW5drZqQ3DCNMRAKu1Vee6Iz0Gk3FkZMDzz0HJ0/CqFEwZkxFW6S5UWTnZLPvwj6L0LIuu9PQuSFdm3alS9MutKrVSsdnaTSl4Hoy0l8yDONBYOHV5dHA5WK212g0txE2NvD44zB1KixdCn37Qv36FW2Vpqxk52Sz/+J+Np3exLaobXkywjd1bUrXpl3p2qwrzas310JLo7nBlER0PQx8AsxExXRtudqn0WjuENq2hZ49YcMGNcz4j39UtEWa0pAjORyMOcim05v4++zfeTxazVyb0a1ZN7o160bT6k2LOYpGo7leSjJ78Qww5CbYotFoKjETJqicXVu3QlgYBARUtEWa4hARjl0+xsbTG9l0ZlOerPBNXJrQo3kPLbQ0mptMkaLLMIyXRORdwzBmUzC/FiLyTLlaptFoKhW1a8PIkfDtt/DllyqHV5WS+MorMydPqiKTFy9CUlJuS06Gbt1g8GC13ZEj8MUXYGsL1aqpfBrOzqq5uECfPlC9cqRLOB1/mg2nN7AhcgMxqTGW/obODenerDvdm3fXQ4caTQVR3E+mufSPjmDXaDSAytv1559Kp6xcqVJK3BKkpirhdP58rpACeOUVSEgofB/rbLApKUqgFUWPHrnvZ86EY8egSRNo3jy3NW5cbir1UuolNkRuYH3keiITIi39tRxr0b1Zd3o276mD4TWaSkCRvwAi8svVt6kissR6nWEYIwrZRaPR3OZUrQqPPgqvvQYLFkCXLlCvXkVbVQgmk6rWvWePSjJ24gSIKE9V376qqjeoHBhpadCgAbi65nqwXF2hUaPc47Vpo8SUyaQEXHJyrkcsKQmsS8acPQtRUapt357bb2sLoaEwaZJaFlHNxqZMl5iSmcKWs1tYH7meAzEHLCV4nO2c6da0Gz2a98C7nrcqv6PRaCoFJfm3azqwpAR9Go3mDqB9eyW2tmyBDz9UmerLqBvKhwMH4D//yevBsrWFVq3A1xeysnJF17PPluyYTk5q/5Lw1ltw4YJyB0ZGwunTql24oESdmfBwePllaN1a2eXjo94XU2jZlGMi7EIYa0+tZVvUNjJNmQBUtalKx8Yd6eXWi6BGQVSxudXHfTWa25PiYroGAncBjQ3DmGW1yhXILm/DNBpN5eWpp9Ro3aFDsHw5DB9egcZcvqxistq2VcuNG0Nionrt3Bn8/JSnyiy0yhsHB3BzU61bt9z+9HTItvrpjIxUXrZ9+1QDsLMDT09l87Bhlky0kfGRrD21lvWR67mSnlss2reeLyFuIXRp2gUnO6dyvzSNRnN9FJkc1TAMfyAAeB14xWpVErBORG5amXidHFWjqXzs3g2vvqrClD78ENzdr7nLjSUyUim+DRvU8N5XXymPFkB0NDRsWPmLRV65AocPK+/cwYPKIwbg4kLSN5+z4ewm/jr5FydO7lQB/Pb2NHJuRJ8Wfejl1ot6TpVxbFej0RSVHLUkGeldgRQRMV1dtgXsRSS1XCwtBC26NJrKyeefw6pVKk78ww+Vo6bc2b9fZWnds0ctG4Ya73zySRWLdQuTkxDP3m3LWBP9N9uqXSY7JxtMJpx27adHYk36OPnQOrA/RocOyntnq8vxaDSVkevJSL8a6AuY0xY7Xu3rcuPM02g0tyITJqicXadPw/ffw8PlmTY5Pl4Fs5vFlr099OsHQ4Yor9YtTExKDH9G/MmaU2u4lHoJHMDIMWjXoB19a7Wn0+kw7M4fgthkiPwJfvpJBfwHBqq6TNZB/xqNptJSEtHlICKWOhEikmwYRrVytEmj0dwiODjA//0fvPiiGulr316FI5ULTk4q5YOTk8pVMWhQ3sD0W4zsnGy2ndvGHyf+YN/FfZbZhw2cGtCvZT96u/emTrU6amP/ISoe7PBh2LlTtago2Lgxr9I9elRNJ7WeTanRaCoNJRle/BuYLCJ7ri4HAZ+ISOebYB+ghxc1msrOwoXwv/9BnTrw8cc3aJQvOxtWrFApHswHjIiAunVv6WHE80nn+SPiD9acXENChpphWdWmKl2adqF/y/741vMtWT6t6GiVDywkRC2LwGOPqVmSnp7QtasadtWFMjWam871DC8+CywxDCP66nJDYOQNtE2j0dzijBihAuuPHYO334Y33rjOPKAnT6qhxMhIuHRJiQmAli1vhLk3neycbLaf287vJ34n7GKYpb959eaEtgyll1svXOxL6bVr1CjvsGJ6ugqui4tTH8SxYzBnDrRooQRY795KFWs0mgqjJLUXdxqG4QV4AgZwVESyyt0yjUZzy1ClCkyfDs8/rybhffYZTJ5chsmD2dmwZAksXqwSkTZoAMHB5WLzzeBS6iX+OPEHq0+uJi4tDgA7Wzu6N+vOgFYD8KzteeOyxDs6wr/+pcTX7t0qkdqOHUrAnjwJHh65oisz8ybNetBoNNaU9H9RT6At4AC0MwwDEfmu/MzSaDS3GrVrq2f+tGmqVFCzZqUsExQZqbxb5nI7d98NDz108/Jr3SBEhH0X9/Fr+K/siN5BjuQA0NS1KQNbDSTEPQRnO+fyM8DBQXm2unZV4iosTMWA+frmbvPuu2oYsls36N5d5TTTaDTlTkliumYAvVCiaxUwENgsIveVu3VX0TFdGs2tw+bNKiG8YaiE6x06lGCnc+eUayw7WwWCP/tsXpFwC5CalcpfJ//i1+O/EpUUBYCtYUvnJp0Z1HoQ3nW9K0ftw+xsFXx/xSrVort7rgC7xWeCajSVgevJ03UA8Af2ioi/YRj1ga9F5O7yMbUgWnRpNLcWixap2owODvD++yrU6Jp8+qmqJzRhwi3l3YpKjGJl+ErWnFpDenY6ALUdazOg1QBCW4ZS07FmBVtYCNnZKgv+pk2wbZsq6G3m2WehT58KM02juR24nkD6NBHJMQwj+2qi1BigxQ23UKPR3DaMHKnqPm/cCK+/Du+9V0gWgzNn1GuzZur1yScrfwb5q4gIey/sZcWxFew+v9vS71PXh8GtB9OxScfKXf+wShUIClItK0sNQW7apAp0+/vnbvfnn6rAd9euOghfo7kBlORXYZdhGDWA/wK7UUlSd5SnURqN5tbGMGDKFBU2FB6uguzfekvFfQFKjc2apTo+/FDl3roFBFdGdgbrItex4tgKziaeBVRgfIhbCINbD8athlvFGlgWqlZVY8AdOigPmHnaqQj8+KNKTfH116q2ZffuSoDVrITeO43mFqDY4UVDBSA0EZGzV5fdAFcR2X9zzFPo4UWN5tYkKUkF1588qUKF3vq3UOeXubBsmdogJER5uCr5cGJcWhy/hv/Kbyd+IykzCVBDiINbDya0ZWjp0z3cCojA338rD9iuXSooH5Q49vWFUaNuubg7jeZmcT0xXbtFJKjcLCsBWnRpNLcuSUkqoP50eAYPxn7I4JpbsHeqAo8+CgMHVmoP1+n40yw/upz1p9erOoiAZ21PhngOoUvTLpV7CPFGkpamhh43bVJlmLKzVbXzoKuPhosXVUHuW7hCgEZzI7memK5thmF0EJGd5WCXRqO5zXFxgTdfiGfXPW9Q7Vw4+y470fKbf1A7pLzqBV0fIsKBmAP8dOQnS7yWgUGXJl0Y6jWUNnXbVLCFFYCjI/TqpVpKigq+t479mjNHibJ27dQsyE6d1JCxRqPJQ0lEVwjwhGEYkUAKKkGqiEjl/MXUaDSVDueIfXSrH87uzHp8Uf9VjPlNed0DmjSpaMtyyZEctp7dytIjSzkedxxQ8Vr9WvTjHs97aOiiUykASkxZz24UUYlsRdQw5K5dKi6sXTsVAxYcrAWYRnOVIocXDcNoJiJnDMModLK3iJwuV8us0MOLGs1twO+/k+rXiRkza3D0qBqNeuGFEubxKkcyTZmsPbWWZUeWEZ2sqp252rtyd+u7GeQx6PaM1yoPEhJg61Y1BHnggBJhAOPGwX03La2jRlMpKHVMl2EYe0Qk8Or7pSJybznbWCRadGk0tyA7d6oyPk2b5ulOT1dFsTdvVuFcDz6oajfe7NCu9Ox0fjv+G8uPLbeU6KnvVJ/hbYbTx70P9lXsb65BtxPx8aoM0ebNahqruej2Dz/A0aNqBmTHjuBcjpn5NZoKpCyia6+ItMv/viLQokujucVYtw4++kilFpg1C1xd86wWUSUWv/9eve/aVeXkvBmTGJMzk1kZvpIVx1ZYZiK613Dnvrb30bVpV2xtbMvfiDuVp5+G01cHSWxtwc8PunSBzp2hevWKtU2juYFcr6fL8r4i0KJLo7mF+PVX+OIL9f7++5Urqwg31s6dKmN9aiq4uam6jeVVBjAxI5HlR5ezMnwladlpAHjV9uJ+7/tp36h95SjRc7sTH6+C8P/+G/bvhxxVlxLDgLFjlctTo7kNKIvoMpEbOO8IpJpXoQLpXQvdsRzQokujuQUwu6/mz1fLEybA8OHX3O3cOXjzTYiKAjs7pdHuuUdVBLoRJKQn8NORn1h1YpWlTE9A/QDu974fn3o+WmxVFElJSoBt2aIy4k+bpoYcQS2fOKE8YLoYt+YWpMx5uioDWnRpNJUcEZg3D376SXktnnoKQkNLvHtKCnz1Faxdq5Y9PdVw4/XMbrySdsUitjJNKrFnh0YdGOk9Es86nmU/sObGk5IC9va52fD/8x8VDwYqJrBTJ9U8PCp1XjeNxkyFiC7DMAYAHwO2qCLZ7+RbPwaYenUxGZgkIvvyH0eLLo2mknP4MEydquJ0/u//VKqAMrBzJ3zyCcTFqeo0Y8bA0KHqsCUlIT2BpUeW8uvxXy1iq2PjjozyGUWrWq3KZJfmJrN7tyoVtX173mLctWqpL8SwYRVmmkZTEm666DIMwxYIB/oB54CdwGgROWy1TRfgiIhcMQxjIPCqiHTMfywtujSaW4BfflGz1IKDr+swKSnwzTeq1jKoetjjx0P79sU7ORIzEll2ZBm/hP9ChikDgM5NOjPKZxQtara4Lps0FUR2Nhw6pIYht22DS5fgoYdyY7/On4cjR9SXw/WmRbxoNNekIkRXZ5SICr26PB1ARN4uYvuawEERKTCAr0WXRlMJEVEuKUsV6xvL7t3w2WcQE6OWfXyU+PLMNzKYkpnCsqPL+PnYz5aYreBGwYzxG6PF1u2EiCriWbOm8ngBLFoECxYoNd6mTW7h7mbN9DCkpkKpCNF1HzBARCZeXR4LdBSRp4vY/gXAy7y9NVp0aTSVDBGYPVtlH3/77XILds7KglWrYPFiFXcNKsPAmDFQr1E6K8NX8uPhH0nJUkNQQQ2DGOM7Bo/aHuVij6aSsWUL/P67SsaanZ3bX6+eKlk0dmyFmaa5s7me2otlPmchfYUqPMMwQoBHgG7laI9Go7kR5OSo3Ft//aWmG16+XG6iq2pVNZOxb18Vo798OWzemsWyQ7+T3uoHajSIp7or+Nb3Zazf2DuzLuKdTJcuqqWmqhmPO3aofwRiYnJdpKDWr12rhiEbNKgwczWa8hRd5wDrVNRNgOj8GxmG4Qd8DQwUkcvlaI9Go7lerAWXvT3MmAG+vuV+WicnGPNgDs6+63jvj/9xNiaGnARIudiahnZj6TXIn5bV9XDSHUu1arkCTASOH1f/EJgJC4Mvv1StcWMIDISgIDVmba8rD2huHuU5vFgFFUjfB4hCBdI/ICKHrLZpBqwFHhKRLUUdSw8vajSVgPyC69VX1UOrnBERdkbv5Lt933E6QWUzb+DYDPeEhzi6NpgrcUpsOTmpSZO9e4OXlw7puS3IzoaMjLwtM1O1rKzc16ws5cFqc9XTGRenPFs1aig36ZEj8PPPsGyZOgYocWZrC40awZAh6r35S2MYKlFc7doweHCuPUuWqP7hw3O33b4dkpOVW7ZKldxWtaoSflWr5jY7O9WcnPQX9Dbnpg8viki2YRhPA3+gUkbMEZFDhmE8cXX9F8ArQG3gs6sJCrMLM1Kj0dxgMjLUgyguTgVLJSfnvlavrnIjNWmiXs2zwipAcB2JPcLcsLkcuXQEgHrV6vGg34P0dOuJjWFD9hhVX3nFCpVL8/ffVWvYEEJCoGdP9UzVVAAi6vuUmKhezd+xpCTlHXVzU9vt2qU+wMBAlQ4ClKfqpZfyxmldi9DQvKLr22+hRQslutq0UUp882Y1PTY+XtmVmgpXruQVQKdPK1FUvbraxyy6ROC779R766S/CxdCRETp7s3y5bl5UF55Bc6ehZdfVvaCCmQMC1N1saybo2Puq3WrVk3FsVWtWjo7NDed8hxeRERWAavy9X1h9X4iUCBwXqPRlANJSSrmZds22LNHeQlKgrOzemiZ/1u/CYLrXOI55oXNY3vUdgBc7FwY6T2Suzzuoqpt7oOlShUlrkJCIDJSlXxcv15lEvjf/1Rr0kRlsQgOVs/Q0uT80uTDZFKCxc4OXFxU3/HjSozHx+eKGXMraiTl8cdzRVdCAuzdq7xSZuztleCysVEiw95endPePve9tQepatW801pr1VLCqE6d3D7DgHHj8nqz0tKUGDQX5L50SQ1BZmZCbKw67pdfgr+/+s7fd5+6JmuRFhwMzZsre7Ozcz1v5vf5PXMmU94vYVycOq91CYbwcNi6tcQfC6BqnbZsqd5//bWaZDBhQm7OvAMH1H8oTk5KpDk5qb9tJ6eC762HZjU3FJ2RXqO5nRFRnoRly+DgwbwPQQ8PpUicndUD1PyjGxenavOcO6f+A09NzXvMLl2gRw81Nf8G/zhfSbvCwoML+SPiD3IkB3tbe4Z6DWV4m+FUq1qtRMfIyVFl/dauVRrTOremi4tyqPj5KWdLgwZ6lMeCOQVITIwSAbGx6nXQoNyJEl99pfKxPfJIrldq0yZ4993Cj+nkpDyl5u+XuXXtqj4EUOc4fVoJH3MJgpwcJVqqVr25H1BCAmzYoLxMBw5AenruOsOADz+EVlcT7OYXX2UlKUmdp2bN3Iz8J0/ChQtKFGZkqPVpaapZv7dur72WO0ng3XfV5/LCC8rdC8q79s03JbPJzk59To8/rv7eQf1Rbd8OAQHqbx/UH9e5c+ozNv9+3Kj6Xbc4FTF7UaPRVCRHjqghlkNXwyhtbdWDrlMnVePuWvm1TCb1H3OnTqow4qZN6lhbtqjm4gJ3362GX8xejzKSnp3OsiPL+OnoT6Rnp2NgMKDlAEb7jqaWY61SHcvGRj0XAgLUc/vIESW+duyA6Gj1TN2wQW1bu7YSX97e0Lq1cljc1p6w9HTlBjS3Cxfg4kXVYmIKH87z8ckVXbVrq2G3/OL90UeVaKheXTWz0KpSgkdMnTp5PVKgPsSK8LZUr67iu4YMUfciPBz27VMtMjLXOwfwxhvKm2dW8G3aKK9caXFxKfj306JF7lBjWXj6aZXUztk5ty8gACZNUp691FQlmMwtOTnva2amEuDWovLoUTUMbG+fK7qOH1fDomYMQwkvF5fc74C5mZe9vHKvLTtbCew7yLOmPV0aze3GmTMq9mS7GprDxQXuvx/69VM/iCXBZFL/1W/cqAKkPv9cqZFLl+Dvv9UY3okTalsHBxg4UHk+apVOIOVIDn+d/IvvD3xPXFocoEr2jPMfR9PqTa+xd+mJilIjWQcOKMdfYmLe9XZ2aoTGw0M1NzflfCmJdqh0HDumyjMFBIC7u+r76SeYO7fofapXV7FBdeuqVqeOesCaRdeN8u7cimRn534RcnLggQfyulFtbJQXzMdHDemZPWK3GiLKu5acrESbWUgeP66+Tx4e0Lat6jt4EObMyY3ds74fRfHAAzB6tHq/cye8/rr6J/Bf/1J9KSnwxRdKpJmbWchbC/pK7lHTni6N5nYnM1OJrRUr1A+ng0NunbpqJRuaA9TD5f33lbhydITnnst1/9SpoxJnDRmivF5Llqj4sGXL1LBT//4wapTyelyDvef3MmfvHCITIgHwqOXBw+0exqde+cWLNW6s2uDB6hadPasE2OHD6pliripz5EjuPra2ah83N+UJa9JEBec3bFjB2QZMJuWpOn1aCe0zZ9QDzTxEt349rFwJDz+cK7qaNlWtYUPV6tdXQ1L16yuxdS1PzZ0quCCv8raxUWLj0KFcBR8RoTxj4eHqfppF16lT6ovWtm1Bj15lxDByA/etMf8nYo2Pj/rnzExOTt4JE0lJSoxZv7Zunbt9erq6r9a/T1euqO/utWx0ds4VZcHBKt4O1FDr9u3qXt+EyT6lRXu6NJrbgZMnlVA6e1aphIEDYeTIvMHJJSE7W8WDbN2qfghff71g3Z38HD8OP/6ohhxB/Vjfe68SfIU8xE/Hn2bO3jnsubAHUDMSxwWMo3uz7hgV/FBPSlIOvPBw9QyNjFS6pqifyTp1lACz1i316ysnUa1aN/Cf8aQk9fA+dUoZFRmpRFb+yRDWMTw7dii3XufOufFTmvIjLU0NwR08qGZMNmyo+ufMUf+UgPpitGmT29zcbvPx7BIgov6BMIva5GT13bWekJGYqOLtzK/JyXn/KPv3h8mT1fuTJ2HKFHVvZ8/OPcfYseo37ZFHlGetnLnpZYBuJFp0aTRFkJOjhowWLFCCqXFj+L//K/gfaUnIzFSCa/t2NQz5xhulO87ZsyqGzDysWasWPPgg9OkDNjbEp8ezYP8C/oj4A0GoVrUa97e9n7s978bOtvLGdKSnq0szO5SiolS7eLH4jAY2NsrhV6eOCoWqXVst16yptLB1K3T48vBhlVvqxIm82dWtqVtXud+aNVPNz0/1aSoP69apYfojRwoOv7VuDR98oN6LKFFRvfrNt/FWIycn13uWkKCGG5s3V+uiotS05dq1lZcXlCC+/371/p//VHGq5YwWXRrN7UZsrHLtHzyolgcNUlPEyzrmtXu3Sgfh4qIEl3n6eWkxx3kcPw5ApltTfr6rBT8kbyc9Ox0bw4YBLQfwgO8DVHe4dR8wJpPSQtHRuVVnzPHoFy+q7AklxTt9N8Hxq4lxC+aiTx9cXcHt0k6Cf38dW1uwdbDD1Mwd3N2xaeFGVQ83HNu4YV/L6Y4e8bulEFGq3Tx+feSISkXx1FNq/cWLMHGicpu2bq08zK1bq6DzOyjQvFwQUZMH4uPVfz2lCbcoI1p0aTS3E2FhyiuVlKR+RKZMUWVNrpfff1ezi6xnaZWUo0dVfIuvL3h6Ihs2sOmbV5hnd5jYakC9unQIGsKEBgNoGnFJbefldf02V1Kys9UEsMuXr7bYHDJOnMU24hiOkUc5ULMHh6oGkJAAARd+Z1Dkpxys3YNlLV8EwDE7iVbxuzjv1Io4h0bkGAWHoQxDPT+qVcvNkWmdM9M6n6Y53VX+V+tmToVlZ1fp45RvD6xzdoWFwb//nTdNBaj1bm4wfXpuPjFNpUeLLo3mdkAEli5VAfMiqoDvc8/lZo0vLXFxykVfWpFlLbC8vNTy+PFqiNLOjiOzXuabk0s5tnEZZGbgdjmHR7J9CMiopeKSnJ3V033evFzhlf+YRfXdKqSnq+CwI0fUUOHRo3lzng0dCo88ov4Jj4whbccB4hu2Ic6hkSWJu7lIgLmZZ/inpqrlkua3LQtVquRWrbFu1tVszNtYV7kxV8AxV8Up6tX83tY2b/Ucc7PuN7+3tc1bree2w2RSY9lHj6rvzvHjalzbxgZ++CHX4/XvfyuvTatWqrVseQtPs7090bMXNZpbndRUlXXanKl69GjVyvoEunhRTdNOS4P//Cc3LcC1yCewmDdPCaPMTC42r8M8u0Ns3vQKADUzDR5M86PvyVRs/Noo8RETo6akOzqqhIuFiDbmzVPnyt9XmYVXcrK6voMHVTt5Uj1EralbV12Dp6caWuJqaiP3eji596G0c9uys3NzY6am5n0159C0fjXn2TS/ZmYWLG1oLm9oTrCePzduZcAsvgoTZNbN3G9jU/h662Zjk3c78/uSvOZ/X1i71nrVbLGxccPG0w3Da4DaJzOdKufPInF2ahtDcNlzCCMlCePA0dw/f3s7aO6G3DUIevfGMHKdaLetSL0F0aJLo7kVOHtW/XcbFaWC3P/v/3ITFJaFyEiYMUN5ulq1Kj65aX5v01WBRePGKqDpwAFS2rTkB/cEVtQ9SbatgV2N2gxr3Jd7l/6IY0YWOFZTAazh4fDYYyr4NSlJlY/p0KHQYwIF+8wCrTJ4v6zzNl26pIJ2rUcODEN5INq2Va1Nm2snpC0lVaoUnlvzehFRl2cWZda1pfMvF9asq+FYL1v3m0y5ws7cn78vOzu3z/yak6Pem0zl6+mrPDgA1hNaDByyv6Jh6gkappygYWoEDVIjqJV+HraG8/vWEHZ+orb0vLKN3ue+42I1d2Kc3IlxdueSszspdjUxbAyL19Bc39v6tai+otYVt01hzTx8XdhrcfuY31vvY328ova1rv4UEnJ9uWevBy26NJrKztatKmA+PV3N0PnnP3Ono5eF3bvhnXfU8Xx8VEbpogJLC/NA+fqq99HRZNtV4bdal1h4bBlJA5pBYg1CWvXjoX4vUKdaHXAbklcgeXkpkbdggcryHR2t4tECAtS/5dHRaszJ11ed/+p5LH2F2XOzhdiFC/D22+r9xx+r19q1VQB0rVrqnnp7KzscHcvXlnLCMHKHCEuaT/dmYc4wkF+QWYsy6z5rkVaYcDNvb+7Lv878WtT7wrYrblmkZP3mZu43mdR7tezMlZwALucEcODq+qqZKdRNOsllu4ZUqaL6GqWeoE7aWeqkncX78kbLPUyt4soFp5YsaP2aRY3Y5mRhsrkzCmZ7emrRpdFo8iOixMnixWq5WzclUMpSasTMqlUq27OIqp84ZUremVEl8GoxYgQydy7bd/zEXJv9RMeomvY+7p14uN3DeNS2+q/cLLSsadtWee2Sk2HhQpXAc+9eNfTm7Q0PPZS7j3no0mzPkiWFe8TKQ4hlZalj7Nunnsrjx6v+WrWU59FcMNnRUb3/4gsdfX4TMIzcWC+NNU6Ab96uzPuR052QiJPIqcired5OQUoiOY0ucfdHhhJ2OYLDYxPIsXckp0kzTI2aYWrcjOzGzclu0IScKnYWwZcr/Aq+t+4rbNm6H/K+Frdd/n3M6wvbN//2+Y8JubmCKwL9tdVoKiMpKSrZ6a5d6ikzYYIKvL6e4IyzZ3MF16hRKnt5/tpqxXi1zN6mY5eOMTfqWw7ZqZqOjV0aMyFgAsGNg0uX3NTZWdXsGzAA/vtfJbyOHlVxa+PGqVIq+UVbIfYUOTRZ2ngwERW0vHevmkl28GDu+JWDg8o5Zo4cf+89ldndWrBqwaWpbNjZYXi0wvCwKkkkApcvY5uQQFWzFzMpGTJTIDUBrlyAAztytzcMePZZ6N1bLZvzoTRtelNSL9xuaNGl0VQ2zpyBN99UNWlcXOCll9Tw2/XStCk88YQSEL17l9irZfY2RbWsx3exy9iyV2Wed7FzYbTPaAZ6DKSKzXX8lDRtCq+9poY9581Twue992D5ciU2fa3+e/fyKuj9gpIJscK8XwkJqoyRWWhduZLXNjc3FfB+NejdQllzmGk0FY1hFCwy7uKivMjR0er3x7q0VHR03oS7a9bAokXqfa1aatZk48bqtXnzgn8rmjzolBEaTWXir79UcemMDBV08I9/XF9unjNnlJDI/0NY3GzBrCwlXq56h+LT41l4YCG/R/xOjuRgZ2vHPZ73cG+be3Gyu8EBPzk56h58/70K8gdo1w7GjCm+HFFRKSysr8V8fZmZakpecLC6N+Ziva6uKqt7QIA6Z0BA6csoaTS3G1lZuWO6oKokrFmjJvVkZeXdNn/pnffeU4LNXKy0USMV/3gHTKfUKSM0mspMeroa+vvrL7UcEqIyVV9PReW//oLPPlOi6umn1X+sJfRq4etLcosmLNs3nxXhK0jPTsfAoF+LfozxHUPtajd2Fp4FGxvo108NLf78s6rpuHevakFBSnwVVpoo/zCktUescWM1W/P06dxrPnhQFSuuXVvlQrKzU4Lvs8/ULEONRqOomi+4/p57VBNRVTHOnoVz55QIs/4nJT4eNm0qeDw7OyXAJk7M9eBfvqz+NuvWLXWwnoiQkZFBamoqKSkppKam5nmfvy8tLY3hw4fjea2asuWEFl0aTUUTGanyZJ07p36QJk1S9QrL+t9gRgZ8+SX8+adabt1aJVDNzi42VgsALy/SWjZnxbEVLFvxKilZqlZcx8YdGec/jqbVm17v1ZYMBwdVsPuuu1Sx4F9+UcOPu3erFBMjRxbt+TLHYZmF2OzZsHq1uqfma65VS80CzchQ/42bxefBg0p0VZa0FBpNZcUwVIX3evUKr4bh6AhTp6rftfPnVYuOVkP6p09bxFV2djYpP/xA6k8/kWwykerqSkr16qQ4OeW2Ro0sosncrAWVKX8+vGvQtWtXLbo0mjsOEfjjDxVEnpmphramTlWvZeXsWVUeKDIyV8BduaLOU4xXCy8vMrIz+O3Ebyw5vITEjEQA/Ov7M9ZvLJ51KuYHChcXNZtx6NBc8bVzp2pt28Lw4WqY8MIFNelg9251Tc88Az17qmN06qSGELt2VUH7+YchS5qWArQY02jykZ2dTUpKCsnJyXlEkWU5M5MUBweS69YlpVo1UuLjSYmNJeWdd0hJTycjI0N5yWJj1XBl/pCnatVUGhYzBw+qv1VzvSo7O+ycnalWowZOtWpRzckJJycnqlWrRrVq1SzvrfsqSnCBFl0aTcVw8SJ88okK3gbo318lDb2e4cTVq5XgunJFDcG9846KsShMWIDFE5SWlcavh39k+dHlJGQkqFW1vRjrPxa/+n7XdZk3DFdXNaNx6FAVYL9yJWzZAr/9pn6oXV1VYLB5BuGZM7n7duiQN5FsUcOQxaWlKCprfmVK1qrRlAERIT093SKUzM16ubB15r6MjIzrOr+NjQ1OXl5UCwzEuVo1nACnnByqZWbilJGBU61aOPXqpURTdjZOb79NNRsbnKtUoZqtLU62tlSxsVEhGqNGqdAMyJ0cU6eOGrasXVu9Vq9eoTFlWnRpNDeTnBz49Vf49ls1tOXiomYU9uhx/cc2mZSnx9lZJRo1F84tYsZfcmYyK8NX8vOxn0nOTAbAo5YHo31G075R+9KlfyhvRJSQ2rMHTpzIrVcTH69eExPVa+/eBWc8XouSpKWAG5eaQqO5wZiFU1JSUpHCqaiWkpJS6uE5a2xsbHBycsLZ2TnPq3Wz7nN2dqZatWqWPnt7+5L/1mRnq+H/mBjlGYuJyW2xsWqo08y+ffDTTwWP8fTTEBpa5uu9XrTo0mhuFmfPwqxZyjMCSmg99pj6z6ss7NunhtxGjVIP+uRkNW3bzS2vhwbyCIuYlBh+OfYLf0T8QVp2GgBt67RllM8oAhoEVC6xBSoB6aRJKtjWjGGoYPt27dT7XbuUGDt+XM34bNNG/bB261Z672FRaSlKmiNMe780ZSQzMzOPIMovovIvm/uuVzjZ29tbBJG5WS8X9t786uDgcPN+M6pUUWkpmje/9rYdOqihyUuX8jbrVBkVgE4ZodGUNwkJKqv8b7+p/9Rq1YInn4SOHct2vOxsmDNHBYKbY8GWLFHrCkn5YObYpWMsP7qcLee2kCMqXbNfPT9G+YzCp55P5RBb6enqWs6eVeLJzOTJ6j4GBqoWEKCGFK2JiFCxa+vXK6EGKpi3UyclcAMCrj+NeWlTU+hhyDsOESE1NTWPSCrqNX9f5nUUk3RwcChSNBXXnJycqJp/huLtjMhNGV4sKmWEFl0aTXmRnq7SHixdqkSAYah0CA8/XLaCdiLw998wf36uZ6d2bfXf3IwZKjg+34M905TJ32f+ZtXxVRy9rDxstoYt3Zt15x6ve2hVq9U1TlqOiKiyJOfO5Q6v5uSotBDJyfDVV7k1JuPjSx6LkZ6upqr//rsqsG3GxUUF03frpsoN3ag6MvnF1JIlqjaj2fs1bZpap4XYLYXJZMojjKzFUVHiybxc1udqlSpVLGLIxcWlgEAqrq+KrotUqdB5ujSam0VmpkoeuHChEgsA7durQHA3t7Idc/lyNcsxNVXFbLVqpcSFeQZPvuD4yPhI/tj1Jesi11nSPjhVdWJgq4EMbj04b54t8wPCLGiOHYP9+9WxzMeNjlZDow0aqJIgZt56S3mgpk5VHjyA7duV2AkOzk3rkJmphFRSksqPdeCAOkdiohI/wcEqTYSNjcrfU6OGEpRmSpOk1MFBidt+/ZTdmzbBhg3Ke/b776pVq6Y8ZsHBarp7fq9ZabjRpYq0ELuhmIfszKIoJSWlWBFlfp+amlrmczo4OODq6moRRdZiqTDhZN62VPFNmlsSLbo0mhvF5cuqoPTvvysxASpH1vjxpQvszs/Ro/DCCypQ1M5OCZ0JE5Sny+rhfCXtClvObmHtqbWEx+V6eDxqedC/ZX96NeiEw5UksBZcb7+tZvi8/bbKgA8qVmz+fLjvvly7MzOVWEpOzmtbeLi6bnN1WVBeuN9/VyLM3h4OH1bDfkuXquE+ayGRmKiWExNzC3n36VP2e5WfRo1UTq/771e5gTZuhG3blADbvFk1w1Di0M9PXW+bNtc3i/R6ShWBFmKFICKkpaUV6lUqyvtk7ivrkJ1hGHmEkouLC05OToWKKev3Tk5O2uukKRL9zdBorgcR9UBcuVIN/ZmDWVu0UA/6Ll1KHz+wdq2qbRYUBI8/rh621aqpNBAmk/L6VKkCXl4kujdiy9ktbPprPgdiDiAICDhJFXrWCSI0+AFa1GyhhjdHjlQP/CVLclMrZGUp79nFi7miq21buPfevLlxGjRQwix/gduXX1bHtp4M4OysRMvnn+de+5Ur6l5Vr66GEn18lCCdMkUFt1rXdps9W+Xdevjh3BqHKSlqRqZZmJUWw1BeRjc3lffrwoXcfF8HDqjP8OhR+OEHdW9bt84VOK1bl94TVlyG/PIWYpVYoGVlZRU6g66wgPH8oirHWtiXAvOQnbWHqSjhZN1XrVo17XXS3HC06NJoSos5FsnsKTl/XvXb2Kh4oSFD1MOuJD/Y5gdknTpK+KxYoQLuc3LUkGKPHurhWa0aZGUh9nZEutdk9+Ef2R29m8Oxh8nJUPFiVRyqEdggkO5ZDek86yfs2yRB6FUh5eiohI2DgxriM4ukJ59UAsnZOdcmH5+8ggvUfvn7QA0tbt2aux8oD1dGRm5h3bZt1TX4+qoYLbPgS0mBBx/M3dbM4cMqzsu8HaikqAsWqHivUaNUX1KS8so1bVqy2UzWNGgAd9+tWlqaSrhoHvI8eVLZcPhw3u1bt1YesRYt1PlcXEp3zpslxMrZU5adnV1sWgJrsWReZ+67npxO1oHihYmlovpv6uw6jeYaaNGl0ZSErCw1lLZ7d16hBUrA9O+vStYUNx25sJlvI0Yor0t2tppdZx6WbNYMRJADB4gd1Isj7z7JvsPr2M154o58CFVsAbA9f5GgY/F0972bTqNfVwWoExLAeW1B78zXXxcUgiWZPp2drXJkRUSoNnBgrsg5cEANJbq65oqujh3VPWnTJq8HKz9OTrkCyppXXlHionHj3L70dOWBMseNgUoP8Z//qPv51lu5/R99BDVrKoFmHuYpbsaSo2PeBKopKbm1GcPD1XkuXFBt48bc/erUyfWeNWmiWqNGpRNjN1KIFVVTE/IIsZw5c0ht1oyUsDBSwsJIbtqUlHr/3965h9lVl/f+8669Z2bPnskkk0kyITdyMUAgyiWtJCLVo6GC+IgPxQf0FIWK57TqsdBziuHUVihNtZZHjorYVhSRW8tj0XKKYD1p1SoXKZgbJkMGkpDLhElmwkxmX2Zf1nv+eNfK2jOZ1IiZ2Qnzfp5nPWutd6/Lb63f2r/fd72/d/1+s6zDy64uhrq6yM2YwVBr64iexWMh9esIpyAIjohpGiveaSybN9k5rwf8KXacsSiXk5ipjRthy5ZkTD8wUXHBBTYtXz7SKzMWGzZYs9bgoImNb387qSCD4HDzV/Hdv83Or36WrsZDbGktsiX/AH2P3GvH2N8N/f1MP+Nczjv7XayYs4Jz9oa0Pvu30LIcGluStN1//5Ei45e97ZfLJixeftmmnTttvmfPyJitBQsS0bVypQmueOBaSMZje62cckry1WLMNdfY/avtiyjuDiJuggQTTOvWmffuQx9K7LfcYt7JT33KPG9g17dnDyxaNPJ8LS0mHOMuPapV2zYWYPHg2XG/P6O/rG5rM9EzezZ0dto0a5bNOzp++VeT/4kQ0+XLyc+fT+HgQXKq5F98kXwqRa5YJP/44+R6esgPDJA7cICcCLkf/5j8/feTe/FFcs3N5A4dIn/11ZbG9estX4Mgyb/RttZWi+MbHLR9WlsJgoDWMKSlUKB13jxaFywY84u62i4L3OvkOIaLLmdyo2oVyssvW7NSPO3aNbKCBxMbb3oTrFo1UmiN1XTz2GMWmyVildbPfmaVdSYDpRLDG56j5w2d9MyHnXNCtren2PGOPD2VB9EPdMDGvXacMEdr4wyWzVjGmYeWsGLnLhYu+u/Iyt+23+crnH/hsQusXM4q1dgbs3UrPPBAMvbZWJ+6i5iIWLzYptpmxtNPP/rA08ebIBgpbpcts77Kakml4I/+KOmiI6a3F/r7R3bV8ZOfWOzclVdaMydYvt92m+XjH/xBcsz9+02YrV5toikMTaDu2GFibs8em/butedpcNCEOhYEPhyG5KtVCmFIIZul0NpKoaXFlpuayKfTFNJp8kFAQYS8KvlKhXyhQD6fpxDP77036Y5g2rREDD30UHJdCxYk9h077PmrVMwDGgTQ1kZLqUQ2CGiZNo3WQoGWzk5amppoefFFWmfMoGVggNYLL6T1rLNoWbuWlmqVVqD19tvJNDUh116bfJG6Zs3IJswzzxw5VuWzz9p/I/Z6noSxaI5zvBhX0SUiFwNfBFLAXar6uVG/S/T7u4E8cI2qPjeeaXImGWFo3Tb099tXdv39VgHHo9739CQdadYyNGRNOuefb02Hb3yjbbt+vf0Wf7W3cSP89V9b89ecOXDffYQacuhjH6GvPEBfi9C3fDF9S6scmFphX2aAnmkp+ga/Bi+0wu/Mgo37zDOTypOSFPPnLmdJbyvLBho4c8UNzHvTW807cGEI/22UR03EhFLsjRgYsKm/36aVK617CTDv2j33WJD8NdeYrVKxMcriY82ebTFSsTdrwQJrNvt1vuabSDKZZOy1Wr78Zbsf7e2Jbe5cy98lSwjDkFKpxPBLLzG8ZQvDqgx3d1OMBuQdXrPGlm+8kSJQLBYpPvooxZdeYnjlSoqzZlFsb6eQz1Pcto2CCMV0msLAAMWhIcufeDDfY+3DScQEXzqdTKkUmUwmGcB34UIb4HfKFLJTptAydSrZtjZapk2jZerUw/Psvn207txJy3nn0XzOOQQvvDCyU9ebb7ZzdnWZbeZM+OAHTQTFvYDv3WuePji2GLNjtf2qsWgTYXOccWLcRJeIpICvABcBu4FnROQRVa2JTuUSYGk0nQ98NZpPLOPxh61XYfF6SOPpp1vBXy5bMPOGDdaENH++BV1v3Wr2uXMtriaft1ij7m5rWstkTIDs3m2VQmureTjC0IKvBwctNij29rz6KmGlTHnxqZQWLaBcKlL6v99luFykuH8Lw+9eQXHz9yl+eg3F3r3kGiF/2mJy2TT5oYMMLdrHYBMMTs8z+Nh1DIVF9G0H7HzpNLwhhFMXwr5m6N4G06aRamlldmYWpyw8k3m7W1mUncuiCz/JvDnLaEg1wGnd1oQ1bUHisdmyxeKnhobMYxVX5oODR3rlYtrbE9HV0WH3pnbbxYvtC8Q5c0xwjXPcjKqiqlQqFcIwpFKpUK1WR8xrp2q1SrlcplKpHJ7Hy7VTpVKhVCodXo+XS6XSmNPw8PDh34effZZKpWIJDEMTos8/DzfcECfavFrVqo0EENPVZQI3lUr6EevtNe/SzJnWbJnJwPTpNG3YYGJp9Wqag4As0PzkkzQPDtJ87rlkW1poLpXI7tlD8759NEciKptKka1Wyfb1kc1kaJ4zhyB+HvbvtxeKjg77OhTsv1Aq2YcXjY1mq1btGWputo8eGhrstyVL7Nk59VTrzqOxEd72NruGU0+1AcV7e5O+1dJpW0+l7EVl61Y7VjyKwMGD1ox64IB9+BAEdvzOTkvrD35gtqEhe9ZeecVi5Nrb7cvfQsG8ifv2WV9vuZx5G8tlS9vXvmbXcd11ie3uu832WgXfWLZf9cvQE8l2oqXnZEjjBDNuPdKLyCrgZlV9V7R+E4CqfrZmm78FfqiqD0brXcDbVbWn9ljj2iP91q1ce8VvUsxZB5K0TgEBckMQ1rjxMxnoOwDV0ArmbNbc930HbLtq1bwBZ5xhBcL27VYYqVqFHwTRMQE0EQL9fcn+mSZomwYH+0CBStUKgtmdSdNPuQyptAVSFwu2HUBDI6QCqJTNJkCQsuVqBRUxW1OTHXfKFCv8NIwK5ajpplQTJJuOhobQMAlETjdAtYpWK4fFgDZnYbgI1YoVwgjM6LACulxBJUpPU8YqtHIZDQIIxO7B8DA6PBylUSCTsa4PhochDNF02o4xdSp68CCEIaFgtnQa1RCthmgAGgSEmSa0WiEslVEBDYSwsYEwgLBUIhQIM02EC+ZTTQdUu7fZ+cDSr2rpVCw9bVNsOTdk+Q+Wf9ms5eX+A7ZPY+PhWKembdtpKVZpqQa0TJ1JS9BESwnachXatImWVDMBSfYB9iXdnDl2T594wgqHlSutSRPQ7m503boRj6/Gx2hosPuWyaBNTWg2C83N6Lx5aNTJqIahNU2JEMbLcHg5nmrX4+UwDI9YPtpUrVaPmMfLh8XNCYaI0NTUdHhqbGykqamJTCYzYh4vZzIZmkTIVKtkOjrItLXR3NxMU28vzd3dZBYvpnnVKts2nye47TYTPZ/5THLSj33MmjPvuCOJkbvnHvNIXn01XH65CY/nnoM//3N7Nq67zoRVLgdf+ILN3/9+27dQMKG0Y4e9uMRfke7fbx6q9nbrdgTseX3mGXu+4w8IIBGSp52WCMmdOy2dnZ3J/v399hLQ0mKxX0ND5gWOOxQ97zwrM9evtzRUq1Y2Tp9utkrFhM78+dZMXLu/iHVam8vZixRYWbp4sf3nurtNAA4N2T3p6LDry2Qs7TNm2AvZCy/YPR8YsGvv7LTQgWzWhGR7u/2Pe3rMlsvZS1tbm9ni2LZ582w+e7bds1iYz59vInPz5uRFZu5cO+f27SP3D0N7AQxDE63Llplg3rXLtkml7Jp377Y0NjSY7aKL7AUzvpZUysYU3bHDmm0bG226+GJLw5Yt9gIaeUVZvdrytKvL7k8qBZdeasf7+c+tPmhogPe8x8TuD39o+2YyZsvn7Ytqicrq977XrvPBB5MwhcsuM9tDD1meNjdbH38i9izn83aOD3zA8qa310IawtDu9fveZ9s+8IDd1+bm5Jl+6CHL+8ZG2x/sBWFoyK7l6qvN9vDDlqdgXfVks8lIINWq3Z/Zs81WqdhL0T/8w7gKr3r0SD8X2FWzvpsjvVhjbTMX6GGi2LSJdYdyDFei6q9/8Mht9h8EZGSzQCkHA/lIjGA1X6kIG56PKu1qsn1p6Mhj9h+Cg0NH7n9oXyKaYtv2XSbMhEgIjlFxDReT5XhfykfacpFtqFhzHh1V+x8+6LEdszCY7D9cis7TkwiUmBHNeNFv+UN2EIXDEqJQqLlWIBWJvuFDMDzqmBLdi/haCGGoZNvHDh0B0tF+cfLTFRjsteVBRaLbGwRVAgKkAkEIAUrQVCKlQlCEVFVIKaSWziXFFFKSIr03JJ3Lk164hPTAXNKSRoZSh782K/aFFCnQV5tmyScB9HGs0lNPJV039PXZNXR1mUcArPJqa0sK1Nr56ED+SsUKoSiu6ERCREilUqRSKdLp9BHzeLmhoeHwPLbHyw0NDYen2vXGxsYjlmMBFS/HU63ASqfT4xfgnc3C5z53pP2OO+xZr+177JJLbBDvWbMsX6dOhbPPNq/b1KnmiYqJPZ4f/WhyjO98xyrTyy9PguP/4z/sy9Vly+xr0VLJno01a+wZ+7M/SzzLd91lAuaKK6xpuVw2r9O6dZaOCy6wSqy/30RDa6sNPF6t2svBo4/as7dihVXIixebOOjrM0GyZIlVfjt3mnDIZu1aZ8yw63viCftPdHbate3YYZW2qm3b3m7PerFolbaInScIkgp2eDjpTy6XM1uxmHiMh4Zs31zO7ptqUmHXNgVnMrbfnj227/CwTZmM7fvyyzYvFhNbHLcZ24pFE2DVqD5obrZ0dnebF7BSsXuYz5sXZt8+O0djo9k2bzYRVSjYvrmchTTs3Wu2dNpsGzZYWdDVZfnb1mb29evtXhcKJrCGhiw/du1KxNDQkD0jfX1my2YTW7GYbKdqsanxfY3LnKefTu6dRg6Ep54y26FDicB+8kkTyXv2JPsfOpR0ORN3vFyt2nMQ71+t2v4//anZBgdtXdXiMmNb/Aw/8YRd6+CgbVMoWBrb202Ax/kSf/E7wYynp+v9wLtU9bpo/Wrgzar6P2q2eRT4rKr+JFpfB9yoqs/WHmu8PV1rr7yQ8uAAIFbQCPZgVKJae/FimNIKW7vMm1Opmht81kyzaQilshUcb32rPVBPPZU8hPPmmndq924IqyYQ5s+H6e0jjzlzphVIL7yQeLU6Ouz8W7bYvsMlewNtbLTKOM6/6dPtj9Hfn3ilpk615YGB+Ibb8ePj7tiRvLXFlfn+XiSM9u/osHvx6gCiat6wWbPMG9Z/MBENixbBqwfN49OcQYIUrFyFbNpob4xBCkSQ006ze7Jr1+EYFTn/fKTvIGzeCKkUkskiq9+JNEVvyS++iLS22jGvugr5yU+RTZsQCZAghbzlLQSFIjzzDEEQIA2NBKsvIhguIf9vHYFCMKWN4KMfJSAg+MLtBKGSbp1C6hOfJCUpgr/6PEG5jKTSVinNmmVvY/v2WUXR2WnXGceCzZ1rb6WplN3XAweQctnyIK784maeVMqm6G1WxhBIR6vsY/vo38eyi8iY67XbHusUBMGI+WhbPMXrqVRqhD1er7XHQiqVSvnXaycblYpNQZA0WYZhEphf2zHugQNWvsyYEXm9MXE2OGjbxdsWi1YeZjLmCYrZts3OtXSplRFbt9oQTqecYuKuvd1sTz+dCNKFC5OhpYLAyqOzz7btNm82D01Hhwm+nh7btrPT0jdjhlXKv/iF/V4smqC54w67jnTaBlufOdO2v+kms4eheSpnzrROg8tlO/dHPmKi5c47k3i5a6814fDNb9q1NTTYMV99NWmujo+9cyd8/etJDN/atZbev/u7xCv1l39p3rDbb7f1piazNTdbvfOtb1laGhosdGDrVjt3Y6PZbr3V6pg770w8Zbfeavfm85+3fbNZ++I3lzNRHnul4ti/P/5ju74pU8wLCybiY8G7dq3ZPv1pO0ZTk92nhQst7Z/6lN2TqVPt+GDXPzxsIvSWW8z2p39qZWkmA3/xF2a75RYTY+l08jJz661mE7HjNTdbGnI5qwOvv97yfO3aJN333VcXT5c3L8Lrv83a03jCt/M7jnMCcaKVRydDmXmypnGcqIfoSgMvAO8E9gDPAB9U1edrtrkU+AT29eL5wJdU9c2jjzXuostxHMdxHOc4MeExXapaEZFPAN/Huoz4hqo+LyK/H/3+N8D3MMHVjXUZce14pcdxHMdxHKeejOv34ar6PUxY1dr+pmZZgY+PZxocx3Ecx3FOBH7J2CWO4ziO4zjO8cBFl+M4juM4zgTgostxHMdxHGcCcNHlOI7jOI4zAYxblxHHExHZD+ysdzocx3Ecx3GOgVNVdeZo40khuhzHcRzHcU52vHnRcRzHcRxnAnDR5TiO4ziOMwG46AJE5GIR6RKRbhFZU+/0TFZEZL6I/JuIbBGR50XkDyP7dBH5gYhsi+bt9U7rZEREUiLycxH552jd8+UEQESmici3RWRr9N9Z5XlTf0Tkhqgc2ywiD4pIxvOlPojIN0SkV0Q219iOmhciclOkB7pE5F3HMy2TXnSJSAr4CnAJcCbwARE5s76pmrRUgP+pqsuAlcDHo7xYA6xT1aXAumjdmXj+ENhSs+75cmLwReBxVT0DOBvLI8+bOiIic4FPAr+hqsuxofCuwvOlXnwTuHiUbcy8iOqcq4Czon3ujHTCcWHSiy7gzUC3qr6kqiXg74HL6pymSYmq9qjqc9HyIazymIvlxz3RZvcA76tLAicxIjIPuBS4q8bs+VJnRKQN+C3g6wCqWlLVV/G8ORFIA80ikgaywF48X+qCqv4Y6B9lPlpeXAb8vaoOq+p2bGzoNx+vtLjoskp9V8367sjm1BERWQicCzwNdKpqD5gwA2bVMWmTlf8D3AiENTbPl/qzGNgP3B01/d4lIi143tQVVd0D3Aa8DPQAA6r6L3i+nEgcLS/GVRO46AIZw+b9aNQREWkF/hG4XlUH652eyY6IvAfoVdVn650W5wjSwHnAV1X1XCCHN1nVnSg+6DJgETAHaBGR361vqpxjZFw1gYsuU7Hza9bnYW5gpw6ISAMmuO5X1Ycj8ysickr0+ylAb73SN0m5AHiviOzAmt/fISL34flyIrAb2K2qT0fr38ZEmOdNfVkNbFfV/apaBh4G3oLny4nE0fJiXDWBiy54BlgqIotEpBELoHukzmmalIiIYLEpW1T1CzU/PQJ8OFr+MPBPE522yYyq3qSq81R1Ifb/+FdV/V08X+qOqu4DdonI6ZHpncAv8LypNy8DK0UkG5Vr78RiVD1fThyOlhePAFeJSJOILAKWAj87Xif1HukBEXk3FrOSAr6hqmvrm6LJiYi8Ffh3YBNJ7ND/xuK6HgIWYIXZ+1V1dFCkMwGIyNuB/6Wq7xGRDjxf6o6InIN94NAIvARci71Qe97UERG5BbgS+yr758B1QCueLxOOiDwIvB2YAbwCfAb4LkfJCxH5E+D3sLy7XlUfO25pcdHlOI7jOI4z/njzouM4juM4zgTgostxHMdxHGcCcNHlOI7jOI4zAbjochzHcRzHmQBcdDmO4ziO40wALrocx6k7ItIhIuujaZ+I7ImWh0TkznE65/Ui8qEx7AtFZPNxPE+jiPw4GoPPcZxJjBcCjuPUHVXtA84BEJGbgSFVvW28zhcJoN/Dem8fV1S1JCLrsD6b7h/v8zmOc+Lini7HcU5YROTtIvLP0fLNInKPiPyLiOwQkctF5PMisklEHo+GkEJEVojIj0TkWRH5fjzUxyjeATynqpWafTaIyJPAx2vOv1BE/l1Enoumt0T2e0Xksprt7heR94rIWSLys8hLt1FElkabfBf4r+NxjxzHOXlw0eU4zsnEEuBSbDDh+4B/U9U3AgXg0kh4fRm4QlVXAN8Axhph4gKgdgDvu4FPquqqUdv1Ahep6nmYp+pLkf0urOd3RGQqNq7e94DfB76oqucAv4GN4wawGfjN13jNjuO8TvDmRcdxTiYeU9WyiGzChu16PLJvAhYCpwPLgR/YkHekgJ4xjnMKNhZeLJqmqeqPot/uBS6JlhuAO6KhdqrAaQCq+iMR+YqIzAIuB/5RVSuRp+xPRGQe8LCqbou2r4pISUSmqOqh43QvHMc5yXDR5TjOycQwgKqGIlLWZByzECvPBHh+DI/VaApAJloW4Gjjod2AjdV2NtYyUKz57V6syfAqLD4MVX1ARJ7GvHHfF5HrVPVfo+2bRu3vOM4kw5sXHcd5PdEFzBSRVQAi0iAiZ42x3RbgDQCq+iowEA24DiNjr6YCPaoaAldjnrOYbwLXR8d4PjrfYuAlVf0S8AjwpsjeAexX1fKvf4mO45ysuOhyHOd1g6qWgCuAvxKRDcB6LN5qNI8Bv1Wzfi3wlah5sFBjvxP4sIg8hTUt5mrO9Qom3u6u2f5KYLOIrAfOAL4V2f8LFvPlOM4kRhLvvOM4zuRBRL4D3BjHXb2G/bNYLNl5qjrwS7Z9GLhJVbtey7kcx3l94J4ux3EmK2uwgPpfGRFZDWwFvnwMgqsR+K4LLsdx3NPlOI7jOI4zAbiny3Ecx3EcZwJw0eU4juM4jjMBuOhyHMdxHMeZAFx0OY7jOI7jTAAuuhzHcRzHcSYAF12O4ziO4zgTwP8H2Fuo1tlBQBUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.4081, 'epsilon': 0.1539, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACjFElEQVR4nOydd3hU1daH35NeCb2XBAikJyQQegktIEVAFBBRUCwo2D5RuBZs1+tVFMTutaCIgIgiKioiHQRCCaEnBEJJgAQCIZUkk/X9sZlJhySQhLLf59nP5OzZ55x1zkxmfrP22msZIoJGo9FoNBqNpnKxqm4DNBqNRqPRaG4FtOjSaDQajUajqQK06NJoNBqNRqOpArTo0mg0Go1Go6kCtOjSaDQajUajqQK06NJoNBqNRqOpAmyq24CyULduXXF3d69uMzQajUaj0WiuyPbt28+ISL2i/TeE6HJ3d2fbtm3VbYZGo9FoNBrNFTEM42hJ/Xp6UaPRaDQajaYK0KJLo9FoNBqNpgrQokuj0Wg0Go2mCrghYro0mopiMplITk4mJyenuk3RaDQ3CLa2ttSuXRtra+vqNkVzk1FposswjC+BwUCiiPiV8LwBvAfcBmQA40VkR2XZo7k1SU5OxsHBgbp166LechqNRlM6IkJaWhrJycnUq1ds8ZlGc1VU5vTiXGDAZZ4fCHheag8BH1eiLZpblJycHFxcXLTg0mg0ZcIwDFxcXLR3XFMpVJqnS0TWGYbhfpkhtwPfiIgAmw3DqGkYRiMROVlZNpXGnj2Ql1c15yrrd/+VxhV83vx3SfsYRvGxJW0XPIa5WV2S5FZWhfvMj0X/trICa+vCj9eD1tGCS6PRlAf9maGpLKozpqsJcLzA9olLfVUuul5/HdLTq/qstwZmAWZtDba26tHGRv1tfrSzy3+0ty/enJwKN0dHcHWFGjXUo80NEJn473//m++++w5ra2usrKz49NNP6dixY5XbERkZSUJCArfddhsAy5YtY9++fUybNo3x48czePBgRo4cWWifNWvWMHPmTH799dcqt1ej0WhuJqrz66qknxJS5VYAPj5w8WLZxspVWHg1+xbcv+BxSjpmaeNK2i44tuDfZs9fXl7hsXl5+Q3AZMrfFsnfLtiflwc5OZCVdXXXXxqOjkqA1aoFtWtDnTr5j/Xrq34Hh+rzuv3zzz/8+uuv7NixA3t7e86cOUN2dna12BIZGcm2bdssomvo0KEMHTq0WmzRaDSaW43qFF0ngGYFtpsCCdVhyEsvVcdZb37MIs1kgtzc4i0np3C7eBGys9WjuWVlQUYGZGaqx4wM5ZVMS4MLFyA1VT2XmQmnTxe34a67YNcu5Q1zdQUXFyXQatdWYszZufLF2MmTJ6lbty729vYA1K1bF8ivtFC3bl22bdvGM888w5o1a1i7di1PPPEEoKY51q1bh6urK2+99Rbz5s3DysqKgQMH8uabbxIbG8tjjz1GUlISTk5O/O9//8PLy4vx48fj4ODA3r17OX36NO+++y79+/fnpZdeIjMzkw0bNjB9+nQyMzPZtm0bH3zwAQArV67kvffes+wzePDgQteSnp7OlClT2L17N7m5ubz88svcfvvtlXsDNRqN5iahOkXXMmCyYRgLgY5ASnXEc2kqD8PIn1q0s6ucc4goIZaSAufOQXIynD2rHs+cATe3fEH3/PPF97eyyp/aNE9vlleE/fLL5Z/v378/r776Km3atKFv376MGjWKnj17ljp+5syZfPjhh3Tt2pW0tDQcHBz4/fffWbp0KVu2bMHJyYnk5GQAHnroIT755BM8PT3ZsmULjz76KKtWrQIgLi6OtWvXEhsbS1hYGIcOHeLVV18tJLLmzp1b6Nwl7VOQf//73/Tu3Zsvv/yS8+fPExoaSt++fXF2di7fTdNoNJpbkMpMGbEA6AXUNQzjBDADsAUQkU+A5ah0EYdQKSMmVJYtmpsXw1DeKmdnaNy4+PMJCar/4kX4+uvCXrbsbOWJM3vVzMczCzAHh2sjFl1cXNi+fTvr169n9erVjBo1ijfffLPU8V27duXpp59m7NixjBgxgqZNm7Jy5UomTJiAk5MTALVr1yYtLY1NmzZx5513Wva9WGCe/K677sLKygpPT09atmzJgQMHrmjrlfZZsWIFy5YtY+bMmQBkZWVx7NgxvL29y3VPNBqN5lakMlcvjrnC8wI8Vlnn12gKYm8Pf/5ZuE9ETV8mJ0NSkpqeTE4uHPvm5ATu7qq5uVV8KtLa2ppevXrRq1cv/P39+frrr7GxsSHvUnBcVoGAt2nTpjFo0CCWL19Op06dWLlyJSJSbEVVXl4eNWvWJDIyssRzFh1flhVZV9pHRFiyZAlt27a94rE0Go1GUxhdBkhzy2IYKgi/SRMICoLwcLjjDujRA9q0Ud6zjAzYtw+WL1dt796yL7owc/DgQWJiYizbkZGRtGjRAnd3d7Zv3w7AkiVLLM/Hxsbi7+/Pc889R/v27Tlw4AD9+/fnyy+/JCMjA1BJX2vUqIGHhweLFy8GlCDatWuX5TiLFy8mLy+P2NhYDh8+TNu2bXF1dSU1NbVUW0vapyDh4eG8//77yCVlunPnzvLdDI1Go7mFuQEW22s0VYedHTRtqlpIiIoLi4uDY8dU3NiuXSqvW+vW4OWlhNmVSEtLY8qUKZw/fx4bGxtat27NZ599xv79+3nggQd44403CqWPmD17NqtXr8ba2hofHx8GDhyIvb09kZGRtG/fHjs7O2677TbeeOMN5s+fz6RJk3j99dfJyclh9OjRBAYGAtC2bVt69uzJ6dOn+eSTT3BwcCAsLIw333yToKAgpk+fXszWkvYpyIsvvsiTTz5JQEAAIoK7u7tOJaHRaDRlxJCrzWNQBbRv3162bdtW3WZobkASEhJoXFKwVznJy4OTJyEmRsWJgQrCd3dXKUdq1LjqU1xTSsu5pdFoysa1+uzQ3JoYhrFdRNoX7deeLo2mDFhZqWnIJk3UKsl9+5T36/BhOHIEWrVSU5SVtUpTo9FoNDc+WnRpNOWkVi3o2hUCAmD/fiW8Dh2CEycgOBhatKj+8kdFU0FoNBqNpvrRgfQaTQVxdYXQUBg4UGW+z8qCTZtg9WqVtFWj0Wg0moJo0aXRXCVubtCnD3TsqFJTnDqlVjoePHj1pZ80Go1Gc/OgRZdGcw0wDBXXNWgQeHio0kfbt8OWLepvjUaj0Wi06NJoriEODtC5s4r5srZW8V5//61qQ2o0Go3m1kaLLo2mEmjRAvr3Vxnthw514Y8/VE3I0li/fj2+vr4EBQWRWU6FtnTpUvbt21duG11cXErsz8zMpGfPnpgKuOhmzZqFg4MDKSkp5T7PtSAyMpLly5dX+nnmzp1LgjknCDBx4sQK3du4uDj8/PyuOG7x4sV4e3sTFhZW7nMUtfVa2VXSmJdfftlS+qms9OrViyul+pk9e7Yl4W95qeh7oqBdffv25dy5cxU6v0ZTEbTo0mgqiVq1YMAANfWYmQkrV8LRoyWPnT9/Ps888wyRkZE4OjqW6zwVFV2l8eWXXzJixAisra0tfQsWLKBDhw789NNP1+w85aG6RNfnn3+Oj49PpZ3viy++4KOPPmL16tXl3rciout6ozpEV0HGjRvHRx99dFXH0GjKgxZdGk0l4uCgphk9PWH37jUMHNiL224biZeXF2PHjkVE+Pzzz/n+++959dVXGTt2LABvv/02HTp0ICAggBkzZliO98033xAQEEBgYCDjxo1j06ZNLFu2jKlTpxIUFERsbCyxsbEMGDCAkJAQunfvbilafeTIETp37kyHDh148cUXS7V5/vz53H777Zbt2NhY0tLSeP3111mwYIGlf+/evYSGhhIUFERAQAAxMTG8+OKLvPfee5Yxzz//PHPmzGHNmjX07NmTu+66izZt2jBt2jTmz59PaGgo/v7+xMbGAiqp6yOPPEL37t1p06YNv/76K9nZ2bz00kssWrSIoKAgFi1aRHJyMsOGDSMgIIBOnToRFRUFKI/MfffdR//+/XF3d+fHH3/k2Wefxd/fnwEDBpCTkwPAq6++SocOHfDz8+Ohhx5CRPjhhx/Ytm0bY8eOtXgcC3pF/vjjD4KDgwkMDKRPnz5lfg/MnTuXESNGMGDAADw9PXn22WctNmzYsIFHHnmEqVOnYjKZmDp1quV1//TTTy3HeOutt/D39ycwMJBp06aVaOv27dvp2bMnISEhhIeHc/LkSQC2b99OYGAgnTt35sMPPyyz3aXRq1cvnnvuOUJDQ2nTpg3r168HlId09OjRBAQEMGrUqEIe2xUrVtC5c2eCg4O58847SUtLY86cOSQkJBAWFmbx9JU0DiAiIoIuXboQGBhIaGgoKSkpxd4T6enp3H///XTo0IF27drx888/X9GuoUOHFnpPazSVjohc9y0kJEQ0mooQHx+fvzF4cOW0K+Ds7CwiIl98sVocHWvIBx8cl2PHTNKpUydZv369iIjcd999snjxYhER+fPPP+XBBx+UvLw8MZlMMmjQIFm7dq3s2bNH2rRpI0lJSSIicvbs2WL7ioj07t1boqOjRURk8+bNEhYWJiIiQ4YMka+//lpERD744AOLXQW5ePGiNGjQoFDfa6+9Jq+++qqYTCZp0aKFnD59WkREJk+eLN9++61lv4yMDDly5Ii0a9dORERMJpO0bNlSzpw5I6tXrxY3NzdJSEiQrKwsady4sbz00ksiIjJ79mx54oknLNcSHh4uJpNJoqOjpUmTJpKZmSlfffWVPPbYYxabJk+eLC+//LKIiPz9998SGBgoIiIzZsyQrl27SnZ2tkRGRoqjo6MsX75cRESGDRsmP/30U6F7JyJyzz33yLJly0REpGfPnhIREWF5zrydmJgoTZs2lcOHDxfbvySOHDkivr6+IiLy1VdfiYeHh5w/f14yMzOlefPmcuzYsWLn+/TTT+W1114TEZGsrCwJCQmRw4cPy/Lly6Vz586Snp5e6NwF983OzpbOnTtLYmKiiIgsXLhQJkyYICIi/v7+smbNGhEReeaZZyx2lcV2MzNmzJC3337bct6nn35aRER+++036dOnj4iIvPPOO5Zz7tq1S6ytrSUiIkKSkpKke/fukpaWJiIib775przyyisiItKiRQvL+7m0cRcvXhQPDw/ZunWriIikpKRITk5OsffE9OnTZd68eSIicu7cOfH09JS0tLRS7TLTunVrOXPmTLH7UOizQ6MpJ8A2KUHP6OSoGk0V4eEBAQGh1KrVlI0boU2bIOLi4ujWrVuhcStWrGDFihW0a9cOULUbY2Ji2LVrFyNHjqRu3boA1K5du9g50tLS2LRpE3feeael7+KlCt0bN260FNYeN24czz33XLH9z5w5Q82aNQv1LVy4kJ9++gkrKytGjBjB4sWLeeyxx+jcuTP//ve/OXHiBCNGjMDT0xN3d3fq1KnDzp07OX36NO3ataNOnToAdOjQgUaNGgHQqlUr+vfvD4C/v3+h6bW77roLKysrPD09admypcVTV5ANGzZYrqV3796cPXvWEm82cOBAbG1t8ff3x2QyMWDAAMt54uLiAFi9ejVvvfUWGRkZJCcn4+vry5AhQ4qdx8zmzZvp0aMHHh4epd77y9GnTx/c3NwA8PHx4ejRozRr1qzQmBUrVhAVFcUPP/wAQEpKCjExMaxcuZIJEybg5ORU6rkPHjzInj176NevHwAmk4lGjRqRkpLC+fPn6dmzJ6Be999///2ythqlZPYt2D9ixAgAQkJCLPd03bp1PP744wAEBAQQEBAAqHu3b98+unbtCkB2djadO3cudvzSxh08eJBGjRrRoUMHAGqUUnNrxYoVLFu2zBJ7lpWVxbFjx0q1y0z9+vVJSEiwvE81mspEiy7NrcMvv1Tr6Q0D6ta1p00biI6GU6esSU7OLTZORJg+fToPP/xwof45c+aU+oVoJi8vj5o1axIZGVmKDZff39HRkaysLMt2VFQUMTExli/z7OxsWrZsyWOPPcbdd99Nx44d+e233wgPD+fzzz+nd+/eTJw4kblz53Lq1Cnuv/9+y7Hs7e0tf1tZWVm2raysyM3Nvw9FbSzJZikhAZp5XMHj2traWvrN58nKyuLRRx9l27ZtNGvWjJdffrnQNZeEiFzx3l2OgtdubW1d6HoLnuP9998nPDy8UP8ff/xxxXOLCL6+vvzzzz+F+s+fP19uu+vUqVMsuDw5OdkiOCH/eopeS2mvVb9+/a44jVfauKioqDJdg4iwZMkS2rZtW+y5y+2flZVV7jhKjaai6JgujaaKCQlROb1E4MABOHOm8PPh4eF8+eWXlniW+Ph4EhMT6dOnD99//z1nLy2DTE5OBsDV1ZXUSynwa9SogYeHB4sXLwbUF9GuXbsA6Nq1KwsXLgRU3FZJ1KpVC5PJZBEhCxYs4OWXXyYuLo64uDgSEhKIj4/n6NGjHD58mJYtW/L4448zdOhQS1zV8OHD+eOPP4iIiCgmIMrC4sWLycvLIzY2lsOHD9O2bdtC1wjQo0cPyzWsWbOGunXrluoBKYr52urWrUtaWprFswQUO4+Zzp07s3btWo4cOQLk3/utW7dy7733lvsaSyI8PJyPP/7YEncWHR1Neno6/fv358svv7QEnJf0urdt25akpCSL6MrJyWHv3r3UrFkTNzc3NmzYABR+3ePj40uMTXNxcaFRo0b8/ffflvP98ccfxTyyRSn4muzZs8fyfujUqRMbN27k0KFDAGRkZBAdHV3sGkob5+XlRUJCAhEREQCkpqaSm5tb7LUKDw/n/ffftwjynTt3XtYuUP8fp06dwt3d/bLXptFcK7To0miqGMNQ5YNcXVXi1LVroaDjo3///tx999107twZf39/Ro4cSWpqKr6+vjz//PP07NmTwMBAnn76aQBGjx7N22+/Tbt27YiNjWX+/Pl88cUXBAYG4uvrawkofu+99/jwww/p0KHDZVM/9O/f3/IlvXDhQoYPH17o+eHDh7Nw4UIWLVqEn58fQUFBHDhwwCI+7OzsCAsL46677iq0ArKstG3blp49ezJw4EA++eQTHBwcCAsLY9++fZag6Zdffplt27YREBDAtGnT+Prrr8t8/Jo1a/Lggw/i7+/PsGHDLNNWkB/IXzR1R7169fjss88YMWIEgYGBjBo1CoBjx45dMy/JxIkT8fHxITg4GD8/Px5++GFyc3MZMGAAQ4cOpX379gQFBVmmzwraajKZ+OGHH3juuecIDAwkKCiITZs2AfDVV19ZpoML2nry5ElsbEqe7Pjmm294/fXXCQoKonfv3syYMYNWrVpd1v5JkyaRlpZGQEAAb731FqGhoYC6d3PnzmXMmDGWhQ/mKeOHHnqIgQMHEhYWVuo4Ozs7Fi1axJQpUwgMDKRfv35kZWUVe0+8+OKL5OTkEBAQgJ+fn2WxSGl2gVpk0KlTp1Lvg0ZzrTFKctNfb7Rv316ulO9FoymJhIQEGjduXN1mlEhenhJcJ09C3brQty9YXQc/g3bu3Mm7777LvHnzKrR/Xl4ewcHBLF68GE9Pz3LtO378eAYPHszIkSMrdO6qZurUqYwbN65YnNCNwAcffEDz5s0ZOnRodZtSbTzxxBMMHTq0RI/f9fzZobn+MQxju4i0L9p/HXzEazS3JlZW0KWLSqB65gxcmg2pdtq1a0dYWFih5KhlZd++fbRu3Zo+ffqUW3DdiLz99ts3pOACmDx58i0tuAD8/PzKlf5Do7latKdLc1NzI/xaPXsW/vpLeb66dlXZ7DUaTfVyI3x2aK5ftKdLo7lOqVMHgoPV31u2QDVV2tFoNBpNJaNFl0ZzHeDpqTxcubmwYUPhwHqNRqPR3Bxo0aXRXAcYBnTsCG5uytO1dWt1W6TRaDSaa40WXRrNdYKNDXTrph7j4uD48eq2SKPRaDTXEi26NJpKxtramqCgIHx9fQkMDOTdd98lLy8PgG3btllKlIDydAUFcek5yM6uBoNLYfz48YUSiRbkySefZN26dZbtpKQkbG1tCxVtrmreeOONSj9HZGQky5cvt2wvW7aMN998s0LHKlhcuzSSkpLo2LEj7dq1sxSarqit19Ku8ePH4+HhQWBgIG3atOHee+8lPj7+iseePXu2JelrebkW19O3b99i2fc1mspEiy6NppJxdHQkMjKSvXv38tdff7F8+XJeeeUVANq3b8+cOXMKjff0VHm7MjPhUjL565rk5GRLbUIzixcvplOnTlcs/VKZVIfoGjp0KNOmTau08/399994eXmxc+dOunfvXq59KypSysrbb7/Nrl27OHjwoCXtSPYVfjVUh+gqyLhx4/joo4+u6hgaTXnQokujKcqBA7B4sXq8xtSvX5/PPvuMDz74ABFhzZo1DB48GFAlZbp06UJwcDteeKELp04d5NAhOHo0g7vuuouAgABGjRpFx44dLb/UXVxceP755wkMDKRTp06cPn0agKNHj9KnTx8CAgLo06cPx44dA5QY8vPzIzAw0CKSTCYTU6dOpUOHDgQEBFi8UyLC5MmT8fHxYdCgQSQmJpZ4TT/88IOlqLSZBQsW8M4773DixAmLx8NkMjF+/Hj8/Pzw9/dn1qxZxMbGEmxeugnExMQQEhICgLu7O//617/o3Lkz7du3Z8eOHYSHh9OqVSs++eQTQJUA6tGjB8OHD8fHx4dHHnmEvLw8pk2bRmZmJkFBQYwdOxaAd999Fz8/P/z8/Jg9ezYAcXFxeHl5MXHiRPz8/Bg7diwrV66ka9eueHp6svVScJ35tWnXrh1dunTh4MGDZGdn89JLL7Fo0SJLVvS5c+cyefJkAE6fPs3w4cMJDAwkMDDQkiG+LJT0ukZGRvLss8+yfPlyS8b8FStW0LlzZ4KDg7nzzjstpaMiIiLo0qULgYGBhIaGkpKSUszW9PR07r//fjp06EC7du0slQsyMzMZPXq05f1WMDN/WTAMg6eeeoqGDRtaimuXZOecOXNISEggLCyMsLCwUsdV5vUMHTq0Wn8YaG5BROS6byEhIaLRVIT4+Pjy7bB/v0jHjiLt2qnH/fuv2gZnZ+difTVr1pRTp07J6tWrZdCgQSIikpKSIjk5OSIi8tdff0mfPiNk/nyR++9/Wx588CEREdm9e7dYW1tLRESEiIgAsmzZMhERmTp1qrz22msiIjJ48GCZO3euiIh88cUXcvvtt4uIiJ+fn5w4cUJERM6dOyciIp9++qllv6ysLAkJCZHDhw/LkiVLpG/fvpKbmyvx8fHi5uYmixcvLnYt9957r8UGEZFjx45J69atRURk+vTp8s4774iIyLZt26Rv376Wcebz9+rVS3bu3GkZP2fOHBERadGihXz00UciIvLkk0+Kv7+/XLhwQRITE6VevXoiIrJ69Wqxt7eX2NhYyc3Nlb59+1psLHjft23bJn5+fpKWliapqani4+MjO3bskCNHjoi1tbVERUWJyWSS4OBgmTBhguTl5cnSpUst963oazNixAgREfnqq6/kscces5yn4PZdd90ls2bNEhGR3NxcOX/+fLF7V5CePXte8XUtePykpCTp3r27pKWliYjIm2++Ka+88opcvHhRPDw8ZOvWrYVsL2rr9OnTZd68eZbXwtPTU9LS0uSdd96RCRMmiIjIrl27Cr3fSuO+++4r9t544okn5M033yzVThH1GiclJVXr9bRu3VrOnDlT7JrK/dmh0RQA2CYl6BldcEqjKcju3SqQqkkTSEhQ215e1/w0UkJS4pSUFO677z5iYmIwDIOcnBxcXWHXrg08+ugTgMqgXTADup2dncVTFhISwl9//QXAP//8w48//gioKZRnn30WUEWvx48fz1133cWIESMA5V2IioqyxGulpKQQExPDunXrGDNmDNbW1jRu3JjevXuXeC0nT56kXr16lu2FCxdy1113Aaou5AMPPMDTTz9Ny5YtOXz4MFOmTGHQoEH0798fUDUHv/rqK959910WLVpk8S4Blozp/v7+pKWl4erqiqurKw4ODpw/fx6A0NBQWrZsCcCYMWPYsGFDsTJCGzZsYPjw4Tg7OwMwYsQI1q9fz9ChQ/Hw8MDf3x8AX19f+vTpg2EY+Pv7ExcXV+prcyVWrVrFN998A6i4Pjc3tyvuY6a017UgmzdvZt++fXTt2hWA7OxsOnfuzMGDB2nUqJGlpmRphcBXrFjBsmXLLLUcs7KyOHbsGOvWrbPEGQYEBFQ44775PV6andfL9dSvX5+EhATq1KlToevUaMqDFl0aTUH8/cHOTgkuW1u1fY05fPgw1tbW1K9fn/3791v6X3zxRcLCwvjpp5+Ii4ujV69ehIaqL68jR+DCBSj6fWNra4thGID6Ys8tJcGXecwnn3zCli1b+O233wgKCiIyMhIR4f333yc8PLzQPsuXL7fsdzkcHR3JysqybC9YsIDTp08zf/58QGX2jomJwdPTk127dvHnn3/y4Ycf8v333/Pll19yxx138Morr9C7d29CQkIKffnZ29sDYGVlZfnbvG2+1qI2lmRzSSK36DmKnqfgOUp6bSqTsryuIkK/fv2KTY9FRUWV6XUTEZYsWULbtm2LPVeW/a/Ezp076dOnT6l2lmRPdVxPVlbWNStartFcCR3TpdEUxMsL5s6FadPU4zX2ciUlJfHII48wefLkYl8EKSkpNGnSBIC5c+cC0KABdO7cjX/++Z6tW2Hv3n3s3r37iufp0qULCxcuBGD+/Pl069YNgNjYWDp27Mirr75K3bp1OX78OOHh4Xz88ccW7010dDTp6en06NGDhQsXYjKZOHnyJKtXry7xXN7e3hw6dAiAgwcPkp6eTnx8PHFxccTFxTF9+nQWLlzImTNnyMvL44477uC1115jx44dADg4OBAeHs6kSZOYMGFCOe+oirc6cuQIeXl5LFq0yHKttra2lmvq0aMHS5cuJSMjg/T0dH766adyBaKX9NoAuLq6kpqaWuI+ffr04eOPPwZUPNuFCxcs/WVZ2XclOnXqxMaNGy33PiMjg+joaLy8vEhISCAiIgKA1NRUcnNzi9kaHh7O+++/bxGkOy8V/+zRo4dFMO/Zs4eoqCjLPvfee28hT2RJiAhz5szh5MmTDBgwoFQ7ofD9q47rERFOnTqFu7t7Ge64RnP1VKroMgxjgGEYBw3DOGQYRrElPYZhuBmG8YthGLsMw9hrGEb5P3E1mmuNlxfceec1E1zmgG5fX1/69u1L//79mTFjRrFxzz77LNOnT6dr166Fik2/+uqjpKcncf/9AcyY8V8CAgKuOFU1Z84cvvrqKwICApg3bx7vvfceAFOnTsXf3x8/Pz969OhBYGAgEydOxMfHh+DgYPz8/Hj44YfJzc1l+PDheHp64u/vz6RJk+jZs2eJ5xo0aBBr1qwBlJdr+PDhhZ6/4447WLBgAfHx8fTq1YugoCDGjx/Pf/7zH8uYsWPHYhiGZcqxPHTu3Jlp06bh5+eHh4eH5fwPPfQQAQEBjB07luDgYMaPH09oaCgdO3Zk4sSJtGvXrsznKO21CQsLY9++fZZg7oK89957rF69Gn9/f0JCQti7dy95eXkcOnSI2rVrl/s6i1KvXj3mzp3LmDFjCAgIoFOnThw4cAA7OzsWLVrElClTCAwMpF+/fmRlZRWz9cUXXyQnJ4eAgAD8/Px48cUXAZg0aRJpaWkEBATw1ltvERoaajlnVFQUjRo1KtGeqVOnWlJGREREsHr1auzs7Eq1E9RrNHDgQMLCwqrlerZv306nTp2wsdGTPpqqodIKXhuGYQ1EA/2AE0AEMEZE9hUY8y/ATUSeMwyjHnAQaCgihdYZ64LXmopyMxStNZlMHDiQw65dDqSlxfLGG32Ijo7Gzs6uuk2z0K1bN3799Vdq1qxZof1nzpxJSkoKr732Wrn2W7NmDTNnzuTXX3+t0Hmrmj179vDll1/y7rvvVrcp5ebChQs88MADLF68uLpNuWY88cQTDB06lD59+hR77mb47NBUH6UVvK5MeR8KHBKRw5cMWAjcDuwrMEYAV0PNs7gAyYCuOqfRFCAjI4P77gvj7NkcTCbhpZc+vq4EF8A777zDsWPHKiS6hg8fTmxsLKtWrbr2hl1n+Pn53ZCCC1QA+80kuEC9HiUJLo2msqhMT9dIYICITLy0PQ7oKCKTC4xxBZYBXoArMEpEfit6LO3p0lSUm+nX6vHjsH49ODjA0KGqXJBGo6kcbqbPDk3VU5qnqzJjukpaLlJU4YUDkUBjIAj4wDCMktcDazS3OE2bqkz1WVlQYNGjRqPRaG4QKlN0nQCaFdhuCiQUGTMB+PFSLrFDwBGU10uj0RTBMPLrMu7fr8SXRqPRaG4cKlN0RQCehmF4GIZhB4xGTSUW5BjQB8AwjAZAW+BwJdqk0dzQ1K+v8rbm5sKePdVtjUaj0WjKQ6WJLhHJBSYDfwL7ge9FZK9hGI8YhvHIpWGvAV0Mw9gN/A08JyJnKssmjeZmIDBQeb0OHYJSUkRpNBqN5jqkUvN0ichyEWkjIq1E5N+X+j4RkU8u/Z0gIv1FxF9E/ETk28q0R6OpLn766ScMw7DkJwIVqGsuV1Ow8PWyZct48803Sz1WzZrg4QF5eVAgz2OpPPnkk6xbtw6AX3/9lXbt2hEYGIiPj4+luHVlMXv2bDIyMir1HHFxcXz33XeW7W3btlnKvpSX8ePHW8ohlcbFixfp27dvibm5ymvrtbSrpDEuLi7lOk/B92FpREZGsnz58nIdtyAVeU8UtOvXX38tMc+dRnMjoDPSazRVwIIFC+jWrZslSzxA48aNS/wiHTp0KNOmFcslXIiAALC2hqNHITm59HHJycls3ryZHj16kJOTw0MPPcQvv/zCrl272LlzZ6WXs6kO0dW+fXvmzJlTaefbuXMnOTk5REZGMmrUqHLtW1HRdT1RHaKrIIMGDWLZsmWV/r7SaCqDK4ouwzC6Gobxl2EY0YZhHDYM44hhGDruSqMpI2lpaWzcuJEvvviikOiKi4vDz8+v2Pi5c+cyebLKrDJ+/Hgef/xxunTpQsuWLS0izcEhjyVLHuXZZ30ZPHgwt912W4kC7ocffmDAgAFAfvkUc21De3t72rZtS2pqKh4eHpaSORcuXMDd3Z2cnBx69erFU089RY8ePfD29iYiIoIRI0bg6enJCy+8YLkOLy8v7rvvPgICAhg5ciQZGRnMmTOHhIQEwsLCCAsLA5T4NGfEf+655yx2uri48NxzzxESEkLfvn3ZunUrvXr1omXLlixbtsxynu7duxMcHExwcDCbNm0CYNq0aaxfv56goCBmzZpVyCuSlpbGhAkT8Pf3JyAggCVLlpT5dXN3d2fGjBkEBwfj7+/PgQMHSExM5J577iEyMpKgoCBiY2PZvn07PXv2JCQkhPDwcE6ePAnAoUOH6Nu3L4GBgQQHBxMbG1vMVpPJxNSpU+nQoQMBAQEWz6OIMHnyZHx8fBg0aBCJiYlltrsk1qxZQ69evRg5ciReXl6MHTvWUi7njz/+wMvLi27dulmKpAOkp6dz//3306FDB9q1a8fPP/9MdnY2L730EosWLbJ4+koaByqp7zPPPGO59++//36J74kVK1bQuXNngoODufPOO0lLS7usXYZh0KtXrxsmIa5GUwgRuWwDDgADgfpAHXO70n7XsoWEhIhGUxHi4+MLdwwerFpBXnlF9W3Zkt/3+++q7/338/vOnlV9995bLhvmzZsn999/v4iIdO7cWbZv3y4iIkeOHBFfX18REVm9erUMGjRIRES++uoreeyxx0RE5L777pORI0eKyWSSvXv3SqtWrUREZPHixdK//0D57juTfPjhSXFzqymLFy8udu57771Xli1bZtl+4IEHpF69ejJ69Gj59ttvxWQyiYjI+PHj5aeffhIRkU8//VSefvppERHp2bOnPPvssyIiMnv2bGnUqJEkJCRIVlaWNGnSRM6cOSNHjhwRQDZs2CAiIhMmTJC3335bRERatGghSUlJIqJei2bNmkliYqLk5ORIWFiY5ZyALF++XEREhg0bJv369ZPs7GyJjIyUwMBAERFJT0+XzMxMERGJjo4W8+dCwXtXdPvZZ5+VJ554wvJccnLyZV+r++67z3IfW7RoIXPmzBERkQ8//FAeeOCBYsfPzs6Wzp07S2JiooiILFy4UCZMmCAiIqGhofLjj2pxdmZmpqSnpxez9dNPP5XXXntNRESysrIkJCREDh8+LEuWLJG+fftKbm6uxMfHi5ubW4mvb2m2m3F2drbYXKNGDTl+/LiYTCbp1KmTrF+/XjIzM6Vp06YSHR0teXl5cuedd1rsmz59usybN09ERM6dOyeenp6SlpZW6P15uXEfffSRjBgxQnJyckRE5OzZs5b7an5PJCUlSffu3SUtLU1ERN5880155ZVXLmuXiMi3334rkydPvuz9uFqKfXZoNOUA2CYl6JmyTC+miMjvIpIoImfNrZI0oEZz07FgwQJGjx4NwOjRo1mwYEG59h82bBhWVlb4+Phw+vRpADZs2MDo0XfSurUVNWs2JCgorMR9T548Sb169Szbn3/+OX///TehoaHMnDmT+++/H4CJEyfy1VdfAfDVV18VKjw9dOhQAPz9/fH19aVRo0bY29vTsmVLjh8/DkCzZs3o2rUrAPfccw8bNmwoZktERAS9evWiXr162NjYMHbsWEusmZ2dncUj5+/vT8+ePbG1tcXf35+4uDgAcnJyePDBB/H39+fOO+9k3759xc5RlJUrV/LYY49ZtmvVqnXFfQoyYsQIAEJCQix2FOTgwYPs2bOHfv36ERQUxOuvv86JEydITU0lPj7eUgfSwcEBJyenYvuvWLGCb775hqCgIDp27MjZs2eJiYlh3bp1jBkzBmtraxo3bkzv3r2vaGvRAupF+0JDQ2natClWVlYEBQURFxfHgQMH8PDwwNPTE8MwuOeeewrZ9uabbxIUFESvXr3Iysri2LFjJV5DSeNWrlzJI488YqlrWFK9yc2bN7Nv3z66du1KUFAQX3/9NUePHr2sXQD169cnIaFoBiKN5vqnLDmtVxuG8TbwI3DR3CkiOyrNKo2msvjll+J9L71UvG/AANUKUrt2yftfhrNnz7Jq1Sr27NmDYRiYTCYMw+Ctt94q8zHs7e0tf8ulKSHzo4+PWsWYkVFy3i5HR0eyijzh7++Pv78/48aNw8PDg7lz59K1a1fi4uJYu3YtJpOp0LSn+fxWVlaFbLGysiI3V1XtKvqFX5IAMNtcEra2tpZ9Cp6n4DlmzZpFgwYN2LVrF3l5eTg4OJR6vILnLMmWsmK2w9ra2mJH0eP7+vryzz//FOq/cOFCmY4vIrz//vuEh4cX6l++fHm57a5Tpw7nzp2zbCcnJ1O3bl3LdsHXruD1lHYeEWHJkiW0bdu2UP+WLVvKNK4s915E6NevX7EfIpGRkZfdNysrC0dHx8seW6O5HimLp6sj0B54A3jnUptZmUZpNDcLP/zwA/feey9Hjx4lLi6O48eP4+HhUaInqDx069aNJUuW4OiYh5vbafbtW8Mlp1MhvL29OXToEKDim9asWWN5LjIykhYtWli27733XsaMGVPIy1VWjh07ZhEe5kUDAK6urqReymvRsWNH1q5dy5kzZzCZTCxYsICePXuW+RwpKSk0atQIKysr5s2bh8lkKnaOovTv358PPvjAsm0WJffeey9bt24t93UWpW3btiQlJVmuPScnh71791KjRg2aNm3K0qVLAbXiMSMjo5it4eHhfPzxx5Z4uujoaNLT0+nRowcLFy7EZDJx8uRJVq9ebdln+vTp/PTTT8Vs6dWrF4sWLSI7OxtQsYHmuKnS8PLy4siRI8TGxgIUEj/h4eG8//77FrG8c+dOoPj9Lm1c//79+eSTTyziLvnSio+C+3fq1ImNGzda3qMZGRlER0df1i7zfSopHlKjud65ougSkbAS2pV93RqNhgULFlimmMzccccdV72C7Y477qBp06b4+fnx0UcP07p1R1JT3Si6oGvQoEEWoSUivPXWW7Rt25agoCBmzJjB3LlzLWPHjh3LuXPnGDNmTLnt8fb25uuvvyYgIIDk5GQmTZoEwEMPPcTAgQMJCwujUaNG/Oc//yEsLMwSXH777beX+RyPPvooX3/9NZ06dSI6OhpnZ2cAAgICsLGxITAwkFmzZhXa54UXXuDcuXP4+fkRGBhoES9RUVE0atSo3NdZFDs7O3744Qeee+45AgMDCQoKsgT4z5s3jzlz5hAQEECXLl04depUMVsnTpyIj48PwcHB+Pn58fDDD5Obm8vw4cPx9PTE39+fSZMmFRKnu3fvpmHDhsVsGTx4MN27dyckJISgoCA2btzIf//738va7+DgwGeffcagQYPo1q1bIRH+4osvkpOTQ0BAAH5+frz44osAhIWFsW/fPksgfWnjJk6cSPPmzQkICCAwMNDyni/4nqhXrx5z585lzJgxBAQE0KlTJw4cOHBZuwBWr17NoEGDKvCKaTTVyxULXhuG4QbMAHpc6loLvCoiKZVsmwVd8FpTUW7morVpaWm4uLhw9uxZAgJCef75jXTq1JDg4MLjunXrxq+//krNmjUve7wffviBn3/+mXnz5pXLjri4OAYPHsyeGyRF/oULF3jggQdYvHhxdZtSIcLDw/nzzz+r24xq4/Tp09x99938/ffflXqem/mzQ1P5lFbwuiwxXV8Ce4C7Lm2PA74CRlw78zQaTXkZPHgw58+fJzs7m3/960Vq1mxITIyK8yoY7vTOO+9w7Nixy4quKVOm8Pvvv19V/qUbhRo1atywggu4pQUXqKnsd955p7rN0GgqRFk8XZEiEnSlvspEe7o0FeVW+rW6di3Ex4OvryoVpNFoKs6t9NmhufaU5ukqSyB9pmEY3QocqCuQeS2N02g0V4+vr3qMjoZLsdQajUajuY4oy/TiJODrS7FdBpAMjK9MozQaTfmpWxcaNIDTp1UaCR+f6rZIo9FoNAW5ougSkUgg0DCMGpe2y5aARqPRVDk+Pkp0HTwIXl5gpaurajQazXVDqaLLMIx7RORbwzCeLtIPgIi8W8m2aTSactKwIbi5QUqKKobt4VHdFmk0Go3GzOV+BztfenQtoblUsl0azU2DtbU1QUFB+Pn5MWTIEM6fP19p5zIM5eECOHAASlons23bNh5//PGrPtf48eNLLLIN8OSTT1pK/Pz666+0a9eOwMBAfHx8LEWdK4vZs2eTUTRh2TUmLi6uUK61q7mnl7uPZi5evEjfvn0tubGuxtZradfLL79MkyZNCAoKwtPTkxEjRpSpPNPcuXMrXMbnWlzP6NGjiYmJqdD5NZqroVTRJSLmT8aVIvJKwQZUboIUjeYmwtHRkcjISPbs2UPt2rX58MMPK/V87u4qZcS5c5CYWPz59u3bM2fOnEo7f3JyMps3b6ZHjx7k5OTw0EMP8csvv7Br1y527txJr169Ku3cUD2iq7Lv6c6dO8nJySEyMpJRo0aVa9+KipSy8tRTTxEZGUlMTAyjRo2id+/eJCUlXXaf6hBdBZk0aVK5SnFpNNeKskR8vF/GPo1GcwU6d+5MfHw8ALGxsQwYMICQkBC6d+/OgQMHAJX8cfjw4QQGBhIYGGjJcP7uu+/i5+eHn58fs2fPthzztddew8vLi379+jFmzBhmzZpJmzbw+uu9eOqp5wgNDaVNmzasX78egDVr1jB48GAAbrvtNoKCgggKCsLNzY2vv/4ak8nE1KlT6dChAwEBARbPlIgwefJkfHx8GDRoEIklKTpUklVz8erU1FRyc3OpU6cOoOr/tW3bltTUVDw8PCzlby5cuIC7uzs5OTn06tWLp556ih49euDt7U1ERAQjRozA09OTF154AVBfvF5eXtx3330EBAQwcuRIMjIymDNnDgkJCYSFhVlK4CxYsAB/f3/8/Px47rnnLHa6uLjw3HPPERISQt++fdm6dSu9evWiZcuWLFu2zHKe7t27ExwcTHBwsOW1mDZtGuvXrycoKIhZs2YVuqdpaWlMmDABf39/AgICWLJkSZnfH+7u7syYMYPg4GD8/f05cOAAiYmJ3HPPPURGRhIUFERsbCzbt2+nZ8+ehISEEB4ezsmTJwE4dOgQffv2tWT8j42NLWbr1b6+l2PUqFH079/fIopKsvOHH35g27ZtjB07lqCgIDIzM6v8erp3787KlStLrKep0VQqIlJiAzoD/wccB54u0F4GdpW2X2W0kJAQ0WgqQnx8fOGOwYNLb7//nj/u998vP7YcODs7i4hIbm6ujBw5Un6/dJ7evXtLdHS0iIhs3rxZwsLCRETkrrvuklmzZln2OX/+vGzbtk38/PwkLS1NUlNTxcfHR3bs2CERERESGBgoGRkZcuHCBWndurW8/fbbkpkp4u3dUwYOfFpSUkR+++036dOnj4iIrF69WgYNGlTIxm3btom/v7+cP39ePv30U3nttddERCQrK0tCQkLk8OHDsmTJEunbt6/k5uZKfHy8uLm5yeLFi4td77333ivLli2zbD/wwANSr149GT16tHz77bdiMplERGT8+PHy008/iYjIp59+Kk8//bSIiPTs2VOeffZZERGZPXu2NGrUSBISEiQrK0uaNGkiZ86ckSNHjgggGzZsEBGRCRMmyNtvvy0iIi1atJCkpCQRUa9/s2bNJDExUXJyciQsLMxyTkCWL18uIiLDhg2Tfv36SXZ2tkRGRkpgYKCIiKSnp0tmZqaIiERHR4v5s6joPSy4/eyzz8oTTzxheS45Obn4m6IA9913n+U+tmjRQubMmSMiIh9++KE88MADxY6fnZ0tnTt3lsTERBERWbhwoUyYMEFEREJDQ+XHH38UEZHMzExJT08vZuvVvr4FmTFjhuW+m5k1a5Y88sgjl7WzZ8+eEhERUa3X07dvX9m2bVup11bss0OjKQfANilBz1xu9aIdKnbLBhXHZeYCMPIaaz+N5qYlMzOToKAg4uLiCAkJoV+/fqSlpbFp0ybuvPNOy7iLFy8CsGrVKr755htAxYO5ubmxYcMGhg8fbqk3OGLECNavX09eXh633347jo6OAAwZMgRQ04uOjtChwwgOHoSQkBDi4uJKtO/MmTOMGzeO77//Hjc3N1asWEFUVJQl/iUlJYWYmBjWrVvHmDFjsLa2pnHjxvTuXXIJ1pMnT1KvXj3L9ueff87u3btZuXIlM2fO5K+//mLu3LlMnDiRt956i2HDhvHVV1/xv//9z7LP0KFDAfD398fX19dSJ7Fly5YcP36cmjVr0qxZM7p27QrAPffcw5w5c3jmmWcK2RIREUGvXr0s9owdO5Z169YxbNgw7OzsLB45f39/7O3tsbW1xd/f33KvcnJymDx5MpGRkVhbWxMdHV3yi1yAlStXsnDhQst2rVq1rrhPQUaMUMU+QkJC+PHHH4s9f/DgQfbs2UO/fv0AMJlMNGrUiNTUVOLj4y21Ph0KliUowNW+vldCLgUSlmbn9XI99evXJyEhgZCQkApdp0ZTEUoVXSKyFlhrGMZcETlahTZpNJXHL7+UbdyAAapdA8wxXSkpKQwePJgPP/yQ8ePHU7NmTSIjI8t0DPMXWVn71XnB1taew4ehcWPrEqdSTCYTo0eP5qWXXsLPz89yzPfff5/w8PBCY5cvX25ZvXw5HB0dycrKKtTn7++Pv78/48aNw8PDg7lz59K1a1fi4uJYu3YtJpPJcn5Q05AAVlZWlr/N2+brKGpLSbZd7v7Y2tpa9il4noLnmDVrFg0aNGDXrl3k5eWV+sVf9JxluU+lYbbD2rrk10xE8PX15Z9//inUf+FC2bL5XO3reyV27txJ+/btS7WzJHuq43qysrIsP1Y0mqqiLDFdGYZhvG0YxnLDMFaZW6VbptHcZLi5uTFnzhxmzpyJo6MjHh4elhqAIsKuXbsA6NOnDx9//DGgRNGFCxfo0aMHS5cuJSMjg/T0dH766Se6d+9Ot27d+OWXX8jKyiItLY3ffvvNcj4bG6hXD0wmOHKkZJumTZtGQEAAo0ePtvSFh4fz8ccfW+KtoqOjSU9Pp0ePHixcuBCTycTJkydZvXp1icf09vbm0KFDgIpvWrNmjeW5yMhIWrRoYdm+9957GTNmDBMmTCjn3VQ1+Mxf1AsWLKBbN1U4w9XVldTUVAA6duzI2rVrOXPmDCaTiQULFtCzZ88ynyMlJYVGjRphZWXFvHnzMJlMxc5RlP79+/PBBx9Yts+dO2e51q1bt5b7OovStm1bkpKSLNeek5PD3r17qVGjBk2bNmXp0qWA8pxmZGQUs7Uir+/06dP56aefrmjbkiVLWLFiBWPGjCnVTih8/6rjeszjfM1lHDSaKqIsoms+cADwAF4B4oCISrRJo7lpMadOWLhwIfPnz+eLL74gMDAQX19ffv75ZwDee+89Vq9ejb+/PyEhIezdu5fg4GDGjx9PaGgoHTt2ZOLEibRr144OHTowdOhQAgMDGTFiBO3bt8fNzc1yPrO+iY0t2Z6ZM2eyYsUKSzD9smXLmDhxIj4+PgQHB+Pn58fDDz9Mbm4uw4cPx9PTE39/fyZNmlSqeBk0aJBFaIkIb731Fm3btiUoKIgZM2Ywd+5cy9ixY8dy7tw5xowZU+576e3tzddff01AQADJyclMmjQJgIceeoiBAwcSFhZGo0aN+M9//kNYWJglGPv2228v8zkeffRRvv76azp16kR0dLRlejcgIAAbGxsCAwOZNWtWoX1eeOEFzp07h5+fH4GBgZYv+6ioqBKn18qLnZ0dP/zwA8899xyBgYEEBQVZAvznzZvHnDlzCAgIoEuXLpw6daqYrRV5fXfv3k3Dhg1LtGfWrFmWlBHffvstq1atol69epe1c/z48TzyyCMEBQVhMpmq/HpOnz6No6PjNXk9NJryUJaC19tFJMQwjCgRCbjUt1ZEyv5z8SrRBa81FeVWKFqblpaGi4sLGRkZ9OjRg88++4zg4GBA5en6/Xc4fx46dYKWLavGpm7duvHrr79Ss2bNy4774Ycf+Pnnn5k3b165jh8XF8fgwYPZs2fPVVhZdVy4cIEHHnjA4tm80QgPD+fPP/+sbjOuGbNmzaJGjRo88MADpY65FT47NJVHaQWvy1J7MefS40nDMAYBCUDTa2mcRqOpOA899BD79u0jKyuL++67zyK4ID9Z6ubNqjSQh4fqq2zeeecdjh07dlnRNWXKFH7//XeWL19e+QZVMzVq1LhhBRdwUwkugJo1azJu3LjqNkNzC1IWT9dgYD3QDJWfqwbwiogsq3zzFNrTpako+teqiun6+WfIyoK+faF+/eq2SKO5/tGfHZqrocKeLhH59dKfKUDYtTZMo9FULtbW0Lo17NkD0dFadGk0Gk11cbmC1+8DpbrBROTqi7dpNJoqwdMT9u2D48chPR2cna+8j0aj0WiuLZfzdOn5PI3mJsHREZo3h7g4iImBoKDqtkij0WhuPS6XHPXrqjREo9FULm3aKNF16BD4+ak8XhqNRqOpOq6Yp8swjNUFk6Lq5KgaTdk5e/asJQdWw4YNadKkCUFBQdSsWRMfH59KOefSpUvZt29fsf66dVXLzlbi62p5+eWXmTlzZonPzZ4921LKCCA3N5e6desyffr0Cp/v/PnzfPTRR2Ua6+LiUubj5uXl8fjjj+Pn54e/vz8dOnTgSGnZZK8BcXFxloLQlUnR98FLL73EypUrSx2/e/duxo8fX+l2aTS3MmVJjvoMMPVSexGIpIxTj4ZhDDAM46BhGIcMw5hWyphehmFEGoax1zCMtWW0W6O5IahTpw6RkZFERkbyyCOP8NRTT1m2rayu/O9XUhmYK1Ga6AJo21Y9HjyocnhVBrm5uXz55Zfcfffdlr4VK1bQtm1bvv/++8uW5rkc5RFd5WHRokUkJCQQFRXF7t27+emnn66YX+xqqC7R9eqrr9K3b99Sx/v7+3PixAmOHTtW6bZpNLcqV/zUF5HtBdpGEXka6Hil/QzDsAY+BAYCPsAYwzB8ioypCXwEDBURX+DOosfRaG5WTCYTDz74IL6+vvTv35/MzEwAevXqxb/+9S969uzJe++9x/bt2+nZsychISGEh4dz8uRJAP73v//RoUMHAgMDueOOO8jIyGDTpk0sW7aMqVOnEhQURGxsLLGxsQwYMICQkBDuuac7Z88eICUFRo8ez+OPP06XLl1o2bKlpWAwwNtvv02HDh0ICAhgxowZlv5///vftG3blr59+3Lw4MESr2vVqlUEBwdjU2D+csGCBTzxxBM0b96czZs3W/r/+OMPgoODCQwMpE+fPkBxD5qfnx9xcXFMmzaN2NhYgoKCmDp16mXtNDNu3DhLpn9QGfCXLSuc7ebkyZOWUj8ATZs2pVatWnzxxRc89dRTlnH/+9//ePrpp4mLi8PLy4uJEyfi5+fH2LFjWblyJV27dsXT09NS6ufll19m3Lhx9O7dG09PT0tB72nTprF+/XqCgoKYNWsWWVlZTJgwAX9/f9q1a2fJYD937lyGDRvGkCFD8PDw4IMPPuDdd9+lXbt2dOrUieTk5HK9D8aPH295jSMiIujSpQuBgYGEhoZayuoMGTKkULFujUZzjRGRyzagdoFWFwgHDpZhv87AnwW2pwPTi4x5FHj9SscKCQkRjaYixMfHF+4YPLh87YknSt6/AsyYMUPefvttERE5cuSIWFtby86dO0VE5M4775R58+aJiEjPnj1l0qRJIiKSnZ0tnTt3lsTERBERWbhwoUyYMEFERM6cOWM59vPPPy9z5swREZH77rtPFi9ebHmud+/eEh0dLSIimzdvltDQMJk/XyQ8/D4ZOXKkmEwm2bt3r7Rq1UpERP7880958MEHJS8vT0wmkwwaNEjWrl0r27ZtEz8/P0lPT5eUlBRp1aqV5XoK8tJLL1lsERHJyMiQRo0aSXp6unz66acyZcoUERFJTEyUpk2byuHDh0VE5OzZs8Xuk4iIr6+vHDlyRI4cOSK+vr6W/tLsFBFxdnYWEZE1a9bI7bffLiIi58+fF3d3d8nJySlk7/Hjx6VFixYSGBgoTz/9tOzYsUNERNLS0qRly5aSnZ0tIiKdO3eWqKgoy2sXFRUlJpNJgoODZcKECZKXlydLly61nG/GjBkSEBAgGRkZkpSUJE2bNpX4+HhZvXq1DBo0yHL+mTNnyvjx40VEZP/+/dKsWTPJzMyUr776Slq1aiUXLlyQxMREqVGjhnz88cciIvLkk0/KrFmzyvU+MG9fvHhRPDw8ZOvWrSIikpKSYrknGzZskMEVfH/fbBT77NBoygGwTUrQM2UJpd2OSh1hALnAEaD02gn5NAGOF9g+QXEPWRvA1jCMNYAr8J6IfINGcwvg4eFB0KVlhCEhIcQVCLQaNWoUAAcPHmTPnj3069cPUN4xc724PXv28MILL3D+/HnS0tIIDw8vdo60tDQ2bdrEnXfmO5Gzsi5ibQ2ZmTBy5DCsrKzw8fHh9OnTgJoKXLFiBe3atbMcIyYmhtTUVIYPH46TkxMAQ4cOLfG6Tp48ibe3t2X7119/JSwsDCcnJ+644w5ee+01Zs2axebNm+nRowceHh4A1K5du1z3rzQ7e/ToYRnTs2dPHnvsMRITE/nxxx+54447CnngQHm2Dh48yKpVq1i1ahV9+vRh8eLF9OnTh969e/Prr7/i7e1NTk4O/v7+xMXF4eHhgb+/PwC+vr706dMHwzAsz5u5/fbbcXR0xNHRkbCwMLZu3Vps6nLDhg1MmTIFAC8vL1q0aEF0dDQAYWFhuLq64urqipubG0OGDAHUVGBUVBRQtvdBQQ4ePEijRo3o0KEDoLLlm6lfvz4JCQlluv8ajab8lCU5qkcFj11SsZGiwRw2QAjQB3AE/jEMY7OIRFfwnBrN5fnll+rdvwD29vaWv62trS3Ti4ClsLKI4Ovryz///FNs//Hjx7N06VICAwOZO3eupch0QfLy8qhZsyaRkZGF+jdvVjFdZ8/m2yCXYq1EhOnTp/Pwww8X2mf27NkYZagh5OjoSFZWlmV7wYIFbNy4EXd3d0AtLli9ejUiUuLxbGxsyMvLs2wXPFZBSrOzKOPGjWP+/PksXLiQL7/8ssQx9vb2DBw4kIEDB9KgQQOWLl1Knz59mDhxIm+88QZeXl5MmDCh0HgzVlZWlm0rK6tCcXhFr6+k6zXf99LsutJ5yvI+KHq+0l7HrKwsHB0dL7u/RqOpOGVZvehgGMbThmH8aBjGEsMwnjIMw6EMxz6BKh1kpimqbmPRMX+ISLqInAHWAYFlNV6judlp27YtSUlJFtGVk5PD3r17AUhNTaVRo0bk5OQwf/58yz6urq6WGJ0aNWrg4eFhqfsnIuzatcsSUJ+YCDk5FCI8PJwvv/yStLQ0AOLj40lMTKRHjx789NNPZGZmkpqayi+lCFBvb28OHToEqELPGzZs4NixY8TFxREXF8eHH37IggUL6Ny5M2vXrrWsFDTHKLm7u7Njxw4AduzYYXm+4HVdzs6ijB8/ntmzZwPKK1WUHTt2WLw7eXl5REVF0aJFCwA6duzI8ePH+e677xgzZkyJ13s5fv75Z7Kysjh79ixr1qyhQ4cOxa6jR48eltcvOjqaY8eO0db8ApWBsrwPCuLl5UVCQgIRERGW/c0CLjo6Gj8/v3Jfp0ajKRtlWb34DeCLqrv4AeANzCvDfhGAp2EYHoZh2AGjgaL1Gn8GuhuGYWMYhhNq+nF/WY3XaG527Ozs+OGHH3juuecIDAwkKCiITZs2AfDaa6/RsWNH+vXrh5eXl2Wf0aNH8/bbb9OuXTtiY2OZP38+X3zxBYGBgfj6+vLzzz9Tq5ZKmJqbC7Gxhc/Zv39/7r77bjp37oy/vz8jR44kNTWV4OBgRo0aRVBQEHfccQfdu3cv0eaBAweybt06AH788Ud69+5dyGNz++23s2zZMmrUqMFnn33GiBEjCAwMtEyp3nHHHSQnJxMUFMTHH39MmzZtALUStGvXrvj5+TF16tRS7SxKgwYN8Pb2LuSpKkhiYiJDhgzBz8+PgIAAbGxsmDx5suX5u+66i65du1KrVq0rvVzFCA0NZdCgQXTq1IkXX3yRxo0bW84RGBjIrFmzePTRRzGZTPj7+zNq1Cjmzp1b6H5dibK+D8zY2dmxaNEipkyZQmBgIP369bN4E1evXs2gQYPKfZ0ajaZslKXg9S4RCbxSXyn73gbMBqyBL0Xk34ZhPAIgIp9cGjMVmADkAZ+LyOyix9EFrzUVRRetLZ0TJ2DdOlUSaOhQKMPMYZkZPnw4b731Fp6entfuoBUkIyMDf39/duzYgZubW7n3Hzx4ME899ZRldWVZefnll3FxceGZZ54p9zmrg4sXL9KzZ082bNhQLO7tVkR/dmiuhtIKXpfF07XTMIxOBQ7UEdhYlpOKyHIRaSMirUTk35f6PjELrkvbb4uIj4j4lSS4NBpN5dCkCbi6qlqMJ05c22O/+eabltQW1cnKlSvx8vJiypQp5RZc58+fp02bNjg6OpZbcN2IHDt2jDfffFMLLo2mEimLp2s/0BYwZ8xrjpoCzANERAIq1UK0p0tTcfSv1ctz8CBs3w7168Nl8mZqNLcc+rNDczWU5ukqy0+aAZVgj0ajuQ5o2RKiolRAfXIylDNrg0aj0VyXiAgpF1OIvxBPQmoCCakJxKfGE38hnsmhk/Gu533lg1QCZUkZcdQwjEDAHDW7XkR2Va5ZGo2mKrC1hdatYf9+5fXq3Lm6LdJoNJqyczH3IgmpCZy4cMIiquJTVcvIyShxn+MXjl+/osswjCeAB4EfL3V9axjGZyLyfqVaptFoqoQ2beDAATh6FIKC1KpGjUajuV4QEc5nnef4heOcuHDC0uIvxJOYUTxNjBlnW2eauDahSY0mNHZtXOjv6qIs04sPAB1FJB3AMIz/Av+gUkhoNJobHGdnaNoUjh+H6GgI1JnyNBpNNZAneSSmJ3I85TjHLxy3PJ64cIL0nPQS97E2rGnk0ogmNZrQtEZTi7Bq4tqEGvY1ypTQuSopi+gyAFOBbRMlZ5vXaDQl4OLiYkngCaqQ8bZt2/jggw/Kfaw1a9Ywc+ZMfv311zLv06tXL2bOnEn79sViOi14eSnRdegQ+PmBtXW5TdNoNJoykSd5nEo7xbGUY5Z2POU4J1JPkG3KLnEfZ1tnmtVoRtMaTQu1Bi4NsLG6cVbclsXSr4AthmH8hBJbtwNfVKpVGo2mSqlbF+rUgbNn4cgRFeel0Wg0V4OIcDr9NEfPH7WIq6MpRzlx4QQ5eTkl7lPbsTbNajSjuVtzmtZoSrMazWjm1gw3e7frzmtVEcoSSP/upYLU3S51TRCRnZVqlUZzi5CUlMQjjzzCsWMqI8vs2bPp2rUrW7du5cknnyQzMxNHR0e++uqrYqVh0tPTmTJlCrt37yY3N5eXX36Z22+/nczMTCZMmMC+ffvw9vYuVNOxNAwD2raFTZtUfFerVtc2WapGo7m5OZ91nrjzcRw9f5SjKUeJOx/HsZRjXDRdLHF8Xae6NK/RnOZuqjVza0azGs1wtnOuYsurlvL45AxUbi79Uay5IRmyYEilHPeXMZcvgp2ZmUlQUJBlOzk5maFDhwLwxBNP8NRTT9GtWzeOHTtGeHg4+/fvx8vLi3Xr1mFjY8PKlSv517/+xZIlSwod99///je9e/fmyy+/5Pz584SGhtK3b18+/fRTnJyciIqKIioqiuDg4DJdR/PmEBkJFy5AfLyK89JoNJqCZJuyOXpeiSqzuIo7H0fKxZQSx9dyqEULtxa0qNmC5m7NaeHWgmZuzXCydapiy68PyrJ68SXgTmAJSnB9ZRjGYhF5vbKN02huBhwdHYmMjLRsm2O6QGVM37dvn+W5CxcukJqaSkpKCvfddx8xMTEYhkFO0arUwIoVK1i2bBkzZ84EICsri2PHjrFu3Toef/xxAAICAggIKFv+YisrFdu1Ywfs26cy1mtvl0ZzayIiJGcmc/jcYY6cP0Lc+TiOnDtCfGo8QvGk6k62TrRwa4F7TXeLyGrh1gJXe9dqsP76pSyerjFAOxHJAjAM401gB6BFl+aG4koeqeogLy+Pf/75B8cieRqmTJlCWFgYP/30E3FxcfTq1avYviLCkiVLik07AhWOfWjdGvbsgTNnVKtXr0KH0Wg0NxCmPBMnLpzg8LnDFpF1+NxhUrOLF5C3Mqxo6toU95ruuNd0x6OmBy1qtqCeU72bIuaqsimL6IoDHICsS9v2QGypozUaTZnp378/H3zwAVOnTgUgMjKSoKAgUlJSaNKkCaA8YyURHh7O+++/z/vvv49hGOzcuZN27drRo0cP5s+fT1hYGHv27CEqKqrM9tjYqLxde/Yob1fPnld9iRqN5jriYu5F4s7HEXsultjkWIsXq6TAdhc7FzxqeqhWSz02c2uGnbVdNVh+c1AW0XUR2GsYxl+AAP2ADYZhzAEQkccr0T6N5qZmzpw5PPbYYwQEBJCbm0uPHj345JNPePbZZ7nvvvt499136d27d4n7vvjiizz55JMEBAQgIri7u/Prr78yadIkJkyYQEBAAEFBQYSGhpbLpjZtVIb6+Hg4fx5q1rz669RoNFVPRk4Gh88dJjY5lthzsRxKPsSJCydKnB5s6NyQlrVa4lHLg5a1WtKyVkvqONbR3qtrTFkKXt93uedF5OtralEJ6ILXmoqii9ZWjG3bVKJUDw9dGkhza3KjfXZk5mQSey6WmLMxHEo+ROy5WBJSE4oJLCvDiuY1mtOqdis8anpYHm/2VYNVTYULXleFqNJoNNcXXl4QE6NKAwUEqKz1Go3m+iDblE1ssvJcxSTHlOrBsrGyoYVbC1rXbk2rWq1oVbsV7jXd9fRgNXLjpHHVaDRVhouLSiFx9KgqhF3GrBMajeYaY8ozcfzCcaLPRhN9NpqYszHEpcSRJ3mFxtlY2eDu5k7r2q0trblbc2ytbavJck1JaNGl0WhKxMdHia5Dh8DXF+ztq9sijebmRkQ4k3GGg2cPWkTWoeRDxRKMGhi0cGuBZ21PPOt44lnbE/ea7lpg3QCUKroMw5gnIuMMw3hCRN6rSqM0Gk31U6sWNGoEJ0+qqUY/v+q2SKO5ucjKzSLmbAwHzx7k4JmDRCdHk5yZXGxcQ+eGeNbxpE2dNnjW9qRV7VY42DhUg8Waq+Vynq4QwzBaAPcbhvENRTLRi0jxd4ZGo7mp8PFRouvgQVUmyFb/kNZoKoSIcCrtFAfOHLC0I+ePFIvDcrFzoW2dtrSp08bSatjXqCarNdeay4muT4A/gJbAdgqLLrnUr9FobmLq11cJUpOS1GpGX9/qtkijuTHINmVzKPkQ+5P2s//Mfg6cOVCsVI6VYUXLmi1pW6ctXnW9aFOnDY1dG+s0DTcxpYouEZkDzDEM42MRmVSFNmk0musEwwB/f1i1SuXu8vQEO73wSaMpRkpWCvuS9rH/zH72Je0j9lwsuXm5hca42bvhVdfL0lrXbq2nCW8xypIyYpJhGIFA90td60Sk7CmuNZpbHGtra/z9/S3bo0ePZtq0aaWOf+ONN/jXv/5l2e7SpQubNm0q93kjIyNJSEjgtttuK/H5nTt38uGHH/L5558zd+5cpk6dStOmTUlLS6Nly5bMmDGDLl260KCB8nglJqppxgKXUmbc3d3Ztm0bNWrUoG/fvqxatQobG72OR3NjYp4q3Ju0l31J+9iXtI/41PhCYwwM3N3c8a7njXddb7zqetHQpaH2Yt3ilKXg9ePAQ8CPl7rmG4bxmYi8X6mWaTQ3CUULXl+JoqKrIoILlOjatm1bqaLrjTfe4IUXXrBsjxo1ig8++ACA1atXM2LECFavXo23tzcBAbByJRw4oGK7KurtsrOzo0+fPixatIixY8dW7CAaTRUjIsSdj2NP4h72Je1jb9JezmWdKzTG3tqetnXa4lPPB596PrSp00YnHNUUoyw/NScCHUUkHcAwjP8C/wBadGluKIYMGVIpx/3ll/IX0k5JSSE0NJRly5bRtm1bxowZQ+/evYmNjSUzM5OgoCB8fX2ZP38+Li4upKWlsWbNGl5++WXq1q3Lnj17CAkJ4dtvv8UwDCIiInjiiSdIT0/H3t6ev/76i5deeonMzEw2bNjA9OnTGTVqlOX8qampREVFERgYWKJ9YWFhPPTQQ3z22WfMmjWL1NRYZs9+jKSkJP7zHye+++5/eHl58csvv/D666+TnZ1NnTp1mD9/Pg0aNODs2bOMGTOGpKQkQkNDKVj5YtiwYUyfPl2LLs11S57kkZKVwub9my1CKz0nvdAYN3s3fOr54FvPF596PnjU8sDGSntvNZenLO8QAzAV2DZRZCWjRqMpHbOIMmMWQB988AHjx4/niSee4Ny5czz44IMAfPDBB6V6xnbu3MnevXtp3LgxXbt2ZePGjYSGhjJq1CgWLVpEhw4duHDhAk5OTrz66qts27bN4r0qyLZt2/C7Qg6I4OBgPv30UwAeeugh3n//E2JjPTlyZAuPPPIoa9asolu3bmzevBnDMPj888956623eOedd3jllVfo1q0bL730Er/99hufffaZ5bh+fn5ERESU8y5qNJVHnuSRnJlMYnoip9NOk5SRxMXzF/n+2PeWMfWd6uNb3xe/+n741vPVAe+aClEW0fUVsMUwjJ8ubQ8Dvqg0izSaSqIiHqlrQWnTi/369WPx4sU89thj7Nq1q0zHCg0NpWnTpgAEBQURFxeHm5sbjRo1okOHDgDUqHHl5eUnT56kXr16lx1j9k6lpaWxadMmHn74TtLSICcHrK1VssYTJ04watQoTp48SXZ2Nh4eHgCsW7eOH39UEQmDBg2iVq1aluNaW1tjZ2dHamoqrq6uZbpujeZaUpLIKhr07mTjRHircHzrKaFVz/ny/y8aTVkoSyD9u4ZhrAG6oTxcE0RkZ2UbptHc7OTl5bF//34cHR1JTk62iKnLYV8gLby1tTW5ubmISLl/cTs6OpKVlXXZMTt37sTb25u8vDxq1qxJZGQkZ8/Cn3+CjQ1kZcGUKVN4+umnGTp0qGX608zlbLp48SIODnrVlqZqEBHOZ53ndPppTqedJjE9kZy8nEJjatjXoL5zfRo4N6C+c33OJZ27oQpea24MyjQBLSI7gB2VbItGc0sxa9YsvL29eeONN7j//vv5559/sLW1xdbWlpycHGzLmInUy8uLhIQEIiIi6NChA6mpqTg6OuLq6kpqamqJ+3h7e/POO++Uesy1a9fy2WefsXr1amrUqIGHhweLFy/mzjvvpEkTYdOmKPbtCyQlJYUmTZoA8PXXX1v279GjB/Pnz+eFF17g999/59y5/KDjs2fPUq9evTJfn0ZTXkSEtOw0TqWdUkIr/TQXcwuX0nG1c6WBSwOLyHK0dSz0/DkKB8prNNcCHfWn0VQyRWO6BgwYwP3338/nn3/O1q1bcXV1pUePHrz++uu88sorPPTQQwQEBBAcHMz8+fOveHw7OzsWLVrElClTyMzMxNHRkZUrVxIWFsabb75JUFBQsUB6Ly8vUlJSCk3xLVq0iA0bNpCRkYGHhwdLlizB29sbgPnz5zNp0iRef/11srJy8PcfTcuWgUyb9vIlIdaETp06ceTIEQBmzJjBmDFjCA4OpmfPnjRv3txy7tWrV5e6olKjqShZuVmcTjvNqbRTnEo7VSzw3cnWiYYuDWng3IAGLg1wsnWqJks1tzJGwVVF1yvt27eXbdu2VbcZmhuQhIQEPUVQCrNmzcLV1ZWJEyeWe9+NG1Ux7ObNoVu38u07YsQI/vOf/9C2bdtyn1ejMWPKM5GUkcTJ1JOcSjtVYgqHBi4NLELLxc6lXNPw+rNDczUYhrFdRNoX7deeLo3mFmXSpEksXry4Qvu2awcnTsCxYyppav36ZdsvOzubYcOGacGlKTciQsrFFIvISsxIxJSXv7De2sqa+k71aejSkIYuDanpUFOvLtRcd5QlOeoI4L9AfVQgvQGIiFxxiZRhGAOA9wBr4HMRebOUcR2AzcAoEfmh7OZrNJqK4uDgwLhx4yq0r5OTKoa9ezds3w4DBqiSQVfCzs6Oe++9t0Ln1Nx6XMy9yOn00ySkJnAq7RQZORmFnq/lUItGro1o6NKQek71sLayriZLNZqyURZP11vAEBHZX54DG4ZhDXwI9ANOABGGYSwTkX0ljPsv8Gd5jq/RlJWKrO7TXBlvb4iNhXPn4PBhaNWqui3S3OiICMmZyZxMO0lCagJnM84i5IfAONo40tCloUVoVVbdwhsh7EZzY1IW0XW6vILrEqHAIRE5DGAYxkLgdmBfkXFTgCVAhwqcQ6O5LLa2tqSlpeHiUr54Ds2VsbFR04wbN8KuXdCsmS6GrSk/F3MvcirtFAmpCZxMO0lWbn4qEyvDivpO9Wnk2ohGLo2qZMpQREhLS9OrazWVQllE1zbDMBYBSwHLmlsR+bHUPRRNgOMFtk8AHQsOMAyjCTAc6I0WXZpKoHbt2iQnJ5eaOkFzddjYgIsLpKTAP/+Ap2d1W6S53hER0nPSOZtxljMZZzh/8Xyh5x2sHajjWIc6TnWo5VhLldbJgcxzmWSSWSU22traUrt27So5l+bWoiyiqwaQAfQv0CfkF8AujZJ+jhT12c4GnhMRk/ZCaCoDa2vrK2Ze11wdmZnw9NNgbQ0ffgh6wZemKNmmbHaf3s3W+K1EJESQlJFkec7asMa3ni/tG7enfeP2NK3RVHulNTctZclIP6GCxz4BNCuw3RRIKDKmPbDw0j9YXeA2wzByRWRpBc+p0WiqmNatoU8fWLkSvvgCXnyxui3SXA+czzpPRHwEW+K3EHkqkoum/OSkNR1q0r5Rezo06UBgg0Cc7Zyr0VKNpuooy+rFpsD7QFeUp2oD8ISInLjCrhGAp2EYHkA8MBq4u+AAEfEocJ65wK9acGk0Nx733gsbNsDWrbBpE3TpUt0WaaoaEeHEhRNsid/ClhNbOHj2YKEg+JY1WxLaJJTQJqG0rt1ae7M0tyRlLXj9HXDnpe17LvX1u9xOIpJrGMZk1KpEa+BLEdlrGMYjl57/pMJWazSa64patZTw+uwz+Ogj8PODMtTd1tzgiAgHzx5k84nN/HP8HxLS8iczbKxsCGwQaBFadZ3qVqOlGs31wRUz0huGESkiQVfqq0x0RnqN5vpHBP71L9izB3r0gKlTq9siTWWQm5dL1Oko/jn+D1vitxTKBO9q50qHxh3o2LQj7Rq2K1bPUKO5VbiajPRnDMO4B1hwaXsMcPZaGqfRaG58DAOeeAImT4Z166BrVz3NeLNwMfciO07u4J8T/7A1fmuhuob1nerTqWknOjfrjHddb52gVKO5DGURXfcDHwCzUDFdmy71aTQaTSEaNoTx4+HTT/U0441OZk4mEQkRbDy2kW0nt5FtyrY85+7mbhFaHjU9dHyWRlNGyrJ68RgwtAps0Wg0NwGDBqlg+t274ZNP4Nlnq9siTVnJyMlga/xWNhzbwI6TO8jJy7E816Z2Gzo360yXZl1o7Krzgmg0FaFU0WUYxrMi8pZhGO9TPL8WIvJ4pVqm0WhuSAwDHn8cpkyB9euhWzc9zXg9k5mTydb4raw/tp7tJ7eTm5cLgIGBT10fujbvSpdmXXQgvEZzDbicp8tc+kdHsGs0mnJhnmb85BM1zejjAzVrVrdVGjNZuVlExEew4diGQlOHBgZ+9fwsQqu2o87KrtFcS0oVXSLyy6U/M0RkccHnDMO4s4RdNBqNxsJtt6lpxqgo+O9/4fXXVdb6G4aMDDh7Fpo2Ve47gB9+gBMnIDs7v+XkqAvz8YG7L6UizM6GBQuU0qxVK/+xbl1wrJ4VfTmmHHac3MG6o+vYEr+lULJSn7o+dGveja7Nu2qhpdFUImUJpJ8OLC5Dn0aj0VgwDPi//4Mnn1RpJObOhQceqG6rSkAEkpLg8GGIjVWPhw/DmTPq+fnz81cD7NsHERElH8fJKf/v8+eVQCuJmjXVjQkKUtuJiUq4NW6cL+6uEXmSx57EPayJW8Om45sKrTpsW6ct3Zt3p2vzrnrqUKOpIi4X0zUQuA1oYhjGnAJP1QByK9swjUZz41O7NkyfrtrSpdCmDXTvXt1WoYSWWeBs2QL//nfxMXZ2yjOVnp4vuoYNUwFqdnb5zcYG8vJU5W8z9vYwbhycO6cE2PnzkJysxN3584XHLl0Kv/yi9nF3Bw8PaNkS2raFFi3K7R4UEY6cP8KauDWsPbqW5Mxky3Pubu70aNGDHi160MClQbmOq9Forp7LeboSUPFcQ4HtBfpTgacq0yiNRnPz4O0NEyeqNBLvvQfNmystUeWkpMCaNbB5MzRqpKL9QeW1qFlTCZ5WrZTgadVKjbGyKnyMgICyncvNDe66q3i/iJqyLBjgZm8Pdeqo/oMHVTPj7Q1vvZW/b1oauLqWeMqk9CTWxK1hddxqjl84bulv4NyAni160su9F83cmpW4r0ajqRrKkpG+BpAuIqZL29aAvYhkVIF9gM5Ir9Hc6IjArFmwerWaRXv3XXCuihrHubmwfTv89Rds2wYmk+qvUwe++irf21XQ81VdpKbCkSOqHTqkxFdwMDzyiHr+5El46CElDv38wN+fzLYt2ZSyl1VHVrE7cbel1mEN+xp0a9aNXu698KrrpfNoaTRVzNVkpF8B9AXSLm07XurTi8A1Gk2ZMAx47DGIi1OaYtYseP75StY569cr91pKitq2soIOHaB3b2jXrvDJrwdR4uqqPGkFvWlmkQgqgN/WFok7wq7Tu/g74gybXM6R7ewANdywbdqcji260dujN+0atcPGqiwf7xqNpiopy3+lg4iYBRcikmYYhtPldtBoNJqi2Nur2oxPPaXCqL78Eu6//xrrnby8/CnBpk2V4GrWDPr2hV69VJDZjUSBeK6TXk1Z+fwQVu3+mTNn0iE1B9LA76w1YSdc6PrY1zi71FKDt26FJk0qJThfo9FUnLKIrnTDMIJFZAeAYRghQGblmqXRaG5GGjaE556DV15R8ePOzjB69DU4cHy8Wi2YlKRyU4AKSP/oo8IpH24wsnKz2HhsI38d/ou9SXtVpz3U9wyiT8s+9GnanQZHz8Lp02AWXLm5MHMmZGaquLT27SEkBPz9VeC/RqOpNsoiup4EFhuGkXBpuxEwqtIs0mg0NzVBQSpjwltvqWwMzs4wZEgFD5aWBt99B7/9prxchqEEWJMm6vlmN17guIgQfTaavw7/xbqj68jMVb9x7a3t6da8G308+uBX3y8/TqtWkWtMT4fQUNixQ8WB/fKLag4Oalr17rtVXJhGo6lyylJ7McIwDC+gLWAAB0Qk5wq7aTQaTal066YcMXPmwGefqRRXffqU4wB5ebBiBXzzjQpANwzo1w/uvFN5d25A0rLTWH1kNX/G/snRlKOWfq86XvRv1Z9uzbvhaFuGxKpubvDMM+oeRUerBQQRESr32D//qFQWZg4cULFkZpGq0WgqlbJGWrYFfAAHoJ1hGIjIN5Vnlkajudnp108lff/8c5VKwtGxjDUaRVQVbXNqBT8/tarPw6NS7a0MRIR9Sfv4M/ZPNh7faCnH42bvRm+P3vRr2a/iaR6srMDLS7V77lHJXnftUtOtZj79VK2UbNYMOneGTp2gdesbdjpWo7neuaLoMgxjBtALJbqWAwOBDYAWXRqN5qq4/XY1G7ZgAbz9tkqiGhp6hZ0MQ02TJSerSPyuXW84kZCenc6qI6v4/dDvhXJqtWvYjvBW4XRs2vHarz6sW7ewO9FkUmLr5Ek4fly1779X4zp3hv799TSkRnONKUuert1AILBTRAINw2gAfC4iFY3CKDc6T5dGc/MiAl98AT//rLTTo4/CgAFFBu3bp+YjQ0LUdna22tHevsrtvRpizsbw+6HfWXt0rcWrVcuhFv1a9qNfq340dGlY9Ubl5sLevWrqcfNmlaQV1IqHbt3U3ykpKvjORqeh0GjKwtXk6coUkTzDMHIvJUpNBFpecws1Gs0tiWGomoyOjrBwIXz4oZoJGzsWjJxs+PZbtdTR1VWtRnRzu6FW4WWbsll/dD2/xfxGTHKMpT+oQRADPQcS2iS0enNq2dhAYKBqDz8MMTFKgLUv8H3x5Zcqz0doqJoDDg6+oV4DjeZ6oSz/6dsMw6gJ/A9VDigN2FqZRmk0mlsLw1Aiq25dpasWLYLs6DjGJ76FVfxxFZ80cGAVpbG/NiSmJ7I8ZjkrYleQmp0KgIudC309+jKg9QCa1LgOg9cNQxXIbNOmcH9iopoHXr1aNQcHJcq6dlWPDg7VY69Gc4Nx2elFQ61Jbioixy9tuwM1RCSqasxT6OlFjebWISICfvu/VfSP+ZA6rtm06tkUm6lPFRcC1yEiQtTpKH6J/oWt8VstZXla1WrFkDZD6N6iO3bWN6iHKCEBNm2CjRtV8L2Z0aOVYtZoNBYqNL0oImIYxlIg5NJ2XKVYp9FoNJfocGAe3jbfE20N62z78D6TeNrG/rqOabiYe5HVcav55eAvHLtwDAAbKxu6N+/OIM9BtKnT5savf9i4MYwcqVpiohJgmzYpb5eZZcsgMlL1hYaWWpxbo7lVKUsg/YfAXBGJqBqTiqM9XRrNLcTevfDyy5wd8SAzNvTj6DEDGxu1UHHw4OtroeKZjDP8Fv0bf8b+aZlCrOVQi9s8b2NA6wHUdKhZvQZWNc88k5/Kw9pa1ZHs0kWthnRzq17bNJoqpDRPV1lE1z5Unq44IB2VIFVEJOBy+11LtOjSaG5yzpxRAV1mUlPB1ZXsbJXH6/ffVXfHjvDEE9XvQIlNjmXpgaWsP7Yek6ii1G1qt2Fo26F0bd711i02fe6cWgG5aRNERakEraCU8qhRehpSc8tQbtFlGEZzETlmGEaLkp4XkaMl9VcGWnRpNDcxv/+u0tJfJknXpk0qe316OtSpo4pmBwZWrZkiwtb4rSw9sJQ9SXsAMDDo2qwrw7yG0bZu26o16HrnwgW14nHjRpWU9cknoWdP9dz+/SobfufOqiCnRnOTURHRtUNEgi/9vURE7qhkG0tFiy6N5iYkL0+lIvj5Z7U9duxlq18nJqo6zvv3q+0ePVSqidq1K9fMbFM2a+LW8OP+H4lPjQfA0caR8FbhDGk7hPrO9SvXgJuB9HSwtc1PMzFnDvz1l/q7ZUslvrp0Uclar6f5Y42mglREdO0UkXZF/64OtOjSaG4yMjNVCvqICJUnavLkMhVfNJlgyZJLKSWyVW6vsWNVrJe19bU1MS07jd9jfueX6F84l3UOgLpOdbm97e30b9UfJ1una3vCW4mICFizBrZuhays/P7GjdWLWeEK6BrN9UFFVi9KKX9rNBpNxTlzBl55BeLiVHDWv/6l6ieWAWtruOsu6NVLzUhu2aJivlauVOUX/f2v3rzkzGSWHljK74d+JytXCQKPmh6M8B5Bt+bdbt14rWtJhw6qZWerqUdzNvyEBBUXZiY5GY4eVS+szoavuQm4nKfLRH7gvCOQYX4KFUhfo0osRHu6NJqbBhEV23P4MDRpAi+9pLwbFSQiQtVsPn1abQcEwJgxZdZwhTiZepIl+5fw95G/yc3LBVTW+BHeIwhqGHTjp3y43jGZVLmnevXy47x+/lmpaicnlYS1Y0dVCuoGSpKruTWp8OrF6wEtujSam4joaPjuO/i//7smyxCzs+HHH1WloPR01Vce8RV3Po7Fexez/th6BMHAoEuzLoz0GUnr2q2v2j7NVbBypXphjxZYt2Vjozxf3btDv37VZppGczmqRXQZhjEAeA+wRhXJfrPI82OB5y5tpgGTRGRX0eNo0aXR3OAkJkL9yg04T09XuTl//jlffPn5waBB0KlT8dmpmLMxLNq7iC3xWwCVzDTMPYw7vO+4Pkv03MqcPKnmkjdvVt4wEfWiPv+8ej43F44cgdatdSC+5rqgykWXYRjWQDTQDzgBRABjRGRfgTFdgP0ics4wjIHAyyLSseixtOjSaG5g/vpLFVR86im15LCSKUl81a4N/fvDgAGQmLefhXsWsuPUDgDsrO0IbxXOCO8R1HWqe5kja64LUlJg2zY1DRlwKV3kzp1qqrp2bTUNGRqqcorompCaaqJCZYCuklDgkIgcvmTAQuB2wCK6RGRTgfGbgaaVaI9Go6lqfvgBvv5a/R0fXyWndHZWU4u3365qM//2Gxw/Dp8t3cMrGxZg1SiKOnWgYR0HhngNYpjXsFsvc/yNjJtb8ZWuaWkque6ZM7BihWq2tkqUhYQod6eVVfXYq9EUoDJFVxPgeIHtE0AxL1YBHgB+r0R7NBpNVSEC33yjRJdhqKWFgwdXqQlOTuq7tnn7Pby/egGHYqK4cA6szzrjGDsEU9ZQznRwJTob2rVT39GaG5Tu3aFbN7UiNiJCpaKIjobt29XUZMEUFPv3q2lI/YJrqoHKFF0lTayXOJdpGEYYSnR1q0R7NBpNVZCXBx9/DH/8oXI8PP10lUwrFmVv4l6+2/0dUYlRAAR6O9On6e3USBjK1o3OREfD2rWqOTtDUJCamQoOrvyEq5pKwDDAw0O1u+5S05Dbtxcec+YMPPss2Nvne8GCg6FRo+qxWXPLUZmi6wTQrMB2UyCh6CDDMAKAz4GBInK2Eu3RaDRVwf/+pwSXnR1Mm6byMVUhB88c5Nuob4k8HQmAs60zw7yGMaTNEJztVKqBUSPg1ClYvx7WrVMOko0bVQOVJD0kRC2S8/JSSVg1NxhubtC7d+G+5GRwd8/3iEVEqP5GjZT4GjNGF+bWVCqVGUhvgwqk7wPEowLp7xaRvQXGNAdWAfcWie8qhA6k12huIA4fhtdeUx6ua5GttIwcSj7E/Kj5bDupPiucbJ0Y1nYYQ9sOtYit0jh1SjlFtm9XuTqzs/Ofs7KCVq3Axwd8faFtW+0Ju+FJToYdO9QLvnOnWnFhYwMLFuQH32/cqOLEWre+9uUONDc91ZUy4jZgNiplxJci8m/DMB4BEJFPDMP4HLgDMCdhyS3JSC26NJrrHJOp8BdTTk6VxcwcPX+Ub6O+ZXP8ZgAcbBwY2mYow7yG4Wpf/jxg2dmwZw9ERsLevXDokJoxLUjt2kqIeXqq72QPD1WIW2crqAJyc1XpoKwsuHgx/28bG6WIQcUU/vGHeh8OGZL/wvzyi8qkm5en3rO5uWpMYqLKhN+6tXouL08JsJwc9cMhMFAF/kVHQ0YG3HefSu4L8Pff6s1iba0UurlZW6tmY1P40dZWTbfXqaP2P3xY2eThkZ8UNi0Nzp9X3mJzs7fX4u8GojpWLyIiy4HlRfo+KfD3RGBiZdqg0WgqmdRUVdZnwADo21f1VYHgOpl6kgV7FrAmbg2CYGdtxyDPQdzhfQduDhWfIrKzUzNNwcFqOysLDhxQAmzfPoiNVY6S5OT82SlQgfvNm0OLFuqxaVOVbL9+fb1wrhB5eUrM2Nur7dRUFfhuYwM9e6o+EXj9deWByshQtTrNjzk5JR/X3R3ef1/9bRiqVIHJBLfdlp+kbe1aOHiwdNsSLkXAmEzKhowMZcPmzfk5wrKzlbi74w41NiZG1ZEsD97e+aLrr7/g11/VYhNzwP+WLTB7dvH9bGzUfSvYHB3V4+DBKmM/KCG3ZYsSkebp/aws9QvCyUntY360tdW/FqoQXcxKo9FUnORklR/p6FG4cEH9grezq9RTns04y6K9i1gRuwKTmLCxsiG8VTh3+d5FbcdrP+/n4KCC7IOC1LaImo6MiVHfYYcO5V/+gQOqFcTGRjkwGjdWoUP16+e3Bg1ukoo2Isozc+6cek+cO5ffzp9XLSVFtdRUVTzz6afVvufPK4HRpEm+6DIMiIoqXAzbjGEoseDgoMSGg4NqRctJ3XZbvm1mBg+Grl3zvU5WVurvgh4qwyjcWrVStkRGKjGWkqJcnGasrJSXyt1dqW0Xl8KetKKPOTn5gguUSu/UqbD99vbqfmRnq3bxomq5uaqZE9AVpGvX/L/NVR/6988XXQkJMH168f1sbNT9dHZWQszJKf/vdu0gLEyNS0tTc++1ayvRaKaol1tzWXQZII1GUzrZ2WrqRUR9mbi45HuxEhPhhRfUkvxmzVQcV8Evk2tM6sVUluxfwi/Rv5BtysbAoLdHb+72v5v6zpWb7b4spKQo8XX0KBw7ptKSJSTA2SssD3J0VLetTh0VQmT+u2ZNqFVLtZo1r5M8n4mJyuNTs2b+itRTp+CRR9SXb1np1g2eu1SMJC1NVS9v0ADGjs0fs327EvBmIeDoqJqdXfV5ZkTUC9yiRb4Nzz6r0lCYadxYTUn6+qrHutco4a6IElzmKVWzEDNPrzZvnn+umJh8T1enTqrv6FG1qrig5zAjQx2zNAYPhocfVn8fPAjPPANt2sA776g+kwmGD1dvTmfn/M+Igs3VtfDfdeooW29ydO1FjUZzeeLj1Rfq8ePqi/TUqZIVg729+sI5cED9Svb2hnffzY9HucZk5Wbxy8FfWLJ/Cek56hd+l6ZduCfgHpq5NbvC3tVPVpbSpQkJSrOcPp3/ePq0+t4sCw4OUKOGWlzn5pb/t4uL+tv8nebqqr7/zM6KMk1t5uYqYxIS8l/706fVY69eMHKkGmfO/O7vD2+8kX+Bd96Z/4Vaq5byhpjVovmxRg316Op6c3lGYmJg927V9u5VgsZMv37w+OPq74wM5flr3Pj6ms7LyckXYObpVPNjkyZq+S4o0fbdd8pdO3686ktNVUK5PDrCzw/+8x/198WLcP/96v1inhoGWLJECTrzm9vVtfBjJXvTrwXVEtOl0WiucxISYMMG1Y4cKf68tbUqt2JtrTwSaWlq+ig6Wn1Yu7qqL5KHH1bTMIGBapl+s6sXQ7l5ufwV+xcL9izgXNY5AIIaBHFv4L141vG8wt7XDw4O+emjiiKibunZs8WbeVbOPEtndmgkJpb93IZReMaohl0WzdIPUO/iCepknqBmejyu6SdxSkvExkqwsgZr80zbpThwU4NjSKq6DpumzTAGDSp8MQ4O6kvyBvgirBQ8PVUbMUIJhcOH1XTk3r35gYGgPHdvvaVEg7e3Wg7r46O8UUULg1Yltrb5Sv5ytGhRfHrS1VXV2zKLNPNnRMGWmlr474LvndRUNS9f9PqXLVOfM6VhZ6fuo7nVrw9TpuQ/HxGhxnh7X3fvS+3p0mhuNUTUcvglS1RAkhlnZxWI6+Ojfs02bKg8FwW9EiJqn+eeU8916KAEWExM4SV+np4qqL5HD/VrtVzmCRuPb+SbXd9wMu2kOlxtT+4NvJeghkFXceE3LuaY7gsXVEtJyX80f5cVbOnpYHP2NB7xG0izrUlUXVU2p07mCR7dPan48Q2DFLv6JDs04px9I87ZN+ScfUPO2zfgnH1DLtqowDPDKBxKZV5UZ24FF9sVXHRna5v/aO63tc3fNv9dsNnYFN6+4RcjrFgB336rFHRBbG2VN+nf/76+PGBVgYh6E2dmFk5Q+8sv6j6ZRVnRx6JTog0awOef52/ffbca++23+WLyzTfV59SDD+ZPuVYi2tOl0dzqiKjpw+++U8khQblAOnZUZVSCgq686tAwlKCaM0eJMvMv1KwsFdeyaZPKNhoTo9rnn6sPuGHDVCzIFYg6HcXcyLnEJMcA0MS1CeMCxtGlWReMW+0LqQCGkT9lWCh5ekaGmvY5ckS1UK/8uoSRJ5EX5pLj6c25aX2UMyKlIXVm+5Hm1oQLrk1IcWnCeafGJNs2ICPHlsxM9f138SLkZIJ1Fjhngk2BOG7zmOq4B0UFmY1NfjNvm7Mz2Nrm/12wFc3iULSvpCwPV2rmWPyi/YX6uvfHqkc/rM+cxvrgPowD+5U37Phx9f9jfn+LqEUGjRsrMda2rfIO3YxliwxDTTnXrFm4v2DZpqKIqPuVmpq/MKOg80hEfZalpBT+wZeYWD43cSWhPV0azc2OCGzbpn71HT6s+urWhVGj1FRgWdzvf/6Zv/z+Sly8qMTdypVqtZP5M8bfXy2zDw4u9ov+8LnDfB35NTtO7QCglkMt7va/m74t+2JjpX8bAupL5PBhlbPC3E6eLDymYIB6SgosWqREsnkF2lVijuMu2gousDMvuDP3ZWermeicnEtiLqdwX0nb5mZe7JeTU76woRsFa2twzkvF1XSe867NsLKCOlnx3B/xiKqjd2kBpVjZcMatFUm12rC/5SBSazQptOCyYGqwkvrL2wyj9O2y/m3evlJ/Rfsutw0l9GemY6RewKhVE6c6jpU+66gD6TWaW5HTp+Gjj1T2bVABq3feCeHhZfvlLAKLF8O8eeqT68MPyxevtWkTzJ+vxILZK+bmpoTAyJEkutdj3q55rDm6BtLScEq7yB2+dzK09yQcbBxUsP7u3fn1eG4lsrJU/iaz1zApqfgYGxu1EswcNGb2jNxkiOSn9zKLsYLN3GcyFf/bnKmhYCvYVzCjQ9HsDnl5JT9nzghxuVbSGHPe1cstGLQSE/UyjtIkPZomaQdpmn6QupnHLc9/7vMuJ11UTGNg0krqZMWT4OzJSefWpNjVu/WmKCvAc8+p3yeViZ5e1GhuJUwmFYz67bfKjeDiojxbt91W9sDS3FyVYPKPP9QH+SOPXF5wFRVIBw6oaZLsbCUOxo6FVavgt9+4YGPi+9Xv8NugNuQ2aYhNRhaD/jzKXcdcqWG1CJoPVMccP17tb2cHc+fmH/dmE2Lp6aoQZFpa/kpBGxs1FWxOBurgoIpCtmqV35o2rd4g7CrCMPKn6a6L1BnXAJHiYkz9bY3J1JK8vJbk5Q1QeVrT0jEOxWBzOJrn+rqTZ63G15m1BrsDu0BALoLJypXMZp5kNW5FWqtA0lsHFjl2voC9Uis6TiTfZvNzRR/NWUOK7m/et+g+V9tX0nbRseZ7XbC/Omdqb/7/Vo3mViMmBj74IH8qsUcPFTxaNG7icmRkqMDTnTuV4Pm//4MuXUoff+BAcYG0e7fabtJErZJs3Jisu0awLG0LS5peIENyMA4fIuy0PWNrdKPB4eT8sbt3q+MW3N/cd6MLsbQ0lfPo4sX8e5qdrbyIDg5qFZw5aefYsep1a9NG3YcbPppcY8Yw8mPKrowztAkCgiiUke7B4bCvbX6W3gsX4NQO1eqchy6BatyZM7B06SXR3vKWEevXI/quazQ3Czk5airvxx/Vz7n69eHRRyEkpHzHOXNGlfWJi1NTgS++WHzKqqjIKSqwzM/Z2UFCArl2Nqyse57vjv7KOa+LkGdL8Bkn7stpT8sTtpC2Ve2XkaFEhrlQ9qX9sbVVfSWdB65vIXbmjCrmaK4jdOyY6m/UKF901aoFgwap68rNzfdGmkvNaDQlERKS//8toqagDx1S8X4F3/PR0Sq1g5mi09L9+6vEs5pKR4sujeZm4MgRlaA0Lk79hB4+XC2brshcTF6eShDVpAm8/HLxpKclebUKCCyLQPLyQr76ik1bf+Abqz0knFoG9uDZ7Xbuy/UlsMMQlaNo5UoV8A3ql7qXlxJf7drle8wKCqfrWYiZawTt3p0vtIqumLKxUTFtPj7qXpu9V488cu3t0dw6GEZ+famiXunmzWHcOOX9PnxYLcAw/20YMHBg/tivv1bCv0WL/EKi5jqZmqtGiy6N5kYmL095tubPVx+UjRqpOKqKCAqR/A9uc0kfV9eyebXuvLOYQIo8Fck3x74hxk6lf2jk0oh7A++la7OuhdM/DBig0hz88Qd8/73KDDpjhiqjcs896thmvLyuvRC7VnzzjYpZK5rF39lZJWn09VWtVavrLmGj5ianaVO466787cxM9QPtyBGVD6vg+3HlSvWjy4xhqB9ezZur3HtVkOPqZkaLLo3mRuXUKeXdMtd9u+02mDCh/N4tk0kJEGdnGD1a9bm7q8eyerVACRgvLw6eOcg3fz9PVGIUoNI/jPEbQ79W/UpP/2Brq3Lz9O+vVuwtWaK8RNOnq5w7d9+dX2T30nksXI0Qq6j3a8MGlfX63nvz602mpyvBVaOGKnVibi1a6FgszfWFo6P6fypYuBrUD6/Jk5UgMxcSjY9XnrGTJyEgIH/spk3w5ZdqcY25NW2qmqtrlV7OjYQWXRrNjYaIypv1xRcqrUDt2qq+W3ljt0D9ov3vf9VUmI2NEggnTpTbqwVwLOUY83bNY3P8ZgCcbZ0Z6TOSwW0Gq/QPZcHeXsUxDRyoYlCWLoXISNWCglRgeUnCqKJCrCRRWVSINWmiyrqEhuYve1q1SomuoKD8HFi3367ispo108v2NTcmhqGSJXfsmN+Xk6P+Z44dU+EAZo4dyy8gWjSlU+3a8NVX+T829u5VsZoNGtzyAfw6T5dGcyORnKyywW/frra7dVPB8hX5ZXnwoCo8e/asCuS+6y54/fXCAgSUKMnJUYKjhCm5+AvxfLf7O9YfW48g2FnbMbTNUO7wuQMXu/KVACpGaqpKffHzz/lp0Nu1gzFjiv9KLwtFvVqLF6t7YBaV06apRQNjx6r4suxsdR5nZ1Xg2ezV27JFeRo7dVJfJBrNrUZurvJ+HT9euCUkKO/vJ5/kjzX/P1lZqf+Xxo1Va9RI/XC5BrVarzd0ni6N5kZn/XqV6DQtTeXdmjRJpYMoL3l58NNPKodXbq4K6H7uOfj77zJ7tQBOpp5k4Z6FrI5bjSDYWNkQ3iqcu3zvorZj7Wtzza6u6gN76FAlvJYtU2ksdu5Udo8cCe3bl92zVNQj5u+vxOSRI+raV62CmTPVr3gHB+VJTEuDzp3V+IKiraA3QKO51bCxyZ9WLIi5iruZ3FzlIYuPV4tKzFOV5h+OkyblH2PrVlV3sVGj/PqvjRopoXaTrK7Uokujud45dw4++0zFEYGaRnz8ceXCrwjffqs8PGlpKv/TuHHqWFeI1TJzMvUki/ct5u8jf5MneVgb1vRt2ZdRvqOo51zvKi+2FFxdVVD97bcr4fXLLyr9wquvqinRO+5Q9SPLOnWRlqa8VTt3qg/0+HioV09NrTo5qQ94Bwe1qODzz1UsS1mmIq/3HGEaTWVjGIU97zY2KgUNqP+d06fz48QSEtRKXjOHD+eHExSlbl0VQ2YY5OXlkbFqFRlWVqQ7OZFub09GTg7p6elkZGRYWnp6Ounp6WRmZhZ67rHHHiM4OLgy70Kp6OlFjeZ6RQT++kt90KSnq3iniRNVCZ+riRk6dw6mTFF1EW1tyywgjqcc5/u937P26FoEwcCgt0dvRvuNpqFLw5LPVVlkZqq4tp9+UlOuoD6UBw5U98fNrfD4ixfVdZvTX8TGwpNP5j9fp46atmzXDgID1RdC0ftQ0lSkv3/lrojUaG4yRITs7GyLICrUEhJIP3KE9FOnyEhKIv3MGdLPnSM9JYV0OzsyOnQgLS2NrKwsVdrMXE/JXA3dzk59Ttatm/8ZYE5Db21tseH//u//6NWrV6Vep55e1GhuJOLjVVb5PXvUdkiIit2qX//y+5XE2bPKU9aypRIUXl5qum7fvuIr+YpOvwGxybF8v/d7Np3YBIC1YU1vj96M9BlJY9fGV3ulFcPREYYNU4Hra9ao1Y7x8apG5MKFatp1yBCVnmHfPnj+eeXV++9/1f4tWyrPmLe3iilp2rSwkHVzKy6eSvIEXssVkRrNDYCIkJOTQ1paGunp6ZZHc7vSdnp6OrmXKz5ZEHt79UOpYUMlsM6cAcAAHOvXx8lkwjk3F6fsbJytrXGytsbZ2hrnDh1w6tQJJycnnPbvx3npUpxcXHCqVw/nMWOodbnqGpWMFl0azfVEVpbKu7V4sfqQcXODhx5SAqG83q2cHLX674sv1FSaefXQ3LlquqykqcRLiAjbErax9MBSS+oHWytb+rXsxx0+d1DfuQLirzKwtYV+/VT+oFWrVK6siAiVlfvvv1VQfLdu+dWLzclIDQOefbZ857qWKyK1ENNUI3l5eYUEUcHHkvqKPldm0VQKtra2uLi44OTkZHl0dnYu1krqd3JywsnJqXCuv9xc5fFOTFTN21vFgqmLVZ972dlqtXbt2tWaJ0+LLo3meiAvT4mEb7/Nny7r10/l3arIysSICPjf/9Q0WVKS8gy1aaN+KV4mQD7blM3qI6tZemApJ1JPAOBg48DA1gMZ5jXs2gXIXwvS05Un0BwDckLZS5MmatWjk5NaoXnwoBJaDRuq6w0IqPj0bFlSUyxefP1kyNfctJhMpkJiqLRW0piMjIyrOreNjQ3Ozs64uLhYmlkQmf8u2ldw2+5aix4bm/xs/EUZMgQGD1ZxnElJFZstuIZo0aXRVDc7d6q4rbg4te3pCfffrxJrlpc1a9QKx6QktcKxWTN1rP/+VwmuUgLkT6Wd4s9Df/LX4b9IuZgCQF2nugxtM5T+rfrjbOd89dd5tWRnK5ESFaVEVnS0itUw4+CgBFVQEAQHq1+0mzerDNtRUererFmj4j26dlUesLZtrz6nVkkrIq/nUkWa6wYRsYii1NTUQn+bBZK5v2BfWloameYUKhXE7DkqKpwu12d+vOaiqbIxB/dfB0lbtejSaKoDEfXFunhx/kqdevXgvvtUPFJFhMCBAyruKz5e/fJ79VV4+GH1t7d3sS9yU56JbQnb+P3Q7+w4uQNBCZiWNVsywnsEXZt3LT2DfFXzySewYoWaMjVjZaWuJShItTZtiq9eDAtT7fRp5Un8+281/fDzz6qZBVjXrkqAXYvM8ZVRqkgLsesWEeHixYuFxFJJQsn8d8H+9PR0KrqYzTCMYgKpqFgq7TknJyesdJWEauE6+UTVaG4R8vJU+Ywff4QYVZMQZ2c13TdkSPliDQ4cUCv4nJzgwQfVl7K9vQoSz8tTbnSzCCngjTl6/ihr4tawOm41ZzNVnUBbK1u6N+/OQM+BtK3TtnC8RFWzfDn884+KZTPn77G3V4LL3V0tBggIUJ5AJ6eyHbNBA1VKaMwYdd82blTtzJl8AebqqlYvtm+vPGVFV0CWh2tZqgi0EKsCcnNzSxVKJW0X/PtqYpwKTr8VbK6urpftKxbXpLkh0KJLo6kK0tPV1NbPP6s4K1A1+oYMUSvwyuP2vngRvvtOrchLT1dLof39VTOLE3v7QsHxZzPOsu7oOlbHrebI+SOW/sYujRnoOZA+Hn1wtS9gg4gKTjWXvcnKUvmxcnJUslIzs2erL///+7/8fDu//64KcA8YoHJrgYpTe+MNFdz6f/+Xf0++/Vbl5nniCZWhGvLjtHbvzhddw4bBiBFXJ4RAeRDNNeceeEDFe23YkJ9hft061QxDJXQ0izsfn7ILvNKoCiEGt7QYKzhdV7SV5oUyP2ZlZVX4vHZ2diUKpYLbrq6uODs7W/pcXV1xcnLCukAqA83NjxZdGk1lYTIp8bBypfpSN0+NNWwIw4dDnz5KHJWFAwdUzq4zZ9Tfhw4p0eLsrL50o6NV8eVLX+Li58eJRs5s2fcDW05s4eDZg5bpQxc7F7o160aYRxjeto0xjh+H1ItgFl3//KMKaXfqlC+QDEOlY7C1VR4j8y/sM2fUdGZ6er6tWVmQkqLEoZm0NHUvDh5UsVcHDqhiurt2qfHdu+eLLpNJ7Vv0S3DXLpXaoWXLsr4Cl8cw8oXQAw8oQbN9u6ojt3u38kTGxKh0FIah0k/4+alpyDZt1HTwtY4HuxbFu29wr5iIkJmZWWJAeEmep6IxUVczXVdQEF3J81Rw+4aLcdJUG1p0aTTXEpNJfcFt2aI8W+fOqX7DUNNiAwZAly6Xjx0q+gV54IDKGh8drfYLClLHyshQAsbeHkJDuZh7kf01s9jROpUth2aTEJlgOaStlS0drJoRltOEkAGTsHW+JLDef1/FSj3yiPK4gRJyWVlqebUZe3sYNUoF54vki43Jk5VHrF6BTPQDByrbjx1TQi06Woktk0mJrz/+UONsbJSIqVFDCZqC57K3V/1moqPh7bdVvrKXX1Z9IirTde3a8Nhj+ckP09PVas3yxKwYhhIwTZqoHGZZWapI7549qsXEKKF76FD+Pm5uyrvXpo0Sgi1aqGnM6hJicPXTk9dInJlMJjIyMkpcQVfUE1XSdl5eXoXPXdbpuoICy7yqTk/XaSobLbo0mqslJUVlR46IUI8FvT6NGyuPVlhYYWFipuiX3PbtKpg+JUWJmVWr1Je+yaSm5jIzVb3Bxx4je28UMTtWElVfiDrxNQd2HSA3LxdMeXD2DK4mGzp0HknHph0JbhSMw1NTIW49tB8GbS6JrtatlThyLrA60dsbFiwo3Af5U4UFqVNHFbk9c0Z90YOqn/b228XHursrgeLlpR49PUuOYXviCSUSHBzy+1xdVbB769aF7/v27eq5xx/P73/9dXVfX38dfH1VX0yMus62bZW37Eo4OCiBFxKitrOy1DH37lXHio5W59+2TbWC+7VooVrz5ur1b9KkcHxdRSirELualZMF+ky2tmR89BHpTZqQHhWlWpMmpNerp0RSdDTphw6RXqsW6S4uxUTV1a6sc3BwuGxQeEmeKHPT03Wa6xktujSa8iCi8kEdOAD796vH48cLj2nSRAVjF01JUJoHKyVFTT126ZJ/PHOx5b//hr59MdnZcsLJhmg3J2Kanyb6jyeJOx+HKScdIhPB1hajUWNa1WpFQG1vQmcuwDvbDespk/Pjsv6/vTOPsqSu7vjn1lv69Xu9zNIzwzD7ACMOgkZhEFFcwAODRJKAMkkwCsfk6NEYPDEcMCZBTZCg8UQimyLEuBu2cEQUD6BGI8MMA8MwG0szDLP2MN3Ty3v99ps/bhX1pqdHtul+PfT9nFPnVd36VdWv6lf1+33f/W2nnmrXbZw4dvlyWxpJpeJjIopFq0bctg0WLTJBAXD33Tb46tln28S1YF6fzk4TSEcdZcvrXmcC7aWQSBw4r+TSpbY0ks2a12tkAV8qmWCdOjW2/d//wa23mnC84AKzbdkC11xj3raLL47DbtxoXrYjj4zTLpOJe0mCvQe7d8dVkM88Y9WlfX3x2GAj7ykaWXvWLBNh0W9Xlw1c+3J7k40yewDHHkvlm9+ksGYNhUWLKKRSFFpaKJTLFDZvJi9CYds2Cr/8Jfnt2ym0t5PfuZP8pZeSL5UoPPkk+ZYWivm8dWTo6LBq4WhQ2ej+R9ra2syLOTAAHR1I6D3KVSrkCgXa5s+nbcGCUXvUjTZEQfLVCFTHmcD4m+04B6O/37wj0fLss1ZQN3qyIPYonHiiLbNnxwILTHCsXm3zJkZzKN52m+0vFOw6oSelNH0KPQMZtk0J2Dq9g61HPM3W7s1s/2gHlef6oDgM3ffCzBkIwoKWmZywaTcnTDuK4z5xU9wY/qyUFeS1WiygVqw4+L3WaiYY9uwxMbFr1/7L3r1x2AsvjEXXokUmMhurAufMsWrFsa6qSadjT1QjX/2qCa9GL9qiRfDOd+4/ue6uXSaYpkyJbarw2c+aaLvttvgc3/++vQPnnWfnEDHP1dSpVh3Z1WXhBgbsHXn2WROoO3aYWN2zx363bz8guqpKCSh2dDDc3k6xvZ3hbJZCSwvD6TTDySTDqRTDQUABGK7XKQwPMxwujRP8Dg8PU2kcViNixowXBBH3328CKRJJQWCDyYIJqXweCQKys2aRKxZpS6XIdnSYeFqwgFxLC7lnniE3YwZt+/aRO+MMcscfT+4f/5G2Wo3c0BDZ666zqrrIm9bba3NdNlZrLl68v2jctMnE8YtVdx5G7dMcZyRjKrpE5Czga0ACuElVrxqxX8L9ZwMF4COqumYs4+Q4QDwBcrTs3WtiI1p6eg4UV1EhNX++NTKPPA35vFUrLlwYC64//mMTU/W6DUPQ00N56zP0dbbQm1R6V/43vXO76D2mQM/sQXa3C7vf08G+aRkoLIUNG6E6DL2PQKUdchlmds1nyWPbOeaIE1hy+qc4aupRtFYUWn5qoqKx9+HFF5uAaGxUvH27VY/Nnh23Adq0yQZO3bt3/7AjSSbN8zN3blyNCNa27IYb9g87EdrFjOygcNpptjRy/PFw9dX7e/VKJav6LBZfEFyqSm3tWkqPPUbp1FMptbVRKpUo3XMPpR/+kNIpp1A65xyz9fRQ/Na3KE6dSnH5ckpHHklx2jSKq1dT6uuj2NnJcD5Psb+fYm8vw4ODFMtltFZ76fcmYp6zZNKWRCJekkkSqdQLU6Vkczly7e20LlxItq2NXEeHCajOTrIDA+T27CG7dCm5446zKVd27CDX3U3rW96CvP71ccP8SsWE5WWXWRzWrjXb9OkmRNetM/E2b54JzWjO0JfTvuz3VHf+XtvLaZ/2amwvN6zjjMKYiS4RSQDXAu8FtgGrROQuVd3QEGw5cEy4nAxcH/6OL838OJtlm2jxebE4vuENVk1VqZhweOwx2543zwrKzZvjCZy7uqzQfPppWzo7rSpqaMiq7qLqu2iYhr4+E0jZrFW91WpofohacZjqkqMpv/s0ylKncvNNlAf3UcxvpdRVo7jlt5S+u5vixscoJOoM3z6L/Cf/isJz3RTmb2VQKgyklcEZDzFwTIry8UWohUM8lO+HnjY4ewE82hdWqWVJJtPMPGIus3fA/Of6mT/jD5n3jnOY1zmP7JNboGOV3c+D3VDcYFVr+bxVb/3kJ7aez5vnYnDQBkc96yy7z3Xr4NprbXqhSHS1tlp7LBHz2nR1WbVXVA02e7atd3XFDdXHCFVFValWq9TrdarVKrVajVqtRrVafWG7Uqm8YKtUKvvZI1u0jNyuVCqUy+UD1svl8oHLhReakCqV0KEhe8+uvDJum7V3r4nz+++3dxLMc/n44/YuNfa+XLvWjn/jG+NOAn19ln4LFpCeM4fWRILMvn20btxI65QptC5ZQmutZsvGjfY7Zw7ZapXWRILswACtlQq56dNtMt9EgtZymdTgIAIWz1LJrvHkk5Z+jR7JqFp27VqLbzode/BWr7Z3I52GZcvsPufNs04XqZRVJ+/aZW3XHnnE1oeG7BtMpawTRhDYM3jiCTtntQp33GHf2owZ9t7dfbd5WX/xC3tfZ82ya913nx2fz9v7t3u3De0hYvGePduuuXKlhfn4x2Mh9s1vWri//EvLL1IpuOUWs1100asTdhNJBL4W8vWJEp9xRF5p99oXPbHIKcAVqnpmuH05gKp+qSHMjcAvVfUH4fZm4F2qurPxXCeeeKKubmyseijZtImLzj/J2jAAtLXbFOb5IaiHz2bKFCuk9z5vjZTrdcukOjrMVlfLOFpaLCErFSsEi0XzHuRyYQYyBHUAtTYQbW37H59pgY4p0LcXFKjW7EM+YpZVT6jauRNJSCasqilKvlQaEgFUK2YTIEjYeq2KipitJWOZX3u7ZZKqUKuCBBbHckM3/2ToAdB63GMtmTJRUqvatghkWsN2NBU0nbbrdHVZRlmp2jYCmQxarZgtELteeztaLNq9IJAI0Gwr1NXs9RokkqgAnVPQfb1orQ6C3VMyQV3rUKtbmCBAMxnqtQqUK6hAXQRNJVFR6pUqCtRTCXRqJ7VEAn1+D3WgHkAtnaQuUK9ZOESsfVG1aoVCLexVlclAKmn3EhWuqZQVEK0ZE3u1ut1nWxskkgTlCq0Dw+QkTbZtKrlagtZqQNu+PO21JB3vP5/cwiWICPqb31jhfcopNlYUoE88AQ88sN/rq6qM/IKV+LXgpJPQ44+3cD09lukccQR69NHWtb5eR/N5NOztV6/XX+hyH61HS+N2tD7SdrClVqv93vVIXE1UEokE6XSadDpNJpOhpaVl1CWTSpGpVGhJJmk58kgymQytra20rFpFplgkc845tE6dSiaTIXPvvWRWrSKzYgWJyAu3cqV1ADj5ZPjc58ymalWYYGOlhVWAfOEL1pHgIx+xqrp83oTJ3XdblfZb32oCZe9eEzuplHn7ikVbVq+2Y5YutXcU4irQyKsJFmb9esvzGqemirxd0eTpQ0M25lqxaPHp6jLbrl3xRMMzZ1p7sGhYkOnTbSDafN7sxaLd3wknWJwefdQETa1mf7Iajy+XTXxNm2a9SjMZ80R3dpqo27rVbENDlt91dFie1Npq12tvt3jv22e2YtHCRL1sI+E8a1bsUdy61cIODVm5kM2aSMxm7ZydnbZ/zx67j0TCvNBDQzY+XxDE7eB27rQ/gNG5Tz3V8o3ubot3EFgnnO5ue/7ptKXhGWfYNX/3OzuutdVsLS0mgJ9+2sImEnDmmfbNb9hg+5NJ+xO2fbtNkZVKmf2ss+zZ3XuvXTebtbaeIvDjH9s72N5uPZxFrH1kpWLhzj3XbHfcYe9bS4t5P6P3dWjI4rJihb0Tzz8PP/qRPeds1moFwM5ZKtnxH/iAnfP22+25JpM2VA3AnXdaXixi7TNTKbMVCvbMly+369xxh70j5bI928WLzVav2/vxox+NqfASkYdV9cSR9rGsXpwDNLYw3saBXqzRwswBdjJerFvHfYN5StWwmOodODDMnj6slG8o3sp56C+EYgQr5cpFWLs+HFiyFocvDx14zt5B6Bs68PjBXbFoimzPPGfCTAiF4CijH5ca/lVHx1I50JYPbUPFhusoB5TcdtKXds5CJT6+XLL1oR2xQAELWCzsv00dCvtsXSNbDQr5hnsFgprtKu6DyohzSjW+tmDnzIdiNwoqColwI3p0SaBcNcMA8bOQmq2oHRagyM4BgkAISorUIVBIzJpC0JolqNUJnt1KoqYkUwEJ7SBozZHYM4tkbx/JZJpkIk0KIdAUEA2wWSVPlTzwPIFdbPVj8MQW271zp2Us69ZZoQWWeUWNl4PAMrIgOLCKqbHqae9eG7qikZ074wFaJxhBEJBIJPZbksnkAb+pVOqF9WhJpVKj/qbTaVKp1H5LJKCi/S+2vOqG3aeffqDtootsaWTZMmtLNnKE86uussIjqlrs6IAPftDGNzv5ZBP7YN6oOXNMSL3znWaL2nLlcvG4a2BVq88+az0/Z8608991lw1u++532/GVihXiX/+6XSPyHlUq8G//ZgXieeeZSKhWrdBev96E1JIlVrB2d5vnavZsO+dxx8VjoqVSFtd63bxmv/2tFdwLF1rBOHOmebF377Z7WLjQhE1Pj8VLxM67ZYvFX8M/sJ2d9pyiseKqVfsegsDOL2LhEwlbLxRsX9QJQ9XuLQhsu7fXxJdq/B1G++t1e8Yi9s1GE9ZHnWGee87C1mrxcCzd3SbMymUTGZFnfssWi0Mk+DZvtuOj6u7hYevo0dtrtmzW4r5hgz2fp54ye0uL2dets3NGYqhQsFqCnh6zRd7EtWvtNwoXiWDYP9yasPVPoRA3X3j4YbPl8/asqtW4R28+H6fLqlUm5nfssOPB7A89FIet1ez4lSvNNjho71qpZCIzspXLFu7BBy1dBwctHYpFu05np9kSCTtv5I0dHIzTJRrbbpwZS0/XB4AzVfWj4faHgGWq+tcNYe4GvqSqvwm37wMuVdWHG8811p6uf7ngHVQG+gGx9jqC/ROohv+8Fy+G9jbYtNm8QtWafegzZ5hN61AO2zy8/e2WyA8+GHuS5s4x79S2bea5USxznDZ1/3POmGEZWzSRb6UC06fB4qPsQ6uH/w6nTLUPcPdue9Eib0wqZR9j5JWKqhL6+6MHbhlHtWr/MLdsseOrVQubTEJPD1JX89BMm2bH9PcjquYNmzHDhFVvX1j4i2WEffusgG8N/6GdtMwy3127IBBEAuToo+3ZbNsGySSSSFpD6L59sHEDBAFBJgNvf4d9+OvXI1u2IO3tFvaDH0R+/Wtk40aQAAkSBCctg+ECPPIoQZCAVJrg9NNheJjggV+aw6+tHbnwQwRBgFx/A0G1TqKjA/mrj5EQIfj3rxGUqySCJMF555OQgMR/30pQq8f/0KJqj127LON429vi6rY1a8yzecIJcUPt/n4kysgbFolEUaNoin5HtIUabcygyDZy32h2ETnoduNvtB7NxSYi9qxG7Gu0RWEiW+O+RCLxwr7GZaQ9ElGN+32cpMOIatXyj1QqfneLRcujoqpJsO3+ftuOOi2oWh6rGs86APZ9FQr2vUVDlvT3W17X2Wl2sLzxqafs21myJK42inqdHn20Ccp16yxPbW+3374+Ex2LF9u1s1m7h/XrTQwWi3FV4ebNJghbWsw7M2+e5a9RMwZVu56q2Y491sTX1q1w442x0Pv0p81+440WNpUyL+b27XD99fbtp1ImrDdtsiYAkVfry1+2+/zKV2Kv1Je/bH+avvAFe+65nLXLnDnTBmL+xjfs+GTSzrl+vV0nnbblS1+yPPiqq2JP2ZVX2nP+h3+IvVr//M/2rC+5xO5lyhT44hfN9pnPWLrmcnY+sPZ+hYLF8eqrzfa5z9m9p1J2D4sWWV75d39nz7m9PT7n5ZebwIviAxafoSE7PjrnFVfEHUCuvNL2ff7zVraoWjymTbPnMzxsQu7jH7dy6otftHenrc1mw2iCp8urF+G1X2ftcTws6/4dxzlM8Tzz8InjGNEM0ZUEngBOB7YDq4A/U9X1DWHeB3wS6714MnCNqi4bea4xF12O4ziO4ziHiHFv06WqVRH5JPBzbMiIm1V1vYh8LNx/A/BTTHA9hQ0ZcdHBzuc4juM4jnM4M6bjdKnqTzFh1Wi7oWFdgU+MZRwcx3Ecx3EmAi9z3gnHcRzHcRznleCiy3Ecx3EcZxxw0eU4juM4jjMOuOhyHMdxHMcZB8ZsyIhDiYjsAZ5tdjwcx3Ecx3FeAgtUdcZI42EhuhzHcRzHcQ53vHrRcRzHcRxnHHDR5TiO4ziOMw646AJE5CwR2SwiT4nIZc2Oz2RFROaJyAMislFE1ovI34T2aSLyCxF5Mvyd2uy4TkZEJCEij4jIT8JtT5cJgIhMEZFbRWRT+O2c4mnTfETk02E+9riI/EBEMp4uzUFEbhaRHhF5vMF20LQQkctDPbBZRM48lHGZ9KJLRBLAtcByYCnwpyKytLmxmrRUgb9V1dcDbwU+EabFZcB9qnoMcF+47Yw/fwNsbNj2dJkYfA34maoeC7wRSyNPmyYiInOATwEnquobsKnwVuDp0iz+EzhrhG3UtAjLnBXAceEx14U64ZAw6UUXsAx4SlW7VbUM/BA4t8lxmpSo6k5VXROuD2KFxxwsPb4dBvs28EdNieAkRkTmAu8Dbmowe7o0GRHpAE4DvgWgqmVV3YenzUQgCbSKSBLIAjvwdGkKqvproHeE+WBpcS7wQ1Utqeoz2NzQyw5VXFx0WaH+XMP2ttDmNBERWQj8AbASmKWqO8GEGTCziVGbrPw7cClQb7B5ujSfxcAe4Jaw6vcmEcnhadNUVHU78BVgK7AT6FfVe/F0mUgcLC3GVBO46AIZxebjaDQREWkDbgMuUdWBZsdnsiMi5wA9qvpws+PiHEASeDNwvar+AZDHq6yaTtg+6FxgEXAkkBORC5sbK+clMqaawEWXqdh5DdtzMTew0wREJIUJru+p6u2hebeIzA73zwZ6mhW/ScqpwPtFZAtW/f4eEfkuni4TgW3ANlVdGW7fiokwT5vmcgbwjKruUdUKcDvwNjxdJhIHS4sx1QQuumAVcIyILBKRNNaA7q4mx2lSIiKCtU3ZqKpfbdh1F/DhcP3DwP+Md9wmM6p6uarOVdWF2Pdxv6peiKdL01HVXcBzIvK60HQ6sAFPm2azFXiriGTDfO10rI2qp8vE4WBpcRewQkRaRGQRcAzw0KG6qI9ID4jI2ViblQRws6r+S3NjNDkRkbcD/wusI2479FmsXdePgflYZvYBVR3ZKNIZB0TkXcBnVPUcEZmOp0vTEZE3YR0c0kA3cBH2h9rTpomIyOeBC7Be2Y8AHwXa8HQZd0TkB8C7gC5gN/BPwJ0cJC1E5O+Bi7G0u0RV7zlkcXHR5TiO4ziOM/Z49aLjOI7jOM444KLLcRzHcRxnHHDR5TiO4ziOMw646HIcx3EcxxkHXHQ5juM4juOMAy66HMdpOiIyXUQeDZddIrI9XB8SkevG6JqXiMhfjGJfKCKPH8LrpEXk1+EcfI7jTGI8E3Acp+mo6l7gTQAicgUwpKpfGavrhQLoYmz09jFFVcsich82ZtP3xvp6juNMXNzT5TjOhEVE3iUiPwnXrxCRb4vIvSKyRUT+RESuFpF1IvKzcAopROQtIvIrEXlYRH4eTfUxgvcAa1S12nDMWhH5HfCJhusvFJH/FZE14fK20P4dETm3Idz3ROT9InKciDwUeukeE5FjwiB3An8+Fs/IcZzDBxddjuMcThwFvA+bTPi7wAOqejwwDLwvFF7/AZyvqm8BbgZGm2HiVKBxAu9bgE+p6ikjwvUA71XVN2OeqmtC+03YyO+ISCc2r95PgY8BX1PVNwEnYvO4ATwOnPQK79lxnNcIXr3oOM7hxD2qWhGRddi0XT8L7euAhcDrgDcAv7Ap70gAO0c5z2xsLrxINE1R1V+F+74DLA/XU8DXw6l2asASAFX9lYhcKyIzgT8BblPVaugp+3sRmQvcrqpPhuFrIlIWkXZVHTxEz8JxnMMMF12O4xxOlABUtS4iFY3nMatj+ZkA60fxWI1kGMiE6wIcbD60T2Nztb0RqxkoNuz7DlZluAJrH4aqfl9EVmLeuJ+LyEdV9f4wfMuI4x3HmWR49aLjOK8lNgMzROQUABFJichxo4TbCBwNoKr7gP5wwnXYv+1VJ7BTVevAhzDPWcR/ApeE51gfXm8x0K2q1wB3ASeE9unAHlWtvPpbdBzncMVFl+M4rxlUtQycD/yriKwFHsXaW43kHuC0hu2LgGvD6sHhBvt1wIdF5EGsajHfcK3dmHi7pSH8BcDjIvIocCzwX6H93VibL8dxJjESe+cdx3EmDyJyB3Bp1O7qFRyfxdqSvVlV+18k7O3A5aq6+ZVcy3Gc1wbu6XIcZ7JyGdag/mUjImcAm4D/eAmCKw3c6YLLcRz3dDmO4ziO44wD7ulyHMdxHMcZB1x0OY7jOI7jjAMuuhzHcRzHccYBF12O4ziO4zjjgIsux3Ecx3GcccBFl+M4juM4zjjw/yRG7hjA+Fe6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.4081, 'epsilon': 0.171, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACkEklEQVR4nOydeVxVVff/34dJEFCcxRE0RJkFRc0RJzTNHDI1cyqzybL6PZU+T2XTU32bNJt7GmwwNTRNzcpMzTlFRZxRFFEgUVHm8bJ+f2zvZUZQAYf9fr32695z7j7nrHPO5Z4Pa6+9liEiaDQajUaj0WiqFquaNkCj0Wg0Go3mVkCLLo1Go9FoNJpqQIsujUaj0Wg0mmpAiy6NRqPRaDSaakCLLo1Go9FoNJpqQIsujUaj0Wg0mmrApqYNqAgNGzYUNze3mjZDo9FoNBqN5rLs2rXrnIg0Kr7+hhBdbm5uhIeH17QZGo1Go9FoNJfFMIyTpa3Xw4sajUaj0Wg01YAWXRqNRqPRaDTVgBZdGo1Go9FoNNWAFl0ajUaj0Wg01UCViS7DML4yDCPRMIz9ZXxuGIYxzzCMY4ZhRBqGEVhVtmg0Go1Go9HUNFXp6ZoPDCrn88GAx6U2DfikCm3RaDQajUajqVGqLGWEiGw0DMOtnC53Ad+KiADbDcNwMQzDVUQSqsqmsti/H/Lzq+dYhnFt+xXuW3ib0rY3jJJ9Cm9b1nJZzcqq4LX4eysrsLYu+r4y56TRaDQazc1GTebpag6cKrR8+tK6ahddr70G6enVfdRbD8NQ4svcbGxKNltbsLNTr+b3tWqpZm9f8N7BARwdoXZt1RwcwMkJ6tRRy1rgaTQajeZ6oyZFV2mPRal2KwAvL8jOrlhfuQoLr2bbsrY3ryvvs9L6lfZa/H15LT+/5Pv8fDCZ1GvhZl4nAnl5qlUlVlbg7KyaiwvUr1+0NWwIrq5Qr54WZxqNRqOpPmpSdJ0GWhZabgHE14QhL75YE0e9tTALNJNJtby8gldzy80t2nJyClp2NmRlFbxmZkJGhmqZmcpTmZqqWmYmJCerdvp02TbZ2UHTpkqANWsGbm7g7g4tWyqvm0aj0Wg015KafLSsAKYbhrEI6AIk10Q8l6Z6KBwHZmtbtcfKy1PiKyUFLl6EpKSCdv48nD0LCQmqT2ysaoWxtlbCy90dvL3Bx0eJMu0V02g0Gs3VUGWiyzCMhUAfoKFhGKeB2YAtgIh8CqwG7gCOARnAlKqyRXNrYWOjhg7r1YPWrcvul54OZ87AP//AqVNw4oRqCQkQE6Pa+vWqr4uLEl++vhAcrIYoNRqNRqOpDIZcbaBRNdCpUyfRBa811UVWFpw8CVFRcOCAmt2anFy0T7t2cPvtqrm61oydGo1Go7k+MQxjl4h0KrFeiy6NpnxEIC5Oia89e2DXrqITL9zdYcAA6NdPzZzUaDQaza2NFl0azTUiO1sJr61bYedOFcwPKm1F//4wZAg0b16zNmo0Go2m5tCiS6OpAnJzlfBauVJ5wswEBcE996h0JBqNRqO5tdCiS6OpYmJilPjasEGluQAV8zV5so770mg0mlsJLbo0mmoiNRVWrIBly9RQpI2NGnIcM0YlbNVoNBrNzU1ZoqsqC15rNLckzs4wfjx89pmK8TKZ4OefYdo0+O23q69MoNFoNJobEy26NJoqokEDmDED5s4Ff39IS4OPPoLXX1feMI1Go9HcWmjRpdFUMW3awKuvwrPPqiLd27fD9OkQGVnTlmk0Go2mOtGiS6OpBgwDevaEefOgQwdVkuj55+Hbb6u+ALhGo9Forg+06NJoqpHGjeGNN2DsWLUcFgb/+Y8aetRoNBrNzY0WXRpNNWNtrQLt33hDxX0dPAgzZ6pi3BqNRqO5edGiS6OpIby94Z13oGVLVevx2WchPr6mrdJoNBpNVaFFl0ZTgzRsCP/3f+DpCYmJSnhFR9e0VRqNRqOpCrTo0mhqGGdneO01CAyE5GSYNUvPbNRoNJqbES26NJrrAHt7eOEF6NULMjPh5ZfhyJGatkqj0Wg01xItujSa6wQbG/jXv2DAAFW78ZVXICGhpq3SaDQazbVCiy6N5jrCMOCxx6BTJ0hJgdmz1ZCjRqPRaG58tOjSaK4zrK3hueegbVvl6Xr1VVU4W6PRaDQ3Nlp0aTTXIfb2ysvVuLGK7Xr3XcjPr2mrNBqNRnM1aNGl0Vyn1KsHL72k6jVu2wZffFHTFmk0Go3matCiS6O5jmnZUtVotLGBlSthw4aatkij0Wg0V4oWXRrNdY6PDzz8sHr/8cd6RqNGo9HcqGjRpdHcAAwcCN27qxxe77wDeXk1bZFGo9FoKosWXRrNDYBhwPTp0KgRREXBggU1bZFGo9FoKosWXRrNDYKTk0qeahiwdKkuFaTRaDQ3Glp0aTQ3EF5eMHYsiKg0EikpNW2RRqPRaCqKFl0azQ3GmDHQoQMkJcH77ysBptFoNJrrHy26NJobDGtrNczo6Ag7dsC6dTVtkUaj0WgqghZdGs0NSOPGMG2aev/VV5CaWrP2aDQajebyaNGl0dyghISoHF4pKfDttzVtjUaj0WguhxZdGs0NimHAo4+qbPW//QaHD9e0RRqNRqMpjyoVXYZhDDIM44hhGMcMw5hZyud1DcNYaRjGXsMwDhiGMaUq7dFobjZatoQRI9T7jz8Gk6lm7dFoNBpN2dhU1Y4Nw7AGPgIGAKeBnYZhrBCRg4W6PQYcFJE7DcNoBBwxDGOBiORcbv8mk4mkpCRyc3OrxH6N5kYhJAQcHCArC3buhFatatqi6xdbW1vq16+PtbV1TZui0WhuQapMdAHBwDEROQ5gGMYi4C6gsOgSwNkwDANwApKAChU4SUpKwt7enoYNG6I212huXays4K+/IDYW/Pygdu2atuj6Q0RIS0sjKSmJRo0a1bQ5Go3mFqQqhxebA6cKLZ++tK4wHwIdgHhgHzBDRPIrsvPc3FycnJy04NJogObN1VBjXh7s2lXT1lyfGIaBk5OT9o5rNJoaoypFV2lqqHgax1AgAmgGBAAfGoZRp8IH0IJLo7EQFKSC6k+dgoSEmrbm+kT/Zmg0mpqkKkXXaaBloeUWKI9WYaYAP4niGHACaF+FNl1T/vvf/+Lt7Y2fnx8BAQH8/fffNWJHREQEq1evtiyvWLGCN998E4DJkyezZMmSEtts2LCBoUOHVpuNmqqndm2VQgJgzx6dqV6j0WiuN6oypmsn4GEYhjsQB4wF7i3WJxboB2wyDKMJ4Akcr0Kbrhnbtm1j1apV7N69m1q1anHu3Dlyci4b/18lREREEB4ezh133AHAsGHDGDZsWI3YoqlZPD0hKgouXoSYGHB3r2mLNBqNRmOmyjxdIpIHTAd+Bw4BP4rIAcMwHjYM4+FL3V4FbjcMYx/wJ/CciJyrKpuuJQkJCTRs2JBatWoB0LBhQ5o1a4abmxvnzqlTCA8Pp0+fPgD89ddfBAQEEBAQQMeOHUm9lEL8rbfewtfXF39/f2bOVFk1oqOjGTRoEEFBQfTs2ZPDlxIwTZ48mYcffpiePXvSrl07Vq1aRU5ODi+++CKLFy8mICCAxYsXM3/+fKZPn26xde3atUW2KU56ejr3338/nTt3pmPHjvz8889Vdt00VYu1tQqkB4iM1CkkNBqN5nqiKj1diMhqYHWxdZ8Weh8PDKxKG6qKgQMH8sorr9CuXTv69+/PmDFj6N27d5n933nnHT766CO6d+9OWloa9vb2/Prrryxfvpy///6b2rVrk5SUBMC0adP49NNP8fDw4O+//+bRRx9l3aUCezExMfz1119ER0cTEhLCsWPHeOWVVwgPD+fDDz8EYP78+UWOXdo2hfnvf/9L3759+eqrr7h48SLBwcH0798fR0fHa3jFNNWFu7tKlHrxIhw9Cu1vmAF7jUajubmpUtFVXdx5Z9Xsd+XKsj9zcnJi165dbNq0ifXr1zNmzBhLHFVpdO/enaeffprx48czcuRIWrRowdq1a5kyZQq1L83vr1+/PmlpaWzdupXRo0dbts3Ozra8v+eee7CyssLDw4M2bdpYvGDlcblt1qxZw4oVK3jnnXcAyMrKIjY2lg4dOlx235rrD8MAf3+VQuLAAWjTBuzsatoqjUaj0VxWdBmG0R14CWh9qb8BiIi0qVrTrn+sra3p06cPffr0wdfXl2+++QYbGxvy81XWi6ysLEvfmTNnMmTIEFavXk3Xrl1Zu3YtIlJiNlV+fj4uLi5ERESUeszi/SsyG+ty24gIS5cuxdPT87L70twYNGumimInJsKhQ0qEaTQajaZmqYin60vgKWAXcF1GiJTnkaoqjhw5YvEegQpmb926NZmZmezatYvBgwezdOlSS//o6Gh8fX3x9fVl27ZtHD582DJEee+991qGF+vXr4+7uzthYWGMHj0aESEyMhL/S0/NsLAwJk2axIkTJzh+/Dienp4cO3bMEiNWGqVts337dsvnoaGhfPDBB3zwwQcYhsGePXvo2LFjFV05TXVgGBAQAGvWqKFGDw+dMFWj0WhqmooE0ieLyK8ikigi582tyi27zklLS2PSpEl4eXnh5+fHwYMHeemll5g9ezYzZsygZ8+eRUqNzJ07Fx8fH/z9/XFwcGDw4MEMGjSIYcOG0alTJwICAizDewsWLODLL7/E398fb2/vIoHtnp6e9O7dm8GDB/Ppp59ib29PSEgIBw8etATSF6e0bQrzwgsvkJubi5+fHz4+PrzwwgtVdNU01UnDhiphqskE+/bVtDUajUajMeQyyXwMw3gTsAZ+AizBRSKyu2pNK6BTp04SHh5eZF18fDzNmjWrLhOuCyZPnszQoUO5++67a9oUzQ1CSgr88ot6f8cdULduzdpzPXAr/nZoNJrqxTCMXSLSqfj6igwvdrn0WnhjAfpeC8M0Gk3VUacO3HabmsW4bx/06FHTFmk0Gs2ty2VFl4iEVIchmstTPBWERlMRvL0hOlqVB0pO1t4ujUajqSkuG9NlGEZdwzDeMwwj/FJ71zAM/bOt0dwg1K4NbduqskD799e0NRqNRnPrUpFA+q+AVOCeSy0F+LoqjdJoNNcWLy+wsoLYWBXnpdFoNJrqpyKiq62IzBaR45fay8Atn6NLo7mRcHRUSVJFVMJUjUaj0VQ/FRFdmYZhWMJvLyVLzaw6kzQaTVXg7a28XTExUE5aN41Go9FUERURXY8AHxmGEWMYxkngQ+Dhy2xzS+Dk5HTZPps2bcLb25uAgAAyMyunVZcvX87BgwevmV2ZmZn07t0bU6EqyHPmzMHe3p7k5ORKH+daEBERwerVqy/f8SqZP38+8fHxluWpU6de0bWNiYnBx8fnsv3CwsLo0KEDISGVn4dS3NZrZdfZszH85z8+RbxdL730kiU/XEXp06cPxVO4FGfu3LlkZGRUar9mrvQ7Udiu/v37c+HChSs6vkaj0VQVlxVdIhIhIv6AH+ArIh1FZG/Vm3ZzsGDBAv71r38RERGBg4NDpba9UtFVFl999RUjR44skrR14cKFdO7cmWXLll2z41SGmhJdX3zxBV5eXlV2vC+//JKPP/6Y9evXV3rbKxFdFaVWLZWt/sSJqvV21YToKsyECRP4+OOPr2ofGo1Gc60pU3QZhnHfpdenDcN4GpgKTC20rLnEhg0b6NOnD3fffTft27dn/PjxiAhffPEFP/74I6+88grjx48H4O2336Zz5874+fkxe/Zsyz6+/fZb/Pz88Pf3Z8KECWzdupUVK1bwzDPPEBAQQHR0NNHR0QwaNIigoCB69uxpKVx94sQJunXrRufOncvNJr9gwQLuuusuy3J0dDRpaWm89tprLFy40LL+wIEDBAcHExAQgJ+fH0ePHuWFF17g/ffft/T5z3/+w7x589iwYQO9e/fmnnvuoV27dsycOZMFCxYQHByMr68v0dHRgErs+vDDD9OzZ0/atWvHqlWryMnJ4cUXX2Tx4sWWbPpJSUkMHz4cPz8/unbtSmRkJKA8MpMmTWLgwIG4ubnx008/8eyzz+Lr68ugQYPIzc0F4JVXXqFz5874+Pgwbdo0RIQlS5YQHh7O+PHjLR7Hwl6R3377jcDAQPz9/enXr1+F7/v8+fMZOXIkgwYNwsPDg2effdZiw+bNm3n44Yd55plnMJlMPPPMM5b7/tlnn1n28dZbb+Hr64u/vz8zZ84s1dZdu3bRu3dvgoKCCA0NJSEhAYBdu3bh7+9Pt27d+Oijjypks5UVuLur2K7ier5Pnz4899xzBAcH065dOzZt2gQoD+nYsWPx8/NjzJgxRTy2a9asoVu3bgQGBjJ69GjS0tKYN28e8fHxhISEWDx9pfUD2LlzJ7fffjv+/v4EBweTnJxc4juRnp7O/fffT+fOnenYsaOlQkN5dg0bNqzId1qj0WiuC0Sk1AY8dOl1dintxbK2q4oWFBQkxYmLiyuxrrpxdHQUEZH169dLnTp15NSpU2IymaRr166yadMmERGZNGmShIWFiYjI77//Lg8++KDk5+eLyWSSIUOGyF9//SX79++Xdu3aydmzZ0VE5Pz58yW2FRHp27evREVFiYjI9u3bJSQkRERE7rzzTvnmm29EROTDDz+02FWY7OxsadKkSZF1r776qrzyyitiMpmkdevWcubMGRERmT59unz//feW7TIyMuTEiRPSsWNHERExmUzSpk0bOXfunKxfv17q1q0r8fHxkpWVJc2aNZMXX3xRRETmzp0rM2bMsJxLaGiomEwmiYqKkubNm0tmZqZ8/fXX8thjj1lsmj59urz00ksiIvLnn3+Kv7+/iIjMnj1bunfvLjk5ORIRESEODg6yevVqEREZPny4LFu2rMi1ExG57777ZMWKFSIi0rt3b9m5c6flM/NyYmKitGjRQo4fP15i+9I4ceKEeHt7i4jI119/Le7u7nLx4kXJzMyUVq1aSWxsbInjffbZZ/Lqq6+KiEhWVpYEBQXJ8ePHZfXq1dKtWzdJT08vcuzC2+bk5Ei3bt0kMTFRREQWLVokU6ZMERERX19f2bBhg4iI/Otf/7LYdTnbU1JEfvhBZOFCkVmzZsvbb79tOe7TTz8tIiK//PKL9OvXT0RE3n33Xcsx9+7dK9bW1rJz5045e/as9OzZU9LS0kRE5M0335SXX35ZRERat25t+T6X1S87O1vc3d1lx44dIiKSnJwsubm5Jb4Ts2bNku+++05ERC5cuCAeHh6SlpZWpl1mbrvtNjl37lyJ63A9/HZoNJqbGyBcStEzZSZHFRHzv+NrRWRL4c8uBdNfP9x5Z9XstxKVtIODg2nRogUAAQEBxMTE0KNY+u81a9awZs0aSzHptLQ0jh49yt69e7n77rtp2LAhAPXr1y+x/7S0NLZu3cro0aMt67KzVVWmLVu2WIprT5gwgeeee67E9ufOncPFxaXIukWLFrFs2TKsrKwYOXIkYWFhPPbYY3Tr1o3//ve/nD59mpEjR+Lh4YGbmxsNGjRgz549nDlzho4dO9KgQQMAOnfujKurKwBt27Zl4MCBAPj6+hYZXrvnnnssRcLbtGlj8dQVZvPmzZZz6du3L+fPn7fEmw0ePBhbW1t8fX0xmUwMGjTIcpyYmBgA1q9fz1tvvUVGRgZJSUl4e3tzZznfj+3bt9OrVy/c3d3LvPbl0a9fP+peyjbq5eXFyZMnadmyZZE+a9asITIykiVLlgCQnJzM0aNHWbt2LVOmTKH2pUrUpR37yJEj7N+/nwEDBgBgMplwdXUlOTmZixcv0rt3b0Dd919//bVcWw3DAMDZGdzc1BDj2bPQoIFh6TNy5EgAgoKCLNd048aNPPHEEwD4+fnh5+cHqGt38OBBundXPwc5OTl069atxHHL6nfkyBFcXV3p3LkzAHXq1CnV7jVr1rBixQpL7FlWVhaxsbFl2mWmcePGxMfHW76nGo1GU9NUpAzQB0BgBdbd0tSqVcvy3tramry8vBJ9RIRZs2bx0EMPFVk/b948ywOxLPLz83FxcSEiIqLUzy+3vYODA1lZWZblyMhIjh49anmY5+Tk0KZNGx577DHuvfdeunTpwi+//EJoaChffPEFffv2ZerUqcyfP59//vmH+++/v9Rzt7KysixbWVkVuQ7FbSzNZimlFqi5X+H92traWtabj5OVlcWjjz5KeHg4LVu25KWXXipyzqUhIpe9duVR0fv+wQcfEBoaWmT9b7/9dtljiwje3t5s27atyPqLFy9W2u4GDRpYgsu9vdUsxlOnkggOdi9xPsXPpax7NWDAgMsO45XVLzIyskLnICIsXboUT0/PEp+Vt31WVlal4yg1Go2mKikvpqubYRj/D2hkjuO61F5CFcC+fli5smraNSY0NJSvvvrKEs8SFxdHYmIi/fr148cff+T8+fMAJCUlAeDs7EzqpWjnOnXq4O7uTlhYGKAeRHv3qvkM3bt3Z9GiRYCK2yqNevXqYTKZLCJk4cKFvPTSS8TExBATE0N8fDxxcXGcPHmS48eP06ZNG5544gmGDRtmiasaMWIEv/32Gzt37iwhICpCWFgY+fn5REdHc/z4cTw9PYucI0CvXr0s57BhwwYaNmxYpgekOOZza9iwIWlpaRbPElDiOGa6devGX3/9xYkTJ4CCa79jxw4mTpxY6XMsjdDQUD755BNL3FlUVBTp6ekMHDiQr776yhJwXtp99/T05OzZsxbRlZuby4EDB3BxcaFu3bps3rwZKHrf4+LiSo1Nc3JywtXVlT///JM6daBOnST27v2NJk3KL8hY+J7s37/f8n3o2rUrW7Zs4dixYwBkZGQQFRVV4hzK6te+fXvi4+PZuXMnAKmpqeTl5ZW4V6GhoXzwwQcWQb5nz55y7QL19/HPP//g5uZW7rlpNBpNdVLe7EU7wAnlDXMu1FKAu6vetJuPgQMHcu+999KtWzd8fX25++67SU1Nxdvbm//85z/07t0bf39/nn5azVMYO3Ysb7/9Nh07diQ6OpoFCxbw5Zdf4u/vj7e3tyWg+P333+ejjz6ic+fO5aZ+GDhwoOUhvWjRIkaMGFHk8xEjRrBo0SIWL16Mj48PAQEBHD582CI+7OzsCAkJ4Z577ikyA7KieHp60rt3bwYPHsynn36Kvb09ISEhHDx40BI0/dJLLxEeHo6fnx8zZ87km2++qfD+XVxcePDBB/H19WX48OGWYSsoCOQvnrqjUaNGfP7554wcORJ/f3/GjBkDQGxs7DXzkkydOhUvLy8CAwPx8fHhoYceIi8vj0GDBjFs2DA6depEQECAZfissK0mk4klS5bw3HPP4e/vT0BAAFu3bgXg66+/tgwHF7Y1ISEBG5vSndjffvstr732GgEBAcyc2ZeRI2eTldWWnJyy7X/kkUdIS0vDz8+Pt956i+DgYEBdu/nz5zNu3DjLxAfzkPG0adMYPHgwISEhZfazs7Nj8eLFPP744/j7+zNgwACysrJKfCdeeOEFcnNz8fPzw8fHxzJZpCy7QE0y6Nq1a5nXQaPRaGoCo7ThnCIdDKO1iJysJntKpVOnTlI8L1B8fDzNmjWrIYtuTPbs2cN7773Hd999d0Xb5+fnExgYSFhYGB4eHpXadvLkyQwdOpS7774x9PozzzzDhAkTSsQJ3Qh8+OGHtGrVimHDhl2277p18M8/4O+vhhxvFmbMmMGwYcNK9fjp3w6NRlPVGIaxS0Q6FV9fkX8DMwzDeBvwBuzNK0Wk7zW0T1MNdOzYkZCQEEwmU6U9VQcPHmTo0KGMGDGi0oLrRuTtt9+uaROumOnTp1e4r5eXEl1HjoCnJ9wsjiEfH59Kpf/QaDSa6qAinq41wGLgX6hM9JOAsyJScopcFaE9XRpN1SACa9bA+fPQqRO0a1fTFlU9+rdDo9FUNWV5uipSBqiBiHwJ5IrIXyJyP9D1mluo0WiqHcNQ3i6AQ4cgP79m7dFoNJqbmYqIrtxLrwmGYQwxDKMj0KIKbdJoNNVIixZQpw6kp8PJGo3e1Gg0mpubioiu1wzDqAv8P9QQ4xfAU1VqlUajqTYMAzp0UO8PHlRDjhqNRqO59lw2bFZEVl16mwyEVK05Go2mJnBzg337IDkZ4uOhefOatkij0WhuPspLjvqBYRjzymrVaeT1irW1NQEBAXh7e+Pv7897771H/qWgmPDwcEuJkuudyZMnF0kkWpgnn3ySjRs3WpbPnj2Lra1tkaLN1c3rr79e5ceIiIhg9erVluUVK1bw5ptvXtG+ChfXLouzZ8/SpUsXOnbsaCk0faW2Xold1tbQvr1aX7gQ9uTJk3F3d8ff35927doxceJE4uLiLrvvuXPnWpK+VpZrcT79+/e3ZN/XaDSa64XyhhfDgV3ltFseBwcHIiIiOHDgAH/88QerV6/m5ZdfBqBTp07Mm3dja9OkpCRLbUIzYWFhdO3a9bKlX6qSmhBdw4YNY+bMmVV2vD///JP27duzZ88eevbsWaltr1SkFOe228DOTtVjPHu2YP3bb7/N3r17OXLkiCXtSE552VSpGdFVmAkTJvDxxx9f1T40Go3mWlOm6BKRb8pr1WnkjUDjxo35/PPP+fDDDxERNmzYwNChQwFVUub222+nY8eO3H777Rw5cgRQ5VDuuece/Pz8GDNmDF26dLH8p+7k5MR//vMf/P396dq1K2fOnAHg5MmT9OvXDz8/P/r160dsbCygxJCPjw/+/v4WkWQymXjmmWfo3Lkzfn5+Fu+UiDB9+nS8vLwYMmQIiYmJpZ7TkiVLLEWlzSxcuJB3332X06dPWzweJpOJyZMn4+Pjg6+vL3PmzCE6OprAwILynEePHiUoKAgANzc3/v3vf9OtWzc6derE7t27CQ0NpW3btnz66aeAKgHUq1cvRowYgZeXFw8//DD5+fnMnDmTzMxMAgICGD9+PADvvfcePj4++Pj4MHfuXABiYmJo3749U6dOxcfHh/Hjx7N27Vq6d++Oh4cHO3bsKPPe5OTk8OKLL7J48WJLVvT58+db8l+dOXOGESNG4O/vj7+/vyVDfEUo7b5GRETw7LPPsnr1akvG/DVr1tCtWzcCAwMZPXq0pXTUzp07uf322/H39yc4OJjk5OQStqanp3P//ffTuXNnOnbsaKlckJmZydixYy3ft8KZ+UHl6DKnjCjs7TJjGAZPPfUUTZs2tRTXLs3OefPmER8fT0hICCEhIWX2q8rzGTZsWI3+Y6DRaDSlIiLlNmA9sK54u9x217IFBQVJceLi4kqsuyyHDon8+KN6vQY4OjqWWOfi4iL//POPrF+/XoYMGSIiIsnJyZKbmysiIn/88YeMHDlSRETefvttmTZtmoiI7Nu3T6ytrWXnzp0iIgLIihUrRETkmWeekVdffVVERIYOHSrz588XEZEvv/xS7rrrLhER8fHxkdOnT4uIyIULF0RE5LPPPrNsl5WVJUFBQXL8+HFZunSp9O/fX/Ly8iQuLk7q1q0rYWFhJc5l4sSJFhtERGJjY+W2224TEZFZs2bJu+++KyIi4eHh0r9/f0s/8/H79Okje/bssfSfN2+eiIi0bt1aPv74YxERefLJJ8XX11dSUlIkMTFRGjVqJCIi69evl1q1akl0dLTk5eVJ//79LTYWvu7h4eHi4+MjaWlpkpqaKl5eXrJ79245ceKEWFtbS2RkpJhMJgkMDJQpU6ZIfn6+LF++3HLdyro3X3/9tTz22GOW4xRevueee2TOnDkiIpKXlycXL14sce0K07t378ve18L7P3v2rPTs2VPS0tJEROTNN9+Ul19+WbKzs8Xd3V127NhRxPbits6aNUu+++47y73w8PCQtLQ0effdd2XKlCkiIrJ3794i3zczmZkiixaJLFggcuGCyKRJk0p8N2bMmCFvvvlmmXaa7/HZs2dr9Hxuu+02OXfuXIn7cUW/HRqNRlMJgHApRc9UJP/0vwq9twdGAXkVEXSGYQwC3kcVyP5CREoExRiG0QeYC9gC50Skd0X2XWkOH4bJkyEnR42hzJ9fEMRyDZFSpn4lJyczadIkjh49imEYlsLHmzdvZsaMGYDKoF245IydnZ3FUxYUFMQff/wBwLZt2/jpp58ANYTy7LPPAqro9eTJk7nnnnsYOXIkoLwLkZGRlnit5ORkjh49ysaNGxk3bhzW1tY0a9aMvn1LLy6QkJBAo0aNLMuLFi3innvuAVRdyAceeICnn36aNm3acPz4cR5//HGGDBnCwIEDAVVz8Ouvv+a9995j8eLFFu8SYClR4+vrS1paGs7Ozjg7O2Nvb8/FixcBCA4Opk2bNgCMGzeOzZs3lygjtHnzZkaMGIGjoyMAI0eOZNOmTQwbNgx3d3d8fX0B8Pb2pl+/fhiGga+vLzExMeXem/JYt24d3377LaDi+urWrXvZbcyUdV8Ls337dg4ePEj37t0ByMnJoVu3bhw5cgRXV1dLTcmyCoGvWbOGFStWWGo5ZmVlERsby8aNGy1xhn5+fqWWOLK3h7ZtISpK5e0qDfN3vCw7r5fzady4MfHx8TRo0KD0E9FoNJpqpiKzF4vHb20xDOOvy21nGIY18BEwADgN7DQMY4WIHCzUxwX4GBgkIrGGYTSujPGVYt8+JbiaN1fTs/btu+ai6/jx41hbW9O4cWMOFXpivfDCC4SEhLBs2TJiYmLo06cPULpAM2Nra4thGIB6sOflla5zzX0+/fRT/v77b3755RcCAgKIiIhARPjggw8IDQ0tss3q1ast25WHg4MDWVlZluWFCxdy5swZFixYAKjM3kePHsXDw4O9e/fy+++/89FHH/Hjjz/y1VdfMWrUKF5++WX69u1LUFBQkYdfrVq1ALCysrK8Ny+bz7W4jaXZXN41LL7fwsc0H6Ose1NVVOS+iggDBgwoMTwWGRlZofsmIixduhRPT88Sn1Vk+w4d4OhRlbOrtK/dnj176NevX5l2lmZPTZxPVlbWNStartFoNNeCy+bpMgyjfqHW0DCMUKBpBfYdDBwTkeMikgMsAu4q1ude4CcRiQUQkdKDi64Fvr7KwxUfD7a2avkacvbsWR5++GGmT59e4kGQnJxM80tz8OfPn29Z36NHD3788UdA1Tbct2/fZY9z++23s2jRIgAWLFhAjx49AIiOjqZLly688sorNGzYkFOnThEaGsonn3xi8d5ERUWRnp5Or169WLRoESaTiYSEBNavX1/qsTp06MCxY8cAOHLkCOnp6cTFxRETE0NMTAyzZs1i0aJFnDt3jvz8fEaNGsWrr77K7t27AbC3tyc0NJRHHnmEKVOmVPRSWtixYwcnTpwgPz+fxYsXW87V1tbWck69evVi+fLlZGRkkJ6ezrJlyyoViF7WvXF2diY1NbXUbfr168cnn3wCqHi2lJQUy/qKzOy7HF27dmXLli2Wa5+RkUFUVBTt27cnPj6enTt3ApCamkpeXl4JW0NDQ/nggw8sgnTPnj2AulZmwbx//34iIyMt20ycONHiiXR0hNatVXb65OQCu0SEefPmkZCQwKBBg8q0E4pev5o4HxHhn3/+wc3N7QrugEaj0VQNFUmOuouCmYzbUElSH6jAds2BU4WWT19aV5h2QD3DMDYYhrHLMIyJFdjvldG+vRpSnDnzmg0tmgO6vb296d+/PwMHDmT27Nkl+j377LPMmjWL7t27YzKZLOsfffRRzp49i5+fH//3f/+Hn5/fZYeq5s2bx9dff42fnx/fffcd77//PgDPPPMMvr6++Pj40KtXL/z9/Zk6dSpeXl4EBgbi4+PDQw89RF5enqVota+vL4888gi9e5c+ojtkyBA2bNgAKC/XiBEjinw+atQoFi5cSFxcHH369CEgIIDJkyfzxhtvWPqMHz8ewzAsQ46VoVu3bsycORMfHx/c3d0tx582bRp+fn6MHz+ewMBAJk+eTHBwMF26dGHq1Kl07Nixwsco696EhIRw8OBBSzB3Yd5//33Wr1+Pr68vQUFBHDhwgPz8fI4dO0b9+vUrfZ7FadSoEfPnz2fcuHH4+fnRtWtXDh8+jJ2dHYsXL+bxxx/H39+fAQMGkJWVVcLWF154gdzcXPz8/PDx8eGFF14A4JFHHiEtLQ0/Pz/eeustgoODLceMjIzE1dXVsmwuDZSaCv/61zOWlBE7d+5k/fr12NnZlWknqHs0ePBgQkJCauR8du3aRdeuXbG5WSp4azSam4PSAr2uRQNGo+K4zMsTgA+K9fkQ2A44Ag2Bo0C74vu6ZoH01xl5eXmSmZkpIiLHjh2T1q1bS3Z2dg1bVZTu3btbAuOvhLfffluef/75Sm9XeCLCjcC+ffvkqaeeqmkzrojk5GS5++67S6xfv14F1EdGVr9NV8sTTzwha9euLfWzm+G3Q6PRXN9wpYH0hmHYA48CPQABNgOfiEhWuRsqz1bLQsstgPhS+pwTkXQg3TCMjYA/EHU5u24GMjIyCAkJITc3FxHhk08+wc7OrqbNKsK7775LbGwsLi4uld52xIgRREdHs27dumtv2HWGj48P7733Xk2bcUXUqVOHsLCwEuu9vNRofFSUivO6kZxGPj4+9OvXr6bN0Gg0miIYcplCa4Zh/AikAt9fWjUOqCcioy+znQ1KPPUD4oCdwL0icqBQnw4ob1coYAfsAMaKyP7C++rUqZMUz+gdHx9Ps2bNLnd+Go3mChGBP/6Ac+cgKAhKiWO/IdG/HRqNpqoxDGOXiHQqvr4i/7t6ioh/oeX1hmHsvdxGIpJnGMZ04HdUyoivROSAYRgPX/r8UxE5ZBjGb0AkkI8ajtxf9l41Gk11YRjK27Vxo0of4eEBVhWJAtVoNBpNqVREdO0xDKOriGwHMAyjC7ClIjsXkdXA6mLrPi22/DbwdsXM1Wg01Unz5lC3rprFeOKEyuGl0Wg0miujIv+3dgG2GoYRYxhGDGoGY2/DMPYZhhFZ/qYajeZGxjDA21u9P3hQDTlqNBqN5sqoiKdr0OW7aDSam5VWrSAyUqWPiI1VObw0Go1GU3ku6+kSkZOAC3DnpeYiIifNrYrtu+5ZtmwZhmFY8hOBCtQ1l6spXPh6xYoVvPlmiUpIV8yTTz7Jxo0bAVi1ahUdO3bE398fLy8vS3HrqmLu3LlkZGRU6TFiYmL44YcfLMvh4eGWsi+VZfLkyZZySGWRnZ1N//79S83NVVlbr6VdpfVxcnKq1HEKfw/LIiIigtWrV5dYb2VVkLfrwIGyvV1X8p0obNeqVatKzXOn0Wg0NwsVyUg/A1gANL7UvjcM4/GqNuxGYeHChfTo0cOSJR6gWbNmpT5Ihw0bxsyZM6/JcZOSkti+fTu9evUiNzeXadOmsXLlSvbu3cuePXuqvJxNTYiuTp06MW/evCo73p49e8jNzSUiIoIxY8ZUatsrFV3XE2WJLgB3d6hdGy5ehLKS7l/td2LIkCGsWLGiyr9XGo1GU1NUJKbrAaCLiLwoIi8CXYEHq9asG4O0tDS2bNnCl19+WUR0xcTE4OPjU6L//PnzmT59OqC8F0888QS33347bdq0sYi0/Px8Hn30Uby9vRk6dCh33HFHqQJuyZIlDBqkRn7N5VPMtQ1r1aqFp6cnqampuLu7W0rmpKSk4ObmRm5uLn369OGpp56iV69edOjQgZ07dzJy5Eg8PDx4/vnnLefRvn17Jk2ahJ+fH3fffTcZGRnMmzeP+Ph4QkJCCAkJAZT4NGfEf+655yx2Ojk58dxzzxEUFET//v3ZsWMHffr0oU2bNqxYscJynJ49exIYGEhgYCBbt24FYObMmWzatImAgADmzJlTxCuSlpbGlClT8PX1xc/Pj6VLl1b4vrm5uTF79mwCAwPx9fXl8OHDJCYmct999xEREUFAQADR0dHs2rWL3r17ExQURGhoKAkJCQAcO3aM/v374+/vT2BgINHR0SVsNZlMPPPMM3Tu3Bk/Pz+L51FEmD59Ol5eXgwZMoTExKurfLVhwwb69OnD3XffTfv27Rk/frylXM5vv/1G+/bt6dGjh6VIOkB6ejr3338/nTt3pmPHjvz888/k5OTw4osvsnjxYounr3C/Tp06Eh//MwCRkSb+3//7l+Xaf/DBB6V+J9asWUO3bt0IDAxk9OjRpKWllWuXYRj06dOHVatWXdU10Wg0mrLIzM0k15RbcwaUljFVimaN3wfYF1q2B/Zdbrtr2a7XjPTfffed3H///SIi0q1bN9m1a5eIiJw4cUK8vb1FpGhm9a+//loee+wxERGZNGmS3H333WIymeTAgQPStm1bEREJCwuTwYMHi8lkkoSEBHFxcZGwsLASx544caKsWLHCsvzAAw9Io0aNZOzYsfL999+LyWQSEZHJkyfLsmXLRETks88+k6efflpERHr37i3PPvusiIjMnTtXXF1dJT4+XrKysqR58+Zy7tw5OXHihACyefNmERGZMmWKvP322yIi0rp1azl79qyIqHvRsmVLSUxMlNzcXAkJCbEcE5DVq1eLiMjw4cNlwIABkpOTIxEREeLv7y8iIunp6ZbM/FFRUWK+38Wz0hdefvbZZ2XGjBmWz5KSksq9V5MmTbJcx9atW8u8efNEROSjjz6SBx54oMT+c3JypFu3bpKYmCgiIosWLZIpU6aIiEhwcLD89NNPIiKSmZkp6enpJWz97LPP5NVXXxURkaysLAkKCpLjx4/L0qVLpX///pKXlydxcXFSt27dUu9vWbabcXR0tNhcp04dOXXqlJhMJunatats2rRJMjMzpUWLFhIVFSX5+fkyevRoi32zZs2S7777TkRELly4IB4eHpKWllbk+1lWvwUL0mTKlI/ljjtGSm5uroiInD9/3nJdzd+Js2fPSs+ePSUtLU1ERN588015+eWXy7VLROT777+X6dOnl3s9rpbr4bdDo9FUHXmmPIlPiZcdp3fI8kPL5cO/P5RZa2fJxGUTZegPQ2V3/O4qt4ErzUgPfA38bRjGMsBAFa3+sioE4FVx553qdeXKgnWvvAI7d8ILL4C5Lttvv8FHH0FoKFzyOpGUBJMmQf368M03FT7kwoULefLJJwEYO3YsCxcuJDAwsMLbDx8+HCsrK7y8vDhz5gwAmzdvZvTo0VhZWdG0aVOL16A4CQkJNGrUyLL8xRdfsG/fPtauXcs777zDH3/8wfz585k6dSpvvfUWw4cP5+uvv+Z///ufZZthw4YB4Ovri7e3t6X2Xps2bTh16hQuLi60bNmS7t27A3Dfffcxb948/vWvfxWxZefOnfTp08diz/jx49m4cSPDhw/Hzs7O4pHz9fWlVq1a2Nra4uvrS0xMDAC5ublMnz6diIgIrK2tLUWTy2Pt2rVFvIv16tW77DaFGTlyJABBQUFFvC1mjhw5wv79+xkwYACgClu7urqSmppKXFycpQ6kvb19qftfs2YNkZGRFi9lcnIyR48eZePGjYwbNw5ra2uaNWtG3759L2tr8QLqxdcFBwfTokULAAICAoiJicHJyQl3d3c8PDwAde8+//xzi20rVqzgnXfeASArK4vY2NhSz6F4P2fnWPbvX8uoUQ9b6hqWVm9y+/btHDx40PLdycnJoVu3bhw+fLhMuwAaN25MfHzxwhUajUZTkozcDE6nnC7REtISyMvPK3UbWytbLmZdrF5DC3FZ0SUi7xmGsQFVBghgiojsqVKrbgDOnz/PunXr2L9/P4ZhYDKZMAyDt956q8L7qFWrluW9XBoSMr9eDgcHB7KyilZi8vX1xdfXlwkTJuDu7s78+fPp3r07MTEx/PXXX5hMpiLDnubjW1lZFbHFysqKvDz1hS3+wC9NAJRns62trWWbwscpfIw5c+bQpEkT9u7dS35+fplCpvgxS7OlopjtsLa2tthRfP/e3t5s27atyPqUlJQK7V9E+OCDDwgNDS2yfvXq1ZW2u0GDBly4cMGynJSURMOGDS3Lhe9d4fMp6zgiwtKlS/EslmL+77//vmy/3Fx47TUhOdng7FkopPtLbDtgwAAWLlxYZH1ERES555+VlYWDg0OZn2s0mlsLESE5O5nY5FhOp5wmNjmWU8mnOJ16mqTMpDK3a1i7Ic2dm9PcuTkt6rSgmXMzWtRpQSPHRlgZNZfluTJHNlC1F6/8SVeVrFxZ1MsF8OKLap3ZywUwaJBaZ/ZygfJwrVxZKS/XkiVLmDhxIidPniQmJoZTp07h7u7O5s2br+o0evTowdKlS8nPz+fMmTNs2LCh1H4dOnTg2LFjgIpvKtwvIiKC1oXm9U+cOJFx48YxZcqUStsTGxtrER7mSQMAzs7OpKamAtClSxf++usvzp07h8lkYuHChfTu3bvCx0hOTsbV1RUrKyu+++47TCZTiWMUZ+DAgXz44YeWZbMomThxIjt27Kj0eRbH09OTs2fPWs49NzeXAwcOUKdOHVq0aMHy5csBNeMxIyOjhK2hoaF88sknlni6qKgo0tPT6dWrF4sWLcJkMpGQkMD69est28yaNYtly5aVsKVPnz4sXryYnJwcQMUGluUBNdO+fXtOnDhBdHQ0QBHxExoaygcffGARy3v2qP+hSjuH4v1sbWHAgIGsXfspkZFK3CUlJZXYvmvXrmzZssXyHc3IyCAqKqpcu8zXqbR4SI1Gc3MjIpzLOMeehD38fPhnPtzxIc/+8Sz3/nQvE5ZN4D/r/sMn4Z/wy9FfiEyMJCkzCVsrW9zqutGjZQ/Geo/lmdufYW7oXMJGh/H1XV/zWt/XeKTzI9zpeSdBzYJo4tSkRgUXVMDTZRjGi8BoYClKcH1tGEaYiLxW1cZdzyxcuLDETMRRo0bxww8/FAkkryyjRo3izz//xMfHh3bt2tGlSxfq1q1bot+QIUP47LPPmDp1KiLCW2+9xUMPPYSDgwOOjo7Mnz/f0nf8+PE8//zzjBs3rtL2dOjQgW+++YaHHnoIDw8PHnnkEQCmTZvG4MGDcXV1Zf369bzxxhuEhIQgItxxxx3cddddFT7Go48+yqhRowgLCyMkJARHR0cA/Pz8sLGxwd/fn8mTJ9OxY0fLNs8//zyPPfYYPj4+WFtbM3v2bEaOHElkZKRlmPRqsLOzY8mSJTzxxBMkJyeTl5fHk08+ibe3N9999x0PPfQQL774Ira2toSFhZWwdcaMGcTExBAYGIiI0KhRI5YvX86IESNYt24dvr6+tGvXrog43bdvn2XItzBDhw5l165dBAUFYW1tTdu2bfn0009L9CuMvb09n3/+OUOGDKFhw4b06NGD/ftVha0XXniBJ598Ej8/P0QENzc3Vq1aRUhICG+++SYBAQHMmjWrzH6zZk0lIiKKiRP9qFfPlocffpDp06eX+E7Mnz+fcePGkZ2dDcBrr71Gu3btyrQLsHyXNBrNzYmIcCHrArHJsZy8eJLY5FjVUmLJyC195rKjrSMt67SkZd2WtKzTkhZ1WtCybksaOzaucRFVWSpS8PoQ0FFEsi4tOwC7RaRDNdgH3HoFr9PS0nBycuL8+fMEBwezZcsWmjZtWqJfjx49WLVqFS4uLuXub8mSJfz888989913lbIjJiaGoUOHFnkoXs+kpKTwwAMPEBYWVtOmXBGhoaH8/vvvNW1Ghdi7V+XsatoUKhCWViHOnDnDvffey59//nltdlgGN/Nvh0ZzPZGek87J5JOcvHiyyGtqTukjGM52zrSu29oirlrVbUXLui2pZ1/vqsJJaoKrKXgdg5qxaA4gqgVEXzvTNMUZOnQoFy9eJCcnhxdeeKFUwQXw7rvvEhsbW67oevzxx/n111/LzL90M1GnTp0bVnABN4zgAmjfHqKi4J9/IDERGje++n3Gxsby7rvvXv2ONBpNtZKXn0dcShwxF2OIuRjDyeSTnLh4gnMZ50rt72jrSKu6rWhdt7V6dVGvdWvVveHEVWWpiKdrOdAZ+AMV0zUA2AwkAojIlaUIrwS3mqdLo7kR2L9flQdq3Bj69VN1Gm8E9G+HRnPlpGSncOLCCU5cPMGJCyeIuRhDbEpsqbMF7aztaOHcAjcXN9xc3CwCq4FDg5tfXF2Fp2vZpWZmw7UySqPR3Lh4esKRI8rTdeaMGmrUaDQ3ByJCQloCxy8c5/iF4xahdT7zfKn9mzo2tYir1i6tcXdxx9XZ9YaLuapqKpIyouJT+jQazS2DrS106AARESrGq0mTG8fbpdFoCsg15RKbHEv0hegCkXXxBFl5WSX62tvY07quElXu9dxxd3GntUtratvWrgHLbzwq4unSaDSaUmnXDg4fhvPnIT4emjevaYs0Gk15ZOdlc+LiCY4lHSM6SYmssoYHGzg0oE29Nri7uKvXeu64Orne9EODVYkWXRqN5oqxsQEvL9i9W8V3NWumvV0azfVCdl42xy8c51jSMUs7lXIKoWgst4FBc+fmtK3Xljb12tC2flvcXdypa18yXZHm6ihzsNUwjO8uvc6oPnNuLKytrQkICMDHx4c777yTixcv1qg94eHhPPHE1c9rmDx5cqlFtgGefPJJNm7cCMCqVavo2LEj/v7+eHl5WYo6VxVz584lI6P0PC7XipiYGH744QfL8tVc0/Kuo5ns7Gz69+9vKTJ9NbZeS7teeuklmjdvTkBAAB4eHowcOZKDBw+W2tfDA2rXhgsX4L335l9xGZ9rcT5jx47l6NGjV3R8jeZGJseUQ9T5KH6J+oW52+cyffV0RoeN5tm1z/L57s9ZF7OO2JRYDMPAra4b/dz7MS1wGm/1f4sfR//Ip0M/5ZnuzzDKaxQBTQO04KoiyvN0BRmG0Rq43zCMbymWiV5Eys6/f4vg4OBAREQEAJMmTeKjjz7iP//5T43Z06lTJzp1KjFZ4pqRlJTE9u3bmTt3Lrm5uUybNo0dO3bQokULsrOzLbUUq4q5c+dy3333Ubt21cUOmB/89957L1D113TPnj3k5uZavkeVobit15qnnnrKUmdz8eLF9O3bl3379hWp+QlgbQ3e3qrM6fz58+nVy+eKZgdei/N55JFHeOutt4rUGNVobjbyJZ/Y5FiOnj9K1PkojiYd5WTyyRJDhFaGFW513bit/m3cVv822tZri3s9d+ys7WrIck150wo+BX4D2gO7irXwcra7JenWrRtxcXEAREdHM2jQIIKCgujZsyeHDx8GVPLHESNG4O/vj7+/P1u3bgXgvffew8fHBx8fH+bOnWvZ56uvvkr79u0ZMGAA48aNsxQe7tOnD8899xzBwcG0a9eOTZs2AbBhwwaGDh0KwB133EFAQAABAQHUrVuXb775BpPJxDPPPEPnzp3x8/OzeKZEhOnTp+Pl5cWQIUNITEws9RyXLFliKV6dmppKXl4eDRo0AFT9P09PT1JTU3F3d7eUv0lJScHNzY3c3Fz69OnDU089Ra9evejQoQM7d+5k5MiReHh48PzzzwPqwdu+fXsmTZqEn58fd999NxkZGcybN4/4+HhCQkIsJXAWLlyIr68vPj4+RaoAODk58dxzzxEUFET//v3ZsWMHffr0oU2bNqxYscJynJ49exIYGEhgYKDlXsycOZNNmzYREBDAnDlzilzTtLQ0pkyZgq+vL35+fixdurTC3w83Nzdmz55NYGAgvr6+HD58mMTERO677z4iIiIICAggOjqaXbt20bt3b4KCgggNDSUhIQGAY8eO0b9/f/z9/QkMDCQ6OrqErVd7f8tjzJgxDBw40OKJKm5n7doJ7N27hKNHwxkzZjwBAQFkZmZW+/n07NmTtWvXllpPU6O5ETGXx9kSu4Wv93zNrLWzGLNkDI//+jjzdszjt+jfiL4QjSnfRMs6Lenn3o+Hgx7mnQHvEDY6jHmD5/FElye4w+MOPBt6asFV04hIuQ345HJ9qroFBQVJceLi4kqsq24cHR1FRCQvL0/uvvtu+fXXX0VEpG/fvhIVFSUiItu3b5eQkBAREbnnnntkzpw5lm0uXrwo4eHh4uPjI2lpaZKamipeXl6ye/du2blzp/j7+0tGRoakpKTIbbfdJm+//baIiPTu3VuefvppERH55ZdfpF+/fiIisn79ehkyZEgRG8PDw8XX11cuXrwon332mbz66qsiIpKVlSVBQUFy/PhxWbp0qfTv31/y8vIkLi5O6tatK2FhYSXOd+LEibJixQrL8gMPPCCNGjWSsWPHyvfffy8mk0lERCZPnizLli0TEZHPPvvMYmvv3r3l2WefFRGRuXPniqurq8THx0tWVpY0b95czp07JydOnBBANm/eLCIiU6ZMsZx369at5ezZsyKi7n/Lli0lMTFRcnNzJSQkxHJMQFavXi0iIsOHD5cBAwZITk6OREREiL+/v4iIpKenS2ZmpoiIREVFifk7VvwaFl5+9tlnZcaMGZbPkpKSSlyjwkyaNMlyHVu3bi3z5s0TEZGPPvpIHnjggRL7z8nJkW7dukliYqKIiCxatEimTJkiIiLBwcHy008/iYhIZmampKenl7D1au9vYWbPnm257mbmzJkjDz/8cJl2xsSIdOjQW/7v/3ZKTk7NnU///v0lPDy8zHO7Hn47NJqyyMzNlMh/IiXsQJj8d+N/ZeKyiTL0h6El2v3L75c3N70pPx38Sfad2ScZORk1bbqmEEC4lKJnKpIy4hHDMPyBnpdWbRSRyCpTgVfKnXeW/dljj6lC1wC//QYffVR23+JFs8shMzOTgIAAYmJiCAoKYsCAAaSlpbF161ZGjx5t6WeuPbdu3Tq+/fZbQMWD1a1bl82bNzNixAhLvcGRI0eyadMm8vPzueuuu3BwcLh0ekXPb+TIkQAEBQWVOax37tw5JkyYwI8//kjdunVZs2YNkZGRlviX5ORkjh49ysaNGxk3bhzW1tY0a9aMvmXUdUlISCgytPTFF1+wb98+1q5dyzvvvMMff/zB/PnzmTp1Km+99RbDhw/n66+/LjLUY64t6Ovri7e3t6VOYps2bTh16hQuLi60bNmS7t27A3Dfffcxb948yzCXmZ07d9KnTx+LPePHj2fjxo0MHz4cOzs7i0fO19eXWrVqYWtri6+vr+Va5ebmMn36dCIiIrC2tiYqKqrUcy7M2rVrWbRokWW5Xr16l92mMIXv2U8//VTi8yNHjrB//34GDBgAgMlkwtXVldTUVOLi4hgxYgSg6iqWxtXe38shlxIpl2Vnq1YqjUROjioRZGNTM+fTuHFj4uPjCQoKuqLz1GiqC7mUC+vwucMcPneYI+eOcOLiiRKB7o62jrRr0A7PBp60a9COdg3a6ZirG5SKFLx+ApgGmJ8SCwzD+FxEPqhSy24AzDFdycnJDB06lI8++ojJkyfj4uJS4Rgd84OsouvN1KpVC1DirbShFJPJxNixY3nxxRfx8fGx7PODDz4gNDS0SN/Vq1dXaAqwg4MDWVlF87b4+vri6+vLhAkTcHd3Z/78+XTv3p2YmBj++usvTCaT5fiF7baysrK8Ny+bz6O4LaXZVt71sbW1tWxT+DiFjzFnzhyaNGnC3r17yc/PL/PBX/yYVzNV+nL3TETw9vZm27ZtRdanpKRUaP9Xe38vx549e+jUqVOZdgI4OanXw4fB3b1mzicrK8vyz4pGcz2RnZfN0aSjHD53mENnD3Ho3KESdQitDCvauLTBs4Enng098WzgSTPnZjpNw01CRVLFTgW6iMiLIvIi0BV4sGrNugJWriy7mb1coN6X1/cKqFu3LvPmzeOdd97BwcEBd3d3Sw1AEWHv3r0A9OvXj08++QRQoiglJYVevXqxfPlyMjIySE9PZ9myZfTs2ZMePXqwcuVKsrKySEtL45dffqmUTTNnzsTPz4+xY8da1oWGhvLJJ59Y4q2ioqJIT0+nV69eLFq0CJPJREJCAuvXry91nx06dODYsWOAim/asGGD5bOIiAhat25tWZ44cSLjxo1jypQplbIbVA0+84N64cKF9OjRAwBnZ2dSU9UPVJcuXfjrr784d+4cJpOJhQsX0rt37wofIzk5GVdXV6ysrPjuu+8wmUwljlGcgQMH8uGHH1qWL1y4YDnXHTt2VPo8i+Pp6cnZs2ct556bm8uBAweoU6cOLVq0YPny5YDynGZkZJSw9Uru76xZs1i2rHDBidJZunQpa9asYdy4cWXaCVC/vjN166aSnw8ZGdV/PuZ+3t7eFb7uGk1VkZSZxJbYLXyx+wue/v1pxiwZw6w/Z/HN3m/YEb+D1JxUXOxd6Nq8K5P8J/FGvzf48e4fmTtoLo90foS+7n1pXqe5Flw3ERXJ02UApkLLJorNZNRgSZ2waNEiFixYwCOPPMJrr71Gbm4uY8eOxd/fn/fff59p06bx5ZdfYm1tzSeffEK3bt2YPHkywcHBAEydOpWOHTsCaijO39+f1q1b06lTJ+rWrbg7+Z133sHb25uAgAAAXnnlFaZOnUpMTAyBgYGICI0aNWL58uWMGDGCdevW4evrS7t27coUL0OGDOGzzz5j6tSpiAhvvfUWDz30EA4ODjg6OjJ//nxL3/Hjx/P8888zbty4Sl/LDh068M033/DQQw/h4eHBI488AsC0adMYPHgwrq6urF+/njfeeIOQkBBEhDvuuIO77rqrwsd49NFHGTVqFGFhYYSEhFiGd/38/LCxscHf35/Jkydb7gXA888/z2OPPYaPjw/W1tbMnj2bkSNHEhkZaRkmvRrs7OxYsmQJTzzxBMnJyeTl5fHkk0/i7e3Nd999x0MPPcSLL76Ira0tYWFhJWydMWNGpe/vvn37LEO+xZkzZw7ff/896enp+Pj4sG7dOstwbll2Tp48mVmzHiYnx4GXXtrG558v4bnnqu98zpw5g4ODwzW5HxpNZRARTqec5uDZgxw4e4CDZw9yJv1MkT4GBm1c2tC+YXs6NOpAh4YdaOzYWIuqW4iKFLx+GphEQf3F4cB8EZlbpZYV4lYteJ2WloaTkxMZGRn06tWLzz//nMDAwBq1qUePHqxatQoXF5dy+y1ZsoSff/6Z7777rlL7j4mJYejQoezfv/8qrKw+UlJSeOCBByyezRuN0NBQfv/992u+38hIVRC7fn0IDa2+hKlz5syhTp06PPDAA2X2uRV+OzRVT15+HscvHOdA4gGLyCo+VOhg44BnA0+8GnnRoVEHPBt44mCrh75vBa644LWIvGcYxgagB8rDNUVE9lx7EzXFmTZtGgcPHiQrK4tJkybVuOACePfdd4mNjS1XdD3++OP8+uuvrF69uvoMqyHq1KlzwwouoEoEF6gs9dHRkJQEMTHg7l4lhymBi4sLEyZMqJ6DaW4pzMlHDyQeYH/ifg6fP1yiNmF9h/p4NfTCu7E3Xo28cHNx0wWfNUW4rKfreuBW9XRpNDcyJ07Atm3g4KAmF9tcJ0XH9G+HpiLkmHI4fO4w+87sY3/ifo6cP0Jufm6RPs2dm+PVyAufxj54NfKiiWMTPVSoAa7C06XRaDRXgpsbREWpYtiRkXAdOGo1mjLJMeVw5NwRIs9Esi9xH0fOHymR4d2trhs+jX3wbuyNdyNv6jlULm2MRqNFl0ajqRIMAzp3ht9/hyNHoHVruFTAQKOpcfLy8zh6/ih7z+wl8kwkh88dLuLJMge9+zT2wbeJL96NvHGu5VyDFmtuBrTo0mg0VUb9+tC+PRw6BH//rTK2WOkQF00NICKcuHiCvf/sZe+ZvRw4e6BETJa7izu+jX3xa+KHd2NvnOycashazc1KRZKjjgT+D2iMCqQ3ABGROhXYdhDwPmANfCEib5bRrzOwHRgjIksqbr5Go7ne8fWFU6fg4kUlvnQKLU118U/aP0T8E2ERWsVnF7as0xK/Jn74NfHDt7Gv9mRpqpyKeLreAu4UkUOV2bFhGNbAR8AA4DSw0zCMFSJysJR+/wdUzTSqKuL8+fP069cPgH/++Qdra2saNWpETEwMzZo14+DBg5fZQ+VZvnw57dq1w8vL65rvuzAvvfQSTk5OJUrvAMydO5f69eszceJEAPLy8mjatCkPPvggb7zxxhUd7+LFi/zwww88+uijl+3r5OREWlpahfabn5/Pk08+ybp16zAMA3t7e3788Ufcq2gqXUxMDFu3buXee++tkv2bKf49ePHFF+nVqxf9+/cvtf++fft49913i+RRq05sbCA4GNatg337oGVLqHPZf9k0msqTmp1K5JlIIv6JYM8/e0rkyWpUuxH+Tfzxb+qPXxM/6jvUryFLNbcqFRFdZyoruC4RDBwTkeMAhmEsAu4CiquRx4GlQOcrOEaN0aBBA0upn8IixZxn6nLk5eVhU8npXMuXL2fo0KFVLrrKIi8vj6+++ordu3db1q1ZswZPT09+/PFHXn/99SuauXPx4kU+/vjjComuyrB48WLi4+OJjIzEysqK06dPW5KgVgUxMTH88MMP1SK6Cn8PXnnllXL7+/r6cvr0aWJjY2nVqlWV2lYWTZtCmzZw/LgaZuzfv/pyd2luXvLy8zhy7gi7E3YT8U8ER5OOFqlb6GznjF8TP/yb+BPQNICmTk317EJNjVKR6IpwwzAWG4YxzjCMkeZWge2aA6cKLZ++tM6CYRjNgRHApxW2+AbAZDLx4IMP4u3tzcCBA8nMzASgT58+/Pvf/6Z37968//777Nq1i969exMUFERoaCgJCQkA/O9//6Nz5874+/szatQoMjIy2Lp1KytWrOCZZ54hICCA6OhooqOjGTRoEEFBQfTs2ZPDhw8DMHnyZJ544gluv/122rRpYykYDPD222/TuXNn/Pz8mD17tmX9f//7Xzw9Penfvz9Hjhwp9bzWrVtHYGBgEbG4cOFCZsyYQatWrdi+fbtl/W+//UZgYCD+/v4Wj+BLL73EO++8Y+nj4+NDTEwMM2fOJDo6moCAAJ555ply7TQzYcIEfv75Z8vy+PHjWbFiRZE+CQkJllI/AC1atKBevXp8+eWXPPXUU5Z+//vf/3j66aeJiYmhffv2TJ06FR8fH8aPH8/atWvp3r07Hh4ellI/L730EhMmTKBv3754eHhYCnrPnDmTTZs2ERAQwJw5c8jKymLKlCn4+vrSsWNHS7ma+fPnM3z4cO68807c3d358MMPee+99+jYsSNdu3YlKSmpUt+DyZMnW+7xzp07uf322/H39yc4ONhSVufOO+8sUqy7JujYEezt4exZuFRNSqOpNP+k/cPqo6t5beNr3Lv0Xmb+OZMfD/5IVFIU1lbW+Db2ZaLfRN4b+B7fj/yemT1mMthjMK7OrlpwaWoeESm3AV+X0r6qwHajUXFc5uUJwAfF+oQBXS+9nw/cXdq+goKCpDhxcXEl1tUUs2fPlrfffltERE6cOCHW1tayZ88eEREZPXq0fPfddyIi0rt3b3nkkUdERCQnJ0e6desmiYmJIiKyaNEimTJlioiInDt3zrLv//znPzJv3jwREZk0aZKEhYVZPuvbt69ERUWJiMj27dslJCTE0u/uu+8Wk8kkBw4ckLZt24qIyO+//y4PPvig5Ofni8lkkiFDhshff/0l4eHh4uPjI+np6ZKcnCxt27a1nE9hXnzxRYstIiIZGRni6uoq6enp8tlnn8njjz8uIiKJiYnSokULOX78uIiInD9/vsR1EhHx9vaWEydOyIkTJ8Tb29uyviw7RUQcHR1FRGTDhg1y1113iYjIxYsXxc3NTXJzc4vYe+rUKWndurX4+/vL008/Lbt37xYRkbS0NGnTpo3k5OSIiEi3bt0kMjLScu8iIyPFZDJJYGCgTJkyRfLz82X58uWW482ePVv8/PwkIyNDzp49Ky1atJC4uDhZv369DBkyxHL8d955RyZPniwiIocOHZKWLVtKZmamfP3119K2bVtJSUmRxMREqVOnjnzyySciIvLkk0/KnDlzKvU9MC9nZ2eLu7u77NixQ0REkpOTLddk8+bNMnTo0BL3tLo5eVJkwQKRH38USU+vGRuup98OzeXJzsuW8Lhw+Sz8M3lo5UMy9IehRdrDKx+Wz8M/l51xOyUzN7OmzdVoREQECJdS9ExFMtJXvmKx4jTQstByCyC+WJ9OwKJL/300BO4wDCNPRJZX+mh33lm5/m3bwty5Jbe/wqLXhXF3d7fUPAwKCiImJsby2ZgxYwA4cuQI+/fvZ8CAAYDyjpnrxe3fv5/nn3+eixcvkpaWRmhoaIljpKWlsXXrVkaPHm1Zl52dbXk/fPhwrKys8PLy4swZFdewZs0a1qxZY6knmJaWxtGjR0lNTWXEiBHUrl0boMxafAkJCXTo0MGyvGrVKkJCQqhduzajRo3i1VdfZc6cOWzfvp1evXpZYqfq169c3ERZdvbq1cvSp3fv3jz22GMkJiby008/MWrUqBLDtS1atODIkSOsW7eOdevW0a9fP8LCwujXrx99+/Zl1apVdOjQgdzcXHx9fYmJicHd3R1fX18AvL296devH4ZhWD43c9ddd+Hg4ICDgwMhISHs2LGjRJb+zZs38/jjjwPQvn17WrduTVRUFAAhISE4Ozvj7OxM3bp1ufPS98/X15fIyEigYt+Dwhw5cgRXV1c6d1Yj9XUKBU41btyY+Pjif37VT8uW0KIFnD4NW7dC3756NqOmJAmpCYTHh7MrYRf7EveRY8qxfOZo60hA0wACXQPp2LQjjRwb1aClGk3lqMjsxRbAB0B3QIDNwAwROX2ZTXcCHoZhuANxwFigSLCLiFgimg3DmA+suiLBdZ1Rq1Yty3tra2vL8CJgiSkSEby9vdm2bVuJ7SdPnszy5cvx9/dn/vz5bNiwoUSf/Px8XFxcLHFl5dkgl6oOiAizZs3ioYceKtJ37ty5FXK7Ozg4kJVVMMV64cKFbNmyBTc3N0BNLli/fj0iUur+bGxsyM/PtywX3ldhyrKzOBMmTGDBggUsWrSIr776qtQ+tWrVYvDgwQwePJgmTZqwfPly+vXrx9SpU3n99ddp3749U6ZMKdLfjJWVlWXZysqKvLyCRInFz6+08zVf97LsutxxKvI9KH68su5jVlYWDg41X/PNMFRQ/fnzkJio6jP6+dW0VZqaJi8/j/2J+wmPDyc8Ppy41Lgin99W7zYCXQPp1KwT7Rq0w9rKuoYs1WiujopEcn8N/IAaLgS479K6AeVtJCJ5hmFMR81KtEYNSR4wDOPhS59f2ziuq/VQXQMPV2Xw9PTk7NmzbNu2jW7dupGbm0tUVBTe3t6kpqbi6upKbm4uCxYsoHlzFQrn7OxsidGpU6cO7u7uhIWFMXr0aESEyMhI/P39yzxmaGgoL7zwAuPHj8fJyYm4uDhsbW3p1asXkydPZubMmeTl5bFy5cpSBU+HDh04dikYJyUlhc2bN3Pq1CmLYPj6669ZuHAhb775Jo899hgnTpzA3d2dpKQk6tevj5ubG6tWrQJg9+7dnDhxosR5lWdn48aNi9gzefJkgoODadq0Kd6l5CHYvXs3TZs2pVmzZuTn5xMZGYnfpSd8ly5dOHXqFLt377Z4lirDzz//zKxZs0hPT2fDhg28+eabJCQkFDmPXr16sWDBAvr27UtUVBSxsbF4enoWmYhQHhX5HhSmffv2xMfHs3PnTjp37kxqaioODg7Y2NgQFRWFj49Ppc+zKrC3h9tvV7MZDxyAxo1VoL3m1uJi1kXC48PZGbeTPf/sITOv0D+nto4WkRXoGoiLvUvNGarRXEMqIroaicjXhZbnG4bxZEV2LiKrgdXF1pUqtkRkckX2ebNgZ2fHkiVLeOKJJ0hOTiYvL48nn3wSb29vXn31Vbp06ULr1q3x9fW1PGDHjh3Lgw8+yLx581iyZAkLFizgkUce4bXXXiM3N5exY8eWK7oGDhzIoUOH6NatG6DSL3z//fcEBgYyZswYAgICaN26NT179ix1+8GDB1uKCf/000/07du3iMfmrrvu4tlnn+Xjjz/m888/Z+TIkeTn59O4cWP++OMPRo0axbfffktAQACdO3emXbt2gJoJ2r17d3x8fBg8eDBvv/12qXYWF11NmjShQ4cODB8+vFR7ExMTefDBBy3DrsHBwUyfPt3y+T333ENERAT16lW+lEdwcDBDhgwhNjaWF154gWbNmtGoUSNsbGzw9/dn8uTJPProozz88MP4+vpiY2PD/Pnzi1yvy1HR74EZOzs7Fi9ezOOPP05mZiYODg6sXbsWJycn1q9fz5AhQyp9nlVFkybg46NSSGzdCnfcocSY5uZFRDiZfJK/T//NjrgdRCVFFfm8dd3WdG7WmU7NOtG+YXvtzdLclFy24LVhGGtRQe4LL60aB0wRkX5Va1oBuuD19cOIESN466238PDwqGlTyMjIwNfXl927d1O3bt1Kbz906FCeeuopy+zKilJeHrPrkezsbHr37s3mzZsrnaakKhFR3q4zZ5SnKySketJI6N+O6sM8bGgWWokZiZbPbK1s8WviR3DzYDo160Rjx8bl7EmjubG4moLX9wMfAnNQMV1bL63T3IKYh9FqWnStXbuW+++/n6effrrSguvixYsEBwcXSWdxMxMbG8ubb755XQkuUALr9tth9Wr45x84eFBnq78ZyMjNYFf8Lraf3k54QjgZuRmWz+rWqktw82C6NO+Cf1N/7G20e1Nza3FZT9f1gPZ0aTQ3L/HxsGGDEmH9+qkYr6o9nv7tuNZczLrI9tPb2X56O3vP7CUvv2DSSas6rejSogtdmnehXYN2OleW5pag0p4uwzCeFZG3DMP4ACihzETkiWtso0ajuQVp1gy8vJSna9MmGDBAlwm6ETiTdoZtp7ex7dQ2Dp07ZMkEb2Dg1dCLri260rVFV1ydXWvYUo3m+qG88QZz6Z/wcvpoNBrNVePvD8nJEBenvF4DB+rA+uuRuJQ4tpzawtZTW4m+EG1Zb2NlQ8emHenWohvBzYOpa1/5GEuN5lagTNElIuYcChkiElb4M8MwRpeyiUaj0VwRhgHdu8PatZCUBBs3qqFGaz2BrcY5lXyKLae2sCV2CzHJMZb19jb2dHLtxO0tbyeoWRC1bWvXnJEazQ1CRSJrZ6HK9VxunUaj0VwxNjbQuzesWQPnzqlUEj166MLYNcGp5FNsjt3M5tjNxKbEWtY72jrSpXkXbm95Ox1dO2JnbVeDVmo0Nx7lxXQNBu4AmhuGMa/QR3WAvNK3urVwcnIiLS3Nsjx//nzCw8P58MMPK72vDRs28M4771iSh1aEPn368M4779CpU4lYPY3mhsTBAfr0gT/+gFOnICJCFcq+rsnKgosXISUFUlPhttvAPKN2/36VAVYETCawtVUn6eAAzs7QpUvBfkRqVGHGpcSxKXYTm2M3czL5pGW9k50TXZt3pUerHvg39cfG6vqaBavR3EiU99cTj4rnGgbsKrQ+FXiqKo3SaDS3LnXrQs+esH49HDqk9En79jVtVSGSk+H771UBybg4uHCh6OezZ4P5H6G9e2HRotL34+JSVHQ99BBkZ0P9+tCwoZph0Ly5em3dWom0a8zZ9LNsit3ExpMbi8RoOdo60q1FNy20NJprTHkxXXuBvYZhLAPSRcQEYBiGNVDxtNq3KGfPnuXhhx8mNla55ufOnUv37t3ZsWMHTz75pCVj+Ndff42np2eRbdPT03n88cfZt28feXl5vPTSS9x1111kZmYyZcoUDh48SIcOHYrUdNRobiaaNFF6ZNs22L0b8vPVDMdqQ0RlbT14UDUHB3jgAfWZnR389ltBX1tbqFdPTbl0dlZ9zfj4wD33qKrehgG5uZCZqVrhmQIiqiBlTo4KartUbsvChAlqP6CE3v794O6uxFglqhwAJGcls+XUFjbEbODQuUOW9Q42DnRr0Y2erXsS0DRACy2NpgqoyF/VGqA/YB5Hc7i07vaqMupGITMzk4CAAMtyUlISw4YNA2DGjBk89dRT9OjRg9jYWEJDQzl06BDt27dn48aN2NjYsHbtWv7973+zdOnSIvv973//S9++ffnqq68siTz79+/PZ599Ru3atYmMjCQyMpLAwMDqPF2Nplpxd1cjcjt3qmHG/HylYaoMESV2tm1TAWVxhYouu7jA/fcr4eTgAI89phKKtWgBjRqVPSzo76/a5TAMWLxYDVMmJSnBFx+vbIiPVxfDTHg4fPGFem9lBW5u0K4deHqq1qJFCXuy8rLYfno7G2I2sOefPeSLKjxvZ21HcLNgerXuRVCzIB2jpdFUMRURXfYiYglcEpE0wzCuq2kqdy68s0r2u3Jc+UWwHRwciIiIsCybY7pAZUw/ePCg5bOUlBRSU1NJTk5m0qRJHD16FMMwyM3NLbHfNWvWsGLFCt555x0AsrKyiI2NZePGjTzxhEqP5ufnZynerNHcrNx2m5rBuH07REYqEebnV0WhT8uWwdeFysw6OakU+d7eJd1sgwZd++Pb2KhhxYYNlYgqixYtVODb8eNqiPP4cdV++02NzX73HQCmfBMRe1azPvMQ2+N3kG1SNUitDCs6uXait1tvurboqrPCazTVSEVEV7phGIEishvAMIwgQI9rXYb8/Hy2bduGQ+GhBuDxxx8nJCSEZcuWERMTQ58+fUpsKyIsXbq0xLAjoLM5a2453N2VQ2frVhWTnp8PAQFXKbxycmDzZnB0LIirCgyEn3+Gbt1UfSJv7+szZ0VQkGqgYsCOHYOoKDh8GHF05PiF46yPWc9fx9dxces6daGcnOjQsAN9vIfQvcto6jrWr9lz0GhuUSoiup4EwgzDiL+07AqMqTKLroDLeaRqgoEDB/Lhhx/yzDPPABAREUFAQADJyck0b94cUJ6x0ggNDeWDDz7ggw8+wDAM9uzZQ8eOHenVqxcLFiwgJCSE/fv3ExkZWV2no9HUKK1bK+G1ZYsKrs/NVbHqVlaV3FF6uhIp//qXmmno5gbBwUqYtG4N8+ffWDkqatUCb2+S2rjyV3v488SfnPz9D/VZZhbNbBsQklCLkOMNaZInsGYV1F6nxmmnTFFeM41GU21cVnSJyE7DMNoDnoABHBaRkmNimiLMmzePxx57DD8/P/Ly8ujVqxeffvopzz77LJMmTeK9996jb9++pW77wgsv8OSTT+Ln54eI4ObmxqpVq3jkkUeYMmUKfn5+BAQEEBwcXM1npdHUHC1bqlmNmzcr3ZSSovJ4VShzfUaGcpNFRyvFlpoKbdrA0KEFqRpuJLEF5Jpy+Tvub/48/ie7/9ltidNytnOmd+vehLiH4FHfAyMlRQXeR0aq4Lj4eNixAx59tGBnGzeq4U1/f+X902g0VUKFCl4bhuEDeAGWnzcR+bYK7SqCLnit0WjMnD+vNEJmptIHvXqpyYNlcuaMyj+Rnw+GQXyDBjRr3VrFTd1gQgvg+IXjrD2+lg0xG0jNSQXA2rCmU7NO9G/Tn07NOpU/8/DcOTh8WClWM9OmQUKCch16eanhy86doVWrG/IaaTQ1TVkFry8rugzDmA30QYmu1cBgYLOI3F0FdpaKFl0ajaYwmZmqOPa5cyrsqls3pQ8sFE40ajLBypVqlqGPD/Hp6Tfcb0dqdip/nfyLP6L/4PjF45b1bVza0L9Nf3q17nXl9Q5NJli6VOXmOHRIiVMzjRurYcjCAk2j0VyWskRXRWK67gb8gT0iMsUwjCbAF9faQI1Go6koDg6qNuPOnWri3ubNykHj5ytYnY5VubX69VM5taytYcgQlU8LVFzXDYCIsD9xP79H/87WU1vJzVdRHU52ToS4hdC/TX/a1Gtz9QeytlY5wO65R12bPXtUWorwcEhMVLM4zUREqHWdO1/GvajRaEqjIqIrU0TyDcPIMwyjDpAIXIO/dI1Go7lyrK3VxEMXF6UTYiKTcd4RTqtaZ5S+io6GDh1UZ7PgugFIzkpm7fG1rIleQ3yamr9kYNCxaUcGth1IcPPgqsun5eiovFo9ehTkLXNzK/h81Sr4+2/1vl07dQO6dNHDkBpNBamI6Ao3DMMF+B+qHFAasKMqjdJoNJqKYBjQ3sNEs8R9pO8+TH5uPnHWtSAggFaebajs5MaaQkTYl7iPX4/+yva47eTlq/K2DRwaMKDNAAa0HUBjx8bVa5RhgIdH0XXduqnhx717VZqKqCiVF6xpUxg5EgYPrl4bNZobjHJFl6GSQr0hIheBTw3D+A2oIyI6V4FGo6l5LlyArVupk5yMU2ODU3Ye7MzyI/efWkStha5dVXWe65XU7FTWnVjHr8d+JS5VZcA3MOjSvAuhbUMJdA3E2uo6yhXWr59qWVlqqPHvv9VMyH/+UbnPzMTFQWysqlZeoemlGs2tQbmiS0TEMIzlQNCl5ZhqsEmj0WgqRmamKkBdpw5WXbvSumFD7BKUFjh3DlavVpVxvL1VeNf1wtHzR/nl6C9sit1EjkmJlQYODRjYdiAD2w6kYe2GNWzhZbC3V4q2a1fl+Tp8GFxdCz5fuxaWLFEXPSBA9QsOVhnzNZpbmIoML243DKOziOyscms0Go3mcuTkFCioZs1U/FHz5pbs8a6ucMcdKs4rOlpNyDtxQpUPalOD0ag5phw2ndzEL0d/4WjSUcv6wKaB3OFxB52adbq+vFoVxZxmojDNmyu1e+SI8oTt2KGGK728lKdswICasVWjqWEqEvIQghJe0YZhRBqGsc8wDD28CFhbWxMQEGBpb775Zrn9X3/99SLLt99+ZTXDIyIiWL16dZmf79mzh6lTpwIq632jRo3o2LEjHh4ehIaGsnXr1is6bmm4ublx7tw5cnJy6NWrF3l5edds3xpNCU6cUKV6zp4tWNeqVYlyPXZ2Kr47NFRlisjKUs/9335Teb4qkJ7wmnEu4xzfRHzD5OWTmfv3XI4mHcXJzokR7Ufw+dDPeTnkZbq06HJjCq6y6N8f3nkHvvlGJWENClL36MAB5RUzk5GhgvWr84ZoNDVImZ4uwzBaiUgsKi+XphSKF7y+HK+//jr//ve/LctXKn4iIiIIDw/njjvuKPM4zz//vGV5zJgxfPjhhwCsX7+ekSNHsn79ejqYZ3ZdA+zs7OjXrx+LFy9m/Pjx12y/Gg2gcknt2qUe0KBihho1uuxmDRqo5/+pU8rzdfGiEl3ffAOjRxdUALrWiAgHzx5kZdRKtp3eZskW37ZeW4a2G0rPVj2pZVPr2h/4eqN+fRVcP3iwEli7d6ugezN//w3vvaeKfHfpooYhfXxUdnyN5iakvG/2ciBQRE4ahrFUREZVk003NMnJyQQHB7NixQo8PT0ZN24cffv2JTo6mszMTAICAvD29mbBggU4OTmRlpbGhg0beOmll2jYsCH79+8nKCiI77//HsMw2LlzJzNmzCA9PZ1atWrxxx9/8OKLL5KZmcnmzZuZNWsWY8YUlMJMTU0lMjISf3//Uu0LCQlh2rRpfP7558yZM4fo6Ggee+wxzp49S+3atfnf//5H+/btWblyJa+99ho5OTk0aNCABQsW0KRJE86fP8+4ceM4e/YswcHBFE6uO3z4cGbNmqVFl+bakpamMqFeuKC8JZ06VWqc0DCUM6x5czXaFRmpXl97Ta2/+26V1f5a1LbONeWy8eRGVhxZYUliam1Y06tVL+70vBPPBp63btH62rVLJlnNy1PC7Nw5+OUX1RwdlWfs9tuhe/easVWjqSLKE12Ffxmu67xcd955Z5Xsd+XK8gtpm0WUGbMA+vDDD5k8eTIzZszgwoULPPjggwB8+OGHZXrG9uzZw4EDB2jWrBndu3dny5YtBAcHM2bMGBYvXkznzp1JSUmhdu3avPLKK4SHh1u8V4UJDw/Hx8enXLsDAwP57LPPAJg2bRqffvopHh4e/P333zz66KOsW7eOHj16sH37dgzD4IsvvuCtt97i3Xff5eWXX6ZHjx68+OKL/PLLL3z++eeW/fr4+LBzpw7901xDTp+G7dtVHJeTkyq+eIVJOa2tVUiRs7N6/i9bpibYvfcefP+9Gors319pgMqSnJXMr8d+ZfXR1VzIugBA3Vp1GXTbIAbfNpgGtRtckc03PQMGqIt+7Ji6z9u3q5uycaNKwmoWXSLKRdnwOp9goNFchvJEl5TxXnOJsoYXBwwYQFhYGI899hh79+6t0L6Cg4Np0aIFAAEBAcTExFC3bl1cXV3p3LkzAHUqMPc9ISGBRpcZdjF7p9LS0ti6dSujR4+2fJadnQ3A6dOnGTNmDAkJCeTk5ODu7g7Axo0b+emnnwAYMmQI9Qo9AK2trbGzsyM1NRVnZ+cKnbdGUyY5OQWCq0ULNfR0DaYgWlvDsGEq2H7DBjXJLi5OpZtasEAlWx80CAIDVYx4eZxKPsXyw8vZcHKDZRaiW1037mp/F71a96q6JKY3E+Z8YB4eMGGCqgG5fbsaGzZz4gTMmAFt2xYkZHV31wlZNTcc5Ykuf8MwUlAeL4dL77m0LCJy3WS/uZxHqrrJz8/n0KFDODg4kJSUZBFT5VGrVkF8h7W1NXl5eYhIpYciHBwcyMrKKrfPnj176NChA/n5+bi4uJQqHB9//HGefvpphg0bZhn+NFOeTdnZ2djrvDyaa4GdnRqOSkpSmeWv8QPWxkY5Wfr2VSmnfv9dhRiZW8OGyrHWvXvR2tgiwoGzB/jp0E/sjC/w7HZu1pnh7Yfj29j31h1CvBa4usKIEUXXnT4NtWqp6ajR0fDDD+oGde6sAvM6drw248MaTRVTpugSEf0NvkLmzJlDhw4deP3117n//vvZtm0btra22Nrakpubi20FS5K0b9+e+Ph4du7cSefOnUlNTcXBwQFnZ2dSU1NL3aZDhw68++67Ze7zr7/+4vPPP2f9+vXUqVMHd3d3wsLCGD16NCJiiQdLTk6mefPmAHzzzTeW7Xv16sWCBQt4/vnn+fXXX7lw4YLls/Pnz9OoUaMKn59GU4KMDBXfY65e3bRp0cDrKsDKSnm1AgNV2Niff8KaNcrhsmyZao0aQbfbTdT23Ep4+jKOXVApH+ys7ejv3p9hnsNoXqd5ldp5S9Orl/J07t1bkILi3Dn49VdVePO77wr6pqeruDCN5jqkSqeIGIYxCHgfsAa+EJE3i30+Hnju0mIa8IiIVGw87jqgeEzXoEGDuP/++/niiy/YsWMHzs7O9OrVi9dee42XX36ZadOm4efnR2BgIAsWLLjs/u3s7Fi8eDGPP/44mZmZODg4sHbtWkJCQnjzzTcJCAgoEUjfvn17kpOTiwzxLV68mM2bN5ORkYG7uztLly61zFxcsGABjzzyCK+99hq5ubmMHTsWf39/XnrpJUaPHk3z5s3p2rUrJ06cAGD27NmMGzeOwMBAevfuTSvzwxE1M7KsGZUazWU5d04FzGdlKa9GkybVbkK9eiqwftQoldlg82bYuCWH/TlrWRvxE9kHzmBrA01c6nLHbUOZ2nswrZvohJ/Vgp2d8mx17qzSUBw7VpD/y+zlyshQQ5Rubqpfp05w2216GFJz3WBIFeVHMQzDGogCBgCngZ3AOBE5WKjP7cAhEblgGMZg4CUR6VJ8X506dZLw8PAi6+Lj42nWrFmV2H6jM2fOHJydnS25uqqLkSNH8sYbb+Dp6Vmtx9XcBJw8qeJ4TCYltnr0UMKrCqjob0daThq/RP3CyqiVxJ1LJikJss654pIwkoapfbESFa/Vpo1KvOrlpZpOul6DHDoEzz9ftCSRi4uaDdmpkxJiVfS90mgKYxjGLhHpVHx9VXq6goFjInL8kgGLgLsAi+gSkcKJqrYDlw9+0lyWRx55hLCwsGo9Zk5ODsOHD9eCS1M5RODgQTVsBCqYOijo8hHsVUhSZhLLDy/n12O/kpWn4iM7tvZg1KBRdG3Rjfg4K3bvVnm/9u2D48dVW75cbd+8uSo75OmpnCytWum0U9VGhw4q3isyEnbuVO3cOTVm/OefKkGbWXQlJSnXpvaCaaqRqvwpaA6cKrR8GijhxSrEA8CvVWjPLYO9vT0TJkyo1mPa2dkxceLEaj2m5gYnPx/Cw9UwkWGoYOj27WvMnDNpZ1h6aCl/HP+DvHxVWSGgSQCjvUcXCY5v2VK1u+5SDpWDB1Wi9YMH1ZBkXJxqa9ao/draqtGu225TXrHWrZUQ02FHVUStWgXDkCIqBUV4uLop5nwgIvDss5Cbq4L5goJUjUgnpxo1XXPzU5Wiq7R/H0odyzQMIwQlunqU9nlZXMnsPo1Gc52QmalSxVtbq0SYLVtW+SFLC6c4nXKasANhbDi5gXzJx8Dg9ha3M9p7NLfVv63c/ZnrOZtDO/Py1OS6gweVljx2DOLj4ehR1QrTsKESYC1bqhKSzZur1wYNtPPlmmEY6iK3bl10fWqqElxJSao499q1qm+7dkr89+tX5RM4NLcmVSm6TgOFf0VbAPHFOxmG4Qd8AQwWkfMV3bmtrS1paWk4OTlp4aXR3Ig4OqpZaYZRLUkvRYS0tDTL7NqYizEs3r+YLae2IAhWhhUhbiGM9hpNy7pXJgBtbNSwYuFR9vR0JcSOHYOYGOV4OXVKjXqdO6eqGxXGzk5lTWjcWD33GzdWYW6NG6vLVKeOFmVXTZ06MH++iiUMD1fliQ4dUqUKjhxRpYjMoismRnnPmjbVF15z1VRlIL0NKpC+HxCHCqS/V0QOFOrTClgHTCwW31WE0gLpTSYTSUlJ5ObmVoX5Go2mKkhLU14GV9caObytrS0pViksPriYbae3AWBjZUN/9/6M8hpFU6fq8W7k58M//6hnvnk4Mi5OecWSk8vf1tZWia8GDVSrX1+FJplf69VTseNOTlojVIqsLBWkt2cPTJ5ckIj31VfVLMnGjZUXzN9fzZzQMyY05VBWIH2Via5LB70DmItKGfGViPzXMIyHAUTkU8MwvgBGAScvbZJXmpGliS6NRnODsX+/KniYkQGvvFIwJldNHEs6xsJ9C9kRvwMAWytbBt02iJEdRtKw9vVTXiY9XQmyM2dUS0wseD1/XunWimBlpRw6Li5KHzg7q+U6ddR7c3NyKtp00H8x5s2DbdtKXng3NxXY179/jZilub6pEdF1rdCiS6O5wdm8Gd59VwU9desG//rXNSnpUxGKi61a1rUYfNtgRnQYQX2HKyi0WMNkZSnxZR6evHBBtaQkuHhRvSYnK/F2JdSqpUZ+a9dWr+b3Dg7q1dwcHEpv9vYFrQYnoarstqmpqoRU7dpq3ZEjqqRQTo6K6Src8vLUq8mk3uflqff33acC7qKj4auvVC45GxulWKdNU0F5ixapCx8frzLpNmyo+lhZKXejYRS8t7ZWNSe7di2w6ddf1SSSQYPUutRUNR3W1lbtx9a2oNnZlXytVUupafMwvYhqNXoDbm1qImWERqPRwM8/w5dfqofAkCHqQVUND4PSxNYQjyGM7DCSuvY37tCQvb3SAM0vkwA/L0+JL3NLTS14TU2FlBTlvCnesrNVS0q6elvNesDevvTXWrUK+hR+b2cHdZJicMw4S63cNGrlpmGXk4Zddiq22WnY5mZgnZWOTU4GVlnpWGVlYJWdibFoUUFKiLlz1YyGN95QMVqgBNPPP1fuJIYOVcLKw0NNQd2/HyZOVIF7zZur5QMHVKmi+Ethy4ah3IaFXYqFv/O+vgXv4+NVOovc3ALRlZwMP/5YOTt79YJnnlHvExLgoYeU3R9/XNBn1iz1d1hYGZuVcuFXc6tTR523mfx8LeSuEi26NBpN1SCixJb5ITdpkkr1XsWBRscvHOeHfT/wd9zfwM0jtiqLjU1B3FdFEVGCKy1NjQKnp6uWkaFaZmbB+4wM5XXLzFTN/D4rq6Dl5EBOtpBzIQPn3CRscpNwyEnCJHlsbTTActz7D/6LutmJfOz3KdnWyis14fD/cEuJJA+oqNPu/VFZ5DnWwtYWQo+1wjU9h83/teVCY+UUuu1MB1rmZiJ2tTBsbZS6s7PDys4Gw9amyKuVrTXWdtakH2iFnFLb13YehP3wIPJrN0OyGmMdA7VsArB/4A3sE47jcCQCu9ij2CacwkCUkytPwLY2ef+aibWRjxX5WDdpWDC9v317eOKJohUYnJ1h/PgCD1xeXuneuZwcdcNycopub04OW7gepYiaLGAyVfwLUVy0jR6t/n4XLCgQt19+qca+HRyU0CzuInVyKlg2t1tYuGnRpdFoqoYLF+Cvv9TTf8YM6NOnSg938uJJftj3A1tPqzk5dtZ2DPEYwqgOo24psXU1GEaBA6RSnDqlAtHOnrWMe8rZc+QnniP/7Hnyc3LIB0zWkG8HubXrcnjmAIte6PDOBWwvXGDMHamkONQmJwfq1vEk94wNmTbOZFg7kWnlRJqVM+k4kWE4ki61yaA2aeJIWn5tMsSBPGwhQ5n0Y6PHoBGqwNylcKwjdAfb7ip5Uc6ldjm2FV5ofqkVpu6l5gMMA6CWSzqt0g7SOmUfrVP3k5DaltX/FwSAU04ST+6dzNnarYmr40WcizcJ9TqS6dgQa2ulR6yt62JjM/bSe/UnVPBZoVYLrBwuvf8HrN4xf+aG1cAV2Bp5GJ+r7awMcOn2Nrb52djkZWFrysImLws7UyY2uZnY5GWpV3PLySDXqhHx6y8dW0x4nckFK4NjEXZYXbKn5dq91Io/AYbKE2UYWN4XXwdgGAYp839SAtcA+/mfYH0xibyJ94OrqzrHIwexSjoHzk5Y1XHGqo4KODScbnzBpmO6NBpN1XHsmHKV+PtX2SHiUuL4Yd8PbIrdhCDYWtlyh8cdjOowinoO9arsuLcMIgXeyZwc5eVIToYnnyzoM22aGtIqC3t75XIzT7Ns0ACmTCnY7+nTqk/9+lf8UBUp3RFUOFyrcPiWeV3h1+LrCod3Ff6s+Pri68zvLa95Qp7JwGSCVkkR3HPoZawlr4j9KXYNiXX2Ym3L+0m1q4R7sjoRwTY/m1zrAlXeMvUgTrkXqGXKwD4vTb2a0i+9pmGfV+i9KR0rMfF/QQUVUx6NfJgGWXF84vsx5xxUqpa7jr+H37n1JQ9vGGTbOJJl40y2rROZtnXItnUiy9aZv1uNJsO+PlZW0CgzFtv8LJIdm5Nr51gkpM7KCqZOVVWhqhId06XRaKqeM2cgIgJCQ9XybeUnF70a/kn7h0X7F7HuxDoEwcbKhkFtBzHae/QNGSBfo4goz+SpUwW5K+Lj1fs6deDtt1U/W1tYsUIpiYceUkNKoOoemZOKNWxYtDVoUNCvLFpcfQU4w7CMFl6HFB5SD0CyF5N/5Ciy/wBy4FIpg/RziLGJoZ9Ox2SnwqdqLVlAfq6JLLf2ZLm1J692HUwmirT8/JLL5nXm17y80teXt6605fx8g/x8+2Kfe5GfDzn5kJWvvkrmz8zvizST0EgKPtvg9wS1sy9gcmmEo5Val+jiyREjF/vcVGrlpWFvaenY56Zhn5sGmUWv8MZ6d5F6KYNU/2ML8UrazE9tn+FAg14ABCb+RpczP7O2xRSysoKr57aXghZdGo3m8uTnqwdwdLQqNBgdrR7Shf/Vv3BBBRRbWcGdd6pZiq6u6oHq5nbNYrnOZZxj8f7F/HH8D0xiwtqwZkCbAdzjfQ+NHBtdk2Pc1CQmqgRhJ08qD9OpU+o1I6P0/snJBd4uw4AHH1RxOoU9UjNmVI/tNwlGLTus/bzBz1utELHcj8atHQrW7fxVXf+/Lm3o6qqy5nt6qvJFl5tNcV1S/HfAq5Q+Qy61AkQAkwlTSjqSkoqkpiHJKUiqyv33cd965NuqfjYLmmK97zZuu68hee3UulqLE7FfeZrOj5twDKyiU6sAenhRo9GUTloabNkCGzeqae3Z2WX3TUpSYiw/XyWFatu2aMKnOnUK6uV07HhFGegvZl0k7EAYvx77ldz8XAwMQtxCGOszFlfnmkm2el2Tn69m78XHw8CBBesffFDFXxXH2VkJ5BYtVD0ic20iV9fr1X10c5Ofrwp2Hz6sWlRUQYA8wAMPwPDh6v3Jk2oov107dc9u8LinKiE9XeVaadCgWgqf6uFFjUZzeXJyVFmUDRvUD35eobiTRo2UmDK3xo2VsPr1V1iyRAmq7t1h8GAVUB0frx7ux46p5Y0bVQM1K6pXL+jbV+0H1INl3z41nd5c+PrwYVIjdvBT3XhWpoaTbVJT63rkNePeLlNpGRhS9ra3CiLqYRIdrRJ1mYd2AWbPVvf09tsLijn7+Khrbq683aKFuh+6vtD1hZUVdOmiGqjxupMnlfg6fFhlxTezZQssXKje29urYf22bdWrh8cN6hG7xphnTtYw2tOl0WiUV2vlShWvY868bRjqhz0kREWdFi97kpsLH34I69apvpMnw4gRJR/cIkqA7dmj4r02bVIz3OrUUULAx0c9HD77TIk8OzuYP5+MvExWvHAPyxqdI8MWCAigS30/xn/4F+7JVpZ+gDp2Tk7Buvbtb04hJqK8iuYK2kePKrGVkqI+t7eHxYsLPB1z56r3992ngtQ1Nydmj/TRo+ofnMI0bw6fflqwvHGjEtstWxZNKaG5pmhPl0ajKUlyssqjtWqVSrIE0KaNElq9epX/oE5Ph8hIla/nX/8qyLBdmMLCZ+hQJa5WrlTxQ+fOqdiU/fthzRo1PNm8Odl5Wfyy5QuWpGwntWki2NsTcMaK+xyG45nfDJI3qQdJfLzaNyjBVXzdzSDE0tPVg/TIEeXhOHpUxc4Vx9lZeTbatFHnbM75UHiGoebmpXt31UD9TR87pr4rx44Vzd914ULBpAg7O+XtdHdX3xt3d/UdMuff0lQJWnRpNLciqakQFgarVxfEagUEwJgxBdm7L4eLC7z4ovK+tGlT8vPDh0sKn337lIfsttuUQJo4Uc16+/FHcmOi+c32OD965nHx6I/QoCFeGY7cd8gF36w60OnSsJmdndrW1rYgs3fxdfv2VVyIXS+IqID2pk3VeYAqnbRzZ9F+jo4F2dHNr40a6aFBjaJuXQgKUq042dlqqPn4cTX0b/aWmnn99YK/qchI5fV2c1PfSR0ndk3QokujuZXIy4NfflHxH+bifJ07wz33VEyArFunZjFOmKCW3d0LPivuRSpN+Pj6FhVInTqR1+421rrlsTjoFOdiDkJGJh7JNtx3womOOcEYQW1Vdm6zfWbxVthbVdq6igixmvR+5eQo28xiadYsNfuzcNkab2/lufD0VM3DQwW2a4GluRKaNlXfM1B//ydOqHb8uGpubgV9V61Shb5Beb9atVKtdWv1d9KhQ7WbfzOgRZdGcysgogLkv/xSiSZQnq1JkyqWSysvD/73P+UZAxXc265dweelebWKCyyzqLkkkEzeXqy3O83ClW+TmJEIdWxw6zmM+zzvJvhgCsYvvyhbo6KUEAkNhWHD1D6Ki6Pi6wodp1whVprdVSXEUlPVbMKDB5W4io6GTz5RD0JQD7N//lH9zIwapZpGc61xdFTivizPtpeX8kqfOKEmahT2ivXoUSC6Ll6E774rEGQtWqgZgvofg1LRokujudk5dQo+/1wFsYPy9DzwgAqOr8gP4/nz8OabSojY2MDDD6vp7GFh5Xu1Ro8uVfjke7bjr1oJLNz/PglpKot5yzotGeczjh6temAYBrRFxYDt3g3LlsHevSr2bMUK9YM/YkTRQrylUREhFhZWuWHIyoixixcLiiHv3w8xMUU/Nwy1ziy6pk6FRx4pf58aTXUxfHhBSoq0NIiNVd/XkyeLfvdjYlRMZmHs7VWgfosW6m/JHBtauLrBLYoWXRrNzUpmphpGXLFCTTd3dIR774U77iiaQ6s8du6E999XQ1wNG8K//632VRGvFhQRPqZ8E3+d/IvF+xcTnxYPQDOnZozzHUev1r2wMorFjBhGQWzK8eOwfLmaebVpk2o+Pkp8de5c8R/y4kKsNLvLG4YsLyYsNVWJw337VDt1quixbW2Vd9DbW3kR2rcvOoXdHMel0VxvODmp76xXKYlMmzdXZaBiY9V3/tQpNZvW7Bl78MGCvm+8oURaixZqu+bNC/LB1a9/SwgyLbo0mpsNESVKvvxSpRcwDJU7a8IENcutovz5p0o5kJamfhAffVR5l0rzDpXh1QLIy89jQ8wGfjzwo8Wz1cSxCeN8xtHHrQ/WVhWYtt6mDTz9tAq8X7ECfv9deY/271d2DB+ucn5VNolnRYchoaQY27FDDaOcP68+y8uDH34o2LednRqCMQ/htGunk4xqbj4aNVIVKAqTklJQBL3wb86pU6pGZ0JCyQki/fsXVDZITlZ/X66uqt1Egkzn6dJobiZiY1W+q8hItdyunRoOvNxQXGmkp6uixBERyiNTq1bRvFi5uUqUlDELMNeUy7oT6wg7GMaZ9DMAuDq5MsZ7DL3demNjdRX/82VkqCGNn39WqSdA/bgPHqzaFWS8L0Jpw4iHDqnrkZurju/qCsHBKpFsTo7KedSpk0q34eioPF8BAdfXDEmNpibJySmo6Vm8xuedd8LYsarf7t0qsa8ZOzs1DO/qql7HjCkQc9fpkGVZebq06NJobgbS0pSX5ZdfVLyVs7MSCP37V/wHyWSCP/4o6jFatAjeeqvAuzNzpvJqlRPblJWXxa9Hf2X5keUkZSYB0Ny5OWO8x9Crda+KebYqSl4ebN0KP/2kAtNBTW3v3l39iLdvf+U/yDk56jz37lUiNiBADXXu26f+8/7oIyWuDhwoen18fa/v1BQazfVIfn5BWoqjR1U+v/h45RUzJ/81s2hRwdD8Sy+pYP8mTQqKrjdpolqLFiVyDebm5mIYBjYVDbG4QnRyVI3mZiQ/X3l8vv1WeVYMQ8Vs3Xdf5YYSo6KUiIiMVLFTTz6phEJAwGVjtcykZqeyMmolK6NWkpajstq71XVjtPdoerTqUTJm61pgY6OSuPbsqQTSihVKhJnjvtq2hUGDoHdvcHAof1/5+Uq47d2rvHuHDhWtdQcFqStE1DGPH1cC63pOTaHR3AgUzgPm4aHCCcxkZCAJCWSfPElGfDzpSUlknD5Neno6GRERpCckkHHgAOkmExmXWrrJREarVqR7eZGRkUHG+fOkHzlCXsOGPP9//0cXc3mlakaLLo3mRmXfPvjiC/XgB/UwnzataK6dy5GergTbr78q0XbggPrPMiKiwENTRqyWmbiUOH4+8jN/nviTHJMSKR0admC012g6NeukZiNWNYah4qc6dFDDjatXw2+/KRH10Ucqvq1PHyXA2rZV25iTke7dWxAAb85dZsbdXZVC8vdXAfCFj2dnd32mptBorkNMJhMZGRmkpaWRkZFBenp6ua14n4yMDEwmk9rZ4sUFOxZRCWGzs9XfV3a28trn5akZxGYP+MWLcPYsNvXrk21OCF0D6OFFjeZG4/hx+OYbFfcAKpD1gQdUpumKChwR+P57JdqsrNSPVvPmqoZby5ZFhxJL3VzYl7iP5YeXszO+ICA2yDWIu73uxruRd/WIrfLIyVHn8/vvSkyaadtWDaGuWqUEZmGaNlXePX9/JYSK15usKMXFVFiYmrlVkWFILcQ01yEmk8kigNLS0kqIpOLrii9nZWVdtQ12dnbUrl0bR0fHCr0WWZedTe2oKGyDgjAaNboGV6R89PCiRnOjk5CghNLGjWq5dm0YOVLN3KtsvbTVq+GJJ9SQmqOjSm7YvDns2lVyKLEQmbmZbIjZwOqjq4lJjgHA1sqWvu59ucvzLlrWbXl153gtsbNTQe19+qjyJmvWqHiP6OiCZmurxOrQoSr1ROPG1+bYV5qaArQQ01QJIkJWVpZFDBV+Nbfigqnw69WKJsMwiogiJycnateubXl1dHQs0Yqvv+o4rNLKlVUzWnRpNNc7cXEqQejatcptbmsLQ4YoL1SdOhXbx+HDSqz16qUe2unpSrS1bKke8ElJ0K9fmUOJMRdjWH10Netj1pOVp35869aqy9B2Qxl822Dq2l+hR+hak5ys7D9yBO6/X3n+DEMV+q1TR8WJmExqxqHZy3/6tDrv/fuhWzc1A7F27WtrV0WHIW/EmpGaaiM/P7+IUCpNNJW1nJ6eTn5+/hUf2yyazIKp8GvhVto6R0dHHBwcat77fR2gRZdGc70SFQVLl6r6Z+Zp0f37qwSnlXGP//qrivVKSVExSosWqTilli1V+gM7u1ID5FOzU9kcu5k/T/zJkfNHLLvzbuTNHR530K1FN2ytazihZ1JSQcb34glJ+/UriG+bPFl5A9u2VcOpPXqo67FpE6xfr0Ta5s2q2dhAx45KgAUFlZj9dMVcaakiHZh/U2EepissjkprZXmhrgZ7e/tSRVNpr8XFU+3atbVougbomC6N5nrCZFJDfMuWKSEBSgT07auGEps3L39784O4QweVtHPFCuXVOXZMeW+cneG//y0z7UNefh674nex7sQ6dsTvIC8/D4DatrXp69aXwR6DaVW3VRVegHIQUUOshw4VCK3iMVl2diprtq+vEl0NGlRs34mJStxu26ZqIxb+XXRzU+IrMFDtu4qnmpe4L+Yg/MJ50eDalCrSXBGVFU6pqamWdZmZmVd17MIepcLiqPByaeuuyfCcpsLoPF0azfVMQoLKkfXnn8p7A0ok3XGHyjdVEW+L+eGcmKhmIvr4qPId+fnqMycnlTah2PBUrimXiH8i2HpqK3/H/U1qjiq4bGDg38Sfvu596dayG/Y29ld+fiJq6E8E6tUrWJ+drTx4trblTwLYuFHVj0xOLrre3l7NKjS3du2uXhRdvAjbt6uM2JGRysbCxyucZd7Do3rK91QkMN8spCsaE3aLizOTyVSqR+lyHifz7LsrxTxMV1wklSeWCr+3sqqC1Cuaa44OpNdorjdSU9WDfe3aAq8WqAdpaKhq5cUWmR+abdoowWEehnJ0VF4uOzt47DEVTH7iRJEHbFpOGhH/RLDt1DZ2xu8kM6/gv++WdVrSz70ffdz60KB2IU+RiIqNqlevQCCtX6+8TgMHKsEDKk/WvHnQpQs89ZRal5OjyhDZ2akhUzOvvabSU7zyihrSA/jgA/jqK5VZ/vXX1TpbWzUEWK+eCow3iyw3t2vveXJxUaklBg1Sdh88qGaK7t6tiv3u2aOa2S5PTyVaPDzUNWjQ4NpnyK5IYD5UPCastHU34JBlTk5OpWKcCrerCQyvrHBydna2vNfDdLc2WnRpNNVJYiL8/bfypOzfr7xQoOKNevRQ4qVDh5IP7eIPw+3bVcb55GTIyoK331ZZ2O3sVH6aVq1U3cQOHQAwtfMgqoGw55/d7F7zBVHnoxAKvNxtXNrQrWU3bm95Oy2t62NERsLuQ8omM+PHK6FYOBt0ZKQSje3aFYguKysVqF84/sQwVPqFWrWUeIuPV7MHIyNV7Nr+/QWiKzFRfR4VVbB9kyZKDLm5qaLbZh5/XMVmvf56wdDrgQOq5puXlyobcjXY2akUEgEBKjC/cAzZgQNKhJlrQJpxcVECrG1bZa+bm7Lj/7d35lF2lGX+/zx363t7S9NZCKQJSQyRkKAJIrI54ACjosMyIDC/UZGRUWdwEA4OAzPjEP+Yn8vkoKz6O4efCOIPmeMgAgI6gj/BoyMZCCFNliaTjkln7aSTXu6+PPPHU9V1u5NogHR3Qp7POXVu1VNvVb1V7633/dbzbgfTQ7G/9mBvpJfkW+k5eZDEWf3YTfsagmB0L7rRPepKowevfQMcqHCqF0wunJy3iosuxxlLBgfNU7JypQmM7u5oXzxuhfnZZ9vo5vvzaoVVRv39ViCeeaadc8sWq+6q1cwL8+lPDxfEhZPm0dVeZlXnD1izcw2rd64mV46qROISZ/6U+ZxWnc4ZXTmmTz8dFn7Adm7YEFVd1YuutjYTDv39keg65xwTWyedFIU75RR4+GGL29CQzQfZ3W0N07u74YorTCiGzJs3sgrvr/7KvGQLF0a21labb230M9q1y55xc3Nke+45Gx7ir/86El2dnTYn5amnwtVXR2FXrLCq246OA/NOtbdbWr3//bYdpm9Xl01d8vrrVj25bNnICX1TKRPCxx1nzzVcjjnGntObYR+zAryhCbzfbM/JwKbFIuVkkuxdd5Hr6CD76qtkV64kO2MG2SlTTEx1dZFdt47c5MkMNTbuJare6jAE8Xj8DbVrqre5cHImAhddjnOwqFat99z69dZwvbPTBEx9u8l02gr+00+3302brHDbuHHkxMq/+pV5ha68MioMq1UbbX3VKqvC2r4dGhrIHz+DDVdfyPqun9A90M26lnV0v/o9asUiNKSGLz1ja5bFPRUWX/QZTj7rMjLJjImTn90F5QarhgQbIPS000wk1HPnnXtX5S1aZAV2feHZ22ujwG/aZAJkX0yebJ6guXPtN/SSgV139LWnTIFrr937PA8+aNeoHzpj/nx7XrNnR7atWy0t6m35PPzTP5mY+OEPI/sDD5hH64orIu/Znj0WfvLkaF5KsI4J73ufLWBpvW2bia/ubvOEbdhgz2TdOltG094ezRUXzhs3bZpda/LkNz58xQH0kqxWq+TvuYfc8uXkZs8mr0ouFiNXKJBdvZp8LEa2u5vcz39u0600N9v0KzfdRK5YJNvVRS6VopLPw9/8jT3/V16J5s9btMiuPdrW3GxCfGAAWluRlpaoh1ypRPPQEE3HH0/TrFkH1MuuoaHBhZNzWOGiy3HeKJWKCZ4tW2wMrZ4eE1obNlgPs3oSCSv0wkbtuZxVo4XVNp/8pBVAqlbIb9licx9WKlZQtbXBySejqSR9qSqb57aw5QsXsmX+cWze2Mmm361ka60flv3vqLG9Quzl5czNpZj/Fzcwv2Mx86fOZ8r9j8Drz8BQGySDeQgXLrThJOpFTzoNX/pStB225erttaq/6dOt+gysqvQrXzERecstZstkIi9JOm1epNmzo6q2WbMOfHyxP0QiYYKsnvPPt6Wes8+2tm/1gimfNxESi430ci1bZmLp4osj21NPmffuiiusbRqYkLv/fhOOV1xhNhETbB0dVt0bDyb3zmbtnD099p/ZvDmazLevz5bVq/d9j+k02t5Osa2NXGMjhcZGCpkM+YYG8qkU+XicfCxmS61GrlAgn8/vc8k98QS5XG7/06AcffSwIOKFF0wgZbPm0YvF7P8L9p/I50nE4zTNmEFTPk9TMknjpEk05XImmtJpmjZsoGnqVJr27KHpggtoWriQ5ttuo7FSoXloiMy99yLz54/sALBlC3z2syOrNk84YWTV5osv/uHqzsOsfZpzZDCmoktEPgTcAcSB+1T1q6P2S7D/QiAHfEpVXx7LODnO76VUskJnzx4TGrt2mdjYtcsy8XXrolHcQ+q+3Jk7NyrcczkbamDaNKvGWrLEPEINDTYFzcqVUChQGOhjj+bZ8/yj7ElW2dNRYNekJL3JEr0rvkGvnMDOa1spb+6HfBl2PgPrptu12+IkXt3CzOQUZr/nY8w5ag5zjprD3N9+i/TQIMy81Kq0AC691AZVPfbYKO7t7eZp6uuzuQr7+yMREN7/7t3mZQu5+OJIdLW12b76bvBHHQVf/rIJj6lTD36j8jdDJhPNuRjS3h411K/nM58xUV3fHiyVsnupHx9t+3YbYiKbpXrZZZRKJUqlEsVbbqGYz1P65jcpxmIUi0WKjzxCcc0aCuefT3HmTApNTRTTaYqFAoV0mkImQ6Gvj2JfH4WtWynk8xQqFfLZLIVymeKBDmopYkIvHjdBWv9bt0g8TiaYJqWxqYnG5mZbWlpobG2lsaWFpkmTyDQ10bRrF41bttC0cCGNCxbYKOGbN9P43/9Nqv4DIhzWYvJk+Pu/t/gsX2629nYb8mTlSovjrFkmrjo7zTP5VjoAHKjtjbRP259geyvHuwh0GEPRJSJx4B7gAqAHWCYij6vqqrpgHwZOCJb3Ad8KfseXsXiRDvY5PY57h1240ArSSsUaNb/6qomemTMts12zxqrijjvOvuBzOWu8vW6dFQItLVGbo40bo8JJ1b7sBwas8Xd7OwwNoctfplopU4kL5QXzKU2fSrlWprx+OcU4FDNHU7zm8xRrJQo3Xk++MEj+xzFyc48nX8qRm7GdbBKGUsrQz25kcFKaoTN7KGb7AYGTYpBuhK6kibNaFTIDMLQVmtK0tE+n49UNHJs6ihmLP8iMRDsztJkZLz5JIt0OgwugtwDFNbD4vdZOavfuSHR1d1uvwDPOiKrqenqiAvL30dpq4nHatJETas+da70R6z1IItau6yCjqlSrVSqVCtVqdXi9VqsN2yqVyvASbpfL5RH20Bbaw/VyuUypVIq2X3lleLtUKlFqb6f89NMUH3uMcrlMcXCQci5H6de/pnLJJWEkrZdlpQK33hpFvqvLhPyuXSZUwcR8d7cJubDas1w2j1gyGXUsqFahs5OGQoHMvHlkGhvJqJLu7SWzaxeZtjbSLS1kymUy+TyZ/n4aUykyU6eSicdt2b2bJiDT3k5jKkVDLIbkcvb/KJXs3dixw+JdKNi7kE7bbzJpcVi1yv4HqVQ0xMeKFRYulbJ2bjt22P/tF7+wMBddZN6844+393PbNvOcrV5t5+7vt2FScjn7v3Z12XG1mnl8+/vtP9fbCz/5iXnbBgftfd6xwzpxiNh7fMwxdv7nnzdbLhfZfvMbe5+vuy4aEPjb37Zwn/tcJM7uu89s1167b8F2KInAt2u+PhHxGUfGbJwuETkDWKKqHwy2bwVQ1a/Uhfk/wP9X1YeD7bXAuao6YsTDMR2na80arrn8vRTCnlbNLSBAdghqwbNpa7OMZddOqNYsQ2hstAxo104LV62aB+PEE+2l7u62zEvVvCKxWHBOALWqpubmkcenG6C1DXbvAgUqVXtBpx9tmY6qnTuegEQcCnmGO6AlUxCPQaVsNgFicVuvBV4KARrSlrG2tqCDQ3bOagUkZscXi9HxiSBjrVWjEdGTSYtXtRJ4MAQaM1AoQqWMplIggk6bClu3WXxDT0cmY/Erle15xARtbbXnFHpKYjG0udmeUTYH1SqaTKACtE+Gnb3osNdFbF+tCtUaGrMpXzSTRisVtFQCAY0JtWQSULRcpgZoIo62tqAouqcfFagJ1OJCTQTVGjWgGodaays1rVIt5KPehmGBVKlAvhCkQQKmB96RzT2WroKlYSwOxUJgE/vvxGJQrRIfypGpQGbBIjLt02jMV2h86VWa+7I0v/tUms/8AM2pZhKvrbZG4snkcLXVvt7e8J1WsLZG73qX2davR597zkTTeeehqmg2C889h6bT0NCAptNoJgOZDBosZDLBM7HzhlOJqCqqSq1WG16v366312q1/S7VanWf2/X2arXKoTymoIiQSqVoaGgY/h2xqJKqVEhPnkx60iSz7dlDw8aNpDs6SC9aRDqdJl0skn7oIdItLaRvvplMJkM6nabhppuQjRttOI1Q9D74oI3X9YlPRNWbq1bZVEczZ8Lf/V3Ui/RLXzKx8tnPRoLk5z+3QuiUU0ycFArWDm/5csvz5syx917VqlxFbH7KkLVrTRTNmxcJye3bTTTWi/NSyQq6cOaD0DO8c6e9T+98p+UN4QdQPm9e0qYmaxNWqdg5OjrsvsJ2YsWiVS3Pnh31BK5U7CNp2jSr8q/VLP5hJ5Ddu+3dzeejtnL5vNkKBfPSFgoWl6YmWz/mGDtPrWb5cCZjxzQ3Wx4wMBAd39ZmcRgYsP35vHmWBwbs2pMm2bOfO9dsmzdH7/NZZ9lH4fr1VpYkEiZkt241wZpI2DM85xyL3wsvWJo0NtowKpMmWa/m9estjrGYDaq8caOJ41TKlvPPN0/2Cy9YmEwGLrjAnvHTT9vzam42m4iJ32o1GjcQ4Ikn7Pmn0zaOIFgVfC5n8bz0Ujv26aftfyditqOPtmv/6Ed2vXTa5o4VgR//2I5PJuHyy832xBNR1fZVV9l1nnzSwtVqNmdqa6sNAl0sWnlzzjnmMX38cUuLYtHaE550ktmqVft/PPLImAqviRinawawqW67h729WPsKMwMYNcz0GLJyJc8OZilWggy9b2DvML27sdK7LtMvZaE/F4gRrIQrFWDFa2arVKPwpaG9z9k3CLuH9j5+cFskekJb96aoAK8pUNn7fMVCtB4eS3lvWzawDRXqrqP7Lr2pa/fx+86ZL0fHlwLRNtRjAhUY3lmon8IiEE653bZf6+z5gbp7BUqV4Do7oVxXzYXateu3RSGXH3lPohCrjLgscTXxB1CfPLHgPGHUBdiVswygXEOCZIg1J4klkogmifUViNUglhBipRgxYsQ2xohXasRViGdSxGJx4pU4iWKZeCxBIpUgoUKcBPFq4CVqysDuGAVSFCpH05fdCpsG4PkXbf+ePZZRlUPRuo8lHo9+43ErAHt7g3uvWgGgap6IkJYW+63VLDN7CwM/jjWJRIJYLEYikSAejxOPx0fYwiW0x+NxkskkiURi+DdcH21PpVLD9nBJpVLDS2gLhdVo+0Fr0H3uuXvb7r7b0r2+I8OFF5oIqh91/9hj4YYbrCAKq4DBerbmcvDxj0e9JWfPtsL4T//UpoUCK9wffNDGQPvUp+w/MzRkQ3OAtd8L/4P33GMeq6uvNoFWLltB/sQT1knkT/7EbGEVfXOzFbyhOHr4Ydt35pkmGCoV+K//MoE2a5YVkieeaJ7pri67z1NPtX29vebdBgvT0WEibudOO+fUqeZd6+uz661fb6IhmYyeY61m73UiYfcUvjuV4IOyULDtZNK8apMm2Xb4gVgsRh9huZztK5ejj+2hoeEPq2GREAoIERNTpZLFKxS8mzdHtmLR2onu2GHryaT9rl9v5y4WTZwVCvaMpk+3971YjARjV5dV1xaLJrjyeUuzcKiZUICuWmVxz+fteeRy0fPN5y2++XxU7RveT61m/xkwcV8uW/xXrBhpq1bNdtxxFp9s1p5R2PMa7J4qFQv/0kuRrVSycKHjJQxXKtmxjY1mCz8mXnnFnuPQkN1zNmvxHhy0JRTI4XRa48xYero+BnxQVa8Ntj8BnKaqf1sX5ifAV1T1V8H2s8DNqvpS/bnG2tP1L1e+n/JAUMUzc6aVqps3m3ACy1BammHNWvPwVKr29TNtqtm0ZgX4lCnWYDebtS+OoUBUdcww71RPT+A1wv587UeNPOfUqfbidHVFXq3J7TDnHfai1Kr28rQdZX+m7dujjKO93V7Kvr7IK9XaausDA+EDty+N8Gvwd7+LMsDWVnvZduyIjm9vt9/+fkTVMospU4YnSJZYHGJimVtYdZIOvrBOPRVeWwU7toHEkJjA7HdALmvPNpFEEnFYtBj27EbWrLXj0mlrlJ1IImvWwObNSFMzxGPIJZcgv/41srbL4hqLIaecguQsM5B4HEmmkHPPtaqT518wgdTUDJddTiwWQ+7/LlKrIZPaiF3zaUQgdtc9xMoVYskksY9eREyE2GOPE6tUiceTxC+7nNjR04n37iS2ZasVbOecEzWSXrbMPJuLF0cFXWeneQJmzLDwwcTLEo/beiiSRJDgXmhqigrVanXvBt6wz4I9tO1v32j7aFv98b9vXUSGR8Ou367fX2+r3xeLxUYsoS0ej4+wh9v19lA8eS+1w4SwTAnTK2h0D4zsidnfb//zMO8BKxSHhkyghR8DxaLldamU5Y8hGzbY8bNmRe/itm123unTTSSF59y0yc4XFsALF1q+B5ZvhlVOqZSFr1RM3Jx8suWDPT0m+gYH7d2eN8/ywWTS4t7ZaUI1FC7xuHmtFiwwT9K2bWbfudPasE2fbjNQ3H57VIV7110mfv71X6Mq3DvusLgvWWLnzGTgG9+we/ziFy3/bmkx25w55kG6+24TY8kkLF1q9/G1r0VVxkuXmmgNO8s0N8PXv27P+cYb7ZlOmmQCG+D66+2+wnBg3tTQW7h0qdluvtnSLpm0MQLBxtTr77e4L11qz239eot7oWB53le/amFvucXSp6HBngFY7+KBATv+9tvN9s//HHnPliyx+7/ttkgI3nij5btLltg9lUr20TF/vtkqFbvuQw9NiKfLqxfh7V9n7XE8LOv+Hcd5m/N2zzMPhziOERMhuhJAF3AesBlYBvwvVX2tLsxHgM9jvRffB9ypqqeNPpfPveg4juM4zuHCuLfpUtWKiHwe+Ck2ZMR3VPU1EflcsP/bwFOY4FqHDRlxzVjFx3Ecx3EcZyIZ03G6VPUpTFjV275dt67AdWMZB8dxHMdxnEOBgzgDq+M4juM4jrM/XHQ5juM4juOMAy66HMdxHMdxxgEXXY7jOI7jOOPAmA0ZcTARkV7gdxMdD8dxHMdxnAPgeFWdOtp4WIgux3Ecx3Gcwx2vXnQcx3EcxxkHXHQ5juM4juOMAy66ABH5kIisFZF1InLLRMfnSEVEjhORX4jIahF5TUS+ENjbReQ/ROT14PeoiY7rkYiIxEVkuYg8GWx7uhwCiEibiPxQRNYE784ZnjYTj4jcGORjnSLysIikPV0mBhH5jojsEJHOOtt+00JEbg30wFoR+eDBjMsRL7pEJA7cA3wYOAn4cxE5aWJjdcRSAW5S1fnA6cB1QVrcAjyrqicAzwbbzvjzBWB13bany6HBHcAzqnoi8G4sjTxtJhARmQFcD5yqqguxqfCuwtNlovgu8KFRtn2mRVDmXAUsCI65N9AJB4UjXnQBpwHrVHW9qpaAHwAXT3CcjkhUdauqvhysD2KFxwwsPR4Igj0AXDIhETyCEZEO4CPAfXVmT5cJRkRagT8C/i+AqpZUdQ+eNocCCSAjIgmgEdiCp8uEoKrPA32jzPtLi4uBH6hqUVW7sbmhTztYcXHRZYX6prrtnsDmTCAiMgtYDPwWOFpVt4IJM2DaBEbtSOWbwM1Arc7m6TLxzAF6gfuDqt/7RKQJT5sJRVU3A0uBjcBWoF9Vf4any6HE/tJiTDWBiy6Qfdh8HI0JRESagX8HblDVgYmOz5GOiHwU2KGqL010XJy9SACnAN9S1cVAFq+ymnCC9kEXA7OBY4EmEfn4xMbKOUDGVBO46DIVe1zddgfmBnYmABFJYoLr+6r6aGDeLiLHBPuPAXZMVPyOUM4CLhKRDVj1+x+LyEN4uhwK9AA9qvrbYPuHmAjztJlYzge6VbVXVcvAo8CZeLocSuwvLcZUE7jogmXACSIyW0RSWAO6xyc4TkckIiJY25TVqnp73a7HgauD9auBH4933I5kVPVWVe1Q1VnY+/Gcqn4cT5cJR1W3AZtE5J2B6TxgFZ42E81G4HQRaQzytfOwNqqeLocO+0uLx4GrRKRBRGYDJwAvHqyL+oj0gIhciLVZiQPfUdV/mdgYHZmIyNnAC8BKorZD/4C16/o3YCaWmX1MVUc3inTGARE5F/iiqn5URCbj6TLhiMgirINDClgPXIN9UHvaTCAi8mXgSqxX9nLgWqAZT5dxR0QeBs4FpgDbgduAx9hPWojIPwJ/iaXdDar69EGLi4sux3Ecx3GcscerFx3HcRzHccYBF12O4ziO4zjjgIsux3Ecx3GcccBFl+M4juM4zjjgostxHMdxHGcccNHlOM6EIyKTReSVYNkmIpuD9SERuXeMrnmDiHxyH/ZZItJ5EK+TEpHngzn4HMc5gvFMwHGcCUdVdwGLAERkCTCkqkvH6nqBAPpLbPT2MUVVSyLyLDZm0/fH+nqO4xy6uKfLcZxDFhE5V0SeDNaXiMgDIvIzEdkgIn8mIl8XkZUi8kwwhRQi8h4R+aWIvCQiPw2n+hjFHwMvq2ql7pgVIvIb4Lq6688SkRdE5OVgOTOwf09ELq4L930RuUhEFojIi4GX7lUROSEI8hjwF2PxjBzHOXxw0eU4zuHEO4CPYJMJPwT8QlVPBvLARwLhdRdwuaq+B/gOsK8ZJs4C6ifwvh+4XlXPGBVuB3CBqp6CearuDOz3YSO/IyKTsHn1ngI+B9yhqouAU7F53AA6gfe+yXt2HOdtglcvOo5zOPG0qpZFZCU2bdczgX0lMAt4J7AQ+A+b8o44sHUf5zkGmwsvFE1tqvrLYN/3gA8H60ng7mCqnSowD0BVfyki94jINODPgH9X1UrgKftHEekAHlXV14PwVREpiUiLqg4epGfhOM5hhosux3EOJ4oAqloTkbJG85jVsPxMgNf24bEaTR5IB+sC7G8+tBuxudrejdUMFOr2fQ+rMrwKax+Gqv4/Efkt5o37qYhcq6rPBeEbRh3vOM4RhlcvOo7zdmItMFVEzgAQkaSILNhHuNXAXABV3QP0BxOuw8i2V5OArapaAz6Bec5CvgvcEJzjteB6c4D1qnon8DjwrsA+GehV1fJbv0XHcQ5XXHQ5jvO2QVVLwOXA10RkBfAK1t5qNE8Df1S3fQ1wT1A9mK+z3wtcLSL/iVUtZuuutR0Tb/fXhb8S6BSRV4ATgQcD+wewNl+O4xzBSOSddxzHOXIQkR8BN4ftrt7E8Y1YW7JTVLX/D4R9FLhVVde+mWs5jvP2wD1djuMcqdyCNah/w4jI+cAa4K4DEFwp4DEXXI7juKfLcRzHcRxnHHBPl+M4juM4zjjgostxHMdxHGcccNHlOI7jOI4zDrjochzHcRzHGQdcdDmO4ziO44wDLrocx3Ecx3HGgf8BygRWWx7E8UQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.4081, 'epsilon': 0.18810000000000002, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACi7ElEQVR4nOydeXyN1/b/308mCQkxizmIhIwSYh5iCqVaSlFVtDro3P6uVu9t0eHe9rZaSueJ3tYXRamqtqrmosaIORFiSIIQIvNwsn5/bOfkZJSQCfv9eu3XOc9+pvU8z8k5n6y99lqGiKDRaDQajUajKV9sKtsAjUaj0Wg0mjsBLbo0Go1Go9FoKgAtujQajUaj0WgqAC26NBqNRqPRaCoALbo0Go1Go9FoKgAtujQajUaj0WgqALvKNqAk1KtXT1q2bFnZZmg0Go1Go9Fclz179lwUkfr5+28J0dWyZUt2795d2WZoNBqNRqPRXBfDME4V1q+HFzUajUaj0WgqAC26NBqNRqPRaCoALbo0Go1Go9FoKgAtujQajUaj0WgqgHITXYZhfGMYxgXDMA4Wsd4wDGOuYRjHDcMINwwjsLxs0Wg0Go1Go6lsytPTtQAYVMz6wYDHtfYY8Gk52qLRaDQajUZTqZRbyggR2WwYRstiNrkH+J+ICLDDMAxXwzDcRCSuvGwqioMHISenos+ai2GUrO9G9i9qnXV//m3N6/MvA9jY5F1vbtb95ve2trnvbWxym3W/RqPRaDR3CpWZp6sJcMZq+ey1vgoXXW+9BSkpFX1WjWGAnZ0SYeZmZ1ew2duDg4NqdnbqtVq13OboqF6dnFSrXj231agBzs7qvRZ5Go1Go6lMKlN0FfYTKBVuBdC+PWRklGxbKWMLS3O8wrYtbZ/1OpHCl623zf++qJaTk/e9uZmXTaa8/eZ1WVmqlTc2NuDiogRYrVpQu3beVqcONGwIDRooUafRaDQaTVlTmaLrLNDMarkpEFsZhkyfXhlnvbPJL8ays9X77OzclpWV+2pumZnqNSMD0tPVq/l9ejqkpkJamnpNSVGvV6+qdYmJqsXEFG9b7dpKgDVqBM2aQYsW6rVRIyXeNBqNRqO5ESpTdK0CnjYMYzHQGUisjHguTeVgjvmyta2Y82VnQ3IyJCUp4XX5MiQkwJUr6n18PFy4oF4vX1bt6NG8x3BwgKZNoW1b8PJSrXFjPWyp0Wg0mpJRbqLLMIxFQB+gnmEYZ4EZgD2AiHwGrAHuAo4DqcCk8rJFo7GzA1dX1Zo1K3q7nBy4dAnOn4e4ODh9OrddvAgnTqj2229qexcX8PSEgADo2BGaNKmAi9FoNBrNLYkhZR2kVA507NhRdMFrTWWTkgInT0JEhPKCHT2qPGLWuLkp8dWxI/j5KbGn0Wg0mjsLwzD2iEjHAv1adGk0N4aIGo48dAj27IG9e9XwpZmaNaFPH+jfH9zdK81MjUaj0VQwWnRpNOVMTg4cOwa7d8OOHWpI0kyrVkp8hYSoGZQajUajuX3RokujqUBEICoK1q2DTZtUED+oPGJDh8I996jUFRqNRqO5/dCiS6OpJDIzYedO+PVXCA9XfdWqwV13wfDhKkWFRqPRaG4ftOjSaKoAx47B4sVqCBJUGoohQ+CBB1RmfY1Go9Hc+mjRpdFUIY4fhyVLVOwXQL16MGUKBAdXrl0ajUajuXm06NJoqiDHj8PHH6tXgG7d4LHHoG7dyrVLo9FoNDdOUaJLFzXRaCqRNm1g1iyYPFkNL27bpjxea9aUfZ1PjUaj0VQuWnRpNJWMra2azfjpp9C5s6od+emnSoylp1e2dRqNRqMpK7To0miqCPXqwauvwksvKa/X5s0wdaoqR6TRaDSaWx8tujSaKkbPnvDBB6qOY3Q0vPBC7mxHjUaj0dy6aNGl0VRBmjWD999Xw40pKfDGGyrVhI7z0mg0mlsXLbo0mipKjRrwr3/B+PFqeeFC+PJLLbw0Go3mVkWLLo2mCmMYcP/9SnzZ2cHPP6sgey28NBqN5tZDiy6N5hagc2cVZG9vr8oJzZunhZdGo9HcamjRpdHcIgQFwfTpqnTQH3/AnDmQk1PZVmk0Go2mpGjRpdHcQgQEwMyZKqXE+vVqlqPJVNlWaTQajaYkaNGl0dxi+PrC668r4bVpE3zzTWVbpNFoNJqSoEWXRnML0r49zJihgutXrVJxXhqNRqOp2mjRpdHcovj4wNNPq/effQZhYZVqjkaj0WiugxZdGs0tTL9+MHKkCqh/5x04e7ayLdJoNBpNUWjRpdHc4jz0EHTpkpu5Pimpsi3SaDQaTWFo0aXR3OIYBvy//wetWqni2P/5D2RnV7ZVGo1Go8mPFl0azW2AoyO89hrUqQMHD8K331a2RRqNRqPJjxZdGs1tQr168M9/go0NrFypA+s1Go2mqqFFl0ZzG+HpCWPHqvezZ8PVq5Vrj0aj0Why0aJLo7nNuP9+lccrIQHmztU1GjUajaaqoEWXRnObYWOjAuurV4e//4a1ayvbIo1Go9GAFl0azW1Jgwbw5JPq/ZdfQkxM5dqj0Wg0Gi26NJrblt69oU8fyMiAWbN0GgmNRqOpbLTo0mhuY554Qnm9jh+HJUsq2xqNRqO5sylX0WUYxiDDMI4ZhnHcMIxphayvZRjGz4Zh7DcM45BhGJPK0x6N5k6jRg148UX1ftkyXSZIo9FoKhO78jqwYRi2wMfAAOAssMswjFUicthqs6eAwyJyt2EY9YFjhmEsFJHM6x3fZDKRkJBAVlZWudiv0dwu1K4Nzz8PsbEqd5dhqHYnYm9vT506dbC1ta1sUzQazR1IuYkuIBg4LiInAAzDWAzcA1iLLgFcDMMwAGcgAShR5ElCQgKOjo7Uq1cP4079BdFoSkjdurB6tcrblZkJ7u6VbVHFIyIkJyeTkJBA/fr1K9scjUZzB1Kew4tNgDNWy2ev9VnzEdAOiAUOAM+JSE5JDp6VlYWzs7MWXBpNCahWDQID1fu9e1Vw/Z2GYRg4Oztr77hGo6k0ylN0FaaG8qdpDAXCgMZAAPCRYRg1S3wCLbg0mhLTsiU0bKgE151aIkh/Z2g0msqkPEXXWaCZ1XJTlEfLmknAj6I4DpwEvMrRpjLl3//+N97e3vj5+REQEMDff/9dKXaEhYWxZs0ay/KqVat45513AJg4cSLLli0rsM/GjRsZOnRohdmoqXwMAzp1UslTo6IgPr6yLdJoNJo7i/IUXbsAD8Mw3A3DcADGAKvybXMa6AdgGEZDwBM4UY42lRnbt29n9erV7N27l/DwcNatW0ezZs2uv2M5kF90DRs2jGnTCkwW1WioWVOVCALYuRNySjSYr9FoNJqyoNxEl4hkA08DvwNHgB9E5JBhGE8YhvHEtc3eBLoZhnEA+BN4WUQulpdNZUlcXBz16tWjWrVqANSrV4/GjRvTsmVLLl5Ul7B792769OkDwKZNmwgICCAgIIAOHTqQlJQEwLvvvouvry/+/v4WoRQVFcWgQYMICgqiZ8+eHD16FFBeqyeeeIKePXvStm1bVq9eTWZmJtOnT2fJkiUEBASwZMkSFixYwNNPP22xdd26dXn2yU9KSgoPP/wwnTp1okOHDvz000/ldt80lY+3N7i4QGIiXPtoaTQajaYCKM/Zi4jIGmBNvr7PrN7HAgPL04byYuDAgbzxxhu0bduW/v37M3r0aHr37l3k9rNmzeLjjz+me/fuJCcn4+joyK+//srKlSv5+++/qV69OgkJCQA89thjfPbZZ3h4ePD333/z5JNPsn79egCio6PZtGkTUVFRhISEcPz4cd544w12797NRx99BMCCBQvynLuwfaz597//Td++ffnmm2+4cuUKwcHB9O/fnxo1apThHdNUFWxtoWNH2LABDh2CVq3A0bGyrdJoNJrbn3IVXRXF3XeXz3F//rnodc7OzuzZs4ctW7awYcMGRo8ebYmjKozu3bvz4osvMm7cOEaMGEHTpk1Zt24dkyZNonr16gDUqVOH5ORktm3bxqhRoyz7ZlhNNbv//vuxsbHBw8ODVq1aWbxgxXG9fdauXcuqVauYNWsWAOnp6Zw+fZp27dpd99iaWxM3N2jSRNVkPHBAxXppNBqNpny5rugyDKM7MBNocW17AxARaVW+plV9bG1t6dOnD3369MHX15dvv/0WOzs7cq4FyqSnp1u2nTZtGkOGDGHNmjV06dKFdevWISIFZlPl5OTg6upKWBHTy/JvX5LZWNfbR0RYvnw5np6e1z2W5vYhIEAlTD1+HNq2hVq1KtsijUajub0piafra+AFYA9gKl9zboziPFLlxbFjxyzeI1DB7C1atCAtLY09e/YwePBgli9fbtk+KioKX19ffH192b59O0ePHrUMUT7wwAOW4cU6derg7u7O0qVLGTVqFCJCeHg4/v7+ACxdupQJEyZw8uRJTpw4gaenJ8ePH7fEiBVGYfvs2LHDsj40NJR58+Yxb948DMNg3759dOjQoZzunKaqUKsWtGkDkZEqhUQxo+MajUajKQNKEkifKCK/isgFEblkbuVuWRUnOTmZCRMm0L59e/z8/Dh8+DAzZ85kxowZPPfcc/Ts2TNPqZE5c+bg4+ODv78/Tk5ODB48mEGDBjFs2DA6duxIQECAZXhv4cKFfP311/j7++Pt7Z0nsN3T05PevXszePBgPvvsMxwdHQkJCeHw4cOWQPr8FLaPNa+99hpZWVn4+fnh4+PDa6+9Vk53TVPV8PUFe3s1zHjuXGVbo9FoNLc3hkj+fKX5NjCMdwBb4EfAElwkInvL17RcOnbsKLt3787TFxsbS+PGjSvKhCrBxIkTGTp0KCNHjqxsUzS3EYcOwf79qkbjoEG3f13GO/G7Q6PRVCyGYewRkY75+0syvNj52qv1zgL0LQvDNBpN5eLlpYYYL1+GkyfVbEaNRqPRlD3XFV0iElIRhmiuT/5UEBpNWWBrC/7+sH278ng1bw52t8W8Zo1Go6laXDemyzCMWoZhfGAYxu5r7X3DMPQ8J43mNqJlS6hbF9LSdMJUjUajKS9KEkj/DZAE3H+tXQXml6dRGo2mYjEMME9YPXxYFcXWaDQaTdlSEtHVWkRmiMiJa+11QEd9aDS3GQ0aQOPGkJ2thJdGo9FoypaSiK40wzB6mBeuJUtNKz+TNBpNZeHnp14jItRQo0aj0WjKjpKIrinAx4ZhRBuGcQr4CHjiOvvcETg7O193my1btuDt7U1AQABppfwVW7lyJYdvwOVQlF1paWn07t0bkyk3x+3s2bNxdHQkMTGx1OcpC8LCwlizZs31N7xJFixYQGxsrGV58uTJN3Rvo6Oj8fHxue52S5cupV27doSElH4eSn5by8quwraZOXOmJT8cQJ060KwZmExw8GDhx+nTpw/5U7jkZ86cOaSmppbM+Hzc6GfC2q7+/ftz+fLlGzq/RqPRlBfXFV0iEiYi/oAf4CsiHURkf/mbdnuwcOFC/vGPfxAWFoaTk1Op9r1R0VUU33zzDSNGjMiTtHXRokV06tSJFStWlNl5SkNlia6vvvqK9u3bl9v5vv76az755BM2bNhQ6n1vRHSVJX5+KsYrKgqSk2/sGJUhuqwZP348n3zyyU0dQ6PRaMqaIkWXYRgPXnt90TCMF4HJwGSrZc01Nm7cSJ8+fRg5ciReXl6MGzcOEeGrr77ihx9+4I033mDcuHEAvPfee3Tq1Ak/Pz9mzJhhOcb//vc//Pz88Pf3Z/z48Wzbto1Vq1YxdepUAgICiIqKIioqikGDBhEUFETPnj0thatPnjxJ165d6dSpU7HZ5BcuXMg999xjWY6KiiI5OZm33nqLRYsWWfoPHTpEcHAwAQEB+Pn5ERkZyWuvvcaHH35o2eZf//oXc+fOZePGjfTu3Zv777+ftm3bMm3aNBYuXEhwcDC+vr5ERUUBKrHrE088Qc+ePWnbti2rV68mMzOT6dOns2TJEks2/YSEBO699178/Pzo0qUL4eHhgPLITJgwgYEDB9KyZUt+/PFHXnrpJXx9fRk0aBBZWVkAvPHGG3Tq1AkfHx8ee+wxRIRly5axe/duxo0bZ/E4WntFfvvtNwIDA/H396dfv34lfu4LFixgxIgRDBo0CA8PD1566SWLDVu3buWJJ55g6tSpmEwmpk6dannun3/+ueUY7777Lr6+vvj7+zNt2rRCbd2zZw+9e/cmKCiI0NBQ4uLiANizZw/+/v507dqVjz/+uMR2F0WfPn14+eWXGTAgmJdfbsvhw1s4eFB5SMeMGYOfnx+jR4/O47Fdu3YtXbt2JTAwkFGjRpGcnMzcuXOJjY0lJCTE4ukrbDuAXbt20a1bN/z9/QkODiYxMbHAZyIlJYWHH36YTp060aFDB0uFhuLsGjZsWJ7PtEaj0VQJRKTQBjx+7XVGIW16UfuVRwsKCpL8xMTEFOiraGrUqCEiIhs2bJCaNWvKmTNnxGQySZcuXWTLli0iIjJhwgRZunSpiIj8/vvv8uijj0pOTo6YTCYZMmSIbNq0SQ4ePCht27aV+Ph4ERG5dOlSgX1FRPr27SsREREiIrJjxw4JCQkREZG7775bvv32WxER+eijjyx2WZORkSENGzbM0/fmm2/KG2+8ISaTSVq0aCHnz58XEZGnn35avv/+e8t+qampcvLkSenQoYOIiJhMJmnVqpVcvHhRNmzYILVq1ZLY2FhJT0+Xxo0by/Tp00VEZM6cOfLcc89ZriU0NFRMJpNERERIkyZNJC0tTebPny9PPfWUxaann35aZs6cKSIif/75p/j7+4uIyIwZM6R79+6SmZkpYWFh4uTkJGvWrBERkXvvvVdWrFiR596JiDz44IOyatUqERHp3bu37Nq1y7LOvHzhwgVp2rSpnDhxosD+hXHy5Enx9vYWEZH58+eLu7u7XLlyRdLS0qR58+Zy+vTpAuf7/PPP5c033xQRkfT0dAkKCpITJ07ImjVrpGvXrpKSkpLn3Nb7ZmZmSteuXeXChQsiIrJ48WKZNGmSiIj4+vrKxo0bRUTkH//4h8WukthuZsaMGfLee+9Zzvviiy+KiMiyZb+Ij08/+b//E3nrrfct59y/f7/Y2trKrl27JD4+Xnr27CnJyckiIvLOO+/I66+/LiIiLVq0sHyei9ouIyND3N3dZefOnSIikpiYKFlZWQU+E6+88op89913IiJy+fJl8fDwkOTkZHn//cLtMtOmTRu5ePFigftQFb47NBrN7Q2wWwrRM0WmQBQR87/j60TkL+t114Lpqw53310+xy1FJe3g4GCaNm0KQEBAANHR0fTo0SPPNmvXrmXt2rWWYtLJyclERkayf/9+Ro4cSb169QCoU6dOgeMnJyezbds2Ro0aZenLuDav/6+//rIU1x4/fjwvv/xygf0vXryIq6trnr7FixezYsUKbGxsGDFiBEuXLuWpp56ia9eu/Pvf/+bs2bOMGDECDw8PWrZsSd26ddm3bx/nz5+nQ4cO1K1bF4BOnTrh5uYGQOvWrRk4cCAAvr6+eYbX7r//fkuR8FatWlk8ddZs3brVci19+/bl0qVLlnizwYMHY29vj6+vLyaTiUGDBlnOEx0dDcCGDRt49913SU1NJSEhAW9vb+4u5vOxY8cOevXqhbu7e5H3vjj69etHrVoqbV379u05deoUzZo1y7PN2rVrCQ8PZ9myZQAkJiYSGRnJunXrmDRpEtWrVy/y3MeOHePgwYMMGDAAAJPJhJubG4mJiVy5coXe16pUjx8/nl9//bVYW40i6vtY948YMQKAHj2CuHIlGhH47bfNvP76swD4+fnhdy3afseOHRw+fJju3dXXQWZmJl27di1w/KK2O3bsGG5ubnTq1AmAmjVrFmrf2rVrWbVqlSX2LD09ndOnT7N582aefbagXWYaNGhAbGys5XOq0Wg0lU1J8k7PAwJL0HdHU61aNct7W1tbsrOzC2wjIrzyyis8/vjjefrnzp1b5A+imZycHFxdXQkLCyt0/fX2d3JyIj093bIcHh5OZGSk5cc8MzOTVq1a8dRTT/HAAw/QuXNnfvnlF0JDQ/nqq6/o27cvkydPZsGCBZw7d46HH3640Gu3sbGxLNvY2OS5D/ltLMxmKaQWqHk76+Pa29tb+s3nSU9P58knn2T37t00a9aMmTNn5rnmwhCR69674ijpc583bx6hoaF5+n/77bfrnltE8Pb2Zvv27Xn6r1y5Umq769atWyC4PCEhwSI4Ifd6bG1tsbHJxtZWzWJMSir8WQ0YMOC6w3hFbRceHl6iaxARli9fjqenZ4F1xe2fnp5e6jhKjUajKU+Ki+nqahjG/wPqm+O4rrWZqALYVYeffy6fVsaEhobyzTffWOJZYmJiuHDhAv369eOHH37g0qVLgPohBHBxcSEpKQlQXgB3d3eWLl0KqB+i/fvVfIbu3buzePFiQMVtFUbt2rUxmUwWEbJo0SJmzpxJdHQ00dHRxMbGEhMTw6lTpzhx4gStWrXi2WefZdiwYZa4quHDh/Pbb7+xa9euAgKiJCxdupScnByioqI4ceIEnp6eea4RoFevXpZr2LhxI/Xq1SvSA5If87XVq1eP5ORki2cJKHAeM127dmXTpk2cPHkSyL33O3fu5KGHHir1NRZGaGgon376qSXuLCIigpSUFAYOHMg333xjCTgv7Ll7enoSHx9vEV1ZWVkcOnQIV1dXatWqxdatW4G8zz0mJqbQ2DRnZ2fc3Nz4888/Lef77bffCnhkzRgGeHiAl1cvvvhCHf/gwYOWz0OXLl3466+/OH78OACpqalEREQUuIaitvPy8iI2NpZdu3YBkJSURHZ2doFnFRoayrx58yyCfN++fUDez4q1XaD+Ps6dO0fLli2LeCoajUZT8RQ3e9EBcEZ5w1ys2lVgZPmbdvsxcOBAHnjgAbp27Yqvry8jR44kKSkJb29v/vWvf9G7d2/8/f158UU1T2HMmDG89957dOjQgaioKBYuXMjXX3+Nv78/3t7eloDiDz/8kI8//phOnToVm/ph4MCBlh/pxYsXM3z48Dzrhw8fzuLFi1myZAk+Pj4EBARw9OhRi/hwcHAgJCSE+++/P88MyJLi6elJ7969GTx4MJ999hmOjo6EhIRw+PBhS9D0zJkz2b17N35+fkybNo1vv/22xMd3dXXl0UcfxdfXl3vvvdcybAW5gfz5U3fUr1+fL774ghEjRuDv78/o0aMBOH36dJl5SSZPnkz79u0JDAzEx8eHxx9/nOzsbAYNGsSwYcPo2LEjAQEBluEza1tNJhPLli3j5Zdfxt/fn4CAALZt2wbA/PnzLcPB1rbGxcVhV0TxxP/973+89dZbBAQE0LdvX2bMmEHr1q2LtL19exg0aAoJCcl4e/vx7rvvEhwcbLl3CxYsYOzYsZaJD+Yh48cee4zBgwcTEhJS5HYODg4sWbKEZ555Bn9/fwYMGEB6enqBz8Rrr71GVlYWfn5++Pj4WCaLTJkyheTkZPz88toFapJBly5dirwPGo1GUxkYhQ3n5NnAMFqIyKkKsqdQOnbsKPnzAsXGxtK4ceNKsujWZN++fXzwwQd89913N7R/Tk4OgYGBLF26FA8Pj1LtO3HiRIYOHcrIkbeGXp86dSrjx48vECd0K/DRRx/RvHlzhg0bVibH278fDh0CNze4gbRjlcJzzz3HsGHDCvX46e8OjUZT3hiGsUdEOubvL8m/gamGYbwHeAOO5k4R6VuG9mkqgA4dOhASEoLJZCq1p+rw4cMMHTqU4cOHl1pw3Yq89957lW3CDfP000+X6fG8vFSG+rg4uHgRrs33qNL4+PiUKv2HRqPRVAQl8XStBZYA/0Blop8AxItIwSly5YT2dGk0lYvZ29WoEfS9xf/d0t8dGo2mvCnK01WSMkB1ReRrIEtENonIw0CXMrdQo9FUWby8wN4ezp2D+PjKtkaj0WhuTUoiurKuvcYZhjHEMIwOQNNytEmj0VQxqlUDc8YGq0mCGo1GoykFJRFdbxmGUQv4f6ghxq+AF8rVKo1GU+Xw8gIHBzh/Hi5cqGxrNBqN5tajJAWvV4tIoogcFJEQEQkSkVUVYZxGo6k6ODjkersOHKhcWzQajeZWpLjkqPMMw5hbVKtII6sqtra2BAQE4O3tjb+/Px988AE5OTkA7N6921KipKozceLEPIlErXn++efZvHmzZTk+Ph57e/s8RZsrmv/85z/lfo6wsDDWrFljWV61ahXvvPPODR3Lurh2UcTHx9O5c2c6dOjAli1bbsrWsrRr4sSJuLu74+/vT9u2bfnvfx8iKSmG8+eVx6so5syZY0n6WlrK4nr69+9fIPu+RqPRVDbFebp2A3uKaXc8Tk5OhIWFcejQIf744w/WrFnD66+/DkDHjh2ZO/fW1qYJCQmW2oRmli5dSpcuXa5b+qU8qQzRNWzYMKZNm1Zu5/vzzz/x8vJi37599OzZs1T73qhIKSnvvfce+/fv59ixYwQFdeDtt0PIzs7kwAEoavJzZYgua8aPH88nn3xyU8fQaDSasqZI0SUi3xbXKtLIW4EGDRrwxRdf8NFHHyEibNy4kaFDhwKqpEy3bt3o0KED3bp149ixY4Aqh3L//ffj5+fH6NGj6dy5s+U/dWdnZ/71r3/h7+9Ply5dOH/NrXDq1Cn69euHn58f/fr14/Tp04ASQz4+Pvj7+1tEkslkYurUqXTq1Ak/Pz+Ld0pEePrpp2nfvj1DhgzhQhEBOsuWLbMUlTazaNEi3n//fc6ePUtMTIzlPBMnTsTHxwdfX19mz55NVFQUgYG55TkjIyMJCgoCoGXLlvzzn/+ka9eudOzYkb179xIaGkrr1q357LPPAFUCqFevXgwfPpz27dvzxBNPkJOTw7Rp00hLSyMgIIBx48YB8MEHH+Dj44OPjw9z5swBIDo6Gi8vLyZPnoyPjw/jxo1j3bp1dO/eHQ8PD3bu3Fnks8nMzGT69OksWbLEkhV9wYIFlvxX58+fZ/jw4fj7++Pv72/JEF8SCnuuYWFhvPTSS6xZs8aSMX/t2rV07dqVwMBARo0aZSkdtWvXLrp164a/vz/BwcEkJiYWsDUlJYWHH36YTp060aFDB0vlgrS0NMaMGWP5vFln5i8JhmHwwgsv0KxZIw4d+pULF+CHHwraOXfuXGJjYwkJCSHkWjbVir6eYcOGVeo/BhqNRlMoIlJsAzYA6/O36+1Xli0oKEjyExMTU6Dvuhw5IvLDD+q1DKhRo0aBPldXVzl37pxs2LBBhgwZIiIiiYmJkpWVJSIif/zxh4wYMUJERN577z157LHHRETkwIEDYmtrK7t27RIREUBWrVolIiJTp06VN998U0REhg4dKgsWLBARka+//lruueceERHx8fGRs2fPiojI5cuXRUTk888/t+yXnp4uQUFBcuLECVm+fLn0799fsrOzJSYmRmrVqiVLly4tcC0PPfSQxQYRkdOnT0ubNm1EROSVV16R999/X0REdu/eLf3797dsZz5/nz59ZN++fZbt586dKyIiLVq0kE8++URERJ5//nnx9fWVq1evyoULF6R+/foiIrJhwwapVq2aREVFSXZ2tvTv399io/V93717t/j4+EhycrIkJSVJ+/btZe/evXLy5EmxtbWV8PBwMZlMEhgYKJMmTZKcnBxZuXKl5b4V9Wzmz58vTz31lOU81sv333+/zJ49W0REsrOz5cqVKwXunTW9e/e+7nO1Pn58fLz07NlTkpOTRUTknXfekddff10yMjLE3d1ddu7cmcf2/La+8sor8t1331mehYeHhyQnJ8v7778vkyZNEhGR/fv35/m8FcWECRMKfDaee+45eeGFd+Szz+LFx6enJCXltVNEPeP4+PhKvZ42bdrIxYsXC1zTDX13aDQaTSkAdksheqYkGen/YfXeEbgPyC6JoDMMYxDwIapA9lciUiAoxjCMPsAcwB64KCK9S3LsUnP0KEycCJmZKiJ4wQI1HauMkULGWxITE5kwYQKRkZEYhmEpfLx161aee+45QGXQti454+DgYPGUBQUF8ccffwCwfft2fvzxR0ANobz00kuAKno9ceJE7r//fkaMGAEo70J4eLglXisxMZHIyEg2b97M2LFjsbW1pXHjxvQtIttlXFwc9evXtywvXryY+++/H1B1IR955BFefPFFWrVqxYkTJ3jmmWcYMmQIAwcOBFTNwfnz5/PBBx+wZMkSi3cJsJSo8fX1JTk5GRcXF1xcXHB0dOTKlSsABAcH06pVKwDGjh3L1q1bC5QR2rp1K8OHD6dGjRoAjBgxgi1btjBs2DDc3d3x9fUFwNvbm379+mEYBr6+vkRHRxf7bIpj/fr1/O9//wNUXF+tWrWuu4+Zop6rNTt27ODw4cN0794dgMzMTLp27cqxY8dwc3Oz1JQsqhD42rVrWbVqlaWWY3p6OqdPn2bz5s2WOEM/P78bLnEkItSrB9HRO4iOPkyXLt2xs8u1s6pcT4MGDYiNjaVu3bo3dJ0ajUZT1lxXdIlI/vitvwzD2HS9/QzDsAU+BgYAZ4FdhmGsEpHDVtu4Ap8Ag0TktGEYDUpjfKk4cEAJriZNIDZWLZex6Dpx4gS2trY0aNCAI0eOWPpfe+01QkJCWLFiBdHR0fTp0wcoXKCZsbe3xzAMQP2wZ2cXrnPN23z22Wf8/fff/PLLLwQEBBAWFoaIMG/ePEJDQ/Pss2bNGst+xeHk5ER6erpledGiRZw/f56FCxcCKrN3ZGQkHh4e7N+/n99//52PP/6YH374gW+++Yb77ruP119/nb59+xIUFJTnx69atWoA2NjYWN6bl83Xmt/Gwmwu7h7mP671Oc3nKOrZlBclea4iwoABAwoMj4WHh5fouYkIy5cvx9M81dCKkux/Pfbt28c//tGPM2cEX98BzJy5iAEDoKhDV9b1pKenl1nRco1GoykLrpsywjCMOlatnmEYoUCjEhw7GDguIidEJBNYDNyTb5sHgB9F5DSAiJRf9h9fX+Xhio1VqbWveUDKivj4eJ544gmefvrpAj8EiYmJNGnSBIAFCxZY+nv06MEPP/wAqNqGB0owD79bt24sXrwYgIULF9KjRw8AoqKi6Ny5M2+88Qb16tXjzJkzhIaG8umnn1q8NxEREaSkpNCrVy8WL16MyWQiLi6ODRs2FHqudu3acfz4cQCOHTtGSkoKMTExREdHEx0dzSuvvMLixYu5ePEiOTk53Hfffbz55pvs3bsXAEdHR0JDQ5kyZQqTJk0q6a20sHPnTk6ePElOTg5LliyxXKu9vb3lmnr16sXKlStJTU0lJSWFFStWlCoQvahn4+LiQlJSUqH79OvXj08//RRQ8WxXr1619Jvj3G6GLl268Ndff1nufWpqKhEREXh5eREbG8uuXbsASEpKIjs7u4CtoaGhzJs3zyJI9+3bB6h7ZRbMBw8eJNwqy+lDDz2UxxNZGCLC3LlziYuLY9CgQYwY0YXIyL84ePA4cXG5dkLe+1cZ1yMinDt3jpYtW5bspms0Gk0FUJLkqHvIncm4HZUk9ZES7NcEOGO1fPZanzVtgdqGYWw0DGOPYRgPleC4N4aXlxpSnDatzIYWzQHd3t7e9O/fn4EDBzJjxowC27300ku88sordO/eHZPJZOl/8skniY+Px8/Pj//+97/4+fldd6hq7ty5zJ8/Hz8/P7777js+/PBDAKZOnYqvry8+Pj706tULf39/Jk+eTPv27QkMDMTHx4fHH3+c7OxsS9FqX19fpkyZQu/ehY/oDhkyhI0bNwLKyzV8+PA86++77z4WLVpETEwMffr0ISAggIkTJ/L2229bthk3bhyGYViGHEtD165dmTZtGj4+Pri7u1vO/9hjj+Hn58e4ceMIDAxk4sSJBAcH07lzZyZPnkyHDh1KfI6ink1ISAiHDx+2BHNb8+GHH7JhwwZ8fX0JCgri0KFD5OTkcPz4cerUqVPq68xP/fr1WbBgAWPHjsXPz48uXbpw9OhRHBwcWLJkCc888wz+/v4MGDCA9PT0Ara+9tprZGVl4efnh4+PD6+99hoAU6ZMITk5GT8/P959912Cg4Mt5wwPD8fNza1Qe6ZOnWpJGbFr1y42bNiAg4MDbm71effdBXz88Vi6d8+1E9QzGjx4MCEhIZVyPXv27KFLly7Y2ZUkgkKj0WgqhusWvL7hAxvGKCBURCZfWx4PBIvIM1bbfAR0BPoBTihRN0REIqyPdbsWvDaZTGRlZeHo6EhUVBT9+vUjIiICBweHyjbNQo8ePVi9ejWurq43tP+sWbNITEzkzTffLNV+GzduZNasWaxevfqGzlvRHDx4kG+++YYPPvigsk0pNVevXuWRRx5h6dKlpd43OxtWrYL0dOjdW43eVwWee+45hg0bRr9+/Qqsux2+OzQaTdWmqILX1/030DAMR+BJoAcgwFbgUxFJL3ZH5dlqZrXcFIgtZJuLIpICpBiGsRnwByK4A0hNTSUkJISsrCxEhE8//bRKCS6A999/n9OnT9+Q6Bo+fDhRUVGsX7++7A2rYvj4+NySggtUAPuNCC4AOzto3x727lVhko0bFx3bVZH4+PgUKrg0Go2mMrmup8swjB+AJOD7a11jgdoiMuo6+9mhxFM/IAbYBTwgIoestmkHfASEAg7ATmCMiBy0Ptbt6unSaG4HTCbl7UpLg169oGnTyraoePR3h0ajKW9u2NMFeIqIv9XyBsMw9l9vJxHJNgzjaeB3VMqIb0TkkGEYT1xb/5mIHDEM4zcgHMhBpZU4WPRRNRpNVcPWVnm79uxR3q4mTaqGt0uj0WiqGiURXfsMw+giIjsADMPoDPxVkoOLyBpgTb6+z/Itvwe8VzJzNRpNVaRNGzhyBC5fhjNnoHnzyrZIo9Foqh4lmb3YGdhmGEa0YRjRqGD33oZhHDAMI7z4XTUazZ2ArS34+Kj34eFwre67RqPRaKwoiadr0PU30Wg0dzqtWilv19WrcPIktG5d2RZpNBpN1eK6ni4ROQW4Andfa64icsrcytm+Ks+KFSswDMOSnwhUoK65XI114etVq1bxzjsFKiHdMM8//zybN28GYPXq1XTo0AF/f3/at29vKW5dXsyZM4fU1NRyPUd0dDT/93//Z1nevXu3pexLaZk4caKlHFJRZGRk0L9//0Jzc5XW1rK0q7BtnJ2dS3Ue689hUYSFhbFmzZpitymOuXPn4OGhPhMHDqgA+9LYtXr16kLz3Gk0Gs3tQkky0j8HLAQaXGvfG4bxTPF73TksWrSIHj16WLLEAzRu3LjQH9Jhw4Yxbdq0MjlvQkICO3bsoFevXmRlZfHYY4/x888/s3//fvbt21fu5WwqQ3R17NiRuXPnltv59u3bR1ZWFmFhYYwePbpU+96o6KpK3KzomjNnDnXrplK7NqSmQmRk6fYfMmQIq1atKvfPlUaj0VQWJYnpegToLCLTRWQ60AV4tHzNujVITk7mr7/+4uuvv84juqKjo/ExB7hYsWDBAp5++mlAeS+effZZunXrRqtWrSwiLScnhyeffBJvb2+GDh3KXXfdVaiAW7ZsGYMGqZFfc/kUc23DatWq4enpSVJSEu7u7paSOVevXqVly5ZkZWXRp08fXnjhBXr16kW7du3YtWsXI0aMwMPDg1dffdVyHV5eXkyYMAE/Pz9GjhxJamoqc+fOJTY2lpCQEEJCQgAlPs0Z8V9++WWLnc7Ozrz88ssEBQXRv39/du7cSZ8+fWjVqhWrVq2ynKdnz54EBgYSGBjItm3bAJg2bRpbtmwhICCA2bNn5/GKJCcnM2nSJHx9ffHz82P58uUlfm4tW7ZkxowZBAYG4uvry9GjR7lw4QIPPvggYWFhBAQEEBUVxZ49e+jduzdBQUGEhoYSFxcHwPHjx+nfvz/+/v4EBgYSFRVVwFaTycTUqVPp1KkTfn5+Fs+jiPD000/Tvn17hgwZwoULN1f5auPGjfTp04eRI0fi5eXFuHHjLOVyfvvtN7y8vOjRo4elSDpASkoKDz/8MJ06daJDhw789NNPZGZmMn36dJYsWWLx9BW2Haikvv/4xz8s937evHmWz0TfviG8+ab6TCxcuJYuXboSGBjIqFGjSE5OLtYuwzDo06fPLZMQV6PRaEqNiBTbgAOAo9WyI3DgevuVZQsKCpL8xMTEFOiraL777jt5+OGHRUSka9eusmfPHhEROXnypHh7e4uIyIYNG2TIkCEiIjJ//nx56qmnRERkwoQJMnLkSDGZTHLo0CFp3bq1iIgsXbpUBg8eLCaTSeLi4sTV1VWWLl1a4NwPPfSQrFq1yrL8yCOPSP369WXMmDHy/fffi8lkEhGRiRMnyooVK0RE5PPPP5cXX3xRRER69+4tL730koiIzJkzR9zc3CQ2NlbS09OlSZMmcvHiRTl58qQAsnXrVhERmTRpkrz33nsiItKiRQuJj48XEfUsmjVrJhcuXJCsrCwJCQmxnBOQNWvWiIjIvffeKwMGDJDMzEwJCwsTf39/ERFJSUmRtLQ0ERGJiIgQ8/O2vnf5l1966SV57rnnLOsSEhKKfVYTJkyw3McWLVrI3LlzRUTk448/lkceeaTA8TMzM6Vr165y4cIFERFZvHixTJo0SUREgoOD5ccffxQRkbS0NElJSSlg6+effy5vvvmmiIikp6dLUFCQnDhxQpYvXy79+/eX7OxsiYmJkVq1ahX6fIuy3UyNGjUsNtesWVPOnDkjJpNJunTpIlu2bJG0tDRp2rSpRERESE5OjowaNcpi3yuvvCLfffediIhcvnxZPDw8JDk5Oc/ns7jtPvnkExkxYoRkZWWJiMilS5cs9zU+Pl5yckSWLo0XT8+esmNHsoiIvPPOO/L6668Xa5eIyPfffy9PP/10sffjZqkK3x0ajeb2BtgtheiZkni65gN/G4Yx0zCM14EdwNflogBvhrvvVs2aN95QfdaFfH/7TfV99FFuX0KC6pswoVSnXLRoEWPGjAFgzJgxLFq0qFT733vvvdjY2NC+fXvOnz8PwNatWxk1ahQ2NjY0atTI4knKT1xcHPXr17csf/XVV/z5558EBwcza9YsHn74YQAmT57M/PnzAZg/f36ewtPDhg0DwNfXF29vb9zc3KhWrRqtWrXizBlVNrNZs2Z0794dgAcffJCtW7cWsGXXrl306dOH+vXrY2dnx7hx4yyxZg4ODhaPnK+vL71798be3h5fX1+io6MByMrK4tFHH8XX15dRo0Zx+PDh6967devW8dRTT1mWa9eufd19rBkxYgQAQUFBFjusOXbsGAcPHmTAgAEEBATw1ltvcfbsWZKSkoiJibHUgXR0dKR69eoF9l+7di3/+9//CAgIoHPnzly6dInIyEg2b97M2LFjsbW1pXHjxvTt2/e6tuYvoJ6/Lzg4mKZNm2JjY0NAQADR0dEcPXoUd3d3PDw8MAyDBx98MI9t77zzDgEBAfTp04f09HROnz5d6DUUtt26det44oknLHUN89ebNAxIT99BTMxhRo/ujr9/AN9++y2nTp0q1i6ABg0aEBubv3CFRqPR3B5cd/aiiHxgGMZGVBkggEkisq9crboFuHTpEuvXr+fgwYMYhoHJZMIwDN59990SH6NatWqW93JtSMj8ej2cnJxIT89bicnX1xdfX1/Gjx+Pu7s7CxYsoHv37kRHR7Np0yZMJlOeYU/z+W1sbPLYYmNjQ3Z2NlDwB78wAVCczfb29pZ9rM9jfY7Zs2fTsGFD9u/fT05ODo6Ojte9fhEp1JaSYrbD1tbWYkf+43t7e7N9+/Y8/VevXi3R8UWEefPmERoamqd/zZo1pba7bt26XL582bKckJBAvXr1LMvWz876eoo6j4iwfPlyPD098/T//fffJdquJPe+Vi0hOHgAjzyyCC8vCAxU/WFhYcXum56ejpOTU7HH1mg0mluVkni6zBio2otVM9f0zz+rZs306aovODi3b9Ag1XcttgqAOnVU37fflvh0y5Yt46GHHuLUqVNER0dz5swZ3N3dC/UElYYePXqwfPlycnJyOH/+PBs3bix0u3bt2nH8+HFAxTdZbxcWFkaLFi0syw899BBjx47N4+UqKadPn7YID/OkAQAXFxeSkpIA6Ny5M5s2beLixYuYTCYWLVpE7969S3yOxMRE3NzcsLGx4bvvvsN0bdqb9TnyM3DgQD6y8laaRclDDz3ETmvP5g3i6elJfHy85dqzsrI4dOgQNWvWpGnTpqxcuRJQMx5TU1ML2BoaGsqnn35qiaeLiIggJSWFXr16sXjxYkwmE3FxcWzYsMGyzyuvvMKKFSsK2NKnTx+WLFlCZmYmoGIDi/KAmvHy8uLkyZNERUUB5PHChoaGMm/ePItY3rdP/Q9V2DUUtt3AgQP57LPPLOIuISGhwP5dunTh2LG/OHfuOJGREB+fSkRERLF2me9TYfGQGo1GUxZkZGeQnVPwH+2KoiSzF6cD3wK1gXrAfMMwXi1vw6o6ixYtsgwxmbnvvvtuegbbfffdR9OmTfHx8eHxxx+nc+fO1KpVq8B2Q4YMsQgtEeHdd9/F09OTgIAAZsyYwYIFCyzbjhs3jsuXLzN27NhS29OuXTu+/fZb/Pz8SEhIYMqUKQA89thjDB48mJCQENzc3Hj77bcJCQmxBJffc889JT7Hk08+ybfffkuXLl2IiIigRo0aAPj5+WFnZ4e/vz+zZ8/Os8+rr77K5cuX8fHxwd/f3yJewsPDcXNzK/V15sfBwYFly5bx8ssv4+/vT0BAgCXA/7vvvmPu3Ln4+fnRrVs3zp07V8DWyZMn0759ewIDAy3PMjs7m+HDh+Ph4YGvry9TpkzJI04PHDhAo0aNCtgydOhQevbsSVBQEAEBAfz111/897//LdZ+R0dHvvjiC4YMGUKPHj3yiPDXXnuNrKws/Pz88PHx4bXXXgMgJCSEw4cPWwLpi9pu8uTJNG/eHD8/P/z9/S2feevPRP369fnf/xbw5ZdjmTrVj65du3D06NFi7QLYsGEDQ4YMuYEnptFoNAoRISEtgfDz4ayJXMMXe75g+obpPPzTw4xcOpKDFyqv2mBJCl4fATqISPq1ZSdgr4i0qwD7gDuv4HVycjLOzs5cunSJ4OBg/vrrr0J/jHv06MHq1atxdXUt9njLli3jp59+4rvvviuVHdHR0QwdOpSDB2+NcphXr17lkUceYenSpZVtyg0RGhrK77//XtlmlCnJybB6tcpQHxoK1ybYFsr58+d54IEH+PPPP8vVptv5u0OjuZMw5Zg4l3yOM1fPcCbxDGevnlUt6SypWYWnnrE1bHmu83OEuBc/WnCz3EzB62jUjEVzAFE1IKrsTNPkZ+jQoVy5coXMzExee+21QgUXwPvvv8/p06eLFV3PPPMMv/76603lX7pVqFmz5i0ruIDbTnABODuDlxccPgx790L//kUXwz59+jTvv/9+xRqo0WiqPFmmLGKTYjlz9QynrpyyiKzY5NgihwpdHFxoWrOppTVxaULTmk1p6NwQO5uSSJ/yoSSerpVAJ+APVEzXAGArcAFARG4sRXgpuNM8XRrN7URWlgqZTE+HHj0qvxi2/u7QaKom2TnZxFyN4XTiaUs7lXiKuOQ4cqTwgq71q9enWc1mNKvVzCKwmtVsRs1qNW9qstXNcjOerhXXmpmNZWWURqO5/bG3Bz8/lbll3z5o0kQVyNZoNHcmOZLD+eTzRF+J5lTiKU5dOcWpxFPEJsVikoL1wwwM3JzdaF6rOc1rNc8jshztrj/bvSpRkpQRJZ/Sp9FoNIXQqhVERMCVK3DsGLRvX9kWaTSaiiAxPZHoK9GWdipRCaxMU2aBbfOLK3NrWrMpDrYOlWB92VN5A5sajeaOwcZG5epavx4OHVIirATp2DQazS1Cdk42ZxLPEH0lmpNXTnLy8kmiE6O5kn6l0O3rVa9Hi1otaF6rueW1ea3mVLOrVuj2twtadGk0mgqhUSM1tBgTA+HhedPnaTSaW4erGVc5cfkEJy+ftAisM1fPFDo06GTnREvXlrSo1QL32u60qNWCFq4tcHZwrgTLK58i83QZhvHdtdfnKs6cWwtbW1sCAgLw8fHh7rvv5sqVK5Vqz+7du3n22Zuf1zBx4sRCi2wDPP/885YSP6tXr6ZDhw74+/vTvn17S1Hn8mLOnDmkphY+DbisiI6OzpNr7WbuaXH30UxGRgb9+/e35Ma6GVvL0q6ZM2fSpEkTAgIC8PDwYMSIESUqz7RgwYJiy/h06KC8XlFRYJVkHyib6xkzZgyRkZGlPoZGoymIiHA++Tzbzmzj+/DveWPTG0xcOZFxP47jtQ2v8U3YN2yI3kB0YjQ5kkNj58Z0b9adcb7jeLXnq3x191csGbmEdwe8y1PBT3GXx114N/C+YwUXFO/pCjIMowXwsGEY/yNfJnoRSShXy24BnJycCAsLA2DChAl8/PHH/Otf/6o0ezp27EjHjgUmS5QZCQkJ7Nixgzlz5pCVlcVjjz3Gzp07adq0KRkZGYXWMCxL5syZw4MPPlhorcOywvzD/8ADDwDlf0/37dtHVlaW5XNUGvLbWta88MIL/OMf/wBgyZIl9O3blwMHDuSp+ZmfBQsW4OPjU+TswJo1wcNDxXXt2gUDBuSmkCiL65kyZQrvvvsuX3755Q0fQ6O5E8mRHGKuxhB1OYqohChOXD5B1OUoUrJSCmxbzbYaLV1b0qp2K9xd3WlVuxUtXFvcckHtlUFxGek/A34DvIA9+druYva7I+natSsxMTEAREVFMWjQIIKCgujZsydHjx4FVPLH4cOH4+/vj7+/vyXD+QcffICPjw8+Pj7MmTPHcsw333wTLy8vBgwYwNixY5k1axagysK8/PLLBAcH07ZtW7Zs2QLAxo0bGTp0KAB33XUXAQEBBAQEUKtWLb799ltMJhNTp06lU6dO+Pn5WTxTIsLTTz9N+/btGTJkCBcuXCj0GpctW2YpXp2UlER2djZ1r2W7rFatGp6eniQlJeHu7m4pf3P16lVatmxJVlYWffr04YUXXqBXr160a9eOXbt2MWLECDw8PHj1VVXkIDo6Gi8vLyZMmICfnx8jR44kNTWVuXPnEhsbS0hIiKUEzqJFi/D19cXHx4eXX37ZYqezszMvv/wyQUFB9O/fn507d9KnTx9atWrFqlWrLOfp2bMngYGBBAYGWp7FtGnT2LJlCwEBAcyePTvPPU1OTmbSpEn4+vri5+fH8uXLS/z5aNmyJTNmzCAwMBBfX1+OHj3KhQsXePDBBwkLCyMgIICoqCj27NlD7969CQoKIjQ0lLi4OACOHz9O//79LRn/o6KiCth6s8+3OEaPHs3AgQMtnqjC7Fy2bBm7d+9m3LhxBAQEkJaWVuh2vr5w5cpxXnyxP+3bl+319OzZk3Xr1hVaT1Oj0ShMOSair0Tz54k/+WLPF7z0x0vcv/R+nlzzJO9vf5+Vx1YSfiGclKwUalWrRWCjQEa2G8lL3V7isyGf8cOoH5g1cBZPdnqSwR6D8aznqQVXSRGRYhvw6fW2Ke8WFBQk+YmJiSnQV9HUqFFDRESys7Nl5MiR8uuvv4qISN++fSUiIkJERHbs2CEhISEiInL//ffL7NmzLftcuXJFdu/eLT4+PpKcnCxJSUnSvn172bt3r+zatUv8/f0lNTVVrl69Km3atJH33ntPRER69+4tL774ooiI/PLLL9KvXz8REdmwYYMMGTIkj427d+8WX19fuXLlinz++efy5ptviohIenq6BAUFyYkTJ2T58uXSv39/yc7OlpiYGKlVq5YsXbq0wPU+9NBDsmrVKsvyI488IvXr15cxY8bI999/LyaTSUREJk6cKCtWrBARkc8//9xia+/eveWll14SEZE5c+aIm5ubxMbGSnp6ujRp0kQuXrwoJ0+eFEC2bt0qIiKTJk2yXHeLFi0kPj5eRNTzb9asmVy4cEGysrIkJCTEck5A1qxZIyIi9957rwwYMEAyMzMlLCxM/P39RUQkJSVF0tLSREQkIiJCzJ+x/PfQevmll16S5557zrIuISGhwD2yZsKECZb72KJFC5k7d66IiHz88cfyyCOPFDh+ZmamdO3aVS5cuCAiIosXL5ZJkyaJiEhwcLD8+OOPIiKSlpYmKSkpBWy92edrzYwZMyz33czs2bPliSeeKNbO3r17y65du657PQEBwfL88z/K0qUiCQllez39+/eX3bt3F3ltVeG7Q6OpKEw5Jjl95bT8eeJP+Xz35/KP3/8hI5aMkKH/N7RAe3jlw/LWprdk0YFFsvPsTrmUeklycnIq+xJuSYDdUoieKUnKiCmGYfgDPa91bRaR8HJTgTfK3XcXve6pp1Sha4DffoOPPy562/xFs4shLS2NgIAAoqOjCQoKYsCAASQnJ7Nt2zZGjRpl2S4jIwOA9evX87///Q9Q8WC1atVi69atDB8+3FJvcMSIEWzZsoWcnBzuuecenJycrl1e3usbMWIEAEFBQUUO6128eJHx48fzww8/UKtWLdauXUt4eLgl/iUxMZHIyEg2b97M2LFjsbW1pXHjxvTt27fQ48XFxeUZWvrqq684cOAA69atY9asWfzxxx8sWLCAyZMn8+6773Lvvfcyf/78PEM9w4YNA8DX1xdvb29LncRWrVpx5swZXF1dadasGd27dwfgwQcfZO7cuZZhLjO7du2iT58+FnvGjRvH5s2buffee3FwcLB45Hx9falWrRr29vb4+vpa7lVWVhZPP/00YWFh2NraEhERUeg1W7Nu3ToWL15sWa5du/Z197HG+pn9+OOPBdYfO3aMgwcPMmDAAABMJhNubm4kJSURExNjqfXpWMS0v5t9vtdDriVSLsrO0lxPfHwM99wznNhYOHzYkWuPu0yup0GDBsTGxhIUFHRD16nR3KqICOdTzhN5KZLIhEgiL0Vy/PJx0rPTC2zbsEZD2tRpY2mtareiZrWalWD1ncV1RZdhGM8CjwHmX4mFhmF8ISLzytWyWwBzTFdiYiJDhw7l448/ZuLEibi6upY4Rsf8Q1bSfjPVqqlptba2toUOpZhMJsaMGcP06dPx8fGxHHPevHmEhobm2XbNmjUlytzr5OREenreP15fX198fX0ZP3487u7uLFiwgO7duxMdHc2mTZswmUyW81vbbWNjY3lvXjZfR35bCrOtuPtjb29v2cf6PNbnmD17Ng0bNmT//v3k5OQUKWTyn/NmMhxf75mJCN7e3mzfvj1P/9WrV0t0/Jt9vtdj3759dOzYsUg7C7OnuOvp1EnVZTx1SqWQKGz/G7me9PR0yz8rGs3tTGJ6IhGXIoi4FEFkQiQRlyJIykwqsF396vXxqOOBR10P2tRpQ+varXGp5lIJFmuKi+kyMxnoLCLTRWQ60AV4tHzNugF+/rnoZvZygXpf3LY3QK1atZg7dy6zZs3CyckJd3d3Sw1AEWH//v0A9OvXj08//RRQoujq1av06tWLlStXkpqaSkpKCitWrKBnz5706NGDn3/+mfT0dJKTk/nll19KZdO0adPw8/NjzJgxlr7Q0FA+/fRTS7xVREQEKSkp9OrVi8WLF2MymYiLi2PDhg2FHrNdu3YcP34cUPFNGzdutKwLCwujRYsWluWHHnqIsWPHMmnSpFLZDaoGn/mHetGiRfTo0QMAFxcXkpLUF0rnzp3ZtGkTFy9exGQysWjRInr37l3icyQmJuLm5oaNjQ3fffcdJpOpwDnyM3DgQD766CPL8uVr0+8eeughdu7cWerrzI+npyfx8fGWa8/KyuLQoUPUrFmTpk2bsnLlSkB5TlNTUwvYeiPP95VXXmHFCuuCE4WzfPly1q5dy9ixY4u0E/Lev+tdzx9/rMTXF7KyMti6NRUnp5u/HvN23t7eJb/xGs0tQKYpk6MXj/LT0Z9476/3eOSnR3hwxYO8sfkNFh9azJ64PSRlJlGrWi06Ne7EAz4PMKP3DL4f/j3f3PMNr/R8hZHtRxLQKEALrkqkJHm6DMA6+YaJfDMZNVhSJyxevJiFCxcyZcoU3nrrLbKyshgzZgz+/v58+OGHPPbYY3z99dfY2try6aef0rVrVyZOnEjwtaRFkydPpkOHDoAaivP396dFixZ07NiRWrVqldieWbNm4e3tTUBAAABvvPEGkydPJjo6msDAQESE+vXrs3LlSoYPH8769evx9fWlbdu2RYqXIUOG8PnnnzN58mREhHfffZfHH38cJycnatSowYIFCyzbjhs3jldffZWxY8eW+l62a9eOb7/9lscffxwPDw+mTJkCwGOPPcbgwYNxc3Njw4YNvP3224SEhCAi3HXXXdxzzz0lPseTTz7Jfffdx9KlSwkJCbEM7/r5+WFnZ4e/vz8TJ060PAuAV199laeeegofHx9sbW2ZMWMGI0aMIDw8vNDhtdLi4ODAsmXLePbZZ0lMTCQ7O5vnn38eb29vvvvuOx5//HGmT5+Ovb09S5cuLWDrc889V+rne+DAAcuQb35mz57N999/T0pKCj4+Pqxfv94ynFuUnRMnTuSJJ57AycmJ7du3X/d6Ll6cTmqqPU8/vRR395u/nvPnz+Pk5FQmz0OjqSxEhPjUeI5ePGppJ6+cLFDc2dHOkTa12+BR14O2ddvStm5b6levX6k1BzXFU5KC1y8CE8itv3gvsEBE5pSrZVbcqQWvk5OTcXZ2JjU1lV69evHFF18QGBhYqTb16NGD1atX4+rqWux2y5Yt46effuK7774r1fGjo6MZOnQoBw8evAkrK46rV6/yyCOPWDybtxqhoaH8/vvvlWrDxYvwxx8qdcSgQXCdj1axzJ49m5o1a/LII48Uuc2d8N2hubXINGUSlRDF0YtHOXLxCEcvHuVyet5EdgYGzWo2w7OeJ23rtsWrnhfNajbD1kYXMq2K3HDBaxH5wDCMjUAPlIdrkojsK3sTNfl57LHHOHz4MOnp6UyYMKHSBRfA+++/z+nTp4sVXc888wy//vora9asqTjDKomaNWvesoILqHTBBVCvHrRpA5GRsGMHDByoEqjeCK6urowfP75sDdRoypjLaZc5cvEIR+KPcOTiEaIuRxXwYrk4uOBZ1xOvel4WoVXdvvxyFGoqhut6uqoCd6qnS6O5U8jKgl9/heRkVQz72qh4uaC/OzQViYhw9upZDsUf4nD8YY7EH+Fcyrk82xgYtKjVAq96XpbW2KWxHia8hblhT5dGo9GUN/b20LUrrFsHR45A48bQoEFlW6XRlJ7snGyOJxzncPxhDl04xJGLRwrMKHS0c8Szrift6rWjXf12eNb1pIZDjUqyWFORaNGl0WiqBPXrg7c3HDwI27fD4MHg4FDZVmk0xZOenc6xi8c4FH+IQxcOcfTSUTJNmXm2qeNUB+/63rSr14729dvT0rWljsW6Q9GiS6PRVBl8fCAuDi5dgj17lPdLo6lKpGWlcTj+MAcvHOTghYNEJkRiElOebZrVbEb7+u3xru9N+/rtaVCjgR4q1AAlS446Avgv0AAVSG8AIiLXTV1rGMYg4EPAFvhKRN4pYrtOwA5gtIgsK7n5Go3mdsLGRgmt336DkyfVMKNV+jeNpsIxi6zw8+EcuHCAqMtR5EiOZb2BQevarfFp4GMRWbUcS57eR3NnURJP17vA3SJypDQHNgzDFvgYGACcBXYZhrFKRA4Xst1/gcqfRlUKLl26RL9+/QA4d+4ctra21K9fn+joaBo3bszhw4evc4TSs3LlStq2bUv79u3L/NjWzJw5E2dn5wKldwDmzJlDnTp1eOihhwDIzs6mUaNGPProo7z99ts3dL4rV67wf//3fzz55JPX3dbZ2Znk5OQSHTcnJ4fnn3+e9evXYxgGjo6O/PDDD7i7u9+QndcjOjqabdu28cADD5TL8c3k/xxMnz6dXr160b9//0K3P3DgAO+//36ePGpVmZo1ITAQdu6EXbvUsGN1PWlLU0GkZ6dzJP6IRWRFJkTmEVk2hg2edT3xaeCDTwMf2tVrp+OxNCWmJKLrfGkF1zWCgeMicgLAMIzFwD1AfjXyDLAc6HQD56g06tatayn1Yy1SzHmmrkd2djZ2dqUb3V25ciVDhw4td9FVFNnZ2XzzzTfs3bvX0rd27Vo8PT354Ycf+M9//nNDLvQrV67wySeflEh0lYYlS5YQGxtLeHg4NjY2nD171pIEtTyIjo7m//7v/ypEdFl/Dt54441it/f19eXs2bOcPn2a5s2bl6ttZUXr1hATo9rWrdCvH9jqEBhNOZBlyuLYpWOEnw8n/Hw4xy4dy5O+wSyyfBv44tvQl/b12+Nod/2yYRpNYZQkG85uwzCWGIYx1jCMEeZWgv2aAGesls9e67NgGEYTYDjwWYktvgUwmUw8+uijeHt7M3DgQNLS0gDo06cP//znP+nduzcffvghe/bsoXfv3gQFBREaGkpcXBwAX375JZ06dcLf35/77ruP1NRUtm3bxqpVq5g6dSoBAQFERUURFRXFoEGDCAoKomfPnhw9ehSAiRMn8uyzz9KtWzdatWplKRgM8N5779GpUyf8/PyYMWOGpf/f//43np6e9O/fn2PHjhV6XevXrycwMDCPWFy0aBHPPfcczZs3Z8eOHZb+3377jcDAQPz9/S0ewZkzZzJr1izLNj4+PkRHRzNt2jSioqIICAhg6tSpxdppZvz48fz000+W5XHjxrFq1ao828TFxVlK/QA0bdqU2rVr8/XXX/PCCy9Ytvvyyy958cUXiY6OxsvLi8mTJ+Pj48O4ceNYt24d3bt3x8PDw1LqZ+bMmYwfP56+ffvi4eFhKeg9bdo0tmzZQkBAALNnzyY9PZ1Jkybh6+tLhw4dLOVqFixYwL333svdd9+Nu7s7H330ER988AEdOnSgS5cuJCQklOpzMHHiRMsz3rVrF926dcPf35/g4GBLWZ277747T7Huqo5hQOfOysN18aKK77oFsttobgFEhKiEKJYfXs70DdMZs3wMr/z5CosOLuJQ/CFMOSY86ngwwmsEM3vPZPF9i5k1cBYTAiYQ6BaoBZfm5hCRYhswv5D2TQn2G4WK4zIvjwfm5dtmKdDl2vsFwMjCjhUUFCT5iYmJKdBXWcyYMUPee+89ERE5efKk2Nrayr59+0REZNSoUfLdd9+JiEjv3r1lypQpIiKSmZkpXbt2lQsXLoiIyOLFi2XSpEkiInLx4kXLsf/1r3/J3LlzRURkwoQJsnTpUsu6vn37SkREhIiI7NixQ0JCQizbjRw5Ukwmkxw6dEhat24tIiK///67PProo5KTkyMmk0mGDBkimzZtkt27d4uPj4+kpKRIYmKitG7d2nI91kyfPt1ii4hIamqquLm5SUpKinz++efyzDPPiIjIhQsXpGnTpnLixAkREbl06VKB+yQi4u3tLSdPnpSTJ0+Kt7e3pb8oO0VEatSoISIiGzdulHvuuUdERK5cuSItW7aUrKysPPaeOXNGWrRoIf7+/vLiiy/K3r17RUQkOTlZWrVqJZmZmSIi0rVrVwkPD7c8u/DwcDGZTBIYGCiTJk2SnJwcWblypeV8M2bMED8/P0lNTZX4+Hhp2rSpxMTEyIYNG2TIkCGW88+aNUsmTpwoIiJHjhyRZs2aSVpamsyfP19at24tV69elQsXLkjNmjXl008/FRGR559/XmbPnl2qz4F5OSMjQ9zd3WXnzp0iIpKYmGi5J1u3bpWhQ4cWeKZVnUuXRBYvFlm4UOTaR/2mqUrfHZqK4VzSOfk18ld5e8vbMnbZWBn6f0PztKd+eUq+2P2F7DizQ5IzkivbXM1tALBbCtEzJclIX/qKxYqzQDOr5aZAbL5tOgKLrw1J1QPuMgwjW0RWlvpsd99duu1bt4Y5cwruf4NFr61xd3e31DwMCgoiOjrasm706NEAHDt2jIMHDzJgwABAecfM9eIOHjzIq6++ypUrV0hOTiY0NLTAOZKTk9m2bRujRo2y9GVkZFje33vvvdjY2NC+fXvOnz8PqKHAtWvXWuoJJicnExkZSVJSEsOHD6f6tcCZomrxxcXF0a5dO8vy6tWrCQkJoXr16tx33328+eabzJ49mx07dtCrVy9L7FSdOnVKfvOKsbNXr16WbXr37s1TTz3FhQsX+PHHH7nvvvsKDNc2bdqUY8eOsX79etavX0+/fv1YunQp/fr1o2/fvqxevZp27dqRlZWFr68v0dHRuLu74+vrC4C3tzf9+vXDMAzLejP33HMPTk5OODk5ERISws6dOwtk6d+6dSvPPPMMAF5eXrRo0YKIiAgAQkJCcHFxwcXFhVq1anH3tc+fr68v4eHhQMk+B9YcO3YMNzc3OnVSI/U1a+bOdWnQoAGxsfn//Ko+deooj9e2bcrbVauWzt+luT4pmSmEnw9n37l9hJ0LIy45Ls/6BtUb4N/In4BGAfg19MPV0bVyDNXccZRk9mJTYB7QHRBgK/CciJy9zq67AA/DMNyBGGAMkCfYRUQsEc2GYSwAVt+Q4KpiVKtWzfLe1tbWMrwIWGKKRARvb2+2b99eYP+JEyeycuVK/P39WbBgARs3biywTU5ODq6urpa4suJskGvjMiLCK6+8wuOPP55n2zlz5pQoFsvJyYn09HTL8qJFi/jrr79o2bIloCYXbNiwAREp9Hh2dnbk5OQGpFofy5qi7MzP+PHjWbhwIYsXL+abb74pdJtq1aoxePBgBg8eTMOGDVm5ciX9+vVj8uTJ/Oc//8HLy4tJkybl2d6MjY2NZdnGxobs7Nw4j/zXV9j1mu97UXZd7zwl+RzkP19RzzE9PR0nJ6di96+qtGwJly+rpKlbt6r6jDqwXmNNjuQQeSmSfef2sTduL8cuHcsT/F7Dvgb+Df3xb+RPh0YdaOTcSKdw0FQKJYnkng/8H2q4EODBa30DittJRLINw3gaNSvRFjUkecgwjCeurS/bOK6b9VCVgYerNHh6ehIfH8/27dvp2rUrWVlZRERE4O3tTVJSEm5ubmRlZbFw4UKaNFGhcC4uLpYYnZo1a+Lu7s7SpUsZNWoUIkJ4eDj+/v5FnjM0NJTXXnuNcePG4ezsTExMDPb29vTq1YuJEycybdo0srOz+fnnnwsVPO3ateP48eOAKvS8detWzpw5YxEM8+fPZ9GiRbzzzjs89dRTnDx5End3dxISEqhTpw4tW7Zk9erVAOzdu5eTJ08WuK7i7GyQz8UxceJEgoODadSoEd7e3gXs3bt3L40aNaJx48bk5OQQHh6On58fAJ07d+bMmTPs3bvX4lkqDT/99BOvvPIKKSkpbNy4kXfeeYe4uLg819GrVy8WLlxI3759iYiI4PTp03h6euaZiFAcJfkcWOPl5UVsbCy7du2iU6dOJCUl4eTkhJ2dHREREfj4+JT6OqsK/v5KeJ07B5s3w4ABOrD+TichLYF9cfvYE7eHfef2kZyZO6vZ1rDFu743AY0C6NCoA23qtNHJSDVVgpKIrvoiMt9qeYFhGM+X5OAisgZYk6+vULElIhNLcszbBQcHB5YtW8azzz5LYmIi2dnZPP/883h7e/Pmm2/SuXNnWrRoga+vr+UHdsyYMTz66KPMnTuXZcuWsXDhQqZMmcJbb71FVlYWY8aMKVZ0DRw4kCNHjtD1WsZJZ2dnvv/+ewIDAxk9ejQBAQG0aNGCnj17Frr/4MGDLcWEf/zxR/r27ZvHY3PPPffw0ksv8cknn/DFF18wYsQIcnJyaNCgAX/88Qf33Xcf//vf/wgICKBTp060bdsWUDNBu3fvjo+PD4MHD+a9994r1M78oqthw4a0a9eOe++9t1B7L1y4wKOPPmoZdg0ODubpp5+2rL///vsJCwujdu3aRd6zoggODmbIkCGcPn2a1157jcaNG1O/fn3s7Ozw9/dn4sSJPPnkkzzxxBP4+vpiZ2fHggUL8tyv61HSz4EZBwcHlixZwjPPPENaWhpOTk6sW7cOZ2dnNmzYwJAhQ0p9nVUFGxvo3h1+/x0SElRh7G7dVMC95s4gOyeboxePsid2D3vi9nDyysk8692c3ejQqAOBboH4NvTVxaE1VZLrFrw2DGMdKsh90bWuscAkEelXvqblogteVx2GDx/Ou+++i4eHR2WbQmpqKr6+vuzdu5datUqfjHDo0KG88MILltmVJaW4PGZVkYyMDHr37s3WrVtLnaakqnHlCvzxhyqQ7eEBHTuWXnjp745bh8tpl9kbt5fdsbvZd24fKVkplnUOtg74N/Qn0C2QILcg3FzcKtFSjSYvN1Pw+mHgI2A2KqZr27U+zR2IeRitskXXunXrePjhh3nxxRdLLbiuXLlCcHBwnnQWtzOnT5/mnXfeueUFF4CrK/TuDRs2QGSkKpR9bc6K5jZARDiecJxdsbvYHbubyITIPOubujQlqHEQHRt3pH399jjY6uKcmluL63q6qgLa06XRaKyJiYEtWyAnR8V7FRLSVyT6u6NqkZ6dzr64feyK3cWu2F1cSb9iWedg64BfAz86Nu5IUOMgGjk3qjxDNZpSUGpPl2EYL4nIu4ZhzEN5uPIgIs+WsY0ajUZTIpo0UTUat22D/fvBwUENN2puDS6mXmRXzC7+jvmb8PPhZOVkWdbVq16P4MbBdGrSCb+GftqbpbmtKG68wVz6Z3cx22g0Gk2l0KKFiu0y12i0s4NyKqupuUlEhFOJp9hxdgd/n/2b45ePW9YZGHjW9SS4STDBTYJpUauFTueguW0pUnSJiDmHQqqILLVeZxjGqEJ20Wg0mgqlTRslvPbtUzMas7Lg2qRYTSWTIzkcjj/MjrM72HF2B+dTzlvWVbOtRodGHQhuojxaOjmp5k6hJJG1r6DK9VyvT6PRaCqcdu1UXcawMNi9G9LTwddXp5OoDLJMWYSdC2P72e3sjNlJYkaiZV2tarUIbhJMl6ZdCGgUoIcNNXckxcV0DQbuApoYhjHXalVNILvwve4snJ2dSU7OTci3YMECdu/ezUcffVTqY23cuJFZs2ZZkoeWhD59+jBr1iw6diwQq6fR3FG0bw+OjvD333DwoBJeHTuq/F6a8iU9O509sXvYdmYbu2J3kZadW4HDzdmNLk270LVpVzzreWJj6AeiubMpztMVi4rnGgbssepPAl4oT6M0Go2mtLRqBdWqqVJBx48r4dW9u85cXx6kZqWyK2YXf535iz1xe8g0ZVrWtXJtRddmXenStIuOz9Jo8lFcTNd+YL9hGCuAFBExARiGYQuUPK32HUp8fDxPPPEEp0+fBlR9w+7du7Nz506ef/55S8bw+fPn4+npmWfflJQUnnnmGQ4cOEB2djYzZ87knnvuIS0tjUmTJnH48GHatWuXp6ajRqNRsxr79oVNm+DsWVi/Hnr0gCpXdlIEMjIgNVUlG3NxUf2ZmSoDrJ2dKjBZrVqVGSdNzUrl77N/89eZv9gbtzfPjEOvul50a9aNbs260dC5YSVaqdFUbUoS07UW6A+Yx9GcrvV1Ky+jbhXS0tIIsMrMmJCQwLBhwwB47rnneOGFF+jRowenT58mNDSUI0eO4OXlxebNm7Gzs2PdunX885//ZPny5XmO++9//5u+ffvyzTffWBJ59u/fn88//5zq1asTHh5OeHg4gYGBFXm5Gs0tQf360L8/bNwI8fHw22/K45WvilT5IaIKRdapk9s3Z45SgYmJkJKixJbJpNaNGgUPPaTeHzwIM2bk7mcYSnxVrw7OzvDPf0Kja7mqDh2CtDRwc4OGDZVQK2PSstL4O+Zvtp7emkdoGRj41PehW7NudG3WlXrV65X5uTWa25GS/JU6ioglcElEkg3DqFJFre5edHe5HPfnscUXwXZyciIsLMyybI7pApUx/fDhw5Z1V69eJSkpicTERCZMmEBkZCSGYZCVlZX/sKxdu5ZVq1Yxa9YsANLT0zl9+jSbN2/m2WdVejQ/Pz9L8WaNRpMXV1cIDVV5vM6fhz//VElU27Urh5PFx6v0+JGRalzz+HElvBYvzt3m6FGV0dUaBweoUUOJKeu++vXVNMy0NOUNS0lRLT4+r8tu+XKVKwNU8FqDBtC4sXL3+fio4pQ3QEZ2Brtid7Hl1BZ2x+22DB2ahVaP5j3o2qwrdZzqXOdIGo0mPyURXSmGYQSKyF4AwzCCAD2udR1ycnLYvn07TvnGNZ555hlCQkJYsWIF0dHR9OnTp8C+IsLy5csLDDsCOj5CoykhTk4QEgLh4XD4sJrdePGiyu9VJuzZA19+WVBMgVJ96ekquh9gyhTliapdWwmtGjUK90z5+MA33+QuZ2cr8ZWWBlevQs2auevatlXiLDZWCbJz51TbuxeSknJFV0ICfPqpyq/h4aGaeTjTfJqcbPbF7WPTqU38HfM36dnplnXe9b3p0bwH3Zp100JLo7lJSiK6ngeWGoYRe23ZDRhdbhbdANfzSFUGAwcO5KOPPmLq1KkAhIWFERAQQGJiIk2aNAGUZ6wwQkNDmTdvHvPmzcMwDPbt20eHDh3o1asXCxcuJCQkhIMHDxIeHl5Rl6PR3JLY2KjajPXqqTxeZ8/ChQtKv/j6luJA6enw119qmK9rV9VXo4YSXDVqgKdnXlFTp07eWCx//xu7ADs7JZBcXAqOj44Zk/s+K0sJrthYZVOzZrnrTpxQF79jR26fmxvSpg2HWlZnU+NM/jq/m6TMJMvqtnXa0qtFL7o3766HDjWaMuS6oktEdhmG4QV4AgZwVEQKjolp8jB37lyeeuop/Pz8yM7OplevXnz22We89NJLTJgwgQ8++IC+ffsWuu9rr73G888/j5+fHyJCy5YtWb16NVOmTGHSpEn4+fkREBBAcHBwBV+VRnNr0rQpDBqk6jVevKhCowYNgokTlWYqlJwc5SZbv16NU2ZkKPFkFl1t28J//6sEV2VPkbS3V0LLWmyZadMG/t//swyBnjp9gI2ZO9l45lcuxmVCYCDY2dG8ZnP6pDeiZ9NuNArooYL4NRpNmVKigteGYfgA7QFHc5+I/K8c7cqDLnit0WjKgpwc2L49llmzGpOdrRxSTz0Fef5/uXoV1qxREfiXLuX2t28PAwdCv34VbvfNkpCWwKboTWyI3sDJhBNquDIlmfrZ1ejd7xF6t+xNy1otYNIkdc12dkpU+vkpl6CXl4o302g0JaKogtfXFV2GYcwA+qBE1xpgMLBVREaWg52FokWXRqMpK2JjY8nObszcuXDsmOrr1UvpjXr1gJ9/hi++UCsaNVI5KPr0UbMEbyEysjPYcXYHf578k7BzYQjqu76GfQ16Nu9Jn5Z9aF+/fW6caHY2LFigZlCeOKEmA5ixt1fq9BYUnBpNZVCU6CpJTNdIwB/YJyKTDMNoCHxV1gZqNBpNRdG8Obz7LqxeDb9/EsXFFbE8vqMnw4bByKEDqHH4MAwefMvVExIRDsUfYv3J9Ww9vdWSHd7Oxo5OjTsR0jKEjo07Ym9rX3BnOzuYPFm9T05WKSkOHFDtxIm8ovO332D/fjU02aHDNbWq0WiuR0lEV5qI5BiGkW0YRk3gAtCqnO3SaDSacsXmwjmGHfuO0JzNRKW58GpaJ5Ytc+T33x0ZPfpl7moH9reI3rqYepE/T/zJuhPrOJdyztLvWdeTvu596dm8Jy7VXIo5Qj6cnaFzZ9VA5RezDn7btk1VGd+6VS03awZBQUqEeXvroUiNpghKIrp2G4bhCnyJKgeUDOwsT6M0Go2m3MjMVMOHv/4K2dlUc7an/eh+/DfIxDdL1OjaV1+pUcaRI9XoYlXUEJmmTHac3cG6E+vyDB/Wq16Pvi37EuIeQtOaTcvmZLVq5V2eMkWJrr17lcfrzBnVVq5UJQBeflltJ3JLeQo1mvKm2JguQw32NxWRM9eWWwI1RaRCcxXomC6NRnPT5OTAkSPE7t9P40WLlBjo2xfGjVMJSVEaYfdumD9faQhQemPYMDXa6FIKZ1F5EX0lmrVRa9kQvYHkTJW32t7Gni5NuzCg1QD8G/lXbGHp7GyV/HXvXpW7bMgQNeEAVN+XX6rq4506qckI5ZA5X6OpatxMIP0eEQkqN8tKgBZdGo3mpsnJgd9/J/biRRqfOAETJkDLloVuajKptFzLl6twJlB5TkND4a67VOL3iiQtK43NpzazNmotEQkRlv7WtVszsPVAerXohbODczFHqECsvVvffAMrVuSuc3JSMWCdOqnhyNq1K8dGjaacuRnR9TGwQER2lZdx10OLLo1Gc0NkZCgRYM4Mn5Cgvjt8fEq0u4gaPVu+XGW0N+Pjo5w53bqVbzqr4wnH+e34b2w6tcmSJb6GfQ36tOzDwNYDaVW7iofXmr1gu3erkkWnT+eua9IEPvssd1kPRWpuI25GdB1GJUaNBlJQCVJFRCqs8F9VFV22trb4WqW1HjNmDNOmTSty+//85z/885//tCx369aNbdu2lfq8YWFhxMbGctdddxW6ft++fXz88cd89dVXLFiwgKlTp9K0aVOSk5Np1aoVM2bMoNsN1mXLT8uWLdm9ezc1a9akf//+rF+/Hjs9fKCpbEQgOloNbzVqpCpeX+NGvztOnIBVq1TseEaG6qtRA3r3VhklvLzKRjOkZ6ezKXoTvx3/jeOXj1v6vet7E9o6lG7NulHN7hZNXHrhQq4Ac3fPLfR98aJK4Nqxo0qa5u+fK5Q1mluQUosuwzCai8hpwzAKrVQmIqfK2MYiqaqiy9nZmeTk5OtveIPbF4W5sPZHH31U6PpRo0bx6quv4u/vX2DbDRs2MHbsWDZs2EC7Mqj+axZd9erV4/XXX6dNmzaMGzfupo+r0dwwGRmwc2duUFbDhkoVXcsaf7PfHampsHkz/PEHROSO9FG3rvJ8de+uCmvblDKs6kziGdZEruHPk39aUj04OzjTz70foa1DaVarkGzztwt//glz5uQu29urxKxmEZa/BJJGU8W5kTxdK4FAETllGMZyEbmv3Ky7jUhMTCQ4OJhVq1bh6enJ2LFj6du3L1FRUaSlpREQEIC3tzcLFy60iLCNGzcyc+ZM6tWrx8GDBwkKCuL777/HMAx27drFc889R0pKCtWqVeOPP/5g+vTppKWlsXXrVl555RVGj84thZmUlER4eDj+RdR6CwkJ4bHHHuOLL75g9uzZREVF8dRTTxEfH0/16tX58ssv8fLy4ueff+att94iMzOTunXrsnDhQho2bMilS5cYO3Ys8fHxBAcHYy3a7733Xl555RUtujSVR2ysqjGYnq5+uIOClEelDIetqldXJYQGDVLOtD//VPFf8fFqxuPPP6tQpeBglUHB37/oUkPZOdnsOLuDXyJ+4WD8QUt/u3rtGNxmMN2bd8fBtgpOnSxr+vaFVq2UB2znTqVm9+xR7euvYdGiXM+XHobU3MIUJ7qsP9VVOnDg7rvvLpfj/vxz8YW0zSLKjFkAffTRR0ycOJHnnnuOy5cv8+ijjwLw0UcfEWYdGGLFvn37OHToEI0bN6Z79+789ddfBAcHM3r0aJYsWUKnTp24evUq1atX54033ijS07V79258rhOvEhgYyOeffw7AY489xmeffYaHhwd///03Tz75JOvXr6dHjx7s2LEDwzD46quvePfdd3n//fd5/fXX6dGjB9OnT+eXX37hC3PmbsDHx4dduyot9E9zJ2OedhgZqZYbNFA1EossrFg2tGwJjzwCDz+sTv3XX6qdPw+//66ajY0qz2gWYB4ecDUrgd+P/85vUb+RkJYAgKOdIyEtQ7jL4y5aurYsV7urHIahxLG7O9x/v8oLtnu3EmCQK7hMJnjySVWiqFMnFZRfFaaUajQlpDjRJUW811zDycmpUBE1YMAAli5dylNPPcX+/ftLdKzg4GCaNlU5dQICAoiOjqZWrVq4ubnRqVMnAGrWrHnd48TFxVH/2vT3ojB7p5KTk9m2bRujRo2yrMu4Fqxy9uxZRo8eTVxcHJmZmbi7uwOwefNmfvzxRwCGDBlCbavZR7a2tjg4OJCUlISL/iLUVCSGoZqNjVI2ZRVgVYrTt22r2sSJcPKkctLs3QtHjqh2+Ijw2fKjXKq7mowGf1HDxYSLC7Rza8497YfQp2UfqttXrzCbqzS1aqmSQ/nLDh0/rryZsbGwcaN63u3a5aakaN5ce8E0VZriRJe/YRhXUR4vp2vvITeQ/voKoIK4nkeqosnJyeHIkSM4OTmRkJBgEVPFUc1qCpStrS3Z2dmISG5dtBLi5OREenp6sdvs27ePdu3akZOTg6ura6HC8ZlnnuHFF19k2LBhluFPM8XZlJGRgaMOgNVUBCIq0an5bycgANq0AVfXyrQKw1AjZa1awahRkJiUxXebt/DjoZ+JvnKctDQwkgxs47pRM3Eosek+/NzE4KiHMt/DQzl89J9RIXh6qhmPu3apduhQbvv2W5g3LzcNiB6G1FRBihRdImJbkYbcTsyePZt27drxn//8h4cffpjt27djb2+Pvb09WVlZ2NsXUvesELy8vIiNjWXXrl106tSJpKQknJyccHFxISkpqdB92rVrx/vvv1/kMTdt2sQXX3zBhg0bqFmzJu7u7ixdupRRo0YhIpZ4sMTERJo0aQLAt99+a9m/V69eLFy4kFdffZVff/2Vy5cvW9ZdunSJ+vXrl/j6NJobJjtb/ejGx6vgKgcHlXSzkgWXNYnpifx6/Fd+ifyFK+lXqNEMurepSa/GoTTPHEzc8focOqRmRZ49q9qGDWpfw1CTLlu0UBqiRQvV3Nx0blGaNFHt3nshJUXl8ti1SwXYtbCa9/Xqq7lxfR073nIFyzW3J+X652sYxiDgQ8AW+EpE3sm3fhxwrV4EycAUESnZeFwVIH9M16BBg3j44Yf56quv2LlzJy4uLvTq1Yu33nqL119/ncceeww/Pz8CAwNZuHDhdY/v4ODAkiVLeOaZZ0hLS8PJyYl169YREhLCO++8Q0BAQIFAei8vLxITE/MM8S1ZsoStW7eSmpqKu7s7y5cvt8xcXLhwIVOmTOGtt94iKyuLMWPG4O/vz8yZMxk1ahRNmjShS5cunDx5EoAZM2YwduxYAgMD6d27N82bN7ece8OGDUWmsdBoyozERJW3ITFRzUi8fFnNUKwiRF+JZuXRlWw6tYnsnGwAWtZqyT1e99CrRa/cwPhe6iUrS+mF48dVXFhkpJp4GRen2o4duce2sVGX2rRprvZo1Ei1evXuQEFWo4aaLmqVEgRQYuzgQZUQd88eVfapcWMlwIKCVCHzqljbSXPbc908XTd8YMOwBSKAAcBZYBcwVkQOW23TDTgiIpcNwxgMzBSRzvmPVVVTRlRVZs+ejYuLC5MnT67Q844YMYK3334bT0/PCj2v5g7i9GmlQrKzoWZNVeevlN6t8vjuEBH2xu1l5dGVhJ0PA8DAILhJMPd43oNPA59ShQpkZUFMjBJjp07ltvh4NWpWGDY2Sng1aqSqGlm3evVUSovqd1LI2JUruaWJ9u4F63Q9U6dCr2uqNzNTecT0UKSmDLmRlBE3SzBwXEROXDNgMXAPYBFdImKdGXQHUEbVWe9spkyZwtKlSyv0nJmZmdx7771acGnKB3Nq+MPXvj5atlQ5GSrZtZNpymRT9CZWHF3BmasqL5ijnSMDWg3g7rZ34+ZyY0Na9vbqEvNXKcrMVN6vmJjcdv48nDsHly6p3KMXLhR9XEdHJb7q1FFpLWrXVprV/OrqqmLYa9VSNtzSuLqqVBR9+6pZjxERakbkvn1q1qOZzz6D8HA1vTQwUHnBynnWq+bOpTw9XSOBQSIy+dryeKCziDxdxPb/ALzM21ujPV0azR3OuXOwfr3yRgQGqmmCN+iZKIvvjuTMZH6N/JVVEau4kn4FgLpOdbm77d2EtgmtlDqIWVlKcJ07pxK8X7yoPGPmdumSEm0lxdFRia+aNXObs3Puq4uLenV2VhrF/HrLibVnn1XTTc3Y2KjZr4GB0KVL3jgxjaaEVIanq7BvxEIVnmEYIcAjQI/SnOBGZvdpNJpbkEaNlAeiQYObit+62X8y41Pi+enYT/we9bulFqK7qzvDvYbTs0VP7Gwqz/Nmb58b51UYIiqbfkKCapcuqRE4c7t8Wb0mJsLVqyq/bHq68qSV1o4aNVSrXj331clJvZrfm1v16krgmZcdHXObnV0FjPrNmaMC6vbuVV6wo0eVR/XwYaVkzaLr6lVIS6tS8YOaW4/y/IY4C1jXrWgKxObfyDAMP+ArYLCIXCrpwe3t7UlOTsbZ2VkLL43mduTsWeU+McdsWdU5vRFEhOTk5BuaXXvqyimWH1nO5lObMYkJgICGAdzX/j78G/rfEt9BhpErhppdp6KQWaBdvapEWFKSep+cnPc1JUW15OTc16ysXCF3s9jaKvFVrZpqZjFmXrbur1ZNxcY7OOT2m5fNffb2efvVsg32rdti27YtjBmjLiQ8XImwzlYhxuvXq+z4jRqp9CT+/qpUUQnyJ2o0ZspzeNEOFUjfD4hBBdI/ICKHrLZpDqwHHsoX35WHwoYXTSYTCQkJZGVllYf5Go2mshBRUeNRUerXNDi4zMas7O3tqVOnDra2JcuIcyT+CMsOL2NnrMqMbmPY0LN5T0a0G0Gr2lW6UEelYE6dlpKiRJtZlKWlqeXU1Nz3aWm5LT0973tzy86uONttbNTHzCzG8r8PPP4DvpE/Ui07BRuba/l4bSC5fivi23TlTPcx2Nnlbm9nh2XZ+tW62dsrYZn/vXUz990Cul5jRYUPL4pItmEYTwO/o1JGfCMihwzDeOLa+s+A6UBd4JNr/ylmF2ZkYdja2l4387pGo7nFyMyEDz9UFaUNAyZMqPAs4+aZiEsPL+VQvPof0cHWgYGtBjK83XAa1NDFl4vCMHK9THXq3PzxsrNzBVhGhmrm9/n7MjNVM/eZ35v7rddnZalmfp+RobJLmPctjGPcz2L3kTRKicL96n5aXQ2jWfJh7OJPEBPXkOXn1Hb2pnR6xC3lZE0/ztbwItu2WuEHLCU2NnlFWHGv5vfW++Rv5n4bm8LXWzfzNtbbFvbexqbgtvnXFbVtUcvW7XYQnuXm6SpLCvN0aTSa24xLl+Df/1aJqhwd1bT+4OAKO32O5LD9zHZ+OPQDJ66cAKCGfQ2Gth3K3W3vppZjrQqzRVPxmEy5Ysws0MzL5r6sLCUEzX3ZqZlUO3GELJtqXG7oRXY2OEfuw2/5dCQHTIYdCfXacr6BL+fq+3KhjhcZVCM7G0szH9NkIk9//j5NbqUvswAzizTr/qLEmvXyxIlqnkT52lrxgfQajUZTMiIj4a23VIR3w4bw2msVNmssOyebTdGbWHZ4GWeTzgJQ27E293rdy+A2g3Gyd6oQOzQVgEiuayxfs83IwDYzE0drN1lWloolvJZMmshI+PVXaN0ahgwBHOByc5g7Fy7kKJV05Qq4Zaspo1eu0Co5HKKXqXPb2KgKCh07ql/+7GwVHPf228o1+Moruba+846yzcYGMWzIsbFFDFtMNnbq1bAjx8YOk2GH2NqR5VST5AHDLWLNcfsGTNnCVb8eZNs4YDKBXexpJD2DLOzJsqmGya4aWTbVyDIcyMaObJNBzrXLMJmwvM/Ozn1f1Kv1PsVtm/99/lbYOpNJ3T6R3PPcDKmpN7f/zaBFl0ajqXzOnVOCy8dH/fBUQHBylimLdSfWsezwMi6kquRWDao34L7299G/Vf/czPGaqoVZqCQl5Ub4JyWpKP7u3VWgO8Bvv8G6dUrk9O+v+rZuhXffLd35xo/PFV3x8fDHH+pcQ4aovqwslf/LGjs7VXaoQYO8dmZlqXhF8xTTZ59VfX//rYbRExJyx2X377ckdDVQMTpQzI92gwY0eHx47vIbX6j9x3YCl2uf5elfqRmahWE9Nmw9hXTmTDWhBeDnn9V01kGDVFkEUBl84+LyTke1np5qY1Ps7S0pZtFVmFAz95vFWXHb5OSox1JZaNGl0Wgqn549VdRyUFC5JzzNyM7g96jfWX5kOQlpCQA0cWnC/d7306tFr0pN+3DHkpmpcla4uOSmzd+zB7ZvV56jq1dzX1NSij5O06a5ouvKFTh2TM00NFO9uvqc5c9NkX86pHmqo4ODytllpk0beOaZvGkjXF1h+vTCA5IMI7eBUgV2dkrEJCUpsZKZqYRWSoqKYXRzg/bt4YEHVOmi/K4ksyvLPB5qHn/MXyG9d2/l0qlmFVPWuLE6b/4gt4yMvAF0iYm5+1hPOtm2TZVXCg7OFV3r18OKFUU/E0fH3Fwh5jZpkqoID2qm6MmTyqNo7ktJUc/anG/Ezs5yG8tIw1Ua+ttFo9FUPOnpMG+eKlrs4aH6rKfnl8cps9P5JeIXVhxdQWKG+lFpWaslo31G061ZN2yMW/zbvKqSmani9awztcbHK4Fh9mi+954q7zRtWm4dxVOn4PffCx7Pxkbt5+KS28wZW63FUN++Kq2DdV9QECxffuPX0qABDByYt8/BATp1urHjLV6shOHhw3DokMoRZi662atXbuDR33+rFCpeXurvpST1nJ54omR9ZkymwmcrWIu5YcPU36l1MrhmzVSf9XRU81RV6yHchITcfayz9G7fDqtXw6OP5oqunTvhgw9yt3F0zJuB1/zeOjOvv39uCQfzuZ2dq1yNTS26NBpNxXLhArz5phqWiI6Gjz4q12lJqVmprI5YzcqjK0nKTALAo44Ho71HE9wk+JbIsVXluXxZVek+d04NP5nbhQt5f2ytGTQoV3Q1aKAKRObk5K7v0EH92JprE7m65oqrkjyzBg0qdxypJFSrpnJ9+fmpZZNJ/U0cPgzWJdU2bIC//lLvDUPFO3p6KhHWrl3RGXFLg61trieqKLp2Ldg3YIBqhWFO+GYWY+ZcItaJ4nx91TW1aZPXloYNc3OOmIXbpWJSeT71VK7o2rJFfa8MGKCGcEHVzJo3D0aPzlsGqoLRokuj0VQcBw6oAOGrV9UPxT//WW6CKzkzmZ+P/cxPx34iJUsNSXnV9WKMzxgC3QK12LpRtm5VHpm77lLDVQA//KC8FYVha6sKPuavwF2vXu42jz6qmjXu7qrdSdjaqiD91q3z9vfrp4Ygjx2DEydy/2H5/XflZXr1VbVdejqEhakyWWWRs+Nmsc7IWxTduqlmTa9euQXJRXIFW/5MvOaWkpL3s2IYucVEzSQkKG9iWlpZXd0NoUWXRqMpf0TUj/JXXylvRmCgSglhDtAtQ5Iykvjp2E/8HPEzqVlqmpJ3fW/G+ozFr6GfFlvFYTIpb9WZM3D6tBrSOn0a3ngj1yu1caMa7vLyyhVdrVopj4ubm/JQWLc6dfLGBWlKT6dOuUOYmZkqcfDRo6pZx6xFRqq0K6Duu4eHEmAeHsqT5OJS4abfNIaR64EraW7OgQMLDgO3agX/+Y+asFCJaNGl0WjKFxH48ks18wlg5Eg1I+xGI2KPHlUeM1/f3CDno0dJCtvJStc4fk7aQ1p2GiQn45dZm7FBE/HpMqxsruV2QURVxI6OVrFT5nbmTOFJoWJickVXnz7qvpuHcqD4ISZN2eLgoASueUalNYahhiqPH1eenb//Vs3M99+roVpQz75OnTunjFGNGjddSqws0MlRNRrNzWN23Z86peIurJt5KCAqSs3Kat5c/dfapImK7WjeXLVGjQrOXMwvsI4eVfmNMjPVj8+CBSRmJrHy9TGsrptAuj0QEECAqxdjP/+L9gl2lu0s++cXbLc75lJp5lJKK1eqAO6iZgHWr6+eR9Om6rVZM+UlsJ4Fp6naiEBsLEREKO9XZKQa0v/889xtnnhCiel69dTzbdVKecNatVJ92iN8U+jkqBqNpuy4fFnFjhw8qFpsgVr2ucII1DBi+/bqhz8uTvVFReXdPi1NDX/07KlyIGVnwyOP5BFYHDiglps04cqF0/y4+UPWJO8jo8FFcHQk6LwNY5zuwYsmkPC3EnaxsWo/KCDYbjshlpmZW5sFlIdxzRr4f/8PevRQfdWqKcHl4qLiYFq0UF6rFi2UwCrJzDhN1cYw1Ge/SRMICVF91g4Wk0l5vC5dUh7PixfVjEEz48fD/fer9wkJKv1Gs2ZlVgP1TkaLLo1GUzIyMtRQxfr1sHdv3i9xR0clqtq2VUHTe/fCpk0qf1FQUG4dlYwM5RELC8sd1jh9WuXq2bpVxXtt3KiGIjMy1LoWLVSA8DVhlFDDhh/twvk1MIlM4yi4ONEpyYUxh2rRNtMFOg5Sx3VwUILL3l4JKivBdlsIMZNJeRbNnozISLX8n/+oZwFKQJlMaiahmZ49VfB17dram3EnYf2sbW3hv/9Vf2+xsSo4PypKvZ44kbcaxJYtKhbTxkb97ZiFuvm1qs8QrWJo0aXRaIpGRAmQP/5Qosg888fOTuXF8fNTWeRbt1Zf5ImJ8P77Kut1tWrKq2Vjk5twMiYGXn45r8iZNAmWLlVf+s7OSmjZ2qrt09LU9HlbWy5u+Z1lmdtY+2BNspIFarais2c/xviMoU3P7IIiyewZs+67GSEGlSvGLl5Us9eOHcsdNrLOdwTqhzU2Nld0DRsGI0aoZKBmymHyguYWxcZGDSM3bZp3tqA19vZqfUyMivk7cyZ3XZ068O23ucvr1qmhyebNtagvAi26NBpNQXJyVNLCH39UP/Bm2rZVSSd79iwYgHvkiPrv+dIlte4f/1A/9kuX5oqUwkSOl5da7+ioRFbjxirHTp068NNPnFu3kqX2Eay3WU32bgHDoFsdf0Z3nEKr7ncrgVaHgiLIyytvn5fXjQuxIuLJyt0rFhUFy5apc1y8WHC9m5uamWZurVvnTWZ5K85W01Qu+YXSXXeplpmp/iEyp6s4eTJvSoaMDFWD0izaatTIjdds1kxlsXdzq6CLqLpo0aXRaHLJyIA//1TB1ubYKxcXCA1VYss6qaGZ7GxYskQ1ETWr6qWXlEjIL1J8fQuKHChUEJ29epalPslsdLEjJ7M1xuXL9Iqvwf1HbWgR6QB/fw3frFB29e9fsgSRNyrEoPResdJy+rRKgtm0qcrLZL63W7eq9zVqKNHr6ala27Z3zswzTeXj4KAC7a2TmFqTkaG+J06fVi05Wf0jduSIWt+wYa7o2rhR1as0e9nM8WdVLHt8eaBFl0ajUTFTa9aoEilXr6q+Ro1UmZ7+/YufuXb1qsrBlZysBNdDD6khhg0bCoqUUaMKFzlgEUTHE46zdMvbbD+7HUGwMWzo13YQo9qPoknNJsqTtmGDGsqIiVGeoGXL1LlDQ1XAeGlm2pVUiBUmGIvzihXn/YqPV7FtDRvmTv0/c0ZdR0BAruhq1UrV+mvXTv046eEaTVWlZk2VFR7UP1/mKgWnT6tXc4kfUDGcmzbl3d8w1MxZX194/vnc/gsXVJzobZLrTaeM0GjuZDIycsWWucith4eKA+rWrehcWubvDbMIWLpUlfaxs0rRAMoLlJWlREoxXiAR4VD8IX449AP7zu0DwM7Gjv7u/bmv/X00cm5UuA3meLMtW5RwBOUR6t1bCTDrL/qyoKgUFtbXaL5us/dr/nz1g7RmjfJaJSfnxmL165f7A3PlCvz0k4qVs054qdHcbkRHq5jEmBiVgPfsWeVZz8lRJXreeENtl56u/lEzlwVq3Fh5y8zN07PKDqEXlTJCiy6N5k4kMxN+/VV5Vq5cUX1t28K4cepLrziPyvnz6kvR0VGVbvHyUqLr7bdzPT7Tpqkvy+t4fHIkhx1nd7D88HIiElTsmKOdI4PbDOZer3up41TCUibp6Up4/f67CjQ34+GhMlP36lV+qRDyX+MPP6j7U726+lExTzIIC1M/KjY2qoZd587qNX/mbI3mTiQ7W323ZGfnzp6Mi1OlwgqLZwSYMQM6XtM1Gzeqv8NGjXJbw4ZKlFWCh1iLLo1Gozwya9cqYWAuRNymjRJbQUHFfzllZytPzOefw65duUVq//c/tb6EXi2ATFMm606sY+XRlcQlq9gxFwcXhnkOY4jHEFyq3cR/r9HR6hrXr89NAFqtmhp2DA1VdpXHl7DJBO+9pwoTm9Nf2Ngor1V2tpqK36SJKvj72muq8O6tkJpCo6lsMjOVAIuLU//Umd8/9VRunNiHH6qQg/w4OqpZ1q+9VqEm6+SoGs2dTHa2EiGLF6t4IlBDbw88oGYVXU+EHD0KH3+sBM2lS8qL4+Oj/gO9XqyWFQlpCfwa+Strjq/haoaKHWtYoyH3et1L/1b9cbRzLHS/UtGyJTz2mBKB27YpAXbggJog8OefuYHqISEqVuRGyMqC335TM7ieeUbdP1tbNUwCanjTxUV52AYPhqQklRojK0ulbPD3r5zZkBrNrYiDg/J+WecPy8+gQcqzfe6c8pidO6daaipkZ5OdnU1qaiqpqanUqlULJ+s0KhWI9nRpNLcz2dnK7f7DD7mzEZs3V56trl2vL7ays+H119VQpIuLGiobPFh5dEro1QKIuBTBqmOr2Hp6KyYxAeBRx4MR7UbQtWlXbG3KOUg2NlbFfq1blzucahi5QetduhQdfC+SW5ewZ8/cvnHjlJj68ks1lAFqpparq1rOf2/zi6nChmR9fbUQ02isEBGysrJISUkhNTW10Nf8feaWkpxMalISqUlJZFr9Pf7zn/+ka9eu5Wq39nRpNHcSWVnKq7N0qZr9AyoI9YEHlHAoabHpyEj45hs1TFe3rnLh+/mBt/d1RUCmKZNtZ7axOmI1xy6pOCsDg25Nu3G359141/fGqKhYi8aNYcIEJZT27VPia+dO9X7fPpVPrEsX5Zny91exWAcOqBJHBw4ocWVrC506qeEKw4AxY9R+1slGCytCbCb/LMmSzoaEsktLodFUMDk5OXlEUXJych6xlF80FdaXXVgR9tJgGNjY2FCjRg2cnJywKen3XzmgRZdGczuRkaGG05YvV8OAoH7AR49WguJ6064PHoSFC1WaiH791HLt2kpMXL6sgtT9/AoKCCvOXj3Lb8d/Y/3J9SRlJgFQw74GA1sPZGjboTSoUYllQ+zslHDq1EkJqS1blAALC4NFi+CLL1RQvrOzEpnmINy6ddV1p6bmJh8dNuzmbCmLZK3a+6UpZ8zDcmbBlF8YWYuowtanmatY3AR2dnbUqFGD6tWrF/uav8/catSogYODQ8X9k1fctVS2ARqNpgy4dEnlyvr9dyUmQMU/jBlTfOoHM5mZqpzHv/6lhNt33ykx4uurBMjly3kTheYjPTud7We2szZqLQfjD1r6W7m2YrDHYPq07FM28VplyeHDKkFjbKwSozk56trT0lRQvIi6b717w4ABaqKBYxlfw40may0qHgy0GNPkIScnJ48XKTk5OY84Mr/P/2pu6eZULDeIYRh5RJG1MHJ2di5UMOVftre3rxKCqSzQokujuZWJjFQzCrduVUIBVDDpqFFquKy4L6qjR9UQ28WLqkD1kSNKdLi6KnERHg73319kgHyO5BB+PpwNJzew7ew20rPVl7OjnSO9mvdiUJtBeNT1KL9rLw0REWrGZceOKrcPqAkFu3ap982bw5Ah6hpr1VL34q+/1DDjnj2q2durGLCgIAgMLL+SJiURYkuXVp1SRZpyRUTIzMwsIIysxVNxwik1NZWbid02DMMikMxiyCyWrPusm7WYql69+m0jmMoCLbo0mluN5GTYvFl5oiIjVZ9hqJQI99yjREVJZiOOHKlEBSgx4e2tvDyOjuoH289PrbMSASJCxKUI/jrzF5tPbeZS2iXLIb3qetHXvS+9W/amun055cS6HiIqhu3oUTUk2uDaUOb27SonWXZ2rugKDlbDh97eKoO+NR07wvjx6v7s2KHasWNKpJmFWqNGKqdZhw65HsHyoiTxYFC6mDAtxCoMESnU01SciLJevtmYJmuBlF885e83b2tednR01KKpDNGiS6O5FcjJgf37ldDavl0FyoPKvj5wIAwdmiswCuPoUSUWGjRQuaoOHFBDZ9WqKYF2112qQPWxYwV+iHMkh8Pxh9l2ZhvbzmzLI7Qa1mhIX/e+hLQMwc2lEorZpqfD8ePKk3X0qGqXL6t1TzyhvFegBJbJlJtIEdS9KO6egRIv992n2pUr6h7u3auexblzalbnr7+qe9iihRJwPj7Qvr0q2F1e3GypIii5ENPiDIDMzMzrepaKEk03622yt7cvUiSZ+/KLKWuPU2UGjmvyokWXRlNVyc5WP+5mT0v+VAf9+6u0D9ZFYvP/QKanw4oV8PLLqkaig4Oqeebrq3JtNWyoZuDdfbc67jWPSmJ6IntPbmBP3B72ndtnyakFUK96Pbo17UaP5j3wqudV8v+CMzOVl6527VxP3MmTanizVavcnFnx8Ur81a+f65USUcOdFy8qwRkRobx8p07lliQy4+KirsPae9WuXfEzC0uCq6uK7RowQIng48dzZz8eO6ZymEVHwy+/qO0bNFBZ/tu2VUO+bdqUbUxYYZMZbiY4HwoKscL6blEvmclkIjU1tdihuOKG7LLM/+jcINZxTIWJpKJElLOzMw53QCHoOwUtujSaqsSVK0pc7NypvCqpqbnrGjVSMwr79VOCJD/meJ60NBWbNWCAGh47dUrVVXRyUmJn506VPsHqxzm1dXOOxu3l4IWD7Ivbx/HLx/Mc2s3ZjW7NutGtWTc86njkCq2MDCWSatRQYgrU+RYvVvZOmJB7kDFjlGBavjxXKC5dqmYQ/uMfKmAdVDzV22+rGYbmGmxHjyoPnWHk9VZFRirRdf/90KePEgAXLsDff+e9N+YSI66uytabxcYmV1CNHq1ESWSkKmJ98KC6hgsXVNu6Ve1jGErktGwJ7u65r/XqlW2G/BsNzi9KiFURL1n+WXT5g8Pzz6jLv3yzAeHmGXSFiaKihu6sX7W3SQNadGk0lUtysvqh3r9ftdOn865v2VIFxHftqn6grX+czT9oLVqoPFTmH01XV5UCYds29WMZEKC8XE5OUL06EhxMfMoFIqtf4nCrKxyK/owT+04g5HqMHGwd8G3gS6BbIEFuQTR2aYyxbh3s2gQj6+cKrIULlSdtwgQVIwbKu7Z1q/LuWOPqqkRXWlqu6GreXHm5MjJyt4uLUx4jV9fcPnMNNRcXJa48PJQX7NNPISoKHnww1yv211/K2+TkpOobmo/55JPqPn3+ee5xP/9cDTuOG6cC6CG3PFKtWtdPsWG5YQ5qaNHbWwnAnByVTNXskYuIUNdkLu5rFmKg7GzSRLWmTVVr3Fhdc1kIRLhxIVZY3w14yXLs7Un79FNSmjYl9cABUvbvJ7VZM1Lq188N+I6KIuX4cVJq1ybV2bmAsMqw/ozcAOaAcOuYpeJEUn4xdTvNoNNUHlp0aTQVRXq6EgiRkbnNnCXejIODigfq0EEJLfMMuaNHVSB4mzbqx2/zZvjvf1XSUpMJxo6FZ59V+yclKcHw5JNkD7+HONs0ToVvJuroNo675hB1+E2Swq6llcgRyMjA1saWNo198K7vjZ9La3w/WY5D+gX4xCoX1R9/KA9O1665oqtRI2WjvX3udk2bKs+VOV4qJ0d5w559Vv1IL12qPHBnzihPkIi6PnPh55491T2wHg6sU0eJ0/zDLO+/r7yB1iU9goLUcps2uX1ZWcrO/DMON2xQ93DcuNy+hQtVrrMnn1TZ90E9q19+UfFa/furPhEloFxdlRi0xsYmt2zJgAGqLzNTXXN0tBpWNb9evaqGKo/n9S4CKjjfXLi3QQPl4axbN/fV1bXkiW7zUwIhlpOTQ9onn5C2bx+p7u6kAqk2NqRmZJB29CiphkHq6dOk/PknqWfPkubiQkpcHKlTp5KamUlqZCQp1aqRnpKiiqPXrJm38HdAgLrG5OSi+69ehZo1MVxcVIxSZiY1UlNxbt6cGs2bF5g1V9hMOnNSTC2aNJWNFl0aTVkiojwl58+rH9gzZ9QPs1lg5Cc9XcVW9eypaod5eqof3507VZqCXr2UUJk4UQm0q1dzPVdXrvz/9s49yq6qvuOf3zn3PZNJMpBASAJ5GIS8tBhtEeuCYFcQpTyKy1fVgi7aLtpCbWGh6EL/aLXapcUH2CWCFikullILQhAWoJUupRAgJCEJmTyAIY/JY5KZuXPf99c/fufk3JkkSmlmbsL8Pmuddc/53X3O2Wfvc/b+nr1/Z2/I5Wg26uwd2MHOqTV2ffkqdmx6lt4T0ryceYodD99/cNodGgdgywBMnULXiTN509Q3cca+gEX/+RinLzmX3J990cI1m7D169YlV6kk0+OsWGGCq9X5/MILTYS0DoDYbFoXady91tdnxzocYWitOrGIAxNG99xzaCvT4fxawvBQwTN/vi2tzJtnA5+2omrzJvb3mxhoPc/kySPnZXzpJRvhv9lMRFepZMIslzMhGXPHHTZu2oc/bK1BYHm4e7dtn3/+yHgMDJgI7e1Nfrdvt3toaOjIggxMoEyZYuk3dSr1SZMod3ZSzucpZTKUMxlKqRSlMKQcBJRUKZXLlEolytHv8PAwpVJp5HL//QwPDx+5dWn69INiiF/8wuJZLJrgDwLbBkuvYhGCgML06RTKZTpSKQpdXXSUShRmzaLj7LPpWLeOwrZtdEybRsf+/XSsWEHHkiUUPvc5OhoNOotFsrfcYqIpblHbtw+uvXZk1+aCBSO7Np9+2gRk3B3vHwo4bWZMRZeIXADcDITAbar65VH/S/T/hcAw8Geq+sxYxslxXhdqLUIMDFglvW+f/fb32yCbGzaYAKjVTGC0vKEfHEqgVLIR0RcvttaPIIDPftYq1NWrYcsWO+4jj0C9TiMUhv7lqxxI1RnIHmD/GQX27t7D3tl72DfnJPZtSLEnV2F3pk59fg889lk7Tyfw7HooDiFLlnLSCady6uRTmbe3l/nPvsCbLv4YJ156pVVgW7bAyldgSovTuYjNt5hOm9gYHLRria/9xRcT4bVmjV3D4sXmhwUmWh5+eGT6dXebuJoxw35POQVmz7bt1KhiKJ48eqwRgXPOOdT+539uSysLF5pAaxWcw8MmokaLwVWrLN0uuyyxPf44zbvvpnr55VQuvZRKpUJ10yaqX/kKlTlzqFxxBZWuLirZLJV166ik05Qvu4xKsUhl924qmzdT7uuj3GxSKZUoDw7aUipRUaXUbFJpNKj/ri/k4rQNQ0v3eH30EgQQhkgYki8UyBcKFDo6KHR2ku/ooDBpEvnOTjq6uihEX8gV9u6lsH07hUWLKCxcaI7j27eT7+mhsGwZcuaZid9hrWZC6MYbE9G0apXZu7vhkkvs3oq/Ct2+3Xzl4PV/APBabb/tQ4HXKtrGw+Ycl4yZ6BKREPg28EdAL/CUiNynqi+0BHsvsCBafh+4NfodX8biYTiWHs6JFsfTTzfhs3attbgsWGC+UdWqhVu3zgryk09Ohhzo6bFKYMoUq0y3bbOKM5+3lp7BQWu92LvX/GxyuYNv8friRmo0qWXT1M5aSq2zQG3TM1S1TqU/pPqWxVRDqGxeQ5k65T2/pnzBqZS29VCeuYti5x6KUqN44D8YzjQZOneQwSwMhQ3Y+CWYcxos3mnxP7kKc8rw5hzMXGwiqLeXqbsGOOnNMzkp083JmW5m764ze8seZl50Hdnzou6t0kOwuQMoJL5h+bwJiZ4e6/4pFm1pNg99TmLOP9/GBANLr9ECKZu1rsTu7mRYhiNNJn0UUVXq9TqNRuOQpdUer9fr9d+61Gq1g8vB7d5eak8+Sa1Wo1qtUps71+w33WTbtRrV/n6qItS++EUqjYbZX32V+q5d1tr2k59YhAcG7H584QUTvzGrVlmX8aZNSdpu3mz33rx55njf2Wlp2tNjrXKzZkGtRlCrkd+6lXwqRe6008g3m+SaTXJ9feQrFXJdXeRzOfJBQL5aJV8uk8/nyXd1kQ9D8qoUhobIhyGFqVPJBoGJ8/377V7r6EjiVK3ac5bLmT2TMSG3ebPNjNDRYcI9nbavO9NpC/Pud1vr56xZ1r37q1/ZMS+5xITUnDn27O7caffi+vW278CAicFy2YR/KmXnv/dei9/06daaeP/9Fm5gwLpl+/osPnELXGx7/HF7DopFKwvijx76+01gxxO633qrtUBv2gR/+ZeJQPvudy0drroqsX3ve3bMT37y6InAw9mOF2F4PMRxnJH/z9ghv/XAImcDX1DVFdH2ZwBU9UstYf4V+IWq3h1tbwTOVdURji7Lli3Tp59+ekziyYYNXHH5283nAKBzEghQHDJ/F0hG6N67BxpNq5AKBWvF2LvHwjUaVgiecYY9rFu3WuGgaoVPEETHBFArNDs7R+6fy0LXFOjfCwrUG/aQnXySFSaqduwwBakQyiUO+j6nMxAGUK+ZTYAgtPVm1L0kQDZnx+3qRAeH7JiNuoUNAqiUk7RJpa0AaTYsnIgVQvWG7SNiS6EApTLUa2gmY7bp02HHTqhV0biCL+ShVodK1eIaiKVtqQTFYVRIuotUoTiE1huQSVvkp0+DnTvRej05ZiaNNptW+IqgImjerlGrFRDMFrVGaKVi50mFNCd3WfL199MEVEDDwNa1iUa2Zj5rtlqVpipNgWY2TTMMaWgDrUefkqdSVniLWBdRfP/ELTmNepJfXZPsWgeGzA6Wz7k87NppadRskj1hOvm5p5OrNMht7aWjdxcdqQIdHVMoNEMKjYBJuwdJhamDjuAKdj8FgXUHLl1qYwT19MBjj6Hz58Py5XbOAwfQe+5J9ovQVArNZtFsFqJfzeUgn0ejVitVRZtN+433Ux2xNOP/R2232lttv2tpNBqHrMe/Y1WWHS1EhEwmQzabtd90mgyQSafJTZ1KNpu1ZcsWMo0GubPPJpvLkcvlyD71FNmXXya3YgXZM88kl8uRe/55cj/8IblzziF3zTXkcjlSpRLy0Y9a2XL33cnJr7/exMs//qOJmqEh8xH88Y+ta/u88+xl46WX4Lbb7F669FJ7Nkslm/VgcNDEdiplZduGDSaSZs+2+x7sK9mNG61sbK3Unn7ays1lyxIftJ4eEzjz5ydjmu3da3Ho7k7i2d9vAiyXs8oybkXev9+e+5NPNhHWbNp9P3my7d/bm7w8TJpkZWl/f+I3NnWqlacD0XAoQWBCsK/PztHZadc5a5a1ctdqB7v0D7oFqCY+heWynbdctrTq6LD1U06xdNm/39KlXDZ/wx07rGV7yhSzxV/ebt9u4Wo182uMff46OizuixbZ+Z54Iil/zznHrvvZZ030xgL4Xe+yuuO552w7Fr3Dw+YXKmLHOu88S4MHHkjqrLiMeOghi0suZy4GYC3Z8Qcx8Vh4jzxi6RaGNkgz2LiCcd26YoWlZX+/CePYdSEerubBBy1eYWj3HphYjruqL77YzrdyZTJV1/Ll9rL8wAMWx2rVvnqeN89sjYaFXbjQWuMffNBs06ebC8MYCi8RWaWqy0bbx7J7cSbwSst2L4e2Yh0uzExglHfxGLJmDY8OFqnUowJ738ChYXb3Y7V3S6FeLcKB4UiMYDVWtQyr15mt3kjCV4cOPea+QegfOnT/wZ2JaIptW1+xClyIKvLD+Me0iqV4X2qH2oqRbajUch4FPdwYNC3+HL/tmMMHkhq7WrH1oVdMoAIH/ywXW44dCcHhvfb/waStw/D+lmsFqpGQLO000dZ6zFK15ZhqS6kUXVMcT4XhKFwcpaAJ5WF72FvnY5XmiMMDkIoEZr3lmFmBdAhNgVKNQEECJRiuIQhBnyANJQCCdEiAEFQahA0lQAjzTYJACBs5wnKVkIAwnEFq8lRCZhC+uo3UYBGZOwPSU6J0EIoDFYoA/aVE9AZRy8PgYLQdJMv69eYbBFagZTJWsT36aJQeTWs5ae1aSqUOP4RBtWrLgQP2UnEMkkqlCIKAVCpFGIYj1lt/D7eeTqdJpVIHf+P1eBm9nU6nyWQyI9Zbt2NxFa+HYfj6HblbuypjliyxDwDiFyKwPL/11kN96D7yEavsTj01+Qp0+XLzW1u40PwEwcZBq9dNkLQO9zF5st03112X+N/dc4+1Fv3Jn9j8ntWqVe7f+paJik9+0irCWs32q1btF+wcd91lrc4XXWSt0fG4dCtXWmX4nvdYBVkswu232727fLnZmk2ba7Svz75Qffvb7T6P783TTjN7X59V7KtWmYh65zvtGru7TaA0GjZUSbFo4mfnThMpYWjxyWQsjTZvNnGTStl1pFIWh2bTwlYqSbdsrWb5US4nAxBXq5ZPpZLZ8nnbp9Gw5zIITNTE7gnFYtIyGL9UFosWJpUywRa3xMUfaDQaJtiqVYtrtWpfQ+/ZY+dKpex361Y7Z6Vix69UEp/BSiVpTYxnu4gbD8plE9Rg11Gv2znXrx9pq1at9RbsPI2G2dats2Ns356IpkYj6SIeHk7S6fnnzVYsJmmyerVdb7GYpOWaNZZvxaKl//Cwnae/38RaLme2F16wc8e2SiWZOmucGcuWrg8AK1T1U9H2x4B3qOpft4R5APiSqj4RbT8KXK+qq1qPNdYtXf/wwT+kNnAAECuUBHNorUfCYN48mNQJGzZaq0S9Yb4o06eZTZsmDE480d4sikUbzHIoElWzZlrrVG9v1GqEvR12Tx15zGnTkre2uFXrhG6YN99u7GYjmRsvk7VCptm0B7y72x6q/v6kEO7qsvX4TU7EmtZrNStIXnopeaC7umz/+Guy+JgAAwNIbJt2orXC9PcjQQASfaW1P/JzyuXtoT3rrKTCD6JWrdPmQmnYHrpUGkmFsPQtSH8/bHrRwmWysGwZkk7bQ799O9LZCUGAXHgh/Po3VmikQkQCZMlSpFQ66FMl6QwSF6JPPEEgAVLogIsuMo1y94+gqQSTpyAf/4TZbr2VoFpH0hmCFRcgIsjKhwjqDYIwJLjoYoIgIPjpfQS1OmEQElx3PeGceQQSEDzx38jLL1vBHw9bsHq1FVAzZ9pbVRBYWuzYYbYZMw4KJIkFUnd30g03PIzEb5fxgJpxZRMX7sTZemhFHtuOVMkf6X8RGWGLt1vDt/4fjz3UGi5eWv8LgoAg6qpq/b/VFm+/liUMw4OiKv71cZCOMw53P9frVjmmUsl9H3+cAiM/btizxyrpE09M/OriFrBJkxJxWK1a2ZtOW7kbs2WLlYVz5yb779xpZeiBAyZkliyx1plt26z1J66slyyx44Idd+1as2Wztm+1auXr4sVWrm/dmviBLlpkrXvxEDH1uoU7/XQrM9etM0HxtreZbccOG/5l3z5rlVywwETJVVdZ+nV1mdBdsMBakL78ZYtTNgs332x12ec/b+mcz8PXv24vaJ/+tKVtZ6fZwFwM6nUT2V/7mtmuvtrypDXcNdeYmMlm4ZvftONcd51dezpt8VGFG26wPBGxr62XLjUB++lPJ1OOxee5/nqLVzpt8VY1f9G4W/mrX7V8uvHGRHjdeKPl/+c/b3Gs161reN48+Nznkvvpyist3W+6yWwdHXDnnW1p6fLuRXjj91l7HN8w/gCO4zjA8V1mHmvxGQPaIbpSwIvA+cCrwFPAR1R1XUuY9wF/hX29+PvAN1T1HaOPNeaiy3Ecx3Ec5ygx7j5dqloXkb8Cfo4NGXG7qq4Tkb+I/v8O8CAmuHqwISOuGKv4OI7jOI7jtJMxHadLVR/EhFWr7Tst6wpcPZZxcBzHcRzHORZwz1PHcRzHcZxxwEWX4ziO4zjOOOCiy3Ecx3EcZxxw0eU4juM4jjMOjNmQEUcTEdkNvNTueDiO4ziO47wGTlPVaaONx4XochzHcRzHOd7x7kXHcRzHcZxxwEWX4ziO4zjOOOCiCxCRC0Rko4j0iMgN7Y7PREVEZovI4yKyXkTWicg1kb1bRB4RkU3R79R2x3UiIiKhiDwrIj+Ltj1fjgFEZIqI/FhENkTPztmeN+1HRP42KsfWisjdIpLzfGkPInK7iPSJyNoW2xHzQkQ+E+mBjSKy4mjGZcKLLhEJgW8D7wUWAh8WkYXtjdWEpQ78naqeCfwBcHWUFzcAj6rqAuDRaNsZf64B1rdse74cG9wMPKSqZwBvwfLI86aNiMhM4G+AZaq6GJsK70N4vrSL7wMXjLIdNi+iOudDwKJon1sinXBUmPCiC3gH0KOqW1S1CvwIuLjNcZqQqOoOVX0mWh/EKo+ZWH78IAr2A+CStkRwAiMis4D3Abe1mD1f2oyIdAHvBr4HoKpVVd2P582xQArIi0gKKADb8XxpC6r6X8C+UeYj5cXFwI9UtaKqW7G5od9xtOLiossq9Vdatnsjm9NGRGQO8HvAk8BJqroDTJgB09sYtYnKvwDXA80Wm+dL+5kH7AbuiLp+bxORDjxv2oqqvgr8M/AysAM4oKoP4/lyLHGkvBhTTeCiC+QwNh9Ho42ISCfwE+BaVR1od3wmOiLyfqBPVVe1Oy7OIaSAs4BbVfX3gCLeZdV2Iv+gi4G5wClAh4j8aXtj5bxGxlQTuOgyFTu7ZXsW1gzstAERSWOC6y5VvTcy7xKRGdH/M4C+dsVvgnIO8Mcisg3rfl8uIj/E8+VYoBfoVdUno+0fYyLM86a9vAfYqqq7VbUG3Au8E8+XY4kj5cWYagIXXfAUsEBE5opIBnOgu6/NcZqQiIhgvinrVfVrLX/dB3wiWv8E8J/jHbeJjKp+RlVnqeoc7Pl4TFX/FM+XtqOqO4FXROTNkel84AU8b9rNy8AfiEghKtfOx3xUPV+OHY6UF/cBHxKRrIjMBRYA/3O0Tuoj0gMiciHmsxICt6vqP7Q3RhMTEXkX8CtgDYnv0Gcxv657gFOxwuwDqjraKdIZB0TkXODvVfX9InICni9tR0Tein3gkAG2AFdgL9SeN21ERL4IfBD7KvtZ4FNAJ54v446I3A2cC5wI7AJuAn7KEfJCRG4ErsTy7lpVXXnU4uKiy3Ecx3EcZ+zx7kXHcRzHcZxxwEWX4ziO4zjOOOCiy3Ecx3EcZxxw0eU4juM4jjMOuOhyHMdxHMcZB1x0OY7TdkTkBBF5Llp2isir0fqQiNwyRue8VkQ+fhj7HBFZexTPkxGR/4rm4HMcZwLjhYDjOG1HVfcCbwUQkS8AQ6r6z2N1vkgAXYmN3j6mqGpVRB7Fxmy6a6zP5zjOsYu3dDmOc8wiIueKyM+i9S+IyA9E5GER2SYil4nIV0RkjYg8FE0hhYi8TUR+KSKrROTn8VQfo1gOPKOq9ZZ9VovIr4GrW84/R0R+JSLPRMs7I/udInJxS7i7ROSPRWSRiPxP1Er3vIgsiIL8FPjoWKSR4zjHDy66HMc5npgPvA+bTPiHwOOqugQoAe+LhNc3gctV9W3A7cDhZpg4B2idwPsO4G9U9exR4fqAP1LVs7CWqm9E9tuwkd8RkcnYvHoPAn8B3KyqbwWWYfO4AawF3v46r9lxnDcI3r3oOM7xxEpVrYnIGmzaroci+xpgDvBmYDHwiE15RwjsOMxxZmBz4cWiaYqq/jL6707gvdF6GvhWNNVOAzgdQFV/KSLfFpHpwGXAT1S1HrWU3Sgis4B7VXVTFL4hIlURmaSqg0cpLRzHOc5w0eU4zvFEBUBVmyJS02QesyZWngmw7jAtVqMpAbloXYAjzYf2t9hcbW/BegbKLf/diXUZfgjzD0NV/11EnsRa434uIp9S1cei8NlR+zuOM8Hw7kXHcd5IbASmicjZACKSFpFFhwm3HngTgKruBw5EE67DSN+rycAOVW0CH8NazmK+D1wbHWNddL55wBZV/QZwH7A0sp8A7FbV2v//Eh3HOV5x0eU4zhsGVa0ClwP/JCKrgecwf6vRrATe3bJ9BfDtqHuw1GK/BfiEiPwG61ostpxrFybe7mgJ/0FgrYg8B5wB/FtkPw/z+XIcZwIjSeu84zjOxEFE/gO4Pva7eh37FzBfsrNU9cDvCHsv8BlV3fh6zuU4zhsDb+lyHGeicgPmUP9/RkTeA2wAvvkaBFcG+KkLLsdxvKXLcRzHcRxnHPCWLsdxHMdxnHHARZfjOI7jOM444KLLcRzHcRxnHHDR5TiO4ziOMw646HIcx3EcxxkHXHQ5juM4juOMA/8Lvot59ebYGmcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.4081, 'epsilon': 0.20520000000000002, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACkiklEQVR4nOydd3hVVdaH35NGeugQesCQAGkk9BZCCwiCNBGRpsiIiu2zwIyKbRzHBmJ3VFBEQEAQERWRDiIECb0GQiAJJBBID0lu1vfH5t70CiEB9vs8+7n39HXOSc753bXXXssQETQajUaj0Wg0lYtVVRug0Wg0Go1GczugRZdGo9FoNBrNDUCLLo1Go9FoNJobgBZdGo1Go9FoNDcALbo0Go1Go9FobgBadGk0Go1Go9HcAGyq2oCyULduXWnRokVVm6HRaDQajUZTKrt3774gIvUKzr8pRFeLFi0ICwurajM0Go1Go9FoSsUwjNNFzdfdixqNRqPRaDQ3AC26NBqNRqPRaG4AWnRpNBqNRqPR3ABuipgujaaimEwmEhISyMrKqmpTNBrNTYKtrS21a9fG2tq6qk3R3GJUmugyDOMrYAgQJyI+RSw3gPeBO4E0YJKI/F1Z9mhuTxISErC3t6du3bqoPzmNRqMpHhEhJSWFhIQE6tUrNPhMo7kmKrN7cT4wsITlgwDPq20q8Ekl2qK5TcnKysLZ2VkLLo1GUyYMw8DZ2Vl7xzWVQqV5ukRks2EYLUpYZRjwjYgIsMMwjJqGYbiLSGxl2VQcBw5ATs6NOVZZ3/3FrWeen3d5UesaRuF1CjYAK6vcz7zLzNNWVoW/W1vnfppbddY0WnBpNJryoJ8ZmsqiKmO6GgNn8kyfvTrvhouu11+H1NQbfdRbC8NQ4svGJn+ztVWfNWqo7zVqgJ2d+rS3BweH3E8HB3B2zm0uLqo5O1dvUVcW/v3vf/Pdd99hbW2NlZUVn332GZ07d77hdoSHhxMTE8Odd94JwKpVqzh06BAzZsxg0qRJDBkyhFGjRuXbZuPGjbzzzjusXr36htur0Wg0txJVKbqKeo3KDbcCaNsWrlwp27pyDRZWZNu825i/F7WfktbL+1mwgfLyFZyfk5M73/xpMuXOz/s9O1stz85W7XpjbQ01a0Lt2uqzVi1o0AAaNsxtLi7VV5j9+eefrF69mr///psaNWpw4cIFMjMzq8SW8PBwwsLCLKJr6NChDB06tEps0Wg0mtuNqhRdZ4GmeaabADFVYchLL1XFUW8dzELNZMoVXllZ+b9nZiphm/d7ejpkZKjP9HRIS4OUFNVSU9VnUpL6fvGiasXh6AhNm0LLlrmtefMbdw1KIjY2lrp161KjRg0A6tatC+RWWqhbty5hYWE888wzbNy4kU2bNvHEE08Aqptj8+bNuLi48NZbb7FgwQKsrKwYNGgQb775JhERETz66KPEx8fj6OjI//73P7y9vZk0aRL29vYcPHiQ8+fP89577zFgwABeeukl0tPT2bp1KzNnziQ9PZ2wsDA+/PBDANatW8f7779v2WbIkCH5ziU1NZXp06ezf/9+srOzefnllxk2bNgNvJoajUZz81KVomsV8JhhGIuBzkBiVcRzaa6dvHFgtrbXf/9ZWXDpUm5LSIDz5+HcOdViY5VgO3pUtbx2PfCAEl8NGsDUqZXjDfvpp5KXDxgwgFdffZXWrVvTr18/xowZQ3BwcLHrv/POO3z00Ud0796dlJQU7O3t+eWXX1i5ciV//fUXjo6OJCQkADB16lQ+/fRTPD09+euvv3jkkUdYv349AJGRkWzatImIiAhCQkI4ceIEr776aj6RNX/+/HzHLmqbvPz73/+mT58+fPXVV1y+fJlOnTrRr18/nJycynnVNBqN5vajMlNGLAJ6A3UNwzgLzAJsAUTkU2ANKl3ECVTKiMmVZYvm5sbWFurXV60oRJRH7PRpiIiAU6fg5Ek4cwaSk+HwYdViY3PjyRwdVbfljcDZ2Zndu3ezZcsWNmzYwJgxY3jzzTeLXb979+48/fTTjBs3jhEjRtCkSRPWrVvH5MmTcXR0BKB27dqkpKSwfft2Ro8ebdn2Sp5+8nvuuQcrKys8PT1p2bIlR44cKdXW0rZZu3Ytq1at4p133gEgIyODqKgo2rRpU65rotFoNLcjlTl6cWwpywV4tLKOr7l9MAxwcwM/P9XMZGbCsWOq2/PcOXjmmfyxb/Xrg4eH6pa0s6tcG62trenduze9e/fG19eXr7/+GhsbG3KuDpvNyMiwrDtjxgwGDx7MmjVr6NKlC+vWrUNECo2oysnJoWbNmoSHhxd5zILrl2VEVmnbiAjLly/Hy8ur1H1pNBqNJj+6DJDmlsXOTgXf+/tDaCiMHAk9e6ruRmtriIuDv/6CFStg+3a4fLly7Dh69CjHjx+3TIeHh9O8eXNatGjB7t27AVi+fLlleUREBL6+vjz//PN06NCBI0eOMGDAAL766ivS0tIAlfTV1dUVDw8Pli5dCihBtHfvXst+li5dSk5ODhEREZw8eRIvLy9cXFxITk4u1taitslLaGgoH3zwAXJVve7Zs+car45Go9HcPugyQJrbBjs75dVq2lTFiUVFQWSkig+LjFTdk02bgo+PGiV5vUhJSWH69OlcvnwZGxsb7rjjDj7//HMOHz7Mgw8+yBtvvJEvfcScOXPYsGED1tbWtG3blkGDBlGjRg3Cw8Pp0KEDdnZ23HnnnbzxxhssXLiQadOm8frrr5OVlcW9996Lv78/AF5eXgQHB3P+/Hk+/fRT7O3tCQkJ4c033yQgIICZM2cWsrWobfLy4osv8uSTT+Ln54eI0KJFC51KQqPRaMqIIdeSA+EG0aFDBwkLC6tqMzQ3ITExMTRq1KjEdVJTVczXiRMqBYZhKPHl66u6LW9Gisu5pdFoykZZnh0aTXEYhrFbRDoUnK89XZrbHicn6NBB5Ws7dEiJr6goFYjfpo0SX7rurUaj0WiuFS26NJqrODrmiq+DB5X4OnQIoqOha1cVH3azUDAVhEaj0WiqHh1Ir9EUwNEROnaE/v3B1RUSE2HtWti//8bV6NRoNBrNrYcWXRpNMdStCwMHgpeXElv79yvxlZJS1ZZpNBqN5mZEiy6NpgRsbCAoCPr2VbFfCQnw++8qM75Go9FoNOVBiy6Npgw0aACDBqnP9HRYt07l+dJoNBqNpqxo0aXRlBE7O+jdG5o1U3m+NmxQIxxLw9nZudR1tmzZQrt27QgICCA9Pb1cdq1cuZJDhw6Va5uS7EpPTyc4OBiTyWSZN3v2bOzt7UlMTCz3ca4H4eHhrFmzptKPM3/+fGJiYizTU6ZMqdC1jYyMxMfHp9T1li5dSps2bQgJCSn3MQraer3sKmqdl19+2VL6qaz07t2b0lL9zJkzx5Lwt7xU9G8ir139+vXjknZba24gWnRpNOXA2hq6dwdPT1VeaOtWyJNsvsIsXLiQZ555hvDwcBwcHMq1bUVFV3F89dVXjBgxAus8eTIWLVpEx44dWbFixXU7TnmoKtH1xRdf0LZt20o73pdffsnHH3/Mhg0byr1tRURXdaMqRFdexo8fz8cff3xN+9BoyoMWXRpNOTEMlVrCz0/Vcty1C44eLX27jRs30rt3b0aNGoW3tzfjxo1DRPjiiy/4/vvvefXVVxk3bhwAb7/9Nh07dsTPz49Zs2ZZ9vHNN9/g5+eHv78/48ePZ/v27axatYpnn32WgIAAIiIiiIiIYODAgQQFBdGzZ09L0epTp07RtWtXOnbsyIsvvlisnQsXLmTYsGGW6YiICFJSUnj99ddZtGiRZf7Bgwfp1KkTAQEB+Pn5cfz4cV588UXef/99yzr/+te/mDt3Lhs3biQ4OJh77rmH1q1bM2PGDBYuXEinTp3w9fUlIiICUEldH374YXr27Enr1q1ZvXo1mZmZvPTSSyxZsoSAgACWLFlCQkICd999N35+fnTp0oV9+/YByiMzceJEBgwYQIsWLfjhhx947rnn8PX1ZeDAgWRlZQHw6quv0rFjR3x8fJg6dSoiwrJlywgLC2PcuHEWj2Ner8ivv/5KYGAg/v7+9O3bt/QbfpX58+czYsQIBg4ciKenJ88995zFhq1bt/Lwww/z7LPPYjKZePbZZy33/bPPPrPs46233sLX1xd/f39mzJhRpK27d+8mODiYoKAgQkNDiY2NBWD37t34+/vTtWtXPvroozLbXRy9e/fm+eefp1OnTrRu3ZotW7YAykN677334ufnx5gxY/J5bNeuXUvXrl0JDAxk9OjRpKSkMHfuXGJiYggJCbF4+opaD2DXrl1069YNf39/OnXqRGJiYqG/idTUVB544AE6duxI+/bt+fHHH0u1a+jQofn+pjWaSkdEqn0LCgoSjaYiREdH504MGXLdW0rIEFm4UOS770TOni3aBicnJxER2bBhg7i6usqZM2fEZDJJly5dZMuWLSIiMnHiRFm6dKmIiPz222/y0EMPSU5OjphMJhk8eLBs2rRJDhw4IK1bt5b4+HgREbl48WKhbUVE+vTpI8eOHRMRkR07dkhISIiIiNx1113y9ddfi4jIhx9+aLErL1euXJEGDRrkm/faa6/Jq6++KiaTSZo3by7nz58XEZHHHntMvv32W8t2aWlpcurUKWnfvr2IiJhMJmnZsqVcuHBBNmzYIG5ubhITEyMZGRnSqFEjeemll0REZM6cOfLEE09YziU0NFRMJpMcO3ZMGjduLOnp6TJv3jx59NFHLTY99thj8vLLL4uIyB9//CH+/v4iIjJr1izp3r27ZGZmSnh4uDg4OMiaNWtEROTuu++WFStW5Lt2IiL333+/rFq1SkREgoODZdeuXZZl5um4uDhp0qSJnDx5stD2RXHq1Clp166diIjMmzdPPDw85PLly5Keni7NmjWTqKioQsf77LPP5LXXXhMRkYyMDAkKCpKTJ0/KmjVrpGvXrpKamprv2Hm3zczMlK5du0pcXJyIiCxevFgmT54sIiK+vr6yceNGERF55plnLHaVxXYzs2bNkrffftty3KefflpERH7++Wfp27eviIi8++67lmPu3btXrK2tZdeuXRIfHy89e/aUlJQUERF588035ZVXXhERkebNm1v+notb78qVK+Lh4SE7d+4UEZHExETJysoq9Dcxc+ZMWbBggYiIXLp0STw9PSUlJaVYu8zccccdcuHChULXId+zQ6MpJ0CYFKFndHJUjeYacHJSHq99+2DbNhgwoOS6jZ06daJJkyYABAQEEBkZSY8ePfKts3btWtauXUv79u0BVbvx+PHj7N27l1GjRlG3bl0AaheRrTUlJYXt27czevRoy7wrV64AsG3bNkth7fHjx/P8888X2v7ChQvULHACixcvZsWKFVhZWTFixAiWLl3Ko48+SteuXfn3v//N2bNnGTFiBJ6enrRo0YI6deqwZ88ezp8/T/v27alTpw4AHTt2xN3dHYBWrVoxYMAAAHx9ffN1r91zzz1YWVnh6elJy5YtLZ66vGzdutVyLn369OHixYuWeLNBgwZha2uLr68vJpOJgQMHWo4TGRkJwIYNG3jrrbdIS0sjISGBdu3acddddxU6jpkdO3bQq1cvPDw8ir32JdG3b1/crtaUatu2LadPn6Zp06b51lm7di379u1j2bJlACQmJnL8+HHWrVvH5MmTcXR0LPbYR48e5cCBA/Tv3x8Ak8mEu7s7iYmJXL58meDgYEDd919++aVEWw3DKHX+iBEjAAgKCrJc082bN/P4448D4Ofnh5+fH6Cu3aFDh+jevTsAmZmZdO3atdD+i1vv6NGjuLu707FjRwBcXV2LtG/t2rWsWrXKEnuWkZFBVFRUsXaZqV+/PjExMZa/U42mMtGiS3P78NNPlbLbdqISqJ4+DZs2KeFVXFhWjRo1LN+tra3Jzs4utI6IMHPmTP7xj3/kmz937txiX4hmcnJyqFmzJuHh4UUuL217BwcHMjIyLNP79u3j+PHjlpd5ZmYmLVu25NFHH+W+++6jc+fO/Pzzz4SGhvLFF1/Qp08fpkyZwvz58zl37hwPPPBAkeduZWVlmbayssp3HQraWJTNUkTNWPN6efdra2trmW8+TkZGBo888ghhYWE0bdqUl19+Od85F4WIlHrtSqKs9/2DDz4gNDQ03/xff/211GOLCO3atePPP//MN//y5cvltrtOnTqFgssTEhIsghNyz6fguRR3r/r3719qN15x6+3bt69M5yAiLF++HC8vr0LLSto+IyOj3HGUGk1F0TFdGs01YhjQpYtKppqaClu2qCD7ihIaGspXX31liWeJjo4mLi6Ovn378v3333Px4kVAvQgBXFxcSE5OBpQXwMPDg6VLlwLqRbR3714AunfvzuLFiwEVt1UUtWrVwmQyWUTIokWLePnll4mMjCQyMpKYmBiio6M5ffo0J0+epGXLljz++OMMHTrUElc1fPhwfv31V3bt2lVIQJSFpUuXkpOTQ0REBCdPnsTLyyvfOQL06tXLcg4bN26kbt26xXpACmI+t7p165KSkmLxLAGFjmOma9eubNq0iVOnTgG5137nzp1MmDCh3OdYFKGhoXzyySeWuLNjx46RmprKgAED+OqrrywB50Xddy8vL+Lj4y2iKysri4MHD1KzZk3c3NzYunUrkP++R0dHFxmb5uzsjLu7O3/88YfleL/++mshj2xB8t6TAwcOWP4eunTpwrZt2zhx4gQAaWlpHDt2rNA5FLeet7c3MTEx7Nq1C4Dk5GSys7ML3avQ0FA++OADiyDfs2dPiXaB+v84d+4cLVq0KPHcNJrrhRZdGs11wNoaevVS3Y0XLsCOHSrIviIMGDCA++67j65du+Lr68uoUaNITk6mXbt2/Otf/yI4OBh/f3+efvppAO69917efvtt2rdvT0REBAsXLuTLL7/E39+fdu3aWQKK33//fT766CM6duxYYuqHAQMGWF7SixcvZvjw4fmWDx8+nMWLF7NkyRJ8fHwICAjgyJEjFvFhZ2dHSEgI99xzT74RkGXFy8uL4OBgBg0axKeffoq9vT0hISEcOnTIEjT98ssvExYWhp+fHzNmzODrr78u8/5r1qzJQw89hK+vL3fffbel2wpyA/kLpu6oV68en3/+OSNGjMDf358xY8YAEBUVdd28JFOmTKFt27YEBgbi4+PDP/7xD7Kzsxk4cCBDhw6lQ4cOBAQEWLrP8tpqMplYtmwZzz//PP7+/gQEBLB9+3YA5s2bZ+kOzmtrbGwsNjZFd3Z88803vP766wQEBNCnTx9mzZpFq1atSrR/2rRppKSk4Ofnx1tvvUWnTp0Ade3mz5/P2LFjLQMfzF3GU6dOZdCgQYSEhBS7np2dHUuWLGH69On4+/vTv39/MjIyCv1NvPjii2RlZeHn54ePj49lsEhxdoEaZNClS5dir4NGc70xinLTVzc6dOggpeV70WiKIiYmhkaNGt2w412+rDLWZ2WBvz+0a3fDDn3d2LNnD++99x4LFiyo0PY5OTkEBgaydOlSPD09y7XtpEmTGDJkCKNGjarQsW80zz77LOPHjy8UJ3Qz8OGHH9KsWTOGDh1a1aZUGU888QRDhw4t0uN3o58dmlsLwzB2i0iHgvO1vNdoriM1a0K3biq2a/9+aNQIatWqaqvKR/v27QkJCcFkMpXbU3Xo0CGGDBnC8OHDyy24bkbefvvtqjahwjz22GNVbUKV4+PjU670HxrNtaI9XZpbmqr6tbprl0qaWqsWhIaCle7I12huKrSnS3MtFOfp0q8CjaYSaN9exXddugTXMVm8RqPRaG5itOjSaCoBGxs1ohHgwAEV66XRaDSa2xstujSaSqJBA1WjMSdHjWbMyalqizQajUZTlWjRpdFUIgEBqpsxIQEOH65qazQajUZTlWjRpdFUIra2MGKENTNnBhAa2g4fH3/ee+89cq66vcLCwiwlSqo7kyZNypdINC9PPvkkmzdvtkzHx8dja2ubr2jzjeaNN96o9GOEh4ezZs0ay/SqVat48803K7SvvMW1iyM+Pp7OnTvTvn17S6Hpitp6Pe2aNGkSHh4e+Pv707p1ayZMmEB0dHSp+54zZ44l6Wt5uR7n069fv0LZ9zWaykSLLo2mknFwcGDp0nDeeusgL730O2vWrOGVV14BoEOHDsydO7eKLbw2EhISLLUJzSxdupQuXbqUWvqlMqkK0TV06FBmzJhRacf7448/8Pb2Zs+ePfTs2bNc21ZUpJSVt99+m71793L06FFL2pHMzMwSt6kK0ZWX8ePH8/HHH1/TPjSa8qBFl0ZTkCNHYOlS9XmdaN8e7O0hO7s+r7zyOR9++CEiwsaNGxkyZAigSsp069aN9u3b061bN44ePQqocij33HMPfn5+jBkzhs6dO1t+qTs7O/Ovf/0Lf39/unTpwvnz5wE4ffo0ffv2xc/Pj759+xIVFQUoMeTj44O/v79FJJlMJp599lk6duyIn5+fxTslIjz22GO0bduWwYMHExcXV+S5LVu2zFJU2syiRYt49913OXv2rMXjYTKZmDRpEj4+Pvj6+jJ79mwiIiIIDAy0bHf8+HGCgoIAaNGiBf/85z/p2rUrHTp04O+//yY0NJRWrVrx6aefAqoEUK9evRg+fDht27bl4YcfJicnhxkzZpCenk5AQADjxo0D4L333sPHxwcfHx/mzJkDQGRkJN7e3kyZMgUfHx/GjRvHunXr6N69O56enuzcubPYe5OZmclLL73EkiVLLFnR58+fb8l/df78eYYPH46/vz/+/v6WDPFloaj7Gh4eznPPPceaNWssGfPXrl1L165dCQwMZPTo0ZbSUbt27aJbt274+/vTqVMnEhMTC9mamprKAw88QMeOHWnfvr2lckF6ejr33nuv5e8tb2b+smAYBk899RQNGza0FNcuys65c+cSExNDSEgIISEhxa5XmeczdOjQKv1hoLkNEZFq34KCgkSjqQjR0dHl2+DwYZHOnUXat1efhw9fsw1OTk4iInL0qMjChSI//SRSs2ZNOXfunGzYsEEGDx4sIiKJiYmSlZUlIiK///67jBgxQkRE3n77bZk6daqIiOzfv1+sra1l165dIiICyKpVq0RE5Nlnn5XXXntNRESGDBki8+fPFxGRL7/8UoYNGyYiIj4+PnL27FkREbl06ZKIiHz22WeW7TIyMiQoKEhOnjwpy5cvl379+kl2drZER0eLm5ubLF26tND5TZgwwWKDiEhUVJTccccdIiIyc+ZMeffdd0VEJCwsTPr162dZz3z83r17y549eyzrz507V0REmjdvLh9//LGIiDz55JPi6+srSUlJEhcXJ/Xq1RMRkQ0bNkiNGjUkIiJCsrOzpV+/fhYbzdfdfGwfHx9JSUmR5ORkadu2rfz9999y6tQpsba2ln379onJZJLAwECZPHmy5OTkyMqVKy3Xrbh7M2/ePHn00Uctx8k7fc8998js2bNFRCQ7O1suX75c6NrlJTg4uNT7mnf/8fHx0rNnT0lJSRERkTfffFNeeeUVuXLlinh4eMjOnTvz2V7Q1pkzZ8qCBQss98LT01NSUlLk3XfflcmTJ4uIyN69e/P9vRXHxIkTC/1tPPHEE/Lmm28Wa6eIusfx8fFVej533HGHXLhwodA5lfvZodHkAQiTIvSMzkiv0eRl/37IzITGjSEmRk17e1+XXd9xBxw9CklJYDIVTkqcmJjIxIkTOX78OIZhWAofb926lSeeeAJQGbTzlpyxs7OzeMqCgoL4/fffAfjzzz/54YcfANWF8txzzwGq6PWkSZO45557GDFiBKC8C/v27bPEayUmJnL8+HE2b97M2LFjsba2plGjRvTp06fI84qNjaVevXqW6cWLF3PPPfcAqi7kgw8+yNNPP03Lli05efIk06dPZ/DgwQwYMABQNQfnzZvHe++9x5IlSyzeJcBSosbX15eUlBRcXFxwcXHB3t6ey1fzcHTq1ImWLVsCMHbsWLZu3VqojNDWrVsZPnw4Tk5OAIwYMYItW7YwdOhQPDw88PX1BaBdu3b07dsXwzDw9fUlMjKyxHtTEuvXr+ebb74BwNraGjc3t1K3MVPcfc3Ljh07OHToEN27dwcgMzOTrl27cvToUdzd3S01JYsrBL527VpWrVplqeWYkZFBVFQUmzdvtsQZ+vn5VbjEkVxNvF2cndXlfOrXr09MTAx16tSp0HlqNOVBiy6NJi++vmBnpwSXra2avk5YWal6jD/8cBIRa2rXrg/kDml88cUXCQkJYcWKFURGRtK7d28g9+VVFLa2thiGAagXe3Z2dpHrmdf59NNP+euvv/j5558JCAggPDwcEeGDDz4gNDQ03zZr1qyxbFcSDg4OZGRkWKYXLVrE+fPnWbhwIaAyex8/fhxPT0/27t3Lb7/9xkcffcT333/PV199xciRI3nllVfo06cPQUFB+V5+NWrUuHrtrCzfzdPmcy1oY1E2l3QNC+437zHNxyju3lQWZbmvIkL//v0LdY/t27evTPdNRFi+fDleXl6FlpVl+9LYs2cPffv2LdbOouypivPJyMi4bkXLNZrS0DFdGk1evL1h/nyYMUN9Xicvlxl7+3gWLHiY/v0f49ix/C+CxMREGjduDMD8+fMt83v06MH3338PqNqG+/fvL/U43bp1Y/HixQAsXLiQHj16ABAREUHnzp159dVXqVu3LmfOnCE0NJRPPvnE4r05duwYqamp9OrVi8WLF2MymYiNjWXDhg1FHqtNmzacOHECgKNHj5Kamkp0dDSRkZFERkYyc+ZMFi9ezIULF8jJyWHkyJG89tpr/P3331eviT2hoaFMmzaNyZMnl/VSWti5cyenTp0iJyeHJUuWWM7V1tbWck69evVi5cqVpKWlkZqayooVK8oViF7cvXFxcSE5ObnIbfr27csnn3wCqHi2pKQky/yyjOwrjS5durBt2zbLtU9LS+PYsWN4e3sTExPDrl27AEhOTiY7O7uQraGhoXzwwQcWQbpnzx5AXSuzYD5w4AD79u2zbDNhwoR8nsiiEBHmzp1LbGwsAwcOLNZOyH/9quJ8RIRz587RokWLMlxxjebaqVTRZRjGQMMwjhqGccIwjEJDegzDcDMM4yfDMPYahnHQMIzyP3E1muuNtzeMHn3dBJc5oLtdu3b079+PIUMGMGLELA4dUj2ZZp577jlmzpxJ9+7dMZlMlvmPPPII8fHx+Pn58d///hc/P79Su6rmzp3LvHnz8PPzY8GCBbz//vsAPPvss/j6+uLj40OvXr3w9/dnypQptG3blsDAQHx8fPjHP/5Bdna2pWi1r68v06ZNIzg4uMhjDR48mI0bNwLKyzV8+PB8y0eOHMmiRYuIjo6md+/eBAQEMGnSJP7zn/9Y1hk3bhyGYVi6HMtD165dmTFjBj4+Pnh4eFiOP3XqVPz8/Bg3bhyBgYFMmjSJTp060blzZ6ZMmUL79u3LfIzi7k1ISAiHDh2yBHPn5f3332fDhg34+voSFBTEwYMHycnJ4cSJE9SuXbvc51mQevXqMX/+fMaOHYufnx9dunThyJEj2NnZsWTJEqZPn46/vz/9+/cnIyOjkK0vvvgiWVlZ+Pn54ePjw4svvgjAtGnTSElJwc/Pj7feeotOnTpZjrlv3z7c3d2LtOfZZ5+1pIzYtWsXGzZswM7Orlg7Qd2jQYMGERISUiXns3v3brp06YKNje700dwYKq3gtWEY1sAxoD9wFtgFjBWRQ3nW+SfgJiLPG4ZRDzgKNBSRfOOMdcFrTUWprkVrN25UPZheXnB1sF6xmEwmsrKysLe3JyIigr59+3Ls2DHs7OxuiK1loUePHqxevZqaNWtWaPt33nmHxMREXnvttXJtt3HjRt555x1Wr15doePeaA4cOMBXX33Fe++9V9WmlJukpCQefPBBli5dWtWmXDeeeOIJhg4dSt++fQstq67PDs3NQXEFrytT3ncCTojIyasGLAaGAXnL/wrgYqgOd2cgASg6KEWjuYXw94fYWDh+XAkvZ+fi101LSyMkJISsrCxEhE8++aRaCS6Ad999l6ioqAqJruHDhxMREcH69euvv2HVDB8fn5tScIEKYL+VBBeo+1GU4NJoKovK9HSNAgaKyJSr0+OBziLyWJ51XIBVgDfgAowRkZ8L7kt7ujQVpTr/Wv3zTzh1Clq0gG7dqtoajUaTl+r87NBUf4rzdFVmTFdRw0UKKrxQIBxoBAQAHxqGUfR4YI3mFsPPT41oPH0aionF1mg0Gs0tRGWKrrNA0zzTTYCYAutMBn64mkvsBHAK5fXSaG55nJzAwwNErmvye41Go9FUUypTdO0CPA3D8DAMww64F9WVmJcooC+AYRgNAC/gZCXapNFUK8wDJE+ehDyprjQajUZzC1JpoktEsoHHgN9QGSC/F5GDhmE8bBjGw1dXew3oZhjGfuAP4HkRuVBZNmk01Q03N5X83mSCq6mLNBqNRnOLUql5ukRkjYi0FpFWIvLvq/M+FZFPr36PEZEBIuIrIj4i8m1l2qPRVBUrVqzAMAxLfiJQgbqjRo2ibVs4dGgjkycPITsbVq1axZtvvnndjv3kk0+yefNmAFavXk379u3x9/enbdu2luLWlcWcOXNIS0ur1GNERkby3XffWabDwsIsZV/Ky6RJkyzlkIrjypUr9OvXr8jcXOW19XraVdQ6ziUNiy2CvAXYiyM8PJw1a9aUa795qcjfRF67Vq9ezaxZsyp8fI2mKtEZ6TWaG8CiRYvo0aOHJUs8QKNGjVi2bBl16yqPV04ORESoeoMzZhTKJVwhEhIS2LFjB7169SIrK4upU6fy008/sXfvXvbs2VPp5WyqQnR16NCBuXPnVtrx9uzZQ1ZWFuHh4YwZM6Zc21ZUdFUnqkJ05WXw4MGsWrWq0v+uNJrKoFTRZRhGd8MwfjcM45hhGCcNwzhlGIaOu9JoykhKSgrbtm3jyy+/zCe6IiMj8fHxwTBU2ghQAfVffTWfxx5TmVUmTZrE448/Trdu3WjZsqXFk5GTk8MjjzxCu3btGDJkCHfeeWeRnpBly5YxcOBAILd8irm2YY0aNfDy8iI5ORkPDw9LyZykpCRatGhBVlYWvXv35qmnnqJXr160adOGXbt2MWLECDw9PXnhhRcs5+Ht7c3EiRPx8/Nj1KhRpKWlMXfuXGJiYggJCSEkJARQ4tOcEf/555+32Ons7Mzzzz9PUFAQ/fr1Y+fOnfTu3ZuWLVuyatUqy3F69uxJYGAggYGBbN++HYAZM2awZcsWAgICmD17dj6vSEpKCpMnT8bX1xc/Pz+WL19e5vvWokULZs2aRWBgIL6+vhw5coS4uDjuv/9+wsPDCQgIICIigt27dxMcHExQUBChoaHExsYCcOLECfr164e/vz+BgYFEREQUstVkMvHss8/SsWNH/Pz8LJ5HEeGxxx6jbdu2DB48mLi4uDLbXRQbN26kd+/ejBo1Cm9vb8aNG2cpl/Prr7/i7e1Njx49LEXSAVJTU3nggQfo2LEj7du358cffyQzM5OXXnqJJUuWWDx9Ra0HKqnvM888Y7n2H3zwQZF/E2vXrqVr164EBgYyevRoUlJSSrTLMAx69+590yTE1WjyISIlNuAIMAioD9Qxt9K2u54tKChINJqKEB0dnX/GkCGq5eWVV9S8v/7KnffLL2reBx/kzrt4Uc2bMKFcNixYsEAeeOABERHp2rWr7N69W0RETp06Je3atRMRkfXrN0iHDoNl4UKRt9+eJ48++qiIiEycOFFGjRolJpNJDh48KK1atRIRkaVLl8qgQYPEZDJJbGys1KxZU5YuXVro2BMmTJBVq1ZZph988EGpV6+e3HvvvfLtt9+KyWQSEZFJkybJihUrRETks88+k6efflpERIKDg+W5554TEZE5c+aIu7u7xMTESEZGhjRu3FguXLggp06dEkC2bt0qIiKTJ0+Wt99+W0REmjdvLvHx8SKi7kXTpk0lLi5OsrKyJCQkxHJMQNasWSMiInfffbf0799fMjMzJTw8XPz9/UVEJDU1VdLT00VE5NixY2J+LmzYsEEGDx5sOce8088995w88cQTlmUJCQkl3quJEydarmPz5s1l7ty5IiLy0UcfyYMPPlho/5mZmdK1a1eJi4sTEZHFixfL5MmTRUSkU6dO8sMPanB2enq6pKamFrL1s88+k9dee01ERDIyMiQoKEhOnjwpy5cvl379+kl2drZER0eLm5tbkfe3ONvNODk5WWx2dXWVM2fOiMlkki5dusiWLVskPT1dmjRpIseOHZOcnBwZPXq0xb6ZM2fKggULRETk0qVL4unpKSkpKTJvXu7fZ0nrffzxxzJixAjJysoSEZGLFy9arqv5byI+Pl569uwpKSkpIiLy5ptvyiuvvFKiXSIi3377rTz22GMlXo9rpdCzQ6MpB0CYFKFnytK9mCgiv4hInIhcNLdK0oAazS3HokWLuPfeewG49957WbRoUaF1DCM3K31MjEojYebuu+/GysqKtm3bcv78eQC2bt3K6NGjsbKyomHDhhavQUFiY2OpV6+eZfqLL77gjz/+oFOnTrzzzjs88MADAEyZMoV58+YBMG/evHyFp4cOHQqAr68v7dq1w93dnRo1atCyZUvOnDkDQNOmTenevTsA999/P1u3bi1ky65du+jduzf16tXDxsaGcePGWWLN7OzsLB45X19fgoODsbW1xdfXl8jISACysrJ46KGH8PX1ZfTo0Rw6dKjQMQqybt06Hn30Uct0rVq1St0mLyNGjAAgKCjIYkdejh49yoEDB+jfvz8BAQG8/vrrnD17luTkZKKjoy11IO3t7XF0dCy0/dq1a/nmm28ICAigc+fOXLx4kePHj7N582bGjh2LtbU1jRo1ok+fPqXaqgp7FD+vU6dONGnSBCsrKwICAoiMjOTIkSN4eHjg6emJYRjcf//9+Wx78803CQgIoHfv3mRkZBAVFVXkORS13rp163j44YctdQ2Lqje5Y8cODh06RPfu3QkICODrr7/m9OnTJdoFUL9+fWJiCmYg0miqP2UpA7TBMIy3gR+AK+aZIvJ3pVml0VQWP/1UeN5LLxWeN3CganmpXbvo7Uvg4sWLrF+/ngMHDmAYBiaTCcMweOuttwqt6+gI9vaQmgpXe/oA1Q1oRq6qMZGyVZJwcHAgo0AuCl9fX3x9fRk/fjweHh7Mnz+f7t27ExkZyaZNmzCZTPj4+BQ6vpWVVT5brKysyM5WVbsKvvCLEgAl2Wxra2vZJu9x8h5j9uzZNGjQgL1795KTk4O9vX2p5y8iRdpSVsx2WFtbW+wouP927drx559/5puflJRUpv2LCB988AGhoaH55q9Zs6bcdtepU4dLly5ZphMSEqhbt65lOu+9y3s+xR1HRFi+fDleXl755v/1119lWq8s115E6N+/f6EfIuHh4SVum5GRgYODQ4n71miqI2XxdHUGOgBvAO9ebe9UplEaza3CsmXLmDBhAqdPnyYyMpIzZ87g4eFRpCfIMFQdRoCEhJL326NHD5YvX05OTg7nz59n48aNRa7Xpk0bTpw4Aaj4przrhYeH07x5c8v0hAkTGDt2bD4vV1mJioqyCA/zoAEAFxcXkq+m2+/cuTObNm3iwoULmEwmFi1aRHBwcJmPkZiYiLu7O1ZWVixYsACTyVToGAUZMGAAH374oWXaLEomTJjAzp07y32eBfHy8iI+Pt5y7llZWRw8eBBXV1eaNGnCypUrATXiMS0trZCtoaGhfPLJJ5Z4umPHjpGamkqvXr1YvHgxJpOJ2NhYNmzYYNlm5syZrFixopAtvXv3ZsmSJWRmZgIwf/78Yj2gZry9vTl16hQREREA+cRPaGgoH3zwgUUs79mzByh8vYtbb8CAAXz66acWcZdw9Y867/ZdunRh27Ztlr/RtLQ0jh07VqJd5uuU94eBRnOzUKroEpGQIlrpvm6NRsOiRYssXUxmRo4cWewINk9PsLaGtDS4fLn4/Y4cOZImTZrg4+PDP/7xDzp37oybm1uh9QYPHmwRWiLCW2+9hZeXFwEBAcyaNYv58+db1h03bhyXLl1i7Nix5T1N2rRpw9dff42fnx8JCQlMmzYNgKlTpzJo0CBCQkJwd3fnP//5DyEhIZbg8mHDhpX5GI888ghff/01Xbp04dixYzg5OQHg5+eHjY0N/v7+zJ49O982L7zwApcuXcLHxwd/f3+LeNm3bx/u7u7lPs+C2NnZsWzZMp5//nn8/f0JCAiwBPgvWLCAuXPn4ufnR7du3Th37lwhW6dMmULbtm0JDAy03Mvs7GyGDx+Op6cnvr6+TJs2LZ843b9/Pw0bNixky5AhQ+jZsydBQUEEBASwbds2/vvf/5Zov729PZ9//jmDBw+mR48e+UT4iy++SFZWFn5+fvj4+PDiiy8CEBISwqFDhyyB9MWtN2XKFJo1a4afnx/+/v6Wv/m8fxP16tVj/vz5jB07Fj8/P7p06cKRI0dKtAtgw4YNDB48uAJ3TKOpWkoteG0YhhswC+h1ddYm4FURSaxk2yzogteainIzFq3dtQuOH4fWraFDoXKpuaSkpODs7MzFixfp1KkT27ZtK/Jl3KNHD1avXk3NmjVLPO6yZcv48ccfWbBgQbnsjYyMZMiQIRw4cKBc21UVSUlJPPjggyxdurSqTakQoaGh/Pbbb1VtRpVx/vx57rvvPv74449KPc7N+OzQVB+KK3hdlpiur4ADwD1Xp8cD84AR1888jUZjxtNTia5TpyAgAGyK+S8dMmQIly9fJjMzkxdffLFIwQXw7rvvEhUVVaLomj59Or/88ss15V+6WXB1db1pBRdwWwsuUF3Z7777blWbodFUiLJ4usJFJKC0eZWJ9nRpKsrN+mv1998hPh46dYI77qhqazSa24+b9dmhqR4U5+kqSyB9umEYPfLsqDuQfj2N02g0+TELrePH86eP0Gg0Gs3NS1m6F6cBX1+N7TKABGBSZRql0dzuNGsGf/8Nly7BxYuQZ+S/RqPRaG5SShVdIhIO+BuG4Xp1umwJaDQaTYWxtoZWreDQIeXt0qJLo9Fobn6KFV2GYdwvIt8ahvF0gfkAiMh7lWybRnNbc8cdcPgwREVBYCDkyW2p0Wg0mpuQkmK6nK5+uhTRnCvZLo3mlsHa2pqAgAB8fHy46667uFxSAq48ODuDuzuYTHDyOpaYDwsL4/HHH7/m/UyaNKnIItsATz75pKXEz+rVq2nfvj3+/v60bdvWUtS5spgzZw5paWmVeozIyMh8udau5ZqWdB3NXLlyhX79+llyY12LrdfTrpdffpnGjRsTEBCAp6cnI0aMKFN5pvnz51e4jM/1OJ97772X48ePV+j4Gs21UKzoEhHzk3GdiLyStwGVmyBFo7mFcHBwIDw8nAMHDlC7dm0++uijMm9rDqg/ceL6BdR36NCBuXPnXp+dFUFCQgI7duygV69eZGVlMXXqVH766Sf27t3Lnj176N27d6UdG6pGdFX2Nd2zZw9ZWVmEh4czZsyYcm1bUZFSVp566inCw8M5fvw4Y8aMoU+fPsTHx5e4TVWIrrxMmzatyFJcGk1lU5bRix+UcZ5GoymFrl27Eh0dDUBERAQDBw4kKCiInj17cuTIEUAlfxw+fDj+/v4MHuxPVNR2kpPhlVfew8fHBx8fH+bMmWPZ52uvvYa3tzf9+/dn7NixvPOOqtLVu3dvnn/+eTp16kTr1q3ZsmULABs3bmTIkCEA3HnnnQQEBBAQEICbmxtff/01JpOJZ599lo4dO+Ln52fxTIkIjz32GG3btmXw4MHExcUVeY7Lli2zFK9OTk4mOzubOnXqAKr+n5eXF8nJyXh4eFjK3yQlJdGiRQuysrLo3bs3Tz31FL169aJNmzbs2rWLESNG4OnpyQsvvACoF6+3tzcTJ07Ez8+PUaNGkZaWxty5c4mJiSEkJMRSAmfRokX4+vri4+PD888/b7HT2dmZ559/nqCgIPr168fOnTvp3bs3LVu2ZNWqVZbj9OzZk8DAQAIDAy3Z5mfMmMGWLVsICAhg9uzZ+a5pSkoKkydPxtfXFz8/P5YvX17mv48WLVowa9YsAgMD8fX15ciRI8TFxXH//fcTHh5OQEAAERER7N69m+DgYIKCgggNDSU2NhaAEydO0K9fP0vG/4iIiEK2Xuv9LYkxY8YwYMAAiygqys5ly5YRFhbGuHHjCAgIID09/YafT8+ePVm3bl2R9TQ1mkpFRIpsQFfg/4AzwNN52svA3uK2q4wWFBQkGk1FiI6Ozj9jyJDi2y+/5K73yy8lr1sOnJycREQkOztbRo0aJb9cPU6fPn3k2LFjIiKyY8cOCQkJERGRe+65R2bPnm3ZZvv2y/L662Hi4eEjKSkpkpycLG3btpW///5bdu3aJf7+/pKWliZJSUlyxx13yNtvvy0iIsHBwfL000+LiMjPP/8sffv2FRGRDRs2yODBg/PZGBYWJr6+vnL58mX57LPP5LXXXhMRkYyMDAkKCpKTJ0/K8uXLpV+/fpKdnS3R0dHi5uYmS5cuLXS+EyZMkFWrVlmmH3zwQalXr57ce++98u2334rJZBIRkUmTJsmKFStEROSzzz6z2BocHCzPPfeciIjMmTNH3N3dJSYmRjIyMqRx48Zy4cIFOXXqlACydetWERGZPHmy5bybN28u8fHxIqLuf9OmTSUuLk6ysrIkJCTEckxA1qxZIyIid999t/Tv318yMzMlPDxc/P39RUQkNTVV0tPTRUTk2LFjYn4WFbyGeaefe+45eeKJJyzLEhISCl2jvEycONFyHZs3by5z584VEZGPPvpIHnzwwUL7z8zMlK5du0pcXJyIiCxevFgmT54sIiKdOnWSH374QURE0tPTJTU1tZCt13p/8zJr1izLdTcze/Zsefjhh0u0Mzg4WHbt2lWl59OvXz8JCwsr9twKPTs0mnIAhEkReqak0Yt2qNgtG1Qcl5kkYNR11n4azS1Leno6AQEBREZGEhQURP/+/UlJSWH79u2MHj3ast6VK1cAWL9+Pd988w1gjgdz49NPtxIQMBzDcMLJCUaMGMGWLVvIyclh2LBhODg4AHDXXXflO/aIEapwRFBQEJGRkUXad+HCBcaPH8/333+Pm5sba9euZd++fZb4l8TERI4fP87mzZsZO3Ys1tbWNGrUiD59ii7BGhsbS7169SzTX3zxBfv372fdunW88847/P7778yfP58pU6bw1ltvcffddzNv3jz+97//WbYZOnQoAL6+vrRr185SJ7Fly5acOXOGmjVr0rRpU7p37w7A/fffz9y5c3nmmWfy2bJr1y569+5tsWfcuHFs3ryZu+++Gzs7O4tHztfXlxo1amBra4uvr6/lWmVlZfHYY48RHh6OtbU1x44dK/Kc87Ju3ToWL15sma5Vq1ap2+Ql7z374YcfCi0/evQoBw4coH///gCYTCbc3d1JTk4mOjraUuvT3t6+yP1f6/0tDbnaD16cndXlfOrXr09MTAxBQUEVOk+NpiIUK7pEZBOwyTCM+SJy+gbapNFUHj/9VLb1Bg5U7TpgjulKTExkyJAhfPTRR0yaNImaNWsSHh5ehu3BzU1ITlalgdq1y11mfsEVR42rQx6tra2L7EoxmUzce++9vPTSS/j4+Fj2+cEHHxAaGppv3TVr1lhGL5dsrwMZGRn55vn6+uLr68v48ePx8PBg/vz5dO/encjISDZt2oTJZLIcP6/dVlZWlu/mafN5FLSlKNtKuj62traWbfIeJ+8xZs+eTYMGDdi7dy85OTnFvvgLHrMs16k4SrtnIkK7du34888/881PSipbNp9rvb+lsWfPHjp06FCsnUXZUxXnk5GRYfmxotHcKMoS05VmGMbbhmGsMQxjvblVumUazS2Gm5sbc+fO5Z133sHBwQEPDw9LDUARYe/evQD07duXTz75BFCiKCkpicGDexEWtpLDh9NISUllxYoV9OzZkx49evDTTz+RkZFBSkoKP//8c7lsmjFjBn5+ftx7772WeaGhoXzyySeWeKtjx46RmppKr169WLx4MSaTidjYWDZs2FDkPtu0acOJEycAFd+0ceNGy7Lw8HCaN29umZ4wYQJjx45l8uTJ5bIbVA0+84t60aJF9OihCme4uLiQnJwMQOfOndm0aRMXLlzAZDKxaNEigoODy3yMxMRE3N3dsbKyYsGCBZhMpkLHKMiAAQP48MMPLdOXLl2ynOvOnTvLfZ4F8fLyIj4+3nLuWVlZHDx4EFdXV5o0acLKlSsB5TlNS0srZGtF7u/MmTNZsWJFqbYtX76ctWvXMnbs2GLthPzXryrOx7xeu7y/YDSaG0BZRNdC4AjgAbwCRAK7KtEmjeaWxZw6YfHixSxcuJAvv/wSf39/2rVrx48//gjA+++/z4YNG/D19SUoKIiDBw8yYEAgfftO4qmnOtGhQ2emTJlC+/bt6dixI0OHDsXf358RI0bQoUMH3NzcymzPO++8w9q1ay3B9KtWrWLKlCm0bduWwMBAfHx8+Mc//kF2djbDhw/H09MTX19fpk2bVqx4GTx4sEVoiQhvvfUWXl5eBAQEMGvWLObPn29Zd9y4cVy6dImxY8eW+1q2adOGr7/+Gj8/PxISEpg2bRoAU6dOZdCgQYSEhODu7s5//vMfQkJCLMHYw4YNK/MxHnnkEb7++mu6dOnCsWPHcHJSmXT8/PywsbHB39+f2bNn59vmhRde4NKlS/j4+ODv72952e/bt6/I7rXyYmdnx7Jly3j++efx9/cnICDAEuC/YMEC5s6di5+fH926dePcuXOFbK3I/d2/f3+xBdVnz55tSRnx7bffsn79eurVq1einZMmTeLhhx8mICAAk8l0w8/n/PnzODg4XJf7odGUh7IUvN4tIkGGYewTEb+r8zaJSNl/Ll4juuC1pqLcSkVr9+2DAwfAwwO6ds2dn5KSgrOzM2lpafTq1YvPP/+cwMDAqjMU6NGjB6tXr6ZmzZolrrds2TJ+/PFHFixYUK79R0ZGMmTIEA4cOHANVt44kpKSePDBBy2ezZuN0NBQfvvtt6o247oxe/ZsXF1defDBB4td51Z6dmhuPMUVvC5L7cWsq5+xhmEMBmKAJtfTOI1GUzotWyrRFRUFQUFgZ6fmT506lUOHDpGRkcHEiROrXHABvPvuu0RFRZUouqZPn84vv/zCmjVrbpxhVYSrq+tNK7iAW0pwAdSsWZPx48dXtRma25CyeLqGAFuApqj8XK7AKyKyqvLNU2hPl6ai3Gq/Vv/4A86fh44dwdOzqq3RaG5dbrVnh+bGUmFPl4isvvo1EQi53oZpNJqy06qVEl0nT2rRpdFoNDcbJRW8/gAo1g0mItdevE2j0ZSLpk1Vt+LFi3D5MpQSMqXRaDSaakRJni7dn6fRVDOsraF5czh+HCIiVGyXRqPRaG4OSkqO+vWNNESj0ZSNVq2U6IqMhIAAJcQ0Go1GU/0pNU+XYRgb8iZF1clRNZqyc/HiRUsOrIYNG9K4cWMCAgKoWbMmbdu2rdA+a9eGWrXgyhW4Wjs7HytXruTQoUPXaHnpvPzyy5bi2gWZM2eOpZQRQHZ2NnXr1mXmzJkVPt7ly5f5+OOPy7Sus7Nzmfebk5PD448/jo+PD76+vnTs2JFTp05V1MxSiYyMtBSErkwK/h289NJLrFu3rtj19+/fz6RJkyrdLo3mdqYsyVGfAZ692l4Ewilj16NhGAMNwzhqGMYJwzBmFLNOb8Mwwg3DOGgYxqYy2q3R3BTUqVOH8PBwwsPDefjhh3nqqacs01ZWpf/7FVUGBpS3C1QXY0FulOgqjuzsbL766ivuu+8+y7y1a9fi5eXF999/X2rpouIoj+gqD0uWLCEmJoZ9+/axf/9+VqxYUWp+sWuhqkTXq6++Sr9+/Ypd39fXl7NnzxIVFVXptmk0tyulPvVFZHeetk1EngY6l7adYRjWwEfAIKAtMNYwjLYF1qkJfAwMFZF2wOiC+9FoblVMJhMPPfQQ7dq1Y8CAAaSnpwPQu3dv/vnPfxIcHMz777/P7t27CQ4OJigoiNDQUGJjY2neHDZu/B9TpnTE19efkSNHkpaWxvbt21m1ahXPPvssAQEBREREEBERwcCBAwkKCqJnz54cOXIEUFnBH3/8cbp160bLli0tBYMB3n77bTp27Iifnx+zZs2yzP/3v/+Nl5cX/fr14+jRo0We1/r16wkMDMTGJjd6YdGiRTzxxBM0a9aMHTt2WOb/+uuvBAYG4u/vT9++fYHCHjQfHx8iIyOZMWMGERERBAQE8Oyzz5Zop5nx48dbMv2DyoC/alX+bDexsbGWUj8ATZo0oVatWnz55Zc89dRTlvX+97//8fTTTxMZGYm3tzdTpkzBx8eHcePGsW7dOrp3746np6el1M/LL7/M+PHj6dOnD56enpaC3jNmzGDLli0EBAQwe/ZsMjIymDx5Mr6+vrRv396SwX7+/Pncfffd3HXXXXh4ePDhhx/y3nvv0b59e7p06UJCQoLFro4dO+LvX/LfwaRJkyz3eNeuXXTr1g1/f386depkKatz11135SvWrdForjMiUmIDaudpdYFQ4GgZtusK/JZneiYws8A6jwCvl7avoKAg0WgqQnR0dP4ZQ4aUrz3xRNHbV4BZs2bJ22+/LSIip06dEmtra9mzZ4+IiIwePVoWLFggIiLBwcEybdo0ERHJzMyUrl27SlxcnIiILF68WCZPniwiIj//fEEWLhTZv1/kX//6l8ydO1dERCZOnChLly61HLdPnz5y7NgxERHZsWOHhISEWNYbNWqUmEwmOXjwoLRq1UpERH777Td56KGHJCcnR0wmkwwePFg2bdokYWFh4uPjI6mpqZKYmCitWrWynE9eXnrpJYstIiJpaWni7u4uqamp8tlnn8n06dNFRCQuLk6aNGkiJ0+eFBGRixcvFrpOIiLt2rWTU6dOyalTp6Rdu3aW+cXZKSLi5OQkIiIbN26UYcOGiYjI5cuXpUWLFpKVlZXP3jNnzkjz5s3F399fnn76afn7779FRCQlJUVatmwpmZmZIiLStWtX2bdvn+Xe7du3T0wmkwQGBsrkyZMlJydHVq5caTnerFmzxM/PT9LS0iQ+Pl6aNGki0dHRsmHDBhk8eLDl+O+8845MmjRJREQOHz4sTZs2lfT0dJk3b560atVKkpKSJC4uTlxdXeWTTz4REZEnn3xSZs+eLSIiFy5csOyrpL8D8/SVK1fEw8NDdu7cKSIiiYmJlmuydetWGVLBv+9bjULPDo2mHABhUoSeKUtG+t2o1BEGkA2cAoqvnZBLY+BMnumzFPaQtQZsDcPYCLgA74vIN2g0twEeHh4EBAQAEBQURGRkpGXZmDFjADh69CgHDhygf//+gPKOmevFZWQc4NVXXyA9/TJWVimEhoYWOkZKSgrbt29n9OhcJ/KVK1cs3++++26srKxo27Yt58+fB1RX4Nq1a2nfvr1lH8ePHyc5OZnhw4fj6OgIwNChQ4s8r9jYWNq0aWOZXr16NSEhITg6OjJy5Ehee+01Zs+ezY4dO+jVqxceHh4A1K5du+wXrwQ7e/XqZVknODiYRx99lLi4OH744QdGjhyZzwMHyrN19OhR1q9fz/r16+nbty9Lly6lb9++9OnTh9WrV9OmTRuysrLw9fUlMjISDw8PfH19AWjXrh19+/bFMAzLcjPDhg3DwcEBBwcHQkJC2LlzZ6Guy61btzJ9+nQAvL29ad68OceOHQMgJCQEFxcXXFxccHNz46677gJUV+C+ffsAOHDgAC+88AKXL18mJaXov4O8HD16FHd3dzp27AiobPlm6tevT0xMTJmuv0ZzMyJXwxsMw6iS45clOapHBfdd1BkVDOawAYKAvoAD8KdhGDtE5FgFj6nRlMxPP1Xt9nmoUaOG5bu1tbWlexGwFFYWEdq1a8eff/5ZaPv/+79JPPHESurX9yc+fj579mwstE5OTg41a9YkPDy8VBvMDyMRYebMmfzjH//It+6cOXPK9KBycHAgIyPDMr1o0SK2bdtGixYtADW4YMOGDYhIkfuzsbEhJyfHMp13X3kpzs6CjB8/noULF7J48WK++uqrItepUaMGgwYNYtCgQTRo0ICVK1fSt29fpkyZwhtvvIG3tzeTJ0/Ot74ZKysry7SVlVW+OLyC51fU+Zqve3F2lXacSZMmsXLlSvz9/Zk/f76l2HhxFHfdQV1rBweHErfXaKo7IsKljEvEJMcQmxxLTHKM+p4SS2xKLC/0fAH/hv5VYltZRi/aG4bxtGEYPxiGsdwwjKcMw7Avw77PokoHmWmCqttYcJ1fRSRVRC4Am4GquRIaTTXEy8uL+Ph4i+jKysri4MGDACQnJxMQ4E52dhbffrvQso2Li4slRsfV1RUPDw9L3T8RYe/evSUeMzQ0lK+++oqUlBQAoqOjiYuLo1evXqxYsYL09HSSk5P5qRgB2qZNG06cOAGoQs9bt24lKiqKyMhIIiMj+eijj1i0aBFdu3Zl06ZNlpGC5hilFi1a8PfffwPw999/W5bnPa+S7CzIpEmTmDNnDqC8UgX5+++/Ld6dnJwc9u3bR/PmzQHo3LkzZ86c4bvvvmPs2LElXrei+PHHH8nIyODixYts3LiRjh07FjqPXr16sXChun/Hjh0jKioKLy+vMh8jOTkZd3d3srKyLPuBwtfLjLe3NzExMezatcuyvVnAHTt2DB8fn3Kfp0ZTFSRfSebIhSP8cfIPFuxdwH+3/pcnfnmCe5bdw8SVE5n5x0zm7pzLssPL2H52O6cunyIjO4PzqeerzOaydC9+AySj6i4CjAUWUHrQ+y7A0zAMDyAauBe4r8A6PwIfGoZhA9ihuh9nl810jebWx87OjmXLlvH444+TmJhIdnY2Tz75JO3ateO1115j0qTOODo2p1kzX3Jy1Av23nvv5aGHHmLu3LksW7aMhQsXMm3aNF5//XWysrK499578fcv/rfNgAEDOHz4MF27dgVU+oVvv/2WwMBAxowZQ0BAAM2bN6dnz55Fbj9o0CBLMeEffviBPn365PPYDBs2jOeee46PP/6Yzz//nBEjRpCTk0P9+vX5/fffGTlyJN988w0BAQF07NiR1q1bA2okaPfu3fHx8WHQoEG8/fbbRdpZv379fPY0aNCANm3acPfddxdpb1xcHA899JCl27VTp0489thjluX33HMP4eHh1KpVq9hrVhydOnVi8ODBREVF8eKLL9KoUSPq1auHjY0N/v7+TJo0iUceeYSHH34YX19fbGxsmD9/fr7rVRqvvfYanTt3pnnz5vj6+lqEVsG/AzN2dnYsWbKE6dOnk56ejoODA+vWrcPZ2ZkNGzYwePDgcp+nRlNZZJmyiE2J5WzSWaKToolOjrZ8JmcW/lFhxsXOhUYujfI1d2d3Gjo3xKWGyw08g/yUpeD1XhHxL21eMdveCcwBrIGvROTfhmE8DCAin15d51lgMpADfCEicwruRxe81lSU26Fo7fr1cO5c9SqCPXz4cN566y08q4FBaWlp+Pr68vfff+Pm5lbu7YcMGcJTTz1lGV1ZVl5++WWcnZ155plnyn3MquDKlSsEBwezdevWQnFvtyO3w7OjOpF0JYmzSWcLtXMp55BiKhLa29jT2KUxjV0aW4RVY1f13dmu7Ln6KoMKF7wG9hiG0UVEdlzdUWdgW1kOKiJrgDUF5n1aYPpt4O2y7E+j0RSmZUsluqpTEew333yT2NjYKhdd69at44EHHuDpp58ut+C6fPkynTp1ypfO4lYmKiqKN998UwsuTaUhIlxIu8CZpDOcSTyT77M4r5WBgbuzuxJXro1p4tqERi6NaOLahFr2taosIL6ilMXTdRjwAswZ85oBh1GeKRERv0q1EO3p0lSc2+HXqskEK1ZAZibceacugq3RXA9uh2dHZSEixKXGEZUYRVRiFGeSzlg+M7KLHhhjb2NPU9emNHFtkq+5O7tja217g8/g2rkWT9fASrBHo9FcJ/IWwT55EgIDq9oijUZzOyAiXEy/yOnLp4lKjOJ04ulSxZVbDTeaujalqVtTy2cT1ybUcahz03mtKkJZUkacNgzDHzBHzW4RkZKHP2k0mhuKuQj2qVOqCHYZKgxpNBpNmUnJTCHyciRRiVFEXo7k9OXTnE48TWpWapHr17KvRVPXpjSv2Zxmbs1o4tqEpq5NcbMvf1zlrUSposswjCeAh4Afrs761jCMz0XkgxI202g0N5BatVS34uXLqgh206albaHRaDSFyc7JJjopmsjLkURejuTU5VNEXo7kYvrFItd3sXOhuVtzi7hq7qY+q3KEYHWmLN2LDwKdRSQVwDCM/wJ/kptCQqPRVDGGobxdu3erIthadGk0mtJIupLEqUunOHX5lOXzTNIZsnOyC61rZ22nxJVbc1rUbEHzmup7Tfuat0W34PWiLKLLAEx5pk0UnW1eo9EUgbOzsyWBJ6hCxmFhYXz44Yfl3tfGjRt55513WL16daFlLVrAnj0QGwtpaXC1Wg+9e/fmnXfeoUOHQjGdGo3mNkBEOJdyjpOXTua2yydJSE8ocn13Z3da1GyRrzV0boiVoeMWrpWyiK55wF+GYaxAia1hwJeVapVGoyk3NWpAkyYQFaViu4pIvq7RaG5xsnOyOZN4hpOXThJxKYKIhAhOXT5FenZ6oXXtbexp7tYcj5oeeNTywKOmBy1qtsDBVpeCqizKEkj/3tWC1D2uzposInsq1SqN5jYhPj6ehx9+mKgolZFlzpw5dO/enZ07d/Lkk09aMobPmzevUGmY1NRUpk+fzv79+8nOzubll1+mU6dhnDiRzsMPTyYx8RBt2rTJV9NRo9HcOmSaMjl9+bRFXEVciiDyciRZOVmF1q3tUJuWNVvSslZLPGp50LJWS9yd3XXX4A2mPFnwDFRuLn2HNDcldy26q1L2+9PYkotgp6enExAQYJlOSEhg6NChADzxxBM89dRT9OjRg6ioKEJDQzl8+DDe3t5s3rwZGxsb1q1bxz//+U+WL1+eb7///ve/6dOnD1999ZUlkefff/djy5bPsLZ25Ndf93Hhwj4CdQ4JjeamJ8uUxenE05xIOMHxi8c5kXCC04mnMYmp0Lruzu60qtWKlrVa0qp2K1rVanXbjxqsLpRl9OJLqDqLy1GCa55hGEtF5PXKNk6juRVwcHAgPDzcMm2O6QKVMf3QoUOWZUlJSSQnJ5OYmMjEiRM5fvw4hmGQlVX4l+vatWtZtWoV77zzDgAZGRmcORNFZORmund/nIgI6NnTDz+/Ss9frNForiOmHBNnks5w/OJxjicogXXq8qlCAe4GBk1dm9KqVivuqH0HrWoroeVo61hFlmtKoyyerrFAexHJADAM403gb0CLLs1NRWkeqaogJyeHP//8EweH/DEU06dPJyQkhBUrVhAZGUnv3r0LbSsiLF++vFC3o6MjWFkZnD0LumdRo6nemLO3H7t4zNIiLkVwxXQl33oGBk1cmuBZx5NWtVrhWceTlrVaYm9jX0WWaypCWURXJGAPmNPL1gAiKssgjeZ2YsCAAXz44Yc8++yzAISHhxMQEEBiYiKNGzcGlGesKEJDQ/nggw/44IMPMAyDPXv20L59e0JCerF+/ULatAnht98OsG/fvht1OhqNphRSMlMs4urohaMcSzhG0pWkQus1dGrIHbXvoHWd1haBpT1YNz9lEV1XgIOGYfwOCNAf2GoYxlwAEXm8Eu3TaG5p5s6dy6OPPoqfnx/Z2dn06tWLTz/9lOeee46JEyfy3nvv0adPnyK3ffHFF3nyySfx8/NDRGjRogWrV69m2rRpbNo0mRkz/GjVKoBOnTrd4LPSaDSguglPJ57m6IWjHL14lCMXjhCdHF1oPdcarnjV8VICq7YnnnU8ca3hWgUWayqbshS8nljSchH5+rpaVAS64LWmotyuRWtF4KefICUFeveG2/ASaDTXREWeHclXkjly4QiHLxy2eLEK1iC0tbKlVa1WeNVVIsurjhf1nerrUYS3GBUueH0jRJVGo7m+mDPU792rMtRr0aXRXF9EhLNJZzkUf4jDFw4X68Vq6NQQ77reeNX1wquOFx61PLCxKk/iAM2thL7zGs0tSsuWsH8/loB6B53vUKOpMJmmTI5dPMbh+MMcvqBaSmZKvnXsrO1oXbs13nW9LU2natDkRYsujeYWxcEBGjeGM2fg5EmdoV6jKQ9Zpix2Re/iYPxBDsUf4njC8UIpG+o41KFN3Ta0rdcW77re2oulKZVi/zoMw1ggIuMNw3hCRN6/kUZpNJrrwx13KNF14gS0bau6HTUaTWHSs9KJS40jPi2euNQ4LsZd5Puo7y3LDQxauLWgbb22tK3Xljb12lDPsZ6OxdKUi5IkeZBhGM2BBwzD+IYCmehFpOhKmRqNptrQsCE4O6uA+thYHdul0ZhJzUwlLjXO0pIzk/Mtt8KKdvXa0bZeW9rVa4d3XW+c7JyqyFrNrUJJoutT4FegJbCb/KJLrs7XaDTVmLwB9cePa9GluX1JzUzlfOp54lLjOJ9yntSs1HzLbaxsqOdYj/pO9annVI8rl64wrsm4KrJWc6tSrOgSkbnAXMMwPhGRaTfQJo1Gcx1p1QoOHIDoaEhKAled/kdzG5CWlcb5lPMWoVVU0LtZZNV3qk8th1pYGVaW5TGJMTfaZM1tgFVpK4jINMMw/A3DeOxq04XcNJpyYG1tTUBAgKW9+eabJa7/xhtv5Jvu1q1bhY4bHh7OmjVrsLeHFi3UvGPHcpfv2bOHKVOmACrrfb169Wjfvj2enp6Ehoayffv2Ch23KFq0aMGFCxfIzMykV69eZGdnl76RRlMOMrIziEqMYlf0LlYfW83KIyv58+yfnLx0kpTMFOys7Wji2oRA90AG3TGIkW1GEtwimDb12lDHsU4+waXRVBZlKXj9ODAV+OHqrIWGYXwuIh9UqmUazS1CwYLXpfHGG2/wz3/+0zJdUfETHh5OWFgYd955J15eKl/XyZPg5wd2duo4L7zwgmX9MWPG8OGHHwKwYcMGRowYwYYNG2jTpk2Fjl8UdnZ29O3blyVLljBunO660VSc7Jxs4lLjOJdyjnMp57iccTnfclsrW4sXq4FzA2rZ19JB75oqpyxjW6cAnUUkFcAwjP8CfwJadGluKu66665K2e9PP5W/kHZiYiKdOnVi1apVeHl5MXbsWPr06UNERATp6ekEBATQrl07Fi5ciLOzMykpKWzcuJGXX36ZunXrcuDAAYKCgvj2228xDINdu3bxxBNPkJqaSo0aNfj999956aWXSE9PZ+vWrcycOZOGDcdw7pwSX02aJLNv3z78/f2LtC8kJISpU6fy+eefM3v2bCIiInj00UeJj4/H0dGR//3vf3h7e/PTTz/x+uuvk5mZSZ06dVi4cCENGjTg4sWLjB07lvj4eDp16kTeyhd33303M2fO1KJLUy5yJIeE9ASLyLqQdoEcybEst7aypp5jPRo4NaCBcwNqO9TW3itNtaMsossATHmmTRQYyajRaIrHLKLMzJw50+JVmjRpEk888QSXLl3ioYceAuDDDz8s1jO2Z88eDh48SKNGjejevTvbtm2jU6dOjBkzhiVLltCxY0eSkpJwdHTk1VdfJSwszOK9io6Gc+dUF2NMTBg+Pj4l2h0YGMhnn30GwNSpU/n000/x9PTkr7/+4pFHHmH9+vX06NGDHTt2YBgGX3zxBW+99Rbvvvsur7zyCj169OCll17i559/5vPPP7fs18fHh127dl3DFdXcDogIKZkpnEs5R2xKLHGpcWSaMi3LDQzqONShoXNDGjo3pK5jXaytrKvQYo2mdMoiuuYBfxmGseLq9N3Al5VmkUZTSVTEI3U9KK57sX///ixdupRHH32UvXv3lmlfnTp1okmTJgAEBAQQGRmJm5sb7u7udOzYEQDXYiLlGzUCFxdITobTp2OpV69eiccye6dSUlLYvn07o0ePtiy7cuUKAGfPnmXMmDHExsaSmZmJh4cHAJs3b+aHH1REwuDBg6lVq5ZlW2tra+zs7EhOTsbFxaVM5625PcgyZXE+9TyxybHEpsQWCn53sXOxiKwGzg2ws7arIks1mopRltqL7xmGsRHogfJwTRaRPZVtmEZzq5OTk8Phw4dxcHAgISHBIqZKokaNGpbv1tbWZGdnIyJlilUxDPDygrAwuHjRgYyMjBLX37NnD23atCEnJ4eaNWsWKRynT5/O008/zdChQy3dn7nHK96mK1euYG9vX6rNmlsbEeFyxmVikmOITYkt1GVoZ21HQ+eGuDu709C5oc6TpbnpKVO9AhH5G/i7km3RaG4rZs+eTZs2bXjjjTd44IEH+PPPP7G1tcXW1pasrCxsbW3LtB9vb29iYmLYtWsXHTt2JDk5GQcHB1xcXEhOzp/wsWVL2LcPXFzacOTIu8Xuc9OmTXz++eds2LABV1dXPDw8WLp0KaNHj0ZELPFgiYmJNG7cGICvv/7asn2vXr1YuHAhL7zwAr/88guXLl2yLLt48SL16tUr8/lpbi0yTZkWT1Zscizp2emWZYZhUM+xHu4uSmTVcaijg981txS6SJRGU8kUjOkaOHAgDzzwAF988QU7d+7ExcWFXr168frrr/PKK68wdepU/Pz8CAwMZOHChaXu387OjiVLljB9+nTS09NxcHBg3bp1hISE8OabbxIQEGCJI7OxUXm7MjO9iY9PzNfFt2TJErZu3UpaWhoeHh4sX77cMnJx4cKFTJs2jddff52srCzuvfde/P39efnllxk9ejSNGzemS5cunDp1CoBZs2YxduxYAgMDCQ4OplmzZhZ7N2zYwJ133nkdr7CmOpPXmxWTHMOFtAsIuQMrHG0dcXd2p5FLI91lqLnlMfKOKqqudOjQQcLCwqraDM1NSExMDI10GvZ8pKbCqlXwyy+z6dLFhUcemXJDjz9ixAj+85//4OXldUOPq7lxZOdkcz7lPNHJ0cQkx5CWlWZZZmVYUc+xHo1cGuHu4o5bDbdq6c3Szw7NtWAYxm4R6VBwvvZ0aTS3GU5O0LQp9OkzjejopTf02JmZmdx9991acN2CpGamEpMcQ3RyNOdTz2PKyR307mDrQCPnRjRyaURD54bYWuuuZc3tSVmSo44A/gvURwXSG4CISKnFRAzDGAi8D1gDX4hIkam4DcPoCOwAxojIsrKbr9FoKoK3N0RF2dO69XiuXIE88fmVip2dHRMmTLgxB9NUKiJCQnoC0cnRRCdFcynjUr7ldRzq0Ni1MY1cGunEpBrNVcri6XoLuEtEDpdnx4ZhWAMfAf2Bs8AuwzBWicihItb7L/Bbefav0ZSVso7uu52oWxcaNlR5u44eVVnqNZrSMOWYOJ96nrNJZ4lOjiY9KzcI3sbKBndndxq7Nsbd2R0HW4cqtPTauBnCbjQ3J2URXefLK7iu0gk4ISInAQzDWAwMAw4VWG86sBzoWIFjaDQlYmtrS0pKCs7Ozlp4FcDXN1d0eXur0kAaTUHMow3PJJ0hNjmWrJwsyzJHW0cauzSmsWtjGjg1uCWSk4oIKSkpenStplIoi+gKMwxjCbASuGKeKSI/FLuFojFwJs/0WaBz3hUMw2gMDAf6oEWXphKoXbs2CQkJhVInaBRubpCQADt3qnQSGg0ooRWfGk98WjwJ6Qn5Rhs62zpTz7EedZ3q4mLnon7MJMP55PNVaPH1xdbWltq1a1e1GZpbkLKILlcgDRiQZ56QWwC7OIpyKxT02c4BnhcRk/ZCaCoDa2vrUjOv385cugSffqqC67/8Un1qbk/iU+PZfmY7f579k0PxhyxCy8CgXb12dGnShc5NOtPQuWEVW6rR3LyUJSP95Aru+yzQNM90EyCmwDodgMVXBVdd4E7DMLJFZGUFj6nRaMpBu3YqnmvfPpVGYuzYqrZIcyM5l3KO7We2sy1qG8cSjlnm21jZENAggG5Nu9GpcSfc7N2q0EqN5tahLKMXmwAfAN1RnqqtwBMicraUTXcBnoZheADRwL3AfXlXEBGPPMeZD6zWgkujubGMHatE148/wtCh2tt1qxObHMu2M9vYGrWViEsRlvk1rGvQoVEHujXtRodGHXC0daxCKzWaW5OyFrz+DjBXu73/6rz+JW0kItmGYTyGGpVoDXwlIgcNw3j46vJPK2y1RqO5bvj4qKD6/fvhp5/g3nur2iLN9eZ8ynm2Rm1la9RWTlw6YZlvb2NPp0ad6N6sO0HuQdSwuUG5QzSa25RSM9IbhhEuIgGlzatMdEZ6jaZy2b8f/vlPHdt1K3Ex7SJbo7ay+fTmfF2H9jb2dG7cmZ7NetLevb0uu6PRVALXkpH+gmEY9wOLrk6PBS5eT+M0Gk3V4uurPF4HDmhv181M0pUktkVtY/PpzRyMP2gJhjd7tHo270mge6AWWhpNFVEW0fUA8CEwGxXTtf3qPI1Gcwtx333K2/XDDxAaCrVqVbVF1xERMJnA5uoj78IF+OsvSEuD9HTIzARbW7Xc2hoGDVL5NABiY9XymjXB1RWq2UjrjOwMdpzdwabITew5tweTqPI7tla2dGzUkZ7Ne9KxUUfddajRVAPKMnoxChh6A2zRaDRViK8vdOwIu3bB11/Dk09WtUUVJD1dZXw9fBgiI1UG2NhYuOsuGD9erRMbq3JlFEePHrmia9Ei2LBBfbe2hvr1oVEjaNwYvLygV69KPZ2iyM7JZk/sHjZGbuSv6L+4YlIpFK0MK4LcgwhuHkznJp11MLxGU80oVnQZhvGciLxlGMYHFM6vhYg8XqmWaTSaG86UKbBnD/zxB9x5J7RuXdUWlZPXX1eZXouKVb1wIfd7/frqBB0dwcFBeblMJsjOhqysXMEFysPVpAlcvgwpKUqwxcbC7t3QoUOu6MrIgP/+V2WZbdlSCbK6da/bqYkIJxJOsCFyA5tPbybxSqJlWZu6bejdojfdm3bX6R00mmpMSZ4uc+kfHcGu0dwmNGoEw4bB8uXw+efw9tvVrjdNkZmpRM+2bfDoo0o4gfq0slKip21buOMOcHdXzcUld/sGDWDatLId64EHVDMf99w5iImB6Ggl3sxERkJYmGpm6tWDNm1UQrSePfPbUEYupF1g/an1bDi1gbPJuZl6mrg0IcQjhODmwTRwblDu/Wo0mhtPWUYvjhaRpaXNq0z06EWN5saRng7/+IfKVv/UU9CnT1VblIdjx2D1avjzT+VZAvi//4PevdX3hATlvbK3v/G2paTA3r1w8iScOKG6OFNTc5d/8YUSe6C6Pt3clBgsQtVmZGfw55k/WX9qPXvP77UExLvVcCO4eTAhHiG0qtVK1xPVaKop1zJ6cSZQUGAVNU+j0dwCODjAxIkwZw7Mnw9du+Y6kqoEEdixA1auhEOHcud7eqrYKx+f3HlVWS/P2Rm6d1cNlN2nTyuBdepUfq/Yxx8rz1jdutC+PXTogPj7cyQtit9P/s6WqC1kZCtRaWtlS+fGnenj0Yf27u2xsSrLY1uj0VRHSorpGgTcCTQ2DGNunkWuQHZlG6bRaKqOPn1gzRrlWPr+eyXCqpTFi5UHyclJjSwMDYWG1bwGoGFAixaq5cVkgqZN4eJFuHCBhPU/sz7sa9a5JRBd2wbcG4GbK151vOjr0ZeezXvibOdcFWeg0WiuMyX9ZIpBxXMNBXbnmZ8MPFWZRmk0mqrFMGDqVHjmGeVgGjBA9YTdEERUrFabNlCnjjLm/vtVLFX//lXTdXg9sbbG9Mz/ERa9i9/CFhN2cityORFS0qmVYENf/2D69ptKE9cmSmiePKuC8nVXokZz01Os6BKRvcBewzBWAKkiKvmLYRjWgE74otHc4nh5Qd++aiTj55/DSy/dgPf+0aMq9unIEXVwc96Kjh0r+cA3hvMp51kbsZZ1p9aRkJ4AgHXjJnTuNJJ+DbsSGCNYd+6aKyyXL4fNm9UIys6doVs3VaHcRncxajQ3I2X5z10L9ANSrk47XJ3XrbKM0mg01YMJE1TMeliYEl/9+lXSgRISVP2hzZvVtJub8nTdAmTnZLMzeie/HP+F8PPhlvmNXRoT2iqUPh59ctM8eBbYuFEjFQsWFwe//aaas7MSYP37q1GRGo3mpqEsosteRMyCCxFJMQxDZ9zTaG4DateGhx+G996Dzz5TMevXNZRKBDZtUjtPSVH5soYPh5Ej1SjEm5i41Dh+O/Ebv5/8nUsZlwCws7aje9PuDGg1gHb12pU++nDcOFUq4NQppX63b4eoKKWAGzXKFV3p6cr7ZWtbyWel0WiuhbKIrlTDMAJF5G8AwzCCgPTKNUuj0VQXevdW+Ua3blXi6803VSqs60JUFLz7rvreoYPKnZV3lN9NhoiwO3Y3a46vISwmzJLqoalrUwbdMYgQj5DyB8UbRm7C1XHj4OxZJb569sxd56efVP2mLl3UiM6AAN0FqdFUQ8ryX/kksNQwjJir0+7AmEqzSKPRVCsMAx55RGVrOHxYvdtHjbpOO2/eHMaMUfmr+vW7aYPFk68k8/vJ31lzfA3nU88DYGNlQ4+mPRh4x0Da1mt7/XJqNWkC99yTf15kpMoJ9scfqrm4qPivXr2Ue/K6qWSNRnMtlJocFcAwDFvACzCAIyKSVdmG5UUnR9Voqp6//4ZZs5QD5d13leOl3GRmqq7E4GAVEH6TE5EQwU/HfmLz6c1k5ajHYn3H+tzpeSf9W/XHtYbrjTMmOhq2bFFxcWfO5M4fMACmT79xdmg0mmKTo5ZVdPkAbQHLWG0R+ea6WlgCWnRpNNWDzz5TCeGbNlXJU+3syrFxfDz85z9w/Ljy1nz88U3p2crOyWbH2R2sOrqKwxdUtTQDg0D3QAZ7DiaoURBWRhV7lk6fVuJr82Z48EHV7Qiwb5/Kmt+rl/IyajSaSqHCosswjFlAb5ToWgMMAraKyPXqYCgVLbo0murBlSsqi8PZszB0KDz0UBk33LsX3noLkpJUzNa//lVBV1nVkXQliV9P/Mqa42u4mH4RACdbJ/q37M+dnnfi7nKjEpmVA/Pz3Sxu3347d4RoixZKfAUH39RxdBpNdeRaygCNAvyBPSIy2TCMBsAX19tAjUZT/alRA55+Gp59FlatUpV4zGUPi0QEVqxQ9YREIDBQZVytQOHnquJM4hlWHV3F+sj1ZJoyAVVs+i6vu+jj0Qd7m2qcrLWgJ/HOO1VNp23bVBxYZCR8841Kz3HXXfmD8zUazXWnLKIrXURyDMPINgzDFYgDbq6fqBqN5rrh6QlTpqiuxvffVzHwxabU+ugjlVsKVPD3uHE3RVC3iLD3/F5WHlnJ7tjcghwd3Dsw1GsoAQ0Dbs5i0+3aqfbwwypIb9Mm+OsvNUKiffvc9VJTlWC7ydN2aDTVjbKIrjDDMGoC/0OVA0oBdlamURqNpnozZIjqYvz5Z/j3v1VgfYMGRazYpYvyqjzxRG5cUTUmOyebLae3sOLICk5dPgWo3Fp9WvRhmPcwVZrnVsDGBjp1Ui0jQwmvvMr5l19g0SK1vFcvCAoqZwCfRqMpihJjugz1U66JiJy5Ot0CcBWRfTfGPIWO6dJoqh8mE7z6qnKYNG2qwoWcnIDs7Pw5olJTry6ovqRnpfNbxG/8ePRHLqRdAKCWfS2GtB7CwDsG3thRiNWBDz/M9VCCun9du6r4L19fsLauOts0mpuAawmk3y0iQZVmWRnQokujqZ6kpqr4rjNnVO/UrMlRWP/ndXjssZsiJcTljMv8eORHfjnxC6lZqYBKZDrcezi9W/TG1vo2zvB+4YIKut+0SRXeNpO3JqZGoymSawmk32EYRkcR2VUJdmk0mpsYJyeVu+v//g8ubjrAyTWvc4d7KsaKFdVadJ1POc8Ph3/g95O/W/Jr+dTzYUSbEXRo1OHmjNe63tStCyNGqHbmTG4KirzFx/fvh927VRekh8dNmQJEo7mRlMXTdQiVGDUSSEUlSBURuWFPVO3p0miqN6eW/825x/+NdXYmRo9udPju/zBqVL8YoNOXT7Ps0DI2R20mR3IA6NK4C6PajsKrrlcVW3cTUDAFxXvvwYYN6nvjxmr0Y69eqr9Zo7mNKbenyzCMZiIShcrLpdFoNEWzcyce3/6Hmh7ZLE0OZfWVRxj0lRUPP1x9HB8nEk6w5MASdkTvAMDasKZPiz6MajuKpm5aIJSZgjd08GA1wnHrVpURf/Fi1Zo3VykoQkOrxk6NpppSUvfiSiBQRE4bhrFcREbeIJs0Gs3NwvbtKumpyUStCXcR2P4hfv2PwZo1quLP9OlVmyHiyIUjLDmwhLBY5Sm3s7ZjQMsBDG8znPpOOiHoNePlpdpDD6muxs2b4c8/VUb8Cxdy10tMVAGAjRpVna0aTTWgJNGV9yeNzsul0WgK4+ioVNWwYTBpEh0Mg1mz4LXXYN06Jbyeeir/YMYbweH4w3y3/zvCz4cDUMO6Bnd63slw7+HUcqh1Y425HbC2hoAA1R55BMLDoVmz3OV//AHz5qkqBN27Q48eWoBpbktKehRKMd81Go1GERAAH3ygXqBXu578/VUqiZdfVo6PrCyVhP5GpHkqKLYcbBy4q/VdDPMedvulfagqbGygQ4FQlsxMJdBPnlRtwQJVhqh7d9V0DJjmNqHYQHrDMEzkBs47AGnmRahA+hv2BNOB9BpNNWLDBqhVSwmuEjh2DF56SfUqtWwJ//xnMQlUrwMFxZajrSNDWw9lmPcwnO2cK+egmvKRlQV79qj4r7/+grSrr5Ru3WDmTPW9YKC+RnOTUuE8XdUBLbo0mmrC5s3wzjvKm/HJJ6WqqMhIeOMNiI0FZ2fl8Qq6jln/IhIiWLBvgaVUj4ONA8O8hjHUayguNW6e+o63HVlZqgj6tm3QuXNutYJdu+DTT1Ui1q5dVZb8m6BslEZTkCoRXYZhDATeB6yBL0TkzQLLxwHPX51MAaaJyN6C+9GiS6OpBmzbpoLmc3Lg/vthzJgybZaSojIL7NqlHBj33ac2vRZnRlRiFAv3LWT72e0A2NvYM8xrGMO8hmmxdTPz+efw00+5025uuaLM31+XItLcNNxw0WUYhjVwDOgPnAV2AWNF5FCedboBh0XkkmEYg4CXRaRzwX1p0aXRVDF//QX/+Y+q/XPvvapwdTkQgSVL4Lvv1PeOHVU5Rje38pkRmxzLd/u/Y9PpTQiCnbUdQzyHMLLtSB2zdSsgAkeOqBGQf/4J587lLvP0VOpdo7kJqArR1RUlokKvTs8EEJH/FLN+LeCAiDQuuEyLLo2mCgkLU1Wts7Nh1CiYMKHCbqrdu1XvZEoKuLjAlCkQElL67i6lX2LJwSX8euJXTGLCxsqG0Fah3NPuHmo71K6QLZpqjojqn/7rL9ixQ/VLjx+vlp07B3PmqILcnTurxKwaTTWiKkTXKGCgiEy5Oj0e6CwijxWz/jOAt3n9vGjRpdFUEamp8OCD6nPYMPX9GoOc4+Jg7lwV0gMqHv/RR6FhwyIOn5nKD4d/4MejP3LFdAUDgz4efbjP9z6dZ+t2QyT3b2/VKvjf/3KXNWqk3KcdO0K7djc+R4lGU4CqEF2jgdACoquTiEwvYt0Q4GOgh4hcLLhciy6NpoKYTCppZVgYXLoEycmqJSUpIVWvnqqZ5+GhhvB7eEDNmvn3sXev2v6BB67bqDIRWL8evvxSmWNnp2K9hg1T78ssUxZrjq9hycElJGcmA9C5cWcm+E+gmVuzUvauueVJTVUjIXfuVH+bycm5y2rWhK+/1gH4miql2nYvGobhB6wABonIsaL2pUWXRlMORFS+hk2bYMsWuHy5fNu3bAl9+kDfvmrIYSWSmAhffAEbN6rpBg0Fnzu3sM/qa+LT4gBViHpiwES863pXqi2amwAR1c1tbjk5cOWKigM7cgT27YP69VUF9gsXlJqfPRt8fMDXV/0929jk/niwslLfDUN9t7JSiV7NnzVqgIND7rFBp7PQlImqEF02qED6vkA0KpD+PhE5mGedZsB6YIKIbC9uX1p0aTRlQAR+/x2WLVM5Gsw0aqQKETduDK6uKpjKxUUlqzx3Dk6dyt8SEpRo8/RUtfX691cvrEp82ezeDW/O28funHmk1jiBgz0EtmrGzEGT6dAoCEO/6G4uRJQ3KiVFtbS03JaaqjLS17paGeCPP5S3qm/f3KSq27fD/PlKUGVlqWYWWsUxdaqq95iZqX5szJmjShQdPaqWp6fDoUNq9Iarq/qsUaPk8+jdWwk4gDNnVD948+YqIbCZRx9V52trq0SenZ36XqOGanZ2+T/r1FH/U2b27VPrt26thB6o87S21gLvJqbcBa+vFRHJNgzjMeA3VMqIr0TkoGEYD19d/inwElAH+PjqQzW7KCM1Gk0pRESovFnmF0zt2kpoBQfDHXcU//B2c1MvJjOnT8M//qF+3cfGKhfUxo3qRTNhgoqZuc4vgrNJZ/k55SvSu+2iwQW4cKY2daLuJ/NAXxbssyJ9lMqfqcN0qgGnT8P58+DtrYQLqHpPW7eqLmtz93VaWq5nqCg8PHJF16lTavvWrXNFV1ZW/h8OebGxUc3aWjXzd3t7tdzOTnm0mjWDtm3VSNvdu1WOuYgIyMhQAuz8eSWqHByUrSaT8pyZm8kETk65xzWZij6ns2fV+mWlefP8omvWLCWyli/PFV3//Kf6X3ZwyG2OjrmfBZuTkxKt5u0vXFBCzsVFd7NWM3RyVI3mZiY1VZVUWbNGvRBq11bB7j16lP9hGxcHM2ZAfDz4+cHDD6sX1dq1yvsFKlnlpEnqZXaNJGYk8t3+7/g14ldyJAd7G3tGtRnF4DuGsXWjPYsXw8WrEZ61akFoKAwcqBwFmuuEiPJExcerF3V8vLroCQm5n+++myto/vUv5Zl59VVo317NW7AAvv++8L4dHZX4cXYuLBLuuguaNFHrnTihBFbLlrmjEFNTVbd4jRpKPJhb3q7BinD+vIoF27MndwSkeX9PPaWO4e+vRnd4eRVW+mYxZmubOy82VonEzMzcT3O7ciX309xcXODuu3Ov/4svqnX++99cW55+Go4fL9+5/fhj7v+8eft331ViFlTOlrAwdT+cnNSni0vuPTJPm+e5uOhfOteAzkiv0dxqbN8OH3+sAqOsrNSL7L771EutvFy8qATXuXNKWL36au6LNisLfvlFPbSTktS8jh1h4kT1q72cZJoy+enoT3x/6HvSstIwMAhtFco4v3HUtK+Zu16m6nlavRqiotQ8Kyvl9RowQOlC8w97TRnZsgUOHFDiIy5OtStXSt7ms89yi1MvWKC8RWPGqL8TUDfn/PncrmvzS72635y8oyFTU5VHzGTKXW5vr0ZC+vmpHzH1b/Bo2ezsXK9cenr+LlrzdGqq+szMVIXGzbz4ovIg/ve/uUL27bfVj6jy8P77SgwDrFypvG9DhqjrAhATA9HRuffe1VXde90tqkWXRnPLkJOjXn7Llqnptm1h2jQ1+rAiXL6sBFd0tIrjeu21/N0qZtLSYMUK9fDNyFAKaOhQ9bIyC7QSEBG2n9nOV3u+Iu5qkHyQexAPtH+gxBGJInDwoBJff/6Z25Pj5qZqJffsqd4Bt/Vz/soVJXya5bmO//mPElhvvZX74p0zRynZvDg4qFGs5lanjmq1a6vWpEl+z86tSlqaGum7dy+Eh6sYLjMvvKDygYHqYjWZVBfpzfRHFxenvJkpKfnj7ZKTC383f/7vf+pvAlQ9rz//VM+K7t3VvGXL1EjRvFhZ5Qqwgs3NTeVWc3dX62ZkqM8aNW6ua1kGbnhMl0ajqQSSk9VLNDxcPdweeEAJn2t5YJ09q7qVWrSAV14pWnCB8qCNG6d+6X73nfJ+rVyp4nGmTlWlWoqxIyIhgv/9/T8OxqtxNM1cmzElcArt3duXap5hqMFnPj7KIff77yrMLDpa9aquWaM0QpcuKn+mr2+ZNODNSVqaEgNRUerlf+ZM7v0TUS9Bc3B4aqryTMbE5Iqunj2VWGjYUNXNrFev+Pt9u+HoqISVWVwlJKiu1H37cj07AEuXqpHBzs5qvvmP08Ojenv36tcvn7euoENm9Gjl8csbA1q/vvqnS0rKbenpyvuemFj0fhs1yhVdK1fCwoX5q1ycOKG6SvMOeKhZM/e7m5u6VzepSNOeLo3mZuHkSZUZPi5OPXief14pjOvB4cPqYVieujwnTqjuTXPsSceOKg4sz4M9IT2BBXsX8MepPxAE1xqu3O97PwNaDcDaquIvKBHVe7Jli+oxiYvLXWZrq96FQUEqNKd585v0+XzunLq25lGlkZHKU1EU1tbqRfbyy7lFyGNilACrXfsmvQDVlK++Uj804uPzz7e3Vz+AzFnzb1eys3MHVSQlKfFl/p6UpEZEm7urv/1Wec8nTFBJ+kD9onr33ZKPYWOTK8Dc3GDQIFUgHdR9OXVKHcMcN1gF6O5FjeZmZvNmFV+Rmam6AP/5T6hbt+L7S09XD6ZrDYjPyYFff1VdDGlpauTY+PFkDh7IquOrWXJwCRnZGdhY2XBX67sY024MTnbX17NiTksWFgZ//610St7HmpOTGmzXtq1qnp6lZwq44URGqniZLl1yhe/776uRgXmxtVUvkmbNVGveXE03aKCDnm80cXGqO3L/fpWKIjY2fyH4o0dV95z5D69Nm/IXG71dyBtfd/686hY3CzZzM09fvpzbLWnmkUeU8ALlCp87V43mfPJJNe/sWXjpJeUxu+++3FGylYjuXtRobkZE4IcfVM4iUEPNH35YiZuKkpqqPCInTqhYlaCgiu/LygruvFOJhS+/RDZvYufid/hi14uca9kAHB3o3LgzD7R/gEYujSp+nBIwDNXj4eWleiiSklTva1iYenbHx6uMAbt355rcpAm0apXbPDxuUC9bTo7qGjx+XKUrMMdKffmlMtrNTV1LUF1WSUm5lQLM3YLVuQvrdqJ+ffVi79tXTSck5L83+/cr4XX0qPLmgPJGenurFhqq76WZvJ7YBg1yvbXFkZmZX5A1bZq7rGZNJapatcqdd+mSehDEx6uBQVWI9nRpNNWVnByVrv2nn9RD6cEHrz1+KzVV/eI7dky9NN54o/QHXBmJSozif6tfIXzfWsjMpGm2E1PbTyFg/LNVGoh94YJyRJhbZGTR6ZZq11bPbnNr0kT1UNSpcw2XPDExN1v6kSNK6Jp/pb/3nnK7gYphOX5cdb2YRwVqbm5SU9U9P3xYtaNHc0eK1qwJ33yT+4e1YoX6P/Ty0jlRKoPsbPUgSExU/9QuLpV+SN29qNHcTGRmqriG7dtVt9H//Z8KYr0WkpOV4DpxQj3g33jjugyDT76SzHf7v2PNiTXkSA7OVvaMi63HoD+isMZQCmb69GojJjIzlfCKiFBhchERKiY9M7Po9W1s1OVq2FC1+vVVz655sF+tWlcdFiKqG+PgQaXujhwpOsFn/foqd9Lo0bnD8TW3PtnZ6g/tyBH13RzDlJamAsnN7+I6dZT4uuMOJcq9vHJLEWluGrTo0mhuFlJS4PXX1cvbyUl1Afr4XNs+k5PVfk6eVF0c//537lDwinDkCKZ9e/mt7mW+vbSJ5MxkjJRUBuW04v5uD+PiG6T69l57TYk8V1e45x4VMHvmjOp68fVV3SzVgJwcFaJjHgwYFaVGR547p3omSsIwoFPWNgad/AgXkvPl8rR2rEHOHa2xautNDX9vHNt7YV1bx/Vo8pCcrEbxHTumvJ2pqfmX/+tfuV3OJ04okdaqlR51Ws3RMV0azc1AfLwqC3LmjPrF+8orFUpAmg8RJX5OnlSu9X//u3xB+EeO5BdJR46wb/o9/K9RLJHO2RAQgJ+bFw999xctEnfDvEdVDJqNjXIpXbyogvYBfvtNvTjMNermz88VXgWPcwOxssr1ZHXsmH9ZRoYSX+fPq8+csL+pt/1HjrkEsdF1KJcuQUx6LUyXkzljV5so53accWxLlHNb4h2bk3PeGs4DG9T+8iYDz5tL1PxpbkVVfrG3V2JOD0a8hXBxyR3xKKLUvlmAHT+e2wUNsGoVbLj6h+TurrxhLVuq1qqVDtS/CdCiS6OpLkRGqgD3ixdVl9yrr17bCEUzhqEe6l98oQRd7dpl3/bIEVX2JzMT7OyI/eQtvvrzE3bccRrs7WmQaM2Ddv3ogidG4k6VDyomRoknUEGrvr7q3JydlZg8c0aJP5NJrXdVyOU9jkWMVaEQM+elsN+7lxatWtGis5+aXzsVwv+mh5/wwKtDyc6Gyxdak3jqS8SoR8NLBnYJULeIQVfmvJSpqUrEVQRzmUEHB/VpbjVq5H4311YuWG+54HdzbeaCn9er6o6mnBiGCiZs0gT69Cm8vEkTJcIiI1XXdWysypsCakDMyy+r7xkZaiSJh4cSZ7r+YrVBiy6Npjpw4IDqUkxNVUmmXnhBiZRrIS0ttySQr2/+OnPFUVDk7N8PmZmkN2nI91aHWLnhGbJdnLAXG0afcOLuC3Wxe26k2tbOTgkuW9vc/GHmeU5OqiTJpk3q3GJi1Bs9NlbFt1w9TiHRVpQQq0zMtfnCw1VSzORkNb9/f1UOBlTyr2eftXT52thA3YY21G1Yn1ZF7jQXEXWLzQm/k5JyRZi5mYVZwYovaWnqXZqdnbvujcDGJr8Iy/tp/l6wWVtf7V61zj+vtM+C34trVlbFT1tZFZ7O+2kYN7GQvOce1bKz1Y+XEyeUFzkiIn/6F3MJIFD/O82bq1Gw5ubtfW0joDUVRosujaaq2bpVBc1nZ6vCgv/3f9f+QNy/X5WBeeqp3P6ygm+aIroNC4qcHJ92/OGezjf1/+JyjRxw8aCPz1AmdvoPtY+dye+Bmj+/sFeq4Ly2bVVB4Q8/VILr99/VcUNDC4u2ooTY9fZ+paUpcWUuglww8L1ePSW2zFnKQXUH9epVocMZRm5t4YpiLslnLstn/p6Rkb+ucsGWtw5z3pa3VvOVK+ozK0sdJ29LT6+4zdUNwygs0Ir6XpZWcF+GUfQ6xU2X9L2oZerTBsPwwDA8sKoNRp2ry1aq5S6x1jR27YhT3Cns4i7A2eMY268mMTbg8DNfYapdD8OAWuEbsMrOJLNhMzIbNkMcnSzHLqrlta0izex0K2oZ5F9ecN2Cy0uaX9Q65u82NlXn/NOiS6OpSn76SSVQFFH5rv7xj2t/GmzbBu+8o96U27YVDlKCorvzCoicfbtW82XdM5y8uyEkOeLV2J+p/WfQuk5rtQ//Lvn3ac4/VNq8bt1U271bFVM+c0Z1ffbooUY4du+eu01BIXY9uiFF4PvvVSbVI0dyizmC8sj5+ytvVkCACvKqZm4RG5trF25lRSRXgOUVY+bvJlPutPnTPC87W33PO68snzk5ud8LNvOynJyil+WdX/C7eVpEtezsyr9+VUdr4CWwBwebZOqnRVI/PZL6aaepdeUc386rC1f/rKceWEGDNBVzaQ0k29Uh3qEp8fbNOFGzAyfdSi/VdbPx/PPXPhi8omjRpdFUBdnZSmytWaOmx49XKQSu5QUvogJtv/xSfR88WNVELIqivEi+vmBnR3RCJPO8L/NXxs9w2Zm69Vswsf9EgpsHY1xPARIUBB99pHIULVmi8hidPKlURdOmSjwV9JQtXVr2bkizEGvRQl1vc5kQw1DdnGfOKIHbti0EBiqR5emp41/yYBi5sV+3CiL5RVjez5KaeZ282+cVcuZlxa1XcJ5Z/OUVggX3VXAfUPx+8s7Lv54LOTm+iPhyRSBWoE+eY2TX6UvKhQhcL53GOfEstbIv0oyLSGY4zeraUSegPTk5UOfCUdr//SWJLk247NKUJJfGJDo3JtmxASbDJp8dpTXzsc33I2/La3veeUXtp7jti5s2f6/Kf3EtujSaG01yMrz5purWsrFROayKCpotD1euqC67jRvVdEERV9ATdFVg5fUiJXk0YvGLd7Lm6E+YXO7AvmZdRrcdzTCvYdSwqaS6Oba2Kkald28llrZsUUWbf/tN5S668878nqsi7C4kIPftU+tOmqSuy5mr3aCLF+cmgr3vPtUn5Oenh97fZpi7A81xZ5phuV9zclRc49Wi6q3btWOYOb3eb5Fw+jBwGK6g2gXUhWzYUIVImP+XIiPV97p1q9RTnJOTQ3p6OmlpaaSmppKWlkZaWhqtWrUCalWJTTpPl0ZzIzlzRqVviI1VWan/9a/rExz+6quwa5cauvbkk6qLzkwpXXIZbVuziqMsO7SM9Ox0DAz6t+zPOL9x1HYox0jH68GxY6qg8MGDatrdXQmknj1zS6YUFYs2frwaInjlivKgjRqlulgbN1axWl26qOmMjGqXI0yjuSlITlYB+mfP5ia0i4lRaW4cHNSPGrPAeuwxlQjW1lYJskaNcj/btlXe51IQkXxiKSUlxTJtnlfUZ2pqKunp6ZbPopg5cybdunW7jhenMDpPl0ZT1ezeDW+9pYK3W7aEF1+8PikhQHmLzp2DkSPVg/DIkVxRUUxAuqm1J7/bRLLowHskpCcAEOQexET/iXjU8rg+dpWX1q3VAICdO2HePJWz6N13YdGiXI+Yt7fK0h0ZqWKzwsJUcHtOjjrHrKzcvAkxMWre668rwVXd0lJoNDcLLi7KM2wexWsmM1OV2Mnr0apdG9OlS6QlJJBy/DipR46QajKRmp1Nas+epHTurATSiROkbt1Kao0apNrakmplRaphkCpCenY218Mp5ODggJOTE46Ojjg6OuLk5ITzjQiILAYtujSayiY7G777TnWbiagIzieeUMKgophMKhDcHCTv7a1+XT7wQGFRUaBLTnx82HJ6M9/t/47o5GgAPGt7MilgEn4N/Io/5o3CMNRowQ4dYP16Fe8VE6PE19y5KldRcnL+VPGuripmq0MH1Zo0Ub+oKxoPptHc5ogIGRkZpKSkkJKSQmpqar7PouaZPU0pKSlkZGSo/+WcnNwhtBkZqrSZ2ZMdF6d+PBWFlRUO3brh5OqqRFNCAs729jjWqYNT/fo41q2Lk4uLRUgV9eng4IBVNYvR1KJLo6lMzJ6a48fVA2jcOBgz5triHM6ehdmzVVfcSy/lCq+DB4tOsXA1IF327WO7ezbfnfyQqKQoANyd3ZngP4HuTbtf3yD564G1tcqP1bSp8lRt26a8hKAEkoeHGizQs6cKgjfnJDNTcORkWeLBKiMthUZTRZi76MwiqbRWUFDl5B3ZW04Mw8DJzQ1HR0ecnZ1xdnbGycnJ0pydnXECHC9fxjktDceUFJySk3FOTMTx0iUcraywWrIkd4fTpqlnX3y8+v+0tlZVO+rXVx7w4GC1Xlqa8vrb21e7kcegRZdGUzmIwLp1KiXClSvqwfB//5c/gWFF9rlqFXzzjRIKtrZqFJ6LS7HB8WozYYfTJb5z3kLk2UgA6jnWY0y7MfRt2Rcbq2r0GMjMzPVABQWpT0dHFa/l46O+X7qkvIeOjvDXXyrFesOGpRePLmo0JJQ9LQVoMaa54YgIV65csYih5OTkfEIp73RycrJFOJm/X0sXnb29fT6RVFA8FTfPyckJBweHa/shl5GRf7pbt1zRFRennglxcarl7fI8dEiVTwP1/1u3rhJn5s9Ro6p08IwOpNdorjcJCUpsbd+upoOD1a+0a/lHj42F99/Pdcv7+ChRZzIVG5+U3foONkVuYvnh5ZxJOgNAXce63NP2Hvq36l99xNaVK0o4gRoM8OqrKnXDe++peSLKy+Xrq2rLicDevUqAhoXljgVv0wb69lXdt+W51gWF1NKlKq7M7P2aMUONBK2OpYo0Nw05OTn5BFFeoVTadPY1JBVzcHDIJ46Ka0WJKBubavKMKApzLFl8vEpi3KiRmh8WpgbjXLhQdEbf779Xgf+VjA6k12gqm+xsJQQWLVK/0hwc4JFHlOv7Wti9W2Xzu3RJxSr9619qZNBvvxXZlZjeqjm/RfzGjz/9lwtpFwCo41CHUW1HMaDVAOysqzjpknkE4e7dKi6tZUslbED9YvXygvbtlZgyp5DOm8nQMHKTl8bGwurVKrP94cOqff65Gq3Yr59KdFpaTEdZuiGhfKWKtBC7ZTGZTIUEklkk5f0sOP9avE52dnYWMeTi4pJPHJmnXVxc8gkn87S1edTvrYadnRJaZrFlxhzXCaqr8eLF3Hbp0g0RXCWhRZdGcz3YtUtlVY+JUdOdO6vEpPXrX/u+ra2VZ6dGDSUgXF2LFAYxyTH8euJX1kasJTVLFeZr5tqMkW1H0qt5r6rzbOXkqNpw5lI7R47kTwduzlxoGOoc33mn7Pt2d4eHHlIpI7Zvhz/+UHm6Nm9WrVYtJcC6dVPewbL8ci+uG7KsMWGghdhNQHZ2NqmpqfkEUlGiyTwvKSnJkragophFUV6hZP4sKJ7yzrO7lbLT3kgcHVVr2rSqLbGgRZdGcy2cOAHffqu8NqA8UVOnKk9NRTCZ1EjH5ctVXIK/vwrCb9QImjXLfbGPHg3z52Pat5e/GuXwS8xCwveEW3bTrl47RrYZSYdGHXLjKrKyVIXlOnVyj7dggdrnQw9B7as5uZYsgR9/VAH/w64mTjx5UgXte3mpVBdmPvtMCab778+tS3PxotpnVJQSQPv35xaOBiWuvLxUFvigINWVeK0Br/b2KsFsnz4qxmP9etViY+GXX1RzdlZiuEsX5VErGHifl+JKGpUlJkwLsRtKQfGUVyBVhngyDKNIoVRQSLm6uuZb5ujoeOt6nTRlRosujaa8iCiPzfLludnPHR1VEs/Bg8vmTSlIaiqsXasE3Pr1yjt06JDqrvT1VS7xPC/2qMQoNl7ZyR92f5BwRuXYsrO2o1ezXtzZrC+eybZwxTZXzJw7p4RV/fqqTJCZsDAlqEaOzBVdmZlKJOUNZE1LU4GrKSn57V63TsVN3H9/7rzx45UI9fBQsRbm6+PkpOLbRo6s3MKB9eurbPZjxqhkjtu3q3bmjPKE/fGH8hh6eytx3L493HFHbvLVkigoxrQQu25kZ2cX20VX0rzrJZ4KtoLCKW+XXrUb6au5adCiS6MpK1lZsHUr/PBDbm4ZBwcYOFAJCTe38u9z82ZYuDA3e3NMjHr5t26tjpfHqxW3Zyub66ay6eRHRO65evxsE41znBjkPYS+7UfibOesRMWcOdCrFzz7rFqvTh0lBq2tc7vyQAnFzMzc8jigjjdsWP48Yt7eatRkXkRUZumwMFU6xCyk6tdXIqtLFxg0SHmVwsPh44/h8uXc9dLTVXxaixbw+OO5+zWLkGvFMFS8WMuWShSePavEV1iYqvN46JBqCxcqQejtrYLx27RR17+sedS0ELOQd6RdUXFORQWLm79nFBytVkZKEk9Fzc/bhafFk+ZGo0WXRlMSOTnqZbdpk3php6pYKWrXhrvuUqKioqMSjxyBsWOV98jKSnlmJkxQMU3Z2YidLREtXAk7sJiwmDCO5hyGU2ng5IizvSvdm3an95+xtFu3F+MBV+h8Vcy0aKG8THmFlK2tSs5a0JvTuXNhu+zt8wuOxERl65EjSqw884w6f8NQgsG8rFUrtf7nn6vj5X2hJSUpYdq6de68mBjVdXrlSv7jP/mkOubbb+cGyZ45o9Zr0qTiSWWbNFFZ7e+5R93HAwdUIH94uLJl9+7cbmIrKyXW7rhDnVfLluq6llUMVqUQuw4CLSsrq9ScTsWlLqjoSDsrK6tiu+tKElKOjo5aPGluGrTo0mgKkpmpXlw7d6oCzAkJuctatoQhQ9SIxLJWyxVRXpbVq9WIw4ceUt2Q+/crj1DNmkqg9O1LwpC+HGx4hT37fyeMGP6/vTMPkqu67/3n19v0NpJGGxrtCwIJsBHYYAEGgzGLjWMbCgqbxAYnToV6jheKFGU958V6TsCOszg4FuZV2ZYBE1yO8SN4YXEJnrHCIoNAaF9GGwLNSELSLN3T++/98btX3TOSYkE00xLz+1Tduvf++txzT99z+5xv/852YMt3D0WTWL+J93XF+MCn/xfnXnQD8WgcepfBa0XrXB8yZ47N3D6YP9R8pmqeqI4O66u2ZYsd79s3MNyGDdYxHcwrdsMNA0cQHUmYnH66bY1MnWrLIpVKA9Nw4IAJ0bC5E0wwPvWUzbp/1VVmC5sO58+3/mFvhUzGBGcoOvftq49+XLfO4g6fQUgkYh1yp0+3bepU20+efOwd9IdDiN1yC1os0h+Lkbv7bnKTJ9P36qvk1qyhr72dvrFjbeqCLVvo6+ggN3o0fanUAAFVasyTt0g40i4URZlM5lAz3ZE6j4fn/+15nRznJMBFl+OEo+tWrbJt3bqBQqC93ZrqPvCBYx8Fs3y5CaxSyfpT7dxpHpVazfqBzZlD9cwzeH1Klg2JHtaOKrCu8FM6H7kfagodK6FWY9z7r+C8aQt57+T3cvbBFSS7N0F2HkQDwXf55ba9XTZvhqeftubN7dvNIzWYZNI8PqFoOPPM+mdTprz9e7e0mGBqRMQGEhw4MNCjNW4czJgx8PmvW2eL7F55ZV109fbCbbeZV+qv/7oeduNGu9/UqUcWSOPH28z2F19s54WCPZutW+3d6Ogwb9uOHbY1EolYk+qkSba1t9t+wgTbRo8++kCBowix0ssvk58zh1xrK/nWVnLlMvlNm8hFIuT37KHvnnvIv/EGudZWcp2d5BYtIjd9Ork1a8ht3EiupQXt74cvfMEEefjuRSI21QYcbstmTez29BBtayM7aZIJpVKJbG8v2VmzyM6efVj/psF9nnykneMcHRddzsiiVLJKc+vWeoW6bdtAkQVWaZ9zjs0P9V+NrqtUzBu2fLnNdDx/vnkbrr/e+ixFIuiCs9kvRd6YHGX7lFFsS+bY9pvb2TGxhfJ1SVi/1Sq8WIFkLMn88fM5a5VyXrGNme/7BjJ1qt3r1vOPfZSfqgmolpa6eHn6aXj8cZu/6oorzNbZCb/4Rf26TMaaJk89td60NmXK8C6nITLQywXW7PqZzwy0zZ1rTbJz59ZtXV22DZ6L55/+yUYy3ntvXSg+9piJ7KuvrguR3l7zJo0bZ16mcI4usObNHTtMfDVunZ3Q2Ul19276q1X6q1UKtRr54DgP9Gez5NNp+lMp+uNx8rEY/dEo+UiEXK1GvlYjX6mQLxTI5/OHN9GNH2/5OWqU5WFfn6W1u9tE08GD9i6Gy7b095OMxcjOmEEmnyeTSJAdM4ZMLkf2tNPItLSQ3bGD7CmnkDlwgOxHP0p2wQIyd9xBa7VKS28v8t3Ayxp61F57zdb2bGzanDJl4Gz9y5YN9NqdJH3RHGe4GFLRJSJXA3cDUeD7qvrNQZ9L8PlHgDxwi6quHMo0Oe9wikVrDgy3ri6rRDs7rdId3FQG9T5VF1xgXpOzz7awq1fbFA6h4Hj+eRuxmE5b5bZ7N2zdSuWVleyPV3jzNw/x5p1f5c3Nq9g3L09nqsruVmH3ud2Uxo6BFwtQ6IZ4DJJ5qEWYOG0eczfkODM+lzOu/Htmts0iGonCxZXDPTIiJqYKBatsu7utst2/36ZpCPf79tm0CYWCTTp60UV2fXe3eYdmzaqLrnnz4OabzYs0c6ZV7idLE89ppw3sIwb2He699/B+YtOmQTRKra2NUqFAsVikuGIFxd/9jkJ7O8VYjEKhQPGllyj86EcUTz2VwrXXUigUKOTzFB54gEI8TuGyy+gvFMze0UF/Xx/92SyFQoFSb6+N8uzvt0EQlYqJlbfSxykahViMWCJBJpUinUrZAr7ZLOlTTiHT2mqL/I4aRXbhQtLd3WTmzydz1llk2tps27OHdEcHsQULBjQ5Ui7bvGW33Wb3WrHC0jdmTL25W9WeVWMz5rE0bR6r7a32RRsOm+MMI0MmukQkCiwBrgB2Ab8XkUdVdV1DsA8Dc4PtfcD3gv3wMhQ/4mYVICdrGteuteaO0083AVAqWcW5fr11eJ42zZpw+vut2WfzZqssUikTTTt2WL+pRMK8RqGnp6fHvDeplAmlfB5E0PdfRHnh+ZRFKX/1K5TKBYpvrKfQt5Piv/VReOYpCrUS+dFpcnd+jXylQH7Jt8kd3EtPC/TMnERPMkLPqb3kJveARCD1Gqz4Z/NGzKlYJdfSAm2jGd02ifZ3f5BpKzuYPX0Bs97zaWYmJpKpxaA9b981NgEiQb+rZ5+1Tt6XXlr3wixbBkuWWLzHQjo9cBmMCy80wTV9et02YYJ55YYAVaVWq1GtVqlUKkfcl8vlQ+flcvmo+8FbqVQacByeF4vFQ7ZisXjos2KxSLFYpHLjjfUEhgLpwQetzxiYMO3qMvvBg2arVOydjcUGetDWrzdv0/z50NqKtLWRViW1Zw/JOXNInXsu6XSaVKFA6oknSI0aRfrii0lXKqTLZdIvvki6UCA1YwZpVdL9/WS6u0nl8yTGjq2P8iyVTEz39toAgM5Os/f0mEDeudOmGwnDgr3zv/ylvX+xmHkse3pMPP30p9Zf7JJLbAmVadNsFO2+fRbm4EG7pqvLRGB/v33/eNyE/L//uzX/Tpxo1/ziF/anpafHBm/s3WtTiYhYeidNsrjC/pFf/KK9w4kEfO979pvfvBluvbVu/8EP7Po/+7O3J+6O1XY0EXgylJmexpNSdA/Z2osicgGwWFWvCs4XAajqNxrC/B/g/6nqQ8H5RuBSVd3dGNeQrr24YQOfvf48CuGotGwrCJDrs741YJV7Mglv7oNqzSrvdNoq1zf3Wbhq1Qq4efOs4Ni2zQooVSsAI5EgTgC1AjWTgf1v1q9PtsCoMXDgTVCgUrXCYVJQkKla3NEYxKJQ6LdwAPEERCNQKZtNsApcgWoFFTFbS4vF29pqYkVrgTcnYmksNXgIYkG/oVrN7h0RNBa3+KoVu0awZ1MsBumN283HtqF791mFFTpOWlrQSsVsEVveRdNptFSEUhkES2cyiaJosQRaQ2MxEKiNGgXdB9FqDRWoRUAjUdAaNVWzRS3OWrVCrVikJlCLRqilk9QiQjWfoyZQTSetsikUrNnk0HcO/odUKsFzFHtWqFUgYfPNhInmNahWoaODTAkysSSZcxaSbptIZuVqRm17g9GxLKNaWmnR6IAlQHTQHrDRkO3tZn/uOfTVV62jd7CYq3Z0oE89ZRVhKmXPKZlEUyk0mHn50HEmQy3o6B+KH8vKw/e1Wu1QmHAfHqsq1Wr1kG3wVq1WD21HOj/REBESiQTJZJKWlpZDW2gL7Y3HqUSCZG8vLUDy9NNJpVK2Pfssyb17SV1/Panp04nH48hjj8Ejj9io1muvtZt2dNiIzNmzbf3MkFtuMTG1dKl5GFVtAMSvfmVC+Lzz7J17+WW47z7rj3bVVSaC8nmb2LZcNq9lqWTv8qpVFufcufZ+gpUd27bZPcJFwctl+5MTj9dFPVh/w95euz5cTWH7dvNytbebaO/rsz8E/f32Li5caOFeecXSBZb2eNxsxaL9bs44w35PW7bY76yvz+J817ss/i1b7HdXqVi/wTAs2Hc79VQrdzdvrl8/Y4Y1RW/YYOXQwYMm8qZMMa9uuED6hAlm37zZbOEkwVOn2rXhu9rebvHs2GG2aNTiSiRsv3y52SsVu3d7u+VPtWr5N326le2bN5stGq0PMnn99aAcjZhQ7+21+4hYuPPPt+fQ0VGf3uVDH7L+iOH3i0bNK9nRYSNtEwnbrrmm3g9xyxYLF41af8/Nm+vXRyJWzmzYYOlOJu1eH/uYpe+ZZ+w8mbRpY3p6TFSLWH31iU/Yd/nxj+05tLbW3/OHHrL3Kp22wTVgAr9QsDR+6lOWD2+8YWHBrr/uunqclYrdJ7z+Jz+x61tabHqbMM5cztIZdjl4+OH6n5CbbrL7Pfxwvcz+oz+y9/9nP7N8GT/eJoEeQuHVjLUXpwANtRm7ONyLdaQwU4DdDBerV7OsN0exElR/+4/QkXjvAUwRNFSRpRx054M5j7Das1SAVWvNVqnWw5f6Do9zfy8c6Dv8+t7OumgKbdteM2EmBELwCM0VxUL9OLyW8uG2XGDrKzTcRwfV/oci/QNx1syW76tfXyoF9+kygdrIgHl41Lb+nO3D60Xr4ULRGw3ClvLQPyhOqdajC8Vdb1DIVwObKMTKdhJ23YqViby5F4nHieyBSA0iQCQWIYIQLVaJqBJViCarRFWI5iBaixBTiL97GrFaG7FIjFhXyQr7005DOzPkOnPk9sXZ05cASiD7rbATsf2RtmjUmnvCWdL7+qxA2rnTKk2w7zRz5uFrCVarVoA3zvp+ghCJRIhGo0SjUWKx2GH7xi0ajRKPx4nH48RiscOOE4nEIVvjeeM+3FpaWojH4wNEVRjuuI2QGzwIAOAjH7GtkZkzbY6zanWg/UtfsnwOR56KWFPwhAkmWsK+apMnW2U2Y4ZNuwH2m83lzP4P/1BvEl6yxCrjP/9zS1+xaKM+77/f4rzuOrtm3z5bWDyTscXYy2Xbli61SvHaa61iqlTghRdsmauzz7atWrW0PPmkhbnwQns3Z8+ue9zOOCP4wzjJKveeHgubydg7XSzad0gkzDZxoom7wBNNW1tdoPT3W/zJpAkaEbNVq3U72POoVCyOeNyu7+21cH1BWVurWVoqFduHaUkm7bqdO62CD22FggmjWMzuWSjU7du2Wbz9/WbL5UwMpdMWVxhnR0d9qatUymwbNtTTm83a8dq11i2gWLTBF7mciejt2wfeY+VK8+rn83Xx+dJLFn9Hh5XBo0bVxfFrr9WFTz5veRk+60TCwq1YYeVMLmf50dtr3SlyOdsSCXt2zz1Xf9ZhOdRo08CB8OyzZuvrs+9YLNqi9ZMn2zPO5epzBi5fXg8Ldn1oC/OvVDJPaWgLPbrPPGP77u56U/7y5fZcurstzYWCpWf0aLOF+ReuVzvMDKWn6wbgKlX9XHD+aeB8Vf1CQ5hfAd9Q1eXB+TLgDlV9qTGuofZ03XnjxZR7ugGxfyqCqf5KUEjOng2tWdiwEaoVs7e3w8QJZtOaeWrGj7eO17mcvbDhD33qFPNO7doFtaoJhGnTYGzbwDjDf2ObNtW9WuPG2f3Xr7dri0EfjETCXPZh/o0dawXN/v31yS9Hj7bj7u7wgVv85SCt27fbC12p2I80Hoc9XUgtuH78OHsm3d1IOMpp4kRLw/5QSERgzmw737sPUkkkGkUuuABeXW0FeCRiFd28efZstm+HeByJxZELL4ID+2Hly0g0SiSZhCuvRJJJ5OVXYNMmJJslEonBTTch//mfyKpVSCSKSITIJR9ACgUizz5HRCJINE7kw1cTrVSRx54w0ZRtJXLr/yAqUSLf+hbRSo1YJovc/leWD88/b2kKR52JWOG3e7cVEu3tZuvqMtu0adbJPpyCIXw+ra31aSTKZfvO0ehRF1wOK/9GETBYEPxXYQbbwg1M7Ay2h7bGzyKRyKGtMVzjZ43H0Wh0wDXheSisIpEIsVjskM2nADhBCUVArTaw72A+b2VCKlW3hxVvOj2wybOry973SZPq1+/YUfcChdd3ddmfkomBdzicjmXMGPPizpxp4TZsMK/K3LnmZREx25NPmpfpssusnFq3zir61lYbtTpjhpWPq1bZb23WLBOHmzZZ14R43MrWefOsPFq3zsrLRMIq37vusjIxEjGxmkzWm/Hj8fpKDtksLFpk9mrV7JMnwze/aTYR8162tlqzaXj9TTfZs37wQbsuFoO/+AsTfQ88YJ/FYjb/3a5d1uwZi9m2eLGld+lSS288Dn/7t+a9uuceC9PSAn/3d/bZiy/afSIR+2zRIgt7//32eTxuy4utX29rxcbjdv3XvmZ13re/XfekL15safz61y1/slkLBzbpcrVq+RHaFi2y9yKTsXuALR2Wy9k97rzT8nrLFpsUuVaz68NlxcJn23ifv/mbuuAM0/H1r5vwSiQsTrB9d7elffFi++yuu+p18O23W1161132fra2mmetCZ4ub16Ed36btafxhGrTdxznBOJEK49OhjLznZTGIaIZoisGbAIuB14Hfg/cpKprG8JcA/wlNnrxfcB3VPX8wXENuehyHMdxHMc5Tgx7ny5VrYjIXwJPYFNG/FBV14rIrcHn9wK/xgTXFmzKiM8OVXocx3Ecx3GayZDO06Wqv8aEVaPt3oZjBT4/lGlwHMdxHMc5EThyD1/HcRzHcRznuOKiy3Ecx3EcZxhw0eU4juM4jjMMuOhyHMdxHMcZBoZsyojjiYjsBXY0Ox2O4ziO4zjHwAxVnTDYeFKILsdxHMdxnJMdb150HMdxHMcZBlx0OY7jOI7jDAMuugARuVpENorIFhH5SrPTM1IRkWki8rSIrBeRtSLypcA+VkR+IyKbg31bs9M6EhGRqIi8LCK/DM49X04ARGSMiPxMRDYEv50LPG+aj4jcFpRja0TkIRFJer40BxH5oYjsEZE1Dbaj5oWILAr0wEYRuep4pmXEiy4RiQJLgA8DZwCfEpEzmpuqEUsFuF1V5wMLgc8HefEVYJmqzgWWBefO8PMlYH3DuefLicHdwOOqOg84G8sjz5smIiJTgC8C71XVs7Cl8D6J50uz+BFw9SDbEfMiqHM+CZwZXHNPoBOOCyNedAHnA1tUdauqloCfAB9vcppGJKq6W1VXBse9WOUxBcuP+4Jg9wGfaEoCRzAiMhW4Bvh+g9nzpcmIyCjgEuAHAKpaUtWDeN6cCMSAlIjEgDTwBp4vTUFVnwH2DzIfLS8+DvxEVYuqug1bG/r845UWF11Wqb/WcL4rsDlNRERmAucALwCnqOpuMGEGTGxi0kYq/wLcAdQabJ4vzWc2sBdYGjT9fl9EMnjeNBVVfR34R2AnsBvoVtUn8Xw5kThaXgypJnDRBXIEm8+j0UREJAs8DHxZVXuanZ6Rjoh8FNijqi81Oy3OYcSAc4Hvqeo5QA5vsmo6Qf+gjwOzgMlARkT+pLmpco6RIdUELrpMxU5rOJ+KuYGdJiAicUxwPaiqPw/MXSLSHnzeDuxpVvpGKBcBHxOR7Vjz+wdF5Md4vpwI7AJ2qeoLwfnPMBHmedNcPgRsU9W9qloGfg5ciOfLicTR8mJINYGLLvg9MFdEZolIAutA92iT0zQiERHB+qasV9V/bvjoUeDm4Phm4D+GO20jGVVdpKpTVXUm9vt4SlX/BM+XpqOqncBrInJ6YLocWIfnTbPZCSwUkXRQrl2O9VH1fDlxOFpePAp8UkRaRGQWMBdYcbxu6jPSAyLyEazPShT4oare2dwUjUxE5P3A74DV1PsO/U+sX9dPgelYYXaDqg7uFOkMAyJyKfBXqvpRERmH50vTEZEF2ACHBLAV+Cz2h9rzpomIyP8GbsRGZb8MfA7I4vky7IjIQ8ClwHigC/ga8AhHyQsR+Srwp1jefVlVHztuaXHR5TiO4ziOM/R486LjOI7jOM4w4KLLcRzHcRxnGHDR5TiO4ziOMwy46HIcx3EcxxkGXHQ5juM4juMMAy66HMdpOiIyTkReCbZOEXk9OO4TkXuG6J5fFpHPHME+U0TWHMf7JETkmWANPsdxRjBeCDiO03RU9U1gAYCILAb6VPUfh+p+gQD6U2z29iFFVUsisgybs+nBob6f4zgnLu7pchznhEVELhWRXwbHi0XkPhF5UkS2i8h1IvItEVktIo8HS0ghIu8Rkd+KyEsi8kS41McgPgisVNVKwzWrROQ54PMN958pIr8TkZXBdmFgf0BEPt4Q7kER+ZiInCkiKwIv3asiMjcI8gjwx0PxjBzHOXlw0eU4zsnEHOAabDHhHwNPq+q7gH7gmkB4/Stwvaq+B/ghcKQVJi4CGhfwXgp8UVUvGBRuD3CFqp6Leaq+E9i/j838joiMxtbV+zVwK3C3qi4A3out4wawBjjvbX5nx3HeIXjzouM4JxOPqWpZRFZjy3Y9HthXAzOB04GzgN/YkndEgd1HiKcdWwsvFE1jVPW3wWcPAB8OjuPAd4OldqrAaQCq+lsRWSIiE4HrgIdVtRJ4yr4qIlOBn6vq5iB8VURKItKqqr3H6Vk4jnOS4aLLcZyTiSKAqtZEpKz1dcxqWHkmwNojeKwG0w8kg2MBjrYe2m3YWm1nYy0DhYbPHsCaDD+J9Q9DVf9NRF7AvHFPiMjnVPWpIHzLoOsdxxlhePOi4zjvJDYCE0TkAgARiYvImUcItx44FUBVDwLdwYLrMLDv1Whgt6rWgE9jnrOQHwFfDuJYG9xvNrBVVb8DPAq8O7CPA/aqavm//xUdxzlZcdHlOM47BlUtAdcDfy8iq4BXsP5Wg3kMuKTh/LPAkqB5sL/Bfg9ws4g8jzUt5hru1YWJt6UN4W8E1ojIK8A84P7AfhnW58txnBGM1L3zjuM4IwcR+b/AHWG/q7dxfRrrS3auqnb/gbA/Bxap6sa3cy/Hcd4ZuKfLcZyRylewDvVvGRH5ELAB+NdjEFwJ4BEXXI7juKfLcRzHcRxnGHBPl+M4juM4zjDgostxHMdxHGcYcNHlOI7jOI4zDLjochzHcRzHGQZcdDmO4ziO4wwDLrocx3Ecx3GGgf8PPLyvyjIW1CoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.4452, 'epsilon': 0.1368, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACkJUlEQVR4nOydeViV1fbHPy/zIOCsOKMiKKOgKM44m2ZqmpqZWtbNJqtflt5b2Xy7TZrN3UrLvGqOmVmZOWvmiLOCKA6AAqLIKHBYvz+25zArIIjD/jzPfs559zut9z2H835Ze+21DBFBo9FoNBqNRlO5WFW1ARqNRqPRaDR3Alp0aTQajUaj0dwAtOjSaDQajUajuQFo0aXRaDQajUZzA9CiS6PRaDQajeYGoEWXRqPRaDQazQ3ApqoNKA21a9eWZs2aVbUZGo1Go9FoNNdk165diSJSp3D/LSG6mjVrxs6dO6vaDI1Go9FoNJprYhjGyeL69fCiRqPRaDQazQ1Aiy6NRqPRaDSaG4AWXRqNRqPRaDQ3gFsipkujKS8mk4mkpCSys7Or2hSNRnOLYGtrS82aNbG2tq5qUzS3GZUmugzD+BYYBMSLiG8x6w3gI+AuIB0YLyK7K8sezZ1JUlISDg4O1K5dG/WV02g0mpIREVJTU0lKSqJOnSKTzzSa66IyhxfnAP2vsn4A4HmlPQp8Xom2aO5QsrOzqVatmhZcGo2mVBiGQbVq1bR3XFMpVJqnS0Q2GobR7Cqb3AN8LyICbDMMo7phGO4iEldZNpXEgQOQm3tjzlXaZ/+1tsu/3vy+8D6GUXS74pYLNyur4vvM/eb35mZtnffexqb013ij0IJLo9GUBf2boaksqjKmqyFwOt/ymSt9N1x0vfkmpKXd6LPevhiGEmI2NnmvtrZ5r+ZmZ6eavX1ec3Qs2lxcoFo19eriAk5ON5+wuxZvvfUW//vf/7C2tsbKyoovv/ySDh063HA7wsPDiY2N5a677gJgxYoVHDp0iKlTpzJ+/HgGDRrE8OHDC+yzfv163n//fVauXHnD7dVoNJrbiaoUXcU9NuWGWwG0aQOXL5duW7kOC69n3/z75z9OcccUKbpN4X0L95mb2eOXm1uwz/xa+H1uLphMee9zctT6nBzVKgPDgOrVoUYNqFkz77VuXahfX7XatZXn7Wbgr7/+YuXKlezevRt7e3sSExPJysqqElvCw8PZuXOnRXQNHjyYwYMHV4ktGo1Gc6dRlaLrDNA433IjILYqDHnllao46+2LWXyZTHniy9yys/NaVpYSu/lbZiZkZKiWnq5eU1MhJUW11FTVf+GCasePF2+DjY0SYUOHQmKiEmY1aoCz8433ksXFxVG7dm3s7e0BqF27NpBXaaF27drs3LmT559/nvXr17NhwwYmT54MqGGOjRs34uLiwrvvvsvcuXOxsrJiwIABvPPOO0RFRfHEE0+QkJCAk5MT//3vf/H29mb8+PE4ODhw8OBBzp07x4cffkjfvn155ZVXyMjIYPPmzUybNo2MjAx27tzJJ598AsCaNWv46KOPLPsMGjSowLWkpaXx1FNPsX//fnJycnj11Ve55557buDd1Gg0mluXqhRdK4AnDcNYAHQAkqsinktT8VhZqWHDyiInBy5eVKIrKUm9nj8PCQkQFwdnz6r+2FjVl5Sk9nv/fSW48g9p2tpevwj7+eerr+/bty+vv/46rVq1onfv3owcOZLu3buXuP3777/Pp59+SufOnUlNTcXBwYFff/2V5cuX8/fff+Pk5ETSlYt69NFH+eKLL/D09OTvv//m8ccfZ+3atQBER0ezYcMGoqKiCAsL49ixY7z++usFRNacOXMKnLu4ffLz1ltv0bNnT7799lsuXrxISEgIvXv3xtnZuYx3TaPRaO48KjNlxHygB1DbMIwzwHTAFkBEvgBWodJFHEOljJhQWbZobi9sbNTw4RWHUbFcvpwnvgxDiTRra+V9M3vVQK3LH09WGWl5qlWrxq5du9i0aRPr1q1j5MiRvPPOOyVu37lzZ5577jnGjBnDsGHDaNSoEWvWrGHChAk4OTkBULNmTVJTU9m6dSsjRozId9154+T33XcfVlZWeHp60rx5c44cOXJNW6+1z+rVq1mxYgXvv/8+AJmZmZw6dYrWrVuX6Z5oNBrNnUhlzl4cfY31AjxRWefX3NnY20PTpsqT1aCB6tuxQw1fJiTAuXOqJScX3K9uXWjWDBo3VseoKKytrenRowc9evTAz8+P7777DhsbG3KvBNFlZmZatp06dSoDBw5k1apVdOzYkTVr1iAiRWZU5ebmUr16dcLDw4s9Z+HtSzMj61r7iAhLlizBy8vrmsfSaDQaTUFuklBjjebG4OCgBFW7djBwoIr56tQJmjRRXq74eNi+HZYtgw0blDC73gkQR48eJTIy0rIcHh5O06ZNadasGbt27QJgyZIllvVRUVH4+fnx4osv0q5dO44cOULfvn359ttvSU9PB1TSV1dXVzw8PFi0aBGgBNHevXstx1m0aBG5ublERUVx/PhxvLy8cHFxISUlpURbi9snP/369ePjjz9GrtyUPXv2XN/N0Wg0mjsIXQZIc0fj6Kg8W82aqeD+M2cgOloNTcbEqFa7Nvj4KI9ZeeK/UlNTeeqpp7h48SI2Nja0bNmSr776isOHD/Pwww/z9ttvF0gfMXPmTNatW4e1tTVt2rRhwIAB2NvbEx4eTrt27bCzs+Ouu+7i7bffZt68eUyaNIk333yT7OxsRo0aRUBAAABeXl50796dc+fO8cUXX+Dg4EBYWBjvvPMOgYGBTJs2rYitxe2Tn5dffplnnnkGf39/RIRmzZrpVBIajUZTSgy53n/jbwDt2rWTnTt3VrUZmluQ2NhYGpjHF8tAZiYcOwZHj+bFf1WvrsRXkyY3f56wknJuaTSa0lHe3w6NBsAwjF0i0q5wvx5e1GiKwcEBfH3hnnsgKEh5xC5ehC1bYM2aorFgGo1Go9FcCz28qNFcBRsb8PYGT084cQL271eB+L/+qpLq+vhUzozH66VwKgiNRqPRVD3a06XRlAJra2jZUgXft2ypEsAeOKDEV3x8VVun0Wg0mlsBLbo0mjJgZwchIdCnD7i6wqVLarhx797rn+Wo0Wg0mtsbLbo0mnJQpw4MGAB+fiqo/uBB2LSp8upNajQajebWR4sujaacWFsr0RUWpjxgZ87AH3+o2pAajUaj0RRGiy6N5jqpXx/69gUXF1UH8vffVS1IM9WqVbvmMTZt2oSPjw+BgYFkZGSU6fzLly/n0KFDZTW7RLsyMjLo3r07JpPJ0jdjxgwcHBxIrqJpm+Hh4axatarSzzNnzhxiY2MtyxMnTizXvY2OjsbX1/ea2y1atIjWrVsTFhZW5nMUtrWi7Cpum1dffdVS+qm09OjRg2ul+pk5c6Yl4W9ZKe93Ir9dvXv35sKFC+U6v0ZTHrTo0mgqAFdXJbzq1YOMDBXndeZM6fefN28ezz//POHh4Tg6Opbp3OUVXSXx7bffMmzYMKzzTcucP38+7du3Z9myZRV2nrJQVaLr66+/pk2bNpV2vm+++YbPPvuMdevWlXnf8oium42qEF35GTt2LJ999tl1HUOjKQtadGk0FYS9vRpqbNlSFdbevFlltjezfv16evTowfDhw/H29mbMmDGICF9//TU//vgjr7/+OmPGjAHgvffeo3379vj7+zN9+nTLMb7//nv8/f0JCAhg7NixbN26lRUrVjBlyhQCAwOJiooiKiqK/v37ExwcTNeuXS1Fq0+cOEFoaCjt27fn5ZdfLvE65s2bxz333GNZjoqKIjU1lTfffJP58+db+g8ePEhISAiBgYH4+/sTGRnJyy+/zEcffWTZ5l//+hezZs1i/fr1dO/enfvuu49WrVoxdepU5s2bR0hICH5+fkRFRQEqqetjjz1G165dadWqFStXriQrK4tXXnmFhQsXEhgYyMKFC0lKSmLIkCH4+/vTsWNH9u3bByiPzLhx4+jbty/NmjVj6dKlvPDCC/j5+dG/f3+ys7MBeP3112nfvj2+vr48+uijiAiLFy9m586djBkzxuJxzO8V+e233wgKCiIgIIBevXqV+nsxZ84chg0bRv/+/fH09OSFF16w2LB582Yee+wxpkyZgslkYsqUKZbP/csvv7Qc491338XPz4+AgACmTp1arK27du2ie/fuBAcH069fP+Li4gDYtWsXAQEBhIaG8umnn5ba7pLo0aMHL774IiEhIbRq1YpNmzYBykM6atQo/P39GTlyZAGP7erVqwkNDSUoKIgRI0aQmprKrFmziI2NJSwszOLpK247gB07dtCpUycCAgIICQkhOTm5yHciLS2Nhx56iPbt29O2bVt++umna9o1ePDgAt9pjabSEZGbvgUHB4tGUx5iYmLyFgYNqpxWiNxckZ07RebNE1m4UMTZ2VlERNatWyeurq5y+vRpMZlM0rFjR9m0aZOIiIwbN04WLVokIiK///67PPLII5Kbmysmk0kGDhwoGzZskAMHDkirVq0kISFBRETOnz9fZF8RkZ49e0pERISIiGzbtk3CwsJEROTuu++W7777TkREPvnkE4td+bl8+bLUq1evQN8bb7whr7/+uphMJmnatKmcO3dORESefPJJ+eGHHyz7paeny4kTJ6Rt27YiImIymaR58+aSmJgo69atEzc3N4mNjZXMzExp0KCBvPLKKyIiMnPmTJk8ebLlWvr16ycmk0kiIiKkYcOGkpGRIbNnz5YnnnjCYtOTTz4pr776qoiI/PnnnxIQECAiItOnT5fOnTtLVlaWhIeHi6Ojo6xatUpERIYMGSLLli0rcO9ERB544AFZsWKFiIh0795dduzYYVlnXo6Pj5dGjRrJ8ePHi+xfHCdOnBAfHx8REZk9e7Z4eHjIxYsXJSMjQ5o0aSKnTp0qcr4vv/xS3njjDRERyczMlODgYDl+/LisWrVKQkNDJS0trcC58++blZUloaGhEh8fLyIiCxYskAkTJoiIiJ+fn6xfv15ERJ5//nmLXaWx3cz06dPlvffes5z3ueeeExGRX375RXr16iUiIh988IHlnHv37hVra2vZsWOHJCQkSNeuXSU1NVVERN555x157bXXRESkadOmlu9zSdtdvnxZPDw8ZPv27SIikpycLNnZ2UW+E9OmTZO5c+eKiMiFCxfE09NTUlNTS7TLTMuWLSUxMbHIfSjw26HRlBFgpxSjZ3RyVI2mgjEMlcU+K0slVDWZ8jLYh4SE0KhRIwACAwOJjo6mS5cuBfZfvXo1q1evpm3btoCq3RgZGcnevXsZPnw4tWvXBqBmzZpFzp2amsrWrVsZMWKEpe/ylTpGW7ZssRTWHjt2LC+++GKR/RMTE6levXqBvgULFrBs2TKsrKwYNmwYixYt4oknniA0NJS33nqLM2fOMGzYMDw9PWnWrBm1atViz549nDt3jrZt21KrVi0A2rdvj7u7OwAtWrSgb9++APj5+RUYXrvvvvuwsrLC09OT5s2bWzx1+dm8ebPlWnr27Mn58+ct8WYDBgzA1tYWPz8/TCYT/fv3t5wnOjoagHXr1vHuu++Snp5OUlISPj4+3H333UXOY2bbtm1069YNDw+PEu/91ejVqxdubm4AtGnThpMnT9K4ceMC26xevZp9+/axePFiAJKTk4mMjGTNmjVMmDABJyenEs999OhRDhw4QJ8+fQAwmUy4u7uTnJzMxYsX6d69O6A+919//fWqthol1LjK3z9s2DAAgoODLfd048aNPP300wD4+/vj7+8PqHt36NAhOnfuDEBWVhahoaFFjl/SdkePHsXd3Z327dsD4OrqWqx9q1evZsWKFZbYs8zMTE6dOlWiXWbq1q1LbGys5Xuq0VQmWnRp7hx+/vmGncowoEMHJbxEYN06Nfxob29v2cba2pqcYnJMiAjTpk3jH//4R4H+WbNmlfhANJObm0v16tUJDw8vwa6r7+/o6EhmZqZled++fURGRloe5llZWTRv3pwnnniC+++/nw4dOvDLL7/Qr18/vv76a3r27MnEiROZM2cOZ8+e5aGHHrIcK/+1W1lZWZatrKwK3IfCNhZnsxSTFM28Xf7j2traWvrN58nMzOTxxx9n586dNG7cmFdffbXANReHiFzz3l2N0n7uH3/8Mf369SvQ/9tvv13z3CKCj48Pf/31V4H+ixcvltnuWrVqFQkuT0pKsghOyLuewtdS0mfVp0+faw7jlbTdvn37SnUNIsKSJUvw8vIqsu5q+2dmZpY5jlKjKS86pkujqSSsrKBzZyXA0tMhPFxlsr8W/fr149tvv7XEs8TExBAfH0+vXr348ccfOX9lamRSUhIALi4upKSkAMoL4OHhwaJFiwD1INq7dy8AnTt3ZsGCBYCK2yqOGjVqYDKZLCJk/vz5vPrqq0RHRxMdHU1sbCwxMTGcPHmS48eP07x5c55++mkGDx5siasaOnQov/32Gzt27CgiIErDokWLyM3NJSoqiuPHj+Pl5VXgGgG6detmuYb169dTu3btEj0ghTFfW+3atUlNTbV4loAi5zETGhrKhg0bOHHiBJB377dv386DDz5Y5mssjn79+vH5559b4s4iIiJIS0ujb9++fPvtt5aA8+I+dy8vLxISEiyiKzs7m4MHD1K9enXc3NzYvHkzUPBzj4mJKTY2rVq1ari7u/Pnn39azvfbb78V8cgWJv9ncuDAAcv3oWPHjmzZsoVjx44BkJ6eTkRERJFrKGk7b29vYmNj2bFjBwApKSnk5OQU+az69evHxx9/bBHke/bsuapdoP4+zp49S7Nmza56bRpNRaFFl0ZTidjYqHxeNWpAWhokJV1bePXt25f777+f0NBQ/Pz8GD58OCkpKfj4+PCvf/2L7t27ExAQwHPPPQfAqFGjeO+992jbti1RUVHMmzePb775hoCAAHx8fCwBxR999BGffvop7du3v2rqh759+1oe0gsWLGDo0KEF1g8dOpQFCxawcOFCfH19CQwM5MiRIxbxYWdnR1hYGPfdd1+BGZClxcvLi+7duzNgwAC++OILHBwcCAsL49ChQ5ag6VdffZWdO3fi7+/P1KlT+e6770p9/OrVq/PII4/g5+fHkCFDLMNWkBfIXzh1R506dfjqq68YNmwYAQEBjBw5EoBTp05VmJdk4sSJtGnThqCgIHx9ffnHP/5BTk4O/fv3Z/DgwbRr147AwEDL8Fl+W00mE4sXL+bFF18kICCAwMBAtm7dCsDs2bMtw8H5bY2Li8PGpvjBju+//54333yTwMBAevbsyfTp02nRosVV7Z80aRKpqan4+/vz7rvvEhISAqh7N2fOHEaPHm2Z+GAeMn700UcZMGAAYWFhJW5nZ2fHwoULeeqppwgICKBPnz5kZmYW+U68/PLLZGdn4+/vj6+vr2WySEl2gZpk0LFjxxLvg0ZT0RjFuelvNtq1ayfXyvei0RRHbGwsDRo0qGozyMhQ+bvS01WR7ICAqraoZPbs2cOHH37I3Llzy7V/bm4uQUFBLFq0CE9PzzLtO378eAYNGsTw4cPLde4bzZQpUxg7dmyROKFbgU8++YQmTZowePDgqjalypg8eTKDBw8u1uN3s/x2aG5NDMPYJSLtCvdrea/R3AAcHaFTJ/jzTzh0SOXzql+/qq0qnrZt2xIWFobJZCqzp+rQoUMMGjSIoUOHlllw3Yq89957VW1CuXnyySer2oQqx9fXt0zpPzSa60V7ujS3NTfbf6v796vm6KhqNzo4VLVFGo2mOG623w7NrUVJni4d06XR3EB8faFuXTXcuG2bmtmo0Wg0mjsDLbo0mhuIYahhRnt7iI2FYlJQaTQajeY2RYsujeYG4+SkcngB7N1bsDi2RqPRaG5ftOjSaKqARo3Ay0ulj9i6VWWt12g0Gs3tjRZdGk0lY21tTWBgID4+PgQEBPDhhx+Sm5tLYCDEx+/kk0+eviWGGcePH18gkWh+nnnmGTZu3GhZTkhIwNbWtkDR5hvN22+/XennCA8PZ9WqVZblFStW8M4775TrWPmLa5dEQkICHTp0oG3btpZC0+W1tSLtGj9+PB4eHgQEBNCqVSsefPBBYmJirnnsmTNnWpK+lpWKuJ7evXsXyb6v0VQmWnRpNJWMo6Mj4eHhHDx4kD/++INVq1bx2muvYW0No0e3Y9y4WRw4oJKn3ookJSVZahOaWbRoER07drxm6ZfKpCpE1+DBg5k6dWqlne/PP//E29ubPXv20LVr1zLtW16RUlree+899u7dy9GjRy1pR7Kysq66T1WIrvyMHTuWzz777LqOodGUBS26NJrCHDkCixZVSpR73bp1+eqrr/jkk08QEQ4fXs+nnw7CZIIffthOp06daNu2LZ06deLo0aOAKody33334e/vz8iRI+nQoYPlP/Vq1arxr3/9i4CAADp27Mi5c+cAOHnyJL169cLf359evXpx6tQpQIkhX19fAgICLCLJZDIxZcoU2rdvj7+/v8U7JSI8+eSTtGnThoEDBxIfH1/sNS1evNhSVNrM/Pnz+eCDDzhz5ozF42EymRg/fjy+vr74+fkxY8YMoqKiCAoKsuwXGRlJcHAwAM2aNeOf//wnoaGhtGvXjt27d9OvXz9atGjBF198AagSQN26dWPo0KG0adOGxx57jNzcXKZOnUpGRgaBgYGMGTMGgA8//BBfX198fX2ZOXMmANHR0Xh7ezNx4kR8fX0ZM2YMa9asoXPnznh6erJ9+3ZAlfsp/NlkZWXxyiuvsHDhQktW9Dlz5ljyX507d46hQ4cSEBBAQECAJUN8aSjucw0PD+eFF15g1apVloz5q1evJjQ0lKCgIEaMGGEpHbVjxw46depEQEAAISEhJCcnF7E1LS2Nhx56iPbt29O2bVtL5YKMjAxGjRpl+b7lz8xfGgzD4Nlnn6V+/fqW4trF2Tlr1ixiY2MJCwsjLCysxO0q83oGDx5cpf8YaO5AROSmb8HBwaLRlIeYmJiy7XD4sEiHDiJt26rXw4ev2wZnZ+cifdWrV5ezZ8/KunXrpH//gbJwoch//5ssp05li4jIH3/8IcOGDRMRkffee08effRRERHZv3+/WFtby44dO0REBJAVK1aIiMiUKVPkjTfeEBGRQYMGyZw5c0RE5JtvvpF77rlHRER8fX3lzJkzIiJy4cIFERH58ssvLftlZmZKcHCwHD9+XJYsWSK9e/eWnJwciYmJETc3N1m0aFGRa3nwwQctNoiInDp1Slq2bCkiItOmTZMPPvhARER27twpvXv3tmxnPn+PHj1kz549lu1nzZolIiJNmzaVzz77TEREnnnmGfHz85NLly5JfHy81KlTR0RE1q1bJ/b29hIVFSU5OTnSu3dvi4357/vOnTvF19dXUlNTJSUlRdq0aSO7d++WEydOiLW1tezbt09MJpMEBQXJhAkTJDc3V5YvX265b8nJyZKdXfSzmT17tjzxxBOW8+Rfvu+++2TGjBkiIpKTkyMXL14scu/y071792t+rvmPn5CQIF27dpXU1FQREXnnnXfktddek8uXL4uHh4ds3769gO2FbZ02bZrMnTvX8ll4enpKamqqfPDBBzJhwgQREdm7d2+B71tJjBs3rsh3Y/LkyfLOO++UaKeI+owTEhKq9HpatmwpiYmJRa6pzL8dGk0+gJ1SjJ7RGek1mvzs3w9ZWdCwocrpsH8/eHtX+GkkX4Iua2vw84M1a5K5775xpKREYhiGpfDx5s2bmTx5MqAyaOcvOWNnZ8egQYMACA4O5o8//gDgr7/+YunSpYAaQnnhhRcAVfR6/Pjx3HfffQwbNgxQ3oV9+/ZZ4rWSk5OJjIxk48aNjB49Gmtraxo0aEDPnj2LvZa4uDjq1KljWV6wYAH33XcfoOpCPvzwwzz33HM0b96c48eP89RTTzFw4ED69u0LqJqDs2fP5sMPP2ThwoUW7xJgKVHj5+dHamoqLi4uuLi44ODgwMWLFwEICQmhefPmAIwePZrNmzcXKSO0efNmhg4dirOzMwDDhg1j06ZNDB48GA8PD/z8/ADw8fGhV69eGIaBn58f0dHRlnsybtw4IiMLfjZXY+3atXz//feAiutzc3O75j5mSvpc87Nt2zYOHTpE586dAcjKyiI0NJSjR4/i7u5uqSlZUiHw1atXs2LFCkstx8zMTE6dOsXGjRt5+umnAfD39y93iSPzd7wkO2+W66lbty6xsbHUqlWrXNep0ZQFLbo0mvz4+YGdnRJctrZquYI5fvw41tbW1K1bl8OHDwNqJuOTT76Mp2cYL764DGfnaHr06AEUFGiFsbW1xTAMQD3Yc3Jyit3OvM0XX3zB33//zS+//EJgYCDh4eGICB9//DH9+vUrsM+qVass+10NR0dHMjMzLcvz58/n3LlzzJs3D1CZvSMjI/H09GTv3r38/vvvfPrpp/z44498++233Hvvvbz22mv07NmT4ODgAg8/e3t7AKysrCzvzcvmay1sY3E2X+0eFj5u/nOaz/Hyyy8TFhbGsmXLiI7O+2wqi9J8riJCnz59igyP7du3r1Sfm4iwZMkSvLy8iqwrzf7XYs+ePfTq1atEO4uzpyquJzMzs8KKlms010LHdGk0+fH2hjlzYOpU9VrBXq6EhAQee+wxnnzyyQIPAisrsLNLpmbNhhw8CF99NceyrkuXLvz444+Aqm24f//+a56nU6dOLFiwAIB58+bRpUsXAKKioujQoQOvv/46tWvX5vTp0/Tr14/PP//c4r2JiIggLS2Nbt26sWDBAkwmE3Fxcaxbt67Yc7Vu3Zpjx44BcPToUdLS0oiJiSE6Opro6GimTZvGggULSExMJDc3l3vvvZc33niD3bt3A+Dg4EC/fv2YNGkSEyZMKOMdVfFWJ06cIDc3l4ULF1qu1dbW1nJN3bp1Y/ny5aSnp5OWlsayZcvKFIienJxMw4YNAZgzZ46l38XFhZSUlGL36dWrF59//jmg4tkuXbpk6S/NzL5r0bFjR7Zs2WK59+np6URERODt7U1sbCw7duwAICUlhZycnCK29uvXj48//tgiSPfs2QOoe2UWzAcOHGDfvn2WfR588MECnsjiEBFmzZpFXFwc/fv3L9FOKHj/quJ6RISzZ8/SrFmzUtxxjeb6qVTRZRhGf8MwjhqGccwwjCJTegzDcDMM42fDMPYahnHQMIyy/+JqNBWNtzeMGFFhgssc0O3j40Pv3r3p27cv06dPL7LdK6+8wJIl03jppc7ExuYl7nr88cdJSEjA39+f//znP/j7+19zqGrWrFnMnj0bf39/5s6dy0cffQTAlClT8PPzw9fXl27duhEQEMDEiRNp06YNQUFB+Pr68o9//IOcnBxL0Wo/Pz8mTZpE9+7diz3XwIEDWb9+PaC8XEOHDi2w/t5772X+/PnExMTQo0cPAgMDGT9+PP/+978t24wZMwbDMCxDjmUhNDSUqVOn4uvri4eHh+X8jz76KP7+/owZM4agoCDGjx9PSEgIHTp0YOLEibRt27bU53jhhReYNm0anTt3xpQvqVpYWBiHDh2yBHPn56OPPmLdunX4+fkRHBzMwYMHyc3N5dixY9SsWbPM11mYOnXqMGfOHEaPHo2/vz8dO3bkyJEj2NnZsXDhQp566ikCAgLo06cPmZmZRWx9+eWXyc7Oxt/fH19fX15++WUAJk2aRGpqKv7+/rz77ruEhIRYzrlv3z7c3d2LtWfKlCmWlBE7duxg3bp12NnZlWgnqM9owIABhIWFVcn17Nq1i44dO2Jjowd9NDeGSit4bRiGNRAB9AHOADuA0SJyKN82/wTcRORFwzDqAEeB+iJSYJ6xLnitKS+3WtHa9HRYuRJycqBvX6hdW3lJsrOzcXBwICoqil69ehEREYGdnV1Vm2uhS5curFy5kurVq5dr//fff5/k5GTeeOONMu23fv163n//fVauXFmu895oDhw4wLfffsuHH35Y1aaUmUuXLvHwww+zaNGiqjalwpg8eTKDBw+mV69eRdbdar8dmpuLkgpeV6a8DwGOicjxKwYsAO4BDuXbRgAXQ42zVAOSgOKDUjSaOwAnJxXfdfCgiuEPC1PDLGFhYWRnZyMifP755zeV4AL44IMPOHXqVLlE19ChQ4mKimLt2rUVb9hNhq+v7y0puEAFsN9OggvU51Gc4NJoKovK9HQNB/qLyMQry2OBDiLyZL5tXIAVgDfgAowUkV8KH0t7ujTl5Vb8b/XyZVixArKzoU8fyDcxUKPR3CBuxd8Ozc1DSZ6uyozpKm66SGGF1w8IBxoAgcAnhmEUPx9Yo7lDsLdX3i5Q3i6NRqPR3B5Upug6AzTOt9wIiC20zQRg6ZVcYseAEyivl0ZzR+PtrTJXnD0LJSSC12g0Gs0tRmWKrh2Ap2EYHoZh2AGjUEOJ+TkF9AIwDKMe4AUcr0SbNJpbAju7vMmT+/ZBJUUBaDQajeYGUmmiS0RygCeB34HDwI8ictAwjMcMw3jsymZvAJ0Mw9gP/Am8KCKJlWWTRnMr4eWlxFd8vPZ2aTQaze1ApebpEpFVItJKRFqIyFtX+r4QkS+uvI8Vkb4i4iciviLyQ2Xao9FUFcuWLcMwDEt+IlCBuuZyNevXr7eUfVmxYgXvvPMOtrbQurXa9nq8Xc888wwbN24EYOXKlbRt25aAgADatGljKW5dWcycOZP09PRKPUd0dDT/+9//LMs7d+60lH0pK+PHj7eUQyqJy5cv07t372Jzc5XV1oq0q7htqlWrVqbz5P8elkR4eDirVq0q03HzU57vRH67Vq5cWWyeO43mVkBnpNdobgDz58+nS5culizxAA0aNCj2QTp48GCmTlW5hFu1UoH1CQkqvqusJCUlsW3bNrp160Z2djaPPvooP//8M3v37mXPnj2VXs6mKkRXu3btmDVrVqWdb8+ePWRnZxMeHs7IkSPLtG95RdfNRFWIrvwMHDiQFStWVPr3SqOpDK4pugzD6GwYxh+GYUQYhnHcMIwThmHouCuNppSkpqayZcsWvvnmmwKiKzo6Gl9f3yLbz5kzhyefVJlVHnlkPMuWPc2rr3YiKKg5ixYpkZabm8vjjz+Oj48PgwYN4q677ipWwC1evJj+/fsDeeVTzLUN7e3t8fLyIiUlBQ8PD0vJnEuXLtGsWTOys7Pp0aMHzz77LN26daN169bs2LGDYcOG4enpyUsvvWS5Dm9vb8aNG4e/vz/Dhw8nPT2dWbNmERsbS1hYGGFhYYASn+aM+C+++KLFzmrVqvHiiy8SHBxM79692b59Oz169KB58+asWLHCcp6uXbsSFBREUFAQW7duBWDq1Kls2rSJwMBAZsyYUcArkpqayoQJE/Dz88Pf358lS5aU+nNr1qwZ06dPJygoCD8/P44cOUJ8fDwPPPAA4eHhBAYGEhUVxa5du+jevTvBwcH069ePuLg4AI4dO0bv3r0JCAggKCiIqKioIraaTCamTJlC+/bt8ff3t3geRYQnn3ySNm3aMHDgQOKvc3x5/fr19OjRg+HDh+Pt7c2YMWMs5XJ+++03vL296dKli6VIOkBaWhoPPfQQ7du3p23btvz0009kZWXxyiuvsHDhQounr7jtQCX1ff755y33/uOPPy72O7F69WpCQ0MJCgpixIgRpKamXtUuwzDo0aPHLZMQV6MpgIhctQFHgAFAXaCWuV1rv4pswcHBotGUh5iYmIIdgwaplp/XXlN9f/+d1/frr6rv44/z+s6fV30PPlgmG+bOnSsPPfSQiIiEhobKrl27RETkxIkT4uPjIyIi69atk4EDB4qIyOzZs+WJJ54QEZFx48bJvfcOl0WLTPKf/xyUZs1aiIjIokWLZMCAAWIymSQuLk6qV68uixYtKnLuBx98UFasWGFZfvjhh6VOnToyatQo+eGHH8RkMomIyPjx42XZsmUiIvLll1/Kc889JyIi3bt3lxdeeEFERGbOnCnu7u4SGxsrmZmZ0rBhQ0lMTJQTJ04IIJs3bxYRkQkTJsh7770nIiJNmzaVhIQEEVGfRePGjSU+Pl6ys7MlLCzMck5AVq1aJSIiQ4YMkT59+khWVpaEh4dLQECAiIikpaVJRkaGiIhERESI+Xch/70rvPzCCy/I5MmTLeuSkpKu+lmNGzfOch+bNm0qs2bNEhGRTz/9VB5++OEix8/KypLQ0FCJj48XEZEFCxbIhAkTREQkJCREli5Vk7MzMjIkLS2tiK1ffvmlvPHGGyIikpmZKcHBwXL8+HFZsmSJ9O7dW3JyciQmJkbc3NyK/XxLst2Ms7OzxWZXV1c5ffq0mEwm6dixo2zatEkyMjKkUaNGEhERIbm5uTJixAiLfdOmTZO5c+eKiMiFCxfE09NTUlNTC3w/r7bdZ599JsOGDZPs7GwRETl//rzlvpq/EwkJCdK1a1dJTU0VEZF33nlHXnvttavaJSLyww8/yJNPPnnV+3G9FPnt0GjKALBTitEzpRleTBaRX0UkXkTOm1slaUCN5rZj/vz5jBo1CoBRo0Yxf/78Mu0/dOgQWre2olGjNpw7dw6AzZs3M2LECKysrKhfv77Fa1CYuLg46uTLrvr111/z559/EhISwvvvv89DDz0EwMSJE5k9ezYAs2fPLlB4evDgwQD4+fnh4+ODu7s79vb2NG/enNOnTwPQuHFjOnfuDMADDzzA5s2bi9iyY8cOevToQZ06dbCxsWHMmDGWWDM7OzuLR87Pz4/u3btja2uLn58f0dHRAGRnZ/PII4/g5+fHiBEjOHToUJFzFGbNmjU88cQTluUaNWpcc5/8DBs2DIDg4GCLHfk5evQoBw4coE+fPgQGBvLmm29y5swZUlJSiImJsdSBdHBwwMnJqcj+q1ev5vvvvycwMJAOHTpw/vx5IiMj2bhxI6NHj8ba2poGDRrQs2fPa9qav4B6cX0hISE0atQIKysrAgMDiY6O5siRI3h4eODp6YlhGDzwwAMFbHvnnXcIDAykR48eZGZmcurUqWKvobjt1qxZw2OPPWapa1hcvclt27Zx6NAhOnfuTGBgIN999x0nT568ql0AdevWJTa2cAYijebmpzRlgNYZhvEesBS4bO4Ukd2VZpVGU1n8/HPRvldeKdrXv79q+alZs/j9r8L58+dZu3YtBw4cwDAMTCYThmHw7rvvlvoY9vb2tGypSgPl5goXL2IZGroWjo6OZGZmFujz8/PDz8+PsWPH4uHhwZw5c+jcuTPR0dFs2LABk8lUYNjT3t4eACsrK8t783JOjqraVfiBX5wAuJrNtra2ln3ynyf/OWbMmEG9evXYu3cvubm5ODg4XPP6RaRYW0qL2Q5ra2uLHYWP7+Pjw19//VWg/9KlS6U6vojw8ccf069fvwL9q1atKrPdtWrV4sKFC5blpKQkateubVnO/9nlv56SziMiLFmyBC9zpt4r/P3336XarjT3XkTo06dPkX9EwsPDr7pvZmYmjo6OVz22RnMzUhpPVwegHfA28MGV9n5lGqXR3C4sXryYBx98kJMnTxIdHc3p06fx8PAo1hN0NeztoXlz9f7IEVVgesmSJeTm5nLu3DnWr19f7H6tW7fm2LFjgIpvyr9deHg4TZs2tSw/+OCDjB49uoCXq7ScOnXKIjzMkwYAXFxcSElJAaBDhw5s2LCBxMRETCYT8+fPp3v37qU+R3JyMu7u7lhZWTF37lxMJlORcxSmb9++fPLJJ5Zlsyh58MEH2b59e5mvszBeXl4kJCRYrj07O5uDBw/i6upKo0aNWL58OaBmPKanpxextV+/fnz++eeWeLqIiAjS0tLo1q0bCxYswGQyERcXx7p16yz7TJs2jWXLlhWxpUePHixcuJCsrCxAxQaW5AE14+3tzYkTJ4iKigIoIH769evHxx9/bBHLe/bsAYre75K269u3L1988YVF3CUlJRXZv2PHjmzZssXyHU1PTyciIuKqdpnvU3HxkBrNzc41RZeIhBXTru3r1mg0zJ8/3zLEZObee+8t1ww2syMhOhruuuteGjVqhK+vL//4xz/o0KEDbm5uRfYZOHCgRWiJCO+++y5eXl4EBgYyffp05syZY9l2zJgxXLhwgdGjR5fZttatW/Pdd9/h7+9PUlISkyZNAuDRRx9lwIABhIWF4e7uzr///W/CwsIsweX33HNPqc/x+OOP891339GxY0ciIiJwdnYGwN/fHxsbGwICApgxY0aBfV566SUuXLiAr68vAQEBFvGyb98+3N3dy3ydhbGzs2Px4sW8+OKLBAQEEBgYaAnwnzt3LrNmzcLf359OnTpx9uzZIrZOnDiRNm3aEBQUZPksc3JyGDp0KJ6envj5+TFp0qQC4nT//v3Ur1+/iC2DBg2ia9euBAcHExgYyJYtW/jPf/5zVfsdHBz46quvGDhwIF26dCkgwl9++WWys7Px9/fH19eXl19+GYCwsDAOHTpkCaQvabuJEyfSpEkT/P39CQgIsHzn838n6tSpw5w5cxg9ejT+/v507NiRI0eOXNUugHXr1jFw4MByfGIaTdVyzYLXhmG4AdOBble6NgCvi0hyJdtmQRe81pSX261o7aZNcPo0+PhAixapVKtWjfPnzxMSEsKWLVuKfRh36dKFlStXUr169asee/Hixfz000/MnTu3TDZFR0czaNAgDhw4UKb9qopLly7x8MMPs2jRoqo2pVz069eP33//varNqDLOnTvH/fffz59//lmp57ndfjs0N5aSCl6XJqbrW+AAcN+V5bHAbGBYxZmn0WhKQ+vWSnRFRsLTTw8iOfkiWVlZvPzyy8UKLoAPPviAU6dOXVV0PfXUU/z666/XlX/pVsHV1fWWFVzAHS24QA1lf/DBB1VthkZTLkrj6QoXkcBr9VUm2tOlKS+343+rq1dDYiK0a6eSp2o0morndvzt0Nw4SvJ0lSaQPsMwjC75DtQZyKhI4zQaTekxlwY6ckQXwtZoNJpbidIML04CvrsS22UAScD4yjRKo9GUTKNG4OICKSlw5gw0blzVFmk0Go2mNJRm9mK4iAQA/oCfiLQVkb2Vb5pGoykOw8ibyXj4cNXaotFoNJrSU6KnyzCMB0TkB8MwnivUD4CIfFjJtmk0mhJo3hz27VOxXYmJkC8Hpkaj0WhuUq7m6XK+8upSTKtWyXZpNLcN1tbWBAYG4uvry913383Fixev+5g2NtCypXofEVG2fXfu3MnTTz993TaMHz++2CLbAM8884ylxM/KlStp27YtAQEBtGnTxlLUubKYOXMm6enplXqO6OjoArnWrueeXu0+mrl8+TK9e/e25Ma6Hlsr0q5XX32Vhg0bEhgYiKenJ8OGDStVeaY5c+aUu4xPRVzPqFGjiIyMLNf5NZrroUTRJSLmX8Y1IvJa/gZUboIUjeY2wtHRkfDwcA4cOEDNmjX59NNPK+S4np5qqPHUKShU6eeqtGvXjlmzZlWIDcWRlJTEtm3b6NatG9nZ2Tz66KP8/PPP7N27lz179tCjR49KOzdUjeiq7Hu6Z88esrOzCQ8PZ+TIkWXat7wipbQ8++yzhIeHExkZyciRI+nZsycJCQlX3acqRFd+Jk2aVKZSXBpNRVGa2Ysfl7JPo9Fcg9DQUGJiYgCIioqif//+BAcH07VrV44cOQKo5I9Dhw4lICCAgIAAS4bzDz/8EF9fX3x9fZk5cybOztCwISxZ8gZt2njTp08fRo8ezfvvqypdPXr04MUXXyQkJIRWrVqxadMmANavX8+gQYMAuOuuuwgMDCQwMBA3Nze+++47TCYTU6ZMoX379vj7+1s8UyLCk08+SZs2bRg4cCDx8fHFXuPixYstxatTUlLIycmhVq1agKr/5+XlRUpKCh4eHpbyN5cuXaJZs2ZkZ2fTo0cPnn32Wbp160br1q3ZsWMHw4YNw9PTk5deeglQD15vb2/GjRuHv78/w4cPJz09nVmzZhEbG0tYWJilBM78+fPx8/PD19eXF1980WJntWrVePHFFwkODqZ3795s376dHj160Lx5c1asWGE5T9euXQkKCiIoKMjyWUydOpVNmzYRGBjIjBkzCtzT1NRUJkyYgJ+fH/7+/ixZsqTU349mzZoxffp0goKC8PPz48iRI8THx/PAAw8QHh5OYGAgUVFR7Nq1i+7duxMcHEy/fv2Ii4sD4NixY/Tu3duS8T8qKqqIrdf7+V6NkSNH0rdvX4soKs7OxYsXs3PnTsaMGUNgYCAZGRk3/Hq6du3KmjVriq2nqdFUKiJSbANCgf8DTgPP5WuvAntL2q8yWnBwsGg05SEmJqZgx6BBJbdff83b7tdfr75tGXB2dhYRkZycHBk+fLj8euU8PXv2lIiICBER2bZtm4SFhYmIyH333SczZsyw7HPx4kXZuXOn+Pr6SmpqqqSkpEibNm1k9+7d8uuvO6RJkwBZsCBdLl68JC1btpT33ntPRES6d+8uzz33nIiI/PLLL9KrVy8REVm3bp0MHDiwgI07d+4UPz8/uXjxonz55ZfyxhtviIhIZmamBAcHy/Hjx2XJkiXSu3dvycnJkZiYGHFzc5NFixYVud4HH3xQVqxYYVl++OGHpU6dOjJq1Cj54YcfxGQyiYjI+PHjZdmyZSIi8uWXX1ps7d69u7zwwgsiIjJz5kxxd3eX2NhYyczMlIYNG0piYqKcOHFCANm8ebOIiEyYMMFy3U2bNpWEhAQRUZ9/48aNJT4+XrKzsyUsLMxyTkBWrVolIiJDhgyRPn36SFZWloSHh0tAQICIiKSlpUlGRoaIiERERIj5t6jwPcy//MILL8jkyZMt65KSkorco/yMGzfOch+bNm0qs2bNEhGRTz/9VB5++OEix8/KypLQ0FCJj48XEZEFCxbIhAkTREQkJCREli5dKiIiGRkZkpaWVsTW6/188zN9+nTLfTczY8YMeeyxx65qZ/fu3WXHjh1Vej29e/eWnTt3lnhtRX47NJoyAOyUYvTM1VJG2KFit2xQcVxmLgHDK1j7aTS3LRkZGQQGBhIdHU1wcDB9+vQhNTWVrVu3MmLECMt2ly9fBmDt2rV8//33gIoHc3NzY/PmzQwdOtRSb3DYsGFs2rQJkymXTp3uwWRy5NIluPvuuwuce9gwVTgiODiY6OjoYu1LTExk7Nix/Pjjj7i5ubF69Wr27dtniX9JTk4mMjKSjRs3Mnr0aKytrWnQoAE9exZfgjUuLo46depYlr/++mv279/PmjVreP/99/njjz+YM2cOEydO5N1332XIkCHMnj2b//73v5Z9Bg8eDICfnx8+Pj6WOonNmzfn9OnTVK9encaNG9O5c2cAHnjgAWbNmsXzzz9fwJYdO3bQo0cPiz1jxoxh48aNDBkyBDs7O4tHzs/PD3t7e2xtbfHz87Pcq+zsbJ588knCw8OxtrYmohQBdGvWrGHBggWW5Ro1alxzn/zk/8yWLl1aZP3Ro0c5cOAAffr0AcBkMuHu7k5KSgoxMTGWWp8ODg7FHv96P99rIVeSx5Vk581yPXXr1iU2Npbg4OByXadGUx5KFF0isgHYYBjGHBE5eQNt0mgqj59/Lt12/furVgGYY7qSk5MZNGgQn376KePHj6d69eqEh4eX6hjmB1kxa6hZU70rTg/Y29sDSrwVN5RiMpkYNWoUr7zyCr6+vpZzffzxx/Tr16/AtqtWrbLMXr4ajo6OZBYKMvPz88PPz4+xY8fi4eHBnDlz6Ny5M9HR0WzYsAGTyWQ5f367raysLO/Ny+brKGxLcbaVfN/A1tbWsk/+8+Q/x4wZM6hXrx579+4lNze3xAd/4XOW5j6VxLU+MxHBx8eHv/76q0D/pUuXSnX86/18r8WePXto165diXYWZ09VXE9mZiaOjo6lOodGU1GUJqYr3TCM9wzDWGUYxlpzq3TLNJrbDDc3N2bNmsX777+Po6MjHh4elhqAIsLevSr9Xa9evfj8888BJYouXbpEt27dWL58Oenp6aSlpbFs2TK6du1Kly5d2Lr1Z3JzMzl5MpWff/6lTDZNnToVf39/Ro0aZenr168fn3/+uSXeKiIigrS0NLp168aCBQswmUzExcWxbt26Yo/ZunVrjh07Bqj4pvXr11vWhYeH07RpU8vygw8+yOjRo5kwYUKZ7AZVg8/8oJ4/fz5duqjCGS4uLqSkpADQoUMHNmzYQGJiIiaTifnz59O9e/dSnyM5ORl3d3esrKyYO3cuJpOpyDkK07dvXz755BPL8oULFyzXun379jJfZ2G8vLxISEiwXHt2djYHDx7E1dWVRo0asXz5ckB5TtPT04vYWp7Pd9q0aSxbtuyati1ZsoTVq1czevToEu2EgvevKq7HvJ2Pj0/pbrpGU0GURnTNA44AHsBrQDSwoxJt0mhuW8ypExYsWMC8efP45ptvCAgIwMfHh59++gmAjz76iHXr1uHn50dwcDAHDx4kKCiI8ePHExISQocOHZg4cSJt27alffv23HPPYP71rwBmzBhGixbtcHNzK7U977//PqtXr7YE069YsYKJEyfSpk0bgoKC8PX15R//+Ac5OTkMHToUT09P/Pz8mDRpUoniZeDAgRahJSK8++67eHl5ERgYyPTp05kzZ45l2zFjxnDhwgVGjx5d5nvZunVrvvvuO/z9/UlKSmLSpEkAPProowwYMICwsDDc3d3597//TVhYmCUY+5577in1OR5//HG+++47OnbsSEREhGV419/fHxsbGwICApgxY0aBfV566SUuXLiAr68vAQEBlof9vn37ih1eKyt2dnYsXryYF198kYCAAAIDAy0B/nPnzmXWrFn4+/vTqVMnzp49W8TW8ny++/fvL7Gg+owZMywpI3744QfWrl1LnTp1rmrn+PHjeeyxxwgMDMRkMt3w6zl37hyOjo4V8nloNGWhNAWvd4lIsGEY+0TE/0rfBhEp/b+L14kueK0pL3dC0drU1FRycqqxbFk6b77ZjfnzvyIkJKhKberSpQsrV66kevXqV91u8eLF/PTTT8ydO7dMx4+OjmbQoEEcOHDgOqy8cVy6dImHH37Y4tm81ejXrx+///57VZtRYcyYMQNXV1cefvjhEre5E347NJVHSQWvS1N7MfvKa5xhGAOBWKBRRRqn0WjKz6OPPsqhQ4c4fz6TTp3GUaNG1QougA8++IBTp05dVXQ99dRT/Prrr6xaterGGVZFuLq63rKCC7itBBdA9erVGTt2bFWbobkDKY2naxCwCWiMys/lCrwmIisq3zyF9nRpysud9N/qyZOwZQu4ucFdd6nEqRqNpnzcSb8dmoqn3J4uEVl55W0yEFbRhmk0moqhcWNwdITkZIiPh3r1qtoijUaj0eTnagWvPwZKdIOJyPUXb9NoNBWGlRW0aAEHDkBkpBZdGo1Gc7NxNU+XHs/TaG4xWraEgwfhzBnIyFCeL41Go9HcHFwtOep3N9IQjUZz/Tg5qXqMZ87A8eOg0xBpNBrNzcM183QZhrEuf1JUnRxVoyk958+ft+TAql+/Pg0bNiQwMJDq1avTpk2bSjnnsWPLOXPmEMeOwTXmyVwXr776qqW4dmFmzpxpKWUEkJOTQ+3atZk2bVq5z3fx4kU+++yzUm1brVq1Uh83NzeXp59+Gl9fX/z8/Gjfvj0nTpwor5nXJDo62lIQujJZvnw5hw4dsiy/8sorrFmzpsTt9+/fz/jx4yvdLo3mTqY0yVGfB6ZcaS8D4ZRy6NEwjP6GYRw1DOOYYRhTS9imh2EY4YZhHDQMY0Mp7dZobglq1apFeHg44eHhPPbYYzz77LOWZSura//5FVcG5lps3LicpKRDpKVBbGx5rL4+cnJy+Pbbb7n//vstfatXr8bLy4sff/zxqqV5rkZZRFdZWLhwIbGxsezbt4/9+/ezbNmya+YXux6qSnS9/vrr9O7du8Tt/fz8OHPmDKdOnap02zSaO5Vr/uqLyK58bYuIPAd0uNZ+hmFYA58CA4A2wGjDMNoU2qY68BkwWER8gBGFj6PR3K6YTCYeeeQRfHx86Nu3LxkZGQD06NGDf/7zn3Tv3p2PPvqIXbt20b17d4KDg+nXrx9xcXEA/Pe//6V9+/YEBARw7733kp6eztatW1mxYgU//DCFadMCWb8+iqioKPr3709wcDBdu3blyJEjgMoK/vTTT9OpUyeaN29uKRgM8N5779G+fXv8/f2ZPn26pf+tt97Cy8uL3r17c/To0WKva+3atQQFBWFjkxe9MH/+fCZPnkyTJk3Ytm2bpf+3334jKCiIgIAAevXqBRT1oPn6+hIdHc3UqVOJiooiMDCQKVOmXNVOM2PHjrVk+geVAX/FioLZbuLi4iylfgAaNWpEjRo1+Oabb3j22Wct2/33v//lueeeIzo6Gm9vbyZOnIivry9jxoxhzZo1dO7cGU9PT0upn1dffZWxY8fSs2dPPD09LQW9p06dyqZNmwgMDGTGjBlkZmYyYcIE/Pz8aNu2rSWD/Zw5cxgyZAh33303Hh4efPLJJ3z44Ye0bduWjh07kpSUdM3vwZQpUwgMDCQqKorx48dbPuMdO3bQqVMnAgICCAkJsZTVufvuuwsU69ZoNBWMiFy1ATXztdpAP+BoKfYLBX7PtzwNmFZom8eBN691rODgYNFoykNMTEzBjkGDytYmTy5+/3Iwffp0ee+990RE5MSJE2JtbS179uwREZERI0bI3LlzRUSke/fuMmnSJBERycrKktDQUImPjxcRkQULFsiECRNERCQxMdFy7H/9618ya9YsEREZN26czJu3SObPF/nf/0S6d+8pERERIiKybds2CQsLs2w3fPhwMZlMcvDgQWnRooWIiPz+++/yyCOPSG5urphMJhk4cKBs2LBBdu7cKb6+vpKWlibJycnSokULy/Xk55VXXrHYIiKSnp4u7u7ukpaWJl9++aU89dRTIiISHx8vjRo1kuPHj4uIyPnz54vcJxERHx8fOXHihJw4cUJ8fHws/SXZKSLi7OwsIiLr16+Xe+65R0RELl68KM2aNZPs7OwC9p4+fVqaNm0qAQEB8txzz8nu3btFRCQ1NVWaN28uWVlZIiISGhoq+/bts3x2+/btE5PJJEFBQTJhwgTJzc2V5cuXW843ffp08ff3l/T0dElISJBGjRpJTEyMrFu3TgYOHGg5//vvvy/jx48XEZHDhw9L48aNJSMjQ2bPni0tWrSQS5cuSXx8vLi6usrnn38uIiLPPPOMzJgx45rfg0WLFlnWmZcvX74sHh4esn37dhERSU5OttyTzZs3y6Byfr9vN4r8dmg0ZQDYKcXomdJkpN+FSh1hADnACaDk2gl5NARO51s+Q1EPWSvA1jCM9YAL8JGIfI9Gcwfg4eFBYGAgAMHBwURHR1vWjRw5EoCjR49y4MAB+vTpAyjvmLle3IEDB3jppZe4ePEiqamp9OvXz7K/nR00aABHjqSybdtWRozIcyJfvnzZ8n7IkCFYWVnRpk0bzp07B6ihwNWrV9O2bVtAlRmKjIwkJSWFoUOH4uTkBMDgwYOLva64uDhat25tWV65ciVhYWE4OTlx77338sYbbzBjxgy2bdtGt27d8PDwAKBmzZplun8l2dmtWzfLNt27d+eJJ54gPj6epUuXcu+99xbwwIHybB09epS1a9eydu1aevXqxaJFi+jVqxc9e/Zk5cqVtG7dmuzsbPz8/IiOjsbDwwM/Pz8AfHx86NWrF4ZhWNabueeee3B0dMTR0ZGwsDC2b99eZOhy8+bNPPXUUwB4e3vTtGlTIiIiAAgLC8PFxQUXFxfc3Ny4++67ATUUuG/fPuDq34PiOHr0KO7u7rRv3x5Q2fLN1K1bl9iqGJPWaO4QSpMc1aOcxy4uH3bhYA4bIBjoBTgCfxmGsU1EIsp5To3m6vz8c9Xunw97e3vLe2tra8vwImAprCwi+Pj48NdffxXZf/z48SxfvpyAgADmzJljKTJtxtMTDh3KxdGxOrt3h1NcCFl+G+RKrJWIMG3aNP7xj38U2HbmzJkYpUhz7+joSGZmpmV5/vz5bNmyhWbNmgFqcsG6desQkWKPZ2NjQ25urmU5/7HyU5KdhRk7dizz5s1jwYIFfPvtt8VuY29vz4ABAxgwYAD16tVj+fLl9OrVi4kTJ/L222/j7e3NhAkTCmxvxsrKyrJsZWVVIA6v8PUVd73m+16SXdc6z7W+B8Wdr6TPMTMzE0edZ0SjqTRKM3vRwTCM5wzDWGoYxhLDMJ41DMOhFMc+gyodZKYRqm5j4W1+E5E0EUkENgIBpTVeo7nd8fLyIiEhwSK6srOzOXjwIAApKSm4u7uTnZ3NvHnzLPu4uLiQkpJC7drQoIErdep48MUXqu6fiLB3796rnrNfv358++23pKamAhATE0N8fDzdunVj2bJlZGRkkJKSws8lCNDWrVtz7NgxQBV63rx5M6dOnSI6Opro6Gg+/fRT5s+fT2hoKBs2bLDMFDTHKDVr1ozdu3cDsHv3bst683Vdy87CjB8/npkzZwLKK1WY3bt3W7w7ubm57Nu3j6ZNmwLQoUMHTp8+zf/+9z9Gjx591ftWHD/99BOZmZmcP3+e9evX0759+yLX0a1bN8vnFxERwalTp/Dy8ir1Oa71PSiMt7c3sbGx7Nixw7K/WcBFRETg6+tb5uvUaDSlozSzF78HfFB1Fz8BWgNzS7HfDsDTMAwPwzDsgFFA4XqNPwFdDcOwMQzDCTX8eLi0xms0tzt2dnYsXryYF198kYCAAAIDA9m6dSsAb7zxBh06dKBPnz54e3tb9hk1ahTvvfceQUFtsbeP4vHH5zF79jcEBATg4+NTILC8OPr27cv9999PaGgofn5+DB8+nJSUFIKCghg5ciSBgYHce++9dO3atdj9BwwYwMaNGwFYunQpPXv2LOCxueeee1ixYgWurq589dVXDBs2jICAAMuQ6r333ktSUhKBgYF8/vnntGrVClAzQTt37oyvry9Tpkwp0c7C1KtXj9atWxfwVOUnPj6eu+++G19fX/z9/bGxseHJJ5+0rL/vvvvo3LkzNWrUuOp9K46QkBAGDhxIx44defnll2nQoIHlHAEBAcyYMYPHH38ck8mEn58fI0eOZM6cOQXu17W41vegbdu2REVFWfrt7OxYuHAhTz31FAEBAfTp08fiTVy3bh0DBw4s83VqNJrSUZqC13tFJOBafSXsexcwE7AGvhWRtwzDeAxARL64ss0UYAKQC3wtIjMLH0cXvNaUlzu9aG12NixbBjk5MHCgKoZ9Ixg6dCjvvvsunp6eN+aEVyE9PR0/Pz92796NWzluwKBBg3j22WctsytLy6uvvkq1atV4/vnny3zOquDy5ct0796dzZs3F4l7uxO50387bhdEhKSMJGJTYolJiSE2JZb+LfvTwKVyP9tyF7wG9hiG0VFEtl05UAdgS2lOKiKrgFWF+r4otPwe8F5pjqfRaMqGrS00awbHjql6jO2K/ARUDu+88w5xcXFVLrrWrFnDQw89xHPPPVdmwXXx4kVCQkIKpLO4nTl16hTvvPOOFlyaW5KUyynEpMQQcynGIrBiLsUQlxrHZdPlAtu2rNmy0kVXSZTG03UY8ALMGfOaoIYAcwEREf9KtRDt6dKUH/3fKly4AL/+qgTYkCHqVaPRXB3923HzkZObQ1xKHGcunSEmJUa9XoohJiWGlKyioQVmXO1daVCtAQ1cVAttHEoTtyaVauv1eLr6V4I9Go3mBlGjBtSpAwkJEB2tZjVqNBrNzUpqViqnk09z5tKZAu1s2llyJbfYfRxsHGjo0pCGLg1p4NKAhq4NLSKrml3py4JVNqVJGXHSMIwAwBw1u0lErj79SaPR3FS0aqVEV0QEtGwJpcj8oNFoNJWGiHAh8wKnk09z+tLpvNdLp7mYebHYfQwM6jvXp6FrQxq5NlIiy1UJrZqONUuV0qaquaboMgxjMvAIsPRK1w+GYXwlIh9XqmUajabCaNwYHBwgOVmJr7p1q9oijUZzJyAinM84z+nk05xKPsWp5FOcvqTep2WnFbuPvbU9DV0a0titMY1dG1tEVgOXBthZ293gK6hYSjO8+DDQQUTSAAzD+A/wFyqFhEajuQWwslIergMHlLdLiy6NRlORiAjJl5M5efEkp5JPcTL5pHp/6RTp2enF7lPNrhqNXRvTxK0JjV0b09itMY1cG1HHqc4t4bUqD6URXQZgyrdsovhs8xqNphiqVatmSeAJqpDxzp07+eSTT8p8rPXr1/P++++zcuXKUu/To0cP3n//fdq0acfBg3D6NKSnw5VqPhqNRlMmMnMyOXnxJCeTTxJ9MZqTF08SnRzNpcuXit3exc6Fpm5NaeymBJa5udm73bbiqiRKI7pmA38bhrEMJbbuAb6pVKs0Gk2F4+SkhhlPnVIpJPwrfd6xRqO5lRER4lLjiL4YzYkLJ5TASj5JXGpcsds72TrRxLUJTas3palbU5pWb3rHiquSKE0g/YdXClJ3udI1QUT2VKpVGs0dQkJCAo899hinTqmMLDNnzqRz585s376dZ555hoyMDBwdHZk9e3aR0jBpaWk89dRT7N+/n5ycHF599VXuueceMjIymDBhAocOHaJ169YFajq2aqVEV1QU+PpSbD1GjUZz55GRnaHE1cUTnLhwghMXlcgqnOMKwMbKhkYujWhWvZlFYDWr3ozaTrW1uLoGZcmCZ6Byc+k7qrkluXv+3ZVy3J9HX70IdkZGBoGBgZblpKQkBg8eDMDkyZN59tln6dKlC6dOnaJfv34cPnwYb29vNm7ciI2NDWvWrOGf//wnS5YsKXDct956i549e/Ltt99aEnn27t2bL7/8EicnJ/bt28e+ffsICgqy7FOnjspKn5yshhmvlBjUaDR3COYM7ccvHOf4heOcuHiC4xeOl+i9quVYi2bVm+FR3YNm1ZvRrHozGro2xMZKJ9EtD6WZvfgKMAJYghJcsw3DWCQib1a2cRrN7YCjoyPh4eGWZXNMF6iM6YcOHbKsu3TpEikpKSQnJzNu3DgiIyMxDIPs7Owix129ejUrVqzg/fffByAzM5NTp06xceNGnn76aQD8/f3xzzeOaBjK27Vjh8pQr0WXRnP7Yh4ejEqK4viF40RdUK/Jl5OLbGtjZUMT1yZ41PDAo7qH5dXF3qUKLL99KY1UHQ20FZFMAMMw3gF2A1p0aW4pruWRqgpyc3P566+/cHR0LND/1FNPERYWxrJly4iOjqZHjx5F9hURlixZUmTYEbiqi79ZMwgPh/h4uHgRqle/rkvQaDQ3AbmSS8ylGI4lHSPqQhRRSVFEXYgiIyejyLbOts60qNECjxoeltdGro209+oGUJo7HA04AJlXlu2BqBK31mg0paZv37588sknTJkyBYDw8HACAwNJTk6mYcOGgPKMFUe/fv34+OOP+fjjjzEMgz179tC2bVu6devGvHnzCAsL48CBA+zbt6/Afra20Lw5HD2q0keEhFTqJWo0mgpGRIhJiSHyfCTHko5xLOkYxy8eJzMns8i2NR1r0qJGC1rUaEHzGs1pUbPFbZ2S4WanNKLrMnDQMIw/AAH6AJsNw5gFICJPV6J9Gs1tzaxZs3jiiSfw9/cnJyeHbt268cUXX/DCCy8wbtw4PvzwQ3r27Fnsvi+//DLPPPMM/v7+iAjNmjVj5cqVTJo0iQkTJuDv709gYCAhxagqT08luk6cULMYHRwq+0o1Gk15EBHi0+KJTIok4nyERWQV58Gq41SHljVb0rJmS4vIquFYowqs1pREaQpej7vaehH5rkItKgZd8FpTXnTR2pLZsAFiYsDPTzWNRpNHVf12JGcmE3E+gojzEUQmRRKZFFls/qvaTrVpUaMFrWq1okWNFrSs2RI3B7cbbq+meMpd8PpGiCqNRnPj8fZWoisyEtq0AWvrqrZIo7mzyDJlcfzCcY4mHiXifARHzx/lXNq5Itu52bvhWdMTz1qeeNb0pGXNltqDdYuio+Y0mjuUunWhZk1ISlLDjC1bVrVFGs3ti4hwLu0cRxOPcvT8UY4kHuHExRPk5OYU2M7e2t4isFrVakWrWq10DNZthBZdGs0dimEob9fWrSq+q0UL1afRaK6fyzmXiUyK5EjiEUsrnKrBwKCpW1Na1WqFVy0vvGp70di1MdZW2u18u1Ki6DIMY66IjDUMY7KIfHQjjdJoNDeGJk1U+ojkZIiLAx3+ptGUj/Pp5zmceJjDCYc5nHiY4xeOYxJTgW1c7V3xruWNV20vvGt707JmS5xsdRHUO4mrebqCDcNoCjxkGMb3FMpELyJJlWqZRqOpdKyswMsL9uyBw4e16NJoSoOIcDL5JIcSDnEo4RCHEw4Tnx5fYBsDg+bVm+Nd29vS6lerr4cJ73CuJrq+AH4DmgO7KCi65Eq/RqO5xWnRAvbvh3Pn4MIFqKHjczWaAmSZsog8H8nBhIMcSjjEkcQjpGWnFdjGydYJ71retK7Tmta1W9OqViscbR1LOKLmTqVE0SUis4BZhmF8LiKTbqBNGo3mBmJnp4LojxxRLTS0qi3SaKqWbFM259PP8+fePzmYcJCI8xFk5xYsxVXHqQ5t6rSxtCZuTbAydAV5zdUpTcqISYZhBABdr3RtFJF9V9tHo9HkYW1tjV++RFijRo1i6tSpJW7/9ttv889//tOy3KlTJ7Zu3Vrm84aHhxMbG8tdd91V7Po9e/bw6aef8vXXX7NjxxymTJlCzZqNsLFJpUWL5kyfPp1OnTqV+bzF0axZM3bu3Imrqyu9e/dm7dq12NjoeTyam4MsUxYJaQnEp8UTnxZPUmYSOck5/HjqR8s2Td2a4lPHB5+6PrSu3Zo6znWq0GLNrUppCl4/DTwKLL3SNc8wjK9E5ONKtUyjuU0oXPD6WhQWXeURXKBE186dO0sUXW+//TYvvfQSAPb20KfPSO699xPatIELF9YxbNgw1q1bR+vWrct1/uKws7OjV69eLFy4kDFjxlTYcTWasmAWWefSznEu9RwXMy8i5CUKNwwDVztXhnoPxbeuL61rt9aFnzUVQmn+1ZwIdBCRNADDMP4D/AVo0aW5pbj77rsr5bg//1z2QtrJycmEhISwYsUKvLy8GD16ND179iQqKoqMjAwCAwPx8fFh3rx5VKtWjdTUVNavX8+rr75K7dq1OXDgAMHBwfzwww8YhsGOHTuYPHkyaWlp2Nvb88cff/DKK6+QkZHB5s2bmTZtGiNHjrScPyUlhX379hEQEGDpM8dyRUbC4MFhPProo3z11VfMmDGDqKgonnjiCRISEnBycuK///0v3t7e/Pzzz7z55ptkZWVRq1Yt5s2bR7169Th//jyjR48mISGBkJAQ8le+GDJkCNOmTdOiS3PDyDZlE58Wz7m0c8SnxXMh40IBkWVlWFHbsTZ1netS17kudZzrEH82Xlez0FQ4pRFdBpB/3quJQjMZNRpNyZhFlBmzAPrkk08YP348kydP5sKFCzzyyCMAfPLJJyV6xvbs2cPBgwdp0KABnTt3ZsuWLYSEhDBy5EgWLlxI+/btuXTpEk5OTrz++uvs3LmTTz75pMhxdu7cia+vb4E+BweoXx/OnlV5u4KCgvjyyy8BePTRR/niiy/w9PTk77//5vHHH2ft2rV06dKFbdu2YRgGX3/9Ne+++y4ffPABr732Gl26dOGVV17hl19+4auvvrKcx9fXlx07dlznXdVoSsaUayIhPYFzqec4l3aO8xnnCwh/K8OKOk51qOtcl3rO9ajlVAsbKz3cral8SvMtmw38bRjGsivLQ4BvKs0ijaaSKI9HqiIoaXixT58+LFq0iCeeeIK9e/eW6lghISE0atQIgMDAQKKjo3Fzc8Pd3Z327dsD4Orqes3jxMXFUadO0ZgUP7880WV+SKWmprJ161ZGjBhh2e7y5csAnDlzhpEjRxIXF0dWVhYeHh4AbNy4kaVLVUTCwIEDqZFvSqS1tTV2dnakpKTg4qKHbDTXT67kkpSRxLnUc5xNPUtiemKBHFmGYVDbqTb1nOtRr1o9ajvV1iJLUyWUJpD+Q8Mw1gNdUB6uCSKyp7IN02hud3Jzczl8+DCOjo4kJSVZxNTVsLe3t7y3trYmJycHESlz7h9HR0cyMzOL9Nepk+ft2rBhD61btyY3N5fq1asXKxyfeuopnnvuOQYPHmwZ/jRzNZsuX76Mg4NDmWzWaMyICClZKZxNPcvZ1LPEp8WTZcqyrDcwqOFQg/rV6lOvWj3qONXB1tq2Ci3WaBSlkvoishvYXcm2aDR3FDNmzKB169a8/fbbPPTQQ/z111/Y2tpia2tLdnY2trale0h4e3sTGxvLjh07aN++PSkpKTg6OuLi4kJKSkqx+7Ru3ZoPPvig2HV+frBu3QYWLvyKDRvW4erqioeHB4sWLWLEiBGIiCUeLDk5mYYNGwLw3XffWY7RrVs35s2bx0svvcSvv/7KhQsXLOvOnz9PnTp1Sn19Gg2osjrn0s4RlxLH2dSzRfJkudi5UK9aPSW0nOthb2NfwpE0mqpD+1c1mkqmcExX//79eeihh/j666/Zvn07Li4udOvWjTfffJPXXnuNRx99FH9/f4KCgpg3b941j29nZ8fChQt56qmnyMjIwNHRkTVr1hAWFsY777xDYGBgkUB6b29vkpOTCwzxLVy4kM2bN5Oeno6bmweTJy/BMNTMxXnz5jFp0iTefPNNsrOzGTVqFAEBAbz66quMGDGChg0b0rFjR06cOAHA9OnTGT16NEFBQXTv3p0mTZpYzr1u3boSZ1RqNGZyJZfE9ETOpp4lLiWOpIykAsHv9jb21HeuT/1qqjnbOVehtRpN6TDyBxferLRr10527txZ1WZobkFiY2P1DKQSmDFjBi4uLkycOLHIuvh4WLNGJU4dPFi9VhTDhg3j3//+N15eXhV3UM1tQVpWGnGpccqblXaWbFNeQlJz8Lu7izv1q9WnhkONSi2po387NNeDYRi7RKRd4X7t6dJo7lAmTZrEokWLil1Xty7Uq6dKAx09qoYcK4KsrCyGDBmiBZcGUN6s+LR4YlNiiUuJI/lycoH1rvauuFdzx93FnbrOdXXwu+aWpzTJUYcB/wHqogLpDUBE5JpTpAzD6A98BFgDX4vIOyVs1x7YBowUkcWlN1+j0ZQXBwcHxo4dW+J6P7880eXlVTHeLjs7Ox588MHrP5DmliU9O53YlFhiU2I5m3qWnNwcyzpbK1vqVatHA5cGuFdz10OGmtuO0vzb8C5wt4gcLsuBDcOwBj4F+gBngB2GYawQkUPFbPcf4PeyHF+jKS3lmd2nqTxvl+bOQkQ4n3GemEsxxKbEciHzQoH11R2qW0RWHec6N0X9wlsh7EZza1Ia0XWurILrCiHAMRE5DmAYxgLgHuBQoe2eApYA7ctxDo3mqtja2pKamkq1atW08CoHZm/XkSPg6akSqGo01yLblE1capwSWqmxXM65bFlnY2VD/Wr1aeDSgAYuDXCydapCS4siIqSmpurZtZpKoTSia6dhGAuB5YDlL0dElpa4h6IhcDrf8hmgQ/4NDMNoCAwFeqJFl6YSqFmzJklJSSWmTtBcm+rV4fx52LoVvL2r2hrNzUpGdgaJ6YkkpidyIbNgmR1HG0dqO9amllMtqjtUx9rKGjLhYuZFLnKx6owuAVtbW2rWrFnVZmhuQ0ojulyBdKBvvj4hrwB2SRTnVijss50JvCgiJu2F0FQG1tbWxWZe15QekwmefBJEYNYsaNasqi3S3AyICMcvHGfbmW38HfM3Jy6esKwzMGhduzUhDUMIaRhCI9dG2tOs0VC6jPQTynnsM0DjfMuNgNhC27QDFlz5Y6wN3GUYRo6ILC/nOTUaTQXTuDEMHAg//wxffw1vvAH6+XlnYso1cTDhIH+d/ottMdtITE+0rHOwcSCofhAdGnWgXYN2uNpfuxyVRnOnUZrZi42Aj4HOKE/VZmCyiJy5xq47AE/DMDyAGGAUcH/+DUTEI9955gArteDSaG4+Ro+Gdetg717Yvh06dLj2PprbgyxTFnvi9vDXmb/YHrOdlKy8ofqajjXp0LADHRp2wL+evy61o9Fcg9IWvP4fYK52+8CVvj5X20lEcgzDeBI1K9Ea+FZEDhqG8diV9V+U22qNRnNDcXGB+++Hr76Cb76B4GCw0SmTblvSs9PZGbuTrae3sjN2J5dNeYHwjVwaEdo4lI6NOuJZ01MPG2o0ZeCaGekNwwgXkcBr9VUmOiO9RlP15OTAU0/BmTPw8MMwZEhVW6SpSFKzUvn7zN9sOb2FPWf3FMif5VnTk9BGoYQ2DqWR67ULs2s0dzrXk5E+0TCMB4D5V5ZHA+cr0jiNRnPzY2MDEyfCq6/CggUQFgZublVtleZ6MAutzac2E34u3CK0DAx86vjQqXEnOjXuRG2n2lVsqUZze1Aa0fUQ8AkwAxXTtfVKn0ajucMIDlZt1y744Qd44omqtkhTVtKy0th2ZhubTm1i77m9BYSWf11/OjfpTGijUGo41qhiSzWa24/SzF48BQy+AbZoNJpbgIcfhj174PffoVcvnbvrViAzJ5PtMdvZeHIju+J2FRBaAfUC6NKkC6GNQnFz0K5LjaYyKVF0GYbxgoi8axjGxxTNr4WIPF2plmk0mpuSxo1h2DBYvBhmzlS5uyqiLmOVIQKpqZCcDBcvwqVL6tXFBbp2VdtkZoK5OLiDAzg7g5OTenV2VjfFxaWqrqBYsk3Z7I7bzYaTG/g75m+yTFmAElp+df3o2qQrnRp30kJLo7mBXM3TZS79oyPYNRpNAe6/X6WOOHUK5s5V3q9bgrQ0cHQEqyv1/T7/HDZsUP2Fads2T3RlZ8OPP5Z83Oefh+7d1fvNm2HTJmjQQIkxc7sBNZRyJZcD8QdYH72erae3kpadd12ta7ema5OudG7SmZqOOtu6RlMVlCi6ROTnK2/TRWRR/nWGYYwoZheNRnOHYGsLzzyjtMZPP0FoKLRpU9VWFUNWFhw+rBKM7d0LkZHw6adKBAHk5uYJserVVXNzU61Vq7zj2NvDAw8or1hmptonPV211FQlsMxERKiaSYWpWxe8vOCFFyr0EkWE6IvRrItex4aTG0jKSLKs86juQbem3ejWtBt1netW6Hk1Gk3ZKU3KiN0iEnStvspEp4zQaG5O5s5VDiB3d/j4Y6VNqpysLPjrL5XNdd8+5aUyY22tpl8GBqrlxETl9apRo+LS7MfEQFQUxMYqV+Dp0yrPRk4OtG4N776rtsvNVfWVmjYFHx/VmjUrtR2J6Ymsj17P+uj1nEw+aemv71yf7s26071pdxq7Nb7KETQaTWVR5pQRhmEMAO4CGhqGMSvfKlcgp/i9NBrNncSoUfD333DyJHz/PTzySFVbhBJZs2Yp8QXQvDkEBKjm41NwmK92JaRCaNhQtfyYTHD2rPKSmTlzRgmy06fVkCSo+LA2bZSdYWFQqOhyZk4mW09vZe2Jtew7t89SVNrFzoWuTboS5hGGVy0vnbBUo7lJuVpMVywqnmswsCtffwrwbGUapdFobg1sbeHZZ+G551RtxtBQ8PW9gQZkZsIff8DatfDeeyqZmLMz3HuvGiLs0uXmSCZmbV1UiDVqBJ98ooY/Dx5ULSEBduxQrW1bqFkTEWH/rlX8eWEXWy/uJzNHCTdbK1s6NOxAmEcYQe5B2FjpEgEazc1OaYYXXYE0ETFdWbYG7EUk/QbYB+jhRY3mZmfePJUwtX59+OgjNbGvUklJgV9+gRUr1HtQw4bBwZV84komIQEOHICjR4l/YChrTvzJn8f/JH7nBkhNAUdHWtduTU+/wXTpPJpqTtWr2mKNRlMMJQ0vlkZ0bQN6i0jqleVqwGoR6VQplhaDFl0azc1NTo7ydp04oYph/+tfFRciVYCUFBVE9ttveUN1Xl4wYgSEhFTSSW8cWaYstpzawprja9gXv091CtQ5HkfPk9b0Ou+Ke/aV4VEHB+UNGzQI/P2rzmiNRlOE6ykD5GAWXAAikmoYRmX/H6vRaG4hbGxg2jQ11Pj337BwoYr3qlBEYOpUFZwOEBQEw4er8cxbXGwdv3Cc1VGrWR+93pLmwc7ajtBGofRu3puA0QEYJpMaity5U7VTp9SEgY4d8w4UF6cC9AsPZWo0mpuC0oiuNMMwgkRkN4BhGMFARuWapdFobjXc3WHKFHjtNTXc2Ly5cj5dN7m5aoahYahYrbVrYcIEaNGiAg5edaRnp7MhegOro1Zz7MIxS79nTU/6tuhL1yZdcbZzztvBxgb8/FSbMAHi45X4at8+b5ulS5UXsHFjFWDXqZP6IG5xUarR3C6UZnixPbAAFVgP4A6MFJFdJe9VsejhRY3m1mHxYvjuOxXX9eGH1+F0SUyEL75QKRXGjlV95t+rW1hERJ6P5Ldjv7Hx1EZLULyzrTM9PXrSp3kfPGp4lP/g33yjJhbkT/Zat64SYN27g6fndVqv0WhKQ7ljuq7sbAt4AQZwRESyr7FLhaJFl0Zz6yAC//kPbNmiJuh98EEZA+tFYP16+PJLJR5cXZWYuAEZ3SuLzJxM1kev57djvxF1IcrS71vHl34t+9GpcSfsrCuollJOjgrG/+sv1S5cUP3DhikPGah0GjY2eZn5NRpNhXK9ossXaANYfvVE5PsKtfAqaNGl0dxaZGaqbPUnT5YxsD45WWWM/+svtRwSAk88USRf1a3C6eTTrIpcxdrotaRnqwnfLnYu9PToSf+W/Wnk2qhyDRCBo0dVhvwePdRQI8DKlWq6aefOqvn6agGm0VQg1zN7cTrQAyW6VgEDgM0iMrwS7CwWLbo0mluPuDgVWJ+WBgMGwKRJ1xBe27apvFXJyaosz6OPQq9et9xQYk5uDtvObGNV5Cr2x++39Leu3Zq7PO+qWK9WeXnvPdi4MW+5enUV/6UFmEZTIVyP6NoPBAB7RCTAMIx6wNcicnflmFoULbo0mluTfftU+qzsbLjnHlUYu1gNJQKvvALh4SpQ/JlnVCzSLURyZjK/HfuNX4/9yvmM8wA42DgQ1iyMuzzvoln1ZlVrYH5EVH6PzZtVi4vLW9e1a4XXh9Ro7jSuJ2VEhojkGoaRcyVRajzQvMIt1Gg0tx3+/mpo8c03VWFsOzsVE19EeBkGTJ6shhUHDbqlvFuR5yP5OeJnNp3aRE6uqpDW2LUxd3neRU+PnjjZ3oQZdgxDDTU2b64+kPwCLChfWd2jR2HDBpXZv3XrW+pz0WhuRkrj6foM+CcwCvg/IBUIF5EJlW+eQnu6NJpbm23b4N//Vtkfxoy5ksPrwAFYvVp5tW6x4SxTrom/zvzFT0d+4sj5IwAYGIQ0DGFQq0EE1Au4NesfiqgPydpaLX/+Oaxapd7Xrq2GH7t2hVattADTaK5CuYYXDfWr0UhETl9Zbga4isi+yjK0OLTo0mhufTZtUqFEkiv8y/cnOh6erR7wTz8NffpUtXmlIjUrld+P/c7KyJUkpicCKt1D3xZ9Geg5kHrV6lWxhRXM8eNqJummTSqFh5k6dZRHctiwKjNNo7mZKdfwooiIYRjLgeAry9GVYp1Go7nt6doVsjNyOP7sLKx2rCOmITR4ejhGr15Vbdo1iUuJY8XRFfxx/A8umy4D0NClIYO9BtPToycONrduOourYh6CnDABIiKU+Nq8WdWITErK2y41Fc6eVQlrtQdMoymR0sR0bTMMo72I7Kh0azQaze1Laio917+Nn8t+Ii44MNPxWeqf78TTJrC9SUcXjyYeZenhpfx15i8ENSoQWC+Qe7zvIdg9+NYcQiwPhqFqXHp5qdkQhw9DjRp56zdtgs8+U2UJunRRzcNDCzCNphClEV1hwGOGYUQDaagEqSIiusKqRqMpHRcuqIj606ep06oGcS9OJ/p/LTiyXlWz+de/VA7UmwERYXvMdpYcXsLhxMMA2FjZ0L1pd4Z4D7m5ZiFWBYYBbdoU7DOZwM1NzYJctEi1/AKsuZ57pdHAVWK6DMNoIiKnDMNoWtx6ETlZqZblQ8d0aTS3ODk5MH06XLyockjUqcOJE/D66ypUqH59tbpRJecKvaqJuTmsj17P0sNLOX3pNKDitQa0HMDdXndT0/HWTNB6w8jNVZMjtmxRLTlZ9QcGwhtvqPe3QRknjaY0lDmQ3jCM3SISdOX9EhG5t5JtLBEtujSaWxSRvAesuR6gc14R56Qk9Tw+dkx1/9//FazffCPIzMnkt2O/sfzIckt+rdpOtRnqPZS+LfrevvFalYlZgG3erJKtduum+g8dUnWhzJnw9SxIzW1KeUTXHhFpW/h9VaBFl0ZzC7Jxo2pTp6o6fyWQmamew9u2qeX+/VXYUGWXWky5nMLKiJWsiFhBalYqAE1cmzC8zXC6Nu2KjVVpoi80ZeL779XQo5natVUx7k6d1JDlLZY6RKMpiev1dFneVwVadGk0txi//aYCq0VgypQ8T0cJiMDy5eqZnJOjwoH+7/9U3HZFczHzIsuPLOeXyF/IzMkEVImeEW1G0K5BuzsnOL4qEFFB+Fu2qHqQ+dNQtGgBM2dWmWkaTUVSHtFlIi9w3hFIN69CBdLfsLBXLbo0mluIpUth9mz1ftw4GF76Mq3R0crrFR2tnB4jR8J9913VUVZqEtMTWXp4Kb9H/U6WKQuAtvXbcp/PffjW9b3+E2jKhghERuYJsHbt4B//UOuSk+G//1VesODgynd7ajQVTLlrL94MaNGl0dwCiMAPP8CPP6rlSZPgrrvKfJisLHWY5cvVIZs0gUceUfHY5SEhLYHFhxaz+vhqS5mejg07cp/PfXjW8izfQTUVi4gq0Gl3pRD46tXw8cfqva2t+vA7doSQEFWcW6O5yakS0WUYRn/gI8AaVST7nULrxwAvXllMBSaJyN7Cx9GiS6O5yRGBr76ClSuVi+qZZyAs7LoOuX8/fPQRnDunlkNC4KGHoGHD0u0fnxbPooOLWHNiDTm5ORgYdGnShft87tNpH2524uNVEP5ff6n6j/lnPfr4qGKe5lJFGs1NyPUUvC7vCa2BT4E+wBlgh2EYK0TkUL7NTgDdReSCYRgDgK+ADpVlk0ajqSRMJpWjycZGBc53uP4/Yz8/FRa2YgUsXAjbt8Pu3ar6zMiRUK1a8fslpify48Ef+eP4Hxax1b1pd0b6jKSxW+PrtktzA6hbV5UYGjZM5Xjbvh3+/hvCw5WoNwsus3e1bVtVkFsLMc1NTqV5ugzDCAVeFZF+V5anAYjIv0vYvgZwQESK/B+rPV0azS1AVhacOFEp0e8XLsDcubBmjXrOOjqqkcvBg6HmlfRZSRlJLDq4iN+ifisgtkb5jqKhayndY5qbm4wMlevN3V0tHz0Kzz+v3lerBkFByiUaFAQuLlVmpkZzw4cXDcMYDvQXkYlXlscCHUTkyRK2fx7wNm+fHy26NJqbkNxc+PlnGDAgLxankomKgjlzlMMDVLhPp7Bk8F3EXwm/kmXKwsCga5OujPIdpT1btztxcfDrr8oTFhOT128YyvP1z3+qTPkazQ3mhg8vomY5FqZYhWcYRhjwMNClEu3RaDQVhckEM2bAhg3K2/DCCzfktC1aqGSqEREwf3EayyOWsu3YCnKPZ1KjBvRq1Zn/6zsaj5rFFtLQ3G64u6tAv4cegthY2LFDtYMH1XL+2lKLF6uAwMBA5SrVaKqAyhRdZ4D8/2Y2AmILb2QYhj/wNTBARM5Xoj0ajaYiMJlUXodNm9RU/oEDb+jpM3My2ZezksOtFlOrfhrZcWA63R73Uw9wckdzXvsNevWCPn1UeSHNHUKDBnDPPaqlpyvRZc65lpqqxqdzc1XcV+vWaggyOFgX5tbcUCpzeNEGiAB6ATHADuB+ETmYb5smwFrgQRHZWtKx9PCiRnOTkJOjBNfmzcpb8Npr6gF2I06dm8PqqNXMPzCfi5kXAfCr68eDAQ9S18qbP/+EP/5QI05mfH1VsvOOHaFOnRtipuZGYE4xYW5ZWWqsuUYNtf7yZTUWbW2tYgxTUtQw5M8/q7jD/M89Jyd48EFoesU7ahZghqG+48HBedvu2aOEW0BAXvK406fV+a2tlQ02NgXf29qqpoXdHUVVpYy4C5iJShnxrYi8ZRjGYwAi8oVhGF8D9wLm4tk5xRmpRZdGU8mIKG9AQoJ6QNSsqR5G+R8UOTnw/vsqmaWTk6pWXRkp44uYJmw6tYm5e+dyNu0sAJ41PXkw4EEC6gUUyCAvokaWVq9WZmZl5R3H01OJr9BQVVhbPwNvMLm5qv5maqr6/phjrc6cUUOC9eurDwdUyojPPlOB85mZSkTlb/k/WDPdu+cF1Z85o/LENWwIX3yRt82IEcqGS5dUQH5ysjpW27bqew/KQ5aTo+xr1Qq+/rrg/pmZKhedeYjyn/9U+U2uhVmA2dnBl1/m1SD9739VNuCHH4bmzVXf33+rL7KDQ9Hm6Fj01dFRC7ubjKqI6UJEVgGrCvV9ke/9RKBI4LxGo6lERFSF6a1bVfDx2bMqGVZ6esHt7OyU56BmTWjWTD2oNm1Ss8Jef109kCrVTGHP2T18F/4dxy8eB6ChS0MeDHiQ0EahxZbrMQzl3fL1VcnNd+5UqZ527lTJzyMj1ShTzZoqtCcwUDktzDMgNeUgJUV5lS5cUELm0iUlZszt0iW1TVpanofpoYdg6FD1/sQJ+PZbVQDbLLpyc2HXrquf18ZGfUfNnqT8sxUdHZUHtrB7MyREiSxzjUfDULaZBWBuLixZorZJSFDrpk5VXxJzM3u1zDRooK4tJ0cNvefkKO+b+dX83twyMvIEHqgv5eHDSsyZ2btXeeXKwltvgb+/er98ufr7HjwYulwJlY6OVmLOyUkJvuJa4X+0NBWOzkiv0dwpxMfD+vWwdm3BmV5mHBygXj31kEhKKvgQAPVAOnkSevSAfv0qdcwuKimK2eGz2XtO5Uqu5ViL+/3up5dHL6ytyp6LKStLjQxt3aqe5cnJBdc3aqSe0V5e4O0NjRvf4bWXTSb1HUhIUN4isyj58081TNerl5q1CqpS+Vtvle64zs4qtcOQISrhGqjv1B9/QMuW6rsF6gPbuzfPm2Nvr5qDgxJa9vaVIw5E4MABNT12zx71z0n+Z+TIkfDAA3k2WluXLjdY4eFQN7c8+0+cUMK0Zcs879e+fUqMmb18mZl5zez9y8xU/yhlZKj27rvKnQvw6aeq/mn+qhB//AGzZl3dTsPIE2XVqqkaXJ07q3VRUeqPp1WrvPIQWVlw/rwSvM7OWrDlQ5cB0mjuVMLDVXbRAwfy+tzc1HCMt7ca1qlXT/1w5v/RzMxUQi0xUU0X3LFDPQjyZwcPDVX/TbdpUyE/uOdSzzF331w2nNwAgLOtMyPajOBur7uxs66YtBQi6jm/d6+6NQcOFNWXjo7q+dWihYqz9vBQwqwiakDeFIioh6XZy2l+PXdOfebnz+d9zi+8AF27qvc//aSG2+6+Gx59VPWdOKH6qldXzc1NzRp0c8tr5ofyrZa8NDVVfUH27lXtscfyvEk//QT/+5/KkO/np9yrzZtX3TWK5P0Nmv9u69WDWrVUX2SkEshpaUqspaaq17S0vFbY2/3MM0pgg6o28eWXSsRNmpR3zOeeU+8NQwm1atXU51/41cVFtaZN8+Ln8v+W3GZo0aXR3GnExKhhm+3b1bKdnfJOhYWpGJZrPRyysuCdd5SH61//UkMiyclqrG77dtVyVC1DmjdXs8a6di04dFJKUi6nsPDgQn6J/IWc3BxsrGy4u9XdjGgzAhf7yk1ymZOj/ok/ckRlvzhyRDl4CmNjo+pANm6sBJi5NWhww9KUlQ0R5UGxssobevv7bzW+GhdXfFyUGcNQQ8t16qg4JnOFgcRE9UB3d88LWr9T+eQT+P33gn0ODuofkJCQGz6rt0Iwx92ZY+/q1Mnzch4+rP7mvb3zvg+HD6s4T7OAKw333AMTr0QVHTwIL7+sZpK+9JLqy8lRcW6ursU3N7eb9A+uIFp0aTR3CqmpsGCB+s/UZFIPgvvuUw8BJ6fSHePyZVXfLjxcPbDfe69o0cOkJDXUtGqVeriDCo4aORL69i2VWyjblM3KiJUsPLiQtOw0DAx6NOvBA/4PUNe5btmuuwJJSlL/xJ84odrx48oZVByGAbVrK6dC/fp5jsO6dVV/zZqV7CETUQafPKnEr7kg9Jw5Kj5pwgRVTgeU6HrzTfXezS3P2PyGm70jt41brxJJTFRB9Pv3K4+Yeepshw55IsIceO/jowSLeQjxdiMnJ0+sXbqkXlNSVDPH9aWkqHtjHkY2fx9DQpT4AvVdHjfu6ueyt88TYK6uyss4YoRal52thkFr1LghE31KQosujeZ2RwTWrVNDPSkpSg306aNiUMrilcjMVIHy+/erH7W33sobDiiOrCzYuFENt0RHq7769eH++9UQZjHBUeYZid+Ff0d8ejwAgfUCmdB2As1rNC/DRd840tOVrjlzpmCLiysY9lOY/E6jWrXUe/P8hBo18kblXF1L8Q98Roa6x9HRSg1GR8OpU+phB2r2Xvfu6v2qVUp4DRsGo0apvrQ0ZbC7++378K9KkpKU+HJzU0H3oP5xMQsKw1Du0tat81r9+rfl8FqpMc9GNXtj09JU3KlZrOVv5okZZg+7mS5d4MUX1fv4eDUTtE4d5ek389RT6g913Dho377SL0uLLo3mdiY1VU2x37RJLfv5KRd+8zIKmLQ0lXvr8GGlCt56S42hlQYRNVVw7lylRkCJtbFj1X+yVx4sB+MP8u2eb4lIilCbuDVlQuAEgtyDip2ReLOTk6OGI82hUeaWkKAcIRcuXF2U5cfRMS8MqoZdGk0zj1IvLYq6l6KofuE4zpfisLEGaxssr9bWYOXmgtGkiZoRaB76yclRK2/Be3pbceaMKhp68KAKzC8sGL77Lm/67Jkzyj3q4HDj7bxVEFH/GJoF2KVLSrCZvVrx8Sr2zMVFxaSZ9xkyRA2f/vOfebNkKxEtujSa25UDB1TC0sRE9WP9j3+o4NeyPmzT0tR/5JGR6of/7bfzCguXBZNJedz+97+84ChfX2LHDGbOhXX8deYvAGo41GCs/1h6Ne+FlXH7ThXMyVEOkMRE9XrhQsHX5GRIT0ynWmwEaTgTV03NQGt14W9GRr5Z4Fgmw4YExybEOzXjnJMH5xybEe/YlHS76jg5Gzg5qRFkc+omc3NyKj7lU/6JgfmbeYKgTv1UwWRlqQDCw4dVS0pSf7tmHntM5Qlr2lSJiFatVGvc+NabhHAzYR6CT05W4/7VqlX6KbXo0mhuN3JyYP58WLRI/ai0aqWGl8ojlMzHe/ttNVz19tvqx+l6yM6Gr78mZcF3LGh4gV/qJWOqUxv7mnUZZuPHsNCHcPAJuL5z3IqYTGpY0Nk5r07RqlXI55+T1TmM8w8+R3IyZJw5T62v/8OFWi1JcG3BuWotOGvTiNRMG1JT88Jn0tOvHhN/PRiGEl5mIVa4mXN95k+Xlb/Z2RVMyp4/SbuNTdH3+Vv+5O7mPnOGhttSCGZnqyGy48fVdyQ/9vbqn6k+fdSy9mLe9FRJclSNRlNJnD+vZhYeOaJ+eEeOVHE71xP8bGOjfvTT0sqXLfTIERUH5ucH3t5kRx7hl19nsKBVAmlyGcPkTJ9Dl3lg7R5q2p+AutvU0Iq3d7H7l9h3q5Gaqrwahw6p64mMVHEsw4fnBQx7eWF4eWHfojENGqgZkbSuBX3epTSlu805N80ZAMzpnPK3/KmezOsLJ3rPzFQCzryck6OWK0vUlRez+Movyop7zb+dlVXR/pKalZVqxfUXXn+11/ytuP0KNlusnv0Qq5ws7E5HYXsiApvjEdhEHcUq8RxZtjWQlCvX8csv2Cyar3J7tWyJ0bKFag3ctRC7ydGiS6O51di/H/7zH+Uqr11bebd8fMp3rMhINcPtuefyxpTs7a+9X2ExdOQIjB8PWVmInS1b3nuaObu/5VzDc+DgQOA5Bx5q+yQem/ZD2q9gSlfDLIsWqVleR49a9sfOTgWAQ9E+87luZiGWkKCGfA8dUu3UqaLbuLsXnEnaooWael9ObGzy0iBVJLm5eaLLLMays/NinwuXPzT3mcVa/oTshd+bE7Tn7zOZ8pYLvzdvn5urlk2mm08MVgx2QOsrTeFEMlnvOZJzZRT+rugzBMenwca9wF7LdpdtnDhePYjlrV7ME3OYMKytsbJSeszcb35vGHlOs/x95tfCfddaDwXXFd62pL6S9r3WutI28/6gMueUNlS1otGiS6O5VRBR5T3mzMkrujtlSl4enbKyd6+arp2ZqQLu77uv+O2uIrAsYmj/fsjK4nALV75xOMzR7R+CqyuNLzvw0NEaBKe7YbxyL/S6VwmRuDj11Fy7VrlmGjZUx2vYUMW0mGvZFddXnBCrajIyVI2/AwdUIG9+bG3V0K95tpqXV/k/sxuMlVVe7NfNgkieCMsvxsxCrPD73Nzi+8zL+Vv+fvN25j7zcQr3Fd6v8PqSlgu3wutF8q9zwzpf31rvJ9jWdBT1Uo5RP/UY9dKiqJ8WhUtWEjY5mZZYfTtTBs/ueYAEx8acc/TIiwV08iDDpnLz393M1K+vRZdGo7ka6enw0Ueqjg2onDQPPFD+WjXr16vj5eSoFAPmPE6FuYrAyi+GYlvW43vvRLa4RYGVFdVrNWRMl8fp07kx1gcPFfRK/fijEnyXLik7Dh5U+XqSktSTx9FRbQ/qnLGxSrj4+RV77hvu/crMhM2blbi6/37V5+CQV1/I2VklyPTxUa8tW5YrYaymeAwjL8brzqbWlaZmq4qAnE8iKC2DEe5XZsxGnsH6hSyQKIQoEBCAXMh1rkXa5H+S7dFK7Zt8CZOtA2JrR26uOkNh8SdS/HLhvsL75l829+Xf91p95v0LH6fwtpb7UEKfef+qElygRZdGc/NjDmyPiVFDUs8+q/zj5UEEfvhBCR9QJXwmTszzvxcWL8WJHD8/ixhKdjRY6HSYVUfnYQprgV1KOkPb3Mu9vZ7C0dZRHbNNoaFPb+88YXT//apE0c8/q1o7GRlw772qwLaDQ57Iyy+mCgux4oRhRQqx5GR1vtat8+7hxx+r90OHKpFoGDB5skrE1azZHV64UVMVGAYYtWtiVTtfp68nLPkxL6ebOdtvdDSkncehRXUwz5eZ/zVs2KCGvps2VfnEzK1hQ61yKwh9FzWam5mNG1WR2suX1Y/fP/9ZNDN8acnOVnFDW7cqUfDoowVLlRQnXvIJLIvI8fbm8jdf8dNfs1lsdYSMSzswMOjjP5QxfmOo5VSr9DY5O8NDD0H//jB7tqoNt3GjKvg7ZoyarZVfMHl7FxViixaVfhiyNEIsM1N53/bsUR656GgVLDVvnnqyOToqsVWzZsEEXDcg4aJGU2YcHZXHtU2bvD4RNcSfv2B9Robqj4lRzexVh4IZ4zMz1d9p48bqb+5mGnu+BdCiS6O5GcnJgW++UaV8QJXNeOKJ6/uBM0/dcnaGqVMhMLDg+uK8WiNGFBA5plaerDn2O/+L/B9JzkmADe3c2zEucBzNqjcrv20NGqj6jocOqSzSR4/Cp5+qLPdjx6pkhmZvXH5PGRQvDIu7FiheiImopJXh4UpoHT5cMIGlnZ0KdE9NzYtUHz++/Neq0VQ1hnFlimw+/vUv9bdx5owqvXDqFJw+rV6bNMnbLjq6YG6x2rXzCpE2bKjCFSp6RsdthM7TpdHcbCQmqnQQR48qofTIIzBgQPmngufk5A0NZGWp4zdoUHKAfHa2Ei/5gtRFhC2nt/DDvh+ISYkBoEWNFjzU9iH86/lf/zXnR0T9l/3dd3m17Jo3V56v9u2Lvw+luZb9++Hf/1YPhlOnVOFdFxc1pBIXp+rwVKumjt+ypSoKHhCgjncLFNjVaCoNkby/u6goFZ5w+rT6uymcYX/2bCXEQP0Nx8ZiyYPi7q5ea9S47VNb6OSoGs2twLZtajgxJUX9cE2dWv6irbm5auhtyxY1rJhfOJQyDkpE2HtuL9+Ff8exC8cAcK/mzoMBD9K5cefKLduTkwOrV6uYr6Qk1efpqcRXUNC1f7TzX0uLFsqL9o9/KCF28WLef+/h4Wq41cVFlT0aPFgNr9zMaSk0mpsBk0nVv4qJUR6y2Fh4/PG8v83Jk1Wy18I4OKiQgocfVssZGeqfzPr11e9eOePHRIT09HTS09NJS0uzvGZkZJCWlmZ536NHDxo3blzOiy4dOjmqRnMzk5mphhN/+00tBwXB//2f8r6UB3N5kX371PKSJeqH7GoB8uZhuysiY9+5fczbN49DiYcAqOlYk9G+o+ndvDc2Vjfgp8PGBu66C3r3Vvdl0SKVV+zVV5X4Gj5cTSgoKWjdfC1Ll6pcYOPG5Xm8HB1h926VriIhQQW/x8UpARoTc3OmpdBobjasrfO8WMXFNE6erLzKcXHqd8b8mpJSUFgdP4689BKXc3NJzc0lvXp10qpXJ83VlTRnZ9J8fEgHi3DKL6jyv2ZkZFAaR5KHh0eli66S0KJLo6lqjh1TnqiYGDUUNn483H13+d3vu3bBjBlq1p2bm0oH8e671w6Qv8KB+AP8b///2B+v4qBc7FwY1noYd7e6G3ubUiROrWjs7JT3qW9fWLVKCcjISDVU6O6urq9nT+XZ279fXX+nTuB/ZdizenU1EeHMGXVfzQJq0CDlDTMPL14rLQXc/IlZNZoqQkQsHqXU1FSLOEo1mZRwatCANDc30ho3Ji0pibQDB0h75hm1XVwcaUePkpuZqTzRhYVT27Z5aVeiotQ/S4ULhdrZgYMDDi4uODs74+TkhLOzs+V9/lZVggu06NJoqo6cHFi2TM2KM5nUNO3nn1del/KQlgZz58Ivv6jlgADlLVuz5poB8uLlxf5z+1h4YCH74pV3zNnWmWGthzGo1SCcbJ1KPu+NwsFBCayBA9U1LV2qfoBfekl5Ch0d1YxCOzv1o20WXaGhatJAcaWNipsNCcUL0spOTaHRVDFZWVkWwVTW17S0tFJ5mYrFMMDbG3t7e5wdHXG2ssIpNxdnkwnnnBycu3XDuVo1JaR++AGnhAScra1xsrbG2cbG8t6pRw+sXnxRHTMxMS++rHZtNVOzdm3llXOqut8zLbo0mqrg8GH47DM1EwiUB2b8+OsL2N67V8U/paaq/FeTJ6uht5K8Wt7eiJcXf8f8zaLVzxORFAGAk60TQ7yGMNhrMM52ztd1mRVOSoq6zqgo9R9xZqYaSk1LUz/cFy5AcLCaSWUO/nV0VK0kCs+GLEmIlWVGpBZimipARCzCqaRmFkrF9WddZ10lBwcHqlWrhrOzs+U1/3snJyeqXRFPhV+dnZ2xKU0s16BBKjFx/paQoFqLFnnbxcWp9DOFefrpvMLhVYAWXRrNjSQlRf339ccfarl+fRV42rZt+Y6XkZEnKGrUUPETDg5KfA0YkCcoComInNwcNp7cyOJDizl96TQArvauDG41mIGtBlLNrtr1X2tFkZMDCxaodA6RkQWHHlq0ULFd1aura9+zR2Xv/+orlXC1b181hT1/PqLSUFiIwfWnptBoSklOTg6pqamkpKQUEEaFl4vryyk8m7AM2NjYWESSueUXTsUJKXO/k5MT1tbWFXgXSsDJSY0GXGtEoFEjlUg6MbFgc3evfBuvghZdGs2NIDcX/vxTCS5zEOnw4WqYrzzerYwM5SlbuhRefx169VJ1/9zcio9FuiIikjKS+G3///j12K9czLwIQG2n2gzzHkafFn1wsKniRIfm5IyRkRAWpvpsbFTc1dmz6n2bNkqkBgerH978sW9JSWro8bff1H+6332nmq+vEl9duqi0EOWhtEORN0OpIk2VY55JV1gYpaSkFFkuLKQyMzPLfV5bW9sCoqmwgLraOnt7+8qdkXwjqVFDxXreZOiUERpNZZKbq+r0zZ+vArlBxRo9/nj5MstnZqqYrdmzVSqI3FyoW1d5daDYPFsiQsT5CH6O+Jktp7eQk6v+E27m1owh3kPo3qz7jZmNWBKpqXlCKCcHRo1Sge/ff69+OEHdQ3t7JVhKkyA2N1cF1K9dC9u3KxEESrQFBalZjyEhFVN4ujQ5wkAPQ96i5OTkkJaWVqxYKk485e/LNRf/KyPW1tbFCiMXF5dr9tnpnHI3BTplhEZzIxFRouh//1NJBAHq1VPZ1bt1K/vMxH37VMD94cN5JTzs7NSDOjW12OD4i83qs/7IctYcX8PJ5JMAGBh0atSJu73uxqeOT9n+qxVRAf/54y4uX1bXYmtb+mtKTlY27t+v4rMSE9XwobmKcefOSnzl/2+/S5fS2wkqlq19e9XS0+Gvv1Rx7b17lQjbvt0SvEuHDkqANWpUvhmjpYkJq+hSRZoyISJcvny5WMFUkpAyv78er5Ojo2MRYeTi4lJEKJmXza8ODg63j8dJUwAtujSaiiQzUw2FrVyZFyRfty6MHKlc3eVJ+nfkiKr1l5ioxMQ996iH9bvvKsGVLzg+27MFu6pdZM3xxewM34lJTICK1+rbvC8DPAdQ17lu3rHT0lQgap06ed6mPXuU58zfH4YMUX0XLqg8V25uaoakmZdeUva9+25eQejffoMVK1Tyw8GD4fx5JXKWLlXXUDjmxMFBCRFzstJnny37PboaTk5q+LVXLzX8+Pffqu3dq0Ts4cNK8NSqpWZ8mlutMtSQLExFlyrSQgyA3NzcAoHg1/I85RdQ5Y11MgyjWNFUkpAyv5Y6MFxzR6G/ERpNRXD8uBIb69ereCtQ05NHjlTJPcvy43vokKo52KoV3Huvetg6OSkRYGenEobeey/4+MD+/WS2acVu5yS2bn2fHbE7SM9OB8DKsKJDww708uhF+wbtsPl7B/y6Ue1r/i96xgwlQKZNU7mtQGVr37Gj4Iw/Gxvl6So8XGJtneehMhMZCTt3Ko/WTz8pUZeWpopIOzmp4T1vbyVsVqxQYs853yzJEyeUeG3SpGB/RVCzpppgMGCA+px271bXv3u3Eodr16oGSgy1bp0noJo0KX/utOuJB4OyCbGbXKAV9jpdLWA8JSXFMrRnnmFX3pAYW1tbiyBydXXF2dm5iFgqLJzMAeLa66SpKLTo0mjKS1ycemBv2gQREXn9bdooL0+XLnkJ/a6FyaREydKlqtBzVpYSPW3aqIens7N64Nragr8/iemJ7LE9zY76kew6uIAsU95Ubw+nBoQluRHm5EP1buPyzvHZZ0oI9eiRVxutcWP1cM+Pn5/yYNWvn9dXrZoSUIWzvz//vHrI54+zqllTZdI/f17Z6+SkHv5eXur1iSfyRNz8+cqm/AVylyxR3sJnnlHeKVAlQtauVULNLA6vF0dHNZTZubOy5eRJ5f3au1eJlpgY1dasUds7OSkh3LIleHioepANGpScEb8wpU1Ncb1C7AZ4yooTTiWlIigsqtLS0q5rhp05zUBxw3Surq7FDtm5uLjoWCfNTYEWXRpNaRFR+aG2bVNiyzx8CEoU9eypxJZ5mKw0rFmjYrUSEpQXJTZWPTDd3JQw2bcPRo4k9b+fcnD37+yplUX4sZnE7FFFp0lLh/OJeNVsRacuowltFIp7hrWqaeYWCyPzia5evZSnKv9/7ePGqZYfczLB/OTmKttOnFDeH3MKhuXLlRgbM0YFwIMKUo+Pz/MSNWlSsjCZO1eJs/wPRHd3VeYn/0SDiAiVjV4kT3QlJ6taii1aqJqJZg4fVoKqUaPSexgNI28a+j33qCHQqCglVo4eVa8JCapOY3h43n52dmqfJk2UgG3USLV69ZQX8FpUpBArqbwTFCvEsvbtI/3/2zvzKDuq+85/fvX297pbQmq0CyRAyIiwYxABYg/gg1lscjwmZryMBwd8cAwxnEwwOAkGOzF2Dpkx9uAlxjgO9jj4ECxzHLOE3QxgELJAEmoBbi0toa3Vkrr7vX77b/74VameWlKsYHW3RP8+59R5Vb+6de+tuq/u/dZdlyyhOHcug9OmmWhasYLiypUUp06lOHHiHoKq9bfRaOzfs90L6XT6P+wMvrfj9vb20ZuWwHFGCBddjrMvajVbomfFCmvyW7nS+lBF5PNw+unWEfvMM2103X/Eiy/aAs6nnmpNhF1dNoHp+vUmSi68EC6/nPp9P2FdoU7XYQ1WZX/Dql88yYaBDTCwDdZth8OnkJs8lROnnsgpfWnO/LfH6TzlBDjuQxZOm5pwaJ0gFODKK3/3PTebNjVDT4/Ne9XTE+9HIwBbJxc84QSL/4wZsR9HH71//bJErAZt+BQOH/uYba2ccAJcddXuc/Ns2mTNlq1pArak0pYt8N3vxvF67DETT+edF/c9q1YtjfP5PZsNk0mrmWtdbLyvz/zo7jbx2d1tQuz113ev6YyunzrVaguj32nTrH9fZ6fVBO6ryWo/hFitVqMUBJTWrqUYBJTSaUovvEBxcJBSsUhx+XJKIhRfeYXiokUU16yhVChQ7O9n8OqrKWWz1BYvtvQOApuxH0xQttra2uz59vdbnKO0GhwkXSrRNn06bTNnWh+mUom2/n7ajj6atmOO2esou2jKAq91csYrLrocB6zWZM0a29aujfdrtd3ddXbaSLeFC60ATCZNPD344O41E888A08+aUKsXLbC7OmnrUCbOBEeeYT6q0vZ0qb0nDaVtckia9+TZN2RG1jfeTj1N1ZBownbl0AmQypIcUxtIie/WeaU2Zcy77/eYNM89PZCdc7u4kDEBMq+iApVMDEVzWm1cSNs3rxnR/eIKVOsWS2axgFiwTnS7G0yxGOPtZqyYjG2qdpySun07rV1S5ZYM/CCBbHoWrzY1m88+2y46SazNRrwve9ZE+mf/El8fVQbt3ChLSsUMTBgAmz9ett6euy3tzdunsSa42qqlBsNhppNhoChjg6G2toYyucZymQopdMMJZO2BQElVUrNJqVqldLQkK1rt2gRpVLJmufa22MxdPfdcZxmzIjtr7xioqlSsT5sQWD/2b4+kqoU2tspVCo24WUmQ1s+T9ukSRQGBiiccgqF+fNpu/NOCs0mbfU6bbfeasu0XHstqXrdhO9Xv2rhRrVpq1btvVkzWu/uEO2L5jgHghEVXSLyfuBOIAHcrapfHXZewvMXAyXgf6jqkpGMkzMOqdetc/j27fa7dasVFps3x7+tBTfEX/fz51uhfPzx1rSzYYP16enstMlIly61pq2hIWsWC0f26cc+ys5KP3056DtpHn3VfvrmVdg8McmmfB+bH/kMvXlBT30LSuESNskNJv4KOaZnOpn/VoX5Uy5m/pmXMPewuSS718BJ60w0RPNqdXaaOFC1e+jvt62vz+63tbB7+GErDC+6KG5S3LEjnuMrorMzbi6bPTvef7uTio4UIiZgJ07c3XbLLXu6veQSE1ythfnQkInicK4uVaW2dSuVn/+cSqFA5eyzqVQqtt1+O+Xubiqf/jTlqVMpl8tUliyh/OqrlI8+mvIRR1Aulyk3m5SHhigXCpRTKYa2b2do507K27fTqFTsv1it7lvY7us+UykTS4kEJBIk02lbvLejg3y0uG97O/m2NvIdHRQ6OihMmGD7EyeS37GDtk2bKJx0EvkTT6Rt/XpSV1+N1Ovm9x13WFjR/GLTpsGnP20iKJuNmyu3bDF39fqeTZj706y5N9t/ti/aWNkc5wAwYqJLRBLAXcD7gPXASyLyoKq+1uLsImBeuJ0JfDv8HV1G4uU8mDKLQzGOqpb5L19uX+vz5lnhX6lYM99rr8V9Z0olawZ8800rgAsFq4FYt85qHRIJs6mavb/famuiztvh6LrGrJnU5sym1qxRfXwxVWlSWdlH5fpPUGnupPz5v6C85S1KSWXoXUdTyqco9fdRnL6RgYwwMLlE/6PXMdAoM3D+VrTRgGQC5hRh8uGwbJMV9MkEZBXJ5Zly+nuY8cSLzEl2csTCz3HkjAUcMeEIsv/v1xavBe+GyXMsno2G1SIsWWICK9r6++2+9tbH5jOfiUVXKmXut22Lz8+ZA5/6lAnGqAlsfyYf/T1RVer1Oo1Gg0ajsWu/9XdfW61W2/Ubba3H1Wp1t/3ouFqtUn322V22arVKpVCg+vTTVB97zNadazTs+fT2wjXXxBHu6rL/2b33xs+np8dqB3t64qVFBgftv9nWZiIvEobd3SQaDXLnnEOuo4NcOk2uq4vc5s3kjz2WXGcn+Xqd3LZt5NauJZfLkZ80iXylQq7RIN/bSy6ZpDBjBvlEgpQI0t9v70MmY3ErlSwulYoJl6i5u9k0MZNIxJPMZjL2vxgYsJqxe++1/8fChXbvs2bZUlW9vSbM+/pM9K1bZ7/For2HyaT9/4LAanRff938aTatv9/OnVZDunUrPPSQuRsYsP/Zli1WG1woWC1wsWjPcfNmeO45C/e66yzumQx85zv2PK+5JhZn3/++2f70T3+3uPt9bAdb/rgv28EWn0MhjqPMiM1ILyJnAbeq6oXh8c0Aqnp7i5vvAk+p6k/C41XAe1V1Y6tfIzojfVcXV3743ZSjmo62dhCgOAjN8NlMnGgZ7bZea/JpNq0fSEeH2ZrhpJGZjCVkrRYPe1e1TCUIQj8BNB4m37ctvj6bgY6JsH0bKFBv2Es/baplWpEQSSSt4C4PmTuAVBoSAdRrZhMgSNh+o46KmC2TMX/b262A0KaFLYHFsVqJn00yHHmnzbhvUDIFjQbaqMd9UnJ5qJShXkfT4SSZkydbplqrg4TRzGbtC7lWgyBAA4FCm11bqaAImhDIZFHUCo9mE00mUQEmTEC3bzebYFsiiaqlSTMAlQDNZdB6Ha3VaIbumumU7Ye2ZjZDc9YMGomAZnc3DVELI5Wye41qIkRicTY4aOkPlnb5vKVl7za7Jp2GOUfa+d92k600yDcCCh2d5IM0+cEq7TtKdCTytBcOo62RINC4X49+4AO7+iDpc89Z5rBwoc2XBegbb6DRdAbRNcR/AVIpyGTQbNa2fB7mzkWnTbNh9rWaPZd02q5T3efWbDb32G82m7vZG43GLtvwrfVcJKwiW6PReNvD/keadDpNJpMhnU6TTqfJZrNkMpldv5Etm82SKZXIlkpkp00jO3MmuVyOzM6d5J59lszUqeQvv3yX29wNN5AcHLQliSIx9LWvmQi68UY491yzPfUU/MM/2AS6f/mXZtuxw6YeSSRsPrSoH9u3v239yi67zN63UskE+eLFJqaPOSZeEPzFFy3c8L8E2CCNctkKoGh6kHXrTPTMnh2PXt282T5oJkyw5ZTAwl++3ETXKadY3AYHLT61mvXrSyatJrhWs+2oo8zPpUstz6lW7aPpxBPt2qVL4zzz5JPjPpVBYPc2e7bF4c037V3r7zdBN2WK2bJZE3mTJpm/q1ebbXDQ8vAJE6wWLpeLbZmMiexczj6IJkyw/L2/397xoSGLcyZjH2qvvmrnVe1d7eiwsKMBKtOnW3w3brR7TCTsvkslqyUXifvLbdliXRnC2kvOPdcGb/z2txZeImF9J994w/qVRqOXL7zQ/H/+eXvG2azZUimbYy96PomEDex57TXbsllzf/HFls4vvBCL80susZrxRx+1+OXztrB0o2ET+6paPnjppXYPP/2p5ZH5vM0hCHD//bHgv/xyc7dokT3rRAI++lGrRe/ttUmjGw0rBz8U9kW97z67PpuNm/bvvz/8UE3a9QA/+5kJdxHr+5lImK1YtHT44ActrR54wPyrVm0JsDlzzNZo2ECg++4bUeE1FjPSzwR6Wo7Xs2ct1t7czAQ2MlosW8bjA0Uq9bAQ6Ovf083W7ZhyaCkoqkXYWQrFCFbyVcvwyoqw0G7E7quDe/rZNwDbB/e8fmBTLJoi2+oeE2ZCKAT30jRRKcf70bXU9rQVQ9tguSUcbSm5d/N0//wc6o+vr1Ztf3BjLFAiykMtB+G5Ur95orBLQpSGWu4VSISZXLkfqsP8lHoctoT+Fqt2beRUBJKhoyj6ybp1TAfot/AFkKBBIAFBDUQhgRKkqwRAMARBExIqJI6eQULbSAQJEhvqJIfKJI+YS3LbDJKJJMntIJs2W0a4GSpUqQDbyVuYAzssc4syYRHLRCOB19trmUNXlxV6YAVSoRDPjRVl1lHT0/CO2fW6ZdhvvMHBSDKZJJFIkEwmCYJgt+NoSyQSpFKpXcepVGqXLdoiezqd3nUc7Uf2TCazm5tWYRVtB2zduQ98YE9ba5+riGuugY9/fPfm0QULTIS1Tsyay1lzcBDEogfsQ2ztWit4Zs0y21NP2SjP97zHClIwofHFL1pB89d/be9otQqf/7w1r998s8WhWrVC7plnrLA+4wz7D73+uo2wPeIIKyAbDbPfdZf9XnCBhdNo2LQeq1dbf7vZs+MRlevWmXg57TTzZ+NGEwKplDVJNpt2zy+9ZAXllHAC37VrYyGWy9k9rF4d5jNq24QJcU2bajzdiogV2M2mnYv6IkYf2KWSuVE1YRAE4YeoxrXikb+9vXauWo2FXE+Pva+RUBgasvgGgYWZzdq1q1fbuUbD3t9y2d7JbdvMv44OO9/VZc9paMiuLZVMbK1da7Z02mzLlll8hobMv2LRxGBbm6VVuWxui0VrJejujv0sFk2YbQpr3SOx/PLLdr+lUnx/ixdbnEul2F1U+RE9w2bTBH1kazRMLEe2gYE4rV54wYTqW2+Z2+jZP/+8uR0cNP/q9d1tUb/a556L/axULKznnrPn3d9vx5WKhRP1dwwCC+vll63Vo78/TpfWtWlHkZGs6bocuFBVrwqPPwGcoarXtbj5N+B2VX02PH4cuFFVX271a6Rruv7uI+dS698JSDgBIvZVUg+ba446CtrboGsVNOpmnz4dphxuNm1CtWYq/pxzLJFfeCF+gWfNtNqp9euh2TCRMHs2TDpsdz8PP9wyptdfj2u1Jk+28FeutGsrVcsg02krjKP0mzTJMrC+vrhWasIE29+5M3rg5n/k75o18Z+8o8MK7q1bkKbGtVUC7NiJqFpt2JTD7SXa1md/6CCwztXbt1tGkMvaC3rmQmTZMstcgwCRwL68SyWkpycUDUk48wykbzssX4YkEpDNEZx3PpLN2pdvdzfS1oYECbjiCuSZXyErViBBgEgCOesspFxGFi9GJCBIpZAL3odUqgSPPYEoBO3tJK66mgAh+N93EjSbJNo6SFx7HQFC4u/vIKjVSCRSVqMwdap9hW7aZJnEtGn2PLZssQxj5kzrPB4NXd+61Z7J5Mlx01OxiERNOkGw61eiiUT3Ubi3FvrR/nAhsDf7vmzRNvw4sgVBsFdbZA/CDvfDbcP3E4nE79yPRFQikfDJJg9WIsEB8WCLaEmmqAYkorfX3HZ2xv/nvj4rzA87LHY7OGjvSKEQi6lGw2p0RKzrQMSaNVbIH3mkue/qsuW0ogEs06eb7eWX4/nfjjsubjbKZMzNggUmdpYts/eyULD3dscOq6GbPdvyvvZ2i8Py5XbNwIDdb6Fg+fBxx9n5qEn+b/7GzquaaO7osAmGazV7r6+80t71u++O1978sz+zMuGeeyzMVMpqMTdtskEbQWC2L33JwvzHf7TjVMoGKXR1wTe/aXl+Om2DP956y36jNLn9disDnnjC1mWNPsS+8hV7Bt/7Xnz93/6tPeevf93imsvBl79sefhtt9n9FgpmazRsLr5Gw8qT226z53DjjSZw2tvNPzDxXiqZf1/5itluucWeaSpltbRz5ljYN95oz6e9PfbzC1+w/1kuF/t5yy327NLp2M8vfcnKtETCbImExTUaxXzTTfb/+/KXzb963dJg9mzrf1uvm0D90Y/GpKbLmxfhnd9m7XE86Nv5Hcc5BDiY8seDLc88VOM4QoyF6EoCrwPnAxuAl4CPquqKFjeXANdioxfPBL6hqmcM92vERZfjOI7jOM4BYtT7dKlqXUSuBR7Bpoy4R1VXiMg14fnvAL/EBNeb2JQR+zF7o+M4juM4zqHHiM7Tpaq/xIRVq+07LfsKfHYk4+A4juM4jnMwsJ8rtTqO4ziO4zi/Dy66HMdxHMdxRgEXXY7jOI7jOKOAiy7HcRzHcZxRYMSmjDiQiMhWYO1Yx8NxHMdxHGc/OFJVDx9uPCREl+M4juM4zqGONy86juM4juOMAi66HMdxHMdxRgEXXYCIvF9EVonImyJy01jHZ7wiIrNF5EkRWSkiK0Tkc6F9koj8u4i8Ef4eNtZxHY+ISEJEfiMivwiPPV0OAkRkoojcLyJd4btzlqfN2CMiN4T52HIR+YmIZD1dxgYRuUdEtojI8hbbPtNCRG4O9cAqEbnwQMZl3IsuEUkAdwEXAQuA/yYiC8Y2VuOWOvAXqnocsBD4bJgWNwGPq+o84PHw2Bl9PgesbDn2dDk4uBN4WFXfBZyEpZGnzRgiIjOBPwdOV9U/wJbCuwJPl7Hin4D3D7PtNS3CMucK4Pjwmm+FOuGAMO5FF3AG8KaqdqtqFfgX4LIxjtO4RFU3quqScH8AKzxmYunxw9DZD4E/HpMIjmNEZBZwCXB3i9nTZYwRkQ7gj4DvA6hqVVV34GlzMJAEciKSBPLAW3i6jAmq+gzQN8y8r7S4DPgXVa2o6mpsbegzDlRcXHRZod7Tcrw+tDljiIjMAU4Bfg1MVdWNYMIMmDKGURuvfB24EWi22Dxdxp6jgK3AD8Km37tFpICnzZiiqhuAO4B1wEZgp6o+iqfLwcS+0mJENYGLLpC92HwejTFERNqAfwWuV9X+sY7PeEdELgW2qOrLYx0XZw+SwKnAt1X1FKCIN1mNOWH/oMuAucAMoCAiHx/bWDn7yYhqAhddpmJntxzPwqqBnTFARFKY4Pqxqj4QmjeLyPTw/HRgy1jFb5xyNvBBEVmDNb+fJyI/wtPlYGA9sF5Vfx0e34+JME+bseUCYLWqblXVGvAA8Id4uhxM7CstRlQTuOiCl4B5IjJXRNJYB7oHxzhO4xIREaxvykpV/V8tpx4EPhnufxL4+WjHbTyjqjer6ixVnYO9H0+o6sfxdBlzVHUT0CMi80PT+cBreNqMNeuAhSKSD/O187E+qp4uBw/7SosHgStEJCMic4F5wIsHKlCfkR4QkYuxPisJ4B5V/buxjdH4RETOAX4FLCPuO/QFrF/XT4EjsMzsclUd3inSGQVE5L3A/1TVS0VkMp4uY46InIwNcEgD3cCV2Ae1p80YIiK3AR/BRmX/BrgKaMPTZdQRkZ8A7wU6gc3AF4FF7CMtROSvgE9haXe9qj50wOLiostxHMdxHGfk8eZFx3Ecx3GcUcBFl+M4juM4zijgostxHMdxHGcUcNHlOI7jOI4zCrjochzHcRzHGQVcdDmOM+aIyGQRWRpum0RkQ7g/KCLfGqEwrxeR/74X+xwRWX4Aw0mLyDPhGnyO44xjPBNwHGfMUdVtwMkAInIrMKiqd4xUeKEA+hQ2e/uIoqpVEXkcm7PpxyMdnuM4By9e0+U4zkGLiLxXRH4R7t8qIj8UkUdFZI2IfEhE/l5ElonIw+ESUojIaSLytIi8LCKPREt9DOM8YImq1luueUVEngc+2xL+HBH5lYgsCbc/DO33ishlLe5+LCIfFJHjReTFsJbuVRGZFzpZBHxsJJ6R4ziHDi66HMc5lDgauARbTPhHwJOqegIwBFwSCq9vAh9W1dOAe4C9rTBxNtC6gPcPgD9X1bOGudsCvE9VT8Vqqr4R2u/GZn5HRCZg6+r9ErgGuFNVTwZOx9ZxA1gOvPtt3rPjOO8QvHnRcZxDiYdUtSYiy7Blux4O7cuAOcB84A+Af7cl70gAG/fiz3RsLbxINE1U1afDc/cCF4X7KeD/hEvtNIBjAVT1aRG5S0SmAB8C/lVV62FN2V+JyCzgAVV9I3TfEJGqiLSr6sABehaO4xxiuOhyHOdQogKgqk0RqWm8jlkTy88EWLGXGqvhDAHZcF+Afa2HdgO2VttJWMtAueXcvViT4RVY/zBU9f+KyK+x2rhHROQqVX0idJ8Zdr3jOOMMb150HOedxCrgcBE5C0BEUiJy/F7crQSOAVDVHcDOcMF12L3v1QRgo6o2gU9gNWcR/wRcH/qxIgzvKKBbVb8BPAicGNonA1tVtfb736LjOIcqLrocx3nHoKpV4MPA10TkFWAp1t9qOA8Bf9RyfCVwV9g8ONRi/xbwSRF5AWtaLLaEtRkTbz9ocf8RYLmILAXeBfxzaP8vWJ8vx3HGMRLXzjuO44wfRORnwI1Rv6u3cX0e60t2qqru/B1uHwBuVtVVbycsx3HeGXhNl+M445WbsA71/2lE5AKgC/jmfgiuNLDIBZfjOF7T5TiO4ziOMwp4TZfjOI7jOM4o4KLLcRzHcRxnFHDR5TiO4ziOMwq46HIcx3EcxxkFXHQ5juM4juOMAi66HMdxHMdxRoH/D4YNCS1qGMhFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.4452, 'epsilon': 0.1539, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACiYElEQVR4nOydd3hU1fa/35OekEbvJUBIQioJvYeOIAqCgIiAcrli158ofK+K7Xq9NhSwXhUUERAQRURFpInSIXQIBEJJAgkE0utk/f7YzGTSYBIIoez3efYzc/Zp65yZ5Hxm7bXXMkQEjUaj0Wg0Gk3lYlfVBmg0Go1Go9HcDmjRpdFoNBqNRnMd0KJLo9FoNBqN5jqgRZdGo9FoNBrNdUCLLo1Go9FoNJrrgBZdGo1Go9FoNNcBh6o2wBZq1aolzZo1q2ozNBqNRqPRaK7Ijh07zolI7eL9N4XoatasGdu3b69qMzQajUaj0WiuiGEYJ0rr18OLGo1Go9FoNNcBLbo0Go1Go9ForgNadGk0Go1Go9FcB26KmC6NpqKYTCaSk5PJy8uralM0Gs1NgqOjIzVq1MDe3r6qTdHcYlSa6DIM40tgMJAoIkGlrDeAD4A7gExgvIjsrCx7NLcnycnJuLi4UKtWLdRXTqPRaMpGREhPTyc5OZnatUtMPtNororKHF6cCwy4zPqBgO+lNgn4uBJt0dym5OXl4e7urgWXRqOxCcMwcHd3195xTaVQaZ4uEdlgGEazy2xyF/C1iAiw2TAMb8Mw6otIQmXZVBb79kFBwfU5l63P/ittZ73e/L60fS63nfWrnV3h+7KanV3RV/P74s3evvDVvF1VogWXRqMpD/p/hqayqMqYrobAKavl05f6rrvoev11yMi43me9fbC3V83BoWRzdCzanJ1LNhcXcHUFNzf16uoK7u7g6ale3d3V8W9k/v3vf/Ptt99ib2+PnZ0dn376KR06dLjudkRFRREfH88dd9wBwPLlyzlw4ABTp05l/PjxDB48mOHDhxfZZ926dbzzzjusWLHiutur0Wg0txJVKbpK+ykh190KoHVryMmxbVu5CguvZl/r/a2PU9oxS9vOvFx8X+s+s7fPur94Kygo+WrdTKai70XUq8kEublXd/2Xo1o18PKC6tVVq1FDvTZvDk5OSpg5O1eN123Tpk2sWLGCnTt34uzszLlz58itzJtxGaKioti+fbtFdA0ZMoQhQ4ZUiS0ajUZzu1GVous00NhquREQXxWGvPRSVZz19sAsuvLzC1/NLS+vZMvNVQI4J0e9z86GrCzVMjML36enQ1qaaunpylOZkQHxxb5B994Lhw6p9w4OSnx5eChB5u2tWrVqlSvGEhISqFWrFs7OzgDUqlULKKy0UKtWLbZv386zzz7LunXrWL9+PU8++SSghjk2bNiAh4cHb731FvPmzcPOzo6BAwfy5ptvEhMTw6OPPkpSUhJubm7873//w9/fn/Hjx+Pi4sL+/fs5e/Ys7733Hv369eOll14iKyuLjRs3Mm3aNLKysti+fTuzZ88GYPXq1XzwwQeWfQYPHlzkWjIyMnj88cfZu3cv+fn5vPzyy9x1112Vd/M0Go3mFqIqRddy4DHDMBYCHYCUqojn0lQuhlE4lFhZiCjhlZICyclw4ULha506hevfeKNsG81Dm05OqtmVY4rJTz9dfn2/fv149dVXadWqFX369GHkyJH06NGjzO3feecdPvzwQ7p06UJ6ejouLi788ssv/PDDD2zZsgU3NzeSk5MBmDRpEp988gm+vr5s2bKFRx55hDVr1gAQGxvL+vXriYmJITIykqNHj/Lqq68WEVlz584tcu7S9rHm3//+N7169eLLL7/k4sWLtG/fnj59+lCtWjXbb5hGo9HcplRmyogFQE+glmEYp4HpgCOAiHwCrESliziKShkxobJs0dzaGIbyXnl4QKNGRdfFx0ODBur9nDnK22btWTN74HJziw5/msWXq6t6vRrc3d3ZsWMHf/75J2vXrmXkyJG8+eabZW7fpUsXnnnmGcaMGcOwYcNo1KgRq1evZsKECbi5uQFQo0YN0tPT+fvvvxkxYoRl3xyrcfJ7770XOzs7fH19ad68OYfMLr/LcKV9Vq1axfLly3nnnXcAyM7O5uTJkwQEBJTrnmg0Gs3tSGXOXhx9hfUCPFpZ59doivPzz6X3Z2fD+fOQlASJieq9deybqys0aQKNG0Pt2hUbirS3t6dnz5707NmT4OBgvvrqKxwcHCi4FEiXnZ1t2Xbq1KkMGjSIlStX0rFjR1avXo2IlJhRVVBQgLe3N1FRUaWes/j2tszIutI+IsLSpUvx8/O74rE0Go1GUxRdBkhz2+PiAg0bQlgY9OsHI0ZAr17g76/ivbKy4PBhWL0afvgB9uxRfbZy+PBhjhw5YlmOioqiadOmNGvWjB07dgCwdOlSy/qYmBiCg4N5/vnnadu2LYcOHaJfv358+eWXZGZmAirpq6enJz4+PixevBhQgmj37t2W4yxevJiCggJiYmI4duwYfn5+eHh4kJaWVqatpe1jTf/+/Zk1axZySZXu2rXL9huh0Wg0tzm6DJBGUwwHB6hXT7U2bVR82KlTcPKkig3btw8OHICmTZUwq1798sdLT0/n8ccf5+LFizg4ONCyZUs+++wzDh48yEMPPcQbb7xRJH3E+++/z9q1a7G3t6d169YMHDgQZ2dnoqKiaNu2LU5OTtxxxx288cYbzJ8/n8mTJ/P666+Tl5fHqFGjCA0NBcDPz48ePXpw9uxZPvnkE1xcXIiMjOTNN98kLCyMadOmlbC1tH2sefHFF3nqqacICQlBRGjWrJlOJaHRaDQ2YsjV5jG4DrRt21a2b99e1WZobkLi4+NpYA7qukpE1BDk4cNw+nThEGSdOhASol5vFMrKuaXRaGzjWv7v0Nx+GIaxQ0TaFu/Xni6NxkYMQwmrOnWUxys6GmJiVBzY6tUq7qtNGzUkqdFoNBpNcbTo0mgqgLs7hIdDcLDKA3bggBp+jIuDgACVcLcy02RcieKpIDQajUZT9ehAeo3mKnB0VMLrzjtVjJfJpGK+VqxQAkyj0Wg0GjNadGk01wA3N+jSBfr2VYH1mZmwfj3s2nX9iqlrNBqN5sZGiy6N5hpSuzYMGKDSTxgGHDwIf/yhRJhGo9Fobm+06NJorjGGoWK6+vRRiVWTkuCXXyBBF7nSaDSa2xotujSaSqJ2bRg4EB56yJ2cHFi3DvbvL5rt3syff/5JYGAgYWFhZJUn8yrwww8/cODAgXLb5+7uXmp/VlYWPXr0wGQyWfpmzJiBi4sLKSkp5T7PtSAqKoqVK1dW+nnmzp1LvFXV9IkTJ1bo3sbGxhIUFHTF7RYvXkxAQACRkZHlPkdxW6+VXaVt8/LLL1tKP9lKz549uVKqn/fff9+S8Le8VPQ7YW1Xnz59uHDhQoXOr9FUBC26NJpKxMUF7O1VHi+A3btVKy685s+fz7PPPktUVBSurq7lOkdFRVdZfPnllwwbNgx7e3tL34IFC2jXrh3Lli27ZucpD1Uluj7//HNat25daef74osv+Oijj1i7dm25962I6LrRqArRZc3YsWP56KOPruoYGk150KJLo7kOBAWBnd06Xn+9J5MmDcfHx58xY8YgInz++ed89913vPrqq4wZMwaAt99+m3bt2hESEsL06dMtx/n6668JCQkhNDSUsWPH8vfff7N8+XKmTJlCWFgYMTExxMTEMGDAACIiIujWrZulaPXx48fp1KkT7dq148UXXyzT1vnz53PXXXdZlmNiYkhPT+f1119nwYIFlv79+/fTvn17wsLCCAkJ4ciRI7z44ot88MEHlm3+9a9/MXPmTNatW0ePHj249957adWqFVOnTmX+/Pm0b9+e4OBgYmJiAJXU9eGHH6Zbt260atWKFStWkJuby0svvcSiRYsICwtj0aJFJCcnc/fddxMSEkLHjh3Zs2cPoDwy48aNo1+/fjRr1ozvv/+e5557juDgYAYMGEBeXh4Ar776Ku3atSMoKIhJkyYhIixZsoTt27czZswYi8fR2ivy66+/Eh4eTmhoKL1797b5s587dy7Dhg1jwIAB+Pr68txzz1ls2LhxIw8//DBTpkzBZDIxZcoUy+f+6aefWo7x1ltvERwcTGhoKFOnTi3V1h07dtCjRw8iIiLo378/CZfGs3fs2EFoaCidOnXiww8/tNnusujZsyfPP/887du3p1WrVvz555+A8pCOGjWKkJAQRo4cWcRju2rVKjp16kR4eDgjRowgPT2dmTNnEh8fT2RkpMXTV9p2ANu2baNz586EhobSvn17UlJSSnwnMjIyePDBB2nXrh1t2rThxx9/vKJdQ4YMKfKd1mgqHRG54VtERIRoNBUhLi6ucGHw4MppV6BatWoiIrJ27Vrx8PCU2bNPybx5JgkK6igbNvwpIiLjxo2TxYsXi4jIb7/9Jv/4xz+koKBATCaTDBo0SNavXy/79u2TVq1aSVJSkoiInD9/vsS+IiK9evWS6OhoERHZvHmzREZGiojInXfeKV999ZWIiMyePdtilzU5OTlSt27dIn2vvfaavPrqq2IymaRp06Zy9uxZERF57LHH5JtvvrHsl5mZKcePH5c2bdqIiIjJZJLmzZvLuXPnZO3ateLl5SXx8fGSnZ0tDRo0kJdeeklERN5//3158sknLdfSv39/MZlMEh0dLQ0bNpSsrCyZM2eOPProoxabHnvsMXn55ZdFROSPP/6Q0NBQERGZPn26dOnSRXJzcyUqKkpcXV1l5cqVIiJy9913y7Jly4rcOxGR+++/X5YvXy4iIj169JBt27ZZ1pmXExMTpVGjRnLs2LES+5fG8ePHJTAwUERE5syZIz4+PnLx4kXJysqSJk2ayMmTJ0uc79NPP5XXXntNRESys7MlIiJCjh07JitXrpROnTpJRkZGkXNb75ubmyudOnWSxMREERFZuHChTJgwQUREgoODZd26dSIi8uyzz1rsssV2M9OnT5e3337bct5nnnlGRER+/vln6d27t4iIvPvuu5Zz7t69W+zt7WXbtm2SlJQk3bp1k/T0dBERefPNN+WVV14REZGmTZtavs9lbZeTkyM+Pj6ydetWERFJSUmRvLy8Et+JadOmybx580RE5MKFC+Lr6yvp6ell2mWmZcuWcu7cuRL3ocj/Do2mnADbpRQ9o5OjajTXkQ4d2jN0aCP+/BPq1g3jjz9i6dq1a5FtVq1axapVq2jTpg2gajceOXKE3bt3M3z4cGrVqgVAjRo1Shw/PT2dv//+mxEjRlj6cnJyAPjrr78shbXHjh3L888/X2L/c+fO4e3tXaRv4cKFLFu2DDs7O4YNG8bixYt59NFH6dSpE//+9785ffo0w4YNw9fXl2bNmlGzZk127drF2bNnadOmDTVr1gSgXbt21K9fH4AWLVrQr18/AIKDg4sMr917773Y2dnh6+tL8+bNLZ46azZu3Gi5ll69enH+/HlLvNnAgQNxdHQkODgYk8nEgAEDLOeJjY0FYO3atbz11ltkZmaSnJxMYGAgd955Z4nzmNm8eTPdu3fHx8enzHt/OXr37o2XlxcArVu35sSJEzRu3LjINqtWrWLPnj0sWbIEgJSUFI4cOcLq1auZMGECbm5uZZ778OHD7Nu3j759+wJgMpmoX78+KSkpXLx4kR49egDqc//ll18ua6thGFfsHzZsGAARERGWe7phwwaeeOIJAEJCQgi5NKa+efNmDhw4QJcuXQDIzc2lU6dOJY5f1naHDx+mfv36tGvXDgBPT89S7Vu1ahXLly+3xJ5lZ2dz8uTJMu0yU6dOHeLj4y3fU42mMtGiS3P78NNPVW0Bzs7ONGgAPXrAl1/ak5CQz5YtRbcREaZNm8Y///nPIv0zZ84s84FopqCgAG9vb6Kiokpdf6X9XV1dyc7Otizv2bOHI0eOWB7mubm5NG/enEcffZT77ruPDh068PPPP9O/f38+//xzevXqxcSJE5k7dy5nzpzhwQcfLHLtZuzs7CzLdnZ25Ofnl2ljaTZLKbMRzNtZH9fR0dHSbz5PdnY2jzzyCNu3b6dx48a8/PLLRa65NETkivfuclhfu729fZHrtT7HrFmz6N+/f5H+X3/99YrnFhECAwPZtGlTkf6LFy+W2+6aNWuWCC5PTk62CE4ovJ7i11LWZ9W3b98rDuOVtd2ePXtsugYRYenSpfj5+ZVYd7n9s7Ozyx1HqdFUFB3TpdFUAfXqQaNGKsj+2DG4eLFwXf/+/fnyyy8t8SxxcXEkJibSu3dvvvvuO86fPw+oByGAh4cHaWlpgPIC+Pj4sHjxYkA9iHbv3g1Aly5dWLhwIaDitkqjevXqmEwmiwhZsGABL7/8MrGxscTGxhIfH09cXBwnTpzg2LFjNG/enCeeeIIhQ4ZY4qqGDh3Kr7/+yrZt20oICFtYvHgxBQUFxMTEcOzYMfz8/IpcI0D37t0t17Bu3Tpq1apVpgekOOZrq1WrFunp6RbPElDiPGY6derE+vXrOX78OFB477du3coDDzxQ7mssjf79+/Pxxx9b4s6io6PJyMigX79+fPnll5aA89I+dz8/P5KSkiyiKy8vj/379+Pt7Y2XlxcbN24Ein7ucXFxpcamubu7U79+ff744w/L+X799dcSHtniWH8m+/bts3wfOnbsyF9//cXRo0cByMzMJDo6usQ1lLWdv78/8fHxbNu2DYC0tDTy8/NLfFb9+/dn1qxZFkG+a9euy9oF6u/jzJkzNGvW7LLXptFcK7To0miqCFdX8PVVeb2Sk+GSlqJfv37cd999dOrUieDgYIYPH05aWhqBgYH861//okePHoSGhvLMM88AMGrUKN5++23atGlDTEwM8+fP54svviA0NJTAwEBLQPEHH3zAhx9+SLt27S6b+qFfv36Wh/TChQsZOnRokfVDhw5l4cKFLFq0iKCgIMLCwjh06JBFfDg5OREZGcm9995bZAakrfj5+dGjRw8GDhzIJ598gouLC5GRkRw4cMASNP3yyy+zfft2QkJCmDp1Kl999ZXNx/f29uYf//gHwcHB3H333ZZhKygM5C+euqN27dp89tlnDBs2jNDQUEaOHAnAyZMnr5mXZOLEibRu3Zrw8HCCgoL45z//SX5+PgMGDGDIkCG0bduWsLAwy/CZta0mk4klS5bw/PPPExoaSlhYGH///TcAc+bMsQwHW9uakJCAQxkFQr/++mtef/11wsLC6NWrF9OnT6dFixaXtX/y5Mmkp6cTEhLCW2+9Rfv27QF17+bOncvo0aMtEx/MQ8aTJk1i4MCBREZGlrmdk5MTixYt4vHHHyc0NJS+ffuSnZ1d4jvx4osvkpeXR0hICEFBQZbJImXZBWqSQceOHcu8DxrNtcYozU1/o9G2bVu5Ur4XjaY04uPjadCgQVWbcVkOHICoKFUgu18/KBZSdd3ZtWsX7733HvPmzavQ/gUFBYSHh7N48WJ8fX3Lte/48eMZPHgww4cPr9C5rzdTpkxh7NixJeKEbgZmz55NkyZNGDJkSFWbUmU8+eSTDBkypFSP383wv0Nz42IYxg4RaVu8X8t7jaaKCQhQw4uxsape44ABYBUCdN1p06YNkZGRmEymcnuqDhw4wODBgxk6dGi5BdfNyNtvv13VJlSYxx57rKpNqHKCgoLKlf5Do7latKdLc0tzs/xaNZlg9Wo1xFinDvTqBXZ68F+jqTJulv8dmhuTsjxd+t+6RnMDYG8P3bqpOK/ERNixo6ot0mg0Gs21RosujeYGwc0NundXAuzIETh9uqot0mg0Gs21RIsujeYGomZNCAtT77duhUt5TTUajUZzC6BFl0Zzg9GqlYrrys4GHcqo0Wg0tw5adGk0lYy9vT1hYWEEBgYSGhrKe++9R0FBAQDbt2+3lCgxYxjQsaNKIXHiBJw8WRVWl2T8+PFFEola89RTT7FhwwbLclJSEo6OjkWKNl9v3njjjUo/R1RUFCtXrrQsL1++nDfffLNCx7Iurl0WSUlJdOjQgTZt2lgKTVfU1mtp1/jx4/Hx8SE0NJRWrVrxwAMPEBcXd8Vjv//++5akr+XlWlxPnz59SmTf12gqEy26NJpKxtXVlaioKPbv38/vv//OypUreeWVVwBo27YtM2fOLLGPuztcKr3Itm3K63WjkpycbKlNaGbx4sV07NjxiqVfKpOqEF1Dhgxh6tSplXa+P/74A39/f3bt2kW3bt3KtW9FRYqtvP322+zevZvDhw9b0o7k5uZedp+qEF3WjB07lo8++uiqjqHRlActujSa4hw6BIsXq9drTJ06dfjss8+YPXs2IsK6desYPHgwoErKdO7cmTZt2tC5c2dMpsPUqwepqZnccce9hISEMHLkSDp06GD5pe7u7s6//vUvQkND6dixI2fPngXgxIkT9O7dm5CQEHr37s3JS+6yxYsXExQURGhoqEUkmUwmpkyZQrt27QgJCbF4p0SExx57jNatWzNo0CASExNLvaYlS5ZYikqbWbBgAe+++y6nT5+2eDxMJhPjx48nKCiI4OBgZsyYQUxMDOHh4Zb9jhw5QkREBADNmjXj//7v/+jUqRNt27Zl586d9O/fnxYtWvDJJ58AqgRQ9+7dGTp0KK1bt+bhhx+moKCAqVOnkpWVRVhYGGPGjAHgvffeIygoiKCgIN5//30AYmNj8ff3Z+LEiQQFBTFmzBhWr15Nly5d8PX1ZevWraV+NocPHyY3N5eXXnqJRYsWWbKiz50715L/6uzZswwdOpTQ0FBCQ0MtGeJtobTPNSoqiueee46VK1daMuavWrWKTp06ER4ezogRIyylo7Zt20bnzp0JDQ2lffv2pKSklLA1IyODBx98kHbt2tGmTRtL5YKsrCxGjRpl+b5ZZ+a3BcMwePrpp6lXr56luHZpds6cOZP4+HgiIyOJjIwsc7vKvJ4hQ4ZU6Q8DzW2IiNzwLSIiQjSaihAXF1e+HQ4eFOnQQaRNG/V68OBV21CtWrUSfd7e3nLmzBlZu3atDBo0SEREUlJSJC8vT0REfv/9dxk2bJikp4vcf//b0qvXJDl+XGTv3r1ib28v27ZtExERQJYvXy4iIlOmTJHXXntNREQGDx4sc+fOFRGRL774Qu666y4REQkKCpLTp0+LiMiFCxdEROTTTz+17JednS0RERFy7NgxWbp0qfTp00fy8/MlLi5OvLy8ZPHixSWu5YEHHrDYICJy8uRJadmypYiITJs2Td59910REdm+fbv06dPHsp35/D179pRdu3ZZtp85c6aIiDRt2lQ++ugjERF56qmnJDg4WFJTUyUxMVFq164tIiJr164VZ2dniYmJkfz8fOnTp4/FRuv7vn37dgkKCpL09HRJS0uT1q1by86dO+X48eNib28ve/bsEZPJJOHh4TJhwgQpKCiQH374wXLfSvtsRETmzJkjjz76qOU81sv33nuvzJgxQ0RE8vPz5eLFiyXunTU9evS44udqffykpCTp1q2bpKeni4jIm2++Ka+88ork5OSIj4+PbN26tYjtxW2dNm2azJs3z/JZ+Pr6Snp6urz77rsyYcIEERHZvXt3ke9bWYwbN67Ed+PJJ5+UN998s0w7RdRnnJSUVKXX07JlSzl37lyJayr3/w6Nxgpgu5SiZ3RGeo3Gmr17ITcXGjaE+Hi17O9/zU8jpSQlTklJYdy4cRw5cgTDMMjLy6NaNThzZiMdOz7J9u0weHBQkZIzTk5OFk9ZREQEv//+OwCbNm3i+++/B9QQynPPPQeootfjx4/n3nvvZdiwYYDyLuzZs8cSr5WSksKRI0fYsGEDo0ePxt7engYNGtCrV69SryUhIYHatWtblhcuXMi9994LqLqQDz30EM888wzNmzfn2LFjPP744wwaNIh+/foBqubgnDlzeO+991i0aJHFuwRYStQEBweTnp6Oh4cHHh4euLi4cPFSlfD27dvTvHlzAEaPHs3GjRtLlBHauHEjQ4cOpVq1agAMGzaMP//8kyFDhuDj40NwcDAAgYGB9O7dG8MwCA4OJjY2tszP5kqsWbOGr7/+GlBxfV5eXlfcx0xZn6s1mzdv5sCBA3Tp0gWA3NxcOnXqxOHDh6lfv76lpmRZhcBXrVrF8uXLLbUcs7OzOXnyJBs2bLDEGYaEhFS4xJH5O16WnTfK9dSpU4f4+Hhq1qxZoevUaMqDFl0ajTXBweDkpASXo6NavsYcO3YMe3t76tSpw8GDBy39L774IpGRkSxbtozY2Fh69uwJgJubULOm0oJ79hQ9lqOjI4ZhAOrBnp+fX+o5zdt88sknbNmyhZ9//pmwsDCioqIQEWbNmkX//v2L7LNy5UrLfpfD1dWVbKugswULFnD27Fnmz58PqMzeR44cwdfXl927d/Pbb7/x4Ycf8t133/Hll19yzz338Morr9CrVy8iIiKKPPycL9VDsrOzs7w3L5uvtbiNpdlcmsgtfo7i57E+R1mfTWVhy+cqIvTt27fE8NiePXts+txEhKVLl+Ln51dinS37X4ldu3bRu3fvMu0szZ6quJ7s7OxrVrRco7kSOqZLo7HG3x/mzoWpU9XrNfZyJSUl8fDDD/PYY4+VeBCkpKTQsGFDAObOnWvp79q1K/v3f4dhwPr1B9i7d+8Vz9O5c2cWLlwIwPz58+natSsAMTExdOjQgVdffZVatWpx6tQp+vfvz8cff2zx3kRHR5ORkUH37t1ZuHAhJpOJhIQE1q5dW+q5AgICOHr0KACHDx8mIyODuLg4YmNjiY2NZdq0aSxcuJBz585RUFDAPffcw2uvvcbOnTsBcHFxoX///kyePJkJEyaU424qtm7dyvHjxykoKGDRokWWa3V0dLRcU/fu3fnhhx/IzMwkIyODZcuWlSsQvazPxsPDg7S0tFL36d27Nx9//DGg4tlSU1Mt/bbM7LsSHTt25K+//rLc+8zMTKKjo/H39yc+Pp5t27YBkJaWRn5+fglb+/fvz6xZsyyCdNeuXYC6V2bBvG/fPvZYKf0HHnigiCeyNESEmTNnkpCQwIABA8q0E4rev6q4HhHhzJkzNGvWzIY7rtFcPZUqugzDGGAYxmHDMI4ahlFiSo9hGF6GYfxkGMZuwzD2G4ZR/v+4Gs21xt8fRoy4ZoLLHNAdGBhInz596NevH9OnTy+x3XPPPce0adPo0qULJpPJ0v/II4+QkpLESy+F8NNP/8XHJwRPz8sPVc2cOZM5c+YQEhLCvHnz+OCDDwCYMmUKwcHBBAUF0b17d0JDQ5k4cSKtW7cmPDycoKAg/vnPf5Kfn28pWh0cHMzkyZPp0aNHqecaNGgQ69atA5SXa+jQoUXW33PPPSxYsIC4uDh69uxJWFgY48eP5z//+Y9lmzFjxmAYhmXIsTx06tSJqVOnEhQUhI+Pj+X8kyZNIiQkhDFjxhAeHs748eNp3749HTp0YOLEibQxTw+1gbI+m8jISA4cOGAJ5rbmgw8+YO3atQQHBxMREcH+/fspKCjg6NGj1KhRo9zXWZzatWszd+5cRo8eTUhICB07duTQoUM4OTmxaNEiHn/8cUJDQ+nbty/Z2dklbH3xxRfJy8sjJCSEoKAgXnzxRQAmT55Meno6ISEhvPXWW7Rv395yzj179lC/fv1S7ZkyZYolZcS2bdtYu3YtTk5OZdoJ6jMaOHAgkZGRVXI9O3bsoGPHjjg46EEfzXWitECva9EAeyAGaA44AbuB1sW2+T/gv5fe1waSAafix9KB9JqKcisEw+bn50tWVpZkZ4vMmnVUatVqKjExOVVtVhG6dOliCYyvCG+//ba88MIL5d7PeiLCzcDevXvl6aefrmozKkRKSooMHz68qs24pjzxxBOyevXqUtfdCv87NFUHVRBI3x44KiLHAAzDWAjcBRyw1nyAh6HGWdwvia7Sg1I0mtuUzMxMIiMjycvLIztbmDDhY/bvd6JpU1Wn8Ubg3Xff5eTJk3h7e5d736FDhxITE8OaNWuuvWE3GEFBQbz33ntVbUaF8PT0ZPHixVVtxjUlKCiI3r17V7UZmtsIQy4TYHpVBzaM4cAAEZl4aXks0EFEHrPaxgNYDvgDHsBIEfm5+LHatm0rV8qIrNGURnx8PA0aNKhqM64ZBQWwciWkpqrkqQEBVW2RRnNrcqv979BcXwzD2CEibYv3V2ZMV2nTRYorvP5AFNAACANmG4ZR+nxgjUaDnR2Yc4nu23djZ6rXaDQaTVEqU3SdBhpbLTcC4ottMwH4/tIQ6FHgOMrrpdFoyqBBA9Xy8lQaMY1Go9HcHFSm6NoG+BqG4WMYhhMwCjWUaM1JoDeAYRh1AT/gWCXapNHcErRpowpjHz0KKSlVbY1Go9FobKHSRJeI5AOPAb8BB4HvRGS/YRgPG4bx8KXNXgM6G4axF/gDeF5EzlWWTRrNrYKXF7RsCSLa26XRaDQ3C5Wap0tEVopIKxFpISL/vtT3iYh8cul9vIj0E5FgEQkSkW8q0x6NpqpYtmwZhmFY8hOBCtQ1l6uxLny9fPly3nzzzSseMzBQzV48eRIuVcQplaeeeooNGzYAsGLFCtq0aUNoaCitW7e2FLeuLN5//30yMzMr9RyxsbF8++23luXt27dbyr6Ul/Hjx1vKIZVFTk4Offr0KTU3V3ltvZZ2lbaNu7t7uc5j/T0si6ioKFauXFmu41pTke+EtV0rVqwoNc+dRnMzoDPSazTXgQULFtC1a1dLlniABg0alPogHTJkCFOnlsglXAI3N+XtAhVUXxrJycls3ryZ7t27k5eXx6RJk/jpp5/YvXs3u3btqvRyNlUhutq2bcvMmTMr7Xy7du0iLy+PqKgoRo4cWa59Kyq6biSqQnRZM2jQIJYvX17p3yuNpjK4ougyDKOLYRi/G4YRbRjGMcMwjhuGoeOuNBobSU9P56+//uKLL74oIrpiY2MJCgoqsf3cuXN57DGVWWX8+PE88cQTdO7cmebNm1tEWkFBAY888ghjxwbyzjuDeeyxO/jqq5ICbsmSJQwYMAAoLJ9irm3o7OyMn58faWlp+Pj4WErmpKam0qxZM/Ly8ujZsydPP/003bt3JyAggG3btjFs2DB8fX154YUXLNfh7+/PuHHjCAkJYfjw4WRmZjJz5kzi4+OJjIwkMjISUOLTnBH/+eeft9jp7u7O888/T0REBH369GHr1q307NmT5s2bs3z5cst5unXrRnh4OOHh4fz9998ATJ06lT///JOwsDBmzJhRxCuSnp7OhAkTCA4OJiQkhKVLl9r8uTVr1ozp06cTHh5OcHAwhw4dIjExkfvvv5+oqCjCwsKIiYlhx44d9OjRg4iICPr3709CQgIAR48epU+fPoSGhhIeHk5MTEwJW00mE1OmTKFdu3aEhIRYPI8iwmOPPUbr1q0ZNGgQiYmJNttdGuvWraNnz54MHz4cf39/xowZYymX8+uvv+Lv70/Xrl0tRdIBMjIyePDBB2nXrh1t2rThxx9/JDc3l5deeolFixZZPH2lbQeq9NGzzz5rufezZs0q9TuxatUqOnXqRHh4OCNGjCA9Pf2ydhmGQc+ePVmxYsVV3RONpkooLWOqFM0afwgYCNQBaprblfa7lk1npNdUlBJZpQcPVs2aV15RfVu2FPb98ovqmzWrsO/8edX3wAPlsmHevHny4IMPiohIp06dZMeOHSIicvz4cQkMDBSRopnV58yZI48++qiIiIwbN06GDx8uJpNJ9u/fLy1atBARkcWLF8vAgQPFZDLJr78miJubt7z66uIS537ggQdk+fLlluWHHnpIateuLaNGjZJvvvlGTCaTiIiMHz9eli1bJiIin376qTzzzDMiItKjRw957rnnRETk/fffl/r160t8fLxkZ2dLw4YN5dy5c3L8+HEBZOPGjSIiMmHCBHn77bdFRKRp06aSlJQkIuqzaNy4sSQmJkpeXp5ERkZazgnIypUrRUTk7rvvlr59+0pubq5ERUVJaGioiIhkZGRIVlaWiIhER0eL+f9C8az01svPPfecPPnkk5Z1ycnJl/2sxo0bJ4sXL7bYPnPmTBER+fDDD+Whhx4qcfzc3Fzp1KmTJCYmiojIwoULZcKECSIi0r59e/n+ezU5OysrSzIyMkrY+umnn8prr70mIiLZ2dkSEREhx44dk6VLl0qfPn0kPz9f4uLixMvLy2KXLbabqVatmsVmT09POXXqlJhMJunYsaP8+eefkpWVJY0aNZLo6GgpKCiQESNGWOybNm2azJs3T0RELly4IL6+vpKenl7k+3m57T766CMZNmyY5OXliYjI+fPnLffV/J1ISkqSbt26SXp6uoiIvPnmm/LKK69c1i4RkW+++UYee+yxy96Pq0VnpNdcDZSRkd6W4cUUEflFRBJF5Ly5VZIG1GhuORYsWMCoUaMAGDVqFAsWLCjX/nfffTd2dna0bt2as2fPArBx40ZGjBiBnZ0d3bvXIzAwknPnSsZ2JSQkULt2bcvy559/zh9//EH79u155513ePDBBwGYOHEic+bMAWDOnDlFCk8PGTIEgODgYAIDA6lfvz7Ozs40b96cU6dOAdC4cWO6dOkCwP3338/GjRtLXMe2bdvo2bMntWvXxsHBgTFjxlhizZycnCweueDgYHr06IGjoyPBwcHExsYCkJeXxz/+8Q+Cg4MZMWIEBw4cKHGO4qxevZpHH33Usly9evUr7mPNsGHDAIiIiLDYYc3hw4fZt28fffv2JSwsjNdff53Tp0+TlpZGXFycpQ6ki4sLbm5uJfZftWoVX3/9NWFhYXTo0IHz589z5MgRNmzYwOjRo7G3t6dBgwb06tXrirYWL6BevK99+/Y0atQIOzs7wsLCiI2N5dChQ/j4+ODr64thGNx///1FbHvzzTcJCwujZ8+eZGdnc/LkyVKvobTtVq9ezcMPP2ypa1havcnNmzdz4MABunTpQlhYGF999RUnTpy4rF0AderUIT6+eAYijebGx5YyQGsNw3gb+B7IMXeKyM5Ks0qjqSx++qlk30svlewbMEA1a2rUKH3/y3D+/HnWrFnDvn37MAwDk8mEYRi89dZbNh/D2dnZ8l4uDQmZXwFcXcEcL713L3TrhtU6V7KLZVANDg4mODiYsWPH4uPjw9y5c+nSpQuxsbGsX78ek8lUZNjTfH47O7sittjZ2ZGfr6p2FX/glyYArG0ujqOjo2Uf6/NYn2PGjBnUrVuX3bt3U1BQgIuLS5nHsz5nabbYitkOe3t7ix3Fjx8YGMimTZuK9Kemptp0fBFh1qxZ9O/fv0j/ypUry213zZo1uXDhgmU5OTmZWrVqWZatPzvr6ynrPCLC0qVL8fPzK9K/ZcsWm7az5d6LCH379i3xQyQqKuqy+2ZnZ+Pq6nrZY2s0NyK2eLo6AG2BN4B3L7V3KtMojeZWYcmSJTzwwAOcOHGC2NhYTp06hY+PT6meoPLQtWtXli5dSkFBAWfPniUqah12dnDqFFg9dwkICODo0aOAim9at26dZV1UVBRNmza1LD/wwAOMHj26iJfLVk6ePGkRHuZJAwAeHh6kpaUB0KFDB9avX8+5c+cwmUwsWLCAHj162HyOlJQU6tevj52dHfPmzcNkMpU4R3H69evH7NmzLctmUfLAAw+wdevWcl9ncfz8/EhKSrJce15eHvv378fT05NGjRrxww8/AGrGY2ZmZglb+/fvz8cff2yJp4uOjiYjI4Pu3buzcOFCTCYTCQkJrF271rLPtGnTWLZsWQlbevbsyaJFi8jNzQVUbKA5bqos/P39OX78ODExMQBFxE///v2ZNWuWRSzv2rULKHm/y9quX79+fPLJJxZxl5ycXGL/jh078tdff1m+o5mZmURHR1/WLvN9Ki0eUqO50bmi6BKRyFLalX3dGo2GBQsWWIaYzNxzzz1XPYPtnnvuoVGjRgQFBfHPf/6TDh060LKlF1B0JuOgQYMsQktEeOutt/Dz8yMsLIzp06czd+5cy7ZjxozhwoULjB49utz2BAQE8NVXXxESEkJycjKTJ08GYNKkSQwcOJDIyEjq16/Pf/7zHyIjIy3B5XfddZfN53jkkUf46quv6NixI9HR0VSrVg2AkJAQHBwcCA0NZcaMGUX2eeGFF7hw4QJBQUGEhoZaxMuePXuoX79+ua+zOE5OTixZsoTnn3+e0NBQwsLCLAH+8+bNY+bMmYSEhNC5c2fOnDlTwtaJEyfSunVrwsPDLZ9lfn4+Q4cOxdfXl+DgYCZPnlxEnO7du5d69eqVsGXw4MF069aNiIgIwsLC+Ouvv/jvf/97WftdXFz47LPPGDRoEF27di0iwl988UXy8vIICQkhKCiIF198EYDIyEgOHDhgCaQva7uJEyfSpEkTQkJCCA0NtXznrb8TtWvXZu7cuYwePZqQkBA6duzIoUOHLmsXwNq1axk0aFAFPjGNpmq5YsFrwzC8gOlA90td64FXReS65cHWBa81FeVWLlqbnp6Ou7s758+fp3379qxe/Rdbt9bDZIKBA8EcvtS1a1dWrFiBt7f3ZY+3ZMkSfvzxR+bNm1cuO2JjYxk8eDD7yspbcYORmprKQw89xOLFi6valArRv39/fvvtt6o2o8o4e/Ys9913H3/88UelnudW/t+hqXzKKnhtS0zXl8A+4N5Ly2OBOcCwa2eeRqMpL4MHD+bixYvk5uby4osv4uNTj+RkOHwYDhyAS3HtvPvuu5w8efKyouvxxx/nl19+uar8SzcLnp6eN63gAm5rwQVqKPvdd9+tajM0mgphi6crSkTCrtRXmWhPl6ai3G6/VjMzYflyVR7ozjsLA+w1Gk35uN3+d2iuLWV5umwJpM8yDKOr1YG6AFnX0jiNRnNtcHODpk2V6LKqOKTRaDSaGwBbhhcnA19diu0ygGRgfGUapdFoKk5AABw/DjExEBwMVpkCNBqNRlOFXFF0iUgUEGoYhuelZdsS0Gg0mirB2xsaNID4eDhyBPTMeo1Go7kxKFN0GYZxv4h8YxjGM8X6ARCR9yrZNo1GU0ECApToOnwY/P3BwRaftkaj0WgqlcvFdFW79OpRStPhuRqNjdjb2xMWFkZQUBB33nknF4vX6qkE6tSBmjUhJ0cNNVqzfft2nnjiias+x/jx4y0FuIvz1FNPWUr8rFixgjZt2hAaGkrr1q0tRZ0ri/fff5/MzMxKPUdsbGyRXGtXc08vdx/N5OTk0KdPH0turKux9Vra9fLLL9OwYUPCwsLw9fVl2LBhNpVnmjt3boXL+FyL6xk1ahRHjhyp0Pk1mquhTNElIub/jKtF5BXrBlRughSN5hbC1dWVqKgo9u3bR40aNfjwww8r/ZyGobxdAAcPQkFB4bq2bdsyc+bMSjt3cnIymzdvpnv37uTl5TFp0iR++ukndu/eza5du+jZs2elnRuqRnRV9j3dtWsXeXl5REVFMXLkyHLtW1GRYitPP/00UVFRHDlyhJEjR9KrVy+SkpIuu09ViC5rJk+eXK5SXBrNtcKW2YuzbOzTaDRXoFOnTsTFxQEQExPDgAEDiIiIoFu3bhy6NN3w7NmzDB06lNDQUEJDQy0Zzt977z2CgoIICgri/ffftxzztddew9/fn759+zJ69GjeeUdV6XrggZ4sXfo8Tz/dnpYtW/Hnn38CsG7dOgYPHgzAHXfcQVhYGGFhYXh5efHVV19hMpmYMmUK7dq1IyQkxOKZEhEee+wxWrduzaBBg0hMTCz1GpcsWWIpXp2WlkZ+fj41a9YEVP0/Pz8/0tLS8PHxsZS/SU1NpVmzZuTl5dGzZ0+efvppunfvTkBAANu2bWPYsGH4+vrywgsvAOrB6+/vz7hx4wgJCWH48OFkZmYyc+ZM4uPjiYyMtJTAWbBgAcHBwQQFBfH8889b7HR3d+f5558nIiKCPn36sHXrVnr27Enz5s1Zvny55TzdunUjPDyc8PBwy2cxdepU/vzzT8LCwpgxY0aRe5qens6ECRMIDg4mJCSEpUuX2vz9aNasGdOnTyc8PJzg4GAOHTpEYmIi999/P1FRUYSFhRETE8OOHTvo0aMHERER9O/fn4SEBACOHj1Knz59LBn/Y2JiSth6tZ/v5Rg5ciT9+vWziKLS7FyyZAnbt29nzJgxhIWFkZWVdd2vp1u3bqxevbrUepoaTaUiIqU2oBPw/4BTwDNW7WVgd1n7VUaLiIgQjaYixMXFFe0YPLjs9ssvhdv98svlty0H1apVExGR/Px8GT58uPxy6Ty9evWS6OhoERHZvHmzREZGiojIvffeKzNmzLDsc/HiRdm+fbsEBQVJenq6pKWlSevWrWXnzp2ybds2CQ0NlczMTElNTZWWLVvK22+/LSIiPXr0kAkTnpH580VeeeVn6d27t4iIrF27VgYNGlTExu3bt0twcLBcvHhRPv30U3nttddERCQ7O1siIiLk2LFjsnTpUunTp4/k5+dLXFyceHl5yeLFi0tc7wMPPCDLly+3LD/00ENSu3ZtGTVqlHzzzTdiMplERGT8+PGybNkyERH59NNP5ZlnnrHY/dxzz4mIyPvvvy/169eX+Ph4yc7OloYNG8q5c+fk+PHjAsjGjRtFRGTChAmW627atKkkJSWJiPr8GzduLImJiZKXlyeRkZGWcwKycuVKERG5++67pW/fvpKbmytRUVESGhoqIiIZGRmSlZUlIiLR0dFi/l9U/B5aLz/33HPy5JNPWtYlJyeXuEfWjBs3znIfmzZtKjNnzhQRkQ8//FAeeuihEsfPzc2VTp06SWJiooiILFy4UCZMmCAiIu3bt5fvv/9eRESysrIkIyOjhK1X+/laM336dMt9NzNjxgx5+OGHL2tnjx49ZNu2bVV6PX369JHt27eXeW0l/ndoNOUA2C6l6JnLhdc6oWK3HFBxXGZSgeHXWPtpNLcsWVlZhIWFERsbS0REBH379iU9PZ2///6bESNGWLbLyckBYM2aNXz99deAigfz8vJi48aNDB061FJvcNiwYfz5558UFBRw11134erqCsCdd95Z5Nzjxw/j3DmoXTuCmJjYUu07d+4cY8eO5bvvvsPLy4tVq1axZ88eS/xLSkoKR44cYcOGDYwePRp7e3saNGhAr16ll2BNSEigdu3aluXPP/+cvXv3snr1at555x1+//135s6dy8SJE3nrrbe4++67mTNnDv/73/8s+wwZMgSA4OBgAgMDLXUSmzdvzqlTp/D29qZx48Z0uZR2//7772fmzJk8++yzRWzZtm0bPXv2tNgzZswYNmzYwN13342Tk5PFIxccHIyzszOOjo4EBwcTG6vuVV5eHo899hhRUVHY29sTHR1d6jVbs3r1ahYuXGhZrm6ux2Qjw4apYh8RERF8//33JdYfPnyYffv20bdvXwBMJhP169cnLS2NuLg4S61PFxeXUo9/tZ/vlZBLCbfLsvNGuZ46deoQHx9PREREha5To6kIZYouEVkPrDcMY66InLiONmk0lcdPP9m23YABql0DzDFdKSkpDB48mA8//JDx48fj7e1NVFSUTccwP8hs7Tfj5uZMq1aQlGRPVlbJoRSTycSoUaN46aWXCLqUW0JEmDVrFv379y+y7cqVKy2zly+Hq6sr2dnZRfqCg4MJDg5m7Nix+Pj4MHfuXLp06UJsbCzr16/HZDJZzg9qGBLAzs7O8t68bB4SKm5LabZd7v44Ojpa9rE+j/U5ZsyYQd26ddm9ezcFBQVlPviLn9OW+1QWZjvs7e1LHf4SEQIDA9m0aVOR/tRU27L5XO3neyV27dpF27Zty7SzNHuq4nqys7MtP1Y0muuFLTFdmYZhvG0YxkrDMNaYW6VbptHcYnh5eTFz5kzeeecdXF1d8fHxsdQAFBF2794NQO/evfn4448BJYpSU1Pp3r07P/zwA5mZmWRkZLBs2TK6detG165d+emnn8jOziY9PZ2ff/65xHl9fcHODkwmKP4cmzp1KiEhIYwaNcrS179/fz7++GNLvFV0dDQZGRl0796dhQsXYjKZSEhIYO3ataVeZ0BAAEePHgVUfNO6dess66KiomjatKll+YEHHmD06NFMmDChnHdT1eAzP6gXLFhA166qcIaHhwdpaWkAdOjQgfXr13Pu3DlMJhMLFiygR48eNp8jJSWF+vXrY2dnx7x58zCZTCXOUZx+/foxe/Zsy/KFCxcs17p169ZyX2dx/Pz8SEpKslx7Xl4e+/fvx9PTk0aNGvHDDz8AynOamZlZwtaKfL7Tpk1j2bJlV7Rt6dKlrFq1itGjR5dpJxS9f1VxPebtAgMDbbvpGs01whbRNR84BPgArwCxwLZKtEmjuWUxp05YuHAh8+fP54svviA0NJTAwEB+/PFHAD744APWrl1LcHAwERER7N+/n/DwcMaPH0/79u3p0KEDEydOpE2bNrRr144hQ4YQGhrKsGHDaNu2LV5eXkXO6eysSgOByttlzTvvvMOqVasswfTLly9n4sSJtG7dmvDwcIKCgvjnP/9Jfn4+Q4cOxdfXl+DgYCZPnlymeBk0aJBFaIkIb731Fn5+foSFhTF9+nTmzp1r2XbMmDFcuHCB0aNHl/teBgQE8NVXXxESEkJycjKTJ08GYNKkSQwcOJDIyEjq16/Pf/7zHyIjIy3B2HfddZfN53jkkUf46quv6NixI9HR0Zbh3ZCQEBwcHAgNDWXGjBlF9nnhhRe4cOECQUFBhIaGWh72e/bsKXV4rbw4OTmxZMkSnn/+eUJDQwkLC7ME+M+bN4+ZM2cSEhJC586dOXPmTAlbK/L57t27l3r16pVqz4wZMywpI7755hvWrFlD7dq1L2vn+PHjefjhhwkLC8NkMl336zl79iyurq7X5PPQaMqDLQWvd4hIhGEYe0Qk5FLfehGx/efiVaILXmsqyu1QtDY9PR13d3cyMzPp3r07n332GeHh4UW2SUmBn38Ge3u4++7KLw3UtWtXVqxYgbe392W3W7JkCT/++CPz5s0r1/FjY2MZPHgw+/btuworrx+pqak89NBDFs/mzUb//v357bffqtqMa8aMGTPw9PTkoYceKnOb2+F/h6byKKvgtS15qvMuvSYYhjEIiAcaXUvjNBpNxZk0aRIHDhwgOzubcePGlRBcAF5eUL8+JCTA0aNQ2aMq7777LidPnrys6Hr88cf55ZdfWLlyZeUacwPg6el50wou4JYSXADe3t6MHTu2qs3Q3IbY4ukaDPwJNEbl5/IEXhGR5ZVvnkJ7ujQVRf9aLSQhAdauBVdXuOsuFeel0WhKR//v0FwNFfZ0iciKS29TgMhrbZhGo7k+1KunPF4pKXDyJDRrVtUWaTQaze3F5QpezwLKdIOJyNUXb9NoNNcNwwA/P9i6FQ4dUsH11yBDgEaj0Whs5HKeLj2ep9HcYvj4wO7dkJwMSUmqMLZGo9Forg+XS4761fU0RKPRVD729ipv1759Kn2EFl0ajUZz/bhiKK1hGGutk6Lq5Kgaje2cP3/ekgOrXr16NGzYkLCwMLy9vWndunWlnPOHH37gwIEDZa43J0s9fRrKyO9pEy+//LKluHZx3n//fUspI4D8/Hxq1arFtGnTKny+ixcv8tFHH9m0rbu7u83HLSgo4IknniAoKIjg4GDatWvH8ePHK2rmFYmNjbUUhK5Min8PXnrpJVavXl3m9nv37mX8+PGVbpdGcztjy/ylZ4Epl9qLQBQ2Dj0ahjHAMIzDhmEcNQxjahnb9DQMI8owjP2GYay30W6N5qagZs2aREVFERUVxcMPP8zTTz9tWbazYfpgaWVgrsSVRJerq4rnEgEbSgmWm/z8fL788kvuu+8+S9+qVavw8/Pju+++u2LporIoj+gqD4sWLSI+Pp49e/awd+9eli1bdsX8YldDVYmuV199lT59+pS5fXBwMKdPn+bkyZOVbptGc7tyxf/6IrLDqv0lIs8AHa60n2EY9sCHwECgNTDaMIzWxbbxBj4ChohIIDCi+HE0mlsVk8nEP/7xDwIDA+nXrx9ZWVkA9OzZk//7v/+jR48efPDBB+zYsYMePXoQERFB//79SUhIAOB///sf7dq1IzQ0lHvuuYfMzEz+/vtvli9fzpQpUwgLCyMmJoaYmBgGDBhAREQE3bp149ChQ/j7wyefjOeFF56gU6fONG/e3FIwGODtt9+mXbt2hISEMH36dEv/v//9b/z8/OjTpw+Hi6e3v8SaNWsIDw/HwaEwemHBggU8+eSTNGnShM2bN1v6f/31V8LDwwkNDaV3795ASQ9aUFAQsbGxTJ06lZiYGMLCwpgyZcpl7TQzduxYS6Z/UBnwly8vmu0mISHBUuoHoFGjRlSvXp0vvviCp59+2rLd//73P5555hliY2Px9/dn4sSJBAUFMWbMGFavXk2XLl3w9fW1lPp5+eWXGTt2LL169cLX19dS0Hvq1Kn8+eefhIWFMWPGDLKzs5kwYQLBwcG0adPGksF+7ty53H333dx55534+Pgwe/Zs3nvvPdq0aUPHjh1JTk4u1/dg/Pjxls9427ZtdO7cmdDQUNq3b28pq3PnnXcWKdat0WiuMSJy2QbUsGq1gP7AYRv26wT8ZrU8DZhWbJtHgNevdKyIiAjRaCpCXFxc0Y7Bg8vXnnyy9P0rwPTp0+Xtt98WEZHjx4+Lvb297Nq1S0RERowYIfPmzRMRkR49esjkyZNFRCQ3N1c6deokiYmJIiKycOFCmTBhgoiInDt3znLsf/3rXzJz5kwRERk3bpwsXrzYsq5Xr14SHR0tIiKbN2+WyMhIERHp12+ctG8/XPbtM8n+/fulRYsWIiLy22+/yT/+8Q8pKCgQk8kkgwYNkvXr18v27dslKChIMjIyJCUlRVq0aGG5Hmteeukliy0iIpmZmVK/fn3JyMiQTz/9VB5//HEREUlMTJRGjRrJsWPHRETk/PnzJe6TiEhgYKAcP35cjh8/LoGBgZb+suwUEalWrZqIiKxbt07uuusuERG5ePGiNGvWTPLy8orYe+rUKWnatKmEhobKM888Izt37hQRkfT0dGnevLnk5uaKiEinTp1kz549ls9uz549YjKZJDw8XCZMmCAFBQXyww8/WM43ffp0CQkJkczMTElKSpJGjRpJXFycrF27VgYNGmQ5/zvvvCPjx48XEZGDBw9K48aNJSsrS+bMmSMtWrSQ1NRUSUxMFE9PT/n4449FROSpp56SGTNmlOt7YF7OyckRHx8f2bp1q4iIpKSkWO7Jxo0bZXAFv9+3GiX+d2g05QDYLqXoGVsy0u9ApY4wgHzgOFB27YRCGgKnrJZPU9JD1gpwNAxjHeABfCAiX6PR3Ab4+PgQFhYGQEREBLGxsZZ1I0eOBODw4cPs27ePvn37Aso7Zq4Xt2/fPl544QUuXrxIeno6/fv3L3GO9PR0/v77b0aMKHQi5+TkACpnV8uWd3P0qB133tmas2fPAmoocNWqVbRp08ZyjCNHjpCWlsbQoUNxc3MDYMiQIaVeV0JCAgEBAZblFStWEBkZiZubG/fccw+vvfYaM2bMYPPmzXTv3h0fHx8AatSoUa77V5ad3bt3t2zTo0cPHn30URITE/n++++55557injgQHm2Dh8+zJo1a1izZg29e/dm8eLF9O7dm169erFixQoCAgLIy8sjODiY2NhYfHx8CA4OBiAwMJDevXtjGIZlvZm77roLV1dXXF1diYyMZOvWrSWGLjdu3Mjjjz8OgL+/P02bNiX60rhvZGQkHh4eeHh44OXlxZ133gmoocA9e/YAtn0PrDl8+DD169enXbt2gMqWb6ZOnTrEx8fbdP81Gk35sSU5qk8Fj11aBqDiwRwOQATQG3AFNhmGsVlEKiHSRKMBfvqpave3wtmqAKK9vb1leBGwFFYWEQIDA9m0aVOJ/cePH88PP/xAaGgoc+fOtRSZtqagoABvb2+ioqJKrHNzAw8PZzIyVFC9XIq1EhGmTZvGP//5zyLbv//++xg2JPZydXUlOzvbsrxgwQL++usvml3Kxnr+/HnWrl2LiJR6PAcHBwoKCizL1seypiw7izN27Fjmz5/PwoUL+fLLL0vdxtnZmYEDBzJw4EDq1q3LDz/8QO/evZk4cSJvvPEG/v7+TJgwocj2Zuzs7CzLdnZ2ReLwil9faddrvu9l2XWl89jyPSh+vrI+x+zsbFxdXS+7v0ajqTi2zF50MQzjGcMwvjcMY6lhGE8bhuFiw7FPo0oHmWmEqttYfJtfRSRDRM4BG4BQW43XaG51/Pz8SEpKsoiuvLw89u/fD0BaWhr169cnLy+P+fPnW/bx8PCwxOh4enri4+NjqfsnIuzevduybcOG6vXQocJz9u/fny+//JL09HQA4uLiSExMpHv37ixbtoysrCzS0tL4qQwBGhAQwNGjRwFV6Hnjxo2cPHmS2NhYYmNj+fDDD1mwYAGdOnVi/fr1lpmC5hilZs2asXPnTgB27txpWW99XZezszjjx4/n/fffB5RXqjg7d+60eHcKCgrYs2cPTZs2BaBDhw6cOnWKb7/9ltGjR5d6vZfjxx9/JDs7m/Pnz7Nu3TratWtX4jq6d+9u+fyio6M5efIkfn5+Np/Dlu+BNf7+/sTHx7Nt2zbL/mYBFx0dTVBQULmvU6PR2IYtsxe/BgJRdRdnAwHAPBv22wb4GobhYxiGEzAKKF6v8Uegm2EYDoZhuKGGHw/aarxGc6vj5OTEkiVLeP755wkNDSUsLIy///4bgNdee40OHTrQt29f/P39LfuMGjWKt99+mzZt2hATE8P8+fP54osvCA0NJTAwsEhgeZ064OQE586p2YwA/fr147777qNTp04EBwczfPhw0tLSCA8PZ+TIkYSFhXHPPffQrVu3Um0eOHAgGzZsAOD777+nV69eRTw2d911F8uXL8fT05PPPvuMYcOGERoaahlSveeee0hOTiYsLIyPP/6YVq1aAWomaJcuXQgKCmLKlCll2lmcunXrEhAQUMRTZU1iYiJ33nknQUFBhISE4ODgwGOPPWZZf++999KlSxeqV69+xc+rOO3bt2fQoEF07NiRF198kQYNGljOERoayowZM3jkkUcwmUwEBwczcuRI5s6dW+R+XQlbvwdmnJycWLRoEY8//jihoaH07dvX4k1cu3YtgwYNKvd1ajQa27Cl4PVuEQm9Ul8Z+94BvA/YA1+KyL8Nw3gYQEQ+ubTNFGACUAB8LiLvFz+OLnitqSi6aO2ViYqCAwegSRPo2vXaHHPo0KG89dZb+Pr6XpsDXgWZmZkEBwezc+dOvLy8yr3/4MGDefrppy2zK23l5Zdfxt3dnWeffbbc56wKcnJy6NGjBxs3biwR93Y7ov93aK6Gsgpe2+Lp2mUYRkerA3UA/rLlpCKyUkRaiUgLEfn3pb5PzILr0vLbItJaRIJKE1wajaZyadVKJUs9dQoyMq7NMd98801LaouqZPXq1fj7+/P444+XW3BdvHiRVq1a4erqWm7BdTNy8uRJ3nzzTS24NJpKxBZP10HADzBnzGuCGgIsAEREQirVQrSnS1Nx9K9V2/j7b4iNhYAAuDQZUKO5rdH/OzRXQ1meLlt+0gyoBHs0Gs0NhJ+fEl1Hj0JQEDg6VrVFGo1Gc+thS8qIE4ZhhALmqNk/RWT35fbRaDQ3FzVrQu3akJQEx44pEabRaDQ3K/kF+ZxNP0t8WjxxaXHEpcZZ3v+/Tv+P4LrBVWLXFUWXYRhPAv8Avr/U9Y1hGJ+JyKxKtUyj0VxX/P2V6Dp0qLAotkaj0dyoiAipOamcTj3N6dTTFnEVlxbHmfQzmMRU6n5xaXE3ruhCZZ/vICIZAIZh/BfYhEohodFobhEaNQIPD0hLU0H1l1JVaTQaTZViKjBxJv0Mp1NPcyr1VBGRlZ6bXuo+BgZ13OrQ0LMhDTwa0NDj0qtnQ2q71b7OV1CILaLLAKzloonSs81rNJpScHd3tyTwBFXIePv27cyePbvcx1q3bh3vvPMOK1assHmfnj178s4779C2bYmYziIYhgqk37q1MIWEDQnoNRqN5pqQa8q1CKqTKSc5lXKKU6mnSEhPIL8gv9R93BzdaOTRiIaeDWnk2YiGHg0tQsvJ3uk6X8GVsUV0zQG2GIaxDCW27gK+qFSrNBpNleDjA3v2wIULcPYs1KtX1RZpNJpbjZz8HIuwMrdTqac4k34GKVEtUFHbrTaNPBvR2LMxjTwbWZq3i7dN5cluFGwJpH/vUkFqc9rECSKyq1Kt0mhuE5KSknj44Yc5eVJlZHn//ffp0qULW7du5amnniIrKwtXV1fmzJlTojRMRkYGjz/+OHv37iU/P5+XX36Zu+66i6ysLCZMmMCBAwcICAgoUtPxStjbqyD63buVt0uLLo1GU1HyTHnEpcVx4uIJTqac5ETKCU5cPMHZjLOliis7w44G7g1o7NmYJl5NlMjyUiLLxcGW6oM3PuXJgmegcnPdPJJSo7HizgV3Vspxfxp9+SLYWVlZhIWFWZaTk5MZMmQIAE8++SRPP/00Xbt25eTJk/Tv35+DBw/i7+/Phg0bcHBwYPXq1fzf//0fS5cuLXLcf//73/Tq1Ysvv/ySixcv0r59e/r06cOnn36Km5sbe/bsYc+ePYSHh5frenx9Yf9+OHMGkpOhRo1y7a7RaG4zRIQz6Wc4kXKC2IuxnLh4ghMpJ4hLi6NACkpsb2/Y08CjAU28mlhaY8/GNPBogKP9rZ2vxpbZiy8BI4ClKME1xzCMxSLyemUbp9HcCri6uhIVFWVZNsd0gcqYfuDAAcu61NRU0tLSSElJYdy4cRw5cgTDMMjLyytx3FWrVrF8+XLeeecdALKzszl58iQbNmzgiSeeACAkJISQkPLlL3ZygpYt1SzGgwehS5fyXrFGo7lVSc9NJ/ZiLMcvHC8UWSknyM7PLrGtgUF99/o0825GE68mNPVqSlPvpjTwaICD3e1Z+cCWqx4NtBGRbADDMN4EdgJadGluKq7kkaoKCgoK2LRpE66urkX6H3/8cSIjI1m2bBmxsbH07NmzxL4iwtKlS0sMOwJXHePg7w/R0XDyJISGgrv7VR1Oo9HcZIgICekJHLtwjOMXjnP84nFiL8aSlJlU6vY1XGvQ1KspzbybWcRVY8/GODvYXrz9dsAW0RULuABmGesMxJS5tUajsZl+/foxe/ZspkyZAkBUVBRhYWGkpKTQsGFDQHnGSqN///7MmjWLWbNmYRgGu3btok2bNnTv3p358+cTGRnJvn372LNnT7ntcnNTKSOOH1cerytMfNRoNDcxuaZcYi/GcuzCMYvIik2JLdV75WTvZBFX1s3T2bMKLL/5sEV05QD7DcP4HRCgL7DRMIyZACLyRCXap9Hc0sycOZNHH32UkJAQ8vPz6d69O5988gnPPfcc48aN47333qNXr16l7vviiy/y1FNPERISgojQrFkzVqxYweTJk5kwYQIhISGEhYXRvn37CtkWEKBEV0yMKg3kcmvEsWo0tzUZuRnEXIghJjmGYxeOEXMhhtOpp0sNbK/lVgsfbx/VqqvX+h71sTN05uSKYkvB63GXWy8iX11Ti0pBF7zWVBRdtPbqWL8e4uIgOFg1jeZ24Vb435GSnULMhRiOJh8lJjmGmAsxnM04W2I7O8OOxp6NaV69OT7ePuq1uo/2Xl0FFS54fT1ElUajuTEJCFCi6/BhFeelC2FrNDcmqTmpHDl/hKPJR1W7cJRzmedKbOdk74SPtw8tqrfAp7p6berd9IZMJHorcntOH9BoNDZRu3ZhIezoaAgMrGqLNBqNeYgw+nw0R5OPcuT8ERIzE0ts5+LgQnPv5rSs0ZIWNVrQonoLGnk2wt7Ovgqs1oAWXRqN5jIYhhpWXLNGpY9o1Up7uzSa60meKY/jF48TfT6a6PPRHDl/hNNpp0ts52zvTIvqLWhZo6WlNfRsqOOvbjDKFF2GYcwTkbGGYTwpIh9cT6M0Gs2NQ926UKcOJCZqb5dGU5mICPFp8RaBdfj8YY5fPF6i7qCDnQM+3j741vClVc1WtKzRksZejbXAugm4nKcrwjCMpsCDhmF8TbFM9CKSXKmWaTSaGwKzt+uPP7S3S6O5lmTkZnD4/GGiz0dz6Nwhos9Hk5abVmQbA4PGno1pVbMVrWq2wreGL828m93ymdtvVS4nuj4BfgWaAzsoKrrkUr9Go7kNqFOn0Nt1+LBKIaHRaGxHRDiVeopD5w5Z2qnUUyW2q+5SnVY1W+FX0w+/Wn60qN6Cak7VqsBiTWVQpugSkZnATMMwPhaRydfRJo1Gc4Nh7e06dEh5u5z0ZCeNpkyy87M5fO4wB88dtIisjLyMIts42DnQsnpL/Gr54V/Ln1Y1W1HbrfZVV5TQ3LjYkjJismEYoUC3S10bRKT8Ka41mtsUe3t7gq2SXI0aNYqpU6eWuf0bb7zB//3f/1mWO3fuzN9//13u80ZFRREfH88dd9xR6vpdu3bx4Ycf8vnnnzN37lymTJlCo0aNSE9Pp3nz5kyfPp3OnTtbtrf2dkVHl8/b1axZM7Zv346npyd9+vRhzZo1ODjoeTyaW4fzmec5eO4gB5IOsD9xP8cvHi+RcLSWWy38a/rjX0u15tWb62HC2wxbCl4/AUwCvr/UNd8wjM9EZFalWqbR3CIUL3h9JYqLrooILlCia/v27WWKrjfeeIMXXnjBsjxy5Ehmz54NwNq1axk2bBhr164lICAAuDbeLicnJ3r37s2iRYsYM2ZMha5Lo6lqRITTqafZn7TfIrKKp2ywM+xoWb0l/rX8aV27Nf61/KnlVquKLNbcKNjyU3Mi0EFEMgAMw/gvsAnQoktzU3HnnXdWynF/+qn8hbRTUlJo3749y5cvx8/Pj9GjR9OrVy9iYmLIysoiLCyMwMBA5s+fj7u7O+np6axbt46XX36ZWrVqsW/fPiIiIvjmm28wDINt27bx5JNPkpGRgbOzM7///jsvvfQSWVlZbNy4kWnTpjFy5EjL+dPS0tizZw+hoaGl2hcZGcmkSZP47LPPmDFjBjExMTz66KMkJSWRm+vGuHH/Izran+PHf+L1118nNzeXmjVrMn/+fOrWrcv58+cZPXo0SUlJtG/fHuvKF3fffTfTpk3Toktz02AqMHHswjH2Je6zCK3iAe9ujm4E1AogoFYArWu3xremLy4OunaWpii2iC4DMFktmyg2k1Gj0ZSNWUSZMQug2bNnM378eJ588kkuXLjAP/7xDwBmz55dpmds165d7N+/nwYNGtClSxf++usv2rdvz8iRI1m0aBHt2rUjNTUVNzc3Xn31VbZv327xXlmzfft2gq4wPhgeHs6nn34KwKRJk/jkk0/w9fXll1+28Oyzj9Cs2Rq6du3K5s2bMQyDzz//nLfeeot3332XV155ha5du/LSSy/x888/89lnn1mOGxQUxLZt28p5FzWa64epwMTF7Its3L+RfYn7OHjuYInizzVcaxBYO5DA2oG0rt2apt5NdcoGzRWxRXTNAbYYhrHs0vLdwBeVZpFGU0lUxCN1LShreLFv374sXryYRx99lN27d9t0rPbt29OoUSMAwsLCiI2NxcvLi/r169OuXTsAPD2vXC8tISGB2rVrX3Ybs3cqPT2dv//+mxEjRljWpafnkJsL69ef5osvRpKQkEBubi4+Pj4AbNiwge+/VxEJgwYNonr16pZ97e3tcXJyIi0tDQ8PD5uuW6OpTEwFJs5nnScxI5HEjESSMpPIvZjLdye/s2zTwL0BgXWUyAqsE0jdanV1wLum3NgSSP+eYRjrgK4oD9cEEdlV2YZpNLc6BQUFHDx4EFdXV5KTky1i6nI4Oztb3tvb25Ofn4+IlPufv6urK9nZ2ZfdZteuXQQEBFBQUIC3t3cR4XjhAvz6K7zyyuO89NIzjBo1xDL8aeZyNuXk5ODioodeNFVDgRRwPvM8ZzPOcjb9LOeyzmEqMBXZpppjNe5oeQdBdYIIrBNIDdcaVWSt5lbCpulDIrIT2FnJtmg0txUzZswgICCAN954gwcffJBNmzbh6OiIo6MjeXl5ONqYgdTf35/4+Hi2bdtGu3btSEtLw9XVFQ8PD9LS0krdJyAggHfffbfMY65fv57PPvuMtWvX4unpiY+PD4sXL2bEiBGICCdP7qF581AyM1NIS2sIwFdffWXZv3v37syfP58XXniBX375hQsXLljWnT9/ntq1a9t8fRrN1SIiJGclW0RWUmZSiSzv3i7e1KlWh7rV6lK7Wm2SE5Np0KBBFVmsuVXRc7Y1mkqmeEzXgAEDePDBB/n888/ZunUrHh4edO/enddff51XXnmFSZMmERISQnh4OPPnz7/i8Z2cnFi0aBGPP/44WVlZuLq6snr1aiIjI3nzzTcJCwsrEUjv7+9PSkpKkSG+RYsWsXHjRjIzM/Hx8WHp0qWWmYvz589n8uTJvP766+Tl5TFq1CimTAllxIiX+de/RvDFFw3p1q0jx48fB2D69OmMHj2a8PBwevToQZMmTSznXrt2bZkzKjWaa4GIkJabxpn0M5xNP8vZjLPkmnKLbOPl7KVElntd6lSro4PeNdcFw3pW0Y1K27ZtZfv27VVthuYmJD4+Xv9aLYMZM2bg4eHBxIkTK3yMfftgzx6oUQP691dpJa7EsGHD+M9//oOfn1+Fz6vRFCcrL0uJrIyznEk/Q2ZeZpH17k7u1K1Wl7rudalbrS6ujq6XPZ7+36G5GgzD2CEibYv3a0+XRnObMnnyZBYvXnxVx/D3h6NHITkZYmPhUhx9meTm5nL33XdrwaW5avIL8knKSCIhPYEz6We4mH2xyHoXBxfqVqtLPfd61HWvi7uTe9UYqtFYYUty1GHAf4E6qEB6AxARueIUKcMwBgAfAPbA5yLyZhnbtQM2AyNFZInt5ms0mori4uLC2LFjr+oYDg4QGgqbNsHu3dC4seorCycnJx544IGrOqfm9kREuJh90SKykjKSMElh8LuDnQN1qtWhnns96rnXw8vZS88u1Nxw2OLpegu4U0QOlufAhmHYAx8CfYHTwDbDMJaLyIFStvsv8Ft5jq/R2EpFZvdpbKdZM1UEOzlZZarXxbA114qc/BzOpJ8hIT2BhPQEsvKyLOsMDGq61rSIrFputbC3s78m570Zwm40Nye2iK6z5RVcl2gPHBWRYwCGYSwE7gIOFNvucWAp0K4C59BoLoujoyPp6em4u7tr4VVJGAaEh8Pq1XDgADRvDm5uVW2V5mbEPMswPi2ehPQEzmeeL1K/0NXRlfru9anvXp967vVwdnC+zNEqbkN6erqeXaupFGwRXdsNw1gE/ADkmDtF5Psy91A0BE5ZLZ8GOlhvYBhGQ2Ao0AstujSVQI0aNUhOTi4zdYLm2lGzpiqGvX49hITYFlSv0eSZ8jifdZ7zmec5n3WevII8yzoDg+ou1anpWpMabjWo5lhN/XjKVAWmKwtHR0dq1NB5uTTXHltElyeQCfSz6hMKC2CXRWn/cov7bN8HnhcRk/ZCaCoDe3v7K2Ze11wbXFzgkUcgIwOmTIHu3avaIs2NiIhwIuUE2+K2sS1+G4fOHSrizarjVoe2DdoS0SCCkLohOpWD5pbCloz0Eyp47NNAY6vlRkB8sW3aAgsvCa5awB2GYeSLyA8VPKdGo6kiatSABx+EWbPg008hLAxsqEikuQ3INeWy9+xetsZtZWv8Vs5lnrOsc7BzILB2IG0btKVtg7Y09GioQwE0tyy2zF5sBMwCuqA8VRuBJ0Xk9BV23Qb4GobhA8QBo4D7rDcQEcsEc8Mw5gIrtODSaG5e+vZVw4t79sDnn8Mzz1S1RZqq4mL2RbbFbWNL3BaizkSRY7JEp1DdpbpFZIXVC8PNUQcBam4PbC14/S1grnZ7/6W+vpfbSUTyDcN4DDUr0R74UkT2G4bx8KX1n1TYao1Gc0NiGPDYY6qtXQs9ekBERFVbpbkeiAinU0+zJW4LW05v4fD5w0WGDZt7N6d9w/a0b9ieljVaam+W5rbkihnpDcOIEpGwK/VVJjojvUZzc/H99zBnDtSuDR9+CK6XT/6tuUkREQ6fP8zm05vZdGoT8emFESSOdo6E1g2lfcP2tGvYjlputarQUo3m+nI1GenPGYZxP7Dg0vJooPKmjWg0mpueu+6CP/9U2ernzYNJk6raIs21Ir8gnz1n97Dp1Ca2xG3hQnZhMXMPJw/aNWhHh0YdCK8froPgNZpi2CK6HgRmAzNQMV1/X+rTaDSaUrG3h8cfh6efhhUroGNHlUZCc3OSk5/DrjO7+PvU32yN20pGXoZlXR23OnRs1JFOjTsRUCvgmiUo1WhuRWyZvXgSGHIdbNFoNLcQzZvDvffCwoXwzjswcyZ4e1e1VRpbyc7PZlvcNv469Rfb47cXCYRv6tWUTo060alxJ3y8fXR8lkZjI2WKLsMwnhORtwzDmEXJ/FqIyBOVaplGo7npGTUK9u1T7e234bXXwM6uqq3SlEVWXhbb4rex8eRGdiTsINeUa1nXqkYrOjXuRKdGnWjo2bAKrdRobl4u5+kyl/7REewajaZC2NurRKlPPKHSSCxcCPfdd+X9NNeP7PxstsZtZePJjWyP314kI3xArQC6NO5C58adqV1NJxnWaK6WMkWXiPx06W2miCy2XmcYxohSdtFoNJoS1KihhNeLLyrR1bq1Spx6U5KWpip7Z2VBdjZkZkJOjsqV4eQEnTsXbnvyJDg6qgyxbm43VF2kXFMu2+K28efJP9kWv83i0TIwCKwdaBFaNd1qVrGlGs2thS0pI3aKSPiV+ioTnTJCo7n5+fZbWLAAvLxUfNcNWdpOBM6dg+hoiI2Fs2dh0CDw81PrlyyBr74qfV8XF1hs9fv0kUfg1KXys/b24OGhLrpePejSpbBOUkGBeq3kcdf8gnyizkSx4cQGNp3eRHZ+tmVdQK0AujXpRpcmXajheiN+MBrNzUW5U0YYhjEQuANoaBjGTKtVnkD+tTdRo9HcyowaBQcOwO7dKr7r9deVFqlysrLghx/gyBEltlJSiq4PCCgUXTVqQOPGynPl4lLYRJRXy5ratSE3F1JT1TkuXlTt2DFo0qRwu3374JVXVF/Tpqr5+EDLluDuflWXJiLsT9rP+tj1/HXqL9JyCwu/+9bwpXvT7nRt0lXn0NJorhNleroMwwgFwoBXgZesVqUBa0XkQmn7VQba06XR3BpcvKjiuy5cgDvugIcfroJRt4wMiIkpzGFRUAD336+GDkEJHV9fJXrq14fAQGjQ4OrOmZenxNe5c8p71qQJNGum1v32G8yeXfp+9evDjBlQrZpaFrHphp24eIJ1setYf2I9SZlJlv7Gno3p0bQH3Zt2p75H/au7Jo1GUyZlebpsGV70BDJExHRp2R5wFpHMSrG0FLTo0mhuHQ4cgBdeUDpk7FiVVqLSyc+HbduUwImKUsJl/nzlsQJVs8jeXomtevWuvxLMyIATJ1SLjVXesGPHlACcO7fQnmefVbFjgYGq+fsrTxuQnJXM+tj1rDm+htiUWMuha7nVomfTnvRo1oOmXk11egeN5jpwNRnpVwF9gPRLy66X+jqXuYdGo9GUQevWSju8+abKVl+jBvTpU0knS0iAVavgjz+Uew1U7FRAgHK7mUVXZGQlGWAj1aqpG9O6dWFffj6cP18ouDIz1fCnCOzdC0C2A2z2q8aaBjlEeWQgLs4AuDu507VxV3o060Fg7UAttDSaGwRbRJeLiJgFFyKSbhiGLgmv0WgqTOfO8M9/wiefwKxZKmlq2xK/Ca+S5GR1ErM3v3Fj6N9fCSxPz2t8skrAwQHq1i1cdnODb75B9u9n/+7f+SN2DRuzo8nOMcFxcPD1p33LSCJ9ImlbUA8He0eo3eCGmjWp0dzu2CK6MgzDCBeRnQCGYUQAWZVrlkajudUZNEjpou++U16vN96AVq2u8qCxsYWxUjVqQESEElj9+yvv1k0sQBIzEllzcg1/JP3BGa8zEOoBpjD8C2rQ62INuo6cikfNS7Fn772nhkzr1lX3IDwcQkMtQ5EajaZqsCWmqx2wEDCXj68PjBSRHZVsmwUd06XR3JqIwAcfqNE/T0/473+hUaMKHOjgQRWjtXs3vPWWEljmE9zEQivXlMumU5v4/djv7D6729Jfy60WvZr1opdPr9Kzw3/2GaxbVzg5ANTsypAQ6NevaD4xjUZzzalwIP2lnR0BP8AADolI3hV2uaZo0aXR3Lrk56v0ETt2qBxer76q6jbaxPnz8OWXsGGDWnZzg8mToWfPyjL3unDswjFWxaxiXew6S3FpJ3snOjbsSN8WfQmpG4KdcYW8XgUFcPQo7NwJ27cXxoONGaPyd4ByNZ47pyYQ3MTiVKO50bha0RUEtAYsvmkR+fqaWngZtOjSaG5tsrPhP/9R+sDNDV56SU3OK5P8fFi+XGVbzc5WM/qGDYO77rrq3FZVRWZeJhtObODXo78ScyHG0t+iegv6tehHj6Y9qOZUreInSElR4isgoDAFxuLF8PXXaii2fXvo2FF5w4rnHNNoNOXialJGTAd6okTXSmAgsFFEhleCnaWiRZdGc+uTnw/vvgsbNyoNNW3aZYLr589XNYUAOnWCiROhTp3rZuu1QkQ4mnyUX4/+yoaTGyxZ4t2d3OnZtCd9W/SleXVb3X4V4McfVWLYc+cK+1xd1Y3v0QM6dKi8c2s0tzBXI7r2AqHALhEJNQyjLvC5iNxZOaaWRIsujeb2oKAAPvxQZXmwt4f/9/+gW7dSNkxNVeOQ992ngsRvMrLzs1kXu45fjvzCsYvHLP1BtYPo37I/nRt3xsne6foYI6Jygm3erFpsrOrv2hWef169z8tTKSu8vK6PTRrNTc7V5OnKEpECwzDyLyVKTQQq8aeXRqO5XbGzg8ceUyOE33+vygUlJ8OQVocwln2vKmebi0i/805Vm1tuTlw8wcojK1kbu5asfDUJ3MPJgz7N+9CvRT8aeVZkFsFVYhjQooVqY8bAmTOwZUvhLFCAXbtU4F1QkPIsduoEtXTpII2mvNgiurYbhuEN/A/YgUqSurUyjdJoNLcvhgETJqj60PPm5BPz8gJichbj4yPYB6yAoUOr2sRykV+Qz6ZTm/j5yM/sT9pv6Q+oFcAdvnfQpXEXHO1voBiqevVUbJw18fHK9bh3r2qffabye3TurFp9XVJIo7GFyw4vGiqNcSMROXVpuRngKSJ7ro95Cj28qNHchiQkEP/kf0nYGEN+gcGh1vfQ6/P7aNz8BhIolyE5K5lfj/7Kr0d/5UK2yobv6uBKZLNIBvoOpJl3s6o1sLxkZKhSSps2qYD83FzV37gxfPRR1dqm0dxgXE1M1w4Riag0y2xAiy6N5jZjyxZV6Dkjg4xqdXiPZ9iaEYiLiyqYXWqc1w2AiHDo3CF+iv6Jv0/9jUmVrKWxZ2MGtxpMZLNIXB1dq9jKa0BOjsrx8fff4OMD99yj+s+cgVdeKfSANW+uU1FobkuuRnR9CMwVkW2VZdyV0KJLo7mNOHCgMIC7c2d48kmy7dyYNaswHdeAAWoI0u0GKUiWX5DPnyf+5KfonziSfAQAO8OOjg07MrjVYILqBN0e9Q9//BE+/7xwuU4d6NJFxYD5+2sBprltuBrRdQCVGDUWyEAlSBURCakEO0tFiy6N5jZCREXQt2yp4rcuPahFYOVK9UzPz4eaNVUe1KrMapCSncIvR39h5ZGVliFEDycPBrQcwB2+d1DL7TYLNjeZYN8+5QHbtKmwyDiouK9PPlGzJTSaW5xyiy7DMJqIyEnDMJqWtl5ETlxjG8tEiy6N5hbn2DE1ZdGca+sy5XtiY2H2bDh8WC137arqWnt7XxdLATidepofD/3Imtg15JpUbFNTr6YM8RtCz2Y9r1+6hxsZETh0CP76SwmwFi3g//5PrcvPh08/hXbtICxMJWbTaG4hKiK6dopI+KX3S0Xknkq2sUy06NJobmG2bFGercaNVfFFGx7ABQWwYgXMm6cS0ru7w7hx0LevmmRXGYgIexP38sOhH9gWXxht0a5BO+72v5vgOsG3xxBiRRBReb6qXcqov2MHvPyyeu/iopKxduqkXm+UMWON5iqoSJ4u6/8eOi+XRqO5toioUj5ffKHeN25sc8yPnR0MGaKq1nz0kXqGf/ihSq4+dqwKBbtW+sdUYOKvU3+x9MBSSyJTJ3snejXrxd3+d5decFpTFMMoFFwATZrA/fcrD1hMjCpDsHEjODhAaChMnarEmEZzi2Grp8vyvirQni6N5hbDZFK5nlauVMv33w/33lshpSSiRrC+/hoSElSfry888IAauaoo2fnZ/B7zOz8c+oHEzEQAvJy9GNxqMHf43oGns2fFD64pJDFRia9Nm9QkigYN4OOPC78Lf/xRtF6kRnMTUJHhRROFgfOuQKZ5FSqQ/rr9x9GiS6O5hcjMhLfeUu4pR0d46ino3v2qD5ufD6tXqxrYycmqLyhIxeK3a2e7nkvLSeOn6J9YEb2CtNw0ABq4N2BowFB6+fTS8VqVSUoKnD2rEq+Cqgk5YYJ637ixmjXRsaNar4dyNTcwFZ69eCOgRZdGcwvxyy9qTNDTE154QXkxriE5OfDTT7BkicrnCWri3JAh0KdP2aNW5zPPs+zQMn6L+c1SeNqvph/3BNxDh0YdsDP0rLvrTnw8fPutSsZq/jBBzZpo316VLapRo8rM02jKokpEl2EYA4APAHtUkew3i60fA1xKyEM6MFlEdhc/jhZdGs0thAgsWgQ9e6qSM5VERgb8/rsSYIlqdJBq1VSwfe/ehaUFE9ISWHJgCWti15BfkA9ARP0IhrceTmDtQB0cfyOQnw/796tJF5s3Q1KSiv9asKBQRe/ZA40aaRGmuSG47qLLMAx7IBroC5wGtgGjReSA1TadgYMicsEwjIHAyyJSIuuOFl0azU1OTAx4eVVJkWSTST2rf/gBDh4s7K/d8hQFAYs467IBB0fBwKBL4y4Mbz2cFjVaXHc7NTYiovKGnDihhDuoD3nMGKW0W7ZU48nt2qn3WjRrqoCqEF2dUCKq/6XlaQAi8p8ytq8O7BORElOBtOjSaG5ioqLg3/+G2rVVSggPjyoz5cgRWPjbMZYcXMRZp00IgoE9YZ6RjAkfzh1dG1KzZpWZp6koKSkwaxbs2lVYExLUMGREhCpT1LhxlZmnuf2oSMqIq6UhcMpq+TRwudzRDwG/VKI9Go3merNxI7z7rhoeat4cXKuu7uDR5KMsjF/A1ppbadQZvFMc8Drfj/w992CfXYfvdsJ3nyvnSIcOKmTIx0c7Sm4KvLxUfGBuLuzdC1u3qnbunJr9eNddhdsePKi+h02b6g9Xc92pTNFV2re5VLeaYRiRKNHVtRLt0Wg015PfflPJs0TUQ++hh6rkIXc0+SgL9i5ga/xWQOXYGug3kGEBw6jhWoO0NDX8uGWLcpQcPara/Pkq1j84GEJC1GujRvo5fUPj5KQ8WxER8PDDcPIk7N5dGMAHKi/c4cMq9is8XG0bGlqlHljN7UNliq7TgLU/txEQX3wjwzBCgM+BgSJyvhLt0Wg014ulS2HuXPV+7FgYMeK6q5XSxNYg30EMCxiGt4u3ZTsPDzWrsU8f5SjZvVs5SbZvV46Sv/5SDaB6dVW3uVUr1Xx9q9R5p7kchqG8WU2tKtmJqOWkJJVXZPVq1QxDfaDDh6uUFBpNJVGZomsb4GsYhg8QB4wC7rPewDCMJsD3wFgRia5EWzQazfVi714luAxDeRvuuOO6nj72Yizf7PmGLXFbAHC2d7aILS8Xr8vu6+RUGIMtAmfOKBG2d6+aHHfhQmEeT1CX2KSJKivYrJkajvTxUaNdmhsQw4DHH1cf7okTKlfcjh0qKevhw0XjwQ4ehOPHlResQQPt4tRcEyo7ZcQdwPuolBFfisi/DcN4GEBEPjEM43PgHsBcPDu/tMAzHUiv0dxEiKj08E2bFs4uuw6cSjnFt3u/ZeOpjUChZ+uegHuuKLZsQUSljTp8WLXoaPVMNplKblu9uorbbtSoaKtVSz+7rxuJiSppW8OGqm4UqJkUFy+qDy0/XxXxzM9XCXuPHVPburqq9cuXq0kgdeqoFham0lR4eUG/foXF2Q8eVOPR9vbqPIahXu3tSzYHB9V8fAqHM1NT1axLT8/CUknm57L+sty06OSoGo2m8sjPVw+PKsiRlJCWwLd7v2X9ifUIgqOdIwNbDmR46+FUd61eqefOzVXP6uPHVRaD48dVy84ufXtHR/WsrlcP6tYtfK1VS7Xq1W/D56yIEkeZmUW/P2vXqlmJmZmFLSur8DU7u7BlZal9P/20cP9Ro5SY+fbbQoHz4otKSNlCcrJybQYFqeODUtspKerYH3yg+r76SmXiLQ8vv6xiyUBVbf/uO1UKa+RI1bd5M7zxBjg7K/eruTk7FzbzsouLah06FNa9SkpS3rt69cDPT/WZTOp6XF1Vs9PJfiuTqpi9qNFobgdycuA//1FuoP/+VymH68C5zHMs3LeQ34/9ToEU4GDnQL/m/RgROIJabtcnH5iTk4rx8vcv7BNRTpZTpyAuDk6fLmwXL6q+uLjSj+fgADVrFgqwGjUKW/XqKgOCl5dyitjbX48rrCB5eeoBb24XLyqxkpKi3jdpooQLqJs1caK66DlzCo/xxRdqe1sprnQbNlSiy9qx0KpVocfJ2vtkZ1fonbL2VhmGEkMJCWqcefFiJbx8fAqP6e2tztOggSp9UKeOUtcFBUroWLf8fNU8raroubkp5W3dl5ur7DaLSluoWbNQdB0+DO+8A126qOLhoAIUJ04s3N7ZWZ3bzU2JMOvXatXUa4sWqnq82abjx5WA1XUwK4wWXRqNpuJkZMBrr6ls4R4e6gFbyaIrJTuFxQcWs/LISvIK8jAw6OPTh9HBo6lTrU6lntsWDEM9Q+vWhbbFfudmZ6s4sbNnC18TE5Vj4tw55Sw8e1a1K+HhoQSYh4d6Xnt6Fr53dy9sHh7qtVq1a+TgMHubzAnNMjKUQDp3Ds6fV9+BtLTLHyMkpFB0eXgUem2s6dNHiTezMLAWCObm7Fz4Wnz/d98ted6xYyt2zc2bqzZ0qBJNOTmF6wxD3VyzqDSLsuBg5SVr21YJu7K45x7VrOneXQmm3NyiLSen9JadXbScVs2a6hhmLxcou2vUKPQSmve9cKFs2yIjC0VXYiI8+6wSs598UrjNpEnqS2X+klm/mr+A5mXzF/Q2Toanhxc1Gk1JcnKKjpdlZBR6A8xeAAcHlQMpJUUFLL36aqUmoMzIzeCHQz/ww+EfLLURuzbuypiQMTTybFRp572e5OQU1S7JyYXtwoXC53pqalEHTnlwdS10ZJiFmLWWqeaYi3fOWbyyzuCefgajQX1Mbdri4gIeJ/ZR691pEBiI/OdNnJ3BriBfiRFr7OwKXXXe3qpVr65Uore3UqRmQSByc4+p5uTAoUNqtsXevSrYL1+Vk8LNTZUqMivdnTuVl68KKjMUwXpI1yyiMzPV33lWlnrNzFS2mkXXqVPw/vsqybHZe2Yywd13l+/czZqpRLZmO558Un3x/v3vQnG6Zo2yz8OjsJl/VRQX1zcoenhRo9GUjYgaPlm3Tv1Sj4u7/FM9J0dtl51dGFMyc6Z6kHburH51X6MHaa4pl5+jf2bxgcWk5SoPSrsG7bg/5H6aV29+Tc5xo+DsrBwJDUvU5ShKQYFyJl28qF5TU1VLS1MtPV016/fWYVE5GfmQk4BLdjxO2fF45sRTMzuOmtnxeOQWZu7JAfbV7MGyFurZUT27Jg/vc+J0rB3zYtQ2Dg4ORKQ/RZ6bF3keNcjzrIl4eOLkbKjQI0dwzgfHi+CcBY7nwekUOO1RDi5HR8MSsuTgoEbmVH/JZl5vbubfAFWKs7Oa4RgaqpZzclRw/f79SnyZBVdurvIK5+cr0dW6NQQGqr+Vpk2vb4yVYRT+3dpK48YlvYd2dmrSTHq6EmrmL1tpLSNDfSEbWf1AyslRP+rMH76ZJUuUyCsNJ6eiQszcHn648Mtw8KA6XtOmavsbCO3p0mhuZ86cUd6q1auVi8WMnZ36lWvOgeDtrURYQYF6cs+erbZ3clLDLsWHk2rUUMMjXbqoh0sFnoymAhN/HP+Db/d+y/ksJQQCawcyLnQcAbUDrrC3BlAP+tRUi2el4Fwypuf/j4L4M5hyTSrUqHjokdiTUa0OqW51SXWtR3z1QA7X76lGpLJFxa1nG5bRqap8hBhGoRgzN2txZg7Zsn5vbvb2Jfutw73Kei3+3uZ28TzuX83G8chB7LIy1J+Eoa7BcHGBf/0Lo02Y6r/ZvX+2UlCggh2zsooOhS5erIYzrX9JmN/n5ZU8jru78iiamTRJxeF98knhL5jPPlOeyAceUDlhKhnt6dJoNIXs2QOLFqlXM3XrqjiaiIgr/0JMTVX7Tp+uxqhSU9U0vl27VOmfxET46SfVataEAQNU8/a+omkiwqbTm/h699fEpamIcx9vH8aFjiO8fjjG7fAwKi/mfBZQ+JDZvx+mTVOelP/+FwA7b0/szp8BxwJoWFd5HcwB4A0bqve1a18mSr/ovRcpDHEyhxYVDz8qLSwpN1c9O/Pyiq4z91mvK96Xn1/4WlBQuO+NT01gOohQO+8kTdIP0DjtAI3TD+Kdc5ZZU+tz0Vnd+jtiP6Zp2j4SPP044+XHWW8/Lng0wXCwLxLvX/x98WXr7BXW25TVis8jKN6K91svV+y9HYbRRC1vKew3mo/ArmXR+QyGAXaGYJeXg0NWGnYZadhnpGKfkYqdmMg5Xri9Z3Uf7AvcSMvwgnjV73HoNI6HY8lMysctp+pGKbWnS6O5nTh2TE1x37lTLTs5KW9U374q6PdygiY3t1CImZ+2jo4ltxNReYs2biwUYKDcA927w5AhalZUKew5u4e5UXM5knwEgPru9bk/5H66NemmxZaZ3FyV2DMmRjVzvoqcHOjWDZ57Tm2XnAwTJigPwltvFe5/6pSaYXeTxMZcDnOareJizNzMy+aJg8WXrZu5z5bXKzWzICytz9xvfs3PB7fsZFLsqiOXRO1D+5+hQcaRIteaa+9CgltL9tfszo46A6vidt/UuOcmUy3vIinOdXjyX+50reSig9rTpdHczpw9C998o2K2QAWu3nMPDB5cmJDxcqxapXIJ/fe/ynNlHtcpDcNQ9XF8fWH8eOUR++knVVtnzRqVdNLTU03FHz4cDIOY5Bi++uNddp3cAp6eeNdqxOig0fTLa4LD1oOQdbhoXobbhbw8JaqOHFEtJkbVEywoKLltrVpF6wdWr65iY4p/TpU42eF6Y2dXmMLq5kblJzOP4Juy/4vEHEMOR8PhQxjRhzHOnkXYR78BvmSOUoLNOHmCat/NIaeJLzlNWpLT2Jc8jxoWcXelZhZ/1k1E9ZttMS+b35e2vfUyFO5vfazi21kf33rf8vQVX2f9an5feF9rUCA1cJeq/b2hPV0aza1Mbq4aRvz+e/WT2sEBBg2Ce+8tmheoLETU/vPnq+VHHoGB5fiVbZ7VFRysZq59/rmaAXUpwDjhrl7M61ePP9MPwO4o3PLgnsRaDPn3ElzsnZVoM3vY5s5Vwsv6mLeSEBNRUxTNCULz82H06JJ5mgxDDQu2bFmYysA6w7nm1iQlRQnv2rUL60muWlU4E9BM9erqu9GihfpRcwt4NG9GtKdLo7nd2LdPBbybM3FGRirvUh0bc1nl5al/6GvXqgf95MmXF1zFxdChQ6WLpiZNuOAKC52i+c3lD0zbnHE0waBjTtzr2AaPuCQ4cKkUa26uijWKj1fHhltHiJlMhbFTqanwz3+q999+q+63g4PySmVnF3oOW7ZUU+7LM+tMc2vg5VUy8Vv79ip9w9GjSpAdPaqE+7Zt6u/hPqtyx598UjjxpXlz9Xd1Q2fYvTXRokujudXIyFBi5Ndf1XLjxqrIb0A5ZvylpKi8OQcPql/KU6aoMiNlUZrA2ru3hGjKCGjB9z6p/Fg7mRx7J4zGjemT4Mp9hxyove0AOOxQotAcX+bkpPZ1dFSCqpRjAjeHEDt3TpVmOXBA3VcoLCVjThBa3Nv11luXT6ypub3x9i6cJQzq+5OQoGI3U1MLYzRNJuUVs5755+ioPGbNmqkJNIGB19v62xL916zR3Eps2QIffaSCqB0cYMQI1cqKvyqNnByVefrMGRUn9OKL6pexNcUFTWliKDjYIppynexZUT2BxYe/J31gE0j1pkOzrjzQ5//RpFoDFev16acqINzTU3no7rtPlYXZt6+ocLoZhJh5NuH+/cr+/fsLJxSYcXAozHNmGOqa3d2LTmbQgktTHgxDzUAtXqZHBJ5/XsUHHjum2tmzyjN29KiqEGAWXRs3wu+/K0Fmbk2a3AqBczcE+i9ao7kVyMiA//1P5dwCNWPtiSfUP8vy4uwM/frBpk3wwgsli1iX5tWyElgWMeTvT/6Xn7N6ywIW2O0nOel3AIJ8OjIubBz+taxET79+0KuXsn/RIhUs/uab6lf4ffcV5vDx9y/0ol0rIXatiI9XCWbNmckvXiy6vlo1db7WrZXXsVWrovE2OiZLU1k4OChPtbW3OiND/ciJjS3q5TpwQM1uNs9wBiXm6tVT399nninsz8sr3w86jRZdGs1NT1SUGqYyJyt94AG4887yZbgWUZ6t+vXV8vDhcNdd6ni2eLVGjCgihgr8WrEhdh3fxnxLgksCAC2qt+CB0AdoU69N6ekfHBygf38lvn7/Xc2WjI2FN95Q4mv0aOjUqWSF6asRYhX1fpmHcWrUKIyvWrRIeezMeHmpYdLAQNWaNbu+Wcc1mstRrVrhd9OaYcOU5+vECfX3d+KEigtNSCg6+cZkUvUzq1dXP+4aNVKhDI0aqaZ/RJSKnr2o0dysZGer4beVK9Wynx88/fSVa8gUJy1Nlfc4ckSJN+u6cKV5tUD1mX/lWnmMzIlN5++Zz8nUkwA0cG/A2NCxdGncpXy5tnJzVRzKkiWqGCEUFV9XOlZZgf3WdpuvpbzDkP/9rxqGmTatsDbdX3/B338XFjpu2PD2yCquufXJz1fCKzdXTegANVw+aZISX6Xx/PNYkmHFxKgfhQ0aKI/ZbeAd07MXNZpbiT17VK3Ds2eVh+i++9Qv1PLORjp8WA3jnTunfplu3qxKcpTDq4W/PyLCjoQdfLPnG2IuqKJ8ddzqMDp4NJHNIrG3q8AsKScnlUesXz/l+Vq8WP3y/s9/1C/r4cNVMtCy4p5s8YgtXlz2MGRWlnrYDB+u7vMzz6jEP3v3qnN6eqqacmasA5o1mlsJcx1Da+rUUT+IEhJUwl1zi4tTpX2s48r++EPl6gP1Q6Ru3cLYs+bNVXLm2wTt6dJobiayspR365df1HLz5sq71axZ+Y4jov4JzpmjhIWfnxJtzzxjs1dLHUbYHr+dBfsWWLLI13CtwcjAkfRt3hdH+2v4izYvr1B8metE1qkDQ4eqf9oVyUdk7f2yt1cxbL//roYK7ezU/W7ZUj0c+vRR9d1yc9VD6KuvyjcjVKO5XTDrCrOn99df1Q+6+HgVxmCtOwICCism5OerXIB16qhQh3r1Cl/r1rUtkfMNgvZ0aTQ3O7t2qbxZSUnqoT9ypPLClHeG27lz6jjmQNkhQ1S5mGXLbPJqQeliy8vZi3sC7uEO3ztwdqiEhIyOjnDHHcrztW6d+pUdF6dmPS5cqLxiAweqWCpbEFHxWPffD+vXqyn2//uf8l7l5an11aopL+Idd6ggeev7s2+femDcaKkpNJqqpviwurn2Kqi/rTNnlIcsPr5onNjZs6o/IUH9vRXnhRcKJwPs2wcnT1JQuzaZnp5kVqtGRl4eGRkZZGVlkZGRQWZmpuXV+v3IkSPxsy6wfR3RokujudFJSVHCZ/VqtdyyJTz5ZPm9W2aSk5WAE1H/wMxDdKXNQIQiw3QFUsDfp/5myYEllmFEbxdv7gm4h4EtB1aO2CqOg4PyOvXqpX49L1mi4tHmz1ceqh49lJAsnubCmrg4FY914UJhn5OTuqehofDYYypmLiKiUEiVljesrASwWohpNKXj6KgC7hs3RkTIyckh/dw5JYpSU8mYPJmMU6fIiI8n88wZMpKSyDh/nozkZDIXLCBj6VIlnnbuJOPECbKsY8ocHZXHu1q1osOhmZnq7/PSD9SePXtWmejSw4sazY1KQYFyy3/9tZre7eAAY8ao4bTyxm6lpRWdTfT11yomrKDAJrGQZ8pjzfE1LD24lIR0NRvR28Wb4QHDGdBywPURW2Uhomz+8UeVidv8P611azWLs2VLWLFCBfyas76bS+y4uUFYWGGrXv3y5yp+fxYvVjFmZu/X1KlqXWWmptBobhBExOJVysjIID093fL+cn3WraC0OqK2kJysfpDm5OBqMlEtPx83Ozuq2dvjVr8+1e66Czc3N6o5O+P28ce42dtTzdUVt1GjaHnvvdSsWfPa3oxi6OFFjeZmIjoaPv5YJS4EaNNGCYbyzkzMz1eC49NPoXt3Jdj8/VXB64KCkukTigWfp+em89vR31gevZzkrGQA6lWrx7CAYfRu3hsn+xsgYaJhqCnuISHKgzVnjhouNGd/d3JS97FBA3jwQfVr2MFBJZGtVat8MwyLB+eX5h28lqkpNJpKJjc31yKMbH21FlRX67hxdnamWrVqSiBVq4a7u7vlvXV/8WXzq6urK3Z2dur/WXKyCr8wjMK/MbNnPzFRea/btoVKFlyXQ4sujeZGIilJBWuvXq08NrVqwT/+YVuKBGtE1NDbnDlq6C0qSsVA/Phj2clMrTiVcorlh5ezNnYtOaYcAHy8fRjeejhdGnep2GzEysCc+X337sKWkaHyBA0frjyFsbHqWjMz1TT2fv3ULMPata/+/LbmCNPDkJpKQkTIzs62iKDirbR+674869JAFcDFxQV3d3eLEHJ3d7csm5v1eus+Nzc3HK5V1QU7O/X/0jrlDahceh9+qP5XZGZWeboKLbo0mhuBixdVMtBfflHeKQcHuPtuFSxfnuLGhw6p2Xd796pgVFD/ZOrWVcNsCQllBsgXSAE74new/PByos5GWQ4ZVjeMu/3vJrx+ePnybFUWyclFRZZ5JqOZ+vVVXFa/fioA/uhRdU/Wr1cC9MgRVfw3LEx5/zp0uLpZUVebmkILsdseS2xTKaLJ3NLS0soUUaaycmXZgIODg0UEmcVRWcLJer1ZQF0z0VTZGMYNMfvxJrlbGs0tSloafP+9St+QozxKdO+uZsyVdyjx0CHl3Tl1Sv3q69IFJk9WAaUTJyrBVUqAfGJGIr/vmc/q46s5l6kEjJO9E72a9WKI3xAaezW+hhdcQXbuVGWJ9u5VQ4jWeHqqocXQUDUMW7du0fW+vqo99JBKYLp+vfL87dihmoODCpjv0EENPVwprssWKjoMCVqI3cTk5eWVKpTM782CqbT+/Pz8Cp/XycnJIoqKN2vBVFqfk5PTjfFj6jZBiy6NpiqIi4Off1YemOxs1dehg0pfYOusxEOHVJLUBg1U5mfrpJ12dspLNmiQ2raY5yUnP4etcVtZFbOK3Wd3I6i4jPru9enfoj/9WvTDw7mKynicO6eGQkNCCus+btmihgpBef6CgpTICg1V98uWh4azs5rx2KuXCsD9+2/48091ri1bVAMl0Nq3VwKsRYtrk1W+MmpGaiFWKRQUFJQqjqyXi/eb+3Jzcyt8XrNwMgsiDw+PMoVU8eZ4G2R4v1XQokujuV6IKI/NTz8pD4uZsDAltsozhTkqSs2+O39eBZD+8Yd6+Lq4qJgGZ2do165we39/8nxbsDNhJ3/+/Q5b4raQna/EnpO9E50bdaZfi34E1Qkq36/etDQVQ+XlpYLzQQma+HjVZ85KLaJy8Li4gLd30Xty8qRKfmhObvrJJ0oAPfUU9O6t+rp3VzFYwcFqmLS8szeL4+WlcnoNHKiGK7dsUTMfd+8uHIKcP1/N+AwKKgzUb9y44iLsWtaMhLJnSGoxhoiQmZlZ5jDd5TxOGRkZFT6vvb19ETFUlnAy93t4eFhElpPTDTApRVPpaNGl0VQ2cXGwYYNK6Bkfr/qcnKBnT5XSwBbPltmr5ewMx46pfFTx8UrEiKghsyeeKPEQz8rLIupMFFvitrD59GYy8gofKK1qtKKXTy96NOuBu5N74bkyM9U57O0LM66LqLxWqakwe3Zh4eZZs9Swn3UNwh07YMYMiIxUGe5BZXb/xz/UMadPV+WHDh1Sgf0pKWr7u+5S2zZsqDxcmZmFNpVWmPdaUaNGoQDLyVH3eetWJZATE9X1bdqktvXyUvfEz081X9/yxdwVpzKKd9vqFbvBxZlZOJUVIH6lVtFZdYZhFPE2leZ5MvcX73N2dtZDdZrLokWXRlMZJCaqoasNG5SAMVOrlhry69evaCbmy3HoEDzwgCoaW1CgPGOuriootFo1FYPUrx8A4udHfAMPtsVvY/uab9iftJ/8gsJYkebezenWtBtdm3Slnns95TH7Yp7yirW9lFLmyBGV+TkwUNVlBOXdiY1VXq2MjMKcXzVqqBgqa8+Tl5d6iNeqBfv3q0D2vXtVGoycHHjppcJtU1LUxIGsrMI+V1flfbJOXBoXp8Savz88+2xh/5494O6uajFei4Bes4fQ7CU8e1adw9ySk9Ws0M2bC+9Ls2ZqGNLHp7C5u5d5iitSUSEGtnvFSuurhCHL/Pz8UvM1lTWzrvjy1aQjMM+qu9wwXfF1Hh4euLm5qRQEGk0loEWXRnMtyMpSsUG7dikhc+pU4To3N5XyoXt3FYN0paGxbdtUbi17e3jxRfUQzM9XIi0tTT0Qp02DlBRkzx5OtajFPvtj7P/rJ/Yl7bPk06KgAMPOnoBaAbRt0JYuG0/Q8K8TMKUduNdT20RHw8qVSmyYRVe9euqBWzyj+yuvKEHk5lbY9/DDygtmPe3cyUl5xBYvVs1Mq1ZqXYsWykMUEKDy5djbK9FkpmlT5SVr1aqwLylJCaA6dYra9MYbSgR+801h+Z/ly5VAHDhQnQeU2DOX/SkPdeuquo59+6r9ExIKvXTR0UpQHz+umjW1a6tratSosDVurD7DinhCbBVi5QnYt0Gc5bVoQWZUFBk7d5LRtCkZ9eop4XToEBmHDpFeqxYZXl5lJsLMNscrVhCzcCpvu6lm1WluK/S3UqMpLyJKBBw5oh685oew9bRtFxflLeneHcLD1UOsNA4cgLVr1fr0dDWM9fvvyqNlZ6f2v/QgFQ93khpV5+i9nYhJXE3MhRii7aNJ23seCkyWmCpPB3fC/4qh7QVXwj9ZjofrJTGy7HU4cUIJQnOJDLNt1kN3devC22+XtLVFCyV8UlMLZ/itXauSuPbpA5MmqT53d/Ugd3BQwqNFCyWgWrWyzSPVqZNq1gQGqgSv1vc4P18JtwsXinoNd+5UQ5wdOxb2/fknfPAB9O+vSvyAmsCwdKkSmebYMVCfb2nCyDBUjFqDBkoUghJzx44VtuPH1T1OSlLNOnYP1GdkLt5rfq1bV4nPWrWUB9FWUVZciJn75s5F9uwhx8+PzDp1yKpThwyTicyjR8m0syMzLY2MrCyy0tLI2LOHDMMgc/NmMhYuJPPYMTJcXclITydz3Dhy3dzUjwjz9zEsTJ2neJ+7u/r+pqaqz+KSp8/IyMA9Nxf3Bg2o1rChEkSZmVS7cAH3li2p1rJlmbPstHDS3Irob7RGcznS0+H06cJ24oQSWykpRbczDBXj06aNegiJwMGDKmjcyakwWenGjWq7IUOUULvvPvWgNj+8UlMpQDjbtCZxLrmcPvA9cW5+nH4mhBPHdpImOXDg08LhvdRUau47RqBnC4LGP0JQnSAaeTbCWDFePQAz8uBSfDv33ff/2zv3KDuqKg9/u+77dnfeHQidII8EYsLIKwkKjAufoKA4KMg4MgwsHHSJiIosUJcDLIFhBMfH4JMBHXV0jQgRRUUFBlBGIIFAnkAgJiQk6aTTHfp23/fd88euSt3uJIiY7pvQ+1ur1q3adarq1DlV5/zuPqfOsS8am71KM2faAhbH/n5rGt282X43bYonod20ySrac8+1oSnA4lEsDh0ra8YMEzh7qskPzGsTdcqPSCatyXE4Z55pguvQQ2NbsWjnaBZnW7bYRNnTpg0VXRdfbOOmXX99fM3Fi817dswx1nwI5t2r1UzoRH3fwIThCy/Ez8yGDfH6wMCuPWNAXZVSIkFx/HhKHR0U83mKuRzFTMaWVIpiEFAMAgYbDYqNBsVSicHBQYrF4o5JfaP1IdOrTJoUC6I77jDb9Omx7emn44m+y2V7HvN5gkKBNhHaxo+nrVSibeJE2rNZ2p55hvzkybS/+CJtCxbQPmcObV/8Ivl6nfZGg/Zrr6UtlyN74YVItWofS1x9tV038qatWLHzBwBPPml/MqLhUvbBvmiO81KMqOgSkVOArwAJ4GZV/ddh+yXc/05gEPgnVX1sJOPkODuoVKxy3b7d+up0d8ceii1bTGQ0i6vmf/LTppnnZtYsq/z7+807M3euVQrvfa+FVbXhHHp6YNEiKtTpm5Snd/8UfSsfp3fqi2wdJ3Rnqmw5rkT3AZ1sXfYcjfJGEzjVh+HZsIJOw/g/9XJo5iBmHncWh046lJlMovP3X0D2mw2z3hHH9cYbTfA1i54JE6yy37Ahbjpcs8Y8SD09trzU6NQi1rzX3Dz6utcNbdoDu+ZLTTY90uyq0/273gWnnWYiKSKfh7PPjr+ajOjpsfxsHkjxoYfQu++mkkpRnjyZSqVC+ZFHKN9wA+U5cyhfcAHlcplSsUj5llsoJRKUTjmFcqVCub3dtidOpDR9OqXBQUrbtlHs6aHU10epWKRULFIplYbG788hYmmdSMS/TevpTIZ8Pk8+nyfX2UnbwQeTb28nP24cbR0d5MaNo238eNseN458WxttmzfTtnYtbUcfTf6oo8isWYOcd549F6mUNeeCCadq1bx0551nIiidjpsr16+3cNXqn2/W3N0HANF1XmlftD1t+0vDOs4uGDHRJSIJ4CbgbcB64FERuVNVVzQFewcwK1yOA74R/o4urXw5W2Xb2+LzcuJ42GFWKS1bZp/2z5plzWTlsoVbvty8K1OnWtPR6tXmlZo0yTwyhYL94163ziqmqMkvEl75fDwnYaGAFvqpT5lMdf6xVNIJqnfeQXWwQLk/QXn2FMq9qyjfdR/lxxdRDBoM/mQ/ip/6GIN/Wk1x/3UUplUpJBv0p++lf0aDQmeBwSQgJXjwcybeZvaa9wNgRgbGpeDoo5i0fA3Te2tMn7CA6ce8nenjpjNj1QtM3ngfkj0EuveHdT1QXA9vfZt96XfjjXauwUG71/5+OOcca/oD+yLvppusf9LFF5tNxNItIp+39Ntvv/g3agY74ICdm0nT6d03nb5CVJVarUa9Xt+x1Gq1Hbbm390t1Wp1x+/ulkqlEq9ffTXVapVyuUy1s5NyNkv1U5+iEtoqGzdS7euDL38ZvvMdi2hvrzUpbtpkHlAwL9fixeYpavb+rVplInz27Njbtn27PYv77Qdz5iAi5FTJLltGLpcjd8QR5BoNso0GuWefJV8uk5s2jRyQq1bJ9fWRq1TId3TYkkiQr9fJDQ6Sy2RINg/NEXku29vj5stKxeKbTtv7kMnEom3RInsWUikbMmPbNhNKd9xh+9/0JjvfgQfagLPd3XZ/fX22f9MmO9fgoN17MmnrQWDv6zPP2LlFrB/k735nx0+dan947r7b9hUKlj7d3daUHQT2jE+bZvf0hz/YNS+6yAReOm1DjoANDBzZojz70Idi26232jX+EmG3N4nAV0u5vjfEZxSRv3ayyt2eWOQNwJWqenK4fQWAql7XFOZbwP+q6o/C7aeAk1R1Y/O55s2bp4sWLRqReLJqFee9bz6lqOJr7wABBgrQCNNmwgTro9OzFeoNq5TzeSs8e7ZauHrdCq3Zs+2lXrPGKn5V+8ccBOE5AdQKv/b2ocdnMzBuAvT2gAK1sEDcfz8riKIOy4kkJBNQKkKUfak0JAKoVc0mQJCw9XoNFTFbJmvCJRIhqlCvgQQWx0o5TptkOOCeNuJ+LskU1OtovWbbIpDNWUFaq6LptNmmdMLmjVCt2XURyGbRWs3uIRC7XkcHWirZvSCQCNB8DhS0WLS+Ssmk3eb4CWjfNrTesHOKoMkENBpoo4GKoEF8nUa1ggpmT9k5tFqlIaDJgMa4DjSRoNG7jQbQCKCeStIQaNRrFi4QE221momYethkk81CKmn3F3UWTqVMoOSy9qVhvWH32RZWdAMFglqDXF3Id0wiJxny5TptPS/SUU/SftoZdLzmMNrSbSR+dy+sWoUef7w1aQH69NNW8TQRvb/D32KNbPPmwZFHoqpoOEehdnXBEUeYrVaD7m40l0PzeTSRMHvTAuxoqmo0Gqjqjt/m9UajsWOJtuv1+hB78xIJquZw9Xr9r55AdyRJp9NkMpkdSzqdJp1Kkc3lyGQyZNNpMlu2kBEhe8QRZstmyT76KJmtW8mdeirZAw8020MPkb3rLrInn0zu3HNtZPB160xAzJhhE3JHXHCBiYxvf9sEB5i4WLjQmlNPOMHEyJNPmr2ryyY3LxZN7Nx8swmDyNtXKpmw2rzZvJKRQNu61YTk5Mlx82ytZv3kkskdzyJgfRkLBfszFJUnzz9vv11dJtILBfMcbtliYQ4/PPYY9/TYeQ4/3OK2ZImVI/U6zJljcVqyJG7Gfc1r7JxRf7Jy2UTa5MkW52zW3tFx46zPYTSkSvS1bS5n18xmLV2icrlQsH2lkh1XqcSezlJp6FhzGzda2T8wYNdJpUx85/OWzpMmma27244JAkufvj7zMEfeyGOOMW/gunVWxgeBDSHz1FNWdmQylt4nnWT38fjjdt50Oh7c98EH7bhczv5YdXTYeHOrV9s9JhJmX7PGnovo+Le/3fL5wQctTDYLp5xi93rXXRbv9nbr/yhiM2bU65Ye0WDLCxdaOmWzNtSLiA3/EjXjR90P7rrL0lIEzjrLPjDp6YHbbrPj83mb7iy6Tqlkx591lh3/s59Z/gSBdY8A+1CmULD100+3+1640I6t1Sx9DjjAbFFz+fz59pwtXGjPTmenDbszgsJLRBar6rzh9pFsXuwCmj7hYj07e7F2FaYL2MhosXQp9/QPUK6FBf22F3cOs6UXEHvpIioDsH0wFCNYDVcpwRPLzVarx+ErhZ3Pua0fegs7H9+/KRZNkW3N8ybMhFAI7qIJolyK16Njqe5sGwhthVLTdXTnWttO+vLOOViNj6+Ubb2wPhYoYAFLg0O3acBgn61rZKvD4EDTvQJB3XaV+qA67JxSi68todQYCMVuo8meCDeipEsKVMO0fJH4HEE9jp6CoASbtiMSEFQUaUBCIegcR5DNEdQbBOs3kKg3CFIBiXobiVwbie4pJHq3k0ymSCbTJFVI1MaTrFRNuKYSQI0SUKKDHoAlz8GasCJ64QUrwFasiD0m/f2hYA2ssAyCeH34kkzasnXrUKEWDcfwwAPszSSTSYIgIJFIkEwmd/wOX2+2pVIpksnkLn+bl2QyaWIpnR5iz2QypFKpHfual2jfKx6D6T3v2dk2ezacf/5QW1eXeWWGC8+PfMTyv3mKovnzrcI59ti48pgyxUTA9OlxxQVW0ZXL1jwYNTl/+9smvC680PoTVipw770m0ObNs0quUrHzXXaZVbCXX27PYLVqzdLr1llT+v77W4UXjfJ/5JHWry4U9fzkJyai3vhGs9XrVskODJjAyuetb+Ejj9jzeeCB1neuq8sE1dq1VukfdpjdY0+PeS1UTaCuX29xkrCcHj/erlupmC2azzSRsMo5COJ3KQjsXQsCi1c0HVfkmQN7j6K0jyr8wUETR1FfyMgLNzgY/zEvlSxufX12vY4Os61da+94uRwLvmeftfQsl+NjV682r2G5bGKkVLL+d/39th4JyJUrTYA++6xt53IWjxUr7PqRGBoctJaC3t6h4Z580tIqChcJ+Og+o+d+yZLY1mhYej3+eGyrVu080QckhULsUV20yJ7LF16w86vaOSKHysCA5VOlYs9BdHy5bOGiGSP6++Nwjz5q99DfH8fhsccsffv743tZssSeq/5+S7NSKW7aHmVG0tN1JnCyql4Qbp8DLFDVjzWFuQu4TlV/H27fA1ymqkM++RlpT9c17/9bqi9uB8RedsH+ldTCCviQQ6CjHVY9ZV6hWt3+bU7tNJs2oFK1wuDEEy2T//jH2JM0vcu8U+vXm+dGsYJi0sSh5+zstMLr6adjr9bkSXDIofZSNcICYcJE+8eyebM9jCLxP6xt22KvVHMzhiWwueprNQu/dq0dHw1HkExCdzfSUPPQTJpkx2zfjqiaN6yz04TVtt6wwArHKerts4Iwl7VwCxbA8mWwaTMEgkiAHDrT0mbDekgmkUQ4511vr91fECDZLHLCiXZ/K1bA2rUE7R1IMglnnYXc/wCsXIkkApAEMn8+MlhEnlhi10jbVC9BsQT33UeAIB0dBB/4ICJC8M1vIY0GiXHjCT70zwSSIPj3LxNUqiSSKYK/O4OEJAhu+ymJWp0gmbJ+P1Onxh3LDzjAPAtR36bFi+3f5JFHxkMUbN+OFAoWRiQu3JuFUvgryWRs2wXNFX20vqvK/6XC7ep3+HqzLQiCnfZHtmgMoyAIhtiawyUSiR3rzUsikdhpPZFIDFn3MZL2UoZ/1Rl5paJmSbDKLBIjUZ+4Ws08XcmklR8RGzbYvq6uWAhu3WoCZcqU2Ps2MGAetHx+6EcgK1ZY+TV3rnmIli61MisarmPTJrPNmGEV7cSJJiqWLrUPH6IPBrJZExhz58YCSsTe6blzTSg9/7yVzQMD1hx/yCGx6Emnzfba19r+1avN21ivW5l8+eVWNkaDCieT8IUvmJi86SbbTqVsgOClS+0jlKjZ/sYbrZy+9lpL41zOvizu7bVhY6JJnL/4Rbvnn//crp3J2Dmvv97i86Uv2XYmY2PvdXfbhw3hBxNcd53dz6WXWhp0dMT99z7+8bh15LqwoerSSy0t83m7Blh8CgW7xg03mO1zn7P6J5Ew28yZlq6f/rSlf1sbXHONhf3MZyz9stl4fMDPf968oslk/EX1lVfGeXTVVXaOK6+MheAnP2n181VXmTCrVGze1cMPt3uu1eyYH/ygJZ4ub16EV3+btcdxn2z7dxxnH8XLzH0njiNEK0RXEngaeAuwAXgU+ICqLm8KcypwEfb14nHAV1V1wfBzjbjochzHcRzH2UOMep8uVa2JyEXA3diQEbeo6nIR+XC4/5vALzHBtRobMuK8kYqP4ziO4zhOKxnRcbpU9ZeYsGq2fbNpXYGPjmQcHMdxHMdx9ga8x6rjOI7jOM4o4KLLcRzHcRxnFHDR5TiO4ziOMwq46HIcx3EcxxkFRmzIiD2JiGwB1rY6Ho7jOI7jOC+D16hq53DjPiG6HMdxHMdx9nW8edFxHMdxHGcUcNHlOI7jOI4zCrjoAkTkFBF5SkRWi8jlrY7PWEVEZojIfSKyUkSWi8jHQ/skEfmtiDwT/k5sdVzHIiKSEJHHReQX4bbny16AiEwQkdtEZFX47rzB86b1iMgnwnJsmYj8SESyni+tQURuEZFuEVnWZNttXojIFaEeeEpETt6TcRnzoktEEsBNwDuAOcDfi8ic1sZqzFIDPqWqrwVeD3w0zIvLgXtUdRZwT7jtjD4fB1Y2bXu+7B18Bfi1qs4GjsTyyPOmhYhIF3AxME9Vj8Cmwjsbz5dW8V3glGG2XeZFWOecDcwNj/l6qBP2CGNedAELgNWq+pyqVoAfA6e3OE5jElXdqKqPhev9WOXRheXH98Jg3wPe05IIjmFEZDpwKnBzk9nzpcWIyDjgjcB/AqhqRVX78LzZG0gCORFJAnngBTxfWoKqPgBsG2beXV6cDvxYVcuqugabG3rBnoqLiy6r1J9v2l4f2pwWIiIHAUcDDwP7qepGMGEGTG1h1MYqXwYuAxpNNs+X1nMIsAW4NWz6vVlE2vC8aSmqugG4AVgHbAS2q+pv8HzZm9hdXoyoJnDRBbILm4+j0UJEpB34KXCJqr7Y6viMdUTkNKBbVRe3Oi7OTiSBY4BvqOrRwADeZNVywv5BpwMHAwcAbSLywdbGynmZjKgmcNFlKnZG0/Z0zA3stAARSWGC64eqento3iwi08L904DuVsVvjHIC8G4R+RPW/P5mEfkBni97A+uB9ar6cLh9GybCPG9ay1uBNaq6RVWrwO3A8Xi+7E3sLi9GVBO46IJHgVkicrCIpLEOdHe2OE5jEhERrG/KSlX9UtOuO4Fzw/VzgZ+NdtzGMqp6hapOV9WDsPfjXlX9IJ4vLUdVNwHPi8jhoektwAo8b1rNOuD1IpIPy7W3YH1UPV/2HnaXF3cCZ4tIRkQOBmYBj+ypi/qI9ICIvBPrs5IAblHVa1obo7GJiJwIPAgsJe479BmsX9f/AAdihdmZqjq8U6QzCojIScClqnqaiEzG86XliMhR2AcOaeA54DzsD7XnTQsRkauA92NfZT8OXAC04/ky6ojIj4CTgCnAZuBfgIXsJi9E5LPA+VjeXaKqv9pjcXHR5TiO4ziOM/J486LjOI7jOM4o4KLLcRzHcRxnFHDR5TiO4ziOMwq46HIcx3EcxxkFXHQ5juM4juOMAi66HMdpOSIyWUSWhMsmEdkQrhdE5OsjdM1LROQfd2E/SESW7cHrpEXkgXAOPsdxxjBeCDiO03JUtQc4CkBErgQKqnrDSF0vFEDnY6O3jyiqWhGRe7Axm3440tdzHGfvxT1djuPstYjISSLyi3D9ShH5noj8RkT+JCJniMi/ichSEfl1OIUUInKsiNwvIotF5O5oqo9hvBl4TFVrTcc8ISL/B3y06foHiciDIvJYuBwf2r8vIqc3hfuhiLxbROaKyCOhl+5JEZkVBlkI/MNIpJHjOPsOLrocx9mXOBQ4FZtM+AfAfar6N0ARODUUXl8D3qeqxwK3ALuaYeIEoHkC71uBi1X1DcPCdQNvU9VjME/VV0P7zdjI74jIeGxevV8CHwa+oqpHAfOwedwAlgHzX+E9O47zKsGbFx3H2Zf4lapWRWQpNm3Xr0P7UuAg4HDgCOC3NuUdCWDjLs4zDZsLLxJNE1T1/nDf94F3hOsp4D/CqXbqwGEAqnq/iNwkIlOBM4Cfqmot9JR9VkSmA7er6jNh+LqIVESkQ1X791BaOI6zj+Giy3GcfYkygKo2RKSq8TxmDaw8E2D5LjxWwykC2XBdgN3Nh/YJbK62I7GWgVLTvu9jTYZnY/3DUNX/FpGHMW/c3SJygareG4bPDDvecZwxhjcvOo7zauIpoFNE3gAgIikRmbuLcCuBmQCq2gdsDydch6F9r8YDG1W1AZyDec4ivgtcEp5jeXi9Q4DnVPWrwJ3A60L7ZGCLqlb/+lt0HGdfxUWX4zivGlS1ArwPuF5EngCWYP2thvMr4I1N2+cBN4XNg8Um+9eBc0Xkj1jT4kDTtTZj4u3WpvDvB5aJyBJgNvBfof1NWJ8vx3HGMBJ75x3HccYOInIHcFnU7+oVHJ/H+pIdo6rb/0zY24ErVPWpV3Itx3FeHbiny3GcscrlWIf6vxgReSuwCvjayxBcaWChCy7HcdzT5TiO4ziOMwq4p8txHMdxHGcUcNHlOI7jOI4zCrjochzHcRzHGQVcdDmO4ziO44wCLrocx3Ecx3FGARddjuM4juM4o8D/A1XvsuY3G3UZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.4452, 'epsilon': 0.171, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACjuklEQVR4nOydeXxN5/b/3zujEGImpggNIXNCzCKmUKpoFVVFq1qd299tq/e26HBvfXWgquNtS6suilJVbVXNU40RcwgRkhCEyDycrN8fT87JHAky4Hm/Xs/rnL33s/dee5/pc9aznrUMEUGj0Wg0Go1GU75YVbYBGo1Go9FoNHcDWnRpNBqNRqPRVABadGk0Go1Go9FUAFp0aTQajUaj0VQAWnRpNBqNRqPRVABadGk0Go1Go9FUADaVbUBpqF+/vrRs2bKyzdBoNBqNRqO5Lnv37r0kIg0Krr8tRFfLli3Zs2dPZZuh0Wg0Go1Gc10MwzhT1Ho9vKjRaDQajUZTAWjRpdFoNBqNRlMBaNGl0Wg0Go1GUwFo0aXRaDQajUZTAZSb6DIM41vDMOIMwzhUzHbDMIw5hmGcNAwjzDAM//KyRaPRaDQajaayKU9P13xgQAnbBwJuOW0S8Hk52qLRaDQajUZTqZRbyggR2WwYRssSutwPfC8iAuw0DKO2YRjOIhJbXjYVx6FDkJ1dMecyjFvbL2/fvPsUtb9hFO5T1HLe4xXXrKzyPxZcZ27W1vkfy3JdGo1Go9HcSVRmnq6mwNk8y+dy1lW46Hr3XUhOruiz3p0YhhJg1tZgY5PbrK3B1ja32dioRzs71ezt8zcHh/ytenWoUQNq1gRHR7WsBZ5Go9FoqhKVKbqK+kmUCrcCaN8e0tNL11duwsKb2be4/c3rStpWVL+iHot7bvYCmtdnZ+c+L7hsMqnlvC3vOhHIylKttPf8RrCyUuLLyQnq1IHatdVjnTpQrx40agQNG0LdulqcaTQajaZiqEzRdQ5onme5GRBTGYZMnVoZZ737MAs0swgzi6+8LTOzcEtPL9zS0iAlBVJTc1tSkmqJiWr52jXVzp4t3iYbG2jQAJydoUUL1Vxc1GO1ahV3bzQajUZz51OZomsV8KxhGIuBTkBCZcRzaSqOvEOL5U1WlhJgCQlw5YpqV69CfDxcugRxcXDhgtoeG6vavn35j9GoEbRtC+3aqdayZcXYrtFoNJo7k3ITXYZhLAJ6AfUNwzgHTANsAUTkC2ANcC9wEkgBJpSXLZq7DxsbNaRYu7byXBVHWhpcvAjR0RAVBWfOqMdz55Qou3ABNm9Wfe3tlQjz94fAQGjWTA9NajQajab0GHKzgUYVQIcOHUQXvNZUJCaTGpY8dgyOHlUttoAf1tlZia+OHcHLS8WRaTQajUZjGMZeEelQaL0WXRpN6UhIgIMHYdcu2LNHxY6ZqV8f+vaFfv1UgL5Go9Fo7l606NJobiHZ2XD8uBJg27blesEMQw0/9u+vvGA2lRk1qdFoNJpKQYsujaacEFEesD/+gO3bVRA/qOHH0aMhKEgPPWo0Gs3dhBZdGk0FkJgI69fDr7/mer+aN4cxY6BrVx14r9FoNHcDWnRpNBWIyQQbNsCiRSo9BUCrVvD44+DtXbm2aTQajaZ8KU506UEPjaYcsLZWgfVffgmTJ6vM96dOwb/+BZ9+qpK3ajQajebuQosujaYcsbGBe++F//4XHnlELf/+OzzzDISGVrZ1Go1Go6lItOjSaCoAOzsYORJmz4Z77lEJWd98U3u9NBqN5m5Ciy6NpgJxcYH334exY3O9Xi+8oDLiazQajebORosujaaCsbGBhx5SXi9XVzXL8f/9PwgLq2zLNBqNRlOeaNGl0VQSLi4wcyZ06gTJyTB1Kvz5Z2VbpdFoNJryQosujaYSqVYN/vlPGDZMpZmYMwfmzVMJVzUajUZzZ6FFl0ZTyVhZwWOPwbPPqlQTP/0EM2bkZrbXaDQazZ2BFl0aTRUhJATeegtq1FDlhD76SNV41Gg0Gs2dgRZdGk0VwscH3nkHHBxgyxaYO1cPNWo0Gs2dghZdGk0Vw80Npk1Tub3+/BO++UYLL41Go7kT0KJLo6mCeHioAHsbG/j5Z1i8uLIt0mg0Gs3NokWXRlNFCQiAV14Bw4D//Q9WrqxsizQajUZzM2jRpdFUYbp2VRnrQQ0z/v135dqj0Wg0mhtHiy6NporTpw+MH6+ez5qlMthrNBqN5vZDiy6N5jZg+HDl9UpOhv/8B9LTK9sijUaj0ZQVLbo0mtsAw4Dnn4cmTSAyEj77TM9o1Gg0mtsNLbo0mtuEGjXUjEZ7e1i/Hv74o7It0mg0Gk1Z0KJLo7mNcHFR5YIAvvwSTpyoXHs0Go1GU3q06NJobjN69YJ771W1Gd97DxITK9sijUaj0ZQGLbo0mtuQiROhTRu4eFGlktBoNBpN1UeLLo3mNsTWFl5+WZUK+usv2Lu3si3SaDQazfXQokujuU1p2hQeflg9nzsXUlIq1x6NRqPRlIwWXRrNbczQoapA9qVL8N13lW2NRqPRaEpCiy6N5jbG2lrl77KxgTVr4NChyrZIo9FoNMWhRZdGc5vTsiWMGKGez5mjs9VrNBpNVaVcRZdhGAMMwzhuGMZJwzCmFLHdyTCMXwzDOGAYxmHDMCaUpz0azZ3KQw+pHF6xsbBwYWVbo9FoNJqisCmvAxuGYQ18CvQDzgG7DcNYJSJH8nR7BjgiIvcZhtEAOG4YxkIRybje8U0mE/Hx8WRmZpaL/RrN7cazz8Lu3er5sWNQq1bl2lMVsbW1pW7dulhbW1e2KRqN5i6k3EQXEAicFJFTAIZhLAbuB/KKLgFqGoZhAI5APJBVmoPHx8dTrVo16tevj9pdo7m7adIEUlPh6FGIioJ+/VTNRo1CREhKSiI+Pp4GDRpUtjkajeYupDyHF5sCZ/Msn8tZl5e5QDsgBjgIvCAi2aU5eGZmJo6OjlpwaTR58PSEatXUbMaoqMq2pmphGAaOjo7aO67RaCqN8hRdRakhKbAcAoQCTQBfYK5hGKUeFNGCS6PJj60t+Pio5/v3g8lUufZUNfR3hkajqUzKU3SdA5rnWW6G8mjlZQLwkyhOAqcB93K06Zby73//Gw8PD7y9vfH19eXvv/+uFDtCQ0NZs2aNZXnVqlXMmDEDgPHjx7Ns2bJC+2zcuJHBgwdXmI2aiqNVK6hTRyVLPXq0sq3RaDQajZnyjOnaDbgZhuEKRAOjgIcL9IkC+gBbDMNoBLQFTpWjTbeMHTt2sHr1avbt24e9vT2XLl0iI+O68f/lQmhoKHv27OHee+8FYMiQIQwZMqRSbNFUPoYB/v6qPNCRI9C6NTg4VLZVGo1Goyk3T5eIZAHPAn8AR4EfReSwYRhPGYbxVE63d4CuhmEcBP4CXhORS+Vl060kNjaW+vXrY29vD0D9+vVp0qQJLVu25NIldQl79uyhV69eAGzatAlfX198fX3x8/MjMTERgJkzZ+Ll5YWPjw9TpqisGhEREQwYMICAgAB69OjBsWPHAOW1euqpp+jRowdt2rRh9erVZGRkMHXqVJYsWYKvry9Llixh/vz5PPvssxZb161bl2+fgiQnJ/PYY4/RsWNH/Pz8+Pnnn8vtvmkqhkaNoHlzyMqCAwcq2xqNRqPRQPl6uhCRNcCaAuu+yPM8BuhfnjaUF/379+ftt9+mTZs29O3bl5EjRxIUFFRs/w8++IBPP/2Ubt26kZSURLVq1fjtt99YuXIlf//9N9WrVyc+Ph6ASZMm8cUXX+Dm5sbff//N008/zfr16wGIjIxk06ZNREREEBwczMmTJ3n77bfZs2cPc+fOBWD+/Pn5zl3UPnn597//Te/evfn222+5evUqgYGB9O3blxo1atzCO6apaHx9IToaTp2CNm2gbt3Ktkij0WjubspVdFUU991XPsf95Zfitzk6OrJ37162bNnChg0bGDlypCWOqii6devGyy+/zJgxYxg+fDjNmjVj3bp1TJgwgerVqwNQt25dkpKS2L59OyPMKcaB9Dwpxh966CGsrKxwc3OjVatWFi9YSVxvn7Vr17Jq1So++OADANLS0oiKiqJdu3bXPbam6lKzJrRtq+K69u6Fvn11CgmNRqOpTK4rugzD6AZMB1xy+huAiEir8jWt6mNtbU2vXr3o1asXXl5efPfdd9jY2JCdrbJepKWlWfpOmTKFQYMGsWbNGjp37sy6desQkUKzqbKzs6lduzahoaFFnrNg/9LMxrrePiLC8uXLadu27XWPpbm98PCA06fh4kU4exZatKhsizQajebupTSerm+Al4C9QJWcgF6SR6q8OH78uMV7BCqY3cXFhdTUVPbu3cvAgQNZvny5pX9ERAReXl54eXmxY8cOjh07ZhmifPjhhy3Di3Xr1sXV1ZWlS5cyYsQIRISwsDB8cvIALF26lHHjxnH69GlOnTpF27ZtOXnypCVGrCiK2mfnzp2W7SEhIXzyySd88sknGIbB/v378fPzK6c7p6lI7OzAy0tlqg8Lg2bNwEpXXNVoNJpKoTRfvwki8puIxInIZXMrd8uqOElJSYwbN4727dvj7e3NkSNHmD59OtOmTeOFF16gR48e+UqNzJ49G09PT3x8fHBwcGDgwIEMGDCAIUOG0KFDB3x9fS3DewsXLuSbb77Bx8cHDw+PfIHtbdu2JSgoiIEDB/LFF19QrVo1goODOXLkiCWQviBF7ZOXN998k8zMTLy9vfH09OTNN98sp7umqQxatwZHR7h2Dc6cqWxrNBqN5u7FECmYr7RAB8OYAVgDPwGW4CIR2Ve+puXSoUMH2bNnT751MTExNGnSpKJMqBKMHz+ewYMH8+CDD1a2KZrbjFOnYOdOJb4GD767vV1343eHRqOpWAzD2CsiHQquL83wYqecx7w7C9D7Vhim0WjKn5YtVc6ua9eUALvnnsq2SKPRaO4+riu6RCS4IgzRXJ+CqSA0mtJiZaViu7Ztg0OHwNUV8ox+azQajaYCuO4gg2EYToZhfGQYxp6c9qFhGE4VYZxGo7l1tGgBtWur8kAFUrVpNBqNpgIoTWTHt0Ai8FBOuwbMK0+jNBrNrccwwNtbPT98WGWr12g0Gk3FUZqYrtYi8kCe5bcMwwgtJ3s0Gk050rSpykwfHw8nToDOf6vRaDQVR2k8XamGYXQ3L+QkS00tP5M0Gk15kdfbdeQIZGZWrj0ajUZzN1Ea0TUZ+NQwjEjDMM4Ac4GnrrPPXYGjo+N1+2zZsgUPDw98fX1JTS2bVl25ciVHjhy5ZXalpqYSFBSEyZSb43bWrFlUq1aNhISEMp/nVhAaGsqaNWuu3/EmmT9/PjExMZbliRMn3tC9jYyMxNPT87r9li5dSrt27QgOLvs8lIK23iq7zH2cnaFBA0hPhxdemG7JD1daevXqRcEULgWZPXs2KSkpZTqumRt9T+S1q2/fvly5cuWGzq/RaDTlxXVFl4iEiogP4A14iYifiBwof9PuDBYuXMg//vEPQkNDcXBwKNO+Nyq6iuPbb79l+PDh+ZK2Llq0iI4dO7JixYpbdp6yUFmi6+uvv6Z9+/bldr5vvvmGzz77jA0bNpR53xsRXWUhr7fr0iUwlUOdicoQXXkZO3Ysn3322U0dQ6PRaG41xYouwzAeyXl82TCMl4GJwMQ8y5ocNm7cSK9evXjwwQdxd3dnzJgxiAhff/01P/74I2+//TZjxowB4P3336djx454e3szbdo0yzG+//57vL298fHxYezYsWzfvp1Vq1bxyiuv4OvrS0REBBEREQwYMICAgAB69OhhKVx9+vRpunTpQseOHUvMJr9w4ULuv/9+y3JERARJSUm8++67LFq0yLL+8OHDBAYG4uvri7e3NydOnODNN9/k448/tvT517/+xZw5c9i4cSNBQUE89NBDtGnThilTprBw4UICAwPx8vIiIiICUIldn3rqKXr06EGbNm1YvXo1GRkZTJ06lSVLlliy6cfHxzN06FC8vb3p3LkzYWFhAEyfPp1x48bRv39/WrZsyU8//cSrr76Kl5cXAwYMIDNnnOztt9+mY8eOeHp6MmnSJESEZcuWsWfPHsaMGWPxOOb1ivz+++/4+/vj4+NDnz59Sv26z58/n+HDhzNgwADc3Nx49dVXLTZs3bqVp556ildeeQWTycQrr7xied2//PJLyzFmzpyJl5cXPj4+TJkypUhb9+7dS1BQEAEBAYSEhBAbGwvA3r178fHxoUuXLnz66aelthugYUPl7TKZlPAC5Sl67bXXCAwMpE2bNmzZsgVQHtJRo0bh7e3NyJEj83ls165dS5cuXfD392fEiBEkJSUxZ84cYmJiCA4Otnj6iuoHsHv3brp27YqPjw+BgYEkJCQUek8kJyfz2GOP0bFjR/z8/CwVGkqya8iQIfne0xqNRlMlEJEiG/BkzuO0ItrU4vYrjxYQECAFiY6OLrSuoqlRo4aIiGzYsEFq1aolZ8+eFZPJJJ07d5YtW7aIiMi4ceNk6dKlIiLyxx9/yBNPPCHZ2dliMplk0KBBsmnTJjl06JC0adNGLl68KCIily9fLrSviEjv3r0lPDxcRER27twpwcHBIiJy3333yXfffSciInPnzrXYlZf09HRp1KhRvnXvvPOOvP3222IymcTFxUUuXLggIiLPPvus/PDDD5b9UlJS5PTp0+Ln5yciIiaTSVq1aiWXLl2SDRs2iJOTk8TExEhaWpo0adJEpk6dKiIis2fPlhdeeMFyLSEhIWIymSQ8PFyaNm0qqampMm/ePHnmmWcsNj377LMyffp0ERH566+/xMfHR0REpk2bJt26dZOMjAwJDQ0VBwcHWbNmjYiIDB06VFasWJHv3omIPPLII7Jq1SoREQkKCpLdu3dbtpmX4+LipFmzZnLq1KlC+xfF6dOnxcPDQ0RE5s2bJ66urnL16lVJTU2VFi1aSFRUVKHzffnll/LOO++IiEhaWpoEBATIqVOnZM2aNdKlSxdJTk7Od+68+2ZkZEiXLl0kLi5OREQWL14sEyZMEBERLy8v2bhxo4iI/OMf/7DYVRrbRUSio0WGD58mjz76vmRlqfO+/PLLIiLy66+/Sp8+fURE5MMPP7Sc88CBA2JtbS27d++WixcvSo8ePSQpKUlERGbMmCFvvfWWiIi4uLhY3s/F9UtPTxdXV1fZtWuXiIgkJCRIZmZmoffE66+/LgsWLBARkStXroibm5skJSUVa5eZe+65Ry5dulToPlSF7w6NRnNnA+yRIvRMsbMXRcT8d3ydiGzLuy0nmL7qcN995XPcMlTSDgwMpFmzZgD4+voSGRlJ9+7d8/VZu3Yta9eutRSTTkpK4sSJExw4cIAHH3yQ+vXrA1C3bt1Cx09KSmL79u2MGDHCsi49XVVl2rZtm6W49tixY3nttdcK7X/p0iVq166db93ixYtZsWIFVlZWDB8+nKVLl/LMM8/QpUsX/v3vf3Pu3DmGDx+Om5sbLVu2pF69euzfv58LFy7g5+dHvXr1AOjYsSPOzs4AtG7dmv79+wPg5eWVb3jtoYceshQJb9WqlcVTl5etW7darqV3795cvnzZEm82cOBAbG1t8fLywmQyMWDAAMt5IiMjAdiwYQMzZ84kJSWF+Ph4PDw8uK+E98fOnTvp2bMnrq6uxd77kujTpw9OTiptXfv27Tlz5gzNmzfP12ft2rWEhYWxbNkyABISEjhx4gTr1q1jwoQJVK9evdhzHz9+nEOHDtGvXz8ATCYTzs7OJCQkcPXqVYKCggD1uv/2228l2moYRr5lZ2dwcICsLIMchyTDhw8HICAgwHJPN2/ezPPPPw+At7c33jljkzt37uTIkSN066a+DjIyMujSpUuh8xbX7/jx4zg7O9OxY0cAatWqVaTda9euZdWqVZbYs7S0NKKiooq1y0zDhg2JiYmxvE81Go2msilNyohPAP9SrLursbe3tzy3trYmq4gkSCLC66+/zpNPPplv/Zw5cwr9IBYkOzub2rVrExoaWuT26+3v4OBAWlqaZTksLIwTJ05YfswzMjJo1aoVzzzzDA8//DCdOnXi119/JSQkhK+//prevXszceJE5s+fz/nz53nssceKvHYrKyvLspWVVb77UNDGomyWImqBmvvlPa6tra1lvfk8aWlpPP300+zZs4fmzZszffr0fNdcFCJy3XtXEqV93T/55BNCQkLyrf/999+ve24RwcPDgx07duRbf/Xq1TLbXa9evXzB5YYBtrbx2Nu7Yg4dNF9PwWsp7rXq16/fdYfxiusXFhZWqmsQEZYvX07btm0LbStp/7S0tDLHUWo0Gk15UlJMVxfDMP4f0MAcx5XTpqMKYFcdfvmlfNotJiQkhG+//dYSzxIdHU1cXBx9+vThxx9/5PLlywDEx8cDULNmTRITEwHlBXB1dWXp0qWA+iE6cEDNZ+jWrRuLFy8GVNxWUdSpUweTyWQRIYsWLWL69OlERkYSGRlJTEwM0dHRnDlzhlOnTtGqVSuef/55hgwZYomrGjZsGL///ju7d+8uJCBKw9KlS8nOziYiIoJTp07Rtm3bfNcI0LNnT8s1bNy4kfr16xfrASmI+drq169PUlKSxbMEFDqPmS5durBp0yZOnz4N5N77Xbt28eijj5b5GosiJCSEzz//3BJ3Fh4eTnJyMv379+fbb7+1BJwX9bq3bduWixcvWkRXZmYmhw8fpnbt2jg5ObF161Yg/+seHR1dZGyao6Mjzs7O/PXXX5bzbdv2Ox06dCclBYqbXJv3NTl06JDl/dC5c2e2bdvGyZz09ikpKYSHhxe6huL6ubu7ExMTw+7duwFITEwkKyur0GsVEhLCJ598YhHk+/fvL9EuUJ+P8+fP07Jly6IvSqPRaCqBkmYv2gGOKG9YzTztGvBg+Zt259G/f38efvhhunTpgpeXFw8++CCJiYl4eHjwr3/9i6CgIHx8fHj5ZTVPYdSoUbz//vv4+fkRERHBwoUL+eabb/Dx8cHDw8MSUPzxxx/z6aef0rFjxxJTP/Tv39/yI7148WKGDRuWb/uwYcNYvHgxS5YswdPTE19fX44dO2YRH3Z2dgQHB/PQQw/lmwFZWtq2bUtQUBADBw7kiy++oFq1agQHB3PkyBFL0PT06dPZs2cP3t7eTJkyhe+++67Ux69duzZPPPEEXl5eDB061DJsBbmB/AVTdzRo0ICvvvqK4cOH4+Pjw8iRIwGIioq6ZV6SiRMn0r59e/z9/fH09OTJJ58kKyuLAQMGMGTIEDp06ICvr69l+CyvrSaTiWXLlvHaa6/h4+ODr68v27dvB2DevHmW4eC8tsbGxmJjU7QT+/vvv+fdd9/F19eX3r17M23aNPr1aw2o8kDZ2YX3mTx5MklJSXh7ezNz5kwCAwMt927+/PmMHj3aMvHBPGQ8adIkBg4cSHBwcLH97OzsWLJkCc899xw+Pj7069ePtLS0Qu+JN998k8zMTLy9vfH09LRMFinOLlCTDDp37lzsfdBoNJrKwChqOCdfB8NwEZEzFWRPkXTo0EEK5gWKiYmhSZMmlWTR7cn+/fv56KOPWLBgwQ3tn52djb+/P0uXLsXNza1M+44fP57Bgwfz4IO3h15/5ZVXGDt2bKE4oduBuXPn0qJFC4YMGVKq/iKwejUkJkKXLqoY9u3OCy+8wJAhQ4r0+OnvDo1GU94YhrFXRDoUXF+av4EphmG8D3gA1cwrRaT3LbRPUwH4+fkRHByMyWQqs6fqyJEjDB48mGHDhpVZcN2OvP/++5Vtwg3z7LPPlqm/YUD79vD336omY8uWat3tjKenZ5nSf2g0Gk1FUBpP11pgCfAPVCb6ccBFESk8Ra6c0J4ujaZ8yc5WYYzJydC9O7RoUdkWlR/6u0Oj0ZQ3xXm6SlMGqJ6IfANkisgmEXkM6HzLLdRoNJWGlZXydoHydl3nv5hGo9FoboDSiC5zSdxYwzAGGYbhBzQrR5s0Gk0l0KqVytt15QrkJL3XaDQazS2kNKLrXcMwnID/hxpi/Bp4qVyt0mg0FY61NZhTYd3Ckp8ajUajyeG6gfQisjrnaQIQXL7maDSaysTNTQmuuDi4eFHVZ9RoNBrNraGk5KifGIYxp7hWkUZWVaytrfH19cXDwwMfHx8++ugjsnMSHe3Zs8dSoqSqM378+HyJRPPy4osvsnnzZsvyxYsXsbW1zVe0uaL5z3/+U+7nCA0NZc2aNZblVatWMWPGjBs6Vt7i2sVx8eJFOnXqhJ+fn6XQ9I3aejN22dpCmzbq+ZEj6r3h6uqKj48Pbdq04dFHHyU6Ovq6x549e7Yl6WtZuRXX07dv33zZ9zUajaYqUNLw4h5gbwntrsfBwYHQ0FAOHz7Mn3/+yZo1a3jrrbcA6NChA3Pm3N7aND4+3lKb0MzSpUvp3LnzdUu/lCeVIbqGDBnClClTyu18f/31F+7u7uzfv58ePXqUad8bFSnF0aaNGmqMjoaMDJU+48CBAxw/ftySdiQjI6PEY1SG6MrL2LFj+eyzz27qGBqNRnOrKVZ0ich3JbWKNPJ2oGHDhnz11VfMnTsXEWHjxo0MHjwYUCVlunbtip+fH127duX48eOAKofy0EMP4e3tzciRI+nUqZPln7qjoyP/+te/8PHxoXPnzly4cAGAM2fO0KdPH7y9venTpw9RUVGAEkOenp74+PhYRJLJZOKVV16hY8eOeHt7W7xTIsKzzz5L+/btGTRoEHFxcUVe07JlyyxFpc0sWrSIDz/8kHPnzlk8HiaTifHjx+Pp6YmXlxezZs0iIiICf//c8pwnTpwgICAAgJYtW/LPf/6TLl260KFDB/bt20dISAitW7fmiy++AFQJoJ49ezJs2DDat2/PU089RXZ2NlOmTCE1NRVfX1/GjBkDwEcffYSnpyeenp7Mnj0bgMjISNzd3Zk4cSKenp6MGTOGdevW0a1bN9zc3Ni1a1exr01GRgZTp05lyZIllqzo8+fPt+S/unDhAsOGDcPHxwcfHx9LhvjSUNTrGhoayquvvsqaNWssGfPXrl1Lly5d8Pf3Z8SIEZbSUbt376Zr1674+PgQGBhIQkJCIVuTk5N57LHH6NixI35+fpbKBampqYwaNcryfkstpu5PtWpwzz3q+dWruesNw+Cll16icePGluLaRdk5Z84cYmJiCA4OJjg4uNh+5Xk9Q4YMqdQ/BhqNRlMkIlJiAzYA6wu26+13K1tAQIAUJDo6utC663L0qMiPP6rHW0CNGjUKratdu7acP39eNmzYIIMGDRIRkYSEBMnMzBQRkT///FOGDx8uIiLvv/++TJo0SUREDh48KNbW1rJ7924REQFk1apVIiLyyiuvyDvvvCMiIoMHD5b58+eLiMg333wj999/v4iIeHp6yrlz50RE5MqVKyIi8uWXX1r2S0tLk4CAADl16pQsX75c+vbtK1lZWRIdHS1OTk6ydOnSQtfy6KOPWmwQEYmKipJ77rlHRERef/11+fDDD0VEZM+ePdK3b19LP/P5e/XqJfv377f0nzNnjoiIuLi4yGeffSYiIi+++KJ4eXnJtWvXJC4uTho0aCAiIhs2bBB7e3uJiIiQrKws6du3r8XGvPd9z5494unpKUlJSZKYmCjt27eXffv2yenTp8Xa2lrCwsLEZDKJv7+/TJgwQbKzs2XlypWW+1bcazNv3jx55plnLOfJu/zQQw/JrFmzREQkKytLrl69Wuje5SUoKOi6r2ve41+8eFF69OghSUlJIiIyY8YMeeuttyQ9PV1cXV1l165d+WwvaOvrr78uCxYssLwWbm5ukpSUJB9++KFMmDBBREQOHDiQ7/1WkORkkUWLRHr2HCfff5//vfHCCy/IjBkzirVTRL3GFy9erNTrueeee+TSpUuFru2Gvjs0Go2mDAB7pAg9U5qM9P/I87wa8ACQVRpBZxjGAOBjVIHsr0WkUFCMYRi9gNmALXBJRIJKc+wyc+wYjB+vxkvs7GD+fHB3v+WnkSISHCUkJDBu3DhOnDiBYRiWwsdbt27lhRdeAFQG7bwlZ+zs7CyesoCAAP78808AduzYwU8//QSoIZRXX30VUEWvx48fz0MPPcTw4cMB5V0ICwuzxGslJCRw4sQJNm/ezOjRo7G2tqZJkyb07l10cYHY2Fga5ImkXrx4MQ899BCg6kI+/vjjvPzyy7Rq1YpTp07x3HPPMWjQIPr37w+omoPz5s3jo48+YsmSJRbvEmApUePl5UVSUhI1a9akZs2aVKtWjas57pXAwEBatWoFwOjRo9m6dWuhMkJbt25l2LBh1KhRA4Dhw4ezZcsWhgwZgqurK15eXgB4eHjQp08fDMPAy8uLyMjIEl+bkli/fj3ff/89oOL6nJycrruPmeJe17zs3LmTI0eO0K1bNwAyMjLo0qULx48fx9nZ2VJTsrhC4GvXrmXVqlWWWo5paWlERUWxefNmS5yht7d3iSWOqldXmelF4Ny5/NvM7/Hi7Kwq19OwYUNiYmKoV69esdep0Wg0FUlpZi8WjN/aZhjGpuvtZxiGNfAp0A84B+w2DGOViBzJ06c28BkwQESiDMNoWBbjy8TBg0pwNW0KMTFq+RaLrlOnTmFtbU3Dhg05evSoZf2bb75JcHAwK1asIDIykl69egFFCzQztra2GDm1WKytrcnKKlrnmvt88cUX/P333/z666/4+voSGhqKiPDJJ58QEhKSb581a9ZY9isJBwcH0tLSLMuLFi3iwoULLFy4EFCZvU+cOIGbmxsHDhzgjz/+4NNPP+XHH3/k22+/5YEHHuCtt96id+/eBAQE5Pvxs7e3B8DKysry3LxsvtaCNhZlc0n3sOBx857TfI7iXpvyojSvq4jQr1+/QsNjYWFhpXrdRITly5fT1pz/IQ+l2d9M+/aqHFBcHKSmqhxeoGp49unTp1g7q8r1pKWl3bKi5RqNRnMruG6eLsMw6uZp9Q3DCAEal+LYgcBJETklIhnAYuD+An0eBn4SkSgAESk6uOhW4OWlPFwxMWqKVo4H5FZx8eJFnnrqKZ599tlCPwQJCQk0bdoUgPnz51vWd+/enR9//BFQtQ0PHjx43fN07dqVxYsXA7Bw4UK6d+8OQEREBJ06deLtt9+mfv36nD17lpCQED7//HOL9yY8PJzk5GR69uzJ4sWLMZlMxMbGsmHDhiLP1a5dO06ePAnA8ePHSU5OJjo6msjISCIjI3n99ddZvHgxly5dIjs7mwceeIB33nmHffv2AVCtWjVCQkKYPHkyEyZMKO2ttLBr1y5Onz5NdnY2S5YssVyrra2t5Zp69uzJypUrSUlJITk5mRUrVpQpEL2416ZmzZokJiYWuU+fPn34/PPPARXPdu3aNcv60szsux6dO3dm27ZtlnufkpJCeHg47u7uxMTEsHv3bgASExPJysoqZGtISAiffPKJRZDu378fUPfKLJgPHTpEWFiYZZ9HH300nycSoFYt5fHKzlaOYhFhzpw5xMbGMmDAgGLthPz3rzKuR0Q4f/48LVu2vIFXQKPRaMqH0iRH3UvuTMYdqCSpj5div6bA2TzL53LW5aUNUMcwjI2GYew1DOPRUhz3xnB3V0OKU6bcsqFFc0C3h4cHffv2pX///kybNq1Qv1dffZXXX3+dbt26YTKZLOuffvppLl68iLe3N//3f/+Ht7f3dYeq5syZw7x58/D29mbBggV8/PHHALzyyit4eXnh6elJz5498fHxYeLEibRv3x5/f388PT158sknycrKshSt9vLyYvLkyQQFFT2iO2jQIDZu3AgoL9ewYcPybX/ggQdYtGgR0dHR9OrVC19fX8aPH897771n6TNmzBgMw7AMOZaFLl26MGXKFDw9PXF1dbWcf9KkSXh7ezNmzBj8/f0ZP348gYGBdOrUiYkTJ+Ln51fqcxT32gQHB3PkyBFLMHdePv74YzZs2ICXlxcBAQEcPnyY7OxsTp48Sd26dct8nQVp0KAB8+fPZ/To0Xh7e9O5c2eOHTuGnZ0dS5Ys4bnnnsPHx4d+/fqRlpZWyNY333yTzMxMvL298fT05M033wRg8uTJJCUl4e3tzcyZMwkMDLScMywsDGdn50K21K4Nixa9wtChPri5tWH37t1s2LABOzu7Yu0E9RoNHDiQ4ODgSrmevXv30rlzZ2xsShNBodFoNBVEUYFet6IBI1BxXOblscAnBfrMBXYCNYD6wAmgTcFj3bJA+ipGVlaWpKamiojIyZMnxcXFRdLT0yvZqvx069bNEhh/I7z//vvyxhtvlHm/vBMRbgcOHjwoL730UmWbcUMkJCTIgw8+WOz2DRtEFi4UOXCg4my6WZ5//nlZt25dkdvuhO8OjUZTteFGA+kNw6gGPA10BwTYCnwuImkl7qg8W83zLDcDYoroc0lEkoFkwzA2Az5A+PXsuhNISUkhODiYzMxMRITPP/8cOzu7yjYrHx9++CFRUVHUrl27zPsOGzaMiIgI1q9ff+sNq2J4enry0UcfVbYZN0StWrVYunRpsds9PNSofHi4chBXsbdokXh6etKnT5/KNkOj0WjyYUgJgcgAhmH8CCQCP+SsGg3UEZER19nPBiWe+gDRwG7gYRE5nKdPO5S3KwSwA3YBo0TkUN5jdejQQQpmzo6JiaFJkybXuz6NRnMLWLdOBdT7+CgRdjujvzs0Gk15YxjGXhHpUHB9aQIe2oqIT57lDYZhHLjeTiKSZRjGs8AfqJQR34rIYcMwnsrZ/oWIHDUM43cgDMhGDUceKv6oGo2mMvD0hPXrVUB927agQ6U0Go2m7JTmq3O/YRidRWQngGEYnYBtpTm4iKwB1hRY90WB5feB90tnrkajqQwaNYJ69eDyZTh5slxS3Gk0Gs0dT2lmL3YCthuGEWkYRiRqBmOQYRgHDcMIK3lXjUZzJ2AYytsFcPQo5JnoqdFoNJpSUhpP14Drd9FoNHc6TZqoFBJXr8KpU+DmVtkWaTQaze3FdT1dInIGqA3cl9Nqi8gZcytn+6o8K1aswDAMS34iUIG65nI1eQtfr1q1ihkzClVCumFefPFFNm/eDMDq1avx8/PDx8eH9u3bW4pblxezZ88mJSWlXM8RGRnJ//73P8vynj17LGVfysr48eMt5ZCKIz09nb59+xaZm6ustt5Ku4rq4+joWKbz5H0fFkdoaChr1qwpdnteb9eRIyppal5u5D2R167Vq1cXmedOo9Fo7hRKk5H+BWAh0DCn/WAYxnPlbdjtwqJFi+jevbslSzxAkyZNivwhHTJkCFOmTLkl542Pj2fnzp307NmTzMxMJk2axC+//MKBAwfYv39/uZezqQzR1aFDB+bMmVNu59u/fz+ZmZmEhoYycuTIMu17o6KrKnE90QXQvLnKVJ+cDDnlKy3c7Hti0KBBrFq1qtzfVxqNRlNZlCam63Ggk4hMFZGpQGfgifI16/YgKSmJbdu28c033+QTXZGRkXiaXQJ5mD9/Ps8++yygvBfPP/88Xbt2pVWrVhaRlp2dzdNPP42HhweDBw/m3nvvLVLALVu2jAED1MivuXyKubahvb09bdu2JTExEVdXV0vJnGvXrtGyZUsyMzPp1asXL730Ej179qRdu3bs3r2b4cOH4+bmxhtvvGG5Dnd3d8aNG4e3tzcPPvggKSkpzJkzh5iYGIKDgwkODgaU+DRnxH/ttdcsdjo6OvLaa68REBBA37592bVrF7169aJVq1asWrXKcp4ePXrg7++Pv78/27dvB2DKlCls2bIFX19fZs2alc8rkpSUxIQJE/Dy8sLb25vly5eX+nVr2bIl06ZNw9/fHy8vL44dO0ZcXByPPPIIoaGh+Pr6EhERwd69ewkKCiIgIICQkBBiY2MBOHnyJH379sXHxwd/f38iIiIK2WoymXjllVfo2LEj3t7eFs+jiPDss8/Svn17Bg0aRFzczVW+2rhxI7169eLBBx/E3d2dMWPGWMrl/P7777i7u9O9e3dLkXSA5ORkHnvsMTp27Iifnx8///wzGRkZTJ06lSVLllg8fUX1Mwxo29bEwoX/oHdvde8/+eSTIt8Ta9eupUuXLvj7+zNixAiSkpJKtMswDHr16sXq1atv6p5oNBpNlaWojKmSP2v8QaBanuVqwMHr7XcrW1XNSL9gwQJ57LHHRESkS5cusnfvXhEROX36tHh4eIhI/szq8+bNk2eeeUZERMaNGycPPvigmEwmOXz4sLRu3VpERJYuXSoDBw4Uk8kksbGxUrt2bVm6dGmhcz/66KOyatUqy/Ljjz8uDRo0kFGjRskPP/wgJpNJRETGjx8vK1asEBGRL7/8Ul5++WUREQkKCpJXX31VRERmz54tzs7OEhMTI2lpadK0aVO5dOmSnD59WgDZunWriIhMmDBB3n//fRERcXFxkYsXL4qIei2aN28ucXFxkpmZKcHBwZZzArJmzRoRERk6dKj069dPMjIyJDQ0VHx8fEREJDk52ZKZPzw8XMyvd8Gs9HmXX331VXnhhRcs2+Lj40t8rcaNG2e5jy4uLjJnzhwREfn000/l8ccfL3T8jIwM6dKli8TFxYmIyOLFi2XChAkiIhIYGCg//fSTiIikpqZKcnJyIVu//PJLeeedd0REJC0tTQICAuTUqVOyfPly6du3r2RlZUl0dLQ4OTkV+foWZ7uZGjVqWGyuVauWnD17Vkwmk3Tu3Fm2bNkiqamp0qxZMwkPD5fs7GwZMWKExb7XX39dFixYICIiV65cETc3N0lKSsr3/iyp39y5n0mXLsPl++8z5dQpkcuXL1vuq/k9cfHiRenRo4ckJSWJiMiMGTPkrbfeKtEuEZEffvhBnn322RLvx81SFb47NBpN5ZBpypRMU2a5n4diMtKXxtM1D/jbMIzphmG8hSrb8025KMCb4b77VMvL22+rdXkL+f7+u1o3d27uuvh4tW7cuDKdctGiRYwaNQqAUaNGsWjRojLtP3ToUKysrGjfvj0XLlwAYOvWrYwYMQIrKysaN25s8RoUJDY2lgYNGliWv/76a/766y8CAwP54IMPeOyxxwCYOHEi8+bNA2DevHn5Ck8PGTIEAC8vLzw8PHB2dsbe3p5WrVpx9qwqm9m8eXO6desGwCOPPMLWrVsL2bJ792569epFgwYNsLGxYcyYMZZYMzs7O4tHzsvLi6CgIGxtbfHy8iIyZ3wqMzOTJ554Ai8vL0aMGMGRI0eue+/WrVvHM888Y1muU6fOdffJy/DhwwEICAiw2JGX48ePc+jQIfr164evry/vvvsu586dIzExkejoaEsdyGrVqlG9evVC+69du5bvv/8eX19fOnXqxOXLlzlx4gSbN29m9OjRWFtb06RJE3r37n1dWwsWUC+4LjAwkGbNmmFlZYWvry+RkZEcO3YMV1dX3NzcMAyDRx55JJ9tM2bMwNfXl169epGWlkZUVFSR11BUv/Xr1/HUU09hbW3DoUNQu3bhepM7d+7kyJEjdOvWDV9fX7777jvOnDlTol0ADRs2JCamYOEKjUajKT0iQnxqPGEXwvj95O98ve9r3tr4FpN+mcQDPz7AobjKSwd63dmLIvKRYRgbUWWAACaIyP5yteo24PLly6xfv55Dhw5hGAYmkwnDMJg5c2apj2Fvb295LjlDQubH6+Hg4EBaWv5KTF5eXnh5eTF27FhcXV2ZP38+3bp1IzIykk2bNmEymfINe5rPb2Vllc8WKysrsrKygMI/+EUJgJJstrW1teyT9zx5zzFr1iwaNWrEgQMHyM7Oplq1ate9fhEp0pbSYrbD2traYkfB43t4eLBjx458669du1aq44sIn3zyCSEhIfnWr1mzpsx216tXjytXrliW4+PjqV+/vmU572uX93qKO4+IsHz5ctq2bZtv/d9//12qfiJC48YG6emQmKhiu1q1KnyOfv36FfojEhoaWuL1p6Wl4eDgUOx2jUajMZOVnUVMYgznrp0r1FKzUovcx8DgcsrlCrY0l9J4uswYqNqLN/5LV5788otqeZk6Va0LDMxdN2CAWpcTWwVA3bpq3Xfflfp0y5Yt49FHH+XMmTNERkZy9uxZXF1di/QElYXu3buzfPlysrOzuXDhAhs3biyyX7t27Th58iSg4pvy9gsNDcXFxcWy/OijjzJ69Oh8Xq7SEhUVZREe5kkDADVr1iQxMRGATp06sWnTJi5duoTJZGLRokUEBQWV+hwJCQk4OztjZWXFggULMOUkgcp7joL079+fuXm8lWZR8uijj7Irr2fzBmnbti0XL160XHtmZiaHDx+mVq1aNGvWjJUrVwJqxmNKSkohW0NCQvj8888t8XTh4eEkJyfTs2dPFi9ejMlkIjY2lg0bNlj2ef3111mxYkUhW3r16sWSJUvIyMgAVGxgcR5QM+7u7pw+fZqIiAiAfOInJCSETz75xCKW9+9X/6GKuoai+vXv35+vvvoCd3cl7rZvjyc7O//+nTt3Ztu2bZb3aEpKCuHh4SXaZb5PRcVDajSau5fUzFROXD7BX6f+4rvQ73h387s8+cuTPPDjAzyz5hne2/oeC8IWsCFyAyfiT5CalUpNu5q413Onj2sfxvmM4/Xur/PpvZ+y7KFl9GlVeXVZS1PweiowAliOElzzDMNYKiLvlrdxVZlFixYVmon4wAMP8L///S9fIHlZeeCBB/jrr7/w9PSkTZs2dOrUCScnp0L9Bg0axJdffsnEiRMREWbOnMmTTz6Jg4MDNWrUYP78+Za+Y8aM4Y033mD06NFltqddu3Z89913PPnkk7i5uTF58mQAJk2axMCBA3F2dmbDhg289957BAcHIyLce++93H///aU+x9NPP80DDzzA0qVLCQ4OpkaNGgB4e3tjY2ODj48P48ePx8/Pz7LPG2+8wTPPPIOnpyfW1tZMmzaN4cOHExYWhrOzc5mvsyB2dnYsW7aM559/noSEBLKysnjxxRfx8PBgwYIFPPnkk0ydOhVbW1uWLl1ayNYXXniByMhI/P39EREaNGjAypUrGTZsGOvXr8fLy4s2bdrkE6cHDx60DPnmZfDgwezdu5eAgACsra1p3bo1X3zxRaF+ealWrRpfffUVgwYNon79+nTv3p1Dh5RL/c033+TFF1/E29sbEaFly5asXr2a4OBgy3Di66+/Xmy/iRMnEh4ezv33e5OaaktQ0BN07vxsoffE/PnzGT16NOnp6QC8++67tGnTpli7AMt7SaPR3H0kZyRz9tpZziac5UzCGc4mnCXqWhSXUi4V2d/AwNnRmWa1mhVqtexrVbD1paM0Ba+PAn4ikpaz7ADsE5F2FWAfcPcVvE5KSsLR0ZHLly8TGBjItm3baNy4caF+3bt3Z/Xq1dSuXbvE4y1btoyff/6ZBQsWlMmOyMhIBg8enO9HsSpz7do1Hn/8cZYuXVrZptwQISEh/PHHH5VtRpk4cwa2bYPq1VVYpLX1jR/rwoULPPzww/z111+3zsAiuJO/OzSa24HUzFSiEqKISojiTMIZy2N8anyR/W2sbGhWU4mp5k7NaV6rOc2dmtOkZhPsrO0q2PrScTMFryNRMxbNAUT2QMStM01TkMGDB3P16lUyMjJ48803ixRcAB9++CFRUVEliq7nnnuO33777br5l+4EatWqddsKLuC2E1wALVrA4cMqS31EBLRpc+PHioqK4sMPP7xltmk0msolKzuLc9fOcebqGc4knCHyaiRnrp4hLqXoVDl21nY0q9mMFk4tLK1ZrWY0dmyMtdVN/KOrQpTG07US6Aj8iYrp6gdsBeIAROTGUoSXgbvN06XR3E6cPQtbtoCDAwwZcnPeropAf3doNLcWEeFy6mVOXznNmYQzlsdz185hksKFWs2eK5faLrRwaoGLk3ps5NgIK6MsoeZVl5vxdK3IaWY23iqjNBrN7U+zZlCnDly5AidPQoHJjhqN5g4iw5TBmavKa3X66mlOXzlNZEIkSRlJhfqaY65a1m6Ji5MLLrVdcHFyoUnNJneM56qslCZlROmn9Gk0mrsOwwBvb9i0SQ01tm4NNqX5O6fRaKo0CWkJRFyJ4NSVU5y+cprTV09z7to5hMIjZDXtauJa25WWtVtaWnOn5lSzuX4KoLsJ/dWo0WhumiZNoF49uHwZjh3LLYyt0WiqPiLCheQLRMQrgXXqyilOXT1VZGC7lWFFs5rNcK3timsdV8tjnWp1bip34t2CFl0ajeamMQzw84N16+DIEeXt0jlONZqqR7ZkE5MYw8n4kxaRFXElguTM5EJ9HWwccK3tSqs6rWhVpxWudVxp4dSiys4YvB0oNmLNMIwFOY8vVJw5txfW1tb4+vri6enJfffdx9WrVyvVnj179vD88zc/r2H8+PFFFtkGePHFFy0lflavXo2fnx8+Pj60b9/eUtS5vJg9ezYpKSnleo7IyEj+97//WZZv5p6WdB/NpKen07dvX0uR6Zux9VbaNX36dJo2bYqvry9ubm4MHz78uuWZGjaEgwfnc/FiDGFhZTbrllzPqFGjOHHiRNlPrtHcgWRLNmcTzrLh9Ab+u/e/vPbna4xcNpLJv07mwx0fsvL4SsLiwkjOTMbJ3okA5wBGtB/Ba91e46vBX7HkwSX8X7//48kOT9KvdT/uqXuPFlw3SUmergDDMFyAxwzD+J4CmehFpOiEGncRDg4OhIaGAjBu3Dg+/fRT/vWvf1WaPR06dKBDh0KTJW4Z8fHx7Ny5k9mzZ5OZmcmkSZPYtWsXzZo1Iz09vcgahreS2bNn88gjjxRZ6/BWYf7hf/jhh4Hyv6f79+8nMzPT8j4qCwVtvdW89NJL/OMf/wBgyZIl9O7dm4MHD+ar+VmQrVvnM2CAJ6dONaFtW7hOCrl83IrrmTx5MjNnzuS///3vDR9Do7kdERFik2I5cfkEJ+JPKE/WlQjSstIK9a1fvT731LmH1nVb07pOa1rXba2HByuIkuZmfgH8DrgDewu0PSXsd1fSpUsXoqOjAYiIiGDAgAEEBATQo0cPjh07Bqjkj8OGDcPHxwcfHx+2b98OwEcffYSnpyeenp7Mnj3bcsx33nkHd3d3+vXrx+jRo/nggw8AVRbmtddeIzAwkDZt2rBlyxYANm7cyODBgwG499578fX1xdfXFycnJ7777jtMJhOvvPIKHTt2xNvb2+KZEhGeffZZ2rdvz6BBg4iLKzqHyrJlyyzFqxMTE8nKyqJevXqAqv/Xtm1bEhMTcXV1tZS/uXbtGi1btiQzM5NevXrx0ksv0bNnT9q1a8fu3bsZPnw4bm5uvPHGG4D64XV3d2fcuHF4e3vz4IMPkpKSwpw5c4iJiSE4ONhSAmfRokV4eXnh6emZrwqAo6Mjr732GgEBAfTt25ddu3bRq1cvWrVqxapVqyzn6dGjB/7+/vj7+1teiylTprBlyxZ8fX2ZNWtWvnualJTEhAkT8PLywtvbm+XLl5f6/dGyZUumTZuGv78/Xl5eHDt2jLi4OB555BFCQ0Px9fUlIiKCvXv3EhQUREBAACEhIcTGxgJw8uRJ+vbti4+PD/7+/kRERBSy9WZf35IYOXIk/fv3t3iiirJz2bJl7N+/h6++GsOUKb7s3Jla4dfTo0cP1q1bV2Q9TY3mTuJyymV2nN3B9we+5831bzJ6+WieXP0kH+z4gJ+P/8zhi4dJy0qjQfUGdGnWhbHeY5keNJ0fhv3AvPvn8a+e/2KU5yg6Nu1IXYe6WnBVFCJSYgM+v16f8m4BAQFSkOjo6ELrKpoaNWqIiEhWVpY8+OCD8ttvv4mISO/evSU8PFxERHbu3CnBwcEiIvLQQw/JrFmzLPtcvXpV9uzZI56enpKUlCSJiYnSvn172bdvn+zevVt8fHwkJSVFrl27Jvfcc4+8//77IiISFBQkL7/8soiI/Prrr9KnTx8REdmwYYMMGjQon4179uwRLy8vuXr1qnz55ZfyzjvviIhIWlqaBAQEyKlTp2T58uXSt29fycrKkujoaHFycpKlS5cWut5HH31UVq1aZVl+/PHHpUGDBjJq1Cj54YcfxGQyiYjI+PHjZcWKFSIi8uWXX1psDQoKkldffVVERGbPni3Ozs4SExMjaWlp0rRpU7l06ZKcPn1aANm6dauIiEyYMMFy3S4uLnLx4kURUa9/8+bNJS4uTjIzMyU4ONhyTkDWrFkjIiJDhw6Vfv36SUZGhoSGhoqPj4+IiCQnJ0tqaqqIiISHh4v5PVbwHuZdfvXVV+WFF16wbIuPjy90j/Iybtw4y310cXGROXPmiIjIp59+Ko8//nih42dkZEiXLl0kLi5OREQWL14sEyZMEBGRwMBA+emnn0REJDU1VZKTkwvZerOvb16mTZtmue9mZs2aJU899VSJdgYFBcm2bbtl6VKR777LkICAir+evn37yp49e4q9tqrw3aHRlIWUjBQ5cP6ALD28VP69+d/y6IpHZfD/BhdqY38aK29vfFsWHVwke6L3yNXUq5Vt+l0LsEeK0DOlSRkx2TAMH6BHzqrNInIDERvlzH33Fb/tmWdUoWuA33+HTz8tvm/BotklkJqaiq+vL5GRkQQEBNCvXz+SkpLYvn07I0aMsPQz155bv34933//PaDiwZycnNi6dSvDhg2z1BscPnw4W7ZsITs7m/vvvx+HnGjk+wpc3/DhwwEICAgodljv0qVLjB07lh9//BEnJyfWrl1LWFiYJf4lISGBEydOsHnzZkaPHo21tTVNmjShd+/eRR4vNjY239DS119/zcGDB1m3bh0ffPABf/75J/Pnz2fixInMnDmToUOHMm/evHxDPebagl5eXnh4eFjqJLZq1YqzZ89Su3ZtmjdvTrdu3QB45JFHmDNnjmWYy8zu3bvp1auXxZ4xY8awefNmhg4dip2dncUj5+Xlhb29Pba2tnh5eVnuVWZmJs8++yyhoaFYW1sTHh5e5DXnZd26dSxevNiyXKdOnevuk5e8r9lPP/1UaPvx48c5dOgQ/fr1A8BkMuHs7ExiYiLR0dEMGzYMUHUVi+JmX9/rITmJlIuz04ydHXh4wKpVxzlypOKvp2HDhsTExBAQEHBD16nRVCbZkk1UQhThl8M5dukY4ZfDiUqIKpSmoYZtDdzquuFWz83yWM+hnvZYVXFKU/D6eWASYP6VWGgYxlci8km5WnYbYI7pSkhIYPDgwXz66aeMHz+e2rVrlzpGx/xDVtr1Zuzt7QEl3ooaSjGZTIwaNYqpU6fimTN/X0T45JNPCAkJydd3zZo1pfqgOjg4kJaWPz7Ay8sLLy8vxo4di6urK/Pnz6dbt25ERkayadMmTCaT5fx57baysrI8Ny+br6OgLUXZVtL9sbW1teyT9zx5zzFr1iwaNWrEgQMHyM7OLvaHv+A5b+YL7XqvmYjg4eHBjh078q2/du1aqY5/s6/v9di/fz8dOnQo1s68tGkD1aoJTZt6sHz5Dlq3zt1W3teTlpZm+bOi0VR1EtMTOX75OMcuHbOIrNSs1Hx9bKxscK3tSpt6bWhbry1t6rWhSc0mWmDdhpQm3/5EoJOITBWRqUBn4InyNesG+OWX4pvZywXqeUl9bwAnJyfmzJnDBx98gIODA66urpYagCLCgQMHAOjTpw+ff/45oETRtWvX6NmzJytXriQlJYXk5GRWrFhBjx496N69O7/88gtpaWkkJSXx66+/lsmmKVOm4O3tzahRoyzrQkJC+Pzzzy3xVuHh4SQnJ9OzZ08WL16MyWQiNjaWDRs2FHnMdu3acfLkSUDFN23cuNGyLTQ0FBcXF8vyo48+yujRo5kwYUKZ7AZVg8/8g75o0SK6d+8OQM2aNUlMTASgU6dObNq0iUuXLmEymVi0aBFBQUGlPkdCQgLOzs5YWVmxYMECTCZToXMUpH///sydO9eyfOXKFcu17tq1q8zXWZC2bdty8eJFy7VnZmZy+PBhatWqRbNmzVi5ciWgPKcpKSmFbL2R1/f1119nxYq8BSeKZvny5axdu5bRo0cXayfk3j9ra7j33rYkJl5k6dIdZGVVzPWY+3l4eJTl1ms0FYKIEJUQxdqItXy882OeWv0UD//0MG9teoslh5dw4MIBUrNSaVi9IT1a9GCi30Te7/c+Sx5cwkchH/FUh6cIdg2maa2mWnDdppQmT5cB5C2eZKLATEYNltQJixcvZuHChUyePJl3332XzMxMRo0ahY+PDx9//DGTJk3im2++wdrams8//5wuXbowfvx4AgMDAZg4cSJ+fn6AGorz8fHBxcWFDh064OTkVGp7PvjgAzw8PPD19QXg7bffZuLEiURGRuLv74+I0KBBA1auXMmwYcNYv349Xl5etGnTpljxMmjQIL788ksmTpyIiDBz5kyefPJJHBwcqFGjBvPnz7f0HTNmDG+88QajR48u871s164d3333HU8++SRubm5MnjwZgEmTJjFw4ECcnZ3ZsGED7733HsHBwYgI9957L/fff3+pz/H000/zwAMPsHTpUoKDgy3Du97e3tjY2ODj48P48eMtrwXAG2+8wTPPPIOnpyfW1tZMmzaN4cOHExYWlm947Uaxs7Nj2bJlPP/88yQkJJCVlcWLL76Ih4cHCxYs4Mknn2Tq1KnY2tqydOnSQra+8MILZX59Dx48aBnyLcisWbP44YcfSE5OxtPTk/Xr11uGc4uzc/z48Tz11FM4ODiwffsOpk5dxpw5z/PttwnY2pb/9Vy4cAEHB4db8npoNDdLelY64ZfDOXrpKEcuHuHYpWOF8mHZWdvhVtcN9/rutK3Xlrb121LXoW4lWawpb0pT8PplYBy59ReHAvNFZHa5WpaHu7XgdVJSEo6OjqSkpNCzZ0+++uor/P39K9Wm7t27s3r1ampfJxfAsmXL+Pnnn1mwYEGZjh8ZGcngwYM5dOjQTVhZcVy7do3HH3/c4tm83QgJCeGPP/4ot+PHx4P58AMGqBqN5cmsWbOoVasWjz/+eLF97obvDk3lkJCWwJGLRzh88TBHLh7h1JVThQo+169en3b129Gufjvc67vjWscVGyudp/xO44YLXovIR4ZhbAS6ozxcE0Rk/603UVOQSZMmceTIEdLS0hg3blylCy6ADz/8kKioqBJF13PPPcdvv/3GmjVrKs6wSqJWrVq3reACylVwAdStq+K7jh+HXbugf3+Vvb68qF27NmPHji2/E2g0OYgIcclxHIo7ZBFZ0YnR+foYGLSq3Yr2DdrTrkE72jdoT/3q9SvJYk1V4LqerqrA3erp0mjuBDIz4ddfISUFOnYEN7fKtUd/d2huBBHh3LVzHL542CK0LqVcytfHztoO93rutG/QnvYN2tO2fluq25ZfMmdN1eWGPV0ajUZzM9jaQkAAbNkCoaHQrJmuy6ip+piD3g/FHeJQ3CEOxh0kIT0hX5+adjVp36A9Hg08aN+gPa3rttZDhZoS0e8OjUZT7jRrBk2bQnQ07N0LORNSNZoqg4hw9tpZDl44SNiFMA5dPMS19PzpTepUq4NnQ088G3ri0cCDFk4t9CxCTZnQokuj0ZQ7hgEdOsCFCxAVBTExoEf4NJWJ5NQqDLsQxoHzB4r0ZNV1qItXQy88G3ri1dBL58bS3DSlSY46HPg/oCEqkN4ARERqlWLfAcDHgDXwtYjMKKZfR2AnMFJElpXefI1Gc7tQowZ4ecH+/bB7NwwaBDb6b5+mArmccpkDFw4ooXXhQKGYrDrV6uDV0AvvRt54NfLC2dFZiyzNLaU0X3kzgftE5GhZDmwYhjXwKdAPOAfsNgxjlYgcKaLf/wHlO43qFnP58mX69OkDwPnz57G2tqZBgwZERkbSpEkTjhw5cp0jlJ2VK1fSpk0b2rdvf8uPnZfp06fj6OhYqPQOwOzZs6lbty6PPvooAFlZWTRu3JgnnniC995774bOd/XqVf73v//x9NNPX7evo6MjSUlJpTpudnY2L774IuvXr8cwDKpVq8aPP/6Iq6vrDdl5PSIjI9m+fTsPP/xwuRzfTMH3wdSpU+nZsyd9+/Ytsv/Bgwf58MMP8+VRqyzatoXISLhyRcV3dSgUZqrR3DqSM5I5FHeI0POhhJ4P5VziuXzba9nXwruhElg+jXy0J0tT7pRGdF0oq+DKIRA4KSKnAAzDWAzcDxRUI88By4GON3COSqNevXqWUj95RYo5z9T1yMrKwqaMf/NXrlzJ4MGDy110FUdWVhbffvst+/bts6xbu3Ytbdu25ccff+Q///nPDX1hXb16lc8++6xUoqssLFmyhJiYGMLCwrCysuLcuXOWJKjlQWRkJP/73/8qRHTlfR+8/fbbJfb38vLi3LlzREVF0aJFi3K17XpYWUGnTrB2LYSHg7OzivXSaG4FWdlZHL90nNDzoew/v5/wy+H5ahZWs6mGV0MlsLwbedOydkstsjQVSmnKAO0xDGOJYRijDcMYbm6l2K8pcDbP8rmcdRYMw2gKDAO+KLXFtwEmk4knnngCDw8P+vfvT2qqqqPVq1cv/vnPfxIUFMTHH3/M3r17CQoKIiAggJCQEGJjYwH473//S8eOHfHx8eGBBx4gJSWF7du3s2rVKl555RV8fX2JiIggIiKCAQMGEBAQQI8ePTh27BgA48eP5/nnn6dr1660atXKUjAY4P3336djx454e3szbdo0y/p///vftG3blr59+3L8+PEir2v9+vX4+/vnE4uLFi3ihRdeoEWLFuzcudOy/vfff8ff3x8fHx+LR3D69Ol88MEHlj6enp5ERkYyZcoUIiIi8PX15ZVXXinRTjNjx47l559/tiyPGTOGVatW5esTGxtrKfUD0KxZM+rUqcM333zDSy+9ZOn33//+l5dffpnIyEjc3d2ZOHEinp6ejBkzhnXr1tGtWzfc3NwspX6mT5/O2LFj6d27N25ubpaC3lOmTGHLli34+voya9Ys0tLSmDBhAl5eXvj5+VnK1cyfP5+hQ4dy33334erqyty5c/noo4/w8/Ojc+fOxMfHl+l9MH78eMtrvHv3brp27YqPjw+BgYGWsjr33XdfvmLdlUnduuDjo57//TekppbcX6MpDhEh+lo0vxz/hXc2vcPo5aOZ8tcUFh9ezPHLx7EyrPBo4MEYrzHM7DuTRQ8sYmrQVO53vx/XOq5acGkqHhEpsQHzimjflmK/Eag4LvPyWOCTAn2WAp1zns8HHizqWAEBAVKQ6OjoQusqi2nTpsn7778vIiKnT58Wa2tr2b9/v4iIjBgxQhYsWCAiIkFBQTJ58mQREcnIyJAuXbpIXFyciIgsXrxYJkyYICIily5dshz7X//6l8yZM0dERMaNGydLly61bOvdu7eEh4eLiMjOnTslODjY0u/BBx8Uk8kkhw8fltatW4uIyB9//CFPPPGEZGdni8lkkkGDBsmmTZtkz5494unpKcnJyZKQkCCtW7e2XE9epk6darFFRCQlJUWcnZ0lOTlZvvzyS3nuuedERCQuLk6aNWsmp06dEhGRy5cvF7pPIiIeHh5y+vRpOX36tHh4eFjWF2eniEiNGjVERGTjxo1y//33i4jI1atXpWXLlpKZmZnP3rNnz4qLi4v4+PjIyy+/LPv27RMRkaSkJGnVqpVkZGSIiEiXLl0kLCzM8tqFhYWJyWQSf39/mTBhgmRnZ8vKlSst55s2bZp4e3tLSkqKXLx4UZo1aybR0dGyYcMGGTRokOX8H3zwgYwfP15ERI4ePSrNmzeX1NRUmTdvnrRu3VquXbsmcXFxUqtWLfn8889FROTFF1+UWbNmlel9YF5OT08XV1dX2bVrl4iIJCQkWO7J1q1bZfDgwYVe08oiO1vkr79EFi4U2bBBLVcUVem7Q1N2ktKTZHvUdpn791x5bOVjMvh/g/O1yasny5d7vpRd53ZJamZqZZuruUsB9kgReqY0GenLXrFYcQ5onme5GRBToE8HYHHOv436wL2GYWSJyMoyn+2++8rWv3VrmD278P43WPQ6L66urpaahwEBAURGRlq2jRw5EoDjx49z6NAh+vXrByjvmLle3KFDh3jjjTe4evUqSUlJhISEFDpHUlIS27dvZ8SIEZZ16enpludDhw7FysqK9u3bc+HCBUANBa5du9ZSTzApKYkTJ06QmJjIsGHDqF5dJfErrhZfbGws7dq1syyvXr2a4OBgqlevzgMPPMA777zDrFmz2LlzJz179rTETtWtW7Y6YsXZ2bNnT0ufoKAgnnnmGeLi4vjpp5944IEHCg3XNmvWjOPHj7N+/XrWr19Pnz59WLp0KX369KF3796sXr2adu3akZmZiZeXF5GRkbi6uuLl5QWAh4cHffr0wTAMy3Yz999/Pw4ODjg4OBAcHMyuXbsKZenfunUrzz33HADu7u64uLgQHh4OQHBwMDVr1qRmzZo4OTlxX877z8vLi7CwMKB074O8HD9+HGdnZzp2VCP1tWrlznVp2LAhMTEFP36Vh2FA587w229qJmN4uIr30mgKIiKcvnqavTF72Ru7l6OXjpIt2ZbtNe1q4tfYDz9nP3wb++qM75oqTWlmLzYDPgG6AQJsBV4QkXMl7gi7ATfDMFyBaGAUkC/YRUQsEc2GYcwHVt+Q4Kpi2NvbW55bW1tbhhcBS0yRiODh4cGOHTsK7T9+/HhWrlyJj48P8+fPZ+PGjYX6ZGdnU7t2bUtcWUk2SE7VARHh9ddf58knn8zXd/bs2aVyszs4OJCWlmZZXrRoEdu2baNly5aAmlywYcMGRKTI49nY2JCdnftlmfdYeSnOzoKMHTuWhQsXsnjxYr799tsi+9jb2zNw4EAGDhxIo0aNWLlyJX369GHixIn85z//wd3dnQkTJuTrb8bKysqybGVlRVZWlmVbwesr6nrN9704u653ntK8Dwqer7jXMS0tDYcqlpG0enUIDMxNmtqoEVynpKfmLiE5I5nQ86HsidnDvvP7iE+Nt2yzMqxoX789/s7++Dv707pua6yM0kTKaDSVT2kiuecB/0MNFwI8krOuX0k7iUiWYRjPomYlWqOGJA8bhvFUzvZbG8d1sx6qW+DhKgtt27bl4sWL7Nixgy5dupCZmUl4eDgeHh4kJibi7OxMZmYmCxcupGlOpHHNmjUtMTq1atXC1dWVpUuXMmLECESEsLAwfMzBMkUQEhLCm2++yZgxY3B0dCQ6OhpbW1t69uzJ+PHjmTJlCllZWfzyyy9FCp527dpx8uRJQBV63rp1K2fPnrUIhnnz5rFo0SJmzJjBM888w+nTp3F1dSU+Pp66devSsmVLVq9eDcC+ffs4ffp0oesqyc6GDRvms2f8+PEEBgbSuHFjPDw8Ctm7b98+GjduTJMmTcjOziYsLAxvb28AOnXqxNmzZ9m3b5/Fs1QWfv75Z15//XWSk5PZuHEjM2bMIDY2Nt919OzZk4ULF9K7d2/Cw8OJioqibdu2+SYilERp3gd5cXd3JyYmht27d9OxY0cSExNxcHDAxsaG8PBwPD09y3yd5U3z5nDPPXDyJGzbpopiW1tXtlWaikZyEpPuidnD7ujdHL10NF+h6LoOdQlwDiDAOQDfxr7UsCu/CTEaTXlSGtHVQETm5VmebxjGi6U5uIisAdYUWFek2BKR8aU55p2CnZ0dy5Yt4/nnnychIYGsrCxefPFFPDw8eOedd+jUqRMuLi54eXlZfmBHjRrFE088wZw5c1i2bBkLFy5k8uTJvPvuu2RmZjJq1KgSRVf//v05evQoXbp0AVT6hR9++AF/f39GjhyJr68vLi4u9OjRo8j9Bw4caCkm/NNPP9G7d+98Hpv777+fV199lc8++4yvvvqK4cOHk52dTcOGDfnzzz954IEH+P777/H19aVjx460adMGUDNBu3XrhqenJwMHDuT9998v0s6CoqtRo0a0a9eOoUOHFmlvXFwcTzzxhGXYNTAwkGeffday/aGHHiI0NJQ6deoUe8+KIzAwkEGDBhEVFcWbb75JkyZNaNCgATY2Nvj4+DB+/HiefvppnnrqKby8vLCxsWH+/Pn57tf1KO37wIydnR1LlizhueeeIzU1FQcHB9atW4ejoyMbNmxg0KBBZb7OisDfH+LiICFB5e/q1Kl8i2JrqgYZpgwOxR1id/RudkXvIi4lzrLNyrDCs4EnAU0C6NCkAy5OLjroXXNHcN2C14ZhrEMFuS/KWTUamCAifcrXtFx0weuqw7Bhw5g5cyZulV21GEhJScHLy4t9+/bh5ORU5v0HDx7MSy+9ZJldWVpKymNWFUlPTycoKIitW7eWOU1JRXHlikojYTIpEebuXn7n0t8dlcfVtKsWkRV6IZS0rNwQAyd7Jzo06UCHJh3wa+ynvVma25qbKXj9GDAXmIWK6dqes05zF2IeRqts0bVu3Toee+wxXn755TILrqtXrxIYGJgvncWdTFRUFDNmzKiyggugTh3o0gW2blUZ62vV0mWC7gREhHPXzvF39N/8fe5vjl8+ni9vVqvarejYtCMdm3SkTb022pulueO5rqerKqA9XRrN3cHBg6rZ2kL//nADDszror87ypdsyeb4pePsOLeDned2EpsUa9lma2WLTyMfApsG0rFpRz3TUHPHUmZPl2EYr4rITMMwPgEKKTMRef4W26jRaO5yPD1VbFdUFGzaBCEhUIYwOE0lkWHK4MD5A+w4t4Nd0bvyFY6uZV+Ljk060qlpJ/yc/ahmU60SLdVoKpeSxhvMpX/2lNBHo9Fobhnm/F1JSRAfr9JJ9O6tygdpqhapmansjd3L9rPb2R2zO198VuMajencrDOdm3WmXYN2OqWDRpNDsaJLRMw5FFJEZGnebYZhjChiF41Go7lpbGygZ0/44w81q/Hvv5UQ0+E+lU9yRjJ/R//N9rPb2Re7j8zsTMu2VrVb0aV5F7o060ILpxY6PkujKYLSRNa+jirXc711Go1Gc0uoXl0Jr7/+gtOnlacrMFALr8ogMT2Rned2su3sNg5cOEBWtkrea2DQrn47ujbvSpdmXWjk2KiSLdVoqj4lxXQNBO4FmhqGMSfPplpAVtF73V04OjqSlJRkWZ4/fz579uxh7ty5ZT7Wxo0b+eCDDyzJQ0tDr169+OCDD+jQoVCsnkZz21OvHgQFwcaNEBGhhFeHDreh8BKBzEzIylIXYWdX5cdLzUJra9RWQi+EWsruGBh4N/SmW4tudG7WmboOZSvxpdHc7ZTk6YpBxXMNAfbmWZ8IvFSeRmk0Gg2o0kBBQSqo/sQJpVX8/auA8BKBq1fhzBk4e1YFoF25olpAAJjrlx4/DkXlc7OxUeLr3/9WKfkB1q9X/WvXhrp1oXFj1erXr5A0/ckZyew8t5MtUVsIPR9qyQhvZVjh28iX7i2607lZZ5yqlcOUUo3mLqGkmK4DwAHDMFYAySLqE2gYhjWg5xNdh4sXL/LUU08RFRUFqPqG3bp1Y9euXbz44ouWjOHz5s2jbYFKv8nJyTz33HMcPHiQrKwspk+fzv33309qaioTJkzgyJEjtGvXLl9NR43mTqVxY+jRAzZvVprEygp8fStYeCUmQs2aucuvvgrHjhXdN2+eC3NuNBsb1UQgI0N5vbKycreDKkC5YUPh41lZgZ8fTJ+eu+7kSWjWDKrd3EzAtKw0dkfvZtOZTeyN3WsZOjQLrR4uPejcrDO17Gtd50gajaY0lCamay3QFzCPoznkrOtaXkbdLqSmpuLr62tZjo+PZ0jOP9wXXniBl156ie7duxMVFUVISAhHjx7F3d2dzZs3Y2Njw7p16/jnP//J8uXL8x333//+N7179+bbb7+1JPLs27cvX375JdWrVycsLIywsDD8/f0r8nI1mkqjSRMlvLZsgaNHlXbx8ytH4ZWcrLK0HjwIYWEQHQ0//KCytoLyRNWoAS1agIsLNGigMrzWrp0/q2urVrBqVX5DRZTgysjIL5r69wc3N5Uz49IluHABYmPh8uX84iwhAV56SR2zcWPlKXNzU611a7hOYfOs7Cz2x+5nY+RG/o7+m3STKpNlHjrs4dKDLs26aI+WRlMOlEZ0VRMRS+CSiCQZhlG9HG0qM/ctuq9cjvvL6JKLYDs4OBAaGmpZNsd0gcqYfuTIEcu2a9eukZiYSEJCAuPGjePEiRMYhkFmZmbBw7J27VpWrVrFBx98AEBaWhpRUVFs3ryZ559X6dG8vb0txZs1mruBpk2hWzdVGPvYMaWLuna9hSNvGRlqquSWLbBnj4rDMmNvr4YRzYXVX3pJrbue6itqu2Go7K+2tvnXe3qqVpRdeb3a164poXfunBJlsbHKZvOx//Of3OOkpYG9PQIcuXiEjZEb2XZ2G4kZuQXT3eu509OlJ91adNMxWhpNOVMa0ZVsGIa/iOwDMAwjANDjWtchOzubHTt24FDgX+dzzz1HcHAwK1asIDIykl69ehXaV0RYvnx5oWFHQE/D1tzVNG8OvXopjXH2rJrd2LPnTY+yKZKS4P33lSfKMJTA8vMDb2/lRcrrbbolJywldnaqmWneHObOVd6ys2fVUGN4uAp6O3NGed9yODv7bdZHbWSTcwYXHa2Up87BAZfaLvRq2YueLj1pWKNhESfVaDTlQWlE14vAUsMwYnKWnYGR5WbRDXA9j1Rl0L9/f+bOncsrr7wCQGhoKL6+viQkJNC0aVNAecaKIiQkhE8++YRPPvkEwzDYv38/fn5+9OzZk4ULFxIcHMyhQ4cICwurqMvRaKoMjRurkbiNG9Uo3B9/KCFWppJBaWkqcH3/fvjnP5XIqlsXBg9WJ+jWTU2frMrY2ICrq2r9+ql1mZlcNSWz6djPbIjcQETiz2CfAvHQIM6eoMQMgmhJy3bNoYELaMGl0VQo1xVdIrLbMAx3oC1gAMdEpPCYmCYfc+bM4ZlnnsHb25usrCx69uzJF198wauvvsq4ceP46KOP6N27d5H7vvnmm7z44ot4e3sjIrRs2ZLVq1czefJkJkyYgLe3N76+vgQGBlbwVWk0VQMnJyW8Nm9WIU9//gnduyu9VCIpKcoz9NlnanwS4MABFZkPMGlSeZpdbmSaMtkVvYu/Tv/F3ti9lhQPNfw60a2WB8EpjfCISMQIC1MzLbduVWKtY0d1gPPn4dQp5dVzdKzEK9Fo7mxKVfDaMAxPoD1g8amLyPflaFc+dMFrjUZTFFlZsGOHGmUzjwh6ehaRBistDQ4fhhMniMnMpMmPP4K7u0rt0KVL/qHD2wQR4WT8SdadWsfmqM0kZajQW2vDmgDnAIJdgwlsGoidtV3enSAmRk0Q8PBQQ5UAS5fC99+rm9imjUqIFhCggvR1SINGU2aKK3h9XdFlGMY0oBdKdK0BBgJbReTBcrCzSLTo0mg0xSGiNMThw+p5/foqwN7isBFRMwhzPFsx9erRxNVViYvbkIS0BDZEbuDPiD+JuhZlWd+qdiv6tOpDkEtQ2WcebtoEv/+uZihk5cl97eSkguZuUw+gRlNZFCe6SvP37kHAB9gvIhMMw2gEfH2rDdRoNJobwTDUqFijRsrrdekS/L4mm44dwcXVKtd7ExenOqam5k/rcBtgyjaxL3Yff576k13RuyyJS53snejVshd9XPvgWsf1xk8QFKRaWpoabt2zB/buhYsXVYoKM2lpsGaNGpZs1kx7wTSaMlIa0ZUqItmGYWQZhlELiANalbNdGo1GUyYaNYKBA+HghkvUPLaLM3+2IsbLHT8/qObuDu3aqY63UVLhC0kXWBuxlnWn1xGfGg+oxKWBTQLp17ofHZp0wMbqFg6NVqsGnTqpJqLSUuQdDTlwAObNU61xY1UQMzBQDVXehkO0Gk1FU5pPyR7DMGoD/0WVA0oCdpWnURqNRlNmMjKwPxBKQPxJUmqAVcop9pxuS3S0gY+PcduEJ2VlZ7Hz3E7+OPkHBy4cQFCip4ljE/q17kdv194Vk0/LMHJjvszUrQu9eytP2Pnzath21SqVKNbfH15+WYsvjaYESvx0GCop1HsichX4wjCM34FaIqJzFWg0mqqBiMpPtW8fpKVhWFlRI7AdjVp40Gi/wfnzsHu3mpxXlWvDn086zx8n/+DPU3+SkK6G9GytbOneojv9W/fHo4FH5efpc3NTiWGzs1VusL//hl27ICpKzWbIK7jWrQMvL+WC1Gg0wHVEl4iIYRgrgYCc5cgKsEmj0WhKR2Ym7NypfvABGjZU8UZOTtQCgoPVpn37VGqJtWtVFzs7FXBf2ZiyTeyO2c1vJ35j//n9Fq+Wi5MLIa1DCHYNxtGuCqZwsLJSsz/d3WHcOOX1uno1d3tMDHz8sXresqUaguzcWc+G1Nz1lMYPvNMwjI4isrvcrdFoNJqyYG2tcm/Z2qrhrVat8v2oG4ZK0N6kCRw6pCbnxcSohO4hITBiROXkQL2SeoU/Iv7g95O/czn1MqC8Wj1a9GCg20Da1mtb+V6tstC4cf4kaSaTSpy2dy9ERqr244/qZnfqBA8/XMZsthrNnUHBbDZFEYwSXhGGYYQZhnHQMAw9vAhYW1vj6+traTNmzCix/3/+8598y1273ljN8NDQUNasWVPs9v379zNx4kRAZb1v0KABfn5+uLm5ERISwvbt22/ovEXRsmVLLl26REZGBj179iQr73RzjaY8MJkgXRVpxspKZY+/915V7LkYoWJjo/Kf3nuvGu0ymeDXX+GJJ+Crr1S+0PJGRDhy8Qjvb3ufx1Y9xsKDC7mcepkmjk143O9xvhv6HS91eQn3+u63l+AqiubN4bXXYOFCeOstdePr1VPuxr/+yl+U+/BhVYJJo7kLKDZPl2EYLUQkyjAMl6K2i8iZcrUsD1U1T5ejoyNJZfiyKGv/4jAX1p47d26R20eMGMEbb7yBj49Pob4bNmxg9OjRbNiwgXbm2Vw3QcuWLdmzZw/169fnrbfe4p577mHMmDE3fVyNpkgSElQ2dUdHlT/qBsRJTEwMmZlNWLRIFc8G5Sjr2RMGDVJhS7eSDFMGmyI38Uv4L5y+ehoAA4NOTTsxqM0gfBr53P4iqzSIQEQEREer9BSghocfflg9enrmzpxsqMsTaW5visvTVZKnayVYxNVHInImbysnO297EhISaNu2LcePHwdg9OjR/Pe//2XKlCmkpqbi6+trESWOOdkbN27cSK9evXjwwQdxd3dnzJgxmMXw7t276dq1Kz4+PgQGBpKQkMDUqVNZsmQJvr6+LFmyJN/5ExMTCQsLw8fHp0j7goODmTRpEl999RUAERERDBgwgICAAHr06MGxY8cA+OWXX+jUqRN+fn707duXCxcuAHD58mX69++Pn58fTz75JHlF+9ChQ1m4cOGtupUaTX7OnFGFFhMSIDEx19t1A7i4wJQp8MknKpFqVpZywLz8MvzjH6quY+ZNFju7lHKJ70K/Y/zK8czZNYfTV0/jZO/EQ+0f4psh3/Cvnv/Ct7Hv3SG4QAnke+7JFVyg4sDatFGC7MAB5XZ8/HF4/nnlJbt8udLM1WjKg5JiuvJ+E1TpvFz33XdfuRz3l19KLqRtFlFmXn/9dUaOHMncuXMZP348L7zwAleuXOGJJ54AYO7cuYSGhhZ5rP3793P48GGaNGlCt27d2LZtG4GBgYwcOZIlS5bQsWNHrl27RvXq1Xn77beL9XTt2bMHT0/PEu329/fnyy+/BGDSpEl88cUXuLm58ffff/P000+zfv16unfvzs6dOzEMg6+//pqZM2fy4Ycf8tZbb9G9e3emTp3Kr7/+ahFvAJ6enuzerUP/NLeY7GxVmDrnj4wlMPsWpCZo2RJefx1iY+G331Sg/fHjqn39dW7OUDe30jnVRIRjl47x8/Gf2XFuh6UGoltdN+5rcx/dW3TH1tr2pu2+Y2jQAP79byWi9+xRsyH37oXTp1Xr1Su3b2ysGqK0syv2cBpNVaekby0p5rkmBwcHhyJFVL9+/Vi6dCnPPPMMBw4cKNWxAgMDadasGQC+vr5ERkbi5OSEs7MzHXOK0taqVeu6x4mNjaVBgwYl9jF7p5KSkti+fTsjRoywbEvP8R6cO3eOkSNHEhsbS0ZGBq6uKtv15s2b+emnnwAYNGgQderUsexrbW2NnZ0diYmJ1KxZs1TXrdGUSEqKGgO8eFHFb/n7l14BlQFnZ3jsMRgzRlXE+eUXFfttTkPVpEmuAGvatPD+WdlZbD+7nZXHVnIi/gSgaiD2bNGTIW2H0KZem7vHo3Uj1KypppoGBysXY1gYHDmS/2bPmKFmQfj5KdGdM0tVo7mdKEl0+RiGcQ3l8XLIeU7OsojI9RVABXE9j1RFk52dzdGjR3FwcCA+Pt4ipkrC3t7e8tza2pqsrCxEpMxf1A4ODqSlpZXYZ//+/bRr147s7Gxq165dpHB87rnnePnllxkyZAgbN25k+vTplm0l2ZSenk61atWK3a7RlIkTJ5Tgql5dzYYr5zwP9vbQvz/06wcnTyoBtnmz+q1ftEi15s1V2FHHjtDMNZm1p3/j1xO/cinlEgA17Woy8J6BDGozqGKSmN5p2NqqYtsBAbnrzEPJaWmq1tOOHbnlnQIDlUdMx4FpbgOKFV0iYl2RhtxJzJo1i3bt2vGf//yHxx57jB07dmBra4utrS2ZmZnY2pZueMHd3Z2YmBh2795Nx44dSUxMxMHBgZo1a5KYmFjkPu3atePDDz8s9pibNm3iq6++YsOGDdSqVQtXV1eWLl3KiBEjEBFLPFhCQgJNc/5lfvfdd5b9e/bsycKFC3njjTf47bffuHLlimXb5cuXadCgQamvT6O5Ll5eanixXTtVoqaCMAzlUHNzUx6wsDAlwHbsUHm/TsbG8dHGVVyp9weOtdNwqgXuTZoz0ncIwS2Dsbexv/5JNKXH3l7l/bp0SSVj3bVLxYCZx4KbNcsVXfHxaqKFHobUVEHKtV6DYRgDgI8Ba+BrEZlRYPsY4LWcxSRgsoiUbjyuClAwpmvAgAE89thjfP311+zatYuaNWvSs2dP3n33Xd566y0mTZqEt7c3/v7+pQo4t7OzY8mSJTz33HOkpqbi4ODAunXrCA4OZsaMGfj6+lriyMy4u7uTkJCQb4hvyZIlbN26lZSUFFxdXVm+fLll5uLChQuZPHky7777LpmZmYwaNQofHx+mT5/OiBEjaNq0KZ07d+b0aTXratq0aYwePRp/f3+CgoJo0aKF5dwbNmzg3nvvvRW3VnO3IgJHj6qAazs7NaTo51epJllZqXQTvr4QMvokX21ewfqIrVy9kk16OlQ764vN1aFcTPFn2e8G4d5KK7Zrp9JT6FHFW0j9+ir9xL33Kq/X/v2q3EDe98i33yp17Our3JEBASp2TKOpAhSbMuKmD2wY1kA40A84B+wGRovIkTx9ugJHReSKYRgDgeki0qngsapqyoiqyqxZs6hZs6YlV1dFMXz4cN577z3atm1boefV3CFkZqr4rZgYFcuTd5bbLaSs3x0iQuj5UJYdWUZYnEpRaG1Y09OlJ51rD+VieCvCwlS6qeTk/Ps6OakRsDZtoG1bpSV1uGM58+abUDBkwsVF1YDq0UPlc9NoypniUkaUp6crEDgpIqdyDFgM3A9YRJeI5M3SuRO4fvCT5rpMnjyZpUuXVug5MzIyGDp0qBZcmhsjKUmN3yUkqKEkd/fKtohsyWZb1DaWHVnGqaunAHCwcWDAPQMY0nYI9avnxJe1g/vvV6Ogp07BwYOqHT+uLmf3btXM1KunZk26uqrm4qIC9fWo/C3inXfUEOOePart36/SjZw5o2IDzaIrIUEJ/apQD0pz11Cenq4HgQEiMjFneSzQSUSeLab/PwB3c/+8aE+XRnMHc/myElxpaco1FBSkYnLKiet9d2SaMvnr9F/8dPQnYpNiAahdrTZD2gzhXrd7qWFXo1TnEYELF1Rd6PBwJcIiI9VlFsQwVBWdZs1Ua9pUzahs3FiJNGsdYXvjZGWpmZB79kDfvqouFKiyRAsWKNXr769a+/Y6FkxzS6gMT1dRkQxFKjzDMIKBx4HuZTnBjczu02g0VYhz59SQosmkFEb37uX6o1fSn8y0rDR+P/k7K46tID5V1QVydnRmeLvh9HbtjZ112ewyC6nGjVW2e3V+VRvanIbq9GkVmB8bm9sKprqztlYx4o0aqccGDXIf69fXqauui40NeHurlpf0dDU5w+wFW7FC3UgvL1Vaql+/yrFXc0dTnqLrHNA8z3IzIKZgJ8MwvIGvgYEiUur0w7a2tiQlJeHo6KiFl0Zzu3LhghJcrVuroGer0pSDvTFEhKSkpEKza5MyklgdvppVx1eRmKFmBbd0askIjxF0b9EdK+PW2WQYyoPl7Kwy4ZvJzFSC69y5/CLs/Hk1UmZeLg5HR6hbVwmwunWhTh2oXTt/c3JS8WTaa5bD2LEwerTygu3bp9rp0yo5q6NjruhKTlZK2NdX3UiN5iYoz+FFG1QgfR8gGhVI/7CIHM7TpwWwHni0QHxXPooaXjSZTMTHx5N5s7U6NBpN5SECcXHKdVMBf55sbW2pW7cu1tbWXEu/xspjK1kdvprUrFQA3Ou585DHQ3Ro0qHK/JlLT1e36Px5lbKsYLtyRY2glRZHR6hVK1eE1ayp1uV9XqOGejQ/r1HjLok5u3JFBeE3bAgeHmrdzp0qaz6oYDwfH9U8PfMX7tZo8lDc8GK5ia6ck94LzEaljPhWRP5tGMZTACLyhWEYXwMPAOZajllFGVmU6NJoNLch6enw3XcwapT65a8ErqReYcWxFaw5sYZ0k0q66dvIl5GeI/Fo4FFlxFZpEYFr15RHzNyuXFFlDc2PV6+qPomJqv+NYGOjxFf16qrVqKE0R/Xq+R+rVct9ND+3t89dZ35ubX2bpNMIDYWfflLTUzMyctdbW6tpqf/5zy0pSaW5s6gU0XWr0KJLo7kDSEhQM8uOH1dDiVOnVujp41PjWXZkGX9E/EGGSf14dmzSkZEeI2lb/+6YdZudrSaKJiSolpSkhJj50fw8OTn/Y0pK2bxppcHKKleE2dur53Z26rn50fw87/rimq1t8Y82NurRlkyM1BQlnjIy1Lhuerp6zMoq/GgyqWHFBg1U/zVrYP16daMuX86tnL55s1Kzv/yiAu1atFDBfDY2ucrSyko9t7JSSdzat1frL15UQ5sNG+bmG8vKUutsbPI3W9vcCzMv29urx9tCwd49VEYgvUaj0ShiYmD6dBWY1LAhTJhQYae+nHKZ5UeX8/vJ38nMVuEInZt2ZqTnSO6pe0+F2VEVsLJSDsZatVQ5o9IionRIcrISYObH1NTcZl5OS8v/aH6enq4ezc1kUvukpFz/5PamFBxMSThkJVItKwkHUxL2WcmW9famFOxNKfzeYhLpNmp26aDTc2l9bR+/tHye006+AASd+5Gg2MUW/WNYgVXOo2HkPs+7bmefN7jYqgE2Nna0O5BK2z2nOd15FDH3DcUh5TKO38Xg+dP/sM5Kw+lMWL6bnV3dEVP1WmQ71kSq18CwssKwgqRBo0it1h5ra3A4FEmtj+di8u1AuosfNjZgnZhEtbfewSDHjtK8SHn/yCQmKjFYt676o2Pm66+VeDSr3KJckQ4Ouc+rV680j/SdihZdGo2mfDl2DN5+W/0QtG4N06apSO9y5nLKZYtnyyy2ujbrymiv0bSs3bLcz38nYRi5HqWbfulEID2dLJtqpKcrMSZ/rCU79gJXgoeTZl2D9HSou+hTaoRtx0hOQrKyyc6GbFHeOslWjwXXxbR6mCt2NcjIgIYXEmmQcJF69kmcd8hxatnUIMW6JplW9mRZ2ZJl2JFlZUeWlS0mw5YsK1uyDRtMedruo/U5H6VMj0hox1FjGKePtSMitgZQg7qp1niZRmEjGTRq0JX6qWdpkBZFzYzLcA24lg2SwNYm/Ymv1hQrMXFxWSOOrE8j07oajZLr0TGuPxeutmT3UXUeh0wr7j/dEWvJwkqysJEsbMjEhizsJAMbycSGTGwlE5uc5cgL1qy9oEY9a6Wn8fC6KJKrp/BTlhLb1tbw4MoNVMu4psScARg54jPvcs5zw4CMGnXY9uT3WFmpYwQs+gfWWekcHv0uUssJKytovG8N1a6eRxyqk12tOlK9BtkO1REHNRYt1WsgNRyhenWsbK0txyqqmR2BeZfNw9AFtxfVt+Bz83XkfV7Z6OFFjUZTfuzYAR98oP5dd+gAr71W7jUUzcOIeT1b3Zp3Y5TnKC22yhsRFUB26VJupP/ly6rFx+c+WlmpPFlmnnoKoqPhs89yXXCzZqmhPFCeF3OUf8EIf3NzcIAuXdRzUOcymdSMw5ycGmaPXd5RxJKem0xFjzoW18z9s7LAOvEqdaIPUS/2EHXjjvFb8EwysCMrC/punU6TC/uJq9ma6Nrtia7VnnM123HNuo7lGCaTEpOlGtYVwUpMZFspP4pVdhb1085hIFyo7mrp5nl5E/ZZydhlp2GXnYatKecxOw07Uxp22anq0ZSKXXYqKTZOfOPxkWX/1/aOwM6UxsyAJaRbVwdg7LF/0fJaGKUhw7oa6dY1+NLzE1JtVGmGzrErqJ0Rx66Gg4l3UPV+66ZG45h5hTQbR9JsHEm1diTTyv6mVZNZeL3yispOU57o4UWNRlPxhIcrwRUSApMnl2u+giupV1h+dDm/nfzNErPVvXl3RnqO1GLrViGigsEuXFB1jczMmQOHDimRVRqVYG+vFIx5SmRIiBqHNAsmgPHjVatZ88YC1evVK7Qqr8eu/KmNSj2pft075930pgnCgOwTwAngZ0hExYENG6ZqS+YgolpWlhJhJhOFhJnJZJCdbWPZZjLZkJ3dMs+yuW9QvmOYnxdcl50NyTnPx+ZZd37AXIzUFAbVdbB4GO3aDSL+agDW6SlYpadgk5aMTbpq1hkp2KYnYZORgm16MkgaQhrt/KphslL7d4/bToOUY6Q070FsnaaIQKewNXhErbJk9hQBk2FDmm2OCLOpSZq1eky1qUmqtSNhDftyza4+2dlQI+0y1tmZXLOuQ6aVvfKESm6rTLTo0mg05cejj4Kbm/JAlJNvPyEtgeVHl/PriV8tYksPI94E5umQ586pWLzUVBgyJHf7448rIb1kiYr5AeVVMicSq1kzN3Nr3gyueROJOTjkfz8MG1bYjgoYgq403nlHBbYdO6byhB09qp6fP6+UiJn9+zF++gnD3R07d3c1W7JSi3c2KmJd1yLWFYGIuubkZN6qnyf/yN8PwoULtO/ZROlUgJ8bwvb2ubM5EhNzZo5ezWlFMDMA3HJKOn22BH77DZ6abBGwsn0HrFhB9kOjsOrgXzqbywEtujQaTdlJSVHejsRE9QNtbqmpKq/RkCFqmKh2bZXTqBwEV2J6Ij8d/YnVJ1aTlqVq63Rq2omHvR6mVZ1Wt/x8dxzZ2epH/uzZ/C0mJn/l7urV4b77csdmWrdWbpakpFzR9fjjMHGimiRhb18513O7Ua2amhnp66uWTSaVGb9u3dw+Bw+qlBV5C3g3aaK8jO7uMHBg1QhUKg2GkRukn5dOnQr3vf9+1fKSkaHec+ZWcNptw4a5fWvUUMt5ktkaF87DsaNYZ6aVcmZC+aBjujQazfVJSFB5ig4fVsNIp08X9tNnZKjhxJQUlXkz7/BTkyZqmry7u2otWtxw9vnkjGRWHlvJz8d/tiQ17dikIw97PXzXzUYsFSL5f5jnzVM/4mfPqiG+oqhRQxWAbNpUvXYPPqhzUVUGV68qT9ixY6pFROTmCmveXMXAgXqNv/tOfa7c3FQBz9tFjFUUV66ouMEWLSpkRqaO6dJoNGUjMRE2boR16+DUqfzbrK3Vj7GTk/oCS0uDv/5SQ0LNmkGPHvnjf2JiVPvrL7V/jRoqsL57d1VouLggm2PH1L99Ly9SW7uw6vgqVuz6juQrF6BWLfzu6cEYrzG0vSTw137wylKi7m4lOztXzIrAW28pIfz117leqbNnc1/P+vXVj7e5NWumHmvV0j/aVYHatVW9KHPNqKwsVTU9PDx/iYDLl2H58tzlatXgnnuUV9LNTeX/uttTP9SpUyWGrLWnS6PR5CKiRM7atbB9e64nxM5OiRkPD1X+pG3b3GGkTZtUIHVGhtr2z3/mjzsx/1CY41aOHVN1bcxUqwaBgeoHH9QPhLu76jd+PGlZafzaNIXlQ9uQmJUMoaF4XbXnkQsNaT83Zwbc+PHq/HZ2MH9+7v45gu2OFGKZmeq+RkSodvKkCmRfsCBXML34oto2c6byNIL6wTaZ1D/+vIHrmtuXhAT48084cUK9vpcu5d/+3nvqswmqtuTVq0qQNWumPZjlhPZ0aTSa4jGZlFfrxx+VRwrUD7efH/Tvr+Iuiiq+t2BB7tT/AQPgyScLf4nb2Kh/3ffco2KDjh1TGbxTU5VoOHlSZfoODVXnrFMHvv2WjAsx/FY3jqX3ZJCQmQjxNWln34xHDjfGu+Y9cCVGiSpQgqtpU2W7ed2dJMSys5WH6sSJ3B/WyMiiZwpevJgb3/Liiyq9Qt6ZfG3aVITFmorEyUkNAZtJSFCfq5Mn1fuldevcbb/+qgp4g/pMu7iAq6tq7dqpz6mm3NCiS6O5mzGZlKdq8eLc2Wf160PfvtCvX/7g1KKws1PDWU88AYMGFR6SKihycrxX+cRQnTrw/vsqVszKisz4i6yd8Tg/elsR3/wiZFrhllqdR7r8E7867TF+mACJMeoHw8sr146YPOsOHrwzhNhff6lcVeHhagg3L4ahhgLNw0itW0OrVrnDiKAKNGvuPpycICBAtYJ06KDe/xERaiKFWZwB9OypkliBEm6rVikx1rIlODuXa8qXuwUtujSauxGRXLEVHa3WOTurQtRBQSV/uWZl5XqzHnpIDQ26uhbuV5TAKkoMjRgBEyeStW0L66qfZ4lzMpfqJUCGFa2ynRgT3YCOQQ9jtO+jYlzMx8krkopadzNCrDLYuhV27YLhw3PFUkwMhOUknmzYUMXntGmjHlu3zi+wNJrScO+9uXnAkpOVx/T0aRXnZ/4TA0qI5U1ga2urRL6Li2oDBujh6RtAiy6N5m7j0CEVWB0RoZYbN1Ziq1ev6/+T3bQJvv8e/u//lEfMMHIFV0GPUVEix8urkBjKys5ivW0USyY3I+5iFtRqRctG7jyc5kbnLacwjDNqOHL7diUIhwxRQi0v5lmReZdvVIiVt/fLPMvzyBGVFNTJSa3fswc2bFCCyiy6evVSIqtNmyoRBKy5w6hRQ8VpengU3tawofpTdfq0SmURF6eEmXkSxoABuX2//ValjHFxyZ2M0aiRnoxRBDqQXqO5Wzh/XqUL2L5dLderB2PGQHDw9YNpMzLgv/+F339Xy2PHqi9kM0V5tUCtM2ceLzCcl+XRjr/sovnx8I/EpajA+ua1mvOw18N0a94NwzByA/tXrVJeIPP3lacnDB2qvGxl+WIvbrgzr41mu4vyft2IGEtJUZMIDh1SKTdOnMiNxZoyBbp1U8/DwiAqSg0JOTuX/po0moogJUW9P80CbOzY3G2PP55/cgyoz06zZiqXmFmgZWaqz3DFlASoVHQgvUZzt5KSooYJfv5Z/djb2amg22HDSlcHMTYWZsxQ/3BtbWHSJPWPdunSkr1aI0YU6W3KanMPf9mc4cfDs/KJrVGeo+jeojtWRp78XYYB3t6qxcaqIOC1a5WAOXRIpa0YMgT69CndtZTGI7Z0afHer9IMRSYnK3F18KB6PHkyf04zw1CeLA8P5Q0wY75OjaYqUr164c+PmZdfVmIsb5Ld+Hj1nZGUlNsvNFRl42/QIDcPXN7WoMEd7x3TokujuVMRUUHY8+erKeKgvFqPPqqGBkuz/19/wVdfqZmGjRsrz0xmZmHxUcSwIZDvSzrDlMHaiLUsP7qcSylqSnvzWs0Z7Tmabi265RdbReHsrLKeP/ywmh6/apU63xdfwA8/qKG6QYPUF3dZKPhDUty1XG8oslYtVXrk1Kn8IsvaWgW7e3oqodW+vY6F0dxZFDVEmZysSknlHRa/elVNvImLU23//vz7LFuWm4pmzRr12KSJ+u5p0OCOCOTXw4sazZ1IeDh8+aV6BJVXa9KksqULiImBp59Ws5icneEf/1CJTJcuVXl/zOJjyhTl1Spm6C01M5XfTv7GimMruJp2FYAWtVowynNU6cRWcZhMquTQypXq3KD+JXfpolJTeHjc+L/moq4l71CkiLpmR0dYuFCJMcNQwqt2bTV06+AAvXur4ZXSeOE0mruBrCyVMDk6WrWYGPWYmgqzZuX2e+wxlf7EjLW1ijNzdlae7Z491fqMDHXMKjappLjhRS26NJo7iStXVDkQc+b3unWVUOjV68YEyCefqFIj1aqpf6AlxWoVICEtgV9P/Mov4b+QlKGGGO6pcw8jPUfSqWknFbN1qzh+HH75Rc0ANJnUulatYPBglR3/ZkRPRoYSXFZWKvbt4EH1Bf/FF5CerhJRmgXoww+rVBuTJt1eqSk0mqqEiMqwHx2tYlFjY1XWfTMTJqhZvqBiVN97TyVkbtRItYYNlXesYUNV27ISEsDqmC6N5k4mPR1WrFBfVGlp6ktm6FAV7F6wwGxxxMfDv/+thNoDDyhh0Lix2r8UsVpmYhNjWXlsJetOryPDpOrEta/fnoc8HsLf2f/Wii0zbduq9thjaojPPMw3Z46aqRkcrIJ5S5O3ymRScVgHDqh29KgSmL6+Kh7F3V39s46PV8OE//d/uUORgwZV/dQUGk1VxzDyJ3sF9dm5cEEJsGbNyMrKIjk5mZSoKJIzMkiJjiY5KooUk4kUk4nkrCxSsrNJmTCB5LQ0UlNTSd6yhZS6dZn0xhv4+PhUyqVp0aXR3M5kZ6s0A99/r0QAqOzxjz2mYiFKQ1aW8hJ9+SX8/bdy469apTxmpYjVMhN+OZwVR1ew7ew2BOVB79ikI8PbDcezoeetuuKSqVtXzch86CHYskWJr2PHVAD+r7+qjNshIWrGoNn7JaJyFR04oGYQHjqkhjry4uqaf2jWxiZ39lb79lUzNYVGU0XJzs4mJSWFlJQUkpKSSElJITk5OV8ruC7vckpKChnmwt+gPm+Gof58ZmerP04ZGer5unW5/cLDwcWFK1euVPxF56CHFzWa2xERFYT63Xe5eXPuuUeJrbwJDq/H/v1KbJljK2JjVSxUfPx1Y7UAsrKz2Bq1lV+O/0J4vIofs7GyoZdLL4a3G05zp+a36opvnMhIJb42bMgVU9WqqckEdnYqbiQxMf8+TZuqmYQ+Puq6y1os+GZSU2ghpqnimEwmi2AqKJbM64rabhZYKSkpN22DlZUVNWrUoHr16sU+FnoeF4dDixY0bNWK6uUcA6aHFzWaOwERNe36f//LDR6vX1/NSCxL3FZSErz5pko6WquW8uKMH6/K8cTHX9erFZ8az+8nf+f3k79zJU39a3S0cySkdQj3tbmPetXrUWVo2VINtbZooeKyNmxQQ4Z//aUmCdjZqT69eqnm41O62Z0lcaOpKUALMU25IyIWz5FZGOUVSHnXFSWc0gqWpLoBzILI3AouFxRQjo6O+Zbt7e3LJ1ShnNGiS6O5HRBRw1//+58SDKDE0gMPqGDxsiYbPHNGzbrLzFQCY84c9YPu4VHsj7sp28S+2H2sjVjLrphdZEs2AC2dWnJf2/sIcgnC3sb+VlztzSGipqM3bJgrQt99VyV2nDEDZs5UHr3//he2bVNDEPb2SsxeuKCmuXftqjyHt/JLvTSpKe6UmpGacscc02QWRnkFUlHLBYXVzYxyGYZhEUI1atSwPOZdl7cVXOfg4ICV1Q3OWr7N0aJLo6nKZGUpYbBqVW76h5o11cydwYNLPytvwwb1Y/300yrm68gRJbaaN1ez744dy/3xLvADfj7pPOtOrWPdqXVcTlUziKwMK7o068J9be7Ds6Fn5f7jFFECxZww9eBBNdPp669zk4926aKyY9vaqmVnZ5g6Ve17+HBumaHYWJUraNkyJdoCA1WBYLNAupXcTKkiuLVZ8zUVjoiQkZFRpFAqSTyZW3p6+k2dv1q1ajg6OlqaWRyZhVNBQZVXODk4ONyWXqaqgBZdGk1VJCEhdxaeOUC+rGIrOxv27lVB9j/8oJa3bFFJB81xSpcu5R9KzOFK6hW2Rm1l05lNHL983LLe2dGZ/q3708e1D3UcKqkWoMmk4tiOHFGC6cgRdb/yUrOmmmpuFl2PPFL0sQxDJS319ISnnlLH2rpVCbC4OFi9WjU7OzXs2KGDemzS5NZ4wcqjZqT2ilUYIkJ6enqJ4qiklmUuB3UDmGOa8gqnvAKppOfVq1fH+g5INHo7okWXRlNVMJnUEOKGDeqH3/yF3KKFSvYZHJybrbk4jh1TMxCvXlUz8eLi1I+yiDqOYRSb9iEhLYFd0bvYfGYzBy4csMxAtLe2p2vzrvRv3R+PBh6V8w/37Fl1X44dUx6/gv/ya9dWQ6NmAeXiUnZRZGWVu/+TT6rcX3v3wu7dqjj47t2qgZol6empgu29vJTn7FbdlxsVYqCHJ28AESE1NbVUwqko79PNCCdbW9sihVNRQqng+mrVqmlv022IFl0aTWUionJCbdqkmrlcj2Gooa0hQ9QPe1FfrsXNkDt7VtVb9PWF1q1Vss7vv1fnyvMDLW3bcta5Oruid/H32m84fvm4RWjZWNng39ifoJZBBDYNpJpNGZKLJiYqkeLgoHJnmfn5ZyUshw5VAgeUiDl/XhV5Nqe4OHxYlS9yd1e2g5pduXRp7rGaNMktqePhofKJ3cofIMPIFT9jxihv4759SoQdPKiWN29WDcDJSU1GcHdXj25ut7bUT2mF2F0aJ5Z3Nl1phuYKLt9MfJOdnV2JAqmkZncXFH7W5EeLLo2mosnMVMJizx7YtUvFEZlp2jR3Fl3jxsUf49gxlSfq6lWVDHXmTJU7KiNDBYCfOKGSgb76qhIQ/fvDwYNcbetCmEMcYbvWEXo+lAvJFyyHtLGywaeRD12bd6VLsy7UtK+Z/5x//60EUkhI7vDmggVqCHTcOLUelCdq+vTcZKJm5s9X3rv77lOiKy1NTQzYtg1eeglGj1b9Vq2C2bOhc+dc0eXqqrx2zZrBt98qkQOqBuPOnaokSL2cGZNZWSrX2K0UYXXrQt++qomoYPuwMCVQDh1Sw5t5PWGGoYShq6tqrVqpx7p1y88jZl53q+PEiiuJdAvFWVGz6QrOpCvquXk5tWBetTJSXHxTaTxOWjhpyoIWXRpNeZOdrWbOHTmivCWhofmHx5yclGgIDi5+xtyxY2rfatXg2jXl9QkPV8tpaSq56dSp6scyKQlatECGDOF80nnCL4dzNOkoYdXDOHv4bL7D1rKvRccGvnRq4IffPd2VR+vSJXjvQyXi3njj/7d35lF2VNe9/nbdqW93S92SWo2wZgFCIIMFYggYEiLbjH7ISWCBX2Lz5JCV5AE2MS+O5SGGRRwcQiDGAcdrgYlj++G8ZbARk0kCHiCP5xBhkZaQxKCpG1pTSz3dedjvj12le7vVijGo+0r0/taqVVW7zqk6Vaeqzq/2OXVOLfADD5jH6bTTrKoSTIAMDdnwQxHTp5t37vjja+e/c6d5pfbuhTvusL8n33zThFQ+byImYulSi39GXRc3QWAN26dOrQkusPZWW7ZYVV8kuh56CL73PRuS58orzbZ/v3URMWeOibl3goj9gDB3rvVAr2p/PW7eXJu2bKmNLffcc7W4ra2WhjlzLP6cOSZ8OjtrjfzfKYeznRgcLMTGsBUXLSK7bh2ZX/yC7Pz5ZGbNsr6aNm1ieNMmsp2dZNra/suOMA/X33RjNQD/ZYIq3oBhYpzJid9pjnO4GRiArVtNKG3caPPRnQEuXAhnnmnCYvFi88xEbNpkXpTOTus5/fXXrZDbts3E2rJlFi7y5syaRfWG69k1u43td9zI1k3Ps7m9wisv38rQurpOP3M5krkiS+edwanHncupx5zK8Wu3Etz+d3BhEyz5oIVrarJqtKYmExSRCDz/fBN09e3Kfuu3YOVKa7ge0d5uAqunBz75SRMe9b1Hv/lmLf1nnWVeoHPOqW2//HKb6unogAcfNIFWz4UXmqews7NmGxoyb1d9Oru7rSPZpUtHiq5Vq0x03HVXrTpw7VrLw1NPfWv9dYV5wKxZ8Bu/YbZSyY65datNW7bYNDxs+Rv1sVa/jxkzbB/R+HEdHTBzps07Ot7Z+JGHEGLldevInXACuenTyU6fTq5SIfvaa2REyPb3k7v/frI7d5KZOpXsnj1kb7mFTKFAdssWMuk02aEhMh//OOWWFvuYqFZNIEf36Ghba6tdg8FBE9CtrQeSlC6Xac3naZk9m9a5c60LguFhWvfvp+X442ldvPigLgjquyrw9k3O0YCLLsd5O6ia92TnThMR27aZ92bbtlq7rHo6O80DlExa9VpU8G/caNVl06aZCFm71taj6pLvfMcEW+iByOzspveU2ey8fAW9pct4Y/t6dkxVtm/5CsVtoaegBXi9G/I52k46jROPWcriGYt571MvcuJP1hO//iI4OawK7Bg2j1Z9Y+DWVus4tV7IgAmsvXtHeuJ27ID777e2Y9ddZ7Zy2TxN9XR0WOP2BQtsPn++eXreqndHxNJVV0gD5mkazbXXWtVrvedk2jRL/8yZNVuxaOcTi9kA1hGPP27VhF/4Qk10PfOMefouuqj2J2Q+b+3UZs6EFStq8YeGrD3bokU2RajavdHdbYK0p8eWd+40j9/evTatXz/2NWhpodreTn7KFPKtreSam8k1NZFPpcglEuTicXJBYFO1Sq5QIJfLkc1myeVyI5aj+YihVMDu0UgQrVljAmlgwO71ILC0gonKQsFsLS3EMxmaRWhpb6cln6d52jRaUikTSTNm0DI4SMtZZ9GyZAktd9xBc7VKa6VCy6230rJsGc07dhB84hOWJ7lczcMaedReemns6s7oHp2AKlDHORyMq+gSkYuBrwIx4D5V/cqo7RJuvxTIAv9DVV8czzQ5zi+lUrHCpr/fGkzv22f9PkVTb68VPlGBNfrLPZ22eRDA6adbI/Ht2636L5+3qsE1ayzuxz4Gr75KOSYMLH8vA/l+BpoH2T8rwd5Eib6136Bv6UL2vq+X3ZJl6PQyzNsIe8IuEpJ5eKELmlLMOPs3md82n/nt81n8/BoWd2eZ+fHbkIULLWzvdChPH+m9WboUvv51Ewpr19p59PdbIbtvn83377fzjrx1H/kI/P7v23IQWPuxejo64KqrrE1TVH12OBuVvxVG/+U5d64NkVRPIgH/9E92vvVCctkyE2H1Y1f29Vm4epHS12ei+NhjYcUKVJVKpULh05+muGMHxdtuo9DRQaFQoPDMMxTWraOwfDmF446jEATk02kK5TL5uXMpnH46+b4+Cn195Ht6yA8NUcjnyQ0NkR8eJp/Nki+XKVarb/0axOMmKGOxkct1k8RiNIf9LjW3ttI8cyYtU6aQbm2lecoUmy6+mOa9e2lesoSWk06yIVV6e2nZsYPmZctoOe00Eq+/jqxaVRvm6C//0tIQDX10zDHmVezqsryJqjB7e+G886yN41hVm2+zunNM26/SPu1Qgu2dxHdh6DCOoktEYsA9wIeAHuAFEVmjqi/XBbsEOCGczga+Hs4nlvF4aCbi4fQ02t9x5bK9tF96yarq5s2zF/3GjWafP9+qbfJ5+1PwlVfsC7mtDTIZE0Tbt9cK6qGhkUJq+nSzDwygO3uppJsopxKUUglKMSi9uomiKAWdTvGzf0FhSpriDf+TXG6Q/AsPklu8kFwhQ376TjJJGE5C5unPM1zNkzllK4Mn5sgGVZi9w9K0LYBi1qplWt6AosK5S6C7m+Tefo7NxJk15SSOTU7nPdVW5n+/n3npWbRedq15H3oLMOssmFEy4RSJrvZ286hs2mRCEMxT9elPH/RIjEkyaV6degG1cKE14q9v9C9y6H6x3iGqSrVapVKpHDSVy+UD8/opspVKpRHL0TyaRqxPmULpkUcoFou2XihQXLKE0vr1FG+6iWKxSHFoiGJ/P8X9+yleeSWFQsHaJUUDZn/uczVP3rZtdu1ffLHmnRkYsPZfbW0j//J84QXzip1xRq3adssWGBhA5s2jqa2NtAipwUHSu3eTbm2lafp00pUK6WKR9K5dpFVJd3SQDgLSsRjN2azZ2tpoTqXMViqRKpWQWMzEczZr9/727bZeX51ZKlla//Vf7T5IpSxMV5d9RCSTdk/19ZlYfewxE3of+pC1d5s713542LXLjrFhg23fvdvaI+7bZ9ds0ya7Zvm87b9YNFGfSNj6o4/adTvmGIv75JNmHxqye3DXLvNKitizHdmefdbS9qlP1YThvfdauOuuq4mzb3zDbH/4hzXbfffZQOmbN9vHxtsRfG/VdrQIw3dTGieYcRvwWkTOAW5W1YvC9dUAqnpbXZhvAD9R1QfD9c3ABaraW7+vcR3wetMmVl1xJvlMxtZbp4AAmWGohtemvd1eQH17oVK1wrC52Qrkvr0WrlKxF9GSJfZQb91qLw5VK6SCINwngNaqSurjN6Vgajvs7wMFyhV7GGcdY4Pyqtq+Y3GIxyCfgyj7EkmIBVAumU2AIGbL1Up4wYFUk4mUqVPQoWHbZ6VsYYMACvnatYkn7AVUrdTa9iQSlq5K2dZFzLOTL0C5hEajvXd22ldsqYRGXoR02tJXLNmxAkGnttl5RNVpQYBGVUiZDFQqaNK+DXRGh12Hcrm2z0QcrVbRSsX2JwLpJqqVChQKdnkCQZNJFEWLRVSgGo+hU6eggPb322UKoBoLUJSqKlXBpimtVGNCNZuhWq2iguV/ENi1zIXXLJGoiY83eixfJbyOsZgJIg0zpy0cQHl4GCoVBEjPP56mzveQLlRI/+dGWvuztCw5lZazz6M12UrzhldofvpZu8/SacI7aWS7KzjQIFnBep8/9VTb8Prr6DPPoAsXHqgO06EhePxxNJVCUylIpdB0Gm1qgnR65HIyaddLdcypGnphqtXqCFs0H738X02VSmXEcjRVfxVPTwOIxWIkk0mSySSpZJJUUxOpVIpUoUAynyfV2UnTzJlmGxykaeNGUrNmkTrvPJqammhKJGi6+25SlQrpv/5rUk1NpNNpmu68k1RXF6lbbkHOPNMO9uSTJhwuvrhWtdvXZwX5tGlwzz12fw0Pw5e+ZAL7D/7AtmWzJk6ef946ez3pJHtfvfmm2VtbzUtbKJj9P/7D3j3LltV65t+61Z7HBQtqQrK/30TStGm1HymiwdnB9hl90AwM2P4XLbJ36fCwtf8bHjZRNWeOLe/bZ9Wuzc1mi9qJFYvWDm7uXCtMq1V7j06bZh9KO3aYDUzYqtpxo59PWlstfDYbvsPy5qWNxGdLi9nmzLFzL4UfMU1N9r5qaamJuyj+jBl2ToODI+NH3uO2Nou7eLG9H/fssfTmcuZ1HhqqicxEwtp09vWZWI/F7Nk//3zbb9RdSXOztSVsb7d8evVVCxeP21/Qvb0WP5GwvFuxwo7zk5/YOyydrv2V++ijds2mTDEbWHV7qWThLrnEbE88YWlIJmvtL5980q5dEFgnzgBPPWV5CHDppZZX+/ZZtXyhYOlcudKu46OPWvx4HK64wmyPP25pFbF9JpMm6LPhR+mFF1peP/aY7a9UsqYbCxfa/ioVu7ZRn3pr1li8zk7zco+j8GrEgNezgfpfpXo42Is1VpjZQC8TRVcXTw9lKJRD9bJv8OAwe/YDMrKNSDEDA9mwwMNKuGIeXtpgtnKlFr44fPA+9w3B/uGD4w/trImmyLa1u1aAVxUYozO+erEUxaV0sC0T2obzdcdR0LqwtZ2+tX1mSzXxVyzY8nC3CVTgwMZ8pm7foRDM7rPtWmfPDdadK1As2/bcHihF5x5uy9WnW0EUsrnwnKJ0KgSlEYclplAo2sNcnz1BGClKugD7w2tbrtohAEkrQTKOaIygP09QBYkrsQIEBEh3QKxSIaZCkE4SC2IEpRixQpF4ECeeihFTIVaeSjy00TQLCibGyqW59A/20t9bgZ+Hw/9EfwiWSib2gsDSHwT2Qg6C2hStRwVjFK+z0+Y//nHtnKNe2yMKBZtG9/J+hCAixONxYrEYsVhszOX6eSKROLAcTYlEYsQ8Ho+TTCZJJBIjpsiWTCYPhE+lUgeEVbQ9sh2WXr7r24dF/PmfW+Fe/+fm8uXW9qm+nVpTk4muZNIKzshTdvnl5vG59NJa+JkzLe9XrLA/Z8E8cs3N5i3+0z+t7ff6663wv/12K3yLRfMAPfssXH21/RRSKpm4euABK8w++lG7TwsFG/tS1fo8q1TM/vDDdrxzzzVhUqmYl/C550zInX222YaG4Ac/sHN7//tNsOzaZeIinzfBeMIJJswGBky4dXZaGvr6rBB/+WUr4JNJO3b0cahq20slmyeTJphE7Byj9n7d3bUPrcgLVwrfKUFgBXsQWIEefWxHAkTEtlerJkCi5zOTsbREtnjcRG+xWLvG3d0mUopFO36xaJ7IfN6uayJh8y1bzMO4fbutRyLwtdfMI1go2P7zefP0ZzI10ZPPm2hVrZ1bLlcb4zWXq5VlGzbYPJu1vKlUatW+UdtTVfsRCGrnWCpZ3mYydo718detq4UtlWwfL4atjIaHbb1SMVs8brboOq9bVxPssZjtt6vL7oXop59s1tKdz5stEt3RKA4TzHh6uq4ELlLVa8P1jwFnqeoNdWEeB25T1efC9aeBz6jq2vp9jben68tXnU9pcACQsNdu7MEthyX0okUwpRU2bTYPT7li7Tg6Z5pNq+a96eiw9gmZjLnSh0NRNWe2ead6ekKvEab4p08buc+ZM81T8sorNa/WjOmw6Dh7AKrmvaF9mr0cdu2ym0/E1H4iYQ9o5PmYOrX2dWcX2F6y5bKF377d4pfLFjZy90fxo2q1wUFE1R7Gjg57CPbtQ4IAJIAF82ttgJrSFu6M5bDhZdi9y8IEAgsXIdks9LwBiQQSj9mX8/5+ZPNmi5dK2cs2mUI2bYQ33kRaWswTt3Il8n//DXntNSTyzC1fjmRzSFeXtVFJJJELLkAyGfjZswQi0NJK8DtXABB86x+RahVpa0dWrTKBdM89BMUSsUSS4MP/DUEI1jxKUCoTi8UJfucKAgJiDz18wMbq1VYwgPW1tW2bncvixWbr6rLqiNmz7V4JOwM9UJUTiaV6kdTSUquOKpcRsDwZ46+s+j+1ouWx/t4aK9yh4ojIgal+ffS2ensQBAfZI1v9tiAIDrIHQUAsFjuwLZpG2+Lx+Ai7/6V2BKNa+ykjupdVawVlvWgcGLB3SVtbzXuWyZhXqLnZPEBg++vpsWdk7txa/O5uKzznzas1Ddizx4RW9McnmGiIOustlWrVS9G7Lwjs/XrKKXbcqKqzp8dss2ZZ/LY2C9/VZV6pTMbOrbnZBMXSpXa8wcFaNzFLl1q87dtr3r2TT7Z3x7p1Vs6o1oTjY4/Bl79s1y6Vgq99zdqPrl5t74HmZhucPps1IVyt2rv7rrss/iOPwJ131uLfdZel49Zb7Tybm+Fv/sau8Z/9mR27tdW6cVGFP/5jO8f2dhPYADfcYOVOfbibbrI0RMcA29/goB377rvNtnp1TcR+5SvmcdqyxeLncpae6DirV5vATiYtjWAfFYODlvbbb7d9f/GLtWv/hS+Yd/GLX7R7oVy267JwoXl3i0WbrrnG8vLmm+0eaGmx9pgN8HR59SK8++usPY3vmvYAjuO8y5kM78wjLT3jQCNEVxx4BfgA8AbwAvDfVXVDXZjLgOuxvxfPBu5W1bNG72vcRZfjOI7jOM5hYsLbdKlqWUSuB57Cuoz4pqpuEJE/Crf/PfAEJrhew7qMWDVe6XEcx3Ecx2kk49pPl6o+gQmretvf1y0rcN14psFxHMdxHOdIIGh0AhzHcRzHcSYDLrocx3Ecx3EmABddjuM4juM4E4CLLsdxHMdxnAlg3LqMOJyIyB5ge6PT4TiO4ziO8xaYr6ozRxuPCtHlOI7jOI5ztOPVi47jOI7jOBOAiy7HcRzHcZwJwEUXICIXi8hmEXlNRD7b6PRMVkRkroj8WEQ2isgGEflUaJ8uIv8iIq+G82mNTutkRERiIvILEXksXPd8OQIQkXYR+b6IbAqfnXM8bxqPiPxJ+B5bLyIPikiT50tjEJFvishuEVlfZztkXojI6lAPbBaRiw5nWia96BKRGHAPcAlwMvBRETm5samatJSBm1T1JODXgOvCvPgs8LSqngA8Ha47E8+ngI11654vRwZfBX6kqkuA92F55HnTQERkNvBJ4AxVfS82FN7VeL40in8ALh5lGzMvwjLnamBpGOfeUCccFia96ALOAl5T1S2qWgS+B6xscJomJaraq6ovhstDWOExG8uPb4XBvgV8pCEJnMSIyBzgMuC+OrPnS4MRkanArwP3A6hqUVX78bw5EogDaRGJA83Am3i+NARV/Rmwb5T5UHmxEvieqhZUdSs2NvRZhystLrqsUO+uW+8JbU4DEZEFwGnAz4FjVLUXTJgBnQ1M2mTlb4HPANU6m+dL41kE7AEeCKt+7xORFjxvGoqqvgHcAewAeoEBVf1nPF+OJA6VF+OqCVx0gYxh8340GoiItAIPATeq6mCj0zPZEZEPA7tVdW2j0+IcRBw4Hfi6qp4GZPAqq4YTtg9aCSwE3gO0iMjvNTZVzltkXDWBiy5TsXPr1udgbmCnAYhIAhNc31XVh0PzLhE5Ntx+LLC7UembpLwfuFxEtmHV7ytE5Dt4vhwJ9AA9qvrzcP37mAjzvGksHwS2quoeVS0BDwPn4vlyJHGovBhXTeCiC14AThCRhSKSxBrQrWlwmiYlIiJY25SNqnpn3aY1wDXh8jXAIxOdtsmMqq5W1TmqugB7Pp5R1d/D86XhqOpOoFtETgxNHwBexvOm0ewAfk1EmsP32gewNqqeL0cOh8qLNcDVIpISkYXACcC/H66Deo/0gIhcirVZiQHfVNUvNzZFkxMROQ94Fuii1nboc1i7rv8DzMNeZleq6uhGkc4EICIXAP9LVT8sIjPwfGk4IrIM+8EhCWwBVmEf1J43DUREbgGuwv7K/gVwLdCK58uEIyIPAhcAHcAu4EvADzlEXojI54FPYHl3o6o+edjS4qLLcRzHcRxn/PHqRcdxHMdxnAnARZfjOI7jOM4E4KLLcRzHcRxnAnDR5TiO4ziOMwG46HIcx3Ecx5kAXHQ5jtNwRGSGiKwLp50i8ka4PCwi947TMW8UkY+PYV8gIusP43GSIvKzcAw+x3EmMf4ScByn4ahqH7AMQERuBoZV9Y7xOl4ogD6B9d4+rqhqUUSexvps+u54H89xnCMX93Q5jnPEIiIXiMhj4fLNIvItEflnEdkmIr8tIreLSJeI/CgcQgoRWS4iPxWRtSLyVDTUxyhWAC+qarkuzksi8jxwXd3xF4jIsyLyYjidG9q/LSIr68J9V0QuF5GlIvLvoZfuP0XkhDDID4HfHY9r5DjO0YOLLsdxjiaOAy7DBhP+DvBjVT0FyAGXhcLra8AVqroc+CYw1ggT7wfqB/B+APikqp4zKtxu4EOqejrmqbo7tN+H9fyOiLRh4+o9AfwR8FVVXQacgY3jBrAeOPNtnrPjOO8SvHrRcZyjiSdVtSQiXdiwXT8K7V3AAuBE4L3Av9iQd8SA3jH2cyw2Fl4kmtpV9afhtm8Dl4TLCeDvwqF2KsBiAFX9qYjcIyKdwG8DD6lqOfSUfV5E5gAPq+qrYfiKiBRFZIqqDh2ma+E4zlGGiy7HcY4mCgCqWhWRktbGMati7zMBNozhsRpNDmgKlwU41Hhof4KN1fY+rGYgX7ft21iV4dVY+zBU9X+LyM8xb9xTInKtqj4Thk+Niu84ziTDqxcdx3k3sRmYKSLnAIhIQkSWjhFuI3A8gKr2AwPhgOswsu1VG9CrqlXgY5jnLOIfgBvDfWwIj7cI2KKqdwNrgFND+wxgj6qW3vkpOo5ztOKiy3Gcdw2qWgSuAP5KRF4C1mHtrUbzJPDrdeurgHvC6sFcnf1e4BoR+X9Y1WKm7li7MPH2QF34q4D1IrIOWAL8Y2j/TazNl+M4kxipeecdx3EmDyLyA+AzUburtxG/GWtLdrqqDvySsA8Dq1V189s5luM47w7c0+U4zmTls1iD+l8ZEfkgsAn42lsQXEnghy64HMdxT5fjOI7jOM4E4J4ux3Ecx3GcCcBFl+M4juM4zgTgostxHMdxHGcCcNHlOI7jOI4zAbjochzHcRzHmQBcdDmO4ziO40wA/x9YAJOTE9cJUwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.4452, 'epsilon': 0.18810000000000002, 'assignment': '0'}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACiWklEQVR4nOydd1hUV/rHP5eOotgVK6gIShUUu4gNjSVqNOoaoybGxPTkt0l0k2ja7mbTzJqeTaIprho1Zo0xiTH2FitiLwiigIIiSJX2/v44zjB0UBDU83me88zcM+fe+947w8yX97znfQ0RQaPRaDQajUZTtVhVtwEajUaj0Wg0dwJadGk0Go1Go9HcBLTo0mg0Go1Go7kJaNGl0Wg0Go1GcxPQokuj0Wg0Go3mJqBFl0aj0Wg0Gs1NwKa6DSgPjRo1EldX1+o2Q6PRaDQajaZM9u7de1FEGhfuvyVEl6urK3v27KluMzQajUaj0WjKxDCMM8X16+lFjUaj0Wg0mpuAFl0ajUaj0Wg0NwEtujQajUaj0WhuAlp0aTQajUaj0dwEqkx0GYbxlWEY8YZhHCrhdcMwjPmGYZwyDCPcMIyAqrJFo9FoNBqNprqpSk/XQmBIKa8PBdyvtRnAJ1Voi0aj0Wg0Gk21UmUpI0Rks2EYrqUMuRv4RkQE2GkYRj3DMFxEJK6qbCqJQ4cgL+9mnzUfwyhf3/XsX9Jrlv2Fx5peL7xd+DVTs7Iqum3qMz0vqVXkOjUajUajuZWpzjxdLYCzFtvnrvXddNH1xhuQlnazz6oBJbxsbNSjtbV6bno0NVvbos3eHuzs1KPpuaMjODiox1q18h+dnFSrXVuLPI1Go9FUH9Upuor7+ZObbgXQqRNcvVq+sVLJFl7P8Sz3KW7/0voK71vctuXYws9N2ybPoKkvL6/gowjk5ub3FW6Wr2VlVfweXA+GoYRXnTpQr55qzs7qsX59aNw4v9WufXNs0mg0Gs2dQ3WKrnNAK4vtlkBsdRgyZ051nFVjEmYmEZaTk/9oep6drVpOjnrMysp/vHq1aMvIgPR09Wh6npqqmuXzuDL8qbVqQZMm0KIFtGypmum5o+PNuT8ajUajub2oTtG1CnjcMIwlQDcguTriuTTVh2Go6cObRW6uEl5XrkBSUsF26RJcvAgJCaqlp0NUlGqFadEC2rcHd3f12K6dmtbUaDQajaY0quwnzzCMxUA/oJFhGOeAuYAtgIh8CqwB7gJOAenAtKqyRaMBFStWp45qLVqUPE5EecPOn4dz51SLicl/NLVNm9R4w1ACzN8f/PygY0cVd6bRaDQajSWGVHaQUhXQpUsX0QWvNTWBnBw4cwZOnoRTp9TjmTPKi2bCzg68vaFbN+jVS8WNaTQajebOwTCMvSLSpUi/Fl0azY2RmQmHD0NYmGqWU5JWVtC5M/TpAz16qFgxjUaj0dzeaNGl0dwkLl+GfftgyxbYvz9/paetLfTuDaNGQdu21WqiRqPRaKoQLbo0mmrgyhXYtg02b1beMNOfm6+vEl9duujcYRqNRnO7oUWXRlPNXLgAP/0Ev/2mpiQBWrWCsWMhJESLL41Go7ld0KJLo6khpKXB2rWwapVKUwEq9cRDD6lEvRqNRqO5tdGiS6OpYeTkqLQT336r8oSBCrifNk1lxddoNBrNrUlJosuqOozRaDQqMeyAAfDppzBhgko1sWULPPIILFmiRJlGo9Fobh+06NJoqhkHB5g0CT75RHm6srJg0SKYPRvi46vbOo1Go9FUFlp0aTQ1hCZN4Pnn4e9/h0aN4NgxeOIJ5f3SaDQaza2PFl0aTQ3D1xfmz1fJVNPT4a231LZpxaNGo9Fobk206NJoaiB16qjpxUcfVbFev/8Ozzyj6kFqNBqN5tZEiy6NpoZiGDB0KLz3HrRurQpuP/ccnD5d3ZZpNBqN5nrQokujqeG0aQNvvw1+fpCUBLNmQXh4dVul0Wg0moqiRZdGcwtQqxbMnatWN2ZkqOdbt1a3VRqNRqOpCFp0aTS3CLa2anpx5EiVw+utt1RZIY1Go9HcGmjRpdHcQhgGTJ8OU6ao4tmff67KCWk0Go2m5qNFl0Zzi2EYqkj2E0+o7f/8BzZvrl6bNBqNRlM2WnRpNLcogwfD1Knq+bx5sH9/tZqj0Wg0mjLQokujuYUZMwZGjVIxXv/4B5w8Wd0WaTQajaYktOjSaG5hDAMeeABCQlTG+ldegZiY6rZKo9FoNMWhRZdGc4tjGPDkkxAYCFeuwJw5kJhY3VZpNBqNpjBadGk0twE2NippqocHxMerdBK5udVtlUaj0Wgs0aJLo7lNcHCAl16CBg3g8GH49tvqtkij0Wg0lmjRpdHcRtSrpxKoWlnBihXw55/VbZFGo9FoTGjRpdHcZnh7w/33q+fz5sGFC9Vrj0aj0WgUWnRpNLchY8ZAt26Qlgb//CdkZVW3RRqNRqPRokujuQ0xDHj6aWjSBCIi4IsvqtsijUaj0WjRpdHcpjg5wezZamXjL7/Ali3VbZFGo9Hc2WjRpdHcxrRvDw89pJ5/8gkkJVWrORqNRnNHo0WXRnObM3Qo+PtDSgp8+ml1W6PRaDR3Llp0aTS3OYYBTzyh8nht26aaRqPRaG4+VSq6DMMYYhjGccMwThmGMauY150Nw/jJMIwDhmEcNgxjWlXao9HcqTRpAtOu/XV98okqF6TRaDSam4tNVR3YMAxr4CNgEHAO2G0YxioROWIx7DHgiIiMMAyjMXDcMIxFIlLmAvfc3FwSExPJzs6uEvs1mtsNPz94+GG4fFklTfXyqm6Lbj62trY0aNAAa2vr6jZFo9HcgVSZ6AKCgFMichrAMIwlwN2ApegSoI5hGAbgBCQCOeU5eGJiIg4ODjRq1Ai1u0ajKYu6dWHNGkhIgLw8aNmyui26eYgIqampJCYm0rhx4+o2R6PR3IFU5fRiC+Csxfa5a32WfAh0BGKBg8BTIpJXnoNnZ2fj5OSkBZdGUwHq1FEeL4Ddu++spKmGYeDk5KS94xqNptqoStFVnBqSQtuhQBjQHPAHPjQMo265T6AFl0ZTYTw8oHFjyMiA/fur25qbi/7O0Gg01UlViq5zQCuL7ZYoj5Yl04AfRHEKiAQ8q9CmSuXvf/87Xl5e+Pr64u/vz5/VVF04LCyMNWvWmLdXrVrFm2++CcDUqVNZvnx5kX02btzI8OHDb5qNmpqDYagSQVZWcPo0XLpU3RZpNBrNnUFViq7dgLthGG6GYdgBE4BVhcZEAwMADMNoCngAp6vQpkpjx44drF69mn379hEeHs66deto1apV2TtWAYVF18iRI5k1q8hiUY3GTN26yuMlAnv3qkeNRqPRVC1VJrpEJAd4HPgNOAp8LyKHDcN4xDCMR64Nex3oaRjGQeAP4AURuVhVNlUmcXFxNGrUCHt7ewAaNWpE8+bNcXV15eJFdQl79uyhX79+AGzatAl/f3/8/f3p3LkzKSkpALz11lv4+Pjg5+dnFkoREREMGTKEwMBA+vTpw7FjxwDltXrkkUfo06cPHTp0YPXq1WRlZTFnzhyWLl2Kv78/S5cuZeHChTz++ONmW9etW1dgn8KkpaXxwAMP0LVrVzp37sz//ve/KrtvmpqDtzc4OsLFixAZWd3WaDQaze1PVa5eRETWAGsK9X1q8TwWGFyVNlQVgwcP5rXXXqNDhw4MHDiQ8ePHExwcXOL4d955h48++ohevXqRmpqKg4MDv/zyCz/++CN//vkntWrVIjExEYAZM2bw6aef4u7uzp9//smjjz7K+vXrAYiKimLTpk1EREQQEhLCqVOneO2119izZw8ffvghAAsXLixw7uL2seTvf/87/fv356uvviIpKYmgoCAGDhxI7dq1K/GOaWoatrYqU/2OHRAWBq1aqT6NRqPRVA1VKrpuFiNGVM1xf/qp5NecnJzYu3cvW7ZsYcOGDYwfP94cR1UcvXr14tlnn2XSpEmMGTOGli1bsm7dOqZNm0atWrUAaNCgAampqWzfvp1x48aZ97169ar5+b333ouVlRXu7u60bdvW7AUrjbL2Wbt2LatWreKdd94BIDMzk+joaDp27FjmsTW3Nq6ucPKk8nYdOgSdO1e3RRqNRnP7UqboMgyjF/AK0ObaeAMQEWlbtabVfKytrenXrx/9+vXDx8eHr7/+GhsbG/LyVNaLzMxM89hZs2YxbNgw1qxZQ/fu3Vm3bh0iUmQ1VV5eHvXq1SMsLKzYcxYeX57VWGXtIyKsWLECDw+PMo+lub0wDOjSBX77DY4fh3btVLyXRqPRaCqf8ni6vgSeAfYCuVVrzvVRmkeqqjh+/LjZewQqmL1NmzZkZGSwd+9ehg4dyooVK8zjIyIi8PHxwcfHhx07dnDs2DHzFOVf/vIX8/RigwYNcHNzY9myZYwbNw4RITw8HL9ryZWWLVvGlClTiIyM5PTp03h4eHDq1ClzjFhxFLfPzp07za+HhobywQcf8MEHH2AYBvv376ezdnncMTRooMTWqVMqqL5fPyXGNBqNRlO5lCeQPllEfhGReBG5ZGpVblkNJzU1lSlTptCpUyd8fX05cuQIr7zyCnPnzuWpp56iT58+BUqNvP/++3h7e+Pn54ejoyNDhw5lyJAhjBw5ki5duuDv72+e3lu0aBFffvklfn5+eHl5FQhs9/DwIDg4mKFDh/Lpp5/i4OBASEgIR44cMQfSF6a4fSx5+eWXyc7OxtfXF29vb15++eUqumuamoqvL9jZQVwcxMRUtzUajUZze2JIGWvFDcN4E7AGfgDMwUUisq9qTcunS5cusmfPngJ9sbGxNG/e/GaZUCOYOnUqw4cPZ+zYsdVtiuY25Phx5emqUweGDVN5vG5H7sTvDo1Gc3MxDGOviHQp3F+e6cVu1x4tdxagf2UYptFoagbu7iqo/soVNdXYoUN1W6TRaDS3F2WKLhEJuRmGaMqmcCoIjaYysbJSdRm3bFErGd3cdAoJjUajqUzKnEAwDMPZMIz3DMPYc629axiG880wTqPR3FxatoRGjSAzE8qRjUSj0Wg0FaA8URtfASnAvdfaFWBBVRql0WiqB8PIz9V19Kgqiq3RaDSayqE8oqudiMwVkdPX2qvAHZ+jS6O5XWncWHm8cnLUNKNGo9FoKofyiK4MwzB6mzauJUvV//9qNLcxfn7K6xURAaWkgNNoNBpNBSiP6JoJfGQYRpRhGGeAD4FHytjnjsDJyanMMVu2bMHLywt/f38yKjhX8+OPP3LkyJFKsysjI4Pg4GByc/Nz3M6bNw8HBweSk5MrfJ7KICwsjDVr1pQ98AZZuHAhsbGx5u3p06df172NiorC29u7zHHLli2jY8eOhIRUfB1KYVsry67ixrzyyivm/HCWODtD27aQlwcHDhR8rV+/fhRO4VKY999/n/T09PIZX4jr/UxY2jVw4EAuX758XefXaDSaqqJM0SUiYSLiB/gCPiLSWUQOlLWfRrFo0SL++te/EhYWhqOjY4X2vV7RVRJfffUVY8aMKZC0dfHixXTt2pWVK1dW2nkqQnWJri+++IJOnTpV2fm+/PJLPv74YzZs2FDhfa9HdFUFPj5gbQ3R0ao2Y0WoDtFlyeTJk/n4449v6BgajUZT2ZQougzDuO/a47OGYTwLTAemW2xrrrFx40b69evH2LFj8fT0ZNKkSYgIX3zxBd9//z2vvfYakyZNAuDtt9+ma9eu+Pr6MnfuXPMxvvnmG3x9ffHz82Py5Mls376dVatW8dxzz+Hv709ERAQREREMGTKEwMBA+vTpYy5cHRkZSY8ePejatWup2eQXLVrE3Xffbd6OiIggNTWVN954g8WLF5v7Dx8+TFBQEP7+/vj6+nLy5Elefvll/v3vf5vHvPjii8yfP5+NGzcSHBzMvffeS4cOHZg1axaLFi0iKCgIHx8fIiIiAJXY9ZFHHqFPnz506NCB1atXk5WVxZw5c1i6dKk5m35iYiKjRo3C19eX7t27Ex4eDiiPzJQpUxg8eDCurq788MMPPP/88/j4+DBkyBCys7MBeO211+jatSve3t7MmDEDEWH58uXs2bOHSZMmmT2Oll6RX3/9lYCAAPz8/BgwYEC53/eFCxcyZswYhgwZgru7O88//7zZhq1bt/LII4/w3HPPkZuby3PPPWd+3z/77DPzMd566y18fHzw8/Nj1qxZxdq6d+9egoODCQwMJDQ0lLi4OAD27t2Ln58fPXr04KOPPiq33SXRr18/XnjhBYKCgujQoQN7927B0xOysjIYN24Cvr6+jB8/voDHdu3atfTo0YOAgADGjRtHamoq8+fPJzY2lpCQELOnr7hxALt376Znz574+fkRFBREcnJykc9EWloaDzzwAF27dqVz587mCg0ZGRlMmFC8XSNHjizwmdZoNJoagYgU24CHrz3OLabNKWm/qmiBgYFSmJiYmCJ9N5vatWuLiMiGDRukbt26cvbsWcnNzZXu3bvLli1bRERkypQpsmzZMhER+e233+Shhx6SvLw8yc3NlWHDhsmmTZvk0KFD0qFDB0lISBARkUuXLhXZV0Skf//+cuLECRER2blzp4SEhIiIyIgRI+Trr78WEZEPP/zQbJclV69elaZNmxboe/311+W1116T3NxcadOmjVy4cEFERB5//HH57rvvzPulp6dLZGSkdO7cWUREcnNzpW3btnLx4kXZsGGDODs7S2xsrGRmZkrz5s1lzpw5IiLy/vvvy1NPPWW+ltDQUMnNzZUTJ05IixYtJCMjQxYsWCCPPfaY2abHH39cXnnlFRER+eOPP8TPz09ERObOnSu9evWSrKwsCQsLE0dHR1mzZo2IiIwaNUpWrlxZ4N6JiNx3332yatUqEREJDg6W3bt3m18zbcfHx0vLli3l9OnTRfYvjsjISPHy8hIRkQULFoibm5skJSVJRkaGtG7dWqKjo4uc77PPPpPXX39dREQyMzMlMDBQTp8+LWvWrJEePXpIWlpagXNb7puVlSU9evSQ+Ph4ERFZsmSJTJs2TUREfHx8ZOPGjSIi8te//tVsV3lsNzF37lx5++23zed99tlnRUTk559/lgEDBsjVqyJTprwrwcHTJC5O5MCBA2JtbS27d++WhIQE6dOnj6SmpoqIyJtvvimvvvqqiIi0adPG/HkuadzVq1fFzc1Ndu3aJSIiycnJkp2dXeQzMXv2bPn2229FROTy5cvi7u4uqamp8u6775rvhaVdJtq3by8XL14sch9qwneHRqO5vQH2SDF6psTkqCJi+nd8nYhss3ztWjB9zWHEiKo5bgUqaQcFBdGyZUsA/P39iYqKonfv3gXGrF27lrVr15qLSaempnLy5EkOHDjA2LFjadSoEQANGjQocvzU1FS2b9/OuHHjzH1Xr6qqTNu2bTMX1548eTIvvPBCkf0vXrxIvXr1CvQtWbKElStXYmVlxZgxY1i2bBmPPfYYPXr04O9//zvnzp1jzJgxuLu74+rqSsOGDdm/fz8XLlygc+fONGzYEICuXbvi4uICQLt27Rg8eDAAPj4+BabX7r33XnOR8LZt25o9dZZs3brVfC39+/fn0qVL5nizoUOHYmtri4+PD7m5uQwZMsR8nqioKAA2bNjAW2+9RXp6OomJiXh5eTGilM/Hzp076du3L25ubiXe+9IYMGAAzs4qbV2nTp04c+YMrVq1KjBm7dq1hIeHs3z5cgCSk5M5efIk69atY9q0adSqVavEcx8/fpxDhw4xaNAgAHJzc3FxcSE5OZmkpCSCg4MB9b7/8ssvpdpqlFDF2rJ/zJgxAAQGBhIVFYWdHZw9u5levZ7kwAEYPNgXX19fQN27I0eO0KuX+jrIysqiR48eRY5f0rjjx4/j4uJC165dAahbt26x9q1du5ZVq1aZY88yMzOJjo5m8+bNPPnkkwD4+ubbZaJJkybExsaaP6cajUZT3ZSnDNAHQEA5+u5o7O3tzc+tra3JyckpMkZEmD17Ng8//HCB/vnz55f4g2giLy+PevXqERYWVuzrZe3v6OhIZmameTs8PJyTJ0+af8yzsrJo27Ytjz32GH/5y1/o1q0bP//8M6GhoXzxxRf079+f6dOns3DhQs6fP88DDzxQ7LVbWVmZt62srArch8I2FmezFFML1DTO8ri2trbmftN5MjMzefTRR9mzZw+tWrXilVdeKXDNxSEiZd670ijv+/7BBx8QGhpaoP/XX38t89wigpeXFzt27CjQn5SUVGG7GzZsWCS4PDEx0Sw4If96LK/FyQns7AwuXSpYDFtEGDRoUJnTeCWNCw8PL9c1iAgrVqzAw8OjyGul7Z+ZmVnhOEqNRqOpSkqL6ephGMb/AY1NcVzX2iuoAtg1h59+qppWyYSGhvLVV1+Z41liYmKIj49nwIABfP/991y6dAlQP4QAderUIeXaev26devi5ubGsmXLAPVDdODasrJevXqxZMkSQMVtFUf9+vXJzc01i5DFixfzyiuvEBUVRVRUFLGxscTExHDmzBlOnz5N27ZtefLJJxk5cqQ5rmr06NH8+uuv7N69u4iAKA/Lli0jLy+PiIgITp8+jYeHR4FrBOjbt6/5GjZu3EijRo1K9IAUxnRtjRo1IjU11exZAoqcx0SPHj3YtGkTkZGRQP6937VrF/fff3+Fr7E4QkND+eSTT8xxZydOnCAtLY3Bgwfz1VdfmQPOi3vfPTw8SEhIMIuu7OxsDh8+TL169XB2dmbr1q1Awfc9Jiam2Ng0JycnXFxc+OOPP8zn+/XXX4t4ZAsTHNyXQ4fU8VetOmT+PHTv3p1t27Zx6tQpANLT0zlx4kSRayhpnKenJ7GxsezevRuAlJQUcnJyirxXoaGhfPDBB2ZBvn//fqDgZ+XQoXy7QP19nD9/HldX11KvTaPRaG4mpa1etAOcUN6wOhbtCjC26k27/Rg8eDB/+ctf6NGjBz4+PowdO5aUlBS8vLx48cUXCQ4Oxs/Pj2efVesUJkyYwNtvv03nzp2JiIhg0aJFfPnll/j5+eHl5WUOKP73v//NRx99RNeuXUtN/TB48GDzj/SSJUsYPXp0gddHjx7NkiVLWLp0Kd7e3vj7+3Ps2DGz+LCzsyMkJIR77723wArI8uLh4UFwcDBDhw7l008/xcHBgZCQEI4cOWIOmn7llVfYs2cPvr6+zJo1i6+//rrcx69Xrx4PPfQQPj4+jBo1yjxtBfmB/IVTdzRu3JjPP/+cMWPG4Ofnx/jx4wGIjo6uNC/J9OnT6dSpEwEBAXh7e/Pwww+Tk5PDkCFDGDlyJF26dMHf3988fWZpa25uLsuXL+eFF17Az88Pf39/tm/fDsCCBQvM08GWtsbFxWFjU7wT+5tvvuGNN97A39+f/v37M3fuXNq1a1eq/TNnzsTKKpW//c2XxYvfws8vCFD3buHChUycONG88ME0ZTxjxgyGDh1KSEhIiePs7OxYunQpTzzxBH5+fgwaNIjMzMwin4mXX36Z7OxsfH198fb2Ni8WmTlzJqmpqfj6+vLWW28RFBRktnnv3r107969xPug0Wg01YFR3HROgQGG0UZEztwke4qlS5cuUjgvUGxsLM2bN68mi25N9u/fz3vvvce33357Xfvn5eUREBDAsmXLcHd3r9C+U6dOZfjw4Ywde2vo9eeee47JkycXiRO6Ffjwww9p3bo1I0eOrNTjnjoFu3ZB3bpw112qQHZN5amnnmLkyJHFevz0d4dGo6lqDMPYKyJdCveX59/AdMMw3ga8AAdTp4j0r0T7NDeBzp07ExISQm5uboU9VUeOHGH48OGMHj26woLrVuTtt9+ubhOum8cff7xKjtu2rarHeOUKREWp7ZqKt7d3hdJ/aDQazc2gPJ6utcBS4K+oTPRTgAQRKbpErorQni6NpmYQGQk7dkDt2mrRcE32dpWE/u7QaDRVTUmervJ8ZTYUkS+BbBHZJCIPAN0r3UKNRlPjcXVVJYLS0lRdRo1Go9GUn/KIruxrj3GGYQwzDKMz0LIKbdJoNDUUwwBTmNuhQ2BRxlOj0Wg0ZVAe0fWGYRjOwP+hphi/AJ6pUqs0Gk2NpWVLaNAAMjLg5Mnqtkaj0WhuHcpT8Hq1iCSLyCERCRGRQBFZdTOM02g0NQ/DUMWwAY4cgWLywWo0Go2mGEpLjvqBYRjzS2o308iairW1Nf7+/nh5eeHn58d7771HXl4eAHv27DGXKKnpTJ06tUAiUUuefvppNm/ebN5OSEjA1ta2QNHmm80//vGPKj9HWFgYa9asMW+vWrWKN99887qOZVlcuyQSEhLo1q0bnTt3ZsuWLTdka2XaNXXqVNzc3PDz86NDhw7cf//9xMTE0Lw5NGoEmZlw/HjR/d5//31z0teKUhnXM3DgwCLZ9zUajaa6Kc3TtQfYW0q743F0dCQsLIzDhw/z+++/s2bNGl599VUAunTpwvz5t7Y2TUxMNNcmNLFs2TK6d+9eZumXqqQ6RNfIkSOZNWtWlZ3vjz/+wNPTk/3799OnT58K7Xu9IqW8vP322xw4cIDjx4+b045kZ2eZY7uOHoWsrIL7VIfosmTy5Ml8/PHHN3QMjUajqWxKFF0i8nVp7WYaeSvQpEkTPv/8cz788ENEhI0bNzJ8+HBAlZTp2bMnnTt3pmfPnhy/5hpIT0/n3nvvxdfXl/Hjx9OtWzfzf+pOTk68+OKL+Pn50b17dy5cuADAmTNnGDBgAL6+vgwYMIDo6GhAiSFvb2/8/PzMIik3N5fnnnuOrl274uvra/ZOiQiPP/44nTp1YtiwYcTHxxd7TcuXLzcXlTaxePFi3n33Xc6dO0fMtUJ8ubm5TJ06FW9vb3x8fJg3bx4REREEBOSX5zx58iSBgYEAuLq68re//Y0ePXrQpUsX9u3bR2hoKO3atePTTz8FVAmgvn37Mnr0aDp16sQjjzxCXl4es2bNIiMjA39/fyZNmgTAe++9h7e3N97e3rz//vsAREVF4enpyfTp0/H29mbSpEmsW7eOXr164e7uzq5du0p8b7KyspgzZw5Lly41Z0VfuHChOf/VhQsXGD16NH5+fvj5+ZkzxJeH4t7XsLAwnn/+edasWWPOmL927Vp69OhBQEAA48aNM5eO2r17Nz179sTPz4+goCCSk5OL2JqWlsYDDzxA165d6dy5s7lyQUZGBhMmTDB/3iwz85cHwzB45plnaNasGb/88gtNm0J09Fpmz+6Bn1++nfPnzyc2NpaQkBBCQkIAbvr1jBw5slr/MdBoNJpiEZFSG7ABWF+4lbVfZbbAwEApTExMTJG+Mjl6VOT779VjJVC7du0iffXq1ZPz58/Lhg0bZNiwYSIikpycLNnZ2SIi8vvvv8uYMWNEROTtt9+WGTNmiIjIwYMHxdraWnbv3i0iIoCsWrVKRESee+45ef3110VEZPjw4bJw4UIREfnyyy/l7rvvFhERb29vOXfunIiIXL58WUREPvvsM/N+mZmZEhgYKKdPn5YVK1bIwIEDJScnR2JiYsTZ2VmWLVtW5Fruv/9+sw0iItHR0dK+fXsREZk9e7a8++67IiKyZ88eGThwoHmc6fz9+vWT/fv3m8fPnz9fRETatGkjH3/8sYiIPP300+Lj4yNXrlyR+Ph4ady4sYiIbNiwQezt7SUiIkJycnJk4MCBZhst7/uePXvE29tbUlNTJSUlRTp16iT79u2TyMhIsba2lvDwcMnNzZWAgACZNm2a5OXlyY8//mi+byW9NwsWLJDHHnvMfB7L7XvvvVfmzZsnIiI5OTmSlJRU5N5ZEhwcXOb7ann8hIQE6dOnj6SmpoqIyJtvvimvvvqqXL16Vdzc3GTXrl0FbC9s6+zZs+Xbb781vxfu7u6Smpoq7777rkybNk1ERA4cOFDg81YSU6ZMKfLZeOqpp+TNN9+UhIQE6d69j3z5Zap8/73IG28oO0XUe5yQkFCt19O+fXu5ePFikWu6ru8OjUajqQDAHilGz5QnI/1fLZ47APcA5QqdNQxjCPBvVIHsL0SkSFCMYRj9gPcBW+CiiASX59gV5tgxmDpVzYPY2cHCheDpWemnkWKSzSYnJzNlyhROnjyJYRjmwsdbt27lqaeeAlQGbcuSM3Z2dmZPWWBgIL///jsAO3bs4IcffgDUFMrzzz8PqKLXU6dO5d5772XMmDGA8i6Eh4eb47WSk5M5efIkmzdvZuLEiVhbW9O8eXP69y++uEBcXByNGzc2by9ZsoR7770XUHUhH3zwQZ599lnatm3L6dOneeKJJxg2bBiDBw8GVM3BBQsW8N5777F06VKzdwkwl6jx8fEhNTWVOnXqUKdOHRwcHEhKSgIgKCiIttfSnk+cOJGtW7cWKSO0detWRo8eTe3atQEYM2YMW7ZsYeTIkbi5ueFzLeLby8uLAQMGYBgGPj4+REVFlfrelMb69ev55ptvABXX5+zsXOY+Jkp6Xy3ZuXMnR44coVevXgBkZWXRo0cPjh8/jouLi7mmZEmFwNeuXcuqVavMtRwzMzOJjo5m8+bN5jhDX1/f6y5xZPqM79y5k5Mnj/CPf/QiOxusrbMICelRY66nSZMmxMbG0rBhw+u6To1Go6lsyhRdIlI4fmubYRibytrPMAxr4CNgEHAO2G0YxioROWIxph7wMTBERKINw2hSEeMrxMGDSnC1aAGxsWq7kkXX6dOnsba2pkmTJhw9etTc//LLLxMSEsLKlSuJioqiX79+QPECzYStrS2GYQDqhz2nhCVipjGffvopf/75Jz///DP+/v6EhYUhInzwwQeEhoYW2GfNmjXm/UrD0dGRzMxM8/bixYu5cOECixYtAlRm75MnT+Lu7s6BAwf47bff+Oijj/j+++/56quvuOeee3j11Vfp378/gYGBBX787O3tAbCysjI/N22brrWwjcXZXNo9LHxcy3OazlHSe1NVlOd9FREGDRpUZHosPDy8XO+biLBixQo8PDyKvFae/cti//79DBgwwGznBx8sZu1asLGB4so9Vtf1ZGZmVlrRco1Go6kMykwZYRhGA4vWyDCMUKBZOY4dBJwSkdMikgUsAe4uNOYvwA8iEg0gIsUHF1UGPj7KwxUbC7a2+WveK4mEhAQeeeQRHn/88SI/BMnJybRo0QKAhQsXmvt79+7N999/D6jahgcPHizzPD179mTJkiUALFq0iN69ewMQERFBt27deO2112jUqBFnz54lNDSUTz75xOy9OXHiBGlpafTt25clS5aQm5tLXFwcGzZsKPZcHTt25NSpUwAcP36ctLQ0YmJiiIqKIioqitmzZ7NkyRIuXrxIXl4e99xzD6+//jr79u0DwMHBgdDQUGbOnMm0adPKeyvN7Nq1i8jISPLy8li6dKn5Wm1tbc3X1LdvX3788UfS09NJS0tj5cqVFQpEL+m9qVOnDikpKcXuM2DAAD755BNAxbNduXLF3G+Kc7sRunfvzrZt28z3Pj09nRMnTuDp6UlsbCy7d+8GICUlhZycnCK2hoaG8sEHH5gF6f79+wF1r0yC+dChQ4SHh5v3uf/++wt4IotDRJg/fz5xcXEMGTLEbGdS0ilatIC0tHR++eUEUPD+Vcf1iAjnz5/H1dW1fDddo9FobgLlSY66l/yVjDtQSVIfLMd+LYCzFtvnrvVZ0gGobxjGRsMw9hqGcX85jnt9eHqqKcVZsyptatEU0O3l5cXAgQMZPHgwc+fOLTLu+eefZ/bs2fTq1YtcixTejz76KAkJCfj6+vKvf/0LX1/fMqeq5s+fz4IFC/D19eXbb7/l3//+NwDPPfccPj4+eHt707dvX/z8/Jg+fTqdOnUiICAAb29vHn74YXJycsxFq318fJg5cybBwcXP6A4bNoyNGzcCyss1evToAq/fc889LF68mJiYGPr164e/vz9Tp07ln//8p3nMpEmTMAzDPOVYEXr06MGsWbPw9vbGzc3NfP4ZM2bg6+vLpEmTCAgIYOrUqQQFBdGtWzemT59O586dy32Okt6bkJAQjhw5Yg7mtuTf//43GzZswMfHh8DAQA4fPkxeXh6nTp2iQYMGFb7OwjRu3JiFCxcyceJEfH196d69O8eOHcPOzo6lS5fyxBNP4Ofnx6BBg8jMzCxi68svv0x2dja+vr54e3vz8ssvAzBz5kxSU1Px9fXlrbfeIigoyHzO8PBwXFxcirXnueeeM6eM2L17Nxs2bMDOzq6AnY8+6svcud3Zvv0Y6enqPRo6dCghISHVcj179+6le/fu2NiUJ4JCo9Fobg5lFry+7gMbxjggVESmX9ueDASJyBMWYz4EugADAEeUqBsmIicsj3W7FrzOzc0lOzsbBwcHIiIiGDBgACdOnMDOzq66TTPTu3dvVq9eTb169a5r/3feeYfk5GRef/31Cu23ceNG3nnnHVavXn1d573ZHDp0iK+++or33nuvuk2pMFeuXOHBBx9k2bJlN3ScrVshOhratwcL/VMtPPXUU4wcOZIBAwYUee12+O7QaDQ1m5IKXpf5b6BhGA7Ao0BvQICtwCciklnqjsqz1cpiuyUQW8yYiyKSBqQZhrEZ8ANOcAeQnp5+LedRNiLCJ598UqMEF8C7775LdHT0dYmu0aNHExERwfr16yvfsBqGt7f3LSm4QAWw36jgAlWT8exZVQi7Y0eoU6cSjLtOvL29ixVcGo1GU52U6ekyDON7IAX47lrXRKC+iIwrYz8blHgaAMQAu4G/iMhhizEdgQ+BUMAO2AVMEJFDlse6XT1dGs3txs6dcPo0tGkD1xYr1jj0d4dGo6lqrtvTBXiIiJ/F9gbDMA6UtZOI5BiG8TjwGyplxFcictgwjEeuvf6piBw1DONXIBzIQ6WVOFTyUTUaTU3GxweiouDMGejUCerXr26LNBqNpuZQHtG13zCM7iKyE8AwjG7AtvIcXETWAGsK9X1aaPtt4O3ymavRaGoytWuDu7uqx3jgAFRxBg6NRqO5pSjP6sVuwHbDMKIMw4hCBbsHG4Zx0DCM8NJ31Wg0dxpeXipnV2wsJCRUtzUajUZTcyiPp2tI2UM0Go1G4eCgMrIcOgRhYTBwIFRCTlaNRqO55SnT0yUiZ4B6wIhrrZ6InDG1KravxrNy5UoMw+DYsWPmvtjYWHO5GsvC16tWreLNN4tUQrpunn76aTZv3gzA6tWr6dy5M35+fnTq1Mlc3LqqeP/990lPT6/Sc0RFRfHf//7XvL1nzx5z2ZeKMnXqVHM5pJK4evUqAwcOLDY3V0VtrUy7ihvj5ORUofNYfg5LIiwsjDVr1pQ6pjQsPxOenmBvrzxdcXHls2v16tXF5rnTaDSa24XyZKR/ClgENLnWvjMM44nS97pzWLx4Mb179zZniQdo3rx5sT+kI0eOZNasWZVy3sTERHbu3Enfvn3Jzs5mxowZ/PTTTxw4cID9+/dXeTmb6hBdXbp0Yf78+VV2vv3795OdnU1YWBjjx4+v0L7XK7pqEpUpuuzsVCA9qNiu8qQDHDZsGKtWraryz5VGo9FUF+WJ6XoQ6CYic0RkDtAdeKhqzbo1SE1NZdu2bXz55ZcFRFdUVBTe3t5Fxi9cuJDHH38cUN6LJ598kp49e9K2bVuzSMvLy+PRRx/Fy8uL4cOHc9dddxUr4JYvX86QIWrm11Q+xVTb0N7eHg8PD1JSUnBzczOXzLly5Qqurq5kZ2fTr18/nnnmGfr27UvHjh3ZvXs3Y8aMwd3dnZdeesl8HZ6enkyZMgVfX1/Gjh1Leno68+fPJzY2lpCQEEJCQgAlPk0Z8V944QWznU5OTrzwwgsEBgYycOBAdu3aRb9+/Wjbti2rVq0yn6dPnz4EBAQQEBDA9u3bAZg1axZbtmzB39+fefPmFfCKpKamMm3aNHx8fPD19WXFihXlft9cXV2ZO3cuAQEB+Pj4cOzYMeLj47nvvvsICwvD39+fiIgI9u7dS3BwMIGBgYSGhhJ3zWVz6tQpBg4ciJ+fHwEBAURERBSxNTc3l+eee46uXbvi6+tr9jyKCI8//jidOnVi2LBhxMffWOWrjRs30q9fP8aOHYunpyeTJk0yl8v59ddf8fT0pHfv3uYi6QBpaWk88MADdO3alc6dO/O///2PrKws5syZw9KlS82evuLGgUrq+9e//tV87z/44INiPxNRUWt59dUePPpoAMOGjSM1NbVUuwzDoF+/frdMQlyNRqOpMCJSagMOAg4W2w7AwbL2q8wWGBgohYmJiSnSd7P59ttv5YEHHhARkR49esjevXtFRCQyMlK8vLxERGTDhg0ybNgwERFZsGCBPPbYYyIiMmXKFBk7dqzk5ubK4cOHpV27diIismzZMhk6dKjk5uZKXFyc1KtXT5YtW1bk3Pfff7+sWrXKvP3ggw9K48aNZcKECfLdd99Jbm6uiIhMnTpVVq5cKSIin332mTz77LMiIhIcHCzPP/+8iIi8//774uLiIrGxsZKZmSktWrSQixcvSmRkpACydetWERGZNm2avP322yIi0qZNG0lISBAR9V60atVK4uPjJTs7W0JCQsznBGTNmjUiIjJq1CgZNGiQZGVlSVhYmPj5+YmISFpammRkZIiIyIkTJ8T0flveu8Lbzz//vDz11FPm1xITE0t9r6ZMmWK+j23atJH58+eLiMhHH30kDz74YJHjZ2VlSY8ePSQ+Pl5ERJYsWSLTpk0TEZGgoCD54YcfREQkIyND0tLSitj62Wefyeuvvy4iIpmZmRIYGCinT5+WFStWyMCBAyUnJ0diYmLE2dm52Pe3JNtN1K5d22xz3bp15ezZs5Kbmyvdu3eXLVu2SEZGhrRs2VJOnDgheXl5Mm7cOLN9s2fPlm+//VZERC5fvizu7u6Smppa4PNZ2riPP/5YxowZI9nZ2SIicunSJfN9NX0mEhISpE+fPhIeniqLFolMnvymzJ37aql2iYh899138vjjj5d6P26UmvDdodFobm+APVKMnimPp2sB8KdhGK8YhvEqsBP4skoU4I0wYoRqlrz2muqzLOT766+q78MP8/sSE1XflCkVOuXixYuZMGECABMmTGDx4sUV2n/UqFFYWVnRqVMnLly4AMDWrVsZN24cVlZWNGvWzOw1KExcXByNGzc2b3/xxRf88ccfBAUF8c477/DAAw8AMH36dBYsWADAggULChSeHjlyJAA+Pj54eXnh4uKCvb09bdu25exZVTazVatW9LqW5fK+++5j69atRWzZvXs3/fr1o3HjxtjY2DBp0iRzrJmdnZ3ZI+fj40NwcDC2trb4+PgQFRUFQHZ2Ng899BA+Pj6MGzeOI0eOlHnv1q1bx2OPPWberl/BhFBjxowBIDAw0GyHJcePH+fQoUMMGjQIf39/3njjDc6dO0dKSgoxMTHmOpAODg7UqlWryP5r167lm2++wd/fn27dunHp0iVOnjzJ5s2bmThxItbW1jRv3pz+/fuXaWvhAuqF+4KCgmjZsiVWVlb4+/sTFRXFsWPHcHNzw93dHcMwuO+++wrY9uabb+Lv70+/fv3IzMwkOjq62Gsobty6det45JFHzHUNi6s3uXPnTo4cOcLkyb146SV//vjja8LDz5RqF0CTJk2IjS1cuEKj0WhuD8pcvSgi7xmGsRFVBghgmojsr1KrbgEuXbrE+vXrOXToEIZhkJubi2EYvPXWW+U+hr29vfm5XJsSMj2WhaOjI5mZBSsx+fj44OPjw+TJk3Fzc2PhwoX06tWLqKgoNm3aRG5uboFpT9P5raysCthiZWVFTk4OUPQHvzgBUJrNtra25n0sz2N5jnnz5tG0aVMOHDhAXl4eDg4OZV6/iBRrS3kx2WFtbW22o/Dxvby82LFjR4H+K1eulOv4IsIHH3xAaGhogf41a9ZU2O6GDRty+fJl83ZiYiKNGjUyb1u+d5bXU9J5RIQVK1bg4eFRoP/PP/8s17jy3HsRYdCgQSxevJjz52H9erC1hatXw0rdNzMzE0dHx1KPrdFoNLcq5fF0mTBQtRdr5uLvn35SzZI5c1SfZfXdIUNU37XYKgAaNFB9X39d7tMtX76c+++/nzNnzhAVFcXZs2dxc3Mr1hNUEXr37s2KFSvIy8vjwoULbNy4sdhxHTt25NSpU4CKb7IcFxYWRps2bczb999/PxMnTizg5Sov0dHRZuFhWjQAUKdOHVJSUgDo1q0bmzZt4uLFi+Tm5rJ48WKCg4PLfY7k5GRcXFywsrLi22+/JTc3t8g5CjN48GA+tPBWmkTJ/fffzy5Lz+Z14uHhQUJCgvnas7OzOXz4MHXr1qVly5b8+OOPgFrxmJ6eXsTW0NBQPvnkE3M83YkTJ0hLS6Nv374sWbKE3Nxc4uLi2LBhg3mf2bNns3LlyiK29OvXj6VLl5KVlQWo2MCSPKAmPD09iYyMJCIiAqCAFzY0NJQPPvjALJb371f/QxV3DcWNGzx4MJ9++qlZ3CUmJhbZv3v37mzbto1Tp07RrBk0aJBOdPQJsrNLtst0n4qLh9RoNJrbgfKsXpwDfA3UBxoBCwzDeKmqDavpLF682DzFZOKee+654RVs99xzDy1btsTb25uHH36Ybt264ezsXGTcsGHDzEJLRHjrrbfw8PDA39+fuXPnsnDhQvPYSZMmcfnyZSZOnFhhezp27MjXX3+Nr68viYmJzJw5E4AZM2YwdOhQQkJCcHFx4Z///CchISHm4PK777673Od49NFH+frrr+nevTsnTpygdu3aAPj6+mJjY4Ofnx/z5s0rsM9LL73E5cuX8fb2xs/PzyxewsPDcXFxqfB1FsbOzo7ly5fzwgsv4Ofnh7+/vznA/9tvv2X+/Pn4+vrSs2dPzp8/X8TW6dOn06lTJwICAszvZU5ODqNHj8bd3R0fHx9mzpxZQJwePHiQZs2aFbFl+PDh9OnTh8DAQPz9/dm2bRv/+te/SrXfwcGBzz//nGHDhtG7d+8CIvzll18mOzsbX19fvL29efnllwEICQnhyJEj5kD6ksZNnz6d1q1b4+vri5+fn/kzb/mZaNy4MQsXLmTixIn4+vryf//Xnbi4Y5w968C8ecXbBbBhwwaGDRt2He+YRqPR1HzKU/D6KNBZRDKvbTsC+0Sk402wD7jzCl6npqbi5OTEpUuXCAoKYtu2bcX+GPfu3ZvVq1dTr169Uo+3fPly/ve///Htt99WyI6oqCiGDx/OoUO3RjnMK1eu8OCDD7Js2bLqNuW6CA0N5bfffqtuM6qM3bvh5Elo3rz48kAXLlzgL3/5C3/88UeV2nE7f3doNBqFiHAp4xLnrpwj5koM566cUy3lHP/X4//wblK1HvUbKXgdhVqxaAogsgciKs80TWGGDx9OUlISWVlZvPzyy8UKLoB3332X6OjoUkXXE088wS+//HJD+ZduFerWrXvLCi7gthZckF8MOzYWzp+Hwh/r6Oho3n333WqxTaPR3Jrk5OUQlxLH2StnzcLqbPJZzqWcIzMns9h9zl05V+WiqyTK4+n6EegK/I6K6RoEbAXiAUTk+lKEV4A7zdOl0dyuHDmiSgPVqwdDh1ZPeSD93aHR3Hpk5WYRcyWG6ORoopOjOXflHNHJ0cSlxpErucXuU9e+Li3rtKRl3YKtSe0mWFtZV6m9N+LpWnmtmdhYWUZpNJo7Cw8PNcWYlAQREdC+fXVbpNFoahImcXUm+YxZYEUnR3M+9TxCUSeRgUHT2k1pVbcVrZxb0bJuS1rVVY917OtUwxWUTnlSRpR/SZ9Go9GUgrU1dO4MW7cqj1fLlqpAtkajubPIzcslLjWOM0lnOJN8xvwYmxJbrLiyMqxo4dSC1s6taVm3Ja2dW9PKuRUt6rTA3sa+mDPUTMrj6dJoNJpKo1UrFc91/ryqy9itW3VbpNFoqgoRITEjkaikKM4kn1GPSWc4e+Us2XnZRcYbGLSo04I2zm1o7dza3JrXaY6ttW01XEHlokWXRqO5qRgGdOkCa9aoKca2bcGiuIJGo7lFycrN4kySElaRSZFEJUURlRRFSlbx+Rab1GpCm3ptzALLtZ4rLeq2wM7a7iZbfvMoMU+XYRjfXnt86uaZc2thbW2Nv78/3t7ejBgxgqSkpGq1Z8+ePTz55I2va5g6dWqxRbYBnn76aXOJn9WrV9O5c2f8/Pzo1KmTuahzVfH++++Tnp5epeeIiooqkGvtRu5paffRxNWrVxk4cKA5N9aN2FqZdr3yyiu0aNECf39/3N3dGTNmTLnKMy1cuLBcZXzq1oVOndTz3bshL69yrmfChAmcPHmywsfQaDTlx+S92hu7l+VHlvP2trd59OdHGfv9WJ5d+yzzd83npxM/cTD+IClZKTjZOeHd2Jvh7sN5rOtjvD3obZaOXcqXd3/JnOA5TPGfQohbCG713W5rwQWle7oCDcNoAzxgGMY3FMpELyKJVWrZLYCjoyNhYWEATJkyhY8++ogXX3yx2uzp0qULXboUWSxRaSQmJrJz507ef/99srOzmTFjBrt27aJly5ZcvXq12BqGlcn777/PfffdV2ytw8rC9MP/l7/8Baj6e7p//36ys7PNn6OKUNjWyuaZZ57hr3/9KwBLly6lf//+HDx4sEDNz8IsXLgQb2/vcq0O9PJSKSSSkuDECTh//savZ+bMmbz11lv85z//ue5jaDSafPIkj7iUOCIuRxB5OZLTl08TcTmC5KvJRcZaGVa0rNMSt3puuNV3w7WeK671XGno2PCGyrbdTpSWkf5T4FfAE9hbqO0pZb87kh49ehATEwNAREQEQ4YMITAwkD59+nDs2DFAJX8cPXo0fn5++Pn5mTOcv/fee3h7e+Pt7c37779vPubrr7+Op6cngwYNYuLEibzzzjuAKgvzwgsvEBQURIcOHdiyZQsAGzduZPjw4QDcdddd+Pv74+/vj7OzM19//TW5ubk899xzdO3aFV9fX7NnSkR4/PHH6dSpE8OGDSM+Pr7Ya1y+fLm5eHVKSgo5OTk0bNgQUPX/PDw8SElJwc3NzVz+5sqVK7i6upKdnU2/fv145pln6Nu3Lx07dmT37t2MGTMGd3d3XnpJFTmIiorC09OTKVOm4Ovry9ixY0lPT2f+/PnExsYSEhJiLoGzePFifHx88Pb25oUXXjDb6eTkxAsvvEBgYCADBw5k165d9OvXj7Zt27Jq1Srzefr06UNAQAABAQHm92LWrFls2bIFf39/5s2bV+CepqamMm3aNHx8fPD19WXFihXl/ny4uroyd+5cAgIC8PHx4dixY8THx3PfffcRFhaGv78/ERER7N27l+DgYAIDAwkNDSUuLg6AU6dOMXDgQHPG/4iIiCK23uj7Wxrjx49n8ODBZk9UcXYuX76cPXv2MGnSJPz9/cnIyCj1ekJDBzJrlh8vvhjA2rURPP/8jV9Pnz59WLduXbH1NDUaTenk5OVw+vJpfo/4nc/2fMbzvz/P+OXjeeTnR3h7+9ssP7qcfef3kXw1mdq2tfFu7M2IDiN4MuhJ5oXOY9m4ZXw87GOe6/UcYzuNpUvzLjSq1UgLLktEpNQGfFLWmKpugYGBUpiYmJgifTeb2rVri4hITk6OjB07Vn755RcREenfv7+cOHFCRER27twpISEhIiJy7733yrx588z7JCUlyZ49e8Tb21tSU1MlJSVFOnXqJPv27ZPdu3eLn5+fpKeny5UrV6R9+/by9ttvi4hIcHCwPPvssyIi8vPPP8uAAQNERGTDhg0ybNiwAjbu2bNHfHx8JCkpST777DN5/fXXRUQkMzNTAgMD5fTp07JixQoZOHCg5OTkSExMjDg7O8uyZcuKXO/9998vq1atMm8/+OCD0rhxY5kwYYJ89913kpubKyIiU6dOlZUrV4qIyGeffWa2NTg4WJ5//nkREXn//ffFxcVFYmNjJTMzU1q0aCEXL16UyMhIAWTr1q0iIjJt2jTzdbdp00YSEhJERL3/rVq1kvj4eMnOzpaQkBDzOQFZs2aNiIiMGjVKBg0aJFlZWRIWFiZ+fn4iIpKWliYZGRkiInLixAkxfcYK30PL7eeff16eeuop82uJiYlF7pElU6ZMMd/HNm3ayPz580VE5KOPPpIHH3ywyPGzsrKkR48eEh8fLyIiS5YskWnTpomISFBQkPzwww8iIpKRkSFpaWlFbL3R99eSuXPnmu+7iXnz5skjjzxSqp3BwcGye/fuCl3P2rUZ8tVXaTJ/fuVcz8CBA2XPnj0lXltN+O7QaKqbrJwsOXHxhPxy8hf58M8P5elfnpZRS0bJ8P8OL9Km/jhVXtv4mnx34DvZHr1dLqRekLy8vOq+hBoNsEeK0TPlSRkx0zAMP6DPta7NIhJeZSrwehkxouTXHntMFboG+PVX+OijkscWLppdChkZGfj7+xMVFUVgYCCDBg0iNTWV7du3M27cOPO4q1evArB+/Xq++eYbQMWDOTs7s3XrVkaPHm2uNzhmzBi2bNlCXl4ed999N46Ojtcur+D1jRkzBoDAwMASp/UuXrzI5MmT+f7773F2dmbt2rWEh4eb41+Sk5M5efIkmzdvZuLEiVhbW9O8eXP69+9f7PHi4uIKTC198cUXHDx4kHXr1vHOO+/w+++/s3DhQqZPn85bb73FqFGjWLBgQYGpnpEjRwLg4+ODl5eXuU5i27ZtOXv2LPXq1aNVq1b06tULgPvuu4/58+ebp7lM7N69m379+pntmTRpEps3b2bUqFHY2dmZPXI+Pj7Y29tja2uLj4+P+V5lZ2fz+OOPExYWhrW1NSdOnCj2mi1Zt24dS5YsMW/Xr1+/zH0ssXzPfvjhhyKvHz9+nEOHDjFo0CAAcnNzcXFxISUlhZiYGHOtT4cScizc6PtbFnItkXJJdl7v9fTs6cDPP6ug+kyLBNLXez1NmjQhNjaWwMDA67pOjeZ2Iycvh+jkaE5eOsmpxFOcTDzJmeQz5OQV9Qi7OLnQvkF72tZva36sa1+3Gqy+PSlTdBmG8SQwAzD9SiwyDONzEfmgSi27BTDFdCUnJzN8+HA++ugjpk6dSr169codo2P6IStvvwl7e5WXxNrautiplNzcXCZMmMCcOXPw9vY2H/ODDz4gNDS0wNg1a9aUy/3r6OhIZmbBsgo+Pj74+PgwefJk3NzcWLhwIb169SIqKopNmzaRm5trPr+l3VZWVubnpm3TdRS2pTjbSrs/tra25n0sz2N5jnnz5tG0aVMOHDhAXl5eiUKm8DlvxE1e1nsmInh5ebFjx44C/VeuXCnX8W/0/S2L/fv306VLlxLtLM6e8lxP7drg7Q3h4Sq+KysL7Oyu/3oyMzPN/6xoNHcaeZJHzJUYTlw6wcnEk5y8dJLIpMgi6RkMDFrWaUn7Bu1p36A97Rq0o239ttSyrbqYWU3pMV0mpgPdRGSOiMwBugMPVa1Z18FPP5XcTF4uUM9LG3sdODs7M3/+fN555x0cHR1xc3Mz1wAUEQ4cOADAgAED+OSTTwAliq5cuULfvn358ccfSU9PJy0tjZUrV9KnTx969+7NTz/9RGZmJqmpqfz8888VsmnWrFn4+voyYcIEc19oaCiffPKJOd7qxIkTpKWl0bdvX5YsWUJubi5xcXFs2LCh2GN27NiRU6dOASq+aePGjebXwsLCaNOmjXn7/vvvZ+LEiUybNq1CdoOqwWf6oV68eDG9e/cGoE6dOqSkqKXH3bp1Y9OmTVy8eJHc3FwWL15McHBwuc+RnJyMi4sLVlZWfPvtt+Tm5hY5R2EGDx7Mhx9+aN6+fPmy+Vp37dpV4essjIeHBwkJCeZrz87O5vDhw9StW5eWLVvy448/Aspzmp6eXsTW63l/Z8+ezcqVlgUnimfFihWsXbuWiRMnlmgnFLx/Fbme1q3TadasDmlpKezbd/3XYxrn5eVV7vuu0dyqiAgX0y+y/ex2FoYt5G9//I3xy8fz6JpHef/P9/n55M+cSDxBdl42Leq0ILhNMNM7T+efA/7J0rFL+WT4J/xfz//jbs+78W7irQXXTaA8eboMwLKwUS6FVjJqMKdOWLJkCYsWLWLmzJm88cYbZGdnM2HCBPz8/Pj3v//NjBkz+PLLL7G2tuaTTz6hR48eTJ06laCgIACmT59O586dATUV5+fnR5s2bejSpQvOzs7ltuedd97By8sLf39/AF577TWmT59OVFQUAQEBiAiNGzfmxx9/ZPTo0axfvx4fHx86dOhQongZNmwYn332GdOnT0dEeOutt3j44YdxdHSkdu3aLFy40Dx20qRJvPTSS0ycOLHC97Jjx458/fXXPPzww7i7uzNz5kwAZsyYwdChQ3FxcWHDhg3885//JCQkBBHhrrvu4u677y73OR599FHuueceli1bRkhIiHl619fXFxsbG/z8/Jg6dar5vQB46aWXeOyxx/D29sba2pq5c+cyZswYwsPDi51eqyh2dnYsX76cJ598kuTkZHJycnj66afx8vLi22+/5eGHH2bOnDnY2tqybNmyIrY+9dRTFX5/Dx48aJ7yLcy8efP47rvvSEtLw9vbm/Xr15unc0uyc+rUqTzyyCM4OjqyY8eOCl3PxIm+fPqpDePHq+uZO7fi13PhwgUcHR0r5f3QaGoaGdkZnEw8yfGLxzl+6TgnLp3gcublIuMa12qMewN33Bu606FhB9rVb0dtu9rVYLGmMOUpeP0sMIX8+oujgIUi8n6VWmbBnVrwOjU1FScnJ9LT0+nbty+ff/45AQEB1WpT7969Wb16NfXq1St13PLly/nf//7Ht99+W6HjR0VFMXz4cA4dOnQDVt48rly5woMPPmj2bN5qhIaG8ttvv1W3GWaOHYN9+1RpoGHDwL6C1T3mzZtH3bp1efDBB0sccyd8d2hufUSEc1fOceziMY5dPMbxS8eJTo4uUiLHyc6JDg060KGhau4N3annUK96jNaYue6C1yLynmEYG4HeKA/XNBHZX/kmagozY8YMjhw5QmZmJlOmTKl2wQXw7rvvEh0dXaroeuKJJ/jll19Ys2bNzTOsmqhbt+4tK7iAGiW4QBXEPncO4uNV0tRevVQG+/JSr149Jk+eXHUGajRVRHp2OicuneBowlGzyErLTiswxtqwpm39tnRo2AGPhh54NPLAxclFp2S4hSjT01UTuFM9XRrNnUhqqioRlJOjRJdFqGCloL87NNWNiHA+9TxHLx41i6wzyWeKeLEa1WqER0MPPBt54tHQg3YN2t32GdtvF67b06XRaDQ3EycnCAiAXbuUt6tJE9CLETW3Mqako0cSjnA04ShHLh4hKTOpwBgbKxva1W+HZyNPc2tUq1H1GKypMrTo0mg0NY527dQ0Y2ws7NgBISEVm2bUaKqTzJxMjl08xuH4wxxJOMKxS8fIys0qMKaufV06NupIx0Yd6dS4k/Zi3SFo0aXRaGochgHdusEvv8D58yqHl59fdVul0RRPytUUjiQc4VD8IQ4nHCbicgR5kldgTIs6LejUuBOdGneiY6OONK/TXMdi3YGUJznqGOBfQBNUIL0BiIiUmaLWMIwhwL8Ba+ALEXmzhHFdgZ3AeBFZXn7zNRrN7Yqjo4rpWr8eDh+GRo2gRYvqtkqjgaTMJA7FH+LghYMcij9E9JXoAq9bGVa4N3CnU+NOeDX2olPjTjg7lD/lj+b2pTyerreAESJytCIHNgzDGvgIGAScA3YbhrFKRI4UM+5fQM1aRlUGly5dYsCAAQCcP38ea2trGjduTFRUFM2bN+fIkSNlHKHi/Pjjj3To0IFOnTpV+rEteeWVV3BycipSegfg/fffp0GDBtx///0A5OTk0KxZMx566CH++c9/Xtf5kpKS+O9//8ujjz5a5lgnJydSU1PLddy8vDyefvpp1q9fj2EYODg48P333+Pm5nZddpZFVFQU27dv5y9/+UuVHN9E4c/BnDlz6Nu3LwMHDix2/MGDB3n33XcL5FG7VWjaVHm4wsLUNOOQISrmS6O5mVzOuMzB+IMcvHCQg/EHiUmJKfC6rZUtHg098G7ijVcTLzwbeeJgU3aVC82dR3lE14WKCq5rBAGnROQ0gGEYS4C7gcJq5AlgBdD1Os5RbTRs2NBc6sdSpJjyTJVFTk4ONjYVm9398ccfGT58eJWLrpLIycnhq6++Yp8pZTiqPp6Hhwfff/89//jHP67LXZ6UlMTHH39cLtFVEZYuXUpsbCzh4eFYWVlx7tw5cxLUqiAqKor//ve/N0V0WX4OXnvttVLH+/j4cO7cOaKjo2ndunWV2lYVdOwIFy+qGK8tW2DwYLC2rm6rNLczyZnJZpEVfiGccynnCrxub21Px0Yd8W7ijXcTbzo07ICttW01Wau5lShPGaA9hmEsNQxjomEYY0ytHPu1AM5abJ+71mfGMIwWwGjg03JbfAuQm5vLQw89hJeXF4MHDyYjIwOAfv368be//Y3g4GD+/e9/s3fvXoKDgwkMDCQ0NJS4uDgA/vOf/9C1a1f8/Py45557SE9PZ/v27axatYrnnnsOf39/IiIiiIiIYMiQIQQGBtKnTx+OHTsGwNSpU3nyySfp2bMnbdu2NRcMBnj77bfp2rUrvr6+zJ0719z/97//HQ8PDwYOHMjx48eLva7169cTEBBQQCwuXryYp556itatW7Nz505z/6+//kpAQAB+fn5mj+Arr7zCO++8Yx7j7e1NVFQUs2bNIiIiAn9/f5577rlS7TQxefJk/ve//5m3J02axKpVqwqMiYuLM5f6AWjZsiX169fnyy+/5JlnnjGP+89//sOzzz5LVFQUnp6eTJ8+HW9vbyZNmsS6devo1asX7u7u5lI/r7zyCpMnT6Z///64u7ubC3rPmjWLLVu24O/vz7x588jMzGTatGn4+PjQuXNnc7mahQsXMmrUKEaMGIGbmxsffvgh7733Hp07d6Z79+4kJiZW6HMwdepU83u8e/duevbsiZ+fH0FBQeaSPCNGjChQrPtWwjCge3eoUwcuX4ZC2WM0mhsmLSuNP8/9yX/2/ocn1jzBfSvv41/b/sWaU2s4l3IOe2t7OjfrzP2+9/P2oLdZMnYJr/d/nfHe4/Fq4qUFl6b8iEipDVhQTPuqHPuNQ8VxmbYnAx8UGrMM6H7t+UJgbHHHCgwMlMLExMQU6asu5s6dK2+//baIiERGRoq1tbXs379fRETGjRsn3377rYiIBAcHy8yZM0VEJCsrS3r06CHx8fEiIrJkyRKZNm2aiIhcvHjRfOwXX3xR5s+fLyIiU6ZMkWXLlplf69+/v5w4cUJERHbu3CkhISHmcWPHjpXc3Fw5fPiwtGvXTkREfvvtN3nooYckLy9PcnNzZdiwYbJp0ybZs2ePeHt7S1pamiQnJ0u7du3M12PJnDlzzLaIiKSnp4uLi4ukpaXJZ599Jk888YSIiMTHx0vLli3l9OnTIiJy6dKlIvdJRMTLy0siIyMlMjJSvLy8zP0l2SkiUrt2bRER2bhxo9x9990iIpKUlCSurq6SnZ1dwN6zZ89KmzZtxM/PT5599lnZt2+fiIikpqZK27ZtJSsrS0REevToIeHh4eb3Ljw8XHJzcyUgIECmTZsmeXl58uOPP5rPN3fuXPH19ZX09HRJSEiQli1bSkxMjGzYsEGGDRtmPv8777wjU6dOFRGRo0ePSqtWrSQjI0MWLFgg7dq1kytXrkh8fLzUrVtXPvnkExERefrpp2XevHkV+hyYtq9evSpubm6ya9cuERFJTk4235OtW7fK8OHDi7yntxKJiSJLlogsWiRy8uT1H6cmfXdoqoerOVclLC5Mvg77Wp759RkZ8d8RMvy/w81tzNIx8uIfL8rSQ0vlSPwRyc7NLvugGo0FwB4pRs+UJyN9xSsWK84BrSy2WwKxhcZ0AZZcm5JqBNxlGEaOiPxY4bONGFGx8e3awfvvF93/OoteW+Lm5maueRgYGEhUVJT5tfHjxwNw/PhxDh06xKBBgwDlHTPVizt06BAvvfQSSUlJpKamEhoaWuQcqampbN++nXHjxpn7rl69an4+atQorKys6NSpExcuXADUVODatWvN9QRTU1M5efIkKSkpjB49mlq1VLHTkmrxxcXF0bFjR/P26tWrCQkJoVatWtxzzz28/vrrzJs3j507d9K3b19z7FSDBg3Kf/NKsbNv377mMcHBwTz22GPEx8fzww8/cM899xSZrm3ZsiXHjx9n/fr1rF+/ngEDBrBs2TIGDBhA//79Wb16NR07diQ7OxsfHx+ioqJwc3PDx8cHAC8vLwYMGIBhGObXTdx99904Ojri6OhISEgIu3btKpKlf+vWrTzxxBMAeHp60qZNG06cOAFASEgIderUoU6dOjg7OzPi2ufPx8eH8PBwoHyfA0uOHz+Oi4sLXbuqmfq6dfPXujRp0oTY2MJ/frcW9etD166wc6fK31WrFugcp5ryICJEXI4g7HwYYefDOHrxaIEUDtaGNR4NPfBt6otfMz88Gnpo75WmSijP6sWWwAdAL0CArcBTInKu1B1hN+BuGIYbEANMAAoEu4iIOaLZMIyFwOrrElw1DHuLgnHW1tbm6UXAHFMkInh5ebFjx44i+0+dOpUff/wRPz8/Fi5cyMaNG4uMycvLo169eua4stJskGtVB0SE2bNn8/DDDxcY+/7775crFsvR0ZHMzEzz9uLFi9m2bRuurq6AWlywYcMGRKTY49nY2JCXl7+M2vJYlpRkZ2EmT57MokWLWLJkCV999VWxY+zt7Rk6dChDhw6ladOm/PjjjwwYMIDp06fzj3/8A09PT6ZNm1ZgvAkrKyvztpWVFTk5OebXCl9fcddruu8l2VXWecrzOSh8vpLex8zMTBxvgwyjbdvClStw5Ahs3QoDBkDDhtVtlaYmkpCWwP7z+9kft58DFw6QkpVS4HW3em74N/PHr6kfXk28dOC75qZQnkjuBcB/UdOFAPdd6xtU2k4ikmMYxuOoVYnWqCnJw4ZhPHLt9cqN47pRD1UleLgqgoeHBwkJCezYsYMePXqQnZ3NiRMn8PLyIiUlBRcXF7Kzs1m0aBEtrq2Tr1OnjjlGp27duri5ubFs2TLGjRuHiBAeHo5fKcmMQkNDefnll5k0aRJOTk7ExMRga2tL3759mTp1KrNmzSInJ4effvqpWMHTsWNHTp06BahCz1u3buXs2bNmwbBgwQIWL17Mm2++yWOPPUZkZCRubm4kJibSoEEDXF1dWb16NQD79u0jMjKyyHWVZmeTJk0K2DN16lSCgoJo1qwZXl5eRezdt28fzZo1o3nz5uTl5REeHo6vry8A3bp14+zZs+zbt8/sWaoI//vf/5g9ezZpaWls3LiRN998k7i4uALX0bdvXxYtWkT//v05ceIE0dHReHh4FFiIUBrl+RxY4unpSWxsLLt376Zr166kpKTg6OiIjY0NJ06cwNvbu8LXWRPx84OMDIiMhE2bYNAgFe+lubPJzMnk4IWD7D+/n31x+4qsMGxcqzH+zfzp3Kwzvk19dQoHTbVQHtHVWEQWWGwvNAzj6fIcXETWAGsK9RUrtkRkanmOebtgZ2fH8uXLefLJJ0lOTiYnJ4enn34aLy8vXn/9dbp160abNm3w8fEx/8BOmDCBhx56iPnz57N8+XIWLVrEzJkzeeONN8jOzmbChAmliq7Bgwdz9OhRevToAaj0C9999x0BAQGMHz8ef39/2rRpQ58+fYrdf+jQoeZiwj/88AP9+/cv4LG5++67ef755/n444/5/PPPGTNmDHl5eTRp0oTff/+de+65h2+++QZ/f3+6du1Khw4dALUStFevXnh7ezN06FDefvvtYu0sLLqaNm1Kx44dGTVqVLH2xsfH89BDD5mnXYOCgnj88cfNr997772EhYVRv379Eu9ZSQQFBTFs2DCio6N5+eWXad68OY0bN8bGxgY/Pz+mTp3Ko48+yiOPPIKPjw82NjYsXLiwwP0qi/J+DkzY2dmxdOlSnnjiCTIyMnB0dGTdunU4OTmxYcMGhg0bVuHrrImYEqdmZkJcHGzcqISXg3ZU3FGICNHJ0eyN28ve2L0cuXiEnLx8b7SjjSO+TX0JcAnAv5m/LgytqRGUWfDaMIx1qCD3xde6JgLTRGRA1ZqWjy54XXMYPXo0b731Fu7u7tVtCunp6fj4+LBv3z6cnSv+X+vw4cN55plnzKsry0tpecxqIlevXiU4OJitW7dWOE1JTSY7G/74AxIT1RTjgAFQnsvT3x23LmlZaRy4cIA9sXvYF7ePSxmXzK8ZGLg3cCfAJYDOLp3p0LADNla3z+ddc2txIwWvHwA+BOahYrq2X+vT3IGYptGqW3StW7eOBx54gGeffbbCgispKYmgoKAC6SxuZ6Kjo3nzzTdvK8EFYGsL/frB2rVw6RJs3gx9+5ZPeGluDSy9WXti93Ak4Qi5kmt+vZ5DPQJdAgl0CcS/mT917PU8s6ZmU6anqyagPV0ajaYkUlLg99/VdGOTJhAcrARZSejvjppNVm4WB84rb9bu2N0kpCeYX7MyrOjYqKMSWs0DcavnpqcMNTWSCnu6DMN4XkTeMgzjA5SHqwAi8mQl26jRaDQVpk4dNbW4fj3Ex8OGDcoDZmdX3ZZpysvF9Ivsid3DrphdHLhwoEA6B5M3q0vzLvg388fJTteB0ty6lOaIN5X+0fmfNRpNjcbZGQYOVMLr4kUV6xUSooPrayoiwunLp9kVs4s/Y/4k4nJEgdfb129P1xZd6dq8K+0btNfeLM1tQ4miS0RMORTSRWSZ5WuGYYwrZheNRqOpNurUUasY//hDlQv64w/o3x9ug/RktwU5eTkcvHCQned2sit2FxfTL5pfs7e2x7+ZP91adCOweSANHCuWUFmjuVUoT8jpbFS5nrL6NBqNplqpVSvf45WcrGK9goOVJ0xz80nLSmNv3F7+PPcne+L2kJ6dbn6tgWMDgpoH0a1lN3yb+mJnreeDNbc/pcV0DQXuAloYhjHf4qW6QE7xe91ZODk5kZqaat5euHAhe/bs4cMPP6zwsTZu3Mg777xjTh5aHvr168c777xDly5FYvU0mjsWR0clvDZuVKsaf/sNevaEli2r27I7g6TMJP489yc7zu3gwIUDBXJnuTq70q1lN7q16KanDTV3JKV5umJR8Vwjgb0W/SnAM1VplEaj0dwI9vYquP7PP+HMGZVOwtcXiilcoKkEEtIS2H52O9vPbufoxaPItbVXBgbejb3p3rI73Vp2o5lTs2q2VKOpXkqL6ToAHDAMYyWQJqKSoxiGYQ2UP632HUpCQgKPPPII0dHRgKpv2KtXL3bt2sXTTz9tzhi+YMECPDw8CuyblpbGE088wcGDB8nJyeGVV17h7rvvJiMjg2nTpnHkyBE6duxYoKajRqMpiI2N8nDVrw8HDkB4OCQlQZs21W3Z7UFcShzbz25n29ltnEw8ae63sbKhc7PO9GjZg6AWQbrcjkZjQXliutYCAwHTPJrjtb6eVWXUrUJGRgb+/v7m7cTEREaOHAnAU089xTPPPEPv3r2Jjo4mNDSUo0eP4unpyebNm7GxsWHdunX87W9/Y8WKFQWO+/e//53+/fvz1VdfmRN5Dhw4kM8++4xatWoRHh5OeHg4AQEBN/NyNZpbDsOATp1UTNf27RAdDQkJIAKtW99EQ0RUpe7Ll1Ww2ZUr+c3eHsaMyR/7ySeQk6P6LZujI3h6wrUC85hyLN7EKbq4lDi2Rm9la/RWTiedNvfbW9vTtXlXerTqQZfmXahlW+um2aTR3EqUR3Q5iIg5cElEUg3DqFF/USMWj6iS4/40sfQi2I6OjoSFhZm3TTFdoDKmHzlyxPzalStXSElJITk5mSlTpnDy5EkMwyA7O7vIcdeuXcuqVat45513AMjMzCQ6OprNmzfz5JMqPZqvr6+5eLNGoymdFi0gNFRNM16+DE8/DfffD3ffXQWa5eJFOH5czWXWq6f6Pv8cSorXdHEpKLo2bFAVvYtjypR80bV9O8ybpzLCNmsGTZuq1qwZtGoFzZtXysWVJLQcbRwJahFEr1a9CHAJwN5GT4BoNGVRHtGVZhhGgIjsAzAMIxDQ81plkJeXx44dO3AstF79iSeeICQkhJUrVxIVFUW/fv2K7CsirFixosi0I6ADTzWa66Ru3XzhlZ0NX36pYr6eeUbplusiLw8iIuDIETh2TLWL11IhvPgidO+unjdpopZWNm6sDKlbV7nf6tZVhSMtmTkTrl6FrCz1aGppaWBZfuvKFdV/9qxqhVm2LD9R2aZNylPWvr2aby3jeyQhLYGt0VvZfGYzpy6fMvfXsq1Ftxbd6NWqF51dOusVhxpNBSmP6HoaWGYYRuy1bRdgfJVZdB2U5ZGqDgYPHsyHH37Ic889B0BYWBj+/v4kJyfTokULQHnGiiM0NJQPPviADz74AMMw2L9/P507d6Zv374sWrSIkJAQDh06RHh4+M26HI3mtsDWFjp2hDlzYP58OHQIHn8cZsxQgfcV+p8mPV3tmJxcsL92bfDwUI8mRoyAUaPKd4KQkPKdf+hQVWzywoWCLS5O2WaZGXbhwnwxWK8etGunBJi7u7ohdeuSlJlkFlpHLx417+po40i3Ft3o3bq3FloazQ1SpugSkd2GYXgCHoABHBORonNimgLMnz+fxx57DF9fX3Jycujbty+ffvopzz//PFOmTOG9996jf//+xe778ssv8/TTT+Pr64uI4OrqyurVq5k5cybTpk3D19cXf39/goKCbvJVaTS3B127wocfwscfq1m6f/8b1q1TGqpt22J2yM6GnTshLEypNMNQnqtGjVS8lZ+fEi+enio3RWFxVVVVuGvXVgYXa/Q1RKBPH+WRi4hQqwn27oW9e0m3ymXn6K5sagNhF8LIu5oJ2TnY1XEmqEU3+rTpQ5fmXbTQ0mgqiXIVvDYMwxvoBJj/dRKRb6rQrgLogtcajaaysPzuEFH5vL78UjmsDENNQd5337WEqlFRKsPqhg2qsjYopdaqlXqekgJOTjc1mP2GECEnLoa9YWvYeGoduy6Gk9WyGdSpg7VhTUCiPcFbztKNFjh09FFxad7eyjNWVcJRo7kNqXDBa4sd5wL9UKJrDTAU2ArcNNGl0Wg0VYFhqNm8oCBYvFjFuq/9JZdLK7Ywqc4q3HJOYmV1bXDbtqrOUAOLEjV16lSL3RVFRDh+6TgbIjewJXoLKVkp0Bho7I53Y2+CXYPp1aoXdX5dD7VWqcrhu3erBmqqsmdPFQCn0Wium/L86zIW8AP2i8g0wzCaAl9UrVkajUZz86hdG6ZPV16urz/OpN/XH3MpN4OLtWpT+65gOjw+GLuO7arbzAoTnxbP+sj1rI9cT1xqnLm/jXMbQlxD6NumL41rN87f4e67VYuPh8OHVTt0CGJi1BSrifR0NSfr76+ai8tNuyaN5lamPKIrQ0TyDMPIMQyjLhAPlBJAoNFoNLcQGRmwdi0MHUqrVna8+I/anGw0md822rM+N5icaHsavAljxypRZlfDw5sysjPYdnYbf5z+g0MJh8z9DRwbENwmmBDXEFzruZa+ErpJE9VMQf2JiWqlpInDh1Uw3PbtartZMyW+OndW8W2Wiwg0Go2Z8oiuPYZh1AP+gyoHlArsqkqjNBqNpsrJzVVia9EiFdBlZwdDh2IY0OH/RuD+LATuUNOOUVEq1db338OwYTB4cMFZxupGRDgUf4jfT//O9rPbuZqrBJKdtR09W/akv1t//Jr5YWVYlXGkEih8se3bw2OPqYUFYWFw/jz8+qtq1tbwzTcqHYZGoylAqYH0hvpXqKWInL227QrUFZGbmqtAB9JrNJrKIjYmhuZxcfDVV/n5rTw8YOpUFTReCBHYtUuJr4gI1WdtDT16KAHm5VV9cfSm6cN1p9dxIe2Cud+7sTf93frTq3Wvqs8On5cHp07B/v2qZWSoqUcTzz+vPGFduihP2C0SB6fR3AglBdKXuXrx2o6BVWZZOdCiS6PRVApJScRu20bzTz9V202bKrHVq1eZyklE1W9cs0Zlj8jLU/2tW8PAgSplVuE8p1VBTl4OO8/tZG3EWsLOh5mLSzeq1YiBbgPp79YflzrVGGOVm6tUKai8YdOn579mGErgdumiWtu2t87KT42mAtyI6PoIWCgiu6vKuLLQokuj0VQKp04Ru2MHzX/+GcaPh+HDVcbUCnLxIvz2m5pNS0pSfYYBPj4QHKwW+jk5Va7pZ5PP8vvp3/kj8g+uXL0CgK2VLT1a9mBQu0H4NvW9/unDqkIEzp2DPXtUbrDDh1VdSROvv65iwUxjtQDT3CbciOg6gkqMGgWkoRKkiojctMJ/NVV0WVtb4+PjY96eMGECs2bNKnH8P/7xD/72t7+Zt3v27Ml2UyBqBQgLCyM2Npa77rqr2Nf379/PRx99xBdffMHChQt57rnnaNmyJampqbRt25a5c+fSs2fl1Ct3dXVlz5491K1bl4EDB7J+/XpsdD4fTU0iI0OVwAEQIfbPP2nu5VUp01w5OWrqcdMmlV3BtMDPxkbFkwcFqUSsjRuXfpySyMrNYlv0Nn499StHLubXcnV1dmVwu8H0c+1HHftbaLouI0O5C3fvVqsi58/PX5nwr3+p0kZduqib1qKFFmGaW5YKiy7DMFqLSLRhGG2Ke11EzlSyjSVSU0WXk5MTqampZQ+8zvElYSqs/eGHHxb7+rhx43jppZfw8/MrMnbDhg1MnDiRDRs20LFjxxu2xSS6GjVqxKuvvkr79u2ZNGnSDR9Xo7lhrl5VMUbR0XDXXWbXU1V9d6SlqWnHjRvhwAHluDHh6qoEWGAgdOhQdp7Rc1fO8eupX1kfuV7l1AIcbBwIbhNMaLtQ2jdof3vVYc3NhUmT1E000ayZEl9duqhYu5q+bFSjseB6kqP+CASIyBnDMFaIyD1VZt1tRHJyMkFBQaxatQoPDw8mTpxI//79iYiIICMjA39/f7y8vFi0aJFZhG3cuJFXXnmFRo0acejQIQIDA/nuu+8wDIPdu3fz1FNPkZaWhr29Pb///jtz5swhIyODrVu3Mnv2bMaPzy+FmZKSQnh4OH5+fsXaFxISwowZM/j888+ZN28eERERPPbYYyQkJFCrVi3+85//4OnpyU8//cQbb7xBVlYWDRs2ZNGiRTRt2pRLly4xceJEEhISCAoKwlK0jxo1itmzZ2vRpal+YmNVNeuMDLCygkuXKn++rxC1a6v6jQMGqMWQe/YoL9i+fWr1Y1SUWv1ob68qBvn6qta+vQqBMsVqrTm5hoPxB83HbV+/PUPaDyHYNRgHG4cSz39LY20NX3yhbtaePaqdPw8//aTa9OkqfxjoaUjNLU1posvyU12j83KNGDGiSo7700+lF9I2iSgTJgH04YcfMnXqVJ566ikuX77MQw89BMCHH35IWFhYscfav38/hw8fpnnz5vTq1Ytt27YRFBTE+PHjWbp0KV27duXKlSvUqlWL1157rURP1549e/AuZgWWJQEBAXz22WcAzJgxg08//RR3d3f+/PNPHn30UdavX0/v3r3ZuXMnhmHwxRdf8NZbb/Huu+/y6quv0rt3b+bMmcPPP//M559/bj6ut7c3u3dXW+ifRqM8JmFhcPy42m7cGLp1u+npC5yd8wVYdrYKZdq1S5l29mx+pgUAal3EaP8bl+r/huF4GScnqFPLgb6t+zKk/RDcG7rfVNurDScntRqhb1+1SuHECTUNuWeP8naZ+O471W+ahvTwIL9sgEZTsylNdEkJzzXXcHR0LFZEDRo0iGXLlvHYY49x4MCBch0rKCiIli1bAuDv709UVBTOzs64uLjQtWtXAOqW44cjLi6OxmUEkJi8U6mpqWzfvp1x48aZX7t6LQHiuXPnGD9+PHFxcWRlZeHm5gbA5s2b+eGHHwAYNmwY9evXN+9rbW2NnZ0dKSkp1NHLwjU3m6Qk2LZNuZmsrJQbqWPHaveK2NrmJ24HZWZ4uPDr/oOsi/6Z6NydSHoepINjViuaJA+jkW0Il91q8edJSGgLbm5qtu2OcfBYWani4Z6eMHlywdcOHIDISNWWLVOxeQEBSoQFBOj8YJoaTWmiy88wjCsoj5fjteeQH0hfYz7ZZXmkbjZ5eXkcPXoUR0dHEhMTzWKqNOzt7c3Pra2tycnJQUQqHLfh6OhIZmZmqWP2799Px44dycvLo169esUKxyeeeIJnn32WkSNHmqc/TZRm09WrV3FwuE2nQDQ1n5QU9aPbs2fNyl56jcycTHYkbGB1ymqim0TTtAk0zrGmrW0fmqfdRVqUFycSDJKTYffF/NKHoMoftmqV31q3Vo9NmuRnaLgj+Mc/lOvQ5AWLi1MrGTZtUrUxn3xSjcvNVeLtjlGqmluBEkWXiNxJf8aVyrx58+jYsSP/+Mc/eOCBB9ixYwe2trbY2tqSnZ2NbTmXqHt6ehIbG8vu3bvp2rUrKSkpODo6UqdOHVJSUordp2PHjrz77rslHnPTpk18/vnnbNiwgbp16+Lm5sayZcsYN24cImKOB0tOTqZFixYAfP311+b9+/bty6JFi3jppZf45ZdfuHz5svm1S5cu0bhx43Jfn0Zzw1jmhKpXD/r1g0aNyo5Uv8mcTz3P6hOrWXd6HWnZKli8gWMDhrYfyuB2g2ngmC8QRVRIWmQknD6tWmSkqsRz8qRqllhbK+HVvLkqgdismWqNG6s0ZLddRR47O5VktXNnmDFD1YU0xYF1754/butWFScWGKha585VHten0ZRFlX4zGYYxBPg3YA18ISJvFnp9EvDCtc1UYKaIlG8+rgZQOKZryJAhPPDAA3zxxRfs2rWLOnXq0LdvX9544w1effVVZsyYga+vLwEBASxatKjM49vZ2bF06VKeeOIJMjIycHR0ZN26dYSEhPDmm2/i7+9fJJDe09OT5OTkAlN8S5cuZevWraSnp+Pm5saKFSvMKxcXLVrEzJkzeeONN8jOzmbChAn4+fnxyiuvMG7cOFq0aEH37t2JjIwEYO7cuUycOJGAgACCg4Np3bq1+dwbNmwoMY2FRlPpXLqkflj9/aHNtUXWzZpVq0mWmErzrDq+ij9j/jQnMe3YqCPDOwynZ6ue2FgV/Qo2DJUtoUUL6N07v//KFRUPVrhduqScPXFxRQ4FQK1aSpQ1aqRaw4b5z+vXVw5BJ6db2CFkulmmQHsTR46oudw//lDNMNR0pUmEtW9fLeZq7mzKzNN13Qc2DGvgBDAIOAfsBiaKyBGLMT2BoyJy2TCMocArItKt8LFqasqImsq8efOoU6cO0y0zQd8ExowZwz//+U88PDxu6nk1dxgiyt2zb58KuG7aFPr3L7dqqOrvjuzcbDad2cSq46uITFL/rNhY2RDcJpgRHUbQrkG7Sj1fVpZK/B4bmy++4uNVX0IClBFtoOyzUY7CBg3Uo7OzejS1unXzW506agVmjUdEpQvZuzc/MWturnqtY0d46638cVeuqIvWaCqJ60kZcaMEAadE5PQ1A5YAdwNm0SUilplBdwJlBz9pymTmzJksW7bspp4zKyuLUaNGacGlqVpyclQqiDPX0gR26KCmjWqAm+bK1SusObmGn0/+TFJmEgDO9s4Mcx/GUPeh1HOoVyXntbPLj/MqjIgKc4uPVx6xixdVMz1PTFTOoLS0/NfKe866dZWHzMlJCTHTc1OrXbtgq1VLNUfHm/R2GYbygLZpA2PGqPQhBw4oAXZtYRCg5m6fekqVJAoIUJ+nTp1q3BS15vagKj9VLYCzFtvngCJeLAseBH6pQnvuGBwcHJhceMVPFWNnZ8f9999/U8+pucNISYEtW5RKsLFRqSBM04rVSMyVGH489iPro9aTlZsFgFs9N+72uJu+bfpia119MY6Gke+hKm027epVdVsTE9Xiz6Qk9ZicDJcvK0eQZcvKqphIK2yTo2O+ACv86OCgHk3NwaH4Zm+f/9zWthxCztFRxXxZxn2BKlNka5sfQLd8uTqoj4+auh4yRCdm1VQaVSm6ivsTKHYu0zCMEJTo6l3c6yVxPav7NBrNLYiISgeRlKQURJ8+1zUdVFnhFCLC0YtH+eHoD/wZ86e5v4tLF0Z3HI1PE59b6rvJ3l7N0jZtWvZYESXSrlyB1FTVUlJUS01VXjNTs9xOT1ctMzP/eWVhGOoaCjc7u4KPpuembVtbsLfvi/3U7tSPPUz9qP3UjdiH44UzGAm74c+jXPIajt01YedwdD/W7VyxbVK/fEJPoylEVYquc4Clw7slEFt4kGEYvsAXwFARuVTeg9va2pKamoqTk9Mt9eWm0WiuA8NQnq0jR1RCzOvwPIgIqampN7S6Nk/y2HluJz8c/YHjl1QCVlsrW/q79eduj7tp5VzMHN9thmHke5iaNKn4/rm5SnBlZOQ/mp5nZuZvm1pmZvHt6tX8x+zs/P7rww7ofK09gJNjIm2v7Mc+PZ3dT6vEq7a5mTy37zWsJYd4xzZE1vXjbAM/Yup7I461sLXF3GxsKHa7pEdr6/zt0pppnLV1wb7yPOr8sTWDqgykt0EF0g8AYlCB9H8RkcMWY1oD64H7C8V3FaC4QPrc3FwSExPJNlWY1Wg0txe5uSoYycWl0g5pa2tLgwYNsK5gYqus3CzWR65n5dGVxKaq/x3r2NXhLve7GN5heJXFa2nKR26umvK8erXklpWVP8b03HI7O7tgv6nP1OyT4wk+/BHNLx/GOucqkqfOnWdYEVu7A2vazORC7ZpbvMUwlACzFGEmUVZSX3HbZT0v6TUrq5Kfl/W6ZTP1GUbp40prDg5VH7J30wPpRSTHMIzHgd9QKSO+EpHDhmE8cu31T4E5QEPg42veqpzijCwOa2vrMjOvazSaW5T4eHjzTRXk/OyzEBJSLWakZaXxy6lfWHV8FZczVU66JrWaMMpzFIPaDbp9ayHeYlhb58eAVR1NgFeVAjt+HAk7gOwPI+/4CSTnGMH/rktWXbXWw/aXVeSlppPm5k1aSw+ysSU7W72Wk0OJzy37cnOL9ptabm7BMeV5FMnf/1rhkTuW559XEQrVQZVqPRFZA6wp1PepxfPpwM3Na6DRaGo2hw/DP/+poribN6+WfEqXMy6z6vgq1pxaQ3q2Cj5yq+fG2E5j6dWqF9ZWOnf0HYutLXh7Y3h7Y9w3Cav0dDhxgoYejfLH7FujkrZuQE2Fe3qqwHxvb7XithoC8/PylPiyFGKW23l5Bfstx1v2FTfG9Gg6TuH+wo+m5yVtm54X18p6vfA4kaKvVWf+br0mVqPR1Bx++w0+/VR9e3furP4lvYlZxOPT4llxZAW/n/6d7DwVuuDTxIexncbSuVlnHT96J2ByBZmCxRwc8hdtpKSoHHG1a6tC26DmqRIS4Ndf85WHq6t67cwZlUAtKgp+ubY4PygI7r1X5ZbLyFDzmD//rITY2LH5dvz6qwp0Kzy3ZpoHtJwXtLFR+/v55e8fE6MemzYFGxt1iLwcbO2twUF/jqsLLbo0Gk31k5MDX34Jq1er7VGjYOrUm1ZU8GzyWZYfWc7GMxvJuxas061FN8Z1GodHI517rsYjoqLora3zvUjR0XDihEpgZhJIkZHw/fcFo/RNjyahZUqgamLsWJgyRT2PiIC5c1UqiddfV31ZWTB/fvF22dio1QYpKWq5Z0qKWgyyfr0SXX/8AZ98AkePqlIBLi4qR1j9+ip1xYUL5b8HtWrB0qX526++qjLlfvaZ8hgDvPeeSrtia5u/jLPw0k7Tc1NejkmTVIZcgLAwJTB9ffOXuiYnq2WqplwfDg46ar8UtOjSaDTVz9WrKmmljQ089hgMHHhTThuRGMH3h79n+zm1jsfKsCLENYSxncbS2rl1GXtrqpTMTJUILCkpP3GYZQIxk5AxiZmcnILBOnv3wldfqfJAJtGVlqZKR5WGKdLaJEgsA8WcnZUHtp1FVQE7O1Vou3BUuGXEtynq2+QpNQmWS5fUOGdnNe/15rVKeS4uqn/06OLn6wrPEebkFJ2yNJ3DsnyASVCaVgekpZX9Powbl//8l19g+3aYPTv/+GvXwjffFNyncLI1U2ZcUzK2IUPyE9SePau8ga1b5y+aMdl5G1Zy16JLo9FUP7Vrw8svq/+Yr9UFrUqOJhxl6eGl7I3bC6i0D4PaDmJMxzE0dSpHsirN9ZOTo8RG/fr5QuGPP2D3bvVjbKpnu3Yt/Oc/5T+uvb3yOplwc4MBA1QMlYnWreG554pmX3V0zPfwlLaszc0NXnutYJ+dHTz5ZPnttGTKFBg/XnnkjhxR8YzHjikPVWAgPPCAGpeVpQRZhw4qPszdvexK5iZPnCWzZyuvYHZ2/vRpccs7TS0zs2A+PD8/da8sa5w6OipPmikBm2Vej8uXi7etS5d80bVlCyxeDBMmKK8awP79ylPn4FC0tIGpWZY+cHJSU7omj15ubr7QrWFo0aXRaKqH7dvVD4zph6W4OjaViIhwMP4gSw8tJTw+HAB7a3vucr+LUZ6jaODYoErPf8eQnZ1f/NHUEhJUX0KCSnsvAm+/rQQEqGm/bduUR8okupo0UZ6PevWUQHN2zi8K6exctCBk4ehof//8Y5moWxf69q3Sy68wDg5qus7XV23n5qoYsLy8/DEnTypRunu32jaM/GlTDw/o1av8sY+Gke/Fqyh33aWaJcOHq2bCNNVrmYDN8nl6en7MG6j3uGvXgtUlMjOVnSbxdqkcKTwnT1axcqBKhb35pnqv//pX1ZecrKZyR4wAL6+KX3sloUWXRqO5uYjAf/8LS5ao7cDAggHAlX46YW/cXpYeWsqxS8cAqG1bm+EdhjPSYyR17etW2blvW65ezf/xBti8WQV+x8WpH8jS8j8ahopfssxbEBysvDju7vl9xZXsuROwti44fQlKkLzwgvon5dgxFVsWHa3a77+rKU+T6Nq2TT26u0Pjxjc/bb6pzlN583eEhBRNCdO7txKSJqFmKm1g+bxwyYPCok2koNfy8mV1b6orV8Q1tOjSaDQ3j7Q0Fcy7a5f6cn7ggfz/8CsZEWHnuZ0sPbyUiMsRgEpoOspzFMPch1HbrozpmTsdEfVDdfas8qY4XMtJNn+++qG3jJ9KToaDB9Vzw1BeqmbN8msLNWmiBECTJtCgQdEpPHf3goJLUxAnJyVEel+rlJedrepEHjumhJdlzsrFi/MLwjs7q/vavr0StR06XFf5rGrBMPLjwBo1Knu8Jf37KyFvuSiiUSP1mTXF91UTWnRpNJqbQ1QU/OMfyhvi5KRiawICKufYx46pH30fH/I8OrAtehvfH/6eqOQoAOo51GOM5xiGug/VCU2LIylJvT9nzqgf8bNn1aMp0Pqtt/Jj7erUUaIpJSV//27doGVLNVXUqFHVp/u+07G1zZ9atEQEevZUnsSTJ5UY3rNHNSi4EvPiRSXc2rZV42+3dCimlBomnJyq3csFWnRpNJqq4OpVtSIpJkZ9uUdGquXs2dnqR7l3bxXjs2eP+i+9UaPiA4MtxJQ5/qdw37FjMHUquVlX2dwsk+//4sc5azX10DBNuMdnPKH9HsTO2q74491pxMerexAZqdqZM+rHuTicnFTwuSUTJ8L99xf8QWvS5PoKMWoqF8OAv/xFPRdR8XQnT6p26lTBRSq7dqkYJ1Der7Zt1bRmu3YqyL1589tPiNUAtOjSaDQ3Rl4eHD+uluifOKGEVnx8wTG5uXD+vBJW1tYq/qcwtWurL3xPT9WsrFT6iKwsFTu0cKEaN3Vqgb6c8DA2OF9kmXs2cblJcKEWTRq7Mu5/cQyIc8TW9mtYGFLsvmbRdrsKsTNnIDxc/diaMvvv2qVyN1ni6KiCm9u0USKrTRsVqF2vXtEfXgftKbwlMAw1xdusWfEenrp11dR+RIQS3fv3qwZKbP/3v/ljt2xR/xy1aVPVtZZue7To0mg0Fcc0bbF3r/qiTk0t+Lop95CrK7RooaZDsrJUfIaNjRJhly4pL1hCgmqm/8q3b1df+rGxSjQ0b64CasPC1HGzsqBFC7LizrFu+9cstzlBQvtLkJtH8ywH7u3yOMEXHLGJjVTnjo3Njze6tm+BvttBiGVlqR/PkyfVSjBTvqONG1WSzQkT8kWXp6fyNLq5qdamTfUEXGuqF1OMmIj6+4uIUO30aSWsTJ+HnBwVh5mTo7abNVOfGdNnx8tLrS7VlAstujQaTfnIy1MCa+1atSTbMkjVxUXl3vHxUZ6SyEj46CMVKzJjRsHjmARNaGi+oDl6VC35Tk1V8UUhIWqK8vRpJbysrODrr6FTJzKz0vk19xA/BKRyOXcnODrRqscQ7s3xoE/QOKw7ealz2NkpcWVrq+yCon0HD5ZfiFnaXp1iLC9PxVwdP648iydOqHtkSjFga5svuvz8lEC2zFXVvr1aCafRQP7ChyZNoEePoq9nZKig9MhIFed3/rxqf/6pXn/hhfwA/7AwJfxbt1atadMamSurOtGiS6PRlM7Fi0po/f67eg7qizQgQAmtLl3yf+Szs2HBAvjpJ7WdlKT+QzYFVl+LvyoiaA4dUqKhQwclfkJDVTbutWtVFuzERNJSE/k5YSP/63uZK2RBg/q0tWnC+O6P0cO1T8G6iJ6e6tiFBVJxfeURYhaxYzfdK3blijrH8ePq8eRJ9UNoiWEor6K7uwpoN1FcriqNpiLUqQNPP62e5+SohTCRkfkLL0xJTkF5qU01JkH9nbRsmZ9TbMSIm2l5jUSLLo1GUzxRUWpqasuWfC9Ks2aq5MnAgWrpvyUxMWqV2+nTSmRNnapE1MqV+YKkJEHj41NU/NjYwF13kdS/J/879j9+PriCjIvWcLkOHgnC+JPN6XIgDeO3j6F3uPKOdeqUPy1iig2zpHBfSeKsOC9ZRb1i14OIWjFoyrl05EjxXqkmTdS99fBQj23b6lgrTdVjY6MEVKtWxSeZ7dpV/R2YcohduqS+D06fVs9Nois7G556SoUOtGyZ31q0UCLvNkaLLo1Gk4+IKkWyfLmK1wLl1erTR5Vo8fEpGvsjogpVL1yoxIeLi0oHkZtbVJAUJ66gWPETnxbPyqMrWXt6LVm5WWADfn6DudfrXnysXDC2bFExS5GR8NtvqjVvrgRh//5qarM8lFeIFWd7aV6xinq/wsJUFm0fH3jxRdXn5qbEVPv2+XZ26KBjaDQ1k65dVTORlqamws+eLbg6OS4uv980TWmiTh1Vrsj03RATo0INmje/Lf6x0KJLo9Eo4bR3r8oSf/y46rO3h8GDYdSo0tMBGIb6TzYxUcVxzJypprmWLSsqSMaNK17QgFlURF6OZMX2d9gSvYU8UR62bi26Ma7TODwaWeQlGjNGteho2LAB1q9X5/nmG/j2WzX9OXCgyiFVuERMWZTkJSuPV6y0acjdu1WQclqaEreenvllkJo2Vf0JCfnndHRUqTZ0XIzmVqR27eL/lpo3V0l2Y2Lg3Ln8FhOj8r9ZJnBduVL9QwXKu968ufrHzsVFeXgDA2/e9VQChpRWrqGG0KVLF9ljSu6m0WgqDxG1CnHxYhUrBOo/zREjVD21klz9Iipey+Rx2bdP5W4y1XSzTO+Qna0ESSlTb6a6iCuOrGDf+X0AWBvW9G3TlzEdx+Baz7XsazEF+q9bBzt35q+2qlNHTT0OGlSw5ltlUdirtWwZ/POfSmyePasSUublwccfq1gsKysVZ+XkpO7fiBFqXw8PFTNnmV1co7mTMFVBcHbOzwP37bcqVuz8+fy/aRP+/vmFvTMz4W9/UyEQLi4FKyI0alQwr9xNwDCMvSLSpXC/9nRpNHcixYktZ2e45x4YOrR0N350NLzxhor5eued/Fw/dnbl92pdIycvhy1ntvDjsR85nXQaAAcbB0LbhXK3x900rl0BAWJlpf7rDQxU/y1v3KiC/yMjYdUq1dzdlferb9/yFwguC8v/5BMT1Zd/YqISXDk58McfKhg+I0N5rkRU7Fm/fioG7tChyokH02hudQyjaKzo5Mmq5eWpf0piY1U7fz5/AQ+obVMi2MJYWcFrr1Vpjdfyoj1dGs2dhIhKjrl4sRJKoBJgmsSWvX3J+6alqf0WL1aeLcNQ04mmwtXl9GoBpFxN4ZdTv/DzyZ9JzEgEwNnemREdRnCX+13Usa+kYFoRNfW5di1s2pRf1sbGRk07DhigpiGv97/gxMSCPxIPPqgSw6amKqHVsKGKcWnQQKW8sLZW99gkRk0esdhYmDVLCdWakJZCo7nVMKWYMaW0MLULF9Tf6UcfqQUAN4mSPF1adGk0dwIisGOHEkiRkaqvfn0ltoYMKV1siaiYqQUL1JRiXJz6IvP2VgKjAmLh9OXTrDm5hg1RG1RwPNDGuQ13e9xNsGuwKtVTVWRlqXuwbh0cOKCuC5SHr18/lYuoffvyJQkVgccfV16/777Lj0H59FP1Re/trVr79gXTZRRTvqiAUIXbI1mrRlNFiAgZGRmkp6eTnp5OWlpasY8FnqekkJ6ZSfq1/Z5++mm6dCmihyoVPb2o0dyJ5OTAtm1qNWJUlOpr0EDFGYWGqh/2snjhBTVFVreuysn1xBMwZ44SXIVXIBYjCLJzs9l2dhs/n/iZY5eOmfsDXQIZ5TkKv6Z+BXNsVRV2dkpYBQeraYqNG5UAi4mB//1PtebN1dRj375qCfv582r67+BBVbtu/nwlogxDeQgvXlT7m0TXI4+UfP7yrJIsbvEBaCGmuS0QEa5evWoWRKZmuZ2enk5qamqRPksxdaPOohTLYu03GS26NJrbkcxMFc/044/5dRAbNVJia9CgssVWXp6Kgzh2TCU6vXBBBaQ+8ICq49e6dZk/+OeunOP3iN/5I/IPkq+qgsq1bWszwG0Ad7nfRYu6LSrxgiuI6V7cc4/K6L5pE2zerKZcw8Lg739X3qxatZRH0FRvLiJCBbwDPP+8CtK/kZWFhYVYedNSQM3Omq+5LRGRIoKpcLMUTIXFU1paGrmWlSyuEwcHB2rVqkXt2rULPJbW5+joaO5zqqx4zutAiy6N5nbi8mVYswZ+/lkFk4P6sR4zRq3gKyt1wtq18OWXKjj+xRfVj7eDA3TvroTXoUNKdJXg1crIzmBr9FbWRqwt4NVyq+fGMPdhBLsG42BTQ3Lt5OaqGJBjx5THKi9PTfWlpanSOTk5Ki4rPV2JzIED1RiTILVc1l5ZlDctRU3Lmq+5JShJNKWmppZruzK8THZ2dmYhZCmCCgsmy9ctn9eqVQvrm7wSsTLRokujudURUT+oa9aoVAmm/yQ9PZU3Jyio9DilvDwVXL9gAXz/vdr+44/8VAb29kpwWU4lWpCTl8OB8wfYdGYT289u52ruVQAcbRzp26Yvg9oOokPDDjdnCrE0MjLUvTH9l7typQput8TVVaXKMAmT06fVvblyRXnCNm9W06ydO6tVkgEBlS++blbWfC3EbjlEhKysrAJCqPBj4b7CAupGRZPJY1S7dm2zWHJyciogoIoTTaaxthXNmXeboUWXRnOrkpKiEoL+8ouKKwLlgenRQ9Ut7Nix9P337VMrEU+fVj/IsbGq39VVibTjx0tM+5AneRyOP8zmM5vZdnYbKVn5MRLejb0Z2HYgvVr3qj6vlohqpqm/5ctV0tT77oN771V9nTqpJedeXqp5e6sp1MLiMDdXFeTesUOJ2vh4NR25aZMa2769yhfk46PueVVkza7srPmghVg1kZuba45bKk4clSSiTNs5hXNVVRAHBwezMLIUSMUJp8J9t7qXqSagRZdGcyuRmak8Lxs3KtFk8mo1aKAC40NDiy9/U9zKuQceUCsZraxUnNeDDypvV15esQHyWblZhMXs4s9zf7IrdhdJmUnmw7eq24rgNsH0bdMXlzouRc9f1WRkqPw8x4/ntylT1JQgqIz6VlZq2tBEp07w+edlH9vaOn814vTpSuDu3avaoUP5uYGWLVNj3d3V2E6dVPxX3bpVc803kjVfC7HrRkTIzMwst1gqPC6jcLHyCmJra1usWHJycirieSruNS2aqhctujSamk5mpgru3rZNeVoyM1W/YajprdBQNYVoU8Kf89GjMGGCivfKy1Mr9g4eVCLE1VXlt7nnHhg/XtUsLFT/MOx8GLtidrH//H5zmgeAprWb0rdNX/q26Usb5zY3b/owK0t550xi59QpVUKk8LTJ6dP5z7t3V+V0SkuNUR4MI7847913q3tnWt148KCy59gx1Uy4uCix4uGhvGKurjduR2lc7/TkHSLERITs7OxiRVJp25bCKc9UAP46MAyjwPSbSRAV97w4b5RdeVYca2osWnRpNDWR2FhVp2/PHvWjbjml4OGh0h706aPSFlhi+jFs21Z5f/bsgRUrVLoIBwcl2DZtUvvb2anAcUdHc6bmZFcXDta6yIHzfxC26l3Op50vcHj3Bu4EtQiiW4tuuNZzLVloZWWp81vGO/3+u/I0jRyZv3ryl1+Ux+6uu1ScFCiR+PXX6sd86lTVd/Giykp9+XLBMjmJiepcjRrlC5vWrVUJkA4d8sdV1Q+VvX1+FnxQQfdHj6r34NgxJcLi4lTbsEGNMQk3Nzdo1w7atFFJGxs3Ll+OsOuhuoRYFYgzS0+TZYqB4tINlCSgbnSKzt7evogYshRMxYkmy6m6ao9v1FQbWnRpNNWNiJqyOnw4v5nSPID6Ifb0VJnN+/ZVggLUD9rvv6sftA4dVOqDqVNV0HdcXH59Pxsb9ePo4KC8Ln37gqcneQu+4sy+DRxrbsuxy79w7Kd5xKbGFjCttm1tfJr40NmlM0EtgmhkX1/ZY4qVOnQI/vxT2RAUpPpOnID/+z81zfbee/kH++47JZL69VMiCdT05s6dSvSZRNfx4/DDD8orZBJddnZKnIGKu2rdWh1/1y517156CXr1Uq+vXQtz56qpxaeeUn1pafDqq2rf//u/fJvCw9Vjhw6VE4tVq1ZBEZaToxKoHjumruv0abV99qxqmzfn7+vgoMRYq1bq0VRDzsWl8koWWVLVQqyYPvHw4Gp4OOn79pHm6kp68+b5OZiOHyft2DHSmzQhzdm52BxOpu0b8TQB2NjYlOpRKux1KiykbEryKms0ZaA/ORrNzUQEEhJUvqfTp/NTFly5UnCck5OaOuzSRf2Am37ckpKUd2vDBnjmGSUmsrPV1GDv3uoHztVVia569VTgeJcuZKZcJipsI5EtahGZuoHItV8RlRxFplUmWDiz7Kzt8KzfAf+MuvhZNafdXfdhbXUtBuT115X37V//yg/SP3lS5QLLy8sXXc7O+QlELenfX3msDhxQiwBiYtQ1ZWcr8TZ8uBrn7q6SlFp68erUUULKlEXf5Ln64w84c0Z5i0zY2CjBYhJ2oO7b0aPq0ZJPP1Xi54MP8othr1yp7u/o0SrNBigP2/79SgCVtUDBEhsb5XVs21Z580C9R9HRSnBGRKjn0dHKC3jqlGqFcXJS19SkifKINWqU/9iwobpXlSEEShBiEh5OZocOZDRpQnrjxmTk5ZF+6hTpVlakp6aSvmABGRcukO7sTHpsLGl//zsZWVmkR0aSVquWygj+4IOkOziQt29fftoN0z8GqalqCr24/itXVFycSXimpmKfkUHtZs2o3by5imHKzKRWUhK13dxwat++gFAqTlDpKTpNdaFFl0ZTFWRlqTQLMTGqxcaqx6io/Pp/kP+j0rIl9Oypgq8dHODSJfVD7eur9pk6VYm11FS10i45WQkr05RhWBiZD00joa5wIfM0Mb0bEfugLzG19hMTtpqL6ReBXDiddc3zpZZtN8lxwDMiCc+Gnnj+5Unc6rthk4fK6wUwZBKYcn/a2CjRePlyvv2+vso2yx/qunVhxgwlsN57T92H8+eVlwvUIgBLbG3VtJwJDw9VCNpSSBkGPPpo0fs8YEDRvv79VbOkUSNV57Cwh6RjRyUS69fP74uNVYLIMuD5/9s782g96vKOf56Zd78LCVkMJJAFiKGBEE0QFSpuFFnU1qNiheLGqVWktQsUaHuq0h6ox1ahAvaouKB1OYpAZYmSFmpbV9CYYHKzEAjZbi7kJnd593ee/vHMZN7kJpRq7n0T7vM5Z84788xvfvOb+b3zm+88v+2JJ+CTnzQxcMMNqf3yyy0PPv3pVAg+8ohd+ytfmU7IWy5bPnV3W7iTT7blvPPSuIaHUw/Ytm12z5KqyZGRQwuyhN5e61Bx7LG0enqolkpUCgWqhQKVXI5qNks1DKkEAVURKvU6lUqFSqVCtVrdN7VKYmvfrlar+w81MHVqKobuusvSt2eP5XEQWBs7sOegWjVbLgd79pBTpdTTQ1etRqmri66lSylt2kRpwwa6pk2ja2iI0pln0rVoEaV//Ee6o4hSq0XXRz9KV6lE6coryTQadn9uusnOk3jUNm6ESy8dW92ZDGj7fKtAj+I2a86RzbiKLhF5A3AzEAKfU9WbDtgv8f4LgTLwblV9bDzT5Di/Ea2WvWz27DHhMzho6888Y8vAgC1btx70C52hIfNYLFtmbanuvNNeyHv3WgG/YoUNb1Czsa701luphcoQo+w9ocSe7f0M5rcyuHwmg9NCni02GOgK2XWWMrz6b+DSKTAUQLkCj34D5s2FXI5MkGHOtlHmr+tn/tkXs+A172TelHkcs3k7fPMaOCUL006xdAZYe7FczgRTFFm6zzzTeuV1daX3I4rgwQfNU7V4sdlE4Lbbxt67TMY8NbNm2ZI0SJ8zZ3+vVCaTes0OF/m8pf1ArrpqrO2yy8b2Au3ttWrRdiFYrVr+53L7Dzr70EPmtZk3LxVdDz8Mt98OF1xA6/3vp16vUx8YoHbTTdSnT6f+7ndTq9Wo1evU+vqojY5SW7yY2pIl1KpValu2UN2+3cKMjlIdHKS6dy+1oSGqo6NUKxWqrRa1KKIaRTSeT/VbGKZLJrP/dhiaUGr7LRSLFItFSl1dFGfMoNjVRam7m1JvL8Xubkq/8zuUBgboevGLKS5caOMz9fdT2rKF0hln0LV0KcWnniJzxRXpfJOf+MTYeSiTmQ9Wr7Z8S6ox+/st3Y3G2KrNX7O683nb/r8CrVM254hn3ESXiITArcB5wFbgpyJyr6r+qi3YBcAp8XIWcHv8O7GMxx//SHoQJ2MaVU0IrFplX7nz5llhvXattZmaN88K6VotHWpg1ix70VYq5unYvNkEU6lkgmnrVivUSyUTTMno5CMj6MgwjVkzaR47heboMI01P6cuEY1sQG3xIhrZgPq2tdSIqEZPUPmL36W2eQPVBWUqgwOMBk3K679IOYwoLx9kJAfDYYvhNX9Nc/5cWLY1rjpswHyBhVNh2RnmWdi6FZ7eSGbqS5jRO5sZ009j9sOPMnvbELNf9nZmn3MhM7tmEt75FVj5dRg6HmZZw3mKgyYkVG1am9FRW4aH7XwPPTT2eXn96/c1vCefN49Dezf0QgEuusiqvGbMsCWp7vtNpsx5Hqgqqkqr1dq3NJvNMesH+z1waTz1VLreaNCcO5dGo0Hjy1+233qdxrnn0hgZofHxj9NoNKjX6zQ2bqReq1G/7TYa2awJrCefpL5pE/UdO2g98IAltlKx/2yxaFWXCb/8pQm6JUvSdmZbtth9TjoJgP33tm0zQXjaadZ+LPb2SBRRPOEECkFAUZX87t2UqlUKPT0UMhmKjQaFVotitUqxUKDY00MxDCmIUCqXKYYhpalTKYYhxSCgWKsRJP/3ctmWHTvsnJlMWrWZzVp178MP23OSzdqyaRPce6+JmOXL7QPl+OPhu9810Z7JmNBNrvEnPzGRNTxsz2smY+0cg8DOvW6d2UZHzVarWVvCbNbS+J3v2IfMzJn2EXTfffYxMDRkom5gwNpDitizPWuWne/hh802OmqCub/feg1Pn25etA99yMqRXM5EtAh84AOpQPvsZ+0+/OEfprbPf97Cve99h08EHszW6fL6aH33TDDym45Oe8iIRV4BfERVz4+3rwNQ1RvbwvwL8LCqfi3e7gNerao72uNavny5/uxnPxuXdLJuHe9565lUkyqf7h4QYHQEovjeTJkSV/k8A6244CmVrLB79hkL12rZC2jRInsoN2+2glPVPANBEMcJoPYy7+7e//hCHnqnwOCzoECzZQ/UrLiQULW4wwxkQqhWLBxANgdhAM2G2QQIQluP4rGcBMgXLN7ebnR4xOJsNS1sEECtmt6bTNYKi6hl4USsUGu27BgRW0olqFSh2UBzOZAAZs6AHTuhUUeTtj2lIjSaUKtbWoN40uBKBUbLqGAv754eCz8yDM1WHCdWgO7YiTYbaZy5HLRaaFt6tFhEm02o1SzOQNBcHkXNBmg2hN5jiMSqyxSIBDQMbH8U2a9AVCwQiaL1OpEqkUCUyxCFIZFERPUGkQDZjAm5ZtPEWaSW7jB+IbWaaX719ti1Do+kPRNnzLD/2a4BaNTtfzZ9GuHxcyjUobC9n9LOZymFBUqlXkqtkGIU0L1zkO4oQ3HaixDETlGpWJ6dc4695AA2bkRXrkRPOimtftu7F775zX3Jai8NVATN5ez+FwpoPo8WCvbSOukkEzitlonOQgHNZPaJngOXKIoOaWvfF0XRvu1Wq7Vv+2BL+/5k/XDM6zbeiAj5fJ5cGJKr1chls+RnzTJbLkd+40by9Tr5l7+cfG8v+Xye/KpV5Pv6KJx7LoUzz6RQKJDftIn8HXdQWLKE4jXXkM/nKRQKFC69lKwqcvfdqRi68Ub4n/+Ba6+1DgeqJkRuucWG03j7203MDAzAxz5mz9X7329lWLlsPWB37jRvX0+P2deuNaFz/PH2v280LOyaNSYk22cvWLXKhNEZZ6TDZWzZYkLqxBPt2QYTRRs3Wtl68smpd3jHDruW00+3cwwNmSCr1eyjIQzNllR/F4t2TBRZudDdnYZJ2o1Nn27XkbSnDAKLa/duWxIv36mnWjprNQubVOn39NizWy7b+apVe4ZHRy1cd7fZ5syx+PbsseuqVu3adu60ZgTHHGNxL1yYfkQlcS9aZPFt2JDO/3nqqfa+WLXK8ikMzcs8d246blwids8+287x2GMWLp9P234+8ojFVypZ5xowT3sU2bmSMuL737fw+bxVh4vYx1ilYnly4YVmW7nS8isIrH1mGFq4ctny5TWvsR67u3dbr+Vq1dJ/8cV2/IoVdq0iafOGFSvS4y+4wNK6YoUd22yaR37WLIuv0bD7uHSp3cv777f7VKulPZsfeshsM2fa7BvjKLxE5FFVXX6gfTyrF2cDT7dtb2WsF+tgYWYDO5goVq9m5fAotWb8utk9NDbMwCAg+48DVB+FvfGfQbC3Vb0Kqx43W7OVhq+PjI1z9zAMjow9fnhnKpoS2+an0xd4pMBBuju3i6XkWBpjbaOxbaTSdh4FbQubRvr84izvTd/W9ZqtjzxtAhXYt7Pa1paJ+OVYftb277u1TSjvabtW7IFXoLzDRFt7nJW2NJpMitsHtcUpCuU4XJKkIErT03brkGi/6AEYjq+51RZnPjDh20qPlzAi2LsXyeYIdllUARBkAwIEqbUIIyVQISi2CAWCKE9YEUIJCOVFhMdMIWQW4dYnyYyUydSOI8icYCcYLcCuJjURatJgkEbck7BkAnbvUCqEg8CWDRvSNliJV2BgwApIsAJ2ypT9q5QSz8XBvFJRlLYzOkIJgoAgCAjDcN+SyWTGrB/4m81myWQyY5ZsNrtvad9uX8/lcuRyuf3C5nI58vn8vvVsNks+nycMw8MzZMDZZ1sHCtX0haxq7eHq9f29j+efb56zBQtsW8Q6LFxySTqYK9h/JJlv87LL0uNFzIN11VVpFet998E999jL8Pd+z869fr31JD3uOPut1225+mp7+V93nQmPRsMGk/3hD80rumyZvUT7+myWhHnzrMNEs2n/uU99yn6Tzgitlr18n3zShNiJJ9r+vj6L88QTTSD299v5fvADe8G/9rX2/58+3a6z2bThU2o1aw83MGDPy+LF9rE8Ne6t+/TTJmKSYVay8Qepqt3netxWMpu1OBPvWxiaUOjvt7BJ+7beXrufrZaJlzC08z3zjNnK5bTHcbm8v7jL5Ww7WZIeykk7z3rdjqvXLd2Dg7ZeLKadOGo1W7JZ+9282e5rrWbXVauZdxIszVFk6U/aFCaip9m0PG+3JfkgYtcWRRZfX5/FsX272ZPjH3/cji+XLX1RlFYRl8t2v5PONoVC2ia2UrFjd+40WzZrtnXrUo99cv/WrrXfkRGz1WrpfKUTzHh6ut4GnK+qV8TbfwC8TFWvagtzH3Cjqv5XvL0SuEZVH22Pa7w9XX9/yW/TGNoLiD2sgrntm7EwWLAAerphXZ95K5otK1RmzjCbRlBv2IN8zjmW2T/6kWWwKsyZbd6OrVtjrxHWLfzYqfvHmVTDrF+ferWmHQsLTrI/TRSr9ilTIJdP29uIWIGRydgDlnilenttPfmSEzEvRaNh1WhPPWXHN5sWNnHhJ8cfe6wdNzSEJLYZ081TNTiIBIF5tebOhT2D9gWTL1ihsmwZrP0V9MdVAoHA3PlQHo2/WrNIJoQlS5DBPbBhfdzY1sY9kmzWBMP27UjylfqGC5Af/wg2PwlhaOc//TSkXEHW9e0r9ORV50J5FPmv/wYRglIX8sY3goJ84xtIpMgxU5DLL0cQ5PbbkUaDIJuD884jCELkwRUEzRZBmCF445sQhPDf/g1pNAklJLj6asIT5xNs305408cJ6g2kq8teLiecYF+h69aZFyCpDtq1y6599mz7/8QCScLQ1qdNS6uTRkctr0ul1NZqIc1mKo6CYL8egnKI9efa/1zh2n+T5bn2J+tBEOx3zHPZDrQntsTevh2G4XOuJ78+BtIRTFKOQPrSba+ebDbtvx+G+w+TkQyh0j6W2bPP2kt22rRUdA4Pm72rKx3Prdk0URGGqegEK/8qFSu/kuMHBuxcM2ak3rdq1crkQiEVBKefbuv1uj2HfX1mS4RTpWLvkNNPt2d940aLe3jYBO6iRdYT+Ikn7J4kjf3Xr7f2gKOjcNZZ5rHp7zev1MCAeYsWLrQy/J57THRefLHZVK269u/+zu5n0sGjvx/+8i/tvnV1wc03W/quvNKO6ekxUatq1aKNhr0Pbr7ZbB/8oIXv6rJevqo2FMvIiHm/br3VbFdfbd68MLSqVzDb8LCd+8YbbViYTZvgz/4sFUWf/KSFveYaC5vJmAcWTKQPDdk9vvFGS8N115mAiiK4/norX6+/3srLRsPSu3Chif5Gw/Io6exzww1m6+qy9rQd8HR59SK88OusPY0Tn0bHcZxOcCSVj0dDuT5OdEJ0ZYD1wOuAbcBPgXeq6uNtYS4CPoT1XjwLuEVVx3RbGnfR5TiO4ziOc5iY8DZdqtoUkQ8BK7AhI+5Q1cdF5I/i/Z8B7scE10ZsyIj3jFd6HMdxHMdxOsm4jtOlqvdjwqrd9pm2dQWuHM80OI7jOI7jHAmM76A5juM4juM4DuCiy3Ecx3EcZ0Jw0eU4juM4jjMBuOhyHMdxHMeZAMZtyIjDiYgMAE91Oh2O4ziO4zjPg7mqOuNA41EhuhzHcRzHcY52vHrRcRzHcRxnAnDR5TiO4ziOMwG46AJE5A0i0iciG0Xk2k6nZ7IiIieIyH+IyFoReVxE/iS2Hysi3xeRDfHv1E6ndTIiIqGI/FxEvhtve74cAYjIFBH5loisi5+dV3jedB4R+dO4HFsjIl8TkYLnS2cQkTtEZJeIrGmzHTIvROS6WA/0icj5hzMtk150iUgI3ApcAPwW8Psi8ludTdWkpQn8uaqeCrwcuDLOi2uBlap6CrAy3nYmnj8B1rZte74cGdwMPKiqi4AzsDzyvOkgIjIb+GNguaqehk2F9w48XzrFF4E3HGA7aF7E75x3AIvjY26LdcJhYdKLLuBlwEZVfUJV68DXgTd3OE2TElXdoaqPxevD2MtjNpYfX4qDfQn43Y4kcBIjInOAi4DPtZk9XzqMiPQCrwI+D6CqdVXdg+fNkUAGKIpIBigB2/F86Qiq+p/A7gPMh8qLNwNfV9Waqm7G5oZ+2eFKi4sue6k/3ba9NbY5HURE5gEvAX4MvEhVd4AJM2BmB5M2WfkUcA0Qtdk8XzrPAmAA+EJc9fs5EenC86ajqOo24BPAFmAHsFdVv4fny5HEofJiXDWBiy6Qg9h8HI0OIiLdwLeBD6vqUKfTM9kRkYuBXar6aKfT4owhA7wUuF1VXwKM4lVWHSduH/RmYD5wPNAlIpd1NlXO82RcNYGLLlOxJ7Rtz8HcwE4HEJEsJri+qqp3xeZ+ETku3n8csKtT6ZuknA28SUSexKrfXysiX8Hz5UhgK7BVVX8cb38LE2GeN53l9cBmVR1Q1QZwF/BKPF+OJA6VF+OqCVx0wU+BU0RkvojksAZ093Y4TZMSERGsbcpaVf2ntl33Au+K198F3DPRaZvMqOp1qjpHVedhz8e/q+pleL50HFXdCTwtIi+OTa8DfoXnTafZArxcREpxufY6rI2q58uRw6Hy4l7gHSKSF5H5wCnATw7XSX1EekBELsTarITAHar6951N0eRERM4BfgCsJm07dD3WruubwIlYYfY2VT2wUaQzAYjIq4G/UNWLRWQani8dR0SWYh0ccsATwHuwD2rPmw4iIh8FLsF6Zf8cuALoxvNlwhGRrwGvBqYD/cDfAndziLwQkb8C3ovl3YdV9YHDlhYXXY7jOI7jOOOPVy86juM4juNMAC66HMdxHMdxJgAXXY7jOI7jOBOAiy7HcRzHcZwJwEWX4ziO4zjOBOCiy3GcjiMi00TkF/GyU0S2xesjInLbOJ3zwyJy+UHs80RkzWE8T05E/jOeg89xnEmMFwKO43QcVX0WWAogIh8BRlT1E+N1vlgAvRcbvX1cUdW6iKzExmz66nifz3GcIxf3dDmOc8QiIq8Wke/G6x8RkS+JyPdE5EkReYuIfFxEVovIg/EUUojIMhF5REQeFZEVyVQfB/Ba4DFVbbYds0pEfghc2Xb+eSLyAxF5LF5eGdvvFJE3t4X7qoi8SUQWi8hPYi/dL0XklDjI3cCl43GPHMc5enDR5TjO0cRJwEXYZMJfAf5DVU8HKsBFsfD6Z+CtqroMuAM42AwTZwPtE3h/AfhjVX3FAeF2Aeep6ksxT9Utsf1z2MjviMgx2Lx69wN/BNysqkuB5dg8bgBrgDN/zWt2HOcFglcvOo5zNPGAqjZEZDU2bdeDsX01MA94MXAa8H2b8o4Q2HGQeI7D5sJLRNMUVX0k3ncncEG8ngU+HU+10wIWAqjqIyJyq4jMBN4CfFtVm7Gn7K9EZA5wl6puiMO3RKQuIj2qOnyY7oXjOEcZLrocxzmaqAGoaiQiDU3nMYuw8kyAxw/isTqQClCI1wU41Hxof4rN1XYGVjNQbdt3J1Zl+A6sfRiq+q8i8mPMG7dCRK5Q1X+Pw+cPON5xnEmGVy86jvNCog+YISKvABCRrIgsPki4tcDJAKq6B9gbT7gO+7e9OgbYoaoR8AeY5yzhi8CH4zgej8+3AHhCVW8B7gWWxPZpwICqNn7zS3Qc52jFRZfjOC8YVLUOvBX4BxFZBfwCa291IA8Ar2rbfg9wa1w9WGmz3wa8S0R+hFUtjradqx8Tb19oC38JsEZEfgEsAr4c21+DtflyHGcSI6l33nEcZ/IgIt8BrknaXf0ax5ewtmQvVdW9/0fYu4DrVLXv1zmX4zgvDNzT5TjOZOVarEH9/xsReT2wDvjn5yG4csDdLrgcx3FPl+M4juM4zgTgni7HcRzHcZwJwEWX4ziO4zjOBOCiy3Ecx3EcZwJw0eU4juM4jjMBuOhyHMdxHMeZAFx0OY7jOI7jTAD/CxWmOW7BT0COAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'theta': 0.4452, 'epsilon': 0.20520000000000002, 'assignment': '0'}\n" + ] + } + ], + "source": [ + "# set parameters\n", + "def ps(param_synth_method):\n", + " param_choices_true_false = []\n", + " for i in range(len(search_points_theta)):\n", + " theta_val = search_points_theta[i]\n", + " for j in range(len(search_points_epsilon)):\n", + " epsilon_val = search_points_epsilon[j]\n", + "\n", + " # parameters\n", + " # set parameter values\n", + " def alpha(t): return np.piecewise(t, [t>=0], [alpha_val])\n", + " def beta(t): return np.piecewise(t, [t>=0], [beta_val])\n", + " def delta(t): return np.piecewise(t, [t>=0], [delta_val])\n", + " def gamma(t): return np.piecewise(t, [t>=0], [gamma_val])\n", + "\n", + " def epsilon(t): return np.piecewise(t, [t>=0], [epsilon_val])\n", + " def theta(t): return np.piecewise(t, [t>=0], [theta_val])\n", + "\n", + " def zeta(t): return np.piecewise(t, [t>=0], [zeta_val])\n", + " def eta(t): return np.piecewise(t, [t>=0], [eta_val])\n", + "\n", + " def mu(t): return np.piecewise(t, [t>=0], [mu_val])\n", + " def nu(t): return np.piecewise(t, [t>=0], [nu_val])\n", + " def lamb(t): return np.piecewise(t, [t>=0], [lamb_val])\n", + " def rho(t): return np.piecewise(t, [t>=0], [rho_val])\n", + "\n", + " def kappa(t): return np.piecewise(t, [t>=0], [kappa_val])\n", + " def xi(t): return np.piecewise(t, [t>=0], [xi_val])\n", + " def sigma(t): return np.piecewise(t, [t>=0], [sigma_val])\n", + "\n", + " def tau(t): return np.piecewise(t, [t>=0], [tau_val])\n", + "\n", + "\n", + " # USER: set initial conditions\n", + " I0, D0, A0, R0, T0, H0, E0 = 3.33333333000000e-6, 3.33333333000000e-7, 1.66666666000000e-8, 3.33333333000000e-8, 0, 0, 0\n", + " S0 = 1-I0-D0-A0-R0-T0-H0-E0\n", + " y0 = S0, I0, D0, A0, R0, T0, H0, E0 # Initial conditions vector\n", + " # USER: set simulation parameters\n", + " dt = 1\n", + " tstart = 0\n", + " tend = 100\n", + " tvect = np.arange(tstart, tend, dt)\n", + " # simulate/solve ODEs\n", + " sim = odeint(sir_model.SIDARTHE_model, y0, tvect, args=(alpha, beta, gamma, delta, epsilon, mu, zeta, lamb, eta, rho, theta, kappa, nu, xi, sigma, tau))\n", + " S, I, D, A, R, T, H, E = sim.T\n", + "\n", + " # plot results - uncomment next line to plot time series. not recommended for large numbers of points\n", + " sir_model.plotSIDARTHE(tvect, S, I, D, A, R, T, H, E)\n", + " # USER: write query condition.\n", + " query_condition = max(I+D+A+R+T) <= 0.02 #((0.15 <= I[10]) and I[10] <= 1.0)\n", + " query = '1' if query_condition else '0'\n", + " param_assignments = {'theta': theta_val, 'epsilon': epsilon_val, 'assignment': query} # for \"all\", go through every option. for \"any\", only need one good parameter choice.\n", + " print(param_assignments)\n", + " param_choices_true_false.append(param_assignments)\n", + " if param_synth_method == \"any\" and query == '1':\n", + " return param_choices_true_false\n", + " return param_choices_true_false\n", + " \n", + "param_choices_true_false = ps(\"all\")" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgp0lEQVR4nO3de5xVdb3/8debAeQ6YTimAooYaejxwpkw85qagVlQ9iss61in46XwUmlpp4fZSc/ll6e0ssjMtLxQkRZ5o4tZ/YyUQUxFJBEvDKgMiqKCMwzz+f2x1uR2WDOz98ws1h54Px+P/Zh1+X7Xfu89e+3PXpe9tiICMzOzjgYUHcDMzKqTC4SZmWVygTAzs0wuEGZmlskFwszMMrlAmJlZJhcIswJJOkpSY9E5SklaIumoLuZ/SdJVWy+RFcUFwnpM0hOSNkp6WdKzkn4kaUTRuboiabykkDSwj5Y3RNILko7OmPdNSXP74n56In2cr6T/n1WSviGpprt+EbFvRNzVxfz/jIhP9WlYq0ouENZb742IEcBk4G3AlyvprES/eR12LCwR8SrwU+DjHdrVACcB1269dJkOSP8/xwAfAf6tNwvrq8Jq/UO/WTGtukXEKuB2YD9JO0q6RVKTpHXp8Nj2tpLuknSJpLuBDcAESZ+QtFTSS5JWSDqtpP1RkholfUHSGklPS5oh6XhJf5f0vKQvlbQfIOl8SY9Jek7SzyS9MZ39p/TvC+kn60PSPp9M73+dpPmS9ihZXkj6jKRHgUczHv61wImShpVMezfJ+nV7V4+to/S+3lwyfo2ki0vGT5B0f7rV8hdJ+3f+X3lNRDwC/Jnk/7OXpDvT52atpOsljSq5jyckHZsOXyRprqTrJK0HTkmnXZfOb98i+xdJT6XL+/eSZQ2VdG36vC5N/4eNJfO/mG7dvCRpmaRjynk8tnW4QFifkDQOOB5YTPK6+hGwB7A7sBH4TocuHwNOBUYCTwJrgBOAWuATwDclTS5pvwswBBgDXAj8ADgZ+GfgcOBCSRPStmcBM4Ajgd2AdcAV6bwj0r+jImJERCyQNAP4EvABoI7kjfTGDnlnAAcDkzo+9oj4C/B02r/08d0QEa1lPLaypH2uBk4DRgPfB+ZJ2qGMvpNInqfFgID/Inlu3gqMAy7qovt0YC4wCri+kzaHAXuTbKlcKOmt6fSvAOOBCcC7SP5n7Zn2BmYBb4uIkSRF9YnuHottRRHhm289upGszC8DL5C8yX8XGJrR7kBgXcn4XcB/dLPsXwJnp8NHkRSZmnR8JBDAwSXtFwEz0uGlwDEl83YFNgEDSd6sAhhYMv924F9LxgeQbNnskY4HcHQ3eb8M/CYdrk37H1TmY2ssmRfAm0vGrwEuToe/B3ytw7KWAUd2cj8BrCcpkI8BFwMDMtrNABZ3+L8emw5fBPypQ/uLgOvS4fbnc2zJ/HuBmenwCuDdJfM+1f54gTeTFM9jgUFFv5592/Lm/YnWWzMi4nelE9JdLd8EpgI7ppNHSqqJiM3p+MoOfaaRfNp8C8kb9DDgwZImz5X03Zj+fbZk/kag/QD5HsDNktpK5m8G3tTJY9gDuFzS/5ZGItlaeTIrb4YfA1+RNIbkk/DyiFhc5mMr1x7Av0g6s2TaYJItgc5MjojlpRMk7Qx8i2SLYmSaaV0Xy+jusQM8UzK8gdf+F7t16P+P4YhYLukckoKzr6T5wOciYnUZ92dbgXcxWR4+T7K74eCIqOW13ToqafOPywinu0h+AVwKvCkiRgG3dWhfiZXAtIgYVXIbEslxkqzLF68ETuvQfmgku462yJslIp4i2TX1UZLdSz/u4WPbQFJA2u3SIeclHXIOi4iOu8O681/p49k//f+c3EUe6Oaxd+NpYGzJ+LjXLTjihog4jKT4BfA/vbgv62MuEJaHkSSf6F9IDw5/pZv2g4EdgCagNf3EfVwv7n82cEn7gWZJdZKmp/OagDaSfeKl7S+QtG/a/g2S/k8P7vdakn3qh/LavvpKH9v9wEck1UiaSnIcpd0PgNMlHazEcEnvkTSywpwjSXcNpls851XYvxI/I3lud0zva1b7DEl7Szo6LaKvkrxmNneyHCuAC4Tl4TJgKLAW+CtwR1eNI+IlkgPLPyPZ1fERYF4v7v/ytP9vJL2UZjg4va8NwCXA3emZQG+PiJtJPrnOSc/UeQiY1oP7nUuyS+33EfF0Dx/b2cB7SY7rfJTkeAXpshpITlP9Trqs5cApPcj5VZLTkl8EbgVu6sEyyvUfQCPwOPA7kueoOZ23A/DfJK+TZ4CdSU4WsCqhCP9gkJltHZLOIDmAfWS3ja1w3oIws9xI2lXSoel3U/YmOT51c9G5rDw+i8nM8jSY5Psae5LsNptDcjq09QPexWRmZpm8i8nMzDJtU7uYdtpppxg/fnzRMczM+o1FixatjYi6rHnbVIEYP348DQ0NRccwM+s3JD3Z2TzvYjIzs0wuEGZmlskFwszMMrlAmJlZJhcIMzPL5AJhZmaZXCA2b4aHH4anny46Sf8QAcuWwcpyfkPGiIDly2HFiqKT9B9PPAGPPpo8d9a9VavgkUegra37thXapr4H0SNz58Ktt8IOO8BFF8GYMUUnqm533AE33ggDB8IFF8DEiUUnqm4LFsD3v58Mn3MOHHRQoXGq3pIl8PWvJ292n/wkHHVU0Ymq2+OPw8UXw6ZN8IEPwIwZfbp4b0E8/jgMGQKvvgpr1xadpvo99RTU1EBzMzQ1FZ2m+q1alXwSbmuD1f4lzW4980zyZid5K7UcTU3JujhoULJu9jFvQcycCT/+MYwbB5MmFZ2m+k2fDs8/D6NG+dNwOY45Bp58MtniOuywotNUv4MPhqVLYeNGmDq16DTV74AD4MgjYc0aOPHEPl/8NnU11/r6+vClNszMyidpUUTUZ83zLiYzM8vkAmFmZplcIMzMLJMLhJmZZXKBMDOzTC4QZmaWyQXCzMwyuUCYmVkmFwgzM8uUa4GQNFXSMknLJZ2fMf+jkh5Ib3+RdEC5fc3MLF+5FQhJNcAVwDRgEnCSpI4XO3ocODIi9ge+BlxZQV8zM8tRnlsQU4DlEbEiIlqAOcD00gYR8ZeIWJeO/hUYW25fMzPLV54FYgxQer3exnRaZ/4VuL3SvpJOldQgqaHJl582M+szeRYIZUzLvHSspHeSFIgvVto3Iq6MiPqIqK+rq+tRUDMz21KevwfRCIwrGR8LbPGLKZL2B64CpkXEc5X0NTOz/OS5BbEQmChpT0mDgZnAvNIGknYHbgI+FhF/r6SvmZnlK7ctiIholTQLmA/UAFdHxBJJp6fzZwMXAqOB70oCaE13F2X2zSurmZltyb8oZ2a2HfMvypmZWcVcIMzMLJMLhJmZZXKBMDOzTC4QZmaWyQXCzMwyuUCYmVkmFwgzM8vkAmFmZplcIMzMLJMLhJmZZXKBMDOzTC4QZmaWyQXCzMwyuUCYmVkmFwgzM8vkAmFmZplcIMzMLJMLhJmZZXKBMDOzTLkWCElTJS2TtFzS+Rnz95G0QFKzpHM7zDtb0kOSlkg6J8+cZma2pdwKhKQa4ApgGjAJOEnSpA7NngfOAi7t0Hc/4N+AKcABwAmSJuaV1czMtpTnFsQUYHlErIiIFmAOML20QUSsiYiFwKYOfd8K/DUiNkREK/BH4P05ZjUzsw7yLBBjgJUl443ptHI8BBwhabSkYcDxwLishpJOldQgqaGpqalXgc3M7DV5FghlTItyOkbEUuB/gN8CdwB/A1o7aXtlRNRHRH1dXV1Ps5qZWQd5FohGXv+pfyywutzOEfHDiJgcEUeQHKt4tI/zmZlZF/IsEAuBiZL2lDQYmAnMK7ezpJ3Tv7sDHwBuzCWlmZllGpjXgiOiVdIsYD5QA1wdEUsknZ7Ony1pF6ABqAXa0tNZJ0XEeuAXkkaTHMD+TESsyyXo0qXwgx/A2LFwxhkwdGgud7PNeOIJ+O53Yccd4TOfgdraohNVt2eege98B2pq4MwzYaedik5U3datg29/GzZuhFmzYEy5hy23U6+8AldcAc8+C5/+NOy1V58uPtfvQUTEbRHxlojYKyIuSafNjojZ6fAzETE2ImojYlQ6vD6dd3hETIqIAyLi97mFvOkmaG6GxYth2bLc7mabcfvtyUq8ZAk88EDRaarfH/8IjY3w+OOwYEHRaapfQwP8/e/JG97vfld0mur30EPw4INJoZhX9g6asvmb1P/0T/Dyy8kn4d12KzpN9Zs0CVpaYNgwGJd5YpmVestbQIKBA2HChKLTVL/x42HIEGhrg733LjpN9Rs7FoYPT7a49t23zxeviLJOLOoX6uvro6GhobJOEcknvJEjYdSoXHJtUyJg9epkJR49uug0/cMzz8CAAbDzzkUn6R+amqC1FXbdtegk/cO6dckWxJgxyYeRCklaFBH1WfNyOwbRb0j+JFwJyfuFK7XLLkUn6F98unpldtwxueXAu5jMzCyTC4SZmWVygTAzs0wuEGZmlskFwszMMrlAmJlZJhcIMzPL5AJhZmaZXCDMzCyTC4SZmWVygTAzs0wuEGZmlskFwszMMrlAmJlZJhcIMzPL5AJhZmaZXCDMzCxTrgVC0lRJyyQtl3R+xvx9JC2Q1Czp3A7zPitpiaSHJN0oaUieWc3M7PVyKxCSaoArgGnAJOAkSZM6NHseOAu4tEPfMen0+ojYD6gBZuaV1czMtpTnFsQUYHlErIiIFmAOML20QUSsiYiFwKaM/gOBoZIGAsOA1TlmNTOzDvIsEGOAlSXjjem0bkXEKpKtiqeAp4EXI+I3WW0lnSqpQVJDU1NTLyObmVm7PAuEMqZFWR2lHUm2NvYEdgOGSzo5q21EXBkR9RFRX1dX1+OwZmb2enkWiEZgXMn4WMrfTXQs8HhENEXEJuAm4B19nM/MzLqQZ4FYCEyUtKekwSQHmeeV2fcp4O2ShkkScAywNKecZmaWYWBeC46IVkmzgPkkZyFdHRFLJJ2ezp8taRegAagF2iSdA0yKiHskzQXuA1qBxcCVeWU1M7MtKaKswwL9Qn19fTQ0NBQdw8ys35C0KCLqs+b5m9RmZpbJBcLMzDK5QJiZWSYXCDMzy+QCYWZmmVwgzMwsU1nfg5B0KHARsEfaR0BExIT8opmZWZHK/aLcD4HPAouAzfnFMTOzalFugXgxIm7PNYmZmVWVcgvEHyR9neSiec3tEyPivlxSmZlZ4cotEAenf0u/jh3A0X0bx8zMqkVZBSIi3pl3EDMzqy5lneYq6Q2SvtH+y22S/lfSG/IOZ2ZmxSn3exBXAy8BH0pv64Ef5RXKzMyKV+4xiL0i4sSS8a9Kuj+HPGZmViXK3YLYKOmw9pH0i3Mb84lkZmbVoNwtiDOAa9PjDgKeB07JK5SZmRWv3LOY7gcOkFSbjq/PM5SZmRWvywIh6XOdTAcgIr6RQ6ata8MGuPde2Gkn2G+/otNUv5YWuOceGD4cDjoI0teCdaK1NXl91dTA294GA3x9zC61tcF990FzM0yZAoMGFZ2oukXAAw/Aiy8mz9eQIX26+O62IEb26b1Vo+uvhz/8IXkhXngh7LVX0Ymq2y9/mdwGDIDzzoMDDig6UXW780645ppk+Iwz4PDDC41T9Roa4PLLkze+devghBOKTlTdli6FSy+FzZvhySfhYx/r08V3WSAi4qu9WbikqcDlQA1wVUT8d4f5+5CcLjsZ+PeIuDSdvjfw05KmE4ALI+Ky3uTJ9PLLMHBg8oJsbu6+/fZu48bk0/DmzX6+yrFxY7KVFZEMW9c2bkyeqwEDkq1761pzc/J81dTk8vrqbhfTFyLi/0r6NsmlNV4nIs7qom8NcAXwLqARWChpXkQ8XNLseeAsYEaH5S4DDixZzirg5jIeT+U+/nEYPRp23RX22SeXu9imvP/9ydZWbS1Mnlx0mup33HHJSlxTA0ceWXSa6nfIIcmWw6uvwnveU3Sa6rf//vCRj8Bzz8F739vni+9uF9PS9G9DD5Y9BVgeESsAJM0BpgP/KBARsQZYI6mrV8IxwGMR8WQPMnRv9OikSFh5amuTF6SVZ+hQ+NCHik7RfwweDDNmFJ2i/6ipgeOPz23x3e1i+nX699r2aZIGACPKOJNpDLCyZLyR1y76V4mZwI2dzZR0KnAqwO67796DxZuZWZZyr8V0g6RaScNJtgCWSTqvu24Z07bYTdXN/Q4G3gf8vLM2EXFlRNRHRH1dXV0lizczsy6Ue87dpHSLYQZwG7A70N3h8kZgXMn4WGB1hfmmAfdFxLMV9jMzs14qt0AMkjSIpED8KiI20f3WwEJgoqQ90y2BmcC8CvOdRBe7l8zMLD/lXmrj+8ATwN+AP0nag+SKrp2KiFZJs4D5JKe5Xh0RSySdns6fLWkXkgPgtUCbpHNIt1YkDSM5A+q0yh+WmZn1liIqOizwWkdpYES09nGeXqmvr4+Ghp6ccGVmtn2StCgi6rPmlXuQerSkb0m6T9IiSZcD/sEgM7NtWLnHIOYATcCJwAfT4Z922cPMzPq1co9BvDEivlYyfrGkGTnkMTOzKlHuFsQfJM2UNCC9fQi4Nc9gZmZWrHILxGnA9UBzepsDfE7SS5L82xBmZtugcgvEG0h+Qe5rETEIGA8cGxEjI6I2p2xmZlagcgvEFcDbSb64BvAS8J1cEpmZWVUo9yD1wRExWdJigIhYl3472szMtlHlbkFsSn+XIQAk1QFtuaUyM7PClVsgvkXygz07S7oE+H/Af+aWyszMClfWLqaIuF7SIpIf7xEwIyKWdtPNzMz6sXKPQRARjwCP5JjFzMyqSLm7mMzMbDvjAmFmZplcIMzMLJMLhJmZZXKBMDOzTC4QZmaWyQXCzMwyuUCYmVmmXAuEpKmSlklaLun8jPn7SFogqVnSuR3mjZI0V9IjkpZKOiTPrGZm9nplf5O6UunF/a4A3gU0AgslzYuIh0uaPQ+cBczIWMTlwB0R8cH0yrHD8spqZmZbynMLYgqwPCJWREQLya/QTS9tEBFrImIhsKl0uqRa4Ajgh2m7loh4IcesZmbWQZ4FYgywsmS8MZ1WjglAE/AjSYslXSVpeFZDSadKapDU0NTU1LvEZmb2D3kWCGVMizL7DgQmA9+LiIOAV4AtjmEARMSVEVEfEfV1dXU9S2pmZlvIs0A0AuNKxscCqyvo2xgR96Tjc0kKhpmZbSV5FoiFwERJe6YHmWcC88rpGBHPACsl7Z1OOgZ4uIsuZmbWx3I7iykiWiXNAuYDNcDVEbFE0unp/NmSdgEagFqgTdI5wKSIWA+cCVyfFpcVwCfyympmZlvKrUAARMRtwG0dps0uGX6GZNdTVt/7gfo885mZWef8TWozM8vkAmFmZplcIMzMLJMLhJmZZXKBMDOzTC4QZmaWyQXCzMwyuUCYmVkmFwgzM8vkAgGwYQO0thadov/YuBE2beq+nSWam6GlpegU/UdLC7z6atEp+o9Nm5J1MgcuEHffDbNmwZe/DC++WHSa6vfAA3DmmXDeebBmTdFpqt9jj8HZZ8NnPwtPPll0muq3ahV8/vPJc7Z0adFpqt9zz8EFFyTvYYsW9fniXSDuvBNGjIDVq2HFiqLTVL8//xkGDUpemMuWFZ2m+t17b/IJ75VX4G9/KzpN9Xv4YXjhBWhrg7/+teg01e/RR5MPakOGwF139fniXSCOPhpefhl22w0mTCg6TfU7/PDkDW/0aNh77+7bb++mTEkK6vDhcOCBRaepfpMmwahRMGAAvOMdRaepfhMnws47J7vkjjqqzxeviHJ/5K361dfXR0NDQ+UdN25MVuKBuV7cdtvx6qtQU5M8Z9a95maQYPDgopP0Dy0tyRbEkCFFJ+kfWluTD21Dh/aou6RFEZF55Wy/I0KPn9jtllfcyuywQ9EJ+hcX0soMHJjbh1vvYjIzs0wuEGZmlskFwszMMrlAmJlZJhcIMzPLlGuBkDRV0jJJyyWdnzF/H0kLJDVLOrfDvCckPSjpfkk9OHfVzMx6I7fTXCXVAFcA7wIagYWS5kXEwyXNngfOAmZ0sph3RsTavDKamVnn8tyCmAIsj4gVEdECzAGmlzaIiDURsRDwld/MzKpMngViDLCyZLwxnVauAH4jaZGkUztrJOlUSQ2SGpqamnoY1czMOsqzQChjWiXX9Tg0IiYD04DPSDoiq1FEXBkR9RFRX1dX15OcZmaWIc8C0QiMKxkfC6wut3NErE7/rgFuJtllZWZmW0meBWIhMFHSnpIGAzOBeeV0lDRc0sj2YeA44KHckpqZ2RZyO4spIlolzQLmAzXA1RGxRNLp6fzZknYBGoBaoE3SOcAkYCfgZkntGW+IiDvyympmZlvK9WquEXEbcFuHabNLhp8h2fXU0XrggDyzmZlZ1/xNajMzy+QCYWZmmVwgzMwskwuEmZllcoEwM7NMLhBmZpbJBcLMzDK5QJiZWSYXCDMzy+QCYWZmmVwgzMwskwuEmZllcoEwM7NMLhBmZpbJBcLMzDK5QJiZWSYXCDMzy+QCYWZmmVwgzMwskwuEmZllyrVASJoqaZmk5ZLOz5i/j6QFkpolnZsxv0bSYkm35JnTzMy2lFuBkFQDXAFMAyYBJ0ma1KHZ88BZwKWdLOZsYGleGc3MrHN5bkFMAZZHxIqIaAHmANNLG0TEmohYCGzq2FnSWOA9wFU5ZjQzs07kWSDGACtLxhvTaeW6DPgC0NZVI0mnSmqQ1NDU1FRxSDMzy5ZngVDGtCiro3QCsCYiFnXXNiKujIj6iKivq6urNKOZmXUizwLRCIwrGR8LrC6z76HA+yQ9QbJr6mhJ1/VtPDMz60qeBWIhMFHSnpIGAzOBeeV0jIgLImJsRIxP+90ZESfnF9XMzDoamNeCI6JV0ixgPlADXB0RSySdns6fLWkXoAGoBdoknQNMioj1eeUyM7PyKKKswwL9Qn19fTQ0NBQdw8ys35C0KCLqs+b5m9RmZpYpt11M/cbatXDrrbDrrnDssTDANbNL69fDr38NtbUwbRoM9EuoSxs2wC23QE0NnHAC7LBD0YmqW0tLsj42NyfP14gRRSeqbps3w/z58NxzyfO14459univ3T/5Cdx/P7S1wZgxsO++RSeqbjfdBL//ffLCfNObYMqUohNVt9/+Fn71q2R45Eg47rhi81S7BQvg5z8HKbl9+MNFJ6puDzwAN9yQPFcbNsBpp/Xp4v1xecQIaG1NthyGDCk6TfUbNiwppgMG+NNwOYYOhfbjfEOHFpulPxg6NHmzi4Dhw4tOU/122CF5vjZvTtbNPuaD1Bs2wMKFMHo07LdfPsG2JS0tcM89SWE98MDkxWmd27wZ7r032cVUX+9dmN1pa4P77kt2MU2ZAoMGFZ2oukUkWxEvvpg8Xz34kNvVQWoXCDOz7ZjPYjIzs4q5QJiZWSYXCDMzy+QCYWZmmVwgzMwskwuEmZllcoEwM7NM29T3ICQ1AU/28WJ3Atb28TL7mjP2DWfsG87YN7ZWxj0iIvPnOLepApEHSQ2dfYmkWjhj33DGvuGMfaMaMnoXk5mZZXKBMDOzTC4Q3buy6ABlcMa+4Yx9wxn7RuEZfQzCzMwyeQvCzMwyuUCYmVmm7bpASJoqaZmk5ZLOz5g/XdIDku6X1CDpsHL7Fp1R0jhJf5C0VNISSWdXW8aS+TWSFku6pRozSholaa6kR9Ln85AqzPjZ9P/8kKQbJeXy84jlvu4lvU3SZkkfrLRvURmraZ3pLGPJ9NzXGQAiYru8ATXAY8AEYDDwN2BShzYjeO04zf7AI+X2rYKMuwKT0+GRwN+rLWPJ/M8BNwC3VNv/Oh2/FvhUOjwYGFVNGYExwOPA0HT8Z8ApRWQsaXcncBvwwUr6FpyxataZzjKWzMt1nWm/bc9bEFOA5RGxIiJagDnA9NIGEfFypP8NYDgQ5fYtOmNEPB0R96XDLwFLSd5IqiYjgKSxwHuAq3LI1uuMkmqBI4Afpu1aIuKFasqYGggMlTQQGAasLiJj6kzgF8CaHvQtLGM1rTOdZYStts4A2/cupjHAypLxRjJeDJLeL+kR4Fbgk5X0LThj6fzxwEHAPVWY8TLgC0BbDtn6IuMEoAn4UbpJf5Wk4dWUMSJWAZcCTwFPAy9GxG+KyChpDPB+YHalfasgY2mb8RS4znST8TLyX2eA7btAKGPaFuf8RsTNEbEPMAP4WiV9+0BvMiYLkEaQfAo5JyLWV1NGSScAayJiUQ65SvXmeRwITAa+FxEHAa8Aeew/783zuCPJJ9A9gd2A4ZJOLijjZcAXI2JzD/r2hd5kTBZQHevMZWRk3IrrDJC8+LdXjcC4kvGxdLFZHhF/krSXpJ0q7VtExohYK2kQyQv9+oi4KYd8vcoIHAq8T9LxwBCgVtJ1EdHXb269/V83RkT7J8m55FMgepPxncDjEdEEIOkm4B3AdQVkrAfmSILkYnPHS2ots2+hGSPil1W0znT2PB7M1llnEnke4KjmG0lxXEHyqav9QNG+Hdq8mdcOCk4GVpFU/277VkFGAT8GLqvW57FDm6PI7yB1rzICfwb2TocvAr5eTRlJ3jSWkBx7EMlB9TOLyNih/TW8dgC4ataZLjJWzTrTWcYO03NbZ9pv2+0WRES0SpoFzCc5W+DqiFgi6fR0/mzgRODjkjYBG4EPR/KfyexbTRnTUyA/Bjwo6f50kV+KiNuqJWNf5sg545nA9ZIGk6zYn6iyjPdImgvcB7QCi8nhMg1lZqyobzVlJNmirZZ1pir4UhtmZpZpez5IbWZmXXCBMDOzTC4QZmaWyQXCzMwyuUCYmVkmFwizCim5uuun0+GjKr2ipqRTJO2WTzqzvuMCYVa5UcCne9H/FJJLYphVNX8PwqxCktqvvrkM2ERyfaa1wH7AIuDk9MuK/wx8g+Qy3WtJCsOhJN+MXUXyZbdDgPOA9wJDgb8Ap23NLxKadcYFwqxC6ZU+b4mI/SQdBfwK2Jfkejp3k7zh3wP8EZgeEU2SPgy8OyI+Keku4NyIaEiX98aIeD4d/gnws4j49dZ9VGZb2m4vtWHWh+6NiEaA9BIN44EXSLYofptecK2G5FLcWd4p6Qsk11J6I8l1lVwgrHAuEGa911wyvJlkvRKwJCK6/HlSJT8N+l2gPiJWSrqI5CqdZoXzQWqzyr1E8pOUXVkG1Cn9/WpJgyTtm9G/vRisTX+H4IOYVQlvQZhVKCKek3S3pIdIDjQ/m9GmJf2h+W9JegPJunYZye6ja4DZktoPUv8AeBB4Ali4NR6DWTl8kNrMzDJ5F5OZmWVygTAzs0wuEGZmlskFwszMMrlAmJlZJhcIMzPL5AJhZmaZ/j8eX5AqG5fIrAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot \"true/false\" points. Is there any way of characterizing these regions?\n", + "\n", + "sir_model.plot_two_params(\"theta\", \"epsilon\", param_choices_true_false)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'theta': 0.2968, 'epsilon': 0.1368, 'assignment': '0'}, {'theta': 0.2968, 'epsilon': 0.1539, 'assignment': '0'}, {'theta': 0.2968, 'epsilon': 0.171, 'assignment': '0'}, {'theta': 0.2968, 'epsilon': 0.18810000000000002, 'assignment': '0'}, {'theta': 0.2968, 'epsilon': 0.20520000000000002, 'assignment': '0'}, {'theta': 0.3339, 'epsilon': 0.1368, 'assignment': '0'}, {'theta': 0.3339, 'epsilon': 0.1539, 'assignment': '0'}, {'theta': 0.3339, 'epsilon': 0.171, 'assignment': '0'}, {'theta': 0.3339, 'epsilon': 0.18810000000000002, 'assignment': '0'}, {'theta': 0.3339, 'epsilon': 0.20520000000000002, 'assignment': '0'}, {'theta': 0.371, 'epsilon': 0.1368, 'assignment': '0'}, {'theta': 0.371, 'epsilon': 0.1539, 'assignment': '0'}, {'theta': 0.371, 'epsilon': 0.171, 'assignment': '0'}, {'theta': 0.371, 'epsilon': 0.18810000000000002, 'assignment': '0'}, {'theta': 0.371, 'epsilon': 0.20520000000000002, 'assignment': '0'}, {'theta': 0.4081, 'epsilon': 0.1368, 'assignment': '0'}, {'theta': 0.4081, 'epsilon': 0.1539, 'assignment': '0'}, {'theta': 0.4081, 'epsilon': 0.171, 'assignment': '0'}, {'theta': 0.4081, 'epsilon': 0.18810000000000002, 'assignment': '0'}, {'theta': 0.4081, 'epsilon': 0.20520000000000002, 'assignment': '0'}, {'theta': 0.4452, 'epsilon': 0.1368, 'assignment': '0'}, {'theta': 0.4452, 'epsilon': 0.1539, 'assignment': '0'}, {'theta': 0.4452, 'epsilon': 0.171, 'assignment': '0'}, {'theta': 0.4452, 'epsilon': 0.18810000000000002, 'assignment': '0'}, {'theta': 0.4452, 'epsilon': 0.20520000000000002, 'assignment': '0'}]\n" + ] + } + ], + "source": [ + "print(param_choices_true_false)\n", + "\n", + "\n", + "id_number = randint(10**5, 10**6 - 1)\n", + "\n", + "with open(f'sidarthe_july_demo_{id_number}.json', 'w', encoding='utf-8') as f:\n", + " json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/notebooks/sir-auto-eval-constrained-trajectory.ipynb b/scratch/notebooks/sir-auto-eval-constrained-trajectory.ipynb new file mode 100644 index 00000000..2cf050be --- /dev/null +++ b/scratch/notebooks/sir-auto-eval-constrained-trajectory.ipynb @@ -0,0 +1,664 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import scipy\n", + "from scipy.integrate import odeint\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import sir_model" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# initialize recording of parameter choices and true/false\n", + "\n", + "\n", + "beta_search_bounds = [1000*0.000001,1000*0.002]\n", + "gamma_search_bounds = [0.082,0.085]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Start here at each iteration by changing the number of values of beta_val and gamma_val to synthesize , then run the following cells to observe the simulation and tell whether the parameter settings are what you're looking for (1) or not (0)." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "beta_values_to_synthesize = 100\n", + "gamma_values_to_synthesize = 100" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "search_points_beta = np.linspace(beta_search_bounds[0], beta_search_bounds[1], beta_values_to_synthesize)\n", + "search_points_gamma = np.linspace(gamma_search_bounds[0], gamma_search_bounds[1], gamma_values_to_synthesize)" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqY0lEQVR4nO3deZgU1b3/8ffXAQFFQMQkMqhgLqJsM8CAIiK4sRjF6MVIQlSIxAW9anK9QX+5iV4Tnywar6IoyRVwI6KoIPFBJbiggqKDDMoaGERlExVFBpBtvr8/qpvuabpnmqWqoefzep5+purU6arv6Zrp/s6p06fM3RERERGRcB2S6wBEREREagMlXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRqJPrALLRrFkzb9myZa7DEBEREanRnDlzvnD3o1PLD4qkq2XLlpSWluY6DBEREZEamdnH6cp1eVFEREQkAkq6RERERCIQWtJlZmPNbJ2Zzc+w3cxspJktM7MPzKxzWLGIiIiI5FqYPV2PAP2q2d4faB17XAU8FGIsIiIiIjkVWtLl7m8A66upciHwmAfeAZqY2TFhxSMiIiKSS7kc01UIfJq0vjJWJiIiIpJ3cjllhKUp88ijAObPh8rKfduHpWtNBM+NimKUfKffH5HaobAQGjXKzbFzmXStBI5NWm8BrM5FIL//PWzalIsji4iISJRGjIDTT8/NsXOZdE0BrjezCcApwAZ3X5OLQNq2ha1bdy/3LPvdsq0XhiiOncv2ZetgiFFERHLviCNyd+zQki4zexLoDTQzs5XAbUBdAHcfDUwFzgOWAZuBoWHFUpPf/jZXRxYREZHaIrSky91/XMN2B64L6/giIiIiBxLNSC8iIiISASVdIiIiIhFQ0iUiIiISASVdIiIiIhFQ0iUiIiISASVdIiIiIhFQ0iUiIiISASVdIiIiIhFQ0iUiIiISASVdIiIiIhFQ0iUiIiISASVdIiIiIhFQ0iUiIiISASVdIiIiIhFQ0iUiIiISASVdIiIiIhFQ0iUiIiISASVdIiIiIhFQ0iUiIiISASVdIiIiIhFQ0iUiIiISASVdIiIiIhFQ0iUiIiISASVdIiIiIhFQ0iUiIiISASVdIiIiIhFQ0iUiIiISASVdIiIiIhFQ0iUiIiISASVdIiIiIhFQ0iUiIiISgVCTLjPrZ2ZLzGyZmd2SZntjM/uHmc0zswVmNjTMeERERERyJbSky8wKgFFAf6At8GMza5tS7TpgobsXAb2Bv5jZoWHFJCIiIpIrYfZ0dQOWuftyd98GTAAuTKnjwBFmZkBDYD2wI8SYRERERHIizKSrEPg0aX1lrCzZA8DJwGrgQ+BGd68MMSYRERGRnAgz6bI0ZZ6y3hcoA5oDxcADZtYoxJhEREREciLMpGslcGzSeguCHq1kQ4HnPLAM+Ag4KcSYRERERHIizKTrPaC1mbWKDY4fBExJqfMJcDaAmX0XaAMsDzEmERERkZyoE9aO3X2HmV0PvAwUAGPdfYGZXRPbPhr4HfCImX1IcDlyhLt/EVZMIiIiIrkSWtIF4O5TgakpZaOTllcDfcKMQURERORAoBnpRURERCKgpEtEREQkAkq6RERERCJQ45guM+sB3A4cH6tvgLv7CeGGJiIiIpI/shlIPwb4BTAH2BluOCIiIiL5KZuka4O7vxh6JCIiIiJ5LJuk6zUzuwt4DtgaL3T390OLSkRERCTPZJN0nRL7WZJU5sBZ+z8cERERkfxUY9Ll7mdGEYiIiIhIPqtxyggza2xm95hZaezxFzNrHEVwIiIiIvkim3m6xgIbgR/FHt8A48IMSkRERCTfZDOm6/vu/u9J6/9jZmUhxSMiIiKSl7Lp6dpiZqfHV2KTpW4JLyQRERGR/JNNT9e1wKOxcVwGrAeGhBmUiIiISL7J5tuLZUCRmTWKrX8TdlAiIiIi+SZj0mVmP3X3J8zslynlALj7PSHHJiIiIpI3quvpOjz284g02zyEWERERETyVsaky93/Gluc7u4zk7fFBtOLiIiISJay+fbi/VmWiYiIiEgG1Y3p6g6cBhydMq6rEVAQdmAiIiIi+aS6MV2HAg1jdZLHdX0DDAwzKBEREZF8U92YrhnADDN7xN0/jjAmERERkbyTzeSom83sLqAdUD9e6O5nhRaViIiISJ7JZiD9eGAx0Ar4H2AF8F6IMYmIiIjknWySrqPcfQyw3d1nuPvPgFNDjktEREQkr2RzeXF77OcaM/sBsBpoEV5IIiIiIvknm6Tr97GbXf8nwfxcjYBfhBqViIiISJ7J5obXL8QWNwBnhhuOiIiISH6qbnLU+6nmHovufkMoEYmIiIjkoep6ukoji0JEREQkz1U3OeqjUQYiIiIiks9qHNNlZq+R5jJjNpOjmlk/4D6CezU+7O5/TFOnN3AvUBf4wt171bRfERERkYNNNt9evDlpuT7w78COmp5kZgXAKOBcYCXwnplNcfeFSXWaAA8C/dz9EzP7zh7ELiIiIjE7d+5k/fr1bN++vebKsl/UrVuXpk2bUlBQkFX9bL69OCelaKaZzchi392AZe6+HMDMJgAXAguT6vwEeM7dP4kda11WUYuIiEgV69evp379+jRr1gwzy3U4ec/dqaioYP369Rx99NFZPafGGenNrGnSo5mZ9QW+l8W+C4FPk9ZXxsqSnQgcaWavm9kcM7s8q6hFRESkiu3bt9OwYUMlXBExMxo2bLhHPYvZXF6cQzCmywguK34EXJlNPGnKUseG1QG6AGcDDYC3zewdd/9XFvsXERGRJEq4orWnr3eNPV3u3srdT4j9bO3ufdz9rSz2vRI4Nmm9BcEthFLrvOTum9z9C+ANoCjb4EVEROTAcuedd9KuXTs6duxIcXExs2fPzkkcZWVlTJ06ddf6lClT+OMfg+/zDRkyhGeeeWa357z++uucf/75ocWUzbcX6wPDgdMJeqreAh5y929reOp7QGszawWsAgYRjOFK9jzwgJnVAQ4FTgH+d49aICIiIgeEt99+mxdeeIH333+fevXq8cUXX7Bt27acxFJWVkZpaSnnnXceAAMGDGDAgAE5iSWuxp4u4DGgHcF9Fx8ATgYer+lJ7r4DuB54GVgEPO3uC8zsGjO7JlZnEfAS8AHwLsG0EvP3piEiIiKSW2vWrKFZs2bUq1cPgGbNmtG8eXNatmzJF198AUBpaSm9e/cGYMaMGRQXF1NcXEynTp3YuHEjAH/+85/p0KEDRUVF3HLLLQCUl5fTr18/unTpQs+ePVm8eDEQ9Fpdc8019OzZkxNPPJEXXniBbdu28dvf/pannnqK4uJinnrqKR555BGuv/76XbFOnz69ynNSbdq0iZ/97Gd07dqVTp068fzzz+/z65PNmK427p58ye81M5uXzc7dfSowNaVsdMr6XcBd2exPREREanbBBeHs9x//qH57nz59uOOOOzjxxBM555xzuPTSS+nVK/P0m3fffTejRo2iR48eVFRUUL9+fV588UUmT57M7NmzOeyww1i/fj0AV111FaNHj6Z169bMnj2b4cOH8+qrrwKwYsUKZsyYQXl5OWeeeSbLli3jjjvuoLS0lAceeACARx55pMqx0z0n2Z133slZZ53F2LFj+frrr+nWrRvnnHMOhx9++B6+agnZJF1zzexUd38HwMxOAWbu9RFFREQkLzVs2JA5c+bw5ptv8tprr3HppZfuGkeVTo8ePfjlL3/J4MGDufjii2nRogXTp09n6NChHHbYYQA0bdqUiooKZs2axSWXXLLruVu3bt21/KMf/YhDDjmE1q1bc8IJJ+zqBatOTc+ZNm0aU6ZM4e677wbg22+/5ZNPPuHkk0/eo9ckWTZJ1ynA5Wb2SWz9OGCRmX0IuLt33Ouji4iIyH5XU49UmAoKCujduze9e/emQ4cOPProo9SpU4fKykogSF7ibrnlFn7wgx8wdepUTj31VKZPn4677/atwMrKSpo0aUJZWVnaY6bWz+ZbhTU9x9159tlnadOmTY37ylY2Y7r6Aa2AXrFHK+A84HwgpA5MEREROdgsWbKEpUuX7lovKyvj+OOPp2XLlsyZE8y1/uyzz+7aXl5eTocOHRgxYgQlJSUsXryYPn36MHbsWDZv3gwEk742atSIVq1aMXHiRCBIiObNS4x0mjhxIpWVlZSXl7N8+XLatGnDEUccsWuMWDrpnpOsb9++3H///bgHs13NnTt3H1+d7KaM+BhoQpBgXQA0cfeP4499jkBERETyQkVFBVdccQVt27alY8eOLFy4kNtvv53bbruNG2+8kZ49e1a5Zc69995L+/btKSoqokGDBvTv359+/foxYMAASkpKKC4u3nV5b/z48YwZM4aioiLatWtXZWB7mzZt6NWrF/3792f06NHUr1+fM888k4ULF+4aSJ8q3XOS/eY3v2H79u107NiR9u3b85vf/GafXx+LZ3AZK5jdCPwceC5WdBHwN3e/f5+PnqWSkhIvLS2N6nAiIiIHndWrV9O8efNchxG5IUOGcP755zNw4MCcHD/d625mc9y9JLVuNmO6rgROcfdNsR39CXibYAoJEREREclCNkmXATuT1neS/hY/IiIiIpFKnQriQJZN0jUOmG1mkwiSrQuBMaFGJSIiIpJnaky63P0eM3ud4DZAAEPdfd+H8IuIiIjUItlMGRFnBPde1KVFERERkT1UY9JlZr8FHgWOBJoB48zsv8MOTERERCSfZNPT9WOgq7vf7u63AacCg8MNS0RERA42DRs2rLHOm2++Sbt27SguLmbLli17tP/JkyezcOHCUOKKQjZJ1wogecawekB5KNGIiIhIXhs/fjw333wzZWVlNGjQYI+eu7dJ14Eim6RrK7DAzB4xs3HAfKDCzEaa2chwwxMREZGDzeuvv07v3r0ZOHAgJ510EoMHD8bdefjhh3n66ae54447GDw4uGh211130bVrVzp27Mhtt922ax+PPfYYHTt2pKioiMsuu4xZs2YxZcoU/uu//ovi4mLKy8spLy+nX79+dOnShZ49e+66afVHH31E9+7d6dq1636ZSX5/yWbKiEmxR9zr4YQiIiIi+8UFId0aeQ/upD137lwWLFhA8+bN6dGjBzNnzmTYsGG89dZbu2aQnzZtGkuXLuXdd9/F3RkwYABvvPEGRx11FHfeeSczZ86kWbNmrF+/nqZNmzJgwIAqs8+fffbZjB49mtatWzN79myGDx/Oq6++yo033si1117L5ZdfzqhRo8J5LfZCNlNGPBpFICIiIpI/unXrRosWLQAoLi5mxYoVnH766VXqTJs2jWnTptGpUycguHfj0qVLmTdvHgMHDqRZs2YANG3adLf9V1RUMGvWLC655JJdZVu3bgVg5syZu26sfdlllzFixIj938C9kE1Pl4iIiBxM9qBHKiz16tXbtVxQUMCOHTt2q+Pu3HrrrVx99dVVykeOHIlZ9TNUVVZW0qRJE8rKytJur+n5ubAn83SJiIiI7Dd9+/Zl7NixVFRUALBq1SrWrVvH2WefzdNPP82XX34JwPr16wE44ogj2LhxIwCNGjWiVatWTJw4EQgSuHnz5gHQo0cPJkyYAAQD9w8UGZMuM3s89vPG6MIRERGR2qJPnz785Cc/oXv37nTo0IGBAweyceNG2rVrx69//Wt69epFUVERv/zlLwEYNGgQd911F506daK8vJzx48czZswYioqKaNeuHc8//zwA9913H6NGjaJr165s2LAhl02swtw9/QazhUB/YArQm5SZ6N19fdjBxZWUlHhpaWlUhxMRETnorF69mubNm+c6jFon3etuZnPcvSS1bnVjukYDLwEnAHOomnR5rFxEREREspDx8qK7j3T3k4Gx7n6Cu7dKeijhEhEREdkD2UwZca2ZFQE9Y0VvuPsH4YYlIiIikl+yueH1DcB44Duxx3gz+4+wAxMRERHJJ9nM0zUMOMXdNwGY2Z+At4H7wwxMREREJJ9kM0+XATuT1neS8k1GEREREaleNj1d44DZZha//+IPgTGhRSQiIiIHpYKCAjp06MCOHTto1aoVjz/+OE2aNMl1WHvk9ttvp2HDhtx88837fd819nS5+z3AUGA98BUw1N3v3e+RiIiIyEGtQYMGlJWVMX/+fJo2bXrA3Gza3amsrMx1GNndBsjd349NIXGfu88NOygRERE5uHXv3p1Vq1YBUF5eTr9+/ejSpQs9e/Zk8eLFAHz22WdcdNFFFBUVUVRUxKxZswC45557aN++Pe3bt+fee+8FYMSIETz44IO79n/77bfzl7/8BYC77rqLrl270rFjR2677TYAVqxYwcknn8zw4cPp3Lkzn376adp6AHfeeSdt2rThnHPOYcmSJaG9JrrhtYiISD664ILM2667Dvr1C5Zfegmq65Hai5tn79y5k1deeYUrr7wSgKuuuorRo0fTunVrZs+ezfDhw3n11Ve54YYb6NWrF5MmTWLnzp1UVFQwZ84cxo0bx+zZs3F3TjnlFHr16sWgQYO46aabGD58OABPP/00L730EtOmTWPp0qW8++67uDsDBgzgjTfe4LjjjmPJkiWMGzeOBx98MGO9ww8/nAkTJjB37lx27NhB586d6dKlyx63ORtKukRERGS/2LJlC8XFxaxYsYIuXbpw7rnnUlFRwaxZs7jkkkt21du6dSsAr776Ko899hgQjAdr3Lgxb731FhdddBGHH344ABdffDFvvvkmN9xwA+vWrWP16tV8/vnnHHnkkRx33HGMHDmSadOm0alTJwAqKipYunQpxx13HMcffzynnnoqANOmTUtbb+PGjVx00UUcdthhAAwYMCC01yfUpMvM+gH3AQXAw+7+xwz1ugLvAJe6+zNhxiQiIlIrZNtD1a9fotdrH8XHdG3YsIHzzz+fUaNGMWTIEJo0aUJZWVlW+8h0T2iAgQMH8swzz7B27VoGDRq0q/6tt97K1VdfXaXuihUrdiVu1dW79957MYtmUoZsJke92MyWmtkGM/vGzDaa2TdZPK8AGEVw0+y2wI/NrG2Gen8CXt7z8EVERORA07hxY0aOHMndd99NgwYNaNWqFRMnTgSC5GfevHkAnH322Tz00ENAcEnym2++4YwzzmDy5Mls3ryZTZs2MWnSJHr2DG6KM2jQICZMmMAzzzzDwIEDAejbty9jx46loqICgFWrVrFu3brdYspU74wzzmDSpEls2bKFjRs38o+9uJyarWx6uv4MXODui/Zw392AZe6+HMDMJgAXAgtT6v0H8CzQdQ/3LyIiIgeoTp06UVRUxIQJExg/fjzXXnstv//979m+fTuDBg2iqKiI++67j6uuuooxY8ZQUFDAQw89RPfu3RkyZAjdunUDYNiwYbsuCbZr146NGzdSWFjIMcccA0CfPn1YtGgR3bt3B6Bhw4Y88cQTFBQUVIknU73OnTtz6aWXUlxczPHHH78rwQuDVdeNB2BmM929xx7v2Gwg0M/dh8XWLyOY2f76pDqFwN+Bswjm/noh3eXFkpISLy0t3dMQREREao3Vq1fTvHnzXIdR66R73c1sjruXpNbNpqer1MyeAiYDW+OF7v5cDc9Ld4E0NcO7Fxjh7jujup4qIiIikgvZJF2NgM1An6QyB2pKulYCxyattwBWp9QpASbEEq5mwHlmtsPdJ2cRl4iIiMhBo8aky92H7uW+3wNam1krYBUwCPhJyr5bxZfN7BGCy4uT9/J4IiIiIgesbL692MLMJpnZOjP7zMyeNbMWNT3P3XcA1xN8K3ER8LS7LzCza8zsmn0PXURERJLVNE5b9q89fb2zveH134H4rGY/jZWdm0UwU4GpKWWjM9QdkkUsIiIikkbdunWpqKigYcOGkc07VZu5OxUVFdStWzfr52STdB3t7uOS1h8xs5v2NDgREREJT9OmTVm/fj0bN27MdSi1Rt26dWnatGnW9bNJur4ws58CT8bWfwx8uRexiYiISEgKCgo4+uijcx2GVKPGMV3Az4AfAWuBNcDAWJmIiIiIZCmbby9+AoR390cRERGRWiBj0mVmv3L3P5vZ/ew+qSnufkOokYmIiIjkkep6uuL3WtT9d0RERET2Ucaky93jt9ne7O4Tk7eZ2SVpniIiIiIiGWQzkP7WLMtEREREJIPqxnT1B84DCs1sZNKmRsCOsAMTERERySfVjelaTTCeawAwJ6l8I/CLMIMSERERyTfVjemaB8wzs0nAJnffCWBmBUC9iOITERERyQvZjOmaBjRIWm8ATA8nHBEREZH8lE3SVd/dK+IrseXDwgtJREREJP9kk3RtMrPO8RUz6wJsCS8kERERkfyTzQ2vbwImmtnq2PoxwKWhRSQiIiKSh7K59+J7ZnYS0AYwYLG7bw89MhEREZE8kk1PFwQJV1ugPtDJzHD3x8ILS0RERCS/1Jh0mdltQG+CpGsq0B94C1DSJSIiIpKlbAbSDwTOBta6+1CgCM3TJSIiIrJHskm6trh7JbDDzBoB64ATwg1LREREJL9kM6ar1MyaAP9HcDugCuDdMIMSERERyTfVJl1mZsAf3P1rYLSZvQQ0cvcPoghOREREJF9Ue3nR3R2YnLS+QgmXiIiIyJ7LZkzXO2bWNfRIRERERPJYNmO6zgSuMbMVwCaCCVLd3TuGGZiIiIhIPsmYdJnZce7+CcG8XCIiIiKyD6rr6ZoMdHb3j83sWXf/94hiEhEREck71Y3psqRlzcslIiIisg+qS7o8w7KIiIiI7KHqLi8Wmdk3BD1eDWLLkBhI3yj06ERERETyRMaky90LogxEREREJJ9lM0/XXjOzfma2xMyWmdktabYPNrMPYo9ZZlYUZjwiIiIiuRJa0mVmBcAogikn2gI/NrO2KdU+AnrF5vz6HfC3sOIRERERyaUwe7q6Acvcfbm7bwMmABcmV3D3We7+VWz1HaBFiPGIiIiI5EyYSVch8GnS+spYWSZXAi+GGI+IiIhIzmRzG6C9ZWnK0k49YWZnEiRdp4cYj4iIiEjOhJl0rQSOTVpvAaxOrWRmHYGHgf7u/mWI8YiIiIjkTJiXF98DWptZKzM7FBgETEmuYGbHAc8Bl7n7v0KMRURERCSnQuvpcvcdZnY98DJQAIx19wVmdk1s+2jgt8BRwINmBrDD3UvCiklEREQkV8z9wL/DT0lJiZeWluY6DBEREZEamdmcdJ1IoU6OKiIiIiIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhKBOmHu3Mz6AfcBBcDD7v7HlO0W234esBkY4u7vhxlTWmPGwM6dULdu8Dj00MRy6nqdOumX4+upj0PyNK91Dx6VlcHDHcyC1wqC17OiIlEnub47HHlkou7XX8M33wTboGr9OnWgZcvEcRcvDvYd3578aN4cvvOdoN6XX8Ly5YltyTG7wymnQEFBUP7BB0EMqXUAvvtdaNs2WN60CWbNStRLrg/QrRs0bRosL1oUHD+1jjs0bAhnnZVo0z/+ATt2pH99O3aE1q2Dsk8+gXffrbq/ZBdfHLxeAK+8Ap9/XvW4cS1bwmmnBcvffBMcP109gD59gtcA4L33gnalO3ajRnDRRYn1xx9PtCm1frdu0L59sFxeDjNmpK8HcPnlwd8WwAsvwNq1u9cB+P734cwzg+UNG+DppzPv84IL4JhjguW334YPP0xfr3FjGDQosT5mDGzfnv74p50WnCuApUth+vT09QCGDUu06fnnYfXq9PX+7d/g3HOD5a+/hief3L1OPO4LL4TCwmB55kyYNy/9Pps0gZ/8JLH+t79lblOPHlBcHCz/61/wz39maBDw858n/p4nTcrcptatg98pgK++gr//PfM+f/jDRJveeqv6Ng0enFhPblPqee3RAzp1CpaXLKm+TVddlWjTc89lbtOJJ1Zt0/jxmfd50UVV21RWlr5ekybw058m1v/61+rP04HUprlz09dr0gQuuyyxPnp05jadfnrVNk2blvn4V19dtU2rVqWvd+KJ0Ldv5v1EJLSky8wKgFHAucBK4D0zm+LuC5Oq9Qdaxx6nAA/FfkZr2jTYvHnvnpv6wV9QECQfAN9+GyQQBQVB8mUW/DzkEGjQIPiArlMnqLN2bWI7JPZhBm3aBB8ABQXw8cfBH0p8e/KbyhFHwDnnJI43cWLwwZcuQejZE0pKgnoLF1b94E1OegD+8Icg3kMOgXvugWXLEklWcqzdu8N11wX11qyBX/0qEVtq3d/9Dtq1C+o+9VRw/OTtcYWFwR9n3H//N2zdmv5cXHll8EYNwQfpX/6Svh4Er0086XrySZg/P329M85IJF1ffQUjR2beZ4sWiaRr5szgAzWdwsKqSddjjwW/K+lceWUi6Vq+HB59NPPxBwxIJF3Tp2duU69eiaRr40aYMCHzPjt1SiRd8+ZV36bkpGvKlMxtato0kXStXBl8SGcyeHAiQZk5s/rzFE+6KiqC42dy2mmJpGvBgsTvXqrCwqpJ10svZW7T976XSLpWr4apUzMff+jQRJveeaf6NsWTrk2bqt/nGWckPvgWLYIXX0xfr7CwatL1z39mblPz5omka82aoP2ZXHllYvnddzO3afPmxIf55s3V77NXr0SblizJXLewsGrSVV2bCgsTH+Zr18LLL2c+/rBhieX33svcpi1bqrapun327l21TZnqFhZWTbqmTz942pQpQSosrJp0vfJK5ja1aFG1TdUlXT//eWK5ujZ9++0BkXSZp/sPb3/s2Kw7cLu7942t3wrg7n9IqvNX4HV3fzK2vgTo7e5rkvdVUlLipaWlocQJBCd00qTgF23btuBDfdu24LF9e5D0HH98sFxeHpzYHTuCHpd4UhN/nHZa8HP79uCDf+PG9Mc86qjgv3MIjvvhh5njO+mkoCcBgt6OTP/t16+feOMHmDMniDGdY49NfPB8+WXQrky6dEkkKIsWJdqUnCCZBR+mJ5wQrH/7bZDMpSZb8Z/f/37Q4wPBG/oXX6TfZ716QfshSNAWLEgkfMkPCD4k4gnC11/Dp5/uXie+344dgwTFLEgiN22qGmN8+cgjoVWrYP3bb4M3lXRtMgt6Jo44IlhetSrRpuQ68TbFEzkIzn1l5e77heCNKt5799VXiTale63at08kXeXlQZuSJbfpuOOC5a1bg16M1PbEnXBCcJ7MgmTiiy92Py4E/2m2aZMoi5+ndL73PTj66KBe/Dyl7i+ubdtEm5YvT7QptV7jxok2ffttcE4z7bNly6q/e19+mb5evXqJhBeC3+fk85TapmbNguWvvw6SyXT1zILf5/jf00cfZf6Hr0mT4MMHgvOU3KZULVvC4YcHy2vXwvr16esdemjVNi1alOhhTvXd71ZtU6YeBKjaphUrMrepUaNEm7Zt27M2xc9Tqj1p0/e+F7z3QtAjunJl5uOfdFLid2/Fit3/nuIaN97785SpTfXqBe8ncfuzTcnnaX+36bPPqj9PyW1avLj6373kNlX3u9emzZ7/7p17btVYQmBmc9y9ZLfyEJOugUA/dx8WW78MOMXdr0+q8wLwR3d/K7b+CjDC3atkWKEnXRD8R5vpF/CKK2DgwGD5rbfgT3+qur2gIHF58f/+L/GGft99wS9rvHcrubcr3tW5Y0fwhvbss1U/7JOXi4uDP4KdO4M36XiXsFnVD4E6dYIPnsrKoO6nn1bttUru8apXL3hUVgZ/VFu2pL9kF29f/NJg/NJe6iXD+Hrycrr1TGXx8nh8IiIiYRgxIriEGaJMSVeYY7rS/JtH6qdpNnWicdVVwYf9oYfuPqYr3tMAwXiUJ56oOp4r3X+0ADfemP3x412pUjU5TB7nFf+ZLjlMTtjSJY7Jy/F9pJZnGv+1J9uqW09NJjOVJf9MLdvbfWR7jL3ZT5hl+3LcsJ6/t8/d1xhzJYxYDqT2Se0Tv8qUA2EmXSuBY5PWWwCpo/ayqRON5DE21YknZRKe5N6+fP0igoiI1DphfqK9B7Q2s1ZmdigwCEgd3ToFuNwCpwIbUsdziYiIiOSD0Hq63H2HmV0PvEwwZcRYd19gZtfEto8GphJMF7GMYMqIoWHFIyIiIpJLoc7T5e5TCRKr5LLRScsOXBdmDCIiIiIHAg2YEREREYmAki4RERGRCCjpEhEREYmAki4RERGRCIQ2I/3+ZGafAx/nOg4RERGRLBzv7kenFh4USZeIiIjIwU6XF0VEREQioKRLREREJAJKugAz62dmS8xsmZndkut4aiszO9bMXjOzRWa2wMxujJU3NbN/mtnS2M8jcx1rbWRmBWY218xeiK3rvBwAzKyJmT1jZotjfzvddW5yz8x+EXsfm29mT5pZfZ2X3DCzsWa2zszmJ5VlPBdmdmssH1hiZn33Zyy1PukyswJgFNAfaAv82Mza5jaqWmsH8J/ufjJwKnBd7FzcArzi7q2BV2LrEr0bgUVJ6zovB4b7gJfc/SSgiOAc6dzkkJkVAjcAJe7enuBWeIPQecmVR4B+KWVpz0XsM2cQ0C72nAdjecJ+UeuTLqAbsMzdl7v7NmACcGGOY6qV3H2Nu78fW95I8OFRSHA+Ho1VexT4YU4CrMXMrAXwA+DhpGKdlxwzs0bAGcAYAHff5u5fo3NzIKgDNDCzOsBhwGp0XnLC3d8A1qcUZzoXFwIT3H2ru39EcG/obvsrFiVdwYf6p0nrK2NlkkNm1hLoBMwGvuvuayBIzIDv5DC02upe4FdAZVKZzkvunQB8DoyLXfp92MwOR+cmp9x9FXA38AmwBtjg7tPQeTmQZDoXoeYESrrA0pRpHo0cMrOGwLPATe7+Ta7jqe3M7HxgnbvPyXUssps6QGfgIXfvBGxCl6xyLjY+6EKgFdAcONzMfprbqCRLoeYESrqCLPbYpPUWBN3AkgNmVpcg4Rrv7s/Fij8zs2Ni248B1uUqvlqqBzDAzFYQXH4/y8yeQOflQLASWOnus2PrzxAkYTo3uXUO8JG7f+7u24HngNPQeTmQZDoXoeYESrrgPaC1mbUys0MJBtBNyXFMtZKZGcHYlEXufk/SpinAFbHlK4Dno46tNnP3W929hbu3JPj7eNXdf4rOS865+1rgUzNrEys6G1iIzk2ufQKcamaHxd7XziYYo6rzcuDIdC6mAIPMrJ6ZtQJaA+/ur4NqRnrAzM4jGLNSAIx19ztzG1HtZGanA28CH5IYO/T/CMZ1PQ0cR/Bmdom7pw6KlAiYWW/gZnc/38yOQucl58ysmOALDocCy4GhBP9Q69zkkJn9D3Apwbey5wLDgIbovETOzJ4EegPNgM+A24DJZDgXZvZr4GcE5+4md39xv8WipEtEREQkfLq8KCIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iknNmdpSZlcUea81sVWy5wsweDOmYN5nZ5WnKW5rZ/P14nEPN7I3YPfhEpBbTm4CI5Jy7fwkUA5jZ7UCFu98d1vFiCdDPCGZvD5W7bzOzVwjmbBof9vFE5MClni4ROWCZWW8zeyG2fLuZPWpm08xshZldbGZ/NrMPzeyl2C2kMLMuZjbDzOaY2cvxW32kOAt43913JD1nnpm9DVyXdPyWZvammb0fe5wWK3/czC5MqjfezAaYWTszezfWS/eBmbWOVZkMDA7jNRKRg4eSLhE5mHwf+AHBzYSfAF5z9w7AFuAHscTrfmCgu3cBxgLp7jDRA0i+gfc44AZ3755Sbx1wrrt3JuipGhkrf5hg5nfMrDHBffWmAtcA97l7MVBCcB83gPlA171ss4jkCV1eFJGDyYvuvt3MPiS4bddLsfIPgZZAG6A98M/glncUAGvS7OcYgnvhxZOmJu4+I7btcaB/bLku8EDsVjs7gRMB3H2GmY0ys+8AFwPPuvuOWE/Zr82sBfCcuy+N1d9pZtvM7Ah337ifXgsROcgo6RKRg8lWAHevNLPtnriPWSXB+5kBC9L0WKXaAtSPLRuQ6X5ovyC4V1sRwZWBb5O2PU5wyXAQwfgw3P3vZjaboDfuZTMb5u6vxurXS3m+iNQyurwoIvlkCXC0mXUHMLO6ZtYuTb1FwL8BuPvXwIbYDdeh6tirxsAad68ELiPoOYt7BLgpto8FseOdACx395HAFKBjrPwo4HN3377vTRSRg5WSLhHJG+6+DRgI/MnM5gFlBOOtUr0InJG0PhQYFbs8uCWp/EHgCjN7h+DS4qakY31GkLyNS6p/KTDfzMqAk4DHYuVnEoz5EpFazBK98yIitYeZTQJ+FR93tRfPP4xgLFlnd99QQ93ngFvdfcneHEtE8oN6ukSktrqFYED9HjOzc4DFwP1ZJFyHApOVcImIerpEREREIqCeLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERicD/B6zalCmhC2rAAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "False\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqN0lEQVR4nO3de5QU1bn38e/DyE1HQEQTAQVMEOQ2AwwgIoKiXIxiNBhJ1CjReEGPmhxz0Dev0WPiOkm8HEVRklfAS0hQVBBdqATvgqKDDlFugUFUBIKK4gwgt3neP6qb7mm6Z3qAqobm91mr11Tt2l317K6e7md27dll7o6IiIiIhKtergMQERERORAo6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgo6RIRERGJwEG5DiAbLVq08LZt2+Y6DBEREZFazZ8//wt3PyK1fL9Iutq2bUtpaWmuwxARERGplZl9nK5clxdFREREIqCkS0RERCQCoSVdZjbRzNaZ2YcZtpuZjTWz5Wb2TzPrEVYsIiIiIrkWZk/Xw8DQGrYPA9rHHpcDD4YYi4iIiEhOhZZ0ufvrwPoaqpwNPOqBt4FmZnZUWPGIiIiI5FIux3S1Aj5NWl8VKxMRERHJO7mcMsLSlHnkUQAffghVVXu2D0vXmgieGxXFKBItvZ9FwtGqFTRpkptj5zLpWgUcnbTeGlidi0B+/3vYuDEXRxYREZEojRkDJ52Um2PnMumaAVxjZlOAPsAGd1+Ti0A6dYItW3Yt9yz73bKtF4Yojp3L9mVrf4hRRERy79BDc3fs0JIuM/s7MBBoYWargFuA+gDuPh6YCZwBLAc2AaPCiqU2v/1tro4sIiIiB4rQki53/0kt2x24Oqzji4iIiOxLNCO9iIiISASUdImIiIhEQEmXiIiISASUdImIiIhEQEmXiIiISASUdImIiIhEQEmXiIiISASUdImIiIhEQEmXiIiISASUdImIiIhEQEmXiIiISASUdImIiIhEQEmXiIiISASUdImIiIhEQEmXiIiISASUdImIiIhEQEmXiIiISASUdImIiIhEQEmXiIiISASUdImIiIhEQEmXiIiISASUdImIiIhEQEmXiIiISASUdImIiIhEQEmXiIiISASUdImIiIhEQEmXiIiISASUdImIiIhEQEmXiIiISASUdImIiIhEQEmXiIiISARCTbrMbKiZLTWz5WZ2Y5rtTc3sWTNbYGYLzWxUmPGIiIiI5EpoSZeZFQDjgGFAJ+AnZtYppdrVwCJ3LwIGAneZWYOwYhIRERHJlTB7unoDy919hbtvBaYAZ6fUceBQMzOgEFgPbA8xJhEREZGcCDPpagV8mrS+KlaW7H7geGA18AFwnbtXhRiTiIiISE6EmXRZmjJPWR8ClAEtgWLgfjNrEmJMIiIiIjkRZtK1Cjg6ab01QY9WslHA0x5YDnwEdAwxJhEREZGcCDPpehdob2btYoPjRwIzUup8AgwCMLPvAB2AFSHGJCIiIpITB4W1Y3ffbmbXAC8CBcBEd19oZlfGto8Hfgc8bGYfEFyOHOPuX4QVk4iIiEiuhJZ0Abj7TGBmStn4pOXVwOAwYxARERHZF2hGehEREZEIKOkSERERiYCSLhEREZEI1Dqmy8z6AbcCbWL1DXB3Pzbc0ERERETyRzYD6ScAvwTmAzvCDUdEREQkP2WTdG1w9+dDj0REREQkj2WTdL1iZncATwNb4oXu/l5oUYmIiIjkmWySrj6xnyVJZQ6cuvfDEREREclPtSZd7n5KFIGIiIiI5LNap4wws6ZmdreZlcYed5lZ0yiCExEREckX2czTNRGoAH4ce3wDTAozKBEREZF8k82Yru+5+4+S1v/bzMpCikdEREQkL2XT07XZzE6Kr8QmS90cXkgiIiIi+Sebnq6rgEdi47gMWA9cEmZQIiIiIvkmm/9eLAOKzKxJbP2bsIMSERERyTcZky4zu9Dd/2pmv0opB8Dd7w45NhEREZG8UVNP1yGxn4em2eYhxCIiIiKStzImXe7+59jibHefk7wtNpheRERERLKUzX8v3pdlmYiIiIhkUNOYrr7AicARKeO6mgAFYQcmIiIikk9qGtPVACiM1Uke1/UNMCLMoERERETyTU1jul4DXjOzh9394whjEhEREck72UyOusnM7gA6A43ihe5+amhRiYiIiOSZbAbSTwaWAO2A/wZWAu+GGJOIiIhI3skm6Trc3ScA29z9NXf/OXBCyHGJiIiI5JVsLi9ui/1cY2Y/AFYDrcMLSURERCT/ZJN0/T52s+v/JJifqwnwy1CjEhEREckz2dzw+rnY4gbglHDDEREREclPNU2Oeh813GPR3a8NJSIRERGRPFRTT1dpZFGIiIiI5LmaJkd9JMpARERERPJZrWO6zOwV0lxmzGZyVDMbCtxLcK/Gh9z9D2nqDATuAeoDX7j7gNr2KyIiIrK/yea/F29IWm4E/AjYXtuTzKwAGAecDqwC3jWzGe6+KKlOM+ABYKi7f2JmR9YhdhEREYnZsWMH69evZ9u2bbVXlr2ifv36NG/enIKCgqzqZ/Pfi/NTiuaY2WtZ7Ls3sNzdVwCY2RTgbGBRUp2fAk+7+yexY63LKmoRERGpZv369TRq1IgWLVpgZrkOJ++5O5WVlaxfv54jjjgiq+fUOiO9mTVPerQwsyHAd7PYdyvg06T1VbGyZMcBh5nZq2Y238x+llXUIiIiUs22bdsoLCxUwhURM6OwsLBOPYvZXF6cTzCmywguK34EXJpNPGnKUseGHQT0BAYBjYG3zOxtd/9XFvsXERGRJEq4olXX17vWni53b+fux8Z+tnf3we7+Zhb7XgUcnbTemuAWQql1XnD3je7+BfA6UJRt8CIiIrJvuf322+ncuTPdunWjuLiYefPm5SSOsrIyZs6cuXN9xowZ/OEPwf/zXXLJJTz55JO7POfVV1/lzDPPDC2mbP57sREwGjiJoKfqTeBBd/+2lqe+C7Q3s3bAZ8BIgjFcyZ4B7jezg4AGQB/gf+vUAhEREdknvPXWWzz33HO89957NGzYkC+++IKtW7fmJJaysjJKS0s544wzABg+fDjDhw/PSSxxtfZ0AY8CnQnuu3g/cDzwWG1PcvftwDXAi8Bi4Al3X2hmV5rZlbE6i4EXgH8C7xBMK/Hh7jREREREcmvNmjW0aNGChg0bAtCiRQtatmxJ27Zt+eKLLwAoLS1l4MCBALz22msUFxdTXFxM9+7dqaioAOBPf/oTXbt2paioiBtvvBGA8vJyhg4dSs+ePenfvz9LliwBgl6rK6+8kv79+3Pcccfx3HPPsXXrVn7729/y+OOPU1xczOOPP87DDz/MNddcszPW2bNnV3tOqo0bN/Lzn/+cXr160b17d5555pk9fn2yGdPVwd2TL/m9YmYLstm5u88EZqaUjU9ZvwO4I5v9iYiISO3OOiuc/T77bM3bBw8ezG233cZxxx3Haaedxvnnn8+AAZmn37zzzjsZN24c/fr1o7KykkaNGvH8888zffp05s2bx8EHH8z69esBuPzyyxk/fjzt27dn3rx5jB49mpdffhmAlStX8tprr1FeXs4pp5zC8uXLue222ygtLeX+++8H4OGHH6527HTPSXb77bdz6qmnMnHiRL7++mt69+7NaaedxiGHHFLHVy0hm6TrfTM7wd3fBjCzPsCc3T6iiIiI5KXCwkLmz5/PG2+8wSuvvML555+/cxxVOv369eNXv/oVF1xwAeeeey6tW7dm9uzZjBo1ioMPPhiA5s2bU1lZydy5cznvvPN2PnfLli07l3/84x9Tr1492rdvz7HHHruzF6wmtT1n1qxZzJgxgzvvvBOAb7/9lk8++YTjjz++Tq9JsmySrj7Az8zsk9j6McBiM/sAcHfvtttHFxERkb2uth6pMBUUFDBw4EAGDhxI165deeSRRzjooIOoqqoCguQl7sYbb+QHP/gBM2fO5IQTTmD27Nm4+y7/FVhVVUWzZs0oKytLe8zU+tn8V2Ftz3F3nnrqKTp06FDrvrKVzZiuoUA7YEDs0Q44AzgTCKkDU0RERPY3S5cuZdmyZTvXy8rKaNOmDW3btmX+/GCu9aeeemrn9vLycrp27cqYMWMoKSlhyZIlDB48mIkTJ7Jp0yYgmPS1SZMmtGvXjqlTpwJBQrRgQWKk09SpU6mqqqK8vJwVK1bQoUMHDj300J1jxNJJ95xkQ4YM4b777sM9mO3q/fff38NXJ7spIz4GmhEkWGcBzdz94/hjjyMQERGRvFBZWcnFF19Mp06d6NatG4sWLeLWW2/llltu4brrrqN///7Vbplzzz330KVLF4qKimjcuDHDhg1j6NChDB8+nJKSEoqLi3de3ps8eTITJkygqKiIzp07VxvY3qFDBwYMGMCwYcMYP348jRo14pRTTmHRokU7B9KnSvecZDfffDPbtm2jW7dudOnShZtvvnmPXx+LZ3AZK5hdB/wCeDpWdA7wF3e/b4+PnqWSkhIvLS2N6nAiIiL7ndWrV9OyZctchxG5Sy65hDPPPJMRI0bk5PjpXnczm+/uJal1sxnTdSnQx903xnb0R+AtgikkRERERCQL2SRdBuxIWt9B+lv8iIiIiEQqdSqIfVk2SdckYJ6ZTSNIts4GJoQalYiIiEieqTXpcve7zexVgtsAAYxy9z0fwi8iIiJyAMlmyog4I7j3oi4tioiIiNRRrUmXmf0WeAQ4DGgBTDKz/xt2YCIiIiL5JJuerp8Avdz9Vne/BTgBuCDcsERERGR/U1hYWGudN954g86dO1NcXMzmzZvrtP/p06ezaNGiUOKKQjZJ10ogecawhkB5KNGIiIhIXps8eTI33HADZWVlNG7cuE7P3d2ka1+RTdK1BVhoZg+b2STgQ6DSzMaa2dhwwxMREZH9zauvvsrAgQMZMWIEHTt25IILLsDdeeihh3jiiSe47bbbuOCC4KLZHXfcQa9evejWrRu33HLLzn08+uijdOvWjaKiIi666CLmzp3LjBkz+PWvf01xcTHl5eWUl5czdOhQevbsSf/+/XfetPqjjz6ib9++9OrVa6/MJL+3ZDNlxLTYI+7VcEIRERGRveKskG6NXIc7ab///vssXLiQli1b0q9fP+bMmcNll13Gm2++uXMG+VmzZrFs2TLeeecd3J3hw4fz+uuvc/jhh3P77bczZ84cWrRowfr162nevDnDhw+vNvv8oEGDGD9+PO3bt2fevHmMHj2al19+meuuu46rrrqKn/3sZ4wbNy6c12I3ZDNlxCNRBCIiIiL5o3fv3rRu3RqA4uJiVq5cyUknnVStzqxZs5g1axbdu3cHgns3Llu2jAULFjBixAhatGgBQPPmzXfZf2VlJXPnzuW8887bWbZlyxYA5syZs/PG2hdddBFjxozZ+w3cDdn0dImIiMj+pA49UmFp2LDhzuWCggK2b9++Sx1356abbuKKK66oVj527FjMap6hqqqqimbNmlFWVpZ2e23Pz4W6zNMlIiIistcMGTKEiRMnUllZCcBnn33GunXrGDRoEE888QRffvklAOvXrwfg0EMPpaKiAoAmTZrQrl07pk6dCgQJ3IIFCwDo168fU6ZMAYKB+/uKjEmXmT0W+3lddOGIiIjIgWLw4MH89Kc/pW/fvnTt2pURI0ZQUVFB586d+c1vfsOAAQMoKiriV7/6FQAjR47kjjvuoHv37pSXlzN58mQmTJhAUVERnTt35plnngHg3nvvZdy4cfTq1YsNGzbksonVmLun32C2CBgGzAAGkjITvbuvDzu4uJKSEi8tLY3qcCIiIvud1atX07Jly1yHccBJ97qb2Xx3L0mtW9OYrvHAC8CxwHyqJ10eKxcRERGRLGS8vOjuY939eGCiux/r7u2SHkq4REREROogmykjrjKzIqB/rOh1d/9nuGGJiIiI5Jdsbnh9LTAZODL2mGxm/xF2YCIiIiL5JJt5ui4D+rj7RgAz+yPwFnBfmIGJiIiI5JNs5ukyYEfS+g5S/pNRRERERGqWTU/XJGCemcXvv/hDYEJoEYmIiMh+qaCggK5du7J9+3batWvHY489RrNmzXIdVp3ceuutFBYWcsMNN+z1fdfa0+XudwOjgPXAV8Aod79nr0ciIiIi+7XGjRtTVlbGhx9+SPPmzfeZm027O1VVVbkOI7vbALn7e7EpJO519/fDDkpERET2b3379uWzzz4DoLy8nKFDh9KzZ0/69+/PkiVLAPj3v//NOeecQ1FREUVFRcydOxeAu+++my5dutClSxfuueceAMaMGcMDDzywc/+33nord911FwB33HEHvXr1olu3btxyyy0ArFy5kuOPP57Ro0fTo0cPPv3007T1AG6//XY6dOjAaaedxtKlS0N7TXTDaxERkXx01lmZt119NQwdGiy/8ALU1CO1GzfP3rFjBy+99BKXXnopAJdffjnjx4+nffv2zJs3j9GjR/Pyyy9z7bXXMmDAAKZNm8aOHTuorKxk/vz5TJo0iXnz5uHu9OnThwEDBjBy5Eiuv/56Ro8eDcATTzzBCy+8wKxZs1i2bBnvvPMO7s7w4cN5/fXXOeaYY1i6dCmTJk3igQceyFjvkEMOYcqUKbz//vts376dHj160LNnzzq3ORtKukRERGSv2Lx5M8XFxaxcuZKePXty+umnU1lZydy5cznvvPN21tuyZQsAL7/8Mo8++igQjAdr2rQpb775Jueccw6HHHIIAOeeey5vvPEG1157LevWrWP16tV8/vnnHHbYYRxzzDGMHTuWWbNm0b17dwAqKytZtmwZxxxzDG3atOGEE04AYNasWWnrVVRUcM4553DwwQcDMHz48NBen1CTLjMbCtwLFAAPufsfMtTrBbwNnO/uT4YZk4iIyAEh2x6qoUMTvV57KD6ma8OGDZx55pmMGzeOSy65hGbNmlFWVpbVPjLdExpgxIgRPPnkk6xdu5aRI0furH/TTTdxxRVXVKu7cuXKnYlbTfXuuecezKKZlCGbyVHPNbNlZrbBzL4xswoz+yaL5xUA4whumt0J+ImZdcpQ74/Ai3UPX0RERPY1TZs2ZezYsdx55500btyYdu3aMXXqVCBIfhYsWADAoEGDePDBB4HgkuQ333zDySefzPTp09m0aRMbN25k2rRp9O8f3BRn5MiRTJkyhSeffJIRI0YAMGTIECZOnEhlZSUAn332GevWrdslpkz1Tj75ZKZNm8bmzZupqKjg2d24nJqtbHq6/gSc5e6L67jv3sByd18BYGZTgLOBRSn1/gN4CuhVx/2LiIjIPqp79+4UFRUxZcoUJk+ezFVXXcXvf/97tm3bxsiRIykqKuLee+/l8ssvZ8KECRQUFPDggw/St29fLrnkEnr37g3AZZddtvOSYOfOnamoqKBVq1YcddRRAAwePJjFixfTt29fAAoLC/nrX/9KQUFBtXgy1evRowfnn38+xcXFtGnTZmeCFwarqRsPwMzmuHu/Ou/YbAQw1N0vi61fRDCz/TVJdVoBfwNOJZj767l0lxdLSkq8tLS0riGIiIgcMFavXk3Lli1zHcYBJ93rbmbz3b0ktW42PV2lZvY4MB3YEi9096dreV66C6SpGd49wBh33xHV9VQRERGRXMgm6WoCbAIGJ5U5UFvStQo4Omm9NbA6pU4JMCWWcLUAzjCz7e4+PYu4RERERPYbtSZd7j5qN/f9LtDezNoBnwEjgZ+m7LtdfNnMHia4vDh9N48nIiIiss/K5r8XW5vZNDNbZ2b/NrOnzKx1bc9z9+3ANQT/lbgYeMLdF5rZlWZ25Z6HLiIiIslqG6cte1ddX+9sb3j9NyA+q9mFsbLTswhmJjAzpWx8hrqXZBGLiIiIpFG/fn0qKyspLCyMbN6pA5m7U1lZSf369bN+TjZJ1xHuPilp/WEzu76uwYmIiEh4mjdvzvr166moqMh1KAeM+vXr07x586zrZ5N0fWFmFwJ/j63/BPhyN2ITERGRkBQUFHDEEUfkOgypQa1juoCfAz8G1gJrgBGxMhERERHJUjb/vfgJEN7dH0VEREQOABmTLjP7L3f/k5ndx66TmuLu14YamYiIiEgeqamnK36vRd1/R0RERGQPZUy63D1+m+1N7j41eZuZnZfmKSIiIiKSQTYD6W/KskxEREREMqhpTNcw4AyglZmNTdrUBNgedmAiIiIi+aSmMV2rCcZzDQfmJ5VXAL8MMygRERGRfFPTmK4FwAIzmwZsdPcdAGZWADSMKD4RERGRvJDNmK5ZQOOk9cbA7HDCEREREclP2SRdjdy9Mr4SWz44vJBERERE8k82SddGM+sRXzGznsDm8EISERERyT/Z3PD6emCqma2OrR8FnB9aRCIiIiJ5KJt7L75rZh2BDoABS9x9W+iRiYiIiOSRbHq6IEi4OgGNgO5mhrs/Gl5YIiIiIvml1qTLzG4BBhIkXTOBYcCbgJIuERERkSxlM5B+BDAIWOvuo4AiNE+XiIiISJ1kk3RtdvcqYLuZNQHWAceGG5aIiIhIfslmTFepmTUD/h/B7YAqgXfCDEpEREQk39SYdJmZAf/j7l8D483sBaCJu/8ziuBERERE8kWNlxfd3YHpSesrlXCJiIiI1F02Y7reNrNeoUciIiIikseyGdN1CnClma0ENhJMkOru3i3MwERERETyScaky8yOcfdPCOblEhEREZE9UFNP13Sgh7t/bGZPufuPIopJREREJO/UNKbLkpY1L5eIiIjIHqgp6fIMyyIiIiJSRzVdXiwys28Ierwax5YhMZC+SejRiYiIiOSJjEmXuxdEGYiIiIhIPstmnq7dZmZDzWypmS03sxvTbL/AzP4Ze8w1s6Iw4xERERHJldCSLjMrAMYRTDnRCfiJmXVKqfYRMCA259fvgL+EFY+IiIhILoXZ09UbWO7uK9x9KzAFODu5grvPdfevYqtvA61DjEdEREQkZ8JMuloBnyatr4qVZXIp8HyI8YiIiIjkTDa3AdpdlqYs7dQTZnYKQdJ1UojxiIiIiORMmEnXKuDopPXWwOrUSmbWDXgIGObuX4YYj4iIiEjOhHl58V2gvZm1M7MGwEhgRnIFMzsGeBq4yN3/FWIsIiIiIjkVWk+Xu283s2uAF4ECYKK7LzSzK2PbxwO/BQ4HHjAzgO3uXhJWTCIiIiK5Yu77/h1+SkpKvLS0NNdhiIiIiNTKzOan60QKdXJUEREREQko6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgo6RIRERGJgJIuERERkQgcFObOzWwocC9QADzk7n9I2W6x7WcAm4BL3P29MGNKa+JE2L4d6teHBg2q/6zpcdBBmX/GH2aRNyd07sGjqqr6z3r1gtcNYMcOqKhIbEutf/jhibpffQXffJPYBom69etD27aJYy9eHOw7vs/4A6BlSzjyyGD5yy9hxYrE/lLr9ukDBQXB8oIFsGHDrnXc4Tvfgc6dg/WNG2Hu3F3rxH/26QPNmyfiLC/ftY47FBbCoEGJNj37bPD+S60L0K0btG8fLH/yCcybl9iWXA/gRz8K3nMAL70E69btWs89eD379QvWv/kGZsyovp9kgwcHrwHAu+/CokXp6zVpAueck1h/7LFd2xTXuzd06RIsl5fDq6+mrwdw8cXBewDguedg7dr09b73PTj11GD566/hiSfSxwlw1llw1FHB8ltvwQcfpN9n06YwcmRifcIE2LYt/T5PPDE4VwDLlsHs2ZmPf9lliTY98wysXp2+3ve/D6efHix//TX87W+Z93n22dCqVbA8Z07wnk6nWTP46U8T63/5S+Y29esHxcXB8r/+Bf/4R+bj/+IXid/nadMyt6l9++A9BcHvfU1t+uEPE216882a23TBBYn15Dalntd+/aB792B56dKa23T55Yk2Pf105jYdd1z1Nk2enHmf55xTvU1lZenrNWsGF16YWP/zn2s+T/tjm8aPz9ymk06q3qZZszIf/4orqrfps8/S1zvuOBgyJPN+IhJa0mVmBcA44HRgFfCumc1w9+RP7WFA+9ijD/Bg7Ge0XnwRNm3aveemfvkXFCQSrW+/TSQj8fJ69YKfBx8cJB4FBUFisHZtUB5/bvLPjh2DL4CCAvj448QvSuoHSmFh8KaKH+/xx6t/8SU/Bg6EkpKg7sKFwYc/pE9S/vhHaNw4qHvXXcGXSjy25KTyxBPh6quDemvWwK9/ndiW2q7f/S744jULviCffTZ9gtqqVfDLGXfzzbBlS/pzcemlwQc1BF+kd92Vvh7A1KmJpGvKFPjww/T1Tj45kXR99RWMHZt5n0cfnUi65sxJvKapWrWqnnQ9+mjwXknn0ksTSdeKFUHdTM4+O5F0zZ6duU0DBiSSroqK4H2SSffuiaRrwYKa25ScdM2YkblNzZsnkq5PP4Xp0zMf/8ILEwnKnDk1n6d40rVxY/B+yuTEExNJ18KFmeu2alU96Xrhhcxt+u53E0nX6tUwc2bm448alWjT22/X3KZ40rVxIzz/fOZ9nnxy4otv8eLMdVu1qp50/eMfmdvUqlUi6VqzJmh/Jpdemlh+553Mbdq0KfFlvmlTzfscMCDRpiVLMtdt1ap60lVbm+Jf5mvXBp/9mVx2WWL53Xczt2nz5uptqmmfAwcm2rR0aea6rVpVT1Bmz86/Nr30UuY2tW5dvU01JV2/+EViuaY2ffvtPpF0mWf6C3dPd2zWF7jV3YfE1m8CcPf/SarzZ+BVd/97bH0pMNDd1yTvq6SkxEtLS0OJEwh+SadNC95cW7cGX+pbtyYeHTtCmzZBVl5eHpzY7duDR3KvS1VV8GVWVRVs++CD4EstncMPD/46h+AN/sEHmePr2DHoSYCgt2Pt2vT1GjVKfPADzJ8fxJfO0Ucnvni+/DLRK5NOz56JBGXx4qBNyQlSPPk67DA49tig7Ntvg7rx7ck/IWh7YWGwvGYNfPHFrnXr1YOGDaFDh8QxFi4MXuv4enL9li2DBMEs6Bn45JPMiWy3bokEpbw8+FJL3p7cprZtg+Vvvw0+VJLrJC9///tw6KFB2erV8Pnn6ffZsCEcf3yi/IMPgvdMatIZb9ORRwbLX30VJCmpr2V8uWvXxHmKtym1LgRtatMmWN6yJejFSFcv+TyZBW2Kn6fUY8fPU7xs4cJEAp/qu9+FI45InKdVq3bdX1ynTok2rViR+OMotV7TpnDMMYk2xf8wSKdt2+rvvS+/TL/Phg2Dv47jFi2quU0tWgTL8Talez3jf0TF2/TRR5n/4GvWLPjyibdp+fKa23TIIcHy2rWwfn36eg0aJJJ4CH5HM7XpO9+p3qZMPQhQvU0rV2ZuU5MmiTZt3Vq3NsXPU6q6tOm73w0+eyHo3U5+76Xq2DHxGbFyZeL3KVXTprt/njK1qWHD4PMkbm+2Kfk85bJNS5bU/N5LblNN770OHer+3jv99OqxhMDM5rt7yS7lISZdI4Ch7n5ZbP0ioI+7X5NU5zngD+7+Zmz9JWCMu1fLsEJPuiD4izbTG/Dii2HEiGD5zTeDnp9k8UuJ9esHXdvxD/SxY4MP/4KCIIGoFxtCV69e8CExZEiQnH39ddAtmvxFXi9puF1RUfBLsGNH8KZaE8tJky9zmQUxHH10UK+qKkg6knuu4qqqggStQYNgecuWRK9cup6uevUSy/F9p14yjC+nXnKMl8WPm64s/jPTL6CIiMjeMmZMcAkzRJmSrjDHdKUbzJSa4WVTJxqXXx4kBA0aVB/P1aBB8Fd5XO/ewfXt5PFbmcZtXXtt9sfv0WPP4s8n6RK65Ee6xLC2R2r95PVM+0qtU9s+0u0zU53kn9mW1VY/m31l+9xM22s7Tk319vZzd9fe3me2z63LMUL6Y3ifOW6u2icCiatMORBm0rUKODppvTWQOmovmzrRiI8HqU08KZPwxHv8knv7RERE9nNhfqu9C7Q3s3Zm1gAYCcxIqTMD+JkFTgA2pI7nEhEREckHofV0uft2M7sGeJFgyoiJ7r7QzK6MbR8PzCSYLmI5wZQRo8KKR0RERCSXQp2ny91nEiRWyWXjk5YduDrMGERERET2BRo0IyIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEQhtRvq9ycw+Bz7OdRwiIiIiWWjj7kekFu4XSZeIiIjI/k6XF0VEREQioKRLREREJAJKugAzG2pmS81suZndmOt4DlRmdrSZvWJmi81soZldFytvbmb/MLNlsZ+H5TrWA5GZFZjZ+2b2XGxd52UfYGbNzOxJM1sS+93pq3OTe2b2y9jn2Idm9ncza6TzkhtmNtHM1pnZh0llGc+Fmd0UyweWmtmQvRnLAZ90mVkBMA4YBnQCfmJmnXIb1QFrO/Cf7n48cAJwdexc3Ai85O7tgZdi6xK964DFSes6L/uGe4EX3L0jUERwjnRucsjMWgHXAiXu3oXgVngj0XnJlYeBoSllac9F7DtnJNA59pwHYnnCXnHAJ11Ab2C5u69w963AFODsHMd0QHL3Ne7+Xmy5guDLoxXB+XgkVu0R4Ic5CfAAZmatgR8ADyUV67zkmJk1AU4GJgC4+1Z3/xqdm33BQUBjMzsIOBhYjc5LTrj768D6lOJM5+JsYIq7b3H3jwjuDd17b8WipCv4Uv80aX1VrExyyMzaAt2BecB33H0NBIkZcGQOQztQ3QP8F1CVVKbzknvHAp8Dk2KXfh8ys0PQuckpd/8MuBP4BFgDbHD3Wei87EsynYtQcwIlXWBpyjSPRg6ZWSHwFHC9u3+T63gOdGZ2JrDO3efnOhbZxUFAD+BBd+8ObESXrHIuNj7obKAd0BI4xMwuzG1UkqVQcwIlXUEWe3TSemuCbmDJATOrT5BwTXb3p2PF/zazo2LbjwLW5Sq+A1Q/YLiZrSS4/H6qmf0VnZd9wSpglbvPi60/SZCE6dzk1mnAR+7+ubtvA54GTkTnZV+S6VyEmhMo6YJ3gfZm1s7MGhAMoJuR45gOSGZmBGNTFrv73UmbZgAXx5YvBp6JOrYDmbvf5O6t3b0twe/Hy+5+ITovOefua4FPzaxDrGgQsAidm1z7BDjBzA6Ofa4NIhijqvOy78h0LmYAI82soZm1A9oD7+ytg2pGesDMziAYs1IATHT323Mb0YHJzE4C3gA+IDF26P8QjOt6AjiG4MPsPHdPHRQpETCzgcAN7n6mmR2OzkvOmVkxwT84NABWAKMI/qDWuckhM/tv4HyC/8p+H7gMKETnJXJm9ndgINAC+DdwCzCdDOfCzH4D/Jzg3F3v7s/vtViUdImIiIiET5cXRURERCKgpEtEREQkAkq6RERERCKgpEtEREQkAkq6RERERCKgpEtEcs7MDjezsthjrZl9FluuNLMHQjrm9Wb2szTlbc3sw714nAZm9nrsHnwicgDTh4CI5Jy7fwkUA5jZrUClu98Z1vFiCdDPCWZvD5W7bzWzlwjmbJoc9vFEZN+lni4R2WeZ2UAzey62fKuZPWJms8xspZmda2Z/MrMPzOyF2C2kMLOeZvaamc03sxfjt/pIcSrwnrtvT3rOAjN7C7g66fhtzewNM3sv9jgxVv6YmZ2dVG+ymQ03s85m9k6sl+6fZtY+VmU6cEEYr5GI7D+UdInI/uR7wA8Ibib8V+AVd+8KbAZ+EEu87gNGuHtPYCKQ7g4T/YDkG3hPAq51974p9dYBp7t7D4KeqrGx8ocIZn7HzJoS3FdvJnAlcK+7FwMlBPdxA/gQ6LWbbRaRPKHLiyKyP3ne3beZ2QcEt+16IVb+AdAW6AB0Af4R3PKOAmBNmv0cRXAvvHjS1MzdX4ttewwYFluuD9wfu9XODuA4AHd/zczGmdmRwLnAU+6+PdZT9hszaw087e7LYvV3mNlWMzvU3Sv20mshIvsZJV0isj/ZAuDuVWa2zRP3Masi+DwzYGGaHqtUm4FGsWUDMt0P7ZcE92orIrgy8G3StscILhmOJBgfhrv/zczmEfTGvWhml7n7y7H6DVOeLyIHGF1eFJF8shQ4wsz6AphZfTPrnKbeYuD7AO7+NbAhdsN1qD72qimwxt2rgIsIes7iHgauj+1jYex4xwIr3H0sMAPoFis/HPjc3bfteRNFZH+lpEtE8oa7bwVGAH80swVAGcF4q1TPAycnrY8CxsUuD25OKn8AuNjM3ia4tLgx6Vj/JkjeJiXVPx/40MzKgI7Ao7HyUwjGfInIAcwSvfMiIgcOM5sG/Fd83NVuPP9ggrFkPdx9Qy11nwZucvelu3MsEckP6ukSkQPVjQQD6uvMzE4DlgD3ZZFwNQCmK+ESEfV0iYiIiERAPV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhKB/w8pmoxBBNIuHwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "False\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqDElEQVR4nO3de5QU1bn38e/jcBUEREwioIIJgtxmgAFBRFAUBqMYPRhJ1AiReEGPmhxz0Ddv1OPRdZJgPIqiJK+Al5AQUUHiQiV4Fwwy6BC5BgZRuRhEAjKAXJ/3j+qme5rumeZS1dDz+6zVq6t27ap6dldP9zNVu3eZuyMiIiIi4Tom1wGIiIiI1ARKukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQiUCvXAWSjWbNm3qpVq1yHISIiIlKt+fPnb3D3E1PLj4qkq1WrVpSWluY6DBEREZFqmdkn6cp1eVFEREQkAkq6RERERCIQWtJlZhPMbL2ZLcyw3MxsjJmtMLO/m1nXsGIRERERybUwz3Q9CZRUsXwQ0Cb2uA54PMRYRERERHIqtKTL3d8GNlZR5RLgaQ/8DWhiZieFFY+IiIhILuWyT1cL4LOk+dWxMhEREZG8k8shIyxNmUceBbBwIezde2jbsHStiWDdqChGERGpztHwOdyiBTRqlJt95zLpWg2cnDTfElibi0Duuw+2bs3FnkVERCRKo0bB2WfnZt+5TLqmAzeb2WTgTGCzu6/LRSDt28OOHfuXe5bn3bKtF4Yo9p3L9mXraIhRRERy77jjcrfv0JIuM/sT0A9oZmargbuB2gDuPg6YAVwIrAC2AcPDiqU6d92Vqz2LiIhITRFa0uXuP6hmuQM3hbV/ERERkSOJRqQXERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiUCoSZeZlZjZMjNbYWZ3pFne2Mz+YmYLzGyRmQ0PMx4RERGRXAkt6TKzAmAsMAhoD/zAzNqnVLsJWOzuhUA/4LdmViesmERERERyJcwzXT2AFe6+0t13ApOBS1LqOHCcmRnQENgI7A4xJhEREZGcCDPpagF8ljS/OlaW7FHgDGAt8BFwq7vvDTEmERERkZwIM+myNGWeMj8QKAOaA0XAo2bWKMSYRERERHIizKRrNXBy0nxLgjNayYYDL3hgBfAx0C7EmERERERyIsykax7QxsxaxzrHDwWmp9T5FOgPYGbfBNoCK0OMSURERCQnaoW1YXffbWY3A68CBcAEd19kZjfElo8D/ht40sw+IrgcOcrdN4QVk4iIiEiuhJZ0Abj7DGBGStm4pOm1wIAwYxARERE5EmhEehEREZEIKOkSERERiYCSLhEREZEIVNuny8x6A/cAp8bqG+Duflq4oYmIiIjkj2w60o8HfgrMB/aEG46IiIhIfsom6drs7i+HHomIiIhIHssm6XrDzEYDLwA74oXu/kFoUYmIiIjkmWySrjNjz8VJZQ6cd/jDEREREclP1SZd7n5uFIGIiIiI5LNqh4wws8Zm9qCZlcYevzWzxlEEJyIiIpIvshmnawKwBfh+7PEVMDHMoERERETyTTZ9ur7t7v+WNP9fZlYWUjwiIiIieSmbM13bzezs+ExssNTt4YUkIiIikn+yOdN1I/BUrB+XARuBYWEGJSIiIpJvsvn1YhlQaGaNYvNfhR2UiIiISL7JmHSZ2VXu/gcz+1lKOQDu/mDIsYmIiIjkjarOdDWIPR+XZpmHEIuIiIhI3sqYdLn772KTs9x9dvKyWGd6EREREclSNr9efCTLMhERERHJoKo+Xb2As4ATU/p1NQIKwg5MREREJJ9U1aerDtAwVie5X9dXwJAwgxIRERHJN1X16XoLeMvMnnT3TyKMSURERCTvZDM46jYzGw10AOrFC939vNCiEhEREckz2XSknwQsBVoD/wWsAuaFGJOIiIhI3skm6TrB3ccDu9z9LXf/MdAz5LhERERE8ko2lxd3xZ7Xmdl3gbVAy/BCEhEREck/2SRd98Vudv0fBONzNQJ+GmpUIiIiInkmmxtevxSb3AycG244IiIiIvmpqsFRH6GKeyy6+y2hRCQiIiKSh6o601UaWRQiIiIiea6qwVGfijIQERERkXxWbZ8uM3uDNJcZsxkc1cxKgIcJ7tX4hLv/Kk2dfsBDQG1gg7v3rW67IiIiIkebbH69eHvSdD3g34Dd1a1kZgXAWOACYDUwz8ymu/vipDpNgMeAEnf/1My+cQCxi4iISMyePXvYuHEju3btqr6yHBa1a9emadOmFBQUZFU/m18vzk8pmm1mb2Wx7R7ACndfCWBmk4FLgMVJdX4IvODun8b2tT6rqEVERKSSjRs3Uq9ePZo1a4aZ5TqcvOfuVFRUsHHjRk488cSs1ql2RHoza5r0aGZmA4FvZbHtFsBnSfOrY2XJTgeON7M3zWy+mf0oq6hFRESkkl27dtGwYUMlXBExMxo2bHhAZxazubw4n6BPlxFcVvwYuDabeNKUpfYNqwV0A/oD9YH3zOxv7v6PLLYvIiIiSZRwRetAX+9qz3S5e2t3Py323MbdB7j7u1lsezVwctJ8S4JbCKXWecXdt7r7BuBtoDDb4EVEROTIcv/999OhQwc6d+5MUVERc+fOzUkcZWVlzJgxY9/89OnT+dWvgt/zDRs2jOeee26/dd58800uuuii0GLK5teL9YCRwNkEZ6reBR5396+rWXUe0MbMWgNrgKEEfbiSvQg8ama1gDrAmcD/HlALRERE5Ijw3nvv8dJLL/HBBx9Qt25dNmzYwM6dO3MSS1lZGaWlpVx44YUADB48mMGDB+cklrhqz3QBTwMdCO67+ChwBvBMdSu5+27gZuBVYAnwrLsvMrMbzOyGWJ0lwCvA34H3CYaVWHgwDREREZHcWrduHc2aNaNu3boANGvWjObNm9OqVSs2bNgAQGlpKf369QPgrbfeoqioiKKiIrp06cKWLVsA+M1vfkOnTp0oLCzkjjvuAKC8vJySkhK6detGnz59WLp0KRCctbrhhhvo06cPp59+Oi+99BI7d+7krrvu4s9//jNFRUX8+c9/5sknn+Tmm2/eF+usWbMqrZNq69at/PjHP6Z79+506dKFF1988ZBfn2z6dLV19+RLfm+Y2YJsNu7uM4AZKWXjUuZHA6Oz2Z6IiIhU7+KLw9nuX/5S9fIBAwZw7733cvrpp3P++edzxRVX0Ldv5uE3H3jgAcaOHUvv3r2pqKigXr16vPzyy0ybNo25c+dy7LHHsnHjRgCuu+46xo0bR5s2bZg7dy4jR47k9ddfB2DVqlW89dZblJeXc+6557JixQruvfdeSktLefTRRwF48sknK+073TrJ7r//fs477zwmTJjApk2b6NGjB+effz4NGjQ4wFctIZuk60Mz6+nufwMwszOB2Qe9RxEREclLDRs2ZP78+bzzzju88cYbXHHFFfv6UaXTu3dvfvazn3HllVdy2WWX0bJlS2bNmsXw4cM59thjAWjatCkVFRXMmTOHyy+/fN+6O3bs2Df9/e9/n2OOOYY2bdpw2mmn7TsLVpXq1pk5cybTp0/ngQceAODrr7/m008/5Ywzzjig1yRZNknXmcCPzOzT2PwpwBIz+whwd+980HsXERGRw666M1JhKigooF+/fvTr149OnTrx1FNPUatWLfbu3QsEyUvcHXfcwXe/+11mzJhBz549mTVrFu6+368C9+7dS5MmTSgrK0u7z9T62fyqsLp13J3nn3+etm3bVrutbGXTp6sEaA30jT1aAxcCFwEhncAUERGRo82yZctYvnz5vvmysjJOPfVUWrVqxfz5wVjrzz///L7l5eXldOrUiVGjRlFcXMzSpUsZMGAAEyZMYNu2bUAw6GujRo1o3bo1U6ZMAYKEaMGCRE+nKVOmsHfvXsrLy1m5ciVt27bluOOO29dHLJ106yQbOHAgjzzyCO7BaFcffvjhIb462Q0Z8QnQhCDBuhho4u6fxB+HHIGIiIjkhYqKCq655hrat29P586dWbx4Mffccw933303t956K3369Kl0y5yHHnqIjh07UlhYSP369Rk0aBAlJSUMHjyY4uJiioqK9l3emzRpEuPHj6ewsJAOHTpU6tjetm1b+vbty6BBgxg3bhz16tXj3HPPZfHixfs60qdKt06yX/7yl+zatYvOnTvTsWNHfvnLXx7y62PxDC5jBbNbgZ8AL8SKLgV+7+6PHPLes1RcXOylpaVR7U5EROSos3btWpo3b57rMCI3bNgwLrroIoYMGZKT/ad73c1svrsXp9bNpk/XtcCZ7r41tqFfA+8RDCEhIiIiIlnIJukyYE/S/B7S3+JHREREJFKpQ0EcybJJuiYCc81sKkGydQkwPtSoRERERPJMtUmXuz9oZm8S3AYIYLi7H3oXfhEREZEaJJshI+KM4N6LurQoIiIicoCqTbrM7C7gKeB4oBkw0cz+b9iBiYiIiOSTbM50/QDo7u73uPvdQE/gynDDEhERkaNNw4YNq63zzjvv0KFDB4qKiti+ffsBbX/atGksXrw4lLiikE3StQpIHjGsLlAeSjQiIiKS1yZNmsTtt99OWVkZ9evXP6B1DzbpOlJkk3TtABaZ2ZNmNhFYCFSY2RgzGxNueCIiInK0efPNN+nXrx9DhgyhXbt2XHnllbg7TzzxBM8++yz33nsvV14ZXDQbPXo03bt3p3Pnztx99937tvH000/TuXNnCgsLufrqq5kzZw7Tp0/n5z//OUVFRZSXl1NeXk5JSQndunWjT58++25a/fHHH9OrVy+6d+9+WEaSP1yyGTJiauwR92Y4oYiIiMhhcXFIt0Y+gDtpf/jhhyxatIjmzZvTu3dvZs+ezYgRI3j33Xf3jSA/c+ZMli9fzvvvv4+7M3jwYN5++21OOOEE7r//fmbPnk2zZs3YuHEjTZs2ZfDgwZVGn+/fvz/jxo2jTZs2zJ07l5EjR/L6669z6623cuONN/KjH/2IsWPHhvNaHIRshox4KopAREREJH/06NGDli1bAlBUVMSqVas4++yzK9WZOXMmM2fOpEuXLkBw78bly5ezYMEChgwZQrNmzQBo2rTpftuvqKhgzpw5XH755fvKduzYAcDs2bP33Vj76quvZtSoUYe/gQchmzNdIiIicjQ5gDNSYalbt+6+6YKCAnbv3r1fHXfnzjvv5Prrr69UPmbMGMyqHqFq7969NGnShLKysrTLq1s/Fw5knC4RERGRw2bgwIFMmDCBiooKANasWcP69evp378/zz77LF9++SUAGzduBOC4445jy5YtADRq1IjWrVszZcoUIEjgFixYAEDv3r2ZPHkyEHTcP1JkTLrM7JnY863RhSMiIiI1xYABA/jhD39Ir1696NSpE0OGDGHLli106NCBX/ziF/Tt25fCwkJ+9rOfATB06FBGjx5Nly5dKC8vZ9KkSYwfP57CwkI6dOjAiy++CMDDDz/M2LFj6d69O5s3b85lEysxd0+/wGwxMAiYDvQjZSR6d98YdnBxxcXFXlpaGtXuREREjjpr166lefPmuQ6jxkn3upvZfHcvTq1bVZ+uccArwGnAfConXR4rFxEREZEsZLy86O5j3P0MYIK7n+burZMeSrhEREREDkA2Q0bcaGaFQJ9Y0dvu/vdwwxIRERHJL9nc8PoWYBLwjdhjkpn9e9iBiYiIiOSTbMbpGgGc6e5bAczs18B7wCNhBiYiIiKST7IZp8uAPUnze0j5JaOIiIiIVC2bM10TgblmFr//4veA8aFFJCIiIkelgoICOnXqxO7du2ndujXPPPMMTZo0yXVYB+See+6hYcOG3H777Yd929We6XL3B4HhwEbgX8Bwd3/osEciIiIiR7X69etTVlbGwoULadq06RFzs2l3Z+/evbkOI7vbALn7B7EhJB529w/DDkpERESObr169WLNmjUAlJeXU1JSQrdu3ejTpw9Lly4F4J///CeXXnophYWFFBYWMmfOHAAefPBBOnbsSMeOHXnooYcAGDVqFI899ti+7d9zzz389re/BWD06NF0796dzp07c/fddwOwatUqzjjjDEaOHEnXrl357LPP0tYDuP/++2nbti3nn38+y5YtC+010Q2vRURE8tHFF2dedtNNUFISTL/yClR1Ruogbp69Z88eXnvtNa699loArrvuOsaNG0ebNm2YO3cuI0eO5PXXX+eWW26hb9++TJ06lT179lBRUcH8+fOZOHEic+fOxd0588wz6du3L0OHDuW2225j5MiRADz77LO88sorzJw5k+XLl/P+++/j7gwePJi3336bU045hWXLljFx4kQee+yxjPUaNGjA5MmT+fDDD9m9ezddu3alW7duB9zmbCjpEhERkcNi+/btFBUVsWrVKrp168YFF1xARUUFc+bM4fLLL99Xb8eOHQC8/vrrPP3000DQH6xx48a8++67XHrppTRo0ACAyy67jHfeeYdbbrmF9evXs3btWr744guOP/54TjnlFMaMGcPMmTPp0qULABUVFSxfvpxTTjmFU089lZ49ewIwc+bMtPW2bNnCpZdeyrHHHgvA4MGDQ3t9Qk26zKwEeBgoAJ5w919lqNcd+Btwhbs/F2ZMIiIiNUK2Z6hKShJnvQ5RvE/X5s2bueiiixg7dizDhg2jSZMmlJWVZbWNTPeEBhgyZAjPPfccn3/+OUOHDt1X/8477+T666+vVHfVqlX7Ereq6j300EOYRTMoQzaDo15mZsvNbLOZfWVmW8zsqyzWKwDGEtw0uz3wAzNrn6Her4FXDzx8EREROdI0btyYMWPG8MADD1C/fn1at27NlClTgCD5WbBgAQD9+/fn8ccfB4JLkl999RXnnHMO06ZNY9u2bWzdupWpU6fSp09wU5yhQ4cyefJknnvuOYYMGQLAwIEDmTBhAhUVFQCsWbOG9evX7xdTpnrnnHMOU6dOZfv27WzZsoW/HMTl1Gxlc6brN8DF7r7kALfdA1jh7isBzGwycAmwOKXevwPPA90PcPsiIiJyhOrSpQuFhYVMnjyZSZMmceONN3Lfffexa9cuhg4dSmFhIQ8//DDXXXcd48ePp6CggMcff5xevXoxbNgwevToAcCIESP2XRLs0KEDW7ZsoUWLFpx00kkADBgwgCVLltCrVy8AGjZsyB/+8AcKCgoqxZOpXteuXbniiisoKiri1FNP3ZfghcGqOo0HYGaz3b33AW/YbAhQ4u4jYvNXE4xsf3NSnRbAH4HzCMb+eind5cXi4mIvLS090BBERERqjLVr19K8efNch1HjpHvdzWy+uxen1s3mTFepmf0ZmAbsiBe6+wvVrJfuAmlqhvcQMMrd90R1PVVEREQkF7JJuhoB24ABSWUOVJd0rQZOTppvCaxNqVMMTI4lXM2AC81st7tPyyIuERERkaNGtUmXuw8/yG3PA9qYWWtgDTAU+GHKtlvHp83sSYLLi9MOcn8iIiIiR6xsfr3Y0symmtl6M/unmT1vZi2rW8/ddwM3E/wqcQnwrLsvMrMbzOyGQw9dREREklXXT1sOrwN9vbO94fUfgfioZlfFyi7IIpgZwIyUsnEZ6g7LIhYRERFJo3bt2lRUVNCwYcPIxp2qydydiooKateunfU62SRdJ7r7xKT5J83stgMNTkRERMLTtGlTNm7cyJYtW3IdSo1Ru3ZtmjZtmnX9bJKuDWZ2FfCn2PwPgC8PIjYREREJSUFBASeeeGKuw5AqVNunC/gx8H3gc2AdMCRWJiIiIiJZyubXi58C4d39UURERKQGyJh0mdl/uvtvzOwR9h/UFHe/JdTIRERERPJIVWe64vda1P13RERERA5RxqTL3eO32d7m7lOSl5nZ5WlWEREREZEMsulIf2eWZSIiIiKSQVV9ugYBFwItzGxM0qJGwO6wAxMRERHJJ1X16VpL0J9rMDA/qXwL8NMwgxIRERHJN1X16VoALDCzqcBWd98DYGYFQN2I4hMRERHJC9n06ZoJ1E+arw/MCiccERERkfyUTdJVz90r4jOx6WPDC0lEREQk/2STdG01s67xGTPrBmwPLyQRERGR/JPNDa9vA6aY2drY/EnAFaFFJCIiIpKHsrn34jwzawe0BQxY6u67Qo9MREREJI9kc6YLgoSrPVAP6GJmuPvT4YUlIiIikl+qTbrM7G6gH0HSNQMYBLwLKOkSERERyVI2HemHAP2Bz919OFCIxukSEREROSDZJF3b3X0vsNvMGgHrgdPCDUtEREQkv2TTp6vUzJoA/4/gdkAVwPthBiUiIiKSb6pMuszMgP9x903AODN7BWjk7n+PIjgRERGRfFHl5UV3d2Ba0vwqJVwiIiIiBy6bPl1/M7PuoUciIiIiksey6dN1LnCDma0CthIMkOru3jnMwERERETyScaky8xOcfdPCcblEhEREZFDUNWZrmlAV3f/xMyed/d/iygmERERkbxTVZ8uS5rWuFwiIiIih6CqpMszTIuIiIjIAarq8mKhmX1FcMarfmwaEh3pG4UenYiIiEieyJh0uXtBlIGIiIiI5LNsxuk6aGZWYmbLzGyFmd2RZvmVZvb32GOOmRWGGY+IiIhIroSWdJlZATCWYMiJ9sAPzKx9SrWPgb6xMb/+G/h9WPGIiIiI5FKYZ7p6ACvcfaW77wQmA5ckV3D3Oe7+r9js34CWIcYjIiIikjNhJl0tgM+S5lfHyjK5Fng5xHhEREREciab2wAdLEtTlnboCTM7lyDpOjvEeERERERyJsykazVwctJ8S2BtaiUz6ww8AQxy9y9DjEdEREQkZ8K8vDgPaGNmrc2sDjAUmJ5cwcxOAV4Arnb3f4QYi4iIiEhOhXamy913m9nNwKtAATDB3ReZ2Q2x5eOAu4ATgMfMDGC3uxeHFZOIiIhIrpj7kX+Hn+LiYi8tLc11GCIiIiLVMrP56U4ihTo4qoiIiIgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgEaoW5cTMrAR4GCoAn3P1XKcsttvxCYBswzN0/CDOmtCZMgN27oXZtqFOn8nM2j1q1Es/J0wUFYBZ5c0LnDnv2BM/usHdv8CgogLp1gzp79sDmzcH03r2V67rDCScErzHAxo3w1VfBstT6tWtD69aJfS9enNh3vG48phYt4BvfCOY3bICVKxPbiT/idXv2DOIFKCsLYk2t4w7f/CZ07BiUbd0Ks2dXrpdct2dPaNo0EWd5+f51ABo2hP79E8umTw/ef/F6yc+FhdCmTTD9yScwd+7+xyJed8iQ4H0H8NprsH79/tsDaNUKevcOpjdvDvafyYABwWsAMG9e0K7kfcc1agSXXZaYf+YZ2LUr/TZ79Ei8puXl8Oab+28v7pprgvcAwEsvweefp6/37W/DeecF05s2wbPPZm7TxRfDSScF0++9Bx99lH6bjRvD0KGJ+fHjM7fprLOgc+dgevlymDUr8/5HjEi0ado0WLcufb3vfAcuuCCY3rQJ/vjHzNu85JLg/Q/Be3TBgvT1mjSBH/4wMf/732duU+/eUFQUTP/jH/DXv2be/09+kvh7njoV1q5NX69Nm+A9BfCvf1Xdpu99L9Gmd9+tuk1XXpmYT25T6nE9++xEm5Ytq7pN112XaNMLL2Ru0+mnV27TpEmZt3nppZXbVFaWvl6TJnDVVYn53/0u83GqCW2aOTPz/q+/vnKb1qxJX+/002HgwMzbiUhoSZeZFQBjgQuA1cA8M5vu7kmf2gwC2sQeZwKPx56j9eqrsG3bwa2b/IW+d2/wpRdPtL7+OiiPJ1/HHBM8zKBBg+ALulatYL1164Ly5Edcu3bBG7agAFatSv+mcofjjoOSkqDeMcfAn/5U+cs8OVE591zo3j2ot3Bh8OGf+gUdT2hGj4b69YOYHngg+FKJx5f8fNZZcNNNwTbXroWf/3z/OvHn++6DDh2Cus89B3/5S/rXt0ULGDcuMX/XXbBjR/q6114bfFBD8EX64IPp6wFMmZJIuiZPhkWL0tc755xEgvCvf8Ejj2Te5imnJJKuOXPgxRfT12vRonLS9fTTVbcpnnR9/HGQzGTyve8lkq5Zs4Ljmk7fvomkq6Ki6gSlS5dE0rVgQdVtSk66pk8P3v/pNG2aeE0/+yx472Vy1VWJBGX27MxtOuecRNK1dWvm9xME79N40rVoUdXvveSk65VXMrfpW99KJF1r18KMGZn3P3x4ok1z51bdpnjStXUrvPxy5m2ec07ii2/Jksx1W7SonHT99a+Z29SiReKLb926oP2ZXHttYvr99zO3adu2xJf5tm1Vb7Nv30Sbli7NXLdFi8pJV1Vtatky0abPPw8++zMZMSIxPW9e5jZt3165TVVts1+/ym3KVLdFi8oJyqxZNbtNVSVdP/lJYrqqNn399RGRdJmn+w/vcGzYrBdwj7sPjM3fCeDu/5NU53fAm+7+p9j8MqCfu1f616+4uNhLS0tDiRMI/kinTg3eXDt3Bl+AO3cmHu3aBV+ou3YFZ0/mzQuSmd279z/jc9ZZwfSuXcHB37Il/T5POCH47xyCN/hHH2WOr1274EwCwKefBm/CdOrVS3zwA8yfH8SXzsknJ754vvyy8lmZVN26JRKUJUuCNqVLpJo2TZyV+vrroG5y8phc97TTgjM+EHygf/ll5XrxR926QfshSNAWLQpe3+TEND590knBl59ZkCB99ln6OI85Bjp1SiTIK1YEX2qp+wY4/vigTWZBm5Ytq1wvedvf+U6Q+JoFX7xffLF/jBC0qX37RPlHHyUS3NRYmzcPzt4ltyldPQgSmfhxKi8P2pTu9W/SBE49NZjeubNym1J9+9vBcYq3acOG9HXr1oW2bRPLFi1K3yYIjtGJJwZlmzalb1Nc+/aJNq1cmfjnKLVe48bB3ygEf7/Ll+/flrhWrYLjBPu/91LbdPrpifnFiyu3Kdm3vgXNmgXTmzYF/xhlOsvdrl2iTR9/HLQpXd3GjYMvn3ibVqxIvz2zoE0NGgTzn3+euU116iSSeAj+RjO16Zvf3L9NmSS3adWqzP/EZtsmCKdN3/pW8NkLwVne1asTy1KPQWqb4p8RqcJoU926wedJ3MG2KdXR2qaq3ntt22b33mvUKNGmCy6oHEsIzGy+uxfvVx5i0jUEKHH3EbH5q4Ez3f3mpDovAb9y93dj868Bo9y9UoYVetIFwX+0md6A11wTXLqB4PTpr39deXnyJcXf/z6RTIwZE3z4x888xb/wzYIP8wsuCBK3TZuC//aT/+iPOSaRXHTuHPwR7NkTvKnilyPMKp+dqlUrSKb27AnezKtXJ5Ku1MtmdesGH1Z79gR/VDt27H95Lf4HEY8rvt34dOrlxXTTyc+ZylIv/4mIiIRl1KjgEmaIMiVdYfbpSvdvXuq3ajZ1onHddcGXfp06lftz1akT/Fce16NH0A8hnmhV1W/rlluy33+3bocWf75ITs4g/XO6ZK2qR/J2M5Wn1slmWXXP1dXJVJZp/erqp5uuanm29Q5k+cFspyqHsu7hWP9g1z3UGKMQ1X71z5QcaeJXmXIgzKRrNXBy0nxLILXXXjZ1ohHvD1KdeFIm4YhfhjtGP6wVEZH8EuY32zygjZm1NrM6wFAg9WdS04EfWaAnsDm1P5eIiIhIPgjtTJe77zazm4FXCYaMmODui8zshtjyccAMguEiVhAMGTE8rHhEREREcinUcbrcfQZBYpVcNi5p2oGbwoxBRERE5EigjjMiIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhKB0EakP5zM7Avgk1zHISIiIpKFU939xNTCoyLpEhERETna6fKiiIiISASUdImIiIhEQEkXYGYlZrbMzFaY2R25jqemMrOTzewNM1tiZovM7NZYeVMz+6uZLY89H5/rWGsiMyswsw/N7KXYvI7LEcDMmpjZc2a2NPa300vHJvfM7Kexz7GFZvYnM6un45IbZjbBzNab2cKksozHwszujOUDy8xs4OGMpcYnXWZWAIwFBgHtgR+YWfvcRlVj7Qb+w93PAHoCN8WOxR3Aa+7eBngtNi/RuxVYkjSv43JkeBh4xd3bAYUEx0jHJofMrAVwC1Ds7h0JboU3FB2XXHkSKEkpS3ssYt85Q4EOsXUei+UJh0WNT7qAHsAKd1/p7juBycAlOY6pRnL3de7+QWx6C8GXRwuC4/FUrNpTwPdyEmANZmYtge8CTyQV67jkmJk1As4BxgO4+05334SOzZGgFlDfzGoBxwJr0XHJCXd/G9iYUpzpWFwCTHb3He7+McG9oXscrliUdAVf6p8lza+OlUkOmVkroAswF/imu6+DIDEDvpHD0Gqqh4D/BPYmlem45N5pwBfAxNil3yfMrAE6Njnl7muAB4BPgXXAZnefiY7LkSTTsQg1J1DSBZamTONo5JCZNQSeB25z969yHU9NZ2YXAevdfX6uY5H91AK6Ao+7exdgK7pklXOx/kGXAK2B5kADM7sqt1FJlkLNCZR0BVnsyUnzLQlOA0sOmFltgoRrkru/ECv+p5mdFFt+ErA+V/HVUL2BwWa2iuDy+3lm9gd0XI4Eq4HV7j43Nv8cQRKmY5Nb5wMfu/sX7r4LeAE4Cx2XI0mmYxFqTqCkC+YBbcystZnVIehANz3HMdVIZmYEfVOWuPuDSYumA9fEpq8BXow6tprM3e9095bu3org7+N1d78KHZecc/fPgc/MrG2sqD+wGB2bXPsU6Glmx8Y+1/oT9FHVcTlyZDoW04GhZlbXzFoDbYD3D9dONSI9YGYXEvRZKQAmuPv9uY2oZjKzs4F3gI9I9B36PwT9up4FTiH4MLvc3VM7RUoEzKwfcLu7X2RmJ6DjknNmVkTwA4c6wEpgOME/1Do2OWRm/wVcQfCr7A+BEUBDdFwiZ2Z/AvoBzYB/AncD08hwLMzsF8CPCY7dbe7+8mGLRUmXiIiISPh0eVFEREQkAkq6RERERCKgpEtEREQkAkq6RERERCKgpEtEREQkAkq6RCTnzOwEMyuLPT43szWx6Qozeyykfd5mZj9KU97KzBYexv3UMbO3Y/fgE5EaTB8CIpJz7v4lUARgZvcAFe7+QFj7iyVAPyYYvT1U7r7TzF4jGLNpUtj7E5Ejl850icgRy8z6mdlLsel7zOwpM5tpZqvM7DIz+42ZfWRmr8RuIYWZdTOzt8xsvpm9Gr/VR4rzgA/cfXfSOgvM7D3gpqT9tzKzd8zsg9jjrFj5M2Z2SVK9SWY22Mw6mNn7sbN0fzezNrEq04Arw3iNROTooaRLRI4m3wa+S3Az4T8Ab7h7J2A78N1Y4vUIMMTduwETgHR3mOgNJN/AeyJwi7v3Sqm3HrjA3bsSnKkaEyt/gmDkd8ysMcF99WYANwAPu3sRUExwHzeAhUD3g2yziOQJXV4UkaPJy+6+y8w+Irht1yux8o+AVkBboCPw1+CWdxQA69Js5ySCe+HFk6Ym7v5WbNkzwKDYdG3g0ditdvYApwO4+1tmNtbMvgFcBjzv7rtjZ8p+YWYtgRfcfXms/h4z22lmx7n7lsP0WojIUUZJl4gcTXYAuPteM9vlifuY7SX4PDNgUZozVqm2A/Vi0wZkuh/aTwnu1VZIcGXg66RlzxBcMhxK0D8Md/+jmc0lOBv3qpmNcPfXY/XrpqwvIjWMLi+KSD5ZBpxoZr0AzKy2mXVIU28J8B0Ad98EbI7dcB0q971qDKxz973A1QRnzuKeBG6LbWNRbH+nASvdfQwwHegcKz8B+MLddx16E0XkaKWkS0TyhrvvBIYAvzazBUAZQX+rVC8D5yTNDwfGxi4Pbk8qfwy4xsz+RnBpcWvSvv5JkLxNTKp/BbDQzMqAdsDTsfJzCfp8iUgNZomz8yIiNYeZTQX+M97v6iDWP5agL1lXd99cTd0XgDvdfdnB7EtE8oPOdIlITXUHQYf6A2Zm5wNLgUeySLjqANOUcImIznSJiIiIREBnukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAL/HwJHgl8kfTXAAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "False\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAp5klEQVR4nO3de5gU1bnv8e/rcBcBEaMCIhgR5TYDDCgiAqIwGMXoxkiiRohso8SoyXFv9OQkuN367ESNR1GU5Ch4CQkRFSQ+qAQvqGCQQYfINTCIyi0EUWQAgYH3/FE9dE/TPdMDVDX0/D7P089UrVpd9a6ume53Vq1eZe6OiIiIiITrmGwHICIiIlIbKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiUCdbAeQiRYtWnjbtm2zHYaIiIhItRYuXLjZ3U9MLj8qkq62bdtSXFyc7TBEREREqmVmn6Yq1+VFERERkQgo6RIRERGJQGhJl5lNNLNNZrY4zXYzs3FmtsrM/m5m3cOKRURERCTbwuzpehooqmL7EKB97HEj8ESIsYiIiIhkVWhJl7u/A2yposrlwLMe+BvQzMxOCSseERERkWzK5piuVsDnCetrY2UiIiIiOSebU0ZYijKPPApg8WLYt+/Q9mGpWhPBc6NyNMSYytEat4iIhKNVK2jaNDvHzmbStRY4NWG9NbA+G4Hcey9s356NI4uIiEiUxoyB88/PzrGzmXTNAG4xsynAOcBWd9+QjUA6doRduw4s9wz73TKtF4Yojp3N9h2KozVuEREJT5Mm2Tt2aEmXmf0J6A+0MLO1wFigLoC7TwBmApcAq4AdwMiwYqnOr36VrSOLiIhIbRFa0uXu369muwM/Cev4IiIiIkcSzUgvIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEgElXSIiIiIRUNIlIiIiEoFQky4zKzKzFWa2yszuTLG9qZn9xcwWmdkSMxsZZjwiIiIi2RJa0mVmecB4YAjQEfi+mXVMqvYTYKm75wP9gd+aWb2wYhIRERHJljB7unoBq9x9tbvvBqYAlyfVceA4MzOgMbAFKA8xJhEREZGsCDPpagV8nrC+NlaW6DHgbGA98DFwm7vvCzEmERERkawIM+myFGWetD4YKAFaAgXAY2bWJMSYRERERLIizKRrLXBqwnprgh6tRCOBlzywCvgEOCvEmERERESyIsykawHQ3szaxQbHDwdmJNX5DBgIYGYnAR2A1SHGJCIiIpIVdcLasbuXm9ktwOtAHjDR3ZeY2U2x7ROA/waeNrOPCS5HjnH3zWHFJCIiIpItoSVdAO4+E5iZVDYhYXk9MCjMGERERESOBJqRXkRERCQCSrpEREREIqCkS0RERCQC1Y7pMrM+wN3AabH6Bri7nx5uaCIiIiK5I5OB9E8BPwMWAnvDDUdEREQkN2WSdG1191dDj0REREQkh2WSdL1lZg8ALwG7Kgrd/cPQohIRERHJMZkkXefEfhYmlDlw4eEPR0RERCQ3VZt0ufuAKAIRERERyWXVThlhZk3N7CEzK449fmtmTaMITkRERCRXZDJP10RgG/C92ONrYFKYQYmIiIjkmkzGdH3b3f8tYf2/zKwkpHhEREREclImPV07zez8ipXYZKk7wwtJREREJPdk0tN1M/BMbByXAVuAEWEGJSIiIpJrMvn2YgmQb2ZNYutfhx2UiIiISK5Jm3SZ2bXu/gcz+3lSOQDu/lDIsYmIiIjkjKp6uo6N/TwuxTYPIRYRERGRnJU26XL338UWZ7v73MRtscH0IiIiIpKhTL69+GiGZSIiIiKSRlVjunoD5wEnJo3ragLkhR2YiIiISC6pakxXPaBxrE7iuK6vgWFhBiUiIiKSa6oa0zUHmGNmT7v7pxHGJCIiIpJzMpkcdYeZPQB0AhpUFLr7haFFJSIiIpJjMhlIPxlYDrQD/gtYAywIMSYRERGRnJNJ0nWCuz8F7HH3Oe7+I+DckOMSERERySmZXF7cE/u5wcy+A6wHWocXkoiIiEjuySTpujd2s+v/RTA/VxPgZ6FGJSIiIpJjMrnh9Suxxa3AgHDDEREREclNVU2O+ihV3GPR3W8NJSIRERGRHFRVT1dxZFGIiIiI5LiqJkd9JspARERERHJZtWO6zOwtUlxmzGRyVDMrAh4huFfjk+7+6xR1+gMPA3WBze7er7r9ioiIiBxtMvn24h0Jyw2AfwPKq3uSmeUB44GLgbXAAjOb4e5LE+o0Ax4Hitz9MzP7Vg1iFxERkZi9e/eyZcsW9uzZU31lOSzq1q1L8+bNycvLy6h+Jt9eXJhUNNfM5mSw717AKndfDWBmU4DLgaUJdX4AvOTun8WOtSmjqEVERKSSLVu20KBBA1q0aIGZZTucnOfulJWVsWXLFk488cSMnlPtjPRm1jzh0cLMBgMnZ7DvVsDnCetrY2WJzgSON7O3zWyhmf0wo6hFRESkkj179tC4cWMlXBExMxo3blyjnsVMLi8uJBjTZQSXFT8BbsgknhRlyWPD6gA9gIFAQ+B9M/ubu/8jg/2LiIhIAiVc0arp611tT5e7t3P302M/27v7IHd/L4N9rwVOTVhvTXALoeQ6r7n7dnffDLwD5GcavIiIiBxZ7rvvPjp16kTXrl0pKChg/vz5WYmjpKSEmTNn7l+fMWMGv/518H2+ESNG8MILLxzwnLfffptLL700tJgy+fZiA2A0cD5BT9V7wBPu/k01T10AtDezdsA6YDjBGK5ELwOPmVkdoB5wDvB/a9QCEREROSK8//77vPLKK3z44YfUr1+fzZs3s3v37qzEUlJSQnFxMZdccgkAQ4cOZejQoVmJpUK1PV3As0AngvsuPgacDTxX3ZPcvRy4BXgdWAY87+5LzOwmM7spVmcZ8Brwd+ADgmklFh9MQ0RERCS7NmzYQIsWLahfvz4ALVq0oGXLlrRt25bNmzcDUFxcTP/+/QGYM2cOBQUFFBQU0K1bN7Zt2wbA/fffT5cuXcjPz+fOO+8EoLS0lKKiInr06EHfvn1Zvnw5EPRa3XTTTfTt25czzzyTV155hd27d/OrX/2KP//5zxQUFPDnP/+Zp59+mltuuWV/rLNnz670nGTbt2/nRz/6ET179qRbt268/PLLh/z6ZDKmq4O7J17ye8vMFmWyc3efCcxMKpuQtP4A8EAm+xMREZHqXXZZOPv9y1+q3j5o0CDuuecezjzzTC666CKuvvpq+vVLP/3mgw8+yPjx4+nTpw9lZWU0aNCAV199lenTpzN//nwaNWrEli1bALjxxhuZMGEC7du3Z/78+YwePZo333wTgDVr1jBnzhxKS0sZMGAAq1at4p577qG4uJjHHnsMgKeffrrSsVM9J9F9993HhRdeyMSJE/nqq6/o1asXF110Eccee2wNX7W4TJKuj8zsXHf/G4CZnQPMPegjioiISE5q3LgxCxcu5N133+Wtt97i6quv3j+OKpU+ffrw85//nGuuuYYrr7yS1q1bM3v2bEaOHEmjRo0AaN68OWVlZcybN4+rrrpq/3N37dq1f/l73/sexxxzDO3bt+f000/f3wtWleqeM2vWLGbMmMGDDz4IwDfffMNnn33G2WefXaPXJFEmSdc5wA/N7LPYehtgmZl9DLi7dz3oo4uIiMhhV12PVJjy8vLo378//fv3p0uXLjzzzDPUqVOHffv2AUHyUuHOO+/kO9/5DjNnzuTcc89l9uzZuPsB3wrct28fzZo1o6SkJOUxk+tn8q3C6p7j7rz44ot06NCh2n1lKpMxXUVAO6Bf7NEOuAS4FAipA1NERESONitWrGDlypX710tKSjjttNNo27YtCxcGc62/+OKL+7eXlpbSpUsXxowZQ2FhIcuXL2fQoEFMnDiRHTt2AMGkr02aNKFdu3ZMnToVCBKiRYviI52mTp3Kvn37KC0tZfXq1XTo0IHjjjtu/xixVFI9J9HgwYN59NFHcQ9mu/roo48O8dXJbMqIT4FmBAnWZUAzd/+04nHIEYiIiEhOKCsr4/rrr6djx4507dqVpUuXcvfddzN27Fhuu+02+vbtW+mWOQ8//DCdO3cmPz+fhg0bMmTIEIqKihg6dCiFhYUUFBTsv7w3efJknnrqKfLz8+nUqVOlge0dOnSgX79+DBkyhAkTJtCgQQMGDBjA0qVL9w+kT5bqOYl++ctfsmfPHrp27Urnzp355S9/ecivj1VkcGkrmN0G/DvwUqzoCuD37v7oIR89Q4WFhV5cXBzV4URERI4669evp2XLltkOI3IjRozg0ksvZdiwYVk5fqrX3cwWunthct1MxnTdAJzj7ttjO/oN8D7BFBIiIiIikoFMki4D9ias7yX1LX5EREREIpU8FcSRLJOkaxIw38ymESRblwNPhRqViIiISI6pNuly94fM7G2C2wABjHT3Qx/CLyIiIlKLZDJlRAUjuPeiLi2KiIiI1FC1SZeZ/Qp4BjgeaAFMMrP/E3ZgIiIiIrkkk56u7wM93f1udx8LnAtcE25YIiIicrRp3LhxtXXeffddOnXqREFBATt37qzR/qdPn87SpUtDiSsKmSRda4DEGcPqA6WhRCMiIiI5bfLkydxxxx2UlJTQsGHDGj33YJOuI0UmSdcuYImZPW1mk4DFQJmZjTOzceGGJyIiIkebt99+m/79+zNs2DDOOussrrnmGtydJ598kueff5577rmHa64JLpo98MAD9OzZk65duzJ27Nj9+3j22Wfp2rUr+fn5XHfddcybN48ZM2bwH//xHxQUFFBaWkppaSlFRUX06NGDvn377r9p9SeffELv3r3p2bPnYZlJ/nDJZMqIabFHhbfDCUVEREQOi8tCujVyDe6k/dFHH7FkyRJatmxJnz59mDt3LqNGjeK9997bP4P8rFmzWLlyJR988AHuztChQ3nnnXc44YQTuO+++5g7dy4tWrRgy5YtNG/enKFDh1aafX7gwIFMmDCB9u3bM3/+fEaPHs2bb77Jbbfdxs0338wPf/hDxo8fH85rcRAymTLimSgCERERkdzRq1cvWrduDUBBQQFr1qzh/PPPr1Rn1qxZzJo1i27dugHBvRtXrlzJokWLGDZsGC1atACgefPmB+y/rKyMefPmcdVVV+0v27VrFwBz587df2Pt6667jjFjxhz+Bh6ETHq6RERE5GhSgx6psNSvX3//cl5eHuXl5QfUcXfuuusufvzjH1cqHzduHGZVz1C1b98+mjVrRklJScrt1T0/G2oyT5eIiIjIYTN48GAmTpxIWVkZAOvWrWPTpk0MHDiQ559/ni+++AKALVu2AHDcccexbds2AJo0aUK7du2YOnUqECRwixYtAqBPnz5MmTIFCAbuHynSJl1m9lzs523RhSMiIiK1xaBBg/jBD35A79696dKlC8OGDWPbtm106tSJX/ziF/Tr14/8/Hx+/vOfAzB8+HAeeOABunXrRmlpKZMnT+app54iPz+fTp068fLLLwPwyCOPMH78eHr27MnWrVuz2cRKzN1TbzBbCgwBZgD9SZqJ3t23hB1chcLCQi8uLo7qcCIiIked9evX07Jly2yHUeuket3NbKG7FybXrWpM1wTgNeB0YCGVky6PlYuIiIhIBtJeXnT3ce5+NjDR3U9393YJDyVcIiIiIjWQyZQRN5tZPtA3VvSOu/893LBEREREcksmN7y+FZgMfCv2mGxmPw07MBEREZFcksk8XaOAc9x9O4CZ/QZ4H3g0zMBEREREckkm83QZsDdhfS9J32QUERERkapl0tM1CZhvZhX3X/wu8FRoEYmIiMhRKS8vjy5dulBeXk67du147rnnaNasWbbDqpG7776bxo0bc8cddxz2fVfb0+XuDwEjgS3Al8BId3/4sEciIiIiR7WGDRtSUlLC4sWLad68+RFzs2l3Z9++fdkOI7PbALn7h7EpJB5x94/CDkpERESObr1792bdunUAlJaWUlRURI8ePejbty/Lly8H4J///CdXXHEF+fn55OfnM2/ePAAeeughOnfuTOfOnXn44YcBGDNmDI8//vj+/d9999389re/BeCBBx6gZ8+edO3albFjxwKwZs0azj77bEaPHk337t35/PPPU9YDuO++++jQoQMXXXQRK1asCO010Q2vRUREctFll6Xf9pOfQFFRsPzaa1BVj9RB3Dx77969vPHGG9xwww0A3HjjjUyYMIH27dszf/58Ro8ezZtvvsmtt95Kv379mDZtGnv37qWsrIyFCxcyadIk5s+fj7tzzjnn0K9fP4YPH87tt9/O6NGjAXj++ed57bXXmDVrFitXruSDDz7A3Rk6dCjvvPMObdq0YcWKFUyaNInHH388bb1jjz2WKVOm8NFHH1FeXk737t3p0aNHjducCSVdIiIicljs3LmTgoIC1qxZQ48ePbj44ospKytj3rx5XHXVVfvr7dq1C4A333yTZ599FgjGgzVt2pT33nuPK664gmOPPRaAK6+8knfffZdbb72VTZs2sX79ev71r39x/PHH06ZNG8aNG8esWbPo1q0bAGVlZaxcuZI2bdpw2mmnce655wIwa9aslPW2bdvGFVdcQaNGjQAYOnRoaK9PqEmXmRUBjwB5wJPu/us09XoCfwOudvcXwoxJRESkVsi0h6qoKN7rdYgqxnRt3bqVSy+9lPHjxzNixAiaNWtGSUlJRvtId09ogGHDhvHCCy+wceNGhg8fvr/+XXfdxY9//ONKddesWbM/cauq3sMPP4xZNJMyZDI56pVmttLMtprZ12a2zcy+zuB5ecB4gptmdwS+b2Yd09T7DfB6zcMXERGRI03Tpk0ZN24cDz74IA0bNqRdu3ZMnToVCJKfRYsWATBw4ECeeOIJILgk+fXXX3PBBRcwffp0duzYwfbt25k2bRp9+wY3xRk+fDhTpkzhhRdeYNiwYQAMHjyYiRMnUlZWBsC6devYtGnTATGlq3fBBRcwbdo0du7cybZt2/jLQVxOzVQmPV33A5e5+7Ia7rsXsMrdVwOY2RTgcmBpUr2fAi8CPWu4fxERETlCdevWjfz8fKZMmcLkyZO5+eabuffee9mzZw/Dhw8nPz+fRx55hBtvvJGnnnqKvLw8nnjiCXr37s2IESPo1asXAKNGjdp/SbBTp05s27aNVq1accoppwAwaNAgli1bRu/evQFo3Lgxf/jDH8jLy6sUT7p63bt35+qrr6agoIDTTjttf4IXBquqGw/AzOa6e58a79hsGFDk7qNi69cRzGx/S0KdVsAfgQsJ5v56JdXlxcLCQi8uLq5pCCIiIrXG+vXradmyZbbDqHVSve5mttDdC5PrZtLTVWxmfwamA7sqCt39pWqel+oCaXKG9zAwxt33RnU9VURERCQbMkm6mgA7gEEJZQ5Ul3StBU5NWG8NrE+qUwhMiSVcLYBLzKzc3adnEJeIiIjIUaPapMvdRx7kvhcA7c2sHbAOGA78IGnf7SqWzexpgsuL0w/yeCIiIiJHrEy+vdjazKaZ2SYz+6eZvWhmrat7nruXA7cQfCtxGfC8uy8xs5vM7KZDD11EREQSVTdOWw6vmr7emd7w+o9Axaxm18bKLs4gmJnAzKSyCWnqjsggFhEREUmhbt26lJWV0bhx48jmnarN3J2ysjLq1q2b8XMySbpOdPdJCetPm9ntNQ1OREREwtO8eXO2bNnCtm3bsh1KrVG3bl2aN2+ecf1Mkq7NZnYt8KfY+veBLw4iNhEREQlJXl4eJ554YrbDkCpUO6YL+BHwPWAjsAEYFisTERERkQxl8u3Fz4Dw7v4oIiIiUgukTbrM7D/d/X4ze5QDJzXF3W8NNTIRERGRHFJVT1fFvRZ1/x0RERGRQ5Q26XL3itts73D3qYnbzOyqFE8RERERkTQyGUh/V4ZlIiIiIpJGVWO6hgCXAK3MbFzCpiZAediBiYiIiOSSqsZ0rScYzzUUWJhQvg34WZhBiYiIiOSaqsZ0LQIWmdk0YLu77wUwszygfkTxiYiIiOSETMZ0zQIaJqw3BGaHE46IiIhIbsok6Wrg7mUVK7HlRuGFJCIiIpJ7Mkm6tptZ94oVM+sB7AwvJBEREZHck8kNr28HpprZ+tj6KcDVoUUkIiIikoMyuffiAjM7C+gAGLDc3feEHpmIiIhIDsmkpwuChKsj0ADoZma4+7PhhSUiIiKSW6pNusxsLNCfIOmaCQwB3gOUdImIiIhkKJOB9MOAgcBGdx8J5KN5ukRERERqJJOka6e77wPKzawJsAk4PdywRERERHJLJmO6is2sGfD/CG4HVAZ8EGZQIiIiIrmmyqTLzAz4H3f/CphgZq8BTdz971EEJyIiIpIrqry86O4OTE9YX6OES0RERKTmMhnT9Tcz6xl6JCIiIiI5LJMxXQOAm8xsDbCdYIJUd/euYQYmIiIikkvSJl1m1sbdPyOYl0tEREREDkFVPV3Tge7u/qmZveju/xZRTCIiIiI5p6oxXZawrHm5RERERA5BVUmXp1kWERERkRqq6vJivpl9TdDj1TC2DPGB9E1Cj05EREQkR6RNutw9L8pARERERHJZJvN0HTQzKzKzFWa2yszuTLH9GjP7e+wxz8zyw4xHREREJFtCS7rMLA8YTzDlREfg+2bWManaJ0C/2Jxf/w38Pqx4RERERLIpzJ6uXsAqd1/t7ruBKcDliRXcfZ67fxlb/RvQOsR4RERERLImzKSrFfB5wvraWFk6NwCvhhiPiIiISNZkchugg2UpylJOPWFmAwiSrvNDjEdEREQka8JMutYCpyastwbWJ1cys67Ak8AQd/8ixHhEREREsibMy4sLgPZm1s7M6gHDgRmJFcysDfAScJ27/yPEWERERESyKrSeLncvN7NbgNeBPGCiuy8xs5ti2ycAvwJOAB43M4Bydy8MKyYRERGRbDH3I/8OP4WFhV5cXJztMERERESqZWYLU3UihTo5qoiIiIgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgE6oS5czMrAh4B8oAn3f3XSdsttv0SYAcwwt0/DDOmlCZOhPJyqFsX6tU78GedOvH1xEedOgf+TFzOywOzyJsTKvfgsW9f8EhczsuDBg2Cenv3wtat8ToV9Sp+tmgB9esHdbdsCeom1ql41K0Lp58eP/6SJcG+E+tUPFq3hpNOCupt3gylpanrAfTuHcQLUFICX30V35ZY76SToHPnYHn7dnjvvfi25LrnnAMnnBCPc/XqA+sANG4MAwfG119+Ofj9q6ibqGtXOPPMYPnTT2H+/AOPX2HYsOD3DmD2bNi06cD9AbRtC336BMtbt8KMGan3BzB4cPw1XbAAli5NXbdJE7jyyvj6c8/Bnj0HHhugV6/4a7pqFcyZk/rYANdfH/wOALzyCmzcmLreGWfAgAHB8ldfwfPPpz42wGWXwSmnBMvz5sHHH6eu17QpDB8eX3/yyfh5SnbeecG5Ali5Mnj90xk1Kt6m6dNhw4bU9c44Ay6+OFj+6iv44x/T7/Pyy6FVq2B57lxYtKjy9orXrFkzuOaaePnvf5/+PPXpAwUFwfI//gF//Wv64//7vwfvkQDTpsH69anrtW8PgwYFy19+WXWbvvvdeJvee+/ANlWoqk3Jvyvnnx9v04oVVbfpxhvjbXrppfRtOvPMym2aPDn9Pq+4onKbSkpS12vWDK69Nr7+u9+lP09qU/o2JZ7/M88M3s+yLLSky8zygPHAxcBaYIGZzXD3hHdthgDtY49zgCdiP6P1+uuwY8fBPTc5oahTJ55offNN8POYYyo/zKBRo+ADuk6dIInYuDGoW/Fcs/jy2WcHv7B5efDJJ7BuXbAtMUkwg+OOg6KioN4xxwRvaIkf5omPAQOCD79jjoHFi4M3/337Utd98EFo2DDY7/33Bx+UibFWLJ93HtxyS7DP9evhjjsqtyfx5733QpcuwfqLL1b+4E/UqhVMmBBfHzsWdu1KXfeGG4I3agg+SB96KHU9gKlT40nXlClBkpTKBRfEE4Qvv4THHku/zzZt4knX++8HyVQqrVpVTrqee67qNlUkXZ98EtRN57vfjSddb7wRnNdU+vWLJ13btlWdoHTvHk+6Fi2quk2JSdeMGfHf/2TNm8df07Vrg9+9dK69Np6gzJ1bdZsqkq7t2+Evf0m/z/POiyddS5cGyVwqrVpVTrpefz19m04+OZ50rV8PM2emP/7IkfE2zZ+fvk0XXBBPurZvh1dfTb/PCy6If/AtW5a+bqtWlROUv/41fZtatYp/8G3YAK+9lv74N9wQX/7gg/Rt2rEj/mG+Y0fV++zXL96m5cvT161Jm1q3jrdp48bgnKYzalR8ecGC9G3aubNym6raZ//+lduUrm6rVpUTlNmz1aZ0Mm3TN98cEUmXear/Gg/Hjs16A3e7++DY+l0A7v4/CXV+B7zt7n+Kra8A+rt7pX/9CgsLvbi4OJQ4geCPdNq04Jdr9+7gA3DXrmB5zx4466zgA3XPnqD3ZMGCIJkpL6/c4+Me9KC4B3WXLAk+1FI54QT49reD5Z070/+3DcHxmzQJlj/7LJ6gJWvQIP7GD7BwYZDQpXLqqfEPni++CNqVTo8e8QRl+fJ4m5ITqebNoV27YPmbb4K6FZLrnn560OMDwRv6F1/Etyc+6tcP2l+xvmRJPMlMTlBbtownCF99BZ9/fuA+K9a7do0nKKWlUFaWut7xx8fbtGtX0KbkehV1zzgjSHzNgsR48+bUSWf9+tCxY/y5ixcH5ylV3ZYt4VvfCpa//DI4/4l1Epc7d463afXqoE2pXvtmzeC00+Jt+sc/qCRx39/+dvw8rV8fP0/JGjSADh3i60uWxJP45H2efDKceGJQlniekutB8DoltindP0dNmwZ/oxVtWrkydT0IevqOOy5YTv7dS1S/ftAzU2HZsvR/TyefHPTeQtCmin+MUjnrrPjf0yefBG1KVbdp0+DDp6JNq1al32fbtnDsscHyxo3pz1P9+sHvaWKbEs9TopNOOrBN6SS2ac2aqs9TcpvSybRN9eodeJ7Stenkk4P3XrOgl3ft2vTHT27T9u2p64XRppqcp4o2gdqUqk0VfzNNmsTbdPHFlWMJgZktdPfCA8pDTLqGAUXuPiq2fh1wjrvfklDnFeDX7v5ebP0NYIy7V8qwQk+6IPiPNt0v4PXXB5duIOg+/c1vKm9PvNz4u9/FP6QefTT+RllxqbGip6vi0kF5efCG9vLLB37gV+jaNfiFKS+vnHQlX7aqWzf4b2Lv3uCXee3aeC9chYrn1K8f1N+3L0guv/kmnjwm1qtIcJIvKyZfWkxchpqXhfR7KCIiUsmYMcElzBClS7rCHNOV6l+y5E/WTOpE48Ybg5/JY7rq1g16Gir06hVctstk3NZPf5r58QsPODe1S2KylzyuK/mR6jJochmkrpeqPFWdTLdVtV5VnarKMtlWk/KqlqvbR7qymtStyT4ziacmDubYNd3fodSrad3DKarj6h8qOdJUXGXKgjCTrrXAqQnrrYHkUXuZ1InGhRdmVq9evfigPTl8Env4jtGXakVEJPeE+em2AGhvZu3MrB4wHEgeLT0D+KEFzgW2Jo/nEhEREckFofV0uXu5md0CvE4wZcREd19iZjfFtk8AZhJMF7GKYMqIkWHFIyIiIpJNoc7T5e4zCRKrxLIJCcsO/CTMGERERESOBBo8IyIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEQhtRvrDycz+BXya7ThEREREMnCau5+YXHhUJF0iIiIiRztdXhQRERGJgJIuERERkQgo6QLMrMjMVpjZKjO7M9vx1FZmdqqZvWVmy8xsiZndFitvbmZ/NbOVsZ/HZzvW2sjM8szsIzN7Jbau83IEMLNmZvaCmS2P/e301rnJPjP7Wex9bLGZ/cnMGui8ZIeZTTSzTWa2OKEs7bkws7ti+cAKMxt8OGOp9UmXmeUB44EhQEfg+2bWMbtR1VrlwP9y97OBc4GfxM7FncAb7t4eeCO2LtG7DViWsK7zcmR4BHjN3c8C8gnOkc5NFplZK+BWoNDdOxPcCm84Oi/Z8jRQlFSW8lzEPnOGA51iz3k8liccFrU+6QJ6AavcfbW77wamAJdnOaZayd03uPuHseVtBB8erQjOxzOxas8A381KgLWYmbUGvgM8mVCs85JlZtYEuAB4CsDdd7v7V+jcHAnqAA3NrA7QCFiPzktWuPs7wJak4nTn4nJgirvvcvdPCO4N3etwxaKkK/hQ/zxhfW2sTLLIzNoC3YD5wEnuvgGCxAz4VhZDq60eBv4T2JdQpvOSfacD/wImxS79Pmlmx6Jzk1Xuvg54EPgM2ABsdfdZ6LwcSdKdi1BzAiVdYCnKNI9GFplZY+BF4HZ3/zrb8dR2ZnYpsMndF2Y7FjlAHaA78IS7dwO2o0tWWRcbH3Q50A5oCRxrZtdmNyrJUKg5gZKuIIs9NWG9NUE3sGSBmdUlSLgmu/tLseJ/mtkpse2nAJuyFV8t1QcYamZrCC6/X2hmf0Dn5UiwFljr7vNj6y8QJGE6N9l1EfCJu//L3fcALwHnofNyJEl3LkLNCZR0wQKgvZm1M7N6BAPoZmQ5plrJzIxgbMoyd38oYdMM4PrY8vXAy1HHVpu5+13u3trd2xL8fbzp7tei85J17r4R+NzMOsSKBgJL0bnJts+Ac82sUex9bSDBGFWdlyNHunMxAxhuZvXNrB3QHvjgcB1UM9IDZnYJwZiVPGCiu9+X3YhqJzM7H3gX+Jj42KH/TTCu63mgDcGb2VXunjwoUiJgZv2BO9z9UjM7AZ2XrDOzAoIvONQDVgMjCf6h1rnJIjP7L+Bqgm9lfwSMAhqj8xI5M/sT0B9oAfwTGAtMJ825MLNfAD8iOHe3u/urhy0WJV0iIiIi4dPlRREREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSkawzsxPMrCT22Ghm62LLZWb2eEjHvN3MfpiivK2ZLT6Mx6lnZu/E7sEnIrWY3gREJOvc/QugAMDM7gbK3P3BsI4XS4B+RDB7e6jcfbeZvUEwZ9PksI8nIkcu9XSJyBHLzPqb2Sux5bvN7Bkzm2Vma8zsSjO738w+NrPXYreQwsx6mNkcM1toZq9X3OojyYXAh+5envCcRWb2PvCThOO3NbN3zezD2OO8WPlzZnZ5Qr3JZjbUzDqZ2QexXrq/m1n7WJXpwDVhvEYicvRQ0iUiR5NvA98huJnwH4C33L0LsBP4TizxehQY5u49gIlAqjtM9AESb+A9CbjV3Xsn1dsEXOzu3Ql6qsbFyp8kmPkdM2tKcF+9mcBNwCPuXgAUEtzHDWAx0PMg2ywiOUKXF0XkaPKqu+8xs48Jbtv1Wqz8Y6At0AHoDPw1uOUdecCGFPs5heBeeBVJUzN3nxPb9hwwJLZcF3gsdqudvcCZAO4+x8zGm9m3gCuBF929PNZT9gszaw285O4rY/X3mtluMzvO3bcdptdCRI4ySrpE5GiyC8Dd95nZHo/fx2wfwfuZAUtS9Fgl2wk0iC0bkO5+aD8juFdbPsGVgW8Stj1HcMlwOMH4MNz9j2Y2n6A37nUzG+Xub8bq1096vojUMrq8KCK5ZAVwopn1BjCzumbWKUW9ZcAZAO7+FbA1dsN1qDz2qimwwd33AdcR9JxVeBq4PbaPJbHjnQ6sdvdxwAyga6z8BOBf7r7n0JsoIkcrJV0ikjPcfTcwDPiNmS0CSgjGWyV7FbggYX0kMD52eXBnQvnjwPVm9jeCS4vbE471T4LkbVJC/auBxWZWApwFPBsrH0Aw5ktEajGL986LiNQeZjYN+M+KcVcH8fxGBGPJurv71mrqvgTc5e4rDuZYIpIb1NMlIrXVnQQD6mvMzC4ClgOPZpBw1QOmK+ESEfV0iYiIiERAPV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhIBJV0iIiIiEVDSJSIiIhKB/w+W3IZ5aIYJMAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "False\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAp1klEQVR4nO3de5gU1bnv8e/rcHcERIwKqGCCKLcZYEARERTlYhSjGyOJMUJ0GyUcNYl7oycnke0Oz07UeBRFSY6CN5SIChIfVIJ3RdFBhwgI4SIqDEoUxRlAYOA9f1Q33dN0z/QAVQ09v8/z9DO1qlZVvatrZvqdVWtWmbsjIiIiIuE6JNcBiIiIiNQHSrpEREREIqCkS0RERCQCSrpEREREIqCkS0RERCQCSrpEREREItAg1wFko3Xr1t6+fftchyEiIiJSq4ULF37h7kemrj8okq727dtTWlqa6zBEREREamVmH6dbr9uLIiIiIhFQ0iUiIiISgdCSLjObYmYbzGxxhu1mZhPNbKWZ/cPMeoYVi4iIiEiuhdnT9SAwtIbtw4COsddVwH0hxiIiIiKSU6ElXe7+GrCxhioXAA974G2gpZkdE1Y8IiIiIrmUyzFdbYFPk8prY+tERERE8k4up4ywNOs88iiAxYth1659O4ala00E+0blYIgxnYM1bhERCUfbttCiRW7Oncukay1wbFK5HVCei0B+/3vYvDkXZxYREZEojRsHp5+em3PnMumaDYw1s+nAKcAmd1+fi0A6d4Zt2/Zc71n2u2VbLwxRnDuX7dsXB2vcIiISnubNc3fu0JIuM3scGAi0NrO1wM1AQwB3nwzMAc4FVgJbgNFhxVKb3/0uV2cWERGR+iK0pMvdf1TLdgd+Edb5RURERA4kmpFeREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAJKukREREQioKRLREREJAKhJl1mNtTMlpvZSjO7Mc32Fmb2NzNbZGZLzGx0mPGIiIiI5EpoSZeZFQCTgGFAZ+BHZtY5pdovgKXuXgQMBP5kZo3CiklEREQkV8Ls6eoDrHT31e6+HZgOXJBSx4HDzMyAQmAjUBViTCIiIiI5EWbS1Rb4NKm8NrYu2T3AyUA58AFwnbvvCjEmERERkZwIM+myNOs8pTwEKAPaAMXAPWbWPMSYRERERHIizKRrLXBsUrkdQY9WstHA0x5YCXwEnBRiTCIiIiI5EWbS9S7Q0cw6xAbHjwRmp9T5BBgEYGZHAZ2A1SHGJCIiIpITDcI6sLtXmdlY4AWgAJji7kvM7OrY9snAfwMPmtkHBLcjx7n7F2HFJCIiIpIroSVdAO4+B5iTsm5y0nI5MDjMGEREREQOBJqRXkRERCQCSrpEREREIqCkS0RERCQCtY7pMrN+wHjg+Fh9A9zdTwg3NBEREZH8kc1A+geAXwILgZ3hhiMiIiKSn7JJuja5+3OhRyIiIiKSx7JJul42s9uAp4Ft8ZXu/l5oUYmIiIjkmWySrlNiX0uS1jlw1v4PR0RERCQ/1Zp0ufuZUQQiIiIiks9qnTLCzFqY2R1mVhp7/cnMWkQRnIiIiEi+yGaerilABfDD2OsbYGqYQYmIiIjkm2zGdH3X3f8tqfxfZlYWUjwiIiIieSmbnq6tZnZ6vBCbLHVreCGJiIiI5J9serquAR6KjeMyYCMwKsygRERERPJNNv+9WAYUmVnzWPmbsIMSERERyTcZky4z+4m7P2pmv0pZD4C73xFybCIiIiJ5o6aerkNjXw9Ls81DiEVEREQkb2VMutz9z7HFee7+ZvK22GB6EREREclSNv+9eHeW60REREQkg5rGdPUFTgOOTBnX1RwoCDswERERkXxS05iuRkBhrE7yuK5vgBFhBiUiIiKSb2oa0/Uq8KqZPejuH0cYk4iIiEjeyWZy1C1mdhvQBWgSX+nuZ4UWlYiIiEieyWYg/TRgGdAB+C9gDfBuiDGJiIiI5J1skq4j3P0BYIe7v+ruPwNODTkuERERkbySze3FHbGv683s+0A50C68kERERETyTzZJ1+9jD7v+NcH8XM2BX4YalYiIiEieyeaB18/GFjcBZ4YbjoiIiEh+qmly1Lup4RmL7n5tKBGJiIiI5KGaerpKI4tCREREJM/VNDnqQ1EGIiIiIpLPah3TZWYvk+Y2YzaTo5rZUOAugmc13u/uf0hTZyBwJ9AQ+MLdB9R2XBEREZGDTTb/vXhD0nIT4N+Aqtp2MrMCYBJwDrAWeNfMZrv70qQ6LYF7gaHu/omZfacOsYuIiEjMzp072bhxIzt27Ki9suwXDRs2pFWrVhQUFGRVP5v/XlyYsupNM3s1i2P3AVa6+2oAM5sOXAAsTarzY+Bpd/8kdq4NWUUtIiIi1WzcuJEmTZrQunVrzCzX4eQ9d6eyspKNGzdy5JFHZrVPrTPSm1mrpFdrMxsCHJ3FsdsCnyaV18bWJTsRONzMXjGzhWb206yiFhERkWp27NhBYWGhEq6ImBmFhYV16lnM5vbiQoIxXUZwW/Ej4Ips4kmzLnVsWAOgFzAIaAq8ZWZvu/s/szi+iIiIJFHCFa26vt+19nS5ewd3PyH2taO7D3b3N7I49lrg2KRyO4JHCKXWed7dN7v7F8BrQFG2wYuIiMiBZcKECXTp0oXu3btTXFzMggULchJHWVkZc+bM2V2ePXs2f/hD8P98o0aN4sknn9xjn1deeYXzzjsvtJiy+e/FJsAY4HSCnqo3gPvc/dtadn0X6GhmHYB1wEiCMVzJngHuMbMGQCPgFOD/1qkFIiIickB46623ePbZZ3nvvfdo3LgxX3zxBdu3b89JLGVlZZSWlnLuuecCMHz4cIYPH56TWOJq7ekCHga6EDx38R7gZOCR2nZy9ypgLPAC8CHwhLsvMbOrzezqWJ0PgeeBfwDvEEwrsXhvGiIiIiK5tX79elq3bk3jxo0BaN26NW3atKF9+/Z88cUXAJSWljJw4EAAXn31VYqLiykuLqZHjx5UVFQAcOutt9KtWzeKioq48cYbAVi1ahVDhw6lV69e9O/fn2XLlgFBr9XVV19N//79OfHEE3n22WfZvn07v/vd7/jrX/9KcXExf/3rX3nwwQcZO3bs7ljnzZtXbZ9Umzdv5mc/+xm9e/emR48ePPPMM/v8/mQzpquTuyff8nvZzBZlc3B3nwPMSVk3OaV8G3BbNscTERGR2p1/fjjH/dvfat4+ePBgbrnlFk488UTOPvtsLrnkEgYMyDz95u23386kSZPo168flZWVNGnShOeee45Zs2axYMECmjVrxsaNGwG46qqrmDx5Mh07dmTBggWMGTOGl156CYA1a9bw6quvsmrVKs4880xWrlzJLbfcQmlpKffccw8ADz74YLVzp9sn2YQJEzjrrLOYMmUKX3/9NX369OHss8/m0EMPreO7lpBN0vW+mZ3q7m8DmNkpwJt7fUYRERHJS4WFhSxcuJDXX3+dl19+mUsuuWT3OKp0+vXrx69+9SsuvfRSLrroItq1a8e8efMYPXo0zZo1A6BVq1ZUVlYyf/58Lr744t37btu2bffyD3/4Qw455BA6duzICSecsLsXrCa17TN37lxmz57N7bffDsC3337LJ598wsknn1yn9yRZNknXKcBPzeyTWPk44EMz+wBwd+++12cXERGR/a62HqkwFRQUMHDgQAYOHEi3bt146KGHaNCgAbt27QKC5CXuxhtv5Pvf/z5z5szh1FNPZd68ebj7Hv8VuGvXLlq2bElZWVnac6bWz+a/Cmvbx9156qmn6NSpU63HylY2Y7qGAh2AAbFXB+Bc4DwgpA5MEREROdgsX76cFStW7C6XlZVx/PHH0759exYuDOZaf+qpp3ZvX7VqFd26dWPcuHGUlJSwbNkyBg8ezJQpU9iyZQsQTPravHlzOnTowIwZM4AgIVq0KDHSacaMGezatYtVq1axevVqOnXqxGGHHbZ7jFg66fZJNmTIEO6++27cg9mu3n///X18d7KbMuJjoCVBgnU+0NLdP46/9jkCERERyQuVlZVcfvnldO7cme7du7N06VLGjx/PzTffzHXXXUf//v2rPTLnzjvvpGvXrhQVFdG0aVOGDRvG0KFDGT58OCUlJRQXF+++vTdt2jQeeOABioqK6NKlS7WB7Z06dWLAgAEMGzaMyZMn06RJE84880yWLl26eyB9qnT7JPvtb3/Ljh076N69O127duW3v/3tPr8/Fs/gMlYwuw74d+Dp2KoLgb+4+937fPYslZSUeGlpaVSnExEROeiUl5fTpk2bXIcRuVGjRnHeeecxYsSInJw/3ftuZgvdvSS1bjZjuq4ATnH3zbED/RF4i2AKCRERERHJQjZJlwE7k8o7Sf+IHxEREZFIpU4FcSDLJumaCiwws5kEydYFwAOhRiUiIiKSZ2pNutz9DjN7heAxQACj3X3fh/CLiIiI1CPZTBkRZwTPXtStRREREZE6qjXpMrPfAQ8BhwOtgalm9n/CDkxEREQkn2TT0/UjoLe7j3f3m4FTgUvDDUtEREQONoWFhbXWef311+nSpQvFxcVs3bq1TsefNWsWS5cuDSWuKGSTdK0BkmcMawysCiUaERERyWvTpk3jhhtuoKysjKZNm9Zp371Nug4U2SRd24AlZvagmU0FFgOVZjbRzCaGG56IiIgcbF555RUGDhzIiBEjOOmkk7j00ktxd+6//36eeOIJbrnlFi69NLhpdtttt9G7d2+6d+/OzTffvPsYDz/8MN27d6eoqIjLLruM+fPnM3v2bP7jP/6D4uJiVq1axapVqxg6dCi9evWif//+ux9a/dFHH9G3b1969+69X2aS31+ymTJiZuwV90o4oYiIiMh+cX5Ij0auw5O033//fZYsWUKbNm3o168fb775JldeeSVvvPHG7hnk586dy4oVK3jnnXdwd4YPH85rr73GEUccwYQJE3jzzTdp3bo1GzdupFWrVgwfPrza7PODBg1i8uTJdOzYkQULFjBmzBheeuklrrvuOq655hp++tOfMmnSpHDei72QzZQRD0URiIiIiOSPPn360K5dOwCKi4tZs2YNp59+erU6c+fOZe7cufTo0QMInt24YsUKFi1axIgRI2jdujUArVq12uP4lZWVzJ8/n4svvnj3um3btgHw5ptv7n6w9mWXXca4ceP2fwP3QjY9XSIiInIwqUOPVFgaN268e7mgoICqqqo96rg7N910Ez//+c+rrZ84cSJmNc9QtWvXLlq2bElZWVna7bXtnwt1madLREREZL8ZMmQIU6ZMobKyEoB169axYcMGBg0axBNPPMGXX34JwMaNGwE47LDDqKioAKB58+Z06NCBGTNmAEECt2jRIgD69evH9OnTgWDg/oEiY9JlZo/Evl4XXTgiIiJSXwwePJgf//jH9O3bl27dujFixAgqKiro0qULv/nNbxgwYABFRUX86le/AmDkyJHcdttt9OjRg1WrVjFt2jQeeOABioqK6NKlC8888wwAd911F5MmTaJ3795s2rQpl02sxtw9/QazpcAwYDYwkJSZ6N19Y9jBxZWUlHhpaWlUpxMRETnolJeX06ZNm1yHUe+ke9/NbKG7l6TWrWlM12TgeeAEYCHVky6PrRcRERGRLGS8vejuE939ZGCKu5/g7h2SXkq4REREROogmykjrjGzIqB/bNVr7v6PcMMSERERyS/ZPPD6WmAa8J3Ya5qZ/a+wAxMRERHJJ9nM03UlcIq7bwYwsz8CbwF3hxmYiIiISD7JZp4uA3YmlXeS8p+MIiIiIlKzbHq6pgILzCz+/MUfAA+EFpGIiIgclAoKCujWrRtVVVV06NCBRx55hJYtW+Y6rDoZP348hYWF3HDDDfv92LX2dLn7HcBoYCPwFTDa3e/c75GIiIjIQa1p06aUlZWxePFiWrVqdcA8bNrd2bVrV67DyO4xQO7+XmwKibvc/f2wgxIREZGDW9++fVm3bh0Aq1atYujQofTq1Yv+/fuzbNkyAD7//HMuvPBCioqKKCoqYv78+QDccccddO3ala5du3LnnXcCMG7cOO69997dxx8/fjx/+tOfALjtttvo3bs33bt35+abbwZgzZo1nHzyyYwZM4aePXvy6aefpq0HMGHCBDp16sTZZ5/N8uXLQ3tP9MBrERGRfHT++Zm3/eIXMHRosPz881BTj9RePDx7586dvPjii1xxxRUAXHXVVUyePJmOHTuyYMECxowZw0svvcS1117LgAEDmDlzJjt37qSyspKFCxcydepUFixYgLtzyimnMGDAAEaOHMn111/PmDFjAHjiiSd4/vnnmTt3LitWrOCdd97B3Rk+fDivvfYaxx13HMuXL2fq1Knce++9GesdeuihTJ8+nffff5+qqip69uxJr1696tzmbCjpEhERkf1i69atFBcXs2bNGnr16sU555xDZWUl8+fP5+KLL95db9u2bQC89NJLPPzww0AwHqxFixa88cYbXHjhhRx66KEAXHTRRbz++utce+21bNiwgfLycv71r39x+OGHc9xxxzFx4kTmzp1Ljx49AKisrGTFihUcd9xxHH/88Zx66qkAzJ07N229iooKLrzwQpo1awbA8OHDQ3t/Qk26zGwocBdQANzv7n/IUK838DZwibs/GWZMIiIi9UK2PVRDhyZ6vfZRfEzXpk2bOO+885g0aRKjRo2iZcuWlJWVZXWMTM+EBhgxYgRPPvkkn332GSNHjtxd/6abbuLnP/95tbpr1qzZnbjVVO/OO+/ELJpJGbKZHPUiM1thZpvM7BszqzCzb7LYrwCYRPDQ7M7Aj8ysc4Z6fwReqHv4IiIicqBp0aIFEydO5Pbbb6dp06Z06NCBGTNmAEHys2jRIgAGDRrEfffdBwS3JL/55hvOOOMMZs2axZYtW9i8eTMzZ86kf//goTgjR45k+vTpPPnkk4wYMQKAIUOGMGXKFCorKwFYt24dGzZs2COmTPXOOOMMZs6cydatW6moqOBve3E7NVvZ9HTdCpzv7h/W8dh9gJXuvhrAzKYDFwBLU+r9L+ApoHcdjy8iIiIHqB49elBUVMT06dOZNm0a11xzDb///e/ZsWMHI0eOpKioiLvuuourrrqKBx54gIKCAu677z769u3LqFGj6NOnDwBXXnnl7luCXbp0oaKigrZt23LMMccAMHjwYD788EP69u0LQGFhIY8++igFBQXV4slUr2fPnlxyySUUFxdz/PHH707wwmA1deMBmNmb7t6vzgc2GwEMdfcrY+XLCGa2H5tUpy3wGHAWwdxfz6a7vVhSUuKlpaV1DUFERKTeKC8vp02bNrkOo95J976b2UJ3L0mtm01PV6mZ/RWYBWyLr3T3p2vZL90N0tQM705gnLvvjOp+qoiIiEguZJN0NQe2AIOT1jlQW9K1Fjg2qdwOKE+pUwJMjyVcrYFzzazK3WdlEZeIiIjIQaPWpMvdR+/lsd8FOppZB2AdMBL4ccqxO8SXzexBgtuLs/byfCIiIiIHrGz+e7Gdmc00sw1m9rmZPWVm7Wrbz92rgLEE/5X4IfCEuy8xs6vN7Op9D11ERESS1TZOW/avur7f2T7w+jEgPqvZT2LrzskimDnAnJR1kzPUHZVFLCIiIpJGw4YNqayspLCwMLJ5p+ozd6eyspKGDRtmvU82SdeR7j41qfygmV1f1+BEREQkPK1atWLjxo1UVFTkOpR6o2HDhrRq1Srr+tkkXV+Y2U+Ax2PlHwFf7kVsIiIiEpKCggKOPPLIXIchNah1TBfwM+CHwGfAemBEbJ2IiIiIZCmb/178BAjv6Y8iIiIi9UDGpMvM/tPdbzWzu9lzUlPc/dpQIxMRERHJIzX1dMWftajn74iIiIjso4xJl7vHH7O9xd1nJG8zs4vT7CIiIiIiGWQzkP6mLNeJiIiISAY1jekaBpwLtDWziUmbmgNVYQcmIiIikk9qGtNVTjCeaziwMGl9BfDLMIMSERERyTc1jelaBCwys5nAZnffCWBmBUDjiOITERERyQvZjOmaCzRNKjcF5oUTjoiIiEh+yibpauLulfFCbLlZeCGJiIiI5J9skq7NZtYzXjCzXsDW8EISERERyT/ZPPD6emCGmZXHyscAl4QWkYiIiEgeyubZi++a2UlAJ8CAZe6+I/TIRERERPJINj1dECRcnYEmQA8zw90fDi8sERERkfxSa9JlZjcDAwmSrjnAMOANQEmXiIiISJayGUg/AhgEfObuo4EiNE+XiIiISJ1kk3RtdfddQJWZNQc2ACeEG5aIiIhIfslmTFepmbUE/h/B44AqgXfCDEpEREQk39SYdJmZAf/j7l8Dk83seaC5u/8jiuBERERE8kWNtxfd3YFZSeU1SrhERERE6i6bMV1vm1nv0CMRERERyWPZjOk6E7jazNYAmwkmSHV37x5mYCIiIiL5JGPSZWbHufsnBPNyiYiIiMg+qKmnaxbQ090/NrOn3P3fIopJREREJO/UNKbLkpY1L5eIiIjIPqgp6fIMyyIiIiJSRzXdXiwys28IeryaxpYhMZC+eejRiYiIiOSJjEmXuxdEGYiIiIhIPstmnq69ZmZDzWy5ma00sxvTbL/UzP4Re803s6Iw4xERERHJldCSLjMrACYRTDnRGfiRmXVOqfYRMCA259d/A38JKx4RERGRXAqzp6sPsNLdV7v7dmA6cEFyBXef7+5fxYpvA+1CjEdEREQkZ8JMutoCnyaV18bWZXIF8FyI8YiIiIjkTDaPAdpblmZd2qknzOxMgqTr9BDjEREREcmZMJOutcCxSeV2QHlqJTPrDtwPDHP3L0OMR0RERCRnwry9+C7Q0cw6mFkjYCQwO7mCmR0HPA1c5u7/DDEWERERkZwKrafL3avMbCzwAlAATHH3JWZ2dWz7ZOB3wBHAvWYGUOXuJWHFJCIiIpIr5n7gP+GnpKTES0tLcx2GiIiISK3MbGG6TqRQJ0cVERERkYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiYCSLhEREZEIKOkSERERiUCDMA9uZkOBu4AC4H53/0PKdottPxfYAoxy9/fCjCmtKVOgqgoaNYKGDYOv8eX4K7ncoEH1bfFygwbVlw85BMwib06o3GHnTti1K1iOl92DNjdpEtSrqoKvv07UidfftSvY3ro1NG4cLH/5JWzaVP2Y8VejRnDCCYnzL16cOB8k9gFo1w6OOipY/uILWLkycb748eLLp50GBQVBuawMvvoqfb2jjoJu3YLy5s3w+uuJbalf+/aFVq2C8pIlsGpV+rqFhXD22Yk2PfNM8H4l14kvFxXBiScG5Y8/hrffrl4n2YgRwTUAmDcPPv98zzru0L49nH56UN60CWbPrr49+euQIXD00cHyu+8G7UqtC9CiBVx0UaL8yCOwY0f6OPv0ga5dg+WVK+GVV9LXA7j88uDnCeBvf4PPPkvf/u99D846K1j++mt44onMxzz/fDjmmGB5/nz44IP09Vq0gJEjE+X778/cptNOC64VwIoVwfufyRVXBN/XALNmwfr16et973twzjnB8ldfweOPZz7mBRdA27bB8htvwKJF6eu1bAmXXpoo/+UvmdvUrx8UFwfL//wn/P3vmc//7/+eaNPMmVBenr5ex44weHCw/NVX8NhjmY/5gx/se5tSv1dOPz3RpuXLa27TVVcl2vT005nbdOKJ1ds0bVrmY154YfU2lZWlr9eyJfzkJ4nyn/+c+TqpTXVvUw6FlnSZWQEwCTgHWAu8a2az3X1pUrVhQMfY6xTgvtjXaL3wAmzZsnf7JicU8cQjnmht2xZ8jSdfhxySeDVrFiQeBQXB/uXlif3MqidrnTvD4YcHdVevhnXr9vxwBjjsMDj33KDeIYcEv9Di39Tx5CP+9cwz4ZRTgnqLF8NTT1U/VnIyc8cd0LRpUPfWW4MPleT44sv9+sHYsUG99evh17+uvj15nwkTgg/eQw4JflCSP/iTtW0LkycnyuPHJ97XVFdcEfyihuCD9I470tcDmDEjkXRNn149mUh2xhmJpOurr2DSpMzHPP74RNL11ltBMpVO27bVk65HHqm5TfGk66OP4NFHM5//Bz9IJF0vvhhc13QGDEgkXRUVNScovXolkq5Fi2puU3LSNXs2fPtt+rqtWiWSrrVrMx8Tgl/S8aRr/vya2xRPujZvDhK0TE47LZF0LV0Kzz6bvl7bttWTrhdeyNymY45JJF3l5TBnTubzjx6dWF6wIHObzjgjkXRt2QLPPZf5mGeckfjgW7YMnn8+fb22basnKH//e+Y2tW2b+OBbvz7zMSH4Po17553MbdqyJfHBt2VLzcccMGD/t6ldu0SbPvssuKaZXHllYvnddzO3aevW6m2q6ZgDB1ZvU6a6bdtWT1DmzVObMtmbNuWQeaa/mvf1wGZ9gfHuPiRWvgnA3f8nqc6fgVfc/fFYeTkw0N2r/elXUlLipaWlocQJBD+kTz8dfHNt3x58AG7fnnh16hT0DuzYEfRevPNO0DMR7/FJTrr69g3KO3YEv9ArKtKf84gj4LvfDZa3bs381zbASSdB8+bB8iefBN+E6TRpAt27J8oLFwYxpnPssYkPni+/TPTKpNOrVyJBWbYs0abk5NAsSAw7dAjK334b1I1vS/4KQe9VYWGwvH59EEP8ePF6hxwS9IaddFKivGRJIhlMrdumTdAzZRYkSJ9+Wr1echzduwdtMgt6WzZv3rNOvE3t2wfL27YFbUpNiuPljh0TbSovD3rb0rW/ceMgkY6v++CDRDIcb0t8W5s28J3vBOXUNiWfH4JEJp50rVoVtClZ/LgtWwYJIgTX6Z//TB8nVL9O5eXBdUp3zEaNgp+TuOTrlHrMo4+GI49MXKe1a9PXAzj55ESbVq9O/HGUWq9Fi+B7GoLrtGJF5mO2b7/n9166eo0bB9c07sMPg5+ndL3XRx8d/BEFQU/bunV71omf46STEj9PH32U+Q++Fi2CD594m1auzNxz3r49HHposPzZZ3tep+Q2fe971duU/L2X7KijsmsTVG/TmjV1a1Mm2bapUaM9r1OmNh19dPC71yzo5U3+3kuV2qbUn6e4MNpUl+sUbxOoTdm26ZxzqscSAjNb6O4le6wPMekaAQx19ytj5cuAU9x9bFKdZ4E/uPsbsfKLwDh3r5ZhhZ50QfAXbaaLdfnlwa0bCLpP//jHxDaz6rcZJ09O/EK/555Er1ByL1f8A3rQoMRtuHhPT7oEoUuX4Bumqiq4xZR82yj5+jVoEHxIxxPBtWur36qL13cPfgAaNAjqxRPN5HrJPV3x/ZITzNTl5NuIqetTt6euC+l7UEREZA/jxiV6+0OSKekKc0xXuj/JUj9ds6kTjauuCr4mj+uKJ1PxngYIxqM89lgiyYr3lqQzdmz69en07r33seeD1LFcqbdD0433qssr+RyZluu6raZyaiKZzX7pvmZal+k4tR0jXb1M2+tary7nru08+2Pfuuy/L/vu73phiOrc+gNKDgbxu0w5EGbStRY4NqncDkgd4ZZNnWjEx4PUJj7IXvav1Ft2IiIieSbMKSPeBTqaWQczawSMBFJHS88GfmqBU4FNqeO5RERERPJBaD1d7l5lZmOBFwimjJji7kvM7OrY9snAHILpIlYSTBkxOtPxRERERA5moc7T5e5zCBKr5HWTk5Yd+EWYMYiIiIgcCDQjvYiIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIRCC0Gen3JzP7F/BxruMQERERycLx7n5k6sqDIukSEREROdjp9qKIiIhIBJR0iYiIiERASRdgZkPNbLmZrTSzG3MdT31lZsea2ctm9qGZLTGz62LrW5nZ381sRezr4bmOtT4yswIze9/Mno2VdV0OAGbW0syeNLNlsZ+dvro2uWdmv4z9HltsZo+bWRNdl9wwsylmtsHMFiety3gtzOymWD6w3MyG7M9Y6n3SZWYFwCRgGNAZ+JGZdc5tVPVWFfBrdz8ZOBX4Rexa3Ai86O4dgRdjZYnedcCHSWVdlwPDXcDz7n4SUERwjXRtcsjM2gLXAiXu3pXgUXgj0XXJlQeBoSnr0l6L2GfOSKBLbJ97Y3nCflHvky6gD7DS3Ve7+3ZgOnBBjmOql9x9vbu/F1uuIPjwaEtwPR6KVXsI+EFOAqzHzKwd8H3g/qTVui45ZmbNgTOABwDcfbu7f42uzYGgAdDUzBoAzYBydF1ywt1fAzamrM50LS4Aprv7Nnf/iODZ0H32VyxKuoIP9U+Tymtj6ySHzKw90ANYABzl7ushSMyA7+QwtPrqTuA/gV1J63Rdcu8E4F/A1Nit3/vN7FB0bXLK3dcBtwOfAOuBTe4+F12XA0mmaxFqTqCkCyzNOs2jkUNmVgg8BVzv7t/kOp76zszOAza4+8JcxyJ7aAD0BO5z9x7AZnTLKudi44MuADoAbYBDzewnuY1KshRqTqCkK8hij00qtyPoBpYcMLOGBAnXNHd/Orb6czM7Jrb9GGBDruKrp/oBw81sDcHt97PM7FF0XQ4Ea4G17r4gVn6SIAnTtcmts4GP3P1f7r4DeBo4DV2XA0mmaxFqTqCkC94FOppZBzNrRDCAbnaOY6qXzMwIxqZ86O53JG2aDVweW74ceCbq2Oozd7/J3du5e3uCn4+X3P0n6LrknLt/BnxqZp1iqwYBS9G1ybVPgFPNrFns99oggjGqui4HjkzXYjYw0swam1kHoCPwzv46qWakB8zsXIIxKwXAFHefkNuI6iczOx14HfiAxNih/00wrusJ4DiCX2YXu3vqoEiJgJkNBG5w9/PM7Ah0XXLOzIoJ/sGhEbAaGE3wB7WuTQ6Z2X8BlxD8V/b7wJVAIboukTOzx4GBQGvgc+BmYBYZroWZ/Qb4GcG1u97dn9tvsSjpEhEREQmfbi+KiIiIREBJl4iIiEgElHSJiIiIREBJl4iIiEgElHSJiIiIREBJl4jknJkdYWZlsddnZrYutlxpZveGdM7rzeynada3N7PF+/E8jczstdgz+ESkHtMvARHJOXf/EigGMLPxQKW73x7W+WIJ0M8IZm8PlbtvN7MXCeZsmhb2+UTkwKWeLhE5YJnZQDN7NrY83sweMrO5ZrbGzC4ys1vN7AMzez72CCnMrJeZvWpmC83shfijPlKcBbzn7lVJ+ywys7eAXySdv72ZvW5m78Vep8XWP2JmFyTVm2Zmw82si5m9E+ul+4eZdYxVmQVcGsZ7JCIHDyVdInIw+S7wfYKHCT8KvOzu3YCtwPdjidfdwAh37wVMAdI9YaIfkPwA76nAte7eN6XeBuAcd+9J0FM1Mbb+foKZ3zGzFgTP1ZsDXA3c5e7FQAnBc9wAFgO997LNIpIndHtRRA4mz7n7DjP7gOCxXc/H1n8AtAc6AV2BvwePvKMAWJ/mOMcQPAsvnjS1dPdXY9seAYbFlhsC98QetbMTOBHA3V81s0lm9h3gIuApd6+K9ZT9xszaAU+7+4pY/Z1mtt3MDnP3iv30XojIQUZJl4gcTLYBuPsuM9vhieeY7SL4fWbAkjQ9Vqm2Ak1iywZkeh7aLwme1VZEcGfg26RtjxDcMhxJMD4Md3/MzBYQ9Ma9YGZXuvtLsfqNU/YXkXpGtxdFJJ8sB440s74AZtbQzLqkqfch8D0Ad/8a2BR74DpUH3vVAljv7ruAywh6zuIeBK6PHWNJ7HwnAKvdfSIwG+geW38E8C9337HvTRSRg5WSLhHJG+6+HRgB/NHMFgFlBOOtUj0HnJFUHg1Mit0e3Jq0/l7gcjN7m+DW4uakc31OkLxNTap/CbDYzMqAk4CHY+vPJBjzJSL1mCV650VE6g8zmwn8Z3zc1V7s34xgLFlPd99US92ngZvcffnenEtE8oN6ukSkvrqRYEB9nZnZ2cAy4O4sEq5GwCwlXCKini4RERGRCKinS0RERCQCSrpEREREIqCkS0RERCQCSrpEREREIqCkS0RERCQCSrpEREREIvD/AfbYeIsPcWrxAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "False\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABQBElEQVR4nO3dd3xUZfb48c9JI9TQRKSDIiIloYOIgCiCBcuCvWDvov5cBRuWVXfVtaAouwpWVhRURL8WFkFFWUCqUqV3QUQwAdKf3x9nhpmElEmYO5Ny3q/Xfd07d+7ceTKTZM48z7nnEeccxhhjjDHGWzHRboAxxhhjTGVgQZcxxhhjTARY0GWMMcYYEwEWdBljjDHGRIAFXcYYY4wxEWBBlzHGGGNMBMRFuwGhqF+/vmvRokW0m2GMMcYYU6yFCxfuds4dlX9/uQi6WrRowYIFC6LdDGOMMcaYYonIpoL22/CiMcYYY0wEWNBljDHGGBMBFnQZY4wxxkSAZ0GXiEwQkV0isqyQ+0VExojIWhH5SUQ6e9UWY4wxxpho87Kn601gUBH3DwZa+5YbgFc9bIsxxhhjTFR5FnQ5574D9hRxyLnA207NBWqLyDFetccYY4wxJpqiWTKiMbAl6PZW374d0WmOMcYYU4k5l3fJzQ1sx8XpApCVBenphx/vX+rWBRE9ds8ePT439/DnqFZNjwXIzITt2/MeE7zdpAkkJuq+nTth7968x/mPTUyEVq0C+5Yty3tc8+aQlBT2ly5U0Qy6pIB9roB9nsvODvwuGWOMqUCc0wAhO1uXnJy864YNoUoVPXbbNvjtt7zH+Jfq1aFbt8A5p03Le39ubmDdsye0aaPHrlgBs2YF7gs+LjcXRo4MBCjjxsHWrYGAJycnsN2jB1x4oR63ZQs89VTeoMh/rHMwejT4C4q//jp8/XXeIMq/btkS/vnPwGs1ZEjhr+Mtt8Dgwbr99dcwdmzhx06bFth+/HFYu7bg4wYOhNtvD/xMd95Z+Dmfew5at9btKVPgyy8LPq5VK3jxxcDtUaPy3n/ffXDyyYU/j8eiGWpsBZoG3W4CbI9GQ+66S9cnngjt2um6fv1otMQYYyoY5+DXX7UnIzMTMjIC25mZcOyx0LixHrtuHcydqwGP//6sLF2ys/MGKM8/Dxs35r3fv+7fH268MXBO/z/5ggR/mE+dWvSHuT/oEoHx4/P2sgQ76qhA0LV1a+Hn9L8+/p/pl19gzZqCj2vePLCdlaVBSmGysgLbmZmQllbwcdnZeW/72yECMTG69u+LCcpGSkjQIDT4mOAl+GeqWxcaNCj4uNq1856zWbO8zxm87Q+MAY4+Go4/Pu9x/nWjRnl/pvbt8/58tWoV/FpESDSDrmnAbSIyCegB7HPORXxoMT1dezQzM/Xv9/PPdX+DBtCxI/TpA8nJEBsb6ZYZY0wEBH9ApqfD+vVw8GBgSU8PrM88M/CN9LPPYM4cDaLS03Xt327SRIMivxtvLDxAuemmQNC1YQNMmlR4W3NyAsMS27ZpWwty8GBgOz5eh5zi4vQfef518D/3pk31H37wMTExun300Xmf49xz9XWLjQ0c41/7Ay6Atm21lyj4mODF/9r7X6eDBwNBT/ASPCTWpIn2NAUfFxwo1akTOPaaa+CKKw4/xr8d7JNP8ranMKeeqksoHnootOOaNi269yzY0KG6hOKpp0I7LkLEFfaHcKQnFnkP6AfUB3YCo4F4AOfcOBER4GX0CscDwNXOuQLn+unatavzchqgzEz9crF8ufYEr1wJBw4E7k9KglNOgb598wbXxhgTVf6hs7Q0XVJTYf9+XU49NfCh+t572uNz4IDed/Cgrg8c0H9u/p6gzZvh1lsLf76nngr0HLz+un5IF6RxYx0q87v1Vm1rlSq6xMfrOiEBBgyALl30uPXrtacrIUGPyb/07BkIkrZs0R6duDi9LzY2cFxCgi7GRImILHTOdc2/37OeLufcJcXc74Ai/rojJyFBhxXbtdPbubna6zV/PnzzjX6h+vRTXRo10mH1/v0P/5JgjDFH7NdfNUn4zz912bcvsN2rF3Tvrsd9/z08+6z2/hSkVy8dAgL9NrlkScHHpacHtmvU0J6ZqlW1d6hq1bzbDRoEjh00SNviD6QSEwPb+QOeUHswWrXKmwRdlKZNiz/GmDLGs56ucPK6p6sozukXxG++gdmz9UIM0L/3yy/X/2vW82WMKdK+ffrtbc8eDaj++EOXvXv129uDDwaOvfxyPb4gF18Ml12m2wsXwiOPaJBTo4YuNWtqoFWjBlx7rd4G+Okn7dmqXl2Dp+rV9cqxatW0Z8j+iRkTVoX1dFnQVQK5ufDtt/Duu7Brl+477ji48kro1Cm6bTPGRMH+/Xq12++/B9a7d+sybJgmhgJ88AG8807B56hSRa/G8nv4YR0qTErSpN9atXS7Zk1N+Pb3BGVn67fC+Hhvf0ZjTIlZ0BVG2dkwfbrme/7xh+4bMABuvjnvBRbGmHLMOQ1+du4MLHFxgcvqMzKKTua9+WZNPAdNOP/oI72Sq04dXWrXDqwtWdSYCiXiOV0VWVyc/i8dMEDzvN57T8uWrFsH998Px1hdfWPKB+f0m1O1aoHCi198AV99BTt25L2iBvSP2x90VamiOU4JCVoioF49vbKvXj1djj028LiTTtLFGFOpWdB1BKpU0S+6XbvqRT0bN2pttzvv1FwvY0wZkZur9ZI2b9b11q2aY7Vtm17J99BDgQT1tDT9BgUaiDVsqOUCjj46UNrAb/z4yP4cxphyzYKuMGjRQuvrjRmjowhPPgnnn6+5Xlbp3pgIys3VHqqNG7UWTP/+uj8jo/BSCDVq5K3r1Lev5mI1bKj5VDbsZ4wJEwsJwqR6dS2W/Mkn8MYb8PHHmld77732P9sYz2zdqqUQ1q3TQGvzZg22QIf8/EFX1apaX6paNb30uHFjLTDZqNHhgVWDBnlLIxhjTJhY0BVGInDeeXqB0WOPaRmdOnXg+ust8DLmiGRkaGC1Zo1WDPfPKzd3Lrz1Vt5jjzpK72/RIm+19TJWmdoYU/lY0OWBdu3ggQd0ztFPP9XAa9iwaLfKmHLCOZ2ba+VKXX75RXuwcnP1/iuvDARdHTrA6adrGYWWLXW/vyCoMcaUMRZ0eaRjR7jnHvjHP+Dtt/Wq8NNPj3arjCmDsrJg0yYtegfaM/Xgg1rryi8mRoOq1q0DkxODznEXPM+dMcaUYRZ0eah3b53L9dVX4aWXNHWkR49ot8qYKMvMhFWrYNkyXVav1sBr4sRABfWePbV6+wkn6NKqlRXBM8aUexZ0eezMM/Wz4/334emn4W9/06nNjKl0tm3TSZBXrAgku/s1a6bV3P1B1403Rr59xhjjMQu6IuCyy7T+4vTpOj/t2LGBOozGVEj79uncgFlZcMYZuq9mzcCkyy1baj5W+/Zw4ok6zY0xxlRwFnRFgAjccgusXQvr12uO1w03RLtVxoSRc/oLPn++Bltr1uj+evVg4ED9I6hVS68uad3agixjTKVkQVeExMbCiBFw113w2WdwyimaqmJMuTdnDvz73zo86Bcfr1eTdOkCOTmBKsFdD5uKzBhjKg0LuiKoVSu44AKYMkWr17/4on42GVNuZGXBokVabLRjR91Xu7YGXPXq6ZUiXbvqfZb4bowxeVjQFWGXXAL/+x9s2QIffKD5XsaUadnZsHixVvudO1cngU5JCQRdJ5yg82Add5xVATbGmCJY0BVhCQlw220wahRMnqxlJfx1Ho0pUzZuhC++gNmzITU1sL9VK+jUKVDtPSYmb+0sY4wxBbKgKwrat9dSEp9/rvW7nnlGP7eMibrgaXNWrNBfUoDmzaFPHzj5ZJ230BhjTIlZ0BUlV12lF3r98otOFXTuudFukam0srNh3jz48ksdIrzqKt3fpw/8+qtOGt2yZXTbaIwxFYD1r0RJtWpaRgLgvfc0TcaYiNq+Hd54A4YPh7//XWtoffut9naB1tW65hoLuIwxJkyspyuKunXTybGXL9dRnKFDo90iUymsWQPvvqtXIfo1b65FTPv3t2R4Y4zxiAVdUXbhhVovcupUGDJEE+2N8VRmpgZcCQlaMG7QIDj+eAu2jDHGYxZ0RVmnTppGs3atThN09tnRbpGpUHbv1oh+zx64917dd+KJcPvt0KtXYK5DY4wxnrOcrigTgWHDdPvDDzWn2ZgjtmULvPACXHcdfPKJ1tjavVvvE9GpeSzgMsaYiLKerjKgVy9o2lQ/J7/5Bk47LdotMuXW6tVadXf+fL0tokOIf/kL1K8f3bYZY0wlZ0FXGeDv7XruOS2YeuqpVrfLlMK+fTBypHaXJiRo9H7++dCwYbRbZowxBgu6yoxTToGJE/Uq/jlztAalMcVav15LOohAUhKcc47Orn7eeXrbGGNMmWH9KWVEbGygZMQHHwRKJRlToC1b4G9/gxEj4IcfAvuvuUaLm1rAZYwxZY4FXWXIgAFQty5s2AALFkS7NaZM2rMHXn4Zbr1Vq8hXqQJ790a7VcYYY0Jgw4tlSHy8puCMH6+5Xd26RbtFpsw4cEAvb506VetsxcRoMdNLLtFI3RhjTJnnaU+XiAwSkdUislZERhZwf5KIfCoiS0VkuYhc7WV7yoNBg6B6dVi5UkeQjAHgiy903DkzUy93feUV7e2ygMsYY8oNz4IuEYkFxgKDgROBS0TkxHyH3QqscM4lA/2Af4pIpa7Jnpio8wwDfP11dNtiomz//sD2OefoL8bTT8P990PjxtFrlzHGmFLxsqerO7DWObfeOZcJTALOzXeMA2qKiAA1gD1ApS8Peuqpup41C3JyotsWEwX79sGYMXDjjZCWpvsSErSifNu20W2bMcaYUvMy6GoMBA+QbfXtC/Yy0BbYDvwMjHDO5XrYpnLhhBOgUSPNmV6yJNqtMRHjHPz3vxps/fe/2tO1fHm0W2WMMSZMvAy6Cpo9N38hhDOAJUAjIAV4WURqedimckFEr2QEG2KsNLZvhwce0B6u/ft1Us6XX4YePaLdMmOMMWHi5dWLW4GmQbeboD1awa4G/u6cc8BaEdkAnADM97Bd5UL//vDuuzB3rn4GV68e7RYZz0yfDuPGQVaW1te6/nqtlisFfW8xxhhTXnnZ0/Uj0FpEWvqS4y8GpuU7ZjMwAEBEjgbaAOs9bFO5cdRR0LGjfg7Pnh3t1hhPNWyob/SAAfDqq9C3rwVcxhhTAXkWdDnnsoHbgK+AlcAHzrnlInKTiNzkO+xx4CQR+Rn4GrjPObfbqzaVNzbEWEHl5MDSpYHbHTtqCYg774SaNaPWLGOMMd7ytDiqc+5z4PN8+8YFbW8HBnrZhvKsVy8tIbFqFWzbZlUCKoQdO3Rm89Wr4YknoEMH3d+0adGPM8YYU+7ZNEBlWHDNrpkzo9sWc4Scg88/h9tv1yi6Th2bYNMYYyoZC7rKOH/NrpkzIbfSF9Mop9LS4KmnNF8rI0NztsaO1WFFY4wxlUaxw4si0ht4BGjuO14A55xr5W3TDEC7dnD00bBzJ/z0E6SkRLtFpkQ2boTHH4ddu6BaNbjttkD3pTHGmEollJ6u8cBzwMlAN6Crb20iwGp2lXNJSTpfYuvW8OKLFnAZY0wlFkrQtc8594Vzbpdz7nf/4nnLzCH+IcY5cyA9PbptMSHYvz+Qr1WnDjz5pM6Z2LBhdNtljDEmqkIJumaJyDMi0ktEOvsXz1tmDjn6aGjTRjtMFi2KdmtMkTZu1NIP//lPYF/TphDn6YXCxhhjyoFQPgn885B0DdrngFPD3xxTmJ49tcrAvHlw0knRbo0p0PffwwsvaLL8woVw4YUQHx/tVhljjCkjig26nHP9I9EQU7QePeCtt+DHH7W2ZmxstFtkDsnNhXfegSlT9Hb//powbwGXMcaYIKFcvZgEjAZO8e36FnjMObfPy4aZvJo0gUaNdF7klSuhfftot8gAmr/1zDPasxUTA9deC+ecY9P4GGOMOUwoOV0TgFTgQt/yJ/CGl40yhxPR3i7QSbBNGfHvf2vAVauWloYYMsQCLmOMMQUKJeg61jk32jm33rc8CliNrijo2VPX8+ZZMfMy45proHt3eP55K3ZqjDGmSKEEXQdF5GT/DV+x1IPeNckU5oQTtOzTr7/C5s3Rbk0ltmpVYHqApCR46CFo0CC6bTLGGFPmhRJ03QyMFZGNIrIJeBm4ydtmmYLExEA3X1naefOi25ZKa9o0uPdeeMNG2I0xxpRMsUGXc26Jcy4Z6Ah0cM51cs4t9b5ppiD+IUbL64ow52D8eHjtNd2uUcPGeI0xxpRIoVcvisjlzrl3ReTufPsBcM4953HbTAFSUiAhAdasgd9/h3r1ot2iSiAnB15+GWbM0CKnI0ZAv37RbpUxxphypqieruq+dc0Clhoet8sUokoV6NRJt22IMQKysnQKnxkzNNp96CELuIwxxpRKoT1dzrl/+TZnOOd+CL7Pl0xvoqRHDw245s2DM8+MdmsquHfe0Ukvq1eH0aOhbdtot8gYY0w5FUoi/Ush7jMR0r27loL66Sc4cCDaranghg3TMd0nn7SAyxhjzBEpKqerF3AScFS+vK5agE1CE0VJSVo+YuVKnQD75JOLf4wpgYMHITFRI9uaNbXoqTHGGHOEiurpSkBzt+LIm8/1JzDU+6aZothVjB5JTYWRI+GVV+zqRGOMMWFVVE7Xt8C3IvKmc25TBNtkQtCjh5aKWrAAsrP1ojpzhNLSNFF+/Xrt7UpL054uY4wxJgxC+ag+ICLPAO2ARP9O59ypnrXKFKtxY50Ee+tWHWbs0CHaLSrn/AHXunVwzDHw1FMWcBljjAmrUBLpJwKrgJbAo8BG4EcP22RC1KWLrhcvjm47yr39++Hhh2HtWg24nnzSCqAZY4wJu1CCrnrOufFAlnPuW+fcNUBPj9tlQuCv12VB1xFIT9dSEGvWQMOGGnDVrx/tVhljjKmAQgm6snzrHSJyloh0App42CYTovbtIT5eR8T27Yt2a8qpjAxNimvQQIcULeAyxhjjkVByuv4mIknA/0Prc9UC7vK0VSYkVapAu3awZAksXQqnnBLtFpVDSUnau5WWZgGXMcYYT4Uy4fVnzrl9zrllzrn+zrkuzrlpkWicKV7nzrpetCi67ShXnIPZswMlIapV054uY4wxxkNFFUd9CSi0UJFz7g5PWmRKJDivyzmt52mK8fbbMGWKdg/edlu0W2OMMaaSKGp4cUHEWmFKrXlzqFMH9uyBzZv1tinCxx9rwBUbq8XOjDHGmAgpqjjqW5FsiCkdEe3tmjlThxgt6CrC7NkwYYJu33kndOsW1eYYY4ypXIrN6RKRWSIyM/8SicaZ0FjpiBCsXAnPP6/b11wD/fpFtTnGGGMqn1CuXrwnaDsR+AuQHcrJRWQQ8CI6Qfbrzrm/F3BMP+AFIB7Y7ZzrG8q5TYA/6Fq+HDIzISEhuu0pc3bs0Emrs7LgzDPhvPOi3SJjjAm7nJwc9uzZQ1ZWVvEHm7CIj4+nbt26xMbGhnR8sUGXc25hvl0/iMi3xT1ORGKBscDpwFbgRxGZ5pxbEXRMbeAVYJBzbrOI2CVkpZCUBK1a6ZSBy5cHgjDjU62azplUrRrccINdbWCMqZD27NlDYmIi9evXR+z/nOecc6SlpbFnzx6OOuqokB5TbNAlInWDbsYAXYCGIZy7O7DWObfed55JwLnAiqBjLgU+cs5t9v0Au0JqtTlM584adC1ebEHXYZKS4G9/g5wcTaA3xpgKKCsrywKuCBIRatSoQWpqasiPCaUi/UL0SsaFwP/QIqnXhvC4xsCWoNtbffuCHQ/UEZFvRGShiFwZwnlNAfyBltXr8nEOZs2C3Fy9nZAAVatGt03GGOMxC7giq6SvdyjFUVs651r51q2dcwOdc9+H0paCTpfvdhzac3YWcAbwkIgcH8K5TT5t20JiImzapOUjKr2PPoLnngskzxtjjImIJ554gnbt2tGxY0dSUlKYN29eVNqxZMkSPv/880O3p02bxt//rqnlw4cPZ8qUKYc95ptvvuHss8/2rE2hDC8mArcAJ6NB0/fAq8659GIeuhVoGnS7CbC9gGN2O+f2A/tF5DsgGfgltOYbv/h46NABfvxRhxgHDIh2i6Jo0SJ4y1fx5OSTo9sWY4ypRP73v//x2WefsWjRIqpUqcLu3bvJzMyMSluWLFnCggULOPPMMwEYMmQIQ4YMiUpb/EIZXnwbaIfOu/gy0BZ4J4TH/Qi0FpGWIpIAXAzknz7oE6CPiMSJSDWgB7Ay1MabvGyIEb1S8emndXjxkkusAKoxxkTQjh07qF+/PlWqVAGgfv36NGrUiBYtWrB7924AFixYQD9f2Z5vv/2WlJQUUlJS6NSp06H8qKeffpoOHTqQnJzMyJEjAVi3bh2DBg2iS5cu9OnTh1WrVgHaa3XTTTfRp08fjj/+eD777DMyMzN5+OGHef/990lJSeH999/nzTff5LagWUhmzJiR5zH57d+/n2uuuYZu3brRqVMnPvnkkyN+fUIpGdHGOZccdHuWiCwt7kHOuWwRuQ34Ci0ZMcE5t1xEbvLdP845t1JEvgR+AnLRshLLSv5jGAjMw7hkSSWdEig9XRPm9+/XYOuSS6LdImOMiYpzzvHmvJ9+WvT9AwcO5LHHHuP444/ntNNO46KLLqJv38IrQT377LOMHTuW3r17k5aWRmJiIl988QVTp05l3rx5VKtWjT2+nJkbbriBcePG0bp1a+bNm8ctt9zCzJlaNnTjxo18++23rFu3jv79+7N27Voee+wxFixYwMsvvwzAm2++mee5C3pMsCeeeIJTTz2VCRMmsHfvXrp3785pp51G9erVS/iqBYQSdC0WkZ7OubkAItID+CGUkzvnPgc+z7dvXL7bzwDPhNZcU5RGjXTe5l27YO1aaN062i2KIOc0f2vzZi0PcffdlTDqNMaY6KpRowYLFy5k9uzZzJo1i4suuuhQHlVBevfuzd13381ll13GBRdcQJMmTZgxYwZXX3011apVA6Bu3bqkpaUxZ84chg0bduixGRkZh7YvvPBCYmJiaN26Na1atTrUC1aU4h4zffp0pk2bxrPPPgtAeno6mzdvpm3btiV6TYKFEnT1AK4Ukc2+282AlSLyM+Cccx1L/ewmrPxTAn31lc7lXKmCrowMSEvTWlwPPqhrY4yppIrrkfJSbGws/fr1o1+/fnTo0IG33nqLuLg4cn1Xk6enB1LCR44cyVlnncXnn39Oz549mTFjBs65w64KzM3NpXbt2ixZsqTA58x/fChXFRb3GOccH374IW3atCn2XKEKJadrENAS6OtbWgJnAmcDHnVgmtJKSdF1Ib+XFVdiIjz6KPzjH9A4f2USY4wxkbB69WrWrFlz6PaSJUto3rw5LVq0YOFCrbX+4YcfHrp/3bp1dOjQgfvuu4+uXbuyatUqBg4cyIQJEzhw4ACgRV9r1apFy5YtmTx5MqAB0dKlgUynyZMnk5uby7p161i/fj1t2rShZs2aRdbQKugxwc444wxeeuklnNPCC4vDMNdeKCUjNgG10QDrHKC2c26TfzniFpiw6ujrd1yxQqcEqvDS0gK1uOLioEWLqDbHGGMqs7S0NK666ipOPPFEOnbsyIoVK3jkkUcYPXo0I0aMoE+fPnmmzHnhhRdo3749ycnJVK1alcGDBzNo0CCGDBlC165dSUlJOTS8N3HiRMaPH09ycjLt2rXLk9jepk0b+vbty+DBgxk3bhyJiYn079+fFStWHEqkz6+gxwR76KGHyMrKomPHjrRv356HHnroiF8f8UdwhR4gMgK4HvjIt+t84N/OuZeO+NlD1LVrV7dgwYJIPV25N2KEVqd//PFAz1eFlJMD99+v9TL++letPG+MMZXU9u3badSoUbSbEXHDhw/n7LPPZujQoVF5/oJedxFZ6Jzrmv/YUIYXrwV6OOceds49DPREgzBTRvkDraXFXmNazr37rnbpbdlS/LHGGGNMlIWSSC9ATtDtHAquNm/KiJQULci+ZAlcdVWYT56eDt99BzNm6NBenTqBpW5daNkSkpO9v3JwwQKYMkWfx3q5jDGm0spfCqIsCyXoegOYJyIfo8HWucB4T1tljsiJJ2p607p1kJoKNWuG4aQbN8IXX+h8hgcPBvYX1MvUsiUMHQq9e3szwfTu3TrFD8AVV0D79uF/DmOMMSbMig26nHPPicg36DRAAFc75448hd94pkoVDbx++kmX3r2P4GR//KEV3pcF1axt2xYGD9bgau9enezxjz/g99/hhx9gwwZ45hkd/rvgAjj1VJ1wOhyys7U9qanQpYsGd8YYY0w5EEpPl5+gVeNtaLEcSE7WgGvJkiMIuvbu1UT1rVu17tWpp8KgQdC8eeGPGT4cZs7U8c0dO2DsWJg0Ce66Sxt1pKZPh5UroV49PacVQDXGGFNOhDLh9cPAMOBDNOB6Q0QmO+f+5nXjTOmlpMA77xxBMn1wwNWihU6vE0reVEKCBmYDB2qv1+TJ2vP10EMwbBhceumRDTmecYa2rWNHy+MyxhhTroRy9eIlQDfn3CPOudHo1YuXedssc6SOOw6qV9fOpp07S/jgffs04NqyRXu1Qg24gsXEQJ8+OjWPfw7EDz6AUaN0nqLSio3VwM3yuIwxpsypUaNGscfMnj2bdu3akZKSwsHgHOEQTJ06lRUrVnjSrkgIJejaCARXDKsCrPOkNSZsYmIChVJL1NsVHHA1awZPPHFkPUr+IOnJJ3VIcOVKuOMOmDOnZOeZNk17uIwxxpRrEydO5J577mHJkiVUrVq1RI8tbdBVVoQSdGUAy0XkTRF5A1gGpInIGBEZ423zzJEo8ZRAaWnwwAM6aXTTphoohWsIr317GDMGuneH/fvhqafgvfd0ourifPcdvPYa/L//p4n0xhhjyrRvvvmGfv36MXToUE444QQuu+wynHO8/vrrfPDBBzz22GNcdpkOmj3zzDN069aNjh07Mnr06EPnePvtt+nYsSPJyclcccUVzJkzh2nTpvHXv/6VlJQU1q1bx7p16xg0aBBdunShT58+hyat3rBhA7169aJbt25hqSQfLqEk0n/sW/y+8aYpJtz8eetLl2psU2zO+VtvwaZN4Q+4/GrV0smop02D8ePhP//RKx9vuqnwPK/ffoNXXtHtYcO0FoYxxpiinePR1MglmEl78eLFLF++nEaNGtG7d29++OEHrrvuOr7//vtDFeSnT5/OmjVrmD9/Ps45hgwZwnfffUe9evV44okn+OGHH6hfvz579uyhbt26DBkyJE/1+QEDBjBu3Dhat27NvHnzuOWWW5g5cyYjRozg5ptv5sorr2Ts2LHevBalEErJiLci0RATfo0aQf36WtZqwwZo1aqIg3/5Bb76SoOfUaOgdm1vGiUC554LRx+tZSW+/FLLTfz1r1rrIlhurtbj2r8fevTQJHpjjDHlQvfu3WnSpAkAKSkpbNy4kZNPPjnPMdOnT2f69Ol06tQJ0Lkb16xZw9KlSxk6dCj169cHoG7duoedPy0tjTlz5jBs2LBD+zIyMgD44YcfDk2sfcUVV3DfffeF/wcsBes2qMBEdIhxxgzt7So06MrN1d4k5+C887Sny2s9e2qC/mOPwbx5enXjQw/lreQ6darWB6tTB26/3cpDGGNMqErQI+WVKkFfpGNjY8kuID3EOceoUaO48cYb8+wfM2YMUsz//NzcXGrXrs2SQnJoint8NISS02XKsZDyur74QsvX168PF18cgVb5tG2rhU7r19cE+3vv1W450ET+d9/V7TvusPIQxhhTAZ1xxhlMmDCBtLQ0ALZt28auXbsYMGAAH3zwAb///jsAe/bsAaBmzZqkpqYCUKtWLVq2bMnkyZMBDeCW+q4c6927N5MmTQI0cb+sKDToEpF3fOsRkWuOCTd/XteyZZCVVcABe/dqQS+A66+HxMQCDvJQ06Y6zNi8udYEGzVK87h+/lmT5k8/HboeNlG7McaYCmDgwIFceuml9OrViw4dOjB06FBSU1Np164dDzzwAH379iU5OZm7774bgIsvvphnnnmGTp06sW7dOiZOnMj48eNJTk6mXbt2fPLJJwC8+OKLjB07lm7durFv375o/oh5iCvk6jERWQEMBqYB/chXid45t8frxvl17drVLViwIFJPV+HcfrtOnfjkk9ChQ747n3tO51Ps0gVGj47eEF5aGjz8MKxZo/leTz6p0wo1a6YFx4wxxhRp+/btNGrUKNrNqHQKet1FZKFz7rAeg6KGF8cBXwInAAvzLRYBlSP+3q7F+WfMXLZMA674eLjxxujmTNWoAY8/Dq1bazXXUaO0rpcFXMYYYyqIQoMu59wY51xbYIJzrpVzrmXQUtR1cKaM6dxZ14sWBe3MzoZXX9XtYcPgmGMi3q7DJCZq7lbt2lq1/kir1xtjjDFlSLGJ9M65m0UkWURu8y0dI9EwEz7t2+uUiOvWacF5QCeO3rxZg62//CWq7Tvk44/BP4x83HEacI0cWYp5jIwxxpiyp9igS0TuACYCDXzLRBG53euGmfBJSIB27XR78WK0RMTHvnq3V12lB0Tbli3gv8Lkrrt0+qETTtCk+vvvD1zVaIwxxpRToZSMuA7o4Zx72Dn3MDrh9fXeNsuEW5cuul60CJg7F379VXu5evWKarsArQ82ZowOeQ4cqOOh1appDa82bbTH6/77tXq9McYYU06FEnQJkBN0O4d8VzKasu9QXtdCh/vwI71x7rk6M3a0ff45rFoFdevCNdcE9letCo8+qlVdd+zQKYTK0KW/xhhjTEmE8on7BjBPRB4RkUeAucB4T1tlwq5JE61BWnPbKg4sWa1XCw4YEO1m6bDhW76Zpm688fCrFatX16samzfXIcgHHwRfYTxjjDFlS2xsLCkpKbRv355zzjmHvXv3RrtJJfbII4/w7LPPenLuUBLpnwOuBvYAfwBXO+de8KQ1xjMi2tvV69eP2bcXOPPMyBdCLchvv2mPVs+ecNJJBR9Tq5ZOGdS4sRYcGz1a52M0xhhTplStWpUlS5awbNky6tatW2Ymm3bOkZubG+1mhDYNkHNuka+ExIvOufzVnkw50bPZdtrsncsfqXFw9tnRbo5q21bnfbzttqKPq11bk+sbNtQCqo88AunpkWihMcaYUujVqxfbtm0DYN26dQwaNIguXbrQp08fVq1aBcDOnTs5//zzSU5OJjk5mTlz5gDw3HPP0b59e9q3b88LL7wAwH333ccrr7xy6PyPPPII//znPwF45pln6NatGx07dmT06NEAbNy4kbZt23LLLbfQuXNntmzZUuBxAE888QRt2rThtNNOY/Xq1Z69JjbhdSXSYcMn/IRjTpX+tEqsQ9VoNsa5QDHWUAug1qungdd992kO2OOPa69XWbj60hhjyppzzin8vltvhUGDdPvLL6GoHqlSTJ6dk5PD119/zbXXXgvADTfcwLhx42jdujXz5s3jlltuYebMmdxxxx307duXjz/+mJycHNLS0li4cCFvvPEG8+bNwzlHjx496Nu3LxdffDF33nknt9xyCwAffPABX375JdOnT2fNmjXMnz8f5xxDhgzhu+++o1mzZqxevZo33niDV155pdDjqlevzqRJk1i8eDHZ2dl07tyZLv6rz8LMgq7K4s8/SZw9gxo14H9Hn0fHn6BHjyi257XXoEoVuOSSkgVNDRroFEEjR8JPP+n2Aw9oVX1jjDFRdfDgQVJSUti4cSNdunTh9NNPJy0tjTlz5jBs2LBDx2VkZAAwc+ZM3n77bUDzwZKSkvj+++85//zzqe77Qn7BBRcwe/Zs7rjjDnbt2sX27dv57bffqFOnDs2aNWPMmDFMnz6dTp06AZCWlsaaNWto1qwZzZs3p2fPngBMnz69wONSU1M5//zzqVatGgBDhgzx7PXxNOgSkUHAi0As8Lpz7u+FHNcNTdC/yDk3xcs2VVqffw6ZmeSkdOW3jGYsWhTFoGvFCv3mFBcHp56qk16XxDHHaI7XyJGwcKFOmH3vvXo+Y4wxKtQeqkGDAr1eR8if07Vv3z7OPvtsxo4dy/Dhw6lduzZLliwJ6RyFzQkNMHToUKZMmcKvv/7KxRdffOj4UaNGceONN+Y5duPGjYcCt6KOe+GFF5AITYMXSnHUC0RkjYjsE5E/RSRVRP4M4XGxwFh00uwTgUtE5MRCjvsH8FXJm29CkpkJn30GQM0rzwfyTQkUSdnZ8PLLuj10aMkDLr+mTXV4sXp1+N//4PnnteirMcaYqEtKSmLMmDE8++yzVK1alZYtWzJ58mRAg5+lS5cCMGDAAF71TUmXk5PDn3/+ySmnnMLUqVM5cOAA+/fv5+OPP6ZPnz4AXHzxxUyaNIkpU6YwdOhQAM444wwmTJhAWloaANu2bWNXAVPIFXbcKaecwscff8zBgwdJTU3l01IMp4YqlET6p4Ehzrkk51wt51xN51ytEB7XHVjrnFvvnMsEJgHnFnDc7cCHgE2y55VvvtH6Vq1a0eysDtSsqbVRd+yIQlumTdPSD8cco3M+HolWrbSOV2IifPedBnNFfEMyxhgTOZ06dSI5OZlJkyYxceJExo8fT3JyMu3ateOTTz4B4MUXX2TWrFl06NCBLl26sHz5cjp37szw4cPp3r07PXr04Lrrrjs0JNiuXTtSU1Np3Lgxx/jmDB44cCCXXnopvXr1okOHDgwdOpTUAkoLFXZc586dueiii0hJSeEvf/nLoQDPC1JUNx6AiPzgnOtd4hOLDAUGOeeu892+Aq1sf1vQMY2B/wCnorW/PitoeLFr165ugX9OPlNyd90Fa9fC3XdD//48/TTMnq1lsSJ6EePu3XDTTZCRodXmfX9ER2zZMk2oz8zULvJbbgkk6RtjTCWxfft2GjVqFO1mVDoFve4istA51zX/saH0dC0QkfdF5BLfUOMFInJBCI8r6FMvf4T3AnCfcy6ngGNNOGzYoAFX9erQW2PnQ9XpIz3E+NprGnCdfHL4Ai7QGb0fflgT8r/8Up/HeryMMcaUMaFkHtcCDgADg/Y54KNiHrcVCE7YaQJsz3dMV2CSL4GtPnCmiGQ756aG0C4Tiv/+V9f9+h26StAf7/z8M2RlRejCv8xMfbLERLjuuvCfPzlZ52f8298CSfpXX209XsYYY8qMYoMu59zVpTz3j0BrEWkJbAMuBi7Nd+6W/m0ReRMdXpxayucz+WVmwqxZuj0wEDPXqwctWmhx95UroWPHCLQlIQEeekgnr65Xz5vn6NJFA68nn4SPP9bA64orLPAyxhhTJoRy9WITEflYRHaJyE4R+VBEmhT3OOdcNnAbelXiSuAD59xyEblJRG468qabYs2dC2lpmnDeqlWeu/y9XRFNlROBo4/29jm6ddPyETExMHkyvPeet89njDFlSHF52ia8Svp6hzrh9TSgEdAY+NS3L5TGfO6cO945d6xz7gnfvnHOuXEFHDvcanSF2fTpuh448LC7unfX9dy5Hqc/bd+uxUs3bvTwSfLp1Qv++lcN8t57DyZOtBwvY0yFFx8fT1pamgVeEeKcIy0tjfgS5OiEktN1lHMuOMh6U0TuLGnjTITt3AlLl+qwXt++h93dti3UrKllI7ZuLX25rCI5B//6l1aO/+QTGDHCgycpxMkna92uZ5+FSZO0LZddZkONxpgKq27duuzZs6fAcgnGG/Hx8dStWzfk40MJunaLyOWAf5zmEuD3UrTNRNKMGbo+6SSoUeOwu2NjtSL9jBlaW9SToGvePL1Esnp1GD7cgycoximnaJD17LPw/vsaeF1+uQVexpgKKTY2lqOOOirazTBFCGV48RrgQuBXYAcw1LfPlFW5uYGg6/TTCz3MNx0Vc+d60IbMTC3dABroJCV58CQh6NNHhxpjYuCDD+Dtt22o0RhjTFSEcvXiZsC72R9N+C1erIVIGzaEDh0KPaxTJ51zes0aPbx+/TC24aOP9ErFFi1g8OAwnrgUTj5Zg66nn4YpUzQoHT7ceryMMcZEVKE9XSJyr2/9koiMyb9ErommxPwJ9KefXmRgkZCgVRYgzL1du3bplYOgZe9jY8N48lI66SS47z5ty0cfaa6Z9XgZY4yJoKKGF1f61guAhQUspizatw/mz9dga8CAYg/3ZIhx/Xp9/lNO0WrxZUWvXlrHKz4e/u//4MUXIccmQzDGGBMZhQ4vOuf802wfcM5NDr5PRI5wpmLjmVmzIDtb61WFUIS0Wzcdefv5Zy3pVUDOfcn17AnjxpWNHq78unfXeRoffxy+/hrS0+Gee7SQqjHGGOOhUBLpR4W4z0SbcyEl0AerUUPTvnJz4ccfw9iW+vWhTp0wnjCMkpM16KpeHX74QacOysyMdquMMcZUcEXldA0WkZeAxvnyud4EsiPWQhO6detg0yaoVUu7sEIUtiHGL7+EL77QCK6sa9tWpwuqVQsWLtTer/37o90qY4wxFVhRPV3b0XyudPLmck0DzvC+aabEvv5a1/36lWi4zB90LVx4BB0+f/wBEybAK6/AsmWlPEmEtWoFf/871K2rbR41CvbsiXarjDHGVFCFBl3OuaXOubeADsC7zrm3fLc/ATIi1UAToqws+PZb3Q4hgT5Y/frQujVkZGi1iVJ56y04eFB72CIyg3aYNG0KzzwDjRvDhg1a02vbtmi3yhhjTAUUSk7XdKBq0O2qwAxvmmNK7ccfITVV62K1bFnihx/REOMvv2gvW1wcXH99KU4QZQ0awD/+Accfr+Uu7r1Xi5cZY4wxYRRK0JXonEvz3/BtV/OuSaZU/EOLp51WqqKfvXrpet68ElZRcA7+/W/dPu88OOaYEj93mZCUBE88oYXL/vxThxoXWmUUY4wx4RNK0LVfRDr7b4hIF+Cgd00yJbZ3LyxYoCUa+vUr1SmaNIFGjbSzbOXK4o8/ZNYsWL1a86IuvLBUz11mJCbCgw/q8GxGhl7h6C80a4wxxhyhUIKuO4HJIjJbRGYD7wO3edoqUzLffKNXDHbtWuo5DkUCvV1z5pTggf48squugqpViz62PIiLgxEjYOhQ7fJ76SV44w2rXm+MMeaIFRt0Oed+BE4AbgZuAdo652zcpawIrs1VwgT6/E46Sdfffaf1VUPy8MOafN6//xE9d5kiokHk7bcHpg168kktpGqMMcaUUig9XQBtgBOBTsAlInKld00yJbJ+vdbmqlmzRLW5CtK6tV7Mt28fLFoU4oNiY3W6n4o4efTAgfDoo1pEde5cGDnSSkoYY4wptWKDLhEZDbzkW/oDTwNDPG6XCVUpa3MVJHi6xhnFXZ/6ySeVIwBJToZnn4WGDbX47N13w9q10W6VMcaYciiUnq6hwADgV+fc1UAyUMXTVpnQZGdrPhcc8dCiX//+GnzNn689XgVauBBefx3uuqsE45DlWJMm8M9/ahX733+H++7TCwiMMcaYEggl6DronMsFskWkFrALaOVts0xIgmtztQrPW1K3rlZNyMnR3K7DZGfDa6/p9nnnVZ6JomvV0pISAwdq2f7nntPXoTIEncYYY8IilKBrgYjUBl5DpwFaBMz3slEmRMEJ9GHMqTrttLynz+PTT7Vie+PGcM45YXvOciE+Hm67DW69VYPNadPgoYeK6BI0xhhjAooMukREgKecc3udc+OA04GrfMOMJpp+//2Ia3MVpnt3zctfv16XQ/bsgf/8R7evv77y9HIFE4FBg/Rqxjp1dM7GO+/UqvzGGGNMEYoMupxzDpgadHujc+4nrxtlQvDf/2ptrp49oXbtsJ46Ph769tVtf54+oPMrpqdDjx46BlmZtW0LL7wAbdrA7t2a5zVtmtXzMsYYU6hQhhfnisiR1SIw4ZWbC199pduDBnnyFP68/G++8aUt7dqlyePx8XDddZ48Z7lTty489ZQOs/pz3Z58EtLSin+sMcaYSieUoKs/GnitE5GfRORnEbHermhauFB7V445RksaeODYYzU//88/NV+fBg3g+efh5pu1fIJR8fFwww06V6O/nteIETo1kjHGGBOk0KBLRJr5NgejVyueCpwDnO1bm2j54gtdn3GGZ0VJg2t2HRpiPPZYOP10T56v3DvpJHjxRa0wu2uXDjd++KH2ShpjjDEU3dM1FcA5twl4zjm3KXiJSOvM4Xbv1gT6uLjAZYYe6d8fqrn97J6xmL17PX2qiuHoo+Hpp+Hcc7XmxptvwgMPaBBmjDGm0isq6AruQrG6XGXFV19psnbPnqWe3DpUSUlwVcw7XLryYdY+OtHT56ow4uI05230aL3AYdkyncNx1ixLsjfGmEquqKDLFbJtoiUnR69aBBg82PvnW7uWnn98Tq7E8NGuk22krCS6doWXX9YrPQ8c0GKqTz+txWyNMcZUSkUFXcki8qeIpAIdfdt/ikiqiPwZqQaaIAsWaH2uRo2gQwdvn8s5ePVVaic5VrY+l5//bM7cud4+ZYWTlKTDi3fcAYmJ8P33cMstMGdOtFtmjDEmCgoNupxzsc65Ws65ms65ON+2/3atSDbS+Hz5pa4HDfIsgf6Qr76CX34hpn49jrn7EgAmT7YRshIT0YsPXnoJTjwR9u7VMhNPPQV//BHt1hljjImgUEpGlJqIDBKR1SKyVkRGFnD/Zb4yFD+JyBwR8ab+QUWwa5eWioiLC9vk1oXat08LoQJcdx2nnlWVpCRYuxaWLPH2qSushg3h73+Hm27SXq85c7TXa+ZMi2SNMaaS8CzoEpFYYCxacuJE4BIROTHfYRuAvs65jsDjwL+9ak+5N326fjifdJJOvuylyZO1wGdKCvTuTUKCzm3tv8uUkgicdRaMHQudO+tr/PzzmnS/fXu0W2eMMcZjXvZ0dQfWOufWO+cygUnAucEHOOfmOOf8YyxzgSYetqf8ysrSoAsik0B/2WVw/vnaK+MbxjzzTK39+fPPsHKl902o0Bo0gEcegbvugho1YPFinUR74kTIzIx264wxxnjEy6CrMbAl6PZW377CXAt84WF7yq+ZMzX/p0ULaNfO++erWhWuuQYaB96uatW0kwastyssRODUU2HcOB0uzs6GSZN0yPHHH6PdOmOMMR7wMugqKNO7wOQVEemPBl33edie8ik3VyubAwwd6m0C/U8/6YTWhRgyBBISNCbYuNG7ZlQqSUlw551aTqJFC9i5Ex57DB5/HLZti3brjDHGhJGXQddWoGnQ7SbAYYkrItIReB041zn3u4ftKZ/mzIEdO7Ta+ckne/c827fDo4/qMFchEzYnJenMQ2C9XWHXti288IIWVq1aFebP1/fi3/+22l7GGFNBeBl0/Qi0FpGWIpIAXAxMCz7AN7/jR8AVzrlfPGxL+eRcILq54AKIjfXueV56SfOJ2rXTPKNCnH++NmP2bI0FTRjFxuoUQv/6FwwcqL2cn36qE2p/8okOQRpjjCm3PAu6nHPZwG3AV8BK4APn3HIRuUlEbvId9jBQD3hFRJaIyAKv2lMuLV4M69frdDJezrP45Zc6XU1SElx/fZGHHnUU9OuncdpHH3nXpEqtTh2dOujFFyE5WXseX39d872++85KTBhjTDklrhz8A+/atatbsKASxmOjRmkwdNVVms/lhd279cP84EG4776QhjC3btWHxMRoXNC8uTdNM2iAtWABTJigLzxo7tfll0P37t4XyTXGGFNiIrLQOdc1/35Pi6OaI7BqlQZc1atrvQYvOAevvKIBV8+e0Lt3SA9r0kQrV+Tk6MPLQdxefolAt246j+Mdd0D9+noVw9/+Bn/9Kyxdam+AMcaUExZ0lVVTpuj6zDO1XoMXli/XSxGrV4ebby5Rr8mVV+po5IoVMGOGN80zQWJjdTqhf/1Lc7ySkmD1anjwQe2hXLjQgi9jjCnjbHixLNq0CW67TeszTJigH7BemTtXi6/26VPih377LTz7LNSsqeWmvC6Ub4Kkp8O0aTB1auDqxuOOg4sugh49bNjRGGOiyIYXyxN/Xa7TT/c24AIdVixFwAVwyima552aCm+8EeZ2maIlJsKFF8L48XD11RyaHPOJJzQJ/+uv7WpHY4wpYyzoKmu2bNEupJgYLRPhhVmzYM2aIz6NiI5KxsXpEOOyZWFomymZqlX192TCBLjxRs352rRJa35de62WHLE6X8YYUyZY0FWWOKfjdLm5WqepQYPwP8eGDTBmDNx7b1gKbTVuDMOG6fYrr1jnStQkJMDZZ8Nrr2mF+xYtYM8eePtt7QkbN84q3BtjTJRZ0FWW/PCDTsVTs6ZmqodberpON5OdrXW/jjkmLKcdOlRPtWWLphiZKIqL07kcx4zRqYQ6d4aMDPi//9MJzB98UGc5yMmJdkuNMabSiYt2A4xPerrm54AGXDVrhv85Xn9daz01barTzYRJQoLW7XroIXjvPUhJ0ZxuE0Ui+kakpOhw47RpOmy9dKku9erBoEHao1q3brRba4wxlYL1dJUVkydrodJjj9UPwnD74Qf46iuIj9ehxSpVwnr6lBT9DM/M1FzuP/4I6+nNkWjeXJPr33pLZxxo3Bh+/x0mToThw3WC7TlzbGzYGGM8ZiUjyoLt23Vy4+xseOYZOOGE8J5/1y4trLl/vyZbn312eM/vk5UFDzwAK1fqj/DkkxrjmTLGOe3t+uILmDcvMNSYlAT9++vwZIsWUW2iMcaUZ1YyoqxyDv79bw24BgwIf8AF2oMGOm3MWWeF//w+8fFw//16Ad2qVVatvszyDz2OGqW9X9ddB82awb59mpR3++26TJkS+N0xxhhzxKynK9rmzdMpXapV02rjtWt78zxbtui5vcgVy2f9ep2hJjNTR7OGDPH8Kc2Rck7LiMyYAbNn6yTbfu3ba1G2k07yvm6cMcZUAIX1dFnQFU3p6Vp5fudOb6KTHTvCdoViSX3/PfzjH9qp8uij0KlTVJphSiM7W6cV+uYbmD9fo2fQN7N9e52js1cvS8A3xphCWNBV1jinc+h8953mz7zwgs6vFy7Tp8PYsVq9dNCg8J23BN59F95/X6d2fPRRaNMmKs0wR+LAAfjf//RCjMWLA8n2IjoU3qOHLo0b29RDxhjjU1jQZSUjomXaNA24EhP1asJwBlw//aQJVbm5Wtk+Si67TEc158zRBPv779eyUaYcqVZNcw0HDNALMebP1wBs0SK9YmLlSnjzTWjUSHMGu3eHtm21Xpgxxpg8rKcrGn7+WYtU5uZqMvNJJ4Xv3Nu2wT33aE7O+efDNdeE79ylkJ0NL7+sUwHGxsJdd0HfvlFtkgmHgwe152vePPjxx7xTDVWtqpNydumiUbYXMysYY0wZZsOLZcXu3TpNy759Wsr9qqvCd+5t27RL6fffdcjn/vuj2tPl55x2hnz0kd625PoKJidHL1edNw8WLNDuzWCNG+vVkh07QocOEbmYwxhjosmCrrIgMxNGjtSrxFJSNNEpXEHRpk3ae7Z3L7RrB488okOXZcjHH+u8zKDzNV5xhaUBVUi//abDj4sWwZIlmhfmJwKtWmkA1r49nHgi1KgRtaYaY4wXLOgqC156SRPcGzTQxPlwfuPftEmHKo89Vnu7yljA5TdzJrz4oo6sduwII0bY6FOFlp2tXzL80w+tWpW38r2IVsw/8UT9stC2rRZ6s2jcGFOOWdAVTc7B229rscmEBJ10+thjw/88W7dqBJOQEP5zh9GiRfDcczrCmpiotTkHDrTP2UohI0OT73/+GZYvh9WrD59+qG5dvTLSvxx7bJn/nTbGmGAWdEVLTo5mks+YoZnk99wDJ58cnnP//DP8+iucfnp4zhdB+/bBq6/qhXCgOde3367zMJtKJDNTe8KWL4cVK7QnbP/+vMfExGhv2HHHwfHH67p5c5tjyhhTZlnQFQ0ZGdqrNX++flO//36NLo6Uc5og9dZbuv3kk5ofU844p8XPx43Ti9+qV9drC84+u8yOjhqvOacXhKxapcvq1Tp0nv//VFwcNG2q+WEtW2pvWIsWlh9mjCkTLOiKtLQ0eOwxHUqpWRNGjw5PddDUVHj+eb1MH7QsxPDhZeIqxdLas0c7A/0/UlIS/OUvcOaZUKVKdNtmyoD0dNiwQXvE1q6FX37RSeIL+t9Vr54GX82aBdZNmlgUb4yJKAu6ImnHDnjiCf2GXr++Bl9Nmx75eVeu1J6z3bv1G/1dd2kxygrAOb3QbeJE7dwADb6GDdN8r6pVo9o8U9akp8PGjTrRp3/ZtCkwZVF+DRro32CTJrpu3FiX2rUtmdAYE3YWdEVCdjZMnQrvvaf//Js21YCrfv0jP/eCBfD443rZX5s2WsW+Al7255wm2k+cqB0boL1dvXvDaafpKKp9RpoC5eZqjuOmTbps3AibN+uXoPzJ+n5Vq2rw1agRNGwYWB9zDNSpY79sxphSsaDLa2vWaEmIDRv0dv/+WgU0XGUh9u2DG2/Ubp8rr6zw06w4p3HmRx/BsmWB/UcfrcFX797aaWGfiaZY2dk6qfzmzVq4ddu2wJKWVvjjEhL0i83RRweWBg10qV/fgjJjTKEs6PLK/v3aszVtmkYKDRrArbce+SSDq1bBp5/qEKI/wPr990p5ed+OHXrx58yZOrLq16ABdO2qS4cOlrZjSiE1NRCA/fqr/rL513/+WfRj4+I0+DrqKF3Xq6dL8HZSUnjnVTXGlAsWdIXb9u0aFM2YofklInDeeXDppaX/9HdOy0D83//pLNEAN90EZ50VtmaXZ7m5Opf3zJmwcGHez8S4OB11PeEEXbdpo+WejCm1Awdg1y7tJdu5M7D922+6FBeUgf5fqF1bfxnr1tXesdq1dfFv16mjwVn16tZzZkwFYUFXODinVbWnTQtcagdaWv3qq7V+UGmkpuqM0F9+qd+4QYc2zjtPayhYFvlhnNML2RYs0ADsl18Ov5jtqKO0kkDz5noRm/9Ctgo+MmsiJSNDu15/+03Xv/+ed71nj6YFhCo2VoMv/1KrVmBdq5amKuRfEhMtUDOmDLKgq7TS0zXQ+vFHXfbs0f3x8dCvn87c3KLFkT3HvffqlYmg34YHDoRBgyrlUGJppabqVY+rVwfKOx08ePhxMTGaI92woabo+NdHHx0YDbLPMBM22dk6H+off+j/jj/+CNwOXu/bl3eOylDFxuqVzMFL9eqBdfBSrVpg7V+qVrVfeGM8UFjQZd/580tNhXXrtBtl2TIdz8rKCtxfvz4MHgxnnKGf0KHKzNTL2hcv1q6Za6/VeeZAK8pXq6aBVrdulgNSCjVrBvK7QIcit27V6xo2b9aL2TZv1nQdfwpPQWJjdbSnXj2Nf4M7HvxL8OdbtWr2mWWK4M/7CuUK5qwsDb727dNALDVVhzCDl9TUvEtGRuAxpZWYGAjA/OuqVXW/f7tKlcA+/3aVKrr49/nXVapoT739YRhzGE97ukRkEPAiEAu87pz7e777xXf/mcABYLhzblH+83ja05WZqWUe/IHWrl35fwideqRbN11atgztn4lzmpu1dq2ee/NmjQT8hg3TqxBNRGVkaODlX3bu1PVvv+moUGpqyc4ncnjngf9zKzEx8Lnl/0xKTNTPo4SEvJ9PCQnaeRofn3c7Lq5c1701XsvM1It50tLyLgcOBPbv36/LgQN5l/37tSffKwX9kgf/8vt/2fMvBf0h+P8Ygm8H7wteBy+xsRb8maiIeE+XiMQCY4HTga3AjyIyzTm3IuiwwUBr39IDeNW3jpz4ePjww0DXfkKCTi3in+etc+e8PVr79+uVTXv3BpY9e/TTOzVVi5eC/qFPm6bH+m83baqX2XXponlgJuKqVNEcr+bNC74/M1PfTv/i70TYt087Gvbty/vZdvBgYNsrMTEFf54Ef67Exga2/euYmMB9wbdjYg7fLmoRKXpbJO928D7/bf/PkX8dfJx/Cb4PDt8fvK+gY4q6Hcox/u1g+Y8tbF/wY/Ofu7Djiru/6JghAZEEqFEHCapOE2qcITg4eBA5eODQWjLSIT1d96WnI+kHNTjLSEeC1wcPIpkZkJmBZGToN5qMdCQzE7Iy4aBvIfRvMp6ER8F/GL5tl+ePJS7w7SboD+rQMTGxh/+RBf9xFfSHVsAfm4uJ0XOF8kcXG4vEBv6gnJTgDzL/H2XwfVD8Hy9U+EA1ml9mvRxe7A6sdc6tBxCRScC5QHDQdS7wttPutrkiUltEjnHO7fCwXXmJwOWXayJ79eraFZGVpUOBK1Zolc6LLgpMKj1nDowZU/j59u/X84BO0ZObq9ncLVvanDblQEKC5nk1bBja8Tk5eTsRDh4MbKenH74c+mzK0AAvI0N/3bKy9HZmZuC2f8nNDTzGmPASoJpvCaMYR1xuJvG5GcTnZui2yzy0Ly5Xt+NcVmDbdzs2N4s4l0lcbla+fYF1jMsmLjeLWJdNrMs6tB3jsnVfbrbvdg6Q7VvsD6gknAgOQUNzwYlu54pGK44Y3z7d1nXguMA2eW47Dt/n3/Y/rz/8doWcJ7iNhe07dPuwc0OrBy+j8/DodHx4GXQ1BrYE3d7K4b1YBR3TGIhc0AVwzjkaXO3fX/D9f/wR2G7QQAMo/2Xf/ku+/VnZweUiBg/2sNGmLIiNDVxc5gXnNLDLztYAzL8dvPj3Ba9zc3XtX/y3c3Pz3ue/nf9+5/LeF3zbuUC74PD7g/f59/uzGAq6v7jF/zrk3y7qvuDXr7B9/u2CHpf/vlD2FXZ/UceV9v5Qni/UxxansOOKfrwAVYAqZDsNeYobyDzS9hR2cIzL8QVn2cQEBWP+2zEuJ7D27/dtBy/+/eJy8+wXl0OMyz1sfwyBfeJyiSFwnJCbbzvoHPj3u8DjfccDvkDSIb6fTXCAy3M+cU7Xh86R63tX/Pe5Q8/hP5f4njfwDup9h7+mhWyXI3EHQij34tVze3jugvon879FoRwTGTfeqGt/DoI/Cad6dQ2s/JKTi+7pMiaMRAKjIlb81ZiSEvRjzq4ZK5H833z835byf5MK/raS/5jCvh0Vtz//vuDb/u38+4o6pqD7wjEXcil5+Zu4FQj+yZoA20txTGT07x+VpzXGGGPKlMISFs0R8zKV7EegtYi0FJEE4GJgWr5jpgFXiuoJ7ItoPpcxxhhjTIR41tPlnMsWkduAr9CSEROcc8tF5Cbf/eOAz9FyEWvRkhFXe9UeY4wxxpho8nSg2zn3ORpYBe8bF7TtgFu9bIMxxhhjTFlgZReNMcYYYyLAgi5jjDHGmAiwoMsYY4wxJgIs6DLGGGOMiQBPJ7wOFxH5DdgU7XYYY4wxxoSguXPuqPw7y0XQZYwxxhhT3tnwojHGGGNMBFjQZYwxxhgTARZ0ASIySERWi8haERkZ7fZUViLSVERmichKEVkuIiN8++uKyH9FZI1vXSfaba2MRCRWRBaLyGe+2/a+lAEiUltEpojIKt/fTi97b6JPRO7y/R9bJiLviUiivS/RISITRGSXiCwL2lfoeyEio3zxwGoROSOcban0QZeIxAJjgcHAicAlInJidFtVaWUD/8851xboCdzqey9GAl8751oDX/tum8gbAawMum3vS9nwIvClc+4EIBl9j+y9iSIRaQzcAXR1zrVHp8K7GHtfouVNYFC+fQW+F77PnIuBdr7HvOKLE8Ki0gddQHdgrXNuvXMuE5gEnBvlNlVKzrkdzrlFvu1U9MOjMfp+vOU77C3gvKg0sBITkSbAWcDrQbvtfYkyEakFnAKMB3DOZTrn9mLvTVkQB1QVkTigGrAde1+iwjn3HbAn3+7C3otzgUnOuQzn3AZ0buju4WqLBV36ob4l6PZW3z4TRSLSAugEzAOOds7tAA3MgAZRbFpl9QJwL5AbtM/el+hrBfwGvOEb+n1dRKpj701UOee2Ac8Cm4EdwD7n3HTsfSlLCnsvPI0JLOgCKWCf1dGIIhGpAXwI3Omc+zPa7ansRORsYJdzbmG022IOEwd0Bl51znUC9mNDVlHnyw86F2gJNAKqi8jl0W2VCZGnMYEFXRrFNg263QTtBjZRICLxaMA10Tn3kW/3ThE5xnf/McCuaLWvkuoNDBGRjejw+6ki8i72vpQFW4Gtzrl5vttT0CDM3pvoOg3Y4Jz7zTmXBXwEnIS9L2VJYe+FpzGBBV3wI9BaRFqKSAKaQDctym2qlERE0NyUlc6554LumgZc5du+Cvgk0m2rzJxzo5xzTZxzLdC/j5nOucux9yXqnHO/AltEpI1v1wBgBfbeRNtmoKeIVPP9XxuA5qja+1J2FPZeTAMuFpEqItISaA3MD9eTWkV6QETORHNWYoEJzrknotuiyklETgZmAz8TyB26H83r+gBohv4zG+acy58UaSJARPoB9zjnzhaRetj7EnUikoJe4JAArAeuRr9Q23sTRSLyKHARelX2YuA6oAb2vkSciLwH9APqAzuB0cBUCnkvROQB4Br0vbvTOfdF2NpiQZcxxhhjjPdseNEYY4wxJgIs6DLGGGOMiQALuowxxhhjIsCCLmOMMcaYCLCgyxhjjDEmAizoMsZEnYjUE5ElvuVXEdnm204TkVc8es47ReTKAva3EJFlYXyeBBH5zjcHnzGmErN/AsaYqHPO/Q6kAIjII0Cac+5Zr57PFwBdg1Zv95RzLlNEvkZrNk30+vmMMWWX9XQZY8osEeknIp/5th8RkbdEZLqIbBSRC0TkaRH5WUS+9E0hhYh0EZFvRWShiHzln+ojn1OBRc657KDHLBWR/wG3Bj1/CxGZLSKLfMtJvv3viMi5QcdNFJEhItJOROb7eul+EpHWvkOmApd58RoZY8oPC7qMMeXJscBZ6GTC7wKznHMdgIPAWb7A6yVgqHOuCzABKGiGid5A8ATebwB3OOd65TtuF3C6c64z2lM1xrf/dbTyOyKShM6r9zlwE/Cicy4F6IrO4wawDOhWyp/ZGFNB2PCiMaY8+cI5lyUiP6PTdn3p2/8z0AJoA7QH/qtT3hEL7CjgPMegc+H5g6bazrlvffe9Awz2bccDL/um2skBjgdwzn0rImNFpAFwAfChcy7b11P2gIg0AT5yzq3xHZ8jIpkiUtM5lxqm18IYU85Y0GWMKU8yAJxzuSKS5QLzmOWi/88EWF5Aj1V+B4FE37YAhc2Hdhc6V1syOjKQHnTfO+iQ4cVofhjOuf+IyDy0N+4rEbnOOTfTd3yVfI83xlQyNrxojKlIVgNHiUgvABGJF5F2BRy3EjgOwDm3F9jnm3Ad8uZeJQE7nHO5wBVoz5nfm8CdvnMs9z1fK2C9c24MMA3o6NtfD/jNOZd15D+iMaa8sqDLGFNhOOcygaHAP0RkKbAEzbfK7wvglKDbVwNjfcODB4P2vwJcJSJz0aHF/UHPtRMN3t4IOv4iYJmILAFOAN727e+P5nwZYyoxCfTOG2NM5SEiHwP3+vOuSvH4amguWWfn3L5ijv0IGOWcW12a5zLGVAzW02WMqaxGogn1JSYipwGrgJdCCLgSgKkWcBljrKfLGGOMMSYCrKfLGGOMMSYCLOgyxhhjjIkAC7qMMcYYYyLAgi5jjDHGmAiwoMsYY4wxJgIs6DLGGGOMiYD/D4rIdp/IYdUvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABP4UlEQVR4nO3dd3iUVfbA8e9JIaFXQXpRBKQkdBVpYgFFbKgoa6/L+rM3bKi7rq66rmJXxMqKioLoIiIigg3pCAjSpRcRSICQdn9/nBlmElImybwzKefzPO/zzrzzzjs3mSRzcu+554pzDmOMMcYY462YaDfAGGOMMaYisKDLGGOMMSYCLOgyxhhjjIkAC7qMMcYYYyLAgi5jjDHGmAiwoMsYY4wxJgLiot2AUNSrV8+1aNEi2s0wxhhjjCnU/Pnzdznnjsp9vEwEXS1atGDevHnRboYxxhhjTKFEZENex2140RhjjDEmAizoMsYYY4yJAAu6jDHGGGMiwLOgS0TGisgOEVmaz+MiIqNFZLWILBGRLl61xRhjjDEm2rzs6XoLGFjA44OA1r7teuBlD9tijDHGGBNVngVdzrlZwO4CTjkHeMepn4BaItLQq/YYY4wxxkRTNEtGNAY2Bt3f5Du2NTrNMcYYYyoo5yA7W/d5bQkJEOPrpzl4ENLT9bb/Of5rxMVBzZqB+9u353w8eKtTB6pW1cf27oU//ww8Fnx+TAy0ahVo67p1+vrB5/rPr1sXGjTQ+/v3w9q1gccAmjcPtC8Kohl0SR7HXB7HPJeeDpUqReOVjTHGeOrQIThwALKyIDMzsM/M1A/iY48NnPvLL0eem52t++bNoU0bPW/HDpg1S4/7N/952dlw4YWBD/YvvoCVK3M+7t+aNYPLLtPz0tLg73/P+bg/oMnKgssvh65d9dyvvoIJE3Ke4w+aEhPh1VcDX9Ott8LWrUee5xyccw5cdVXga7///vy/j6+8Ao0b6+3nn4fZs/M+r0MHePxxvX3wIFx3Xf7XvOsu6NNHb8+YAWPH5n1eYiJ89FHg/uOP69eUl/POg6uv1ttr1hz5Nd1zD5x8cv5t8lg0g65NQNOg+02ALdFoyO23689g+/Zw/PG6P+ookLzCQmOMMXnzBwjOQXy8Hjt4EDZt0uAnPT2wZWTovk+fQG/HzJmwalXg8YwMDX4yMqBJk8CHaVqa/uEOftwfSGVm6mP+D/P//Q/efDPv9ub+MH/hBdiSz8fQuecGgq7t2+Htt/P/PgwaFAi6li7VAC0vqak5v3dLluR/zeBzU1Pzb2diYs77Bw9qIJmX7OzA7ZgY/dDz7/Pa/KpUgerVAz1f/ucA1KiR85r16+d/rcqVA+fWqKGBrf+x4PNyf00tW+rrB5/r39evHzivWjUNAv1EcrYvCqIZdE0GbhKR8UBPYK9zLuJDi2lpGjCnp8PGjTB1qh6vVw86doTevaFzZ+0xNcaYciMzUz+QK1XSoSPQP4Zr1+ofxgMHdJ+WpudlZ8ONNwae/8QTgWAqLU33hw7peeecA9deq+etWQMjR+bfjg4dAkHXggXwzTd5nxccdMTE6B/sgr42vypVNACKj4fYWP1j7t/n/jDv1El7c4LPiY3V1zvuuMB59evD0KF6PCZGz/GfFxub84N94ED9EPE/5n9OTEzOYa6EBHjssUCwEXyuSGDIDODUU6FHj5yPBwdLwZ55JvA9y32eP2gCfR8mT87/exrsppt0K0xiIrzxRmjXHDBAt1AU9PMUrFWrQK9bKSHOeTOiJyLvA/2AesB2YBQQD+Cce0VEBHgBneF4ALjKOZfnWj/dunVzXi4DlJGhfxeWLYPly3UL/v2uXl2Dr379oG1b6wEzxpQC6en6hyr3tn+/Bhr+D7CMDHjkEQ2i9u/X/YEDgZycW28NnPvZZ/Daa3m/XkwMTJoU+AN4882aW5NbbCycdVZgWGn9enjuOQ3u/AFefHxgf/HF+l8uwPz5GsjFx+u58fGBrUaNQE+Tc3peXJw+5g+Ogm/bH2oTRSIy3znX7YjjXgVd4eR10JWbc/D77zBnjvZ2B/9D1aCBDtefeqr+XhtjTNgcPAgrVmhS8b59ObeUFBgxIpBXM3q05vbkpVUrDXRA/6Cde27OoSTQIKpKFbjmGv2DBrBokeYgVa6svRT+vX87/fRAMPP773rNhIScmw0LGJNv0GW/HXkQ0aHl5s01wFq/Hr79Vrft23XY/5NPYPhw7QGzf6iMMQVatgw2b9bZWXv25Nx37hwYttu5Ex56KP/r/PFHIOiqXRtq1dK8leCtalU4+ujAc0Q0QTsxUR+rXFmDrYSEI/94JSfrFopmzUI7zxhzmPV0FYFzOmHjvfcCEydattTJJ926WfBlTIVy4ID+R7ZzJ+zapQHRH38Ebr/4YiBX6cEHtRcpL926wahRejslBf71Lx1Kq1lT9/6tenWdaVetWiS+OmNMCdjwYhhlZurs1vff17+voPlef/vbkXmZxpgyKDNTg6kdO3Tbtk33ycmB/Kf58+Hhh/O/xksvQVPfBO2JE2HDBu2d8vdQ+ffBtYqMMeWCDS+GUVycpjb06wdTpsC4cZr7tXatTqpo0iTaLTTGFCozU/MFtm0L1D8CeOABrVmUOwcKNFHbH3QdfbQmdterF9jq1g3s69YNPO+887z9WowxZYIFXSVQqZLmp3btqrNSf/8dbrtNJ/X07h3t1hljDtu1S8sR/P675lZt3qwBlz+w+uADzXMCnSHjnAZPDRroVr++BlktWwau2bgxPP105L8WY0yZZUFXGDRtqqVQnn9ea+A9+ST8+qvW8bOJPMZESFqaBlUbNmiuVdu2gf9+NmzQX9Bg/tpHjRtrfpY/6Lr9dk02t2UqjDFhZiFBmCQmwp13ajX711/Xcjc7duhwo5WWMMYjU6ZoFe+1a3WYMDhHde/eQNDVogX0769j//7t6KPzDqyiuC6bMaZ8s6ArjETgzDPhmGN0MtKcOZpLe9NNNrPRmGLbt0+XhvFvd90VmLEybx7Mnau34+I0mGreXIOsdu0C16hbV3uwjDEmiizo8kCbNhp0PfAATJumk5T+8pdot8qYMiIlRWemrFih244dOR9fvTqwntpZZ0GvXloMtGlTG883xpRq9hfKI+3a6WLmjz2mObo1a8LZZ0e7VcaUMmlpGlgdOgQ9e+qxQ4dyLkWTkKDdx61b6/p3zZsHHguedWiMMaWcBV0e6tED/u//dDWO11/Xkjw2q9FUaGlpsHSp5mEtW6a9VtnZ2kvlD7rq1dP/UJo102T4pk0tMdIYUy5Y0OWxU0/V1T7efltnONasqQvZG1PhfPYZvPEGZGUFjsXEaO9Vhw6aBO9Pfrz++ui00RhjPGRBVwRccIEusTZ5Mvz735pcbwWoTbnlr4k1fz6cdBL07avHGzbUXq02bSApCTp21J4sW8bBGFNBWNAVASJwzTWwcqVub76pMxqNKRecg99+g59+0tmE69fnfNwfdCUl6dpZ9h+HMaaCsqArQmJi4JZbtFr9l19Cnz42zGjKiX/+UwMuv8REDbC6ds2Z6B4fr5sxxlRQFnRFUNOmcPHFulbj88/DCy/oxCxjyoT0dFi4EL77Ds4/P7AkTocOWpy0Z0+dPdK+vQVXxhiTBwu6ImzoUPj+ex2BGTdOlwoyptTKzNRAa/ZsrfZ74IAer1cvEHSddRYMGWIVgI0xphAWdEVYXJwOMd5xB0yaBCefrJO3jCl13n1Xx8L37g0ca9VK656cfHLgmBUkNcaYkNhfyyho3RrOPRcmToTRo+HZZ+1zy5QCu3ZBjRqB9Qj//FMDrqZNoV8/DbYaNoxqE40xpiyzj/ooGT5cc483bIAJE2DYsGi3yFRIWVk64/DLL3V/xx2B2YYXXACDB+swog0dGmNMiVnQFSUJCVqt/r774OOPNS2mevVot8pUGDt3wtSpMH067N6tx+LiYOvWwDmNG0enbcYYU05Z0BVFHTtCly5aR3LyZO39MsZzY8dqQqFzer9xYzjjDDjlFF0ywRhjjCcs6Iqyiy7SoOuzz+C886BKlWi3yJQ76emQkREoStqggRaO69ULBg3SEg82fGiMMZ6zoCvK2rfXbdkymDJFS0oYExYpKfpD9dlncNppcMUVenzAADjxRKhTJ7rtM8aYCiYm2g0wWjAVdMQnPT2qTTHlwc6dMGaMFoF77z2dgbhmTeDxxEQLuIwxJgqsp6sUSE7WMhKrVukksrPPjnaLTJm0YweMHw8zZuisRNCkwQsu0ARCY4wxUWU9XaWAiOZ2AXzyiRYBN6bItm2Dr77SBPm+feG55+CRR3SRT8vZMsaYqLOerlKiZ09o1gx+/107Kk4/PdotMqXe9u0wfz6ceabe79gRLr9cq8VbEVNjjCl1rKerlAju7ZowITA6ZMwR9u6F116DG2+El1/WhTxBf4guvNACLmOMKaUs6CpF/B0UW7fCd99FuzWm1ElLgw8/hOuu0xmJWVnQv3+gFIQxxphSzYYXS5HYWO2oGD1ae7v69LFUHOMzfbouQO2vHt+1q5aAaNkyuu0yxhgTMk97ukRkoIisFJHVInJvHo/XFJHPRGSxiCwTkau8bE9Z0L+/FgVfv15nMxoDwNKlGnAdeyw89hg8/LAFXMYYU8Z41tMlIrHAi8BpwCZgrohMds4tDzrtb8By59zZInIUsFJExjnnKmy1qrg4DbwmTYKvv4bjjot2i0xU7N4N+/ZBixZ6/4ortPxD797W/WmMMWWUlz1dPYDVzrm1viBqPHBOrnMcUF1EBKgG7AYqfMGEAQN0P2uWFUutcLKyYOJEuOEGeOqpQP2Q2rVtvNkYY8o4L4OuxsDGoPubfMeCvQC0A7YAvwC3OOeyPWxTmdCiBRxzDKSmws8/R7s1JmJWrYLbb9cFqdPSdFbFwYPRbpUxxpgw8TKRPq9/yV2u+2cAi4BTgGOAr0RktnNun4ftKhMGDNCVW77+Wmc1mnIsLU2X65k8WQub1q8PI0Zosrwxxphyw8uerk1A06D7TdAerWBXAZ84tRpYB7T1sE1lRt++mt81f35gwpoph5yDe++FTz/V++edBy++aAGXMcaUQ14GXXOB1iLSUkQqAcOAybnO+R0YACAiDYA2wFoP21Rm1KgB3bvrZ/LMmdFujfGMCAwerOPJ//mPLlKdmBjtVhljjPGAZ0GXcy4TuAn4EvgV+NA5t0xEbhSRG32n/R04SUR+Ab4G7nHO7fKqTWWNP6F++nQNvkw5sXSpjhv7DRgA//63Bl7GGGPKLU+LozrnpgBTch17Jej2FsBWGcxH165as2vjRli9Glq3jnaLTImkp2uB008/1bHjtm2hcWPt7YqNjXbrjDHGeMyWASrF4uKgXz+9PX16VJtiSmr9erj1Vi3AJgIXXAANGkS5UcYYYyLJgq5S7tRTdT9rFmRkRLctphicgy+/hDvu0C7Lxo3h6adh+HCNqo0xxlQYhQZdItJLRL4Skd9EZK2IrBMRS3aPkBYtoFUrq9lVZv33v/DCCzq0eNpp8NxzNk5sjDEVVCj/ar8B3AbMB7K8bY7Jy4ABsHat5l736hXt1pgi6d8fpk2Dq64KjBUbY4ypkEIZXtzrnPvCObfDOfeHf/O8Zeawvn01z3rePNi7N9qtMYX65ZfAdNNGjeD11y3gMsYYE1LQ9Y2IPCUiJ4pIF//mecvMYTVrQqdO+jk+b160W2PylZmphU3vuw/+97/A8UqVotcmY4wxpUYow4s9fftuQcccunSPiZATToCFC+HHHwP1u0wpsns3PPEE/PorxMdD1arRbpExxphSptCgyznXPxINMQXr2RNeflkDr0OHICEh2i0yh61YAY8/roFXvXra02XJ8sYYY3IJZfZiTRF5RkTm+bZ/i0jNSDTOBNStq5/j6emwaFG0W2MOmzEDRo7UgKtDB3j2WQu4jDHG5CmUnK6xQApwkW/bB7zpZaNM3k44Qfc//RTddhifzEz45BPdn3UW/P3vmoBnjDHG5CGUnK5jnHMXBN1/REQWedQeU4CePXUVmblzITsbYqy0bXTFxcFDD+mY7xlnRLs1xhhjSrlQPrYPisjJ/jsi0gs46F2TTH6aNYOjj9ayEStWRLs1FVRqqi7l4y8JUb++BVzGGGNCEkpP11+Bt315XALsBq70slEmbyI6xDhpkg4xHn98tFtUwezYAaNGwaZNev/cc6PaHGOMMWVLoT1dzrlFzrkkoBPQ0TnX2Tm32Pummbz09BXw+OmnQGeLiYCNG+GuuzTgat7clgYwxhhTZPn2dInIX5xz74nI7bmOA+Cce8bjtpk8tGsH1avD1q0aBzRrFu0WVQCrVmkPV0qKzlB84AGrw2WMMabICurp8n+qVM9jq+Zxu0w+YmOhRw+9bbMYI2DJEq27lZIC3bvDI49YwGWMMaZY8u3pcs696rs53Tn3ffBjvmR6EyUnnKCLX8+ZAxddFO3WlGPOwTvvQFqaLoB56606Y9EYY4wphlBmLz4f4jETIcnJupzfb79pTU7jEREdShw+HO64wwIuY4wxJVJQTteJwEnAUbnyumoAsV43zOQvMRE6d9aerjlzYNCgaLeonFm1Co49VoOuWrVg2LBot8gYY0w5UFBPVyU0dyuOnPlc+4Ch3jfNFMQ/i3HOnOi2o9yZNUt7tV5/3aaHGmOMCauCcrq+Bb4Vkbeccxsi2CYTgh49tCNm8WI4cACqVIl2i8qBWbPg6ac12KpeXb/BxhhjTJiEktN1QESeEpEpIjLDv3neMlOgmjWhbVtd9m+xVU0rudmzAwHXJZfoZowxxoRRKEHXOGAF0BJ4BFgPzPWwTSZEXbrofuHC6LajzPvuu0DANWwYXHpptFtkjDGmHAol6KrrnHsDyHDOfeucuxo4weN2mRD4g64FCyz9qNgWL9aAKzsbLr7YAi5jjDGeCWUOfIZvv1VEzgK2AE28a5IJ1bHHaurR9u1aob5Ro2i3qAxq1ky35GQtDWF5XMYYYzwSStD1D99i13eg9blqALd52ioTkpgYSErS0bGFCy3oKpbateHJJyEhwQIuY4wxngplwevPnXN7nXNLnXP9nXNdnXOTI9E4U7jgIUYTom3bYPz4wJhsYqIFXMYYYzxXUHHU54F8M4Wcczd70iJTJJ07637JEp3JaEXTC7F7Nzz4oAZeCQlw3nnRbpExxpgKoqCP6HkRa4Uptnr1oGlT2LgRVqyADh2i3aJS7MABePhhDbiOPRbOOCPaLTLGGFOBFFQc9e1INsQUX5cuGnQtWGBBV76ysjR3a906aNxYgy+rKGuMMSaCCs3pEpFvgouiWnHU0sfyugrhHLz6KsyfDzVqwKhRWl3WGGOMiaBQMoDuDLqdCFwAZIZycREZCDyHLpA9xjn3RB7n9AOeBeKBXc65vqFc2wS0bw/x8bBmDezda/HEEb78Er74Qr9JDzwADRtGu0XGGBN2WVlZ7N69m4yMjMJPNmERHx9PnTp1iI2NDen8QoMu59z8XIe+F5FvC3ueiMQCLwKnAZuAuSIy2Tm3POicWsBLwEDn3O8iUj+kVpscEhI08Fq0SLe+FrbmdOKJMGMGDBkC7dpFuzXGGOOJ3bt3k5iYSL169RCbke055xypqans3r2bo446KqTnhDK8WCdoqyciZwBHh3DtHsBq59xa51w6MB44J9c5lwKfOOd+930BO0JqtTmCDTEWoGZN+Ne/4OSTo90SY4zxTEZGBtWqVbOAK0JEhGrVqhWpZzGU4cX5aOkIQYcV1wHXhPC8xsDGoPubgJ65zjkOiBeRmUB14Dnn3DshXNvk4i8dsXChpjBV+N+5Xbt0WPGSS7SKbIX/hhhjKgILuCKrqN/vUIqjtnTOtfLtWzvnTnfOfRdKW/K6XK77cUBX4CzgDOBBETkuhGubXJo3hzp14M8/YcOGaLcmytLT4Z//1AKoH34Y7dYYY0yF8thjj9G+fXs6depEcnIyc+bMiUo7Fi1axJQpUw7fnzx5Mk88oanlV155JRMmTDjiOTNnzmTw4MGetanQni4RSQRGACejQdN3wMvOubRCnroJaBp0vwm6bmPuc3Y55/YD+0VkFpAE/BZa842fiPZ2ff21DjG2aBHtFkWJc/DSS7BqFdSvD2edFe0WGWNMhfHjjz/y+eefs2DBAhISEti1axfp6elRacuiRYuYN28eZ555JgBDhgxhyJAhUWmLX6E9XcA7QHt03cUXgHbAuyE8by7QWkRaikglYBiQe/mgT4HeIhInIlXQ4cdfQ228ycmf17VwYXTbEVWff66RZ6VKOlOxevVot8gYYyqMrVu3Uq9ePRISEgCoV68ejRo1okWLFuzatQuAefPm0a9fPwC+/fZbkpOTSU5OpnPnzqSkpADw5JNP0rFjR5KSkrj33nsBWLNmDQMHDqRr16707t2bFStWANprdeONN9K7d2+OO+44Pv/8c9LT03nooYf44IMPSE5O5oMPPuCtt97ipptuOtzW6dOn53hObvv37+fqq6+me/fudO7cmU8//bTE359QcrraOOeSgu5/IyKLC3uScy5TRG4CvkRLRox1zi0TkRt9j7/inPtVRKYCS4BstKzE0qJ/GQYgOVl7vJYtg0OHdFZjhbJ0KYwZo7dvuQVatoxue4wxJkrOPtub6372WcGPn3766Tz66KMcd9xxnHrqqVx88cX0LWBK/dNPP82LL75Ir169SE1NJTExkS+++IJJkyYxZ84cqlSpwu7duwG4/vrreeWVV2jdujVz5sxhxIgRzJihZUPXr1/Pt99+y5o1a+jfvz+rV6/m0UcfZd68ebzwwgsAvPXWWzleO6/nBHvsscc45ZRTGDt2LHv27KFHjx6ceuqpVK1atYjftYBQgq6FInKCc+4nABHpCXwfysWdc1OAKbmOvZLr/lPAU6E11xSkRg1d3WbVKo0/unaNdosiaOdOeOIJyM6GCy6APn2i3SJjjKlwqlWrxvz585k9ezbffPMNF1988eE8qrz06tWL22+/neHDh3P++efTpEkTpk+fzlVXXUUV36ohderUITU1lR9++IELL7zw8HMPHTp0+PZFF11ETEwMrVu3plWrVod7wQpS2HOmTZvG5MmTefrppwFIS0vj999/p10JSg+FEnT1BC4Xkd9995sBv4rIL4BzznUq9qubsOvcWYOuxYsrWNCVkKCzCWJj4fLLo90aY4yJqsJ6pLwUGxtLv3796NevHx07duTtt98mLi6O7OxsQIMXv3vvvZezzjqLKVOmcMIJJzB9+nScc0fMCszOzqZWrVosWrQoz9fMfX4oswoLe45zjo8//pg2bdoUeq1QhZLTNRBoCfT1bS2BM4HBgEcdmKa4knwDwRUur6tGDXj0Ubj3Xi0RYYwxJuJWrlzJqlWrDt9ftGgRzZs3p0WLFsyfr7XWP/7448OPr1mzho4dO3LPPffQrVs3VqxYwemnn87YsWM5cOAAoEVfa9SoQcuWLfnoo48ADYgWLw5kOn300UdkZ2ezZs0a1q5dS5s2bahevfrhHLG85PWcYGeccQbPP/88zmnhhYVh+GANpWTEBqAWGmCdDdRyzm3wbyVugQmrtm01h3z9etizJ9qtiYB163RIEbSXyxaxNsaYqElNTeWKK67g+OOPp1OnTixfvpyHH36YUaNGccstt9C7d+8cS+Y8++yzdOjQgaSkJCpXrsygQYMYOHAgQ4YMoVu3biQnJx8e3hs3bhxvvPEGSUlJtG/fPkdie5s2bejbty+DBg3ilVdeITExkf79+7N8+fLDifS55fWcYA8++CAZGRl06tSJDh068OCDD5b4+yP+CC7fE0RuAa4DPvEdOg94zTn3fIlfPUTdunVz8+bNi9TLlXkPPaQ9XXfdVc5TmzZvhltv1US2UaMg1y+MMcZUJFu2bKFRo0bRbkbEXXnllQwePJihQ4dG5fXz+r6LyHznXLfc54YyDnMN0NM595Bz7iHgBDQIM6VUcrLu8xn6Lh/S03Vpn7Q0qF27Ak7VNMYYU9aEkkgvQFbQ/SzyrjZvSgl/0OXZkkDOaV2K1FQNeGrXhlq1dFwzUl5/XYcWGzaEm26yZX6MMaaCyl0KojQLJeh6E5gjIhPRYOsc4A1PW2VKpGVLzSvftQu2boWw9Tbv3QtffaVrGm7bduTj1apBq1Zw7rnQrZt3gdCsWTB1KsTHa+K85XEZY4wpAwoNupxzz/gWpD7Zd+gq51xFmxtXpojoLMbZs3WIscRB1/LlOv/4p58gM1OPHXWUrjX055+67dmjPV9LlujWogVceCH06qUJ7uGyZQs870snvO46DfKMMcaYMiCUni4/QavG2zhOGZCcHAi6fMtOFc///gev+OrZikDPnjBwoK45FFyawTkNvGbOhEmTdPrkU0/Bu+/C0KFw+unh6fn67DPN4+rdW9thjDHGlBGhLHj9EHAh8DEacL0pIh855/7hdeNM8fnzupYs0YoKxSpdNWVKIOA6/3xdV6JevbzPFdHcrvPOg8GD4Ztv4OOPtWfqhRfghx/gtts096skrrtOu+5OOcXyuIwxxpQpoXwUXwJ0d8497Jwbhc5eHO5ts0xJ1a+vOeb790Ou5aRCM2UKvPyy3r7hBrjqqvwDrtzi47Vn6+WXtW5F9eqwYAH83/+VfEplTIwGfyVY+8oYY4w3qlWrVug5s2fPpn379iQnJ3Pw4MEiXX/SpEksX77ck3ZFQihB13oguABSArDGk9aYsPJXpy9ynPPFF4GA6/rrteeqOGJitFDY889Dhw46/Pjgg/D224HcsFAcOADPPQe+RU+NMcaUXePGjePOO+9k0aJFVK5cuUjPLW7QVVqEEnQdApaJyFsi8iawFEgVkdEiMtrb5pmS6NxZ90ErJRRu6lR46SW9fd114Vmqvm5deOwxGD5chwQnTNBZh6EGUa++CtOnw3/+U/K2GGOM8dzMmTPp168fQ4cOpW3btgwfPhznHGPGjOHDDz/k0UcfZfhwHTR76qmn6N69O506dWLUqFGHr/HOO+/QqVMnkpKSuOyyy/jhhx+YPHkyd911F8nJyaxZs4Y1a9YwcOBAunbtSu/evQ8vWr1u3TpOPPFEunfvHpZK8uESSiL9RN/mN9Obpphw69hRY5zly+HQoRDqh86fDy++qLevvRaGDAlfY2JiYNgw6NRJE+xXrtShx0cfhcaN83/ed9/BjBlaA+yGG8LXHmOMKc/C8Q9zXoqwkvbChQtZtmwZjRo1olevXnz//fdce+21fPfdd4cryE+bNo1Vq1bx888/45xjyJAhzJo1i7p16/LYY4/x/fffU69ePXbv3k2dOnUYMmRIjurzAwYM4JVXXqF169bMmTOHESNGMGPGDG655Rb++te/cvnll/Oi/3OtFAilZMTbkWiICb/q1XWFnFWrtJZply4FnJyeHkiav/RSOOccbxp1/PE6VPjII/Dbbxp4jRoFea3ivmtXIAi85hpo0sSbNhljjAm7Hj160MT3dzs5OZn169dz8skn5zhn2rRpTJs2jc6+oZnU1FRWrVrF4sWLGTp0KPV8ucR16tQ54vqpqan88MMPXHjhhYePHTp0CIDvv//+8MLal112Gffcc0/4v8BiKErJCFMGJSVp0LVoUSFB10cfacHT5s21vpaXatTQ4cZ//QvmzYP77tPhxu7dA+c4p7lgqalaaHXQIG/bZIwx5UkReqS8khA0vBIbG0tmHrm8zjlGjhzJDblGMkaPHo0UMkM9OzubWrVqsSifxOXCnh8NxSkkYMoQf+mIAvO6tmzRPCuAESMgLgKxeGIi3H8/DBigvWz/+IdWu/ebPl1nPFarBjffbOUhjDGmHDrjjDMYO3YsqampAGzevJkdO3YwYMAAPvzwQ/744w8AdvtygKtXr05KSgoANWrUoGXLlnz00UeABnCLfR92vXr1Yvz48YAm7pcW+QZdIvKub39L5Jpjwq1dO02HWrtWV/E5gnM6rJiZqQHQ8cdHrnFxcXDLLXDRRVpMbPRoLawKOtMxJkbzuGrXjlybjDHGRMzpp5/OpZdeyoknnkjHjh0ZOnQoKSkptG/fnvvvv5++ffuSlJTE7bffDsCwYcN46qmn6Ny5M2vWrGHcuHG88cYbJCUl0b59ez799FMAnnvuOV588UW6d+/O3jw//KJDnHN5PyCyHBgETAb6kasSvXMuYvP3u3Xr5ubNmxeplyt3HnxQhxfvuksrOOTw3Xc6zFetmgZfNWtGo4nw+ec6SxHg6qu1yOrmzVoI1Xq5jDGmUFu2bKFR2BbbNaHK6/suIvOdc91yn1vQ8OIrwFSgLTA/12YRUBniH2JcmHvFzIMH4fXX9fYVV0Qv4AKtBXbTTdrzNnasVrNv3NgCLmOMMeVGvkGXc260c64dMNY518o51zJos1WGy5CuXXW/YIHGNIf9979aK+u447SCfLR17apB1p498NZbgTwzY4wxphwoNJHeOfdXEUkSkZt8W6dINMyET/PmUKeOxlcbNvgOrl8PkydrkPPXvxZzccYwck7XaAStcwFauf7DD6PXJmOMMSaMCv2kFZGbgXFAfd82TkT+z+uGmfARCVSnX7DAd/DDDzV5fdCgQJATTTNmaHHWatXg3/+GW2/Vhr/7rpazMMYYY8q4ULo3rgV6Oucecs49hC54fZ23zTLh5q/RtWABsH27JtDHxnpfkysUe/fCmDF6+/rrtVtuwAC47TYNvN55B3wzUowxxpiyKpSgS4CsoPtZ5JrJaEq/zp01flm2DDImfKrDeX36gK/ab1S9/roWQe3cGfr1Cxzv3x/+z9epOmYMTJkSleYZY4wx4RBK0PUmMEdEHhaRh4GfgDc8bZUJu+rVoXVriE9LIeUTXxHS88+PbqNAhxS//VaLiY0YceRsxdNOgxtv1Nsvv6xFU40xxpRKsbGxJCcn06FDB84++2z27NkT7SYV2cMPP8zTTz/tybVDSaR/BrgK2A38CVzlnHvWk9YYT3XpAl12TCVlZ5r2KrVoEe0mQXw81K8Pw4fD0Ufnfc5ZZ+nai6AFVL/9NnLtM8YYE7LKlSuzaNEili5dSp06dUrNYtPOObKzs6PdjNCWAXLOLfCVkHjOOZe72pMpI7p0zKDH9s+0Mn1p6OUC6NRJF7UeMqTg8849Fy67TIdFn3kGfvghIs0zxhhTPCeeeCKbN28GYM2aNQwcOJCuXbvSu3dvVqxYAcD27ds577zzSEpKIikpiR98f9ufeeYZOnToQIcOHXj22WcBuOeee3jppZcOX//hhx/m3//+NwBPPfUU3bt3p1OnTowaNQqA9evX065dO0aMGEGXLl3YuHFjnucBPPbYY7Rp04ZTTz2VlStXevY9sQWvK5DjtszkgPuTDTEtaHB0Eg2i2ZjMzMAaj4mJoT3noovg0CGdefnUU7p2Y7cjCv4aY4wBOPvs/B/7299g4EC9PXWq/vObn2Isnp2VlcXXX3/NNb5Riuuvv55XXnmF1q1bM2fOHEaMGMGMGTO4+eab6du3LxMnTiQrK4vU1FTmz5/Pm2++yZw5c3DO0bNnT/r27cuwYcO49dZbGTFiBAAffvghU6dOZdq0aaxatYqff/4Z5xxDhgxh1qxZNGvWjJUrV/Lmm2/y0ksv5Xte1apVGT9+PAsXLiQzM5MuXbrQ1V/gMsws6KoonCN28kRq1ICPa51P3EJh0KAotSUrC+6+G9q2hcsvDz3oAvjLX3SB7EmT4J//hFGjICnJs6YaY4wJ3cGDB0lOTmb9+vV07dqV0047jdTUVH744QcuDJotf+jQIQBmzJjBO++8A2g+WM2aNfnuu+8477zzqFq1KgDnn38+s2fP5uabb2bHjh1s2bKFnTt3Urt2bZo1a8bo0aOZNm0anX21kVJTU1m1ahXNmjWjefPmnHDCCQBMmzYtz/NSUlI477zzqFKlCgBDCht5KQFPgy4RGQg8B8QCY5xzT+RzXnc0Qf9i55yVIffC/PmwcSNVmtRlWaXeVJlP9IKuzz+HVau08vzllxftuSK6NuOhQ/DFF/D3v+vWrp0nTTXGmDIr1B6qgQMDvV4l5M/p2rt3L4MHD+bFF1/kyiuvpFatWixatCika+S3JjTA0KFDmTBhAtu2bWPYsGGHzx85ciQ33HBDjnPXr19/OHAr6Lxnn30WidCSc6EURz1fRFaJyF4R2SciKSKyL4TnxQIvootmHw9cIiLH53Pev4Avi958E7KJEwGoNvwcsmPiWLJER/gi7o8/4L339PZf/1q0Xi4/fxX9AQM0+Hr4YQ3ijDHGlAo1a9Zk9OjRPP3001SuXJmWLVvyka/QtXOOxYsXAzBgwABefvllQIck9+3bR58+fZg0aRIHDhxg//79TJw4kd69ewMwbNgwxo8fz4QJExg6dCgAZ5xxBmPHjiU1NRWAzZs3s2PHjiPalN95ffr0YeLEiRw8eJCUlBQ+K8ZwaqhCSaR/EhjinKvpnKvhnKvunKsRwvN6AKudc2udc+nAeOCcPM77P+Bj4MjvkAmP1athyRKoXJmaF55O06a61rUvjzGyxoyBtDQ44QTo3r341xGBm2+G3r3hwAF46CFd2sgYY0yp0LlzZ5KSkhg/fjzjxo3jjTfeICkpifbt2/Opr+D1c889xzfffEPHjh3p2rUry5Yto0uXLlx55ZX06NGDnj17cu211x4eEmzfvj0pKSk0btyYhg0bAnD66adz6aWXcuKJJ9KxY0eGDh1KSkrKEe3J77wuXbpw8cUXk5yczAUXXHA4wPOCFNSNByAi3zvnehX5wiJDgYHOuWt99y9DK9vfFHROY+C/wClo7a/P8xpe7Natm5s3b15Rm2D8/vMfXWbn3HPhmmsYM0YLvF94YdFH90pk0SJ48EFISICXXtJSESWVmQlPPAFz5kDNmvD449C0acmva4wxZcyWLVto1KhRtJtR4eT1fReR+c65I2Z6hdLTNU9EPhCRS3xDjeeLSCj1BvIaIM0d4T0L3OOcy8rjXBMO+/frkj8AZ54J5FoSKFIyMrS4KcCwYeEJuEBnQN5zj35Re/fqjEbfFGVjjDGmNAkl6KoBHABOB872bYNDeN4mILjLoQmwJdc53YDxIrIeGAq8JCLnhnBtE6pZs3S2X6dO4OuK7dBBC8CvWaO57BGRlgatWkGTJtrjFk7x8RpsdeoEf/6pt7duDe9rGGOMMSVU6OxF59xVxbz2XKC1iLQENgPDgEtzXbul/7aIvIUOL04q5uuZvEybpvvTTz98qFIlDbwWLICFC3WJQ89Vr649Uvv3B+pzhVOlSjp0+cgjsHSpBl5PPBG+HjVjjDGmhEKZvdhERCaKyA4R2S4iH4tIk8Ke55zLBG5CZyX+CnzonFsmIjeKyI0lb7op1Nq1mkRfrRqceGKOh/xDjHPnRqAdwXmDQdN3wy4xURPq27aFnTvhvvtg1y7vXs8YY0qZwvK0TXgV9fsd6oLXk4FGQGPgM9+xUBozxTl3nHPuGOfcY75jrzjnXsnj3CutRleYfeVb2LpfP+0JCtKzp+7nzdN0K8/8/DPcdhv89puHLxKkcmUtIdG6NWzfboGXMabCiI+PJzU11QKvCHHOkZqaSnx8fMjPCWWc5yjnXHCQ9ZaI3FrUxpkIS0+Hb77R20FDi35HH63rXa9fr9UkPFnxID0dXntNg59ff4XjjvPgRfJQtSo8+ig88IAmrt13n1avr1cvMq9vjDFRUKdOHXbv3p1nuQTjjfj4eOrUqRPy+aEEXbtE5C/A+777lwB/FKNtJpJ+/FHzp1q3hpYt8zzlhBM06PrpJ4+Crk8+0YCreXMYHMrcizCqVg3+8Q/N81q9GkaO1MDrqKMi2w5jjImQ2NhYjrK/caVaKMOLVwMXAduAregsw6u9bJQJA38C/Wmn5XuKP81rzpycaVdhsXMn+KoPc8MNEBsb5hcIgT/wat0atm2De++FPKoUG2OMMZFQaNDlnPvdOTfEOXeUc66+c+5c59yGSDTOFNPWrTpmWKkS9OmT72ktW+rkvj//hJUrw9yGsWN1ePHkk6FjxzBfvAiqVtW1Gdu00YBr5EgLvIwxxkRFvkGXiNzt2z8vIqNzb5Froimy6dN137t3gbMFRXSIEXSIMWyWLNGCrAkJcM01YbxwMVWtqqUk/IHXvffCltwl44wxxhhvFdTT9atvPw+Yn8dmSqOsrEDQVcDQop9/iPHHH8M4xLhnjwY6F11UepLX/cn17drp0Oe998IG67A1xhgTOfkGXc45/zLbB5xzbwdvaIV6UxotWAC7d0PjxnD88YWe3q6d1i3dsgU2bQpTG/r0gVdfDX/l+ZKqUkUDr6QkHVMdORJWrYp2q4wxxlQQoSTSjwzxmCkNvvxS96edpuOHhYiNhR499PaPP4axHTVrHlEbrFTwF1Dt0QNSUrRy/bJl0W6VMcaYCqCgnK5BIvI80DhXPtdbQGbEWmhCt3evVjuNiYFTTgn5af4hxhLndY0ZAxMnQmYp//GoVEl7ufr0gYMHNQibbyPmxhhjvFVQT9cWNJ8rjZy5XJOBM7xvmimymTM1p6trV6hdO+Snde6sOe+rVpWgePvq1TB5MrzzTtmYHRgXB3fcoT2C6elaWmLWrGi3yhhjTDmWb3FU59xiYLGITAT2O+eyAEQkFkiIUPtMqJwLJNCfemqRnlqpksZpP/ygNbvOOqsYr/3aa7o/+2xo1KiIF4iSmBj4v//TXK9PP4WnntJcr3POiXbLjDHGlEOh5HRNAyoH3a8MTPemOabY1q7V8vLVqweStIrAXzqiWHlds2bpMj81a8LFFxfjAlEkomUtrrpK748ZA2+95UG1WGOMMRVdKEFXonMu1X/Hd7uKd00yxfL117rv10+HzoqoWzft+PnlF0hNLfz8w9LS4E3f0pxXXFFgXbBSSwTOPx9uv11nFnz8MTz7bOnPTTPGGFOmhBJ07ReRLv47ItIVOOhdk0yRZWRoPhcUeWjRr3p1LRyfnQ1z5xbhiRMmwB9/wLHHFvu1S43+/XWtxsREmDFD87wO2o+6McaY8Agl6LoV+EhEZovIbOAD4CZPW2WKZu5cLX/QokW+i1uHwj/E+P33IT7BuUC5heuvD6lERanXtasujF2zps5ovPvuEswuMMYYYwJCWXtxLtAW+CswAmjnnLP59aVJcAJ9CQKfXr10iHHePK0+USgRDVAef1yrrJYXrVtrUn3jxpond/vtVkTVGGNMiYXS0wXQBjge6AxcIiKXe9ckUyS7d2uPTGys5nOVQO3a2tGTlRUYrSyUCHToUKLXLZUaNtTAq1MnndF47706vdMYY4wppkKDLhEZBTzv2/oDTwJDPG6XCdXMmZqI1b27DomVkD8ty5+Xn6esLHjjDdi+vcSvV6pVr64LZftreT3+uOaw2cxGY4wxxRBKT9dQYACwzTl3FZCE1ekqHUpQmys/PXporLFunVahyNPUqTBpEjz8cPkPQOLitJbXlVfq/bffhmeegUOHotosY4wxZU8oQddB51w2kCkiNYAdQCtvm2VCsmoVbNyoPVxdu4blknFxgVHK6XlVY0tJgffe09uXXVY+kucLIwIXXKBLByUmau/i3XeXjcr7xhhjSo1Qgq55IlILeB1dBmgB8LOXjTIhKmFtrvwMGKD7mTPzKFX13ntayCspKbBoY0Vx0knw9NOa77V2Ldx6KyxeHO1WGWOMKSMKDLpERIDHnXN7nHOvAKcBV/iGGU00paXBt9/q7TDXx2rVSqtPpKTkqtm1bh188YVOcSwvJSKKqnlzHV7s2lW/QQ8+qIt8l/dhVmOMMSVWYNDlnHPApKD7651zS7xulAnB7Nmwfz+0aaMRUhiJBOK4w0OMwesrnnUWNGsW1tcsU6pVg4cegosu0u/H2LHwxBP6fhhjjDH5CGV48ScR6e55S0zRTJ2q+0GDPLl8v35ahWLePNizB+3lWr4catSASy/15DXLlJgYzWkbORIqV9ZyErfcYvW8jDHG5CuUoKs/GnitEZElIvKLiFhvVzStXQu//abrHJ58sicvUbOmrseYne2r2dWqFbzwghYKrVbNk9csk046CZ57Do45Rkto3H03TJ5sw43GGGOOkG/QJSL+8aNB6GzFU4CzgcG+vYmWL77Q/SmnQIJ31TuChxidA5o2DdssyXLFX0h18GCdefD661qpv0grhxtjjCnvCurpmgTgnNsAPOOc2xC8RaR15kgHDwbKxXs0tOjXrRs0id9O5YU/sGa19dwUKD4ebrhBhxurVoWfftL6Xja70RhjjE9BQVfw1DSry1VafPutzlxs3157njwUFwfXZL/GhasfZ+2TEzx9rXLDP9zYpo0ulP3AAzBmjFa0N8YYU6EVFHS5fG6baHEuMLTocS8XAD//zPEpP5MeW5n3dwyw0bJQNWgA//oX/OUvOhvh00+1ple+Jf6NMcZUBAUFXUkisk9EUoBOvtv7RCRFRPZFqoEmyKpV+sFdvbr2qHjp0CF49VWqVIENJw9nV3Yd/vc/b1+yXImNhYsv1lyvxo115YA77oAPPsij4qwxxpiKIN+gyzkX65yr4Zyr7pyL8932368RyUYaH3+ZiFNP1RwiL02YoMvctGhBx5GDAZ2Ul5bm7cuWO61b63Dj2WdrsPXeezoDdM2aaLfMGGNMhIVSMqLYRGSgiKwUkdUicm8ejw/3laFYIiI/iEiSl+0p0/bvD1SgHzjQ29faskWDLoARI+iYHEubNrBvH0yb5u1Ll0sJCVrB/x//0KHHdes08Hr7bcv1MsaYCsSzoEtEYoEX0ZITxwOXiMjxuU5bB/R1znUC/g685lV7yrxvvtEP6KQkaNTI29f66CPtlRkwANq1QwQuvFAfmjjRRseKLSlJa52dc47m502YoDMcly6NdsuMMcZEgJc9XT2A1c65tc65dGA8cE7wCc65H5xzf/ru/gQ08bA9ZZdzMGWK3va6lwvgr3+F4cPhqsASmz166GTJXbsCFStMMSQmwrXXaq5X06baqzhypK7n+OefhT/fGGNMmeVl0NUY2Bh0f5PvWH6uAb7wsD1l17x5mohdpw6ccIL3r1epEgwbpmXpfYJ7uyZM0Er1pgTatNFcr0sv1fy8b76BG2+Ezz6DrKxot84YY4wHvAy6JI9jeZaeEJH+aNB1j4ftKZucgw8/1NvnnafFs7zy3XcFLtrcuzfUrw+bN2vtT1NC8fFwySXw4otaifbAAV1U/Lbb4Ndfo906Y4wxYeZl0LUJCK7e2QTYkvskEekEjAHOcc794WF7yqZly2DFCi0T4eXQ4sqV8OSTcNNNWi4iD3FxcP75evujj2x5wbBp2BAeekgLqdavr4n2d9+ttb62b49264wxxoSJl0HXXKC1iLQUkUrAMGBy8Am+9R0/AS5zzv3mYVvKro8+0v3ZZ2s+kBcyMnSoyzno16/A9RxPO01HHVevthVuwkoEevaEl17Sod1KlbTn8cYbYezYAnsgjTHGlA2eBV3OuUzgJuBL4FfgQ+fcMhG5UURu9J32EFAXeElEFonIPK/aUyatXg0LFmiwNXiwd6/z0UeaM9aokQ53FaBSJZ18B1rn03q7wiwhQScxvPoq9O+vU0UnToTrrtN8L5s6aowxZZa4MvCp2a1bNzdvXgWMx554Ar7/Hs49F665xpvX2LBBl6jJzITHH4cOHQp9yv79OgEvNVVHwXr39qZpBl2FYOzYQFmJ+vU1MO7fX6veG2OMKXVEZL5zrlvu454WRzUlsGkT/PCDJlKde643r5GdDaNHa8A1aFBIARdA1apwxRV6e8wYzf82HmndGv75T7j/fi0xsWOHDgX/7W8we7Z1NRpjTBliQVdp9fHH+oE6YADUrevNayxaBL/9BvXqwZVXFumpZ5yhVQ9279aVbYyHRLRUyAsvaCX7o4/WKaRPPgk336y9oRZ8GWNMqWfDi6XRzp2aw5Odrbk9DRt691oLF+qHenJykZ+6bp2OTDoH//kPHHNM2Ftn8pKZCdOnw/jx8Idvwm+TJlpIrU8fb8uKGGOMKZQNL5YlEydqgczevb0NuAA6dy5WwAXQsqVOqnROS01ZwdQIiYvT8iGvvaarBxx1lA5H/+c/cMMN8MUXtqajMcaUQhZ0lTa7dsGXX+rtoUO9eY3Jk2H58rBcavhwHf1ctQqmTg3LJU2oKlWCM8/U4OvWW3X26Y4dWnbi6qvhv/+FvXuj3UpjjDE+FnSVNm+8ob0UvXppV1K4LV2q2e/3368BXglVrgzXX6+333kH9uwp8SVNUcXFae7fyy/rdNJjjtFg6/33df3M0aPh99+j3UpjjKnwLOgqTRYv1oKYCQnelIhISYF//1vHAy+4QBPow+DEE6FrVy0l8cYbYbmkKY6YGB2S/s9/tPxHz56a//XVVzrb8f77dUas1foyxpiosIzb0iIzU5PmAS66SPN0wsk5eP557d1q27bQIqhFIaKF0//2N5g5E5KS4NRTw3Z5U1QiWv6jQwed5Th5Mnz9NSxZoludOjr99IwzvJsZa4wx5gjW01VafPZZoCr8eeeF//pffgk//ghVqsBdd4W9sObRR2vgBZpUv2JFWC9viqtxY022f/ttHQdu0kTrfLz/vuZ9/eMfMGeO9X4ZY0wEWMmI0mD3bp11lpYGDz+sY3XhtHGjJlqnp2vA1adPeK8f5LXXNH6sXVtHuawjpZRxTvP6pkzRIDwrS4/XrAmnnKKLazZtWvA1jDHGFCi/khE2vFgavPGGBlwnnBD+gAt0vZ6EBM338TDgAu082bBBR7Eee0xXMqpUydOXNEUhAh076vbnnzoe/NVXGphPnKhb69bQt6/+vNSpE+0WG2NMuWE9XdH2yy9w330ambz8sq6t54Vt26BWLV0822P79sFtt2n1gv799baI5y9riss5XZlg+nT49ls4eFCPi0CnThqAnXSSrv9kjDGmUPn1dFnQFU2ZmXDLLTqdf/hwGDYsfNd2TkvGt2oVvmsWwfr1OpKZlqa9X16kqRkPpKfD3LkafM2dG8j1iovTGRK9eumsyBo1ottOY4wpxSzoKo1efllzaxo21HX1wjkO9/HHgeTpwYPDd90i+OEHrVwgAiNGaBF1U4bs369v4syZ2iPr/1sRE6PDkyedBD16hK30iDHGlBeW01XaTJ+uAVdcHNx5Z3gDrh9/1IDLuajm5Jx0ktbmfPNNndG4d69Ww7ChxjKialVNrD/tNH3zfvpJg7DFiwPbyy9rb2qPHrode6y9wcYYkw/r6YqGVavgnnsgIwNuvlk/1MJlzRq99qFDcMUV3i0lVARTp+rKNM7pWo3XXWefy2VaSgr8/LOWmli4UMeQ/WrVgi5ddEtO1lmRxhhTwdjwYmmxd6+Wb9i1CwYN0nG3cFm9Gh56SD8UBwzQfLFSEt18/z08/bSmCPXrp02Ls37Wsi89XYcef/5Zt+ClpUR0SaIuXTQfrG1bm8pqjKkQLOgqDTIz4cEHtU5Su3bwz3+GL/JYuRJGjdI8nO7dYeRIiI8Pz7XDZPFircWZlqaVMe66yybElSvO6aSQBQt0W7ZMe3P94uM18OrUSbfWrUvdz6gxxoSDBV2lweuv65Isdepo5dBw5ltt2gT33gvt22s0U0q7kVat0vqv+/Zp4dRbboHOnaPdKuOJQ4f0H4yFC7U3bN26QDI+aK/XccfB8cfr1q6drphgjDFlnAVd0eQcfPQRvPuuBkP//Kd+wITb9u06kyzMS/yE29atuu72ypV6/8wzNeE+AiXETDSlpGjwtWSJ7n//PefjItC8ObRpo1vbtrpsUSkZIjfGmFBZ0BUt2dnaw/X55/rhccstmm8VDv4cmjPPDM/1IigrCz75BP77Xx11bdhQU92OPz7aLTMRk5ICv/6qw5DLl2tOYu41IKtW1byw1q11ZuSxx0KDBhaIGWNKNQu6oiEjA555Br77LlAaolevkl83K0ujlQ8/1Pv/+leZjVbWr9der/Xr9XO0Xz+tEduoUZQbZiIvPV1n365cqduKFTkT8/2qVdMyFf6tZUvtESulQ+rGmIrHgq5IO3BAFx9cskTzVO6/X5OHS2r3bnjqKc2VEYG//AUuvLBM/+efmQnvv689X5mZWnvzlFM0+GrQINqtM1G1e7cmAq5erduqVToDOLe4OGjWTIcn/fvmzeGoo8r074YxpmyyoCuSduzQgGvtWqhdWzPHw7Ecz6JFWndh71697p13hieQKyV27IDx4+Hrr3VUNjZWS5gNGQJNm0a7daZUcA7++EN/t9atC+y3bs37/MRE7QVr2lT3/ttHH20zJ40xnrGgKxKysjR36913deZWw4bw97+Hp7vmp580Ad85rXl0551aiLIc2rpVg69vvglMdmvbVgOwk0+2CW4mDwcOwMaNsGFDYFu/Pu9eMdDer6OO0nFs/9awoW4NGlg9MWNMiVjQ5bW1a+H553UIBDQ6uPHG8FXkTkmBG27Qku4XX6xjcOXcpk0wcSLMmhUoep6QoN/ak0/W5f8SEqLbRlPKpaToD9LGjYH95s060zc7O//n1amjvWENGuhWv35gq1fPesmMMQWyoMsrBw7ABx/ApEn6R7xePa0y3717ya67ZIn2mt11V+AP/N69FXJZlbQ0rWg/fbqmsvlVqqSBV7du+u22/C8TssxMDby2bNEgbOtW3bZt03HurKyCn1+rlvaUHXWU/s7Xq6eF5+rU0X3dutZbZkwFZkFXuG3dqkHRV1/BwYM6XHH22ZrYXrly8a6Zna2FJD/7DObP12M33ACDB4ev3WXcli0wcybMm6c51cHq19dhSP/WsqVNaDPFkJWlsyb9AdiOHRqg7dyp+z/+KLiXzK9aNc29rFNHt9q1datVK7DVrg01aliyvzHljAVd4eCcFnWcPFlrZPm/dx06aHXP444r3nX37NHgbepU/QMPmgB84YVw7rn2H3M+9uzR2HTePI1V9+/P+XilStCiRWAim39iW+3a9hlnSiA7W2dV7tqlgdiuXbr98Udg27278N4yPxENvGrU0ECsZs3Aff9WvbpuNWpoMFeliv0QG1OKWdBVXIcO6aKBc+fqp7u/blBcHPTtq1PrSjoz8a67tCYRaHfNoEGaNV4BhxKLKztbC5yvWBHYNm/O+9yqVXUo8uijNW/66KP12+4fFapa1T7PTAk5p2td7d6t259/6n7PniO3lJSiXz8mRoOv6tV1X7Wq7v23g7cqVQK3K1fW+5Ur2w+5MR6yoCtUKSlaoHHNmsCSJcGL9tatCwMHamBUlKAoLU2T7Bcu1ODthhsCBU2//hp+/FGv2aWL/TEMk5SUnJPZ/FvuHrHcKlUKBGA1awa2WrUCnQ7+zzv/Z5q9ZabYMjM1QNu3T/M2/VtKSuC4/3ZKim7+mSUlUblyYPMHYsFbYmJg798SEgLHEhKO3OLj7ZfBGKIUdInIQOA5IBYY45x7Itfj4nv8TOAAcKVzbkHu63gadKWnaxL8mjUaFPmH9wKN1CVIunfXrVWr0P6oOKfDkP7rbtqUc7Hfiy6Cyy4L65diCufvgNi2TdNzgnOn/SNDRf08E9HPrNxb8GdV5cr6mZSYqEFd8OdUpUq6xccH9rm3uDj7LDNBMjMhNVUDsNRU/U8i937/fp3oE3zbv4UjaMuLSM4f6tw/5MHHg3/gg38J/Fvw/bi4vG/77+feKsDsblO65Rd0eZZmLCKxwIvAacAmYK6ITHbOLQ86bRDQ2rf1BF727SMnPh4+/lj/EIH+ordsqWu8HXccdO2as0dr/37N5vYPDfz5p27btukfwKef1vNE4H//CxRtjI3VoowdO+o1O3aM5FdpfEQCPVdt2uR9zoEDgbSc4I4H/5aamvPzLi0t8LnmJf/nSWxs4HPHfzsmJufj+W0xMbrldzuvTeTI2wUdEwlsue/n3vyfjf59XueEcryw27mPFXY/d4Cb+9zCzs99rCSP531eHFALEmohiUC9/K+dp+xsOHiQmEMHkYMHct5OS0MOpek+7aBu6YdyHj+UBofSkPR03R86BOmHICMTSU8DwhjUhfjPRo7TRHD+X5DYQDDmDv+CBH6RnP+XSGKO/AXy/3LFxupzY3L94vh/eWJj9Tq5Hw/+RSrsFy02VtstIf4SBt12EvSLltc5of5yRlA0/4msVCl6k6y8fNkewGrn3FoAERkPnAMEB13nAO847W77SURqiUhD51w+5aU94F9K5+uvdawoMVGHE9et08V4x43T9WhOO03P//57rceVn/379ToA55+v+2OO0SxuS4gvE/w9VaFWwc/M1AmsBw/m7FBISztyO3ToyC0jQztc09MDtzMydMvMDOz9mzElFwNU9W1hIhATl0Vcdjpx2enEZx8iPvtQjvtx2enEu/TDx2JdBvHZ6cRmZ+jjLoPY7IxC97Euk1iXSYxvH5edQazLIMZlEZedATggPXxfWwXhRHAIjhjffd1ni7/nUA7fPnwOghMB5Ijbwdf0P8cdjraCzwm61uFr5DzHf638jh2+X8Dj/uPHPHAJXa6MzmouXgZdjYGNQfc3cWQvVl7nNAYiF3SBlnoYNy7/roo//wzcbtBAhxiDp37Xrh3IzE5MDJw7cKCXrTalRFxcYHKZV5zTgCsrK2cAlpGhx/yb/5y8tuzsnHv/7YI250K7nd99yHksry33ef6vN3jL61ju47nPCf7e5Xc/r2sEnxe8L+z8/J6T+7GiPF6c6+SlsOsU9Xr5Pz8WqOzbIMO3Ffd1ipX94hzisjUA8wViMdm+IC07E8nOCgra9LEYl3XEJtmB27EuE3HZh/cxLgsh2/f8LGLIDhz37fM6ps/JzvO+4Hx7/3Pc4eP+awC+5znA5fFc3953O/c54PS6vvMOhyiHv9HOtxVQEiWv96T0p4bnEH9wX9Re28ugK6/Ow9xvTSjnRMYNNwTyEfxbYqL2WgUvt5OUBM89F5UmmopLJJDCYowpiKBpxLGAjS6EzP8fkD8Ay++/ptzHgp/rv12c/5jy+q8ruG3h+G/Kf7tZs6J/f8LEy6BrExA8QNME2FKMcyKjf/+ovKwxxhgTdSKaV2Y85eUUj7lAaxFpKSKVgGHA5FznTAYuF3UCsDei+VzGGGOMMRHiWU+Xcy5TRG4CvkT7ecc655aJyI2+x18BpqDlIlajJSOu8qo9xhhjjDHR5OmkSefcFDSwCj72StBtB/zNyzYYY4wxxpQGVkHOGGOMMSYCLOgyxhhjjIkAC7qMMcYYYyLAgi5jjDHGmAjwdMHrcBGRncCGaLfDGGOMMSYEzZ1zR+U+WCaCLmOMMcaYss6GF40xxhhjIsCCLmOMMcaYCLCgCxCRgSKyUkRWi8i90W5PRSUiTUXkGxH5VUSWicgtvuN1ROQrEVnl29eOdlsrIhGJFZGFIvK57769L6WAiNQSkQkissL3u3OivTfRJyK3+f6OLRWR90Uk0d6X6BCRsSKyQ0SWBh3L970QkZG+eGCliJwRzrZU+KBLRGKBF4FBwPHAJSJyfHRbVWFlAnc459oBJwB/870X9wJfO+daA1/77pvIuwX4Nei+vS+lw3PAVOdcWyAJfY/svYkiEWkM3Ax0c851QJfCG4a9L9HyFjAw17E83wvfZ84woL3vOS/54oSwqPBBF9ADWO2cW+ucSwfGA+dEuU0VknNuq3Nuge92Cvrh0Rh9P972nfY2cG5UGliBiUgT4CxgTNBhe1+iTERqAH2ANwCcc+nOuT3Ye1MaxAGVRSQOqAJswd6XqHDOzQJ25zqc33txDjDeOXfIObcOXRu6R7jaYkGXfqhvDLq/yXfMRJGItAA6A3OABs65raCBGVA/ik2rqJ4F7gayg47Z+xJ9rYCdwJu+od8xIlIVe2+iyjm3GXga+B3YCux1zk3D3pfSJL/3wtOYwIIukDyOWR2NKBKRasDHwK3OuX3Rbk9FJyKDgR3OufnRbos5QhzQBXjZOdcZ2I8NWUWdLz/oHKAl0AioKiJ/iW6rTIg8jQks6NIotmnQ/SZoN7CJAhGJRwOucc65T3yHt4tIQ9/jDYEd0WpfBdULGCIi69Hh91NE5D3sfSkNNgGbnHNzfPcnoEGYvTfRdSqwzjm30zmXAXwCnIS9L6VJfu+FpzGBBV0wF2gtIi1FpBKaQDc5ym2qkERE0NyUX51zzwQ9NBm4wnf7CuDTSLetInPOjXTONXHOtUB/P2Y45/6CvS9R55zbBmwUkTa+QwOA5dh7E22/AyeISBXf37UBaI6qvS+lR37vxWRgmIgkiEhLoDXwc7he1CrSAyJyJpqzEguMdc49Ft0WVUwicjIwG/iFQO7QfWhe14dAM/SP2YXOudxJkSYCRKQfcKdzbrCI1MXel6gTkWR0gkMlYC1wFfoPtb03USQijwAXo7OyFwLXAtWw9yXiROR9oB9QD9gOjAImkc97ISL3A1ej792tzrkvwtYWC7qMMcYYY7xnw4vGGGOMMRFgQZcxxhhjTARY0GWMMcYYEwEWdBljjDHGRIAFXcYYY4wxEWBBlzEm6kSkrogs8m3bRGSz73aqiLzk0WveKiKX53G8hYgsDePrVBKRWb41+IwxFZj9ETDGRJ1z7g8gGUBEHgZSnXNPe/V6vgDoarR6u6ecc+ki8jVas2mc169njCm9rKfLGFNqiUg/Efncd/thEXlbRKaJyHoROV9EnhSRX0Rkqm8JKUSkq4h8KyLzReRL/1IfuZwCLHDOZQY9Z7GI/Aj8Lej1W4jIbBFZ4NtO8h1/V0TOCTpvnIgMEZH2IvKzr5duiYi09p0yCRjuxffIGFN2WNBljClLjgHOQhcTfg/4xjnXETgInOULvJ4HhjrnugJjgbxWmOgFBC/g/SZws3PuxFzn7QBOc851QXuqRvuOj0ErvyMiNdF19aYANwLPOeeSgW7oOm4AS4HuxfyajTHlhA0vGmPKki+ccxki8gu6bNdU3/FfgBZAG6AD8JUueUcssDWP6zRE18LzB021nHPf+h57Fxjkux0PvOBbaicLOA7AOfetiLwoIvWB84GPnXOZvp6y+0WkCfCJc26V7/wsEUkXkerOuZQwfS+MMWWMBV3GmLLkEIBzLltEMlxgHbNs9O+ZAMvy6LHK7SCQ6LstQH7rod2GrtWWhI4MpAU99i46ZDgMzQ/DOfdfEZmD9sZ9KSLXOudm+M5PyPV8Y0wFY8OLxpjyZCVwlIicCCAi8SLSPo/zfgWOBXDO7QH2+hZch5y5VzWBrc65bOAytOfM7y3gVt81lvlerxWw1jk3GpgMdPIdrwvsdM5llPxLNMaUVRZ0GWPKDedcOjAU+JeILAYWoflWuX0B9Am6fxXwom948GDQ8ZeAK0TkJ3RocX/Qa21Hg7c3g86/GFgqIouAtsA7vuP90ZwvY0wFJoHeeWOMqThEZCJwtz/vqhjPr4LmknVxzu0t5NxPgJHOuZXFeS1jTPlgPV3GmIrqXjShvshE5FRgBfB8CAFXJWCSBVzGGOvpMsYYY4yJAOvpMsYYY4yJAAu6jDHGGGMiwIIuY4wxxpgIsKDLGGOMMSYCLOgyxhhjjIkAC7qMMcYYYyLg/wHll3unNoMyAwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABP0ElEQVR4nO3dd3yUVfb48c9JI/QYitKLAlITOggIgiA2XBUVdXXVZRXRtfu1d7HrD1GUVUHUZVdFBdFFRUBBRUF6U6SI0qQKJJCQdn9/nBlmElImyZSU8369ntfzzDPPzNxkkszJveeeK845jDHGGGNMaEVFugHGGGOMMZWBBV3GGGOMMWFgQZcxxhhjTBhY0GWMMcYYEwYWdBljjDHGhIEFXcYYY4wxYRAT6QYEom7duq558+aRboYxxhhjTJGWLFmyxzlXL+/5chF0NW/enMWLF0e6GcYYY4wxRRKR3/I7b8OLxhhjjDFhYEGXMcYYY0wYWNBljDHGGBMGIQu6RGSSiOwSkdUF3C8iMk5ENojIShHpEqq2GGOMMcZEWih7uiYDQwu5/0yglWe7Fng1hG0xxhhjjImokAVdzrn5wL5CLjkPeNupH4AEEWkQqvYYY4wxxkRSJEtGNAK2+N3e6jm3IzLNMcYYYyqpnBzIzgbnjt0AqlXzXXvwoF6f33VVq0L16nqcng5//qnH+V3bsCFER+vxrl1w6JDvPv9ra9SABp4+maws2Lgx9zVezkGTJlCzpu85d+7MfU2zZlC7dum/XyUUyaBL8jnn8jkXckeOQJUqkXhlY4wxQeOcfijHxIB4PmIOHIC0ND2flaWBhXdfvbp+CIN+ECxZ4rvPf8vJgR49oH59vXblSli92nefd5+To0HHFVf42vTqq5Ca6rvffxswAPr31+vWroW33vIFM/7XOQdPPOELJsaN0zb4X+vdd+kCt92m1+3dC6NG+YKTvIHSAw9A9+567X//C+++m//3NTFR2+Y1erR+X/Nz2WVw6aV6vGIFPP54we/X22/Dccf5vk8F1ePs0UPbCrB/P9xxR8HP+eCDvq/pyy+P/Zruugv69i348SEWyaBrK9DE73ZjYHskGnLbbfp71q4dtG+v+wYNfL+zxhhjipCVpYHLkSPaMxEXp+d37oRt2yAzU+/LyNAtM1ODo7PP9j3Hm2/qh3lmZu4tKwsGDYLBg/W6Zcs08PDe593n5Oj9/h/mY8cG9mGemgpPPlnw13f88b6ga9WqwgMU/6BrwQINFPLTqpXvOCVFA6+CZGb6jvfv1+9rfg4dyn07Pb3g5/QXHe0LVv030EDSX61aus97nUjuHrEqVfT7lt9zikCUX4bT8ceDd+WZvNc18Ms8io2F1q199+Xd16jhu7Z+fejQIfc13rZHSCSDrhnAjSLyLtATOOCcC/vQYnq69kCmp8P27TB7tp5PSIBOnaBfP+jaVd9nY4wp93JytOfn8GHdN2yoH7YAy5drgJSerltamm/frBlcfLFet38/3HmnL8g6ckR7e7zuvx969tTjuXPhP//Jvy0JCbmDrnnztHcmP94PT9DX2rMn/+tiYnK35bjj9MM3NtYXWHj3Tfz+74+Ph1NO0UDAe01UlO6jo6Ge34ouHTvqh7j/NVFRuuUNUEaN0oAp73VRUdCoke+6du006IuO9gUk/pt/sHDjjRq4eu/zBilRUbk/rBIT4f33cwc4/tf79yyMGKFbIF55JbDrkpPhjTcCu3bUqMCuq10bnn8+sGsHD/YF6mWEOBeaET0R+S8wAKgL7AQeAmIBnHMTRESAl9EZjoeBq51z+f470q1bNxfKZYCysuDXX/WfjLVrYc2a3D2n1atDnz7aE9yhg/WAGWPKgB07NLcmNVV7N1JTfcft22svDugftZde0iDr8OFjez4mTvT14DzxBHz/ff6vl5TkGypKTfUNIXlFRWnPRlwc3HST7/W//hrmzNHzebfq1XU4yuvrrzVAiYvT4MG7xcRoG73tPHJEv3bvfd7NG7AYE2EissQ51+2Y86EKuoIp1EFXXs5pr9fChfqP16ZNvvvq1oWLLoIhQ3z/HBpjTIl482y8ycRbtujQ1cGDvi0lRbesLB1S87r2Wg288nPeeTBypB6vWQN33537/qpVdatWTXNgvMM3n3+u/4HGx+v98fG+rW5dX2+Tc/ra8fEaaFWpYgGPMX4s6CqFLVv0H7B583zD6McfD5dfrjmQ/sPSxhhDZqZvmCc7Gz75BPbt02E5/+3AAe0VGjRIr/30U/jXvwp+3o8/9v3BefJJ2L1bc1iqV9e997hNGx0CA18ORbVqulWtasGRMSFmQVcQOKc97++8A1u36rkmTTRnslcv+ztmTKWyaROsW6e5RXv3+vZ798IJJ/h6pZyDCy/MnQjt7x//gGHD9Pinn3Qorlat3FvNmro/4QT7Q2NMOVBQ0GUDZMUgonmWvXrBV19pbuiWLZoG0aeP/sPqP3HDGFMOHT4Mf/yh265dvlo/u3bpVPm2bfW6b76BDz7I/zlSU33HIhp0xcVpUndCQu7NP0+hbVvf8xtjKhwLukogKkpHA049Fb74Qmcnf/edpkLcc49v1qsxpoxKTdXEzW3bNOjp10/P79+fe7p/Xtu3+4Kidu10ZlS9eprvlJgIdero5j9tHTQXwRhT6VnQVQqxsXDOOdC5Mzz1FGzeDLffrv8Me1M0jDFlwKJFOjNmyxYNtA4e9N3XooUv6KpdW4fyEhJ0KO+EE3yz5o4/PvcU/+7dfUUYjTEmABZ0BUGjRvDcc1pQd84crcW3di1cd52vPqAxJoT279f/en77zbdde60mlIPmXs2a5bu+ShWtT9WoUe6uaRGYMsXypowxIWFBV5BUqQK33KLlcSZM0L/ve/dqjUArLWFMCKSlwdNPa0K7d303f7/+6gu6evbUfKomTaBxYx0KLCiwsoDLGBMiFg4E2eDBcOKJurLEkiU6genWW+3vuDHF5pwmsG/YAOvX6+acb6mW+HjtwUpN1TIIzZvr1qyZbi1a+J6rdWvf0iHGGBMhFnSFQMuW8PDDcO+9Osuxdm245hoLvIwJyPLlWq/q55+PXVQ3OlqXP4mL01+o++7TJHbv+m7GGFOGWdAVIq1aadD16KMwfbrm5V54YaRbZUwZ4l3gd/VqXWKmWzff+YUL9bhWLe2hOukk3Z94Yu5ESf/1+IwxpoyzoCuEOnfWocXnnoPJkzXwslmNptJKTdUlblau1O333333HTrkC7o6dYLbboOTT7ZioMaYCsWCrhA79VQdIXntNc3vql3b99liTIWWmamzSLxB06OPasV1r7g47b3q0AG6dPGdr10bTjstvG01xpgwsKArDM49V2e0v/++lpN45RUdNTGmwvnjD51BsmSJ9mY995yvJEPXrpqTlZSkvVmtWvnWJzTGmErAgq4w+etf9Z/8Vavg9de1iKox5Z5zmvC+cKFu3kVJvX75xRd0XXKJbsYYU0lZ0BUmIvDPf8KNN8LXX+uwoxWzNuVSTo6uhQWQnQ2PPKI5WQDVq2syY5cuutWpE7l2GmNMGWNBVxg1aKA9XpMm6RDj+PG2QLYpJzIyYNky+PZbHTZ87TWtCBwTA0OGaCDWs6euS2jVgI0xJl/21zHMzjtPP7d++QXefBNuuCHSLTKmANnZWjPr66916DAtzXff6tWaowVahM4YY0yRLOgKs6gouOkmXTLo8891mLFjx0i3ypg8UlJ05fb9+33nWraEvn11a9AgYk0zxpjyyoKuCGjWDC6+GP7zH3jpJd2qVIl0q0ylduAALF3qK9VQs6bmY1WvDgMGQP/+FmgZY0wpWdAVIRddBN99B7/9psHX1VdHukWm0nFO87RmzdLhw6wsrfjetKne/+ijGnxZcVJjjAkKC7oiJCZGhxlvvx0++QT+8hc47rhIt8pUCgcPaqD12Wewa5eeE9HptDk5vuusmJwxxgSVBV0R1Lo19O4N338P06ZZPrIJg8xMGDVKc7ZAF4oeMkTXp7LyDsYYE1IWdEXYxRdr0PXZZzrkWLNmpFtkKpScHFi0SNeeionRCvB9+8KePXD22VpLy4YPjTEmLCzoirCTTtKZ90uWwIwZcPnlkW6RqRAyMmD2bJg+HXbs0HHsAQP0vuuvt0DLGGMiwIKuMuCSSzTo8uZ2Va8e6RaZcislBf73P/j0U52RCHDCCbnXOLSAyxhjIsKCrjKgbVut1bVqlX5eXnxxpFtkyqUZM+Df//YVMW3VCi64QBMHo6Mj2zZjjDEWdJUVF1+sQdfHH8OwYRAfH+kWmXInJkYDruRk/YHq0MF6tYwxpgyxoKuMSEqCNm1g3Tr44gtdLsiYAh0+DB99pFV1L7pIzw0erHW22rSJbNuMMcbkKyrSDTBKRHO7QD9LMzIi2x5TRmVm6jDiP/4B770HU6f6hhNjYy3gMsaYMsx6usqQbt2gRQv49VeYMwfOPDPSLTJlhnMwbx68846voGm7dnDVVVC1akSbZowxJjAWdJUhIpqK8/TT8OGHMHSopeQYtIL8gw/Cxo16u0kTDba6d7cfEGOMKUdCOrwoIkNFZJ2IbBCRu/O5v7aIfCIiK0RkjYhU+hUITzkF6teHnTs1sd4YatbU3qw6deDmm+Hll6FHDwu4jDGmnAlZ0CUi0cB44EygHXCpiLTLc9kNwFrnXBIwAHheROJC1abyICoKBg7U49mzI9sWEyEZGZqrtW2b3hbR4qYTJsDpp+sPiTHGmHInlH+9ewAbnHObnHMZwLtA3jl5DqgpIgLUAPYBWSFsU7ngDbq++04nqZlKZOVKuPFGePtteOMN3/m6da2OiDHGlHOhDLoaAVv8bm/1nPP3MtAW2A6sAm52zuWEsE3lQoMGWmIpI0MDL1MJpKTA2LFw3326bE+TJlY3xBhjKphQBl35JZy4PLfPAJYDDYFk4GURqRXCNpUbp5+u+zlzItsOE2LOwddfw6hR+mbHxsIVV8C4cVrk1BhjTIURyqBrK9DE73ZjtEfL39XAR05tAH4FTg5hm8qNPn10NGnNGu34MBXU7t3w4os6Q7FTJ3jpJZ3CGmMTi40xpqIJZdD1I9BKRFp4kuNHADPyXPM7MAhARI4H2gCbQtimciM+XgMvsN6uCsf5dfjWrw9XXqmzEh9/HBrlHYE3xhhTUYQs6HLOZQE3Al8APwHvO+fWiMgoERnluewx4BQRWQXMAe5yzu0JVZvKm0GDdD9nTu7PaVOOHTgATz4J337rO3f++TqebCUgjDGmQgvpGIZzbiYwM8+5CX7H24EhoWxDedahAxx/vNbsWrlS12c05djChTp8eOAAbNoEvXtDdHSkW2WMMSZMrOBPGSbi6+2yml3lWEYGvPqqDh8eOAAdO8ITT1jAZYwxlYwFXWWct2bXggVw6FBk22JKYOtWLWw6c6Ymx48cCWPGaC6XMcaYSqXIoEtE+ojIlyLyi4hsEpFfRcSS3cPk+OO1Y8RqdpVDzsFTT8HmzVp87bnntPaW5W4ZY0ylFEhP10TgBaAv0B3o5tmbMPHW7LIhxnJGBP75T+2ufPFFOPHESLfIGGNMBAUSdB1wzn3mnNvlnNvr3ULeMnPUKadoCYmffoJduyLdGlOonTvhk098t9u0gVtv1QWrjTHGVGqBBF1ficizItJbRLp4t5C3zBwVHw/duunxwoWRbYspxPLlGmC99hp8/32kW2OMMaaMCaRkRE/PvpvfOQcMDH5zTEF69tTSTj/8AOeeG+nWmFycg+nT4c039bhbN60ub4wxxvgpMuhyzp0WjoaYwnXrphUGVq/WtZFr1ox0iwwAR47oOonz5+vtiy+Gyy+HKJsYbIwxJrdAZi/WFpEXRGSxZ3teRGqHo3HGp0YNncWYkwOLF0e6NQaA/fvh3ns14IqPh3vu0cWqLeAyxhiTj0A+HSYBKcDFnu0g8GYoG2Xy19Mz0PvDD5Fth/Fz4IDW3Hr+eZ3xYIwxxhQgkJyuE51zF/rdfkREloeoPaYQvXrBv/4FS5dq3a64uEi3qJJLSIBHHoHq1fXYGGOMKUQgPV1pItLXe0NE+gBpoWuSKUjdunDSSZCeDitWRLo1ldTcufDWW77bjRpZwGWMMSYggfR0XQ+85cnjEmAfcFUoG2UK1rMnbNigFQm6W4na8HEOpk6Fd97R2z16QNu2kW2TMcaYciWQ2YvLgSQRqeW5fTDUjTIF69ULpkyBRYs0qd5ytsPAOZg0SctCiMC111rAZYwxptgKDLpE5K/OuX+LyG15zgPgnHshxG0z+WjWTNdj3LkT1q2zz/6Qy8mBl1+GL7/UBatvvx369i36ccYYY0wehfWTVPfsa+az1Qhxu0wBRLS3C6zoechlZsLTT2vAFRcH999vAZcxxpgSK7Cnyzn3L8/hbOfcd/73eZLpTYT06gUff6ylI66+WgMxEwJpafDbbzo78cEHoV27SLfIGGNMORZIIv1LQN61FvM7Z8KkbVutSL9jB2zZAk2bRrpFFVStWvDYY7oEQMuWkW6NMcaYcq6wnK7ewClAvTx5XbWA6FA3zBQsOlonz82Zo71dFnQFUXo6zJsHQ4ZoF2K9eroZY4wxpVRYTlccmrsVQ+58roPA8NA3zRSmd2/dW3X6IEpP12KnL78MH34Y6dYYY4ypYArL6ZoHzBORyc6538LYJhOA5GTN7V6/HvbuhTp1It2ici49HR59VFcUT0y0JX2MMcYEXSBVng6LyLMiMlNE5nq3kLfMFKpKFUhK0uOlSyPblnLvyBHN3Vq1SgOuJ56Ahg0j3SpjjDEVTCBB1xTgZ6AF8AiwGfgxhG0yAerimcpgQVcpZGbC44/DypW+gKtRo0i3yhhjTAUUSNBVxzk3Ech0zs1zzl0D9Apxu0wAvEHX8uVaw9OUwJtv6jcwIQHGjLGAyxhjTMgEEnRlevY7RORsEekMNA5hm0yAGjTQ6vSpqZrbZUpg+HCtv/Xoo9DYfqyNMcaETiBB1+Oexa5vB+4A3gBuDWmrTEBEfL1dy5ZFti3lVmIiPPUUtGgR6ZYYY4yp4IoMupxznzrnDjjnVjvnTnPOdXXOzQhH40zRLK+rBKZNg7ff1oWswUr6G2OMCYvCiqO+BLiC7nfO3RSSFpli6dRJi6WuWweHDumKNaYQc+bApEl63LMntGkT2fYYY4ypNApbBmhx2FphSqxaNTj5ZFizBlassPJShVq2DMaN0+Nrr7WAyxhjTFgVVhz1rXA2xJRcly4adC1bZkFXgX77DZ58Uqd5Dh8O554b6RYZY4ypZIpc8FpEviKfYUbn3MCQtMgUW+fO8M47mtflnKUoHePPP3V5n7Q06NsXrrwy0i0yxhhTCRUZdKEzFr3igQuBrECeXESGAi+iC2S/4Zx7Kp9rBgBjgVhgj3OufyDPbXxOPBFq1oRdu2D7dis1dYzXXoPdu3Uc9tZbLSo1xlRI2dnZ7Nu3j8zMzKIvNkERGxtLYmIi0dHRAV1fZNDlnFuS59R3IjKvqMeJSDQwHhgMbAV+FJEZzrm1ftckAK8AQ51zv4tI/YBabXKJitLervnztbfLgq48Ro3Sb9K11+qClcYYUwHt27eP+Ph46tati9g/lyHnnCM1NZV9+/ZRr169gB5TZMkIEUn02+qKyBnACQE8dw9gg3Nuk3MuA3gXOC/PNZcBHznnfvd8AbsCarU5hpWOKETt2nDnnbo3xpgKKjMzkxo1aljAFSYiQo0aNYrVsxjI8OISNKdL0GHFX4G/B/C4RsAWv9tbgZ55rmkNxIrI10BN4EXn3NsBPLfJo3Nn3a9apcsJxsZGtj0RN2cO/P47/O1v2stljDGVgAVc4VXc73cgxVFbOOdaevatnHNDnHPfBtKW/J4uz+0YoCtwNnAG8ICItA7guU0eiYnQvDkcOQJr1xZ5ecW2fj2MHw8ffQSLrfKJMcaE05gxY2jfvj2dOnUiOTmZhQsXRqQdy5cvZ+bMmUdvz5gxg6ee0tTyq666ig8++OCYx3z99decc845IWtTILMX44HRQF80aPoWeNU5l17EQ7cCTfxuNwa253PNHufcIeCQiMwHkoBfAmu+8de5M2zerKUjkpIi3ZoI2b8fnnhCu/uGDoUePSLdImOMqTS+//57Pv30U5YuXUqVKlXYs2cPGRkZEWnL8uXLWbx4MWeddRYAw4YNY9iwYRFpi1cg4y5vA+2Bl4CXgbbAOwE87keglYi0EJE4YASQd/mgj4F+IhIjItXQ4cefAm28ya3S53VlZcHTT8OePdC2LVx3XaRbZIwxlcqOHTuoW7cuVapUAaBu3bo0bNiQ5s2bs2fPHgAWL17MgAEDAJg3bx7JyckkJyfTuXNnUlJSAHjmmWfo2LEjSUlJ3H333QBs3LiRoUOH0rVrV/r168fPP/8MaK/VqFGj6NevH61bt+bTTz8lIyODBx98kPfee4/k5GTee+89Jk+ezI033ni0rbNnz871mLwOHTrENddcQ/fu3encuTMff/xxqb8/geR0tXHO+febfCUiK4p6kHMuS0RuBL5AS0ZMcs6tEZFRnvsnOOd+EpHPgZVADlpWYnXxvwwD0K6dTs779VctTXXccZFuUZhNnAirV+tY6913Q0wgP97GGFPxhKr+8yefFH7/kCFDePTRR2ndujWnn346l1xyCf37F1wJ6rnnnmP8+PH06dOH1NRU4uPj+eyzz5g+fToLFy6kWrVq7Nu3D4Brr72WCRMm0KpVKxYuXMjo0aOZO3cuAJs3b2bevHls3LiR0047jQ0bNvDoo4+yePFiXn75ZQAmT56c67Xze4y/MWPGMHDgQCZNmsT+/fvp0aMHp59+OtVLsd5eIJ9Ky0Skl3PuBwAR6Ql8F8iTO+dmAjPznJuQ5/azwLOBNdcUJi4OOnaEJUt0iHFgZSpfO38+fPqpBlr33quBlzHGmLCqUaMGS5Ys4ZtvvuGrr77ikksuOZpHlZ8+ffpw2223cfnll3PBBRfQuHFjZs+ezdVXX021atUASExMJDU1lQULFnDRRRcdfeyRI0eOHl988cVERUXRqlUrWrZsebQXrDBFPWbWrFnMmDGD5557DoD09HR+//132rZtW6zvib9Agq6ewJUi8rvndlPgJxFZBTjnXKcSv7oJus6dNehasaKSBV2dO2si26mn2pqKxphKr6geqVCKjo5mwIABDBgwgI4dO/LWW28RExNDTk4OoMGL1913383ZZ5/NzJkz6dWrF7Nnz8Y5d8yswJycHBISEli+fHm+r5n3+kBmFRb1GOccH374IW2C+JkSSE7XUKAF0N+ztQDOAs4BbAG7MiY5WffLl+uSQJVGzZrw2GMwZEikW2KMMZXWunXrWL9+/dHby5cvp1mzZjRv3pwlS7TW+ocffnj0/o0bN9KxY0fuuusuunXrxs8//8yQIUOYNGkShw8fBrToa61atWjRogVTp04FNCBascKX6TR16lRycnLYuHEjmzZtok2bNtSsWfNojlh+8nuMvzPOOIOXXnoJ5/kwXbZsWSm/O4GVjPgNSEADrHOBBOfcb96t1C0wQdW0KSQkwL59sHVrpFsTYs7BvHmQna23rT6NMcZEVGpqKn/7299o164dnTp1Yu3atTz88MM89NBD3HzzzfTr1y/Xkjljx46lQ4cOJCUlUbVqVc4880yGDh3KsGHD6NatG8nJyUeH96ZMmcLEiRNJSkqiffv2uRLb27RpQ//+/TnzzDOZMGEC8fHxnHbaaaxdu/ZoIn1e+T3G3wMPPEBmZiadOnWiQ4cOPPDAA6X+/ogrojtERG4G/gF85Dl1PvCac+6lUr96gLp16+YWW72lgD3/PHz9ta56E6pkyjJh5kx49VXo2hUeesiCLmNMpbZ9+3YaNmwY6WaE3VVXXcU555zD8OHDI/L6+X3fRWSJc65b3msDGV78O9DTOfegc+5BoBcahJkyyjvEGISe0LJr0yZ4/XU9HjjQAi5jjDFlXiCJ9AJk+93OJv9q86aM8BZGXbVKS1dVuMoJhw/DU0/pFzd0qCbPG2OMqZTyloIoywL5OH4TWCgi09Bg6zxgYkhbZUqlbl1o3Fhzutav1zqhQZOZCd9/D7NnQ2qqFgPz3048EVq3Dl3Pk3Pw8suwYwe0aAH/sE5XY4wx5UORQZdz7gXPgtR9Paeuds5V5IGrCiE5WYOuZcuCFHRt3w6ff64LSR88WPi1bdvC8OHQvXvwg6/Zs+GbbyA+Hu66S4uTGWOMMeVAcQaeBK0ab0OL5UBystYKXb4cLrusFE908CC88IIW//Jq0UKH9Vq21NL33m3vXvjhB/jpJy3f0KwZXHihDv/5zVYpMefAu3Dq6NHQqFHpn9MYY4wJk0AWvH4QuAj4EA243hSRqc65x0PdOFNyHTpAVBSsW6cpUJ7CvsVz8CDcd5+uoh0Xp8HT0KGFDx9eey188QVMmwa//aYB23//C7fdBiefXJovSV/zvvtg8WLtRTPGGGPKkUBmL14KdHfOPeycewidvXh5aJtlSqt6dY2NcnJ0OcJi8w+4GjXSmYI336zV3gsbMoyPh/PO0+tvugkaNtT8q7vugqlTS1+xVcQCLmOMKaNq1KhR5DXffPMN7du3Jzk5mbS0tGI9//Tp01m7dm1I2hUOgQRdmwH/imFVgI0haY0JKv/q9MWSN+B64onir2UYGwuDB8P48XD++Rr9vf02PPCAVm4tjnXr4P77Yffu4j3OGGNMmTNlyhTuuOMOli9fTtWqVYv12JIGXWVFIEHXEWCNiEwWkTeB1UCqiIwTkXGhbZ4pjRIFXQcPaoBTmoDLX0wMXHMNPPww1K6ti0LedFPuHLHCpKVptdcVKzSR3xhjTJn39ddfM2DAAIYPH87JJ5/M5ZdfjnOON954g/fff59HH32Uyy/XQbNnn32W7t2706lTJx566KGjz/H222/TqVMnkpKSuOKKK1iwYAEzZszgzjvvJDk5mY0bN7Jx40aGDh1K165d6dev39FFq3/99Vd69+5N9+7dg1JJPlgCSaSf5tm8vg5NU0ywtWmjo31btmiOe506RTzg0CENuH79NTgBl7+uXWHcOM3xWrFCg7BrrtFesMK8/rqvPMSIEcFpizHGVHShWo6kGCtpL1u2jDVr1tCwYUP69OnDd999x8iRI/n222+PVpCfNWsW69evZ9GiRTjnGDZsGPPnz6dOnTqMGTOG7777jrp167Jv3z4SExMZNmxYrurzgwYNYsKECbRq1YqFCxcyevRo5s6dy80338z111/PlVdeyfjx40PzvSiBQEpGvBWOhpjgi4mBjh3hxx81zhk4sIgHvPVWaAIur8REndU4dSq88w5MmqRDjddck3+e2MKF8OWXOlR5xx26N8YYUy706NGDxo0bA5CcnMzmzZvp27dvrmtmzZrFrFmz6Ny5M6BrN65fv54VK1YwfPhw6tatC0BiPp9HqampLFiwgIsuuujouSNHjgDw3XffHV1Y+4orruCuu+4K/hdYAhWtVrnJIylJg67ly4sIun75RYfvoqPh3nuDH3B5icDFF8Pxx8PYsTB9ugZet9ySO6hKSdEiqABXXaUreRtjjAlMMXqkQqVKlSpHj6Ojo8nKyjrmGucc99xzD9ddd12u8+PGjUOKqPOYk5NDQkICywvIoSnq8ZEQSE6XKce8eV0rVhQycTAnB155RS/4y1/CE+D076+LVMfHw/z58MgjWtvC6/XXYf9+aN++gq/abYwxldcZZ5zBpEmTSE1NBWDbtm3s2rWLQYMG8f7777N3714A9nkmYNWsWZOUlBQAatWqRYsWLZg6dSqgAdyKFSsA6NOnD++++y6giftlRYFBl4i849nfHL7mmGBr2lRX59m3T3O78jVzJmzcqOsHhTNvKjlZ11BMSNCo8J57NNByToc4q1fXMhVl8L8VY4wxpTdkyBAuu+wyevfuTceOHRk+fDgpKSm0b9+e++67j/79+5OUlMRtt90GwIgRI3j22Wfp3LkzGzduZMqUKUycOJGkpCTat2/Pxx9/DMCLL77I+PHj6d69OwcOHIjkl5iLuAK6P0RkLXAmMAMYQJ5K9M65Ys77L7lu3bq5xYsXh+vlKpwXXoCvvoKRI7WEVi5//gmjRmkv0333Qa9e4W/gH3/Agw9qwnyTJjBmjEaKhw5p4GWMMaZI27dvp2HDhpFuRqWT3/ddRJY457rlvbaw4cUJwOfAycCSPJtFQOWIJz+RZfmtmDlxogZc3btDz55hbddRJ5wAzzyj3XKbN2tO2b59FnAZY4ypUAoMupxz45xzbYFJzrmWzrkWflvLMLbRlJI36Fq1CjIy/O5YuRLmzdMlfq67LrLDeAkJukj2xo3aLm/gZYwxxlQQRSbSO+euF5EkEbnRs3UKR8NM8CQk6NrUGRmwZo3nZFaWJs8DXHKJziaMpEOHYPJkrceVkADbtlngZYwxpkIpMugSkZuAKUB9zzZFRP4Z6oaZ4OraVfdHC8HPnKmBTaNGRRcoDYeJEzXA6tgRpkzR4GvbNk2u98xeMcYYY8qzQEpGjAR6OucedM49iC54/Y/QNssEW5cuul+6FO3lmuZZZODqqyNfdHT1ai2CGhOjsxUTEjSZvmVL2L5dE/z3749sG40xxphSCiToEiDb73Y2eWYymrLv5JOhalUtG7H/f9/Bnj3QuDH06BHZhmVm+oqgXnyxtgmgZk14/HFo3lx7vB54QAumGmOMMeVUIEHXm8BCEXlYRB4GfgAmhrRVJuhiYqBTJ8A5Dkz+SE+ef37ka2BNnapBVePGmkjvzxt4NWmisxofeEBzv4wxxpRJ0dHRJCcn06FDB84991z2l8NRiocffpjnnnsuJM8dSCL9C8DVwD7gT+Bq59zYkLTGhFTXrtDi4Aoyft6kQ3gDBkS6SRoJNm4MN9yQ/zBn7doaeDVooDMbH3oI0tLC305jjDFFqlq1KsuXL2f16tUkJiaWmcWmnXPk5OREuhmBLQPknFvqKSHxonMuv2pPphzo0gV6/zGNgwch5+xztVREpHXoAOPH674giYma41W/PqxbB48+Cp5FTY0xxpRNvXv3Ztu2bQBs3LiRoUOH0rVrV/r168fPP/8MwM6dOzn//PNJSkoiKSmJBQsWAPDCCy/QoUMHOnTowNixYwG46667eMU76x7tkXr++ecBePbZZ+nevTudOnXioYceAmDz5s20bduW0aNH06VLF7Zs2ZLvdQBjxoyhTZs2nH766axbty5k3xNb8LoSOT5tM+2PLCUlpwrrTzqTNpFszMGDUKuWHkcFEPvXq6eB1913a+L944/rcGNZCByNMaYsKmzd2htugKFD9fjzz/Wf34KUYPHs7Oxs5syZw9///ncArr32WiZMmECrVq1YuHAho0ePZu7cudx0003079+fadOmkZ2dTWpqKkuWLOHNN99k4cKFOOfo2bMn/fv3Z8SIEdxyyy2MHj0agPfff5/PP/+cWbNmsX79ehYtWoRzjmHDhjF//nyaNm3KunXrePPNN3nllVcKvK569eq8++67LFu2jKysLLp06UJX75T/ILOgqzKZNo3atWE+QzhuXU3aHLNAQZj8+SeMHg29e8P11wc+e/KEE3yB1/Llum7jvfdqwpoxxpiIS0tLIzk5mc2bN9O1a1cGDx5MamoqCxYs4KKLLjp63RHPaMXcuXN5++23Ac0Hq127Nt9++y3nn38+1T2rklxwwQV888033HTTTezatYvt27eze/dujjvuOJo2bcq4ceOYNWsWnT2VwFNTU1m/fj1NmzalWbNm9PIsbzdr1qx8r0tJSeH888+nWrVqAAwbNixk35+QflqJyFDgRSAaeMM591QB13VHE/Qvcc59EMo2VVp79sC8edRKEBbGn0f9pXD55RFqy8SJkJqqdbmKGzA1agSPPabB1o8/wvPPwx13QHR0aNpqjDHlVaA9VEOH+nq9Ssmb03XgwAHOOeccxo8fz1VXXUVCQgLLly8P6DkKWhMaYPjw4XzwwQf88ccfjBgx4uj199xzD9ddd12uazdv3nw0cCvsurFjxyJhmlQWSHHUC0RkvYgcEJGDIpIiIgcDeFw0MB5dNLsdcKmItCvguqeBL4rffBOwGTMgO5saZ/QltfrxrF+vI3xh57/00PXXl2z2ZPPmmtdVrRp8+y2MGweF/JIaY4wJr9q1azNu3Diee+45qlatSosWLZg6dSqgwc+KFSsAGDRoEK+++iqgQ5IHDx7k1FNPZfr06Rw+fJhDhw4xbdo0+vXrB8CIESN49913+eCDDxjumfF+xhlnMGnSJFJTUwHYtm0bu3btOqZNBV136qmnMm3aNNLS0khJSeGTEgynBiqQRPpngGHOudrOuVrOuZrOuVoBPK4HsME5t8k5lwG8C5yXz3X/BD4Ejv0OmeA4dEjH7IHYi8+nfXuNUQL8pyN4srJgwgQ9Lu3SQyedBA8/DPHxMHcuvPqqBV7GGFOGdO7cmaSkJN59912mTJnCxIkTSUpKon379nz88ccAvPjii3z11Vd07NiRrl27smbNGrp06cJVV11Fjx496NmzJyNHjjw6JNi+fXtSUlJo1KgRDRo0AGDIkCFcdtll9O7dm44dOzJ8+HBS8qnrWNB1Xbp04ZJLLiE5OZkLL7zwaIAXClJYNx6AiHznnOtT7CcWGQ4Mdc6N9Ny+Aq1sf6PfNY2A/wAD0dpfn+Y3vNitWze3ePHi4jbBeE2frkN6HTvCE08wbRpMmgSDBsEtt4SxHR9+qOsrNmyoBVGDUQl/5Up45BFdWPK88+Dvf4987TFjjImA7du307Bhw0g3o9LJ7/suIkucc8dkTgfS07VYRN4TkUs9Q40XiMgFATwuv0++vBHeWOAu51x2PteaYHDuaC8X52lHo+cfBpYuDWPn0J498N//6vGoUcFbeqhTJ18y/ccfw9tvW4+XMcaYMimQLOZawGFgiN85B3xUxOO2Ak38bjcGtue5phvwrieBrS5wlohkOeemB9AuE4g1a7Tie2IidNOgu1kzvblvnxZ6b9EiDO2Ii4N+/SA93Rf1BUvXrjqj8ckn4YMPNACL2CwBY4wxJn9FBl3OuatL+Nw/Aq1EpAWwDRgBXJbnuY9+3IvIZHR4cXoJX8/kZ9Ys3Z9++tEZfiJaKHX2bFiyJExBV61auph1dog6NXv2hDvvhGeegXff1cDrkktC81rGGGNMCQQye7GxiEwTkV0islNEPhSRxkU9zjmXBdyIzkr8CXjfObdGREaJyKjSN90U6dAh+O47PR48ONddnk4vFi0KcRuysnTzCmVphz594LbbNKr897+118sYYyqRovK0TXAV9/sd6ILXM4CGQCPgE8+5QBoz0znX2jl3onNujOfcBOfchHyuvcpqdAXZvHmaYJ6UpIVF/XTtqmlVP/+stUpD5qOP4Kab4KefQvgifvr31x41EXjrLc3zMsaYSiA2NpbU1FQLvMLEOUdqaiqxxchRDiSnq55zzj/ImiwitxS3cSYCvvCUPjvjjGPuio+H5GStL7poUb6XlN7u3fDeexr4ZWaG4AUKMGiQDmO+9BK88YYm1v/lL+F7fWOMiYDExET27duXb7kEExqxsbEkJiYGfH0gQdceEfkr4Jl6xqXA3hK0zYTThg2waRPUrAmeJRDy6t1bg67vvw9R0DVpkgZcffvqLMNwGjIEcnJ0PbGJEzXwOv/88LbBGGPCKDo6mnr16kW6GaYQgQwvXgNcDPwB7ACGe86ZssybQD9wYIHlGXr00FG4FSvg8OEgv/6qVVotPi4OronQj8vQofDPf+rxpElaJ8wYY4yJkCKDLufc7865Yc65es65+s65vzjnfgtH40wJpadrPhcck0Dvr3ZtaNdO89yXLg3i62dnw2uv6fFFF0Ek//MaMkRzykS0MKtnGQpjjDEm3AocXhSR/3POPSMiL3FsUVOcczeFtGWm5L77Truu2rTRolyF6NVLS3l9/72OAgbF559rAbD69eGCQOrohtjgwRAVBS++qMVTc3KsnIQxxpiwKyynyzvdzNbfKW+8Q4sBJGr16qUpTz/+qLnuQSkUX6OGdqONHKnDi2XBoEHa2zV2rJaTOHIErrjClgwyxhgTNgUGXc457zLbh51zucZkROSikLbKlNzWrbB2rU5PDGDRzhNOgObNtWNq1Sotmlpq/ftrwlh8fBCeLIgGDtQ6YS+8oMOM6enwj39Y4GWMMSYsAkmkvyfAc6Ys8PZy9e8fcNDjndz4/felfG3/2jBVq5bNYKZ/f99ajZ98okOOOTmRbpUxxphKoMCgS0TO9ORzNRKRcX7bZCCroMeZCMrKgrlz9biQBPq8evfW/cKFpVgr2jl4+GFdgicjo4RPEiY9e8JDD0GVKjBnDjz7bO6q+cYYY0wIFNbTtR3N50oHlvhtM4BQVHUypbVkCRw4AE2aQOvWAT+sRQvNef/zT/jllxK+9rff6hTITz8NbyHUkkpOhsceg2rVtO1jxmielzHGGBMiBQZdzrkVzrm3gI7Av51zb3lufwzYp1NZ9OWXuj/99GIN7YmUcojxyBGtgwVw5ZVQvXoJniQC2raFJ57QArKLF8P994NVcjbGGBMigeR0zQKq+t2uCswOTXNMiR04oIFDVBScdlqxH+4dYvz++xIMMX70EezZAy1basBXnpx4Ijz9tNYS+/ln+L//g127It0qY4wxFVAgQVe8cy7Ve8NzXC10TTIl8tVXWpS0a1c47rhiP7xtW+3w2b5dJ0AGbPdu+MCzTvm112rQV940aaJ5Xc2b6xd/5506ndMYY4wJokA+IQ+JyNFCAiLSFUgLXZNMsTkHsz2djyXsaYqO1ioPUMwhxsmTfesrtm9fotcuE+rUgaeegg4dYN8+uPtuWL060q0yxhhTgQQSdN0CTBWRb0TkG+A94MaQtsoUz4YN8NtvUKuWL3IqgVNO0f38+QEOMWZmwv79WgD16qtL/LplRvXq8Mgj0KcPHDoEDzzgW07JGGOMKaXCKtID4Jz7UUROBtoAAvzsnCsH09MqEW8v14ABWn+qhLp00bjtt99g40Y46aQiHhAbC48/Dtu26fTHiiAuTvO6Xn9dZ2I+95x+fZdeWjbrjhljjCk3Ak3AaQO0AzoDl4rIlaFrkimWjAxfb0wpk9hjYjRuAy1fFRARaNy4VK9b5kRFaX7atdfq1/ff/2rwVdbrjxljjCnTigy6ROQh4CXPdhrwDDAsxO0ygVq0SIfCWrbUglulNGiQ7ufNK6Tc1qFDmni+ZUupX6/MEoFzz9Uhxvh4HXO9/36dJWqMMcaUQCA9XcOBQcAfzrmrgSSgSkhbZQJXygT6vFq21C0lRRfBztd772kQ8sorQXnNMq17dw0w69aFn36C226zmY3GGGNKJJCgK805lwNkiUgtYBfQMrTNMgHZu1erwPuPCwaBt7drdn7V2LZtgxkztCdo5MigvWaZ1ry5LpLdurXW8LrjDq1ib4wxxhRDIEHXYhFJAF5HlwFaCiwKZaNMgObO1WmGPXtqka0g6d9fS0gsWaLVE3J5/XWtBzZ4sBYWrSyOOw6efFILzx45ogVVJ0/W74UxxhgTgEKDLhER4Enn3H7n3ARgMPA3zzCjiSTnci/7E0S1a+uoWk5OnooJP/6okVi1arrcT2UTFwe33uorAvvhh7rIty0dZIwxJgCFBl3OOQdM97u92Tm3MtSNMgFYsQJ27NBcoy5dir6+mLxx3OzZnppdWVnwxht68tJLNTKrjLwJ9mPG6Pdg+XK45RatsWGMMcYUIpDhxR9EpHvIW2KK57PPdD90aEiW3unaVWOK33/X2qv88osu+dOoEZxzTtBfr9zp0AHGjoVWrXx5Xp9+WoKFK40xxlQWgXxan4YGXhtFZKWIrBIR6+2KpH374IcfNNgaPDgkL+Gfmz97NtCunc5WvP32UhVgrVDq1tWlg846S3sC//UvvX3oUKRbZowxpgwqMOgSkaaewzPR2YoDgXOBczx7EymzZmnCVa9ekJgYspfxDjHOn++pC3rCCdqzY3zi4uD66+GuuzTXbcECuOkmWLcu0i0zxhhTxhTW0zUdwDn3G/CCc+43/y0srTPHys6GL77Q4zPPDOlLNW8OPRPX03LzHBYttGGzQvXtCy++6BtuvOsuTbTPyYl0y4wxxpQRhQVd/gvNWV2usmLJEtizBxo2hKSk0L5WTg6X/Tme8zaNZfMrM0P7WhXBCSdoKYnzztPgePJkuO8+DcKMMcZUeoUFXa6AYxNJ/gn0oV6A+fPPaZq5kdT4unx0YJAVYg9EbKwWjX3oIUhIgNWr4cYbdTFLS7I3xphKrbCgK0lEDopICtDJc3xQRFJE5GC4Gmj87NqlPV2xsb6y8aFy4AC8/TYxMZAy4h9kRsczdWpoX7JC6dYNxo+HU06BtDSd6fjkk7Z2ozHGVGIFBl3OuWjnXC3nXE3nXIzn2Hu7VjgbaTw+/1x7S/r2hVohfgveektn4XXuzCm39yY6Gr75Bv74I7QvW6HUqgV3360FVatWhe+/h9GjdWaC9XoZY0ylE/wCT35EZKiIrBORDSJydz73X+4pQ7FSRBaISIiTlMqxrCydtQghT6Dn55+12n1MDIwaRb36woABGid89FFoX7rCEYGBA+Hll6FTJzh4UBfQfuwxzc0zxhhTaYQs6BKRaGA8WnKiHXCpiLTLc9mvQH/nXCfgMeC1ULWn3PvhBx2aatYMTj45tK/18ce6v+ACTdgHLrxQ44fZs+HPP0P78hVS/frw+OPwz39C9eq6pNLo0TBzpvV6GWNMJRHKnq4ewAbn3CbnXAbwLnCe/wXOuQXOOe9H+A9A4xC2p3yb6Zk9eNZZoU+gv/12XV/w4ouPnmrSRMuCZWbCjBmhffkKSwSGDNEis716aa7Xq69qeQmbpWCMMRVeKIOuRsAWv9tbPecK8nfgsxC2p/xavx5WrYL4eOjfP/SvFxOj6wtWqZLr9PDhuv/f/6zoeqkkJsK992q+V0IC/PQT3HwzvP66fWONMaYCC2XQlV93TL7jKCJyGhp03RXC9pRfH3yg+7PO0qGpUPnf/wqdXde6taYlpaXppaYURKBPH5gwQQNc57QLcdQo+OorG3I0xpgKKJRB11agid/txsD2vBeJSCfgDeA859zeELanfNqyRZeWiY3VopuhsnChBgC33aZJ+wW46CLdz5jhWRrIlE716jqUO3YstG0L+/fDCy9oL9j69ZFunTHGmCAKZdD1I9BKRFqISBwwAsiVDeRZ3/Ej4Arn3C8hbEv55S2ONXhw6NZZPHRI84xAA7tCFrROStKVbg4c0AmOJkhattRq9rfcArVrw9q1GgA/95xVtDfGmAoiZEGXcy4LuBH4AvgJeN85t0ZERonIKM9lDwJ1gFdEZLmILA5Ve8qlnTth3jyIitLpg6EyeTLs2wdt2sA55xR6qYgvt+uDDyA9PXTNqnREtOjtv/6l73dsrL7/o0b56qYZY4wpt0Jap8s5N9M519o5d6Jzbozn3ATn3ATP8Ujn3HHOuWTP1i2U7Sl3PvpIF0weMEBLDoTC6tVadDUmBm66SQO8IvTurR0ze/bAe++FplmVWvXqcNVVOtx76qk6ZfSDD3QYcto0G9c1xphyKqRBlymFfft0/M6/aynYMjLgpZf0+KKLoGnTgB4moiWmRDQG2LKl6MeYEqhfH+68U4cY27XTwqqTJsE//qElRDIzI91CY4wxxWBBV1n18cf6odq7txbJCoVly2D7dg22vBnyAWrTBs44A7KztdSUTbYLoTZt4Kmn4OGH4cQTNSB/9VUddvzyy0InPhhjjCk7xJWDT8tu3bq5xYsrUbpXSgpcc40mTP2//wcnnRS611q7VnOHWrUq9kNTUvRz/+BBzfk+7bQQtM/k5pyu4ThlCvz+u56rV09zwAYPhri4yLbPGGMMIrIkv5Qp6+kqiz79VAOuLl1CG3CBDluVIOACqFlTY0OAiRMhNTWI7TL5E4FTTtFh4Tvu0F7Q3bs1/+vvf4cPP9RCasYYY8ocC7rKmtRU+OQTPS7mkF/A3nkHli8PylMNHAjt22sJiXfeCcpTmkBERenqBOPHwz336LDj/v06E/Xqq3W2oy2obYwxZYoFXWXNv/+t43YdO2o0E2wLFsD778NjjxVafT5QInD99RAdDZ99ZvU8w87b8/X//h888oj+zBw6pLMdR47UJHx7U4wxpkywoKss2bhRZ6VFRcF11wV/Yes9e3yzFa+6SotwBkGzZlpT1Tl4+WWbVBcRIjoc/dRTGmj17atvyLx5mnB3993w7beWdG+MMRFkQVdZ4ZxvGuCwYRrJBFNODjz/vA5fdutWZBHU4rr0Uq1wsGmT1vYsB/MzKq42beCuu3QB7fPPh2rVYM0arXh/9dU6Drx7d6RbaYwxlY4FXWXF7Nmwbp0u9XPppcF//g8+0EKoCQm61EyQe9Hi47UzJS4OvvhChxpNhNWvrzMdJk/WntMmTTTv6/33Nen+scdg0SKt+2GMMSbkCl5kz4RPSop+MIJ+GFarFtzn//lnLTEAOtQUpGHFvFq1ghtv1PWaX3tNy3916BCSlzLFUbWq9myefbaWCJk5U3P7Fi3SLSFB630MHhy6mnDGGGMs6CoT/v1vLXbVsSP06xf85xfR+g6nnQadOwf/+f2cdhr8+qtWqn/qKc3vrlcvpC9pAiWiifbe6aazZ+u2dau+YdOmQevWOiW1b9+QBefGGFNZWXHUSNuwQXufoqJg3LiAl+Iptj17tEcjJvRxdna2Fk9fvlwrGTz9NFSpEvKXNSXhHPzyiwZf8+fD4cN6PioKkpO1LEWvXsHvfTXGmAqsoOKoFnRFUk6Orq33yy+a8OytNBoMzsFPP2nx0whISdFY8o8/dM3mO+4I/mRME2RHjsAPP+iMx6VLfblecXHQtauWpujeXRfkNsYYUyALusqid97RpObERK0oXrVq8J578mStTj5ypNZziIDff4fbb9fi+gMHwj//GZaONhMMKSnw3XcagK1e7TsfEwNJSdCnD/ToYUOQxhiTj4KCLvsIjBRvkVIRuPXW4AZcc+ZowBUdDc2bB+95i6lpU7jvPhgzBubO1WoVd91lywOWCzVrwtChuu3Zo+s9LligpSeWLNFNBE4+WXu/unfXMifWnWmMMQWynq5I8O8CuuYaHVoMltWr4YEHtAjmDTfoh2aErVunxdJTUnQ24/332whVuXXggA5BLlgAK1fmLrZav77WgOvSBTp1Cu4/EsYYU47Y8GJZkZqqyU47dmiS8u23B693YPVqjW7S03VIceTI4DxvEGzZorHg3r3QsqU2MyEh0q0ypZKWprMlFi2CH3/MvaxUdDS0bauzZTt31hkVUVYW0BhTOVjQVRbk5MCjj+rQTMuW8MwzwZvWt3KlRjIZGVq34ZZbytyH3K5dGnht3w4NGsC990Z09NMEk3cW5NKluq1bl3tZgurVtZuzY0ftBWve3IYijTEVlgVdZYE3cb5mTRg7VodjgmXHDi0J362bDiuWsYDL68ABePBBXS4oJgYuvxwuuKDMNteU1KFDsGIFLFumvWF//JH7/po1tSesXTvdTjoJYmMj0lRjjAk2C7oi7ZNPtEy7iC6/kpQU/NfYtw+OO67M9yCkp8Obb2phdNDP3ltv1d4vU0Ht2gWrVmmP7MqVmpzvLzZWC7O2aePb6tSJTFuNMaaULOiKFOfg7bd17UOAUaN0OZZg+PprXUvvL38JzvOF2ZIlWg923z5du/Hvf4czzijzMaMpLec0CFu7Vrc1azTpL6+6dTUQa9VKe8JOPFF7yIwxpoyzoCsSsrLgpZe0XkJUFNx8sxasKq3MTJg0CT79VG8/+6xO3S+HUlK0RNn8+Xq7ZUv46191lNSCr0okJUXXCF23TrdffvFVx/d3/PEagLVsCS1a6Fanjv2wGGPKFAu6wi09XRcfXLJEk+XvuUerepfWzp26rs769ZoUNXIknHVWuf/Q+eYbeOMN7fUCHV366191FLacf2mmJJzTNSF/+UWXylq/Xhf1zMg49tqaNTX4atZMt6ZNdbO6JMaYCLGgK5z27oUnntAPjFq14KGHdJiktBYu1BWkDx3SJPy779ahlwoiIwM++wymTvVVH+jQQatfdOtm1ewrvexsHYbcuFEDsE2bdJ+amv/1detCkya6NW7s2xISLJI3xoSUBV3hkJOjUcNbb2kNo/r1tUREo0alf+5vv9UeLoCePbUkRI0apX/eMig9XUdOP/zQ93makACDBsHgwcH5dpoKwjn9J+fXX+G337Tw8G+/aXCWmZn/Y6pVg4YNdWvQwHd8wgm6rJEFZMaYUrKgK9Q2b4aXX9Z8FNDA6IYbdDZhMKSkwPXXw/Dh2vVTCT4YDh2CWbPgyy9z51m3awd9++rKMyecELn2mTIsJ0fLqGzdmnvbskV/sApSpYr+UHm3evU0j6x+fd2qV68Uv3vGmNKxoCtU0tO19tZHH+nwR2IiXHcd9O5d8j/OzsHixfC//2kFUe9ihYcOVco8Fec0x/rLLzX3Kz3dd1/jxhp8deumwZgNQZpCOQcHD2qFXv9txw7NlyxoqNKralUdtqxXT/ferU4d32aBmTGVngVdwbZzp46BffmlBkMicOaZcOWVJQ+MsrN1SZVPP9VaRhDcEhMVQFqarr38449a+Nx/gltsrE5sO/lkrf118snB62g0lURqqv5u//GHbrt2we7dut+5M3fEX5C4OA2+EhP1B9C7JSbqOHlCgg5jJiTYfwnGVFAWdAWDc1rg8ZNPNKnd+71r21YXri5p2YY9e3Qc7YsvfNP3qleHSy/VgMv+MOcrKwt++kkDsCVLNJ0nrzp1dMUZ78S25s21d8zbeWhMwJzToGzPntzb7t2aV7Z3r/7+pqUF/pw1amgAVru2TrrxP65VS2dm1qzpO7ZeNGPKBQu6SurIEV3O5McfdcjPW0k7Jgb69YNhw7R7pTTuvFPHz0AjgjPP1HpeFTRRPlRSUjSl7uefNRj75ZeCOyYSEzVlp0ED3R9/fO5RomAtiWkqobQ0DcD+/FO3fft8x3/+qVNz9+/XfU5O8Z5bRP8u5N2qV8+9r1ZNj/Pu4+MtaDMmDCzoClRKik5J37hRe7VWrcpdGygxEYYO1a04Y1eHD2u9oaVLNXgbNUrrIQB89ZUOK551lp6zP4pBkZOjI0SbN/smtW3erOeysgp/bI0a+Y8G+Xc++H/mVa1qb5spJm9+2cGDGoB5N++5gwf171FKip5PSSleL1p+RPSHtWpVDcS8x/Hxvtvx8b593q1KFd3y3o6Otl8AY/xEJOgSkaHAi0A08IZz7qk894vn/rOAw8BVzrmleZ8npEFXRgZMn65B1oYNmruRV6tWvmztk04K7I+Lc/q8Gzboc2/blvv+iy+GK64IxldgiiknRzssd+zwpe7s3KmdE3v2aMdEUUFZXiK+z6xq1XJ/fnk/w7yfVd7PKe8WF6f5aHFxvi02NvcWE6N7+2yr5LKzNYc0JUWHOlNT9Xbe48OH9dh/f/hwYDlpJREV5fthLmif3+b9wc/7A5/f5v0l8B57N+9t++UwZUhBQVfIkoVEJBoYDwwGtgI/isgM59xav8vOBFp5tp7Aq559+MTGakEob0Z2XJwuMXLiiRpsdemSu0crNVUDqP37fdu+ffqpffAgvPCCXieiNbt27NDbMTGaUNSxo2+qnYmIqChfBYD81h33dkDs3at770iQd1TI+5nn/7mXnq7nC6tGECzR0bk/c7y389tHRenef/Oei4o69riwTaTgY+9t/33eY/9z3vcB8r8v72O85/LeX9Cx/2dv3vvz7vOeK+i6vNcUdX9Bx4XdX/R10UAt3WoANYp+TC45OUh6GqSlIWmHiTqShqR7tiNpSFoaUUfS4MgRz7l0vf7IET0+kp77OCND9zk5nl64NMivPQU0p8QKesJo/cF3MTF67PlFcLGxEOX7xXAxMXrb88vioqN9t6Ojj96WmOhj7vP+4LuoY3+hXHQ0iN6WaN8vj5OCf9GcFP0L5yj4l0+ixPM8oq9d2C9kfr+YlVDVqpHL6w1lhnYPYINzbhOAiLwLnAf4B13nAW877W77QUQSRKSBc25HCNuVm4iuNzNnji/nISNDq12vXQv/+Q+MGKFVOQEWLND1FAviX9Zh+HDdn3SSLktiCfHlgogvnzlQ2dm+wMu/UyE9XT+LvPsjR3xbRoaez8zUY+/ee5x3y8rS1/FuR46E7ntgKqoooLpnC5JYiMrJItZlEJudTkxOBrEug5jsI7rP8dtcBrGe4+icTGKd7mNc5tFzMS6DaJdFTE4m0S7z6D46J4sYl0l0TibRLkvPuSyic/Q4yuUAWZ7NfjkC5URwCA5P4Ibndp5jR9778HsMR+8DyJGoXOf8r/e+pjdydnmu8X+evNflPef/eP+vh3zPcfRxJ90/gi5/61jC71jphDIKaAT4lbRkK8f2YuV3TSMgfEEXwLnnwpQpBXdT/Pmn79i74K432SchQXvCjj9eM7Lj433XDhkSwkabsiQ6WmPtUJdRc04Drqys3Jv3nP8+Jyd3kOZ/LidHr8vJyX/LztbX8j/nve1/Pr9zkP85723v/f77/O5z7tgtv/vzXuu9nXfvn0mR9/r8HlPQ4wq7Pr/HFPbY/B5f2HMH8tj8lOZ5AnuNGCAG56rpY4BMz1by5wz8Ou/FUS7bE4hlEuWykewsol0WUS6bqJyso/fnvS052XrOb8t7TlyOXutyjt72vy8K33nJyUbIIcrv2qOPw+ltz/3e+4QcxLnc5z3nvM8BHL0f3NHrAM/17ujeez9+57zPL8553iXvu+WAYk7qOPp9L+C4DKuSfmbEXjuUQVd+/ZZ535JArgmP667TLg7/ZJv4eP0UTUjwXZeUpOsfGhMBIr5hRWOMP8Eb/EF8Edca4Nj/arz/LeV3Pr/r8/tvx/+/o4LO532uvNcU9F9RILcD+a+pWbOSfb+CIJR/urcCTfxuNwa2l+Ca8DjttIi8rDHGGBMRlTivK1Kiir6kxH4EWolICxGJA0YAM/JcMwO4UlQv4EBY87mMMcYYY8IkZD1dzrksEbkR+AItGTHJObdGREZ57p8AzETLRWxAS0ZcHar2GGOMMcZEUkgzQ5xzM9HAyv/cBL9jB9wQyjYYY4wxxpQFoRxeNMYYY4wxHhZ0GWOMMcaEgQVdxhhjjDFhYEGXMcYYY0wYhHTB62ARkd3Ab5FuhzHGGGNMAJo55+rlPVkugi5jjDHGmPLOhheNMcYYY8LAgi5jjDHGmDCwoAsQkaEisk5ENojI3ZFuT2UlIk1E5CsR+UlE1ojIzZ7ziSLypYis9+yPi3RbKyMRiRaRZSLyqee2vS9lgIgkiMgHIvKz53ent703kScit3r+jq0Wkf+KSLy9L5EhIpNEZJeIrPY7V+B7ISL3eOKBdSJyRjDbUumDLhGJBsYDZwLtgEtFpF1kW1VpZQG3O+faAr2AGzzvxd3AHOdcK2CO57YJv5uBn/xu2/tSNrwIfO6cOxlIQt8je28iSEQaATcB3ZxzHdCl8EZg70ukTAaG5jmX73vh+cwZAbT3POYVT5wQFJU+6AJ6ABucc5uccxnAu8B5EW5TpeSc2+GcW+o5TkE/PBqh78dbnsveAv4SkQZWYiLSGDgbeMPvtL0vESYitYBTgYkAzrkM59x+7L0pC2KAqiISA1QDtmPvS0Q45+YD+/KcLui9OA941zl3xDn3K7o2dI9gtcWCLv1Q3+J3e6vnnIkgEWkOdAYWAsc753aABmZA/Qg2rbIaC/wfkON3zt6XyGsJ7Abe9Az9viEi1bH3JqKcc9uA54DfgR3AAefcLOx9KUsKei9CGhNY0AWSzzmroxFBIlID+BC4xTl3MNLtqexE5Bxgl3NuSaTbYo4RA3QBXnXOdQYOYUNWEefJDzoPaAE0BKqLyF8j2yoToJDGBBZ0aRTbxO92Y7Qb2ESAiMSiAdcU59xHntM7RaSB5/4GwK5Ita+S6gMME5HN6PD7QBH5N/a+lAVbga3OuYWe2x+gQZi9N5F1OvCrc263cy4T+Ag4BXtfypKC3ouQxgQWdMGPQCsRaSEicWgC3YwIt6lSEhFBc1N+cs694HfXDOBvnuO/AR+Hu22VmXPuHudcY+dcc/T3Y65z7q/Y+xJxzrk/gC0i0sZzahCwFntvIu13oJeIVPP8XRuE5qja+1J2FPRezABGiEgVEWkBtAIWBetFrSI9ICJnoTkr0cAk59yYyLaochKRvsA3wCp8uUP3onld7wNN0T9mFznn8iZFmjAQkQHAHc65c0SkDva+RJyIJKMTHOKATcDV6D/U9t5EkIg8AlyCzspeBowEamDvS9iJyH+BAUBdYCfwEDCdAt4LEbkPuAZ9725xzn0WtLZY0GWMMcYYE3o2vGiMMcYYEwYWdBljjDHGhIEFXcYYY4wxYWBBlzHGGGNMGFjQZYwxxhgTBhZ0GWMiTkTqiMhyz/aHiGzzHKeKyCshes1bROTKfM43F5HVQXydOBGZ71mDzxhTidkfAWNMxDnn9gLJACLyMJDqnHsuVK/nCYCuQau3h5RzLkNE5qA1m6aE+vWMMWWX9XQZY8osERkgIp96jh8WkbdEZJaIbBaRC0TkGRFZJSKfe5aQQkS6isg8EVkiIl94l/rIYyCw1DmX5feYFSLyPXCD3+s3F5FvRGSpZzvFc/4dETnP77opIjJMRNqLyCJPL91KEWnluWQ6cHkovkfGmPLDgi5jTHlyInA2upjwv4GvnHMdgTTgbE/g9RIw3DnXFZgE5LfCRB/AfwHvN4GbnHO981y3CxjsnOuC9lSN85x/A638jojURtfVmwmMAl50ziUD3dB13ABWA91L+DUbYyoIG140xpQnnznnMkVkFbps1+ee86uA5kAboAPwpS55RzSwI5/naYCuhecNmhKcc/M8970DnOk5jgVe9iy1kw20BnDOzROR8SJSH7gA+NA5l+XpKbtPRBoDHznn1nuuzxaRDBGp6ZxLCdL3whhTzljQZYwpT44AOOdyRCTT+dYxy0H/ngmwJp8eq7zSgHjPsQAFrYd2K7pWWxI6MpDud9876JDhCDQ/DOfcf0RkIdob94WIjHTOzfVcXyXP440xlYwNLxpjKpJ1QD0R6Q0gIrEi0j6f634CTgJwzu0HDngWXIfcuVe1gR3OuRzgCrTnzGsycIvnOdZ4Xq8lsMk5Nw6YAXTynK8D7HbOZZb+SzTGlFcWdBljKgznXAYwHHhaRFYAy9F8q7w+A071u301MN4zPJjmd/4V4G8i8gM6tHjI77V2osHbm37XXwKsFpHlwMnA257zp6E5X8aYSkx8vfPGGFN5iMg04P+8eVcleHw1NJesi3PuQBHXfgTc45xbV5LXMsZUDNbTZYyprO5GE+qLTUROB34GXgog4IoDplvAZYyxni5jjDHGmDCwni5jjDHGmDCwoMsYY4wxJgws6DLGGGOMCQMLuowxxhhjwsCCLmOMMcaYMLCgyxhjjDEmDP4/PzxxZxQ1zQkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABP1klEQVR4nO3deXhU5fXA8e/Jwg6BCCiLbIrImrCDiKCyqYhVEagrqHVBq9ZqkfpTrJXW1qWKRdEKLpWKiorUoqKCgqLIroAii8gqCBFIWLK+vz/ODDMJCZmEuXMTcj7Pc5+7zJ1738wkmTPvcl5xzmGMMcYYY7wV53cBjDHGGGMqAgu6jDHGGGNiwIIuY4wxxpgYsKDLGGOMMSYGLOgyxhhjjIkBC7qMMcYYY2Igwe8CRKJu3bquWbNmfhfDGGOMMaZYS5Ys2eWcq1fweLkIupo1a8bixYv9LoYxxhhjTLFE5MfCjlvzojHGGGNMDFjQZYwxxhgTAxZ0GWOMMcbEgGdBl4hMEZGdIrKyiMdFRCaIyDoR+VpEOnlVFmOMMcYYv3lZ0/UiMOgoj58HtAwsNwDPeFgWY4wxxhhfeRZ0OefmAWlHOeUi4GWnvgRqi0gDr8pjjDHGGOMnP1NGNAI2h+1vCRzb7k9xjDHGmArCOV2L6DonB/LydAFdO6dLQgJUqaLHc3Nh377Q84PnB8+tXRsqVdJj+/ZBRkbo3OA5oNdsEFbP8uOPeu3w84Ln1qun1w1ec/v2/I+H/zynnw5xgfqkDRtg//785zVtCklJJX21osbPoEsKOeYKOea5gwehalU/7myMMeaYOadBQ26uLtWrhx7buhWys/V48JxggNGwIdSvr+ft2AGrV+vx8HODgciQIRAfr+d+8AH89FP+x4Pbp50G/fvrebt3w/PPh84puFx3HQQTf8+cCfPm5X/cOb3uiSfCuHGhn+nmm+HQodA54QHSlVfC+efrefPmwZNPhh4LPw/gjTdCwdS99+rPX5g+feCuu3R72zYYPbro9+Kvf4V27XT79dfhnXcKP69RI5g0KbT/+99DZmbh5153HfzqV7q9ZAk8/njR9w//mZ57Dlatyv/4mDFw5plFP99jfgZdW4CTw/YbA9v8KEjwvW7bFtq00XXjxqEvAMYYY4qQm6v/QLOyQuvwf6ArV8Ivv+jx4JKdresmTUIfgLt3w5Qp+lhwyckJbd92G5x6qp7773/D//6njweDo6CCH+a33ab3Kkz4h/m33x79w/y880JB1yef6M9VmAMHQkHXwYPw2WdFXzM9PbS9cyesWVP4ecHapKBduzToKkz4z5qXV/TPXlBioi4ioZqiuDjdr1w5dF5CgtYUhZ8nEnq/ExND59aqFarNCj9HBE46Kf/9mzbVshY8TyR/zVStWtCqVWg//PxgmYOaN89/reDzfeRn0DUTuFVEpgHdgb3OuZg3LR46BGlpWgO5cyfMnavHa9aE9u2hd2/o1i1UW2qMMeWScxoUHTgQWpzL/wH2zjvaHHToUGg5eFCfN2CA/kMEWLAAJkzQ4zk5R97r9ddDzQdTpxYdoPTuHQq6srK0ZqYo+/eHtnNy8u+DBgMJCfkDBNDALitLH4uPz7+uWzd03kknQd+++lhcnK7Dl/AP8wEDoFOn/OfGxenSsGHovBNOgLvvDj0Wfl5cXKiWC7QmrXfvUBARPFfkyA+giRND5wWvFdwO//nPPBN69iw8kCpYq/DQQ0W/9uEaNIBXXons3GHDdInEY49Fdl7nzrpE4sYbIzsvhsQ5b1r0RORVoC9QF9gBjAMSAZxzk0REgH+iIxwPAKOcc4XO9dOlSxfn5TRAeXnanLxqlS6rV2sgFlS1KpxxhtawdugQ+rJjjDG+yMrSmpn0dA0+MjJ0Hdy+7LLQB/rrr8Obb2rwVPD/ff36MHlyaP/yy/PXvoS78koYPly3v/gC/vIX3Q7WhIQvf/ubfnMFePVV2LRJA4fgEqxVadYMevXS8w4dgi+/DD1WcGnQIBTIHTqkgVcw0IqPt6YJU6aIyBLnXJcjjnsVdEWT10FXQc5pc/1XX8Gnn8LataHHkpNh6FAYNCh/LaoxxpTIoUOwd6/WtgS/yX32mf7D2bdPl/T00LpdOxg7Vs/bvRtGjiz62vfeCz166PZrr4VqJipXhmrVdKlaVe99772h5732mjbVVa2q/WLCl0aNQv2fsrO1lqtyZQ16LOAxJh8Luo7B1q1a6/3JJ9qHEPR/1eWXwznnWM2XMSYgLw/27NEgpE4dPbZ1qzbbpaXpY3v36jrYJ+f557WjNGgNUVF9gNq2hYcf1u2sLPjTn7TDeI0aulSvHlratw81nR08GAqk7J+VMTFhQVcUOKe1X6+8Ahs36rFGjTT4CjbFG2OOU3l5+fv1vP++Npv9/LPWPO3erR3GnYMLL4QbbtDz1qwJjfwKl5iow+AfeED7HYH2ldq6VTv71qqlTXTBdc2aWqtkjCnzigq67C+4BESge3ftWD9/vgZfW7fCI49oTdgdd+gXTmNMObV/P/zwg6YP+OknHV0TXNLSdDh6MPCZM0f7VRWUlJQ/OGrYUDv01qmjS+3aek61akd+UzvjDM9+NGOM/6ym6xjk5MDHH8MLL+j/6hNPhHvuCY1qNsaUMc5pzdS2baGlQwf9JgXw+eehJrzCTJ4c6tc0Z472t6pbV0epnXCCdvq02ihjKjyr6fJAQgIMHAipqfp/et06HR18ww3a0d6aG43xSXBkW9Azz2it1NatR+YtyskJBV2NGmkKhZNO0m9RJ56oQVb9+hpchQ/dP+cc738OY8xxxWq6oiQrS78Ez5ql+337wi23hBLjGmM8EBxq/MMPmvflxx+1n9WOHToSLxh4jR0byhVVp442+QWXNm10McaYKLGaLo9VqqQzM7RpA089pSMdf/lFZ26w1BLGREFOjo74C3acXL5cc0UdPHjkuSIaeDVqpPvXXKPHGjfOP0WMMcbEkAVdUdanD7RooalvVqzQJLt/+EP+QU/GmGI4B5s368i/tWu17f6HHzQT+M036zknnKABV3KyTvfRrJlOJdKkiQZX4Zm5Tz/dlx/DGGPCWdDlgZNP1hQ699yj/XInTdLPCevjZUwEnntOR6gcOHDkY3v3hrYbNdIhxOHzshljTBlmQZdHmjeH++6D+++H997TUeKXX+53qYwpI3bt0vm2gvNujRmjtVOg304OHIB69bRT+2mn6ZDgFi3yNw3GxVnAZYwpVyzo8lC7dvpZMn68Tj+WlAQXXOB3qYzxQXa2ztf39de6bC8wt/2qVaGg6+KL4dJLtdnQGGOOIxZ0eax7d/jtb2HCBHj2WR04ZfkPzXEvKwu2bNHaqaAnnwyla6hWDVq31qlt2rbNn9wuOH2NMcYcZyzoioH+/XWqtZdf1pGNrVuHpmUz5rixdSssXgxLl2p6hrg4reJNSNAhvBddpMFWSooGYzYPoDGmgrGgK0aGDtUWlCVLtGP92LF+l8iYKNi5E959Vycl3bo1/2OnnKJT5wQzuF99dezLZ4wxZYgFXTEioslSR4/WOW0//xx69fK7VMaUUHa2Tux80km6n5kJb7+t2zVqQJcu0KkTdOyoo0eMMcYcZkFXDNWrB6NG6YwkzzyjU77VrOl3qYwpRlYWLFum3xQWLtQs7v/4hz7WuDFceaX2y2rd2poMjTHmKCzoirHzzoP587XLy7/+BXfe6XeJjClEXh58841OrfD55/mzvufmamb4KlW0Cnf4cN+KaYwx5YkFXTEmArfdBrfeCnPnQu/e0LWr36UypoAFC+Bvfwvtt2gBZ56pQ2+DU+sYY4wpEQu6fNCggbbITJkCEyfqYtPBGd/s3w+ffqq1V5dcose6dNFpdXr00NnbLdAyxphjZkGXTy66CD77DL7/XlNJBKeTMyYmnNPhtLNna/NhVpamc7jgAp2zsEoVzW9ijDEmaizo8klcnDYz/va38MEHmoA7OLLeGM8cOgRz5miah82bQ8dTUnQyaesIb4wxnrGgy0dNm2rLzdy58OabVttlYmDrVh06CzrNTv/+0K9fKAWEMcYYz1jQ5bPLLtMBYrNn6yAwm27ORE2wCXHFCrjiCj12yilw/vk6MWjPnpot3hhjTEzYf1yfnXyyDgj7/HN46y24/nq/S2TKvdxcnVz6rbdg7Vo91rNnaB5Eq1I1xhhfWNBVBgwbpkHXe+9pzVdSkt8lMuVSdjZ8/DFMnw47duixWrVg8GDNzGuMMcZXFnSVAS1aaK6uRYtgxgy45hq/S2TKnZwcTf62bZvuN2gAv/oVnHuujkY0xhjjOwu6yojhwzXoevddTZVk0wOZYmVlaZ+suDhdd+4MiYn6y9Srlx43xhhTZth/5TKiVStITdUR/e++63dpTJmWl6fNiDfeCPPmhY5ffbXm1urd2wIuY4wpg+w/cxkSnMJu5kw4cMDfspgyyDn46itN7vbEE7Brl3aYDwrOhWiMMaZMsubFMqRdO2jbVkf5z5oFQ4f6XSJTZqxZo/NGrV6t+/Xr61xSffv6WixjjDGRs5quMiZY2/XOO9o32hgWLoS77tKAq1YtuOEGmDQJzj7baraMMaYc8TToEpFBIrJGRNaJyD2FPJ4kIv8VkRUiskpERnlZnvIgNVVzd+3ZA0uW+F0a4xvnQtsdO+ovxbBh8K9/wYUXaod5Y4wx5YpnQZeIxAMTgfOANsCvRaRNgdNuAVY751KAvsBjIlLJqzKVByI6KwvARx/5Wxbjk6++0pqtjAzdr1QJJkyAq67SSamNMcaUS17WdHUD1jnnNjjnsoBpwEUFznFATRERoAaQBlT4RrW+fXXw2aJFsHev36UxMbN7N/zlL/DnP8P338P//hd6zKbrMcaYcs/LoKsRsDlsf0vgWLh/Aq2BbcA3wO3OuTwPy1QuJCdryqXcXJ2X0Rzn8vI0wLr5Zh2NWKUK/OY3NpLCGGOOM14GXYX18HUF9gcCy4GGQCrwTxGp5WGZyo3wJkZX8FUzx48ff4Q//EE7xh88CN27wzPPwJAhEB/vd+mMMcZEkZdtFluAk8P2G6M1WuFGAQ875xywTkR+AE4HvvKwXOVCt26alX7jRvjhh9BcxeY4s2ePpoNIToabbtKJqY0xxhyXvKzpWgS0FJHmgc7xI4CZBc7ZBJwLICInAq2ADR6WqdxISAilYLIO9ceZ9PTQdkoK3HknPP20BVzGGHOc8yzocs7lALcCHwDfAq8751aJyE0iclPgtD8DZ4jIN8DHwBjn3C6vylTeBJsYP/kEsrN9LYqJBud0uoFrrw0lOQXNt1W9un/lMsYYExOeDolyzs0CZhU4NilsexswwMsylGfNm0OzZtrEuGgRnHGG3yUypbZrF/zjH/D117q/ZAm0KZhBxRhjzPHMMtKXYZaz6zixaBHcdpsGXElJcO+9mnPLGGNMhWJBVxnXt68OYluyBNLS/C6NKZGcHJg8GR58UPtxdeoEEydCjx5+l8wYY4wPig26RKSXiHwoIt+LyAYR+UFErLN7jCQlQdeumsrJcnaVM/v2wccfa6bbkSPhgQf0DTXGGFMhRdKnazLwO2AJkOttcUxh+vWDL7/UJsaLL7Y5jsuN5GTNwVWlCpx+ut+lMcYY47NIgq69zrn3PC+JKVLnzlpBsnkzbNoETZv6XSJTKOfg1VehalWNjkFnMDfGGGOILOiaKyKPAG8BmcGDzrmlnpXK5JOQoMlSP/xQa7ws6CqD9u+Hxx/XyaoTEuDMM6FePb9LZYwxpgyJJOjqHlh3CTvmgHOiXxxTlJ49Q0HX8OF+l8bks2ULPPQQbN2q+bb+8AcLuIwxxhyh2KDLOXd2LApiji4lRbsGrVunKZ/q1vW7RAaAxYvh73/XeRObNtV0EA0a+F0qY4wxZVAkoxeTRORxEVkcWB4TERuCFWOVKmnGAdDaLlMGzJun6SAOHtTmxEcftYDLGGNMkSLJ0zUFSAeGBZZ9wAteFsoULpjeyYKuMqJ1a6hTB0aMCI1SNMYYY4oQSZ+uU5xzl4bt/0lElntUHnMUXbtqyqdvvoGMDKhRw+8SVUDZ2dpRXkT7bU2caG+EMcaYiERS03VQRM4M7ohIL+Cgd0UyRalRA9q310Spixb5XZoKaO9eGDsW3ngjdMwCLmOMMRGKJOi6GZgoIhtF5Efgn8BN3hbLFMWaGH2yc6c2Ia5ZAx98AIcO+V0iY4wx5UyxQZdzbrlzLgXoALR3znV0zq3wvmimMMGga+lSyMrytywVxpYtMGYMbNsGLVpoh3nrv2WMMaaEiuzTJSJXOudeEZE7CxwHwDn3uMdlM4WoWxdOPVVTR6xYof28jIfWr4f779d5FNu00e3q1f0ulTHGmHLoaDVdwU+WmoUs1pHFR8Hari++8Lccx73vvoM//lEDrs6dNT2EBVzGGGNKqciaLufcs4HNj5xzn4c/FuhMb3zSowe88orOOJOXpyMajQfq1tWO8p07w5136qhFY4wxppQi+bh+KsJjJkaaNNEcnHv3amWM8UjduvDII3DXXRZwGWOMOWZH69PVEzgDqFegX1ctIN7rgpmiiWht19tv6yjGNm38LtFxZMkS2LABLrtM95OT/S2PMcaY48bRaroqoX23Esjfn2sfMNT7opmjCU8d4Zy/ZTluLF0K48fDyy9r8GWMMcZE0dH6dH0KfCoiLzrnfoxhmUwETj8dkpJg+3bYvFmbHM0xWLYMHnpIM86ff35ooktjjDEmSiLp03VARB4RkVkiMie4eF4yc1RxcaG4YOlSf8tS7i1fnj/guukmbcM1xhhjoiiSoGsq8B3QHPgTsBGwSWjKgGDQZS1hx2DNGg24srJg0CALuIwxxngmkqDrBOfcZCDbOfepc+5aoIfH5TIR6NhR44NVqyAz0+/SlEPOwdNP64t37rkwerQFXMYYYzwTSdCVHVhvF5ELRKQj0NjDMpkIJSXBKadoq9jKlX6XphwSgfvug4sugt/+1gIuY4wxnook6HpIRJKA3wN3Ac8Dv/O0VCZiwSbGZcv8LUe5Ej5pZd26cP31EG9ZUIwxxngrkgmv33XO7XXOrXTOne2c6+ycmxmLwpnideyoa+tMH6H9++Huu2HqVMu1YYwxJqaOlhz1KaDITyXn3G2elMiUyOmnQ9Wqmjbi55+hXj2/S1SGZWdrHq4NG+DgQfjVr2wuRWOMMTFztLlNFsesFKbUEhIgJUWTpC5dCgMH+l2iMso5eOop+OYbzTL/0EMWcBljjImpoyVHfSmWBTGl16mTBV3Feu01mDsXqlSBceOgfn2/S2SMMaaCKXYWXxGZSyHNjM65czwpkSmxYGf6FSsgN9f6hB/hk0+0D5cI/OEP0KKF3yUyxhhTARUbdKEjFoOqAJcCOZFcXEQGAU+iE2Q/75x7uJBz+gJPAInALudcn0iubUJOPBEaNoRt2+D776F1a79LVIbk5GgtF8BvfgNdu/pbHmOM8Uhubi5paWlkZ2cXf7KJisTERJKTk4mPsLaj2KDLOVcw3/nnIvJpcc8TkXhgItAf2AIsEpGZzrnVYefUBp4GBjnnNomItfmUUqdOGnQtXWpBVz4JCfDXv8K8eXDhhX6XxhhjPJOWlkaVKlWoW7cuYnkHPeecIyMjg7S0NOpFOIqt2JQRIpIcttQVkYHASRFcuxuwzjm3wTmXBUwDLipwzuXAW865TYEfYGdEpTZHsHkYC8jNDW3Xrg1DhvhWFGOMiYXs7Gxq1KhhAVeMiAg1atQoUc1iJM2LS9A+XYI2K/4AXBfB8xoBm8P2twDdC5xzGpAoIp8ANYEnnXMvR3BtU0D79lqps3YtpKdDzZp+l8hHeXk6OvHkk+Gaa6yTmzGmwrCAK7ZK+npHkhy1uXOuRWDd0jk3wDn3WSRlKexyBfYTgM7ABcBA4D4ROS2Ca5sCqlSBNm00M8Ly5X6XxmdTp8LixfDRR/DLL36XxhhjKpTx48fTtm1bOnToQGpqKgsXLvSlHMuXL2fWrFmH92fOnMnDD2vX8pEjRzJ9+vQjnvPJJ58wePBgz8oUyejFKsBo4Ew0aPoMeMY5d6iYp24BTg7bbwxsK+ScXc65/cB+EZkHpADfR1Z8E65TJ/j6a21i7N3b79L4ZMECeP11Hak4ZoxO82OMMSYmvvjiC959912WLl1K5cqV2bVrF1nhU6/F0PLly1m8eDHnn38+AEOGDGGIz11NIpl78WWgLfAU8E+gNfDvCJ63CGgpIs1FpBIwAig4fdA7QG8RSRCRamjz47eRFt7kF96vq0LOcLN5M/zjH7o9apRmjTXGGBMz27dvp27dulSuXBmAunXr0rBhQ5o1a8auXbsAWLx4MX379gXg008/JTU1ldTUVDp27Eh6ejoAf//732nfvj0pKSncc889AKxfv55BgwbRuXNnevfuzXfffQdordVNN91E7969Oe2003j33XfJysri/vvv57XXXiM1NZXXXnuNF198kVtvvfVwWT/66KN8zylo//79XHvttXTt2pWOHTvyzjvvHPPrE0mfrlbOufBPr7kisqK4JznnckTkVuADNGXEFOfcKhG5KfD4JOfctyLyPvA1kIemlVhZ8h/DADRrBnXqQFoa/Pij7lcY+/drP65Dh6BPH53ixxhjKiivBmv/979Hf3zAgAE8+OCDnHbaafTr14/hw4fTp0/RmaAeffRRJk6cSK9evcjIyKBKlSq89957zJgxg4ULF1KtWjXS0tIAuOGGG5g0aRItW7Zk4cKFjB49mjlz5gCwceNGPv30U9avX8/ZZ5/NunXrePDBB1m8eDH//Oc/AXjxxRfz3buw54QbP34855xzDlOmTGHPnj1069aNfv36Uf0YZjOJJOhaJiI9nHNfAohId+DzSC7unJsFzCpwbFKB/UeARyIrrjkaEZ0Ae84c7ddVoYKuF1/UnBnNm8Nvf6svhjHGmJiqUaMGS5YsYf78+cydO5fhw4cf7kdVmF69enHnnXdyxRVXcMkll9C4cWM++ugjRo0aRbVq1QBITk4mIyODBQsWcNlllx1+bmZm5uHtYcOGERcXR8uWLWnRosXhWrCjKe45s2fPZubMmTz66KMAHDp0iE2bNtH6GPIyRRJ0dQeuFpFNgf0mwLci8g3gnHMdSn13E3WpqaGgq0JV9lx9tdZ2XXMNBKq1jTGmoiquRspL8fHx9O3bl759+9K+fXteeuklEhISyMvLAzR4Cbrnnnu44IILmDVrFj169OCjjz7COXfEqMC8vDxq167N8iJGihU8P5JRhcU9xznHm2++SatWrYq9VqQi6dM1CGgO9AkszYHzgcGAZZssY4LdmFauhAqVlLhmTZ3i58QT/S6JMcZUWGvWrGHt2rWH95cvX07Tpk1p1qwZS5ZorvU333zz8OPr16+nffv2jBkzhi5duvDdd98xYMAApkyZwoEDBwBN+lqrVi2aN2/OG2+8AWhAtGJFqKfTG2+8QV5eHuvXr2fDhg20atWKmjVrHu4jVpjCnhNu4MCBPPXUU7hAJ+lly5Yd46sTWcqIH4HaaIB1IVDbOfdjcDnmEpioSk6Gpk0hMxPWrPG7NB7buxdefVWn+jHGGOO7jIwMrrnmGtq0aUOHDh1YvXo1DzzwAOPGjeP222+nd+/e+abMeeKJJ2jXrh0pKSlUrVqV8847j0GDBjFkyBC6dOlCamrq4ea9qVOnMnnyZFJSUmjbtm2+ju2tWrWiT58+nHfeeUyaNIkqVapw9tlns3r16sMd6Qsq7Dnh7rvvPrKzs+nQoQPt2rXjvvvuO+bXR1wxw9xE5HbgN8BbgUMXA88555465rtHqEuXLm7x4sWxul259/zz8M47MGwYXHWV36XxiHPwwAM6VHPwYLjxRr9LZIwxvtq2bRsNGzb0uxgxN3LkSAYPHszQoUN9uX9hr7uILHHOdSl4biTNi9cB3Z1z9zvn7gd6oEGYKaNSU3W9otgxpuXYm29qwFWzJlx6qd+lMcYYY4oVSUd6AcImsiOXwrPNmzKiXTudEuj77yEjA2rU8LtEUbZ6Nfw7kCruzjstAaoxxlRgBVNBlGWRBF0vAAtF5G002LoImOxpqcwxqVIFTj9dO9N/8w307BnlGzgH69ZpRFenji61asUmTUN6OjzyiM6veMkl0OWI2ltjjDGmTCo26HLOPR6YkPrMwKFRzrlj78JvPJWSokHX8uVRDLoyMmDuXHjvPc3+Hi4+HmrXhhYtNFdF+/bRD8Kcg3/+E3bt0qjyuO2wZowx5ngUSU1XkKBZ461psRzo2FHnfY7K5Ndr18L//gfz50NwDq2kJB0m+csvumRkwO7duixaBKedBkOHQo8e0Qu+srJ0WGbVqnD33dqGaowxxpQTkUx4fT9wGfAmGnC9ICJvOOce8rpwpvROPRWqV9ck7Tt3Qv36pbzQhx/CU0+FJnNMTYVBg6B79/xBT3a2zj/0yScwc6Z2KPvLX+Dkk+Gyy6Bv32MPvipXhnHj9Icq9Q9kjDHG+COS0Yu/Bro65x5wzo1DRy9e4W2xzLGKj9cWPjiGUYwffggTJmjANXgwPPcc/PnP0KvXkbVMiYmamHT4cJg8GW64QTu4b94Mjz8O48drf6zSyMuD3MBYDhFo1KiUP5Axxhgv1Yhg5Nb8+fNp27YtqampHDx4sETXnzFjBqtXr/akXLEQSdC1EQjPGFYZWO9JaUxUBVNHlCqJbjDgArj2Ws2D1aBBZM+tUkVnW/3Xv+C227TKbeFC3V61quRlmT4d7rkHtm8v+XONMcaUKVOnTuWuu+5i+fLlVK1atUTPLW3QVVZEEnRlAqtE5EUReQFYCWSIyAQRmeBt8cyxCM/XVUwO3PwKBlwXX1y6AiQkQP/+eq1WrbQD/NixMG2a1l5FYu1a+M9/4Lvv4KefSlcOY4wxMfXJJ5/Qt29fhg4dyumnn84VV1yBc47nn3+e119/nQcffJArrtBGs0ceeYSuXbvSoUMHxo0bd/gaL7/8Mh06dCAlJYWrrrqKBQsWMHPmTO6++25SU1NZv34969evZ9CgQXTu3JnevXsfnrT6hx9+oGfPnnTt2jUqmeSjJZKeyG8HlqBPvCmKibaGDbWFb9cu+OEHHVhYrGgFXOHq14eHH9bgafp07eG/YoXWXiUlFf28zEx47DFtWrzwQh0dYIwxpngXejQ1cglm0l62bBmrVq2iYcOG9OrVi88//5zrr7+ezz777HAG+dmzZ7N27Vq++uornHMMGTKEefPmccIJJzB+/Hg+//xz6tatS1paGsnJyQwZMiRf9vlzzz2XSZMm0bJlSxYuXMjo0aOZM2cOt99+OzfffDNXX301EydO9Oa1KIVIUka8FIuCmOgT0Tjlww91FGOxQdeyZdEPuIISEuDqq6FDB+3jtXKlTlD9pz/BSScV/pyXXoKtW7Uz/siR0SuLMcYYz3Xr1o3GjRsDkJqaysaNGznzzDPznTN79mxmz55Nx8CX6oyMDNauXcuKFSsYOnQodQPJr5OTk4+4fkZGBgsWLOCyyy47fCwzMxOAzz///PDE2ldddRVjxoyJ/g9YCjbm/jiXmqpB17Jlmku0SFlZ8PTTuj1iRHQDroIFevJJnTdxwwZN/fCnPx0ZEa5eDe++C3Fx8PvfQ6VK3pTHGGOORyWokfJK5cqVD2/Hx8eTk5NzxDnOOcaOHcuNBebPnTBhAlLMiPe8vDxq167N8iJyIxX3fD9E0qfLlGMpKbpevTqUYqtQb7yhfaaaNtURiF6qUwf++lct3J492swY/keTlaWBmXOabuKUU7wtjzHGGF8MHDiQKVOmkJGRAcDWrVvZuXMn5557Lq+//jq7d+8GIC0tDYCaNWuSHhgJX6tWLZo3b84bb7wBaAC3IjBcv1evXkybNg3QjvtlRZFBl4j8O7C+PXbFMdGWlATNm2sc8+23RZy0dav2tQIYPTo2SUerVdParrPOgoMHtbZr3jx9LD4eBg6Eli29DwCNMcb4ZsCAAVx++eX07NmT9u3bM3ToUNLT02nbti333nsvffr0ISUlhTvvvBOAESNG8Mgjj9CxY0fWr1/P1KlTmTx5MikpKbRt25Z33nkHgCeffJKJEyfStWtX9u7d6+ePmI+4Ioa1ichq4DxgJtCXApnonXNpXhcuqEuXLm7x4sWxut1xZ8oUePttuPTSQrpGOQf33acd2/v1g9tjHGM7p3m9An8ojB4N552n23l52rxojDGmWNu2baNhw4Z+F6PCKex1F5ElzrkjJgc+2ifaJOB94HRgSYHFIqBypFMnXS9dWsiD8+drwFWzJowaFdNyAdrb//rr9d55efDEEzBrlj5mAZcxxpjjSJGfas65Cc651sAU51wL51zzsCWS5AOmjGjTRmfQ+eEHnannsP374fnndXvUKKhVy5fyAdrLv2VLHdX4l7/oXI/GGGPMcaTYqgTn3M0ikiIitwaWDrEomImeSpVCUwLly07/yis6WXXr1tq06Ke1a3U0Y+PGOqXQpEllYvSNMcYYEy3FBl0ichswFagfWKaKyG+9LpiJriOaGNev19qkuDjtR+Xn0NqcnNAcjzfeCHfdpcefe04nzzbGGGOOA5EMU7se6O6c2w8gIn8DvgCe8rJgJrqCQdeyZYH+6dOmaZAzZAg0a+Zr2XjnHdi4USfMvuIKbQsVgWee0fkbRbzLrmyMMcbESCQ9lQXIDdvPpcBIRlP2NWyoMU16Omz8fKtOQJ2QoEMa/bRjh04PBHDLLRpwAZx/vu6D1ni9/74/5TPGGGOiJJKg6wVgoYg8ICIPAF8Ckz0tlYk6EejcWbfTXpihtVznnKOJSv00aZImEevT58i5FQcN0uZG0Gz5c+bEvnzGGGMiFh8fT2pqKu3atePCCy9kz549fhepxB544AEeffRRT64dSUf6x4FRQBrwCzDKOfeEJ6UxnurUCapn76HyZx/rAa+m+imJESOgXTtNG1GYwYN1ZKVzmk5i/vyYFs8YY0zkqlatyvLly1m5ciXJycllZrJp5xx5eXl+FyOyaYCcc0sDKSSedM4tK/4Zpizq0AG6//wuB/dlk9mxu44U9FurVjolUO3aRZ9zySXa18s5ePRRbRo1xhhTpvXs2ZOtW7cCsH79egYNGkTnzp3p3bs33333HQA7duzg4osvJiUlhZSUFBYsWADA448/Trt27WjXrh1PPPEEAGPGjOHp4BzBaI3UY489BsAjjzxC165d6dChA+PGjQNg48aNtG7dmtGjR9OpUyc2b95c6HkA48ePp1WrVvTr1481a9Z49prYhNcVSFU5xNmHZpHlYFWrS+nkZ2E2b4aTT478/OHDITNTpyt6+GH4v/8LtZcaY4w50tEGIN1yi3bhAO0ze7QaqVKk78nNzeXjjz/muuuuA+CGG25g0qRJtGzZkoULFzJ69GjmzJnDbbfdRp8+fXj77bfJzc0lIyODJUuW8MILL7Bw4UKcc3Tv3p0+ffowYsQI7rjjDkaPHg3A66+/zvvvv8/s2bNZu3YtX331Fc45hgwZwrx582jSpAlr1qzhhRde4Omnny7yvOrVqzNt2jSWLVtGTk4OnTp1orNHny8WdFUkH35I/arpfFnjdLbsbu1f0LVqlU5yfe65Ou1QJOkqRODqq7X/18yZmkD1gQdCCciMMcb47uDBg6SmprJx40Y6d+5M//79ycjIYMGCBVx22WWHz8vMzARgzpw5vPzyy4D2B0tKSuKzzz7j4osvpnr16gBccsklzJ8/n9tuu42dO3eybds2fv75Z+rUqUOTJk2YMGECs2fPpmOgX3BGRgZr166lSZMmNG3alB49egAwe/bsQs9LT0/n4osvplq1agAMGTLEs9fH06BLRAYBTwLxwPPOuYeLOK8r2kF/uHNuupdlqrByc2HGDJKSYEGVS9i9TFvrYp6eKydHO8UD1KtXsgIEpwzKytJvZg8+CH/+M5x+ujdlNcaY8izSGqpBg0K1Xsco2Kdr7969DB48mIkTJzJy5Ehq167N8uXLI7pGUXNCAwwdOpTp06fz008/MWLEiMPnjx07lhuDA68CNm7ceDhwO9p5TzzxBBKjD8NIkqNeIiJrRWSviOwTkXQR2RfB8+KBieik2W2AX4tImyLO+xvwQcmLbyL2+eewcyfVTmnIzmbd2bVLW/hi7t13YdMmOOkkCPvWEzERTeZ69tlw6BCMGwfr1kW/nMYYY0otKSmJCRMm8Oijj1K1alWaN2/OG2+8AWjws2LFCgDOPfdcnnnmGUCbJPft28dZZ53FjBkzOHDgAPv37+ftt9+md+/eAIwYMYJp06Yxffp0hg4dCsDAgQOZMmUKGRkZAGzdupWdO3ceUaaizjvrrLN4++23OXjwIOnp6fzXw9lQIulI/3dgiHMuyTlXyzlX0zkXySR93YB1zrkNzrksYBpwUSHn/RZ4EzjyFTLR4Ry89RYAcsnFdOysb/uSJTEuR1oaTJ2q2zfcoPMTlYaINkueeSYcOAD33w8//hi9chpjjDlmHTt2JCUlhWnTpjF16lQmT55MSkoKbdu25Z133gHgySefZO7cubRv357OnTuzatUqOnXqxMiRI+nWrRvdu3fn+uuvP9wk2LZtW9LT02nUqBENGjQAYMCAAVx++eX07NmT9u3bM3ToUNLT048oT1HnderUieHDh5Oamsqll156OMDzghytGg9ARD53zvUq8YVFhgKDnHPXB/avQjPb3xp2TiPgP8A5aO6vdwtrXuzSpYtbvHhxSYtggr7+Gu69F5KSYMoUPv2iEo8+Cqmp2joXM488AvPmQffu2hH+WOXkaN+uRYt09OPDD0OjRsd+XWOMKYe2bdtGw4YN/S5GhVPY6y4iS5xzXQqeG0lN12IReU1Efh1oarxERC6J4HmFNZAWjPCeAMY453ILOddES7CqdPBgqFSJ1FStLFq1SgcExsTXX2vAVamS1nJFQ0KCdshPTYU9ezSw3L49Otc2xhhjoiySoKsWcAAYAFwYWAZH8LwtQHhOgMbAtgLndAGmichGYCjwtIj8KoJrm0ilpcFXX0F8PAwcCGiF16mnQnY2rFwZo3K0aAEXXKDJUOvXj951K1XSYKtdO9i9W7cLacs3xhhj/Fbs6EXn3KhSXnsR0FJEmgNbgRHA5QWu3Ty4LSIvos2LM0p5P1OYOXN0huuePfNN+dOpE6xdC4sXxyjdVY0acNNN3ly7ShXt1zVuHHz7Lfzxj9rUWLeuN/czxhhjSiGS0YuNReRtEdkpIjtE5E0RKTaVuXMuB7gVHZX4LfC6c26ViNwkIh59+pp8nIPZs3U7UMsV1K2brr/8Uk/zTHq6pnjwWtWqGnS1bKmTaN97r9byGWNMBVJcP20TXSV9vSOd8Hom0BBoBPw3cCySwsxyzp3mnDvFOTc+cGySc25SIeeOtBxdUfbNN9rHqW7dIyaTbtkSkpNh1y5Yv97DMjzzjGY+/v57D28SUL265u5q0QK2bdPAqxxOtmqMMaWRmJhIRkaGBV4x4pwjIyODxMTEiJ8TSXLUes658CDrRRG5o6SFMz74IJD6rH9/iMsfX4tAjx4wa5bWdp16qgf3X7lSJ6iuVOnocytGU40a8NBD2sS4caMGXn/5i3ZkM8aY41hycjJpaWmFpksw3khMTCQ5OTni8yMJunaJyJXAq4H9XwO7S1E2E0vp6bBggUZX/fsXekrPnhp0ffEFXHlllO+fmwvPPqvbl10W3c7zxalZMxR4bdoEY8dq4BWrwM8YY3wQHx9PvXr1/C6GOYpImhevBYYBPwHb0VGG13pZKBMFc+ZoHqtOnXS6nUK0a6ctcps2aWtcVH3wgdY01a8Pl0SSYSTKkpI00GraVFPvjx1rfbyMMcb4qtigyzm3yTk3xDlXzzlX3zn3K+ecpf8uy5wLNS0OGFDkaQkJ0CWQum3hwijePz0dXnlFt6+7rvSZ549VUhKMHw/NmsGWLVrzZYGXMcYYnxQZdInIHwLrp0RkQsEldkU0JbZmjdbu1K4dGqZYhJ49df3FF1G8/9SpGnh16BC6gV/CA6+tWzXw2m2t48YYY2LvaDVd3wbWi4ElhSymrArWcvXrp9VZR9GpEyQmwnffwS+/ROn+bdtqs+INN2ifMr/VqqVNjS1aaOA1dqwlUDXGGBNzRQZdzrngNNsHnHMvhS9ohnpTFh04oCMGocgO9OGqVtVZdJzTxPVR0bs3PPec9qcqK4Kd6085RdNojBnjQUc2Y4wxpmiRdKQfG+ExUxZ8+qlOqNi+PUQ48WnUmhhzckLb8fHHeDEP1KypTY2tW2uCsjFjtLO/McYYEwNH69N1nog8BTQq0J/rRSCnqOcZn334oa6P0oG+oG7dtBVwxQqtKCuVrCxNgvrii7HJQF9awQSqwUmyx46NTeJWY4wxFd7Rarq2of25DpG/L9dMYOBRnmf8snGjTqhYvTqccUbET0tK0sqfnBxYurSU937rLW2uW7Kk2H5kvqtSBe67D7p3h4wMTaAas5m/jTHGVFRH69O1ItB/qz3wSlh/rneAzFgV0JTARx/puk+fEqdpOKYmxl27YHpgBqcbbjgi+32ZVKkS3HOPvlaHDum8jVHNm2GMMcbkF8mn42ygath+VeAjb4pjSi0nBz75RLf79Svx07t31/Xixfm7ZkXkpZe0H9kZZ2hfsvIiIQHuvBPOO0+bRMePh/ff97tUxhhjjlORBF1VnHMZwZ3AdjXvimRKZdEi2LtXRwyWYiLFBg00ldWBA/D11yV44po1GuwlJsK15XCigrg4uPlmuOIKHcI5cSL85z+6bYwxxkRRJEHXfhHpFNwRkc7AQe+KZEol2IG+f/9S58bq0UPXETcxOqepIQAuvhhOPLFU9/WdCIwYAbfeqtuvvqrBV26u3yUzxhhzHIkk6LoDeENE5ovIfOA14FZPS2VKJi1NO7DHx0PfvqW+TK9eup4/P8IBiAcOaC/85GSd1Lq8GzhQO9VXqqQJZv/6V+3vZYwxxkRBJHMvLgJOB24GRgOtnXOWkb4smTsX8vI090NSUqkv06yZ5g7dvz/CRKnVq8P998OTT+qIwONB9+6aRLVGDe1YbxNlG2OMiZJIh5m1AtoAHYFfi8jV3hXJlIhzoVGLpehAX9C55+r6o5IMlahd+5jvW6a0bg1//zucdBKsW6ed7Tds8LtUxhhjyrligy4RGQc8FVjOBv4ODPG4XCZSa9bAli1Qpw507nzMl+vTRwf1LV16lAqenTs1z9X69cd8vzLr5JPh0UehTRudIHvMGEspYYwx5phEUtM1FDgX+Mk5NwpIASp7WioTuWCV1NlnR2XqnVq1tJXSOW21LNTkybB8OcyYccz3K9OSkrSp8eyztW/X+PHw9ts2stEYY0ypRBJ0HXTO5QE5IlIL2Am08LZYJiKHDsG8ebodhabFoGAT48cfFxJffP01LFgAlSvDNddE7Z5lVmIi/O53cOWV+mJMmQJPPFG2pzoyxhhTJkUSdC0WkdrAv9BpgJYCkXSzNl774gs4eBBatdLmsCjp1EkreTZv1lmFDsvNhX/9S7eHDYO6daN2zzJNBIYP1ybGSpVgzhz4wx+0mdUYY4yJ0FGDLhER4K/OuT3OuUlAf+CaQDOj8dvs2bru3z+ql01I0BY10Nquwz74QOd3rF8ffvWrqN6zXDjzTO3ndeKJ2p/td78rYSZZY4wxFdlRgy7nnANmhO1vdM7Zp0xZsHmzTtJcpQr07h31ywebGD/9NNCSlp4Or7yiB6+7rsRzOx43mjeHf/xDqwP37YP/+z/t22b9vIwxxhQjkubFL0Wkq+clMSXz3nu67tsXqkV/VqYjcnatXw/Z2dChQ2h27IqqZk2dIHvYMA22Jk+Ghx/WF8sYY4wpQiRB19lo4LVeRL4WkW9ExGq7/JSZqf2KQCdr9ki+nF2pqfDss6Gpciq6uDi46ipNnlq1qg4uuP32Ap3gjDHGmJAigy4RaRLYPA8drXgOcCEwOLA2fpk3T2tVWrWCFt4NJD0iZ1dyss6MbULOOEMz8p96KuzYoR3s33nHmhuNMcYc4Wg1XTMAnHM/Ao87534MX2JSOlO4YNOih7VcoDm7Lmq4iE4/zWLux3me3qtca9BAM9gPGQI5OfD88/DnP2s/OGOMMSbgaEFXeBuS5eUqK9au1aVGDU860Odz6BAXbHqG8398hh9emkeexV1FS0yE3/xGJ8yuXh0WLdKm2CU2Takxxhh1tKDLFbFt/BSs5erXz/sRhG+8QV33M/vqtWAeZ7Fggbe3Oy706AETJuj0QWlp8MAD8MwzmsjWGGNMhXa0oCtFRPaJSDrQIbC9T0TSRWRfrApowmRkaA4HgEGDvL3X1q3w1luIQOXbb8ZJHG+8YV2VIlK/Pvz1r5qxPyEBZs3STvZr1vhdMmOMMT4qMuhyzsU752o552o65xIC28H9WrEspAmYO1eTZqWkQKNG3t3HOXjuOe2f1K8f3a85ndq1YcMGWLbMu9seV+LiYOhQePxxzb+xbRvcfTf8+982hZAxxlRQkaSMKDURGSQia0RknYjcU8jjVwTSUHwtIgtEJMXL8pRrzoWaFs8/39t7ffmlDlmsXh1GjqRSJbjoIn1o+nRvb33cad5cA69LLtH911+H226D1av9LZcxxpiY8yzoEpF4YCKacqIN8GsRaVPgtB+APs65DsCfgee8Kk+5t3KlZqFPToZu3by9V3Dun6uu0kkY0TivenX45htrJSuxxEQYNQr+9jdo3FibbseM0b5eBw74XTpjjDEx4mVNVzdgnXNug3MuC5gGXBR+gnNugXPul8Dul0BjD8tTvs2apesBA7SfkJf++Ee48858KSmqVQtVsFltVym1bq2d7EeMgPh4fU9vuSWQ8t8YY8zxzsugqxGwOWx/S+BYUa4D3vOwPOXXzp2a8TwuDgYO9P5+cXE643Vc/l+PIUN0wOSXX2qlmymFxES44gp44glo2RJ27dKcXg8+CNu3+106Y4wxHvIy6CpsrphCx76JyNlo0DXGw/KUX2++CXl5miK+bl1v7uEcTJ0aSD1fuNq1NVNFsEjmGDRrBo8+qrm9qlXTvF633KLvQWam36UzxhjjAS+Dri3AyWH7jYFtBU8SkQ7A88BFzrndHpanfEpLgw8/1O3LLvPuPh98ANOmadPiUbKgXnKJVoB98gn8/LN3xakQ4uK0+nDSJK1ZzM7W92D0aPjiC8vPYYwxxxkvg65FQEsRaS4ilYARwMzwEwLzO74FXOWc+97DspRfM2boh/EZZ8DJJxd7eqns3g0vvKDbV155RLNiuBNP1ET4ubnw9tveFKfCqVNH+9D97W9aA7ZzJ/zlLxoA2wTaxhhz3PAs6HLO5QC3Ah8A3wKvO+dWichNInJT4LT7gROAp0VkuYgs9qo85VJ6eihNhFe1XM6FRtF16wa9ehX7lKFDdf3++9YNKaratNG+XjfeCDVr6ojVO++Exx7TQMwYY0y55mmeLufcLOfcac65U5xz4wPHJjnnJgW2r3fO1XHOpQaWLl6Wp9yZOVOnj+ncGU491Zt7LFgACxdC1apw880ghXXFy69ZMzjnHK2Ae/ZZawWLqvh4GDwY/vUvbctNSNC23JtughdftEm0jTGmHPM06DLH4MAB+O9/dXvYMG/ukZGh/YkARo4sUSf9UaM0b9eSJdr9yERZ9er6Ij/7LJx1lka4b74J118P//kP7N/vdwmNMcaUkAVdZdWsWfrB2q6dNjt5YcUK2LtXrx+WkysStWvD1Vfr9r/+ZfM5e6Z+fZ0+6PHHoWNHDcZffVWDr+nT7YU3xphyRFw5aBvq0qWLW7y4AnX3ysyE667TgOjBB/XD1itr12rKglLM5ZiXB3fdpZe45BKtmDEeW7UKXnlF+3uBzhhw0UWhKQOMMcb4TkSWFNZlymq6yqLZszXgatkSUlO9vVfLlqWePDsuLtQN7J134Mcfo1w2c6S2bXVk45//DK1a6e/Jyy/Dtdfqeu9ev0tojDGmCBZ0lTVZWfDWW7o9bFhEHdtLxDl46ilNxhkFLVtqy2Rurg6CLAcVp+WfiAbjjzyiwVeHDtrs+MYbGnw9+yz89JPfpTTGGFOABV1lzfTpOjVMs2bQvXv0r//BB1qT9thj2pE+CoLzYq9aBXPnRuWSJhLB4Gv8eA3AunXToP3dd+GGG/T4ypUWCRtjTBlhQVdZsn17aDbpm26Kfi3X5s3a6x0063mNGlG5bI0aof5ckydrzGhi7PTT4b77tBbznHM09cSXX8LYsfC732k0nJ3tdymNMaZCs6CrrHBOm4Wys/VDs23b6F4/O1trQ7Ky4NxzNQ1BFJ1zjla67NunXY6ysqJ6eROpZs00yJo8GUaMgFq1YP16Hf04cqTm+rKmR2OM8YUFXWXFl19q0qtgfqZoe+kl+OEHaNBAM55HmYhmNqhfX0czPv20tWr5KjkZrrhCp3e67TYNxvbt01xfv/kNjBunv3O5uX6X1BhjKowEvwtg0FxLwWa/q67SJFjRtGSJDi+Mj9ccD1WrRvf6AbVqwf/9n97i44/hlFPgwgs9uZWJVKVK0L8/9OsHa9botFLz58PSpbrUrq2TbffrB02a+F1aY4w5rllNV1nw+uvw88/QokWJk5RGJClJaz4uvxxOOy361w/TvDnccYduP/88fPONp7czkRLRfl+/+53Wel5/vaYK2bNHZy6/5Rad5/F//7OphowxxiOWHNVvW7bAb38LOTnw6KOae8kLe/dqVVS0O+cX4aWXdExArVrwj39os6MpY5yD77+Hjz7S2q/g1ELx8ZqQ96yzoEcPz2pGjTHmeFVUclQLuvzkHNx/PyxfDgMGaPAVLTk58PXX0KlT9K5ZAnl58Kc/aQtWixbaud4SppdhWVnax+vjj/X3MS9Pj1eqpKkozjxTJ16vUsXXYhpjTHlgQVdZNGOGjjKrWVMnnq5VKzrXdQ7++U/Nx3XttXDxxdG5bgllZGiL1fbt2uz44IPR765mPLB3L3z+Ocybp8nXgipV0iD+jDOga9eopRwxxpjjjQVdZc3y5VrL5ZzmUjrjjOhdOxjMVaoEDz+saeN9snOnpo/atk0HTj70kDU1liu7dmnT44IF8N13oePx8dC+vQZfXbvqm2uMMQawoKts+eknrQJKT4fhw+HKK6N37YULNRO5czBmjDYL+WzvXo0vN2yAE07QmWtOPtnvUpkSS0vTJsgFC3SERLAJErRTfrdu0KULtG4NiYn+ldMYY3xmQVdZceiQJrTauFFrCO67L3qd2xcu1JqtnBzN0TRiRHSuGwX792uwtWqVtqb+6U++VsCZY5WerqlIFi3SdbATPkDlyloL1rGjLo0bx2wAhzHGlAUWdJUFzsHf/w6ffaY1A489Fr3e5V99pb3Vc3NhyBBNCVDGPugyMzUmXLxY+2OPHg19+5a5YpqSys2Fb7/VAGzpUv1CES45WSflbt9el5NOsjfdGHNcs6CrLJg+XXMpVKum07I0ahS9a+/YAffcA336wDXXlNkPtZwcePJJ+OQT3T/zTA2+atb0tVgmmtLSYMUKWLZMlz178j9et64GX23aaFNkkyZl9vfVGGNKw4Iuv334oU5GDNqk2LVr9O+Rnq4jysr4B5hzmhrquee0tTU5WWeq6dzZ75KZqHMONm3SPmDBpWDy1erVNfhq3VoTuJ56qn4xMcaYcsqCLr84pxnnX3lF90eOhEsvjc5133sPDhyAoUOP/Xo++OknrfD79lvdP/98uPpqy+d1XHMOfvwRVq7UN371ah0hGU5E+4G1aqUzKJx6qs4daZ3zjTHlhAVdfsjLg2efhVmz9IPkpps0sjhWhw7pjNJz5+r+44+X217peXnw1lswdao2PdaooTHp4MGWh7PC+PnnUAD2/fc6MXtOTv5zEhK0GfKUUzQIa9ECmja1bPnGmDLJgq5Yy8rSaX2++EK/od91V3RycW3eDH/9q64rV9Y5884++9iv67MNG3TO75Urdb92bRg2DAYO1HRjpgLJytLA6/vvdZLu9eth61atJSuoQQOtBQsuTZrosfj4GBfaGGNCLOiKpT17NDBavVrbyu67D9q2Pfbrzp0LEyfqMMCTT9aO802aHPt1ywjntP/1yy/D2rV6rG5drfU691zLZl+hHTyogdj69bBunY6Q3LTpyBox0FqxRo30b6NJE91u3BgaNtQvKsYY4zELumLBOZ1654UXNG9R3bqakCoagdEnn2iKCdA8C7fccty2vzmnGTBeeSWUfSA+XnNvDhigM9HExflaRFMW5ORoDdjGjRqQbdqk/cV27iz6OfXqaRDWsKEuDRro+sQTrc+YMSZqLOjy2ubNOt/h6tW637kz3HqrBl7RkJGh1/v1rzXyKOMjFKPBOc3pNXu2BmHBBOgnnKCpJrp21QrEhAR/y2nKmEOH9O9x0ybYskW3t27VSUBzcwt/joj+Yp10kgZgJ56o2/Xq6bxVJ5xgTZbGmIhZ0OWVzEzNvzV9un7zTkqCG26A3r1LHxg5p1OtzJoF48aFOjUdOnTc1m4VJy0N5szRAGz79tDxqlW15qtrV0hN1c9GYwqVk6P57LZt02X79tB6x47C+4wFBYOy+vX1i1TB5YQTtP3bqmCNMVjQFX07d8L//qdRQEaGHhs4UFNC1KhRumtmZ2uw9d//agdigJtvjs6Ix+OEczrv8ldfaQL0H3/M/3i9eqF0T61ba99qqwkzxcrJ0dQVO3ZoLpMdO3TZuVOXX345elAGGpjVqaMBWHKybhdcatfWL2YV9MuTMRWFBV3R4JxOHvjf/+qoxOBr16oVjBpV+s7yO3bA++9rAtW9e/VYrVo6EfaAAdascRQ7d2rwtXixZh0InwIQNOBq3FiDr6ZNQwPc6ta1SglTAsGgbOdO2L1b01yEr3fvDv3tRqJyZQ2+gkFYrVpHrmvWDC01atj/AWPKEQu6SiszE77+Wj/VFy8OddJNSNCORRdeqAkcS8q5UPPj3Xdr9Q1A8+Zas9W3r30bLqFg8vNvvw0t4U2R4RIStKWoQQPtunPSSaFWorp1tVLCashMieTk6MjlYBC2Z4/WkIUve/bokp1d8utXr67BV3AJBmPVq4eWGjU0m3/16vnXVatWiH6gxpQVFnRFKj1dh6WvXx+atiQrK/R4nTrajHjeedqEUJLrrl2rEwIvXqyd4tu108fmzdNj55+vtWb2zzFqDh7UQGzjRm2K3LhR+1SnpR39eSKhiojgEtwPft4FP/OCn3tVq1rtmYmAc/qLuXevBmD79un2vn1HLunpumRkFN+8eTQi+iUuGIAF1+FLlSqhdXCpWlVr5YL7lSuHlipVrPbNmCL4EnSJyCDgSSAeeN4593CBxyXw+PnAAWCkc25pwet4GnRlZcGMGaH8P4UNN2/ZErp00aVly8iCIufgzTf1muvWaRNiuGHD4KqrovIjmJLLzNSuO9u36xJsNdq1S9eRdOEpTPDzLLiEf3YV/MwKXxITdbxEcElMzL8kJOTfjo+32LxCycvTtvOMjNASDMYOHAg9FlwfOBA6fuCADsLxQnx8/l/kSpVC6+AS/AUv+IuekBD6ZQ+uw3/RC/sDKGxt33RMGVRU0OVZA4qIxAMTgf7AFmCRiMx0zq0OO+08oGVg6Q48E1jHTmKiBkcHDuh+pUraxHfKKdps2KmT1m4FZWRoVUmw6SC4/ukn/Sf4+ON6nkj+oXbB67Zvr8Fbq1ax/ClNAZUrax+vpk0LfzzYUhSsjNi7N7Qd/pkX/Nzbv18rL4LL7t3e/wzB4KuodVFLXFxoXXC7qCUY5ImEjhW2HX5OwWOFLcHPy4LnBY9B4c8LP17wnIKPHW0/knPC9wtbH227qPOLek5hgbQeiwNqIlITEoE6gaWY6x2Wl0dc5kHkUGA5eCC0zjwUOn7oIJKdqevMQ8ihQ7rOOoRkZga2dU1WJrhc2H8A/c4cuPeRP8KxKe6CIhCfAAkJuIQE3Y6PxyUmQpz+Qbj4+NDxhAQkPl6PxcUf/qNx8fEgcYf/gFxc2B9LcD/sj+Xw88P+SFxcnF4jLg5JiMdJ3JF/aCL5j4cvIqH7FvgDO/ycAn9kEh865qSYP8bg61XB1azpX55kL3utdAPWOec2AIjINOAiIDzough42Wl125ciUltEGjjniuiJ4wER7bD+8cfaRlSlSmgakm+/hf/8B0aMgP799fwvvoAJE4q+3v79oRmbhw3T659yimaQt6r4ciMhIZQNIFLO5a9gyMwMBWGHDuk6MzO0ZGXp8exs3S64ZGfnX3JydMnNDW3n5Oi1jDm6OKB6YIkCASo54lwuiXmZ+ZaEvCwS8rJ022Uf3k/IyyLRhbbjXTYJedmH1wl5WSS4bOLzsg+v411OvvPiXQ4JednEudzDj4lzQHZgMZFwIjjicAhOBJBCtx0FH0OfF7Ydul4wmBPyJO7wdvB48Nr6vPzXLOy8/Psc8dyCP0/h1wk97/BzRTjt3mF0uqZ9yV+4KPAy6GoEbA7b38KRtViFndMIiF3QBdoZfurUI4e+Bf3yS2j7xBO1iTHY0Sc4DDzYGzt8At5+/TwstClrREL9mevV8/ZezuUPvoLbubkaoOXl6XbBJXg8L0/Pz8sregmel5en9ytqO7gfvi7qWGFLUY9D6LHgz1zw8aL2w1+n8MeOdqywdVHnF3Xu0R6LZDuSa5fkPpE8t7hjRT9f0I+QBILBnHMQSQh0LGUsSFwecbnZxOXlHA7G4vJyiHc5SF5oP/iY5OUS58KWwGPhi7i8w8fF5YWtc4hzeQWO5V8LecTlBbaD+4HHcRqoBo/h3OHtgueLywMccvic3MM/rx5zgWMuEHjq+vB55B0+Hnpu8AV1QBGJgkuj4PtUxruKV8oc6Nu9vQy6CqvDLPhWRHJObNx4o35qhncSrVJFP0GTkkLndegQakI0xiciWhtnIyyNiQMqBxZzVOFRemHfdo72Ledo34wKnl/Y8cLOKe03qII/S8F1cd+OiupXEgNe/sveApwctt8Y2FaKc2Lj7LN9ua0xxhgTE+GdB20Agi+8fNUXAS1FpLmIVAJGADMLnDMTuFpUD2BvTPtzGWOMMcbEiGc1Xc65HBG5FfgATRkxxTm3SkRuCjw+CZiFpotYhw5/GeVVeYwxxhhj/ORpjxDn3Cw0sAo/Nils2wG3eFkGY4wxxpiywBp1jTHGGGNiwIIuY4wxxpgYsKDLGGOMMSYGLOgyxhhjjIkBTye8jhYR+Rn40e9yGGOMMcZEoKlz7oi5ScpF0GWMMcYYU95Z86IxxhhjTAxY0GWMMcYYEwMWdAEiMkhE1ojIOhG5x+/yVFQicrKIzBWRb0VklYjcHjieLCIfisjawLqO32WtiEQkXkSWici7gX17X8oAEaktItNF5LvA305Pe2/8JyK/C/wfWykir4pIFXtf/CEiU0Rkp4isDDtW5HshImMD8cAaERkYzbJU+KBLROKBicB5QBvg1yLSxt9SVVg5wO+dc62BHsAtgffiHuBj51xL4OPAvom924Fvw/btfSkbngTed86dDqSg75G9Nz4SkUbAbUAX51w7dCq8Edj74pcXgUEFjhX6XgQ+c0YAbQPPeToQJ0RFhQ+6gG7AOufcBudcFjANuMjnMlVIzrntzrmlge109MOjEfp+vBQ47SXgV74UsAITkcbABcDzYYftffGZiNQCzgImAzjnspxze7D3pixIAKqKSAJQDdiGvS++cM7NA9IKHC7qvbgImOacy3TO/YDODd0tWmWxoEs/1DeH7W8JHDM+EpFmQEdgIXCic247aGAG1PexaBXVE8AfgLywY/a++K8F8DPwQqDp93kRqY69N75yzm0FHgU2AduBvc652dj7UpYU9V54GhNY0AVSyDHLo+EjEakBvAnc4Zzb53d5KjoRGQzsdM4t8bss5ggJQCfgGedcR2A/1mTlu0D/oIuA5kBDoLqIXOlvqUyEPI0JLOjSKPbksP3GaDWw8YGIJKIB11Tn3FuBwztEpEHg8QbATr/KV0H1AoaIyEa0+f0cEXkFe1/Kgi3AFufcwsD+dDQIs/fGX/2AH5xzPzvnsoG3gDOw96UsKeq98DQmsKALFgEtRaS5iFRCO9DN9LlMFZKICNo35Vvn3ONhD80ErglsXwO8E+uyVWTOubHOucbOuWbo38cc59yV2PviO+fcT8BmEWkVOHQusBp7b/y2CeghItUC/9fORfuo2vtSdhT1XswERohIZRFpDrQEvorWTS0jPSAi56N9VuKBKc658f6WqGISkTOB+cA3hPoO/RHt1/U60AT9Z3aZc65gp0gTAyLSF7jLOTdYRE7A3hffiUgqOsChErABGIV+obb3xkci8idgODoqexlwPVADe19iTkReBfoCdYEdwDhgBkW8FyJyL3At+t7d4Zx7L2plsaDLGGOMMcZ71rxojDHGGBMDFnQZY4wxxsSABV3GGGOMMTFgQZcxxhhjTAxY0GWMMcYYEwMWdBljfCciJ4jI8sDyk4hsDWxniMjTHt3zDhG5upDjzURkZRTvU0lE5gXm4DPGVGD2T8AY4zvn3G4gFUBEHgAynHOPenW/QAB0LZq93VPOuSwR+RjN2TTV6/sZY8ouq+kyxpRZItJXRN4NbD8gIi+JyGwR2Sgil4jI30XkGxF5PzCFFCLSWUQ+FZElIvJBcKqPAs4BljrncsKes0JEvgBuCbt/MxGZLyJLA8sZgeP/FpGLws6bKiJDRKStiHwVqKX7WkRaBk6ZAVzhxWtkjCk/LOgyxpQnpwAXoJMJvwLMdc61Bw4CFwQCr6eAoc65zsAUoLAZJnoB4RN4vwDc5pzrWeC8nUB/51wntKZqQuD482jmd0QkCZ1XbxZwE/Ckcy4V6ILO4wawEuhayp/ZGHOcsOZFY0x58p5zLltEvkGn7Xo/cPwboBnQCmgHfKhT3hEPbC/kOg3QufCCQVNt59yngcf+DZwX2E4E/hmYaicXOA3AOfepiEwUkfrAJcCbzrmcQE3ZvSLSGHjLObc2cH6uiGSJSE3nXHqUXgtjTDljQZcxpjzJBHDO5YlItgvNY5aH/j8TYFUhNVYFHQSqBLYFKGo+tN+hc7WloC0Dh8Ie+zfaZDgC7R+Gc+4/IrIQrY37QESud87NCZxfucDzjTEVjDUvGmOOJ2uAeiLSE0BEEkWkbSHnfQucCuCc2wPsDUy4Dvn7XiUB251zecBVaM1Z0IvAHYFrrArcrwWwwTk3AZgJdAgcPwH42TmXfew/ojGmvLKgyxhz3HDOZQFDgb+JyApgOdrfqqD3gLPC9kcBEwPNgwfDjj8NXCMiX6JNi/vD7rUDDd5eCDt/OLBSRJYDpwMvB46fjfb5MsZUYBKqnTfGmIpDRN4G/hDsd1WK51dD+5J1cs7tLebct4Cxzrk1pbmXMeb4YDVdxpiK6h60Q32JiUg/4DvgqQgCrkrADAu4jDFW02WMMcYYEwNW02WMMcYYEwMWdBljjDHGxIAFXcYYY4wxMWBBlzHGGGNMDFjQZYwxxhgTAxZ0GWOMMcbEwP8DcPGy5gelY/UAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABPtklEQVR4nO3dd3hUZfbA8e9JoxcRUKqABqQmdBARFAVsuLqo2EVdu6KurqhrWVd+q4INBbFQbCuKCqKLihRFRJFqAUSqICAtlISW9v7+ODPMJKRMwtyZlPN5nvvcMnfufTMzyZy85bzinMMYY4wxxngrJtoFMMYYY4wpDyzoMsYYY4yJAAu6jDHGGGMiwIIuY4wxxpgIsKDLGGOMMSYCLOgyxhhjjImAuGgXIBS1a9d2TZo0iXYxjDHGGGMKtWjRoh3OuTq5j5eKoKtJkyYsXLgw2sUwxhhjjCmUiPye13FrXjTGGGOMiQALuowxxhhjIsCCLmOMMcaYCPAs6BKRcSKyTUR+yedxEZGRIrJaRH4SkQ5elcUYY4wxJtq8rOmaAPQv4PGzgUTfciPwsodlMcYYY4yJKs+CLufcHCClgFMuAN506nugpojU86o8xhhjjDHRFM2UEQ2AjUH7f/iObYlOcYwxxpgyzrnAOiYmsH3okG5nZwfOyc7WdYUKkJCg24cOwb59gecFLwB16wbutX07pKfnPNe/XbUq1KoVuOamTTnLGHx+o0ZQsaJu//kn7NmT83H/cypWhGbNAvu//JLzHIATToAaNUJ7rTwQzaBL8jjm8jjmubQ0qFIFJK8SGWOMKZmcg8zMnEt8vH6hAxw8qF/mmZmQlRVY/Ptt2ugff4AVK2DjxsDj2dmB82vWhLPOCtxz/PjA49nZObf79IG2bfXcxYth2rTAOc7l3P6//wv8LM88o/f3P5aVFQgsevaEK67Q89atg3/968hz/Mt//gNNm+q5o0fDl18G7hscgJx0Ejz3XGD/4ovzf51vuw36+3oLzZql183PJ58Etp94Atauzfu8/v31ugAbNsA99+R/zeee0/ICTJoE06fnfV7un+nBB4885/774dRT87+Xx6IZdP0BNArabwhsjkZB7rsPDhyAVq2gdWtdn3BC4J8AY4wxuWRnay3GoUOBJT0dYmPBP4OIc/olnZGhj/mXjAxdevSAli313EWL4H//CzyWkaHBj3/9yiuB/4zvvRdWr9agI7fgL/ONG0P/Mp85E774Iu/zTjopEHQBTJ6c/zVPPjkQdG3bBvPn53+uc4GfaeNGWLMm7/N27QpsZ2XBzp35XzP4NcnO1tcuN5EjaxkSEgLHRQJfgCIayPpVrKhBaPC5/muJ5PyZ6tTRL9fc54jAMccErlmhgn5mgs8JPrdChcC5xx8PLVrk/bM0bJjzZ2rT5sjrVa9+5OsRQdEMuqYCt4vIRKArsMc5F/GmxYMHtaYyNRW++UYX0H9+2rTRfzC6dg3UbBpjTKninAY6Bw7A/v0518ccA4mJet7OnfDxxxo8HTig64MHA9t//zs0bqznvvyy1uDkpVkzeOGFwP4LLxzZxONXv34g6EpJgQUL8v85srM1oPP/TP7gIi5Ol9hYXQf/sa5cWcvjfyx4HRsLlSoFzm3VKnCP3MuxxwbOE4HrrtN1bKwGJ/51TEzg5wFo315rW/yP5V6C3XOPvk8xMYGgx7/4a+NAg5Px43OeFxwoBf/8N98MN9105Hm5icCHH+b/2gc7/XRdQvHPf4Z2XuPG8OKLoZ178cUF18r5iWitXwkjLr9fhqO9sMi7QG+gNrAVeBSIB3DOjRERAV5CRzjuBwY75/Kc66dTp07Oy2mAnIM//oBly2D5cl1v2xZ4vEIFDbx699bfobhSMXmSMabM8PeL8fer2bpV+6ukpWn/Gv/i33/iiUCAct998OuveV+3Tx+46y7d3rAhUEOUlyef1KYAgNdfh6lT9Y+jv7+Pf92wod7Tb+RI/cJPSNAlPl6XhARo1y7QB2f7dm068z8eFxfYjo/XGg5/wOAPTmJjrV+IKZFEZJFzrtMRx70KusLJ66ArLzt2wA8/wFdfaVO/X40acNFFcO65OWs8jTEmJFlZWrW+e7cGD82bBx579VVtStq7V5fUVF3S0+H66+Evf9Hz5syB4cPzv8e77wb6NT38sP4nWbmy1uz415UqQVJS4JppafD55/p4hQpaYxK8NGgQqEXJzs6/1sQYY0HX0di6Vf/GffWV/jMIOuji0kuhb1+r+TLGoM1wKSnaTBc8Qurrr7Uz865d2pdh795Ac1vt2tpU5HfVVRqM5RYXpx2pBw7U/TVrtCmwalVtevKv/UurVoE/TFlZgVovY0xEWNAVBs7pYJS33gr0d6xbFy6/HM44w/7pM6bMOnhQm+38fXv279daqR07dElJ0aDLb+hQ7SQO2ul63LjAYyJQrZoGZXXq6Eg0v6++0maz6tX1nGrVdLtCBfsDY0wpkl/QZXU0RSACHTtChw7w3Xfw9ts64OT557UD/j33RH1ghDHmaKxapf2ftm7VZds27WuUmqodpJ9+Ws9LSNBRecH/tCYkaFBWq1bOzszdumnNV82a2nG9evX8a5569/bqJzPGlAAWdBWDCJxyiv4tnT0bxo7V0c5DhmgKkJNPjnYJjTFHSE+HLVs0b9Pmzbq9ebOO7vKnOJg9O2eeIb+EhJyBUlwc3H23BlC1a2uwlV+yv3r1dDHGlHsWdB2FmBgd/JOUBE89pf8gDx0KgwfDgAHWGmBMVOzbpzVTxx+v+ykp+t/Q1q15py7YsCEQdLVrp3mhjjtOn1+3ri41ahz5Cx3qsHljjPGxPl1hkpkJEyZo31bQmrAhQ3QgkDHGA5mZmutl3Tpdfv9dA6gdO7S62T+6LytLO6BnZWkg1bCh5oeqV0/XJ52kfaeMMSZMrE+Xx+Li4IYbdNDQCy/AvHk6COnxxy21hDFH7eBBDawaNAh0nBw3Lv+mwOAhxbGxOm1J7do5M2sbY0yEWdAVZqecoi0VDz2kiVafekoTEltaCWNClJmpAdZvv+myapXWaDmno1X8zXpNm2ptVdOmujRpopmtjz/+yGzf1qfKGFMCWCjggfr1tYbr/vt1VosXX9Skz9bHy5g87N8faIfPyoIrr9R+WcFiYzWgCu7MfuaZOefDM8aYEs6CLo80agSPPqo1XrNmaT/cwYMt8DLlnHOBKWz8827t2aMZ1P1z2TVsqNnRW7TQ5aSTtBbLPwWOn/0yGWNKGQu6PNSihTYtPv645kesUQP++tdol8qYKNiwAT76CH76SfNeBatQQfNhHXec7j/5pLXHG2PKJPvL5rEOHbQbyogROrqxVi0baW7KuIMH4eeftdaqQwc9lpEBM2fqdrVq0KaNTp7cqpX2xwoOsizgMsaUUfbXLQJOO01bUF59VQdRtWmjs38YU2Zs2qQzxC9cqE2GmZkaUPmDrqZN4cYbNdBq2tSaBo0x5ZIFXRFy3nn6z/9338GoUdrfy753TKk3eza8954GXX4ikJgI7dtrHy4RHU14/vnRK6cxxpQAFnRFiAjcfLMGXosWaef6Pn2iXSpjiiAzE378Uae88WdwBw24qlaFTp2gc2dITrZJSI0xJg+WkT7CZs2C557TadpGj9Y+XsaUWJmZsHgxzJ2rzYf79kG/fnD77fr4vn2aU6tly/wncTbGmHLGMtKXEKefDnPmaG3X6NGaUsKaGU2J89tv8OWX8O23Oo+hnz8BqV+VKtpJ0RhjTKEs6IowEa0kuPVWmD9fKxB69ox2qYwh0P8K9IP5+ee6fcIJOhqkRw+dhscYY0yxWNAVBbVrw3XXaYf6MWOgXTvN4WVMxB08qLVZX34JvXrB2Wfr8T59tPN77945+28ZY4wpNgu6oqRfP/jmG80VOXas5vIyJmLWroXPPoOvv4YDBwLH/UHXCSfAtddGpWjGGFNWWdAVJSJwxx1wyy3w1VdwySU6+4kxnlqyBP77X/j118Cxk0+Gvn3h1FOjVy5jjCkHLOiKouOP1zl7P/8c3n/fartMBKSkaMBVpYo2IfbvrxOFGmOM8ZwFXVE2cCBMn66tPJddBvXqRbtEpsz4/Xed9LN6de1ECDpqIytLO8ZXrBjd8hljTDkTE+0ClHfHHadpJLKz4YMPol0aU+o5px0FH3tMh8nOnAlffAGHDunjCQnalGgBlzHGRJzVdJUAF1+sSVNnzYJBg2xeRlMMzum8hxMnao4t0ADrrLPgggugQoXols8YY4wFXSVBgwba6jNnDnz4oU4XZEyRrFsHjz+u29Wr6zyH554L1apFt1zGGGMOs+bFEuLSS3U9fbr2dTamQM4FarQAmjXTdurrrtMcJIMGWcBljDEljAVdJUTjxnDKKZCRAR99FO3SmBJt2TK4/374+99h1arA8XvugQsvtP5axhhTQlnQVYL4a7s++wz27IluWUwJtH69NiEOHQorVug0Bjt3RrtUxhhjQmR9ukqQZs2gc2dYsACmTIFrrol2iUyJkJICb76pIy2c05qsCy/UpVKlaJfOGGNMiKymq4Tx13ZNmxYY5W/KuYkTNfVDbKx2kH/9dbj8cgu4jDGmlPE06BKR/iKyUkRWi8jQPB6vISKfiMiPIrJMRAZ7WZ7SoEULSEyE/fvhu++iXRoTFc7B3r2B/csv12Smo0fDjTfa7OjGGFNKeRZ0iUgsMAo4G2gFXCYirXKddhuw3DmXBPQGnhGRBK/KVFqceaauZ8yIbjlMFGzZoolNhw6FzEw9VrMm3HefTVdgjDGlnJc1XV2A1c65tc65dGAicEGucxxQTUQEqAqkAJkelqlUOO00iI/XxOLbtkW7NCYiMjN1SoLbb4fFi7Uf14YN0S6VMcaYMPIy6GoAbAza/8N3LNhLQEtgM/AzMMQ5l+1hmUqFqlWhe3dtZZo1K9qlMZ5buRLuvhveeAPS0zXf1iuv6MgKY4wxZYaXQZfkcczl2u8HLAXqA8nASyJS3cMylRrBTYwu96tmyo433tCmw/Xrtfnw3//WfFvWb8sYY8ocL4OuP4BGQfsN0RqtYIOBj5xaDawDTvawTKVGUhLUrg1bt8Ivv0S7NMYz9etDTIxOwPnSS5CcHO0SGWOM8YiXQdcCIFFEmvo6xw8CpuY6ZwPQB0BEjgNaAGs9LFOpERMDffrotnWoL0PS0zWjvN+ZZ8LLL8PVV+sE1cYYY8osz4Iu51wmcDvwBbACeN85t0xEbhYR/5TO/wZOEZGfgZnA/c65HV6VqbTxB13ffgsHDkS3LCYMVq2Cu+6CRx6BTZv0mIiNSjTGmHLC04z0zrlpwLRcx8YEbW8G+npZhtKsXj1o00abF+fOhbPOinaJTLE4pxNqvvUWZGVBgwaW+dYYY8ohy0hfwvk71H/5ZXTLYYppzx7NuzVhggZcAwbAyJE2MtEYY8ohC7pKuB49dKq9FSsCLVKmlFixAu64Q/NuVaumzYp/+5v13TLGmHKq0KBLRHqIyJci8puIrBWRdSJind0jpGJFOPVU3Z45M7plMUVUtSrs26dtxC++qLOZG2OMKbdC6dM1FrgbWARkeVsck5czz9QRjLNmwZVX6shGU0IdOgQVKuh2o0bw1FPQtKlOVm2MMaZcC+Xre49z7jPn3Dbn3E7/4nnJzGGtWsFxx8HOnZq83JRQ69bBrbfmrJI86SQLuIwxxgChBV2zRWS4iHQXkQ7+xfOSmcNEdFoggO++i25ZTD7mzIF779XJMr/4wqYRMMYYc4RQmhe7+tadgo454IzwF8fkp1s3mDIFvv8eBg/WQMyUAFlZOpXP5Mm636eP1nbZG2SMMSaXQoMu59zpkSiIKVjLljod35YtsGEDnHBCtEtkOHAAnn4aFi7UJsQbboBzz7WAyxhjTJ5CGb1YQ0SeFZGFvuUZEbHZeCMsJga6dNHt77+PblmMz3PPacBVrRo88QScd54FXMYYY/IVSp+ucUAqcIlv2QuM97JQJm/Wr6uEueoqaN4cnnlG00IYY4wxBQilT9eJzrm/Bu3/S0SWelQeU4CkJM3btWYNbN8OdepEu0Tl0KZNOo0PaEqIESOsdssYY0xIQqnpOiAip/p3RKQHYNMvR0FCAnTwjRu1JsYo+PJL7SQ/LWg6UQu4jDHGhCiUoOsWYJSIrBeR34GXgJu9LZbJj7+J0YKuCJs8WedMzM6GXbuiXRpjjDGlUCijF5cCSSJS3be/1+tCmfx16qQD5X75BVJTtQ+38ZBz8Pbb8P77un/TTdph3hhjjCmifIMuEbnSOfe2iNyT6zgAzrlnPS6byUPVqtC2LSxdCgsWwBmWLc07zsGYMdqcGBMDd90Fp1sGFWOMMcVTUPNiFd+6Wh5LVY/LZQrQrZuurYnRYxMmaMAVHw8PPmgBlzHGmKOSb02Xc+4V3+YM59y3wY/5OtObKOnaVStgFi3KOb+yCbP+/WH+fO08365dtEtjjDGmlAulI/2LIR4zEVK7NiQmQnq6NjOaMAqeM7FePRg1ygIuY4wxYVFQn67uwClAnVz9uqoDsV4XzBSsWzdYtUoTpXbtWvj5JgSZmTB8OJx8Mlx4oR6LtY+6McaY8CiopisB7bsVR87+XHuBgd4XzRTEnzrihx90zmVzlPwB17x58N57sHt3tEtkjDGmjCmoT9fXwNciMsE593sEy2RC0LAh1K8PmzfDr79C69bRLlEplpWlU/nMmwdVqsC//w01a0a7VMYYY8qYUPp07ReR4SIyTURm+RfPS2YKJKI5uwAWL45uWUq17Gx49lmYOxcqV4bHH9cOc8YYY0yYhRJ0vQP8CjQF/gWsBxZ4WCYTIv+UQEuWRLccpZZz8MorMGcOVKqkAVfz5tEulTHGmDIqlKDrWOfcWCDDOfe1c+46oJvH5TIhaNNGU0itXg179kS7NKXQ3r2aEiI+Hh5+GFq0iHaJjDHGlGGhBF0ZvvUWETlXRNoDDT0skwlRhQral8s5Sx1RLDVqwNNPw0MPaZp/Y4wxxkOhBF1PiEgN4O/AvcDrwN2elsqEzN/EuGhRdMtRqmzZEtiuWxc6doxeWYwxxpQbhQZdzrlPnXN7nHO/OOdOd851dM5NjUThTOH88cKSJTnzepp8LFwIt9yiaSHsBTPGGBNBBSVHfRHI91vJOXenJyUyRdKoERx7LOzcCevWQbNm0S5RCbZ6NTz5pKaIOHhQh4AaY4wxEZJv0AUsjFgpTLGJaBPjl19q6ggLuvKxY4fm3zp0CPr0gauvjnaJjDHGlDMFJUd9I5IFMcUXHHQNtLkCjnTgAPzrX5CSoh3mb7/darmMMcZEXEE1XQCIyGzyaGZ0zp3hSYlMkSUnawyxfLnGF5UqRbtEJUhWFjz1FKxfDw0awAMPQFyhH3tjjDEm7EL59rk3aLsi8FcgM5SLi0h/4AV0guzXnXNP5nFOb+B5IB7Y4ZzrFcq1TUDVqppi6tdf4aefbALsHHbtgo0boVo1ePRRXRtjTBmUlZVFSkoKGRkZhZ9swiI+Pp5atWoRGxsb0vmFBl3OudzJCL4Vka8Le56IxAKjgLOAP4AFIjLVObc86JyawGigv3Nug4jUDanU5ggdOmjQtXixBV051K6t8ypu3w716kW7NMYY45mUlBQqVqxI7dq1EetC4TnnHGlpaaSkpFCnTp2QnlNoyggRqRW01BaRfsDxIVy7C7DaObfWOZcOTAQuyHXO5cBHzrkNvh9gW0ilNkfw5+uyeRh9glP016xp8ykaY8q8jIwMqlatagFXhIgIVatWLVLNYijJURehIxkXAd+hSVKvD+F5DYCNQft/+I4Faw4cIyJficgiEbEhZcWUmKgtZ3/+mTP3Z7n055+ai2vsWO3TZYwx5YQFXJFV1Nc7lOSoTZ1zzXzrROdcX+fc3FDKktflcu3HAR2Bc4F+wMMiYjMOF0NMDCQl6Xa5zk5/8CAMGwapqbBpk74wxhhjImbYsGG0bt2adu3akZyczPz586NSjqVLlzJt2rTD+1OnTuXJJ7Vr+bXXXssHH3xwxHO++uorzjvvPM/KFMroxYrArcCpaNA0F3jZOXewkKf+ATQK2m8IbM7jnB3OuX3APhGZAyQBv4VWfBOsY0eYO1ebGD38zJRczsGLLwZGKv7975YawhhjIui7777j008/ZfHixVSoUIEdO3aQnp4elbIsXbqUhQsXcs455wAwYMAABgwYEJWy+IVSDfAm0Bp4EXgJaAm8FcLzFgCJItJURBKAQUDu6YM+BnqKSJyIVAa6AitCLbzJqX17Xf/0E5TLwStTpsCcOVCxok5iXaVKtEtkjDHlypYtW6hduzYVKlQAoHbt2tSvX58mTZqwY8cOABYuXEjv3r0B+Prrr0lOTiY5OZn27duTmpoKwNNPP03btm1JSkpi6NChAKxZs4b+/fvTsWNHevbsya+//gpordXNN99Mz549ad68OZ9++inp6ek88sgjvPfeeyQnJ/Pee+8xYcIEbr/99sNlnTFjRo7n5LZv3z6uu+46OnfuTPv27fn444+P+vUJJWVEC+dcUtD+bBH5sbAnOecyReR24As0ZcQ459wyEbnZ9/gY59wKEfkc+AnIRtNK/FL0H8OATgfUpIlW9KxYAe3aRbtEEbR0KYwfr9t3363zIxljTDl1/vneXPeTTwp+vG/fvjz++OM0b96cM888k0svvZRevfLPBDVixAhGjRpFjx49SEtLo2LFinz22WdMmTKF+fPnU7lyZVJSUgC48cYbGTNmDImJicyfP59bb72VWbNmAbB+/Xq+/vpr1qxZw+mnn87q1at5/PHHWbhwIS+99BIAEyZMyHHvvJ4TbNiwYZxxxhmMGzeO3bt306VLF84880yqHMU/9KEEXUtEpJtz7nsAEekKfBvKxZ1z04BpuY6NybU/HBgeWnFNYdq316BryZJyFHQ5B2+8oetLLoFTTol2iYwxplyqWrUqixYt4ptvvmH27Nlceumlh/tR5aVHjx7cc889XHHFFVx00UU0bNiQGTNmMHjwYCpXrgxArVq1SEtLY968eVx88cWHn3vo0KHD25dccgkxMTEkJibSrFmzw7VgBSnsOdOnT2fq1KmMGDECgIMHD7JhwwZatmxZpNckWChBV1fgahHZ4NtvDKwQkZ8B55wrL1/tpUJyMkyeDD8WWhdZhojovIrTptk8SMYYQ+E1Ul6KjY2ld+/e9O7dm7Zt2/LGG28QFxdHdnY2oMGL39ChQzn33HOZNm0a3bp1Y8aMGTjnjhgVmJ2dTc2aNVm6dGme98x9fiijCgt7jnOODz/8kBYtWhR6rVCF0qerP9AU6OVbmgLnAOcBHlVgmuJq3VpnuVm9WgfwlRtVq2otl41WNMaYqFm5ciWrVq06vL906VJOOOEEmjRpwiLf0PoPP/zw8ONr1qyhbdu23H///XTq1Ilff/2Vvn37Mm7cOPbv3w9o0tfq1avTtGlTJk2aBGhA9GNQ7cKkSZPIzs5mzZo1rF27lhYtWlCtWrXDfcTyktdzgvXr148XX3wR5zTxwpIlS47y1QktZcTvQE00wDofqOmc+92/HHUJTFhVqACtWmlLW5mv7Vq0CF57DTJDmpXKGGOMx9LS0rjmmmto1aoV7dq1Y/ny5Tz22GM8+uijDBkyhJ49e+aYMuf555+nTZs2JCUlUalSJc4++2z69+/PgAED6NSpE8nJyYeb99555x3Gjh1LUlISrVu3ztGxvUWLFvTq1Yuzzz6bMWPGULFiRU4//XSWL19+uCN9bnk9J9jDDz9MRkYG7dq1o02bNjz88MNH/fqIP4LL9wSRIcDfgI98hy4EXnXOvXjUdw9Rp06d3MKFCyN1u1Jv0iR4803o3x9uuy3apfHIzp1w552wdy/ccQf07RvtEhljTFRt3ryZ+vXrR7sYEXfttddy3nnnMTBK3Uvyet1FZJFzrlPuc0Npi7ke6Oqce8Q59wjQDQ3CTAmVnKzrMNSElkxZWTB8uAZc7dvDWWdFu0TGGGNMoULpSC9A8FwqWeSdbd6UECeeqF2ctm7VKYHK3DzP774Ly5ZBrVqWANUYY8q53KkgSrJQarrGA/NF5DER+RfwPTDW22KZoxE8JVCZ69f100/w/vsaaN17L9SoEe0SGWOMMSEptKbLOfesiHyFTgMEMNg5V1YbrsqM5GT49lttYuzfP4wXzsyEBQtg5kxIS4Njjsm5NGumixfS0uC553SUwGWXQdu23tzHGGOM8UAozYt+gmaNt7acUsDfr+unnyA7OwyZFLZtgy++gBkzwJcdOF/t2sHFF2t1Wzib/pzTttNjj4VLLw3fdY0xxpgICGXC60eAi4EP0YBrvIhMcs494XXhTPEdf7wuf/4Ja9ZAYmIxL5SaCiNHwvz5GvQANGyo1WdNm8Lu3bBrlwZiO3dqLdhPP+ly0kmarLR79/Dkz6pWTedU3L8fgoYcG2OMMaVBKDVdlwHtnXMHAUTkSWAxYEFXCZecDJ9/rk2MxQq6UlPhn/+EtWshPh569IB+/TQDa341WPv2wWef6eTTq1fDk0/qPIh33138yC81FSpV0qyvIjaRtTHGlFBVq1YlLS2twHO++eYbbr75ZuLj4/nuu++oVKlSyNefMmUKzZs3p1WrVmEvVySEUv2wHgjOGFYBWONJaUxY+ZsY85k1oWDBAVe9evDqqzpSsE2bgpsMq1TR2q1x4+CWW6BuXdi4Ef7xDw3ECskLdwTnNHD7xz90OKYxxphS7Z133uHee+9l6dKlRQq4QIOu5cuXe1Qy74USdB0ClonIBBEZD/wCpInISBEZ6W3xzNFo107joxUrIGiqq8IFB1z168N//gO1axft5gkJcM458PLLOt19ZiaMHQuPPw579oR+nY8/1qbKbds03b4xxpgS76uvvqJ3794MHDiQk08+mSuuuALnHK+//jrvv/8+jz/+OFdccQUAw4cPp3PnzrRr145HH3308DXefPNN2rVrR1JSEldddRXz5s1j6tSp3HfffSQnJ7NmzRrWrFlD//796dixIz179jw8afW6devo3r07nTt3Dksm+XAJpXlxsm/x+8qbophwq1ZNu1WtWqVprTp2DOFJuQOu//s/7bheXAkJcOON2qn+hRdg4ULNJP/3v2tUWJD16+GNN3T7zjuhZs3il8MYY8qT8z2aGrkIM2kvWbKEZcuWUb9+fXr06MG3337LDTfcwNy5cw9nkJ8+fTqrVq3ihx9+wDnHgAEDmDNnDsceeyzDhg3j22+/pXbt2qSkpFCrVi0GDBiQI/t8nz59GDNmDImJicyfP59bb72VWbNmMWTIEG655RauvvpqRo0a5c1rUQyhpIx4IxIFMd5ITtaga+nSEIKuffvCG3AF69pVO+SPGKER4D//qcHYeeflfX5WFjz/vNaQ9esHXbqEpxzGGGMiokuXLjRs2BCA5ORk1q9fz6mnnprjnOnTpzN9+nTat28P6NyNq1at4scff2TgwIHU9rWy1KpV64jrp6WlMW/ePC6++OLDxw4dOgTAt99+e3hi7auuuor7778//D9gMRQlZYQphZKTdS7GkPp1vflmzibFPD7kR6V2bRg2DCZO1OWVV3Tk45VXHtlPbPJkHXZZpw5cf314y2GMMWVdEWqkvFIhqEtIbGwsmZmZR5zjnOOBBx7gpptuynF85MiRSCEph7Kzs6lZsyZL8/mCK+z50RCGcfymJGvZUlv41q/X7A75+u03HXUYG6tpGcIdcPnFxsIVV8Bdd2kaifff12bH4F/GLVvgv//V7Tvu0JGLxhhjypx+/foxbty4wyMLN23axLZt2+jTpw/vv/8+O3fuBCDFlx+yWrVqpKamAlC9enWaNm3KpEmTAA3gfvRNw9KjRw8mTpwIaMf9kiLfoEtE3vKth0SuOCbc4uN1wCEUUNuVlQWjRulIwQsvhMaNvS9Ynz7w8MPaOX7mTHjiiUBv/+OPh+uu0z4JvipnY4wxZU/fvn25/PLL6d69O23btmXgwIGkpqbSunVrHnroIXr16kVSUhL33HMPAIMGDWL48OG0b9+eNWvW8M477zB27FiSkpJo3bo1H3/8MQAvvPACo0aNonPnzuwpyuAtj4nLZwi/iCwHzgamAr3JlYneOVdIWvLw6dSpk1u4cGGkblfmTJmiAwdPPx18n9ucpk6F117T9A6jRkHFinmc5JGVK+Ff/9IO/M2bw6OPQvXqkbu/McaUEZs3b6Z+/frRLka5k9frLiKLnHOdcp9bUPPiGOBz4GRgUa7FIqBSpEMHXS9ZkkearJ074e23dfummyIbcAG0aAHDh2vA9/PPGhXu3RvZMhhjjDERkG/Q5Zwb6ZxrCYxzzjVzzjUNWjya0dh4oVEj7cO+ezesW5frwddfhwMHoFu36I0QbNAAnn4atm+HadM0+CtB1cHGGGNMOBTakd45d4uIJInI7b6lkORKpqQRCdR2LVoU9MCiRTB3rvaruvHGqJTtsO++g+OOg6pVNTp86CELvIwxxpQphQZdInIn8A5Q17e8IyJ3eF0wE17+oGvxYt+B9HQYM0a3r7hCUzNEy44dmq4iPl5zeTVtCr//Dg8+aIGXMcaYMiOUlBE3AF2dc4845x4BugF/87ZYJtySkzVDw4oVsH8/msPlzz/hhBO8y1wcqtde0ybOrl2hf39NytqoEWzYAA88UEiuC2OMMaZ0CCXoEiAraD+LXCMZTclXpYr2Wc/Kgp8XZ+iIRYDBgyEuijly58+HefO0A//NN+uxmjU18GrcWCfL/uc/rXO9McaYUi+UoGs8MF9EHhORx4DvgbGelsp4wt/EuPW9ryAlBZo0CRyMhqwsreUCuOqqnJNq+wOvRo20qfHhh3WaImOMMSVWbGwsycnJtGnThvPPP5/dpbCl4rHHHmPEiBGeXDuUjvTPAoOBFGAXMNg597wnpTGe6tgRcI5qMybjAC666MjpdyIpNlb7bZ11Vt5zMNaooUlT69XT6YkefVSbIY0xxpRIlSpVYunSpfzyyy/UqlWrxEw27ZwjOzs72sUIbRog59xiXwqJF5xzS7wulPHGiSdCcsYCqqRsZH/l2tCzZ7SLBM2awZ13aoezvNSqpfM11q2riVQffxx8E5oaY4wpubp3786mTZsAWLNmDf3796djx4707NmTX3/9FYCtW7dy4YUXkpSURFJSEvPmzQPg2WefpU2bNrRp04bnn38egPvvv5/Ro0cfvv5jjz3GM888A8Dw4cPp3Lkz7dq149FHHwVg/fr1tGzZkltvvZUOHTqwcePGPM8DGDZsGC1atODMM89k5cqVnr0mNuF1ORITA+el66zry076C12i1ZcrOxt++kl794eiTh2t8Ro6FH75RbcfflgnlTTGGJO3ggZJ3XabDlwC+PxznY0kP8WYPDsrK4uZM2dy/fXXA3DjjTcyZswYEhMTmT9/PrfeeiuzZs3izjvvpFevXkyePJmsrCzS0tJYtGgR48ePZ/78+Tjn6Nq1K7169WLQoEHcdddd3HrrrQC8//77fP7550yfPp1Vq1bxww8/4JxjwIABzJkzh8aNG7Ny5UrGjx/P6NGj8z2vSpUqTJw4kSVLlpCZmUmHDh3o2LFjkX/mUFjQVZ78+isnHlzO8rgqzJF+RCkVKvzvf/Dqq3DOOXDLLaE9p149rfEaOlQnkXzySW2ajOYgAGOMMTkcOHCA5ORk1q9fT8eOHTnrrLNIS0tj3rx5XHzxxYfPO+RrsZg1axZvvvkmoP3BatSowdy5c7nwwgupUqUKABdddBHffPMNd955J9u2bWPz5s1s376dY445hsaNGzNy5EimT59Oe99cvWlpaaxatYrGjRtzwgkn0K1bNwCmT5+e53mpqalceOGFVK5cGYABAwZ49vp4+o0lIv2BF4BY4HXn3JP5nNcZ7aB/qXPuAy/LVK599BHVa8DCuueyZEVF0tOjUFmUkhKYdqionfgbNtRargcfhAULYMQIuO8+7RtmjDEmp1BrqPr3D9R6HSV/n649e/Zw3nnnMWrUKK699lpq1qzJ0qVLQ7pGfnNCAwwcOJAPPviAP//8k0GDBh0+/4EHHuCmm27Kce769esPB24Fnff8888jEerfHEpy1ItEZJWI7BGRvSKSKiKFjt8XkVhgFDppdivgMhFplc95TwFfFL34JmSbNsH335NQOZ5tXc4jPR2WL49COSZM0ERhnTtrXq6iatIE/v1vzYHx7bfwwgt5TChpjDEmmmrUqMHIkSMZMWIElSpVomnTpkyaNAnQ4OfHH38EoE+fPrz88suANknu3buX0047jSlTprB//3727dvH5MmT6enrgzxo0CAmTpzIBx98wMCBAwHo168f48aNIy0tDYBNmzaxbdu2I8qU33mnnXYakydP5sCBA6SmpvJJMZpTQxVKR/qngQHOuRrOuerOuWrOueohPK8LsNo5t9Y5lw5MBC7I47w7gA+BI18hEz6TJ2twcsYZtDzlGCDXlECR8MsvMHu2Zp4/mmmHTjwRHntMc3vNng2jR1vgZYwxJUz79u1JSkpi4sSJvPPOO4wdO5akpCRat27Nxx9/DMALL7zA7Nmzadu2LR07dmTZsmV06NCBa6+9li5dutC1a1duuOGGw02CrVu3JjU1lQYNGlCvXj0A+vbty+WXX0737t1p27YtAwcOJDU19Yjy5Hdehw4duPTSS0lOTuavf/3r4QDPC1JQNR6AiHzrnOtR5AuLDAT6O+du8O1fhWa2vz3onAbAf4Ez0Nxfn+bVvNipUye3cOHCohbB+O3aBddfD5mZ8PLL/JzSgAcf1NyjERvNm5kJd92lObcuuwwuv/zor/nzzxp8pafDgAFwww3RTYFhjDFRtHnzZurXrx/tYpQ7eb3uIrLIOdcp97mh1HQtFJH3ROQyX1PjRSJyUQjPy+vbL3eE9zxwv3MuK49zTbj873+QkaHNeQ0a0LKlVhJt2KDTHkbE9OkacB13HPiqhI9a27aBzvRTp8Jbb1mNlzHGmBIrlI701YH9QN+gYw74qJDn/QE0CtpvCGzOdU4nYKKvA1tt4BwRyXTOTQmhXCYUWVnw5Ze6fYG27sbFQVKSzsCzeDH07VvA88PljDNg2zZo3Tq8vfc7doT774f//AcmTdJr+zpXGmOMMSVJoUGXc25wMa+9AEgUkabAJmAQkKNNyTnX1L8tIhPQ5sUpxbyfycvChTpisEEDDXh8OnXSoOuHHyIUdFWsCNde6821u3XTUYxPPw3vvKOjGYOGJhtjjDElQSijFxuKyGQR2SYiW0XkQxFpWNjznHOZwO3oqMQVwPvOuWUicrOI3Hz0RTch+cI3KLRfvxz9nbr4knQtWeJxgvfNm+HgQQ9v4HPqqXDPPfozvvmmDhwwxphyprB+2ia8ivp6hzrh9VSgPtAA+MR3LJTCTHPONXfOneicG+Y7NsY5NyaPc6+1HF1htmOH1nTFxWnzXpBataBFC+2DvnixR/fPytJmv1tugfXrPbpJkN69YcgQ3R43rlhZlI0xprSKj48nLS3NAq8Icc6RlpZGfHx8yM8JpU9XHedccJA1QUTuKmrhTBR8+aV2LO/WTSePzqVbN53O8PvvoXt3D+7/xRcabNWtC5EaUdOnjw4aGDVKs97HxcHZZ0fm3sYYE0W1atUiJSUlz3QJxhvx8fHUqlUr5PNDCbp2iMiVwLu+/cuAncUom4mk7GwdMQj5Zhru3h3eeEP7dWVlhTmxe2pqIPP89ddHNvV9//6aouKVVwI5vM45J3L3N8aYKIiNjaVOnTrRLoYpQCjNi9cBlwB/AluAgb5jpiRbskSbF48/Htq1y/OUBg10Zp20NFi2LMz3/+9/NfBq186jarRCnHdeIAHryy9r2gxjjDEmigoNupxzG5xzA5xzdZxzdZ1zf3HO/R6Jwpmj4O9A37dvgQlDffOA8v33Ybz377/DtGl637/9LXoJS88/H/xzbI0ZY328jDHGRFW+QZeI/MO3flFERuZeIldEU2QpKZoPIiZG+zgVwB90ffddmPKKOqd9qbKztUmvSZMwXPQonHce3OwbLPvqq+CbesIYY4yJtIL6dK3wrW3+ndJm5kwNerp312GKBWjeXE/ZsQPWrIGTTgrD/QcM0DQRV1wRhouFwbnnagA6ejS8/roGhn/5S7RLZYwxppzJN+hyzvnbYvY75yYFPyYilnmypHIu0IG+X79CTxfR2q5p07SJ8aiDLhGdbqhLl5I1D+LZZ2t5Ro2CsWM1KLz00pJVRmOMMWVaKB3pHwjxmCkJfvoJ/vwT6tQB36zshQlbv660tMB2SQxm+vfXPF4imrl+/Hibq9EYY0zE5FvTJSJnA+cADXL14aoOZHpdMFNM/g70Z52lTWohaNsWqlTR/u9btkC9esW4786dcOutcPrpOmowxHtH3Jln6pREI0Zo1voDB7TcJTFINMYYU6YU9M24Ge3PdRBYFLRMBQpvtzKRl5qqPeJFNLgIUVyczsUIR1Hb9cYbsH8/7NpVcgMuv1NPhYcegvh4+PxzePZZzetljDHGeCjfb0fn3I/OuTeAtsDbzrk3fPsfA17O1meK6+uvNXho316bF4sgeBRjka1cCbNna/Q2uLjzo0dY587w2GNa6/XVV/DkkzonkjHGGOORUKokpgOVgvYrATO8KY45Kl9+qeuzziryUzt21IqfX3+F3buL8ETn4LXXdPsvf9FkrKVFu3bwxBPatjp/PjzySM5+acYYY0wYhRJ0VXTOHf4m8m1X9q5IpljWrtWlWjUdPVhElSpBcrLGUPPnF+GJc+ZoTVfNmnDJJUW+b9S1aKG1XMceq2n5779f82cYY4wxYRZK0LVPRDr4d0SkI3DAuyKZYvHXcvXurVVWxeBvYpw7N8QnHDwIEybo9tVXa+RWGjVpAsOHQ6NGsGED3HcfbNwY7VIZY4wpY0IJuu4CJonINyLyDfAecLunpTJFk56u/ZKgSB3oc+veXbtl/fhjiJU96enQsqUm9zqK+5YIderAU0/pz7NjB/zjH7B8ebRLZYwxpgwJZe7FBcDJwC3ArUBL59wirwtmimD+fO2L1KyZLsVUrZrWdjmn/eILVb26BidPPlk2Ui5Uq6Z9vLp21dfz4YeLUO1njDHGFCzUsf0tgFZAe+AyEbnauyKZIjuKDvS5+adqnDmzkLyhwQ9WqHDU9y0xEhLggQc0kWp6utZ+vfeeJVE1xhhz1AoNukTkUeBF33I68DQwwONymVBt3w5Ll2o/rl69jvpy7dvDMcfApk3aPz5PK1bA3/+u67IoNlYTpl53ndbgvf02PPccZGREu2TGGGNKsVBqugYCfYA/nXODgSSgDFVtlHL+Kqnu3bV57CjFxmpSef+lj+BPEbFqFSwsw3Ohi8CFF2oS1YoVtb31oYdgz55ol8wYY0wpFUrQdcA5lw1kikh1YBtQ/I5DJnycgxm+lGlhaFr08zcxfvNNHvlCZ83SgOvYY+HicjDvedeu2sRYu3aghu/336NdKmOMMaVQKEHXQhGpCbyGTgO0GPjBy0KZEP38M2zdqiPv2rUL22UbN4bERNi3L9e0QAcO6HQ/ANdcozVA5UGzZvDMM/qibN0K995rHeyNMcYUWYFBl4gI8B/n3G7n3BjgLOAaXzOjiTZ/B/o+fcI+32Fwh/rD3n9f51Zs0ULzgZUntWrBf/6jba8HD2rt1/jxkJUV7ZIZY4wpJQr8pnbOOWBK0P5659xPXhfKhCA1Fb79tsiTW4fqtNM0Z9eSJbBzJ7BlC0yZog/eeGPZSBFRVBUqwN13688fEwMffQSPPgp790a7ZMYYY0qBUKpHvheRzp6XxBTNjBk6mq5DBzjuuLBf3j+b0OGcXX/8oUFHnz7QvHnY71dqiMD558OwYVCjhmaSvesu7edmjDHGFCCUoOt0NPBaIyI/icjPImK1XdHkHHz2mW6fc45nt/E3Mc6YAa5TZ3j1VRhsLcsAtGkDzz+vTa3bt2uS2I8/tnxexhhj8hWX3wMi0tg5twE4O4LlMaFYskSb++rUgU6dPLtN+/Y6j/WmTfDbb9CiRXXP7lUq1a6t/bzGj4dPPoHXX9ear7vvDkv6DmOMMWVLQTVdUwCcc78Dzzrnfg9eIlI6k7dp03Tdv3/YO9AHi4uDK+t8Qbctk5n5RaZn9ynV4uO1j9eDD0KVKrBgAdx5p83baIwx5ggFfWMH95S2vFwlxfbt8MMPGhH17evtvXbv5tRV4zhr4zjWf/wjqane3q5U694dRo7U5sYdO3QqoYkTbXSjMcaYwwoKulw+2yaaPv9c+w2dcoq2/XlpwgSqsJ/9LTuyolIHPv3U29uVenXr6uTfAwdCdja884729dq0KdolM8YYUwIUFHQlicheEUkF2vm294pIqojYGPloyMyE6dN128MO9IBmX585E+LiOP7Rm0CETz7RFFWmAHFxmjh22DDt8/Xbb9rc+L//WSd7Y4wp5/INupxzsc656s65as65ON+2f996VEfDd9/B7t2aMr5VK+/uk50NY8bo9kUX0aJ3PVq00NRg/pjPFKJdO3jpJU2mmp6ur+cjj2jTozHGmHLJu17YgIj0F5GVIrJaRIbm8fgVvjQUP4nIPBFJ8rI8pZ6/A/2553qbnPSzz2DtWh0deckliASmWZw8WSvcTAiqVIF77tH+XdWqwdKlcNttgSZiY4wx5YpnQZeIxAKj0JQTrYDLRCR39cw6oJdzrh3wb+BVr8pT6m3YAL/8ovMdej0Fz8KFur7hBk2ICnTpAo0aaUXN1197e/sy55RTYNQozTa7f79uP/CA9fUyxphyxsuari7AaufcWudcOjARuCD4BOfcPOfcLt/u90BDD8tTuvmTofbuDZUre3uvRx7R6W26dz98SAT++lfd/vBDq6gpsmOOgYcegvvv10z2y5bBHXfofJZWdWiMMeWCl0FXA2Bj0P4fvmP5uR74zMPylF5paYGZp73uQA8aYXXqdEQTZq9e2jd840bNWmGKSAROPRVefhnOOkuncXrrLRgyRGsxjTHGlGleBl15dTrKs35ERE5Hg677PSxP6fXpp3DgACQlQdOm3twjM1ODgW3b8j0lLg4uvFC3J02y2q5iq1ZNRzQ+8QTUq6dNxw88AMOH+2YXN8YYUxZ5GXT9ATQK2m8IbM59koi0A14HLnDO2TdObgcO6Jx+AJde6t19PvhAO+oPG1ZgNNW3r8YMK1dqC5k5CklJOsLxiisgIQHmzIGbb4aPPrImR2OMKYO8DLoWAIki0lREEoBBwNTgE0SkMfARcJVz7jcPy1J6ffaZNi+2bKmTLHth40Z47z3d/tvfChwZWbEiDBig25MmeVOcciUhAQYN0lrG7t01Edr48XD77TB/vlUnGmNMGeJZ0OWcywRuB74AVgDvO+eWicjNInKz77RHgGOB0SKyVEQWelWeUik9XWs9QGu5vEgT4Ry8+KLWrPTrF1Jgd+65UKkSLF6sUw2aMKhbV+dv/Ne/oEEDHdn4xBPa7Pib/T9ijDFlgbhS8J90p06d3MKF5TAe++QTePVVOPFEeO45b4KuadO0luWYY3RdpUpIT/v4Y3j9dTjuOBg9WitsTJhkZmoN57vvcnjCy5494eqr4fjjo1s2Y4wxhRKRRc65TrmPe5oc1RyFzEzva7l27IAJE3T75ptDDrgAzjsPmjSBrVutmTHs4uLg/PPhtdd0Hsf4ePjmG7jlFg2MrbO9McaUShZ0lVSzZmlQ1LgxdOvmzT2WL9e0Bd265cjJFYrYWI0BQPvgbz5iiIQ5alWq6DyOY8bodEJZWVoz+be/aUC2a1fh1zDGGFNiWNBVEmVlBaqPLrnEuyl/TjsNnn9eo6di3KNVK+jTRyvlXnnF+nx7pm5dnU7opZegRw8NlKdO1RkDxo+34MsYY0oJC7pKom++gT//1BxOp57q7b1OOAFq1Sr20wcP1gqZxYt1Pm7jocaNYehQGDlSpxTyD7S4/nptdty6NdolNMYYUwALukqa7GydGgZ0lunY2PBf/4knYO7csFyuRg3t3w3a4nXwYFguawrStCn885/w7LPaNJyRoc2ON94IzzwDv/8e7RIaY4zJgwVdJc1nn2nerLp1tR9PuE2apPmfXn01bBFS//6QmKhd0N59NyyXNKFITNT5HEeNCnxWvvpKc3w9+igsWmRtvsYYU4JY0FWS7Nqlc/GBdpaOiwvv9VeuhP/+V7fvuUcznYZBTEygW9iUKfDTT2G5rAlV48b6fr72miZRS0jQ9t7HHoNbb9VA3qogjTEm6izoKknGj4d9+6BzZ+2zE07798OIEdq8+Je/QHJyWC+fmAh//ate/qmnYPv2sF7ehKJuXU39MWGCjno89lj44w9NpDZ4MIwdq0lXjTHGRIUFXSXFzz/D7NlaS3HjjeEfsfjKK9o5v1mzQCesMLvqKujQAfbu1Skc09M9uY0pTLVqmt/r9dfhH/+AFi10KqkpUzQoe+ghHaxh8zsaY0xEWdBVEmRm6ugz0BQR4c46/vXXmvcrIQHuvVeTbXogJkYvf/zxsGaNZjiwLkVRFBenmexHjNBO9337QoUK2v779NNw7bUwbhysXx/tkhpjTLlgQVdJ8PHH2nm+fn246KLwX/+EE7Tp6W9/g0aNwn/9INWqaUVKxYpacffJJ57ezoQqMRHuuAPeeEM74DVpAnv2wOTJenzIEH2z9uyJdkmNMabMsrkXo237dv0SPHQIHn8c2rf35j779+ss1V4lWs1l7lzt2xUTA//+N7RrF5HbmlA5pxNpz5qlNaH79unx2FhtI+7VS/sVhmmwhTHGlCf5zb1oQVe0/d//aVbRU0+F++8P33UPHtQRbKecEr5rFtEbb+gUQdWrax+vJk2iVhRTkPR0+OEHmDkzZ5qJhATo0kVnLujY0WY1N8aYEFnQVRLNmAEvvKC1CWPG6GizcHAOnnwS5s2D666DCy8Mz3WLyJ+HdcECqFpVMxi0aBGVophQ7doF334Lc+bAihWB4xUrQqdOOkdnx45FmhzdGGPKGwu6SpqVK3VKl8xMuPNOOOus8F377bfhvff0i3HECGjYMHzXLqL0dO2zPX++fm8/9FDYs1UYr2zfru3Ec+bA6tWB43FxkJSk2fA7dYLataNXRmOMKYEs6CpJUlLg7rt1fe65Oow/XGbNguee085Ujz3mXR+xIsjK0ukCZ83S7+t//EMrTEwpsm2bNoN//z0sW5ZzWGqTJppbrnNnaN48/FNXGWNMKWNBV0mRng4PPqg1XW3aaC/zcGWenzULnn9evxBvvBHOPz881w0D5zRh+iefaF/+IUOgT59ol8oUy5492gds/nz48cec2e6rVtVRE+3ba5VmuNOfGGNMKWBBV0ngnFb5zJgBdepojVSNGuG59pw52pToHFxxBQwaFJ7rhpFzOgvRxIm6f/75mirK+meXYhkZWvO1YIEuW7bkfLxePW2KbNtW/8moVSs65TTGmAiyoKsk+OQTnWg6IQGGD9fs8OGyfTs88IDOPj1wYPiu64FPPtEZabKyNG3YvfeG96UwUfTnn7B0KSxZorVg/lQUfg0aBAKwVq20P1iE0pgYY0ykWNAVbXPnaqCVna2dmnr2DP89DhzQXFylwKpV8MwzOhVgXJxWzl10kXZFM2VEdrZ2wP/xR/jlF1i+/MiJt489Flq21ADs5JOhadPwT/RujDERZkFXNH38sc6DB3DppXDllUd/Tedg0iStLrrssqO/XhQcOqRzfP/vf7rfurWOKbB8XmVUZqbOD/XzzxqE/frrkTVhCQla7dm8eWA5/nirDTPGlCoWdEWDczq33ZQpuj94sObMOtovkH37tD/Y/Pm6/8ILpbp9btEi/RF27dKXplcvuPxy7Q5kyjDndPqrFSsCy+bNR55XpYp+vk88UdcnnaRTZtkoSWNMCWVBV6RlZOhIwjlz9Mvhrrugd++jv+7q1Zr4dOtW/TK6+26drqWU27tXO9h/9plWiMTGauqyQYPClzPWlAJpafoZ/+03XVauhN27jzwvIUE7BDZpok2STZroHKM1alitmDEm6izoiqS9e3XiwZ9+Cl9GUOfg88+1I35mpv63P3QoHHdcWIpcUmzbBu++qzPSOKffraedBv36aTZ7+z4th1JStFly7Vpdr1mjH5S8VKsGjRtrQOZfN2hgHfaNMRFlQVckOKe5ssaOhdRUOOYYTVAajqa/mTO15gzgnHPg+uvLdK6FP/6Ad97R8Qd+jRtr8HX66frdasqxffvg999h/XpYt07XGzboxO55SUjQJsmGDXVdv762X9erBzVrWkBmjAkrC7q8tmkTjB6ttVugCSKHDIG6dYt/TecCXwb79un1rrpKOz2VE5s3w/Tpmtpszx49Fh8PHToEkqBb6icD6O/Lrl0afG3cqOs//tAlryZKv4oVtbP+cccF1v6lTh2oXDliP4IxpmywoMsr6enw0Uc612FmplbB3HCDVscU979n52D2bO3gNGxYoEYrI0MjjnIoM1OToH/xhaaACv7YJiZq8JWcrK2u5fQlMgXZt0//Mdq0SSP5zZs1p9iWLVorXZAqVTT4Cl6OPVaX2rV1XaFCZH4OY0ypYEFXuO3YobkOvvgi8Ef7zDN1hGL16sW75qFD2vH+00+1/wrAbbdpwlNzWEqKBmALFmgezvT0wGNxcRqE+VM/JSZqK6+1Hpl8paZqALZ165HL9u05P2D5qVJFq1yPPVY/cP51zZq69m9XqWIfRmPKAQu6wsE5TfD4ySc6+W92th5PTITrrtMs28WxaZPWas2YEchbVKsWXHPN0dWYlQOHDmmL7oIFOhvNhg1HnlO9ug5u8y+NG2tXnmrV7KU1hXBOg7Lt23XZtg127tR/uvxLSopWxYYiLk5HWPqXmjX1A5rXUrWqfkit6taYUseCruJKTw98qy9cGBg1FRsLPXroBIJFHVbnf839z7nvPk0UCXqts8/WjPVluKO8V9LS9KX0p31au/bI/Jt+lSsH+lIff7y2FPlbi2rXtuwDJkT+wCwlRQOyXbt0e9cu7Uu2a1dgOXCg6NevWDEQgFWteuRSpUrOpXLlwLpSJZvmwZgosKArVKmpgaHpP/+sAVdw80LNmjqE7uyzi5ZAas8ezTu0eLEGb0OGBGrG5s7VjkrnnKMJIE3YOKffg+vW6WC3deu0YnHLlvwHuvnFxgYqI/xLjRo5KyH834P+77jKlS1npylAerr+LfAvu3dripm8ltRU/S8iK+vo7lmxYiAA86+DtytWDKyDtytUCByrUCGwX6GCfciNKURUgi4R6Q+8AMQCrzvnnsz1uPgePwfYD1zrnFuc+zqeBl3p6Zoxfs0aTcqYV/6fk06CTp20t3ZiYmjVH/5pelav1mX79pyPh2s6IFMs/sqJLVt02bo1Z4vRzp2F96/OT/B3XF7facHfXRUqaIWmf4mP12Px8XkvcXG6+LdjY602rkxzTmvH0tICQVjuZf/+wHrfPt0+cED3C/vPorji4o78AOf1gc69xMcH1sHbCQmBD7b/w13QBz8uzj74pkTLL+jybGZZEYkFRgFnAX8AC0RkqnNuedBpZwOJvqUr8LJvHTnx8fDhh4E/TgkJmuH6xBN13rf27XPmJEhN1aqS3bsDTQcpKdoRNzU1kEtLRPtobdmi+xUqaL6udu0CwZuJGpFA15kWLfI+x18p4X+rd+/W/dTUwPeff71vX+A77uDBI+d19lJMTOB7KDY2sPZvx8QE9oOXmJjAY/7tUBaRQLDn38+9zu+Yf99fbsj7seBj/iWv5/i38zuee13Qsfz28zpe0LHgdUHH84oZjnxcgMq+pS5SCagEUkgmmsPXcY6YQweQA/uJOXSAmIP7kYMHAsuhg3rs0EFdDuwnJuOQPpZ+KHDcv51+CEk/BC4TyATyaLvP6+cquLjF4mJjIVY/+C4uTrdjYw9vu7g4iNFfAhcbG9j2/8LE6C/C4cdybRMbi5PAL4+LyfmL42Jy/hI5yfkLdXg/aDnimAhOYpC42MMfKBcT2M7xS+d/fj6/aIcfy+uXTsRi1CDHHKP/+EaDZ0EX0AVY7ZxbCyAiE4ELgOCg6wLgTafVbd+LSE0Rqeec2+JhuXIS0RqnmTO1jahiRf22XbdOOwX9979aK9W3r57//fcwcmT+19u3T68D+ryYGK0pa9DA+laUMgkJgQwBofJXTOzfr+uDB3OuDx3S5eDBwDojQz9yuZeMjMCSmRlY516yswPPMSan4KAtDGKBio44l0F89iHistOJy04nPvvQ4SU2O/BYvEsnLvsQsdmZxLl04rPTic3OIM6lE5edQazLIC47Q6/jMojNziDWZR4+Hut8+9mZh4/7tyHLtxwKz89WxjkRHIIjxrev62zf2hFz+BzwneuL1PyP+beDr5f7XP++/xx/yO1COM8FhefBzw1+fuAxCn3O4efliDiF5v+8hA5XF3Pg21HyMuhqAGwM2v+DI2ux8jqnARC5oAu0M/w77+Tf4zo4seJxx2ktlb+Tj384+HHHaZbrSpUC5/bp42GhTUkkEujbFQnOaZefzMzA2h+I+df+4/5t/9q/7V8K2ncu52PB+/7t4HV+x4Ifg8C6sGP+5+V+PPeS+9zc5+U+Fsp+7uNFOZbf48EKejy/a4Z6rKDeI6Fe70gCJODckQN9sh1kAxlFvmbe8n2uc8S4LGJ8AVhMVgaSnaXbvuP+x8Rl677LCjzm33ZZh58nLjvPY/7j/uv4jwnZxGRn6dplIy7Ltw6cn/v5gsv5fJcNLhtx7vCx/Lf1gx/jssF3ncC2y3FtfZf0+eB/Ef3b2cV/Q4oqr/evKJ8Hj3o/JRzq682FQ+Bl0JVXZWbulzCUcyLjppv0GzO4w2jFilprVaNG4Lx27eDZZ6NSRGNyEwk0LRpTfgj69WUf/JDk9d9O7v9k8vovJ7//bAr7zyiv7VAfK2xd2DkFHfPvN2lS6EvmFS8/sX8AjYL2GwKbi3FOZJx+elRua4wxxngqd6dJEzVevgMLgEQRaSoiCcAgYGquc6YCV4vqBuyJaH8uY4wxxpgI8aymyzmXKSK3A1+g3S/HOeeWicjNvsfHANPQdBGr0ZQRg70qjzHGGGNMNHnaIO6cm4YGVsHHxgRtO+A2L8tgjDHGGFMSWAOvMcYYY0wEWNBljDHGGBMBFnQZY4wxxkSABV3GGGOMMRHg6YTX4SIi24Hfo10OY4wxxpgQnOCcO2ISuVIRdBljjDHGlHbWvGiMMcYYEwEWdBljjDHGRIAFXYCI9BeRlSKyWkSGRrs85ZWINBKR2SKyQkSWicgQ3/FaIvKliKzyrY+JdlnLIxGJFZElIvKpb9/elxJARGqKyAci8qvvd6e7vTfRJyJ3+/6O/SIi74pIRXtfokNExonINhH5JehYvu+FiDzgiwdWiki/cJal3AddIhILjALOBloBl4lIq+iWqtzKBP7unGsJdANu870XQ4GZzrlEYKZv30TeEGBF0L69LyXDC8DnzrmTgST0PbL3JopEpAFwJ9DJOdcGnQpvEPa+RMsEoH+uY3m+F77vnEFAa99zRvvihLAo90EX0AVY7Zxb65xLByYCF0S5TOWSc26Lc26xbzsV/fJogL4fb/hOewP4S1QKWI6JSEPgXOD1oMP2vkSZiFQHTgPGAjjn0p1zu7H3piSIAyqJSBxQGdiMvS9R4ZybA6TkOpzfe3EBMNE5d8g5tw6dG7pLuMpiQZd+qW8M2v/Dd8xEkYg0AdoD84HjnHNbQAMzoG4Ui1ZePQ/8A8gOOmbvS/Q1A7YD431Nv6+LSBXsvYkq59wmYASwAdgC7HHOTcfel5Ikv/fC05jAgi6QPI5ZHo0oEpGqwIfAXc65vdEuT3knIucB25xzi6JdFnOEOKAD8LJzrj2wD2uyijpf/6ALgKZAfaCKiFwZ3VKZEHkaE1jQpVFso6D9hmg1sIkCEYlHA653nHMf+Q5vFZF6vsfrAduiVb5yqgcwQETWo83vZ4jI29j7UhL8AfzhnJvv2/8ADcLsvYmuM4F1zrntzrkM4CPgFOx9KUnyey88jQks6IIFQKKINBWRBLQD3dQol6lcEhFB+6ascM49G/TQVOAa3/Y1wMeRLlt55px7wDnX0DnXBP39mOWcuxJ7X6LOOfcnsFFEWvgO9QGWY+9NtG0AuolIZd/ftT5oH1V7X0qO/N6LqcAgEakgIk2BROCHcN3UMtIDInIO2mclFhjnnBsW3RKVTyJyKvAN8DOBvkMPov263gcao3/MLnbO5e4UaSJARHoD9zrnzhORY7H3JepEJBkd4JAArAUGo/9Q23sTRSLyL+BSdFT2EuAGoCr2vkSciLwL9AZqA1uBR4Ep5PNeiMhDwHXoe3eXc+6zsJXFgi5jjDHGGO9Z86IxxhhjTARY0GWMMcYYEwEWdBljjDHGRIAFXcYYY4wxEWBBlzHGGGNMBFjQZYyJOhE5VkSW+pY/RWSTbztNREZ7dM+7ROTqPI43EZFfwnifBBGZ45uDzxhTjtkfAWNM1DnndgLJACLyGJDmnBvh1f18AdB1aPZ2Tznn0kVkJpqz6R2v72eMKbmspssYU2KJSG8R+dS3/ZiIvCEi00VkvYhcJCJPi8jPIvK5bwopRKSjiHwtIotE5Av/VB+5nAEsds5lBj3nRxH5Drgt6P5NROQbEVnsW07xHX9LRC4IOu8dERkgIq1F5AdfLd1PIpLoO2UKcIUXr5ExpvSwoMsYU5qcCJyLTib8NjDbOdcWOACc6wu8XgQGOuc6AuOAvGaY6AEET+A9HrjTOdc913nbgLOccx3QmqqRvuOvo5nfEZEa6Lx604CbgRecc8lAJ3QeN4BfgM7F/JmNMWWENS8aY0qTz5xzGSLyMzpt1+e+4z8DTYAWQBvgS53yjlhgSx7XqYfOhecPmmo65772PfYWcLZvOx54yTfVThbQHMA597WIjBKRusBFwIfOuUxfTdlDItIQ+Mg5t8p3fpaIpItINedcapheC2NMKWNBlzGmNDkE4JzLFpEMF5jHLBv9eybAsjxqrHI7AFT0bQuQ33xod6NztSWhLQMHgx57C20yHIT2D8M5918RmY/Wxn0hIjc452b5zq+Q6/nGmHLGmheNMWXJSqCOiHQHEJF4EWmdx3krgJMAnHO7gT2+CdchZ9+rGsAW51w2cBVac+Y3AbjLd41lvvs1A9Y650YCU4F2vuPHAtudcxlH/yMaY0orC7qMMWWGcy4dGAg8JSI/AkvR/la5fQacFrQ/GBjlax48EHR8NHCNiHyPNi3uC7rXVjR4Gx90/qXALyKyFDgZeNN3/HS0z5cxphyTQO28McaUHyIyGfiHv99VMZ5fGe1L1sE5t6eQcz8CHnDOrSzOvYwxZYPVdBljyquhaIf6IhORM4FfgRdDCLgSgCkWcBljrKbLGGOMMSYCrKbLGGOMMSYCLOgyxhhjjIkAC7qMMcYYYyLAgi5jjDHGmAiwoMsYY4wxJgIs6DLGGGOMiYD/B9/3bDiMo0fwAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABNn0lEQVR4nO3dd5xU5fXH8c9hl6UuvUiRpghKFxARwa7YMBpU1KhYYkGjxpiYYouJiT9bFEuIUWwxwRYRDSoq9oKAooKKgIL04kpZ+u4+vz/ODDO7bJkts7Pl+3697uveuXPvnWd3YObs85x7HgshICIiIiLJVSfVDRARERGpDRR0iYiIiFQCBV0iIiIilUBBl4iIiEglUNAlIiIiUgkUdImIiIhUgvRUNyARrVq1Cl26dEl1M0RERERKNHv27HUhhNYF91eLoKtLly7MmjUr1c0QERERKZGZLSlsv4YXRURERCqBgi4RERGRSqCgS0RERKQSKOgSERERqQRJC7rMbKKZrTGzuUU8b2Y23swWmtnnZrZ/stoiIiIikmrJ7Ol6FBhZzPPHAt0jy0XA35PYFhEREZGUSlrJiBDCO2bWpZhDTgIeDyEE4CMza2Zm7UIIK5PVJhERkWolBF/n5fk6LS323Pbt/nxhS716kJHhx+3YAZs3x64VPSaqZUsw8+2sLD8+/vno8Q0bQvPmsWuuXp3/WvHntGvnbQBYtw42bCj8tTMyoHPn2OP58wu/HkDbttCihW//+COsWLH7MVG9esV+poULYcsW3+7UCZo1K/ycSpDKOl0dgKVxj5dF9inoEhGpjkKA3FzIyfF1o0ax59atg61b8z8f3W7eHPbc04/LzoY5c2LH5OXlXw8fHvvSnDkTvvnGn4s/Li/Pv5xHj469/t13538+fjn2WBg0yI+bNQuefz72XAj5t++8E+pEBon+7/9g8eLYMfHrgw+G88/34xYvhj/8YffAKBpI/eUv0L27b0+YAC+/vHtwAtClC9x7b+zxqacWHXRceikcd5xvv/VW/vMKmjw5Fsz9+c+wYEHhxx11FFxxhW8vWwZXXln0Ne+4A3r08O1nnoGpUws/rmtXGD8+9vjXv07sZ5o1K/95BcX/TH//u/87Abj2Wn9vUiSVQZcVsq+I33RyvfMONG4M+yurTESqm2igs317bNm509d77gn16/txCxbA0qXeQ7FzZ2y9cyc0aQInnRS75m23+fM5ObFjotunneaBD8Cbb8I//hELkHJy8rfthRdiAcpf/pLYl/natR7MFGWffWJB16xZRX+Zd+mSP+iaPr3oL/P4D/8ff4TPPy/69eOvsXatBx+F2bQp/zkbNxZ9zWjwFT02/jHEemzqFMgIql/fjzXLvwCkx32916sHTZvufkz8dlSLFtCmze7Hgl8j/prRQDm+jdFzor1c4D1p3brlPzZ6fPv2+V+/R4/8v+P414/voWrWDPbbb/fXLszee3t7zPL/DClgoah/hBVxcR9efCmE0LuQ5/4BvBVC+E/k8Xzg0MKGFwcNGhSSVZH+xx/hkku85/Hgg+HnP4/1XoqIVJgQPBDassV7fKLLtm2+Hj489qXx4ouwfLk/t327r6PbAwfCWWf5cYsXe29DwS/pqNtvh549fXvCBPjf/wo/rlMnuP/+2OOTT949gIq66CI48UTffuMN70GKl5bmS3o6PPFEbIgr2iuUnh57vk4d3x44MBYgrV0LEyfGniu4nHSSDzOB93QtWODHRo+Prps2hUMOibVr+nT//UaPjW6npXmAFr1mVpYHUoUda+Zf4NH3adUqD0Sjz8Uf16ABZGb6cbm53oNXMDiKD1CiAVVurv9bib+mVDtmNjuEMKjg/lT2dE0BLjezScAQYEMq8rkyM+H00+Hf/4b33oPZs+Hss+H443f/o0JEarHoF+eOHdA6bkq1V17xXo3Nm33ZsiW2Pv742Bf/9Om7ByjxDjgg1iv1/vswb17hx7VrF9uuW9cDrvR0D26iSzSfJ763o0cPb1P0mOg5devG8nSirrnGPwDr1vUlPT22btUqdtzw4d7u6HNpaUUHCddeW/TPHq9168SPHTzYl0Qcfnhix7Vokfhf3nvskdhx0SAw0WOlxkpa0GVm/wEOBVqZ2TLgRqAuQAhhAjAVOA5YCGwBzktWW4qTng6nnOK9XA8+CDNm+Hr6dBg3LjbMLiI1SG6uB0rr1/uwz4YNnngb/bKdPt2HzrKz/bjsbA+kwL9o//nP2LUefTT2XEGD4v7QbdTIg5yGDb0XpEED365f37fje6uOPx6GDfPnoku9er6OH2Jp3z5/7kpxDjvMl0QMG5bYcdEATkQSktThxYqSzOHFgmbM8F74des8ILv11lguoIhUYdG8mawsX3780ZM1DzzQn//xR09mXr/eg6iCn33XXQdDhvj2pEnw5JP5nzfz6+2xB9x1V2z/E094wNSwoQdWjRrFtvfYQ/kKIrVQVRxerJKGDIF+/TzweuMN/2wdPz5/TqCIVLK8PA+k1q71ZfBg7x0CeOQRvxvmxx+9Byte796xoKthQ08kBw+gmjTxIZ/o0qRJ7Lzhw72bOzMztjRqVPjQ2dlnV/zPKyI1koKuQtSv70OLCxfCkiU+enDxxalulUgNlpvrieLREgOrVnmi5erVHmT98EP+4be//c0TmsHPW7fOtxs39vykli193bVr7Jx69eC++3x4LjOz+KTNDh18ERGpQAq6ipCRAVdf7ctLL3kPWP/+qW6VSDW3ahV8/70XNVy50pdVq2DNGhgxwv/DgQ/9vflm/nObN/ck7tatPXE76tRT/W67Fi1Kzi+KL8IoIlLJFHQVo1s3OPNMT9m45x7/Izm+1p+IFGLzZh/Giy5jxvjQHvhdKjNnFn5etGI0eGB1xRV+G3/r1h5sxQda8eLvphMRqcIUdJXgpz+Fjz/2mQkefBB++ctUt0ikilm3zu+gW7LEe7GysvI/P2xY7G6Unj29/lP79l76ILq0bZu/lyo93QtmiojUIAq6SpCW5oHWFVf4XeQHHghDh6a6VSKVbP16+PZbXxYt8nynn/3Mn8vL88rjURkZ0LGjV6vu1Cl/DajTTvNFRKQWUtCVgA4dYOxY7+m67z4v5xN/o5NIjfTWW14xeMGC3XuvunWLBV2tW8O553qA1amT91qpiraIyG4UdCXohBPggw9g7lz/Lho1KtUtEqkAubk+LPj1176cempsPrXFi71wHXh5hm7dYkv0zkHwACt+jjsRESmUgq4EmcHIkR50ffSRgi6ppvLyfHqZuXN9+eYbL7kQ1bNnLOgaMcLnpOve3XOw1HslIlIuCrpKYdAgz++dO9cLX2uIUaq8HTv8DsK99vLHIcCf/uQTLEe1bQv77usB14ABsf3RXi0REakQCrpKoVEj6NMHPv3U73o/4ohUt0ikgLw8T3T/7DOYMwe+/NJ7qP7zH09wT0uDI4/0fb16ebBVcLJjERFJCgVdpTR0qAddH36ooEuqkOXLfb7ATz7xbth43bp5Rfd27fzxRRdVfvtERERBV2kNGQIPPOCB17ZtPmWQSKUKwYcMN270uQXBp7R56y3fbtMG9t/fJxHt08fnFRQRkZRT0FVKLVp4ncf58z3wUs0uqRR5eX534Ucf+bJypU9pc999/ny7dnD55R6EKeldRKRKUtBVBgce6EHXhx8q6JIk+/57ePlleP99+PHH2P4mTfyuwpwcv7sD4JhjUtNGERFJiIKuMhg6FB57zJPp47/zRMotBNi+PTZuvWKFz7gOfpfh0KEe9e+7rw8piohItaFwoQw6dPBZTpYt85JH/fqlukVS7a1Z4zlZ06d74dFrrvH9++/vBUsPOsjLPmjYUESk2lLQVUZDh8Izz3h6jYIuKZNt23yanTfe8OJvUbm5nsNVp46XeTjnnNS1UUREKoyCrjI68MBY0HXRReqAkFL66CP4299gyxZ/nJHhkfzhh3sUr6FDEZEaR0FXGXXvDi1bwrp1sHChPxYp0vbtPoQYnWKnc2cPuHr2hKOPhmHDoGHD1LZRRESSSkFXGZl5za6pU73TQkGXFGrdOvjf/+DVVz1KHz/e//G0awcPPeTJ8SIiUitoDKMcouUiPvoote2QKiYEn37n1lvhggvg2Wdh0yaoWxc2b44dp4BLRKRWUU9XOfTu7fMxfv+939nfvn2qWyQpt3o13HGHFzIFn+twxAgYNcqr6oqISK2loKsc0tNh0CB4+22YPVtBV60VQuxOiubNvVp8ZiYceywcd5wPK4qISK2noKucevTwoGvx4lS3RCpdTg68/ron9t16qyfCZ2TADTdAp06amFNERPJR0FVOnTv7+vvvU9sOqUQ5OfDmmzBpkt+RCF7Y9LjjfHuffVLWNBERqboUdJVTfNAVP8okNVBengdXkyb5ECJ4CYgzz/SSDyIiIsVQ0FVOTZv63MMbN8IPP0CrVqlukSTN7bd7BXnwuaDOOAOGD1chUxERSYiCrgrQuTN88QUsWaKgq8aJ77488kj45hvv2Tr0UL8zUUREJEH6E70CdOrka+V11SDr1sHdd8N998X27b8//OMfcMQRCrhERKTU1NNVAaJ5XUuWpLYdUgFycuCFFzxva9u22ITTTZt6j1e6/suIiEjZJLWny8xGmtl8M1toZr8t5PmmZvaimX1mZvPM7LxktidZ1NNVQ3z2GfziF/Doox5wHXSQ93Q1bZrqlomISA2QtD/bzSwNuB84ClgGzDSzKSGEL+MOuwz4MoRwopm1Buab2ZMhhB3JalcyxAdduoOxGsrN9Sry8UnyF18MAwaktl0iIlKjJHOs5ABgYQjhWwAzmwScBMQHXQHINDMDGgNZQE4S25QUmZnQogVkZfksMHvskeoWSamkpfm8iBkZMGYM/OQn/lhERKQCJTPo6gAsjXu8DBhS4Jj7gCnACiATOD2EkJfENiVNp04edH3/vYKuamHlSti+Hbp08ccXXABnnw2tW6e0WSIiUnMlM6ersEG2UODxMcAcoD3QH7jPzJoksU1Jo2T6aiIvD55/Hi6/3Otu7dzp+5s2VcAlIiJJlcyermXAnnGPO+I9WvHOA24NIQRgoZl9B/QEPk5iu5JCyfTVwMqVcOedMH++P95rLw+6NJQoIiKVIJlB10ygu5l1BZYDY4AzCxzzPXAE8K6ZtQV6AN8msU1Jo56uKiwEn5j6wQf9rsSWLeGyy2Dw4FS3TEREapGkBV0hhBwzuxx4FUgDJoYQ5pnZJZHnJwB/Ah41sy/w4chrQwjrktWmZNoz0qe3bJnfDKfamVXIPffAG2/49ogRcOml0LhxatskIiK1TlIrPYYQpgJTC+ybELe9Ajg6mW2oLA0bekrQ2rWwapVXHZAqok8f+PBDuOQSn75HNT1ERCQFVF67AnXq5EHXkiUKulIqLw+++85ztgAOPxwGDoRmzVLaLBERqd1KvHvRzIaZ2Wtm9o2ZfWtm35lZtcy7SjYl01cBGzbADTfAb34Dixf7PjMFXCIiknKJ9HQ9DPwSmA3kJrc51ZuS6VPsq6/g//4PfvjBS0Bs3pzqFomIiOySSNC1IYTwctJbUgOopytFQoApU+CRR/wuhn33hWuv9bsURUREqohEgq43zex24L/A9ujOEMInSWtVNbXnnj6StXw55ORAujLmkm/nTp+Uevp0f3zyyXDOOfrli4hIlZPIN1N06p5BcfsCcHjFN6d6q18f2rb1uxdXrIj1fEkSrVjhE1XXqwe//CUMG5bqFomIiBSqxKArhHBYZTSkpujc2YOuJUsUdFWKzp19KLFVK+jWLdWtERERKVIidy82NbO7zGxWZLnTzJpWRuOqI+V1VYIZM+Cdd2KPDzhAAZeIiFR5iQwvTgTmAqdFHp8NPAKckqxGVWe6gzHJXnwR/vlPz9naay8VRBMRkWojkaBrrxDCT+Me/9HM5iSpPdWeerqSJAR4/HF49ll/PGYMtG+f2jaJiIiUQiJB11YzOziE8B54sVRga3KbVX116OB3MK5YATt2QEZGBVw0Jwdeftkv+JOf1L6JHXNz/Q7F11+HOnXgyiu9yryIiEg1kkjQdSnwWCSPy4AsYGwyG1WdZWR4B8zy5T75dblTjRYsgHvv9WltAObM8WrrmZnlbWr1sH27FzydOdPvUPzd73xKHxERkWqmxET6EMKcEEI/oC/QJ4QwIITwWfKbVn1F87rKNcS4fTtMnAi/+pUHXG3aeJX1OXN8X20Zv1y1CubO9SDzllsUcImISLVVZE+Xmf0shPAvM7u6wH4AQgh3Jblt1VanTvDBB+VIpv/iCxg/3gMOMy/4eeaZkJ0Nf/4zLFrkgdc118CQISVfrzrr3NnnUmzeXEnzIiJSrRXX09Uoss4sZGmc5HZVa9H87tWry3Dyhg1w000ecHXpAnfeCeef75VXW7XyobYRI2DbNu/5efppTzKvSdav9+HEqN69FXCJiEi1V2RPVwjhH5HN10MI78c/F0mmlyK0bu3rNWvKcPLHH3vCfO/e8Kc/7T6dTb163sPVtavfzffEEz70eOih5W121ZCVBX/4g9+JcMMNGk4UEZEao8ScLuDeBPdJRNu2vl67tgwnz5jh6xEjip4/0AxGj4Zx4/zxhAmwbl0ZXqyK+eEH+P3v/Q6EPfeEvfdOdYtEREQqTHE5XUOBg4DWBfK6mgC1rGZB6bRo4ZUNsrJKWTZi+3b49FPfTiRX65hjfBju44/hnnvg5ps9IKuO1q3zgGvlSu/F+/OfoUmTVLdKRESkwhTX05WB526lkz+fayMwOvlNq77S0jz9CkrZATVnjkdp3bt75FYSM/jFLzw4mTPHa3lVR+vXw3XXecC1116eq6aAS0REapjicrreBt42s0dDCJrUppTatPGcrjVrSlE4/aOPfH3ggYm/ULNmcNll8Ne/wsMPQ//+1atSewjwl794YbNu3byHq7Hu0xARkZonkZyuLWZ2u5lNNbPp0SXpLavm2rTxdcJ5XXl5sTv2ShN0ARx0EBx2mPeS3XWXV3CvLsz87swePXx4VAGXiIjUUIkEXU8CXwNdgT8Ci4GZxZ0gsaAr4TsYv/7ay0W0a+dJ5KV18cXQsiXMnw/PPVf681OpZ0+4/XYv/ioiIlJDJRJ0tQwhPAzsDCG8HUI4HyhlV0ztEw26Eq7VFR1aHDKkbMnwjRrBVVf59n/+A4sXl/4alSU3F267Dd57L7avut4AICIikqBEgq6dkfVKMzvezAYAHZPYphohWqsroeHFEPIHXWXVvz8cd5xPkD1hQtUsmhqCT1797rvwwAOwZUuqWyQiIlIpEgm6/hyZ7PpXwDXAQ8Avk9qqGqBUw4vLlvmde5mZsO++5Xvhc87xYbp58+Dtt8t3rWR46il4/XWvo3HDDdCwYapbJCIiUikSmfD6pRDChhDC3BDCYSGEgSGEKZXRuOos2tO1bl0Cee3RXq4DDvB6E+XRqBGMHevbEydWrZ6kN9+EJ5/0ocTf/MZzuURERGqJ4oqj3gsUOT4VQrgiKS2qIerW9VJbWVleaD3a81WoaBX6ipq8+ogj4JVXPKn+3/+GCy+smOuWx9y5Pok3wM9/XvMn6hYRESmguJ6uWcDsYhYpQUJzMGZleXCUkQEDBlTMC5vBpZf6+sUXYUmKy6zl5PjE3Tk5MGoUnHhiatsjIiKSAsUVR32sMhtSE7Vp4/FUscn0H3/s6379oH79invxvfaCY4+FqVM9qf4vf0ndHYLp6XD99V4x/4ILUtMGERGRFCsy6IoyszcpZJgxhHB4UlpUg0Qnvi62pys6tFjagqiJ+NnP/C7BuXN9PWJExb9Gorp188r5IiIitVSJQRd+x2JUfeCnQE4iFzezkcA9+ATZD4UQbi3kmEOBu4G6wLoQwiGJXLs6iA4vFlmra9s2nzPRzJPoK1pmpifV33uvTxE0eDA0aFDxr1OUf/4T9t7bq+WLiEhS5ebmkpWVxc6dO0s+WCpE3bp1adGiBWkJ3gRXYtAVQiiYv/W+mZVYi8DM0oD7gaOAZcBMM5sSQvgy7phmwAPAyBDC92ZWXLp5tVPiVEALFnieU/fuPodiMhx1FLz6KnzzDUyaBOedl5zXKeiVV2DKFM9V69MnNgO4iIgkRVZWFvXr16dVq1aYCk4nXQiB7OxssrKyaB3tZSlBiSUjzKxF3NLKzI4B9kjg2gcAC0MI34YQdgCTgJMKHHMm8N8QwveRHyDRSXOqhRJrdS1d6usuXZLXCDO45BJfT5niE0sn29dfwz/+4duXXaaAS0SkEuzcuZPGjRsr4KokZkbjxo1L1bOYSHHU2cTuZPwQL5KaSDZ0B2Bp3ONlkX3x9gGam9lbZjbbzM5J4LrVRnxPV6HF4b//3tdlmWuxNLp3hyOP9F61Bx9MbqX6rCz461/9tU48EQ5X6p+ISGVRwFW5Svv7TqQ4atcQQrfIunsI4egQwnslnQcU1pKC3/bpwEDgeOAY4Hoz2yeBa1cL9et7WtXOnbB+fSEHRHu6kh10AZx7rhdO/eST2B2TFS0nB2691QOv3r3h/POT8zoiIlJl3XLLLfTq1Yu+ffvSv39/ZkRvGKtkc+bMYerUqbseT5kyhVtv9dTysWPH8uyzz+52zltvvcUJJ5yQtDYlcvdifWAccDAeNL0H/D2EsK2EU5cB8dFER2BFIcesCyFsBjab2TtAP+CbxJpf9bVpA5s2+RBj8+YFnowGXZ06Jb8hTZvCWWd5T9dDD3lNsIyMin2NiRPhq698OPHaa71UhIiI1BoffvghL730Ep988gn16tVj3bp17NixIyVtmTNnDrNmzeK4444DYNSoUYwaNSolbYlKZHjxcaAXcC9wH7Av8EQC580EuptZVzPLAMYABacPegEYbmbpZtYQGAJ8lWjjq4Mi87qys+HHH6Fevdhtjsl23HHQuTOsWgXPP1/x1z/qKOjaFX7/++TdGCAiIlXWypUradWqFfXq1QOgVatWtG/fni5durBu3ToAZs2axaGHHgrA22+/Tf/+/enfvz8DBgxg06ZNANx222306dOHfv368dvf/haARYsWMXLkSAYOHMjw4cP5+uuvAe+1uuSSSxg+fDj77LMPL730Ejt27OCGG27gqaeeon///jz11FM8+uijXH755bva+vrrr+c7p6DNmzdz/vnnM3jwYAYMGMALL7xQ7t9PIl0RPUII/eIev2lmn5V0Ugghx8wuB17FS0ZMDCHMM7NLIs9PCCF8ZWavAJ8DeXhZibml/zGqriKDrmgvV8eOlVe0NC0NLr7Yg6Knn/Z8q4oM+Lp2hXvuSV0RVhERAZI38ceLLxb//NFHH83NN9/MPvvsw5FHHsnpp5/OIYcUXQnqjjvu4P7772fYsGFkZ2dTv359Xn75ZSZPnsyMGTNo2LAhWVlZAFx00UVMmDCB7t27M2PGDMaNG8f06dMBWLx4MW+//TaLFi3isMMOY+HChdx8883MmjWL++67D4BHH30032sXdk68W265hcMPP5yJEyeyfv16DjjgAI488kgaNWpUyt9aTCJB16dmdmAI4SMAMxsCvJ/IxUMIU4GpBfZNKPD4duD2xJpb/ZQYdFXG0GK8Pn3g4IPhvfd8OPDaa8t3vZwc+PRTrwEGCrhERGqxxo0bM3v2bN59913efPNNTj/99F15VIUZNmwYV199NWeddRannHIKHTt25PXXX+e8886jYcOGALRo0YLs7Gw++OADTj311F3nbt++fdf2aaedRp06dejevTvdunXb1QtWnJLOmTZtGlOmTOGOO+4AYNu2bXz//ffsu+++pfqdxEsk6BoCnGNmkVvt6AR8ZWZfACGE0LfMr14LFBl0Re9c7NixUtsDeIL7xx974HXssdC3HG/h44/7UOWpp8I5NermUxGRaqukHqlkSktL49BDD+XQQw+lT58+PPbYY6Snp5OXlwd48BL129/+luOPP56pU6dy4IEH8vrrrxNC2O2uwLy8PJo1a8acOXMKfc2CxydyV2FJ54QQeO655+jRo0eJ10pUIjldI4GuwCGRpStwHHACoJmLS1Bk0LVsma8ru6cLfEjxtNN8e8IE760qi1mzPOCqUyfW0yUiIrXW/PnzWbBgwa7Hc+bMoXPnznTp0oXZs73W+nPPPbfr+UWLFtGnTx+uvfZaBg0axNdff83RRx/NxIkT2bJlC+BFX5s0aULXrl155plnAA+IPvsslun0zDPPkJeXx6JFi/j222/p0aMHmZmZu3LEClPYOfGOOeYY7r33XkKkzNKnn35azt9OYiUjlgDN8ADrRKBZCGFJdCl3C2q4+KArX3msyqrRVZSTT4b27X2Yc/Lk0p+flQV/+5tvn302lKO7VUREaobs7GzOPfdc9ttvP/r27cuXX37JTTfdxI033siVV17J8OHD802Zc/fdd9O7d2/69etHgwYNOPbYYxk5ciSjRo1i0KBB9O/ff9fw3pNPPsnDDz9Mv3796NWrV77E9h49enDIIYdw7LHHMmHCBOrXr89hhx3Gl19+uSuRvqDCzol3/fXXs3PnTvr27Uvv3r25/vrry/37sVBCoUwzuxL4OfDfyK6TgQdDCPeW+9UTNGjQoDBr1qzKerkKFQKcfjps3Qr//rfX7WLbNh+OS0+HZ5/1BPdU+PRTuOEGv4PygQdiEWJJQoDrroPPP4f+/eHmm5XLJSKSYitWrKB9+/apbkalGzt2LCeccAKjR49OyesX9ns3s9khhEEFj01kePECYEgI4YYQwg3AgXgQJgkwK2SIMZpE36FD6gIu8FpdBx8M27f75NSJmjLFA66mTeFXv1LAJSIikoBEgi4DcuMe51J4tXkpQpFBV6qGFuNdeKGXzv/oI5g5s+Tjc3Nh2jTfvuIK1eMSEZGUevTRR1PWy1VaiQRdjwAzzOwmM/sj8BHwcHKbVbNU6aCrZUv42c98e8IE7/UqTloa3HknXH01HHBA8tsnIiJSQySSSH8XcB6QBfwAnBdCuDvJ7apR4ie+BlJXo6soJ5wAXbp4VPj00yUfX78+HHZY0pslIiJSkyTS0xVl+NyLGlospWjQtXp1ZEcqa3QVJi0Nxo3z7f/+F5Yv3/2Y776Dv//dbwIQERGRUisx6DKzG4DHgOZAK+ARM7su2Q2rSaIz7axZA+zY4XMfmnkifVWx774+d2JODtx/f/76Fjk5cNddMHWq320pIiIipZZIT9cZwOAQwk0hhBvxuxfPSm6zapZ8w4srVnhA07491K2b0nbt5rzz/I7EL76IJcsDTJoEixdDu3ZQTZIVRUSk8jVu3LjEY95991169epF//792bp1a6muP3nyZL788suktKsyJBJ0LQbiK4bVAxYlpTU1VLNmkJEBmzbB9oVxE11XNZmZcNFFvv3II14AddEieOYZ75m76irP5xIRESmjJ598kmuuuYY5c+bQoEGDUp1b1qCrqkgk6NoOzDOzR83sEWAukG1m481sfHKbVzOYxYYYN82L5HNVlST6goYP9yl9Nm/2YcZ774W8PBg1CvbbL9WtExGRauCtt97i0EMPZfTo0fTs2ZOzzjqLEAIPPfQQTz/9NDfffDNnneWDZrfffjuDBw+mb9++3Hjjjbuu8fjjj9O3b1/69evH2WefzQcffMCUKVP49a9/Tf/+/Vm0aBGLFi1i5MiRDBw4kOHDh++atPq7775j6NChDB48uEIqyVeURCa8fj6yRL2VnKbUbK1be3761gVVqFxEYcw8qX7cOC+CmpEB++wTKyshIiJV34lJmhq5FDNpf/rpp8ybN4/27dszbNgw3n//fS688ELee++9XRXkp02bxoIFC/j4448JITBq1CjeeecdWrZsyS233ML7779Pq1atyMrKokWLFowaNSpf9fkjjjiCCRMm0L17d2bMmMG4ceOYPn06V155JZdeeinnnHMO999/f3J+F2VQYtAVQnisMhpS00XzuvIWL/X7P6tq0AXQqpXnd/3617ByJfz5zxpWFBGRUjnggAPoGEml6d+/P4sXL+bggw/Od8y0adOYNm0aAwYMAHzuxgULFvDZZ58xevRoWrVqBUCLFi12u352djYffPABp5566q592yO1Jt9///1dE2ufffbZXHvttRX/A5ZBIj1dUgHatoU6eTmwagW0p2rmdMUbORLeeQdmzIDPPlNdLhGR6qQUPVLJUq9evV3baWlp5OTk7HZMCIHf/e53XHzxxfn2jx8/Hithirm8vDyaNWvGnDlzCn2+pPNToTR1uqQcWreG5ttXsXNLjnd7VfWeIzO4/HK/C+CNN6CIf9QiIiJldcwxxzBx4kSys7MBWL58OWvWrOGII47g6aef5ocffgAgKysLgMzMTDZt2gRAkyZN6Nq1K8888wzgAdxnn30GwLBhw5g0aRLgiftVRZFBl5k9EVlfWXnNqbnatoVW25ayfQdVe2hxyxa4+WZYsMDriJ15pu8fP96fExERqSBHH300Z555JkOHDqVPnz6MHj2aTZs20atXL/7whz9wyCGH0K9fP66++moAxowZw+23386AAQNYtGgRTz75JA8//DD9+vWjV69evPDCCwDcc8893H///QwePJgNGzak8kfMx0J8Ecz4J8y+BI4FpgCHUqASfQghK9mNixo0aFCYNWtWZb1cUvzwAzx09NMctfoJ9r/5ZDj//FQ3qXAPPujd0j17wm23+QTXv/mNB2FHHOFlI0REpMpZsWIF7du3T3Uzap3Cfu9mNjuEMKjgscUNL04AXgF6ArMLLNU7AkqBFi2gzfal5OyEHW2raE/XwoXw0ktQp47fvWgG6ek+uXVGhg8zfvhhqlspIiJSLRUZdIUQxocQ9gUmhhC6hRC6xi3dKrGNNYIZdDKv0bWuQRUMukLwXq4Q4KSToGvX2HMdO8LYsb59333w448paaKIiEh1VmIifQjhUjPrZ2aXR5a+ldGwGicE9shZBsDK9CoYdL3zDnz1lU8DNGbM7s+fcAL07w8bN3rB1CKGpUVERKRwiUx4fQXwJNAmsjxpZr9IdsNqnDVraJi+g00ZLVi5sVGqW5Pftm0+7Q/AuedCw4a7H2MGV14JjRrBzJnw2muV20YREZFqLpGSERcCQ0IIN4QQbsAnvP55cptVAy1dSr168EP9jqxZk+rGFPDdd7B1K+y9Nxx5ZNHHtWoFl17q2//8J6xaVTntExERqQESCboMyI17nEuBOxklAcuXUy8D1tXvyOrVqW5MAfvu6/lcv/qV92gVZ8QIOPhg7x276y6/u1FERERKlEjQ9Qgww8xuMrObgI+Ah5Paqppo5Urq1YOs+u2rZgdR06aJVcmPzs3YooXngP3738lvm4iIVAtpaWn079+f3r17c+KJJ7J+/fpUN6nUbrrpJu64446kXDuRRPq7gPOALOBH4LwQwt1JaU1NFg266rWrOsOL8+bBCy9AIVMzFCsz0+dlNINnnoFPP01O+0REpFpp0KABc+bMYe7cubRo0aLKTDYdQiAvLy/VzUhsGqAQwieREhL3hBD0DVsWK1aQXhc2N2lHdjZs3pzi9uTlwYQJ8NBD8PLLpT+/d2846yy/i/HOOyGr0mrliohINTB06FCWL18OwKJFixg5ciQDBw5k+PDhfP311wCsXr2ak08+mX79+tGvXz8++OADAO666y569+5N7969ufvuuwG49tpreeCBB3Zd/6abbuLOO+8E4Pbbb2fw4MH07duXG2+8EYDFixez7777Mm7cOPbff3+WLl1a6HEAt9xyCz169ODII49k/vz5SfudaMLrypCTA6tXY2Zk7NkWVsCaNflLYVW6116DxYt9HshjjinbNU49Fb74wifEvuMO+POfvbCqiIik3oknFv3cZZfByJG+/corUFyPVBkmz87NzeWNN97gggsuAOCiiy5iwoQJdO/enRkzZjBu3DimT5/OFVdcwSGHHMLzzz9Pbm4u2dnZzJ49m0ceeYQZM2YQQmDIkCEccsghjBkzhquuuopx48YB8PTTT/PKK68wbdo0FixYwMcff0wIgVGjRvHOO+/QqVMn5s+fzyOPPMIDDzxQ5HGNGjVi0qRJfPrpp+Tk5LD//vszcODAUv/MiVDQVRnWrPEeoTZtaNU+g8UrYPXqFAZd27fHcrHGjvVq82VRpw5ccw384hcefE2aFJurUUREap2tW7fSv39/Fi9ezMCBAznqqKPIzs7mgw8+4NRTT9113Pbt2wGYPn06jz/+OOD5YE2bNuW9997j5JNPplEjL690yimn8O6773LFFVewZs0aVqxYwdq1a2nevDmdOnVi/PjxTJs2jQEDBgCQnZ3NggUL6NSpE507d+bAAw8EYNq0aYUet2nTJk4++WQaRsoljRo1Kmm/HwVdlWHlSl+3a0fbtr6Z0jsYp0zx4cDu3f1OxPJo1swDr+uv96Crd2/oq/q5IiIpl2gP1ciRsV6vcormdG3YsIETTjiB+++/n7Fjx9KsWTPmzJmT0DWKmhMaYPTo0Tz77LOsWrWKMZFC3iEEfve733HxxRfnO3bx4sW7Arfijrv77ruxku7cryCJFEc9xcwWmNkGM9toZpvMbGMiFzezkWY238wWmtlvizlusJnlmtno0jS+2lixwtdVIejatAmefda3zz235BIRiejXD04/3Xvzbr9d+V0iIrVc06ZNGT9+PHfccQcNGjSga9euPPPMM4AHP5999hkARxxxBH//+98BH5LcuHEjI0aMYPLkyWzZsoXNmzfz/PPPM3z4cADGjBnDpEmTePbZZxk92kOGY445hokTJ5KdnQ3A8uXLWVPIHWtFHTdixAief/55tm7dyqZNm3ixDMOpiUokAec2YFQIoWkIoUkIITOE0KSkk8wsDbgfOBbYDzjDzPYr4rj/A14tXdOrkWhPV/v2qQ+6Xn0VtmzxKX369au4655xhvdwrV8Pf/kL7NxZcdcWEZFqZ8CAAfTr149Jkybx5JNP8vDDD9OvXz969erFCy+8AMA999zDm2++SZ8+fRg4cCDz5s1j//33Z+zYsRxwwAEMGTKECy+8cNeQYK9evdi0aRMdOnSgXbt2ABx99NGceeaZDB06lD59+jB69Gg2bdq0W3uKOm7//ffn9NNPp3///vz0pz/dFeAlgxXXjQdgZu+HEIaV+sJmQ4GbQgjHRB7/DiCE8NcCx10F7AQGAy+FEJ4teK1BgwaFWbNmlbYJVcdNN8Hs2XDddSxqNYSrroIuXXwKw0qXlwdvvw2dO0O3Cp63fMMG+OUvYe1aOOooz/WqpC5bEZHabsWKFbRv3z7Vzah1Cvu9m9nsEMKggscm0tM1y8yeMrMzIkONp5jZKQmc1wFYGvd4WWRffKM6ACcDExK4XvUVN7zYpo1vrlqVojmj69SBww6r+IALvMDqddd5Yv5rr5WtFIWIiEgNlUjQ1QTYAhwNnBhZTkjgvMK6OAqGGXcD14YQau5cMjk5fveiGeyxB40b+3zS27Z5elWlWb0a1q1L/ut06wZXXOHbDz4Ic+cm/zVFRESqgRLvXgwhnFfGay8D9ox73BFYUeCYQcCkyF0DrYDjzCwnhDC5jK9Z9axd6/MTtmoFGRkY0LatzzG9ejU0KTE7roI8+KBXjv/NbyBy+2zSHHIILFoEzz8Pt94Kd9/tP7+IiEgtlsjdix3N7HkzW2Nmq83sOTNLYJI+ZgLdzayrmWUAY4Ap8QeEELqGELqEELoAzwLjalTABfmS6KOiQ4yVlkz/1Vfw8ceQlgY9e1bOa557rifrb9gAt9zitcFERCSpSsrTlopV2t93ohNeTwHa4zlZL0b2ldSQHOBy/K7Er4CnQwjzzOwSM7ukVK2szuLyuaL22MPXlTYH47/+5euf/MTralWGtDTvVWvbFhYu9KmCqsC8VyIiNVXdunXJzs5W4FVJQghkZ2dTt27dhM9JpDhq6xBCfJD1aOSOw0QaNBWYWmBfoUnzIYSxiVyz2kl1T9fcufD559CokQddlSkzE2680SfH/vBDmDgRLrywctsgIlJLtGjRgqysrELLJUhy1K1blxYtWiR8fCJB1zoz+xnwn8jjM4AfytC22imuGn1Updbq+k/kbTvpJA+8Ktuee8Lvf+/B1wsv+A9f3HxgIiJSJmlpabRu3TrVzZBiJDK8eD5wGrAKWAmMjuyTRBQyvFhpQVd8L1cS55IqUd++sTsa//lP+Oij1LVFREQkRUoMukII34cQRoUQWocQ2oQQfhJCWFIZjav2cnNjkVUhQVd0HuykycyEwYNT18sV77DD4Gc/i00V9M03qW2PiIhIJStyeNHMfhNCuM3M7mX3+lqEEK5IastqgnXrvE5Xy5ZQr96u3Q0aeDy0aZPPmtO8eZJev3NnuOGGFFVhLcRpp3kQ+tprcPPNHnzFBaMiIiI1WXE9XV9F1rOA2YUsUpJC8rmiKjWvq6pMxWMG48bBgAFeSuK66yqnYKuIiEgVUGTQFUKITrO9JYTwWPyCV6iXkhSSzxWV1KBr3jzv4Zo/PwkXL6f0dE+s79HDx1evu84DMBERkRoukUT63yW4TwqKBl2FTECa1KDr3//26vOzq2iHZP36Pgl4166wfDlcfz1kZ6e6VSIiIklVZNBlZsdG8rk6mNn4uOVRIKfSWlidFVKjKyppQVf8HYsnnVTBF69AjRt7XleHDj4n0h//6BNSioiI1FDF9XStwPO5tpE/l2sKcEzym1YDJDC8WOFV6Z96ytejRqX+jsWSNGsGf/4ztG4NX3/t2zt2pLpVIiIiSVFcTtdnkfytPsC/4vK5XgA0kV5J8vJg1SrfLiToSkpV+oULYc4cH75LZV2u0mjVyoOtZs3gs898nkYFXiIiUgMlktM1DWgQ97gB8HpymlODRMtFtGjhQVAB0Z6utWsrcErC557z9bHH+vBdddG+vQdeTZvCJ5/4sKMmyBYRkRomkaCrfghhV5ZzZLth8ppUQxRTLgIgI8Prc+XkQFZWBbzepk0wc6bfHVjZcyxWhM6d4a9/jfV43XSTcrxERKRGSSTo2mxm+0cfmNlAYGvymlRDFJPPFRUdYoyOQpZLZqZPsfPrX3vvWnW0555w663e/rlzvezFFlUnERGRmiGRoOsq4Bkze9fM3gWeAi5PaqtqgmLuXIyq8GT65s3hoIMq6GIp0qGDB16tWsFXX3ngtXlzqlslIiJSbonMvTgT6AlcCowD9g0hVNECUFVIAj1dFVY24ttvfZ7HmqJdOw+82rTxAq+//W0FjcGKiIikTiI9XQA9gP2AAcAZZnZO8ppUQxRTGDWqQoKu7Gy49lq45JKa1SPUtq0HXh06wOLFPmy6fHmqWyUiIlJmJQZdZnYjcG9kOQy4Dagm9QhSJIRiy0VEVUjQNXWqJ5zvsUfVr8tVWq1b+6TY0SmDfv3rqjm1kYiISAIS6ekaDRwBrAohnAf0A+oltVXV3Q8/wM6dfidegwZFHtahg6+XLvU4rdS2b4cpU3x79OgyXKAayMz0chKDB/sdmn/4Q9Wd3khERKQYiQRdW0MIeUCOmTUB1gDdktusai6BfC7wXPHGjX2+5zKlLL3+up/cvTv07VuGC1QT9ev7JNlHHOGB5s03w2uvpbpVIiIipZJI0DXLzJoB/8SnAfoE+DiZjar2EsjnAjCDbpHw9dtvS/kaeXnw/PO+PXq0X6wmS0+HK6+EU0/1n338eHj44QqsLCsiIpJcxQZdZmbAX0MI60MIE4CjgHMjw4xSlMWLfb3nniUe2rWrr7/7rpSv8eGHngzWrh0ceGApT66mzOCcc+DyyyEtDSZPhj/9SbW8RESkWig26AohBGBy3OPFIYTPk92oai/abbXXXiUeWuaeLvCSCiedBHUSvQm1hjjmGM/zysyEWbPgmmsqqMKsiIhI8iTybf2RmQ1OektqihBi3VbRbqxilDnoGjYMHnzQA5DaqHdvuOsu701cuhSuvhq++CLVrRIRESlSIkHXYXjgtcjMPjezL8xMvV1FWbHCSzi0bOkTOJegY0dPV1q5EraWdnKltDQ/ubbaYw+44w4YNMjvbLzuOp/0u0y3goqIiCRXkUGXmXWKbB6L3614OHAicEJkLYWJ9nJ1S+wGz/R06BT5TUdTwYq1ahX861+wfn1ZWlfzNGwI118fS7B/9FG45RYvGisiIlKFFNfTNRkghLAEuCuEsCR+qZTWVUeLFvk6waAr/tCEhhinTIGnnoLHHit922qqOnU8wf76671A7IwZcNVVsfdCRESkCigu6IqvQaC6XIkqZU9X/KElBl3Z2bH6VCedVPq21XQHHAD33OM3MKxe7RXsX35Zw40iIlIlFBd0hSK2pThl6OlKuGzEK694vlj//tClS1laV/O1bQu33QbHHuuzAjzwgA83btiQ6paJiEgtV1zQ1c/MNprZJqBvZHujmW0ys42V1cBqJSvLc60aNoxNrJiAaNC1eDHk5hZxUE4OvPiib//kJ+VoZC2QkQHjxnlPV3S48fLLNX2QiIikVJFBVwghLYTQJISQGUJIj2xHHzepzEZWG/FDi6WoEN+okcdoO3fC8uVFHPTOOx7UdeoE++9f/rbWBiNGwL33enmJ9evhppvgH/+AHTtS3TIREamFklpV08xGmtl8M1toZr8t5PmzImUoPjezD8ysXzLbk3RlGFqMKjavKwSvvg7ey1XTp/ypSK1b+/Diuef6raIvveRJ9vPnp7plIiJSyyQt6DKzNOB+vOTEfsAZZrZfgcO+Aw4JIfQF/gQ8mKz2VIoyJNFHlZhMf+GFcMghvkjp1Knj81PecYcXRlu61IceH3rIc+REREQqQTJ7ug4AFoYQvg0h7AAmAfluuQshfBBC+DHy8COgYxLbk3zl6OkqNpneDPr29eluMjLK3r7abq+9/O7G6AThL7zguV6ffZbqlomISC2QzKCrA7A07vGyyL6iXAC8nMT2JNeWLV5WPj09oYmuC4rv6cpX4UDlDipWRoYPNd51l//SV6/2Svbjx3tVexERkSRJZtBVWOJRoRGEmR2GB13XJrE9yRUtJ9+pU5mm5mnVCho3ho0bPV9+lwkTfHLnpUuLPFfKYK+94M474eyz/f167TW4+GIvy6FAV0REkiCZQdcyIL7LpyOwouBBZtYXeAg4KYTwQxLbk1zRocW99irT6WaF5HVt3Aivv+4lD5Q8X/HS0+G00/wOx379vKfr/vvhV7+CBQtS3ToREalhkhl0zQS6m1lXM8sAxgBT4g+IzO/4X+DsEMI3SWxL8pUjiT4qmte1K+h65RUvbzB4sCeAS3J07Ah/+hNce61PVL5ggQde992noqoiIlJhkhZ0hRBygMuBV4GvgKdDCPPM7BIzuyRy2A1AS+ABM5tjZrOS1Z6kK0cSfVS+nq6dO728AagYamUwg4MP9uHcn/7U73h89VW/a/Tpp2H79lS3UEREqrnSJx+VQghhKjC1wL4JcdsXAhcmsw2VIicHvv/et6PdVWUQDbq++w4vhvrjj369Pn3K30ZJTP36MHYsHHEEPPIIzJwJTzwBU6d6/tdhh3lAJiIiUkr69qgIS5d64NWuHTRoUObLdOzoaUYrVwR2PjvZd6oYamrsuSfccIMXVu3WDX74Ae6+G668Ej7+WMn2IiJSagq6KkI0CauMSfRR6enQuTO03raUrd8shRYtfCobSZ2+fT3Yuvpqv8V08WLP//rVr3wuRwVfIiKSoKQOL9Ya0aCrHEOLUd26wWuLOvHhGQ9zTO/lZSo/IRXMzIcVhw2Dl1+GZ57xZPubboJ994WzzvLgTD2SIiJSDPV0VYQK6umCWNw2f11L/yKXqiMjA046yacPOu88yMyEr77y4qq/+Y2X9lDPl4iIFEFBV3mFEAu6ynHnYlRPm4+FvMKnA5KqoX59OOUUePhhOOccD76+/tqL2F52GUyf7jl+IiIicRR0ldfq1T4FULNm0Lx5+a61ciVd//5rLp53BYsX5rBxY4W0UJKlQQM49VSYONFLS7Rq5TdV/O1vcNFFMHkybN6c6laKiEgVoaCrvCpwaJHnniO9TsB67EMO6XzwQfkvKZWgfn0fdvznP+Gqq/w21LVrvSds7Fj4+99h+fJUt1JERFJMQVd5LVzo6/Im0a9bB2+8AWY0Oe+nALz9djnbJpUrPd3rez3wgOd59e0L27Z5ja9LLvHE+5kzIS8v1S0VEZEU0K1x5RECfPihb/fuXb5rTZ7seUAHH8yAEzpQ9ymYN8/LQ7VsWe6WSmUygyFDfFmyBF58Ed5800tMzJ7tw5BHHQVHH+3bIiJSK6inqzwWL4Zly6BJE58wuaw2bPBSBACnnUajRjBokMd0771XIS2VVOncGS6/HB591Ica27XzXs3//AfOPx9uvtkDdyXei4jUeOrpKo933vH1sGHlq6c1ZUpsYuvIMOWIEf5d/Pbbni4k1Vxmps/peMop8MUXPpn5hx/6cOPMmf78iBFw+OHQvbtqfomI1EAKusoqhFjQVd6q8W3a+Bjiqafu2jV4sOdnL1gAK1d6B4nUAGae69W3r/dwTp/uuXxLlsD//udLhw5ejHX4cGjfPtUtFhGRCmKhGhRzHDRoUJg1a1aqm5Hf/PlwzTUeLD3ySPl7JnJydustu/NOeOstn2f5tNPKd3mpwkLwWc7ffNPf8PXrY8916+bB18EHwx57pKqFIiJSCmY2O4QwqOB+9XSVVfTWwuHDK2YoqJDhyREj/Dv4nXcUdNVoZh5cdevmeV9z5vib/tFHXpLk22/hsce8LMnQoXDggdCpk4YgRUSqGQVdZZGXF8twL8/Q4tNPey7X6NE+lljAgAGe6rNkiS+dO5f9paSaSEuDgQN92bEDPv0U3n3XpxhatMiXf/3Lx5ujd0juu6+fJyIiVZqCrrKYOxd+/NG/+Pbeu2zXWL0aJk2CnTv9C3bffXc7JD0dDjoIXn3VOz7OPruc7ZbqJSMjFljt2OE9YB995AHYypVeZmTyZGjUyCP0QYNg//3LPzOCiIgkhYKusogm0JdnaPHhhz3gOvTQQgOuqBEjYkHXz36mEaVaKyMDDjjAl7w8n+sxevfj8uXe8xrtfe3WzYOvfv1gv/38XBERSTkFXaWVkwPvv+/bZR1anDPHvzDr1/ccnmL07g0tWsCqVX4n4z77lO0lpQapU8eDqf32gwsu8F6vaOHVzz+P5YE9+yzUretBfb9+0KePl6MoT3kTEREpM336ltann0J2tidYlSXJKicHHnzQt08/vcRy83Xq+I1rU6Z4b5eCLtlNu3Zwwgm+7NjhUxl89pkH999+64HY55/7sRkZ0LOnR/O9evk/qELyCUVEpOIp6Cqt8tbm+t//YOlS/6JMsOrpiBEedL37LpxzjkaLpBgZGZ7fNWCAP960KRZ0ffGF/9uLD8Lq1PHhyJ49vUesZ09o3Vrj2CIiSaCgqzS2b/dEZvB8rrL4+mtf//znPvSTgH328QoB33/vlQN+/vOyvbTUQpmZPmPCsGH+eMMG7wmbN89vCPnuO5+0feFCeOklP6ZZMx+GjF+aNk3ZjyAiUlOoOGppvP8+3HqrfwnddVfZrhGCB17FJM8XZsEC+PWvITfXp+uLdmSIlMu2bfDNN/5vMrps2rT7ca1aeZ2wrl193a2besRERIqg4qjllZMDzz/v24ccUvrzQ/AvKLNSB1zgcd6ZZ8ITT8Df/gb33efzbIuUS/36sWmJwP+dRu/aWLgwtl63zpcZM2LnNmrkeY1duuRfN2qUip9ERKTKU9CVqCef9Kl/Wrb0SYlLY8kSuPtu76oqx1x6o0fDJ5/4yNC998Lvf6+OBqlgZp5v2K5dLG8xLw9WrIjdFbloka83boQvv/QlXosW0LGjj4nvuadvd+zo9cP0D1ZEajENLyZi1iz44x896fivf/Vb9RP1ww8+R+O6dXD00fCLX5SrKWvW+CW2bPH10UeX63IiZROCFwhesgQWL46tly71OygLU7++/9HRoYMve+zhwd0eeyggE5EaRcOLZbVuXSx/6+yzSxdwbd3qwdq6dT6kePHF5W5OmzZw6aU+GfaDD/pd/x06lPuyIqVj5j1aLVrkTzAMwf8yWLo0/7JihfeMRXvLCqpXz4Ovtm1jS5s2vm7dGho3VlAmItWegq7i5OTAbbd5YvHAgfDTn5bu3L/+1e8Oa98err++wmo9HHqoFyJ/5x244w5PrM/MrJBLi5SPWSxoGlTgj7xNmzz4WrHCq+ivXOn5YytX+nPRSUYLU7++B1+tWsXWrVp50NeypW83aqTATESqNAVdxXnySfjqK/9Q/+UvE/9ADwEeeMALqTZtCjfdVOFR0bhx3rSFC+Gyy3yocfDgCn0JkYqVmQk9evhS0ObNHnytWePzkkbX0e1t22K9ZkXJyPAgrHnzWC9c8+ZeAiO6ji6qyi8iKaCcrqJ89BHcckvZ8riWLfOoqG5dPzdJZeRXrfI7GaN5zEcc4TW8dPOY1CgheBLj2rWx5YcffFm3Lrbeti3xazZq5H8QxS9NmsSWzMzYOjPTj69TJ3k/o4jUKEXldCnoKmjNGnj0US//DnDuuX7bYEny8vJ/KD/+uOdxJbn7KS/Pq9U//rjPn92qlfd6DRigkRapZbZuhawsX3780YOx9et9e/362LJhg//HKQ0zD7wyMz2/rFEjX0eXRo3yLw0bxtYNG0KDBvoPKVKLKOgqyZYt8Mwz8MILHr1kZHgO1xlnlPxhOX++F84aO9Zzv1Jg6VLv9VqwwB936BArRN61qz7vRXYJwedP3bDBg7CNG329aZNvb9zo2xs2+HGbNvnwZ3k1aOBLNAiLf1y/vi8NGsTW9erF9tevH3tcr15sSU/Xf26RKiglQZeZjQTuAdKAh0IItxZ43iLPHwdsAcaGED4peJ2kBl15eTBtGvzrX/4hC1789NxzPWG3MCF4wu+sWb58+aXv69vXhyRTJDcX/vtfmDzZvzei2rWDgw6Cvff20knt2yulRaRUcnM98Nq0yQOxzZt9HV22bPF98cuWLbFl69bktMssfxCWkRFbF7XUrbv7uqQlPT22jm7XrQtpaQr8RApR6UGXmaUB3wBHAcuAmcAZIYQv4445DvgFHnQNAe4JIQwpeK2kBl1ZWV7KYds2Hw684IL8ib47d3pAFb3zcNo0mDTJ80qi0tPhJz+BMWP8Ay/FcnN9Wr3334cPPojFklFpaR547bmn3yPQrJmntERzjKN/iEf/wFaAJlJOeXkeeEWXaCC2dat/9hS13rbN53yN345fcnJS/ZO5aPAVXaKPE1kX3I4udeoUva+4dfwSv6/g82a7Hx/dn5aW//nodsF1wX2FHVdwO7pIjZaKOl0HAAtDCN9GGjAJOAmIL199EvB48MjvIzNrZmbtQggrk9iu/Fq0gPPOg9de8+3//Cf2gbhxowdl8VVI09I84Gra1G+JHzTIE6iqUPZ6Whr06+fLJZd4BftPPvEJs5cu9QT8km4Ei5eeHhvJKPiHb8HPxsI+0+I/dyC2LvgZFP85VNTnUnRfcc+VtK+4/YmorM9LfS7XJHWARpElAWmJHW65OaTl7qBOzg5f79xOWs722L6c7dTJ3RlbR/bv2s7dGVsi++vkRffl5H8+LwfLy9m1XSd3J5aXS53cHCA3smwvx++olon8Bw9Wh2AG+IdedDuYESz6YVkncmzsuYLHR68VvXb+/bFtzAiFnht3TCHXKPKYQs+hFMcROz5uX77j8/2+CjkvX/sKyv+lETDaXfoTOo8s/XR8FSGZQVcHIP5rfRnem1XSMR2Aygu6AI47zjPRFy7c/bk6dfJPADxkiBdL3XvvavGtWKcO9OnjS9T27V4madmyWI5xNL1l/fr8f2xv3ep/TFeVP6hFJF56ZGlYsZdNiyyJCIE6IZe0kEN62Llru07IpU5eTmw7bn/8vjrkkhY5tg651Al5+Y636GNi+23Xdv59aSEXC3mR5/P8XPJ2XWPX/rjnY/vCrscWQqH764Q8IOza79u5ALues8L2hUAdfJ/tGl2KrnMr5C0TCoZpRR6z4ZjhyW5KkZIZdBX28xccy0zkmMpx6aUeRMUnuWZmeu9XWtynT+PGPvt0NVavHnTr5ktJQvAR1sKW3Nzdl7w8X0KIbUcfQ+ymsfh19LmC6+K2C+4r7rlEJHpsNbjvRKSSGbHgr36K25IcIbKU8p7XYi4Y+0A0gj8OIbYd3R85BsBC3q5z47fznRd/zbjngfzHxF+jsONKODd+Xdjxu+0v5HWKO7fEaxS2XfCcQtoa1WZEcso4JSKZQdcyYM+4xx2BFWU4pnIcckhKXraqM4vl34qISEWI9jck2p0oNUUyq/3NBLqbWVczywDGAFMKHDMFOMfcgcCGSs3nEhEREakkSevpCiHkmNnlwKt4OD8xhDDPzC6JPD8BmIrfubgQLxlxXrLaIyIiIpJKSS0GEEKYigdW8fsmxG0H4LJktkFERESkKtBkYiIiIiKVQEGXiIiISCVQ0CUiIiJSCRR0iYiIiFSCpE54XVHMbC2wJNXtEBEREUlA5xBC64I7q0XQJSIiIlLdaXhRREREpBIo6BIRERGpBAq6ADMbaWbzzWyhmf021e2prcxsTzN708y+MrN5ZnZlZH8LM3vNzBZE1s1T3dbayMzSzOxTM3sp8ljvSxVgZs3M7Fkz+zryf2eo3pvUM7NfRj7H5prZf8ysvt6X1DCziWa2xszmxu0r8r0ws99F4oH5ZnZMRbal1gddZpYG3A8cC+wHnGFm+6W2VbVWDvCrEMK+wIHAZZH34rfAGyGE7sAbkcdS+a4Evop7rPelargHeCWE0BPoh79Hem9SyMw6AFcAg0IIvfGp8Mag9yVVHgVGFthX6HsR+c4ZA/SKnPNAJE6oELU+6AIOABaGEL4NIewAJgEnpbhNtVIIYWUI4ZPI9ib8y6MD/n48FjnsMeAnKWlgLWZmHYHjgYfidut9STEzawKMAB4GCCHsCCGsR+9NVZAONDCzdKAhsAK9LykRQngHyCqwu6j34iRgUghhewjhO3xu6AMqqi0KuvxLfWnc42WRfZJCZtYFGADMANqGEFaCB2ZAmxQ2rba6G/gNkBe3T+9L6nUD1gKPRIZ+HzKzRui9SakQwnLgDuB7YCWwIYQwDb0vVUlR70VSYwIFXWCF7FMdjRQys8bAc8BVIYSNqW5PbWdmJwBrQgizU90W2U06sD/w9xDCAGAzGrJKuUh+0ElAV6A90MjMfpbaVkmCkhoTKOjyKHbPuMcd8W5gSQEzq4sHXE+GEP4b2b3azNpFnm8HrElV+2qpYcAoM1uMD78fbmb/Qu9LVbAMWBZCmBF5/CwehOm9Sa0jge9CCGtDCDuB/wIHofelKinqvUhqTKCgC2YC3c2sq5ll4Al0U1LcplrJzAzPTfkqhHBX3FNTgHMj2+cCL1R222qzEMLvQggdQwhd8P8f00MIP0PvS8qFEFYBS82sR2TXEcCX6L1Jte+BA82sYeRz7Qg8R1XvS9VR1HsxBRhjZvXMrCvQHfi4ol5UFekBMzsOz1lJAyaGEG5JbYtqJzM7GHgX+IJY7tDv8byup4FO+IfZqSGEgkmRUgnM7FDgmhDCCWbWEr0vKWdm/fEbHDKAb4Hz8D+o9d6kkJn9ETgdvyv7U+BCoDF6Xyqdmf0HOBRoBawGbgQmU8R7YWZ/AM7H37urQggvV1hbFHSJiIiIJJ+GF0VEREQqgYIuERERkUqgoEtERESkEijoEhEREakECrpEREREKoGCLhFJOTNraWZzIssqM1se2c42sweS9JpXmdk5hezvYmZzK/B1MszsncgcfCJSi+lDQERSLoTwA9AfwMxuArJDCHck6/UiAdD5ePX2pAoh7DCzN/CaTU8m+/VEpOpST5eIVFlmdqiZvRTZvsnMHjOzaWa22MxOMbPbzOwLM3slMoUUZjbQzN42s9lm9mp0qo8CDgc+CSHkxJ3zmZl9CFwW9/pdzOxdM/skshwU2f+EmZ0Ud9yTZjbKzHqZ2ceRXrrPzax75JDJwFnJ+B2JSPWhoEtEqpO9gOPxyYT/BbwZQugDbAWOjwRe9wKjQwgDgYlAYTNMDAPiJ/B+BLgihDC0wHFrgKNCCPvjPVXjI/sfwiu/Y2ZN8Xn1pgKXAPeEEPoDg/B53ADmAoPL+DOLSA2h4UURqU5eDiHsNLMv8Gm7Xons/wLoAvQAegOv+ZR3pAErC7lOO3wuvGjQ1CyE8HbkuSeAYyPbdYH7IlPt5AL7AIQQ3jaz+82sDXAK8FwIISfSU/YHM+sI/DeEsCByfK6Z7TCzzBDCpgr6XYhINaOgS0Sqk+0AIYQ8M9sZYvOY5eGfZwbMK6THqqCtQP3ItgFFzYf2S3yutn74yMC2uOeewIcMx+D5YYQQ/m1mM/DeuFfN7MIQwvTI8fUKnC8itYyGF0WkJpkPtDazoQBmVtfMehVy3FfA3gAhhPXAhsiE65A/96opsDKEkAecjfecRT0KXBW5xrzI63UDvg0hjAemAH0j+1sCa0MIO8v/I4pIdaWgS0RqjBDCDmA08H9m9hkwB8+3KuhlYETc4/OA+yPDg1vj9j8AnGtmH+FDi5vjXms1Hrw9Enf86cBcM5sD9AQej+w/DM/5EpFazGK98yIitYeZPQ/8Jpp3VYbzG+K5ZPuHEDaUcOx/gd+FEOaX5bVEpGZQT5eI1Fa/xRPqS83MjgS+Bu5NIODKACYr4BIR9XSJiIiIVAL1dImIiIhUAgVdIiIiIpVAQZeIiIhIJVDQJSIiIlIJFHSJiIiIVAIFXSIiIiKV4P8BCq5a7x663iEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABNpklEQVR4nO3dd5yU1fXH8c/ZhWXpHaUJGBEUpCOiAnaxBBvG3o2xRY2xxBh7TEw0RrGR/BRsxC5IjBpi7A0FBQWUIEjvRWSRBXb3/v44M8zssmW2zMyW7/v1el7zzDPPPHN3B2bO3nvuuRZCQERERESSKyPdDRARERGpCxR0iYiIiKSAgi4RERGRFFDQJSIiIpICCrpEREREUkBBl4iIiEgK1Et3AxLRpk2b0LVr13Q3Q0RERKRM06dPXxtCaFv0eI0Iurp27cq0adPS3QwRERGRMpnZouKOa3hRREREJAUUdImIiIikgIIuERERkRRQ0CUiIiKSAkkLusxsnJmtNrNZJTxuZjbGzL41sy/NbECy2iIiIiKSbsns6XocGFnK40cB3SPbRcAjSWyLiIiISFolrWRECOE9M+tayinHAU+GEALwiZm1MLP2IYQVyWqTiIhItRdC7DZ+y8iAzEx/LC8Ptm+PPQZQUBB7XtOmYOb3N23a+dzofnY2NGsWu+aaNYUfj9emDTRo4PsbNvh1i54XAtSvD506xY4tWFC4bUWv2bKl7//wA6xYUbiN8Xr08N8BwMKFsHnzzucANG8OnTv7fm4u/O9/scd22w1atNj5OSmSzjpdHYElcfeXRo4p6BIRqUkKCvwLOy8P8vP9tl49/+IH2LYNli6NPR7d8vL8uT17xs6dNw8WLYqdU1AQu23SBA4/PPa6EyZ4MBF/TnQ74ADo18/PmzMHXn218OPRLQS48UbIyvJzx46NBQnRgCI/328HDoRzzvHzVqyAW26J/fwhFH7Ob3/rQQLAU0/Bv/61cxAVAnToAA88EPuZTj7ZA4XiXHABHH+877//Ptx7b8nvyQsveEAFcOedMHt28eeNGAHXXOP7K1fCJZeUfM0//hF69/b9l16CV14p/ryOHf33GHXddbB1a/Hnxv9Mn38Of/lLya8f/zONHZvYz7R2rb+/UddfDwceWPJrJFk6gy4r5lgxIWvyvfee/3/v3z8dry4iUkHbt/sX9NatHths2+b727d7j8hee8XOfeONwudt3x7b9t8/FqB8+aV/uUV7UrZvjwVUeXnw8MOx3o4bb4Svviq+tyH+i2/VKrjyypJ/jvgv83ffLf3LPD7omjSp5AClQ4fYz7R6tQcpJcnPj+0vWgRff138edHeE/AAa0UpfQTbt8f2t271XpmyzoPCv0uznbeo+vVjAYhZrAeo6HngX3AtW8aOx58T7eUC/zez666xc4reRgNT8N6i6O8j/npmsMsuhV+/Wzf/N1fc68f3OjVrFgtU438HRX9GgK5dY7+rom2N72Vr0AD22Sf2ePPmpJOF4v6zVNXFfXjx1RBC72Ie+xvwTgjhmcj9ucBBxQ0vDho0KCSrIv2GDR7Yb94Mw4d70N2qVVJeSkTqso0bffgkNxe2bPHtxx/9frt23osCsH49PP64f1FHA6rc3Nj+ddfFgqlHHy05QOnQAf72t9j9n/3MX7M4554LJ53k+++9B3ffXfLP8eyz0Lix7994owdpZt6zlZkZux06FC67zM9bswbuuMMfy8iInRM9/6yz/Is5+vqff+6PRYfTovstWsTaCTBxogdMGRmxc6P7PXvGrrl6NXzzTeyxjIzYl3hGBvTt6+0A+O47/z3FPx7db9LE3yvwAHTVqp3Pi27NmnlgBP7ebd++8znR50bPg50DCamRzGx6CGFQ0ePp7OmaDFxuZs8CQ4CN6cjnatrUe3P/8Q//vz5tmv//P/rowkG1iNRR+fmQkxPbWraMffEuWgRvveV/tW3e7EFU9PbHH+Ghh2IByt13w8yZxb/G/vvHgq68PHj77ZLb8+OPsf3GjT0QyMryv+gbNPAv8AYNoG2RZd9GjvTemfr1Y1tWlt/27Bk7r3dvuP12D0Lq1fPHo7f160PDhrFzb7stFnCUpm1bGDOm9HOihg/3LREnnJDYee3axd6zskQDtbLUq+c9b4nIzo71SpVFwVatlrSeLjN7BjgIaAOsAm4B6gOEEMaamQEP4jMcfwTOCyEU252VzJ6uqNWr/Y/CTz/1+3vs4X+k7bFHUl9WRFIpP9+TfzduLLzl58Nxx8XO+93vfOho06ade4dOPx1OO833P/vMA5SSjB/vicLgQcecOR60NGzoX8LR/T328KAIfBjm/ff98QYNdr5t0aLwMI+IVDsl9XQldXixqqQi6IqaOtXz89au9T9k7rpr5yFmEalGQvAeqA0bfGgu/vbgg+EnP/HzJk70IKi4z7xGjeC552L3L7oolq9j5r1J0e3ww+Goo/yxVas8QGrc2LdGjWK3jRp5rkJ0tpmI1BnVcXixWhoyxIf3H3nERw3++le4//5Y3qiIpFAInge1erX/JbR2rQ9xRXuFcnPhjDO8d6g4XbrEgq7osFizZp5M27y570fvhxAb2rnpJv+rq1kzD55KGvLZZRcYPbrqfl4RqdUUdBUjO9uHFr/9FhYvhiee8D98RaSKRYOqFSt8JlQ0/2niRJ9tt2bNzrO7OneOBV3Z2Z5PFO1VatnSt+h+9+6x5x12mPdSJdLzFD9LTUSkiijoKkFWFvz613D11fDPf8K++8ZmH4tIBeTmejmA5ct9W7nSt+iU/9tugwEDYucuX+77TZt6XlSbNp6Q3aFD4es+/XRiXdH19HEnIumlT6FS7L6758w+9ZQPMT74YOwPcREpIi/PA6WlS2HJEr9t3hwuvNAfz8/3/0RFNW4M7dsXPnbEEV7AsG3bsmd9aexfRGoIBV1lOOkkn9E4d67Pbrz66nS3SCTN4pckAa/0/frrsGxZ4SKT4MFUNOhq3NhrsbRq5b1V7dt7IcYmTXZ+jdatfRMRqUUUdJUhMxN+9Su44govnbPffl5SR6ROyMvzxMb5871o5Hff+RIp118fGwrcssXPMfMgqnNnrwjdubOvcxavtCVGRERqOQVdCejYEc47z3u6HnwQevVK+0oCIlUvfvbetm2+dtyCBTsnsoMPH0aDroMO8oTHzp0TLwApIlIHKehK0DHHwIcfwqxZ8M47hesoitRImzb5uPk33/htTo7XSAGfSbJhgwdcHTt6gmN069bNZwZGtW27c/VzERHZiYKuBJl5PcRZs+CTTxR0SQ21YIGXYpg924cEi9q0yWcLAtx8s88Y1OwREZEqoaCrHAYO9Fnns2f7yiEaYpRqbcMGX4y4dWtfTw+8Uvvrr/t+/fpex6pHD197r2fPWMAFXlhURESqjIKucmjcGPr0gc8/9yXXDjss3S0SiZObC199BV98ATNmeN4VeOmFaNC1115w9tl+f489PPASEZGUUNBVTvvt50HXxx8r6JJq5PHHYfLkwknvDRp4cNWnT+xY48Zw8skpb56IiCjoKrchQ+Dhh70zITdXk7UkxfLzYc4cX5n9sMOga1c/3rSpl3fo3t3Hwfv182FDVWEXEak29IlcTq1a+XfZ3Lne46WaXZJ027bB9OnevTptmie7gy/gHA26jjjCgzAlGoqIVFsKuipg6FAPuj75REGXJNkjj8Bbb8XWJwQv4TBkiP9DjIpPgBcRkWpJQVcF7Lefp9B8+qmP6GgER6pEQQHMnAl77x1bT3DbNg+49tgDDjjA//F16pTedoqISIUoXKiAjh29+PaSJV63q1+/dLdIarTvvvPerHff9TIP114Lw4f7Yz/7GZxyii+vIyIiNZqCrgoaOtSDro8/VtAlFZCT44t5TpkCCxfGjrdvX/i8ovdFRKTGUtBVQfvtB88/75PILr44tmSdSEJuvhnmzfP9pk1h2DA45BDYc0/9YxIRqaUUdFXQHnv4Cilr1/p35557prtFUm1t2QL//S/suy+0a+fHDjnEa2YdeaRH8EoMFBGp9fRJX0Fm/l356qs+xKigS3ayfLn/A3nzTQ+81q6Fc8/1x445Bo49Nq3NExGR1FLQVQlDh/p36iefwDnnpLs1Ui2E4EvxTJzoNbWievXyLUpDiCIidY6CrkrYe29o0gSWLvVNM/mFxx+Hl1/2/fr14aCDvEdr993T2SoREakGFHRVQr16MHiwT0KbPl1BV52UlwcbN0Lr1n5/6FD4z39g1Cg4+mho1iy97RMRkWpDQVcl9ejhQdeiReluiaRUXp4nxz/3nBdtu+02P96zp/d2ZWWltXkiIlL9KOiqpN1289vFi9PbDkmRvDyPsp99Flav9mPZ2YVXP1fAJSIixVDQVUnRoGvRIs+hVn50LRUCvPcePP00rFzpxzp1gtNOgwMPhIyM9LZPRESqPQVdldS8uW8bN8KaNbEyTFLLrF8P998P27f7OlCnnupL9SjYEhGRBCnoqgJdusCXX3pvl4KuWmTZMl+GJyPDE+XPOsunqx5yCGRmprt1IiJSw+jP9CrQpYvfKq+rlti0CR5+GC65BN55J3b8hBPg8MMVcImISIWop6sKxOd1SQ1WUOALUD/5pAdeGRmxZHkREZFKSmrQZWYjgfuBTODREMJdRR5vDjwN7BZpyz0hhPHJbFMyqKerFpg7F/72t9gi1H36+ErmnTunt10iIlJrJC3oMrNM4CHgcGAp8JmZTQ4hzIk77TJgTgjhp2bWFphrZhNCCNuS1a5kiPZ0LVninSXKra5hPv0U7rjD91u3hgsvhAMO0FRUERGpUsns6doX+DaEsADAzJ4FjgPig64ANDUzA5oA64G8JLYpKRo39u/qdetg1SrPvZYapH9/X6ZnwAA45ZRYvS0REZEqlMw+mY7Akrj7SyPH4j0I7AUsB74CrgwhFCSxTUkTHWJUXlcNsHEjPPSQ522Br5F4772+arkCLhERSZJkBl3Fjc2EIvePBGYAHYB+wINmViMXq1Nl+hogBJ+NeMkl8MYbMD4ufVAzEkVEJMmSOby4FIjPQu6E92jFOw+4K4QQgG/N7DugJ/BpEtuVFOrpquaiZSA++MDv9+vnBU5FRERSJJlB12dAdzPrBiwDTgVOL3LOYuBQ4H0z2wXoASxIYpuSRj1d1djMmfDXv3rSXXY2XHQRHHaYEuVFRCSlkhZ0hRDyzOxy4N94yYhxIYTZZnZx5PGxwB3A42b2FT4ceX0IYW2y2pRM0aBr6VJfE7meKqBVD8uWwU03+dBiz55w9dWa6SAiImmR1NAghPAa8FqRY2Pj9pcDRySzDamSne1LAK1eDStWqLxTtdGxI4wa5cv3nHyycrdERCRt1B9Thbp08aBr0SIFXWn14YfQti3suaffv/DC9LZHRESEBGYvmtkBZvYfM/ufmS0ws+/MrEbmXSWbkunTLC8P/u//4K67fNu8Od0tEhER2SGRnq7HgF8B04H85DanZlMyfRqtXeuB1ty5PoR4wgnQqFG6WyUiIrJDIkHXxhDC60lvSS2gnq40mTUL/vhH+OEHaNMGrr/ek+ZFRESqkUSCrrfN7G7gZWBr9GAI4fOktaqG6tTJqxCsWAHbtkFWVrpbVAf897/wwAOQn+/L+VxzDTSrkfV1RUSklksk6BoSuR0UdywAh1R9c2q2rCzo0MGrFCxbBt26pbtFdUDDhh5wHX88nHeeVhsXEZFqq8ygK4RwcCoaUlvstpsHXIsXK+hKmhBihU333x/GjNEvW0REqr1EZi82N7N7zWxaZPuLmTVPReNqIuV1JdnKlXDVVfDNN7FjCrhERKQGSGQsZhywCfhZZPsBGF/qM+owzWBMogUL4Npr/XbChHS3RkREpFwSyen6SQjhpLj7t5nZjCS1p8ZTT1eSfPkl/P73sGUL9O0LN9yQ7haJiIiUSyI9XVvM7MDoHTM7ANiSvCbVbB06eJmoVasgN7cKL/z9916Lqi764AO45RYPuIYN833V4BIRkRomkZ6uS4AnInlcBqwHzk1mo2qyevV8ub/Fi2HJEujevZIXzM+HV17x4bQQ4Je/hIPr0NyG116DsWP9Zx81ypf0iSbRi4iI1CCJzF6cAfQ1s2aR+z8ku1E13W67edC1eHElg65vv/UaVAviVl26915YuBDOOadulEdo29Z/zjPPhJNOUsAlIiI1VolBl5mdGUJ42syuLnIcgBDCvUluW43VpYuPiFU4mT4313u2XnnFe3jatYNLL/XVtP/2N3j5Ze9Gu+aa2j/MNngwPPIItG+f7paIiIhUSmk9XY0jt02LeSwkoS21RjQ+WLWqAk/Oy/MZegsXeq/OCSfA6adDdrY/3rGjrzH42WcedN10U+0KSELwgLN/f+jVy4/Vpp9PRETqrBKDrhDC3yK7b4YQPox/LJJMLyVo185vV6+uwJO/+soDrjZt4MYbYY89Cj/ep48PMd5xh3el/frXcN99sRetyUKAxx7zHr5//QsefRQaNy77eSIiIjVAIklBDyR4TCIqFXR98onfHnrozgFX1K67wt13Q79+sGmTB12hhnc+hgB//7sHXPXqeQFUBVwiIlKLlJbTNRTYH2hbJK+rGZCZ7IbVZK1aedywcSNs3QoNGiT4xBBg6lTfHzKk9HMbNfLhxcsu896xf/7TZ/fVRCHA//0fvPqq/+J++1vP5RIREalFSuvpygKa4IFZ07jtB2B08ptWc5n56CDAmjXleOK338K6ddC6dcm9XPGaN/cSEgBPPAFLl5a7rdXC00970FivnueoKeASEZFaqLScrneBd83s8RCC6quXU7t2vkzg6tXQqVOCT4rv5Uq0NMKQIT4U+d//wl//Cn/+s1dnrSmWLoWXXvKyEL/5DQwYkO4WiYiIJEUixVF/NLO7gV5AdvRgCOGQpLWqFqhQXlc0n2u//cr3Yj//OcycCf/7H7z4IpxySvmen06dOvmEgc2byx5SFRERqcESSaSfAHwDdANuAxYCnyWxTbVCuYOulSt9wcZGjWCffcr3Yo0be+I5wDPPFC6mWl1t3hzbHzwYDjoobU0RERFJhUSCrtYhhMeA7SGEd0MI5wPl7Iqpe8oddEWHFgcO9Nym8urbF4491pcNuvde2Lat/NdIlc8+8+V8vvoq3S0RERFJmUSCru2R2xVmdoyZ9QcSzVKqs8oddFV0aDHeuef6ituLFsHEiRW/TjJ9+y386U+QkwMzZqS7NSIiIimTSND1+8hi178GrgEeBX6V1FbVAuUKun74AWbP9h6ugQMr/qINGngJCYDnn69gobAkWr0abr/d62gccoivpygiIlJHlBl0hRBeDSFsDCHMCiEcHEIYGEKYnIrG1WStW/sExPXrfWWfUn32mdeq6t278gVB+/SBYcN8ePGxxyp3raq0eTPcdhts2OBt/OUvtXi1iIjUKaUVR32AUtZYDCFckZQW1RL16nngtXatb7vuWsrJVTG0GO/88z2Q++gjH8Lr169qrltReXnwxz/6skWdO3vx04rkrYmIiNRgpfV0TQOml7JJGRIaYty2Db74wverqmRCmzaxshFjxybQ1ZZk337rw6ctWsCtt2p5HxERqZNKK476RCobUhu1awdz5pQRdM2Y4TlOe+wRK2NfFY47Dt58E5Ytg8mT4cQTq+7a5dWzpy/Q3aBB7ViYW0REpALKzOkys7fN7K2iWyoaV9Ml1NMVHVqs6sKg9evDRRf5/jPP+PJCqbZ9e2y/d2/o3j31bRAREakmEkmsuSZuPxs4CUhovMrMRgL34wtkPxpCuKuYcw4C7gPqA2tDCCMSuXZNUGbQVVAAn37q+1WVzxVvwAC/7iefwPjxvkB2qixbBr/7HfziF8n52UREpJD8/HzWr1/P9vg/eCWp6tevT6tWrchMcPm9MoOuEELR/K0Pzezdsp5nZpnAQ8DhwFLgMzObHEKYE3dOC+BhYGQIYbGZ1aqxpzKDru++g40b/cQuXZLTiJ//HD7/HN59F0aO9B6nZNuyBe6802cQvPOOgi4RkRRYv3492dnZtGnTBtPs8KQLIZCTk8P69etp27ZtQs9JZHixVdzWxsyOBEqbixe1L/BtCGFBCGEb8CxwXJFzTgdeDiEsjvwA1aywVOWUGXQtXuy3e+6ZvPIJ7drBySf7/t/+5hXrkykEX3h7yRKfqXjllcl9PRERAWD79u00adJEAVeKmBlNmjQpV89iIsVRpxObyfgxXiT1ggSe1xFYEnd/aeRYvD2Blmb2jplNN7OzE7hujRENfNeu9ZHEnUSDrs6dk9uQE0/04GvhQvj3v5P7Wi+8AB9/7DMUf/c7aNgwua8nIiI7KOBKrfL+vhMpjtothLB75LZ7COGIEMIHibSluMsVuV8PGAgcAxwJ3GRmeyZw7RohK8urJOTne5HUnSyJxKTJDrqysnytQ4CnnoJNm5LzOtOnw9NPe6/dr3/tSxKJiEidcuedd9KrVy/69OlDv379mBpdWzjFZsyYwWuvvbbj/uTJk7nrLk8tP/fcc3nxxRd3es4777zDsccem7Q2lZnTZWbZwKXAgXjQ9AHwSAght4ynLgXio4lOwPJizlkbQtgMbDaz94C+wP8Sa371164dfP+9DzHuVBEiVT1d4HlV/fp5iYqnnoJLL63a62/bBvfd58OLZ54JgwdX7fVFRKTa+/jjj3n11Vf5/PPPadCgAWvXrmXbtm1pacuMGTOYNm0aRx99NACjRo1i1KhRaWlLVCLDi08CvYAHgAeBvYCnEnjeZ0B3M+tmZlnAqUDR5YNeAYaZWT0zawQMAb5OtPE1QYl5Xdu2wcqV3ivUseioaxKYeQmJjAx44w1YsKBqr5+VBTffDMccAz/7WdVeW0REaoQVK1bQpk0bGjRoAECbNm3o0KEDXbt2Ze3atQBMmzaNgw46CIB3332Xfv360a9fP/r378+myEjMn//8Z/bZZx/69u3Lb37zGwDmz5/PyJEjGThwIMOGDeObb74BvNfq4osvZtiwYey55568+uqrbNu2jZtvvpnnnnuOfv368dxzz/H4449z+eWX72jrm2++Weg5RW3evJnzzz+fwYMH079/f1555ZVK/34SKRnRI4TQN+7+22Y2s6wnhRDyzOxy4N94yYhxIYTZZnZx5PGxIYSvzewN4EugAC8rMav8P0b1VWLQtXy59wp17Og1tVKhc2f46U/hlVc8qf6uu6o2gb97d9XiEhGpBn760+Rc95//LP3xI444gttvv50999yTww47jFNOOYURI0quBHXPPffw0EMPccABB5CTk0N2djavv/46kyZNYurUqTRq1Ij1kfyciy66iLFjx9K9e3emTp3KpZdeyltvednQhQsX8u677zJ//nwOPvhgvv32W26//XamTZvGgw8+CMDjjz9e6LWLe068O++8k0MOOYRx48bx/fffs++++3LYYYfRuBKrqiQSdH1hZvuFED4BMLMhwIeJXDyE8BrwWpFjY4vcvxu4O7Hm1jzRoGvNmiIPRIcWO3VKaXs47TQv4zBnDrz/PgwfXrnrffkl5OTA/vtXSfNERKTmatKkCdOnT+f999/n7bff5pRTTtmRR1WcAw44gKuvvpozzjiDE088kU6dOvHmm29y3nnn0ahRIwBatWpFTk4OH330ESdHZ+MDW7du3bH/s5/9jIyMDLp3787uu+++oxesNGU9Z8qUKUyePJl77rkHgNzcXBYvXsxee+1Vrt9JvESCriHA2WYWiRLYDfjazL4CQgihT4VfvQ6IBl2rVhV5IJpEv9tuKW0PjRvDOefAmDEwbhzsuy9kZ1fsWhs3wj33wIYNPrSoPC4RkWqhrB6pZMrMzOSggw7ioIMOYp999uGJJ56gXr16FESm8efmxlLCf/Ob33DMMcfw2muvsd9++/Hmm28SQthpVmBBQQEtWrRgxowZxb5m0fMTmVVY1nNCCLz00kv06NGjzGslKpGcrpFAN2BEZOsGHA0cCySpA7P2iJaN2Gl4MVUzF4tz2GE+DLhuHTz3XMWuEa3HtWGDF1wdOLBq2ygiIjXO3LlzmTdv3o77M2bMoEuXLnTt2pXp073W+ksvvbTj8fnz57PPPvtw/fXXM2jQIL755huOOOIIxo0bx48//gh40ddmzZrRrVs3XnjhBcADopkzY5lOL7zwAgUFBcyfP58FCxbQo0cPmjZtuiNHrDjFPSfekUceyQMPPEAIXnjhiy++qORvJ7GSEYuAFniA9VOgRQhhUXSrdAtqufjhxRBfMCOVMxeLMvPleQAmTYoFgOUxaZKXiGja1MtDZCQSv4uISG2Wk5PDOeecw957702fPn2YM2cOt956K7fccgtXXnklw4YNK7Rkzn333Ufv3r3p27cvDRs25KijjmLkyJGMGjWKQYMG0a9fvx3DexMmTOCxxx6jb9++9OrVq1Bie48ePRgxYgRHHXUUY8eOJTs7m4MPPpg5c+bsSKQvqrjnxLvpppvYvn07ffr0oXfv3tx0002V/v1YCEVLZxU5wexK4OfAy5FDJwB/DyE8UOlXT9CgQYPCtGnTUvVyVe600zzt6amnvG4XeXkwerQX8HrhhYoP71XWgw96sdQ+feD3v088qX7BArj6am+/hhVFRKqF5cuX06EO1kc899xzOfbYYxk9enRaXr+437uZTQ8hDCp6biLdExcAQ0IIN4cQbgb2w4MwSdBOMxhXrvSApV279AVc4LldTZt6Mvz77yf2nO3bfVgxP9/LQyjgEhERSUgiQZcB8Qv25VN8tXkpwU5BV3RoMdVJ9EU1bQrnnef7jz4KmzeX/Zy1a31B6/bt4dxzk9o8ERGRsjz++ONp6+Uqr0RmL44HpprZRDzYOg54LKmtqmV2KhuRziT6og47DKZMgW++gQkTvIBqadq392HJtWvT20snIiJSwySSSH8vcB6wHlgHnBdCuC/J7apVdiobUZ2CLjNfEsgMXn215Er18bl/2dmpry8mIiJSw5Vnypnhay9qaLGcdiobka4aXSXp1s3LF4cADz9cZJplxPjx8Pe/Q25ZS26KiIhIccoMuszsZuAJoCXQBhhvZr9LdsNqk1128ds1a4CCAli61A9Up96iM86AVq1g7lwfbow3e7aXiPjXv2JtFxERkXJJpKfrNGBwCOHWEMIt+OzFM5LbrNolfngxrFzli123auXV4auLRo3gggt8f/x4iKx1RW4u3Hef936dfDLssUfamigiItVbkyZNyjzn/fffp1evXvTr148tW7aU6/qTJk1izpw5SWlXKiQSdC0E4jOmGwDzk9KaWqpJE0+D2rIFtsyL9BRVl6HFeMOGeWX5zZt9QWyAf/zDS1x07QqnnprW5omISM03YcIErrnmGmbMmEHDhg3L9dyKBl3VRSJB11Zgtpk9bmbjgVlAjpmNMbMxyW1e7WAW6+3aNDuNlejLEk2qz86Gjz6Cl16CV17x41dcAfUSmewqIiJ13TvvvMNBBx3E6NGj6dmzJ2eccQYhBB599FGef/55br/9ds44wwfN7r77bgYPHkyfPn245ZZbdlzjySefpE+fPvTt25ezzjqLjz76iMmTJ3PttdfSr18/5s+fz/z58xk5ciQDBw5k2LBhOxat/u677xg6dCiDBw+ukkryVSWRb9GJkS3qneQ0pXZr187Lc+XOq2ZJ9EW1awdnn+09XTffDF26wPHH+1qNIiJSM/w0SUsjl2Ml7S+++ILZs2fToUMHDjjgAD788EMuvPBCPvjggx0V5KdMmcK8efP49NNPCSEwatQo3nvvPVq3bs2dd97Jhx9+SJs2bVi/fj2tWrVi1KhRharPH3rooYwdO5bu3bszdepULr30Ut566y2uvPJKLrnkEs4++2weeuih5PwuKqDMoCuE8EQqGlLbRXu68r6LBF3VKYm+qGOOgf/+F+bP90Wxzzwz3S0SEZEaZt9996VT5LuuX79+LFy4kAMPPLDQOVOmTGHKlCn0798f8LUb582bx8yZMxk9ejRt2rQBoFWrVjtdPycnh48++oiTTz55x7GtW7cC8OGHH+5YWPuss87i+uuvr/ofsAI0XpQibdsCIWBLF0N7qm9PF/ji1b/+NSxa5Ilo8+fDPvuku1UiIpKocvRIJUuDBg127GdmZpKXl7fTOSEEbrjhBn7xi18UOj5mzBisjPWACwoKaNGiBTNmzCj28bKenw7lqdMllbDLLtBs+zryc3KheXNo1izdTSpZCJ5zdsopUL8+PPCAz7gUERGpQkceeSTjxo0jJycHgGXLlrF69WoOPfRQnn/+edatWwfA+siM+qZNm7Jp0yYAmjVrRrdu3XjhhRcAD+BmzpwJwAEHHMCzzz4LeOJ+dVFi0GVmT0Vur0xdc2qvdu2g7ZbFbN1K9Uyij/rsM7jqKpg3D0aP9pyuFSt8iSAREZEqdMQRR3D66aczdOhQ9tlnH0aPHs2mTZvo1asXN954IyNGjKBv375cffXVAJx66qncfffd9O/fn/nz5zNhwgQee+wx+vbtS69evXjllVcAuP/++3nooYcYPHgwGzduTOePWIiF4qqPA2Y2BzgKmAwcRJFK9CGE9cluXNSgQYPCtGnTUvVySbFxIzxw2CsctfxRBt54lM8SrG5yc+Gyy7x0/gUXeAL93Llw7bX++J/+BHvtldYmiohI8ZYvX06HDh3S3Yw6p7jfu5lNDyEMKnpuacOLY4E3gJ7A9CJbzY6A0qBZM9h1+xLy8yC3bTXt6XrxRQ+4dt89NvOlRw/v8QoB7r1XywCJiIhUUIlBVwhhTAhhL2BcCGH3EEK3uG33FLaxVjCDLuY1utY2qoZJ9KtXw8sv+/7FF0NmZuyx00/39RlXroTHHktP+0RERGq4MhPpQwiXmFlfM7s8svVJRcNqnRDYNc/LRayoVw17usaNg+3bYcSInYcQ69WDq6/22zfegBo+1CsiIpIOiSx4fQUwAWgX2SaY2S+T3bBaZ+NGmloOufUas3xLy3S3prBZs+DDDyErC849t/hzunaFs87y/TFjIDJ7RERERBKTSMmIC4EhIYSbQwg34wte/zy5zaqFFi+mQQNYm92ZVaurWe2Q9et98e2TT4ZIIbpiHX889OoFGzbAww97npeIiIgkJJGgy4D8uPv5FJnJKAlYvpwGDWBddkdWrUp3Y4oYPtyX/TnhhNLPy8jwchLZ2fDBB/DuuylpnoiISG2QSNA1HphqZrea2a3AJ4Cyqctr+XIaZMH67A7VL+gCL9gaVz24RLvuCj+PdHQ+8ogn14uIiOCV5/v160fv3r356U9/yvfff5/uJpXbrbfeyj333JOUayeSSH8vcB6wHtgAnBdCuC8pranNIj1d0aCrWozMPfMMTJwIxSzNUKrDD4f99oMff4Q//7n8zxcRkVqpYcOGzJgxg1mzZtGqVatqs9h0CIGCgoJ0NyOxZYBCCJ9HSkjcH0L4ItmNqpVWrCCzHvzYogO5udUgD33ZMnjuORg/HhYvLt9zzeDKK73M/rx58PjjSWmiiIjUXEOHDmXZsmUAzJ8/n5EjRzJw4ECGDRvGN998A8CqVas44YQT6Nu3L3379uWjjz4C4N5776V379707t2b++67D4Drr7+ehx9+eMf1b731Vv7yl78AcPfddzN48GD69OnDLbfcAsDChQvZa6+9uPTSSxkwYABLliwp9jyAO++8kx49enDYYYcxd+7cpP1OtOB1KoQAK1diQFaX9rAEVq1K8/KLTz4J+fnea7V7BcquNWkC110H118Pr7ziC2IPGVL17RQRkYqJFrkuzmWXwciRvv/GG1Baj1QFFs/Oz8/nv//9LxdccAEAF110EWPHjqV79+5MnTqVSy+9lLfeeosrrriCESNGMHHiRPLz88nJyWH69OmMHz+eqVOnEkJgyJAhjBgxglNPPZWrrrqKSyMrujz//PO88cYbTJkyhXnz5vHpp58SQmDUqFG899577LbbbsydO5fx48fz8MMPl3he48aNefbZZ/niiy/Iy8tjwIABDBw4sNw/cyIUdKXCunW+YHSLFrTs0HBH0NW9e5raM3cufPSRl4g488yKX6dHDzjnHK/xdd99Xkqibdsqa6aIiNQsW7ZsoV+/fixcuJCBAwdy+OGHk5OTw0cffcTJJ5+847ytW7cC8NZbb/Hkk08Cng/WvHlzPvjgA0444QQaN24MwIknnsj777/PFVdcwerVq1m+fDlr1qyhZcuW7LbbbowZM4YpU6bQv39/AHJycpg3bx677bYbXbp0Yb/99gNgypQpxZ63adMmTjjhBBo1agTAqFGjkvb7UdCVCsuX+2379uy6q++mLZk+BHjiCd8fNQpatarc9Y4/Hr780gum3n03/OEPXkRVRETSK9EeqpEjY71elRTN6dq4cSPHHnssDz30EOeeey4tWrRgxowZCV2jpDWhAUaPHs2LL77IypUrOfXUU3ecf8MNN/CLX/yi0LkLFy7cEbiVdt59992HWWqKMiRSHPVEM5tnZhvN7Acz22RmPyRycTMbaWZzzexbM/tNKecNNrN8MxtdnsbXGNGgq0MHdtnFd1evTlNbvvgCvvrKhwdHV8Gv2wx+9SsP3r7+GiZMqPw1RUSkRmvevDljxozhnnvuoWHDhnTr1o0XXngB8OBn5syZABx66KE88sgjgA9J/vDDDwwfPpxJkybx448/snnzZiZOnMiwYcMAOPXUU3n22Wd58cUXGR35DjvyyCMZN24cOTk5ACxbtozVxXzJlnTe8OHDmThxIlu2bGHTpk38swLDqYlKJJH+z8CoEELzEEKzEELTEEKZ2Uhmlgk8BBwF7A2cZmZ7l3Den4B/l6/pNciKFX7boQPt2vlu2nq6orW1Tj7ZC6JWhWbN4NprPQB78UX4+OOqua6IiNRY/fv3p2/fvjz77LNMmDCBxx57jL59+9KrVy9eeeUVAO6//37efvtt9tlnHwYOHMjs2bMZMGAA5557Lvvuuy9Dhgzhwgsv3DEk2KtXLzZt2kTHjh1p3749AEcccQSnn346Q4cOZZ999mH06NFsKma2WknnDRgwgFNOOYV+/fpx0kkn7QjwksFK68YDMLMPQwgHlPvCZkOBW0MIR0bu3wAQQvhjkfOuArYDg4FXQwgvFr3WoEGDwrSavN7fnXfCJ5/AddexsPMwfvlL6NgRxo5NQ1tC8CV/9t3Xc7qq0ksv+UzG7Gy4917oXA3XmBQRqaWWL19Ohw4d0t2MOqe437uZTQ8hDCp6biI9XdPM7DkzOy0y1HiimZ2YwPM6Akvi7i+NHItvVEfgBCAd4UfqxPV0RYcX16xJU60uMzjwwKoPuABOPBGGDYPcXLjjDti8uepfQ0REpIZKJOhqBvwIHAH8NLIdm8DzistKKxpm3AdcH0LIL+bc2iGEWNC16640bAhNm/pkxg0bUtiOmTOTn0hmBldcAd26+c98991QDYrRiYiIVAdlTjMLIZxXwWsvBeLHlzoBy4ucMwh4NjJroA1wtJnlhRAmVfA1q59ouYjmzXfkUO26qxdHXbWq8pMHE5KbC/fcAzk58Ne/QteuyXut7Gz43e98jcbp0+Hpp+Hss5P3eiIiIjVEIrMXO5nZRDNbbWarzOwlM+uUwLU/A7qbWTczywJOBSbHnxBC6BZC6BpC6Aq8CFxaqwIuKDS0GBVNpk/ZDMbJk+H7770IapcuyX+9du28aGpGBrzwgi+OLSIiSVdWnrZUrfL+vhNd8Hoy0AHPyfpn5FhZDckDLsdnJX4NPB9CmG1mF5vZxeVqZU0WV6MrKprXlZIZjFu2wKRJvn/WWT4EmAp9+8L55/v+fffB/PmpeV0RkTqqfv365OTkKPBKkRACOTk51K9fP+HnJFLFsm0IIT7Iejwy4zCRBr0GvFbkWLFJ8yGEcxO5Zo1TTE9XSoOuV1/1scy99/ZAKJVGjYIFC+Ctt+C22+Avf1HFehGRJGnVqhXr168vtlyCJEf9+vVpVY48oUSCrrVmdibwTOT+acC6CrStbooGXeno6dqyBSZO9P3TTktdL1eUGfzylz5V86uv4NZb4c9/rrr6YCIiskNmZiZt9YdttZbI8OL5wM+AlcAKYHTkmCQincOL//qX93LttVfqe7mi6tWD3/7Wa3YtXuzLBOXlpactIiIiaVRm0BVCWBxCGBVCaBtCaBdCOD6EsCgVjavxQii0BFBUNJF+zZokV1QYNAj23z89vVzxmjTxXq4WLXydxgceSFORMhERkfQpcXjRzK4LIfzZzB5g5/pahBCuSGrLaoMNG7xcRLNmhYbUsrKgZUt/eN26JKY5de0KN9yQpIuXU7t2cPPN3p633vK6Gaedlu5WiYiIpExpPV1fR26nAdOL2aQsxfRyRSV1iLG69iJ17+6lJMzgH/+AN95Id4tERERSpsSgK4QQXWb7xxDCE/EbXqFeylJMEn1UUhe+njTJe5T+978kXLySBg+GSy7x/YcfhvfeS297REREUiSRRPrixqeqyZhVNVdKT9euu/ptlQddW7f6wtOzZnkSfXV01FFwzjneI/eXv8DUqelukYiISNKVltN1FHA00NHMxsQ91AzQ9LNElBJ0Ja0q/euvw8aNPpQ3YEAVX7wKjR4NP/7oFev/9Ce45Zb0zbAUERFJgdJ6upbj+Vy5FM7lmgwcmfym1QKlDC8mJadr+/b01uUqr7POgmOO8Xb//vcwd266WyQiIpI0JfZ0hRBmAjPNbCKwOYSQD2BmmUCDFLWv5gohoaBr5coqfM133oH1633W4qBBVXjhJDGDX/zCe7zeftt7u/7wB18jUkREpJZJJKdrCtAw7n5D4M3kNKcW2bABcnOhaVOvU1VE27Yec6xbV0W1QgsKPJcL4KSTqn8vV5QZXHklDB0Kmzd7IdV589LdKhERkSqXSNCVHULIid6J7DdKXpNqiVLyucALtbdu7R1ia9ZUwestXuwRXLt2MGxYFVwwhTIz4brrYoHX734H33yT7laJiIhUqUSCrs1mtiMj28wGAluS16RaopiFrouKzmCskmT6rl1h3Divg5WZWQUXTLF69TzwOvBAH2686SaYMyfdrRIREakyiQRdVwEvmNn7ZvY+8BxweVJbVRuUks8VVeW1upo2hT33rKKLpUG9enDNNTBihA/N3nyzLxskIiJSCySy9uJnQE/gEuBSYK8QgirSl6WYha6LqrIZjNOn155FpDMz4eqr4dBDvebYbbf5zyciIlLDJdLTBdAD2BvoD5xmZmcnr0m1RALDi1USdC1Y4ItJX355klfPTqGMDE+uP/JIX7vyjjt8dqOIiEgNVmLJiCgzuwU4CA+6XgOOAj4Ankxqy2qyEMrV01WpshHRGYuDBnmwUluYwWWX+czPl16Ce+/1GaEnnFBzZmaKiIjESeRbejRwKLAyhHAe0BfV6Srd99/HykU0bVriaZ06+e3ixRVco3rlSnj/fR+SO/74irS0ejODc8+FCy/0++PHw2OPVd8FvUVEREqRSNC1JYRQAOSZWTNgNaDqlaVJIIkeoEULaNUKtmypYG/XxIkegBx0ELRpU4EL1BDHHQfXXuuJ9q+8Avfc41XsRUREapBEgq5pZtYC+D98GaDPgU+T2agaL4Ghxahu3fz2u+/K+Ro//ABvRmrUnnhiOZ9cAw0f7rlrDRvCe+/5zMYffkh3q0RERBJWatBlZgb8MYTwfQhhLHA4cE5kmFFKsmiR30bHD0sRXfFmwYJyvsYbb3iS+cCBsNtu5XxyDdW3L9x1l3cPzprlsxwXL053q0RERBJSatAVQgjApLj7C0MIKpxUlmgE9ZOflHlqhYOuXXeFjh1rZy5XaXbf3ZPq99jDp31ecw189lm6WyUiIlKmRIYXPzGzwUlvSW0RAsyf7/sJLNxc4eHF4cPhkUe896euad3ae7yGDfOEuDvuiOW3iYiIVFOJBF0H44HXfDP70sy+MjP1dpVkzRpfP7B5cx8GK0P79pCdDWvXViBFyazulk9o0MCT6884w4OtcePgr3/1WaMiIiLVUIlBl5lFE4WOwmcrHgL8FDg2civFiY4TduuWUECUkeHLJkKCvV2zZnmAUSWrZNdwZnDqqXDDDR6Evf02/PrXsHRpulsmIiKyk9J6uiYBhBAWAfeGEBbFbylpXU0UHVpMIJ8rqlx5XS+95ENpqtAes//+nufVsaMn1v/qVz7DUUREpBopLeiK76ZRXa5ERSOnBPK5ohLO61qyBKZNg6wsGDmyYu2rrXbbzYcXhw/3Ica774a//U31vEREpNooLegKJexLacoxczEq4Z6uyZP99tBDoVmz8rettmvY0GczXnyxF1J99VW47jpYtizdLRMRESk16OprZj+Y2SagT2T/BzPbZGaqSlmcH37wjPgGDRIqjBrVpYunJy1Z4qW3irVxI7z1lu8fd1zl21pbmcExx8Cf/wzt2sG338IVV8Drr2t2o4iIpFWJQVcIITOE0CyE0DSEUC+yH72vbpbixCfRl2Px6QYNPB2poKCUWp+vv+4R2eDBfrKUrnt3GDMGDj7Yf28PP+ylJb7/Pt0tExGROirxyKACzGykmc01s2/N7DfFPH5GpAzFl2b2kZnV7KJTFcjnioo+pdi8rrw8HyqDulcMtTIaN/aq9dde6/uffQaXXw5Tp6a7ZSIiUgclLegys0zgIbzkxN7AaWa2d5HTvgNGhBD6AHcAf09We1KiHEVRi4om0xeb11WvHvzud3DCCbDPPhVvX101fDg8+CD06ePDtL//vS+avXFjulsmIiJ1SDJ7uvYFvg0hLAghbAOeBQolI4UQPgohbIjc/QQoe7HC6izaTVWJnq4Sk+l79oTzz6+7xVArq00bD7YuvNBnf777Llx6qZeWUK6XiIikQDKDro7Akrj7SyPHSnIB8HoS25NcW7d6Uc6MDM+ML6f44cVCMUBeXtW0TzxgPe64WK/XDz94aYk77vAJECIiIkmUzKCruC6ZYrsUzOxgPOi6PontSa6FCz1a2m0370kppxYtoGVLX0pw5cq4B/7wB7jlFli+vKpaKu3be6/XFVfEcr0uvRQmTVKQKyIiSZPMoGsp0Dnufidgp8jBzPoAjwLHhRDWJbE9yRXN54omZ1XATsn0S5d6QDBrFjRpUrn2SWFmcPjhPqtx6FCPdh97zAOxL7W0qIiIVL1kBl2fAd3NrJuZZQGnApPjT4is7/gycFYI4X9JbEvyRSOlchRFLWqnZPpXXvHbQw5RMdRkadUKfvtb701s396Lpd14I/zpTxpyFBGRKlUvWRcOIeSZ2eXAv4FMYFwIYbaZXRx5fCxwM9AaeNg8QTwvhDAoWW1KqkrMXIwqlEy/aVOsGOqoUZVrm5Rt0CDP85o0CZ57Dj74wHsZTzzRt+zsdLdQRERquKQFXQAhhNeA14ocGxu3fyFwYTLbkBL5+bAosgZ4FQRd331HrBjqwIHQuXOpz5MqkpUFP/uZF1R99FH46CN45hl/L844w4cjMzPT3UoREamhkloctc5YtswDpHbtPDG7gtq39+r061fnsX3Sv/yglvxJvbZt4YYb4K67oEcPr2L/0EOxwqoqMSEiIhWgoKsqRIcWK5HPBV5tomtX6PDjt/y4apPPhOzXr9LNkwrq1ctLSlx/vUfES5f6rMdrr4XPP1fwJSIi5ZLU4cU6oxLL/xS1++7w+tyevH/qeI4duk7FUNPNDA48EPbbD157DZ5/HubO9cT7nj192LFvX71PIiJSJvV0VYUqDroA/reqeZVcT6pIvXo+oeHRR+Hcc6FpU/jmG7jpJh+KVM+XiIiUQUFXZYVQpUFXz83TySjIK3k5IEmv7Gw46SSv6XX22V4/bfZs7/m66ipfVig/P92tFBGRakhBV2WtWQM5OV5Hq3Xryl1r7lw6j7uVi765mkULg8pEVWcNG8LJJ3vwdc45vqTAggWeA/aLX/hQ5Nat6W6liIhUIwq6Kiu+l6uyeT0vvEBmBoQBA8GMDz6ofPMkyRo1gtGjPfi67DJPuF+1Ch55xIchH38cVq9OdytFRKQaUNBVWd9+67eVHVpctMjLEWRl0eYCLxPx3nuVbJukTlYWjBwJY8f6bMfu3b0H9KWX4MILfQ3Nr75S3peISB2m2YuVNXWq3/buXbnrvPSS3x5+OAMOaUH2YzBvHqxY4Z0nUkNkZPhsxwMP9FmO//wnfPghfPyxb507w5FH+tJOTZumu7UiIpJC6umqjMWLYeFCT6bu37/i11m5Et5916udn3giWVm+BjOot6tG69EDrrnGhx5PO83zvpYs8RmQZ5/t+V9ffqneLxGROkJBV2VEI6L99/eSAhX18stQUAAjRnhVe2DYsMIvITVYq1Zw+ukwfryXlxg40Gc4vveeL67985/DhAmwfHm6WyoiIkmk4cWKCiEWEQ0fXrlrde8OM2Z4QnZE//4++rR4sad7delSuZeQaqBePQ/Q99/fk+v/8x94801PvH/2Wd969PC1H4cN8xmxIiJSa1ioAUMbgwYNCtOmTUt3MwqbNw+uvhpatvQZahmV7DQMYafZjw8+CP/+t6/BfNZZlbu8VFMFBZ5g//bbnvuVm+vHMzK80v2BB/pYs/K/RERqDDObHkIYVPS4hhcrKtrLdeCBlQ+4oNhyE9EOtPfeU9pPrRUNrq66Cp5+2td1HOglQ/jiC3jgATjzTLj5ZpgyxRffFhGRGknDixURArz/vu9XZmjx0Uc9ef6UU7zeUxG9e3tH2sqVXpmie/eKv5TUAA0a+L+n4cNh0yb45BP/dzZzpgdgX3zhwViPHjBkiG+dOmndRxGRGkJBV0XMng3r1nnSe48eFbvGwoUwebJ/YR5ySLFJW9HqA//8p09uVNBVhzRtCocf7tsPP3gA9vHHHoB9841vTzwBHTp4z9jAgbDPPl4vTEREqiUFXRURn0BfkV6GEODvf/fbY48tNUt+xAgPut5/Hy64QJ0adVKzZnDEEb7l5vri2lOnwmef+YzH5cv9H0lWlgdeAwZAv35eE0z/YEREqg0FXeWVl8eO9XkqOrT40UeePN20qZcSKMWee3qH2urV3sFW2RqsUsNlZ8dmQObnewHW6dN9mz8/tg8+Nt2nj+eM9e27oxyJiIikh4Ku8po50/NtOneGrl3L//ytW71YJviUxCZNSj3dzGO7F1/0DjYFXbJDZibsvbdvZ50FGzZ43tfnn3vR1Q0bfFz63Xf9/LZt/R/Q3nv7bceO6gkTEUkhBV3lVdmhxZdfhjVroFs3Xw4mAdGg64MPfA3lYnLuRbxn65BDfAsBli71+m8zZ8KsWf7v7u23fQNo3hx69oxte+zhPWkiIpIUCrrKY9s2T2aGig0thuDVTgF+8YuES0107er5+nPneirYVVeV/6WljjHz3tjOneGnP/V6YIsW+Rh1dNuwwXPDouuHZmTE/rF17+5BWOfOlVttQUREdlBx1PL46CP44x/9y+ivf634dRYsgN13L9dTlizxYGvbNvjNb+CAAyr+8iKE4LVIojMhv/nGZ9QWFBQ+LyvLe2V/8hP/N7v77j7xQ7MkRURKVFJxVP0Jm6j8fJg0yfcr0stVUBDr2SpnwAXe4XDBBfDII16pvmdPaN26/M0QAbwnrH173w4+2I/l5npBuHnzYrcrVngX69y5hZ/bqZMHY126+Na1qyfqK0dMRKRECroS9Y9/wNdf++LFhx1WvufOnQtjxvhix506VbgJRx0Fn37qk9Puuw9uv13fcVKFsrM9wT5+tkZOjgdgCxbAd9/57dKl3vW6ZMnOz48OaXbqFNvfZRcNUYqIoOHFxHz+Odxyi0c4f/hD+aYQrlwJ11wDGzd6bs1FF1WqKRs2wOWXe73MCy+E446r1OVEym/bNs8PW7jQbxct8lzF9euLPz8zE3bd1Qu5xm/t20ObNv64iEgtouHFilq3Dv7yF98/88zyBVybNsGtt3rA1b8/nH9+pZvTsiVccQX8/vdekLxv34pVrhCpsKwsT7QvukTCpk0efC1Z4r1h0R6x1ath2TLfisrI8GHJXXf1bZdd/P4uu3iJi5Yt1Z0rIrWGgq7S5OfD3Xd7t1L//nDyyYk/d9s2uPNO/6Lp2tWz36toiGXIEBg5Et54w5t3xx0+6imSVk2bQq9evsXbts1zw5Yti1XQX77ce4HXrfPblSuLv2b9+t4b1rZt4ds2bTypsVUrr9ivwExEagAFXaWZMMGn1rdqBb/+deIf7CHA/ff7c1u39qHJKi6udcEFXtR+8WK47DK45BIYNkzfPVINZWXFEu6L2rYNVq2KBV6rV8e2Vau892zFCt9KUq+e/x9t3dp7xlq29PvR/RYtfGve3IM4EZE0UdBVkqlT4YUXPIq59lr/wE7UkiW+WGLDhh5wtWlT5c3Lzvb0sjFjPLH+7ru9hNgll/gf/iI1QlZWLOG+OLm5XtR1zRpYuzZ2u3at95KtXw+bN8cCtbI0buwBWLNm/n86ujVrFtuaNo3dNmqkv2REpMookb6o1as9WSpaef7ssxMbVszPL5wQ/I9/+DBL377JaWdECPCf/8D//Z9/P7Vo4T1fQ4bou0LqiNxcD77Wr/eZJvG3338f2zZu3LkOWVkyMnypriZNPAhr0sQDt+ixxo1jW6NGO982aKD/iCJ1UEmJ9Aq6orZs8Z6tSZNg+3b/C/zEE31B6rI+NOfM8eJZF1wAAwcmt50lWLXKy0jMmuX327b1AqoHHuiLZutzX+q8EHy4cuPGwtsPPxTeNm2K7efmVu41zTz4atTIe76jW9H72dm+NWzogVr0tkGD2GPR/ayshFezEJH0SEvQZWYjgfuBTODREMJdRR63yONHAz8C54YQPi96naQGXQUF3lX01FP+AQwwYgScc45HLsUJwWsWTZsGn33m1bwB+vXzrPY0CQH++U9f3nHdutjxNm1g//29kH6XLl5CSQXFRRKQl+fDlzk5Hoxt2uT3o8fib3/8MfbY5s3+h9y2bclpV716saCsQQP/D52VFbtfv37sWPwWPV6/fmwrer9+fb9+0fvRLXpff8mJlCjlQZeZZQL/Aw4HlgKfAaeFEObEnXM08Es86BoC3B9CGFL0WkkNujZs8NpZuble5v3CC33tuajoh2Y0SnnjDXj22cJRTf36cNJJPgxZDaKZEDwO/PBD39auLfy4mc/O79zZA7LmzWO5xi1bxv4Ij/7hrc9XkQrKy/Pga8sWD8Rycz0427LF96OP5ebGtuj9rVtjx6L727b5fnUYocjIKByM1avnKRYl7Ufvx+9nZJR8P7pFj2VkFN4v6TZ+K+5YRoZ/oGVm+m1xjxV336zwfvzjRY9Hj0Xvgz5E65h01OnaF/g2hLAg0oBngeOAOXHnHAc8GTzy+8TMWphZ+xBCKVOVqljLlnDeed7b1bo1PPNM7ENx40YPyn75SzjiCD+/fn0PuFq18qHEfff1Hq7s7JQ1uSxmsNdevl1wgRfEnz7dZzouXuyz9cuaEBYvM7PkP4ZL+lws+pkV/9kT/xkU/RyK/4yK3o+/jf/ZijtenmOlHU9Eqj479RldG9QDmka2BNSPbKVNhgmBjPztZOZt3bFl5G0jM38bGdu3+m30fuS8jDzfz8jfXui4FeTFHd/u5xXkxR2P3Ebu+3HfhwJgW2STMkX+QwfLIJgB/oG3Yz/+sSLH/NYgfp8iz83IiHtO7DhmhPj9Qtcucl78/aKPF71WCc/Z8XMWd6zQh5qV8/zYc3Y+Xvw1d7puRPtLjqfLyL1KuEZyJTPo6gjErxOyFO/NKuucjkDqgi6Ao4+GJ5/05U6Kysjw4YOo/fbz5Kndd68R34pm3oHXs2fs2PbtXjJp6VKPKaM5xtF84x9/LPxHd/wf6yKSbgZkRbYEg7lEZEQumYgQyAj5ZIR8MkPeji3+fkZB7H5GyCeDfDLjj1EQuUYeGaGAzJCHhYId140+JyNyzCLnZ4b8HecZBTvu247rRfcL4o6XdCzEXSsAgcyQDwQyQsFOt0YBFkLcbSj+WPTa+MQNC35tl19171kdVZ5v3uLO3XjksKpqSrklM+gq7mct2ieeyDmpccklHqHEJ7k2beo9WvGzEhs3hp/8JC1NrCr163u91kQr2efl+ajG9u2xLS/Pt/z8nbcQPFUufouOhkQnj0VvQ4ht8fejStoveqy0xxKR6LnVYVRHJP0M//qoBzRIc1uSo6DIbaXEfdAZxe+X+BhAQUEkKGTHh2dpzy30ePT1CZHgj+LPi/twK/Tc4s4vcqzE58TfFn1uWY+Vtl/0OSVcs6Rz2w3vUew5qZDMoGspEF98pxOwvALnpMaIEWl52ZogmpYhIiIVUWQITuqsZM47/gzobmbdzCwLOBWYXOScycDZ5vYDNqY0n0tEREQkRZLWfxFCyDOzy4F/4yUjxoUQZpvZxZHHxwKv4TMXv8VLRpyXrPaIiIiIpFNSB41CCK/hgVX8sbFx+wG4LJltEBEREakOVNZYREREJAUUdImIiIikgIIuERERkRRQ0CUiIiKSAkld8LqqmNkaYFG62yEiIiKSgC4hhLZFD9aIoEtERESkptPwooiIiEgKKOgSERERSQEFXYCZjTSzuWb2rZn9Jt3tqavMrLOZvW1mX5vZbDO7MnK8lZn9x8zmRW5bprutdZGZZZrZF2b2auS+3pdqwMxamNmLZvZN5P/OUL036Wdmv4p8js0ys2fMLFvvS3qY2TgzW21ms+KOlfhemNkNkXhgrpkdWZVtqfNBl5llAg8BRwF7A6eZ2d7pbVWdlQf8OoSwF7AfcFnkvfgN8N8QQnfgv5H7knpXAl/H3df7Uj3cD7wRQugJ9MXfI703aWRmHYErgEEhhN74UninovclXR4HRhY5Vux7EfnOORXoFXnOw5E4oUrU+aAL2Bf4NoSwIISwDXgWOC7NbaqTQggrQgifR/Y34V8eHfH344nIaU8Ax6elgXWYmXUCjgEejTus9yXNzKwZMBx4DCCEsC2E8D16b6qDekBDM6sHNAKWo/clLUII7wHrixwu6b04Dng2hLA1hPAdvjb0vlXVFgVd/qW+JO7+0sgxSSMz6wr0B6YCu4QQVoAHZkC7NDatrroPuA4oiDum9yX9dgfWAOMjQ7+Pmllj9N6kVQhhGXAPsBhYAWwMIUxB70t1UtJ7kdSYQEEXWDHHVEcjjcysCfAScFUI4Yd0t6euM7NjgdUhhOnpbovspB4wAHgkhNAf2IyGrNIukh90HNAN6AA0NrMz09sqSVBSYwIFXR7Fdo673wnvBpY0MLP6eMA1IYTwcuTwKjNrH3m8PbA6Xe2row4ARpnZQnz4/RAzexq9L9XBUmBpCGFq5P6LeBCm9ya9DgO+CyGsCSFsB14G9kfvS3VS0nuR1JhAQRd8BnQ3s25mloUn0E1Oc5vqJDMzPDfl6xDCvXEPTQbOieyfA7yS6rbVZSGEG0IInUIIXfH/H2+FEM5E70vahRBWAkvMrEfk0KHAHPTepNtiYD8zaxT5XDsUz1HV+1J9lPReTAZONbMGZtYN6A58WlUvqor0gJkdjeesZALjQgh3prdFdZOZHQi8D3xFLHfot3he1/PAbviH2ckhhKJJkZICZnYQcE0I4Vgza43el7Qzs374BIcsYAFwHv4Htd6bNDKz24BT8FnZXwAXAk3Q+5JyZvYMcBDQBlgF3AJMooT3wsxuBM7H37urQgivV1lbFHSJiIiIJJ+GF0VERERSQEGXiIiISAoo6BIRERFJAQVdIiIiIimgoEtEREQkBRR0iUjamVlrM5sR2Vaa2bLIfo6ZPZyk17zKzM4u5nhXM5tVha+TZWbvRdbgE5E6TB8CIpJ2IYR1QD8AM7sVyAkh3JOs14sEQOfj1duTKoSwzcz+i9dsmpDs1xOR6ks9XSJSbZnZQWb2amT/VjN7wsymmNlCMzvRzP5sZl+Z2RuRJaQws4Fm9q6ZTTezf0eX+ijiEODzEEJe3HNmmtnHwGVxr9/VzN43s88j2/6R40+Z2XFx500ws1Fm1svMPo300n1pZt0jp0wCzkjG70hEag4FXSJSk/wEOAZfTPhp4O0Qwj7AFuCYSOD1ADA6hDAQGAcUt8LEAUD8At7jgStCCEOLnLcaODyEMADvqRoTOf4oXvkdM2uOr6v3GnAxcH8IoR8wCF/HDWAWMLiCP7OI1BIaXhSRmuT1EMJ2M/sKX7brjcjxr4CuQA+gN/AfX/KOTGBFMddpj6+FFw2aWoQQ3o089hRwVGS/PvBgZKmdfGBPgBDCu2b2kJm1A04EXgoh5EV6ym40s07AyyGEeZHz881sm5k1DSFsqqLfhYjUMAq6RKQm2QoQQigws+0hto5ZAf55ZsDsYnqsitoCZEf2DShpPbRf4Wu19cVHBnLjHnsKHzI8Fc8PI4TwDzObivfG/dvMLgwhvBU5v0GR54tIHaPhRRGpTeYCbc1sKICZ1TezXsWc9zWwB0AI4XtgY2TBdSice9UcWBFCKADOwnvOoh4HropcY3bk9XYHFoQQxgCTgT6R462BNSGE7ZX/EUWkplLQJSK1RghhGzAa+JOZzQRm4PlWRb0ODI+7fx7wUGR4cEvc8YeBc8zsE3xocXPca63Cg7fxceefAswysxlAT+DJyPGD8ZwvEanDLNY7LyJSd5jZROC6aN5VBZ7fCM8lGxBC2FjGuS8DN4QQ5lbktUSkdlBPl4jUVb/BE+rLzcwOA74BHkgg4MoCJingEhH1dImIiIikgHq6RERERFJAQZeIiIhICijoEhEREUkBBV0iIiIiKaCgS0RERCQFFHSJiIiIpMD/Az18VrEuo0RHAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABNmElEQVR4nO3dd5xU1f3/8deHhWXpHaUKKBgFYekiIigq2PCrQUWN3a8tisYYSxIV/cXEmqARJUaxJHzFrmiMYu+ioNgQpIhUqYIsfXfP74/PDDMsW2bLzGx5Px+P+7h37ty5c3YXdj57zud8joUQEBEREZHkqpXuBoiIiIjUBAq6RERERFJAQZeIiIhICijoEhEREUkBBV0iIiIiKaCgS0RERCQFaqe7AYlo2bJl6NSpU7qbISIiIlKimTNnrgkhtCp4vkoEXZ06dWLGjBnpboaIiIhIiczsh8LOa3hRREREJAUUdImIiIikgIIuERERkRRQ0CUiIiKSAkkLusxskpmtMrOvi3jezOweM5tvZl+aWZ9ktUVEREQk3ZLZ0/UIMLKY548Cuka2C4D7k9gWERERkbRKWsmIEMK7ZtapmEuOBx4LIQTgYzNramZtQggrktUmERGRSiuE2D4/P3Yc3TIzwczPb90KeXmx5yD2mtq1oUEDP87Lg/Xrd7139BigaVO/L8DGjZCTs/s1IUBGBrRpEzu3ZInfu2D7Q4Dmzf2+4Pf78cfd7xfVpYu3N3rPTZt2vwagUSNo396Pt2+HefN2vyZqr738evD3XrUq9lzHjrG2pUE663S1A5bEPV4aOaegS0SksgvBP3Rzc2P7+OPmzSEry69dtQpWr/bnos/n5/txnTrQv3/svm+8EQso8vJi1+XnwwEHQPfuft333/u18c/HbxdfHHv/KVNgwYLYc9G25+fD/vvD6af7devWwZ//vOt18ceXXurXAzz7LPznP7FAI/76Fi3g7rtjX9N558HPP+8aQEW3X/0KRo/26z76CP7yl6K/55MnQ+PGfnzLLTBrVuHXDRoEv/+9H69d6+9flJtugj6R7J7nnoOnnir8ulatYNKk2ONrrvEgrTBnnAEnn+zHX36Z+Nf0z3/C558Xft1BB8F11/nx+vVw7bVF3zP+a5o2bdev6Zpr4OCDi35tkqUz6LJCzhURtibXe+95UJydnY53FxEpozVrPEDZvh22bfN9dOvYETp08OuWLoUPPvDzO3bsvl12GdSr59c++CDMnh0LonbsiO379oXf/MavW7068Q/zV14p/sM8Puh66KHiP8yjQdeKFfDCC0W//7nnxoKub7+Fzz4r/Lr69WPHubkwd27R99yyJXa8adOuPSjx6tTZ/XVbtxZ+bbR3Kp5Z4Vt8z069et72aM9XrVqx18Z/TbVqeQAcf9/442gvF/gHYXxvVvz1LVrs2sb27f17EH+/qPiepAYNYO+9d79ffPvi77l5c+Hv365d7HydOrHgN/5+0eOGDWPn9tzTg/Xo802akE4Wiuqeq4ib+/DiSyGEHoU89w/g7RDC45HHc4FhhQ0v9uvXLySrIv369XDRRf5v55BD4PzzoVmzpLyViNQkIcQ+BHbsgIUL/cM3+gEcfzxsWOxD5c034a23/Py2bbH9tm3eI/DAA7H3OP1070EpzOmnw5gxfvzxx94zUpTHHov94rvpJijq9+2AAXD99X4c7UHJyPAPwYwMHyaK7i+7LPZh9+qr3isVfT7+2saN4de/jr3HpEn+tWZk+Ady/L5Xr9g9V6yA6dP9ufgtev2QIbGAYvZs/2Uffa5WLf/Z1KrlAUJ0mbnozyn6YZ+Rsetxq1axQG7jRg8QoveJXhe9f7T3BmKBRPx1Ba+XasXMZoYQ+hU8n86erqnApWY2BRgIbEhHPlfDht6z+/jj8O67/rvmzDPhqKP0/0CkRsvN9b/GcnJ23Q48EOrW9WumTvVelE2b/IM1ut+8GXr2jAUoGzfCVVcV/V577x0LulatKnrYKCNj18dt2njvRGamb3XregBUt+6uPQPt2/twT506vmVmxo7r1Nm1Z+Tccz1Yiz4XDY6i941q0QKefz6R7ySMGOFbIs49N7Hr2rSB//mfxK6N9oqUpE4d2HffxK5t1CiWN1SS+O+v1GhJC7rM7HFgGNDSzJYCNwJ1AEIIE4GXgaOB+cBm4JxktaU4tWt70DVkCPzjH/DppzBxov9RdsklsM8+6WiViFS4n3/23o716/04um3YAD16wODBft2XX8Kf/rTrUFK8Bx6IDcF8+y28/37h18UPk9SvD127+pBQ/JaV5fv4AGnoUOjWzZ/LyvJAJ36Ld+ediX3t7dv70FwiokOSIlLhkjq8WFGSObwYLwTvhX/gAU+VqF0bbr018T98RCTFtm/33KK1a+Gnn3bdNm+GP/4xdu2FF8Ly5YXf55hjPM8APKfnqqt86Kdhw9jWqJHnp5x7LrRs6dd+/bUnXzdo4Fv9+rGtXr3d81dEpEaojMOLlY6ZT/rIzob77/e0ir/9zSehFPwDU0SSbNMmD6iiQdXq1f7X0LBh0Lu3X/PGG3DffUXfY/v2WF5Pu3axRNro1rixb127xl6z994+2y0+SbkoPXZLVxURKZKCrkLUq+czgxcsgMWL4dFH4YIL0t0qkWpmyxZYudLr6GzZAoce6udDgLPO8t6qwrRrFwu6Wrf2ob7mzX1r1iy2NW26a2LmDTck1q7atWN1g0REKpB+sxQhMxN++1u48kp48UWftKOSEiKlFD+Db9Ys7z5evtxnnm3YELuuUaNY0GXmf/ls3uxBVcuWsa1Vq13H+/v23XU2n4hIJaagqxhdusCpp8K//+1DjPfeGyvyKyIRIXhy+uLFXlF66VLfliyBc87x4UDwQOvNN2Ovq1MH9tjD6+jsuacXq4zOzhs/3pPIlRMlItWIgq4SjB4Nn3wC333nsxuvvDLdLRJJo61bvaRBx47+OAQ4+2xPJi/M0qWx4549fdy+bVsfEmzRouigKlqoU0SkGlHQVYKMDA+0xo71kZEDD/TVCESqvQ0bYP583xYu9GVXfvzRE8wffzxW3LFxYy9mGa2A3qGDlyho396HB6Patdu1NIKISA2joCsB7dr5KMk//uFDjN27p30lAZGKtXmzD+9Fiz2+/vqua8dF1a7tgdSmTbGlNm69NbGZfiIiNZyCrgQdcwx8+CF89RW8/TYcf3y6WyRSRiHAsmVe2HPOHK9LtXgxnHRSrIBmhw6eU7X33l4huEsX39q3331mnxIdRUQSoqArQWYwcqQHXR9/rKBLqqgHHvD1ruJnDoIHUjk5scfdusETT2gtLBGRCqSgqxT69vXPpm++8c8sDTFKpRQC/PADfPGFL2kzdmzsH+vmzf6Pt1kzX49uv/28BEOXLrEiohDL1xIRkQqjoKsUGjTwCViffeYzGo84It0tEolYtw4+/9z/cc6a5WsKRn31FRx8sB+ffDKccoqXaFBQJSKSUgq6SmnQIP9c++gjBV2SRvFFRzdt8pke+fmx51u2hF69/K+EAw6InW/bNrXtFBGRnRR0ldLAgb7U26xZvnKJyglJymzZ4hH/9OmwaJHPLjTzLtgePXx4sE8f39q2VU+WiEglo6CrlJo18xSYOXP882/w4HS3SKq1jRs9yHr/fc/Rys2NPbdoEXTu7Md/+pOCLBGRSk5BVxkMGuRB10cfKeiSJFq40Cvz5uX5YzNPfB840Lf4QqMKuEREKj0FXWVw4IHw8MMwY4Z3PBQsWyRSatu3++yMH3/0tacA9trLZx127OjR/aBBmjIrIlKFKVwog7Zt/XNw8WKfGNa7d7pbJFVSCPD1176+1AcfeDmH2rVhxAivDJ+RAf/8566lHEREpMpS0FVGgwZ50PXRRwq6pJQ2boRXX4Vp02DFitj5ffaBYcM82IpSwCUiUm0o6CqjQYO8YPf06XDxxUqpkVLYuhUee8x7ulq0gOHDPdjq0CHdLRMRkSRS0FVGXbpAq1awejV8953PaBTZTU4OvPaaj0Nff71H561awemn+7qGffpoqR0RkRpCQVcZmXlC/Ysv+hCjgi7ZxaJF8NJLnq+1fbuf++Ybr6cFXhVeRERqFAVd5TBoUCzoOussDTHWeCH4WofPPONL8kT17g3HHutrHYqISI2loKsc9t/fJ5ktXw5Llyolp8bbsQPuuMMXlM7KgsMPh2OOgfbt090yERGpBBR0lUNGBgwYAG+84dXpFXTVMLm58Pbbvph0VpbPNDzlFC/9cPTRHpGLiIhEKOgqp27dPOhatCjdLZGUyc31XK0nnoCVK+Hnn+HEE/25445Lb9tERKTSUtBVTh07+v6HH9LbDkmBvLxYsPXjj36ufXuvlisiIlICBV3ltNdevl+yxPOolUxfTc2aBRMnwrJl/rhdOzj1VBgyRCUfREQkIQq6yqlRI2jWDH76CVatgj32SHeLJCk2b/aAq00bOO00OOQQBVsiIlIqCroqQMeOHnQtXqygq9pYscLrah1+uD8eNAh+9zs46CCtcC4iImWiT48KsNde8MUXntfVv3+6WyPlsnUrPPkkPPecjxfvv7/nbJl575aIiEgZKeiqANG8LiXTV2EhwAcfwEMPwZo1fm74cKhXL73tEhGRaiOpQZeZjQTuBjKAB0MItxZ4vgnwb6BjpC13hhAeTmabkiE6g3Hx4vS2Q8poyRJPkv/yS3+8zz5w0UVa20lERCpU0oIuM8sAJgBHAEuBT81saghhdtxlvwZmhxCOM7NWwFwzmxxC2J6sdiVDNOhasgTy85VfXeU8+qgHXI0awZlnwpFH6ocoIiIVLpk9XQOA+SGEhQBmNgU4HogPugLQyMwMaAisA3KT2KakqF8fWrWC1as9/7pdu3S3SEqUmxtLiL/gAmjZEk4/XVXkRUQkaZL553w7YEnc46WRc/HuBfYDlgNfAZeHEPKT2KakUZHUKmLrVnjgAbj+es/jAmjd2ocTFXCJiEgSJTPoKqxMaCjweAQwC2gLZAP3mlnjJLYpaaLJ9MrrqsS+/RYuvRRefBFmz4bvvkt3i0REpAZJ5vDiUiB+Cej2eI9WvHOAW0MIAZhvZt8DvwA+SWK7kkI9XZVYbi48/jg89ZT3bnXpAmPHwt57p7tlIiJSgyQz6PoU6GpmnYFlwBjgtALXLAaGA++Z2R7AvsDCJLYpaVQ2opJauhTuugvmz/daWyed5BXlVeBURERSLGmfPCGEXDO7FHgVLxkxKYTwjZldFHl+IvD/gEfM7Ct8OPKaEMKaZLUpmTp08M/05ct3zdGWNPv4Yw+4WreGK6+E7t3T3SIREamhkhoahBBeBl4ucG5i3PFy4MhktiFV6taFPff02YvLlsV6viTNTjzR63gccww0aJDu1oiISA2mYkQVSHldlcCiRXDddbBunT+uVQtOPlkBl4iIpF2JQZeZDTaz18zsOzNbaGbfm1mVzLtKNs1gTLM33oDf/ha+/toT50VERCqRRIYXHwJ+A8wE8pLbnKpNyfRpsn27L+Pz2mv++PDD4fzz09smERGRAhIJujaEEP6b9JZUAxpeTIOffoJbboG5cyEz04ucHnFEulslIiKym0SCrrfM7A7gWWBb9GQI4bOktaqKatfOU4h+/NE7XzIz092iam7rVh9OXL3a12H64x+9BpeIiEgllEjQNTCy7xd3LgCHVXxzqrY6dTzwWrLEN9XeTLKsLBgxAmbOhD/8AZo0SXeLREREilRi0BVCODQVDakuOnb0gGvxYgVdSRECrFnjPVvgMxN/+UsVRhMRkUovkdmLTczsr2Y2I7LdZWbqUiiCkumTKDcXxo+H3/zGhxTBK9Iq4BIRkSogkTpdk4CNwMmR7Wfg4WQ2qipT0JUkW7fCn/4Eb77pxytWpLtFIiIipZJIF8HeIYRfxj2+ycxmJak9VV50BqNqdVWgDRvg5pvhu++gcWO48Ubo1i3drRIRESmVRHq6tpjZwdEHZjYY2JK8JlVtbdr4aNeqVbB5c7pbUw2sXAlXX+0BV+vWcPvtCrhERKRKSqSn62Lg0UgelwHrgLOT2aiqLCPDF7/+/ntPqN933wq46cqVMGkS7NgBl10GzZpVwE2rgE2bPOBat85LQdx4IzRvnu5WiYiIlEkisxdnAb3MrHHk8c/JblRV17GjB12LF5cz6MrNhalTYfJkL/wFcOWVcP31NaMeVYMGPjvxww+9JET9+ulukYiISJkVGXSZ2a9CCP82sysLnAcghPDXJLetyqqQyvTffQf33uvRG8Ahh/iMvW+/9d6fK6+Egw4qd1srpbw87zIEOOYYOPpon6UoIiJShRWX09Ugsm9UyNYwye2q0tq08f2qVWW8wb/+BVdd5QFX69Ywbhz87ne+3M1hh8G2bfCXv8ATT3jdqupkzhz49a9h6dLYOQVcIiJSDRTZ0xVC+Efk8PUQwgfxz0WS6aUIrVv7vkxB1+LF8OSTvp7QCSfAqad65XXwkvdXXOF1KR55BP79b08cu/JKv76qmz3b87a2boUXX4SLL053i0RERCpMIp/Uf0/wnESUK+j6+GPfH3YYnHNOLOCKMoMTT/Qcp6wseOcdePbZcrW3Uvj661jANXQoXHBBulskIiJSoYrL6RoEHAS0KpDX1RjISHbDqrKmTb1TauNGjyEKxk3FigZdBx5Y/HUDB8K11/rQ4+TJ0K8fdOpUtgan27x5Xodr61YPNi+/vHr03ImIiMQp7pMtE8/dqs2u+Vw/A6OT37Sqyyy2NGCpervWrvUAJDMTsrNLvr5vXxg50mc5/u1vvq9qFi/2Hq4tW3yygAIuERGpporL6XoHeMfMHgkhaFGbUmrdGpYv96ArOpuxRNOn+753b6hbN7HXnHsufPYZLFzoifWnn16m9qbNnDneJdi/v6+pqIBLRESqqUSKo242szuA7sDOgbIQwmFJa1U1UKa8rmjQNWhQ4q+pV8+Dleuu8wT8gQNhn31K8aZpduSRXuy1Vy8tXC0iItVaIt0Kk4E5QGfgJmAR8GkS21QtlDro2rQJvvzSxyb79y/dm/XoAccfD/n58Ne/xgqpVlY//+zdgFH9+/uQqoiISDWWSNDVIoTwELAjhPBOCOFcoIQsbyl10PXZZ56T1b27L+pcWmeeCe3aeQmJyZNL//pU2bYNbrrJC7wuWpTu1oiIiKRMIkHXjsh+hZkdY2a9gfZJbFO1UOqgKzprceDAsr1hZqYPM5rBc8/B3Lllu08y5efDXXd5tf26dcsWXIqIiFRRiQRdf4osdv1b4CrgQeA3SW1VNVCqoCs3F2bM8OOyBl3gCz2eeKJXqZ840YOcyuThh+Gjj3xNxXHjtHi1iIjUKCUGXSGEl0IIG0IIX4cQDg0h9A0hTE1F46qy5s19+cCffkogxeqrr2DzZq80H11DqKzGjIEWLWD+fHjttfLdqyL95z/w/POeLP/730OHDulukYiISEoVVxz170CRC/uFEMYmpUXVREaGxz6rVvk61e3aFXNxogVRE5GVBeedB7ffDo8+6otiN2pU/vuWx6efwj8iq0pdein07Jne9oiIiKRBcT1dM4CZxWxSgugQ4+rVxVwUQqxURHmGFuMdfDAccIDXv6oMSfVr1/r+1FNh+PD0tkVERCRNiiuO+mgqG1Id7bGHLylYbF7X/PkelLRoUXH1tczgwgth7Fh4+WUYMQI6d66Ye5fFyJH+te29d/raICIikmYl5nSZ2Vtm9mbBLRWNq+qiSwGtXFnMRfGzFs0q7s332guOPTaWVB+KHClOjtzcXbv49tmnYr8+ERGRKiaREuBXxR1nAb8EElrkz8xGAnfjC2Q/GEK4tZBrhgHjgTrAmhDC0ETuXRUkNLxYlir0iTrtNHjnHZg92/fDhlX8exRl0iR4+21flFs5XCIiSZeXl8e6devYsWNHyRdLhahTpw7NmzcnIyMjoetLDLpCCAXztz4ws3dKep2ZZQATgCOApcCnZjY1hDA77pqmwH3AyBDCYjNrnVCrq4g99vB9kcOLq1bBDz9A/fpeVb6iNWgAZ58Nd9/t5RoGDvRlg5LtzTfhxRd9pmKia0iKiEi5rFu3jqysLFq2bIlpZCHpQgjk5OSwbt06WkWHtkqQyPBi87itpZmNAPZM4N4DgPkhhIUhhO3AFOD4AtecBjwbQlgc+QJKs1JhpRf9GRQZdC1Y4Pv99kveuoPDh3v9rnXrYMqU5LxHvPnzYcIEP77oIn9vERFJuh07dtCwYUMFXCliZjRs2LBUPYuJFEedSWwm40d4kdTzEnhdO2BJ3OOlkXPxugHNzOxtM5tpZmcmcN8qo1UrT2Nas8ZTnHazJPLt6dgxeY2IJtWbwdSpsGxZ8t5rwwb485+9MNnIkZ7ALyIiKaOAK7VK+/1OpDhq5xBCl8i+awjhyBDC+4m0pbDbFXhcG+gLHAOMAK43s24J3LtKqF3bi6SG4B1Nu4kGXckuFNq1Kxx+uEd+Dz6YnPfIz/faYKtXe+/WBRck531ERKRSu+WWW+jevTs9e/YkOzub6dHc5RSbNWsWL7/88s7HU6dO5dZbPbX87LPP5umnn97tNW+//TbHHnts0tpU4piWmWUBlwAH40HT+8D9IYStJbx0KRAfTbQHlhdyzZoQwiZgk5m9C/QCvkus+ZVf69ZeEWLVqlhi/U6LF/s+FdXZzzwTPvjAlxv69FPo379i7z9njtfHaNrUK87XqVOx9xcRkUrvo48+4qWXXuKzzz6jbt26rFmzhu0lLsuSHLNmzWLGjBkcffTRAIwaNYpRo0alpS1RiQwvPgZ0B/4O3AvsB/wrgdd9CnQ1s85mlgmMAQouH/QCMMTMaptZfWAg8G2ija8KiiwbkZ8PS5f6cSqCrqZNvTgpeG9XoeOd5bD//nDrrXD11VpTUUSkhlqxYgUtW7akbmQSVcuWLWnbti2dOnVizZo1AMyYMYNhkdn077zzDtnZ2WRnZ9O7d282btwIwO23384BBxxAr169uPbaawFYsGABI0eOpG/fvgwZMoQ5c+YA3mt10UUXMWTIELp168ZLL73E9u3bueGGG3jiiSfIzs7miSee4JFHHuHSSy/d2dbXX399l9cUtGnTJs4991z69+9P7969eeGFF8r9/Ukke3vfEEKvuMdvmdkXJb0ohJBrZpcCr+IlIyaFEL4xs4siz08MIXxrZq8AXwL5eFmJr0v/ZVRe0RmMu5WNWLXKc5+aN/dZhqlw7LHw6qse7E2d6otjV6T99qvY+4mISJkcd1xy7vvii8U/f+SRR3LzzTfTrVs3Dj/8cE455RSGDi26EtSdd97JhAkTGDx4MDk5OWRlZfHf//6X559/nunTp1O/fn3WRfJzLrjgAiZOnEjXrl2ZPn06l1xyCW++6WVDFy1axDvvvMOCBQs49NBDmT9/PjfffDMzZszg3nvvBeCRRx7Z5b0Le028W265hcMOO4xJkyaxfv16BgwYwOGHH06DcnxmJ9LT9bmZ7VwU0MwGAh8kcvMQwsshhG4hhL1DCLdEzk0MIUyMu+aOEML+IYQeIYTxpWx/pRcdUtxtBmMqkugLql0b/vd//fjxx4tINCuFEOCee3y4UkREaryGDRsyc+ZMHnjgAVq1asUpp5yyW7ATb/DgwVx55ZXcc889rF+/ntq1a/P6669zzjnnUL9+fQCaN29OTk4OH374ISeddBLZ2dlceOGFrFixYud9Tj75ZGrVqkXXrl3p0qXLzl6w4pT0mmnTpnHrrbeSnZ3NsGHD2Lp1K4ujaUFllEhP10DgTDOLvlNH4Fsz+woIIQRVvixGkcOLqUqiL6hPH6/XNX06PPYYXHFF2e/1n//Aa6/Bhx/CQw+lrsdORESKVVKPVDJlZGQwbNgwhg0bxgEHHMCjjz5K7dq1yc/PB2Dr1lhK+LXXXssxxxzDyy+/zIEHHsjrr79OCGG3WYH5+fk0bdqUWbNmFfqeBa9PZFZhSa8JIfDMM8+wbwWWPkqkp2sk0BkYGtk6A0cDxwJJ6sCsPoocXkxlEn1B553nvV5vvAFz55btHgsXeqAFcNllCrhERIS5c+cyb968nY9nzZrFXnvtRadOnZg502utP/PMMzufX7BgAQcccADXXHMN/fr1Y86cORx55JFMmjSJzZs3A170tXHjxnTu3JmnnnoK8IDoiy9imU5PPfUU+fn5LFiwgIULF7LvvvvSqFGjnTlihSnsNfFGjBjB3//+d0JkGb3PP/+8nN+dxEpG/AA0xQOs44CmIYQfolu5W1DNRXu6Vq8usPxhunq6ANq0gRNO8OP77/ek/tLYts3LQ+Tmej2uwYMrvo0iIlLl5OTkcNZZZ7H//vvTs2dPZs+ezbhx47jxxhu5/PLLGTJkyC5L5owfP54ePXrQq1cv6tWrx1FHHcXIkSMZNWoU/fr1Izs7mzvvvBOAyZMn89BDD9GrVy+6d+++S2L7vvvuy9ChQznqqKOYOHEiWVlZHHroocyePXtnIn1Bhb0m3vXXX8+OHTvo2bMnPXr04Prrry/398dCCQshm9nlwP8Cz0ZOnQA8EEL4e7nfPUH9+vULM2bMSNXbVbhf/crrhj7yCLRogUdfp5wCW7bA5MnQuHHqG7V1K1x8sVduvfhiiEypTcgDD3jfdYcOMH48ZGYmrZkiIpKY5cuX07Zt23Q3I+XOPvtsjj32WEaPHp2W9y/s+25mM0MI/Qpem8jw4nnAwBDCDSGEG4AD8SBMErRbMv3atR5wNWmSnoALICsrllT/2GMeFSbiq6884KpVC377WwVcIiIiCUok6DIgL+5xHoVXm5ciRIOunXld6RxajDdoEPTtC5s2+YLYiTDzMdOTT4a9905u+0RERErwyCOPpK2Xq7QSCboeBqab2Tgzuwn4GHgouc2qXqJB184ZjOlMoo8XXZexTh1Pqp89u+TX9OgB997rw6MiIiKSsEQS6f8KnAOsA9YC51THelrJtNvwYmXp6QJPqv/lL/34/vshL6/w6+Km+FK/vs9+FBERkYQl0tMVZfjaixpaLKXdhhejPV2pLIxanJNO8toWixZBIUshsGkTXHKJLx+0Y0fKmyciIlIdlBh0mdkNwKNAM6Al8LCZ/THZDatOdhleDKFy9XSBJ8NfeKEfT568e6X6Bx/0iPHbbz2BXkREREotkU/QU4H+IYRxIYQb8dmLpye3WdVLtFbXqlUQ1m+AnBwvJtqsWXobFq9/f69Uv2UL/POfsfOffw6vv+6B2W9+A3H1VUREROI1bNiwxGvee+89unfvTnZ2Nlu2bCnV/Z9//nlmJ5J/XIZ2pUIiQdciIL5iWF1gQVJaU001aODb9u2QMzsuiT6BZQpS6oILvJTE++/7MkHbt8N99/lzp54K7dunt30iIlLlTZ48mauuuopZs2ZRr169Ur22rEFXZZFI0LUN+MbMHjGzh4GvgRwzu8fM7klu86qP6BDjz99UsqHFeK1bwxln+PF993n9rh9/hE6d4H/+J50tExGRKuTtt99m2LBhjB49ml/84hecfvrphBB48MEHefLJJ7n55ps5/XQfNLvjjjvo378/PXv25MYbb9x5j8cee4yePXvSq1cvzjjjDD788EOmTp3K7373O7Kzs1mwYAELFixg5MiR9O3blyFDhuxctPr7779n0KBB9O/fv0IqyVeURKagPRfZot5OTlOqt9at4fvvYet3lSyJvqBjj4V334VZs7w0RIcOnkSv2YoiIlXHcUlaGrkUK2l//vnnfPPNN7Rt25bBgwfzwQcfcP755/P+++/vrCA/bdo05s2bxyeffEIIgVGjRvHuu+/SokULbrnlFj744ANatmzJunXraN68OaNGjdql+vzw4cOZOHEiXbt2Zfr06VxyySW8+eabXH755Vx88cWceeaZTJgwITnfizIo8ZM0hPBoKhpS3UV7unK/r8Q9XeCJ8pdd5ksDbdsGvXrBfvulu1UiIlLFDBgwgPaRtJTs7GwWLVrEwQcfvMs106ZNY9q0afTu3RvwtRvnzZvHF198wejRo2nZsiUAzZs33+3+OTk5fPjhh5x00kk7z23btg2ADz74YOfC2meccQbXXHNNxX+BZaDuixSJBl22bAm0ovL2dAHstRecfjpMmeLZ/9u3a7kfEZGqpBQ9UslSt27dnccZGRnk5ubudk0Igeuuu44LozPoI+655x6shLzn/Px8mjZtyqxZswp9vqTXp4Pm/6dI69ZQL3cj/LTek9Uj0Xuls2WLF0g9+WRPnF+xAgpZnV1ERKS8RowYwaRJk8jJyQFg2bJlrFq1iuHDh/Pkk0+ydu1aANZFShk1atSIjRs3AtC4cWM6d+7MU089BXgA98UXXwAwePBgpkyZAnjifmVRZNBlZv+K7C9PXXOqrz32gJZblrBtO5Vz5mLU/ffDlVfC8uUwdqyfe+YZL5wqIiJSgY488khOO+00Bg0axAEHHMDo0aPZuHEj3bt35w9/+ANDhw6lV69eXHnllQCMGTOGO+64g969e7NgwQImT57MQw89RK9evejevTsvvPACAHfffTcTJkygf//+bNiwIZ1f4i4shFD4E2azgaOAqcAwClSiDyGsK+RlSdGvX78wY8aMVL1dUuTkwB3DX+G4JRPoe9Vh2JW/SXeTdvfVV/D73/tajBMm+BJB998PL78M++wDd9yhhHoRkUpq+fLltG3bNt3NqHEK+76b2cwQQr+C1xY3vDgReAX4BTCzwFa1I6A0aNAA2uYtIT8PtrSshEn0+fmxoqgnn+wBF8BZZ3l11/nz4ckn09c+ERGRKq7IoCuEcE8IYT9gUgihSwihc9zWJYVtrBbMYK9aPnNxTf1KmEQ/bZrXtGjVCk48MXa+fn244go/fuIJmDcvLc0TERGp6kpMpA8hXGxmvczs0sjWMxUNq47a5HrQtaJ2Jevp2rQJ/v1vPz7nnN1nKvbsCccf771hd93lsxlFRESkVBJZ8HosMBloHdkmm9llyW5YtbN5M83y1pBbqw5Ld+yR7tbs6oknYMMG2H9/KFBDZaczz/QJAMuWwaMq3SYiIlJaiZSMOB8YGEK4IYRwA77g9f8mt1nV0JIlZNaFtVntWbm6klXq2HNPaNTI114salZlZqbPaszIgKlTITItV0RERBKTyKe/AXlxj/MoMJNRErB0KXXrwpqs9qxale7GFHD00fDww7D33sVft88+MGaMH48f78OSIiIikpBEgq6HgelmNs7MxgEfAw8ltVXV0YoV1M2EdVlt+fHHdDcmIr5cSFzl4GKddBJ06wZr1sA//pGcdomISJWUkZFBdnY2PXr04LjjjmP9+vXpblKpjRs3jjvvvDMp904kkf6vwDnAOuAn4JwQwviktKY6W76cunU96Fq9etd4Jy3y8uDqq73waSFLMxQpI8OHGTMz4a234M03k9dGERGpUurVq8esWbP4+uuvad68eaVZbDqEQH5+frqbkdgyQCGEzyIlJO4OIXye7EZVSytWkJEB25q3Yft2+OmnNLfn1VdhzhzflzYCbNcOLrrIj++/H5Yurfj2iYhIlTZo0CCWLVsGwIIFCxg5ciR9+/ZlyJAhzJkzB4CVK1dywgkn0KtXL3r16sWHH34IwF//+ld69OhBjx49GD9+PADXXHMN99133877jxs3jrvuuguAO+64g/79+9OzZ09uvPFGABYtWsR+++3HJZdcQp8+fViyZEmh1wHccsst7Lvvvhx++OHMnTs3ad8TlRdPhRB8WR0gs1NbWAwrV0Ihi6anxtatvpg1wNlnewX60jr8cE+mf+cduO02LyWhRbFFRCqP444r+rlf/xpGjvTjV17xVUiKUobFs/Py8njjjTc477zzALjggguYOHEiXbt2Zfr06VxyySW8+eabjB07lqFDh/Lcc8+Rl5dHTk4OM2fO5OGHH2b69OmEEBg4cCBDhw5lzJgxXHHFFVxyySUAPPnkk7zyyitMmzaNefPm8cknnxBCYNSoUbz77rt07NiRuXPn8vDDD3PfffcVeV2DBg2YMmUKn3/+Obm5ufTp04e+ffuW+mtOhIKuVPj5Z9i8GerXp0mHxrAYVq2C/fZLU3tefNG72rp2hUGDynYPM/9P+913vi7jgw9C5D+CiIjUTFu2bCE7O5tFixbRt29fjjjiCHJycvjwww856aSTdl63bds2AN58800ee+wxwPPBmjRpwvvvv88JJ5xAgwYNADjxxBN57733GDt2LKtWrWL58uWsXr2aZs2a0bFjR+655x6mTZtG7969AcjJyWHevHl07NiRvfbaiwMPPBCAadOmFXrdxo0bOeGEE6hfvz4Ao0aNStr3R0FXKkR6uWjbltZ7+MTPlSvT1JaNGz2PC7yXqzwLb9erB9deC7/9Lfz3v15Etag6XyIiklqJ9lCNHBnr9SqnaE7Xhg0bOPbYY5kwYQJnn302TZs2ZdasWQndo6g1oQFGjx7N008/zY8//siYyGz6EALXXXcdF1544S7XLlq0aGfgVtx148ePx8rzWVgKiRRHPdHM5pnZBjP72cw2mtnPidzczEaa2Vwzm29m1xZzXX8zyzOz0aVpfJWxYoXv27Rhj0hd1LTNYHz6aS/1kJ3tQVJ5dekC55/vx3//e+xrFRGRGqtJkybcc8893HnnndSrV4/OnTvz1FNPAR78fBGp9Th8+HDuv/9+wIckf/75Zw455BCef/55Nm/ezKZNm3juuecYMmQIAGPGjGHKlCk8/fTTjB7tIcOIESOYNGkSOTk5ACxbtoxVhdRmKuq6Qw45hOeee44tW7awceNGXizDcGqiEkmkvx0YFUJoEkJoHEJoFEJoXNKLzCwDmAAcBewPnGpm+xdx3W3Aq6VrehUS19MVDbrSUqsrBB8OBK8wX1GOPhoOOsiHUG+/XcsEiYgIvXv3plevXkyZMoXJkyfz0EMP0atXL7p3784LL7wAwN13381bb73FAQccQN++ffnmm2/o06cPZ599NgMGDGDgwIGcf/75O4cEu3fvzsaNG2nXrh1t2rQB4Mgjj+S0005j0KBBHHDAAYwePZqNGzfu1p6iruvTpw+nnHIK2dnZ/PKXv9wZ4CWDFdeNB2BmH4QQBpf6xmaDgHEhhBGRx9cBhBD+UuC6K4AdQH/gpRDC0wXv1a9fvzBjxozSNqHyuOMOePdduOIKlu47nIsv9iLw//xnGtoSAsydC7/4RcXed9MmGDvWo8nhw+Hyy8s3dCkiIqWyfPly2rZtm+5m1DiFfd/NbGYIoV/BaxPp6ZphZk+Y2amRocYTzezEBF7XDlgS93hp5Fx8o9oBJwATE7hf1RUdcmvbltat/XD1al8/OuXMKj7gAmjQAP7wB5/B+MYb8J//VPx7iIiIVGGJBF2Ngc3AkcBxke3YBF5XWDdHwW618cA1IYS8Qq6tHuLKRdC2LZmZ0KyZ1yZduzaF7XjxxeTnW3Xp4j1c4N14X3+d3PcTERGpQkqcvRhCOKeM914KdIh73B5YXuCafsCUyKyBlsDRZpYbQni+jO9Z+Wzc6ENv9etDY0+F22MPr9iwciW0apWCNsybBw88AP/6Fzz6qM86TJZDDoH58+G55+DWW+Fvf0vRFykiIlK5JTJ7sb2ZPWdmq8xspZk9Y2btE7j3p0BXM+tsZpnAGGBq/AUhhM4hhE4hhE7A08Al1SrgglgvV5s2O3Ocosn0KSsb8X//5/ujjkpuwBV11lk+O3LDBvjzn5VYLyKSIiXlaUvFKu33O9EFr6cCbfGcrBcj50pqSC5wKT4r8VvgyRDCN2Z2kZldVKpWVmVx+VxRKQ265s2DGTMgKwt++csUvCG+PuPVV/sXOn8+3HtvJVhsUkSkeqtTpw45OTkKvFIkhEBOTg51SrGqSyLFUVuFEOKDrEciMw4TadDLwMsFzhWaNB9CODuRe1Y58T1dESkNuqLL/RxzzM7hzZRo1Aj++Ee46ipfGLt9ezj55NS9v4hIDdO8eXPWrVtXaLkESY46derQvBRr+iUSdK0xs18Bj0cenwqkMgW8aotLoo+KzmBMeq2uBQvgk0+gbl044YQkv1khOnXyavV/+Yvnk+2xBwwdmvp2iIjUABkZGbRSDm2llsjw4rnAycCPwApgdOScJKKY4cWkV6WP9nIdfTQ0aZLkNyvCoEEQWfCU8eM1o1FERGqsRGYvLgaSt/pjdVagXERUq1aeU792LeTmQu1krYB55pk+a/LERMqqJdHxx/tY6osvwp/+5MViO3Qo+XUiIiLVSJEf92Z2dQjhdjP7O7vX1yKEMDapLasOouUi6tXbJZ+qdm1o0QLWrPEiqXHpXhWrQwf4zW+SdPNSOv98H0+dPh3GjYO77oKmTdPdKhERkZQpbnjx28h+BjCzkE1KEj+0WGBJnD339H1Skum3bq18swVr1YLf/Q66dvXg6+abvZ0iIiI1RJFBVwghusz25hDCo/EbXqFeSlLIzMWopC58fffdXrLhhx+ScPNyqFsXbrjBv/h58+CWW1TDS0REaoxEEumvS/CcFFRIPldUdAZjhfd0LV4MH3zg9bEaNqzgm1eApk3hpps8sX/WLM/vyqu+q0CJiIhEFRl0mdlRkXyudmZ2T9z2CJCbshZWZcUEXUmbwfjkkz60eOSRnjhWGbVr5wn1DRrAxx97z1xlGw4VERGpYMX1dC3H87m2smsu11RgRPKbVg0UUi4iKinDiytXwrvvekX40aMr8MZJ0KmT93hlZXnx1IkTFXiJiEi1VuTsxRDCF8AXZvYcsCmEkAdgZhlA3RS1r+qKLxdRTE5XhQ4vPv+8v+8hh1SNRab33Reuv95nM778spe3OOusdLdKREQkKRLJ6ZoGxK+SXA94PTnNqUZycmLlIgopTNqihXdI/fRTBeWSb9gA06b5cbrrcpVGz55w7bX+zXj6aZg8WT1eIiJSLSUSdGWFEHKiDyLH9ZPXpGoivperQLkI8AoK0c6oChli/P57LwDWr58P3VUlAwb4ckFmXkX/sccUeImISLWTSC30TWbWJ4TwGYCZ9QW2JLdZ1UAxSfRRe+zhifQrV/p60OWSnQ2TJnnvWlU0ZIgHXXfe6T1eO3b48kGFBKwiIiJVUSJB1xXAU2YWiSJoA5yStBZVFwkGXVCBeV0NGvhWVR18sPfW3XYbvPCCr5F04YUKvEREpFoocXgxhPAp8AvgYuASYL8QgirSl6SYmYtRFRJ05ebCa69VnyKjBx4Iv/891KkD//kPTJigoUYREakWEsnpAtgX2B/oDZxqZmcmr0nVRDEzF6MqJOh6/3245x6v9F5d9O/vsxozM+HVV32dxlyVhhMRkaqtxKDLzG4E/h7ZDgVuB0YluV1VXyl6uqKXlloI8Mwzfjx8eBlvUkn17g033uh1vN55x2t6bVEqoYiIVF2J9HSNBoYDP4YQzgF6oTpdxdu40UtGZGUVWi4iqkMH3y9ZUsaVcD77DBYtgubNYdiwsrS0cuvZE269NbZk0HXXwfr16W6ViIhImSQSdG0JIeQDuWbWGFgFdElus6q4+CT6YpLAGzTw3q4dO2DZsjK8z7PP+n7UKM+Bqo723tvXZ2zTBhYsgN/9Lvb9FRERqUISCbpmmFlT4J/4MkCfAZ8ks1FVXgIzF6O6RMLXhQtL+R4LF8KXX3rx1ZEjS/niKqZNGw+8unb1GhtXXw3ffZfuVomIiJRKsUGXmRnwlxDC+hDCROAI4KzIMKMUZfFi37drV+KlnTv7vtRB1/PP+/7II6t2mYhENWkCf/4z9Onj1fevu87XmRQREakiig26QggBeD7u8aIQwpfJblSVF42gupQ8Chu95PvvS/keffv60Ntxx5XyhVVYVpbPahwxwktk3HEH/OtfKikhIiJVQiLDix+bWf+kt6Q6iQZde+9d4qXRnq7vvy9l7DB0KIwfH5sCWVPUrg2//jVccIHnyz35pPeAbd2a7paJiIgUK5Gg61A88FpgZl+a2Vdmpt6uoqxb5zPsGjSA1q1LvLxVK790wwZf/FoSYOY9fDfd5N+8jz/2BPsKWcRSREQkOYoMusysY+TwKHy24mHAccCxkb0UJtrL1blzQsvXmJUymf6NN2DiRE8or+l69/bCqe3aeemMK66AmVosQUREKqfierqeBwgh/AD8NYTwQ/yWktZVRaUYWoxKOOgKAZ56ypfH0ew9166dL5Ldt6/XRxs3zvO8ylT4TEREJHmKC7riu2lUlytRCxb4PoEk+qj4vK5izZzpBb1atoSDDipb+6qjhg29ev0ZZ8TyvK6/XuO1IiJSqRQXdIUijqU4pZi5GJVwT9cLL/j+uOM8oVxizODkk+FPf4KmTeGrr2DsWK9lJiIiUgkUF3T1MrOfzWwj0DNy/LOZbTSzn1PVwCpl0ybPtapTB9q3T/hlHTp4DLViRTHLCy5a5EvhZGV5yQQpXM+ecPfd0KOHT2j44x/hkUe87L+IiEgaFRl0hRAyQgiNQwiNQgi1I8fRx41T2cgqIzo+2KlTqXqiateGjh09ZWvRoiIuivZyHXFEzSiGWh7Nm3uP15gx/viZZ+C3v40VrRUREUmDREpGlJmZjTSzuWY238yuLeT50yNlKL40sw/NrFcy25N08TMXS6nYvK6cHHjnnVipBClZRgacfjrcdhvsuad/Y6+4AqZOVTFVERFJi6QFXWaWAUzAS07sD5xqZvsXuOx7YGgIoSfw/4AHktWelCjDzMWoYvO6Gjb06uvnn+/rEEri9tsP7rnHewh37IB//tOT7FeuTHfLRESkhklmT9cAYH4IYWEIYTswBTg+/oIQwochhOgUs4+BxBOhKqMyzFyMKjGZfu+9YdSosrWrpqtXz5Pq//AHaNwYvvjCq9q/8ALk56e7dSIiUkMkM+hqByyJe7w0cq4o5wH/TWJ7kmvHDliyxIcAO3Uq9cujw4s//FCgxNTmzRXSPAEOPBDuuw8OOQS2bYMHH4Srr/ZvuoiISJIlM+gqrBx7ock0ZnYoHnRdk8T2JFc0WmrXzmcYllJ01aDt22H58sjJEOCaa+C662D16optb03VpIkvGXTDDdCiBcyd67lekyf7N19ERCRJkhl0LQU6xD1uDywveJGZ9QQeBI4PIaxNYnuSqwz1uQraLZn+q698OuPSpV57SipO//7e63X00ZCbC1OmwMUXw/TpSrQXEZGkSGbQ9SnQ1cw6m1kmMAaYGn9BZH3HZ4EzQghVe12bciTRR+2W1xUtE3HMMV77SypW/foeaN12mw8Jr1rlpSbGjfPK/yIiIhUoaUFXCCEXuBR4FfgWeDKE8I2ZXWRmF0UuuwFoAdxnZrPMbEay2pN0FdDTtUvQtXw5fPqpB1tHHVX+9knR9t8fxo+HCy/0cd7PPoNLL/Wiqps2pbt1IiJSTSR1LZkQwsvAywXOTYw7Ph84P5ltSIn8/NiYYAUFXeGFqVgIMGyY5yFJcmVkwLHHwpAh8Oij8PrrXlT1tde8yOpRR2npJRERKZekFketMVasgK1bfSHqxmUv1t+qlXe0bFubw47/vu4nVSYitZo08fISd97pPWA//wwPPODDkO+/r3wvEREpMwVdFaEc9bnimXky/Z6bF7Bps0F2dpnKT0gF6NYNbr3V125s397X1LztNl9O6PPPFXyJiEipabykIlRAPldUly4w9etevHXyI5x4uNYVTyszGDgQ+vXzYcb/+z+YN8/LTey3H5x2GvTq5deJiIiUQD1dFSHa01WOmYtR0bht3vIGWvKnssjIgJEjfZjxrLOgUSP49ltfTuiaa2DWLPV8iYhIiRR0lVcIFdfTFQL7rX6XjPwdO+M4qUSysmD0aHjood2Dr6uugg8/1LJCIiJSJAVd5bVunSdbN2zomfDl8ckn7PnvOzhv/nWsWKFSUZVWvXq7B1/ffQd/+Ysn3L/yiqrbi4jIbhR0lVd8L1d5cntCgKeeopZB/sFDAHjvvQponyRPNPh6+GG46CLYYw+vrzZhApx3nle5/+mnku8jIiI1goKu8qqgmYt8/bWvA9ioER3OGwHAO+8oVahKqFvXVw34xz98Ae0uXWD9el/P8dxzvfzE3Ln6YYqI1HCavVhe06f7fv/9y3efp5/2/ahR9ByQRaNGvuTiDz+oakSVkZHhxVUPPtjXzXzpJfj4Y4+e33kHunb1IqtDhpRpUXQREanaFHSVx/LlMH++r+HXt2/Z77NggS89k5UFxxxD7doweLCnBr37roKuKscMevb0bdUq+O9/4dVXvdzEvHnwz3/C0KFw5JGwzz4qOSEiUkNoeLE83n3X94MGQWZm2e8T7eUaOdKTsoFDDom9hUalqrDWrT3Z/pFH4IorvL7Xli0eUV95pVe/f+EFH44UEZFqTT1dZRWCDxlBLEIqq/79fSzxf/5n56nu3aF5c1i50jtHunUr31tImmVmwvDhvi1Z4sVW33gDFi2CBx+ESZOgd29fa/PAAzX8KCJSDSnoKqvvv/dAqUkTr0peHocdBoceusswU61anvrzwgve26Wgqxrp0MET7M8803MC33oLZsyAmTN9y8rySvgHHwx9+pSvF1VERCoNBV1lFR1aHDzYE6jLIoRYoFVIXk806HrvPf+MrqXB4Oolmrw3eLDXenv/fXj7bS+4Gk2+z8qCAQP8mn79FICJiFRhCrrKIoRY0FWeocW//c1zuE47DRo02O3pbt08JWjVKpg9G3r0KPtbSSXXuDEcfbRvP/7oAdgHH/hEjXff9a1uXR+CHDDAh6SbNk13q0VEpBQUdJXFnDmwejW0bFn2UhHffOPDSpmZnstVSNBl5jHd00/7Z66Crhpizz296Oro0R6AffihB2Hz5nkJio8/9n8c++7rAVjfvtC5s2ZBiohUcgq6yiKaQD9kSNk+6PLzffFkgF/+stjlg6JB1wcfwAUX+IiU1CB77gknnujbmjXw6aeeB/bFFx78z5kDjz0GzZp5L1jfvpCd7T1nIiJSqegjvLTy8rzXAbzWUlm89povH9SypQddxejUyfOulyyBL7/0vGqpoVq29OKqRx0FW7d6bbcZM3y/di28+aZvZt7z1asXHHCAT4WtXz/drRcRqfEUdJXWl1/Chg3Qrl3Zlv7ZtAn+9S8/Pvdcz9MpRnSIcfJkH2JU0CWAJ9gfdJBvIcDixR58ffaZD10vXOjbc8/5DIyuXX18ev/9vVZYpB6ciIikjoKu0oqvzVWWocXHH/egrXt3LwmQgCFDPOj66CM45xyvUiGykxnstZdvJ5wA27f7sOMXX/gfCd9952s/zp0Lzzzjr9lrL/83+ItfeG5YmzbKCRMRSTIFXaWxfbtHPlC2ocUQ4Kef/MPtggsS/pBr187TdGbNgnvvhd//Xp+PUozMzNgyROAV8GfP9h6w2bM9CPvhB99eftmvadTIg6999/VesX32UXQvIlLBLFSBNWb69esXZsyYke5meMD15z/7sOLdd5f9PsuWeSRVCqtXw2WX+ejk2LFwxBFlf3up4bZv9/U+v/nGe7/mzCl8GaJWrTz42mcf2HtvzxNr1kwRv4hICcxsZgihX8Hz6ulKVH6+VyqFsvVy5ebGph6WMuAC//y76CK46y6f+Nijh48IiZRaZqbnde23nz8OwaP66BDkvHmeD7Z6tW/R3l3wWZGdO/vWqZMPU3boUGJuooiIKOhK3OOPe89A06a+fl5pfPmljwv+8Y/QsWOZmzB0KHzyiVeov+suuO22shfDF9nJzKvwtm7tCYTgf2QsW+bFWefP9yDs+++9cv4XX/gW//o99/R/2x07Qvv2vrVrV2j9ORGRmkpBVyI+/xyeeMI/XH73u9LluixZ4kOSmzZ5Ev4ZZ5S5GWZwySW+SszcufDUUzBmTJlvJ1K0WrW8B6tDB18XFLxHbM2aWAAWzQtbvhxWrPBt+vRd79O8uQdfbdv61qZNbK8ljUSkhlHQVZJ167xbKQQ4/fRYcnIi1q+HceM84Bo0CH71q3I3p2FDuOIK7zR7/HEvIaHFsCUlzHycu1UrX5A7KjfXA68ffvA/MpYu9W3ZMv//s24dfPXV7vdr3tx7yKLbHnvEetxatFA3rohUOwq6ipOXB7ff7iUesrPh5JMTf+22bXDzzb5wYrdu8NvfVlgCcq9evnLQ88/DnXfCTTcpv0vSqHbt2NBivGiu2NKlsd6w5ct9W7kyFpDNnr37PWvV8sCrdWsvCtuqle+jW4sW3uOspH4RqUIUdBVn8mTP42reHK66yj8IEpGf771j8+b5h8b111d4ovEZZ3gJiUWLfDbjeefBiBH6DJJKJD5XrGBV37w8r6L/448egP34o2+rVvn200+xRP6iZGT4bMoWLfz/aPPm/ji6NW3q+yZNoE6dpH6pIiKJUNBVlOnTPWmqrHlcH3/sScTjxvkv/wqWmempYhMneqX6CRP8LceO9c8ekUotIyMWkBVmxw7PH4sGXmvX+n7NGt/WroWNG2OPS9Kggf8fbtLE/z82buzHjRvvujVq5Fv9+voLRkQqnOp0FbRqFTz6qEcy4F1KiQwrxpeEAHjySa/43b17ctoZ59134f77ISfHc74uvNAL5ifaMSdSJW3f7nmTa9f69tNPu2/r1/uWn1+6e2dk+H+m+K1RI983aOBb/HH9+rF9/fqaJCBSwxVVp0tBV9SWLd6z9fzz/ld2nTq+GPVpp5X8F++XX8J99/kYX//+yW1nEdatg3vugZkz/XGTJjB4sK801L27AjCpwULwv0jWr/f8zPXrvfRFdNuwwfcbN/r288++oHh51K7twVe9er7FH8dvWVmxfcGtbt3Yvm5d/52k3jeRKiEtQZeZjQTuBjKAB0MItxZ43iLPHw1sBs4OIXxW8D5JDbry8+G113wR6g0b/Nwhh8BZZxU99BGCT5v/9FMvnDVvnp/v29eHE9MkBP9Snn7ac5ajmjb1yZNdu8bynevVS1szRSq/HTs8UCu4bdwImzf78aZNvuXk+LnNm/3x5s3e813RzDz4ysyMBWLR48zM3Y+jW506sX10K/i4du2iH9euHdtq1VLgJ5KAlAddZpYBfAccASwFPgVODSHMjrvmaOAyPOgaCNwdQhhY8F5JDbp++snXQdy61Rf/Pf98X38uavt2j2aiifCvvOK1Gtati12TmQknneQ9Y5UgYTcEL6P03nvw/vuen1xQ69ZegqllSw/K4rcGDfwP7Pr1fZ+Zqd+zIqWyfbv3nm/evOs+um3dGju/bZs/jm7R57dv9/22bb7t2JHur8p/EcQHYbVr+1BsnTq+jz4uuI/fCjtXcKtVK/F9/LHZrufjt/jnzAp/vqjj6OP4fUnn9EuzRkvHMkADgPkhhIWRBkwBjgfi54cfDzwWPPL72MyamlmbEMKK3W+XJM2awTnneBdRixYeUEV/QW7Y4EHZZZfBkUf69XXqeMDVooUPJQ4Y4LW7KtEyKGa+PGSXLnDmmb7M3mefeRmlxYt9Bn90klii94uObhT8Izj6+y76e7Sw31nRoc3430XR30fR5wqej56L3xd1ruBzJZ0r7nxZper3q36PVxWZkS3BCThZka04+flk5G0nI3cbGbnbqLXD9xl526mVu33X48i+Vt6OXY53Po4cF7rl52L5uZHHuTvP1crb4X/RsSOySYki/2GD1SKYAf5LLnoczAgW90uQXZ8reH30XtHrizyPFXFN7Dj2HIU/X/Behdxvl6+RAr+cdrn/zpOlvL5g23Y9F//+hd6z4POR47YXHc9eI35RyHslXzKDrnbAkrjHS/HerJKuaQekLugCOPpoeOwxX+6koIwMHz6IOvBAX+y6c+cq8QloFluzOCovz4cfly71+DGaaxzdCv5BHv2Du7xpLiJSHrVILDorBcM/BRL8JLCQT0bIJSPkUis/N3Yc8nY9T54HauSRkZ9LLfJ3XhO9R62QV/gWuTa6GflkhDws5O/22HZeGz3Ojztf9DkLIXKv4PclHwjUCrF99Lr4vT9P4edCvt8v8pyL7vMq7mdWQyXyaZvoJ/KGIwaXpynlksygq7Cvv+BYZiLXpMbFF3u3S3zia6NGXn8hPgu9QQPvQqrCMjJiy+MlIi/PRzZ27PAALHqcl+dbbq6nxkUfh+D7/Hw/ju5L2qIKPi7qXPR8/L6w58oq0ddXgbkoIhWkFrFevOonv8C+XKK/GPI9GIvOoDViv/Qs5O/yy23nc9HXRO8TQuy5+HvGPQ8e+MXeO8SCv8LeI+4X1y73LnB9wq+J/5oLXlfIPXd7roT7FNnOAozinwfY45B9Cz2fCskMupYCHeIetweWl+Ga1Bg6NC1vWxVE0yyyKvAPbBGR6i3ap6DlrCQmmYUEPgW6mllnM8sExgBTC1wzFTjT3IHAhpTmc4mIiIikSNJ6ukIIuWZ2KfAqHupPCiF8Y2YXRZ6fCLyMz1ycj5eMOCdZ7RERERFJp6QuAxRCeBkPrOLPTYw7DsCvk9kGERERkcpAdcpFREREUkBBl4iIiEgKKOgSERERSQEFXSIiIiIpkNQFryuKma0Gfkh3O0REREQSsFcIoVXBk1Ui6BIRERGp6jS8KCIiIpICCrpEREREUkBBF2BmI81srpnNN7Nr092emsrMOpjZW2b2rZl9Y2aXR843N7PXzGxeZN8s3W2ticwsw8w+N7OXIo/1c6kEzKypmT1tZnMi/3cG6WeTfmb2m8jvsa/N7HEzy9LPJT3MbJKZrTKzr+POFfmzMLPrIvHAXDMbUZFtqfFBl5llABOAo4D9gVPNbP/0tqrGygV+G0LYDzgQ+HXkZ3Et8EYIoSvwRuSxpN7lwLdxj/VzqRzuBl4JIfwC6IX/jPSzSSMzaweMBfqFEHrgS+GNQT+XdHkEGFngXKE/i8hnzhige+Q190XihApR44MuYAAwP4SwMISwHZgCHJ/mNtVIIYQVIYTPIscb8Q+PdvjP49HIZY8C/5OWBtZgZtYeOAZ4MO60fi5pZmaNgUOAhwBCCNtDCOvRz6YyqA3UM7PaQH1gOfq5pEUI4V1gXYHTRf0sjgemhBC2hRC+x9eGHlBRbVHQ5R/qS+IeL42ckzQys05Ab2A6sEcIYQV4YAa0TmPTaqrxwNVAftw5/VzSrwuwGng4MvT7oJk1QD+btAohLAPuBBYDK4ANIYRp6OdSmRT1s0hqTKCgC6yQc6qjkUZm1hB4BrgihPBzuttT05nZscCqEMLMdLdFdlMb6APcH0LoDWxCQ1ZpF8kPOh7oDLQFGpjZr9LbKklQUmMCBV0exXaIe9we7waWNDCzOnjANTmE8Gzk9EozaxN5vg2wKl3tq6EGA6PMbBE+/H6Ymf0b/Vwqg6XA0hDC9Mjjp/EgTD+b9Doc+D6EsDqEsAN4FjgI/Vwqk6J+FkmNCRR0wadAVzPrbGaZeALd1DS3qUYyM8NzU74NIfw17qmpwFmR47OAF1LdtposhHBdCKF9CKET/v/jzRDCr9DPJe1CCD8CS8xs38ip4cBs9LNJt8XAgWZWP/J7bTieo6qfS+VR1M9iKjDGzOqaWWegK/BJRb2pKtIDZnY0nrOSAUwKIdyS3hbVTGZ2MPAe8BWx3KHf43ldTwId8V9mJ4UQCiZFSgqY2TDgqhDCsWbWAv1c0s7MsvEJDpnAQuAc/A9q/WzSyMxuAk7BZ2V/DpwPNEQ/l5Qzs8eBYUBLYCVwI/A8RfwszOwPwLn4z+6KEMJ/K6wtCrpEREREkk/DiyIiIiIpoKBLREREJAUUdImIiIikgIIuERERkRRQ0CUiIiKSAgq6RCTtzKyFmc2KbD+a2bLIcY6Z3Zek97zCzM4s5HwnM/u6At8n08zejazBJyI1mH4JiEjahRDWAtkAZjYOyAkh3Jms94sEQOfi1duTKoSw3czewGs2TU72+4lI5aWeLhGptMxsmJm9FDkeZ2aPmtk0M1tkZiea2e1m9pWZvRJZQgoz62tm75jZTDN7NbrURwGHAZ+FEHLjXvOFmX0E/Dru/TuZ2Xtm9llkOyhy/l9mdnzcdZPNbJSZdTezTyK9dF+aWdfIJc8DpyfjeyQiVYeCLhGpSvYGjsEXE/438FYI4QBgC3BMJPD6OzA6hNAXmAQUtsLEYCB+Ae+HgbEhhEEFrlsFHBFC6IP3VN0TOf8gXvkdM2uCr6v3MnARcHcIIRvoh6/jBvA10L+MX7OIVBMaXhSRquS/IYQdZvYVvmzXK5HzXwGdgH2BHsBrvuQdGcCKQu7TBl8LLxo0NQ0hvBN57l/AUZHjOsC9kaV28oBuACGEd8xsgpm1Bk4Engkh5EZ6yv5gZu2BZ0MI8yLX55nZdjNrFELYWEHfCxGpYhR0iUhVsg0ghJBvZjtCbB2zfPz3mQHfFNJjVdAWICtybEBR66H9Bl+rrRc+MrA17rl/4UOGY/D8MEII/2dm0/HeuFfN7PwQwpuR6+sWeL2I1DAaXhSR6mQu0MrMBgGYWR0z617Idd8C+wCEENYDGyILrsOuuVdNgBUhhHzgDLznLOoR4IrIPb6JvF8XYGEI4R5gKtAzcr4FsDqEsKP8X6KIVFUKukSk2gghbAdGA7eZ2RfALDzfqqD/AofEPT4HmBAZHtwSd/4+4Cwz+xgfWtwU914r8eDt4bjrTwG+NrNZwC+AxyLnD8VzvkSkBrNY77yISM1hZs8BV0fzrsrw+vp4LlmfEMKGEq59FrguhDC3LO8lItWDerpEpKa6Fk+oLzUzOxyYA/w9gYArE3heAZeIqKdLREREJAXU0yUiIiKSAgq6RERERFJAQZeIiIhICijoEhEREUkBBV0iIiIiKaCgS0RERCQF/j+pditeUYYdygAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABNlElEQVR4nO3dd5iU1fn/8fe9u8DSO0gHDaIiTaoaBDs2SBQVY2zRqFGjxs7XRNHExNiiWIJGQRNNiF3ij9hiB0VBERVFQFB6kbrULef3xz3DzC67y2yZmS2f13U911PmzDNnd2Dm3lPuYyEERERERCS5MtJdAREREZHaQEGXiIiISAoo6BIRERFJAQVdIiIiIimgoEtEREQkBRR0iYiIiKRAVrorkIhWrVqFrl27prsaIiIiIns0a9astSGE1kWvV4ugq2vXrsycOTPd1RARERHZIzP7rrjr6l4UERERSQEFXSIiIiIpoKBLREREJAUUdImIiIikQNKCLjObaGarzeyLEh43MxtvZgvMbI6ZHZSsuoiIiIikWzJbuh4HRpTy+HFA98h2IfDXJNZFREREJK2SljIihPCumXUtpcgo4O8hhAB8aGbNzKxdCGFFsuokIiJSZRUU+BZC4Q0gIwPq1vXjECAnJ3YcLRM9btgwVnbrVt+KK5eRAW3axF5/1SrIy9v9vgBNmkDTpn68bZuXjZaL3wN07gxZkfBixYpYXaOiZRs2hA4d/DgvDxYs2P1eUR07QuPGfrxmDaxeXXy5zEzYf//Y+ddfw86dhevWrNnuz0uRdObp6gAsiTtfGrmmoEtEpKrbuRN27PAvy/z8wnuALl1iZefO9S/qgoJYmehxly6w995ebtUq+PDD2GP5+YWPR4/2L2qAV16Bb7+NBSrRLT8funXzsgBbtsDddxcOaOLLn3029OzpZV99FaZOLVwmGnw0agR33RX7ma6+Gn74IVY2Pkj6yU/gtNO83CefwG23+XFBQWwfLTtpErRq5df/+EeYMaP433f//jBunB9v2gQ//3nJ783//R8cfLAfT5kCTz1VfLkmTQo/dsMNsHZt8WVPOw3OOsuP586N1aU4EydC69ax4w8/LL5c/M+0ZQtce23J94z/md58E558svhyTZsWfuzPfy78M11/Pfz4xyW/TpKlM+iyYq4VE7Ym33vveQDdt286Xl1EJAHRYCbagrB1Kyxb5sFPbq4HQPH74cMhO9vLvvmmByi5ubtv3brFvsA3b4axY/21cnML7/Pz4brrYPBgL/v88yV/mRf94rvzztK/zKNB19Kl8OijJf8Ojj8+FnTNmlXyl3lOTizoysuDjz8u+Z4bN8aON2zw31NxmjQpfL5unQddxdmxI3YcQuGWlqLiW2syM30zi23g+6y4r2sz/z0ULRM9rlMnVrZBA2jZsvhy0ZajqLZtYy1k8eUh1soF/u+qc+fC94q/d2Zm7Fq7dvCjHxUuE9W+feGfvUeP3csVV9dWreCAA3a/X/T3Em+//WLvsVnhnyMN0hl0LQU6xZ13BJanuhIbNsCDD3qQPWwYnH8+NG+e6lqISI1RUOABUd26sS+wFStg0SJv7dm2DbZvj+3N4IILYs//wx9g5Ur/4o7f8vMLtzZ8/TXcfHPJ9ejXLxZ0zZgB06cXXy4+QAD4rthE2i43N3Zcv763/mRl+ZaZGdsX/TI/8ED/4svK8i6t+LLdusXKtW0LI0fGgo+MjFj5jAwPIKJGjPCfMVomfmvRIlauYUP43e/891y0nJkHD1FHHw0DBhQuG38c7667PGAqWtYM6tWLlevbF555JvZY9D7R8vHGji35dx+vSROYPDmxsiNH+paI229PrFzPnv7FmYhf/CKxckVbEktz5JG+JeL66xMrlyLpDLqmAJeZ2WRgMLAxHeO5GjWCU07xf7/vvAMzZ3pr84gRu/8fE5FaID/fW0o2b/Z9/NakCRx2mJfbts27g7Zs8SBr2zbfb9/uj193HQwd6sfTp8Pjjxf/etnZhYOupUu9BauojAyvW1TjxrDPPrHgrrgt6ogj/C/+OnX8ep06sS1+fEvDhnD//X49GkxFt2j5qFGjfEvE1VcnVq5jR/jlLxMr279/YuWysmDQoMTKtmhROGArTcuWiZWLBpAiJDHoMrN/AcOBVma2FLgZqAMQQpgATAWOBxYAW4HzklWX0mRlwamn+ufohAkedP31r/DGG3Dppf6ZJiLV3PbtsHCht7Zs3OhjYuK3Sy+NDSj+y1/8L7Di7LdfLOiqUwdmz969jJm3AkXH74C3pgwZ4tejW3Z2bB/vhhu8BSU721tMoltWkY/r7t3h3nsT+/mjXYJ7kpEBXbsmVlZEysxCcaP/q5gBAwaEVCx4HQJ88AE88oh31Wdl+Ri8ffdN+kuLSHksWOBdcevWwfr1vm3Y4PsBA2JdcfPnw1VXlXyfO+/0gArgb3+Dt97yZvDGjX0f3Tp0KNxV8+mn3uUVv2Vn795tJCK1ipnNCiEMKHo9nd2LVY4ZHHKIDxP461/9c/eee+C++wp30YtIEuXl+XTw6LTwH37wQdjR/T33xLq5/vY3n0lVnL32ih23aOHTyJs1i019b9IktnXsGCv7y18m3sXVr1+5fkQRqZ0UdBWjfn247DL/I3rJEnjiCbjwwnTXSqSGyMvzgGrVKm+lWrXKZyINHOiPf/QR/OlPJT9//fpYV2CvXh5ANW/ugVXz5r41axabhg8+/uaOO5L2I4mIJEJBVwnq1vWxn1dfDf/5j4/DVEoJkQQVFHirVHzixXvu8Rl3q1YVHu8EcMIJsaCrbVt/Xps2nuunVSvfWrb0ffz04tJyFYmIVDEKukqxzz5wxhmebua+++CBB3ZPASJSq+Xm+my7JUs81cDSpb4tX+4z7Z57LtYVuGaNp04w8+Bpr708wNprr1jOHfD/eI89lp6fR0QkiRR07cHo0Z5Xb948ePjh0sfiitRYIXgL1eLF3uLUvbtf/+ijknP7tGxZuCvwl7/0ACw+AaOISC2ioGsPMjPhN7+Byy/3gfWDB8Ohh6a7ViJJtmQJfPONp1lYsMCDrW3b/LERI2JBV+fOPqOvc2ffOnXyQekdOuyeCiGadVxEpJZS0JWADh08qe6ECZ6E98AD076SgEjlCMEHs8+f739NRJM4PvQQfPFF4bLNm3sOp/gM4p06+X8MERHZIwVdCTr+eE8qPWcOvP124omYRaqUnTs9wJo7F776yvvNN23yxzp2jLVG9e/vf1nss4+vm7b33vpLQ0SkghR0JcgMjj3Wg64PPlDQJdVEQUFsPasVK+CSS2ILJ0c1beoZgOMTJUcXCxYRkUqjoKsMBgzwLPVz5/pKIvrDX6qcHTv8H+icOfD5557V97bb/LG2bX2cVatWPlvwgAM8C3ubNsqgLiKSAgq6yqBBA+jTB2bN8klbRx+d7hqJ4LMKp0+HTz6BL7/0NA5R9er5eZ063uL1xBOaOSgikiYKuspoyBAPuj74QEGXpMmOHb6Ac7Sp9YsvYOLE2OP77ON/HfTu7a1Z0TxZoIBLRCSNFHSV0ZAhPrHr0099Bn39+umukdQK69bBjBnexDpnjkf8F1/sj/XrB0ccAQcd5MsmqN9bRKRKUtBVRs2a+TCYr77yFq8f/zjdNZIaa80a7zacNs3/wUWZedLRqBYtPJmciIhUaQq6yuHgg/078IMPFHRJEr30km/g3YL9+nl23oEDPfoXEZFqRUFXOQwZ4kNoZs702fdZ+i1KRWzZ4i1ab78Nw4fHBgsOHQo//OBJSwcM2D3Du4iIVCsKF8qhXTtPzL14MXz2meeRFCmTggIfGPj66z5OKzrjMCMjFnT16AHXX5++OoqISKVS0FVOQ4Z40PXhhwq6pIxefx3++U9Yu9bPzXym4fDhcMghaa2aiIgkj4Kucjr4YJg82YOuX/0qlvRbZDf5+b78TnSqa0GBB1zt2sFRR/nMw1at0ltHERFJOgVd5dStmyfyXr3al6/bf/9010iqnI0b4dVX4b//9RkX55/v1w87DNq395XTlQleRKTWUNBVTmbe2vXSSz6LUUGX7LJoEbzwArz3Xmydw7lzfW1DM2/x6tUrvXUUEZGUU9BVAUOGeND14Ydw3nlqtKj1vv0WJk2C2bP93AwGDYITT/SkpfoHIiJSqynoqoADDvDk3ytWwHff+YxGqcVycz3gys6GY46Bk06CvfZKd61ERKSKUNBVARkZnqfyjTd89r+CrlokPx/eeQfmz4eLLvJrPXrAlVd6AtNGjdJaPRERqXoUdFXQvvt60PXdd+muiaREfr4nMf33v72JE3wG4j77+PGRR6ataiIiUrUp6Kqgzp19//336a2HJFkIHmz961+xYKtdOxgzRk2cIiKSEAVdFRQNur77LjY5TWqY/Hy47jr45hs/b98eTj8dhg2DzMz01k1ERKoNBV0V1LgxtGgB69bBypXe+CE1TGamj9datw5+9jNPZqpgS0REykh51CuBuhhrmHXr4C9/gfffj10780x4+GFfF1EBl4iIlIOCrkrQpYvvNZi+msvL86SmF18Mb77p47dC8McaNoS6ddNbPxERqdbUvVgJFHTVAJ9+6i1Zy5b5+aBBcMEFGqQnIiKVJqlBl5mNAO4DMoFHQwi3F3m8KfAk0DlSl7tCCJOSWadkiAZd6l6shjZtgocegmnT/Lx9e7jwQujfP731EhGRGidpQZeZZQIPAkcDS4GPzWxKCGFuXLFLgbkhhJPMrDUwz8yeCiHsTFa9kiE6pmvpUu+hylL7YfVRp47PSszO9hmJo0b5NRERkUqWzPBgELAghPAtgJlNBkYB8UFXABqbmQGNgHVAXhLrlBTZ2dCmDaxe7SmcOnVKd42kVCtWQPPm/sbVrw/XX+9TUFu3TnfNRESkBkvmQPoOwJK486WRa/EeAPYHlgOfA1eEEAqSWKek0biuaqCgAJ5/Hi67DJ58Mna9Rw8FXCIiknTJDLqKG4EcipwfC8wG2gN9gQfMrEkS65Q0GtdVxa1eDf/3fzBpEuzcCVu2xGYmioiIpEAyuxeXAvEdbR3xFq145wG3hxACsMDMFgH7AR8lsV5JEZ+ZXqqQEDz9w8MPw7Zt3o14+eUaKC8iIimXzKDrY6C7mXUDlgFjgJ8VKfM9cCTwnpm1BXoA3yaxTkmj7sUqaOdOuPtumD7dzw85xLsWGzdOb71ERKRWSlrQFULIM7PLgFfxlBETQwhfmtnFkccnAL8HHjezz/HuyOtDCGuTVadk6tjRUzqtWOHf9cqjWQVEZyHWrw8XXeTL9yjvloiIpElSkxuEEKYCU4tcmxB3vBw4Jpl1SJW6dT3F07JlvnXrlu4a1VIhQE6Ot2aZwaWXwvbtPr1UREQkjbQMUCVSF2Oabd4Mv/893HQT5Ob6tSZNFHCJiEiVsMegy8wONbPXzewbM/vWzBaZWbUcd5VsWvg6jebNgyuugI8/hpUrPVOtiIhIFZJI9+JjwG+AWUB+cqtTvamlK01ef92X8snLg3339WSnat0SEZEqJpGga2MI4b9Jr0kNoKArxfLzYeJEmDLFz086CX7xC63DJCIiVVIi305vmdmdwPPAjujFEMInSatVNdWunX/fr1rlY7ezs9Ndoxpu2jQPuLKy4JJL4Oij010jERGREiUSdA2O7AfEXQvAEZVfneotKws6dPCWriVLoHv3dNeohhs6FL7+Gg49FHr2THdtRERESrXHoCuEcHgqKlJTdOniQdd33ynoSoovv4S99oKWLT0lxIUXprtGIiIiCUlk9mJTM7vHzGZGtrvNrGkqKlcdaVxXEk2bBr/9LYwbB1u3prs2IiIiZZJInq6JwGbgtMi2CZiUzEpVZ0obkSQvvwx//rPPUOzZUwPmRESk2klkTNc+IYRT4s5vMbPZSapPtaeWrkoWAjz5JDz9tJ+ffTaMHq3lfEREpNpJJOjaZmY/DiG8D54sFdiW3GpVX23b+pJAP/wAW7ZAw4bprlE1lpcHDzwA//sfZGTA5ZfDkUemu1YiIiLlkkjQ9Svgicg4LgPWAecms1LVWUYGdOoECxd6F+P++1fCTUOAmTN9Je1DDqk9rTzTpnnAVa8e3HADDBiw5+eIiIhUUYnMXpwN9DGzJpHzTcmuVHXXpYsHXd99VwlB18qVMGECzJrl58ceCxdfXDsSgB52mC/nM2AA9OiR7tqIiIhUSInf3Gb28xDCk2Z2VZHrAIQQ7kly3aqtShlMn5cHL74I//qXt3A1bOiLOL/6KqxY4S0/jRtXRnWrlp07vV+2eXNv0TvzzHTXSEREpFKUNnsxOhqpcTFboyTXq1rbay/fr15dzhtEF29+4gkPQoYN89auP/4RmjWDOXPgmmtg2bLKqnLVsGMH3HorjB0L69enuzYiIiKVqsSWrhDCw5HDN0II0+IfiwymlxJE11ouV9C1ebPnotq+3dcVuuQS6NvXH2vWDP7yFw9MFi2Cq6/2AKVPn0qqeRpt3w633AJffOE/Z06Ot3aJiIjUEInk6bo/wWsSUaGg66OPPADZf3+fuRcNuKJatYI77oDBg70b7uabYf78ilY5vXbu9EDyiy+gRQu4/XafjSAiIlKDlBh0mdnBZnY10NrMrorbxgGZKathNdSkiaeN2LLFtzL58EPfDx/uNylOdjbceCMccwzk53vr186dFaly+uTleZD1+ececP3pT76ApYiISA1TWktXXXzsVhaFx3NtAkYnv2rVl1mstWvNmjI8cccO+OQTPx40aM8vctFFHqAsWQL//Ge56ppWIXjA+PHHPing97+H9u3TXSsREZGkKG1M1zvAO2b2eAhB+dXLqG1bz3awejV07Zrgk2bP9har7t29G3FP6taF3/wGrr0Wnn8ehgyB/farQK3ToE0bqF/fx3NFp32KiIjUQImM6dpqZnea2VQzezO6Jb1m1Vzr1r5ftaoMT4p2LQ4ZkvhzevSAU06JtRrt2FGGF0wzMzjnHHjwQQ80RUREarBEgq6ngK+BbsAtwGLg4yTWqUZo29b3CXcvFhT4IHooW9AF8LOfeSvR8uXwj3+U7bnp8PrrsG5d7DwaoYqIiNRgiQRdLUMIjwG5IYR3Qgi/AMoYFdQ+0TFdCbd0ffUVbNrkaSLKOnOvTh3vZszIgClTfBZgVfXuuzB+vKe6qK6D/0VERMohkaArN7JfYWYnmFk/oGMS61QjRBtvEm7piu9aLM/aij/6EZx2mncz3nuvp52oar780rtAAY4/vuTZmSIiIjVQIkHXHyKLXV8NXAM8CvwmqbWqAaLdiwnl6goBZszw47J2LcY7/XTYe29vXvv3v8t/n2RYtgxuu81TRJx4Iowcme4aiYiIpNQeg64QwsshhI0hhC9CCIeHEPqHEKakonLVWfPmvib1xo0JNDp9/72vp9i0acVmH2ZlwaWX+vGLL1adZYI2bvTZiZs3w8CB8Mtflq81T0REpBorbcHr+4FQ0uMhhMuTUqMawsy7GFes8C7GUodpRbsWBw3ycVkVse++cPTRPlj9b3/zjPXpDHByc72Fa8UK2GcfuO66iv+MIiIi1VCJQRcwM2W1qKHatPFYY/XqPQRdldG1GO+cc2DaNJg1yxOP7inRajJlZUG/frB2Ldx0k2fTFxERqYVKS476RCorUhMltAbj2rW+dmK9eruvs1heTZt6GolHH/XWrr590zdo3QzOOANGjYIGDdJTBxERkSpgj/08ZvZWfFJUJUdNXEJBV7SV66CDKjcwOuEEb15budLHd6Xa118XzsWlgEtERGq50roXo66JO84GTgHyErm5mY0A7sMXyH40hHB7MWWGA/cCdYC1IYRhidy7Okgo6CpPFvpEZGXBxRf7wthPPw1HHJHY0kKVYdUquPVWr8Odd8amcoqISNLk5+ezbt06cnNz91xYKkWdOnVo0aIFmZmZCZXfY9AVQphV5NI0M3tnT88zs0zgQeBoYCnwsZlNCSHMjSvTDHgIGBFC+N7M2iRU62pij0HXli3w+ec+sHzgwMqvQO/ecOihPr5r4kQfxJ5sO3bAH//oMxUHDFC2eRGRFFm3bh3Z2dm0atUK0wzxpAshkJOTw7p162id4HddIt2LLeK2VmZ2LLBXAvceBCwIIXwbQtgJTAZGFSnzM+D5EML3kR8gkaxW1cYeg6758yE/32ccNm6cnEqcf753W773ngd4yRQCPPAAfPutZ9a/5hrNVBQRSZHc3FwaNWqkgCtFzIxGjRqVqWUxkW/EWfhMxlnAB3iS1PMTeF4HYEnc+dLItXj7As3N7G0zm2VmZydw32qjZUuPOdat88wJu1kS+fV07Zq8SrRuDaee6sePPOJBXrL85z/w9ts+Q/HGG6Fhw+S9loiI7EYBV2qV9fedSHLUbiGEvSP77iGEY0II7ydSl+JuV+Q8C+gPnAAcC/zOzPZN4N7VQmZmbBjV2rXFFPj+e9+Xda3Fsjr5ZG92W7wYXn01Oa8xb553YQJccQV06ZKc1xERkSrttttuo2fPnvTu3Zu+ffsyIzphLMVmz57N1KlTd51PmTKF22/3oeXnnnsuzz777G7PefvttznxxBOTVqdEuhezzewqM3vezJ4zs9+YWSLJlpYC8dFER2B5MWVeCSFsCSGsBd4F+iRa+eqg1C7GaEtX587JrUTdut7NCPDkkz7eqrJ98w0UFHhqiB//uPLvLyIiVd4HH3zAyy+/zCeffMKcOXN444036JTshoUSFA26Ro4cyQ033JCWukQl0r34d6AncD/wALA/8I8Envcx0N3MuplZXWAMUHT5oJeAoWaWZWYNgMHAV4lWvjqIjq0rNehKxT/Igw/2gfWbN8M//1n59z/pJPjznz0xq4iI1EorVqygVatW1KtXD4BWrVrRvn17unbtytpIl8/MmTMZPnw4AO+88w59+/alb9++9OvXj82RRoE77riDXr160adPn12B0sKFCxkxYgT9+/dn6NChfP3114C3Wl188cUMHTqUfffdl5dffpmdO3dy00038e9//5u+ffvy73//m8cff5zLLrtsV13feOONQs8pasuWLfziF79g4MCB9OvXj5deeqnCv59EUkb0CCHEtz69ZWaf7elJIYQ8M7sMeBVPGTExhPClmV0ceXxCCOErM3sFmAMU4Gklvij7j1F1lbjw9caNsGmT569q0SL5FTHzNQ8vvxymToURIyqnCzA/3/tRAfbfv+L3ExGRCjvppOTc9z//Kf3xY445hltvvZV9992Xo446itNPP51hw0rOBHXXXXfx4IMPcuihh5KTk0N2djb//e9/efHFF5kxYwYNGjRgXSTn44UXXsiECRPo3r07M2bM4JJLLuHNNz1t6OLFi3nnnXdYuHAhhx9+OAsWLODWW29l5syZPPDAAwA8/vjjhV67uOfEu+222zjiiCOYOHEiGzZsYNCgQRx11FE0rMB45URauj41s11JpMxsMDAtkZuHEKaGEPYNIewTQrgtcm1CCGFCXJk7QwgHhBAODCHcW8b6V3nR7sVVq4o8EN/KlaqBj127wvHHezfgI4/4bMOKWLLEc4HNnl0ZtRMRkWquUaNGzJo1i0ceeYTWrVtz+umn7xbsxDv00EO56qqrGD9+PBs2bCArK4s33niD8847jwaRpNotWrQgJyeH6dOnc+qpp9K3b18uuugiVqxYses+p512GhkZGXTv3p299957VytYafb0nNdee43bb7+dvn37Mnz4cLZv38730bHY5ZRIS9dg4Gwzi75SZ+ArM/scCCGE3hWqQQ0X7V5cs6bIA6kaRF/UmWfCu+/CnDnwwQdwyCHlu8/Ond6duHKlz1isrCWMRESkwvbUIpVMmZmZDB8+nOHDh9OrVy+eeOIJsrKyKCgoAGD79u27yt5www2ccMIJTJ06lSFDhvDGG28QQthtVmBBQQHNmjVjdgl/5Bctn8iswj09J4TAc889R48ePfZ4r0Ql0tI1AugGDIts3YDjgROBJDVg1hwldi+mahB9UY0bw89/7sePPebBU3k89hh89x20b++tXSIiUuvNmzeP+fPn7zqfPXs2Xbp0oWvXrsya5bnWn3vuuV2PL1y4kF69enH99dczYMAAvv76a4455hgmTpzI1q1bAU/62qRJE7p168YzzzwDeED02WexkU7PPPMMBQUFLFy4kG+//ZYePXrQuHHjXWPEilPcc+Ide+yx3H///YRIr9Cnn35awd9OYikjvgOa4QHWSUCzEMJ30a3CNajh4lNGFEqRla6WLoBjj/WuxtWr4fnny/78mTN9XFhWFlx/veflEhGRWi8nJ4dzzjmHAw44gN69ezN37lzGjRvHzTffzBVXXMHQoUMLLZlz7733cuCBB9KnTx/q16/Pcccdx4gRIxg5ciQDBgygb9++3HXXXQA89dRTPPbYY/Tp04eePXsWGtjeo0cPhg0bxnHHHceECRPIzs7m8MMPZ+7cubsG0hdV3HPi/e53vyM3N5fevXtz4IEH8rvf/a7Cvx8LexjXY2ZXAL8Eot/OPwUeCSHcX+FXT9CAAQPCzJkzU/Vyle6cczxB6mOPxcZ4cfbZsH59kYsp9MUXMHasp5N46KHE10fMyYFLL/Uf6LzzPAeYiIik3fLly2nfvn26q5Fy5557LieeeCKjR49Oy+sX93s3s1khhAFFyybSvXg+MDiEcFMI4SZgCB6ESYJ2y9W1ebMHXPXqpW9twgMPhOHDvXvxkUcSf97f/uYB1377wU9+kqzaiYiI1DiJBF0GxHeM5VN8tnkpwW5B19Klvk/lzMXinHeep6z46CPfEjFsmI/juvJKrasoIiJp9/jjj6etlausEvnWnATMMLNxZnYL8CHwWHKrVbPsFnSlczxXvBYtfDYjeGtXIoPqDzoI/vpX6FB0GU0REREpTSID6e8BzgPWAT8A59XEfFrJtFvQla6Zi8U54QQfVL9qFURmhRRr2bLYsVq4REREyqws356GL1itrsUyKjHoSndLF3g2+V/9yo+few7iks3tMm2al3nqqdTWTUREpAZJZMHrm4AngOZAK2CSmf022RWrSaps92LUAQfAkUdCbi48/HDhTPWbNvnsxhCgefP01VFERKSaS6Sl6wxgYAhhXAjhZnz24pnJrVbNEp+VPmzZ6km76tRJPE1DKpx7LjRsCLNmwYcfxq5PnOiBV+/ecNxxaaueiIhUfY0aNdpjmffee4+ePXvSt29ftm3bVqb7v/jii8ydOzcp9UqFRIKuxUB8xrB6wMKk1KaGys6Gpk0hLw82fhmZudihQ2yh6KqgWTM46yw/fvhh2LoVPv8c/vc/DxAvvTS9My1FRKRGeOqpp7jmmmuYPXs29evXL9Nzyxt0VRWJBF07gC/N7HEzmwR8AeSY2XgzG5/c6tUc0S7GTV9WoUH0RR13HOy7L/zwg7dwPfigXz/tNE8TISIikoC3336b4cOHM3r0aPbbbz/OPPNMQgg8+uijPP3009x6662cGZk9f+eddzJw4EB69+7NzTffvOsef//73+nduzd9+vThrLPOYvr06UyZMoVrr72Wvn37snDhQhYuXMiIESPo378/Q4cO3bVo9aJFizj44IMZOHBgpWSSryyJLHj9QmSLejs5VanZWreG+fNh27wqNp4rXkYG/PrXnoNr0iRo0gR69IBTTkl3zUREpCxOStLSyGVYSfvTTz/lyy+/pH379hx66KFMmzaNCy64gPfff39XBvnXXnuN+fPn89FHHxFCYOTIkbz77ru0bNmS2267jWnTptGqVSvWrVtHixYtGDlyZKHs80ceeSQTJkyge/fuzJgxg0suuYQ333yTK664gl/96lecffbZPBhtQKgC9hh0hRCeSEVFarro8K28RVW4pQs8fcTo0fCPf8DGjfDLX3r3ooiISBkMGjSIjh07AtC3b18WL17Mj3/840JlXnvtNV577TX69esH+NqN8+fP57PPPmP06NG0iixg3KJFi93un5OTw/Tp0zn11FN3XduxYwcA06ZN27Ww9llnncX1119f+T9gOSTS0iWVIDqY3pZ+Dy2omi1dUaedBu+/77m5vv4a+vdPd41ERKQsytAilSz16tXbdZyZmUleXt5uZUIIjB07losuuqjQ9fHjx2N7GEdcUFBAs2bNmD17drGP7+n56aAslynSti1k5e8gY+1qH0Dfrl26q1S8Zcu8fr/+tZ8/+yx891166yQiIjXSsccey8SJE8nJyQFg2bJlrF69miOPPJKnn36aH374AYB169YB0LhxYzZv3gxAkyZN6NatG89EEnuHEPjss88AOPTQQ5k8eTLgA/erihKDLjP7R2R/ReqqU3O1aQMtty9j5/bgg9KzqmAj45YtcMMNcPXV0LGjD6zPy4P774eCgnTXTkREaphjjjmGn/3sZxx88MH06tWL0aNHs3nzZnr27MmNN97IsGHD6NOnD1dddRUAY8aM4c4776Rfv34sXLiQp556iscee4w+ffrQs2dPXnrpJQDuu+8+HnzwQQYOHMjGjRvT+SMWYiE+EWb8A2ZzgeOAKcBwimSiDyGsS3blogYMGBBmzpyZqpdLiu3b4ZbD3+bkxXcz4PJDsbE3pLtKu3v0UXjpJU+Wevvtnjbikktg3Tq48MLkDcwUEZEKW758Oe010zzlivu9m9msEMKAomVL616cALwC7AfMKrJV7wgoDbKzobMtIRTAlhZVcDzXsmXw8suei+uii3zfsKEHXQBPPAHLl6e3jiIiItVYiUFXCGF8CGF/YGIIYe8QQre4be8U1rHG6GKeLmJtgyoYdD32GOTnwzHHwN5xb+/gwTBsGOzYAX/5i5cRERGRMtvjQPoQwq/MrI+ZXRbZeqeiYjVRu3xPF7GyThVLF/HJJ/Dxx1C/Pvz857s/fvHF0KKFz2R8/vnU109ERKQGSGTB68uBp4A2ke0pM/t1sitW4+Tm0nLHcoIZSwuqUJ97fr6P5QIYM8aXAyqqUSNPmArwz3/CokWpqp2IiEiNkUjKiAuAwSGEm0IIN+ELXv8yudWqgZYto17dwPp67Vi+tm66a1PYCSd45vnSBsr36wfHH++zGe+5B3JzU1c/ERGRGiCRoMuA+IE8+RSZySgJWLqUevVgTf1OrF6d7srEycz0oOvOO/ecef688zy/2OLF3uIlIiIiCUsk6JoEzDCzcWY2DvgQeCyptaqJli+nXj1YV689q1aluzIRkeUSAJ+tuCfZ2XDVVV72ueegGq/0LiIilS8zM5O+ffty4IEHctJJJ7Fhw4Z0V6nMxo0bx1133ZWUeycykP4e4DxgHbAeOC+EcG9SalOTLV9OvbqwLrs9a9ZUgVyjS5fCueeWfWD8fvvBqadCCN7NuGVLUqonIiLVT/369Zk9ezZffPEFLVq0qDKLTYcQKEj7F2+CywCFED6JpJC4L4TwabIrVSMtX05GBuS3bU9+PkRWNkifv/8dcnJgxYqyP/eMM2CffWDVKnjgAQ/ARERE4hx88MEsW7YMgIULFzJixAj69+/P0KFD+frrrwFYtWoVP/3pT+nTpw99+vRh+vTpANxzzz0ceOCBHHjggdx7770AXH/99Tz00EO77j9u3DjuvvtuAO68804GDhxI7969ufnmmwFYvHgx+++/P5dccgkHHXQQS5YsKbYcwG233UaPHj046qijmDdvXtJ+J1VwLZoaKhLcZHZqD997vBJdBDvl5s2DDz6AunU9gCqrrCy47jq44gpfGLtPHxgxovLrKSIi5Vfa5KhLL419br/yCpTWIlWOxbPz8/P53//+x/nnnw/AhRdeyIQJE+jevTszZszgkksu4c033+Tyyy9n2LBhvPDCC+Tn55OTk8OsWbOYNGkSM2bMIITA4MGDGTZsGGPGjOHKK6/kkkjS7qeffppXXnmF1157jfnz5/PRRx8RQmDkyJG8++67dO7cmXnz5jFp0iQeeuihEss1bNiQyZMn8+mnn5KXl8dBBx1E//79y/wzJ0JBVyps3QobNkDdujTu2nJX0HXggWmoSwjeygUwapTn3yqP9u19Uew774RHHvFux65dK62aIiJS/Wzbto2+ffuyePFi+vfvz9FHH01OTg7Tp0/n1FNP3VVuR2RM8ZtvvsnfI99JmZmZNG3alPfff5+f/vSnNGzYEICTTz6Z9957j8svv5zVq1ezfPly1qxZQ/PmzencuTPjx4/ntddeo1+/fgDk5OQwf/58OnfuTJcuXRgyZAgAr732WrHlNm/ezE9/+lMaNGgAwMiRI5P2+1HQlQrRLry99qLtXj5gPW2D6T/7DObM8SV+Tj65Yvc67DCYPRtefx3+/GfPWJ+dXSnVFBGRCkq0hWrEiErrrYiO6dq4cSMnnngiDz74IOeeey7NmjVj9uzZCd2jpDWhAUaPHs2zzz7LypUrGTNmzK7yY8eO5aKLLipUdvHixbsCt9LK3XvvvVgik8kqQSLJUU82s/lmttHMNpnZZjPblMjNzWyEmc0zswVmVuIKz2Y20MzyzWx0WSpfbUSDrnbtaNvWD9MSdIXgaygCjB7tSU8r6qKLoFMnH5g/YULF7yciItVe06ZNGT9+PHfddRf169enW7duPPPMM4AHP5999hkARx55JH/9618B75LctGkThx12GC+++CJbt25ly5YtvPDCCwwdOhSAMWPGMHnyZJ599llGj/aQ4dhjj2XixInk5OQAsGzZMlYXk5uppHKHHXYYL7zwAtu2bWPz5s38pxzdqYlKZCD9HcDIEELTEEKTEELjEEKTPT3JzDKBB4HjgAOAM8zsgBLK/Rl4tWxVr0aiC0W3b78r6EpLrq7Nm308VosWpff1l0W9enDDDT4+7H//801ERGq9fv360adPHyZPnsxTTz3FY489Rp8+fejZsycvvfQSAPfddx9vvfUWvXr1on///nz55ZccdNBBnHvuuQwaNIjBgwdzwQUX7OoS7NmzJ5s3b6ZDhw60a9cOgGOOOYaf/exnHHzwwfTq1YvRo0ezefPm3epTUrmDDjqI008/nb59+3LKKafsCvCSwUprxgMws2khhEPLfGOzg4FxIYRjI+djAUIIfypS7kogFxgIvBxCeLbovQYMGBBmzpxZ1ipUHffe68HIpZeyos8ILrwQWrWCSZPSUJcQYO3ayh/F//rrMH68B2F33aXxXSIiKbZ8+XLat69Cy8zVEsX93s1sVghhQNGyibR0zTSzf5vZGZGuxpPNLJHBQB2AJXHnSyPX4ivVAfgpULP7peJaulq39tyiP/zgK+qknFlypk0edRQcfrgnXP3DH7xVTURERHZJJOhqAmwFjgFOimwnJvC84kalFW1Wuxe4PoSQX0zZmiM6pqt9e7KyvJUrBFizJkWvv3OnTweO5EtJCjO47LJY/q4776wCGWBFRESqjj3OXgwhnFfOey8FOsWddwSWFykzAJgcmTXQCjjezPJCCC+W8zWrnrh0EbRsCUDbth5wrVrlSxkm3X//63lY5s/3GYbJmqVRty7ceCP85jfw6aeemuLcc5PzWiIiItVMIrMXO5rZC2a22sxWmdlzZtYxgXt/DHQ3s25mVhcYA0yJLxBC6BZC6BpC6Ao8C1xSowIuKJQuIhrspHQG486d8GxkmNyZZyYv4Ipq3Rquvx4yMnx9xnffTe7riYjILnsapy2Vq6y/70QXvJ4CtMfHZP0ncm1PFckDLsNnJX4FPB1C+NLMLjazi8tUy+osrmsxKqUzGF991Vva9tkHBuw2pi85evWCCy7w4/vug0WLUvO6IiK1WJ06dcjJyVHglSIhBHJycqhTp07Cz0kkOWrrEEJ8kPV4ZMZhIhWaCkwtcq3YQfMhhHMTuWe1Ex1EH9eP2KaN71euTPJrx7dynXFG8lu54p14Iixc6LM2//AHXxy7adPUvb6ISC3TokUL1q1bV2y6BEmOOnXq0KIMK7skEnStNbOfA/+KnJ8BpHu55uojbuZiVMq6F994A9atg27dYNCgJL9YEWZwySXw/fc+luz3v4c//tHHfYmISKXLzMykddoW9ZVEJNK9+AvgNGAlsAIYHbkmiSgm6NprL98ntXsxBHj+eT8eMya1rVxRdevCb3/r47zmzYO779aMRhERqbX2GHSFEL4PIYwMIbQOIbQJIfwkhPBdKipXIxQTdLVo4Ynh16/3HsCkMINbb4VTT4WDD07SiySgRQsYN87Xepw+HSZOTF9dRERE0qjEoMvMrovs7zez8UW31FWxGtu6FTZuLJQuAnxiX7QFOKmtXe3bw9lnp6eVK17nzvB//+eR5ksvJb4Iq4iISA1SWkvXV5H9TGBWMZvsSTHpIqKig+mTMq5r3TrvXqxKeveGyy/347/9DWbMSG99REREUqzEoCuEEG2O2BpCeCJ+wzPUy54Uky4iKmmD6fPzfQHqq67yNRarksMP91xhIcAdd8DXX6e7RiIiIimTyED6sQlek6KKSRcRlbSg6913PdjbsgWaN6/km1eC00+Ho4/2wWzjxsG336a7RiIiIilRYsoIMzsOOB7oUGQMVxMgHUs1Vz/FDKKPSkrQFQI884wfn3oqZGZW4s0riRlceqkHhdOnw003wZ//DB067Pm5IiIi1VhpLV3L8fFc2yk8lmsKcGzyq1YDpDromjkTlizxFbUPP7wSb1zJMjPhmmvgoIN8osFvf5ui9PwiIiLpU9qYrs8i47d6AU/Gjed6CdiRqgpWa6kOup57zvejRvlMwaqsTh2f0dizp489++1vfQKAiIhIDZXImK7XgPpx5/WBN5JTnRqkhHQRUc2a+UObN8O2bZXwel9/DV9+6fmwjq0mDZH16sHvfgc/+pGPQ/vd72DTpnTXSkREJCkSCbqyQwg50ZPIcYPkVamGKCVdBPilSk0bsXYtNG4Mxx8P9evvuXxV0bAh3HILdOrkSwbdeKMHqyIiIjVMIkHXFjM7KHpiZv2BymibqdlK6VqMqtQuxh//2LO9n3JKJdwsxZo08UWxO3aExYth7Fh1NYqISI2TSNB1JfCMmb1nZu8B/wYuS2qtaoJScnRFVfq4ruxsbzmqjlq0gD/9Cbp08ckAY8dWvTxjIiIiFZDI2osfA/sBvwIuAfYPISgj/Z6UkqMrqlKCrvXrfWmd7dsrcJMqolkz+OMfYe+9/fc3dqxmNYqISI2RSEsXQA/gAKAfcIaZnZ28KtUQCXQvVsqYrv/8Bx59FB58sAI3qUKiXY3du8PKlZ5dP9pqKCIiUo3tMegys5uB+yPb4cAdwMgk16v6SyDo2muvwkXLbNs2mDrVj088sZw3qYIaN4bf/x722w/WrIFrr4UFC9JdKxERkQpJpKVrNHAksDKEcB7QB6iX1FpVd3tIFxHVqZPPYly2zFfFKbNXX/XM7j17Qo8e5a9vVdSwIdx6K/Tt67/LsWPh00/TXSsREZFySyTo2hZCKADyzKwJsBrYO7nVquai3WHt2hWbLiKqXj2fsFdQ4NkSyiQvz8dyAZx8cvnqWdXVrw833wzDh/uYtVtugbfeSnetREREyiWRoGummTUD/oYvA/QJ8FEyK1XtJTCIPqpbN98vWlTG1/jgA5/d16EDDBxYxidXI1lZcNVVHljm58M998Dzz/s6kyIiItVIqUGXmRnwpxDChhDCBOBo4JxIN6OUZMkS3yewiHO5g65oK9eoUaW2ptUIZnDeeXDBBX4+aRJMmOCtfSIiItVEqUFXCCEAL8adLw4hzEl2paq9b7/1/d577oWNFok+JSEheLB10EFVe2HryjZqFFx3nbd+TZ0K48b5OkoiIiLVQCLdix+aWQ3uv0qChQt9X8agK+EeMzMYOtTHOGVnl6+O1dXQoZ5EtVkz+OwzuPrqWMuiiIhIFZZI0HU4HngtNLM5Zva5mam1qySbN/tYq3r1Sk0XEdWsGTRv7tkfKi0zfU23337wl794xLpiBVxzDcycme5aiYiIlKrEoMvMOkcOj8NnKx4BnAScGNlLcaKtXN26QUZiuWfL1MX41FMwfrwnDq3NWrWCP//Z15zcutXTSzz7rAbYi4hIlVVaVPAiQAjhO+CeEMJ38VtKalcdlWE8V1TCg+m3b/cM9K+/rrFM4F2r110HZ57pwdYTT3g2e/1uRESkCiot6IqfEqe8XImKtnTts0/CT0m4pet///NkqPvv78vkiI9vGzMGbroJGjWCjz6CK6+Eb75Jd81EREQKKS3oCiUcS2mS1dIVAkyZ4sejRpWvbjXZwIFw330ejK5eDddf762C6m4UEZEqorSgq4+ZbTKzzUDvyPEmM9tsZptSVcFqZft2X9MnMxO6dEn4ae3b+4pBa9aU0jM2c6YnXW3TBoYMqZz61jRt2sAdd8BJJ3kOr0cegdtvV3ejiIhUCSUGXSGEzBBCkxBC4xBCVuQ4et4klZWsNhYv9paVTp2gTp2En5aRkUBr14sv+v7EEz2ok+JlZcGFF8INN/gyQtOnw2WXwSefpLtmIiJSyyU2va6czGyEmc0zswVmdkMxj58ZSUMxx8ymm1mfZNYn6aJdi2UYzxVVatC1ciXMmeMDx485pvz1q00OPRTuvx8OOADWrfM1HB9+GHbsSHfNRESklkpa0GVmmcCDeMqJA4AzzOyAIsUWAcNCCL2B3wOPJKs+KVGGpKhFlTqYfq+94KGH4PLLoWHD8tevtmnb1hOpnnOOt4C9/LIPsp8/P901ExGRWiiZLV2DgAUhhG9DCDuByUChEeAhhOkhhPWR0w+BjkmsT/KVYxB91B5nMHbq5NnYpWwyMmD0aLj7bv8dLl3qyVQffxx27kx37UREpBZJZtDVAYhfn2Vp5FpJzgf+m8T6JFdeno/pgnIFXV26ePaDJUsgNzfugfXrNQOvMuy9N9x7r8/8DAGee87Hes3R4goiIpIayQy6rJhrxUYPZnY4HnRdn8T6JNfSpR54tWsHDRqU+enZ2T6LMT8/binB3Fy44gpfX3CTJoxWWN26cMEFcOedHuWuWAE33ugZ/nNy0l07ERGp4ZIZdC0FOsWddwSWFy1kZr2BR4FRIYQfklif5KrAeK6o3QbTv/++t3Tl5kLjxhWrn8T06OGtXj//uY/1ev11+NWvPPmsWhVFRCRJkhl0fQx0N7NuZlYXGANMiS8QWd/xeeCsEEL1TiFegfFcUYXGdYUQSxMxcqT3PUrlycqC00/3GY49e8KGDR6IXXcdLFiQ7tqJiEgNlLSgK4SQB1wGvAp8BTwdQvjSzC42s4sjxW4CWgIPmdlsM5uZrPokXQXSRUQVCrrmzvWDJk1g2LCK10+K17Gjz3C86ipo3hy+/tqPH3hAXboiIlKpspJ58xDCVGBqkWsT4o4vAC5IZh1SIoRKaemK714ML03xQXHHHedjkSR5zODww2HwYJg82ZdbevVV79497TRPSKv3QEREKiipyVFrjZUrYetWbylp3rzct2neHJo2hax1q9n5zgfeBXb88ZVYUSlVgwbwi194K1e/fr64+KRJcNFFPt6roCDdNRQRkWpMQVdlqIRWLvAGl733hjbbvmNzQQPPy9WiRSVUUMqkY0e45RYYNw66doW1a3281xVX+BqYGmwvIiLloKCrMlTCeK6obt1gfrOBvHHm43DuuRW+n5STGfTv7+kkrroKWrf2PGy33OKD7T/9VMGXiIiUiYKuylAJ6SKiordYsDRbrVxVQXS814QJ3vXYuLEPtr/pJrj2Wl9IW8GXiIgkQEFXZaik7kVyczng+1fIyt/BwoX6Lq9S6taFn/4UJk70tRybNIF583wh7WuvhRkz9IaJiEipFHRV1Pr1vjVo4AtTV8Rbb9Hq3w9y7ve3snZtXJJUqTqys30tx8ce8+7faPD1hz/AJZd4otVC6ziJiIg4BV0VFd/KVZEEpgUF8NxzmEE4+hgA3n23EuonyZGdDaec4sHXBRdAq1a+FNT48XD++fDMM7B5c7prKSIiVYiCroqqrPFcH34Iy5dDmzZ0P+/HgAdd6rGq4rKzfRHtv/3N18js1s1bPv/+d28JGz8+FpiLiEitltTkqLXCRx/5fv/9y3+PEODZZ/34lFM4oFcmLVvCmjXec7XffhWvpiRZVhYMH+6rB3z2Gbzwgg+yf/113/bf35OsHnKIlxURkVpHn/4VsXKlR0XZ2TBwYPnvM2cOzJ/vmVGPOgozT9H14ove2qWgqxoxg759fVu2DKZOhTfegK++8q1pU58Necwx0KnTnu4mIiI1iLoXKyI66GrwYKhXr/z3ibZyjRy5a7mZww7zS++/r0To1VaHDvDLX8ITT/gg+y5dYONGj6YvuQSuuQZeew22bUt3TUVEJAXU0lUR0aCrIgtShwBHHw07d8IJJ+y6/KMf+WTIlSvhiy+gd+8K1lXSJzvb19AcMQK++ca7G99911tJ582Dhx+GIUO8e7JfP3U/iojUUPp0L6/Fi+G77zxZZr9+5b+PmTdrRZu2ilx++ml47z0FXTWCGfTo4dsFF8C0aR6AffmlB2Hvvuv/noYO9UB+//0rNiNWRESqFAVd5RVt5Tr00PK3TBQUQEbJPbxDh3rQNW2ar7msBpAaJDsbjjzSt9Wr4Z134O234fvvfRzY1Km+IsHBB/u/sZ49S/23IiIiVZ++xssjhFjQVaSFqkz3uPVWaNMGzjrLWziK6NLFx1ovWeIT4vr3r0Cdpepq0wZOPdWTri5e7MHX++97MPb//p9vTZt6F+TgwdCnz66xfyIiUn0o6CqPb76BVau8JaJnz/Ld4+OPYdYsaNgQfv7zYotEuxifespjPAVdNZyZ5/nq1s1zfC1c6M2c06bBihXw6qu+1a3rgdegQb5pjU4RkWpBQVd5vPOO74cOLV+XT24uPPqoH595pi8lU4KhQz3o+uADuPRSNXDUGmY+m+JHP4Kzz/bxgx9+6Hnh5s/3oP3jj+HBB6FrVx9XeNBBcMAB+kciIlJFKegqq4ICH9kO5Z+1+PLL3nLRqZPPaitFhw6wzz7e6DFrlg/xkVrGzAOrrl1hzBhYt84Dro8+8n7nxYt9e+EFD7h69fKZF716+T8ejQUTEakSFHSV1Zw5sGEDtGvnrRBltWED/Otffnz++QmNjh861IOud99V0CV4d+Kxx/qWm+tJVz/5xLdFizw6nzXLyzZs6F3gvXv7vls3yMxMb/1FRGopBV1lFZ+bqzzT+f/xD0+GOXBgwoO0hg6Fxx/3ho01a6B167K/rNRQdep4QNW7t48DW7/eW7/mzIHPP/dEbx99FFuuKjvblzg44ABPSbHvvtCgQVp/BBGR2kJBV1nk5sL06X5cnlmLIfg9srK8lStBbdp4C9cHH8C998If/qD0TVKC5s09yerw4X6+erUHX59/DnPnerf27Nm+gf9D6tTJg68ePXzfpYtaw0REksBCCOmuwx4NGDAgzJw5M93VgBkzPOLp1g3Gjy//fcrRXLVxow+k37jR47Wf/KT8Ly+12Pr13h05d65vixZBXl7hMnXr+vix6ED+ffaBzp2VKE5EJEFmNiuEMKDodX2KJqqgwNfMg/K1cu3cGZtVVo7+waZN4fLL4fe/96X8+vb170WRMmneHA45xDfwf5eLFsWWJPrmG++S/OYb36KysqBjx1hKi65dvUWseXM1u4qIJEhBV6ImT/ZFEJs29bUSy+Kjj3x9vd/+1r+wymnQIB87/eqrcPfdcM89PqRHpNzq1o0tTRSVkwPffgsLFsS2lStjsyTfeitWtlEjbwWLbp06eXDWsqWCMRGRIhR0JWL2bA+6zODaaz3wStSCBXDHHbBjB8ycWaGgC3zJvjlz/LvvySfhvPMqdDuR3TVqFBucH7V9u+cKW7TI//EtWuTnOTmxrsp42dnQvr0HYB06+HG7dr5v1EgBmYjUSgq69mTdOrjrLh8Ef8YZngk8UWvXen/gjh1wxBG+zEsFZWfD1Vd77PfCCz4J8sADK3xbkdJlZ+/eIhaCjxH7/vvYtmQJLFvmgw+//da3oho29ACsbdvC2157ede7kruKSA2loKs0+flw553+BdKnjyemTNTWrXDLLR609eoFv/51pf1136MHnH66N77dfTeMG+fDa0RSysxzhrVo4YMM423eDMuXw9KlHoStWOHb8uWwZUus27I4TZv6lN3WrX3fqlVsa9nSx5FpdqWIVEMKukrzz3/6OK7mzeGaaxLP7J2X512Kixd718rYsZU+8+v00+HTT33s85VX+koxo0Yp+bhUEY0b794yBt46tmmTB2CrVvm2cmVs/8MP/kfOxo2+3FFxzPz/ZDTgi27Nm/vWrFlsr1YzEalCFHSVZMYMePpp/4C/7jr/AE/U0qWeHbxJE7j5Zv8CqmRZWZ694rHH4JVXYOJEH69/5ZXeUyNSJZl5S1bTpp6ktaiCAm8dXrPGt9WrPRBbuza237DBy6xbt+fXa9gw9npNm/r/4yZNit8aN4b69TXeTESSRnm6ilqzxnMyRBe1PussOO20PT8vN7fwVMLnnvNuxX33TU4943z8sacN27DBh95ccAEceaTSKkkNlZfn/9h/+MEDr/Xr/Xj9er++fn3sOD+/bPfOyPDgK7o1ahTbGjaMHTdo4OcNG8aOGzTQfzoRAUrO06WgK2rbNnj2Wc/FtXOnB1Annwxnnrnnv3xnz4YHHoALL/S8DmmwaRM89BBMm+bnDRvCkCG+hFCfPvoukFooBJ9dGe2u3LjRA7FNm3zbuDF2vGmTl92+vWKvWaeOB18NGnirWXQff5ydHdsX3erV88fq1Ytt+s8rUu2kJegysxHAfUAm8GgI4fYij1vk8eOBrcC5IYRPit4nqUFXQQG8/rrnX9iwwa8ddhicc44P4i1OCD7e5OOPvU8vOkNr4EC46abk1DMBIfjSkM8+68PJoho3hsGDYyu8dO7sf6yLSBG5uR58bd7sW05O4W3LlsLb1q1+fds2Py8oqPw6ZWYWDsLq1i18XHSrV8+Dv+h5Vpbv69SJXc/Kip3Hb9Hr8fvMTHW5ipRRyoMuM8sEvgGOBpYCHwNnhBDmxpU5Hvg1HnQNBu4LIQwueq+kBl3r13sL1fbtPuj3ggsKjzXZudOjmXr1/Py///UB9tEADfwv1NNP97V5qshfpUuWwPvvw3vv+XFRLVt6HstWrXyYS/zY44YNY3+MR/8g12euyB6E4J8XW7fGtm3bfIseb98e22/f7td37IidR4+3bfN7bd/u9023rKxYABYNyKLH8dfj98UdZ2QUvpaRETuOvxa9Xto+fivuWnGbWWLnZr5FA8746/GPF30M9GEpQHqWARoELAghfBupwGRgFBCfRXEU8Pfgkd+HZtbMzNqFEFYksV6FNW/uGUZff90jkMmTYx+Y0e6Iyy7zVPDgfyVu2ODT2QcN8tatXr2q3CypTp08rdgZZ3j6pFmzPJfld9/5+Q8/+Jao6B/K8X80x392Fv28jH4OFv2Mij+G4o/jP7OKnsdfL+646LWSPv8q+3MxnZ+z+oyvKgyoF9ma77l4BtAospUkBKwgn8y8HWTmbiczf6cf5+0gI28nGfk7yczdQUZ+Lpn5O8nI21l4n5+769gK8sjMi1wruhXk7Tq2grzIeZ4f5+cB0U32yIxgBsT2fs2nlgfL8OtFy0Qei/6HjpWPPV74PkWuFyoTf8+izy/6GMXfp1D5uDKR60Ch1yx8P3b93IXKFfk9FfuciFDsB9vuH+yl3buk+7S/eBRdji1mIk8KJDPo6gDEt7EsxVuz9lSmA5C6oAvg+OPh738vPm9QVpZ3G0QNGQL33+/9dNXk2y66QktUQYHP0F+61Mchb9hQeIv/A33bNv/je+dO30QklQz/mM4CGlbebTMjWyJCIDPkkRHyyQoeoGWST2ZBLhkhn8yQt+vx6D7+ODPkYaFgt8czQj4ZFBQ6t1BABvlkhNh121WmYLdzP/ZzCIWu2a7yAaMAC2HX8y0EMvAy0fL+9R2wEApdi3/MX4fYtUjZ6PMiv7DIJhWR6Ldreb6FNx59aDmeVTmSGXQV97so+i8xkTKp8atfeTNM/ADYRo08/0988qvojKVqLCPDE4K3a5dY+YICH+qSm+uBV16eH+fl+eSwoltBgW8h7H4cvV8IsV6T6HH8efw+qqTrRa+VVq4sEn1+Vej9EUkeA+pEtuw016VyRcOjShuJF/kwsIL82HnwgC36wWeEwtdDCeeAhYLd7wO7Pkx3ld/12nHBX/x9it43/nlFyhZXfte1uJ+xxOcVc73UeyRSPv45JXzglnjvos8H2h7Wo/gyKZDMoGsp0CnuvCOwvBxlUmPYsLS8bHWQkREbtysiIiWJtiNUjbG9UvUkM3/5x0B3M+tmZnWBMcCUImWmAGebGwJsTOl4LhEREZEUSVo4HkLIM7PLgFfx0QMTQwhfmtnFkccnAFPxmYsL8JQR5yWrPiIiIiLplNQ20BDCVDywir82Ie44AJcmsw4iIiIiVYGWRxYRERFJAQVdIiIiIimgoEtEREQkBRR0iYiIiKRAUhe8rixmtgb4Lt31EBEREUlAlxBC66IXq0XQJSIiIlLdqXtRREREJAUUdImIiIikgIIuwMxGmNk8M1tgZjekuz61lZl1MrO3zOwrM/vSzK6IXG9hZq+b2fzIvnm661obmVmmmX1qZi9HzvW+VAFm1szMnjWzryP/dw7We5N+ZvabyOfYF2b2LzPL1vuSHmY20cxWm9kXcddKfC/MbGwkHphnZsdWZl1qfdBlZpnAg8BxwAHAGWZ2QHprVWvlAVeHEPYHhgCXRt6LG4D/hRC6A/+LnEvqXQF8FXeu96VquA94JYSwH9AHf4/03qSRmXUALgcGhBAOxJfCG4Pel3R5HBhR5Fqx70XkO2cM0DPynIcicUKlqPVBFzAIWBBC+DaEsBOYDIxKc51qpRDCihDCJ5HjzfiXRwf8/XgiUuwJ4CdpqWAtZmYdgROAR+Mu631JMzNrAhwGPAYQQtgZQtiA3puqIAuob2ZZQANgOXpf0iKE8C6wrsjlkt6LUcDkEMKOEMIifG3oQZVVFwVd/qW+JO58aeSapJGZdQX6ATOAtiGEFeCBGdAmjVWrre4FrgMK4q7pfUm/vYE1wKRI1++jZtYQvTdpFUJYBtwFfA+sADaGEF5D70tVUtJ7kdSYQEEXWDHXlEcjjcysEfAccGUIYVO661PbmdmJwOoQwqx010V2kwUcBPw1hNAP2IK6rNIuMj5oFNANaA80NLOfp7dWkqCkxgQKujyK7RR33hFvBpY0MLM6eMD1VAjh+cjlVWbWLvJ4O2B1uupXSx0KjDSzxXj3+xFm9iR6X6qCpcDSEMKMyPmzeBCm9ya9jgIWhRDWhBBygeeBQ9D7UpWU9F4kNSZQ0AUfA93NrJuZ1cUH0E1Jc51qJTMzfGzKVyGEe+IemgKcEzk+B3gp1XWrzUIIY0MIHUMIXfH/H2+GEH6O3pe0CyGsBJaYWY/IpSOBuei9SbfvgSFm1iDyuXYkPkZV70vVUdJ7MQUYY2b1zKwb0B34qLJeVBnpATM7Hh+zkglMDCHclt4a1U5m9mPgPeBzYmOH/g8f1/U00Bn/MDs1hFB0UKSkgJkNB64JIZxoZi3R+5J2ZtYXn+BQF/gWOA//g1rvTRqZ2S3A6fis7E+BC4BG6H1JOTP7FzAcaAWsAm4GXqSE98LMbgR+gb93V4YQ/ltpdVHQJSIiIpJ86l4UERERSQEFXSIiIiIpoKBLREREJAUUdImIiIikgIIuERERkRRQ0CUiaWdmLc1sdmRbaWbLIsc5ZvZQkl7zSjM7u5jrXc3si0p8nbpm9m5kDT4RqcX0ISAiaRdC+AHoC2Bm44CcEMJdyXq9SAD0Czx7e1KFEHaa2f/wnE1PJfv1RKTqUkuXiFRZZjbczF6OHI8zsyfM7DUzW2xmJ5vZHWb2uZm9EllCCjPrb2bvmNksM3s1utRHEUcAn4QQ8uKe85mZfQBcGvf6Xc3sPTP7JLIdErn+DzMbFVfuKTMbaWY9zeyjSCvdHDPrHinyInBmMn5HIlJ9KOgSkepkH+AEfDHhJ4G3Qgi9gG3ACZHA635gdAihPzARKG6FiUOB+AW8JwGXhxAOLlJuNXB0COEgvKVqfOT6o3jmd8ysKb6u3lTgYuC+EEJfYAC+jhvAF8DAcv7MIlJDqHtRRKqT/4YQcs3sc3zZrlci1z8HugI9gAOB133JOzKBFcXcpx2+Fl40aGoWQngn8tg/gOMix3WAByJL7eQD+wKEEN4xswfNrA1wMvBcCCEv0lJ2o5l1BJ4PIcyPlM83s51m1jiEsLmSfhciUs0o6BKR6mQHQAihwMxyQ2wdswL888yAL4tpsSpqG5AdOTagpPXQfoOv1dYH7xnYHvfYP/AuwzH4+DBCCP80sxl4a9yrZnZBCOHNSPl6RZ4vIrWMuhdFpCaZB7Q2s4MBzKyOmfUsptxXwI8AQggbgI2RBdeh8NirpsCKEEIBcBbechb1OHBl5B5fRl5vb+DbEMJ4YArQO3K9JbAmhJBb8R9RRKorBV0iUmOEEHYCo4E/m9lnwGx8vFVR/wUOizs/D3gw0j24Le76Q8A5ZvYh3rW4Je61VuHB26S48qcDX5jZbGA/4O+R64fjY75EpBazWOu8iEjtYWYvANdFx12V4/kN8LFkB4UQNu6h7PPA2BDCvPK8lojUDGrpEpHa6gZ8QH2ZmdlRwNfA/QkEXHWBFxVwiYhaukRERERSQC1dIiIiIimgoEtEREQkBRR0iYiIiKSAgi4RERGRFFDQJSIiIpICCrpEREREUuD/A8RMAd8sorumAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABNdklEQVR4nO3dd5xU1f3/8ddnl6UtXaR3RVS6NFEpBkWMilFRUWM39thS1K8xGn8xzV5QkiioiQ01KjFoCDZUEAXFLgJKR6r0six7fn98ZpjZZctsmZkt7+fjcR/3zp0zd87u6M6Hcz73cyyEgIiIiIgkV0a6OyAiIiJSEyjoEhEREUkBBV0iIiIiKaCgS0RERCQFFHSJiIiIpICCLhEREZEUqJXuDiSiefPmoVOnTunuhoiIiEiJ5syZszaEsG/B81Ui6OrUqROzZ89OdzdERERESmRmiws7r+lFERERkRRQ0CUiIiKSAgq6RERERFJAQZeIiIhICiQt6DKzCWa22sw+L+J5M7P7zWyBmX1qZockqy8iIiIi6ZbMka7HgFHFPH8s0DWyXQw8nMS+iIiIiKRV0kpGhBCmm1mnYpqcCDwRQgjA+2bWxMxahxBWJqtPIiIilUIIvjeLPd61K3ZccKtTB2pFvrJzcmDHjtg14tsBNGsWe5/16yE3t/B22dnQqJEf79wJa9bk71t8X1u3hqwsf7xmDWzdmv9aUXXqQNu2fpyXBwsX7v0zR/etW8fef/16WL167+tFf0cHHhh7PH++97cw++zj1wXvY/z7A3ToAE2aFP7aFEhnna62wNK4x8si5xR0iYhUJiHA7t2xL32ADRv8yz8315/bvTt23KQJtGzp7TZtgq++irWJbnl5vh8yxL/8AWbNgsWLY8/l5cWOW7aE447zdjk5MH587Pn4LQQ44QTo0cPbzpgBr77q56PP797t+6ws+MMfYj/T738P33+f/1rR7eij4bTTvN3XX/vr4tvk5flzeXlwzz2xwOOee2D69PxtooFF9+7wpz/58c6dcOqpRX8G110HRx7px1OmwKOPFt6uTh14/vnY4//7P1i+vPC2J54IF13kx/Pnw403Fv3+Dz8M7dr58eOPw9tvF94u/mfKyfF+F+UXv4Dhw/14+vTEf6a77krsZ/ruO7jppvzPX389HHFE0X1KsnQGXVbIuUJC3OR7911o2BB6907Hu4uIFCEED2R27vQvsEaNYoHPkiU+4rBrlz8XvzVtCsOGebucHPj7373drl1+vejxrl0eSBwSSan93//g6adj7eK3gl98N9yQ2BffkiUezBSle/dY0PXuu/DWW0W3iwZdeXne16IcemjseM0amDu38Ha1a+d/vHw5LFtWeNtNm2LHubnwww9Fv380uIJYMFoSM/9szfJv0ecyM/P3u2HD2HPxW506+a/brJn/91Pwemaxa0D+Eapom/h9fMC9777QsePebcxio0wAGRmw3357t4sex79/s2bQrVvh7x0dYYvq2rXw0SozaNUq9jg7G3r2zP9848Z7vy6FLBQ2lFdRF/fpxVdCCD0Kee6vwFshhKcjj+cBwwubXuzfv39IVkX6DRvg0kt9FHL4cLjwwrSOPIpIVbV7N2zbBtu3+9RPhw6x52bMgHXr/PyOHbE2O3ZA374+igI+2vCnP/mXZHSL/xs9blzsunffDW++WXhfDjoI/vIXP87JgVNOKbrf11wDI0b48b//DX/7W+HtateGF16IPb7pJli50r+MMzPz7484An7yE2+3dCk89pifz8jwNhkZsfZnnBGbDnvnHfj2Wz8fbRfdN28OQ4fGftfTpvn5wrauXaFFC2+7erUHU2b+XHQf3aJf9OABV25u/nbRAKVBg1iQsGsXbN6c//loe4B69WLHubn+GRYMjuIDEKl2zGxOCKF/wfPpHOmaDFxpZs8Ag4CN6cjnys6Gk0+GZ5/1f2B9+CGccw6MGhX7f0ZEaogQYMUK2LLFv1S3bvXj6P7ww2Nf0tOnw1NPeaC1bVv+HJPMTHjxxdgX69NPw6JFhb9ndnYs6AIPEuLVquWjEHXq5B9B6dzZR1vq1PGAKLplZeUfbcjKgssu831hW3TKCOBHP4JBg/w9s7J8H90KBgm3357Qr5T27eHmmxNrO2SIbyXJzIRjjknsmi1axAKwksT/LoqTlZU/b6o4tdL5NSuVTdJGuszsaWA40BxYBdwCZAGEEMabmQEP4nc4bgPODyEUOpyVzJGuqO+/9xSBOXP88QEHwBVXQJcuSX1bEUmGgknK8+d7Qu2mTXtvzZrBb37j7fLyfISmqL+Ll1wCxx/vx9OmwX33xZ4zg/r1fZSjXj24//7YF+6kSZ4oHH2uTh3f163rUzr77eftcnK8XZ06/lzt2vmnlUSkSihqpCup04sVJRVBF/jf2ZkzfXR93Tr/e/nnP3sAJiKVQHSaBnz06e23fbRn/Xrfb9gQ2//hDz7NBvDII/Dyy4Vfs0WL/Am8116bfzopO9uPs7OhT59YgLR5s79PdrYHW3XqaMpIRIDKOb1Y6ZjBYYd5isXDD3u6xN13+z9mC+YmikiSLFoUSxJfs8b/BRTdDj7Y7z4Cz4t6uJjyfhs3xo4POsinABs39mT0glu8e+5JrJ8NG+ZPBBYRKYGCrkLUqwdXXgkLFngO6OOPw8UXp7tXIlVcCD6dt3Klb6tXw6pVvv3iF7EcmWeegffeK/waa9fGjps0gZEj/XXNmvkde02axPbx/1I6/HDfRETSSEFXEWrXhl/+0kuM/PvfMHCgzyyISAk2b/a7xWrXjiVFLlzoNYC2by/8NatWxYKugw/2AG3ffX1r3twLHjZvnv/W4lq14Oc/T+qPIiJSkRR0FaNLFzjzTPjHP+Dee+HBBz21Q0Qivv4avvnGh4SXLPH95s3+3GGHxYotNm3qAVd2tt9Z16qVby1aeNHL+PIKo0f7JiJSzSjoKsEpp8AHH8C8efDXv/osiEiNsn27VwlftMgrPP/0p7Fcppdf9oKW8aJ35LVpEzvXtKmXV2jQQMnmIlJjKegqQWam38x01VVex2vQoLSuICCSfJs3e7XvhQt9W7EifwmFww+HXr38uH9/D8Dat/fRqnbtfJqwYGBVsPq0iEgNpKArAW3beqX6hx+Ghx7yVQXSvJKASPnl5Hj173nzPD8qfomViRNj7WrV8qCqUycvyBm/zMaIEbFq5iIiUiwFXQk69li/oerTT72URHSFC5EqY+NG+OIL+PJLX4B44UJfTgU8zyoadDVuDGPG+PTgfvv5CJaqaouIlJv+kibIzFed+PRTeP99BV1SBaxd63cQRutQvfKKl2OIMvPRq65dvQJwfOHRc89NeXdFRKo7BV2l0L+//4P/yy990EBTjFKpbNwIn3wCc+fCZ5/52lYXXQQnnujP9+rlI1wHHeRlGbp180rqIiKSEgq6SqF+fejd29dnnDXL6zKKpN2kSTBjhk8XxqtfH3bsiD3u2dM3ERFJCwVdpTR4sAddM2cq6JI02LgRZs+GoUMhK8vPffONB1xZWdC9u69j1auXF5rLyEhvf0VEZA8FXaU0aBCMG+czONu2aXZGUmD5ch/JmjXLA6wQvEJ7dImEU07xJPju3T2HS0REKiUFXaXUpImnxHz5pY94DRmS7h5JtZSbC88+68HWkiWx81lZPooVHeUC/w9SREQqPQVdZTB4sAddM2cq6JIKtHatry8IXpX37bd9YejsbB9iHTzYR7fq1k1rN0VEpGwUdJXB4MHw6KOeWrNrV/5BB5FSWb8e3nnHA6wFC2DCBA+8zOC88zzA6tVLdbJERKoB/SUvg5YtvTD3d9/5Hfr9+6e7R1Kl5ObChx/6UjuzZ8eW2KlXz9c4jI52HXZY+vooIiIVTkFXGQ0e7EHXzJkKuqQUcnLgZz/zES7wEaz+/WH4cBgwQInwIiLVmO4nL6NDD/X9rFm+VJ1IoXJz/T+S6GhW7dpe/b1jRy9c+thjcNNNvoi0Ai4RkWpNI11l1KmTTzOuWuVFvrt3T3ePpFJZtw7++1/f1q+H3/0ODjnEn7vuOs/Vii65IyIiNYKCrjIy8ynGl17yKUYFXQLAt9/6fxTTp8cWk27fPv9waL16aemaiIikl4KucogPui68UAMXNd5dd8Fbb/lxRoYnwh9/PPToof84REREQVd5HHigL3q9erUn1Xfpku4eSUrl5fkWLefQrp1PG44c6YtMt2iR3v6JiEilokT6csjIgIED/Xju3LR2RVIpL8/ral15JbzySuz8CSd4na2f/UwBl4iI7EUjXeV0wAFebmnx4nT3RJIuGmw9+6yvhwjw7rs+qmWmhThFRKRYCrrKqWNH3yvoqsZCgA8+gMcfh6VL/VzLlnD66XDkkcrXEhGRhCjoKqcOHXy/dKkPhGRowrb6+egj+P3v/bhFCzjjDC9mqqV5RESkFPStUU7Z2bDPPl6WadUqaN063T2SCrF1q3+44PW1+vb1ivHHHqtgS0REykTjMhVAU4zVyNatvpr5+ef7bang04e33eaJ8gq4RESkjBR0VQAFXdVACDBtGlxyiRdf27EDPv443b0SEZFqRP9srwAKuqq4+fNh/Hj45ht/fNBBHnztt196+yUiItVKUoMuMxsF3AdkAo+EEP5U4PnGwD+BDpG+3BlCmJjMPiVDNJleQVcVNGWKB1whQLNmPq04bJjuSBQRkQqXtKDLzDKBccDRwDLgQzObHEL4Mq7ZFcCXIYQTzGxfYJ6ZPRlCyElWv5KhfXvfL18OublK+6lSevSArCw47ji/K1HrIoqISJIkM6drILAghPBtJIh6BjixQJsANDQzAxoA64HcJPYpKerWhVatfH3jFSvS3Rsp1saN8OKLPrIFPkw5YQJccIECLhERSapkjsm0BZbGPV4GDCrQ5kFgMrACaAicHkLIS2KfkqZjR/j+e59ijE43SiXz/vvwwAOwaRM0bw5Dhvj5xo3T2y8REakRkjnSVVhSTCjw+BhgLtAG6AM8aGaNktinpFEyfSW2bRvcdx/cfrsHXL16wf77p7tXIiJSwyRzpGsZ0D7ucTt8RCve+cCfQggBWGBm3wEHAh8ksV9JoaCrkvriC7j7bq+5Vbs2nHceHH+8EuVFRCTlkhl0fQh0NbPOwHJgLHBmgTZLgBHAO2bWEugGfJvEPiVNdEpxyZL09kPifPCBL98TAnTpAr/8ZeyuBxERkRRLWtAVQsg1syuB/+IlIyaEEL4ws0sjz48H/h/wmJl9hk9HXh9CWJusPiVT27a+7uLKlZCT44Mqkma9e3s0PGiQ35mo20pFRCSNkvotFEKYAkwpcG583PEKYGQy+5AqWVkeeC1d6pvqaqbJp5/CAQf4LaV16sA99/iHIyIikmZaBqgCKa8rjfLy4J//hN/8BsaNi5WEUMAlIiKVRIkjXWZ2OHAr0DHS3oAQQuiS3K5VPcrrSpONG+Evf/FRLjNo1y7dPRIREdlLItOLjwLXAnOA3cntTtWmka40WLQI/t//87sTmzSBX/3KS0KIiIhUMokEXRtDCK8mvSfVgIKuFJs508tB7NjheVw33eTrJ4qIiFRCiQRdb5rZHcC/gJ3RkyGEj5LWqyqqVStPIVqzxutx1q+f7h5Vc++/7wHXkUfClVfqllEREanUEgm6okv39I87F4AfVXx3qrbMTC8D9e23ntd14IHp7lE1d8UVPpX4ox+p2KmIiFR6JQZdIYQjU9GR6qJDBwVdSbN5s9+heP75XhKidm0YMSLdvRIREUlIIncvNgZuAYZGTr0N3BZC2JjMjlVVyutKkjVr4JZbvAhaTg5cfXW6eyQiIlIqidTpmgBsBk6LbJuAicnsVFWmoCsJFi/2uxKXLvVf8FlnpbtHIiIipZZITtd+IYRT4h7/zszmJqk/VZ6Crgr2+ee+fuLWrdC9uxc/bdAg3b0SEREptURGurab2RHRB5FiqduT16Wqbd99Pd1owwbYtCndvaniZs2C3/7WA67DDoPbblPAJSIiVVYiI12XAY9HcrsMWA+cl8xOVWVmnkz/zTeeTN+jRwVdODfXl7qpSWUR3n8fdu2CH/8YLrnEVxQXERGpohK5e3Eu0NvMGkUea/ymBB07etC1eHEFBF0hwDvvwN//7kHXjTdWYCRXyV15JfTtC0OGqCSEiIhUeUUGXWb20xDCP83sugLnAQgh3J3kvlVZ7dv7funScl5oxQp4+GGYOzd27uabPRiprqUSPvjAg8r69b3w2dChJb9GRESkCihupCs7sm9YyHMhCX2pNlq18v3q1WW8QE4OPP88PPecTys2bOi1qRYvhpdfhnvvheXL4eyzq9cI0P/+Bw884AXO/vAHqJXI7LeIiEjVUOS3Wgjhr5HDaSGE9+KfiyTTSxFatPB9mYKu3Fy4/npYsMAfjxgBF1wAjRr547ZtYfx4D8iWL4frroM6dSqk32k1daoHXAADByrgEhGRaieRb7YHgEMSOCcR8UFXCKUcjPr8cw+4mjXz2lQF87eOPdaH0v70J5gxw4uG/uEPfstkVTV9Ojz4oB9fdBGceGJ6+yMiIpIERd4OZmaDzewXwL5mdl3cdiuQmbIeVkENGngMtH07bNlSyhe//77vjzqq6IT5vn3hzjs9ups/Hx5/vFz9TasPP4S77/bo9JxzFHCJiEi1Vdw9+LWBBvhoWMO4bRMwJvldq7rMoGVLP16zphQvDMFrUwEcemjxbdu390KhmZnwyivw6adl6mtaffcd/PGPsHs3jBkDp56a7h6JiIgkTXE5XW8Db5vZYyEE1VcvpRYtPO991Sro0iXBFy1cCGvXwj77wP77l9y+c2cYOxaefBLuu8+n6OrVK1e/U6pDBy8HUbeuj3KJiIhUY4nkdG0zszuA7sCexKEQwo+S1qtqYN99fV+qZPro1OKgQYkngo0Z469buBAmToTLLy9VP9MqMxOuucaPq9NdmCIiIoVIpMT3k8DXQGfgd8Ai4MMk9qlaiE4vlinoGjw48dfUqgXXXuv7V1/NX9OrMlq7Fu66y5f2AQ+2FHCJiEgNkEjQtU8I4VFgVwjh7RDCBUAJCUdS6rIRK1f6fGR2dukrznfsCGee6cf33QfbtpXu9amyfbuvn/jWW/Doo+nujYiISEolEnTtiuxXmtlxZtYXaJfEPlULpQ66oqNc/fqVrUbVySdD164+klQZA5rdu+HPf/bk+bZtvdiriIhIDZJI0PX7yGLXvwB+CTwCXJvUXlUDZQ66SjO1GC8z06cZs7K80Ognn5TtOskQAvz1rzBnjhd5veUWr7IvIiJSg5QYdIUQXgkhbAwhfB5CODKE0C+EMDkVnavKGjeG2rW9TleJs30bN8JXX/kI1yHlqDnbvr3fzQge5OTmlv1aFenFFz3fLCvLy1y0bp3uHomIiKRccQteP0AxayyGEK5KSo+qCTO/g3H5ch/t6tSpmMYffOCjQb17+0LP5XHSSTBtmq+2/Z//pL/Y6Oef+12V4EsWHXRQevsjIiKSJsUlD81OWS+qqRYtPOhas6aEoCs6tVhSQdREZGXBz37mCetPPQXDh/uwW7ocfDCccILXHjviiPT1Q0REJM2KK45ahdeWqRwSKhuxYwd8/LEPjQ0aVDFvPGAA9O8Ps2f7EkFXpXFQMiMDLr7YR/JERERqsBJzuszsTTN7o+CWis5VddECqatWFdPoo49g1y7o1g2aNq24N7/oIs8RmzbN12dMpbw8r5K/aVPsnGpxiYhIDZdIbYJfxh3XBU4BEsrQNrNRwH34AtmPhBD+VEib4cC9QBawNoQwLJFrVwUJrb8YX4W+IrVt6/lcL7zgSfV33JG6wOef/4TnnvO7Fe+6SwGXiEgK7N69m/Xr17Nr166SG0uFyMrKolmzZmRmZibUvsSgK4Qwp8Cp98zs7ZJeZ2aZwDjgaGAZ8KGZTQ4hfBnXpgnwEDAqhLDEzFok1OsqIlo2osiRrtxc+DBS3L+spSKKc/rp8MYbMG+e70eMqPj3KGjGDA+4MjLgvPMUcImIpMj69eupW7cuzZs3x/S3N+lCCGzZsoX169ezb3RqqwSJTC82i9uam9kxQKsErj0QWBBC+DaEkAM8AxS8le5M4F8hhCWRH6A0i+ZUeiWuv/jtt15Tok0bH5mqaPXqxYqQPvZYbOmdZFm6FO65x4/PPx969Uru+4mIyB67du2iQYMGCrhSxMxo0KBBqUYWEymOOge/k3EOMBMvknphAq9rCyyNe7wsci7eAUBTM3vLzOaY2TkJXLfKaNbM06o2boSdOwtpsGSJ7/ffP3mdGD4cDjwQNmyAZ59N3vts3w633+43Bgwdmv5SFSIiNZACrtQq7e87keKonUMIXSL7riGEkSGEdxPpS2GXK/C4FtAPOA44BrjZzA5I4NpVQkYGNG/ux4XmdUWDrg4dktcJM7jkEt//+99ewyIZxo/3a3fsCD//uaYVRURqqNtvv53u3bvTq1cv+vTpw6xZs9LSj7lz5zJlypQ9jydPnsyf/uSp5eeddx7PP//8Xq956623OP7445PWp0SmF+ua2XVm9i8ze8HMrjWzuglcexnQPu5xO2BFIW1eCyFsDSGsBaYDvRPtfFVQ7HJASyMDge3bF/JkBdp/fzjqKM8hS8a6jCF4LbA6deD666FuIv95iIhIdTNz5kxeeeUVPvroIz799FOmTZtG+2R/xxWhYNA1evRobrjhhrT0JSqR6cUngO7AA8CDwEHAPxJ43YdAVzPrbGa1gbFAweWDXgaGmFktM6sPDAK+SrTzVUGxQVcqRrqizj7bc7w+/NDvKqxIZnDBBfC3vyU/gBQRkUpr5cqVNG/enDp16gDQvHlz2rRpQ6dOnVi7di0As2fPZvjw4QC8/fbb9OnThz59+tC3b182b94MwF/+8hd69uxJ79699wRKCxcuZNSoUfTr148hQ4bw9ddfAz5qdemllzJkyBAOOOAAXnnlFXJycvjtb3/Ls88+S58+fXj22Wd57LHHuPLKK/f0ddq0afleU9DWrVu54IILGDBgAH379uXll18u9+8nkZIR3UII8aNPb5pZiasphxByzexK4L94yYgJIYQvzOzSyPPjQwhfmdlrwKdAHl5W4vPS/xiVV5EFUnfs8JO1akGrRO5LKKemTeGMM2DCBPj7333JoVqJfPzFyM31XK7o4tXNmpW/nyIiUm4nnJCc6/7738U/P3LkSG677TYOOOAAjjrqKE4//XSGDSu6EtSdd97JuHHjOPzww9myZQt169bl1Vdf5aWXXmLWrFnUr1+f9evXA3DxxRczfvx4unbtyqxZs7j88st54w0vG7po0SLefvttFi5cyJFHHsmCBQu47bbbmD17Ng8++CAAjz32WL73Luw18W6//XZ+9KMfMWHCBDZs2MDAgQM56qijyM7OLuVvLSaRb92PzezQEML7AGY2CHgvkYuHEKYAUwqcG1/g8R3AHYl1t+opskDqsmW+b9Om/MFPok44AV57zXOvKmJdxscfh3ffhV//WmsqiogIDRo0YM6cObzzzju8+eabnH766XvyqApz+OGHc91113HWWWdx8skn065dO6ZNm8b5559P/chaxM2aNWPLli3MmDGDU089dc9rd8bdoXbaaaeRkZFB165d6dKly55RsOKU9JqpU6cyefJk7rzzTgB27NjBkiVLOKgc33eJfNsPAs4xs8hcGB2Ar8zsMyCEEFQXoBjR6cW9Eumj+VypmFqMqlXLK9VXxLqMc+bASy/53QIZicxSi4hIqpQ0IpVMmZmZDB8+nOHDh9OzZ08ef/xxatWqRV5eHuDBS9QNN9zAcccdx5QpUzj00EOZNm0aIYS97grMy8ujSZMmzJ07t9D3LNg+kbsKS3pNCIEXXniBbt26lXitRCXybTkK6AwMi2ydgR8DxwNJGsCsPoqcXozmc6U6B6p/f+jXD7Ztg38kkppXiI0bY/W4zj7blzASEZEab968ecyPW3pu7ty5dOzYkU6dOjEnkk/8wgsv7Hl+4cKF9OzZk+uvv57+/fvz9ddfM3LkSCZMmMC2bdsAL/raqFEjOnfuzHPPPQd4QPTJJ7FMp+eee468vDwWLlzIt99+S7du3WjYsOGeHLHCFPaaeMcccwwPPPAAIbJ28Mcff1zO305iJSMWA03wAOsEoEkIYXF0K3cPqrlmzTzPfP16T4HaIx0jXeCduegiyMyEqVNh4cLSvT4EeOghD7x69YJTTklOP0VEpMrZsmUL5557LgcffDC9evXiyy+/5NZbb+WWW27h6quvZsiQIfmWzLn33nvp0aMHvXv3pl69ehx77LGMGjWK0aNH079/f/r06bNneu/JJ5/k0UcfpXfv3nTv3j1fYnu3bt0YNmwYxx57LOPHj6du3boceeSRfPnll3sS6Qsq7DXxbr75Znbt2kWvXr3o0aMHN998c7l/PxaN4IpsYHY18DPgX5FTJwF/CyE8UO53T1D//v3D7NmzU/V2Fe6CC3x68W9/g9atIycvvhhWroQHH/TaVqn2yCPw8suei/XnPydeV2v6dF/HsW5dGDcuNn8qIiJptWLFCtq0aZPubqTceeedx/HHH8+YMWPS8v6F/d7NbE4IoX/BtolML14IDAoh/DaE8FvgUDwIkwTtVTYiJwe+/95zodL1P8gZZ0CTJvDVV74uYyK2bfMiqOCjZQq4REREEpZI0GXA7rjHuym82rwUYa+ga/lyn6Zr3RqystLTqexsH4IDmDjR14AsSf36cO21vnD2yJHJ7Z+IiEgCHnvssbSNcpVWIkHXRGCWmd1qZr8D3geSUNa8+tor6EpXPldBw4dD9+6en/XPfyb2mgED4JprtMyPiIhIKSWSSH83cD6wHlgHnB9CuDfJ/apW9gq60nXnYkFmcOmlPs05ZUrRSfXr18O8eantm4iISDVTmgJLhi9YrSGOUqq0I10AnTp50dQQ4OGHfR8vBHjgAfjVr+DNN9PSRRERkeogkQWvfws8DjQFmgMTzew3ye5YdVJpR7qizjzTlwmaNw9efz3/c2+/DbNnez5X72q1FrmIiEhKJTLSdQYwIIRwawjhFvzuxbOS263qJboU0Nq1sHtnLqxY4VN77dqlt2NR9evDhRf6cXxS/ZYtXloC/HmtrSgiIsVo0KBBiW3eeecdunfvTp8+fdi+fXuprv/SSy/x5ZdfJqVfqZBI0LUIiK8YVgcoZUXNmi0ry+OVvDz44YsVftCqFdSune6uxQwdCj16wKZNvqYiwBNPeJL9wQfDUUelt38iIlItPPnkk/zyl79k7ty51KtXr1SvLWvQVVkkEnTtBL4ws8fMbCLwObDFzO43s/uT273qIzrFuOnzSja1GGUGl13m6zO+9poviP3aa165/oordLeiiIgk7K233mL48OGMGTOGAw88kLPOOosQAo888giTJk3itttu46yzfNLsjjvuYMCAAfTq1YtbbrllzzWeeOIJevXqRe/evTn77LOZMWMGkydP5le/+hV9+vRh4cKFLFy4kFGjRtGvXz+GDBmyZ9Hq7777jsGDBzNgwIAKqSRfURJZ8PrFyBb1VnK6Ur21aAFffw3bv6lESfQFdejgy/o8+yzcfLPXETvllMrZVxERKdoJSVoauRQraX/88cd88cUXtGnThsMPP5z33nuPiy66iHfffXdPBfmpU6cyf/58PvjgA0IIjB49munTp7PPPvtw++23895779G8eXPWr19Ps2bNGD16dL7q8yNGjGD8+PF07dqVWbNmcfnll/PGG29w9dVXc9lll3HOOecwbty45PwuyqDEoCuE8HgqOlLdRUe6dn1bSUe6ok47Dd5916vmt2wJY8emu0ciIlIFDRw4kHaR3OU+ffqwaNEijjjiiHxtpk6dytSpU+nbty/gazfOnz+fTz75hDFjxtC8eXMAmhWSU7xlyxZmzJjBqaeeuufczp07AXjvvff2LKx99tlnc/3111f8D1gGiYx0SQWIBl22bCk0pvIGXbVrw89/DjfcAD/8AKtWaaRLRKSqKcWIVLLUqVNnz3FmZia5ubl7tQkhcOONN3LJJZfkO3///fdjJaS15OXl0aRJE+bOnVvo8yW9Ph1KU6dLyqFFC8gIu8latdxPVNaga9YsOPBAGDUKcnO9RlcJi6KLiIiUxTHHHMOECRPYErlrfvny5axevZoRI0YwadIk1q1bB8D69esBaNiwIZs3bwagUaNGdO7cmeeeew7wAO6TTz4B4PDDD+eZZ54BPHG/sigy6DKzf0T2V6euO9VXy5bQZMf37Nqe6xFY3bolvyjVZs+G3/8efvMbOPdcv+Xy66+9Wr2IiEgFGzlyJGeeeSaDBw+mZ8+ejBkzhs2bN9O9e3duuukmhg0bRu/evbnuuusAGDt2LHfccQd9+/Zl4cKFPPnkkzz66KP07t2b7t278/LLLwNw3333MW7cOAYMGMDGjRvT+SPmY6GIUQwz+xI4FpgMDKdAJfoQwvpkdy6qf//+Yfbs2al6u6TIyYH/+9FMTl/wB/pf0g/73a3p7lJ+ublw5ZW+GPeFF8JPfgIzZ8If/uAB4sMPQ2RuXUREKp8VK1bQpk2bdHejxins925mc0II/Qu2LW56cTzwGnAgMKfAVrUjoDSoXRs6Zy4lBNjSrBLmSL36qgdcbdrA8cf7ucGDfduxA8aN0zSjiIhIORQZdIUQ7g8hHARMCCF0CSF0jtu6pLCP1UZH8zsX19arZPlcmzfDU0/58YUXeq2uqEsvhexsn3qcNi09/RMREakGSkykDyFcZma9zezKyNYrFR2rjlrv9hpd39euZCNdTz3lS/706QMDBuR/rlkzD7wA/vY3v5tRRERESi2RBa+vAp4EWkS2J83s58nuWLWTl0fzHcsAWJJXSdZcBJ9SnDLFK85feGHhleeHDYPDD/dpxnvv1TSjiIhIGSRSp+siYFAIYSuAmf0ZmAk8kMyOVTurVlE/M4fNtfdhxcbsdPcmplUrH8laswY6dSq8jRlcfjl88QV8/jm8/LIn2ouIiEjCEqnTZcDuuMe7KXAnoyRg2TJq14E19dpXrhm6zEw49lg455zi2zVq5EVTwRfCXro0+X0TERGpRhIJuiYCs8zsVjO7FXgfeDSpvaqOli+nTm1YV7dt5Qi6cnNhfSmrfgwcCEcfDbt2wV13+TVEREQiMjMz6dOnDz169OCEE05gw4YN6e5Sqd16663ceeedSbl2Ion0dwPnA+uBH4DzQwj3JqU31dmKFdSuAz/UbcO6dZUgXpk6FS65BP7739K97qKLvLjrwoW+MLaIiEhEvXr1mDt3Lp9//jnNmjWrNItNhxDIy8tLdzcSWwYohPBRpITEfSGEj5PdqWpp5UoyDPJatSEET6FKmx074Omnfd+wYeleW78+XHONHz/7rOd5iYiIFDB48GCWL/el7xYuXMioUaPo168fQ4YM4euvvwZg1apVnHTSSfTu3ZvevXszY8YMAO6++2569OhBjx49uPfeewG4/vrreeihh/Zc/9Zbb+Wuu+4C4I477mDAgAH06tWLW265BYBFixZx0EEHcfnll3PIIYewdOnSQtsB3H777XTr1o2jjjqKefPmJe13ogWvU2XFCgCyOrSGxV55oXXrNPXllVdgwwbo2tWLn5ZWz54wZgw8/zzccQfcf7/nfImISOVxwglFP3fFFb7GLsBrr3kB7KKUYfHs3bt38/rrr3PhhRcCcPHFFzN+/Hi6du3KrFmzuPzyy3njjTe46qqrGDZsGC+++CK7d+9my5YtzJkzh4kTJzJr1ixCCAwaNIhhw4YxduxYrrnmGi6//HIAJk2axGuvvcbUqVOZP38+H3zwASEERo8ezfTp0+nQoQPz5s1j4sSJPPTQQ0W2y87O5plnnuHjjz8mNzeXQw45hH79+pX6Z06Egq5UyMnxoa2MDOp3brkn6EqLLVs8WAJPni/rKuxnneV3Mn79tZeRuPnmsl9LRESqhe3bt9OnTx8WLVpEv379OProo9myZQszZszg1FNP3dNu586dALzxxhs88cQTgOeDNW7cmHfffZeTTjqJ7Gy/0//kk0/mnXfe4aqrrmL16tWsWLGCNWvW0LRpUzp06MD999/P1KlT6du3LwBbtmxh/vz5dOjQgY4dO3LooYcCMHXq1ELbbd68mZNOOon69esDMHr06KT9fhR0pcKqVV7bqlUrWrTxX/nq1Wnqy7/+BVu3Qq9eXgy1rGrVgl/9Cq66Cj78ECZPhhNPrLBuiohIOSU6QjVqVGzUq5yiOV0bN27k+OOPZ9y4cZx33nk0adKEuXPnJnSNotaEBhgzZgzPP/8833//PWPHjt3T/sYbb+SSSy7J13bRokV7Arfi2t17771YigYNEimOerKZzTezjWa2ycw2m9mmRC5uZqPMbJ6ZLTCzG4ppN8DMdpvZmNJ0vsqITC3SujUtWvjh99+noR8//ODBEZRcIiIRLVrE8rseewzmzy//NUVEpMpr3Lgx999/P3feeSf16tWjc+fOPPfcc4AHP5988gkAI0aM4OGHHwZ8SnLTpk0MHTqUl156iW3btrF161ZefPFFhgwZAsDYsWN55plneP755xkzxkOGY445hgkTJrBlyxYAli9fzupCRjaKajd06FBefPFFtm/fzubNm/l3GaZTE5VIIv1fgNEhhMYhhEYhhIYhhBITeMwsExgHHAscDJxhZgcX0e7PQClvo6tCokFXmza0bOmHaZle3LbN87gGDYJu3Srmmoce6nkDubnw5z/7KJqIiNR4ffv2pXfv3jzzzDM8+eSTPProo/Tu3Zvu3bvz8ssvA3Dffffx5ptv0rNnT/r168cXX3zBIYccwnnnncfAgQMZNGgQF1100Z4pwe7du7N582batm1L60hi9MiRIznzzDMZPHgwPXv2ZMyYMWzevHmv/hTV7pBDDuH000+nT58+nHLKKXsCvGSw4obxAMzsvRDC4aW+sNlg4NYQwjGRxzcChBD+WKDdNcAuYADwSgjh+YLX6t+/f5g9e3Zpu1B5jBvniYoXX8zawSdw/vnQtKnXGE25EGDnTqhbt+KuuWsX/PKX8O23cMQR8OtfK79LRCTFVqxYQZs2bdLdjRqnsN+7mc0JIfQv2DaRka7ZZvasmZ0RmWo82cxOTuB1bYH4suXLIufiO9UWOAkYn8D1qq6VK33fpg3Nmnk61A8/eH59yplVbMAFkJUF11/v1333XXjppYq9voiISDWQSNDVCNgGjAROiGzHJ/C6woY6Cg6r3QtcH0LYXUjb6iMupysjA/bd1x+mbIpx8WL4wx9gyZLkvUebNnDttX48cSIkmDApIiJSU5R492II4fwyXnsZ0D7ucTtgRYE2/YFnIncNNAd+bGa5IYSXyvielU9ODqxdCxkZRLPoW7b0wa/Vq6F9+xJeXxGeegpmzoRmzXxx62Q57DA47TSYNAn+8he45x72JLGJiIjUcIncvdjOzF40s9VmtsrMXjCzdglc+0Ogq5l1NrPawFhgcnyDEELnEEKnEEIn4Hng8moVcEGsXETLlj6vyJ7YKzUjXYsXw4wZPgV42mnJf7+zzoL+/WHzZrj9dq96LyIiKVFSnrZUrNL+vhNd8Hoy0AbPyfp35FxJHckFrsTvSvwKmBRC+MLMLjWzJA63VDJxdy5GRQd/UlI2YtIk3x99tI90JVtGhifVt2kD333n1er1R0BEJOmysrLYsmWLAq8UCSGwZcsWsrKyEn5NIsVR9w0hxAdZj0XuOEykQ1OAKQXOFZo0H0I4L5FrVjmFBF2tWvk+6QVSly+Hd97xEbYxKSyBlp0Nv/kNXHedv//++8PJidx7ISIiZdWsWTPWr19faLkESY6srCyalWJAI5Gga62Z/RR4OvL4DGBdGfpWM8Ul0UelbHpx0iQfZRoxIpa9nyrt28MvfuFTjI89Bu3awcCBqe2DiEgNkpmZyb6p/lsvpZLI9OIFwGnA98BKYEzknCSimOnFpAZdmzd7+YaMjNSOcsU79FDP8QrBE+tVsV5ERGqwRO5eXAIkb/XH6q6QoKtJE6hd2+OibdsgssZmxWrYEB5+GD77LDafmQ6nn+7Ja6+/DrfdBnfdFRvqExERqUGKHOkys19H9g+Y2f0Ft9R1sQqLlovIzMwXaJjFHiY1r6tFC59aTCczuPJKX2B7wwa49VYtFSQiIjVScdOLX0X2s4E5hWxSkujtiS1beuAVJ6lTjN99V7nuGKxVC/7v/6BDB1i61Au15uamu1ciIiIpVWTQFUKILrO9LYTwePyGV6iXkhSSRB+VtKBr3Tq/a/Dqq9O0zlARsrN9lKtZM/j0U5WSEBGRGieRRPobEzwnBRWSzxWVtKDrxRd9FKlNG08cq0z23Rd++1tfo/HNN2HCBAVeIiJSYxSZSG9mxwI/BtoWyOFqBGhuKBFxC10XlJSga/NmeO01P05F9fmy2G8/uOEG+P3vfWHs7GwYOzbdvRIREUm64ka6VuD5XDvIn8s1GTgm+V2rBoqZXkxKra5XX4WdO6FvX+jSpQIvXMH69fOq9Wbw5JPw8svp7pGIiEjSFTnSFUL4BPjEzF4EtoYQdgOYWSZQJ0X9q9qKmV6MVnGILs3oa36XQ04OTI4sbXnKKeW8WAocfrjnnd17LzzyCNSrByNHprtXIiIiSZNITtdUoF7c43rAtOR0pxopolxEVIMGHmds3w5btlTA+73xBmzc6CNcvXpVwAVTYMQIuPhiP37wQV8ySEREpJpKJOiqG0LYExZEjpNRzrN6ieZzFVIuAnxkq0LzujIzverqKadUwLBZCp1wApx9tg/33XUXzJyZ7h6JiIgkRSJB11YzOyT6wMz6AduT16VqopipxagKDbqOPhoefdSn7aqaU0/1YHH3bvjTn3z5IhERkWomkQWvrwGeM7NIFEFr4PSk9ai6KEXQVWFV6StbiYhEmcG55/r++ed9ncZdu+DII9PdMxERkQqTyNqLH5rZgUA3wICvQwi7kt6zqq6YchFR0VSvaOH6Mpk3z9dXPPZYL79QVZnBOedAVhY8/TTcc4/XGzv66HT3TEREpEIkMtIFHnAdDNQF+poZIYQnktetaqCYchFR8Xcwltlzz8GsWV4q4qyzynGhSsAMzjzTlw36xz+8an1urgeUIiIiVVyJQZeZ3QIMx4OuKcCxwLuAgq7iJDC9GA26ok1LbdkyD7iysuC448p4kUrotNP8Z5owAR56CHbsgJNOSnevREREyiWRRPoxwAjg+xDC+UBvVKereDt3+hqItWr50jdFaNvWm6xc6aUjSu3FF30/YoTfuVidnHRSrJzEhAley0tLBomISBWWSNC1PYSQB+SaWSNgNVCJy51XAiWUi4iqVQs6dPDjRYtK+R4bN/r6hQA/+Ulpe1g1nHCCV66vVcur1t95pyfYi4iIVEGJBF2zzawJ8Hd8GaCPgA+S2akqL4GpxajOnX3/7belfI/XXvMAZMAAHzKrroYNg1tv9Uqy06f78dat6e6ViIhIqRUbdJmZAX8MIWwIIYwHjgbOjUwzSlGWLfN9AkFXdInE774rxfVzc+E///HjE08sXd+qot69vX5X06bw6ae+YPb69enulYiISKkUG3SFEALwUtzjRSGET5PdqSovOmwVHcYqRjToKtVIV0YGXHGFl1OoKkv+lFeXLj692Latz8Vedx3Mn5/uXomIiCQskenF981sQNJ7Up1EI6j99iuxaTQuW7zYC7InJCMDBg2Cq66qWkv+lFeLFl44tXt3v1Hhhht8ylFERKQKSCToOhIPvBaa2adm9pmZabSrKFu3eiJ9Vha0a1di8+xsjyVychIsHVHT7+Br1Ah+/3s45hj/pd1xh9f0qum/FxERqfSKrNNlZh1CCEvwulySqGhyVseOftddAjp39qWAvv0W2rcvofEdd/gdkWefHStpX9PUquXTqx07eimJSZN8qPAXv/CEexERkUqouJGulwBCCIuBu0MIi+O3lPSuKopOLXZJvKpGwsn0q1b5YtDvvptwQFdtmXlJid/9Dho08CKx110HS5aku2ciIiKFKi7oik8WUl2uRJUinysq4WT6V17xabQhQ6BZs7L1r7rp0wfuvtsLni1bBtdeC6+/nu5eiYiI7KW4oCsUcSzFWbjQ92UMuopMTdq+HaZO9ePRo8vev+qodWu46y6vzJ+TA/fe6+s27tyZ7p6JiIjsUVzQ1dvMNpnZZqBX5HiTmW02s02p6mCVkpPj01tm0KlTwi/bd19PqN+4EX74oYhG06bBtm1w8MGw//4V0t1qpW5duOYauPpqqF0b/vc/z/GK1kwTERFJsyKDrhBCZgihUQihYQihVuQ4+rhRKjtZZSxeDHl5ftdincSXpzSLlY4oNK8rBPj3v/24JhRDLY+jjvJRr7Zt/fO45hqYMkV3N4qISNolUjKizMxslJnNM7MFZnZDIc+fFSlD8amZzTCz3snsT9KVIYk+qtiga/58+P57v1tx0KCy96+m6NQJ7rkHjjzSpxgfftgT7lXFXkRE0ihpQZeZZQLj8JITBwNnmNnBBZp9BwwLIfQC/h/wt2T1JyXKkEQfVWwy/QEHwF//6lNnxSygLXHq1fO7Ga+/Hho2hDlz4Mor4b330t0zERGpoZI50jUQWBBC+DaEkAM8A+SbGwshzAghRLOY3gdKriZamUWT6Msw0lXiHYytW9ecJX8q0hFHwIMPwiGHwObNvobjXXf5sYiISAolM+hqCyyNe7wscq4oFwKvJrE/yZWXF5sbLEPQ1b69D2KtWAE7dsQ9sXy58pHKq1kzuPVWuOwyT7J/6y249FJ4+239bkVEJGWSGXQVtihgod9wZnYkHnRdn8T+JNfy5X73YosWPp1VSllZHniF4PnfgI/GXHWVbyp/UD5m8OMfwwMP+Ijhpk2+gPbvfufLAYiIiCRZMoOuZUD8ojbtgL1WFzSzXsAjwIkhhHVJ7E9ylWNqMSqaTL9nivG///VAbp99SnU3pBSjTRtfu/Gqq7xOx5w5cPnl8PLLpVhxXEREpPSSGXR9CHQ1s85mVhsYC0yOb2BmHYB/AWeHEL5JYl+SrxxJ9FH5lgPKzYX//MdPnHBC+fom+ZnB0Uf7XY1HHOGjiI884oHYp1rLXUREkiNpQVcIIRe4Evgv8BUwKYTwhZldamaXRpr9FtgHeMjM5prZ7GT1J+kqYKQrXzL9++/D2rVeb+qQQ8rfP9lb06Z+d+NvfwutWnlh25tugj/+UVOOIiJS4ZK6anIIYQowpcC58XHHFwEXJbMPKRFCuWp0RUWnFxctgvDyZE+KGz3aR2YkeQYMgN694aWXYNIkmDEDZs+Gk0+GU07xavciIiLllNTiqDXGmjWwZQs0auT5V2XUsCE0bw7N1s1nx9yvPOfoRz+qwI5KkWrXhtNOg/HjYehQz6V75hn42c+8on1ubrp7KCIiVZyCrooQv8h1OUelOneGxjlr2EwjGDlSoyyp1rw5/OpXPsXYtSts2OC5X5dfDu++qxITIiJSZgq6KkIFJNFHdekCXzc7jKlnTITTTy/39aSMevTwIqo33OB5dStXwp//7Itoz5mj4EtEREotqTldNUYFJNFHRS+xYEltyK5d7utJOZjB4Yf7epfTpsFTT/k6mLfe6qNgZ5wB/fsr505ERBKika6KUAFJ9ABs2cKBX79End3bWLBAgymVRq1aMGoU/O1vcMEF0LixB1+33ebrO86apQ9LRERKpKCrvDZuhHXrPPeqTZvyXWvKFJq++ChnrbqbjRvhyy8rpotSQerWhZNOgkcfhQsvhCZNYMECL7Z65ZU+GrZrV7p7KSIilZSCrvKKjnJ17ly+aaacHJjsZSIyTzwegOnTy989SYI6deAnP/Hg62c/87UdlyyB++6Diy6C55+HrVvT3UsREalkFHSVVzSfa//9y3ed11/3UbMuXehxVm8A3ntPK9NUarVrex21Rx+Fa6+FTp1g/Xp4/HE47zwvP7F0aUlXERGRGkKJ9OU1O1JEv1u3sl8jLw9efNGPTz2Vzl2MNm1gxQr47DPo06fcvZRkqlXL66kdeSR8/LF/lnPn+jJO//mPL7B93HGekJ+Zme7eiohImijoKo81a+CLL3zEY+DAsl9nxgwvSdC6NRx2GGZen/OZZ3yKUUFXFWHmSzYdcogvK/Cf/8Cbb/p6jp9+6oVzR46Eo46CFi3S3VsREUkxTS+Wxzvv+H7gQKhXr2zXCMFzgMCTtDP8Ixk61E/NmKFi6FVSp05wxRU+1XjxxV7ra906ePppz/u6+WaPqHNy0t1TERFJEY10lcfbb/t+2LDyXef002HqVBgxYs+p9u2hY0dYvNhnrAYMKN9bSJpkZ8MJJ8Dxx/tc8dSpHknPnetbdrZH2MOGwcEHq+aXiEg1pqCrrJYu9TsXs7OhX7+yX8cMBg/2rYChQ+Ef//ABNQVdVZyZ53b16uXrdE6f7iUm5s+HV1/1bd99PfgaNswjbgVgIiLVioKusorWczjsMMjKKts1du0q9rVDhnjQNXOmz0LVVoH66qFBA/jxj31btMhHTN96y3MEn3/et/bt/b+tww4rfzkSERGpFBR0lUUI5Z9aDMHX9evQwaucN2y4V5PWrX21mfnz/SbJww4rR5+lcurUybdzzoGvvvLg6913fST12Wd9a9UqFoAdcIACMBGRKkpBV1ksWOB3GzZtCj17lu0ab7wB33wDa9fCJZcU2WzIEA+63nlHQVe1ZuY5XQcf7In3n3/uhdpmzoTvv4d//cu3xo19vceBA/221vr1091zERFJkIKusoiOcg0Zsuduw1LZsQOeeMKPzzvPl5cpwhFHwIQJ8MEH/rJimkp1UauWB1R9+sBll/kI2IwZ8P77sHq1F9J9/XVv1727l6jo29dHzDQKJiJSaSnoKq28vFipiGhdh9J67jmvXH7AATB8eLFN990XDjrIv3c/+KDsbylVVEaGB1bdu3upiaVL/T+EDz/0/yg++cS3iRN9Lci+fT1Y69ULmjdPd+9FRCSOgq7S+vxzD5hatfKgqbRWr45Vn//ZzxIamRgyxL9fp09X0FWjmXkOYIcOMGYMbN7s9USi27p1Xoz1zTe9fevW0KOHT4H37KkgTEQkzRR0lVZ0anHo0LJN5Uyc6HctDhsGBx6Y0EuOOAL+/neYMweWLYN27Ur/tlINNWzo/x0OHeo3Zixb5sHX3Lm+UsLKlb7973/evkULzxk76CDfOnYs2/S4iIiUiYKu0ti1y3NroGx3Le7e7UlZdet6LleCmjb1pf1efx3uvhv+8hdP5xHZw8zLTLRv74tw5+V5HbnPPvPtiy98lHX1ar9DEjwJ/4ADYlvXrtCsWVp/DBGR6sxCCOnuQ4n69+8fZkcXlk6nWbPg97/3hOUHHij7dTZu9LvQSmHrVvj5z72U09ixcNZZZX97qYHy8mDJEvjyS9+++soDsIKaN4f994f99ottTZsqQV9EpBTMbE4IoX/B8xovSVReHkye7MdlGeWKv/WwlAEXeOH7666D//s/mDTJqwZ061b6bkgNlZERqwn24x/7uXXrvB7JN9/AvHl+vHatb++/H3tt48YefHXs6IVaO3XyOe6yFgUWEamhFHQlatIk+PRTaNQIjjqqdK99+22v+3DzzT6KUEY9esBPfuJ5+HfdBfffrxISUg777OPboYf642he2MKFvn37re83boSPPvItKjMT2rTxpP727WP7tm0VjImIFEFBVyI+/RSeesqnWH75S781P1FffQX33gu5ufD11+UKugDOPttzpRct8jju8svLdTmRmPi8sGgpkxBg1Sr/D27RIvjuO1+FfcUKL1+xdOne12jRwkfC2rb1rU0b35o3V+K+iNRoCrpKsn493HGHf/mcfrrXQUrUypWeA5abC8cf71s5ZWXBL34B117rayQPGlS+9bZFimXm5VFatYqNiAHs3OmjYkuWeOC1ZIlv33/vQdqqVX67bbxatTwga93at5Yt82/Z2an92UREUkxBV3F274Y774QNG7zY5JlnJv7aLVvgd7+DTZs8KrroogrrVqdOPuI1caIPov3mN8rvkhSrUyeWaB8vN9f/sbF8eWxbscLPrV/vxytWFH7N7GyvBlxwi06D7rOPVn0XkSpNQVdxnn7ab7dv0sSnFROdGsnJgT/+0b9wOnWC66/3HJgK9JOfeIrNJ5/Ar38Np53mA3EqJSFpVatWbIqyoJ07fSQsWj9s9erYqNiqVX6L7tatPo1ZlEaNPPhq1sy3pk39cdOmvjVp4puSHUWkEtJXdFE++MCT583gV7/yP+iJWrHCK9c3bQq33AL16lV49zIy/NL//Kcn1j/zDMye7VOPKp4qlVKdOn4HZMeOez8Xgo8Kr13rdVHit3Xr/Pz69d5m0ybPLStO3bqxAKxxYw/W4o+jW8OGvq9XT2UxRCTpVKeroDVr4PHHY5Xnf/pTH0IqSU5O/qmPl1/2pVe6dElOP+N8/jncc48PHNSuDeecA8cco3/sSzUTgk/1r10LP/zgQVh0v369P7dhg5/btat0187MhAYNPAhr2DB2nJ3tx9F9gwZeVDY727f69X2r4JFsEanaiqrTpaAravt2eP55eOklD6CysuCkkzzoKulfwLNnw7hxcOmlntmeBtu2wd/+5lXrwQcVBg70dRv79VMqjNQgIfj/EBs2eLmLwrbNm33ELLrfsaN871m3rgdf9erF9tHjunVjj+vVi61KET1fp44fR/fRY428iVRZaQm6zGwUcB+QCTwSQvhTgect8vyPgW3AeSGEjwpeJ6lBV16er033z3/6H2nwtezOPdfvtCrqNd9841OQH34Yy0EZNMiz2tNo5kx44QWvdRlVr5537YADYrM7ZajPKlJ95eT4zS9btnggFt1v3erH0f2WLR7Qbd2af5+Mv6O1a3vwFd1q185/Lvo4fsvK2vs4K6v4rVatwvcK+kTKLOVBl5llAt8ARwPLgA+BM0IIX8a1+THwczzoGgTcF0LYa6goqUHXDz/AxRf7v3S7dfO7DOMXot650/d16vh+yhSv2bVxY6xN/fq+Ns/o0ZVmmmH1anjnHd8WLtz7+caNvZ5l8+ae6hLNQW7a1GdNov8gj/7jXOWVRIoQgv+d2LYt/7Z9+97bjh2xffR4504/ju537PAgMN0yMjwAK7hlZhb+uOA++vrMzL23jIyiz2Vk5D8u7FxRx2axc/FbwfPxjws7Nst/XNi5+E2kgHQsAzQQWBBC+DbSgWeAE4Ev49qcCDwRPPJ738yamFnrEMLKJPYrv6ZN4fzzfbSreXPPSI/+0dy40Ue/fv5zGDnS29ep4+dbtvT5u4EDvVR8JbttsEULOOUU31as8JJJS5b4oNzixf4jfPZZ4terVWvvfzTH/z2N/o2N/ztY8O8ZFP73Kvo3q+BxVHHnCh4XVNRzhZ2v6L+dqfpbrL/56WZA3ciWwILhWZGtYTFtQiAjN4fM3J1k7o7sd+3wc7tz8j2X71xkn7F7Fxm7d/njyHHG7l2x5/Jy85+Pe2x5u8nYvQvIA3IimxTLjGBGsAzA9jyGAvtCz/kfx+i5fMdx19nrPJbvvfdqU8hzhT0PFHItim4Tfy7fH5+S2+/9mtjrijqf77UUbFPSteOuE6fNpaPpeMyBhbRNvmRGCm2B+HLVy/DRrJLatAVSF3SBr0X3xBOwYMHez9Wq5VMIUYce6vlb7dtXmW+7aEHwqBA8F3npUh/o++GHWP7xhg35/5G+bZv/wzs31zcRSQUD6kS2CrxkNOArSQhkkEdGXi61wi4ywm4yQy6ZIZeMvFwy2e37kLvnufh9wXMW8vw8u8kM/toM8uLO55ERcskIkXPsJiPyXPzjgsdGXqwdYc/1PCTJy9fOIj9T/OM9bcgDICPkAWHPOW8TYudCXuRXmRd5v+hMUYhseRX3edUwiXybVtQ37sajD6ugK5VeMoOuwn4/BecyE2mTGpdd5sMw8cmwDRp4DaD44Cp611IVZharO5mIEPxmsPgtJ8drx+bm+j4vz/fR44Ib+D6E4rf494zfF3Wu4HMlnSvufFnbVfRrRdLP8FTcTCo08KsEouFRxV3Q/3hFAzLyYsHZnucIe/4QGiH/a+L++O15LvLagtcp+HriA78i20QeR9sUaFtY+736UvC18W0Sfa7g76yo9kU8X2y7wq7tD/Z+Hmg5NH3VxJMZdC0D4isktgMKlqJOpE1qDBuWlretCsxiubkiIhIvOl2nxFcpWTL/K/kQ6Gpmnc2sNjAWmFygzWTgHHOHAhtTms8lIiIikiJJG+kKIeSa2ZXAf/Ex6gkhhC/M7NLI8+OBKfidiwvwkhHnJ6s/IiIiIumU1FvuQghT8MAq/tz4uOMAXJHMPoiIiIhUBpqEFhEREUkBBV0iIiIiKaCgS0RERCQFFHSJiIiIpEBSF7yuKGa2Blic7n6IiIiIJKBjCGGvEuRVIugSERERqeo0vSgiIiKSAgq6RERERFJAQRdgZqPMbJ6ZLTCzG9Ldn5rKzNqb2Ztm9pWZfWFmV0fONzOz/5nZ/Mi+abr7WhOZWaaZfWxmr0Qe63OpBMysiZk9b2ZfR/7fGazPJv3M7NrI37HPzexpM6urzyU9zGyCma02s8/jzhX5WZjZjZF4YJ6ZHVORfanxQZeZZQLjgGOBg4EzzOzg9PaqxsoFfhFCOAg4FLgi8lncALweQugKvB55LKl3NfBV3GN9LpXDfcBrIYQDgd74Z6TPJo3MrC1wFdA/hNADXwpvLPpc0uUxYFSBc4V+FpHvnLFA98hrHorECRWixgddwEBgQQjh2xBCDvAMcGKa+1QjhRBWhhA+ihxvxr882uKfx+ORZo8DP0lLB2swM2sHHAc8Endan0uamVkjYCjwKEAIISeEsAF9NpVBLaCemdUC6gMr0OeSFiGE6cD6AqeL+ixOBJ4JIewMIXyHrw09sKL6oqDLv9SXxj1eFjknaWRmnYC+wCygZQhhJXhgBrRIY9dqqnuBXwN5cef0uaRfF2ANMDEy9fuImWWjzyatQgjLgTuBJcBKYGMIYSr6XCqToj6LpMYECrrACjmnOhppZGYNgBeAa0IIm9Ldn5rOzI4HVocQ5qS7L7KXWsAhwMMhhL7AVjRllXaR/KATgc5AGyDbzH6a3l5JgpIaEyjo8ii2fdzjdvgwsKSBmWXhAdeTIYR/RU6vMrPWkedbA6vT1b8a6nBgtJktwqfff2Rm/0SfS2WwDFgWQpgVefw8HoTps0mvo4DvQghrQgi7gH8Bh6HPpTIp6rNIakygoAs+BLqaWWczq40n0E1Oc59qJDMzPDflqxDC3XFPTQbOjRyfC7yc6r7VZCGEG0MI7UIInfD/P94IIfwUfS5pF0L4HlhqZt0ip0YAX6LPJt2WAIeaWf3I37UReI6qPpfKo6jPYjIw1szqmFlnoCvwQUW9qSrSA2b2YzxnJROYEEK4Pb09qpnM7AjgHeAzYrlD/4fndU0COuB/zE4NIRRMipQUMLPhwC9DCMeb2T7oc0k7M+uD3+BQG/gWOB//B7U+mzQys98Bp+N3ZX8MXAQ0QJ9LypnZ08BwoDmwCrgFeIkiPgszuwm4AP/srgkhvFphfVHQJSIiIpJ8ml4UERERSQEFXSIiIiIpoKBLREREJAUUdImIiIikgIIuERERkRRQ0CUiaWdm+5jZ3Mj2vZktjxxvMbOHkvSe15jZOYWc72Rmn1fg+9Q2s+mRNfhEpAbTHwERSbsQwjqgD4CZ3QpsCSHcmaz3iwRAF+DV25MqhJBjZq/jNZueTPb7iUjlpZEuEam0zGy4mb0SOb7VzB43s6lmtsjMTjazv5jZZ2b2WmQJKcysn5m9bWZzzOy/0aU+CvgR8FEIITfuNZ+Y2Uzgirj372Rm75jZR5HtsMj5f5jZiXHtnjSz0WbW3cw+iIzSfWpmXSNNXgLOSsbvSESqDgVdIlKV7Acchy8m/E/gzRBCT2A7cFwk8HoAGBNC6AdMAApbYeJwIH4B74nAVSGEwQXarQaODiEcgo9U3R85/whe+R0za4yvqzcFuBS4L4TQB+iPr+MG8DkwoIw/s4hUE5peFJGq5NUQwi4z+wxftuu1yPnPgE5AN6AH8D9f8o5MYGUh12mNr4UXDZqahBDejjz3D+DYyHEW8GBkqZ3dwAEAIYS3zWycmbUATgZeCCHkRkbKbjKzdsC/QgjzI+13m1mOmTUMIWyuoN+FiFQxCrpEpCrZCRBCyDOzXSG2jlke/vfMgC8KGbEqaDtQN3JsQFHroV2Lr9XWG58Z2BH33D/wKcOxeH4YIYSnzGwWPhr3XzO7KITwRqR9nQKvF5EaRtOLIlKdzAP2NbPBAGaWZWbdC2n3FbA/QAhhA7AxsuA65M+9agysDCHkAWfjI2dRjwHXRK7xReT9ugDfhhDuByYDvSLn9wHWhBB2lf9HFJGqSkGXiFQbIYQcYAzwZzP7BJiL51sV9CowNO7x+cC4yPTg9rjzDwHnmtn7+NTi1rj3WoUHbxPj2p8OfG5mc4EDgSci54/Ec75EpAaz2Oi8iEjNYWYvAr+O5l2V4fX18VyyQ0IIG0to+y/gxhDCvLK8l4hUDxrpEpGa6gY8ob7UzOwo4GvggQQCrtrASwq4REQjXSIiIiIpoJEuERERkRRQ0CUiIiKSAgq6RERERFJAQZeIiIhICijoEhEREUkBBV0iIiIiKfD/AX20+DpRQz2xAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABMUUlEQVR4nO3deXyU1fXH8c/JxhZ2xAqIYIvIHgTcUdyxKoriVvflZ61atbVW7aLW1rY/t5/iRlvBpVVxR2pRqUrdRUDRCoKAoqwiIpCwJ7m/P84MMwmTZAKZJcn3/Xo9r3nmmTvP3MlA5uTe85xrIQREREREJLVyMt0BERERkcZAQZeIiIhIGijoEhEREUkDBV0iIiIiaaCgS0RERCQNFHSJiIiIpEFepjuQjA4dOoRu3bpluhsiIiIiNZoxY8bKEMJOlY/Xi6CrW7duTJ8+PdPdEBEREamRmX2Z6LimF0VERETSQEGXiIiISBoo6BIRERFJAwVdIiIiImmQsqDLzMaZ2Qoz+6SKx83MRpvZfDP72Mz2SlVfRERERDItlSNdDwHDq3n8aKBHZLsIuD+FfRERERHJqJSVjAghvGFm3appcjzwSAghAO+ZWRsz2yWEsCxVfRIREck6ISTeoo/l50NOZIxk82bYsgXKyys+F7xNy5ax865aVbFd/G1hITRv7vvr18Pq1bHH4vsF0LkzmPn+8uWwaVPFtvHn3GmnWD8XLdr2daO6dIFmzXx/xQrva+XzATRpArvvHrv/6afbvqeoXXaB9u19/7vv/PUr69oV2rTZ9niaZLJOV2cg/ieyOHJMQZeISDYrKYGyMigt3fa2XTto3drbrVoFX30Ve7yszL8wo/cPPTT2Zf7WW/Dtt7E28e133x3239/bffstPPWUH0+0/ehH0KmTt33pJZg2zY+HEDtfCNCxI1x5Zew9/eIX3q8QYueK7p96KhxySKyf48bFHovegt8+8gjkRb5af/MbmDs3FhjFtzv0ULjiCr//5Zfw059W/fO+5Rbo1cv3x42Df/0rcbuuXeHee2P3L7jA31MiF10Exx3n++++C3feWfXrP/usB34At98Oc+YkbnfYYbGf6dKlFX++lcW/p+eegxdeSNyu8nv61a+Se08ffJD4PV1zDRx4YNX9SrFMBl2W4FhIcCzl5s71gPjwwzPx6iIiVQjBRww2bfIRjGiAsnAhFBf7Y9GRj+h+p05QVOTtVq3yL8wtW7bdSkvhwgth11297ZNPwmuv+fH4bcsWH5W4665Yv8480wOYROK/+D78sPov84MOin2ZP/981V/mhx4aC7pKSqoOOgCOOSYWdH31Fbz/fuJ20fcdtWBB1V/mJSWx/U2b4Jtvqn79aGAVbbtxY83tzLbdKh+PatIEWrSo+Hh0v7Cw4mu0a+fvqfI5zGKjXOAjTrvsEnss/ray733PR8Yqvz7ERpmi/YyOUFV+PwBNm8baduwIPXtWfJ1ou+99r+LxXr0q/tur6vXbtIG+fbd9P9E/CDIkk0HXYiD+X30XYGm6O7FiBVx3nX+GHTtC//7p7oGI1HulpbBhg29lZbEvMIApU2KPbdxYcTv4YBg82NtNnQoPPujHN22KBVFRzzwDBQW+f999Ps2SyLBhsaBr3ToPZqqyZk0s+Fi7FpYsSdxu06aK91u39veclwe5uRVv47/427eHAQP8eE5OrF1Ojt/GO/BA/+KNPpaTE9vv3j3Wrl07D+zi2+Tk+JdqTk4s4AI48kh//cptcnJiU1tRt9wSezwaHOTm+m38dNQBB0C/fhXbRZ8HsSAS4Pe/98A5UbvoLcBuu8HEiYl/9pWdd55vyRg7Nrl2++8fC2prctVVybXbZZeKgXp1Ro70LRl//GNy7QYN8i3LZDLomghcZmbjgX2ANZnI5+rYEY4/Hp5+Gv78Z7jjjm0DaxFpBEpLfci7pMS3det8Kynxv+zjR1Cee86nrtat82AqPjjq1An+8pfY/fvv9zaJ7LZbLOjasiVx0FNQ4KMGW7bEgq7dd/eAID/fj0W3/PyKIwZt2/oUU37+tltenr9+1IknwlFHxR6L3kaDqXgPP5zcz7SoKBYA1uT445Nr17JlbCStJt26+ZaMHj2Sa9e0acVRmpraisRJWdBlZo8Dw4AOZrYYuAHIBwghjAEmAT8E5gPrgSRD97p31lk+pT5tGvzhD3Drrdv+ESQi9UAIHiA1bx6bTpg2zaeZ1q6NbcXFHkz16QOXXurtvv0WLr+86nMPHBgLutav95yVqOh0TbNmPhIT79BDfSqpaVN/vGlTD6KaNYMf/KDi+e+/3x+LbgUFiad5Lr44uZ9HYSGccEJybdu127bvIlKnUnn14uk1PB6AS1P1+rWRk+Mjpr/4hQdfd9zhuXpVTWmLSJpt3OjTdtFclqVL4ZVX/Aql1av9ds0a3y8thYceiuV3TJ4M772X+LzxQUZhoY/8FBb61qJF7AqvwkLPa4r64Q99Gq9ZM3+8SZOqf2EkGyC1aBF7fyLSIGVyejGrtGjhF5pcdZX/fn7sMTjjjEz3SqSRmTIFFi/2UaeVK/121SofWRo5Es4/39t9951fwZZI06Y+7RcNuvbZx/NLWrXyrWVL31q1qphU26IF3HNPcv1s29Y3EZFaUNAVp3Nn+OUv4cYbYfx4/6M3g1eWijQMGzZ4IPX117FtxQrfVq+Gf/wjllQ8cSLMn7/tOfLyKl5Z1rmz/1XUtq0nObdp4/utW/uoUzxdliwiWUJBVyV77eV/TI8d61c69+2b0TpqItkvBB95WrrUt2XL/OquvSIre02d6rV9qvLdd7FRqcMPh733hg4d/Fj79j4FWFhYcfquTRs47bSUvSURkVRQ0JXA8cd7aZf//hc+/thLyYg0emVlFS/zv+8+mDfPr7irfHVeaWks6Orc2S/533nn2Naxo2877VQxj+mYY1L/PkREMkRBVwJmfiHRf/8Ls2Yp6JJGprzcl/pYuNCvLFm40K/+W7kSnngiNhX4+eexqcDCQg+uOnXyrW/f2Pl69IDRo9P9LkREso6CripEVyeoqv6gSIMQX+0cfCrwllsq1p2KMvPAq2NHv3/eeR6AdelScb03ERFJSEFXFfbYw3N3Fy70C6F0JbfUe6Wl8MUXPiX42Wc+SrVokReavPBCb7PTTh5wtW8fKyy5226+dekSK84JXuNKRESSpqCrCgUF8P3v+7qMc+fG0lNE6qU77oA339x2bbmcnIrrynXr5vVSNHIlIlLnFHRVo3dvD7g+/VRBl2S5EDz/6pNPPBFxzhxfoyy6BmCzZh5wde7sw7g9evht9+4VR69ychRwiYikiIKuavTu7UuszZ6d6Z6IJLBhg1dbjwZaxcUVH587NxZ0nX46nH225slFRDJIQVc1osn0c+f6IEHlNV9F0uqbb7wO1oABfj8nx5e7iU4ZdujgVw326eNb/LI1KjYnIpJxCiOq0bq1z8YsWeL5x8kuQi9SJ0pLfQRr+nTfFi/2karHHvOAq0kTr8repo0HWzvvrAVDRUSymIKuGvTq5UHX7NkKuiRNFizwdahmzvSFnqOaNfPgqrg4tmbgqFEZ6aKIiNSegq4a9O4Nr7ziQdfxx2e6N9IgLV/ugVQ0qs/J8VXXwUs1DB7s2557ao5bRKQe02/wGvTu7beffuoXiGn2RurE8uVewuHNN33uumdPuO02f6xbN7jySujf3+tmiYhIg6CgqwadOkGrVr4m7/LlsYvBRGrt22/hjTc80Jo3L3a8WTPPx4qubWgGhx2WuX6KiEhKKOiqgZnndU2d6qNdCrpku330EYwb5/tNm8I++8DQoV4ELj8/s30TEZGUU9CVhD59YkHXoYdmujeS9UKAjz+GV1/1KwvPP9+P778/zJgBBxzgOVrxRUlFRKTBU9CVhGi9rlmzMtsPyXKrV/tVF5Mnw7Jlfqyw0IuS5uX56NbVV2e0iyIikjkKupLw/e/7oMSiRX6RmVZJkQq++goef9yvOIwvVHr44T40qisORUQEBV1Jyc/3q/mjS9oNGZLpHklW2bIF3nrLEwD33huGD4dBg7z0g4iISISCriT17u1B1+zZCroatZUr4V//8uV4rrvOj33/+/CTn3jA1aFDZvsnIiJZS0FXkqJ5XVr8upH66it4+ml4/XUoL/djixbBrrv6/g9/mLm+iYhIvaCgK0nRoGvePJ9N0hX+jcTcufDUU375KviU4dChvjxBNOASERFJgoKuJBUWQteuPuAxf34sCJMGbN06+PWvYdMmv5LiiCPgxBOhY8dM90xEROohBV210K2bB13LlinoarDmzoUf/MArw7doASNHeqX4ESO85paIiMh2UtBVC+3a+e1332W2H5IC8+bBo4968dIrr4wtw3PGGRntloiINBwKumpBQVcDtHQpPPwwvPOO32/aFDZsyGyfRESkQVLQVQvR2SUFXQ1AcTGMH+/lH8rKPGfruOM8Z6tVq0z3TkREGiAFXbWgka4G5M03YeJEL2h6xBFw5pmxD1hERCQFFHTVQtu2frtqVWb7Idtp5cpY8dIjj/TLUEeM8CskREREUiyl65SY2XAzm2tm883s2gSPtzazf5rZR2Y2y8zOS2V/dlQ06Fq9OqPdkNpasQJuvhkuvTQ2TJmXB5dfroBLRETSJmVBl5nlAvcCRwO9gdPNrHelZpcCs0MIA4BhwO1mVpCqPu2owkL/rl63DjZvznRvpEalpV5F/ic/8cWoy8thwYJM90pERBqpVE4v7g3MDyF8DmBm44HjgfiFdALQ0swMKARWAaUp7NMOMfNk+pUrfcBk550z3SOp0pw5MHq0L9UDcOCBcMEFWhtRREQyJpVBV2dgUdz9xcA+ldrcA0wElgItgVNDCOUp7NMOa9dOQVfWe/55GDsWQoDOneHii6GoKNO9EhGRRi6VQZclOBYq3T8KmAkcCnwf+LeZvRlCWJvCfu0QJdPXA716eUX5kSPhtNO8HISIiEiGpTKRfjEQvyJwF3xEK955wLPBzQe+APZMYZ922A4l04fgm9StjRvhtddi9/fYw0e6zj5bAZeIiGSNVI50TQN6mFl3YAlwGvCjSm2+Ag4D3jSznYGewOcp7NMO2+6RrsWL4Wc/g+bNoXdv6NsX+vSB3XbzZDHZPvPnw223wZIlXtR08GA/rppbIiKSZVIWdIUQSs3sMuBlIBcYF0KYZWYXRx4fA/weeMjM/otPR14TQliZqj7VhWjQVesCqe+84yMyGzfCW2/5Bn5J5I9+5NXQJXkhwLPPwj/+4Vcpdu2qJHkREclqKS2OGkKYBEyqdGxM3P5S4MhU9qGubXfQNTty0ea550KLFjBrFnzyiWflP/AA9OunmlHJWrkS/u//4OOP/f5xx/nPVVOJIiKSxVSRvpa2K+gqL4dPP/X9YcOgfXsYPtxHa/7yF1//729/gz/8QVONNZkzB373Oygpgdat4corY1OKIiIiWazGRHozO8DM/m1mn5nZ52b2hZlldd5VKm1X0PXll7B+vdeYaN8+dtwMzjgDWrb0UZt33qnTvjZIXbp4XtzgwXDPPQq4RESk3khmpGss8DNgBlCW2u5kv/irF0NIcmBq1iy/7V25ID8ecJ11Ftx3n19xN3gwNGlSV91tGNau9UArL89z4G691T8IjQqKiEg9kkzJiDUhhBdDCCtCCN9Gt5T3LEvl5/v3flmZxwJJieZzJQq6AI46Crp3h2++8eRwiZk7F664AsaNix1r104Bl4iI1DvJBF1TzOxWM9vPzPaKbinvWRar1RRjCLGRrj59ErfJyYEf/9j3n37aF2gWmDwZrr3WE+fnz9eClyIiUq8lM70YXbonPnkm4FXkG6W2bX1Jv+++S+KCwxUrvKhXy5aej1SVPn3goIPgjTd8VOfaa+uyy/VLeTk8+CBMmOD3jzsOzj/fpxdFRETqqRq/xUIIh6SjI/VJrUa64qcWa5oSO+88mDoV3n7bE+v799+hftZLGzZ4zta0ab6Uz6WXwhFHZLpXIiIiOyyZqxdbm9kdZjY9st1uZq3T0blsFS12nlRV+pryueJ16ACnnOL7f/tb41wy6JFHPOBq2RJ+/3sFXCIi0mAkk9M1DigGTolsa4EHU9mpbFer9Reru3IxkRNO8OBr4cLGWULizDNhv/3g9tu9YKyIiEgDkUzQ9f0Qwg0hhM8j2++A3VPdsWzWpo3f1ji9WFzsyV8FBfCDHyR38oICOPlk3x8/vnGMdn32mS/lA16t/1e/gl12yWyfRERE6lgyQdcGMzswesfMDgA2pK5L2S/p6cXo1OIee9QuCfyII7yI6sKF8N5729PF+uP11+GXv4S7724cAaaIiDRayQRdPwHuNbOFZvYlcA9wcWq7ld2STqSvTT5XvPx8GDXK9xvyaNfEiXDbbV70LDp8KCIi0kDVGHSFEGaGEAYA/YF+IYSBIYSPUt+17FXroKuq+lzVOfJIH1L7/HN4//3aPz+bheAJ83/7m98//3y/clMFT0VEpAGrcs7LzM4MIfzDzH5e6TgAIYQ7Uty3rFVY6LOF69fDpk1VrNqzebMX9DSDPfes/YsUFPho11//Co8/Dnvv3TCCkhB8yaOXXvKisFdcAYc22pJvIiLSiFQ30tUictsywVaY4n5lNbPYbFiVVzBGk8O7d/d1A7fHUUf5sNqCBTB9+vadI9tMmOABV0EB/OY3CrhERKTRqHKkK4Twl8juKyGEt+MfiyTTN2rt2vnqNKtWwc47J2iwvflc8QoK4KST4IEHfLRr8OD6P9p19NHw4Yf+vgYMyHRvRERE0iaZRPq7kzzWqNSY17Uj+Vzxhg/3YbV582DGjB07V6aUl3uyPEDTpvC73yngEhGRRqe6nK79gP2BnSrldbUCclPdsWxXbdBVXg6ffur7vXrt2As1aQInnujrMT7+OAwaVL9Gu8rL4c47far1qqt8aZ/61H8REZE6Ut1IVwGeu5VHxXyutcCo1Hctu1UbdC1c6Fn2O+/s9bZ21NFHQ+vWnif2wQc7fr50CcEDrilTfGmfJUsy3SMREZGMqS6n63XgdTN7KITwZRr7VC9UG3TNmeO3O5LPFa9pU8+Bio527bVX9o8WheBXXk6ZEptS7No1070SERHJmGRyutab2a1mNsnMXotuKe9Zlqs26Fq50m87d667F4yOds2dWz9Gux57DF54wWtr/Pa3dReAioiI1FPJBF2PAnOA7sDvgIXAtBT2qV6oNuiKHow2qgvR0S7wgCabq9Q//7xX0jeDa66B/v0z3SMREZGMSyboah9CGAtsCSG8HkI4H9g3xf3KetF4KuH6i6kIuqBible2XslYVgbvvOP7V1wB+zb6fyoiIiJAckHXlsjtMjM7xswGAl1S2Kd6IRpPrV6dYNApGnTV9XqC9WG0KzcXbroJfvUrOOywTPdGREQkayQTdP3BzFoDVwG/AB4AfpbSXtUD+fm+HFB5OaxdW+nBaJn6uh7pgthoV7bV7Vq2zH8Y4GUu9tsvs/0RERHJMskseP1CCGFNCOGTEMIhIYRBIYSJ6ehctkuY11VeHgu66nqkC3y0a1SkYke2jHYtXw6/+AX86U++5qSIiIhso7riqHcDVX6jhxAuT0mP6pG2bWHRIg+6unWLHCwu9sCrZUu/ci8Vjj4ann7aR7umT4chQ1LzOskoKfFyEGvXesCV2+jr5oqIiCRUXVTQQFZYTp2EyfSpSqKP16SJj3aNHZvZNRlLS310a/FijzqvuUZBl4iISBWqK476cDo7Uh+1a+e3FaYX0xF0gY92PfOMj3ZNnZr+qwRDgHvvhY8/9vd6/fXQvHl6+yAiIlKP1JjTZWZT4ouiqjhqTPwVjFulK+hq0gROOcX3H3kklsSeLk89Ba+8AgUFXvx0p53S+/oiIiL1TDJJR7+I228KnASUJnNyMxsO3IUvkP1ACOHPCdoMA+4E8oGVIYSDkzl3Nojmyad9ejFq+HCYMMETy6ZMSV+JhtJS+PBDn9K8+mro0SM9rysiIlUqKytj1apVbNmypebGUify8/Np164duUmm1tQYdIUQKtcleNvMXq/peWaWC9wLHAEsBqaZ2cQQwuy4Nm2A+4DhIYSvzKxjUr3OEhmdXgSvW3HmmXDHHfDoozB0qI88pVpeHvz+9/DJJ1BUlPrXExGRGq1atYqmTZvSoUMHLNvX520AQgiUlJSwatUqdkpytieZ6cV2cVsHMzsK+F4S594bmB9C+DyEsBkYDxxfqc2PgGdDCF9F3sCKpHqdJRKWjEhVYdSqHHywJ7F/8w28+GJqX2vz5tg0Zl6eAi4RkSyyZcsWCgsLFXCliZlRWFhYq5HFZIqjzsCvZJwBvIsXSb0gied1BhbF3V8cORZvD6Ctmf3HzGaY2dlJnDdrVBt0RYfBUi0nB86O/NiefBLWr0/N64QA//d/Xm2+uDg1ryEiIjtEAVd61fbnnUxx1O4hhN0jtz1CCEeGEN5Kpi+JTlfpfh4wCDgGOAr4rZntkcS5s0JhoQ/4rF8PmzZFDqZzejFq8GDo1ctrZT33XGpeY8IEeOstmD07QQl+ERERd/PNN9OnTx/69+9PUVERU6dOzUg/Zs6cyaRJk7benzhxIn/+s6eWn3vuuTz99NPbPOc///kPxx57bMr6lMz0YlMz+7mZPWtmz5jZz8ysaRLnXgzsGne/C7A0QZuXQgjrQggrgTeAAcl2PtPMYrOIW0e7MhF0mcG55/r+hAmwZk3dnv/jj+HBB33/5z+HzpUHLEVERODdd9/lhRde4IMPPuDjjz/mlVdeYdddd635iSlQOegaMWIE1157bUb6EpXM9OIjQB/gbuAeoBfw9ySeNw3oYWbdzawAOA2ovHzQ88BQM8szs+bAPsCnyXY+G1RIpt+8Gdat8+GvwsL0dqR3b69Mv3EjPPFE3Z135Ur43//16cVTTkl/PTAREak3li1bRocOHWjSpAkAHTp0oFOnTnTr1o2VK1cCMH36dIYNGwbA66+/TlFREUVFRQwcOJDiSPrKLbfcQr9+/RgwYMDWQGnBggUMHz6cQYMGMXToUObMmQP4qNXFF1/M0KFD2WOPPXjhhRfYvHkz119/PU888QRFRUU88cQTPPTQQ1x22WVb+/rKK69UeE5l69at4/zzz2fIkCEMHDiQ559/fod/PsmUjOgZQogffZpiZh/V9KQQQqmZXQa8jJeMGBdCmGVmF0ceHxNC+NTMXgI+BsrxshKf1P5tZE6FvK74NRczMa9+9tm+LNCLL8Lxx8POO+/Y+crL4fbbfTpx4EA444y66aeIiKTUccel5rz//Gf1jx955JHcdNNN7LHHHhx++OGceuqpHHxw1ZWgbrvtNu69914OOOAASkpKaNq0KS+++CITJkxg6tSpNG/enFWRukwXXXQRY8aMoUePHkydOpVLLrmE117zsqELFy7k9ddfZ8GCBRxyyCHMnz+fm266ienTp3PPPfcA8NBDD1V47UTPiXfzzTdz6KGHMm7cOFavXs3ee+/N4YcfTosWLWr5U4tJJuj60Mz2DSG8B2Bm+wBvJ3PyEMIkYFKlY2Mq3b8VuDW57mafCksBZWJqMV63bjBsmNfseughX5ZnR/z7314Wom1buOoqT9oXERGpQmFhITNmzODNN99kypQpnHrqqVvzqBI54IAD+PnPf84ZZ5zBiSeeSJcuXXjllVc477zzaB5Z5aRdu3aUlJTwzjvvcPLJJ2997qatydRwyimnkJOTQ48ePdh99923joJVp6bnTJ48mYkTJ3LbbbcBsHHjRr766it69epVq59JvGSCrn2As83sq8j9rsCnZvZfIIQQ+m/3qzcArVv77dq1VBzpypSzz4a33/ak92OOgb59t/9chx0Gy5fDgAGxNyoiIlmvphGpVMrNzWXYsGEMGzaMfv368fDDD5OXl0d5pOTQxo0bt7a99tprOeaYY5g0aRL77rsvr7zyCiGEba4KLC8vp02bNsycOTPha1Zun8xVhTU9J4TAM888Q8+ePWs8V7KSGboYDnQHDo5s3YEfAscCKRrArD+isciaNWR+pAugQwc46STf/9vfdmx5oLw8OOcc1eMSEZGkzJ07l3nz5m29P3PmTHbbbTe6devGjBlea/2ZZ57Z+viCBQvo168f11xzDYMHD2bOnDkceeSRjBs3jvWREkirVq2iVatWdO/enaeeegrwgOijj2KZTk899RTl5eUsWLCAzz//nJ49e9KyZcutOWKJJHpOvKOOOoq7776bELzwwocffriDP53kSkZ8CbTBA6zjgDYhhC+j2w73oJ6rMNKVDUEXeNDVoQN8/jm8+mrtnhsCPPusykKIiEitlZSUcM4559C7d2/69+/P7NmzufHGG7nhhhu44oorGDp0aIUlc+6880769u3LgAEDaNasGUcffTTDhw9nxIgRDB48mKKioq3Te48++ihjx45lwIAB9OnTp0Jie8+ePTn44IM5+uijGTNmDE2bNuWQQw5h9uzZWxPpK0v0nHi//e1v2bJlC/3796dv37789re/3eGfj0UjuCobmF0B/A/wbOTQSOCvIYS7d/jVkzR48OAwffr0dL1crcyc6es99+sHf+xynyexX3yxT+1l0n/+40nwbdrAX/8KzZol97yXXoJ774UuXfxWeVwiIvXC0qVL6dSpU6a7kXbnnnsuxx57LKNGjcrI6yf6uZvZjBDC4Mptk/lGvQDYJ4RwfQjhemBfPAgToFUrv82qkS7w5YF69vQ8syefTO45ixb5lCTA6acr4BIREalDyXyrGlAWd7+MxNXmG6Wsy+mKMoP/icTGEybA119X376szJf52bwZDj0UDjoo5V0UERHZUQ899FDGRrlqK5mg60FgqpndaGa/A94Dxqa2W/VH/EhXWJXmxa5r0rMnHHIIlJbCuHHVt33uOZg3z3PBLrooPf0TERFpRJJJpL8DOA9YBXwLnBdCuDPF/ao38vM9Xaq8LFD27Wo/mA0jXVFnnw1NmsA77/hyPol89RU8+qjvX3457EDhNxEREUmsNkk7hi9YranFSlq3hiZl69myfjM0bepbtujQAaLDrvff76Nelc2c6cePOsorz4uIiEidS2bB6+uBh4G2QAfgQTP7Tao7Vp+0bg0ttqz2eCabRrmiTjrJF6levNjLQVQ2YgT86U9w/vnp75uIiEgjkcxI1+nAkBDCjSGEG/CrF7UIX5xWraBwy3eUbiE7g678fLjkEt9/4glYtmzbNn37QmTJBRERke1RWFhYY5s333yTPn36UFRUxIYNG2p1/gkTJjB79uyU9Csdkgm6FgLx82VNgAUp6U09tTXoytaRLoD+/T2pfvNmGDMGtmyBP/6x6jwvERGRFHj00Uf5xS9+wcyZM2mWbA3JiO0NurJFMkHXJmCWmT1kZg8CnwAlZjbazEantnv1Q+vWHnRt2QK0a5fp7lTtggs8Sf6DD3w68d13YfToxHleIiIi2+k///kPw4YNY9SoUey5556cccYZhBB44IEHePLJJ7nppps44wyfNLv11lsZMmQI/fv354Ybbth6jkceeYT+/fszYMAAzjrrLN555x0mTpzI1VdfTVFREQsWLGDBggUMHz6cQYMGMXTo0K2LVn/xxRfst99+DBkypE4qydeVZBa8fi6yRf0nNV2pv1q3htVbvqM0kD3lIhJp3RrOPdcr1Y8dC336wE9/6mssiohIw3FcipZGrsVK2h9++CGzZs2iU6dOHHDAAbz99ttceOGFvPXWW1sryE+ePJl58+bx/vvvE0JgxIgRvPHGG7Rv356bb76Zt99+mw4dOrBq1SratWvHiBEjKlSfP+ywwxgzZgw9evRg6tSpXHLJJbz22mtcccUV/OQnP+Hss8/m3nvvTc3PYjvU+G0bQng4HR2pz6LTi1sge6cXo448Em66CTZu9FGvAQMy3SMREWmA9t57b7p06QJAUVERCxcu5MADD6zQZvLkyUyePJmBkSvnS0pKmDdvHh999BGjRo2iQ4cOALRLMItUUlLCO++8w8knn7z12KZNmwB4++23ty6sfdZZZ3HNNdfU/RvcDhriqAPR6cVSI/uDrnff9cJieXlQUuIFUXv0yHSvRESkLtViRCpVmjRpsnU/NzeX0gSpLCEErrvuOn784x9XOD569GjMqq9QVV5eTps2bZg5c2bCx2t6fiZocb06kPVXL0atX++LXzdvDqee6oHXXXd5Ur2IiEiaHXXUUYwbN46SkhIAlixZwooVKzjssMN48skn+fbbbwFYtWoVAC1btqS4uBiAVq1a0b17d5566inAA7iPPvoIgAMOOIDx48cDnrifLaoMuszs75HbK9LXnfppayJ9Nl+9CLBkCZSX+/JAf/wjdOoEX34JkX+YIiIi6XTkkUfyox/9iP32249+/foxatQoiouL6dOnD7/+9a85+OCDGTBgAD//+c8BOO2007j11lsZOHAgCxYs4NFHH2Xs2LEMGDCAPn368PzzzwNw1113ce+99zJkyBDWrFmTybdYgYUQEj9gNhs4GpgIDKNSJfoQwqpUdy5q8ODBYfr06el6uVpbX1LOf39wAjk5MOSrZ7M7MX3dOiguhu99Dz79FKLz3LffrmlGEZF6bOnSpXTq1CnT3Wh0Ev3czWxGCGFw5bbVTS+OAV4C9gRmVNqyNwLKgGab15BDoCSnFZvKsjjgAk+e/973fL9XLzjhBAgB/u//vIaXiIiIpESVQVcIYXQIoRcwLoSwewihe9y2exr7mPVs9Xfk50NJfluyaBQz5uWXfUHrREHVmWf6EkGLFsFjj6W/byIiIo1EjYn0IYSfmNkAM7sssvVPR8fqle++Iy8P1uW3yb6gq6QEHn7Y87Y+/HDbxwsK4Gc/AzNflzFSWE5ERETqVjILXl8OPAp0jGyPmtlPU92xemX1avIiI11r12a6M5WMH+85XP36wd57J27Ts6cvih0C3HmnphlFRERSIJmSERcC+4QQrg8hXI8veP0/qe1WPRMZ6cq6oGvJEnjhBR/FuvBCv63K6afDrrv6cx5WPVwREZG6lkzQZUBZ3P0yKl3J2Oh99x35ebAu23K6xo6FsjI44gjYvYY0vOg0Y24uTJwIWXy1qIiISH2UTND1IDDVzG40sxuB94CxKe1VffPdd9k3vThzJkyb5tXnzzoruef06OGJ9eDTjKvSVhVEREQagNzcXIqKiujbty/HHXccq1evznSXau3GG2/ktttuS8m5k0mkvwM4D1gFfAecF0K4MyW9qa8iI11ZdfXiO+/47Smn1G4R7pNOgqIiWLMG7rjD87xERESS0KxZM2bOnMknn3xCu3btsmax6RAC5eXlme5GcssAhRA+iJSQuCuEkOASuEYubqQra4Kun/wErr8eRoyo3fPMfJqxdWv46COILBgqIiJSG/vttx9LliwBYMGCBQwfPpxBgwYxdOhQ5kSulP/6668ZOXIkAwYMYMCAAbwTGTC444476Nu3L3379uXOO+8E4JprruG+++7bev4bb7yR22+/HYBbb72VIUOG0L9/f2644QYAFi5cSK9evbjkkkvYa6+9WLRoUcJ2ADfffDM9e/bk8MMPZ+7cuSn7mWR5Jc96YvXqrSUjsmZ60QyGDNm+57Zr54HXjTfC3//uVz727Fmn3RMRkRQ77riqH7v0Uhg+3PdfegmqG5HajsWzy8rKePXVV7ngggsAuOiiixgzZgw9evRg6tSpXHLJJbz22mtcfvnlHHzwwTz33HOUlZVRUlLCjBkzePDBB5k6dSohBPbZZx8OPvhgTjvtNK688kouueQSAJ588kleeuklJk+ezLx583j//fcJITBixAjeeOMNunbtyty5c3nwwQe57777qmzXokULxo8fz4cffkhpaSl77bUXgwYNqvV7ToaCrh21eTOsW0de0zw25BZmPuh69VXPzeradcfOM2iQV6ufMAFuuQVGj/Zq9iIiIlXYsGEDRUVFLFy4kEGDBnHEEUdQUlLCO++8w8knn7y13aZNmwB47bXXeOSRRwDPB2vdujVvvfUWI0eOpEXkO+fEE0/kzTff5PLLL2fFihUsXbqUb775hrZt29K1a1dGjx7N5MmTGThwIAAlJSXMmzePrl27sttuu7HvvvsCMHny5ITtiouLGTlyJM2bNwdgRG1niGpBQdeOiiQJ5nVoC2sss9OLK1f6Xyvl5fDAA9Chw46d75xz4JNPYP58uOce+OUvqy87ISIi2SPZEarhw2OjXjsomtO1Zs0ajj32WO69917OPfdc2rRpw8yZM5M6R1VrQgOMGjWKp59+muXLl3PaaadtbX/dddfx4x//uELbhQsXbg3cqmt35513Ymn6bkumOOqJZjbPzNaY2VozKzazpMZzzGy4mc01s/lmdm017YaYWZmZjapN57PCd98BkN+xLWZeAL60NEN9eeIJ2LIF9ttvxwMu8IW7r77ar4B86y0f9RIREalB69atGT16NLfddhvNmjWje/fuPPXUU4AHPx999BEAhx12GPfffz/gU5Jr167loIMOYsKECaxfv55169bx3HPPMXToUABOO+00xo8fz9NPP82oUR4yHHXUUYwbN46SkhIAlixZwooVK7bpU1XtDjroIJ577jk2bNhAcXEx/9yO6dRkJZNIfwswIoTQOoTQKoTQMoTQqqYnmVkucC9wNNAbON3MelfR7n+Bl2vX9SwRCbqsXVsKC/1Q5PNMr2XLYPJkH4mKln2oC506eX4XwIMPwscf1925RUSkwRo4cCADBgxg/PjxPProo4wdO5YBAwbQp08fnn/+eQDuuusupkyZQr9+/Rg0aBCzZs1ir7324txzz2Xvvfdmn3324cILL9w6JdinTx+Ki4vp3Lkzu+yyCwBHHnkkP/rRj9hvv/3o168fo0aNori4eJv+VNVur7324tRTT6WoqIiTTjppa4CXClbdMB6Amb0dQjig1ic22w+4MYRwVOT+dQAhhD9VanclsAUYArwQQni68rkGDx4cpmdrsc4XX4T77oPhw/nJJ5eyeLHPxO22W5r7ceut8MYbXgj18svr/vx//zs8+SS0agV33VU3I2kiIlJnli5dSqdOnTLdjUYn0c/dzGaEEAZXbpvMSNd0M3vCzE6PTDWeaGYnJvG8zsCiuPuLI8fiO9UZGAmMSeJ82Sky0kWbNrRu7btpz+v64gsPuPLyfDmfVDjjDBg4ENauhT/+UeszioiI1FIyQVcrYD1wJHBcZDs2ieclykqrPKx2J3BNCKEsQdv6IVq1vW3brUFX2q9gfOwxv/3hD2GnnVLzGjk5nt/VsSPMmwdjxqhwqoiISC3UePViCOG87Tz3YmDXuPtdgKWV2gwGxkeuGugA/NDMSkMIE7bzNdMvGnS1b0+rSKZb2oOuCy6Ali29+nwqtWwJv/61B1///jfssUedXfEiIiLS0CVz9WIXM3vOzFaY2ddm9oyZdUni3NOAHmbW3cwKgNOAifENQgjdQwjdQgjdgKeBS+pVwAXw7bd+267d1qAr7dOL3/ue53FFh9pSaffd4bLLfH/MGCXWi4hkkZrytKVu1fbnneyC1xOBTnhO1j8jx2rqSClwGX5V4qfAkyGEWWZ2sZldXKteZrNo0NW+ffpzutasycwU3yGHwMiRUFbm+V2LF6e/DyIiUkF+fj4lJSUKvNIkhEBJSQn5+flJPyeZ4qg7hRDig6yHIlccJtOhScCkSscSJs2HEM5N5pxZpbTUAx8zaNMmvdOLIcDvfueFUK+5BiKXzqbNeefB8uXw7ru+XNDtt6dnpE1ERBJq164dq1atSlguQVIjPz+fdu3aJd0+maBrpZmdCTweuX868O129K3hiV652LYt5OSkd6Rr5kxPaG/d2tdKTDczuOoquO4678cf/gA33wwFBenvi4iIkJuby06puphK6kQy04vnA6cAy4FlwKjIMYlLogfSe/XiE0/47ciR0KRJGl4wgSZN4De/8Zpdc+bAnXfqikYREZEq1Bh0hRC+CiGMCCHsFELoGEI4IYTwZTo6l/XikuiB9CXSf/IJzJoFhYVeJiKT2rWDG27wpYLefBP+8Y/M9kdERCRLVTm9aGa/DCHcYmZ3s219LUIIKSh7Xs/EJdEDFXK6Qkjh2tDRUa7jj/dgJ9O6dYNrr/UcsyefhDZt4LjjMt0rERGRrFLdSNenkdvpwIwEm1SaXiwogKZN/aK+9etT9Jpz53o+V7NmcGwyNWrTZK+9YqUk/vpXmDIls/0RERHJMlWOdIUQostsrw8hPBX/mJmdnNJe1ReVRrrA87o2bvQpxhYtUvCaK1d6kdLhw9m6wna2OOIIX+173DjP72reHPbZJ9O9EhERyQrJJNJfl+SxxqdSThekIZn+gAM8qDnppBS9wA4aOdIr45eXw//+r4qnioiIRFSX03U08EOgs5mNjnuoFVCa6o7VC5WmFyFNyfRNm6bw5HXgzDN9xGvSJPj9772Aao8eme6ViIhIRlU30rUUz+faSMVcronAUanvWj2QzpGuxYvhued87jLbmcHFF8NBB3l/b7gBvvgi070SERHJqOpyuj4CPjKz54B1IYQyADPLBTJUGCqLbNjgW0FBheStlI10PfmkJ6d/+y1ceGEdnzwFzOBnP/Of0bRpvlD2H/7gazeKiIg0QsnkdE0G4usSNANeSU136pH4qcW42hApWQrom2/g9dchJwdGjKjDE6dYXp5XrB8yBIqLPfBasCDTvRIREcmIZIKupiGEkuidyH7z1HWpnkgwtQikZimgf/7TE9OHDoWOHevwxGmQn++B1957e57Xr38N8+dnulciIiJpl0zQtc7M9oreMbNBwIbUdameSFAuAlIQdK1fDy+/7PsnnFBHJ02zaOC1zz6wbp0vHTRvXqZ7JSIiklbJBF1XAk+Z2Ztm9ibwBHBZSntVH0SnF6sY6aqz6cXJkz3w6tsXfvCDOjppBuTledX6/faLBV6zZ2e6VyIiImmTzNqL04A9gZ8AlwC9QgiqSF/FSFedJtKXlcHEib4/cmQdnDDD8vLgl7/0WmPr18Nvfwvvv5/pXomIiKRFMiNdAD2B3sBA4HQzOzt1XaonqhjpqtNEejO44AIvvTBkSB2cMAvk5cHVV8ORR8LmzXDzzfDqq5nulYiISMpVWTIiysxuAIbhQdck4GjgLeCRlPYs2yUojAq+8k1enpen2rzZK0pst5wcHxU64IAdOEkWys31dRrbtPFSGHfe6UODJ56Y6Z6JiIikTDIjXaOAw4DlIYTzgAGoTleVVy+a1dFoVwg78OR6wAzOOgsuusjvP/igL2/U0N+3iIg0WskEXRtCCOVAqZm1AlYAjbvCZQhVjnRBHeV13XIL3HWXL3DdkB13HPziFz769dxz/r43bcp0r0REROpcMkHXdDNrA/wNXwboA6BxZz+vXQulpVBYmHD+cIfLRixdCm+/7QVR82qcAa7/Dj7Ylwpq1gzeesvLS0SDWhERkQai2qDLzAz4UwhhdQhhDHAEcE5kmrHxqmaUC+qgbMTzz/to2rBhnvfUGAwcCLfd5sVf582Dq66Czz/PdK9ERETqTLVBVwghABPi7i8MIXyc6k5lvSryuaJ2aHqxuBheiayy1BDKRNRG165wxx3Qq5dPq/7yl/Dee5nulYiISJ1IZnrxPTNrIPUK6kgqR7peecUvexw4EHbddfv6V5+1bu1lJA491HO7/vhHGD9eCfYiIlLvJRN0HYIHXgvM7GMz+6+ZNe7RrhpGuqKx2IoVtTxvCPDii75/7LHb17eGID8frrwSzjnH7z/6KNx0k48CioiI1FNVZmmbWdcQwld4XS6JV8NIV+fOfrtkSS3P+9lnsGyZ5zUNHrz9/WsIzGDUKOjeHW6/HaZP90DsV7+C738/070TERGptepGuiYAhBC+BO4IIXwZv6Wld9mqiiWAouKDrlrNivXsCfffDz/9qRdGFRg0yIun9ujhQ4dXXw3//nemeyUiIlJr1X2zW9x+467LVVkSifQtWvjygqtX1/LcXbpAUdGO9K7h6dgR/vxnGD4ctmyB0aM94X79+kz3TEREJGnVBV2hin2pYaTLzGMnqMUU48qVShavTkEBXHqpTzEWFMCUKXDFFTB3bqZ7JiIikpTqgq4BZrbWzIqB/pH9tWZWbGZ1sZxz/VRa6rUgzGKXKSYQnWJcvDiJc27a5FOKP/sZrFtXN/1sqA47zKcbd98dli/3shLjx0N5eaZ7JiIiUq0qg64QQm4IoVUIoWUIIS+yH73fKp2dzCrffee3bdv60jVVqFUy/RtvQEmJ53G1aLHjfWzodt3VC6mOHOnB1qOPehX7Wl8uKiIikj4pzdY2s+FmNtfM5pvZtQkePyNShuJjM3vHzAaksj91ooYrF6OSnl4MAf71L98/5pgd61tjkp8P558Pv/+959bNnu3Tj5MmaZpWRESyUsqCLjPLBe7FS070Bk43s96Vmn0BHBxC6A/8HvhrqvpTZ2pIoo9KeqTrs89gwQJo2RKGDt3x/jU2RUVwzz1w4IGwcaNf/fmrX3npDRERkSySypGuvYH5IYTPQwibgfHA8fENQgjvhBAi83W8B3RJYX/qRg1J9FG77OJpX8uXexpYlaKjXEcdlXDxbElCy5ZwzTU+xdi6NXzyCVx2ma9hqVwvERHJEqkMujoDi+LuL44cq8oFwIsp7E/dSHJ6saAAdtrJv/OXL6+i0Zo18OabHp0drRq0O2z//X2k65BDfCmlBx7wul7z52e6ZyIiIikNuizBsYTJNmZ2CB50XZPC/tSNJKcXIYm8roULoUkTrz7fsWOddK/Ra9kSfv5zuP56D4w/+8zv33+/X6wgIiKSIakMuhYD8Ss2dwGWVm5kZv2BB4DjQwjfprA/dSPJkS5IomzEgAHw8MNwySV10zeJGTLEA62RI30kcdIkuPhiePVVJdqLiEhGpDLomgb0MLPuZlYAnAZMjG9gZl2BZ4GzQgifpbAvdacuR7rAR7o6dNjxfsm2mjXzKxzvugv69PHp3Dvv9Pyvz+rHPzcREWk4UhZ0hRBKgcuAl4FPgSdDCLPM7GIzuzjS7HqgPXCfmc00s+mp6k+d2Y6RroRB18yZfrWdpF63bvCnP3nx2dat4dNP4aqr4NZbVdtLRETSJi+VJw8hTAImVTo2Jm7/QuDCVPahTm3c6Ov9FRQkVcS0yqBr1Sq44QY/x7hx0LRp3fdVKjKDQw+FffaBp5/2KxvfeAPefRdGjICTT1ZhWhERSamUFkdtcOKnFi3RdQIVtW/vs4dr1lTK4X7lFb+ssW9fBVzp1qIFnHMOjBkDBx3kC2g/8wz8z//As8/6kkwiIiIpoKCrNpKs0RVllmC0q7wcXn7Z94cPr9v+SfI6dvRyErff7vlexcXw4INw4YXwz396yQkREZE6pKCrNqL5XEkk0UdtcwXjhx96HtHOO8PAgXXbP6m9PfbwfK8bb4QePWD1avjrX+HHP4aXXvKRMBERkTqQ0pyuBqeWI10QC7qWRotlvBip/zp8eFJTlJIGZjBoEOy1F7z/PvzjH15D7d574fHHvezE8OGaChYRkR2ika7a2I6RrmjZiMWLgZUr/Us9NxcOP7zu+yc7xswT7UeP9rIS3br5Zz52rJeeeOwxn4YUERHZDhrpqo2VK/22FiNdnTr57ZIlwNq1PoXVsSO0aVPn3ZM6YuYLaB9wAEyfDk895WUmHn/ck+0PPxyOOy42jCkiIpIEBV3JCgHmzPH97t2Tflr89GJ5t93Juf12JWnXF2Ze2X7wYJg1y0tNzJjhi5T/619+/PjjfWUBTRWLiEgNFHQla9kyn2pq3To2Z5iE5s19NnLVKvjmG8+fp6Agdf2Uumfm5T369vVcr3/+E/7zHx8Fmz4ddt0VjjkGhg1TrS8REamScrqS9cknftunT61HNTp3hn2WP8+KaV+moGOSVt26wU9/6uUlzjrLI+pFi7zu19ln+5JDc+dqfUcREdmGRrqSFQ26+vWr9VN7Nl9Er68eoP2fmsLhf9dVcA1Bq1Zwyilw4onw3nt+VerHH3vh21de8SnoI46Agw/2tiIi0ugp6EpGCPDf//p+3761fnrR4hfYBMzf9RA6KeBqWPLyPOn+wAP9aomXX/ag64svvN7X2LGe+3XYYZ4flqf/ciIijZW+AZLx9dd+5WLLlrDbbrV77rp17DrvNeYDU3c6loNS0kHJCp07e2mJs87y0a9XX4UPPoCpU31r2RKGDvWtd2/I0ey+iEhjoqArGTuQz8Urr9A8ZyMLW/VndknXuu+bZJ/8/FhwtWoVvP46vPaaJ+FPmuRbu3ZekuKgg6BnT139KCLSCCjoSkZ0arG2+VwhwL/+RZMmML3TCFauhI0bldLVqLRr5xXtTzjBpxzffBPeeMOXgvrnP33r0MGLsu63nwf2moIUEWmQ9Ns9GdGRrtrmc02fDsuWYTt3ZN2uQ2Cx1+vaffe676JkOTP/4Hff3a9ynDfPg6+33vKp62jtr8JCz/3ad18oKvKaIyIi0iAo6KrJihW+tWjh5QJqo1MnX7Nvt93o9FEOXy32XGsFXY2cmS+0vccecMEFHoC99x68+66vFzVlim+5uT7yNXiwb126aBpSRKQeU9BVk+jUYp8+tU987twZLr0UgC6RtbKXLKnDvkn9Fx+AnX22B13vvQfTpvnSQx9/7Nu4cbDTTj76VVTkVfBbt85070VEpBYUdNVkB+pzxYuuwfjFFzvYH2nYunSBUaN8KymBDz/0aeoZM3xJg3//2zfwWmBFRT7t3aePquGLiGQ5BV012Z58rvXr4U9/8uKYQ4eC2dbl+d5/3y9oa9cuNd2VBqSwMHYVZAjw+ecwc6Zvs2d7BP/FF/Dcc/6Pq3v32HJFvXppUXURkSyjoKs6K1fC8uWezFybRKxJk/yLsbTUSwIAHTvC/vvD22/DCy/4TJJI0szg+9/37aSTfNH0OXPgo4/8D4PPPvOg7PPPYeJEf84uu8Cee3oAtuee0LWr54mJiEhGKOiqTjSfqzaFLFetgiee8P1TTqnw0AkneND14ov+kEpHyHYrKID+/X2DWBD2yScwa5YHYcuW+TZlirdp0sSDth49PIesRw/43veUnC8ikiYKuqqzPflcjzzixbj22QcGDqzw0J57+jZnjhcrP+aYOuyrNG6Vg7CyMvjyS0/GnzPHb7/+2qclZ8+OPa9FC5+WjI6i7b67XwCiWmEiInVOv1mrU9t8rrlzPZrKy/NSAAmccAL8+c/w/PNw9NFaCUZSJDc3VhcsGt2vXevlKebN85GwefNg9Wr/dx79tw7+73fXXb1ESrduvvTVbrtB+/YaFRMR2QEKuqqyapVXMm3a1EcAahKCL3AMHlntskvCZvvu6/ldy5Z5Uv2++9Zdl0Wq1aoVDBrkW9SqVbBgQSwfbMECHxGLJunHa9bM88J23TW2deoEO++skTERkSToN2VVon/59+6dXPLxihWeeN+u3Ta5XPFyc+H44+Fvf4MJExR0SYa1a+fbkCGxY+vXw1df+VqR0e2rr6C42Edz586teI7cXM8N69TJpyZ32SW27bSTkvdFRCIUdFWltust7rwz/OUvXv20WbNqmx5xBDz2mOc7z5vn+cwiWaN581gCYrw1a2DRIg/AFi3yQq5Ll3r9sCVLfJs2reJzcnN9aHfnnWO30W2nnaBtW82xi0ijoaArkYUL4fXXfb82SfRJTkU2awZHHQXPPuujXVdfvV29FEmv1q19q5zjuHmzB19Ll3rgtWyZl1pZtsxHf6NXUSaSm+u5Yh07ehDWoYPfj962b+/1xpRLJiINgIKuylatgt/9DjZs8KKUe+xRffvFi+G112pdA+K44zyZ/q234Nxz/ftGpF4qKIgl3Ve2ebPniK1Y4bfLl8fuf/ONj55F1zetSk6Oj4hFp0Lbto1tbdrEbtu0UR0WEclqCrribdjgAdfKlV5Q8sorq/8Le948+MMfPFDbtAn+53+SfqkOHeDAA31A7fHH4bLLNMsiDVBBQSzpPpHNm/3/2zffeOD17bexbeVK34qLY8eSeb02bWKjcq1b+wUE8VvLln5bWOj7ughARNJEv22iysrgllv8Cq5ddoHf/MZ/gVdlyhS4+27YssXXvTv99Fq/5MiR8MYbvpTekiUe41Vx0aNIw1RQ4An40cVJE9myBb77zrdvv/U/clav9vurV1fc37y55pGzypo29eCrsHDbrUULz3GL34/eNm/uuQIK2kQkSRZCyHQfajR48OAwffr01L1ACDBmjC/f07Il3HZb1V8C5eXw0EO+3h3A8OHw4x9v9y/eadNg9Gj/vmjSBM4/3+t3KYVFpJZC8MLEq1d7TbLo7Zo1fltc7LfR/ZISvy0v37HXLSjw4CsahEVvmzXzgC5+v/LWpMm2t02a+Dn1S0Ck3jKzGSGEwdscT2XQZWbDgbuAXOCBEMKfKz1ukcd/CKwHzg0hfFD5PCkPup57DsaNg/x8uPlmn1pMZNMmX8h6xgxPAL7oIvjhD3f45YuLPeZ74w2/X1Tkp+7SRb93RVIqBC+RUVKSeIs+tn49rFvn+xs2xO6vX+/nSIWCglgQFg3Eosfy82PH8vNjj8Xv5+VVPJ6f78eq28/Li235+foFJLKdqgq6UjYubma5wL3AEcBiYJqZTQwhxK1BwtFAj8i2D3B/5DZ9VqyAhx/2/Z//vGLAVVLipSN69fI8kYIC/yu2ZUu47rraXdlYjZYt/QrG/feH++7ztbIvucSPR5fJ22MPT4tp2dK7oN+FInXAzKcLW7TwMha1FYL/MbZ+fSwY27DBt40bY7cbN/pjmzb5sU2bYo9v2lRx27jRp1Q3b/atuLju33eycnJiQVhurgdiubkVj0VvK+9XPhY9V/R4Ts62bXNyYscr71f1ePxmFnvMLHGb+HZmFdtF9+OPJ3Mseh/0y1mqlbKRLjPbD7gxhHBU5P51ACGEP8W1+QvwnxDC45H7c4FhIYQK15enfKRr2jSvJr/bbrG/cIuLPU8kBLjiCjj8cG+7aZNPV3TsmJKurF7ts5czZvh+Ijk5sZST5s0r/rEa3Sr/Don/fRD9nRC/H71flUSP6XeLSIqUl5Nbtpnc0k3klPrt1v2yzQlvc8q2+H7ZFt8ix3LKt2w9llsW288p24KVl0b2S8mJ7Psx35ftZEYwI1j0F28OwQywireJjmFbnw/+S7bCfk5OwuOYEeL3q3h+5ccSPQ5UONc2beLfZ4JjsfZbD9ayfew52x6PO1/c8yv0OcH548/V6eLj2e2oPbdtW4fSPtIFdAYWxd1fzLajWInadAaqKOqTIkOGwO23w9SpFY/n5XmByMLC2LEmTVIWcIEPqF15pcd6337rS+RFt6+/9lhww4ZYaoqINEQ5QNPIVsenzQHyk2gbAjmUk1u+hZxQRm4o3Xobv59TXkouZR60UUZuKCMnskXbxW8WymPHKa9wzCgnJ8SO5VBW6X7FfQvlW59T8Vjw+5HXgLC1zdb2kTbR+/6VHbAQKh4LkeOJjkWeb/jghW0dxAiRbQfzBSVRGLXDbdccccD2dKVOpDLoSvT+Kw+rJdMmPS691Iebo1cxRS8rr+4KxhQy87ISHTr4tGO80tJYesn69X5/yxbfovsh+FZW5rfl5bHUk+hjiQY5kz2WLvXgOg+RBsrwdNyGuYxTNCwCKKuzk0bOWB4LxKIXalgo3/qL14j9ErZQHvdcD+i2aRd5PP550eNVtok7p79+gufF9zn63Pj3Eiq1SfS8uP1tnl+hXdw5Epw34WvEq64vidpV3o+z80E9Ex5Ph1QGXYuB+OI8XYCl29EmPYYOzcjLbo+8vFgJIhERyRbRcYSGGajKjktlOc5pQA8z625mBcBpwMRKbSYCZ5vbF1hTOZ9LREREpCFI2UhXCKHUzC4DXsbD/nEhhFlmdnHk8THAJLxcxHy8ZMR5qeqPiIiISCaltJRyCGESHljFHxsTtx+AS1PZBxEREZFsoNX+RERERNJAQZeIiIhIGijoEhEREUkDBV0iIiIiaZDSBa/ripl9A3yZ6X6IiIiIJGG3EMJOlQ/Wi6BLREREpL7T9KKIiIhIGijoEhEREUkDBV2AmQ03s7lmNt/Mrs10fxorM9vVzKaY2admNsvMrogcb2dm/zazeZHbtpnua2NkZrlm9qGZvRC5r88lC5hZGzN72szmRP7v7KfPJvPM7GeR32OfmNnjZtZUn0tmmNk4M1thZp/EHavyszCz6yLxwFwzO6ou+9Logy4zywXuBY4GegOnm1nvzPaq0SoFrgoh9AL2BS6NfBbXAq+GEHoAr0buS/pdAXwad1+fS3a4C3gphLAnMAD/jPTZZJCZdQYuBwaHEPriS+Gdhj6XTHkIGF7pWMLPIvKdcxrQJ/Kc+yJxQp1o9EEXsDcwP4TweQhhMzAeOD7DfWqUQgjLQggfRPaL8S+Pzvjn8XCk2cPACRnpYCNmZl2AY4AH4g7rc8kwM2sFHASMBQghbA4hrEafTTbIA5qZWR7QHFiKPpeMCCG8AayqdLiqz+J4YHwIYVMI4Qt8bei966ovCrr8S31R3P3FkWOSQWbWDRgITAV2DiEsAw/MgI4Z7FpjdSfwS6A87pg+l8zbHfgGeDAy9fuAmbVAn01GhRCWALcBXwHLgDUhhMnoc8kmVX0WKY0JFHSBJTimOhoZZGaFwDPAlSGEtZnuT2NnZscCK0IIMzLdF9lGHrAXcH8IYSCwDk1ZZVwkP+h4oDvQCWhhZmdmtleSpJTGBAq6PIrdNe5+F3wYWDLAzPLxgOvREMKzkcNfm9kukcd3AVZkqn+N1AHACDNbiE+/H2pm/0CfSzZYDCwOIUyN3H8aD8L02WTW4cAXIYRvQghbgGeB/dHnkk2q+ixSGhMo6IJpQA8z625mBXgC3cQM96lRMjPDc1M+DSHcEffQROCcyP45wPPp7ltjFkK4LoTQJYTQDf//8VoI4Uz0uWRcCGE5sMjMekYOHQbMRp9Npn0F7GtmzSO/1w7Dc1T1uWSPqj6LicBpZtbEzLoDPYD36+pFVZEeMLMf4jkrucC4EMLNme1R42RmBwJvAv8lljv0Kzyv60mgK/7L7OQQQuWkSEkDMxsG/CKEcKyZtUefS8aZWRF+gUMB8DlwHv4HtT6bDDKz3wGn4ldlfwhcCBSizyXtzOxxYBjQAfgauAGYQBWfhZn9Gjgf/+yuDCG8WGd9UdAlIiIiknqaXhQRERFJAwVdIiIiImmgoEtEREQkDRR0iYiIiKSBgi4RERGRNFDQJSIZZ2btzWxmZFtuZksi+yVmdl+KXvNKMzs7wfFuZvZJHb5OgZm9EVmDT0QaMf0SEJGMCyF8CxQBmNmNQEkI4bZUvV4kADofr96eUiGEzWb2Kl6z6dFUv56IZC+NdIlI1jKzYWb2QmT/RjN72Mwmm9lCMzvRzG4xs/+a2UuRJaQws0Fm9rqZzTCzl6NLfVRyKPBBCKE07jkfmdm7wKVxr9/NzN40sw8i2/6R4383s+Pj2j1qZiPMrI+ZvR8ZpfvYzHpEmkwAzkjFz0hE6g8FXSJSn3wfOAZfTPgfwJQQQj9gA3BMJPC6GxgVQhgEjAMSrTBxABC/gPeDwOUhhP0qtVsBHBFC2AsfqRodOf4AXvkdM2uNr6s3CbgYuCuEUAQMxtdxA/gEGLKd71lEGghNL4pIffJiCGGLmf0XX7brpcjx/wLdgJ5AX+DfvuQducCyBOfZBV8LLxo0tQkhvB557O/A0ZH9fOCeyFI7ZcAeACGE183sXjPrCJwIPBNCKI2MlP3azLoAz4YQ5kXal5nZZjNrGUIorqOfhYjUMwq6RKQ+2QQQQig3sy0hto5ZOf77zIBZCUasKtsANI3sG1DVemg/w9dqG4DPDGyMe+zv+JThaXh+GCGEx8xsKj4a97KZXRhCeC3Svkml54tII6PpRRFpSOYCO5nZfgBmlm9mfRK0+xT4AUAIYTWwJrLgOlTMvWoNLAshlANn4SNnUQ8BV0bOMSvyersDn4cQRgMTgf6R4+2Bb0IIW3b8LYpIfaWgS0QajBDCZmAU8L9m9hEwE8+3quxF4KC4++cB90amBzfEHb8POMfM3sOnFtfFvdbXePD2YFz7U4FPzGwmsCfwSOT4IXjOl4g0YhYbnRcRaTzM7Dngl9G8q+14fnM8l2yvEMKaGto+C1wXQpi7Pa8lIg2DRrpEpLG6Fk+orzUzOxyYA9ydRMBVAExQwCUiGukSERERSQONdImIiIikgYIuERERkTRQ0CUiIiKSBgq6RERERNJAQZeIiIhIGijoEhEREUmD/weilqJ290lq1wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABMP0lEQVR4nO3dd5xU1f3/8ddnC72DhaKACkjvKkEUVBQbRIOKvcYYEmuK+k2xJMbEiiYa/EWxRyMWJIpKjFhRFBQMIIgoSlOk79J39/z++Mwws8vs7izs7Mzuvp+Px33cO3fO3Dk7AzOfOeVzLISAiIiIiKRWVrorICIiIlIbKOgSERERqQIKukRERESqgIIuERERkSqgoEtERESkCijoEhEREakCOemuQDJatWoVOnTokO5qiIiIiJRr1qxZq0MIe5U8Xy2Crg4dOjBz5sx0V0NERESkXGb2daLz6l4UERERqQIKukRERESqgIIuERERkSqgoEtERESkCqQs6DKzCWa2yszmlnK/mdm9ZvaFmX1qZv1SVRcRERGRdEtlS9cjwIgy7j8e6BTZLgX+nsK6iIiIiKRVylJGhBDeNrMOZRQZBTwWQgjAB2bWzMxahxBWpqpOIiIiGaeoKLYBhOBbVL16seO8vF3LRI/r14+V3boV8vMTlwPYZx8w8+PVq2HbtthzxJdr0ABatvTj7dthxYri5eL3bdrEnn/1ali/vvjfET2uUwfic29+/nnsb48vF61nixZ+vH49LF+euBxA9+6xv2nxYti0iV3svz80a7br+SqSzjxdbYGlcbeXRc4p6BIRyQQhxL4Ms7N9v20bbNwIBQVQWBjbR7eDD4598c2f72Xj749urVtDr15ebsMG+M9/YoFHYWHx/Uknwd57e9m334bZs4sHKkVFXteWLeGSS2L1/8MfYMeO2P3x5UeNgsMP93IzZsCTTxYvE/+3338/5ES+Lv/4R1i0KFYmuhUVwRFHwNixXm7pUrjqql3LRF/X226Drl399j/+AS+9lPg92G8/f/6o887z1zyRH/8YRo704/feg3HjSnljgeee8+AHvC6ffZa43FFHwdVX+/HKlXD55aVfM/5vev55+Pe/E5fbf3+4777Y7euu8/cpkUsvhZNP9uNZs5L/mx54IPHfdO21sfc9DdIZdFmCcyHBuZRbuBCWLYOjj07Hs4uIlFBQ4K0K0S03F5o39/u2bIG5c4vfv2OHb9u3+wdZq1Ze9q234OOPY/cXFMSOW7WCX/0q9pyXXuqtI9Ey0WAqhOJffO++m/wX3yOPlP5lPmxY8aDr0UdLv+Zhh8WCrgULPEBLZL/9it/+5JPSv8yHDIkdb9oEX31V+vPHt8Js3Ahr1yYut3Vr7DgEfz9KE99Kk50dC+rMYkFrVlbxVi6Axo39b4qWiS8ffd3BH9eyZeJyVuLrt2VLD4Ljy0TLRVuZotdv3774/fHHdevGbrdqBQceWLxcdL/vvsWfv3PnXQPJaNnov3vwFqquXXd93kTHBxzgr2vJ527alHSyULJ5rjIv7t2LL4UQeiS47wHgzRDCU5HbC4GhiboXBwwYEFKVkX7VKrjsMv8/9Yc/QM+eKXkaEamJduyAzZt927rVA6K99vINvLXjgw9i923d6i1FW7f6duONHlCBfwDNm+fnCwuLP8+wYXDNNbFrRltTErn1VugR+ch98EF48cXE5dq2hfHjY7dPO6140BBlBhdf7C1DANOne8tMTo5/qUUDhuxsDxJuuSX25fvoo17faLnolpXlX57Dh3u5DRu8ZST+/ug+K8tbkKKB5GefwTffxO6LljWDhg2hX9ycrI8/9n20XDSoyM4u3m2Vlwfffx8rE182K8uDhOiX9oYNsfcnvjz4exkNkqJBV/Q68deLvq5SY5nZrBDCgJLn09nSNRn4uZk9DRwKbEjHeK699/bW2Oee88+qu+/2/4siUsNFf3BGv/yWL4evv/ZWj/x830e3Bg3811nURRfBunWJu3kuvBBOPdWPlyyBxx4rvQ5bt8aCru3bY2NQoq0Gdet660KjRrHHNGwIAwb4+dxc30e33NzY+Bvw1pyOHf18To7vo8cNGhSvy/33ezCSmxsLpHJyYkFC1A9+4Fsyzj8/uXJNm/rrloyuXWNdWOWJD8DK0rixb8lItqWkZMuPCCkMuszsKWAo0MrMlgE3ALkAIYTxwBTgBOALYDOQ5P+4ynfeef5ZO3Omd9fffvuuLboiksFC8NamjRv9duvWvs/Ph4kT/XxeXmyfl+f33XAD9O3rZd94A555JvH1W7QoHnQVFPiWne3BS/36sX38IN3994fRo/183br+wRLd6tb181G//rUHOHXrFu8WSVSXG25I7nXp0sW3ZERb50QkZVLavVhZUtm9GLVpE/ziF/5jd9AguP56tf6KpN327T5+Zt06OOigWKvQiy/CnDk+m2ndOu/yiY7d6d/fu+3Ag6uzzir9+vGDat95xwdpN2zoLUsNG8a2Jk1g4MDY4/LyPDjKzdUHhYjsIhO7FzNKw4bwu9954PX++/DUU2V/VovIHtq61QOlaLfOihXw7LMeZK1eDWvWeGtU1P33xwZKL14MH31U/Hr16nlwFN/907Chd3E1aeJb48axfaNGscHL4F1x8YOry5JsV5SISBwFXXHatvUW/htv9KCrQ4fkhy6ISCnmzPH++1Wr4LvvfL9qlQdUI0bAz37m5bZt23VWWk6Oz15q0aL44PITT4TBg70rL7olGj+TleXdeyIiGUBBVwn9+vl4zgkT4K67oFu3tOZRE8lsmzd7C1X89u23PhMvGgQ98wx8+umuj83NLT4Qfd99PQBr2TK2NWmSuPsu2XFKIiIZREFXAj/8ofdc/O9//l1xxBHprpFIGoXgXX0hxAZbz53riRDXrUv8mO++80HkAIceCu3a+bTgvfeO7UsGVPXre8uXiEgNpaArATPo08eDrvnzFXRJLZKX50kiv/66+LZlCxx3HPz8516uaVMPuHJzfemPtm1936aNt1hFE1lCLEO2iEgtp6CrFN26+X7+/PTWQyQlQvDWqC+/hEMOiQ0ov/VW/7VRUpMmxQedt2kDDz3kLV+avScikhQFXaXo3Nm/Y5Ys8XQSDRumu0Yie2DNGl8vLrp98UVs4dx77vElM8CTTm7f7kt9tG/vs0nat981IWR2dvHWLBERKZeCrlLUqePLRi1c6FuyiY1F0m7HDs9bFV02pbRlY5o29dxX8evKnXuubyIiUukUdJWhWzcPuObPV9AlGWzLFl+Pbt48H+D++eceTN1+u9/ftq13A7ZpA506+da5c/HFcEVEJOUUdJWhWzd44QX/PhPJOO++64sEL15cvLUKvLUrhNgCuw89pABLRCTNFHSVIbqm6oIFnk4oR6+WpENRkY/D+uQT6NHDN/DAatEiD6o6d4bu3f2+rl13zZiugEtEJO0URpShaVPvmVm+3GfRd+qU7hpJrbFhA3z8Mcya5fvooPcRI2JB14ABcPPNHmRphXYRkYynoKsc3bp50DV/voIuqSJ33QVvvundg1H77OMLOQ8aFDvXuDH07Vvl1RMRkd2joKscXbv6cnDz58OoUemujdQoIfhMjfff97UEoykY9trLUzL07OmB1oABPgheXYQiItWagq5yxCdJjY5LFtltIfjswnff9W31aj/fokUsqv/hD+G009RlKCJSwyjoKkebNj62a/16X8e3det010iqpRDgiSe823DVqtj5Vq3gBz/wVq2okoPgRUSkRlDQVQ4z72L84ANv7VLQJUlbt84j9qws/4e0ZIkHXC1awOGHw5Ah0KWLmk9FRGoJBV1J6NbNg67PPoOjj053bSSjFRTARx/B1Kk+6/Cmm3z1dIAzz4RTT/V/UAq0RERqHQVdSdDi11Kub7/1QOv1172FC3ww/Ndfx4Kugw5KW/VERCT9FHQl4cADfS3GpUs9XZKG3Egxd97pY7Wi9tsPjjsOhg7ddaFoERGptRR0JSEnxxN+z53rXYyHHJLuGklabdrkrVjR2YX77utR+eGHe7DVtau6D0VEZBcKupLUrZuCrlpv5Up48UX473/hnHOKp3gYNQoaNUpr9UREJLMp6EpSdB3GefPSWw9Jgy+/hIkT4b33YlnilyyJ3d+wYVqqJSIi1YuCriQdfLD3GC1aBNu3e2+S1HCLFnlurY8/9ts5OT5Oa9Qo6NAhnTUTEZFqSEFXkho1gv3398loixfHWr6kBlu1ygOuevV8oelRozyZqYiIyG5Q0FUBHTp40LVypYKuGmnePPjqKzjpJL89aBBccgkcdZSmrIqIyB5T0FUBLVr4fu3a9NZDKtnnn8Pjj8Ps2d6FeOihvuh0VpZWORcRkUqjoKsCmjf3/fr1aa2GVJbvvoNHH4V33vHbDRp4kNWgQXrrJSIiNZKCrgqIBl1q6armiorgkUfg3//2ZXvq1IGRI32JHnUjiohIiijoqoBo0BVd5UWqqawsWLHCA65hw+Dcc707UUREJIUUdFVAdEyXgq5qaN48n4Lavr3fvvhiX4D6wAPTWy8REak1slJ5cTMbYWYLzewLM7suwf1NzezfZjbHzOaZ2YWprM+eatbM9wq6qpF16+Cuu+C66+C++2LJTVu3VsAlIiJVKmUtXWaWDdwHDAeWAR+Z2eQQwvy4Yj8D5ocQTjazvYCFZvZkCGF7quq1Jxo18sltmzfDtm1Qt266aySlKiqCl1/25KabN0NuLvTuDYWF/iaKiIhUsVR++xwCfBFC+BLAzJ4GRgHxQVcAGpuZAY2AtUBBCuu0R8x8XNf333sDyr77prtGktDSpXDvvbBggd8eMAAuvdRbt0RERNIklUFXW2Bp3O1lwKElyvwNmAysABoDZ4QQilJYpz2moCvDbd0Kv/415Of7ILyf/tTzbpmlu2YiIlLLpTLoSvQtF0rcPg6YDRwFHAj8x8zeCSFsTGG99ohmMGa4evVgzBhfOuDii7UYtYiIZIxUBl3LgP3ibrfDW7TiXQj8OYQQgC/M7CvgYODDFNZrjyjoyjBFRfDcc74m4rBhfm7kSLVsiYhIxkll0PUR0MnMOgLLgTHAWSXKfAMcDbxjZvsAXYAvU1inPbbbaSPy82HcOB+N37Mn9Oql3FB76vvvfWbi3LlQvz4MHOivrwIuERHJQCkLukIIBWb2c+A1IBuYEEKYZ2aXRe4fD/wBeMTM/od3R14bQlidqjpVht3OSv/WWzBjhh//97++33dfD8BGjYrlj5LkvP023H8/bNrkb8pVV3nAJSIikqFSOnc+hDAFmFLi3Pi44xXAsamsQ2Xb7fUX50cmbf7gB54Jfd48+PZb3z78EB54QOOPkrFlC/z97zBtmt8+9FC4/HJo2jS99RIRESmHEhZV0G61dIXgQRbA2WfD/vv7WKTFi2H8ePj8c/jXv+Ciiyq9vjXOHXd4kFqnDvz4x3DccepOFBGRaqHcjPRmNtjM/mNmn5vZl2b2lZll9LirVNqtgfTffw9r1vhiyvtF5hZkZUGnTp7SwMwXX16+vNLrW+Occ46/buPGwYgRCrhERKTaSGYZoIeAu4DDgYHAgMi+VoouBbR+vTdWJSXaytW1665BwkEHwTHHeJfjgw9WUi1rkIICePfd2O2OHeHOO2PBq4iISDWRTNC1IYTwSghhVQhhTXRLec0yVG6uN1gVFUFeXpIPio7n6t498f3nnQcNGsDMmb6JW7PG10z8y19iY7hArVsiIlItJRN0TTOz281skJn1i24pr1kGq/DC19GWrm7dSr/gmDF+/OCD3rpT2y1aBNdcAwsXemqNtm3TXSMREZE9ksxA+ujSPQPizgU8i3yt1KKFL++3di106FBO4bw8L1ynjncllubkk+G113xc10svwQ9/WIk1rmbefRfuvhu2b4cePeD666FJk3TXSkREZI+UG3SFEIZVRUWqkwoNpo92LXbuDDllvNw5OXDJJXDTTfDUUzB0aKxJrbYIwWdxPvmk3x4+HMaOLft1ExERqSaSmb3Y1MzuMrOZke1OM6vVSZF2K+gqrWsx3oABvm3eDI89ttv1q7a2bPGxW2a+buLllyvgEhGRGiOZMV0TgDzg9Mi2EXg4lZXKdBUKusobz1XSJZdAdja8/jqsKLlUZQ3XoAH8/vfwu99596oGzIuISA2STNB1YAjhhhDCl5HtJuCAVFcskyWdIHXbNk+AaubpIpLRti0cfbR3tT3zzB7Vs1pYuxZefDF2u21bX0NRRESkhkkm6NpiZodHb5jZYGBL6qqU+aKLXpe7FNCiRT4TsWNHb8VJ1mmnefLUadN8maCaavly+NWvfMbma6+luzYiIiIplUzQ9VPgPjNbYmZfA38DLktttTJb0i1d0a7F0vJzlWbffWHYME8GNnFihetXLSxaBL/+NaxaBV26+JqUIiIiNVi5QVcIYXYIoTfQC+gZQugbQpiT+qplrqTHdFVkEH1Jp5/u3ZL//a8HJjXJnDnwf/8HGzdC//7wxz96xlkREZEarNSpYWZ2TgjhCTO7psR5AEIId6W4bhmrYUPPTL9lC2zdCvXqJShUVASffebHuxN0tWnjaSOmTYNnn/XUCTXBxx97kLVjh7fmXXGFZiiKiEitUFZLV8PIvnGCrVGK65XRzJJo7VqyxKOyffeNDQKrqGhr13/+A6tX7941MklRETz8sAdcxx8PV1+tgEtERGqNUr/xQggPRA5fDyG8F39fZDB9rda8uff6rV8PrVsnKFDRVBGJtGsHQ4bA2297a9dl1XwoXVYW3Hijp8OIBpQiIiK1RDID6f+a5LlaJZosvtTB9OUtcp2sM87w/Wuv+QLQ1dHSpZ4CA6BlS/+bFHCJiEgtU2rQFVng+hfAXmZ2Tdx2I5BdZTXMUNEew4TdiyHs2SD6ePvvD4MHe+qJ55/fs2ulwwcfeGb5J56IBV4iIiK1UFktXXXwsVs5FB/PtREYnfqqZbYyx3R9+603gTVp4sk+91S0tevVV5NMg58hZs+Gv/wFCgt9HJeIiEgtVtaYrreAt8zskRDC11VYp2qhzKArftZiZXSjdewIhx3mrUbPPedLBWW6BQt8lmJBAYwcCRdeqC5FERGp1ZIZ07XZzG43sylm9kZ0S3nNMlyZQdfKlb5v377ynvDMM33/yiuZ39q1ZIkPmN+2zZc0uuQSBVwiIlLrJRN0PQksADoCNwFLgI9SWKdqocys9NH1gXY3VUQiBxzgrV3bt2f22K6VK33R6k2b4NBDfTyXAi4REZGkgq6WIYSHgB0hhLdCCBcBh6W4XhmvzPUXoy1R0cisskRbu6ZMydzWrtxcX2eyVy9f5ie71s+5EBERAZILuqIjoFea2Ylm1hdol8I6VQvRlBHr1nnOz2JSFXQdcIC3HmVya1erVj54/re/hTp10l0bERGRjJFM0PVHM2sK/AL4JfAgcHVKa1UN5OT4coEh+BKCxaQq6AI46yzfT5lSSjNbGhQUwDvvxFJCNG0K9eunt04iIiIZJpkFr18KIWwIIcwNIQwLIfQPIUyuispluoTjukKIBV3R5rDKlGmtXSHAAw/AbbfBY4+luzYiIiIZq6wFr/8KlJrNMoRwRUpqVI20aAHffFNieNWmTd7y06AB1K2bmic+80yYMQNefhlOPTU1wV2yJk3y/GF16vhAfxEREUmorNWGZ1ZZLaqpaEtXsV6+VHYtRh14IBxyCHz4obd2XXRR6p6rLNOn+wLWANdcA126pKceIiIi1UBZyVEfrcqKVEcJ11+siqALvLXrww/T19q1aBHcead3L55/vi9VJCIiIqUqd0yXmU2LT4qq5KgxCddfjDZ7pToIOuig2NiuZ55J7XOVtGYN3HyzP/fw4fCjH1Xt84uIiFRDZXUvRv0y7rge8COgIJmLm9kI4B58gewHQwh/TlBmKDAOyAVWhxCOTObamSBhVvqqaukCOOccb+165RUYNQr22Sf1zwm+lmLz5r4Y99ixSn4qIpIBCgsLWbt2LTu01m2Vyc3NpUWLFmQnmZOy3KArhDCrxKn3zOyt8h5nZtnAfcBwYBnwkZlNDiHMjyvTDLgfGBFC+MbM9k6q1hkiYdAV7WusiqCrQwcYOhSmTYN//hOurqJMHnvvDbff7i1dOcnE7SIikmpr166lXr16tGrVCtOP4ZQLIZCfn8/atWvZa6+9knpMMt2LLeK2VmZ2HLBvEtc+BPgihPBlCGE78DQwqkSZs4DnQwjfRP6AVUnVOkMkTBlRlS1d4Hm7cnI88Po6xeuSf/11LBdX3bqeqExERDLCjh07aNSokQKuKmJmNGrUqEIti8kkR52Fz2ScBbyPJ0m9OInHtQWWxt1eFjkXrzPQ3MzeNLNZZnZeEtfNGGnvXgTYd1847jgPhh5/PHXPs2iRt6TdcYd3L4qISMZRwFW1Kvp6J5MctWMI4YDIvlMI4dgQwrvJ1CXR5UrczgH6AycCxwG/M7POSVw7IzRs6EsNbt3qGxAbSF9VQRfAGWd4y9OMGbBgQeVff8MG+NOfYMcO/6O1nqKIiJTilltuoXv37vTq1Ys+ffowY8aMtNRj9uzZTJkyZeftyZMn8+c/+9DyCy64gGeffXaXx7z55pucdNJJKatTMt2L9czsGjN73syeM7OrzaxeEtdeBuwXd7sdsCJBmVdDCJtCCKuBt4HeyVY+3cwStHZVdUtX9LlGRXpuH3001gVYGQoLPdv86tWeh+vHP668a4uISI3y/vvv89JLL/Hxxx/z6aef8vrrr7PffvuV/8AUKBl0jRw5kuuuuy4tdYlKpnvxMaA78Ffgb0BXIJl+rI+ATmbW0czqAGOAkssHvQgMMbMcM2sAHAp8lmzlM0GxoKugwBdiNPP1B6vSqadCo0Ywdy588knlXfeZZ+DTT/3vuf56b9oTERFJYOXKlbRq1Yq6kRVZWrVqRZs2bejQoQOrV68GYObMmQwdOhSAt956iz59+tCnTx/69u1LXl4eALfddhs9e/akd+/eOwOlxYsXM2LECPr378+QIUNYEOnZueCCC7jssssYMmQInTt35qWXXmL79u38/ve/51//+hd9+vThX//6F4888gg///nPd9b19ddfL/aYkjZt2sRFF13EwIED6du3Ly+++OIevz7JTD3rEkKIb32aZmZzyntQCKHAzH4OvIanjJgQQphnZpdF7h8fQvjMzF4FPgWK8LQScyv+Z6RPscH0Gzd6K1OzZpCVTDxbiRo2hNGj4ZFHfA3Evn33PJXDvHnw1FN+nV/+Elq2rJSqiohIap18cmqu++9/l33/sccey80330znzp055phjOOOMMzjyyNIzQd1xxx3cd999DB48mPz8fOrVq8crr7zCpEmTmDFjBg0aNGBtZLbapZdeyvjx4+nUqRMzZsxg7NixvPGGpw1dsmQJb731FosXL2bYsGF88cUX3HzzzcycOZO//e1vADzyyCPFnjvRY+LdcsstHHXUUUyYMIH169dzyCGHcMwxx9CwYcMKvmoxyQRdn5jZYSGEDwDM7FDgvWQuHkKYAkwpcW58idu3A7cnV93MU6ylKx1di/FOOgkmT4bFi+Htt6GMf+hJee45DyJHj4Y+fSqliiIiUnM1atSIWbNm8c477zBt2jTOOOOMneOoEhk8eDDXXHMNZ599Nqeeeirt2rXj9ddf58ILL6RBgwYAtGjRgvz8fKZPn85pp52287Hbtm3beXz66aeTlZVFp06dOOCAA3a2gpWlvMdMnTqVyZMnc8cddwCwdetWvvnmG7p27Vqh1yReMkHXocB5ZvZN5Pb+wGdm9j8ghBB67faz1wDRXsSNG0l/0FW3ridMvfdeb/E67LA9W3T7uuvgpZdg5MhKq6KIiKReeS1SqZSdnc3QoUMZOnQoPXv25NFHHyUnJ4eioiLAg5eo6667jhNPPJEpU6Zw2GGH8frrrxNC2GVWYFFREc2aNWP27NkJn7Nk+WRmFZb3mBACzz33HF0qcV3hZPrARgAdgSMjW0fgBOAkIEUNmNVHNOjasIH0B10ARx8NBxzgA99feGHPrlWnjo8VUwJUERFJwsKFC1m0aNHO27Nnz6Z9+/Z06NCBWbM81/pzzz238/7FixfTs2dPrr32WgYMGMCCBQs49thjmTBhAps3bwY86WuTJk3o2LEjEydOBDwgmjMnNtJp4sSJFBUVsXjxYr788ku6dOlC48aNd44RSyTRY+Idd9xx/PWvfyVEJqd9UgnjpZNJGfE10AwPsE4GmoUQvo5ue1yDaq5JE99nTNCVlQWXXOLHzz7r6yRWxNKlMG4cbNpU6VUTEZGaLT8/n/PPP59u3brRq1cv5s+fz4033sgNN9zAlVdeyZAhQ4otmTNu3Dh69OhB7969qV+/PscffzwjRoxg5MiRDBgwgD59+uzs3nvyySd56KGH6N27N927dy82sL1Lly4ceeSRHH/88YwfP5569eoxbNgw5s+fv3MgfUmJHhPvd7/7HTt27KBXr1706NGD3/3ud3v8+lgoJ72AmV0J/Bh4PnLqFOD/hRD+usfPnqQBAwaEmTNnVtXTVcicOfDb30KPHnBrhwe8O+6SS2IpHNLl1lth+nQ46qjklwfavh1+8QtYssRbuC68MKVVFBGRyrNixQratGmT7mpUuQsuuICTTjqJ0aNHp+X5E73uZjYrhDCgZNlkuhcvBg4NIfw+hPB74DA8CBNK6V5s0SJt9dnpggu8W/CNNzybfDKeeMIDrjZt4MwzU1k7ERGRWieZoMuA+HVfCkmcbb5WinYvZsRA+nitW8da2/7xj/ITpn72GUya5OkhfvELqJdM/lsREZH0euSRR9LWylVRyQRdDwMzzOxGM7sJ+AB4KLXVqj7ig66wNoOCLoDTT/emuM8+g3fLWLlp+3a45x4PzH70I+hcbVZiEhERqTaSGUh/F3AhsBZYA1wYQhiX4npVGzk5npc0BChYHQm6mjVLa512atAAzj3Xjx9+2IOrRB5/HJYvh/32g7POqrr6iYiI1CIVSZtu+ILV6losoUkTyC3cSkH+Vk+zEEnolhGGD4cOHeD77302Y0kh+GrdWVk+4F7L/IiIiKREMgte/x54FGgOtAIeNrPfprpi1UnTptBoxzoKduCtXHu6/E5lysqCn/zEjydOhBUl1hw3g5/9DMaPh06dqr5+IiIitUQyLV1nAgNDCDeGEG7AZy+endpqVS9NmkDDHevZUUDmjOeK16OHJ00tKIC//z02qD6SHRjwgfciIiJ7oFGjRuWWeeedd+jevTt9+vRhy5YtFbr+pEmTmD9/fkrqVRWSCbqWAPFT2eoCi1NSm2qqWEtXJgZdABddBI0bw+zZ8M47Prh+7Fjfi4iIVJEnn3ySX/7yl8yePZv69etX6LG7G3RlimSCrm3APDN7xMweBuYC+WZ2r5ndm9rqVQ87g65MbekCb46LJjt94AG4+24fPJ+hSWdFRKT6evPNNxk6dCijR4/m4IMP5uyzzyaEwIMPPsgzzzzDzTffzNlne6fZ7bffzsCBA+nVqxc33HDDzms89thj9OrVi969e3Puuecyffp0Jk+ezK9+9Sv69OnD4sWLWbx4MSNGjKB///4MGTJk56LVX331FYMGDWLgwIGVkkm+siSzqN4LkS3qzdRUpfpq0sSDrh1FZG7QBXDMMfD6675t3w6DBsEZZ6S7ViIiUtlOTtHSyBVYSfuTTz5h3rx5tGnThsGDB/Pee+9xySWX8O677+7MID916lQWLVrEhx9+SAiBkSNH8vbbb9OyZUtuueUW3nvvPVq1asXatWtp0aIFI0eOLJZ9/uijj2b8+PF06tSJGTNmMHbsWN544w2uvPJKfvrTn3Leeedx3333pea12A3lBl0hhEeroiLVWTToKsj0oMvMc3c9/riP5zrhBJ9tKSIiUskOOeQQ2rVrB0CfPn1YsmQJhx9+eLEyU6dOZerUqfTt2xfwtRsXLVrEnDlzGD16NK1atQKgRYKVXvLz85k+fTqnnXbaznPbtm0D4L333tu5sPa5557LtddeW/l/4G5IpqVLyrGzezGQ2UFXCPDyy7D33t7SNW2a/xqKW3xURERqgAq0SKVK3bp1dx5nZ2dTUFCwS5kQAtdffz0/ic6yj7j33nuxcjIBFBUV0axZM2bPnp3w/vIenw4VydMlpYgGXTsyeSA9wIwZ8NFHcNBB0K8ffPllRvzHFBGR2um4445jwoQJ5OfnA7B8+XJWrVrF0UcfzTPPPMOaNWsAWLt2LQCNGzcmLy8PgCZNmtCxY0cmTpwIeAA3Z84cAAYPHszTTz8N+MD9TFFq0GVmj0f2V1Zddaqnnd2LmTyQHrxLsUkTXwz7ysjbGs1GLyIiUsWOPfZYzjrrLAYNGkTPnj0ZPXo0eXl5dO/end/85jcceeSR9O7dm2uuuQaAMWPGcPvtt9O3b18WL17Mk08+yUMPPUTv3r3p3r07L774IgD33HMP9913HwMHDmTDhg3p/BOLsVDKQshmNh84HpgMDKVEJvoQwtpUVy5qwIABYWYGz7LbuiUwu+Mp5Fgh/b9+HquTwVnd8/M9Y35Wls9gfOMN6NoV/vxnPyciItXSihUraNOmTbqrUesket3NbFYIYUDJsmV9y44HXgUOBmaV2DI3AkqDutvzyLFCNmU1YltRBgZc8YF1o0ax4OrHP4YWLTxXV+TXgYiIiKRGqUFXCOHeEEJXYEII4YAQQse47YAqrGPGs/XryMmBTbnNyaBWTBcC3HwzPPUURGZ17NSoEVx+uR8/8QQsW1b19RMREaklyu1PCiH81Mx6m9nPI1uvqqhYtbLOg6783OZs3JjuypTwwQeeAPXf//ZlgEoaMMCXCNq+HcaNK740kIiIiFSaZBa8vgJ4Etg7sj1pZpenumLVyrp15OZCfm6zzGrp2rEDJkzw47PPhoYNE5f78Y+hZUtYuBAmTaqy6omIiNQmyYycvgQ4NITw+xDC7/EFr3+c2mpVM+vXZ2b34ksvwbffwn77wYgRpZdr2LB4N+PSpVVTPxERkVokmaDLgMK424WUmMlY6+1s6cqg7sUNGyCSo4SLLy4/AWr//jB8uLeO3XGH70VERKTSJBN0PQzMMLMbzexG4APgoZTWqrqJjOnKy22ROUHXP/8Jmzd7EtT+/ZN7zCWXwD77eNLUxx5Lbf1ERKTGyc7Opk+fPvTo0YOTTz6Z9evXp7tKFXbjjTdyxx13pOTayQykvwu4EFgLrAMuDCGMS0ltqqu1a3cOpM+I7sWiIlixwlNDXHxx8o9r0AB+9StvFZs0CWbNSlkVRUSk5qlfvz6zZ89m7ty5tGjRImMWmw4hUJQBE8WSyoYZQvg4kkLinhDCJ6muVLWzbh05ubApUwbSZ2V5mohx42D//Sv22C5d4Jxz/Pjuu2HdukqvnoiI1HyDBg1ieWTFk8WLFzNixAj69+/PkCFDWLBgAQDfffcdp5xyCr1796Z3795Mnz4dgLvuuosePXrQo0cPxo0bB8C1117L/fffv/P6N954I3feeScAt99+OwMHDqRXr17ccMMNACxZsoSuXbsyduxY+vXrx9KlSxOWA7jlllvo0qULxxxzDAsXLkzZa6IFryvD+vXkZlrKCDPo2HH3HvujH8Hs2TBnDtx1lwdwGbhwqIiIlOHkk0u/72c/i02wevVVKKtFajfW6C0sLOS///0vF0d6Wy699FLGjx9Pp06dmDFjBmPHjuWNN97giiuu4Mgjj+SFF16gsLCQ/Px8Zs2axcMPP8yMGTMIIXDooYdy5JFHMmbMGK666irGjh0LwDPPPMOrr77K1KlTWbRoER9++CEhBEaOHMnbb7/N/vvvz8KFC3n44Ye5//77Sy3XsGFDnn76aT755BMKCgro168f/ZMdllNBCrr21I4dkJdHTp0sNuc0SW9LV1ERPPQQHHsstG+/+9cxg2uu8RmNs2fD8897ICYiIlKGLVu20KdPH5YsWUL//v0ZPnw4+fn5TJ8+ndNOO21nuW2RZN1vvPEGj0XGEGdnZ9O0aVPeffddTjnlFBpG0hydeuqpvPPOO1xxxRWsWrWKFStW8P3339O8eXP2339/7r33XqZOnUrfvn0ByM/PZ9GiRey///60b9+eww47DICpU6cmLJeXl8cpp5xCgwYNABg5cmTKXh8FXXsqEmXltGoGeZbelq6334bJkz0h6j/+sWdrKbZoAVdd5a1cjz8OPXtC586VVlUREUmxZFuoRowoO61QBUTHdG3YsIGTTjqJ++67jwsuuIBmzZoxe/bspK5R2prQAKNHj+bZZ5/l22+/ZcyYMTvLX3/99fzkJz8pVnbJkiU7A7eyyo0bNw6rot6cZJKjnmpmi8xsg5ltNLM8M0sqtDCzEWa20My+MLPryig30MwKzWx0RSqfESJjnnL2ao4ZbNqUOPF7yhUU+IxFgDFjKmfx6oEDYdQoKCyEv/wF8vL2/JoiIlLjNW3alHvvvZc77riD+vXr07FjRyZOnAh48DNnzhwAjj76aP7+978D3iW5ceNGjjjiCCZNmsTmzZvZtGkTL7zwAkOGDAFgzJgxPP300zz77LOMHu0hw3HHHceECRPIz88HYPny5axatWqXOpVW7ogjjuCFF15gy5Yt5OXl8e/d6E5NVjLfzLcBI0MITUMITUIIjUMITcp7kJllA/cBxwPdgDPNrFsp5f4CvFaxqmeISNBlLZrTJPKqpKW16/XXYeVKaNsWjjqq8q57/vnQqROsWgW3365lgkREJCl9+/ald+/ePP300zz55JM89NBD9O7dm+7du/Piiy8CcM899zBt2jR69uxJ//79mTdvHv369eOCCy7gkEMO4dBDD+WSSy7Z2SXYvXt38vLyaNu2La1btwbg2GOP5ayzzmLQoEH07NmT0aNHk5egkaC0cv369eOMM86gT58+/OhHP9oZ4KWCldWMB2Bm74UQBlf4wmaDgBtDCMdFbl8PEEK4tUS5q4AdwEDgpRDCsyWvNWDAgDBz5syKVqFqvPYa/O1vMHw4YxdcwdKl8Ne/QocOVViH7dvh0kthzRq49lo4/PDKvf7333tX48aNcPrpcO65lXt9ERHZYytWrKBNmzbprkatk+h1N7NZIYQBJcsm09I108z+ZWZnRroaTzWzU5N4XFsgfj2ZZZFz8ZVqC5wCjE/iepkpmlKheXOaNvXDKh9MP2WKB1wHHACDKxwfl2+vvTyYM4NnnoH336/85xAREanhkgm6mgCbgWOBkyPbSUk8LtGotJLNauOAa0MIhQnKVg/RoKtZs/QEXQUF8MILfnzuualL7dCrF1x4oR/ffTcsW5aa5xEREamhyp29GEK4cDevvQzYL+52O2BFiTIDgKcjswZaASeYWUEIYdJuPmfVW7PG9y1bpmdMV06Oj7WaNi355X521w9/CJ9/Du++C7fc4jm86tdP7XOKiIjUEMnMXmxnZi+Y2Soz+87MnjOzdklc+yOgk5l1NLM6wBhgcnyBEELHEEKHEEIH4FlgbLUKuADWrvV9y5bp617ce28444zUJzA1gyuv9Cz3y5Z5i1c5YwJFRKTqlDdOWypXRV/vZBe8ngy0wcdk/TtyrryKFAA/x2clfgY8E0KYZ2aXmdllFaplJktnS9eSJVUf9NSrB7/5DTRs6GO7tDC2iEhGyM3NJT8/X4FXFQkhkJ+fT25ubtKPSSY56l4hhPgg65HIjMNkKjQFmFLiXMJB8yGEC5K5ZkYpLPQxXWbFxnRVSdC1cSP88peeIuIvf/FgqKq0aQPXXQc33gjPPgv77gvHHVd1zy8iIrto0aIFa9euTZguQVIjNzeXFi1aJF0+maBrtZmdAzwVuX0msGY36lbzrF/vLU3NmkFOzs6WrirpXpw8GbZtg+bNqzbgiurTB8aO9fwY998P++zj50REJC2ys7PZa6+90l0NKUMy3YsXAacD3wIrgdGRcxIdzxWJcqtsTNemTfDSS358xhkpfrIyHHssjB7tCVNvvRW++SZ9dREREclw5QZdIYRvQggjQwh7hRD2DiH8MITwdVVULuPFjeeCKgy6Xn7ZA6+ePaFr1xQ/WTnOO89zg23eDDfd5K1/IiIisotSuxfN7NchhNvM7K/sml+LEMIVKa1ZdRA3cxHY2b2Yl+e9jimZTLh1K0ya5Menn56CJ6ggM7jmGli9GhYu9AWy//Sn9HR5ioiIZLCyWro+i+xnArMSbFKipSsnBxo08N62yHqale+11zyq69IFevdO0ZNUUJ068NvfeuqKRYs8h9eOHemulYiISEYpNegKIUSX2d4cQng0fsMz1EuJoAtI/QzGunX9SU4/PfV5uSqiWTP4wx+8brNnwx13+OxOERERAZIbSH99kudqn2jQFTddNOW5ukaMgIcegoEDU/QEe6BNGw+8GjaE6dN9IXDlixEREQHKHtN1PHAC0NbM7o27qwlQkOqKVQslxnQBVZM2om7dFF58D3XsCDfc4N2Nr78OjRrBRRdlVquciIhIGpTV0rUCH8+1leJjuSYDyoQJCVu6UjaDcfp0T0S6ZUslXzgFunaF//s/H+Q2aRI880y6ayQiIpJ2pbZ0hRDmAHPM7AVgUwihEMDMsoEMbmqpItu2edqGnBxo3Hjn6ZQEXSHA44/7eofNm8PRR1fixVOkf3/4xS/gttvgiSf8dfrRj9JdKxERkbRJZkzXVKB+3O36wOupqU41Ep8YNa7rLCUD6WfO9ICrVSs48shKvHCKHX44XH65vz6PPAITJ6a7RiIiImmTTNBVL4SwMwFC5LhB6qpUTSSYuQgpGkgfzcs1cqS3GFUnw4fDFVd44PXYY/Cvf6W7RiIiImmRTNC1ycz6RW+YWX+gGgwsSrEEg+ghBQPpv/wSPv3Uk40ee2wlXbSKHXMMXHmlB15PPAFPPVX+Y0RERGqYZJpNrgImmtmKyO3WQBoX/MsQpbR0VXr3YrSV67jjPBVDdXX00ZCVBXffDf/8p2eQPesszWoUEZFao9ygK4TwkZkdDHQBDFgQQlC68QQzF6GSB9KvXQtvv+2BycknV8IF02zYMA+87rwTnn7aZ2JefLECLxERqRWSHSDUBegG1AP6mhkhhMdSV61qoCq6F5s1g+uvh6++gn32qYQLZoAjj4TsbA+8XnzRX6grr6x+Y9VEREQqqNxvOjO7ARiKB11TgOOBd4HaHXSV0tJVrx7k5sL27b429R6t+5yVBYce6ltNcvjhnjT1llvgzTe9L/b667VItoiI1GjJDKQfDRwNfBtCuBDojfJ0ldrSZVZJ47oKanjS/z594E9/8qbBjz+G3/wmhWsniYiIpF8yQdeWEEIRUGBmTYBVwAGprVaGC6HUli6ohC7GEDzNwl13QX5++eWrq06dPHnq3nvD55/Dr38Nq1alu1YiIiIpkUzQNdPMmgH/wJcB+hj4MJWVynj5+bBjh88mTNAltse5uj78EJYuhXnzoH798stXZ23bwu23Q4cOsHw5XHMNfPZZumslIiJS6coMuszMgFtDCOtDCOOB4cD5kW7G2quMVi6ohBmM8clQs7N38yLVSIsW8Oc/Q9++/qL93//BtGnprpWIiEilKjPoCiEEYFLc7SUhhE9TXamMV0qOrqg9GtP15Zcwd663cA0fvnv1q44aNoQbboCTTvLxbHfd5RnsQ0h3zURERCpFMt2LH5jZwJTXpDqJX3cxgT0a0zVliu+POQYa1LLVlrKz4Sc/gZ/+1GduTpwIt97q00BFRESquWSCrmF44LXYzD41s/+ZWe1u7SqnpatVK99/910Fr7tpk6dQADjhhN2qWo1wwglw003e+vX++/CLX/h4LxERkWqs1KDLzPaPHB6Pz1Y8CjgZOCmyr73Kaelq1873FY4TPv3UE3z16hW7SG3Vpw/ccYe/Dt98A1ddBe+9l+5aiYiI7LayWromAYQQvgbuCiF8Hb9VSe0yVTktXW3a+H758goOSRo0CB54AC65ZM/qV1O0a+djuw4/3LsY//xnePDBmp/DTEREaqSygq74BfFqd16ukspp6Wrc2Md1bdsWi8+S1ro1dOy4Z/WrSerX9/xdl17qY75efNFnN1b4hRUREUmvsoKuUMqxlNPSBZ5+CirQxbh0qWbqlSa64Pett/pr/tlncPnlMH16umsmIiKStLKCrt5mttHM8oBekeONZpZnZrV3vZbCQli/3gOBZs1KLVahcV2rV8PPfgZXX+3Xl8S6doV77oH+/SEvz4Owe+/V7EYREakWSg26QgjZIYQmIYTGIYScyHH0dpOqrGRGWbfOW6SaNYOc0tcLr1BL1yuv+DXbtq0dyVD3RNOmns/r0kt9ZfH//MeXTPr883TXTEREpEzJpIzYbWY2wswWmtkXZnZdgvvPjqSh+NTMpptZ71TWp1KUM54rKumWroICeO01P67NaSIqItrdePfdvnzQypXwq1/B009rkL2IiGSslAVdZpYN3IennOgGnGlm3UoU+wo4MoTQC/gD8P9SVZ9Kk8R4LojNYFy2rJzrTZ/uWVQ7dIBuJV8eKVP79nDnnTBqFBQVwZNPehftF1+ku2YiIiK7SGVL1yHAFyGEL0MI24GngVHxBUII00MI6yI3PwAyPzlVki1drVt7UvVVqzz1Vqleftn3J5zgLThSMXXqeIqNW26BffaBJUs8meqjj5bzwouIiFStVAZdbYGlcbeXRc6V5mLglRTWp3Ik2dKVk+MxQAje+5XQkiUwf76nRRg2rFKrWev06gV/+5svEh4CPPusj/WaPz/dNRMREQFSG3QlarZJmBPBzIbhQde1KaxP5Yi2dJUTdEES47q+/dYTeg0bBvXqVU79arN69eDHP4a//MVf/OXL4dprYdy43VwIU0REpPKkMuhaBuwXd7sdsKJkITPrBTwIjAohZH7Gy2hLVzndi5DEDMbDDoNHHoFzzqmUqklENLXEGWd4k+N//+sLab/8so/9EhERSYNUBl0fAZ3MrKOZ1QHGAJPjC0TWd3weODeEUD3m/CfZvQhJpo3IzfUU9lK56tTxYPa++6BfP19MfPx4H2i/YEG6ayciIrVQyoKuEEIB8HPgNeAz4JkQwjwzu8zMLosU+z3QErjfzGab2cxU1afSVKB7MRp0JZzB+O67HghIarVpAzfe6EsH7bUXfPmlp5e47Tbv3hUREakipWf3rAQhhCnAlBLnxscdXwJUn9Wdt271QCk3Fxo1Krd4fEtXCHGTE5cs8XFHLVrAhAlKiJpqZr6YeN++MHEiTJoE77wD778PJ50Ep5+u1kYREUm5lCZHrXHi00Ukkd6heXOfmJif76vW7PTqq74fNEgBV1WqVw/OPRceeACOOsqXXJo0ybPbT5qkFBMiIpJSCroqogJdi+Bx2S7jurZuhWnT/HjEiMqtnySnVSsf23X33Z5qIj8fHnrIZz6+/DLs2JHuGoqISA2koKsiKjBzMWqXcV3vvgubN0OXLp6FXtLnwAPhj3+E3/8eDjjAg+rx473l69VXtaSQiIhUKgVdFVHBli5IkKsr2rV4/PGVVy/ZfWYwcKDn8rr+el9aaPVqn/X4k5/AlCnqdhQRkUqhoKsiKpAuIqpY9+JXX8HChdCwIRx+eOXXT3afGfzgB/DXv8Kvf+3R8qpV8Pe/w8UXe4Z7zTYVEZE9kNLZizXO99/7fje6F5cvx1tMuneHjh2hbt3Kr5/sOTMYMgQGD/bFyCdO9DQTjz7qxyecACee6OPCREREKkBBV7JCgM8j+Vvbt0/6YW3a+H7lSig8qAvZf/6zz5qTzJaV5a2RgwfDnDkecH36qbd4vfCCt4qNHOlj87RQuYiIJEFBV7K++87H+jRuXKGgq149bxRZvdp7q1q3RmkiqhMz6NPHt4ULPbXE9Ome5+udd6BTJzj5ZA/QcnPTXFkREclkGtOVrP/9z/c9elS4ZaNtm8CRy57k+xlfpqBiUmW6dPEFtB96CEaP9gB80SK46y44/3xPdFvmmk8iIlKbKehK1ty5vu/Ro8IP7ZE1nyNWPE3zcb9XGoKaoFUrD7IeeQQuv9zH6OXlebfjZZf5LMg339SsRxERKUbdi8mKtnT17Fnhh/Za+hL5wIL2I9gvRy95jVGnDhx7LAwfDl984elA3n7bA/S5c33m4+GHe/b7bt009ktEpJZTBJCMVat85mKjRhVPaLpmDW2+ms4Cy2JG8xEMT0kFJa3MfGxXp06eXuLtt+G11zwQmzrVt7339uBr6NDYlFYREalVFHQlI9rK1b17xVsrXn2V+nWLWND8cBatU5qBGq9BA1/eacQIWLoU3njDuxpXrYKnn/atQwdPSzFkSGRmhYiI1AYKupKxu12LO3bAK69Qpw7Mbnsia9f6CkANGlR+FSUD7befj/0691z/NzRtGnzwASxZ4tvjj/tSRIMHw2GHeUJWdUGKiNRYCrqSsbuD6N97DzZswDp2oKCoO3wDK1bAQQdVfhUlg2VlQe/evu3YAZ984mtwfvABLF7s22OPeVK3Qw+FQYN8pmSW5rmIiNQkCrrK8/33nqOrYUOfpVYRXbrASSdB5860/cD4+hvPKKCgqxbLzYVDDvFt+3YPwN5/Hz780CPyF17wrUkT6NcP+vf3fZMm6a65iIjsIQVd5Ym2cnXrVvGWh9atfdFkoO1SP7VsWSXWTaq3OnW8ZevQQ32Vgs8+89avGTPg2299LNibb8YG6vfr50lau3QBzYIVEal29Mldnj1IFREvOmHtS+VHlUSys737ukcPnwG5fDnMmgUzZ3rg//nnvj39tC9z0L17rMuyY0eNBRMRqQYUdJVnd8ZzbdgAt9ziM9iOOgrwBorsbPjoI5/ItvfelV9VqSHMfFB9u3YwahRs3erB/yefwOzZPity1izfwLu+u3Xzf6Pdu/vgfLWEiYhkHH0yl2X1al+pun59OOCA5B/34oveVdSo0c6gq2VLzxDw5pvw7397Y4ZIUurVg4EDfQNYu9YX4Z4zx4OxVas8mv/oI7+/bl3vjjz44NjWtGn66i8iIoCCrrLFj+dKdpHqb7/1RZEBzjij2F2jRnnQ9dprcOaZSh0hu6lFCxg2zDfwoGvePN/mzvWuyWhW/KjWrT0Q69zZZ3IceKAHcyIiUmUUdJUl+qVVkfFcDz/saQGGDfMBz3EOOsh7gObOhf/8x4MwkT22996+RYOwDRtgwYLYtmiRt9iuXOnZ8sG7MPfbz4OvAw7wrWNHX8RbRERSQkFXWaKD6JMdz/XppzB9urcgnH9+wiKnnOJB1+TJnk0i2QY0kaQ1bRqbFQm+yPrXX3vwtWiRL0+0ZAl8841v06bFHrvXXh58tW/vmfPbt/dZIBojJiKyx/RJWpq1az1vUr163hpQnsJC+Mc//Pi003wQVwIDB3oOzBUrPD3T4YdXYp1FEsnJ8X/DBx7okzvAc4R99ZVPp41uS5Z4Xrrvv/e8YfGPb93aW8aiW7t2Hoypi1JEJGkKukoTP54rmV/5q1ZBfr538/zwh6UWM/Nuxb//3Yd+KeiStKhTx7u/47vACwv918DXX3sA9vXXvn37rc+YXLp01+u0bOnBV5s2sf2++/pWp06V/TkiItWBgq7SVLRrsXVrGD/es9eX82Vz1FHwxBOwcKEPuTn44D2sq0hlyM6OtWTF/xrYutUH50cDr2XLfL9yJaxZ49unn+56vRYt/P/FvvvCPvvExp7ts48Ha+pbF5FaRkFXIkuWwFtv+XGvXsk/rm5d2H//covVqwfHHw/PPOOtXdddt1u1FKka0S72kt3shYXeFbl8ubeQRbeVK73ld+1a3+bN2/WaZh547bUXtGoV27dq5edbtoRmzRSYiUiNoqCrpLVr4aabYMsW/7XfuXPZ5ZcsgTfe8PQQDRsm/TQnngjPP+/j7r/7zn/8i1Qr2dmxrsT+/YvfV1QUy3P37bcehK1a5f/Yv/vO/5+tXu1bacygeXNvMUu0b9YstmlsmYhUAwq64m3Z4gHX6tXQtStcfXXZy6vMnw9/+pNP0Qe46KKkn6pFCzjiCI/XnnwSrrxSP+qlBsnKinUn9u696/07dni35OrVscH7q1fHzq1Z4/+voq1l5alXz2dtRrcmTTwYa9LE02A0aRI7btzYExfrP5yIVDEFXVGFhXDbbT6Lq3Vr+O1vyx6bNXWqj4YvKPA1fsaMqfBTnnKKJ0udNs17Za6+OrZGo0iNlpsbayUrTUGBB1zr1hXfr10L69cX37Zu9e2775KvQ8OGHnxFg7BGjfxc9Hz0uEEDv92gQex2/fpa71JEKsxCCOmuQ7kGDBgQZs6cmbonCMEHwU+Z4h/Ad9zhs7ASKSyEhx7ytXzApyJeeOFu/2qePRvGjfMf9nXqeHqvk0/W57lI0kKAzZu9ZWzDBti4sfhxXp7vo1teHmza5I/bE/XrewAWDcLq1Yudq18/di7RVrdu8ePopnxoIjWCmc0KIQzY5Xwqgy4zGwHcA2QDD4YQ/lzifovcfwKwGbgghPBxyeukPOh64QWYMMF/fd9yi3ctJrJtG/zxjx4p5eTA2LEwfPgeP/2mTfD//p93NYJPmPzJTzwvpYIvkRQIwf/j5eV5qpdoILZpk9+O32/eHLtv0yYfhrBlS2rqlZ3tgVidOrGt5O2SW25u8X30ODfXP6eixyVvJzrOyfGuYRHZI6UFXSn7WWVm2cB9wHBgGfCRmU0OIcyPK3Y80CmyHQr8PbKvOqtWwaOP+vHVVxcPuPLyPHVEt24+PqROHR8X0rQp/OY3pQdnFdSwoT/1oEHwt795irDLL/fz0eXyOnf2iZGNG/t5BWMie8As1qW4O0LwwGvzZt+igVjJLdrtGX+8dav/gIs/jt4uLIwFd+li5sFX/Jad7UFZdnbsdvw+K2vX84m2rKzE56LnSx6Xdn8ym1nscdHj+Pviz0WP4/flnYvfRJKUspYuMxsE3BhCOC5y+3qAEMKtcWUeAN4MITwVub0QGBpCWBl/rZS3dH30kTc1tW8f+9Wbn+9jSELwUe7HHONlt2/3LopWrVJSlQ0bPAacNav08cPx3xcNG8Z+oJb8sRr/eRH98Rr/GVHy86Ksz45E9+mzRqQShYAVFZJdsG3nllWw3Y8Lt5NVsI3swh1kFWwnq3A72ZH7sgp3xG3bySrcEVduR/GtqKDYbQuFkeOCnfftcbdrbWRGMCNY9IPW9yFuH3Z+4HpZsFgZix6XOB937YTnsVLKxI6Tvj/uWrEylF6u2HWLvRiJy8Y9pvj1Y4/b9dyuzw8kvm6Z1y6uzWWjaH9cahNkVnlLF9AWiE9hvYxdW7ESlWkLrKQqDRwId94JM2YUP5+T45lL438N16mTsoALvBHtiiv8eM0a+Pzz2Pbdd7Eej7w830SkpjD8IzkHSD79TLmyIltukrUIRWSHArKDB2I7j0NhbF+0g2wKyQqFxc6X3KLnLRSRRSHZodCDO4r8XCgki2hZL2cUkRW5zx8XX7aoWJnodbNCERDizsXKWQix8pE9hF3OA8Wvs/Oxodi1/Z0qwiLXcCGyFVXe+1YLJfs7fk9/728YPngPr7D7Uhl0JXpdSv6ESqZM1fjZzzzIip/N1LSpNx2lScuW3uU4aFDx89EeiLw879koKPAZ+Dt2xI5D8K2w0PdFRbEfsNH7Ev2gTfZcVdGPbpGqlgXUiWw1SwAKK/2isQ9Uwz9sjbgP2OjtomjAFv8BHAnc4j6Q4x9rIcEHd/R85Fyx5wrR4I9IudKvXexcieuX/OAt83Hx5YsFoXF1KFmuxG0r+bWfoB67lCl5vQp8ee1zRJeE56tCKoOuZcB+cbfbASt2o0zVGDIkLU+7O7KzY2mHREQknUp01YmUIZXTVD4COplZRzOrA4wBJpcoMxk4z9xhwIaS47lEREREaoKUtXSFEArM7OfAa3jKiAkhhHlmdlnk/vHAFDxdxBd4yogLU1UfERERkXRKaSa+EMIUPLCKPzc+7jgAP0tlHUREREQygbLgiYiIiFQBBV0iIiIiVUBBl4iIiEgVUNAlIiIiUgVSuuB1ZTGz74Gv010PERERkSS0DyHsVfJktQi6RERERKo7dS+KiIiIVAEFXSIiIiJVQEEXYGYjzGyhmX1hZteluz61lZntZ2bTzOwzM5tnZldGzrcws/+Y2aLIvnm661obmVm2mX1iZi9Fbut9yQBm1szMnjWzBZH/O4P03qSfmV0d+Ryba2ZPmVk9vS/pYWYTzGyVmc2NO1fqe2Fm10figYVmdlxl1qXWB11mlg3cBxwPdAPONLNu6a1VrVUA/CKE0BU4DPhZ5L24DvhvCKET8N/Ibal6VwKfxd3W+5IZ7gFeDSEcDPTG3yO9N2lkZm2BK4ABIYQe+FJ4Y9D7ki6PACNKnEv4XkS+c8YA3SOPuT8SJ1SKWh90AYcAX4QQvgwhbAeeBkaluU61UghhZQjh48hxHv7l0RZ/Px6NFHsU+GFaKliLmVk74ETgwbjTel/SzMyaAEcADwGEELaHENaj9yYT5AD1zSwHaACsQO9LWoQQ3gbWljhd2nsxCng6hLAthPAVvjb0IZVVFwVd/qW+NO72ssg5SSMz6wD0BWYA+4QQVoIHZsDeaaxabTUO+DVQFHdO70v6HQB8Dzwc6fp90MwaovcmrUIIy4E7gG+AlcCGEMJU9L5kktLei5TGBAq6wBKcUx6NNDKzRsBzwFUhhI3prk9tZ2YnAatCCLPSXRfZRQ7QD/h7CKEvsAl1WaVdZHzQKKAj0AZoaGbnpLdWkqSUxgQKujyK3S/udju8GVjSwMxy8YDryRDC85HT35lZ68j9rYFV6apfLTUYGGlmS/Du96PM7An0vmSCZcCyEMKMyO1n8SBM7016HQN8FUL4PoSwA3ge+AF6XzJJae9FSmMCBV3wEdDJzDqaWR18AN3kNNepVjIzw8emfBZCuCvursnA+ZHj84EXq7putVkI4foQQrsQQgf8/8cbIYRz0PuSdiGEb4GlZtYlcupoYD56b9LtG+AwM2sQ+Vw7Gh+jqvclc5T2XkwGxphZXTPrCHQCPqysJ1VGesDMTsDHrGQDE0IIt6S3RrWTmR0OvAP8j9jYof/Dx3U9A+yPf5idFkIoOShSqoCZDQV+GUI4ycxaovcl7cysDz7BoQ7wJXAh/oNa700amdlNwBn4rOxPgEuARuh9qXJm9hQwFGgFfAfcAEyilPfCzH4DXIS/d1eFEF6ptLoo6BIRERFJPXUvioiIiFQBBV0iIiIiVUBBl4iIiEgVUNAlIiIiUgUUdImIiIhUAQVdIpJ2ZtbSzGZHtm/NbHnkON/M7k/Rc15lZuclON/BzOZW4vPUMbO3I2vwiUgtpg8BEUm7EMIaoA+Amd0I5IcQ7kjV80UCoIvw7O0pFULYbmb/xXM2PZnq5xORzKWWLhHJWGY21MxeihzfaGaPmtlUM1tiZqea2W1m9j8zezWyhBRm1t/M3jKzWWb2WnSpjxKOAj4OIRTEPWaOmb0P/Czu+TuY2Ttm9nFk+0Hk/ONmNiqu3JNmNtLMupvZh5FWuk/NrFOkyCTg7FS8RiJSfSjoEpHq5EDgRHwx4SeAaSGEnsAW4MRI4PVXYHQIoT8wAUi0wsRgIH4B74eBK0IIg0qUWwUMDyH0w1uq7o2cfxDP/I6ZNcXX1ZsCXAbcE0LoAwzA13EDmAsM3M2/WURqCHUvikh18koIYYeZ/Q9ftuvVyPn/AR2ALkAP4D++5B3ZwMoE12mNr4UXDZqahRDeitz3OHB85DgX+FtkqZ1CoDNACOEtM7vPzPYGTgWeCyEURFrKfmNm7YDnQwiLIuULzWy7mTUOIeRV0mshItWMgi4RqU62AYQQisxsR4itY1aEf54ZMC9Bi1VJW4B6kWMDSlsP7Wp8rbbeeM/A1rj7Hse7DMfg48MIIfzTzGbgrXGvmdklIYQ3IuXrlni8iNQy6l4UkZpkIbCXmQ0CMLNcM+ueoNxnwEEAIYT1wIbIgutQfOxVU2BlCKEIOBdvOYt6BLgqco15kec7APgyhHAvMBnoFTnfEvg+hLBjz/9EEamuFHSJSI0RQtgOjAb+YmZzgNn4eKuSXgGOiLt9IXBfpHtwS9z5+4HzzewDvGtxU9xzfYcHbw/HlT8DmGtms4GDgcci54fhY75EpBazWOu8iEjtYWYvAL+Ojrvajcc3wMeS9QshbCin7PPA9SGEhbvzXCJSM6ilS0Rqq+vwAfUVZmbHAAuAvyYRcNUBJingEhG1dImIiIhUAbV0iYiIiFQBBV0iIiIiVUBBl4iIiEgVUNAlIiIiUgUUdImIiIhUAQVdIiIiIlXg/wP2M8iD9gJnJQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABMKElEQVR4nO3dd5zU1fX/8dfZQu9FpYigAkpbqqiIQCyABRuJRGNLMcYUjSnqN7HHxKgxdklULJGIXYk/NNi7CCgoRUIRpYq4lF367t7fH2eGmV22zLI7O7O77+fj8Xl8ynzmM3dnYOfsvedzroUQEBEREZHkykh1A0RERETqAwVdIiIiIjVAQZeIiIhIDVDQJSIiIlIDFHSJiIiI1AAFXSIiIiI1ICvVDUhEu3btQteuXVPdDBEREZEKzZ49e30IoX3J47Ui6OratSuzZs1KdTNEREREKmRmX5Z2XMOLIiIiIjVAQZeIiIhIDVDQJSIiIlIDFHSJiIiI1ICkBV1mNsnM1pnZvDIeNzO708yWmNmnZjYwWW0RERERSbVk9nQ9DIwp5/GxQPfIciFwXxLbIiIiIpJSSSsZEUJ428y6lnPKKcCjIYQAfGhmrcysQwhhTbLaJCIikjIhxNYZcX0eO3f6sfjHo0uDBpCdHTtv27Y9z4lq3RrMfHvjRj+/5OuGAI0bQ6tWfmzXLli3bs9rRbf32QcaNfLt3FzYvLn4taKys2H//WP7S5dCUdGe1wNo397bCrBpE6xZU/zxeD17xt6rL76ALVtKP69ly9jrb98OixeXfs0uXWI/ewqksk5XJ2BF3P7KyDEFXSIiqRQCFBRAYaGvmzaNfZl/841/8Ucfj55TVORffAcc4Odt2QIffxw7p6gotl1YCMOGQdu2fu7s2bBoUey86LlFRf4F+b3vxdp2110eTETPiy4hwHHHwdChft6cOfDUU7HH4s8LAf7611gwc9ttsGRJ8ccLC/2xww+Hn/zEt1etgssvLx7wRK8dAlx/PRx6qJ/74IPw4ovFrxnVuTPcFze48/3vxwKkkn78YzjlFN9+7z1va1mefhoaNvTtv/wFFiwo/byRI+E3v/HttWvh4ovLvuZNN0Hv3r79zDMwdWrp55X8mX7/+8R+po8/Tvxnmjix7J9p1Ci47DLf/uYb+L//K/28yy+Ho44q+/WSLJVBl5VyrIxQN7kWLYKVK+GYY1Lx6iIixAKdHTt82bkztu7cGZo08fOWLIEvv/TjO3d6T8WuXb7drBmccUbsmrfc4n/179rl1y4oiG2ffrp/UQG88w7cfXfsnPgeCij+xXfLLbBwYek/Q/yXeW4u3Hxz2T/vgQfGgq5PPoEXXij9vE6digddb75Z9pd5nz6x7Q0b4NNPy379wsJY0LVuHaxYUfp50Z4d8Pdl06byrxl/bkFB6edZia+/Bg2KPxZ93Ayy4r6ms7OhefM9z4nfj2rVCtq12/MxMw+Oo7KyoGPH4teLX8e3rU0bKDk7TPS8ffctfvygg/zfWmk/b7SXC6BFC+/NKnleyXZA7LVLO69Tp9ixhg1j/xZKXif+Z08BC2V16VXHxX148cUQQp9SHvsH8GYI4fHI/iJgZGnDi4MHDw7Jqki/bh1cdJH//7jhBujbNykvIyJ1RQj+ZbJ1q/f4RNfRZdgwyMz0c6dN8y/zbds8+Nm+PRZU5eTAeef5eStXem9DWb+P//zn2C+nBx4oO0Dp0AH++c/Y/ne/669Zmh/+EE47zbffftuDqXhZWb5kZsKkSbGgL9orlJkZezy6nZMTC5Byc+H++31oKP68jAxfn3SSf9lDrKcr+nj80qJFLDgEeOMNX2dk+Bdp/LkHHODvAXjQ9dVXe54X3T7ooNiw1dq1/plGA5T48xo18jaAB1V5ecUDnfjzGzaMXTM+4Io+XjL4kDrLzGaHEAaXPJ7Knq6pwC/MbAowFNiUinyuffaBk0+GZ5/13ti//33PgF1E6pAQPFDascP/co967TXv1cjP96Gx6LJ1K4weXbxXqGSAEm/AAO+NAPjgAx/mKk27drHtBg28XVlZ/sXdoEFsie5H9egB3/lOLNcnus7O3vOv+N/8JtZbEj0nuh3/sx9xBEyZ4kFPdnYsSChNdAinIm3a+FBOIgYN8iUR8QFYeVq3Lt6jUp799kvsvMzMxPOBsmrFLHtSw5L2r8LMHgdGAu3MbCVwDZANEEKYCEwDTgCWAFuBC5LVloqcd5731s+eDX/6k/8+jeYNikgaC8F7cjZu9GGfzZvh4INjAcW773rPSF6eP5aX50FVUZEHPQ89FLvWQw+VPXQU3wXeuLEHJo0be+9P48bFl3hjx8Jhh/kvlOjSsKEv8V/e7dvDc88l9kV99NG+JOLwwxM7LxqQiUhSJfPuxe9X8HgAfp6s16+MjAz43e/8j8Lly733/Mor1RMskjIFBT48lJsL337rQUq0JyQ/H66+2gOk+Du0oq64wof4wIeNPvpoz+tHA6B4xx/vQ0xNm+65xPeEDB7sXeOJOPLIxM4rmbsjInWS/pdHNG0KV13lgdcHH8Djj8NZZ6W6VSJ10K5dsH6932HUo0cs+HnqKe+Z+vbbPXucDjkkFnQ1auS3g0c1aOC9Ri1b+hId2gMfNuvc2Y+1aOHrZs1KD3DOPTex9uuvMRHZSwq64nTq5D1e113nQVfXron/oSoiESHEApPcXPjPf/yOla+/9kArNzd27q23xu5c2rgRli3zbTPPx2nb1ocKo2UIwAOmv/3Ng6hWrbwXrKxAqFOn4nc1iYikkIKuEgYNggsu8Jt1brsNevVKaR01kfRUUOBB1OrVxZc1a7xOUbRsQGGhlxuIl5Hh+VTt2xc/ftJJXnKgbVv/TxdfPLKkHj2q86cREakRCrpKceqpMHMmfPaZl3lJNGdVpM7Zvt1vu1+xwofqomUDbroJZswo/TnR2+vBA6izz/Zbgtu393WbNrGSCvGit/qLiNRRCrpKYeZ3fX/2mRe/VdAl9cLWrR5IffWV38775Zc+LBjVsWOs2naXLj4lR8eOey777BN7TkYGTJhQsz+HiEiaUtBVhuh3S1kzDojUWjt2eO7UkiWeD3X88X5869Y9p+PIyvJE9C5dYhXJAc45J/HEcxERARR0lalHD/++Wb7c6yM2bZrqFonspZUrYe5cv+Nv6VLvwYpWPu/aNRZ0tW3rOVUdOnjierS6d2lDgbqDT0Sk0hR0laFBA58lYtEiXwYOTHWLRBKwYYPPi9e9eyxR/bXXiiezZ2R4sHXwwX5elFksAV5ERKqdgq5y9OrlAdeCBQq6JA2F4MU/FyyA+fNh3jy/exDgZz+DE07w7f79vfZVjx4eZHXrVnxaGRERqREKusrRu7fPzLFwYapbIlJCCD5B8sqVxY83auSFROPrnOTk+CIiIimloKschxzi688/97JEmqVDatz27X4b7ezZ3qN1223+D9HMyy9s2uR/HUSXAw8sPQdLRERSTmFEOVq29GLWq1b5zV6qxyhJF4L3Xs2a5YHW/Pke8Ud9/jn06ePbv/mNT2mjpHYRkVpBQVcFevXyoGvhQgVdUgNWrfJhwygznyZn4EBfDj449lj8HIMiIpL2FHRVoFcveOUVH9k55ZRUt0bqjF27YM4cn+B540af8BO8a7VnTy8yOniwV+lVcCUiUico6KpAr16+XrCg+Dy+IpUWH2jNmOEF4KJyc316HDOfBFpEROocBV0V6NDBc7s2bvS78zU9nOyVhQu9Nys+0OraFYYP9zkNW7dOWdNERKRmKOiqgJn3dn3wgfd2KeiShKxa5cthh/n+AQd4T1c00Bo2zIcSRUSk3lDQlYBDD40FXccck+rWSNrasQPeew/++1//x9K8OTz6qJd4aNIE7r/fhxBFRKReUtCVgPi8LpE9LFvmgdZbb8WGDxs1gqFDfRLpFi38mAIuEZF6TUFXAg46yGdNWbkSNm+OfYeKsHQpXHppbL9HDxgzxocQGzVKWbNERCT9KOhKQFaWf5fOm+f50EOHprpFkjKbNvkdiCNG+P6BB3qx0q5dYfRoX4uIiJRCQVeCevVS0FWvrVoFzzwDb7zhFeK7d/daWmbw5z+rloiIiFRIQVeClNdVTy1a5MHWhx/GCrUNHQqFhbFzFHCJiEgCFHQl6JBD/Lt18WLYudNzvKQOCwGuvtqHEsHHmI89Fk47zXu4REREKklBV4KaNvVSS8uXw5IlsZ4vqWOivVlm0Latl3o44QQYN04FTEVEpEoyUt2A2iSaI71mTUqbIckwbx5ceSXMnBk7dt55MGmSrxVwiYhIFamnqxKi37sbNqS2HVKNli2Dhx6KDSNmZMSqyCvQEhGRaqSgqxIUdNUh69fDv/7ldyOG4MOIp50GJ5+c6paJiEgdpaCrEhR01RFz5sANN/gdEVlZcOKJcOaZPm2PiIhIkijoqoToLC4Kumq5nj29Z2voUDj3XNhvv1S3SERE6gEFXZWgnq5aatkyeOopn66nYUNo3BjuvVc9WyIiUqOSeveimY0xs0VmtsTMrijl8ZZm9h8zm2tm883sgmS2p6qiQVdubmrbIQnKz4f77vNg69134fnnY48p4BIRkRqWtJ4uM8sE7gGOA1YCM81sagghvqb7z4EFIYSTzaw9sMjMJocQdiarXVXRtClkZ8O2bbB9u+YzTlshwHvvwcSJPldiRobX2VKSvIiIpFAyhxcPA5aEEJYBmNkU4BQgPugKQHMzM6AZkAsUJLFNVWLmvV3r1vkQY4cOqW6R7CE314cOZ8zw/T594KKLvLKtiIhICiUz6OoErIjbXwmUnCr6bmAqsBpoDpwZQihKYpuqLBp0bdyooCstLVjgAVeTJnDBBTB6tOZGFBGRtJDMoKu0b7pQYn80MAf4DnAQ8IqZvRNC2JzEdlWJ8rrSUPxkmMOGeQX5kSOhXbuUNktERCReMhPpVwL7x+13xnu04l0APBvcEuAL4JAktqnKdAdjmnnnHfjRj3xSTPBerfHjFXCJiEjaSWbQNRPobmbdzKwBMAEfSoz3FXAMgJntC/QEliWxTVW210FXURFMmwZvv+1jk1I1W7fCbbfBzTf7+/naa6lukYiISLmSNrwYQigws18A/wUygUkhhPlmdlHk8YnADcDDZvYZPhx5eQhhfbLaVB32Ouh6/30vXxDVtSvk5PgyYIBXRpfELFwIt97qyXUNGsBPfuK5WyIiImksqd/0IYRpwLQSxybGba8Gjk9mG6rbXgddn37q6/3284Sw5ct9eeEFD7xuuEEJ3xUJwYucPvaYbx98MPz2t9CpU6pbJiIiUiF1r1RSdCqgSifSL4hUyvj1r6F7d/j8c58D8KWXYO5cH3YcMaI6m1r3rFsHTz7pAdf48XD22eohFBGRWqPCbywzGwZcCxwQOd+AEEI4MLlNS0/Rnq5KpWXl5cGXX3pl1e7dfd23ry/77Qd33gkPP+xzAariatn23deryzduDIMGpbo1IiIilZJIIv2DwG3AUcAQYHBkXS+1auXrDRs8Nz4hn3/u6x49POCKd8wxcNBBsH49PPNMdTWzbggBXn65eJL8UUcp4BIRkVopkaBrUwjhpRDCuhDCt9El6S1LU1lZPm1fCLA50Wpi8+f7ulevPR/LyPBEcIBnn4VvvqmWdtZ6BQVw991wzz1eYX59Wt9fISIiUqFEgq43zOwWMzvCzAZGl6S3LI1VOq8rGnT17l364717w/DhXuTzoYeq3L5ab/NmuOoqmD7d70785S9Vd0tERGq9RLKQo1P3DI47FvAq8vVS69aeopXQHYw7d8KSJX5n4iHl1H294AKfvuadd+DEE8sO0Oq6FSvg+uth7VqPbv/4R8+DExERqeUq7OkKIYwqZam3ARdUsmzE//7nQ2Vdu0LTpmWf1749nH66b//zn5VIGKtDPv3US0CsXet5brfdpoBLRETqjAqDLjNraWa3mdmsyPI3M2tZE41LV5UKuqKlIkrL5yrpjDOgbVtYtqx+Vlhv1cqT5YYNg7/+1d8LERGROiKRnK5JQB7wvciyGajXiUeVCroqyueK16iRDzMCPPqoD03WJ126eO/W5ZdDw4apbo2IiEi1SiToOiiEcE0IYVlkuQ6olzW6oqKJ9BUGXUVFPmUNJNbTBXD00T60tnEj/Pe/e9vE2qGoyO9OfOWV2LHOnVWZX0RE6qREgq5tZnZUdCdSLHVb8pqU/uJrdZVr+XLYts2LeiY6VGYGEyb49jPPwK5de9nKNLdzJ9x0k9fh+uc/YdOmVLdIREQkqRK5e/FnwCORPC4DcoHzk9modJdwyYjKDC3GGzrUE++XL4dXX4WxYyvZwjS3ZQv86U8wb57fXHDVVdCyXqcJiohIPZDI3YtzQgg5QD+gbwhhQAhhbvKblr4SzumqTBJ9PDM480zffuopv/uxrsjLgz/8wQOuNm28t6u+lscQEZF6pcyeLjP7QQjhMTO7rMRxAEIItyW5bWmrSROv2bl9uy+lTpcYQizo2pug4sgjYf/9vW7VG2/AccdVqc1pIS/P624tWwYdOnhv1z77pLpVIiIiNaK8nq5oUanmpSzNktyutGaWQF7X2rU+/tiiBXTqVPkXyciA733Pt598EgoL96ap6WXDBp/mqGNH+MtfFHCJiEi9UmZPVwjhH5HNV0MI78U/Fkmmr9dat4Z16zyu6tChlBPihxb39m684cPh8cdh9Wp4+20YNWqv25sWunSBP//ZA9FoYpyIiEg9kcjdi3cleKxeqbBsRHmTXCcqMzPW2/XEE7WzSv3GjfDuu7H9rl0VcImISL1UXk7XEcCRQPsSeV0tgMxkNyzdVZhMX5V8rngjRsC//w2rVnnwcvTRVbteTYomza9Y4cOlRx6Z6haJiIikTHk9XQ3w3K0siudzbQbGJ79p6a3coGvTJg+SGjaEA6tYRzYrq3hvVwhVu15N2bYNrr0WvvrKC57qDkUREannysvpegt4y8weDiF8WYNtqhWiQVeptbqivVw9e3rQVFXHHANTpngA8/77PjdhOtu50+9M/N//PFn+T39SHS4REan3Esnp2mpmt5jZNDN7PbokvWVpLpqWtHFjKQ+uWOHr7t2r58WysuC73/XtKVPSu7ersBBuuQU+/dQj0z/9STlcIiIiJBZ0TQY+B7oB1wHLgZlJbFOtEC0ZUWpPV3TMsTqDjeOOg3btvEr9Bx9U33Wr24MPwocfeqX5668v49ZOERGR+ieRoKttCOFBYFcI4a0Qwg+Bw5PcrrRX7t2L0UgsOgZZHbKzYXwklS6de7uOP94DrWuv9TsVRUREBEgs6IrOuLzGzE40swFA5yS2qVaIpiht2lRKJYdoJFadQRd4b1ebNvDFFzBjRvVeu7p07Qr33guHHJLqloiIiKSVRIKuP0Umu/4N8FvgAeDXSW1VLZCV5TU+Qyglryt6oLqDrgYNYr1djz+ePr1dM2fC63FpftVx84CIiEgdU+G3YwjhxcjmJqCWl0SvXm3awObNHmMVS99KVk8XwOjR8PTTPn/hRx/B0KHV/xqVsWwZ3HyzT0LZrh3065fa9oiIiKSp8oqj3gWU2ZUSQvhVUlpUi8Qn0+8uxxWdBbtBA2jcuPpftEEDOOMMuP9+7+067LC9n2aoqtavh+uu85931Cjo2zc17RAREakFyuvpmlVjrailSk2mj+/lSlYwNGYMPPUULF0Ks2bBkCHJeZ3ybNsGN9zgEWefPvDLX6Yu+BMREakFyiuO+khNNqQ2KrUqfTKHFqOivV0PPui9XYMH12zAU1TktbiWLYOOHeH//s/vrhQREZEyVZjTZWZvUMowYwjhO0lpUS2SsqALYOxYz+1avLjmc7umTPHk+ebN4ZprfC0iIiLlSuQ2s9/GbTcCzgAKErm4mY0B7sAnyH4ghHBTKeeMBG4HsoH1IYQRiVw7HZQ6FVAyanSVpmFDn5Px/vvhX/+q2dyuI4+Et9+Giy/2ni4REUm5wsJCcnNz2bVrV8UnS7XIzs6mTZs2ZGZmJnR+Incvzi5x6D0ze6ui55lZJnAPcBywEphpZlNDCAvizmkF3AuMCSF8ZWb7JNTqNFFqTleyykWUZuxYeP55+PJLeOstGDky+a8JXovrnnsgwX9kIiKSfLm5uTRq1Ih27dphyrFNuhAC+fn55Obm0r59+4SeU2GdLjNrE7e0M7PRwH4JXPswYEkIYVkIYScwBTilxDlnAc+GEL6K/ADrEmp1mkjp8CJ4HtVZZ/n25MlQkFAH5N7Ztg3efTe2r4BLRCSt7Nq1i2bNmingqiFmRrNmzSrVs5hIcdTZ+J2Ms4EP8CKpP0rgeZ2AFXH7KyPH4vUAWpvZm2Y228zOTeC6aSNaMmLDhrg6pTUZdIGXaujcGdauhenTk/MaIcAdd8Bf/+p3TYqISFpSwFWzKvt+Vxh0hRC6hRAOjKy7hxCODyG8W9HzgNJaUjIhPwsYBJwIjAauMrMeCVw7LTRp4jcS7tjhHUFAzQddmZnwgx/49hNPeGOq23PPwXvved2xI4+s/uuLiEidceONN9K7d2/69etH//79mZGiaevmzJnDtGnTdu9PnTqVm27y1PLzzz+fp59+eo/nvPnmm5x00klJa1Midy82Ai4GjsKDpneB+0II2yt46kpg/7j9zsDqUs5ZH0LYAmwxs7eBHOB/iTU/tcw8tvr6a4+1mjSh5oMu8EDo4INhyRL4z39iUwVVh3nz4OGHffuyy6BTyc5KERER98EHH/Diiy/y8ccf07BhQ9avX8/OnTtT0pY5c+Ywa9YsTjjhBADGjRvHuHHjUtKWqESGFx8FegN3AXcDhwL/SuB5M4HuZtbNzBoAE4CpJc55ARhuZllm1gQYCixMtPHpoFgyffxEjNEZsWuCGZwbGZl95hnYsqV6rpuXB3/7m/9c48fD4YdXz3VFRKROWrNmDe3ataNhw4YAtGvXjo4dO9K1a1fWr18PwKxZsxgZufHrrbfeon///vTv358BAwaQl5cHwM0330zfvn3JycnhiiuuAGDp0qWMGTOGQYMGMXz4cD7//HPAe60uuugihg8fTo8ePXjxxRfZuXMnV199NU888QT9+/fniSee4OGHH+YXv/jF7ra++uqrxZ5T0pYtW/jhD3/IkCFDGDBgAC+88EKV359ESkb0DCHkxO2/YWZzK3pSCKHAzH4B/BcvGTEphDDfzC6KPD4xhLDQzF4GPgWK8LIS8yr/Y6ROsWT6zZu9cGjz5jVfLLR/f5+G57PP4Nln4Zxzqna9EODuu32qn5494eyzq6WZIiKSfCefnJzr/uc/5T9+/PHHc/3119OjRw+OPfZYzjzzTEaMKLsS1K233so999zDsGHDyM/Pp1GjRrz00ks8//zzzJgxgyZNmpAbKcV04YUXMnHiRLp3786MGTO4+OKLef311wFYvnw5b731FkuXLmXUqFEsWbKE66+/nlmzZnH33XcD8HB01CaitOfEu/HGG/nOd77DpEmT2LhxI4cddhjHHnssTZs2reS7FpNI0PWJmR0eQvgQwMyGAu8lcvEQwjRgWoljE0vs3wLcklhz00+xoCs6tBjNsK9JZnDeefDb38ILL8BJJ1VtiHPzZli+3MdMf/c7yErkn4qIiNRnzZo1Y/bs2bzzzju88cYbnHnmmbvzqEozbNgwLrvsMs4++2xOP/10OnfuzKuvvsoFF1xAkyZNAGjTpg35+fm8//77fPe739393B1xOczf+973yMjIoHv37hx44IG7e8HKU9Fzpk+fztSpU7n11lsB2L59O1999RWHHnpopd6TeIl8kw4FzjWzryL7XYCFZvYZEEII/fb61euA6Cjipk2kJp8rXs+eXpl+xgwvIRHXjVppLVv6HYtffAH77lt9bRQRkaSrqEcqmTIzMxk5ciQjR46kb9++PPLII2RlZVFUVAR48BJ1xRVXcOKJJzJt2jQOP/xwXn31VUIIe9wVWFRURKtWrZgzZ06pr1ny/ETuKqzoOSEEnnnmGXr27FnhtRKVSE7XGKAbMCKydANOAE4CktSBWXtEg67Nm4kFXdFEr1S44AK/o3H6dA+YKivE3WDaqBFUIaIXEZH6ZdGiRSxevHj3/pw5czjggAPo2rUrs2d7rfVnnnlm9+NLly6lb9++XH755QwePJjPP/+c448/nkmTJrF161bAi762aNGCbt268VSkbFEIgblzY5lOTz31FEVFRSxdupRly5bRs2dPmjdvvjtHrDSlPSfe6NGjueuuuwiR78VPPvmkiu9OYiUjvgRa4QHWyUCrEMKX0aXKLajlWrTwdVr0dIHfXXjiiR48PfBA8SAqEf/4h+dyJaP0hIiI1Gn5+fmcd9559OrVi379+rFgwQKuvfZarrnmGi655BKGDx9ebMqc22+/nT59+pCTk0Pjxo0ZO3YsY8aMYdy4cQwePJj+/fvvHt6bPHkyDz74IDk5OfTu3btYYnvPnj0ZMWIEY8eOZeLEiTRq1IhRo0axYMGC3Yn0JZX2nHhXXXUVu3btol+/fvTp04errrqqyu+PhQq+lM3sEuAnwLORQ6cB/wwh3FXlV0/Q4MGDw6xZs2rq5Srl00/hD3+A3r3hpoMf8HyqH/4QTjstdY3Ky4MLL4T8fPjjHxOfDHvmTLj+es/f+tvf4MADk9tOERGpNqtXr6ZjPZwP9/zzz+ekk05ifHWWS6qE0t53M5sdQhhc8txEhhd/BAwNIVwdQrgaOBwPwoQycrpSkUgfr3nz2PRADz6Y2PRA+fnewwV+56MCLhERkWqVSNBlQGHcfiGlV5uvl4oNL9bkZNcVGTvWpwdaswZKqT+yhwcegNxcz+E69dSkN09ERKQ6PPzwwynr5aqsRIKuh4AZZnatmV0HfAg8mNxm1R7Nm/s6Px9CbhrkdEVlZcGPIlNkTpkSyfQvw8yZ8NprPqfRJZdARiL/LERERKQyEkmkvw24AMgFvgUuCCHcnuR21RpZWdCsmeer71rnBdzSIugCGDQIBgzwCvWTJ5d+TslhRU3zIyIikhSV6dIwfO5FDS2W0LIlZBXtpHDTFo/Cot1fqWYGP/6xr19+Gb76qvRzcnJ8WDHFc1KJiIjUZRUGXWZ2NfAI0BpoBzxkZn9MdsNqkxYtoOmujewqwJPoEyjKVmO6dPH8rqIiuO++PUtING3qE1nfcIOGFUVERJIokW/Z7wNDQgjXhhCuwe9e1ER8cVq0gGa7NvhNgukytBjvBz/w7rh58yAyTxXbtsGuXbFzIpOTioiI7K1mzZpVeM4777xD79696d+/P9u2bavU9Z9//nkWLFiQlHbVhESCruVAfMWwhsDSpLSmlmrZ0nu6CnaR+nIRpWne3GuHAUya5HW8HnjAk+aXL09p00REpH6ZPHkyv/3tb5kzZw6NGzeu1HP3NuhKF4kEXTuA+Wb2sJk9BMwD8s3sTjO7M7nNqx1atvSerl3p2tMFMGoU9OnjdzH+9a8+TdCaNT5lkIiISDV68803GTlyJOPHj+eQQw7h7LPPJoTAAw88wJNPPsn111/P2Wf7oNktt9zCkCFD6NevH9dcc83uazz66KP069ePnJwczjnnHN5//32mTp3K7373O/r378/SpUtZunQpY8aMYdCgQQwfPnz3pNVffPEFRxxxBEOGDKmWSvLVJZEJr5+LLFFvJqcptVfaDy+C55ldfLFPgj15MnTt6r1f+++f6paJiEh1OzlJUyNXYibtTz75hPnz59OxY0eGDRvGe++9x49//GPefffd3RXkp0+fzuLFi/noo48IITBu3Djefvtt2rZty4033sh7771Hu3btyM3NpU2bNowbN65Y9fljjjmGiRMn0r17d2bMmMHFF1/M66+/ziWXXMLPfvYzzj33XO65557kvBd7ocKgK4TwSE00pDbb3dNVSPoGXeABVteu8OGH8PXXcPrpqW6RiIjUUYcddhidO3cGoH///ixfvpyjjjqq2DnTp09n+vTpDBgwAPC5GxcvXszcuXMZP3487dq1A6BNmzZ7XD8/P5/333+f7373u7uP7YjMG/zee+/tnlj7nHPO4fLLL6/+H3AvJNLTJRXwnq5cCopI76Br/XpYudKT5tu29SHGVM4RKSIiyVGJHqlkaRh3g1ZmZiYFpUxJF0Lgyiuv5Kc//Wmx43feeSdWQSWAoqIiWrVqxZw5c0p9vKLnp4JqBFQD7+mKJNKnc9B1//2wc6d3O7dqBf/+twdiIiIiKTB69GgmTZpEfn4+AKtWrWLdunUcc8wxPPnkk3z77bcA5OZ68fHmzZuTl5cHQIsWLejWrRtPPfUU4AHc3LlzARg2bBhTpkwBPHE/XZQZdJnZvyLrS2quObWT1+lK80T6EGDwYNhnH7juOjjySNi+He65Z8/aXSIiIjXg+OOP56yzzuKII46gb9++jB8/nry8PHr37s0f/vAHRowYQU5ODpdddhkAEyZM4JZbbmHAgAEsXbqUyZMn8+CDD5KTk0Pv3r154YUXALjjjju45557GDJkCJs2bUrlj1iMhTK+cM1sATAWmAqMpEQl+hBCbrIbFzV48OAwa9asmnq5StuxPTC72xlkh10M/uIprHGjip+UKoWFfsdibq4n1m/ZApdeCscck+qWiYhIFaxevZqOHTumuhn1Tmnvu5nNDiEMLnluecOLE4GXgUOA2SWW9I2AUqBh4VYasIsdGY3ZFtIw4Nq5M7YdLRHRpg1ceKFv338/RLpwRUREJDnKDLpCCHeGEA4FJoUQDgwhdItbDqzBNqa/DRvIyob87NakUS+mW78eLrgApkzZcxhx1CgYMsR7u+66S8OMIiIiSVRhIn0I4WdmlmNmv4gs/WqiYbXKhg1kZ3nQtXlzqhtTwiOPeEHUL7/cc05IM6/b1bQpzJ4Nr72WmjaKiIjUA4lMeP0rYDKwT2SZbGa/THbDapW4nq60Crr+9z94803IzvbertK0aQPRW3Xvv193M4qIiCRJIiUjfgwMDSFcHUK4Gp/w+ifJbVYts2EDWVlpNrwYgs+vCHDKKX7XYllGjoTDDoOtW+HuuzXMKCIikgSJBF0GFMbtF1LiTsZ6L254MW2Crvfeg4ULvYhYXLXeUpnBz38OzZr5MOOrr9ZMG0VEROqRRIKuh4AZZnatmV0LfAg8mNRW1TZxPV1pMby4cyc89JBv/+AH0KRJxc+Jv5vxn/+EVauS1z4REamTMjMz6d+/P3369OHkk09m48aNqW5SpV177bXceuutSbl2Ion0twEXALnABuCCEMLtSWlNbbVhA9npdPdiXp4PJx5wABx3XOLPGzkSjj7ai6becguUMmWDiIhIWRo3bsycOXOYN28ebdq0SZvJpkMIFBUVpboZiU0DFEL4OFJC4o4QwifJblStk249XW3bwp//DDfeGKvLlQgzL5i6zz6wdCk8+mjy2igiInXaEUccwarIqMnSpUsZM2YMgwYNYvjw4Xz++ecAfP3115x22mnk5OSQk5PD+++/D8Btt91Gnz596NOnD7fffjsAl19+Offee+/u61977bX87W9/A+CWW25hyJAh9OvXj2uuuQaA5cuXc+ihh3LxxRczcOBAVqxYUep5ADfeeCM9e/bk2GOPZdGiRUl7TzThdXWI3L24JbtVevR0gQdQLVtW/nlNm8Lvf+/Lc89BTg4MGlT97RMRkeQ6+eSyH/v5z2HMGN9++WWfEq4sezF5dmFhIa+99ho/+tGPALjwwguZOHEi3bt3Z8aMGVx88cW8/vrr/OpXv2LEiBE899xzFBYWkp+fz+zZs3nooYeYMWMGIQSGDh3KiBEjmDBhApdeeikXX3wxAE8++SQvv/wy06dPZ/HixXz00UeEEBg3bhxvv/02Xbp0YdGiRTz00EPce++9ZZ7XtGlTpkyZwieffEJBQQEDBw5kUJK+9xR0VVVhIWzeTFa2sTW7ZWp7utau9Vyu738funbd++v07Om5YI8+Cn//uxdOTdc5JUVEJG1s27aN/v37s3z5cgYNGsRxxx1Hfn4+77//Pt+Nu6lrx44dALz++us8GhlVyczMpGXLlrz77rucdtppNG3aFIDTTz+dd955h1/96lesW7eO1atX880339C6dWu6dOnCnXfeyfTp0xkwYAAA+fn5LF68mC5dunDAAQdw+OGHAzB9+vRSz8vLy+O0006jSST/edy4cUl7fxR0VdWmTRACWW1bUZSfmdqern//G95/Hxo39vkUq+KMM2DOHPj0Uw+8rrtuz+KqIiKSvhLtoRozJtbrVUXRnK5NmzZx0kkncc8993D++efTqlUr5syZk9A1ypoTGmD8+PE8/fTTrF27lgkTJuw+/8orr+Sn0ZqTEcuXL98duJV33u23347V0PdbIsVRTzezxWa2ycw2m1memSXUn2NmY8xskZktMbMryjlviJkVmtn4yjQ+LWzYAEBWu9ZkZsK2bbBrVwrasWKFF0LNyvKerqrKyIDLLoPmzeGTT3yoUUREJAEtW7bkzjvv5NZbb6Vx48Z069aNp556CvDgZ+7cuQAcc8wx3HfffYAPSW7evJmjjz6a559/nq1bt7Jlyxaee+45hg8fDsCECROYMmUKTz/9NOPHe8gwevRoJk2aRH5+PgCrVq1i3bp1e7SprPOOPvponnvuObZt20ZeXh7/2Yvh1EQlkkh/MzAuhNAyhNAihNA8hNCioieZWSZwDzAW6AV838x6lXHeX4H/Vq7paSISdFmb1rSIvCspGWJ87DEvanr88bDvvtVzzbZtYz1mjzwC8+ZVz3VFRKTOGzBgADk5OUyZMoXJkyfz4IMPkpOTQ+/evXnhhRcAuOOOO3jjjTfo27cvgwYNYv78+QwcOJDzzz+fww47jKFDh/LjH/9495Bg7969ycvLo1OnTnTo0AGA448/nrPOOosjjjiCvn37Mn78ePLy8vZoT1nnDRw4kDPPPJP+/ftzxhln7A7wksHK68YDMLP3QgjDKn1hsyOAa0MIoyP7VwKEEP5S4rxLgV3AEODFEMLTJa81ePDgMGvWrMo2oWa88grceScccwy/WHIpX34Jd9wBB9bklOBLlsCvfw0NGvhUPm3aVO/1H34YnnnGE/Nvvx3atave64uISJWtXr2ajh07proZ9U5p77uZzQ4hDC55biI9XbPM7Akz+35kqPF0Mzs9ged1AlbE7a+MHItvVCfgNGBiAtdLT5GeLlq33n2zYI33dD32mK9PPLH6Ay6Ac86B/v09f+2mm1I0fioiIlK7JRJ0tQC2AscDJ0eWkxJ4XmlZaSW71W4HLg8hFJZybu0QDbpatdo9vFijyfRffw1z50KjRjA+SSlxmZnwu99B+/awaJFXrBcREZFKqfDuxRDCBXt57ZXA/nH7nYHVJc4ZDEyJ3DXQDjjBzApCCM/v5WvWvNxcX7dtm5qcrn33hX/8A774gt0NSIYWLeD//s/rd738MvToUblq9yIiIvVcIncvdjaz58xsnZl9bWbPmFnnBK49E+huZt3MrAEwAZgaf0IIoVsIoWsIoSvwNHBxrQq4AL791tdt2+4eXqzxshH77ANDhyb/dQ4+2AvqAdx3HyxenPzXFBGRhFWUpy3Vq7Lvd6ITXk8FOuI5Wf+JHKuoIQXAL/C7EhcCT4YQ5pvZRWZ2UaVamc6iQVebNjUbdIXgdbRq+j/YMcfACSd4Xtef/xzr6RMRkZTKzs4mPz9fgVcNCSGQn59PdnZ2ws9JpDhq+xBCfJD1cOSOw0QaNA2YVuJYqUnzIYTzE7lmWgkhltMVF3TVyPDi3Llw1VXQt68HPzXpJz+B5cthwQK4/npPrm/UqGbbICIixbRp04bc3NxSyyVIcmRnZ9OmEjewJRJ0rTezHwCPR/a/D3y7F22rezZt8mmAWrSA7Oyazel68klf9+9fAy9WQlYW/OEP8Nvf+sTYt97q+V4ZCc2fLiIiSZCZmUn79u1T3QwpRyLfkj8EvgesBdYA4yPHJG5oEai5uxcXLoTPPvPJqU88MckvVoYWLeCaa6BZM5gxAyZNSk07REREaokKg64QwlchhHEhhPYhhH1CCKeGEL6sicalvbg7F4Gay+mK9nKdeKIHXqnSqZP3eGVlwQsvwLRpFT9HRESknipzeNHMfh9CuNnM7mLP+lqEEH6V1JbVBiV6upo39928PCgqStJo27JlMGsWNGwIp5yShBeopD594Je/9EmxJ070EhaDBqW6VSIiImmnvLBgYWQ9C5hdyiJx5SLAO3yaNvX8+sh8mtUvMmEoY8Ykty5XZXznOzBhgv/gN90E//tfqlskIiKSdsoMukII0Wm2t4YQHolf8Ar1UiLogiQPMYYAPXt6Xa7TTkvCC1TBWWfBqFGwfTtcey2sWFHhU0REROqTRAbArkzwWP1TIqcLkhx0mcGpp8IDDxR7zbRgBr/6FQwZ4uOrf/yjT1EkIiIiQDlBl5mNjeRzdTKzO+OWh4GCGmthOiulp6tGykZYadNapoGsLLjiCs/zys31OmLROmYiIiL1XHk9XavxfK7tFM/lmgqMTn7TaoESifSQxKBr8mS/a3HLlmq+cDVr0MCDrYMOgjVr4Oqrk5jgJiIiUnuUl9M1N5K/1Rd4LC6f6wVgR001MG3t2uXDaJmZsTFFkjS8uGkTPPss/OtfsUAvnTVpAtddB507e+X6666DbdtS3SoREZGUSiSnazrQOG6/MfBqcppTi0TzuVq3Ljbcl5Sg66WXYOdOz5fq0qUaL5xELVvCDTdA+/bw+edeSHWr7r8QEZH6K5Ggq1EIYff4UGS7SfKaVEuUks8FVP/8i7t2wf/7f7596qnVdNEa0q4d3Hijrxcu9KHGdB8eFRERSZJEgq4tZjYwumNmgwCNFZVy5yIkYSqgt9+GjRuha1ef3Lq26dDBa3ftsw8sWuT5Xgq8RESkHkok6LoUeMrM3jGzd4AngF8ktVW1QRk9XdWaSB8CPP+8b596avretViRffeFv/zF14sXezmJvLxUt0pERKRGJTL34kzgEOBnwMXAoSEEVaQv5c5FqObhxfnzPRG9VSs4+uhquGAK7bOPB1777QdLlnjglfRJKkVERNJHorMD9gR6AQOA75vZuclrUi1RQU7Xpk3eUVUlvXt7AvpPfgLZ2VW8WBpo394Drw4dfA7Jyy+HdetS3SoREZEaUWHQZWbXAHdFllHAzcC4JLcr/ZWR09WwoZeq2rXLZ8SpEjMYPLj293LFa9fOc7y6dYNVq+B3v/PePBERkToukZ6u8cAxwNoQwgVADtAwqa2qDcoYXoRqKhtRl8srtGnjPV7RyvVXXOFDqSIiInVYIkHXthBCEVBgZi2AdcCByW1WmguhzOFFqIa8rrw8OP98uOUWKCzcy4ukuaZNvWjqkUf63YxXXw0zZqS6VSIiIkmTSNA1y8xaAffj0wB9DHyUzEalva1bvVhpo0bQuPEeD1e5p+ull7yC+5YtXvG+rmrQwPO6xozx9/PGG2HatFS3SkREJCmyynvQzAz4SwhhIzDRzF4GWoQQPq2JxqWtcnq5oIplIwoKam8x1L2RkQEXX+yV/R9/HO67D776ym8eqMsBp4iI1Dvl9nSFEALwfNz+8nofcEGZSfRRVSqQ+uGHfv3994ecnL1rX21jBmedBZddBllZHnRee60myhYRkTolkeHFD81sSNJbUptU0NNVpeHFaC/XSSfV3mKoe2vUKE+wb9kS5syB3/4WVq9OdatERESqRSJB1yg88FpqZp+a2WdmVr97uyoIutq39/XatZW87ooVMG+e54qNHLnXzavVDjkEbrvNpz1atQp+8xv45JNUt0pERKTKygy6zKxLZHMsfrfid4CTgZMi6/qrnHIRAJ06+XrVqkped/58790aNQqa1OM5xffZx+/cHDrUhxivuQamTKmGarMiIiKpU14i/fPAwBDCl2b2TAjhjBpqU/qroKcrGnStXu1xQsKjhGPGwKBB9W9YsTSNGsEf/uDB1uOPw+TJsHCh93xFk+ZERERqkfKGF+O/+et3Xa6Soon0ZfR0NWniD+3aBd98U8lrt2/vVdvFg8/vf9+T6ps3h48/hksugUWLUt0yERGRSisv6AplbEsFPV0AHTv6euXKBK4XAixYoOGzsgwcCHfeCT17wvr1XsH+hRf0fomISK1SXtCVY2abzSwP6BfZ3mxmeWa2t7XWa7+iItiwwbdbty7ztM6dfZ1QXtfnn3uR0CuvrHr76qronI0nn+y1zB54wHO9or2OIiIiaa7MoCuEkBlCaBFCaB5CyIpsR/frb1LNxo3ew9KypdeUKkOlkumjZSJ6965y8+q0rCy48ELP9Wre3O9q/MUv4IMPUt0yERGRCiVSMmKvmdkYM1tkZkvM7IpSHj87UobiUzN738zSvxpoAkOLUImga9MmeO89z18aPbrq7asPDj8c7r7bhx3z8uDPf/bhx+3bU90yERGRMiUt6DKzTOAevOREL+D7ZtarxGlfACNCCP2AG4B/Jqs91aaCavRR0aCrwpyu6dN9uGzIEC+VIIlp08YT7C+8ELKz4ZVXvNdr7txUt0xERKRUyezpOgxYEkJYFkLYCUwBTok/IYTwfgghkiDFh0DnJLaneiTY07Xvvj4atn59OR0wRUU+uTXACSdUXxvrCzPP8fr736FbN/j6a/jjH73Xa8uWVLdORESkmGQGXZ2AFXH7KyPHyvIj4KUktqd6VFAYNSozE/bbz7fXrCnjpNmzvabEfvv5UJnsnQMO8Cr255zjke4rr/gk2jNmpLplIiIiuyUz6Cqtwmep9/ib2Sg86Lo8ie2pHgn2dEECeV1bt/odkKNHqyBqVWVlwfe+571chxziw8B/+hP89a/e3SgiIpJi5VWkr6qVwP5x+52BPWYvNrN+wAPA2BDCt0lsT/WooDBqvArzukaMgGHDoLCwetomsP/+Hmj9v/8Hjz4K774Ls2bBmWfCqaeWe8epiIhIMiWzp2sm0N3MuplZA2ACMDX+hMj8js8C54QQ/pfEtlSfSvR0JVSrKysLGjaserskJiPDc73uvReOPNKT6h55xBPt58xJdetERKSeSlrQFUIoAH4B/BdYCDwZQphvZheZ2UWR064G2gL3mtkcM5uVrPZUmwTvXoRyhhdD8AT6vLzqbZsU1769F5y9/nr/MFatgquugr/8pZxEOxERkeSwUAumUhk8eHCYNSsN4rGdO+GMM7x36tlnK8zD2rQJfvADn4txypS40z/+2Kup778/3HOP8rlqwq5dPnXQlCmwY4d/hmPHwoQJmkBbRESqlZnNDiEMLnk8qcVR65z4OxcTCJRatICmTT1ffuPGuAf++19fjxypgKumZGfD+PEwcSIce6zn0f3nP/CTn8DTT3tALSIikkQKuiqjEvlc4PHUHnldGzZ4KYOMDP/yl5rVrh1cconf5ThwoEfEjzwCP/2pD/kWFKS6hSIiUkcp6KqMSuRzRe2R1/Xaa97LMnRoQndASpJ07QrXXQc33OCFVdev98T7n/40NkuAiIhINVLQVRkJFkaNVyzoCiE2tKh5FtND//5wxx1w+eWeY7duHdx1F1x0kRdZVfAlIiLVREFXZVRyeBFK1OqaOxfWrvW76gYMqP72yd4xg6OO8km0f/c7/9C+/tqHIH/yE0/A12TaIiJSRaoUWRlV6OlavRqvx9W/P/Tp4zldkl4yMuDooz0Ae/ttePJJWLECHnjA73o88USv/9WyZapbKiIitZCCrspYtMjXBxyQ8FM6dvSOlLVroaD7oWTdcIMPM0r6ysjwO0tHjICPPoJnnoGFC+GJJ+C55/yxk0/2vDAREZEEKehK1Lp1Pjl1s2aV+rJt0MBHE9et8xGrTp1QmYjawsxveBg6FBYs8NISM2d6ov306dC3L5x0kj+emZnq1oqISJpT0JWozz7zde/elQ6aOncoZMDMB1n/3gg6fbeHgq7aqFcvuPpqvyPixRfh1Vf938Rnn3lUPXq0lwCpRL6fiIjUL0osSlQ06Orbt9JPHVAwk8O+/g8tHvhbNTdKalynTl5W4pFH4MILoUMH7wF97DG44AIvQfHRR5rEXERE9qCerkRVIejqvfxFNgDzDziRburlqhuaNPG8rpNOgk8+8VIgM2Z4wPXRR36zxXe+A6NGQZcuqW6tiIikAQVdiVi3zpemTSufPL1iBfusmcu6jIbMaH4sJyWlgZIyZl7ZfuBAn2zztdc8AFu92nPAnn4aDjzQA7Cjj4bWrVPdYhERSREFXYmYN8/XvXtXvtTDtGk0agSfthvFF+uaVn/bJH20bAmnnw6nneaJ92+8Ae++C8uW+fLgg5CT4yUpjjhCE22LiNQzCroSEQ26+vSp3PO2boVXX6VBA5jb6UQ2bYItW7zDTOowMw/Qe/f2vK+ZMz0AmzUL5szx5d57oV8/GD4cDj9cAZiISD2goCsRe5vP9cYbsH071qcPDbZ0hS/85rcePaq9hZKuGjSAYcN8ycuDDz/03q+5c2MB2N13w6GHevB12GGxiroiIlKnKOiqyPr1Xtm0SRPPzamMQYPg1FOhTx86vQlfKOiq35o3h+OO8yUagL33ngdgCxb4MmkSdO4MQ4bA4MFeqiJL/01FROoC/TavSHx9rsrmc+23H/zoRwB0WuyHVq2qxrZJ7RUfgG3dCh9/7Hc9zpzpE3WuXOnV7xs18jywgQM9iN9331S3XERE9pKCrorsbT5XCdERoyVLqtgeqXuaNPHk+qOOgoIC7/GaPdsDseXLvRTFjBl+7r77ei5YTo6vdTekiEitoaCrInuTz/XNN/CnP3kdp2OPBbyjIjvbv0dXr/Y5GUX2kJXlwVS/fl5sdf16rwM2a5YPQ379Nbzyii8A++8fS9rv3dur44uISFpS0FWeb7+FNWugcePK5XM9/bSXCPjkk91BV8uWPk/yK6/A1Klw0UXJabLUMe3axYYhi4r839Wnn3oANn8+rFjhy8sv+/nt23vwdeih0LOnT86unDARkbSg38bliQ4t9uqV+ITGy5fDSy95/teZZxZ76JRTPOh69VU4+2xP6xFJWEYGHHywL6ef7kORixd78DV/Pixc6L2sb77pC/jdk927ewDWvbsv++yj+T9FRFJAQVd5KpvPFQI88ICvTzhhj+lfDjgABgyIzRozfnw1t1fql6ws79E69FD/x1RUBF9+6cHX55/DokU+lh0NyqKaN4eDDvIA7MADoVs3H+9WICYiklQKuspT2Xyujz7yYZ9mzbwrqxSnnOJB13/+49UkNPIj1SYjwwOobt086AfYvBn+9z8PwBYv9js5Nm2K1QiLatTI/yo48ECf6qpLF99Xd6yISLXRV35ZcnO9vkOjRt4rUJFdu3yaF4Czzirzy2rgQM99XrHCa2SOHFl9TRbZQ4sWXu9r8GDfD8FzFaMB2BdfeJ7Yt996YLZoUfHnt2njAViXLl4/bP/9fd2ypXrGREQqSUFXWeLzuRLpjlq3DgoL/Utp7NgyTzPzHq677oLnn4cRI/TdJTXIzJPz27Xz+R+jNm/2AOyLL3yI8ssv4auv/I+P3NzivWLgc1l17uzDktGlQwdfa54rEZFSKegqS2XzuTp1gvvu81v8KwjSRo6ERx+FpUs91aaKJcBEqq5FC6/9lZMTOxaC/zGxfLkXa12xIla4dcuW0nvGwHt599vPa4pF1/vu6wn87dt7cr+ISD2koKs0y5fDW2/5dr9+iT+vQYOECnA1aOCdYVOmeG+Xgi5JS2axgGno0NjxEGDjRh9+X7PGk/Xjl7w8XxYvLv26rVr5NaM9btGlfXsfzmzdWsmOIlIn6TdbSbm5cN11PjXLUUdVPFHi4sUeoE2Y4An0CTrxRC/n9dFH/r3VoUMV2y1SU8w8MGrdes+/GELwRP21a/0f9tdf+/Y33/j2+vUesG3cWHovWfT6LVt6ANa2bSwQi19atfKlUaPk/qwiItVIQVe87ds94Fq/3m/D//Wvy0+4mjMH/vpXyM/3cvPnnZfwS7VqBaNGed2uxx7zl9If91LrmcUCokMO2fPxoiL/w+abb3xZv96Xb77xZP5vv4UNG2KB2bJl5b9ew4YeoLVu7UOkLVvG1tHt5s19adHC880qO4eqiEg10dd8VGEh3Hyz/5Lv0AH++Meyc09CgGnT4J//9C+RoUP3KISaiFNPhddfh7ff9jSZyy7zu/RF6qyMjNhw4qGHln5OYaEHXLm5sSAsfsnN9d60jRthxw7PO1u3LrHXN/PAq3lz75kuuV1y3aSJL9Hthg1154uI7DULIaS6DRUaPHhwmDVrVvJeIASYONEDqebN4dZby87NKijwYOull3x//Hg499y9/kU8bx78/e/+nZGVBeec48GY/hgXqUAI3jsd7RXbvNmDseg6uh3NMdu82W8AqIqMDJ8WrEmT2LpJEx/mbNw4tkT3GzUqfWnYsPiiQE6kTjGz2SGEwXscT2bQZWZjgDuATOCBEMJNJR63yOMnAFuB80MIH5e8TtKDrueeg0mTfIjwxhvL/gt8+3a4/novmpqdDb/8pY8RVtG2bV7Ifvp03+/VCy680GtcKvgSqUaFhZ4OUNqyZUtsHd3eutWXLVt8vXNnctrVoEHxIKxBg9ix+O3s7Ni6QYM911lZsf3sbN+Pbsfvx6+zsnyaMwV+ItWmrKAracOLZpYJ3AMcB6wEZprZ1BDCgrjTxgLdI8tQ4L7IuuasWwePPOLbv/518YArL88nF+7d23NUGjb0pN5WrXz4sWfPamlC48Yevx1+uNfvWrAALr3Uj3fv7rn8PXp4fUqlpYhUQWZmLN9rbxQU+F9J27Z5EBa/3rbN/zCL3y5r2bEjtt65M7bk5VXvz1sZ0QAsfsnMLL4ueazkdsklK8t/WZU8npERO15yu6LH4xez4o9F90s+Xtp2aY/FH49ux+9Hf/EqQJW9lLSeLjM7Arg2hDA6sn8lQAjhL3Hn/AN4M4TweGR/ETAyhLAm/lpJ7+n66CMfMuza1f+6zcvz9YYNPoRxySVw7LF+bvQXY9u2SWlKXp7X8Jo923OLSxOfltKkSfE/WKPb8b9Lon/Exi/R68T/7ijv90hpj+n3jkg1CIHMgh1kFOwks2DH7mX3fuHO3dsZhbvIKNwVO1a4c/exjIK47aJdse3CgrjjsW0rKojsF2BFhal+F2ofM4IZwaKBWAbBDLDi693bfl70segv0NKO796OPx59zfjt8s4r67GS1ynl/OgxYI/zYtfbfbCS5xd/XqnXKut6JR4rqbzXiX9ex4vGccDx1dNpUpYa7+kCOgEr4vZXsmcvVmnndALWUJMOOwxuuw1mzCh+PCvLx/rip/Rp0CBpARf4S/385769YYNPmxddvv7ag7LoyEd+ftKaISI1xoBGkaUaZUaWRIRAZijYvWQUFZBJIZlFu3w/FJa5LnehkMyiAjIoIiMUYqFo9/GMEHeM6HOKIvvxjxXtfp5R5OdE1/HbhGL7EMgMhUDAQij2XN8veT5xj8WOlXx+3JsWWYqQvVfR3+7J+Nt+07FHQJKDrrIkM+gq7b0q2a2WyDk14+c/9yAreidT9Bbz7OyUNAf8LvihQ4vXpQS/YXLLFg/Atm71aR8LCnwd3Q7Bzysqim2HsOdSUqLHakotuM9DpA4wIDuy1B2hxLpa+vOiv5SCB23xv0yj+xYNziKPGZFfwpEAbo/HSl4z7nFgz3NK7Ed/Qivxy73YefHPLfFzFDs//rHSnhf/PoSS7zDF21HGe1f+tUp5vGR7y1PRdYB9h1dQfzOJkhl0rQT2j9vvDKzei3NqxvDhKXnZvZGRESs9JCIiNcni1kqulcpJ5r+YmUB3M+tmZg2ACcDUEudMBc41dziwqWQ+l4iIiEhdkLSerhBCgZn9AvgvnlkwKYQw38wuijw+EZiGl4tYgpeMuCBZ7RERERFJpaRWpA8hTMMDq/hjE+O2A/DzZLZBREREJB1oQFpERESkBijoEhEREakBCrpEREREaoCCLhEREZEakNQJr6uLmX0DfJnqdoiIiIgk4IAQQvuSB2tF0CUiIiJS22l4UURERKQGKOgSERERqQEKugAzG2Nmi8xsiZldker21Fdmtr+ZvWFmC81svpldEjnexsxeMbPFkXXrVLe1PjKzTDP7xMxejOzrc0kDZtbKzJ42s88j/3eO0GeTemb268jvsXlm9riZNdLnkhpmNsnM1pnZvLhjZX4WZnZlJB5YZGajq7Mt9T7oMrNM4B5gLNAL+L6Z9Uptq+qtAuA3IYRDgcOBn0c+iyuA10II3YHXIvtS8y4BFsbt63NJD3cAL4cQDgFy8M9In00KmVkn4FfA4BBCH3wqvAnoc0mVh4ExJY6V+llEvnMmAL0jz7k3EidUi3ofdAGHAUtCCMtCCDuBKcApKW5TvRRCWBNC+DiynYd/eXTCP49HIqc9ApyakgbWY2bWGTgReCDusD6XFDOzFsDRwIMAIYSdIYSN6LNJB1lAYzPLApoAq9HnkhIhhLeB3BKHy/osTgGmhBB2hBC+wOeGPqy62qKgy7/UV8Ttr4wckxQys67AAGAGsG8IYQ14YAbsk8Km1Ve3A78HiuKO6XNJvQOBb4CHIkO/D5hZU/TZpFQIYRVwK/AVsAbYFEKYjj6XdFLWZ5HUmEBBF1gpx1RHI4XMrBnwDHBpCGFzqttT35nZScC6EMLsVLdF9pAFDATuCyEMALagIauUi+QHnQJ0AzoCTc3sB6ltlSQoqTGBgi6PYveP2++MdwNLCphZNh5wTQ4hPBs5/LWZdYg83gFYl6r21VPDgHFmthwffv+OmT2GPpd0sBJYGUKYEdl/Gg/C9Nmk1rHAFyGEb0IIu4BngSPR55JOyvoskhoTKOiCmUB3M+tmZg3wBLqpKW5TvWRmhuemLAwh3Bb30FTgvMj2ecALNd22+iyEcGUIoXMIoSv+/+P1EMIP0OeSciGEtcAKM+sZOXQMsAB9Nqn2FXC4mTWJ/F47Bs9R1eeSPsr6LKYCE8ysoZl1A7oDH1XXi6oiPWBmJ+A5K5nApBDCjaltUf1kZkcB7wCfEcsd+j88r+tJoAv+y+y7IYSSSZFSA8xsJPDbEMJJZtYWfS4pZ2b98RscGgDLgAvwP6j12aSQmV0HnInflf0J8GOgGfpcapyZPQ6MBNoBXwPXAM9TxmdhZn8Afoh/dpeGEF6qtrYo6BIRERFJPg0vioiIiNQABV0iIiIiNUBBl4iIiEgNUNAlIiIiUgMUdImIiIjUAAVdIpJyZtbWzOZElrVmtiqynW9m9ybpNS81s3NLOd7VzOZV4+s0MLO3I3PwiUg9pl8CIpJyIYRvgf4AZnYtkB9CuDVZrxcJgH6IV29PqhDCTjN7Da/ZNDnZryci6Us9XSKStsxspJm9GNm+1sweMbPpZrbczE43s5vN7DMzezkyhRRmNsjM3jKz2Wb23+hUHyV8B/g4hFAQ95y5ZvYB8PO41+9qZu+Y2ceR5cjI8X+Z2Slx5002s3Fm1tvMPor00n1qZt0jpzwPnJ2M90hEag8FXSJSmxwEnIhPJvwY8EYIoS+wDTgxEnjdBYwPIQwCJgGlzTAxDIifwPsh4FchhCNKnLcOOC6EMBDvqbozcvwBvPI7ZtYSn1dvGnARcEcIoT8wGJ/HDWAeMGQvf2YRqSM0vCgitclLIYRdZvYZPm3Xy5HjnwFdgZ5AH+AVn/KOTGBNKdfpgM+FFw2aWoUQ3oo89i9gbGQ7G7g7MtVOIdADIITwlpndY2b7AKcDz4QQCiI9ZX8ws87AsyGExZHzC81sp5k1DyHkVdN7ISK1jIIuEalNdgCEEIrMbFeIzWNWhP8+M2B+KT1WJW0DGkW2DShrPrRf43O15eAjA9vjHvsXPmQ4Ac8PI4TwbzObgffG/dfMfhxCeD1yfsMSzxeRekbDiyJSlywC2pvZEQBmlm1mvUs5byFwMEAIYSOwKTLhOhTPvWoJrAkhFAHn4D1nUQ8Dl0auMT/yegcCy0IIdwJTgX6R422Bb0IIu6r+I4pIbaWgS0TqjBDCTmA88FczmwvMwfOtSnoJODpu/wLgnsjw4La44/cC55nZh/jQ4pa41/oaD94eijv/TGCemc0BDgEejRwfhed8iUg9ZrHeeRGR+sPMngN+H8272ovnN8FzyQaGEDZVcO6zwJUhhEV781oiUjeop0tE6qsr8IT6SjOzY4HPgbsSCLgaAM8r4BIR9XSJiIiI1AD1dImIiIjUAAVdIiIiIjVAQZeIiIhIDVDQJSIiIlIDFHSJiIiI1AAFXSIiIiI14P8DAWq3o1r87K8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABMYElEQVR4nO3deXxU5fXH8c9JAgRC2MEKyKJFZN9BRRA3xA21ouK+VetWtbZW/bVWtLWb1rphsVVwoyLulCJSdwVFQXEBRURRNgVkDVsIeX5/nBlmErJMIDOTkO/79bqve+feO3eezITM4XnOPY+FEBARERGR5MpIdwNEREREagIFXSIiIiIpoKBLREREJAUUdImIiIikgIIuERERkRRQ0CUiIiKSAlnpbkAimjVrFtq1a5fuZoiIiIiUa/bs2atCCM2L768WQVe7du2YNWtWupshIiIiUi4z+6ak/RpeFBEREUkBBV0iIiIiKaCgS0RERCQFFHSJiIiIpEDSgi4zG2tmK8zs01KOm5ndY2ZfmtnHZtY7WW0RERERSbdk9nQ9DAwr4/gxQIfIcgnwjyS2RURERCStklYyIoTwppm1K+OUE4FHQwgBeNfMGpnZ3iGE5clqk4iISMqF4OvCQt/OyPAFYPt22Lat6PHoc0KA+vXBzPfl5UFBQexY/Hl16kBuru8rKIDVq2PHoudGNW0KtWv79rp1sGFD0XOiz8nKglatYvsXLSr6uvHnN20KjRr54w0b4Lvvip4Xf36HDrGf/9tvYdOmndsI0KBB7PXz82HBgpLPA2jfHnJyfHv5cli1quRz27SJtTMN0lmnqxWwOO7xksg+BV0iIqkWggcA27f7l3ZBgW/XqhX7Ms/Ph8WLY8eKLwcc4F+U4F+Qixb5/sLCouucHDj66Nhrjx/v1y4sjC3R8w85BHr29PPmzYPJk2PBSfSc6OPf/CYWTDzwACxcGDsWQmy7d2847zw/77vv4Oabix6Pf84NN0CnTn7u44/Df/9b9Hrg65Yt4d57Yz/T6ad7MFGSCy+Ek0/27bffhjvuKP1zmTgR6tb17dtug09LzNiBwYPhuut8+/vv4dJLS7/mH/8I3br59tNPw/PPl3xey5b+PkZddx1s2VLyufE/0wcfJP4z/eMfif1MK1f6Z1Ga+J9pypTSf6brr/ffqTRJZ9BlJewrJYRNri++gCVL4PDD0/HqIlLjbdsGmzd74LF1q6+j25mZ0KVL7NypU/3cbdv8nG3bYsvBB0OvXn7exx/7l1tBgR+LXxcUwP33Q3a2n/vb38JHH5XctvgvvhUr4JprSv854r/43nyz7C/z+KDr+edL/zJv1SoWdK1cCW+9VfrrFxTEgq5Fi+Czz0o+r3Xr2Pb27bBsWenXjPZCgX8eeXkln7d1a9HH0YAsnllsicrM9DZHe35KOicqJwcaNiz5vPr1Y+dlZUGLFju/bnQ7+h6BXy/am1T8dffaq+jrt21b9OeMPz++96h+ffjxj2PnxJ9ffF+bNrH3uPi5LVvGHteuDZ07l37NaC8XwN57Q9euJb9m9P1LEwulddVVxsV9eHFyCKFrCcceAF4PITwReTwfGFLS8GLfvn1DsirSr1gBl13m/+7+8IfY5yQiUqL16334ZNMmD342b/aAYfNmaN4c+vTx89auhXHj/Fh02bo1tv71r2M9KGPHwnPPlfx6P/oR/OtfsccjR8LGjSWfe955MGKEb7/9NvzlL6X/HE88EfuijgZdZt6zlZXlwUBWFhx4IFx+uZ+3ahX8/vd+LHo8up2ZCeec48M84MHRBx94MBF/TkaGf/GdckqsLc8953+Eo8ejz8nIgI4dY9dcsQI+/zx2jllsOyMDevTwNoEHXRs3Fj0eDRJyc2NBSUGB9wzFXy8+oGnQwN8T8M9u27aix6NLRkbRYKawsOQgQ2oEM5sdQuhbfH86e7omAVea2QRgALAuHflcLVrAccf5v/k//Qn+/vei/0EQkT1ECB4o5eX50rAhNGvmxxYvhtde8y/p+GXTJl/uvTf2P+nbb4c5c0p+jQMPjAVd27bBq6+W3p74HpN69TwAqlPHv7ij69q1Y22MGjYs1qNTq5Yv0e2OHWPndeniAVJWVuy8rKzYUq9e7NxRozzIKS84aNYM7r677HOiBg3yJRHRYanytGiR+B/oROfrLZ63VJbs7FjvYHkyknmfmlRXSQu6zOwJYAjQzMyWADcDtQBCCGOAKcCxwJfAJuCCZLWlPOef77l8s2f736jbb0/835WIpMmWLZ4EvHatr9ev92BkWNxN07fc4km1eXneOxU/5DNyJJx1lm9/9x089VTpr7VxYyzoat7chy/q1vXApW5dX7KzY0Mq4EHdNdfEvqjr1Imt69QpOhwzcqQviTj//MTOa9zYl0RkpfP/3yI1R1KHFytLMocXozZuhF/+EpYu9bSIG25Qj7BIym3f7gHUDz/AmjV+B9aaNXDQQbGei//8Bx55ZOccGvDgZ+LE2ONLL/V/1FHZ2T60VL8+HHUUnHCC7//+e3jjDQ+icnL8eN26vp2T43dmZWYm7ccWkT1LVRxerFJycuCmmzzwmjEDJkyAM85Id6tE9iCFhR5ErVzpi1ls+Ck/Hy6+2AOskv4j2LRpLOiqXdsDrlq1vDepUSNfN2zo+TchxP7HdP313otTv74HW6X16Oy1F5x2WmX/xCIiRSjoitOqld+kc8st8O9/+40aBx+c7laJVBMheNCUk+PDZwD/+5/nNa1Y4b1X27fHzm/dOhZ01a7tw4UhePDUtKkPjTVp4ks0kRpgyBC/oy47u/zu6PjniYikmYKuYvr0gQsu8JuJ/v53z0VN8x2mIlVLQYHfir9smS/Ll8fW+fmelB1NJv/hh6I1eBo18pyo5s2L3rYPXq+nQYPy84uiAZ2ISDWjoKsEJ50E778Pn3zid1EPHpzuFomkWGGh5zl9+60vtWr5Pwzwob3/+7+Sn5eb66UTogYP9oKZ0UAr/pb64po0qbTmi4hURQq6SmDmtfg++cQLICvokhrh/fe9ttI333i14Pz82LG9944FXTk50Lev90q1bOnHouv4AoXg++MLHIqI1GAKukoRLXw7b1562yFSaULwBPYvv/TpURYuhFNPjVU7//prr1UV1bQp7LOPJze2bVv0WjffnLp2i4jsIRR0lWL//T21JFrUuPh/4EWqhe3bvfL4F194sLVhQ9HjPXrEgq7+/b33qm1bn5pDv/QiIpVKQVcpatf2Ooeffw7z5/v8qCJVVmGh517Nm+eFPi+80PdnZsLLL3tCO3jO1Y9/HFsOOCB2jXbtEq/iLSIiFaagqwydOnnQNW+egi6pYgoKYMECvzNw7lz/RY2fj+/002M9VeeeG6uW3ry5qv6KiKSJgq4ydOniczIqr0vSrrDQ5wCMTlD83ns+WWi8Fi38l7ZTp6KB1eGHp66dIiJSKgVdZYiOvMyf7x0Lmp5MUuqHH+CDD3yZMwf69YNrr/Vj3bp5knu3bh5ode6888TIIiJSpSiMKEPDhl6lfulS+OorT64XSaqFC+HNN3329W++KXrsu+9i27m5cP/9qW2biIjsFgVd5ejc2YOuefMUdEkSbN7sQ4fR/Kt334Vnn/Xt7Gzo3t0TCnv39jpYIiJSbSnoKkeXLj593GefxWpDiuyWjRs9J+vtt33o8Oyz4ZRT/NjAgT4HYb9+nptVq1Z62yoiIpVGQVc5OnXy9dy5XltSN37JLtm0Cd55B6ZPhw8/9CRB8F+olStj57VrBxddlJYmiohIcinoKsfee3tu17p1Pp+vZjSRXXLXXR50gQda3bt7r9ZBB0HjxmltmoiIpIaCrnKY+RDjjBk+xKigS8oUgifD/+9/PmlntNr74MFeDX7wYA+0GjVKazNFRCT1FHQloFMnD7rmzoUjjkh3a6RKysuDN96AadP8VleArVtjQdchh/giIiI1loKuBGjyaynVF1/A5Mmeq5Wf7/tyc70gqSJ0ERGJo6ArAfvu63MxLl3quV0NG6a7RVJlvP02vPaab/fsCUOHwoEH6q5DERHZiYKuBGRlQceO8MknPsXdgAHpbpGkxapV8N//Qps2cNhhvu+443xS6WHDYK+90ts+ERGp0hR0JahzZw+65s5V0FXjLF4MzzzjOVsFBT79zpAhfpfFXnvBeeelu4UiIlINKOhKUDSv67PP0tsOSZEQPInvmWfg/fd9n5knww8fnt62iYhItaSgK0EdO/p37pdfer507drpbpEk1TvvwJ/+5Nu1a8ORR/qUBJqKR0REdpGCrgTl5Hix8K+/hgULYpUAZA+yYgW0aOHb/fr5HRT9+8Pxx+vuCRER2W0KuiqgbVsPur77TkHXHmXuXHj8ce/GHDvWSz7UquVV5DXvk4iIVBIFXRUQna1lzZr0tkMqyeLF8MgjMHOmP87J8ai6e3d/rIBLREQqkYKuCmjSxNcKuqq51avhiSfgpZc8YT47G04+GU480QMvERGRJFDQVQHRnq7Vq9PbDtlNd94JH30EGRlwzDEwcqQmnRYRkaRT0FUB0e/ltWvT2gypqBBg27bYLadnnum9W+efD61bp7VpIiJScyjoqgD1dFVDS5fCAw/4sOH11/u+zp1jhddERERSJKlBl5kNA+4GMoEHQwh/Lna8IfA40CbSljtCCOOS2abdoZyuamTrVpgwAZ5/3qvI5+T4B6dhRBERSZOkBV1mlgmMBo4ClgDvm9mkEMK8uNOuAOaFEE4ws+bAfDMbH0LIT1a7dke9el5JYPNm2LLFR6ikCvrkE7j3Xli+3O9AHDoUzj1XtbZERCStktnT1R/4MoTwFYCZTQBOBOKDrgDkmpkB9YHVQEES27RbzLyjZMUK7zRRcfIqJgQYMwamTPHHbdvCz3/u0wmIiIikWTKDrlbA4rjHS4DiU0XfB0wClgG5wOkhhMIktmm3Keiqwsz8jsSsLDj9dBgxwrdFRESqgGR+I5VUWTIUe3w0MAc4HNgP+J+ZvRVCWJ/Edu0WFUitYjZvhlWrYJ99/PG553oZiDZt0tsuERGRYjKSeO0lwD5xj1vjPVrxLgCeDe5L4GvggCS2abdFk+l1B2MV8PnncNVVcMstsGmT76tbVwGXiIhUSckMut4HOphZezOrDYzEhxLjfQscAWBmewEdga+S2Kbdtlu1upYuhXXrKrM5NVNBAYwfD7/+tU+EWa8e5OWlu1UiIiJlStrwYgihwMyuBF7CS0aMDSHMNbNLI8fHAL8HHjazT/DhyOtDCKuS1abKsMu1uj77zIMEM9hvP+jVC3r3hgMOUN5RRXz/Pdx+O8yf7+/lKafAWWf5baUiIiJVWFK/7UMIU4ApxfaNidteBgxNZhsq2y7ndL33nq9DgC+/9OWpp7zuxFlnwUknVWYz90zvvw9/+xts3AjNmsG110K3bululYiISELUxVJBuxx0zYtUyrj+eh8O++ADXxYvhrFjveerbdtKbeseJz/fA64BA+Caa6B+/XS3SEREJGHlBl1mNhAYBbSNnG9ACCHsm9ymVU27FHTl58MXX/hwWM+eHiz07u3HxoyB//4XHnwQbr3Vz5GYgoLY8OvAgXDbbd67pfdJRESqmUQS6R8C7gQOAfoBfSPrGqlRI1+vXQuFiVYUW7DAg4e2bXfunTnrLJ+iZs4cHz6TmHnz4JJL/P2L6t5dAZeIiFRLiQRd60IIL4YQVoQQfoguSW9ZFZWVBQ0aeGpWwjciRocWS5pkOTcXzjzTtx96yIMzgVdegd/8BlauhMmT090aERGR3ZZI0PWamd1uZgeZWe/okvSWVWEVnvh67lxfd+lS8vFjj4VWrWDZMgUYhYWe43bXXR6AnnCC1+ISERGp5hJJpI9O3dM3bl/Aq8jXSNEhxoSCrsJCLxcBJfd0gXef/fSnXuRzwgQ47LCaOTnzpk1wxx0+zJqZCZdeCsOGpbtVIiIilaLcoCuEcFgqGlKdVKgq/TffeDDRooWXOShN377Qpw/Mnu2FPy+/vFLaWm2EADff7FXm69eHG2/0/C0REZE9RLnDi2bW0MzuNLNZkeVvZlYDu2FiKnQHY3lDi/EuusgnbJ46FRYt2tXmVU9mPkH1PvvAnXcq4BIRkT1OIjldY4ENwGmRZT0wLpmNqup2KegqbWgx3j77wHHHea/PQw/tcvuqlY0bY9sDBsA998Dee6evPSIiIkmSSNC1Xwjh5hDCV5HlFqBG1uiKSjjoCiF252IiPV0AZ5wRKyERfe6e6p13vHfv009j+zQlkoiI7KESCbo2m9kh0QeRYqmbk9ekqi/h+Re//95Pys2F1q0Tu3hurt+xB/Dkk7vcxipv6lT405+8p2vWrHS3RkREJOkSCbouA0ab2SIz+wa4D7g0uc2q2qKJ9GvXlnNi/NBiRQp6Dh/uczJ+8IFXst/TTJwIo0d7T+BZZ8F556W7RSIiIklXbtAVQpgTQugBdAe6hRB6hRA+Sn7Tqq5oyYjVqz1uKFVFhxajcnPh+ON9e+LEijavanviCXjsMQ9Cr7gCRo5UhXkREakRSk2gMbOzQwiPm9m1xfYDEEK4M8ltq7Lq1YPatWHrVtiyBerWLeXEiiTRF3fSSTBpEsycCV9/De3b72pzq44JE+Df//Yg65e/hEMPTXeLREREUqasnq6cyDq3hKV+aU+qCcwSyOtatw6WLoU6dWC//Sr+Ig0bwjHH+PaektvVoYO/H9ddp4BLRERqnFJ7ukIID0Q2Xw4hTI8/Fkmmr9GaNPE8+TVrfAafnUSHFjt23PU78k4+Gf77X5gxAxYv9pIS1VmfPl4KoyZW2xcRkRovkUT6exPcV6OUWzZid4YWo5o2haFDPXGsOuZ2heD5W3PmxPYp4BIRkRqq1KArMsH1L4HmZnZt3DIKyExZC6uocoOuXU2iL+6UU3wewjfegOXLd+9aqTZxoi9//nPRIqgiIiI1UFk9XbXx3K0siuZzrQdGJL9pVVuZQdeWLbBwoU/pc8ABu/dCLVrA4Yd7r9FTT+3etVJp8mR4/HFPgPv5z73gq4iISA1WVk7XG8AbZvZwCOGbFLapWojW6iox6Pr8cygs9MTx7Ozdf7FTT4WXX4ZXX/USCy1a7P41k+n11+GBSErglVfCwBqfAigiIpJQTtcmM7vdzKaY2avRJektq+Lia3Xt5KuvfL27vVxRe+8NQ4bA9u1Vv7frvffg73/37Qsv9Jw0ERERSSjoGg98DrQHbgEWAe8nsU3VQpk9XdFIrHnzynvB007zobqXX4aVKyvvupVp40a4807v5TvtNL/7UkRERIDEgq6mIYSHgG0hhDdCCBcCBya5XVVemTld0Z3R7rDK0Lo1DBoEBQXw9NOVd93KlJMDN9zghV3PPjvdrREREalSEgm6tkXWy83sODPrBSQ4e/Oeq2FD73hav97joCKikzJGI7PKcvrp/qLTpsEPP1TutXdH/FxIPXvCRRdpah8REZFiEgm6/mBmDYFfAr8CHgR+kdRWVQOZmdCggccb69YVOxgdXqzsoKtNG09KLyiAZ56p3Gvvqq1b4aabYPbsdLdERESkSktkwuvJIYR1IYRPQwiHhRD6hBAmpaJxVV2peV3RHZUddIH3dgFMnVrGHEQpEoLncH30kd+tuFOXn4iIiESVNeH1vUAo7XgI4aqktKgaadzY56IuEnTl53tCeVYW5OZW/ou2awcHH+xTAz37LPz0p5X/Gol6+GFvR06O93bt6nRHIiIiNUBZ35KzUtaKaqrEZPpoPlejRsnLazr9dA92XnzRK9Yno0etPFOnetCXmQn/93/Vf15IERGRJCurOOojqWxIdRSNdYqM8iVzaDFq331hwACYOROee87rYaXSp5/CmDG+fcUV0L17al9fRESkGio3p8vMXosviqriqDHl9nQl0xln+HrKlBIy+ZNo2zb429+8UOvJJ8NRR6XutUVERKqxRJJwfhW3nQ2cAiSUMW1mw4C78QmyHwwh/LmEc4YAdwG1gFUhhEMTuXZVUGIifbLuXCxuv/2gf3+vAD9xIlx8cXJfL6pWLbj+eg/2zjsvNa8pIiLl2r59O6tXr2bbtm3lnyyVolatWjRp0oTMzMyEzi836AohFK8FMN3M3ijveWaWCYwGjgKWAO+b2aQQwry4cxoB9wPDQgjfmlkVn1SwqGhnVpGgKxXDi1HnnONB15QpXpC0Mivgl+WAAypviiMREakUq1evJjs7m2bNmmGqlZh0IQTy8vJYvXo1zRP8/k1keLFJ3NLMzI4GfpTAtfsDX4YQvgoh5AMTgBOLnXMm8GwI4dvID7AioVZXEdGerhJzuqIHk6ldOxg82Es1PPFEcl/r9dc9h0xERKqkbdu2Ub9+fQVcKWJm1K9fv0I9i4kUR52N38k4G3gHL5J6UQLPawUsjnu8JLIv3v5AYzN73cxmm9m5CVy3yoh2Zq1dG1eUPRlTAJXl7LMhI8PnZFy6NDmvsXAh3HMP/OEP8OWXyXkNERHZbQq4Uqui73cixVHbhxD2jaw7hBCGhhDeTqQtJV2u2OMsoA9wHHA0cJOZ7Z/AtauEunUhO9tLc23aFNmZrCmASrP33jB0qEd9jz9e+dffsAH++EdPoB82DH7848p/DRER2WPcdtttdOnShe7du9OzZ09mpmmUZM6cOUyZMmXH40mTJvHnP3tq+fnnn8/TJcxj/Prrr3P88ccnrU3l5nSZWTZwOXAIHjS9DfwjhLClnKcuAeKLN7UGlpVwzqoQwkZgo5m9CfQAvkis+enXuDEsX+4dXDk5pDanK+r00+GVV+Dtt+HUU72kRGUIAe69F1asgP33h0suqZzriojIHumdd95h8uTJfPDBB9SpU4dVq1aRn5+flrbMmTOHWbNmceyxxwIwfPhwhg8fnpa2RCUyvPgo0AW4F7gP6AQ8lsDz3gc6mFl7M6sNjASKTx/0AjDIzLLMrB4wAPgs0cZXBUVqdYUQS/BK1fAiQLNmEI3MH0vko0nQSy/BO+9AvXrw61/7nYsiIiKlWL58Oc2aNaNOnToANGvWjJYtW9KuXTtWrVoFwKxZsxgyZAgAb7zxBj179qRnz5706tWLDRs2APDXv/6Vbt260aNHD2644QYAFi5cyLBhw+jTpw+DBg3i888/B7zX6tJLL2XQoEHsv//+TJ48mfz8fH73u9/x5JNP0rNnT5588kkefvhhrrzyyh1tffnll4s8p7iNGzdy4YUX0q9fP3r16sULL7yw2+9PIiUjOoYQesQ9fs3MPirvSSGEAjO7EngJLxkxNoQw18wujRwfE0L4zMymAh8DhXhZiU8r/mOkT3xeFxs3elJ7dNwxlUaM8Ar1s2bBvHnQufPuXe/bb+Ff//LtK66Avfba/TaKiEhKnHBCcq77n/+UfXzo0KHceuut7L///hx55JGcfvrpHHpo6ZWg7rjjDkaPHs3AgQPJy8sjOzubF198keeff56ZM2dSr149Vkc6My655BLGjBlDhw4dmDlzJpdffjmvvuplQxctWsQbb7zBwoULOeyww/jyyy+59dZbmTVrFvfddx8ADz/8cJHXLuk58W677TYOP/xwxo4dy9q1a+nfvz9HHnkkOTk5FXzXYhIJuj40swNDCO8CmNkAYHoiFw8hTAGmFNs3ptjj24HbE2tu1VOkVlcq71wsrkEDL1b6xBPwyCPw5z/v3jREmzf7NXv08DskRUREylG/fn1mz57NW2+9xWuvvcbpp5++I4+qJAMHDuTaa6/lrLPO4ic/+QmtW7fm5Zdf5oILLqBevXoANGnShLy8PGbMmMGpp56647lbt27dsX3aaaeRkZFBhw4d2HfffXf0gpWlvOdMmzaNSZMmcccddwCwZcsWvv32Wzp16lSh9yReIkHXAOBcM/s28rgN8JmZfQKEEEKNngOmQQNfr1tHevK54p10Ekye7D1ds2ZBv367fq2OHT2fS5NYi4hUO+X1SCVTZmYmQ4YMYciQIXTr1o1HHnmErKwsCgsLAQ9eom644QaOO+44pkyZwoEHHsjLL79MCGGnuwILCwtp1KgRc+bMKfE1i5+fyF2F5T0nhMAzzzxDx44dy71WohLJ6RoGtAcOjSztgWOB44EkdWBWH0WCrlRNAVSaevU8qR7goYd8qLOiIuPpANSvn/phUhERqbbmz5/PggULdjyeM2cObdu2pV27dsye7bXWn3nmmR3HFy5cSLdu3bj++uvp27cvn3/+OUOHDmXs2LFsipQFWL16NQ0aNKB9+/Y89dRTgAdEH30Uy3R66qmnKCwsZOHChXz11Vd07NiR3NzcHTliJSnpOfGOPvpo7r33XkKkJtSHH364m+9OYiUjvgEa4QHWCUCjEMI30WW3W1DNNWzo6/XrSX9PF8Bxx0HLll6z68UXK/bc1avh0kvhwQd3LWATEZEaLS8vj/POO4/OnTvTvXt35s2bx6hRo7j55pu5+uqrGTRoUJEpc+666y66du1Kjx49qFu3LscccwzDhg1j+PDh9O3bl549e+4Y3hs/fjwPPfQQPXr0oEuXLkUS2zt27Mihhx7KMcccw5gxY8jOzuawww5j3rx5OxLpiyvpOfFuuukmtm3bRvfu3enatSs33XTTbr8/FkLx0lnFTjC7GrgYeDay62TgnyGEe3f71RPUt2/fMGvWrFS9XIV8+inceCN06gR/7TQOnn0Wzj3XSzeky8yZXsg0Nxf++U/vsSpPCPD738P770Pv3jBq1O7lhImISEotW7aMli1bprsZKXf++edz/PHHM2LEiLS8fknvu5nNDiH0LX5uIsOLFwEDQgi/CyH8DjgQD8KEUnq60pFIH69/f+je3YcKJ0xI7Dmvv+4BV04OXHWVAi4REZFKlkjQZcD2uMfbKbnafI1UYiJ9unK6oszgoot8PXly+dMDrV4NDzzg2xdfDE2bJr+NIiIileDhhx9OWy9XRSUSdI0DZprZKDO7BXgXeCi5zao+cnM9tsnLg8I1a31nOnO6ovbdF448ErZvh3HjSj8vBLjvPq8x1rcvHH546tooIiJSgySSSH8ncAGwGvgBuCCEcFeS21VtZGTEUqYKVlSBRPp455zjdx/OnAkff1zyOW++GRtWvPJKDSuKiIgkSSI9XVGGz72ob+ViGjaEjMICCtas96AlmuiVbo0bxxL6//UviNRIKaJnTxg4UMOKIiIiSVZu0GVmvwMeARoDzYBxZvbbZDesOmnQAHIK1lGQHyIRWEVi2SQ76SRo3hwWLYJp03Y+3rAh3HCDhhVFRESSLJHo4AygXwhhVAjhZvzuxbOS26zqpWFDqL9tjZe2Svedi8XVrg0XXujbjzwSyfgHFi/2fK8oDSuKiMhuqp9AiaK33nqLLl260LNnTzZv3lyh6z///PPMmzcvKe1KhUSCrkVAfMWwOsDCpLSmmooGXdsKqDr5XPEGDoRevTzbf9w4T5q/8Ua45ppYFX0REZEUGD9+PL/61a+YM2cOdevWrdBzdzXoqioSCbq2AnPN7GEzGwd8CuSZ2T1mdk9ym1c9NGgAOdvWUrCN9JeLKIkZXHYZ1KoFr7zik2GvW+fTBlWV/DMREdljvP766wwZMoQRI0ZwwAEHcNZZZxFC4MEHH2TixInceuutnHWWD5rdfvvt9OvXj+7du3PzzTfvuMajjz5K9+7d6dGjB+eccw4zZsxg0qRJXHfddfTs2ZOFCxeycOFChg0bRp8+fRg0aNCOSau//vprDjroIPr161cpleQrSyKzGT8XWaJeT05Tqq8GDap4TxfA3nt7Uv0//wmPPebFUy+/XMOKIiJ7ohOSNDVyBWbS/vDDD5k7dy4tW7Zk4MCBTJ8+nZ/+9Ke8/fbbOyrIT5s2jQULFvDee+8RQmD48OG8+eabNG3alNtuu43p06fTrFkzVq9eTZMmTRg+fHiR6vNHHHEEY8aMoUOHDsycOZPLL7+cV199lauvvprLLruMc889l9GjRyfnvdgF5QZdIYRHUtGQ6qxITldVDboATj4Z/vhH2LwZWreGtm3T3SIREdlD9e/fn9atWwPQs2dPFi1axCGHHFLknGnTpjFt2jR69eoF+NyNCxYs4KOPPmLEiBE0a9YMgCYl5Evn5eUxY8YMTo2bdm/r1q0ATJ8+fcfE2ueccw7XX3995f+AuyCRni4pR7UJul55xRP9166FZctgxQpo0SLdrRIRkcpWgR6pZKlTp86O7czMTAoKCnY6J4TAjTfeyM9+9rMi+++55x6snJGYwsJCGjVqxJw5c0o8Xt7z06EK1Taovho2hPr5q6v28OK6dT6s2KABDB/udy5Gp/4RERFJg6OPPpqxY8eSl5cHwNKlS1mxYgVHHHEEEydO5IcffgBg9erVAOTm5rJhwwYAGjRoQPv27XnqqacAD+A++ugjAAYOHMiEyNzD48ePT+nPVJZSgy4zeyyyvjp1zamevE7X2qrd05WbC+efD4cdBrfeCnXrwnvvwbvvprtlIiJSQw0dOpQzzzyTgw46iG7dujFixAg2bNhAly5d+M1vfsOhhx5Kjx49uPbaawEYOXIkt99+O7169WLhwoWMHz+ehx56iB49etClSxdeeOEFAO6++25Gjx5Nv379WBctlVQFWAih5ANm84BjgEnAEIpVog8hrE5246L69u0bZs2alaqXq7D8fHiv3anUKdxC34VPYjn10t2k8v3nP55U37gxjB7tQZmIiFRby5Yto2XLluluRo1T0vtuZrNDCH2Ln1vW8OIYYCpwADC72FJ1I6A0qF24hWy2sM1qsylUrOZI0hUWwuoS4uPjjoNOnWDNGp8iSERERJKq1KArhHBPCKETMDaEsG8IoX3csm8K21j1rVlDrSzIq9WYdeurWOLe//4HP/sZTJlSdH9GBlx9tVesf+01H2oUERGRpCk3kT6EcJmZ9TCzKyNL91Q0rFpZs4asSNC1fn26GxNn82ZPnt+ypeThw1at4Nxzffu++yCSnCgiIiKVL5EJr68CxgMtIst4M/t5shtWraxeTVYt2FC7CVUoXw+eftrvWuzYEYrVRtnhhBM0zCgiIpICiZSM+CkwIITwuxDC7/AJry9ObrOqmcjw4sasRlWnp2vFCnguMpHAxReXXnk+I8PnYNQwo4iISFIlEnQZsD3u8XaK3clY461dS1atSE5XVenpevRR2LYNBg/2nq6ytGypYUYREZEkSyToGgfMNLNRZjYKeBd4KKmtqm6qWk7X/Pnwxhs+wfV55yX2nPhhxjFjoJRSIiIiIqXJzMykZ8+edO3alRNOOIG1a9emu0kVNmrUKO64446kXDuRRPo7gQuA1cAa4IIQwl1JaU11FX/3YlXo6crOhq5d4aSTEp/mJzrMmJ0Nb74Jr76azBaKiMgeqG7dusyZM4dPP/2UJk2aVJnJpkMIFBYWprsZiU0DFEL4IFJC4u4QwofJblS1s2ZN1RpebNvWJ7Y+88yKPa9lSy8vAd7btXRp5bdNRERqhIMOOoilke+RhQsXMmzYMPr06cOgQYP4/PPPAfj+++85+eST6dGjBz169GDGjBkA3HnnnXTt2pWuXbty1113AXD99ddz//3377j+qFGj+Nvf/gbA7bffTr9+/ejevTs333wzAIsWLaJTp05cfvnl9O7dm8WLF5d4HsBtt91Gx44dOfLII5k/f37S3hNNeF0Zoon0tdM8vBhCLGHeDLJ24eM94gj48EPv7brjDrj99l27joiIpNcJJ5R+7IorYNgw35461WcmKc0uTJ69fft2XnnlFS666CIALrnkEsaMGUOHDh2YOXMml19+Oa+++ipXXXUVhx56KM899xzbt28nLy+P2bNnM27cOGbOnEkIgQEDBnDooYcycuRIrrnmGi6//HIAJk6cyNSpU5k2bRoLFizgvffeI4TA8OHDefPNN2nTpg3z589n3Lhx3H///aWel5OTw4QJE/jwww8pKCigd+/e9OnTp8I/cyL0bbq7Cgs9kT4L8rIakZ3Onq6XX4aZM+Gcc7y3a1eYweWXw+efw5dfekL+hRdWbjtFRGSPtHnzZnr27MmiRYvo06cPRx11FHl5ecyYMYNTTz11x3lbt24F4NVXX+XRRx8FPB+sYcOGvP3225x88snk5OQA8JOf/IS33nqLq666ihUrVrBs2TJWrlxJ48aNadOmDffccw/Tpk2jV69eAOTl5bFgwQLatGlD27ZtOfDAAwGYNm1aiedt2LCBk08+mXr1fAq/4cOHJ+39UdC1uzZsgMJCshrnUrg5K309Xdu2wb//DatW+R2Luxp0AeTkwHXXwfXXe9mJnj2hd+9Ka6qIiKRAoj1Uw4bFer12UzSna926dRx//PGMHj2a888/n0aNGjFnzpyErlHanNAAI0aM4Omnn+a7775j5MiRO86/8cYb+Vk0PSZi0aJFOwK3ss676667sNLKKlWyRIqj/sTMFpjZOjNbb2YbzCyh0MLMhpnZfDP70sxuKOO8fma23cxGVKTxVcKaNQBkNmtMVpYXf8/PT0M7pk71gKttWxg0aPevd8ABcNZZvv33v0M1vANFRETSo2HDhtxzzz3ccccd1K1bl/bt2/PUU08BHvx89NFHABxxxBH84x//AHxIcv369QwePJjnn3+eTZs2sXHjRp577jkGRb7XRo4cyYQJE3j66acZMcJDhqOPPpqxY8eSl5cHwNKlS1mxYsVObSrtvMGDB/Pcc8+xefNmNmzYwH92YTg1UYkk0v8VGB5CaBhCaBBCyA0hNCjvSWaWCYwGjgE6A2eYWedSzvsL8FLFml5FRIIua9KYBpF3JeW9XVu3wsSJvn322aUXQq2oESOgWzcPuP72Nx9KFRERSUCvXr3o0aMHEyZMYPz48Tz00EP06NGDLl268MILLwBw991389prr9GtWzf69OnD3Llz6d27N+effz79+/dnwIAB/PSnP90xJNilSxc2bNhAq1at2HvvvQEYOnQoZ555JgcddBDdunVjxIgRbCih3mRp5/Xu3ZvTTz+dnj17csopp+wI8JLByurGAzCz6SGEgRW+sNlBwKgQwtGRxzcChBD+VOy8a4BtQD9gcgjh6eLX6tu3b5g1a1ZFm5Aar77qPUFDhvDzRb9k0SK46y7Yb78UtuGZZ+Dhh6FDBw+OKrOb9Icf4KqrPJI87TTPFxMRkSpn2bJltGzZMt3NqHFKet/NbHYIoW/xcxPp6ZplZk+a2RmRocafmNlPEnheK2Bx3OMlkX3xjWoFnAyMSeB6VdPq1b5u3JiGDX0zpWUjNm3yoAsqt5crqmlTz+0y8960d9+t3OuLiIjUEIkEXQ2ATcBQ4ITIcnwCzyvp2794t9pdwPUhhO0lnFs9RHOd0hV0ffYZbN4MnTtDpPu10nXvDuef79t33qn6XSIiIrug3LsXQwgX7OK1lwD7xD1uDSwrdk5fYELkroFmwLFmVhBCeH4XXzP1fvjB102b0nClb6Y0p6tPH3jgAc/gT+bdFyefDF98AdOnw223+TBm3brJez0REZE9TCJ3L7Y2s+fMbIWZfW9mz5hZ6wSu/T7Qwczam1ltYCQwKf6EEEL7EEK7EEI74Gng8moVcEEs6GrSJH2J9C1aQJs2yX0NM7j6athnH1i8GO6+W/MziohUMeXlaUvlquj7neiE15OAlnhO1n8i+8prSAFwJX5X4mfAxBDCXDO71MwurVArq7K4nq5o0JWS4cUNG2DGjNQGPnXrwm9+A/XqeY/Xs8+m7rVFRKRMtWrVIi8vT4FXioQQyMvLo1atWgk/J5HiqM1DCPFB1sOROw4TadAUYEqxfSUmzYcQzk/kmlVKCLFE+iZNUpvT9Z//wBNPwNFHw5VXpuAFI1q1gmuvhT/8AR55BFq3hgEDUvf6IiJSoiZNmrB69eoSyyVIctSqVYsmTZokfH4iQdcqMzsbeCLy+Azgh11o255nwwYoKPAK7nXq7Ai6kj68uHlzrNLwYYcl+cVKMGCA3yn5+OM+N+Of/ww//nHq2yEiIjtkZmbSvHnzdDdDypDI8OKFwGnAd8ByYERkn8QNLQKpG16cOhXy8vyOxS5dkvxipTjtNJ8ce+tW+P3vvRq+iIiIlKrcoCuE8G0IYXgIoXkIoUUI4aQQwjepaFyVFze0CKSmpys/3+dDBA980sXMhzW7dfP34ZZbvAdORERESlRq0GVmv46s7zWze4ovqWtiFVaspys312ORDRtge7Iqj73yik89tO++6Z+EOisLbrzR87wWLYK//CWJP7iIiEj1VlZP12eR9SxgdgmLRHu6IkFXRgbUr++7IvNpVq7t2+HpyCxJp56a3LpcicrNhZtv9rHV2bPhn/9UKQkREZESlBp0hRCi02xvCiE8Er/gFeqlWE8XJDmvq7AQhg/3CvEHH5yEF9hFe+8Nv/2t93xNmQITJqS7RSIiIlVOIon0Nya4r+YpIehKatmIWrXgxBO9InxGIh9dCnXqBNdd571v//43TJpU/nNERERqkFJLRpjZMcCxQKtiOVwNgIJkN6xaiKtGH5WyshFV0cEHw89/DvfcA//6l4+1Hn54ulslIiJSJZTVXbIMz+faQtFcrknA0clvWjWQqp6uEGDUKB+227KlEi+cBEcdBRdd5Nt33w0zZ6a3PSIiIlVEqT1dIYSPgI/M7DlgYwhhO4CZZQJ1UtS+qqugwCMrM2jUaMfupMy/OG+eJ6l/8YVPPF3VnXSS30nw5JNeOPWWWzwPTUREpAZLJDFoGlA37nFd4OXkNKcaWbPG140bF8mvSkoi/Qsv+PrYY6FONYl3zzoLjj/eg9Pf/x7mzk13i0RERNIqkaArO4SwowBCZLte8ppUTZQwtAhJyOn67jt4912/M/DYYyvpoilgBpdc4jldW7b48Oinn6a7VSIiImmTSNC10cx2VOE0sz6ASo8Xq9EVVek5XZMne07X4MFFEvarBTO4+upY4HXzzfDxx+lulYiISFokEnRdAzxlZm+Z2VvAk8CVSW1VdVDCnYtQycOLmzbBtGm+feKJlXDBNMjI8MDryCN9CqNbboE5c9LdKhERkZRLZO7F94EDgMuAy4FOIQRVpE/F8OL06T6fYdeuPu1PdZWRAVddBUOHeuD1+9/DBx+ku1UiIiIpVerdi8V0BDoD2UAvMyOE8GjymlUNlDK8GH/3Ygi7OVPPkUdC8+bVJ3m+LNEJsjMz4cUX4Q9/gF//Gg48MN0tExERSYlye7rM7Gbg3shyGPBXYHiS21X1ldLTVbs2ZGf7TXubdneyJDPo2dOrve8JzOCyy+CEE2DbNvjjH2Hq1HS3SkREJCUSyekaARwBfBdCuADogep0lRp0QSXV6or2pO1pzODii72kRAgwerQXfdUk2SIisodLJOjaHEIoBArMrAGwAqjGCUaVpJREeqiEOxgXLIDzz/eK7nsiMxg5Eq64wrfHj4cxY3xCbxERkT1UIjlds8ysEfAvfBqgPOC9ZDaqytu0yUsg1KkD9XYuWbbbyfSTJnnPT27urrexOhg2zLsF77gDpkzxKPXaa32MVkREZA9TZk+XmRnwpxDC2hDCGOAo4LzIMGPNFZ9EX0Km/G6VjVizBt56y697/PG73sbq4uCD4dZbPXidPh3+7/9g7dp0t0pERKTSlRl0hRAC8Hzc40UhBFW3LGNoEXZzeHHaNNi+3e/qa9Fi19pX3XTtCn/5CzRrBvPnwy9+AV9/ne5WiYiIVKpEcrreNbN+SW9JdVJGEj3sRk/X9u2xu/mq05Q/laFdO7jzTujYEVat8nIS776b7laJiIhUmkSCrsPwwGuhmX1sZp+YWc3u7YoOL5bS0/WjH/l6+fIKXnfWLA84WraEHj12vX3VVePGXkbisMM8Z+622+Cpp3Rno4iI7BFKTaQ3szYhhG+BY1LYnuqhnJ6uli19vXRpBa+7eLEXDz3mmN2sqlqN1a7tw4tt2sCjj/ry1Vde0b5u3XS3TkREZJeVdffi80DvEMI3ZvZMCOGUFLWp6ksw6PruOx8xzMxM8LojRvjk0NnZu9/G6szM34vWreFvf4O33/YcrxtvhLZt0906ERGRXVLW8GJ8V4vqcsUrZQqgqOxszwkvKIAVKyp47SZNSixDUSMdeCDcdZcHWkuXejmJ115Ld6tERER2SVlBVyhlW8rp6QJo1crXS5YkcL38fJg9W7lLJWnVynu7Dj/c36c77/Qq9vn56W6ZiIhIhZQVdPUws/VmtgHoHtleb2YbzGx3Jrip3kKI9XQ1blzqadGgK6G8runTYdQoTxyXndWpA9dcAz//OdSq5Xd4/vKXsGhRulsmIiKSsFKDrhBCZgihQQghN4SQFdmOPm6QykZWKWvX+nQ1DRp4AFCK1q19nVDQNWWKr/v33+3m7bHMYOhQr17fsqUHXNdeCy+8oB5CERGpFhIpGbHLzGyYmc03sy/N7IYSjp8VKUPxsZnNMLOqXychgaFFqMAdjF9/DZ9/Djk5MHjw7rdvT7fvvj4n5bBhsG0bPPgg/O53sc9FRESkikpa0GVmmcBovOREZ+AMM+tc7LSvgUNDCN2B3wP/TFZ7Kk05NbqiEu7pivZy6a7FxGVn+2TZv/2t9zjOmQNXXglvvqleLxERqbKS2dPVH/gyhPBVCCEfmACcGH9CCGFGCGFN5OG7QOsktqdyJNjT1by5jz6uXg2bN5dy0qZN8Prrvn2MyqFV2IABcN990Lcv5OXB7bd7Xpx6vUREpApKZtDVClgc93hJZF9pLgJeTGJ7KkeCQVdGBuy9t2+X2tv1xhteeb1rV9hnn8prY03SuLEPL15xhZfamDkTLr/ck+3V6yUiIlVIMoOukkqql/gtaGaH4UHX9UlsT+VIcHgREhhizMrygl5HH105baupzDzH6/77vfdr0yYvK/Gb38CyZelunYiICJDcoGsJEN990xrY6RvQzLoDDwInhhCq/rhQgj1dkEDZiKOOgocegkGDKqdtNV3Tph5oXX89NGwIn3ziPWCPPw5bt6a7dSIiUsMlM+h6H+hgZu3NrDYwEpgUf4KZtQGeBc4JIXyRxLZUnnKq0cdLqFZXRkYF5gmScpnBIYfAP/4BRxzh0wI8+SRcdhnMmKEhRxERSZukBV0hhALgSuAl4DNgYghhrpldamaXRk77HdAUuN/M5pjZrGS1p9LsQk/XTlXpt2yB557zml+SHLm5XlD1r3/1MhMrV8Kf/uT5X4sXl/t0ERGRymahGvzPv2/fvmHWrCoQj+XnwymneC7Ws896r0oZNmyAM8/0CgcTJ8ad/vLLXmuqSxf485+T3+6arrDQE+sfe8zvcszI8BywM86ARo3S3ToREdnDmNnsEELf4vuTWhx1jxM//U85ARd4Z0uDBt6xFX0qAC+95Osjj6z8NsrOMjLg2GPhgQc82ArB66NdfDFMmOAfkIiISJIp6KqICgwtRu2U1/Xtt16Bvl49zz2S1GnQwBPrR4/2KZe2bIHx4+GSS7wnrKAg3S0UEZE9mIKuiqhAEn3UTkFXtJfr0ENVgT5d9tkHbrrJc7z23x/WrPFA7Gc/g2nTFHyJiEhSKOiqiGhPVwI1uqKKBF35+fDqq75DtbnSr2tXn0D7+us9EFuxAu6914Ov//1PwZeIiFQqBV0VsRvDi0uW4CUL8vJgv/18kfSLlpi47z647jqvaLtiBdxzD1x6qed+5eenu5UiIrIHUNBVEatW+boCPV1FqtI3b+7zBGqexaonIwMGD/Zhxl/9yqPl77/3el8XXugJ9xs2pLuVIiJSjWWluwHVyoIFvm7TJuGn/OhH3pny/fewbf8u1Lq5S5IaJ5UiI8Pz7QYNgnfegWee8c99/Hh4+mkYOhROOCE2saaIiEiCFHQlauVKj5xycqB9+4SfVqsW7LUXfPedL5rXuprIyICBA+Hgg306oWefhdmz4T//gcmTvcfyuOOgd++EyoeIiIgo6ErUp5/6unNn/0KugDZ7baX/jH/wwxtHss9ZXfQlXZ2YQffuvnz9NbzwArz5Jrz/vi8tW8Lxx8Phh3tALiIiUgrldCXqk0983a1bhZ/ad+Mb9Fj1CvWeHKeAqzpr396nFho3Ds47D5o1g2XL4J//hHPPhTvv9OC8GszyICIiqaeerkRFe7oqGnSFQKev/ssK4JM2x7F/pTdMUq5hQxgxAk4+GWbO9DscP/oIXnvNl5Yt4aijvPerAjddiIjInk1BVyJWrYLly72K/L77Vuy5n39Ok7VfsSirAbOyD+GU5LRQ0iEz03O+Dj7YE/Zeftnrey1bBo88Ao8+6sOShx0GBx3kvz8iIlJjKehKRHRosUuXCudz8d//kp0NHzYfyrff1a78tknV8KMfwdln+yTaH3zgAdh773kP2Ecfwf33+9RDhx7qyfe19bsgIlLTKOhKxK4OLa5dC9OnU6uO8ek+x7B+vZd6ys2t9BZKVZGZCf36+ZKXB9Onw+uv++/Q22/7kp3tAdjAgX4XpAIwEZEaQUFXIqI9XV27Vux5kXn8rH9/6q9qwYqvvEjqAQdUfhOlCqpf36d7OvpoLznyxhsehH35pd8B+eabHoD16eNBWN++Pim3iIjskRR0leeHHzyfq27diudzDRkCmzdD7960ngpfKeiquZo39+T7ESO83tv06d7rtWCBb0+f7ne2duoEAwZ4T1nr1rrbVURkD6Kgqzzx9bkyMyv23BYtvLQA0CrSWbZ0aSW2TaqnvfaCn/zElxUrPPdr5kz/XZs3z5dx47wkRZ8+ngPWo4fqgImIVHMKusqzq/W5QijSSxGdg3H+/Epql+wZWrTw4qrHHw+bNnkS/nvv+XrVKnjpJV8yMmD//T346t7du0uVCyYiUq0o6CrPriTRL10Kt90GJ53kc/UBvXpBnTrw8cfw7bcVmr5Raop69eCQQ3wJARYu9ODrww/hs8/g8899efJJn1+qUyf/vezSxQOyOnXS/ROIiEgZFHSVZfVqD6Cys2G//RJ/3hNPwOLF3q0VCbpyc+GII7yO5gsvwM9/nqQ2y57BDH78Y19OO817webO9fITH3/sUxJ9/LEvAFlZ/jvaubMvHTtC48bp/RlERKQIBV1lifZydemSeD7X/Pl+l1qtWnD66UUODR/uQddrr/msMQ0bVnJ7Zc9Vr16sFAXA+vX++/nppx6Mff21/+7Nnw/PPefntGjhPWAdO/qy777qDRMRSSMFXWWpaKmIEOBf//Ltk0/2L704rVr5d+b778OLL8LIkZXYVqlZGjSIVcMH7wmbPz+WiP/FF56kv2KF3yUJ3nu2zz6xHrQf/xjatfM7c0VEJOkUdJWlokn0b77pX3yNG3tpgBKcdJIHXf/9L5xyineIiey2evU8cbBXL39cWBgb4p4/34Owb7+NLa++Gnvu3nv7ZN7RpW1bv8NS5SpERCqVgq7SVDSfa+tWePhh3z733FJ7D7p18++1r7/2GO2IIyqvySI7ZGR48NS27Y68QvLz/Rdv4UIv0Prllx6YLV/uy4wZsefXqeO9Yvvs43d9tGnjXbU/+lHFS6eIiAigoKt0c+f6ulMnT1Iuz4oV3m21775lRlJmcOKJcNdd8PzzcPjh6lCQFKldO5bfFVVQAEuWeDAWXb791v/TEQ3M4mVleeDVurUHYS1bek9Zy5bQpIl+mUVEyqCgqzQVHVrcZx8YPRrWrCn3i2fwYHjkEVi0yG8+69Fj95oqssuysjyvq107OOyw2P68vKLDkYsXe8/vypUepC1ZsvO1atf2AGyvvXz50Y9i2y1a+BCoiEgNpqCrJN9843cggheiTFStWjslz5d22nHHweOPe/kIBV1S5dSvHys/EW/LFli2zIOuZct8Wb7c1+vX+7+db74p+Zo5Of7vo3lzXzdt6ttNm3r1/aZNleQoIns0BV3FrV4No0b53WADB/ot92WZNw/eegvOPNOLcSXomGNg4kRPql+yJFaxXqRKy872IfSS5iHduBG++87nloyuo9srV/rx6BBmaRo08GHKpk39hpQmTXxp1MgfR5fs7KT9iCIiyaKgK96WLXDrrT79ygEHwLXXlj1U+P778Ne/+vNycuDssxN+qQYNPJ9r6lR47DH45S81q4tUczk5ftNJSTeehOA9YStWeAC2cqX/O4tfVq/2c9av97H3stSp44XuGjb0gCy63aBBbB1d6tf3RflmIpJmCrqitm/3AGrhQs9L+e1vS4+CQvAs+HHjfHvQIK8aXkEnnQQvv+w3jS1d6jFeSR0IItWeWSww6tCh5HMKC2HdOg++ossPP8DatZ4rGV3WrvW7haN1yBJ9/WjwlZsb2y6+1KvnwWN0qVfPl1q1FLSJyG6zEEK621Cuvn37hlmzZiXvBUKAMWO8XHxuLtx+u9+ZVZKCArj/fvjf//zxWWd55fld/IM8fz7ceaenxGRlwRlneP0u3ZUvUooQvHd57VoP0tat82BswwbfjvaWrV/v+zZs8KHN3ZGV5WVgokFY3bqxJfo4Ozu2Lzvblzp1Ytvxj+vU8WsqkBPZI5nZ7BBC3532JzPoMrNhwN1AJvBgCOHPxY5b5PixwCbg/BDCB8Wvk/Sg67nnYOxY/yN42207Jw9HbdkCt9ziU6/Urg2/+IVPTrybtmzxuxknT/bHHTvCz37mvV4KvkQqwfbtfkdmXp4HYfHrjRtj6+LLpk2+FBRUfpsyMjz4ql3b19Gldu3Yvuh28aVWrdg6fonfl5VV9Fj0cVZWbFHQJ5IUpQVdSRteNLNMYDRwFLAEeN/MJoUQ5sWddgzQIbIMAP4RWafOihUe8YAHUfEB14YNPsFw166eN1Knjt9t1aQJ3HSTT6NSCbKzPcgaMMDrd82f70ONder4SEx0+rw2bWIjIwrGRCogMzM2vLkrtm3z4GvjRti8ueiyaZP/z2nLlqL7o/u2bi26HV0KCmLnpktmZtEgLCsrti/+WPF90XVGRuxxdInuj98XfRy/Lm9f8e2MDA8S44/FPy7tvOLb0cclnRN/HIruE6kESevpMrODgFEhhKMjj28ECCH8Ke6cB4DXQwhPRB7PB4aEEJbHXyvpPV3vvQcPPOCl4uP/B7xmjQ9lXHUVHHWUn5uf78eaNElKU/LyvJTErFl+41dpcnI8AIummxT/j2z835Lo36b4BXb+W1LW35WSjunvkMius+0FZBZsJbNgKxkF+b69PT/yeCuZ27ft2J9RkE/m9nwytm+LLL6dWZBf9PGO47HFCgsi2wVkRLZ9XxJ67/ZkZgQzgkUCssg6xK3Djj+u0X0G+PNK3IftuC5YkeM7XjN+u6zzSjtW/DolnF/qeZF9sWvu2Llr5++0f+fr7Tiv+HVLvXYJ1ynhOfFaXjqctkM77nxuJUp5TxfQClgc93gJO/dilXROK2A5qdS/vydWzZxZdH9Wlvd8NWgQ21e7dtICLvBerEsv9e1163zKvOj0ed9/HxshiY5+iEh1lRVZcirvkhmRJZFyZyGQEbaTGQqKLBmFBTv2Z4TtZIVtWCjc8bj4eqeF7WQW22ehkAy2kxEKY/uIbhcWOe7bhTue5+fFrSPbFgIZRM4P2zHCjuf6OSF2LgELYcc1iHts+PsAlHjMdnRMhMhSWHmfVw2U6P/Vk/l/+nVHHgRJDrpKk8ygq6T3rHi3WiLnpMYVV3iQFR2/y831YCuNxRobNoR+/XyJV1gYS0PZtMlHPuKXggLvoCss9CW6HcLOS3GJ7kuVanCfh0g1ZcQCvz1HNDSq3Iv6H0wLkYCr0NcWYn9YjbDzduS58ecBRc+NXrOk49HnF3sc/Qmt2B/zIufFP7fYzxF/zo7jxZ5X5Fj88SJBKLF2JHKN4tfahfNKO17i80s5d69B5dTfTKJk/mtbAuwT97g1sGwXzkmNQYPS8rK7IiPDY8IK1GIVEZFdFh2Ky0h3Q6SaS+Zv0PtABzNrb2a1gZHApGLnTALONXcgsK54PpeIiIjIniBpPV0hhAIzuxJ4CS8ZMTaEMNfMLo0cHwNMwctFfImXjLggWe0RERERSaekDuaHEKbggVX8vjFx2wG4IpltEBEREakKNEAtIiIikgIKukRERERSQEGXiIiISAoo6BIRERFJgaROeF1ZzGwl8E262yEiIiKSgLYhhObFd1aLoEtERESkutPwooiIiEgKKOgSERERSQEFXYCZDTOz+Wb2pZndkO721FRmto+ZvWZmn5nZXDO7OrK/iZn9z8wWRNaN093WmsjMMs3sQzObHHmsz6UKMLNGZva0mX0e+bdzkD6b9DOzX0T+jn1qZk+YWbY+l/Qws7FmtsLMPo3bV+pnYWY3RuKB+WZ2dGW2pcYHXWaWCYwGjgE6A2eYWef0tqrGKgB+GULoBBwIXBH5LG4AXgkhdABeiTyW1Lsa+CzusT6XquFuYGoI4QCgB/4Z6bNJIzNrBVwF9A0hdMWnwhuJPpd0eRgYVmxfiZ9F5DtnJNAl8pz7I3FCpajxQRfQH/gyhPBVCCEfmACcmOY21UghhOUhhA8i2xvwL49W+OfxSOS0R4CT0tLAGszMWgPHAQ/G7dbnkmZm1gAYDDwEEELIDyGsRZ9NVZAF1DWzLKAesAx9LmkRQngTWF1sd2mfxYnAhBDC1hDC1/jc0P0rqy0KuvxLfXHc4yWRfZJGZtYO6AXMBPYKISwHD8yAFmlsWk11F/BroDBunz6X9NsXWAmMiwz9PmhmOeizSasQwlLgDuBbYDmwLoQwDX0uVUlpn0VSYwIFXWAl7FMdjTQys/rAM8A1IYT16W5PTWdmxwMrQgiz090W2UkW0Bv4RwihF7ARDVmlXSQ/6ESgPdASyDGzs9PbKklQUmMCBV0exe4T97g13g0saWBmtfCAa3wI4dnI7u/NbO/I8b2BFelqXw01EBhuZovw4ffDzexx9LlUBUuAJSGEmZHHT+NBmD6b9DoS+DqEsDKEsA14FjgYfS5VSWmfRVJjAgVd8D7Qwczam1ltPIFuUprbVCOZmeG5KZ+FEO6MOzQJOC+yfR7wQqrbVpOFEG4MIbQOIbTD/328GkI4G30uaRdC+A5YbGYdI7uOAOahzybdvgUONLN6kb9rR+A5qvpcqo7SPotJwEgzq2Nm7YEOwHuV9aKqSA+Y2bF4zkomMDaEcFt6W1QzmdkhwFvAJ8Ryh/4Pz+uaCLTB/5idGkIonhQpKWBmQ4BfhRCON7Om6HNJOzPrid/gUBv4CrgA/w+1Pps0MrNbgNPxu7I/BH4K1EefS8qZ2RPAEKAZ8D1wM/A8pXwWZvYb4EL8s7smhPBipbVFQZeIiIhI8ml4UURERCQFFHSJiIiIpICCLhEREZEUUNAlIiIikgIKukRERERSQEGXiKSdmTU1szmR5TszWxrZzjOz+5P0mteY2bkl7G9nZp9W4uvUNrM3I3PwiUgNpj8CIpJ2IYQfgJ4AZjYKyAsh3JGs14sEQBfi1duTKoSQb2av4DWbxif79USk6lJPl4hUWWY2xMwmR7ZHmdkjZjbNzBaZ2U/M7K9m9omZTY1MIYWZ9TGzN8xstpm9FJ3qo5jDgQ9CCAVxz/nIzN4Broh7/XZm9paZfRBZDo7sf8zMTow7b7yZDTezLmb2XqSX7mMz6xA55XngrGS8RyJSfSjoEpHqZD/gOHwy4ceB10II3YDNwHGRwOteYEQIoQ8wFihphomBQPwE3uOAq0IIBxU7bwVwVAihN95TdU9k/4N45XfMrCE+r94U4FLg7hBCT6AvPo8bwKdAv138mUVkD6HhRRGpTl4MIWwzs0/wabumRvZ/ArQDOgJdgf/5lHdkAstLuM7e+Fx40aCpUQjhjcixx4BjItu1gPsiU+1sB/YHCCG8YWajzawF8BPgmRBCQaSn7Ddm1hp4NoSwIHL+djPLN7PcEMKGSnovRKSaUdAlItXJVoAQQqGZbQuxecwK8b9nBswtocequM1AdmTbgNLmQ/sFPldbD3xkYEvcscfwIcOReH4YIYR/m9lMvDfuJTP7aQjh1cj5dYo9X0RqGA0visieZD7Q3MwOAjCzWmbWpYTzPgN+DBBCWAusi0y4DkVzrxoCy0MIhcA5eM9Z1MPANZFrzI283r7AVyGEe4BJQPfI/qbAyhDCtt3/EUWkulLQJSJ7jBBCPjAC+IuZfQTMwfOtinsRGBz3+AJgdGR4cHPc/vuB88zsXXxocWPca32PB2/j4s4/HfjUzOYABwCPRvYfhud8iUgNZrHeeRGRmsPMngN+Hc272oXn18NzyXqHENaVc+6zwI0hhPm78loismdQT5eI1FQ34An1FWZmRwKfA/cmEHDVBp5XwCUi6ukSERERSQH1dImIiIikgIIuERERkRRQ0CUiIiKSAgq6RERERFJAQZeIiIhICijoEhEREUmB/wdpIaGlb9FqtAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABMD0lEQVR4nO3dd5xU5fXH8c9ZdpelIyAqWEBFlN6LiKAoYsOGSmLvNWqMNYk18ZdEjbFExUSxJCT2ggYVsSsRBUGkSBBEpAgibZciu+zz++PMMLPLllnYKct+36/Xfd0yd+6c2YGds8/z3PNYCAERERERSa6sdAcgIiIiUhso6RIRERFJASVdIiIiIimgpEtEREQkBZR0iYiIiKSAki4RERGRFMhOdwCJaNGiRWjTpk26wxARERGp1JQpU1aEEHYufbxGJF1t2rRh8uTJ6Q5DREREpFJm9m1Zx9W9KCIiIpICSrpEREREUkBJl4iIiEgKKOkSERERSYGkJV1mNtrMlpvZjHIeNzO738y+NrPpZtYjWbGIiIiIpFsyW7qeAIZV8PiRQLvIciHwcBJjEREREUmrpJWMCCF8YGZtKjjlOOCpEEIAPjGzpma2WwhhabJiEhERSYkQYuvi4th2CJCTA2Z+7KefYPPmkudHt+vUgfr1fXvzZli7tuzzQoAmTSA31/fz82HdupKPR9fZ2bDLLrE4Fy/2+EpfD2Cnnfy64Ndbtmzr9xfVpo3HG73munVln9eoEbRq5dubNsG8eWX++ADYc09o0MC3ly2DFSu2vh74z7N9+9j+rFklf6alr9m0afmvmWTprNPVGvgubn9R5JiSLhGRVAnBv6CKiqCwMLYdXTdvDnl5fu7y5b5s3rz1kpsLvXvHrvvWW/6lGn9OcbEvXbvCAQf4efPnwzvv+PH4c6LLpZdC3bp+7r/+5edHE5lo7MXF0LkzjBzp561YAX/8Y+wa8ecXF8MVV8D++/u5zz8Pr78eSzqiS3Ex7Lwz3HNP7D2dey4UFGx9bghw5plwwgl+3ocfwp13lv8z//e/oWFD3779dpg+vezzBgyAG26I/ewvvLD8a/7ud9Ctm2+/8IIvZdllF3j00dj+r34VS5BKO+ssGDHCt6dOhT/9qfzXj39PDz8MX3xR9nkHHQTXX+/bK1fCddeVf8349/T664m/p9tvL/89XX+9x5Am6Uy6rIxjZaSlyTd3LixaBIccko5XF5Fa74cfYONGT1I2bfLWj8JCX++1F+yxh5/33Xfw8cf+WGGhnxvdLiyEK6+MJUh/+xt89VXssaKi2NK7t58L8P33iX+Z/+c/8OKLZZ+3yy4lk67HHiv/iy87O5Z0LVkCr7xS/uuff34s6Zo9G6ZNK/u8Ro1i20VFMGdO+dfcuDG2vW6dJzRlib5u1Pr1sGFD2edu3hzbNiu5Hb+U9Rp5eVufk5UV+yzBW5GiLTTx50W3c3Ji5zZsCC1blv26O5cqkt66tb+v+OtF19FWLvAWp7Ztt35/Zb3n6DXLemy33WLbOTmx5Les60ZbucDfT4cOW59n5i1y8Tp0iH1Opd9X/HtKAwtlNb9V18W9e/G1EEKnMh57BHgvhPDvyP4cYHBZ3Yu9evUKyapIv3w5XHKJ/3/5/e+h01aRiohEFBbCN9/4L/SNG/2LZeNGXzZsgMGDY10nb78N773niVP0nJ9+8qVpUxg1KnbdkSPLT1DOOANOOcW3J06EP/yh/Pj++c/Yl8rNN3vrRFn69YPf/Ma3f/jBk67sbP9iL72+4orYL8bXX/f3lJ3tSUH0nGhCcMklsdcYPdqTwqys2DnR7a5dY9dcvBg++yz2WFaWf0FGtwcOjHWbzZzpXWxZWbHFzNdNm3oXF/jrfvONb0evG5+A7LJLLKGJdsVFrxW9Hvj7a9w49p7Wrds6iYou0XjBW77KSkyk1jCzKSGEXqWPp7OlayxwuZk9DfQF1qRjPFfLlnD00fDSS/677C9/8WMisoMIwROiggL/go1+yfbuHfsyf/VVbxVav94fW7fOt9ev91aeG2/089as8e6Y8uy7byzpWras/FaZ+FYJ8OesX++tHrm5JZfWrWPn7bEHnHqqPz8315OC3Fzfz8mBevVi515wgb/vnBw/L7rOzi7ZgrPzzv4LMBFHHulLIs49N7HzWrcu+R4r0rFjYufl5pYc41ORRo1KtpJVJL7lpSJKuKQcSUu6zOzfwGCghZktAm4BcgBCCKOAccBRwNfAeuCcZMVSmbPPhoULYcoUb0m/666SrboikkE2bYLVqz0Bil/WrvVuhT59/Lzp030MSkFBbCBzvMcei/2FNWOGtyKVpaAgtl2/vidW9eptvdStW7LrZNAg7zqJdh/l5fl2dIkXP26oInvsAaefnvi5IpJRknn34s8qeTwAlyXr9asiKwuuvdb/gF2wwFu7brhBf6yIpEwInjStXBlbVq3y9YYN8Mtfxs697DIfh1SWTZtiSVdOjl8TPOGJtmg0bOhLVlzFnKOP9i63Bg1iS/36vsS3HtWv778gElGVFhwRqRXS2b2YURo0gJtu8sRr4kR4+mn4WYVpo4gkJARvLVq+3McPRZd+/WIDY//zH3jkkfKv8YtfeLcYeHdYUZGPtWna1McwNW7s6/gupX33haee8kQru5JfdV26bNdbFBFJhJKuOK1be4vXbbf5ncl77QUHHpjuqERqgA0bYOlST66iCUwIfofckiU+eLy0xo1jSVfz5v6XT/Pm0KyZ343UvLmvS9+Z9H//l1hMOTlbP1dEJI2UdJXSsyecc47fePOXv/i4zTTfYSqSWb7+GiZP9mTq++99vWaNP9akid9BB94/v2GDJ1wNGngLVXRp0aJk61K/ftC/f+rfi4hICinpKsPxx/sdzF9+6fXdDj443RGJpFBBgdeD+vZbXy9cCMOHx2owzZ4NY8aUfE5uLuy6qw8kLy6OjZf63e+8e6+yu740gFJEagElXWUwg+7dPemaNUtJl+yg4pOjELyK8/z5Pni9tI4dY0lXx45w4ole5qBVK0+0mjcvO3HaddfkxS8iUsMo6SpHtFjyrFnpjUOkWkSLRc6b592D8+b5nX2PP+6Pm3lX4cqVXs5gjz182XNPX/bdN3atvff2RUREqkRJVzn2289veFqwwOskJloTTySjTJ3qidW3325dq8rME69oxe2rr/ZSCrvuqu4+EZEkUNJVjtxc/+P+q6986dkz3RGJlGPDBp9nbuZMH2/Vs2ds4t2cHG/hysryKVL22ceXfff1edTiqwC3a5eW8EVEagslXRXo0METruj3mEjGmDbN7/aYMcOTqvg5VHNzY0nXfvt5VfZ99tm6CrqIiKSUkq4KdOgAL76ocV2SZhs3+l0dnTrFqqO/+SZ89JFv16njSdUBB/g/2uiARPAELFoLS0RE0kpJVwX239/Xc+Z4AezKilqLVIsQvPXq8899TNasWf4P8JZboFdk0vrBg2H33aFzZ6/CrlYsEZGMpzSiAk2a+PfaokV+J/1++6U7ItmhFRbCww97t+Hq1bHjZv6PL35we9++voiISI2hpKsSBxzgSdesWUq6pJqtWgXTp8OgQb6fk+MDCFev9ort3btDjx7QtasXGBURkRpNSVclOnaEt97ypOv449MdjdR4K1bAf/8LH3/s/6hC8My+ZUt//JJLvITDXnupbIOIyA5GSVclomOQo9+P+h6UKtu40TP3Dz7w22GjsrO9JSt+Muj4+QhFRGSHoqSrErvuCk2beo/P0qU+64lIpTZv9rsKwYuSPvGEV4XPzfXB8AMG+Lp+/bSGKSIiqaOkqxJm3to1caK3dinpknKF4AVK33rLx2r9/e/emlW/Ppx2mo/T6tOnZEFSERGpNZR0JSA+6TrssHRHIxln5Up45x1PtpYsiR3/6iuvrQU+QbSIiNRqSroSED+uS2SLdevg/vvhk09i8xo2awZDhsDhh8Nuu6U3PhERyShKuhLQtq3Xnly8GNas8fpdUkvFV8mtXx8WLvTtfv1g6FAfGB8dyyUiIhJHSVcCsrO96Pf06V5GqV+/dEckKbdiBYwd612I993nJR7M4KqrYOedvYVLRESkAkq6EtShgydds2Yp6apVFizwCTg/+MDvSASYPBmOOsq327dPW2giIlKzKOlKkMZ11TIzZsDzz8OUKb5vBgcf7APi99knvbGJiEiNpKQrQe3b+/fuvHley1LzC+/gXn7ZE666dX2s1nHHwS67pDsqERGpwZR0Jah+fR9QP38+zJ0bqwQgO4gvv/QPOdqK9fOf+/Yxx2jeQxERqRZKuqpgr7086Vq2TEnXDmPuXK8WP326T8Fzxx1+fO+9fREREakmSrqqYKedfL1yZXrjkGqwdCk89RR89JHvN2gAnTt7va2srPTGJiIiOyQlXVUQTbpWrUpvHLId8vPhX/+C11/3uxFzcmD4cBgxAho2THd0IiKyA1PSVQXRUkxKumqwoiKYMMFbtIYMgdNP9zkRRUREkkxJVxU0beprJV01zOzZfvtpVpY3V/7iF7DnntCmTbojExGRWkRJVxVEW7o0pquGWLECHnvMx21dckmsoOnBB6c3LhERqZWSOmLYzIaZ2Rwz+9rMbijj8SZm9qqZfWFmM83snGTGs700pquGKC72KXsuucQTrtzcWDV5ERGRNElaS5eZ1QEeBA4HFgGfmdnYEEJ8TffLgFkhhGPNbGdgjpmNCSFsSlZc26N+ff/+3rjRl7y8dEckW/n2W3jgAZgzx/cPPBDOP9/nRxQREUmjZHYv9gG+DiHMBzCzp4HjgPikKwCNzMyAhsBKoCiJMW0XMx/XtXy5t3bttlu6I5ISZs+GX//aB8s3awaXXgp9+6Y7KhERESC5SVdr4Lu4/UVA6W/AvwJjgSVAI+DUEEJxEmPabs2aedK1cqWSroyz334+bcC++8JZZ3ntLRERkQyRzKTLyjgWSu0fAUwDDgX2Ad4ysw9DCGuTGNd20biuDFJcDK+8Aocc4k2QderAH//ofcAiIiIZJpkD6RcBe8Tt7463aMU7B3gxuK+Bb4D9kxjTdlPSlSGWLYMbboDRo30MV5QSLhERyVDJTLo+A9qZWVszywVG4l2J8RYCQwDMbBegPTA/iTFtNyVdaRYCvP2219qaPdv7e48+Ot1RiYiIVCpp3YshhCIzuxx4E6gDjA4hzDSziyOPjwJ+BzxhZl/i3ZHXhxBWJCum6rDNtbqWLfNB3o0bQ8+evkQLdkpiNm6Ehx6Cd9/1/QMPhMsvh0aN0huXiIhIApJaHDWEMA4YV+rYqLjtJcDQZMZQ3aItXatXV/GJH37oI/CXL4evv4ZnnvG5/nr0gJNOgr33ru5QdyybNsGvfgULF0Ldul6D69BD/ZZSERGRGkAV6asomnRVuaVrVqRSxvHHe6HOyZNh6VL44AP44gt45BHdbVeR3Fzo08e7F2+8EfbYo/LniIiIZJBK+7bMbICZvWVm/zOz+Wb2jZll9LirZNqmMV0h+PgjgGOPhQsvhL/9zZf994c1a+C556o91hqvsBAWL47tn3463HOPEi4REamREhlQ9BhwD3AQ0BvoFVnXSk2aeI/WmjVVmFnm22+hoABatICWLWPHd9vNEzDw0gfff1/t8dZYa9bAb37jy5o1fqxOHU0DICIiNVYiSdeaEMLrIYTlIYQfo0vSI8tQ2dk+Fj6EWC5QqWjXYseOWz/Wrh0MGeJV1B9/vNrirNEWLIBf/tJbB6MZroiISA2XSNL1rpndZWb9zaxHdEl6ZBmsyl2MM2f6uqykC+DMM31w+MSJMGPGdsdXo33yCVx7Lfzwg9/dec89sOee6Y5KRERkuyUykD46dU+vuGMBryJfK+20kzfGJJR0hVB50tWsGYwYAWPGwN//Dn/5S+0rJRECPP88PPWU7x9yiJeDULFTERHZQVSadIUQDklFIDVJtFZXQknXDz/Ajz96eYiKBoCfcAK8+SbMnw/vvAOHHVYtsdYYs2d7wmXmLX8nnaRyECIiskNJ5O7FJmZ2j5lNjix/NrMmqQguU1WpezHaytWhQ8VJRN26PkkzePKxceN2xVjjdOgA55/vA+dHjFDCJSIiO5xE+rBGA/nAKZFlLVCrR3xXqVZXZV2L8QYN8nFMq1Z5V9uOLj/f7+yMOu446Nu3/PNFRERqsESSrn1CCLeEEOZHltuAWl0+fZtauhJJuszgggt8+6WXduy79n74Aa67Dn77W5XKEBGRWiGRpGuDmR0U3TGzAcCG5IWU+RJOutasgUWLfDD4PvskdvH27b3y+qZNXrtrR7Rwod+huGiRFz7LyUl3RCIiIkmXSNJ1CfCgmS0ws2+BvwIXJzeszJZw92K0Cn379l7gK1GnnOLr117zoqo7kvnz4YYb/OaCjh3hT3+C5s3THZWIiEjSVZp0hRCmhRC6Al2AziGE7iGEL5IfWuaKv3sxhApOrErXYrz27aFbN9iwwROvHcW8eT5QPj8fevWC22/XfJMiIlJrlNv8YmanhxD+aWZXlzoOQAjhniTHlrHy8vxmw59+gvXrK8gbtjXpAjj1VJg2zbsYjzsO6tXb1nAzQ36+j98qKPDB8tdfr25FERGpVSpq6YqmEo3KWBomOa6MZhZr7Vq9upyTNm70lp2sLG+5qqpOnTxZKyiAceO2NdTM0aiR19868EDvXlTCJSIitUy5LV0hhEcimxNCCB/HPxYZTF+rNW0KS5f6uK7Wrcs4Yc4cKC6Gfffd9laqU06BW27xOxmPOcab12qa4uJYdf0jj4Rhw1SDS0REaqVEBtI/kOCxWqXSqvTb07UY1b27T4i9Zg2MH7/t10mXefPgsstK1uJSwiUiIrVUuUlXZILrXwE7m9nVccutQJ2URZihKi0bEV+JfluZ+dgugBdfhMLCbb9Wqi1e7K10ixbBq6+mOxoREZG0q6ilKxcfu5VNyfFca4ERyQ8ts1WYdBUVefcibF9LF3jNrjZtYMUKn5OxJvjhBx80v2YN9OwJF9fqCiMiIiJAxWO63gfeN7MnQgjflndebVVhra758/3Wxtatvfjn9jDzsV133gnPPQdDhlSt5leqrVkDN93kSeIBB8CNN2Z2vCIiIimSyLfhejO7C+gI5EUPhhAOTVpUNUCFY7qirVzb07UYb8AAT+AWL4b33/fEKxOtWwc33+xxtm3r3Ys1cfC/iIhIEiQykH4M8BXQFrgNWAB8lsSYaoQKuxd//NHXu+5aPS+WlRWrUv/ss35HYCaaOtVb+Vq1UuFTERGRUhJp6WoeQnjMzK6M63J8P9mBZboKk67owWhzWHUYNAj+/W9YsgQ+/ND3M81BB3mJ/vbtvaaGiIiIbJFIS1f0lrmlZna0mXUHdk9iTDVCkyY+3GrtWh83X0I06YpmZtWhTp1Ya9czz2RWa9f69bHtgQOhZcv0xSIiIpKhEkm6fm9mTYBfAdcAjwK/TGpUNUBWVqwxZ6uq9MlIugAOOcQTmu++g4kTq/fa2+qdd+Cii+B//0t3JCIiIhktkQmvXwshrAkhzAghHBJC6BlCGJuK4DJduV2M0QPV3cWWnQ0nn+zbTz9dyWzbKTBjBjzwgGedX3+d3lhEREQyXEUTXj8AlPutHkK4IikR1SBlJl1FRd7naLb95SLKMmSIdy9++y188gn071/9r5GIxYvhjjv8/R53HBx1VHriEBERqSEqGkg/OWVR1FBl1upau9ZboJo29XFY1S0nB0aMgFGjvLWrX7/UT61TUAC33ebrvn3h3HNT+/oiIiI1UEXFUZ9MZSA1UfTmxBJjupI1nive4Yd76Yj58+Gzz7xqfaqEAHff7bN97703XHNNbEJrERERKVel35Zm9q6ZvVN6SUVwmS46ZKtES1cqkq7cXDjpJN9O9diumTPh88+hUSP4zW8gL6/y54iIiEhCdbquidvOA04CShdJKJOZDQPuwyfIfjSE8McyzhkM3AvkACtCCBlYgKpsZValT0XSBXDEET4t0Ny5qW3t6tTJK81nZ6s0hIhIBtm8eTMrV66ksLCw8pOlWuTk5NCsWTPqJDicqNKkK4QwpdShjxMpjmpmdYAHgcOBRcBnZjY2hDAr7pymwEPAsBDCQjOrUd/iZQ6kT1XSVbeuj+169FH4xz+gd+/Uje3q2TM1ryMiIglbuXIleXl5tGjRAkv1WN9aKIRAQUEBK1euZOedd07oOYl0LzaLW1qY2RFAIvPb9AG+DiHMDyFsAp4Gjit1zs+BF0MICyNvYHlCUWeIMgfSpyrpAjjySGjRAhYs8Cr1ybJxI/z2t/Dll8l7DRER2S6FhYU0bNhQCVeKmBkNGzasUstiIiOgp+B3Mk4B/osXST0vgee1Br6L218UORZvP2AnM3vPzKaY2ZkJXDdjxLd0bRlWlcqkKzcXfvYz3x4zBjZvrv7XCMFrcX3xhd8xmUmV8EVEpAQlXKlV1Z93IsVR24YQ9o6s24UQhoYQPkoklrIuV2o/G+gJHA0cAdxkZvslcO2MkJcH9ep5qaqCgsjBVCZdAIce6hNML1ni1eGr2xtvwAcf+Ju94QbdqSgiIhW644476NixI126dKFbt25MmjQpLXFMmzaNcePGbdkfO3Ysf/yjDy0/++yzef7557d6znvvvccxxxyTtJgS6V7MM7OrzexFM3vBzH5pZoncsrYI2CNuf3dgSRnnvBFCWBdCWAF8AHRNNPhMEM2ttpSNSHXSlZ0Np53m2//6F2zaVH3XXrjQx4wB/OIXsMceFZ8vIiK12n//+19ee+01Pv/8c6ZPn86ECRPYI03fHaWTruHDh3PDDTekJZaoRJotngI6Ag8AfwUOAP6RwPM+A9qZWVszywVGAqWnD3oFGGhm2WZWH+gLzE40+EwQvYNxy7iuVCdd4JNMt2kDK1Z4y1R12LQJ7rrL10OGwMEHV891RURkh7V06VJatGhB3bp1AWjRogWtWrWiTZs2rFixAoDJkyczePBgAN5//326detGt27d6N69O/n5+QDceeeddO7cma5du25JlObNm8ewYcPo2bMnAwcO5KuvvgK81eriiy9m4MCB7Lfffrz22mts2rSJm2++mWeeeYZu3brxzDPP8MQTT3D55ZdviXXChAklnlPaunXrOPfcc+nduzfdu3fnlVde2e6fTyIlI9qHEOJbn941sy8qe1IIocjMLgfexEtGjA4hzDSziyOPjwohzDazN4DpQDFeVmJG1d9G+kRrda1ahQ8437jRx1rVq5e6IMzgjDPgd7/zoqlDh25//azHH/cB+q1awcUXV0uYIiKSGscem5zrvvpqxY8PHTqU22+/nf3224/DDjuMU089lUGDyq8Edffdd/Pggw8yYMAACgoKyMvL4/XXX+fll19m0qRJ1K9fn5WRVo0LL7yQUaNG0a5dOyZNmsSll17KO5FhNQsWLOD9999n3rx5HHLIIXz99dfcfvvtTJ48mb/+9a8APPHEEyVeu6znxLvjjjs49NBDGT16NKtXr6ZPnz4cdthhNGjQoIo/tZhEkq6pZtYvhPAJgJn1BT5O5OIhhHHAuFLHRpXavwu4K7FwM0+JshHxrVypHszYuze0bw9z5sDYsXDKKdt3vV69fG7H665TAVQREUlIw4YNmTJlCh9++CHvvvsup5566pZxVGUZMGAAV199Naeddhonnngiu+++OxMmTOCcc86hfv36ADRr1oyCggImTpzIySefvOW5P/3005btU045haysLNq1a8fee++9pRWsIpU9Z/z48YwdO5a7774bgI0bN7Jw4UIOOOCAKv1M4iWSdPUFzjSzhZH9PYHZZvYlEEIIXbb51XcA0Tmt164lPV2LUWZw5pleJf7FF72cRKNG2369nj3h73/3MWMiIlKjVNYilUx16tRh8ODBDB48mM6dO/Pkk0+SnZ1NceTu940bN24594YbbuDoo49m3Lhx9OvXjwkTJhBC2OquwOLiYpo2bcq0adPKfM3S5ydyV2Flzwkh8MILL9C+fftKr5WoRMZ0DQPaAoMiS1vgKOAYIEkNmDVHNOlas4bYwK50JF0AXbpAt26wbp13M1ZVCD6fY5QSLhERqYI5c+Ywd+7cLfvTpk1jr732ok2bNkyZ4rXWX3jhhS2Pz5s3j86dO3P99dfTq1cvvvrqK4YOHcro0aNZv3494EVfGzduTNu2bXnuuecAT4i++CI20um5556juLiYefPmMX/+fNq3b0+jRo22jBErS1nPiXfEEUfwwAMPECI1oaZOnbqdP53ESkZ8CzTFE6xjgaYhhG+jy3ZHUMM1buzrtLd0RZ1zjrd6vfaal5GoirFj4aqr4OWXkxGZiIjs4AoKCjjrrLPo0KEDXbp0YdasWdx6663ccsstXHnllQwcOLDElDn33nsvnTp1omvXrtSrV48jjzySYcOGMXz4cHr16kW3bt22dO+NGTOGxx57jK5du9KxY8cSA9vbt2/PoEGDOPLIIxk1ahR5eXkccsghzJo1a8tA+tLKek68m266icLCQrp06UKnTp246aabtvvnY6GSyZLN7ErgAuDFyKETgL+FEB7Y7ldPUK9evcLkyZNT9XJVMnOml6/af3+4q8s/vIXptNNg5Mj0BXXffTBhAvTvD7/+dWLPWbLEy0Js2gQ33ZS6uRxFRKRaLFmyhFatWqU7jJQ7++yzOeaYYxgxYkRaXr+sn7uZTQkh9Cp9biLdi+cBfUMIN4cQbgb64UmYEGvpWrOGzGjpAr+TMS8P/vtfmJHAzaDFxXDvvZ5wHXKIEi4REZEkSCTpMiB+fpnNlF1tvlbKmIH08Zo1g5NO8u1HH42bo6gcr70Gs2d73BconxYRkZrjiSeeSFsrV1UlknQ9Dkwys1vN7DbgE+Cx5IZVczRq5EOo1q2D4hVpHkgf74QTfDLsefMqnh5o6VJ48knfvuyy7bvjUURERMqVyED6e4BzgJXAj8A5IYR7kxxXjWEW62Is/GG1b2RC0lW3rpeQAHjqKS/aWpZHH/VuxcGDoW/flIUnIiJS21Rl9mLDJ6xW12IpjRuDhWI2/7jaD0TL1Kfb4MHQrp2XsnjxxbLPuewyn+bnwgtTGpqIiEhtk8iE1zcDTwI7AS2Ax83st8kOrCZp0gTqFeVTtKnYu+cypb6VGZx/vm+/8ILPzVhas2ZeJkLdiiIiIkmVSEvXz4DeIYRbQwi34HcvnpbcsGqWxo2hYeEqCovIjK7FeB06wIAB3oU4erQfC8HvbIxUBxYREakODRs2rPScDz/8kI4dO9KtWzc2bNhQpeu//PLLzJo1KylxpUIiSdcCIL5iWF1gXlKiqaGaNIFGhSspKiTzki6Ac8/1MV4ffgjTpsHEifB//wc331z5nY0iIiLVaMyYMVxzzTVMmzaNevXqVem525p0ZYpEkq6fgJlm9oSZPQ7MAArM7H4zuz+54dUMjRtDg2hLV7Nm6Q5nay1bxoq13n8/PPKIbw8YkPqJuUVEZIf33nvvMXjwYEaMGMH+++/PaaedRgiBRx99lGeffZbbb7+d007zTrO77rqL3r1706VLF2655ZYt13jqqafo0qULXbt25YwzzmDixImMHTuWa6+9lm7dujFv3jzmzZvHsGHD6NmzJwMHDtwyafU333xD//796d27d7VUkq8uiQw+eimyRL2XnFBqriZNoOGmVd7SlSmD6Es7/ngvHfHxxz7mbNAgOOKIdEclIiLJcGySpkauwkzaU6dOZebMmbRq1YoBAwbw8ccfc/755/PRRx9tqSA/fvx45s6dy6effkoIgeHDh/PBBx/QvHlz7rjjDj7++GNatGjBypUradasGcOHDy9RfX7IkCGMGjWKdu3aMWnSJC699FLeeecdrrzySi655BLOPPNMHnzwweT8LLZBpUlXCOHJVARSkzVpAg2LVlOUiWO6orKz4bjj/C5GMxgxArKqcvOqiIhI4vr06cPuu+8OQLdu3ViwYAEHHXRQiXPGjx/P+PHj6d69O+BzN86dO5cvvviCESNG0KJFCwCaldGLVFBQwMSJEzn55JO3HPvpp58A+Pjjj7dMrH3GGWdw/fXXV/8b3AYZcptdzVaiezFTk64Q4O23oXlzqFMH3nzT52ZU96KIyI6nCi1SyVK3bt0t23Xq1KGoqGirc0II3HjjjVx00UUljt9///1YJd9PxcXFNG3alGnTppX5eGXPTwc1dVSDxo2h0abIQPpMHNMFfrfi7NnQqRPstx98/rkPqBcREUmTI444gtGjR1NQUADA4sWLWb58OUOGDOHZZ5/lxx9/BGDlSp/xpVGjRuTn5wPQuHFj2rZty3PPPQd4AvfFF18AMGDAAJ5++mnAB+5ninKTLjP7R2R9ZerCqZmaNPGSERndvdivH1xyCfziF3DeeX7s73+HKt6uKyIiUl2GDh3Kz3/+c/r370/nzp0ZMWIE+fn5dOzYkd/85jcMGjSIrl27cvXVVwMwcuRI7rrrLrp37868efMYM2YMjz32GF27dqVjx4688sorANx33308+OCD9O7dmzVr1qTzLZZgoZySAWY2CzgSGAsMplQl+hDCymQHF9WrV68wefLkVL1clRUWwn/bjCRv8zp6/+9fWOMMLzRaXAzXXANz5/pgS1WjFxGp8ZYsWUKrVq3SHUatU9bP3cymhBB6lT63ou7FUcAbwP7AlFJL5mZAaZATNtEgrGMz2RSQGQXYtli+3KcBipeVBZdf7utXX4UZM9ITm4iISC1SbtIVQrg/hHAAMDqEsHcIoW3csncKY8x8q1eTnQ3rcpqyNj/DBu49/DBcdBFMmVLy+N57wymn+Pb995c/IbaIiIhUi0oH0ocQLjGzrmZ2eWTpkorAapSVK8nJgfzcZqxdm+5g4kydCpMne4vWvvtu/fipp0KbNrB0KfzjHykPT0REpDZJZMLrK4AxQMvIMsbMfpHswGqUVavIzoaCnJ3ImPF6xcWxuRZPPtlH+5eWne2TXUe7GWfOTGmIIiIitUkiJSPOB/qGEG4OIdyMT3h9QXLDqmFWrSI7J8OSrgkTYMECnwJo+PDyz9tnH0/KQoD77oNIYTkRERGpXokkXQZsjtvfTKk7GWu9VavIyYZ12U0zI+nasCHWXXjWWZCbW/H5I0eqm1FERCTJEkm6HgcmmdmtZnYr8AnwWFKjqmniuhczYkzXCy/A6tXQvj0MHFj5+dnZcOWV3s04dizU4BncRUQkferUqUO3bt3o1KkTxx57LKtXr053SFV26623cvfddyfl2okMpL8HOAdYCawCzgkh3JuUaGqqaPdipgyk79vXK8+fd17i0/zsu6/PxxgC3HMPrFuX3BhFRGSHU69ePaZNm8aMGTNo1qxZxkw2HUKguLg43WEkNg1QCOHzSAmJ+0IIU5MdVI0T6V7MmDFd7drB//0fHHBA1Z73s5/5GK9ly+ChhzwBExER2Qb9+/dn8eLFAMybN49hw4bRs2dPBg4cyFdffQXAsmXLOOGEE+jatStdu3ZlYmR6unvuuYdOnTrRqVMn7r33XgCuv/56HnrooS3Xv/XWW/nzn/8MwF133UXv3r3p0qULt9xyCwALFizggAMO4NJLL6VHjx589913ZZ4HcMcdd9C+fXsOO+ww5syZk7SfiSa8rg7Rlq7snchLZ9JVVORdhbBtE1lnZ8O11/odjR98AD16wJAh1RqiiIikyLHHlv/YZZfBsGG+/cYbUFGL1DZMnr1582befvttzotMO3fhhRcyatQo2rVrx6RJk7j00kt55513uOKKKxg0aBAvvfQSmzdvpqCggClTpvD4448zadIkQgj07duXQYMGMXLkSK666iouvfRSAJ599lneeOMNxo8fz9y5c/n0008JITB8+HA++OAD9txzT+bMmcPjjz/OQw89VO55DRo04Omnn2bq1KkUFRXRo0cPevbsWeX3nAglXdsrhBLFUXPT2b345z/73YcXXgi77rpt12jdGi6+GO69F0aN8tYyTSshIiIJ2LBhA926dWPBggX07NmTww8/nIKCAiZOnMjJJ5+85byfInfKv/POOzz11FOAjwdr0qQJH330ESeccAINGjQA4MQTT+TDDz/kiiuuYPny5SxZsoQffviBnXbaiT333JP777+f8ePH0717dwAKCgqYO3cue+65J3vttRf9+vUDYPz48WWel5+fzwknnED9+vUBGF7RHf/bSUnX9ioogKIisps0oGhjbvq6F7/5Bj76CHJyYq1d2+rQQ+Hzz7216667fNnea4qISGol2kI1bFis1Ws7Rcd0rVmzhmOOOYYHH3yQs88+m6ZNmzJt2rSErlHenNAAI0aM4Pnnn+f7779n5MiRW86/8cYbueiii0qcu2DBgi2JW0Xn3Xvvvdi29A5tg0SKo55oZnPNbI2ZrTWzfDNLqD3HzIaZ2Rwz+9rMbqjgvN5mttnMRlQl+IywahUAdZrvRE4ObNqUphl1xozx9VFHQYsW23ctM7j0Uq/x9fXXEPkrREREJBFNmjTh/vvv5+6776ZevXq0bduW5557DvDk54svvgBgyJAhPPzww4B3Sa5du5aDDz6Yl19+mfXr17Nu3TpeeuklBkbuxB85ciRPP/00zz//PCNGeMpwxBFHMHr0aAoKCgBYvHgxy5cv3yqm8s47+OCDeemll9iwYQP5+fm8ug3dqYlKZCD9ncDwEEKTEELjEEKjEELjyp5kZnWAB4EjgQ7Az8ysQznn/Ql4s2qhZ4hI0mXNdtpS9D3ldzD+738waRLUret3IFaHBg18fFdWFrz0kk8pJCIikqDu3bvTtWtXnn76acaMGcNjjz1G165d6dixI6+88goA9913H++++y6dO3emZ8+ezJw5kx49enD22WfTp08f+vbty/nnn7+lS7Bjx47k5+fTunVrdtttNwCGDh3Kz3/+c/r370/nzp0ZMWIE+fn5W8VT3nk9evTg1FNPpVu3bpx00klbErxksIqa8QDM7OMQwoAqX9isP3BrCOGIyP6NACGEP5Q67yqgEOgNvBZCeL70tXr16hUmT55c1RBS4733fCzVwQdz5aJrmT/fKy60a5fCGG6+2ZOiESO8GGp1euYZ+Oc/fRqhe+/d/lY0ERFJiiVLltBKY3BTrqyfu5lNCSH0Kn1uIi1dk83sGTP7WaSr8UQzOzGB57UGvovbXxQ5Fh9Ua+AEYFQC18tMkZYudtqJxpH2v5S2dM2Y4QlX/fpwYiIfSxWdfDJ06wZr1sAf/gCFhdX/GiIiIrVAIklXY2A9MBQ4NrIck8DzyhqVVrpZ7V7g+hDC5jLOrRmiSVfTplu6F1M6mH7hQh/kfvzx0KhR9V8/K8u7GVu29G7Mv/2t+l9DRESkFqj0lrQQwjnbeO1FwB5x+7sDS0qd0wt4OnLXQAvgKDMrCiG8vI2vmXo//ujr5s1pEsm/UtrSddRR0KePt3QlS+PG8Otfw3XXeT2Xdu1g6NDkvZ6IiMgOKJG7F3c3s5fMbLmZLTOzF8xs9wSu/RnQzszamlkuMBIYG39CCKFtCKFNCKEN8DxwaY1KuABWrvR18+ZbuhdTXjaiRYvkJl3gleojBel4+GGYOze5ryciIlVW2ThtqV5V/XknOuH1WKAVPibr1cixygIpAi7H70qcDTwbQphpZheb2cVVijKTRVu6mjVLbffinDleRyuVc0kNGeIta0VFPs1QRsx5JCIiADk5ORQUFCjxSpEQAgUFBeTk5CT8nEQqXu4cQohPsp6I3HGYSEDjgHGljpU5aD6EcHYi18woIZToXkzpQPp//hOmTfMxZccdl4IXjLjgApg/H776Cu68E267TYVTRUQyQLNmzVi5cmWZ5RIkOXJycmjWrFnC5yfybbnCzE4H/h3Z/xnw4zbEtuNZt86rodarB/Xqpa5O19y5nnDl5aV+bsTsbLjxRp+fcfp0nxj7F7/YtrkeRUSk2tSpU4edd9453WFIBRLpXjwXOAX4HlgKjIgck+h4rkiWm7IxXc9HSpkddRQ0bJjkFytDs2Zw002QmwtvvQUvvJD6GERERGqYSpOuEMLCEMLwEMLOIYSWIYTjQwjfpiK4jBfXtQikZkzXd9/BxIk+x2IquxVLa9cOrrnGW7iefNLnfRQREZFyldu9aGbXhRDuNLMH2Lq+FiGEK5IaWU1QKulq1MhzkHXrfKx5UoY6RVuVDjtsSwtb2vTvD+ecA6NHexn+Fi1g//3TG5OIiEiGqqila3ZkPRmYUsYiceUiwBOuaBdjUsYxLl/u0w6ZJaf6/LY4/nifnb6wEH7/e/j++3RHJCIikpHKbYsJIUSn2V4fQngu/jEzOzmpUdUUceUioho39u7FNWtgp52q+fWaNIHzzoMffoBdd63mi28jM7joIli2zKcjuu02+NOfYtmniIiIAIkNpL8xwWO1T6nuRSC5dzDWrQvHHgvnZth9DNnZcP310KYNLFoEt94K69enOyoREZGMUm7SZWZHRsZztTaz++OWJ4CilEWYyUp1L0IS72BMZRHUbdGggbdy7bqrl7T4/e+9nIaIiIgAFbd0LcHHc22k5FiuscARyQ+tBkhVS9eGDV6UdMyYzE6+mjWD3/3O119+6d2MRcrPRUREoIKkK4TwRQjhSaAz8M8QwpOR/VeAn1IVYMbavNmrwZtB06ZbDielpWvCBB9EP306ZCXSI5xGu+4Kt9/u9cM+/RTuv98r94uIiNRyiXyDjwfqxe3XAyYkJ5waZPVqTyaaNClRG6Laa3WFAK9G7mlIZ12uqthrLx/XlZcH774LjzyixEtERGq9RJKuvBBCQXQnsl0/eSHVEGV0LUISuhc/+wyWLoWWLaFfv2q6aAq0bw+//a0npP/5Dzz6qBIvERGp1RJJutaZWY/ojpn1BDYkL6Qaopykq9onvX7lFV8fe2zmdy2W1rUr/PrXnniNHasWLxERqdUS+Ra/CnjOzD40sw+BZ4DLkxpVTVBq3sWoah3TtWCBj+PKy4PDD6+GC6ZB797wm9/4tEX/+Y9PkK3ES0REaqFE5l78DNgfuAS4FDgghKCK9JV0L1ZL0vXxx74+/HAvyVBT9erlXY25ufDGG/DAA0q8RESk1kl0dsD2QAcgD+huZoQQnkpeWDVAAt2LIfjNjdvs5z/3LrqWLbfjIhmiRw+46SYvKfHWW1764ooral6XqYiIyDaq9BvPzG4BHogshwB3AsOTHFfmK6d7MScH6tf3nGLduu18DTPo1GnHSLoAunWDW27xyvpvv+11vFRAVUREaolEmhlGAEOA70MI5wBdgbpJjaomKKelC6phXFdhod+xuCPq0sXreDVoABMnehK23dmpiIhI5ksk6doQQigGisysMbAc2Du5YdUAFSRd21024qOPfBLpxx7bxgtkuA4dvJWrWTOYMQNuuCHWcigiIrKDSiTpmmxmTYG/49MAfQ58msygMt7GjT6hc06OV14vZbtaukLwMhEheJHRHdVee8Fdd0Hr1n6X5rXXwuLF6Y5KREQkaSpMuszMgD+EEFaHEEYBhwNnRboZa6/4Vq4yRspvV0vXnDkwb55f5OCDtz3GmqBlS7jzTi+kuny5J16zZ6c7KhERkaSoMOkKIQTg5bj9BSGE6ckOKuNV0LUI21k2Ytw4Xx9+uJdY2NE1bgy//72XlcjP92Kqb7+d7qhERESqXSLdi5+YWe+kR1KTRJOuUncuRkWTrtWrq3jd/Hwfz2UGw4Ztc3g1Tl6e1/E69lgoKoJ774XHH/dbQEVERHYQiSRdh+CJ1zwzm25mX5pZ7W7tig76Lqela5ddfF3lGxAnTPA7F3v0iF2ktqhTBy68EC67zLdffNFbwDZoxikREdkxlFsc1cz2DCEsBI5MYTw1QyXdi61b+3rRoiped+1an6fwyFr8Ix82DFq1gj/+0Sf7vvZabwXbddd0RyYiIrJdKmrpehkghPAtcE8I4dv4JSXRZapKkq7ddvMewmXLvLcsYWedBU884eObarMuXeDPf4Y99oBvv4WrroJPPkl3VCIiItuloqQr/rY81eWKV041+qjcXL8xr7gYvv++itdu0sS712q73XbzkhL9+nnx1DvugNGjq5jFioiIZI6Kkq5QzrZU0tIFsS7GhEpPrVoFkybB5s3bH9uOpEEDv5vxvPN8jsaXXvL96M9fRESkBqko6epqZmvNLB/oEtlea2b5ZrattdZrvhAqbemCKiZdb77pg8Yffnj749vRmMHxx/sYr+bNvY7XFVfAlCnpjkxERKRKyk26Qgh1QgiNQwiNQgjZke3ofuNUBplR1q71FqlGjSqso7X77r6udDD95s2edAEMHFg9Me6IDjgA7rvPJ81euxZuvRUeeUQTZouISI2RSMmIbWZmw8xsjpl9bWY3lPH4aZEyFNPNbKKZdU1mPNUiga5F8BvwIIGWrsmTYcUKbxrr0mX749uRNWkCt90GZ57p495ee80H2c+bl+7IREREKpW0pMvM6gAP4iUnOgA/M7MOpU77BhgUQugC/A74W7LiqTYJJl3Rlq5Kk67XX/f1sGFlTikkpWRlwcknx+5u/O47uOYaeO45FVMVEZGMlsyWrj7A1yGE+SGETcDTwHHxJ4QQJoYQVkV2PwF2T2I81aOSavRRzZtD3bo+FdC6deWctGwZfP65T5w9ZEj1xrmj22cfr1wfrWL/1FNw/fWehImIiGSgZCZdrYH4b8BFkWPlOQ94PYnxVI8EW7rMYl2M5Y7rGj/eB+YfdJCPEZOqyc31Kva33eZJ8Fdf+SD7p59WaQkREck4yUy6yuorK7P0hJkdgidd1ycxnuqRYNIFsTsYlywp54Sdd/Z6VEOHVk9stVWPHvDQQ3DEEZ5sjRkDV14Jc+akOzIREZEtkpl0LQL2iNvfHdgq/TCzLsCjwHEhhMwvwJRAuYioSqcDGjbM78Dr2LF6YqvNGjSAyy/3Iqq77QYLF/oUQn/7WwX9uyIiIqmTzKTrM6CdmbU1s1xgJDA2/gQz2xN4ETgjhPC/JMZSfbahpavCwfRmGkBfnbp0gb/+FUaM8J/rq6/CRRfBW295V66IiEiaJC3pCiEUAZcDbwKzgWdDCDPN7GIzuzhy2s1Ac+AhM5tmZpOTFU+1qULSVe4djCtX+rijFSuqNzZxubk+j+W990KHDn43w/33+12O/6sZub2IiOx4spN58RDCOGBcqWOj4rbPB85PZgzVqrAQ8vO9RlSTJpWeHh1Iv2SJN7JsadCaMMHHHX3zDdx4Y/Lire3atvVK9h984PM2/u9/8KtfwWGHwemnJ5Q4i4iIVJekFkfd4UTHc+20U0Jdgg0aQNOmXjR9S6NWCN7VBRpAnwpmMGgQjBoFJ50E2dme9F54oZeZ0HgvERFJESVdVVGFrsWorboYv/wSvv/e71zs3r1645Py1asHZ58NDz4IBx7omfBzz8EFF8Arr3grpoiISBIp6aqKaEtXFZKurWp1RedZPPxwr64uqdWqlXfp3n233zWanw+PPgoXX+x101TfS0REkkTf+lWxHS1dS5bgX/ATJ3qX12GHVX98krj27eEPf4Cbb4Y994Tly+GBB/xORyVfIiKSBEq6qiLBKYDilajV9c47/mXeo4d3L0p6mUHv3p5sXXutZ8jxydcbb6jbUUREqo2SrqrYhpauErW69t0X+vf3oqiSObKy4OCDfbzXtdf6RNrLl/v+eef52K+CgnRHKSIiNVxSS0bscObO9fXuic/LvcsuXmHihx9gU7uO5P5a1eczVjT5Ougg+OgjeP55L+vx1FPw7LM+zdBxx6mVUkREtomSrkStWAFLl/pdcHvvnfDTsrNh1129pWvJEmjTJnkhSjWJJl8DB8K0afDii75+5RV47TVvrTz6aB+Ir9kEREQkQUq6EjVjhq87dvSmqypo02wt/d9/iFXvHUmbs7smIThJCjMv69G9O8yfDy+84C1g0aVNG0++Bg+GvLx0RysiIhlOY7oS9eWXvu7cucpP7b36LQ5Y+TE5416p5qAkZfbe28d7jR4NI0d61dsFC3zc11lnwcMPw7x56Y5SREQymFq6EhVt6apq0lVcTPv5r7MEmL77UXSq9sAkpZo3h9NOg1NP9fIfr70Gs2fDuHG+7L2312AbPBgaNkx3tCIikkGUdCXixx99QFYVx3MB8PnnNN64jFl1d2Gq9eDnyYlQUi0728d9HXywt3iNHw/vvefdkI884i1ifft68tWjB+TkpDlgERFJNyVdiYi2cnXoUOXxXIwbR14eTGl5JIuWZJWc+Fp2DG3a+FyO55wDn3ziCdgXX8TGfjVsCAMGeAKmwfciIrWWkq5EbOt4rmXLYPJkcurn8NUeh1NQAGvXQpMm1R+iZICcHL/jceBAv9v1/fe99WvBAp/+6c03vbDugQf60rGjpoISEalFlHQlYlvHc73xBoSAHXQQzRc1ZuVc76VU0lULtGgBJ53ky7ffevL1wQdedPW113xp0sTLT/Tr5/+2cnPTHbWIiCSRkq7KrFzpRbby8mCffar23KOP9rE/ffrQeqzXVl20CA44IDmhSobaay+/w/HMM+Hrr30A/scfe923N97wJS8PunWDPn18aqKmTdMdtYiIVDMlXZXZjvpctGjhd7pRajogqZ3MoF07X84807sdJ06ETz/1AfiffOIL+Dk9eniNsPbtPXkXEZEaTb/JKxMdz9WpisUeSo2Yj84cNHt2NcUlNZsZtG3ry2mn+RiwTz/1Zfp0bxadOxeeecbvmu3SxZOwzp39H5MG44uI1DhKuiqzLYPo582DP/0JTjxxy+TWPXr4d+esWd6oUdXKE7KDa9ECjjrKl40bvYX1889h6lTvk540yRfwrsfOnT0R69wZWrVSEiYiUgMo6arIto7nGjPGx+ssWrTlUP36MHSoT9/38stw9dXVH67sIPLyoFcvX8BnS5861ctQfPklrFoFH37oC/iA/P3395ImHTr4v1XVBRMRyThKuioSX58r0TE106bBZ595s9aIESUeGj4cxo7178qzz/bqASKV2nlnz9iHDvVu68WLPfmaPt3/ja5eXbIlLCfHm1Lbt/elXTufdV2tYSIiaaWkqyJVLRVRXAyPPurbp5yy1R1oLVt6hYCJE+E//4Ezzqi+UKWWMPMxXbvvDkce6UnY99/7YMFZs3z57juYM8eXqEaNYN99vRVsn318e5ddlIiJiKSQkq6KVHUQ/fjxXpOpZUtv1irD8cd70vX66z59n0ozyXYxg9128+XQQ/1YQYEPwv/f/3yZMwfWrPEuyqlTY89t0MAH8rdpE1v22su7N0VEpNop6SrPqlU+JqtuXW8VqMz69fDPf/r2OeeUm03tv7/39sydC++8s2WcvUj1adjQS0107+77Ifi4sHnzYsvXX3u35IwZsRZd8CRul11gjz1gzz192WMPX5SMiYhsFyVd5anqeK4VK/zLrlUrn2evHGbe2nXXXT6+64gj1MMjSWbmra/R/u2olSu9Vlh0+eYb/0Pj++99+eyzktdp1sy7NVu39qVVK1922UV1xEREEqDflOWJJl2Jdi3uuSf89a8+uWIlWdSBB3qFgO++86oAPXtuZ6wi26JZM1969IgdKyryO28XLiy5LFniSdrKlT6AP56ZD/Zv1coH7O+yiy8tW/p+48b6y0JEBCVdZVu40CcrBq+FlKjs7IRuSczO9hmCnnzSS0go6ZKMkZ0d606Mb7EtLvZ5Ixcvji1LlniCtnx5bClL3bqelJVeWrTwpXlzdV2KSK2gpKu0lSvh1lth3TpvkmrfvuLzv/gCPvoITj+9SjNZDxsGTz/t45q//dbHL4tkrKwsb7Xaddet/0ooKoJly7xLMpqERfeXLfP/S4sWlahbt5UGDTz5atYMdtrJt3fayfebNvXtpk294J1azUSkhlLSFW/jRrj9dh903L49/OpXFf+CnzgR/vxn2LTJvyRGjkz4pRo2hCFDYNw4eOopuO46bxAQqXGys2PjvMqybp2PeVy+3P9vRZcff/RlxQo/Z906b2WuSG6uJ19NmpS9NG7s5TEaN/alQQMlaSKSMZR0RW3eDHfe6Xd27bor3HRT+fUcQoDnnoN//MP3Dz98q0KoiTj+eJgwwafbu/JKz/Hatdv2tyCSkRo08KW85twQvMzFihWxcWOrVsW2V6/2/dWr/Q+jiroySzPzv3AaNYotDRv6Eo0rfjt+qV9fNwiISLWyEEK6Y6hUr169wuTJk5P3AiHAqFHe7NSokd9aWN5f7YWF8MAD8O67/gv9nHM8e9rGv6bnzfPGsu++8x6cU0/1uqr6XS9Sho0bPQFbu9aTsOh6zRrfji75+X5sw4bte73cXJ9don59X+rViy3x+3l5W6/z8rz5um7dkvtZWdXxkxCRDGZmU0IIvbY6nsyky8yGAfcBdYBHQwh/LPW4RR4/ClgPnB1C+Lz0dZKedL30Eowe7ZnOHXd4mYiybNwIN9/s1b/z8uCaa6Bv3+1++U2bvNHslVc8/2vXDi64wNdKvkS2Q1GRd1sWFHgilp/v2wUFsePRZf36WDdndLu4uPpjys6OJWPRJTd363V0ycnxYzk5JY9F96Pb2dmx7dL70e3sbCV9IilQXtKVtK90M6sDPAgcDiwCPjOzsSGEWXGnHQm0iyx9gYcj69RZvtxvIwT45S9LJlxr1/pA+c6dfRxJ3bpe+fuHHzz5atu2WkLIzYXzzoM+feAvf/HCqddd58f32Sc2hd5ee8V6R5SMiSQgOzs23quqQvC/iNav92XDhti69LJxoy/R7ej6p59ij/30ky9FRbFkMB3MYglYnTq+XaeO70ePVbaObmdllTwe3Y9foseyskpul3Usum0W249f4s8r65z4Y9Ht0sdKH48eK/2YxgJKEiStpcvM+gO3hhCOiOzfCBBC+EPcOY8A74UQ/h3ZnwMMDiEsjb9W0lu6Pv0UHnnEk6j4v4ZXr/ZfvFdc4eO2wLsX163bal7F6rJuHfzrXzB5st+RX5769T0Ba9Bg6z9q438vxf8Oi19g698rFf2OKesx/U4SqaIQyNpcSJ2in7YsWUU/UadoE1lFm/zYZl9nbS70Y5s3xdabC7cc37JdXBi5ZvyxIrI2F2KRtR/bTNbmQv+dJokxI5gRLNI6aFkEM8BKrss6hm15foljcdeN7m/1WKnnlnVO6WNlXqPU+4jslDgOxM4tcR4lzy99za3i2OqHV+7x+OeWeP2Er13G9UpdsyzR12l98bHsNbSSygTbKeUtXUBr4Lu4/UVs3YpV1jmtgaWkUp8+cM89MGlSyeM5Od7yFf9Xck5O0hIu8CTqggt8yc+PTZ03Z47ffb92bawnZP36pIUhIklhQG5kaVR9l60TWRKJIBRTJxRRp7iQOqGIrLDZ9yNLVnHsWFnr0ttZYTNZbKZO2OzPpRgLxZHjxWSFIrJC5BibyYo8Fr9fetsIZRwr9m2KsRD8GlvOK/k8w7ezQjGUWhveZVziWCiOfDphy/VdiCxJ6GauBRL9uzzVf7+vOawfJDnpKk8yk66yfo6l/8RK5JzUuOwyby6Kv8upceO09uM1auQlkUqXRQrBW8Ty8z3xKiz03orCwth2cXFsCSG2Lr2UluixVNEf5SLVLYtY4rdjiKZG1XvRyBWLPYHbso77BRo9DpR4LJrElTiv9Hbc4yWeHzle4rUi785CqeeW97z491DGL/sSzynvefHruMdsq8e2/pmVea3yHq/gvDLFPVbmdRK45i4D96v4eUmUzIxiEbBH3P7uQOkOs0TOSY2BA9Pystsiehd8w4bpjkREZEcVbRNIsAlRJAHJvI3lM6CdmbU1s1xgJDC21DljgTPN9QPWlB7PJSIiIrIjSFpLVwihyMwuB97E/1QYHUKYaWYXRx4fBYzDy0V8jZeMOCdZ8YiIiIikU1IHLIUQxuGJVfyxUXHbAbgsmTGIiIiIZAJVyRMRERFJASVdIiIiIimgpEtEREQkBZR0iYiIiKRAUie8ri5m9gPwbbrjEBEREUnAXiGEnUsfrBFJl4iIiEhNp+5FERERkRRQ0iUiIiKSAkq6ADMbZmZzzOxrM7sh3fHUVma2h5m9a2azzWymmV0ZOd7MzN4ys7mR9U7pjrU2MrM6ZjbVzF6L7OtzyQBm1tTMnjezryL/d/rrs0k/M/tl5PfYDDP7t5nl6XNJDzMbbWbLzWxG3LFyPwszuzGSD8wxsyOqM5Zan3SZWR3gQeBIoAPwMzPrkN6oaq0i4FchhAOAfsBlkc/iBuDtEEI74O3IvqTelcDsuH19LpnhPuCNEML+QFf8M9Jnk0Zm1hq4AugVQuiET4U3En0u6fIEMKzUsTI/i8h3zkigY+Q5D0XyhGpR65MuoA/wdQhhfghhE/A0cFyaY6qVQghLQwifR7bz8S+P1vjn8WTktCeB49MSYC1mZrsDRwOPxh3W55JmZtYYOBh4DCCEsCmEsBp9NpkgG6hnZtlAfWAJ+lzSIoTwAbCy1OHyPovjgKdDCD+FEL7B54buU12xKOnyL/Xv4vYXRY5JGplZG6A7MAnYJYSwFDwxA1qmMbTa6l7gOqA47pg+l/TbG/gBeDzS9fuomTVAn01ahRAWA3cDC4GlwJoQwnj0uWSS8j6LpOYESrrAyjimOhppZGYNgReAq0IIa9MdT21nZscAy0MIU9Idi2wlG+gBPBxC6A6sQ11WaRcZH3Qc0BZoBTQws9PTG5UkKKk5gZIuz2L3iNvfHW8GljQwsxw84RoTQngxcniZme0WeXw3YHm64qulBgDDzWwB3v1+qJn9E30umWARsCiEMCmy/zyehOmzSa/DgG9CCD+EEAqBF4ED0eeSScr7LJKaEyjpgs+AdmbW1sxy8QF0Y9McU61kZoaPTZkdQrgn7qGxwFmR7bOAV1IdW20WQrgxhLB7CKEN/v/jnRDC6ehzSbsQwvfAd2bWPnJoCDALfTbpthDoZ2b1I7/XhuBjVPW5ZI7yPouxwEgzq2tmbYF2wKfV9aKqSA+Y2VH4mJU6wOgQwh3pjah2MrODgA+BL4mNHfo1Pq7rWWBP/JfZySGE0oMiJQXMbDBwTQjhGDNrjj6XtDOzbvgNDrnAfOAc/A9qfTZpZGa3Aafid2VPBc4HGqLPJeXM7N/AYKAFsAy4BXiZcj4LM/sNcC7+2V0VQni92mJR0iUiIiKSfOpeFBEREUkBJV0iIiIiKaCkS0RERCQFlHSJiIiIpICSLhEREZEUUNIlImlnZs3NbFpk+d7MFke2C8zsoSS95lVmdmYZx9uY2YxqfJ1cM/sgMgefiNRi+iUgImkXQvgR6AZgZrcCBSGEu5P1epEE6Fy8entShRA2mdnbeM2mMcl+PRHJXGrpEpGMZWaDzey1yPatZvakmY03swVmdqKZ3WlmX5rZG5EppDCznmb2vplNMbM3o1N9lHIo8HkIoSjuOV+Y2X+By+Jev42ZfWhmn0eWAyPH/2Fmx8WdN8bMhptZRzP7NNJKN93M2kVOeRk4LRk/IxGpOZR0iUhNsg9wND6Z8D+Bd0MInYENwNGRxOsBYEQIoScwGihrhokBQPwE3o8DV4QQ+pc6bzlweAihB95SdX/k+KN45XfMrAk+r9444GLgvhBCN6AXPo8bwAyg9za+ZxHZQah7UURqktdDCIVm9iU+bdcbkeNfAm2A9kAn4C2f8o46wNIyrrMbPhdeNGlqGkJ4P/LYP4AjI9s5wF8jU+1sBvYDCCG8b2YPmllL4ETghRBCUaSl7DdmtjvwYghhbuT8zWa2ycwahRDyq+lnISI1jJIuEalJfgIIIRSbWWGIzWNWjP8+M2BmGS1WpW0A8iLbBpQ3H9ov8bnauuI9AxvjHvsH3mU4Eh8fRgjhX2Y2CW+Ne9PMzg8hvBM5v26p54tILaPuRRHZkcwBdjaz/gBmlmNmHcs4bzawL0AIYTWwJjLhOpQce9UEWBpCKAbOwFvOop4AropcY2bk9fYG5ocQ7gfGAl0ix5sDP4QQCrf/LYpITaWkS0R2GCGETcAI4E9m9gUwDR9vVdrrwMFx++cAD0a6BzfEHX8IOMvMPsG7FtfFvdYyPHl7PO78U4EZZjYN2B94KnL8EHzMl4jUYhZrnRcRqT3M7CXguui4q214fn18LFmPEMKaSs59EbgxhDBnW15LRHYMaukSkdrqBnxAfZWZ2WHAV8ADCSRcucDLSrhERC1dIiIiIimgli4RERGRFFDSJSIiIpICSrpEREREUkBJl4iIiEgKKOkSERERSQElXSIiIiIp8P+Tf5ihpusk5wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABLsklEQVR4nO3dd5xU5dn/8c+1u5SlN1GKCkREpQuIiigWiqgQFCPWqPGX2KJGE8tjLDExMbbHhpLEnpBHsRODiCWWiCIgoCIiRQQpoiJlqVvu3x/XDDO77OzOLjs7s7vf9+t1XufMOfecuXdm2bm4y3VbCAERERERSa2sdFdAREREpC5Q0CUiIiJSDRR0iYiIiFQDBV0iIiIi1UBBl4iIiEg1UNAlIiIiUg1y0l2BZLRp0yZ06tQp3dUQERERKdfs2bO/CyHsUfJ8jQi6OnXqxKxZs9JdDREREZFymdlXpZ1X96KIiIhINVDQJSIiIlINFHSJiIiIVAMFXSIiIiLVIGVBl5k9amZrzezTBNfNzO4zs8Vm9rGZHZyquoiIiIikWypbuh4HRpRx/Xiga2T7OfBQCusiIiIiklYpSxkRQnjHzDqVUWQ08GQIIQAfmFkLM2sXQlidqjqJiIhklBCgsND38Vv0WsOGYOaPt2wpXjZaJgSoXx8aN/ZzBQWwfn3xctGyAC1benmADRsgL6/49eg+JwfatYs9f8UKf/3SyrZuDc2b+/GmTfDNN8Wvxx/vtx9kRdp8li+HrVtLL9e8ObRv78fbt8OSJaWXA+jcOfbzr14N331X/HrUPvtAixa7nq8m6czT1QFYEff468g5BV0iIukWAuTn+3H0C7qgAL7/3veFhb7FH3fqFPviW7YMVq2KXSsshKIi3zdqBEceGXut557z1yoqim3R8gMHQo8eXu7zz2HatOLlolsI8JvfeKAA8MgjXofotfhyBx8Mp5/u5Vavhj/+MVYmGqhEj6++Grp29bITJ8ZePz5AKiqCDh3grrtiP9MZZ8C2bbveD+CCC2D0aD9+6y24++7En8Ozz0KDBn58882wYEHp5YYMgauuiv1MF1+c+J633Qbdu/vxpEkweXLp5Tp2hIfiOqGuuAJ27Ci9bPzPNGtW8j/T+PHw2Wellzv6aLjySj9euxauuSbxPeN/ppdfTvwzXXMNHHFE4vukWDqDLivlXClhaeotXgxffAEjR6bj1UVEIgoL/X/027d7ELJ9u5/fe+9Ymfff9y/z/Hz/AszPjx336wcHHujlPvsM/v1vD4qiZaLHBQVwxx1Qr56X/cMfvHw0gMrPjwUI8V98q1bBJZckrn/8F99rr5X9ZR4fdP3zn4m/zNu0iQVdq1f7fRMpKIgFXV98kfjLfK+9ij9n2bLE94x+BuAtMuvWlV5u8+ZdnxcNWsuSlQXZ2d6aFd2g+HFUo0bQpEnpZRo1ipXLzvaWp0T3in7uAM2aeWtWyTJmxd8n8FaiHTtKL9usWexxkybwox8Vv16yfPw9o61n8cyKt7I1aBD73S7tXvE/f7t2sd+Z+PcAYq1xaWKhtOa3qrq5dy++HELoUcq1vwBvhRD+L/J4ITCktO7F/v37h1RlpP/hBzj3XP88Hn7Y/32LiCQUgn/xbN3q25YtsePmzWH//b3chg3w0kseIG3b5tejAdX27XDRRbEvpieegBdf9ACgpA4dYMKE2ONTT/X7leb882HMGD9+5x0PrBJ5+unYF9X//A988smuZXJyPDj61a/88Zo1cP31fj4727f441/8Arp08bKvvw4zZ8aCivitZUtvCYqaONFbgqJls7Jixz17encUeND1ySex62ax8mbeKhYNuhYu9M8mei3+OfHdVjt2wNdfF78e3Zt58BJt6du82T+7+AApumVnF//iL61ctEutZDAltY6ZzQ4h9C95Pp0tXZOBS83sKWAgsCEd47latvSWxnfe8b+PP/tZdddARKpVYaGPYcnJiXWFffMNfPSRf6nGb1u2+P6WW3xsDcANN8C8eaXfe9AguPZaP962DZ55JnE9Nm6MHZt5wGXm/6Nv0MC/6OvX37W1YdAgL1u/vrdYxO+jLQEABxwAv/61/5z16vkWPc7JiXXvAFx3nQc90evxgUy8vfbybrtkHHecb8k488zkyrVrV7z1oyzduiVXrn79WKBYnsaNY78z5Yl/f0UiUhZ0mdn/AUOANmb2NXATUA8ghDABmAKMBBYDW4DzUlWX8pxyigddU6fCuHHJ/5sSkTQrKPDgZcMG3+/YAQMGxK7ff7+PBcnL8+t5eR5IAZx1Fpx2mh8vWwYPPpj4dTZvjgVd0YAoN3fXLf7Lu1kzOPtsf150a9Agto/vMjz9dG/5iXYzleWKK5J7b9q29S0ZTZsmV05EdksqZy+eXs71AJQxOKD6dOkCffrA3Lnwyiswdmy6ayRSh4XgQdS6db798IOPz4i2cLz2Gjz/vJfZtKn4c5s29fFBUfPmxWZRRZkVHxcD3tU0YoR3DzVu7Nejx40aFQ9Kfvvb5LqHcnPhJz9J7meOH2MjIrVWOrsXM8rJJ3vQNXmyT8DQ30CRFCgo8EBq7VoPrnr29PPbtvlYoWiQVXJg7RVXxIKu/HwfgwOxAbzNmvk08ObN/b7RoOjCC/24adPY1rjxrkHT3nuXPUA8nsbjiEglKeiK6NPH03x8+aXP4B06NN01EqmBogPBo4OZ330XPvgAvv3Wt++/j82K69TJu//Au9uWLYvNYGvaFFq18kGXrVoV7yYbNMhbvpo393LRwcml6b/LOFYRkbRR0BVh5q1dd93lKWOOO07/oRUpVWGhtzStWuWzyeK3b7/19AO9ennZZct8wGRUdDZYmzY+VTz+/G23eSDVokVstlhpmjdP+7RvEZHKUNAV54gj4MknYeVK+PBDn30sUmdt2OAZqJcv95arYcP8fF4eXHpp6c8x8+7BqMMP95QHbdvCHnt4wJWT4M9ONAGliEgtpaArTk6Oj+d6+GFv7VLQJXXK7NkwY0Ys0IpPabD33rGgq1kzD5CiuY6i0/jbt/fAKj6o+tGPiidJFBGpwxR0lTB8ODz1lK+0sGBB8bQ3IjVaCL4e2dKlvgzD0qU+uy6az+jzz336blRurncB7r23j7+KMit7iQ8RESmVgq4SGjb05YAmTfJZ6ddfn+4aieyG/Hz/X8QXX/hisSVTLPTpEwu6DjnEZ/btu68HWvHLiIiIyG5T0FWKE0/0gGvGDG8Y0NJAkvHy8731asECT7twwQV+PifHs/5GuwqbNvXuvi5dfH/QQbF7dO2qcVUiIimkoKsULVv6ChqffuqD6hV0ScbZssV/QefP90Br0aJYuoasLM+23rCht1Sdf74n+NxvP/9lVuuViEhaKOhKoFUr3ydaUF6kWuXleQLR6P8AZs3adTHjffbxlqsDDigeWB17bPXVU0REElLQlYCCLkmrggIf2D5nji+VsGiRJ4+77DK/3qOHB1jRfbduvnSNiIhkLAVdCUSDrviUQyIpN306vP46fPKJt2xF5eTEug/Bf0H//Ofqr5+IiFSagq4EokHX99+ntx5SixUV+Xisdu1iv3CLF8PMmX68zz7Qt6/PMOzRw8doiYhIjaWgKwG1dElK5OfDvHnw/vs+PXbDBp9pOHq0Xx8yxIOwgw/2lA0iIlJrKOhKQGO6pErNnOkrqc+cCVu3xs7vtZcv9hy1zz7F1yQUEZFaQ0FXAvHdiyFolr1UUGGhp26I/uK88kqs27BzZzjsMN/23Ve/XCIidYSCrgRyc30IzbZtnhKpceN010gyXgjw5Zfwxhvw9ttw9dXQq5dfO+EE6N4dBg3y1i0REalzFHSVoVUrWLXKuxgVdElC69d71+Ebb8CyZbHzc+fGgq5+/XwTEZE6S0FXGaJB1w8/+FJ0IrsYPx6mTfOZiODL7Bx1FBxzjGeAFxERiVDQVQaljZBdbNjgA9+j6RuaNvX9wIGe+X3AAM+pJSIiUoK+HcqgtBGy09Kl8NJL8M47vpbhSSf5+dGjfYX06C+LiIhIAgq6yqC0EXVcURF8+KEHW59+6ufMYPXqWJnmzdNTNxERqXEUdJVBQVcd9t578MQTsQArNxeGDfNWLc0+FBGRSlDQVYaWLX2voKsOKiz0gGvPPb0rcehQaNQo3bUSEZEaTEFXGaKrsCjoquU2bYJ//csXlD7nHD93xBE+YH7AAE9yKiIispsUdJUhvqVLWelroS1bfLzWiy/6cb168OMfQ7NmHmgNHJjuGoqISC2ioKsMykpfS23fDi+/DM89561cAH37wmmnecAlIiKSAgq6ymDmrV2rV3vaiKSDrhBg5Uro0EHNY5lm0ya45JJYHpDu3eGss6BHj/TWS0REaj0FXeVo3dqDrnXroGPHJJ/07rtwxx1w6KFwzTVKlplJmjaFrl096Dr7bOjTR4GxiIhUC40QLkel0kbMmeP7Dz6Ae+6JLREj1W/ZMrjhBvjii9i5K6+Eu+7yLkUFXCIiUk3UBFOOSqWNWLTI91lZ8PbbPgvu0kv1BV+dNm3yPFvTpnl3b716cOONfk2D80REJA1S2tJlZiPMbKGZLTaza0u53tzM/mVm88xsvpmdl8r6VEaF00Zs2wbLl0N2Ntx8M9Sv71/8f/ubf/lLaoUAr70Gv/gFvPqqB76jRsGvfpXumomISB2XspYuM8sGxgNDga+BmWY2OYTwWVyxS4DPQggnmdkewEIzmxhC2JGqelVUhVu6lizxL/599/Xuq+uvh9//3vNA5eb6OCJJjdWr4X//FxYs8Me9e8NFF/mEBhERkTRLZUvXIcDiEMLSSBD1FDC6RJkANDUzA5oA64CCFNapwiq86PXixb7v2tX3Bx/sg+mzsmDSJPj3v6u8jhLRoIGP4WrZEn7zGw92FXCJiEiGSGXQ1QFYEff468i5eA8ABwKrgE+Ay0MIGTXqPBp0ff99kk+IDtiOBl3gsxivuMKPJ070LkipGosWxSYqtGrl47YeegiOPFJj6EREJKOkMugq7Ruv5KCm4cBcoD3QB3jAzDIqO2X87MWkhmRFB9HHB10AQ4ZAt24+wPu116qyinXTtm0wYYLPRPzXv2Lne/TQQHkREclIqQy6vgb2jnvcEW/Rince8Hxwi4EvgQNSWKcKy831Xqvt22Hr1nIK5+X5uKL69WGffYpfM4NTTvHjF1/0df6kcj7+2BOc/vvfPmEhPz/dNRIRESlXKoOumUBXM+tsZvWBccDkEmWWA8cCmNmeQDdgaQrrVGFmFcjVFR3P1blz6QlRDz3UxxitXQv//W+V1rNOyM+Hhx/2yQlr10KXLj5wfuzYdNdMRESkXCkLukIIBcClwKvAAmBSCGG+mV1oZhdGiv0eONzMPgHeAK4JIXyXqjpVVtJpI6Jdi/vvX/r1+Nau555TComKWLcOrrrKF6jOzoYzz/QEp507p7tmIiIiSUlpctQQwhRgSolzE+KOVwHDUlmHqpB02ohE47niDRkC//iHz7L76CPo168KalgHNG/u/bx77eUzExMFtiIiIhlKywAlIem0EckEXfXqebJO8NYuSSwvDzZu9OPsbLj2Wrj3XgVcIiJSI5UbdJnZIDN7zcy+MLOlZvalmWXUuKtUSyptxA8/wHff+cj78nJDjRgBjRrBJ58UXxNQYpYu9Szy//u/sW7Y1q39fRMREamBkmnpegS4GzgCGAD0j+zrjKRauqKtXPvtV35+qMaNYeRIP1Zr167efNO7ENes8Td98+Z010hERGS3JTOma0MI4ZWU1ySDJTV7MZmuxXgnneSpI95/H1auVOZ08DQaf/sbTIkMAxw6FC680FNwiIiI1HDJtHT9x8zuMLPDzOzg6JbymmWQpLoXKxp0tWoFxxzjXWfPP79b9asVvv/ex2xNmeLpNn75S7jsMgVcIiJSayTT0jUwsu8fdy4Ax1R9dTJTdPbiDz94jLRL72EI5aeLKM3JJ3t2+jffhLPOir1QXfTvf8PChbDHHnDddckHryIiIjVEuUFXCOHo6qhIJmvUyLMVbNvmWel3Gcv97bc+y65pUw8aktWhAwwcCB984EHHWWdVab1rlDPO8OB1zBhollErQYmIiFSJZGYvNjezu81sVmS7y8yaV0flMkV8VvpSB9NHZyDuv3/FF1k++WTfT5lStxbCDgGmTvW1KMG7FH/6UwVcIiJSayUzputRYBPwk8i2EXgslZXKRGWO66roeK54BxwQWwj7jTcqXb8apaAAHngAxo+H225TZn4REakTkgm6fhRCuCmEsDSy/Q7okuqKZZoyW7qiay5WJugyi7V2vfgiFBVVpno1x7ZtcMstMG2aD5I/4YSKtw6KiIjUQMkEXVvN7IjoAzMbBGxNXZUyU8K0ESHEgq799qvczQ89FNq187xUH3xQ6TpmvE2bfLHqOXN8WZ/bboPDD093rURERKpFMkHXRcB4M1tmZl8BDwAXlvOcWidh0LVyJWzZ4tnSo4UqKisLfvxjP37++drZ3fbdd3DNNT7+rW1buOMOzVAUEZE6pdygK4QwN4TQG+gF9Awh9A0hzEt91TJLwkWvd2c8V7xjj/XZjwsXwoIFu3evTPTqq7BiBey7rwdc7dqlu0YiIiLVKmHKCDM7K4TwDzO7ssR5AEIId6e4bhmldWvf7xJ0ffml7yvbtRjVoIGPb3rqKW/tOuig3btfpjnjDF+0+oQTPLgUERGpY8pq6Woc2TctZWuS4nplnIQtXRs2+D4ale2OE06AevXgww+927KmW7oU8vL82AzGjVPAJSIidVbClq4Qwl8ih6+HEN6LvxYZTF+nJBzTFQ0qmlRBHNqihS8N9OqrPpPxkkt2/57p8sUXcMMNngD297/3Rb5FRETqsGQG0t+f5LlarWRW+p2qMuiC2ID6N94oZ4XtDBYNuLZs8UHzDRqku0YiIiJpV9aYrsOAw4E9SozragZkp7pimSaalX71ao+FOnSIXKjqoKtjR0+jMH26t3adf37V3Le6xAdcgwbBr3/t2eZFRETquLJauurjY7dyKD6eayMwNvVVyzyldjFWddAFcOqpvn/lldgyOTWBAi4REZGEyhrT9Tbwtpk9HkL4qhrrlLGaR1acjI6dB1ITdO23H/TrB7Nnw+TJcOaZVXfvVFmzBm68UQGXiIhIAsmM6dpiZneY2RQzezO6pbxmGSg6Fnzz5siJ/HzYscNTIVT1uKWf/MT3//qXBzKZrm1bGDwYDjtMAZeIiEgpkgm6JgKfA52B3wHLgJkprFPGigZdO2Og+Fauql4/8KCDoEcPj/CmTKnae6dCVhZcfDFcfbUCLhERkVIkE3S1DiE8AuSHEN4OIZwPHJriemWkXVq6UtG1GO+003z/4ouwfXtqXmN35OXBfffFxp2ZKeASERFJIJmgKz+yX21mJ5hZX6BjCuuUsRo18v0uQVeqclD17u3LC23Y4Lm7Msn27XDLLfDaa/DAA+mujYiISMZLJuj6g5k1B64Cfg08DPwqpbXKUNXe0mUWa+16/nkfQ5YJCgvhz3/2NSLbtIELLkh3jURERDJeuX1BIYSXI4cbgKNTW53MVuaYrlQ55BDo1AmWLfOEqSNGpO61khEC/PWvMHOmL+lzyy2wxx7prZOIiEgNUFZy1PuBkOh6COGylNQogyXsXkxl0GXmebvuuAOefRaOOy6946ZeftkH9ter5zm59t47fXURERGpQcr69p5VbbWoIaKx1c6gK3qQyqAL4Igj4J//9EWw33gDhg9P7eslsnAh/O1vfnz55XDggemph4iISA1UVnLUJ6qzIjVBWlq6wNMxnHGGt3Y99RQcfTTUr5/a1yxN166+NmRuLhx1VPW/voiISA1Wbj+Vmf2HUroZQwjHpKRGGSwtY7qiBg+GZ57xsV1Tp8KoUal/zZKysnwtyJCw11lEREQSSGZw0K/jjhsCpwAFydzczEYA9+ILZD8cQritlDJDgHuAesB3IYSMbULJzfX95s0ed1iqU0bEM4Ozz4bf/x4mTYJhw6Bhw9S/7o4d3qV45pnQokWsLiIiklEKCwtZt24d+Zky070OqFevHq1atSI7Ozup8snMXpxd4tR7ZvZ2ec8zs2xgPDAU+BqYaWaTQwifxZVpATwIjAghLDeztknVOk1ycjzO2bbNt9zqGtMVNWAAdOvmY6smT44tFZQqIcCDD/o4slWr4NZbU/t6IiJSaevWraNhw4a0adMG03+OUy6EQF5eHuvWrWOPJGfxl5uny8xaxW1tzGw4sFcS9z4EWBxCWBpC2AE8BYwuUeYM4PkQwvLID7A2qVqnUbFxXdXZvQix1i7wvF07B5elyKuvesBVvz78v/+X2tcSEZHdkp+fT5MmTRRwVRMzo0mTJhVqWUwmOepsfCbjbOB9PEnqz5J4XgdgRdzjryPn4u0PtDSzt8xstpmdk8R906rYuK7qDrrAs9T36uUB1/PPp+51Fi6Ev/zFjy+91HOFiYhIRlPAVb0q+n6XG3SFEDqHELpE9l1DCMNCCP9Npi6l3a7E4xygH3ACMBy4wcz2T+LeaVMsK306gi6ItXZNnuxLBFW1DRvgttugoABOPNFnS4qIiCTh1ltvpXv37vTq1Ys+ffowY8aMtNRj7ty5TJkyZefjyZMnc9ttPrT83HPP5dlnn93lOW+99RYnnnhiyuqUzOzFhsDFwBF40PRf4KEQwrZynvo1EJ85syOwqpQy34UQNgObzewdoDfwRXLVr347g64NBT6wKysrNsK+uhxwgI/vmjnTZzRW5TI8hYVw++3w3Xeeh+tnyTRqioiIwPvvv8/LL7/MRx99RIMGDfjuu+/YsWNHWuoyd+5cZs2axciRIwEYNWoUo9Ix8z9OMt2LTwLdgfuBB4ADgb8n8byZQFcz62xm9YFxwOQSZV4CBptZjpk1AgYCC5KtfDpEx3RtXxcZT9W4cXpm8511lu+nTIFvv626+5rBQQdBy5Zw7bXpzX4vIiI1yurVq2nTpg0NGjQAoE2bNrRv355OnTrx3XffATBr1iyGDBkCwNtvv02fPn3o06cPffv2ZdOmTQDcfvvt9OzZk969e3PttdcCsGTJEkaMGEG/fv0YPHgwn3/+OeCtVhdeeCGDBw9m//335+WXX2bHjh3ceOONPP300/Tp04enn36axx9/nEsvvXRnXV9//fVizylp8+bNnH/++QwYMIC+ffvy0ksv7fb7k8w3arcQQu+4x/8xs3nlPSmEUGBmlwKv4ikjHg0hzDezCyPXJ4QQFpjZVOBjoAhPK/FpxX+M6hNt6dr+fZq6FqO6dIEjj4R33oEnn4Srrqqa+2ZleXqIH/+4elJhiIhIlTvppNTc91//Kvv6sGHDuOWWW9h///057rjjOO200ziqjGTad955J+PHj2fQoEHk5eXRsGFDXnnlFV588UVmzJhBo0aNWLduHQA///nPmTBhAl27dmXGjBlcfPHFvPnmmwAsW7aMt99+myVLlnD00UezePFibrnlFmbNmsUDDzwAwOOPP17stUt7Trxbb72VY445hkcffZT169dzyCGHcNxxx9F4N74bkwm65pjZoSGEDwDMbCDwXjI3DyFMAaaUODehxOM7gDuSq276Rd/rHevSHHQB/PSn8P778NZb/i9s/90YDvfDDx5wNW/ujxVwiYhIBTVp0oTZs2fz7rvv8p///IfTTjtt5ziq0gwaNIgrr7ySM888k5NPPpmOHTvy+uuvc95559Eo0rXUqlUr8vLymD59OqeeeurO527fvn3n8U9+8hOysrLo2rUrXbp02dkKVpbynjNt2jQmT57MnXfeCcC2bdtYvnw5B+7GEnjJBF0DgXPMbHnk8T7AAjP7BAghhF6VfvUaKNq9mL++GhOjJtK2LYwe7QthP/ww/PnPlevqDAHuuguWL4ff/nb3gjcREUm78lqkUik7O5shQ4YwZMgQevbsyRNPPEFOTg5FRUWABy9R1157LSeccAJTpkzh0EMP5fXXXyeEsMuswKKiIlq0aMHcuXNLfc2S5ZOZVVjec0IIPPfcc3Tr1q3ceyUrmTFdI4DOwFGRrTMwEjgRSFEDZuaKxliF6zOgpQvg1FO9dWrBAngvqQbIXT3/PMybB0VFkGSCNxERkZIWLlzIokWLdj6eO3cu++67L506dWL2bM+1/txzz+28vmTJEnr27Mk111xD//79+fzzzxk2bBiPPvooWyJr7q1bt45mzZrRuXNnnnnmGcADonnzYiOdnnnmGYqKiliyZAlLly6lW7duNG3adOcYsdKU9px4w4cP5/777ydElr6bM2fObr47yaWM+ApogQdYJwEtQghfRbfdrkENE23pKthQzdnoE2nUKDao/vHHfdmeili0CP4emRdxxRU+gF5ERKQS8vLy+OlPf8pBBx1Er169+Oyzz7j55pu56aabuPzyyxk8eHCxJXPuueceevToQe/evcnNzeX4449nxIgRjBo1iv79+9OnT5+d3XsTJ07kkUceoXfv3nTv3r3YwPZu3bpx1FFHcfzxxzNhwgQaNmzI0UcfzWeffbZzIH1JpT0n3g033EB+fj69evWiR48e3HDDDbv9/lgoZ/FiM7sc+H9ANBPnGOCvIYT7d/vVk9S/f/8wa9as6nq5Ms2cCbfcAuc0nMSp2/4OY8f62Kp0KiyEyy+Hr76Cc8+FU05J7nlbt/rzVq/2BbSVdV5EpMZatWoV7du3T3c1qt25557LiSeeyNixY9Py+qW972Y2O4TQv2TZZLoXfwYMDCHcGEK4ETgUD8LqpGhLV0hXYtTSZGfH8mlNmpR8wtS//MUDrs6d0x84ioiI1HLJBF0GFMY9LqT0bPN1QnRMl2VS0AXQty/07+/rE02cWH75pUtj6yr+5je+FxERqWEef/zxtLVyVVQysxcfA2aY2Qt4sDUaeCSltcpgO4OuLXk+0i1Tgi6A88+Hjz6CqVNh5Miy10vs0gVuvdVTRey9d+JyIiIiUiWSGUh/N3AesA74HjgvhHBPiuuVsaLdi9lbMqylCzx4Ov54TwHx0EO+L0uvXlBG0joRERGpOsl0L0YZvvZine1aBA+6zCBnW57HNJkUdIEvht28OXz2GUQy9RYzaxZ8mtFJ/0VERGqlcoMuM7sReAJoCbQBHjOz36a6YpnKzNe3bliYR2ERmRd0NW4cG1T/6KMQn6Nkwwa45x647jqYPz8t1RMREamrkmnpOh0YEEK4OYRwEz578czUViuzNW4MuQV5FBaQeUEXwJAh0LMnbNzo6zJGTZjggVevXr6otYiISBVqksR34rvvvkv37t3p06cPW7durdD9X3zxRT777LOU1Ks6JBN0LQPiM4Y1AJakpDY1RJPcQuoXbqWgyGKDvDKJGVx0kaeSmDoVFi70bPX//S80bAiXXVa55YJERER208SJE/n1r3/N3Llzyc3NrdBzKxt0ZYpkgq7twHwze9zMHgM+BfLM7D4zuy+11ctMLep5Nvr8+o0zN3jZe28YM8aP//d/4cEH/fi882DPPdNXLxERqfXeeusthgwZwtixYznggAM488wzCSHw8MMPM2nSJG655RbOPNM7ze644w4GDBhAr169uOmmm3be48knn6RXr1707t2bs88+m+nTpzN58mR+85vf0KdPH5YsWcKSJUsYMWIE/fr1Y/DgwTsXrf7yyy857LDDGDBgQJVkkq8qyaSMeCGyRb2VmqrUHC1yfObijnqZ0VyZ0Lhx8M478O673id63HE+u1FERGq3k1K0NHIFVtKeM2cO8+fPp3379gwaNIj33nuPCy64gP/+9787M8hPmzaNRYsW8eGHHxJCYNSoUbzzzju0bt2aW2+9lffee482bdqwbt06WrVqxahRo4plnz/22GOZMGECXbt2ZcaMGVx88cW8+eabXH755Vx00UWcc845jB8/PjXvRSWUG3SFEJ6ojorUJNGga3umB10NGsCZZ3oX44YNfpypLXMiIlKrHHLIIXTs2BGAPn36sGzZMo444ohiZaZNm8a0adPo27cv4Gs3Llq0iHnz5jF27FjatGkDQKtWrXa5f15eHtOnT+fUU0/deW779u0AvPfeezsX1j777LO55pprqv4HrIRkWrqkhKbmQde27MZprkkSjjnGk6a+9RY8/7wPoFfgJSJSu1WgRSpVGjRosPM4OzubgoKCXcqEELjuuuv4xS9+Uez8fffdh5XzXVVUVESLFi2YO3duqdfLe346VCRPl0Q0zfIxXVuzM7ylK+ryy6F9e/jwQ3j77XTXRkREBIDhw4fz6KOPkhdZWm/lypWsXbuWY489lkmTJvH9998DsG7dOgCaNm3KpkgqpGbNmtG5c2eeeeYZwAO4efPmATBo0CCeeuopwAfuZ4qEQZeZ/T2yv7z6qlMzNMF/OTZbBgdda9f64tf5+dCmDVxwgZ//y1986R8REZE0GzZsGGeccQaHHXYYPXv2ZOzYsWzatInu3btz/fXXc9RRR9G7d2+uvPJKAMaNG8cdd9xB3759WbJkCRMnTuSRRx6hd+/edO/enZdeegmAe++9l/HjxzNgwAA2bNiQzh+xGAsJlooxs8+A44HJwBBKZKIPIaxLdeWi+vfvH2bNmlVdL1euOdc/Q/7DT7Jx6Ckc949z012d0v3hDzBjBowe7QFXCHDzzb4248CBcP316mYUEalFVq1aRfv27dNdjTqntPfdzGaHEPqXLFtW9+IEYCpwADC7xJY5EVAaNCr0lq48MrSla8YM33Jz4eST/ZwZ/PKXfm7GDJ/RKCIiItUmYdAVQrgvhHAg8GgIoUsIoXPc1qUa65hxciNB18aiDAy6tm3zLkTwdRjjZ3zEdzNOmADr11d79UREROqqcgfShxAuMrPeZnZpZOtVHRXLZA0zOeiaNAm+/Ra6dIGRI3e9PnQo9OnjazI++KB3O4qIiEjKJbPg9WXARKBtZJtoZr9MdcUyWcN8D7o2FGZY0PXNN/BCJI/txRf7MkAlmfkyQLm58P77njxVREREUi6ZlBEXAANDCDeGEG7EF7z+f6mtVmartyMSdBVkWJ6u11+HggJf8Lpbt8Tl9tgDfvYzP37wQZ/pKCIiIimVTNBlQGHc40JKzGSsa+pt96Dr++0Z1tJ1xhlw9dVwzjnllx02DA49FLZsgTvvhMLC8p8jIiIilZZM0PUYMMPMbjazm4EPgEdSWqsMl71tMxhsCk0oJcFu+pjB4MHekpVM2csu84H2CxZAJImciIhIZWVnZ9OnTx969OjBSSedxPoaOGHr5ptv5s4770zJvZMZSH83cB6wDvgBOC+EcE9KalMTFBVhmzeTk+3LAG3Zku4KAZ9+CqtXV/x5TZvCVVd5APb00zB/ftXXTURE6ozc3Fzmzp3Lp59+SqtWrTJmsekQAkVFRemuRnLLAIUQPoqkkLg3hDAn1ZXKaJt9CaCCho0JlhV9mD47dsDdd/vA+S++qPjze/WCU07xWYx33gmRpRhERER2x2GHHcbKlSsBWLJkCSNGjKBfv34MHjyYzz//HIBvvvmGMWPG0Lt3b3r37s306dMBuPvuu+nRowc9evTgnnvuAeCaa67hwQcf3Hn/m2++mbvuuguAO+64gwEDBtCrVy9uuukmAJYtW8aBBx7IxRdfzMEHH8yKFStKLQdw66230q1bN4477jgWLlyYsvdEC15XVCQoKWrog+jTHnS99JKniOjcGfbbr3L3OPNMmDcPFi2CBx6Aa65RtnoRkZrupJMSX7vkEhgxwo+nToWyWqQqsXh2YWEhb7zxBj+LTNr6+c9/zoQJE+jatSszZszg4osv5s033+Syyy7jqKOO4oUXXqCwsJC8vDxmz57NY489xowZMwghMHDgQI466ijGjRvHFVdcwcUXXwzApEmTmDp1KtOmTWPRokV8+OGHhBAYNWoU77zzDvvssw8LFy7kscce48EHH0xYrnHjxjz11FPMmTOHgoICDj74YPr161fhnzkZCroqKhp0NfJB9GntXvzhB8/LBZ70NKuS65fn5MBvfuNjvN57D157zQfai4iIVMDWrVvp06cPy5Yto1+/fgwdOpS8vDymT5/OqaeeurPc9u3bAXjzzTd58sknAR8P1rx5c/773/8yZswYGjf2xo2TTz6Zd999l8suu4y1a9eyatUqvv32W1q2bMk+++zDfffdx7Rp0+jbty8AeXl5LFq0iH322Yd9992XQw89FIBp06aVWm7Tpk2MGTOGRo0aATBq1KiUvT8Kuioq0rQVDbrS2tL1z396BvqBA72bcHe0a+ddlHff7dnqf/Qj30REpGZKtoVqxIhYq9duio7p2rBhAyeeeCLjx4/n3HPPpUWLFsydOzepeyRaExpg7NixPPvss6xZs4Zx48btLH/dddfxi1/8oljZZcuW7Qzcyip3zz33YNXUu5NMctSTzWyRmW0ws41mtsnMNiZzczMbYWYLzWyxmV1bRrkBZlZoZmMrUvm0iLR0WdM0B12rVsG0ad66dd55VXPPo4+G4cMhPx/++EfPWi8iIlJBzZs357777uPOO+8kNzeXzp0788wzzwAe/MybNw+AY489loceegjwLsmNGzdy5JFH8uKLL7JlyxY2b97MCy+8wODBgwEYN24cTz31FM8++yxjx3rIMHz4cB599FHyIt/PK1euZG0p+ScTlTvyyCN54YUX2Lp1K5s2beJflehOTVYy/VG3A6NCCM1DCM1CCE1DCM3Ke5KZZQPjgeOBg4DTzeygBOX+DLxasaqnSXSgeZM0j+n65z+hqAiOOw46dKi6+/7859C1qydMvfNOfw0REZEK6tu3L7179+app55i4sSJPPLII/Tu3Zvu3bvz0ksvAXDvvffyn//8h549e9KvXz/mz5/PwQcfzLnnnsshhxzCwIEDueCCC3Z2CXbv3p1NmzbRoUMH2rVrB8CwYcM444wzOOyww+jZsydjx45lUymNBonKHXzwwZx22mn06dOHU045ZWeAlwpWVjMegJm9F0IYVOEbmx0G3BxCGB55fB1ACOFPJcpdAeQDA4CXQwjPlrxX//79w6xZsypahdR49ll44gnebzeGP64+nzPOgNNPT0M9Vqzw3FrnnptcXq6K+PZbuPxyb+kaN84H2ouISEZbtWoV7du3T3c16pzS3nczmx1C6F+ybDItXbPM7GkzOz3S1XiymZ2cxPM6ACviHn8dORdfqQ7AGGBCEvfLDJGmrexmae5e3HtvH/xe1QEX+D2vvtpnMD71FMycWfWvISIiUsckE3Q1A7YAw4CTItuJSTyvtFFpJZvV7gGuCSHUnDVoIt2L9VqmKejassVzaqVanz5w9tl+fNddlUu+KiIiIjuVO3sxhFDZUdpfA3vHPe4IrCpRpj/wVGTWQBtgpJkVhBBerORrpl4k6MppkaaUEX/6E2zf7t1/VTmWqzRjx3rC1Q8+gFtvhdtvh8iUWhEREamYZGYvdjSzF8xsrZl9Y2bPmVnHJO49E+hqZp3NrD4wDpgcXyCE0DmE0CmE0Al4Frg4owMu2Bl01W+VhpauTz+FuXPhq6+gWblzGXafGVxxBXTs6K95++1aGFtEJIOVN05bqlZF3+9kF7yeDLTHx2T9K3KuvIoUAJfisxIXAJNCCPPN7EIzu7BCtcwkkaCrQetqbukKASIJ5BgzxtdNrA6NG8NNN3mQN3s2PPxw9byuiIhUSL169cjLy1PgVU1CCOTl5VGvXr2kn5NMctQ9QgjxQdbjkRmHyVRoCjClxLlSB82HEM5N5p5pVyLoqralCj/6CBYs8GArhdlyS7XXXvDb38L//A+8/DK0b1/28hIiIlLtWrVqxbp160pNlyCpUa9ePVq1apV0+WSCru/M7Czg/yKPTwe+r0TdaodIlJW7RzW2dIUA//iHH596anrGVR14oI8ju+su+NvfPIN9/11mw4qISJpkZ2ezRypmtEuVSaZ78XzgJ8AaYDUwNnKu7glh5yCuRnvEkqOmvCX3o49g8WJo2RJOOCHFL1aGIUM8b1cIPr5r2bL01UVERKSGKTfoCiEsDyGMCiHsEUJoG0L4cQjhq+qoXMaJpmvIzaV+bjb16kFBga+ak1Lr1nnr1pgxUL9+il+sHGecAUceCVu3wu9+54lURUREpFwJuxfN7OoQwu1mdj+75tcihHBZSmuWiXYuAeRdi40awYYN3tqV0lho6FA4/HDIzk7hiyTJzLsZv/sOPvsMbrgB/vxnaN483TUTERHJaGW1dC2I7GcBs0vZ6p5ofohI0BVdvLxaxnU1bgwNG1bDCyWhfn248Ubo1AlWrvQWr61b010rERGRjJYw6AohRJfZ3hJCeCJ+wzPU1z0lWrqiQVfKcnUtXQpTpsCOHSl6gd3QuLEHW3vtBYsWwR/+UA39rCIiIjVXMgPpr0vyXO0XDboi0VbKg66nn4aHHoJJk1L0ArupVSu45RZo0QI+/hjuvBOKitJdKxERkYyUMOgys+Mj47k6mNl9cdvjQEG11TCTlDKmC1IUdK1YAdOnQ716MHJkCl6girRr54FX48Ze3wceqJ61IUVERGqYslq6VuHjubZRfCzXZGB46quWgRJ0L6ZkTNczz/h+6FBvUcpknTv7GK/69eG117x1ToGXiIhIMQlnL4YQ5gHzzOwFYHMIoRDAzLKBBtVUv8xSXWO61qyBt9+GrCw45ZQqvnmKHHSQZ63//e/hlVf83EUX+WxHERERSWpM1zQgN+5xLvB6aqqT4aor6Hr+eR8bNWQItG1bxTdPob59PYVEvXoeeKnFS0REZKdkgq6GIYSdKwxGjtOwDk0GSDCmq0q7F3/4wbvozGDs2Cq8cTWJBl716yvwEhERiZNM0LXZzA6OPjCzfkDdTMq0YYPvI4lAU9LS1bQpXHYZnHwy7L13Fd64GvXt612N0cDrwQcVeImISJ2XzILXVwDPmNmqyON2wGkpq1Em+z6yznfr1kCKgq6cHDj66Cq8YZpEA68//AGmToVt2zyTfU4yv3IiIiK1TzJrL84EDgAuAi4GDgwh1L2M9CHEgq7IbMIqTxlR21qD+vaFm27yTPpvvQW33grbt6e7ViIiImmRTPciQDfgIKAvcLqZnZO6KmWoLVu8taZBg53RVpWmjAgBfv1rHwOVsmyradCrF/zxj9CsGcya5eO98vLKf56IiEgtU27QZWY3AfdHtqOB24FRKa5X5lm3zvetW+9Mg1Cl3Ytz58IXX8AHH3hgV5t07eqLYrdpAwsWwHXXxd5PERGROiKZlq6xwLHAmhDCeUBv6mKerhLjuaCKg66XXvL9CSfUznFPHTvCHXf4ftkyuPpqXyxbRESkjkgm6NoaQigCCsysGbAW6JLaamWgUoKu3Ej2si1bdnM41ooVMHu2z/Y7/vjduFGGa9PGW7y6doVvvoGrrvI1G0VEROqAZIKuWWbWAvgbvgzQR8CHqaxURiol6MrJ8THiRUW7OT588mTfH3OMp4yozZo18zFeAwd6E+GNN3peMhERkVquzKDLzAz4UwhhfQhhAjAU+Gmkm7FuKSXogtgMxkqPDd+4Ed58049Hj67kTWqYhg3hf/4HxoyBwkK47z547LHaN3tTREQkTplBVwghAC/GPV4WQqib/UEJgq7dnsE4cybs2AH9+vl4p7oiKwvOPx9++UvIzvalj/74R58hKiIiUgslM2L7AzMbEMnXVXeV09JV6cH0xx4LnTt7EFIXDRsGe+4Jf/qTz9y86ipvBevQId01ExERqVLJfNMfjQdeS8zsYzP7xMzqXmtXgqArsgzj7uXq6tIFOnXajRvUcL17w113eUvf8uXwq1/B+++nu1YiIiJVKmHQZWb7RA6Px2crHgOcBJwY2dcdBQWwfr3n52rRotil3WrpWr16d2tWe3ToAHffDYMGwdat3tX4xBM+5ktERKQWKKul60WAEMJXwN0hhK/it2qpXaZYv94HebdosUsOrUrn6lqxAn7+c8/QrgHkLjcXrrnGx3plZcGzz/oyQtGFxkVERGqwsoIuizuue3m54iXoWoRYw1e0SNJeecX3e+21M8O94O/FmDG+UHbz5jBvHlx6KcyZk+6aiYiI7Jaygq6Q4LjuKSPo2msv31eop3DbtliaiJEjd69utVXPnnDvvdCjh7c03ngjPPqod/WKiIjUQGUFXb3NbKOZbQJ6RY43mtkmM9tYXRXMCGUEXe3a+X7Nmgrc7913vT+yWzefuSila90abr0Vzj7buxtfeMEXBdfyQSIiUgMlDLpCCNkhhGYhhKYhhJzIcfRxs+qsZNrFL3ZdQqVauqZM8b1aucqXlQU/+QncfrunlliyBC6/HKZO1Vg4ERGpUVKaHMrMRpjZQjNbbGbXlnL9zEgaio/NbLqZ9U5lfSqtjJauli2hQQPYtCnJwfSLFsHixb7czxFHVG09a7Nu3by78aijfM2l8eN9EsLatemumYiISFJSFnSZWTYwHk85cRBwupkdVKLYl8BRIYRewO+Bv6aqPrslGnS1arXLJbNYa1dSXYwrV/oyOMce6wtcS/IaN/buxauv9jUc582DSy7xlkO1eomISIZLZUvXIcDiEMLSEMIO4Cmg2OKCIYTpIYQfIg8/ADJzHZwyWrqggl2MQ4bAk096l5lUzuDB8OCD3lK4bRs89BBcf73ynomISEZLZdDVAVgR9/jryLlEfga8ksL6VE4I5QZdFR5Mn5vr3YtSec2be06va6/1408+8dQSTz8N+fnprp2IiMguUhl0lZZ8qtQ+IDM7Gg+6rklhfSpnyxZvTWnQIJZ+voSkgq4Q4L33fHFrqTqDBnmr19FH+3v7j3/4Itpz56a7ZiIiIsWkMuj6Gtg77nFHYFXJQmbWC3gYGB1CqGiK0dSLn7mYIInpnnv6vszerfnz4bbb4MorNf6oqjVr5u/rrbf6+o0rV/og+zvuiH1+IiIiaZbKoGsm0NXMOptZfWAcMDm+QGR9x+eBs0MIX6SwLpVXTtciJNnSNW2a7wcOVAb6VOnVC+6/H845xycpvPMO/OIXMGmSWhhFRCTtUhZ0hRAKgEuBV4EFwKQQwnwzu9DMLowUuxFoDTxoZnPNbFaq6lNpSQRdbdt6HPXttwkSpm/e7F2LAEOHVn0dJSYnB0491QfXDxzoXcN//7sHX2+9pVZGERFJm5zyi1ReCGEKMKXEuQlxxxcAF6SyDrstiaArJwf22MNTRn3zDXQoOV3g3Xe9paVXr9hUR0mttm3ht7+Fjz+Ghx+GL7+Eu+6CyZPhZz+D7t3TXUMREaljUpoctVZIIuiCcroYo12LauWqfr16wT33eBb7li09Oe2118LNN3t2exERkWqioKs8FQy6dhlMv2yZf9E3bgyHH17l1ZMkZGXBccfBX/8K48Z5ctrZs+GKK+BPf4Lly9NdQxERqQMUdJUnyaArYVb6zZuhSxdfvkYZ6NOrYUM480zvbhwzxj+P6dM9v9ddd8GKFeXfQ0REpJJSOqarVtjd7sXu3X3NQCXszBzNm8P558Po0T6zcdo0H2T/9ttw2GE+EH+//dJdSxERqWXU0lWWggJYv96nJrZoUWbRcpcCqlevKmsmVaF1a7joIvjLX2DkSJ8RMX06/OpXcNNN8Omnmu0oIiJVRkFXWdav9y/dFi38C7kM8d2LO7+np02Dr79OZQ2lKrRt68FXtNuxYUP46CO47jq46ipvASs1F4iIiEjyFHSVJcmuRfAVgpo188wQP/yAJ+164AG47DJfSkgyX6tW3u346KNw+um+PuaiRXDnnZ5m4plnYNOmdNdSRERqKAVdZalA0AUlZjC+8YY3eR16aMI1GyVDNW0KZ5wBjz/ug+z33tuXE3rySTj3XB+j98UX6noUEZEK0UD6skSDrlatkiq+116wcCGsWR3o/tprfnLYsBRVTlKufn0YPtw/w7lz4aWXPNXE66/71qULHH+8z0zNzU13bUVEJMMp6CpL/GLXSYi2dG2d8bGnp2/bFnr3TlHlpNqYQd++vq1aBVOnetC1dCmMHw+PPAKDB3susAMP1NqaIiJSKgVdZalg92J0MH3T6a96x+1xx+kLuLZp397HfZ11ls90nDoV5s+H117zrV07OOYY39q2TXdtRUQkgyjoKkslxnQ1yt9Aq8Xvw0GmZX9qs/r1YcgQ377+2sfwvfmmD+ibONG3Hj28BWzQIM8NJiIidZqCrrJUoqUrJ+Qzp9lR9By0Hdq0SWHlJGN07Ag//SmcfTbMm+ddjx984Hm+Pv3U84D17g1HHukTK5o0SXeNRUQkDRR0JRJChYOuli1hW5M2PFP/Ck65JNA4hdWTDJSVFRv7tWULzJgB77wDc+bEtgcegJ49PfP9oYcmPUlDRERqPgVdiWzZAtu2QYMGSad8MPPWruXL4Zu1Rhc1aNRdjRrB0Uf7tmkTvP++B2CffOIzIefOhYcegm7dPPjq3x/23VdjAEVEajEFXYnEz1xM9otw0iQO2dGer4sOZfXqHLp0SV31pAZp2tTTTgwb5gHYhx96EDZnjucYWbgQnnjCu6P794cBA6BXL8+MLyIitYaCrkQq2LXI+vXwz38yZFkR0/Z8lNWrNZ5LStG0KRx7rG/btvlyQzNnwqxZ8N13Phty6lRfduqgg6BPH99+9CPvvhQRkRpLQVciFQ26Xn8dCgvZ1nMgG9e3Yc2a1FVNaomGDeHww30LARYv9uSrM2f68kMff+zbk096sNarl48H69ED9tlHXZEiIjWMgq5EKhJ0hQCvvgpA0bARMCmyFJBIssyga1ffxo3zbsh583zs15w5nmz3vfd8A1/os0cP3w48EDp3huzstP4IIiJSNgVdiVQk6Jo3D9asgT32oPnRB8Mk1NIlu6dpUzjiCN9C8F+ojz/2FBSffOK/n9On+wY+4aNbNzjgAA/C9t/fAzMREckYCroSqUjQ9corvh8+nLZ7ZWEG334LBQU+NEdkt5h55t127XwtyGgQFs0DtmCBN61GuyOj9trLg6/99/cWtC5dNDhfRCSNFBKUJgTPMg7lB10//OD5mLKyYOhQcnJgjz28N+ibb6BDh9RXV+qY+CAsuurBhg3w+efw2We+X7LEA7M1azxVRfR5HTp48LXffj44v3Nnb1UTEZGUU9BVmo8+gpUrPdtp585ll23QAM47z5u2Ioku99rLg641axR0STVp3hwGDvQNoLAQVqyAL76IbcuX+38mvv46FoiB/9526hTb9t3Xs+zXr5+GH0REpPZS0FVSCPD00348Zkz5XzyNGsHo0cVOtWvnvTwa1yVpk50dC6KGDfNz+fkeeC1ZEtu++spz0q1b5//ZiIpm+t17b58p2bGj/w+iQwe1jImIVJKCrpLmz/cxMk2awIgRicuFABs3lrqQcfv2vp81C0aO1Mx+yRD16nmX4o9+FDsXHR/21VewbBl8+aUHZqtW+Tix1as9mWu8Zs08+Grf3rdoV2e7dtBYi1+JiCSioKukSZN8P2oU5OYmLvfBB3D33d61OHJksUtHHeWNZbNm+Qz/I45IYX1Fdkf8+LBDD42dLyjwwGv5ct9WrvRuyVWr/D8bGzf6f05KatoU9txz161tWx/sqIH8IlKHKeiKt2iR50Rq2BBOPDFxuW3b4K9/9X0Iu1xu3dpjsfHjYcIE6N1bPTJSw+TkeLfiPvsUPx+Cd0WuXOkBWLRFbM0aP960ybfFi0u/b9OmHnztsYcve9Smjf+DiR63auXjJEVEaiEFXfGeecb3I0eWHSX985++ZMt++8Hxx5daZPjw2PrGf/sbXHllCuorUt3MPEhq3doz5McLwWfzfvPNrtt33/lkk2hQtnRp4tdo3NiDr5Yt/XVatPDjli1jxy1a+L9RLY0kIjWIgq6o5ct9EeJ69eDHP05c7quv4KWX/Mvn4osT/tE3g1/+Ei69FP7zH+9y7NcvNVUXyQhmHiy1auUJWksKwVNbfPutb99959v338eO162DzZt9W7Gi/Ndr1szHVbZo4cfxW/Pmvm/SxPdNm3ortgZZikiaKOiKirZyDR3q/5MuTQjw4INQVOStYV27lnnLdu3gzDPhsce8q3H8+LKHiYnUamYeHLVokfjfTgiQlxebUblunbeerV/v++i2YYO3mG3Y4Nvy5cnVISfHW9KaNNl1i55v3NhnJTdp4vv4rUEDBW0iUmkKusDHo7z9tk+zP+WUxOVmzfLkk82bwznnJHXr0aPh3Xd9iMuTT8IvflFFdRapjcy8RappU88XVpaCgljgtX69D+7fsCE20H/jxlh3ZvR4+/ZYoFYZWVn+P6fcXA/C4ve5ud6SFj1u0CD2OHrcsKEfR7foY62bKVInpDToMrMRwL1ANvBwCOG2Etctcn0ksAU4N4Tw0S43SrXnnvP/YQ8Z4rOsEunVy1vBzj8/6anx2dlw2WXwq1/Bv//tK7IcfrjGCovstpyc2FivZO3Y4S1pmzf7Pn6LdmtGt7w82LoVtmzxbfNmf370elXKzvY/CvXr77oveRzd6tWL7aNbycf16vn7lOhxTo5v2dm+qRVPJKUslDL7rkpubJYNfAEMBb4GZgKnhxA+iyszEvglHnQNBO4NIQwsea/+/fuHWbNmpaSe/PCDB1GFhfDQQ7EU8oWFnu9h8mT43e9iQdbatWUHZgn8/e+xbBT160PPnjBggG+VuJ2IpENBgQdi0WAsut+2zbfota1bY+e2b/fH27fHHpfcp+jvcIVFg7BoIBa/T3Q+GrDl5HhLYPRcVlbsWvyWlVX8Wsnj6OPoccmtrGvRzSzxYzPfokFmyWvxZUo+LnlNQaokYGazQwj9dzmfwqDrMODmEMLwyOPrAEIIf4or8xfgrRDC/0UeLwSGhBBWx98rpUFXCJ6J+957PXt3dMzIxo2xP4Q/+1nZg+uTUFDg4+/fe88zU8Rr2HDXYSQNGpT+NwZ2/fde2r97/S0QqSFCwIoKyS7YXmzLKthBduEOsgq2k12wg6yCHWQV5ftxYb6XKcyPbJFzOx/vullRAVmFBWQV5fs+ei5y3ooK0/1O1ExmBDMgsresnY8BQvRxiXO+9/I7j3dejxzH3XuX81iJ12fXciXqF1Xyccn7lVtml5+92MnE5Xe5f/Hn7Xou7n7xzy3tvmXeu7j2F45m3+EHlFlmdyUKulLZvdgBiJ9+9DXemlVemQ7AaqqLmU8rzM/3HF3x2reHsWPh6KN3+2Vycny42Cmn+PCT2bNh5kx/yeh/lL//frdfRkRqHMP/FOcAVZjRP/62yQiBnJBPVigkO3gwlk0h2UVx50rsLRTtfBx/zSgiO3IuKxSQFYqwUOSPKSQ7FMYeh0Ky8GMLRTufGz32MtHjorjzic6FYo8h7CxrIZR6PvrYrxcvAxQr71/5Xjbyxu0sJ7sn2baC3W1T2DB00G7eofJSGXSV9r6U/M1Mpkz1+OUvvXkpmgOoWTOPlFKgRQs49ljfQvCAKzqEJH7oSFGR93JG9yHENih+XBmZ0qMhIpnAgNq7yHl8aFRlbXpxf5SNuONQVPp54v+AexAY/4e8+PXIfeJfJ75MyftFy0V+ypL3Lu3+O8+VeI1SrxV7jbhr8deLBaLE6lGyXFn3KvV+pZRJUK+E1+PseWS3Us9Xh1QGXV8De8c97gisqkSZ6nH44Wl5WbPYZKc2bdJSBRERqZQSXXAi5UhlOueZQFcz62xm9YFxwOQSZSYD55g7FNhQcjyXiIiISG2QspauEEKBmV0KvIqnjHg0hDDfzC6MXJ8ATMFnLi7GU0acl6r6iIiIiKRTSvN0hRCm4IFV/LkJcccBuCSVdRARERHJBFotVkRERKQaKOgSERERqQYKukRERESqgYIuERERkWqQsmWAqpKZfQt8le56iIiIiCRh3xDCHiVP1oigS0RERKSmU/eiiIiISDVQ0CUiIiJSDRR0AWY2wswWmtliM7s23fWpq8xsbzP7j5ktMLP5ZnZ55HwrM3vNzBZF9i3TXde6yMyyzWyOmb0ceazPJQOYWQsze9bMPo/82zlMn036mdmvIn/HPjWz/zOzhvpc0sPMHjWztWb2ady5hJ+FmV0XiQcWmtnwqqxLnQ+6zCwbGA8cDxwEnG5mB6W3VnVWAXBVCOFA4FDgkshncS3wRgihK/BG5LFUv8uBBXGP9blkhnuBqSGEA4De+GekzyaNzKwDcBnQP4TQA18Kbxz6XNLlcWBEiXOlfhaR75xxQPfIcx6MxAlVos4HXcAhwOIQwtIQwg7gKWB0mutUJ4UQVocQPoocb8K/PDrgn8cTkWJPAD9OSwXrMDPrCJwAPBx3Wp9LmplZM+BI4BGAEMKOEMJ69Nlkghwg18xygEbAKvS5pEUI4R1gXYnTiT6L0cBTIYTtIYQv8bWhD6mquijo8i/1FXGPv46ckzQys05AX2AGsGcIYTV4YAa0TWPV6qp7gKuBorhz+lzSrwvwLfBYpOv3YTNrjD6btAohrATuBJYDq4ENIYRp6HPJJIk+i5TGBAq6wEo5pzwaaWRmTYDngCtCCBvTXZ+6zsxOBNaGEGanuy6yixzgYOChEEJfYDPqskq7yPig0UBnoD3Q2MzOSm+tJEkpjQkUdHkUu3fc4454M7CkgZnVwwOuiSGE5yOnvzGzdpHr7YC16apfHTUIGGVmy/Du92PM7B/oc8kEXwNfhxBmRB4/iwdh+mzS6zjgyxDCtyGEfOB54HD0uWSSRJ9FSmMCBV0wE+hqZp3NrD4+gG5ymutUJ5mZ4WNTFoQQ7o67NBn4aeT4p8BL1V23uiyEcF0IoWMIoRP+7+PNEMJZ6HNJuxDCGmCFmXWLnDoW+Ax9Num2HDjUzBpF/q4di49R1eeSORJ9FpOBcWbWwMw6A12BD6vqRZWRHjCzkfiYlWzg0RDCremtUd1kZkcA7wKfEBs79D/4uK5JwD74H7NTQwglB0VKNTCzIcCvQwgnmllr9LmknZn1wSc41AeWAufh/6HWZ5NGZvY74DR8VvYc4AKgCfpcqp2Z/R8wBGgDfAPcBLxIgs/CzK4Hzsc/uytCCK9UWV0UdImIiIiknroXRURERKqBgi4RERGRaqCgS0RERKQaKOgSERERqQYKukRERESqgYIuEUk7M2ttZnMj2xozWxk5zjOzB1P0mleY2TmlnO9kZp9W4evUN7N3ImvwiUgdpj8CIpJ2IYTvgT4AZnYzkBdCuDNVrxcJgM7Hs7enVAhhh5m9gedsmpjq1xORzKWWLhHJWGY2xMxejhzfbGZPmNk0M1tmZieb2e1m9omZTY0sIYWZ9TOzt81stpm9Gl3qo4RjgI9CCAVxz5lnZu8Dl8S9ficze9fMPopsh0fO/93MRseVm2hmo8ysu5l9GGml+9jMukaKvAicmYr3SERqDgVdIlKT/Ag4AV9M+B/Af0IIPYGtwAmRwOt+YGwIoR/wKFDaChODgPgFvB8DLgshHFai3FpgaAjhYLyl6r7I+YfxzO+YWXN8Xb0pwIXAvSGEPkB/fB03gE+BAZX8mUWkllD3oojUJK+EEPLN7BN82a6pkfOfAJ2AbkAP4DVf8o5sYHUp92mHr4UXDZpahBDejlz7O3B85Lge8EBkqZ1CYH+AEMLbZjbezNoCJwPPhRAKIi1l15tZR+D5EMKiSPlCM9thZk1DCJuq6L0QkRpGQZeI1CTbAUIIRWaWH2LrmBXhf88MmF9Ki1VJW4GGkWMDEq2H9it8rbbeeM/Atrhrf8e7DMfh48MIIfzTzGbgrXGvmtkFIYQ3I+UblHi+iNQx6l4UkdpkIbCHmR0GYGb1zKx7KeUWAPsBhBDWAxsiC65D8bFXzYHVIYQi4Gy85SzqceCKyD3mR16vC7A0hHAfMBnoFTnfGvg2hJC/+z+iiNRUCrpEpNYIIewAxgJ/NrN5wFx8vFVJrwBHxj0+Dxgf6R7cGnf+QeCnZvYB3rW4Oe61vsGDt8fiyp8GfGpmc4EDgCcj54/Gx3yJSB1msdZ5EZG6w8xeAK6OjruqxPMb4WPJDg4hbCin7PPAdSGEhZV5LRGpHdTSJSJ11bX4gPoKM7PjgM+B+5MIuOoDLyrgEhG1dImIiIhUA7V0iYiIiFQDBV0iIiIi1UBBl4iIiEg1UNAlIiIiUg0UdImIiIhUAwVdIiIiItXg/wNBUpKJjZOAyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABLUElEQVR4nO3deXxU5fXH8c8hCUsgbAIKogIKiuyrWsQFVBYRN7SorXurUqvWatX6c6nVLmotYrG0VVxaWhQVAetCVdwVAQXEBRFEEVBEEAh7kuf3x5lhJiHLJGQyk+T7fr3u6y5z587JDGROnue557EQAiIiIiKSXHVSHYCIiIhIbaCkS0RERKQKKOkSERERqQJKukRERESqgJIuERERkSqgpEtERESkCmSmOoBEtGjRIrRr1y7VYYiIiIiUad68eWtDCC2LHq8WSVe7du2YO3duqsMQERERKZOZfVHccXUvioiIiFQBJV0iIiIiVUBJl4iIiEgVUNIlIiIiUgWSlnSZ2UQzW2Nmi0p43MxsnJl9ZmYLzax3smIRERERSbVktnQ9DAwt5fFhQMfI8lPgr0mMRURERCSlklYyIoTwmpm1K+WUk4FHQwgBeMfMmppZ6xDC6mTFJCIikhIhxNZmvgDk5UFBgS/Rx6NLZibUq+fH8/MhN7fw9aILQOPGfj74eVu2FH9uVha0aBF7bNWq3a8V1bQp5OTErrl2beHrxWvfPvYzffUVbN1a/M+fkwOtW/v29u3w+eeFH493wAGQne3bq1fDunXFn1evHnTsGNtftKj4GAH2399/rhRJZZ2ufYEVcftfRY4p6RIRSYUQ/Ms9Ly+2btgw9mW+bh1s3Bh7PH6pWxcOPTR2rdde2/2c/HxPLrp1gw4d/Lxly+Ctt2KJR3SJnvvTn0JGhp87ebJ/oRcUeKzx5/XoASef7Od98w2MGxe7VvTc6PYVV3iSAPD44zBrVuyc+HWbNnD77bGf6YILYMeOwklK9PwLLoDhw/28WbPg3ntLTmaefNLfL4Bf/xo+/rj4z+PYY+Hqq337q6/g8stL/uz++MfY+//vf8OMGcWft99+cP/9sf3LL4edO4s/9yc/gZEjfXv2bBg7tuTXj/+Zxo1L7Gf65hu49tqSr3nnndC5s2/PmJH4z3TzzSX/TNddB0ceWfJrJlkqky4r5lgxaWnyLVsGixfDsGGpeHURqfV27vS/+nfsiK2j2/vsE2uZWLUKFi6MPb5zpy/R7fgE5eGHvRUhL88fi1/37+9JAsCKFfCLX8SSrKLiv/imTIFnnin+Zyj6xTd2bOlf5tGka/lyeOyxkt+biy6K/UzvvVfyl3mjRrHt7dv9fSpJfCvM9997QlOc+vUL72/YUPLPFP/eRZPX4liRr76srFiyEt8CZhZr5QJ/D3JyCj8e/5zoewT+XrRoUfy58a1c4K1OeXnFnxv/njZq5C1P8fEXjSGqbdvC71P8Y3vvHduuWxcOPrj46wE0aFD4edGksuh72KpV4f0uXWKfR9FrNmlCKlkorvmtsi7u3YvPhBC6FvPY34BXQgj/iewvBo4prnuxb9++IVkV6devh/PP98/jgQd2//coIrJLfr5/SW/dWnjZts3X/ftD8+Z+7htvwJw5/tj27bH19u2w117w29/Grnv66Z44Fefii2MtOK+8An/6U8nxTZkSSxRuuMG7WYpz1FGxFoaVK+HSS2OPZWT4kpnp65tuiiVdTzzhMRQ9JyPDv/iuuCJ2nbFjvQWoTh0/r06d2LmHHw5dI18Ly5fDO+/449Fzott16sCQIbGWtnnzvKUteo5Z7LwWLeDAA/28bdvg008LPx7dNvOkIPqFvm4dbN4ceyz+vMzM2OcJ/tlHz4lf6tTx5CkaZ3x3YfRasHuyIDWWmc0LIfQtejyVLV3TgcvNbDJwGLAhFeO5mjXzlsbXXoNp0/yPKhGpgfLy/Mt10yYfn9Kpk38hArz8MnzxhT++ebOPh4mue/b0FiSAr78unKAU1bp17Ev6s8/8usUpmmA1bOhf2vXq+V//dev6dlaW/5KK2ndfGDrUj0eXunVj2/GtHeee6z9D/LmZmb7Et2C0bu3JWjSBKi0xGDXKl0RcdVVi57Vr50si+vRJ7Lz69aF798TObd68cGJVmkTHAkUTPZEikpZ0mdl/gGOAFmb2FXALkAUQQpgAPAsMBz4DtgAXJCuWspx2middzz8Po0f77z8RSWN5ed7isXGjd/ls2ODbBx4Ya5VZuBAefNATrE2bdh/Y+69/xboaXnvNW1GKs88+se3sbE+CGjQofon/Uh4wwFtU6tf3BKp+/dh2fLcJwKOPJvZzd+xYeMBwaaLvQ1nq1Nm9G01EkiKZdy+eVcbjAfhZsl6/PA480MdgLlgAzz2X+B9yIlKJQvDEaf167/JZt863d+yAc86JnTdmjI9DKs4ZZ8SSjYICH7AZZeZjYho18iV+DM6gQd7d1bBhbMnO9qVx49h5zZolJ0ESkVohld2LaeX00z3pmj7dh09kZaU6IpEapKDAx8N8+21s6dUr1q303//6oMriBnJnZsLZZ8e6vaJdYI0be0tVdGncuPCg3E6d4J57PNHKyfEEqqSus6OOqsyfVkSkWEq6Inr29DuIP//cx4kef3yqIxKpRkKA777zrrxoIpWf74Owv/nGHyt6N9cll8TOzc6OlSeIjrFp3txblpo186QtOl7pj3/07rCyxsxkZ6ulSUTSipKuCDMf2/WnP3m5keOO040mIsX64gv44AMvX/D111608Jtv/Bbxvff2FivwJOnLL328FXhrVMuWvrRoUXjw9IABvkRvnS9NtFiiiEg1o6QrzpFHwiOP+B3U774Lhx2W6ohEUmD7dv9PsGJFbBk50mvfgP/nKG5cU5MmnkxFK26Dt3Q1auSJVmkJVSLJlohINaekK05mJpxyiv+h/uSTSrqkhotPjvLy4A9/8JpJa9bsXkH70ENjSVfnzl47qU0bv7OvdWtfF70jDwqPsRIRqeWUdBUxZAj85z9e9PjjjxO/61okrW3b5gMWly2DpUt9vWNHrIJ4ZqbXlfruO+8WbNPGK4y3bevr+OldunaNFbYUEZGEKekqon59OPFEn47rqafgxhtTHZHIHnjnHfjnP72LsGjrlZknY9EaTb/8pXcRtmkTq6wtIiKVRr9ZizFihCdcs2f7pOqaGkjS2nffebPsJ5/4cuyx/pcDxAazZ2R4i9WBB/qcdx06+O268UUxu3VLTfwiIrWEkq5iNGsGhxzi05atXKmkS9LQrFleQf3DD/0vg3h77x1Lurp0gbvv9gRLg9VFRFJKSVcJolNxrVuX2jiklgvBSzMsWOB1TKKJ06uvxqatyc72vxIOOcQHIcbXpsrO1mB2EZE0oaSrBEq6JGU2bID582NLtCVr//1jA9iHDYN+/bwl64ADVFRORKQaUNJVgmjStX59auOQWmTTJrjlFliypPDxxo19ctD4kgyqZyIiUu0o6SpBNOn67rvUxiE11LZt8N57XsYhOplzo0Y+P2Hdut6C1auXJ1vt26slS0SkBlDSVQJ1L0ql27jRq7m//bZ3G+7Y4cdPPBGaNvXE6tZbfSB8vXopDFRERJJBSVcJ1L0olWblSpgwARYu9Imbow45BA4/PDaRM/i4LRERqZGUdJUgvnsxfrYUkTJt2+a1sTp18v3GjX2CaDPo3RuOOAL694/9IxMRkVpBSVcJGjTwupHbtsGWLdCwYaojkrRWUOCJ1UsvwVtv+T+eRx7xVqycHJ/4uVMn3xYRkVpJSVcpmjf3Eknr1inpkhKsXg0vvggvv1y4SGmHDl76Idqa1adPauITEZG0oaSrFNGka/16n0FFpJClS+Gqq2L7e+8Ngwb5NDytW6csLBERSU9KukqhshFSyJo13oU4eLDvR+cv7NDBq8V36aLBfyIiUiIlXaVQ2QghBJ9Mevp0H6sFXjurRQtPsMaOhTp1UhqiiIhUD0q6SqGyEbVYXh68/ronW5995scyMmDgQMjPj52nhEtERBKkpKsU6l6spbZvhzFjvDsRvOTDsGEwfLjKPIiISIUp6SqFWrpqkc2bITvbuwzr1fPCpfXqwamnwtFH+9Q8IiIie0BJVyk0pqsW2LQJnnoKnnkGrr8+VtphzJhYEiYiIlIJlHSVIj7pUlX6GmbzZpg2DZ5+GrZu9WMLF8aSLhVmExGRSqakqxSqSl8DbdsGM2Z461Zurh/r3RvOOSc2bY+IiEgSKOkqQ4Wr0qtpLD1NnQr//rdvd+0KP/4xHHpoamMSEZFaQfe7l6FCg+k/+shbTqZOTUpMUk4bNsS2Tz4Z+vWD22+H3/1OCZeIiFQZtXSVoUJlI954wwdoT5wIWVkwYkRSYpMyfPGFfwZffAF/+5vfjZidDTffnOrIRESkFlLSVYYKtXR9+mls+29/8y/6QYMqNS4pxZYt3oU4YwYUFHi/8OefexkIERGRFElq96KZDTWzxWb2mZldX8zjTcxshpktMLMPzeyCZMZTEeUuG5GX51/wAKNH+3rsWHj77coOTYoKwavIX3aZ35kYApx4Ivz970q4REQk5ZLW0mVmGcB44HjgK2COmU0PIXwUd9rPgI9CCCeZWUtgsZlNCiHsSFZc5VXupOvLL2HHDmjTxsd1AUyeDHfeCbfcAj17JiNMAbjvPvjf/3z74IO91laHDqmNSUREJCKZLV39gc9CCMsiSdRk4OQi5wQgx8wMaASsA/KSGFO5NWvm64STrmjXYseOvj77bDjpJG8Bu/12WLy40mOUiMMOg5wcuPxyuOsuJVwiIpJWkpl07QusiNv/KnIs3l+AzsAq4APgyhBCQRJjKre99vJ1wknXkiW+jiZdZvCTn8DgwT6n3/jx3u0le+7zz+G552L7hx0G//gHDBmich0iIpJ2kpl0FfetVzTbGALMB9oAPYG/mFnjJMZUbkWr0pfps898HU26wBOAn/3Mm80+/xzmz6/sMGuXvDwfKP+LX8Bf/xp7z0EVbEVEJG0lM+n6Ctgvbr8t3qIV7wLgqeA+Az4H0mrEc7Qq/fbtflNcqXbsgOXLPckq2rWVlQUjR/r2k08mI9TaYflyT7b+8x/Iz4dhw2Dfog2oIiIi6SeZSdccoKOZtTezusBoYHqRc74EBgOY2d7AwcCyJMZUIQmXjVi2zEsUHHCAZ2pFDRvmWdyCBYVbZ6RsIXgJiKuv9sRrn328uOlll/l7KiIikuaSlnSFEPKAy4EXgI+Bx0MIH5rZpWZ2aeS03wI/MLMPgJeA60IIa5MVU0UlfAdj0fFcRTVsCEOH+rZau8rn3//20g87d/qYrfvug27dUh2ViIhIwpJaHDWE8CzwbJFjE+K2VwEnJDOGypBwVfqyki7wLsYZM+DNN2H1amjdulJirPGGDoXXXoPzzoMf/CDV0YiIiJSb5l5MQLRsRJndi0XLRRSnRQs4+mjvLnv66coIr2bKz/eaW9G7F/baywfNK+ESEZFqqsyky8wGmNn/zOxTM1tmZp+bWdqNu0qmhMpGbN4MK1dCZia0a1f6BU87zdcvvlh4MmZxGzb4/Ijjxnlh2ag6+htBRESqr0S+xR4E7gGOBPoBfSPrWiOhMV1Ll/q6QwdPvEqz//7Qr5/f7fjMM5USY43xySdw5ZWwcCE0bapxWyIiUmMkknRtCCE8F0JYE0L4LrokPbI0klBV+kS6FuOdfrqv//tf2LatwrHVGCH4e3HDDT54rnNnuPde6No11ZGJiIhUikQG0s8ys7uAp4Dt0YMhhPeSFlWaSah7MZFB9PEOPdTnB1y82McunXTSHsVYreXleaX+F1/0/ZNPhvPPL7vFUEREpBpJ5FvtsMi6b9yxAAyq/HDSU3xLVwglzDBT3qTLDEaNgjvu8AH1w4dDRkZlhFv9hACrVkHdut61eNRRqY5IRESk0pWZdIUQjq2KQNJZtCr9tm1elX63mWY2bIBvv/WT2rZN/ML9+0ObNp5wvP02HHlkpcZdbWRlwY03+nt44IGpjkZERCQpErl7sYmZ3WNmcyPLn8ysSVUEly7MyqhKHx3PddBB5bvDrk4d70oDeOqp2jUR9sKF8Kc/eQV/gMaNlXCJiEiNlkiGMBHYBJwZWTYCDyUzqHRU6h2M5e1ajDd4MOTk+DU++qjC8VUrL77oJSFeeQVeeinV0YiIiFSJRJKuA0MIt4QQlkWW3wAdynxWDZO0pKtePTjxRN+eOrVCsVUrTz7pdyXm53u9suOOS3VEIiIiVSKRpGurme0abGRmA4CtyQspPZVYNiKEPUu6wJOurCx4910vsFoThQATJ8LDD3t/7SWXwAUXlHBXgoiISM2TSNJ1GTDezJab2RfAX4BLy3hOjVNi2Yhvv/WB9Dk5sPfeFbt406Zw7LGemEybtidhpqf8fG/dmjrV79C85hoYMSLVUYmIiFSpMpOuEML8EEIPoDvQLYTQK4SwIPmhpZcSW7riW7n2pNXmlFN8/dJLNW9qoIICT07r1YObblJJCBERqZVKLBlhZj8KIfzLzK4uchyAEMI9SY4trZQ4pis6/c9BB+3ZC+y3H/TtC3PnwnPPwejRe3a9dJKVBf/3f951uqfvk4iISDVVWktXtBpVTjFLoyTHlXZK7F6M1pCoaNdivFNP9fUzz/i8jNXZtm0+WXVenu83aKCES0REarUSW7pCCH+LbL4YQngz/rHIYPpapcSq9Lm5vm5UCXlot24+YfayZTBrFgwZsufXTIVt2+A3v4FFi/wNGzMm1RGJiIikXCID6e9L8FiNFq1Kv307bI2/d7Myky6zWGvX1KnVs1hqfMLVvHlsrJqIiEgtV9qYriOAHwAti4zragzUukkCzby1a/Vqb7zJzo48UJlJF/hUQI8+6uOf3n4bfvCDyrluVSiacP3+9z7NkYiIiJTa0lUXH7uVSeHxXBuBUckPLf0UO66rspOuzEwvGgrw+OPVp7Vrxw4lXCIiIqUobUzXq8CrZvZwCOGLKowpbTWJzDi5cWPcwWjStdss2HvghBPgscf8zsj33oM+fSrv2sny2GNKuEREREpRYtIVZ4uZ3QV0AepHD4YQBiUtqjQV7VLcvDlyIC/Pu9TM4vobK0Hduj4W6uGHvbWrOiRdZ54Ja9bAGWco4RIRESlGIgPpJwGfAO2B3wDLgTlJjCltRXsQdyVd0Y1GjSp/Opthw7z17KOP4MMPK/falSWEWPdnvXrwy1/C/vunNiYREZE0lUjStVcI4UFgZwjh1RDChcDhSY4rLe3W0lXZ47mKvthJJ/n2449X/vUrw5Qp8Ic/VP+aYiIiIlUgkaRrZ2S92sxONLNeQNskxpS2osO2tmyJHEhm0gUwcqTXqXjvvdh0Q+ni+efhn//0Oyw//jjV0YiIiKS9RJKu282sCfBL4BrgAeAXSY0qTZXY0lWZg+jj5eR4NyPAE08k5zUqYs4cuP9+3x4zBnr0SG08IiIi1UAiE14/E0LYEEJYFEI4NoTQJ4QwvSqCSzeljulKllNO8bkL33oLVqxI3usk6vPP4c47fSzX2WfD0KGpjkhERKRaKK046n1AiUWiQghXJCWiNBZt6aqy7kXwEgzHHw/PPutjqK6+uuznJMu6dXDbbX7H5jHH1KxJuUVERJKstJIRc6ssimoi2otYJQPp451+uo+hevVVT3RSVZLhscdg7Vro3Bl+/vPKv2NTRESkBiutOOojVRlIdVBi0pWsMV1RrVrB4MHwv//Bv/8N11yT3NcryUUXeWmI00/3WmIiIiKSsDKLo5rZLIrpZlRxVKqupQu8hWvWLHjtNS9AesAByX/NqBC8VatuXbjwwqp7XRERkRokkYr08c0q9YHTgbxELm5mQ4F78QmyHwgh/KGYc44BxgJZwNoQwtGJXDsV4sd0hQBWlUlXq1Y+aP2ZZ2DSJPj1r5P/muBJ3quvwrXXevkKERFJS/n5+axbt46dO3eWfbJUiqysLJo3b05GRkZC55eZdIUQ5hU59KaZvVrW88wsAxgPHA98Bcwxs+khhI/izmkK3A8MDSF8aWatEoo6RTIyPO/Ytg22boXsqky6wFu4Zs702lhLlkDHjsl9vS++gHHjYPt2eOcdHzwvIiJpad26ddSvX58WLVpgGnObdCEEcnNzWbduHS1btkzoOWWWjDCz5nFLCzMbAuyTwLX7A5+FEJaFEHYAk4GTi5xzNvBUCOHLyA+wJqGoU6hQgdSqTrqaN4cRI3x70qTkvtbmzfC733nCNWgQHJ22DZAiIgLs3LmTRo0aKeGqImZGo0aNytWymEhx1Hn4nYzzgLfxIqkXJfC8fYH4wlJfRY7F6wQ0M7NXzGyemZ2bwHVTqtC4rqpOugBGjYIGDWDePJ+XMRlCgD//GVatgvbtvQCq/hOLiKQ9JVxVq7zvdyLFUduHEDpE1h1DCCeEEN5IJJbiLldkPxPoA5wIDAFuMrNOCVw7ZQq1dFVFcdSicnK8YCr4NDyhxFJqFffEEzB7tv+wN9zgdyyKiIgk4I477qBLly50796dnj17Mnv27JTEMX/+fJ599tld+9OnT+cPf/Ch5eeffz5PFDPTyyuvvMKIaI9SEiRy92J9YAxwJJ40vQH8NYSwrYynfgXsF7ffFlhVzDlrQwibgc1m9hrQA/g0sfCrXjTpyt1Y4JmXWfJLRhR18skwYwYsWgQLFkDPnpV37Y8/9mQO4Je/hNatK+/aIiJSo7399ts888wzvPfee9SrV4+1a9eyY8eOlMQyf/585s6dy/DhwwEYOXIkI0eOTEksUYl0Lz4KdAHuA/4CdAb+mcDz5gAdzay9mdUFRgNFpw+aBgw0s0wzywYOA9J69uRofrV9XaSVKzu76rveGjb0WllQ+a1dBx3k8z2edRb061d51xURkRpv9erVtGjRgnqRHpIWLVrQpk0b2rVrx9q1awGYO3cux0RuzHr11Vfp2bMnPXv2pFevXmzatAmAO++8k27dutGjRw+uv/56AJYuXcrQoUPp06cPAwcO5JNPPgG81erSSy9l4MCBdOrUiWeeeYYdO3Zw880389hjj9GzZ08ee+wxHn74YS6//PJdsb744ouFnlPU5s2bufDCC+nXrx+9evVi2rRpe/z+JFIy4uAQQvyMxrPMbEFZTwoh5JnZ5cALeMmIiSGED83s0sjjE0IIH5vZ88BCoAAvK7Go/D9G1YmO6dr+XQrGc8UbMQKmTYNPP/V5GQcMqJzrZmXBZZclp9tSRESqxEknJee6M2aU/vgJJ5zAbbfdRqdOnTjuuOP44Q9/yNGl3Ih19913M378eAYMGEBubi7169fnueee4+mnn2b27NlkZ2ezbt06AH76058yYcIEOnbsyOzZsxkzZgwvv/wyAMuXL+fVV19l6dKlHHvssXz22WfcdtttzJ07l7/85S8APPzww4Veu7jnxLvjjjsYNGgQEydO5Pvvv6d///4cd9xxNNyD3q1Ekq73zezwEMI7AGZ2GPBmIhcPITwLPFvk2IQi+3cBdyUWbupF3+sd61KcdNWv7xNO338/PPww9O/vCVNFzZ4NXbvGfkANxhQRkXJq1KgR8+bN4/XXX2fWrFn88Ic/3DWOqjgDBgzg6quv5pxzzuG0006jbdu2vPjii1xwwQVkR1o5mjdvTm5uLm+99RZnnHHGrudu37591/aZZ55JnTp16NixIx06dNjVClaasp4zc+ZMpk+fzt133w3Atm3b+PLLL+ncuXO53pN4iSRdhwHnmtmXkf39gY/N7AMghBC6V/jVq6FoTpL3fYqTLoATTvA/O1as8KKpp55aset88omXh2jVCu67T0VQRUSqubJapJIpIyODY445hmOOOYZu3brxyCOPkJmZSUFBAeDJS9T111/PiSeeyLPPPsvhhx/Oiy++SAhht7sCCwoKaNq0KfPnzy/2NYuen8hdhWU9J4TAk08+ycEHH1zmtRKVyJiuoUB74OjI0h4YDowAktSAmb7SKunKyPD5EMEno964sfzX2LwZ7roLCgrgiCOUcImISIUtXryYJUuW7NqfP38+BxxwAO3atWPePK+1/uSTT+56fOnSpXTr1o3rrruOvn378sknn3DCCScwceJEtmzZAnjR18aNG9O+fXumTJkCeEK0YEFspNOUKVMoKChg6dKlLFu2jIMPPpicnJxdY8SKU9xz4g0ZMoT77ruPEBlu8/777+/hu5NYyYgvgKZ4gnUS0DSE8EV02eMIqpnomK78DWmQdAH06QO9e3vy9J//lP/5EybAmjVw4IFwbtqXSRMRkTSWm5vLeeedx6GHHkr37t356KOPuPXWW7nlllu48sorGThwYKEpc8aOHUvXrl3p0aMHDRo0YNiwYQwdOpSRI0fSt29fevbsuat7b9KkSTz44IP06NGDLl26FBrYfvDBB3P00UczbNgwJkyYQP369Tn22GP56KOPdg2kL6q458S76aab2LlzJ927d6dr167cdNNNe/z+WChjwLSZXQn8BHgqcuhU4O8hhPv2+NUT1Ldv3zB37tyqerlSzZkDt90GP64/hTO3Pep3EZ5/fmqD+uIL+PnPfRzW+PHQtm1iz5s1C+65x+tw3Xsv7Fu0dq2IiFQXq1atok2bNqkOo8qdf/75jBgxglGjRqXk9Yt7381sXgihb9FzE+levAg4LIRwcwjhZuBwPAmrlXbdtJCKavQlOeAAGDLEuwgnTkzsOatX+yB8gEsuUcIlIiKSZIkMpDcgP24/n+KrzdcK0e5FcnO90zUdki6Ac86BV17xprgFC6BHj9LPf+cdn7l7wAA47rgqCVFERKSyFS0Fkc4SSboeAmab2VQ82ToZeDCpUaWxaI5lW9Is6WraFM48Ex59FB58EMaOhTqlNGSeeirsvz906qTyECIiIlUgkYH09wAXAOuA74ALQghjkxxX2oq2dGVsSaPuxaiTT4aWLeHzz+GFF8o+v08fn8tRREREki6RMV1Rhs+9WKubRRo08IahzG25XrS9quddLE3dunDhhb796KOwYUPhx0PwgfaLF1d9bCIiIrVcmUmXmd0MPAI0A1oAD5nZ/yU7sHRl5q1d9fNzyc8nvVq6wMdo9erlY84eeqjwY889B88/D3fcASmagFRERKS2SqSl6yygXwjh1hDCLfjdi+ckN6z01rAh1M/fnJ5JlxlceilkZsJLL8GHH/rxNWtiSdgll3irmIiISCVqlMB34uuvv06XLl3o2bMnW7duLdf1n376aT766KOkxFUVEkm6lgPxFcPqAUuTEk010bBBAfXzNpOXT3p1L0a1aQPReiV//Svs3AnjxsXuVqysybFFRETKadKkSVxzzTXMnz+fBg0alOu5FU260kUiSdd24EMze9jMHgIWAblmNs7MxiU3vPTUNGszAHlZ2aXfIZhKZ5wB++zjhVNvv93LSOTkwGWXpToyERGp4V555RWOOeYYRo0axSGHHMI555xDCIEHHniAxx9/nNtuu41zzvFOs7vuuot+/frRvXt3brnlll3XePTRR+nevTs9evTgxz/+MW+99RbTp0/n2muvpWfPnixdupSlS5cydOhQ+vTpw8CBA3dNWv35559zxBFH0K9fv0qpJF9ZEikZMTWyRL2SnFCqj2ZZfufi9rrp0VxZrLp1vZvxxhu9W7FzZ99v0iTVkYmISLKdlKSpkcsxk/b777/Phx9+SJs2bRgwYABvvvkmF198MW+88cauCvIzZ85kyZIlvPvuu4QQGDlyJK+99hp77bUXd9xxB2+++SYtWrRg3bp1NG/enJEjRxaqPj948GAmTJhAx44dmT17NmPGjOHll1/myiuv5LLLLuPcc89l/PjxyXkvKqDMpCuE8EhVBFKdNMmIJF2ZaZx0gZeE6NQJPvjAuxgHDkx1RCIiUkv079+ftpFp6Xr27Mny5cs58sgjC50zc+ZMZs6cSa9evQCfu3HJkiUsWLCAUaNG0aJFCwCaN2++2/Vzc3N56623OOOMM3Yd2759OwBvvvnmrom1f/zjH3PddddV/g9YAYm0dEkROXW8e3FbuiddADffDF9+CVu2wLx50He3qaBERKSmKUeLVLLUq1dv13ZGRgZ5eXm7nRNC4IYbbuCSSy4pdHzcuHFYGYW7CwoKaNq0KfPnzy/28bKenwppOiApveWYt3RtzagGSVeLFnDeeT6p9fjxsHlzqiMSEREBYMiQIUycOJHcyHzGK1euZM2aNQwePJjHH3+c7777DoB169YBkJOTw6ZNmwBo3Lgx7du3Z8qUKYAncAsWLABgwIABTJ48GfCB++mixKTLzP4ZWV9ZdeFUD9Gka4ul4Z2LUc8+C089BXl5MHKkdzOuXZv4hNgiIiJJdsIJJ3D22WdzxBFH0K1bN0aNGsWmTZvo0qULN954I0cffTQ9evTg6quvBmD06NHcdddd9OrVi6VLlzJp0iQefPBBevToQZcuXZg2bRoA9957L+PHj6dfv35sKFooPIUshFD8A2YfAcOA6cAxFKlEH0JYl+zgovr27Rvmzp1bVS9XpvdvfIKdDzzCxsGncty/L0x1OLtbu9bvUty2DX77W+jZE1asgCuu8CTsttu8gKqIiNQYq1atok2bNqkOo9Yp7n03s3khhN3G85TWvTgBeB44BJhXZEmfDCgFsoN30W22NO1efPBBT7iOOMITLoD99oOzz/bt++7zMV4iIiJSZUpMukII40IInYGJIYQOIYT2cUuHKowx7TQo8O7FjQVpmHS9/z688YaP4frJTwo/dtppcNBB8O23u08RJCIiIklV5kD6EMJlZtbDzC6PLN2rIrB01iAvTZOuvDz4+999+6yzoGXLwo9nZMBVV/kUQc8/7wVTRUREpEokMuH1FcAkoFVkmWRmP092YOms7k5Pur7PS7Ok64UX4KuvoHVrOPnk4s854AAYPdq3x42Dcs57JSIiIhWTSMmIi4HDQgg3hxBuxie8/kkZz6nR6u3wpGtDfpolXdGbDS680FuzSnL66dChg0+C/eCDVRObiIhILZdI0mVAftx+PkXuZKxtsrZ70rVuR5olXTffDLfeCocdVvp5mZnwi19AVpa3jr31VpWEJyIiUpslknQ9BMw2s1vN7FbgHaBWN4/U2ZqLmY/pKqbAbuqY+dQ/iVThbdcOLrjAt++7z8tMiIiI7IGMjAx69uxJ165dOemkk/j+++9THVK53Xrrrdx9991JuXYiA+nvAS4A1gHrgQtCCGOTEk11EAK2eTMZGbA9s2F6FHifNg2+/rr8zxsxwqcFys2FP/0JCgoqPzYREak1GjRowPz581m0aBHNmzdPm8mmQwgUpMF3XELTAIUQ3ouUkLg3hPB+soNKa1u2QAgU1GtAgWWkvtzVxx/DAw/4XYnbtpXvuWb+vKZNYdEieOKJJAQoIiK10RFHHMHKlSsBWLp0KUOHDqVPnz4MHDiQTz75BIBvvvmGU089lR49etCjRw/eigx3ueeee+jatStdu3Zl7NixAFx33XXcf//9u65/66238qc//QmAu+66i379+tG9e3duueUWAJYvX07nzp0ZM2YMvXv3ZsWKFcWeB3DHHXdw8MEHc9xxx7F48eKkvSea8Lq8IvND5TdoFL+bGiF4wgVw0klQv375r9GkiY/vuuUWmDQJevSAgw+u3DhFRKTqnXRSyY/97GcwdKhvP/+8z81bkgpMnp2fn89LL73ERRddBMBPf/pTJkyYQMeOHZk9ezZjxozh5Zdf5oorruDoo49m6tSp5Ofnk5uby7x583jooYeYPXs2IQQOO+wwjj76aEaPHs1VV13FmDFjAHj88cd5/vnnmTlzJkuWLOHdd98lhMDIkSN57bXX2H///Vm8eDEPPfQQ999/f4nnNWzYkMmTJ/P++++Tl5dH79696dOnT7l/5kQo6SqvaNKV7UlXSlu6Xn8dPv0Umjf3OxIrqndvOOUUePppuOsuLyWRnV1ZUYqISC2xdetWevbsyfLly+nTpw/HH388ubm5vPXWW5xxxhm7ztu+fTsAL7/8Mo8++ijg48GaNGnCG2+8wamnnkrDhj6/8Wmnncbrr7/OFVdcwZo1a1i1ahXffvstzZo1Y//992fcuHHMnDmTXpHp7XJzc1myZAn7778/BxxwAIcffjgAM2fOLPa8TZs2ceqpp5Id+d4bOXJk0t4fJV3lFUm6QiTpStmYrrw8eOQR3/7RjyrWyhXv3HNh4UJYtgz+8he49trEBuSLiEh6SrSFaujQWKvXHoqO6dqwYQMjRoxg/PjxnH/++TRt2pT58+cndI2S5oQGGDVqFE888QRff/01oyM1J0MI3HDDDVxyySWFzl2+fPmuxK2088aOHYtV0fddIsVRTzOzJWa2wcw2mtkmM9uYyMXNbKiZLTazz8zs+lLO62dm+WY2qjzBp0S0P7FRipOumTO9ztZ++8HgwXt+vaws+NWvPHl7/fUKNSeLiIgANGnShHHjxnH33XfToEED2rdvz5QpUwBPfhZEZkQZPHgwf/3rXwHvkty4cSNHHXUUTz/9NFu2bGHz5s1MnTqVgQMHAjB69GgmT57ME088wahRnjIMGTKEiRMnkhv5fl65ciVr1qzZLaaSzjvqqKOYOnUqW7duZdOmTcxI4vdfIgPp7wRGhhCahBAahxByQgiNy3qSmWUA44FhwKHAWWZ2aAnn/RF4oXyhp0jkw7KcFHYv5udD5B8vP/oR1Enofoiy7bsvXHmlb0+cCB9+WDnXFRGRWqdXr1706NGDyZMnM2nSJB588EF69OhBly5dmDZtGgD33nsvs2bNolu3bvTp04cPP/yQ3r17c/7559O/f38OO+wwLr744l1dgl26dGHTpk3su+++tG7dGoATTjiBs88+myOOOIJu3boxatQoNm3atFs8JZ3Xu3dvfvjDH9KzZ09OP/30XQleMlhpzXgAZvZmCGFAuS9sdgRwawhhSGT/BoAQwu+LnHcVsBPoBzwTQtjtFrq+ffuGudFq66n25JPw8MO83fpUfrf6Qs46C84+OwVxrFgBL74I559f+d2AEyfC1KnQrBmMHetjxkREJK2tWrWKNm3apDqMWqe4993M5oUQ+hY9N5Emkrlm9piZnRXpajzNzE5L4Hn7Aivi9r+KHIsPal/gVGBCAtdLD5H+xMwmKR5Iv99+Xtw0Gf3Q550HXbvC+vXwxz+SXhVgRUREqqdEkq7GwBbgBOCkyDIigecVlw0UbVYbC1wXQsgv5tz0FOlezGzSMH636nzzjZeKSKaMDLjuOm/h+ugjePjh5L6eiIhILVDm3YshhAsqeO2vgP3i9tsCq4qc0xeYHLlroAUw3MzyQghPV/A1ky+SZWU1S0FLV26uj7naf3+fYzGZZR2aNoUbbvBl2jTo1AmOOip5ryciIlLDJXL3Ylszm2pma8zsGzN70szaJnDtOUBHM2tvZnWB0cD0+BNCCO1DCO1CCO2AJ4AxaZ1wwW5JV5XevTh1qr9gVlbV1NE65BC4+GLfvvdeWLIk+a8pIiIVVtY4balc5X2/E53wejrQBh+TNSNyrKxA8oDL8bsSPwYeDyF8aGaXmtml5YoynUSSrnp7VXFL14YNMD2Ss/7oR1X0osDw4XD88bBjB/z2t/Dtt1X32iIikrCsrCxyc3OVeFWREAK5ublkZWUl/JxEiqO2DCHEJ1kPR+44TCSgZ4FnixwrdtB8COH8RK6ZcpGkq36LKm7pevJJn1uxb1/o3LmKXhQfqD9mjI8lW7gQbrsN7rwTGjSouhhERKRMzZs3Z926dcWWS5DkyMrKonk57vBPJOlaa2Y/Av4T2T8L+K4CsdUMkaSrQcsqTLo2bID//te3q7KVKyoz08d2XXMNLF/uSdf//Z8PuBcRkbSQkZFBy5YtUx2GlCKR7sULgTOBr4HVwKjIsdonhF1ZVnZLv3txy5bk30zItGnevde/Pxx4YJJfrASNGvmk2Dk5MHcuPPhgauIQERGppspMukIIX4YQRoYQWoYQWoUQTgkhfFEVwaWdrVuhoADq1yerQSZ163oJqx07kvy62dnQsCGceWaSX6gMrVvDjTd6y9eMGbHWNxERESlTid2LZvarEMKdZnYfu9fXIoRwRVIjS0dF5l3MzvaEa/NmqFcvia87ahSMGLHnk1pXhi5d4Oc/hz//Gf72Ny8tMaDcExaIiIjUOqWN6fo4sk6T+XfSQJGkq2FD+P5772JM+kw56ZBwRQ0a5Hcx/utfcPfd/kb07JnqqERERNJaid2LIYToNNtbQgiPxC94hfrap5ikC5I4mH7WLO/CS3r/ZQWceSaMHOn9q3fcAZ9+muqIRERE0loiA+lvSPBYzRdNuiLZVrQ+aVKSrrw8ePRRmDAB3n8/CS+wh8y8cOqxx3opi1tv9Um4RUREpFiljekaBgwH9jWzcXEPNQZq5wzI0eyqSEtXUgqkvvoqrF3rE1v375+EF6gEZnDFFZ6MzpkDN93k5SRatUp1ZCIiImmntJauVfh4rm3AvLhlOjAk+aGloarqXiwogClTfPuMMzy5SVeZmT459qGHwnffeeK1bl2qoxIREUk7pY3pWhAZv9UN+FfceK5pwPaqCjCtVFXS9fbbsHKltxhVh0mm69WDm2+G9u1h1Sr49a+VeImIiBSRyJiumUD8nC8NgBeTE06aK6ZkBFRy0hUCPP64b59+evWp+t6wIdx+uydeK1cq8RIRESkikaSrfgghN7oT2c5OXkhprISWrkod07VoESxb5vWvjjuuEi9cBRo3VuIlIiJSgkSSrs1m1ju6Y2Z9gK3JCymNbdjg65wcIEndi507w7XXwvnnQ926lXjhKtK4sZeQUOIlIiJSSCJJ11XAFDN73cxeBx4DLk9qVOnqu8g833vtBSQp6crM9HFcgwdX4kWrWE6OJ14dOnjidcMNXkxVRESkFktk7sU5wCHAZcAYoHMIYV6yA0tLRZKu6JiuSute3Lmzki6UBnJyvKuxQwcfXP+rX6mOl4iI1GqJtHQBHAwcCvQCzjKzc5MXUprautWXunWTc/fi5s1wwQUwfjzk51fCBdNATg787ndeTmLtWi8tocr1IiJSS5WZdJnZLcB9keVY4E5gZJLjSj/xrVyRulmVmnTNnOljxr7+uvrcsZiIhg3httugXz/YtAluvBHmz091VCIiIlUukZauUcBg4OsQwgVAD6BeUqNKR0W6FqESS0bk58OMyFSXI2tgPluvng+oHzTIpwz6zW/gjTdSHZWIiEiVSiTp2hpCKADyzKwxsAbokNyw0lA06WrefNeh+DFdIezBtd9+2wea77sv9O27BxdKY5mZcNVVcPLJPq/knXfC1Kl7+MaJiIhUH4kkXXPNrCnwD3waoPeAd5MZVFoqpqUrIwPq1/e8Ydu2Pbj29Om+Hjkyvaf82VNmcNFFcN55/qZNnOhj2PJq51SeIiJSu5Q44TWAmRnw+xDC98AEM3seaBxCWFgVwaWVYpIu8CFL27Z5F2ODBsU8ryyffgoff+wXGjRoz+NMd2YwahTssw/8+c/wwguwerWXlYjcoCAiIlITldrSFUIIwNNx+8trZcIFJSZdezyua8ECXw8Z4s1mtcWRR8Lvf++V9xcuhGuu8eRLRESkhkqke/EdM+uX9EjSXQlJV7RxpsK1us44A+67z8c61TadOsE990C7dl5E9Ze/jCWhIiIiNUwiSdexeOK11MwWmtkHZlb7WrvKaOnKzaXi2rUrNEC/VmnZ0gfVR0tK3HQTTJmiAfYiIlLjlJh0mdn+kc1h+N2Kg4CTgBGRde2Rnw/r1/t2keSowpNe5+fD0qV7HltN0KAB/N//wejRnmw9+qhPI1Sp8yuJiIikVmktXU8DhBC+AO4JIXwRv1RJdOni++89GWjSxEsfxKnwmK65c72Ewp13VkaE1V+dOnDOOXDzzZ7Jzp4Nv/gFLF+e6shEREQqRWlJV3ztgtpXlyteCV2LEGv4Wru2nNd87jlfd+xY8bhqon79YOxYaN/eB9b/8pfw4ovqbhQRkWqvtKQrlLBd+5SSdO2zj6/LdePdmjXw3nuQlQWDB+95fDXNPvvA3Xf7e7NjB9x7r7cI7tHAORERkdQqLenqYWYbzWwT0D2yvdHMNpnZxqoKMC2UknS1bu3rr78ux/VeeMFbbo48Eho33vP4aqK6deHKK72LsX59nzbo5z+HRYtSHZmIiEiFlJh0hRAyQgiNQwg5IYTMyHZ0v3ZlCpWZdOXl+eTWAMOG7XlsNZmZF4wdN87LS6xd63M4/utfqmIvIiLVTiIlIyrMzIaa2WIz+8zMri/m8XMiZSgWmtlbZtYjmfFUWClJV+PG3hCTm5tg79c77/jA/AMOgEMOqdQwa6zWreGPf4Qzz/T9xx6Da6/VIHsREalWkpZ0mVkGMB4vOXEocJaZHVrktM+Bo0MI3YHfAn9PVjx7pJSkyyzW2pXQuK6NG/3uvGHDavY8i5UtMxN+/GP43e+8ttdnn3nX4+TJavUSEZFqIZktXf2Bz0IIy0IIO4DJQKGy6yGEt0IIkQJYvAO0TWI8FVdK0gWxwfQJdTEOHw6PPALHHVc5sdU2Xbv6JNnDhnmyNWkSXH01LFuW6shERERKlcyka19gRdz+V5FjJbkIeC6J8VRcgklXwncw1qvni1RMgwYwZowXUN17b/j8c0+8Hn0Utm9PdXQiIiLFSmbSVVzfWbGlJ8zsWDzpui6J8VTMli2wbZvfTRctP19EQoPpd+zwelPbtlV+jLVV9+7wl7/ASSd5hf8pUzwZmz071ZGJiIjsJplJ11fAfnH7bYFVRU8ys+7AA8DJIYTvkhhPxcS3cpUwBiuhMV1vveX1pm67rXLjq+3q14ef/hTuussLqq5ZA7ff7u/zN9+kOjoREZFdkpl0zQE6mll7M6sLjAamx58Qmd/xKeDHIYRPkxhLxZXRtQgJjun63/98fdRRlROXFHbIIfDnP3sC1qABzJnjrV6TJ6vLUURE0kLSkq4QQh5wOfAC8DHweAjhQzO71MwujZx2M7AXcL+ZzTezucmKp8ISSLpatvSpA7/7DnbuLOaEb76BhQu9i3LgwOTEKZCR4V2NEybA0Ud7l+6kSXDJJfDyy5pKSEREUiqz7FMqLoTwLPBskWMT4rYvBi5OZgx7LIGkKyMDWrXylq5vvoG2Re/BfPFFXw8YUOK4MKlEzZvDNdfAkCHwwAN+Z+Of/wzTp8NFF0G3bqmOUEREaqGkFketERJIuqCUOxgLCmJJl8pEVK1u3Xzy7F/8wj+/pUu9ov1vf6vCqiIiUuWUdJUlwaSrxDsYFy706Wv23lstLKkQnUrob3+Dc87xgffvvuvzON55J3z1VaojFBGRWkJJV1nWrfN1gklXsXcwduzorVyqQJ869erB6NHw97/DyJFe4f71132w/Z//XI4iayIiIhWT1DFdNUI5uxd3a+nq2dOXgoLKjkwqolkz+MlP4NRTfQ7H//3PB9m/8ooPvh81CvbfP9VRiohIDaSWrtLk58P69d5C1axZqaeWWSC1jt7qtNKiBfzsZ36n4+DBfmzWLD92++2weHFq4xMRkRpHmUBp1q/3MgNNmnh3VCn23tvXX38dV5ngqafgyy+TG6PsmX32gauugn/8A0480ct6zJ7tdz/eeKPX+1KpCRERqQRKukqTYNcieD3OJk28Ttd33+FlCh56CK67zidmlvTWqhVceik8+KB3MWZn+00Qt93mdb5mzICtW1MdpYiIVGNKukpTjqQLinQxRstEHHNMma1kkkaaNoXzzoOJE+HCCz0ZW73aB+Cff77X/Vq5MtVRiohINaSkqzQVTbpW7PSB2QDHH1/5cUnyNWzog+3//ne44Qbo0sUnP582zVvEbrwR3nhDrZgiIpIwNcGUJsFyEVHROxjz3pwNmzZBhw6+SPWVkQE/+IEvn30G//0vvPaadz0uXOh9yscf7yVB9t031dGKiEgaU9JVmgq2dDV+5wVogCrQ1zQHHQRXXgkXX+wtmc8/75Xtn3jCl4MP9kKsAwdCTk6qoxURkTSjpKs05Uy69tkHmm1bTZNl86FXXf8ClpqnYUO/03H4cC8tMXOmdzUuXuzLP/4B/fv7eL4+ffyOSBERqfWUdJWmAklXgWUwp/kJdDkuU5Nb13RmcMghvlxyCbzzDrz0EsyfD2+95UuDBnD44d761auXbqoQEanF9A1QkhDKnXQ1bQrbm7TiyXo/54xzQSlXLVKvnle0P/po/3fz6qs+zdBnn3nR1VmzPAk//HBfevXy54iISK2hpKskW7bAtm3eNZSdndBTzLy1a/lyrzJw0EHJDVHS1F57wWmn+bJ6tSdfr7/u/zBeesmXunWhd29PwPr1g8aNUx21iIgkmZKuksTfuZjoRNWPPEL/re1YUfADvv46S0mX+N0VZ57py1dfeRfkO+/42K/othl06gR9+/py4IGaHF1EpAZS0lWScnYt8s038MQTDFyVxYxWvVm9Oit5sUn11LatV7sfNcr/fc2e7UnXBx/EBuFPmuT91L17+0TpPXpA8+apjlxERCqBkq6SlDfpmjkTgK29j2Tr1zklT3wtAv7vavhwX7ZtgwULYO5cX9auhZdf9gVgv/1iCViXLtCoUUpDFxGRilHSVZLyJF15efC//wEQThgCj6KkSxJXvz4cdpgvIfgk6fPn+7JoEaxY4cuMGd7teMAB0K2bJ2Bdu3qBVhERSXtKukpSnqRrzhxYvx7atqXZgEPhUR8/LVJu0aTqgAPg5JM9oV+82BOwaDfk8uW+zJjhz2nd2stWdO7s6wMOgDqa4UtEJN0o6SpJeZKuF17w9dChtGxl1KnjPUQ7d0KWhnbJnsjM9BatLl18f8cO+PRTbwFbtAg++cQz/NWrvSwFeMvZQQdBx44+QL9jR5+4W4PzRURSSklXcULwO82g7KRrzRp47z3/chw0iMxMaNnSx9WvWaPp+KSS1a3rXYpdu/p+fr63en38sSdgH3/s//CiSVlU48Y+D+iBB8bWbdooERMRqUJKuorz3nuwcqXfRVbWhNWNGsFPfwrff79rvr3WrT3pWr1aSZckWUaGJ1AHHggjRvix9eu9KOunn8KSJb5s3BgbJxZVv36sK7Ndu9i2xoiJiCSFkq7iPP64r085pex587KzY192Efvs42uN65KUaNbMC6726+f7IcC338KyZbB0qa+XLfM+8GipinhNmvgdk0WX5s3VMiYisgeUdBW1aBF89JG3YA0fXvJ5IXiLQjE1lNq08fWcOZ6P6XtKUsrMx3S1auUV8KM2boQvvvDuyfj1hg2+xHdPgk9btO++/g88um7d2v/KaNpU/9BFRMqgpKuoaCvXSSf5ZMUleeUVGD8eLrxwt+TsmGP8Mu+/76cde2yyghXZA40be+mJbt1ix0LwFrBomYoVK7yExapVnohFW8mKql/fk6+99/Z1q1a+vffePshRk7+LiCjpKmTJEs+U6tf3pKskmzfDxImwfXux3Y/NmsFFF8G998I//uHFxTVMRqoFM0+SWrb0f7jxNm3y5GvVKr/RZPVqL0i3ejXk5sZKWRQnOzt23ZYtoUULv0klut5rr9L/yBERqQGUdMWbMsXXw4fvGhRfrEmTfOB8584weHCxpwweDK++6uOW//53uPbaSo9WpGrl5MDBB/tSVG6uJ1/R23a/+abw9pYt3nX5xRclXz872/9i2WsvXzdv7utmzbz7smlT387JUR0yEamWlHRFffklvP22F9Y6+eSSz1u6FJ55xn/pjxlT4jgWM/jZz+Dyy+G117zLMTquWaTGadTI64F17Lj7YyF4Uvbtt4WX774rvGzZ4svKlaW/lpl3jTZt6k3I8UtOjj8WXTdu7LHVq6cxZyKSckq6op54wtfHH1/yBMMhwF//6uuRI/02+1Lssw/86Efw4INw//0+BCw7u3LDFkl7Zp4E5eSUXIIlmpitXw/r1hVevv8+tqxf7+dFB/snKjMzFkOjRr40bFh4u+iSnR1bVOVYRCqBki7wcSmvvuo1j04/veTz5szx2+ubN4ezz07o0iNHwuuve8mkRx6Byy6rpJhFapL4xGz//Us/Ny/P77z8/ntfb9jg25s2+f7Gjb69YYOvN23y6SHWr/elIjIzPRFr0KDkpX79wtvRpV49X+L369f3RE6tbyK1SlKTLjMbCtwLZAAPhBD+UORxizw+HNgCnB9CeC+ZMRXrySehoMAHYrVqVfJ5PXp4wnXxxQk3WdWpAz//OVx1FTz7rM/KMmCA/84VkQrIzPT/hyW1SBdnx45YApab6zfD5ObGls2bCy9btvjxrVt9Oy+v/K1riahXz2/GiSZm0f3osays3dd16/q66HZxS2bm7vvRY5mZ/oemEj+RKmMhhORc2CwD+BQ4HvgKmAOcFUL4KO6c4cDP8aTrMODeEMJhRa/Vt2/fMHfu3KTEyfr1XvYhP9+7DqMl5PPyvInqmWfgtttit7yvXet3XJXTpEkwebJvZ2ZC9+6x+pV7711JP4uIVL4QvKVs61ZPyLZuLbxs2eJ3Mm/dCtu2xY5v3+7Ltm2xJXps+3ZPBNNBRkYsGYsmYqVtx68TXerU2X0/eqys7aJL9DGz3R8reix+v+h2cY/Fr+OX6DFQkioJMbN5IYS+ux1PYtJ1BHBrCGFIZP8GgBDC7+PO+RvwSgjhP5H9xcAxIYRCtdyTmnSF4NP+3HuvT4ESHTeycaM/Bl7/4ZRT9uhl8vNhxgx44w3vaox/2+vV2304Sd26hX9XRX83QOHfBdH9ovR7QSTNhUBG3nYy8rZTJ2+Hr/N3kLEzcix/Jxn5O3Y9lpG/gzr5O33J21F4P3KsTkF0P6/wYwW+bwV5ke3ofn6q34XqJ/LLNVgdghngv4yj28GMYHG/rCn8WHHnQ+yXefz+bo8lel78ftHHi16rhOfs+jmLO1boC8bKeX7h5xV7rZKuV+Sxokp7nfjntbl0JAecUMxd2JWopKQrmd2L+wIr4va/wluzyjpnX6DqJtAxgz59/K/O+HnpzLzV6/TTYdCgPX6ZjAzP2045xXso5s3zIWLvv+9/PG/f7mOGRaS2MKB+ZKlEGZElESFQJ+STEfIKLXUK8godrxPyd+3Hrwst5JNRkEcdCnYds1BARsjDKCAj7pifX7BrP/p4dNufX2Q7FFCHgsg5Ie5cX1vkZ4k+Fn8uxB6rEwqAgIVQ6PnArscKnxN2XT/ypkXWSlgrQ1ntA8loP9hw3BGQ5KSrJMlMuop7r4o2qyVyTtW44gpvcorWBWrc2DOlJGjSxPO4QYO8xWv79tiwkuhQkp07vXWsoMDX+fl+bnSBwtuVJUkNnyKSlgz/Gqh591QFCn+ZVEqKFP0FWRBJ5iK/hAtth4JCv5xjj8UlbsU9j+J/uRc9vtt5kZ/Sin5BFH1u/PPjf5airxX/WHHPi38vdktEKRxLCe9f6dcq5vGi8ZamrOsAew/sVPo1kiiZ/9O+AvaL228LrKrAOVXjBz9IycuaxW5qqsBQMRERqTLRdoLk/EEuNV8yyzrPATqaWXszqwuMBqYXOWc6cK65w4ENRcdziYiIiNQESWvpCiHkmdnlwAv4nwUTQwgfmtmlkccnAM/idy5+hpeMuCBZ8YiIiIikUlI78kMIz+KJVfyxCXHbAfhZMmMQERERSQeaNVZERESkCijpEhEREakCSrpEREREqoCSLhEREZEqkLRpgCqTmX0LfJHqOEREREQScEAIoWXRg9Ui6RIRERGp7tS9KCIiIlIFlHSJiIiIVAElXYCZDTWzxWb2mZldn+p4aisz28/MZpnZx2b2oZldGTne3Mz+Z2ZLIutmqY61NjKzDDN738yeiezrc0kDZtbUzJ4ws08i/3eO0GeTemb2i8jvsUVm9h8zq6/PJTXMbKKZrTGzRXHHSvwszOyGSD6w2MyGVGYstT7pMrMMYDwwDDgUOMvMDk1tVLVWHvDLEEJn4HDgZ5HP4nrgpRBCR+ClyL5UvSuBj+P29bmkh3uB50MIhwA98M9In00Kmdm+wBVA3xBCV3wqvNHoc0mVh4GhRY4V+1lEvnNGA10iz7k/kidUilqfdAH9gc9CCMtCCDuAycDJKY6pVgohrA4hvBfZ3oR/eeyLfx6PRE57BDglJQHWYmbWFjgReCDusD6XFDOzxsBRwIMAIYQdIYTv0WeTDjKBBmaWCWQDq9DnkhIhhNeAdUUOl/RZnAxMDiFsDyF8js8N3b+yYlHS5V/qK+L2v4ockxQys3ZAL2A2sHcIYTV4Yga0SmFotdVY4FdAQdwxfS6p1wH4Fngo0vX7gJk1RJ9NSoUQVgJ3A18Cq4ENIYSZ6HNJJyV9FknNCZR0gRVzTHU0UsjMGgFPAleFEDamOp7azsxGAGtCCPNSHYvsJhPoDfw1hNAL2Iy6rFIuMj7oZKA90AZoaGY/Sm1UkqCk5gRKujyL3S9uvy3eDCwpYGZZeMI1KYTwVOTwN2bWOvJ4a2BNquKrpQYAI81sOd79PsjM/oU+l3TwFfBVCGF2ZP8JPAnTZ5NaxwGfhxC+DSHsBJ4CfoA+l3RS0meR1JxASRfMATqaWXszq4sPoJue4phqJTMzfGzKxyGEe+Iemg6cF9k+D5hW1bHVZiGEG0IIbUMI7fD/Hy+HEH6EPpeUCyF8Dawws4MjhwYDH6HPJtW+BA43s+zI77XB+BhVfS7po6TPYjow2szqmVl7oCPwbmW9qCrSA2Y2HB+zkgFMDCHckdqIaiczOxJ4HfiA2NihX+Pjuh4H9sd/mZ0RQig6KFKqgJkdA1wTQhhhZnuhzyXlzKwnfoNDXWAZcAH+B7U+mxQys98AP8Tvyn4fuBhohD6XKmdm/wGOAVoA3wC3AE9TwmdhZjcCF+Kf3VUhhOcqLRYlXSIiIiLJp+5FERERkSqgpEtERESkCijpEhEREakCSrpEREREqoCSLhEREZEqoKRLRFLOzPYys/mR5WszWxnZzjWz+5P0mleZ2bnFHG9nZosq8XXqmtlrkTn4RKQW0y8BEUm5EMJ3QE8AM7sVyA0h3J2s14skQBfi1duTKoSww8xewms2TUr264lI+lJLl4ikLTM7xsyeiWzfamaPmNlMM1tuZqeZ2Z1m9oGZPR+ZQgoz62Nmr5rZPDN7ITrVRxGDgPdCCHlxz1lgZm8DP4t7/XZm9rqZvRdZfhA5/k8zOznuvElmNtLMupjZu5FWuoVm1jFyytPAOcl4j0Sk+lDSJSLVyYHAifhkwv8CZoUQugFbgRMjidd9wKgQQh9gIlDcDBMDgPgJvB8CrgghHFHkvDXA8SGE3nhL1bjI8Qfwyu+YWRN8Xr1ngUuBe0MIPYG++DxuAIuAfhX8mUWkhlD3oohUJ8+FEHaa2Qf4tF3PR45/ALQDDga6Av/zKe/IAFYXc53W+Fx40aSpaQjh1chj/wSGRbazgL9EptrJBzoBhBBeNbPxZtYKOA14MoSQF2kpu9HM2gJPhRCWRM7PN7MdZpYTQthUSe+FiFQzSrpEpDrZDhBCKDCznSE2j1kB/vvMgA+LabEqaitQP7JtQEnzof0Cn6utB94zsC3usX/iXYaj8fFhhBD+bWaz8da4F8zs4hDCy5Hz6xV5vojUMupeFJGaZDHQ0syOADCzLDPrUsx5HwMHAYQQvgc2RCZch8Jjr5oAq0MIBcCP8ZazqIeBqyLX+DDyeh2AZSGEccB0oHvk+F7AtyGEnXv+I4pIdaWkS0RqjBDCDmAU8EczWwDMx8dbFfUccFTc/gXA+Ej34Na44/cD55nZO3jX4ua41/oGT94eijv/h8AiM5sPHAI8Gjl+LD7mS0RqMYu1zouI1B5mNhX4VXTcVQWen42PJesdQthQxrlPATeEEBZX5LVEpGZQS5eI1FbX4wPqy83MjgM+Ae5LIOGqCzythEtE1NIlIiIiUgXU0iUiIiJSBZR0iYiIiFQBJV0iIiIiVUBJl4iIiEgVUNIlIiIiUgWUdImIiIhUgf8HvLV/9kma+ewAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABK/ElEQVR4nO3dd3xUVf7/8dcnCaGGDkoVWAGRklAFFQELoCI2VOx1Ldhdd9Wva1l3/bnWtaHsrmJb1g6ILioWrKwoKFhhqQoCIkYgCTXJ+f1xZphJmCSTkCnJvJ+Px33cO3fO3Pkko5kP55z7OeacQ0RERERiKy3RAYiIiIikAiVdIiIiInGgpEtEREQkDpR0iYiIiMSBki4RERGROFDSJSIiIhIHGYkOIBotW7Z0nTp1SnQYIiIiIhWaP3/+Budcq9Lna0TS1alTJ+bNm5foMEREREQqZGbfRzqv4UURERGROFDSJSIiIhIHSrpERERE4kBJl4iIiEgcxCzpMrPJZrbezL4u43kzswfNbKmZfWlm/WIVi4iIiEiixbKn60lgdDnPHwl0DWwXAo/GMBYRERGRhIpZyQjn3Adm1qmcJscCTzvnHPCJmTU1szbOubWxiklERCSunCu5mUF6eui57dtLPh/+mvr1ISPwNb11a8m24e3S06FZs9B7rl+/e5ugxo2hYUN/XFAAv/5asm34vmNHHy/A2rWwbVvJawWPs7KgdWt/vGMHfP/97m3Cr1m/vj/+6Sf//uHPB9WtC126hB5/9x0UF+/eDmDvvaFlS3/866+wenXkawL07h36mRIgkXW62gGrwh6vDpxT0iUiEk/FxVBY6LeiotDeDFq0CLVbsiT0XOltn32gTRvfbs0a+Prrks8XF4f248ZBWmCgZeZMWLfOnw9vU1wM++0HRxzh2/38M0yeHHrOuZKvufBC6NDBt33lFfj4493bOudjvOGG0M80YYL/mUq3cw7OOCP0/h98AI8+unsSFdyeew7q1PFt//AHnyREcuihcPXV/vj77+Hyy8v+XO66C3r08MdPPw2vvRa5XceOMHFi6PFFF/mfKZILL4RjjvHHn3wC999f9vtPnRr6me67DxYtitwu/Gdauxauuabsa4b/TK+8Aq++Grld6Z/p//4vup/p88+j/5kSIJFJV6RUM0JaGnvLl8P//gejyxsMFRGJhR07YNMmv9++3e/DtyFDQv8yf/993zuwc6ffduwIHe+3X+iP2Lp18MADoed27iyZVP3xj9C1q2/7979H/2X+hz9E98X33Xfw0ENl/8zHHQeZmf74vffKTlB27gwlPVu2wEcflX3NvLzQ8U8/lX3N0vGvW+ffJ5KtW0vGkp9f9vtH6gEKCn5+aWkle1nS0/3vIZiAmoW2YPug+vWhSZPI7Zo2Lfl+rVuX/DnD2zZoEDrfsCG0a7d7m/CYg9q08T1d4c8F98FeLvA/z777Rr6GWaiXK/i67t13f08z2Guvkq/df//Qz1Q6zvB/GDRtCr16Rb5mpJjizFyk7rfqurgfXnzNOdcrwnN/B95zzj0beLwYGB5peHHAgAEuVhXpf/0VzjnHfw6PPRbqoRQR2c0vv8CGDf7LeOtW/yUU3NerB0cdFWp7553+S3r7dr9t2xY6PvPMUNt334W//a3s93zpJT/UAnDddfDtt5HbDRsG117rj1evhksuKfuad9wR+mJ67DGYMcMPY6Wnl9y3awe33x563fXX+6QtPX33beRIGDTIt1u0CGbN8ufT0kq2S0uD004LDZvNng25uaF2aWmhrV07PxwEfijs88/9H+tg2+BxWhp06waNGvm2a9fCxo3+OPx6Zj4paN8+9DOtWVOyXXhC07Ch/1whlBSHPx++ZWaGvtCLi5PmS14Sw8zmO+cGlD6fyJ6uGcBlZvYccACwKRHzuZo1g4MP9j3Hr7wC558f7whEJKYKC33yk5/ve0Py8/0clP3288//+is884zvSSkoCO23bvXHt9wSSlCmT/dbJG3alEy6vvjCXyeSLVtCxw0b+n/tZWb6rW5dP/xRt65/HP4P4+HDoWdPfz4jw7cLHrdtG2rXqhX8v//nn69Txz8fbJ+R4ef1BJ1/PlxwQXS/y7/+Nbp2++0X+v1WZMSI6No1bAhDh0bXtk2b0FBnRcJ/b+UJfj7RSFM1JoksZkmXmT0LDAdamtlq4BagDoBzbhIwEzgKWApsAc6NVSwVOeEEn3S98QaMHx+aYygiSaa42PdgbN7sh+SC2+bNfjv33FDPxN13w6efhoZEwg0eDDfe6I+LiuCtt8p+z/AEqU0bPyxXv35oq1fP78MnMoPvdUpL88/Xreu34HH4EMsBB/gtGkceGV27unVDPUQVUU+MSNzE8u7FUyt43gGXxur9K+M3v4HsbFi4EF5/3c/xFJE4Kijww3a//hracnP9fsCAUG/IvHnw5z+XfZ0TTgglXcXFPuFKS/PDTllZft+oUWjOCfhen0sv9efr1/f/6mrYMHQcvB74nqzw3qzyDNhtZEFEUlwihxeTyokn+qRrxgw49tiE3twgUns453ugNmzw2/r1fp+XB1dcEWp31VV+QnMkWVmhpKtZM58kNW3q902a+K1xY7+FTxKeMAEuu8yfK683JzNTd9GISFwo6QrIyYHOnWHFCn8zTfCGGRGpQF6eT5jWrfNlAzp29Odnz4aHH/YTkCO5+OLQHJn27f3E6BYtfGLVrBk0b+6Tq06dQq/p2hWmTIkurqysqv5EIiIxoaQrwMyPTNx7ry/jcfjhmuogEtG//w2rVvk7xNatKzlZ/MwzQ0lXw4Y+4WrY0E/sbtXKTxgPbuFuuSV+8YuIJIiSrjAHHwxPPeXvtv700+jntorUCs75+karVvn/CYL7vDxfFDJo9uySQ4H16vmK0G3alLwTLCfHF4zUnSkiIoCSrhIyMnzNvsceg5dfVtIltdimTb4rN1g6YPZsXwRz+/bI7QsKQsnTqaf61wZvy2/cOHK3cGVusRcRSQFKukoZNcr/4/y77/wWXK1ApEYK9l4tXeonLC5f7rfcXD8UePLJvl2zZj7hatbMDw926ODnWQX34RPUDz00MT+LiEgNp6SrlGBR6Rde8HO7gqV8RGqETZtCS4WAvytw+fLd29WrV7JXa//9/VwtTT4XEYkZJV0RjBkD06bB3Ln+7nYtDSRJqbDQJ1SLFoW2n38umTy1aeOXrtl3X1+QrksXv+29d8khQQ0FiojEnJKuCJo182twfv01/Pijki5JMqtX+4ntixbtXo6hfn1/V2Ew6br66pJrwomISMIo6SpD8+Z+n5ub2Dgkhe3cCYsX+6q9deuGlkrIyoIvv/TH7dv7iYfdu/u17jp0KLnuW3ChZBERSTglXWVQ0iVx55wv0zB/PixYAN98E5p31bKlXzbBzM/ZuvVWP2QYPn9LRESSmpKuMgSTrl9/TWwckkJefBGeeabkuY4dfb2r7OyS5/v3j1tYIiJSPZR0lSGYdP3yS2LjkFooN9ffpTF3LgweHFr3r1cv33PVr5/fsrP9BEMREakVlHSVQcOLUq3WroWPPoJPPoH//S90vrAwlHT16OF7ujTpXUSkVlLSVQYNL0q1mTQJ/vOf0OPMTOjb1y95MGhQ6LySLRGRWk1JVxnChxed0/ehRGnTJvjgAz9U2LmzP/eb3/hSDoMHw4EH+oRLdxWKiKQcJV1lqF/fF+3etg22bNGavVKOHTv8CunvvuvvPCwu9ssaXHKJf37YML+p+KiISEpT0lWO5s1hzRo/r0tJl+xm5Up4/XV4/32/IDRAejoMHAgDBoTaKdkSERGUdJUrPOnq0CHR0UjSefNNmDnTH3ftCiNGwCGHqHaWiIhEpKSrHLqDUXb58Uc/GX6//XxiBTBqVGjfqVPCQhMRkZpBSVc5lHSlOOfgiy9gxgw/Vwt8uYdg0tWpE1x0UcLCExGRmkVJVzlUNiJF7dzpJ8VPn+4XlwY/L2v4cDjmmERGJiIiNZiSrnKoKn2KevtteOQRf9yiBRx9tB9CbNw4sXGJiEiNpqSrHBpeTBGbNsGKFX6NQ4BDD4WPP4aRI31drQz9byIiIntO3ybl0PBiLZeXB1Onwmuv+VIPTzzhC7TVrQt/+UuioxMRkVpGSVc5VJW+lioo8PO1XnkFtm715wYO9Ofr109oaCIiUnsp6SqHqtLXMoWFvmdr6tRQMdN+/eC006B798TGJiIitZ6SrgqoKn0tkp4Oc+b4hKtPHzj9dNh//0RHJSIiKUJJVwWqVJV+3Tp47DEYO9Z/uUvifPkl7L03tG7tx4cvucR3XWZnJzoyERFJMUq6KlClOxhnzYK5c31hzb/8BXr0iElsUo61a+Gf/4TPPvOLTV97rT+vYUQREUmQtEQHkOyqlHQtWeL3O3bAn/7kyxFIfOzYAf/+N1x6qU+46tf3leOdS3RkIiKS4mKadJnZaDNbbGZLzez6CM83MbNXzWyhmX1jZufGMp6qqHTZCOdCSVefPn7+0M03+54Xia3PPvPJ1rPP+qryI0bA3/8O48bp1lMREUm4mCVdZpYOTASOBPYHTjWz0rOWLwW+dc5lA8OBe80sM1YxVUWlq9KvXesTrebN4ZZb/NyhjRvhj39UaftYWrsW/vxnP59un33gjjvgmmugWbNERyYiIgLEtqdrELDUObfcObcDeA44tlQbB2SZmQGNgFygMIYxVVqlhxeDvVxdu/r1+m68Ebp1g/Xr4aabfEFOqR7hQ4Zt2sCJJ8L558P990OvXgkLS0REJJJYJl3tgFVhj1cHzoV7GOgBrAG+Aq50zhXHMKZKq/TwYnjSBX5O0a23+lsfV62CiROrO8TUtH69H7adPz907uyz4bjjtGyPiIgkpVgmXZEm0ZSezTwKWAC0BXKAh80sqVYVLl2VvkL/+5/fB5MugKwsP6E+I8PXiVqzptrjTBnOwX/+4+duLVgATz+tSfIiIlIjxDLpWg2EV7Zqj+/RCncuMNV5S4EVwH4xjKnSglXpd+zwVenLVVQEy5b54/CkC6BVKz+x2zm/BI1UXm6unyc3aZKvtXXwwXDbbZokLyIiNUIsk67PgK5m1jkwOX48MKNUmx+AwwDMbC+gO7A8hjFVSYsWfl/hvK5Vq3x2tvfevnertOOP9/u334ZNm6o1xlrv00/h8st97bOsLLjhBrjuOmjSJNGRiYiIRCVmSZdzrhC4DHgT+A54wTn3jZldbGYXB5r9GTjQzL4C3gGuc85tiFVMVRW8Aa7CpKv0fK7SOnSAQYN8OYPXXqu2+Gq97dv9XLjNmyEnBx5+GA48MNFRiYiIVEpMZxw752YCM0udmxR2vAYYGcsYqkPUdzBGms9V2gkn+F6b//zH321Xr161xFir1a0LV18NK1fCscdqOFFERGokVaSPQtRJV0U9XeAXWO7e3ZeOePvtaomvVnrvPXjppdDjnBx/Z6ISLhERqaEqTLrM7CAze8vM/mdmy81shZkl3byrWIqqbMSOHb4nxgz23bfsdma+twtg2jQ/+V5CCgv9RPl77/V3JmoJJRERqSWiGV58HLgamA+kZIYQnEhfbkH5FSt8AtWxY8VDhoMH+2Kea9f6EhJDh1ZbrDXahg3w17/C4sW+vMZFF/l1E0VERGqBaIYXNznnXnfOrXfO/RLcYh5ZEolqIn0087mC0tJCdzJOnao6UwBffQVXXukTrlat4K67YPRoDSeKiEitEU3SNdvM7jazIWbWL7jFPLIkEtXwYnA+V7du0V30sMN8uYOlS33Ckco++cQvkbR5M/Tt65fxiSZ5FRERqUGiGV48ILAfEHbOAYdWfzjJqXRV+oidL9FMog+XmQljxsCUKb63q0+faom1RurWzXcnDh0K55zjewJFRERqmQqTLufciHgEksyCVem3bfNV6Rs2LNVgyxb48Uc/D6kyc5COPhpefNGvH/jDD34+WKrYvt0nnmY+q33wwcgFZUVERGqJaO5ebGJm95nZvMB2r5mlXBnwcqvSL13qu8A6d4Y6daK/aFYWHH64P06lpYE2bIDf/x7+9a/QOSVcIiJSy0UzjjMZyANODmybgSdiGVQyKncyfWWHFsMFi33Ong0bN1Y1vJpj1Sq49lp/t+fHH/vuQxERkRQQTdL1G+fcLc655YHtT0CXWAeWbMotkLonSVfbtn5poMJCX6W+Nlu82K+X+Msvvkjs3XerIr+IiKSMaJKurWZ2cPCBmR0EbI1dSMkpZkkX+ErrADNn+iKrtdHnn8ONN/pK/AMHwm23aUhRRERSSjR3L14CPBWYx2VALnBOLINKRmWWjdi0Cdav9z02HTpU7eI9e/qEbckSePddX5+qNpk3D26/3ffmHXYYXHaZv+lAREQkhVTY0+WcW+Ccywb6AL2dc32dcwtjH1pyKbMqfbCX6ze/qXqpA7NQb9f06bWvWOq++/qCp8cf7wugKuESEZEUVOa3n5md4Zz7l5ldU+o8AM65+2IcW1IpcyL90qV+v6fFPA88EFq29KUn5s3zQ3C1RdOm8Le/Rai1ISIikjrK65oJfkNmRdgaxTiupFPm8OL69X7frt2evUFGBowd64+nTduzayWDV1+FJ58M9dop4RIRkRRXZk+Xc+7vgcO3nXMfhz8XmEyfUsqsSl9Q4PeNqiEPHTkSnn3WLwu0bJkfsqyJZsyAf/7THw8ZAt27JzYeERGRJBDNJKSHojxXqwWr0u/Y4QvQ75Kf7/fVkXQ1bOgTL6i5vV2vvBJKuCZMUMIlIiISUGbSFVjg+ndAKzO7Jmy7FUiPW4RJJGJV+mDSVV3DZ2PH+gn5H34YGrqsKWbMgMce88eXXgpHHpnYeERERJJIeT1dmfi5WxmUnM+1GRgX+9CST8TJ9NXZ0wXQujUMGwbFxfDyy9VzzXh4661QD9ell9a+shciIiJ7qLw5Xe8D75vZk8657+MYU9Jq2tTvN28OO1mdc7qCxo3zywK99RaMHx/K9pJVYWFoOPTCC5VwiYiIRBDNnK4tZna3mc00s3eDW8wjS0INGvh9MM+iuDj0oDrvzuvYEQYPhp07/RypZJeRAXfc4YueHnNMoqMRERFJStEkXVOARUBn4E/ASuCzGMaUtIJ51a6J9OEJV1ULo5blpJP8/j//CQ1hJpvc3FBJiCZNYNSoxMYjIiKSxKLJFFo45x4Hdjrn3nfOnQcMjnFcSSmYdO3q6aruSfThunWDnBzYtg1ee636r7+nVq+Gyy+Hxx+vfRX0RUREYiCapGtnYL/WzI42s75A+xjGlLR2G16s7kn0pQV7u2bM8MlXssjNhZtu8pPbVq+GoqJERyQiIpL0okm6/hJY7Pp3wLXAY8DVMY0qSZU5vBirpKt3b9hvP8jLgzffjM17VNb27fCXv8CGDT62G27QWooiIiJRiGbB69ecc5ucc18750Y45/o752bEI7hkE0y6dk2xinVPlxmcfLI/njrVT6xPJOfgvvv8It977w1//CPUrZvYmERERGqI8ha8fggoc7KOc+6KmESUxHbr6Yp10gUwYAB06gQrV8K77yZ2svrTT8OcOf4XcfPNfvK8iIiIRKW8nq55wPxytpQT9zld4Hu7gnO7XnopcfOntm2DuXP9XZrXXw8dOiQmDhERkRqqvOKoT8UzkJqgzLsXY5l0ARx8MEyZAmvW+KKphx8e2/eLpF49uPtu+PZbf1eliIiIVEqFc7rMbHZ4UdRULo6akOFF8L1Lp57qj5991leAj5etW0PHDRvCwIHxe28REZFaJJrbzq4NO64HnAhE9a1vZqOBB/ALZD/mnPtrhDbDgfuBOsAG59ywaK6dCMHhxS1b/Jxyi1fSBXDIIfDCC7BqFcyaBUcdFfv33L4drrsOunaFiy6CzMzYv6eIiFRJUVERubm57Ez0TVcppE6dOjRv3pz09PSo2leYdDnnSs/f+tjM3q/odWaWDkwEjgBWA5+Z2Qzn3LdhbZoCjwCjnXM/mFnrqKJOkLQ0P8q2bZvvAGoQz6QrLQ3OOMMvt/P8836IMZZJkHMwcSKsWOGTr507lXSJiCSx3Nxc6tWrR8uWLTGzRIdT6znnyM/PJzc3l1atWkX1mmiGF5uHbS3NbBSwdxTXHgQsdc4td87tAJ4Dji3V5jRgqnPuh8APsD6qqBMomF8VFBC/4cWgIUOgSxdfnPT112P7Xq+/7ueP1a0L//d/sam6LyIi1Wbnzp00atRICVecmBmNGjWqVM9iNMVR5xO6k/G/+CKp50fxunbAqrDHqwPnwnUDmpnZe2Y238zOiuK6CVXiDsZ4J11mvrcL4MUXY1elfvFi+Oc//fEVV8A++8TmfUREpFop4Yqvyv6+oymO2tk51yWw7+qcG+mc+yiaWCJdrtTjDKA/cDQwCrjJzLpFce2EKTGZPt5JF/i6Xd27w6ZN8Oqr1X/9TZv8EGZhIYwd6+eSiYiIROn222+nZ8+e9OnTh5ycHObOnZuQOBYsWMDMmTN3PZ4xYwZ//aufWn7OOefw0ksv7faa9957jzFjxsQspmiGF+uZ2TVmNtXMXjazq82sXhTXXg2EF3NqD6yJ0OYN51yBc24D8AGQHW3wibCrpyvfhW5jjOfQmxmceaY/njo1rH5FNXnmGfjlF+jRA849t3qvLSIitdp///tfXnvtNT7//HO+/PJL3n77bTokqK5j6aRr7NixXH/99QmJJSia4cWngZ7AQ8DDQA/gmShe9xnQ1cw6m1kmMB4ovXzQK8BQM8swswbAAcB30QafCMH8atsvBX6yeYMGfpJ7PPXp49dlzM+HV16p3mtfcAEceaQvgKo1FUVEpBLWrl1Ly5YtqRtYIq5ly5a0bduWTp06sWHDBgDmzZvH8OHDAXj//ffJyckhJyeHvn37kpeXB8Bdd91F7969yc7O3pUoLVu2jNGjR9O/f3+GDh3KokWLAN9rdfHFFzN06FC6devGa6+9xo4dO7j55pt5/vnnycnJ4fnnn+fJJ5/ksssu2xXr22+/XeI1pRUUFHDeeecxcOBA+vbtyyvV8H0bzbdqd+dceO/TbDNbWNGLnHOFZnYZ8Ca+ZMRk59w3ZnZx4PlJzrnvzOwN4EugGF9W4uvK/xjxE0y6tv+SgKHFoODcruuug+nTYcwYaNy4eq5drx5MmFA91xIRkYQ45pjYXLeiWS0jR47ktttuo1u3bhx++OGccsopDBtWdiWoe+65h4kTJ3LQQQeRn59PvXr1eP3115k+fTpz586lQYMG5ObmAnDhhRcyadIkunbtyty5c5kwYQLvvuvLhq5cuZL333+fZcuWMWLECJYuXcptt93GvHnzePjhhwF48sknS7x3pNeEu/322zn00EOZPHkyGzduZNCgQRx++OE03IPRrWiSri/MbLBz7hMAMzsA+DiaizvnZgIzS52bVOrx3cDd0YWbeMHf9Y5fE5h0Aey/P/TvD/Pn+4KpF11U9WsVFMDLL8Mpp2gBaxERqbJGjRoxf/58PvzwQ2bPns0pp5yyax5VJAcddBDXXHMNp59+OieccALt27fn7bff5txzz6VBYD5P8+bNyc/PZ86cOZwUXBYP2L59+67jk08+mbS0NLp27UqXLl129YKVp6LXzJo1ixkzZnDPPfcAsG3bNn744Qd69OhRqd9JuGiSrgOAs8zsh8DjjsB3ZvYV4Jxzfar87jVQMOkqTHTSBX7O1eefw8yZcPTR0L595a/hHDz8MHz0Efz8M/zud9Ufp4iIxFUs7rOKVnp6OsOHD2f48OH07t2bp556ioyMDIqLiwGfvARdf/31HH300cycOZPBgwfz9ttv45zb7a7A4uJimjZtyoIFCyK+Z+n20dxVWNFrnHO8/PLLdO/evcJrRSuayUijgc7AsMDWGTgKGAPEqAMzeQUn0hduTIKka599YNQoKC6GJ56o2jXefdcnXPXqwWmnVW98IiKSUhYvXsySJUt2PV6wYAH77LMPnTp1Yv58X2v95Zdf3vX8smXL6N27N9dddx0DBgxg0aJFjBw5ksmTJ7MlcLNabm4ujRs3pnPnzrz44ouAT4gWLgzNdHrxxRcpLi5m2bJlLF++nO7du5OVlbVrjlgkkV4TbtSoUTz00EM45wsvfPHFF3v424muZMT3QFN8gnUM0NQ5931w2+MIaphgT1fR5vySJxLl9NN9wvTpp/Dll5V77Zo1MCkw2nvxxdCmTfXHJyIiKSM/P5+zzz6b/fffnz59+vDtt99y6623csstt3DllVcydOjQEkvm3H///fTq1Yvs7Gzq16/PkUceyejRoxk7diwDBgwgJydn1/DelClTePzxx8nOzqZnz54lJrZ3796dYcOGceSRRzJp0iTq1avHiBEj+Pbbb3dNpC8t0mvC3XTTTezcuZM+ffrQq1cvbrrppj3+/VgwgyuzgdmVwG+BqYFTxwP/cM49tMfvHqUBAwa4efPmxevtyjVvHvzpT3Bm/Zc4eetTcPzxcN55iQ3qhRd8qYcuXeBvf4vubsrCQvjDH2DJEl+L69pr/QR9ERGpkdasWUPbtm0THUbcnXPOOYwZM4Zx48Yl5P0j/d7NbL5zbkDpttEML54PHOCcu9k5dzMwGJ+EpaRgx1ZxXqA+ViKHF4OOOw5atoTly/3SPdF47jmfcLVu7e9WVMIlIiISU9EkXQYUhT0uInK1+ZQQnNNFQRLM6QrKzISzAisoPf10xcsDOQdr1/pE65prEj9EKiIiUkVPPvlkwnq5KiuapOsJYK6Z3WpmfwI+AR6PbVjJK5ifpCVT0gUwfDh07eoXw54+vfy2ZvD738MDD0DPnvGITkREJOVFM5H+PuBcIBf4BTjXOXd/jONKWruSri1JMpE+yCw0t+yll/xSPpGEz+Hr3Dn2cYmIiAgQXU9XkOEXrE7ZoUXwNwqaQZ3t+T5/SZaeLoBeveDAA2H7dpg8effnV670PVwrVsQ9NBERkVQXzYLXNwNPAc2AlsATZvbHWAeWrMz8vK56hfkUFZFcSRfA+ef7OV4ffABhNUwoLIT774fFi+HNNxMWnoiISKqKpqfrVGCgc+5W59wt+LsXT49tWMmtYUOoV5RPYTImXa1bw/jx/vjRR2HnTn88dSosW+afP/vsxMUnIiK1VqMovhM//PBDevbsSU5ODlu3bq3U9adPn863334bk7jiIZqkayUQXjGsLrAsJtHUEA0bOOoVFfiermSZ0xXu+OOhXTv48UeYNg1WrfLrMwJcfjnUr5/Y+EREJGVNmTKFa6+9lgULFlC/kt9HVU26kkU0Sdd24Bsze9LMngC+BvLN7EEzezC24SWnpplbMOcoTK8HGdEsXxlnGRlwySX++Lnn4M47/fDiyJGQk5PQ0EREpPZ77733GD58OOPGjWO//fbj9NNPxznHY489xgsvvMBtt93G6af7QbO7776bgQMH0qdPH2655ZZd13j66afp06cP2dnZnHnmmcyZM4cZM2bw+9//npycHJYtW8ayZcsYPXo0/fv3Z+jQobsWrV6xYgVDhgxh4MCB1VJJvrpEkzFMC2xB78UmlJqjSYYvjLojMzm6KyPKzvaV5qdOhW+/hYEDE185X0RE4uOYGC2NXImVtL/44gu++eYb2rZty0EHHcTHH3/MBRdcwEcffbSrgvysWbNYsmQJn376Kc45xo4dywcffECLFi24/fbb+fjjj2nZsiW5ubk0b96csWPHlqg+f9hhhzFp0iS6du3K3LlzmTBhAu+++y5XXnkll1xyCWeddRYTJ06Mze+iCipMupxzT8UjkJqkaYYvF7EtI4mTLvCT6l97DTZvhiFDknMoVEREaqVBgwbRvn17AHJycli5ciUHH3xwiTazZs1i1qxZ9O3bF/BrNy5ZsoSFCxcybtw4WrZsCUDz5s13u35+fj5z5szhpJNO2nVu+/btAHz88ce7FtY+88wzue6666r/B6yCJBwbS36N02pI0tW8ua84/+ijftHI7duhbt1ERyUiIrFWiR6pWKkb9n2Tnp5OYWHhbm2cc9xwww1cdNFFJc4/+OCDWAXL0xUXF9O0aVMWLFgQ8fmKXp8IlanTJQFZ5pOurelJnHQFi6COGeMr1f/8M/z734mNSUREJMyoUaOYPHky+fn+e/XHH39k/fr1HHbYYbzwwgv8Eij0nZubC0BWVhZ5eXkANG7cmM6dO/Piiy8CPoFbGCiVdNBBB/Hcc88BfuJ+sigz6TKzZwL7K+MXTs0QTLq2pCVp0lVcDH/8I8yY4R9fdpkvMDZtmq/TJSIikgRGjhzJaaedxpAhQ+jduzfjxo0jLy+Pnj17cuONNzJs2DCys7O55pprABg/fjx33303ffv2ZdmyZUyZMoXHH3+c7OxsevbsySuvvALAAw88wMSJExk4cCCbNm1K5I9YgrnwZWHCnzD7FjgSmAEMp1QleudcbqyDCxowYICbN29evN6uQl/cNJWd/3iCzYcex+HPnp/ocHb3n//ApEnQsqUfWqxXz1eonzYNOnTway7WqZPoKEVEpBqtWbOGtm3bJjqMlBPp925m851zA0q3LW94cRLwBrAfML/UljwZUAI0dL6nK9+SsKdr40Z45hl//Nvf+oQL4IwzfO2uVat8GQkRERGJqzKTLufcg865HsBk51wX51znsK1LHGNMOvUKfdKVV5yESdeTT0JBAfTv7+9YDMrMhCuv9MOML70ES5cmLEQREZFUVOFEeufcJWaWbWaXBbY+8QgsmdUv8knX5mRLupYtg3fe8cVRL7rIJ1jhevSAsWP9nK8HHvAFU0VERCQuolnw+gpgCtA6sE0xs8tjHVgyq7vTJ12bipIo6XIOHn/cH48ZA23aRG535pn+uZUr4fnn4xaeiIhIqoumZMQFwAHOuZudczfjF7z+bWzDSm6ZO3zS9evOJEq68vNh61bIyoJTTim7Xd26cMUV/vjFF2H58vjEJyIikuKiSboMKAp7XESpOxlTTZ3tSZh0ZWXBfffB3XdDRaup9+oFRx8NRUVwzz2wY0d8YhQREUlh0SRdTwBzzexWM7sV+AR4PKZRJbm0rfmYQZ5rxM6diY4mjJm/QzEa55wTupvx8ZT+OEVEpJqkp6eTk5NDr169OOaYY9i4cWOiQ6q0W2+9lXvuuScm145mIv19wLlALvArcK5z7v6YRFMTOIcVFJCeDtvSG7JlS4LjKSiABx+E9esr97p69eAPf/CT7mfOhLlzYxOfiIikjPr167NgwQK+/vprmjdvnjSLTTvnKC4uTnQY0S0D5Jz7PFBC4gHn3BexDiqpbd0KxcW4uvUoTsugoCDB8Tz/PLz1Fjz0UOVf26ULnH22P37gAciNW71bERGp5YYMGcKPP/4IwLJlyxg9ejT9+/dn6NChLFq0CICffvqJ448/nuzsbLKzs5kzZw4A9913H7169aJXr17cf//9AFx33XU88sgju65/6623cu+99wJw9913M3DgQPr06cMtt9wCwMqVK+nRowcTJkygX79+rFq1KmI7gNtvv53u3btz+OGHsziGK7dowevKCqwPVVjfz5tKaNL100+hRU3POqtq1zj2WPj8c/jiCz8n7M9/3r3UhIiI1DzHHFP2c5deCqNH++M33oDyeqSqsHh2UVER77zzDuef71dtufDCC5k0aRJdu3Zl7ty5TJgwgXfffZcrrriCYcOGMW3aNIqKisjPz2f+/Pk88cQTzJ07F+ccBxxwAMOGDWP8+PFcddVVTJgwAYAXXniBN954g1mzZrFkyRI+/fRTnHOMHTuWDz74gI4dO7J48WKeeOIJHnnkkTLbNWzYkOeee44vvviCwsJC+vXrR//+/Sv9M0dDSVdlBZKu4mRIup56ytfaGjHCL2pdFWZw9dVw+eWwcKFfKuiEE6o3ThERSQlbt24lJyeHlStX0r9/f4444gjy8/OZM2cOJ5100q5227dvB+Ddd9/l6aefBvx8sCZNmvDRRx9x/PHH07BhQwBOOOEEPvzwQ6644grWr1/PmjVr+Pnnn2nWrBkdO3bkwQcfZNasWfTt2xeA/Px8lixZQseOHdlnn30YPHgwALNmzYrYLi8vj+OPP54GDRoAMHbs2Jj9fpR0VVYg6XINfdKVsDldy5fDhx/6NRTPPHPPrtWsma9Wf9tt8PTT0Lt31ZM4ERFJDtH2UI0eHer12kPBOV2bNm1izJgxTJw4kXPOOYemTZuyYMGCqK5R1prQAOPGjeOll15i3bp1jB8/flf7G264gYsuuqhE25UrV+5K3Mprd//992NxGuGJpjjqCWa2xMw2mdlmM8szs83RXNzMRpvZYjNbambXl9NuoJkVmdm4ygSfEIGki0b+g0xYT9e//+33Rx0FrVrt+fUGDvRd0UVFcOedoZ9TRESkkpo0acKDDz7IPffcQ/369encuTMvvvgi4JOfhQsXAnDYYYfx6KOPAn5IcvPmzRxyyCFMnz6dLVu2UFBQwLRp0xg6dCgA48eP57nnnuOll15i3DifMowaNYrJkyeTH/je+vHHH1kf4eaystodcsghTJs2ja1bt5KXl8erVRhOjVY0E+nvAsY655o45xo757Kcc40repGZpQMTgSOB/YFTzWz/MtrdCbxZudATJJBlWVYChxd/+gk+/dQXOh1XjXnqOefAvvv66997r69yLyIiUgV9+/YlOzub5557jilTpvD444+TnZ1Nz549eeWVVwB44IEHmD17Nr1796Z///5888039OvXj3POOYdBgwZxwAEHcMEFF+waEuzZsyd5eXm0a9eONoGVV0aOHMlpp53GkCFD6N27N+PGjSMvL2+3eMpq169fP0455RRycnI48cQTdyV4sWDldeMBmNnHzrmDKn1hsyHArc65UYHHNwA45+4o1e4qYCcwEHjNOfdS6WsNGDDAzZs3r7IhxMa0aTB5MnP3Ppa/rLuA8ePh9NMTEMeqVbBiBRxySPVed/16uOoqyMvzP1ig+1ZERJLbmjVraNu2baLDSDmRfu9mNt85N6B022h6uuaZ2fNmdmpgqPEEM4tmpnU7YFXY49WBc+FBtQOOByZFcb3kEOiWTG+S4DldHTpUf8IF0Lo1XHutn2D/73/D/PnV/x4iIiIpKJqkqzGwBRgJHBPYxkTxukiz0kp3q90PXOecK4rQNjkFkq6MpgkYXnQOvvsu9sN+/fr5Xi7n/DJBP/0U2/cTERFJARXeveicO7eK114NdAh73B5YU6rNAOC5wF0DLYGjzKzQOTe9iu8Ze4lMuhYuhJtugkGD/D6WTj4ZFi+Gzz6DO+6Au+6CzMzYvqeIiEgtFs3di+3NbJqZrTezn8zsZTNrH8W1PwO6mllnM8sExgMzwhs45zo75zo55zoBLwETkjrhgl1JV2bzOA8vOgf/+pc/3m+/2L+fGfzud7D33rBsGTzyiCbWi4gkuYrmaUv1quzvO9oFr2cAbfFzsl4NnKsokELgMvxdid8BLzjnvjGzi83s4kpFmUwCSVfdFo3CH8bevHm+56lJk/KrDFenhg3h//7P93C98w68/HJ83ldERCqtTp065OfnK/GKE+cc+fn51KlTJ+rXRFMctZVzLjzJejJwx2E0Ac0EZpY6F3HSvHPunGiumXCBLKteyzj2dDkHU6b443Hj/GLV8dK5s59Yf8cdvgJ+27Zw4IHxe38REYlK8+bNyc3NjVguQWKjTp06NG/ePOr20SRdG8zsDODZwONTgV+qEFvtUCrpisucrs8/90N8TZv6YqjxNmSIXxj7ySd9/a5WrVSxXkQkyaSnp9OqOoplS8xEM7x4HnAysA5YC4wLnEs9zu1KuhruFerpinlPbqCKL8cdl7jJ7CecAEccATt2+EWxN2xITBwiIiI1VIVJl3PuB+fcWOdcK+dca+fccc657+MRXNLZtg2Ki6FuXTLqZZCZ6VfNCazbGRtFRX4txL32giOPjOEbVcAMJkyAPn3g11/hT3+CrVsTF4+IiEgNU2bSZWZ/COwfMrMHS2/xCzGJ7Fp30fdyBdfRjOm8rvR0XzPrH/+AwAroCZORATfcAO3awcqVvoxEYWFiYxIREakhyuvp+i6wnwfMj7ClnjKSrrjM60qLZiQ4Dho1gltugawsf0flgw+qlISIiEgUyvwmd84Fl9ne4px7KnzDV6hPPcHsKl5J1+OPw6uvxnj8sgratIFbb/V3Uc6eDY89psRLRESkAtF0n9wQ5bnar1RPV3C0LyZJ19q18MorMHmyX3w62XTrBjfe6IccZ8yAF15IdEQiIiJJrcySEWZ2JHAU0K7UHK7GQGpO5InnnK6XX/a9R8OHQ8uWMXiDapCTA7//Pfz1r75aflZWYkpaiIiI1ADl9XStwc/n2kbJuVwzgFGxDy0JBZOuQLYVs+HF3FxfAd7MF0NNZgceCJde6o8nTYIPPkhsPCIiIkmqzJ4u59xCYKGZTQMKnHNFAGaWDtSNU3zJJV7Di9On+7sCDzzQ3ymY7EaN8kOgTz0F993nhxxVtV5ERKSEaOZ0zQLqhz2uD7wdm3CSXDyGF/Pz4fXX/fFJJ1XjhWPsxBN9r1xRkS8lMWdOoiMSERFJKtEkXfWcc7uWdQ4cJ7hgVILEo2TEe+/5Iqx9+sC++1bjhWPMDM46K5R43XmnEi8REZEw0ay9WGBm/ZxznwOYWX8gNUuRb9rk91lZQIySrtGj/RqLlVhAM2kEEy8zv3TRnXfCH/4ABx2U6MhEREQSLpqk6yrgRTNbE3jcBjglZhEls18C63y3aAHEaE5XRgYcfHA1XjDOzODMM/3xiy/6oUYlXiIiIlGtvfgZsB9wCTAB6OGcS82K9Lm5fh9Iuqp9TldcStvHQTDxOvlkv1blXXf5uzFFRERSWLRry3QH9gf6Aqea2VmxCylJbdvmk6I6dWIzvLh0qU9UHnusGi6WBMzgjDNg/HifeN1/P0ybluioREREEqbC4UUzuwUYjk+6ZgJHAh8BT8c0smQTHFps3twnFFRz0jVjBuzcuevatYKZX6w7Kwv++U9fXX/TJjj77Nr1c4qIiEQhmp6uccBhwDrn3LlANqlYp6vUfC4Izena4+HFX3+FDz/0iciYMXt4sSQ0dixccw2kp/tK+w895O9wFBERSSHRJF1bnXPFQKGZNQbWA11iG1YSqiDp2qP1nmfO9MVQBw+GvfbagwslsREj4I9/hMxMeOstuOOO5FvIW0REJIaiSbrmmVlT4J/4ZYA+Bz6NZVBJKULSlZYG9ev7hKvKvV07doSKoY4du2cxJrsBA+Avf/HjsnPnwg03hG5OEBERqeXKTbrMzIA7nHMbnXOTgCOAswPDjKml1J2LQXt8B+OHH/p5Tl26QM+eVY+vpujRw9/N2Lo1LFkCv/sdrFiR6KhERERirtykyznngOlhj1c6576MdVBJKUJPF1RDra5ly/x+7NjUmVzesaNfo7FHD9iwwdfx+jT1Ok9FRCS1RDO8+ImZDYx5JMkumHS1bFni9B73dF14ITzyCBxySNVjq4maNPFDjcOH+3Icf/mLLymxR5PjREREklc0SdcIfOK1zMy+NLOvzCz1ervK6OmqlrIRHTr4+l+pJjPT39V4xhk+2Zo8Gf72N02wFxGRWqnMOl1m1tE59wO+LldqKy4OzekqtSZilYcX8/JgzRro1i11hhUjMYNTToF27XwB1dmz/RyvG26Atm0THZ2IiEi1Ka+nazqAc+574D7n3PfhW1yiSxYbN/rEq0kTvzZimEaN/L7SSdfbb8O118Lf/14tIdZ4Bx8M997rk6+VK+Hqq+GTTxIdlYiISLUpL+kK735Jvbpc4coYWoRQx9fPP1fies7Bm2/647599yy22mSfffwE+wMP9JPkbr8dnnxShVRFRKRWKC/pcmUcp54yykUAtGnj9+vWVeJ6X30FP/7orzdgwJ7HV5s0aADXXw/nnecLob38sh9qXL8+0ZGJiIjskfKSrmwz22xmeUCfwPFmM8szs83xCjAplNPTtffefr92bSWuFyyGOnKkXxpHSjKD44/3PV3Nm8N338Hll8P77yc6MhERkSorM+lyzqU75xo757KccxmB4+DjxvEMMuGiSLrWrYuy2sGmTX6ukplPuqRsvXrBww/DkCF+uPGee/zwY7WsMC4iIhJf0ZSMqDIzG21mi81sqZldH+H50wNlKL40szlmlh3LeKqsnKQrK8uPiG3Z4m9IrNBbb/l1FgcO3K3ml0SQleWHFy+7DOrW9Xc3XnEFfPttoiMTERGplJglXWaWDkzEl5zYHzjVzPYv1WwFMMw51wf4M/CPWMWzRzZs8PtS5SLAd1hVaogxPd0nEqNHV198tZ0ZjBoFDzwAv/mNn991/fXwj3/4wqoiIiI1QCx7ugYBS51zy51zO4DngGPDGzjn5jjnfg08/ARoH8N4qq6cni6o5GT644/3d+T1718toaWUdu38EOMpp/hE7NVX4dJLYeHCREcmIiJSoVgmXe2AVWGPVwfOleV84PUYxlN11Zl0ga/EnhbTkd3aKyPDV7D/29/8IuHr18Mf/+jnfmmul4iIJLFYfvNHKrMecaq5mY3AJ13XxTCeqtm61W+ZmaFKqKVENbz466/wxhv+WrLnunTxxVTPPNMnYm++CZdc4u9w1PqNIiKShGKZdK0GOoQ9bg+sKd3IzPoAjwHHOud+iWE8VRPey1XGcj3hdzCW6Z13YOJEeOih6o0vlWVkwMkn+7le3bv7xPaee3zP16pVFb9eREQkjmKZdH0GdDWzzmaWCYwHZoQ3MLOOwFTgTOfc/2IYS9VVMLQIoeHFMnu6nPPL/gCMGFF9sYnXsSPcfbe/qzErC7780tf1euIJTbQXEZGkEbOkyzlXCFwGvAl8B7zgnPvGzC42s4sDzW4GWgCPmNkCM5sXq3iqLJh0RbhzMahlS9/pkpsLO3ZEaLBoka9A37w59OsXmzhTnRkccYRfy3L0aL9W5tSpcNFFvkxHcXGiIxQRkRQX09nczrmZzrluzrnfOOduD5yb5JybFDi+wDnXzDmXE9iSb02cKHq60tKgdWt//NNPERqE93KpAn1sZWX5OxrvvRe6dvWZ8IMPwpVXwoIFiY5ORERSmG6hq0gUSReUM8S4bRt88IE/Pvzw6o1Nyta1q0+8rr0WWrWClSvhppvg1lv9sYiISJxlJDqApBdl0rXXXn6/W9I1Z45PvLp3h/bJWYas1jKDYcP8MkKvvgovvADz58Pnn8PQoXDaab72l4iISByop6silezp2u0OxiZNoEcPP99IEiMzE0480VewP+YYP8T7wQe+xMT991dytXIREZGqUU9XRfZ0eLF/f7+pdlTiNWkCF17oVwV4/nk/1+6dd+C99+DQQ2HcOGjbNtFRiohILaWervIUFfnaT1Du3YsQRa2uMmp8SQK0auUX0J40CQ47zN/Z+NZbcPHFcOedsGxZoiMUEZFaSElXeTZu9D1UTZr4mhDlCCZdP/0UqE7gHDzzjP8CVy9Xctp7b7jqKnj0UT/8m54OH33kz918s6/3pc9ORESqiZKu8kQ5tAhQty40awaFhYGXLVzoJ27/v/8X2xhlz7Vr5wur/vOfcNxxUK8efPEF3HijLzXx9ttlFGATERGJnpKu8lQi6YJSazC+9ZZ/cPjhGlqsKVq2hPPPh8mT4fTTfQ/nihV+maHzzoN//cvX/RIREakCJV3lqWTSFZxM//PKAvjkE59sHXZYjIKTmMnKgvHjffJ11VV+ce1Nm/zk+/POgzvu8D1hGnoUEZFK0N2L5ali0uXe/8APR2Vnh0rVS82TmemT5kMPhe++87W+5swJbXvtBSNH+t7MCm60EBERUdJVnioOLzad+yY0Q7W5agsz2H9/v+Xm+jleb77p75p45hmYMsWXBTn0UBg0yCdrIiIipSjpKk8Vkq42BUupv2YZdMzyldCldmneHE4+GU46ya/l+MYbMHcufPaZ3xo2hIMO8gnY/vtrPp+IiOyipKs8VRhe3JreiE+aH0XPoxurx6M2M4O+ff22aZOvcD97NixZArNm+a1lSzj4YL9166YETEQkxSnpKk8lk67GjWFb072ZXu8STh4LWTEMTZJIkyZ+eaFjjoFVq3zyNXs2bNgA06f7rXVrn3wdeKASMBGRFKWkqyxbtviFqjMz/ZBRFMx8b9eKFb4yfZayrtTToQOcdRaceSYsXuyLrX70EaxfD1On+q15cz/364ADoE8f9YiKiKQIJV1lCe/lirZX4pFHGFzQnR+KD2Hdujp07Rq78CTJmcF++/nt/PNh0SL48ENfSuTnn/1csDfe8IVY+/XzE/H79fNDkiIiUisp6SpLJYcWWbkSXn+dwT99wIstD9594WtJXWbQo4fffvtb3xX6ySd+Av7y5aESFAD77BNaJH2//dQLJiJSiyjpKktlk65ZswDYOmgYhd/XLXvha0ltZr7YapcucNppfthx/ny/LVwI33/vt6lTfcLVowfk5Piab7/5DaSpnrGISE2lpKsslUm6duyAd98FwEaPgr+jni6JTuvWcOSRftu5E7791idgCxb4HrGFC/0Gfm5hjx7Qsyf06gX77lvhQuwiIpI89Be7LJVJuj7+GAoKoGtXmg/oAn9HPV1SeXXq+B6t7Gz/eNMm+Oorn3QtWOD/o5o3z2/ge8K6d/eJWPfufmvSJGHhi4hI+ZR0laUySdebb/r9qFG0auVHgH75xXeAaUqOVFmTJqE6X+BLUHzzjd++/tqXp/jqK78FtWnj54J17ep7wrp0gbp1ExO/iIiUoKQrEufgxx/9cUVJ1+rV/kuwXj045BDS0/2I0bp1frpO+/axD1dSRMuWMGyY3wA2b/ZrQi5a5LclS/y49tq1vk4Y+H8BdOzok7DgXLJOnaBBg4T9GCIiqUpJVyRffOGTqSZN/JdUeVq0gEsvhfx8qF8f8MsBrVvnv/uUdEnMNG7sa30dcIB/XFTkJ+EvWgRLl/ok7Icf/J21K1eWfG2bNqEErGNHf9dkmzaaqC8iEkNKuiJ54QW/P+64iscH69eH0aNLnGrTJjQFRyRu0tNDvVlB27f7shRLl/qJ+cuX+8Qs2CP28cehtpmZ/l8JHTv6Iq/t2/t9mzaasC8iUg30l7S04JyZhg3hqKPKbldcDLm5EYtZtmvn9598AmPGaMUXSaC6dUM1woIKC31P7ooVoRIV33/vi7YuX+63cGlpvvu2bVv/H3fbtqGtRQuf7ImISIWUdJUW7OU65pjy573MmgX//KevNl4qORs+3F/myy/hnXfg8MNjF65IpWVk+GHFTp1Kni8o8MORq1f7SfrB/U8/wZo1fgveORkUnMS4996+R2yvvfzj4L5xY/2rQ0QkQElXuCVL4PPP/aT4sWPLbrd5Mzz9tL89sXHj3Z5u0sQXHr/3XnjsMV9cvFmzGMYtUh2CdcDCe8XA/3e+dq1Pun78MZSArV3re3uDQ5VffLH7NevWhVatfI9wq1Ylj1u08OtQNmigxExEUoKSrnAvvuj3Rx5Z/mrVTz8NeXm+ntJBB0VsMmwYvPeer3P597/D9ddXf7gicZGZ6Sfa77PP7s9t3+5v0w3eOfLTT/7x+vX+uKDA95itXl329evV88lXixb+XyfNm/t9+Na0qf9/UhP9RaQGU9IV9MMP8N//+gKVxx1XdrvFi/3QYkYGXHxxmf9CN4MJE/yNjR9/7Od3DR4cm9BFEqZuXT/ZvkOHyM8XFPi5Yhs2+O3nn0OPc3N9Qbtt20K9Z+Ux893ITZv6fePGfh88btzYJ2bhexXKE5EkoqQr6KWX/P6II/y/tCMpLoZHH/V1vI47rsJ6EK1bw1lnwT/+4V/Wu7cfwRFJGQ0b+q30/LEg52DLllAC9uuvoS031+83bvRbXl7oOFqZmT4Ba9QotG/UyMdUet+ggd/Cj3WTgIhUIyVd4IdG3n/f/4E98cSy2336KSxb5ueknHJKVJc++mh/6cWL4cknfc+XiASYhRKzsnrLggoL/XzKjRv9EknBbfNmv8/L88d5eaHjHTt8MhdcYaKy6tb1ZWGCSVj9+pG3evVKbvXr+9fWrRs6F3ys8hsiKSum//eb2WjgASAdeMw599dSz1vg+aOALcA5zrnPYxlTRC+/7HuxDjvMd0+VpW9f3wv229/6P6JRSEuDK66AK6+EN96Abt38qi6BOqoiEq2MDP//X1k90aU55+ec5ef7JCy4Lyjwx+H74LZlS2i/ZYt//fbtletdq0h6uk++MjNL7oPHwcd16oT2wfPB4zp1dj8ObhkZux9nZIS2OnV044JIgphzLjYXNksH/gccAawGPgNOdc59G9bmKOByfNJ1APCAc+6A0tcaMGCAm1f6VvXq8uuvcN55vpr3o4+GimwVFsKHH8Krr8Kf/xwaF8zNjf6Pfphnn4V//9sfZ2RAr14waBAMHOjvtheRJBNM2rZsga1bQwnZtm3+8datoeNt20oeb90aSti2bQvtt23z1020tLSSiVhwS0+veF/6uKwtLW334/B9ecelt+BzZmW3CW7BNqX3pc9Falf6OLiJVJKZzXfODdjtfAyTriHArc65UYHHNwA45+4Ia/N34D3n3LOBx4uB4c65teHXimnS5ZwvE/HAA/7urI0bfWK1eXOozfnnlz+5PgpFRfDaa35S/aJFJf/uZmaWnFbSqJE/F+lvFOz+tyDS3wT9nRBJQs5hxUWkF24vsaUV7iC9aAdphdtJL9xBWuEO0op37jr2z/lzaUWB80U7SSsK7gsD+5272ux+rhArLiStqDDRv4WaxwxnBoT2pc85CyRr4W1g1/mS58KO09IinscMF35cxutDzxH5+dLXinC9stqErrXrZMnniPBFU97rdjsf+bqVu3aE60R4Tbi2F49ln5Hdy7hG9Sgr6Yrl8GI7YFXY49X43qyK2rQD1hIvZr6Q1o4dfu2e8PPt2sG4cTBixB6/TXo6HHus3zZv9qUkPvvM53sFBT7Py83d47cRkaRm+D+7GUA13lWTFtjqRNHWOdIoJr14J2muiHRXSLor9MfFO0mniLTiwt2eCz4OPzaKSQ88TnOFpLsizBVjrpg0inY9Z67Yt6F413HwteaKMQLPlz52xbteY7gS1wG3q41/TaiNUYw5V+J8yfb+sUU6F3idBY4Dv7TAJnsq2v6AWPYbbDp8CMQ46SpLLJOuSL+z0v/VRtMmPq64ws+fCNYFatIkZjWBGjf2edyIEaERjPBpJfn5sHOn7x0rLvb7oiLfNrhByePqkgwjHyISS4afZlv77syMSWoU/KNYHEjMAn94dx0Hz0doE0zidntN4Lol2gbOl9lmVyyBdqW/EEq/Nvz14T9Lea8Jj6H076BEAhpipd6v9PFu19rDdmU9H/H1ZbTda2i38tvGUCyTrtVA+O1I7YHShXiiaRMfBx6YkLc1C93c1KJFQkIQEZEyBfsGal+SKvEXy/LOnwFdzayzmWUC44EZpdrMAM4ybzCwqfR8LhEREZHaIGY9Xc65QjO7DHgT/0+Eyc65b8zs4sDzk4CZ+DsXl+JLRpwbq3hEREREEimmdbqcczPxiVX4uUlhxw5QuVARERGp9bR6rIiIiEgcKOkSERERiQMlXSIiIiJxoKRLREREJA5itgxQdTKzn4HvEx2HiIiISBT2cc61Kn2yRiRdIiIiIjWdhhdFRERE4kBJl4iIiEgcKOkCzGy0mS02s6Vmdn2i40lVZtbBzGab2Xdm9o2ZXRk439zM3jKzJYF9s0THmorMLN3MvjCz1wKP9bkkATNramYvmdmiwP87Q/TZJJ6ZXR34O/a1mT1rZvX0uSSGmU02s/Vm9nXYuTI/CzO7IZAPLDazUdUZS8onXWaWDkwEjgT2B041s/0TG1XKKgR+55zrAQwGLg18FtcD7zjnugLvBB5L/F0JfBf2WJ9LcngAeMM5tx+Qjf+M9NkkkJm1A64ABjjneuGXwhuPPpdEeRIYXepcxM8i8J0zHugZeM0jgTyhWqR80gUMApY655Y753YAzwHHJjimlOScW+uc+zxwnIf/8miH/zyeCjR7CjguIQGmMDNrDxwNPBZ2Wp9LgplZY+AQ4HEA59wO59xG9NkkgwygvpllAA2ANehzSQjn3AdAbqnTZX0WxwLPOee2O+dW4NeGHlRdsSjp8l/qq8Ierw6ckwQys05AX2AusJdzbi34xAxoncDQUtX9wB+A4rBz+lwSrwvwM/BEYOj3MTNriD6bhHLO/QjcA/wArAU2Oedmoc8lmZT1WcQ0J1DSBRbhnOpoJJCZNQJeBq5yzm1OdDypzszGAOudc/MTHYvsJgPoBzzqnOsLFKAhq4QLzA86FugMtAUamtkZiY1KohTTnEBJl89iO4Q9bo/vBpYEMLM6+IRrinNuauD0T2bWJvB8G2B9ouJLUQcBY81sJX74/VAz+xf6XJLBamC1c25u4PFL+CRMn01iHQ6scM797JzbCUwFDkSfSzIp67OIaU6gpAs+A7qaWWczy8RPoJuR4JhSkpkZfm7Kd865+8KemgGcHTg+G3gl3rGlMufcDc659s65Tvj/P951zp2BPpeEc86tA1aZWffAqcOAb9Fnk2g/AIPNrEHg79ph+Dmq+lySR1mfxQxgvJnVNbPOQFfg0+p6U1WkB8zsKPyclXRgsnPu9sRGlJrM7GDgQ+ArQnOH/g8/r+sFoCP+j9lJzrnSkyIlDsxsOHCtc26MmbVAn0vCmVkO/gaHTGA5cC7+H9T6bBLIzP4EnIK/K/sL4AKgEfpc4s7MngWGAy2Bn4BbgOmU8VmY2Y3AefjP7irn3OvVFouSLhEREZHY0/CiiIiISBwo6RIRERGJAyVdIiIiInGgpEtEREQkDpR0iYiIiMSBki4RSTgza2FmCwLbOjP7MXCcb2aPxOg9rzKzsyKc72RmX1fj+2Sa2QeBNfhEJIXpj4CIJJxz7hcgB8DMbgXynXP3xOr9AgnQefjq7THlnNthZu/gazZNifX7iUjyUk+XiCQtMxtuZq8Fjm81s6fMbJaZrTSzE8zsLjP7yszeCCwhhZn1N7P3zWy+mb0ZXOqjlEOBz51zhWGvWWhm/wUuDXv/Tmb2oZl9HtgODJx/xsyODWs3xczGmllPM/s00Ev3pZl1DTSZDpwei9+RiNQcSrpEpCb5DXA0fjHhfwGznXO9ga3A0YHE6yFgnHOuPzAZiLTCxEFA+ALeTwBXOOeGlGq3HjjCOdcP31P1YOD8Y/jK75hZE/y6ejOBi4EHnHM5wAD8Om4AXwMDq/gzi0gtoeFFEalJXnfO7TSzr/DLdr0ROP8V0AnoDvQC3vJL3pEOrI1wnTb4tfCCSVNT59z7geeeAY4MHNcBHg4stVMEdANwzr1vZhPNrDVwAvCyc64w0FN2o5m1B6Y655YE2heZ2Q4zy3LO5VXT70JEahglXSJSk2wHcM4Vm9lOF1rHrBj/98yAbyL0WJW2FagXODagrPXQrsav1ZaNHxnYFvbcM/ghw/H4+WE45/5tZnPxvXFvmtkFzrl3A+3rlnq9iKQYDS+KSG2yGGhlZkMAzKyOmfWM0O47YF8A59xGYFNgwXUoOfeqCbDWOVcMnInvOQt6ErgqcI1vAu/XBVjunHsQmAH0CZxvAfzsnNu55z+iiNRUSrpEpNZwzu0AxgF3mtlCYAF+vlVprwOHhD0+F5gYGB7cGnb+EeBsM/sEP7RYEPZeP+GTtyfC2p8CfG1mC4D9gKcD50fg53yJSAqzUO+8iEjqMLNpwB+C866q8PoG+Llk/ZxzmypoOxW4wTm3uCrvJSK1g3q6RCRVXY+fUF9pZnY4sAh4KIqEKxOYroRLRNTTJSIiIhIH6ukSERERiQMlXSIiIiJxoKRLREREJA6UdImIiIjEgZIuERERkThQ0iUiIiISB/8f9ex7j5cE+6AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABK/0lEQVR4nO3dd5xU1f3/8ddnF5a6dFGqoEFUehMRURALqGBUjNgSNcYWo4kxliRGY+I3iag/G35JvgpqJCE2FIkaYsFGgoKCCooUURAQBSlLW3b3/P74zDCzfXbZKcu+n4/Hfdw7d87cObuDOx/P+dzPsRACIiIiIpJcWenugIiIiEhdoKBLREREJAUUdImIiIikgIIuERERkRRQ0CUiIiKSAgq6RERERFKgXro7kIg2bdqELl26pLsbIiIiIpWaP3/+NyGE/UqerxVBV5cuXZg3b166uyEiIiJSKTP7vKzzml4UERERSQEFXSIiIiIpoKBLREREJAUUdImIiIikQNKCLjObbGbrzeyjcp43M7vPzJaZ2Qdm1j9ZfRERERFJt2SOdD0CjKrg+dFAt8h2KfC/SeyLiIiISFolrWRECOENM+tSQZPTgMdCCAH4r5m1MLN2IYS1yeqTiIhI0oUQ25fc6tcHM38+Px8KCkq3B2/TtGnsmps2QVFR6XYheLtGjfzxjh2weXPZ/QBo3z72/uvXw65d5V+zTZtYP7/8MvZ8/LUBOnSAhg39+Ouvva/x14pq0ADia24uWRL7mUraf39o1Sr2s3/5ZenrRfXoEfuZVqyAbdvKbtuyJXTqVPb7pUg663R1AFbFPV4dOaegS0QkVXbu9C/+wsLS+xYtIDfX2337Laxa5efjt6Ii3x9zTOyLb84c2LChdLuiIujaFYYM8XYbN8JTT8WuEUKsXVERjB/vQQLArFnwzjt+vmS7tm3hmmtiP9P11/vPEH0+2j4EOOssGDEi1s+HHy4dGEXbTpniQRLAzTfDJ5/4ccn2w4fH3v/zz+Gqq8r/fd9xBxx2mB9PmQIzZ5bdrlMnePDB2OOLLvKfqSyXXgpjxsR+pnvuKf/9n34acnL8+M474eOPy2533HHws5/58dq1cPXV5V8z/meaPh2ef77sdp07w8SJscc33QS7d5fdNv5nmj8/8Z9p0qTEfqY0SWfQZWWcKyOETb7PPvOAe1RFk6EiIjWhoACys2MByrp1kJfnown5+T7ysHu3H7dtCz17ertNm/zLLPrc7t3FtwsvhI4dve3TT8Ps2X6+oKD41r493H13rD/nnJPYl/l771X8xTdkSOyL79lny//iGzEiFnTl5ZX/BQ3+RzkadK1cCXPnlt2u5OjFsmXlf5lv3Ro73rnTR3vKEz9SsmuXty9LYWHZ581Kb/FycnyEqOTzZtCkSfG2LVv6z1SynVlslAl8xKtt29Jtosfx9tvPfx/x56PHrVsX72d0hKqsn6NBg+LX7Nat9O8B4IADip8/5BD/t1dW/1q2jB23aAGHH176emW9rmtX/++rZFuI/feRRhbKGqqrqYv79OLMEELPMp77MzA7hPD3yOMlwPCyphcHDhwYklWR/ttv/W+VGTz0UGw0VUTquMJCD26i0zYACxbA9u0+hbNjh38JR/eDB0Pv3t5u/nz4+9/9izr6ZR09Liws/n/m119ffoAyfDj8/Od+vHo1XHFF+f39wx9iAdpDD8Fzz5XdrkMHHw2IOu8871N2NtSrV3w/bhyMHBn72Z94ws9nZ0NWVqxdVpaP9MQHXevX+/msrFibrCz/UjzqKG+3dSu8+mrpNtGtf3//wgUPutat8z/WJds1bAjdu8d+pk8/jX3ZRq8bfV386N2OHbBlS/GgJ9rWDJo3j11n504fASsriIr+TsADtZJBidQ5ZjY/hDCw5Pl0jnTNAK4ys2nAYGBzOvK5WraEo4+GN96AGTPg4otT3QMRSYqCAv9Sz8srvQ0ZEvs/rH//G15/3YOp6LZtmwdc7dvDn/8cu+b//I9/UZelZctY0LVjhw+fl8XMg69ogNKxoz9u0MCnsuL3hx4ae13z5nD++f5c/JaT4/vOnWNtv/tdD5bq1fOtfv3Ycb0Sf/anTk3s99m3r2+J+O53E2uXmwunnZZY2y5diucDVeSQQxJr16hR8aC6IvGjSRVRwCUVSFrQZWZ/B4YDbcxsNXALUB8ghDAJeAE4GVgGbAcuSlZfKnPGGR50vfginH126VFdEckQa9d6ou6WLZ4sHL8/8ED/Dxjgq6/gkkvKv067drGga/16WLiwdJuyplEGDfJgrmFD3xo1iu3jpz9694YJEzxwatDA20SnkuKnFqHiXJl4ubmxn68ybdpo2F4kAyXz7sVzKnk+AD9O1vtXxcEHQ58+/nf3xRd9RF1EUmTbNli+3Of6N270/aZNvv/2W/jd72L5HQ8/XH5ez5YtsaCkaVOfJsrN9eP4rUmT4vkqw4d7wNS4sT/XuLFvDRqUDrp+8YvEfqZmzXwTEYmTzunFjHLGGR50zZjho93RG1ZEpJp27PBRpK+/hm++Kb4NHBibglqxAn71q/Kvs2lTLOjq2tWDtObNY4FN8+YeXMUn6TZu7HlFiUz1dOjgm4hIkinoiujXz9MFVq70m35OOCHNHRLJdLt2eVC1bp1vX3/tt7VHA50bbvBbg8sSrb8DfqdVjx4eWLVu7YnOLVv61qJF8YDovPMS65vyakQkAynoijCDM8+Eu+6CZ56B44/X322RPaUJoomOixbB44/DmjU+FVjSmWf6yBN4gnh+vt9Cvt9+sTyjNm2KB1L77w9//GPyfxYRkTRT0BXn6KPh0Uf9zux33vE7wEXqhG3b4IsvvLDj6tW+ffmlJ6SfdRZccIG3CwE+iiynWq+ej1Ltv79P7R1wgOdRRV1/fep/DhGRDKagK069ep5m8tBDXkZHQZfscwoKPKD6/PPiFcRvvNHn1kvKyvISC1EHHeSJ7e3b+4hVfJAlIiIVUtBVwkknwbRpXqvw449jKxuI1Dr5+X5X4LJlvl+xwpdxiVYf79kzdhdft24eQB14oFf37tjRt3btitd1atw48VpNIiJSjIKuEho2hJNP9sLLzzxT8U1VIhmjsNBHr0LwGijgVblvuql023bt/C7A/PzYuURrRYmISLUp6CrDqaf6mp1z5/rd7aoxKBln61ZYvNiHY5csgaVL/W7CwYPh17/2Ngcf7NOBBx8M3/mOB1pduiRegVtERGqUgq4ytGzpy3h99JHnEivokrSLX8/tL38pe5Hgdu08sT2qUSO4997U9E9ERCqloKsc0TJCZd0VL5J0mzfDhx96xd6FC+HKK2O5VPvv70vKHHKIV1I/9FD/vwRVQBcRyWgKusqhoEtSKlqK4b33YP780kVFP/ooFnSddJInHmrZBBGRWkVBVzkUdEnSbdlSfHTqnnu8wjv4SNbhh/uioL17x5Ljwe/2EBGRWkdBVzmid9Ir6JIaE4LfYTh3rm/LlsFjj/lSN2Y+gpWXB/37e8CVk5PuHouISA1S0FWO6Pq6Crpkr4TgwdWbb8KcOV7hPSonx6cR+/Xzx9/7Xnr6KCIiKaGgqxzR6cVvv01vP6SWy8uD666DoiJ/3KIFHHGEl3bo0wcaNEhr90REJHUUdJUjGnRt2FD8bn2Rcq1bB7Nn+12Hv/+9/6PJzYXhw33B6KOP9iUO9I9JRKROUtBVjkaNPF95507Yvt2/M0VK2bbNpw5ffdULlUYtWuTL7AD87Gfp6ZuIiGQUBV0VaN3ai6Nu3KigS0rIy4P/+z94663YcjoNGsBRR8GIEVq0U0RESlHQVYGWLWNBV6dO6e6NpF1+fuyOwsaN4YMP/Fzv3nD88TBkiMo5iIhIuRR0VUC1ugSAlSt92Z2334Y//xmaN4esLLjmGq8O365dunsoIiK1gIKuCqhWVx1WWOi1tGbO9MT4qAUL4Nhj/ThaIV5ERCQBCroqoFpddVAI8OKLMH26340IPmV4wglwyinQoUN6+yciIrWWgq4KaKSrDjKD//zHA6527WDMGBg50nO4RERE9oKCrgpopKsO2LIFnnkGhg6Fbt383Pnn+5I8Rx3luVsiIiI1QEFXBZRIvw/butWnEJ9/3ouxrV0LN93kz3Xv7puIiEgNUtBVgfigS1Xp9xHbtsGzz8Jzz8GOHX5u4EA488y0dktERPZ9CroqoKr0+5j58+HOO72wKfhC0+edp1EtERFJCQVdlVBV+n1I586waxf06gUXXKCq8SIiklLKEq5EtfK6tm+Hp5+Gb75JSp8kQYsXw733+twwwH77wf33w+23K+ASEZGU00hXJap1B+OLL8Ijj/j+jjtikZukxsaNMGUKzJ7tj3v39vUQQXW2REQkbTTSVYlq1er65BPff/UV3HKLJ29L8hUUeIL85Zd7wJWTA+PH+5qIIiIiaZbUoMvMRpnZEjNbZmY3lvF8czN73swWmtkiM7somf2pjmqNdC1d6vtWrXzdvttu81wiSZ5Fi+CnP4WHHvK7EgcPhgcf9ER5LUItIiIZIGlBl5llAxOB0cDhwDlmdniJZj8GFocQ+gDDgbvMLCdZfaqOKo90bdwIGzZ4BfMJE6BNG88t+tOffCRGkmPJEvj8czjgAPjNb+DXv/bFqEVERDJEMke6jgCWhRBWhBDygWnAaSXaBCDXzAxoCmwEMioyqXIifXSU6zvfgbZtfZQrNxfefdeTuKNJ3bL34j+U006DK66AiRNh0KD09UlERKQcyQy6OgCr4h6vjpyL9wBwGLAG+BC4JoRQlMQ+VVmVpxejQdchh/i+UyfP62rQAF59FZ58ssb7WOds2QJ33QVXXhn7YLKz4eSTPY9LREQkAyUz6CqrfnvJYZ6TgAVAe6Av8ICZNUtin6qsZFX6Sn36qe+j6/iBF9+8MZLS9vTTXlJCqueddzzYmj0bdu+GZcvS3SMREZGEJDPoWg10invcER/RincR8Exwy4DPgEOT2Kcqa9TIt/z8BGKlEGJBQHzQBb7UTM+efpFZs5LS133arl2eGP+738HmzV7g9IEH4Igj0t0zERGRhCQz6HoX6GZmXSPJ8eOBGSXafAGMBDCz/YHuwIok9qlaEs7rWrfOF1Ju0cIT6Es64wzfP/eckuqrYsUKuOYar3tWrx5ccokXOG3XLt09ExERSVjSgq4QQgFwFfAv4GPgiRDCIjO73MwujzT7HXCUmX0IvALcEELIuDLuCQdd0Xyubt3KXh174EDo2NEr1b/1Vo32cZ+Wnw9r13p+3N13e9K8Vh8XEZFaJqkV6UMILwAvlDg3Ke54DXBiMvtQExJOpi+ZRF+SGZx+ut/FOH06HHusgofy7N4N9ev78aGHehmIXr2UKC8iIrWWKtInIFqra8OGShrGj3SVZ/hwn35csQI++KAGercPWrrUyz+8+27s3IABCrhERKRWqzToMrOhZvZvM/vUzFaY2WdmlnF5V8kUnV789tsKGhUWlp9EHy8nB8aM8eNnnqmR/u0zQoCXXoLrr/cllGbOTHePREREakwi04sPAz8D5gOFye1OZkoop2vVKr/Drm1baFZJ1YvRo+GJJ+C993yZoC5daqintVj07sRXX/XHJ5/sCfMiIiL7iESmFzeHEF4MIawPIWyIbknvWQaJBl0VTi9Wls8VLzcXToyksk2fvld92yds2OB1zF591UcCr73WpxejOV0iIiL7gESCrtfMbIKZDTGz/tEt6T3LIAlNL1Yl6ILYHXivv+53M9ZVIXjtrWXLfN3Eu+6CESPS3SsREZEal8j04uDIfmDcuQAcV/PdyUwlq9KXecNhIkn08fbfH4YO9dIRzz8PF11UI32tdcx8VGvqVLjuusqnZkVERGqpSke6QggjytjqTMAF0LBhJVXp8/Phs888gDj44MQvHC2W+q9/wY4dNdLXWiEE+OST2OPu3X1hcAVcIiKyD0vk7sXmZna3mc2LbHeZWfNUdC6TVJhM/9lnfvdix44enSWqWzfo0QO2bYOXX66Rfma8wkKvU/aLX8CcOenujYiISMokktM1GdgKfC+ybQGmJLNTmajCZPqq5nPF++53ff/cc1BUVJ2u1R75+fCHP8C//w0NGkB2drp7JCIikjKJ5HQdHEI4M+7xb81sQZL6k7EqTKavaj5XvCOO8DUE166F//4Xjjqq2n3MaNu2ecL8okV+9+Ytt/i0ooiISB2RyEjXDjM7OvrAzIYCdSgBySVtpCsrC8aO9eNnn61O1zLfxo1eEmLRIl8I/E9/UsAlIiJ1TiJB1xXARDNbaWafAw8Al1fymn1OuTld27fD6tVQr171i5wefzw0aQIffwxLluxNNzNPCPDHP3oR2A4d4I47fOFqERGROiaRuxcXhBD6AL2BXiGEfiGEhcnvWmYpd3px2TIPLLp2rX4xz4YNvUo9eG7XviRaEqJvXw+49tsv3T0SERFJi3Jzuszs/BDC42Z2bYnzAIQQ7k5y3zJKudOLe5PPFe+UU7w6/dtvw/r1vpxQbbZzpweT4AHp736X3v6IiIikWUUjXU0i+9wytqZJ7lfGKXeka90633fuvHdv0KYNDBvmdzDW9oWeV6+Gyy7zuxRFREQEqGCkK4Tw58jhyyGEt+OfiyTT1ynlVqXPy/N9bu7ev8lpp8Hs2V4sdfx4aNx476+ZaqtWwS9/CZs2wRtveL5amSX8RURE6pZEEunvT/DcPi2+Kv22bXFPRIOuJk3KfF2VfOc70LOnJ+fXxlGiVavgpps84OrbF379awVcIiIiERXldA0BjgL2K5HX1Qyok1UtW7WCL7/0Kcam0QnWaNDVtIZmXL/7XfjoI5gxw/O86iVSSi0DrF3rI1ybN3vAdfPNkJOT7l6JiIhkjIpGunLw3K16FM/n2gKMS37XMk+ZyfQ1HXQdcYSXVli/Ht58s2aumWwbN/qo1qZN0Lu3Ai4REZEyVJTT9Trwupk9EkL4PIV9yljNIytObtkSd7Kmgy4zGDcO7r0XnnwShg/P/Cm6TZv8bsVu3Tz4UsAlIiJSSiJzV9vNbALQA2gYPRlCOC5pvcpQ0bSt7dsjJ0KIJXjVRE5X1PDhMHWq50jNnQtHHllz106Ggw7yGly5uVVb8FtERKQOSSSRfirwCdAV+C2wEng3iX3KWNGbCfck0m/f7oFXw4Y1m3tVrx6ccYYfP/mkv0emKSiABQtijzt0gGbN0tYdERGRTJdI0NU6hPAwsDuE8HoI4WIgw4dekiM6mLUn6KrpqcV4J57oQcynn8IHH9T89fdGCPD//p/nbr30Urp7IyIiUiskEnTtjuzXmtkpZtYP6JjEPmWsUkFX9CAZQVeDBl63C3y0K5P89a9eg6tRo72vxC8iIlJHJBJ0/d7MmgM/B64DHgJ+ltReZahSOV3JHOkCLxnRqBEsXOgjXpng5Zc9CMzK8ppcBx+c7h6JiIjUCokseD0zhLA5hPBRCGFECGFACGFGKjqXaUrldCU76GrSxAMvyIzRrg8/hIkT/fjyy6Ffv/T2R0REpBapqDjq/UC5GdwhhKuT0qMMltKcrqixY+G55+C///W7GTt1St57VeTLL+F//scT6E87DUaPTk8/REREaqmKRrrmAfMr2OqclE8vArRsCSec4MfpHO3atcvrbw0aBBdfnL5+iIiI1FIVFUd9NJUdqQ3SMtIFcOaZfpfg66/DOedAu3bJfb+yHHQQ3H23/xKyEkkFFBERkXiVfnua2Wtm9mrJLRWdyzRpC7ratoXjjoOiIvj735P7XiWtXBk7bt3aa5KJiIhIlSVS0fO6uOOGwJlAQSIXN7NRwL34AtkPhRD+WEab4cA9QH3gmxDCsYlcOx2ixdZ37PBSVZaqoAtg/Hh47TWYPRvOOis1uV1vvAETJvh7n3de8t9PRESqrbCwkI0bN7J79+7KG0uNqF+/Pq1atSI7Ozuh9pUGXSGEkvlbb5vZ65W9zsyygYnACcBq4F0zmxFCWBzXpgXwIDAqhPCFmbVNqNdpkpXlgdeOHZ7X1SSVQdf++3vB1BdfhL/9DW64Ibnv9/nncN99ftyyZXLfS0RE9trGjRtp2LAhbdq0wTJ9zd59QAiBvLw8Nm7cyH777ZfQaxKZXmwVt7Uxs5OAAxK49hHAshDCihBCPjANOK1Em3OBZ0IIX0R+gPUJ9TqNiiXTpzLoAvje96B+fXjrreLTfjVt2za/U3HXLhgxQncqiojUArt376Zp06YKuFLEzGjatGmVRhYTyYieT+xOxv/gRVJ/mMDrOgCr4h6vjpyLdwjQ0sxmm9l8M/t+AtdNq2J5XakOutq0gVGj/Hjq1OS8Rwhwzz2wZg106QI//jHoP2ARkVpBAVdqVfX3nUhx1K4hhIMi+24hhBNDCG8l0peyLlficT1gAHAKcBJws5kdksC106ZYgdRUB13g+Vw5OV63a+nSmr/+00/7tZs0gV/+0pcjEhERSdDtt99Ojx496N27N3379mXu3Llp6ceCBQt44YUX9jyeMWMGf/yjp5ZfeOGFPPXUU6VeM3v2bE499dSk9SmR6cWGZnatmT1jZk+b2c/MLJFb2FYD8dneHYE1ZbR5KYSwLYTwDfAG0CfRzqfDnunFbSF2G2P0ZCq0bAnRfxA1Pdq1cydE/4H+/OfpKU0hIiK11n/+8x9mzpzJe++9xwcffMDLL79MpzQV9S4ZdI0dO5Ybb7wxLX2JSmR68TGgB3A/8ABwGPDXBF73LtDNzLqaWQ4wHii5fNBzwDAzq2dmjYHBwMeJdj4d9gRdG3Z4CYeGDaFeIjeB1qAzz/T3nT8fPq7BX1fDhnDvvfCLX3gRVBERkSpYu3Ytbdq0oUFklqRNmza0b9+eLl268M033wAwb948hg8fDsDrr79O37596du3L/369WPr1q0A3HHHHfTq1Ys+ffrsCZSWL1/OqFGjGDBgAMOGDeOTTz4BfNTq8ssvZ9iwYRxyyCHMnDmT/Px8fvOb3/CPf/yDvn378o9//INHHnmEq666ak9fX3755WKvKWnbtm1cfPHFDBo0iH79+vHcc8/t9e8nkWihewghfvTpNTNbWNmLQggFZnYV8C+8ZMTkEMIiM7s88vykEMLHZvYS8AFQhJeV+KjqP0bqRIOu/I1pmFqMatbMlwd64gl4/HG4/faau3ZuLhxzTM1dT0REUm7MmORc9/nnK37+xBNP5LbbbuOQQw7h+OOP5+yzz+bYY8uvBHXnnXcyceJEhg4dSl5eHg0bNuTFF1/k2WefZe7cuTRu3JiNGzcCcOmllzJp0iS6devG3LlzufLKK3n1VS8bunLlSl5//XWWL1/OiBEjWLZsGbfddhvz5s3jgQceAOCRRx4p9t5lvSbe7bffznHHHcfkyZPZtGkTRxxxBMcffzxN9mJ2K5Gg630zOzKE8F8AMxsMvJ3IxUMILwAvlDg3qcTjCcCExLqbftGcrrQGXQCnnw7//Cd88AEsWAB9+1b/Wv/+t6+teP75qR+1ExGRfUbTpk2ZP38+b775Jq+99hpnn332njyqsgwdOpRrr72W8847jzPOOIOOHTvy8ssvc9FFF9E48oXbqlUr8vLymDNnDmedddae1+7atWvP8fe+9z2ysrLo1q0bBx100J5RsIpU9ppZs2YxY8YM7rzzTgB27tzJF198wWGHHVal30m8RL5hBwPfN7MvIo87Ax+b2YdACCH0rva710LRAHf3t2kOupo2hXHj4NFH4eGHfVqwOsvzfPkl/PnPXh7isMNg8OCa76uIiKRUZSNSyZSdnc3w4cMZPnw4vXr14tFHH6VevXoUFRUBHrxE3XjjjZxyyim88MILHHnkkbz88suEEErdFVhUVESLFi1YsGBBme9Zsn0idxVW9poQAk8//TTdu3ev9FqJSuRbehTQFTg2snUFTgZOBZI0gJm5okFX4ea84ifSYexY2G8/r9n1yitVf/3u3XDHHbF6XAq4RERkLyxZsoSlcXfWL1iwgAMPPJAuXbowf77XWn/66af3PL98+XJ69erFDTfcwMCBA/nkk0848cQTmTx5Mtu3bwe86GuzZs3o2rUrTz75JOAB0cKFsUynJ598kqKiIpYvX86KFSvo3r07ubm5e3LEylLWa+KddNJJ3H///YTghRfef//9vfztJFYy4nOgBR5gjQFahBA+j2573YNaJhpjFWyO3LmYrpEu8NIR34+UNnv8cb/7sCr++ldYscKr3V9+ec33T0RE6pS8vDx+8IMfcPjhh9O7d28WL17Mrbfeyi233MI111zDsGHDii2Zc88999CzZ0/69OlDo0aNGD16NKNGjWLs2LEMHDiQvn377pnemzp1Kg8//DB9+vShR48exRLbu3fvzrHHHsvo0aOZNGkSDRs2ZMSIESxevHhPIn1JZb0m3s0338zu3bvp3bs3PXv25Oabb97r349FI7hyG5hdA/wIeCZy6nTgLyGE+/f63RM0cODAMG/evFS9XYXmzYPf/hbOazyd8dsnw2mnwSWXpK9DIXh5h6VL4Zxz4NxzE3vdwoXw61/7lOSf/gSHHprcfoqISFKtWbOG9u3bp7sbKXfhhRdy6qmnMm7cuLS8f1m/dzObH0IYWLJtItOLPwQGhxB+E0L4DXAkHoTVSdGRrqKtac7pijKDiy/242eegchdHhXasSO2ruI55yjgEhERSYFEgi4DCuMeF1J2tfk6IRp0WTqq0ZenZ0848kjPzXr88crb5+fDgQfCwQd7Mr6IiEgt9cgjj6RtlKuqErl7cQow18ym48HWacDDSe1VBouWjLBtedCczAi6AC68EN59F15+2Qu0dO1aftvmzeHmm72ivkpEiIiIpEQiifR3AxcBG4ENwEUhhHuS3K+MFY2xsnZk0EgXQIcOcPLJnuM1ebLvS9q926vog09LZkrfRURE6oCqFHYyfMHqOju1CL7+c1YW1N+VR1EgswKX8eN9/nPBAh/1KunRR+H66702l4iIiKRUIgte/wZ4FGgJtAGmmNmvk92xTGXmU4yNCvIoKiSzgq5mzTwxHuAvf/HcraiPP4YZM/wux6qWlhAREZG9lshI1znAoBDCrSGEW/C7F89LbrcyW+PG0LAgj4JMC7oATj0VunSBr76CSBE58vO9Yn0Injh/8MFp7aKIiOybmibwnfjmm2/So0cP+vbty44dO6p0/WeffZbFixcnpV+pkEjQtRKIrxjWAFielN7UEk2bBBoW5lFYQOYFXdnZcMUVfvzUU7BmDUyb5lOKnTrB2Went38iIlKnTZ06leuuu44FCxbQqFGjKr22ukFXpkgk6NoFLDKzR8xsCvARkGdm95nZfcntXmZqlrOTrFDE7uwGmXn33+GHw8iRUFDgy/xMn+7zoldf7VXsRUREkmj27NkMHz6ccePGceihh3LeeecRQuChhx7iiSee4LbbbuO883zSbMKECQwaNIjevXtzyy237LnGY489Ru/evenTpw8XXHABc+bMYcaMGfziF7+gb9++LF++nOXLlzNq1CgGDBjAsGHD9ixa/dlnnzFkyBAGDRpUI5Xka0oiEcP0yBY1OzldqT1a1vc7F3fnZNgoV7yLLoL//Af++U9o21ZFUEVE6pIxSVoauQorab///vssWrSI9u3bM3ToUN5++20uueQS3nrrrT0V5GfNmsXSpUt55513CCEwduxY3njjDVq3bs3tt9/O22+/TZs2bdi4cSOtWrVi7NixxarPjxw5kkmTJtGtWzfmzp3LlVdeyauvvso111zDFVdcwfe//30mTpyYnN9FNVQadIUQHk1FR2qT5tkedO2sn8FBV/PmcMEFsHw5rF+vaUUREUmpI444go4dOwLQt29fVq5cydFHH12szaxZs5g1axb9+vUDfO3GpUuXsnDhQsaNG0ebNm0AaNWqVanr5+XlMWfOHM4666w953bt2gXA22+/vWdh7QsuuIAbbrih5n/AasjAubHM1ywadGVncNAFXrfr1VdhyRKYOdNHv0REZN9XhRGpZGnQoMGe4+zsbAoKCkq1CSFw0003cdlllxU7f99992FWcYWqoqIiWrRowYIFC8p8vrLXp0NV6nRJRC4edO3I5KArP98Lil1xhSfXP/ccfPFFunslIiKyx0knncTkyZPJiyyt9+WXX7J+/XpGjhzJE088wYYNGwDYGFlXODc3l61btwLQrFkzunbtypORO/VDCCxcuBCAoUOHMm3aNMAT9zNFuUGXmf01sr8mdd2pHZpGgq5tWRkadH32mY9qvfQSdOsGo0dDYaEvch2tSC8iIpJmJ554Iueeey5DhgyhV69ejBs3jq1bt9KjRw9+9atfceyxx9KnTx+uvfZaAMaPH8+ECRPo168fy5cvZ+rUqTz88MP06dOHHj168NxzzwFw7733MnHiRAYNGsTmzZvT+SMWY6Gs5WIAM1sMjAZmAMMpUYk+hLAx2Z2LGjhwYJg3b16q3q5SC26ZTv6kyWw97jRG/v2SdHenuBDghhu8GOqYMXDppb7G4lVXwTffwMUXw+mnp7uXIiJSw9asWUP79u3T3Y06p6zfu5nNDyEMLNm2ounFScBLwKHA/BJb5kRAadCo0Ee6toYMHOl65RUPuFq0gMjtuDRp4kEXwOOPaxkgERGRNCg36Aoh3BdCOAyYHEI4KITQNW47KIV9zDiNizzoygtN0tyTEnbu9PUVwUe0msT1b8AAr90VX51eREREUqbSRPoQwhVm1sfMropsvVPRsUzWsMCDri1FGTbS9fTTsGkTdO8Ow4eXfv6HP4SWLX0kbObMVPdORESkTktkweurgalA28g21cx+kuyOZbIGBdsA2FSQQUHXhg3wzDN+/MMfegX6knJz4cc/9uNHH4W1a1PXPxERkToukZIRlwCDQwi/CSH8Bl/w+kfJ7VZmy8n3ka6MCrq2boWOHeGoo+Cww8pvN3gwHHMM7NoF99+vaUYREZEUSSToMqAw7nEhJe5krGvq7/Kga2N+BgVdXbrAPff4+oqVuewyr1j/4YfwwgvJ7pmIiIiQWNA1BZhrZrea2a3Af4GHk9qrDJe9Iw8zyKMp+fnp7k0cs+LJ8+Vp1gyuvNKPJ09W0VQREakR2dnZ9O3bl549ezJmzBg2bdqU7i5V2a233sqdd96ZlGsnkkh/N3ARsBH4FrgohHBPUnpTG4QAeXlk14Od9ZqyfXua+zNvHtx1F3z9ddVed9RRcPzxfjfjhAlkVvQoIiK1UaNGjViwYAEfffQRrVq1ypjFpkMIFGVAcfCElgEKIbwXKSFxbwjh/WR3KqPt2uXV3evnUJhVn23b0tiXwkIfqZo9G+bMqfrrL7sM2reHlStjpSZERERqwJAhQ/gyUhdy+fLljBo1igEDBjBs2DA++eQTAL766itOP/10+vTpQ58+fZgT+S67++676dmzJz179uSee+4B4IYbbuDBBx/cc/1bb72Vu+66C4AJEyYwaNAgevfuzS233ALAypUrOeyww7jyyivp378/q1atKrMdwO2330737t05/vjjWbJkSdJ+J1rwuqoi60MVNvJ8rrQGXbNmwapVcMABvrh1VTVsCNddB7/4BcyYAf37ez0vERGp/caMKf+5H/8YRo3y45degopGpKqxeHZhYSGvvPIKP/zhDwG49NJLmTRpEt26dWPu3LlceeWVvPrqq1x99dUce+yxTJ8+ncLCQvLy8pg/fz5Tpkxh7ty5hBAYPHgwxx57LOPHj+enP/0pV0bSY5544gleeuklZs2axdKlS3nnnXcIITB27FjeeOMNOnfuzJIlS5gyZQoPPvhgue2aNGnCtGnTeP/99ykoKKB///4MSNJ3oYKuqooGXY096Erb9OKuXfC3v/nxD34A9etX7zrdusH55/tI1//7f/DAA17NXkREpIp27NhB3759WblyJQMGDOCEE04gLy+POXPmcNZZZ+1pt2vXLgBeffVVHnvsMcDzwZo3b85bb73F6aefTpNIjvIZZ5zBm2++ydVXX8369etZs2YNX3/9NS1btqRz587cd999zJo1i379+gGQl5fH0qVL6dy5MwceeCBHHnkkALNmzSqz3datWzn99NNp3LgxAGPHjk3a70dBV1VFgq7QJM0jXf/8pxdC7dYNhg7du2udeSa8/z588IHfAXnLLWXX+RIRkdoj0RGqUaNio157KZrTtXnzZk499VQmTpzIhRdeSIsWLViwYEFC1yhvTWiAcePG8dRTT7Fu3TrGjx+/p/1NN93EZZddVqztypUr9wRuFbW75557sBR95yVSHPUMM1tqZpvNbIuZbTWzLYlc3MxGmdkSM1tmZjdW0G6QmRWa2biqdD4tIkEXTdMYdO3YAU895cfnnbf3AZIZXHutF0+dP9+nGkVERKqpefPm3Hfffdx55500atSIrl278uSTTwIe/CxcuBCAkSNH8r//+7+AT0lu2bKFY445hmeffZbt27ezbds2pk+fzrBhwwAYP34806ZN46mnnmLcOA8ZTjrpJCZPnkxe5Pv5yy+/ZP369aX6VF67Y445hunTp7Njxw62bt3K89WYTk1UIon0dwBjQwjNQwjNQgi5IYRmlb3IzLKBicBo4HDgHDM7vJx2fwL+VbWup0nkw7J0Bl0LF3o/DjvM87BqQuvWsRpfU6bA4sU1c10REamT+vXrR58+fZg2bRpTp07l4Ycfpk+fPvTo0YPnnnsOgHvvvZfXXnuNXr16MWDAABYtWkT//v258MILOeKIIxg8eDCXXHLJninBHj16sHXrVjp06EC7du0AOPHEEzn33HMZMmQIvXr1Yty4cWzdurVUf8pr179/f84++2z69u3LmWeeuSfASwaraBgPwMzeDiFUef7KzIYAt4YQToo8vgkghPCHEu1+CuwGBgEzQwhPlbzWwIEDw7x586raheR49ll4+GHeOWAsv1v3I8aP98GmlFu1CnbvhoNqeO3xyZNh+nRo1cqnGlu2rNnri4hIUqxZs4b27dunuxt1Tlm/dzObH0IYWLJtIiNd88zsH2Z2TmSq8QwzOyOB13UAVsU9Xh05F9+pDsDpwKQErpcZIiNd2c3TnNPVqVPNB1zgSfk9e8LGjXDHHVBQUPPvISIiUgclEnQ1A7YDJwJjItupCbyurESjksNq9wA3hBAKy2ibmSJBV70WaQi6tm71nKtkrpeYnQ3XX+8jXR99pPpdIiIiNaTSuxdDCBdV89qrgU5xjzsCa0q0GQhMi9w10AY42cwKQgjPVvM9ky+dQdczz3gC/emnw8UXJ+99WraEG2+Em27y6dTu3eHoo5P3fiIiInVAIncvdjSz6Wa23sy+MrOnzaxjAtd+F+hmZl3NLAcYDxS7LS6E0DWE0CWE0AV4CrgyowMu2BN05bRKcZ2uTZtit/+mIgA67DCIFLXj3ns9h0xERDJaZXnaUrOq+vtOdMHrGUB7PCfr+ci5yjpSAFyF35X4MfBECGGRmV1uZpdXqZeZJBJ0NWid4pGup57ygqiDBsEhh6TmPU89FY45BnbuhN/9zqc3RUQkI9WvX5+8vDwFXikSQiAvL4/6VShOnkhx1P1CCPFB1iOROw4T6dALwAslzpWZNB9CuDCRa6ZdOoKuzZvhxRf9+PzzU/CGEWbwk5/A6tWwYgX8z/948FVPNXVFRDJNq1at2LhxY5nlEiQ56tevT6tWrRJun8i35zdmdj7w98jjc4AN1ejbviESdDVq41VuUzK9OGMG5OfDEUck547FijRsCDffDD//uSfWP/AAXHONKtaLiGSY7Oxs9ttvv3R3QyqQyPTixcD3gHXAWmBc5FzdE8Keoa3GbWMjXUkdyd2+3Zf8AYhbtyql2rTxwCsnB155BZ5+Oj39EBERqcUqDbpCCF+EEMaGEPYLIbQNIXw3hPB5KjqXcXbt8rpVOTnUa5xDgwZQVOSnk2rsWDjySDj00CS/UQW+8x247jof4Xr0UXj77fT1RUREpBYqd3rRzK4PIdxhZvdTur4WIYSrk9qzTFRi3cUmTTzg2rbNZ+GSonFjOPfcJF28ioYM8eKpjzwCd98Nbdv6gtsiIiJSqYpGuj6O7OcB88vY6p5o0BVZtTy6eHnKykZkgjPOgBNO8Byz3/4W1q5Nd49ERERqhXKDrhBCdJnt7SGER+M3vEJ93VNipKtx4+Kna1RhIfzyl55En0lL8ZjBlVdC375+V+Wvf+1LBomIiEiFEkmkvynBc/u+aH2IuOlFSNJI19tvw4cfwsyZkJXIx5RC9erBr37l9cLWr/cke92iLCIiUqFyv83NbHQkn6uDmd0Xtz0CZNDQSwqVM9JV47W6QvBiqODTeZkWdIEnsd16qy+8/cUXPtW4c2e6eyUiIpKxKvo2X4Pnc+2keC7XDOCk5HctA5UIuiK7mg+63nsPPvvMF50eObKGL16DcnPhtttgv/1gyRL4wx8yaypUREQkg1SU07Uwkr/VC3g8Lp/rOSDZRRIyU6pGup580vennQZVWF4gLdq08Sr1zZt7sHjXXZ6PJiIiIsUkMm81C2gU97gR8HJyupPhyigZATWc0/Xpp7BokV981KgavHASdejg04uNGsFbb3k5CQVeIiIixSQSdDUMIey5Py9y3Dh5Xcpg5QRdNTrS9dprvj/xxNhQWm1w8MGxwOuNNxR4iYiIlJBI0LXNzPpHH5jZAGBH8rqUwbZs8X1uLpCk6cVLLoGbboIxY2rwoily2GGe4xUNvDTVKCIiskciQddPgSfN7E0zexP4B3BVUnuVqTZE1vlu3RpI0vRidjYcdZQnp9dGhx4aC7zefBPuvFPJ9SIiIiS29uK7wKHAFcCVwGEhhLpZkb6coKtGRrry82HTphq4UAY49FBPrm/c2HO8FHiJiIgkNNIF0B04HOgHnGNm309elzJUfr7ndNWrB82aATUcdL35Jlx0EUybVgMXywDdu/uIV+PGXuj1d79THS8REanTKg26zOwW4P7INgK4Axib5H5lnugoV6tWvhQONZjTFUJsuZ/aOq1Ylu7d4fe/9yD1vfd8ySBVrhcRkToqkZGuccBIYF0I4SKgD9Agqb3KRCWmFqEGc7oWLYIVK7zW1bBhe3mxDNOtG9xxB7Rt6wVUb7gBvvkm3b0SERFJuUSCrh0hhCKgwMyaAeuBg5LbrQxURtDVuLEPeu3Y4YNV1fZ8ZG3x0aMhJ2cvLpShOnTwwKtzZ1i1Cn7xC1i9Ot29EhERSalEgq55ZtYC+D98GaD3gHeS2amMVEbQZeY36YWwF6Nd69fDf/7juWKjR+99PzNV69bwxz96WYlvvoHrr4ePP053r0RERFKmwqDLzAz4QwhhUwhhEnAC8IPINGPdUkbQBTWQ1zVzpkdtRx/t+WL7stxcT6gfNMhzu375y1gxWBERkX1chUFXCCEAz8Y9XhlC+CDZncpI5QRd0UWvqz3S9e23vh9bR+5NaNAAfvUrL/5aUOCV6x97bC/nZ0VERDJfItOL/zWzQUnvSaaLJn+XM9KVl0f1/Pzn8PDDnnBeV2Rnw6WXwhVXQFaWL/D9xz+qpISIiOzTEgm6RuCB13Iz+8DMPjSzujfaVc5IV43cwdi27V68uBY7+WRfr7FJE5gzB268UXc2iojIPqvcoMvMOkcOR+N3Kx4HjAFOjezrjhBi04Al8q6qXSB17VovFVHXp9X69oUJE6BdO1i+HK65BhYsSHevREREalxFI13PAoQQPgfuDiF8Hr+lpHeZYtMmX7g5N7dUSYdqTy9On+4jO088USNdrNU6dfLFsfv180XFf/Mb/73U9YBURET2KRUFXRZ3XPfqcsUrZ2oRoE0b33/9dRWut3MnzJ7tx0OG7FXX9hm5uXDrrXDOOf74r3/1Ox2rnSwnIiKSWSoKukI5x3VPBUFXu3a+X7euCtd74w2vqHrYYV4wVFxWFpx7Ltxyiwdh777r041Ll6a7ZyIiInutoqCrj5ltMbOtQO/I8RYz22pmW1LVwYxQQdC1//6+X7u2Ctd76SXf78vFUPfGgAFwzz1+R+f69V7B/sknoago3T0TERGptnKDrhBCdgihWQghN4RQL3IcfdwslZ1MuwRHuhJKQVqxwkdumjaFoUNrro/7mrZt4U9/gtNO83y6xx7z+l7r16e7ZyIiItWSSMmIajOzUWa2xMyWmdmNZTx/XqQMxQdmNsfM+iSzP9VWQdDVtKlvO3d6DniloqNcxx23b66zWJPq14dLLoHbboOWLeGjj+Dqq316VkREpJZJWtBlZtnARLzkxOHAOWZ2eIlmnwHHhhB6A78D/pKs/uyVCoIuiI12JTTF2KoVNG8Oo0bVTN/qgn794IEHYPBgr80xYYJvmzenu2ciIiIJS+ZI1xHAshDCihBCPjANOC2+QQhhTgghUgCL/wIdk9if6qsk6KpSXtf48fDII14mQRLXrJlPL/74x76U0BtvwJVX+l6lJUREpBZIZtDVAVgV93h15Fx5fgi8mMT+VN/Gjb6vZKQr4TsY69Xb+z7VRWY+QvjAA9C7t8/nTpgAt98e+4xEREQyVDKDLivjXJlDEmY2Ag+6bkhif6pn506f0qpf38sYlCGh6cXPP4eZM6tRul5KOeAA+P3v4Sc/8eq0c+f6qNdLL2nUS0REMlYyg67VQPwcWkdgTclGZtYbeAg4LYSwIYn9qZ7o1GKrVj7SUoYDDvB9hSNdL70Ef/4z/O1vNdu/usoMTjwRJk6EQYM8mJ04Ea67TnW9REQkIyUz6HoX6GZmXc0sBxgPzIhvEFnf8RngghDCp0nsS/VFg65o6fkyVBp07d4Nr7/uxyNH1lzfxD+Xm2+GG27wwPjTT+HnP/cAbOvWdPdORERkj6QFXSGEAuAq4F/Ax8ATIYRFZna5mV0eafYboDXwoJktMLN5yepPtVWSRB99ql49XxN7584yGrzzjgcAXbvCQXV7RaWkMIOjj4ZJk+CMM7yy/UsvwWWX+b6wMN09FBERSW6drhDCCyGEQ0IIB4cQbo+cmxRCmBQ5viSE0DKE0DeyDUxmf6olgaArKyt2B2OZo10vv+z744+v2b5JcY0awUUXwf33e6L91q0+4vWTn/iSQsr3EhGRNEpq0LVPSCDoglgy/VdflXhi40aYPx+ys+HYY2u+f1Jap06eaH/DDT73u2qVF1j99a9h+fJ0905EROooBV2VSTDoiuZ1lbqD8bXXfITliCO8KKqkRnTK8cEHvap906bwwQfw05/CnXfCl1+mu4ciIlLHKOiqzN4GXZ07Q69ecMIJNd83qVz9+r5+4//9H5x+uiffvf46XHGFL6pdpZXKRUREqk9VOitTxenFUjldgwb5JunVtClcfDGceio88YTn2b3yio9EjhzpKwW0bZvuXoqIyD5MI10VKSryWxLByxFUoMpV6SU92raFq67yOx1HjvSp33//G370I7j7bi9iKyIikgQKuiqyaZMHXs2bV7p0T/TuxfXr/SXk58Nf/gJLliS9m1INBxzg+V2TJsGIEX7utdc8ILvtNli8OK3dExGRfY+CrookOLUIkJPjg2EFBfDNN8B//wvPP+9V6CVztW8P117rAfIpp/gH+e67fufj9dfDW2/5hyoiIrKXlNNVkSoEXeBTjBs3em5223//20+qNlftsP/+cPnlcM45vkbmzJnw8ce+tWkDo0fDSSfpDlQREak2jXRVpIpBV/QOxg1LvoGFC31KctiwJHVOkqJ5czjvPJgyxYOwDh186PKvf/XCq/fc41PGKrQqIiJVpJGuilRjpAsge/Yr/qV85JGQm5ucvklyNWzo040nnwwLFvhU8bx5fsfjK69Aly6+4Pbw4fqMRUQkIQq6KlKdka4QaPHuLDgA/1KW2s0M+vXzbe1aePFFD7pWrvQ8sClTYOhQvxOyd29fE0pERKQMCroqEg26KikXEXXAAdB1y0Kyv1kPvdtC377J65ukXrt2Xuvr+9/3GyX+9S8fBZs927dWrXzka8QIHwkTERGJo6CrItWYXtzUYH/mtB5DjzH7Y2ZJ7JykTb16vsTQ0Uf7Ypsvv+xB17p18MwzvnXp4mttDh0am3cWEZE6TUFXRb75xvcJBl25ubCrVTueb3gp54wEZfrUAfvv74n3554Ln3zitb7efNOnH1euhEcfhYMP9gBNAZiISJ2moKs827fDzp1et6lp04ReYuZTjCtWePqP8qvrEDM47DDffvQjeO89r/E1dy4sX+7bo49C164weLAvgP6d7/jrRESkTlDQVZ74qcVEvhhDgLvuYsjW3qwsOo516+pxyCHJ7aJkqPr1PbAaPNhXJnj//VgA9tlnvk2b5jlggwf72py9evkdkyIiss9S0FWeKuZz8ckn8PrrDNqwkL+3PI61a5PXNalFcnJiAdju3fDhhx58zZ3r/8ZefNG3evWgZ0/o3x8GDIBOnTQKJiKyj1HQVZ6qBl3/+hcA24YcT9Gn9bTwtZRWv74HVf37e+HV5cs9+Jo/H5Yt8zshFyyAyZP9313v3tCnj+/32y/dvRcRkb2koKs8VQm6tm3z6SMga9SJ8CkKuqRiZp7T9Z3veCL+li0ecM2f79uGDZ6U/9pr3r5dO5+C7NHDt7ZtNRImIlLLKOgqT1WCrjfegF27oHdv9uvtd6dpelGqpFkzOOYY30KAzz+HDz7w7cMP/R/U2rUwa5a3b906FoAdeigceCBkZ6f3ZxARkQop6CpPVYKu6BfhiSfSpo1/923Y4DnUOTnJ66Lso8y8zleXLjB2LBQW+lTkRx/BokWweLH/A3vjDd/A/6F16wbdu/vWrZsv1K3RMBGRjKGgqywhwJdf+nFlQdeKFZ6P07QpDBlCdrbP/Kxd63UzO3VKfndlH5edDYcc4tsZZ/i/z1WrPAD7+GO/iWPtWn+8aFHsdc2aefB18ME+jXnQQZqWFBFJIwVdZVmwAFavhubN/YuqIu3bw9VXx2p64ek3a9d6XpeCLqlxZtC5s2+jR/u5LVvg009hyRIPwpYv93PRHLGoxo29Vlh0O/BAv06jRun5WURE6hAFXWV54gnff/e7lc8PNmwIJ5xQ7NQBB/heeV2SMs2awcCBvoGPhn39tY/CLl3q+88+g82bS4+IgY+ARQO5zp2hY0fo0CHhwsAiIlI5BV0lLV7suTNNmsDJJ5ffrrDQ82rati31VIcOvp8zB8aM0WyOpIGZ/9ts2xaOOip2/ttvPfhascL3X3zho7rr1/s2b17x67RoEQvA2rf3YdzoXgmLIiJVoqCrpOgo15gxPhVTnpkzfVmXSy4pFZyNGOGXWbTIy3eNGpXE/opURcuWvvXvHztXWOjDsp9/HgvCotumTb599FHpa7Vp42tPHnCAb/vv71vbtl5tPysrVT+ViEitoKAr3rJlnv/SsKHfNVaeb7+Fv/3NK4y3aVPq6dxcr335pz/BlCm+zF6rVknst8jeyM720ayOHX1R7qjoFOXq1bBmjW9r1/r+q698Qfhvvik9VRm9ZuvWsdG2Nm28wGvr1rF906YaBhaROkVBV7wnn/T96NEVr1Y9ZYoviD1okEdUZRg61J965x2YNAl++csk9FckmeKnKONHxsBHx775xu8WWbfOg7Dofv16Hx2LTlmWJyfH/28kurVuHRuJi99yczVqJiL7BAVdUatWeRJW/fqeQF+exYu9Snj9+vCjH5XbzAyuuMLrWv7nP37p+NQakVotOzs2ndinT+nn8/N9lGz9et9HR8Xitx07YkFbRcz8RoEWLfyO4ui+WbPSW26ub8o3E5EMpKArKjrKdcIJ5c8FFhbC//6vH595picTV6BNG7jwQn/JpEm+hJ5uBpM6ISfHk++jd5WUZedO2Lgxtm3Y4FP3JbetW/2uy82bq/b+zZr5f3BNm3ogFj1u2tRvlCm5NW4c2zTtKSJJoKAL/P+0X3/dpzDOPLP8dnPnwsqVPt0yblxClx49GmbP9hqWU6bAT35SIz0Wqf0aNvQ7Idu3r7hdQUEs8Iom9m/Z4o+3bCl+nJfnbfPzYyNq1dGoUSwAa9Qo9jh63KiR979hw+LHDRtCgwaxcw0axDYFciJ1XlKDLjMbBdwLZAMPhRD+WOJ5izx/MrAduDCE8F4y+1Smp5+GoiIYObJ0CYgQYn8sBw704avLLvM/ogkw80Dr6qt9taBu3WDYMP8faxFJQL16sfyuRITgo2hbt8aCsLy84tv27b7fti12vH27bzt2xLbocmA1ISfH/25E9/HHOTnFtwYNPIUhJye2jx7Hbzk5/vuJPxf/uF692Ka1OUXSzkIIybmwWTbwKXACsBp4FzgnhLA4rs3JwE/woGswcG8IYXDJaw0cODDMK1k/qKZ8+y1cfHFs6jA6HVJQ4KNfzz8Pt98ei5I2b/Z8kiqaNg2mTvXj7Gzo2TOWh1/JLKWIpFJRkQdc0QAsPhDbvt0Duh07Yvvo8a5dfhy/j9/SzSwWfEUDsuhxdnbx4Cy6jx5nZRU/F38+/lx2dvnnolv84/KOzUq/Lno+2tYs1i56PrqPPy55ruT56Lno4+jvSmQvmNn8EMLAUueTGHQNAW4NIZwUeXwTQAjhD3Ft/gzMDiH8PfJ4CTA8hFCslntSg64Q4L334N57fUmUb7/1/JKtW2NtLrkETjttr96mqAj++U94+23PxY//tefkFE8tadrUz8X//Yr+zYDifyPixT/W3wyRDBIC2QW7yCrIJ7tgF9mF+WQV7CJ79y4/X7g77nz+nnNZhbv9XOFusgry9zy2wgKyinaTHTmXVbgbKyogO+44q7DAnyvyPUn6W79PivwBDZZFMAP8D270OJgRLPoHOWtPW99b3LnIa+Oej79OyTaYEeKPK2pX6jnKvk6x9hW0KdWOhNoXf//iryvvfPxrgdLXrfTaZVyvxDXLEn2fDpeP4cATu1dy3b1TXtCVzOnFDsCquMer8dGsytp0AFK3gI4ZDBjgNbcWLCh+vmNHz90aPnyv3yYry+utjhnj8dx773k5ifnzfYYjP9/jPRHZFxnQMLLVoHok/FfcQhHZoYDsUEBWUUHsOBQWP0+hB2oUkl3kz2dRSHYo9ONQQFbkWhaKIucK91wni6JS56PnjCKyQ+GeY3++xHEoKta+rHMWQuw5QoLnY89B2HMOQuxc5DxEA9TCmv286phE/98/1WMEm48/EpIcdJUnmUFXWb/Hkv+rlUib1PjJTzyPomVLv3uxWbOk1QbKzYVjj/UtBJ952L7dg69oysnu3T7jWVTk+8JCbxvdoqLHNfU/sfqfYZF9VRaQE9n2HfEhUs1cMHK1Ig/con90ix2HotJtAIIHePF/qMu8RvR9SraJnC/VLvITlnvtuL4bxR+X/NIo6zV7zpf8HexpF/f6ir50KrpWec9X0K5MJX+WipRzzf2HHVLx65IomUHXaqBT3OOOwJpqtEmNNBXRMovd9KSq9SIi6RYdC9CNB1Lzklnm+V2gm5l1NbMcYDwwo0SbGcD3zR0JbC6ZzyUiIiKyL0jaSFcIocDMrgL+hf8vw+QQwiIzuzzy/CTgBfzOxWV4yYiLktUfERERkXRKap2uEMILeGAVf25S3HEAfpzMPoiIiIhkAq0iKyIiIpICCrpEREREUkBBl4iIiEgKKOgSERERSYGkLQNUk8zsa+DzdPdDREREJAEHhhD2K3myVgRdIiIiIrWdphdFREREUkBBl4iIiEgKKOgCzGyUmS0xs2VmdmO6+1NXmVknM3vNzD42s0Vmdk3kfCsz+7eZLY3sW6a7r3WRmWWb2ftmNjPyWJ9LBjCzFmb2lJl9EvlvZ4g+m/Qzs59F/o59ZGZ/N7OG+lzSw8wmm9l6M/so7ly5n4WZ3RSJB5aY2Uk12Zc6H3SZWTYwERgNHA6cY2aHp7dXdVYB8PMQwmHAkcCPI5/FjcArIYRuwCuRx5J61wAfxz3W55IZ7gVeCiEcCvTBPyN9NmlkZh2Aq4GBIYSe+FJ449Hnki6PAKNKnCvzs4h854wHekRe82AkTqgRdT7oAo4AloUQVoQQ8oFpwGlp7lOdFEJYG0J4L3K8Ff/y6IB/Ho9Gmj0KfDctHazDzKwjcArwUNxpfS5pZmbNgGOAhwFCCPkhhE3os8kE9YBGZlYPaAysQZ9LWoQQ3gA2ljhd3mdxGjAthLArhPAZvjb0ETXVFwVd/qW+Ku7x6sg5SSMz6wL0A+YC+4cQ1oIHZkDbNHatrroHuB4oijunzyX9DgK+BqZEpn4fMrMm6LNJqxDCl8CdwBfAWmBzCGEW+lwySXmfRVJjAgVdYGWcUx2NNDKzpsDTwE9DCFvS3Z+6zsxOBdaHEOanuy9SSj2gP/C/IYR+wDY0ZZV2kfyg04CuQHugiZmdn95eSYKSGhMo6PIotlPc4474MLCkgZnVxwOuqSGEZyKnvzKzdpHn2wHr09W/OmooMNbMVuLT78eZ2ePoc8kEq4HVIYS5kcdP4UGYPpv0Oh74LITwdQhhN/AMcBT6XDJJeZ9FUmMCBV3wLtDNzLqaWQ6eQDcjzX2qk8zM8NyUj0MId8c9NQP4QeT4B8Bzqe5bXRZCuCmE0DGE0AX/7+PVEML56HNJuxDCOmCVmXWPnBoJLEafTbp9ARxpZo0jf9dG4jmq+lwyR3mfxQxgvJk1MLOuQDfgnZp6U1WkB8zsZDxnJRuYHEK4Pb09qpvM7GjgTeBDYrlDv8Tzup4AOuN/zM4KIZRMipQUMLPhwHUhhFPNrDX6XNLOzPriNzjkACuAi/D/odZnk0Zm9lvgbPyu7PeBS4Cm6HNJOTP7OzAcaAN8BdwCPEs5n4WZ/Qq4GP/sfhpCeLHG+qKgS0RERCT5NL0oIiIikgIKukRERERSQEGXiIiISAoo6BIRERFJAQVdIiIiIimgoEtE0s7MWpvZgsi2zsy+jBznmdmDSXrPn5rZ98s438XMPqrB98kxszcia/CJSB2mPwIiknYhhA1AXwAzuxXICyHcmaz3iwRAF+PV25MqhJBvZq/gNZumJvv9RCRzaaRLRDKWmQ03s5mR41vN7FEzm2VmK83sDDO7w8w+NLOXIktIYWYDzOx1M5tvZv+KLvVRwnHAeyGEgrjXLDSz/wA/jnv/Lmb2ppm9F9mOipz/q5mdFtduqpmNNbMeZvZOZJTuAzPrFmnyLHBeMn5HIlJ7KOgSkdrkYOAUfDHhx4HXQgi9gB3AKZHA635gXAhhADAZKGuFiaFA/ALeU4CrQwhDSrRbD5wQQuiPj1TdFzn/EF75HTNrjq+r9wJwOXBvCKEvMBBfxw3gI2BQNX9mEdlHaHpRRGqTF0MIu83sQ3zZrpci5z8EugDdgZ7Av33JO7KBtWVcpx2+Fl40aGoRQng98txfgdGR4/rAA5GldgqBQwBCCK+b2UQzawucATwdQiiIjJT9ysw6As+EEJZG2heaWb6Z5YYQttbQ70JEahkFXSJSm+wCCCEUmdnuEFvHrAj/e2bAojJGrEraATSMHBtQ3npoP8PXauuDzwzsjHvur/iU4Xg8P4wQwt/MbC4+GvcvM7skhPBqpH2DEq8XkTpG04sisi9ZAuxnZkMAzKy+mfUoo93HwHcAQgibgM2RBdeheO5Vc2BtCKEIuAAfOYt6BPhp5BqLIu93ELAihHAfMAPoHTnfGvg6hLB7739EEamtFHSJyD4jhJAPjAP+ZGYLgQV4vlVJLwLHxD2+CJgYmR7cEXf+QeAHZvZffGpxW9x7fYUHb1Pi2p8NfGRmC4BDgcci50fgOV8iUodZbHReRKTuMLPpwPXRvKtqvL4xnkvWP4SwuZK2zwA3hRCWVOe9RGTfoJEuEamrbsQT6qvMzI4HPgHuTyDgygGeVcAlIhrpEhEREUkBjXSJiIiIpICCLhEREZEUUNAlIiIikgIKukRERERSQEGXiIiISAoo6BIRERFJgf8P3MyZaPtMyrgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAEDCAYAAAAP7rExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABLlElEQVR4nO3deXiU1fn/8fedkBD2HQVBQUVU9k20qIAboIi1oqJW675XbWurtnVrq7VqrRuKVnGr3ypugP5ccN+oKCgogoggCoIisiXsSc7vj3uGmYQsk5BZQj6v63quZ5kzz5zJQObOWe5jIQREREREJLmy0l0BERERkbpAQZeIiIhICijoEhEREUkBBV0iIiIiKaCgS0RERCQFFHSJiIiIpEC9dFcgEa1btw6dOnVKdzVEREREKjVjxowVIYQ2pa/XiqCrU6dOTJ8+Pd3VEBEREamUmX1T1nV1L4qIiIikgIIuERERkRRQ0CUiIiKSAgq6RERERFIgaUGXmY03s+VmNrucx83M7jSzr8zsUzPrm6y6iIiIiKRbMlu6HgaGV/D4CKBLZDsXuDeJdRERERFJq6SljAghvGNmnSoocgzwaAghAB+YWXMzaxdCWJasOomIiCRVCFBc7PvoFr0OUL9+rOy6dduWiR7n5cXKbtoEBQWxx0qXbdMGzPz4p59g8+ZtywA0aAAtW/rxli3w/fdlvzbAzjt7HaL3XLOm5PuI7nNzYdddY8/76quy33e0ntHXX7MGli7d9ucX1bUrZEXahb7+GtavL3mvqGbNoGNHP964EebPjz1Wuvwee0CjRuW/ZgqkM0/XLsDiuPMlkWsKukREkiWE2Bf05s3+xV9Y6FtRUWxfVARdusTKzpsHa9fGHi8ujpXbeWfo3t3LrV0Lr78eeyxarrjYtyOPhLZtvex778GsWSUfjwYsLVvCWWfF6v23v8VeOz6wKS6Go4+GAw/0ch99BP/5T8nHo0FAcTGMHQs5OV72xhvhyy/LDpQOPBAuvNDLLV4Mv/lNycfjt5tugn339bL//jc8/3zZP/uOHeGee2Lnp57qwU9Zzj4bjjnGj99/H/71r/I/02ee8eAH4B//gLlzyy43dCj89rd+vGwZXHRR+ff8xz9i7+mZZxJ/T1dcEQv6SjvnHBg1yo9nzEj8Pd17b2Lv6ccf4Y9/LP+e8e8pTdIZdFkZ18oIY5Nv0SL44gsYXlFnqIhIdYXgAcOmTR7ERP/a3rjRWwY2b/Yv302b/Dh6fuCB0KqVl506FWbO9Oult1at4LLLYq938cWwYYO/5pYtsaCqsNC/zKNffO++C7ffXn6947/4Hnyw4i++aNC1Zg2MH1/+PQcMiAVdc+bAyy+XXa5Dh5JB1yeflP9l/rOfxY4LCmDhwvJfP771Y/Vqb8Upy8aNJc83bUrsnllZ/hlH9+B7s1iwF9WoUSzoipaJHse3iNWvH2shii8XPY/XqpUHwaXLmEHz5rFrOTmxFqLS5aKvGX/Pzp23fT0z2GmnkvfYYw//d1bWfeNfv1kz2HvvbcuVpXPnbX+WUR06xI7r14/9Oyzrng0bln3/FLJQVnNdTd3cuxdfCCF0L+Ox+4C3Qgj/jZzPA4aU1b3Yv3//kKyM9KtWwemn++fywAPQunVSXkZEaovCQu/KWL/evxSbNPHrP/wAn37qX8YbNvg+um3Y4H9tR79U//lPDyg2bYpt0d+1Q4bA737nx4sXx1pTyvL3v8e+RB54ACZNKrtc+/Zw332x8xNO8DqV5cwz4dhj/XjqVG+lyMmB7GyoV6/k/sYbY11M48fDkiUeTNSrV3K/996xv1rXrPFgLSvL7xG/z8ry9x/9RTt3rv/VG/+4mZ83agT9+sXqPWOG76MBTXz5nXeOBaf5+bB8+bbBT7Srqn372Bfx6tX+eUe/yOPL5uTE3nsIsaArWiY+CIgPsEQAM5sRQuhf+no6W7omAxeb2RPAQGBNOsZztWgBgwb5H3yTJ/vvIxGp5datg5UrvdUjflu3zgOF0aNjZa+80suuX++BSnxryumnw3HH+fGXX8Kdd5b/mhdeGAu6Vq/2L/542dn+JR7f2tGoEXTr5q1Jubn+WP36vs/N9V9QUYMGecCQkxPb6tXzfelxKnfcEQueSm/R4AO8hSi+lagiif5ybNYs8bL77ONbIuIDsIo0aRILlCsT3/JSEbNYACayHZIWdJnZf4EhQGszWwJcC+QAhBDGAS8CRwJfAeuBM5JVl8r84hcedL30Epx4YtrH2YlIVPz4o02bfLzOmjU+bqj0dt55JcegPPVU2fds2bJk0LVsmQddUVlZ3g3RoEGsaw084Dn0UH8sL2/bLb475pJLfOxR/fq+5eZ6wFNWXW66KbGfRVUClHbtEisnIimVzNmLJ1XyeAAqGMWXOnvuCT17es/BSy+V/H0sIkk2e7aPwVm1KratXu37Ll3g6qu93MaNPhC2PCtWxI7btIFddoHGjUtujRpt27px/fXeWtSwoW+5uWV3Fe2xR8lxUxVp0yaxciJSp6SzezGjHHecB12TJ/uEkdLjHUWkCjZu9O64H3/07aefPChascKPb73VW44ApkyBN98s+z6rVsWOmzTxrrCmTcveovcDGDHCt0R06lSttygiUlUKuiL69PHfvYsWwVtvweGHp7lCIpmquNiDp++/98Hl0f2ee8LPf+5lvvsO/vSn8u+xYkUsSOrTx1uYWrb0MUzNm8f28a1SWVlw1VXJeU8iIimgoCvCzFu7/vlPePZZOOwwTUaROiwEb5FasgR69PBB2QC33OIz3kpPCQcfpB4Nutq29QHibdr4TLU2bXx2WevWvjVtGnve0KG+iYjs4BR0xTnwQHjkEf+e+fBDGDgw3TUSSYF167xv/dtvfVuyxFuqolPk77sv1iqVk+MBV8uWPk1/5509T89OO5XMSt2kSeIDxEVE6ggFXXHq1fM/1B94wCc/KeiSHcqqVd5//vXX3uo0eLBf//57z8dUWrNmPhg9PoXCGWfA+edr+ryISDUo6Cpl2DB44gnP2Td3buIztEUyzqef+hIrCxZ41vPo2mkAvXvHgq4OHTwH0q67eobqjh092Cor11GzZimpuojIjkhBVyl5eb402IQJPrarorHAIhkhP9/XxZs3z2fsRZcLeestePXVWLmGDX22SOfOJf+aqF8frrsuhRUWEambFHSVYeRIeO45mDbNJ1lpaSDJGCH4mKs5c3ybO9eTe0Z16uSZywEOOMBn/+25p+eYattWs0NERNJIQVcZWrSArl09Z+N33ynokjSKpmeILhC8cSNcdFHJBXZzcz2o2nvvkrmqBgzwTUREMoKCrnJEe2jiVwcRSboQfBHkWbN8TNbs2T7D49FHvZWqQQPo39+7BPfd17sJO3Uqe4kZERHJKPpNXQ4FXZJS33wDkybBxx97fqx4bdv6sjjRxY+vuSbl1RMRke2noKscCrokaULwIGvLFl9bEGDDhtig9+bNfXZhz56+7bRTumoqIiI1SEFXOVq18r2CLqkRRUXw2WeedXfaNFi+3AOqG27wx7t0gTPPhF69fHahBryLiOxwFHSVI9qTo6BLtsv8+fDSS/DBB57aIapZMx/0HoIHWNnZcOyx6auniIgknYKucqh7UaqluNiXz2nQwM8XLox1G+6yi6dxGDgQ9trLF3AWEZE6Q0FXOeKDrmhjhEiZQvCldd58E955Bw46CM4+2x/bf38fGD9okGd81z8kEZE6S0FXORo08Oz0GzfC+vXQqFG6ayQZZ80aeOMNb8lavDh2/csvY8fNmsHJJ6e+biIiknEUdFWgVStPjrpypYIuKeXFF+H++32APEDTpnDwwTBkiHcdioiIlKKgqwItW8aCro4d010bSavVq30gfPQfwu67+/it/faDI47wBaOVoFRERCqgb4kKaAaj8OWX8MIL8O67ngE+muKha1d4+OHY4D8REZFKKOiqQDRXV+kE4bKDKyqC99/3DPHR8Vlm0LAhFBZ6i5aZAi4REakSBV0ViH6nrlqV3npICn35JfzjH568FKBxY+8+POqo2KLTIiIi1aCgqwLK1VVHxOcEadfOZyW2b+/JSocO9cWlRUREtpOCrgoo6NrB5efDc8/5sjx33OHdhk2awK23ek4tJS8VEZEapKCrAhpIv4PKz4eJE2HyZE/EBvDxxz4TEaBTp3TVTEREdmAKuiqgrPQ7mA0bvGVr4kQ/Bujb15OXdu2a1qqJiMiOT0FXBRo08G3DBmWlr/VCgD//OTYbsU8fD7b23ju99RIRkTpDQVcl4hOkKuiqZULw9A/RFA8jR3om+TPO8JxbIiIiKaSRwpWIdjFWKVdXcTHMnes5nSQ9Fi6EK6+Exx6LXRsyBG6+WQGXiIikhYKuSlQrV9ebb8If/gDXX6/AK9UKCmDcOLjsMpgzB955BzZv9sfMNDBPRETSRkFXJarV0jVrlu9nzoTbb/duLkmuEODVV+G88+D//T8PrkaNgrvvhtzcdNdOREQkuWO6zGw4cAeQDTwQQrip1OPNgP8Au0bqcmsI4aFk1qmqqpWrKzpYOzsb3n4bmjeHs85SK0uyrFsH114L8+b5effuHnwp9YOIiGSQpLV0mVk2MBYYAewLnGRmpQfTXATMCSH0AoYA/zSzjGqWqHL34rp1PvK+Xj2fLVevnq/h9+yzSatjndewITRt6h/W5ZfDjTcq4BIRkYyTzO7F/YCvQggLQwibgSeAY0qVCUATMzOgMbASyKhBUFXuXlywwPe77w79+8NvfuPnDz8Mr79e09Wru7780oNb8BbESy6Be+6BwYPVoigiIhkpmUHXLsDiuPMlkWvx7gb2AZYCnwGXhhCKk1inKqty92K0a3GvvXx/8MFwzjl+fOednvlcqm/zZnjwQW/Ruv12nykK3oWrnB4iIpLBkhl0ldXcUHpE+TBgJtAe6A3cbWZNk1inKovvXkxoPPz8+b7v0iV2bdQoGD3aA4T779fA+upauNBnJU6c6OfdunkeLhERkVogmUHXEqBj3HkHvEUr3hnAs8F9BXwNZFSK8Lw8z0q/ebMP16pUtKUrPugCOOUUaNPGu8Q++qjG67lDC8GX7/nd72DxYujQAf75Tzj9dMjJSXftREREEpLMoOsjoIuZdY4Mjh8DTC5V5lvgUAAz2wnoCixMYp2qJeEuxlWrYMUKj9I6dCj5WL16cExkSNtzz9V4HXdYIcBf/gLjx3vOsyOP9G7F0kGtiIhIhkta0BVCKAQuBl4B5gITQgifm9n5ZnZ+pNhfgZ+Z2WfA68AVIYQVyapTdbVq5ftKg674rsWyBnMffrjPtJs9O1ZWKmYGvXtDs2ZwzTVwwQVQv366ayUiIlJlSc3TFUJ4EXix1LVxccdLgSOSWYea0KKF76sUdJWlYUMYPtzTRzz3nGetl20VFcGSJbDbbn4+ahQMHeppIURERGopZaRPQMLdi5UFXQBHH+1JU99/H5Yvr5H67VBWrfL8ZldcAd9/79fMFHCJiEitV2nQZWaDzOxVM/vSzBaa2ddmlnHjrpIpoe7FEMofRB+vdWtPI1FcDJNLD3Gr42bPhksv9X1uLqxZk+4aiYiI1JhEWroeBG4DDgQGAP0j+zojoe7FH36A/Hwfe9SmTcU3/PnPff/KKwlOidzBheAB6J/+5C1d3bvDHXdA167prpmIiEiNSWRM15oQwktJr0kGS6h7Mdq1uNdelWdE33136NXLF8Z++WU47rgaqWetVFgI993nPweAX/wCTjvNu2BFRER2IIm0dL1pZreY2QFm1je6Jb1mGSSh7sVEuhbjHXus7ydP9sCjrlq0CF591fNt/f73cMYZCrhERGSHlEhL18DIvn/ctQAcUvPVyUzx3YshlNOQlcgg+nh9+/rsvG++gXff9dl5ddGee3qW+Xbt1J0oIiI7tEqDrhBCHY0GYvLyPNvD+vU+BKtx41IFiorgq6/8ONGgy8zHdt1xh6eQGDKk7izU/OmnsGUL9Ovn50OGpLU6IiIiqZDI7MVmZnabmU2PbP80s2apqFwmqXBc1+LFsGkTtG3rA+kTNXiwL9S8aBF89lkN1LIWeP99uPZa+Mc/YikhRERE6oBExnSNB/KBEyLbWuChZFYqE1UYdMUPoq+KnBw46ig/ji7ivCN78UUPtgoL4bDDYKed0l0jERGRlEkk6NojhHBtCGFhZLse2D3ZFcs0SQm6AEaM8JxUH33ki2HviEKAJ56Ae+/141NPhXPOqTvdqSIiIiQWdG0wswOjJ2Y2CNiQvCplpgpzdVV1EH28Zs1ig+h3xGSpxcWeEuLxxz3I+vWv4YQTFHCJiEidk0jQdQEw1swWmdk3wN3A+ZU8Z4dTbtqIzZvh6689iNhjj+rd/JhjfP/aa55gdUfy7bcwZYp3pV51FRyR8UttioiIJEUisxdnAr3MrGnkfG2yK5WJyu1e/Pprn73YsSM0aFC9m3fs6DP5ZszwJKHHH79ddc0onTr5wt6NGkGPHumujYiISNqUG3SZ2S9DCP8xs9+Wug5ACOG2JNcto5Tbvbg947niHXOMB10vvOCJU+slkkItQxUWegvX7pGhf/vvn976iIiIZICKuhcbRfZNythKZ6ra4ZXbvbh4se87d96+F+jdG3bd1V/g3Xe3717pVFgIt9zi2eU//TTdtREREckY5TanhBDuixy+FkJ4P/6xyGD6OqXcrPQFBb5v2nT7XiCaLPXOO2HSpNqZLLWwEG6+Gf73P+9OrG53q4iIyA4okYH0dyV4bYcWzUq/ZUsszgJiJ9ukqa+GwYN9NuOCBfD559t/v1QqKvIWrmjA9de/Vm82p4iIyA6qojFdBwA/A9qUGtfVFKiTKxK3bOlLAa1aBU2aRC7WZNCVmwtHHgn//a8nS+3effvvmQohwF13wdSpHnD97W++pqKIiIhsVVFLVy4+dqseJcdzrQVGJ79qmafMGYw1GXSBB105OfDhh7BkSc3cM9kefhhefx3q14frrlPAJSIiUoaKxnS9DbxtZg+HEL5JYZ0yVnTY1tr4pBk1HXQ1b+5L5Lz0Ejz9NFx2Wc3cN5m6d/dUF1dcAXvvne7aiIiIZKRExnStN7NbzOxFM3sjuiW9ZhkoGletWxe5EELNB13gKSPM4K234Mcfa+6+yTJgADz4IPTtm+6aiIiIZKxEgq7HgS+AzsD1wCLgoyTWKWM1bOj7rUHXxo2+zE1urncJ1pR27eCgg3xw+nPP1dx9a9LUqSVTQtRk0CkiIrIDSiToahVCeBDYEkJ4O4RwJlAns102imQuW78+ciEZrVxR0az0r7xSqj8zA8ye7TMVr7tux12kW0REpIYlEnRtieyXmdlRZtYH6JDEOmWsaNC1taUrmUFXp07Qv7+v7fj88zV//+patgxuvNFzcg0fDu3bp7tGIiIitUIiQdffzKwZ8DvgcuAB4DdJrVWG2qZ7MZlBF8Rau55/HjZsSM5rVEVBAVx/vS/KPWAAnH127UvgKiIikiaVBl0hhBdCCGtCCLNDCENDCP1CCJNTUblMk9LuRYB99/Vt3TqfHZhOhYXw9797d2KnTr7MT1YiMbuIiIhAxclR7wJCeY+HEC5JSo0yWMpbusBbu66/3pOljhxZswP2q+K++3zgfPPmcM01WuJHRESkisoNuoDpKatFLbFNyohUBF39+nnL0qJF8MYbMGxY8l6rIoMGwbRp8Oc/Q5s26amDiIhILVZRctRHUlmR2iAtLV1m3tp1yy3wzDOeODU7Dasw9e4NDzzg6TFERESkyiodlGNmb8YnRa3LyVFTPqYratAgz921bJknTE2V77/39BBRCrhERESqraLuxajL447zgOOAwkRubmbDgTvwBbIfCCHcVEaZIcDtQA6wIoQwOJF7p0PDht7wtH6950TNSlXQlZ0NY8bAv/4FTzwBgwdDvUQ+uu2webMPnF+0CP74Rxg4MLmvJyIi26WoqIiVK1eyZcuWygtLjcjJyaFly5ZkJ9gDVek3dwhhRqlL75vZ25U9z8yygbHA4cAS4CMzmxxCmBNXpjlwDzA8hPCtmbVNqNZpYubjx9ev9wwOjaL9jKnIxj54MEyY4LMHX389uWO7QoB77oGFC72FrXv35L2WiIjUiJUrV5KXl0fr1q0xpfNJuhACBQUFrFy5kjYJjnVOpHuxZdzW2syGATsncO/9gK9CCAtDCJuBJ4BjSpU5GXg2hPBt5A0sT6jWaVRiXFeqWrrAW7tOPtmPn3gCkvmXzCuveGCXm+utXNF+VRERyVhbtmyhcePGCrhSxMxo3LhxlVoWE0m0NAOfyTgD+B+eJPWsBJ63C7A47nxJ5Fq8vYAWZvaWmc0ws9MSuG9alZjBmMqgC3w9xl13hRUr4NVXk/Ma8+d7egiAiy/2mZMiIlIrKOBKrar+vBNJjto5hLB7ZN8lhHBECOG9ROpS1u1KndcD+gFHAcOAq81srwTunTZpa+kC79885RQ/fvJJH3dVk/LzY0v8HHUUDB1as/cXEZEd3g033EC3bt3o2bMnvXv3Ztq0aWmpx8yZM3nxxRe3nk+ePJmbbvKh5aeffjpPP/30Ns956623GDlyZNLqVOmYLjPLAy4EDsSDpveAe0MIGyt56hKgY9x5B2BpGWVWhBDWAevM7B2gF/BlYtVPva0zGNeF1AddAAccALvv7uOtXnoJjindY7sdvvsONm2Crl19iR8REZEq+N///scLL7zAxx9/TP369VmxYgWba7qBIEEzZ85k+vTpHHnkkQCMGjWKUaNGpaUuUYl0Lz4KdAPuAu4G9gEeS+B5HwFdzKyzmeUCY4DSywdNAg4ys3pm1hAYCMxNtPLpEG3p2rB6ExQV+binVGaJj2/teuop2FhZ7FsFe+8Nd98NV16Z/NmRIiKyw1m2bBmtW7emfv36ALRu3Zr27dvTqVMnVqxYAcD06dMZMmQIAG+//Ta9e/emd+/e9OnTh/z8fABuvvlmevToQa9evbjyyisBWLBgAcOHD6dfv34cdNBBfPHFF4C3Wp1//vkcdNBB7LXXXrzwwgts3ryZa665hieffJLevXvz5JNP8vDDD3PxxRdvretrr71W4jmlrVu3jjPPPJMBAwbQp08fJk2atN0/n0S+WbuGEHrFnb9pZrMqe1IIodDMLgZewVNGjA8hfG5m50ceHxdCmGtmLwOfAsV4WonZ5d81/aItXRtXpKGVK2rAAOjSxcdf/b//B8cdt333KyqKJVxt2XL76yciIml19NHJue/zz1f8+BFHHMFf/vIX9tprLw477DBOPPFEBg8uPxPUrbfeytixYxk0aBAFBQXk5eXx0ksvMXHiRKZNm0bDhg1ZuXIlAOeeey7jxo2jS5cuTJs2jQsvvJA33vC0oYsWLeLtt99mwYIFDB06lK+++oq//OUvTJ8+nbvvvhuAhx9+uMRrl/WceDfccAOHHHII48ePZ/Xq1ey3334cdthhNNqOyWWJtHR9Ymb7R0/MbCDwfiI3DyG8GELYK4SwRwjhhsi1cSGEcXFlbgkh7BtC6B5CuL2K9U+56M96y6o0Bl3xrV3PPBOXrbUatmzxxaufesqTj4mIiFRT48aNmTFjBvfffz9t2rThxBNP3CbYiTdo0CB++9vfcuedd7J69Wrq1avHa6+9xhlnnEHDSNdSy5YtKSgoYOrUqRx//PH07t2b8847j2XLlm29zwknnEBWVhZdunRh991339oKVpHKnjNlyhRuuukmevfuzZAhQ9i4cSPffvtt9X4wEYm0dA0ETjOz6CvtCsw1s8+AEELouV01qGWi3YtpDboA+vaFffaBuXM98Dr11Ord55FHvMWsoMD/NMrLq9l6iohIylXWIpVM2dnZDBkyhCFDhtCjRw8eeeQR6tWrR3HkD/uNccNirrzySo466ihefPFF9t9/f1577TVCCNvMCiwuLqZ58+bMnDmzzNcsXT6RWYWVPSeEwDPPPEPXrl0rvVeiEmnpGg50BgZHts7AkcBIIEkNmJkrGmMVrk5z0GUGZ57pxxMnehqJqpoxAyZN8q7Fyy9XwCUiIttl3rx5zJ8/f+v5zJkz2W233ejUqRMzZniu9WeeeWbr4wsWLKBHjx5cccUV9O/fny+++IIjjjiC8ePHsz7Si7Ny5UqaNm1K586deeqppwAPiGbNio10euqppyguLmbBggUsXLiQrl270qRJk61jxMpS1nPiDRs2jLvuuosQPPHCJ598sp0/ncRSRnwDNMcDrKOB5iGEb6Lbdteglom2dBWtSXPQBT7w/cADPXXEY4nMbYizZg3cfrsfn3IK7JXRmTpERKQWKCgo4Fe/+hX77rsvPXv2ZM6cOVx33XVce+21XHrppRx00EEllsy5/fbb6d69O7169aJBgwaMGDGC4cOHM2rUKPr370/v3r259dZbAXj88cd58MEH6dWrF926dSsxsL1r164MHjyYESNGMG7cOPLy8hg6dChz5szZOpC+tLKeE+/qq69my5Yt9OzZk+7du3P11Vdv98/HohFcuQXMLgXOAZ6NXDoWuD+EcNd2v3qC+vfvH6ZPn56ql6vQjBlw3XVwcsOJnLT+QRg1Cs45J30V+v57uOACHwz/r3/BHnsk9rybboL33/clfm64AbISafQUEZFMtXTpUtq3b5/uaqTc6aefzsiRIxk9enRaXr+sn7uZzQgh9C9dNpFv2rOAgSGEa0II1wD740FYnRQdSB/yM6ClC2DnnWHkSF8vcfx431fm/fd9y8uD3/xGAZeIiEgKJDKQ3oCiuPMiys42XydsnSlaUADNSH/QBXDCCfDaa/DppzB9uqeUqMgee0DPnjBoELTN6DXGRUREKlTR7MhMk0gTx0PANDO7zsyuBz4AHkxutTJXdExX1voMaekCaNIExozx44ce8q7Giuy8M/ztbzBiRPLrJiIiIkBiA+lvA84AVgI/AWfUhnxayRJt6cqooAt8rcR27WDxYpgypewyy5fHuh/NfBMREZGUqMpgHsPXXqzT39T16/sQqJxNBRQHMifoqlcPfvUrP3788W0Tpq5b50lQ//xnX9haREREUqrSoMvMrgEeAVoArYGHzOzPya5YpjLz1q68wgLvxcuUoAvgZz/zhKlr1sATT5R87IEHYOVKz0C/HUsYiIiISPUk0tJ1EjAghHBdCOFafPbiKcmtVmZr2BDyigooKiSzAhgzOPdc30+aBN9E0qh98okPtM/JgUsu0WxFERFJisYJNES8++67dOvWjd69e7Nhw4Yq3X/ixInMmTMnKfVKhUS+fRcB8RnD6gMLklKbWqJRw0Be4brMa+kC2HNPHyBfXAzjxsGmTXDvvf7YySdDhw7prZ+IiNRpjz/+OJdffjkzZ86kQYMGVXpudYOuTJFI0LUJ+NzMHjazh4DZQIGZ3Wlmdya3epmpWd4mskMhhVm5kJub7ups69RToVkzmD0b/vpXWLYMdt0Vfv7zdNdMRETqgLfeeoshQ4YwevRo9t57b0455RRCCDzwwANMmDCBv/zlL5xyinea3XLLLQwYMICePXty7bXXbr3Ho48+Ss+ePenVqxennnoqU6dOZfLkyfz+97+nd+/eLFiwgAULFjB8+HD69evHQQcdtHXR6q+//poDDjiAAQMG1Egm+ZqSSJ6u5yJb1FvJqUrt0SzbZy5uys2wVq6oxo3hjDM86/yjj3rW+Qsu8MH2IiKy4zs6SUsjV2El7U8++YTPP/+c9u3bM2jQIN5//33OPvts3nvvva0Z5KdMmcL8+fP58MMPCSEwatQo3nnnHVq1asUNN9zA+++/T+vWrVm5ciUtW7Zk1KhRJbLPH3rooYwbN44uXbowbdo0LrzwQt544w0uvfRSLrjgAk477TTGjh2bnJ9FNVT6LRxCeCQVFalNWuREgq56GTSeq7RDDoEXX/TB882aeeAlIiKSIvvttx8dIkNaevfuzaJFizjwwANLlJkyZQpTpkyhT58+gK/dOH/+fGbNmsXo0aNp3bo1AC1bttzm/gUFBUydOpXjjz9+67VNmzYB8P77729dWPvUU0/liiuuqPk3WA1q+qiGJuZB18bsDG3pAh9M/+tfw1dfebqIhQth993TXSsREUmFKrRIJUv9+vW3HmdnZ1NYWLhNmRACV111Feedd16J63feeSdWSS7J4uJimjdvzsyZM8t8vLLnp4OmsVVDk6x1AGyol6FB16ZNnourUydvYg4B7rknsXUZRUREUmTYsGGMHz+eggJvzPjuu+9Yvnw5hx56KBMmTOCnn34CYOXKlQA0adKE/EiuyaZNm9K5c2eeeuopwAO4WbNmATBo0CCeiKROevzxx1P6nipSbtBlZo9F9pemrjq1Q+NIS9d6y9Cga8IEOO88mDYNTjoJWrSAefPglVfSXTMREZGtjjjiCE4++WQOOOAAevTowejRo8nPz6dbt2786U9/YvDgwfTq1Yvf/va3AIwZM4ZbbrmFPn36sGDBAh5//HEefPBBevXqRbdu3Zg0aRIAd9xxB2PHjmXAgAGsWbMmnW+xBAvltH6Y2RxgBDAZGEKpTPQhhJXJrlxU//79w/Tp01P1cpWaef0kNt/zAPlDjubQJ89Nd3VK+u47uPhiKCyEW26BvfeGd9+Fm2+GBg28xSvSRy4iIjuOpUuX0r59+3RXo84p6+duZjNCCP1Ll62oe3Ec8DKwNzCj1JY5EVAaNCz2lq4CMrCl69//9oDr8MM94AI48EAYOBA2bIC771Y3o4iISBqUG3SFEO4MIewDjA8h7B5C6By31ekR2Q2KPOjKDxkWdM2cCTNmeMr86DqM4IPqL7zQs+fPmAFvvpm2KoqIiNRVlQ6kDyFcYGa9zOziyNYzFRXLZHmFHnStKc6goKu4GB580I+PP97TRMRr2RLOOceP77/fU0mIiIhIyiSy4PUlwONA28j2uJn9OtkVy2T1t0SCrsIMCrreeAMWLYI2bWDUqLLLHHII9OvnKSTuvVfdjCIiIimUSMqIs4GBIYRrQgjX4Aten5PcamW23M0edK0uyqCga+edPUXEaaeVvzSRmQ+yb9AAPvgA3nsvpVUUERGpyxIJugwoijsvotRMxromZ5MHXas2N86cxqLu3eGOO2Dw4IrLtW4NZ57px+PGQQZNpRUREdmRJRJ0PQRMM7PrzOw64APgwaTWKsNlbyjAsnz24pYtaa5MfNSXleWtWZUZNgx69YK1azWbUUREakx2dja9e/eme/fuHH300axevTrdVaqy6667jltvvTUp905kIP1twBnASmAVcEYI4fak1KY2CAEKCsjOho31GrNuXZrrc++98K9/VW1gvBlcconPcvzgAyVNFRGRGtGgQQNmzpzJ7NmzadmyZcYsNh1CoLi4ON3VSGwZoBDCx5EUEneEED5JdqUy2ubNUFiI5eRQmJXL+vVprMu338LLL8Nbb3kOrqpo2xYuusiP//1vWLKkxqsnIiJ11wEHHMB3330HwIIFCxg+fDj9+vXjoIMO4osvvgDghx9+4Nhjj6VXr1706tWLqVOnAnDbbbfRvXt3unfvzu233w7AFVdcwT333LP1/tdddx3//Oc/AbjlllsYMGAAPXv25NprrwVg0aJF7LPPPlx44YX07duXxYsXl1kO4IYbbqBr164cdthhzJs3L2k/Ey14XVWR9aEKGzSOP02Phx/2lrcjj4Rddqn68w8+GKZP97xdt9wCt94KOTk1Xk0REUmDo48u/7GLLoLhw/345ZehohapaiyeXVRUxOuvv85ZZ50FwLnnnsu4cePo0qUL06ZN48ILL+SNN97gkksuYfDgwTz33HMUFRVRUFDAjBkzeOihh5g2bRohBAYOHMjgwYMZM2YMl112GRdeeCEAEyZM4OWXX2bKlCnMnz+fDz/8kBACo0aN4p133mHXXXdl3rx5PPTQQ9xzzz3llmvUqBFPPPEEn3zyCYWFhfTt25d+/fpV+T0nQkFXVUWirOKGHnSlraXriy/go48gL8/XV6yu88+HuXNh4UJ47LHYIHsREZEq2rBhA71792bRokX069ePww8/nIKCAqZOncrxxx+/tdymTZsAeOONN3j00UcBHw/WrFkz3nvvPY499lgaNWoEwC9+8QveffddLrnkEpYvX87SpUv58ccfadGiBbvuuit33nknU6ZMoU+fPgAUFBQwf/58dt11V3bbbTf2339/AKZMmVJmufz8fI499lgaNmwIwKjy0i7VAAVdVRUJukIk6ErbmK7oqumjRm2bCLUqGjaEyy+HP/wBnnsO+vTxTUREardEW6iGD4+1em2n6JiuNWvWMHLkSMaOHcvpp59O8+bNmTlzZkL3KG9NaIDRo0fz9NNP8/333zNmzJit5a+66irOO++8EmUXLVq0NXCrqNztt9+OJTIJrQYkkhz1F2Y238zWmNlaM8s3s7WJ3NzMhpvZPDP7ysyurKDcADMrMrPRVal8WkT7ExunMej6/HNf8qdhQ/j5z7f/fl27wskn+/G//qU0EiIisl2aNWvGnXfeya233kqDBg3o3LkzTz31FODBz6xZswA49NBDuffeewHvkly7di0HH3wwEydOZP369axbt47nnnuOgw46CIAxY8bwxBNP8PTTTzN6tIcMw4YNY/z48RREvp+/++47li9fvk2dyit38MEH89xzz7Fhwwby8/N5vhrdqYlKZCD9zcCoEEKzEELTEEKTEELTyp5kZtnAWGAEsC9wkpntW065fwC1Ywpd5MOyJmnsXpw712cgHnMMNGlSM/c8/njo1g1WrfLAS2kkRERkO/Tp04devXrxxBNP8Pjjj/Pggw/Sq1cvunXrxqRJkwC44447ePPNN+nRowf9+vXj888/p2/fvpx++unst99+DBw4kLPPPntrl2C3bt3Iz89nl112oV27dgAcccQRnHzyyRxwwAH06NGD0aNHk5+fv019yivXt29fTjzxRHr37s1xxx23NcBLBquoGQ/AzN4PIQyq8o3NDgCuCyEMi5xfBRBC+HupcpcBW4ABwAshhKdL36t///5h+vTpVa1CckyaBA88wEc7H81fvj+XE0+EX/4yDfVYvNjXU4xrOt1uP/4Il14K+fne8rU9Y8VERCSlli5dSvv27dNdjTqnrJ+7mc0IIfQvXTaRlq7pZvakmZ0U6Wr8hZn9IoHn7QIsjjtfErkWX6ldgGOBcQncLzNEWrqym3qwk7aB9B071mzABb5u4+9/761o//0vzJhRs/cXERGpwxIJupoC64EjgKMj28gEnlfWqLTSzWq3A1eEEIrKKJuZIoO4spulIWXE3LkeCCWz669PHzjlFH+NW2+FH35I3muJiIjUIZXOXgwhnFHNey8BOsaddwCWlirTH3giMmugNXCkmRWGECZW8zWTLxJl5bRI8ZiuEDyJ6fz5cNllcOihyXutE06AefM8JcWNN3oOr/IW0RYREZGEJDJ7sYOZPWdmy83sBzN7xsw6JHDvj4AuZtbZzHKBMcDk+AIhhM4hhE4hhE7A08CFGR1wwdagK7dlimcvfvSRB1zNmsGgKg+xqxoz+N3voF07z991770aWC8iUgtUNk5balZVf96JLng9GWiPj8l6PnKtsooUAhfjsxLnAhNCCJ+b2flmdn6VaplJIkFX/VYpDLpCiOXlOv54T4iabI0awVVXeQvXa69pfUYRkQyXk5NDQUGBAq8UCSFQUFBAThVWckkkOWqbEEJ8kPVwZMZhIhV6EXix1LUyB82HEE5P5J5pl46g6+OPvcWpRQsYMSIFLxjRuTNcfDHcdhuMGwft20PPnql7fRERSVjLli1ZuXJlmekSJDlycnJo2bJlwuUTCbpWmNkvgf9Gzk8CfqpG3XYMkaCrQVvPj5WSMV1PR7JoHHNM6sdWDR0KX3/t2er//ncfXF+ddR5FRCSpsrOzadOmTbqrIRVIpHvxTOAE4HtgGTA6cq3uCcFzWAEN28ZaupLakvvFFzB7tnf3pbKVK97pp8PAgR5wXn/91p+BiIiIJK7SoCuE8G0IYVQIoU0IoW0I4echhG9SUbmMs3kzFBZCTg7ZDXLJy/OAa+PGJL7mLrt4CofRo33Zn3TIyvL1GXffHZYt8xmNW7akpy4iIiK1VLndi2b2hxDCzWZ2F9vm1yKEcElSa5aJSq272LChB1zr1kGDBkl6zSZNILKoZ1rl5cHVV/usxtmzYexYz16fokVCRUREaruKWrrmRvbTgRllbHVPqaArmhA+aeO6Mm0GSuvWcM01UL8+vP46RBYvFRERkcqVG3SFEKLLbK8PITwSv+EZ6uuecoKupMxgXLECzj4bkrjaebXssYd3NZrBY4/Bq6+mu0YiIiK1QiID6a9K8NqOL5VB18SJsHy5D6TPNPvvD+ee68d33QVTp6a3PiIiIrVARWO6RgBHAruY2Z1xDzUFCpNdsYyUqu7F/Hx4+WU/Hj26hm9eQ0aO9Hr+3//5MkHXXQe9eqW7ViIiIhmropaupfh4ro2UHMs1GRiW/KploDIG0sdfrjEvvACbNkG/fp6gNFONGQNHH+0zOv/2N1+mSERERMpUbktXCGEWMMvMngPWhRCKAMwsG6ifovpllmh0FWniSkpL16ZNsXFcmdrKFWUG55zjLV5vvQXXXgv/+Ad07FjpU0VEROqaRMZ0TQHiEyI0AF5LTnUyXHTwVjLHdL31lgcxe+0F3brV4I2TxMxTRwwY4PW++mrP5SUiIiIlJBJ05YUQtnagRY7TlKUzzVIxkH7aNN+PGlV7cmDVqwdXXAHdu8NPP/lC2UuXprtWIiIiGSWRoGudmfWNnphZP2BD8qqUwdau9X0TX3cxOqarRoOuP//ZW4sGDarBm6ZA/frevditmwIvERGRMiQSdF0GPGVm75rZu8CTwMVJrVWm+imyzndkRfGkjOnKyoL99vPWo9omL89nMXbvDitXeuD13XfprpWIiEhGSGTtxY+AvYELgAuBfUIIdTMjfTToatUKqOHuxdWrPVCp7fLyvMWrRw9/P3/8owIvEREREmvpAugK7Av0AU4ys9OSV6UMtXmzDxTPzobmzYEa7l585hk466xYfq7aLC/Plwvq2TPW4rVoUbprJSIiklaVBl1mdi1wV2QbCtwMjEpyvTJPtBWqZcutA9xrrHtx40ZfTqewEPbccztvliGigVevXrBqFVx5JXz+ebprJSIikjaJtHSNBg4Fvg8hnAH0oi7m6SrVtQg12L34xht+k3322XGCLvDB9ddcAz/7mb+/a66Jzc4UERGpYxIJujaEEIqBQjNrCiwHdk9utTJQGUFXgwbe6LVhAxQXV/O+IcSSoY7aARsQc3M9ncTw4d5Fe+ON8FrdTPMmIiJ1WyJB13Qzaw78G18G6GPgw2RWKiOVEXSZxcZ1VbuLceZMWLIEWrf2haR3RFlZcOGFvmxQcTHccQc8/bQHnCIiInVEhXkJzMyAv4cQVgPjzOxloGkI4dNUVC6jlBF0gXcxrlvnQVckZ2rVTJ7s+yOPrJ1pIhJlBqecAs2awf33wyOPwPLlcO65O/b7FhERiaiwpSuEEICJceeL6mTABeUGXdu16HVRkc+GrF8fhtWRNcRHjoTf/x5ycuCllzyvV42vGC4iIpJ5Eule/MDMBiS9JpmugpYuqGb3Yna2Z6B/6CFo2nT76lebHHQQ/P3vnnpj1iy4/HJlrxcRkR1eIkHXUDzwWmBmn5rZZ2ZW91q7Kmnp2q4ZjJFlheqUrl3httugc2dPnvq738Gnde+flYiI1B3lBl1mtmvkcAQ+W/EQ4GhgZGRfd4QQy9NVKuiKjuOqckvXF194kFGXB5O3aQM33wwDB3oX4zXX+EzOuvwzERGRHVZFLV0TAUII3wC3hRC+id9SUrtMsXatJy5t3NhTIMSJdi/m51fxno8/Dn/6k9In5OX5UkHHHedj3O6/3wOxDXVzTXUREdlxVRR0Wdxx3cvLFa+crkXwTA/gE/ES9v33nioiNxcOOGC7q1frZWXB6ad7Pq+8PHjvPfjNb+Dbb9NdMxERkRpTUdAVyjmue6JBVzTCirPzzr7//vsq3G/KFN8PGlTNPBM7qAMPhNtvh1139XFev/0tvP12umslIiJSIyoKunqZ2Vozywd6Ro7Xmlm+ma1NVQUzQjToatlym4fatfN9wkFXYaGvswiepV1K2mUX+Oc/YehQ2LQJbr0V7rrL16cUERGpxcoNukII2SGEpiGEJiGEepHj6Hkdym8ArFjh+zK6F+NbuhIa//3hh7B6NXTs6Gstyrby8rx78cILPZ/XlClw6aUwf366ayYiIlJtiaSMqDYzG25m88zsKzO7sozHT4mkofjUzKaaWa9k1qfaKhjT1bChp9jatAlWrUrgXtGuxWHDPEu7lM0MRozwtBKdOnker9//HiZM2I6FLkVERNInaUGXmWUDY/GUE/sCJ5nZvqWKfQ0MDiH0BP4K3J+s+myXCoIuqMK4rhBgzz2hbVs45JCaq9+OrFMn72485hif3fjYY3DVVfDDD+mumYiISJUks6VrP+CrEMLCEMJm4AngmPgCIYSpIYRo+9AHQIck1qf6airoMoNf/hIeeKBuJkStrtxcOPts+OtffVzdnDlw0UWe00utXiIiUkskM+jaBVgcd74kcq08ZwEvJbE+1VdJ0BUdTL9sWYL3U7di9fTu7YPqDzrI+3Pvv9/TTCxeXOlTRURE0i2ZQVdZkUWZQ83NbCgedF2RxPpUz6ZNvsZPvXrlro+YUEvXZ5/BpEnVyKIqJTRtCn/4g69Z2bKlZ/a/5BIf61VYmO7aiYiIlCuZQdcSoGPceQdgm1WNzawn8ABwTAjhpyTWp3ri00WU00IVDboqbOl6/nnvVowOpJftM3Ag3HOPT0goLPSxXpde6sGtiIhIBkpm0PUR0MXMOptZLjAGmBxfILK+47PAqSGEL5NYl+qrpGsREsjVtWaNp4ow8/xTUjMaNYKLL4YbbvAP4dtvfUmhW26JfW4iIiIZImlBVwihELgYeAWYC0wIIXxuZueb2fmRYtcArYB7zGymmU1PVn2qLYGgq2VLH+u9Zk05Swa+847PvOvXr8wEq7KdevaEu++GU07xD+Kdd+D88+HZZ9XlKCIiGSOpebpCCC+GEPYKIewRQrghcm1cCGFc5PjsEEKLEELvyNY/mfWplgqWAIoyg5128uMyW7uii1ofemjN1k1icnNhzBi4915fz3LjRnjoIZ/lOHVqgplrRUREkiepQdcOIYGWLqhgMP2iRbBwoXeF7bdfjVdPSmnb1rsYr7/elxRauhT+/nef5Th3brprJyIidZiCrsokGHSVO67r9dd9P3iwt8ZIavTt612O558PzZp5wPWHP3gA9t136a6diIjUQQq6KlPFlq5tZjB27w59+qhrMR3q1YOjjvJ8Xiee6EHv1Km+puPtt1chsZqIiMj2q5fuCmS87Q26Bg70TdKnYUNfCWDECPi///Mxdq+/Dm++6csxnXhi7AMUERFJErV0VaS4GFau9ONKZh1Guxe1JGAGa9UKfv1rGDcODjvMr732mndB3nmnuh1FRCSpFHRVZPVqD7yaNoWcnAqLtm3rsxiXL/fsEKxd60vWaPB25mnXzhOpjhvn3b7FxfDqq3DBBXDjjTBvXrprKCIiOyAFXRVJsGsRfLhQq1YecP34I/D22559/sknk1tHqb527eCyyzz4Gj4csrPhf/+Dyy+Hq66Cjz5SqgkREakxGtNVkWjXYgJBF/iwoBUrfAbjztFZi9FuLMlc7dt7Pq+TT/blml58EWbP9q1dOx+Mf9hhnvZDRESkmtTSVZEqtHRBbFzXmlmLYMEC5eaqbVq0gNNO86SqZ57pfcbLlvmamaef7ms9fvttumspIiK1lFq6KlLFoCs6AS77rUgG+oMPVm6u2qhBAzj2WDjmGF8z84UXYNYseOkl3/bdF444AgYNgry8dNdWRERqCQVdFVmxwvcVLAEUb+edIbt4Cy0+fgN2BQ4/PHl1k+TLyoL99/dt8WIPvt54A+bM8e2++zzp7RFHwJ57+kwKERGRcijoqki0pSvBRarbtYOuq6cR1uZD587+RSw7ho4dfXbjGWfAu+/6JIkvvoCXX/atY0cYOtSDsLZt011bERHJQAq6KlKN7sVlDffg3dbH0m3UbphaPnY8eXnegnn44T6+a8oUb/1avBgefdS3bt1gyBDvfmzSJN01FhGRDGGhFkyJ79+/f5g+fXrqX/iEE2DDBs9insCXZwhw0kmwbh385z++5J/UAYWF8Mkn8NZb8MEHsHmzX8/Kgp494cADvYtS/yBEROoEM5sRQuhf+rpausqzYYNvubnQuHFCTzHz1q4FCzxthL5j64h69WDAAN/Wr/dcX2+/7YPvZ870bexY6NEDfvYzn9Hapk26ay0iIimmoKs88V2LiXQTFhfD3/7GoDX9+br4CL7/vh5duya3ipKBGjb0LPeHHgr5+d7y9f77HoB9+qlv48ZBp04efO23H+y1lwbhi4jUAQq6ylPF8Vx88gl89BG91i7m0SYjtl34WuqeJk1i478KCjz9xLRp8PHHsGiRbxMmeJNonz7Qt6/vmzdPc8VFRCQZFHSVp4ozF5kyBYD1Bx4Onxrff5+keknt1LgxHHKIb1u2eLb7adM8EPvxRx8P9tZbXnb33T346tHDB+UrF5iIyA5BQVd5qtLStWaNf3makTP8MPgUtXRJ+XJyPKjq0wfOOw+WLPHWr08+gc8+g4ULfXvmGV8Pcq+9PADr0QP23ltBmIhILaWgqzzRxKiJBF1vvOEz2AYMoE1XbxlTS5ckxMxzfHXs6BnwN2+Gzz/3sV+zZsFXX8Hcub5NmOAzIvfYw7Pi77sv7LOPL18kIiIZT0FXeRJt6Qpha9ciw4bRurVPZlu50r8/tQqQVElubqwVDDz/yJw5HoDNmeNTY+fP923SJC/Ttq23hnXt6tsee+gfnohIBlLQVZYQYOlSP64s6PriC+8eatEC+vUjK8u/A5cu9dauXXdNfnVlB9aoUSwdBcDGjTBvXmwpoi++gOXLfXvvPS+Tne0tZ3vu6dsee/gKCfXrp+99iIiIgq4yzZrlGcabNfMvrIrsvjv89rc+OLqe/zjbtfOga9kyBV1Sw/LyoFcv38BTlSxeDF9+6QHYl1/CN9/EZke+Fll83Qx22cWDr06dfN+5c+IpUUREZLsp6CrLk0/6/phjKu+mqV/f19yLs/POvte4Lkm6rCzYbTffogusb9wIX3/tXZFffeX7b7/1FtklS3ztyKhGjWJjynbbzf9K6NDBF3lXMCYiUqMUdJU2d65P52/UCI48svxyW7b4YPt27bZ5qEMH37/7Lowape8uSbG8PB9gv88+sWubN3uL2KJFHpBFt/x8byH74ouS96hf31vG4rd27aB9e09/oX/UIiJVpqCrtGgr18iRHniVZ+JEX5PxnHO2Cc6GDoWnnvKhNy++CEcdlbzqiiQkN9e7yuO7y0OAtWu9O/Lbbz0oi+7XrImlriitUSMPvnbayZt14/dt2mztZhcRkZL02zHeggUwY4a3FIwaVX65FSs8OCss9BaAUho1gvPPhxtvhIcfhoEDvbdGJKOY+bjFnj19i7duXaw78rvvfIDi0qW+rVsXm0FZ1j1btPDgq21b37dp4/8BWrXyffPmaikTkTpJQVe8CRN8P2IENG1afrkHH4RNm2DQoNiA5lIOOMDXNp46Fe65B66+Wt8zUos0ahRLQREvBG8FW7bMBy3+8ENs/8MP/gfJypW+zZtX9r2zs32lh5YtPRBr0SJ23qKFb82be0CYnZ30tyoikioKuqIWL/YIKScHfv7z8st9+qlPzc/NhbPOqvCW553nEyE/+sjXPD7wwJqtskjKmXlA1Lx5yTFjUUVFnuPuxx99W77c9z/95NuKFd6lGX28stdq2tSDr+bN/TgajDVtuu3WpIn//xURyVAKuqKeesr3hx9e/nqLhYVw331+fOKJ3m1SgZYt4fTTYexYGDfOG8WaNKm5KotknOxs71Zs27b8Mps3ewC2ciWsWuXHq1bFzlev9v3atd6qtmaNjzVLRF6eD/Rv0sS3xo19a9Qodty4MTRs6Nfit/r11RwtIkmloAu8e+Ttt336/XHHlV/ugw/8l3+7dhW3hsUZNsxvPXs2jB8Pl15aM1UWqbVyc/3/UBkzf0soKvKAa+1aD8Si++i1+G3NGigo8HQZGzfGlvGqCjMPxho08H30OLrFn+flxbYGDTxgi78WPa9XT4GciGyV1KDLzIYDdwDZwAMhhJtKPW6Rx48E1gOnhxA+TmadyvTMM55k8tBDt/0LPYTYL80BA3wg8HnnJbzMihlcfDH8+teep7JLFxg8uOKJkSJCybFfiQjBA678fA/A1q71fXRbty52vH69n69bFzvetCl2raaYeQBWesvN9S3+uPSWkxPblz6O3+rVK/84O1tBn0gGsRBCcm5slg18CRwOLAE+Ak4KIcyJK3Mk8Gs86BoI3BFCGFj6Xv379w/Tp09PSj1ZtQrOPNP/qr733thsxC1bvInq+ed9GmI0SsrPr1Yf4YQJ8NhjfpyVBd26wX77+da+fQ29FxGpvqIi2LDBg7DotmFDbIueb9rk+40bY/votmlTyePCwnS/Kw++olt2tgdk2dklr5W3L31c3paVVXJf1nF0K31e3rWsLA8Yy7oWDSbjz6PH8dcruxY9BwWnUqPMbEYIof8215MYdB0AXBdCGBY5vwoghPD3uDL3AW+FEP4bOZ8HDAkhLIu/V1KDrhDg44/hjjs8I3d0XEl+fqzM2Wd7dvrtUFwML7/sCVPnzPHzqNzc2BCT6PCT3Nxtf6dFf0dAyd8ZUeUdi0h6WHERWYWbyS7cRPaWjWQXRY4LN229nlW0Zes+q3Dz1jJZRVuw4kKyCzeTVbTZHy/aQnakXPQ8q7hw67FFj4sLySoqxIqL0v0jqF3MCJZFMAMscu7HseuAeaAWe8zKvoaVuG/841uvlygTe2zb55d+jBKPA2Xcq4Iy8ddKfGFUtXzccyq51zb3K83Ku0/59ytLWXWOt8t5I9ntiK7bXK9J5QVdyexe3AVYHHe+BG/NqqzMLsAyUsUM+vXzlq2ZM0te79ABTjjB+wO3U1aW51A98kjv3fj4Y5g2zfcFBT62ePXq7X4ZEcko2UCDyFZDsoDERjdACGSHQuqFLWSFIrKKC8kOsS0rFJW7L31c7kZxiXOjmOxQhIXiEmUsFGNby5Y6DsVkUYSFELkevRZ9Xoh7flnnxVufu82eUM5jAf969scjPzBAger2qOzv/UxoD1hz6EBIctBVnmQGXWX9bEs3qyVSJjV+/WsfXxHNFdS0aazZuYY1bgwHH+xbCB5wRYeSRIedbN7srWHFxd7rUVTkZeM32Ha/vZLU8CkiaWFATmTbcQRiXxQ1EiLF/SK1ULz1l6wR+4Ubfx3wc4BQHAvaIl0YscdK3mPrcyn5S7z0efTdWUXPi39u/PsIJcts85yynhf/XD8p8ZCFsu+x9f6lla5zWY9X8VqZ9ymrbALP2emgvSq+VxIlM+haAnSMO+8ALK1GmdT42c/S8rLx42wTHS8sIiI1Kb4rLjl/bItAcv91fQR0MbPOZpYLjAEmlyozGTjN3P7AmtLjuURERER2BElr6QohFJrZxcAr+MCG8SGEz83s/Mjj44AX8ZmLX+EpI85IVn1ERERE0impebpCCC/igVX8tXFxxwG4KJl1EBEREckE6rwWERERSQEFXSIiIiIpoKBLREREJAUUdImIiIikQNKWAapJZvYj8E266yEiIiKSgN1CCG1KX6wVQZeIiIhIbafuRREREZEUUNAlIiIikgIKugAzG25m88zsKzO7Mt31qavMrKOZvWlmc83sczO7NHK9pZm9ambzI/sW6a5rXWRm2Wb2iZm9EDnX55IBzKy5mT1tZl9E/u8coM8m/czsN5HfY7PN7L9mlqfPJT3MbLyZLTez2XHXyv0szOyqSDwwz8yG1WRd6nzQZWbZwFhgBLAvcJKZ7ZveWtVZhcDvQgj7APsDF0U+iyuB10MIXYDXI+eSepcCc+PO9blkhjuAl0MIewO98M9In00amdkuwCVA/xBCd3wpvDHoc0mXh4Hhpa6V+VlEvnPGAN0iz7knEifUiDofdAH7AV+FEBaGEDYDTwDHpLlOdVIIYVkI4ePIcT7+5bEL/nk8Ein2CPDztFSwDjOzDsBRwANxl/W5pJmZNQUOBh4ECCFsDiGsRp9NJqgHNDCzekBDYCn6XNIihPAOsLLU5fI+i2OAJ0IIm0IIX+NrQ+9XU3VR0OVf6ovjzpdErkkamVknoA8wDdgphLAMPDAD2qaxanXV7cAfgOK4a/pc0m934EfgoUjX7wNm1gh9NmkVQvgOuBX4FlgGrAkhTEGfSyYp77NIakygoAusjGvKo5FGZtYYeAa4LISwNt31qevMbCSwPIQwI911kW3UA/oC94YQ+gDrUJdV2kXGBx0DdAbaA43M7JfprZUkKKkxgYIuj2I7xp13wJuBJQ3MLAcPuB4PITwbufyDmbWLPN4OWJ6u+tVRg4BRZrYI734/xMz+gz6XTLAEWBJCmBY5fxoPwvTZpNdhwNchhB9DCFuAZ4Gfoc8lk5T3WSQ1JlDQBR8BXcyss5nl4gPoJqe5TnWSmRk+NmVuCOG2uIcmA7+KHP8KmJTqutVlIYSrQggdQgid8P8fb4QQfok+l7QLIXwPLDazrpFLhwJz0GeTbt8C+5tZw8jvtUPxMar6XDJHeZ/FZGCMmdU3s85AF+DDmnpRZaQHzOxIfMxKNjA+hHBDemtUN5nZgcC7wGfExg79ER/XNQHYFf9ldnwIofSgSEkBMxsCXB5CGGlmrdDnknZm1huf4JALLATOwP+g1meTRmZ2PXAiPiv7E+BsoDH6XFLOzP4LDAFaAz8A1wITKeezMLM/AWfin91lIYSXaqwuCrpEREREkk/diyIiIiIpoKBLREREJAUUdImIiIikgIIuERERkRRQ0CUiIiKSAgq6RCTtzKyVmc2MbN+b2XeR4wIzuydJr3mZmZ1WxvVOZja7Bl8n18zeiazBJyJ1mH4JiEjahRB+AnoDmNl1QEEI4dZkvV4kADoTz96eVCGEzWb2Op6z6fFkv56IZC61dIlIxjKzIWb2QuT4OjN7xMymmNkiM/uFmd1sZp+Z2cuRJaQws35m9raZzTCzV6JLfZRyCPBxCKEw7jmzzOx/wEVxr9/JzN41s48j288i1x8zs2Piyj1uZqPMrJuZfRhppfvUzLpEikwETknGz0hEag8FXSJSm+wBHIUvJvwf4M0QQg9gA3BUJPC6CxgdQugHjAfKWmFiEBC/gPdDwCUhhANKlVsOHB5C6Iu3VN0Zuf4AnvkdM2uGr6v3InA+cEcIoTfQH1/HDWA2MKCa71lEdhDqXhSR2uSlEMIWM/sMX7br5cj1z4BOQFegO/CqL3lHNrCsjPu0w9fCiwZNzUMIb0ceewwYETnOAe6OLLVTBOwFEEJ428zGmllb4BfAMyGEwkhL2Z/MrAPwbAhhfqR8kZltNrMmIYT8GvpZiEgto6BLRGqTTQAhhGIz2xJi65gV47/PDPi8jBar0jYAeZFjA8pbD+03+FptvfCegY1xjz2GdxmOwceHEUL4PzObhrfGvWJmZ4cQ3oiUr1/q+SJSx6h7UUR2JPOANmZ2AICZ5ZhZtzLKzQX2BAghrAbWRBZch5Jjr5oBy0IIxcCpeMtZ1MPAZZF7fB55vd2BhSGEO4HJQM/I9VbAjyGELdv/FkWktlLQJSI7jBDCZmA08A8zmwXMxMdblfYScHDc+RnA2Ej34Ia46/cAvzKzD/CuxXVxr/UDHrw9FFf+RGC2mc0E9gYejVwfio/5EpE6zGKt8yIidYeZPQf8ITruqhrPb4iPJesbQlhTSdlngatCCPOq81oismNQS5eI1FVX4gPqq8zMDgO+AO5KIODKBSYq4BIRtXSJiIiIpIBaukRERERSQEGXiIiISAoo6BIRERFJAQVdIiIiIimgoEtEREQkBRR0iYiIiKTA/wcG/aFFFcKsxgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + } + ], + "source": [ + "# set parameters\n", + "\n", + "\n", + "param_choices_true_false = []\n", + "\n", + "def ps(param_synth_method):\n", + " for i in range(len(search_points_beta)):\n", + " beta_val = search_points_beta[i]\n", + " for j in range(len(search_points_gamma)):\n", + " gamma_val = search_points_gamma[j]\n", + "\n", + " # parameters\n", + "\n", + " def beta(t): return np.piecewise(t, [t>=0], [beta_val])\n", + " def gamma(t): return np.piecewise(t, [t>=0], [gamma_val])\n", + "\n", + "\n", + " # set initial conditions\n", + " I0, R0 = 0.01, 0\n", + " S0 = 1-I0-R0\n", + " y0 = S0, I0, R0 # Initial conditions vector\n", + " # set simulation parameters\n", + " dt = 1\n", + " tstart = 0\n", + " tend = 100\n", + " tvect = np.arange(tstart, tend, dt)\n", + " # simulate/solve ODEs\n", + " sim = odeint(sir_model.SIR_model, y0, tvect, args=(beta, gamma))\n", + " S, I, R = sim.T\n", + "\n", + " # plot results\n", + " #sir_model.plotSIR(tvect, S, I, R)\n", + " ## log parameters and sat/unsat\n", + "\n", + " query_condition = all(I[0:50] >= (0.9141058921813964/1000)) and all(I[0:50] <= (909.6296997070312/1000)) and all(I[50:] >= (0.0005660105962306/1000)) and all(I[50:] <= (154.95701599121094/1000))\n", + " \n", + " #print(query_condition)\n", + " query = '1' if query_condition else '0'\n", + " param_assignments = {'beta': beta_val, 'gamma': gamma_val, 'assignment': query} # for \"all\", go through every option. for \"any\", only need one good parameter choice.\n", + " param_choices_true_false.append(param_assignments)\n", + " if param_synth_method == \"any\" and query == '1':\n", + " return param_choices_true_false\n", + " return param_choices_true_false\n", + "\n", + "param_choices_true_false = ps(\"all\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta gamma\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAnkUlEQVR4nO3dfZxWdZ3/8debmQFmBnQgQG7kTsMSWFOcVSy3LN0EK3F328cPy7XshtiV7HZLszU3c6vN7cYyXfJhRamsuVasi4rWYpuFOggqiLgDyI2gjqLInTA3n98f56CXF8PMNXTOXDPyfj4e14PrnO/N+ZxrDvOZ8z3nOl9FBGZmZlnoU+4AzMzs9cNJxczMMuOkYmZmmXFSMTOzzDipmJlZZpxUzMwsM04qZr2MpNMkbSp3HIUkrZR0WgflX5J0ffdFZOXipGLdStKTknZL2iHpGUk/ljSg3HF1RNI4SSGpMqP++kt6UdK72in7jqRbs9jOwUj3c2f683lK0rclVXTWLiImRcTiDsr/JSI+lmmw1iM5qVg5vC8iBgBTgD8HvtyVxkr0mmO3OBlFxMvAfwDnF9WrAM4Fftp90bXrLenP53TgA8DH/5TOskrG1jv0mv+Y9voTEU8BdwCTJQ2SdLukJkkvpO+P3FdX0mJJV0q6D9gFHCXpAkmrJG2XtFbSJwrqnyZpk6QvSHpW0hZJ50g6S9ITkrZK+lJB/T6SLpa0RtLzkm6RNDgt/l3674vpX/CnpG0+km7/BUl3SRpb0F9IulDS/wH/187u/xT4G0k1BevOJPk/eUdH+1Ys3dYbC5Z/IulrBcvvlbQ8PTv6g6TjDvxTeVVEPA78L8nP52hJv00/m+ck3SiprmAbT0o6I31/uaRbJf1c0kvAh9N1P0/L9535fUjShrS/Swv6qpb00/RzXZX+DDcVlH8xPYvaLmm1pNNL2R/rHk4qVjaSRgNnActIjsUfA2OBMcBu4AdFTf4OmAUMBNYDzwLvBQ4DLgC+I2lKQf3hQH9gFHAZ8CPgPOBE4C+AyyQdlda9CDgHeAcwEngBuCYte3v6b11EDIiIP0o6B/gS8NfAUJJfvjcXxXsOcDIwsXjfI+IPwJa0feH+3RQRLSXsW0nSNjcAnwDeAPw7sEBSvxLaTiT5nJYBAr5O8tkcC4wGLu+g+QzgVqAOuPEAdU4F3kRyRnSZpGPT9V8BxgFHAX9J8jPbF9ObgDnAn0fEQJJE/GRn+2LdKCL88qvbXiS/AHYAL5Ikhh8C1e3UOx54oWB5MfDVTvr+FfCp9P1pJImpIl0eCARwckH9pcA56ftVwOkFZSOAZqCS5BdcAJUF5XcAHy1Y7kNyBjU2XQ7gXZ3E+2VgUfr+sLT9CSXu26aCsgDeWLD8E+Br6ftrgSuK+loNvOMA2wngJZKkugb4GtCnnXrnAMuKfq5npO8vB35XVP9y4Ofp+32f55EF5Q8AM9P3a4EzC8o+tm9/gTeSJNwzgKpyH89+7f/yWKeVwzkRcU/hinQY6DvANGBQunqgpIqIaE2XNxa1mU7yV+0xJL/Ua4BHC6o8X9B2d/rvMwXlu4F9NwmMBX4pqa2gvBU44gD7MBb4nqR/KwyJ5KxofXvxtmMe8BVJo0j+4m6MiGUl7lupxgIfkvTJgnV9Sc44DmRKRDQWrpA0DLia5MxlYBrTCx300dm+Azxd8H4Xr/4sRha1f+V9RDRK+jRJkpok6S7gsxGxuYTtWTfw8Jf1FJ8jGQo5OSIO49UhJxXUeeWR2unwzX8CVwFHREQdsLCofldsBKZHRF3Bq38k133ae5T3RuATRfWrIxnW2i/e9kTEBpJhsw+SDH3NO8h920WSdPYZXhTnlUVx1kRE8VBdZ76e7s9x6c/nvA7igU72vRNbgCMLlke/puOImyLiVJKEGcA3/4RtWcacVKynGEhy5vBieoH8K53U7wv0A5qAlvQv+3f/Cdu/Drhy38V2SUMlzUjLmoA2kjH+wvqXSJqU1j9c0t8exHZ/SnKN4G28eu2hq/u2HPiApApJ00iuC+3zI2C2pJOVqJX0HkkDuxjnQNJhy/TM6h+72L4rbiH5bAel25qzr0DSmyS9K028L5McM60H6MfKwEnFeorvAtXAc8AS4M6OKkfEdpKL67eQDMN8AFjwJ2z/e2n7RZK2pzGcnG5rF3AlcF96B9XUiPglyV/I89M7nFYA0w9iu7eSDPf9JiK2HOS+fQp4H8l1qg+SXH8h7auB5JbgH6R9NQIfPog4/5nkFvBtwH8Dtx1EH6X6KrAJWAfcQ/IZ7UnL+gHfIDlOngaGkdwwYT2EIjxJl5n1XJL+nuQi/js6rWxl5zMVM+tRJI2Q9Lb0u0NvIrne9styx2Wl8d1fZtbT9CX5Ps14kiG9+SS3nlsv4OEvMzPLjIe/zMwsM4f08NeQIUNi3Lhx5Q7DzKxXWbp06XMRMbS9skM6qYwbN46GhoZyh2Fm1qtIWn+gMg9/mZlZZpxUzMwsM04qZmaWGScVMzPLjJOKmZllJtekImlaOt1no6SL2ymXpKvT8kcKZ7aT9BlJKyWtkHSzpP7p+svTqUSXp6+zCtpckva1WtKZee6bmZntL7ekIqmCZDrW6STTqZ6bTk9aaDowIX3NIpmljvRx1xcB9RExGagAZha0+05EHJ++FqZtJqZ1JpFM9PTDNIbs7dwJjz4KL72US/evNy+3vMyKZ1ewdffWcofSKzS3NrPy2ZU8u/PZcofSK7S2tbKqaRWbt3uerlJEBE88/wQbtm3Ipf88v6dyEslMdmsBJM0nmbf6sYI6M4B5kTwrZomkOkkjCmKrltRMMgFRZ0fMDGB+ROwB1klqTGP4Y2Z7BNDWBt/6FqxbB0ccAV/7GvTtm+kmXm+ueeAaHn7mYer61/Evp/8LA/oO6LzRIWzew/O4d/291FbVcsW7rmBIzZByh9Sj/erxX/Hr1b+mb0VfLnvHZYw5fEy5Q+rR7ll7Dz975GdUqIIvnvpF3jzkzZn2n+fw1yheOyXopnRdp3XS2fauAjaQzAK3LSIWFdSbkw6X3SBpUEd9FQclaZakBkkNTU1NXd+r1lbYsAEGD4amJti9u/M2h7i1L6ylrn8d217exkt7fHbXmbUvrKW2qpadzTt9dleCJ198kn4V/djTsofndj1X7nB6vI0vbaRCFexp3cOzO7I/G84zqbQ31Wjx0yvbrZMmihkkTykdCdRKOi8tvxY4GjieJOHsmyO8lO0REXMjoj4i6ocObfcpAx2rqoKPfhRqa+Hcc+Hww7vexyHm4yd+nLr+dZzz5nMYMWBE5w0Ocee/5XyOGHAE0944jaMHHV3ucHq8v530t4ytG8tp405j8rDJ5Q6nx3vPhPfw5iFv5tQxp3LiyBMz7z+3pxRLOgW4PCLOTJcvAYiIrxfU+Xdg8b75siWtBk4DTgWmRcRH0/XnA1Mj4h+KtjEOuD0iJhf3L+mudPsHHP6qr68PP6bFzKxrJC2NiPr2yvI8U3kQmCBpvKS+JBfRi6dEXQCcn94FNpVkmGsLybDXVEk1kgScDqyCZAKfgvZ/RTKN676+ZkrqJ2k8ycX/B/LaOTMz219uF+ojokXSHOAukru3boiIlZJmp+XXAQuBs0jmzd4FXJCW3S/pVuAhoAVYBsxNu/5XSceTDG09CXwibbNS0i0kNwK0ABdGRGte+2dmZvs7pCfp8vCXmVnXlWv4y8zMDjFOKmZmlhknFTMzy4yTipmZZcZJxczMMuOkYmZmmXFSMTOzzDipmJlZZpxUzMwsM04qZmaWGScVMzPLjJOKmZllxknFzMwy46RiZmaZcVIxM7PMOKmYmVlmnFTMzCwzTipmZpYZJxUzM8uMk4qZmWXGScXMzDLjpGJmZplxUjEzs8w4qZiZWWZyTSqSpklaLalR0sXtlEvS1Wn5I5KmFJR9RtJKSSsk3Sypf1Hbz0sKSUPS5XGSdktanr6uy3PfzMxsf7klFUkVwDXAdGAicK6kiUXVpgMT0tcs4Nq07SjgIqA+IiYDFcDMgr5HA38JbCjqb01EHJ++Zme/V2Zm1pE8z1ROAhojYm1E7AXmAzOK6swA5kViCVAnaURaVglUS6oEaoDNBe2+A3wBiBzjNzOzLsozqYwCNhYsb0rXdVonIp4CriI5E9kCbIuIRQCSzgaeioiH29nmeEnLJN0r6S/aC0rSLEkNkhqampoOasfMzKx9eSYVtbOu+Myi3TqSBpGcxYwHRgK1ks6TVANcClzWTrstwJiIOAH4LHCTpMP26zxibkTUR0T90KFDu7A7ZmbWmTyTyiZgdMHykbx2CKujOmcA6yKiKSKagduAtwJHkySahyU9mdZ/SNLwiNgTEc8DRMRSYA1wTOZ7ZWZmB5RnUnkQmCBpvKS+JBfaFxTVWQCcn94FNpVkmGsLybDXVEk1kgScDqyKiEcjYlhEjIuIcSRJaUpEPC1paHpzAJKOIrn4vzbH/TMzsyKVeXUcES2S5gB3kdy9dUNErJQ0Oy2/DlgInAU0AruAC9Ky+yXdCjwEtADLgLmdbPLtwFcltQCtwOyI2Jr9npmZ2YEo4tC9gaq+vj4aGhrKHYaZWa8iaWlE1LdX5m/Um5lZZpxUzMwsM04qZmaWGScVMzPLjJOKmZllxknFzMwy46RiZmaZcVIxM7PMOKmYmVlmnFQOxp13wpw58ItfwCH8RIJS/X797/nkwk/yk+U/oS3ayh1Oj7dsyzI+dcenuOaBa2hubS53OD3eE88/wWfv+iz/9od/Y1fzrnKH0+Nt2LaBL97zRa783ZVse3lb5v07qXTV3r0wfz7U1sLtt8O27H8orzc3Pnoj/Sr7sfjJxWzeXvygait2y8pbCIIHnnqANS+sKXc4Pd6vHv8Vu5t3s/zp5axqWlXucHq8u9bcxfO7nuex5x5j2ZZlmffvpNJVVVVw7LHw9NMwdiwMGFDuiHq8twx/C007mxhWO4zB1YPLHU6Pd9wRx7Ht5W3U9a9j+IDh5Q6nx5s8bDK7W3YzoO8ARg4cWe5werxjhxxLS1sLNZU1jKkbk3n/fqDkwTxQcu9e2LwZhg+H/v2zD+x1pqWthU0vbWJozVBq+9aWO5wery3a2LhtI4OqB3FYv/3mmbMiEcGmlzYxsN9A6vrXlTucXmHz9s30rejLkJohB9W+owdK5vbo+9e1vn1h3LhyR9FrVPapZFzduHKH0Wv0UR/G1o0tdxi9hiRGHz6684r2ijzP6Dz8ZWZmmXFSMTOzzDipmJlZZpxUzMwsM04qZmaWGScVMzPLjJOKmZllxknFzMwy46RiZmaZcVIxM7PM5JpUJE2TtFpSo6SL2ymXpKvT8kckTSko+4yklZJWSLpZUv+itp+XFJKGFKy7JO1rtaQz89w3MzPbX25JRVIFcA0wHZgInCtpYlG16cCE9DULuDZtOwq4CKiPiMlABTCzoO/RwF8CGwrWTUzrTAKmAT9MYzAzs26S55nKSUBjRKyNiL3AfGBGUZ0ZwLxILAHqJI1IyyqBakmVQA1QOBHHd4AvAFHU1/yI2BMR64DGNAYzM+smeSaVUcDGguVN6bpO60TEU8BVJGciW4BtEbEIQNLZwFMR8fBBbA9JsyQ1SGpoamrq+l6ZmdkB5ZlU1M664slb2q0jaRDJmcd4YCRQK+k8STXApcBlB7k9ImJuRNRHRP3QoUM73AEzM+uaPJPKJqBwkoMjee0QVkd1zgDWRURTRDQDtwFvBY4mSTQPS3oyrf+QpOElbs/MzHKUZ1J5EJggabykviQX0RcU1VkAnJ/eBTaVZJhrC8mw11RJNZIEnA6siohHI2JYRIyLiHEkiWRKRDyd9jVTUj9J40ku/j+Q4/6ZmVmR3GZ+jIgWSXOAu0ju3rohIlZKmp2WXwcsBM4iuai+C7ggLbtf0q3AQ0ALsAyY28n2Vkq6BXgsbXNhRLTmsnNmZtYuz1F/MHPUm5kdwjqao97fqDczs8w4qZiZWWacVMzMLDNOKmZmlhknFTMzy4yTipmZZcZJxczMMuOkYmZmmXFSMTOzzDipmJlZZpxUzMwsM04qZmaWmZKSiqSpkh6UtEPSXkmtkl7KOzgzM+tdSj1T+QFwLvB/QDXwMeD7eQVlZma9U8nzqUREo6SKdI6SH0v6Q45xmZlZL1RqUtmVzt64XNK/AluA2vzCMjOz3qjU4a+/I5m9cQ6wk2Qu+L/JKygzM+udSjpTiYj16dvdwD/nF46ZmfVmpd799V5JyyRtlfSSpO2++8vMzIqVek3lu8BfA4/GoTypvZmZdajUayobgRVOKGZm1pFSz1S+ACyUdC+wZ9/KiPh2LlGZmVmvVGpSuRLYAfQH+uYXjpmZ9WalJpXBEfHuXCMxM7Ner9RrKvdI6nJSkTRN0mpJjZIubqdckq5Oyx+RNKWg7DOSVkpaIelmSf3T9VekdZdLWiRpZLp+nKTd6frlkq7rarxmZvanKTWpXAjcmf7SLumWYkkVwDXAdGAicK6kiUXVpgMT0tcs4Nq07SjgIqA+IiaTfPFyZtrmWxFxXEQcD9wOXFbQ35qIOD59zS5x37rumWfgN7+BTZty28TrydbdW/nt2t+y9oW15Q6lV9i+Zzv/s+5/ePy5x8sdSq+wu3k39z55L4888wi+l6hze1v38vv1v2fp5qW5fF6lfvlx4EH0fRLQGBFrASTNB2YAjxXUmQHMS+8qWyKpTtKIgtiqJTUDNcDmNJbCZFYLdO9R1NoK3/wmNDXBYYfBVVdBdXW3htDbfG/J91jzwhpqqmr45hnfZFD1oHKH1KNd/9D1NGxuoF9lP6545xWMOmxUuUPq0eavmM/da++msk8lX377lznmDceUO6Qe7fYnbufWx25FEp875XNMGTGl80ZdUPIDJSUdB4wrbBMRt3XQZBTJrcj7bAJOLqHOqIhokHQVsIHkW/yLImJRQSxXAucD24B3FrQfL2kZ8BLw5Yj433b2YxbJWRFjxozpIPwDiIBdu5JEsmdPkmSsQzv27qB/ZX+aW5tpbmsudzg93s7mnfSt6EtrWyt7Wvd03uAQt7N5J5V9KmmLNva0+PPqzO7m3fRRn9w+r5KSiqQbgOOAlUBbujqAjpKK2llXfFbRbh1Jg0jOYsYDLwK/kHReRPwcICIuBS6VdAnJ88i+QvKQyzER8bykE4FfSZpUdGZDRMwF5gLU19d3/SynshI+9zm49144+WQYMKDLXRxqLjr5In6z7jdMGjqJYbXDyh1Oj/exKR/jzsY7GXf4OMbXjS93OD3eB/7sAxze73CG1g5l0rBJ5Q6nxzv7TWfTR32o7VtL/cj6zPtXKWNqkh6LiOLrIZ21OQW4PCLOTJcvAYiIrxfU+XdgcUTcnC6vBk4DTgWmRcRH0/XnA1Mj4h+KtjEW+O/0ukvx9hcDn4+IhgPFWF9fHw0NByw2M7N2SFoaEe1mpFIv1P+xnYvsnXkQmCBpfPrY/JnAgqI6C4Dz07vApgLbImILybDXVEk1kgScDqxKd2ZCQfuzgcfT9UPTmwOQdBTJxX9fGTYz60alXlP5KUlieZrkG/UCIiKOO1CDiGiRNAe4i+TurRsiYqWk2Wn5dcBC4CygEdgFXJCW3S/pVuAhoAVYRjpkBXxD0ptIhuHWA/vu8no78FVJLUArMDsitpa4f2ZmloFSh78agc8Cj/LqNZXCR+L3Sh7+MjPruo6Gv0o9U9kQEcVDV2ZmZq9RalJ5XNJNwH/x2gdKdnT3l5mZHWJKTSrVJMmk8FEtnd1SbGZmh5hSv1F/Qd6BmJlZ71fqlx/7Ax8FJpE8/h6AiPhITnGZmVkvVOr3VH4GDAfOBO4FjgS25xWUmZn1TqUmlTdGxD8BOyPip8B7gD/LLywzM+uNSk0q+54C+KKkycDhJA+XNDMze0Wpd3/NTR/y+GWSR6sMAP4pt6jMzKxXKjWpHE76CBWSibcAWiQdHxHLM4/KzMx6pVKHv04kecbWKGAk8HGSpwn/SNIX8gnNzMx6m1LPVN4ATImIHQCSvgLcSvIQx6XAv+YTnpmZ9SalnqmMAfYWLDcDYyNiNwWPbTEzs0NbqWcqN5HMIf/rdPl9wM2SanntnPNmZnYIK/UxLVdIWkgyI6NI5irZ98z4D+YVnJmZ9S6lnqkQEUtJrp+YmZm1q9RrKmZmZp1yUjEzs8w4qZiZWWacVMzMLDNOKmZmlhknFTMzy4yTipmZZcZJxczMMpNrUpE0TdJqSY2SLm6nXJKuTssfkTSloOwzklZKWiHpZkn90/VXpHWXS1okaWRBm0vSvlZLOjPPfTMzs/3lllQkVZDMvTIdmAicK2liUbXpwIT0NQu4Nm07CrgIqI+IyUAFMDNt862IOC4ijgduBy5L20xM60wCpgE/TGMwM7NukueZyklAY0SsjYi9wHxgRlGdGcC8SCwB6iSNSMsqgWpJlUANsBkgIl4qaF8LREFf8yNiT0SsAxrTGMzMrJvkmVRGARsLljel6zqtExFPAVcBG4AtwLaIWLSvkqQrJW0keZjlZV3YHpJmSWqQ1NDU1HRQO2ZmZu3LM6monXVRSh1Jg0jOPMaTzDRZK+m8VypEXBoRo4EbgTld2B4RMTci6iOifujQoSXshpmZlSrPpLIJGF2wfCTpEFYJdc4A1kVEU0Q0A7cBb21nGzcBf9OF7ZmZWY7yTCoPAhMkjZfUl+Qi+oKiOguA89O7wKaSDHNtIRn2miqpRpKA04FVAJImFLQ/G3i8oK+ZkvpJGk9y8f+BvHbOzMz2V/J8Kl0VES2S5gB3kdy9dUNErJQ0Oy2/DlgInEVyUX0XcEFadr+kW4GHgBZgGTA37fobkt4EtAHrgX39rZR0C8lMlC3AhRHRmtf+mZnZ/hSx32WHQ0Z9fX00NDR0XtHMzF4haWlE1LdX5m/Um5lZZpxUzMwsM04qZmaWGScVMzPLjJOKmZllxknFzMwy46RiZmaZcVIxM7PMOKkcjAjYsSP51zoVEezYu4O2aCt3KL3Gzr07aW3zAyFKtbt5Ny1tLeUOo9d4ueVlmlubc+nbSaWrIuDHP4YLL4Tvfx/a/IuyM7etuo05C+fwjd9/g72te8sdTo9395q7mbNwDpcvvpxdzbvKHU6Pt2TTEi5ceCFf+s2XeGH3C+UOp8db8cwKPrnwk3x+0ed5esfTmffvpNJVzc1w770wZgwsXQrbtpU7oh5v0ZpFjBgwgtXPreaZHc+UO5we75619zC4ejAbtm1g/Yvryx1Oj7f4ycXUVtXy9I6nWfPCmnKH0+Pdt+k++qgPW3dvZVXTqsz7d1LpqqoqOO00WL8eTjwRDj+83BH1eO8++t1s3r6ZNw95M8MHDC93OD3eGUedwdbdWxlz+BjG1o0tdzg93jvHvZNdzbsYPmA4Rw86utzh9Hinjj6VtmhjcPVgjh16bOb9+4GSB/NAyQjYuRNqa0HtzQ1mxXbu3Ul1VTV95L9jSrGreRf9KvpR0aei3KH0Crubd1NVUUVln9wevP668nLLy1SogqqKqoNq39EDJf0TOBgSDBhQ7ih6ldq+teUOoVepqaopdwi9SnVVdblD6FX6V/bPrW//2WhmZplxUjEzs8w4qZiZWWacVMzMLDNOKmZmlhknFTMzy4yTipmZZcZJxczMMuOkYmZmmXFSMTOzzOSaVCRNk7RaUqOki9spl6Sr0/JHJE0pKPuMpJWSVki6WVL/dP23JD2e1v+lpLp0/ThJuyUtT1/X5blvZma2v9ySiqQK4BpgOjAROFfSxKJq04EJ6WsWcG3adhRwEVAfEZOBCmBm2uZuYHJEHAc8AVxS0N+aiDg+fc3OZ8/MzOxA8jxTOQlojIi1EbEXmA/MKKozA5gXiSVAnaQRaVklUC2pEqgBNgNExKKI2DfF2xLgyBz3wczMuiDPpDIK2FiwvCld12mdiHgKuArYAGwBtkXEona28RHgjoLl8ZKWSbpX0l+0F5SkWZIaJDU0NTV1bY/MzKxDeSaV9iYaKZ68pd06kgaRnMWMB0YCtZLOe01D6VKgBbgxXbUFGBMRJwCfBW6SdNh+nUfMjYj6iKgfOnRol3bIzMw6lmdS2QSMLlg+knQIq4Q6ZwDrIqIpIpqB24C37qsk6UPAe4EPRjrLWETsiYjn0/dLgTXAMZnukZmZdSjPpPIgMEHSeEl9SS60LyiqswA4P70LbCrJMNcWkmGvqZJqJAk4HVgFyR1lwBeBsyNi176OJA1Nbw5A0lEkF//X5rh/ZmZWJLeZHyOiRdIc4C6Su7duiIiVkman5dcBC4GzgEZgF3BBWna/pFuBh0iGuJYBc9OufwD0A+5O8g1L0ju93g58VVIL0ArMjoitee2fmZntz3PUH8wc9WZmh7CO5qj3N+rNzCwzTipmZpYZJxUzM8uMk4qZmWXGScXMzDLjpGJmZplxUjEzs8w4qZiZWWacVMzMLDNOKmZmlhknFTMzy4yTipmZZcZJxczMMuOkYmZmmXFSMTOzzDipmJlZZpxUzMwsM04qZmaWGScVMzPLjJOKmZllxknFzMwy46RiZmaZcVIxM7PMOKmYmVlmck0qkqZJWi2pUdLF7ZRL0tVp+SOSphSUfUbSSkkrJN0sqX+6/luSHk/r/1JSXUGbS9K+Vks6M899MzOz/eWWVCRVANcA04GJwLmSJhZVmw5MSF+zgGvTtqOAi4D6iJgMVAAz0zZ3A5Mj4jjgCeCStM3EtM4kYBrwwzSG7D3xBFx/PTzySC7dv96sf3E91z90Pfdvur/cofQKT+94mh8v+zGL1y0mIsodTo+3dfdW5j08jzsb76Qt2sodTo+3fc92bnr0Jn79+K9pbm3OvP/KzHt81UlAY0SsBZA0H5gBPFZQZwYwL5L/OUsk1UkaURBbtaRmoAbYDBARiwraLwHeX9DX/IjYA6yT1JjG8MdM96qlBb79bWhrgyVL4LvfhQEDMt3E683V91/Ntj3buG/DfYwfNJ5htcPKHVKPdv1D17Nm6xoWP7mYMXVjOGrQUeUOqUe76dGbePCpB2mNVkYOHMlxRxxX7pB6tAWrF3BH4x20RRvDaodxyuhTMu0/z+GvUcDGguVN6bpO60TEU8BVwAZgC7CtKJns8xHgji5sD0mzJDVIamhqaurC7rzSAdTUwK5d0K8fVORzMvR6MqDvAF5ufpmqiiqq+lSVO5wer7aqlr2te6noU0G/in7lDqfHq62qpbmtmT7qQ//K/uUOp8errqqmLdoQol9l9sdXnmcqamdd8bl8u3UkDSI58xgPvAj8QtJ5EfHzVxpKlwItwI1d2B4RMReYC1BfX9/1sYWKCrj4YlixAo45Bqqru9zFoebTUz/Nsi3LGD9oPIOqB5U7nB7vY1M+xgnDT2DEwBGMOmy/v4usyMzJMzlq0FEMrh7MhMETyh1Oj/e+Y97HsJph1PSt4YThJ2Tef55JZRMwumD5SNIhrBLqnAGsi4gmAEm3AW8Ffp4ufwh4L3B6vDroXMr2sjFsGLzrXbl0/Xo0qHoQ7zrKn1epBvYbyGnjTyt3GL1GdVU17xj3jnKH0WtUVVRx6thTc+s/z+GvB4EJksZL6ktyEX1BUZ0FwPnpXWBTSYa5tpAMe02VVCNJwOnAKkjuKAO+CJwdEbuK+popqZ+k8SQX/x/Icf/MzKxIbmcqEdEiaQ5wF8ndWzdExEpJs9Py64CFwFlAI7ALuCAtu1/SrcBDJENcy0iHrIAfAP2Au5N8w5KImJ32fQvJjQAtwIUR0ZrX/pmZ2f50KN+yWF9fHw0NDeUOw8ysV5G0NCLq2yvzN+rNzCwzTipmZpYZJxUzM8uMk4qZmWXmkL5QL6kJWH+QzYcAz2UYTlZ6alzQc2NzXF3juLrm9RjX2IgY2l7BIZ1U/hSSGg5090M59dS4oOfG5ri6xnF1zaEWl4e/zMwsM04qZmaWGSeVgze38ypl0VPjgp4bm+PqGsfVNYdUXL6mYmZmmfGZipmZZcZJxczMMuOk0g5J0yStltQo6eJ2yiXp6rT8EUlTSm2bc1wfTON5RNIfJL2loOxJSY9KWi4p06dolhDXaZK2pdteLumyUtvmHNc/FsS0QlKrpMFpWZ6f1w2SnpW04gDl5Tq+OourXMdXZ3GV6/jqLK5uP74kjZb0P5JWSVop6VPt1Mn3+IoIvwpeJI/pXwMcBfQFHgYmFtU5i2QaYwFTgftLbZtzXG8FBqXvp++LK11+EhhSps/rNOD2g2mbZ1xF9d8H/Dbvzyvt++3AFGDFAcq7/fgqMa5uP75KjKvbj69S4irH8QWMAKak7wcCT3T37y+fqezvJKAxItZGxF5gPsnUxoVmAPMisQSokzSixLa5xRURf4iIF9LFJSSzX+btT9nnsn5eRc4Fbs5o2x2KiN8BWzuoUo7jq9O4ynR8lfJ5HUhZP68i3XJ8RcSWiHgofb+dZHLD4jmpcz2+nFT2NwrYWLC8if1/KAeqU0rbPOMq9FGSv0b2CWCRpKWSZmUUU1fiOkXSw5LukDSpi23zjAtJNcA04D8LVuf1eZWiHMdXV3XX8VWq7j6+Slau40vSOOAE4P6iolyPrzznqO+t1M664vuuD1SnlLYHq+S+Jb2T5D994UTUb4uIzZKGkcya+Xj6l1Z3xPUQybOCdkg6C/gVyXTPPeLzIhmauC8iCv/qzOvzKkU5jq+SdfPxVYpyHF9d0e3Hl6QBJEns0xHxUnFxO00yO758prK/TcDoguUjgc0l1imlbZ5xIek44HpgRkQ8v299RGxO/30W+CXJqW63xBURL0XEjvT9QqBK0pBS2uYZV4GZFA1N5Ph5laIcx1dJynB8dapMx1dXdOvxJamKJKHcGBG3tVMl3+Mr6wtFvf1Fcva2FhjPqxerJhXVeQ+vvdD1QKltc45rDNAIvLVofS0wsOD9H4Bp3RjXcF79ou1JwIb0syvr55XWO5xkXLy2Oz6vgm2M48AXnrv9+Coxrm4/vkqMq9uPr1LiKsfxle73POC7HdTJ9fjy8FeRiGiRNAe4i+RuiBsiYqWk2Wn5dcBCkjsoGoFdwAUdte3GuC4D3gD8UBJASyRPIT0C+GW6rhK4KSLu7Ma43g/8vaQWYDcwM5KjuNyfF8BfAYsiYmdB89w+LwBJN5PcsTRE0ibgK0BVQVzdfnyVGFe3H18lxtXtx1eJcUH3H19vA/4OeFTS8nTdl0j+IOiW48uPaTEzs8z4moqZmWXGScXMzDLjpGJmZplxUjEzs8w4qZiZWWacVMy6kaRxB3qq7QHqf1jSyDxjMsuSk4pZz/ZhwEnFeg0nFbPuVynpp+lcFrdKqpF0oqR70wcM3iVphKT3A/XAjem8G9WSLpP0YDo/x1yl36Az6yn85UezbpQ+OXYdcGpE3CfpBpLHk/8VyfO0miT9P+DMiPiIpMXA5yOiIW0/ONIHE0r6GXBLRPxXOfbFrD1+TItZ99sYEfel739O8hiNySRPq4XkERlbDtD2nZK+ANQAg4GVgJOK9RhOKmbdr3h4YDuwMiJO6aiRpP7AD4H6iNgo6XKgfz4hmh0cX1Mx635jJO1LIOeSzKI4dN86SVUFE01tJ5kWFl5NIM+l82W8v7sCNiuVk4pZ91sFfEjSIyRDWN8nSRDflPQwsJxkPniAnwDXpU+c3QP8CHiUZCKqB7szaLNS+EK9mZllxmcqZmaWGScVMzPLjJOKmZllxknFzMwy46RiZmaZcVIxM7PMOKmYmVlm/j+v55CRHFoBXwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_choices = list(param_choices_true_false[0].keys())\n", + "parameter_list = ([elt for elt in param_choices if elt != 'assignment'])\n", + "for i in range(len(parameter_list)):\n", + " for j in range(i+1, len(parameter_list)):\n", + " param1 = parameter_list[i]\n", + " param2 = parameter_list[j]\n", + " print(param1, param2)\n", + " xsample = [result[param1] for result in param_choices_true_false]\n", + " ysample = [result[param2] for result in param_choices_true_false]\n", + " colors = ['green' if result['assignment'] == '1' else 'red' for result in param_choices_true_false]\n", + " plt.title(\"Parameter Value Pairings\")\n", + " plt.xlabel(param1)\n", + " plt.ylabel(param2)\n", + "\n", + " area = 5 # 0 to 15 point radii\n", + "\n", + " plt.scatter(xsample, ysample, s=area, c=colors, alpha=0.5)\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/notebooks/sir-demo-tkinter.ipynb b/scratch/notebooks/sir-demo-tkinter.ipynb new file mode 100644 index 00000000..f1c8098c --- /dev/null +++ b/scratch/notebooks/sir-demo-tkinter.ipynb @@ -0,0 +1,335 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 21, + "id": "60c811e8", + "metadata": {}, + "outputs": [], + "source": [ + "import tkinter as tk" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "67d7cb90", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n", + "Requirement already satisfied: scipy in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (1.13.1)\n", + "Requirement already satisfied: numpy<2.3,>=1.22.4 in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (from scipy) (1.26.4)\n", + "\u001b[33mWARNING: You are using pip version 22.0.4; however, version 24.0 is available.\n", + "You should consider upgrading via the '/Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/bin/python3 -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n", + "\u001b[0mRequirement already satisfied: matplotlib in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (3.9.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (from matplotlib) (1.2.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (from matplotlib) (4.53.0)\n", + "Requirement already satisfied: packaging>=20.0 in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (from matplotlib) (24.0)\n", + "Requirement already satisfied: importlib-resources>=3.2.0 in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (from matplotlib) (6.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (from matplotlib) (3.1.2)\n", + "Requirement already satisfied: cycler>=0.10 in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (from matplotlib) (0.12.1)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (from matplotlib) (1.4.5)\n", + "Requirement already satisfied: pillow>=8 in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (from matplotlib) (10.3.0)\n", + "Requirement already satisfied: numpy>=1.23 in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (from matplotlib) (1.26.4)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (from matplotlib) (2.9.0.post0)\n", + "Requirement already satisfied: zipp>=3.1.0 in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (from importlib-resources>=3.2.0->matplotlib) (3.19.2)\n", + "Requirement already satisfied: six>=1.5 in /Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/lib/python3.9/site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)\n", + "\u001b[33mWARNING: You are using pip version 22.0.4; however, version 24.0 is available.\n", + "You should consider upgrading via the '/Users/dmosaphir/SIFT/Projects/ASKEM/code/ts-trajectory/.venv/bin/python3 -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + } + ], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "!pip install scipy\n", + "!pip install matplotlib\n", + "\n", + "import scipy\n", + "from scipy.integrate import odeint\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import sir_model\n", + "import json\n", + "from random import randint" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "42a8bb3a", + "metadata": {}, + "outputs": [], + "source": [ + "line_id = None\n", + "line_points = []\n", + "line_options = {}\n", + "line_points_saved = []\n", + "clicked_points_saved = []\n", + "\n", + "def draw_line(event):\n", + " global line_id\n", + " line_points.extend((event.x, event.y))\n", + " if line_id is not None:\n", + " canvas.delete(line_id)\n", + " line_id = canvas.create_line(line_points, **line_options)\n", + "\n", + "\n", + "def set_start(event):\n", + " line_points.extend((event.x, event.y))\n", + "\n", + "\n", + "def end_line(event=None):\n", + " global line_id\n", + " line_points_saved.extend(line_points)\n", + " line_points.clear()\n", + " line_id = None\n", + " \n", + "def draw_point(event):\n", + " canvas.create_oval(event.x, event.y, event.x, event.y, width = 5, fill = 'black')\n", + " clicked_points_saved.extend((event.x, event.y))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "5b04085d", + "metadata": {}, + "outputs": [], + "source": [ + "root = tk.Tk()\n", + "\n", + "canvas = tk.Canvas()\n", + "canvas.pack()\n", + "\n", + "#canvas.bind('', draw_point)\n", + "canvas.bind('', set_start)\n", + "canvas.bind('', draw_line)\n", + "canvas.bind('', end_line)\n", + "\n", + "root.mainloop()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "2817cbec", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[17, 19, 21, 23, 26, 30, 33, 37, 40, 43, 45, 47, 49, 52, 55, 58, 62, 65, 68, 70, 73, 76, 79, 81, 83, 84, 86, 87, 89, 91, 94, 96, 98, 100, 101, 102, 102, 103, 104, 104, 105, 106, 106, 107, 107, 107, 108, 109, 109, 110, 111, 111, 112, 113, 114, 115, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 129, 132, 135, 138, 141, 144, 146, 148, 150, 153, 155, 157, 160, 162, 165, 167, 169, 172, 173, 175, 177, 179, 181, 183, 185, 186, 188, 189, 191, 193, 194, 196, 197, 198, 200, 202, 204, 205, 207, 208, 210, 212, 214, 216, 218, 220, 222, 223, 224, 226, 227, 229, 230, 232, 234, 236, 237, 239, 241, 243, 244, 246, 247, 248, 249, 250, 251, 252]\n", + "[183, 183, 183, 183, 183, 184, 184, 184, 184, 185, 185, 185, 185, 185, 184, 184, 183, 183, 182, 180, 178, 176, 174, 172, 171, 169, 167, 165, 163, 162, 160, 159, 158, 157, 156, 155, 154, 152, 150, 148, 145, 142, 139, 136, 133, 130, 126, 123, 121, 119, 117, 115, 112, 110, 108, 106, 105, 104, 102, 101, 99, 98, 97, 95, 93, 91, 90, 88, 87, 85, 83, 81, 80, 79, 78, 77, 77, 77, 76, 76, 75, 74, 73, 73, 72, 71, 70, 69, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67]\n" + ] + } + ], + "source": [ + "t_vals = line_points_saved[::2]\n", + "y_vals = line_points_saved[1::2]\n", + "print(t_vals)\n", + "print(y_vals)\n", + "y_rescaled = y_vals/np.max(y_vals)\n", + "# print(y_rescaled)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "5224c14b", + "metadata": {}, + "outputs": [], + "source": [ + "# initialize recording of parameter choices and true/false\n", + "\n", + "\n", + "# USER: set bounds\n", + "beta_search_bounds = [0.1,0.25]\n", + "gamma_search_bounds = [0.01,0.04]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "c826d8b9", + "metadata": {}, + "outputs": [], + "source": [ + "# USER: list how many points for each parameter you'd like to synthesize\n", + "\n", + "beta_values_to_synthesize = 10\n", + "gamma_values_to_synthesize = 10" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "96747c5f", + "metadata": {}, + "outputs": [], + "source": [ + "search_points_beta = np.linspace(beta_search_bounds[0], beta_search_bounds[1], beta_values_to_synthesize)\n", + "search_points_gamma = np.linspace(gamma_search_bounds[0], gamma_search_bounds[1], gamma_values_to_synthesize)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "129918df", + "metadata": {}, + "outputs": [], + "source": [ + "def eval_point(beta_val, gamma_val, plot=False, rtol=1e-4):\n", + " # parameters\n", + " def beta(t): return np.piecewise(t, [t>=0], [beta_val])\n", + " def gamma(t): return np.piecewise(t, [t>=0], [gamma_val])\n", + "\n", + "\n", + " # USER: set initial conditions\n", + " I0, R0 = 0.01, 0\n", + " S0 = 1-I0-R0\n", + " y0 = S0, I0, R0 # Initial conditions vector\n", + " # USER: set simulation parameters\n", + " dt = 1\n", + " tstart = 0\n", + " tend = 260\n", + " tvect = np.arange(tstart, tend, dt)\n", + " # simulate/solve ODEs\n", + " # sim = odeint(sir_model.SIR_model, y0, tvect, args=(beta, gamma), hmin=dt, mxstep=1) # similar resolution to FUNMAN\n", + " sim = odeint(sir_model.SIR_model, y0, tvect, args=(beta, gamma), hmin=dt, mxstep=1) # default odeint settings\n", + " S, I, R = sim.T\n", + "\n", + " # print(list(zip(range(tstart, tend+1, dt), I)))\n", + "\n", + " # plot results - uncomment next line to plot time series. not recommended for large numbers of points\n", + " if plot:\n", + " sir_model.plotSIR(tvect, S, I, R)\n", + " # USER: write query condition.\n", + " # query_condition = 0.15 <= max(I) <= 0.3 #((0.15 <= I[10]) and I[10] <= 1.0)\n", + " # query_condition = (0.45 <= max(I)) and (max(I) <= 0.55) and (45 <= np.argmax(I)*dt) and (np.argmax(I)*dt <= 55)\n", + " # query_values = [0.45 <= I[int(t/dt)] <= 0.55 for t in range(tstart, tend+1, dt) if 45 <= t < 55]\n", + " query_values = [y_rescaled[i] - 10 <= R[int(t_vals[i]/dt)] <= y_rescaled[i] + 10 for i in range(len(t_vals))]\n", + " query_condition = all(query_values) \n", + " # print(I[9:11])\n", + " query = '1' if query_condition else '0'\n", + " param_assignments = {'beta': beta_val, 'gamma': gamma_val, 'assignment': query} # for \"all\", go through every option. for \"any\", only need one good parameter choice.\n", + " return param_assignments, sim\n", + "\n", + "# set parameters\n", + "def ps(param_synth_method, rtol=1e-3):\n", + " param_choices_true_false = []\n", + " for i in range(len(search_points_beta)):\n", + " beta_val = search_points_beta[i]\n", + " for j in range(len(search_points_gamma)):\n", + " gamma_val = search_points_gamma[j]\n", + "\n", + " param_assignments, _ = eval_point(beta_val, gamma_val, rtol=rtol)\n", + " param_choices_true_false.append(param_assignments)\n", + " if param_synth_method == \"any\" and query == '1':\n", + " return param_choices_true_false\n", + " return param_choices_true_false" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "c5df90ba", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/fg/63k_244d5jg2d0hp2j_fb21w0000gp/T/ipykernel_84289/164580243.py:18: ODEintWarning: Excess work done on this call (perhaps wrong Dfun type). Run with full_output = 1 to get quantitative information.\n", + " sim = odeint(sir_model.SIR_model, y0, tvect, args=(beta, gamma), hmin=dt, mxstep=1) # default odeint settings\n" + ] + } + ], + "source": [ + "param_choices_true_false = ps(\"all\", rtol=1e-3)\n", + "#print(param_choices_true_false)\n", + "\n", + "id_number = randint(10**5, 10**6 - 1)\n", + "\n", + "with open(f'sir_query_auto_2_param_{id_number}.json', 'w', encoding='utf-8') as f:\n", + " json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "12901feb", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAz4klEQVR4nO3deZwU9bnv8c8zPcwMMKyKooAsRxBx1xHXRKMSUZODMfFqjksWE+O51yRmPWa5aqLEJa65MccYY+JxCTGKEY0Gd1E2mQFkX4Z9WGZhYBZm7e7n/lGNdsZiFpiecvD75jUvurvqV/39dXX3U1XdXT9zd0RERFrKijqAiIh8PKlAiIhIKBUIEREJpQIhIiKhVCBERCSUCoSIiIRSgRCJkJmdbWYlUedIZ2ZLzezsVqb/1Mwe6bpEEhUVCNlrZrbezOrNrNbMSs3sT2aWH3Wu1pjZCDNzM8vupOXlmdlOMzsnZNp9ZvZMZ9zP3kj1c1dq/Ww2s3vNLNZWO3c/yt3famX6r9z9G50aVj6WVCBkX33e3fOBE4GTgZ93pLEFus3zsGVhcfcG4K/A1S3miwFfBh7runShjkutn3OB/wC+uS8L66zCKt1Dt3lhysebu28GXgaONrMBZvaimZWb2Y7U5aG75zWzt8xsspnNBOqAUWb2NTNbbmY1ZrbWzL6VNv/ZZlZiZj82szIz22pmF5vZhWa2yswqzeynafNnmdmNZrbGzLab2dNmNjA1eUbq/52pLevTUm2+nrr/HWY23cyGpy3Pzez/mNlqYHVI9x8DvmhmvdJuO5/g9fVya31rKXVfh6dd/7OZ3ZZ2/XNmtjC11zLLzI7d81r5kLuvAN4hWD//ZmZvpB6bCjN70sz6p93HejM7L3X5FjN7xsyeMLNq4Kup255ITd+9R/YVM9uYWt7P0pbV08weSz2uy1PrsCRt+n+l9m5qzGylmZ3bnv5I11CBkE5hZsOAC4EFBM+rPwHDgcOAeuC3LZpcBVwL9AE2AGXA54C+wNeA+8zsxLT5BwN5wBDgJuAPwJXAScCngJvMbFRq3u8AFwNnAYcCO4AHU9M+nfq/v7vnu/tsM7sY+ClwCTCI4I30Ly3yXgycAoxr2Xd3nwVsTbVP799T7h5vR9/aJdXmUeBbwAHA74FpZpbbjrbjCB6nBYABtxM8NkcCw4BbWmk+CXgG6A88uYd5zgSOINhTucnMjkzdfjMwAhgFTCBYZ7szHQFcD5zs7n0Iiur6tvoiXcjd9ae/vfojeDHXAjsJ3uR/B/QMme94YEfa9beAX7ax7L8D301dPpugyMRS1/sADpySNn8RcHHq8nLg3LRphwDNQDbBm5UD2WnTXwauSbueRbBnMzx13YFz2sj7c+CV1OW+qfYntLNvJWnTHDg87fqfgdtSl/8buLXFslYCZ+3hfhyoJiiQa4DbgKyQ+S4GFrRYr+elLt8CzGgx/y3AE6nLux/PoWnT3wMuT11eC5yfNu0bu/sLHE5QPM8DekT9fNbfR/90PFH21cXu/lr6DalDLfcBE4EBqZv7mFnM3ROp65tatLmAYGtzDMEbdC9gcdos29Pa1qf+L02bXg/s/oB8OPCcmSXTpieAg/fQh+HAA2Z2T3okgr2VDWF5Q/wPcLOZDSHYEi529wXt7Ft7DQe+YmbfTrsth2BPYE9OdPfi9BvM7CDgNwR7FH1SmXa0soy2+g6wLe1yHR+ui0NbtP/gsrsXm9kNBAXnKDObDnzf3be04/6kC+gQk2TCDwgON5zi7n358LCOpc3zwWmEU4dIngXuBg529/7ASy3m74hNwAXu3j/tL8+Dz0nCTl+8CfhWi/l7enDo6CN5w7j7RoJDU1cQHF76n73sWx1BAdltcIuck1vk7OXuLQ+HteX2VH+OTa2fK1vJA230vQ1bgaFp14f9y4Ldn3L3MwmKnwN37sN9SSdTgZBM6EOwRb8z9eHwzW3MnwPkAuVAPLXF/dl9uP+HgMm7P2g2s0FmNik1rRxIEhwTT5//J2Z2VGr+fmZ26V7c72MEx9TP4MNj9R3t20LgP8wsZmYTCT5H2e0PwHVmdooFepvZRWbWp4M5+5A6NJja4/lRB9t3xNMEj+2A1H1dv3uCmR1hZuekimgDwXMmsYflSARUICQT7gd6AhXAHOCfrc3s7jUEHyw/TXCo4z+Aaftw/w+k2r9iZjWpDKek7qsOmAzMTH0T6FR3f45gy3VK6ps6S4AL9uJ+nyE4pPa6u2/dy759F/g8wec6VxB8XkFqWYUEX1P9bWpZxcBX9yLnLwi+llwF/AOYuhfLaK9fAiXAOuA1gseoMTUtF7iD4HmyDTiI4MsC8jFh7howSES6hpn9J8EH2Ge1ObNETnsQIpIxZnaImZ2R+m3KEQSfTz0XdS5pH32LSUQyKYfg9xojCQ6bTSH4OrR0AzrEJCIioXSISUREQu1Xh5gOPPBAHzFiRNQxRES6jaKiogp3HxQ2bb8qECNGjKCwsDDqGCIi3YaZbdjTNB1iEhGRUCoQIiISSgVCRERCqUCIiEgoFQgREQmlAiEiIqE+8QUikUywrHwZW2u2RpqjId7AkrIl7KhvbdyWzKtqqGJx6WLqmusizVFaW8rSsqXEk/FIc6zfuZ7V21cT5RkH3J2VFSvZVNWecXsypznRzNKypZTvKo80R21TLYtLF1PTWBNpju1121lStoTGeGPbM2fQ5urNrKhYQdKTbc/cQfvV7yD2xjPLnuEfq/5Bbo9cbjnrFob0HRJJjt/M/Q1Ly5YyoOcAJp8zmd45vbs8Q0O8gV++/Usq6io4fODh/PzTP8dsb8fs2XultaXc9NZN1DfVc96/ncfVx13d5RkAlpYt5dezfk3Sk3z9+K9z9sizI8nxz+J/8pfFfyE7ls1PzvwJow8YHUmORxc8ysxNM8nPyee2c25jYM+BXZ4h6UnuePcONlVt4pA+h3DbObeRndX1b2NVDVXc8tYtVDVWUXBoAd855TtdngFg3Y513PbObTTHm7lk3CVcPPbiTl3+J34PYt3OdeT1yKOhuYGKuopIMrg7ayrX0D+vPzsbdlLTFM2W0a6mXWyv386AngPYULUhI1sk7bG9fjv1zfX0yunFuh3rIskAsK12G82JZgxjU3V0W+8bqzYSy4rRGG+kvC66rfe1O9bSJ6cPu5p2Rban25RoYkvNFgb2HEhpbSkN8YZIclQ1VlHdVE2/3H6s3bE2kgwA5XXlNMYb6RHrwcaqjZ2+/E98gbj86MsZ2nco54w8h3GDxkWSwcz4VsG36JfXjy8c+QUO7r2noZMza2DPgVx21GX0yenDN0/8JrGsWCQ5xhwwhgmjJnBI/iFceeyVkWQAOGXoKZw27DSOPuhoJh4+MbIck8ZOYsyBYzjzsDM5YfAJkeX46vFfZVDvQVxw+AWMHDAykgx52Xl87fiv0TunN1cddxX5OfltN8qAYX2H8fkxn2dAzwFcc8I1kWQAOO7g4zhr+FmMGjiKLx75xU5f/n51NteCggLXqTZERNrPzIrcvSBs2id+D0JERMKpQIiISCgVCBERCaUCISIioVQgREQklAqEiIiEUoEQEZFQGS0QZjbRzFaaWbGZ3Rgy/QozW5T6m2Vmx7WYHjOzBWb2YiZziojIR2WsQJhZDHgQuAAYB3zZzFr+VHkdcJa7HwvcCjzcYvp3geWZyigiInuWyT2I8UCxu6919yZgCjApfQZ3n+Xuu0/qMgcYunuamQ0FLgIeyWBGERHZg0wWiCFA+hnOSlK37ck1wMtp1+8Hfgy0esY4M7vWzArNrLC8PNrTEIuI7E8yWSDCzhMdeuInM/sMQYH4r9T1zwFl7l7U1p24+8PuXuDuBYMGDdqXvCIikiaTJ1IvAYalXR8KbGk5k5kdS3AY6QJ33566+Qzg383sQiAP6GtmT7h7dKf2FBH5hMnkHsQ8YLSZjTSzHOByYFr6DGZ2GDAVuMrdV+2+3d1/4u5D3X1Eqt0bKg4iIl0rY3sQ7h43s+uB6UAMeNTdl5rZdanpDwE3AQcAv0uNXBbf02lnRUSka2k8CBGRTzCNByEiIh2mAhGPw6JFsCm6MYcB6prrWLB1QWTjYn+gshIWLIDa2khjbK7ezPvb3qc50RxdCHcoLoZly4LLEUl6kiVlSyIdnxuAxkZYuBC2bYs0RnVjNQu2LmBnw85Ic5TtKmPhtoWRjYu924adG1hcuphEMtHpy87kt5i6h7/+Ff75T8jNhZtvhmHD2m6TAffPuZ8V5Svo37M/vzr3V9GMtdvQALfeGhSJkSODx8PCvq2cWVtrtnLL27fQ0NzAZ0Z+hq+f8PUuzwDA4sVwzz1BcfjKV+DccyOJ8fLql5myZAqxrBg/OfMnHHHgEZHk4I9/hNmzoXdvuO02OPDALo+QSCa44907KKkuYXD+YCafM5kesR5dnmNnw05+8dYvqG6q5oTBJ/D9077f5RkA1lSuYfI7k2lKNHHJ2Eu4ZNwlnbp87UFs3hwUh8ZG2LGj7fkzwN3ZVLWJfnn9qG6sZlfTrkhyUFcXPAb9+gWPS7LV3yhmzM6GnTQ2N9KzR09KqksiyQBARQU0NwdFMsKt5i01W4hlxWhONLO9fnvbDTJl0ybIz4f6eqiqiiRCPBmntLaU/nn9Kd9VTmOiMZIcNY011DbV0jenb6TP0cr6SpoSTeTEcthcu7nTl689iC9/Gf7yFxgyBMa1PFVU1zAz/rPgP5m2ahoXHXoRB/U+KJIcDBwIV10VbCVeeCHEYpHEGHPAGC4acxHrdq7j8qMvjyQDAKecEhxiqq+HCy6ILMaksZOoaaqhf15/TjzkxMhycM018PTTMHZssIcZgdzsXL550jd5dc2rXDru0mj2tIGhfYfypXFfYlHpIi45snO32jviuMHHMWHUBMrryvnSkV/q9OXrW0wiIp9g+haTiIh0mAqEiIiEUoEQEZFQKhAiIhJKBUJEREKpQIiISCgVCBERCaUCISIioVQgREQklAqEiIiEUoEQEZFQKhAiIhIqowXCzCaa2UozKzazG0OmX2Fmi1J/s8zsuNTtw8zsTTNbbmZLzey7mcwpIiIflbHTfZtZDHgQmACUAPPMbJq7L0ubbR1wlrvvMLMLgIeBU4A48AN3n29mfYAiM3u1RVsREcmgTO5BjAeK3X2tuzcBU4BJ6TO4+yx33z1KzxxgaOr2re4+P3W5BlgODMlgVhERaSGTBWIIkD7Qcwmtv8lfA7zc8kYzGwGcAMwNa2Rm15pZoZkVlpeX731aERH5F5ksEGGDGYeOTmRmnyEoEP/V4vZ84FngBnevDmvr7g+7e4G7FwwaNGgfI4uIyG6ZLBAlwLC060OBLS1nMrNjgUeASe6+Pe32HgTF4Ul3n5qxlE1NUFQE69Zl7C7ao6axhnmb51FaWxppDsrL4b33oDq0HneZDTs3ULilkMZ4NGMOA+AOK1bAokWRjc8NkEgmWLhtIau2r4osAxAMvVpYCCURjhMO7KjfwXub32N7XYTjcwNs2QLz5gVjuUeouLKY+VvnE0/GO33ZmRyTeh4w2sxGApuBy4H/SJ/BzA4DpgJXufuqtNsN+COw3N3vzWBGmDIFXnkFcnLg5pth+PCM3t2e3D/nflZXrqZvbl9uP/d2+uT26foQ9fVw662wcyccdlhw2cJ2BDNrS80Wbp1xKw3xBs4afhbfPOmbXZ4BgPffh3vuCQrF1VfDZz8bSYwXV73I35b9jZjFuPHMGzly0JGR5OAPfwjeEHv2hMmTIYI99kQywe3v3s622m0c2OtA7jzvTnrEenR5DnbsCF4ftbVw7LHwox91fQZg9fbVTH5nMvFknElHTOLSoy7t1OVnbA/C3ePA9cB0gg+Zn3b3pWZ2nZldl5rtJuAA4HdmttDMdg8ofQZwFXBO6vaFZnZhRoKWlUFuLjQ3R7bV7O5srd1Kn5w+1DbVUh+vjyQHDQ1QUwN9+waPS0RbzdWN1TTFm8jLzqN0V4R7VDt2BI9BVhZUVEQWo7yunJjFiCfj7GzYGVkOtm2DXr2gsTF4nkQgnoxTWV9J39y+7GzYSVOiKZIc7NoV7Dnk5wePS0SqGqtoTjTTI6sHZbvKOn355h76sUC3VFBQ4IWFhW3PmG7LFnj6aRgyBC65BGKxzIRrw7KyZfxj9T846dCTOGfkOZFkAGDGDJgzByZODLaMIpD0JM+vfJ51O9Zx6bhLGdZvWNuNMqG+Hv7616BwXn459O8fSYyKugr+uuSv9M3ty/866n+Rm50bSQ7WrYPnnoMxY+CiiyLZuwQo2lLE6+te59PDP82pQ0+NJAPuMH06LFkCkybB6NGRxGhONPPssmcpryvnsqMv46DeB3V4GWZW5O4FodM+8QVCROQTrLUCoVNtiIhIKBUIEREJpQIhIiKhVCBERCSUCoSIiIRSgRARkVAqECIiEkoFQkREQqlAiIhIKBUIEREJpQIhIiKhVCBERCSUCoSIiIRSgRARkVAqECIiEkoFQkREQmW0QJjZRDNbaWbFZnZjyPQrzGxR6m+WmR3X3rYiIpJZGSsQZhYDHgQuAMYBXzazcS1mWwec5e7HArcCD3egbedobAyG2Fy9OiOLb6+qhipmbZrF5urNkeZg61aYOTMYjzlCayrXMHvTbOqbIxqfG4JhJRcvhqIiSCQiixFPxpm3eR5Ly5YS6QiQu3bB7Nmwfn10GQiGYJ25cWZGxmDukI0bYdasyMbn3m1FxQre2/xeRsbnzu70JX5oPFDs7msBzGwKMAlYtnsGd5+VNv8cYGh723aap56C116DnBy4+WYYMaLT76I97p1zL2sr15Kfk8+dE+6kb27frg9RVweTJ0NVFQwdCr/6VSTjDpdUlzD5nck0xhv51PBPcV3BdV2eAYD58+G++4JCceWVcMEFkcSYtnIazy57llhWjB+f8WOOPujoSHLw8MNBsezZM3ieHNTx8Y/3VTwZ5/Z3bqd8VzkDew3krgl3kRPL6fIcVFYGj8GuXXD00XBjNAc5Vlas5PZ3bieejPP5MZ/n8mMu79TlZ/IQ0xBgU9r1ktRte3IN8HJH25rZtWZWaGaF5eXlHU9ZWRkUh3gcams73r4TuDvb67aTn5NPQ7yBxnhjJDloagqe8Pn5wR5ERFuru5p2EU/GycvOo7K+MpIMQLBlmExCVlZQNCOys2EnsawYiWSC2qZonqMAbN8eFIfdz5MIJJIJqhuryc/Np6axhuZEcyQ5qK+Hhgbo1St4XCJS21RLIpkgOyubyobOf61kcg8ibNMz9B3HzD5DUCDO7Ghbd3+Y1KGpgoKCjr+jXXklTJ0KQ4bAuMwcxWqLmfHdU77LS6tf4sRDT2RQ70GR5KB/f/jWt2DuXJgwIXhjjMDoA0Zz2VGXsaFqAxePvTiSDACceips2RK8EVx4YWQxvjD2CyQ9Sd/cvpx0yEmR5eDaa2HaNBg9OrI97dzsXL49/tu8uf5NPjX8U/TO6R1JDg49FL7yFVi6FD73uWgyAMcNPo4vHPkFKuoq+OK4L3b68i1TxzTN7DTgFnc/P3X9JwDufnuL+Y4FngMucPdVHWnbUkFBgRcWFnZ2V0RE9ltmVuTuBWHTMrmJOA8YbWYjzSwHuByY1iLYYcBU4KrdxaG9bUVEJLMydojJ3eNmdj0wHYgBj7r7UjO7LjX9IeAm4ADgdxZ8GBp394I9tc1UVhER+aiMHWKKgg4xiYh0TFSHmEREpBtTgRARkVAqECIiEkoFQkREQqlAiIhIKBUIEREJpQIhIiKhVCBERCSUCoSIiIRSgRARkVAqECIiEkoFQkREQqlAiIhIKBUIEREJpQJRXw/vvgvLlkUao7K+krfXv83Gqo2R5qCkBN5+GyoqIo2xsmIl72x4h11N0Yx9DARjcs+fD3PmBGOWR6Qp0cSsTbN4f9v7RHp6/poamDEDioujywCU1pby9vq32VqzNdIcrFsXPB4Rjlfu7iwuXczMjTMzMpZ9Jsek7h6eegreeAOys+Hmm2HUqEhi3Dv7XtbvWE9+bj53nncn/fL6dX2IXbvgV78K3ggOPRTuuAMsbHjwzNpYtZE73r2DxkQjZx52Jv/75P/d5RkAKCyE++8PCsUVV8BFF0USY9qKaUxdMZWYxfjRGT/i2IOPjSQHv/89LFgAeXkweTIMHtzlEeLJOHe8ewfldeUMyBvA3Z+9m9zs3C7PwfbtwWulvh6OPBJ+9rOuzwCsqFjB3bPupjnZzEWjL+KKY6/o1OVrD6K6OigOyWSwsiPg7tQ01tArpxdNiSaak82R5CAeh4YG6NUrKBIRba02xBtIeILcWC7VjdWRZACgri54DLKyoLY2shg1TTXELEbCE9Q3R/McBYLXSm7uh8+TCCQ9ya7mXfTu0fuD50kkGhuhuTkoltXRPUfr4/Ukkgmys7Kpaarp9OVndEQ5M5sIPEAwbOgj7n5Hi+ljgT8BJwI/c/e706Z9D/gG4MBi4Gvu3uqzcq9GlCsvhxdfDLaGzj8/eDOIwNoda3l17ascf/DxnDL0lEgyAFBUFGw5n3MOjB4dSQR357W1r7GxaiOfG/M5Ds4/OJIcNDXBCy8Eb4aTJkF+fiQxqhqqeH7l8/TL7cdFYy4iOyuiHf/Nm+Gll4LnxVlnRbJ3CbCsbBnvbHyH04edzjEHHxNJBiA4NL18efC+cdhhkURIJBO8XPwyFXUVTDpiEgN6DujwMlobUS5jBcLMYsAqYAJQAswDvuzuy9LmOQgYDlwM7NhdIMxsCPAuMM7d683saeAld/9za/epIUdFRDqmtQLR7k0RM7sIOArI232bu/+ylSbjgWJ3X5tqPwWYBHxQINy9DChLLTssW08zawZ6AVvam1VERPZdu46nmNlDwGXAtwEDLiXY8m/NEGBT2vWS1G1tcvfNwN3ARmArUOXur+wh27VmVmhmheXl5e1ZvIiItEN7D7if7u5XExwG+gVwGjCsjTZhByjbdTzLzAYQ7G2MBA4FepvZlWHzuvvD7l7g7gWDBg1qz+JFRKQd2lsgdn91os7MDgWaCd68W1PCvxaRobT/MNF5wDp3L3f3ZmAqcHo724qISCdob4F40cz6A78G5gPrgSlttJkHjDazkWaWA1wOTGvn/W0ETjWzXmZmwLnA8na2FRGRTtDeD6nvcvdG4Fkze5Hgg+pWv3Lq7nEzux6YTvA110fdfamZXZea/pCZDQYKgb5A0sxuIPjm0lwze4agGMWBBcDDHe+eiIjsrXZ9zdXM5rv7iW3dFjV9zVVEpGP2+muuqS38IQRfNz2BDz947kvw1VMREdlPtXWI6XzgqwQfMN+bdns18NMMZRIRkY+BVguEuz8GPGZmX3T3Z7sok4iIfAy091tMM83sj2b2MoCZjTOzazKYS0REItbeAvEngm8jHZq6vgq4IROBRETk46G9BeJAd38aSELwFVYgovPsiohIV2hvgdhlZgeQOlWGmZ0KRDeMkoiIZFx7fyj3fYJfQY8ys5nAIOBLGUslIiKRa2+BWAY8B9QBNcDfCT6HEBGR/VR7DzH9DzAW+BXw/4DRwOOZCiUiItFrb4E4wt2/4e5vpv6uBcZkMliX2bULXnsNFi2KbAxmgIq6Cl5Z8wprd6yNLAMAGzbA9OlQWhppjCVlS3h1zavUNHb+OLvtlkzC3LkwY0Yw/nBEGuONvLX+LeZtnkcmhwhuU1UVvPoqrFgRXQZgS80WphdPp6S6JNIcrF4Nr7wClZWRRXB35m+Zzxvr3sjIeOXtPcS0wMxOdfc5AGZ2CjCz09NE4ckn4a23IDsbbroJDj+8yyO4O/fMuoeS6hLyeuTx6wm/pn9e/y7PQW0t3H57UDRfeQXuvjuScYc37NzA3bPupjnRzPKK5XznlO90eQYA5s2D3/wm2HCoqoLPfz6SGH9f+XeeX/E8WZbFD0//IccPPj6SHDz0ULAhlZsLkyfDIYd0eYR4Ms6d795JZX0lffP6cu9n7yU3O7fLc1BeDnfeGYxXPmdO8N4RgWXly7hvzn0kPEFJdQlXH3d1py6/rXMxLSb45lIP4Goz25i6Ppy0oUO7tfr6oDhAMEh9VDHi9eRm55JIJkgkI/oGcSIRbCnn5QVPfPdICkRToomkJ8nOyqY+3vlbRe3W2PjhY9DQ6smLMxsj3kiWZZH0JM2J6PZkaGiAnJwPnycRSHqShkQDedl5NCeaSXoykhzE48HjkJMTvIdEpDnZjOPELEZjvLHTl9/q2VzNrNVhRd19Q6cn2gd7dTbXykp4+eVga+gzn4nkDRGCrea31r/FMQcfw4mHRHiS3EWLYP58+PSnYdSoSCK4OzM2zmDjzo1MPHwig3pHNFJgc3NwuK2hAS68EHpFc37KmsYaXip+iT45fTj/384nlhWLJAfbtgWHmEaNgtNPj+y1smr7KmZtmsX4Q8cz7qBxkWQAgsOPK1fCuefCkHaNptzpkp7ktbWvUVlXyQWjL6BfXr8OL6O1s7m263Tf3YVO9y0i0jGtFYj2fkgtIiKfMCoQIiISSgVCRERCZbRAmNlEM1tpZsVmdmPI9LFmNtvMGs3shy2m9TezZ8xshZktN7PTMplVRET+VXt/B9FhZhYDHgQmACXAPDOb5u7pX4+tBL4DXByyiAeAf7r7l8wsBw1xKiLSpTK5BzEeKHb3te7eBEwBJqXP4O5l7j4P+JcvVZtZX+DTwB9T8zW5+84MZhURkRYyWSCGAJvSrpekbmuPUUA58CczW2Bmj5hZ77AZzexaMys0s8Ly8vJ9SywiIh/IZIEI+xVNe390kQ2cCPy3u58A7AI+8hkGgLs/7O4F7l4waFBEP6gSEdkPZbJAlADD0q4PBbZ0oG2Ju89NXX+GoGCIiEgXyWSBmAeMNrORqQ+ZLycYdKhN7r4N2GRmR6RuOpf95dxPIiLdRMa+xeTucTO7HpgOxIBH3X2pmV2Xmv6QmQ0GCoG+QNLMbgDGuXs18G3gyVRxWQt8LVNZRUTkozJWIADc/SXgpRa3PZR2eRvBoaewtguB0PODiIhI5umX1CIiEkoFQkREQqlAiIhIKBUIEREJpQIhIiKhVCBqauAf/wgGqI9wdL3S2lJeWPkCq7aviiwDAGvWwAsvwJb2/qYxMxZsXcA/Vv2Dqoaq6EIkEjBjBrz2WjA+dUTqm+uZXjyddze+G90YzBAMz/vii7B4cXQZgE1Vm5i2Yhrrd66PNAfLlgWvlYqKyCK4O3NK5vDP1f+krrmu05ef0a+5dguPPw6zZkFWFvz85zBmTJdHcHfunX0v22q3kRPL4a4JdzGg54Auz0FNDdx5Z/Bm+MYbcM89wePSxdbtWMf9c+4n6UlWVa7ie6d+r8szAPDee/BQ6lvZtbVw8cWRxPj7ir/z4qoXMTN69+jNCYecEEkOHnoIli+H7Gy47bZIxmFuTjRz58w7qW2q5eXil7lv4n3kZed1eQ7KyoLXR3MzFBbCL37R9RmAJWVLePC9B0l6km27tvHV47/aqcvXHkQy+eHg68nots7iyTixrBgJT+DtPmVVJ3MP/mKxYOs5Iru3ks2MRDK6HB88H8wifTziyThmhruT8Agfj0Qi2GBwj/S1kvAEMYuR9CQe1V5/Mhn8ZWVF/lpxPGOvFYvsAc6AgoICLyws7FijnTvh9dfhoIPgzDM/LBZdbHP1Zt7Z8A5HHXQUxxx8TCQZgGC3edEiOP10OOywSCK4O7NLZrO5ejPnjjqXgT0HRpKDeDx4bjQ2woQJ0LNnJDF2Ne3ilTWv0De3L2ePOJtYViySHJSXB3uWo0bBySdHkwFYu2Mtc0vmUnBoAaMPGB1ZDubPh9Wr4ayzYPDgSCIkPcmMDTOorK9kwqgJ9Mnt0+FlmFmRu4f+KFkFQkTkE6y1AqFDTCIiEkoFQkREQqlAiIhIKBUIEREJpQIhIiKhVCBERCSUCoSIiITKaIEws4lmttLMis3sxpDpY81stpk1mtkPQ6bHzGyBmb2YyZwiIvJRGSsQZhYDHgQuAMYBXzazcS1mqwS+A9y9h8V8F1ieqYwiIrJnmdyDGA8Uu/tad28CpgCT0mdw9zJ3nwc0t2xsZkOBi4BHMphRRET2IJMFYgiwKe16Seq29rof+DHQ6lnBzOxaMys0s8Ly8vIOhxQRkXCZLBBhZ71r14mfzOxzQJm7F7U1r7s/7O4F7l4waNCgjmYUEZE9yGSBKAGGpV0fCrR3FJozgH83s/UEh6bOMbMnOjeeiIi0JpMFYh4w2sxGmlkOcDkwrT0N3f0n7j7U3Uek2r3h7ldmLqqIiLSUsRHl3D1uZtcD04EY8Ki7LzWz61LTHzKzwUAh0BdImtkNwDh3r85ULhERaR+NByEi8gmm8SBERKTDVCCqquC552DmzGCs3YhsqdnC35b+jaVlSyPLAMDKlfD007BpU9vzZoi7M7dkLlOXT2VH/Y7IchCPw2uvwYsvQkNDZDHqmuuYtnIab61/64PxuiNRUQHPPgtFbX65MKPW7VjH00ufZk3lmkhz8P778MwzUFoaWYSkJ3l7w9s8v+J5aptqO335GfsMott4/HGYMycYfPyAA2Ds2C6P4O7cO/tettdtZ3rxdO767F3RjMNcUwN33x0Mwj5zJtx3X/C4dLG1O9by4LwHcXfW7VjHD07/QZdnAGDuXHj00WCc8qYmuOSSSGI8t/w5Xlr9Ehj0yenDSYeeFEkOHnoIVq0KnhO33QZDh3Z5hOZEM7+e9Wsa4g28vu51Hpj4AHnZeV2eg9JSuP9+SCaDQnHrrV2fAVhStoQ/FP0BHLbXb+frJ3y9U5evPYj0N0AL++lGF8WwLNwdDCz0JyRdxCx40kf4WJgZhuE4WRbhU3T3YxDx53RmwWOBB5cjs/u1Yhb5ayXpSbKifPva/Ri4R/taSf1z84y8b+hD6upqmDEDBg2C8eMjW9nbarcxp2QOYw8cy9gDu34v5gOrV8OSJcFjMaQjP3zvPO5O0dYittZs5VPDP0X/vP6R5CCRgHfegcZGOPtsyM2NJEZ9cz1vrn+TPjl9OOOwM6Irmtu3w7vvwogRcNxx0WQANlZtpGhLEccPPp6RA0ZGloMlS2DNGjj99OD9IwLuzqxNs9jZsJOzR5xN75zeHV5Gax9Sq0CIiHyC6VtMIiLSYSoQIiISSgVCRERCqUCIiEgoFQgREQmlAiEiIqFUIEREJJQKhIiIhFKBEBGRUCoQIiISSgVCRERCZbRAmNlEM1tpZsVmdmPI9LFmNtvMGs3sh2m3DzOzN81suZktNbPvZjKniIh8VMbGgzCzGPAgMAEoAeaZ2TR3X5Y2WyXwHeDiFs3jwA/cfb6Z9QGKzOzVFm1FRCSDMrkHMR4odve17t4ETAEmpc/g7mXuPg9obnH7Vnefn7pcAywHojn3tIjIJ1QmC8QQIH3cyhL24k3ezEYAJwBzOyeWiIi0RyYLRNjIOx0afMLM8oFngRvcvXoP81xrZoVmVlheXr4XMUVEJEwmC0QJMCzt+lBgS3sbm1kPguLwpLtP3dN87v6wuxe4e8GgiEZ1EhHZH2WyQMwDRpvZSDPLAS4HprWnoQUD7/4RWO7u92YwI+zYAVOmwFtvRTr28KaqTTyx6AkWblsYWQYgGEbx8cdh/frIIrg772x8h78s/gsVdRWR5aC5GV56CaZOhbq6yGLUNtXyzNJnmF48nUQyEVkOSkvhqadg9uzoMgDFlcU8/v7jrKxYGWkOCgvhiSdgS7u3eztd0pO8vvZ1/rr0r1Q3hh5k2ScZ+xaTu8fN7HpgOhADHnX3pWZ2XWr6Q2Y2GCgE+gJJM7sBGAccC1wFLDazhalF/tTdX+r0oI8/HqxogIMPhiOP7PS7aIu7c+/se6lurObNdW9y14S7OKDXAV2eg+pquP/+4PLcufCb33w4UH0XWrNjDY8UPYLjlFSX8KMzftTlGQCYMyd4AzCDZBK+9KVIYkxdPpVX1rxC0pMM7DmQk4ecHEkOfv97WLs2uDxkCBx2WJdHaEo0cc+se2hONvPOxnd4YOID9OzRs8tzsG0bPPhgcHn5cpg8ueszAItKF/GnhX/CMKobqvnmSd/s1OVnrEAApN7QX2px20Npl7cRHHpq6V3CP8PofLm5weD0sRhkZ/ThaD1Gdi5NdU3kZecRy4pFEyIrK3gc6uuhX7/gjTEC2VnZmBnxZJycWE4kGQDo0SN4DNyDyxHJjeWS9CRmRo9YdDnIzYV4HHJyInutGMFjsKt5F31y+pBlEf3WNxYLXi9NTcHjEZEeWT0wjKQnyc3O7fTlm0d4WKWzFRQUeOHuvYH2qq2FWbNg0CA4/vjI3hTLd5VTtLWIwwcezuEDD48kAwDr1gVbRCeeCIMHRxZj0bZFbK3dymnDTqNvbt9oQiSTwV5EYyOccUZkbwQN8QZmbpxJfk4+44eMxyJ6jrJzZ7BnOWwYjBsXTQZgc/Vm3t/2PkcffDSH9ev6vZgPrFwZvF5OPhkOiGCPn+DoQ9GWInY27uSMYWfs1d6UmRW5e0HotE98gRAR+QRrrUDoXEwiIhJKBUJEREKpQIiISCgVCBERCaUCISIioVQgREQklAqEiIiEUoEQEZFQKhAiIhJKBUJEREKpQIiISCgVCBERCaUCISIioVQgREQklAqEiIiEUoEQEZFQGS0QZjbRzFaaWbGZ3RgyfayZzTazRjP7YUfaiohIZmWsQJhZDHgQuAAYB3zZzFqOU1gJfAe4ey/ado6KCnjsMXjllWCIyYis27GOR+Y/wnub34ssA8CCrQt4pOgRiiuLI8vg7ry+9nX+vPDPlO0qiyxHU6KJ51Y8x5TFU6htqo0sR3VjNU8uepIXVr5APBmPLAdbtsCjj8KMGcE43RFZXr6cR4oeYUnpksgyADBzZvB4bNoUWYREMsFLq1/i8fcfZ0f9jk5ffiZHHh8PFLv7WgAzmwJMApbtnsHdy4AyM7uoo207zeOPw8KFQXEYMgSOOqrT76It7s79c++nrqmOmRtnMmrAKA7sdWCX56hqqOK37/2WWFaM+dvm89sLfxvJoPDFlcX8eeGfiWXF2Fa7jRvPjGYHcvam2fxt6d8wDMsyLjvqskhyTF0+ldfXvk7CExycfzDjh4yPJAcPPwwbN8Lbb8Pw4cFfF2tKNHHfnPsAmLt5Lg9c8AC9evTq8hxs2QJ/+APEYsHY1Hfe2fUZgEWli3hq8VMYRl1zHd8q+FanLj+Tr/4hQHppLUnd1qltzexaMys0s8Ly8vKOp8zPh3gcsrIgL6/j7TtJfo986uP15MRy6JHVI5IM2VnZ5GbnUt9cT+8evTEskhy52bnEsmI0J5rJz8mPJANAz+yeGIbj9O7RO7IcvXr0IulJsiyL3FhuZDno3RsaGyE7G3KjyZFlWfTq0Yu65jrysvOIWSySHOTkBI9DQwP06RNNBoLXimEkPJGRQmmeoV1FM7sUON/dv5G6fhUw3t2/HTLvLUCtu9/d0bbpCgoKvLCwsGNB6+pg3jw44AA4+uiOte1E2+u28/629xk1cBQj+o+ILMemqk2s3r6aYw4+hkG9B0WWY3n5ckprSzl5yMn0zonmzTnpSeZvnU9jvJHxQ8bTIxZN4W5KNDG3ZC75OfkcP/h4zKIp3FRXQ1FRsKc9Zkw0GYBttdtYVraMsYPGcmifQyPLwZo1wR7VCSdA//6RRHB3FpUuoqqhivFDx5OX3fGNXDMrcveC0GkZLBCnAbe4+/mp6z8BcPfbQ+a9hX8tEO1um26vCoSIyCdYawUik4eY5gGjzWykmeUAlwPTuqCtiIh0gox9SO3ucTO7HpgOxIBH3X2pmV2Xmv6QmQ0GCoG+QNLMbgDGuXt1WNtMZRURkY/K2CGmKOgQk4hIx0R1iElERLoxFQgREQmlAiEiIqFUIEREJNR+9SG1mZUDG/ay+YFARSfGidL+0pf9pR+gvnwc7S/9gH3ry3B3D/1V7H5VIPaFmRXu6ZP87mZ/6cv+0g9QXz6O9pd+QOb6okNMIiISSgVCRERCqUB86OGoA3Si/aUv+0s/QH35ONpf+gEZ6os+gxARkVDagxARkVAqECIiEmq/LBBmNtHMVppZsZl9ZLxKC/wmNX2RmZ2YNu1RMyszsyUt2gw0s1fNbHXq/wHduC+3mNlmM1uY+rvw49oPMxtmZm+a2XIzW2pm301r063WSRt96fJ1so99yTOz98zs/VRffpHWprutl9b60m1eK2nTY2a2wMxeTLtt79aJu+9XfwSnB18DjAJygPcJTiGePs+FwMuAAacCc9OmfRo4EVjSos1dwI2pyzcCd3bjvtwC/LA7rBPgEODE1OU+wKrdbbvbOmmjL126TjqhLwbkpy73AOYCp3bT9dJaX7rNayVt+veBp4AX027bq3WyP+5BjAeK3X2tuzcBU4BJLeaZBPyPB+YA/c3sEAB3nwFUhix3EvBY6vJjwMWZCN9CpvrS1fa6H+6+1d3nA7h7DbCcD8cn71brpI2+RGFf+uLuXpuap0fqz9PadKf10lpfuto+vebNbChwEfBISJsOr5P9sUAMATalXS/hoy/C9szT0sHuvhUg9f9B+5izPTLVF4DrU7unj3bBIYBO6YeZjQBOINjCg268TkL6Al27TmAf+5I6lLEQKANedfduu15a6Qt0r9fK/cCPgWSLNnu1TvbHAhE2onvLrYH2zPNxkKm+/Dfwb8DxwFbgng4n65h97oeZ5QPPAje4e3UnZuuoTPWlq9cJ7GNf3D3h7scDQ4HxZnZ058brkEz1pdu8Vszsc0CZuxd1Vpj9sUCUAMPSrg8FtuzFPC2Vpu3GHUKwpZFpGemLu5emXhBJ4A8Eu7WZtE/9MLMeBG+oT7r71LR5ut062VNfIlgnrebsyDzuvhN4C5iYuqnbrZfdWvalm71WzgD+3czWExyaOsfMnkjNs1frZH8sEPOA0WY20sxygMuBaS3mmQZcnfo2wKlA1e7dr1ZMA76SuvwV4PnODL0HGenL7idKyheAJXuat5PsdT/MzIA/Asvd/d6QNt1mnbTWlwjWCexbXwaZWf9U9p7AecCKtDbdab3ssS/d6bXi7j9x96HuPiLV7g13vzKtTcfXSXs+ye5ufwSf8q8i+DbAz1K3XQdc5x9+a+HB1PTFQEFa278Q7Eo2E1Tqa1K3HwC8DqxO/T+wG/fl8dS8i1JPnEM+rv0AziTYxV4ELEz9Xdgd10kbfenydbKPfTkWWJDKuwS4KW2Z3W29tNaXbvNaabGMs/nXbzHt1TrRqTZERCTU/niISUREOoEKhIiIhFKBEBGRUCoQIiISSgVCRERCqUCIiEgoFQgREQmVHXUAkY87M/u/wBUEJ0irAIqAKuBaglMyFwNXuXudmf0ZqAfGAsOBrxH8cvU0gtMyfzW1zFqCHzudB+wAfkpwSubDCM7RNC11Qr/Hgd6pKNe7+6wMd1fkA9qDEGmFmRUAXyQ48+olQEFq0lR3P9ndjyM4bfc1ac0GAOcA3wNeAO4DjgKOMbPjU/P0Bt5y95OAGuA2YALB6Rx+mZqnDJjg7icClwG/yUQfRfZEexAirTsTeN7d6wHM7IXU7Ueb2W1AfyAfmJ7W5gV3dzNbDJS6++JU26XACIJTbDQB/0zNvxhodPfmVJsRqdt7AL9NFZUEMCYD/RPZIxUIkdaFnVoZ4M/Axe7+vpl9leDcN7s1pv5Ppl3efX33a67ZPzzPzQfzuXvSzHbP8z2gFDiOYG+/Ya97IbIXdIhJpHXvAp+3YNzifILRuiAYMnRr6vTdV2TovvsBWz041fRVBMNRinQZ7UGItMLd55nZNIKxgTcAhQQfUP9fgtHgNhAcIuqTgbv/HfCsmV0KvAnsysB9iOyRzuYq0gYzy3f3WjPrBcwArvXU2NIi+zPtQYi07WEzGwfkAY+pOMgnhfYgREQklD6kFhGRUCoQIiISSgVCRERCqUCIiEgoFQgREQn1/wGauFgn/tBr4gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sir_model.plot_two_params(\"gamma\", \"beta\", param_choices_true_false)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "95378ef1", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2d02089e", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b732c635", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/scratch/notebooks/sir-eval-smt-encoding.ipynb b/scratch/notebooks/sir-eval-smt-encoding.ipynb new file mode 100644 index 00000000..c761e693 --- /dev/null +++ b/scratch/notebooks/sir-eval-smt-encoding.ipynb @@ -0,0 +1,392 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# 1:54:49.48 to get a functioning encoding with just compartmental constraints. Needs more time on probing the parameters\n", + "# 0 - 32:00.68: Setup basic encoding\n", + "# 32:00.68 - 48:00: Setup z3 solver and get results\n", + "# 48:00 - 1:27:15: Setup solution extraction\n", + "# 1:27:15 - 1:54:49.48: Setup solution plotting and explore 8 parameter bound settings to test\n", + "# 1:54:49.48 - 2:09:43.40: Cleanup code, comments, and improve plotting to interpolate\n", + "# 2:09:43.40 - 2:17:19.51: Add dreal and test\n", + "\n", + "from pysmt.shortcuts import And, Or, Plus, Minus, Times, Div, REAL, LE, LT, GE, GT, Equals, Symbol, Real, Solver\n", + "from pysmt.fnode import FNode\n", + "from typing import Dict\n", + "import pandas as pd\n", + "from decimal import Decimal\n", + "import numpy as np\n", + "\n", + "\n", + "def dataframe(assignment: Dict[Symbol, float], state_variables, parameters, max_step, step_size) -> pd.DataFrame:\n", + " timepoints = list(range(0, max_time+step_size, step_size))\n", + " timeseries = {sv: [None]*len(timepoints) for sv in state_variables}\n", + " for k, v in assignment.items():\n", + " sym = k.symbol_name()\n", + " if \"_\" in sym:\n", + " sv = sym.split(\"_\")[0]\n", + " t = sym.split(\"_\")[1]\n", + " value =Decimal(v.numerator) / Decimal(v.denominator)\n", + " timeseries[sv][timepoints.index(int(t))] = value\n", + " else:\n", + " timeseries[sym] = [v]*len(timepoints)\n", + " df = pd.DataFrame(timeseries, index=timepoints).astype(float)\n", + " return df\n", + "\n", + "def reindex_and_interpolate(df, new_index):\n", + " df_reindexed = df.reindex(index = new_index)\n", + " df_reindexed.interpolate(method = 'linear', inplace = True)\n", + " return df_reindexed\n", + "\n", + "\n", + "def plot_results(values, max_step, step_size):\n", + " timepoints = list(range(0, max_time+step_size, step_size))\n", + " results: pd.DataFrame = dataframe(values, [\"S\", \"I\", \"R\"], [\"beta\", \"gamma\"], max_step, step_size)\n", + " newindex = np.linspace(timepoints[0], timepoints[-1], timepoints[-1]+1)\n", + " results = reindex_and_interpolate(results, newindex)\n", + " print(f\"beta = {results['beta'][0]}, gamma = {results['gamma'][0]}\")\n", + " print(results[[\"S\", \"I\", \"R\"]])\n", + " ax = results[[\"S\", \"I\", \"R\"]].plot()\n", + " ax.set_xlabel=\"Time\"\n", + " return ax, results\n", + "\n", + "def run_solver(solver, formula):\n", + " solver.add_assertion(formula)\n", + " result = solver.solve()\n", + " if result:\n", + " model = solver.get_model()\n", + " variables = formula.get_free_variables()\n", + " values = {}\n", + " for var in variables:\n", + " try:\n", + " values[var] = model.get_value(var).constant_value()\n", + " except Exception as e:\n", + " pass\n", + " else:\n", + " print(\"Unsat\")\n", + " values = None\n", + " return values\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Generate model diagram\n", + "\n", + "# from funman.api.run import Runner\n", + "# import json\n", + "\n", + "# amr_model = \"../../resources/amr/petrinet/amr-examples/sir.json\"\n", + "# m = Runner().get_model(amr_model)\n", + "# g = m[0].to_dot()\n", + "# g.render(\"sir.pdf\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Configure these bounds (lower, upper) to configure the parameter space\n", + "\n", + "beta_bounds = (0.25, 0.25)\n", + "gamma_bounds = (0.027755102040816326, 0.027755102040816326)\n", + "\n", + "# Set these values for the initial state\n", + "\n", + "S_0_value = 0.99\n", + "I_0_value = 0.01\n", + "R_0_value = 0\n", + "\n", + "# Infected constraint bounds\n", + "I_bounds = (0.45, 0.55)\n", + "I_bounds_t = (45, 55)\n", + "\n", + "# Timepoints\n", + "step_size = 1\n", + "max_time = 40\n", + "\n", + "noise = 1e-3" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# The main encoding code\n", + "def encode(step_size=1, max_time=10, noise=1e-3, strict_upper_bound_parameters = False, use_compartmental=True):\n", + " time_format = lambda t: f\"{t:03d}\"\n", + "\n", + "\n", + " ################################################################################\n", + " ################# Initial States ###############################################\n", + " ################################################################################\n", + "\n", + " S_0 = Symbol(f\"S_{time_format(0)}\", REAL)\n", + " I_0 = Symbol(f\"I_{time_format(0)}\", REAL)\n", + " R_0 = Symbol(f\"R_{time_format(0)}\", REAL)\n", + "\n", + " population_size = S_0_value + I_0_value + R_0_value\n", + "\n", + " # SIR Model Initial State\n", + " initial_state = And([\n", + " Equals(S_0, Real(S_0_value)),\n", + " Equals(I_0, Real(I_0_value)),\n", + " Equals(R_0, Real(R_0_value))\n", + " ])\n", + "\n", + " ################################################################################\n", + " ################# Parameters ###############################################\n", + " ################################################################################\n", + "\n", + "\n", + " # Parameters\n", + " beta = Symbol(\"beta\", REAL)\n", + "\n", + " gamma = Symbol(\"gamma\", REAL)\n", + "\n", + " upper_op = LT if strict_upper_bound_parameters else LE\n", + "\n", + " parameters = And([\n", + " And(LE(Real(beta_bounds[0]), beta), (upper_op(beta, Real(beta_bounds[1])) if beta_bounds[0] < beta_bounds[1] else LE(beta, Real(beta_bounds[1])))),\n", + " And(LE(Real(gamma_bounds[0]), gamma), (upper_op(gamma, Real(gamma_bounds[1])) if gamma_bounds[0] < gamma_bounds[1] else LE(gamma, Real(gamma_bounds[1]))))\n", + " ])\n", + "\n", + "\n", + " timepoints = list(range(0, max_time+step_size, step_size))\n", + "\n", + "\n", + " ################################################################################\n", + " ################# Transitions ##################################################\n", + " ################################################################################\n", + "\n", + " S_next = lambda t: Symbol(f\"S_{time_format(t+step_size)}\", REAL)\n", + " S_now = lambda t: Symbol(f\"S_{time_format(t)}\", REAL)\n", + " I_next = lambda t: Symbol(f\"I_{time_format(t+step_size)}\", REAL)\n", + " I_now = lambda t: Symbol(f\"I_{time_format(t)}\", REAL)\n", + " R_next = lambda t: Symbol(f\"R_{time_format(t+step_size)}\", REAL)\n", + " R_now = lambda t: Symbol(f\"R_{time_format(t)}\", REAL)\n", + " dt = Real(float(step_size))\n", + "\n", + " S_Trans = lambda t: Equals(S_next(t), \n", + " Minus(\n", + " S_now(t), \n", + " Times([beta, S_now(t), I_now(t), dt])))\n", + "\n", + " I_Trans = lambda t: Equals(I_next(t), \n", + " Plus(\n", + " I_now(t), \n", + " Times(\n", + " Minus(\n", + " Times([beta, S_now(t), I_now(t)]), \n", + " Times(gamma, I_now(t))), dt)))\n", + "\n", + " R_Trans = lambda t: Equals(R_next(t), \n", + " Plus(\n", + " R_now(t), \n", + " Times(\n", + " Times(gamma, I_now(t)), \n", + " dt)))\n", + "\n", + " Trans = lambda t: And(S_Trans(t), I_Trans(t), R_Trans(t))\n", + "\n", + " All_Trans = And([Trans(t) for t in timepoints[:-1]])\n", + "\n", + "\n", + " ################################################################################\n", + " ################# Constraints ##################################################\n", + " ################################################################################\n", + "\n", + " compartmental_constraint = And([\n", + " And( LE(Real(0.0), Plus(S_now(t), Real(noise))),\n", + " LE(Real(0.0), Plus(I_now(t), Real(noise))),\n", + " LE(Real(0.0), Plus(R_now(t), Real(noise))),\n", + " LT(Plus([S_now(t), I_now(t), R_now(t)]), Plus(Real(population_size), Real(noise))), \n", + " GE(Plus([S_now(t), I_now(t), R_now(t)]), Minus(Real(population_size), Real(noise))))\n", + " for t in timepoints]) if use_compartmental else TRUE()\n", + "\n", + " # 10m to add and check\n", + " I_peak = (0.45, 0.55) # .45, .55\n", + " I_peak_t = (45.0, 55.0) # 45, 55\n", + " peak_I = And([\n", + " And(LE(Real(I_peak[0]), I_now(t)),\n", + " LT(I_now(t), Real(I_peak_t[1])))\n", + " for t in timepoints \n", + " if I_peak_t[0] <= t and t <= I_peak_t[1]\n", + " ])\n", + "\n", + "\n", + " ################################################################################\n", + " ################# Combine Assertions ###########################################\n", + " ################################################################################\n", + "\n", + " consistency = And([\n", + " initial_state,\n", + " parameters,\n", + " All_Trans,\n", + " compartmental_constraint,\n", + " peak_I\n", + " ])\n", + " # consistency.serialize()\n", + " return consistency" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# # Solve encoding\n", + "# with Solver() as solver:\n", + "# values = run_solver(solver)\n", + " \n", + "# if values:\n", + "# plot_results(values, timepoints)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta = 0.25, gamma = 0.027755102040816326\n", + " S I R\n", + "0.0 0.990000 0.010000 0.000000\n", + "1.0 0.987525 0.012197 0.000278\n", + "2.0 0.985050 0.014395 0.000555\n", + "3.0 0.982575 0.016592 0.000833\n", + "4.0 0.980100 0.018790 0.001110\n", + "5.0 0.977625 0.020987 0.001388\n", + "6.0 0.972496 0.025534 0.001970\n", + "7.0 0.967366 0.030081 0.002553\n", + "8.0 0.962237 0.034628 0.003135\n", + "9.0 0.957107 0.039175 0.003718\n", + "10.0 0.951978 0.043722 0.004300\n", + "11.0 0.941572 0.052914 0.005514\n", + "12.0 0.931167 0.062106 0.006727\n", + "13.0 0.920761 0.071298 0.007941\n", + "14.0 0.910356 0.080490 0.009154\n", + "15.0 0.899950 0.089682 0.010368\n", + "16.0 0.879773 0.107370 0.012857\n", + "17.0 0.859596 0.125058 0.015346\n", + "18.0 0.839418 0.142747 0.017835\n", + "19.0 0.819241 0.160435 0.020324\n", + "20.0 0.799064 0.178123 0.022813\n", + "21.0 0.763481 0.208762 0.027757\n", + "22.0 0.727898 0.239401 0.032701\n", + "23.0 0.692315 0.270040 0.037645\n", + "24.0 0.656732 0.300679 0.042589\n", + "25.0 0.621149 0.331318 0.047533\n", + "26.0 0.569699 0.373572 0.056728\n", + "27.0 0.518250 0.415826 0.065924\n", + "28.0 0.466800 0.458080 0.075120\n", + "29.0 0.415351 0.500333 0.084316\n", + "30.0 0.363901 0.542587 0.093511\n", + "31.0 0.314539 0.576890 0.108571\n", + "32.0 0.265177 0.611192 0.123631\n", + "33.0 0.215815 0.645495 0.138690\n", + "34.0 0.166453 0.679797 0.153750\n", + "35.0 0.117091 0.714100 0.168809\n", + "36.0 0.096187 0.715183 0.188629\n", + "37.0 0.075284 0.716267 0.208449\n", + "38.0 0.054380 0.717351 0.228269\n", + "39.0 0.033476 0.718435 0.248089\n", + "40.0 0.012573 0.719518 0.267909\n", + "41.0 0.010311 0.701810 0.287879\n", + "42.0 0.008050 0.684101 0.307849\n", + "43.0 0.005788 0.666392 0.327820\n", + "44.0 0.003526 0.648684 0.347790\n", + "45.0 0.001265 0.630975 0.367760\n", + "46.0 0.001065 0.613662 0.385273\n", + "47.0 0.000866 0.596348 0.402786\n", + "48.0 0.000666 0.579035 0.420299\n", + "49.0 0.000467 0.561722 0.437811\n", + "50.0 0.000267 0.544409 0.455324\n", + "Population at end: 0.9999999999999999\n", + "[-0.002475000000000005, -0.002475000000000005, -0.002474999999999894, -0.002475000000000005, -0.002475000000000005, -0.005129413823341866, -0.005129413823341866, -0.005129413823341755, -0.005129413823341866, -0.005129413823341866, -0.010405546792922049, -0.010405546792922049, -0.010405546792921938, -0.010405546792922049, -0.010405546792922049, -0.020177337323093902, -0.020177337323093902, -0.020177337323093902, -0.020177337323093902, -0.020177337323093902, -0.03558290467585801, -0.03558290467585801, -0.03558290467585801, -0.03558290467585801, -0.03558290467585801, -0.051449529036565966, -0.051449529036565855, -0.051449529036565966, -0.05144952903656591, -0.05144952903656591, -0.04936205284144529, -0.04936205284144529, -0.049362052841445236, -0.04936205284144529, -0.049362052841445264, -0.020903674421399204, -0.020903674421399218, -0.020903674421399218, -0.020903674421399204, -0.020903674421399204, -0.002261573475552607, -0.002261573475552609, -0.002261573475552608, -0.002261573475552608, -0.002261573475552606, -0.00019952023486947967, -0.00019952023486947946, -0.00019952023486947967, -0.00019952023486947957, -0.00019952023486947957]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnm0lEQVR4nO3dd3gU5d7G8e+WbCpJCIGEEiD03ouIiAgKCCioiIK9vIpYsYHn2M8RFWwIimIvSFPwUAVpgiC99xJIgFQghfTszvvHQiASSiDJpNyf69ork9kpv4yYvfPMM89jMQzDQERERMQkVrMLEBERkfJNYURERERMpTAiIiIiplIYEREREVMpjIiIiIipFEZERETEVAojIiIiYiqFERERETGV3ewCLoXL5eLo0aNUqFABi8VidjkiIiJyCQzDICUlhWrVqmG1nr/9o1SEkaNHjxIWFmZ2GSIiInIZoqKiqFGjxnnfLxVhpEKFCoD7h/H39ze5GhEREbkUycnJhIWF5X6On0+pCCOnb834+/srjIiIiJQyF+tioQ6sIiIiYiqFERERETGVwoiIiIiYqlT0GRERESltDMMgJycHp9NpdilFxmazYbfbr3jYDYURERGRQpaVlUV0dDRpaWlml1LkfHx8qFq1Kg6H47KPoTAiIiJSiFwuFxEREdhsNqpVq4bD4SiTA3YahkFWVhbx8fFERERQv379Cw5sdiEFDiN//vkno0ePZv369URHRzNjxgz69+9/wX2WLl3K8OHD2b59O2FhYfz73//m/vvvv6yCRURESrKsrCxcLhdhYWH4+PiYXU6R8vb2xsPDg0OHDpGVlYWXl9dlHafAESY1NZWWLVsyfvz4S9o+IiKCPn360K1bNzZt2sQzzzzDww8/zO+//17gYkVEREqLy20lKG0K4+cscMtI79696d279yVvP2HCBMLDw3n//fcBaNy4MStWrODDDz+kZ8+eBT29iIiIlDFFHttWrVpFjx498qzr2bMnq1atOu8+mZmZJCcn53mJiIhI2VTkYSQmJoaQkJA860JCQkhOTiY9PT3ffUaNGkVAQEDuS5PkiYiIlF0l8obWyJEjSUpKyn1FRUWZXZKIiEiZFx8fz9ChQ6lZsyaenp6EhobSs2dP/vrrryI9b5E/2hsaGkpsbGyedbGxsfj7++Pt7Z3vPp6ennh6ehZ1aXy5/AAxSRlUruCZ9+XnSUUfB1Zr2XsUS0RE5Hxuu+02srKy+O6776hTpw6xsbEsWrSIY8eOFel5izyMdOrUiblz5+ZZt3DhQjp16lTUp76o2Vui2RSVmO97NquFSr6OPAHl7MASfNb3FTyvfPQ5EREpuwzDID27+Edi9fawXfLnU2JiIsuXL2fp0qV07doVgFq1atGhQ4eiLBG4jDBy8uRJ9u3bl/t9REQEmzZtIigoiJo1azJy5EiOHDnC999/D8Bjjz3GuHHjePHFF3nwwQdZvHgxU6dOZc6cOYX3U1ymO9uH0SE8iPiUzDOvk5kcT83C6TKIS8kkLiXzosfxtFvPDSl+57a2VK7giZeHrRh+MhERKUnSs500ebX4h7TY8WZPfByX9lHv5+eHn58fM2fO5KqrriqWOxSnFTiMrFu3jm7duuV+P3z4cADuu+8+vv32W6Kjo4mMjMx9Pzw8nDlz5vDss8/y8ccfU6NGDb788ssS8VjvnR1q5rs+2+nieGoW8SmZxKVkkJCSRfzJvIEl4dRySmYOmTkuDp9I5/CJ/Dvknq2Cp90dWv7Z4vKP8BLk68DDViK79IiISBlkt9v59ttveeSRR5gwYQJt2rSha9eu3HnnnbRo0aJIz20xDMMo0jMUguTkZAICAkhKSsLf39/scvJIz3KScNLdgpLwj8Byevn0+1k5rks+rsUCFX0c+bawhAR40Ti0AnUq+2FTvxYRkRIlIyODiIgIwsPDc0ckLQ23aU7LyMhg+fLl/P3338ybN481a9bw5Zdfnnfk9Px+3tMu9fNbYaSYGIZBckZOnsCSX3iJSzlzm+hivDysNK7qT9Nq/jSrFkDTagE0CPXD065bQSIiZrnQh3Np9PDDD7Nw4UIOHTqU7/uFEUY0UV4xsVgsBHh7EODtQd3Kfhfc1uUyOJH2j1tDZ4WWwyfS2RmdTFqWk42RiWyMTMzd1261UD+kwqmA4k/T6gE0ruqPn6f+U4uISME1adKEmTNnFuk59AlVAlmtFir5eVLJz5NGoflv43QZHDyWyvajyWw/kuT+ejSJE2nZ7IxOZmd0MtPXu7e1WCC8ki9NqvnTrHoATav507RaAEG+lz/ds4iIlC3Hjh1j4MCBPPjgg7Ro0YIKFSqwbt063nvvPW655ZYiPbfCSClls1qoW9mPupX9uLllNcB9K+hoUgbbjySx7WgyO466Q0p0UgYHElI5kJDK7C3RuceoFuBFk2rucHI6pFQN8NJjyiIi5ZCfnx8dO3bkww8/ZP/+/WRnZxMWFsYjjzzCyy+/XKTnVp+RcuDYycxTLSfJbDuaxI6jyUQkpOa7bZCvg6bV/N2tKKeCSu1KvhoATkTkEpW1PiMXoz4jckkq+XlybYPKXNugcu66lIxsdkansP1oEtuOuG/x7I07yfHULJbvTWD53oTcbX0dNpqcurVzuhWlXhU/PXosIiKFQmGknKrg5UGH8CA6hAflrsvIdrInNiU3nGw7msyu6GRSs5ysPXiCtQdP5G7rsFtpFFoht/9J02r+NK7qr0HdRESkwBRGJJeXh40WNQJpUSMwd12O08X++NQ8LSg7jiaTkpnDlsNJbDmcBLgnMrRaoF4Vv9xw0rRaAE2q+RPg7WHODyQiIqWCwohckN1mpWFoBRqGVuDWNu51LpdB1Ik0dx+Us57kSTiZxZ7Yk+yJPcmMjUdyj1EzyIfm1QPo26Iq3RuH4LDr9o6IiJyhMCIFZrVaqFXJl1qVfLmpeVXA/SRPXEpmnnCy7UgyRxLTiTyeRuTxNOZsjaaSr4Pb2tbgjnZh1Kty4fFWRESkfFAYkUJhsVgI8fcixN+L7o1DctcnpmWx42gyK/YlMH39YeJSMvnizwN88ecBOtQOYlD7MG5qXhVvh/qaiIiUV3q0V4pNjtPFkt3xTFkbyeJdcZwe8b6Cl53+raozqH0YzaoHmFukiMgV0qO9Z+jRXilx7DYrNzQJ4YYmIcQkZfDLhsNMXhtJ1PF0fvj7ED/8fYhm1f0Z1L4mt7Sqhr+XOr6KiJQHahkRU7lcBqsOHGPy2ih+3xZDltM9s7GXh5U+zatxZ4cw2tWqqFFhRaTUUMvIGWoZkVLBarXQuV4wnesFcyI1i183HmHK2kj2xJ7klw2H+WXDYepU9uXO9mHc2qYGwX6eZpcsIlJm3X///SQmJhb5xHj/pDAiJUZFXwcPXRPOg51rszEqkSlropi15SgH4lN5e+4uRv++mxuahDCofU2uqReMTUPUi4iUCQojUuJYLBba1KxIm5oVeaVfE2ZtPsrktVFsjkpk7tYY5m6NoXqgNwPbuR8RrhbobXbJIiJyBRRGpETz87RzV4ea3NWhJjujk5myNooZG49wJDGdj/7Yy8eL9tK1QWXubB9G98Yhmi9HREomw4DstOI/r4cPlII+dwojUmo0rurP6zc3ZUTvRvy+PYbJa6JYdeAYS3fHs3R3PMF+7gHVBrULo05lDagmIiVIdhq8Xa34z/vyUXD4Fv95C0hhREodLw8bt7Sqzi2tqnMwIZUp66KYvv4w8SmZfL7sAJ8vO0CH8CDu6hBG72ZVNXmfiEgJpzAipVrtYF9e6tWI4Tc0YMmuOKasjWLJ7jjWRBxnTcRxXv1tOwNauwdUa1pNA6qJiEk8fNytFGactxRQGJEywcNm5camodzYNJSYpAymrYtiyrooDp9I5/tVh/h+1SFa1AhgUPswbm5ZjQoaUE1EipPFUipul5hFYUTKnNAAL57sXp9h3eqxcv8xfl4byYLtMWw5nMSWw0n8Z/ZO+rSoyp3tw2irAdVEREynMCJlltVq4Zr6wVxTP5jjqVn8uuEwk9dGsS/uJNPXH2b6+sPUq+LHne3DGNC6OpU0oJqIiCk0HLyUK4ZhsCEykclrIpm9JZr0bCcAHjYLNzYJ5c4OYXSuG4xVA6qJyGXScPBnaDh4kXxYLBba1qpI21oVebVfE2Ztjmby2ki2HE5iztZo5myNpnqgN4PahzGwXQ2qBmhANRGRoqYRoqTcquDlweCONfnfE9cw56lruK9TLfy97BxJTOeDhXvo/M5iRs3dSfapyftERKRoKIyIAE2rBfDGLc1Y868efDioJR3Dg3AZ8PmfB7jri7+JTko3u0QRkTJLYUTkLF4eNga0rsGURzsx4e42VPC0s+7QCfqMXcGfe+LNLk9EpExSGBE5j17NqjL7qWtoWs2f46lZ3PfNGj5YuAenq8T3+RYRKVUURkQuoFYlX34ZejWDO9bEMGDsor3c+/Vq4lMyzS5NRKTMUBgRuQgvDxtvD2jOh4Na4u1h4699x+gzdjmrDxwzuzQRkTJBYUTkEg1oXYP/PdGZ+lX8iEvJZPCXq/ls6X5cum0jInJFFEZECqB+SAV+e6IzA1pXx+kyeHf+Lh75fh2JaVlmlyYiUmopjIgUkI/Dzgd3tGTUrc1x2K0s2hVHn7Er2BSVaHZpIiKlksKIyGWwWCzc1aEmMx6/mlqVfDiSmM7ACSv59q8ISsEMCyIi+br//vuxWCxYLBY8PDwIDw/nxRdfJCMjo0jPqzAicgWaVgtg1pPX0LtZKNlOg9dn7WDYpA0kZ2SbXZqIyGXp1asX0dHRHDhwgA8//JDPP/+c1157rUjPqTAicoX8vTz4dEgbXu3bBLvVwtytMdz8yQq2H00yuzQRkQLz9PQkNDSUsLAw+vfvT48ePVi4cGGRnlMT5YkUAovFwoPXhNOqZiBP/LSBg8fSGPDpSt68uSmD2odhsWgWYJHyzDAM0nOKf1oJb7v3Ff3+2bZtGytXrqRWrVqFWNW5FEZEClGbmhWZ81QXhk/dxJLd8Yz4dStrIo7znwHN8HHofzeR8io9J52OkzoW+3lXD16Nj4dPgfaZPXs2fn5+5OTkkJmZidVqZdy4cUVUoZtu04gUsoq+Dr66rz0v9mqI1QK/bjzCLeP+Yl9citmliYhcVLdu3di0aROrV6/mvvvu44EHHuC2224r0nPqTzWRImC1Wnj8unq0qVmRp37eyN64k9w87i/eHtCc/q2rm12eiBQzb7s3qwevNuW8BeXr60u9evUA+Prrr2nZsiVfffUVDz30UGGXl0thRKQIXVWnEnOe6sLTkzeycv8xnpmyidURx3mtXxO8PGxmlycixcRisRT4dklJYLVaefnllxk+fDiDBw/G27vg4eaSzlMkRxWRXJUrePLDQx156vp6WCzw85pIbv10JYeOpZpdmojIRQ0cOBCbzcb48eOL7BwKIyLFwGa1MPzGhnz7QAeCfB3siE6m79gVzN8WbXZpIiIXZLfbeeKJJ3jvvfdITS2aP6IsRikYLjI5OZmAgACSkpLw9/c3uxyRKxKdlM4Tkzay/tAJAB7sHM6I3o1w2PW3gUhZkJGRQUREBOHh4Xh5eZldTpG70M97qZ/f+u0nUsyqBngz+f+u4v+urQPA139FMOiLVRxJLP4xCERESgKFERETeNisvHxTY764py3+XnY2RibSZ+xyluyOM7s0EZFipzAiYqIbm4Yy56kuNK8eQGJaNg98s5bRv+8ix+kyuzQRkWKjMCJisrAgH6YP7cQ9V7mHWx6/ZD9DvlxNXHLRzpIpIlJSKIyIlACedhtv9W/G2Lta4+uwsTriODeNXcHK/QlmlyYiUuQURkRKkJtbVuN/T15Do9AKJJzM5O4vV/PJor24XCX+oTcR+YdS8LBqoSiMn1NhRKSEqVvZjxmPd2Zg2xq4DHh/4R7u/3Ytx1OzzC5NRC6Bh4cHAGlpaSZXUjxO/5ynf+7LoXFGREqwqeuiePW3bWRku6ga4MW4wa1pWyvI7LJE5CKio6NJTEykSpUq+Pj4YLFYzC6p0BmGQVpaGnFxcQQGBlK1atVztrnUz2+FEZESbldMMo//uIEDCanYrRZG9G7EQ9eEl8lfbiJlhWEYxMTEkJiYaHYpRS4wMJDQ0NB8fycpjIiUISczcxjxyxZmb3EPH39jkxBGD2xJgPflN4uKSNFzOp1kZ2ebXUaR8fDwwGY7/6SfCiMiZYxhGPz49yHemr2TLKeLsCBvPh3cluY1AswuTUQkX0U6HPz48eOpXbs2Xl5edOzYkTVr1lxw+48++oiGDRvi7e1NWFgYzz77LBkZGkNBpCAsFgv3dKrN9KGdqFHRm6jj6dz22Up+/PtQuem1LyJlU4HDyJQpUxg+fDivvfYaGzZsoGXLlvTs2ZO4uPyHsZ40aRIjRozgtddeY+fOnXz11VdMmTKFl19++YqLFymPWtQIZM6TXbihSQhZThf/nrmNpydv4mRmjtmliYhclgLfpunYsSPt27dn3LhxALhcLsLCwnjyyScZMWLEOds/8cQT7Ny5k0WLFuWue+6551i9ejUrVqy4pHPqNo3IuQzD4MvlEbwzfxdOl0Gdyr58NqQtDUMrmF2aiAhQRLdpsrKyWL9+PT169DhzAKuVHj16sGrVqnz3ufrqq1m/fn3urZwDBw4wd+5cbrrppvOeJzMzk+Tk5DwvEcnLYrHwyLV1mPJ/VxHq78WB+FRuGb+CBdtjzC5NRKRAChRGEhIScDqdhISE5FkfEhJCTEz+vwAHDx7Mm2++yTXXXIOHhwd169bluuuuu+BtmlGjRhEQEJD7CgsLK0iZIuVKu9pBzHnqGrrUDyYj28WzUzZxIP6k2WWJiFyyIh+BdenSpbz99tt8+umnbNiwgV9//ZU5c+bw1ltvnXefkSNHkpSUlPuKiooq6jJFSrVKfp58+0AHOoYHkZrlZNikjWRkO80uS0TkkhQojAQHB2Oz2YiNjc2zPjY2ltDQ0Hz3eeWVV7jnnnt4+OGHad68OQMGDODtt99m1KhRuFz5T5Pu6emJv79/npeIXJjNamHsXa2p5OtgZ3Qyb83eYXZJIiKXpEBhxOFw0LZt2zydUV0uF4sWLaJTp0757pOWlobVmvc0pwdI0eOIIoUrxN+LDwa1AuCn1ZHM3nLU3IJERC5BgW/TDB8+nIkTJ/Ldd9+xc+dOhg4dSmpqKg888AAA9957LyNHjszdvl+/fnz22WdMnjyZiIgIFi5cyCuvvEK/fv0uOGqbiFyerg0q8/h1dQEY8ctWDiakmlyRiMiF2Qu6w6BBg4iPj+fVV18lJiaGVq1aMX/+/NxOrZGRkXlaQv79739jsVj497//zZEjR6hcuTL9+vXjv//9b+H9FCKSx/AbGrD24HHWHjzBEz9v4JehV+NpV/gXkZJJw8GLlFHRSenc9PFyTqRlc1+nWrxxSzOzSxKRcqZIh4MXkZKvaoB3bv+R71YdYu7WaHMLEhE5D4URkTKsW8MqPNq1DgAvTd9C5LE0kysSETmXwohIGff8jQ1pW6siKZk5PPHzBjJzNP6IiJQsCiMiZZyHzcrYu1oT6OPBlsNJvDNvl9kliYjkoTAiUg5UD/Tm/YEtAfjmr4P8rvlrRKQEURgRKSe6Nw7hkS7hALwwbTNRx9V/RERKBoURkXLkxV6NaBUWSHJGDk/8vJGsnPynZBARKU4KIyLliIfNyid3tcbfy87mqETem6/+IyJiPoURkXImLMiH0af6j3y5IoI/dsReZA8RkaKlMCJSDvVsGsqDnd39R56btpkjiekmVyQi5ZnCiEg5NaJ3I1rWCCApPZsnJm0g26n+IyJiDoURkXLKYbcybnAbKnjZ2RiZyJjfd5tdkoiUUwojIuVYWJAPo29vAcDnfx5g8S71HxGR4qcwIlLO9WpWlfs61QLguambiU5S/xERKV4KIyLCy30a06y6PyfSsnly0kZy1H9ERIqRwoiI4Gm3Me6uNvh52ll36ATvL9xjdkkiUo4ojIgIALWDfXnntuYAfLZ0P0t3x5lckYiUFwojIpKrb4tqDOlYE4DhUzcTk5RhckUiUh4ojIhIHq/0bUKTqv4cT83iqcnqPyIiRc9udgEiUrJ4edgYP6QNfccuZ03EcT5etJfnbmxodllSmjhzIDsNstMhO9X9NSutgOtOra/cCLq9DD5BZv9UUoQshmEYZhdxMcnJyQQEBJCUlIS/v7/Z5YiUC79tOsLTkzdhscAPD3bkmvrBZpckhcEwTn34p18kCKSd+j79POtSz7z3z3XOrMKt2bcK9PsIGvUp3ONKkbvUz2+FERE5r5G/buHnNVEE+zmY+1QXqvh7mV2SXI604zD9AYha6w4PFNevfQt4+IDDBzy8wcP31Nd81jl83OtPvxw+7v3/+ggSTj3d1fwO6P2uWklKEYUREbliGdlO+o//i10xKXSqU4kfH+6IzWoxuywpCJcLfh4Eexec+57N81QQOB0Szg4H+a07HRYuECLO3tfuBZYr/PeSnQFL34aVn4DhUitJKaMwIiKFYl/cSW4et4K0LCfP9KjPMz0amF2SFMSy0bDkP+5gMGQ6BDdwBwi7N9hKUbfBw+tg5lC1kpQyl/r5radpROSC6lXx478DmgHw8aK9rNyXYHJFcsn2LYIl/3Uv9/kAwrtAhRDwrFC6gghAjXbw6HLo/DRYrLB1KozvCLvmmF2ZFAKFERG5qAGta3BHuxoYBjw9ZRPxKZlmlyQXkxgFvzwMGND2fmg9xOyKrpyHF9zwJjy00N3CkxoHkwfDL4+4+8VIqaUwIiKX5I2bm9EgxI/4lEyenbIJp6vE3+Etv3IyYdp9kH4cqraCXu+aXVHhUitJmaMwIiKXxNthY/zgNnh72FixL4FPl+wzuyQ5n/kj4ch68K4Id3zvblEoa9RKUqYojIjIJasfUoG3+rv7j3z4xx7+PnDM5IrkHJsnw7qvAAvc+iVUrGV2RUVLrSRlgsKIiBTI7W1rcFubGrgMeHryRo6dVP+REiN2O8x6xr3c9SWo38PUcorNeVtJHlYrSSmhMCIiBfZW/6bUq+JHbHImz07djEv9R8yXkQRT7oacdKjbHbq+aHZFxS+3leSZU60k09RKUkoojIhIgfk47Iwf3AYvDyt/7onns2X7zS6pfDMMmPk4HD8AAWFw25dgtZldlTk8vOCGN061kjRUK0kpoTAiIpelYWgF3rzZ3X/kg4V7WHtQv+hNs3Is7JoNNgfc8Z0GAoNTrSR/nttKsnO22ZVJPhRGROSyDWxXgwGtq+N0GTw5aSPHUwt5gjS5uIjl8Mcb7uXe70L1tubWU5LktpL8caaVZMoQtZKUQAojInLZLBYL/+nfjDqVfYlJzuC5qZvUf6Q4JUe7J8AznNDyLmj7gNkVlUw12rpbSa55Vq0kJZTCiIhcEV9Pd/8RT7uVJbvjmbj8gNkllQ/ObJh2P6TGQ0gz93DvVzopXVnm4QU9XlcrSQmlMCIiV6xxVX9e69cUgPd+3836Q/rlXuQWvgpRf4Onv3tgM4eP2RWVDmolKZEURkSkUNzVIYx+Lavl9h85of4jRWfbr/D3p+7lAROgUl1z6yltztdKMv0htZKYRGFERAqFxWLh7QHNCA/25WhSBi9M34xhqP9IoYvfDf970r3c+Rlo1MfUckq1f7aSbJuuVhKTKIyISKGp4OXBuMGtcdit/LEzjq9WRJhdUtmSeRKm3ANZJ6F2F7j+FbMrKv3Ul6REUBgRkULVtFoAr/RtAsA783axMfKEyRWVEYbhbhFJ2A0VqsLtX4PNbnZVZYf6kphKYURECt3dHWvSp3lVclwGT0zaSFJattkllX6rP4ftv4LVDgO/A78qZldU9qiVxDQKIyJS6CwWC6Nua06tSj4cSUxX/5ErFfk3LPiXe/nG/0LNjubWU9aplaTYKYyISJHw9/Jg3F1tcNisLNgRyzd/HTS7pNLpZJx7PBFXDjS9FTo+anZF5cPpVpKH/4DKjdRKUsQURkSkyDSvEcC/+jQGYNS8nWyOSjS3oNLGmQPTH4SUaPdtg5s/0cBmxa16W/i/ZWolKWIKIyJSpO7tVIteTUPJdho88fMGktLVf+SSLX4LDi4Hhx8M+gE8/cyuqHw6XyuJxiUpNAojIlKkLBYL797egrAgb6KOpzPily3qP3Ipds6Gvz5yL9/8CVRuaGo5wrmtJNumw/gOsHOW2ZWVegojIlLkArzd/Uc8bBbmbYvh+1WHzC6pZDu2H2YOdS9f9Tg0u9XceuSMc1pJ4mHK3WoluUIKIyJSLFqGBTKit7v/yH/n7GTbkSSTKyqhstJg6r2QmQxhV8ENb5pdkeRHrSSFSmFERIrNg51rc0OTELKcLoZN2kBKhvqP5GEYMPtZiN0GvpVh4Ldg8zC7Kjmf87aSPAipCWZXV6oojIhIsbFYLIy+vQXVA705dCyNEb9uVf+Rs63/BrZMBosNbv8G/KuaXZFcinNaSX5xt5Jsne4OmHJRCiMiUqwCfRx8Mrg1dquFOVui+XF1pNkllQxH1sO8l9zLPV6D8C7m1iMFc3YrSZUmkHYMfnkIJg+G5KNmV1fiKYyISLFrU7MiL/VqBMBbs3ew/Wg57z+Segym3gfOLGjUF65+yuyK5HKdbiW5biRYPWD3XBh/Faz/Tq0kF6AwIiKmeLhLON0bVSErx8WL07fgcpXTX9QuJ/z6MCRFQVBd6P+pBjYr7ewOuG6Ee0j5am0gMwlmPQXf3wInDppdXYmkMCIiprBYLLx3ewv8PO1sP5rM79tjzC7JHMvehf2Lwe7tHtjMK8DsiqSwhDRx37a58T9g94KIZfBpJ/j7M3cIlVwKIyJimkp+njx4TTgAHyzcg7O8tY7sWeAOIwD9PoaQpubWI4XPaoOrn4ShK6HWNZCdBvNHwNe9IH632dWVGAojImKqh64JJ8Dbg71xJ5m1uRx19DtxCH59xL3c7iFoOcjceqRoVaoL982Cvh+CowIcXgMTroE/R4NTj7hfVhgZP348tWvXxsvLi44dO7JmzZoLbp+YmMiwYcOoWrUqnp6eNGjQgLlz515WwSJStgR4e/B/19YB4MM/9pDtdJlcUTHIznAPbJaR6O7w2GuU2RVJcbBaod2DMOxvqH+ju8Py4v/AxG4Qvdns6kxV4DAyZcoUhg8fzmuvvcaGDRto2bIlPXv2JC4uLt/ts7KyuOGGGzh48CDTp09n9+7dTJw4kerVq19x8SJSNjzQuTbBfg4OHUvjl/WHzS6n6M1/CaI3gXcQDPwO7J5mVyTFKaAGDJ4KA74A74oQsxW+6AZ/vOEOquWQxSjgiEMdO3akffv2jBs3DgCXy0VYWBhPPvkkI0aMOGf7CRMmMHr0aHbt2oWHx+WNJJicnExAQABJSUn4+/tf1jFEpGT7akUEb83eQbUAL5a8cB2edpvZJRWNjT/Bb48DFrj7F6jX3eyKxEwn42HeC7B9hvv7SvXhlnFQ8ypz6yokl/r5XaCWkaysLNavX0+PHj3OHMBqpUePHqxatSrfff73v//RqVMnhg0bRkhICM2aNePtt9/G6Tx/T+LMzEySk5PzvESkbBvSsSah/l4cTcpg8poos8spGtFbYM5w93K3lxVEBPxODfs/6CfwC4Fje92dW+e+CJknza6u2BQojCQkJOB0OgkJCcmzPiQkhJiY/B/LO3DgANOnT8fpdDJ37lxeeeUV3n//ff7zn/+c9zyjRo0iICAg9xUWFlaQMkWkFPLysPHE9fUAGLdkH+lZZezRx/REmHoP5GS4+wt0ed7siqQkadwXhq2GVncDBqz53P0Y8P7FZldWLIr8aRqXy0WVKlX44osvaNu2LYMGDeJf//oXEyZMOO8+I0eOJCkpKfcVFVVG/0oSkTzuaBdGWJA38SmZfL/qoNnlFB6XC2Y85h7wKrAmDPjc3ZlR5GzeFaH/eLhnBgTUhKRI+GEAzBwG6SfMrq5IFej/huDgYGw2G7GxsXnWx8bGEhoamu8+VatWpUGDBthsZ+7/Nm7cmJiYGLKysvLdx9PTE39//zwvESn7HHYrT3dvAMCEZfvLzqy+f30Ie+aBzRPu+B58gsyuSEqyutfD46ugw6OABTb9COM7ws7ZZldWZAoURhwOB23btmXRokW561wuF4sWLaJTp0757tO5c2f27duHy3Xmcb09e/ZQtWpVHA7HZZYtImVV/1bVqFPZlxNp2Xzz10Gzy7lyB5a6H98EuGk0VGttajlSSnj6wU3vwYPz3Z1aT8bClCEw7X53p9cypsDthMOHD2fixIl899137Ny5k6FDh5KamsoDDzwAwL333svIkSNztx86dCjHjx/n6aefZs+ePcyZM4e3336bYcOGFd5PISJlht1m5dke7taRiX8eIDEt/xbUUiHpCEx/CAyXuy9Am3vNrkhKm5pXwWMr4JrhYLG5n7oZ3wG2TC1TE+8VOIwMGjSIMWPG8Oqrr9KqVSs2bdrE/Pnzczu1RkZGEh0dnbt9WFgYv//+O2vXrqVFixY89dRTPP300/k+BiwiAtCneVUahVYgJTOHicsPmF3O5cnJgmn3QVoChDaHPmM0AZ5cHg8v6PEaPLIYQppD+nH36L2TBkFS2RiXp8DjjJhB44yIlD8Ld8TyyPfr8HHY+PPFbgT7lbKBwea+6H4iwivAPaV8ULjZFUlZ4MyGvz6CZe+5R3B1VIAb34Q295fITtFFMs6IiEhx6dG4Ci1rBJCW5eSzpfvNLqdgtk53BxFwPzmjICKFxeYB174Ajy6HGu0hKwVmPwvf3wzHS2krIgojIlJCWSwWnruxIQA//H2ImKRSMkx23E7435Pu5S7PQcPe5tYjZVOVRvDg79DrHfDwgYPL4dOrYeU4cJW+MXoURkSkxOpSP5gO4UFk5bj4ZPFes8u5uIxkmHK3e5r48K7Q7V9mVyRlmdUGVw2FoSvd/95y0mHBv+CrG9yhuBRRGBGREstisfD8qdaRqeuiiDqeZnJFF2AY8NswOLYP/KvD7V+7PyxEilpQONz7G/QbC57+cGQ9TOgCS991d6QuBRRGRKRE6xAeRJf6wWQ7DcYuKsGtI6vGw87/gdXDPROvb7DZFUl5YrFA2/vcQ8o36A2ubFj6NnxxHRzZYHZ1F6UwIiIl3um+I79sOMz++BI4edihlbDwVfdyr1EQ1t7ceqT88q8Gd/0Mt30FPpUgbjt82R0WvALZ6WZXd14KIyJS4rUKC6RH4xBcBnz0RwlrHUmJcY+KaTih+UBo/7DZFUl5Z7FA89th2Bpodrt70L2VY+GzznDwL7Ory5fCiIiUCs/d6B6Vddbmo+yMTja5mlOc2TDtAfdQ3ZUbQ7+PNbCZlBy+wXD7V3DXZKhQFY7vh29vgjnPQWaK2dXloTAiIqVC46r+9G1RFYAPF+4xuZpTFr0BkSvdA08N+gEcvmZXJHKuhr3h8b+hzX3u79d+CZ92gn1/mFvXWRRGRKTUeKZHA6wWWLAjls1RieYWs+M3WPmJe7n/eAiub249IhfiHQg3j4V7/weBtSApCn68DWYMhbTjZlenMCIipUe9Kn4MaF0DgPfNbB1J2AszT0322ekJaHKLebWIFESdrvD4KrjqccACmyfB+I7ucG0ihRERKVWe7l4fu9XCn3viWRNhwl90WWkw5R73MNy1OkOPN4q/BpEr4fB1P/X10EIIbgipcTD1Xtj4k2klKYyISKlSs5IPd7QPA2DMgt0U+1yfy96F+J3gF+Ie2MxmL97zixSWsPbw2HL3XDfBDaDpANNKURgRkVLnyevr4bBbWRNxnBX7EorvxDHbzvQT6fshVAgtvnOLFAW7J1z/b3hsBTh8TCtDYURESp2qAd7c3bEWAGMW7Cme1hGXE2Y97R5PpFFfaNSn6M8pUlzsnqaeXmFEREqlodfVxdvDxuaoRBbtjCv6E677Go6scz/Ge9Pooj+fSDmiMCIipVLlCp7c37k24H6yxuUqwtaR5KPwx6mOqj1ecw+5LSKFRmFEREqtR6+tQwVPOzujk5m7LbroTjTvRffTM9XbQbsHi+48IuWUwoiIlFqBPg4e6hIOwAcL95DjdBX+SXbNhZ2zwGp3D/dutRX+OUTKOYURESnVHromnEAfDw7Ep/LbpqOFe/DMFJj7vHu50xMQ2qxwjy8igMKIiJRyFbw8eKxrXQA+WrSH7MJsHVn8X0g+4h4+u+tLhXdcEclDYURESr17O9Ui2M+TqOPpTF0XVTgHPbIB1nzuXu77oaljMIiUdQojIlLq+TjsDOvmbh35ZNE+MrKdV3ZAZ86pMUVc0Hwg1OteCFWKyPkojIhImXBXh5pUDfAiJjmDSasjr+xgqydAzBbwCoSeowqlPhE5P4URESkTvDxsPHl9fQA+XbqPtKycyztQYiQs+a97+ca3wK9yIVUoIuejMCIiZcbAdjWoGeRDwsksvlt5qOAHMAyY8zxkp7ln5G19T+EXKSLnUBgRkTLDw2blmR7u1pEJy/aTnJFdsAPsmAl7fwebA/p+BBZLodcoIudSGBGRMuWWVtWpW9mXpPRsvloecek7pifCvFOP714zHCo3KJL6RORcCiMiUqbYrBaG39AQgK9WRHAiNevSdlz0BpyMhUr1ocvwIqxQRP5JYUREypzezUJpUtWfk5k5fP7ngYvvELnaPSsvQL+PTJ9OXaS8URgRkTLHarXw3I3u2yzfrowgLiXj/BvnZLnHFAFofTfUvqYYKhSRsymMiEiZdH2jKrQKCyQj28WnS/aff8OVYyF+J/hUghveKr4CRSSXwoiIlEkWi4Xnb3T3HZm0OpKjiennbnRsPyx7z73ccxT4BBVjhSJymsKIiJRZnetV4qo6QWQ5XXyyeF/eNw0DZj8Lzkyo0w1a3GFOkSKiMCIiZZfFYuG5U60j09ZFcehY6pk3t0yBiGVg94K+H2hMERETKYyISJnWvnYQXRtUJsdl8PEfe90rU4/B7y+7l7u+CEF1zCtQRBRGRKTsO/1kzYxNR9gbmwILX4G0Y1ClCVz9lMnViYjCiIiUeS1qBNKzaYh76pn/TYFNPwEW6Pcx2DzMLk+k3FMYEZFyYfgNDfG0ZHFz1Gj3inYPQlgHc4sSEUBhRETKiYahFfi42iLqWGNItFWCHq+ZXZKInKIwIiLlQ9wuep6YDMDI9LvZEOcyuSCRkiHTmcnamLWm1qAwIiJln8sFs57G4spmh9/VzHN14IMFe8yuSsR0W+K3cMesO3h04aPsT7zASMVFTGFERMq+Dd9B1N/g4UvgwI/xsFlZsS+BVfuPmV2ZiCkycjIYs3YM98y7hwNJB/B3+JOQnmBaPQojIlK2pcTCwlP9Q67/F9VqNeDO9jUB+GDhbgzDMLE4keK3IXYDt8+6ne92fIfLcNGvTj9m3jKTjlU7mlaT3bQzi4gUh/kjIDMJqraEDo8C8MT19Zi6Loq1B0+wbE881zWsYnKRIkUvLTuNjzd8zM+7fsbAoIp3FV7t9Cpdw7qaXZpaRkSkDNu7ELb/ChYr9BsLNvffXyH+XtxzVS0A3l+wR60jUuatiV7Drf+7lUm7JmFgMKDeAGb0n1EiggioZUREyqqsVJg93L3ccShUa5Xn7aHX1WXSmki2HkliwY5YejYNLf4aRYpYanYqH6z7gKl7pgJQ1bcqr3d6naurX21yZXmpZUREyqaloyApEgLCoNvL57xdyc+TBzuHA/DBgj24XGodkbLlryN/MeC3AblB5I4Gd/Drzb+WuCACahkRkbIoegus+tS9fNMY8PTLd7NHutThu1UH2R2bwuyt0dzcsloxFilSNJKzkhmzdgwz9s0AoLpfdd64+g1TO6hejFpGRKRscTlh1lNgOKHJLdCw13k3DfDx4P+6uGfs/WjhHnKcGghNSrdlUcsYMHMAM/bNwIKFIY2H8OvNv5boIAIKIyJS1qyZCEc3gqc/9Hr3ops/cE04Qb4ODiSk8uvGI8VQoEjhS8pMYuTykTyx+Ani0uOo5V+Lb3t9y4gOI/Dx8DG7vItSGBGRsiPpMCx+y73c4zXwr3rRXfw87QztWheAj//YS1aOWkekdFl0aBG3zLyF2QdmY7VYub/p/UzvN502IW3MLu2SKYyISNkx90XIOgk1OkDbBy95t7uvqkWVCp4cSUxnyrqoIixQpPAczzjO88ue55mlz3As4xh1AurwQ+8feK7dc3jZvcwur0AURkSkbNg5C3bPAasd+n0M1kv/9ebtsPHE9fUAGLd4LxnZzqKqUuSKGYbB/Ij59J/Zn98P/o7NYuOR5o8wtd9UWlRuYXZ5l0VhRERKv4xkd6sIwNVPQUiTAh9iUPswqgd6E5ucyY9/HyrkAkUKR0J6As8ufZYX/nyBE5knqF+xPj/1+Ymn2jyFp83T7PIum8KIiJR+i9+ClKNQMRy6vnhZh/C023i6e30APl26n9TMnMKsUOSKGIbBrP2zuGXmLSyKXITdYufxlo8zpc8UmlZqanZ5V0xhRERKt8Pr3E/QAPT9EDy8L/tQt7apTu1KPhxPzeLblQcLpz6RKxSbGsuTi5/k5RUvk5yVTOOgxkzuO5mhrYbiYfMwu7xCcVlhZPz48dSuXRsvLy86duzImjVrLmm/yZMnY7FY6N+//+WcVkQkL2c2zHoaMKDFIKjb7YoOZ7dZefaGBgB8vmw/SenZhVCkyOUxDIMZe2cw4LcBLDu8DA+rB0+1foqf+vxEw6CGZpdXqAocRqZMmcLw4cN57bXX2LBhAy1btqRnz57ExcVdcL+DBw/y/PPP06VLl8suVkQkj78/hdht4F0Rer5dKIfs26IaDUL8SM7I4avlBwrlmCIFFX0ymsf+eIxXV75KSnYKzYObM7XvVB5p8Qge1rLRGnK2AoeRDz74gEceeYQHHniAJk2aMGHCBHx8fPj666/Pu4/T6WTIkCG88cYb1KlT54oKFhEB4MRBWDLKvXzjf8A3uFAOa7NaGH6D+6/Or1ZEcOxkZqEcV+RSuAwXU3dPpf9v/Vl5dCWeNk+ea/scP/T+gXoV65ldXpEpUBjJyspi/fr19OjR48wBrFZ69OjBqlWrzrvfm2++SZUqVXjooYcu6TyZmZkkJyfneYmI5DIMmPMc5KRD7S7QakihHr5n0xCaVfcnNcvJ53+qdUSKR1RKFI8seIS3/n6LtJw0WldpzfR+07m/2f3YrDazyytSBQojCQkJOJ1OQkJC8qwPCQkhJiYm331WrFjBV199xcSJEy/5PKNGjSIgICD3FRYWVpAyRaSs2/YL7PsDbA53p1WLpVAPb7FYeO5Gd+vIdysPEpecUajHFzmby3Dx086fuO1/t7EmZg3edm9GdBjBt72+pXZAbbPLKxZF+jRNSkoK99xzDxMnTiQ4+NKbUEeOHElSUlLuKypKIyKKyCnpJ2D+CPdyl+chuH6RnOa6BpVpW6simTkuxi/ZVyTnEDmYdJD759/PO2veIT0nnfah7fml3y8MaTwEq6X8PPBqL8jGwcHB2Gw2YmNj86yPjY0lNDT0nO3379/PwYMH6devX+46l8s974Pdbmf37t3UrVv3nP08PT3x9Cy9g7eISBFa+BqkxkNwA7jmmSI7jbt1pAGDJ65m0ppIHrm2DjUqlvwJx6R0cLqc/LDjB8ZtGkemMxMfuw/PtXuO2xvcXq5CyGkF+okdDgdt27Zl0aJFuetcLheLFi2iU6dO52zfqFEjtm7dyqZNm3JfN998M926dWPTpk26/SIiBXNoJWz4zr3c72OwF+0fLVfXDebqupXIdhp8skitI1I49ifu55559/D++vfJdGbSqWonZtwygzsa3lEugwgUsGUEYPjw4dx33320a9eODh068NFHH5GamsoDDzwAwL333kv16tUZNWoUXl5eNGvWLM/+gYGBAOesFxG5oJxMmPWMe7nNvVDr6mI57XM3NmTlZyuZvuEwj11Xl/Bg32I5r5Q92a5svt32LZ9t/oxsVzZ+Hn680P4FBtQbgKWQ+z2VNgUOI4MGDSI+Pp5XX32VmJgYWrVqxfz583M7tUZGRmItwARVIiKX5K+PIWE3+FaGG94sttO2rVWR6xtVYfGuOD7+Yw8f3dm62M4tZcfu47t55a9X2Hl8JwBdqnfh1U6vEup7bheH8shiGIZhdhEXk5ycTEBAAElJSfj7+5tdjogUt4R98NnV4MyE276C5rcX6+m3HUmi7ycrsFjg92eupUFIhWI9v5Re2c5sJm6dyMQtE8kxcvB3+DOiwwj61ulbLlpDLvXzW00YIlKyGQbMfsYdROp2h2a3FXsJzaoH0LtZKIYBHyzYU+znl9Jp+7HtDJoziM82f0aOkcP1Ydcz85aZ9Kvbr1wEkYIo8G0aEZFitflnOLgc7N7Q94NCH1PkUj17QwPmb49h/vYYth5OonmNAFPqkJIv05nJhM0T+GbbNzgNJxU9K/Jyx5fpWbunQsh5qGVEREqu1AT4/WX38nUjoGJt00ppEFKB/q2qA/DBwt2m1SEl25b4Ldwx6w6+3PolTsNJz9o9mdl/Jr3CeymIXIDCiIiUXL//yz3IWUgz6DTM7Gp4unt9bFYLS3bHs/7QcbPLkRLEZbj4Zts33DvvXg4kHSDIK4gPr/uQMV3HEOQVZHZ5JZ7CiIiUTPuXwJbJgAX6jQWb+TOV1g72ZWDbGgCM/n03paD/vxSDxIxEnlr8FB+s/wCn4eTGWjfy2y2/0aNWj4vvLIDCiIiURNnpMPtZ93KHR6BGW3PrOcuT3evjsFn5+8Bxlu2JN7scMdnm+M0MnD2QZYeX4bA6eOWqVxjTdQyBXoFml1aqKIyISMnz52g4EQEVqsH1r5hdTR7VA725t1MtAN6dvxuXS60j5ZFhGHy3/Tvun3c/Makx1KxQkx9v+pE7Gt6hviGXQWFEREqW2B3uAc4AbnoPvEre2ELDutWjgqedndHJ/G/zUbPLkWKWlJnEU4ufYsy6MeQYOdxY60am9J1C40qNzS6t1FIYEZGSw+VyjyniyoGGfaBxv4vuYoaKvg4eu849yeeYBbvJzHGaXJEUl83xmxk4ayBLDy/Fw+rBvzv+mzFdx+Dn8DO7tFJNYURESo7130DUanD4uVtFSrAHO4dTpYInh0+k89PfkWaXI0XMMAy+3/4998+7n+jUaMIqhPHjTT8yqNEg3ZYpBAojIlIypMTAH2+4l6//NwTUMLeei/B22HimRwMAPlm8l+SMbJMrkqKSlJnE00ueZvS60eQYOdxQ6wam9J1Ck0pNzC6tzFAYEZGSYd5LkJkE1VpDh/8zu5pLcke7GtQJ9uVEWjYT/zxgdjlSBLbGb+WOWXewJGoJHlYPRnYYyftd36eCQ/MTFSaFEREx357fYcdMsNig38dgtZld0SWx26y82KshAF8ujyAuJcPkiqSwGIbBDzt+4N7593I09Sg1/Grww00/MLjxYN2WKQIKIyJirsyTMOc59/JVQ6FqS3PrKaCeTUNpFRZIeraTsYv2ml2OFIKkzCSeWfIM7619jxyX+7bM1H5TaVqpqdmllVkKIyJirqWjICkKAmpCt5fNrqbALBYLI3o3AuDnNVEciD9pckVyJbYlbGPQ7EEsjlqM3WrXbZliojAiIuY5tAr+/tS93Od9cPiaW89luqpOJbo1rIzTZfD+gj1mlyOXwTAMftr5E/fMu4cjJ49Q3a86P/b+UbdlionCiIiY49h+mHwXGC5oPhAa3Gh2RVfkxV6NsFhgztZoNkclml2OFEBKVgrPLXuOd9a8Q44rhx41e7hvywTrtkxxURgRkeKXmgA/3uaekbd6W/dEeKVc46r+DGhdHYB35u3SJHqlxPZj27lj1h0sPLQQu9XOiA4j+OC6D/B3lLyRf8syhRERKV7Z6fDzXe65ZwJrwl2TweFjdlWFYvgNDXDYrKw6cIw/9yaYXY5cgGEYTNo5iXvm3sPhk4ep7ledH3r/wJDGQ3RbxgQKIyJSfFwumPEYHF4DXgEwZDr4VTG7qkJTo6JP7iR678zbpUn0SqjTt2VGrRlFtiub7jW7M7XfVJoFNzO7tHJLYUREis+i193jiVg9YNBPULmh2RUVOk2iV7LtOLYjz22Zl9q/xIfXfajbMiZTGBGR4rH2qzOz8d4yHsK7mFtPEdEkeiWTYRhM3jWZu+fezeGTh6nmW43ve33P3U3u1m2ZEkBhRESK3p4FMPd593K3f0HLQebWU8Q0iV7JcjLrJC/8+QL/Xf1fsl3ZdAvrxtR+U2leubnZpckpCiMiUrSiN8O0+92P8LYaAte+YHZFRe7sSfTGLdlHiibRM83OYzsZNHsQvx/8HbvFzgvtXuDjbh8T4BlgdmlyFoURESk6SYdh0iDIToXwrtD3IygnTeKnJ9E7npqlSfRMYBgGU3dP5e65dxOZEklV36p81/s77m16r27LlEAKIyJSNDKS4ac7ICUaKjeCO74Hu8PsqorN2ZPoTdQkesXqZNZJXvzzRd76+y2yXFlcF3Yd0/pNo0XlFmaXJuehMCIihc+ZDdPug7jt4BcCQ6aBd6DZVRU7TaJX/HYd38Wdc+5k/sH52C12nm/3PGO7jdVtmRJOYURECpdhwJzhsH8xePi4BzULrGl2VaY4exK9yWuiiEhINbmisuv0bZkhc4ZwKPkQob6hfNPrG+5rep9uy5QCCiMiUrhWfAAbvgeLFW7/Gqq3MbsiU52eRC/HZTBmwW6zyymTUrNTeWn5S7m3ZbrW6Mr0ftNpVaWV2aXJJVIYEZHCs3U6LHrTvdzrXWjY29x6SojcSfS2aBK9wrb7+G4GzR7EvIh52Cw2nmv7HGOv122Z0kZhREQKx6GVMHOoe7nTE9Dx/8ytpwQ5exK9d+drEr3CYBgG0/dMZ8hc922ZEJ8Qvu31Lfc3ux+rRR9tpY3+i4nIlUvYC5MHgzMLGveDG94yu6IS5/Qkeiv3H2O5JtG7IqnZqYxYPoI3Vr1BpjOTLtW76LZMKacwIiJXJjUBfrod0k9A9XYw4Auw6lfLP9Wo6MM9mkTviu0+vps7Z9/J3Ii52Cw2nm37LOO6jyPQK9Ds0uQK6DeGiFy+7HT4+U44cRACa7mfnHH4mF1ViXV6Er0d0cnM2qJJ9ArCMAx+2fMLQ+YO4WDyQar4VOGbXt/wYLMHdVumDNB/QRG5PC4X/Pp/cHgteAXCkOngV9nsqkq0oH9MopeV4zK5otIhLTuNl1e8zOurXifTmUnn6p2Z3m86rau0Nrs0KSQKIyJyef54FXb+D2wOuHMSVG5gdkWlwgOda1OlgidRx9OZtPqQ2eWUeHtP7OXOOXcy+8BsbBYbT7d5mk+7f0pFr4pmlyaFSGFERApuzURY+Yl7+ZZPoXZnc+spRXwc9txJ9MYu1iR652MYBjP2zmDwnMFEJEVQxbsKX/X8ioebP6zbMmWQ/ouKSMHsng/zXnQvd/s3tBhobj2lkCbRu7DTt2VeXfkqGc4MOlfrzLSbp9E2pK3ZpUkRURgRkUt3dCNMfwAMF7S+G6593uyKSiW7zcoLPd2T6H25IoL4lEyTKyo5Tg9iNvvAbKwWK0+1fopPe3xKkFeQ2aVJEVIYEZFLkxgFkwZBdhrUuQ76fgSa8+Oy9WoWSsuwQNKynHyyWJPoGYbBtD3TGDxncO7TMl/3/JpHWjyi2zLlgP4Li8jFZSTBTwPhZCxUaQJ3fA82D7OrKtUsFgsjT02iN2l1JAfL8SR6J7NO8tKfL/HmqjfJcmXlDmKm2zLlh8KIiFxYThZMuQfid4JfKAyeCl6a96MwaBI92Hlsp3tumYPuuWWGtx3OuO7j9LRMOaMwIiLnZxgw+1mIWAYevjB4CgSGmV1VmXJ6Er3ZW6LZcjjR7HKKjWEY/LzrZ4bMHUJkSiRVfavyba9veaDZA7otUw7pv7iInN+fY2DTj2CxwsBvoForsysqcxpX9WdAK/ckeu/MKx+T6KVkpfDcsud4e/XbZLuyuS7sOqb1m6a5ZcoxhRERyd/mKbDkP+7l3u9Bg57m1lOGPVuOJtHblrCNgbMGsvDQQuxWOy+2f5Gx3cYS4Klbf+WZwoiInOvgCvhtmHv56iehwyPm1lPGhQWdmUTv3fllcxI9wzD4cceP3DPvHo6cPEJ1v+p83+t77mlyDxY9lVXuKYyISF7xe2DyYHBlQ+ObocebZldULpyeRG/70bI3iV5SZhLPLHmGd9e+S44rhx41ezC131SaV25udmlSQiiMiMgZJ+Pgp9vcj/LWaA+3fgFW/ZooDkG+Dh7tWgcoW5PobYnfwh2z7mBx1GI8rB6M7DCSD677AH+Hv9mlSQmi3zIi4paVBj/fCYmRULE23DUZPLzNrqpcefCacCqXkUn0XIaL77Z/x33z7uNo6lHCKoTxw00/MLjxYN2WkXMojIgIuJzw6yNwZD14V4Qhv4BvsNlVlTvuSfTqA/DJ4n2czMwxuaLLk5iRyJOLn2TMujHkGDn0rN2TKX2n0LRSU7NLkxJKYUREYMErsGs22Bxw5yQIrmd2ReXWHe3CCA/25VgpnURvY9xGbp91O38e/hOH1cErV73C6GtHU8FRwezSpARTGBEp71Z/Dn+Pdy/3/wxqXW1uPeWcx1mT6E1cfqDUTKLnMlx8ufVLHpj/ALFpsdTyr8VPfX7ijoZ36LaMXJTCiEh5tmsuzB/hXu7+KjS/3dx6BIDepWwSveMZx3l80eN8vOFjnIaTm8JvYkrfKTQKamR2aVJKKIyIlFdHNsAvD4Hhgjb3wjXDza5ITrFYLIzoVTom0VsXs46B/xvIX0f+wtPmyeudXuedLu/g6+FrdmlSiiiMiJRHiZEwaRBkp0Hd66HPB6Cm9BKlU91KdG3gnkRvdAmcRM/pcvL55s95aMFDxKXHER4QzqQ+k7itwW26LSMFpjAiUt6kJ8JPAyE1Dqo0hYHfgc3D7KokHy+dmkRvzpZoth5OMrucXAnpCTz2x2OM2zQOl+Hi5ro3M7nPZBpUbGB2aVJKXVYYGT9+PLVr18bLy4uOHTuyZs2a8247ceJEunTpQsWKFalYsSI9evS44PYiUoRysmDqPRC/CypUhSFTwUuDT5VUTar50//UJHrvzt9lcjVuq6NXM3DWQP6O/htvuzdvdX6L/17zX3w8fMwuTUqxAoeRKVOmMHz4cF577TU2bNhAy5Yt6dmzJ3Fxcfluv3TpUu666y6WLFnCqlWrCAsL48Ybb+TIkSNXXLyIFIBhwKynIeJPcPjB4KkQUMPsquQihp+aRG/FvgSW7403rQ6ny8n4TeN5ZMEjJKQnUC+wHj/3+Zn+9fqbVpOUHRajgPNVd+zYkfbt2zNu3DgAXC4XYWFhPPnkk4wYMeKi+zudTipWrMi4ceO49957L+mcycnJBAQEkJSUhL+//ooTuSxL34Wlb4PF5h5dtcGNZlckl+jNWTv4+q8ImlbzZ9YT12C1Fm+fjPi0eF5a/hJrY9YCMKDeAEZ2HIm3XSP0yoVd6ud3gVpGsrKyWL9+PT169DhzAKuVHj16sGrVqks6RlpaGtnZ2QQFBRXk1CJyJTZPcQcRgD5jFERKmSeur4efSZPorTy6kttn3c7amLV42715+5q3ebPzmwoiUqgKFEYSEhJwOp2EhITkWR8SEkJMTMwlHeOll16iWrVqeQLNP2VmZpKcnJznJSKXKWI5/DbMvdz5aWj3oLn1SIEF+Tp49Fr3JHrvL9hTLJPo5bhyGLthLI8tfIzjGcdpULEBk/tOpl/dfkV+bil/ivVpmnfeeYfJkyczY8YMvLy8zrvdqFGjCAgIyH2FhYUVY5UiZUj8bpgyBFzZ0KQ/dH/d7IrkMj3UJZxgP08ij6fx85rIIj1XbGosDy94mIlbJ2JgMLDBQH666SfqBNQp0vNK+VWgMBIcHIzNZiM2NjbP+tjYWEJDQy+475gxY3jnnXdYsGABLVq0uOC2I0eOJCkpKfcVFRVVkDJFBOBkHPx0O2QkQVhHGDABrHqav7Q6exK9sYv2FtkkeiuOrGDgrIGsj12Pr4cv7137Hq92ehUv+/n/gBS5UgX6zeRwOGjbti2LFi3KXedyuVi0aBGdOnU6737vvfceb731FvPnz6ddu3YXPY+npyf+/v55XiJSAFlp7kHNEiMhqA7c+TN46B5/aTeofdFNopfjyuGj9R8x9I+hnMg8QeOgxkzpO4Xe4b0L9Twi+Snwn0nDhw9n4sSJfPfdd+zcuZOhQ4eSmprKAw88AMC9997LyJEjc7d/9913eeWVV/j666+pXbs2MTExxMTEcPLkycL7KUTkDJcTfn0Ejm4A7yAYMh18K5ldlRSCoppELyY1hgd/f5Cvtn0FwJ0N7+SHm36gln+tQjm+yMXYC7rDoEGDiI+P59VXXyUmJoZWrVoxf/783E6tkZGRWM9qCv7ss8/Iysri9tvzTsD12muv8frrr19Z9SJyrgX/hl2zweYJd/0MleqaXZEUotOT6G2OSuSTxXt585ZmV3S8ZVHL+Ndf/yIpMwk/Dz9ev/p1etbuWUjVilyaAo8zYgaNMyJyif6eAPNfci/f/jU0u83ceqRIrNp/jLsm/o3dauGP4V2pHVzwSemyXdl8vP5jvtvxHQBNKjVhzLVjCPPXAwNSeIpknBERKaGcOfDnaJh/auDBHq8riJRhZ0+i9/7CPQXe/8jJI9w/7/7cIHJ347v5ofcPCiJiGoURkdIudjt82R0W/wcwoP3D0PkZs6uSInZ6Er1Zm48WaBK9RZGLGDhrIFsStlDBUYGPun3ESx1ewmFzFGG1IhemMCJSWjmz3a0hn3eF6E3gFQgDvoCbxoCmcC/zCjqJXrYzm3fXvMszS54hJSuFFsEtmNZvGt1rdi/qUkUuqsAdWEWkBIjdDjOHQvRm9/cNekO/j6DChcf7kbJl+A0NmLMlOncSvS71K+e73aa4Tby9+m12Ht8JwH1N7uPpNk/jYfMoznJFzkthRKQ0cWbDio9g2bvuUVW9AuGm0dB8oFpDyqGwIB/uvqoWX/8VwTvzdtG5bnCeSfSOnjzKh+s/ZP7B+QAEeAbw387/pWtYV7NKFsmXwohIaRGzDX57/ExrSMOboO+Hag0p5564vh7T1kWx/Wgys7dGc3PLaqRmp/Ll1i/5fvv3ZLmysGBhQP0BPNn6SYK9g80uWeQcCiMiJZ0zG1Z8CMveU2uInCPI18H/XVuH9xfuYfTvO8nwXMmnm8dxLOMYAB1CO/BC+xdoFNTI5EpFzk9hRKQki9nm7hsSs8X9fcM+p1pDQi68n5QrD3UJ55sNf3DMfwZvrY4GoGaFmjzX7jm6hXXDotAqJZzCiEhJ9M/WEO+K0Hs0NL9drSGSx6HkQ7y/7n2yqyzBBuDy4qm2w7i/6RB1UJVSQ2FEpKSJ2QozH1driFxQUmYSn2/5nJ93/UyOKwebxYZH2tUkRF3HyRqt8GihICKlh8KISEnhzIblH8Cf74Erx90actMY90iqag2RU3JcOUzbM41PN31KYmYiANdUv4bn2z3P7igfHv9pA18uP8DdV9WicgVPc4sVuUQKIyIlQczWU31Dtrq/b9QX+nyg1hDJY/nh5YxZN4YDSQcAqBtQlxfav0Dn6p0BqBNg5E6iN27xXt64wkn0RIqLwoiImXJbQ0af6Rui1hD5h30n9jFm3Rj+OvoXABU9KzKs1TBua3AbduuZX+MWi4WXejVk8MTV/LQ6kgevCadWpYJPoidS3BRGRMwSvcU9bsjZrSF9PwS/KubWJSXG8YzjfLrpU6btmYbLcGG32rm78d080uIR/B35z4B6dd1gujaozLI98YxZsIdP7mpdzFWLFJzCiEhxy8mCFadbQ3LAO8g9bohaQ+SULGcWk3ZO4ostX5CSnQJA95rdGd52ODX9a150/5d6NeLPvfHM2nyUR6+tQ7PqAUVdssgVURgRKU7RW9xPysSeag1p3M/dN0StIQIYhsHiyMW8v/59olKiAGgc1JgX2r9A+9D2l3yc05Pozdh4hHfn7+KHhzoWVckihUJhRKQ45GTB8vdh+ZgzrSF9xkDTW9UaIgDsPLaT99a+x7rYdQAEewfzVOunuLnuzdistgIf7/Qkesv3XngSPZGSQGFEpKipNUQuID4tnrEbx/Lbvt8wMPC0eXJf0/t4qNlD+Hj4XPZxw4J8GHJVTb756yDvzj93Ej2RkkRhRKSo5GS5W0KWv6/WEDlHRk4G323/jq+2fUV6TjoAN4XfxDNtnqGqX9VCOccT3eoxbd1hth05M4meSEmkMCJSFKI3n2oN2eb+vvHNp1pD1FRe3hmGwdyIuXy04SNiUmMAaFG5BS+2f5GWlVsW6rkq+Xny6KlJ9N5fsJteTUNx2K2Feg6RwqAwIlKYcrLcT8ksfx8MJ/hUgj7vQ9MBZlcmJcCmuE2MXjuaLQnuof5DfUN5ts2z9A7vXWST2T3UJZzvVh3i0LE0Jq+N5N5OtYvkPCJXQmFEpLAc3eRuDYnb7v6+yS1w0/tqDRGOnjzKR+s/Yt7BeQB42715uPnD3NvkXrzsXkV6bh+HnWd61OffM7fxzrxdBPk66NtCt2ukZFEYEblSOZmnWkM+UGuI5JGancpXW7/i+x3fk+nMxIKF/vX682TrJ6nsU3whdVD7MBbsiOXPPfE8MWkjm6MSealXI+w23bKRksFiGIZhdhEXk5ycTEBAAElJSfj75z/qoIgpjm481Rqyw/190wHu4dx9g82tS0zldDn5bf9vfLLxExLSEwBoH9qeF9q9QONKjU2pKcfpYsyCPUxYth+Aq+oEMW5wG4L9NJmeFJ1L/fxWGBG5HDmZsOw9WPHhqdaQ4FOtIf3NrkxMtiZ6DaPXjWbX8V0A1KxQk+HthnN92PVF1i+kIOZtjeb5aZtJzXJSNcCLT4e0oXXNimaXJWWUwohIUTmyAX4bptYQySMyOZL3173P4qjFAFTwqMCjLR9lcKPBeNg8TK4ur31xKTz6w3r2x6fisFl57eYmDO5Qs0SEJSlbFEZECltOJix7F1Z8pNYQyZWclcznmz9n0q5J5LhysFlsDGwwkMdbPU5Fr5Lb4pCSkc3z0zbz+/ZYAO5oV4M3b2mGl0fBR3sVOR+FEZHCdGSDu29I/E73901vPdUaUsncusQ0Oa4cpu+ZzvhN40nMTASgc/XOvNDuBeoG1jW3uEtkGAYTlh1g9O+7cBnQvHoAn93dhhoVL3/kV5GzKYyIFIZ/tob4Vna3hjS5xezKxCROl5MVR1bw4foP2Z/k7gxaJ6AOL7R/gWuqX2NydZdn+d54nvp5IyfSsqno48HYu1prLhspFAojIlfqn60hzW6D3qPVGlIOGYbBloQtzI+Yz+8Hfyc+PR6AQM9AhrUaxu0NbsduLd0jJRw+kcbQHzew9UgSVgs837MhQ7vWVT8SuSIKIyKXIzMFds2FbdNh3x9guE61hnwATW42uzopRoZhsOfEHuYfnM+8iHkcOXkk9z1/hz+31r+VR1o8gr+j7PxOysh28srMbUxbfxiAnk1DGDOwJRW8SlYHXCk9FEZELlV2OuxdANt+gT2/Q07GmffUGlLuRCZHMjdiLvMj5ufehgH3qKndwrpxU/hNXF3t6hL3hExhMQyDSWsief1/28l2GtSp7MsX97SlXpUKZpcmpZDCiMiFOLPhwFJ3ANk5G7JSzrxXqR40u90dRCo3MK1EKT4xqTH8fvB35kbMZcexHbnrPaweXFvjWnqF96Jrja54271NrLJ4bYw8wdAfNxCTnIGvw8aYgS3p3bxwZhOW8kNhROSfXC6IXOkOINtnQvrxM+/514Bmt0Lz2yG0Beg+eZl3POM4Cw8uZG7EXDbEbchdb7PY6Fi1I73De9O9ZncqOMpvi0B8SiZP/ryBvw+4/195tGsdXrixoYaRl0umMCICYBhwdANs/QW2z4CUo2fe860MTfq7A0iNDmDVL9iyLiUrhcWRi5kXMY+/o//GaThz32tTpQ29w3tzQ60bqOSt23Kn5ThdvDt/FxOXRwDQuV4lxt7ZmkoaRl4ugcKIlG9xO2HrdHcryImIM+s9A6BJP/ctmNrXgq10PwEhF5eek86fh/9kXsQ8lh9eTpYrK/e9JpWacFP4TfSs3ZNQ31ATqyz5Zm0+yku/bCEty0m1AC8m3NOWFjUCzS5LSjiFESl/jke4w8e2X84M1Q7g4QMNe7sDSL0eYNdfdGVdtjOblUdXMu/gPJZELiEtJy33vToBdegd3ptetXtRO6C2eUWWQnti3cPIRySk4rBbeeuWpgxqX9PssqQEUxiR8iH5qPv2y7Zf4Mj6M+utHlD/BncAadgbHL7m1SjFwulysi52HfMi5vFH5B8kZSblvlfdrzq9aveid3hvGlRsoLEzrkByRjbPTd3Mwh3uYeTv6lCT129ugqddw8jLuRRGpOxKPQY7f3P3Azn0F3Dqn7DFCuHXup+EadwXvEvuvCBSOE4PRjYvYh6/H/ydhPSE3PeCvYPpWbsnvcN70yK4hQJIIXK5DD5duo/3F+7BMKBlWCCfDWlDtcDy87SRXBqFESlbMpJh1xx3C8iBJeDKOfNe2FXuFpCm/cGvimklSvE4PRjZvIh5zD84/5zByG6odQO9w3vTLqQdNqv+Wi9Ky/bE8/TkjSSmZVPJ18Eng1tzdV3NXi1nKIxI6Zed7h6EbNt02LMAnJln3gtt4X4KpumtEBhmXo1SbA4mHWTewXnMj5jPgaQDueu97d5cX/N6etfuXaYHIyupoo6n8egP69kRnYzVAiN6N+KRLnXUEiWAwoiUVs5s2L/EHUB2zYGsk2feq1TfHUCa3QbB9c2rUYpNTGoM8yPmMzdiLjuP78xd77A6cgcju7bGteVqMLKSKCPbyb9mbOOXDe5h5Ps0r8p7t7fA11NPq5V3l/r5rX8pYj6XEw6tdAeQHb9B+okz7wXUdA9G1uw2CG2uwcjKgeMZx1lwcAHzIuadMxjZVdWuonft3lxf8/pyPRhZSePlYWPMwBa0qhnIm7O2M2drNHtiU5hwT1vqVvYzuzwpBdQyIuYwDPfTL9tOD0YWfeY93yrQdIA7gIR1UAApB1KyUlgUuYh5EfNYHb06dzAyCxbahLThpvCb6FGrB0FeQSZXKhez/tAJHv9pPbHJmfh52nn/jpb0bKoxXMor3aaRkscw3ON/nB6MLPHQmfe8AqDxze7bMLWu0WBkZZhhGMSkxrDr+C52n9jNtoRtrDy6kmxXdu42TSs1pXd4bw1GVkrFpWTwxKSNrIlwDyM/rFtdht/QEJtVf1iUNwojUjKcjHcHkKjV7gASv+vMex4+0PAmdwCp2x3sDvPqlCKR7cxmf9J+dh/fnRs+dh/fTXJW8jnb1g2oS+/w3vQO701Nfw2kVdplO12MmruLr/9yj4DcpX4wY+9sTUVf/X9eniiMSPFKT3QHjbgd7qHY43a6l9OO5d3O5oB6N0Dz26BBLw1GVoYkZiTmho3dJ9zh40DSAXLOfgz7FLvFTp3AOjSs2JCGQQ3pVK0TDSpqhuSy6LdNRxjxy1bSs53UqOjNhLvb0qx6gNllSTFRGJGikZUK8bvPhI24ne4QknzkPDtYICgcqjRxj4TaqC94BxZnxVLIXIaLwymH87R07Dq+i9i02Hy3r+CoQKOgRrnBo2HFhtQNrIvDpr+Qy4tdMck8+sN6Dh1Lw9Nu5b8DmnN72xpmlyXFQGFErkxOJhzblzd0xO2EEwfJHfH0n/xrQJXGp15N3F+DG4DDpzgrl0KUnpPOvhP72HVil7vF4/hu9pzYk2eul7PV8KtBo6BGNAhqQKOKjWgY1JCqvlU15oSQlJ7Ns1M2sXhXHAB3X1WTV/s2xWHXbNllmcKIXBpnjntW27NvrcTtdAeRs6ZXz8O3ct7AUaUJVG7o7oQqpVZCeoK7teP4mVstB5MP4jJc52zrsDqoV7FebotHo6BGNKjYAD+HHuOU83O5DD5ZvI+PFrmHkW9dM5DPhrQlNMDL7NKkiCiMSF4uFyRFnbqtclbwiN+Td2TTs3kGQJVGeYNH5cbgV7l4a5dClePK4VDyoTPB41T/juMZx/PdPsgr6JzbLLUDamO36oknuTxLdsXx9OSNJGfkEOznYNzgNlxVp5LZZUkRUBgprwwDTsb+oyPpqX4dZ49meja796nQ0QQqNzoTPPyraYyPUu5k1kn2nNjDruO7cr/uS9xHZj4B1IKF2gG1aVTx1G2WUwEk2DtYt1mk0B06lsqjP6xnV0wKNquFkb0b8dA14fq3VsYojJQHacfP7UgatyPvCKZns3q4+3Dk9us49QqsDVbdty2tsp3ZHMs4RkJ6ArFpsew9sTe3xSMqJSrffbzt3mdaOoIa0qhiI+pVrKdh1aVYpWc5GfnrFmZuOgpAv5bVePe25vg41OpWVmg4+NIsKxVS4yH1GKQlQGrCma+pCZByFOJ2wcmY/Pe3WKFiOIQ0yXt7pVJd0CRipYLLcJGYmUhCegIJ6QkcSz+Wu5zn+4wEkjKTLnisEJ+Q3NsrjYLcnUrDKoRhtSiAirm8HTY+HNSKVmGB/GfOTmZtPsqeGPcw8uHBeuy/PFHLSFEzDPftkdQE95gbqfF5w0WedcfcX3PSL/34ATXzf4LFQx3CShrDMEjNTj0TKjLyDxnH0o9xLONY7pDol8JusVPJuxLB3sHUDaxLg4pnbrMEegUW3Q8lUkjWHjzO4z9tID4lkwpedj4a1IrujUPMLkuukG7TFBXDgMzk84SLs1oyUuPPhIvzdRC9EJsn+AaDTyX30yu+weATDL6VwC/E3bejckPw1GRhZstyZuUNFRnnb83IcGYU6NhBXkHukOEVTLB3cG7gyF0+td7f018tHVLqxSZn8PhPG1h/yH2r+anr6/F0jwYaRr4UUxi5VIYBGYn5BImE/G+TpB0DZ1bBz+PhcyZM+ASfFTSCz3zvW/nMOoefOo+axDAMMpwZpGan5rZUnA4Y+d02yW9o8wvx9fB1hwmvM8Hin0Ej2DuYil4V8bDqtpqUL1k5Lv47ZwffrXLPXVW3si81g3wI8vUk2M9BJT8HlXw98371c+Bpt5lcueSnSPuMjB8/ntGjRxMTE0PLli355JNP6NChw3m3nzZtGq+88goHDx6kfv36vPvuu9x0002Xc+rC9W1fiFwF+QxXfVEOv3zCxFnLp4OHb2X3sgb+KnSGYZDpzCQtJ430nHTSstPyLKfnpJOWk5bvcn7bnP2+cb6B3c7DbrW7Q8R5WjAqe1emknclKnlVwsdD/xZEzsdht/LGLc1oGRbIyF+3sj8+lf3xqRfdr4KnnUp+DoJ8HVTycweXIN8zgSXYzzP3/SAfB3abWhJLkgKHkSlTpjB8+HAmTJhAx44d+eijj+jZsye7d++mSpUq52y/cuVK7rrrLkaNGkXfvn2ZNGkS/fv3Z8OGDTRr1qxQfogrcjqIePr/I1ycbsGonM+6YPDQUweXymW4yHZlk559/nCQ33JusMhJy933n6EjvwG5CtM/b5OcEzS8KlHZpzL+Dn89kihSiG5tU4Or6waz7UgSx1OzSEjN5NjJLPfySffysdRMjqdmke00SMnMISUzh4PH8h8d+GwWCwR6e1DJz5NKvnmDSiU/T4J984Yafy8PrLpVVKQKfJumY8eOtG/fnnHjxgHgcrkICwvjySefZMSIEedsP2jQIFJTU5k9e3buuquuuopWrVoxYcKESzpnkd2mOXEIrHZ3uLB7Ft5xC5lhGBgYOA0nLsOF0+Ukx8gh25lNjiuHbNe5X/Nd58zO3e98255vmwsdN8+++WxXkI6Yl8vL5oW33RsfD5+8X+0++Hj44GM/s/5Slr3t3njZvLBZ1fQrUpIZhkFyRg7HTmZyLDWLYyczSTgVWo6dzCQhNYuEFHdoOZaaxYm0LAraOcFutVDR15EnuJy5VeQOLZX8HASfWufjsOmPk1OK5DZNVlYW69evZ+TIkbnrrFYrPXr0YNWqVfnus2rVKoYPH55nXc+ePZk5c+Z5z5OZmUlm5plOn8nJBbsnf6m+P7qMIyeP4DScGIb7w97AwOlyf+i7cOFyuc5Z7zScue/lfm+48rxy153nGOesN5zu4+HKDRynl4v6r//i5GnzzBMSTi97e3jnuz6/kODr4ZvnfYUGkfLLYrEQ4O1BgLcHdS5hcGiny+BEWlZuy8qxk1lngsypAON+z90Ck5KRQ47LID4lk/iUTCDlEmoCq8WC1eKuz3rqewunvlrAarWcdxuLxYLVevoYljzHc39/Zvmf+5/e3mK5+P7/3Gb4DQ2oU9mcKR0KFEYSEhJwOp2EhOR93CokJIRdu3blu09MTEy+28fEnGeMDGDUqFG88cYbBSntsvx+6He2xG8p8vMUJbvVjofV47xfT79y19vseFg88LB5YLfY8bB5nHc/u9We9zi2c98/51xnHfefNXjZvTSEuIiYyma1EOznSbCfJ3DxpxEzc5ycSM0m4WQmCSdPtbCcPCu4nPU14WQmGdkuDAOchoG7TbjEPyOS66Frwk07d4n8ZBg5cmSe1pTk5GTCwsIK/Ty31L2FjqEdsVqs2Cw2rBZr7stmcTeznf01v+3+uW1+3/9z24ttc6HtTn89/aGvpkARkaLjabcRGmC75Mn80rJyOJmZAwa4DHAZBi7DwMhddt9aOrMu/21choHL5e5K73KdvZ/7PYOztjnn2Ge2MQwD51nb/PMcZ29fvaJ5fSELFEaCg4Ox2WzExsbmWR8bG0toaGi++4SGhhZoewBPT088PYu+D8cdDe8o8nOIiEj54eOwazj7y1CgZ5scDgdt27Zl0aJFuetcLheLFi2iU6dO+e7TqVOnPNsDLFy48Lzbi4iISPlS4Pg2fPhw7rvvPtq1a0eHDh346KOPSE1N5YEHHgDg3nvvpXr16owaNQqAp59+mq5du/L+++/Tp08fJk+ezLp16/jiiy8K9ycRERGRUqnAYWTQoEHEx8fz6quvEhMTQ6tWrZg/f35uJ9XIyEisZ80Ae/XVVzNp0iT+/e9/8/LLL1O/fn1mzpxZMsYYEREREdNpOHgREREpEpf6+a3xcEVERMRUCiMiIiJiKoURERERMZXCiIiIiJhKYURERERMpTAiIiIiplIYEREREVMpjIiIiIipFEZERETEVKViasHTg8QmJyebXImIiIhcqtOf2xcb7L1UhJGUlBQAwsLCTK5ERERECiolJYWAgIDzvl8q5qZxuVwcPXqUChUqYLFYCu24ycnJhIWFERUVpTlvipCuc/HRtS4eus7FQ9e5eBTldTYMg5SUFKpVq5ZnEt1/KhUtI1arlRo1ahTZ8f39/fUPvRjoOhcfXevioetcPHSdi0dRXecLtYicpg6sIiIiYiqFERERETFVuQ4jnp6evPbaa3h6eppdSpmm61x8dK2Lh65z8dB1Lh4l4TqXig6sIiIiUnaV65YRERERMZ/CiIiIiJhKYURERERMpTAiIiIipirXYWT8+PHUrl0bLy8vOnbsyJo1a8wuqVT7888/6devH9WqVcNisTBz5sw87xuGwauvvkrVqlXx9vamR48e7N2715xiS7FRo0bRvn17KlSoQJUqVejfvz+7d+/Os01GRgbDhg2jUqVK+Pn5cdtttxEbG2tSxaXTZ599RosWLXIHgurUqRPz5s3LfV/XuGi88847WCwWnnnmmdx1utZX7vXXX8diseR5NWrUKPd9s69xuQ0jU6ZMYfjw4bz22mts2LCBli1b0rNnT+Li4swurdRKTU2lZcuWjB8/Pt/333vvPcaOHcuECRNYvXo1vr6+9OzZk4yMjGKutHRbtmwZw4YN4++//2bhwoVkZ2dz4403kpqamrvNs88+y6xZs5g2bRrLli3j6NGj3HrrrSZWXfrUqFGDd955h/Xr17Nu3Tquv/56brnlFrZv3w7oGheFtWvX8vnnn9OiRYs863WtC0fTpk2Jjo7Ofa1YsSL3PdOvsVFOdejQwRg2bFju906n06hWrZoxatQoE6sqOwBjxowZud+7XC4jNDTUGD16dO66xMREw9PT0/j5559NqLDsiIuLMwBj2bJlhmG4r6uHh4cxbdq03G127txpAMaqVavMKrNMqFixovHll1/qGheBlJQUo379+sbChQuNrl27Gk8//bRhGPr3XFhee+01o2XLlvm+VxKucblsGcnKymL9+vX06NEjd53VaqVHjx6sWrXKxMrKroiICGJiYvJc84CAADp27KhrfoWSkpIACAoKAmD9+vVkZ2fnudaNGjWiZs2autaXyel0MnnyZFJTU+nUqZOucREYNmwYffr0yXNNQf+eC9PevXupVq0aderUYciQIURGRgIl4xqXionyCltCQgJOp5OQkJA860NCQti1a5dJVZVtMTExAPle89PvScG5XC6eeeYZOnfuTLNmzQD3tXY4HAQGBubZVte64LZu3UqnTp3IyMjAz8+PGTNm0KRJEzZt2qRrXIgmT57Mhg0bWLt27Tnv6d9z4ejYsSPffvstDRs2JDo6mjfeeIMuXbqwbdu2EnGNy2UYESkrhg0bxrZt2/Lc+5XC07BhQzZt2kRSUhLTp0/nvvvuY9myZWaXVaZERUXx9NNPs3DhQry8vMwup8zq3bt37nKLFi3o2LEjtWrVYurUqXh7e5tYmVu5vE0THByMzWY7p6dwbGwsoaGhJlVVtp2+rrrmheeJJ55g9uzZLFmyhBo1auSuDw0NJSsri8TExDzb61oXnMPhoF69erRt25ZRo0bRsmVLPv74Y13jQrR+/Xri4uJo06YNdrsdu93OsmXLGDt2LHa7nZCQEF3rIhAYGEiDBg3Yt29fifj3XC7DiMPhoG3btixatCh3ncvlYtGiRXTq1MnEysqu8PBwQkND81zz5ORkVq9erWteQIZh8MQTTzBjxgwWL15MeHh4nvfbtm2Lh4dHnmu9e/duIiMjda2vkMvlIjMzU9e4EHXv3p2tW7eyadOm3Fe7du0YMmRI7rKudeE7efIk+/fvp2rVqiXj33OxdJMtgSZPnmx4enoa3377rbFjxw7j//7v/4zAwEAjJibG7NJKrZSUFGPjxo3Gxo0bDcD44IMPjI0bNxqHDh0yDMMw3nnnHSMwMND47bffjC1bthi33HKLER4ebqSnp5tceekydOhQIyAgwFi6dKkRHR2d+0pLS8vd5rHHHjNq1qxpLF682Fi3bp3RqVMno1OnTiZWXfqMGDHCWLZsmREREWFs2bLFGDFihGGxWIwFCxYYhqFrXJTOfprGMHStC8Nzzz1nLF261IiIiDD++usvo0ePHkZwcLARFxdnGIb517jchhHDMIxPPvnEqFmzpuFwOIwOHToYf//9t9kllWpLliwxgHNe9913n2EY7sd7X3nlFSMkJMTw9PQ0unfvbuzevdvcokuh/K4xYHzzzTe526SnpxuPP/64UbFiRcPHx8cYMGCAER0dbV7RpdCDDz5o1KpVy3A4HEblypWN7t275wYRw9A1Lkr/DCO61ldu0KBBRtWqVQ2Hw2FUr17dGDRokLFv377c982+xhbDMIziaYMREREROVe57DMiIiIiJYfCiIiIiJhKYURERERMpTAiIiIiplIYEREREVMpjIiIiIipFEZERETEVAojIiIiYiqFERERETGVwoiIiIiYSmFERERETKUwIiIiIqb6f0QpQW9wkFUKAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "# Use dreal instead of z3\n", + "from pysmt.logics import QF_NRA\n", + "\n", + "from funman_dreal.solver import ensure_dreal_in_pysmt\n", + "\n", + "ensure_dreal_in_pysmt()\n", + "\n", + "opts = {\n", + " \"dreal_precision\": 1e-3,\n", + " \"dreal_log_level\": \"none\",\n", + " \"dreal_mcts\": True,\n", + " }\n", + "\n", + "max_time = 50\n", + "step_size = 5\n", + "\n", + "values= None\n", + "with Solver(name=\"dreal\",\n", + " logic=QF_NRA,\n", + " solver_options=opts\n", + " ) as solver:\n", + " values = run_solver(solver, encode(max_time=max_time, step_size=step_size, noise=noise, use_compartmental=True))\n", + " pass\n", + " \n", + "if values:\n", + " ax, results = plot_results(values, max_time, step_size)\n", + " f_pop = results.loc[float(max_time)][[\"S\", \"I\", \"R\"]].sum()\n", + " print(f\"Population at end: {f_pop}\")\n", + " s = list(results.S.values)\n", + " print([s[i]-s[i-1] for i in range(1, len(s))])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "funman_venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/notebooks/sir-manual-true-false.ipynb b/scratch/notebooks/sir-manual-true-false.ipynb new file mode 100644 index 00000000..eb3d98ab --- /dev/null +++ b/scratch/notebooks/sir-manual-true-false.ipynb @@ -0,0 +1,170 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import scipy\n", + "from scipy.integrate import odeint\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import sir_model\n", + "import json\n", + "from random import randint" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# initialize recording of parameter choices and true/false\n", + "\n", + "param_choices_true_false = []" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set these calibration parameters once:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# USER: set initial conditions\n", + "I0, R0 = 0.01, 0\n", + "S0 = 1-I0-R0\n", + "\n", + "# USER: set simulation parameters\n", + "dt = 1\n", + "tstart = 0\n", + "tend = 100\n", + "\n", + "# USER: set simulation parameters\n", + "dt = 1\n", + "tstart = 0\n", + "tend = 100\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### After setting your calibration parameters, run the following cell as many times as you'd like to experiment with different parameter values:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def ps(beta_val, gamma_val):\n", + " def beta(t): return np.piecewise(t, [t>=0], [beta_val])\n", + " def gamma(t): return np.piecewise(t, [t>=0], [gamma_val])\n", + "\n", + " y0 = S0, I0, R0 # Initial conditions vector\n", + "\n", + " tvect = np.arange(tstart, tend, dt)\n", + "\n", + " sim = odeint(sir_model.SIR_model, y0, tvect, args=(beta, gamma))\n", + " S, I, R = sim.T\n", + "\n", + " # plot results\n", + " sir_model.plotSIR(tvect, S, I, R)\n", + "\n", + " ## log parameters and sat/unsat\n", + "\n", + " param_assignments = {'beta': beta_val, 'gamma': gamma_val, 'assignment': input(\"Please enter 0 if the parameter choices were bad and 1 if they were good:\")}\n", + "\n", + " param_choices_true_false.append(param_assignments)\n", + "\n", + "\n", + "beta_value = input(\"Please enter a value for beta:\")\n", + "gamma_value = input(\"Please enter a value for gamma:\")\n", + "ps(beta_value, gamma_value)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### At any point in the process, you can visualize the true/false points:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot \"true/false\" points. \n", + "\n", + "sir_model.plot_two_params(\"beta\", \"gamma\", param_choices_true_false)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Once you're done, save your true/false points:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Save results\n", + "\n", + "id_number = randint(10**5, 10**6 - 1)\n", + "\n", + "with open(f'sir_manual_{id_number}.json', 'w', encoding='utf-8') as f:\n", + " json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "funman_venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/notebooks/sir-ps-auto.ipynb b/scratch/notebooks/sir-ps-auto.ipynb new file mode 100644 index 00000000..deaf255d --- /dev/null +++ b/scratch/notebooks/sir-ps-auto.ipynb @@ -0,0 +1,165 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import scipy\n", + "from scipy.integrate import odeint\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import sir_model\n", + "import json\n", + "from random import randint" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# initialize recording of parameter choices and true/false\n", + "\n", + "\n", + "# USER: set bounds\n", + "beta_search_bounds = [0,1]\n", + "gamma_search_bounds = [0,1]\n", + "\n", + "# USER: list how many points for each parameter you'd like to synthesize\n", + "beta_values_to_synthesize = 10\n", + "gamma_values_to_synthesize = 10\n", + "\n", + "# USER: set values for all parameters that you are not synthesizing \n", + "\n", + "\n", + "# USER: set initial conditions\n", + "I0, R0 = 0.01, 0\n", + "S0 = 1-I0-R0\n", + "\n", + "# USER: set simulation parameters\n", + "dt = 1\n", + "tstart = 0\n", + "tend = 100\n", + "\n", + "# USER: set parameter synthesis method: \"all\" or \"any\"\n", + "method = \"all\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "search_points_beta = np.linspace(beta_search_bounds[0], beta_search_bounds[1], beta_values_to_synthesize)\n", + "search_points_gamma = np.linspace(gamma_search_bounds[0], gamma_search_bounds[1], gamma_values_to_synthesize)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# set parameters\n", + "def ps(param_synth_method):\n", + " param_choices_true_false = []\n", + " for i in range(len(search_points_beta)):\n", + " beta_val = search_points_beta[i]\n", + " for j in range(len(search_points_gamma)):\n", + " gamma_val = search_points_gamma[j]\n", + "\n", + " # parameters\n", + " # set parameter values\n", + " def beta(t): return np.piecewise(t, [t>=0], [beta_val])\n", + " def gamma(t): return np.piecewise(t, [t>=0], [gamma_val])\n", + "\n", + " \n", + "\n", + " y0 = S0, I0, R0 # Initial conditions vector\n", + "\n", + " tvect = np.arange(tstart, tend, dt)\n", + " # simulate/solve ODEs\n", + " sim = odeint(sir_model.SIR_model, y0, tvect, args=(beta, gamma))\n", + " S, I, R = sim.T\n", + " # write query condition.\n", + " query_condition = (0.999 <= (S+I+R).all() <= 1.001) # compartmental constraint\n", + " # query_condition = (0.45 <= max(I)) and (max(I) <= 0.55) and (45 <= np.argmax(I)*dt) and (np.argmax(I)*dt <= 55) #max constraint\n", + " query = '1' if query_condition else '0'\n", + " # plot results - uncomment next line to plot time series. not recommended for large numbers of points\n", + " # if query == '1':\n", + " # print('beta:', beta_val, 'gamma:', gamma_val)\n", + " # sir_model.plotSIR(tvect, S, I, R)\n", + " ## end plot\n", + " param_assignments = {'beta': beta_val, 'gamma': gamma_val, 'assignment': query} # for \"all\", go through every option. for \"any\", only need one good parameter choice.\n", + " param_choices_true_false.append(param_assignments)\n", + " if param_synth_method == \"any\" and query == '1':\n", + " return param_choices_true_false\n", + " return param_choices_true_false\n", + " \n", + "param_choices_true_false = ps(method)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Save results\n", + "\n", + "id_number = randint(10**5, 10**6 - 1)\n", + "\n", + "with open(f'sir_query_auto_2_param_{id_number}_{method}.json', 'w', encoding='utf-8') as f:\n", + " json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot \"true/false\" points. \n", + "\n", + "sir_model.plot_two_params(\"beta\", \"gamma\", param_choices_true_false)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "funman_venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/notebooks/sir-query-positional-1d.ipynb b/scratch/notebooks/sir-query-positional-1d.ipynb new file mode 100644 index 00000000..6d9ef0bc --- /dev/null +++ b/scratch/notebooks/sir-query-positional-1d.ipynb @@ -0,0 +1,173 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Note: this notebook is identical to sir-query-positional-2d.ipynb with the exception that gamma_search_bounds is set to have the same lower and upper bound, and gamma_values_to_synthesize is set to 1.\n", + "\n", + "### For consistency scenarios, both of the search upper and lower bounds should be set to the same number and values to synthesize of each parameter should be set to 1." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import scipy\n", + "from scipy.integrate import odeint\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import sir_model\n", + "import json\n", + "from random import randint" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# initialize recording of parameter choices and true/false\n", + "\n", + "\n", + "# USER: set bounds\n", + "beta_search_bounds = [0.08,0.10]\n", + "gamma_search_bounds = [0.02,0.02]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# USER: list how many points for each parameter you'd like to synthesize\n", + "\n", + "beta_values_to_synthesize = 1\n", + "gamma_values_to_synthesize = 1\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "search_points_beta = np.linspace(beta_search_bounds[0], beta_search_bounds[1], beta_values_to_synthesize)\n", + "search_points_gamma = np.linspace(gamma_search_bounds[0], gamma_search_bounds[1], gamma_values_to_synthesize)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# set parameters\n", + "def ps(param_synth_method):\n", + " param_choices_true_false = []\n", + " for i in range(len(search_points_beta)):\n", + " beta_val = search_points_beta[i]\n", + " for j in range(len(search_points_gamma)):\n", + " gamma_val = search_points_gamma[j]\n", + "\n", + " # parameters\n", + " def beta(t): return np.piecewise(t, [t>=0], [beta_val])\n", + " def gamma(t): return np.piecewise(t, [t>=0], [gamma_val])\n", + "\n", + "\n", + " # USER: set initial conditions\n", + " I0, R0 = 0.01, 0\n", + " S0 = 1-I0-R0\n", + " y0 = S0, I0, R0 # Initial conditions vector\n", + " # USER: set simulation parameters\n", + " dt = 5\n", + " tstart = 0\n", + " tend = 100\n", + " tvect = np.arange(tstart, tend, dt)\n", + " # simulate/solve ODEs\n", + " sim = odeint(sir_model.SIR_model, y0, tvect, args=(beta, gamma))\n", + " S, I, R = sim.T\n", + "\n", + " # plot results - uncomment next line to plot time series. not recommended for large numbers of points\n", + " # sir_model.plotSIR(tvect, S, I, R)\n", + " # USER: write query condition.\n", + " query_condition = 0.15 <= max(I) <= 0.16 #((0.15 <= I[10]) and I[10] <= 1.0)\n", + " query = '1' if query_condition else '0'\n", + " param_assignments = {'beta': beta_val, 'gamma': gamma_val, 'assignment': query} # for \"all\", go through every option. for \"any\", only need one good parameter choice.\n", + " param_choices_true_false.append(param_assignments)\n", + " if param_synth_method == \"any\" and query == '1':\n", + " return param_choices_true_false\n", + " return param_choices_true_false\n", + " \n", + "param_choices_true_false = ps(\"any\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(param_choices_true_false)\n", + "\n", + "id_number = randint(10**5, 10**6 - 1)\n", + "\n", + "with open(f'sir_query_auto_1_param_{id_number}.json', 'w', encoding='utf-8') as f:\n", + " json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sir_model.plot_two_params(\"beta\", \"gamma\", param_choices_true_false)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "funman_venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/notebooks/sir-query-positional-2d.ipynb b/scratch/notebooks/sir-query-positional-2d.ipynb new file mode 100644 index 00000000..b787df84 --- /dev/null +++ b/scratch/notebooks/sir-query-positional-2d.ipynb @@ -0,0 +1,221 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import scipy\n", + "from scipy.integrate import odeint\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import sir_model\n", + "import json\n", + "from random import randint\n", + "import itertools" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def query_1(sim, tstart, tend, dt):\n", + " S, I, R = sim.T\n", + " # USER: write query condition.\n", + " # query_condition = 0.15 <= max(I) <= 0.3 #((0.15 <= I[10]) and I[10] <= 1.0)\n", + " # query_condition = (0.45 <= max(I)) and (max(I) <= 0.55) and (45 <= np.argmax(I)*dt) and (np.argmax(I)*dt <= 55)\n", + " query_values = [0.45 <= I[int(t/dt)] <= 0.55 for t in range(tstart, tend+1, dt) if 45 <= t < 55]\n", + " query_condition = all(query_values) \n", + " # print(I[9:11])\n", + " return query_condition\n", + "\n", + "def eval_point(beta_val, gamma_val, query_condition=query_1, plot=False, rtol=1, atol=1, mxstep=10, mxordn = 1, mxords=1, hmin=1):\n", + " # parameters\n", + " def beta(t): return np.piecewise(t, [t>=0], [beta_val])\n", + " def gamma(t): return np.piecewise(t, [t>=0], [gamma_val])\n", + "\n", + "\n", + " # USER: set initial conditions\n", + " I0, R0 = 0.01, 0\n", + " S0 = 1-I0-R0\n", + " y0 = S0, I0, R0 # Initial conditions vector\n", + " # USER: set simulation parameters\n", + " dt = 1\n", + " tstart = 0\n", + " tend = 55\n", + " tvect = np.arange(tstart, tend, dt)\n", + " # simulate/solve ODEs\n", + " sim = odeint(sir_model.SIR_model, y0, tvect, args=(beta, gamma), mxstep=mxstep, rtol=rtol, atol=atol)\n", + " S, I, R = sim.T\n", + "\n", + " # print(list(zip(range(tstart, tend+1, dt), I)))\n", + "\n", + " # plot results - uncomment next line to plot time series. not recommended for large numbers of points\n", + " if plot:\n", + " sir_model.plotSIR(tvect, S, I, R)\n", + "\n", + " query = '1' if query_condition(sim, tstart, tend, dt) else '0'\n", + " param_assignments = {'beta': beta_val, 'gamma': gamma_val, 'assignment': query} # for \"all\", go through every option. for \"any\", only need one good parameter choice.\n", + " return param_assignments, sim\n", + "\n", + "\n", + "\n", + "# set parameters\n", + "def ps(param_synth_method, parameter_search_bounds, rtol=1e-3, num_dim_points=10):\n", + " parameters = list(parameter_search_bounds.keys())\n", + " parameter_points = {p : np.linspace(parameter_search_bounds[p][0], parameter_search_bounds[p][1], num_dim_points) for p in parameters}\n", + " points = itertools.product(*[parameter_points[p] for p in parameters])\n", + " param_choices_true_false = []\n", + " for point in points:\n", + " point_values = {p: point[i] for i, p in enumerate(parameters)}\n", + "\n", + " param_assignments, _ = eval_point(point_values[\"beta\"], point_values[\"gamma\"], rtol=rtol)\n", + " param_choices_true_false.append(param_assignments)\n", + " if param_synth_method == \"any\" and query == '1':\n", + " return param_choices_true_false\n", + " return param_choices_true_false\n", + " \n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'beta': 0.12, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.12, 'gamma': 0.017222222222222222, 'assignment': '0'}, {'beta': 0.12, 'gamma': 0.019444444444444445, 'assignment': '0'}, {'beta': 0.12, 'gamma': 0.021666666666666667, 'assignment': '0'}, {'beta': 0.12, 'gamma': 0.02388888888888889, 'assignment': '0'}, {'beta': 0.12, 'gamma': 0.026111111111111113, 'assignment': '0'}, {'beta': 0.12, 'gamma': 0.028333333333333335, 'assignment': '0'}, {'beta': 0.12, 'gamma': 0.030555555555555558, 'assignment': '0'}, {'beta': 0.12, 'gamma': 0.03277777777777778, 'assignment': '0'}, {'beta': 0.12, 'gamma': 0.035, 'assignment': '0'}, {'beta': 0.1311111111111111, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.1311111111111111, 'gamma': 0.017222222222222222, 'assignment': '0'}, {'beta': 0.1311111111111111, 'gamma': 0.019444444444444445, 'assignment': '0'}, {'beta': 0.1311111111111111, 'gamma': 0.021666666666666667, 'assignment': '0'}, {'beta': 0.1311111111111111, 'gamma': 0.02388888888888889, 'assignment': '0'}, {'beta': 0.1311111111111111, 'gamma': 0.026111111111111113, 'assignment': '0'}, {'beta': 0.1311111111111111, 'gamma': 0.028333333333333335, 'assignment': '0'}, {'beta': 0.1311111111111111, 'gamma': 0.030555555555555558, 'assignment': '0'}, {'beta': 0.1311111111111111, 'gamma': 0.03277777777777778, 'assignment': '0'}, {'beta': 0.1311111111111111, 'gamma': 0.035, 'assignment': '0'}, {'beta': 0.14222222222222222, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.14222222222222222, 'gamma': 0.017222222222222222, 'assignment': '0'}, {'beta': 0.14222222222222222, 'gamma': 0.019444444444444445, 'assignment': '0'}, {'beta': 0.14222222222222222, 'gamma': 0.021666666666666667, 'assignment': '0'}, {'beta': 0.14222222222222222, 'gamma': 0.02388888888888889, 'assignment': '1'}, {'beta': 0.14222222222222222, 'gamma': 0.026111111111111113, 'assignment': '1'}, {'beta': 0.14222222222222222, 'gamma': 0.028333333333333335, 'assignment': '0'}, {'beta': 0.14222222222222222, 'gamma': 0.030555555555555558, 'assignment': '0'}, {'beta': 0.14222222222222222, 'gamma': 0.03277777777777778, 'assignment': '0'}, {'beta': 0.14222222222222222, 'gamma': 0.035, 'assignment': '0'}, {'beta': 0.15333333333333332, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.15333333333333332, 'gamma': 0.017222222222222222, 'assignment': '0'}, {'beta': 0.15333333333333332, 'gamma': 0.019444444444444445, 'assignment': '0'}, {'beta': 0.15333333333333332, 'gamma': 0.021666666666666667, 'assignment': '0'}, {'beta': 0.15333333333333332, 'gamma': 0.02388888888888889, 'assignment': '0'}, {'beta': 0.15333333333333332, 'gamma': 0.026111111111111113, 'assignment': '1'}, {'beta': 0.15333333333333332, 'gamma': 0.028333333333333335, 'assignment': '1'}, {'beta': 0.15333333333333332, 'gamma': 0.030555555555555558, 'assignment': '1'}, {'beta': 0.15333333333333332, 'gamma': 0.03277777777777778, 'assignment': '0'}, {'beta': 0.15333333333333332, 'gamma': 0.035, 'assignment': '0'}, {'beta': 0.16444444444444445, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.16444444444444445, 'gamma': 0.017222222222222222, 'assignment': '0'}, {'beta': 0.16444444444444445, 'gamma': 0.019444444444444445, 'assignment': '0'}, {'beta': 0.16444444444444445, 'gamma': 0.021666666666666667, 'assignment': '0'}, {'beta': 0.16444444444444445, 'gamma': 0.02388888888888889, 'assignment': '0'}, {'beta': 0.16444444444444445, 'gamma': 0.026111111111111113, 'assignment': '0'}, {'beta': 0.16444444444444445, 'gamma': 0.028333333333333335, 'assignment': '1'}, {'beta': 0.16444444444444445, 'gamma': 0.030555555555555558, 'assignment': '1'}, {'beta': 0.16444444444444445, 'gamma': 0.03277777777777778, 'assignment': '1'}, {'beta': 0.16444444444444445, 'gamma': 0.035, 'assignment': '0'}, {'beta': 0.17555555555555555, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.17555555555555555, 'gamma': 0.017222222222222222, 'assignment': '0'}, {'beta': 0.17555555555555555, 'gamma': 0.019444444444444445, 'assignment': '0'}, {'beta': 0.17555555555555555, 'gamma': 0.021666666666666667, 'assignment': '0'}, {'beta': 0.17555555555555555, 'gamma': 0.02388888888888889, 'assignment': '0'}, {'beta': 0.17555555555555555, 'gamma': 0.026111111111111113, 'assignment': '0'}, {'beta': 0.17555555555555555, 'gamma': 0.028333333333333335, 'assignment': '1'}, {'beta': 0.17555555555555555, 'gamma': 0.030555555555555558, 'assignment': '1'}, {'beta': 0.17555555555555555, 'gamma': 0.03277777777777778, 'assignment': '0'}, {'beta': 0.17555555555555555, 'gamma': 0.035, 'assignment': '0'}, {'beta': 0.18666666666666665, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.18666666666666665, 'gamma': 0.017222222222222222, 'assignment': '0'}, {'beta': 0.18666666666666665, 'gamma': 0.019444444444444445, 'assignment': '0'}, {'beta': 0.18666666666666665, 'gamma': 0.021666666666666667, 'assignment': '0'}, {'beta': 0.18666666666666665, 'gamma': 0.02388888888888889, 'assignment': '0'}, {'beta': 0.18666666666666665, 'gamma': 0.026111111111111113, 'assignment': '0'}, {'beta': 0.18666666666666665, 'gamma': 0.028333333333333335, 'assignment': '0'}, {'beta': 0.18666666666666665, 'gamma': 0.030555555555555558, 'assignment': '1'}, {'beta': 0.18666666666666665, 'gamma': 0.03277777777777778, 'assignment': '0'}, {'beta': 0.18666666666666665, 'gamma': 0.035, 'assignment': '0'}, {'beta': 0.19777777777777777, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.19777777777777777, 'gamma': 0.017222222222222222, 'assignment': '0'}, {'beta': 0.19777777777777777, 'gamma': 0.019444444444444445, 'assignment': '0'}, {'beta': 0.19777777777777777, 'gamma': 0.021666666666666667, 'assignment': '0'}, {'beta': 0.19777777777777777, 'gamma': 0.02388888888888889, 'assignment': '0'}, {'beta': 0.19777777777777777, 'gamma': 0.026111111111111113, 'assignment': '0'}, {'beta': 0.19777777777777777, 'gamma': 0.028333333333333335, 'assignment': '0'}, {'beta': 0.19777777777777777, 'gamma': 0.030555555555555558, 'assignment': '0'}, {'beta': 0.19777777777777777, 'gamma': 0.03277777777777778, 'assignment': '0'}, {'beta': 0.19777777777777777, 'gamma': 0.035, 'assignment': '0'}, {'beta': 0.2088888888888889, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.2088888888888889, 'gamma': 0.017222222222222222, 'assignment': '0'}, {'beta': 0.2088888888888889, 'gamma': 0.019444444444444445, 'assignment': '0'}, {'beta': 0.2088888888888889, 'gamma': 0.021666666666666667, 'assignment': '0'}, {'beta': 0.2088888888888889, 'gamma': 0.02388888888888889, 'assignment': '0'}, {'beta': 0.2088888888888889, 'gamma': 0.026111111111111113, 'assignment': '0'}, {'beta': 0.2088888888888889, 'gamma': 0.028333333333333335, 'assignment': '0'}, {'beta': 0.2088888888888889, 'gamma': 0.030555555555555558, 'assignment': '0'}, {'beta': 0.2088888888888889, 'gamma': 0.03277777777777778, 'assignment': '0'}, {'beta': 0.2088888888888889, 'gamma': 0.035, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.015, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.017222222222222222, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.019444444444444445, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.021666666666666667, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.02388888888888889, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.026111111111111113, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.028333333333333335, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.030555555555555558, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.03277777777777778, 'assignment': '0'}, {'beta': 0.22, 'gamma': 0.035, 'assignment': '0'}]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHHCAYAAAC4BYz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfn0lEQVR4nO3deXgUVdo28Ls7+74QkpAFEgggSwBNIAIKGcwQHZbXwRFZFMR1XBBEZwC/ERSXoKKigKjIgDOCIAwIAyJCBGUJi1kQEiAYCIGErJDOnk7S5/vjvOnXlgDpzlKUdf+uqy+6q6urn8NJVd11qrpbJ4QQICIiItIYvdIFEBERESmBIYiIiIg0iSGIiIiINIkhiIiIiDSJIYiIiIg0iSGIiIiINIkhiIiIiDSJIYiIiIg0iSGIiIiINIkhiIioCXv37oVOp8PevXuVLqVFsrOzodPpsHr16mbN//DDDyMsLKxNayK6WTAEEbWR1atXQ6fTmW/Ozs7o0aMHnn32WRQUFChdXps6ePAgXnnlFZSWlrbL+/Xr1w+dO3fG9X4FaOjQoQgICEB9fX271NQSDz/8sMXfjqenJ/r37493330XtbW1SpdH9Lthr3QBRL93CxYsQHh4OGpqarB//34sX74c33zzDU6cOAFXV1ely2sTBw8exKuvvoqHH34Y3t7ebf5+kydPxpw5c7Bv3z4MGzbsquezs7ORlJSEZ599Fvb26tjsOTk54bPPPgMAlJaW4j//+Q9efPFFHD16FOvWrWv2crp06YLq6mo4ODg0a/4VK1bAZDLZVDOR2nAkiKiN3XPPPXjwwQfx2GOPYfXq1Zg5cybOnTuHLVu2tGi5JpMJNTU1rVSlOlRVVTU5fdKkSdDpdFi7dm2Tz3/55ZcQQmDy5MltWV6rsre3x4MPPogHH3wQzz77LBITExEdHY3169cjLy+v2ctpHIW0s7O77nyVlZUAAAcHBzg5ObWodiK1YAgiamcjRowAAJw7dw4AsGjRIgwZMgQdOnSAi4sLoqKisHHjxqtep9Pp8Oyzz2LNmjXo06cPnJyc8O2339q0jA0bNqB3795wcXHB4MGDcfz4cQDAJ598goiICDg7OyM2NhbZ2dlXLePw4cO4++674eXlBVdXVwwfPhwHDhwwP//KK6/gb3/7GwAgPDzcfErn18v64osvEBUVBRcXF/j6+mLChAm4cOGCxfvExsaib9++SE5OxrBhw+Dq6oqXXnqpyf/T0NBQDBs2DBs3bkRdXd1Vz69duxbdunVDTEwMzp8/j6effho9e/aEi4sLOnTogPvvv7/Jtv5WWFgYHn744aumx8bGIjY21mJabW0t5s+fj4iICDg5OSE0NBR///vfbT6dpdfrze+RnZ2Ny5cv48UXX0RkZCTc3d3h6emJe+65B8eOHbN4XVPXBD388MNwd3dHVlYW/vSnP8HDw8McEH97TVDj6xctWoRPP/0U3bp1g5OTEwYOHIijR49eVWfj35azszP69u2LzZs3N3md0bp16xAVFQUPDw94enoiMjISH3zwgU3/N0S2Use4MNHvSFZWFgCgQ4cOAIAPPvgAY8eOxeTJk2E0GrFu3Trcf//92LZtG0aNGmXx2u+//x5fffUVnn32Wfj5+Zl3LNYsY9++fdi6dSueeeYZAEBCQgJGjx6Nv//97/joo4/w9NNP48qVK3j77bfxyCOP4Pvvv7d4/3vuuQdRUVGYP38+9Ho9Vq1ahREjRmDfvn0YNGgQxo0bh8zMTHz55Zd4//334efnBwDo2LEjAOCNN97Ayy+/jPHjx+Oxxx5DUVERlixZgmHDhiE1NdXi9FlJSQnuueceTJgwAQ8++CACAgKu+f86efJkPPHEE9i5cydGjx5tnn78+HGcOHEC8+bNAwAcPXoUBw8exIQJExASEoLs7GwsX74csbGxyMjIaJVTlCaTCWPHjsX+/fvxxBNPoFevXjh+/Djef/99ZGZm4uuvv7Zpub/+2zl79iy+/vpr3H///QgPD0dBQQE++eQTDB8+HBkZGQgKCrrusurr6xEfH4877rgDixYtumG7165di/Lycjz55JPQ6XR4++23MW7cOJw9e9Z8qm379u144IEHEBkZiYSEBFy5cgWPPvoogoODLZa1a9cuTJw4EXfddRfeeustAMDJkydx4MABzJgxw6b/GyKbCCJqE6tWrRIAxO7du0VRUZG4cOGCWLdunejQoYNwcXERFy9eFEIIUVVVZfE6o9Eo+vbtK0aMGGExHYDQ6/UiPT39qveyZhlOTk7i3Llz5mmffPKJACACAwNFWVmZefrcuXMFAPO8JpNJdO/eXcTHxwuTyWTx3uHh4eKPf/yjedo777xj8dpG2dnZws7OTrzxxhsW048fPy7s7e0tpg8fPlwAEB9//PFV7W3K5cuXhZOTk5g4caLF9Dlz5ggA4vTp0+Z6fyspKUkAEP/617/M0/bs2SMAiD179pindenSRUydOvWq1w8fPlwMHz7c/Pjf//630Ov1Yt++fRbzffzxxwKAOHDgwHXbMnXqVOHm5iaKiopEUVGR+OWXX8Sbb74pdDqd6NevnxBCiJqaGtHQ0GDxunPnzgknJyexYMECi2kAxKpVqyyWD0DMmTOnyffu0qXLVa/v0KGDuHz5snn6li1bBADx3//+1zwtMjJShISEiPLycvO0vXv3CgAWy5wxY4bw9PQU9fX11/1/IGprPB1G1Mbi4uLQsWNHhIaGYsKECXB3d8fmzZvNR8cuLi7mea9cuQKDwYA777wTKSkpVy1r+PDh6N2791XTrVnGXXfdZXFqIiYmBgBw3333wcPD46rpZ8+eBQCkpaXhzJkzmDRpEkpKSlBcXIzi4mJUVlbirrvuwo8//njDC2o3bdoEk8mE8ePHm19fXFyMwMBAdO/eHXv27LGY38nJCdOmTbvuMhv5+PjgT3/6E7Zu3Wq+vkUIgXXr1iE6Oho9evS46v+qrq4OJSUliIiIgLe3d5P/X7bYsGEDevXqhVtuucWinY2nQn/bzqZUVlaiY8eO6NixIyIiIvDSSy9h8ODB2Lx5MwD5f6PXy014Q0MDSkpK4O7ujp49eza7HU899VSz2/TAAw/Ax8fH/PjOO+8E8H9/H3l5eTh+/DimTJkCd3d383zDhw9HZGSkxbK8vb1RWVmJXbt2Nfv9idoCT4cRtbFly5ahR48esLe3R0BAAHr27GneeQHAtm3b8PrrryMtLc3iehGdTnfVssLDw5t8D2uW0blzZ4vHXl5eAOR1NU1Nv3LlCgDgzJkzAICpU6des60Gg8FiR/lbZ86cgRAC3bt3b/L5336CKTg4GI6Ojtdc3m9NnjwZmzdvxpYtWzBp0iQcPHgQ2dnZFqdYqqurkZCQgFWrViE3N9fiY/UGg6HZ73U9Z86cwcmTJ82nAH+rsLDwhstwdnbGf//7XwAy8ISHhyMkJMT8vMlkwgcffICPPvoI586dQ0NDg/m5xlOt12Nvb2+xvBv57d9NYz83/n2cP38eABAREXHVayMiIiyC2dNPP42vvvoK99xzD4KDgzFy5EiMHz8ed999d7PrIWoNDEFEbWzQoEGIjo5u8rl9+/Zh7NixGDZsGD766CN06tQJDg4OWLVqVZOfdPr1KIaty7jWp4SuNb0xJDSO8rzzzjsYMGBAk/P+egSgKSaTCTqdDjt27Gjy/X77+qbaez2jR4+Gl5cX1q5di0mTJmHt2rWws7PDhAkTzPNMnz4dq1atwsyZMzF48GB4eXlBp9NhwoQJNxzJaipUAnIk5tftMZlMiIyMxHvvvdfk/L8NnE2xs7NDXFzcNZ9/88038fLLL+ORRx7Ba6+9Bl9fX+j1esycObNZH3H/9UhSc9zo78Ma/v7+SEtLw86dO7Fjxw7s2LEDq1atwpQpU/D5559bvTwiWzEEESnoP//5D5ydnbFz506LjyWvWrWqXZfRHN26dQMAeHp6XnfnDFw7LHTr1g1CCISHh5tPT7UmJycn/OUvf8G//vUvFBQUYMOGDRgxYgQCAwPN82zcuBFTp07Fu+++a55WU1PTrC929PHxaXK+8+fPo2vXrubH3bp1w7Fjx3DXXXdd8/+ipTZu3Ig//OEPWLlypcX00tJS88Xo7alLly4AgF9++eWq55qa5ujoiDFjxmDMmDEwmUx4+umn8cknn+Dll19ucjSJqC3wmiAiBdnZ2UGn01mcysjOzrbq00OtsYzmiIqKQrdu3bBo0SJUVFRc9XxRUZH5vpubGwBcFRjGjRsHOzs7vPrqq1eNIAghUFJS0uI6J0+ejLq6Ojz55JMoKiq66ruB7OzsrnrvJUuWWPz/XUu3bt1w6NAhGI1G87Rt27Zd9fH+8ePHIzc3FytWrLhqGdXV1eZrllqiqXZs2LABubm5LV62LYKCgtC3b1/861//svj7+OGHH8xfwdDot/2s1+vRr18/AOA3YlO74kgQkYJGjRqF9957D3fffTcmTZqEwsJCLFu2DBEREfj555/bbRnNodfr8dlnn+Gee+5Bnz59MG3aNAQHByM3Nxd79uyBp6en+RqWqKgoAMD/+3//DxMmTICDgwPGjBmDbt264fXXX8fcuXORnZ2Ne++9Fx4eHjh37hw2b96MJ554Ai+++GKL6hw+fDhCQkKwZcsWuLi4YNy4cRbPjx49Gv/+97/h5eWF3r17IykpCbt3727WdTSPPfYYNm7ciLvvvhvjx49HVlYWvvjiC/MoWaOHHnoIX331Ff76179iz549GDp0KBoaGnDq1Cl89dVX2Llz5zVPkTbX6NGjsWDBAkybNg1DhgzB8ePHsWbNGosRqfb25ptv4n/+538wdOhQTJs2DVeuXMHSpUvRt29fi2D02GOP4fLlyxgxYgRCQkJw/vx5LFmyBAMGDECvXr0Uq5+0hyNBRAoaMWIEVq5cifz8fMycORNffvkl3nrrLfz5z39u12U0V2xsLJKSkhAdHY2lS5di+vTpWL16NQIDA/H888+b5xs4cCBee+01HDt2DA8//DAmTpxoHimaM2cO/vOf/0Cv1+PVV1/Fiy++iK1bt2LkyJEYO3Zsi2vU6/WYOHEiAGDMmDEWn3gD5HcqTZkyBWvWrMELL7yAS5cuYffu3Te8ngkA4uPj8e677yIzMxMzZ85EUlIStm3bdtUFxnq9Hl9//TUWLlyI48eP48UXX8Srr76Ko0ePYsaMGa1yKvCll17CCy+8gJ07d2LGjBlISUnB9u3bm3W9UVsZM2YMvvzySxiNRsyZMwebNm3C6tWr0bNnTzg7O5vne/DBB+Hs7Gz+XqrPP/8cDzzwAHbs2GHVdUpELaUTtlzVRkRE1EwDBgxAx44d+ZF4uukwchMRUauoq6tDfX29xbS9e/fi2LFjV/2sCNHNgCNBRETUKrKzsxEXF4cHH3wQQUFBOHXqFD7++GN4eXnhxIkTzbruiqg98cJoIiJqFT4+PoiKisJnn32GoqIiuLm5YdSoUVi4cCEDEN2UOBJEREREmsRrgoiIiEiTGIKIiIhIk3hNUBNMJhPy8vLg4eHRZl95T0RERK1LCIHy8nIEBQU16zunGIKakJeXp+gXjhEREZHtLly4cNWXmDaFIagJjd8we+HCBXh6eipcDRERETVHWVkZQkNDr/qm+GthCGpC4ykwT09PhiAiIiKVae6lLLwwmoiIiDSJIYiIiIg0iSGIiIiINIkhiIiIiDSJIYiIiIg0iSGIiIiINIkhiIiIiDSJIYiIiIg0iSGIiIiINIkhiIiIiDTppghBy5YtQ1hYGJydnRETE4MjR45cc94VK1bgzjvvhI+PD3x8fBAXF2cxf11dHWbPno3IyEi4ubkhKCgIU6ZMQV5eXns0hYiIiFRC8RC0fv16zJo1C/Pnz0dKSgr69++P+Ph4FBYWNjn/3r17MXHiROzZswdJSUkIDQ3FyJEjkZubCwCoqqpCSkoKXn75ZaSkpGDTpk04ffo0xo4d257Nalp1NZCZCVyjbaphNAJnzgBqD5YNDUBWFpCTAwihdDW2M5mAc+fkzWRSuhrbCSH7IisLqK9XupqWycuT64jRqHQlLVNYKLdZ1dVKV9Iyly8Dp08DFRVKV9IyBoNsh8GgdCUtU1kp21FSonQl0Amh7NY/JiYGAwcOxNKlSwEAJpMJoaGhmD59OubMmXPD1zc0NMDHxwdLly7FlClTmpzn6NGjGDRoEM6fP4/OnTvfcJllZWXw8vKCwWBovR9QLSsDPvwQyMgAPD2Bxx8HoqJaZ9ntqaYGWLYMSEkBXF2ByZOB2Filq7JefT2wciWwfz9gbw+MGweMGaN0VdYTAli7FvjuO/l45Ehg0iSgmT8eeFP573+BTZtk3wwdCjz2mOwbtfnhB+CLL4CqKuC224BnngGcnZWuynrJycBnn8kdbu/ewHPPyW2X2pw6BXz0EVBcDISHAzNmAP7+SldlvZwcYMkSIDcXCAoCpk8HunRRuirrFRUBH3wAnD0LdOgAPP000KtXqy3e2v23oiNBRqMRycnJiIuLM0/T6/WIi4tDUlJSs5ZRVVWFuro6+Pr6XnMeg8EAnU4Hb2/vJp+vra1FWVmZxa3VpabKW3CwPCrZvr3136M9ZGQAhw4BgYFyI79lizpHH86dA/btAxr/JrZvV+dRYkEBkJgod7LOzvJ+fr7SVVmvogL45ht539tb9s3Zs4qWZBOTCfj6a7luBAbKdSU9XemqbLN9uzxSDw6W266UFKUrsk1iInDxIhASIrdf17nc4qZ24IAclQsNlaOM+/crXZFtjhyR60RIiAx0u3crWo6iIai4uBgNDQ0ICAiwmB4QEID8Zm7IZ8+ejaCgIIsg9Ws1NTWYPXs2Jk6ceM1UmJCQAC8vL/MtNDTUuoY0h709oNfLjWN9PeDk1Prv0R7s7eWtslIO9Ts5qXPUwd4esLOTw/y1tYCDg3ysNo39UVMjb42P1cbOTtZdWyv7RK3t0OnkOmE0ynVEre0AZDvq6+U2S69XbzscHGQ4raqS/aPWdjTWXVUl/3VwUK6WlrC3l/1QVSX7xdFR0XIUvyaoJRYuXIh169Zh8+bNcG5iuLmurg7jx4+HEALLly+/5nLmzp0Lg8Fgvl24cKH1i42KkqeNamuBiAh5+kWN+vQB4uPl9TQhIcDEieoMQWFhwNixcuPu6yvb4eKidFXW8/MD7rtPnpp0dZX3O3ZUuirrubjIPvD1lX0yZow8daE2Op08HRkSIteR+Higb1+lq7LNuHFA9+5ymxUbC0RHK12RbUaNAiIj5UHCkCHyVKsajRgBDBwow0N0tHysRo19UFMj141RoxQtR9FrgoxGI1xdXbFx40bce++95ulTp05FaWkptmzZcs3XLlq0CK+//jp2796N6CZWzsYAdPbsWXz//ffo0KFDs+tqk2uCAJl6S0sBNzf1jgQB8jqU0lJ5+kWNweHXDAZ5ZOLmpnQlLVNeLv/18FC2jpaqrJSjD15eSlfSMtXVciPv7a3Og4RGtbWyT7y9ZThVq7o6uY54ealzxLdRfb3cZnl5qXdEC5AHCAYD4O7e6iNBqromyNHREVFRUUhMTDRPM5lMSExMxODBg6/5urfffhuvvfYavv322+sGoDNnzmD37t1WBaA21TjqoOYABMiNuo+P+gMQIDcmag9AgAw/ag9AgOwLtQcgQK4bPj7qDkCA3FY1js6pmYODbIeaAxAgg0+HDuoOQIDsB19fxU+FAYDi/5OzZs3C1KlTER0djUGDBmHx4sWorKzEtGnTAABTpkxBcHAwEhISAABvvfUW5s2bh7Vr1yIsLMx87ZC7uzvc3d1RV1eHv/zlL0hJScG2bdvQ0NBgnsfX1xeON8F/OhERESlP8RD0wAMPoKioCPPmzUN+fj4GDBiAb7/91nyxdE5ODvS/OgpZvnw5jEYj/vKXv1gsZ/78+XjllVeQm5uLrVu3AgAGDBhgMc+ePXsQq8aPcxMREVGrU/x7gm5GbXZNEBEREbUZVV0TRERERKQUhiAiIiLSJIYgIiIi0iSGICIiItIkhiAiIiLSJIYgIiIi0iSGICIiItIkhiAiIiLSJIYgIiIi0iSGICIiItIkhiAiIiLSJIYgIiIi0iSGICIiItIkhiAiIiLSJIYgIiIi0iSGICIiItIkhiAiIiLSJIYgIiIi0iSGICIiItIkhiAiIiLSJIYgIiIi0iSGICIiItIkhiAiIiLSJIYgIiIi0iSGICIiItIkhiAiIiLSJIYgIiIi0iSGICIiItIke6UL0IyGBmDrVuDAASAoCJg8GQgIULoq6wkB7NoF7N4N+PjIdnTurHRVtjlwANi2DXBxAR54AOjZU+mKbJOaCmzaJO+PGwfcequy9djq9Glg/XqguhoYPRoYOlTpimyTkwOsWQNcuQLExQF//COg0yldlfUKCmQ78vKAIUOAe+8F9Co8bi4tle3IygKiooD77wccHZWuynpVVcCXXwLp6UDv3sDEiYCbm9JVWc9oBDZuBH76CejWDZg0Se5LFKLCv2iVSk0FvvoKKC4GfvxRbuzVKDNTblAuXQKOHAFWr5bBSG3y8mTt2dnAsWPAZ5/JlVNtDAZg5UoZIE6flvcNBqWrsp7RKGs/dkz2yerVQG6u0lVZTwhZ+5Ejch1Zs0auM2q0fr3cVhUXAxs2ACkpSldkm61b5YHblSvA11/Lgx81SkwEtm+X7di+XT5Wo4MHgc2bZTt27ZL9oyCGoPZSVgbU1gKhoYC7O1BUpHRFtikrAyoq5OiPj49sh8mkdFXWa2xHaCjg7y+DQ3W10lVZr6JC3jp1krfycnlTm+pqecTu7y/7pKJC9pHamExynfDxketIRYU6Qykg2+HuLvujtla97bh8GXBwkP1RX6/OvytArh8m0/+NvJeWKlmN7crKZD907ixH5EpKFC2HIai99OkDhIcDGRlyaHzYMKUrsk2PHkCvXsCpU3LHNXw4YGendFXWCwsDIiOBs2flRjImBvD0VLoq6wUEAAMGyJGtvDx5KiwwUOmqrOfpCdx+u+yLs2eBvn1lH6mNnZ1cJ6qr5TrSq5d6T7MOGya3VRkZctvVp4/SFdnm9tsBDw/g+HEgJESu92p0221yff/5Z6BjR/We9u7XT/bD8eMyZA8erGg5OiHUeC6jbZWVlcHLywsGgwGerbljLCyUQ+Pe3nKDosbrBAA5jJmRIc9H9+unzusEAHmU/vPP8mikf395tKhGNTXyNBIg2+HsrGw9tqqrk+0wGuXflbu70hXZxmSSf1eVlfLaDQWvd2gRIeT1J6Wl8uDH31/pimyXmSmvceraFQgOVroa22VnAxcuyBARHq50NbbLzZUHO/7+rX6QYO3+myGoCW0WgoiIiKjNWLv/VukhPBEREVHLMAQRERGRJjEEERERkSYxBBEREZEmMQQRERGRJjEEERERkSYxBBEREZEmMQQRERGRJjEEERERkSYxBBEREZEmMQQRERGRJjEEERERkSYxBBEREZEmMQQRERGRJjEEERERkSYxBBEREZEmMQQRERGRJjEEERERkSYxBBEREZEmMQQRERGRJjEEERERkSYxBBEREZEm3RQhaNmyZQgLC4OzszNiYmJw5MiRa867YsUK3HnnnfDx8YGPjw/i4uKuml8IgXnz5qFTp05wcXFBXFwczpw509bNICIiIhVRPAStX78es2bNwvz585GSkoL+/fsjPj4ehYWFTc6/d+9eTJw4EXv27EFSUhJCQ0MxcuRI5Obmmud5++238eGHH+Ljjz/G4cOH4ebmhvj4eNTU1LRXs4iIiOgmpxNCCCULiImJwcCBA7F06VIAgMlkQmhoKKZPn445c+bc8PUNDQ3w8fHB0qVLMWXKFAghEBQUhBdeeAEvvvgiAMBgMCAgIACrV6/GhAkTbrjMsrIyeHl5wWAwwNPTs2UNJCIionZh7f5b0ZEgo9GI5ORkxMXFmafp9XrExcUhKSmpWcuoqqpCXV0dfH19AQDnzp1Dfn6+xTK9vLwQExNzzWXW1tairKzM4kZERES/b4qGoOLiYjQ0NCAgIMBiekBAAPLz85u1jNmzZyMoKMgcehpfZ80yExIS4OXlZb6FhoZa2xQiIiJSGcWvCWqJhQsXYt26ddi8eTOcnZ1tXs7cuXNhMBjMtwsXLrRilURERHQzslfyzf38/GBnZ4eCggKL6QUFBQgMDLzuaxctWoSFCxdi9+7d6Nevn3l64+sKCgrQqVMni2UOGDCgyWU5OTnBycnJxlYQERGRGik6EuTo6IioqCgkJiaap5lMJiQmJmLw4MHXfN3bb7+N1157Dd9++y2io6MtngsPD0dgYKDFMsvKynD48OHrLpOIiIi0RdGRIACYNWsWpk6diujoaAwaNAiLFy9GZWUlpk2bBgCYMmUKgoODkZCQAAB46623MG/ePKxduxZhYWHm63zc3d3h7u4OnU6HmTNn4vXXX0f37t0RHh6Ol19+GUFBQbj33nuVaiYRERHdZBQPQQ888ACKioowb9485OfnY8CAAfj222/NFzbn5ORAr/+/Aavly5fDaDTiL3/5i8Vy5s+fj1deeQUA8Pe//x2VlZV44oknUFpaijvuuAPffvtti64bahWZmUB6OuDjAwwdCjg4KFuPrXJygNRUwM0NuOMOQOn/V1vl5wNHjgCOjrI/PDyUrsg2ly8DjZ98HDwY+N9PSqpOeTlw4ABgNAKDBgE3OCV+06qpAfbvByorgQEDgC5dlK7INnV1sj+uXAH69AF69FC6ItuYTMChQ0BBARARAURGKl2RbYQAkpOBCxeAkBAgOhrQ6ZSuyjYnTgBnzgD+/sDttwN2doqVovj3BN2M2uR7gs6dA95+W+54HRyA+++XN7UpLATefBPIzpZ/uPfcAzz2mNJVWa+sDEhIAE6eBPR6GYKef17eV5PaWuCtt2QoBYBbbwVmzwbUdo2byQQsXizDg8kE3HIL8NJLgBq/p+uzz4AdO4CGBiAsDJg7F/jNp1VVYeNGYP16oL5e1j97NhAernRV1vvuO2DVKhlOfX2BmTPVGYQOHQI++gioqJAHoE89BQwZonRV1ktPB95/HygpkQfQU6cCd9/daotX1fcEacrZs/JIpF8/2fFpaUpXZJvsbDkS1K+f3KCkpcmNvdrk5spgesstQKdOwKlTciRCbYqKgKwsubMNC5P3i4qUrsp6ZWUykHbqJPskO1v2kdo0NMh1wsdHriM5OcD580pXZZvUVMDFRbajsFBuw9ToxAkZrPv3l6OmWVlKV2SbzEy5jerXT44yqvWnoH75RQag/v3l6NaJE4qWwxDUXgIC5FHtyZPyD1mNR1SAbIefH5CRIXe24eGKDmXarGNHecvMBC5eBIKC5NGV2vj4yCHl7Gx58/eX09TG3V32wcWLsk8a+0dt7OzkOlFcLNcRPz91jgIBQNeuclt18qQ8VazWdnTpIkezTp6UoU6t7QgKkmcRTp6Uf2e/+vSzqgQGAq6ush1Go+Kni3k6rAltcjpMCHl+PTlZ7qhGj1bvNSgpKbItnp6yHR06KF2RbU6eBPbskaeO/vQn9W5Uzp2TQ/4AMHKkegP2pUvAN9/IU3yxsUDv3kpXZJuSEmDbNjm6NXQocNttSldkm/JyYPt2OYIdFSXbosZrUGpqZDsuXpTXNo0Yob7T3oAMcjt3yoOE7t2B+Hh1XldqMsnt7vHj8tqmUaNkOG0l1u6/GYKawN8OIyIiUh9eE0RERETUDAxBREREpEkMQURERKRJDEFERESkSQxBREREpEkMQURERKRJDEFERESkSQxBREREpEkMQURERKRJDEFERESkSQxBREREpEkMQURERKRJDEFERESkSQxBREREpEkMQURERKRJDEFERESkSQxBREREpEkMQURERKRJDEFERESkSQxBREREpEkMQURERKRJDEFERESkSQxBREREpEkMQURERKRJDEFERESkSQxBREREpEkMQURERKRJDEFERESkSQxBREREpEkMQURERKRJDEFERESkSQxB7am6GsjMBAoLla6kZYxG4MwZIC9P6UpapqEByMoCcnIAIZSuxnYmE3DunLyZTEpXYzshZF9kZQH19UpX0zJ5eXIdMRqVrqRlCgvlNqu6WulKWuRy9WWcLj6NCmOF0qW0jMEAnD4t/1WzykrZjpISpSuBvdIFaEZZGfDhh0BGBuDpCTz+OBAVpXRV1qupAZYtA1JSAFdXYPJkIDZW6aqsV18PrFwJ7N8P2NsD48YBY8YoXZX1hAC+/BL47jv5eORIYNIkQKdTti5bbNsGbNok+2boUOCxx2TfqM0PPwBffAFUVQG33QY88wzg7Kx0VdZLTgY++0zucHv3Bp57Tm67VOZU8Sl8dPQjFFcVI9w7HDNunwF/N3+ly7JeTg6wZAmQmwsEBQHTpwNduihdlfWKioAPPgDOngU6dACefhro1UuxcjgS1F5SU+UtOBi4fBnYvl3pimyTkQEcOgQEBsqN/JYt6hx9OHcO2LcP8PaWj7dvBypUeJRYUAAkJsqdrLOzvJ+fr3RV1quoAL75Rt739pZ9c/asoiXZxGQCvv5arhuBgXJdSU9XuirbbN8uj9SDg+W2KyVF6Ypskng2ERfLLiLEMwQZRRk4kntE6ZJsc+CAHJULDZWjjPv3K12RbY4cketESIgMdLt3K1qOCg+zVMreHtDr5caxvh5wclK6ItvY28tbZaUc6ndyUueog709YGcnh/lrawF3d/lYbRr7o6ZGPnZyUufoiZ2drLu29v/uq7EdOp3sA6NRriNqbQcg21FfL7dZer1q2+Fg5wCTMKGqrgo6nQ72enW2w/z/X1Ul/3VwUK6WlrC3l+tJVZU8aHB0VLQcjgS1l6goedqothaIiJCnX9SoTx8gPl5eTxMSAkycqM4QFBYGjB0rN+6+vrIdLi5KV2U9Pz/gvvvkqUlXV3m/Y0elq7Kei4vsA19f2SdjxgDh4UpXZT2dTp6ODAmR60h8PNC3r9JV2WbcOKB7d7nNio0FoqOVrsgmo7qPQqR/JGrqazAkdAiGhg5VuiTbjBgBDBwow0N0tHysRkOGyNPdNTVy3Rg1StFydEKo+YrQtlFWVgYvLy8YDAZ4tuY5cJMJKC0F3NzUOxIEyOtQSkvl6Rc1BodfMxjkkYmbm9KVtEx5ufzXw0PZOlqqslKOPnh5KV1Jy1RXy428t7c6DxIa1dbKPvH2luFUpeoa6lBuLIeXkxfs9Coc8W1UXy+3WV5eqh2ZAyAPEAwGOQLfyiNB1u6/GYKa0GYhiIiIiNqMtftv9UZ7IiIiohZgCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNUjwELVu2DGFhYXB2dkZMTAyOHDlyzXnT09Nx3333ISwsDDqdDosXL75qnoaGBrz88ssIDw+Hi4sLunXrhtdeew1CiDZsBREREamNoiFo/fr1mDVrFubPn4+UlBT0798f8fHxKCwsbHL+qqoqdO3aFQsXLkRgYGCT87z11ltYvnw5li5dipMnT+Ktt97C22+/jSVLlrRlU4iIiEhldELBIZKYmBgMHDgQS5cuBQCYTCaEhoZi+vTpmDNnznVfGxYWhpkzZ2LmzJkW00ePHo2AgACsXLnSPO2+++6Di4sLvvjii2bVVVZWBi8vLxgMBnh6elrXKCIiIlKEtftvxUaCjEYjkpOTERcX93/F6PWIi4tDUlKSzcsdMmQIEhMTkZmZCQA4duwY9u/fj3vuueear6mtrUVZWZnFjYiIiH7f7JV64+LiYjQ0NCAgIMBiekBAAE6dOmXzcufMmYOysjLccsstsLOzQ0NDA9544w1Mnjz5mq9JSEjAq6++avN7EhERkfoofmF0a/vqq6+wZs0arF27FikpKfj888+xaNEifP7559d8zdy5c2EwGMy3CxcutGPFREREpATFRoL8/PxgZ2eHgoICi+kFBQXXvOi5Of72t79hzpw5mDBhAgAgMjIS58+fR0JCAqZOndrka5ycnODk5GTzexIREZH6KDYS5OjoiKioKCQmJpqnmUwmJCYmYvDgwTYvt6qqCnq9ZbPs7OxgMplsXiYRERH9/ig2EgQAs2bNwtSpUxEdHY1BgwZh8eLFqKysxLRp0wAAU6ZMQXBwMBISEgDIi6kzMjLM93Nzc5GWlgZ3d3dEREQAAMaMGYM33ngDnTt3Rp8+fZCamor33nsPjzzyiDKNJCIiopuSoh+RB4ClS5finXfeQX5+PgYMGIAPP/wQMTExAIDY2FiEhYVh9erVAIDs7GyEh4dftYzhw4dj7969AIDy8nK8/PLL2Lx5MwoLCxEUFISJEydi3rx5cHR0bFZN/Ig8ERGR+li7/1Y8BN2MGIKIiIjURzXfE0RERESkJIYgIiIi0iSGICIiItIkhiAiIiLSJIYgIiIi0iSGICIiItIkRb8sUVMaGoCtW4EDB4CgIGDyZOA3Px6rCkIAu3YBu3cDPj6yHZ07K12VbQ4cALZtA1xcgAceAHr2VLoi26SmAps2yfvjxgG33qpsPbY6fRpYvx6orgZGjwaGDlW6Itvk5ABr1gBXrgBxccAf/wjodEpXZbWCigKsOb4GeeV5GBI6BPfeci/0OvUdN5fWlGLNz2uQdSULUZ2icH+f++Fo17zvjLupVFUBX34JpKcDvXsDEycCbm5KV2U9oxHYuBH46SegWzdg0iS5L1GI+v6i1So1FfjqK6C4GPjxR7mxV6PMTLmBv3QJOHIEWL1aBiO1ycuTtWdnA8eOAZ99JldOtTEYgJUrZYA4fVreNxiUrsp6RqOs/dgx2SerVwO5uUpXZT0hZO1Hjsh1ZM0auc6o0Pr09fjx/I8orirGhvQNSLmUonRJNtl6eit2nd2FK9VX8PXpr3Eg54DSJdkmMRHYvl2G6+3b5WM1OngQ2LxZtmPXLjk4oCCGoPZSVgbU1gKhoYC7O1BUpHRFtikrAyoq5OiPj49shxp/l62xHaGhgL+/DA7V1UpXZb2KCnnr1EneysvlTW2qq4HSUtkXoaGyTWVlSldlPZNJrhM+PnIdqahQZygFUFRZBHdHd4R6hqK2oRaGGnW243L1ZTjYOaCzV2fUN9SjrFaFf1eAXD9Mpv8beS8tVbIa25WVAfX1sh2OjkBJiaLlMAS1lz59gPBwICNDDo0PG6Z0Rbbp0QPo1Qs4dUruuIYPB+zslK7KemFhQGQkcPYscPkyEBMDqPHbwQMCgAED5MhWXp48FRYYqHRV1vP0BG6/XfbF2bNA376yj9TGzk6uE9XVch3p1Uu1p1mHdRkGHXTIKMpAuE84+vj3Ubokm9wecjs8HD1wvPA4QjxDEBkQqXRJtrntNrm+//wz0LGjek979+sHhIQAx4/LAYEW/GB6a+DPZjShzX42o7BQDo17e8tQpMLrBADIYcyMDHk+ul8/QK/SLF1RITcojo5A//6Ag4PSFdmmpkaeRgJkO5ydla3HVnV1sh1Go/y7cndXuiLbmEzy76qyUl67oeD1Di0hhEB6UTpKa0rRo0MP+Lv5K12SzTJLMlFQUYCuPl0R7BmsdDm2y84GLlyQIaKJ39FUjdxcebDj79/qBwn87bBWwN8OIyIiUh/+dhgRERFRMzAEERERkSYxBBEREZEmtejLEquqqpCTkwPjb75fpV+/fi0qioiIiKit2RSCioqKMG3aNOzYsaPJ5xsaGlpUFBEREVFbs+l02MyZM1FaWorDhw/DxcUF3377LT7//HN0794dWxX+9kciIiKi5rBpJOj777/Hli1bEB0dDb1ejy5duuCPf/wjPD09kZCQgFGjRrV2nUREREStyqaRoMrKSvj7yy/O8vHxQdH//gREZGQkUlLU+fsyREREpC02haCePXvi9OnTAID+/fvjk08+QW5uLj7++GN06tSpVQskIiIiags2nQ6bMWMGLl26BACYP38+7r77bqxZswaOjo5YvXp1a9ZHRERE1CZa5WczqqqqcOrUKXTu3Bl+fn6tUZei+LMZRERE6tMuP5uxYMECVFVVmR+7urritttug5ubGxYsWGDLIomIiIjalU0jQXZ2drh06ZL54uhGJSUl8Pf3V/33BHEkiIiISH3aZSRICAGdTnfV9GPHjsHX19eWRRIRERG1K6sujPbx8YFOp4NOp0OPHj0sglBDQwMqKirw17/+tdWLJCIiImptVoWgxYsXQwiBRx55BK+++iq8vLzMzzk6OiIsLAyDBw9u9SKJiIiIWptVIWjq1KkAgPDwcAwdOhT29i36/VUiIiIixdh0TdDw4cNx/vx5/OMf/8DEiRNRWFgIANixYwfS09NbtUAiIiKitmBTCPrhhx8QGRmJw4cPY9OmTaioqAAgL4yeP39+qxZIRERE1BZsCkFz5szB66+/jl27dsHR0dE8fcSIETh06FCrFUdERETUVmwKQcePH8ef//znq6b7+/ujuLi4xUURERERtTWbQpC3t7f5t8N+LTU1FcHBwS0uioiIiKit2RSCJkyYgNmzZyM/Px86nQ4mkwkHDhzAiy++iClTprR2jUREREStzqYQ9Oabb+KWW25BaGgoKioq0Lt3b9x5550YMmQI/vGPf7R2jUREREStrkW/In/hwgUcP34clZWVuPXWWxEREdGatSmGvx1GRESkPtbuv23+tsOVK1fi/fffx5kzZwAA3bt3x8yZM/HYY4/ZukgiIiKidmNTCJo3bx7ee+89TJ8+3fwzGUlJSXj++eeRk5ODBQsWtGqRRERERK3NptNhHTt2xIcffoiJEydaTP/yyy8xffp01X9MnqfDiIiI1Mfa/bdNF0bX1dUhOjr6qulRUVGor6+3ZZFERERE7cqmEPTQQw9h+fLlV03/9NNPMXny5BYXRURERNTWmn1N0KxZs8z3dTodPvvsM3z33Xe4/fbbAQCHDx9GTk4OvyeIiIiIVKHZISg1NdXicVRUFAAgKysLAODn5wc/Pz/+ivz1ZGYC6emAjw8wdCjg4KB0RbbJyQFSUwE3N+COOwBnZ6Ursk1+PnDkCODoKPvDw0Ppimxz+TKQlCTvDx4M+PoqW4+tysuBAwcAoxEYNAgIDFS6ItvU1AD79wOVlcCAAUCXLkpXZJO6hjocuHAAV6qvoI9/H/To0EPpkmxiEiYcungIBRUFiPCNQGRApNIl2UQIgeRLybhguIAQzxBEB0VDp9MpXZZtTpwAzpwB/P2B228H7OwUK6XZIWjPnj1tWcfv37lzwPvvyx2vgwNQVATcf7/SVVmvsBB47z0gO1v+4WZnA2r8WoSyMuCDD4CTJwG9XobT55+X99WkthZYulSGUgBITgZmzwacnJSty1omE7BihQwPJhNw8CDw0kuAGj+Y8MUXwI4dQEMDEBYGzJ0LBAQoXZXVtpzagvXp61FvqkeAewBmD52NcJ9wpcuy2u6s3ViVtgo19TXwdfHFzNtnqjIIHc49jI+OfoSK2gq4ObrhqYFPYUjoEKXLsl56OrB4MVBSIg+gy8uBu+9WrByVbfFV7OxZoKAA6NdPdnxamtIV2SY7W44E9esnRxzS0uTGXm1yc2UwveUWoFMn4NQpuTKqTVERkJUld7ZhYfJ+UZHSVVmvrEwG0k6dZJ9kZ8s+UpuGBrlO+PjIdSQnBzh/XumqbJKanwoXBxf0C+iHwspCnL1yVumSbHKi6ARMMKF/YH9crrmMrCtZSpdkk8ySTJQby9EvsB8q6ypxpuSM0iXZ5pdfZADq3x8QQo4KKYghqL0EBMij2pMn5c42XH1HVABkO/z8gIwMubMND1d0KNNmHTvKW2YmcPEiEBQkT++pjY+PHFLOzpY3f385TW3c3WUfXLwo+6Sxf9TGzk6uE8XFch3x81PlKBAAdPXpivLacpwsPgkPRw8EuKuzHV28u6C+oR4ni0/Cxd4FAW7qbEeQRxAc9A44WXwSdjo7dPLopHRJtgkMBFxd5b7QaFT8dHGLfjbj96pNvidICHm9Q3Ky3FGNHq3ea1BSUmRbPD1lOzp0ULoi25w8CezZI08d/elPchRCjc6dA777Tt4fOVK9AfvSJeCbb+QpvthYoHdvpSuyTUkJsG2bHN0aOhS47TalK7JJeW05tmduR0FlAaKCojA0dKgqr0Gpqa/B9jPbcdFwEX38+2BE+Ajodeo7/q831WPnLzuReTkT3X26Iz4iHg52Kryu1GSS293jx4GQEGDUKMDFpdUWb+3+myGoCfyyRCIiIvVply9LJCIiIlI7hiAiIiLSJIYgIiIi0iSGICIiItIkhiAiIiLSJIYgIiIi0iSGICIiItIkxUPQsmXLEBYWBmdnZ8TExODIkSPXnDc9PR333XcfwsLCoNPpsHjx4ibny83NxYMPPogOHTrAxcUFkZGR+Omnn9qoBURERKRGioag9evXY9asWZg/fz5SUlLQv39/xMfHo7CwsMn5q6qq0LVrVyxcuBCB1/iF6StXrmDo0KFwcHDAjh07kJGRgXfffRc+avwpASIiImozin5jdExMDAYOHIilS5cCAEwmE0JDQzF9+nTMmTPnuq8NCwvDzJkzMXPmTIvpc+bMwYEDB7Bv3z6b6+I3RhMREamPar4x2mg0Ijk5GXFxcf9XjF6PuLg4JCUl2bzcrVu3Ijo6Gvfffz/8/f1x6623YsWKFa1RMhEREf2OKBaCiouL0dDQgIDf/MJyQEAA8vPzbV7u2bNnsXz5cnTv3h07d+7EU089heeeew6ff/75NV9TW1uLsrIyixsRERH9vtkrXUBrM5lMiI6OxptvvgkAuPXWW3HixAl8/PHHmDp1apOvSUhIwKuvvtqeZRIREZHCFBsJ8vPzg52dHQoKCiymFxQUXPOi5+bo1KkTevfubTGtV69eyMnJueZr5s6dC4PBYL5duHDB5vcnIiIidVAsBDk6OiIqKgqJiYnmaSaTCYmJiRg8eLDNyx06dChOnz5tMS0zMxNdunS55mucnJzg6elpcSMiIqLfN0VPh82aNQtTp05FdHQ0Bg0ahMWLF6OyshLTpk0DAEyZMgXBwcFISEgAIC+mzsjIMN/Pzc1FWloa3N3dERERAQB4/vnnMWTIELz55psYP348jhw5gk8//RSffvqpMo0kIiKim5KiH5EHgKVLl+Kdd95Bfn4+BgwYgA8//BAxMTEAgNjYWISFhWH16tUAgOzsbISHh1+1jOHDh2Pv3r3mx9u2bcPcuXNx5swZhIeHY9asWXj88cebXRM/Ik9ERKQ+1u6/FQ9BNyOGICIiIvVRzfcEERERESmJIYiIiIg0iSGIiIiINIkhiIiIiDSJIYiIiIg0iSGIiIiINIkhiIiIiDSJIYiIiIg0iSGIiIiINIkhiIiIiDSJIYiIiIg0iSGIiIiINIkhiIiIiDSJIag9VVcDmZlAYaHSlbSM0QicOQPk5SldScs0NABZWUBODiCE0tXYzmQCzp2TN5NJ6WpsJ4Tsi6wsoL5e6WpaJK88D2dKzsDYYFS6lBYprCxEZkkmquuqlS6lRS5XX8bp4tOoMFYoXUrLGAzA6dPyXzWrrJTtKClRuhLYK12AZpSVAR9+CGRkAJ6ewOOPA1FRSldlvZoaYNkyICUFcHUFJk8GYmOVrsp69fXAypXA/v2AvT0wbhwwZozSVVlPCODLL4HvvpOPR44EJk0CdDpl67LFtm3Apk2yb4YOBR57TPaNyvyQ/QO++PkLVNVV4bZOt+GZQc/A2d5Z6bKslpyXjM9SPoOh1oDeHXvjuZjn4OnkqXRZVjtVfAofHf0IxVXFCPcOx4zbZ8DfzV/psqyXkwMsWQLk5gJBQcD06UCXLkpXZb2iIuCDD4CzZ4EOHYCnnwZ69VKsHI4EtZfUVHkLDgYuXwa2b1e6IttkZACHDgGBgUBVFbBlizpHH86dA/btA7y95ePt24EKFR4lFhQAiYmAs7O8JSYC+flKV2W9igrgm2/kfW9v2Tdnzypaki1MwoSvT3+NqroqBLoH4tDFQ0gvTFe6LJtsP7MdJdUlCPYIRmp+KlIupShdkk0SzybiYtlFhHiGIKMoA0dyjyhdkm0OHJBnEkJD5Uj8/v1KV2SbI0eA9HQgJEQGut27FS1HfYdZamVvD+j1MjjU1wNOTkpXZBt7e3mrrJSnxZyc1DnqYG8P2NnJU5S1tYC7u3ysNo39UVMjHzs5qXL0BHZ2su7a2v+7r8J26KCDk50TjA1GVNZVwl5vD3u9+toBAE52Tqg31aOqrgp66FXbDgc7B5iECVV1VdDpdKpth3l9qKqS/zo4KFdLS9jby31GVZU8gHZ0VLQcjgS1l6goedqothaIiJCnX9SoTx8gPl5eTxMSAkycqM4QFBYGjB0rg6mvr2yHi4vSVVnPzw+47z55atLVVd7v2FHpqqzn4iL7wNdX9smYMUB4uNJVWU2n02FS5CSEeIagwdSA+Ih49PXvq3RZNhnXaxy6+3ZHbUMtYsNiER0UrXRJNhnVfRQi/SNRU1+DIaFDMDR0qNIl2WbECGDgQBkeoqPlYzUaMkSe7q6pAfr2BUaNUrQcnRBqviK0bZSVlcHLywsGgwGenq14DtxkAkpLATc39Y4EAfI6lNJSefpFjcHh1wwGeWTi5qZ0JS1TXi7/9fBQto6WqqyUI6VeXkpX0iLVddWoqa+Bt7M3dGo8SPhftfW1qKyrhLezN/Q69R4z1zXUodxYDi8nL9jpVTji26i+Xm6zvLxUOVJq1tAg2+Hu3uojQdbuvxmCmtBmIYiIiIjajLX7b/VGeyIiIqIWYAgiIiIiTWIIIiIiIk1iCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNsle6AM1oaAC2bgUOHACCgoDJk4GAAKWrsp4QwK5dwO7dgI+PbEfnzkpXZZsDB4Bt2wAXF+CBB4CePZWuyDapqcCmTfL+uHHArbcqW4+NThefxvr09aiuq8boHqMxtPNQpUuySY4hB2t+XoMr1VcQ1y0Of+z6R+h0OqXLsl5BAbBmDZCXBwwZAtx7L6BX4XFzaalsR1YWEBUF3H8/4OiodFXWq6oCvvwSSE8HevcGJk4E3NyUrsp6RiOwcSPw009At27ApElyX6IQFf5Fq1RqKvDVV0BxMfDjj8D69UpXZJvMTLlBuXQJOHIEWL1aBiO1ycuTtWdnA8eOAZ99JldOtTEYgJUrgdOn5W3lSjlNZYwNRqxMXYlj+ceQXZqN1WmrkVuWq3RZVhNCYHXaahzJPYJLFZew5uc1yCzJVLos26xfL7dVxcXAhg1ASorSFdlm61Z54HblCvD11/LgR40SE4Ht22U7tm+Xj9Xo4EFg82bZjl27ZP8oiCGovZSVAbW1QGgo4O4OFBUpXZFtysqAigo5+uPjI9thMildlfUa2xEaCvj7y+BQXa10VdarqJC3Tp3krbxc3lSmuq4apTWl8HfzR6hXKCqMFSirLVO6LKuZhAlFlUXwcfFBZ6/OqDBWwFCrvlAKQK7b7u5yHamtVWW4BgBcvgw4OMhtVn29XPfVqLRUbmsbR95LS5WsxnZlZbIfOneWI3IlJYqWwxDUXvr0AcLDgYwMQKcDhg1TuiLb9OgB9OoFnDolQ8Pw4YCdndJVWS8sDIiMBM6elRvJmBjA01PpqqwXEAAMGCBHtvLy5KmwwEClq7Kap5Mnbg+5HZerL+PslbPo698XYd5hSpdlNTu9HYaHDUd1XTVOFZ9Cr4690LODSk+zDhsmt1UZGXLb1aeP0hXZ5vbbAQ8P4PhxICRErvdqdNttcn3/+WegY0fVnvZGv36yH44flyF78GBFy9EJocZzGW2rrKwMXl5eMBgM8GzNHWNhoTyd5O0tNyhqvE4AkMOYGRnyfHS/fuq8TgCQIyg//yyPRvr3l0eLalRTI0/pAbIdzs7K1mOjuoY6HCs4BmODEf0C+sHd0V3pkmxiEib8XPAzKo2V6N2xN3xclLveoUWEkNeflJbKgx9/f6Ursl1mprzGqWtXIDhY6Wpsl50NXLggQ0R4uNLV2C43Vx6A+vu3+rWY1u6/b4oQtGzZMrzzzjvIz89H//79sWTJEgwaNKjJedPT0zFv3jwkJyfj/PnzeP/99zFz5sxrLnvhwoWYO3cuZsyYgcWLFzernjYLQURERNRmrN1/K34Iv379esyaNQvz589HSkoK+vfvj/j4eBQWFjY5f1VVFbp27YqFCxci8AbD/kePHsUnn3yCfv36tUXpREREpGKKh6D33nsPjz/+OKZNm4bevXvj448/hqurK/75z382Of/AgQPxzjvvYMKECXBycrrmcisqKjB58mSsWLECPgp+/I6IiIhuToqGIKPRiOTkZMTFxZmn6fV6xMXFISkpqUXLfuaZZzBq1CiLZRMRERE1UvTLEouLi9HQ0ICA33xpYEBAAE6dOmXzctetW4eUlBQcPXq0WfPX1taitrbW/LhMrR+hJCIiomZT/HRYa7tw4QJmzJiBNWvWwLmZn5JJSEiAl5eX+RYaGtrGVRIREZHSFA1Bfn5+sLOzQ0FBgcX0goKCG170fC3JyckoLCzEbbfdBnt7e9jb2+OHH37Ahx9+CHt7ezQ0NFz1mrlz58JgMJhvFy5csOm9iYiISD0UDUGOjo6IiopC4q++/ttkMiExMRGDbfwCpbvuugvHjx9HWlqa+RYdHY3JkycjLS0Ndk18sZ+TkxM8PT0tbkRERPT7pvgPqM6aNQtTp05FdHQ0Bg0ahMWLF6OyshLTpk0DAEyZMgXBwcFISEgAIC+mzsjIMN/Pzc1FWloa3N3dERERAQ8PD/Tt29fiPdzc3NChQ4erphMREZF2KR6CHnjgARQVFWHevHnIz8/HgAED8O2335ovls7JyYH+V99InJeXh1t/9XXhixYtwqJFizB8+HDs3bu3vcsnIiIilbopvjH6ZsNvjCYiIlIf1X1jNBEREZESGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJPslS5AUzIzgfR0wMcHGDoUcHBQuiLb5OQAqamAmxtwxx2As7PSFdkmPx84cgRwdJT94eGhdEW2uXwZSEqS9wcPBnx9la3HVuXlwIEDgNEIDBoEBAYqXZFtamqA/fuBykpgwACgSxelK7JNXZ3sjytXgD59gB49lK7INiYTcOgQUFAAREQAkZFKV2QbIYDkZODCBSAkBIiOBnQ6pauyzYkTwJkzgL8/cPvtgJ2dYqUwBLWXc+eA99+XO14HB6CoCLj/fqWrsl5hIfDee0B2tvzDzc4GHntM6aqsV1YGfPABcPIkoNfLcPr88/K+mtTWAkuXylAKyI3k7NmAk5OydVnLZAJWrJDhwWQCDh4EXnoJ8PRUujLrffEFsGMH0NAAhIUBc+cCAQFKV2W9LVuA9euB+npZ/+zZQHi40lVZb/duYNUqGU59fYGZM9UZhA4fBj76CKiokAegTz0FDBmidFXWS08HFi8GSkrkAXR5OXD33YqVo7ItvoqdPSuPRPr1kx2flqZ0RbbJzpYjQf36yQ1KWprc2KtNbq4MprfcAnTqBJw6JVdGtSkqArKy5M42LEzeLypSuirrlZXJQNqpk+yT7GzZR2rT0CDXCR8fuY7k5ADnzytdlW1SUwEXF9mOwkK5DVOjEydksO7fX46aZmUpXZFtMjPlNqpfPznKeOaM0hXZ5pdfZADq31+Obp04oWg5DEHtJSBAHtWePCn/kNV4RAXIdvj5ARkZcmcbHq7oUKbNOnaUt8xM4OJFIChIHl2pjY+PHFLOzpY3f385TW3c3WUfXLwo+6Sxf9TGzk6uE8XFch3x81PnKBAAdO0qt1UnT8pTxWptR5cucjTr5EkZ6tTajqAgeRbh5En5d9apk9IV2SYwEHB1le0wGhU/XawTQghFK7gJlZWVwcvLCwaDAZ6tNRwvhDy/npwsd1SjR6v3GpSUFNkWT0/Zjg4dlK7INidPAnv2yFNHf/qTejcq584B330n748cqd6AfekS8M038hRfbCzQu7fSFdmmpATYtk2Obg0dCtx2m9IV2aa8HNi+XY5gR0XJtqjxGpSaGtmOixfltU0jRqjvtDcgg9zOnfIgoXt3ID5endeVmkxyu3v8uLy2adQoGU5bibX7b4agJrRJCCIiIqI2Ze3+W4VxmIiIiKjlGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJMYgoiIiEiTGIKIiIhIkxiCiIiISJNuihC0bNkyhIWFwdnZGTExMThy5Mg1501PT8d9992HsLAw6HQ6LF68+Kp5EhISMHDgQHh4eMDf3x/33nsvTp8+3YYtICIiIrVRPAStX78es2bNwvz585GSkoL+/fsjPj4ehYWFTc5fVVWFrl27YuHChQgMDGxynh9++AHPPPMMDh06hF27dqGurg4jR45EZWVlWzblxqqrgcxM4BptUw2jEThzBsjLU7qSlmloALKygJwcQAilq7GdyQScOydvJpPS1dhOCNkXWVlAfb3S1bRMXp5cR4xGpStpmcJCuc2qrla6kpa5fBk4fRqoqFC6kpYxGGQ7DAalK2mZykrZjpISpSuBTghlt/4xMTEYOHAgli5dCgAwmUwIDQ3F9OnTMWfOnOu+NiwsDDNnzsTMmTOvO19RURH8/f3xww8/YNiwYTesqaysDF5eXjAYDPD09Gx2W26wUODDD4GMDMDTE3j8cSAqqnWW3Z5qaoBly4CUFMDVFZg8GYiNVboq69XXAytXAvv3A/b2wLhxwJgxSldlPSGAtWuB776Tj0eOBCZNAnQ6ZeuyxX//C2zaJPtm6FDgscdk36jNDz8AX3wBVFUBt90GPPMM4OysdFXWS04GPvtM7nB79waee05uu9Tm1Cngo4+A4mIgPByYMQPw91e6Kuvl5ABLlgC5uUBQEDB9OtCli9JVWa+oCPjgA+DsWaBDB+Dpp4FevVpt8dbuvxUdCTIajUhOTkZcXJx5ml6vR1xcHJKSklrtfQz/m5p9fX2bfL62thZlZWUWt1aXmipvwcHyqGT79tZ/j/aQkQEcOgQEBsqN/JYt6hx9OHcO2LcP8PaWj7dvV+dRYkEBkJgod7LOzvJ+fr7SVVmvogL45ht539tb9s3Zs4qWZBOTCfj6a7luBAbKdSU9XemqbLN9uzxSDw6W266UFKUrsk1iInDxIhASIrdf17nc4qZ24IAclQsNlaOM+/crXZFtjhyR60RIiAx0u3crWo6iIai4uBgNDQ0ICAiwmB4QEID8VtqQm0wmzJw5E0OHDkXfvn2bnCchIQFeXl7mW2hoaKu8twV7e0CvlxvH+nrAyan136M92NvLW2WlHOp3clLnqIO9PWBnJ4f5a2sBBwf5WG0a+6OmRt4aH6uNnZ2su7ZW9ola26HTyXXCaJTriFrbAch21NfLbZZer952ODjIcFpVJftHre1orLuqSv7r4KBcLS1hby/7oapK9oujo6LlKH5NUFt75plncOLECaxbt+6a88ydOxcGg8F8u3DhQusXEhUlTxvV1gIREfL0ixr16QPEx8vraUJCgIkT1RmCwsKAsWPlxt3XV7bDxUXpqqzn5wfcd588NenqKu937Kh0VdZzcZF94Osr+2TMGHnqQm10Onk6MiREriPx8cA1Dr5ueuPGAd27y21WbCwQHa10RbYZNQqIjJQHCUOGyFOtajRiBDBwoAwP0dHysRo19kFNjVw3Ro1StBxFrwkyGo1wdXXFxo0bce+995qnT506FaWlpdiyZct1X3+ja4KeffZZbNmyBT/++CPCrdigtsk1QYBMvaWlgJubekeCAHkdSmmpPP2ixuDwawaDPDJxc1O6kpYpL5f/engoW0dLVVbK0QcvL6UraZnqarmR9/ZW50FCo9pa2Sfe3jKcqlVdnVxHvLzUOeLbqL5ebrO8vNQ7ogXIAwSDAXB3b/WRIFVdE+To6IioqCgkJiaap5lMJiQmJmLw4ME2L1cIgWeffRabN2/G999/b1UAalONow5qDkCA3Kj7+Kg/AAFyY6L2AATI8KP2AATIvlB7AALkuuHjo+4ABMhtVePonJo5OMh2qDkAATL4dOig7gAEyH7w9VX8VBgAKP4/OWvWLEydOhXR0dEYNGgQFi9ejMrKSkybNg0AMGXKFAQHByMhIQGAHD3KyMgw38/NzUVaWhrc3d0REREBQJ4CW7t2LbZs2QIPDw/z9UVeXl5w+T3suImIiKjFFP+IPAAsXboU77zzDvLz8zFgwAB8+OGHiImJAQDExsYiLCwMq1evBgBkZ2c3ObIzfPhw7N27FwCgu8bR16pVq/Dwww/fsJ42Ox1GREREbcba/fdNEYJuNgxBRERE6qOqa4KIiIiIlMIQRERERJrEEERERESaxBBEREREmsQQRERERJrEEERERESaxBBEREREmsQQRERERJrEEERERESapPhvh92MGr9Eu6ysTOFKiIiIqLka99vN/TEMhqAmlJeXAwBCQ0MVroSIiIisVV5eDi8vrxvOx98Oa4LJZEJeXh48PDyu+WOstiorK0NoaCguXLjwu/xdMrZP/X7vbfy9tw/4/beR7VO/tmqjEALl5eUICgqCXn/jK344EtQEvV6PkJCQNn0PT0/P3+0fN8D2/R783tv4e28f8PtvI9unfm3RxuaMADXihdFERESkSQxBREREpEkMQe3MyckJ8+fPh5OTk9KltAm2T/1+7238vbcP+P23ke1Tv5uljbwwmoiIiDSJI0FERESkSQxBREREpEkMQURERKRJDEFERESkSQxB17Fs2TKEhYXB2dkZMTExOHLkyHXn37BhA2655RY4OzsjMjIS33zzjcXzmzZtwsiRI9GhQwfodDqkpaVdtYzY2FjodDqL21//+leLeXJycjBq1Ci4urrC398ff/vb31BfX6+KNmZnZ1/Vvsbbhg0bzPM19fy6desUbV9dXR1mz56NyMhIuLm5ISgoCFOmTEFeXp7FMi5fvozJkyfD09MT3t7eePTRR1FRUWExz88//4w777wTzs7OCA0Nxdtvv21125RqY3Z2Nh599FGEh4fDxcUF3bp1w/z582E0Gi3maaoPDx06dNO3DwDCwsKuqn3hwoUW87RWH7Z3+/bu3XvNdfDo0aMAWrf/WruNAPDKK6/glltugZubG3x8fBAXF4fDhw9bzNOe62F7t0/N62Bz2ge04zooqEnr1q0Tjo6O4p///KdIT08Xjz/+uPD29hYFBQVNzn/gwAFhZ2cn3n77bZGRkSH+8Y9/CAcHB3H8+HHzPP/617/Eq6++KlasWCEAiNTU1KuWM3z4cPH444+LS5cumW8Gg8H8fH19vejbt6+Ii4sTqamp4ptvvhF+fn5i7ty5qmhjfX29RdsuXbokXn31VeHu7i7Ky8vN8wEQq1atspivurpa0faVlpaKuLg4sX79enHq1CmRlJQkBg0aJKKioiyWc/fdd4v+/fuLQ4cOiX379omIiAgxceJE8/MGg0EEBASIyZMnixMnTogvv/xSuLi4iE8++cSq9inVxh07doiHH35Y7Ny5U2RlZYktW7YIf39/8cILL5jnOXfunAAgdu/ebdGHRqPxpm+fEEJ06dJFLFiwwKL2iooK8/Ot1YdKtK+2tvaqdfCxxx4T4eHhwmQyCSFar//aoo1CCLFmzRqxa9cukZWVJU6cOCEeffRR4enpKQoLC83ztNd6qET71LwONqd9QrTfOsgQdA2DBg0SzzzzjPlxQ0ODCAoKEgkJCU3OP378eDFq1CiLaTExMeLJJ5+8at7GP85rhaAZM2Zcs65vvvlG6PV6kZ+fb562fPly4enpKWpra2/QKktKtfG3BgwYIB555BGLaQDE5s2bb9yI62jL9jU6cuSIACDOnz8vhBAiIyNDABBHjx41z7Njxw6h0+lEbm6uEEKIjz76SPj4+Fj01+zZs0XPnj1V0camvP322yI8PNz82Jr+vx6l2telSxfx/vvvX/M1rdWHN0P/GY1G0bFjR7FgwQLztNbqPyHap40Gg8G8wxeifddDJdrXFDWvg021r73WQZ4Oa4LRaERycjLi4uLM0/R6PeLi4pCUlNTka5KSkizmB4D4+Phrzn89a9asgZ+fH/r27Yu5c+eiqqrK4n0iIyMREBBg8T5lZWVIT09v9nso3cZGycnJSEtLw6OPPnrVc8888wz8/PwwaNAg/POf/4Sw4iut2qt9BoMBOp0O3t7e5mV4e3sjOjraPE9cXBz0er15uDcpKQnDhg2Do6OjxfucPn0aV65cuenbeK15fH19r5o+duxY+Pv744477sDWrVtv0CJLSrdv4cKF6NChA2699Va88847FqecW6MPlW5fo61bt6KkpATTpk276rmW9B/QPm00Go349NNP4eXlhf79+5uX0R7roVLta4pa18Hrta+t10GAP6DapOLiYjQ0NFgEDQAICAjAqVOnmnxNfn5+k/Pn5+db9d6TJk1Cly5dEBQUhJ9//hmzZ8/G6dOnsWnTpuu+T+NzzaVkG39t5cqV6NWrF4YMGWIxfcGCBRgxYgRcXV3x3Xff4emnn0ZFRQWee+65Zi23PdpXU1OD2bNnY+LEieYfAMzPz4e/v7/FfPb29vD19TUvJz8/H+Hh4Ve9T+NzPj4+N3Ubf+uXX37BkiVLsGjRIvM0d3d3vPvuuxg6dCj0ej3+85//4N5778XXX3+NsWPH3vTte+6553DbbbfB19cXBw8exNy5c3Hp0iW899575vdpaR/eLP23cuVKxMfHW/xodGv0X1u3cdu2bZgwYQKqqqrQqVMn7Nq1C35+fuZltMd6qFT7fkuN6+CN2tce6yDAEHTTeeKJJ8z3IyMj0alTJ9x1113IyspCt27dFKys9VVXV2Pt2rV4+eWXr3ru19NuvfVWVFZW4p133ml2CGprdXV1GD9+PIQQWL58udLltInmtDE3Nxd333037r//fjz++OPm6X5+fpg1a5b58cCBA5GXl4d33nnHqp1oW7pe+35de79+/eDo6Ignn3wSCQkJin/Nf3M1p/8uXryInTt34quvvrKYrob++8Mf/oC0tDQUFxdjxYoVGD9+PA4fPnxV+FGr5rZPrevgjdrXXusgT4c1wc/PD3Z2digoKLCYXlBQgMDAwCZfExgYaNX8zRUTEwNAJv3rvU/jc811M7Rx48aNqKqqwpQpU244b0xMDC5evIja2tpmLbst29e4czl//jx27dplcYQdGBiIwsJCi/nr6+tx+fJl83LU0IfXa2OjvLw8/OEPf8CQIUPw6aef3rDemJgY899xcyjdvt/WXl9fj+zs7Ou+T+NzzXEztG/VqlXo0KFDs3aK1vYf0LZtdHNzQ0REBG6//XasXLkS9vb2WLlypXkZ7bEeKtW+RmpeB5vTvt/W3trrIMAQ1CRHR0dERUUhMTHRPM1kMiExMRGDBw9u8jWDBw+2mB8Adu3adc35m6vxI+adOnUyv8/x48ctVvDGjVzv3r2bvdyboY0rV67E2LFj0bFjxxvOm5aWBh8fn2YfAbRV+xp3LmfOnMHu3bvRoUOHq5ZRWlqK5ORk87Tvv/8eJpPJHGgHDx6MH3/8EXV1dRbv07Nnz2YP4SrZRkAefcbGxiIqKgqrVq2CXn/jTUlaWpr577g5lGxfU7Xr9XrzUWpr9KHS7RNCYNWqVZgyZQocHBxuWK+1/Qe073bGZDKZD5Laaz1Uqn2AutfBpvy2fU3V3trrIAB+RP5a1q1bJ5ycnMTq1atFRkaGeOKJJ4S3t7f5U1kPPfSQmDNnjnn+AwcOCHt7e7Fo0SJx8uRJMX/+/Ks+FlhSUiJSU1PF9u3bBQCxbt06kZqaKi5duiSEEOKXX34RCxYsED/99JM4d+6c2LJli+jatasYNmyYeRmNH5EfOXKkSEtLE99++63o2LGjzR+Rb+82Njpz5ozQ6XRix44dV9W1detWsWLFCnH8+HFx5swZ8dFHHwlXV1cxb948RdtnNBrF2LFjRUhIiEhLS7P46OavP6Fw9913i1tvvVUcPnxY7N+/X3Tv3t3io7mlpaUiICBAPPTQQ+LEiRNi3bp1wtXV1eaPyLd3Gy9evCgiIiLEXXfdJS5evGgxT6PVq1eLtWvXipMnT4qTJ0+KN954Q+j1evHPf/7zpm/fwYMHxfvvvy/S0tJEVlaW+OKLL0THjh3FlClTzO/TWn2o1N+oEELs3r1bABAnT568qq7W6r+2aGNFRYWYO3euSEpKEtnZ2eKnn34S06ZNE05OTuLEiRPm5bTXeqhE+9S8Djanfe25DjIEXceSJUtE586dhaOjoxg0aJA4dOiQ+bnhw4eLqVOnWsz/1VdfiR49eghHR0fRp08fsX37dovnV61aJQBcdZs/f74QQoicnBwxbNgw4evrK5ycnERERIT429/+ZvE9QUIIkZ2dLe655x7h4uIi/Pz8xAsvvCDq6upU0cZGc+fOFaGhoaKhoeGqmnbs2CEGDBgg3N3dhZubm+jfv7/4+OOPm5y3PdvX+JHTpm579uwxz1dSUiImTpwo3N3dhaenp5g2bZrFdyAJIcSxY8fEHXfcIZycnERwcLBYuHCh1W1Tqo3X6uNfH1OtXr1a9OrVS7i6ugpPT08xaNAgsWHDBlW0Lzk5WcTExAgvLy/h7OwsevXqJd58801RU1Nj8T6t1YdK/I0KIcTEiRPFkCFDmqypNfuvtdtYXV0t/vznP4ugoCDh6OgoOnXqJMaOHSuOHDlisYz2XA/bu31qXgeb0772XAd1QljxuWMiIiKi3wleE0RERESaxBBEREREmsQQRERERJrEEERERESaxBBEREREmsQQRERERJrEEERERESaxBBEREREmsQQRERERJrEEERERESaxBBERDeV8vJyTJ48GW5ubujUqRPef/99xMbGYubMmQCAf//734iOjoaHhwcCAwMxadIkFBYWml+/d+9e6HQ67Ny5E7feeitcXFwwYsQIFBYWYseOHejVqxc8PT0xadIkVFVVmV8XGxuL6dOnY+bMmfDx8UFAQABWrFiByspKTJs2DR4eHoiIiMCOHTvMr2loaMCjjz6K8PBwuLi4oGfPnvjggw/a7f+KiFqGIYiIbiqzZs3CgQMHsHXrVuzatQv79u1DSkqK+fm6ujq89tprOHbsGL7++mtkZ2fj4Ycfvmo5r7zyCpYuXYqDBw/iwoULGD9+PBYvXoy1a9di+/bt+O6777BkyRKL13z++efw8/PDkSNHMH36dDz11FO4//77MWTIEKSkpGDkyJF46KGHzOHJZDIhJCQEGzZsQEZGBubNm4eXXnoJX331VZv+HxFRK7H6J1eJiNpIWVmZcHBwsPi169LSUuHq6ipmzJjR5GuOHj0qAJh/IXzPnj0CgNi9e7d5noSEBAFAZGVlmac9+eSTIj4+3vx4+PDh4o477jA/rq+vF25ubuKhhx4yT7t06ZIAIJKSkq7ZhmeeeUbcd999zW80ESmGI0FEdNM4e/Ys6urqMGjQIPM0Ly8v9OzZ0/w4OTkZY8aMQefOneHh4YHhw4cDAHJyciyW1a9fP/P9gIAAuLq6omvXrhbTfn0a7bevsbOzQ4cOHRAZGWnxGgAWr1u2bBmioqLQsWNHuLu749NPP72qFiK6OTEEEZFqVFZWIj4+Hp6enlizZg2OHj2KzZs3AwCMRqPFvA4ODub7Op3O4nHjNJPJdM3XNPU6nU4HAObXrVu3Di+++CIeffRRfPfdd0hLS8O0adOuqoWIbk72ShdARNSoa9eucHBwwNGjR9G5c2cAgMFgQGZmJoYNG4ZTp06hpKQECxcuRGhoKADgp59+UqzeAwcOYMiQIXj66afN07KyshSrh4isw5EgIrppeHh4YOrUqfjb3/6GPXv2ID09HY8++ij0ej10Oh06d+4MR0dHLFmyBGfPnsXWrVvx2muvKVZv9+7d8dNPP2Hnzp3IzMzEyy+/jKNHjypWDxFZhyGIiG4q7733HgYPHozRo0cjLi4OQ4cORa9eveDs7IyOHTti9erV2LBhA3r37o2FCxdi0aJFitX65JNPYty4cXjggQcQExODkpISi1EhIrq56YQQQukiiIiupbKyEsHBwXj33Xfx6KOPKl0OEf2O8JogIrqppKam4tSpUxg0aBAMBgMWLFgAAPif//kfhSsjot8bhiAiuuksWrQIp0+fhqOjI6KiorBv3z74+fkpXRYR/c7wdBgRERFpEi+MJiIiIk1iCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNYggiIiIiTWIIIiIiIk1iCCIiIiJNYggiIiIiTfr/G80NRo6v85YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "# USER: set num_dim_points with how many points for each parameter you'd like to evaluate\n", + "\n", + "# USER: set bounds\n", + "beta_search_bounds = [0.12,0.22]\n", + "gamma_search_bounds = [0.015,0.035]\n", + "\n", + "param_choices_true_false = ps(\"all\", {\"beta\": beta_search_bounds, \"gamma\": gamma_search_bounds}, rtol=1e-3, num_dim_points=10)\n", + "print(param_choices_true_false)\n", + "\n", + "id_number = randint(10**5, 10**6 - 1)\n", + "\n", + "with open(f'sir_query_auto_2_param_{id_number}.json', 'w', encoding='utf-8') as f:\n", + " json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)\n", + "\n", + "\n", + "# Plot \"true/false\" points. Is there any way of characterizing these regions?\n", + "sir_model.plot_two_params(\"gamma\", \"beta\", param_choices_true_false)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAFuCAYAAABUT1PnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFqElEQVR4nO3deViUVRsG8HvYkR1lFwQ3xAUXFMLdNJfKtMWszDWtTHMrKyuttC81LfeyzdTS1Kxs0Sz3fUVxFxUXTEFUZBfZ3u+Px2FmWBSQ4R3g/l3Xe83MmXeGgw4w95xznqNRFEUBERERERERAQDM1O4AERERERGRKWFIIiIiIiIi0sOQREREREREpIchiYiIiIiISA9DEhERERERkR6GJCIiIiIiIj0MSURERERERHoYkoiIiIiIiPRYqN0BY8rNzcXVq1fh4OAAjUajdneIiIiIiEgliqIgJSUF3t7eMDO791hRpQ5JV69eha+vr9rdICIiIiIiE3H58mXUrFnznudU6pDk4OAAQP4hHB0dVe4NERERERGpJTk5Gb6+vnkZ4V4qdUjSTrFzdHRkSCIiIiIiomItw2HhBiIiIiIiIj0MSURERERERHoYkoiIiIiIiPRU6jVJRERERFS1KIqC3Nxc5Obmqt0VUoG5ufl9y3sXh6ohafv27ZgxYwYiIiIQGxuL3377Db17977nY7Zu3Ypx48bhxIkT8PX1xfvvv49BgwaVS3+JiIiIyHRlZ2cjMTERmZmZaneFVKLRaODq6gpra+sHeh5VQ1JaWhqaNm2KIUOG4Kmnnrrv+RcuXMBjjz2GV199FcuWLcOmTZswdOhQeHl5oVu3buXQYyIiIiIyRYqi4Pr16zAzM4OLiwvMzc2LVcWMKg/tZrEJCQnw8PB4oBElVUNSjx490KNHj2Kfv3DhQgQEBOCzzz4DAAQFBWHnzp2YNWsWQxIRERFRFZadnQ1FUeDi4gIrKyu1u0MqcXBwwI0bN5CTk/NAIalCFW7Ys2cPunTpYtDWrVs37NmzR6UeEREREZEp4ehR1VZW//8VKiTFxcXBw8PDoM3DwwPJycm4ffu2Sr0iIiIiIqLKhNXtysmCBcDp04CtrRw2Nrrr97tdrZruMDdX+zshIiIiIqrcKlRI8vT0xLVr1wzarl27BkdHR9ja2qrUq+K5cgW4ePHBn8fGBrCzk8BkZ1f0dXt7ORwcdJd2dkAZVEQkIiIiIiqWQYMGITExEWvWrAEAdOzYEc2aNcPs2bOLfIy/vz/GjBmDMWPGlEsfC1OhQlJ4eDjWrVtn0LZhwwaEh4er1KPiMzcHrKyAB61ImZEhx82bpXu8NkBpw5P+dUdHwMlJLvWv29g8WJ+JiIiI6N6uX7+OSZMmYe3atbh27RpcXFzQtGlTTJo0CW3atFG7e/d18eJFBAQE4PDhw2jWrFle+5w5c6AoinodKyVVQ1JqairOnTuXd/vChQuIjIyEq6sr/Pz8MGHCBFy5cgVLly4FALz66quYP38+3nrrLQwZMgSbN2/GqlWrsHbtWrW+hWKbMkUus7OBO3eA27flyMjQXS/s9u3bQHq6HKmpcpmWJpcZGSXvR1qaHPkG5O7JykoCkzY06V86OwOuroCLi1w6OQFcL0lERERUMk8//TQyMzOxZMkS1K5dG9euXcOmTZtws7SfjJsIJycntbtQKqqGpIMHD6JTp055t8eNGwcAGDhwIBYvXozY2FjExMTk3R8QEIC1a9di7NixmDNnDmrWrIlvv/22QpX/trCQw87uwZ8rJ0cXoLTBSRuCUlOBlBS5npIih7ZNe1ncUJ+ZCVy/Lsf9mJkVDE7aS+316tXlklP/iIiIiIDExETs2LEDW7duRYcOHQAAtWrVQmhoKIDCR2kSExPh4uKCLVu2oGPHjrh16xZGjhyJf//9F6mpqahZsybeffddDB48GADw33//Yfz48fjnn39w584dBAUFYcGCBQgLCwMA/P777/joo49w8uRJeHt7Y+DAgXjvvfdgYSFxQaPR4IsvvsAff/yBrVu3wsvLC59++imeeeYZAPI+HQCaN28OAOjQoQO2bt1aYLodIOXaR44ciR9++AGWlpYYPnw4Jk+eXGRlusTERLz55pv4/fffcefOHbRs2RKzZs1C06ZNy/B/wZCqIaljx473HH5bvHhxoY85fPiwEXtVcZiby1Q5B4eSP1ZRdKNT2uCUnAwkJRW81F5PTr5/sMrNBRIS5Lhf36tXB9zcgBo15FL/qFFDgiRHpYiIiOhBjB0L3LpV/l/XxQWYNat459rb28Pe3h5r1qzBQw89BGtr6xJ/vYkTJ+LkyZP4+++/UaNGDZw7dy6v+nNqaio6dOgAHx8f/PHHH/D09MShQ4eQm5sLANixYwcGDBiAuXPnol27doiOjsbLL78MAPjggw8Mvsa0adMwZ84c/PDDD3juuedw7NgxBAUFYf/+/QgNDcXGjRvRqFGje+5VtWTJErz00kvYv38/Dh48iJdffhl+fn4YNmxYoef36dMHtra2+Pvvv+Hk5ISvvvoKnTt3xpkzZ+Dq6lrif6viqFBrkqjsaDS6Yg/5qqoXSVEMw1RSkvzSuXVLQpH+5a1b9w5UOTlAfLwcRbGx0YUmd3fpp6enHF5eZTMaR0RERJXbrVulX8tdXiwsLLB48WIMGzYMCxcuRIsWLdChQwc899xzCA4OLtZzxMTEoHnz5mjZsiUAKX6gtXz5cly/fh0HDhzICxV169bNu/+jjz7CO++8g4EDBwIAateujSlTpuCtt94yCEl9+vTB0KFDAQBTpkzBhg0bMG/ePHzxxRdwc3MDAFSvXh2enp737Kuvry9mzZoFjUaDwMBAHDt2DLNmzSo0JO3cuRP79+9HfHx8XnicOXMm1qxZg9WrV+eFubLGkETFptHoRq58fO59bm6uLkTpB6iEBPlFpZ2+l5JS9HNkZACXL8tRGHt7XWjy9DQMUW5uLJdOREREMqJTEb7u008/jcceeww7duzA3r178ffff+PTTz/Ft99+i44dO9738cOHD8fTTz+NQ4cOoWvXrujduzdat24NAIiMjETz5s2LHHU5cuQIdu3ahf/97395bTk5OcjIyEB6ejqqVasGAAWKpYWHhyMyMrJk3yiAhx56yGBqXXh4OD777DPk5OTAPN8buCNHjiA1NRXVq1c3aL99+zaio6NL/LWLiyGJjMLMTH45uLgAtWsXfV5GBnDjhhza4KQ9tG1FVQRMTQXOnZOjsK/v4QHUrAn4+uoufX05AkVERFSVFHfKmymwsbHBI488gkceeQQTJ07E0KFD8cEHH2DHjh0AYLBMJSsry+CxPXr0wKVLl7Bu3Tps2LABnTt3xogRIzBz5sz7bpWTmpqKjz76CE899VShfVJTamoqvLy8sHXr1gL3OTs7G+3rMiSRqmxsJMDUrFn4/Yoi0/vi44G4uILH9euFT+vLzQViY+U4cMDwPmdnXWDSD1HVq3MNFBEREZmOhg0bYs2aNXlT2WJjY/MKIxQ2guPm5oaBAwdi4MCBaNeuHcaPH4+ZM2ciODgY3377LRISEgodTWrRogWioqIMpuAVZu/evRgwYIDBbW1/tGuQcnJy7vt97du3r8Dz1qtXr8AokrZvcXFxsLCwMJhCaGwMSWTSNBpd+fF69Qren50tQamwAHXlipRbzy8xUY5jxwzbbWwAPz8Z+QoIkEt/f+4TRURERMZ18+ZN9OnTB0OGDEFwcDAcHBxw8OBBfPrpp+jVqxdsbW3x0EMPYdq0aQgICEB8fDzef/99g+eYNGkSQkJC0KhRI9y5cwd//fUXgoKCAADPP/88PvnkE/Tu3RtTp06Fl5cXDh8+DG9vb4SHh2PSpEl4/PHH4efnh2eeeQZmZmY4cuQIjh8/jo8//jjva/z8889o2bIl2rZti2XLlmH//v347rvvAADu7u6wtbXF+vXrUbNmTdjY2BRZ/jsmJgbjxo3DK6+8gkOHDmHevHn47LPPCj23S5cuCA8PR+/evfHpp5+ifv36uHr1KtauXYsnn3wybw1WWWNIogrNwkKKOHh5FbxPUWTK3uXLwH//GV4mJRU8PyMDOHNGDi2NBvD2lsCkH57Umt9MRERElY+9vT3CwsIwa9YsREdHIysrC76+vhg2bBjeffddAMCiRYvw0ksvISQkBIGBgfj000/RtWvXvOewsrLChAkTcPHiRdja2qJdu3ZYsWJF3n3//vsv3njjDTz66KPIzs5Gw4YNsWDBAgBAt27d8Ndff2Hy5MmYPn06LC0t0aBBg7wiDVofffQRVqxYgddeew1eXl746aef0LBhQwBSfGLu3LmYPHkyJk2ahHbt2hU6RQ4ABgwYgNu3byM0NBTm5uYYPXp0kQUYNBoN1q1bh/feew+DBw/G9evX4enpifbt28OjuNXHSkGjVMQtcIspOTkZTk5OSEpKgqOjo9rdIROSkiKBSRuatEdxN9l1dtYFp9q1gcBAKRbB6XpERETqyMrKwvXr1+Hm5gZLS0u1u1PpaDQa/Pbbb+jdu7faXbmne70OSpINOJJEVZKDAxAUJIe+27eBixeB8+fluHBBbudbG4nERODQITm0nJ0lLGmPevWA+6yTJCIiIiITxJBEpMfWtmB4ysmR9U36wSk6umD58sREYN8+OQAZVfLzA+rXBxo0kEs/P6m8R0RERESmiyGJ6D7MzSXc+PkB2m0KFEX2fDp/XreOKSoKSEvTPU5RgEuX5NiwQdpsbHShqXFjCWMsDEFERESmrhKv0CkUQxJRKWg0UjK8enWgVStpUxTg6lXg9GkJTadPy1S93Fzd4zIygKNH5Vi1SgJY/fpAkyZyBAUBdzeTJiIiIiKVMCQRlRGNBvDxkaNzZ2m7c0em5kVF6Y4bN3SPyckBTp2SY9UqqdZXr54EpuBgGXFiaCIiIiIqXwxJREZkbQ00bCiH1s2bwIkTsk/TsWOy3kkrO7tgaNKONAUHy/NY8KeWiIiIyKj4douonFWvDrRvLwcga5uOH5fAdPSoTNnTys4GTp6UY+VKKSzRvDkQGgqEhEhFPSIiIiIqWwxJRCpzdTUMTTdvSmg6elSCU2ys7tzbt4Hdu+UAZJSpVSs5atfmPk1EREREZYEhicjEVK8OdOggByBrmI4dkz2ZIiIMS49rK+stWyZhq2VLCUzNmrFqHhERUWUVFxeH/v37Y/fu3bC0tERiYqLaXTLg7++PMWPGYMyYMWp3pdQYkohMXI0aQKdOcuTmSvGHAwfkuHhRd15CAvDvv3JYWMg6platgDZtJEARERGRaRo0aBASExOxZs2aYp0/a9YsxMbGIjIyEk5OTmXSh8oQbMoSQxJRBWJmptvsdsAA4Pp1CUsHDwJHjgCZmXJedjZw+LAc33wDNGoEtG0rgYnrmIiIiCq26OhohISEoF69emp3pdIyU7sDRFR6bm7Ao48CkyYBy5fL5aOPyuiTlqLIGqeFCyVYvfcesH49kJysXr+JiIiocB07dsSoUaPw1ltvwdXVFZ6envjwww/z7vf398cvv/yCpUuXQqPRYNCgQQCAxMREDB06FG5ubnB0dMTDDz+MI0eOGDz3n3/+iVatWsHGxgY1atTAk08+mfc1L126hLFjx0Kj0UCjt8h5586daNeuHWxtbeHr64tRo0YhLS0t7/74+Hj07NkTtra2CAgIwLJly4z3j1OOGJKIKglra5leN3w4sGgRMG8e8Nxzsm+TlqJIQYgFC4D+/SVUbdhguM6JiIiI1LVkyRLY2dlh3759+PTTTzF58mRs2LABAHDgwAF0794dzz77LGJjYzFnzhwAQJ8+fRAfH4+///4bERERaNGiBTp37oyEhAQAwNq1a/Hkk0/i0UcfxeHDh7Fp0yaEhoYCAH799VfUrFkTkydPRmxsLGLvVo2Kjo5G9+7d8fTTT+Po0aNYuXIldu7ciZEjR+b1ddCgQbh8+TK2bNmC1atX44svvkB8fHx5/nMZhUZRFEXtThhLcnIynJyckJSUBEdHR7W7Q6QKRQEuXQJ27JBDv1qeloWFFHto1w4ICwPs7Mq9m0RERA8kKysL169fh5ubGywtLXV3jB0L3LpV/h1ycQFmzSrWqfprkjp27IicnBzs2LEj7/7Q0FA8/PDDmDZtGgCgd+/ecHZ2xuLFiwHIaM9jjz2G+Ph4WOvtQl+3bl289dZbePnll9G6dWvUrl0bP/74Y6F9KGxN0tChQ2Fubo6vvvoqr23nzp3o0KED0tLSEBMTg8DAQOzfvx+tWrUCAJw+fRpBQUGYNWuWKuubinwdoGTZgGuSiCo5jQbw95fjxReB8+d1gUn7QU92tqxrOngQsLQEHnoI6NoVaNqUZcWJiKiCu3VL9teoQIKDgw1ue3l53XN05siRI0hNTUX16tUN2m/fvo3o6GgAQGRkJIYNG1aifhw5cgRHjx41mEKnKApyc3Nx4cIFnDlzBhYWFggJCcm7v0GDBnCuBAugGZKIqhCNBqhTR46BA4GzZyUs7dwppcYBICtLF6Lc3IDOnYEuXQAPD3X7TkREVCouLhXu6+YfAdFoNMjNzS3y/NTUVHh5eWHr1q0F7tMGFltb2xL3IzU1Fa+88gpGjRpV4D4/Pz+cOXOmxM9ZUTAkEVVRGo1sRlu/PjBkCHD6tASjbdt0RR2uXwdWrJCjaVPgkUeA8HDAykrdvhMRERVbMae8VWQtWrRAXFwcLCws4O/vX+g5wcHB2LRpEwYPHlzo/VZWVsjJySnwvCdPnkTdunULfUyDBg2QnZ2NiIiIvOl2UVFRJrdvU2mwcAMRQaORsuIvvwwsWQJMmCBFIPSn2h05AsycKRXyvvxSRqEq74pGIiKiiqNLly4IDw9H79698e+//+LixYvYvXs33nvvPRw8eBAA8MEHH+Cnn37CBx98gFOnTuHYsWOYPn163nP4+/tj+/btuHLlCm7cnV7y9ttvY/fu3Rg5ciQiIyNx9uxZ/P7773mFGwIDA9G9e3e88sor2LdvHyIiIjB06NBSjVqZGoYkIjJgYQG0bi2V7xYvllDk5aW7Py0NWLcOGDcOGDUK+OMPlhMnIiJSk0ajwbp169C+fXsMHjwY9evXx3PPPYdLly7B4+58+Y4dO+Lnn3/GH3/8gWbNmuHhhx/G/v37855j8uTJuHjxIurUqQM3NzcAMvq0bds2nDlzBu3atUPz5s0xadIkeHt75z3u+++/h7e3Nzp06ICnnnoKL7/8Mtzd3cv3H8AIWN2OiO5LUYCTJ6Vc+M6dwJ07hvdbWEhlvF69ZL0TERFRebtXVTOqOljdjojKjUYDNGokxyuvSFDasAE4dUruz84GtmyRo3Fj4IknpJS4GceqiYiIqAJiSCKiErG1lQIOjzwC/PefhCX9DWmPH5fDwwPo2VPOq1ZN3T4TERERlQSn2xHRA7tzR0aR/vgDuHzZ8D5tqOrZE/D0VKd/RERU+XG6HQGcbkdEJsTaGujeHejWDTh8GPj9d+DQIbnv9m0JT3/+KVPwevWSaXvcpJaIiIhMFUMSEZUZjQZo0UKOy5clHG3eDGRmSvGHvXvlqF1b1i116CBFH4iIiIhMCZdVE5FR+PoCI0boyoi7uuruO38emD1b9mVavx7IylKrl0REREQFMSQRkVE5OAB9+gDffQe8+SZQr57uvuvXgQULJCytW8ewRERERKaBIYmIyoWFhUyv++wz4NNPgZAQ3X03bgBffgkMGwb89ZdMzyMiIiJSC0MSEZUrjQYICgI+/FACU6tWuvtu3gS++krC0p9/MiwRERGROhiSiEg19esDkyYBn38OhIbq2hMSgK+/BoYOlUp5d+6o10ciIiIqX4sXL4azs7OqfWBIIiLV1asHTJwoxRzCwnTtt24B334rYem334CMDNW6SEREZDSDBg2CRqOBRqOBpaUlAgIC8NZbbyGDf/hUw5BERCajTh3g/feBOXOA1q117YmJwKJFEpb+/BPIzlati0REREbRvXt3xMbG4vz585g1axa++uorfPDBB2p3q9RycnKQm5urdjdKjSGJiExO7drAhAnAvHlAmza69qQkmYb32mvA7t2y9xIREVFlYG1tDU9PT/j6+qJ3797o0qULNmzYAADIzc3F1KlTERAQAFtbWzRt2hSrV682ePyJEyfw+OOPw9HREQ4ODmjXrh2io6PzHj958mTUrFkT1tbWaNasGdavX5/32NatW+Ptt982eL7r16/D0tIS27dvBwDcuXMHb775Jnx8fGBnZ4ewsDBs3bo173ztFLk//vgDDRs2hLW1NWJiYu77OO1j/fz8UK1aNTz55JO4efNmWf2zlhpDEhGZLH9/4J13gPnzgbZtde2xscDUqcDbbwNRUap1j4iIyCiOHz+O3bt3w8rKCgAwdepULF26FAsXLsSJEycwduxYvPjii9i2bRsA4MqVK2jfvj2sra2xefNmREREYMiQIci+O/Vizpw5+OyzzzBz5kwcPXoU3bp1wxNPPIGzZ88CAPr164cVK1ZA0fv0ceXKlfD29ka7du0AACNHjsSePXuwYsUKHD16FH369EH37t3zngMA0tPTMX36dHz77bc4ceIE3N3d7/u4ffv24aWXXsLIkSMRGRmJTp064eOPPzb+P/J9aBSl8n4Wm5ycDCcnJyQlJcHR0VHt7hDRAzp7VqbdHT9u2N62rWxY6+WlTr+IiEh9WVlZuH79Otzc3GBpaWl455o1ctxPnTqySFbflCnA3RGZe+rdW45SGDRoEH788UfY2NggOzsbd+7cgZmZGVatWoXHH38crq6u2LhxI8LDw/MeM3ToUKSnp2P58uV49913sWLFCkRFRRX83gH4+PhgxIgRePfdd/PaQkND0apVKyxYsADXr1+Ht7c3Nm/enBeKWrdujfbt22PatGmIiYlB7dq1ERMTA29v77zn6NKlC0JDQ/HJJ59g8eLFGDx4MCIjI9G0aVMAKNbjXnjhBSQlJWHt2rV59z/33HNYv349EhMTS/xvea/XQUmygUWJvzIRkUrq1QM++QTYvx/4/nvgyhVp37kT2LsXeOwxoG9f2cCWiIgoT3q67DNxPzVqFGxLSireY9PTS94vPZ06dcKXX36JtLQ0zJo1CxYWFnj66adx4sQJpKen45FHHjE4PzMzE82bNwcAREZGol27doUGpOTkZFy9ehVt9OevA2jTpg2OHDkCAHBzc0PXrl2xbNkytGvXDhcuXMCePXvw1VdfAQCOHTuGnJwc1K9f3+A57ty5g+rVq+fdtrKyQnBwcN7t4jzu1KlTePLJJw3uDw8PN5gOqAaGJCKqUDQaqYAXEgL8+y+wfLn8/crOlnLhGzdKUHr8caCQvxVERFQVVasG6L2ZL5KTU+FtxXlstWol75ceOzs71K1bFwCwaNEiNG3aFN999x0aN24MAFi7di18fHwMHmNtbQ0AsLW1faCvDciUu1GjRmHevHlYvnw5mjRpgiZNmgAAUlNTYW5ujoiICJibmxs8zt7ePu+6ra0tNBpN3u3iPs4UMSQRUYVkYQE8+ijQsSPwyy8yiyIzE0hLkyl5f/0FDBwItGsnwYqIiKqwB5gKV2D6XTkwMzPDu+++i3HjxuHMmTN5RRA6dOhQ6PnBwcFYsmQJsrKyCowmOTo6wtvbG7t27TJ4/K5duxCqt0lhr1698PLLL2P9+vVYvnw5BgwYkHdf8+bNkZOTg/j4+LzpeMVRnMcFBQVh3759Bm179+4t9tcwFtULNyxYsAD+/v6wsbFBWFgY9u/ff8/zZ8+ejcDAQNja2sLX1xdjx45lDXmiKqxaNaB/f+Crr4DOnXWBKD4emDEDeOMN4PRpdftIRERUUn369IG5uTm++uorvPnmmxg7diyWLFmC6OhoHDp0CPPmzcOSJUsASFGF5ORkPPfcczh48CDOnj2LH374AVF3qxuNHz8e06dPx8qVKxEVFYV33nkHkZGRGD16dN7Xs7OzQ+/evTFx4kScOnUKzz//fN599evXR79+/TBgwAD8+uuvuHDhAvbv34+pU6carCXKrziPGzVqFNavX4+ZM2fi7NmzmD9/vupT7QAAiopWrFihWFlZKYsWLVJOnDihDBs2THF2dlauXbtW6PnLli1TrK2tlWXLlikXLlxQ/vnnH8XLy0sZO3ZsoecnJSUpAJSkpCRjfhtEZELOn1eU999XlMcfNzzmzlWU5GS1e0dERMaSmZmpXLlyRcnMzFS7KyU2cOBApVevXgXap06dqri5uSmpqanK7NmzlcDAQMXS0lJxc3NTunXrpmzbti3v3CNHjihdu3ZVqlWrpjg4OCjt2rVToqOjFUVRlJycHOXDDz9UfHx8FEtLS6Vp06bK33//XeDrrVu3TgGgtG/fvsB9mZmZyqRJkxR/f3/F0tJS8fLyUp588knl6NGjiqIoyvfff684OTmV+HGKoijfffedUrNmTcXW1lbp2bOnMnPmzEKfqzju9TooSTZQtbpdWFgYWrVqhfnz5wOQGu6+vr54/fXX8c477xQ4f+TIkTh16hQ2bdqU1/bGG29g37592LlzZ4HzWd2OqGpSFODQISnucOmSrt3BARg8GOjShVPwiIgqm3tWt6Mqo6yq26k23S4zMxMRERHo0qWLrjNmZujSpQv27NlT6GNat26NiIiIvCl558+fx7p16/Doo4+WS5+JqGLQaKSww5w5wMsv69bSpqQAc+cCb70FXLigbh+JiIjIdKlWuOHGjRvIycmBh4eHQbuHhwdOF7GA4IUXXsCNGzfQtm1bKIqC7OxsvPrqqwY134mItMzNgZ49gTZtgO++A+5uGo7Tp4ExY+S+F1544IJEREREVMmoXrihJLZu3YpPPvkEX3zxBQ4dOoRff/0Va9euxZQpU9TuGhGZMFdXYPx44OOPAW311NxcKRk+fLjss1R5t9UmIiKiklJtJKlGjRowNzfHtWvXDNqvXbsGT0/PQh8zceJE9O/fH0OHDgUANGnSBGlpaXj55Zfx3nvvwcysQmU+IipnTZsC8+YBv/0GrFwpJcMTEoDp04FmzYBXX9WFKCIiIqq6VEsVVlZWCAkJMSjCkJubi02bNiE8PLzQx6SnpxcIQtqNqVSsP0FEFYilJfDss8AXXwCtWunaIyOBkSOBZcskPBEREVHVperQy7hx4/DNN99gyZIlOHXqFIYPH460tDQMHjwYADBgwABMmDAh7/yePXviyy+/xIoVK3DhwgVs2LABEydORM+ePQvs4ktEdC8eHsCkScD77wNubtKWnQ2sWAG89hpw+LC6/SMiotLhB+dVW1n9/6s23Q4A+vbti+vXr2PSpEmIi4tDs2bNsH79+rxiDjExMQYjR++//z40Gg3ef/99XLlyBW5ubujZsyf+97//qfUtEFEFFxYm0/BWrZJpeNnZwLVrEqC6dgVeeomFHYiIKgLtB+aZmZmwsrJSuTeklpycHAB44GU4qu6TZGzcJ4mISuLyZeDLL4Fjx3RtNWoAo0YBzZur1y8iIiqexMREpKenw9HREVZWVtBwU7wqRVEU3Lp1C+bm5qhevXqB//+SZAOGJCIiPYoC/POPlAzPyNC1c1SJiMj0KYqCpKQkpKenq90VUolGo4GbmxssLApOmGNIuoshiYhKKz5eKuFFRuraOKpERFQx5Obm5k27oqrFwsKiyBFEhqS7GJKI6EFwVImIiKjyKEk24MZCRERF0GiA7t2BBQtkHyWtf/8FRoxgBTwiIqLKiiGJiOg+3N2ByZMlGNnYSNuNG1IBb948gFPfiYiIKheGJCKiYuCoEhERUdVR4jVJaWlpmDZtGjZt2oT4+Hjk5uYa3H/+/Pky7eCD4JokIjKGotYqde8ODB0KWFur1zciIiIqXEmyQYk3kx06dCi2bduG/v37w8vLi/XniajK0Y4qtWgBzJ0LHDki7evXAydOAG+9Bfj7q9pFIiIiegAlHklydnbG2rVr0aZNG2P1qcxwJImIjE1RJBx99x1w5460WVoCgwcDjz8ugYqIiIjUZ9Tqdi4uLnB1dS1154iIKhONBujRA5g9G6hdW9qysoCvvwamTAGSklTtHhEREZVCiUPSlClTMGnSJO5kTESkp2ZNYOZMoFcvXduBA7L5rHY6HhEREVUMJZ5u17x5c0RHR0NRFPj7+8PS0tLg/kOHDpVpBx8Ep9sRkRoOHpSRJe0okkYDPP000K8fYFHilaBERERUFoxauKF3796l7RcRUZXQsqXsn/T550BkpKxbWr0aOHoUePNNwMtL7R4SERHRvZR4JKki4UgSEalJUYA1a4ClS4HsbGmztQWGDwc6dVK1a0RERFVOSbJBqUNSREQETp06BQBo1KgRmjdvXpqnMSqGJCIyBWfPAjNmALGxurZOnYBXXwWqVVOvX0RERFWJUUNSfHw8nnvuOWzduhXOzs4AgMTERHTq1AkrVqyAm5tbqTte1hiSiMhU3L4NfPUVsGmTrs3TU/ZUqldPvX4RERFVFUYtAf76668jJSUFJ06cQEJCAhISEnD8+HEkJydj1KhRpe40EVFlZmsLjBkDjB+vGz2Ki5OQtG6dTM0jIiIi01DikSQnJyds3LgRrVq1Mmjfv38/unbtisTExLLs3wPhSBIRmaJr12T6XVSUrq1TJ2DECMDaWr1+ERERVWZGHUnKzc0tUPYbACwtLZGbm1vSpyMiqnI8PIBp0wz3VNqyRSrfXb2qXr+IiIhIlDgkPfzwwxg9ejSu6v0lv3LlCsaOHYvOnTuXaeeIiCorCwtg6FDg7bcBGxtpu3gRGDsW2LdP1a4RERFVeSUOSfPnz0dycjL8/f1Rp04d1KlTBwEBAUhOTsa8efOM0UciokqrbVvZT6lmTbmdng58/DGwZAmQk6Nu34iIiKqqUpUAVxQFGzduxOnTpwEAQUFB6NKlS5l37kFxTRIRVRS3b8sGtDt26NqCg6XQw91CokRERPQAymWfpIqAIYmIKhJFAf78E1i0SDeK5OoKvPMOEBSkbt+IiIgqujIPSXPnzsXLL78MGxsbzJ07957nmlIZcIYkIqqITp2Swg4JCXLb3Bx46SXg8ccBjUbdvhEREVVUZR6SAgICcPDgQVSvXh0BAQFFP5lGg/Pnz5e8x0bCkEREFVViIvDpp8CxY7q29u2B11/XFXogIiKi4uN0u7sYkoioIsvJAX74AfjlF12bry/w7ru6Qg9ERERUPEbdJ2ny5MlIT08v0H779m1Mnjy5pE9HRERFMDcHBg2SUGRrK22XLwPjxrFMOBERkTGVeCTJ3NwcsbGxcHd3N2i/efMm3N3dkWNCNWs5kkRElcWVK8DUqcClS7q2fv2Avn25TomIiKg4jDqSpCgKNIX8RT5y5AhcXV1L+nRERFQMPj7AzJlAu3a6tmXLgE8+kfLhREREVHYsinuii4sLNBoNNBoN6tevbxCUcnJykJqaildffdUonSQiIinYMH48ULs2sHSplAzfuxd44w3g/fcBb2+1e0hERFQ5FHu63ZIlS6AoCoYMGYLZs2fDyckp7z4rKyv4+/sjPDzcaB0tDU63I6LKKiICmDEDSEuT23Z2wJtvAi1bqtsvIiIiU2XU6nbbtm1D69atYWlp+UCdLA8MSURUmV29Cnz8sRRzAGRt0oABwNNPc50SERFRfuVWAjwjIwOZmZkGbaYURhiSiKiyu30b+PxzmXan1bYtMHo091MiIiLSZ9TCDenp6Rg5ciTc3d1hZ2cHFxcXg4OIiMqPra2UCO/XT9e2c6esXYqLU69fREREFVmJQ9L48eOxefNmfPnll7C2tsa3336Ljz76CN7e3li6dKkx+khERPeg0QDPPSfFG7T7KV28KPspRUaq2TMiIqKKqcTT7fz8/LB06VJ07NgRjo6OOHToEOrWrYsffvgBP/30E9atW2esvpYYp9sRUVXz33+yTunKFbmt0QBDhgC9enGdEhERVW1GnW6XkJCA2rVrA5D1RwkJCQCAtm3bYvv27aXoLhERlZWaNYHPPgNatZLbigJ8952sW8q3hJSIiIiKUOKQVLt2bVy4cAEA0KBBA6xatQoA8Oeff8LZ2blMO0dERCVnZwdMnAj07atr27oVmDABuPu5FhEREd1DiUPS4MGDceTIEQDAO++8gwULFsDGxgZjx47F+PHjy7yDRERUchoN8OKLEoysraXtzBnZeDY6Wt2+ERERmboHKgEOAJcuXUJERATq1q2L4ODgsupXmeCaJCIi4Px5YMoU4MYNuW1lJWGpdWt1+0VERFSeym2fJFPHkEREJBITgf/9Dzh9WtfWr59MyWNBByIiqgrKPCTNnTu32F981KhRxT7X2BiSiIh0MjOBBQuAzZt1bW3bAmPG6KbkERERVVZlHpICAgKK9YU1Gg3Onz9fvF6WA4YkIiJDigL8+iuwZIlcB4B69YD33gOqV1e3b0RERMbE6XZ3MSQRERVu3z5g5kwgI0Nuu7rKZrT16qnbLyIiImMx6j5JRERU8YWFATNmAO7ucjshAXjnHYDb3REREZViJGnIkCH3vH/RokUP1KGyxJEkIqJ7S0oCPvkEOHlS19a3rxR1YEEHIiKqTIw6knTr1i2DIz4+Hps3b8avv/6KxMTEEnd2wYIF8Pf3h42NDcLCwrB///57np+YmIgRI0bAy8sL1tbWqF+/PtatW1fir0tERICTk1S9e+QRXdvKlcC0abqpeERERFWNRUkf8NtvvxVoy83NxfDhw1GnTp0SPdfKlSsxbtw4LFy4EGFhYZg9eza6deuGqKgouGvngOjJzMzEI488And3d6xevRo+Pj64dOkSnJ2dS/ptEBHRXRYWwOuvA35+wKJFUtBh924gLg6YNIkFHYiIqOops8INUVFR6NixI2JjY4v9mLCwMLRq1Qrz588HIGHL19cXr7/+Ot55550C5y9cuBAzZszA6dOnYWlped/n53Q7IqKSOXhQ1iqlp8vt6tUlKNWurW6/iIiIHpQqhRuio6ORnZ1d7PMzMzMRERGBLl266DpjZoYuXbpgz549hT7mjz/+QHh4OEaMGAEPDw80btwYn3zyCXJych64/0REBLRsKVXvPDzk9s2bwNtvAwcOqNsvIiKi8lTi6Xbjxo0zuK0oCmJjY7F27VoMHDiw2M9z48YN5OTkwEP7l/guDw8PnNbfEl7P+fPnsXnzZvTr1w/r1q3DuXPn8NprryErKwsffPBBSb8VIiIqhK8v8NlnwJQpQFSUrE2aMgUYNgzo2VPt3hERERlfiUPS4cOHDW6bmZnBzc0Nn3322X0r3z2o3NxcuLu74+uvv4a5uTlCQkJw5coVzJgxgyGJiKgMOTlJ1btZs4CdO2Wd0tdfA7GxwNChgBk3kKCKQFGA1FQgJUV3pKUBWVlAdrbhpfa6frv2ek4OYG4OWFrKYWEhR2HXtedYWgJ2doCjI+DgIEe1aiwbSVRBlDgkbdmypUy+cI0aNWBubo5r164ZtF+7dg2enp6FPsbLywuWlpYwNzfPawsKCkJcXBwyMzNhZWVVJn0jIiLAygp46y3A2xtYtUra/vxTCjq89RZgY6Nu/6iKun0biI+X4+ZNIDlZF4DyX09NlaBkKszMdIHJwcEwQGlvu7oCNWrIYW/PUEWkkhKHJK34+HhERUUBAAIDAwutRncvVlZWCAkJwaZNm9C7d28AMlK0adMmjBw5stDHtGnTBsuXL0dubi7M7n6MeebMGXh5eTEgEREZgUYD9O8PeHoCCxbIB+oHDsg6pYkT5X0cUZlRFBnp0YYg/ePaNeD6dQlAFVVurmxOlpRUvPOtrHSBqXr1wq87OjJIERlBiavbJScnY8SIEfjpp5+Qm5sLADA3N0ffvn2xYMECODk5Ffu5Vq5ciYEDB+Krr75CaGgoZs+ejVWrVuH06dPw8PDAgAED4OPjg6lTpwIALl++jEaNGmHgwIF4/fXXcfbsWQwZMgSjRo3Ce++9V2hfWd2OiKhsHDkCTJ0q72EB+cD7gw9Y+Y5KITdX5m5eugTExAAXLwJXrkgY0pZWfBDVqulGZuztDUdt7O0lfNxrulz++8zN5RMC/Wl4hU3T05+qd+eO4VS//KNcZbURmaUl4O4u1VY8PeXQXvfwkCl/RASgZNmgxCNJw4YNw+HDh7F27VqEh4cDAPbs2YPRo0fjlVdewYoVK4r9XH379sX169cxadIkxMXFoVmzZli/fn1eMYeYmJi8ESMA8PX1xT///IOxY8ciODgYPj4+GD16NN5+++2SfhtERFRCTZtKefCPPpIP9RMSZERp/HggNFTt3pFJUhTgxg0JQ/rH5csSJkrCzExGTtzddYebmy786Icgi1JPlCk/2dkFA1RSkvxg3bihO27evHdwzMqSgHnlSuH329sXDE+enjKP1s2No1BERSjxSJKdnR3++ecftG3b1qB9x44d6N69O9K0HzGaAI4kERGVvaQk4OOPAW0hUo2Gle8IMjoUEyMvjHPndIHo9u3iPd7CQt60u7nJm3n9MOTuLlPM9NYkVynp6RKWbt6UKYc3b+pC1PXrMgJXmpEpKysJSzVryuHjI0fNmoCtbdl/H0QqM+pIUvXq1QudUufk5AQXF5eSPh0REVUwTk7A//4HzJ4N7NjByndVVno6cOYMcOqUHFFRxZsqp9HIG/NateTw95dLT8+qG4Lup1o1OXx9C79fUWQ0Ki5Ohnnj4gyvX79eeAGLzEyZ6njxYsH7XF0Nw1PNmoCfn4RVjj5RFVDikaSvv/4aP//8M3744Ye8KnRxcXEYOHAgnnrqKbzyyitG6WhpcCSJiMh4FAX48Udd5TsAaNWKle8qJUWRN9unT+tC0aVL968c5+6uC0N+fnJZs6aMYFD5yc6WoKQNTbGxuil6sbGy3qq47OwMw632kmufqAIoSTYocUhq3rw5zp07hzt37sDPzw+ArB2ytrZGvXr1DM49dOhQCbtethiSiIiMb+NGYP583fusunWloIOzs6rdogehKMDVq0BEBHDsmISi+1Vkc3EBgoKABg3kqFVLRj/ItGVnS3i6cgX47z85tNeTk4v/PDVqFAxPNWtKYQkiE2HU6Xbact1EREQA0KWLDBh88olUvjt3DnjzTSnw4OOjdu+o2DIzJRBFRAAHD8oIQ1E0GiAgQEKR9mARgIrJwkK3Fil/BZaUFMPwdOmSTM27caPg82jXSEVE6NrMzWWKYJ06ctStK68bDjVTBVDikaSKhCNJRETl59Il4MMPde+fHBxkL6WgIFW7RfcSF6cLRUePSlAqjJ2djA5pA1G9elzYX5WlpekCk/5lcYp3aTQywlS3ri481anD1xOVC6NOt9OKiIjAqVOnAACNGjVC8+bNS/M0RsWQRERUvm7elKCkXQduZQW88QbQurWavaI8WVnAiRMSig4eLLpstLk50LAh0LIl0KKFTJ/iKBHdi6LILwBtIQhteIqJkcqH96It5qEdbapXTy454kRlzKghKT4+Hs899xy2bt0K57sTzhMTE9GpUyesWLECbm5upe54WWNIIiIqf2lpsunskSNymyXCVZaZCRw4AGzfDhw6VHSpaFdXICREglGzZlxPRGVDW0Hv3DkgOlouY2JkLdS9mJnJuibtGrfAQMDLi2GdHohRQ1Lfvn1x/vx5LF26FEF351CcPHkSAwcORN26dfHTTz+VvudljCGJiEgd2dnA3LnAli26tiefBAYP5nuccpGTIyl12zZgz57C9yrSaGTqXMuWcvj78z+HykdWlow0aYNTdDRw4cL9g5ODgy4wBQYC9eszzFOJGDUkOTk5YePGjWjVqpVB+/79+9G1a1ckJiaWuMPGwpBERKSewkqEt2sHjB3LgldGoShSonvbNmDnzsKr0Tk56UJRs2aAvX25d5OoUNnZMsJ07pzsuRUVJbfv9TZVo5HCENrRpoYNZdoewz4VwajV7XJzc2FZyF83S0tL5N5vzikREVUZGg3Qv78UPfviC3mvs2MHcOsW8N57fH9eZi5elGC0fTsQH1/w/mrVZFFYhw5AkybcsJVMk4UFULu2HF27Slt6OnD2rASm06flSEnRPUZRJEjFxAD//ittTk4Slho2lJHSOnXkuYlKqMQjSb169UJiYiJ++ukneHt7AwCuXLmCfv36wcXFBb/99ptROloaHEkiIjINBw4A06cDd+7IbV9fKRFuQstYK5b4eGDrVglHMTEF77e0lHLOHTrIOiNu3kqVgf6mxtrRpvPn710YwspKpuZpg1NgIDe+rcKMOt3u8uXLeOKJJ3DixAn4+vrmtTVu3Bh//PEHatasWfqelzGGJCIi03HmDDB5sm4WmKurbDpbu7a6/aowcnOlIt26dVKAIf+fbzMzmULXoQPw0ENcq0FVw507MkXv1Cng5Ek57lWKXKOR9Xfa0NSwoWyES1WC0UuAK4qCjRs34vTp0wCAoKAgdOnSpXS9NSKGJCIi0xIbKyXCr16V2zY2wLvvAia4i4TpSEyUqUT//FP4dLqgIAlGbdvKVCOiqkw7Be/kSQlOJ04U/nOjz90daNRIAlOjRrKPE9c1VUrlsk9SRcCQRERkepKTZUQpKkpum5sDr78OdO6sbr9MiqLIm7t166Q6Xf6qX+7uQLduQMeOcp2IinbjhuFI04UL9y4I4eBgONJUty7XNZWUosi/88GDMo3gvfdMIngaPSRt2rQJs2bNyttMNigoCGPGjDG50SSGJCIi03TnDjBzJrB3r66tXz+gb1+T+DuqnrQ0qZv+998F1xppNLK+6NFH5dLMTJ0+ElV06emyrkkbmqKiZD+nolhZSblx7UhTgwacznovERHAnDlSpUdrzhyTmFtt1JD0xRdfYPTo0XjmmWcQHh4OANi7dy9Wr16NWbNmYcSIEaXveRljSCIiMl25ucA33wB//aVre+QR4LXXquCHtufPSzDaurXgZq+OjlLtq3t3wMNDle4RVWrZ2bJX08mTMoJ78qRhFb38NBogIEACk/Zwdi637poMRZHfXU5Ohuu6Ll0CRo40PPfVV4HHHivf/hXCqCGpZs2aeOeddzAy3ze/YMECfPLJJ7hy5UrJe2wkDElERKZNUYA1a4BFi3RtISHA228Dtraqdat8KAqwfz/wyy8yFSi/hg1l1Kh1a24sRVSeFAX47z9dYCrOuiZvb11gatgQ8PSsnMPiqalAZKRMo4uIkDWTL7wAPP+87hxFkU+7vLxkT7aQEJP5gMeoIcne3h6RkZGoW7euQfvZs2fRvHlzpKamlrzHRsKQRERUMezYAXz+uW7pTe3aUvnO1VXdfhlFdrZ8w6tXF5xSZ2MDPPww0KOHVOAiItNw44bhSNOlS/de1+TqqlvT1KiR/DxXxCmy2kIYBw5IMDp1qmDJ9cBAmT+d/3EmGBKNGpJeeOEFNG/eHOPHjzdonzlzJg4ePIgVK1aUvMdGwpBERFRxHD8OfPyxrnqvu7tUwru720TFl5kJbNgA/PprwU+l/fxkKkqnTlVgCI2oEkhN1RWDOHFCNr3NX2BFn52dVKLUjjbVrWv6I8SbNgHLlgHXrxd+v7U1EBwse7J1716+fSslo4akjz/+GDNnzkSbNm0M1iTt2rULb7zxhsEXHDVqVCm6X3YYkoiIKpbLl2UESfs32c4OeP99oHFjdfv1QNLSgLVrgT/+0G0SpRUUBPTpI1NSTPBTVyIqpsxMqeKmHWk6dQq4fbvo87XFILShqUEDdT8guXZN1lVZW+vatm8HZswwPM/HR35ftWwpo2QVbKNqo4akgICAYp2n0Whw/vz5kjx1mWNIIiKqeBISgI8+kvXAgBRxGDcOaNdO3X6V2K1bwO+/Sxnv/G+WQkKAZ56RN0cMR0SVT04OcPGihCbtkf9DEn1mZkCdOhI8GjeWS2O+d83Olgp/+/fLNLrLl4EJE2QNpFZqKjBokPSlVSsJRl5exutTOeA+SXcxJBERVUy3bwPTp8u6YK0hQ4DevStApoiNlSl1mzYBWVm6do1Gkt7TT5tEKVwiKkeKIrtoawPT8eP3Lwbh6yuBqXFj+UClevUH60NqqvxS3b9fLrVzm7W6dAFGjzZsy8yscKNF98KQdBdDEhFRxZWdDXzxhSzj0Xr8cWDYMBNd/3zlCvDTTzJFRf9Pq4WFvPl46qkK/yksEZUhbTGI48clOOUv5JKfp6duel7jxsWvoLd1K/DPP/K18hddAOQ5GjSQzakffbQ030mFwZB0F0MSEVHFpijAypWydljroYeAN980nDqvqrg4YMUKYPNmw3BkYyNvOHr1qqRl+oioTKWkGIam6OjCQ42Wq6suMDVsCNSqJeebmxue9+OP8otUn50d0KKFbhqdg0PZfz8miCHpLoYkIqLKYdMmYN48meYPSMXZiRNlD0PV3Lghbzw2bNB1DJB1BL16SUCyt1evf0RUsWVkyLohbWiKijKcwquVnS3rndLT5XfRmDFA+/YyrdfcXB735puyl1NoqASjhg2r4K7dDEl5GJKIiCqPyEjgk090NRA8PKQSXrmXCL91S/Y4+vtvwzcs9vYypa5nTxlFIiIqS5mZwLlzEpr27QP27pV1TSkphqPYvr4ytdfWVrdXk7s70LZtlQxG+so8JD311FNYvHgxHB0dsXTpUvTt2xfWJjPPoWgMSURElcuFC1L57uZNuW1nJwWZmjYthy+ekgL88gvw11/AnTu6dltbqSjRq5d0iIjIGKKjgT17JCBdvCjBKD1dfjdpD0DWKnl7F3y8lZWsPdJO0QsMNKF5y+WjzEOSlZUVLl26BC8vL5ibmyM2Nhbu7u5l1mFjYUgiIqp8bt4EJk/WlQg3Nwdeew3o2tVIXzAtDVizRsp565fytrICnnhCRo+qyHx+IlLRxx9LQMrP0xMIC5NpdPb2Mr3u+HE5bt0q+vksLIB69XTV84KCgGrVjNd/E1DmISk4OBgtWrRAp06dMHjwYMydO7fIJx4wYEDpem0EDElERJVTRobscbh/v67tmWeAAQPKsER4Rgbw559Szjs1VdduYSHrjZ55BnBxKaMvRkQEGQ06eFCOMWMAS0vdfRs2AHPnyvXAQAlGYWEyva6wX3yKIlsSnDgBHDsml/cqO67RAHXrGhaDqGQfAJV5SNq9ezfGjRuH6OhoJCQkwMHBAZpC/jM0Gg0SEhJK3/MyxpBERFR55eYCixbJAI9W69ay8ewDzSDJyZFyucuXG27+aG4OPPII0LcvUKPGA3wBIiI916/L+qK9e2X0R1vR7qOPpAKdVnKyTLcLDS39BzTx8bp9mo4fl72b7sXfXzfS1Lgx4Oxcuq9rIoxauMHMzAxxcXGcbkdERCZh3Tpg4ULduuX69YH33y/FewhFAQ4cAL7/HvjvP127RgM8/DDw3HMyrYWI6EEoiuyJpA1G584Vfl6vXsDQocbtS0KCruz48ePApUv3Pt/HRxeaGjWSghAViFFD0qVLl+Dn51foSJKpYUgiIqoaIiKAadNkhhwgf7c/+ADw8yvmE5w7J8NSx44ZtrdtC7z4orwxICIqCxMnSrnOwnh6AuHhMo0uKKj8d87W7tWknZ4XHW1YOS+/GjUMQ1PNmmU457nsGb0EeGJiIr777jucOnUKANCwYUO89NJLcFJ1w4qCGJKIiKqOixdldsqNG3K7WjXgnXeA5s3v8aDr14EffgC2bDFsDwoCXnpJ5v0TEZVGVhZw5oyEB33ffms4T7hOHQlGDz0kn+yYUshIS9Pt1XT8OHD2rOG+cPk5OuoCU8OGur2aTIRRQ9LBgwfRrVs32NraIjQ0FABw4MAB3L59G//++y9a6M+dVBlDEhFR1ZKQAEyZopu9YmYGDB8OdO+e78T0dNnr6PffZe8RLS8vYNAgecNiSm9UiKhiyMiQoe3du2X67u3bMoVXfx3jqVPAjz9KKHroIcDNTb3+llRGhgQ/7bqm06cNf4fmZ2MjHzo1bix7Naj8wZNRQ1K7du1Qt25dfPPNN7C4uyFVdnY2hg4divPnz2P79u2l73kZY0giIqp6MjKAzz+X9c1aTz4JDB4MaHKygX//LViUwcEBeP55oEePKr/ZIhGVUGqqBKLdu4FDhwqGhuHDpSJmZZSdLVPytKHp5EkZfSpMy5YyD1pFRg1Jtra2OHz4MBo0aGDQfvLkSbRs2RLp6ekl77GRMCQREVVNiiIf3v72m67hqZr70T/ne1jEXdGdaGEhex09+yw3giWiktmwAdixAzh6tPApaHZ2sraoe3cZTakKFEWKP+iHJm3l64EDZesEFZUkG5T44zJHR0fExMQUCEmXL1+GQyWrpU5ERBWTRgMMGSKbzv8y8wK6XvwatQ4cx+lqQL36gLUVgPbtZWMlDw+1u0tEFdH27QULMDg7y3Td1q1lillVG5nWaKRsuL8/8NhjEpri4iQ0VbCgWOL/ub59++Kll17CzJkz0bp1awDArl27MH78eDz//PNl3kEiIqJSSUtD90s/IjxrLc6lK8iBLEXa8F9DNJw5BLV7sCgDEd1HbCywa5dUe/vgA8Nqc+HhEpLc3SUUtW4ta27KuyKdKdNoZK2nl5faPSmxEoekmTNnQqPRYMCAAcjOzgYAWFpaYvjw4Zg2bVqZd5CIiKhEFAXYuBFYsgRISoKToxRZOnDFC39UH4wo54dg8bUGo2yATp3U7iwRmZz//pNgtGsXcOGCrv3kSRkd0mrXTkJR7dos9FIJlaoEOACkp6cjOjoaAFCnTh1Uq1atTDtWFrgmiYioijl7VnaWPXNG12ZtDfTti5TOvTHtM0scPaq765lnZMYd398QVWHazV21wSgmpvDzBgwA+vQp375RmTL6PkkVBUMSEVEVkZws+x3984/hxodt28p+R3fL72ZnA19/Dfz9t+6UsDDgjTcAW9ty7jMRmYYJE6TIQGHq1wfatJGpdJ6e5dsvKnNGLdxARERkMnJzgfXrJSClpurafX2BV18FgoMNTrewAF57DahVS8JSbi6wbx/w1lvAxImytICIKiltEYH862N8fQ1DUlCQBKPwcP5SqMIYkoiIqGI6fRr48kvg/Hldm60t8MILwOOP37Oq1GOPAT4+wLRpsqXHxYvAuHHAu+/K+iUiqiQURdYV7dol5bqvXZMPVfRHEdq2BS5f1hVfqF5dvf6SyeB0OyIiqlgSE4HFi4FNmwzbO3UCBg0CXF2L/VRXrgBTpsglILlq5Eigc+ey6iwRlTvtXj07dgA7dwJXrxre//rrQNeu6vSNVMXpdkREVPkoiiwmWrJEanlr+fvL1LpGjUr8lD4+wMyZwPTpUsk3OxuYPVveXw0axEq+RBXKxYsSinbu1H3yoU+jAZo0AVxcyr1rVPGUaiTp7Nmz2LJlC+Lj45Gbm2tw36RJk0rciQULFmDGjBmIi4tD06ZNMW/ePISGht73cStWrMDzzz+PXr16Yc2aNQXu50gSEVElcfkyMG8ecOqUrs3ODujfX3azNzd/oKfPyQG+/Rb46y9dW6tWwJtvAiZYvJWICvPmm0BUlGGbNhhpiy84O6vSNTINRq1u980332D48OGoUaMGPD09odGrm6rRaHDo0KESdXblypUYMGAAFi5ciLCwMMyePRs///wzoqKi4H6PxXIXL15E27ZtUbt2bbi6ujIkERFVRllZwKpVwOrVMsyj1bkzMHgw4ORUpl/u77+Br76S0ATIeu6JEyvkPohEldeVK8DBg8ATTxjW71+zBvjuO2lr3FjWGoWHc+SI8hg1JNWqVQuvvfYa3n777QfqpFZYWBhatWqF+fPnAwByc3Ph6+uL119/He+8806hj8nJyUH79u0xZMgQ7NixA4mJiQxJRESVzYkTMnqkP23Gy0sWDeWrWleWjh4Fpk7VFcuzs5Pqdy1aGO1LEtH9XLsma4x27NAVa/n8c6BePd05N28Ce/fKiBGDERXCqGuSbt26hT5ltJFWZmYmIiIiMGHChLw2MzMzdOnSBXv27CnycZMnT4a7uzteeukl7Nixo0z6QkREJiItTQozrF+vazM3B55+GujbF7CyMuqXDw6W915Tpsgsv7Q04MMPZY3Sk09y41micnPjhi4YnT1b8P4dOwxDUvXqUrqSqAyUOCT16dMH//77L1599dUH/uI3btxATk4OPDw8DNo9PDxw+vTpQh+zc+dOfPfdd4iMjHzgr09ERCZEUYDdu2W+261buvbAQBk98vcvt654eUlBh88/l32UFAX4/nsgOhoYNQqwti63rhBVPRs2yKG/BlFfvXpAu3ZyEBlJiUNS3bp1MXHiROzduxdNmjSBpaWlwf2jRo0qs87ll5KSgv79++Obb75Bjbu7pxMRUSVw4wawcKEkEi0bG2DgQODRR1UpM1etGvDee8CKFcDy5dK2fTvw33/Szj0miYzk2LGCAal2bQlFbdsCnp7q9IuqlBKvSQoICCj6yTQanNff1O8+MjMzUa1aNaxevRq9e/fOax84cCASExPx+++/G5wfGRmJ5s2bw1yvipG2up6ZmRmioqJQp06dvPu4JomIyMTl5gJr1wJLlwIZGbr20FBg+HDARD4Q27sX+OwzXRcdHYF33pGiWURUCmlp8oO1e7dUpbO11d134AAweTLg56cbMfLxUa+vVGkYtXBDWQsLC0NoaCjmzZsHQEKPn58fRo4cWaBwQ0ZGBs6dO2fQ9v777yMlJQVz5sxB/fr1YaU3V50hiYjIhMXEAHPnGpbsdXEBXnlFFl6b2OKfmBjg44+B2Fi5bWYGDB0KPP64yXWVyDRlZEgA2r5dqtNpK1a+8QbQsaPuvOxs2QDWz0+VblLlVW6byWrzleYB/jqMGzcOAwcORMuWLREaGorZs2cjLS0NgwcPBgAMGDAAPj4+mDp1KmxsbNC4cWODxzvfrXefv52IiExUdraU9F650rCsd7duUh3B3l61rt2Ln5+sUZo5E4iIkEGwr7+WQlvDhxu9ngRRxZSVBRw6JMFo/37DEWOtyEjDkGRhwYBEqitVSFq6dClmzJiBs3crjdSvXx/jx49H//79S/xcffv2xfXr1zFp0iTExcWhWbNmWL9+fV4xh5iYGJhxy3MiosohOhqYMwe4cEHX5uMjhRkqwIdd9vbApEnADz9IzgOAjRtllOndd6W4FhHd9dNPwO+/y9S6/JyddVPpGjQo964R3U+Jp9t9/vnnmDhxIkaOHIk2bdoAkIpzCxYswMcff4yxY8capaOlwel2REQmIjNTKiD88osMwQAyX+2pp4Dnn6+QwzA7dgCzZ8u3BshMwQkTgKAgVbtFpA5FKTjvdOVK4McfdbcdHIA2bSQYNW6sSkEWqtqMuiYpICAAH330EQYMGGDQvmTJEnz44Ye4oP/poMoYkoiITMCpU7L26L//dG3+/sDo0UDduqp1qyycPw/8739AfLzctrAAXn1VZg4SVXqKIqPC27fL8dFHgK+v7v7YWGDMGOChh4D27YGmTeWHhEglRg1JNjY2OH78OOrm+8N29uxZNGnSBBmFzTVVCUMSEZGKMjLkU+Q//pA3U4C8QerbF3jmmUrzZik5GZg+HTh6VNfWtavUn6iAA2RE93f1qoSibdsMP/x47jmgXz/Dc7OygHzbxRCpxaiFG+rWrYtVq1bh3XffNWhfuXIl6unvekxERFXX0aPAvHlAXJyurV49GT2qVUu9fhmBo6N8gP7995IHAeDff2X51bvvcj8lqiRu3JA5ptu3A/kqDQOQqXNJSQXbGZCogipxSProo4/Qt29fbN++PW9N0q5du7Bp0yasWrWqzDtIREQVSFoasHgxsH69rs3KCnjxReCJJwC9fe4qEwsLYNgwmT04f76sU4qOlplGb7wBhISo3UOiB/Djj8CqVboRYX2NGslUujZtACen8u8bkZGUOCQ9/fTT2LdvH2bNmoU1a9YAAIKCgrB//340b968rPtHREQVxcGDwIIF8omzVqNGwKhRgLe3ev0qR506AQEBwCefyHKMlBQZZXr+eZmJxP2UyORlZEjq158O6+9vGJDq1AE6dJACDCay4TNRWVN9M1lj4pokIqJykJwMfPstsGWLrs3GBhg8GOjRo0omg7Q0YNYsYN8+XVtIiIwqOTio1y+iQmVny15F27YBe/cCb74JhIXp7s/MBN55B2jVSkaNfHxU6yrRgyjzwg3Jycl5T5ScnHzPc00pjDAkEREZkaLIGoWvvzZci9C8uex7VMUX4yiKVDxfulT3Iby7u5QJr+BF/agyUBTg9Glg61b5OU5J0d3Xrh3w1luqdY3IWMq8cIOLiwtiY2Ph7u4OZ2dnaAr5VFBRFGg0GuTk5JSu10REVHHcuAF88QVw4ICuzc4OGDoU6Ny5So4e5afRSBG/evWAGTMkR8bHy3vPV1+VCnhE5e7iRRkx2r5dV7ten52dbPRKVMUVKyRt3rwZrq6uAIAt+tMpiIioalEUKcrw/ffA7du69tat5Z2/i4t6fTNRTZvKprPTpgFRUVIRed48+RD/1VdZJpzK0W+/AYsWFWy3spLpdR06AC1asCIdEYoZkjp06JB3PSAgAL6+vgVGkxRFweXLl8u2d0REZDquXJHSbceP69pcXOSdfuvW6vWrAqhRQ0LSt98Ca9dK24YNujLhHh7q9o8qoZQUKcttZ6dra9ZMd93MTKbGduggm73a2pZ7F4lMWYkLN5ibm+dNvdN38+ZNuLu7m9R0O65JIiIqAzk58gn08uUyDKL1yCPAkCGAvb16fauAtm6VkaTMTLltby8FHVq2VLVbVBlkZgL798uLLCJCSu8//bTufkWRiiKBgUDbtizZTVWOUTeT1a49yi81NRU2NjYlfToiIjJl588Dc+bIpZaHhxRm0P9UmoqtY0epqKwtE56aKmXCn35a3tNalPgvM1VpubmyefPWrcCePUB6uu6+rVsNQ5JGA4wbV949JKqQiv2reNzdHyqNRoOJEyeiWrVqeffl5ORg3759aMY/mERElUNmJrBihZRny82VNo0G6NUL6NdPSnxTqfn7ywf6s2dLxWVA/qmPHZPqy15eavaOTJ6iABcuSNn97duBhISC57i6yoK47Gwmb6JSKPZPzeHDhwHISNKxY8dgpbfS1MrKCk2bNsWbb75Z9j0kIqLydeKEzAe7ckXXVquWbApbv756/apk7OxkPdKaNVImPDsbOHMGGD0aGDFClooQFWrHDimZmF+1arI+sGNHoEkTWXdERKVS4jVJgwcPxpw5cyrEGh+uSSIiKoG0NGDxYqlep2VhAfTtK7Ws+Wm00Zw9K+95Y2N1bZ07S00MDtpVcampwJ07QPXqura0NKB/f1kjaGEhC9o6dpTNXlkukahIZb6ZrL6kpCTk5OTklQTXSkhIgIWFhUmFEYYkIqJi2rMHWLjQcNpOYKCMHvn5qdevKuT2bfkv2LxZ1+btLfsq1amjXr9IBVlZwMGDsqZo/36gUyf5WdS3fLlMqWvTBnBwUKWbRBWNUUNSjx490LNnT7z22msG7QsXLsQff/yBdevWlbzHRsKQRER0HwkJ8s58zx5dm40NMGAA8NhjnK6jgi1bZJ/ejAy5bWEBDBoEPPEE9+it1BQFOHlSgtGOHTJapFWtGvDDDxwlInpARg1Jrq6u2LVrF4KCggzaT58+jTZt2uDmzZsl77GRMCQRERVBUYB//pFNYfWrYbVsCbz2GuDmpl7fCLGxMv3u7FldW8uWwJgxrNpc6fz3nyTjrVuB+PiC9zs7ywK1vn05YkT0gIxaAvzOnTvIzs4u0J6VlYXb+ruvExGRabpyRQoznDiha3NyAl5+GWjXjsMVJsDLC/j0Uyno8Ntv0nbwIPD661LBmcVkK4lz54CxYwu2W1vrCjA0bQqYm5d714iquhKPJHXq1AmNGzfGvHnzDNpHjBiBo0ePYseOHWXawQfBkSQiIj3Z2VJnesUKua7VuTPw0kv8lNpEHToEfP45kJQktzUa2fqmXz/W0qhQMjKAW7cM67srCjB0qIwgaTRA8+YSjMLDWbGDyAiMOt1u165d6NKlC1q1aoXOnTsDADZt2oQDBw7g33//Rbt27Urf8zLGkEREdFdUlIweXbqka/P0lFrTHJYweYmJsq/SoUO6tvr1ZVTJx0e1btH95OQAR47oNnqtXRuYPt3wnH/+kQDVvj3g4qJKN4mqCqOGJACIjIzEjBkzEBkZCVtbWwQHB2PChAmoV69eqTttDAxJRFTl3b4tC77/+ks+tQakGEPv3sALL8i0HqoQFMVwTyVA1vEPGgQ8/jhnSZoMRQHOn9dt9HrrluH9334LeHio0zeiKs7oIamiYEgioipt/37gyy+BGzd0bbVrSylh1pSusArbU6lxYynqwPfeKoqPlxGjrVuBy5cL3m9nJ2v+nnmG/1FEKim3kJSRkYHMzEyDNlMKIwxJRFQlJSQAX38N7Nqla7OykkUsvXpxEXglkJEBLFkiA4RaNjbAkCFA9+4cVSp3KSnAiy8CubmG7RYWssGrdqNXS0tVukdEwqghKT09HW+99RZWrVpVaLnvnJyckvXWiBiSiKhKURRg/Xpg8WLDst7NmklZb/0F41QpHD0KzJljWDm6WTNg9GigRg3VulW5ZWYCV68C/v6G7ZMmAYcPy/VGjSQYcaNXIpNi1BLg48ePx5YtW/Dll1+if//+WLBgAa5cuYKvvvoK06ZNK3WniYjoAcTEAPPnA6dO6docHYFhw2SPFQ4tVErBwfLfvmiR5GMAiIyUehzDhknhQv7XlwFFAY4dk6l0u3bJWr7vvzccle3ZE2jSRH7e3N1V6yoRlY0SjyT5+flh6dKl6NixIxwdHXHo0CHUrVsXP/zwA3766SesW7fOWH0tMY4kEVGll5kJrFolpb1Z1rtKi4iQAob6kzxatQJGjgRcXdXrV4WlKMDFixKMtm83XNsHAJMnS8luIqowjDqSlJCQgNq1awOQ9UcJCQkAgLZt22L48OGl6C4REZXK0aPAggUy9UfL21uGEYKD1esXqSIkRF4OX38NbN4sbQcOyMvh1VelwjRHlYohPh7Ytk3CUUxMwfttbWWjV5brJqrUShySateujQsXLsDPzw8NGjTAqlWrEBoaij///BPOzs5G6CIRERlISZH5VRs36trMzaVq1rPPSpEGqpLs7ICxY+U9/Pz5sr9Saiowcyawe7csTXNyUruXJiw3F3jjDfmH02duDrRoAXTqBISGsnQ+URVQ4ul2s2bNgrm5OUaNGoWNGzeiZ8+eUBQFWVlZ+PzzzzF69Ghj9bXEON2OiCoVRZFPuL/5BkhO1rUHBcmcKj8/9fpGJiclBVi4UGaKaXGZmp7MTODMGamfru/rr4E//5TrQUFSgKFtW/nHI6IKrVz3Sbp06RIiIiJQt25dBJvY9A6GJCKqNGJjgS++kFX5WtWqyU6irPlM97Bzp2yXpZ+rmzUDhg+X2ZlVSm6uTFPdulWG1u7ckd159YfXLlyQeYodOnA/I6JKxmghKSsrC927d8fChQtRr169B+6osTEkEVGFl5UlRRlWrZLrWm3aAC+/zBX5VCyJiRKUdu/WtVlaAn37Ak89Vcm371EU4Nw5GYXdvh24dcvw/pdflsp0RFTpGa1wg6WlJY4ePfpAnSMiomI6elRGj65c0bW5uckq/NBQ9fpFFY6zMzBhArB/v0zBu35dMvePP8qgyogRBWedVXixsfLNbdtm+DOkVa2aLN4KDCz3rhGR6SvxdLuxY8fC2tq6QuyJxJEkIqqQkpKkMIO2RBkAmJkBvXoBL7wA2Nio1zeq8DIygOXLgd9/l9lnWl26AEOGVKKq8W+9ZbhvGABYWEgZwE6dpD46i5wQVSlGLQGenZ2NRYsWYePGjQgJCYGdnZ3B/Z9//nlJn5KIiACZFrRhg2xSmZqqaw8MlMIM/v6qdY0qDxsbCUMdO0rJ8DNnpH3jRhlpeuklyRAVZplberpsEtW2rWGnO3SQkKTRyDBZhw4yTdXeXr2+ElGFUeKRpE6dOhX9ZBoNNut/8qkyjiQRUYUREyPvWE+e1LXZ2Ulhhm7dKtA7VqpIcnOB9euBJUska2gFB0u5cB8f9fp2T1lZwKFDMp1u/36pVDdjBtCgge6cpCQZjW3XDqhRQ7WuEpHpMErhhvPnzyMgIACaCvSHmiGJiEzenTvAihXAb78BOTm69g4dgKFDZTEJkZElJEhl+Z07dW0WFrLt1jPPmEhhB0UBjh+XNUa7dhmOtgLAY4/Jej0ioiIYJSSZm5sjNjYW7u7uAIC+ffti7ty58DDh8pgMSURk0g4elJJj8fG6Ni8v+Qi/WTPVukVVV0SE1ArRf0n6+MjeSiEhKnXqwgVgyxapTHfzZsH7HR1lql2XLkAFqLxLROoxSkgyMzNDXFxcXkhycHDAkSNHULt27QfvsZEwJBGRSbp2DfjuO2DPHl2bhYV8ZN+nDxeTk6qKGtwMCZHBzZo1y7lDc+bIgil9NjbAQw8B7dsDzZvLzw8R0X0YtXADERGVUkYGsHo18OuvhnseNWkio0fl/u6TqCBra2DgQJnx+cUXugJxERHA4cMyq+35541QBe/WLWDHDqBzZ1mPp9Whg4Qkc3NJah06SAl8VnkkIiMqdkjSaDQF1iNVpPVJRESqURR58/f998CNG7p2Z2dg8OAKVkqMqgp/f2D6dMOXbm4u8OefMvvthReAHj0ecBAnLU1GVLdtA44ckZ8VOzsJSlrBwcCoUTJyVGnqkxORqSvRdLsePXrA2toaAPDnn3/i4YcfLlAC/Ndffy37XpYSp9sRkerOnwe+/ho4cULXZmEBPPEE0LevbGhJZOLu3JHpd6tXy3UtX18pGV6i9UqZmcCBAxKMDhwAsrMN72/WDJgypSy6TURkwChrkgYPHlysL/79998X67zywJBERKpJTgZ+/FHqK+v/mg0JkVXwJltbmahoN24AS5fKSJK+Yq1XOnVKfh727AFu3y54v6enTKXr0EHSFxFRGTNKSKqIGJKIqNzl5AB//w0sW2ZYotjLS8JRq1bq9Y2ojJw5IyXDT5/WtZmZ3We90urVsiGTPmdn2ceoQwegfn1OOyUio2JIuoshiYjK1dGjMrXu0iVdm40N8NxzMr3OJDabISobhS61UxT4ay5hSJ1taDL6YVgE6I0IxcfL3Dw7O6B1a6lMFxws6YqIqBwwJN3FkERE5SI+Hli0SDa41NepEzBoEODqqkq3iMrDnTvA+u+u4PySHQi8th01bl8GABxv8AwCPhyIDh30ctDRo0CDBixzT0SqKEk2MImPbxYsWAB/f3/Y2NggLCwM+/fvL/Lcb775Bu3atYOLiwtcXFzQpUuXe55PRGQ0KSnAt98Cr7xiGJDq1gVmzADGjWNAosrr+nXg119h/fYY9Pr7VYxwXoZAu8t5d3tf3IXPP1MwcqQsQ1IUyMgRAxIRVQCqjyStXLkSAwYMwMKFCxEWFobZs2fj559/RlRUVN7Gtfr69euHNm3aoHXr1rCxscH06dPx22+/4cSJE/DJtxCaI0lEZBSZmcAff8gai7Q0XbuTk2ww06UL11ZQ5XX4MPDTT7oNlPJJ8GqItcnt8VdiW6RbOuW116sH9O8vxev440FEaqhQ0+3CwsLQqlUrzJ8/HwCQm5sLX19fvP7663jnnXfu+/icnBy4uLhg/vz5GDBggMF9DElEVKZyc4FNm6Qow82bunYrK6BXL+Dppw03wSSqjPbtAz7+2LCtbl1ZY9SuHVCjBgCZWffDD4bFHQCgcWNgwAAgKKic+ktEdFdJssGDbAH3wDIzMxEREYEJEybktZmZmaFLly7Ys2dPsZ4jPT0dWVlZcOWUFiIyFkUBDh4EFi8GYmJ07RqNjBr16wdUr65a94jKXFoasH+/VGbo0kUKLWi1aCEfBri6SlW6du0Ab+8CTxEcDHz6qfzoLF0KXLwo7cePA2+9JYUeX3wRqF27fL4lIqKSUDUk3bhxAzk5OfDw8DBo9/DwwOn8Hz0V4e2334a3tze6dOlijC4SUVUXFSXh6Phxw/bQUJla5+enSreIylx6ugSjnTuBiAjdJq8WFoYhydIS+OKLYq2302gkDLVsKU/744/A1aty34EDcrRtK2GJW4cRkSlRNSQ9qGnTpmHFihXYunUrbGxs1O4OEVUmV6/Kx9/5K9YFBkrFusaNVekWUZm6fVs3YnToEJCVVfCcixdl/y9zc11bCWdvaDQy4NS6NbB5M7B8ua5s+M6d8mPWuTPw7LOypRgRkdpUDUk1atSAubk5rl27ZtB+7do1eHp63vOxM2fOxLRp07Bx40YEBwcbs5tEVJXcugWsWAH884+8MdTy9paFFK1bc9U5VQ47dgCzZhUejFxdgTZtJNk0aFBmr3lzc+CRR2SW3j//ACtXAklJMqN140ZZ8teuHdCnD+DvXyZfkoioVFQNSVZWVggJCcGmTZvQu3dvAFK4YdOmTRg5cmSRj/v000/xv//9D//88w9atmxZTr0lokotMRH45Rdg3TqpXqfl5AS88ALQtatMOyKqiG7fltBvb69rCwgwDEguLjL3rU0boGFDo34YYGUF9OwpgemPP4Bff5VlUIoCbN8uR2iohKUGDYzWDSKiIqn+F3/cuHEYOHAgWrZsidDQUMyePRtpaWkYPHgwAGDAgAHw8fHB1KlTAQDTp0/HpEmTsHz5cvj7+yMuLg4AYG9vD3v9X/5ERMWRlCThaO1aw3BkYwM8+aQctrbq9Y+otLTFF3btkql0zzwjgV+rZk2px+3jI+GoYUO9XV/Lh42NTLF77DH5Efz9dyA5We7bv1+OJk0kLLF0OBGVJ9VLgAPA/PnzMWPGDMTFxaFZs2aYO3cuwsLCAAAdO3aEv78/Fi9eDADw9/fHpUuXCjzHBx98gA8//NCgjSXAiahISUny8fXatcCdO7p2KyugRw8p5+3iol7/iEojOVlKdO/aBRw5oiu+AAC1agF3t9swVRkZwIYN8qOpXbOkVbeuhKXwcIYlIiqdCrVPkjExJBFRAUlJwG+/AX/9ZRiOLC2B7t3l03ZuKUAVSVKShKLdu4Fjx2Q/r/xcXCRdDBtWIaaNZmcDW7bIfs3aanhaNWvKj2mHDhXiWyEiE8KQdBdDEhHlSU7WhaOMDF07wxFVdDt3AtOnF2yvUUPWF7VpU6bFF8pTbq5kv59/Bs6fN7zPzQ146inZxokFbomoOBiS7mJIIqIiw5GFhS4ccSNYqgguXwb27JHAo1/VNSNDNjTOzAQ8PSUUtW4N1KtXIYNRYRRFllX9/DNw4oThfXZ2UlflsceAfNsuEhEZYEi6iyGJqApLSJCyWWvXFgxH3bpJOKpRQ73+Ed2PogBnzgB790o4unJF2jt0AN580/DcrVtlY+OAgEoTjIpy4oSEpYgIw3aNRiri9ewpGbKS/zMQUSkwJN3FkERUBcXEyKrvbdsMF61bWMjHzX36MByR6crOBo4fl1C0bx9w82bBc+zsgB9/rPILcs6fl89B8v+oA4Cvr4SlTp04FY+IdBiS7mJIIqoiFEU+Xv71V+DAAcP7LCxkM5Znn2U4ItO2ezcwbx6QmlrwPo0GaNQIeOghKcDg7l7+/TNRSUmyMe3atTKArM/OTn78H3tMZiISUdXGkHQXQxJRJZebK1ORfvlFpiXps7MDHn0UePxxFmQg05OYKHsS6f9tOn8eGD1ad9vCAmjeXEJRaKhsbExFys6WXwd//AGcOmV4n0YDtGolo0tNm3IqHlFVxZB0F0MSUSWVmQls2iQFGWJjDe+rUQPo3Vum1nETWDIViiKFF/btk+PMGeDFF2WEU/+cUaNkbVF4OBASwtdwKUVHA3/+CWzfDmRlGd7n6yvLEjt2ZO4kqmoYku5iSCKqZFJSZE7NX3/JHBt9/v5SD7hduyq/VoNMRE6ODGns3Qvs318w0AcGAjNnGrYpCoc5ypB2Kt66dQWXd1lYyABdly5AixaAubk6fSSi8sOQdBdDElElcfEi8PffMnqkvwEsIHNnnn4aaNaMby7JNJw+Le/KDxwofH0RIKE+LExKd/N1a3TaqXh//gmcPFnwfldX4OGHJTD5+JR//4iofDAk3cWQRFSBZWVJha+1awu+qzEzA9q2lZGjOnXU6R8RICM/gGHQ2boV+Owzw/PMzIDGjSUYhYayioCKLl8GNm4ENm+WpWH5BQVJWGrbFqhWrdy7R0RGxJB0F0MSUQUUHy/zY/75p+CUOhsbKVXVuzere5F6MjOlTPfBg3IMHixriLRSUmS9kY2NrCsKC5NLe3v1+kwFZGfLBrUbNsigX06O4f3W1rIv7yOPSGFBDvgRVXwMSXcxJBFVEIoi71a0U5Ty/1ry9ZUavp068aNdUsf167J76YEDwJEjhtM+u3YFXn/d8PwzZ4Datbk+roJISgK2bJERpkuXCt7v6Qm0by9LHmvVYmAiqqgYku5iSCIycSkp8q5k3TogLs7wPnNz+XT+scf4MS6pIzoa2LlTRosuXiz8HHNzGW4YP75cu0bGoSjAuXPya2nbNiAtreA5Pj4yFa9tWwYmooqGIekuhiQiE6QosrB9/Xpgx46C9Xlr1AC6d5c5LtzfiNT044/AypUF252dgZYtZeOdpk1lTy6qdDIzpdjDhg0yeFjYuyUGJqKKhSHpLoYkIhMSFyfzWbZsKVgKGZDqdI89Jm88WYuXykN6OnDsmEz1PHwYmDQJqFlTd//Jk8Dbb8s733r15LXZsqUUC+G74SolIUHqyOzcCZw4wcBEVFExJN3FkESksrQ0YNcuKSN14kTB++3sZMSoRw/A27v8+0dVS26uTKE7fFiC0enThqv1hw0DnnhCdzs7W0Y7W7TgrqOUpySBKSwMqFuXgYnIVDAk3cWQRKSCnBx5E7p5s8xVyT+dTqORKUqdOslaDmtrdfpJVcf27fJajIyUdXCFsbCQqokDB5Znz6iCK05gcnKSnN2yJdC8OeDgUP79JCLBkHQXQxJROVEU4MIFCUbbthW++Yivr+zW2LGjrDsiMobU1IKltqdNkxHN/Hx85F1rixZAkyZSspuolBISgN275aVWVGDSaIDAQAlMISGcuUlU3hiS7mJIIjKyq1flXcG2bYVX/3J0BDp0kHDEdwNkDKmpsmfRkSNyXLsG/PQTYGWlO+fvv4EvvpDpnU2bSjBq3hzw8FCv31SpJSQA+/dLYcQjR4CMjMLPc3aWsBQSIi9JbqVFZFwMSXcxJBGVMUWRTUR275Y5JoUFIwsLmYj/8MPyCT33iaGylJEBnDoFHD0q7z7PnSv4kf3//gcEB+tuJyVJ4ZC6dVkUhMpdVpbUAImIkNB0+XLh52k0QIMGUsOmSRMZcdLP+kT04BiS7mJIIioD2o1Ddu+W4+rVws8LCpJg1LYtPw6lspeVBUyYAJw9KwUYCmNmJlXoXnxR3mkSmaD4eF1gyr8vsT4LCwlNjRtLaGrQgKGJ6EExJN3FkERUSrm5UvlLG4yuXy/8vMBAKb4QHi5b0hM9qORkWdCRkyOBW99rrxX8GN7fX6bQNW0qmw5Xq1ZuXSV6UFlZ8nI/eFCC03//FX0uQxPRg2NIuoshiagEMjNlbcfevXLculXwHI1G/kK3bi3BqHr18u8nVS63bsm7xGPH5PUXEyPtvr6yjkjfl1/KeU2ayOswOJilualSuX5dfgyOHZMjLq7oc/VDU6NGQP36/IyA6H4Yku5iSCK6j7g43UeYR49KUMrPwkI+pW/dWtYa8U0pPYiEBGDfPllXdOrUvd8F/vij4estN1em1BFVESUJTRqNbGLboIHu8PZmvRwifQxJdzEkEeWjHS2KiJDjypXCz7OykqILrVsDoaFSFYyopNLT5VL/4+1jx4B33y38fDMzqYLYuLEczZpxPhGRnhs3dIHp+HEgNvbe5zs4GIam+vVZ6Z6qNoakuxiSiCAfPWpD0ZEjhY8WAYCrq9ShbdlSAhL/klJJKIq81k6f1o0SXboEvPwy8PjjuvMyMoC+fWVUyMpKCi0EBUkoatgQsLVV73sgqmBu3JCwdPq0HBcuFF3XBJBRpYAAXWCqU0dmtrLoI1UVDEl3MSRRlZScLH81jx8HDh0qerTIzEzenGqDkb8/52VQ8SUlAWfOyHH2rFympBQ8r317YPx4w7YtW2QeUJ06LBFPVIYyMuTH8dQpXXAq7MdSn5WVBKc6daRKfp06gJ8ffzSpcipJNuCPAFFFl5SkW/h+7Jh8el8U7WhRSIhMZeI0OiqOzMyC096++UY2ES6K9iPrmjUL3tepU9n2j4gAyASAJk3kAGSA9+pVXWA6fVr+ROh/PJ6ZCURFyaFlYVEwONWqBVhalu/3Q6QmhiSiiqYkocjMTOZVtGwpwSgggKNFdG+ZmbJJcHS0boToyhVgxQrA2lp3Xr16hiHJ0VHm7wQGyghl/fqcOkekMo0G8PGRo3NnaUtPlx/tc+fkiI4uuLYpO1vOOXtW12ZhIZ951KpleLi7888KVU4MSUSmTFGkvFFUlGzZfr9QpNHIx37ajTQaNuRoERUtO1teV+fPyxEdLRu1FLao4fx5CT9aTZsCTz4pYahePb5TIqogqlXTbS2mlZYmP/7R0brglH+mdna2fH5y8aJhu42NhCU/P8Pw5OzMXwlUsXFNEpEpSUvTrfOIipLLpKSiz9eGIu38iqAghiIqSFGk9HZOjoQZrfR0KaJwL2Zmsl5t8GCZoklEVUJ6uu6zE214unLl3oUh9Dk4SFiqWVNGsry95dLDg+udSD1ck0RUEWRnSyki/UBUVJEFLYYiup/bt2VD1kuX5CPfS5fkSEqS+TZjxujOrVYN8PLSzbUxN5ePg2vX1i1GqF3bcJodEVUJ1arpqvFrZWXJnyntrxjtUdj+TSkpuhpC+jQaCUra4KQ9fHwANzduhUamgyGJqDxkZspfkgsX5Dh7Vj6iy8q69+Ps7WU6k3atR8OG3FKdCtq1C9i0SV5j8fFFn3f+fMG2Pn3ksnZtCUhcmU1ERbC0lIFlf3/D9owM4PJlw89lYmJkADs/7W4B2t0p9FlYAJ6ecri7S2hyd9cdLi6cwkflhyGJqCwpCnDrli4MaY///jMsJ1QYCwt5oxoYKGs8AgPlU37+RajaMjKkPNV//8lx+TIwerThPlbx8cCBA0U/h5OTFO2oX7/gfY88UvZ9JqIqxcZG/mzVq2fYnpIiv760x5UrusuMjILPk52t+1VXGAsLoEaNwgNU9epycIs/KisMSUSllZkpv+kvXjQMRPdaQ6TP29swEAUE8FP8qkxbREH7DkF7XL9e8FxtwQQtPz+5tLUtWHqqVi0JSURE5czBQf68BQYatisKkJhYeIC6erXoSRbZ2bpRqKLY2spuF9Wry2VRB2cR0/2wcAPR/aSlyaf32kP7af61a/cfHQLkoy8/PwlB+oeDg/H7TqZDUeRj1dhYOWrUMJzsn5Ghm/p2P6NGGY4A3bkj4dzNjSOPRFShaQNUfLx8RhQfrzu0t9PTH/zr2NnJ9D0XF6nEp3+pf93RkYUmKhMWbiAqKUUBbt6Uj7Lyh6Fbt4r/PNppTfpHzZr8DVuVJCXJ6yY2Vj7uvHpVdz0tTXfeww8bhiQbGwk5+iNHdnby+tE/fHxkGqY+a2vDqnVERBWURqMLKvlHoLTS0goGqIQE3XHzZuHT+fI/R1pa0VP79Dk66kKTk5Mczs7Srr2tPezs+FlVZcF3blR1ZGbK6I92rF77xjU2VtrvV0RBn40N4Osrb1r1R4m4qrRy044GXbum+6vcs6fhOUuWABs23P+58u/eCMhIkkajC0ROTnw9ERHlY2cnR/4CEvpu39YFplu3dNf1w9StW/cPUwCQnCxHTMz9zzU3LxieHB1l8oiDQ+HXbW35q94UMSRR5ZGdLb/1rl8HbtyQN7LaIBQXJ78dSzq71MlJF4Z8fXVH9er8jVaZpaQAkZHyGrp+XReK4uNlapu+zp0NKw56exd8Po1GRnq8vOR+T09ZK5Rfjx5l+m0QEVVVtrYy8O7jc+/zMjIkLCUm3v8yM/P+XzcnR84vySQUCwspZps/RNnbSxjUv8x/nUuZjYchiSoGbdW4GzfkuH5dF4a0t2/dKnkIAgArK9m0wctLDv0wxHVDlUdmpgRl7XHjhu56t25Aixa6c2/eBD79tHjPGx9v+HFmo0bAE0/oXk9eXhKQOOWSiMjk2NjoflXfi6LI6FRSUvGP7Ozi9SE7W0JYYmLJ+29lZRicqlWTgGhnJ9eLc1hb83PfwvCvNqlLUWQMO//4t/ZSf5y8uL9tCuPkpNt8wcvL8DqnyFVc2r9at27Jx3faKm9ac+fKNvE3bsjoUFHq1TMMSW5uBc+xspJ2Dw9dzVkPDxlV1BcUJAcREVUaGo0uVNwvUAGGoSo5Wf4EpaTc/3r+yQr3k5mpe/tUWhqNBKVq1SQ02trqjqJu29jojvy3tUdFf2vFkERlLydHftITE+WnPjHR8KMV/RCkfXP7IDQaWUHp5iYVw7SX7u66MMQNWCuuixeBEyd0ryft60Z7aOc/BAYCM2caPvbKFSnLfj83bxretrMDXnpJ93ry8OD6ICIiKraShiqtzEwgNVXeRqWlyXXtoX+7sOvFWV9VGEWRx5b28UWxsjIMUG3bAs89V7Zfw5gYkujesrN1P63an0btxx6pqboQpB+GUlNLN+2tKI6OsqmBm1vBIOTmJp/kcyqTacvMBM6f171utK+hwuYnLFggo3tahw8Dixbd/2sUNgHcxUVeG9pNM2rUMLzUHq6uBR/bu3epv10iIqLSsLLS7eVUUjk5Uh799m0JTunphkdamtynva49V3tkZOjuL4u3cZmZcmi3j2zU6MGfszzxnWVlp/2J0f40aGteFnY7Lc3wTeyDfCxxPxqNhJ/q1eWNrP4Ob/q3tW9yyTScPy9hRP+1k55uGKBTU2VNTseOusfdugWMH1+8r5GUZBiSitoI1cFBVyfWxaXwEtjjxsmqVo4AERFRJWduriv68CAURQr+5g9P+re1bXfuGF5q7yvsHFvbsvk+ywvffZqa3Fx5NWlfXdpXVlFH/o8BtIf2zauxQk5hbGwKbhig3UhAf0MBZ2c5GH6MJztb99rJX4nv7Fng9OmCryH9y7Q0KWk+YYLh886ZI0HpfvJvh25vf//HaF8/+UuxN2wIjBmje01pd/krzuvHyur+5xAREVEejUb+fFpZFf05ZWmU5SSj8sB3qeVl9WopsH/njmEI0gYhbVtJ9uoxFgsLXe1JbU3Kwm7b2ekCkJMT35CWRkKC7v8//5GZqbseEiLV9rSuXAG++67oj2/0i1ysXGm4JuvgQWD58vv3rbB1XMVZ26XRFKyTWq2ajC5pX0faS/0gXdTrR7uujIiIiCqsijapwyRC0oIFCzBjxgzExcWhadOmmDdvHkJDQ4s8/+eff8bEiRNx8eJF1KtXD9OnT8ejjz5ajj0uhYMHZfF5ebCx0dV+1O64VtR1/dvaEFTZakEqiozQ5eRICM3Olu9XfyQiJUWCR1ZWwSM7W3ddo5E3+/r+/Rc4dkw3+TYzU87Nfzs0FBgxwvCxo0bpJuvei4ODYUjKygIOHCje95+ebhhu7hd0NBr59ylsXLxjR6Bx48JfP9rwXK1awdePRgMMG1a8/hIRERGpTPWQtHLlSowbNw4LFy5EWFgYZs+ejW7duiEqKgruhawx2L17N55//nlMnToVjz/+OJYvX47evXvj0KFDaNy4sQrfQTFZWxdsMzeXQGNtLYf2ev5Lbd1FbfH7/PUYte3a+/K/Qb1zR0JC/kMbHrSHnZ08XisjA/jvv8Ifqw0d2ushIYah4/x5Kb2ck6M7r7BLFxcgf8D9+WcJLDk5ElByc+VSe1t72bkz0L27YX+HDzc8R3vkH+P99FPDMs1HjwLTpt3//9HGpmBIOn0a2Lr1/o8tLAwV9rooTP6aoPqP02gKr72pfZ2YmRk+tkULWaujfd3kv7xXSO7WrXj9JSIiIqrAVA9Jn3/+OYYNG4bBgwcDABYuXIi1a9di0aJFeOeddwqcP2fOHHTv3h3j7y4CnzJlCjZs2ID58+dj4cKF5dr3EnntNRlN+v13edOq0cihKLqwkpEhn/o7OABTphg+/osvgLVrDc/XDzray44d5Q2wvsGD771HjNYbbxgutr98ueBzFWXZMpkypXXwIPDDD/d/XJ06BUNSRETxRt2aNDG8bWYm++EUR/49l4q7PqqwvZqKCjrm5rpJvZaWha+kDAuT/xtrazlPG5j1DysroG5dw8d5eAA//iihpqSFCbQb5RIRERFRoVQNSZmZmYiIiMAEvcXhZmZm6NKlC/bs2VPoY/bs2YNx+d64d+vWDWvWrDFmVx+ch4d8Uh8be/9zb98u2JaRUbygk5tbsC3/SEJxH2tuXrzHFfbY4n7NwvZIKu7XzR9YzM2lIp6FhVw3N5cAYWEhh/51OzvDx3p7A7166c6715Hfs8/K6JKlpYQa7XnF+T5efrl432t+ZmZlu5qSiIiIiPKoGpJu3LiBnJwceHh4GLR7eHjg9OnThT4mLi6u0PPj8lfTMkXakQXtKJJGYziqpD0KG3FwdpbdyPTPNzPT3dZeFrbAvXFjqVamPV97rrm54WPzT290dJRRHnNzw8fqH9r78o+mhITIm/j855mZGYaYwta9jB4ta260jzM31z1G/zL/6Im5ObBkSYn+S/L4+gJDh5busfrlqomIiIiowlN9ul2V0r69HKUxZIgcpVHItMViqVFD1viURkCAHKVR2H43RERERETlpJhzooyjRo0aMDc3x7Vr1wzar127Bs8iSv56enqW6HwiIiIiIqKSUDUkWVlZISQkBJs2bcpry83NxaZNmxAeHl7oY8LDww3OB4ANGzYUeT4REREREVFJqD7dbty4cRg4cCBatmyJ0NBQzJ49G2lpaXnV7gYMGAAfHx9MnToVADB69Gh06NABn332GR577DGsWLECBw8exNdff63mt0FERERERJWE6iGpb9++uH79OiZNmoS4uDg0a9YM69evzyvOEBMTAzO9SmmtW7fG8uXL8f777+Pdd99FvXr1sGbNGtPeI4mIiIiIiCoMjaLk32Wz8khOToaTkxOSkpLgqL+HDxERERERVSklyQaqrkkiIiIiIiIyNQxJREREREREehiSiIiIiIiI9DAkERERERER6WFIIiIiIiIi0sOQREREREREpEf1fZKMSVvdPDk5WeWeEBERERGRmrSZoDg7IFXqkJSSkgIA8PX1VbknRERERERkClJSUuDk5HTPcyr1ZrK5ubm4evUqHBwcoNFo1O4OERERERGpRFEUpKSkwNvbG2Zm9151VKlDEhERERERUUmxcAMREREREZEehiQiIiIiIiI9DElERERERER6GJLKyYIFC+Dv7w8bGxuEhYVh//79aneJjGz79u3o2bMnvL29odFosGbNGoP7FUXBpEmT4OXlBVtbW3Tp0gVnz55Vp7NkNFOnTkWrVq3g4OAAd3d39O7dG1FRUQbnZGRkYMSIEahevTrs7e3x9NNP49q1ayr1mIzhyy+/RHBwMBwdHeHo6Ijw8HD8/fffeffzNVA1TZs2DRqNBmPGjMlr42uhavjwww+h0WgMjgYNGuTdz9eB+hiSysHKlSsxbtw4fPDBBzh06BCaNm2Kbt26IT4+Xu2ukRGlpaWhadOmWLBgQaH3f/rpp5g7dy4WLlyIffv2wc7ODt26dUNGRkY595SMadu2bRgxYgT27t2LDRs2ICsrC127dkVaWlreOWPHjsWff/6Jn3/+Gdu2bcPVq1fx1FNPqdhrKms1a9bEtGnTEBERgYMHD+Lhhx9Gr169cOLECQB8DVRFBw4cwFdffYXg4GCDdr4Wqo5GjRohNjY279i5c2fefXwdmACFjC40NFQZMWJE3u2cnBzF29tbmTp1qoq9ovIEQPntt9/ybufm5iqenp7KjBkz8toSExMVa2tr5aefflKhh1Re4uPjFQDKtm3bFEWR/3dLS0vl559/zjvn1KlTCgBlz549anWTyoGLi4vy7bff8jVQBaWkpCj16tVTNmzYoHTo0EEZPXq0oij8fVCVfPDBB0rTpk0LvY+vA9PAkSQjy8zMREREBLp06ZLXZmZmhi5dumDPnj0q9ozUdOHCBcTFxRm8LpycnBAWFsbXRSWXlJQEAHB1dQUAREREICsry+C10KBBA/j5+fG1UEnl5ORgxYoVSEtLQ3h4OF8DVdCIESPw2GOPGfyfA/x9UNWcPXsW3t7eqF27Nvr164eYmBgAfB2YCgu1O1DZ3bhxAzk5OfDw8DBo9/DwwOnTp1XqFaktLi4OAAp9XWjvo8onNzcXY8aMQZs2bdC4cWMA8lqwsrKCs7Ozwbl8LVQ+x44dQ3h4ODIyMmBvb4/ffvsNDRs2RGRkJF8DVciKFStw6NAhHDhwoMB9/H1QdYSFhWHx4sUIDAxEbGwsPvroI7Rr1w7Hjx/n68BEMCQREZWTESNG4Pjx4wbzzqnqCAwMRGRkJJKSkrB69WoMHDgQ27ZtU7tbVI4uX76M0aNHY8OGDbCxsVG7O6SiHj165F0PDg5GWFgYatWqhVWrVsHW1lbFnpEWp9sZWY0aNWBubl6gIsm1a9fg6empUq9Ibdr/e74uqo6RI0fir7/+wpYtW1CzZs28dk9PT2RmZiIxMdHgfL4WKh8rKyvUrVsXISEhmDp1Kpo2bYo5c+bwNVCFREREID4+Hi1atICFhQUsLCywbds2zJ07FxYWFvDw8OBroYpydnZG/fr1ce7cOf5OMBEMSUZmZWWFkJAQbNq0Ka8tNzcXmzZtQnh4uIo9IzUFBATA09PT4HWRnJyMffv28XVRySiKgpEjR+K3337D5s2bERAQYHB/SEgILC0tDV4LUVFRiImJ4WuhksvNzcWdO3f4GqhCOnfujGPHjiEyMjLvaNmyJfr165d3na+Fqik1NRXR0dHw8vLi7wQTwel25WDcuHEYOHAgWrZsidDQUMyePRtpaWkYPHiw2l0jI0pNTcW5c+fybl+4cAGRkZFwdXWFn58fxowZg48//hj16tVDQEAAJk6cCG9vb/Tu3Vu9TlOZGzFiBJYvX47ff/8dDg4OefPJnZycYGtrCycnJ7z00ksYN24cXF1d4ejoiNdffx3h4eF46KGHVO49lZUJEyagR48e8PPzQ0pKCpYvX46tW7fin3/+4WugCnFwcMhbj6hlZ2eH6tWr57XztVA1vPnmm+jZsydq1aqFq1ev4oMPPoC5uTmef/55/k4wFWqX16sq5s2bp/j5+SlWVlZKaGiosnfvXrW7REa2ZcsWBUCBY+DAgYqiSBnwiRMnKh4eHoq1tbXSuXNnJSoqSt1OU5kr7DUAQPn+++/zzrl9+7by2muvKS4uLkq1atWUJ598UomNjVWv01TmhgwZotSqVUuxsrJS3NzclM6dOyv//vtv3v18DVRd+iXAFYWvhaqib9++ipeXl2JlZaX4+Pgoffv2Vc6dO5d3P18H6tMoiqKolM+IiIiIiIhMDtckERERERER6WFIIiIiIiIi0sOQREREREREpIchiYiIiIiISA9DEhERERERkR6GJCIiIiIiIj0MSURERERERHoYkoiIqFwMGjQIvXv3Vu3r9+/fH5988sk9z/H398fs2bPLpT+ZmZnw9/fHwYMHy+XrERFR8Vmo3QEiIqr4NBrNPe//4IMPMGfOHKi1f/mRI0ewbt06fPnll6p8/cJYWVnhzTffxNtvv41Nmzap3R0iItLDkERERA8sNjY27/rKlSsxadIkREVF5bXZ29vD3t5eja4BAObNm4c+ffqo2ofC9OvXD2+88QZOnDiBRo0aqd0dIiK6i9PtiIjogXl6euYdTk5O0Gg0Bm329vYFptt17NgRr7/+OsaMGQMXFxd4eHjgm2++QVpaGgYPHgwHBwfUrVsXf//9t8HXOn78OHr06AF7e3t4eHigf//+uHHjRpF9y8nJwerVq9GzZ0+D9vj4ePTs2RO2trYICAjAsmXLCjz2888/R5MmTWBnZwdfX1+89tprSE1NBQCkpaXB0dERq1evNnjMmjVrYGdnh5SUFGRmZmLkyJHw8vKCjY0NatWqhalTp+ad6+LigjZt2mDFihXF/rcmIiLjY0giIiLVLFmyBDVq1MD+/fvx+uuvY/jw4ejTpw9at26NQ4cOoWvXrujfvz/S09MBAImJiXj44YfRvHlzHDx4EOvXr8e1a9fw7LPPFvk1jh49iqSkJLRs2dKgfdCgQbh8+TK2bNmC1atX44svvkB8fLzBOWZmZpg7dy5OnDiBJUuWYPPmzXjrrbcAAHZ2dnjuuefw/fffGzzm+++/xzPPPAMHBwfMnTsXf/zxB1atWoWoqCgsW7YM/v7+BueHhoZix44dpf0nJCIiI+B0OyIiUk3Tpk3x/vvvAwAmTJiAadOmoUaNGhg2bBgAYNKkSfjyyy9x9OhRPPTQQ5g/fz6aN29uUIBh0aJF8PX1xZkzZ1C/fv0CX+PSpUswNzeHu7t7XtuZM2fw999/Y//+/WjVqhUA4LvvvkNQUJDBY8eMGZN33d/fHx9//DFeffVVfPHFFwCAoUOHonXr1oiNjYWXlxfi4+Oxbt06bNy4EQAQExODevXqoW3bttBoNKhVq1aB/nl7e+PSpUul+ecjIiIj4UgSERGpJjg4OO+6ubk5qlevjiZNmuS1eXh4AEDeCM+RI0ewZcuWvDVO9vb2aNCgAQAgOjq60K9x+/ZtWFtbGxSXOHXqFCwsLBASEpLX1qBBAzg7Oxs8duPGjejcuTN8fHzg4OCA/v374+bNm3kjW6GhoWjUqBGWLFkCAPjxxx9Rq1YttG/fHoCMVkVGRiIwMBCjRo3Cv//+W6B/tra2ec9HRESmgSGJiIhUY2lpaXBbo9EYtGmDTW5uLgAgNTUVPXv2RGRkpMFx9uzZvGCSX40aNZCeno7MzMwS9e3ixYt4/PHHERwcjF9++QURERFYsGABABg819ChQ7F48WIAMtVu8ODBef1u0aIFLly4gClTpuD27dt49tln8cwzzxh8nYSEBLi5uZWob0REZFwMSUREVGG0aNECJ06cgL+/P+rWrWtw2NnZFfqYZs2aAQBOnjyZ19agQQNkZ2cjIiIiry0qKgqJiYl5tyMiIpCbm4vPPvsMDz30EOrXr4+rV68WeP4XX3wRly5dwty5c3Hy5EkMHDjQ4H5HR0f07dsX33zzDVauXIlffvkFCQkJefcfP34czZs3L80/BxERGQlDEhERVRgjRoxAQkICnn/+eRw4cADR0dH4559/MHjwYOTk5BT6GDc3N7Ro0QI7d+7MawsMDET37t3xyiuvYN++fYiIiMDQoUNha2ubd07dunWRlZWFefPm4fz58/jhhx+wcOHCAs/v4uKCp556CuPHj0fXrl1Rs2bNvPs+//xz/PTTTzh9+jTOnDmDn3/+GZ6engbT+nbs2IGuXbuWwb8OERGVFYYkIiKqMLy9vbFr1y7k5OSga9euaNKkCcaMGQNnZ2eYmRX9J23o0KEFSnx///338Pb2RocOHfDUU0/h5ZdfNiju0LRpU3z++eeYPn06GjdujGXLlhmU79b30ksvITMzE0OGDDFod3BwwKeffoqWLVuiVatWuHjxItatW5fX1z179iApKanAFDwiIlKXRlFr+3MiIqJycvv2bQQGBmLlypUIDw8v8+f/4YcfMHbsWFy9ehVWVlbFflzfvn3RtGlTvPvuu2XeJyIiKj2WACciokrP1tYWS5cuveems6WRnp6O2NhYTJs2Da+88kqJAlJmZiaaNGmCsWPHlmmfiIjowXEkiYiIqJQ+/PBD/O9//0P79u3x+++/w97eXu0uERFRGWBIIiIiIiIi0sPCDURERERERHoYkoiIiIiIiPQwJBEREREREelhSCIiIiIiItLDkERERERERKSHIYmIiIiIiEgPQxIREREREZEehiQiIiIiIiI9DElERERERER6/g829PlJ7tS2ywAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10, 0.936144057777959)\n", + "{'beta': 0.20408163265306123, 'gamma': 0.02836734693877551, 'assignment': '1'}\n" + ] + } + ], + "source": [ + "def query_2(sim, tstart, tend, dt):\n", + " S, I, R = sim.T\n", + " # USER: write query condition.\n", + " # query_condition = 0.15 <= max(I) <= 0.3 #((0.15 <= I[10]) and I[10] <= 1.0)\n", + " # query_condition = (0.45 <= max(I)) and (max(I) <= 0.55) and (45 <= np.argmax(I)*dt) and (np.argmax(I)*dt <= 55)\n", + " query_values = [0.4 <= I[int(t/dt)] <= 0.6 for t in range(tstart, tend+1, dt) if 45 <= t < 55]\n", + " query_condition = all(query_values) \n", + " # print(I[9:11])\n", + " return query_condition\n", + "\n", + "\n", + "my_params = [p for p in param_choices_true_false if p['assignment']==\"1\"][-1]\n", + "param_assignment, sim = eval_point(my_params[\"beta\"], my_params[\"gamma\"], plot=True, mxstep=20, query_condition=query_1)\n", + "# param_assignment, sim = eval_point(0.25, 0.027755102040816326, plot=True, rtol=1e-10)\n", + "S, I, R = sim.T\n", + "\n", + "print(list(enumerate(S))[10])\n", + "# print([S[i]-S[i-1] for i in range(1, len(S))])\n", + "print(my_params)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wV17Xvl3pFBQlQpYMRCNFscKMYEzCm2GCb4gqOG7gGiK99702c5N50pz3HsfOSXGwn7gUXMMUFMCDRUe9dOkddR/X08v743c0czV5zJIws8POsz0cf0NE+M99Zs2fvNXuV7efxeDykiy666KKLLrro8h0S/0sNoIsuuuiiiy666DLUohtAuuiiiy666KLLd050A0gXXXTRRRdddPnOiW4A6aKLLrrooosu3znRDSBddNFFF1100eU7J7oBpIsuuuiiiy66fOdEN4B00UUXXXTRRZfvnOgGkC666KKLLrro8p0T3QDSRRdddNFFF12+c6IbQLrooosujBw6dIj8/Pzo0KFDlxrloqS6upr8/PzolVdeGVD7TZs20dixY79RJl10uRxEN4B00eUbkldeeYX8/PzO/4SGhtLkyZPpscceo6ampkuN941KZmYm/eQnP6GOjo4hOV9GRgaNHj2afO3sc91119GoUaPI6XQOCdPFyKZNm/r0naioKJoxYwb97ne/I5vNdqnxdNHl/wsJvNQAuujy/7v87Gc/o3HjxpHVaqWjR4/SSy+9RJ9++inl5+dTeHj4pcb7RiQzM5N++tOf0qZNmygmJuYbP99dd91FzzzzDB05coQWLFgg/b26upqysrLoscceo8DAb8ewFxISQn//+9+JiKijo4Pef/992rFjB506dYreeuutAR9nzJgxZLFYKCgoaEDt//a3v5Hb7f5azLro8m0SfQVIF12+YVm+fDndfffd9MADD9Arr7xCTz31FFVVVdFHH310Ucd1u91ktVoHifLbIWazmf38zjvvJD8/P3rjjTfYv7/55pvk8Xjorrvu+ibxBlUCAwPp7rvvprvvvpsee+wx+uKLL+jKK6+kt99+m4xG44CPI1YfAwICfLbr7e0lIqKgoCAKCQm5KHZddPk2iG4A6aLLEMvixYuJiKiqqoqIiJ5//nm69tprKS4ujsLCwmjOnDn03nvvSd/z8/Ojxx57jF5//XWaNm0ahYSE0L59+77WMd59912aOnUqhYWF0TXXXEN5eXlERPTXv/6VJk6cSKGhobRo0SKqrq6WjnHixAm66aabKDo6msLDw2nhwoV07Nix83//yU9+Qj/84Q+JiGjcuHHn3Tjex/rXv/5Fc+bMobCwMBo+fDht2LCB6urq+pxn0aJFlJ6eTmfOnKEFCxZQeHg4/fu//zur09TUVFqwYAG999575HA4pL+/8cYbNGHCBJo3bx7V1NTQ1q1b6YorrqCwsDCKi4ujO+64g71WtYwdO5Y2bdokfb5o0SJatGhRn89sNhs999xzNHHiRAoJCaHU1FR6+umnv7YLy9/f//w5qqurqb29nXbs2EHTp0+nyMhIioqKouXLl1NOTk6f73ExQJs2baLIyEiqqKigm2++mYYNG3beOFTHAInvP//88/R//+//pQkTJlBISAhdddVVdOrUKYlT9K3Q0FBKT0+nXbt2sXFFb731Fs2ZM4eGDRtGUVFRNH36dPrTn/70tXSjiy5fR74da8G66PL/kVRUVBARUVxcHBER/elPf6LVq1fTXXfdRXa7nd566y264447aPfu3bRixYo+3/3yyy/pnXfeoccee4zi4+PPTyoXcowjR47Qxx9/TI8++igREf3yl7+klStX0tNPP01/+ctfaOvWrWQymeg3v/kN3X///fTll1/2Of/y5ctpzpw59Nxzz5G/vz/t3LmTFi9eTEeOHKG5c+fS2rVrqbS0lN588036wx/+QPHx8URENGLECCIi+vnPf04/+tGPaN26dfTAAw9QS0sLvfDCC7RgwQI6d+5cH5dZW1sbLV++nDZs2EB33303jRo1SlOvd911Fz300EO0f/9+Wrly5fnP8/LyKD8/n3784x8TEdGpU6coMzOTNmzYQCkpKVRdXU0vvfQSLVq0iAoLCwfFLel2u2n16tV09OhReuihhygtLY3y8vLoD3/4A5WWltKHH374tY7r3XcqKyvpww8/pDvuuIPGjRtHTU1N9Ne//pUWLlxIhYWFlJSU5PNYTqeTli1bRtdffz09//zz/V73G2+8Qd3d3fTwww+Tn58f/eY3v6G1a9dSZWXleffanj17aP369TR9+nT65S9/SSaTib7//e9TcnJyn2N99tlntHHjRrrxxhvp17/+NRERFRUV0bFjx+jJJ5/8WrrRRZcLFo8uuujyjcjOnTs9ROT5/PPPPS0tLZ66ujrPW2+95YmLi/OEhYV56uvrPR6Px2M2m/t8z263e9LT0z2LFy/u8zkRefz9/T0FBQXSuS7kGCEhIZ6qqqrzn/31r3/1EJEnISHB09XVdf7zZ5991kNE59u63W7PpEmTPMuWLfO43e4+5x43bpzne9/73vnPfvvb3/b5rpDq6mpPQECA5+c//3mfz/Py8jyBgYF9Pl+4cKGHiDwvv/yydL2ctLe3e0JCQjwbN27s8/kzzzzjISJPSUnJeV61ZGVleYjI89prr53/7ODBgx4i8hw8ePD8Z2PGjPHcd9990vcXLlzoWbhw4fnf//nPf3r8/f09R44c6dPu5Zdf9hCR59ixYz6v5b777vNERER4WlpaPC0tLZ7y8nLPL37xC4+fn58nIyPD4/F4PFar1eNyufp8r6qqyhMSEuL52c9+1uczIvLs3Lmzz/GJyPPMM8+w5x4zZoz0/bi4OE97e/v5zz/66CMPEXk++eST859Nnz7dk5KS4unu7j7/2aFDhzxE1OeYTz75pCcqKsrjdDp96kEXXb5J0V1guujyDcuSJUtoxIgRlJqaShs2bKDIyEjatWvX+bfisLCw821NJhN1dnbS/Pnz6ezZs9KxFi5cSFOnTpU+v5Bj3HjjjX3cEfPmzSMiottuu42GDRsmfV5ZWUlERNnZ2VRWVkZ33nkntbW1UWtrK7W2tlJvby/deOON9NVXX/UbPPvBBx+Q2+2mdevWnf9+a2srJSQk0KRJk+jgwYN92oeEhNDmzZt9HlNIbGws3XzzzfTxxx+fj2fxeDz01ltv0ZVXXkmTJ0+WdOVwOKitrY0mTpxIMTExrL6+jrz77ruUlpZGU6ZM6XOdwv2pvk5Oent7acSIETRixAiaOHEi/fu//ztdc801tGvXLiKCbvz9MYS7XC5qa2ujyMhIuuKKKwZ8HVu2bBnwNa1fv55iY2PP/z5//nwiUvqH0WikvLw8uvfeeykyMvJ8u4ULF9L06dP7HCsmJoZ6e3vps88+G/D5ddFlsEV3gemiyzcsL774Ik2ePJkCAwNp1KhRdMUVV5yfuIiIdu/eTf/93/9N2dnZfeJD/Pz8pGONGzeOPceFHGP06NF9fo+OjiYixNFwn5tMJiIiKisrIyKi++67T/NaOzs7+0ySaikrKyOPx0OTJk1i/67OVEpOTqbg4GDN46nlrrvuol27dtFHH31Ed955J2VmZlJ1dXUft4rFYqFf/vKXtHPnTjIYDH1S5zs7Owd8Ll9SVlZGRUVF591+amlubu73GKGhofTJJ58QEYydcePGUUpKyvm/u91u+tOf/kR/+ctfqKqqilwu1/m/CfeqLwkMDOxzvP5E3W/EfRb9o6amhoiIJk6cKH134sSJfYyyrVu30jvvvEPLly+n5ORkWrp0Ka1bt45uuummAfPoosvFim4A6aLLNyxz586lK6+8kv3bkSNHaPXq1bRgwQL6y1/+QomJiRQUFEQ7d+5kM5q8Vy++7jG0soG0PhcGgljd+e1vf0szZ85k23q/+XPidrvJz8+P9u7dy55P/X3uen3JypUrKTo6mt544w2688476Y033qCAgADasGHD+TaPP/447dy5k5566im65pprKDo6mvz8/GjDhg39rmBxBiURVmC8r8ftdtP06dPp97//PdtebWxyEhAQQEuWLNH8+y9+8Qv60Y9+RPfffz/913/9Fw0fPpz8/f3pqaeeGlAau/cK0kCkv/5xITJy5EjKzs6m/fv30969e2nv3r20c+dOuvfee+nVV1+94OPposvXEd0A0kWXSyjvv/8+hYaG0v79+/ukHu/cuXNIjzEQmTBhAhERRUVF+ZyYibQNhQkTJpDH46Fx48add0kNpoSEhNDtt99Or732GjU1NdG7775LixcvpoSEhPNt3nvvPbrvvvvod7/73fnPrFbrgIo2xsbGsu1qampo/Pjx53+fMGEC5eTk0I033qipi4uV9957j2644Qb6xz/+0efzjo6O84HnQyljxowhIqLy8nLpb9xnwcHBtGrVKlq1ahW53W7aunUr/fWvf6Uf/ehH7CqSLroMtugxQLrocgklICCA/Pz8+rgvqqurLyhLaDCOMRCZM2cOTZgwgZ5//nnq6emR/t7S0nL+/xEREUREkrGwdu1aCggIoJ/+9KfSyoHH46G2traL5rzrrrvI4XDQww8/TC0tLVLtn4CAAOncL7zwQh/9acmECRPo+PHjZLfbz3+2e/duKYV/3bp1ZDAY6G9/+5t0DIvFcj5G6WKEu453332XDAbDRR/760hSUhKlp6fTa6+91qd/HD58+HyZBSHq++zv708ZGRlERHqla12GTPQVIF10uYSyYsUK+v3vf0833XQT3XnnndTc3EwvvvgiTZw4kXJzc4fsGAMRf39/+vvf/07Lly+nadOm0ebNmyk5OZkMBgMdPHiQoqKizseszJkzh4iI/uM//oM2bNhAQUFBtGrVKpowYQL993//Nz377LNUXV1Nt956Kw0bNoyqqqpo165d9NBDD9GOHTsuinPhwoWUkpJCH330EYWFhdHatWv7/H3lypX0z3/+k6Kjo2nq1KmUlZVFn3/++YDiZh544AF677336KabbqJ169ZRRUUF/etf/zq/OibknnvuoXfeeYceeeQROnjwIF133XXkcrmouLiY3nnnHdq/f7+mW3SgsnLlSvrZz35GmzdvpmuvvZby8vLo9ddf77MSNdTyi1/8gm655Ra67rrraPPmzWQymejPf/4zpaen9zGKHnjgAWpvb6fFixdTSkoK1dTU0AsvvEAzZ86ktLS0S8avy3dL9BUgXXS5hLJ48WL6xz/+QY2NjfTUU0/Rm2++Sb/+9a9pzZo1Q3qMgcqiRYsoKyuLrrzySvrzn/9Mjz/+OL3yyiuUkJBAP/jBD863u+qqq+i//uu/KCcnhzZt2kQbN248v0L0zDPP0Pvvv0/+/v7005/+lHbs2EEff/wxLV26lFavXn3RjP7+/rRx40YiIlq1alWfzDYi1Ey699576fXXX6ft27dTQ0MDff755/3GLxERLVu2jH73u99RaWkpPfXUU5SVlUW7d++Wgon9/f3pww8/pF/96leUl5dHO3bsoJ/+9Kd06tQpevLJJwfF/ffv//7vtH37dtq/fz89+eSTdPbsWdqzZ8+A4ou+KVm1ahW9+eabZLfb6ZlnnqEPPviAXnnlFbriiisoNDT0fLu7776bQkNDz9edevXVV2n9+vW0d+/eC4pL0kWXixE/z9eJYNNFF1100UWXAcrMmTNpxIgRetq7LpeV6Ka2LrrooosugyIOh4OcTmefzw4dOkQ5OTnSViG66HKpRV8B0kUXXXTRZVCkurqalixZQnfffTclJSVRcXExvfzyyxQdHU35+fkDirPSRZehEj0IWhdddNFFl0GR2NhYmjNnDv3973+nlpYWioiIoBUrVtCvfvUr3fjR5bITfQVIF1100UUXXXT5zokeA6SLLrrooosuunznRDeAdNFFF1100UWX75zoMUCMuN1uMhqNNGzYsG+sjL0uuuiiiy666DK44vF4qLu7m5KSkvqtKaUbQIwYjcZLWkxMF1100UUXXXT5+lJXVycVKFWLbgAxIirH1tXVUVRU1CWm0UUXXXTRRRddBiJdXV2UmpoqVYDnRDeAGBFur6ioKN0A0kUXXXTRRZdvmQwkfEUPgtZFF1100UUXXb5zohtAuuiiiy666KLLd050A0gXXXTRRRdddPnOiW4A6aKLLrrooosu3znRDSBddNFFF1100eU7J7oBpIsuuuiiiy66fOdEN4B00UUXXXTRRZfvnOgGkC666KKLLrro8p0T3QDSRRdddNFFF12+c6IbQLrooosuuuiiy3dOdANIF1100UUXXXT5zoluAA2lWCxEpaVEzc3abVwuoooKotpaIo+Hb+Px4O8VFUROp/axmptxPotFu01nJ1FJCf7VEqsVx2lqunjuujqi8vKL5+7qAndHx+Bw19RcPHdLy9ByV1YOLrfZfHHcNhuO09h48dz19eB2OLSP1draP3d3N7hNpovjdrvBXV19eXGXlRE1NFwcNxGRwTBw7t7e/rnb27Xb2O0D466qGhh3WZlv7ra2/rl7egaXu6oK/9cSoxHHstt9c5eUgG0wuI3GoeFub++fu7cXbdratNsMgeiboQ6VdHUR/Z//Q1RYSBQVRfTgg0Rz5vRt43QS/eMfREePEgUGEq1dS7RqlXys3buJPvgA7a+7juiBB9DeW86cIfr732HYTJ1K9MQTOK+31NYSvfACBpGkJKLHHycaM6Zvm+5ucBcU4Pvf/z7RVVf1beNy4VyC+5ZbiG69Vebeswfcdju4H3xQ5j57Fsfq6CCaMoXoySeJoqP7tqmrA3d9PVFiIrjHjvXNff/9RHPnytz/8z9EX30FjtWridaskbn37iV67z1wX3MN0UMPEQUF9W2TnU30f/+vwv3EE0QxMX3b1NeDqb6eKCEB3OPG9W3T04Nry8sjGjYM3PPmydw7dxIdPkwUEADutWtl7n37wG2zEV19NdHDD8vcOTngNpmIJk+GvmNj+7YxGMBdVwfuxx4jGj++b5veXnDn5oJ70yboylvcbqJXXyU6dIjI359o5Uqi224jUm9aeOAA0TvvgHvePHAHB/dtk5tL9Ne/KtxPPEE0fHjfNkYjuGtriUaNInr0UaKJE2XuP/8Zx4uIAPe11/LcBw+Ce8UKottvl7k/+4zo7bfBfdVVRFu2yNx5eeBubyeaNAn6VnM3NIC7poZo5EhwT5rUt43ZDO6cHHDfdx+eKTX3a68RffkluJcvJ1q3Tub+/HOit96C4X3lleAOCenbJj8f3G1tRBMmED31FFFcXN82jY1Ef/qTwr11K+6Nt1gs4M7OJgoPJ7r3XqL582Xuf/6T6IsvwHrTTUQbNsjcX35J9MYbOKbQt5q7sJDopZcU7iefJIqP79umqQnc1dVEI0aA+4orZO4XXyQ6dw7c99xDtGBB3zYeD9G//gVuIqJly4g2bpS5Dx4kev11HFPoOzS0b5uiIqK//AXc48eDe8SIvm2am8FdVYVr2roVY4+3WK3gPnsW3HffTbRwocz95pt47oiIli4luvNOmfvwYVyf2Uw0ezb6pZq7uBjcra0Y2558En3BW1pawF1ZiT60dStRWhpdCtFXgIZKzp3DT3IyBr89e+Q2VVVER44oE+eePbIV3dtL9Omn+H9MDNpXVsrH2rMHD09yMs579qzc5tgxvBmlpsKqP3KE5z57dmDc0dF4aPbtgwGi5t6zB4Pb8OEwlioq5GN9+ikekORkDO4cd2Ym3h5SU/HWynGL7yYnY5LcvVtuU10N48ebW70SZrHgu4L72DGcUy179yrc2dk8d1aWou/KSpyb4z59GgZpZyfRJ5/IbWpr8d2oKBhA+/bJKzNWK7idTgwyx47hHqtl3z5MACkpMALOnJHbHD+u6LuyEgZMf9wff8xzHzpEFBkJg/PAAXmFw2bDdx0ODOqZmRfHXVwM7qoqDOBqycsjOnUKhnR3N89dX69wBwWBW/3GbbfjXjkcmKiysqAztRw4AANHcJ86xXMXFYG7pgYTJsd98iQMUsGtXikxGMAdEQHuzz6T37idTnzXZvPN/dlnMChTUmAMcdwnTvTPnZ+PdgkJGBM47oYGcIeHw6D5/HM8W2rujz4C96hR6CdFRfL5Dhzoy33yJM9dWIg2dXUwrNRSUKBwm804N8d98CBRWBi4v/hCXu13ufBdqxXcWVk89+ef4/6lpODcHPfJkwp3fb1ieHlLYSH6k+D+8EN5haexEd8NDcXPF1/Iq6FuN75rNuNYx4+DSy1ffAGWlBScW4u7oABtDAZc6yUS3QAaKgkMxFuY2YyHV/2mItoEBGDStdkwaAUE9G3j7492NhvaBQbKqyhEOL7TifOJ73DnI1KW4tWrA2pul0ubOzAQPFYrzx0QgM9tNhzLF7fLhTZ+fnyboCD8zVcbocv+9B0YiDY2G8/k74/zWa2+9R0crHBfrL4Ft8PRfz+xWpXfOe7+9P11uNWrGqLNQPq3dz8JCOD1HRKicHNtiAbWTwID8Tfh+rgYfQturT5wIfp2u/vXt+D2eLS5Rd91OLTvibe+OSY/P3x3sLnd7v71bbdrcwcEgFmL299/4NwD7SdmM7h9MQnugfRvX/q22weu74Fy++onvb0Kt3plR7TxpW8/P3zXbsextLiDgi6cm9P3EIluAA2VzJlDtGgRHtiJE3mXxdixcGcEBGC1YeNGvE14S1gYPh8+HIPAqlWyG4UIroVJk3C+RYuw1KqWxYuxdGw24+833shzL16M44wfj+OqZcwYcAcGgmvDBry9eUtoKJZV4+MV94fajUIEvXhzq91tRFjCFdyzZxMtWSK3mT27L/ftt8ttRo8Gd1AQVtM2bsTbsreEhIB7xAg8tCtXym4UIrjOBLfg47jnzsUAqcU9axbug92O+3rHHXKblBS4GYOCsHq1cSPcTt4SHDww7ltvxbK51QpXhNrdRoSl/rlzoe+ZM4m+9z2ee8kScI8ZQ7R+vdwmORnnCw7G6tWGDbJbNigI3KNG4febb5bdP0S4fsG9YIE297x50PfMmVjaV8uMGf1zJybi/oaEgHf9etktGxhIdNddeDv2eOBuUrtRiNDf0tIUfV99Nc999dVoM2MGXEBqycjAfXA60Y85F1FCArhDQ9E/1q2T3bIBAdB3YiImo+XLZTcKEcYZwX399bJ7kwifX3019J2RwXNPnw7XkNOJlSLORTRyJMaZ0FA8j3fcIbsJ/f0VbpcL3JwbZdUqomnTwH3ddbJ7U3Bfey3aTJ/Oc6enK9wpKb65w8LAffvtsptQzb1sGUIU1LJiBc5ptYKN4xbXI7hvvlluM3UqzuFygZtzbY0YAe7wcPzcdpvsbvPzw3dTUhTu9HSee/p0hVvtliVSPrdacYwVK+Q2QyR+Ho+vCLPvpnR1dVF0dDR1dnZSlHqAvhhxu+GqiIjg3yCEdHZiQFVPxt7S24uHUT0Qe4vNhnYxMXjwOHE6cb7oaN5aJ8KAbjINLndUlPwgXs7c4s1PuMsuhrurC9ffH3d4uOxjV3MHBMA1czHcdjtcrb64XS703ago/k3zQri7unCey4m7owMT1+XE3dkJw+W7zO3nJxv33iJWW2Jiho47NFR+MfUW4f4fLO7oaHmF93LmdjhwrIFwR0YO+grQhczfugHEyDdmAOmiiy666KKLLt+YXMj8rfEKqss3Im1tCOiMjUV2BGdBm80IEAsKwvIgt0rgdCKgz+HA8q7a3UQEq7+0FG/kkybJS7FC6usR+JeSgiVpTtrbcayYGCzrf11ulwvcNhvaDAZ3cjJcAF+X22IBU2Aglm774542jV8p8nhwb9vb4WpSZ5oIMRgQDOyL22RCIGp0NNwRWtwFBXjDulju8nL0zYFwJyXJmYIXwm21gikgAH2Ae2t1uXBtViuW8LVWLsrKlOwe9ZK9EKMRAbm+uDs6ECwdFQU3ii9uf3/om+N2u9GmP+7ycmTJjB8vZ8iouRMT5QxHb+6SEpxn6tSL4y4oQJ9KS9NeARgId0MDkgsSEnjXPBHe/IuLfXPbbOD280M/4VYJBLfZjONocVdUIIh63DjFtaqWxkYEyg8WNxH0rcVdWIjV4rQ02Q0spLISgf7jx/fPPWoUH1JAhJW0oiI8/1On8qtgdjsC6weTe9w46JOTpia088U9BKIbQEMlLS1Ezz+PQSQyEmmrixf3bWOzIZX49GlMEMuXI03U+0HzeJBCuXcvJoorr0RKqtrFc+gQUne7uzGxbd8uD1pFRThfYyP+9sQTsj+6tZXot79VuO+9V44VstmQannyJLiXLUM6sZr7jTeQ5eV0IrboqafkJfDDh4leeQUP7YQJRDt2yA9/SQnSKAX3449jgveWtjZwl5Xhwb/3Xjnmxm5HSu6JEzAgli4l2rxZ5n7rLWRUORyI3fnBD+Sl5CNHkJre2Qnu7dvlh7+0FNwNDZiwH3sMg42a+/nn0TYiAmmr6tgVux36PnECg9nSpUiXVw/Ib7+tZCbNmkW0bZvMffQoSgF0dWHA2r4dk663lJUR/fGPCvejjyLGw1va28FdUgLuO++UYykcDqTIZmWBe8kSlHBQc7/3HjJl7HbE7mzbJhvLx46hZERHh8KdlNS3TXk5uI1GGHaPPoqYGm8xmcBdXIxzbNwox1I4HEilzswE9+LFKOGgnkjeew+ZMnY7zrNtm2x0ZmYqZR7GjgV3cnLfNhUV4DYYwL1lC+6ft3R0gLuoCNwbNsixFE4n0csvQ1d+fuB+6CGZ+/33iXbtAndGBpjU3FlZ4DaZYEhu346XJm+pqiL6/e/BHRcH7tmz+7bp7AR3YSH64vr1cqkPNfeiRSiFoObetQtlNWw2PEfbt8tG54kTSpmH0aPRRv2iV10N7vp6cD/yiFyipKurL/e6dYjn8haXC+c6cgTcCxbgWGo30IcfQucidmf7dtl4O3kSx2pvB/e2bfILU00NuOvqECP18MNy7GFXF9HvfgejLCwMcUnqEiXe3ESITduyReb++GP0cYsFRun27bIRdOqUUuYhJQVt1C8etbXgrq0F90MPySVKhkj0IOihkrw8TCRTp+IB51KJq6qQQj12LFYtjh2T08m7u/F5TAzaZWfje2o5eBAD99SpOK94K/GWM2cwOUyfDmPi9Gm5TX6+wu1y8SmiNTVIlx8zBqtbmZlyOnlPDybbqCiFm0vfP3QIA/G0aZgIxFuJFndTE5+Sm58PIyItDW8uWtzZ2Qp3VpacTm42Y2AYNgxvKrm52txWK7jLy3nus2cxyE6fjvRYLkW0sFDh9nj41NbaWnCnpmLAzsqS07LNZqTKR0bCIMvN5dP3Dx9WViy09H3unMLd0qLNXVysBKJy+q6rgw5SUzGxHz8up2VbrUrq9sSJ2txffYVrTE/H/cjNldtkZyvcra04H8ddVKSs/HD6rq8Hd0oKuE+elLltNiV1e9Ik6FGLu7cX3FVV2tx1deBua+O5i4rwM2UKDIPPP+fT4EUpiJEjwa1OJ7fbwR0WpnCXlsrnO3IEY096OgyGnBy5zblz4E5PR3/MyuK5CwvBHRgIfau5jUY840lJCrc6ndzpRB8LDcVquhb30aMKd00Nz52djWcqPR2GUmam3Ka4WNF3UBC41enkDQ0YQxMTwX3qlFzMVHCHhGBVOi+PLztw9CjGUMGdnc1z19SgTUcHr++SEoyFV1wB7i+/xDjuLWLsHzUKP6dPy2nwYuwPCsKx8vN57sxMsKSnK+OUWnJyFO7OTlzrJRLdABoqEcFeBgMGQM61ExmJgd9oxIAdFSWv7ISG4vPWVrSLiOCX2uPicB6DAefl2ohAZIMB/3JLmpGRYDAYYMRwLhLB3dCAATYqSl7ZERk0ra1oFxHBL1kPH46JTXBzbYYNU7jFdXBMwcHQUU+Ptr7DwxXuyEh5hURkLLW341jh4dr6tlh863vYMLxVGQwY9NUZOd7cBgMGbi19h4djkGppwXE57pgYhduXvi0WtAkK4rkjIxVut1tb36GhaNPV5bt/NzRgQuP0LTLy2ttxLK3+HRsLY8lgwHe4axPc9fXg1tK3N/dA9B0RIXMHBvbl1uonw4fDWDIY8B1f+q6vx8QzUG71SlpEBDiamhR9q1fSBLfJpOib02VsLIwlwe1L3waDb+6wMLTp7EQ/UXOLftLYCHaOOyAATCYT9KTVT2JiFG6thAFRl8pggIHSH3dHB88tGLz1rV5JExm+HR3969vh6F/f3txcQozQndB3bKy8khYRgZ+mJvyI373F3x/f7ez03b9jYsAyUH07HHKG3xCKbgANlcyZgxTvyEikiq5bJ7dJSUGF0YQEvGncf79sAAUH4/MpU9DunnvkpWgiHP+aa3C+tWvlJV0iLIkvXYrO/L3vaadle3NzacJJSTK32gAS3GlpeMu4+24+5sibe80abe6bblK4ubTsmTOx3DtsGJZXN2yQ2yQmwjWWlIS3SI47KEjm5mJJbr8d6Z2Cm0uDv+GG/rlnzMCxoqLAvXGj3CYhAdzJyXhr37yZn9g2b8aK1IgRSNH2xR0RgaVxbil60SK4Y8PD0Ue00rIF91VXwQWmlpEj4fpNScHqzv338xPE5s14O4yPBzcXk7F2LdKXIyKQEs9xL1wI1ogIuG210rLXrVO4775bbjNiBFy6KSlYTbv/fnlgF9zTp2NyvOsuPrZhzZq+3Fpp8MuXo83ixfi/WqZNU9Lx58zB86eW+Hhwp6aCe/NmeSL19+/LvWED2nLc8+eDadUqbe4VK9Dmhhv49GZv7tmz0Y/VMnw4uMeMUbjVRrefHz7PyFC4uXIJt94KLsGtlQbvzb1ypdwmLQ3cMTEYE9WhCUQwEO67D9zjxoFPbZT4+eHaZsxQSoaoq2UTwb0muFeu1OZeuRJtFi3idw2YMgXniI3FmKgOTSDCNW3ahJX5sWPxf7URKLhnzsSxNmzQLpewaJGi7+uvl9tce63CvWABzz1EomeBMfKNZoF5PNrpg95tiHy3G0ibCznfYLXpj0nn1rl1bp1b5+6/zeXINNTcX0P0LLDLWQZywwerzVCfT+e+/Jh07suvzVCfT+e+/Jh07m/E+LlQ0Q2goZTqaqRtxsaiQi1XJKq1FUFowcFYZuZSxc1mBEba7cgC4+IWXC5kQJhMCHDl3AgeD4LwRBp8RgbfKaurEbgYE6PN3dYG7sBAuLA4bosFgXp2O5btudRllwtBj+3tvrnz8xFk54u7pgb6jo4GN5cq7s199dV8qrjFAn3bbL65T53C8dLSePeHxwOemhq4r2bM4Llra3F9vrjb23E+X9xWK/Rts8HdwKUuu91KUO+UKbz7gwjc1dVwF86c6Zs7KgpMHLfJpGQLXn01HyMguK1WcHMpwG43rr+1FUGZXJVrIvTbqirf3HV1eA6ioqBvLlXcZML5/P21uW02cItK34PBnZgIlwvHXV+vbD579dU8d0cH9O3vj2vjYkm8uWfN4lOX3W48Jy0tcNlw7iYiBApXVuIYs2fz3AYDAmEHwu3nhzZa3MePKxXK1dmLgvvMGcTkTJrEu5uIEORcUTEwbhEOwKWKd3Zi3PXzg765FQi7Hfr2xe3xQN/NzegjXFVxIgQil5ejr82Zw3Mbjcqmub64RXLD3Ll8PJHdDn339mLsUmddCu4zZxBL5Iu7tBTJNSNHYg67RMaQbgANldTWIo3SYEBcz/r18s7jPT1Ify0owIBVUIDUXe+gNY8H6b+HDuHhPnqU6Jln5AH5k0+Qvm2zYbJ9+mk5jfL0aaQld3Sgw2/dKsdS1NUhjbK+Hg/O+vXyNh69veAW9Uby8pBSz3EfPAjutDSiZ5+VB7bdu7Ezsc2GB+zpp+XYlbNnkb4uKqBu2SLHJBgM0LfgXrdO3sajtxe7bufmgjU3F7sXq7n/53/A7XKB+5ln5IHt009RnkBw79ghG2/nzoHbZML3H3lE3lLAaAR3XR0mhjvukLfDMJuRTi+4c3LA7W2YejxIy//iC3BPmQJu9cC2dy92eLZaMRDv2CEbb9nZKJfQ3g59P/KIHJPQ0IB+UlsLbqNRjnOzWBRuPz8c9wc/kLlffRWbb7pcGECfeUaOSdi3DzuGi00lf/hD2XjLycH9FdwPPSTHJDQ2grumBtxr1shxV1Yrrv/cOXCfOwdubwNPcB84AO7Jk9G/1dwHDmCHdosF3Dt2yEZQXh701NaG5/qhh+Qd05ua0E8Ed12dHHflzU2E52bbNtkwfe01cDmdMBKefRYvad7y2WdoZzZj0tq+XTYm8vMxDrS1YbJ98EF55/HmZui7qgocNTVy3JXNhudEbCgsuNWG0uuv47lzuaDDZ5+VA2q//BLPgeDetk2elAsKwN3aCu4HHkAci7e0tPTlrq6W45dEWQ2xMe+ZM9ATx71nD7gnTAC3OmlAcPf24oVr2zY55qaoiOgPfwBbeDjR978vl1ZpbQV3ZSW4q6oQp6TmfvFFJQv41Cn0S7Wh9OabygbL48eDW/3yffAgxnmzGdw/+IG8RUlxMdLgRULB5s38NkxDIHoQ9FBJWRkm5YwMdCxu9+q6OljzkyfjTSQ3V06D7+rC56NG4UEuL8f31HL6NB68jAxMRtyO2sXFMH5mzIAxwe1KXF6ucIeE8Cnn9fV9ufPz5TT47u6+3BUVmCzVcuaMwt3QwKe2FhfDiMjIwHE5bm99h4by3AYD2k2ahMm/oEBOg+/tBfeIERiAfHEHBvrWd0kJuGfMgLHL7aZcXq6kboeH8ynngnviRBhbBQXyrupmMwyM+HgMQBUVmGw4bn9/Rd9a3G1t4Dab+ZIKoh/64hZ6GT8e3IWFcvq+1YoJOz5eSc3nuM+dU7ibmvh+UlKC4wtuLsW/vBz3c/p0DMZa3KWlmKxSUtDf1Nw2G5ji4hDoW1mJSVItYlLvj7u1FdxWK88t+uH06TCSTpyQ08kbG3H8ceMQCF1UhON6i90O7thYhZsrq3HuHF5cMjJgxPjizsjAcbmU84oK6GX6dLwEnDzJc5eUICB39Gie2+HAGBcbq5RC0OJ2uXxzl5b2z11ZiX4ouE+dktPgm5pkbi59X83NldU4dw5tMzJgKHAp5yUl+FtGBtpqcVdV4VzR0eBWp8E3N+NYY8bgp6SE38X+1CkcQ5Rw4LhzcvrnLi3tyy0M9EsgugE0VBIfj4GqtBRGDFcFOC4OPxUVmORGjZJdSRER+NxoxOA9fDifcjx6NIwDUVCPc5ONHIm379JS/Mu5SNTcXCbR8OH4KS8H18iR8opUeDiMI8EdF8czpaYq3OHhvLtpxAgYSaWleCPnXA3x8XjrLymBMcbpW3BXVMDo4LjDwsAtjAMtfaemwqjxpe8RI2AkiUGYW/oW3KWlSrE8jjsuDgOQ4FavpIWGwshobFS4tfRtNiv65trEx8NoLy3FZMW5SOLjMTEIbk7fsbHgqKoC94gRMndIiMJdWqrNnZIC7rKygfUTj4dfsh8xAoO6ME619C246+p47uBg3E8xCcbGanNbLOAOC+tf3y6Xtr4Fd3s7uLmspLg4GBy1tcp3vCUoCHoRk6CvfmK1Ktxa+g4JQRunUy7wKNrExChG9Zgx2tw1NeAW98hbAgNx/JYWvBBpcScnwzgtK8Mz4UvfgpvrJ/HxMrc6nTwmBu289c1tPpuaqhgHw4fzulRzc23i4xV9Oxy8vuPjoU9hnKamyiEMgrumBj9xcTK3vz++29rqu38nJ4OlrAxsWvoODUUbm017B4IhED0LjJFvJAvM48Hy4MmTmLDXrOHrTeTmYjk6LAypkFznqKtDVU6LBanU6uq2RJj0d+3CRDJ3LtI71QON3Y4lzeJirMqsWiUve3o8KJZ3/Lhv7rw8cIeEgJubAOvrUeHXYkE69cyZvrmvugpLumpuhwMuvuJirDqtWiWXC/B4UHQuKwsGwpo18rI+EVYz9u/Hda9ezRt4BgO4zWYs1aqr8hLBONy1C4bSlVeiHce9ezfeDCdNwvk47iNHUFBsxAhwc3UyCgrgBgoOxvVzE7fg7u0Fj7oqrze30QjuJUt47j17sGIzaRLOpy4X4PHAHXvsGAa4tWt57sJCuN2CgnAcLsbLaES13J4ecHOlELq7wW0w4O9LlsgTktMJ7oICrJatXs1zHzsG9vh46JszcIuKwB0YiBReLsaroQHc3d3ot1deKbfp6QF3XR3ux9KlvrnHj0e6vLrukMeDPnLkCHjXrOEnm+JicAcEINWbi/FqbARTdzfGCa6Ew0C5P/0Uz9S4cUhB5zbfFNzDh2tzl5TgWP7+4OZipZqawNTVBZcVVwqhtxdtamvx3C5bJnO7XNBRbi64b7mFj2HMysKYEhsLbs4o8ea++WY+VqqpCf2ksxMuwnnzeO4PP4RBMnMmuNWGi8uFMSAnB8//rbfy3MePgzsmBm24F93SUnATgZuLlWpuBlNHB9LXuVIIZjPaVFdjXrrpJp57/36lCO2tt/reiPoCRd8M9SJF3wxVF1100UUXXb59ciHzt+4C00UXXXTRRRddvnNyWWSBvfjii/Tb3/6WGhsbacaMGfTCCy/QXI3N0f72t7/Ra6+9Rvn/G4g5Z84c+sUvfqHZ/pFHHqG//vWv9Ic//IGeeuqpb+oSBibnzmGZNS4OS/vc8nBVFZbkQ0KwjM4tx7e1IUvAZiO67jrejWCxIAOorQ3BZpzbxu3G0mhNDVxWCxbwKe7Z2eAePlybu7oa3EFB4OaWtdvbwWSzIYuIcyNYrWjT2oqAQ85t43ZjCb26Gi7ChQt57pwc/MTGgptbHq6pgfsjKAjL/9yytjf3NdfwbgRv7vR03m0jsvaqqnxz5+ZC5zExcO1w3LW10EFgIPTNcZtMYLJasVzNuRFsNrRpaUEQLJdK63bj3lZWIoZl0SKeOy8PfTwmBvrmlrW9uW+4gV+O7+jA3lYWC7g5N4LNhmeguRnB0lwqrXDLVVYiNmHRIj41Pz8fwcnR0dA3x11XB+6AAByHizvr6IAuzeaBcaelwd3EcR87hti0gXLfeCOfml9fj2c8IAD9jYsn6uyEvs1muGM494fdDu6mJiQDzJ3Lc2dmIsYvKQn3l+MuKEDwfVQU9M1xGwxwvfv54Tha3F98AXfR3Ll8yrU39xVX4Po47qwsxKQkJuJ8XGp+YSECmKOioG8uNd+be9EiPs6vqwv67u3F/ecqKjsc4G5sxP24+mqe+/hxuK98cRcVgTsyEvrmuI1GcBOhn3BxUN3dyAbs6QG3OrtLcB88CHfwpEkYLznuEyfgLkxIwPjFcQ+BXHID6O2336Zt27bRyy+/TPPmzaM//vGPtGzZMiopKaGRzOB46NAh2rhxI1177bUUGhpKv/71r2np0qVUUFBAyaogsF27dtHx48cpibuZQy0lJUg1bGtDhzCZ5PL1JhPSVisq8HtZGdG//Vvfycblwm67Invi7FmiH/1Ijm957z34vkUszNNPywPEkSM4ls2mxKLccEPfNmVlSO0U3O3tcvpnRwfSjUVWQFkZUpe9ud1u7DgsNnY8fZroxz+W40Teew87PAvuH/5QHiCOHgW31arELKnTP8vLwd3aCu62NpRy95bOTuhbZD6VlCC103vQdruJ/vY3DJCiNsePfiQbprt2gd3txkCyYwcmZm/JzMQu14Lb45HTPysqwN3cDO7WVmy94C1dXeAWQeCC23sQEdxiY8dTp8CtNkx37SJ6912wHDoE7mnT+rbJygK3xYJzuN3yNh5VVWAS3M3NSCf2lu5uXJvIDCkqIvqP/+jL7fFg13GxQaLgVht4H3+MMg9uN7i3b4fh6S3Hj6OfmM24py4XYim8pbpa4SbCvw8+2LdNTw+4i4txbYWF4PaOlxNlHsSO2idPgls9honyFC4XJopt2/CC4i0nTkDfgtvhkLfDqKnpy93YiN3AvaW3F9wiS7KgANzecWeizIOY/E6cIPrP/5QNjt27id54Q9lYODRUjj08dQrcvb0K9803921TVwdusUloQwPKWHDchYWKvv/zP2XunTuVTaWPH0cbtcGxZw/Szt1uTPwhIfLL4OnTRC+9hPMGBMBoUm+HUV8PJqMRvxuNKBviLWYzxniR3VlQACZ13NkrryibBR8/jnuinqMEt8ul7Meofhk8cwbcPT3gttnkbSUMBui7oUH5/bHH+raxWPpy5+eDW/2i++qrymbBglsdeC3KajideJEIDpZj4c6dQ/kVwW21Iu7qEsgld4H9/ve/pwcffJA2b95MU6dOpZdffpnCw8Ppf/7nf9j2r7/+Om3dupVmzpxJU6ZMob///e/kdrvpC9UuzgaDgR5//HF6/fXXKegSWZd9pL4exkNGBjp0cbHcprERD1ZaGt60q6rkNPieHnyenIx2RqPSub2luBjnycjAeblU+ZoadL6MDDw8XLpxXZ2yijRsGJ9y3tgIhiuuULi7umTuyko86GlpaM9xiywqX9x1dXhoMzIwyHLpr/X1CndUFAZRjttohIE1ejQmQ3X6fm8vjJKkJBgGRqMyCHpLcTFWambMgEFYXy+3qa1VuJ1ObW6RAh0dzeu7qQkD2RVXYCWppkbmtljAnZgI7oYGnru0FANdRga4OX3X12Nwz8jAgMylv9bVYRVpxgysAHH6FtyTJyP4sbZWTt+3WGC8JiT45i4uVibhzk7tftLbC26Ph+eur4cRkZGBlwiOu7kZ3JMmaXPbbAp3ejq4xWa93lJaislsoNxEyguRFvfw4eBWh3M2N6PdpElYJa6rk7ntdjCNGoUVV/FMcNzBwThfV5c2d0+Pwl1e3j93UZHM3dqKdhMnIrhXjEHe4nSCaeRIhVtL36KsxkC4/f219d3QgPsWHw99q9PgBfeECVjd1uIuKYFBL0pPcNzl5TAORKkPredScAcE8CUsDAboZvp0cBcVyWnwgnv8eIVbXXbA5cJ34+MVfXNjXHm5Up6it5dvU1eHa8rIgKHMcQ+RXFIDyG6305kzZ2iJ1yac/v7+tGTJEsrKyhrQMcxmMzkcDhrutZLgdrvpnnvuoR/+8Ic0Tf02y4jNZqOurq4+P4Muqal44HNy0DG45cPERBg2RUXouOPHy8uVkZH43GBAu6Qkfpk1LQ3nycnBagWXlTV2LCa/nBwMylwm0ejR6PS5uXjYOO6EBHAXF6PDjxsnFwoU3EYjuJOTee4pUzDZ+uIePRrGRk4OBmXOlZaaqnB3dcmrGmruujpwq9NtIyIwoBmNeENKSuKXh9PSFO7YWD57b8wYhTswkHddqrnVq0hEmKxSUjCQ1tXhvqkz88LCMIE0NPjmnjIFRrDg5vSdmgo9CG7OBZiaiskoJwcTO6dvwV1aCqNt7Fh55VJwNzb2r2+bDeeLieH1nZqKfpeTg0FZi3vUKLQxmXjukSPBXVYG7jFjZO6QEBh2jY1wBSYl8WnJV1zRl1urf0dGKgUjOdel4M7OxovCtGmyq2HkSLQrL4exPXq0vOIaHAympiZwizFILZMn42UjJwfPiC995+bid84FmJKC5y4nR5t7xAgcS9QMGj1aXnENDAR3c7Oib25T6CuuUGrkREdr63vYMHB7PNr6TkzEcdra8Fyqs8m8uSsrtbmnTMHLQm4ujslxT5oEoyMnB2Op1nMp+rcovqmWlBScIzcXRs3UqbL7Oj4exxI1icQY5C0BAfhua6tv7smTYRjm5oKN6yejR+OaRM0grariQyCXNAvMaDRScnIyZWZm0jVeFXGffvppOnz4MJ04caLfY2zdupX2799PBQUFFPq/S42//OUv6eDBg7R//37y8/OjsWPH0lNPPaUZA/STn/yEfvrTn0qfD3oWWE6OEgO0eLG8NEqEAfbYMQxMixfzqcTt7VhCtdsRS8MZLlYr2rS1wWLnUs5FTEp1NQb1+fPlh5oIzDk5YFm8mI8B8ua+4QY+dslkwrK/1QrfMGcAWK1oI2JptGKXjh1TBvX587VjUrKzfXPX1uJYIpbGF7fFAn1z3CK2o7UVg7pW7FJmphID1B+3iF3iuOvqwB0QAH1zMVcdHeA2m6FvzlC02dBGxABx3CImRQyOWrFi+flKUb3Fi/nYpfp69DkRS8PFLnV2QpciloYzXERsR0sLBmZu+wIRk1JRgcFaK+aqoADcIpaG4zYY4N7y9wc3F7vU2Qld9vYi1oSbSO12tBExQFzMlYhJETFACxbwsTSFhUoM0OLFfOzSQLi7uqBLEUvDTUh2O9xNIgZIK+bq+HElBmjhQp67qEiJAVq8mI8BMhrB7eeH43AxV4K7pwfcnAEgYlJEDJBWzJXgTkzUjrkqLlZigLS4GxrguifSjrnq7gZ3d7dv7kOHlBggrZirEyeU2KWFC/lYmpISuCeHDQM3FwPkzb1gAf9y2tMDF1h3N/TIxVw5HHCnihggrZirkyfxIpSQAH0PopfmW5MGf7EG0K9+9Sv6zW9+Q4cOHaKM/112PXPmDK1YsYLOnj17PvanPwPIZrORzWY7/3tXVxelpqbqafC66KKLLrro8i2Sb00afHx8PAUEBFCTCIj7X2lqaqIEznL2kueff55+9atf0YEDB84bP0RER44coebmZho9ejQFBgZSYGAg1dTU0Pbt22kst1JCRCEhIRQVFdXnRxdddNFFF110+f9XLmkWWHBwMM2ZM4e++OILuvXWW4mIzgc0P6aOVPeS3/zmN/Tzn/+c9u/fT1eqIszvueeePjFFRETLli2je+65hzZv3jzo1zBg8Xiw7Hn8OJb91q7lKxNnZ6OicmgoKmRyvt/aWlTbtFpRkZVzb3V0EL3/PpZQr76ar6hstyObpqgIy9palYkPHsSS/KhR2FCU487JQXXP0FBE9HMVlWtrlYrKS5fy7i1v7rlz+crEdjuyaQoLsQx7yy0896FDcIGMGqVdmTg3F9VUQ0JwHM5IrquDvs1mZD9xbqLOTmSvGY1YHv7e97QrWBcUYFn7llv4ysSHD8PlNHIkuDm3XF6eUgl69WreLVdfjywvsxl65FLzu7rAbTDArfG978luUG/uSZPQLznur76Ce8sXd34+uAMDwc255QwGpaLykiV8RWVv7jlz+MrEovJ2fj7cUVxlYlF5+8gRuOPWruXdiQUFSkXl1at5t5zRqFRUvvFGvqJydze46+vRj7jKxE4nuPPycJ41a3juo0eVStBr1/LuxMJCVPgNCECGEOeWa2hQKiovXsxXVPbmnjULFX61Kljn5oKbq0ws3KlHjmAcue02nruoSKmovHIl75YT3J2dcANzlYl7esBdV4dxkqtM7M09bhx0yblBjx1TKkGvXcu7E4uLcSwi6Jtzb4nK2x0dcP+oN0Qmgjvygw8QnjBrFrIAuYrKn36KOWPsWDBxbtDMTIwpMTFow7kTS0rQ54igb8691dQEpo4OuNvUGyKruWfORBYgx713L9zOvriHQC55Gvy2bdvovvvuoyuvvJLmzp1Lf/zjH6m3t/e8sXLvvfdScnIy/fKXvyQiol//+tf04x//mN544w0aO3YsNTY2EhFRZGQkRUZGUlxcHMWpBt6goCBKSEigK7ibOlSSm4v0R7GpnNMpp602NyNVvLkZf29uJnruub7+UYcDbfLzlV2Jn3tO7tRvv41OFh6OwSQuTjaUvvwSKbkhITBgIiLktNW8PKSbOp3gdjjktNWWFjA1NeH6GhuJfvrTvtxOp8IdFIQ4mJ/8RPaRv/suBhDBHR8vG0qHDoE7OBgPf0QEyuV7S0EBuB0OcNtsRI8+2rdNayvSpBsbEZ8juL3Tm10upJPn5irczz0n+8jffRcDSHg4Jp34eNlQOnQIOyoL7vBwOW21sBDcdjtijqxWoscf79umrQ3cDQ3gbmgAt7cRKLhzcsBdWYmyA+oA1/ffh1EaHg6dxcXJBsdXX/XlDguT01aLipBOLbjNZuxQ7y3t7eA2GvtyextTbjfS4M+dU7gTEuSAyw8+AHdYGHQWFycbHEeOgDsoCMcLC8Ok7C0lJeC2WvFjNhOpXeUmE7gNBkzgRiPRz37W1yjx5g4MVLjVQaC7dsG4CwuDvocPl7dCOHIEKeeCOyQEhoK3lJaCW/SRnh6UAvCWjg6kpRsM4DMaoW/vyV2k758+jftbUQFu9YvXhx/iJzwcz/Dw4bLBcewYuAMDwR0cTHT77X3blJeD22xWuHfs6NumsxP6rqsDn8EAbu9JUqTvnzrVl1v9AvPRR9C54I6NlSfuzMy+3CEhRHfcIXP/4x+Y4G02GItPP923TVcXuEU2rdC3d6yQSN8/cQLnEdzqF5iPP0YfF89lbCxqvnlLVhZS5QMCEAsWHEy0fn3fNpWV4O7pAXdnJ0qreL+cdXcr3N769o4VEtzHj4O7vBxzjvpFYPdumfv66/u2OX4cqfKCOzCQaONGuhRyydPg169fT88//zz9+Mc/ppkzZ1J2djbt27ePRv3vhF5bW0sNXunSL730Etntdrr99tspMTHx/M/zzz9/qS5hYNLaik44aRI6FpfW2NaGSWLCBAQRNjVhoPAWsxmfJyWhXXu7vDM1EY4/bBjO19srp2MSwXBxuZSMg5YWnqm3F28yUVH8TuiCQXA3N+Na1dzNzQq3ycQzeXObzXI6puB2ONDG45F3Libqq+/oaF7f7e3gmDBB2VhRzW2xQN+JiXh71uKur8dA54u7tbVv1oPK9UtEOHZ3N9rExPjW9/jxCre6XILVCoMuIQHH8qXviAi0sVj4Nq2tir4Hys3p22QC97hxMGg4bpsNhtGoUehzWtwGAwZZX/puawP3xIlYSeDKLrS2YuKaPBmDNVcKQs0trtVb7HYcf+RI39z19TB+fOm7rQ3HmzgRk4SWvjs7ca7hw9FP1OGcHR3KBq+jRyvX6i0Oh7KBseDmdGkwwFCdOBF9S6t/22wKt5a+Ozr65xYbjooNONXcTieYRozwrW+jERO24O5P34GBfBkAb33HxaF/q9PgOzvRzlvf6vIULpeyEfDkyehXWvoW3DZb//oODua5W1uhm8mT8VJWX6/NPXo0dC6u1Vvcbnw3Pr5/fQcH++Zua1O4Q0L4MgBDJJfcACIieuyxx6impoZsNhudOHGC5nm9ER06dIheeeWV879XV1eTx+ORfn7yk59oHr+6uvrSV4GePBmDZ24uBh1uWX/0aAyMZWVKrQx1PFJUFGpRNDej3aRJfKrhVVfhPLm5OC+3FJuWhkE/NxeTFpdyPWmSwm2388vj4vhlZRisMzLkdPJhw8AtdsueNIl37111FQa33FwYS1rcw4ejTVSUb+68PDxsWtyTJuFtpqEBWWfqdPKICKyciV2nJ07k3XtXXonBzRf3lCkK97BhcuE+IhxfcFss/EaJQt8VFQq32r0XHo6Vs7Y2hZtz7115JSag/rjj4pTU1unTee7Ro31zJyVhab2yEgMlxx0aipWz9nas7Ghxz56tcCcm8kv2V1wB7rw86ENdcFBwjxmDNr29vBtF6KWyEoP11Kmye08UqmtrA/eECTy3yPrKzYVxynFPmaKUQhA1mjjusWMVbq7irtBLVRUmr6lTZfdecDCYTCa8sU+YwLtT58yBEZmbC+NUi3vECLThCiUK7nHjwN3Tw2cJJSTgWNXV4E5Lk91kQUEYKzo6fHPPng1jLDcXRp5WPxHcISF8SIG4n/n5MH7nzZNdgKNGgbumBgZSWprsJgsMVLjz85WaQRx3YKDCzVWL9tZ3UBDPLWr75OfDqJk7V3ZJjRwJVrEbfFqa7FEICMB3OztxLHFctcycCZbcXLBp6XvkSLQJDORDCoZI9M1QGfnGNkOtqcHgGBuLh4BLyW1rQ4poUBAGYy4F2mLBMqLDgYGJi7UQrjaTCQMfN2l7PBg8amthRKWny4MREf5eUADjgHuAiDBhnT4N7nnzeB+6xYKlX7sdnZ6LtXC7wd3ejgdRI3CdCgqgz5QUTMgXyx0YCH1z3FYr9G2zQd/9cU+Zwg/GRLj/NTVYudHirqvDIBMdDW4uJddkAndAAPTN+dCtVujbaoW+uVgLtxvHaWvDwMQNaoK7uhrcGRk8d309JraL5bbZoG+rFUYcF2sxUO6iIhgASUmYkLW48/NhlM6bx3N3dOD++vujDZcCbbNB3xaLb+4zZ/BmPHkyH0tEBKO1qgpGjBa3wQB9++Lu7ETKsS9uux36tlgwgXExIm433BUtLXhp4GKJiPByI9x/M2fy3EajYkzPm8enQHd2Qt9+fuhLXOq24DabcS4uccbjgb5bWsCsVXNGcI8ahXvHcTc0wKXsi7urC/omQhst7hMnYLj64j57Fi+6vrhLS/EiNBDuiAiMcf1xz50rv3gTYb45fhzcM2bwqfIeD9yITU3o29wLFRFelsvL8YxwJSwuQr41afCXq+i7weuiiy666KLLt0++NWnw30lxu2Wf99dp4/HIvtyv00acbyBtdO6LbyPON5A2Q8V9IUwDaaNzDx7TQNoMhEnnHrw2OvfgMV1iueRZYN8ZcTqxWebRo1g63LyZL/F/8CAyAMLCiO68k48Tyc9H1oLFgpRc9QamRFhm3rkTy5/XX49sDPUSeU8PNrgTafD33Scv2bpcCndCAjYU5UrlHzoE7pAQcHNxIgUFyFqwWJBqqd4IlAi8r7yC5f1rryVat47nfu01uGWmTMHmrGpL3+VChpNIy960iS/dfvgwMkVCQpCJwMVbFBaCu7dX4VYv2TY2gru+HvEY69fL3L29RP/8J+7f5Mlg4rg/+ACZQCNH4p5wMV5HjiC7JTgY3Fy8RVERsi16e5Elx5UUaGpCP6mvx/L4+vXyErnZDO68PCzFb9okx3i53eD+6iu4CDdt4mO8jh4Fd1AQ0YYNfNxCSQnO19OD9N+lS3nuV16Bu3DePByL4/7Xv+BumTQJulTHeLndyG46dAjc993Hu4uPHQN3QAB0xMUtlJaiX3Z3g3vZMpm7uRn6rquDG3zjxr5Zh0R4Pv75T3BPnAhdctwffYTxIi4O3Jy7ODMT9yUgAM8SVwqhrAzn6+wE8/LlMndLC/RdU4O4sTvv5Ln/9S+4WyZMALe6ZIbbjXHiyy/Bfe+9vLv4+HGMO/7+4OZiJsvLoe/OTvSRm2+WuVtbwV1djWNs3CiXzLBawZ2dDVfqpk1ybJrHg1IQn3+Oa9q0iec+cQIZof7+yCTjSiFUVGDc7exE2YkVK3xzz5kDfXPcb7wBV9m4cWBSh0N4PMjM+uwzcN93H+8uPnkS+ibCXMHFTFZWgttkAvfKlTJ3Wxu4q6rwjNx5p1wyw2YD95kz6LObN/NhHEMg+grQUMnZsxhoLRb4tt95R25TX48HsaUFg+nOnegs3mKz4fPSUrT717/4DefeeQfnsVgwcJ89K7f54gs80FYr/q/aUPY8t6glc+oU0uvVYjCAo6kJg9LOnTimt9jtfbnfeIPPcHr3XSWO4qOPEOehloMH8UBbreD/7DO5TXY2uHt6cAyO22iUuS2Wvm0cDjzQxcV4uH1xiziKjz6CrjjuAweUbUoOHJDb5ORgwurpwQDx5ptym8ZGTFiNjRiURFqxtzid4C4pUbirq+Vjvf++wv3xx0ocgLccOoQaT2Kbkv37ee733wf32bM8d1MTJqyGBnDv3AnjzFtcLnxeVIR4qjff5DeN/eADpAFbrZiYuKrxhw+j5pDg3rdPbpOXh4G/pwexC6+/LrdpaQG30QiWV16RswW9uU0mlGngNl/98EOFe/dubW6h70OHUM5CLfn54O7uRl/nuFtbwW0wKNzq7DW3G9z5+YhzevttfhPTDz+EEWi1okwFt1fjkSOKvg8fVurheEthYV/uf/5TbiMmUYMBBtcrr8hZYG43Pi8oULi5TTU//BBGd3/ce/eizVdfaXO/8w648/KgV/VqSXu78hIkuNXZVB4PPhdBye+8g2dULZ980pf72DG5zbFjqANkteIaPvlEblNcjHN0dYH71VdlbpMJn9fW4kcYOWruV1/FMbq6cExuQ+9PPgGL1Qo2Le49e9Dm6FGMO5dIdANoqKSnB0ZAYiICbbnU9Z4eTEQJCbCIu7t5A6inB39PSMDEpx6MiXD88HCcz+Hg23R3o2MnJeFfbhPY3l6FOyJCfjBEG7NZ4RY1J9Tc3d14s0pMRHv15Ce4w8LA5HDwbby5/fzkQZ1I0XdSEoIWuZRNb+74eHyHM9y6unBdgpvTpcmkcDudfJueHgzcgtuXvgW3Vj/x1ndvrzZ3bGz/+g4N9a3vC+FOTMQqoi99jxoFfff28gZnZ6fCbbHwTB0deCMW/Ztr09sLwyQpCW/kHLfoq4Lbl75HjkQgOcftdCrcSUm++4ng1uonvb34m+Du6ODbWK1oExUFfasnNm99jxzJc7tcMjenS5MJKz6if2v1E6HvgABtfVssCrfJxHNbLH31rTbw3W7oJTrat747O7EyKPq3lr4Fd2Cgb30nJoK7vV3mNpuVfjJypPK7t7hcCrev59JkAstA9R0Y2L++o6NxXLXrSTAIbi19m0z967urS+F2ubSfS9G/g4J4fQ+R6AbQUMn06XB7FBYqG4aqZdw4RPLX1KAjzZ8vu6SGDYNLq6sL7WbN4pdiFy/GeQoLsfzPuaSuvBLurPx8dEZuuTY9HVk2hYXorBz32LHgqK3FgHPttfxu8PPnw1gRVUI57htuwIQsqg73x52QoM0t9B0QwLvbxoxRuDs6wM2lwS9YgIe9shLcXObODTcoxe0mTOBdaXPmwA2Xn49JiVtmnjZN0be/vzb37Nlwo5hM4Fa7GsLDUa21t9c396JFStGyiRN57tmz4YYT3FyK+7RpcEcWF4NbVY2diHCMOXPwhtzeDleheuk7NBS6tFjgKsjI4LkXLsS98aXvWbPghsvPx0TKpbhPm4ZsQ/E2y+lbcBsMMDTmzZMzAUNCFO7ycrgkucydBQvwLBQUwBXBuS5nzcI9FtxcpeCpU/FTXIyJmHNvJifjWTEasYrFcYtn2mrFCoov7mHDwDRuHM89e7ai77g4njstDTovLsakynEnJYG7oUHh5tLJFy+G0V1aivvPZRzNn49JW6Rucy7XWbOUFHeu4CAR+va0aVitcbnArU6DT0zEWNTYCFfn3LlyRp3gdjjAPX06nyo+fz5Y8vPBpsUt+glX4FFwp6eD2+EAtzobVoyhjY34ueoqOTMtIADfdThwrOnT+dR8MRbl54ON4545U9F3dLRcKHEIRc8CY+QbywJrb8fgGBODQYZL/bNYMDgGB+OB41K3XS60sdvRhkuV93gwoHV0YGLjtoEgwqBeX4/BkouRIcIkW1bWP3dhIR7w9PT+uadO5VPOPR7oyGTyzW00wgAYCHd0NAbH/rinTeNTiV0utLHZfHNXVCgFIbV82oI7KYmP7SHCPSst9c1ttUKXvrjdbrSx2TDxaJWbLy/HxD5xojZ3QwMMxYFwR0VhUPfFHRCAfuKL22qFvrW4Kyrg5pkwgS9N4M2dmMjHJBHBaC8p8c1ts4HJ3x/65lKJ3W70E4vl4rkbG/GCk5DAxyR5cw8bhsloMLjT0vhUeSIY0i0tMCS4kgoD5e7qggE0EG4/P/QTLe6iIqxG+OKuqoJBMm4cX5qACO7Z6moYLFqlNwR3ZCTOx3Hb7ZjY/fygb3WcFBHGisJCcE+ZwqfKDyZ3dze4IyJ8cxcU4P++uIuK8FLli7u6Glxjx/IlFYhwXVVVuC6tkiFfU/Q0+IsUPQ1eF1100UUXXb59oqfBX67iduPNTx2v4S0eD1YuOP+qt/T08P5zbxEl632lGzocylYHvrjb2vrn7ugYOm6nc3C5uTiiS82tjtdQy0C4e3v75xYl6y+W2+MZXG4uzsJbhpq7s3NwuV2u/rnt9sHh5uJDLjW3Os7k63CbzYPD7XJdftx2++Bxt7f3z93VdXlxD4HoafBDJVarslni8OFEDz4o+6w9HmRIfPYZXAN33cX7o8Wmgw4H0hFvv11e1iwtxWaY7e3wuT74oJyO2NpK9Je/YMl6zBhscqpe2rZasZne2bPgfuAB2Wft8SAD6MABZWO7+fNlbrHpoM0Gf/Idd8h+9LIybJoquB94QHbxtbURvfQSllBTU4m2bpWXiG026PvsWbjuHnxQ9ll7PMgm2r8f3Bs2INZBLWLzPpsNMSLr1snc5eXQd2sr4hEeeojnfvlluBJSU6Fv9RKx3a5sThkTg+tPS5O5P/wQmSuBgUjLXrhQ5j5xAtxWK+I8NmyQuSsrsRFiayv8+g89JLv42tuh78pKuBu3bJFjBOx2ZXPKmBii739f3qLE40GG3N69SnozF1N28iSyg6xWxCht3ChzV1WBu6UFLpKHH5a5TSZwV1SA+5FH5Oq1Ijvx1Cks6T/wAFwAau6PP1Z2J7/jDsRxqOXUKWQHWa24H3feyXOLDY+nTQO32lXW0QHu8nK4HLdskUtmOBzgPnkS3PffL8fLeTzItvnkE3Dcdhsfm3X6NLgtFjy3d90lu7BratB3m5txXx9+WHY5dXaCu6wMet6yRS6Z4XAgm+j4cXBv3izHb3k80PXHH2Ncu+02jHNqOXsWGVVmM+JI7rlH5q6tBXdTE56jRx7huV9+GWNmYiLaqN3qTie4s7Jwv+6/X46D8njQt0VW05o1KCuglnPnwN3bi/H93nt9c0+ZAia1y0lsvlpcjOfxkUdk97TTiXubmQnuzZv5uJx9+zCmEGHD4JtukttkZyuZm9deC261C7uuDtyNjZjftmyR40G7u9GmuBjj35Yt2m71b1j0FaChkjNnkBoaFoaJ5IMP5DbV1UiNFRkOb70lv91ZLPhcRPPv3q2dJlxZifMdPqydTn72LB6Ms2eRmq2Ws2eRiuuLu6ZG4e7sREqq+m3DagW3yLLZs4fn3rULE5YvbvF5RAQeSi59/9w5cIeGQq+ixoW31NZichCZMG+9Ja9g2WxIxW5rw2C8Zw/41PLRRxj4w8KQBsqlk3/1FSbJ/rgPHgR3TQ3PXV+PQdblwiD49tv85pxvvAHDxs8PAzOX3uzNffRo/9w5OSg9oJbsbPQfwc2VeTAYwC2ycUR6rrc4HNB3Swsm7b17MTGp5eOPEf8SHo4XAi6dXNyH8HBwc+UScnPBHRKCwZvjbmiQudXpzU6nzK2V3lxcrHAfP85znziBNrm5fNmB3Fz0n+BgcL/9tvxW3tiI58lux6T13ntyFqfLhX7f1IRJeP9+nnv3boU7M5PnPnpU4c7P57nz83EfgoPRj996S+Zubla4zWZwq7Pz3G7078ZGTMIHDiA+heMuKlK4MzPlNuI+CG6tsgOC22jkuVtawG21Ypx+/305G9LtRj9paEBc04EDiAdSy6ef4vPwcBhdHHdmJv4mkhg47oICnCMoCOfU4n7/fTALbvXG2B4PvuvNLWKGvGXvXnweHo6+wKXBe3MXFuJaL5HoBtBQidOJzh8aioGGW/pzOjEghYZiQBa/e4vbjc+Dg9HO5eKXGh0OnCc0FJ2Xa+Ny4W+ijdPpu40Wt2AIDQXXQLm586m5tdoIJnF+tQh9h4VhgORcIN7cISH4v9qd4nbju/3p227HxBcWhu/0p29xHVwbwR0QIJcTENfmcoG5P30HBfnW92Bzh4YOTN/BwbwuB9q/BXdoqPIdTk9Eykocx+T9zAUGauvb6YS+RT9Rn8/jwfGDgnC+i30uBbe/v/ZzKfpJUJBvfQturp94PNCl0Le4VrUMVN8eD5j8/PrXtxa3d/8W+ua4xXPpS99OJ1gGMg4Kbi19e3P7GgcH2k/6GweFvrXGQe85xVc/cbmUfmK3ywYQx63VT/rr307nhY0n/v6X1A2mG0BDJbNmIU20oQGZHytXym3Gj4cLpqsLD+KKFfJybUQEPvf3x1vo/Pl8FP2KFThPQwPOO2uW3Oa66+DOqq/HciXntpo5s3/usWNlbvVybXg4vhsQgNWt+fP59Oabb4Y7q6FB0RnHPWUKuCdO5NMoZ85UUmljY3nuMWPgYhGrJ8uXy8u1YWFEq1ZhcjSZwM1tBHnzzVjONRpxbq7i7jXXgNtgwDE4t1VGRl/u1avlNqNHg7unBwPJ8uVy+n5oKL4bFATu667j05uXL8fyeX/caWnQ9/jx2twilTYmhudOTVW43W64B9TcISH4bnAw3vqvu45Pb77pJrgrjEa4IrhKwWruRYt47nnzwB0dTXTLLXKblBS46sxmDN7LlsnZiUFBcB2EhGDV7frree5lyxRuca/VcvXVcDMZDHi2OTdhejrSrJua0GdvuYVPJxep+U4nzq3O8gsMlLm59OalS3E8wc2VnhDc9fV4tjg3YXo62jU3Y2y79Vaee/FicDscOLc6Wy4gAN8NC8NqxbXX8tzf+x7un9EIFyHHPW8e3JEGA7i5UgjTpvXlXrOG38X+xhuxAmS349xq17zgDg9XuNWuYsGdmgru9HS+9MS8ebgmoxFtOe6pU3GO5mbMHbfeyu9iv2QJmO12/F/tmvf3x3cjInAsLe4bb8T4ZDBoc8+di78Jbs69OUSiZ4Ex8o1lgVmtGBxiYrTTX10uuGaCguA/51IWPR50MIcDnY1LOSfCgNbRgQFAHf8jpKsLg+ioUfwOwER4K66rwwShlf46UG6jEQ/ZxXJ3d2PSGizuwECczxe3zQZuLnXbmzs5mS9NILibmsCj3k5CzR0VpZ3+6nKhTUDAxXO3tcFI6o+7sRE8F8PtdkPfvriJwG21Xjx3Tw+MSV/cdju4hw3rn9vfH4P2xXC3t+MnKYkvqSC4GxsxTqiNRDV3ZKR2uvFAuRsaYHBcTtx1deDtj9tsBjeXKj9Q7t5eHCsuTq6pJcThgC4jIvgd3L25icCkxd3YiHP64jaZ0MdFEdqh4k5NlY2kweY2m/Gs+OL+mqKnwV+k6Gnwuuiiiy666PLtEz0N/nIViwUBnc3N2m1cLgTZ1tZqpxp6PPh7RQXv9xXS3Izz+UqTFcXU1EGd3mK14jhNTRfPXVeHYNyL5e7qArevMuoXwl1Tc/HcYg+3oeKurBxcbl9psgPhttlwnMbGi+eurwe3r/T11tb+ubu7wc1t4XIh3G43uKurLy/usjKsAFwMNxFWlAfKzW1voObmthQRYrcPjLuqamDcZWW+udva+ufu6Rlc7qoq3+UZjEYcy1f8S1sbmHyVFrkQbqNxaLjb2/vn7u1V9im8hKKnwQ+VdHUR/Z//g6j3qCikZavjLZxOpEAfPYpl6LVrEX+ilt27kY3ldCJG4oEH5GXrM2eQBt7ZCV/tE0/IrqLaWqIXXsAgkpRE9PjjcvXW7m5wFxTg+9//vuxHd7lwLsF9yy3wF6tlzx5w2+3gfvBBmfvsWRyrowM+/SeflF0XdXXgrq/HMuvjj8tVUNXc998vbz3hciF1+6uvwLF6NXz7atm7F5kodjviSh56SF7+zc5GerPgfuIJ2QVQXw+m+nosRT/+uBy/1dODa8vLU9Kb1X50sfHm4cNwJa1ejb6iln37wG2zIX7h4Ydl7pwccJtMiFl58kl5SdpgAHddHbgfe0zeUbq3F9y5ueDetEneCsHtRirxoUNYYl+5EinOajfBgQPItLLZcO0PPyxXps3NRQqw4H7iCTkux2gEd20tXC2PPirHb/X2Ev35zzheRAS41VsKCO6DB8G9YgVfeuKzz5CNZbPhGdmyRebOywN3eztisp58UuZuaAB3TQ1cco8+Ksdvmc3gzskB9333ySUz3G6kQH/5JbiXL0fpATX3558jw8dqRUzSli3yzuP5+eBua0Ps3lNPyfFEjY1Ef/qTwr11qxwHZbGAOzsb7qh775VjD91ulEH44guw3nQTSjioub/8EplgFouibzV3YSFS8wX3k0/K4QdNTeCuroZreutWudSHxUL04ovI0gwPR8q9umSGx4OyEyK7c9kylHBQcx88iM1rLRZF32pXf1ERSpS0teFZe/JJ2Y3f3Azuqipc09atchyU1Qrus2fBfffdcgyfx4PMNLE589KlKOGg5j58GNdnNiM289FHZe7iYnC3tmJse/JJ2a3c0gLuykr0oa1b5VIfQyT6CtBQyblz+ElOxuDH7ThcVYUUWDFx7tkjW9G9vUraYEwM2nO7Tu/Zg4cnORnn5XaDP3YMb0apqbDqjxzhuc+eHRh3dDQemn375LTs3l581+3GgH/0KJ9O/umneECSkzG4c9yZmXh7SE3FWyvHLb6bnIxJcvduuU11NYwfb271SpjFoqT4Dx8OnXHp5Hv3KtzZ2Tx3Vpai78pKnJvjPn0aBmlnJ7/Dc20tvhsVBQNo3z55ZUbsNu50YpA5dozfLXvfPkwAKSkwAs6ckdscP67ou7ISBkx/3NwOz7W1+G5kpJK6rF7hsNmUlPP4eNzri+EuLgZ3VRUGcLXk5SHFPzERfZbjrq9XuEUKsPqN227HvXI4MFFlZfHp5AcOwMAR3KdO8dxFReCuqcGEyXGfPAmDVHCrV0oMBnBHRID7s8/kN26nE9+12Xxzf/YZDEqxlx3HfeJE/9z5+WiXkIAxgeNuaAB3eDgMms8/l9OynU6UcLDZYNxmZvJp8AcO9OXmyjycOAFDKSUFRj5XDqSgQOE2m3FujvvgQcSjhYTAEFKv9rtc+K7VCu6sLJ77889x/1JScG6O++RJhbu+ni+rUViI/iS4P/xQXuFpbMR3Q0Px88UX8mqo243vik2Yjx/n0+C/+AIsKSk4txZ3QQHaGAx8WY0hEt0AGioJDMRbmNmspNRybQICMOnabBi01IHC/v5Kuq7Fgv9zQYsi7dVsVr7DnY9IWYrngtq8uUWqJNcmMBA8VivPHRCAz202HMsXt8uFNn5+fJugIPzNVxuhy/70HRiINjYbz+Tvj/OJ2h5a3CKtezD0Lbgdjv77idWq/M5x96fvr8PN7RM00P7t3U8CAnh9h4Qo3FwbooH1k8BA/E24Pi5G34Jbqw9ciL7d7v71Lbg9Hm1u0XdFOrgvbtFP1Ofz88N3B5vb7e5f3yL9XquN1arN7e8/cO6B9hOzGdy+mAT3QPq3L32LGkcD0fdAuX31k95ehVu9siPa+NK3nx++K2pKaXEHBV04N6fvIRLdABoqmTMHabg2G5bhOZfF2LFwZwQEYLVh40Y5uyUsDJ8PH45BYNUqPg3+ttuwbG6z4bxcuu3ixVg6Npvxdy6Ncs4ctLPZsBR7221ymzFjwB0YCK4NG+Rsi9BQLKvGxyvuD7UbhQh68ebm0lYXLlS4Z8/mq9vOnt2X+/bb5TajRyup4jEx0Ks6ayEkBNwjRuChXbmST4Nfs0bhFnwc99y5GCC1uGfNwn2w23Ff77hDbpOSAjdjUBBWrzZulMsOBAcPjPvWW7FsbrXCFcGlrS5YAG6zGanyXNrqrFlKKu2YMahOrZbkZJwvOBirVxs2yG7ZoCBwi+ygm2/m0/dvuUXhXrBAm3vePOh75kws7atlxoz+uRMTcX9DQsC7fr3slhWV2xMSlNIE3C7fq1djuV/om9uhfsECfG61go+rypuRgfvgdKIfcy6ihARwh4aif6xbJ7tlAwKg78RETEbLl/Pp5KtWKdzXX8/v9H799eC2WMDHcU+fDteQ04mVIs5FNHIkxpnQUDyPd9whuwn9/RVulwvcnBtl1SqksFutcBFyO6Zffz0+t1rBx3GnpyvcKSm+ucPCwH377bKbUM29bBmfTr5iBc5ptYKN4xbXI7hvvlluM3UqzuFygZtzbY0YAe7wcPzcdpvsbvPzw3dTUhTu9HSee/p0hZvbyUB8brXiGCtWyG2GSPQsMEa+sSwwUeE5IoJ/gxDS2YkBVSuFkAhWuNOpndpLhMm4txeDnlZao9OJ80VHa6e/iv3JBpM7Kko7RfRy5BZvfsJddjHcXV24/v64w8O1ywAI7oAA7V2wB8ptt8PV6ovb5ULfjYrSTn8dKHdXF85zOXF3dGDiupy4OzthuHyXuf38tHcdJ1JWW2Jiho47NFS77AKR4v4fLO7oaO2SIZcjt8OBYw2EOzJy0FeA9DT4ixQ9DV4XXXTRRRddvn1yIfO3xiuoLt+ItLUhoDM2FtkRnAVtNiNALCgIy4PcKoHTiYA+hwPLu1xxL48HAbcmE1wI6qVYIfX1CPxLSdHekK69HceKicGy/tfldrnAbbOhzWBwJyfDBfB1uS0WMAUGYum2P+5p0/iVIo8H97a9Ha4mrUKXBgOCgX1xm0wIRI2OhjtCi7ugAG9YF8tdXo6+ORDupCQ5U/BCuK1WMAUEoA9wb60uF67NasUSvtbKRVmZkt2jVejSaERAri/ujg4ES0dFwY3ii9vfH/rmuN1utOmPu7wcWTLjx2sXXhTciYlyhqM3d0kJzjN16sVxFxSgT6Wlaa8ADIS7oQHJBQkJvGueCG/+xcW+uW02cPv5oZ9wqwSC22zGcbS4KyoQRD1unHbhxcZGBMoPFjcR9K3FXViI1eK0NO1CrpWVCPQfP75/7lGj+JACIqykFRXh+Z86lV8Fs9sRWD+Y3OPGaRdebGpCO1/cQyC6ATRU0tJC9PzzGEQiI5G2qi4Vb7Mhlfj0aUwQy5cjTdT7QfN4kEK5dy8miiuvREqq2sVz6BBSd7u7MbFt3y4PWkVFOJ+o8PvEE7I/urWV6Le/VbjvvVeOFbLZkGp58iS4ly1DOrGa+403kOXldCK26Kmn5CXww4exU3JXFya2HTvkh7+kBGmUgvvxx+UdvNvawF1Whgf/3nvlmBu7HSm5J07AgFi6FLslq7nfegsZVQ4HYnd+8AN5KfnIEaSmd3aCe/t2+eEvLQV3QwMm7Mcek3fwbmtDPyktBffdd8uxK3Y79H3iBAazpUuRLq8ekN9+W8lMmjWLaNs2mfvoUZQC6OrCgLV9u7xjelkZ0R//qHA/+qi8g3d7O7hLSsB9551yLIXDgRTZrCxwL1mCEg5q7vfeQ6aM3Y7YnW3bZGP52DGUjOjoULjVO6aXl4PbaIRh9+ij8g7eJhO4xUafGzfKsRQOB1KpMzPBvXgxSjioJ5L33kOmjN2O82zbJhudmZlKmYexY8Gt3jG9ogLcBgO4t2yRt7Lp6AC32OhzwwY5lsLpxK7bx45Bx4sXo4SDmvv995XNRzMywKTmzsoCt8kEQ3L7dnnH9Koqot//HtxxceBWb2XT2QnuwkL0xfXr5VIfau5Fi1AKQc29axfKathseI62b5eNzhMnlDIPo0ejjfpFr7oa3PX14H7kEblESVdXX+516+TtXlwunOvIEXAvWIBjqd1AH34InYvYne3bZePt5Ekcq70d3Nu2yS9MNTXgrqtDjNTDD8uxh11dRL/7HYyysDDEJalLlHhzEyE2bcsWmfvjj9HHLRYYpdu3y0bQqVNKmYeUFLRRv3jU1oK7thbcDz0klygZItGDoIdK8vIwkUydigecSyWuqkIK9dixWLU4dkxOJ+/uxucxMWiXnc3vqn7wIAbuqVNxXvFW4i1nzih75DQ28juv5+cr3C4XnyJaU4N0+TFjsLqVmSmnk/f0YLKNilK4ufT9Q4cwEE+bholAvJVocTc18Sm5+fkwItLS8OaixZ2drXBnZcnp5GYzBoZhw/CmkpurzW21gru8nOc+exaD7PTpSI/lUkQLCxVuj4dPba2tBXdqKgbsrCw5LdtsRqp8ZCQMstxcPn3/8GFlxUJL3+fOKdwtLdrcxcVKICqn77o66CA1FRP78eNyWrbVqqRuT5yozf3VV7jG9HTcj9xcuU12tsLd2srvYF5YCCNCrPxw+q6vB3dKCrhPnpS5bTYldXvSJOhRi7u3F9xVVdrcdXXgbmvjuYuK8DNlCgyDzz/n0+BFKYiRI8GtTie328EdFqZwl5bK5ztyBGNPejoMhpwcuc25c+BOT0d/zMriuQsLwR0YCH2ruY1GPONJSQq3Op3c6UQfCw3FaroW99GjCndNDc+dnY1nKj0dhhK383pxsaLvoCBwq9PJGxowhiYmgvvUKbmYqeAOCcGqdF4eX3bg6FGMoYI7O5vnrqlBm44OXt8lJRgLr7gC3F9+KW9QKsb+UaPwc/q0nAYvxv6gIBwrP5/nzswES3q6Mk6pJSdH4e7sxLVeItENoKESEexlMGAA5Fw7kZEY+I1GDNhRUfLKTmgoPm9tRbuICH6pPS4O5zEYcF6ujQhENhjwL7ekGRkJBoMBRgznIhHcDQ0YYKOi5JUdkUHT2op2ERH8kvXw4ZjYBDfXZtgwhVtcB8cUHAwd9fRo6zs8XOGOjJRXSETGUns7jhUerq1vi8W3vocNw1uVwYBBn9srybufdHdr6zs8HINUSwuOy3HHxCjcvvRtsaBNUBDPHRmpcLvd2voODUWbri7f/buhQdlUUs0tMvLa23Esrf4dGwtjyWDAd7hrE9z19eDW0rc390D0HREhcwcG9uXW6ifDh8NYMhjwHV/6rq/HxDNQbvVKWkQEOJqaFH2rV9IEt8mk6JvTZWwsjCXB7UvfBoNv7rAwtOnsRD9Rc4t+0tgIdo47IABMJhP0pNVPYmIUbq2EAVGXymCAgdIfd0cHzy0YvPWtXkkTGb4dHf3r2+HoX9/e3FxCjNCd0HdsrLySFhGBn6Ym/IjfvcXfH9/t7PTdv2NiwDJQfTsccobfEIpuAA2VzJmDFO/ISKSKrlsnt0lJQYXRhAS8adx/v2wABQfj8ylT0O6ee+SlaCIc/5prcL61a/ldvhcvhvskPBwptVpp2d7cXJpwUpLMrTaABHdaGt4y7r6bjzny5l6zRpv7ppsUbi4te+ZMLPcOG4bl1Q0b5DaJiXCNJSXhLZLjDgqSublYkttvR3qn4ObS4G+4oX/uGTNwrKgocG/cKLdJSAB3cjLe2jdv5ie2zZuxIjViBFK0fXGLnaK5pehFi+CODQ9HH9FKyxbcV10FF5haRo6E6zclBas799/PTxCbN+PtMD4e3FxMxtq1SF+OiEBKPMe9cCFYIyLgttVKy163TuG++265zYgRcOmmpGA17f775YFdcE+fjsnxrrv42IY1a/pya6XBL1+ONosX4/9qmTZNScefMwfPn1ri48GdmgruzZvlidTfvy/3hg1oy3HPnw+mVau0uVesQJsbbuDTm725Z89GP1bL8OHgHjNG4VYb3X5++DwjQ+HmyiXceiu4BLdWGrw398qVcpu0NHDHxGBMVIcmEMFAuO8+cI8bBz61UeLnh2ubMUMpGaKulk0E95rgXrlSm3vlSrRZtIjfNWDKFJwjNhZjojo0gQjXtGkTVubHjsX/1Uag4J45E8fasEG7XMKiRYq+r79ebnPttQr3ggU89xCJngXGyDeaBebxaKcPerch8t1uIG0u5HyD1aY/Jp1b59a5dW6du/82lyPTUHN/DdGzwC5nGcgNH6w2Q30+nfvyY9K5L782Q30+nfvyY9K5vxHj50JFN4CGUqqrkbYZG4sKtVyRqNZWBKEFB2OZmUsVN5sRGGm3IwuMi1twuZABYTIhwJVzI3g8CMITafAZGXynrK5G4GJMjDZ3Wxu4AwPhwuK4LRYE6tntWLbnUpddLgQ9trf75s7PR5CdL+6aGug7OhrcXKq4N/fVV/Op4hYL9G2z+eY+dQrHS0vj3R8eD3hqauC+mjGD566txfX54m5vx/l8cVut0LfNBncDl7rsditBvVOm8O4PInBXV8NdOHOmb+6oKDBx3CaTki149dV8jIDgtlrBzaUAu924/tZWBGVyVa6J0G+rqnxz19XhOYiKgr65VHGTCefz99fmttnALSp9DwZ3YiJcLhx3fb2y+ezVV/PcHR3Qt78/ro2LJfHmnjWLT112u/GctLTAZcO5m4gQKFxZiWPMns1zGwwIhB0It58f2mhxHz+uVChXZy8K7jNnEJMzaRLvbiJCkHNFxcC4RTgAlyre2Ylx188P+uZWIOx26NsXt8cDfTc3o49wVcWJEIhcXo6+NmcOz200Kpvm+uIWyQ1z5/LxRHY79N3bi7FLnXUpuM+cQSyRL+7SUiTXjByJOewSGUO6ATRUUluLNEqDAXE969fLO4/39CD9taAAA1ZBAVJ3vYPWPB6k/x46hIf76FGiZ56RB+RPPkH6ts2Gyfbpp+U0ytOnkZbc0YEOv3WrHEtRV4c0yvp6PDjr18vbePT2glvUG8nLQ0o9x33wILjT0oiefVYe2Hbvxs7ENhsesKeflmNXzp5F+rqogLplixyTYDBA34J73Tp5G4/eXuy6nZsL1txc7F6s5v6f/wG3ywXuZ56RB7ZPP0V5AsG9Y4dsvJ07B26TCd9/5BF5SwGjEdx1dZgY7rhD3g7DbEY6veDOyQG3t2Hq8SAt/4svwD1lCrjVA9vevdjh2WrFQLxjh2y8ZWejXEJ7O/T9yCNyTEJDA/pJbS24jUY5zs1iUbj9/HDcH/xA5n71VWy+6XJhAH3mGTkmYd8+7BguNpX84Q9l4y0nB/dXcD/0kByT0NgI7poacK9ZI8ddWa24/nPnwH3uHLi9DTzBfeAAuCdPRv9Wcx84gB3aLRZw79ghG0F5edBTWxue64cekndMb2pCPxHcdXVy3JU3NxGem23bZMP0tdfA5XTCSHj2Wbykectnn6Gd2YxJa/t22ZjIz8c40NaGyfbBB+Wdx5uboe+qKnDU1MhxVzYbnhOxobDgVhtKr7+O587lgg6ffVYOqP3ySzwHgnvbNnlSLigAd2sruB94AHEs3tLS0pe7ulqOXxJlNcTGvGfOQE8c95494J4wAdzqpAHB3duLF65t2+SYm6Iioj/8AWzh4UTf/75cWqW1FdyVleCuqkKckpr7xReVLOBTp9Av1YbSm28qGyyPHw9u9cv3wYMY581mcP/gB/IWJcXFSIMXCQWbN/PbMA2B6EHQQyVlZZiUMzLQsbjdq+vqYM1Pnow3kdxcOQ2+qwufjxqFB7m8HN9Ty+nTePAyMjAZcTtqFxfD+JkxA8YEtytxebnCHRLCp5zX1/flzs+X0+C7u/tyV1RgslTLmTMKd0MDn9paXAwjIiMDx+W4vfUdGspzGwxoN2kSJv+CAjkNvrcX3CNGYADyxR0Y6FvfJSXgnjEDxi63m3J5uZK6HR7Op5wL7okTYWwVFMi7qpvNMDDi4zEAVVRgsuG4/f0VfWtxt7WB22zmSyqIfuiLW+hl/HhwFxbK6ftWKybs+HglNZ/jPndO4W5q4vtJSQmOL7i5FP/yctzP6dMxGGtxl5ZiskpJQX9Tc9tsYIqLQ6BvZSUmSbWISb0/7tZWcFutPLfoh9Onw0g6cUJOJ29sxPHHjUMgdFERjustdju4Y2MVbq6sxrlzeHHJyIAR44s7IwPH5VLOKyqgl+nT8RJw8iTPXVKCgNzRo3luhwNjXGysUgpBi9vl8s1dWto/d2Ul+qHgPnVKToNvapK5ufR9NTdXVuPcObTNyIChwKWcl5TgbxkZaKvFXVWFc0VHg1udBt/cjGONGYOfkhJ+F/tTp3AMUcKB487J6Z+7tLQvtzDQL4HoBtBQSXw8BqrSUhgxXBXguDj8VFRgkhs1SnYlRUTgc6MRg/fw4XzK8ejRMA5EQT3OTTZyJN6+S0vxL+ciUXNzmUTDh+OnvBxcI0fKK1Lh4TCOBHdcHM+Umqpwh4fz7qYRI2AklZbijZxzNcTH462/pATGGKdvwV1RAaOD4w4LA7cwDrT0nZoKo8aXvkeMgJEkBmFu6Vtwl5YqxfI47rg4DECCW72SFhoKI6OxUeHW0rfZrOibaxMfD6O9tBSTFeciiY/HxCC4OX3HxoKjqgrcI0bI3CEhCndpqTZ3Sgq4y8oG1k88Hn7JfsQIDOrCONXSt+Cuq+O5g4NxP8UkGBurzW2xgDssrH99u1za+hbc7e3g5rKS4uJgcNTWKt/xlqAg6EVMgr76idWqcGvpOyQEbZxOucCjaBMToxjVY8Zoc9fUgFvcI28JDMTxW1rwQqTFnZwM47SsDM+EL30Lbq6fxMfL3Op08pgYtPPWN7f5bGqqYhwMH87rUs3NtYmPV/TtcPD6jo+HPoVxmpoqhzAI7poa/MTFydz+/vhua6vv/p2cDJayMrBp6Ts0FG1sNu0dCIZALosssBdffJF++9vfUmNjI82YMYNeeOEFmqtRGfJvf/sbvfbaa5T/v2+hc+bMoV/84hfn2zscDvrP//xP+vTTT6myspKio6NpyZIl9Ktf/YqSuI7NyDeSBebxYHnw5ElM2GvW8PUmcnOxHB0WhlRIrnPU1aEqp8WCVGp1dVsiTPq7dmEimTsX6Z3qgcZux5JmcTFWZVatkpc9PR4Uyzt+3Dd3Xh64Q0LAzU2A9fWo8GuxIJ165kzf3FddhSVdNbfDARdfcTFWnVatkssFeDwoOpeVBQNhzRp5WZ8Iqxn79+O6V6/mDTyDAdxmM5Zq1VV5iWAc7toFQ+nKK9GO4969G2+GkybhfBz3kSMoKDZiBLi5OhkFBXADBQfj+rmJW3D39oJHXZXXm9toBPeSJTz3nj1YsZk0CedTlwvweOCOPXYMA9zatTx3YSHcbkFBOA4X42U0olpuTw+4uVII3d3gNhjw9yVL5AnJ6QR3QQFWy1av5rmPHQN7fDz0zRm4RUXgDgxECi8X49XQAO7ubvTbK6+U2/T0gLuuDvdj6VLf3OPHI11eXXfI40EfOXIEvGvW8JNNcTG4AwKQ6s3FeDU2gqm7G+MEV8JhoNyffopnatw4pKBzm28K7uHDtblLSnAsf39wc7FSTU1g6uqCy4qbM3p70aa2Fs/tsmUyt8sFHeXmgvuWW/gYxqwsjCmxseDmjBJv7ptv5mOlmprQTzo74SKcN4/n/vBDGCQzZ4Jbbbi4XBgDcnLw/N96K899/Di4Y2LQhnvRLS0FNxG4uVip5mYwdXQgfZ0rhWA2o011Nealm27iuffvV4rQ3nqr742oL1C+VZuhvv3223TvvffSyy+/TPPmzaM//vGP9O6771JJSQmNZG7UXXfdRddddx1de+21FBoaSr/+9a9p165dVFBQQMnJydTZ2Um33347PfjggzRjxgwymUz05JNPksvlotNcpWNG9M1QddFFF1100eXbJ98qA2jevHl01VVX0Z///GciInK73ZSamkqPP/44PfPMM/1+3+VyUWxsLP35z3+me7miWkR06tQpmjt3LtXU1NBorQ0ovUQ3gHTRRRdddNHl2yffmjpAdrudzpw5Q88+++z5z/z9/WnJkiWUxe1rwojZbCaHw0HDfZTT7uzsJD8/P4rhXDdEZLPZyGaznf+9q6trYBdwoXLuHJZZ4+KwtM8tD1dVYUk+JATL6NxyfFsbsgRsNqLrruPdCBYLMoDa2hBsxrlt3G4sjdbUwGW1YAGf4p6dDe7hw7W5q6vBHRQEbm5Zu70dTDYbsog4N4LVijatrQg45Nw2bjeW0Kur4SJcuJDnzsnBT2wsuLnl4ZoauD+CgrD8zy1re3Nfcw3vRvDmTk/n3TYia6+qyjd3bi50HhMD1w7HXVsLHQQGQt8ct8kEJqsVy9WcG8FmQ5uWFgTBcqm0bjfubWUlYlgWLeK58/LQx2NioG9uWdub+4Yb+OX4jg7sbWWxgJtzI9hseAaamxEszaXSCrdcZSViExYt4lPz8/MRnBwdDX1z3HV14A4IwHG4uLOODujSbB4Yd1oa3E0c97FjiE0bKPeNN/Kp+fX1eMYDAtDfuHiizk7o22yGO4Zzf9jt4G5qQjLA3Lk8d2YmYvySknB/Oe6CAgTfR0VB3xy3wQDXu58fjqPF/cUXcBfNncunXHtzX3EFro/jzspCTEpiIs7HpeYXFiKAOSoK+uZS8725Fy3i4/y6uqDv3l7cf66issMB7sZG3I+rr+a5jx+H+8oXd1ERuCMjoW+O22gENxH6CRcu0t2NbMCeHnCrs7sE98GDcAdPmoTxkuM+cQLuwoQEjF8c9xDIJTWAWltbyeVy0SjVYDJq1CgqLi4e0DH+7d/+jZKSkmgJt40DEVmtVvq3f/s32rhxo6Y1+Mtf/pJ++tOfXhj8hUpJCVIN29rQIUwmuXy9yYS01YoK/F5WRvRv/9Z3snG5sNuuyJ44e5boRz+S41veew++bxEL8/TT8gBx5AiOZbMpsSg33NC3TVkZUjsFd3u7nP7Z0YF0Y5EVUFaG1GVvbrcbOw6LjR1Pnyb68Y/lOJH33sMOz4L7hz+UB4ijR8FttSoxS+r0z/JycLe2grutDaXcvaWzE/oWmU8lJUjt9B603W6iv/0NA6SozfGjH8mG6a5dYHe7MZDs2IGJ2VsyM7HLteD2eOT0z4oKcDc3g7u1FVsveEtXF7hFELjg9h5EBLfY2PHUKXCrDdNdu4jefRcshw6Be9q0vm2yssBtseAcbre8jUdVFZgEd3Mz0om9pbsb1yYyQ4qKiP7jP/pyezzYdVxskCi41Qbexx+jzIPbDe7t22F4esvx4+gnZjPuqcuFWApvqa5WuInw74MP9m3T0wPu4mJcW2EhuL3j5USZB7Gj9smT4FYbeKI8hcuFiWLbNrygeMuJE9C34HY45O0wamr6cjc2Yjdwb+ntBbfIkiwoALd33Jko8yAmvxMniP7zP2WDY/duojfeUDYWDg2VYw9PnQJ3b6/CffPNfdvU1YFbbBLa0IAyFhx3YaGi7//8T5l7505lU+njx9FGbXDs2YO0c7cbE39IiPwyePo00Usv4bwBATCa1Nth1NeDyWjE70YjyoZ4i9mMMV5kdxYUgEkdd/bKK8pmwceP456oDQ7B7XIp+zGqXwbPnAF3Tw+4bTZ5WwmDAfpuaFB+f+yxvm0slr7c+fngVr/ovvqqslmw4FYHXouyGk4nXiSCg+VYuHPnUH5FcFutiLu6BPKtzgL71a9+RW+99Rbt2rWLQtWdjBAQvW7dOvJ4PPTSSy9pHufZZ5+lzs7O8z91XFr5xUp9PYyHjAx0aM7Aa2zEg5WWhjftqio5Db6nB58nJ6Od0ah0bm8pLsZ5MjJwXu6aamrQ+TIy8PBw6cZ1dcoq0rBhfMp5YyMYrrhC4VavovX0wEBKSgJ3QwPPLbKofHHX1eGhzcjAIMulv9bXK9xRURhEOW6jEQbW6NGYDNXp+729MEqSkmAYGI3KIOgtxcVYqZkxAwZhfb3cprZW4XY6tblFCnR0NK/vpiYMZFdcgZWkmhqZ22IBd2IiuBsaeO7SUgx0GRng5vRdX4/BPSMDAzKX/lpXh1WkGTOwAsTpW3BPnozgx9paOX3fYoHxmpDgm7u4WJmEOzu1+0lvL7g9Hp67vh5GREYGXiI47uZmcE+apM1tsync6engFpv1ektpKSazgXITKS9EWtzDh4NbHc3Q3Ix2kyZhlbiuTua228E0ahRWXMUzwXEHB+N8XV3a3D09Cnd5ef/cRUUyd2sr2k2ciOBeMQZ5i9MJppEjFW4tfYuyGgPh9vfX1ndDA+5bfDz0rU6DF9wTJmB1W4u7pAQGvSg9wXGXl8M4EKU+tJ5LwR0QwJewMBigm+nTwV1UJKfBC+7x4xVuddkBlwvfjY9X9M2NceXlSnmK3l6+TV0drikjA4Yyxz1EckkNoPj4eAoICKAm8Tbwv9LU1EQJ3JKnlzz//PP0q1/9ig4cOEAZ6jcoUoyfmpoa+uyzz3z6AkNCQigqKqrPz6BLaioe+JwcdAxu+TAxEYZNURE67vjx8nJlZCQ+NxjQLimJX2ZNS8N5cnKwWsHFPo0di8kvJweDMpdJNHo0On1uLh42jjshAdzFxejw48bJhQIFt9EI7uRknnvKFEy2vrhHj4axkZODQZlzpaWmKtxdXfKqhpq7rg7c6nTbiAgMaEYj3pCSkvjl4bQ0hTs2ls/eGzNG4Q4M5F2Xam71KhIRJquUFAykdXW4b2r3blgYJpCGBt/cU6bACBbcnL5TU6EHwc25AFNTMRnl5GBi5/QtuEtLYbSNHSuvXAruxsb+9W2z4XwxMby+U1PR73JyMChrcY8ahTYmE889ciS4y8rAPWaMzB0SAsOusRGuwKQkPi35iiv6cmv178hIpWAk57oU3NnZeFGYNk12NYwciXbl5TC2R4+WV1yDg8HU1ARuMQapZfJkvGzk5OAZ8aXv3Fz8zrkAU1Lw3OXkaHOPGIFjiZpBo0fLK66BgeBublb0zW0KfcUVSo2c6GhtfQ8bBm6PR1vfiYk4Tlsbnkt1Npk3d2WlNveUKXhZyM3FMTnuSZNgdOTkYCzVei5F/xbFN9WSkoJz5ObCqJk6VXZfx8fjWKImkRiDvCUgAN9tbfXNPXkyDMPcXLBx/WT0aFyTqBmkVVV8COSyCIKeO3cuvfDCC0SEIOjRo0fTY489phkE/Zvf/IZ+/vOf0/79++lqJhVPGD9lZWV08OBBGsHFR/iQbywIOidHiQFavFheGiXCAHvsGAamxYv5VOL2diyh2u2IpeEMF6sVbdraYLFzKeciJqW6GoP6/PnyQ00E5pwcsCxezMcAeXPfcAMfu2QyYdnfaoVvmDMArFa0EbE0WrFLx44pg/r8+doxKdnZvrlra3EsEUvji9tigb45bhHb0dqKQV0rdikzU4kB6o9bxC5x3HV14A4IgL65mKuODnCbzdA3ZyjabGgjYoA4bhGTIgZHrVix/HylqN7ixXzsUn09+pyIpeGezc5O6FLE0nCGi4jtaGnBwMxtXyBiUioqMFhrxVwVFIBbxNJw3AYD3Fv+/uDmYpc6O6HL3l7EmnATqd2ONiIGiIu5EjEpIgZowQI+lqawUIkBWryYj10aCHdXF3QpYmm4Ccluh7tJxABpxVwdP67EAC1cyHMXFSkxQIsX8zFARiO4/fxwHC7mSnD39ICbMwBETIqIAdKKuRLciYnaMVfFxUoMkBZ3QwNc90TaMVfd3eDu7vbNfeiQEgOkFXN14oQSu7RwIR9LU1IC9+SwYeDmYoC8uRcs4F9Oe3rgAuvuhh65mCuHA+5UEQOkFXN18iRehBISoO9BjAH6VmWBvf3223TffffRX//6V5o7dy798Y9/pHfeeYeKi4tp1KhRdO+991JycjL98pe/JCKiX//61/TjH/+Y3njjDbruuuvOHycyMpIiIyPJ4XDQ7bffTmfPnqXdu3f3iS8aPnw4BXP7oKhEzwLTRRdddNFFl2+ffGuywIiI1q9fTy0tLfTjH/+YGhsbaebMmbRv377zhkttbS35e61KvPTSS2S32+n222/vc5znnnuOfvKTn5DBYKCPP/6YiIhmqlY9Dh48SIsWLfpGr0cXXXTRRRdddLn85ZKvAF2O8o1Vgv7ySyy1JiSgUi5XmTg7GxWVQ0NRIZPz/dbWotqm1YqKrJx7q6OD6P33sYR69dV8RWW7Hdk0RUVY1taqTHzwIJbkR43ChqIcd04OqnuGhiKin6uoXFurVFReupR3b3lzz53LVya225FNU1iIZdhbbuG5Dx2CC2TUKO3KxLm5qKYaEoLjcO7Eujro22xG9hPnJursRPaa0Yjl4e99T7uCdUEBlrVvuYWvTHz4MFxOI0eCm3PL5eUplaBXr+bdcvX1yPIym6FHLjW/qwvcBgPcGt/7nuwG9eaeNAn9kuP+6iu4t3xx5+eDOzAQ3JxbzmBQKiovWcJXVPbmnjOHr0wsKm/n58MdxVUmFpW3jxyBO27tWt6dWFCgVFRevZp3yxmNSkXlG2/kKyp3d4O7vh79iKtM7HSCOy8P51mzhuc+elSpBL12Le9OLCxEhd+AAGQIcW65hgalovLixXxFZW/uWbNQ4VergnVuLri5ysTCnXrkCMaR227juYuKlIrKK1fybjnB3dkJNzBXmbinB9x1dRgnucrE3tzjxkGXnBv02DGlEvTatbw7sbgYxyKCvjn3lqi83dEB9496Q2QiuCM/+ADhCbNmIQuQq6j86aeYM8aOBRPnBs3MxJgSE4M2nDuxpAR9jgj65txbTU1g6uiAu029IbKae+ZMZAFy3Hv3wu3si/tryrdqBeg7I7m5SH8Um8o5nXLaanMzUsWbm/H35mai557r6x91ONAmP1/Zlfi55+RO/fbb6GTh4RhM4uJkQ+nLL5GSGxICAyYiQk5bzctDuqnTCW6HQ05bbWkBU1MTrq+xkeinP+3L7XQq3EFBiIP5yU9kH/m772IAEdzx8bKhdOgQuIOD8fBHRKBcvrcUFIDb4QC3zUb06KN927S2Ik26sRHxOYLb203qciGdPDdX4X7uOdlH/u67GEDCwzHpxMfLhtKhQ9hRWXCHh8tpq4WF4LbbEXNktRI9/njfNm1t4G5oAHdDA7i9jUDBnZMD7spKlB1QB7i+/z6M0vBw6CwuTjY4vvqqL3dYmJy2WlSEdGrBbTZjh3pvaW8Ht9HYl9vbmHK7kQZ/7pzCnZAgB1x+8AG4w8Kgs7g42eA4cgTcQUE4XlgYJmVvKSkBt9WKH7OZ6Kmn+rYxmcBtMGACNxqJfvazvkaJN3dgoMKtDgLdtQvGXVgY9D18uLwVwpEjSDkX3CEhMBS8pbQU3KKP9PSgFIC3dHQgLd1gAJ/RCH17T+4iff/0adzfigpwq1+8PvwQP+HheIaHD5cNjmPHwB0YCO7gYCLVSj2Vl4PbbFa4d+zo26azE/quqwOfwQBu70lSpO+fOtWXW/0C89FH0Lngjo2VJ+7MzL7cISFEd9whc//jH5jgbTYYi08/3bdNVxe4RTat0Ld3rJBI3z9xAucR3OoXmI8/Rh8Xz2VsLGq+eUtWFlLlAwIQCxYcTLR+fd82lZXg7ukBd2cnSqt4v5x1dyvc3vr2jhUS3MePg7u8HHOO+kVg926Z+/rr+7Y5fhyp8oI7MJBo40a6FPKtToP/VklrKzrhpEnoWFxaY1sbJokJExBE2NSEgcJbzGZ8npSEdu3t8s7URDj+sGE4X2+vnI5JBMPF5VIyDlpaeKbeXrzJREXxO6ELBsHd3IxrVXM3NyvcJhPP5M1tNsvpmILb4UAbj0feuZior76jo3l9t7eDY8IEZWNFNbfFAn0nJuLtWYu7vh4DnS/u1ta+WQ+q7EciwrG7u9EmJsa3vsePV7jV5RKsVhh0CQk4li99R0SgjcXCt2ltVfQ9UG5O3yYTuMeNg0HDcdtsMIxGjUKf0+I2GDDI+tJ3Wxu4J07ESgJXdqG1FRPX5MkYrLlSEGpuca3eYrfj+CNH+uaur4fx40vfbW043sSJmCS09N3ZiXMNH45+ol7M7+hQNngdPVq5Vm9xOJQNjAU3p0uDAYbqxInoW1r922ZTuLX03dHRP7fYcFRswKnmdjrBNGKEb30bjZiwBXd/+g4M5MsAeOs7Lg79W50G39mJdt76VpencLmUjYAnT0a/0tK34LbZ+td3cDDP3doK3UyejJey+npt7tGjoXNxrd7iduO78fH96zs42Dd3W5vCHRLClwEYItENoKGSyZMxeObmYtDhlvVHj8bAWFam1MpQL+FFRaEWRXMz2k2axKcaXnUVzpObi/NyS7FpaRj0c3MxaXEp15MmKdx2O788Lo5fVobBOiNDTicfNgzcYrfsSZN4995VV2Fwy82FsaTFPXw42kRF+ebOy8PDpsU9aRLeZhoakHWmTiePiMDKmdh1euJE3r135ZUY3HxxT5micA8bJhfuI8LxBbfFwm+UKPRdUaFwq9174eFYOWtrU7g5996VV2IC6o87Lk5JbZ0+necePdo3d1ISltYrKzFQctyhoVg5a2/Hyo4W9+zZCndiIr9kf8UV4M7Lgz6Ychnn72deHgx9zo0i9FJZicF66lTZvScK1bW1gXvCBJ5bZH3l5sI45binTFFKIYgaTRz32LEKN1dxV+ilqgqT19SpsnsvOBhMJhPe2CdM4N2pc+bAiMzNhXGqxT1iBNpwhRIF97hx4O7p4bOEEhJwrOpqcKelyW6yoCCMFR0dvrlnz4YxlpsLI0+rnwjukBA+pEDcz/x8GL/z5skuwFGjwF1TAwMpLU12kwUGKtz5+UrNII47MFDh5qpFe+s7KIjnFrV98vNh1MydK7ukRo4Eq9gNPi1N9igEBOC7nZ04ljiuWmbOBEtuLti09D1yJNoEBvIhBUMkegwQI99YFlhNDQbH2Fg8BFxKblsbUkSDgjAYcynQFguWER0ODExcrIVwtZlMGPi4SdvjweBRWwsjKj1dHoyI8PeCAhgH3ANEhAnr9Glwz5vH+9AtFiz92u3o9FyshdsN7vZ2PIjcJEIEnpoaGAPTp188d2Ag9M1xW63Qt80GfffHPWUKPxgT4f7X1GDlRou7rg6DTHQ0uLmUXJMJ3AEB0DfnQ7daoW+rFfrmYi3cbhynrQ0DEzeoCe7qanBnZPDc9fWY2C6W22aDvq1WGHFcrMVAuYuKYAAkJWFC1uLOz4dROm8ez93Rgfvr7482XAq0zQZ9Wyy+uc+cwZvx5Ml8LBERjNaqKhgxWtwGA/Tti7uzEynHvrjtdujbYsEExsWIuN1wV7S04KWBiyUiwsuNcP/NnMlzG42KMT1vHp8C3dkJffv5oS9xqduC22zGubiUc48H+m5pAbNWzRnBPWoU7h3H3dAAl7Iv7q4u6JsIbbS4T5yA4eqL++xZvOj64i4txYvQQLgjIjDG9cc9d6784k2E+eb4cXDPmMGnyns8cCM2NaFvcy9URHhZLi/HM8KVsLgI+ValwV+OoqfB66KLLrroosu3Ty5k/tZdYEMtbrfs8/46bTwe2Zf7ddqI8w2kjc598W3E+QbSZqi4L4RpIG107sFjGkibgTDp3IPXRucePKZLLHoW2FCJ04nNMo8exdLh5s18if+DB5EBEBZGdOedfJxIfj6yFiwWpOSqNzAlwjLzzp1Y/rz+emRjqJfIe3qwwZ1Ig7/vPnnJ1uVSuBMSsKEoVyr/0CFwh4SAm4sTKShA1oLFglRL9UagROB95RUs7197LdG6dTz3a6/BLTNlCjZnVVv6LhcynERa9qZNfOn2w4eRKRISgkwELt6isBDcvb0Kt3rJtrER3PX1iMdYv17m7u0l+uc/cf8mTwYTx/3BB8gEGjkS94SL8TpyBNktwcHg5uItioqQbdHbiyw5rqRAUxP6SX09lsfXr5eXyM1mcOflYSl+0yY5xsvtBvdXX8FFuGkTH+N19Ci4g4KINmzg4xZKSnC+nh6k/y5dynO/8grchfPm4Vgc97/+BXfLpEnQpTrGy+1GdtOhQ+C+7z7eXXzsGLgDAqAjLm6htBT9srsb3MuWydzNzdB3XR3c4Bs39s06JMLz8c9/gnviROiS4/7oI4wXcXHg5tzFmZm4LwEBeJa4UghlZThfZyeYly+XuVtaoO+aGsSN3Xknz/2vf8HdMmECuNUlM9xujBNffgnue+/l3cXHj2Pc8fcHNxczWV4OfXd2oo/cfLPM3doK7upqHGPjRrlkhtUK7uxsuFI3bZJj0zwelIL4/HNc06ZNPPeJE8gI9fdHJhlXCqGiAuNuZyfKTqxY4Zt7zhzom+N+4w24ysaNA5M6HMLjQWbWZ5+B+777eHfxyZPQNxHmCi5msrIS3CYTuFeulLnb2sBdVYVn5M475ZIZNhu4z5xBn928mQ/jGALRV4CGSs6exUBrscC3/c47cpv6ejyILS0YTHfuRGfxFpsNn5eWot2//sVvOPfOOziPxYKB++xZuc0XX+CBtlrxf7HTr5pb1JI5dQrp9WoxGMDR1IRBaedOHNNb7Pa+3G+8wWc4vfuuEkfx0UeI81DLwYN4oK1W8H/2mdwmOxvcPT04BsdtNMrcFkvfNg4HHujiYjzcvrhFHMVHH0FXHPeBA8o2JQcOyG1ycjBh9fRggHjzTblNYyMmrMZGDEoirdhbnE5wl5Qo3NXV8rHef1/h/vhjJQ7AWw4dQo0nsU3J/v089/vvg/vsWZ67qQkTVkMDuHfuhHHmLS4XPi8qQjzVm2/ym8Z+8AHSgK1WTEwnTshtDh9GzSHBvW+f3CYvDwN/Tw9iF15/XW7T0gJuoxEsr7wiZwt6c5tMKNPAbb764YcK9+7d2txC34cOoZyFWvLzwd3djb7Ocbe2gttgULjV2WtuN7jz8xHn9Pbb/CamH34II9BqRZmKrCy5zZEjir4PH1bq4XhLYWFf7n/+U24jJlGDAQbXK6/IWWBuNz4vKFC4uU01P/wQRnd/3Hv3os1XX2lzv/MOuPPyoFf1akl7u/ISJLjV2VQeDz4XQcnvvINnVC2ffNKX+9gxuc2xY6gDZLXiGj75RG5TXIxzdHWB+9VXZW6TCZ/X1uJHGDlq7ldfxTG6unBMbkPvTz4Bi9UKNi3uPXvQ5uhRjDuXSHQDaKikpwdGQGIiAm251PWeHkxECQmwiLu7eQOopwd/T0jAxKcejIlw/PBwnM/h4Nt0d6NjJyXhX/UgQ4QJSnBHRMgPhmhjNivcouaEmru7G29WiYlor578BHdYGJgcDr6NN7efnzyoEyn6TkpC0CKXsunNHR+P73CGW1cXrktwc7o0mRRup5Nv09ODgVtw+9K34NbqJ9767u3V5o6N7V/foaG+9X0h3ImJWEX0pe9Ro6Dv3l7e4OzsVLgtFp6powNvxKJ/c216e2GYJCXhjZzjFn1VcPvS98iRCCTnuJ1OhTspyXc/Edxa/aS3F38T3B0dfBurFW2ioqBv9cTmre+RI3lul0vm5nRpMmHFR/RvrX4i9B0QoK1vi0XhNpl4boulr77VBr7bDb1ER/vWd2cnVgZF/9bSt+AODPSt78REcLe3y9xms9JPRo5UfvcWl0vh9vVcmkxgGai+AwP713d0NI6rdj0JBsGtpW+TqX99d3Up3C6X9nMp+ndQEK/vIRLdABoqmT4dbo/CQmXDULWMG4dI/poadKT582WX1LBhcGl1daHdrFn8UuzixThPYSGW/zmX1JVXwp2Vn4/OyC3Xpqcjy6awEJ2V4x47Fhy1tRhwrr2W3w1+/nwYK6JKKMd9ww2YkEXV4f64ExK0uYW+AwJ4d9uYMQp3Rwe4uTT4BQvwsFdWgpvL3LnhBqW43YQJvCttzhy44fLzMSlxy8zTpin69vfX5p49G24UkwncaldDeDiqtfb2+uZetEgpWjZxIs89ezbccIKbS3GfNg3uyOJicC9ZIrdJTYUO6usxgVxzjbz0HRoKXVoscBVkZPDcCxfi3vjS96xZcMPl52Mi5VLcp01DtqF4m+X0LbgNBhga8+bJmYAhIQp3eTlcklzmzoIFeBYKCuCK4FyXs2bhHgturlLw1Kn4KS7GRMy5N5OT8awYjVjF4rjFM221YgXFF/ewYWAaN47nnj1b0XdcHM+dlgadFxdjUuW4k5LA3dCgcHPp5IsXw+guLcX95zKO5s/HpC1StzmX66xZSoo7V3CQCH172jSs1rhc4FanwScmYixqbISrc+5cOaNOcDsc4J4+nU8Vnz8fLPn5YNPiFv2EK/AouNPTwe1wgFudDSvG0MZG/Fx1lZyZFhCA7zocONb06XxqvhiL8vPBxnHPnKnoOzpaLpQ4hKJngTHyjWWBtbdjcIyJwSDDpf5ZLBgcg4PxwHGp2y4X2tjtaMOlyns8GNA6OjCxcdtAEGFQr6/HYMnFyBBhki0r65+7sBAPeHp6/9xTp/Ip5x4PdGQy+eY2GmEADIQ7OhqDY3/c06bxqcQuF9rYbL65KyqUgpBaPm3BnZTEx/YQ4Z6VlvrmtlqhS1/cbjfa2GyYeLTKzZeXY2KfOFGbu6EBhuJAuKOiMKj74g4IQD/xxW21Qt9a3BUVcPNMmMCXJvDmTkzkY5KIYLSXlPjmttnA5O8PfXOpxG43+onFcvHcjY14wUlI4GOSvLmHDcNkNBjcaWl8qjwRDOmWFhgSXEmFgXJ3dcEAGgi3nx/6iRZ3URFWI3xxV1XBIBk3ji9NQAT3bHU1DBat0huCOzIS5+O47XZM7H5+0De3+bbHA32bzbh+LlV+MLm7u8EdEeGbu6AA//fFXVSElypf3NXV4Bo7li+pQITrqqrCdWmVDPmaoqfBX6ToafC66KKLLrro8u0TPQ3+chW3G29+6ngNb/F4sHLB+Ve9paeH9597iyhZ7yvd0OFQtjrwxd3W1j93R8fQcTudg8vNxRFdam51vIZaBsLd29s/tyhZf7HcHs/gcnNxFt4y1NydnYPL7XL1z223Dw43Fx9yqbnVcSZfh9tsHhxul+vy47bbB4+7vb1/7q6uy4t7CERPgx8qsVqVzRKHDyd68EHZZ+3xIEPis8/gGrjrLt4fLTYddDiQjnj77fKyZmkpNsNsb4fP9cEH5XTE1laiv/wFS9ZjxmCTU/XSttWKzfTOngX3Aw/IPmuPBxlABw4oG9vNny9zi00HbTb4k++4Q/ajl5Vh01TB/cADsouvrY3opZewhJqaSrR1q7xEbLNB32fPwnX34IOyz9rjQTbR/v3g3rABsQ5qEZv32WyIEVm3TuYuL4e+W1sRj/DQQzz3yy/DlZCaCn2rl4jtdmVzypgYXH9amsz94YfIXAkMRFr2woUy94kT4LZaEeexYYPMXVmJjRBbW+HXf+gh2cXX3g59V1bC3bhlixwjYLcrm1PGxBB9//vyFiUeDzLk9u5V0pu5mLKTJ5EdZLUiRmnjRpm7qgrcLS1wkTz8sMxtMoG7ogLcjzwiV68V2YmnTmFJ/4EH4AJQc3/8sbI7+R13II5DLadOITvIasX9uPNOnltseDxtGrjVrrKODnCXl8PluGWLXDLD4QD3yZPgvv9+OV7O40G2zSefgOO22/jYrNOnwW2x4Lm96y7ZhV1Tg77b3Iz7+vDDssupsxPcZWXQ85YtcskMhwPZRMePg3vzZjl+y+OBrj/+GOPabbdhnFPL2bPIqDKbEUdyzz0yd20tuJua8Bw98gjP/fLLGDMTE9FG7VZ3OsGdlYX7df/9chyUx4O+LbKa1qxBWQG1nDsH7t5ejO/33uube8oUMKldTmLz1eJiPI+PPCK7p51O3NvMTHBv3szH5ezbhzGFCBsG33ST3CY7W8ncvPZacKtd2HV14G5sxPy2ZYscD9rdjTbFxRj/tmzRdqt/w6KvAA2VnDmD1NCwMEwkH3wgt6muRmqsyHB46y357c5iwecimn/3bu004cpKnO/wYe108rNn8WCcPYvUbLWcPYtUXF/cNTUKd2cnUlLVbxtWK7hFls2ePTz3rl2YsHxxi88jIvBQcun7586BOzQUehU1LrylthaTg8iEeesteQXLZkMqdlsbBuM9e8Cnlo8+wsAfFoY0UC6d/KuvMEn2x33wILhranju+noMsi4XBsG33+Y353zjDRg2fn4YmLn0Zm/uo0f7587JQekBtWRno/8Ibq7Mg8EAbpGNI9JzvcXhgL5bWjBp792LiUktH3+M+JfwcLwQcOnk4j6Eh4ObK5eQmwvukBAM3hx3Q4PMrU5vdjplbq305uJihfv4cZ77xAm0yc3lyw7k5qL/BAeD++235bfyxkY8T3Y7Jq333pOzOF0u9PumJkzC+/fz3Lt3K9yZmTz30aMKd34+z52fj/sQHIx+/NZbMndzs8JtNoNbnZ3ndqN/NzZiEj5wAPEpHHdRkcKdmSm3EfdBcGuVHRDcRiPP3dICbqsV4/T778vZkG43+klDA+KaDhxAPJBaPv0Un4eHw+jiuDMz8TeRxMBxFxTgHEFBOKcW9/vvg1lwqzfG9njwXW9uETPkLXv34vPwcPQFLg3em7uwENd6iUQ3gIZKnE50/tBQDDTc0p/TiQEpNBQDsvjdW9xufB4cjHYuF7/U6HDgPKGh6LxcG5cLfxNtnE7fbbS4BUNoKLgGys2dT82t1UYwifOrReg7LAwDJOcC8eYOCcH/1e4Utxvf7U/fdjsmvrAwfKc/fYvr4NoI7oAAuZyAuDaXC8z96TsoyLe+B5s7NHRg+g4O5nU50P4tuENDle9weiJSVuI4Ju9nLjBQW99OJ/Qt+on6fB4Pjh8UhPNd7HMpuP39tZ9L0U+CgnzrW3Bz/cTjgS6FvsW1qmWg+vZ4wOTn17++tbi9+7fQN8ctnktf+nY6wTKQcVBwa+nbm9vXODjQftLfOCj0rTUOes8pvvqJy6X0E7tdNoA4bq1+0l//djovbDzx97+kbjDdABoqmTULaaINDcj8WLlSbjN+PFwwXV14EFeskJdrIyLwub8/3kLnz+ej6FeswHkaGnDeWbPkNtddB3dWfT2WKzm31cyZ/XOPHStzq5drw8Px3YAArG7Nn8+nN998M9xZDQ2KzjjuKVPAPXEin0Y5c6aSShsby3OPGQMXi1g9Wb5cXq4NCyNatQqTo8kEbm4jyJtvxnKu0YhzcxV3r7kG3AYDjsG5rTIy+nKvXi23GT0a3D09GEiWL5fT90ND8d2gIHBfdx2f3rx8OZbP++NOS4O+x4/X5haptDExPHdqqsLtdsM9oOYOCcF3g4Px1n/ddXx68003wV1hNMIVwVUKVnMvWsRzz5sH7uhooltukdukpMBVZzZj8F62TM5ODAqC6yAkBKtu11/Pcy9bpnCLe62Wq6+Gm8lgwLPNuQnT05Fm3dSEPnvLLXw6uUjNdzpxbnWWX2CgzM2lNy9diuMJbq70hOCur8ezxbkJ09PRrrkZY9utt/LcixeD2+HAudXZcgEB+G5YGFYrrr2W5/7e93D/jEa4CDnuefPgjjQYwM2VQpg2rS/3mjX8LvY33ogVILsd51a75gV3eLjCrXYVC+7UVHCnp/OlJ+bNwzUZjWjLcU+dinM0N2PuuPVWfhf7JUvAbLfj/2rXvL8/vhsRgWNpcd94I8Yng0Gbe+5c/E1wc+7NIRI9C4yRbywLzGrF4BATo53+6nLBNRMUBP85l7Lo8aCDORzobFzKOREGtI4ODADq+B8hXV0YREeN4ncAJsJbcV0dJgit9NeBchuNeMgulru7G5PWYHEHBuJ8vrhtNnBzqdve3MnJfGkCwd3UBB71dhJq7qgo7fRXlwttAgIunrutDUZSf9yNjeC5GG63G/r2xU0Ebqv14rl7emBM+uK228E9bFj/3P7+GLQvhru9HT9JSXxJBcHd2IhxQm0kqrkjI7XTjQfK3dAAg+Ny4q6rA29/3GYzuLlU+YFy9/biWHFxck0tIQ4HdBkRwe/g7s1NBCYt7sZGnNMXt8mEPi6K0A4Vd2qqbCQNNrfZjGfFF/fXFD0N/iJFT4PXRRdddNFFl2+f6Gnwl6tYLAjobG7WbuNyIci2tlY71dDjwd8rKni/r5DmZpzPV5qsKKamDur0FqsVx2lqunjuujoE414sd1cXuH2VUb8Q7pqai+cWe7gNFXdl5eBy+0qTHQi3zYbjNDZePHd9Pbh9pa+3tvbP3d0Nbm4LlwvhdrvBXV19eXGXlWEF4GK4ibCiPFBubnsDNTe3pYgQu31g3FVVA+MuK/PN3dbWP3dPz+ByV1X5Ls9gNOJYvuJf2trA5Ku0yIVwG41Dw93e3j93b6+yT+ElFD0Nfqikq4vo//wfRL1HRSEtWx1v4XQiBfroUSxDr12L+BO17N6NbCynEzESDzwgL1ufOYM08M5O+GqfeEJ2FdXWEr3wAgaRpCSixx+Xq7d2d4O7oADf//73ZT+6y4VzCe5bboG/WC179oDbbgf3gw/K3GfP4lgdHfDpP/mk7LqoqwN3fT2WWR9/XK6Cqua+/3556wmXC6nbX30FjtWr4dtXy969yESx2xFX8tBD8vJvdjbSmwX3E0/ILoD6ejDV12Mp+vHH5fitnh5cW16ekt6s9qOLjTcPH4YrafVq9BW17NsHbpsN8QsPPyxz5+SA22RCzMqTT8pL0gYDuOvqwP3YY/KO0r294M7NBfemTfJWCG43UokPHcIS+8qVSHFWuwkOHECmlc2Ga3/4YbkybW4uUoAF9xNPyHE5RiO4a2vhann0UTl+q7eX6M9/xvEiIsCt3lJAcB88CO4VK/jSE599hmwsmw3PyJYtMndeHrjb2xGT9eSTMndDA7hrauCSe/RROX7LbAZ3Tg6477tPLpnhdiMF+ssvwb18OUoPqLk//xwZPlYrYpK2bJF3Hs/PB3dbG2L3nnpKjidqbCT6058U7q1b5TgoiwXc2dlwR917rxx76HajDMIXX4D1pptQwkHN/eWXyASzWBR9q7kLC5GaL7iffFIOP2hqAnd1NVzTW7fKpT4sFqIXX0SWZng4Uu7VJTM8HpSdENmdy5ahhIOa++BBbF5rsSj6Vrv6i4pQoqStDc/ak0/KbvzmZnBXVeGatm6V46CsVnCfPQvuu++WY/g8HmSmic2Zly5FCQc19+HDuD6zGbGZjz4qcxcXg7u1FWPbk0/KbuWWFnBXVqIPbd0ql/oYItFXgIZKzp3DT3IyBj9ux+GqKqTAiolzzx7Ziu7tVdIGY2LQntt1es8ePDzJyTgvtxv8sWN4M0pNhVV/5AjPffbswLijo/HQ7Nsnp2X39uK7bjcG/KNH+XTyTz/FA5KcjMGd487MxNtDaireWjlu8d3kZEySu3fLbaqrYfx4c6tXwiwWJcV/+HDojEsn37tX4c7O5rmzshR9V1bi3Bz36dMwSDs7+R2ea2vx3agoGED79skrM2K3cacTg8yxY/xu2fv2YQJISYERcOaM3Ob4cUXflZUwYPrj5nZ4rq3FdyMjldRl9QqHzaaknMfH415fDHdxMbirqjCAqyUvDyn+iYnosxx3fb3CLVKA1W/cdjvulcOBiSori08nP3AABo7gPnWK5y4qAndNDSZMjvvkSRikglu9UmIwgDsiAtyffSa/cTud+K7N5pv7s89gUIq97DjuEyf6587PR7uEBIwJHHdDA7jDw2HQfP65nJbtdKKEg80G4zYzk0+DP3CgLzdX5uHECRhKKSkw8rlyIAUFCrfZjHNz3AcPIh4tJASGkHq13+XCd61WcGdl8dyff477l5KCc3PcJ08q3PX1fFmNwkL0J8H94YfyCk9jI74bGoqfL76QV0PdbnxXbMJ8/DifBv/FF2BJScG5tbgLCtDGYODLagyR6AbQUElgIN7CzGYlpZZrExCASddmw6ClDhT291fSdS0W/J8LWhRpr2az8h3ufETKUjwX1ObNLVIluTaBgeCxWnnugAB8brPhWL64XS608fPj2wQF4W++2ghd9qfvwEC0sdl4Jn9/nE/U9tDiFmndg6Fvwe1w9N9PrFbld467P31/HW5un6CB9m/vfhIQwOs7JETh5toQDayfBAbib8L1cTH6FtxafeBC9O12969vwe3xaHOLvivSwX1xi36iPp+fH7472Nxud//6Fun3Wm2sVm1uf/+Bcw+0n5jN4PbFJLgH0r996VvUOBqIvgfK7auf9PYq3OqVHdHGl779/PBdUVNKizso6MK5OX0PkegG0FDJnDlIw7XZsAzPuSzGjoU7IyAAqw0bN8rZLWFh+Hz4cAwCq1bxafC33YZlc5sN5+XSbRcvxtKx2Yy/c2mUc+agnc2GpdjbbpPbjBkD7sBAcG3YIGdbhIZiWTU+XnF/qN0oRNCLNzeXtrpwocI9ezZf3Xb27L7ct98utxk9WkkVj4mBXtVZCyEh4B4xAg/typV8GvyaNQq34OO4587FAKnFPWsW7oPdjvt6xx1ym5QUuBmDgrB6tXGjXHYgOHhg3LfeimVzqxWuCC5tdcECcJvNSJXn0lZnzVJSaceMQXVqtSQn43zBwVi92rBBdssGBYFbZAfdfDOfvn/LLQr3ggXa3PPmQd8zZ2JpXy0zZvTPnZiI+xsSAt7162W3rKjcnpCglCbgdvlevRrL/ULf3A71Cxbgc6sVfFxV3owM3AenE/2YcxElJIA7NBT9Y9062S0bEAB9JyZiMlq+nE8nX7VK4b7+en6n9+uvB7fFAj6Oe/p0uIacTqwUcS6ikSMxzoSG4nm84w7ZTejvr3C7XODm3CirViGF3WqFi5DbMf366/G51Qo+jjs9XeFOSfHNHRYG7ttvl92Eau5ly/h08hUrcE6rFWwct7gewX3zzXKbqVNxDpcL3Jxra8QIcIeH4+e222R3m58fvpuSonCnp/Pc06cr3NxOBuJzqxXHWLFCbjNEomeBMfKNZYGJCs8REfwbhJDOTgyoWimERLDCnU7t1F4iTMa9vRj0tNIanU6cLzpaO/1V7E82mNxRUdopopcjt3jzE+6yi+Hu6sL198cdHq5dBkBwBwRo74I9UG67Ha5WX9wuF/puVJR2+utAubu6cJ7LibujAxPX5cTd2QnD5bvM7eenves4kbLaEhMzdNyhodplF4gU9/9gcUdHa5cMuRy5HQ4cayDckZGDvgKkp8FfpOhp8Lrooosuuujy7ZMLmb81XkF1+UakrQ0BnbGxyI7gLGizGQFiQUFYHuRWCZxOBPQ5HFje5Yp7eTwIuDWZ4EJQL8UKqa9H4F9KivaGdO3tOFZMDJb1vy63ywVumw1tBoM7ORkugK/LbbGAKTAQS7f9cU+bxq8UeTy4t+3tcDVpFbo0GBAM7IvbZEIganQ03BFa3AUFeMO6WO7ycvTNgXAnJcmZghfCbbWCKSAAfYB7a3W5cG1WK5bwtVYuysqU7B6tQpdGIwJyfXF3dCBYOioKbhRf3P7+0DfH7XajTX/c5eXIkhk/XrvwouBOTJQzHAW2tYNKWksoMjiSpo6YSn4Xw11QgD6Vlqa9AjAQ7oYGJBckJPCueSK8+RcXQz9Tp/L6ttnA7eeHfsKtEghusxnH0eKuqEAQ9bhx2oUXGxsRKD9Y3ETQtxZ3YSFWi9PStAu5VlYi0H/8+P65R43iQwqIsJJWVITnf+pUfhXMbkdg/WByjxunXXixqQntfHEPgegG0FBJSwvR889jEImMRNqqulS8zYZU4tOnMUEsX440Ue8HzeNBCuXevZgorrwSKalqF8+hQ0jd7e7GxLZ9uzxoFRXhfKLC7xNPyP7o1lai3/5W4b73XjlWyGZDquXJk+BetgzpxGruN95AlpfTidiip56Sl8APH8ZOyV1dmNh27JAf/pISpFEK7scfl3fwbmsDd1kZHvx775Vjbux2pOSeOAEDYulS7Jas5n7rLWRUORyI3fnBD+Sl5CNHkJre2Qnu7dvlh7+0FNwNDZiwH3tM3sG7rQ39pLQU3HffLceu2O3Q94kTGMyWLkW6vHpAfvttJTNp1iyibdtk7qNHUQqgqwsD1vbt8o7pZWVEf/yjwv3oo/IO3u3t4C4pAfedd8qxFA4HUmSzssC9ZAlKOKi533sPmTJ2O2J3tm2TjeVjx1AyoqND4VbvmF5eDm6jEYbdo4/KO3ibTOAWG31u3CjHUjgcSKXOzAT34sUo4aCeSN57D5kydjvOs22bbHRmZiplHsaOBbd6x/SKCnAbDODeskXayqbD2kHPZz5PRS1FFB4UThvSN9CKyapYCqcTu24fOwYdL16MEg5q7vffVzYfzcgAk5o7KwvcJhMMye3b5R3Tq6qIfv97cMfFgVu9lU1nJ/RdWIi+uH69XOpDzb1oEUohqLl37UJZDZsNz9H27bLReeKEUuZh9Gi0Ub/oVVeDu74e3I88Ipco6erqy71unbzdi8uFcx05Au4FC3AstRvoww+hcxG7s327bLydPIljtbeDe9s2+YWppgbcdXWIkXr4YTn2sKuL6He/g1EWFoa4JHWJEm9uIsSmbdkic3/8Mfq4xQKjdPt22Qg6dUop85CSgjbqF4/aWnDX1oL7oYfkEiVDJHoQ9FBJXh4mkqlT8YBzqcRVVUihHjsWqxbHjsnp5N3d+DwmBu2ys/ld1Q8exMA9dSrOK95KvOXMGWWPnMZGfuf1/HyF2+XiU0RrapAuP2YMVrcyM+V08p4eTLZRUQo3l75/6BAG4mnTMBGItxIt7qYmPiU3Px9GRFoa3ly0uLOzFe6sLDmd3GzGwDBsGN5UcnO1ua1WcJeX89xnz2KQnT4d6bFcimhhocLt8fCprbW14E5NxYCdlSWnZZvNSJWPjIRBlpvLp+8fPqysWGjp+9w5hbulRZu7uFgJROX0XVcHHaSmYmI/flxOy7ZaldTtiRO1ub/6CteYno77kZsrt8nOVrhbW/kdzAsL8SIgVn44fdfXgzslBdwnT8rcNpuSuj1pEvSoxd3bC+6qKm3uujpwt7Wx3EUtRVTUUkRT4qeQv58/fV71OUnRDAaDUgpi5Ehwq9PJ7XZwh4Up3KWlMtORIxh70tNhMOTkyG3OnQN3ejr6Y1aW3KaoCDqfMgUvHV98IaeTG414xpOSFG51OrnTiT4WGorVdC3uo0cV7poanjs7G89UejoMJW7n9eJisE+ZglW0L76Q08kbGjCGJiaC+9QpuZip4A4Jwap0Xh5fduDoUYyhgjs7m+euqUGbjg5e3yUlGAuvuALcX34pb1Aqxv5Ro/Bz+rScBi/G/qAgHCs/n+fOzARLeroyTqklJ0fh7uzEtV4i0Q2goRIR7GUwYADkXDuRkRj4jUYM2FFR8spOaCg+b21Fu4gIfqk9Lg7nMRhwXq6NCEQ2GPAvt6QZGQkGgwFGDOciEdwNDRhgo6LklR2RQdPainYREfyS9fDhmNgEN9dm2DCFW1wHxxQcDB319GjrOzxc4Y6MlFdIRMZSezuOFR6urW+Lxbe+hw3DW5XBgEGf2yvJu590d2vrOzwcg1RLC47LccfEKNy+9G2xoE1QEM8dGalwu93a+g4NRZuuLt/9u6FB2VRSzS0y8trbcSyt/h0bC2PJYMB3uGsT3PX14NbStzf3QPQdESFzBwb25dbqJ8OHw1gyGPAdX/qur8fEw3BHBkdSaGAoGboN1GXroviweNkFFhEBjqYmRd/qlTTBbTIp+uZ0GRsLY0lw+9K3waDJff6eGwyY/OLi5BVA0U8aG8HOcQcEgMlkgp60+klMjMKtlTAg6lIZDDBQ+uPu6OC5BYO3vtUraSLDt6Ojf307HP3r25ubS4gRuhP6jo2VV9IiIvDT1IQf8bu3+Pvju52dvvt3TAxYBqpvh0PO8BtC0Q2goZI5c5DiHRmJVNF16+Q2KSmoMJqQgDeN+++XDaDgYHw+ZQra3XOPvBRNhONfcw3Ot3Ytv8v34sVwn4SHI6VWKy3bm5tLE05KkrnVBpDgTkvDW8bdd/MxR97ca9Zoc990k8LNpWXPnInl3mHDsLy6YYPcJjERrrGkJLxFctxBQTI3F0ty++1I7xTcXBr8DTf0zz1jBo4VFQXujRvlNgkJ4E5Oxlv75s38xLZ5M1akRoxAirYvbrFTNLcUvWgR3LHh4egjWmnZgvuqq+ACU8vIkXD9pqRgdef++/kJYvNmvB3Gx4Obi8lYuxbpyxERSInnuBcuBGtEBNy2WmnZ69Yp3HffLbcZMQIu3ZQUrKbdf788sAvu6dMxOd51Fx/bsGZNX26tNPjly9Fm8WL8XyXTRk6j9dPWU3RoNM1JmkP3zLhHPk58PLhTU8G9ebM8kfr79+XesAFtOe7588G0apU294oVaHPDDXx687RpShmB2bPRj9UyfDi4x4xRuNVGt58fPs/IULi5cgm33gouwa2VBu/NvXKl3CYtDdwxMRgT1aEJRDAQ7rsP3OPGgU9tlPj54dpmzFBKhqirZRPBvSa4V67U5l65Em0WLeJ3DZgyBeeIjcWYqA5NIMI1bdqElfmxY/F/tREouGfOxLE2bNAul7BokaLv66+X21x7rcK9YAHPPUSiZ4Ex8o1mgXk82umD3m2IfLcbSJsLOd9gtemPSefWuXXuQWPyeDx88POFMun6/v+fezCYhpr7a4ieBXY5y0Bu+GC1Gerz6dyXH5POffm1GcRj9Wv8DOK5BvVYOnf/bYb6fJcj9zcsugE0lFJdjbTN2FhUqOWKRLW2IggtOBjLzFyquNmMwEi7HVlgXNyCy4UMCJMJAa6cG8HjQRCeSIPPyOA7ZXU1AhdjYrS529rAHRgIFxbHbbEgUM9uh2uLS112uRD02N7umzs/H0F2vrhraqDv6Ghwc6ni3txXX82nilss0LfN5pv71CkcLy2Nd394POCpqYH7asYMnru2Ftfni7u9HefzxW21Qt82G9wNXOqy260E9U6Zwrs/iMBdXQ134cyZvrmjosDEcZtMSrbg1VfzMQKC22oFN5cC7Hbj+ltbEZTJVbkmQr+tqvLNXVeH5yAqCvrmUsVNJpzP31+b22YDt6j0PRjciYlwuXDc9fXK5rNXX81yd1g76KThJPn7+dO85Hk0LISJJfHmnjWLT112u/GctLTAZcO5m4gQKFxZiWPMns1zGwwIhPXBTR0d6Cd+fmjDxcDYbHguRYVydfai4D5zBjE5kybx7iYiBDlXVAyMW4QDcKninZ0Yd/380Je4FQi7Hfr2xe3xQN/NzegjXFVxIgQil5ejr82Zw3Mbjcqmub64RXLD3Ll8PJHdDn339mLsUmddCu4zZxBL5Iu7tBTJNSNHYg67RMbQZWEAvfjii/Tb3/6WGhsbacaMGfTCCy/QXI20uL/97W/02muvUf7/ZjXNmTOHfvGLX/Rp7/F46LnnnqO//e1v1NHRQddddx299NJLNEnroR0Kqa1FGqXBgLie9evlncd7epD+WlCAgbagAKm73kFrHg/Sfw8dwsN99CjRM8/IA/InnyB922bDZPv003Ia5enTSEvu6ECH37pVjqWoq0MaZX09Hpz16+VtPHp7wS3qjeTlIaWe4z54ENxpaUTPPisPbLt3Y2dimw0P2NNPy7ErZ88ifV1UQN2yRY5JMBigb8G9bp28jUdvL3bdzs0Fa24udi9Wc//P/4Db5QL3M8/IA9unn6I8geDesUM23s6dA7fJhO8/8oi8pYDRCO66OkwMd9whb4dhNiOdXnDn5IDb2zD1eJCW/8UX4J4yBdzqgW3vXuzwbLViIN6xQzbesrNRLqG9Hfp+5BE5JqGhAf2kthbcRqMc52axKNx+fjjuD34gc7/6KjbfdLkwgD7zjByTsG8fdgwXm0r+8Iey8ZaTg/sruB96SI5JaGwEd00NuNeskeOurFZc/7lz4D53DtzeBp7gPnAA3JMno3+ruQ8cwA7tFgu4d+yQjaC8POiprQ3P9UMPyTumNzWhnwjuujop7srqtNILJ16gc43niIjobMNZ2nbNNgr0Vw37r70GLqcTRsKzz+IlzVs++wztzGZMWtu3y8ZEfj7GgbY2TLYPPijvPN7cDH1XVUF/NTVy3JXNhudEbCh89v+xd97hcVXX2l9TNOq9V0u2ZUu2JfdCsY0dwJhejYEEMKEZQgCbS+C5CbncktxCckn7II0aCL0YGxuDsY2b5KLee5kZtRmNZqTp5Xx/vDk+M2fvGQnbyCF31vPoAUt75vxmzz57r7PXeteuggxc7ii98QbuO68Xffj002xC7Zdf4j4QubdtYxflxkZwGwzgvvde5LH428hIIHdPD5u/JJbVEA/mPXUK/cTj3rUL3LNmgVsuGhC5rVY8cG3bxubcNDcT/e//gi0mhuj732dLqxgM4O7qAnd3N/KU5Ny/+52kAj5xAuNS7ij99a/SAcszZ4Jb/vC9fz/meZsN3I8/zh5R0tICGbwoKNiyhX8M0zTYeU+Cfvvtt2nbtm3005/+lKqqqmjhwoW0YcMGGpbLHv9mBw4coNtuu432799Px44do/z8fLr88stJJyqCiOi///u/6de//jW9+OKLVFlZSbGxsbRhwwZyOBzT9bFYa2/HolxejoHFO726vx/e/Jw5eBKpq2Nl8BYLfp+ZiRu5owOvk9vJk7jxysuxGPFO1G5pgfOzcCGcCd6pxB0dEndkJF9yrtUGcjc0sDL48fFA7s5OLJZyO3VK4h4Y4EtbW1rgRJSX43153P79HRXF59bp0K64GIt/YyMrg7dawZ2ejgkoFLdaHbq/W1vBvXAhnF3eacodHZJ0OyaGLzkXuWfPhrPV2Mieqm6zwcFIS8ME1NmJxYbHrVRK/R2M22gEt83GL6kgjsNQ3GK/zJwJ7qYmVr7vcMDBSEuTpPk87upqiXtoiD9OWlvx/iI3T+Lf0YHvs6wMk3Ew7rY2LFZ5eRhvcm6nE0ypqUj07erCIik3cVGfjNtgALfDwecWx2FZGZykykpGTj44MUhtxjYqSiqi/IR8ah5pJoPNEPg+Lhe4k5Mlbl5ZjepqPLiUl8OJCcVdXo735UnOOzvRL2VleAg4fpyVwQ8O4r0KC/HQ1tyM9/U3txtzXHKyVAohGLfXG5q7rW1y7q4ujEOR+8QJVgY/NMRy8+T7cm5eWY3qarQtL4ejwJOct7bib+XlaBuMu7sb10pMBLdcBj88jPeaMQM/ra38U+xPnMB7iCUceNy1tZNzt7UFcldXs22myc67A/TLX/6S7rvvPtqyZQvNmzePXnzxRYqJiaGXXnqJ2/6NN96ghx56iBYtWkQlJSX0pz/9iXw+H+37W/0OQRDo+eefpx//+Md03XXXUXl5Ob322muk1+vpo48+msZPJrO0NExUbW1wYnhVgFNT8dPZiUUuM5MNJcXG4vd6PSbvlBS+5LigAM6BWFCPFybLyMDTd1sb/ssLkci5eUqilBT8dHSAKyOD3ZGKiYFzJHKnpvKZ8vMl7pgYfrgpPR1OUlsbnsh5oYa0NDz1t7bCGeP1t8jd2Qmng8cdHQ1u0TkI1t/5+XBqQvV3ejqcJHES5m19i9xtbVKxPB53aiomIJFbvpMWFQUnY3BQ4g7W3zab1N+8NmlpcNrb2rBY8UIkaWlYGERuXn8nJ4Ojuxvc6eksd2SkxN3WFpw7Lw/c7e1TGyeCwN+yT0/HpC46p8H6W+Tu7+dzazT4PsVFMDk5OLfdDu7o6Mn72+sN3t8i9+gouGVhhOSoZEqNSaWesR7qs/RRWmwaJUbKdgAjItAv4iIYapw4HBJ3sP6OjEQbj4ct8Ci2SUqSnOoZM/hqqtRUOBx9fdJ35G9qNd5/ZAQPRMG4c3PhnLa3454I1d8iN2+cpKWx3HI5eVIS2vX0gFt8jb+pVOhL0TlISeH3pZyb1yYtTepvt5vf32lp6E/ROc3PZ1MYRO7eXvykprLcSiVeazCEHt+5uWBpbwdbsP6OikIbpzP4CQTTYOdVBeZyuSgmJobee+89ut6vOuVdd91FY2Nj9PHHH0/6HuPj45SRkUHvvvsuXX311dTV1UWzZs2i6upqWrRo0el2a9eupUWLFtGvfvUr5j2cTic5nc7T/7ZYLJSfn39uVWCCgO3B48exYN9wA7/eRF0dtqOjoyGF5A2O/n5U5bTbIaWWV7clwqL/4YdYSFasgLxTPtG4XNjSbGnBrsw117DbnoKAYnkVFaG56+vBHRkJbt4CqNWiwq/dDjm13/fD5V6+HFu6cm63GyG+lhbsOl1zDVsuQBBQdO7YMTgIN9zAbusTYTfjs8/wua+9lu/g6XTgttmwVSuryktEcA4//BCO0rJlaMfj3rkTT4bFxbgej/vQIRQUS08HN69ORmMjwkAaDT4/b+EWua1W8Mir8vpz6/XgvvRSPveuXdixKS7G9eTlAgQB4dgjRzDB3Xgjn7upCWG3iAi8Dy/HS69HtdyJCXDzSiGMj4Nbp8PfL72UXZA8HnA3NmK37Npr+dxHjoA9LQ39zXNwm5vBrVZDwsvL8RoYAPf4OMbtsmVsm4kJcPf34/u4/PLQ3DNnQi4vrzskCBgjhw6B94YbuItNi6GFdrfvJpVSRVcVX0WzUjg5XoODYBofxzzBK+EwVe5PP8U9VVQECTrv8E2ROyUlKDe1tuK9lEpI1Hm5UkNDYLJYELLipU1YrWjT14f7dsMGltvrxXdbVwfu667j5zAeO4Y5JTkZ3DynxJ/7yiv5uVJDQxgnZjNChCtX8rk/+ggOyaJF4JY7Ll4v5oDaWtz/11/P566oAHdSEtrwHnTb2sBNBG5ertTwMJjGxiBf55VCsNnQpqcH69IVV/C5P/tMKkJ7/fWhD6L+mvatOQxVr9dTbm4uHT16lC7wy4V48skn6eDBg1RZWTnpezz00EP02WefUWNjI0VFRdHRo0fpoosuIr1eT9l+T9ibNm0ihUJBb7/9NvMe//Iv/0LPPvss8/vwYahhC1vYwha2sH177Os4QOc9BHY29p//+Z/01ltv0YcffkhR8ie7r2FPP/00mc3m0z/9vJyasIUtbGELW9jC9g9j51UFlpaWRiqVioZk56UMDQ1RVrBTZP9mzz33HP3nf/4nffHFF1TudzCj+LqhoaGAHaChoaGAkJi/RUZGUqQ8FPFNWHU1tllTU7G1z9se7u7GlnxkJLbRedvxRiNUAk4n0UUX8cMIdjsUQEYjks14YRufD1ujvb0IWa1Zw5e419SAOyUlOHdPD7gjIsDN29YeHQWT0wkVES+M4HCgjcGAhENe2MbnwxZ6Tw9ChGvX8rlra/GTnAxu3vZwby/CHxER2P7nbWv7c19wAV8q7s+9YAE/bCOq9rq7Q3PX1aHPk5IQ2uFx9/WhD9Rq9DeP22QCk8OB7WpeGMHpRJuRESTB8qS0Ph++264u5LBccgmfu74eYzwpCf3N29b25163jr8dPzZG9MUXGMOrVvHDCE4n7oHhYSRL86S0Yliuqwu5CZdcwpfmNzQgOTkxEf3N4+7vB7dKhffh5Z2NjaEvbbapcZeWItzE4z5yBLlpU+X+zne40nytRUtf9X5FKoWK1haupaw4zrxqNqO/bTaEY3jhD5cL3ENDEAOsWMHnPnoUOX45Ofh+edyNjUi+T0hAf/NKCuh0CL0rFHgf3npgNqO/rVbw8CTX/txz5+Lz8biPHUNOSnY2rseT5jc1IYE5IQH9zZPm+3Nfcgk/z89iQX9brfj+eRWV3W5wDw7i+1i1is9dUYHwVSju5mZwx8Whv3ncej24iTAv8fKgxsehBpyYALdc3SVy79+PcHBxMeZLHndlJcKFWVmYv3jc02Dn1QHSaDS0dOlS2rdv3+kcIDGh+Qc/+EHQ1/33f/83/cd//Ad99tlntEwWZy8qKqKsrCzat2/faYfHYrFQZWUlbd269Zv6KJNbayukhkYjBoTJhOMj/M1kgty2sxP/bm8n+tGPAhcbrxen7Yrqiaoqop/8hM1vee89xL7FXJgnn2QniEOH8F5Op5SLsm5dYJv2dkg7Re7RUVb+OTYGubGoCmhvh3TZn9vnw4nD4sGOJ08SPfMMmyfy3ns44Vnk/qd/YieIw4fB7XBIOUty+WdHB7gNBnAbjSjl7m9mM/pbVD61tkLa6T9p+3xEf/wjJkixNsdPfsI6ph9+CHafDxPJE09gYfa3o0dxyrXILQis/LOzE9zDw+A2GHD0gr9ZLOAWk8BFbv9JROQWD3Y8cQLccsf0ww+J3n0XLAcOgHv+/MA2x46B227HNXw+9hiP7m4widzDw5AT+9v4OD6bqAxpbib6538O5BYEnDouHpAocssdvB07UObB5wP39u1wPP2togLjxGbDd+r1IpfC33p6JG4i/Pe++wLbTEyAu6UFn62pCdz++XJimQfxRO3jx8Etd/DE8hReLxaKbdvwgOJvlZXob5Hb7WaPw+jtDeQeHMRp4H5mdVnpt8d/S82GZiKBqHGkkf559T9TpNrvYU8s8yAufpWVRD/+Metw7NxJ9Oab0sHCUVFs7uGJE+C2WiXuK68MbNPfD27xoXdgAGUsAsCt6O+mJqm/f/zjwHw5sczDgQP4d0UF2sgdjl27IDv3+bDwR0ayD4MnTxK98AKuq1LBaZIfh6HVgkmvx7/1epQN8TebDXO8qO5sbASTPDrxyivSYcEVFRhLcodD5PZ6pfMY5Q+Dp06Be2IC3E4ne6yETof+HhiQ/i1fW+32QO6GBnDLH3RffVU6LFjklidei2U1PB48SGg0bC5cdTXKr4jcDgfyrs6DnfcQ2LZt2+iPf/wjvfrqq9Tc3Exbt24lq9VKW7ZsISKiO++8k55++unT7f/rv/6LfvKTn9BLL71EhYWFNDg4SIODgzQxMUFEqIz62GOP0b//+7/Tjh07qL6+nu68807KyckJSLSedtNq4TyUl2NAt7SwbQYHcWOVluJJu7ublcFPTOD3ublop9dLg9vfWlpwnfJyXJcX1uvtxeArL8fNw5Mb9/dLu0jx8XzJ+eAgGObOlbgtFpa7qws3emkp2vO4RRVVKO7+fty05eWYZHnyV61W4k5IwCTK49br4WAVFGAxlMv3rVY4JTk5cAz0emkS9LeWFuzULFwIh1CrZdv09UncHk9wblECnZjI7++hIUxkc+diJ6m3l+W228GdnQ3ugQE+d1sbJrrycnDz+lurxeReXo4JmSd/7e/HLtLChdgB4vW3yD1nDpIf+/pY+b7dDuc1Kys0d0uLtAibzcHHidUKbkHgc2u1cCLKy/EQweMeHgZ3cXFwbqdT4l6wANx+pTlOW1sbFrOpchNJD0TBuFNSwC1L5xy2DpPWoqXilGIqSi6ifnM/mRwybpcLTJmZ2HEV7wket0aD61kswbknJiTujo7JuZubWRm8wYB2s2cjuVecg/zN4wFTRobEHay/xbIaU+FWKoP398AAvre0NPS3XAYvcs+ahd3tYNytrXDoxdITPO6ODjgHYqmPYPelyK1S8UtY6HTom7IycDc3szJ4kXvmTIlbXnbA68Vr09Kk/ubNcR0dUnkKq5Xfpr8fn6m8HI4yj3ua7Lw7QLfeeis999xz9Mwzz9CiRYuopqaG9uzZQ5l/22Lu6+ujAb+F8oUXXiCXy0U333wzZWdnn/557rnnTrd58skn6ZFHHqH777+fli9fThMTE7Rnz56zyhM6a8vPxw1fW4uBwds+zM6GY9PcjIE7cya7XRkXh9/rdGiXk8PfZi0txXVqa7FbwVNlFRZi8autxaTMUxIVFGDQ19XhZuNxZ2WBu6UFA76oiC0UKHLr9eDOzeVzl5RgsQ3FXVAAZ6O2FpMyL5SWny9xWyzsroacu78f3HK5bWwsJjS9Hk9IOTn87eHSUok7OZmv3psxQ+JWq/mhSzm3fBeJCItVXh4m0v5+fG9yZV50NBaQgYHQ3CUlcIJFbl5/5+ejH0RuXggwPx+LUW0tFnZef4vcbW1w2goL2Z1LkXtwcPL+djpxvaQkfn/n52Pc1dZiUg7GnZmJNiYTnzsjA9zt7eCeMYPljoyEYzc4iFBgTg5fljx3biB3sPEdFycVjOSFLkXumho8KMyfz4QaMmIzKD8hnzqMHdRt6qaCxAJKiZbtuGo0YBoaArc4B8ltzhw8bNTW4h4J1d91dfg3LwSYl4f7rrY2KDelp+O9xJpBBQXsjqtaDe7hYam/eYdCz50r1chJTAze3/Hx4BaE4P2dnY33MRpxX8rVZP7cXV3BuUtK8LBQV4f35HEXF8PpqK3FXBrsvhTHt1h8U255ebhGXR2cmnnz2PB1WhreS6xJJM5B/qZS4bUGQ2juOXPgGNbVgY03TgoK8JnEmkHnsUBx+DBUjn1jh6HW1ko5QOvXs1ujRJhgjxzBxLR+PV9KPDqKLVSXC7k0PMfF4UAboxEeOy//ScxJ6enBpL56NXtTE4G5thYs69fzc4D8udet4+cumUzY9nc4EBvmOQAOB9qIuTTBcpeOHMEOSkEBuIPlpNTUhObu68N7ibk0objtdvQ3j1vM7TAYMKkHy106elTKAZqMW8xd4nH394NbpUJ/83KuxsbAbbOhv3mOotOJNmIOEI9bzEkRJ8dguWINDVJRvfXr+blLWi3GnJhLw8tdMpvRl2IuDc9xEXM7RkYwMfOOLxBzUjo7MVkHy7lqbAS3mEvD49bpEN5SKsHNy10ym9GXVityTXgLqcuFNmIOEC/nSsxJEXOA1qzh59I0NUk5QOvXc3OXdBYdHeo7REqFki4pvIQyYjncFgv6Usyl4S1ILhfCTWIOULCcq4oKKQdo7Vo+d3OzlAO0fj0/B0ivR38rFHgfXs6VyD0xAW6eAyDmpIg5QMFyrkTu7OzgOVctLVIOUDDugQGE7onAzctdGh8H9/h4aO4DB6QcoGA5V5WVUu7S2rX8XJrWVoQn4+PBzcsB8udes4b/cDoxgRDY+Dj6kZdz5XYjnCrmAAXLuTp+HA9CWVno73OYA/StkcH/vdo3ehp82MIWtrCFLWxh+0bs/4wMPmxhC1vYwha2sIXtTOy8qsD+T5kgYNuzogLbfjfeyK9MXFODispRUaiQyYv99vWh2qbDgYqsvPDW2BjR++9jC3XVKn5FZZcLaprmZmxrB6tMvH8/tuQzM3GgKI+7thbVPaOikNHPq6jc1ydVVL78cn54y597xQp+ZWKXC2qapiZsw153HZ/7wAGEQDIzg1cmrqtDNdXISLwPL5zY34/+ttmgfuKFicxmqNf0emwPX3ZZ8ArWjY3Y1r7uOn5l4oMHEXLKyAA3LyxXXy9Vgr72Wn5YTquFystmQz/ypPkWC7h1OoQ1LruMDYP6cxcXY1zyuL/6CuGtUNwNDeBWq8HNC8vpdFJF5Usv5VdU9udeupRfmVisvN3QgHAUrzKxWHn70CGE4268kR9ObGyEwkWlAjcvLKfXSxWVv/MdfkXl8XFwa7UYR7zKxB4PuOvrcZ0bbuBzHz4sVYK+8UZuOLFppIk+bf+UVAoVXTP3GpqdwoblBsYH6MOWD8nitND6ovW0IpdTUdmfe/FiVPgNVsG6rg7cvMrEYjj10CHMIzfdxA+DNjdLFZWvvpoflhsYQH+bzQgD8yoTT0yAu78f8ySvMrE/d1ER+pIXBj1yRKoEfeON/DBoSwveiwiKLF54S6y8PTaG8I/8QGQihCM/+ADpCYsXQwXIq6j86adYMwoLwcQr4XD0KOaUpCS04YUTW1sx5ojQ37zw1tAQmMbGEG6TH4gs5160CCpAHvfu3Qg7h+KeBgs7QNNldXWQP4qHynk8jGyVhochFR8ext+Hh4l++tPA+KjbjTYNDdKpxD/9KTuo334bgywmBpNJairrKH35JSS5kZFwYGJjWdlqfT3kph4PuN1uVrY6MgKmoSF8vsFBomefDeT2eCTuiAjkwfzLv7Ax8nffxQQicqelsY7SgQPg1mhw88fGoly+vzU2gtvtBrfTSfTww4FtDAbIpAcHkZ8jcvvLm71eyMnr6iTun/6UjZG/+y4mkJgYOGZpaayjdOAATlQWuWNiWNlqUxO4XS7kHDkcRI88EtjGaAT3wAC4BwbA7e8Eity1teDu6kLZAXmC6/vvwymNiUGfpaayDsdXXwVyR0ezstXmZsipRW6bDSfU+9voKLj1+kBuf2fK54MMvrpa4s7KYhMuP/gA3NHR6LPUVNbhOHQI3BEReL/oaCzK/tbaCm6HAz82G9FjjwW2MZnArdNhAdfrif71XwOdEn9utVrilieBfvghnLvoaPR3Sgp7FMKhQ5Cci9yRkXAU/K2tDdziGJmYQCkAPxtzjNGLJ18knUVHPsFH+nE9PbvuWYqJkBZ3QRDoz9V/ppP6k6RRaahztJOy4rKoIFH24PXRR/iJicE9nJLCOhxHjoBbrQa3RkN0882BbTo6wG2zSdxPPBHYxmxGf/f3o791OowT/0VSlO+fOIHrdHaiv+UPMB9/jD4XuZOT2YX76NFA7shIoltuYbn//Gcs8E4nHPAnnwxsY7GAW1TT6vXg9s8VEuX7lZW4jsgtf4DZsQNjXLwvk5NR883fjh2DVF6lQi6YRkN0662Bbbq6wD0xAW6zGaVV/B/Oxsclbv/+9s8VErkrKsDd0YE1R/4gsHMny33xxYFtKioglRe51Wqi226j82HhENh0mcGAQVhcjIHFkzUajVgkZs1CEuHQECYKf7PZ8PucHLQbHWVPpibC+8fH43pWKyvHJILj4vVKioORET6T1YonmYQE/knoIoPIPTyMzyrnHh6WuE0mPpM/t83GyjFFbrcbbQSBPbmYKLC/ExP5/T06Co5Zs6SDFeXcdjv6OzsbuwjBuLVaTHShuA2GQNWDrAAoEeG9x8fRJikpdH/PnClxy8slOBxw6LKy8F6h+js2Fm3sdn4bg0Hq76ly8/rbZAJ3UREcGh630wnHKDMTYy4Yt06HSTZUfxuN4J49GzsJvLILBgMWrjlzMFnzSkHIucXP6m8uF94/IyM0t1YL5ydUfxuNeL/Zs7FIBOtvsxnXSknBOJGlc445xshkN1FhUiEVJBaQwWYgizOwPIXb5yb9uJ4yYjNoTuocMjlM7InxROjvqCgwORzBx7fTKXEH6++xsZDcNDYmHTgqHsApL6vh8YApPT10f+v1WLBF7sn6W63mlwHw7+/UVIxvuQzebEY78TR4g4EtT+H1SgcBz5mDccXrS51O4nY6J+9vjYbPbTCgb+bMwUOZVhucu6AAfS5+Vn/z+fDatLTJ+1ujCc1tNErckZH8MgDTZGEHaLpszhxMnnV1mJR52/oFBZgY29ulWhnyJK6EBNSiGB5Gu+JivtRw+XJcp64O1+VtxZaWYtKvq8OixZNcFxdL3C4X/8BB8f3b2zFZl5ezcvL4eHCLp2UXF/PDe8uXY3Krq4OzFIw7JQVtEhJCc9fX42YLxl1cjKeZgQGozuRy8thY7JyJp07Pns0P7y1bhsktFHdJicQdH88W7iPC+4vcdjv/oESxvzs7JW55eC8mBjtnRqPEzQvvLVuGBWgy7tRUSdpaVsbnLigIzZ2Tg631ri5MlDzuqCjsnI2OYmcnGPeSJRJ3djZ/y37uXHDX16M/5AUHRe4ZM9DGauWHUcR+6erCZD1vHhveEwvVGY3gnjWLzy2qvurq4JzyuEtKpFIIYo0mHndhocTNqbibHZdNc9PmUvdYN2ktWpqXPo/SYgLDexqVhpZmLyWT3USNw400K3kWFSVxwqlLl8KJrKuDcxqMOz0dbXiFEkXuoiJwT0zwVUJZWXivnh4suqWlbJgsIgJzxdgYdhpmzeKHgZcsgTNWVwfnNNg4EbkjI/kpBeL32dAA53flSjYEmJkJ7t5eOEilpWyYTK2WuBsapJpBPG61WuLmVYv27++ICD63WNunoQFOzYoVbEgqIwOs4mnwpaVsREGlwmvNZryX+L5yW7QILHV1YAvW3xkZaKNW81MKpsnCKjCOfWMqsN5eTI7JybgJeJJcoxES0YgITMY8CbTdjm1EtxsTEy/XQgy1mUyYsHmLtiBg8ujrgxO1YAE7GRHh742NcA54NxARFqyTJ8G9ciU/hm63Y+vX5cKg5+Va+HzgHh3FjchbRIjA09sLZ6Cs7Oy51Wr0N4/b4UB/O53o78m4S0r4kzERvv/eXuzcBOPu78ckk5gIbp4k12QCt0qF/ubF0B0O9LfDgf7m5Vr4fHgfoxETE29SE7l7esBdXs7n1mqxsJ0tt9OJ/nY44MTxci2myt3cjLBlTg4W5GDcDQ1wSleu5HOPjeH7VSrRhieBdjrR33Z7aO5Tp/BkPGcOP5eICE5rdzecu2DcOh36OwS32WGm47rjpFQoaWXeSorTsNwur4sqtBVkd9tpUdYiyozj5Ij4fAhXjIzgoYEn8SfCw40Y/lu0iM+t10vO9MqVfAm02Yz+VigwlnjSbZcL48Rmw7V4knNBQH+PjIA5WM0ZkTszE98dj3tgACHlUNwWCyTeRGgTjLuyEo5rKO6qKjzohuJua8OD0FS4Y2Mxx03GvWIF++BNhPWmogLcCxfypfKCgDDi0BDGNu+BiggPyx0duEd4JSzOwsIy+LO0sAw+bGELW9jCFrZvn4Vl8H/P5vOxMe8zaSMIbCz3TNqI15tKmzD32bcRrzeVNtPF/XWYptImzH3umKbSZhImQRBosudcQRDIJ0x+vam0OWf9LQjfyv4Oc38NpvNsYRXYdJnHg8MyDx/G1uGWLfwS//v3QwEQHU10++38PJGGBqgW7HZIcuUHmBJhm/nll7H9efHFUGPIt8gnJnDAnSiDv+sudsvW65W4s7JwoCivVP6BA+COjAQ3L0+ksRGqBbsdUkv5QaBE4H3lFWzvX3gh0aZNfO7XXkNYpqQEh7PKPX2vFwonUZZ999380u0HD0IpEhkJJQIv36KpCdxWq8Qt37IdHAS3Vot8jFtvZbmtVqLXX8f3N2cOmHjcH3wAJVBGBr4TXo7XoUNQt2g04OblWzQ3Q21htUIlxyspMDSEcaLVYnv81lvZLXKbDdz19diKv/tuNsfL5wP3V18hRHj33fwcr8OHwR0RQbR5Mz9vobUV15uYgPz38sv53K+8gnDhypV4Lx73X/6CcEtxMfpSnuPl80HddOAAuO+6ix8uPnIE3CoV+oiXt9DWhnE5Pg7uDRtY7uFh9Hd/P8Lgt90WqDokwv3x+uvgnj0bfcnj/vhjzBepqeDmhIuP9h+lD5o/IJVSRZvmbaKlOWwphHZjO71e9zqZnWbaMHMDbSzeSAoZ94h1hF6peYV6zb20LGcZ3V52O2lUHO6//AXhllmzwC0vmeHzYZ748ktw33knP1xcUYF5R6nEHMDLmezoQH+bzRgjV17J9rfBgHHS04P3uO02tmSGwwHumhqEUu++m81NEwSUgvjiC3ymu+/mc1dWQhGqVEJJxiuF0NmJeddsRtmJq64Kzb10KeZUHvebbyJUVlQEJnk6hCBAmfX55+C+6y5+uPj4cfQ3EdYKXs5kVxe4TSZwX301y200gru7G/fI7bezJTOcTnCfOoUxu2ULP41jGiy8AzRdVlWFidZuR2z7nXfYNlotbsSREUymL7+MweJvTid+39aGdn/5C//AuXfewXXsdkzcVVVsm337cEM7HPh/8aRfObdYS+bECcjr5abTgWNoCJPSyy/jPf3N5QrkfvNNvsLp3XelPIqPP0aeh9z278cN7XCA//PP2TY1NeCemMB78Lj1epbbbg9s43bjhm5pwc0diruiQuI+cYLPvXevdEzJ3r1sm9paOBITE5gg/vpXts3gIBbIwUFMSqKs2N88HnC3tkrcPT3se73/vsS9Y4eUB+BvBw6gxpN4TMlnn/G5338f3FVVfO6hISxYAwPgfvllOGf+5vXi983NyKf661/5h8Z+8AFkwA4HFqbKSrbNwYOoOSRy79nDtqmvx8Q/MYHchTfeYNuMjIBbrwfLK6+wakF/bpMJZRp4h69+9JHEvXNncG6xvw8cQDkLuTU0gHt8HGOdw22wGei12tdIZ9FRt6mbXql5hcadgeo1n+Cjl2tepobhBhqzj9HbjW9Tx2gHi93yER3pO0IOj4N2te2iY/3HWKZDh6T+PnhQqofjb01Ngdyvv862ERdRnQ75cq+8wqrAfD78vrER+Vlvv80/VPOjj+B0OxzgORaEe/dutPnqq+Dc77wD7vp6jAf5bsnoqPQQJHLL1VSCgN+LScnvvIN7VG6ffBLIfeQI2+bIEdQBcjjwGT75hG3T0oJrWCzgfvVVlttkwu/7+vAjOjly7ldfxXtYLHhP3oHen3wCFocDbMG4d+1Cm8OHMe+cJws7QNNlExNwArKzkWjLk65PTGAhysqCRzw+zneAJibw96wsLHzyyZgI7x8Tg+u53fw24+MY2Dk5+K98kiHCAiVyx8ayN4bYxmaTuMWaE3Lu8XE8WWVno7188RO5o6PB5Hbz2/hzKxSsJJlI6u+cHCQt8iSb/txpaXgNz3GzWPC5RG5eX5pMErfHw28zMYGJW+QO1d8id7Bx4t/fVmtw7uTkyfs7Kip0f38d7uxs7CKG6u/MTPS31cp3OM1midtu5zONjeGJWBzfvDZWKxyTnBw8kfO4xbEqcofq74wMJJLzuD0eiTsnJ/Q4EbmDjROrFX8TucfG+G0cDrRJSEB/yxY2q8tKNreNMuMyKSM2g6xuK9k9gdxen5fMDjMlRyVTTnwO2dw2srrZvjQ5TKRRaygnPoc8Pg+3DU1MSP2tUgXvb7td4jaZ2AVZ7F///pY7+D4f+iUxMXR/m83YGRTHd7D+FrnV6tD9nZ0N7tFRlttmk8ZJRob0b3/zeiXuUPelyQQWcT4Jdl/6c0/W34mJeF956ElkELmD9bfJNHl/WywSt9cb/L4Ux3dEBL+/p8nCDtB0WVkZwh5NTdKBoXIrKkImf28vBtLq1WxIKj4eIS2LBe0WL+Zvxa5fj+s0NWH7nxeSWrYM4ayGBgxG3nbtggVQ2TQ1YbDyuAsLwdHXhwnnwgv5p8GvXg1nRawSyuNetw4Lslh1eDLurKzg3GJ/q1T8cNuMGRL32Bi4eTL4NWtws3d1gZun3Fm3TipuN2sWP5S2dCnCcA0NcAJ428zz50v9rVQG516yBGEUkwnc8lBDTAyqtVqtobkvuUQqWjZ7Np97yRKE4URunsR9/nyEI1tawH3ppWyb/Hz0gVaLBeSCC9it76go9KXdjlBBeTmfe+1afDeh+nvxYoThGhqwkPIk7vPnQ20oPs3y+lvk1ungaKxcySoBIyMl7o4OhCR5yp01a3AvNDYiFMELXS5ejO9Y5OZVCp43Dz8tLViIOeHN3IRcWpazjPTjehqxjtDK3JWMDD5CFUHritaRw+Og9tF2Wpi1kIpTWO41M9ZQvCaeGoYbqCi5iBZmcriXLJH6OzWVz11aij5vacGiygvL5uTgHh8YwO7bypV8Ofn69XC629rw/fMUR6tXY9EWpdu8kOvixZLEnVdwkAhje/587NZ4veCWy+CzszEXDQ4i1LliBSsnF7ndbnCXlfGl4qtXg6WhAWzBuMVxwivwKHIvWAButxvccjWsOIcODuJn+XJWmaZS4bVuN96rrIwvzRfnooYGsPG4Fy2S+jsxkS2UOI0WVoFx7BtTgY2OYnJMSsLkyJP+2e2YHDUa3HA86bbXizYuF9rwpPKCgC3hsTEsbLxjIIgwqWu1cCh4OTJEWGTb2yfnbmrCDb5gweTc8+bxJeeCgD4ymUJz6/VwAKbCnZiIyXEy7vnz+RJorxdtnM7Q3J2dUkHIYDFtkTsnh5/bQ4TvrK0tNLfDgb4Mxe3zoY3TiYUnWLn5jg4s7LNnB+ceGICjOBXuhARM6qG4VSqMk1DcDgf6Oxh3ZydyJWbN4pcm8OfOzubnJBHBaW9tDc3tdIJJqUR/86TEPh/Gid1+9tyDg3jAycri5yT5c8fHYzHicDs9TmocaSSlQknz0+dThIrl9gk+ahppIrvbTqXppVypPBFRl6mLRqwjNDN5JqXHckoqTJXbYoEDFIL7dH8rFBgnwfq7uRm7EaWl/NIERAhbDg/jgYtXmoAI4dmeHjgswUpviNxxcbgej9vlwsKuUGCcyPO7iDBXNDWBu6SEL5U/l9zj4+COjQ3N3diI/w/F3dyMh6pQ3D094Cos5B+7QYTP1d2NzxWsZMgZWlgGf5YWlsGHLWxhC1vYwvbts7AM/u/VfD48+cnzNfxNELBzwYuv+tvEBD9+7m9iyfpQckO3WzrqIBS30Tg599jY9HF7POeWm5dHdL655XkmcpsKt9U6ObdYsv5suQXh3HLz8iz8bbq5zeZzy+31Ts7tcp01t9lhZo7AYLBdVhq1j4aUyzs9TjLYDOT1Bef2+DxksBnI5Z0CtzzPhAE38/Na/M1mOzf97fVOvb+ni9vlOnfco6OTc1ssf1/c02BhGfx0mcMhHZaYkkJ0331szFoQoJD4/HOEBu64gx+PFg8ddLshR7z5ZnZbs60Nh2GOjiLmet99rBzRYCD6f/8PW9YzZuCQU3m1YIcDh+lVVYH73nvZmLUgQAG0d690sN3q1Sy3eOig04l48i23sHH09nYcmipy33svG+IzGoleeAFbqPn5RA89xG4RO53o76oqhO7uu4+NWQsC1ESffQbuzZuRoyE38fA+pxM5Ips2sdwdHehvgwH5CPffz+d+8UXk5OTno7/lW8QuF/r75Elw33svtq3l3B99BOWKWg1Z9tq1LHdlJbgdDuSnbN7Mcnd14SBEgwFx/fvvZ0N8o6Po764uhBu3bmVzBFwu6XDKpCSi73+fPaJEEKCQ271bkjfzcsqOH4c6yOFAjtJtt7Hc3d3gHhlBiOSBB1hukwncnZ3gfvBBtnqtqE48cQJb+vfeixCAnHvHDul08ltuQR6H3E6cgDrI4cD3cfvtfG7xwOP588EtD5WNjYG7owMhx61b2ZIZbje4jx8H9z33MPlygiDQrrZd9EnbJ6RUKOmm0pvo0llsbtZJ/Ul6rfY1srvttHrGarqj7A5SKQND2L1jvfTiyRdp2DpM89Ln0QPLHmBCZWaHmV44+QK1G9spOz6bti7bSrkJspIZbjfURBUV4N6yhc3fEgT09Y4dmNduugnznNyqqqCostmQR/K977Gh974+3HNDQ7iPHnyQDZWZzWjT1obx8eCDbFjd4wH3sWP4vu65h83fEgSMbVHVdMMNKIUgt+pqcFutmN/vvDM0d0kJmOQhJ/Hw1ZYW3I8PPsiGpz0ejMmjR8G9ZQs/L2fPHswpRDgw+Ior2DY1NZJy88ILwS0PYff3g3twEOvb1q1sPuj4ONq0tGD+27o1eFj9G7bwDtB02alTkIZGR2Mh+eADtk1PD6SxosLhrbfYpzu7Hb8Xs/l37gwuE+7qwvUOHgwuJ6+qwo1RVQVpttyqqiDFDcXd2ytxm82QpMqfNhwOcIsqm127+NwffogFKxS3+PvYWNyUPPl+dTW4o6LQr2KNC3/r64Ns0+sF91tvsTtYTiek2EYjJuNdu8Ant48/hvMWHQ0ZKE9O/tVXWCQn496/H9y9vXxurRaTrNeLSfDtt/mHc775JhwbhQITcwcrbw7gPnx4cu7aWpQekFtNDcaPyM0r86DTgVtU44jyXH9zu9HfIyNwHnbvxsIktx07kP8SE4MHAp6cXPweYmLAzSuXUFcH7shITN487oEBllsub/Z4WO5g8uaWFom7ooLPXVmJNnV1/LIDdXUYPxoNuN9+m3kqH5wYpA9bPiSX10VWt5Xea36PTPZAFafX56W3Gt6iIesQqZQq+qzjM2o1stw723ZSi6GFYiJi6Gj/UarQstyH+w5TpbaSYiJiqGG4gT7r5HA3NOB70Ggwjt96i91NGB7GPOByYR557z1WnefzYXwPDmIR3rsX+SkM+E78PiYGTsDRo2wb8XsQT4wPVnZA5Nbr+dwjI+B2ODBPv/8+q4b0+TBOBgaQ17R3L/KB5Pbpp/h9TAycLh730aP4myhi4HE3NuIaERG4ZjDu998Hs8gtPxhbEPBaf24xZ8jfdu/G72NiMIZ5Mnh/7qYmfNbzZGEHaLrM48Hgj4qCt8/b+vN4sKhFRWFCFv/tbz4ffq/RoJ3Xy99qdLtxnagoDF5eG68XfxPbeDyh2wTjFhmiosA1VW7e9eTcwdqITOL15Sb2d3Q0JkheCMSfOzIS/y8Pp/h8eO1k/e1yYeGLjsZrJutv8XPw2ojcKhVbTkD8bF4vmCfr74iI0P19rrmjoqbW3xoNvy+nOr5F7qgo6TW8fiKSduJ4TP73nFodvL89HvS3OE7k1xMEvH9EBK53tvelyK1UBr8vxXESEcH9bF7BS17BS5HqSIpURZLH5yGvEHg9gQRyeV2kUWooSh1FHp+HPD72ei6vi5QKJUWpo8gn+LhtPD4PCSRQdEQ0KUhBbu8k/R2EO2B8i/0t7yexvzWa0P3t8eABYCrzYHQ02gbrb3/uUPPgVMfJZPOgOL6DzYP+a0qoceL1SuPE5WIdIB43r79drsnHt8fz9eYTpfK8hsHCDtB02eLFkIkODED5cfXVbJuZMxGCsVhwI151FbtdGxuL3yuVeApdvZqfRX/VVbjOwACuu3gx2+aiixDO0mqxXckLWy1aNDl3YSHLLd+ujYnBa1Uq7G6tXs2XN195JcJZAwNSn/G4S0rAPXs2X0a5aJEkpU1O5nPPmIEQi7h7snEju10bHU10zTVYHE0mcPMOgrzySmzn6vW49lK24i5dcAG4dTq8By9sVV4eyH3ttWybggJwT0xgItm4kZXvR0XhtRER4L7oIr4se+NGbJ9Pxl1aiv6eOTM4tyilTUric+fnS9w+H8IDcu7ISLxWo8FT/0UX8eXNV1yBcIVej1AEr1KwnPuSS/jcK1eCOzGR6Lrr2DZ5eQjV2WyYvDdsYNWJEREIHURGYtft4ov53Bs2SNzidy23VasQPtTpcG/zwoQLFkBmPTSEMXvddUwYPCc+h9YVriO7204en4c2zNpAqdGBKj+1Uk3Xl1xPkepIMtgMdHHBxVSSxsqbL591OeUk5JB+XE/lmeW0PIctPbEqbxXNS59HWouWZiTNoPVFnDDhggX4fMPDmNuuv54vg1+/HrsRbjeqPMvVcioVXhsdjd2KCy/ky7Ivuwzfn16PECGvZMbKlQhH6nSYE3ilEObPD+S+4Qb+Kfbf+Q52gFwuXFsemhe5Y2IkbnmoWOTOzwf3ggX80hMrV+Iz6fVoy+OeNw/XGB7G2nH99fxT7C+9FMwuF/5fHppXKvHa2Fi8VzDu73wH85NOF5x7xQr8TeTmhTenycIqMI59YyowhwOTcVJScPmr14vQTEQEJN48yaIgYIC53RhsPMk5ESbisTFMAPL8H9EsFkyimZn8E4CJ8FTc348Fgnei+Nfh1utxk50t9/g4Fq1zxa1W43qhuJ1OcPOk2/7cubn80gQi99AQeOTHSci5ExKCy1+9XrRRqc6e22iEkzQZ9+AgeM6G2+dDf4fiJgK3w3H23BMTcCZDcbtc4I6Pn5xbqcSkfTbco6P4ycnhl1QQuQcHMU/InUQ5d1xcULmxT/BRn7mPlAol5SfkM0dciDYwPkB2j50KEgtIreRzj9pHadQ+SjnxORQTweeecE3Q4MQgpcWkUVLUmXOTz4c2CkXo/h4YgGNaUMCXyhNNrb+tVrxXaipbU0s0txtjIDaWf4K7PzcRmIJxDw7imqG4TSaMcbEI7XRx5+ezTtK55rbZcK+E4j5DC8vgz9LCMviwhS1sYQtb2L59FpbB/72a3Y6EzuHh4G28XiTZ9vUFlxoKAv7e2cmP+4o2PIzrhZLJisXU5Emd/uZw4H2Ghs6eu78fybhny22xgDtUGfWvw93be/bc4hlu08Xd1XVuuUPJZKfC7XTifQYHz55bqwV3KPm6wTA59/g4uHlHuHwdbp8P3D09f1/c7e3YAQiGLfioy9RFPWM9ISXuOouOOkY7+Hk7IrbNQG3GNrK6OMcbiNjOcWo1tNKofTRoG3K5JuUmnw8iiVD9TYSd8Pb20P1tNKK/eccyiDYxgf7mHYVyJtzd3aHLM+j1eK9Q+S9GI5hClRb5Otx6/fRwj45Ozm21SucUnkcLy+CnyywWol//GlnvCQmQZcvzLTweSKAPH8b2+Y03Iv9Ebjt3Qo3l8SBH4t572e32U6cgAzebEav94Q/ZUFFfH9FvfoNJJCeH6JFH2Oqt4+PgbmzE67//fTaO7vXiWiL3ddchXiy3XbvA7XKB+777WO6qKrzX2Bhi+o8+yoYu+vvBrdVim/WRR9gqqHLue+5hj57weiHd/uorcFx7LWL7ctu9G0oUlwt5Jfffz27/1tRA3ixy//CHbOhCqwWTVout6EceYfO3Jibw2errJXmzPI4uHrx58CBCSddei7Eitz17wO10In/hgQdY7tpacJtMyFl59FF2S1qnA3d/P7h/8AP2RGmrFdx1deC++272KASfD1LiAwewxX711ZA4y8MEe/dCaeV04rM/8ABbmbauDhJgkfuHP2TzcvR6cPf1IdTy8MNs/pbVSvTb3+L9YmPBLT9SQOTevx/cV13FLz3x+edQYzmduEe2bmW56+vBPTqKnKxHH2W5BwbA3duLkNzDD7P5WzYbuGtrwX3XXUzJDJ/go9dqX6Mvu78kpUJJG2dvpE3zNzFhsC+6vqC3Gt4ih8dBy3KW0dZlWylSHRnQpmG4gX5/8vdktBtpVvIsemzVY5QaE5hPNDgxSL+q+BX1mnspIzaDHlr+EM1JleVB2e3grqlBOOrOO9ncQ58PZRD27UMfX3EFSjjI+/vLL6EEs9ul/pafmN7UhJICRiNyDh99lE0/GBoi+tWv4Gylp6OshrzUh91O9LvfQaUZEwPJvbxkhiCg7ISo7tywASUc5Nz79+PwWrsdOWBbt7Kh/uZmlCgxGnGvPfooG8YfHgZ3dzc+00MPsXlQDge4q6rA/d3vsjl8ggBlmng48+WXo4SDnPvgQXw+mw25mQ8/zHK3tIDbYMDc9uijbFh5ZATcXV0IgT30EFvqY5osvAM0XVZdjZ/cXEx+vBOHu7shgRUXzl27WC/aapVkg0lJaM87dXrXLtw8ubm4Lu80+CNH8GSUnw+v/tAhPndV1dS4ExNx0+zZw8qyrVa81ufDhH/4MF9O/umnuEFyczG587iPHsXTQ34+nrZ53OJrc3OxSO7cybbp6YHz488t3wmz2yWJf0oK+ownJ9+9W+KuqeFzHzsm9XdXF67N4z55Eg6p2cw/4bmvD69NSIADtGcPuzMjnjbu8WCSOXKEf1r2nj1YAPLy4AScOsW2qaiQ+rurCw7MZNy8E577+vDauDhJuizf4XA6Jcl5Whq+67PhbmkBd3c3JnC51ddD4p+djTHL49ZqJW5RAix/4na58F253Viojh3jy+D37oWDI3KfOMHnbm4Gd28vFkwe9/HjcEhFbtlOic6iowM9Byg2IpYilBH0edfnZLQHPnF7fB7a0bqDnB4npcek07H+Y1wZ/Oedn5N+XE95CXnUMNxAJ/Qsd6W2kpoNzZSfkE+9Y720v5vD3dAAeXRWFuYEDjcNDKC/Y2Lg0HzxBSvL9nhQwsHphHN79ChfBr93Lxxh8Qw+XpmHyko4Snl5cPJ55UAaGyVumw3X5nHv3498tMhIOELy3X6vF691OMB97Bif+4sv8OCRl4dr87iPH5e4tVp+WY2mJownkfujj9gdnsFBvDYqCj/79rG7oT4fXisewlxRwZfB79sHlrw8XDsYd2Mj2uh0/LIa02RhB2i6TK3G06PNJklqeW1UKiy6TicmW3misFIpyXXtdvw/L9lSlNHbbNJreNcjkrbieUlt/tyiVJLXRq0Gj8PB51ap8HunE+8VitvrRRuFgt8mIgJ/C9VG7MvJ+lutRhunk8+kVOJ6Ym2PYNyirPtc9LfI7XZPPk4cDunfPO7J+vtMuHnnBE11fPuPE5WK39+RkRI3rw3R1MaJWo2/iaGPs+lvkTvYGPg6/e3zTd7fIrcgBOcWx64oB5c3UapJrVST3WMnh8dx+t/+piAFaVQacnqdZHPbuG2IiDQqDfkEH9ncNlIqlNw2aqWaFKQgq9tKPvJxzx0L6G+XK/hYUqkwRsTxzetvjebrje/JxonNhu8mFJPIPZXxzWNSKPD+Yo2jqYyTqXKHGidWq8Qt39kR24Tqb4UCr3W58F7BuCMivj43r7+nycIO0HTZ0qWQ4Tqd2IbnhSwKCxHOUKmw23Dbbay6JToav09JwSRwzTV8GfxNN2Hb3OnEdXly2/XrsXVss+HvPBnl0qVo53RiK/amm9g2M2aAW60G1+bNrNoiKgrbqmlpUvhDHkYhQr/4c/Nkq2vXStxLlvBPHl+yJJD75pvZNgUFklQ8KQn9KlctREaCOz0dN+3VV/Nl8DfcIHGLfDzuFSswQQbjXrwY34PLhe/1llvYNnl5CDNGRGD36rbb2LIDGs3UuK+/HtvmDgdCETzZ6po14LbZIJXnyVYXL5aktDNmoDq13HJzcT2NBrtXmzezYdmICHCL6qArr+TL96+7TuJesyY498qV6O9Fi7C1L7eFCyfnzs7G9xsZCd5bb2XDsmLl9qwsqTQB75Tva6/Fdr/Y37wT6teswe8dDvDxqvKWl+N78Hgwjjkhoqy4LLqh5AaKUkdRfGQ8bZq/iVFmqZQqur3sdsqOyyaf4KONxRu5Mvhr5l5Dpeml5PA46OKCi+mCvAuYNhcXXEyr8laR3W2n8oxyumI2h7usDKEhjwc7XLwQUUYG5pmoKNyPt9zChgmVSoyT7Gw4OBs38sMo11wDCbvDgRAh78T0iy/G7x0O8PH6e8ECiTsvLzR3dDS4b76ZPVxYzr1hA19OftVVuKbDATYet/h5RO4rr2TbzJuHa3i94OaFttLTwR0Tg5+bbmLDbQoFXpuXJ3EvWMDnLiuTuHknGYi/dzjwHlddxbaZJgurwDj2janAxArPsbH8JwjRzGZMqMEkhETwwj2e4NJeIizGVisW92CyRo8H10tMDC7bFc8nO5fcCQnBJaJ/j9zik58YLjsbbosFn38y7piY4GUARG6VKvgp2FPldrkQag3F7fVi7CYkBJe/TpXbYsF1/p64x8awcP09cZvNcGzPktvitJBSoQx6yjsRkc1tI5fXRYmRiUGl8i6viyZcE5QUlURKBZ/b6/OS2WmmeE08fwfoa3CfrisW7NRxImm3JSlp+vo7Kip42QUiKfx/rrgTE4OXDPl75Ha78V5T4Y6LO+c7QGEZ/FlaWAYftrCFLWxhC9u3z77O+h3kETRs34gZjUjoTE6GcoXnQdtsSBCLiMD2IG+XwONBQp/bje1dXnEvQUDCrcmEEIJ8K1Y0rRaJf3l5wQ+kGx3FeyUlYVv/TLm9XnA7nWhzLrhzcxECOFNuux1MajW2bifjnj+fv1MkCPhuR0cRagpW6FKnQzJwKG6TCQm0iYkI8wTjbmzEE9bZcnd0YGxOhTsnh1UKfh1uhwNMKhXGAO+p1evFZ3M4sIUfbMelvV1S9wQrdKnXI5E4FPfYGJKlExIQRgnFrVSiv3ncPh/aTMbd0QGVzMyZwQsvitzZ2azC0Z+7tRXXmTePy+3wOKhhuIGUCiWVZZRxd2V8go8ahxvJ7rFTaVopxUfydwA6RjvIYDPQzOSZlBHL5x4YH6CesR7KisuiomROaJ5waGqLoYXiNHE0L30ef8fJ6URfKhQYJ7xdAp8P48Rmw+cPtnPR2Ykk6qKi4IUXBweRKJ+VxU8pIMKORUtLyP4+zU2EcRKMu6kJu8WlpcELuXZ1IdF/5szJuTMz+SkFRNhJa27G/T9vHn8XzOVCYv255C4qCl54cWgI7UJxT4OFHaDpspERoueew+QXFwfZqvxEaacTUuKTJ7FAbNwImaj/jSYIkFDu3o2FYtkyosceY0M8Bw5Aujs+joVt+3Z2sm1uxvXECr8//CEbjzYYiP7nfyTuO+9kc4WcTkgtjx8H94YNkBPLud98Eyovjwe5RY89xm6BHzyIk5ItFixsTzzB3vytrZBRityPPMKe4G00gru9HTf+nXeyOTcuFyS5lZVwIC6/HKcly7nfeguKKrcbuTuPP85uJR86BGm62Qzu7dvZm7+tDdwDA1iwf/AD5gRvMhoxTtrawP3d77K5Ky4X+ruyEpPZ5ZdDLi+fkN9+W1ImLV5MtG0by334MEoBWCyYsLZvZ09Mb28nev55ifvhh9kTvEdHwd3aCu7bb2dzKdxuSGSPHQP3pZeihIOc+733oJRxuZC7s20b6ywfOYKSEWNjErf8xPSODnDr9XDsHn6YPcHbZAK3eEDpbbexuRRuN6TUR4+Ce/16lHCQLyTvvQeljMuF62zbxjqdR49KZR4KC8GdmxvYprMT3DoduLduZY+yGRsDt3jQ5+bNTC6Fx+ehF0++SEf6j5CCFLS+aD3dv/R+Jnz1ftP7pw9NLc8sp+0XbKdYTSD3sf5j9KeqP5HJYaIZiTNo+4XbKS8hL6BNt6mbflnxS9JZdJQanUpbl2+lJdlLAtqYHWZ67uhz1GRoomh1NN06/1a6Zq6s1IfHg9PCjxzB2LjkEpRCkPf3hx+irIbTifto+3bW6ayslMo8FBSgjfxBr6eH6Je/xENVaipOVZeXKLFY0N9NTbiHNm1ij3vxenGtQ4fAvWYN3kseBvroIxw4KububN/OOm/Hj+O9RkfBvW0b+8DU2wvu/n7kSD3wAJt7aLEQ/eIXcMqio5GXJC9R4s9NhNy0rVtZ7h07MMbtdjil27ezTtCJE1KZh7w8tJE/ePT1gbuvD9z338+WKJkmCydBT5fV12MhmTcPNzhPStzdDQl1YSF2LY4cYeXk4+P4fVIS2tXU8E9V378fE/e8ebiu+FTib6dOSWfkDA7yT15vaJC4vV6+RLS3F3L5GTOwu3X0KCsnn5jAYpuQIHHz5PsHDmABmT8fC4H4VBKMe2iILyVuaIATUVqKJ5dg3DU1EvexY6yc3GbDxBAfjyeVurrg3A4HuDs6+NxVVZhky8ogj+VJRJuaJG5B4Etb+/rAnZ+PCfvYMVaWbbNBKh8XB4esro4v3z94UNqxCNbf1dUS98hIcO6WFikRldff/f3og/x8LOwVFWwhNIcDfRkbC8c9GPdXX+EzLliA76Oujm1TUyNxGwz8k9ebmuBEiDs/vP7WasGdlwfu48dZbqdTkm4XF6Mfg3FbreDu7g7O3d8PbqORz93cjJ+SEjgGX3zBlcFXDVRRbnwuZcRm0HHdcRqxBsrJXV4XHeg5QNHqaCpOKab6oXpqM7YxlzvUd4jGXeO0IGMB9Yz1UO1gLdOmerCa+sf6aUHGAhq1j9Kx/mMstqGZmkaaqCS1hNRKNe3r3scWaNTrcY/n5OAB5/hxVk7u8WCMRUVhN72+HveN3A4fxpy5YAHu91qWm2pqcE8tWABHiXfyekuL1N8RERgncjn5wADm0OxscJ84wRYzFbkjI7ErXV/PL5dw+DDmUJG7pobP3duLNmNjmAfk1tqKuXDuXHB/+SV7QKk492dm4ufkSVYGL879ERF4r4YGPvfRo2BZsECap+RWWytxm834rOfJwg7QdJmY7KXTYQLkhXbi4jDx6/WYsBMS2J2dqCj83mBAu9hY/lZ7aiquo9Phurw2YiKyTof/8rY04+LAoNPBieGFSETugQEskAkJ7M6OqKAxGNAuNpa/ZZ2SgoVN5Oa1iY+XuMXPwWPSaNBHExPB+zsmRuKOi2N3SETF0ugo3ismJnh/2+2h+zs+Hk9VOh0WK94ZT/7jZHw8eH/HxGCSGhnB+/K4k5Ik7lD9bbejTUQEnzsuTuL2+YL3d1QU2lgsocf3wIB0qKScW1TkjY7ivYKN7+RkOEs6HV7D+2wit1YL7mD97c89lf6OjWW51epA7mDjJCUFzpJOh9eE6m+tFgvPVLllO2mxmliKiYihoYkhGrYOU5wmjjnDS61UU1JUEpkcJtKN6yhWE8sNgSVHJZPL6yKdRUdqlZrbJk4TRyqlinQWHXkFL/cssDhNHEVHRJNuXEdmh5lSo1PZEJg4TgYH4UCI/e9vKhXGgMmEfgo2TpKS8ECl0wUXDIh1qXQ6OCjB+js6Gm3GxjC+5dwiw9CQNL7lO4CiwndsTBrfvLGbnIwHWHGcBBvf/tw8QYzYdzodnI3kZHYnLTYWP0ND+BH/7W9KJV5rNoce30lJYJlqf7vdrMJvGu28O0C/+93vqLCwkKKiomjlypV0nPd0+TdrbGykm266iQoLC0mhUNDzzz/PtPF6vfSTn/yEioqKKDo6mmbNmkX/9m//FrIM/LTY0qWQeMfFQeK6aRPbJi8PFUazsvCkcc89rAOk0eD3JSVo973v4XVy27QJlXjj4nBd3inf69cjfBITA0ltMFm2PzdPJpyTw3LLHSCRu7QUTxnf/S4/58if+4YbgnNfcYXEzZNlL1qE7d74eGyvbt7MtsnORmgsJwdPkTzuiAiWm5dLcvPNkHeK3DwZ/Lp1k3MvXIj3SkgA9223sW2yssCdm4vdhi1b2AVCrcbv589H2OqOO0JziydF87aiL7kE4diYGIyRYLJskXv5coTA5JaRgdBvXh52d+65h79AbNmCp8O0NHDzcjJuvBHy5dhYSOJ53GvXgjU2FmFbHndZGcacyP3d77Jt0tMR0s3Lw27aPfewE7vIXVaGxfGOO/i5DTfcEMgdTAa/cSParF+P/5fb/PmSHH/pUtx/MkuLSaO7F91N+Yn5NCtlFm1ZtIVxXJQKJW1ZvIXKMsooNSaVNs/fTLOSZ7HYpTfQ6oLVFKuJpWvmXEOr8ljuNTPW0FVzrqJYTSytK1xHV81h5c3z0+fTrfNvpcSoRFqSvYTuXHgn+9lSUtDfM2agv7dsYZ1uhQK/Ly9Hf2/ezC+XcP316M/YWEjig8ngr7oKbdatQ8kIuZWWor+TkjAnylMTiOAg3HUXuIuKjSJ1XwABAABJREFUwCd3ShQKfLaFC6WSIXPmsNe79lqJ++qrg3NffTXaXHIJ/9SAkhJcIzkZc6I8NYEIn+nuu7EzX1iI/5c7gSL3okV4r82b2arTRGC45BKpvy++mG1z4YUS95o1fO5psvOqAnv77bfpzjvvpBdffJFWrlxJzz//PL377rvU2tpKGZzkwBMnTtA777xDS5cupccff5x+9KMf0WOPPRbQ5mc/+xn98pe/pFdffZXmz59PJ0+epC1bttB//Md/0A9/+MMpcX2jKjBBCC4f9G9DFLrdVNp8neudqzaTMYW5w9xh7mnlFqf4YPL2qbYR201Xm29rf//dcp8LpunmPgP71sjgV65cScuXL6ff/va3RETk8/koPz+fHnnkEXrqqadCvrawsJAee+wxxgG6+uqrKTMzk/785z+f/t1NN91E0dHR9Je//GVKXGEZfNjCFrawhS1s3z77VsjgXS4XnTp1ip5++unTv1MqlXTppZfSMV4y1xTtwgsvpD/84Q/U1tZGc+bModraWjp8+DD98pe/PBfYZ2c9PZBtJiejQi2vSJTBgCQ0jQbb4zypuM2GxEiXCyowXt6C1wsFhMmEBFdeGEEQkIQnyuDLy/keeU8PkkWTkoJzG43gVqsRwuJx2+1I1HO5sG3Pky57vUh6HB0Nzd3QgCS7UNy9vejvxERw86Ti/tyrVvGl4nY7+tvpDM194gTer7SUH/4QBPD09iJ8tXAhn7uvD58vFPfoKK4XitvhQH87nVCv8STXPp+U1FtSgpADzxobMQ5ycrANHoo7IQFMPG6TSVILrlrFzxEQuR0OcPMkwD4fPr/BgKRMXpVrIozb7u7Q3P39uA8SEtDfPIm7yYTrKZXBuZ1OcIuVvs8Fd3Y2Qi48bq1WOnx21Sou95hjjI7rjpNSoaSVuSu5uTtOj5OOaY+R3W2nxdmLKSuOlS77BB+d1J+kEesIzUmdQ8WpnHATETWPNFOXqYuy4rJoSfYS7i6PzqKj2qFaitfE06q8VVxpvsitIAWtylvFl+Y7nbgvxQrlcvUiEfr71Cnk5BQX88NNREhy7uxEeHnJEn5/63RI4BXTAXhScbMZ865CgbHEW4BdLoyTUNyCgHlpeBhjhFdVnAiJyB0dGGtLl/K59Xrp0NxQ3GL6yYoV/Hwilwv9bbVi7pKrLkXuU6eQSxSKu60N4pqMDKxh38BO0FTsrBwgm81GfX195HK5An5fLpfIcsxgMJDX66VM2SSRmZlJLS0tZ8z01FNPkcVioZKSElKpVOT1euk//uM/6I477gj6GqfTSU6n8/S/LRbLGV8/qPX1QUap0yGv59Zb2ZPHJyYgf21sxETb2Ajprn/SmiBA/nvgAG7uw4eJnnqKnZA/+QTybacTi+2TT7IyypMnIUseG8OAf+ghNpeivx8ySq0WN86tt7LHeFit4BbrpNTXQ1LP496/H9ylpURPP80m9+3ciZOJnU7cYE8+yeauVFVBvi5WQN26lc2l0OnQ3yL3pk3sMR5WK07drqsDa10dTi+Wc7/0Eri9XnA/9RQ7sX36KcoTiNxPPME6b9XV4DaZ8PoHH2RPTNfrwd3fjwXtllvY4zBsNsjpRe7aWnD7O6aCAFn+vn3gLikBt3xi270bJzw7HJiIn3iCdd5qalAuYXQU/f3gg2xOwsAAxklfH7j1ejbPzW6XuBUKvO/jj7Pcr76Kk9W9XkygTz3F5iTs2YMTw8VDJf/pn1jnrbYW36/Iff/9bE7C4CC4e3vBfcMNbN6Vw4HPX10N7upqcPs7eCL33r3gnjMH41vOvXcv0WuvoS8yM9Hfcieovh79ZDTivr7/fvbE9KEhjBORu7+fybtyeBz0m8rfUPVgNRERVQ1U0bYLtjHneL1W+xrt7dxLHp+HilOL6emLn6bk6OSANp93fk6v1b5GNreNMmIzaPuF25mT3huGG+j5iufJaDNSrCaW7ltyH60tXBvQZtg6TL849gvqNnWTWqmmXnMvfbc8MO/K6XHSb4//lqoGqgK4GUfpjTdw33m96MOnn2YTar/8EveBzYbFdts2dlFubMT8ZTDASbj3XuSx+NvICMZJdze+954e5AH5m1hWQzyY99QpyMDljukbb+BgaK8XY/bpp1nRgMhtteKBa9s2NuemuZnof/8XbDExRN//PltaxWAAd1cXuLu7kack5/7d7yQV8IkTGJdyR+mvf5UOWJ45E9zyh+/9+zHP22zgfvxx9oiSlhbI4EVBwZYt/GOYpsHOKAl6ZGSErr76aoqPj6f58+fT4sWLA37Op73zzjv0xhtv0JtvvklVVVX06quv0nPPPUevvvpq0Nf8/Oc/p8TExNM/+cEKAp6NtbdjUS4vx8DinV7d3w9vfs4cPInU1bEyeIsFv8/MxI3c0YHXye3kSdx45eVYjHgnare0wPlZuBDOBO9U4o4OiTsyki8512oDuRsaWBn8+Hggd2cnFku5nTolcQ8M8KWtLS1wIsrL8b48bv/+joric+t0aFdcjMW/sZGVwVut4E5PxwQUilutDt3fra3gXrgQzi7vNOWODkm6HRPDl5yL3LNnw9lqbGRPVbfZ4GCkpWEC6uzEYsnjViql/g7GbTSC22bjl1QQx2EobrFfZs4Ed1MTK993OOBgpKVJ0nwed3W1xD00xB8nra14f5GbJ/Hv6MD3WVaGyTgYd1sbFqu8PIw3ObfTCabUVCQod3VhkZRbFRb1SbkNBnA7HHxucRyWlcFJqqxkZPCDE4PUZmyjoqQiyk/Ip+aRZjLYDAFtXF4XVQ9WU3J0Ms3PmE9dpi7qHutmLlc9WE0+wUflmeU0bB3mSuVbDa1ksBmoPLOcXF4X1Q7VstijndQz1kNlmWWUEJlAx3XHGYHK4MQgtRpaqTCpkAoSC6jZwHKT2405LjlZKoXAKwdSXQ1Ho7wcuym8/m5rQ3+Xl8MZ4Enlu7owDsvK8PBy4gQrgx8awndXWIiHzeZmvnxfzs0rq1Fdjbbl5XAUeJLz1lb8rbwcbYNxd3fjWomJ4JbL4IeH8V4zZuCntZV/iv2JE3gPsYQDj7u2dnLutrZA7upqts002Rk5QI899hiNjY1RZWUlRUdH0549e+jVV1+l4uJi2rFjx5TeIy0tjVQqFQ3J6iQMDQ1RVrDqkVOwf/qnf6KnnnqKNm/eTGVlZfS9732PHn/8cfr5z38e9DVPP/00mc3m0z/9PIfibC0tDRNVWxucGF4V4NRU/HR2YpHLzGRDSbGx+L1ej8k7JYUvOS4ogHMgFtTjhckyMvD03daG//JCJHJunpIoJQU/HR3gyshgd6RiYuAcidypqXym/HyJOyaGH25KT4eT1NaGJ3JeqCEtDU/9ra1wxnj9LXJ3dsLp4HFHR4NbdA6C9Xd+PpyaUP2dng4nSZyEeVvfIndbm1Qsj8edmooJSOSW76RFRcHJGByUuIP1t80m9TevTVoanPa2NiyyvPszLQ0Lg8jN6+/kZHB0d4M7PZ3ljoyUuNvagnPn5YG7vX1q40QQ+Fv26emY1EXnNFh/i9z9/XxujQbfp7gIJicH57bbwR0dPXl/e73B+1vkHh0FtyyMkByVTKkxqdQz1kN9lj5Ki02jxMjAHcAIZQTlxOfQsHWYWo2tlBKdQmkxLFN+Qj45PA5qH22n6IhoSo9h+zs9Np0iVZHUPtpOHp+HchNyuW2SopKo1dBKRruRZiTOYMJkydHg7h3rpT5zH6XHpFNilGznUq3GzvbICB6Igo2T3Fw4p+3tuCdC9Xd7OxZk3jhJS8NunvgwMGMGKydPSkK7nh44p+Jr/E2lwj0nOgcpKfyxK+fmtUlLw/3S3g6HUF5QU2yTnCw51fn5bAqDyN3bi5/UVJZbqcRrDYbQ4zs3Fyzt7WAL1t9RUWjjdAY/gWAa7IxCYF9++SV9/PHHtGzZMlIqlTRjxgy67LLLKCEhgX7+85/TVVM43VWj0dDSpUtp3759dP3fKlP6fD7at28f/eAHPzgTLCJCWE4pG5gqlYp8cm/dzyIjIyky1GGZ58LKy7HVd/w4Fmx5+IsIC9kDD2CbPDpaOqnc39RqtNmxAxPpZZfxHZdbb8VNPTiIsBYvLLluHXY4WlqwK8PbhlywALLfiorg3OnpCIvs3YtBH4z7/vtR4dduh5ya57hs2oTXDg5Cliyv3CtyT0yAe84cPvf8+eA+dgz9w+NOSwP3Z5+hr669lt32VakkbpsN1+I5Lrfcgs84MICYNm8ndO1aacequJhfdqC0FFvZR4+iX3ncYrXaPXvAe801bLkElQpb+R9/jO/4O9/hT+w33YTJTa8H95IlbJs1a8Dd1ARu3qnqJSXgPnIE/SoPkxJhst+6FWG3iAhwy8sOKJXg/ugjfMff+Q5/Yr/xRqkW1NKlfO7Vq+G0NzZit2zDBrbNnDngPnwY3Lz+TkqSuNVqSHjldYCUSlSH/ugj9NX69fzyFCJ3fz+Yly1j21x8MZz2xkbslvFk8MXF6KdDhzAeONyJUYn04LIHaXf7blIpVXRV8VUUHRHIrVAo6N4l91JqdCqNu8ZpXeE6KkhkndfrSq4jn+Cjfks/LclaQstz2TIPF+ZfSGOOMWoYbqCipCK6cvaVTJvZKbPp3iX30qHeQ5QSnUI3lLLcCZEJtHXZVvq0/VNSKpR01ZyrmPpFpFDg86em4ju+5BL+w9l112Gnpq8P9+TKlWybCy9Ef9fVIWzNW79mzcL1vvoKiz9vnMTHY27+9FOMhyuvZHPzRPm+WFNn7Vq+033tteDu7UWeEI/7ggvwHrW1eA+efH/mTIzLr77COJZXgSbCQ5/ITQRu+YOgP/fYGOYEXp7j1VfDiezpwdwtD/ET4bOMjUlFaHnc02XCGVh8fLzQ3d0tCIIgFBQUCIcPHxYEQRC6urqE6OjoKb/PW2+9JURGRgqvvPKK0NTUJNx///1CUlKSMDg4KAiCIHzve98TnnrqqdPtnU6nUF1dLVRXVwvZ2dnCE088IVRXVwvt7e2n29x1111Cbm6usHPnTqG7u1v44IMPhLS0NOHJJ5+cMpfZbBaISDCbzVN+TdjCFrawhS1sYTu/9nXW7zPaAZo7dy61trZSYWEhLVy4kH7/+99TYWEhvfjii5TNezoOYrfeeiuNjIzQM888Q4ODg7Ro0SLas2fP6cTovr6+gN0cvV4fkGP03HPP0XPPPUdr166lA387WuI3v/kN/eQnP6GHHnqIhoeHKScnhx544AF65plnzuSjhi1sYQtb2MIWtn9AO6M6QH/5y1/I4/HQ3XffTadOnaIrrriCRkdHSaPR0CuvvEK38qoFf4vsG6sDVF2NbdbUVGzty7fRiZBncOQIQhrr1/PzTYxGqAScTqKLLuJLxe12KICMRoS/eCEZnw9bo729yNlYs4Yvca+pAXdKSnDunh5wR0SAmxf7HR0Fk9OJbWfeFqrDgTYGAxIOeaENnw9b/z09iB+vXcvnrq3FT3IyuHnS/N5ehD8iIhBa48Xa/bkvuIAvFffnXrCAX8FaVO11d4fmrqtDnyclIUzG4+7rQx+o1ehvHrfJBCaHAyo5nuTa6USbkRGEDXlSWp8P321XF8I6l1zC566vxxhPSkJ/86T5/tzr1vHDt2NjONvKbgc3r8Kv04l7YHgYydI8Ka0goL+7uhBGu+QSvjS/oQHJyYmJ6G8ed38/uFUqvA8vfDs2hr602abGXVqKMC+P+8gR5KaF4G4YbqAqfRUlRiXSd2Z+h+I0rDRfa9HSV71fkUqhorWFa7kSd7PDTF90fUE2t41W5q1k1F1ESJb+svtLGpoYopK0ElqRu4LJ3REEgY72H6WO0Q7Kic+hdUXrGMUZEVHjcCOd0p+ihKgEunTmpVxunUVHB3sPkkKhoHWF64Jy7+veR1aXlVbkrqC5aRzJtcuF/h4aQph/5Up+fx87hpyU7GyMS14phKYmJDAnJGB8846n0Olwvp54iCtvQ8Biwfi2WvH98yoqu93gHhxEmHbVKj53RQVyxUJxNzeDOy4O45vHrdeDmwjzEi9cPj4OdebEBLjl6i6Re/9+pAIUF2O+5HFXViKXKCsL8xeP+wztG68D9F2/cvFLly6l3t5eamlpoYKCAkrjLXxhw5f9u9/BIVEosDjJy9ebTJDbdnbi3+3tRD/6UeBi4/XitN3jxzGQqqqIfvITLPL+9t57OC1ZEODkPPkkK/88dAjv5XRKOSTr1gW2aW+HtFPkHh1l5Z9jY5Abi6qA9nZIl/25fT6cOCwe7HjyJNEzz7Cy1ffewwnPIvc//RM7QRw+DG6HQ8rZkcs/OzrAbTCA22hEKXd/M5vR36LyqbUV0k7/xcbnI/rjHzFBirU5fvIT1jH98EOw+3yYSJ54Aguzvx09ilOuRW5BYPOXOjvBPTwMboMBuUz+ZrGAW0wCF7n9JxGRWzzY8cQJcMvvzw8/JHr3XbAcOADu+fMD2xw7Bm67Hdfw+dhjPLq7wSRyDw8jZ8Lfxsfx2URlSHMz0T//cyC3IOC0dPGARJFb7uDt2IEyDz4fuLdvh+PpbxUVGCc2G75Tr5fNA+rpkbiJ8N/77gtsMzEB7pYWfLamJnD754uJZR7EE7WPHwe33METy1N4vVgotm1j8/MqK9HfIrfbzeQB9Y710m8qf0PDVnAPTgzSA8seCGhjdVnpt8d/S82GZiKBqHGkkf559T9TpFrKFxMEgV6qfokO9h4kEogqdZX04zU/ZhyOnW076c36N8kn+OjL7i8pSh1FC7MC8/NO6E/QiydfJKvbSmqlmtxeN105JzAPqN/cT785/hsamoD4ZWB8gLYu38rlbjI0kYIU1DTcRD9e82OG++Wal+lAzwEiIqrQVtCP1/yYsuNlDseuXZCd+3xY+CMj2YfBkyeJXngBDolKBadJnpei1WIM6PX4t16PsiH+ZrNhjhfVnY2NRD/+MZvn9sor0mHBFRUYS3KHQ+T2eqXzGOUPg6dOgXtiAtxOJ3ushE6H8T0wIP1bnmNrtwdyNzSAW/6g++qr0mHBIrc8P08sq+Hx4EFCo2Hz3KqrUX5F5HY4kKt1HuyMVGD/+q//Sjab7fS/Y2JiaMmSJRQbG0v/+q//es7g/qFMq4XzUF6OAc2rdTQ4iBurtBRP2t3drAx+YgK/z81FO71eGtz+1tKC65SX47o8ZVtvLwZfeTluHp7cuL9f2kWKj+dLzgcHwTB3rsQtr6U0MQEHKScH3AMDfG5RRRWKu78fN215ORYHnvxVq5W4ExKwaPG49Xo4WAUFWAzl8n2rFU5JTg4cA71emgT9raUFOzULF8Ih1GrZNn19ErfHE5xblEAnJvL7e2gIE9ncudhJ6u1lue12cGdng3tggM/d1oaJrrwc3Lz+1moxuZeXY0LmyV/7+7GLtHAhdoB4/S1yz5mD5Me+Pla+b7fDec3KCs3d0oKFRSzhEGycWK3gFgQ+t1YLp6e8HA8RPO7hYXAXFwfndjol7gULwC0e1utvbW1YzKbKTSQ9EPljW7Q0bB2m8sxySolOoSZDEyMnH7YOk9aipeKUYipKLqJ+cz+ZHIHcLq+L2oxtlBmbSWWZZTQ4MUj6cba/24xtpFFpqDyznCwuC/VbWO5+cz9NuCaoPBPcHaaOSbmbDc0Mt8FmIK1FS7OTZ1NhUiH1W/rJaDcGtPH4PNRmbKOM2AwqywC3bjxIf4tlNSyW4P09MYE2SiW3v0mrxXe6cCEeIpqaWBm8wYB2s2Zhd1ucOwPAPXgASE+XSk/wxklHB5wDsdRHsPtS5Fap+CUsdDrMc2Vl4G5uZmXwIvfMmRK3QVZ2wOvFa9PS8F6Dg/w5rqNDKk9htfLb9PfjM5WXw8HncU+TnZED9Oyzz9LExATze5vNRs8+++xZQ/1DWn4+djtqazEweNuH2dlwbJqbMXBnzmS3K+Pi8HudDu1ycvjbrKWluE5tLXYreLLkwkIsfrW1mJR5aoSCAgz6ujrcbDzurCxwt7RgwBcVsYUCRW69Hty5uXzukhIstqG4CwrgbNTW4gmDF0rLz5e4LRZ2V0PO3d8PbnmhwNhYTGh6PZ6QcnL428OlpRJ3cjJf2jljhsStVvNDl3Ju+S4SEcIveXmYSPv78b3JZavR0Qh5DQyE5i4pgRMscvP6Oz8f/SBy80KA+fnY7aitxcLO62+Ru60NTlthIbtzKXIPDk7e304nrpeUxO/v/HyMu9paTMrBuDMz0cZk4nNnZIC7vR3cM2aw3JGRcOwGBxEKzMnhq9fmzg3kDja+4+KkgpGc0GV+Yj5lxmVSzVANjdpHaX76fCYklRGbQfkJ+dRh7KBuUzcVJBZQSnTgjqtGpaG5aXNpyDpE9cP1lB2fTbnxLPec1Dnk9rqpdrCWEiMTKT+B7e/8xHyK08RR3VAdEREVp7AhwLyEPMqKy6Laodqg3Omx6ZSfmI+aQaYeKkgsoNTowB1XtVJNc1Pn0rB1mOqH6yknPofyEjiqu7lzpRo5iYnB+zs+Hv0tCPxQcX4+5qvaWjg18+axMvj0dLTr7ISzXVDA7hSr1bjnRkZwvexsvlqwuBhOR20t5tJg96U4vsXim3LLy8M16urg1Mybx4av09LwXmJNInEO8jeVCq81GEJzz5kDx7CuDmy8+7KgAJ9JrBnECxVPk51RDpBSqaShoSFKl21Lf/nll6cTm7/N9o3lANXWSjlA69ezW6NEmGCPHMHCvn49GyIiws7Il19iq/bCC/mOi8OBNkYjPPZFi9g2Yk5KTw8m9dWr2ZuaCMy1tWBZv56fA+TPvW4dP3fJZMK2v8OB2DDPAXA40EbMpQmWu3TkCHZQCgrAHSwnpaYmNHdfH95LzKUJxW23o7953GJuh8GARTRY7tLRo1IO0GTcYu4Sj7u/H9wqFfqbF3oeGwO3zYb+5jmKTifaiDlAPG4xJ0WcHIPlijU0YHs7ORl9yctd0mox5sRcGl7uktmMvhRzaXiOi5jbMTKCiZl3fIEgoL87OzFZB8u5amwEd2Ji8FwxnQ7hLaUS3LzcJbMZfWm1IteEt5C6XGgj5gDxcq7EnBQxB2jNGm4OUNNIE1UNVFFiZCKtL1pPsRo2d0ln0dGhvkOkVCjpksJLKCOW5bY4LfRl95dkdVtpRc4K7jEXLq+LDvQcoCHrEJWkltCynGXcHKAKbQV1mDooJy6H1hau5eYANY8006mBU5QQmUDri9Zzc4D043o61HuIFAoFrZ2xljLj2JwrkXvCNUErcldwc5dO56SIOUDBcq4qKrB7kZ0dPFespUXKAVq/nn8cysAAQvdEGG+8Gk7j4xi74+MoUcJzXNxuhHbFHKAVK4Ln0oi5S2vX8nNpWlsRSo6PBzcvB8ife80a/sPpxARCYOPj6EfeMRduN1IAxBygYDlXx4/jQSgrC/19nnKAvpYDlJycTAqF4vQb+98AXq+XJiYm6MEHH6Tf/e53Z07/d2Dhw1DDFrawhS1sYfv22TeWBP3888+TIAh0zz330LPPPkuJfuECjUZDhYWFdAGv8FHYwha2sIUtbGEL29+RfS0H6K6/HaJWVFREF110Eal524Rh45sgYNuzogLbfjfeyOYRECH0sXcvwmPXX8+P/fb1oeKsw4GqvLzw1tgY0fvvYwt11Spsfcq3Il0uqGmamxGXvvZatqKwIGAL+dgx5ErcdBOfu7YWFZWjopDRz6vK2tcnVVS+/HJ+eMufe8UKyDZ53J98gkTEuXNxPR73gQMIgWRmor954cS6OlRUjozE+/DCif396G+bDeonXpjIbIZ6Ta/H9vBll7Hcbje4GxuxrX3ddWwYVBCwhXzkCMIsN97ID8vV10uVoK+9lh+W02qh8rLZ0I88ab7FAm6dDmqNyy5jw6D+3MXFGJc87q++QngrFHdDA7jVanDzwnI6nVRR+dJL+dWS/bmXLsV44nHv3Ilrzp4Nbnk4URAQ2jp0COG4G2/khxMbG6FwUanAzQvL6fXo7/FxhNKWs9WSaXwc3FotxtGGDQy3x+ehnW07qX64nmYlz6IbSm5gKjgLgkCH+w7Tob5DlBqdSjeW3kjpsWw4sWmkiT5t/5RUChVdM/camp3ChuUGxgfow5YPyeK00Pqi9bQidwWL7RynD5o/IK1FS4uzFtMVxVeQUsFy72rbRXXDdTQreRZdX3I9U8FZEAQ60n+EDvUeouToZLqp9CYud/NIM33a8SkpSUlXz7maG5YTuc1OM60rXEer8lYxbWhiAv3d34958oor2DCoxwPVlVgJ+sYb+WHQI0ekStA33sgPg7a04L2IoMjihbcGBzFOxsYQ/uFtGlit4O7pwTy5cSPL7fWienNNDeatG2/kl3A4ehRzSlIS2vBKOLS24l4hggKOF94aGgLT2BjCbfIDkeXcixahqjSPe/duhJ1DcU+DnZEHs3btWurs7KSXX36ZOjs76Ve/+hVlZGTQ7t27qaCggObzEgn/r1tdHeSP4qFyHg/Kj/vb8DCk4sPD+PvwMNFPfxoYH3W70aahQTqV+Kc/ZQf1229jkMXEwMFJTWUdpS+/hCQ3MhIOTGwsBqy/1dfjVGKPB9xuN44F8LeRETANDeHzDQ4SPftsILfHI3FHRCAP5l/+hY2Rv/suJhCROy2NdZQOHAC3RoObPzaWLV/f2AhutxvcTifRww8HtjEYIJMeHER+jsjtL2/2eiEnr6uTuH/6UzZG/u67mEBiYuCYpaWxjtKBAzhRWeSOiWFlq01N4Ha5kHPkcBA98khgG6MR3AMD4B4YALe/Eyhy19aCu6sLZQfkibnvvw+nNCYGfZaayjocX30VyB0dzcpWm5uJXnpJ4rbZcEK9v42OgluvD+T2d6Z8Psjgq6sl7qwsNuHygw/AHR2NPktNZR2OQ4fAHRGB94uOZo8CaG0Ft8OBH5uN6LHHAtuYTODW6eAw6fVE//qvgc6UP7daLXHLk0A//BDOXXQ0+jslhTnm4FDvIXqz/k2KUEZQ9UA1Raoj6abSmwLatBnb6KXql8jusZPD7aAJ1wRtv3B7QJsxxxi9ePJF0ll05BN8pB/X07Prng1wSgRBoD9X/5lO6k+SRqWhztFOyorLYo7D+KjlI/qo5SOKiYihhuEGSolJYRyOI31H6M36N0mtVFP1QDVpVBq6ed7NAW06RjvopeqXyOa2kcMD7icufCKgjdlhpt+f+j31m/tJEATSjevo2UueDchxEuX7J/QnArgLkwoD+/vjj9HnMTGYe5KT2YX76FGiN9/E91ZdjfvollsC23R0oMyB1Yq5xGJBaRF/s1gwTkQ1rV6P8e2fKyQIuL8rK3Gdzk6ME/kDzI4dGOPifZmcjJpv/nbsGKTyKhXKoWg0OALJ37q6wD0xAW6zGaVV/B/OxsclbkHAOH/22cBcIZG7ogLcHR1Yc+QPAjt3stwXXxzYpqICUnmRW60muu02Oh92RiqwgwcPUllZGVVWVtIHH3xwWhFWW1tLP/3pT88p4D+MGQwYhMXFGFg8WaPRiEVi1iyoSIaGMCH7m82G3+fkoN3oKHsyNRHePz4e17NaWTkmERwXr1dSHPCS141GvH7OHCT/8U5CFxlE7uFhfFY59/CwxG0y8Zn8uW02Vo4pcrvdaCMI7MnFRIH9nZjI7+/RUXDMmiUdrCjnttvR39nZ2EUIxq3VYqILxW0wBKoeZAcBExHee3wcbZKSQvf3zJkSt7xcgsMBhy4rC+8Vqr9jY9HGbue3MRik/p4qN6+/TSZwFxXBoeFxO51wjDIzMeaCcet0mGRD9bfRCO7Zs7HLwiu7YDBg4ZozB5M1rxSEnFv8rP7mcuH9MzJCc2u1cH5C9LfRbiSX10WzU2aTSqE6XTNH3sbsNNOc1DmUEpNCfZY+Rk4+5hgjk910+lR1g81AFmdgeQq3z036cT1lxGbQnNQ5ZHKY2JPXiUg3rqModRTNTplNDo+D28ZgM5DT6wS3UkUD42x/G2wGGnOMgTs6hfrMfG6jzUgzkmZQfmI+l9vj85BuXEfpMengtpvIaOP0t16PBXv2bNwTvO/EaMT3N3s2FmNe2QWjEc7DnDlwtvv7WRm82Yx24mnwBgNbnsLrlQ4CnjMH44o3dnU6idvpDD6fOJ1oo9HwuQ0GjMU5c/BQptUG5y4owM69+Fn9zefDa9PSQo9vvR4sobiNRok7MpJfBmCa7IwcoKeeeor+/d//nT7//HPS+D0tr1+/nirEQndhC7Q5czB51tVhUuZt6xcUYGJsb5dqk8iTuBISUItieBjtiov5UsPly3Gdujpcl7cVW1qKSb+uDosWT3JdXCxxu1wIS8lNfP/2diyO5eWsnDw+HtziadnFxfzw3vLlcBLq6uAsBeNOSUGbhITQ3PX1uNmCcRcX42lmYACqM7mcPDYWO2fiqdOzZ/PDe8uWYXILxV1SInHHx7OF+4jw/iK33c4/BFHs785OiVse3ouJwc6Z0Shx88J7y5bBiZyMOzVVkraWlfG5CwpCc+fkYGu9qwsTJY87Kgo7Z6Oj2NkJxr1kicSdnc3fsp87F9z19egP3oHA4vdZXw9HfxUnjCL2S1cXJut589jwnliozmgE96xZfG5R9VVXB+eUw12SVkJpMWlUN1RH0RHRp+vqBGCnoEZO/VA9WV1WuiD3AkaVlR2XTXPT5lL3WDdpLVqalz6POeldo9LQ0uylZLKbqHG4kWYlz6KiJDacujR7KSkVSqobqqPMuEyam8rnTo9Jp7qhOopSsYUSRe6ipCKqH6qnCdcErcxdyXBnxWVRSVoJ9Yz1kNaipdK0UiZMFqGKoOU5y2nMOUaNI400K2UWFSVzwsBLlmCnoa4OzmmwcZKejjaRkfyUAvH7bGiA87tyJRtyzczEvdLbCweptJQNk6nVmOPGxvBeYs0gHrdaLXHzqkWXlEjcERF8brG2T0MDnJoVK9iQVEYGWMXT4EtL2YiCSoXXms14L/F95bZoEVjq6sAWrL8zMtBGreanFEyTnZEMPi4ujurr66moqIji4+OptraWZs6cST09PVRSUkIOh+ObYJ02+8ZUYL29mByTk3ET8CS5RiMqfEZEYDLmSaDtdmwjut2YUHm5FmKozWTChM1btAUB25R9fXCiFixg81aI8PfGRjgHvBuICAvWyZPgXrmSH0O327H163Jh0PNyLXw+cI+O4kbkLSJE4OnthTNQVnb23Go1+pvH7XCgv51O9Pdk3CUl/JwcInz/vb3YuQnG3d+PSSYxEdy8XDuTCdwqFfqbF0N3ONDfDgf6myc59/nwPkYjJibepCZy9/SAu7ycz63VwpE4W26nE/3tcMCJ4+VaTJW7uRlhy5wcOODBuBsa4JSuXMnnHhvD96tUog1PAu10or/t9tDcp07hyXjOHH4uERG1GFqo29RN2fHZtDBzIeMkEEHiXj9cT/GaeFqZt5IrOTc7zHRcd5yUCiWtzFvJlZy7vC6q0FaQ3W2nRVmLuJJzn+CjqoEqGrGOUHFqMTeXiIio1dBKXaYuyorLokVZi7jc+nE91Q3VUZwmjlbmrqQIFSuBNjvMdEJ/ghSkoBW5Kyg+kpVui9w2t40WZS3iHpdBgoD+HhmBsxus5kxrKxzczEx8d7xxMjCAkHJcHMYAT7ptsUDiTYQ2PMm5y4VxYrXCYeBJ5cUq/8PDobnb2vAgNBXu2FjMcZNxr1jBPngTYb2pqAD3woV8qbwgIIw4NISxzXugIsLDckcH7hFeCYuzsG9MBi9aXl4evfPOO3ThhRcGOEAffvghPfHEE9TJq6T5LbKwDD5sYQtb2MIWtm+ffZ31+4xCYJs3b6Yf/ehHNDg4SAqFgnw+Hx05coSeeOIJulN+TlTYAs3ng5d8tm0EgY3lnkkb8XpTaRPmPvs24vWm0ma6uL8O01TahLnPCZNPmFqbyZ5hBUGYUpupXu9ctZlO7mkdJ4Lw7Rzff4/c37CdkQrsZz/7GT388MOUn59PXq+X5s2bRx6Ph+644w768Y9/fK4Z/zHM48FhmYcPY+twyxZ+if/9+6EAiI4muv12fp5IQwNUC3Y7JLnyA0yJkGPx8svY/rz4YqKbb2a39icmcMCdKIO/6y52y9brlbizsnCgKK/E/4ED4I6MBDcvT6SxEaoFux1SS/lBoETgfeUV5FpceCHRpk187tdeQ1impASHs8o9fa8XCidRln333fzS7QcPQikSGQklAi9PpKkJ3FarxC3fsh0cBLdWC1nrrbey3FYr0euv4/ubMwdMPO4PPoCCKSMD3wkvx+vQIahbNBpwL2TzLai5GWoLqxUqOV5JgaEhjBOtFtvjt97KbpHbbOCur8dW/N13szlePh+4v/oKIcK77+bneB0+DO6ICKLNm/l5C62tuN7EBOS/l1/O537lFYQLV67Ee/G4//IX5BoUF6Mv5TlePh9UWQcOgPuuu/jh4iNHwK1SoY94eQttbRiX4+Pg3rCB5R4eRn/39yMMftttgapDIrK77fR63etUN1RHs1Nm092L7qakqEBun+Cjj1s/pv3d+yk1OpXuWnQXq4AioqP9R+mD5g9IpVTRpnmbaGkOWwqh3dhOr9e9TmanmTbM3EAbizcyoasR6wi9UvMK9Zp7aVnOMrq97HbSqFjuv9T9hWqHamlW8iy6e9HdlBwdWDLDJ/hoR+sO+rL7S0qNTqU7F97Jzd2p0FbQe03vkVKhpE3zN9GyHDZnsmO0g16rfY3MTjNdPvNyurL4SjbkZjBgnPT0IN/tttvYkhkOB8ZJTQ1CqXffzeamCQJKQXzxBVIY7r6bH+aurIQiVKmEkoxXCqGzE/Ou2YyyE1ddxY4Tf+6lSzGn8rjffBOhsqIiMMnTIQQByqzPPwf3XXfxw8XHj2OeJ8JawcuZ7OoCt8kE7quvZrmNRnB3d+Meuf12tmSG0wnuU6eQ4rBlCz+NYxrsjHaANBoN/fGPf6Suri7auXMnvfHGG9TW1kavv/46qXh5FmHDIP3oIyz+J04QvfMO20arxY04MoLJ9OWXMVj8zenE79va0O4vf+EfOPfOO7iO3Y6Ju6qKbbNvH25ohwP/L570K+cWa8mcOAF5vdx0OnAMDSGu+/LLeE9/c7kCud98k69wevddKY/i44+R5yG3/ftxQzsc4P/8c7ZNTQ24JybwHjxuvZ7lttsD27jduKFbWnBzh+KuqJC4T5zgc+/dKx1Tsncv26a2Fo7ExAQmiL/+lW0zOAgHYXAQk9JLL7FqQY8H3K2tEndPD/te778vce/YIeUB+NuBA6jxJB5T8tlnfO733wd3VRWfe2gIDsLAALhffhnOmb95vfh9czPyqf76V/6hsR98ABmww4GFqbKSbXPwIGoOidx79rBt6usx8U9MIHfhjTfYNiMj4NbrwfLKK6xa0J/bZEKZBt7hqx99JHHv3MnlPth7kD7r+IwcHgcd6DlAu9t3M20ahhvovcb3aNw5TjWDNfRGHcttsBnotdrXSGfRUbepm16peYXGnYHqNZ/go5drXqaG4QYas4/R241vU8coe4jpRy0f0ZG+I+TwOGhX2y461n+MaXOo7xDt6dxDDo+DDvYepF3tu5g2TSNN9F7T37iHauj1uteZNkabkV6peYV0Fh31jvXSKzWvMCown+CjV6pfocbhxtPc7aOcQzU/+ghOt8OB8hrHWG46dAglQxwOOPC7WG5qasKcOj6OMfPaa+xuyeio9BDU24v/l6upBAG/F5OS33kH96jcPvkkkPvIEbbNkSOoA+Rw4DN88gnbpqUF17BYwP3qqyy3yYTf9/XhR3Ry5Nyvvor3sFjwnrwDvT/5BCwOB9iCce/ahTaHD2PeOU92Rg4QEdGf//xn2rhxI91www303e9+l66//nr605/+dC7Z/rFsYgJOQHY2Em150vWJCSxEWVnwiMfH+Q7QxAT+npWFhY9zMC2NjuI62dlYxHltxscxsHNy8F/5Ce5EWKBE7thY9sYQ29hsErdYc0LOPT6OJ6vsbLSXL34id3Q0mNxufht/boWClSQTSf2dk4OkRZ5k0587LQ2v4TluFgs+l8jN60uTSeL2ePhtJiaw4yByh+pvkTvYOPHvb6s1OHdy8uT9HRUVur+/Dnd2NnYRQ/V3Zib622rlO5xms8Rtt/OZxsbwRCyOb14bqxWOSU4Onsh53OJYFblD9XdGBhLJedwej8SdkxN6nIjcQcaJ1WUlj+ChnPgcUiqUNOYY47ZxeByUE59DCZEJZLQbmXCR1WUlm9tGmXGZlBGbQVa3leyeQG6vz0tmh5mSo5IpJz6HbG4bWd1sX5ocJtKoNZQTn0Men4fbZsI1QV6fl3Lic0ilUDFOi9jG7rGDW5NAJruJ5XZbye62U0ZsBqXHpp/+HP7mE3w05hyjxKjE09wTLk5/m83YGRTHN+878R8najXGFq+Nw4HvLSEB40TuSNhs0jjJyJD+7W9eL94/MTH0fWkygUWcT4Ldl/7cwca33Y42iYl4X3noSWQQucX71N98Prw2MTH0+LZYJG6vN/h96fGgTUQEv7+nyc7IAXrmmWfo0UcfpWuuuYbeffddevfdd+maa66hxx9/nJ555plzzfiPYWVlCHs0NUkHhsqtqAiZ/L29GEirV7Mhqfh4hLQsFrRbvJi/Fbt+Pa7T1ITtf15IatkyhLMaGjAYedu1CxZAZdPUhMHK4y4sBEdfHyacCy/knwa/ejWcFbFKKI973TosyGLV4cm4s7KCc4v9rVLxw20zZkjcY2Pg5sng16zBzd7VBW6ecmfdOqm43axZ/FDa0qUIwzU0wAngbTPPny/1t1IZnHvJEoRRTCZwy6tzx8SgWqvVGpr7kkukomWzZ/O5lyxBGE7k5knc589HOLKlBdyXXsq2yc9HH2i1WEAuuIDd+o6KQl/a7QgVlJfzudeuxXcTqr8XL0YYrqEBjgtP4j5/PtSG4tMsr79Fbp0Ojt3KlawSMDJS4u7oQEiSp9xZswb3QmMjQhGc0OXi7MU0I3EGNQw3UHpMOl2Qz1YKnpc+j+alz6MWQwsJJNClRZcy4Z/chFxalrOM9ON6GrGO0MrclYwMPkIVQeuK1pHD46D20XZamLWQe4r7mhlrKF4TTw3DDVSUXEQLM1nuJdlLqCCxgBqGGyg1JpUuyGO5S9NKaX76fGoxtJBP8NGlM1nunPgcWpazjAYmBsCdt5I5xFWtVNP6ovXk8rqobbSNyjPL+Yehrl6NRVuUbvNCrosXSxJ3XsFBIozt+fOxW+P1YnzLZfDZ2ZiLBgcR6lyxgpWTi4cuu93YDS8r40vFV68GS0MD2IJxz5gRvMCjyL1gAbjdbnDLozTiHDo4iJ/ly1llmkqF17rdeK+yMr40X5yLGhrAxuNetEjq78REtlDiNNoZqcDS09Pp17/+Nd0mq97417/+lR555BEy8IoffYvsG1OBjY5ickxKwuTIk/7Z7ZgcNRrccLyQoteLNi4X2vCk8oIAqeHYGBY23jEQRJjUtVo4FLwcGSIssu3tk3M3NeEGX7Bgcu558/iSc0FAH5lMobn1ejgAU+FOTIQzNBn3/Pl8CbTXizZOZ2juzk6pIGSwmLbInZPDz+0hwnfW1haa2+FAX4bi9vnQxunEIh+s3HxHBxb22bODcw8MwFGcCndCAib1UNwqFcZJKG6HA/0djLuzE7kSs2bxSxP4c2dn83OSiOC0t7aG5nY6waRUor95UmKfD+PEbj9r7sGJQeod66WsuCyakcTJSSJIxVuNrRSviaeStBKu5NzpcVLjSCMpFUqanz6fKzn3CT5qGmkiu9tOpemlXKk8EVGXqYtGrCM0M3km9/iKqXJbnBZqMbRMiVtBClqQsSAod/NIM9nctpDc1N0Nh6SoiF+agAjh2Z4eOCzBSm9YLHCU4+JwP/HGicuFhV2hwDiR5XcREeaKpibsopSU8KXy55J7fBzcsbGhuRsb8f+huJub8VAVirunB1yFhfxjN4jwubq78bmClQw5Q/vGZfBJSUl04sQJKpY94bS1tdGKFSto7DxuaZ0LC8vgwxa2sIUtbGH79tk3LoP/3ve+Ry+88ALz+z/84Q90xx13nMlb/t8wnw9PfqEKRQoCdi548VV/m5hAu1D+q8OB64WSG7rd0lEHobiNxsm5x8amj9vjObfcvDyi880tzzOR21S4rdbJucWS9WfLLQjnlpuXZ+Fv081tNp8TbqfHSQabgbw+b3Bsn4cMNgO5vK4Q2AIZbUayu0Nzmx1mbj5OALbLSqP20ZCy83PNLc/rORNum9t2TrjJ68U4cQXnPj1O5PkxDLiZn48TAG6bfHy7XGDyngPu0dHJuS2Wvy/uabApy+C3bdt2+v8VCgX96U9/or1799Kqv8XVKysrqa+vL1wHKJg5HNJhiSkpRPfdx1bJFAQoUj7/HKGBO+7gx6OPHIGqx+2GHPHmm9ltzbY2HIY5OoqY6333sXJEg4Ho//0/5BLNmIFDTuXVgh0OHKZXVQXue+9lY9aCAAXQ3r3SwXarV7Pc4qGDTifiybfcwsbR29txaKrIfe+9bIjPaCR64QVsoebnEz30ELtF7HSiv6uqELq77z42Zi0IUBN99hm4N29GjobcxMP7nE7kiGzaxHJ3dKC/DQbko9x/P5/7xReRk5Ofj/6WbxG7XOjvkyfBfe+92LaWc3/0EZQrajVk2WvXstyVleB2OJCfsnkzy93VhYMQDQbE9e+/nw3xjY6iv7u6EG7cupXNEXC5oEY7cQLc3/8+e0SJIEAht3s3ODZt4ueUHT8OlZvDgRyl225jubu7wT0yglDaAw+w3CYTuDs7wf3gg2z1WlGdeOIEtvTvvRchADn3jh1QtYjy5vXrWe4TJ6AOcjjwfdx+O8PdbeqmP5z6Aw1bh2l+xnx6YOkDAYd8EuEsrBdOvEAdox2UE59DW5dvpZz4wJIZbq+bXq55mY7rjlN8ZDzds+geKssMzJcTBIF2te2iT9o+IaVCSTeV3kSXzmJzs07qT9Jrta+R3W2n1TNW0x1ld5BKGRjC7h3rpRdPvkjD1mGalz6PHlj2ABNyMjvM9MLJF6jd2E7Z8dm0ddlWyk0ILJnh9rrp1dpXqUJbQfGaeNqyeAtz1IcgCPRp+6e0o3UHKRQKuqn0Jrps1mUMd9VAFb1S8wrZ3Da6uOBi+l759xjuPnMfvXjyRRqaGKLS9FJ6cNmDbKjMbMZ92daG8fHgg2xY3eOBCurYMYSS7rmHzd8SBIxtUdV0ww0ohSC36moowaxWzO933smmDPT1gWloCPPWgw+yISfx8NWWFtyPDz7Ihqc9HozJo0fBvWULPy9nzx7MKUQ4MPiKK9g2NTWScvPCC8EtD2H394N7cBDr29atbD7o+DjatLRg/tu6NXhY/Ru2Ke8AVVdXn/6pr6+npUuXUnp6OnV2dlJnZyelpaXRkiVLqFGMI4Yt0E6dgiw3OhoLyQcfsG16eiCN9fnwlPzWW+xTqd2O34vZ/Dt3BpcJd3XhegcPBpeTV1XhxqiqgjRbblVVkEGH4u7tlbjNZkjO5U8bDge4RZXNrl187g8/xIIVilv8fWwsbkqefL+6GtxRUehXscaFv/X1Qbbp9YL7rbfYHSynE1JsoxFO5q5d4JPbxx/DeYuOhgyUJyf/6isskpNx798P7t5ePrdWi0nW68Uk+Pbb/MM533wTjo1CgYm5g5U3B3AfPjw5d20tSg/IraYG40fk5pV50OnALapxRHmuv7nd6O+RETgPu3djYZLbjh3I24mJwQMBTwYvfg8xMeDmlUuoqwN3ZCQmbx73wADLLZc3ezwsN0fe/EnbJ9RiaKGYiBg60neEKrQVLHbvIarUVVJMRAzVDdfRZx1s2YG6oTra17WPNCoN9Zv76e3Gt5ldkMGJQfqw5UNyeV1kdVvpveb3yGQPVHF6fV56q+EtGrIOkUqpos86PqNWI8u9s23nae6j/Ue53If7DlOltvL0ifGfdbLcDcMN9Hnn56RRaUhr0dJbDW8x3MPW4dPcNreN3mt6j0btgeo8n+CjN+vfpMGJQVIr1bS3cy81G5q53M0jzae5j/YfZdrQkSN4yBFPjN/Nlh2ghgaMH/HQ0bfeYndBRkYwfzkcmKfff59VQ/p8GCcDA8gj27sX+UBy+/RT/D4mBk7XUQ730aP4myhi4HE3NuIaERG4ZjDu998Hs8gtPxhbEPBaf27eWr97N34fE4N7kieD9+duasJnPU825R2g/fv3f5Mc//jm8WDwR0XB2+dt/Xk8WNTi4/Ff8d/+5vPh9xoN3svh4G81ut24TlQUBi+vjdeLv4ltPJ7QbYJxe734iYubOrfNxr+enDtYG5FJvL7cxP6OjsZTCi8EInLHxkp9JA+n+Hx4rcgtSk/l5nJh4YuOxmsm62/xc/DaiNwqFVtOQPxsXi/aiH0UrL8jIiRuXl+ea+6oqKn1t0Ih/ZvHLfa3xRK6v6OipNfw+olI2onjMYl9J3IH62+PBxO2UimNcX8TBLx/RASuZzZzud0+N6mUKopSR5FAAnkFto34u+iIaFKSkjw+9rN5BS/5BB9Fq6MpQhlBbi/72byCl7yCl6LUUeT1ecnj8zDXE0ggl9dFGqWGotRRZLKbuNdzeV2kVCgpSh1FPsHHbePxeUgggaIjoklBCi6TyBCljqIIVQS5fUHa+LwUqY4krw+fQR6+EgSB3D43aVQailZHk8lu4oa4PD4PKRQK9Lcg8MNg4viOjsa4DDYPiuMkIiL0PBgZKc0nocZJVBS/DRHaiOM72Dzov6YolaG5o6MlbkEIjBj4c4vvKx+7goDXiuM7WIjL4/l684lSeV7DYGdcByhsX9MWL4aceGAAyo+rr2bbzJyJEIzFggF61VXsoYuxsfi9UolJdvVqfhb9VVfhOgMDuO7ixWybiy5COEurxXYlL2y1aNHk3IWFLLd8uzYmBq9VqbC7tXo1X9585ZUIZw0MSH3G4y4pAffs2XwZ5aJFkMsPDECWyeOeMQMhFnH3ZONGdrs2OprommuwOJpM4J49m8+dmYmnw0WLIJuW2wUXgFunw3vwwlbl5YHc117LtikoAPfEBCaSjRtZ+X5UFF4bEQHuiy7iy7I3bsT2+WTcpaXo75kzg3OLUtqkJD53fr7E7fMhPCDnjozEazUa7BZedBH/QMUrrkC4Qq9HKGLZssm5L7mEz71yJbgTE4muu45tk5eHUJ3Nhsl7wwZWnRgRgdBBZCQWh4sv5nJvmLWBsuOyST+up/LMcm6F41V5q2he+jzSWXRUlFxE64rYMOGCjAW0IncFDVmHKCEyga4ruY4rJ19XuI7sbjt5fB7aMGsDpUYHqvzUSjVdX3I9RaojyWAz0MUFF1NJGitvvnzW5ZSTkHOae3kOW3pC5NZatDQjaQatL2LDhAsyFtCqvFU0bB2mOE0cXT/3ei73+qL1ZHfbye1z0+UzL2fk+yqliq6fez1Fq6NpxDZCF+ZfyOW+bOZllJeQR/pxPZVlltHyXE7JjJUrEfbU6TAn8EohzJ+PMgrDw5iTb7iBTTvIysJrHQ4s6pddxobmVSqMk5gY7LJceCEbKibCa/PzMb4XLOCXnli5EmFrvR5tedzz5uEaw8NYO66/nn+K/aWXgtnlwv/LQ/NKJV4bG4v3Csb9ne9gftLpgnOvWIG/idyXseHN6bIzUoH9o9s3pgJzODAZJyUFl+16vQjNRERA4s2TLAoCBpjbjcEWrPq2wQBnIy+Pzf8RzWJBnDkzk38CMBGeivv7sUDwThT/Otx6PW6ys+UeH8eida641WpcLxS30wlunnTbnzs3l1+aQOQeGgKP/DgJOXdCQnD5q9eLNirV2XMbjXCSJuMeHATP2XD7fOjvUNxE4HY4zp57YgLOZChulwvc8fGTcyuVmLTPgnvUPkqj9lHKic+hmAhOSQVCwcDBiUFKi0ljjsE4je11Ub+5n+I0cdwT3IkQKuoz95FSoaT8hHyu5JyIaGB8gOweOxUkFnBPlT8f3P3mflIoFJNy29w2Kkgs4Erlp8pNVivGSWoqW1NLNLcbYyA2ln+COxHGSX8//r+gIPg4GRzENQsK+CUViDC2jUapCO10cefns07Suea22XCvhOI+Q/vGZfD/6BaWwYctbGELW9jC9u2zb1wGH7YzNLsdCZ3Dw8HbeL1Isu3rCy41FAT8vbOTH/cVbXgY1wsl7xWLwMmTOv3N4cD7DA2dPXd/P5Jxz5bbYgF3qJpTX4e7t/fsucUz3KaLu6vr3HKHkslOhdvpxPsMDp49t1YL7lDydYNhcu7xcXDzjnD5Otw+H7h7eoJyC4JAWouWOkY7uPkvp7FtBmoztoWUgY87x6nV0MokLQdge5zUbmyngfGB4NiCj7pMXdQz1hNSKq6z6KbMbXVxjjeQccuTlv3N5XVNibvb1D0l7nZje0huo804KTdNTGCc8I5COQ3ugmBgIDg3+XwQd3R3hy7PoNfjvULlvxiNYApVWuTrcOv108M9Ojo5t9UqnVN4Hm3KSdBhO0uzWIh+/WtkvSckQJYtz7fweCCBPnwY2+c33oj8E7nt3Ak1lseDHIl772W320+dggzcbEas9oc/ZENFfX1Ev/kNwmk5OUSPPMKehD0+Du7GRrz++99nj57wenEtkfu66xAvltuuXeB2ucB9330sd1UV3mtsDPkyjz7Khi76+8Gt1WKb9ZFH2Cqocu577mGPnvB6Id3+6itwXHstYvty270baiyXC3kl99/Pbv/W1EC+L3L/8IdsfotWCyatFlvRjzzC5m9NTOCz1dcjJHPPPWwcXTx48+BBhJKuvRZjRW579oDb6UT+wgMPsNy1teA2mZCz8uij7Ja0Tgfu/n5w/+AH7InSViu46+rAfffd6Ct/8/kgJT5wAFvsV19NdNNNbJhg714orZxOfPYHHmAr09bVQQIscv/wh2xejl4P7r4+hEoffpjN37JaiX77W7xfbCy45UcKiNz794P7qqu4pSc+7/yc3m58m5xeJy3PWU5bl29lTkyvH6qn35/6PY3aR6k4pZgeXfUopUQHcg+MD9CvK39NveZeyojNoIeXP0zFqYH5Wza3jX57/LdUO1hLsZpYumvhXXRRQWDJDJ/go9dqX6Mvu78kpUJJG2dvpE3zNzHhpC+6vqC3Gt4ih8dBy3KW0dZlWylSHRnQpmG4gX5/8vdktBtpVvIsemzVY5QaE5hPNDgxSL+q+NVp7oeWP8QcT2F32+m3x39LNYM1FBMRQ3cuvJNWzwjMPfQJPnq99nXa172PFKSgK2ZfQZsXbGa4v+z+kt6sf5Psbjstz13O5W4aaaIXTr5ARhu4H131KJNPRENDRL/6FZzb9HSU1ZCX+rDbiX73O6g0Y2KIvvc9tmSGIKDshKju3LABJRzk43v/fhy6a7cjd23rVjbU39yMEiVGI+61Rx9lw/jDw+Du7kZKxUMPsaU+HA5wV1WB+7vfZXP4BAHKNPFw5ssvRwkHOffBg/h8NhtyMx9+mOVuaQG3wYC57dFH2bDyyAi4u7oQAnvoIbbUxzRZeAdouqy6Gj+5ufCQeScOd3dDuisunLt2sV601SrJBpOS0J536vSuXbh5cnNxXd5p8EeO4Mk3Px9e/aFDfO6qqqlxJybiptmzh5VlW614rc+HherwYb6c/NNPcYPk5mJx5nEfPYqnh/x87BLwuMXX5uZikdy5k23T0wPnx59bvhNmt0sS/5QU9BlPTr57t8RdU8PnPnZM6u+uLlybx33yJBxSs5l/wnNfH16bkAAHaM8edmdGPG3c48Ekc+QIvmO57dmDBSAvD07AqVNsm4oKqb+7uuDATMbNO+G5rw+vjYuDw7l3L7sz43RKkvO0NHzXZ8Pd0gLu7m5M4HKrr4fEPzsbY5bHrdVK3KIEWPbE7fK66JO2T8jtc1N6TDod0x6jVgMrJ9/buZcGxgcoLyGP6obr6ITuBIutraBmQzPlJ+RTr7mX9vewCtz6oXo6rjtOWXFZNO4cpx2tO5idEp1FRwd6DlBsRCxFKCPo867PyWgPfOL2+Dy0o3UHOT1OcPcf48rgP+/8nPTjespLyKOG4QY6oWe5K7WVEvdYL+3vZrkbhhuoUldJWXFZZHVbudwD4wN0oOcAxUTEUKQ6kr7o+oJGbIGybI/PQx+3fExOj5My4zLpaP9Rrgx+b+de0lsk7uM6TpmHyko8mOblwcnnlQNpbEQ78QDqjz9mdwIHBuDcREcjGX7fPna33+vFax0OOOXHjsHZkdsXX+DBIy8P1+aVpzh+XOLWavllNZqacB+I3B99xO7wDA7itVFR+Nm3j90N9fnwWvEQ5ooKvgx+3z6w5OXh2sG4GxvRRqfjl9WYJgs7QNNlajWeHkX5d2Qkv41KhUXX6cRkK08UViolua7djv/nJVtGRuI6Npv0Gt71iKQQAi+pzZ/bXyopb6NWg8fh4HOrVPi904n3CsXt9aKNQsFvExGBv4VqI/blZP2tVqON08lnUipxPbG2RzBujUbiPtv+Frnd7snHicMh/ZvHPVl/nwk375ygqY5v/3GiUvH7OzJS4ua1IZraOFGr8TfxROqz6W+RO8gYUCqUFKGKIKfHSTa3jdRKNTeZWKPSkE/wkc1tI6VCyW2jVqpJQQqyuq0k+ASKULLc4vvb3LbTcvBgbeweOzk8Di6TghSkUWnI6T233D7ycZOS1Uo1qRQqsrltkN8H4VYpVeTwOIJyKxXKKXN7BS/Z3DZSKBT8BG9xnNhsWOiDjW9xnLhcUxvfvHtOocD7u1yT35c+39TGt8gdbHyr1bgHRG75zo7YxuEIzR0ZifewWoNzR0R8fW5ef0+ThR2g6bKlSyHDdTqxDc8LWRQWIpyhUmG34bbbWHVLdDR+n5KCxeKaa/gy+JtuguzZ6cR1eTLh9esRzrLZ8HeejHLpUrRzOrEVe9NNbJsZM8CtVoNr82a2Km9UFLZV09Kk8Ic8jEKEfvHn5p30vnatxL1kCf/k8SVLArlvvpltU1AgScWTktCvctVCZCS409Nx0159NV8Gf8MNErfIx+NesQITZDDuxYvxPbhc+F5vuYVtk5eHMGNEBHavbruNLTug0UyN+/rrsW3ucEDiz5OtrlkDbpsNUnmebHXxYklKO2MGqlPLLTcX19NosHu1eTMblo2IALcow73ySr58/7rrJO41a4Jzr1yJ/l60CFv7clu4cHLu7Gx8v5GR4L31ViYsq1aq6Y6yOygrLosEEmjj7I00N20u81bXzr2WStNLyeFx0OqC1bQqbxWLPWMNrcpbRQ6PgxZmLaQrZrNVecszy+mymZeRx+ehgsQCbogoKy6Lbii5gaLUURQfGU+b5m9ilFkqpYpuL7udsuOyySf4aGPxRq6c/Jq515zmvrjgYu5J7xcXXEyr8laR3W2n8oxyLndZZhltmL2BPD4P5Sfm021ltzHcGbEZdFPpTRSljqLYiFi6Zd4tTJhQqVCCOz6bvD4vbZy9kUrT2DDKNXOuofnp88nhcdBF+RfRhfkXMm3o4osR9nQ4ICvnVUFesAAhLY8H9x8vtJWRgfkxOhrzyM03s4cLK5UY39nZUkkFnpz8qqtwTYcDbLyT3i+6KJD7yivZNvPm4RpeL7h5oa30dHDHxODnppvYcJtCgdfm5UncCxbwucvKJG7eSQbi7x0OvMdVV7FtpsnCKjCOfWMqMLHCc2ws/wlCNLMZzkQwCSERvHCPJ7i0lwiLsdWKxT2YrNHjwfUSE4PLjcXzyc4ld0JCcIno3yO3+OQnhsvOhttiweefjDsmJngZAJFbpWJrRX1dbpcLodZQ3F4vxm5CQnD561S5LRZc5++Je2wMC9dZcos7G4mRiUGl2y6viyZcE5QUlURKBZ/b6/OS2WmmeE18UHm3IAg05hij6IhoilIH57Y4LaRUKIOflv53zK0gBcVHxgdtY3djdyspKumsuE9Xg4+Pn3ycREUFL7tAJIX/g52WTiTtEiUlTT6+ExODlwz5e+R2u/FeU+GOizvnO0BhGfxZWlgGH7awhS1sYQvbt8++zvodVoFNpxmNSOhMToZyhedB22xIEIuIwPYgb5fA48HZNG43KpTKw01E8Prb2vBEXlzMbsWKptUi8S8vL/iBdKOjeK+kJKgjzpTb6wW304k254I7NxehrDPlttvBpFZj63Yy7vnz+TtFgoDvdnQUoaZghS51OiQDh+I2mZB0nJiIME8w7sZGPGGdLXdHB8bmVLhzclil4NfhdjjApFJhDPCeWr1efDaHA1v4wXZc2tvBPWtW8EKXej0k96G4x8aQLJ2QADUKh9vhcVDDcAMpFUoqyyjj7m74BB81DDeQw+Ogeenzgu64dIx2kMFmoJnJMykjll94UT+up96xXsqOz6bCpEI+tmOMWg2tFKeJo3np87g7IFPlbhxuJLvHTqVppUF3XKbCPTA+QD1jPZQVl0VFyZzQPOHQ1BZDS0hup8dJDcMNpFAoaEHGAm6ukMhtc9toXvq8oNydo500YhuhoqSioIUXaXAQifJZWfyUAiLsWLS0YDzOm8cf304nxjcR7kve7obPhwRhqxXjLdgi3dWFRP+ZM9nKzHLuzEx+SgERdi6bm3H/z5vH3y11uSAIOJfcRUXBCy8ODaFdKO5psPPuAP3ud7+j//mf/6HBwUFauHAh/eY3v6EVcrny36yxsZGeeeYZOnXqFPX29tL//u//0mOPPca00+l09KMf/Yh2795NNpuNZs+eTS+//DIt4+XBTJeNjBA99xwWm7g4orvuYk+UdjohJT55EgvExo04cdf/RhMESCh378ZCsWwZ0WOPsSGeAwcg3R0fx8K2fTsrR2xuxvXECr8//CEbjzYYiP7nfyTuO+9kc4WcTkgtjx8H94YNkBPLud98Eyovjwe5RY89xoYcDh7ESckWCxa2J55gb/7WVsgoRe5HHmFP8DYawd3ejhv/zjvZnBuXCxLoyko4EJdfjtOS5dxvvQVFlduN3J3HH2e3kg8dgjTdbAb39u3szd/WBu6BASzYP/gBJhs593PPoW1sLGSr8twVlwv9XVmJyezyyyGXl0/Ib78NFZnbjRydbdtY7sOHUQrAYsGEtX07e2J6ezvR889L3A8/jCMk/G10FNytreC+/XY2l8LthkT22DFwX3opSjjIud97D0oZlwu5O9u2sc7ykSMoGTE2JnHn5AS26egAt14Px+7hh9kTvE0mcLe04Bq33cbkUri9bnrhxAt0VHuUlKSk9UXr6b6l9zHhlPca36OPWj8il9dFCzMX0rYLtjEnvR/tP0p/qvoTjTnGqDCpkLZfsJ05Mb1ztJOer3iedOM6SotJo63LttLi7MUBbcYcY/Tc0edOH/S5ecFmumpOYC6Fx+ehF0++SEf6j5CCFLS+aD3dv/R+hvv9pvdPHz5anllO2y/YznAf6z9Gf6r6E5kcJpqROIO2X7id8hLyAtp0m7rplxW/JJ1FR6nRqbR1+VZakh14lI3ZYabnjj5HTYYmilZH063zb6Vr5gaW+pBzX1J4CT2w7AGG+8OWD+mDpg/I6XVSWUYZbb9wO+N0Vmor6Q+n/kAmh4kKEgto+wXbKT9R9qDX00P0y1/ioSo1Faeqy0uUWCwYJ01NuIc2bWKPe/F6UVLi0CGM6TVr8F7yMNBHH+HAUTF3Z/t2Nux0/Djea3QUD0rbtrEPTL294O7vR+7lAw+wuYcWC9EvfgGnLDoaeUnyEiX+3ETIBdy6leXesQP3pt2Oh5ft21kn6MQJlKcYHcVD9fbt7INHXx+4+/rAff/9bImSabLzmgT99ttv07Zt2+inP/0pVVVV0cKFC2nDhg00HKRQoM1mo5kzZ9J//ud/UlYQz9JkMtFFF11EERERtHv3bmpqaqJf/OIXlHyOy21/bauvx0Iybx4cAJ6UuLsbEurCQuxaHDnCysnHx/H7pCS0q6nhn6q+fz8WnHnzcF3xqcTfTp3C4lBWBmeCd/J6Q4PE7fXyJaK9vZDLz5iB3a2jR1k5+cQEFtuEBImbJ98/cAAL3/z5kMmLTyXBuIeGcNPxuNva8KTi8wXnrqmRuI8dY+XkNhsmhvh4PKnU1QXndjjA3dHB566qwiRbVgZ5LE8i2tQkcQsCX9ra1wfu/HxM2MeOsYXQbDZI5ePi4JDV1fHl+wcPSjstwfq7ulriHhkJzt3SItXz4PV3fz/6ID8fDklFBVsIzeFAX8bGwnEPxv3VV/iMCxbg+6irY9vU1EjcBgOux+NubpZ2fjj9rbVoqWqgivLi8ygtJo2O646T0RbI7fQ46UAvpNvFKcVUP1xPHaMs91e9X5HVbaUFGQuoe6yb6oZY7prBGuq39FNZRhkZbUbuyevNI83UPNJMJWklpFQo6YvuL7gy+KqBKsqNz6WM2Aw6rjtOI9ZAObnL66IDPQcoWh0N7qF6ajO2Mdc71HeIxl3jtCBjAfWM9VDtYC3TpnqwmvrH+mlBxgIatY/Ssf5jLLehmZpGmqgktYTUSjXt697HcOvH9XRq4BTlxOec5h62Bq4JHp+Hvuz6kqLUUTQndQ7VD/O5D/cdPs3dO9ZLtUMsN9XU4J5asAAOMe/k9ZYWjJOSEuxa7tvHyskHBjCHZmfjwezECbaYqceDeyMyErvS9fV4aGDAD2MOXbBAmqd43L29aDM2hnlAbq2tmAvnzgX3l1+yB5SKc39mJn5OnmRl8OLcHxGB92po4HMfPQqWBQukeUputbUSt9mMz3qe7LzuAP3yl7+k++67j7Zs2UJERC+++CLt2rWLXnrpJXrqqaeY9suXL6flf/NweX8nIvqv//ovys/Pp5dffvn074qCbWlOp4nJXjodthB5oZ24OEz84vlNhYXszk5UFJyInh44Q7Gx/BBBaioWBZ0O1+W1ERORdTr8l7elGRcHBp0OTgwvRCJyDwyAe8YMdmdHVNB0deHzx8byk+1SUrCwidy8NvHxErf4OXhMGg36cmIieH/HxIDb5cLCLN8hERVLXV3giokJ3t92e+j+jo/HU5VOB+dGXijRn1unw/cbrL9jYjBJud140uJxJyXBeXU4Qve33Y5+iojgc8fFSdw+X/D+jopCG4uF3ZET24jjxOPBjo2cW1TktbVJ3Dym5GT8XafDa3ifTeTWasEdrL/9uTkF2eI0cRQTEUODE4PkFbyUFZdF0RGB3GqlmpKikqjF0EIur4tiImK4IbCU6BRyup2ks+hIrVBz28Rp4kilUJHWoiWv4OWeqRWniaModRTpxnVkcVpoTuocJpQUq4mlmIgYGpoYOs0tPwtL5G42NJPb56ZYTSw3lJQclUwurwvcKjW3TZwmjlRKFeksupDc0RHRpBvXkdlhplnJsxjuOE0cxUbE0uDEIPkEH2XGZjLcKoWKkqOTqWm4CdwRsdy+TIpKOs2tUqr4YUmxLpVOh3EZbJxER6ON2YxdR/nOpThWh4Zwf6ens2FnUeGr18OpCHZfJifj3tbpwBZsfPtz8wQx4lwhzicFBWwILDYWP6KzlpbGciuVYBLvpWDzYFISWHS64AINf263my1gOo123naAXC4XnTp1ii71C0solUq69NJL6RjPk52i7dixg5YtW0a33HILZWRk0OLFi+mPf/zjuUA+O1u6FBLvuDhU5d20iW2Tl4cKo1lZeNK45x7WAdJo8PuSErT73vfwOrlt2oRKvHFxuC7vlO/16xE+iYmBtDmYLNufmycTzslhueUOkMhdWoqnjO9+l59z5M99ww3Bua+4QuLmybIXLcJ2b3w8tlc3b2bbZGcjNJaTg5wsHndEBMvNyyW5+WbIO0Vungx+3brJuRcuxHslJID7ttvYNllZ4M7NRZ7Uli1siEitxu/nz8dEfMcdobnFk6J5W9GXXIJwbEwMxghPJlxeLnEvX44QmNwyMhD6zcvD7s499/AXiC1b8HSYlgZu3gPMjTdCvhwbC0k8j3vtWrDGxiJsy+MuK8OYE7m/+12mSXpsOt296G7KS8yjWSmz6J7F9zALqUqpoi2LtlBZRhmlxqTSHWV30MxkNrfhhpIb6OIZF1OsJpauK7kuqAx+Y/FGitXE0vqi9bSxeCPTZn7GfLp1/q2UGJVIS3OW0vcWfo9pkxaTRncvupvyE/NpVsos2rJoC+O4KBVK2rJY4t48fzPNSp7FcpfeQKsLVlOsJpaumXNNUO6r5lxFsZpYWle4jgnJERHNT5e4l2QvoTsX3sm0SYlOobsX3U0zEmfQrORZtGXxFkqIDHS6FQoFbVm0hcqzyik1OpU2L9hMxSlsuYTrS66nNTPWnOYOKoO/6iqMk3XrUDJCbqWlmPuSkjAnylMTiOAg3HUX7rOiIoxjuVOiUCA9YOFCqWTInDns9a69FiG02Fjw8GTwF1+Mv8XG4h7lnRpQUoJrJCdjTpSnJhDhM919Nx64Cwvx/3InUORetAjvtXkzW3WaCAyXXAKma64Bo9wuvFDiXrOGzz1Ndt5UYHq9nnJzc+no0aN0gV/J/CeffJIOHjxIlZWVIV9fWFhIjz32GJMDFPW3BWzbtm10yy230IkTJ+jRRx+lF198ke666y7uezmdTnI6naf/bbFYKD8//5tRgQlCcPmgfxui0O2m0ubrXO9ctZmMKcwd5v6WcotTZTC59VTbiO2ms81kTGFu+scf3+eCabq5z8D+T6vAfD4fLVu2jH72s58REdHixYupoaEhpAP085//nJ599tnpAZzKF36u2kz39cLcf39MYe5z1mbSBXSKbc7le01nm79HpnPJ/X99fP9dcn/Ddt4coLS0NFKpVDQkSxIbGhoKmuA8FcvOzqZ5MiVTaWkpvf/++0Ff8/TTT9O2bdtO/1vcATrn1tMDeW9yMirU8opEGQxIQtNoEHLiScVtNiR0ulxQgfHyRLxeqIRMJiS48sIIgoAkPFEGX17OH5Q9PUgWTUoKzm00glutRgiLx223I1HP5UJoiydd9nqRZDs6Gpq7oQFJdqG4e3vR34mJ4OZJxf25V63iS8XtdvS30xma+8QJvF9pKV/aKQjg6e1F+GrhQj53Xx8+Xyju0VFcLxS3w4H+djqhXpOrAIkQzz9+HNwlJUiY5lljI8ZBTg62wUNxJySAicdtMklqwVWr+DkCIrfDAW6eBNjnw+c3GJCUyatyTYRx290dkrvf3E/1w/WUEJlAK3NXcqXiJruJTuhPkFKhpFV5q7i5JE6Pk45pj5Hdbacl2Uu4kmuf4KMTuhNksBlobtpcmp3C524aaaJuUzdlx2fT4qzF3AVca9FS3VAdxWviaVXeKi73mGOMjuuOk1KhpJW5K7m5O/7ci7MXU1YcO//6BB+d1J+kEesIzUmdwxzOKlrzSDN1mbooKy6LlmQv4XLrLDqqHaqdEreCFLQqb1VQ7gptBdncNlqUtYiy47OZNj7BR6f0p2jYOkzFqcXM4aynraUFIoCsLIw53vjW6ZDAK6YD8KTiZjPmXYUC9y5vB8LlwvgWK6vLVZdEmCtOnoRYYvZs9nBW0VpbIRLIzMTcxOPW68EdGxuaWxQ3rFjBzydyuTAPWq2Yu+SqS5H71CnkE4XibmtDfmJGBtaw8+QMnTcHSKPR0NKlS2nfvn10/d9keT6fj/bt20c/+MEPzvh9L7roImqVZae3tbXRjGA1QIgoMjKSIkNVCj4X1tcHGaVOh7yeW29lTx6fmIBst7ERSWeNjZDu+ietCQLkvwcOYBE4fJjoqafYheSTTyDfdjqx2D75JCujPHkSsuSxMQz4hx5icyn6+yGj1Gpx49x6K3uMh9UK7oYGsNbXQ1LP496/H9ylpURPP80m9+3ciZOJnU7cYE8+yeauVFVBvi5WQN26FTe2v+l06G+Re9Mm9hgPqxWnhdfVgbWuDqcXy7lfegncXi+4n3qKndg+/RTlCUTuJ55gnbfqanCbTHj9gw+yJ6br9eDu70f+0S23sMdh2GyQ04vctbXg9ndMBQGy/H37wF1SAm75xLZ7N054djgwET/xBOu81dSgXMLoKPr7wQfZnISBAYyTvj5w6/VsnpvdLnErFHjfxx9nuV99lejzz8E9dy645TkJe/YQvf66dKjkP/0T67zV1uL7Fbnvv5/JSRicGKRfHPsF9Y71UoQqgm4ouYFuKwvMu3J4HPSb47+h6oFqUigUVD1QTY9f8HjAuVKCINCrta/S3s695PV5aU7qHHp69dNMIvDejr30Wt1rZHfbKTMuk5648AnGCaofqqdfVf6KjDYjxWni6P6l9zMnpg9NDNFzR587zd1v6afbywLzrhweB/2m8jdUPVhNRERVA1W07YJtzHlYr9W+Rns795LH56Hi1GJ6+uKnKTk6OaDN552f02u1r5HNbaOM2AzafuF2xploGG6g5yueJ6PNSLGaWLpvyX20tnBtQJth6zD94tgvqNvUTWqlmnrNvfTd8sC8K6fHSb89/luqGqgK4JY7Sm/Uv0Gftn9KXp+XZqfMpqdXP80cmfFl95f0cvXLp7m3XbCNPaKksRHzl8EAJ+Hee5HH4m8jIxjf3d1w7Ht6kAfkb2JZDfFg3lOnIAOX17p64w0cDO31Ysw+/TQr0vjyS9y/ViseuLZtY3NumpuJ/vd/wRYTQ/T977OlVQwGcHd1gbu7G3lKcu7f/U5SAZ84gXlA7ij99a/SAcszZ4Jb/vC9fz/meZsN3I8/zgoLWloggx8ZQX9v2cI/hmka7LzK4Ldt20Z//OMf6dVXX6Xm5mbaunUrWa3W06qwO++8k55++unT7V0uF9XU1FBNTQ25XC7S6XRUU1NDHX4y2ccff5wqKiroZz/7GXV0dNCbb75Jf/jDH+jhhx+e9s8XYO3tWJTLyzGweKdX9/fDm58zB08idXWsDN5iwe8zM7E4dHTgdXI7eRI3Xnk5FiPeidotLXB+Fi6EM8E7lbijQ+KOjORLzrXaQO6GBlYGPz4eyN3ZicVSbqdOSdwDA3hS4HGbTGgzPs7n9u/vqCg+t06HdsXFWPwbG1kZvNUK7vR0TEChuNXq0P3d2gruhQvh7PJOU+7okKTbMTF8ybnIPXs2nK3GRvZUdZsNDkZaGiagzk7sPPG4lUqpv4NxG43gttn4JRXEcRiKW+yXmTPB3dTEyvcdDjiKaWmSNJ/HXV0tcQ8N8cdJayveX+TmSPw7Rjuoz9xHZZllFBsRyz0tXD+upzZjG81KmUV5CXnUbGimUXsgt9PrpOqBakqNTqX5GfOpy9RFPWM9zHtVDWJRL88spyHrEFe63WpsJYPNQAuzFpLD46D6YZa709R5mjtOE0eVukpGTj44MUhtxjYqSiqi/IR8ah5pJoPNENDG5XVR9WA1JUcnn+buHmPLalQPVpNP8FF5ZjkNW4f53AZwl2eWk8vr4krOO0c7qWesh8oyyyghMoGO645zuVsNrVSYVEgFiQXUbGC53V43ndSfpOSoZFqQsQDcJg73QDV5BW9Ibmprg6NQXg5noJblpq4ujMOyMjy8nDjByuCHhjDmCgvxsNnczJ4G7/Fgbk5Olko48MpqVFejbXk5HAWe5Ly1FX8rL0fbYNzd3bhWYiK45TL44WG814wZ+Glt5Z9if+IE3mPBArwnj7u2dnLutrZA7upqts002Xl1gG699VZ67rnn6JlnnqFFixZRTU0N7dmzhzL/tuXd19dHAwMDp9vr9XpavHgxLV68mAYGBui5556jxYsX07333nu6zfLly+nDDz+kv/71r7RgwQL6t3/7N3r++efpjjvumPbPF2BpadilaWuDE8OrApyaip/OTixymZlsKCk2Fr/X67HopKTwJd4FBXAOxIJ6vDBZRgaevtva8F9eiETOzdtJS0nBT0cHuDIy2B2pmBg4RyJ3aiqfKT9f4o6J4Yeb0tPhJLW1YSeBFyJJS8NTf2srnDFef4vcnZ1wOnjc0dHgFp2DYP2dnw+nJlR/p6fDSRIXa97Wt8jd1gZnrLCQz52aiglI5JbvpEVFwckYHJS4g/W3zSb1N69NWhqc9rY27NDwQtRpaVgYRG5efycng6O7G9zp6Sx3ZKTE3dYWnDsvD9zt7VMbJ4LA3bJPj0mnxMhEajW2kslh4lZdTolOoZToFOo2dVO/pZ/SY9IpXhPIrVFpKDs+m4asQ9RqaKXk6GRKi2G58xLyyO62U/vo/2fvzaPjqq58/y1VaZ4Ha7Ily4Nsy4M8YgMBg80UJoOZIR0DCTMkEEOTZHXS6e711spbK+nudCfdoX/9EiAEwmwDBoMZPNvyLJXmwZpq0FSlUpVqHn9/fPtwS/fsWxKxEfBe7bW8wPLRvZ/ade455569v/t0UYY+g21TnFlMqbpU6rR1fi5f59oI7jHvGFXnVUvhpoL0AirKLKK+8T4acA5QcRZ+J9ZSklOoIqeCRtwj1GHroMKMQpapMreSfCEfuFMyaFam7O9ZWbMoTZdGXWNdFIqEpAKPok1+ej51WDvI5rXR3Ly5MncGuPvH+2nAMYDvKH0ytz5ZT7NzZtOoe5Tabe2a3LNzZ5M/7KeusS5K16ezbT7v311dSnkGrk1+vvIyMHeuLCfPz0e7vj68JInfiTWdDs+cWBwUFvJ9d/Zs7CZ3deFZ5toUF+N56eqCnHy27G8qLsZz19GBRV5lpZzCILj7+/GnqEjmTk7G71qtuFZBAf9czp4Nlq4usGmNJ+npaOP3a59AMAOWOAuMsS/lLLBoFNuDx49jwt66la83YTAQ7dmDiXfLFr5zGI2oyun1Qkqtrm5LhEl/xw5MJOvXQ96pjrMGAtjSbG/HrsyNN8rbntEoiuXV18fnbmoCd1oauLkJ0GRChV+vF3LqVavic19wAbZ01dzBIEJ87e3YdbrxRrlcQDSKYnlHj2KBsHUrHlq1NTcTffQRPveWLfwCz2wGt8eDrdrVq+U2Tie4BwcR077iCp571y68GdbU4H4c98GDKCg2axa4uToZLS0IA6Wm4vNzCyXB7XaDZ80auY3gtljAfeWVPPf772PHpqYG91OXC4hGEY49fBgD3C238NytrQi7paTgOlyOl8WCarkuF7i5UggTE+A2m/HvV14pT0ihELhbWrBbtmWLxB2NRumw8TAdGjhExZnFtHXJVirKlBe4baNttLt7N+mT9XTDohtYifvgxCDtbN9JE4EJ2jxvM62rWCe1cQVctKNtBxmdRlpTtoauXni1VOE4FAnR+53vU8toC80vmE83Lb5JqjsUjUbpiPEIHRw4SEUZRbS1dis7ubdb22l3127SJevo+prraUGhnOM15BqiHW07aCIwQZuqN9EFs+USDtPl/qDrA2oeaaZ5+fPo5iU3S9xEqIZ9sP8gFWYUanJ3WDvog64PKDkpma5fdD2bKzXsGqYd7TvI6XfS5dWX0/rZcikEd8BNO9p30IBjgFaXraZrFl4jH4gaDqNPGgzojzfdxOcwHj2KMaWgAM8ltyjp6EA4PDkZFcVrmFyp4WH0b4cDpRo2bJDbuN1o09+PcfKaa+SFSziMMaCxEc//zTfz3PX14M7PRxvuRbezE9xE4Oak+SMjYBofh3xdnXZAhDFy504sAleuROkJjvujj5QitDffHP8g6i9oicNQz9ESh6EmLGEJS1jCEvbNsy8yf3+lIbCEJSxhCUtYwhKWsK/C/q+rA/S1tjNnsM1aVIStffUxAETIjzh8GKGRzZv5fBObDSoBv5/oW9/iwwheLxRANhuSzbiwTSSCrdH+foSsNm7kJe4NDeAuLNTm7usDd0oKuLnY79gYmPx+qIg4qbjPhzZWKxIOubBNJIIwUV8fQoSXXcZzNzbiT0EBuLnt4f5+hG5SUhAm5La1Y7kvuoiXisdyL1/Oh22Eaq+3Nz63wQCf5+cjtMNxDwzAB3o9/M1x2+1g8vmwXc1Jxf1+tBkdRdVoTkobieC77elB7s3ll/PcTU3o4/n58De3rR3LvWkTvx0/Pk70ySfowxdeyIcR/H48AyMjSJbmpLQiLNfTg9yEyy9npfnNI8102nKa8tLz6Mr5V0oHgRJBKn9w4CDpknR0efXlrMR93DdOn/Z8Sp6ghy6ccyErFfeH/PRZ72c04h6h2lm1dEHFBVIOjAjLnR07S7NzZ9Pl1ZdLyi019xXzr2Cl+SaniQ70HyBdko4uq76MzSdy+Bz0Sc8n5Al6aMOcDaxUPBAO0Ge9n9Gwa5iWFC+h9bPXs9xHjEeoe6ybKnIqaNO8TSx3y0gLnbKcotz0XLpy/pUst9lppv39+ykpKYk2VW9iucnhQN91uxHm5yTXgQD6yfAw/n3DBr6fHD2KnJTycvRLtXKLCOHbkyeR63bFFfzxFGYzUgaSktDfuDw/pxP92+1GmJ+rqBwMgntoCOGoCy/kuevrEb6Kx93WBu7sbIwnHLfFAm4ijEtcHtTEBNSZLhe4mWNjKBhEqsfgIJ7biy7iuY8dQ7iwrAzjF8c9A5ZYAM2UdXRAamizoUPY7Tg+ItbsdsiNz57F37u6iH7848mTTTiM03aPH0dHOn2a6Oc/l/Nb3nwTORIiF+bZZ+UB4uBBXMvvV3JRNm2a3KarC9JOwT02Jss/x8chNxaqgK4uSJdjuSMRnDgsDqQ8eZLo7/9ezhN5802it99WuP/2b+UB4tAhcPt8Ss6SWv7Z3Q1uqxXcNhtKuceawwF/C+VTRweknbGTZCRC9N//jQFS1Ob4+c/lhemOHWCPRDCQPPMMJuZYO3KE6LnnFO5oVJZ/nj0L7pERcFutODIi1pxOcIskcMEdO4gIbnGw44kT4FYvTHfsIHrjDbDs2wdu9TleR4+C2+vFPSIR+RiP3l4wCe6REciJY21iAp9NKEPa2oj+7u8mc0ejRP/n/ygHJApu9QLv3XdR5iESAffTT2PhGWv19egnHg++03AYuRQx1jfeR7899tvPD9sccY/Qg2sfnNTGFXDR747/jtqt7ZRESdQ62kp/t/HvKFWn5MtFo1H6w+k/0MGBg0RRouPm4/Tzy35OJVmTF3jvdbxHr7a8SuFomPb27aXtF22nutK6SW2OmY/RcyefI0/QQ/pkPQXDQek4jP7x/kncQ64henjdw5PauANu+t3x31GbtY0oStQy2kJ/d+nfUZpeyTuLRqP0xzN/pP39+4miuPfPNv5MWnDs6txFrzS9QpFohD7rxSGkK8sm5x6esJyg504+R+6g+3Pu6xZdN6mN0WGk3x7/LQ27UP9tcGKQHr3gUZa71doKf4+00s82/mwS9+dlHsSh0vX1RD/7mbzgeP99yM4jEUz8aWnyy+DJk0S//z0WJDodFk3q4zBMJvRdiwV/t1hQNiTWPB6M8ULd2dICJnW+3AsvKIcF19fjGVAvOAR3OKycx6h+GTx1CtwuF7j9fvlYCbMZz6UQE5nNROoyM17vZO7mZnCrX3RffFE5LFhwqxOvRVmNUAgvQKmpeDmJtTNnUH5FcPt8yLv6CiwRApspM5mweKirQ4dub5fbDA3hwaqtxZt2b68sg3e58PPZs9HOYlE6d6y1t+M+dXW4LyeV7+9H56urw8PDyY2NRmUXKSeHl5wPDYFh8WKF2+mUuXt68KDX1qI9xy1UVPG4jUY8tHV1eOPoleWvZDIp3Lm5eHvjuC0WLLCqqrCjpJbvu91YlFRUYGFgsSiDYKy1t2OnZuVKLAhNJrnNwIDCHQppc1utuE5eHu/v4WEMZIsXYyepv1/m9nrBXV4O7sFBnruzEwNdXR24OX+bTBjc6+owIHPyV6MRu0grV2IHiPO34F60CMmPAwOyfN/rxeK1rCw+d3s7JhZRwkGrn7jd4I5GWW6T00QjnhGqK63D4ZqjMveIe4TME2aqKaqhuflzacAxQHbvZG5/2E/dY91Ull1Gy0uX06BrkMxOs3StzrFOStOl0crSleTwOcjokLmNDiO5A+7PF0Zn7Wd5bje4CzMKqdXaKsnJR9wjZHKaqKawhuYVzCOjw0h232TuQDhAnbZOKs0qpRWlK2jINUSWCdnfnbZOStWlUl1pHTkDTjI6eW5XwPU5d7e9W2qj5m6ztkncVo+VTE4TLSxYSNX51WR0GsnmtU2+UCiEvltSgp3ioSHlcORJ4J1KWQ2nU7ufuFxok5ysvIBOAjehL65ciZeI1lZZBm+1ot2CBdjdFmOnmrujAwt6UXqC4+7uxuJAlPrQei4Ft07Hl7Awm+GbFSvA3dYmy+AF9/z5Crd1ctkBCofxu8XFir+5Ma67WylP4XbzbYxGfKa6OryYcNwzZIkF0ExZZSV2Oxob0TG47cPycixs2trQcefPl7crs7Pxc7MZ7Soq+G3W2lrcp7ERuxWcKqu6GpNfYyPeMDglUVUVOr3BgIeN4y4rA3d7Ozr8vHlyoUDBbbGAe/ZsnnvJEky28birqrDYaGzEGwYXSqusVLi1TieP5TYawa0uFJiVhQHNYsEbUkUFvz1cW6twFxTw6r25cxVuvZ4PXaq51btIRFDjzZmDgdRoxPemVuZlZCDkNTgYn3vJEiyCBTfn78pK+EFwcyHAykpMRo2NWJBw/hbcnZ1YtFVXyzuXgntoaGp/+/24X34+7+/KSvS7xkYMygx3ZW4llWaVUuNwI9l9dlpWInOXZJXQnNw51DXWRf2OfpqbP1cqFJimS6NFRYtoyDVETSNNVJFTwcrAFxctJn/YT41DjZSfnk9VebK/q/KqKDs1mwzDBkqiJFpYIIcuK/MqqTS7lBqGG2jMO0bLZi2TQlIlWSVUmVtJ3bZu6rX3UlVelVQoMFWXSouLF9Owe5iaRpqoPKecZufI3IuKFlEwHKTGoUbKS8ujylzZ35V5lZ9zExF7OOmc3DlUll1GjcONmtyzsmZRZV4lagbZ+6gqr4qKMlQ7rno9XgBGRhB6rajgD4VevFipkZOXpz2e5OTgmYtG+VBxZSXGq8ZGLGqWLpVVh7Nmod3Zs1hsV1XJO8V6PZ650VHcr7yc566pwaKjsRFjqdZzKfp3OMwrt+bMwT0MBixqli6Vw9fFxbiWqEkkxqBY0+nwu1ZrfO5Fi7AwNBjAxj2XVVX4TKJmEBfiniFLqMAY+9JUYI2NSg7Q5s3y1igRJobDhzGxb97MS4nHxrCFGgggl4ZbuPh8aGOzYcXOSc5FTkpfHybnSy+VH2oiMDc2gmXzZj4HKJZ70yY+d8luR3zY50NsmFsA+HxoI3JptHKXDh/GDkpVFbi1clIaGuJzDwzgWiKXJh631wt/c9wiJ8VqxeSvlbt05IiSAzQVt8hd4riNRnDrdPA3l3M1Pg5ujwf+5haKfj/aiBwgjjsaVXKAKiu1c8Wam7G9XVAAX3K5SyYT+pxOhxwJLnfJ4YAvPR7kPnALLpHbMTqKgZk7viAahb/PnsVgrZFz1TLSQmeGzlBeGnJpMlNkbrPTTAcHDlJyUjJdXn25FNoiQi7N3r695A66acPsDax0OxAO0N7evTTiGaHa4lpaW76WzaU5ajpKZ+1naXbObNo4dyObS9M62kqnB09TXloebZ63mc1dmg630++kz3o/I3fQTesr1rO5S4FwgPb17aNh9zAtKVpC6yrWsdz1pnrqtndTRXYFXVZ9GcvdNtpGpwZPUW5aLm2et5nNAbJMWOhg/0FKSkqiy+ZexuZckdOJPuByIQeIWwCInBSRA3TBBdq5NN3dmNg1csWovV3JAdq8mT/GZXAQoXsi9DeuZtbEBLgnJuJz79un5ACtX6+dSyNyly67jM+l6ehAKDknB9xcDlAs98aN/Mupy4UQ2MQE/MjlXAWDSAEQOUBaOVfHj+NFqKwM/j6POUAJGfw5WkIGn7CEJSxhCUvYN88SMviEJSxhCUtYwhKWsDiWUIHNlEWj2Pasr8e23y238JWJGxpQUTk9HRUyudjvwACqbfp8RFdfzYe3xseJ3noLW6gXXshXVA4EoKZpa0NcWqsy8d69UAKVluJAUY67sRHVPdPTkdHPVVQeGFAqKl99NR/eiuVev56vTBwIoBJ0ayu2YW+6iefetw8hkNJS7crEBgOqqaal4TpcONFohL89HqifuDCRwwH1msWC7eGrrtKuYN3Sgm3tm27iKyrv34+QU0kJuLmwXFOTUgl6yxY+LGcyQeXl8cCPnDTf6QS32Qy1xlVXyWHQWO6aGvRLjvvAAYS34nE3N4Nbrwc3F5Yzm+HviQlwq1Ukau61a9GfVNzBcJB2de2i5pFmWliwkK1MHI1G6eDAQTo4cJBmZc6iW2pvYSsTt4y00O7u3aRL0tGWxVvYisqWCcvnFZWvmHcFW1F5wj9Bb7e9TSanidaUr2ErE4ciIdrVuYuaRppoQcEC2rpkK8t9aODQ55Wgb6m9hWZlyeHE1tFW+qDrA9Il6ejGxTeyYbnBicHPKypvnreZragcy726bDV9u+bbmhWsDSMGWlCwgG5ecrMcThTh1IMHMY7ceisfBm1rUyoq33ADnycyOIj+7XAgDMxVJna50E+MRoyTXGViUTFcVIK+5RY+fHv4sFIJ+pZb+BIO7e24FhEUWVx4a2gI3OPjCP+oD0QmQv7m228jPWH1aqJrr+UrKn/wAeaM6mowcaUnjhzBmJKfjzbc0UEdHahSTwR/c+Gt4WEwjY8j3KY+EFnNvWoVqkpz3Lt3I1wej3sGLLEAmikzGCB/FIfKhUJED0+WrdLICKTiIyP495ERol/8YnJ8NBhEm+Zm5VTiX/xC7tSvvYZOlpmJwaSoSF4offYZpMRpaVjAZGWhw8ZaUxPkpqEQuINBnL4ea6OjYBoexucbGiL6x3+czB0KKdwpKciD+Yd/kGPkb7yBAURwFxfLC6V9+8CdmoqHPyuL6PrrJ7dpaQF3MAhuv59IfSCu1QqZ9NAQ8nMEd+xxIOEw5OQGg8L9i1/IMfI33sAAkpmJhVlxsbxQ2rcPJyoL7sxMWbba2gruQAA5Rz4f0Q9+MLmNzQbuwUFwDw6CO3YRKLgbG8Hd04OyA2rZ6ltvYVGamQmfFRXJC44DByZzZ2TIstW2NqI//lHh9nhwQn2sjY2B22KZzB27mIpEIIM/c0bhLiuTEy7ffhvcGRnwWVERFp4xdnDgIP2l6S+UkpxCZwbPUEZKBt285OZJbTpsHfTHM38kX8hHvpCPPEEPPXXhU5Pa2L12+q9T/0Vmp5miFCWLy0L/dPk/TVqURKIR+j+n/w+dGTxDep2eeuw9VJZdRpV5k5NAd7TvoJ3tOykjJYNaRluoMKOQNsyZfBTCwf6D9ErTK59zp+nT6NbaWye16bR10h/P/JG8IS/5gj5yBVz09MVPT2oz7hun504+R2anmSLRCFkmLPSPm/5x0qIkGo3SH878gU5aTlKqLpXOjp2lsuwyKTl7Z/tO2tm+kzJTMql5pJkKMwvpwjmTFxyHBw7TK02vkD5ZT2cGz1CqLpVuW3rb5O+tuxv9xONB33a5UHoh1hwO9BOjEQsmsxn9JHaSjEZxnRMn0C/PnkU/Ub/AvPMOFhuZmRh7CgrkifvIEaJXXsF4euYMnqPbb5e5//AHTPB+Pxbgzz47uY3TCW6hprVYwB2bKyTk+8eO4T6CW/0C8+676OPiuSwoQM23WDt6FFJ5nQ7lUFJTie68c3Kbnh5wu1zgdjhQWiX25WxiQuGO9XdsrpDgrq8Hd3c35hx1ft6uXTL3JZdMblNfD6m84Nbrie6+m74KS4TAZsqsVnTCmhp0LE7WaLNhkliwAKqG4WEMFLHm8eDnFRVoNzYmn6hNhOvn5OB+brcsxyTCwiUcVhQHo6M8k9uNN5ncXP4kdMEguEdG8FnV3CMjCrfdzjPFcns8shxTcAeDaBONyicXE032d14e7++xMXAsWICFweiozO31wt/l5VCHaHGbTBjo4nFbrZNVD8PDchubDQNSTQ3e2OL5e/58hVtdLsHnw4KurAzXiufvrCy08Xr5Nlar4u/pcnP+ttvBPW8eFjQct9+PhVFpKfqcFrfZjEE2jr9tHhsFw0FaWLiQkpOSaXBCLrtg9VjJ6XfSoqJFVJBeQP3jcikIu89OY94xmlcwj+bkziGbx0YTgcncgXCABicGqSSrhBYVLiK71y5Ltwky8IyUDKoprCFvyMu2sXltFAgHaGHhQtIl6T6vmaNu4/A7aFHRIirMLKQB54AkJx/3jZPda//8VHXxWWMtGAmSZcIC7qJFZPfZpZPXiYjME2ZK16fTwsKF5Av52DZWj5X8YT+4k3Wsv8lqxQ7CokXYkR0YwDM8CXxcOXBUHMCpLqsRCqEPzJoVv59YLJiwFy7EM8G1sdmwcF+4EJMxV3bBZsPiYdEiLLaNRlkG73CgnTgN3mqVy1OEw8pBwIsW4XngxgqzWeH2+7XHE78fbVJTeW6rFb5ZtAgvZSaTNndVFXwuPmusRSL43eLiqf2dmhqf22ZTuNPS+DIAM2SJBdBM2aJFGPQNBkwm3LZ+VRUG9K4uTOqihk2s5eaiFsXICNrV1PBSwwsuwH0MBtyX24qtrcUK3WDApMVJrmtqFO5AAGEptYnrd3Vhcqyrk+XkOTngHh7GdmtNDR/eu+ACDG4GAxZLWtyFhWiTmxufu6kJD5sWd00N3mYGB6E6U8vJs7KwczY6iu3thQv58N66dRjc4nEvWaJw5+TIhfuIcH3B7fXyByUKf589q3Crw3uZmdg5s9kUbi68t24dJqCpuIuKFGnrihU8d1VVfO6KCmyt9/RgoOS409OxczY2hp0dLe41axTu8nJ2y35x8WIqyiyippEmykzJlAoOEhEtLFxIc/PmUtNwE7mDbmlXg4ioIqeCFhUtoh57D5knzLR01lJJlp2mS6M15WvI5rVR62grLShcwJ4sv7Z8LSVREhmGDVSWVUaLi2TuJcVLqDizmAzDBspIydDkrs6vBnfATRfNvkhSZZVnl9Pi4sXUO95LJqeJls5aKoX3UnWptLZ8Ldm9dmoZaaEFBQtoXr4cTl1bvpaSk5LJMGyg0uxSTe5ZmbPIMGygdJ1cKBHgC7EAbmrCywanEiorQ5/r68OkW1srh8lSUjBWjI9jp2HBAj4MvGYNdhoMBoSsuNDO4sW4vsGACZlLKViwAP2wuRmL9g0b5FBxaSm4+/uxQKqtlcNker3C3dys1AziuPV6hZurFr1kicKdksJzi9o+zc1Y1KxfL4ekSkrAKk6Dr62VIwo6HX7X4cC1xHXVtmoVWAwGsGn5u6QEbfR6PqVghiyhAmPsS1OB9fdjUC8owEPASYltNlT4TElBTJuTQHu92EYMBpH/wOVaiFCb3Y4FAjdpR6MYPAYGsIhavlwejIjw7y0tWBxwDxARJqyTJ8G9YQMfQ/d6sfUbCKDTc9LtSATcY2N4ELnJjwg8/f1YDKxYce7cej38zXH7fPC33w9/T8W9ZAk/GBPh++/vx86NFrfRiEEmLw/cnCTXbge3Tgd/czF0nw/+9vngby7XIhLBdWw2DEzcoCa4+/rAXVfHc5tMmNjOldvvh799PiziuFyLaXK3jbZR73gvVeRU0MrSldIigQi7Ms0jzZSTmkMb5mxgpdvjvnE6YT5ByUnJtGHOBla67Q/56Zj5GHmDXlpdvpqVnEeiETplOUVWj5UWFS1ic4mIcIp7r72XynPKNbnNTjM1jTTF5Xb4HHTcfDwudyAcoHpTPXmDXlpVtoqVnEeiETo9eJpG3aNUU1TD5hIR4RR3Ef5bVbaK5SaLRVlMb9jAS6AdDjxPSUnoS5x0OxBAP/F4MPFykvNoFOPp6CgWX1o1Zzo6sDAvLUWf47gHBxFSjsftdELiTYQ2WtzHjmFnPR736dN40Y3H3dmJF6HpcGdlYYybinv9evnFmwjzTX09uFeu5KXy0SjCiMPDWNxxL1REeFnu7sazzZWwOAdLyODP0RIy+IQlLGEJS1jCvnmWkMF/nS0SkWPef02baFSO5f41bcT9ptMmwX3ubcT9ptNmpri/CNN02swgdyR6/tpM9S44nTbRaPS8Mk2nzXSYzhf3jPaTaPSb2b8T3OevzZdsCRXYTFkohMMyDx3C1uH99/Ml/vfuhQIgI4Ponnv4PJHmZqgWvF5IidUHmBJhm/n557H9ecklRLfdJockXC4ccCdk8PfeK2/ZhsMKd1kZDhRVK4mIoHB6913E0O+5h88TaWmBasHrhdRSfRAoEXhfeAGJcRdfTHTHHTz3n/6EsMySJTicVb3SD4ehcBKy7Pvu40u3798PpUhaGpQIdXK+BbW2gtvtVrjVW7ZDQ+A2mSBrvfNOmdvtJnrpJXx/ixaBieN++23IhEtK8J1wOV4HD0LdkpoK7pVMvkVbG9QWbjdUclxJgeFh9BOTCdvjd94pb5F7POBuasJW/H33yTlekQi4DxxAiPC++/gcr0OHwJ2SQnTXXXzeQkcH7udyQf579dUS97BrmF5oeIGMTiNtmL2B7lp+F6XoJnN7gh76s+HPZBg2UE1hDd276l7KT8+fjB2N0M72nbSvbx8VZxbTvSvvpbn5crj48MBh2tG+g3TJOrpz2Z20plzOW+i0ddKfGv9EE4EJunbBtXTNwmukENCIe4SeP/M8GZ1GuqDiArp7xd2TDlUlIvIGvfSS4SUyDBtoYeFCum/VfSz3Ox3v0N7evVSUUUT3rrqXzTk6YjxCb7e9TbpkHd2x9A5aWyGXQuiyddFLhpfI4XfQNfOvoWtrrpVDV6Oj6N/9/cgbu+eeyWpJIjzXf/4zwi0LFqAPqEtmRCIYJz77DKH7bdv4cHF9Pcad5GSMAVzOZHc3xgGHA33kuuvk/m21gruvD9e4+265ZIbPB+6GBoRS77tPzk2LRlEK4pNP8Jnuu4/nPnYMitDkZCjJVMpEIkLI6sUXwX3VVXg243GvXQt/c9yvvIJQ2bx5YFKnQ0SjUGZ9/DG4772XDxcfPw5/E2Gu4HIme3rAbbeD+4YbZG6bDdy9vQht3XOPXDLD7wf3qVNIcbj/fj6NYwYssQM0U3b6NGqbeL2Ibb/+utzGZMKDODqK2O7zz6OzxJrfj593dqLdn//MHzj3+uu4j9eLCef0abnNp5/igfb58P/ipF81t6glc+IE5PVqM5vBMTyMQen553HNWAsEJnO/8gqvcHrjDQwiXi8WJidPym327sUD7fOB/+OP5TYNDeB2uXANjttikbm93sltgkE80O3teLjjcdfXK9wnTvDce/Yox5Ts2SO3aWzEQsLlwgDxl7/IbYaGsEAYGsKgJGTFsRYKgbujQ+Hu65Ov9dZbCve77yp5ALG2bx9qPIljSj76iOd+6y1wnz7Ncw8PY8IaHAT3889jcRZr4TB+3taGfKq//IU9NPbttrfpqOko+UI+eq/zPTpmPia12d+3nz7s/pB8IR/t7dtLH3Z9KLVpGm6iN1vfJFfARWcGz9DLTS9LbUbdo/Snxj+RZcJCvfZeeqHhBXIFJqsFw5EwPd/wPLWNtpHda6dXW16lHnuPdK2d7Ts/597VtYuOmRju/v30UfdH5Av5aF/fPtrdtVtq0zzSTG+2vEkT/glqGGqglw0yt9VjpT81/onMTvPn3BP+yeq1SDRCzzc8T80jzTTuHafXWl6j7jH5EFPauRN1cHw+lKk4elRuc/Agajz5fHixEPVwYq21FRPtxASe0ZdektuISdRsxoLrhRdkFVgkgp+3tCCh+LXX+EM1d+7Eonsq7t270ebAAW3u118Hd1MT+rF6t2RsTHkJEtxqNVU0ip+LpOTXX8czqrb33pvMffiw3ObwYdQB8vnwGd57T27T3o57OJ3gfvFFmdtux88HBvBHLHLU3C++iGs4nbgmd6D3e++BxecDmxb3+++jzaFDGHe+IkssgGbKXC4sAsrLkWjLSdddLkxEZWVYEU9M8Asglwv/XlaGiU8t3SbC9TMzcb9gkG8zMYGOXVGB/6oHGSJMUII7K0t+MEQbj0fhFjUn1NwTE3izKi9He/XkJ7gzMsAUDPJtYrmTkmQpNZHi74oKJC1yks1Y7uJi/A63cHM68bkEN+dLu13hDoX4Ni4XBm7BHc/fglurn8T62+3W5i4omNrf6enx/f1FuMvLsYsYz9+lpfC3280vOB0OhdvrZZnGfeOUpk+j8uxyCkaC5A7IbdxBN4UjYarIqaDkpGRyBmRuV8BF/pCfyrPLKScth8a8sr9dARd5gh4qySqhWZmzyB1wkzc4mTsUCZHD56CCjAKqyKkgT9AjLZKIUFMoTQfuUDjEtnEH3BSKhj7nHveNs218IR9V5FRQblou2bw2KczlDrjJE/RQaXYplWSVkDvoJm9oMnc4EgZ3usLtDjJ9wG7Hjo/o31r9JBxGG52O7ydijKuowO6n3S5PyKJflJQgcV/0m1iLRLDwycvDtbSeS4cDu42if3Nt3G6FW6/Hdbk2Ph/6ZG4unhs1t8eDPyUl+CP+HmvhsMId77m028EyXX/r9VP7Oy8P11WHngSD4Nbyt90+tb+dToU7HOa53W58pooKfDecv2fIEgugmbIVKxD2aG1VDgxV27x5yOTv70dHuvRSOSSVk4OQltOJdqtX81uxmzfjPq2tCFtwIal16xDOam5GZ+S2a5cvh8qmtRWdleOurgbHwAAGnIsv5k+Dv/RSLFZElVCOe9MmTMii6vBU3GVl2tzC3zodH26bO1fhHh8HNyeD37gRD3tPD7i5wzk3bcICSEhyuVDa2rUIwzU3YxHAbTMvW6b4OzlZm3vNGqjF7HZwq0MNmZmo1up2x+e+/HKlaNnChTz3mjUIwwluTuK+bBnCke3t4L7ySrlNZSV8YDJhArnoInnrOz0dvvR6ESqoq2O5L6u+jLJSsqhlFNJtTiq+umw1VeVXUfNIM83KnMVK3JeVLKPaWbXUbsXb7BXzZH9X5lXS2oq1ZHaayea10YY5GyQ5eZo+jTZVbyJv0EvdY920snQle6joxrkbKTs1m1pGW2h+4XxWKr66fDXNzZv7OfdFlXKl4KWzltLSWUup3dpOUYrSlfOulMJWs3Nn07qKdWSZsNCoe5Q2zJa5U3QptGneJvKFfNQ11kUry1ayp7jTxo0Ye5qb8dxyIdc1axD2bG7G98pVOK6tRV9pb8ekyoVlKyrwjA8OYrd4wwZeTr55MxbdnZ3oJ5zi6NJLMWkL6TYXcl29WpG4cwUHidC3ly3Dbk04DG61DL68HGPR0BDUW+vXy3JywR0MgnvFCl4qfumlYGluBpsW99y52gUeBffy5eAOBsGtVsOKMXRoCH8uuEBWpul0+N1gENdasYKX5ouxqLkZbBz3qlWKv/Py5EKJM2gJFRhjX5oKbGwMoZb8fEzunPTP68VklJqKB46TbofDaBMIoA0nlY9GsSU8Po6JjTsGggjbzCYTFhRcjgwRJtmurqm5W1vxgC9fPjX30qW85DwahY/s9vjcFgsWANPhzsvD4DgV97JlvHQ7HEYbvz8+99mzSkFIrZi24K6o4HN7iPCddXbG5/b54Mt43JEI2vj9mHi0ys13d2PHZuFCbe7BQSwUp8Odm4tBPR63Tod+Eo/b54O/NbjPjp0lq8dKCwoXsMdXEOGYhwHHAJXnlEvVjYU5fA7qsHVQblouLS5azEq3/SE/tYy2UHJSMi2btUzKNyJCOKl1tJW8QS8tnbWUPZ19utxDriHqH++nsuwyNicpljsnNYeWFC85L9y1s2pZqTwRYSE9OoqFBFdSgQgTaH8/JlCu9AYRXt7a27GgWrKE7yd+P/pAUhL6CSfdjkQQKvV40L+509mJEEIdGcHCjSupQITwbF8fFixapTcEd3Y27sdxBwKY2JOS8Fyq86SIMFa0toJ7yRJeKn8+uScmwJ2VFZ+7pQX/H4+7rQ0vVfG4+/rAVV3NH7tBhM/V24vPpVUy5K+0hAz+HC0hg09YwhKWsIQl7JtnCRn819UiEWT3q/M1Yi0axc4FF1+NNZeLj5/Hms+H+8WTGwaDylEH8bhttqm5x8dnjjsUOr/cXB7RV82tzo9R23S43e6puUXJ+nPljkbPG7c74KYx71hc+bY/5CerxxpXvh2KhMjqsVIwrM0djUbJ5rFJeT1qc/gcUhLxuXCHI+EpuQPhwDlzk8PB54dMAnfzeS2TwP+nn4S1uT/vJwFt7s/7iTrP5K/h9njOD3c4/PXjDgTOH/fY2NTcTufXi3sGLCGDnynz+ZRDHgsLiR58UI5ZR6NQSHz8MUID3/kOH48+fBiqnmAQcsTbbpO3NTs7cRjm2Bhirg8+KMsRrVai//xPbFnPnYtDTtVb2z4fDtM7fRrcDzwgx6yjUSiA9uxRDra79FKZWxw66Pcjnnz77XIcvasLh6YK7gcekEN8NhvR73+PLdTKSqLHHpO3iP1++Pv0aYTuHnxQjllHo1BcffQRuO+6C7kOahOH9/n9yMm54w6Zu7sb/rZakY/w0EM893PPIZRQWQl/q7eIAwH4++RJcD/wALat1dw7d0K5otdDun7ZZTL3sWPg9vmQV3PXXTJ3Tw8OQrRaEdd/6CE5xDc2Bn/39CDc+Oijco5AIKAcTpmfT/T978tHlESjUMjt3q3Im5mcsuPm4/RS40vkC/no8urL6e4Vd0snj/fae+m/Tv0XjbpHaXnJcnp43cPSyeN2r51+f/L3dHbsLM3JnUOPrHuEynMmV68NhAP0/Jnn6YTlBOWk5dADqx+gZSXLVNhRerfjXfqg6wNKTkqm25fdTpvnbZa4T5hP0J8a/0S+kI8uq76M7llxD8v9/536/2jEPULLSpbRw2sflkJl475x+v2J31P3WDdV5FTQoxc8ShU5k0tmBMNBer7heTpuPk45aTn0vVXfoxWlqny5aBRqm/feg79vvZXPzTp5EqomrxfP7Xe+I4ew+/vRd0dG8L0+/LAccnI40E+6upAP8+ijcsmMYBBqovp6hFDuv1/OO4tGoSB6912Ma7feinFObadPQ1Hl8SCP5LvflbkHBsA9PIzn6JFHeO7nnsOYWV6ONuqweigE7qNHEUr63vfkPKhoFH1bqJq2biW65hqZ+8wZcLvdGN+3bYvPvWQJmNQhJ3H4ans7nsdHHpHD06EQvtsjR8B9//18Xs6HH2JMISK6+Waib39bbtPQoCg3L74Y3OoQttEI7qEhzG+PPirng05MoE17O8a/Rx/VDqt/yZbYAZopO3UK0tCMDEwkb78tt+nrQ80GoXB49VX5bdrrxc9FNv+uXaxMmN5+G/fJyMB9teTkp0/jwTh9GtJstZ0+DRl0PO7+foXb4YAkVf224fOBW6ia3n+f596xA7k08bjFz7Oy8FBy8v0zZ8Cdng6/ihoXsTYwgMkhHAb3q6/KO1h+P6TYNhsG4/ffB5/a3nkHA39GBmSgnJz8wAEsEKbi3rsX3P39PLfJhEE2HMYg+Npr8o5KIIDFptUK7t27sUiLx33o0NTcjY0oPaC2hgb0H8HNlXkwm8Et1DhCnhtjwXCQ/tL0Fxr1jFJyUjLt7t5NnbZO6VLvdrxLHbYOykzJpMPGw6yc/ODAQTpuPk6ZKZnUONRIH/fI5RIMwwb6rPczStOlkdFhpNdbZO5B1yC92/EuBSNBcgVc9HrL6+TwTZY3hyIh+ktzDHfXbuqwyvLm9zrfo3ZrO7gHDlO9qV7m7j9Ix8zHKDMlkwwjBvqoWy47YBg20Kc9n1KqLpWMDiO91vKavOs0NITnKRDApPXmm7KKMxxGvx8exiT80Ue8LHvXLkxYmZmYTOtlbjp0CItucfI6Vy6huRkveKmp6MevvirvJoyMKNweD7jVashIBP17aAiT8J49yE/huNvaFO4jR+Q2hw/j8wju3XLZgUncFgvPPToKbp8P4/Rbb8lqyEgE48ngIPKa9uxBPpDaPvgAP8/MxKKL4z5yBP8mRAwcd0sL7pGSgntqcb/1FpgFt/pg7GgUvxvLLXKGYm33bvw8MxN9gZPBx3K3tuKzfkWWWADNlIVC6Pzp6RhouK2/UAgDUno6il6Jv8daJIKfp6aiXTjMbzUGg7hPejo6L9cmHMa/iTahUPw2WtyCIT0dXNPl5u6n5tZqI5jE/dUm/J2RgQGSC93Ecqel4f/VYaBIBL87lb8DAbxlZ2Tgd6byt/gcXBvBrdPJ5QTEZwuHwTyVv1NS4vv7fHOnp0/P36mprC8j0QiFIiFK1aVSuj6dwpEwGyoKRAKUTMmUrk///HckN/3PzzJSMoiSiA2DhSIhCkfDlK5PJ32ynvxh2d+hSIhCkRCl6dIoTZ9G4UhYul80GqVgOEgpySmUkZJB4WiYwlGZOxgJki5ZR+n6dIpSlG0jfpaRkkHJlMx+tnA0TJFohDL0GZSSnMKH+IR/09K0x5NoFH1A9O9QKH4/SU9X+pbkqBCul5GBRTfXB2LHuJSU+G0EN/fMRaPKc5mRof1chkJgmc44KLi1xsFY7njjYCy3+lqCe6rnMhhU/K01DsbOKcnJ8bkzMhRu9QKI49bqJykpU/v7i4wnyclfaRgssQCaKVu9GjLRwUHUQLnhBrnN/PkIwTideBCvv17ers3Kws+Tk7FrcemlfBb99dfjPoODuO/q1XKbb30L4SyTCduVXNhq1aqpuaurZW71dm1mJn5Xp8Pu1qWX8rLs665DOGtwUPEZx71kCbgXLuRllKtWKVLaggKee+5cyMDF7sm118rbtRkZRDfeiEndbgf3woU8d2kp3g5XrYLcW20XXQRusxnX4MJWdXWTubdskdtUVYHb5cJAcu21snw/PR2/m5IC7m99iz9Q8dprsX0+FXdtLfw9f742t5DS5ufz3JWVCnckgvCAijtNn0ZbFm+hVF0qjXnH6FtV36JFRbK8+dsLvk3lOeVkmbDQytKVtK5inYw95yKqLa4lk9NE8wvm0+XVl8vYpXW0YfYGGnINUV5aHt20+CapzZzcObRp3ibyBD0UjoTpmgXXUGHGZHViii6Fbl5yM6Xp08jqsdIlVZew3NcsuIbKs8FdV1rHcl8450JaOmspmZ1mmlcwjzbNk8OEy0uW0/rZ62nYPUy5abl005KbZBVYRYVSUiAUgr/VKj+9HiGPtDTsFl5yCS9vvvpqXM9iUb5rCfxChMdMJjxbm+UwIS1fjnYjIxjbbr6Zl8Fv3gzuYBD3Vh9ArNPhdzMysFtx8cU891VXIZxlsSDEy3Fv2ADlk9kMbq70xLJlk7m3buVPsb/iCuwABQK4tzo0L7gzMxVudahYcFdWgnv5cr70xIYN+EwWC9py3EuX4h4jI5g7br6ZP8X+yivBHAjg/9Wh+eRk/G5WFq6lxX3FFRifzGZt7vXr8W+CmwtvzpAlVGCMfWkqMJ8Pg0N+Pn+iOBFWxwMDmLhmz+Yli9EoOlgwiM7GSc6JMKCNj2MAUOf/CHM6sf1dWsqfAEyEXQijEbJsLfnrdLktFjxk58o9MYHJ9nxx6/W4Xzxuvx/cnHQ7lnv2bL40geAeHgaP+jgJNXdurrb8NRxGG53u3LltNiySpuIeGgLPuXBHIvB3PG4iskxYyBfyUVVeFXvKORGRzWMju89Os3NmY5eHMVfARYMTg1SSVUJ56Tx3IBwgo8NIOWk57AnuRNiZGnAMUHJSMlXmVvKnnE+Te8w7RmPeMarIqZDylmK5h1xDVJxZLB2DoebOTs1mT3AH+P/4OzkZk43WqduDg1hwxOsnY2P4U1HBl4IgwuJ2aAjjm3pR/jl4AP0kO1tbJh2JoE1S0tTcHg+4Oan8dLndblyrqEiuqSUsGIQvs7L4E9xjuYnApMU9NIR7xuO22/FsiiK0M8VdWSkvks43t8eDsSke919pCRn8OVpCBp+whCUsYQlL2DfPEjL4r6t5vVAajIxotwmHkWQ7MKAtNYxG8e9nz/JxX2EjI7hfPFmyw4GkR/WZNbHm8+E6w8Pnzm00Ihn3XLmdTnDHK6P+Rbj7+8+dW5zhNlPcPT3nlzueTHY63H4/rjM0pI0dCVOPvYf6x/s1peLRaJRMThN1j3XHla9bPVbqtHWSJ6jNPeGfoA5rB9m9ds02/pCfOm2dNOTS5o5EI9Rj76G+8b4Z4aaJCfibO3rmc3A/EtgHB7XbRCLoJ3198aXLZjP6SbwyB1Yrvl/ueAM1N3eEi7BAYHrcvb3T4+7qis9ts03N7XKdX+7e3vhlJSwWXCte/ovNBqZ4pUW+CLfFMjPcY2NTc7vdyjmFX6ElZPAzZU4n0b//O7Lec3Mhy1bnW4RCkEAfOoRt6FtuQf6J2nbtghorFEJuxwMPyNvWp05BBu5wIFb7wx/KoaKBAaLf/haDSEUF0Q9+IFdvnZgAd0sLfv/735fj6OEw7iW4b7oJ8WK1vf8+uAMBcD/4oMx9+jSuNT6OmP6TT8ohF6MR3CYTtll/8AO5Cqqa+3vfk4+eCIch3T5wABxbtiC2r7bdu6FECQSQD/PQQ/L2b0MD5PuC+4c/lEMAJhOYTCZsRf/gB3L+lsuFz9bUhDyq731PjqOLA0P370coacsW9BW1ffghuP1+5C88/LDM3dgIbrsdeWBPPilvSZvN4DYawf3EE/KJ0m43uA0GcN93n3QUQiQaoRcbX6R9ffsoOSmZbqi5gW5deqsUTtpzdg+93vI6+cN+2jB7Az287mHpxHTDsIH+6+R/kd1np0VFi+iHG34o5eVYJiz078f+nQYcA1SaXUqPX/A4LSycnL/lDrjpd8d/R4ZhA2WlZtF9q+6jiysnHykQiUboxYYXaW/fXkpOSqbra66n25beJnF/fPZjeq3lNfKH/XRBxQX06AWPStxNw030X6f+i8a8Y1RTWENPXvikxE2Dg/B3fz9CiY8/LudveTxEv/sdvr+sLJzyrS6ZEYlAAv3ZZwhpXHstSg+owzKffAKFj8+H/LNHH5VPHm9uhuTaZkPu3lNPyflEQ0NE//ZvCvdjj8mlPrxecDc0IBy1bZucexiJ4JDUTz8F67e/jRIOau7PPoMSzOvFmMRxt7ZCmi+4n3xSTj8YHgZ3Xx9C0489Jpf68HqJ/uM/oNLMzITkXl0yIxpF2Qmh7rzmGpQEUXPv3Uv08su4pvC3OtTf1oYSJTYbnrUnn5TD+CMj4O7txWd67DE5D8rnA/fp0+D+m7+Rc/iiUSjTxOHMV1+NU9zV3Pv34/N5PMjNfPxxmbu9HdxWK8a2J5+Uw+Gjo+Du6UEfeuwxudTHDFliB2im7MwZ/Jk9Gytk7sTh3l5IqMXE+f778ira7VZkg/n5aN/TI1/r/ffx8Myejftyp8EfPow3o8pKrOoPHuS5T5+eHndeHh6aDz+UZdluN343EkE9oUOHeDn5Bx/gAZk9G4M7x33kCN4eKivx1spxi9+dPRuT+65dcpu+Pix+YrnVO2FeryLxLyyEzzg5+e7dCndDA8999Kji754e3JvjPnkSC1KHgz/heWAAv5ubiwXQhx/KOzM+H7hDIQwyhw/zp2V/+CEmgDlzsHg5dUpuU1+v+LunB+UFpuJmTngecAzQvr59lJ2aTfpkPe3p2UN23+QdDn/I/7nkvDizmI4Yj1CXTeb+sPtDGnYP05zcOWQYNtApi8xdb6qn9tF2qsytpF57L+3v2y+1aRppohOWE1SeU04T/gl6t0PmNjlNn3OnJKfQnrN7pENTA+EAvdf5HgUjQZqVOYuOmo6yMvg9Z/fQ4MQguEcMdMJ8QvZlfT0mwMpKLCb27pXbNDWhZEFZGZ61d9+Vd0rMZnxXWVlY+H78sfzGHQrhd/1+TLBHj/Iy+I8/xtu/OMvuBMN97NjU3M3NaFdWhjGB4x4cBHdmJhY0n3wiy7JDIZRw8PuRR3TkCC+D37NnMjdX5uHYMSyU5szBIp8rB9LSonB7PLg3x713L/Lo0tKwEFLv9ofD+F2fD9xHj/Lcn3yC72/OHNyb4z5+XOE2mfiyGq2t6E+Ce+dOeYdnaAi/m56OP59+Ku/iRiL4XXEIc309L4P/9FOwzJmDe2txt7SgjdnMl9WYIUssgGbK9Hq8hXk8eHjVbyqijU6HSdfvx6ClThROTkY7vx/t9Ho+aVHIXj0e5Xe4+xEpoQ8uqS2WW0gluTZ6PXh8Pp5bp8PP/X5cKx53OIw2SUl8m5QU/Fu8NsKXU/lbr0cbv59nSk7G/URtDy1uIes+H/4W3MHg1P3E51P+znFP5e+/hps7J2ga/VufrCd9sp68QS/5Qj7SJemkROHkpGRK06eRP+wnT9BDumS5DRFRmg5ydE/QQ0mUxLbRJ+spKSnp89PNuXOw9Ml60iXpyBP0UDASpDRdfG5vyPv539XcKboU8ofAzbUhIkrVpVIkGiFP0EPJScl8orRej37tdmOS1eonou8KObhWm9h+ov5+k5Lwu9PpJ5HI1P1EcEciU/dvIb/XauPzaXMnJ0+fe6rxRHB7POCOxyS4pzMOxvO3qHE0HX9PlzteP3G7FW71zo5oE8/fSUn4XVFTSos7JeWLc3P+niFLLIBmytauhQTY74cEmgtZVFcjnKHTYbfh7rtlVU5GBn5eWIhB4MYbeRn8rbdi29zvx33XrZPbbN6MrWOPB//OySjXrkU7vx9bsbfeKreZOxfcej247rpLVlukp2NbtbgY3DfcIIdRiOCXWG5OtnrZZQr3mjV8dds1ayZz33ab3KaqSpGK5+fDr2rVQloauGfNwkN7ww28DH7rVoVb8HHc69djgNTiXr0a30MggO/19tvlNnPmIMyYkoLdq7vvlssOpKZOj/vmm7Ft7vMhFMHJVjduBLfHA6k8J1tdvVqR0s6di+rUKpudM5tuXnIzpepSKTctl+5afhflpk0Oy6boUuieFfdQaRbUQdfVXMeeqn7TkptoSfES8oV8tHHuRtowR+YWP/cGvbSqbBVdveBqqc3K0pV05fwrKRAO0Nz8uXTncpm7PLucti7ZSmn6NMpNy6U7l98pKcr0yXr6zorvUFl2GUUpStcuvJYWFy+WrrVl8RaqnVVLvpCPLq26lD2hnjZuRMjS50O1Ya4qb10dvodQCP2YCxGVlaFfpqejf9xxhxyW1enQT8rLMRldey0vJ7/xRoQpfD5I5bmT3i+5BNxeL/g47hUrEBoKhbBTxIWISkowzqSn43m8/Xb5UOTkZIU7HAY3F0a58UZI2H0+hAi5E9MvuQQ/9/nAx3EvX65wz5kTnzsjA9y33SaHCdXc11zDy8mvvx739PnAxnGLzyO4r7tObrN0Ke4RDoObC23NmgXuzEz8ufVWOdyWlITfnTNH4V6+nOdesULh5k4yED/3+XCN66+X28yURb8G9rvf/S46d+7caFpaWnT9+vXRY8eOabZtbm6O3nLLLdG5c+dGiSj6r//6r3Gv/ctf/jJKRNEnn3xy2jwOhyNKRFGHwzHt35mWhcPRqM0Wjfp88duNj0ejLlf8Ni4X2sUznw/3C4e12wSD0ajViv9qWSRy/rkjkW8Wt9sdjdrt54fbZpset9cbn2l8PBqdmIjfZjrcfv/U3KEQ/B0IaLeZJrfD54hO+ONzuwPuqN1rj0bicPtD/qjNY4uGI9rcoXAoanVbo4GQNnckEomOecai3uDXhzsaCsGXU/l7bGzqfuJwzGw/OZ/cTmf8Nh4PrjWT3B5PfCan8/xyh0LfLO5AYPrcfn/8+/0V9kXm769cBv/aa6/Rtm3b6LnnnqMNGzbQb37zG3rjjTeoo6ODSphaIidOnKDXX3+d1q5dSz/60Y/oxz/+MT311FPstU+cOEF33HEH5ebm0qZNm+g3v/nNtJgSMviEJSxhCUtYwr559o2Swf/Lv/wLPfjgg3T//ffT0qVL6bnnnqPMzEz64x//yLa/4IIL6Fe/+hXdddddlMbFYf/HXC4Xfec736H//u//poLzXGjprzabTUko1Vp3ejxIMGxo0JYuh0L49xMntKXL0SjuU18fX2poMiERTxTB4mxsDNdpbz837nAYybLHj58/7oGBc+P2esF95sz0uLWktNEoEpzr66GA0DKzeWpuu11JhI3HffLk+eHu6po+d3//OXH7Qj46aTlJZwbPaErFw5EwGYYNdNx8nFwBbSltl62L6k31NOoe1WxjmbDQUeNR6h/X5h73jVO9qZ5aR1u1T3H3+eDv06e1JdeRCBLJjx+PLwHu7oaf4pXDsFjg774+7Tbj40jMbWnR7ifT5RZJ1WrxwhflHhwEN3fOnzCHY2puvx8J+adPa0uuBfexY/G5z54Fd7yyEkND55f71Kn43CIZPN7p6z09YJoONyeEEeZ04l7NzdoS90Dg/HPHKYdBw8NTc8+AfaUy+EAgQKdOnaKf/vSnn/8sOTmZrrzySjp69Og5Xfvxxx+n66+/nq688kr6X//rf8Vt6/f7yR9z5pIz3pf719roKNGvf41BJDsbslV1qXi/H1LikycRm7/2WshEY2O20SgklLt3Y4Jbtw6SVPVicN8+nF48MYHcj6efluWIbW24n6jw+8MfyvFoq5XoV79SuLdtk3OF/H5ILY8fB/c110AGreZ+5RWovEIh5BY99ZQso9y/HyclO52QrT7zjFwttqMDMkrB/YMfIM4fazYbuLu6EI/ftk3OuQkEIMk9dgz5S1dfjdOS1dyvvgpFVTCI3J0f/UjOzTp4ENJ0hwPcTz8tV13t7AT34CBi7E88gXi5mvvXv0bbrCzIVq9W5a4EAvD3sWPIKbj6asjl1bH9116DiiwYRI7O9u0y96FDKAXgdCLn6OmnkZ8Qa11dRL/5jcL9+OPyCd5jY+Du6AD3PfdIuRTBcJD+88R/0lHjUUpOSqYr519JD6x5QJKTv9n6Jr3T8Q4FwgFaVbaKtl+0XaqYfHjgMP3hzB9o3DdO8/Ln0dMXPy2dmN491k2/qf8NWSYsVJxZTI9f8DitLFs5qY3da6dfH/n15weU3r38brpukSqXIhiElPrIEfh782aUcFBXy33zTShlAgHk7mzfLueUHTmilHmoroa/1Semnz0Lf5vNyJl79FH5KJvxcfhbHPR5111yLkUohFO3Dx9G39i8GSUc1NxvvaUcPlpXByY199Gj4LbbkeP19NPyiem9vUT/8i/gLioCt/ooG4cD3K2t6It33imX+lBzX345SjiouXfsQFkNvx/P0dNPy0cHHTumlHmoqkIb9cnjfX3gNpnA/cgjcokSp3My9x13yMe9hMO418GD4N64EddSCxR27oTPRe7O00/LOXzHj+NaY2Pg3r4d/421/n5wG43IkXr4YTn30Okk+ud/xsIlIwN5SeoSJbHcRMgFfPRRmfvdd9HHvV7k7jz9tFxa5cQJlEsYG0P/ePppubTKwAC4BwbA/dBDcomSGbKvdAfIarVSOBymUtUEV1paSkPxVo9T2KuvvkqnT5+mX/7yl9Nq/8tf/pLy8vI+/1OpfkDOhzU1YSJZuhQPOCcl7u3FDkp1NZIVDx+W32wmJvDz/Hy0a2jg31r27sXAvXQp7tvcLLc5dUo5I2doiD95vblZ4Q6HeYlofz92IubORQ2ZI0dkObnLhck2N1fh5lb/+/ZhIF62DBNBU1N87uFhXpLb3IxFRG0t3ly0uBsaFO6jR2U5uceDgSEnB8nUBoM2t88H7u5unvv0aQyyK1bgLZqTiLa2KtzRKC9tHRgAd2UlBuyjR+VCaB4PpPLZ2ViQGQy8fH//fnAvXart7zNnFO7RUW3u9nYlEZXxt9FppNODp6kyr5KKM4up3lRPNu/kXT5fyEf7+vZRVkoWLSxcSIZhA3WPydwH+g+QJ+ih5SXLqcfeQ4Zhg9SmYaiBTE4TrShZQVaPlT15vXW0ldqsbVQ7q5aSkpLo017G3yYTvrs5c7AgOX5c3p30+xXpdk0N/Mj5+8AB7MYtX47n1iBzU0MDJrUVK5RdY7W1teHPkiVYGHzyCS+DF6UgSkrArZaTBwLgzshQuDs75fsdPIixZ/lyLBgaG+U2Z86Ae/ly9EfuJbatDX1lyRK8dHz6qcxtseAZr6hQuNW7TqEQ+lh6OmoNaXEfOqRw9/fz3A0NeKaWL8dCiTt5vb1d8XdKCrjVuymDgxhDy8vBfeKEvHsjuNPSUGuoqYkvO3DoEMZQwd3QwHP396PN+Djv744OjIWLF4P7s8/kA0rF2F9aij8nT8q7N2LsT0nBtZqbee4jR8CyfLkyTqmtsVHhdjjwWb8i+8pDYOfbjEYjPfnkk/Tyyy9TutY5Uir76U9/Sg6H4/M/xnjhoL/WsrOhzDGbMQCq1QGiTVYWBgCrFYsF9c5Oejp+brWiXVaW/NZDhOu73bhfairfJjcXbypmM/7LxUuzs8FgNmMRw51hJrgHBzHA5ubKOztpaQr34CDaq996iPBG4PEo3FybnByFW3wOjik1FT5yubT9nZmpcGdnyzskqam4/tgYrpWZqe1vrze+v3Ny8FZlNmPQ585Kiu0nExPa/s7MxCA1Oorrctz5+Qp3PH97vWiTksJzZ2cr3JGItr/T09HG6WT9nZ2aTVkpWTQ4MUgj7hHKTsumDP1k7pTkFMrPyKcx7xiZnWbKSsmi7FSZqSCjgHwhH5mdZkrRpVBOqvzZslOzSZekI5PTRJFohPIz8tk26fp0MjvN5PQ7qThzGv7OypL9rdcr/jabtftJYSEWS2Yzfieev00mTDxa/STW38XF8g5gVhY4hoeVQzzV6kzBbbfjWlr9pKAAiyXBzbWJ7SfxuDMy0MbhQD9Rc4vxZGgI7By3Tgcmux1+0hoH8/MVbp1O2996PdqEQlNzj4/z3IIh1t/qnTSh8B0fn9rfweDU/o7l5s7oE74T/i4okHfSsrLwZ3gYf8TfYy05Gb/rcMTv3/n5YJmuv4NBWeE3g/aVhsCKi4tJp9PRsGqVPDw8TGVah7ZNYadOnaKRkRFaE7P1Gg6H6cCBA/S73/2O/H4/6VRbe2lpaXHzic6LrV0LifehQ3hjueMOuc2cOagw+u67eNjuuUdeAKWmItwhKqBu2SJvRRPh+j4fOtm3v82f8r15M/69rS2+LPuWW/AGuGgRK2+migpwv/OOItNXL4AEt6iAesMN8la04BYLiWuu0ea2WBCLX7OGl2WvWoXt3oMHEQK86y65TXk5QmPvvAM+jjslReH2eBBmUG/pEuFebjcG46uv5mXwmzbhczU3g5njXrkS1zpwAG/kd98ttykrU7hTUviyA3o9wnkvv4wFYDxulwvcV1zBb0Vffjm4m5rQR7Rk2bfdhh2lhQvRd1VWklVC9666l3a07yB9sp7uWnYXZaVOHmh1yTq6f9X99LLhZXIGnHR9zfU0L18u83BL7S3kCrhowDFAm+dtpvWzZe7L5l5GRoeRmkaaaFXZKvr2Apl7RekKumPZHbS3by8tLFxIf1P3N/JnmzULId2334Zf77xTHth1Ovj7z3/GguS66/gyD1u34t8HBtAfLtSQwRuN2B1auRKhcLUtWwaOTz+Fv7/7XblNcbHCrdPh2VJPpMnJ4H7pJXBdcw12DLW4+/tRzkGL22TCW39dHS9vFtyffIL7bNsmtyksVLiTkyGDVy+6k5IUbocDz5y6WjYRwj0OB3atNm7UlsEbjdjBqqvD2KS22lqFe/58OTWBCAuEe+9FeCspCdzqRUlSEj7bSy9hEXTVVXK1bCKM63b79LhPn8ZuIXdqwJIlGB8+/hj+/u53Ze78fDC9+Sb+fttt8iIwlntsDNxa5RLsduySX3opGNV28cXo/6dOoT9w3DNkX7kKbMOGDbR+/Xr67W9/S0REkUiEqqqq6IknnqCf/OQncX+3urqannrqqUkqsImJCepXJWref//9tGTJEvrxj39My7naBSr7UlVg0aj2CcGxbYjit5tOmy9yv/PVZiqmBPf/89xiyNE6UX26bUS7mWrzTfV3gvs8M31Tuc8H00xz/xX2Rebvr3QHiIho+/btdO+999K6deto/fr19Jvf/Ibcbjfdf//9RES0bds2mj179uf5PIFAgFpbWz//f7PZTA0NDZSdnU0LFy6knJwcaZGTlZVFRUVF01r8fOk2nS/8fLWZ6fsluL9+TF9D7ikXGtNscz6vNa37fUP9neCe4fsluM/vtb5E+8oXQHfeeSeNjo7S3//939PQ0BCtWrWKPvzww88TowcGBig5JmZpsVhodYwi4te//jX9+te/pssuu4z2cYnFXyfr60PYpqAAFXfVWfZEyJE5eRIhmQsvlEMbRAjF1Ncjtr1uHZ8nEg5DAWG3I8GVqxYdjSKsYTQijFZXx3fKvj4kLubna3PbbODW61ElluP2epGoFwggtKWuNiq4jx/HNms87uZmbKPG4+7vh7/z8sDNlWWP5b7wQjn2Lbjr65G7EY/7xAlcr7aWD39Eo+Dp70di6sqVPPfAAD5fPO6xMdwvHrfPB3/7/QgVMnW1KBJRknqXLOHDH0TUMtJCfeN9VJFTQavKVrELhgHHADWPNFNuWi5dOOdC9pgHu9dOx83HSZesowvnXMjm9/hCPjpqPEq+kI/WlK+h0uxSqU0kGqET5hNk9VhpcfFi6ZDTz621FcnGFRUIi3L+NhrxHOTmwt/ckQJ2O/ydnAx/c7kNfj/8LSp9q9WLRPD3iRN4zhcv5qtzx3KXlyMMzXGbTMrhsxdeyHOPj+P7TU7GZ+NySWK5V6+W1YuC++RJ5EAtWsSHm4gQTu/pwTXWrOG5zWYkwk6HOykJbbS46+uVCuVq9aLgPnUKOTk1NXy4iQhJzmfPTo87OxtM3BEOQiqflAR/czsQgQD8HY87GoW/R0bQR9SHswrr6ECyfWkpxiaO22JRDs2Nxy3EDevX8/lEgQD87XZj7KqokNtEo/D38HB87s5OiGtKSjCHfUWLoa98AURE9MQTT9ATTzzB/pt6UVNdXa1dq0PDvhYLo4EByCjNZuT13HmnfPK4ywX5a0sLBqyWFkiOY5PWolGcGL9vHx7uQ4eIfvITeUB+7z3It/1+TLbPPivLKE+exMm94+Po8I89JueAGI2QUZpMeHDuvFM+xsPtBndzM1ibmiCp57j37gV3bS3RT38qD2y7duFkYr8fD9izz8q5K6dPQ77ucOD3H31Uzkkwm+FvwX3HHfIxHm43Tt02GMBqMOD0YjX3H/8I7nAY3D/5iTywffAB8m0E9zPPyIu3M2fAbbfj9x95RD5SwGIBt9GIieH22+XjMDweyOkFd2MjuGMXptEoZPmffgruJUvArR7Ydu9G3orPh4H4mWekxVvDUAP99thvacw7RjlpOfTIukekE9MHJwbpn4/+Mw2MD1CKLoUsTgvdsXxynps36KV/O/ZvZBg2UBIlUcNQA/3owh+RLlnhjkaj9GLDi/Rxz8cUjoRpcfFi+sklP6H89PxJ1/qw60N6yfAS+UI+Ks0upb+9+G9pQaFq8dbYiO93bAz95KGH5JyEoSH07/5++HvrVjnvyudDuYgzZzBQnzmDUgixC9NoFGUn9uyBvxctQv9W51Ls2YMT2r1eTFrPPCMvgpqa8P3abHiuH3pIPjF9eBj9RHAbjXLeVSw3EZ6b7dvlBfWf/gSuUAiLhJ/+FC9psfbxx2jn8WDSevppeTHR3IxxwGbDZPvgg/LJ4yMj8HdvLzj6+1HqIdb8fjwn4kBhwa1eKL38Mp67cBg+/OlP5YTazz7DcyC4t2+XJ+WWFnBbreB+4AHkvcXa6Ohk7r4+OX9JlNUQBwqfOgU/cdzvvw/uBQvArRYNCG63Gy9c27fLOTdtbUT/+q9gy8wk+v735dIqViu4e3rA3duLPCU193/8h6ICPnEC/VK9UPrLX5QDlufPB7f65XvvXozzHg+4f/Qj+YiS9nbI4IWg4P77+WOYZsD+r1OBfW2tqwuTcl0dOhZ36rbRiNX8okV4EzEYZBm804mfl5biQe7u5osYnjyJB6+uDpMqdxJ4ezsWPytXYjHBnUrc3a1wp6XxknOTaTJ3c7Msg5+YmMx99ixfDPDUKYV7cJCXtra3YxFRV4frctyx/k5P57nNZrSrqcHk39Iiy+DdbnDPmoUBKB63Xh/f3x0d4F65Eotd7jTl7m5Fcp6ZyUvOBffChVhstbTgurHm8SAZtbgYA9DZs3wRw1OnsIgS/ma4O6wdZPPaaGXZSvIEPdQ8IpdU6B7rJqPDSCtKV1BmSiYdt8jclgkLddm6aH7BfKrIqaDW0VbpVHVfyEdnhs5QcWYxLZ21lM6OnWWLGJ4ZOkPJSclUV1pHw65h6rQx/aSjA4uflSvhD07i392N73PFCgzGnL8tFvTDBQuw49jWJpcd8Pux0CgqQmJnTw9fxFBM6nV1WMRw/bujAxPXypVYxHDcoh+uWIFF0rFjspx8aAjXnzcPgoO2NrnYZSAA7oIChZsrq3HmDF5c6uqwiInHXVeH63KS87Nn4ZcVK/AScPw4z93RgXIZVVU8dzCIMa6gAHLqeNzhcHzuzs6puXt68PwI7hMnZBn88LDMzcn31dxcWQ1R4LSuDgsFTnLe0YF/q6tDWy3u3l7cKy8P3GoZ/MgIrjV3Lv50dPCn2J84gWuIEg4cd2Pj1NydnZO5xQL9K7DEAmimrLgYA1VnJxYx6t0YIgyeRUUYJMxmLBbUoaSsLPzcYsHgXVjIS7yrqrA4EAX1uDBZSQl2DTo78V8uRKLm5pREhYX4090NrpISeUcqMxOLI8FdVMQzVVYq3JmZfLhp1iwskjo78UbOhRqKi/HW39GBxRjnb8F99iwWHRx3Rga4xeJAy9+VlVjUxPP3rFlYJIlBmNv6FtydnUqxPI67qAgDkOBW76Slp2NxNDSkcGv52+NR/M20Kc4splRdKnXaOikajVJZlhwiKc4spty0XOq0ddK4b5yq8mR/F2QUUGFmIfXae8nkNNGsrFmUkzaZO02fRhU5FTTkGqJOWycVZhSy0vQ5uXPIE/RQ11gXZaZk0qysKfpJNMpv2c+ahUFdLE61/F1YiEHfaMTvcIfPlpcrk2BBAe/vOXOw+9PVhb7FtSkuxvU6OzHxcCGp4mKFe2wM3JwqqagIC46BAeV3Yi0lBX4Rk2C8fuLzKdxaz2VaGtqEQnKBR9EmPx/3stkwnmhx9/eDW3xHsabX4/qjo3gh0uKePRuL064uPBPx/C24uX5SXCxzq+Xk+floF+tv7vDZykplcVBYyPtSzc21KS5W/B0M8v4uLoY/xeK0slJOYRDc/f34U1Qkcycn43et1vj9e/ZssHR1gU3L3+npaOP382rgGbKvXAX2dbQvRQUWjWJ78PhxTNhbt/L1JgwGbEdnZEAKyXUOoxFSea8XcsSVK+U2DgcqpQ4NIay1aZM80AQC2NJsb8euzI03ytue0SikzfX18bmbmsCdlgZubsFhMkG67fVCTr1qVXzuCy7Alq6aOxhEiK+9HbtON94olwuIRiElP3oUC4StW+VtfSLsVn30ET73li38As9sBrfHg61adVVeIiwOd+zAQmndOrTjuHftwpthTQ3ux3EfPIiCYrNmgZurk9HSQvThh+C+8UZ+4hbcbjd41FV5Y7ktFnBfeaXEHQwH6f2u96l1tJVqCmvoxsU3Urp+crmAaDRKhwYO0WHjYSrOLKZbam+hwgyZu3W0lXZ376aU5BS6cdGNNK9AzvGyTFhoZ/tOcgVcdMW8K2hthVwKYcI/QTvad5DZaaa1FWvpyvlXUnKSakIKhRBqaGnBbtmWLXKZg2gUhUUPHcLAvHUrv8Bta0O4UK+HTJrL8RocRJXfiQn023Xr5DYuF/xtNOL7uPpqeSKN5Z4/n+imm+S6Q9Eo+sjBg+DdupWfbNrbwa3TQZbO5XgNDYFpYgLjBFfCYbrcH3yAZ2rePEjQ1dxECndhoTZ3RweulZwMbi5XangYTE4nQlZcCQe3G20GBvDcXnONzB0Ow0cGA7hvuonPYTx6FGNKQQG4uUVJLPd11/G5UsPD6CcOB0KEGzbw3Dt3YkGyahW41QuXcBhjQGMjnv+bb+a56+vBnZ+PNtyLbmcnuInAzeVKjYyAaXwc0nyuFILHgzZ9fZiXvv1tnvujj5QitDffzOcw/pX2RebvxAKIscRhqAlLWMISlrCEffPsG3UYasISlrCEJSxhCUvYTNvXQgX2/4ydOYNt1qIihCS47eHeXmzJp6VhG53bjrfZoBLw+4m+9S1eKu71QgFksyHZjAvbRCLYGu3vR8hq40Ze4t7QAO7CQm3uvj5wp6SAm9vWHhsDk9+PaqBcGMHnQxurFQmHXNgmEsEWel8fQoSXXcZzNzbiT0EBuLnt4f5+hD9SUrD9z21rx3JfdBEfRojlXr6cr2AtVHu9vfG5DQb4PD8fISmOe2AAPtDr4W+O224Hk8+H7WomjOAP+enT3k9p1D1Ky0qW0drytZLEPRKN0OGBw9Rj76E5uXPo8urLJym3hDUNN9GZwTOUn5FPV8y7QqryLHFv2sRvx4+Po+Ku1wtuLozg9+MZGBlBuQROShuNwt89PchNuPxyvqRAczOSk/Py4G9uO95oBLdOh+tweWfj4/C3xzM97tpahJs47sOHkZs2Xe4rruCl+SYTnnGdDv2NyydyOOBvjwfhGC78EQiAe3gYYoD163nuI0eQ41dRge+X425pQfJ9bi78zXGbzQi9JyXhOlrcn36KcNH69bzkOpZ78WJ8Po776FHkpJSX436cNL+1FQnMubnwNyfNj+W+/HI+z8/phL/dbnz/XEXlYBDcQ0P4Pi68kOeur0f4Kh53Wxu4s7Phb47bYgE3EfoJlwc1MQE1oMsFbrW6S3Dv3YtwcE0NxkuO+9gxhAvLyjB+cdwzYIkF0ExZRwekhjYbOoTdLpevt9shWz17Fn/v6iL68Y8nT5LhME7bFeqJ06eJfv5zOb/lzTcR+xa5MM8+Kw8QBw/iWn6/kouyadPkNl1dkHYK7rExWf45Pg65sVAFdHVBch3LHYngxGFxsOPJk0R///dyfsubb6IEvuD+27+VB4hDh8Dt8yk5S2r5Z3c3uK1WcNtsKOUeaw4H/C2UTx0dkHbGDtqRCNF//zcGSFGb4+c/lxemO3aAPRLBQPLMM5iYY+3IEZxyLbijUVn+efYsuEdGwG214iiOWHM6wS2SwAV37CAiuMXBjidOgFu1MN3RvoPeaH2DotEo7evbR89c/AwtK1k2qc1R41F67uRz5A15KSU5hSLRCF21YPIxHr32Xvrt8d/SiHuEkpKSaMQ9Qg+seWAy98QEPptQhrS1Ef3d303mjkZx6rg4IFFwqxd4776LMg+RCEpCPP00Fp6xVl+PfuLx4DsNh5FLEWt9ffClUL2MjEC+HWsuF7jb2+Hv1lZwx+bLiTIP4kTt48fBrV7gifIU4TAmiu3b8YISa8eOoZ8I7mBQPg6jv38y99AQTgOPNbcb3EIl2dIC7ti8M1HmQUx+x44R/exn8oJj1y4cvyMOFk5Pl3MPT5wAt9utcF933eQ2RiO4xfFHg4MoY8Fxt7Yq/v7Zz2Tu559XDpWur0cb9YLj/fchO49EMPGnpckvgydPEv3+97ivTodFk/o4DJMJTBYL/m6xoGxIrHk8GOOFurOlBUzqvLMXXlAOC66vx3eiXnAI7nBYOY9R/TJ46hS4XS5w+/3ysRJmM/w9OKj8XV1yxuudzN3cDG71i+6LLyqHMwtudeK1KKsRCuFFIjVVzoU7cwblVwS3z4e8q6/AEiGwmTKTCYuHujp06PZ2uc3QEB6s2lqoRXp7ZRm8y4Wfz56NdhaL0rljrb0d96mrw305qXx/PzpfXR0eHk4mbTQqu0g5ObzkfGgIDIsXK9xOp8zd04MHvbYW7TluoaKKx2004qGtq8Mgy8lfTSaFOzcXgyjHbbFggVVVhclQLd93u7EoqaiATNhiUQbBWGtvx07NypVYEJpMcpuBAYU7FNLmFhLovDze38PDGMgWL8ZOUn+/zO31gru8HNyDgyx3p62TMvQZVFdaR+P+cTI6ZX+bnCbyBD1UV1pH4WiYeuyy/NXoNNKoe5RWlq6k/LR8ah1l/C24Fy1C8uPAgCzf93qxeC0ri8tN7e3KJOxwaPcTtxv+jkZ52a7JhEVEXR1eIrh+MjIC7poabW6/X+Fevhzc4rDeWOvsxGQ2XW4i5YVIi7uwENzqdM6REbSrqcEusdEocwcCYCotxY6reCY47tRU3M/p1OZ2uRTu7u6pudvaZG6rFe0WLkRyrxiDYi0UAlNJicKt5W9RVmM63MnJ2v4eHMT3VlwMf6tl8IJ7wQLsbmtxd3RgQS9KT3Dc3d1YHIhSHxy3yaRw63R86Q2zGb5ZsQLcbW2yDF5wz5+vcKvLDoTD+N3iYsXf3BjX3a2U1RBnI6rNaMRnqqvDQpnjniFLLIBmyior8cA3NqJjcNuH5eVY2LS1oePOny9vV2Zn4+fiENOKCn6btbYW92lsxG4Fp8qqrsYqv7ERgzKnJKqqQqc3GPCwcdxlZeBub0eHnzdPLhQouC0WcM+ezXMvWYI3qXjcVVVYbDQ2YlDmQmmVlQq304nJNB630Qhutdw2KwsDmjh8taKC3x6urVW4Cwp49d7cuQq3Xs+HLtXc6l0kIkxWc+ZgIDUa8b2plXkZGZhABgfjci8pWkK+kI8ahxqpIL2Ala9X5lVSVmoWNQ43kj5ZLxccJKLK3EoqySqhxuFGcvgdtGwW42/B3dmJRVt1tbxzKbiHhqb2t98PX+bn8/6urES/a2zEoMyFLisrwdXYiMUB109KSsDd1QXuuXNl7rQ0LOyGhqCIrKjgZcmLF0/m1urf2dnoA0lJvAJKcDc04EVh2TI51FBSgnbd3VhsV1XJO66pqWAaHga3GIPUtmgRXjYaG/GMxPO3wYC/cyHAOXPw3DU2anPPmoVriZpBVVXyjqteD+6REcXf3KHQixcrNXLy8rT9nZMD7mhU29/l5biOzYbnUq0mi+Xu6dHmXrIEMniDAdfkuGtqsOhobMRYynHH9m9RfFNtc+bgHgYDFjVLl8ph9+JiXEvUJBJjUKzpdPhdqzU+96JFWBgaDGDj+klVFT6TqBmkVVV8BiyhAmPsS1OBNTYqOUCbN8tbo0QYYA8fxsC0eTMvgR4bwxZqIIBcGm7h4vOhjc2GFTsnORc5KX19GNQvvVR+qInA3NgIls2b+RygWO5Nm/jcJbsd2/4+H2LD3ALA50MbkUujlbt0+LAyqF96KZ9L09SECSIe98AAriVyaeJxe73wN8ctcjusVgzqWrlLR44oOUBTcYvcJY7baAS3Tgd/czlX4+Pg9njgb2ah6A/5aW/fXhr1jNKyWctoTbnMHY1G6bAROUCVuZW0ce5GNgeoeaSZzgydoYL0Ato8bzNlpjC5SyYT+pzIpeFylxwO+FLk0nALF5HbMTqKgZk7vkDkpJw9i8FaK+eqpQXb8iKXhsu5MpsR3kpOBjeXu+RwwN9uN3JNuIk0EEAbkQPEHV8gclJEDtDGjXwuTWurkgO0eTOfuzQdbqcTvhS5NNyEFAgg3CRygLRyrurrlRygyy7judvalBygzZv5HCCLBdxJSbgOl3MluF0ucHMLAJGTInKAtHKuBHd5uXbOVXu7kgOkxT04iNA9kXbO1cQEuCcm4nPv26fkAGnlXB07puQuXXYZn0vT0YHwZE4OuLkcoFjujRv5l1OXCyGwiQn4kcu5CgYRThU5QFo5V8eP40WorAz+Po85QAkZ/DlaQgafsIQlLGEJS9g3zxIy+IQlLGEJS1jCEpawOJZQgc2URaPY9qyvx7bfLbfwlYkbGlBROT0dFTK52O/AAKpt+nyoyMqFt8bHid56C1uoF17IV1QOBKCmaWvDtrZWZeK9e7ElX1qKA0U57sZGVPdMT0dGP1dReWBAqah89dV8eCuWe/16tjIxBQJQ07S2Yhv2ppt47n37EAIpLYW/uXCiwYBqqmlpuA4XTjQa4W+PB5W3ufCWwwH1msWC7eGrrtKuYN3Sgm3tm27iKxPv34/wVkkJuLmwXFOTUgl6yxY2LGdymmhH2w7yBD105fwr2YrKTr+T3m57m8xOM62rWEdXLbhKrqgcy11Tg37JcR84gPBWPO7mZnDr9eDm8rfMZqWi8pVX8hWVnU7422xGGImrTCwqbzc3IxzFVSYWlbcPHkQ47pZb+HBiS4tSUXnLFj4sZ7EoFZWvuIKvqDwxAW6TCf2Iq0wcCoG7qQn32bqV5z50SKkEfcstfDixtRUVfnU6KIS4sNzgoFJRefNmvqJyLPfq1ajwq1XB2mAAN1eZWEj8Dx7EOHLrrTx3W5tSUfmGG/iwnOB2OBAG5ioTu1zgNhoxTnKViWO5582DL7kw6OHDSiXoW27hw4nt7bgWEfzNhbdE5e3xcYR/1AciEyEc+fbbSE9YvRoqQK6i8gcfYM6orgYTFwY9cgRjSn4+2nDhxI4O9Dki+JsLbw0Pg2l8HOG2iy+Oz71qFVSAHPfu3Qg7x+OeAUssgGbKDAbIH8WhcqGQLFsdGYFUfGQE/z4yQvSLX0yOjwaDaNPcrJxK/ItfyJ36tdfQyTIzMZgUFckLpc8+gyQ3LQ0LmKwsWbba1AS5aSgE7mBQlq2OjoJpeBifb2iI6B//cTJ3KKRwp6QgD+Yf/kGOkb/xBgYQwV1cLC+U9u0Dd2oqHv6sLJTLj7WWFnAHg+D2+4kef3xyG6sVMumhIeTnCO5YeXM4DDm5waBw/+IXcoz8jTcwgGRmYtIpLpYXSvv24URlwZ2ZKctWW1vBHQgg58jnI/rBDya3sdnAPTgI7sFBcMcsAsORMP33qf+mxuFGSklOoR57D/199t/T7NzJCa5vtb5F73S8Q5kpmdQy2kJFmUW0rkK14DhwYDJ3RoYsW21rg5xacHs8OKE+1sbGwG2xTOaOXUxFIpDBnzkDf/f0oI+oEy7ffhuL6YwM+KyoSF5wHDwI7pQUXC8jA5NyrHV0gNvnwx+Ph+ippya3sdvBbTZjArdYiP7pnyYvSmK59XqFW50EumMHFncZGeijhYXyUQgHD0JyLrjT0rBQiLXOTnCLPuJyoRRArI2PQ5ZuNoPPYoG/Yyd3Id8/eRLf79mz4Fa/eO3ciT+ZmXiGCwvlBcfhw+DW68Gdmkp0222T23R3g9vjUbifeWZyG4cD/jYawWc2gzt2khTy/RMnJnOrX2DeeQc+F9wFBfLEfeTIZO60NKLbb5e5//AHTPB+PxaLzz47uY3TCW6hphX+js0VEvL9Y8dwH8GtfoF591308cxM9JOCAtR8i7WjRyGV1+mQC5aaSnTnnZPb9PSA2+UCt8OB0iqxL2cTEwp3rL9jc4UEd309uLu7MeeoXwR27ZK5L7lkcpv6ekjlBbdeT3T33fRVWCIENlNmtaIT1tSgY3GyRpsNk8SCBUgiHB7GQBFrHg9+XlGBdmNj8snURLh+Tg7u53bLckwiLFzCYUVxMDrKM7ndeJPJzeVPQhcMgntkBJ9VzT0yonDb7TxTLLfHI8sxBXcwiDbRqHxyMdFkf+fl8f4eGwPHggXKwYpqbq8X/i4vx9uzFrfJhIEuHrfVOln1IGqhxJrNhgGppgZvbPH8PX++wq0ql+AL+WjINURl2WVUU1RDdp+dbF6Z2+g0UlZKFtUU1pA36CWbh/lsVqvi7+lyc/6228E9bx4WNAw3+f1YGJWWos9p+dtsxiAbz982G7gXLsROAld2wWrFxLVoEQZrrhSEmlt81lgLBHD9kpL43CYTFj81NehbXBubDddbuBCThJa/HQ7cq7AQ/USdzjk+rhzwWlWlfNZYCwaVA4wFN+dLsxkL1YULsXDR6t9+v8Kt5e/x8am5xYGj4gBONXcoBKZZs+L722LBhC24p/K3Xs+XAYj1d1ER+rdaBu9woF2sv9XlKcJh9AHBPTam7W/B7fdP7e/UVJ7baoVvFi3CS5nJpM1dVQWfi88aa5EIfre4eGp/p6bG57bZFO60NL4MwAxZYgE0U7ZoEQZPgwGDDretX1WFgbGrS6mVoU7iys1FLYqREbSrqeGlhhdcgPsYDLgvtxVbW4tB32DApMVJrmtqFO5AgN8eF9fv6sJgXVcny8lzcsAtTsuuqeHDexdcgMHNYMBiSYu7sBBtcnPjczc14WHT4q6pwdvM4CBUZ2o5eVYWds7EqdMLF/LhvXXrMLjF416yROHOyZEL9xHh+oLb6+UPShT+PntW4VaF9zJTMml1+WqyeWzUbm2nhYULqTq/WsYuX0dRipJh2EAVORW0qEiDu6hIkbauWMFzV1XF566owNZ6Tw8GSoab0tOxczY2hp0dUQtGbWvWYOIUklxuy37xYnA3NWGxpC44KLjnzkUbt5sPo4jvs6cHg/XSpXJ4TxSqs9nAvWABzy1UXwYD3vw57iVLlFIIGRna3NXVCjdXcVf4pbcXk9fSpXJ4LzUVTHY73tgXLOBVjmvXYhFpMGBxqsU9axbacIUSBfe8eeB2uXiVUFkZrtXXB+7aWjlMlpKCsWJ8PD73mjVYjBkMWORp9RPBnZbGpxSI77O5GYvfDRvkEGBpKbj7+7FAqq2Vw2R6vcLd3KzUDOK49XqFm6sWHevvlBSeW9T2aW7Gomb9ejkkVVICVnEafG2tHFHQ6fC7DgeuJa6rtlWrwGIwgE3L3yUlaKPX8ykFM2QJFRhjX5oKrL8fg2NBAR4CTpJrs0EimpKCwZiTQHu92EYMBjEwcbkWItRmt2Pg4ybtaBSDx8AAFlHLl8uDERH+vaUFiwPuASLChHXyJLg3bOBj6F4vtn4DAXR6LtciEgH32BgeRG4SIQJPfz8WAytWnDu3Xg9/c9w+H/zt98PfU3EvWcIPxkT4/vv7sXOjxW00YpDJywM3J8m128Gt08HfTAzdF/LRMdMx8oV8tKZ8Dc3KknMtItEInbScJJvHRouLF9P8AmZQE9x9feCuq+O5TSZMbOfITX4//O3zIfzJ5VpEIriOzYYBlRuMiRCa6+3FImblSm3u5mYsSjds4LnHx/H9JiejDSeB9vvRv73e+NynTuHNeNEiPpeICIvt3l4sYrS4zWb4Ox63wwHJcTzuQAD+9noxgXE5IpEIwhWjo3hp4HKJiPByI8J/q1bx3BaLspjesIGXQDsc8HdSEvoSJ90W3B4P7sVJzqNR+Ht0FMxaNWcEd2kpvjuOe3AQqQLxuJ1O+JsIbbS4jx3DwjUe9+nTeNGNx93ZiReh6XBnZWGMm4p7/Xr5xZsI8019PbhXruSl8tEowojDw+jb3IsgEV6Wu7vxjHAlLM7BEjL4c7SEDD5hCUtYwhKWsG+eJWTwX2eLROSY91/TJhqVY7l/TRtxv+m0SXCfextxv6maRCM05bvJ+eKeJtPXzt9fhGk6bf5v5Y5GE9wJ7m8m95dsCRXYTFkohMMyDx3C1uH99/Ml/vfuhQIgI4Ponnv4PJHmZqgWvF5IctUHmBJhm/n557H9ecklUGOot8hdLhxwJ2Tw994rb9mGwwp3WRkOFOVK5e/bB+60NHBzeSItLVAteL2QWqoPAiUC7wsvYHv/4ouJ7riD5/7TnxCWWbIEh7OqV/rhMOT0QpZ933186fb9+6EUSUuDEoHLt2htBbfbrXCrt2yHhsBtMiEf4847ZW63m+ill/D9LVoEJhV3OBKmt9vfpoP9B6kkq4TuXXkvVeYxOV4HD0LdkpoKbi7foq0Nagu3Gyo5rqTA8DD6icmE7fE775S3yD0ecDc1YSv+vvvkHK9IBOqPAwcQIrzvPj7H69AhcKekEN11F5+30NGB+7lckP9efTXP/cILCBdu2IBrcdx//jPCLTU16N/qHK9IBOqmffvAfe+9fLj48GFw63TwEZe30NmJfjkxAe5rrpG5R0bgb6MRYfC7756sOiTC8/HSS+BeuBC+5LjfeQfjRVERuLlw8ZEj+F50OjxLa+VSCNTVhfs5HGC+9lqZe3QU/u7vR77bPffw3H/+M8ItCxaAW10yIxLBOPHZZ+Deto0PF9fXY9xJTgY3lzPZ3Q1/OxzoI9ddJ3NbreDu68M17r5bLpnh84G7oQGh1Pvuk3PTolGUgvjkE3ym++7juY8dgyI0ORlKMq4UwtmzGHcdDpTLuP76+Nxr18LfHPcrryBUNm8emNTpENEolFkffwzue+/lw8XHj8PfRJgruJzJnh5w2+3gvuEGmdtmA3dvL56Re+6RS2b4/eA+dQp99v77+TSOGbDEDtBM2enTGGi9XsS2X39dbmMy4UEcHcVg+vzz6Cyx5vfj552daPfnP/MHzr3+Ou7j9WLgPn1abvPpp3igfT78vzjpV829YwcmkxMnIK9Xm9kMjuFhDErPP49rxlogMJn7lVd4hdMbbyh5FO+8gzwPte3diwfa5wP/xx/LbRoawO1y4Roct8Uic3u9k9sEg3ig29vxcMfjFnkU77wDX3Hce/Yox5Ts2SM1aRxupLdb3yZXwEWnLKfoL81/ka8zNIQJa2gIg5KQFcdaKATujg6Fu69PvtZbbync776r5AHE2r59qPEkjin56CO5TWMjruVyoc/8heEeHsaENTgI7uefx+Is1sJh/LytDflUf/kLf2js229DBuzzYWI6dkxus38/ag4J7g8/lNs0NWHgd7mQu/Dyy3Kb0VFwWyxgeeEFWS0Yy223o0wDd/jqzp0K965d2tzC3/v2oZyF2pqbwT0xgb7OcVut4DabFW61ei0SAXdzM/KcXnuNP8R0504sAn0+lKk4elRuc/Cg4u/9+5V6OLHW2jqZ+6WX5DZiEjWbseB64QVZBRaJ4OctLQo3d6jmzp1YdE/FvXs32hw4oM39+uvgbmqCX9W7JWNjykuQ4FarqaJR/FwkJb/+Op5Rtb333mTuw4flNocPow6Qz4fP8N57cpv2dtzD6QT3iy/K3HY7fj4wgD9ikaPmfvFFXMPpxDW5A73few8sPh/YtLjffx9tDh3CuPMVWWIBNFPmcmERUF6ORFtOuu5yYSIqK8OKeGKCXwC5XPj3sjJMfOrBmAjXz8zE/YJBvs3EBDp2RQX+qx5kiDBBCe6sLPnBEG08HoVb1JxQc09M4M2qvBzt1ZOf4M7IAFMwyLeJ5U5Kkgd1IsXfFRVIWuQkm7HcxcX4HW7h5nTicwluzpd2u8IdCvFtXC4M3IKb8bc74KZAOEAVORWUnZpNY16NfhLrb7dbm7ugYGp/p6fH9/c0uCf1k5yc+P4uLYW/3W5+welwKNxeL880Po43YtG/uTZuNxYmFRV4I+e4RV8V3FrPpceDncRZs3juUEjhrqiI308Et1Y/cbvxb4J7fJxv4/OhTW4u/K2e2GL9XVLCc4fDMjfnS7sdOz6if2v1E+FvnU7b316vwm2389xe72R/qxf4kQj8kpcX398OB3YGRf/W8rfg1uvj+7u8HNxjYzK3x6P0k5IS5e+xFg4r3PGeS7sdLNP1t14/tb/z8nBddehJMAhuLX/b7VP72+lUuMNh7edS9O+UFN7fM2SJBdBM2YoVCHu0tioHhqpt3jxk8vf3oyNdeqkcksrJQUjL6US71av5rdjNm3Gf1lZs/3MhqXXrEM5qbkZn5LZrly+Hyqa1FZ2V466uBsfAAAaciy/mT4O/9FIsVkSVUI570yZMyKLq8FTcZWXa3MLfOh0fbps7V+EeHwc3J4PfuBEPe08PuDnlzqZNSnG7BQv4UNratQjDNTdjUmK2mZeVLKPFxYupdbSVkpOS6Yp5Gtxr1iCMYreDWx1qyMxEtVa3Oz735ZcrRcsWLuS516yBSlBwcxL3ZcsQjmxvx6R95ZVym8pK+MBkwgRy0UXy1nd6Onzp9SJUUFfHc192Gb6beP5evRphuOZmTKScxH3ZMqgNxdss108Et9mMhcaGDbISMC1N4e7uRkiSU+5s3IhnoaUFoQgudLl6Nb5jwc1VCl66FH/a2zERc+HN2bPxrFgs2MXiuMUz7fNhByUed04OmObN47nXrFH8XVTEc9fWwuft7ZhUOe6KCnAPDircnJx882Ysujs78f1ziqNLL8WkLaTbXMh19WpF4s4VHCRC3162DLs14TC41TL48nKMRUNDCHWuXy8r6gR3MAjuFSt4qfill4KluRlsWtyin3AFHgX38uXgDgbBrVbDijF0aAh/LrhAVqbpdPjdYBDXWrGCl+aLsai5GWwc96pVir/z8uRCiTNoCRUYY1+aCmxsDINjfj4GGU765/VicExNxQPHSbfDYbQJBNCGk8pHoxjQxscxsXHHQBBhUDeZMFhyOTJEmGS7uqbmbm3FA758+dTcS5fykvNoFD6y2+NzWyxYAEyHOy8Pg+NU3MuW8VLicBht/P743GfPKgUhtWLagruigq/fRETjvnHqtHVSXloeLSpaREkct88HX8bjjkTQxu/HxKNVbr67GxP7woXa3IODWCjG4abxcQzqubkY1ONx63ToJ/G4fT74W4v77FmEeRYs4EsTxHKXl/M5SURYtHd0xOf2+8GUnAx/c1LiSAT9xOs9d+6hIbzglJXxOUmx3Dk5mIzOB3dtLS+VJ8JCenQUCwnu+IrpcjudWABNhzspCf1Ei7utDbsR8bh7e7EgmTePL01AhPBsXx8WLFqlNwR3djbux3EHApjYk5Lgb3WeFBHGitZWcC9Zwkvlzyf3xAS4s7Lic7e04P/jcbe14aUqHndfH7iqq/mSCkT4XL29+FxaJUP+SkvI4M/REjL4hCUsYQlLWMK+eZaQwX9dLRLBm586XyPWolHsXHDx1Vhzufj4eayJkvXx5IbBoHLUQTxum21q7vHxmeMOhc4vN5dH9FVzq/M11DYdbrd7am5Rsv5cuaPR88vN5VnE2kxzOxznlzscnpo7EDg/3Fx+yFfNrc4z+Wu4PZ7zwx0Of/24A4Hzxz02NjW30/n14p4BS8jgZ8p8PuWwxMJCogcflGPW0SgUEh9/jNDAd77Dx6PFoYPBIOSIt90mb2t2duIQz7ExxFwffFCWI1qtRP/5n9iynjsXh5yqt7Z9Phymd/o0uB94QI5ZR6NQAO3Zoxxsd+mlMrc4dNDvRzz59tvlOHpXFw5NFdwPPCCH+Gw2ot//HluolZVEjz0mbxH7/fD36dMI3T34oByzjkahJvroI3DfdRdyHdQmDu/z+5EjcscdMnd3N/xttSIf4aGHeO7nnkMoobIS/lZvEQcCyuGU+fn4/LW1MvfOnVCu6PWQZV92mcx97Bi4fT7kedx1l8zd04ODEK1WxPUfekgO8Y2Nwd89PQg3PvqonCMQCCiHU+bnE33/+/IRJdEoFHK7dyvyZi6n7PhxqIN8PuQo3X23zN3bC+7RUYRIHn5Y5rbbwX32LLgfeUSuXivUiSdOYEv/gQcQAlBzv/uucjr57bcjj0NtJ05AHeTz4fu45x6eWxx4vGwZuNWhsvFxcHd3I+T46KNyyYxgENzHj4P7e9+T8+WiUaht3nsPHLfeyudmnTwJbq8Xz+13viOHsPv70XdHRvC9PvywHHJyOMDd1QU/P/qoXDIjGISaqL4e3PffL+dvRaPw9bvvYly79VaMc2o7fRqKKo8HeSTf/a7MPTAA7uFhPEePPMJzP/ccxszycrRRh9VDIXAfPYrv63vfk/OgolH0baFq2roVZQXUduYMuN1ujO/btsXnXrIETOqQkzh8tb0dz+Mjj8jh6VAI3+2RI+C+/34+L+fDDzGmEOHA4G9/W27T0KAoNy++GNzqELbRCO6hIcxvjz4q54NOTKBNezvGv0cf1Q6rf8mW2AGaKTt1CtLQjAxMJG+/Lbfp64M0VigcXn1VfrvzevFzkc2/a5e2TLinB/fbv19bTn76NB6M06chzVbb6dOQ4sbj7u9XuB0OSFLVbxs+H7iFyub993nuHTswYcXjFj/PysJDycn3z5wBd3o6/CpqXMTawAAmB6GEefVVeQfL74cU22bDYPz+++BT2zvvYODPyIAMlJOTHziASXIq7r17wd3fz3ObTBhkw2EMgq+9xh/O+corWNgkJWFg5uTNsdyHDk3N3diI0gNqa2hA/xHcXJkHsxncQo0j5LmxFgzC36OjmLR378bEpLZ330X+S2YmXgg4Obn4HjIzwc2VSzAYwJ2WhsGb4x4clLnV8uZQSObWkje3tyvc9fU897FjaGMw8GUHDAb0n9RUcL/2mvxWPjSE5ykQwKT15puyijMcRr8fHsYk/NFHPPeuXQr3kSM896FDCndzM8/d3IzvITUV/fjVV2XukRGF2+MBt1qdF4mgfw8NYRLeswf5KRx3W5vCfeSI3EZ8D4Jbq+yA4LZYeO7RUXD7fBin33pLVkNGIugng4PIa9qzB/lAavvgA/w8MxOLLo77yBH8mxAxcNwtLbhHSgruqcX91ltgFtzqg7GjUfxuLLfIGYq13bvx88xM9AVOBh/L3dqKz/oVWWIBNFMWCqHzp6djoOG2/kIhDEjp6RiQxd9jLRLBz1NT0S4c5rcag0HcJz0dnZdrEw7j30SbUCh+Gy1uwZCeDq7pcnP3U3NrtRFM4v5qE/7OyMAAyYVAYrnT0vD/6nBKJILfncrfgQAmvowM/M5U/hafg2sjuHU6uZyA+GzhMJin8ndKSnx/n2/u9PTp+Ts1lffldPu34E5PV36H8xORshPHMcU+c3q9tr9DIfhb9BP1/aJRXD8lBfc71+dScCcnaz+Xop+kpMT3t+Dm+kk0Cl8Kf4vPqrbp+jsaBVNS0tT+1uKO7d/C3xy3eC7j+TsUAst0xkHBreXvWO544+B0+8lU46Dwt9Y4GDunxOsn4bDSTwIBeQHEcWv1k6n6dyj0xcaT5OSvNAyWWADNlK1eDZno4CCUHzfcILeZPx8hGKcTD+L118vbtVlZ+HlyMt5CL72Uz6K//nrcZ3AQ9129Wm7zrW8hnGUyYbuSC1utWjU1d3W1zK3ers3MxO/qdNjduvRSXt583XUIZw0OKj7juJcsAffChbyMctUqRUpbUMBzz52LEIvYPbn2Wnm7NiOD6MYbMTna7eDmDoK87jps51osuDdXcfeii8BtNuMaXNiqrm4y95YtcpuqKnC7XBhIrr1Wlu+np+N3U1LA/a1v8fLma6/F9vlU3LW18Pf8+drcQkqbn89zV1Yq3JEIwgNq7rQ0/G5qKt76v/UtXt787W8jXGGxIBTBVQpWc19+Oc+9YQO48/KIbrpJbjNnDkJ1Hg8G72uukdWJKSkIHaSlYdftkkt47muuUbjFd622Cy9EmMlsxrPNhQmXL4fMengYffamm3g5uZDmh0K4t1rlp9fL3Jy8+eqrcT3BzZWeENwmE54tLky4fDnajYxgbLv5Zp5782ZwB4O4t1otp9PhdzMysFtx8cU891VX4fuzWBAi5Lg3bEA40mwGN1cKYdmyydxbt/Kn2F9xBXaAAgHcWx2aF9yZmQq3OlQsuCsrwb18OV96YsMGfCaLBW057qVLcY+REcwdN9/Mn2J/5ZVgDgTw/+rQfHIyfjcrC9fS4r7iCoxPZrM29/r1+DfBzYU3Z8gSKjDGvjQVmM+HwSE/X1v+Gg4jNJOSgvg5J1mMRtHBgkF0Nk5yToQBbXwcA4A6/0eY04lBtLSUPwGYCG/FRiMmCC3563S5LRY8ZOfKPTGBSet8cev1uF88br8f3Jx0O5Z79my+NIHgHh4Gj/o4CTV3bq62/DUcRhud7ty5bTYskqbiHhoCz7lwRyLwdzxuInD7fOfO7XJhMRmPOxAAd07O1NzJyRi0z4V7bAx/Kir4kgqCe2gI44R6kajmzs7WlhtPl3twEAuOrxO30Qjeqbg9HnBzUvnpcrvduFZRkVxTS1gwCF9mZfEnuMdyE4FJi3toCPeMx223o4+LIrQzxV1ZKS+Szje3x4NnJR73X2kJGfw5WkIGn7CEJSxhCUvYN88SMvivq3m9SOgcGdFuEw4jyXZgQFtqGI3i38+e5eO+wkZGcL94MllRTE2d1BlrPh+uMzx87txGI5Jxz5Xb6QR3vDLqX4S7v//cucUZbjPF3dNzfrnjyWSnw+334zpDQ+fObTKBO5583WqdmntiAtzcES5fhDsSAXdf39eLu6sLOwDnwk2EHeXpcnPHG6i5uSNFhAUC0+Pu7Z0ed1dXfG6bbWpul+v8cvf2xi/PYLHgWvHyX2w2MMUrLfJFuC2WmeEeG5ua2+1Wzin8Ci0hg58pczqJ/v3fkfWemwtZtjrfIhSCBPrQIWxD33IL8k/UtmsX1FihEHIkHnhA3rY+dQoycIcDsdof/lAOFQ0MEP32txhEKiqIfvADuXrrxAS4W1rw+9//vhxHD4dxL8F9002IF6vt/ffBHQiA+8EHZe7Tp3Gt8XHE9J98Ug5dGI3gNpmwzfqDH8hVUNXc3/uefPREOAzp9oED4NiyBbF9te3eDSVKIIC8kocekrd/GxogbxbcP/yhHAIwmcBkMmEr+gc/kPO3XC58tqYmRd6sjqOLgzf370coacsW9BW1ffghuP1+5C88/LDM3dgIbrsdOStPPilvSZvN4DYawf3EE/KJ0m43uA0GcN93n3wUQiQCKfG+fdhiv+EGSJzVYYI9e6C08vvx2R9+WK5MazBAAiy4f/hDOS/HYgH3wABCLY8/Ludvud1Ev/sdrpeVBW71kQKCe+9ecF9/PV964uOPocby+/GMPPqozN3UBO6xMeRkPfmkzD04CO7+foTkHn9czt/yeMDd2Ajue++VS2ZEIpBAf/YZuK+9FqUH1NyffAKFj8+HnKRHH5VPHm9uBrfNhty9p56S84mGhoj+7d8U7scek/OgvF5wNzQgHLVtm5x7GImgDMKnn4L1299GCQc192efQQnm9Sr+VnO3tkKaL7iffFJOPxgeBndfH0LTjz0ml/rweon+4z+g0szMhOReXTIjGkXZCaHuvOYalHBQc+/di8NrvV7F3+pQf1sbSpTYbHjWnnxSDuOPjIC7txef6bHH5Dwonw/cp0+D+2/+Rs7hi0ahTBOHM199NUo4qLn378fn83iQm/n44zJ3ezu4rVaMbU8+KYeVR0fB3dODPvTYY3Kpjxmyr8UO0H/8x39QdXU1paen04YNG+g4J8X9H2tpaaFbb72VqqurKSkpiX7zm99IbX75y1/SBRdcQDk5OVRSUkI333wzdXDSzpm0M2fwZ/ZsDH7cicO9vZDAionz/fflVbTbrcgG8/PRnjt1+v338fDMno37cqfBHz6MN6PKSqzqDx7kuU+fnh53Xh4emg8/lGXZbjd+NxLBgH/oEC8n/+ADPCCzZ2Nw57iPHMHbQ2Ul3lo5bvG7s2djkty1S27T14fFTyy3eifM61Uk/oWF8BknJ9+9W+FuaOC5jx5V/N3Tg3tz3CdPYkHqcPAnPA8M4Hdzc7EA+vBDeWdGnDYeCmGQOXyYPy37ww8xAcyZg0XAqVNym/p6xd89PVjATMXNnfA8MIDfzc5WpMvqHQ6/X5GcFxfjuz4X7vZ2cPf2YgBXW1MTJP7l5eizHLfJpHALCbD6jTsQwHcVDGKiOnqUl5Pv2YMFjuA+cYLnbmsDd38/JkyO+/hxLEgFt3qnxGwGd1YWuD/+WH7jDoXwu35/fO6PP8aCUpxlx3EfOzY1d3Mz2pWVYUzguAcHwZ2ZiQXNJ5/IsuxQCCUc/H4sbo8c4WXwe/ZM5ubmlmPHsFCaMweLfK4cSEuLwu3x4N4c9969yEdLS8NCSL3bHw7jd30+cB89ynN/8gm+vzlzcG+O+/hxhdtk4stqtLaiPwnunTvlHZ6hIfxuejr+fPqpvBsaieB3xSHM9fW8DP7TT8EyZw7urcXd0oI2ZjNfVmOG7CtfAL322mu0fft2+sUvfkGnT5+mlStX0jXXXEMjGmEij8dD8+fPp//9v/83lWkkdO3fv58ef/xxqq+vp48//piCwSBdffXV5I63Bfplm16PtzCPR5HUcm10Oky6fj8GLXWicHKyItf1evH/XNKikL16PMrvcPcjUrbiuaS2WG4hleTa6PXg8fl4bp0OP/f7ca143OEw2iQl8W1SUvBv8doIX07lb70ebfx+nik5GfcTtT20uIWs+3z4W3AHg1P3E59P+TvHPZW//xpu7pyg6fbv2H6i0/H+TktTuLk2RNPrJ3o9/k089+fib8Gt1Qe+iL8jkan9LbijUW1u0XeFHDwet+gn6vslJeF3zzd3JDK1v4X8XquNz6fNnZw8fe7p9hOPB9zxmAT3dPp3PH+LGkfT8fd0ueP1E7db4Vbv7Ig28fydlITfFTWltLhTUr44N+fvGbKvfAH0L//yL/Tggw/S/fffT0uXLqXnnnuOMjMz6Y9//CPb/oILLqBf/epXdNddd1Ea1wmJ6MMPP6T77ruPli1bRitXrqQXXniBBgYG6BT3ljhTtnYtZLh+P7bhuZBFdTXCGToddhvuvltWt2Rk4OeFhRgEbryRl8Hfeiu2zf1+3JeT227ejK1jjwf/zsko165FO78fW7G33iq3mTsX3Ho9uO66S1ZbpKdjW7W4WAl/qMMoRPBLLDcnW73sMoV7zRq+uu2aNZO5b7tNblNVpUjF8/PhV7VqIS0N3LNm4aG94QZeBr91q8It+Dju9esxQGpxr16N7yEQwPd6++1ymzlzEGZMScHu1d13y2UHUlOnx33zzdg29/kQiuBkqxs3gtvjgVSek62uXq1IaefORXVqtc2ejfulpmL36q675LBsSgq4hTrouut4+f5NNyncGzdqc2/YAH+vWoWtfbWtXDk1d3k5vt+0NPDeeacclhWV28vKlNIE3CnfW7Zgu1/4mzuhfuNG/NznAx9XlbeuDt9DKIR+zIWIysrAnZ6O/nHHHXJYVqeDv8vLMRldey0vJ7/xRoX7kkv4k94vuQTcXi/4OO4VKxAaCoWwU8SFiEpKMM6kp+N5vP12OUyYnKxwh8Pg5sIoN94ICbvPhxAhd2L6JZfg5z4f+Dju5csV7jlz4nNnZID7ttvkMKGa+5preDn59dfjnj4f2Dhu8XkE93XXyW2WLsU9wmFwc6GtWbPAnZmJP7feKofbkpLwu3PmKNzLl/PcK1Yo3NxJBuLnPh+ucf31cpsZsq9UBRYIBCgzM5PefPNNujkmZ+Tee++l8fFxeuedd+L+fnV1NT311FP01FNPxW3X3d1NNTU11NTURMuZL83v95M/pgCa0+mkysrK868CExWes7L4NwhhDgcGVC0JIRFW4aGQtrSXCJOx241BT0vWGArhfnl52vJXcT7Z+eTOzdWWiH4ducWbnwiXnQu304nPPxV3ZqZ2GQDBrdNpn4I9Xe5AAKHWeNzhMPpubq62/HW63E4n7vN14h4fx8T1deJ2OLBw+X+ZOylJ+9RxImW3JT9/5rjT07XLLhAp4f/zxZ2Xp10y5OvIHQziWtPhzs4+7ztA3xgZvMViodmzZ9ORI0foopg3imeffZb2799Px7jy9jE2nQVQJBKhLVu20Pj4OB06dIht8w//8A/0j//4j9LPEzL4hCUsYQlLWMK+OfZFFkAar6D/99jjjz9Ozc3NmosfIqKf/vSntH379s//LnaAzrvZbEjoLCiAOoJbQXs8SBBLScH2ILdLEAohoS8YxPYuV9wrGkXCrd2OEIJ6K1aYyYTEvzlztA+kGxvDtfLzsa3/13KHw+D2+9HmfHDPno0QwF/L7fWCSa/H1u1U3MuW8TtF0Si+27ExhJq0Cl2azUgGjsdttyMRNS8P4Qgt7pYWvGGdK3d3N/rmdLgrKmSl4Bfh9vnApNOhD3BvreEwPpvPhy18rZ2Lri5F3aNV6NJiQUJuPO7xcSRL5+YijBKPOzkZ/ua4IxG0mYq7uxsqmfnztQsvCu7yclnhGMvd0YH7LF16btwtLehTtbXaOwDT4R4chLigrIwPzRPhzb+9PT633w/upCT0E26XQHB7PLiOFvfZs0iinjdPu/Di0BAS5c8XNxH8rcXd2ord4tpa7UKuPT1I9J8/f2ru0lI+pYAIO2ltbXj+ly7ld8ECASTWn0/uefO0Cy8OD6NdPO4ZsK90AVRcXEw6nY6GVfVOhoeHNROcv4g98cQTtGvXLjpw4ADNUZ/uG2NpaWma+UTnzUZHiX79awwi2dmQrapLxfv9kBKfPIkJ4tprIRONfdCiUUgod+/GRLFuHSSpav59+yDdnZjAxPb00/Kg1daG+4kKvz/8oRyPtlqJfvUrhXvbNjlXyO+H1PL4cXBfcw3kxGruV16ByisUQm7RU0/JW+D79+OkZKcTE9szz8gPf0cHZJSC+wc/kE/wttnA3dWFB3/bNjnnJhCAJPfYMSwgrr4apyWruV99FYqqYBC5Oz/6kbyVfPAgpOkOB7ifflp++Ds7wT04iAn7iSfkE7xtNvSTzk5w/83fyLkrgQD8fewYBrOrr4ZcXj0gv/aaokxavZpo+3aZ+9AhlAJwOjFgPf20fGJ6VxfRb36jcD/+uHyC99gYuDs6wH3PPXIuRTAIiezRo+C+8kqUcFBzv/kmlDKBAHJ3tm+XF8uHD6NkxPi4wq0+Mb27G9wWCxZ2jz8un+Btt4NbHPR5991yLkUwCCn1kSPg3rwZJRzUE8mbb0IpEwjgPtu3y4vOI0eUMg/V1eBWn5h+9iy4zWZwP/qofJTN+Di4xUGfd90l51KEQjh1+/Bh+HjzZpRwUHO/9ZZy+GhdHZjU3EePgttux0Ly6aflE9N7e4n+5V/AXVQEbvVRNg4HuFtb0RfvvFMu9aHmvvxylEJQc+/YgbIafj+eo6eflhedx44pZR6qqtBG/aLX1wdukwncjzwilyhxOidz33GHfNxLOIx7HTwI7o0bcS11GGjnTvhc5O48/bS8eDt+HNcaGwP39u3yC1N/P7iNRuRIPfywnHvodBL98z9jUZaRgbwkdYmSWG4i5KY9+qjM/e676ONeLxalTz8tL4JOnFDKPMyZgzbqF4+BAXAPDID7oYfkEiUzZF9pEnRqaiqtXbuWPo2R70UiEfr0008nhcS+qEWjUXriiSdox44d9Nlnn9E8rRX9TFpTEyaSpUvxgHNS4t5eSKirq7FrcfiwLCefmMDP8/PRrqGBP1V9714M3EuX4r7irSTWTp1SzsgZGuJPXm9uVrjDYV4i2t8PufzcudjdOnJElpO7XJhsc3MVbk6+v28fBuJlyzARiLcSLe7hYV6S29yMRURtLd5ctLgbGhTuo0dlObnHg4EhJwdvKgaDNrfPB+7ubp779GkMsitWQB7LSURbWxXuaJSXtg4MgLuyEgP20aOyLNvjgVQ+OxsLMoOBl+/v36/sWGj5+8wZhXt0VJu7vV1JROX8bTTCB5WVmNjr62VZts+nSLcXLtTmPnAAn3H5cnwfBoPcpqFB4bZa+RPMW1uxiBA7P5y/TSZwz5kD7uPHZW6/X5Fu19TAj1rcbje4e3u1uY1GcNtsPHdbG/4sWYKFwSef8DJ4UQqipATcajl5IADujAyFu7NTvt/Bgxh7li/HgqGxUW5z5gy4ly9Hfzx6lOdubQW3Xg9/q7ktFjzjFRUKt1oVHAqhj6WnYzddi/vQIYW7v5/nbmjAM7V8ORZK3Mnr7e2Kv1NSwK2Wkw8OYgwtLwf3iRNyMVPBnZaGXemmJr7swKFDGEMFd0MDz93fjzbj47y/OzowFi5eDO7PPpMPKBVjf2kp/pw8KcvgxdifkoJrNTfz3EeOgGX5cmWcUltjo8LtcOCzfkX2lYfAtm/fTvfeey+tW7eO1q9fT7/5zW/I7XbT/fffT0RE27Zto9mzZ9Mvf/lLIkLidGtr6+f/bzabqaGhgbKzs2nh/6hcHn/8cXrllVfonXfeoZycHBr6ny8zLy+PMuIlgX2ZJpK9zGYMgFxoJzsbA784v6m6Wt7ZSU/HIqKvDw92Vha/1V5UhMHVbMZ9uTYiEdlsxn+5Lc3sbDCYzVjEcCESwT04CO65c+WdHaGg6enB58/K4resCwsxsQlurk1OjsItPgfHlJoKX7pc2v7OzAR3IICJWd0/hGKppwdcmZna/vZ64/s7JwdvVWYzBn3urKTYfjIxoe3vzEwMUsEgJmaOOz8fi1efL76/vV74KSWF587OVrgjEW1/p6ejjdMp78iJNqKfhEKY4NTcQpHX2alwc0wFBfh3sxm/w302wW0ygVvL37HcnJIo1t/hMHb21Nx6Pa7f3o6+pNVPCgvxjJjN+J14/jaZcL/pcHMh9awscAwPK9zqnTTB3daGvqTVTwoK8LkEdzx/m83xuTMy0Ebslqq5RT8ZGsL3Vloqc+t0YGptVbg5X+bnK9xaggFRl8psRr+cDve8eby/s7Ph72gUu6XqnTSh8LVY4KN4/g4Gp/Z3LDcniBF9V4wnVVXyTlpWFv6IxVpxscydnAwm8Sxp9e/8fLBM19/BoKzwm0H7WpwF9rvf/Y5+9atf0dDQEK1atYr+/d//nTb8j6z18ssvp+rqanrhhReIiKivr4/d0bnsssto3//sqiRpZKc///zzdN99903J86WcBRYOY9vz0CEM/PfeK4caiPBG/u67eNjuuYeXSLa2KhVQt2zhT+ceHEQVWLMZMs9bb5W3NF0uVFwVbzbbtskdNhzGNvPBg+Detk0ONRDhzfaddxSZPjcBtrUpFVBvuIE/5XpoCKE7sxlSyVtvlfNb3G5UJG1pAfd3vysPEOEwtsgPHsQAeu+9cqiBCP/+zjtYMNx9txySIsKk9vLLWABdfz1/yvXwMLhNJsg8b7tN5vZ4wC3eyL77XXkxEYmA+8ABcG/bJocaiNCP3nkHk/9dd8khKSK8ob38Mr5nwa1+NkZGEHI0mSBhvuMOnvvll/G2umgRmDjunTvRf0tK0IbLKTtyBJ9Prwe3OiRFhMXPyy9jYr/+eoRcOe4//QlvmRs2gFud3+L1wt9NTdjd2LZNniQiETxve/fG5z56FM+BXo+wzapVcpuuLtzP6UQY7corZe7RUfSTgQFs+995J8/98st4gVm4EEzqSTkSQVj2008x0W7bxueU1deDW6eDj9ShNCLsVL30ErivuQZ/1NxWK7j7+xF2v+suOU/E58O41NCAhc2998rc0Si4P/kEE+22bXxu1rFj4E5OhgxeHUojwo7lSy9hQXL11Qi5qrltNnD39SGsdffdPPdf/oIdrAULwKSuhh6NopDrJ59gwt62jc/NOn4c43xSErjVoTQivEy99BJ2Sq66CqkOU3HfdZf8Muz3g/v0aexOb9smLyaiUaQdfPwx/u273+VznE6cQHiLCGMXV8ajtxfcY2Pgvu46mXtsDM9lTw++s7vv5rlffRW7fNXV6CdauZ5/hX1jVGBfV/tSD0ONRrXlg7FtiOK3m06bL3K/89VmKqYEd4I7wZ3gTnBP3ebryDTT3H+FJVRgX2ebzhd+vtrM9P0S3F8/pgT316/NTN8vwf31Y0pwfymLny9qiQXQTFpfH8I2BQXYtueKRFmtSEJLTUVIgpOKezzY2g4EsB3N5YmEw9hGttsRRuO2PaNRhAeEDL6uju+UfX0Iu+Xna3PbbODW61ElluP2ehFKCASwrctJl8NhbCOPjcXnbm5GGCEed38//J2XB25OKh7LfeGFvFTc64W//f743CdO4Hq1tby0MxoFT38/wnErV/LcAwP4fPG4x8Zwv3jcPh/87fdjO5qTLkciSlLvkiUIAXDW0oJ+UFGB8E887txcMHHcdruiFrzwQj5HQHD7fODmJMCRCD6/1YpwIlflmgj9trc3PrfRiOcgNxf+5qTidjvul5ysze33g1tU+j4f3OXlCFtx3CaTcvjshRfy3OPj8HdyMj4bl0sSy716NS9djkTwnIyOIgzKVecmQpi7pwfXWLOG5zabkQg7He6kJLTR4q6vVyqUcykFkQhCLSMjYFYfziqsvR0htelwZ2eDiZOKOxwYd5OS4G9uByIQgL/jcUej8PfICPoIV1WcCGHu7m70tbVreW6LRTk0Nx63EDesX8/nEwUC8LfbjbGLS4WIRuHv4eH43J2dCBmXlGAO+4oWQ4kF0EzZwABklGYzYqJ33imfPO5yQf7a0oIBq6UF0t3YpLVoFPLfffvwcB86RPSTn8gD8nvvIc7q92OyffZZOUfg5EnIksfH0eEfe0yWIxqNkFGaTHhw7rxTPsbD7Qa3qDfS1ARJPce9dy+4a2uJfvpTeWDbtQtxbb8fD9izz8o5AqdPQ74uKqA++qh8pIDZDH8L7jvukI/xcLtx6rbBAFaDAacXq7n/+Edwh8Pg/slP5IHtgw+QtyG4n3lGXrydOQNuux2//8gj8pECFgu4jUZMDLffLh+H4fFATi+4GxvBHbswjUYhy//0U3AvWQJu9cC2ezfyVnw+DMTPPCMv3hoaUC5hbAz+fuQRuTT/4CD6ycAAuC0W+DzWvF6FOykJ1/3Rj2TuF19EzkI4jAH0Jz+Rc0k+/BD5COJQyb/9W3nx1tiI71dwP/QQ8uFibWgI3P394N66FXkLsebz4fOfOQPuM2fAHbvAE9x79oB70SL0bzX3nj3IkfB6wf3MM/IiqKkJfrLZ8Fw/9JB8YvrwMPqJ4DYakTOoxU2E52b7dnlh+qc/gSsUwiLhpz+Vc2A+/hjtPB5MWk8/LS8mmpsxDthsmGwffFDOTxwZgb97e8HR349SD7Hm9+M5EQcKC271Qunll/HchcPw4U9/KufAfPYZngPBvX27PCm3tIDbagX3Aw9Aeh9ro6OTufv6kHMTa6Kshjhy6dQp+Injfv99cC9YAG51DozgdrvxwrV9u3xESVsb0b/+K9gyM4m+/305P9FqBXdPD7h7e5Fzo+b+j/9QVMAnTqBfqhdKf/mLcsDy/PngVr98792Lcd7jAfePfiQLC9rbIYMfHYW/77+fP4ZpBuwrlcH/P2VdXZiU6+rQsbhzyYxGrOYXLcKbiMEgy+CdTvy8tBQPcnc3fk9tJ0/iwaurw2TEnajd3o7Fz8qVWExwpxJ3dyvcaWm85Nxkmszd3CzL4CcmJnOfPYvJUm2nTincg4O8tLW9HYuIujpcl+OO9Xd6Os9tNqNdTQ0m/5YWWQbvdoN71iwMQPG49fr4/u7oAPfKlVjscqcpd3cr0u3MTF5yLrgXLsRiq6VFPlXd48ECo7gYA9DZs5hsOO7kZMXfWtw2G7g9Hr6kguiH8biFX+bPB3drqyzf9/kwYRcXK9J8jvvMGYV7eJjvJx0duL7g5iT+3d34PleswGCsxd3Ziclqzhz0NzW33w+moiIIAHp6MEmqTUzqU3FbreD2+Xhu0Q9XrMAi6dgxWU4+NITrz5uHxO62Nlw31gIBcBcUKNxcWY0zZ/DiUleHRUw87ro6XJeTnJ89C7+sWIGXgOPHee6ODiTIVlXx3MEgxriCAqUUghZ3OByfu7Nzau6eHvRDwX3ihCyDHx6WuTn5vpqbK6tx5gza1tVhocBJzjs68G91dWirxd3bi3vl5YFbLYMfGcG15s7Fn44O/hT7EydwDVHCgeNubJyau7NzMrdYoH8FllgAzZQVF2Og6uzEIoZTbBQV4c/Zs5jkOPlnVhZ+brFg8C4s5DPoq6qwOBAF9bgwWUkJ3r47O/FfLkSi5uYUG4WF+NPdDa6SEnlHKjMTiyPBXVTEM1VWKtyZmXy4adYsLJI6O/FGzoUaiovx1t/RgcUY52/BffYsFh0cd0YGuMXiQMvflZVY1MTz96xZWCSJQZjb+hbcnZ1KsTyOu6gIA5DgVu+kpadjkTE0pHBr+dvjUfzNtSkuxqK9sxOTFRciKS7GxCC4OX8XFICjtxfcs2bJ3GlpCndnpzb3nDng7uqaXj+JRvkt+1mzMKiLxamWvwW30chzp6bi+xSTYEGBNrfXC+6MjKn9LeTrXBvBPTYGbnUYoaAA/aSvD4sl8TuxlpICv4hJMF4/8fkUbi1/p6WhTSjEqy5nzcKumFhUz52rzd3fD27xHcWaXo/rj47ihUiLe/ZsLE67uvBMxPO34Ob6SXGxzK2Wk+fno12sv7nDZysrlcVBYSHvSzU316a4WPF3MMj7u7gY/hSL08pKOWSyrIQAAEO3SURBVIVBcPf3409RkcydnIzftVrj9+/Zs8HS1QU2LX+np6ON3699AsEMWEIFxtiXogKLRrE9ePw4JuytW/l6EwYDtqMzMiBx5zqH0QjprtcLOSInJXY4IDceGkJYa9MmeaAJBLCl2d6OXZkbb5S3PaNRSJvr6+NzNzWBOy0N3NwEaDJBuu31QiLMSYljuS+4gJduB4MI8bW3Y9fpxhtlqWU0Cin50aNYIGzdKm/rE2E346OP8Lm3bOEXeGYzuD0ebNVyUmKnE9yDg4hpc9LtYBD+bmvDrtOWLTz3wYOQi8+aBW6uTkZLC8JAqan4/NzELbjdbvBwUmLBbbGAm5NuB4PYsm9tBfeNN8p1nqJRhGMPH8YAd8stPHdrK8JuKSm4DpfjZbFAUu9ygZuTEk9MgNtsxr9feaU8IYVC4G5pwW7Zli089+HDYC8uhr+5BW5bG7j1epRw4HK8BgfBPTGBfrtundzG5QK30Yjv4+qr43PPn4+T79V1h6JR9JGDB8G7dSs/2bS3g1unQ0kBLsdraAhMExMYJzgJ9HS5P/gAz9S8eag4zNVdE9yFhdrcHR24VnIyuLlcqeFhMDmdCFlx1YTdbrQZGMBze801Mnc4DB8ZDOC+6SY+h/HoUYwpBQXg5hYlsdzXXcfnSg0Po584HAgR/k/JF4l7504sSFatArd64RIOYwxobMTzf/PNPHd9Pbjz89GGe9Ht7AQ3Ebi5XKmRETCNj6PKtTrtgAhj5M6dWASuXInSBBz3Rx8pRWhvvjn+QdRf0BIy+HO0L1UGn7CEJSxhCUtYwr4U+yLzdyIElrCEJSxhCUtYwv6fs4QKbCbtzBlssxYVYWuf2x7u7cWWfFoattG57XibDSoBvx/VkrkwgtcLBZDNhmQzLmwTiWBrtL8fIauNG3mJe0MDuAsLtbn7+sCdkgJublt7bAxMfj9URFwYwedDG6sVCYdc2CYSwRZ6Xx9ChJddxnM3NuJPQQG4ue3h/n6EP1JSsP3PbWvHcl90ER9GiOVevpwP2wjVXm9vfG6DAT7Pz0doh+MeGIAP9Hr4m+O228Hk82G7mgsj+P1oMzqKJFhOShuJ4Lvt6UEOy+WX89xNTejj+fnwN7etHcu9aRO/HT8+joq7Xi+4uTCC349nYGQEydKclFaE5Xp6kJtw+eW8NL+5GcnJeXnwN8dtNIJbp8N1uLyz8XH40uOZHndtLcJNHPfhw8hNmy73FVfw0nyTCc+4Tof+xuUTORzwt8eDcAwX/ggEwD08DDHA+vU895EjyPGrqMD3y3G3tCD5PjcX/ua4zWaE3pOScB0t7k8/Rbho/Xpech3LvXgxPh/HffQoclLKy3E/Tprf2ooE5txc+JuT5sdyX345n+fndMLfbje+f7W6iwhh588+Q3hy0SL0J467vh7hq3jcbW3gzs6GvzluiwXcROgnXB7UxATUgC4XuLljY4JBpHoMDqL/X3QRz33sGMKFZWUYvzjuGbDEAmimrKMDUkObDR3CbkdZ8liz2yFbPXsWf+/qIvrxjydPNuEwTtsV6onTp4l+/nM5v+XNNxH7Frkwzz4rDxAHD+Jafr+Si6I+nqKrC9JOwT02Jss/x8chNxaqgK4uSJdjuSMRnDgsDnY8eZLo7/9ezhN5802UwBfcf/u38gBx6BC4fT4lZ0kt/+zuBrfVCm6bDSfUx5rDAX8L5VNHB6SdsYN2JEL03/+NAVLU5vj5z+WF6Y4dYI9EMJA884x8jMmRIzjlWnBHo7L88+xZcI+MgNtqxUnvseZ0glskgQvu2EFEcIuDHU+cALd6YbpjB9Ebb4Bl3z5wq48xOXoU3F4v7hGJIPcs1np7wSS4R0YgJ461iQl8NqEMaWsj+ru/m8wdjeLUcXFAouBWL/DefRdlHiIRcD/9NBaesVZfj37i8eA7DYeRSxFrfX0KNxH+++CDk9u4XOBub8dna20Fd2y+nCjzIE7UPn4c3OoFnihPEQ5joti+XT7G5Ngx+FtwB4M4LiHW+vsncw8N4TTwWHO7wS1Uki0t4I7NOxNlHsTkd+wY0c9+Ji84du3CMRfiYOH0dDn38MQJcLvdCvd1101uYzSCW5w7NTiIMhYcd2ur4u+f/Uzmfv555VDp+nq0US843n8fsvNIBBN/Wpr8MnjyJNHvf4/76nRYNN1ww+Q2JhOYLBb83WJB2ZBY83gwxgt1Z0sLmNR5Zy+8oBwWXF+P70S94BDc4bByHqP6ZfDUKXC7XOD2+5FXF2tmM/w9OKj8/YknJrfxeidzNzeDW/2i++KLymHBgludeC3KaoRCeJFITZVz4c6cQfkVwe3zIe/qK7BECGymzGTC4qGuDh26vV1uMzSEB6u2Fm/avb2yDN7lws9nz0Y7i0Xp3LHW3o771NXhvpxUvr8fna+uDg8PJzc2GpVdpJwcXnI+NASGxYsVbqdT5u7pwYNeW4v2HLdQUcXjNhrx0NbVYZDl5K8mk8Kdm4tBlOO2WLDAqqrCZKiW77vdWJRUVGBhYLEog2Cstbdjp2blSiwITSa5zcCAwh0KaXMLCXReHu/v4WEMZIsXYyepv1/m9nrBXV4O7sFBnruzEwNdXR24OX+bTBjc6+owIHPyV6MRu0grV2IHiPO34F60CMmPAwOyfN/rxeK1rCw+d3u7Mgk7HNr9xO0GdzTKc5tMWETU1SmHa6ptZATcNTXa3H6/wr18ObjFYb2x1tmJyWy63ETKC5EWd2EhuNXpnCMjaFdTg11io1HmDgTAVFqKHVfxTHDcqam4n9Opze1yKdzd3VNzt7XJ3FYr2i1ciOReMQbFWigEppIShVvL36KsxnS4k5O1/T04iO+tuBj+VsvgBfeCBdjd1uLu6MCCXpSe4Li7u7E4EKU+tJ5Lwa3T8SUszGb4ZsUKcLe1yTJ4wT1/vsKtLjsQDuN3i4sVf3NjXHe3Up7C7ebbGI34THV1WChz3DNkiQXQTFllJR74xkZ0DG77sLwcC5u2NnTc+fPl7crsbPzcbEa7igp+m7W2FvdpbMRuBafKqq7G5NfYiEGZUxJVVaHTGwx42DjusjJwt7ejw8+bJxcKFNwWC7hnz+a5lyzBZBuPu6oKi43GRgzKXCitslLh1jqdPJbbaAS3Wm6blYUBzWLBG1JFBb89XFurcBcU8Oq9uXMVbr2eD12qubnDcEtLsdDs6AB3dbWszMvIwAQyOBife8kSLIIFN+fvykr4QXBzIcDKSkxGjY2Y2Dl/C+7OTizaqqvlnUvBPTQ0tb/9ftwvP5/3d2Ul+l1jIwZlLe7SUrSx23nukhJwd3WBe+5cmTstDQu7oSGEAisqeFny4sWTubX6d3a2UjCSC10K7oYGvCgsWyaHGkpK0K67G4vtqip5xzU1FUzDw+AWY5DaFi3Cy0ZjI56ReP42GPB3LgQ4Zw6eu8ZGbe5Zs3AtUTOoqkrecdXrwT0yovibOzR48WKlRk5enra/c3LAHY1q+7u8HNex2fBcqtVksdw9PdrcS5bgZcFgwDU57poaLDoaGzGWaj2Xon+L4ptqmzMH9zAYsKhZulQOXxcX41qiJpEYg2JNp8PvWq3xuRctwsLQYAAb10+qqvCZRM0grariM2AJFRhjX5oKrLFRyQHavFneGiXCAHv4MAamzZt5KfHYGLZQAwHk0nALF58PbWw2rNg5ybnISenrw6B+6aXyQ00E5sZGsGzezOcAxXJv2sTnLtnt2Pb3+RAb5hYAPh/aiFwardylw4eVQf3SS7VzUhoa4nMPDOBaIpcmHrfXC39z3CK3w2rFoK6Vu3TkiJIDNBW3yF3iuI1GcOt08DeXczU+Dm6PB/7mFop+P9qIHCCOW+SkiMFRK1esuVkpqrd5M5+7ZDKhz4lcGi53yeGAL0UuDbdwEbkdo6MYmLnjC0ROytmzGKy1cq5aWsAtcmk4brMZ4a3kZHBzuUsOB3zpdiPXhJtIAwG0ETlAXM6VyEkROUAbN/K5NK2tSg7Q5s187tJ0uJ1O+FLk0nATUiCAcJPIAdLKuaqvV3KALruM525rU3KANm/mc4AsFnAnJeE6XM6V4Ha5wM0tAEROisgB0sq5Etzl5do5V+3tSg6QFvfgIEL3RNo5VxMT4J6YiM+9b5+SA6SVc3XsmJK7dNllfC5NRwfCkzk54OZygGK5N27kX05dLoTAJibgRy7nKhhEOFXkAGnlXB0/jhehsjL4+zzmACVk8OdoCRl8whKWsIQlLGHfPEvI4BOWsIQlLGEJS1jC4lhCBTZTFo1i27O+Htt+t9zCVyZuaEBF5fR0VMjkYr8DA6i26fOhIisX3hofJ3rrLWyhXnghX1E5EICapq0N29palYn37sWWfGkpDhTluBsbUd0zPR0Z/VxF5YEBpaLy1Vfz4a1Y7vXr+crEgQDUNK2t2Ia96Saee98+hEBKS7UrExsMqKaalobrcOFEoxH+9nigfuLCRA4H1GsWC7aHr7pKu4J1Swu2tW+6ia9MvH8/Qk4lJeDmwnJNTUol6C1b+LCcyQSVl8cDP3LSfKcT3GYzwhpXXSWHQWO5a2rQLznuAwcQ3orH3dwMbr0e3FxYzmxWKipfeSVfUTmWe+1avjKxqLzd3IxwFFeZWFTePngQ4bhbbuHDiS0tSkXlLVv4sJzFolRUvuIKvqLyxAS4TSb0I64ycSgE7qYm3GfrVp770CGlEvQtt/DhxNZWVPjV6aAQ4sJyg4NKReXNm/mKyrHcq1ejwq9WBWuDAdxcZWIRTj14EOPIrbfy3G1tSkXlG27gw3KC2+FAGJirTOxygdtoxDjJVSaO5Z43D77kwqCHDyuVoG+5hQ8ntrfjWkTwNxfeEpW3x8cR/lEfiEyEcOTbbyM9YfVqqAC5isoffIA5o7oaTFwY9MgRjCn5+WjDhRM7OtDniOBvLrw1PAym8XGE29QHIqu5V62CCpDj3r0bYed43DNgiQXQTJnBAPmjOFQuFJJlqyMjkIqPjODfR0aIfvGLyfHRYBBtmpuVU4l/8Qu5U7/2GjpZZiYGk6IieaH02WeQ5KalYQGTlSXLVpuaIDcNhcAdDMqy1dFRMA0P4/MNDRH94z9O5g6FFO6UFOTB/MM/yDHyN97AACK4i4vlhdK+feBOTcXDn5WFcvmx1tIC7mAQ3H4/0eOPT25jtUImPTSE/BzBHStvDochJzcYFO5f/EKOkb/xBgaQzExMOsXF8kJp3z6cqCy4MzNl2WprK7gDAeQc+XxEP/jB5DY2G7gHB8E9OAju2EWg4G5sBHdPD8oOqBNc33oLi9LMTPisqEhecBw4MJk7I0OWrba1QU4tuD0enFAfa2Nj4LZYJnPHLqYiEcjgz5xRuMvK5ITLt98Gd0YGfFZUJC84Dh4Ed0oKrpeRgUk51jo6wO3z4Y/HQ/TUU5Pb2O3gNpsxgVssRP/0T5MXJbHcer3CrU4C3bEDi7uMDPi7sFA+CuHgQUjOBXdaGhYKsdbZCW7RR1wulAKItfFxyNLNZvBZLPB37OQu5PsnT+L7PXsW3OoXr5078SczE89wYaG84Dh8GNx6PbhTU4luu21ym+5ucHs8Cvczz0xu43DA30Yj+MxmcMdOkkK+f+LEZG71C8w778DngrugQJ64jxyZzJ2WRnT77TL3H/6ACd7vx2Lx2Wcnt3E6wS3UtMLfsblCQr5/7BjuI7jVLzDvvos+Lp7LggLUfIu1o0chldfpkAuWmkp0552T2/T0gNvlArfDgdIqsS9nExMKd6y/Y3OFBHd9Pbi7uzHnqF8Edu2SuS+5ZHKb+npI5QW3Xk909930VVgiBDZTZrWiE9bUoGNxskabDZPEggVIIhwexkARax4Pfl5RgXZjY/LJ1ES4fk4O7ud2y3JMIixcwmFFcTA6yjO53XiTyc3lT0IXDIJ7ZASfVc09MqJw2+08Uyy3xyPLMQV3MIg20ah8cjHRZH/n5fH+HhsDx4IFysGKam6vF/4uL8fbsxa3yYSBLh631TpZ9SBqocSazYYBqaYGb2zx/D1/vsKtLpfg82FBV1aGa8Xzd1YW2ni9fBurVfH3dLk5f9vt4J43Dwsajtvvx8KotBR9TovbbMYgG8/fNhu4Fy7ETgJXdsFqxcS1aBEGa64UhJpbfNZYCwRw/ZKS+NwmExY/8fxts+F6CxdiktDyt8OBexUWop+o0znHx5UDXquqlM8aa8GgcoCx4OZ8aTZjobpwIfqWVv/2+xVuLX+Pj0/NLQ4cFQdwqrlDITDNmhXf3xYLJmzBPZW/9Xq+DECsv4uK0L/VMniHA+1i/a0uTxEOKwcBL1qEfqXlb8Ht90/t79RUnttqhW8WLcJLmcmkzV1VBZ+LzxprkQh+t7h4an+npsbnttkU7rQ0vgzADFliATRTtmgRBk+DAYMOt61fVYWBsatLqZWhTuLKzUUtipERtKup4aWGF1yA+xgMuC+3FVtbi0HfYMCkxUmua2oU7kCA3x4X1+/qwmBdVyfLyXNywC1Oy66p4cN7F1yAwc1gwGJJi7uwEG1yc+NzNzXhYdPirqnB28zgIFRnajl5VhZ2zsSp0wsX8uG9deswuMXjXrJE4c7JkQv3EeH6gtvr5Q9KFP4+e1bhVof3MjOxc2azKdxceG/dOkxAU3EXFSnS1hUreO6qqvjcFRXYWu/pwUDJcaenY+dsbAw7O1rca9Yo3OXl/Jb94sXgbmqCP9QFBwX33Llo43bzYRThl54eDNZLl8rhPVGozmYD94IFPLdQfRkMWJxy3EuWKKUQRI0mjru6WuHmKu4Kv/T2YvJaulQO76Wmgsluxxv7ggV8OHXtWiwiDQYsTrW4Z81CG65QouCeNw/cLhevEiorw7X6+sBdWyuHyVJSMFaMj8fnXrMGizGDAYs8rX4iuNPS+JQC8X02N2Pxu2GDHAIsLQV3fz8WSLW1cphMr1e4m5uVmkEct16vcHPVomP9nZLCc4vaPs3NWNSsXy+HpEpKwCpOg6+tlSMKOh1+1+HAtcR11bZqFVgMBrBp+bukBG30ej6lYIYsoQJj7EtTgfX3Y3AsKMBDwElybTZIRFNSMBhzEmivF9uIwSAGJi7XQoTa7HYMfNykHY1i8BgYwCJq+XJ5MCLCv7e0YHHAPUBEmLBOngT3hg18DN3rxdZvIIBOz+VaRCLgHhvDg8hNIkTg6e/HYmDFinPn1uvhb47b54O//X74eyruJUv4wZgI339/P3ZutLiNRgwyeXng5iS5dju4dTr4m4uh+3zwt88Hf3O5FpEIrmOzYWDiBjXB3dcH7ro6nttkwsR2rtx+P/zt82ERx+VaTJe7rQ0LgIoKTMha3M3NWJRu2MBzj4/j+01ORhtOAu33w99eb3zuU6fwZrxoEZ9LRIRFa28vFjFa3GYz/B2P2+GA5DgedyAAf3u9mMC4HJFIBOGK0VG8NHC5RER4uRHhv1WreG6LRVlMb9jAS6AdDvg7KQl9iZNuC26PB/fiJOfRKPw9OgpmrZozgru0FN8dxz04iJByPG6nE/4mQhst7mPHsHCNx336NF5043F3duJFaDrcWVkY46biXr9efvEmwnxTXw/ulSt5qXw0ijDi/9/emUdHVeR7/NfZF0jCnoQkIOIIshlwEkE2NU9AFHVQNh+biGyDcJzxKHNmZJ6eMzAj4/LQN3P0OOK4DMLIAIIsYZUlbAkRkhCWrGTpBLJvvdf74zu3O7m3utMhS4fJ73NOjtipvvfTv9S9t7qqflUlJajbsi9URPiyfOMGrhHZEhatgNPgWwmnwTMMwzDM3QenwXdmbDbtmPedlBFCO5Z7J2WU87lThr1bX0Y5nztlOsq7JU7ulGHvtnNyp4w7TuzddmXYu+2cPAxngXUUFgs2yzx5El2HixfLl/g/ehQZAIGBRPPmyeeJpKUha6GhASm56g1MidDN/Pnn6P4cPx7ZGOou8tpabHCnpMEvXKjtsrVaHd7h4dhQVLZU/rFj8Pb3h7dsnkh6OrIWGhqQaqneCJQIvlu2oHt/3DiiWbPk3n//O4ZlhgzB5qzqlr7VigwnJS170SL50u3HjyNTxN8fmQiy+RYZGfCuq3N4q7ts9Xp4FxRgPsbs2VrvujqiL7/E3+9nP4OTzHvHDmQC9e2Lv4lsjteJE8hu8fODt2y+xZUryLaoq0OWnGxJgZIS1JOCAnSPz56t7SKvr4f35cvoil+0SDvHy2aD948/Yohw0SL5HK+TJ+Ht60s0Z4583sLVqzhfbS3Sf594Qu69ZQuGC+PjcSyZ91dfYbjlvvsQS/UcL5sN2U3HjsF74UL5cPGpU/D29kaMZPMWrl1DvaypgfeUKVrv0lLE++ZNDIPPnds065AI18eXX8J78GDEUua9axfuF716wVs2XHz6NP4u3t64lmRLIVy/jvNVVcF52jSt961biHdeHuaNzZsn9/7qKwy33HsvvNVLZthsuE8cOQLvBQvkw8VnzuC+4+UFb9mcyRs3EO+qKtSRJ5/Uet++De/cXBxj7lztkhkGA7xTUzGUumiRdm6aEFgK4tAhfKZFi+TeZ88iI9TLC5lksqUQsrJw362qwrIT06e79h4zBvGWeX/zDYbK7rkHTurpEEIgMysxEd4LF8qHi8+dQ7yJ8KyQzZnMzoZ3RQW8n3pK611WBu+cHFwj8+Zpl8wwGuGdnIw6u3ixfBpHB8A9QB1FSgputA0NGNvetk1bpqAAF+KtW7iZfv45KktjjEa8fu0ayn31lXzDuW3bcJ6GBty4U1K0ZQ4fxgVtMODfyk6/am9lLZnz55Fer6awEB4lJbgpff45jtkYk6mp9zffyDOctm93zKPYtQvzPNQcPYoL2mCAf2KitkxqKrxra3EMmXdRkda7oaFpGbMZF3RmJi5uV97KPIpduxArmffBg45tSg4e1Jb56Sc8sGprcYP4xz+0ZfR6PLD0etyUlLTixlgs8L561eGdm6s91nffObx373bMA2jMsWNY40nZpuTAAbn3d9/BOyVF7l1SggdWcTG8P/8cjbPGWK14/coVzKf6xz/km8bu2IE0YIMBD6azZ7Vljh/HmkOK9/792jKXL+PGX1uLuQtff60tc+sWvIuK4LJlizZbsLF3RQWWaZBtvrpzp8N7zx7n3kq8jx3DchZq0tLgXVODui7zvn0b3oWFDm919prNBu+0NMxz+vZb+SamO3eiEWgwYJmKpCRtmRMnHPE+ftyxHk5jMjKaen/5pbaM8hAtLESDa8sWbRaYzYbX09Md3rJNNXfuRKO7Oe99+1Dmxx+de2/bBu/LlxFXdW9JebnjS5Dirc6mEgKvK5OSt23DNarm+++bep86pS1z6hTWATIY8Bm+/15bJjMT56iuhvcXX2i9Kyrwen4+fpRGjtr7iy9wjOpqHFO2off338PFYICbM++9e1Hm5EncdzwEN4A6itpaNAIiIjDRVpa6XluLB1F4OFrENTXyBlBtLX4fHo4Hn/pmTITjBwXhfGazvExNDSp2ZCT+q77JEOEBpXgHB2svDKVMfb3DW1lzQu1dU4NvVhERKK9++CnegYFwMpvlZRp763TamzqRI96RkZi0KEvZbOzduzfeI2u4VVfjcyneslhWVDi8LRZ5mdpa3LgVb1fxVryd1ZPG8a6rc+7do0fz8Q4IcB3vlnhHRKAX0VW8+/VDvOvq5A3OqiqHd0OD3KmyEt+IlfotK1NXh4ZJZCS+kcu8lbqqeLuKd9++mEgu87ZYHN6Rka7rieLtrJ7U1eF3indlpbyMwYAyISGIt/rB1jjeffvKva1WrbcslhUV6PFR6rezeqLE29vbebwbGhzeFRVy74aGpvFWN/BtNsQlNNR1vKuq0DOo1G9n8Va8fXxcxzsiAt7l5Vrv+npHPenb1/H/jbFaHd6ursuKCri4G28fn+bjHRqK46qHnhQHxdtZvCsqmo93dbXD22p1fl0q9dvXVx7vDoIbQB3FiBEY9sjIcGwYquaeezCTPy8PFWnCBO2QVPfuGNKqrka52Fh5V+xjj+E8GRno/pcNST30EIaz0tJQGWXdtcOHI8smIwOVVeY9cCA88vNxwxk3Tr4b/IQJaKwoq4TKvB99FA9kZdXh5rzDw517K/H29pYPtw0Y4PCurIS3LA1+4kRc7NnZ8JZl7jz6qGNxu3vvlQ+ljRmDYbi0NDyUZN3Mw4Y54u3l5dx79GgMo1RUwFs91BAUhNVa6+pce0+e7Fi0bPBguffo0RiGU7xlKe7DhmE4MjMT3gkJ2jLR0YhBQQEeIGPHaru+AwIQy4YGDBWMHCn3njQJfxtX8Y6NxTBcWhoepLIU92HDkG2ofJuVxVvxLixEQyM+XpsJ6O/v8L5xA0OSssydiRNxLaSnYyhCNnQZG4u/seItWyn4gQfwk5mJB7FseLN/f1wrRUXoxZJ5K9e0wYAeFFfe3bvD6Z575N6jRzvi3auX3HvoUMQ8MxMPVZl3ZCS8i4sd3rJ08sceQ6P72jX8/WUZRxMm4KGtpG7LhlxjYx0p7rIFB4lQt4cNQ2+N1QpvdRp8RATuRXo9hjrj4rQZdYq32QzvESPkqeITJsAlLQ1uzryVeiJb4FHxHj4c3mYzvNXZsMo9VK/Hz89/rs1M8/bGe81mHGvECHlqvnIvSkuDm8z7wQcd8Q4N1S6U2IFwFpiEdssCKy/HzTEsDDcZWepfQwNujn5+uOBkqdtWK8qYTCgjS5UXAje0yko82GTbQBDhpl5QgJulbI4MER6y1683752RgQt8+PDmvR94QJ5yLgRiVFHh2ruoCA0Ad7xDQ3FzbM572DB5KrHVijJGo2vvrCzHgpDOxrQV78hI+dweIvzNrl1z7W0wIJauvG02lDEa8eBxttz8jRt4sA8e7Ny7uBgNRXe8Q0JwU3fl7e2NeuLK22BAvJ15Z2VhmOfee+VLEzT2joiQz0kiQqP96lXX3kYjnLy8EG9ZKrHNhnrS0NB6b70eX3DCw+Vzkhp7d++Oh1FbeA8dKk+VJ0JD+tYtNCRkSyq4611djQaQO946HeqJM+8rV9Ab4co7JwcNknvukS9NQITh2dxcNFicLb2heHfrhvPJvE0mPNh1OsRbPU+KCPeKjAx4DxkiT5VvS++aGngHB7v2Tk/Hv115X7mCL1WuvHNz4TVwoHxJBSJ8rpwcfC5nS4bcIZwG30o4DZ5hGIZh7j44Db6zYrPhm596vkZjhEDPhWx8tTG1tfLx88YoS9a7Sjc0mx1bHbjyLitr3ruysuO8LZa29ZbNI/K0t3q+hhp3vOvqmvdWlqxvrbcQbestm2fRmI72rqpqW2+rtXlvk6ltvGXzQzztrZ5ncife9fVt4221dj5vk6ntvMvLm/euru5c3h0Ap8F3FAaDY7PEnj2Jli7VjlkLgQyJxEQMDbz4onw8Wtl00GxGOuLzz2u7Na9dw2aY5eUYc126VJuOePs20f/9H7qsBwzAJqfqrm2DAZvppaTA++WXtWPWQiAD6OBBx8Z2EyZovZVNB41GjCe/8IJ2HP36dWyaqni//LJ2iK+sjOgvf0EXanQ00cqV2i5ioxHxTknB0N3SpdoxayGQTXTgALznzMFcBzXK5n1GI+aIzJql9b5xA/G+fRvzEV55Re79179iKCE6GvFWdxGbTI7NKcPC8PmHDtV679yJzBUfH6RlT5qk9T57Ft4GA+Z5zJmj9c7OxkaIt29jXP+VV7RDfOXliHd2NoYbV6zQzhEwmRybU4aFES1Zot2iRAhkyO3b50hvls0pO3cO2UEGA+YozZ2r9c7JgfetWxgiWbZM611RAe+sLHgvX65dvVbJTjx/Hl36L7+MIQC19+7djt3JX3gB8zjUnD+P7CCDAX+PefPk3sqGx8OGwVs9VFZZCe8bNzDkuGKFdskMsxne587B+6WXtPPlhEC2zfffw2PmTPncrAsX4N3QgOv2xRe1Q9h5eai7paX4uy5bph1yqqqC9/XriPOKFdolM8xmZBOdOQPvxYu187eEQKx378Z9beZM3OfUpKQgo6q+HvNI5s/Xeufnw7ukBNfR8uVy77/+FffMiAiUUQ+rWyzwTkrC3+ull7TzoIRA3Vaymp57DssKqLl4Ed51dbi/L1jg2nvIEDiph5yUzVczM3E9Ll+uHZ62WPC3PX0a3osXy+fl7N+PewoRNgyeOlVbJjXVkbk5bhy81UPYN2/CW6/H823FCu180JoalMnMxP1vxQrnw+rtDPcAdRTJyUgNDQzEg2THDm2Z3FykxioZDlu3ar/dNTTgdWU2/549ztOEs7NxvuPHnaeTp6TgwkhJQWq2mpQUpOK68s7Lc3hXVSElVf1tw2CAt5Jls3ev3Ptf/8IDy5W38npwMC5KWfr+xYvwDghAXJU1LhqTn4+Hg5IJs3WrtgfLaEQqdlkZbsZ798JPza5duPEHBiINVJZO/uOPeEg25330KLzz8uTeBQW4yVqtuAl++618c85vvkHDRqfDjVmW3tzY++TJ5r1/+glLD6hJTUX9UbxlyzwUFsJbycZR0nMbYzYj3rdu4aG9bx8eTGp278b8l6AgfCGQpZMrf4egIHjLlku4dAne/v64ecu8i4u13ur0ZotF6+0svTkz0+F95ozc++xZlLl0Sb7swKVLqD9+fvD+9lvtt3K9HteTyYSH1j//qc3itFpR70tK8BA+cEDuvWePw/v0abn3yZMO77Q0uXdaGv4Ofn6ox1u3ar1LSx3e9fXwVmfn2Wyo33o9HsIHD2J+isz7yhWH9+nT2jLK30HxdrbsgOJdVCT3vnUL3gYD7tPffafNhrTZUE+KizGv6eBBzAdS88MPeD0oCI0umffp0/idksQg805Pxzl8fXFOZ97ffQdnxVu9MbYQeG9jb2XOUGP27cPrQUGoC7I0+MbeGRn4rB6CG0AdhcWCyh8QgBuNrOvPYsENKSAAN2Tl/xtjs+F1Pz+Us1rlXY1mM84TEIDKKytjteJ3ShmLxXUZZ96KQ0AAvNz1lp1P7e2sjOKknF+NEu/AQNwgZUMgjb39/fFv9XCKzYb3NhdvkwkPvsBAvKe5eCufQ1ZG8fb21i4noHw2qxXOzcXb19d1vNvaOyDAvXj7+clj6W79VrwDAhzvkcWJyNETJ3NqfM35+DiPt8WCeCv1RH0+IXB8X1+cr7XXpeLt5eX8ulTqia+v63gr3rJ6IgRiqcRb+axq3I23EHDS6ZqPtzPvxvVbibfMW7kuXcXbYoGLO/dBxdtZvBt7u7oPultPmrsPKvF2dh9s/ExxVU+sVkc9MZm0DSCZt7N60lz9tlhadj/x8vLoMBg3gDqK2FikiRYXI/Pjqae0ZQYNwhBMdTUuxOnTtd21wcF43csL30InTJDPop8+HecpLsZ5Y2O1ZR55BMNZBQXorpQNWz34YPPeAwdqvdXdtUFBeK+3N3q3JkyQpzc/+SSGs4qLHTGTeQ8ZAu/Bg+VplA8+6Eil7dFD7j1gAIZYlN6TadO03bWBgURPP42HY0UFvGUbQT75JLpzi4pwbtmKu2PHwruwEMeQDVuNHNnUe8YMbZmYGHjX1uJGMm2aNn0/IADv9fWF9yOPyNObp01D93lz3kOHIt6DBjn3VlJpw8Lk3tHRDm+bDcMDam9/f7zXzw/f+h95RJ7ePHUqhiuKijAUIVspWO09ebLcOz4e3qGhRM88oy0TFYWhuvp63LynTNFmJ/r6YujA3x+9buPHy72nTHF4K39rNQ8/jGGmwkJc27JhwuHDkWZdUoI6+8wz8nRyJTXfYsG51Vl+Pj5ab1l68xNP4HiKt2zpCcW7oADXlmyYcPhwlCstxb3t2Wfl3o89Bm+zGedWZ8t5e+O9gYHorRg3Tu79X/+Fv19REYYIZd7x8RiOLCyEt2wphGHDmno/95x8F/vHH0cPkMmEc6uH5hXvoCCHt3qoWPGOjob38OHypSfi4/GZiopQVub9wAM4R2kpnh3PPivfxT4hAc4mE/6tHpr38sJ7g4NxLGfejz+O+1NhoXPvuDj8TvGWDW92EJwFJqHdssAMBtwcwsKcp79arRia8fXF+LksZVEIVDCzGZVNlnJOhBtaZSVuAOr5PwrV1biJ9usn3wGYCN+Kb97EA8JZ+qu73kVFuMha611Tg4dWW3n7+OB8rryNRnjLUrcbe/fvL1+aQPEuKYGPejsJtXdIiPP0V6sVZby9W+9dVoZGUnPeej18WuNtsyHerryJ4G0wtN67thaNSVfeJhO8u3dv3tvLCzft1niXl+MnMlK+pILirdfjPqFuJKq9u3Vznm7srndxMRocncn75k34NuddXw9vWaq8u951dThWr17aNbUUzGbEMjhYvoN7Y28iODnz1utxTlfeFRWo48oitB3lHR2tbSS1tXd9Pa4VV953yF2XBv/xxx/Tu+++S3q9nkaNGkWbN2+mONkicUSUnp5Ob731FiUnJ1NeXh69//77tHbt2lYdUw2nwTMMwzDM3cddlQb/7bff0muvvUbr16+nlJQUGjVqFE2ZMoVKS0ul5evr62nQoEG0ceNGCnfSmm3pMTuMhgZM6HTlYbVikm1+vvNUQyHw+6ws+bivQmkpzucqTVZZTE09qbMxBgOOU1LSeu+bNzEZt7Xe1dXwdrWMeku88/Ja763s4dZR3tnZbevtKk3WHW+jEcfR61vvXVAAb1fp67dvN+9dUwNv2RYuLfG22eCdm9u5vK9fRw9Aa7yJ0KPsrrdsewO1t2xLEQWTyT3vnBz3vK9fd+1dVta8d21t23rn5LhenqGoCMdyNf+lrAxOrpYWaYl3UVHHeJeXN+9dV+fYp9CDeLwHKD4+nn7+85/TRx99RERENpuNoqOjafXq1fTmm2+6fO/AgQNp7dq1mh6g1hyTqJ16gKqrif73fzHrPSQEadnq+RYWC1KgT55EN/QvfoH5J2q+/x7ZWBYL5ki8/LK22zo5GWngVVUYq331Ve1QUX4+0ebNuIlERhKtXq1dvbWmBt7p6Xj/kiXacXSrFedSvJ95BuPFavbsgbfJBO+lS7XeKSk4VmUlxvTXrNEOXdy8Ce+CAnSzrl6tXQVV7f3SS9qtJ6xWpG7/+CM8ZszA2L6aH35AJorJhHklr7yi7f5NTUV6s+L96qvaIYCCAjgVFKArevVq7fyt2lp8tsuXHenN6nF0ZePN48cxlDRjBuqKmn374G00Yv7CsmVa759+gndFBeasrFmj7ZIuLIT3zZvw/uUvtTtK19XB+9IleC9apN0KQdnA8tgxdLE/9RRSnNXDBAcOINPKaMRnX7ZMuzLtpUtIAVa8X31VOy+nqAje+fkYalm1Sjt/q66O6KOPcLzgYHirtxSw2ZACffQovKdPly89cfAgsrGMRlwjK1ZovS9fhnd5OeZkrVmj9S4uhndeHobkVq3Szt+qr4f3Tz/Be+FC7ZIZNhtSoI8cgfe0aVh6QO196BAyfAwGzElasUK783haGrzLyjB3b+1a7XwivZ7oww8d3itXaudBNTTAOzUVw1ELFmjnHtpsWAbh8GG4Tp2KJRzU3keOIBOsocERb7V3RgZS8xXvNWu00w9KSuCdm4uh6ZUrtUt9NDQQffwxsjSDgpByr14yQwiHNxHmXM2dq/U+ehSb1zY0OOKtHuq/cgVLlJSV4Vpbs0Y7jF9aCu+cHHymlSu186AMBninpMD7v/9bO4dPCMRR2Zz5iSewhIPa+/hxLKtRX4+5matWab0zM+F9+zbubWvWaIeVb92Cd3Y26tDKldqlPlrBXdMDZDKZKDk5mRIarU3h5eVFCQkJlCTbtbedjmk0Gqm6urrJT5tz8SJ++vfHzU+243BODlJglQfn3r3aVnRdnSNtMCwM5WW7Tu/di4unf3+cV7Yb/KlT+GYUHY1W/YkTcu+UFPe8Q0Nx0ezfr03LrqvDe2023PBPnpSnk//wAy6Q/v1xc5d5nz6Nbw/R0fjWKvNW3tu/Px6Se/Zoy+TmovHT2FvdE9bQ4Ejx79kTMZOlk+/b5/BOTZV7JyU54p2djXPLvC9cQIO0qkq+w3N+Pt4bEoIG0P792p4ZZbdxiwU3mVOn5Ltl79+PB0BUFBoBycnaMmfOOOKdnY0GTHPesh2e8/Px3m7dHKnL6h4Oo9GRct67N/7WrfHOzIR3Tg5u4GouX0aKf0QE6qzMu6DA4a2kAKu/cZtM+FuZzXhQJSXJ08kPHkQDR/E+f17ufeUKvPPy8MCUeZ87hwap4q3+LltYCO/gYHgnJmq/cVsseK/R6No7MRENSmUvO5n32bPNe6eloVx4OO4JMu/iYngHBaFBc+iQNi3bYsESDkYjGrenT8vT4A8ebOotW+bh7Fk0lKKi0MiXLQeSnu7wrq/HuWXeR49iPpq/PxpC6t5+qxXvNRjgnZQk9z50CH+/qCicW+Z97pzDu6BAvqxGRgbqk+K9c6e2h0evx3sDAvBz+LC2N9Rmw3uVTZjPnJGnwR8+DJeoKJzbmXd6OsoUFsqX1eggPNoAun37NlmtVuqnmgjXr18/0rvqjm7jY27YsIFCQ0PtP9HtsSiTjw++hdXXO1JqZWW8vfHQNRpx01JPFPbycqTrNjTg37JJi0raa3294z2y8xE5uuJlk9oaeyupkrIyPj7wMRjk3t7eeN1oxLFceVutKKPTycv4+uJ3rsoosWwu3j4+KGM0yp28vHA+ZW0PZ95KWndbxFvxNpubrycGg+P/Zd7NxftOvGX7BLlbvxvXE29vebz9/R3esjJE7tUTHx/8Thn6aE28FW9ndaAl8bbZmo+34i2Ec2+l7irp4K68lXqiPp9Oh/e2tbfN1ny8lfR7Z2UMBufeXl7ue7tbT+rr4e3KSfF2p367ireyxpE78XbX21U9qatzeKt7dpQyruKt0+G9yppSzrx9fVvuLYt3B+HxOUCdgXXr1lFVVZX956YyG74tGTMGabhGI7rhZUMWAwdiOMPbG70Nc+dqs1sCA/F6z564CTz9tDwNfuZMdJsbjTivLN32scfQdVxfj9/L0ijHjEE5oxFdsTNnassMGABvHx94zZmjzbYICEC3au/ejuEP9TAKEeLS2FuWtjppksN79Gj56rajRzf1fv55bZmYGEeqeFgY4qrOWvD3h3efPrhon3pKngb/3HMOb8VP5h0XhxukM+/YWPwdTCb8XV94QVsmKgrDjL6+6L2aO1e77ICfn3vezz6LbnODAUMRsrTViRPhXV+PVHlZ2mpsrCOVdsAArE6tpn9/nM/PD71Xc+Zoh2V9feGtfIF58kl5+v4zzzi8J0507h0fj3g/+CC69tWMGtW8d0QE/r7+/vCdPVs7LKus3B4e7liaQLbL94wZ6O5X4i3boX7iRLxuMMBPtirvyJH4O1gsqMeyIaLwcHgHBKB+zJqlHZb19ka8IyLwMJo2TZ5O/vTTDu/x4+U7vY8fD++GBvjJvEeMwNCQxYKeItkQUd++uM8EBOB6fOEF7TChl5fD22qFt2wY5emnkcJuMGCIULZj+vjxeN1ggJ/Me/hwh3dUlGvvwEB4P/+8dphQ7T1lijydfPp0nNNggJvMW/k8iveTT2rLPPAAzmG1wls2tNWnD7yDgvAzc6Z2uE2nw3ujohzew4fLvUeMcHjLdjJQXjcYcIzp07VlOgiPzgEymUwUFBRE//znP+nZRnNGFi5cSJWVlbRr1y6X75fNAWrtMYnaMQtMWeE5OFj+DUKhqgo3VGcphERohVsszlN7ifAwrqvDTc9ZWqPFgvOFhjpPf1X2J2tL75AQ5ymindFb+eanDJe1xru6Gp+/Oe+gIOfLACje3t7Od8F219tkwlCrK2+rFXU3JMR5+qu73tXVOE9n8q6sxIOrM3lXVaHh0pW9dTrnu44TOXpbwsI6zjsgwPmyC0SO4f+28g4Ndb5kSGf0NptxLHe8u3Vr8x6guyoNPj4+nuLi4mjz5s1EhAnLMTEx9Mtf/rJVk6Dv9JhEnAbPMAzDMHcjLXl+O/kK2nG89tprtHDhQnrooYcoLi6OPvjgA6qrq6PFixcTEdGCBQuof//+tGHDBiJCD0/Gv/dOMZlMVFhYSKmpqdStWzca/O8u/uaOyTAMwzBM18bjDaDZs2fTrVu36K233iK9Xk8PPvgg7d+/3z6JOT8/n7wadVsWFRVRbKNtHTZt2kSbNm2iSZMm0bF/Z6c0d0yGYRiGYbo2Hh8C64zwEBjDMAzD3H3cNesAMQzDMAzDeAJuADEMwzAM0+XgBhDDMAzDMF0ObgAxDMMwDNPl4AYQwzAMwzBdDm4AMQzDMAzT5eAGEMMwDMMwXQ5uADEMwzAM0+XgBhDDMAzDMF0Oj2+F0RlRFseurq72sAnDMAzDMO6iPLfd2eSCG0ASampqiIgoOjrawyYMwzAMw7SUmpoaCg0NdVmG9wKTYLPZqKioiLp37046na5Nj11dXU3R0dF08+ZN3mesGThW7sOxch+OlftwrNyHY9Uy2iteQgiqqamhyMjIJhupy+AeIAleXl4UFRXVrucICQnhi8RNOFbuw7FyH46V+3Cs3Idj1TLaI17N9fwo8CRohmEYhmG6HNwAYhiGYRimy8ENoA7G39+f1q9fT/7+/p5W6fRwrNyHY+U+HCv34Vi5D8eqZXSGePEkaIZhGIZhuhzcA8QwDMMwTJeDG0AMwzAMw3Q5uAHEMAzDMEyXgxtADMMwDMN0ObgB1EI+/vhjGjhwIAUEBFB8fDydO3fOZfnt27fTkCFDKCAggEaMGEE//PBDk9/v2LGDnnjiCerVqxfpdDpKTU3VHMNgMNCqVauoV69e1K1bN5o5cyaVlJS05cdqFzwRq8mTJ5NOp2vys3z58rb8WO1CW8bKbDbTG2+8QSNGjKDg4GCKjIykBQsWUFFRUZNjlJeX04svvkghISEUFhZGS5Ysodra2nb5fG2JJ2I1cOBATb3auHFju3y+tqStr8Hf//73NGTIEAoODqYePXpQQkICnT17tkmZu7VeEXkmXly3tCxfvpx0Oh198MEHTV5v87olGLfZunWr8PPzE3/7299Eenq6WLp0qQgLCxMlJSXS8qdOnRLe3t7iT3/6k8jIyBC//e1vha+vr7h8+bK9zN///nfxP//zP+LTTz8VRCQuXryoOc7y5ctFdHS0OHz4sLhw4YJ4+OGHxbhx49rrY7YJnorVpEmTxNKlS0VxcbH9p6qqqr0+ZpvQ1rGqrKwUCQkJ4ttvvxWZmZkiKSlJxMXFiTFjxjQ5ztSpU8WoUaPEmTNnxIkTJ8TgwYPF3Llz2/3ztgZPxWrAgAHi7bffblKvamtr2/3ztob2uAa//vprkZiYKLKyskRaWppYsmSJCAkJEaWlpfYyd2O9EsJz8eK61ZQdO3aIUaNGicjISPH+++83+V1b1y1uALWAuLg4sWrVKvv/W61WERkZKTZs2CAtP2vWLDF9+vQmr8XHx4tly5Zpyubk5Egf6pWVlcLX11ds377d/tqVK1cEEYmkpKRWfJr2xROxEgINoDVr1rTKvaNpz1gpnDt3ThCRyMvLE0IIkZGRIYhInD9/3l5m3759QqfTicLCwtZ8nHbFE7ESAg8p9c24s9MRsaqqqhJEJA4dOiSEuHvrlRCeiZcQXLcaU1BQIPr37y/S0tI0cWmPusVDYG5iMpkoOTmZEhIS7K95eXlRQkICJSUlSd+TlJTUpDwR0ZQpU5yWl5GcnExms7nJcYYMGUIxMTEtOk5H4qlYKXz99dfUu3dvGj58OK1bt47q6+tbfIyOoqNiVVVVRTqdjsLCwuzHCAsLo4ceesheJiEhgby8vDRd9J0FT8VKYePGjdSrVy+KjY2ld999lywWy51/mHamI2JlMpnok08+odDQUBo1apT9GHdbvSLyXLwUuG5hE/L58+fT66+/TsOGDZMeo63rFm+G6ia3b98mq9VK/fr1a/J6v379KDMzU/oevV4vLa/X690+r16vJz8/P83NuKXH6Ug8FSsionnz5tGAAQMoMjKSLl26RG+88QZdvXqVduzY0bIP0UF0RKwMBgO98cYbNHfuXPumg3q9nvr27duknI+PD/Xs2bNL1ytZrIiIXn31VRo9ejT17NmTTp8+TevWraPi4mJ67733Wvmp2of2jNWePXtozpw5VF9fTxEREZSYmEi9e/e2H+Nuq1dEnosXEdcthT/+8Y/k4+NDr776qtNjtHXd4gYQ8x/FK6+8Yv/3iBEjKCIigh5//HHKysqie++914NmnsFsNtOsWbNICEF/+ctfPK3TqXEVq9dee83+75EjR5Kfnx8tW7aMNmzY0OW2Pnj00UcpNTWVbt++TZ9++inNmjWLzp49q3k4MaC5eHHdwkjHhx9+SCkpKaTT6TrsvDwE5ia9e/cmb29vTfZVSUkJhYeHS98THh7eovLOjmEymaiysrJVx+lIPBUrGfHx8UREdOPGjVYdp71oz1gpD/S8vDxKTExs0qMRHh5OpaWlTcpbLBYqLy/vkvXKVaxkxMfHk8Viodzc3JZ/kA6gPWMVHBxMgwcPpocffpg+++wz8vHxoc8++8x+jLutXhF5Ll4yumLdOnHiBJWWllJMTAz5+PiQj48P5eXl0a9+9SsaOHCg/RhtXbe4AeQmfn5+NGbMGDp8+LD9NZvNRocPH6axY8dK3zN27Ngm5YmIEhMTnZaXMWbMGPL19W1ynKtXr1J+fn6LjtOReCpWMpRU+YiIiFYdp71or1gpD/Tr16/ToUOHqFevXppjVFZWUnJysv21I0eOkM1mszcaOxueipWM1NRU8vLy6rS9Hh15DdpsNjIajfZj3G31ishz8ZLRFevW/Pnz6dKlS5Sammr/iYyMpNdff50OHDhgP0ab1607mjrdRdm6davw9/cXW7ZsERkZGeKVV14RYWFhQq/XCyGEmD9/vnjzzTft5U+dOiV8fHzEpk2bxJUrV8T69es1qX9lZWXi4sWLYu/evYKIxNatW8XFixdFcXGxvczy5ctFTEyMOHLkiLhw4YIYO3asGDt2bMd98DvAE7G6ceOGePvtt8WFCxdETk6O2LVrlxg0aJCYOHFix374FtLWsTKZTGLGjBkiKipKpKamNkmvNRqN9uNMnTpVxMbGirNnz4qTJ0+K++67r9OnK3siVqdPnxbvv/++SE1NFVlZWeKrr74Sffr0EQsWLOj4ALSAto5VbW2tWLdunUhKShK5ubniwoULYvHixcLf31+kpaXZj3M31ishPBMvrlvaNHgFWXZcW9ctbgC1kM2bN4uYmBjh5+cn4uLixJkzZ+y/mzRpkli4cGGT8tu2bRM/+9nPhJ+fnxg2bJjYu3dvk99//vnngog0P+vXr7eXaWhoECtXrhQ9evQQQUFB4rnnnmvSQOqsdHSs8vPzxcSJE0XPnj2Fv7+/GDx4sHj99dc7/TpAQrRtrJRlAmQ/R48etZcrKysTc+fOFd26dRMhISFi8eLFoqampr0/aqvp6FglJyeL+Ph4ERoaKgICAsTQoUPFH/7wB2EwGDri47aKtoxVQ0ODeO6550RkZKTw8/MTERERYsaMGeLcuXNNjnG31ishOj5eXLecI2sAtXXd0gkhxJ31HTEMwzAMw9yd8BwghmEYhmG6HNwAYhiGYRimy8ENIIZhGIZhuhzcAGIYhmEYpsvBDSCGYRiGYboc3ABiGIZhGKbLwQ0ghmEYhmG6HNwAYhiGYRimy8ENIIZhGIZhuhzcAGIYhmEYpsvBDSCGYToVNTU19OKLL1JwcDBFRETQ+++/T5MnT6a1a9cSEdGXX35JDz30EHXv3p3Cw8Np3rx5VFpaan//sWPHSKfT0YEDByg2NpYCAwPpscceo9LSUtq3bx8NHTqUQkJCaN68eVRfX29/3+TJk2n16tW0du1a6tGjB/Xr148+/fRTqquro8WLF1P37t1p8ODBtG/fPvt7rFYrLVmyhO655x4KDAyk+++/nz788MMOixXDMHcON4AYhulUvPbaa3Tq1CnavXs3JSYm0okTJyglJcX+e7PZTO+88w799NNPtHPnTsrNzaVFixZpjvP73/+ePvroIzp9+jTdvHmTZs2aRR988AF98803tHfvXjp48CBt3ry5yXu++OIL6t27N507d45Wr15NK1asoBdeeIHGjRtHKSkp9MQTT9D8+fPtDSebzUZRUVG0fft2ysjIoLfeeot+85vf0LZt29o1RgzDtAF3vI0qwzBMG1NdXS18fX3F9u3b7a9VVlaKoKAgsWbNGul7zp8/L4jIviv00aNHBRGJQ4cO2cts2LBBEJHIysqyv7Zs2TIxZcoU+/9PmjRJjB8/3v7/FotFBAcHi/nz59tfKy4uFkQkkpKSnH6GVatWiZkzZ7r/oRmG8QjcA8QwTKchOzubzGYzxcXF2V8LDQ2l+++/3/7/ycnJ9PTTT1NMTAx1796dJk2aRERE+fn5TY41cuRI+7/79etHQUFBNGjQoCavNR46U7/H29ubevXqRSNGjGjyHiJq8r6PP/6YxowZQ3369KFu3brRJ598onFhGKbzwQ0ghmHuGurq6mjKlCkUEhJCX3/9NZ0/f57+9a9/ERGRyWRqUtbX19f+b51O1+T/lddsNpvT98jep9PpiIjs79u6dSv9+te/piVLltDBgwcpNTWVFi9erHFhGKbz4eNpAYZhGIVBgwaRr68vnT9/nmJiYoiIqKqqiq5du0YTJ06kzMxMKisro40bN1J0dDQREV24cMFjvqdOnaJx48bRypUr7a9lZWV5zIdhGPfhHiCGYToN3bt3p4ULF9Lrr79OR48epfT0dFqyZAl5eXmRTqejmJgY8vPzo82bN1N2djbt3r2b3nnnHY/53nfffXThwgU6cOAAXbt2jX73u9/R+fPnPebDMIz7cAOIYZhOxXvvvUdjx46lp556ihISEuiRRx6hoUOHUkBAAPXp04e2bNlC27dvpwceeIA2btxImzZt8pjrsmXL6Be/+AXNnj2b4uPjqaysrElvEMMwnRedEEJ4WoJhGMYZdXV11L9/f/rzn/9MS5Ys8bQOwzD/IfAcIIZhOhUXL16kzMxMiouLo6qqKnr77beJiOiZZ57xsBnDMP9JcAOIYZhOx6ZNm+jq1avk5+dHY8aMoRMnTlDv3r09rcUwzH8QPATGMAzDMEyXgydBMwzDMAzT5eAGEMMwDMMwXQ5uADEMwzAM0+XgBhDDMAzDMF0ObgAxDMMwDNPl4AYQwzAMwzBdDm4AMQzDMAzT5eAGEMMwDMMwXQ5uADEMwzAM0+X4f6POjG2vg5OnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "funman_venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/notebooks/sir-query-positional.ipynb b/scratch/notebooks/sir-query-positional.ipynb new file mode 100644 index 00000000..e51ec48b --- /dev/null +++ b/scratch/notebooks/sir-query-positional.ipynb @@ -0,0 +1,226 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import scipy\n", + "from scipy.integrate import odeint\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import sir_model\n", + "import json\n", + "from random import randint" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "# initialize recording of parameter choices and true/false\n", + "\n", + "param_choices_true_false = []\n", + "\n", + "# USER: set bounds\n", + "beta_search_bounds = [0.08,0.1]\n", + "gamma_search_bounds = [0.02,0.03]" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "# USER: list how many points for each parameter you'd like to synthesize\n", + "\n", + "beta_values_to_synthesize = 50\n", + "gamma_values_to_synthesize = 50" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "search_points_beta = np.linspace(beta_search_bounds[0], beta_search_bounds[1], beta_values_to_synthesize)\n", + "search_points_gamma = np.linspace(gamma_search_bounds[0], gamma_search_bounds[1], gamma_values_to_synthesize)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "# set parameters\n", + "\n", + "for i in range(len(search_points_beta)):\n", + " beta_val = search_points_beta[i]\n", + " for j in range(len(search_points_gamma)):\n", + " gamma_val = search_points_gamma[j]\n", + "\n", + " # parameters\n", + " def beta(t): return np.piecewise(t, [t>=0], [beta_val])\n", + " def gamma(t): return np.piecewise(t, [t>=0], [gamma_val])\n", + "\n", + "\n", + " # USER: set initial conditions\n", + " I0, R0 = 0.01, 0\n", + " S0 = 1-I0-R0\n", + " y0 = S0, I0, R0 # Initial conditions vector\n", + " # USER: set simulation parameters\n", + " dt = 5\n", + " tstart = 0\n", + " tend = 100\n", + " tvect = np.arange(tstart, tend, dt)\n", + " # simulate/solve ODEs\n", + " sim = odeint(sir_model.SIR_model, y0, tvect, args=(beta, gamma))\n", + " S, I, R = sim.T\n", + "\n", + " # plot results - uncomment next line to plot time series. not recommended for large numbers of points\n", + " # sir_model.plotSIR(tvect, S, I, R)\n", + " # USER: write query condition.\n", + " query_condition = ((0.15 <= I[10]) and I[10] <= 1.0)\n", + " query = '1' if query_condition else '0'\n", + " \n", + " # log parameters and sat (1)/unsat (0)\n", + "\n", + " param_assignments = {'beta': beta_val, 'gamma': gamma_val, 'assignment': query} # for \"all\", go through every option. for \"any\", only need one good parameter choice.\n", + " param_choices_true_false.append(param_assignments)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'beta': 0.08, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08, 'gamma': 0.02020408163265306, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.020408163265306124, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.020612244897959184, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.020816326530612245, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.021020408163265305, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02122448979591837, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02142857142857143, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02163265306122449, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.021836734693877553, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.022040816326530613, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.022244897959183673, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.022448979591836733, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08040816326530613, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08040816326530613, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08040816326530613, 'gamma': 0.020612244897959184, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.020816326530612245, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.021020408163265305, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02122448979591837, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02142857142857143, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02163265306122449, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.021836734693877553, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.022040816326530613, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.022244897959183673, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.022448979591836733, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08081632653061224, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08081632653061224, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08081632653061224, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08081632653061224, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08081632653061224, 'gamma': 0.021020408163265305, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02122448979591837, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02142857142857143, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02163265306122449, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.021836734693877553, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.022040816326530613, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.022244897959183673, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.022448979591836733, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08122448979591837, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08122448979591837, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08122448979591837, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08122448979591837, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08122448979591837, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08122448979591837, 'gamma': 0.02122448979591837, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02142857142857143, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02163265306122449, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.021836734693877553, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.022040816326530613, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.022244897959183673, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.022448979591836733, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.02163265306122449, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.021836734693877553, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.022040816326530613, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.022244897959183673, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.022448979591836733, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.022040816326530613, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.022244897959183673, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.022448979591836733, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.022244897959183673, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.022448979591836733, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.09020408163265306, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.09020408163265306, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.09020408163265306, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.09020408163265306, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.09020408163265306, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.09020408163265306, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.09061224489795919, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.09061224489795919, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.09061224489795919, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.09061224489795919, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.09061224489795919, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.09102040816326532, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.09102040816326532, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.09102040816326532, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.09142857142857143, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.09183673469387756, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.03, 'assignment': '1'}]\n" + ] + } + ], + "source": [ + "print(param_choices_true_false)\n", + "\n", + "id_number = randint(10**5, 10**6 - 1)\n", + "\n", + "with open(f'sir_query_auto_2_param_{id_number}.json', 'w', encoding='utf-8') as f:\n", + " json.dump(param_choices_true_false, f, ensure_ascii=False, indent=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9dXhc17X+/zmSRiPNiJklMzM7ZoehSZo2acrce297b9uA4zjmmAKNw9A0aQrBhqGJnRhlZluyZDGNcJh5zu+P0Rxpe+QkznVu7/19tZ5Hj6Q1sOfsd/bZe7/vXmtJsiwzaIM2aIM2aIN2KSzmX/0BBm3QBm3QBu3/PzY4qQzaoA3aoA3aJbPBSWXQBm3QBm3QLpkNTiqDNmiDNmiDdslscFIZtEEbtEEbtEtmg5PKoA3aoA3aoF0yG5xUBm3Q/o+ZJEmLJEnS/as/R3+TJOmsJEmLPufxFZIk/el/7hMN2r/KBieVQfsfNUmSmiVJckuS5JAkqVuSpD9LkpT0r/5cn2eSJJVJkiRLkhR3id4vQZIkiyRJSwZ4bKskSW9eina+ivVep7MXn3ZJkh6RJCn2i14ny/I4WZZ3f87jm2RZ/vkl/bCD9r/SBieVQftX2A2yLCcBU4EZwMqLebEUtv8z393zJyNZlj3A68APz3teLHA78Jf/uU83oE3qxWcp8F3gF/+dN7tUk/Gg/d+w/zMDc9D+/2eyLLcDHwPjJUlKlyTpQ0mS9JIkmXv/Loo8V5Kk3ZIkbZQkaT/gAoZKkvQTSZKqJUmyS5LUKEnSr/o9f5EkSTpJkpZJktQjSVKnJEk3SZJ0rSRJtZIkmSRJWtHv+TGSJC2XJKlBkiSjJElvSJKU0fvw3t7flt4V/Jze1/y0t32zJEnbJEkq7fd+siRJv5YkqQ6oG+Dy/wLcIkmSpp/vKsJj8uPPu7bzrbet4f3+f0mSpA39/r9ekqRTvbujA5IkTbwwKn0my/I5oJwwPsMkSdrZ2zcGSZJeliQprV8bzZIkXd7791pJkt6UJOnvkiTZgB/3+v7e+3hk5/cjSZJae9/vvn7vlShJ0l96+7W6F0Ndv8fv6d1F2SVJqpEkaemXuZ5B+5+xwUll0P5lJklSMXAtcJLwd/HPQClQAriBJ897yQ+AXwLJQAvQA1wPpAA/AbZKkjS13/PzgASgEFgNPA98H5gGzAdWS5I0tPe5/wXcBCwECgAz8FTvYwt6f6fJspwky/JBSZJuAlYA3wSyCd98Xz3v894EzALGnn/tsiwfADp7X9//+l6RZTnwJa7tS1nva14EfgVkAs8B70uSpP4Srx1LuJ9OAhKwmXDfjAGKgbWf8/IbgTeBNODlCzxnHjCK8I5otSRJY3r9a4AyYChwBWHMIp9pFPAbYIYsy8mEJ+LmL7qWQfsfNFmWB38Gf/7HfgjfAByAhfDE8DSQOMDzJgPmfv/vBtZ/wXu/C/y29+9FhCem2N7/kwEZmNXv+ceBm3r/rgaW9nssH/ADcYRvcDIQ1+/xj4Gf9fs/hvAOqrT3fxlY8gWfdyWwvffvlN7XT/mS16br95gMDO/3/0vAht6/nwHuP++9aoCFF2hHBmyEJ9UGYAMQM8DzbgJOnofr5b1/rwX2nvf8tcDfe/+O9GdRv8ePAN/p/bsRuKrfYz+PXC8wnPCEezmg+ld/nwd/on8Guc5B+1fYTbIsf9bf0UsDbQWuBtJ73cmSJMXKshzs/b/tvNdcQ3hVO5LwTV0DVPR7irHfa929v7v7Pe4GIocESoF3JEkK9Xs8CORe4BpKgcckSfpD/49EeFfUMtDnHcD+CqyRJKmQ8Iq7Xpblk1/y2r6slQI/kiTpP/v54gnvOC5kU2VZru/vkCQpB3ic8M4lufczmT/nPb7o2gG6+v3tog+LgvNer/wty3K9JEm/IzxJjZMkaRtwhyzLHV+ivUH7H7BB+mvQ/rfYnYSpkFmyLKfQRzlJ/Z6jpNTupW/eAh4GcmVZTgP+ed7zL8bagGtkWU7r95Mgh3WfgVJ5twG/Ou/5iXKY1or6vAOZLMuthGmz7xGmvv76Fa/NRXjSiVjeeZ9z43mfUyPL8vlU3RfZ5t7rmdiLz/c/5/PAF1z7F1gnUNTv/2LhjWX5FVmW5xGeMGXggf9GW4N2iW1wUhm0/y2WTHjnYOkVyNd8wfPjATWgBwK9K/sr/xvtPwtsjIjtkiRlS5J0Y+9jeiBEmOPv//x7JUka1/v8VEmSvv0V2v0LYY3gMvq0h4u9tlPAdyVJipUk6WrCulDEngf+TZKkWVLYtJIkXSdJUvJFfs5kemnL3p3V3Rf5+ouxNwj3bXpvW7+JPCBJ0ihJkpb0Trwewt+Z4AXeZ9D+BTY4qQza/xZ7FEgEDMAh4JPPe7Isy3bC4vobhGmY7wLv/zfaf6z39dslSbL3foZZvW25gI3A/t4TVLNlWX6H8Ar5td4TTpXANV+h3TcJ0307ZFnu/IrX9lvgBsI61fcI6y/0vtcxwkeCn+x9r3rgx1/hc64jfATcCnwEvP0V3uPL2npABzQBnxHuI2/vY2pgC+HvSReQQ/jAxKD9LzFJlgeLdA3aoA3a/16TJOnfCYv4C7/wyYP2L7fBncqgDdqg/a8ySZLyJUm6rDd2aBRhve2df/XnGrQvZ4OnvwZt0Abtf5vFE46nGUKY0nuN8NHzQfs/YIP016AN2qAN2qBdMhukvwZt0AZt0Abtktn/0/RXVlaWXFZW9q/+GIM2aIM2aP+n7Pjx4wZZlrMHeuz/6UmlrKyMY8eO/as/xqAN2qAN2v8pkySp5UKPDdJfgzZogzZog3bJbHBSGbRBG7RBG7RLZoOTyqAN2qAN2qBdMhucVAZt0AZt0AbtktngpDJogzZogzZol8y+1klFkqSre8t91kuStHyAx0dLknRQkiSvJEl3fZnXSpKUIUnSp5Ik1fX+Tu/32L29z6+RJOmqr/PaBm3QBm3QBi3avrZJRZKkWMLlWK8hXE719t7ypP3NRDgb68MX8drlhDO6jgB29P4fKX36HWAc4UJPT/e+zyU3p89JRXcFNq9N8AdCAc72nKXb0S34ZVmm3lRPk7kp6r067B1U66sJySHBb3abqeypxBPwCH63301lTyVmt1gfKRgKUq2vpsMeXauo0dxIvame87MndDm6qNJXEQgFBL/VY6WiuwKX3yX4vQEvlT2VGF1GwR+SQ5wznKPNGl2XqcXSQq2xNqptvVPP2Z6z+IN+we/wOajorsDutQt+f9DP2Z6z9Dh7BL8sy9Qaa2mxRJ9w1Nl0nDOci+pbo8tIZU8l3oBX8Lv8Liq6K7B6rII/EApQpa+iy9El+GVZpsHUQKO5Mer6OuwdVOmrCIbErOwWj4WK7grcfrfg9wQ8A+IakkNU66tpt7VHXV+TuYk6Y11U292Obs72nI3C1ea1UdFdgdPnFPy+oI/KnkoMLkPU9dUYagbEtdXaSo2hJqptg8tAZU8lvqBP8H8VXOuMdTRbmqPabre1DzhmTG7TBcdMRXcFFo9F8AdDQar0VXTaO6PabjA10GBqiLq+Tnvn5+J6/piJ4GpymwR/ZMzobLqo62u2NA+Ia4+zZ8AxY/faqeiuwOFzCH5f0MfZnrPonfqo66s11tJqbY1q+1LY1xmnMpNwJbtGAEmSXiNct7oq8gRZlnuAHkmSrruI195IuJwqhGtR7Abu6fW/JsuyF2iSJKm+930OXsqLCskhHjrwEE3mJnKTctmwZAPxsfEAvFLxCp81fEZifCLrF60nNylcNPBA2wH+ePyPAPx+9u+ZnD8ZCA/M9XvW4wv6uGnUTXxzbLhcucvvYt2edZjdZsZmj+Weefco7T92+DGq9FVkJmaycelGNKpwbaa3q9/mg9oPUMeqWb1wNcWp4bpGJzpO8NjhxwD41fRfMbd4LhCeUNbsWoM74OaKoVfwg0k/AMITx4a9G+hx9jA0YyirF6xGksK1mJ47/hzHOo6Rqk5l49KNpKhTAPik/hNeq3yNuJg4VsxfwfCM4QBU66t5YP8DhOQQP570Y5YMXQKEb+prdq/B4XMwr2Qev5z2SyA8yDeXb0Zn01GYUsj6xeuJiwl/RV869RLlreVo47VsWLyBTE0mALubd/PnU38mRoph2WXLGJsdXns0mBrYWL6RQCjAreNu5fqR1wPhG+va3WuxeC1My5/G72b/DggPtIcOPESjqZFsbTYbl2xEHRcu4/565etsa9hGQlwC6xatIz85H4BDukM8e/xZkOE/Z/0n0wumA+HJbN3udXgDXq4fdT23jrsVCN/c1u1eh9FtZHTWaFbM78vY/sThJ6joqSAjMYONSzaijdcC8F7Ne7xT/Q6qGBWrF66mNK0UgNNdp3nk0CMgw8+n/Zz5JfOB8I1nze41uHwulg5dyo8m/wgI37w37N1At6Ob0rRS1i5aS4wUXlM+f/x5DrcfJkWdwoYlG0hLSANgW8M2XjnzCrExsdw7/15GZo4EoMZQw5b9WwiGgvxg4g+4YtgVQHghtGbXGuxeO7OLZ/MfM/5DGTMP7HuAVmsr+cn53L/4flSxKgD+duZv7G7ejUal4f7F95OtDcfT7W3dywsnXkBC4q65dzEhdwIQnkg3lG/AH/DzzbHf5KbRNwHhSWvt7rVYPBYm5U7izrl3Krj+4eAfqDPWkaXJYuPSjSTEJQDwZtWbfFT7EWqVmrUL11KYUgjAsY5jPHnkSQB+PfPXzCycCYQXCmt2r8Eb8HLt8Gv5zoTvAOGJ4/4992NwGRiRMYL7FtynjJmnjz7Nqa5TpCWksXHJRpLV4TI2H9Z+yJtn30QVq2LlgpUMSR8CQGVPJQ8feJiQHOJnU37GwrJwYmaDy8CaXWtw+p0sLF3Iz6b+DAgveDaVb6LD3kFRahHrF60nNia8ln7x5IscaDtAcnwyG5ZsID0xTOp81vgZfzvzN2KlWO6Zdw+js0ZzKe3rpL8KEUuC6np9/93X5varO9FJuJ7Cl25PkqRfSpJ0TJKkY3q9/vyHv9CCoSCt1lYyEjPQO/XCirPJ3IQmXoPb78bo7lvN6+w6ZGSCcpBOR9+qSO/U4wl4UMeqabY2K36b14bFYyEtIU1YBcuyTKO5kfSEdMwes7AyabY2o45V4wl4hBVnh6ODkBxCRqbD1reLMbgMuPwuEuMShbZdfhd6l570xHRaLa0E5b4VWaO5kVR1KjafTVj1tVhaiIuJwxvwCquibkc3/qCfGGJotfWtisweM06fk6T4JBrNjYrfF/TRYe8gIzGDTkensNptsjSRFJ+E0+cUVn1ttjYkJPxBv7CT0Lv0+II+VDEqWqx9uxirx4rNayNNnSa0HZJDtFpbSU9MV/qmf9uJcYl4Ah4B1w57B6FQiKAcpMver22nHnfAjTpOLeyg7D47Zo+ZjMQMmixNwkq0wdwQxtVtFnbALeYW4mPj8Qa96F19fdvl6FJ2Iu3Wvl2M0WXE5XOhidfQaOm7PnfATY+zh4zEDHQ2nbCLaTQ3kqJOwe6zC7i2WduIjYnFF/QJuPY4e/AGvMRKscJqN/KdTFYn02xuVvz+oB+dTUdGYgbdjm5hJ9FkbkKr0uLyuwRcddbwCj4QCkTh6gl4UMWqhLZtXhtWj1UZMxGTkWm2NJOemI7RbRTGTJOliQRVAh7/eWPGHh4zITkk7BANLgMev4eEuASaLH2sg9PnxOg2kp6YTrO1Gblf0ctGcyNpCWnK9y5iLZYWVLGqKFw77Z34g34kJNpsfbczo8uI0+9Eq9IKuzdPwEOXoys8Zuyd+EN9u5hGUyPJ8ck4fA7Mnr4dcJutjVgpFm/QS49D3CFeCvs6J5WBSo1+2eyVX+W1X+o1siz/UZbl6bIsT8/OHjDLwOeaKlbFz6b+DG28ltsn3E5qQqry2Pcnfp/8pHyuGHqFsqoDuHzI5UzMnciMghlcVnKZ4p+QO4HFZYspTSvl22P7igbmanP55phvkpqQyq+m/0pZ9UiSxC+n/pLUhFRuGXML2Zq+z3/buNsoTStl8ZDFjMsZp/jnl8xnWsE0JuVOUnYKAKOzRnPFsCsoTCnkexO+p/jTE9O5ffztJMUn8bOpP1N2CgA/nfJT0hPTuWHkDRSn9FV4vWn0TQzPGM780vlMzpus+GcUzmBO8RzG5Izh2hHXKv6h6UO5Zvg15Ghz+PGkHyv+RFUiP578Y7TxWn448YfKLgzghxN/SI42h6uHX83Q9L4CjNcMv4axOWOZUzxHWVECTM6bzPyS+QzLGMbNo29W/EUpRdw46kbSE9P52ZSfKf7YmFh+PvXnJMUn8Z3x31FW6wDfm/A9ClMKWTpkqbCqWzJkCVPypzCtYBrzS+cr/nE541gyZAklqSXKLgUgW5PNt8Z+ixR1Cr+c+ksFV4BfTgvj+s2x3yQvqa8a8LfGfYuytDIWli5kQs4ExT+neA6zCmcxIXeCslMAGJE5giuGXUF+Uj4/mPgDxZ+iTuF7E76HNl7LT6f8VNldQxjXzMRMrh9xPSWpJYr/hlE3MDJrJPNK5jElf4rin1YwjXkl8xiVNUrZAQKUpZVx3YjryNJk8ePJP1b86jg1P53yU7TxWr4/8fvKah3gh5N+SG5SLlcOu1LZ4QJcNfwqJuRMYFbRLGYXzVb8k3Insah0EUMzhnLLmFsUf35SPjePuZm0hDR+Me0Xij9GiuGX035JijqFW8fdSmZipvLYd8Z/h6KUIpYMWaLscAEWli1kav5UpuRPYfGQxYp/TNYYlgxZQlFKEbdPuF3xZyRmcNu420iOT+YXU3+h7AABfj7156QlpHHT6JsoSC5Q/N8c802GZQxjQekCJuZOVPyzi2Yzq2gW43PGc/XwqxX/8IzhXD38anKTcgVck+KT+MGkH6CN1/LjST9WdmEAP5nyE7K12Vw74lrK0soU/3UjrmN01mjmlcxjWsE0LrnJsvy1/ABzgG39/r8XuPcCz10L3PVlXgvUAPm9f+cDNQO9P7ANmPN5n3HatGnyVzGXzyVX66tlu9cu+APBgFxjqJH1Tr3gD4VCcpO5SW61tEa9V5e9S6411MrBUFDwWz1WuVpfLXv8HsHv8Xvkan21bPVYBX8wFJRrDbVyt6M7qo1WS6vcbG6O8uudernGUCMHggHBb/fa5Wp9tez2uwW/L+CTz+nPyWa3Oer66o31coetI6oNnVUnN5ga5FAoJPiNLqN8Tn9O9gf9gt/pc8rV+mrZ6XMKfn/QL5/Tn5ONLmNU242mRlln1UW13WnvlOuN9VFtm91muVpfLXsDXsHv9rvlan21bPPYBH8E1x5HT1QbzeZmucXSEuXvdnRfFK7egFeu1lfLFrdF8AdDQbnOWCd32bui2miztslN5qao6/siXF0+l+CP4GpymQT/5+HabmsfEFeTyySf05+TfQGf4I/g6vA6BH+kbw1OQ1TbjaZGuc3aFtV2p71TrjPWRbVtcVsuCtfPGzMtlpYBce1x9AyIq81jG3DMXAjXUCgk1xnr5E57Z1QbbdY2udHUGHV9BqdhwDHj8Douesw0mBrkdlt7VNtf1oBj8gXuq1+npnIUGCFJ0hCgnbCI/t1L8Nr3gR8RLin6I+C9fv5XJEl6BCgARgBHLsF1CCbLMg8feJh6Uz0FyQWsX7xe4Ydfq3yNbQ3b0Kq0rFu8jhxtmJk7pDvEs8eeRZIk7ph9BxPzwisTnU3Huj3r8AV83DzmZoUfdvldrNu9DoPLwMTciQo/DPDEkSeo6K4gS5PFhiUbSFQlAn3ce0JcAmsWrlH44dNdp9l6aCsyMr+e0ccPdzu6w9y73yXww76gjw17N9Bp72RE5gjum9/HD//x+B853H6Y9IR0NizZoKw4tzVs49WKV4mLieO+BfcpO4kaQw0P7H+AoBzkJ5N+wqIhi4Aw975612psXpvADwdDQbbs20KLpYWS1BLWLlqr8MN/Pf1X9jTvISk+ifuX3E9GYgYQ5t5fPPkiMcQI/HCTuYmN5RvxBX3cPv52rhkRrvQb4d5NbhMzC2fym5m/UXB95MAj1BhryEvK4/4l9yur+Ter3uSfdf8kUZXIukXrFK3saPtRnjz6JBISv5v1O0Ura7e1s25PWFO5cdSNilbm9ru5f8/99Dh7GJczjmWXLVNwffLIk5zqOqXgGtmlfVj7IW9VvUV8bLyglVV0V/DIwUcIySFBK9M79azevRqXz8XlQy9XtDJ/0M+m8k2029oZmjGUVQtWKSvqF06+wMG2g4qmEtl972jawd9O/424mDjunX+vspOoM9axed9mgqEgP5z0Q5YOXQqExerVu1Zj9VoFrSwkh3hw/4M0mZsoSili3eJ1yg745YqX+azxM5Ljk1m3eB1ZmiwA9rft5/njzxMTE8Pdc+9WdhItlhY27N2AN+gVtDKnz8na3Wsxuo1My5/Gb2f/VsH10UOPUq2vJkebw/1L7ldW829VvcUHtR+QqEpk7cK1ilZ2vOM4Txx5AoDfzPyNopV12jtZu2ctbr+b60f2aWXegJf7995Pt6Ob0VmjWT5vuTJmnjn6DCc6T5CeGB4zSfFJAHxc/zGvV76OKlbFqgWrFK2sSl/FQ/sfIiSHBK3M6DKyetdq7D47S4f0aWURTUVn0zEkfQirF65WcH3p1EvsbdlLqjqV+5fcr+y+dzfv5qVTLxEbE8vyecsFVuVS2NdGf8myHAB+Q3jHUA28IcvyWUmS/k2SpH8DkCQpT5IkHXAHsFKSJJ0kSSkXem3vW28BrpAkqQ64ovd/eh9/g7CY/wnwa1mWxSMal8D8IT9NliayNFl0Ojpx+vtO0tSaasO8v98pcNARTj8QCginPbocXXj8HtRxaupN9Yrf5rVhcBnISMygxth3wkaWZWqMNWRqMjG4DQJHW2+sJzEuEbffTbez7/RZm60tfFJFRuD39S49Lp8LrUpLralW8Tt9TrocXWRpsmg0NwqaSo2xhvSEdCwei8DRNpobUcWq8AQ9Av/dYe/AG/ASQ4zAQRtcBuxeOynqFGqNfW17g15ara1kabLQ2XQC915rrCVZHeaH+/PfTeYmYojBG/QK/He3sxu33018bDwNpgbFb3abMXvMpCekU2OoUfxBOUi9uZ4sTRbdzm6Be6811aJRaXD6ncIppVZrK8jhybA//93j7MHtd5MQl0CdqU7x23129C49mZrMqBNxtcZaMhMzMbqNwumzelM96jg17oBb6FudTaecAjofV6fPiTZeK7Tt8rvosHeQpcmi2dIsaCq1xlpSE1KxeW2CrtFgaiAuJk7h7SPW5egKayoxsYJuY3KbsHltpKpTBVx9QR8tlhayNFm029sFHbLWWEtyfDJ2r13AtdnSrGhl/cdMBFd1rJoGcx+uFo8Fk9ukjJmIyYRPkWVqMulx9gi41pvq0ag0uPyuAcdMRGeLWI+zJ6xXqTRRuPY4e8jUZFJvqhdOpdUaa0lPDI+Z/npVnamO+Nj4qL5tt7XjC/mQJEnQpQwuA3afneT4ZKFvPQEP7fZ2sjRZtFhaBB2yxlBDqjoVq9cqnNhsNDcSI8XgDXijTr5dCvta41RkWf6nLMsjZVkeJsvyxl7fs7IsP9v7d5csy0WyLKfIspzW+7ftQq/t9RtlWV4qy/KI3t+mfo9t7H3+KFmWP/46rik+Np4fTfoRcTFx3DruVlLVfZrKd8d/l/SEdBaWLhRm/6VDljIqaxSTcicxt2Su4h+fM545xXPIS8rjW2O/pfhztbl8Y9Q3iI+N52dTfiZoKj+d8lNUMSpuHHmjshMC+NbYb5GjzWFu8VzGZfdpKpcVX8aE3AmMzhot8MOjMkexoGwBGYkZ3D6+jx9OS0jjW2O/RVxMHD+e9GNBU/nJ5J+gUWm4evjVFKUUKf5vjPoGxSnFzC6cLWgq0wumM71gelhD6d0pQFhTWTp0KSnqFIEf1qg0fG/C94iLieP2CbcrJ6AAfjDxB6SoU1gyZAnD0ocp/quHX82wjGHMKJjBjMIZin9i7kRmF80Oayijb1T8hSmFXDv8WjQqDT+Z8hPFHxcTx08m/4S4mDhuGXML6QlK+BO3j7+dTE0mC0oWCJrKorJFjM4azYTcCcwrmaf4x2aPZV7JPHK0OXx7XJ9Wlq3J5sZRN6KKUfHTKT8VNJWIznH9iOsFTeWWMbeQn5TP3OK5ygkogLnFc5mcP5lRWaO4fOjlin9k5kgWlS0iPSGd747vIwZS1CncNu424mLi+NHEHwmayg8n/RCtSsuVw65UVswA148MayyzimYxJa9PU5mSP4UZhTMUDSVipamlXD70cpLik/jhpB8q/oS4BH4w6QfExcTxnfHfETSV7034HmkJaSwesljQVK4cdiUjs0YyJW8KswpnKf4JOROYUzyHguQCQSsrSC7gupHXkRCXwE8m9+EaI8Xw06nhMXPzmJsFTeXWcbeSrclmXvE8QVNZULqA8TnjGZc9joWlCxX/mOwxzC+dT7Ymm++M+47iz0zM5OYxN6OKUfGTKT9RdtcQHjMJcQlcO/xaCpP7zg3dPPpmCpILmFM0R9BUZhXNYmreVIZnDOfKYVcq/mEZw1hctpi0hDRBA02KT+L28bcTFxPH9yd+X9BUfjjphyTFJ3HF0CsETeXaEdcyNH0oMwpn/N/SVP4v/HxVTcXj98h1xrooDjMYCsoNpoYoblqWw9rCQNy0wWkYkBe3e+1yvbE+ipv2BXxyvbE+Ss+J6Dbnc9OyLMsdto4BNQeTyyQ3mhqj+GGnzynXGeuieH9/0C/XG+ujuOlQKCQ3m5sH1By67F1yq6V1QP67wdQQxfu7/W65zlgXxU0HggG5wdQwIDfdamkdUHPocfTIzebmqLZtHptcb6yP4qa9Ae8FcW00NV40rgPx4g6vQ64z1kXx/l+E6/k6nSyHtYWBNAez2yw3mBqicHX5XJ+L6/k6XSgUklssLQNqDt2ObrnF0hJ1fVaPVa431l8Q1/P1nMiYOV+nk+WwtjCQ5qB36gccMxFczx8zEVzP13Mius35moMshzWjgTQHo8s44Jj5IlwvNGa+Cq7n920E14sZMxfC9csa/yJN5f+XJsvhc+81xhqKU4pZs3CNoqn84+w/+GfdP0mKTxL44aPtR3nq6FNIksRdc+5STme129pZv3c9Hr+Hb4/7tsIPR+IZepw9TM2fqvDDAE8dfYqTnSfJTcpl/eL1ysrkw9oPebPqTRJViaxeuFo5aVLRXcHWQ1sJySH+c+Z/KisTvVPP2t1rcfgcXD/yemVF7Q/62bh3IzqbjjHZY7jnsnuUFfULJ17ggO4AmYmZrF+8XuGHI9x7fFw8982/T1kV1Rnr2LJvCwE5wM+n9vHDCvfusbJkyBKFHw7JIR7Y/wCN5kaGpg1l5YKVyqrv5YqX2dG4gxR1CusXr1fO3O9v28+fTvxJOXMf2SG2WFrYUL4BX8DH9yZ+T1n1OX1O1uxeg9FlZE7xHP5t+r8puG49uJUqfRWFKYWsXbRWWc2/Xf02H9R8gDZey9pFa5Ud4onOEzxxOMy9/3727xWtrNPeybo963D73Xxz7De5cVR4p+QJeFi/Zz1dji4m5U3ijjl3KLg+c+wZjnccJ0ebw/rF6xWtLMK9J8QlsGrhKmWHWK2v5qEDYe7936f/O7OKwqv5SAyQ3WvnmuHXKFpZIBRgY/lG2mxtjMoYxb3z71VwfenUS5S3lJOemM79i+9XdhIR7j0+Np4V81cosRQNpgY279uMP+jnp1N+qsRS2Lw2Vu1chcVjYWHZQn465acKrg/vf5g6cx2lqaWsXrha2QG/Vvka2+q3kaxOZv3i9YpWFtEhI/FHkR1im7WN+/fejzfo5fbxtysnpCKxXXqnnpmFM/n1zF8rffv44cep6K4gPzmfdYvWKfFH79a8y7vn3kUTp2HNojXKDvF012kePfQoMrKglXU7ulm7Zy0un0vQyiKxXR32DsbnjOeuuXcJOuSR9iNkabJYv3i9svve1rCNVytfRR2rZtWCVYpWVmOo4cH9DxKUg/xq2q+YUzwHCFOLa3atwea1ccWwK/j+xO8DvTrk/i00W5oZnj6c+xbcp2gqfz39V3Y37yYtIY31i9crWll5SzkvnHwBVayKe+fdy7CMvp3/pbDB3F8Xaf6QnzpTHTmaHHQ2naCpVOmrSIpPwu6zC1H1DaYGkCEQDAhnzDsdnbh8LhJViVTrqxW/xWOhx9VDliaLSn2loKlU9lSSrc2m29EtcLRV+ioSVYk4fU6BJ222NOMP+pFlmXpzn27T5ejC5rORFJ/EWf1ZxW/32dHZdORoc6gx1Aiayln9WTISMjC6jQJHW2OsIT42HrfPLUT062w6PEEPsVIs9ca+tvVOPVaPldSEVKFtT8BDk7mJHE0OTZYmQVOp0lcpvH//c/31pnpipBg8QY8Q+d1h7whz73FqQTuJfPaMxAwqeyoVf1AOcs54jhxtDu32diHyu0pfhTZei91rF/jvBlMDITkcp3I+rk6fE41KQ3VPH65Wj5UuZxfZ2mzO6s8KmkplTyVZmix6nD2CXnVOf46EuASc/oFxBQRtodvZjc1rI1mdzFlDX986fc4wrpoc6kx1Avd+tucs6YnhGJn+ukaNsQZVrAqX30W7vU+viugicTFxAr+vd+qV+Kr+fesL+qg315OjyaHF0iLEAJ3tOUuKOgWb1yaMmTpjHRKSosdErMPegcvvQh2rFsaMyW1C7wzrVf3bDskhqvRVZGuzw9/5fjpktb4aTZwGh88h4NpoblTiVPprRl2OLhw+B9p4LdWGvrbtPjsd9g5ytDlUG8RI/7P6s2EN1GUQcK0x1KCOVeP0OYUx02JtwRvwIiEJOmuPswer10qKOoWzPX24uvwuWiwt5GhyaDA3CFkizurPkpaQhtljFsZMjamGuJg43H73gNkS/rs2OKlcpMXHxvPd8d/FH/Jz4+gbBU3ltnG3oVFpmFM0hxGZIxT/4iGLKUsvY3TWaGXlATAuexzTC6aTpk7jm2O+qfjzkvK4etjVyMj8aNKPBE3lR5N+REgOce2Ia8nV5iqvuWXsLaSp05hROEPgh+cWz2VU1iiGpA9hcVk/TSVrFHOK5qBVablt3G2KPz0hnRtH3Yg/5Of7E78vaCrfn/h9JEliSdkSZWUFcP2I68nWZDM5f7LAD0/Nn8qEnAkUJhcK/PCQ9CHML50f7ssJfby/RqXhtnG34Q/5uXXcrYKmcvv424mPjWdeyTwhTuXKYVdSmFzIhJwJyikdCGsqU/OnkpWYxTdGfUPxF6UUsXToUiRJEvScuJg4fjDxB/hDfr4x8hvKihng1rG3kqRKYnbRbEZljlL8C8sWMixjGCMyRgjxR2OzxzKjcAbJ6mRuGdsXS5GjzeHa4dcSlIP8aOKPBE3lR5N/hIzMVcOvEjSVm8bcRHpCOtPypwnxR7OLZjM6azRlaWUsGdIXfzQiYwRzi+eSEJcg8P4p6hRuGn0T/pCf2yfcrqzWIaxrxEgxLCpbJMSpXDfiOnK1uUzOm8yk3EmKf3LeZCblTSIvKU/QysrSylhYtpDYmFhlJQ1hTeX28bfjD/m5ZewtSiYGCOOqjlNzWfFlgqZy+dDLKU4tZmz2WCH+aELuBKblTyMzMVM5LQlhTSUSrxM58QZhTeVHk35EUA4qMTQRu2XMLSSrk5lVNEvQyuaXzmd4xvBw7FVJX/zR6KzRzCqcRVJ8kqCBZiZmcv3I6/GH/Pxg4g8ETSXyWS4ferkQp/KNUd8gMzGTaQXTGJ8zXvHPLJzJuJxxFKcWC1rZsPRhzCuZhzpOLYyZZHUyt4y5BX/Iz3fGf0fZ4UIYV1WsioWlCwVN5Zrh15CfnB8eIwVTueR2IV7s/4Wfr6qp+AI+udncHMVhRvj987lpWQ5rCwNpDma3WW6ztkXxw06fU242N0fx/v6gX242N0dx06FQSG6ztg3ITfc4egbUHKwe64B6h9vvlpvNzVHcdCAYkFssLQNy0+229gE1B4PTMKDmYPfa5RZLSxQ37Q145WZzcxTvHwwF5RZLSxQ3LcthDnogLcnkMsnttvYBdY1mc3MUN/1VcO12dA+Iq8VtGRBXl8/1ubier+eEQiFZZ9UNiKveqb8oXD1+j9xsbo7i/b8I14E0B6PLeMlwbbW0XhDXgTQHk8sk66y6C46ZC+F6oTFzvuYgy2FcB9IcLoTr542Zz8N1oDGjd+oH1JJsHtuAfXshXCNj5nydTpbDOutAY+bLGoOayqUzWQ6fe6/sqaQsvYxVC1Ypq/m3q9/m/dr3SYlPYe2itUp+qgj3HiPFcPdldyurok57J+v3rMfld3H7hD5+OMK9d9o7o/jhZ489y9H2oxQkF7B20VplxRnJv6VRifxwVU8Vfzj4B0KE+K+Z/6VERhtcBtbtXofNa+Om0Tdx85jwSZpIPEOLpYUJuRO4c86dAve+t3Uv2Zps1i1ap+wk9jTv4c+n/kxCXAL3LbhPWe02mBrYsm8L/pBf4IetHitrdq/B7DZz5bAr+d7E8GmWkBziof0PUWusZUTmCFbMX6HwwxHuPT0xnXWL1in8cIR7j4uJY/m85cpqt83axobyDXgDXn446YfKat7ld7F291p6nD3ML53Pz6f+XMH18cOPc6b7DKVppaxasErRyiIxQMnqZNYuWqusdk93nVbyqt05505lJ9Ht6GbdnnU4fU5uHXcr140Mn5CKxDO029qZVjCN/5r1Xwqufzz+Rw7rDpOXlMfaRWuVFef2hu28UvFKlFYW4d5DcojfzPyNopUp3LvPxvUj+rSyQCjAln1baDQ3MjZ7LMsuW6bgGuHeszRZrFu8TtHKylvKefHUi8THhrWyyMmwJnMTm/Ztwh/08/OpP1dOvtm9dkWvWjp0qXICLCSHeOTgI1TrqxmaMZSV8/u0sjfPvslH9R+Rqk5l3aJ1ilZ2pP0Izxx9htiYWJZdtkzRytpt7dy/937cATffn/B9ZXfi9rtZu3st3Y5u5hbP5VfTf6X0bUSHLE4tZvXC1YpW9mHth7xV/RZalZY1i9YoWllEh4SwVhY5dad36lm3Zx0On4Obx9ysaGWR2K42axuT8ybz+zm/V9r+04k/caDtALlJuaxdtFaJP9rRtIO/nfkbCbEJrF64WokrqzPW8cC+BwjIAf5jxn8ouzSLx8KaXWuweCxcO+JabhsfZheCoSAP7n+QelM9o7JGsXzecmXMvHwmHAOUkZjBusXrlB1iJAZIFatixbw+rexS2SD9dZHmD/k5qz9LXlIezZZm4dz7qe5TpMSnYPVaBY42wun7Q34hZkJn0+HwOdCoNFR0Vyh+s9tMp72THG0Op7pPCZrKya6wSN9h7xA42tPdp9HGa3H6nUK8RoO5QdFU+sejdNo7sXgsJKuTOd19WvHbfXZarC3kJeVR2VMpxDOc7DpJVmIWeqde4N4reypRx6lx+p1CTEGEP4+VYgUOutvZjdltJj0xXWjb7XdTa6olLymPelO9EM8QScpndpuFmIJqfTWxUiwev0fg3nU2HU6fE3WsWuDYDS4DPc6wXnWq65TiD8pBKnoqyEvKo8XaInDvp7tPk6xOxua1Cfx3rbGWUChEIBgQ+O+IJqON1wq4WjwW2m3t5CblcqqrD9fI9eVoc+hydAm4VvRUhGNkfOfhampQdJH+cRmd9k6sXiup6lTOdJ9R/A6fgyZLE3lJeVQbqgVN5XT3aTISMzC4DEJ81Vn9WVQxYU2lfxxOm60Nl8+FKkZFlV7JD0uPs0fRq/r3rS/o45zhHHlJeTSaGgUd8lT3qXAshSd6zEiShDfgFbJ7R8ZMYlyigKvRbaTb2U22NpuTXScVf0gOcbrrNHlJebRZ24QYoDPdZ9CqtNh8Iq51pjqCoSDBUFCIR2m3t2P1WNGqRFytHis6m468pDzOdJ8RMhif6joV1kCd3UIMUEV3BYlxiVF922RpwhP0ECPFCJpR5HuRlpAm9K3L76LeVE9eUh61xlpBUznVfYr0xHRMbpMQX1XVU0VcTJyix1xqG5xULtLiY+O5bdxtOHwOrhtxnaCpfGvMt4iRYpiWP03ghxeVLSIvOY8haUOUUzoQzhE1MXciiapEIZYiNymXJUOW4Aq4+O747wqayvcmfA+n38nSoUuFOJWbRt2EOlbNhJwJjMkeo/hnF82mLL2MwuRC4cz9yMyRTCuYRqwUy7fG9PHD6QnpXDv8Whw+B98Z/x1ltQ5w+4Tb8Qa9zC+dL8SpXDfyOlLUKYzLHifkp5qSP4VRWaPI0mZxxdC+/FSRfgiGgtw6ti83ljZey82jb8bhc3Dj6BsFTeW2cbcRkkPMLJzJkLS+ldXlQy8nS5vFyKyRTM3v44cjcQZJ6iQhP1VhciELShfgDXr5zvg+zSEuJo7bx9+Ow+fgmmHXCJrKLaNvIVaKZWr+VCH+aH7pfApTCylNK1Ui2iGcI2py3mTUsWoB12xtNpcPvRyn38n3JnxP0FS+N+F7uAIuFg9ZLGgqN466kURVIhNyJwha2ayiWQxNH0pech6LyhYp/hGZI5heMB0JSeD9U9WpXDfiOhw+B7eOu1XQVG4bfxuBUIC5xXMFreyaEdeQlpDGmKwxAq6TcicxJnsM6YnpXDWsr2xRaVopc4rnEAgFhL5NiEvgljG34PA5+Maob5Ac3xenEsl5N6NwhnAKacmQJeRqcxmeMVyIPxqXE/6OaVQabhh1g+IvSC5gYelCPAGPEMcRI8Xw3QnfxeF3cOWwKwVN5ebRN6OKVTElb4qglc0rmUdJagnFqcVcVtynlY3OGs2U/CmoYlV8c3SfBpqlyeLKYVfi8Du4fcLtgqby3QnfxRPwsLB0IflJ+Yr/G6O+gValZVzOOEFTmV4wnREZI8jR5giaytD0ocwsnImMLOSTS4pP4sZRN+LwObhlzC2CpnLbuNsIhoLMKZ4jaCpXDb+KjMSM8Pe092TbJbUL8WL/L/x8VU3FH/TLOqsuisMMhUJyh60jipuW5bC2MBB/avPY5E5754Acrc6qi+KHA8GArLPqorjpUCgkd9o7B+SmjS7jgPyp3WuXO2wdUW17A15ZZ9VF8f7BUFBut7VHcdOyHOagB+KmzW7zgJqD0+ccUO/wBXyyzqqL4qYj/P753LQshzWjgTQHq8c6IC/u8rlknVUXxU1/Ea4DcdMGp2FAzeFCuHr8ns/FdSA9p8veNSCuJpdpQM3B4XV87bha3JbPxfX8vo3gejFjRu/UDzhmrB7rgFpSZMyc3/YXjZmBcDW6jAPiavfaLwrXYCg4IK6yHNZZB9LpPg/XixkzEVwvZsx8WWNQU7l0Jvdy76e6TjEiYwT3zr9X0VTeq3mPd8+9S1pCGmsWrlH44dNdp3n88OOKphJZ7XY7ulm/Z72yco3ww5Fz723Wtih++PkTz3Ow7SDFqcWsWrBKWXF+2vgpr1S8QlJ8EqsXrlZ2MTWGGh468BCyLPO72b9T+GGT28Ta3Wuxeqx8a+y3lFVfIBRg877NNJgawjEys36rrKj/dvpv7GzaSV5SHmsWrVH44fLWcl488aKiqUR2MU3mJjbv20wgFODfpv+bwg/bvDYlt1l/fjjCvZ/Vn1V4/wg//I+qf/BR3UdkJWaxZtEahR8+2n6Up48+TVxsHPfOu1c5GdZua2fD3g24A25+OvmnLChbAITpgohetXjIYiWbrizLPHXkKY53HmdY+jBWzF+h7NI+qvuIN6veJEWdwpqFaxStrLK7kkcOPUKMFMOdc+5Udog9zh7u33M/dp+d28ffzlXDw6t5X9DHxvKNtFhamFU0S6k3AuH8W/tb91OYUsjqhauV+KOdTTv525m/oVFpWL1wtbKLqTPW8eCBBwmGgvzXrP9SMhmY3WbW7VmHxWPhxtE3KlHnEe691ljLpNxwjEwE1wj3nqPNYe2itcoOcX/bfv50/E+o49SsmL9C0cpaLC1sKt+EL+jjV9N/pWQRdvgcSnzVVcOvUk4pyb06ZEVPBaMzR3PPvHuU1fw71e/wXu17ZCRksGbRGiU/1YnOEzx55EniYuJYdtkyZeffae/k/r334/K7+NGkHylZIjwBD+t2r6PD3sGC0gVKPjkIxwAdbT9KWXoZ982/T9FUPqn/hNfPvk5yfDKrF65WarlU9VTxyMFHkJG5Y84dilZmcBlYv2c9Nq+NW8fdqmTe9gf9bNq3iWZzM9MLpvOfs/5TafvPJ/9MeWs5+Un5rF64WtlJ7G7azUunXyIxLpFVC1cpWllEhwzKQX4949eKVmb1WMM56zwmbhh5g7ILDYaCPHTgIc4ZzjEhZ4IQI/NG5Rt8XP8xOdocVi9crcQfHdId4rnjzxEfE44/6p9F4VLYIP11keYP+TndfZrC5ELqTfVCPMPxjuOkqlMxuU3Cuf6z+rPIyHgDXuFcf6u1FZvXhlalFXhgk9tEm7WNvKQ8jnYcFTSVox1HyU/Op83WJnDvJzpPhPlhj004e15rrMUf9IfP6xv6+O92WzsWj4XUhFSOdx5X/DavjUZzI4XJhZzqOiVoKkc7jirn/ftztKc6T6GOU4f1mH4cbZO5SdFU+vP7XY4uJQfW0Y6jit/td1Olr6IopYhqQ7UQz3Cs4xgZCRnoXXohXqOip4LYmFjcfrdQR6PF2oLdZychLkHoW4PLoOhV/dsOykFOdp2kMLmQRnOjoKkc7zxOijolrIn0w7XKUIUsy/iDfgFXnU2H1WslKT6JE50nFL/ZbabF0kJ+cj7HOo4JmsqxjmPkJeXRbmsXYoBOdJ5Ao9Jg99qFPFR1xjo8/nAcT39tocPegcltIlWdyrGOY4rf7rNTZ6qjMLmQM91nBE3lWMcxJUamv151uus08bHxOLwOAddmSzNOvxNVrErQxLod3XQ7u8nSZAlte4NezurPUphcSI2pRtBUjnUeIz0hzPv3x/Vsz1kkJNx+t6BDtlpbsXvtJMYlRuHa4eggNylXwDUkhzjecZyC5AKaLc1CbNfxzuMkxydj8VgELfCc8RyBUCAcu2Q4p/h1Nl1Yh4xP5nhH35ixeCw0m5spSC7gROcJQVM52nGUHG0OHfYOQYc80XWCxLhE7D4R13pTPZ6ABwlJwLXT0Rmu2ZKQLrTt8ruoMdRQlFIUVfXyaOdRJedZf1wruiuIk+Jw+pwDVqP979rgpHKRFh8bzzfHfBODy8CVw64U6m7cPOZm/CE/E3MnCprKgtJwjq3ClELhzP2Y7DHhk2BSONYjYrlJucwvnY/ZY+bWcbcKmspt427D5DaxoGSBoKncMPIGkGB09mjhzP3MwpnkJ+eTpcliXnFffqoRmSMYnzOeQCggnPdPT0jn8iGXY3AZuGXMLYKmcuvYW7F5bcwqmiVoKteMuAZ1rJoRGSMEfnhy/mSGpA9BG68V+OGytDKm5U/D5XcJcRwalYbrR16P3qnnuhHXoVX1aSq3jLkFd8DN1PypwmmVpUPCOcTK0sqE/FTjc8YzImMEqliVUMulMLmQOcVzsHqtgp4TFxPHt8Z+C4PLwNKhSwVN5cZRNxIIBZT3jNi8knlka7PJT84Xan6MyhzFmKwxyLIsxMhka7NZWLYQk9vEbeNuEzSVW8fditljZl7JPEFTuX7k9cRKsYzKGiVoKjMKZ1CcWkxGYoagqQzPGM6k3En4gj6h3kiqOpWrhl2FwWXg5jE3C5rKt8d+G4fPwYzCGUKcytXDryZBlcCwzGFC3rGJuRMZlj4MjUrDlUP74o9KUkuYXjAdp98p4JoQl8A3Rn4Dg8vANcOuETSVm0ffjCfgYVLeJCH+aFHZIlITUilOLRbyU43NHsvIzJHExcRx7fA+XPOT8plbNBeLxyJoDjFSDLeOuxWj28jissWCpnLjqBsJykHG5YxjVFafpjK3eC65SblKLr2IjcocxbjscQTloKCVZWmyWDJkCQaXgW+P+7agqdw27jYsHgtzi+cKcSrXj7yeuNg45T0jNq1gGiVpJaQmpAq5+oakDWFy3mQ8AY9yUhPCmsq1I65F79Qr+lvEbhlzCy6/i2kF0yhN7duNXD70crTxWoZkDGFSXl/80aUyqf9q6f81mz59unzs2LEvfuJ5FgwFMbgMZGoyheBAWZYxuAwkxScJ4EJ4NRMjxQiBXxBeabj9boVSiZgv6MPisZClyRKK/oTkEAaXgfSEdOGGD+EUHYmqRKG4FYR3H7IsCwXFILwzcPqdZCZmCjc4f9CPyW0iS5MlDBBZltG79KSqU4WbEoR3V+pYtSCuQ/iYaSAUUKjAiHkCHuxeO1maLKHtL+rbZHWykDQPwjuAuJg4IVEhhKPIvUGvMEFAX99ma7IHbDsjMUPoW1mWMbqNaFXaKFytHiuSJA2Iq8vvEm5i0Ne32drsAXFNS0gTkj1CGNeEuISovrV5bYTkkLCwgTCuDp8jqm8DoQBGl/GicY2PjVeOGUfM4XPgD/qjcPUGvFi91gv27cXgavFYiJViB8TVE/Bc1JjRO/UXxFWj0kSNmcgpsYsdM5cCV7vXTlAORuF6oTHzebgaXAZS1ClRuJrdZlSxqihcv6xJknRcluXpAz02qKlcpMmyzNNHn+ZYxzFGZ41m2WXLFCA/qvuIf5z9B1maLFYtXKV8KSq7K9l6eGs4P9Vl9yinXPROPffvvR+b18aPJ/1YqTcS4d6bLc0sKBH54RdPvkh5SzlD04dy7/x7lS/qzqad/PX0X0lRp7BqwSqFH64z1ik5on4/+/cKP2x2m1m/Zz1mj5nbxt2mREYHQgEe2v8QNcYaZhTO4Nczfq18gV+peIVPGz+lILmAVQtWKTfYA20HeP7482hUGu5bcJ+yImu1tirc+29m/kY5neXwOVi/Zz09zh6+MfIbSg6lkBzi0UOPcqb7DBNyJ3DHnDuUAfpO9Tu8X/s+2ZpsgR8+2XmSJ448QXxsPPfOu1fhhzvtnYqm8rOpP1NO8bj9biUH1uVD+uqNyLLMc8ef47DuMCMzR3LPvHuUm9+2hm28Vvka6QnprF64WrmRVvVU8cihR5AkiWVzlylZFAwuA/fvuR+r18oPJv5AqTfiC/rYvG8zjaZG5pXMEyoUvnTqJfa07KE0tZT75t+n3AQiMUDJ8cmsWrhK2Z02mhuVeIbfzerTyqweK+v3rMfoNvKtsd9STr4FQ0EePvAw1fpqphVM4z9n/qeC6+uVr/Nx/cdhXBeuUm6wh3WHefbYsySqErlv/n1KLEWbtY1N5ZvwBr38+/R/V05nOX1OJbfZdSOvU3YMsizzxJEnONl5krHZY7n7srsVXN+vfZ93qt8hS5PF6oWrlcn5TNcZHjv8mBJ/FNmddju6uX/v/Th9Tn465adKxU1PwBPWIW1tLCnryycH4Rigg20HGZ4xnOXzlisTy6eNn/JqxaukqFNYvXC1MknVGGp4+MDDQDj+aHR2eOdvcptYv2c9Vo+V2yfcrmSJ8Af9PLDvAepMdUI+OYC/n/47O5p3UJxSzMoFK5WJM6JDauO1rFywUtmdNpmbeGD/A/iCPkErs3lt3L/nfvQuPTeNvklhF0JyiK0Ht1LZU8nkvMn8bvbvFFzfrHqTj+o+Ileby6qFq5QJ5FjHMZ4++jTq2LBW1v/E36WwQfrrIs0f8nOs8xhFKUWcM5wTuPfDusNKjfP+HO2ZnjMgh1dx/eM1IhxvUnwSh9sPK36DyxDmaJMKOKA7IGgqB9oOUJBcQKO5UeDeD+sOkxSfhNljFmqyV+ur8Qa8hOSQcLa+zdaG0W0kVZ3KQd1BxW/1WKkxhjnao+1HBU3loO6gkhurP0d7vOM4CXEJ2Lw2gaOtN9bj9DmJi4kTtIUOewfdjm4yEzM5oDug+N1+N2e6z1CUUkRFT4WgqRxqP0RmYpgf7h9TcLLrJLFSLA6fQ4gpaLI0YfPZUMeqOdrex7H3OHtos7aRq80VrjsoBznSfoSilCJqjbUC935Id4hUdSpGt1Hgvyv0FQRDQXwBn5DDrMXSgtltJjk+mUO6Q4rf5DbRaGqkMKWQg7qDgqZysO0g+Un5tFhaBO79SPsRtCotVq9VyC92Tn8Od8ANMoKuobPplJ1s/+uz++xUG6opSinieMdxQVOJ4Nrh6BBiRY53Hkcdp1Z0tog1mhux++yoYlQCv9/p6KTLEc5tdqCtD1dPwMPJzpMUpRRRpa8SdMhDbYdIT0inx9kjjJmTXSeRJCmsGfSLw2myNGH1WElUJXKkva8Gn96pp83aRn5SvtB2SA5xWHeYwpRC6s31gg55pP0IyepkzB6zgOtZ/Vn8IT+BUEDAtdXaisltIlmdzGFd33i1eCzUmeooSinikO6QoKkc0B0gTxuOkekfA3S0/SiJqkSsHhHXWmMtTp+TGClGiEdpt7XT4+whIzGDg219uDp8Dip7KilKKeJU16nwd6LXDuoOkqXJosvRJehVxzuPExcTh91nF+KrLpUNTioXafGx8dww4gba7e0sKlskbFFvGHUDTr+TUZmjhJof80rmkaROIkuTJeSnGp01miHpQ/AH/QLvn6vNZXbRbLqd3dwy5hZBU/nmmG/S7exmTvEcQVO5bsR1+IN+hqUPE87czyicQZYmixR1ipCfanjGcEZljsIVcIX1mF7LSMxgQekC2u3t4dof/eiCm0ffjMFlYEreFKE2xBVDr0CSJEpSSwTef2LeRAqSC4iPjRfyU5WmljI+ZzwWr0XQcyK1Wtrt7Vw59EpBU7lx9I1YvBbG5YwTztwvKluEOk5NQXKBkJ9qbPZYRR/oH0tRmFLI1PypYW2hXz2OuJg4bhx1I+32duaXzhcosxtG3oAr4GJk5kghp9tlxZeRmpBKliZL0MpGZY1iWOYwvEGvEk0P4dxfc4rn0Gnv5ObRNwsUxi1jb6HH2cPMwpmCpnLN8GsIykHK0soErWxawTRytDlo47VCfqqh6UMZlTUqHBMysk/PSVWnsrhsMe32dq4beZ1Ah9w0+iaMbiOTcydTnNK3ar1i6BXESDGUpJYIecfG54ynKKWIuJg4Lh/Wp5WVpJYwMXciZrdZ6NtEVSLXjriWdnu7ooFF7Bujv4HdZ2ds9lhBU1lYthCNSkNeUp4QfzQmawxlaWWE5JBQwz0/OZ8ZhTPocfYIefRipBhuGnMTnfZO5hXPE+jI60ZchyfgYXjGcCH+aFbhLNIT0klLSBO0shEZIxiRMQJPwCPgmqnJZF7JPDrsHdw0+iaBgvrmmG+id+mZXjBdqSwJcPWwqwnJIcrSyhiT1RdXNiV/CnlJeWhUGkErG5I+hLHZY7F5bYKekxyfzNKhS2m3t3PN8GtIjOujZ28adRNmj5kJuROEE16XD7kcVayKopQiIVffJbMLnTW+FD/A1YRrytcDywd4XAIe7338DDC132O/BSqBs8Dv+vlfB071/jQDp3r9ZYC732PPftHn+6pxKsFQUNY79VFn0mU5fL79/LP4shyOWxjoLL7L5xrwLL4/6Jf1Tn3UmfRQKCTrnfqoWANZDp9vd/uiz8PbPfYB4xzcPveAZ/EDwYCsd+qjzvuHQiHZ4DREnYeX5XDcgtMbfR7e4XXIVnf0WXxvwCsbnIao64v07YXaHqhvrW7rBft2oLP4voBvwL79IlwH6lubxybbPdFxDm6f+5LiOlAMicPrGBBXb8ArG13GqDYuJa5Or3NAXH0B3+fien7fhkKhrzRmBsL1i/p2IFw/b8xcDK6Rvr0YXM1u80XjOlDffhVcrW7rgLh+WeNfEaciSVIs8BThkr864KgkSe/LslzV72nXEK4lPwKYBTwDzJIkaTzwC2Am4AM+kSTpI1mW62RZvq1fG38ArP3er0GW5clf1zVBL/d+7DkO6g4yISfM+0dWJtvqwzUSsjXZrFq4SlmRVeureeTgI8TGhDWVCD9scBnYuHcjFq+Fn035mZJDyRf08cC+B6g31Qs5lAD+cvov7GraxYjMEdxz2T3KTmJv817+fPrPpKnTWLlgpcIPR7j3kBzirrl3KadcrB4r9++9H4PLIMTIRLj3s/qzXFZ8Gb+c9ktlRf2Ps+FYkdK0UlbMX6Hww0faj/DssWfRqrTct+A+ZaWts+nYXL4Zb9DLf838L6XeiNPnZMPeDXQ6OoUcSrIs8+SRJznWcSwqRiaSpykvKY+VC1Yq/HBFdwWPHX5M0VQi/HC3o5uN5Rtx+Bz8atqvlEwGnoCHzfs202xuFmJkIJynaV/rPsZlj+OuuXcpuH7a8CkvV7xMliaLlQtWKrvTWmMtDx94GAmJZZctU7Qyk9vE/Xvux+K18ONJP1bqjfiDfiVWZFHZIqHy5N/P/J3PGj9jWMYwls9brmhl+9v288KJF0iOT2blgpWKVtZsaQ7HM4SC/H727xmbE94h2rw2NuzdQI+zh++M/46ymg/JIbYe2sqZ7jPMLprNv0//d6Vv365+mw9qP6AopYj75t+naGXHO47z9NGnFU0lstJut7WzqXwTnoCH38z8jZJPzuV3sXHvRmWXGzmlJPfqkEfajyi8f0RT+bj+Y944+wa52lxWLlipaGVne86y9dBW4mLiBK2sx9nDxr0bsXlt/GLaL5TTWd6AV8lt1j+fHIR1yL0texmVNYplly1TtLJdTbv46+m/kp6YzqoFqxStrN5Uz4P7HwTg7rl3K7tTs9vMhr0bMLlN/GDSD5Tdd0SHPGc4J+STA3i18lW21W9jaPpQls9bruwQD+oO8vzx50mOT+a+BfcprEOrtZXN5Zvxh/z8btbvGJ8bPk3p8Dm4f8/9dDu7+fbYbys7pZAc4vHDj3Oy6yQzCmbwm5m/UXB9t+Zd3jv3HgXJBaxcsFLRyk52nuTJI0+SEJfAivkrFK3sUtnXSX/NBOplWW6UZdkHvAbceN5zbgT+2jv5HQLSJEnKB8YAh2RZdsnhevV7gJv7v1AK99ytwKtf4zVEmT/k55DuECWpJVT2VAqaSnlrucIP9+doT3SeICSHcPvdAkfbZG5SThXtb92v+A0uQzimIKWQPS17BE1lb8teClMKqTPWCdz7/rb9JKmSMLqNQj34yu7w2fWgHORkZ9+5/hZrC3qnnrSENMpbyxW/xWOhSl9FSWoJB9oOCJrKntY94dxYlhaBez+kO4Q6Vo3FYxFiCmoNtVi9VmKkGIH/bre3K/XSy1v62nb5XRzrOEZJagknO08K8Qx7W/aSmZhJp71TyIF1pOMIMVIMdq9d4N4bzA2Y3WYS4hIEbaHb0U2zuZm8pDz2tOxR/IFQgANtByhJLaFKXyVw7/vb9pOqTqXH2SPEa5zsOkkgFMAb9FLR06dXRXBNUiWxr3Wf4je6jdQaaylKKWJvy15BU9nbspeC5ALqTfUC936g9QAalQaz2yzgWtVThcvvQkbmRFefXtVmbaPb0U16QrrQtzavjYruCkpSSzisOyxoKntb9pKjzaHN2kano497P6Q7hCpWhdVjFbj3elM9Nq+NuJg4QVvosHegs+vI1mQLfesJeDjSfoSS1BJOd50WNJXylnIyEjPocnQJObAicS4un0vQIRvNjZg9ZjQqjaAt9Dh7aDQ3kp+cz96WvYo/JIcoby2nKKWIGkONkH9rX+s+ktXJYQ2zn65xpvsM/qAff9DP6a4+varF2oLepSdFnSLganabOWc4R3FqMeUt5YKmsrdlL/nJ+TSaG4XYroNtB0mMSwzrbP30qmp9NU6fEwmJY519J1PbrG10ObrISMwQrs/hc3Cq6xQlqSUc6zgmaCrlLeVkabJot7VHjZm4mDisXqsQX3Wp7OucVAqB/hVgdL2+L/OcSmCBJEmZkiRpgGuB848ozAe6ZVmu6+cbIknSSUmS9kiSNJ8BTJKkX0qSdEySpGN6vX6gp3yuxcfGc/Xwq2mztnFZyWWCpnLNiGuweW0MTR8q8MNzi+eSoEogPTFd4IdHZo6kKKUIb8Ar1BvJ1eYyNX8qHfYObhh5g6Cp3DDqBjrsHQqnHrGrhl+FO+CmOLVY4IenFUwjLTENrUor1HIZlj6MIelDwhUC+9XESE9MZ07xHNqsbVwz/BpBU7lh5A10O7sZnzNe0FSWDllKSA5RkFwg5B0bnzueXG0usVKsslqHMPc+KnMURrdRqHGuUWlYOmQpbdY2FpUtEjSV60dej9ljZkTmCIEfXli6kFgplhxtjpCfanTWaAqSCwiEAlw+pI/3L0guYELuBLqd3YKWFBcTxzUjrqHN2sbsotmCpnLN8Gtw+B2UpZUJ8UezC2ejVWlJTUgVtLIRmSMoTi3GHXALvH+2JpvpBdNpt7cLuEJYj+t0dDIlbwq5SX11cq4YdgXegJei1CIB18n5k8lIzEAdqxbyUw1JH8LQjKHYvDauHdmn06WqU5lXMo82axtXDrtS0FSuG3kdeqeesdljhfijJUOWIMsyeUl5Aq5js8eSm5SLJElCLEVxSjFjssZgcBmEvk2IS+DyoZfTZm1jful8QVO5dsS1WDwWhmcMF3K6RertZGoylRNQ0IerP+QX8snlJ+czKW8SXY4uISdYjBTDDSPDGmhEX4zY1cOvxuV3UZpaKuA6oyBcCydJncTMoj6tbHjGcMrSynD6nQKumZpMZhXNos3aFo4r6qep3DDyBrocXUzMnShoKlcMvQJ/yE9hSqGggU7Km0SmJhNVrErQysrSyhiRMQKLxyKMmeT4ZBaULqDN2sbSoUsFTeX6kddjdBkZnTVaiD9aXLYYSZLI1eYKcWWXzC7Ei/13f4BvA3/q9/8PgCfOe85HwLx+/+8ApvX+/TPgBLAXeBbYet5rnwHu7Pe/Gsjs/Xsa4ckq5fM+41fVVCJc5YU42oE4TLvHPiA/7PF7BsytFAgGBuRPP69ti9sie/3R3LTD6xiwbV/Ad0F++EJtG51G2R+I5oetHuuA+Y1cPteA/LAv4JONzmg9JxgMyganQQ4Gg1GPGZ3GC/btQNy02+8eMLeSP+CXjc5ozeHz+tbsNl9U33r93q+E60B9a3FbovJWyXJY1xiI979YXGVZvmhcv6hvz7evOmYuhOtAfesP+L/2MeP1ewfUc74qrhcaMxeDa2TMXApcv6zxL8r9pUPcXRQBHV/2ObIsvwC8ACBJ0qbe59L7fxzwTcKTB73P9wLe3r+PS5LUAIwELj668XNMlmVeOPkCe1v2MiVvCr+d/VuFH97RuIO/n/k7eUl5rJi/QuGHa421/OHAHxRNJbLSNrlNbNy7EbPHzC+m/YI5ReGdhD/o5+EDD3POcI6rh1/N7RNuV9p/peIVtjdsZ2z2WO6ce6fCD0e494zEDO6bf5/CDzdbmsOaCiHunnu3siKzeW1sKt9Et6ObH076obLiDIaCPHb4MU51nWJh6UIhRuad6nd4r+Y9hmUM457L7lFWuyc6T/DUkadIViezYv4KZQfVYe9gc/lmPEEPv535W4UfdvldbCrfhM6mE2JkZFnm2ePPckh3iFmF4dxYkdV8pF5MUUoRK+avUPjhsz1nefTwo6hj1dw7716FH9Y79Wws34jda+c/ZvyHEpXtDXiV+hPfGPUNIfL7pVMvsat5F5NyJ/G72b9TVpx7mvfw0qmXyNHmcN+C+5SVdr2pnocOPEQM4TrqEa3M7DazsXwjJrdJiJEJhAL84cAfqNJXCXXGoS9WZFTWKO6ee7eyQzysO8xzx58jLSGN++bfp2hlrdZWHtj3AP6Qnzvn3KloZQ6fg417N9Ll6OJ7E7+nZDIIySGeOPIEJzpPML8kzPtH+jZSL6YsrYzl85YrWtmprlM8eeRJtCot986/V9HKOu2dbCrfhDvgFrQyt9/Nlv1baLG0cMuYW5Qdg9wbA3Sg7QDTC6bzm5m/UcZMpF5MQXIBK+avULSyan01Ww9tRRWrYvllyxWtzOAysKl8ExaPRcgn5wv6lFo8/WNkIJyzbkfTDsbnjOf3c36vjJnylnJePPki2dpsVsxfobAOjeZGHtr/EDIyd8+9W9HKrB4rG8s3onfq+cnknyj55IKhII8cfITKnkqWDBFjZN6sepMPaz9kROYIll22TNHKjrYf5dljz5KiTuG+BfcpOyidTceWfVvwBX38fvbvlR2i0+dkU/km2u3tQj45WZZ56uhTHO04ypyicIxMfx3yzao3KUkt4d559ypaWUV3BY8fflzRVPrvoC6FfZ3011FghCRJQyRJige+A7x/3nPeB34ohW02YJVluRNAkqSc3t8lhCeQ/trJ5cA5WZb7TzTZvYcDkCRpKGHxv5FLbP6Qn/KWckpTSznVdUqoz7CreRdpCWl02DuEWJFIvIfT5xS49wZTA3qXHq1Ky97mPp5U79JTbaimMKWQz5o+EzSVHU07lPP+/bn3vc170aq06J16oWb5ma4zuANuAsEAx9r75tdmSzOd9k5SE1LZ1bxL8Vs8Fk53naYktYS9LXuVOugAO5p3kJeUR4OpQeDe97XuIz42HqPLSJ2xj408pz+H2WNGQhLiNXQ2HW3WNrI0Wexo2qH4XX4Xh3SHKE0t5Uj7EUFT2dG4g8zETNqsbUJus0Pth5CQsHqsAvdeZ6rD6DKijlMLmlGXo4t6Uz35yflC24FQgD0teyhJLeFM9xlBU9nVvIvUhFS6HF1CHM7xzuP4g37cAbcQK9JobkTv1JMUn8Tupt2K3+AyKLnNdjTuEDSVHU07KEwppMZYI3Dve1v2olFpMDgNAq6V3ZXYfXZCckjIddViaaHD3kFaQhq7mvpwtXltnOw8SWlqKfta9wmays7GneRoc2gyNwkxQPtb9xMXE4fJbRJwrTXWYvaEsxj0jwlpt7fTbG4mW5Mt9K0n4OFA2wFKU0s53nFc0FR2Ne0iIzGDdnu7oEMeaT+CLMvYvXZBh6w31WNwGUiMSxQ0o25HN7XGWgqSC9jR2Nd2SA6xs3knxanFVPZUCprK7ubdJKuTo3A91XUKT8CDN+AVdMgmSxNdji5S1Cnsbtmt+E1uE5U9lRSnFrOzaaegqexo2kF+cj51pjq6HX2xXeWt5STEJWBwGQS96mzPWaweK7IsC7FrrdZWdDYdmYmZ7GzaqfjtPjvHOo5RmlrKId0hQVPZ2bSTbE02LZYWIQbogO4AMVIMFo9FyG12qexrm1TksMD+G2AbUA28IcvyWUmS/k2SpEjI6T8J3/jrgeeB/+j3Fm9JklQFfAD8WpZlc7/HvkO0QL8AOCNJ0mngTeDfZFk2cYlNFaNi6ZCltFpbmVE4Q0jjcOXQK7F6rRSnFguxFLOLZhMfG0+KOkXgh0dkjiAvKQ+X3yXEceRoc5iYO5F2WzvXDLtG0FSuHn41OpuOibkTlZNAAEuHLsXld5GfnC/ww5PzJ5MUn0R8XLzADw9NH0pRahE2r03gptMT05leMF3haPtrKlcPu5puZzejskYJeYwWlS4iEAqQo80RciiNzRmrrMD6x8gUpxQzNGOokj8tYhqVhvkl82m1tnJZyWWCpnLlsCsxuU0MSR8i8MPziuchIZGRmCHkUBqVOYrcpFz8Qb9w3j8/OZ/RWaPptHcKvHhcTJzC+08rmCZoKpcPvRyb10ZRSpGglc0smElCXAJJ8UmCVjY8Yzj5yfk4fU4h51mWJotJeZPQ2XRcPfxqQVO5evjVtNvaGZ89XtBUlgxZgtvvJi85T8g7NjFvIqnqVFQxKiGWoiytjJLUEixei9C3KeoUZhXNotXayuIhi4WUIVcNv4oeZw8jMkcIWtnC0oUE5SDZ2mwB19FZo8nSZBGSQ0pEO0BRShHDM4ajd+mFvk2IS2Bh6UJara3MLpotaCpXDrsSs8dMaWqpMGbmFs8lNiaWtIQ0QSsbmTmSXG0u3qBX0HPykvIYmz2WDnsHV4/oaztGiuHqYVcrVRkzE/tSu1w+7HKcPidFKUVCLZdp+dPQxGvQxGuYXtinlQ1NH0pRShEOn0PANSMxgyn5U2iztnHV8KsETeXq4VfTae9kbNZYIf5ocdlivEEvuUm5glY2IXcC6YnpxMbECnnHStNKKUsvw+QxKbsUCGsqc4rn0GptZX7pfEFTuWrYVehdeoZnDBei5ucXz0dGJlOTKcSVXSobzP31FXJ/hUIhTB4TGQkZxMSI87LFY0ETpyE+Tszz4/A5iCEGTbyYY8gX8OEKuKLy/IRCISweCxkaMW8VgMllIi0h7Uu37fK5CBGKyvPzeW1f6PpMLhMpCSlC/iYAm8dGfFx8VP4mT8BDIBSIajsQCmDz2KKu76u07fA5iJVio/JyeQIefAEfKQliXq6v0valxNXsMZORmCFMKpHrS01IFW5KEO7bhLiEL42rP+jH6Xd+7bheyr5Nik8aENeB+tYb8OINeC+qbbPHTHpC+kWNGeCicL1UfXshXAOhAA6f42tt+8vaYO6vS2iyLPO3M+G6IjMKZ/AfM/5D4YcjsSKFyYUsn7dc+VI0mBp4+MDDxMbEsnzecuWEjcVjYVP5JowuI/82/d+UHEqBUCBcf6K7gutH9tUZB3jj7Bt8VPsRE3In8LvZv1O+LEfaj/DcsefI1mazfN5y5YvXam3lwf0PEpSD3D33bmWl7fA52Fy+mU5HJz+Z/BNlxRmSQzx19CmOdRyLipH5oOYD3qp+i5EZI7nrsruU1e6ZrjM8ceQJUtQp3Dv/XmV30uXoYsu+Lbj8LoEfdvvdPHjgQZrMTXx3wneVFXVEr9rXuo/LSi7jF1N/odx4P20I14spTSvlnsvuUSaQGkMNjxx8hIS4BJbPW67ww0aXkc37NmP1WPn1zF8rO0Rf0McfDvyBc4ZzfHPsN5UYGYBXKl/h04ZPmVYwTeD997Xu48WTL5KflM/yecsVrazJ3BTWVKSwphLZQVk9Vjbv24zeqeeX036pxMgEQgEeP/w4p7tOR8XIvFX1Fu/XvB/F+0diRTI1mdw7715FK9PZdOHcX6EAd869U9mdOn1Otuzbgs6uE2JkQnKIZ48/y2HdYRYPWcyPJv1I6dt/1v2TN86+wfCM4dw9925FK6vsruSxI4+RHJ/M8nnLFa2s29HN5n2bcfld/HbWb5Voe0/Aw0P7H6LB3CDEyMiyzJ9P/Zm9LXuZXTRb4P13Ne3ir2f+SnFKMcvnLVe0sjpjHX84+AfiY+O557J7FK3M5DaxuXwzZo+Z/5jxH8oO0R/088jBR6jSV3HT6JuETL6vn32dT+o/YXLeZP5r1n8pk/aBtgO8cOIFcpNyWT5vubKDarG08OCBB5FlmWWXLVN2UDavjS37ttDt6OZnU3+m7CSCoaCS26x/HRmAd869w7vV7zI2eyx3zLlD2fmf7DzJU0efIi0hjRXzVyg74w57B1v2bcEb8HLn3DuVXYzL72LLvi20WduEGBlZlvnjiXBus/ml8/nZlJ8pfRuJmxuWPoy7L7tbmUCqeqp49PCjaFQa7p13r7AzvhQ2mKblIs0f8rOzaSclqSUcbT8qaCrbG7eTpk6jzdomnHs/pDuEL+jD7rUL+XzqjHV0ObrQqDQCT9rj7OFM9xkKUwr5pOETQVP5pP6TcG6s7gpBU9nRuAONSkOnvVPgaE91nsLhc+AL+Dii64sVaTQ3orPpSFGn8Gnjp4rf7DZzrOMYxanF7GjcIWgqnzR8Qq42lxpjjcC9727ZTVxMHD3OHmoMfbEiVT1VSixN/zicNlsbjaZGsjRZbG/YrvhdfhflreWUpJawv3W/oKlsb9hORmIGTeYmgXvf17YPGRmT2yRw7zXGGrod3ahiVexu3q34O+2dnDOcIz85n2312xR/IBTgs8bPKE4t5njHcYF7/6zxM1LUKehsOiGm4EjHETwBDw6fQ8htVm+qp9PeiTZey2eNnyl+g8vA6a7TFKUU8Un9J4Km8kn9JxSmFFLRUyFw7zubdpKoSqTL3iXkNjvTdQar16rETUWs2dJMq7WVNHWa0Lc2r43DusOUpJawq2mXoKlsq99GjjaHOmOdUC9mT8seYqVY9E69gOs5wzkMLgMxUoyga+hsOupN9WRrsvmk/hPF7wl4FL3qkO6QENu1vWE76QnptFhbhDFzoO0AwVAQi8ci6JC1xlq6nd2oY9WCZtTl6KJKX0VBcoHQdkgOsa1hG8WpxZzqOoXR3Zcvb0fjDrTxWnQ2nRBfdbzzOC5fOHt4fx0yMmaS4pMEXE1uEyc7T1KcWsy2+m2CprKtfhv5yflU6auE2K5dzbtQx6oVLShiFd0VmN1mQnJI0KtaLC20WFrISMwQvrd2n52DbQcpSS2hvKVc0FS2NWwjW5NNvale0CHL28qRkDC6jFTp+8eiXxobnFQu0lQxKuaXhnn/KflTBE1lyZAlWDwWCpILhPoFMwpnEBcThzZeK/DDwzKGkaPNwel3CnEc2ZpsxmaPpd3WzuVDLhc0laVDlqKz6RibPVbQVBaWLcTpd5KtzRbyjk3Mm0hiXCJxsXECP1yWVkZ+cj5Wj5XFZX3cdFpCGpPzJtNmbWNB6QJBU7l8yOV0OboYljFMqLc9r2QevqCPTE2mkBtrdPZo0hPSkZGFGJmilCJKUkvCtUuGLFX8GpWG2UWzabGGKyP211SWDl2K0W2kOLVY4IdnF85GJpzWv38OpREZI8jUZOINeIXz/nlJeQzPGE6nvVNoOy4mjoWlC2mztjEpbxLpCX0p3ReXLcbqsZKfnC/UcpmWPw1VrIrEuERBKxuaPpRsbTYOn0PJPA1hTWVs9lh0Nh1Lhy4V6K/Lh15Ou62d0VmjhfijBaULwin0tVkCruNzx5Mcn0ysFCvkHStNK6UwpRCLxyLodCnqFKbkT6HV2sq8knmCprJk6BJ6nD0MSR8iaGWXlVxGIBQgIzFD4P1HZo4kPSGdYCgoaGWFyYWUpZehd+mFvk2IS+Cy4stosbYwrWCakMp+8ZDFmN1mipKLBK1sZuFMJEkiWZ0saGXDM4aTpcnCE/AIek5Em+iwdyhZoSGsqSwZsoQ2axvjc8YLWtmiskXYvXbykvIEXCfnTSYhLgF1nJqpBX1a2ZC0IeQl5WHz2oQxk5GYwYTcCWEdcshSgb5cOmQpnfZORmSOEHYE80vm4wl4yNZmCxrouJxxpCakIkkSswpnKf6S1BKKUoowuo0CrsnxyUwvmE6LtYU5xXMETWXJkCXoXXpK00qF+KO5RXOVkgn988ldKhvUVL6CpiLL4ZVxWkJaFP9tdptJik+KqnXi8DqIkQbmhz0BT1TdhmAoiNVjJT0xXbj5yLKM2W0ekHu3eqzKYOhvTl94xX9+3QZ/0I/D54iqiRFZIZ7P+0faTlGnEBd7HkfrtREfG83Ruv1uAqFAVE2MC7X9efz35/VtbMwFNJWgL6rWSSAYwOa1Ddi3F8LV4ragjddGtX2hvv2quA7UtxfC1eVzEZJDJKmjNZWLwRV6ufeLwPWL+vZ8XeOrjpmBcPUGvHiD3ovC9fPGTGJcYpSmciFcfQEf7oB7QFwv5ZgJhoJfGtfP0+ki2bLPb9vutaOKVX0tmsrgTuUr2GuVr3HHtjt44eQLAoWxv20/d22/i03lm4S07U3mJu7ZcQ8rdq4QaCOrx8q6Peu4a/tdwtHFQCjAE0ee4I7td/BezXtC2+/WvMsd2+/gqaNPCdvsE50nuHP7nazfu16gF9pt7azYuYLlny0XUow4fU42lm/kru13CWlMQnKI5088zx3b7uD1yteFtrc1bOOO7Xew9dBWgRY723OWu7ffzZpdawTaqMfZw8qdK1n26TLhSGqEe79j2x0ChRHRq+7Ydgd/Of0XoW/3NO/hzu138sD+B4SSqfWmeu7+9G7u23mfQBuZ3CbW7FrDXdvvorK7ryyrP+jn0cOPcsf2OwSaBOCNqje4Y9sd/PH4HwnJIcV/WHeYOz+9k/v33o/D51D8LZYWln+2nBU7VghHNm1eG+v3rufO7XcKqeGDoSBPH32aO7bfwTvV7whtv1/7Pndsv4MnjjwhpMY51XWKu7bfpdSdj1iHvYMVO1dwz2f3CMdhXX4Xm/Zt4q7tdwmpRGRZ5sWTL3LHtjt4peIVoe3tDdu5c/ud/OHgHwRarFpfzd3b72bVzlVCSiC9U6/g2p8W8wa8PHzwYe7cfqdwrLc/rn8+9WcB1/KWcu7cfidb9m3B7e+jbhrNjSz7bBkrdqwQaCOLx8Ka3WFcz3T1lagOhAI8fuRx7th+Bx/VfSRc39vVb/P7bb/nmWPPCLgebT/KndvDuPY/5txmbWP5juUs37FcoFodPgcbyjdw5/Y7hbRDITnEc8ef445td/Bm1ZtC2x/VfcQd2+/gscOPCWOmoruCu7bfxdrdazG7+w62djm6WLFjBcs+WyZQcm6/my37tnDn9juF8IOIXnXHtjv42+m/CX27s2knd2y7g4cOPIQ34FX8tcba8JjZcZ9AoV8qG5xULtJ8QR+f1H9CcWox+1v3CwP947qPSVGn0GhuFLj3A20H8Pg9mN1mgXuvNdais+lQx6kF/rvH2cOJzhMUJBfwQe0HgqbyQc0HFCQXcLzjuBDPsK1+G4lxibRZ2wSO9njHcSxuC06/U8iV1GBuoMncRLI6mY/rPlb8ZreZg20HKU4t5uP6j4WB8GHth+Rqc6nsqRS49x1NO4iRYuiwd1Ct74sVqeyupNvZTVAOsqe5LxdUq7WVGmMNmZpM4Qbg8rvY0bSD4tRidjfvFjSVD2s/JD0hnTpjnTA57mnZQ1AOonfqBe79nOEcHfYO4mLi+Kypj//usHdQ0V1BrjaXD2o/UPyBUICP6z6mOLWYQ7pDwuT4cf3HJKmSaLY0CwP9UPshnH4nVq9VqMleZ6yjzdqGRqURJi69S8+xjmMUJhcKuAJ8WPMh+Un5nOw6KUyOnzZ8ijpOjc6qE3A91XkKk9uEN+hlf1ufXtVkbqLR1EiKOkXA1eq1sq91H8WpxWxv2C7cZD6q/YhsbTZV+iphctzZtBNJkuhydAm4Vumr6HZ0I8uysChos7VRbagmS5Ml9K0n4GFH4w4lN1b/Rc8/6/5JWkIa9aZ6IbdZeUs5vqAPo8so6JARXFUxKkEL7LR3crrrNHlJeXxQ09d2SA4pyTKPth8VJsdP6j9Bo9LQYm0RdMijHUdxeB04vA5Bh6w31dNsaUar0gq4Gl1GDusOU5xazIe1HwqLvQ9rPyQvKY8z3WeEyfHTxk9Rxahot7ULOetOd53G6DLiD/qF+KpmSzP1pnrSEtKEMWP32dnbsjesgTbtEDSVD2s/JFOTyTnDOWFy3NW8C1mW6XZ2U9nTt+C6VDY4qVykReICWq2tTMiZIGzB55eE68rnJuUK/PDU/KnESDEkqhIFfnhI+hAyEjNw+V0CN52lyWJkxkjabe0sLF0oaCoLSxfSbmtnROYIIY/RZcWX4fA7yEzMFHIojc8dT0JcAnExcUo2WQjXNMnWZmPxWATNIS0hjXE542i1tjK3eK5wFHFB6QK6HF2UppUKZ+5nF83GG/SSlpAmnPcfmTWSVHUqITkk8P6FyYUUphRicBkEXlyj0jC9YLqiV/XXVBaULsDoNlKQXCBkVZ1ZMJOQHCJZnSzkUBqWPoz0xHQ8AY+SqQDC3HtZehldji4WlvbpWHExcVxWfBmt1lbGZo8VNJX5JfOxeW3kaHOEvGNT8qYQFxOHOlYtaGVD0oeQpcnC7rMrmacBMhMzGZU5Cp1Nx4LSBQJVsaB0AR32DoZnDBe0srklc3H5XaQnpgsxMmNzxqJRaZCQmJrXx/sXpxaTm5SL2WMW+jZFncKE3Am0WluZVTRL0FQWlC6gx9lDcWqxoJXNLpqNP+gnNSFV4P2HZwwnNSGVQCignGyDcF61ouQi9C690LcJcQnMKJxBq7WVSXmTBCp0QekCTG4TeUl5Qi2XSC41bbxW0MqGpg8lPSEdl98l6HQ52hyGpg+l097JgtIFij9GimF+yXx0Nh2js0YLmsq8knlKed7+MTITcycSHxuPKlYl1HAvTS0lW5ONzWsTcE1PTGdM9hglt1l/im1h6UI67Z0MTR8qaGVzi+fiDrjJSMwQcB2TPQZtvBYZmen5fexScWox+cn5mNwm4fqS4pOYnDeZVmsr0wumC5rKgtIFGFwGilKKosZMIBQgVZ0qaGWXygY1la8SpyKHMLlNpCekR3G0JrcJrUobxX/bvXZipJgojtbtd+MJeKJ40kAogMVjiaqFLcvhutppCWlRZ8/NbjOJcYkkqESe1OF1ICNH6RregBen3xlVwz0YCiocbf962xFePEWdEsV/WzwW1LHqKP7b5XMRCAWiYgr8QX+Yez+PB4707YXaTlYnR9X6tnlsxMbEDti3kcnuYtq+EK6aOE1U39q9diSkKP7b4/fgDrgvGa4JcQlRfev0OZUJtb9FcE1PELWFr4Kr1WNFFaOK0gK/Kq7n960sy5g95oseMwPh+kV9OxCunzdmgC+Na6RvLwbXC42ZC+HqC/rCmsp5uH7RmBkIV5snnGX6fFy/rA1qKpfY3qp6i7u238VfT/9VoDCOtB/hnk/v4eEDDwv8cKu1lZW7VrJ612phC2z32tmyfwvLP1sulPoNhoL88fgfWfbpMj6u76MwIMzR3r39bp4//rywzT7ddZrlny1ny/4tAj/cae9kze41rNq1SjhW6PK7ePjAw9zz2T1CuV1Zlnnp1Evctf0u3q1+V2h7R9MO7v70bp46+pRAi53Tn2PFjhVs2LtB4IcNLgPr9qxjxc4VAh3oDXh59NCjLPtsmXDUWJZlXqt8jbu238WrFa8KfXtAd4Blny1j68GtAnXTaG5kxc4VrNuzTuCHLR4LG8o3cO9n9wrUTSAU4OmjT3P3p3cLx0IB3jv3Hndtv4s/n/qzwL0faz/GPZ+Fce2vlelsOlbtWsXq3asFrczhc/DA/ge457N7BOomJIf404k/cff2u/mw9kOh7U/qP2HZp8t47thzAq6V3ZXcu+NeNu/bLNBG3Y5u1uxew3077xPoQLffzR8O/oFlny4TeP+IrnHX9ruieP/dzbu5+9O7eeLIEwKudcY67t1xLxvKNwh0oNFlZP3e9dy7416BNvIFfTx++HHu/vRuIT07hGvx3LX9Ll4+87KA66H2Qyz7dBlbD20VtLJmSzP37byPtbvXCjSv1WNlU/kmln+2nLM9fUfIA6EAzx57lmWfLhOoZAjrVXdtv4s/nfiTgOvJzpPc89k9PHjgQUWYh7AOuWrXKlbtWiWkjHf6nDx04CGWfbZMoLFDcogXT77IXdvvitJAP238lGWfLuOZo88IWllVTxXLP1vOxvKNQlhCj7OHtbvXsmLnCuGItSfgYevBrdz96d2CBirLMn8/83fu2n4Xb1S+EaVXLft0GY8dfkzQyhpMDdy7817W710vlCS/VDY4qVyk+YI+Pqz7kMLkQnY37xY0lQ9qPkAbr6XWWCvkadrXug+H14HBZRC493OGczSZm1DFqvhn3T8Vf7ezm8O6w+Rqc3mr+i1BU3m7+m3ykvI4pDskDLZ/1v2T+Nh4GswNAkcb4ZFtXptwA6831VNrrEUTpxH4b5PbFK7ZklzIezXvCTeZd8+9S5Ymi5NdJwVNZXvjdmRZptXaKpx7P9N1hg57B76gT4jDabG2UNlTSZo6jXdr3lX8Lr+LbfXbKEopYnvjdkFTee/ce6Sp06jSVwmDbXfzbrwBLx32DiH/VpW+SuGRtzX0netvt7VzovME2Zps3jnXJ5YHQgHeq3mPwuRCylvKhZvoh3UfoonTUGuqFQ4c7G/bj81rw+gyCjfwGkMNDeYG1LFqPqrt4797nD3hWvTJ+bxz7h3hBvB29dvkanM50n5EWHh8XP8xsVIszZZmIU9TRFNz+pwC995obqTGUENyfDLv1/al2rN6rexq3kVhciEf1X4kTMzvnnuXzMRMTnefFmqafNr4KSE5RKu1VbiBV/ZUorPpwrE9DX0Tc6u1lTPdZ8hIzBD61u1381HdRxQmF7KjaYcwOb5/7n2S45Op0lcJC489zXtw+V10ObqEG3i1oZoWawuxUqyga3TaOznafpQcbQ5vV7+t+ENyiHer36UwuZADugOCpvJh7YckxCUoYyFih9sPY/aYsXgsQgxQnamOOlMdiXGJAq5Gl5F9rfsoTC7k3XPvCouCt6vfJluTzbGOY0Kd+E8aPiFGiqHF0iLkrDvZeZIuRxduv1uIr2oyN1GlryJVncp75/omLrvPzo7GcD7Aj+s/FjSVd2veJT0xnYruCmHh8VnTZwSCAXQ2HWe6+w47XCobnFQu0lQxKqbnT1c42v6ayqyiWVg8FrI0WcK58Ik5E0EKc8v9+eGytDLSEtJw+BzCmfQsTRZl6WV0ODqYWzRX0FTmFs+lw9HB0PShSsbaSNt2n530hHQhRmZszljUcWpipBgm5Pbx/sUpxWQkZmD1WgXNITUhVeH9I/E1EZtTNIceZw+FyYXkavvO3E8vmI4n4CFFnSKc9x+eOZyk+CQCoYCQG6sguYDcpFyMbiNzi/ryGyWqEpmUN4k2axsTciYo0dUQjkcxuo3kaHOEWIopeVMIykGS4pOE3FhD0oaQEp+CJ+BRMhVAmHsvTi2my9klXHck3kNn0zEyc6RArcwumo3VayUzMVPQyiZkTyBGiiE+Ll7QykrTSklPSMfuswt5uTISMxiaMZR2WztziuYIFMac4jl0ODooTSsVtLKZhTNx+p2kqlMF3n909ugwfy7BpNw+3r8opYgsTRZmj1m4vuT4ZMZkjUFn0zGtYJpAIUZwLUgqELSyafnTwulQ1CkC7z80fSjJ8cn4Q34l+zNAflI++cn56J16IW9VQlwCU/OnKvFV/Wmd2cWzMXvM5GhzhDEzJW8KsiyjUWkErWxI2hBS1Cm4/C5Bp8vWZlOSVkKno1NoO0aKYVbRLHQ2HcPThwta2ayiWdi94THTH9dx2eNQxaiIi4kTcC1JLSEjMQO71y5oSWkJaYzIGIHOpmN20WyBYptbNJcuZxfFqcWCVjazcCZuf/hocn9cR2aORBuvJSSHhNinwpRCcrQ5mNwmQUtKik9ifM54JbdZf01lTtEcDC4DeUl5wpiZlj8Nf8hPcnyyoJVdKhvUVL6CphIMBTG4DGRqMoWbrizLGFwGkuKTonhSi8dCjBQTdbbe5Q9H7vafICC8I4pMUP150pAcwuAykJ6QHsWTGl1GElWJws0YwkdcZVmOOlvv9rtx+p1RPLA/6MfkNpGlyYriv/UuPanq1Cj+2+Q2oY5VR/Hfdq+dQCgQxUF7Ah5FJD2f9/+8vk1WJ0edrTe7wxlzz+egnT4n3qA3SjOK9G22JnvAtjMSM4S+jfDiWpU2Clerx4okSQPi6vK7hAkCwn1r9pgviGtaQlqUZvR5uEaC2Prbhfo2EApgdBkvGtf42PioPFQOnwN/0B+Fqzfgxeq1XrBvLwZXi8dCrBQ7IK6egOe/PWYiuGpUmqi+jVBSFztmsrXZXxrXzxszQTl4SXA1uAykqFOicDW7zahiVVG4flkb1FQusX1Y9yErd67k9crXBQrjZNdJVu1axZNHnhT4YZ1Nx4a9G9hUvkmgrBw+B48cfITVu1dT1dNHG4XkEH89/VdW7lwZxft/2vAp9+24j7+e/qvAD5/tOcvq3at59NCjAj/c7ehmU/km7t97v8APu/1unjjyBKt3rRZ4f1mWebXyVVbuXClQchDmaFfuXMkLJ18Q+OF6Uz1rdq/hoQMPCfywyW3igf0PsG7POoGy8gV9PHvsWVbtWsWh9j56IULvrdy5krer347Sq1btWsWzx54V+OEWSwvr96zngf0PCPywzWvj4QMPs2b3GoGyCoaCvHDiBVbuXBnF+39c/zErd67k1UpRzzndfZrVu1bz+OHHBa2sw97Bhr0b2Lh3o3AM2Olz8uihR1m9a7UQIxPB9b4d90Xx/jsad7By50peOvWSQJ9U66tZvXs1jxx4RIiR0Tv1bNm3hQ17NwjHgD0BD08eeZJVu1YJtJEsy7xe+Tord64U6E4Ip9BZuXMlz594XsC1wdTAut3reGj/QwLNa3abeXD/g6zds1aIkfEH/Tx3/DlW7lzJAd2B/k3w3rn3WLlzJW+efVPo22Mdx1i1axVPHXlKoOTarG2s37Oezfs2C5SV3WvnkYOPsHb3Ws7p++jAYCjIn0/+mZU7Vwq0EYSP29+34z5ernhZGDOVPZWs3rWaxw49JmhlXY4uNpZvZGP5RoGycvldPH74cVbvWi3QRrIs83LFy6zcuVI4xg1henblzpW8ePJFAddaYy1rdq3hDwf/INCBBpeBzfs2s37PeuEYsDfg5emjT7Nq1yqh1IEsy7xV9RYrd67k3XPvCm0f1B1k5c6VPHvsWYHGbjI3sW7POh7Y/4CggV4qG5xULtJ8QR9vV7+t5K3qP9jeqX4Hdayaip4KQcDc27IXk9tEh61D4N6r9dXh4DE5PFFFrNvRTXlLuN79G2ffEDSVN6reIFOTyd7WvcIE9UHtByCHRfP+3PuR9iN02jvDvG9bXzBcvameyp5K4mLiBHHR7DGzo2kHWZos3qp+S/gyvlH1BqnqVA7rDgs3so/rwvEskfeM2KnOUzRbmnH6nMLk2Gxp5mTnSTQqDW9VvaX4XX4XH9Z+SLY2m4/qPhI0lbeq3yIxLpETnSeEG9mOph3Yffbwe3b1BZBW9lRSb6rHH/QLk2O7vZ1DukOkqlN5o+oNxR8IBXiz6s1wjZfGHYKm8l7Ne8TFxHFWf1bIv7WvdR8Gl4EuR5fAvdcYazhnOEeMFCPcwPVOPXtb9pKpyRRwBfhH1T9IT0hnf+t+QVP5sPZDZFmmxlQj6FVH24/SZm3D5DYJN9EGUwNnus+gjlXz9rk+bcHqtbK9cTvZ2mzeqX5HuIH/o+ofpKhTONp+VLiRbWvYhifgocHUIBwkOdN9hkZzI26/m+2NfZNjq7WVYx3HSI5PFnD1BDy8X/s+2dpsPm74GLuv7yDJO+feISEuQXnPiO1u3o3VY6XN2iYEkFbpq6g11hIIBfhnfR+unY5ODugOkJaQxhtn+3ANySHeOPsGWZosdjXvEiao92reI1aK7RuHvXag7QA9jh56nD1C/q1aYy1n9WeJlWJ5v6ZPrzK4DOxq2kWWJos3q94UJo83zr5BWkIaB9sOCoc5Pqz9kEAoQJ2xTsD1eMdx2qxt2Lw2IQaoydLEqa5TJMYlCoGzDp+Df9b9k2xtNu/XvC8set6qfgttvJYTnSeE+k6fNX6Gy++iydTE6a4+HfJS2eCkcpGmilExOXcy7fZ2hmcMF7bm0wqmYfVayUjMEOpSjMseh4SEOk4tnAsvSS0hRZ2C0+9kSl5fDElGYkaY93d0MaNghqCpzCiYQae9k+KUYoEfnpo/FaffSUpCipAba2TmSFSxKmKkGMZm9dVOKEwpJC0hDavHyrT8Pl48RZ3CsPRhtNvbmZw3WaAqZhTMoMfZQ15SnnDmfnL+ZLwBL8nxyUIcx5D0IWhUGoJykIm5ExV/flI+WZosjG4jMwr69I5EVaKSG2tM1hiBkpheMB2Tx0S2JluoVDchZwLBUJBEVaKQG6s0tZSk+CQ8AY/Qt5HX9zh7hLZjpVim5E2h3d7O0PShAp01LX8aNq+NtIQ0AdexWWORJAlVrErAtTilmFR1Kg6fQ9CS0hPTKU0rpdPeyfSC6QKFMb1gOl2OLgpTCgVaZ2r+VFx+F8nxyQLvPyJzhHIMtn+d8cKUQkUri8R6QFhTifD+kTiM/m3rnXpytDmCVjYpbxK+oI8kdZLA+5ellaFVafGH/IKek5uUS642F4PLILStjlUzPmc8OpuOURmjhPij6fnTlWPO/XEdlzMOGZlEVaLA+5eklpCsTsYdcAu4ZmmyKEwujMI1RophWsE0OuwdlKWVCWNmWv407D47qQmpwpgZnTmauJg4YqVYITdWUUoRaQlp2H12QUtKS0gLa6D2DqbmTxUoqBkFM+h2dFOQXCBQoVPzpuIOuElWi7gOzxhOQlwCITkk4BoZMyaPSWhbo9IwKiusgY7PGS9QiDPyZ2B0GaNwnZg7EX/IjzZeK2igl8wuVGf4/4Wfr1qj3h/0yzqrTvYGxNrWoVBI7rB1DFjb2uA0DFhf2uaxyV32rqj60h6/R9ZZdVF1tQPBgKyz6qJqlodCIbnT3jlgPXijyygbnIYov8PrkDtsHVFtewNeWWfVyf6gWNs6GArK7bb2AeuGdzu6B6xZbnab5R5HT5Tf6XPK7bb2qLZ9AZ+ss+qiapaHQiG53dYuO33OqPfSO/UD1g23eqxyt6M7yu/2u+V2W7scDAUF/xfhavdG1w03OA2y0RVdk93mscmd9s6LxvX8uuGhUEjusncNiKvJZZL1Tn2U/1LjOlA9eIvbMiCuLp/rc/t2IFwvNGb0Tv2AY8bqscpd9q4ov9vvlnVWXVTbXzRmBsLV6DIOiKvda78oXIOh4IC4yrIsd9m7LjhmBsLV6XMOiGtkzJyP6+eNmR5Hz4C4flnjc2rUf607FUmSrpYkqUaSpHpJkpYP8LgkSdLjvY+fkSRpar/HfitJUqUkSWclSfpdP/9aSZLaJUk61ftzbb/H7u19rxpJkq7ia7JPGz5lU/km3j33rkBhnOk+w5Z9W/jTiT8J9EKnvZOHDz7M1kNbhe23y+/imWPPsGXfFoFWCckhXqt8jU37NkXx/nta9rBp3yZeP/u6wA/XGGp4YN8DPHvsWYEf1jv1PHroUR45+IhAq3gDXp4/8Txb9m0RKCtZlnmn+h02lW+K0nMO6g6yqXwTL1e8LGzxm8xNPLj/QZ488qQQI2N2m3n88OM8dOAhIUbGH/Tz0qmX2Fy+WThiDeE4nE3lmwQ6EMK0wObyzfz55J8FSq7N2sZDBx7isUOPCfyw3WvnqSNP8cD+BwRaJRgK8vKZl9lUvkmgNiCsa2wq38TbVaKec7bnrIJrf62sy9HFI4ceYevBrUKMjNvv5o/H/8gD+x4QqMgIFbNp36Yo3n9f6z427dvEa5WvCbjWm+p5YP8DPHPsGUErM7qMPHroUf5w8A8CreINeHnh5Ats2bdFOGItyzLvnXuPTeWbhNTpED5Cu7l8M389/VdBU2m2NPPQ/od44sgTglZm9Vh54sgTPHTgIeGoaiAU4C+n/8Lm8s1C7BOEKdJN5Zt4v+Z9oW9PdZ1i877NvHjyRUEra7e18/CBh3ns8GMCFenwOXjm6DM8sP8BgWIOySFeqXiFTfs2sa+lj+aFcLqZTfs28WaVqOdU66vZsm8Lzx17TqCNepw9bD24lUcOPiJoZZ6Ahz8e/yNb9m0RKCtZlnmr+i027dsklFGGsF61ed9mXql4RRgzDaYGHtz/IE8ffVrQykxuE48deoyHDzwsUMy+oI8XT77IpvJNURroBzUfsKl8U5QGerTj6IC4tlpbeejAQzx++HGBvr9U9rVNKr314p8CrgHGArdLknR+7cprCNeSHwH8Enim97XjgV8AM4FJwPWSJI3o97qtsixP7v35Z+9rxhIuMzwOuBp4OlKz/lKaL+jj9bOvkxSfxEd1H2H19g22N6vfJCSHON55XPjC727eTZe9i2ZLM4d1fXWnz/acpaK7Ak/AI5w973Z0s7NpJ5o4Da9UviJoKi9XvIxWpWVH4w5BU3m35l28QS8VPRVCsN8h3SGazc2029vZ09KXf6vWWMvxjuME5SBvVffx32aPmX/W/5Ok+CReq3xNuIG/WvEq6lg15S3lwhf+o9qPsHltVOmrhPxbJztPUmuoxegyCnmamixNHNYdJjYmln9U/UPxO31O3jn3DknxSbx37j3hJvpG1RvESDEcaT8i5Ij6rPEzDE4DdcY6QZiu7KnkrP4sDq9DCDRst7ezt2Uv6lg1r1W+pvgDoQCvVr5KUnwSHzd8LNzI3jr3FkE5yInOE0I8Q3lLOe3WdlosLcIEVW2o5lTXKbxBr4Cr3qnns8bP0Kq0vFwhBgG+XPEymjgNu5p2CZP/ezXv4fa7qeiuEG5kh3WHaTQ30mXvEiaoelM9xzqOISMLuobVa+Wjuo9Iik/iH1X/EBY9r1e+jipWxYG2A8Lk/3Hdx0od8/64nu4+TbW+GrPbLMQAtVhaONh2kLiYOF4/25eM1BPw8Fb1WyTFJ/FB7QeCphLB/1jHMSGv2s6mnfQ4e2gwNQgT1Nmes1T0VODyu4QcXx32Dva07CExLpFXKvsSZkYmmyRVEtsbtguLunfOvYM/6OdU9ykhtmtf6z5ara20WduEvGrnDOc41XUKf9AvxOEYXAa2N2wnSZXEqxWvCpPHKxWvkBCXwJ6WPXQ6+kT/92vex+l3crbnrLCoO9ZxjDpTHT3OHiEpZ6O5kSPtR4iRYgTNyOFz8F7NeyTFJ/F29dvC5Pj62deJjYnlYNtB4aDMtvptmNwmzhnPcarzFJfavs6dykygXpblRlmWfcBrwI3nPedG4K+9O6pDQJokSfnAGOCQLMsuOVzrfg9wM59vNwKvybLslWW5iXDd+5lf8JqLNlWMinHZ4+hydFGWViYcyZucOznM0apThfP+o7JGgRR+bf/cWEUpRSSpk3D5XUIMSXpiusL7T86dLGgqU/Km0O3opjClUOCHJ+VOwulzolVphTw/w9KHoYpVIUkSIzP6eP/85PwwP+y1C7x4cnwypamldDm6GJ8zXtBUpuRNweA2kKPNEfjh8Tnj8QV9aOO1QqxBaVopiapEQnJIiM/J1eaSnpiOxWMR2k5UJTIyYyRdji6GZwwXju9OzpuMxWshPTFd4IfHZI8hKAdJUCUIek5RShHaeC3eoFfgprM0WeRoczC4DUIcQKwUy4ScCeHcZqmlgqYyKXcSDp+DFHWKcN5/ZOZIYmJiUMWqBN6/MLkwrJX5nAKuaQlpFKYU0u3oZnLeZEFTmZw3mR5nD/nJ+QKuE3Im4Aq40Mafh2vGMOWYaP84jgiuNq9N0LGS4pMYkjaELkcXY7LGCJrK5LzJypHU/rEU47LH4Q/50ag0Ql6u4pRitPFhTaV/jfMcbQ6ZmkxMbpPQt/Gx8YzOGk2Xo4uh6UMFTWVy7mSsXitpCWnCmBmdNRpZllHHqQXevyiliKT4JNwBt4BrZmImudpc9C69oLXESDFMyptElyMcK9L/iPDE3IlhHTL+PFwzRhIbE0tsTKwQ+6Tg6hdxTU1IpSiliC5HFxNzJwqayuS8yehdenK1ucLR9gm5E/AEPGjjtULfDkkbQkJsArIsK5VSIVwHKD0hHYvXIvStRqVheMZwuhxdjMwcKRwdnpw7GbPbTKYmU9BAx+aMJRAKoFFphDFzyexCvNh/9wf4FvCnfv//AHjyvOd8CMzr9/8OYDrhSaUWyAQ0wEHgid7nrAWagTPAi0B6r/9J4Pv93usF4FsDfK5fAseAYyUlJV+JT/QFfHKzuXlA/rvV0jogT9pl7xqQgza7zXKbtS2KJ3X5XHKzuTmKJ/UH/XKzuTmK/w6FQnKbtW1AnrTH0TMgB231WOVWS2tU226/W242N0fx34FgQG6xtETx3xHudiD+2+A0yB22jii/3WuXWywtUfy3N+CVm83NUfx3MBSUWywtA2oLnfbOATUjk8s0oG7j8DrkFktLFP/9VXDtdnQPiKvFbflKuJ7Pf4dCIVln1Q2oGemd+gFxtXlsA+Lq8XsuCldZluV2W/uA2oLRZbxkuLZaWi+I60DagsllknVWXdT1OX1OudncHIXrVxkz3Y7uAfW4C+H6eWPm83AdaMzonXq5094Z5Y/gen7fRnA9XwuMjJmBNKMOW8eAY+bLGv8iTUUawHd+pOWAz5FluRp4APgU+AQ4DURIwWeAYcBkoBP4w0W0hyzLf5Rlebosy9Ozs7MHeMkX2+7m3Ww9tJWP6z+O4mgfO/wYL595WeCHux3dPHPsGf54/I8CreL2u/nLqb/w5OEnBd5flmXePfcujx1+TDiqCnCw7SCPHn6U9869J7TdYG7gycNP8pfTfxG2wEaXkeeOP8czx54R6DJf0Mffz/ydJw4/IfD+sizzz9p/svXQ1ig953jncR499ChvVr0p8P6t1laePPwkL5x8QeCHrR4rz594nqePPi3EyARCAV6rfI3HDz8elSZiR+MOth7aGqXnVHRX8Pjhx3m18lWBH+6wd/DUkad4/sTzAu/v9Dl58eSLPHn4SeE4ZUgO8Vb1Wzx66NEoPae8tZyth7byUe1HQt+eM5zjicNP8LfTfxNoox5nD88ee5Znjz0rxMh4Ah7+cvovPH74cYEGlWWZ92veZ+uhrRxoFfWcw+2HeezwY7x77l2hb5ssTTxx+An+fPLPglZmdpt57thzPH30aYEu8wf9vFzxMo8dfiyK9/+4/mO2HtrKrua+o6oQpikfPfQob5x9Q6Bu2qxtPHXkKV448YKgldm8Nv504k88eeRJgQYNhoK8cfYNHj30qMD7Q7gW/dZDWwW6DMI5sB47/BivVLwiUK2d9k6ePvo0fzz+R0Erc/ldvHTqJZ448oRA6YTkEG9Xv81jhx/jcPvh/k2wv3U/Ww9tjSo3UGus5fHDj/PX038VtDKDy6Dg2l8r8wa8/O3M33j88OMCDSr36hpbD20VathAuOT0Y4cf462qtwRcmy3NPHnkSf586s8CzWvxWHj+eHjM9I+R8Qf9vFr5Ko8dfkxImQPhejhbD20VUiFBOB/g44cf5/XK14Uxo7Pp+P/Ye+s4Oa473fup5h4GsUZMFpgtsx2TTEEn2dzszW42udlsks0yZ7OQmCVZZpDFkgWWxcw0zMzYM93T08xccN4/zlRNn6mWabXv3r2b4898rDnT3afr/OpU1Xm+P3iv7j1sadzCxMjcqPafeVOxAZiT9nsJAPvnfQ0hZCsh5A5CyMMAfAD6xvudhBCRECIB2IwJievzjPcfbikxhb3te6HX6HGs+xjDVPZ37EdCSKDKVsUE3F0ZugKLn+ZuSq9p0uHuQL29HoFkgMlX5Ig4cHbgLDhwTLEqQgh2tuyEltPiTP8ZOKMTEPFQ5yEEkgHUjdYxF5NKayV6vb0Y8g8xF5MeTw+qbFWI8lFG//Yn/DjWcwx6jR67W3czJ+Pu1t0ghOCy5TKjvZ/sOwl3zI3msWbmJtE41og2VxtGw6NMsN+Qf0ipl5FeMCrGx7C/Yz/0Gj0OdB5gFtu+9n1IiSlUjFQwN+DzA+cxGh5Fm6uNuUm0OlvR5GiCJ+5htHdbyIZLg5dACE2wKDdBEvBR60fQa/Q43nucufkf6DyACB9Bta2a0d6vWa5hwDeAPl8fk1et092JutE6hJNhhmu4oi6c7j8NnUaHna1sEbKdzTvBgcO5/nPMTeJo11H4E7QOT/rFpNpWreTBSr+Y9Pn6aP0eIYGPOyaYUSgZwtHuo9Br9NjXto+5OcpBgVctV5k4lVN9p+CMOtHsaGagf7OjGS2OFjgiDibYzxKw4JrlGkRJxO7W3Up/QkhgX/s+6DV6HOo8xFzI9rXT71JhrWBuwBcHL8IatKLT3cnEdrU529Aw1gBf3McE+9nDdlwYoNzuo5YJu0pEws6WndBraH69dKZyqOsQwskwakdrmQersuEy9Hv70e/rZ/KqdXu6UTNag0gqwiTl9Ma9ONl7EnqNHh+1fsTcmOXvcnHwIuNQcbznOLxxLxrsDQxTqR2tRYerA9aglXmwGvAPoHykHEkhyayZcDKMQ12HoNfo8XH7x8wD5Z62PeBFHteGrzE34DP9ZzAWHkOrsxWN9gkOeaPaf+ZNpQ7AEo7jFnAcZwCF6McnveY4gB+Oe4HdCyBICBkDAI7jpo3/fy6AbwPYN/77zLT3PwegPe2zvs9xnJHjuAWg8L8WN7jpNXosLVoKV8xFdfs0fXjF1BUIJ8PINeQy9agXFS2iTEWrZ/z9Z+bMRJYhC3E+zuinBaYCTMuaBk/Mg1VTVzFMZdW0VXBH3ZieM51J47Bi6grE+TiyDdmMv//8gvnQaXTgOA6LCyd0/xk5M5BnyEMkFWHyG+UaclGSVwJX1IVlU5ZBm+brsHLqSvjiPhSbi5lYimXFy5ASUzAbzIw2XZJXApPWBJGIWFw8MfbU7KnIN+UjmAgyY5t0JiwoXABXzEW15TSf+xVTVyCYCCLPmIepWRM7zMVFiyERCSatiYk1mJU7C2a9GUkhSZnWeJO/uy/uYzR5LafFTcU3KbnN0uOPVk5diWgqilxjLqP7LypaBA2ngZbTquyabchGjI9h+bQJu+ab8jEjewbcUTeNXUpjKjdPuxmeGOVV6Uzlpqk3ISEkkGXIUtlV5iLp8TnTs6cjz5iHcDKMlVMm5lbW7l0xF5YULWGYysppK+GP+1FoLmRY2bLiZeBFylTS43Nm586GWW+GIAlMfM7U7KkKK0ufW4PWgMVFi+GKuTCvYB4Tf7Ry2kqEkiHkGfOYNbOkeAkICAxaA6P7z8qdhSx9FpJiklkzReYiTM2eCm/My4yt4TRYMXWFEl+VzsqWT12OmBBDjjGHsevCwoWUqXBaLCyYyHk2I2cGcgw5iPJRhhHmGnIxK3cWXFEXlk9ZzqRpWTl1pcKr0u26bMoyJMUksg3ZzJqZlz8PRp0REpEYTjctexryjfkIpUJYOW3CrjIXccVcWFS4iGEqK6euRCARQKGpkFkzy4qXQSQ0tit9zdywdj1d7Eb8AHgWlI0MAPj1eN/PAfx8/N8cqIfYAIA2AHelvbcMQCeo9PV4Wv9H469tBb2RzEz726/HP6sHwDOf9f2+bJxKgk+QPm+fSicVJZEM+AYy6qS2oC2jBu2JesiQf0il0YaTYdLv7VdptCkhRfq9/Rm5xpB/KKNOag/ZiS1oU/X7Yj4y6BtUabTRVJT0eftU+jcv8qTf26/SvyVJIha/JSNbcIQdGfX9QDxABnwDKv07zsdJn7dPxTUEUSADvgGV/i3zjkxswRVxEYvfoho7lAiRfm+/imskheR17TroG/zCdh30DWbkOf3efpX+Ldt1sv79aXYdC48Ra9Cq6vfH/WTAN6CyaywV+1S7TmZGkiSR4cBwRrbgjDjJcGBYdXzBRJD0e/uva9fJXENeM5mYkTVozcgW3FH3p9p18ppJCsnrrplB32BGZjQaGiWjoVFVvzfmzbhmIskI6fP2Xdeu11szmZjRZ9l18tzKdv2iayaTXT9vw39VnAoh5DQhZCkhZBEh5KXxvo2EkI3j/yaEkF+O//1mQkh92nsfIoSsIITcSgi5lNb/h+OvvYUQ8g0yvrMZ/9tL45+1jBDCJuG5ga3aVo3NDZtxZegKI2H0efuwtXErDncdZvRhd9SNnS07sbt1N+MXnhAS2N+xH1sbtzK6PyEEZ/vPYlPDJsZNFgDqx+qxqWETzvWfY8a2BCzY2rgVn3R8wkgb/rgfH7V+hF0tu5itPy/yONR1CFsat6Dfy+r+l4cuY3PDZsb9GaDSw5bGLTjZe5LRh0fDo9jRvAP72vcxun84Gcbetr3Y0byDkepEScSxnmPY3LCZcX8GqPSwuWGziud0e7qxpXGLKrW4M+rEzpad2NO2h5FVYnwMH7d/jO3N2xndXyISTvedxubGzSqeU2OrweaGzYo8JrdB/yC2NG7Bwc6DDCvzxrzY1bILH7V+xOj+SSGJg50Hsa1pG+P+TAjB+YHz2NSwScVzmhxN2NSwCWf6WE43EhzB9qbtirQqt2AiiN2tu7GrZRej+wuSgMNdh7G1cSt6Pazuf9VyFZsbNqvic9pd7djSuAXHe44zdrWH7djetB372vYxUmQkFVHsmu4mK0oijnUfw5bGLehws7p/pbUSmxs2M27tAJVh5TWTLrW6oi7saN6B3a27GVYW5+PY374f25q2MWn6yTgz2tSwScVz6ux12NSwCRcGL6jsuq1pGw50HGDs6ov78FHLR/io5SOGlaXE1IRd/axdLw5dxOaGzYxUB1Cusblxs8qu1pAV25q2qSSrUDKEPa176JpJi5ERJAFHuo5gS+MWJqUMQNNAbW7YzEiwAJXXNzdsxvGe48yacUQc2N68HXta9zAM9Ea136Vp+YItJaaws2UnBEnAgc4DDFPZ274X/oQf14avMSDv0tAl9Hh60OJsYQBtu6sdVdYqOKNORqN1Rp040XMCKTGFrU1bGaayrWkbeInHsd5jDHg/2HlQyVWUvqArrBVoc7ah29PN5BLq8fag1EJzkqVr74FEAAc7D0KQBOxo2cEs9O3NFBaf7T/LMJVjPcdgDVlRM1rDLOh6ez3q7fUY9A8y2vugfxCXBmnOrnSuEeNj2NO2h8aMTLqQfdT6EULJEC4PXWZq1ZztP4sB3wAa7A1MPEOrsxU1ozRHWXqsyGhoFKf7TyPOx7G9abvSL0gCtjdvhyAJONR1CP7ExE1iX/s+WmdmpJRZ0FctV2kMh7ONAbSd7k6Uj5TDFXXhQMdEHI475qY1aiQe25q2MRcZOfjvZN9J5kJ9qOsQzWtlrWTyb1VaK9E81oweTw+jvfd6e3HVchX+hJ+J1wglQ9jfQYHtrtZdzEV0V8suRPkoLgxcYIIZT/aexEhwBDWjNUxetaaxJtSN1sESsDD10oeDw7g4eBGRVAS7WnYp/QkhgY9aPlIcNNKh/562PQgkArhqucowlfMD59Hv7Uezo5kB722uNiWPVnoOLHvYTuvEiElsb56wq0QkbGuka+ZI1xHmweqTjk/gjrlRbi1nOGTpcKkS55R+E+xyd6FsuAzumJtZM964F0e6jtBzqGk7cwHf3rwdCSGB0/2nmRpER7qPwB62o9pWzTzc1Nhq0OhoRL+vn+GQA74BXLFcQTARxJ62PUp/JBVRnFd2t+5mHjw+avkIkVQEFwcvMkzldN9pWAIW1NvrmbxqN6r97qbyBZteo8eCggXwxDxUO09jKkuLliKSiiBbn834hcv1TXQaHRPHMSNnBkx6E5JCktFP84x5Sm6sZcXLGKayrHgZ1WjNUxh9eHHxYsSFOMx6MxPHMSdvDrQaLTiOY7TpqVlTkWXIQpSPMvEr2YZszMiZAU/MQ7XlNKayrHgZ/Ak/CkwFjM/9osJF4EUeJq2J0aZn5c6i+jAkLCiYiDWYkjUFucZchJNhRpM3ao2Ymz9XqaudzlSWFi9FOBlGjiGH0f0XFC6ABAkGrYGJ45iePR0mnQkpMcXEBhWaC1FoKoQ/4WdYi5bTYnHhYnhiHkzPns7EHy0tWooYH1PZdW7+XIADtBotE2swLXsazHoz4kKciXOQeZA35sXS4qUMU1lavBTeuBfF5mKGlS0uWoyEkIBZb2bmtiSvREnjPtmu2YZsRFNRZuwsfRZm5c6CJ+ZROFv62DKvYuxatAiCJMCsY8eekTMDRp0RoiQyzKHIXIQ8Yx6CySBjV5mLeGIehcekjx1OUQ6Zbtf5BfOV2K70NTM9ezplZSK7ZuRz0h/3M3E7HDgsKV6i5MBKZ2WLixYjxseQpc/KuGY0nIbJyzUtexqyDFmI8TFmbnMNuTT2KebB4qLFDFNZWrwU/jhdM+l2XVK0hHLISXM7O282DBoDCCGYXzhf6Z+SNQW5hlyEU+yaMelMmJ03G56YB/MK5jGsbNmUZQgmqV3TGejCwoUQJRFGnZHhdDesXU8X+5/w82WZSiwVI13uLpX+LYgC6fH0qHRSWRcfCYyoPssRdpBeT69Kow0mgqTL3aXSvxN8gnS5u1T6tyiJpNfTm1EnHQmMEIvfoup3R92kx9Oj0mjDyTDpcnepNNqUkCLd7m6V/i1JEun39mdkC7agjQz4BlT6tzfmJd3ubhXXiKaipMvdpeIavMiTbne3Sv+WdfFMzGgsPEb6vf2qsf1xP+l2d6v07zgfJ13uLpX+LUoi6fH0ZGRGFr+FDAeGVf3OiPML2TUpJEmXu0ulf4uSSPq8fRmZkTVozcjjPsuuk7mGbNfJzOjT7DoaGs1oV1/MR7rd3SquIa+ZyVxDXjOTmZG8ZjKxBUfYQfq8fRk5XZe76wvZtdfTm9Guw4HhjHZ1RVwZ7RpKhDKumevZVZIk0ufty8iMrEFrRh7niXpIj6dHtWYiycgXXjMDvoGMzOjzNvxXMZX/V1ujoxG7W3ertGlLwIJ9bftwuu80Ixv54j4c7DyIw12HGd0/KSRxvOc49nfsZ+I4CCG4YrmCPa17GHdDgHKNPa17cM1yjZFPbCEbPm7/WJHN5BZMBHGo6xAOdh5k3GQFScCp3lPY17ZPxXMqRiqwu3W3iud0ebqwp20PLg5eZMYei4xhf8d+JaWI3OS0Kwc6D8Adm9D9RUnEuf5z2Nu2l+E5AE3pvrt1t4rn9Hv7sbd9L872n2XkBXfMjU86P8GR7iOMPiynvtnfsZ+RkwghuDx4Gbvbdqt4TpOjCbtbd6PCWqHiVfvaqV3TWZls10NdhxjdPyWmcLL3JD5u/5iRCQkhKB0uxZ7WPSqe0+5qx57WPbhiYTndaGgUH7d/jOM9xxlWFkqGcKgzs13P9J3BvrZ9DM8BaIzT7tbdaBhjJY9eby/2tu1VygfLzRl1Yn/HfhztPsqwsmgqiqPdR/FJxyeMBCsRCecHzmNv217GpR6gUuju1t2quKtB/yD2tu3Fmf4zjF29cS8OdBzA4a7DjFyWEBI41nMMH7d/zMhJZJwF7mndw0hZAJVC97TuQdlImYpX7WvfhxO9Jxi7BhIBZW7TWRkv8jjZexL72vcxMiEhBOUj5djTukeVSr7T3Yk9bXtweegyM7Y9bMf+9v043nOckazCyTAOdx3Ggc4DjFQnSiLO9J/B3ra9TDobgMY47W7djfpRltP1esbtOsDa1RV14ZOOT3C0+ygjMd+o9rubyhdsvMhja+NWRFNR7Gvbx1xMdrfuxlhkDBcHLzJM5eLQRbQ521Bnr2NgWrurHaXDpRgODDM5sJxRJ450HUEoGcKmhk0MU9nUuAnhFPVNT1/Q+zv2YyQ4gquWq8yNqGykDA32BrQ4W5hcQt2eblwauoSxyBgTUxBIBLCvnfKMrY1sMa5tTdvgj/txovcEA0mPdR+jPv3DZQxTqRutQ5W1Cl3uLibZ3VBgCGf7z8IT82BHyw6lP87HsaN5B6KpKHa17mIuZLtaKZA+13+OiVM5238WXa4uVNmqGEja7GhG2UgZBnwDTJ4mW8iGYz3HEIgHsLVpq9IvSAK2NG5BNBXFx+0fM0xlb9te2EN2XBq6xMQzXBm6gmZHMxrsDYxjQYerA1eGrsAasmJ/+0QMkDvmxsHOgwinwtjUuIm5yGxq2KTEkqTHqRzqPETjP4avMfm3qqxVqLXXos3ZpsRnANRZ5MLgBTgiDoZXhZIh7GnbowSFpj94bGvaBm/ci1N9p5g4leM9x9Hn7UP5SDmaxiaYSuNYI8pHytHj6WHyqlkCFiUWJJ1rJIUktjVtQzQVxe7W3cxNYlfLLjgjTpwfOM8kVT3Xfw7trnbU2mpRZZuI7Wp1tqJ0uBSWgIXJWWcP23G0+yiCySA2N2xW+iUiYVMDXTOfdHwCb3wCvH/c/jFsIRuuDF1hbkTXLNfQONaIprEmJq9al6cLly2XlRu93HxxH/Z37Ec4Fcbmxs3MBXxL4xYEE0Ec7T7KxKkc7jqMQf8gSodLmQeMals1amw16HB1MIGiMmNxRV2MXSOpCD5q+QjRVBQ7WnYwN6gdzTvgiXlwuv8041hwqu8Uejw9KB8pVzmM3Ij2u5vKF2xajRZz8+cqpUPT9eEFhQsQ42Mw680oNk9omCW5Jcp7Z+ZMaJhTs6fCqDMiKSYxP3++0p9nzEOBqQCBRAALCxcyTGVh4UIaU2AqZPTh+fnzkRSTMOlMjE/6rJxZ0HAacOAY5jAlawrMOjNifIzhHVn6LEzNmgpf3Ie5BXMZprKwcCHVaA15jD48r2AeBEmAUWdkckdNz5kOvVYPiUiYmzehTReZi5BtyEY4FWZqnxu0BszKnQVf3IeZOTMZfXhBwQJEUhFkGbIY3X9O3hxIkKDX6BltemrWVBi0BvASrzAtgGrvecY8BJIBZmwtN2HXKVlTGFa2oGAB4kIcJp2J0f1n5c6CRkPjVNK16anZU2HSmZDgE4wunmvIRaGpEL64DwsKFjBMZVHhIoVXpbOyeYXzkBJTMGqNjF1n5MxQuMjs/Am7FmcVI0ufhWgqyvAOs46yNl/ch5K8EoapLCxciFAyhFxDLmPXuflzIUoiDFoDY9dp2dMoUyEiwxwKTYXIMeQgnAwz+br0WspFfHEfpudMZ1jZgsIFiKaiyNJnsWsmvwQERL1msuiaSQkpxq75pnzkm/KVNSM3DhwWFCygObDMxQwrW1CwAAk+AZM+g105DTScJuOaifNxZs1kG7JRbC6GP+7H/Pz54NKSeywsXIhAIqB8P7nNK5gHXuRVdp2ZOxN6rR4EhOF0xVnFyNZnI5KKMGObdJRj+uI+zMqdBb1molzywqKFCKfCyNHnqNaMSEQYtUYmNuiGtevpYv8Tfr4sU4kkI6TN2abiGrzIkw5Xh0r/lvXTQd+g6rNGQ6Ok09Wp0mh9MR9pc7apNNpYKkbanG0qriGIAul0dWbUSQd9gxnZgiPsIB2uDpVGG4gHSJuzTaXRJvgEaXO2qfRvURJJt7s7o/5t8VtIj6dHNbYr4iLtznaV9h5Ohkmro1XFq1JCirQ721X6tyRJpNfTm5EZWYNW0uXuUs2tN+Ylbc42FdeIpqKkzdmm0r8FUSAdrg6V/i0zhwHfgGpse8hOOl2dKq7hj/tJm7NNxTXifJy0OdtUXEOUxOvadcg/lJEtXM+uwUSQtDnbVFwjKSRJu7M9IwvsdndnZIHDgeGMdnVH3aTd2a7iGpFkhLQ6WlVcQ7brZBYo23XIP6Qa2xa0fSG7ftqa6XB1qJiRzBwyMaOx8BjpcHWo7Cqvmcl2ldfMZK4hSiLpcndlZIEWv4X0enpVYzsjzoxrJpQIkTZnm2rNfJpdezw9GZnR5234HVO5sa3D3YEjXUdUKQ5k99WrlquMPhxIBHC67zTO9J9hdH9e5HFx8CJO9J5g8vwQQlAzWoOj3UdVPuk93h4c6TqCGluNimuc6D2BS4OXGH04nAzjTP8ZVZp+URJxZegKjvccZ3gOQHN8Hek6osoxNOAbwLHuYyi3ljNju6NunOg9gfMD5xndP8bHcG7gHE71nWJkB4lIKB0uxbGeYwzPAWha9aPdR1WxBsPBYRzrOYZrw9cYecEX9+Fk30mcGzjHyGVJIYnzA+dxsvckIxOScWZ0tPuoSpvucFG7TpYEbCEbjvccx+Why4wcGEqGcKb/DM72n2VYmWzX4z3HVTynxlaDI11HGBkNoLLV0e6jqLZVM3PriDhwovcELgxcYCSrSCqCM31ncKr3FBP7JEoirlqu4lj3MYbnANQV+EjXERWnG/QN4mj3UZSPTLJrzI1TfadwfuA8I6vE+TjO9Z/Dyd6TjO4vEQllw2U42n2UkVsAoNXViqPdRxkZDaDxGsd7juOq5SpjV3/Cj9N9p3G2/yyj+6fEFF0zPSeYOA5CCKqsVTjafVTFc7o8XTjSdURV48UetuNEzwmVXcOpME73ncbpvtOMXQVJwKXBSzjRc4LhOQCNhTnSdQRdHpbTyXattFYyc+uMOHGy96RqzURTUZztP4vTfacZCVYiEq5ZruFYzzFGogSo1Huk64iK0w0H6JoptZQyc+uJeXCq9xTO9Z9jGOiNar+7qXzBxos8Pqz/UOEB6SfdrpZdGAoM4VTvKZapDF5E/Wg9KkcqmQJCba42nB84jx5PD1MjwRV14eP2j+GMOLGxfiPDVD6o+wDumBv72vcx8Ht/x370entxfuA8c9EoHS5FpbUSdaN1KqZyuv80Bv2DjEYbSATwUctHcMfc+LDhQ2axbW7cDHvYjsOdh5mAwiPd9AZ0afASE89QN1qHq5araB5rZpmKfwjHe47DGqQBYHKL83FsbdwKT8yDbU3bmJvE9qbtGAmO4HjPcYapnO47jeaxZly1XGXgfrOjGZcGL6HD1cHkVRsNj+Jg50GMhcfwYcOHSr8oifiw4UO4Y27sbt3NANo9bXsw6B/E2b6zzM3g0tAl1NhqUGmtRKkljam4OxRGkK69e2IexW4f1H/AXGQ+qP8AzggF4+mBogc6D6DH04MLgxdUcSrlI+VoGGtg6sT3+fpwqu8ULAELEysSSoYUjX1TwybmBrWlaQtGw6M40nWEuWAd6zmGVmcrLg1dYpw2GsYacNVyFa2OVpzoncirNhwYxtHuoxgNjzK8KikksaVhi8Ja0h+sdjbvhCVgwcnek8zN4Fz/OTSMNaBspIxxiGlxtODC4AV0ebqY2K6xyBgOdB6AI+LAxoaNSr9EJJoYMubGnrY9TDDjvrZ96Pf142z/WYapyOdSja2GZSruLpztP4t+Xz+Tf8sX92F3625q17oPmAv4hw0fwhFx4EDnAVX8Uae7ExcHLzJ51apsVSgdLkXjWCMT29Xv68eJ3hMYCY5gR/MOpT+aimJ783Z4Yh5sbdzK3Py3Nm6FNWjFsZ5jTJzKyd6TaHY044rlyu+Yyv8NTauh+nkgEcCUrCmMPjwnbw7ifBxGvRGF5ok8P9NzpgMcoNFomDiHInMRDFoDUmKK0W5zDDmKv/+c/DkMU5mbPxeBeAB5xjxG9y/JLUFSSMKgMzD66bTsaQoXSddPC82FMGqNiPNxRrs168woMhchkAhgVu4shqnMyZ9DNdrx7ye32bmzIUgCDFp27OKsYoWppOvi+aZ8mPVmRPgIM7Zeq8e07GkIJAKYlj2NYSpz8+ciykdh1puRb5zQpmfmzgQBgV6jZ3Tx4qxiGHQGCJLA5FbKNeQi15iLUCrE8AANp8Gs3FkIJAIoMBUwrKwkr4TaVWdkjm969nRwHAcNp8G0HLVdk0JS4WkA1d7zjfkIxAOYmzeXYSpz8uYgmAwi15DL6P6zc2cjJaZUczs1a6pStyOdJRWYCmDSmRDjY0xeJ5POhOKsYgQSAczIncEwlbn5cxFOhpFtyFbZVWYqjF3N1K4iEVV2zdJnIZwMM3Or0+gwPWc6AokA5YjaifxUJXkllEPqzMyamZEzAyCUdaUzh+KsYsrKRJ7JR5ZryEWuIRehJGtXmSXKdk3PO1aSX4KEkIBRZ2Tycsl2BQdmvRaaCykDFZJM7IxZZ6a1ThIBzM6bzTCVuflzM9s1bzZ4kYdBa2BY0rTsadBpdKo1U2AqgFlnRjQVZexq0BowJWsKAokAZZhpTGVO/hxE+Aiy9FmqNSMRyiHT41duWLueLvY/4efLMpVQIkQa7Y0q/TslpEjzWLNK/5YkiXS5uzLqpMOBYdLqaFVptO6omzSNNam4RiQZIU1jTSquwYs8aXW0qvRvWT/tcnepxrYFbaTF0aLSaH0xH2m0N6o02jgfJ01jTSr9W5RE0uZsy6h/93v7SYerQ6V/j4XHSPNYs0r/DsQDpNHeqOIaSSFJmseaM+rfHa4O0u/tV4095B8ibc421djOiJM0jTWp9O9wMnxdu7Y4WlT6t8wcMrGFkcAIaXG0qLiGJ+ohTWNNKq4RTUVJ01iTSv8WRIG0OlpV+rfMHDLZdTQ0SprHmlV29cf9pNHeqOIasl0ns0BREkm7sz0jCxzwDZB2Z7tqbh1hB2kaa1LZNZgIkkZ7o4pryHbNtGY6XZ0ZmZHFbyFtzjbVmnFFXBntKq+ZyVyDF3nS4mhRsUDZrt3ubtXY1qA1o129MW/GNRNLxUjTWJOKBQqiQNqcbRlZYJ+3j3S6OlVj20N20jzWrOJV8pqZzHgTfII0jzWrWKAoiaTD1ZGRBX7eht8xlRvbZPe+Tg/rD++IOHBp6BKqrdXMFjiUDOGq5SpKh0sZSUeQBFSOVOLS0CVGyiKEoMXRgvMD52HxW5gxLAELzg+cZ7bMAOUal4YuodJayUhWMT6G0uFSlA6XMmVcRUlEta0aFwcvMnILALS722maDB8bQ2INWnFh4AIaxxoZ6cYb8+KK5YqSzl5uCSGBspEyXLVcZXR/QgjqRutwYfAC42YJUGZ0fuC8ijmMhkZxcfAi6ux1zNhyio/S4VJGH5bT5F+xXGEkD0IImsaacGHgAuMWDUzYdTJzcEaduDR4CdW2aoaVhVNhXBu+htLhUkT5Cd1fkARU2apweegyk5cLoC6x5wfOq5iDxU/t2uxoZo7PE/PgsuUyKkcqGVYWF+LK3KZLsBKRUDNao7iLp7d0WS692UI2XBy8iIaxBmZsX9yHy5bLKBspY3T/hJBA+Ug5TQeTJhMSQlBnr8PFwYuMPApQtnB+4LwqhmQsPIZLg5dQM1rDrJlgMjhhV2HCrrzIo8JagctDlxmeQwhBk6OJrpk0qQegsTDnB84z8iFAZebLg5dRaa1k7Brlo8qaSZfqRElElbUKlwcvMzwHANqd7bgweAGDvkGmfzgwjAsDF9DkaGLXTNyLy0OXUWGtYOwa42MoGy6jKVnSGKhs14uDFxn+ClBmJMvo6W00PIoLgxdoeelJa+bKEF2v6XLZjWq/u6l8wcaLPN6rew/WkBVbG7cyC3pny050ubtwtOcow1TOD5xH+Ug5Lg9dZnJEtTnbcLLvJFocLYz27o658VHrRxgODOPduncZpvJu7bsYDgyrEgl+3P4xWp1U406/KF4bvqZc8NNzRPV4e3Cs+xg63Z2M9h5MBJVkfe/VvsfcoD6o/wCD/kHsa9vHgMrDXYfRMNqAswNnGRBbY6vBhYELqLZV41TvRI6oQf8gDnYepAk407T3OB/Hhw0fwhqyYlPDJuYmsbVpK3q8PTjUeYhhKid7T6LaVo0LgxeYwLpmB+U4DfYGHOya0N7tYTv2tu/FoH8QH9R9oPSLkoj3at9TEv2l3wQ/av0IHe4OHO0+yjKVwUsoHS7FlaEruGaZyBHV4erA8Z7jaHW2Mvm3PDEPdrXsokXN0uwKAO/Vv4fhwDB2t+5WxR81jzXjZN9JJk6lfKQcFwcvomKkgskR1evtpcDY3YWdzTuV/nAyTDX2kBUf1H3A3Pw/bPgQ/b5+fNLxiSr+qH60Hmf7zzIBkw32BpztP4va0Voc75moZjEcHMaBjgPo9/UzsSJJIYkP6j+ANWTFlsYtzIV6e/N2dHu7caTrCPMQc7bvLCqtlbg4eJFlKs4WnOo9haaxJoapOCIO7G3bC0vAgg/qJ+wqEQnv1L6jsIj0QNHdrbvR5mrDiZ4TzM1Otqe8duTW6e7EiZ4TaHO1Mfm3fHEftjdvV+yafnP8oP4DDAWGsLdtLxN/dLDzIJrGmnCq7xTjlFJlraLnsrWaYSoDvgEc7jqMHm8PwyGjqSg2NWyCNWTFxvqNzM1/c8Nm9Hn7cKDjAHOjPd5zHLWjtTg3cO53TOX/hqbVaDEtexpCyRDyjfmMPjwjZwYSQgIGrYHRpqdmTwUHqr2na9P5pnzoNXrwEo8Z2RO6eJY+CzmGHISSIczKmcUwlZm5M5WYgnTdf3rOdEV7T9dPi83F0IybOV0/zTfmQ6/VIyEkGE3eqDPSug3JEMNjAFonRI4VSec503KmQSAC9Bo944tfaC6EVqOFRCSGd+QZ82DUGRHjY8zYeq0eRaYihJIhFJoLldxW8tgy10iPz5mWPQ0SkaDT6Ji5LTAVQK/VQxAFJq9TtiFb8fdPjy2RuYhc2yOdlc3InoGkkKRzk3Z8xVnF4MBBq9Gyc2vKV1hZul3NOrNi1/Tjlo8vlAwhx5DD6P7Ts6eDl3jotXrGrkWmImg1WhAQRpOXz8mEkGAYmkFrUGrXF2cVM0xlZs5MRFNRmHQmRvefmj0VIhGh1+iZ+JUCUwF0Gh1EIjLMIdeQC5PehGgqysytTqNDsbkYoWQIBaYChpUpdtUaVWtGfm+RSW1XXuKZsWW7hlNhhkVw4DAjZwZdM8Zc1q45M5AUk3Ru0+xaZC4Cx3HgwGU8p5JikjmnzDoz5XTJEOUxaUxlRs4MhFNhZOuzGbtOy5pG7TppbovMRdByWkjIvGbifJw5d2TeldGuuTMR5aMw6U2qNSMSETqNjhn7hrXr6WL/E36+LFMJxAOk1lar4hoJPkHqR+tV+rcoiaTV0Uo6XB0qnXTAN0Aa7A0q/dsRdpBaW61Kow0lQqTWVqviGikhRRrsDSr9W2YObc62jNp0/Wi9SqN1R92k1lar4hrRVJTUjdapuIYgCqRprIn0eftUY3e7u0nzWLNKe7cGraRutE4Vh+OL+UitrValf8f5OKkbrVPp36IkkhZHS0b9u8/bR5rGmlTauz1kJ3WjdSquEUwESa2tVsU1kkKS1I/Wq/RvSZJIm7Mto10HfYMZ7eqMOEmtrVbFNcLJMKm11aq4Bi/ypNHeqNK/ZebQ6mhVze1wYJjUj9aruIYn6iG1tloV15DtOplryHbt9fSqxu7x9JDmsWbV3NqCNlI3WqfiGv64P6Nd5TUzmQXKayYTM+r39pNGe6OKa4yFx0itrfa6dp3MNeQ1M5kFSpJE2p3tpN3Zrhp7yD9EGuwNqjXjirhIra1WxTUiyQiptdWquIZs18ksUOavLY4WlV1HAiOkfrRetWa8MS+ptdWqWGAsFSN1o3UqFihKImkea87IAj9vw38VU+E47mmO43o4juvnOO6fMvyd4zju7fG/t3Icd0fa3/6S47h2juM6OI77q7T+9RzHdY+//gjHcQXj/fM5jotzHNc8/rNx8ng3qo0ER1BhrWBSsANU3qiyVaHV2cpsgaOpqJJmOl3DFCQBzWM0tXe6TzpAZYxKa6WKOYyGRlFprWTK2gLUr79mtAbNzmZGH44LcdTb61E3Wsfo/hKR0OpsRfVoNaNNA3SrXWGtUMU5OCIOVIxUoNPdyUg3wWSQpuwea2T04ZSYQsNYA+rsdUxqDkII2l3tqLZWM1IPQJlR+Ui5Shd3RV2otlajzdnGjC2Xg20Ya2AkHV7k0TjWiBpbjYrndHm6UDFSwcgRAGVGk8vaApQZ1YzWoMXZwtqVjyrp/dN1f1ES0exsRrWtmpFbAGrXCmuFKjZoLEzT20/Wxf1xP6pHq9E01sRIkQkhQe1qr2PiOCQioc3Zhipbldqu4yVpJ9vVGXGi0lqpsmsoGULdaB0axxrZuZV4NNobUTtay8i/hBB0uDtQaa1UcbrhwDDKR8oZ6RKgUm+VtQptLtaukVQEdfY6NNgbkBQnJB1BEpR0+Ol2BWhtlkprpYol2YI2VFgr0OvrZfq9cS+qbdVodrBrJsbHFLumM1CJSGh2ZLZrn68PFdYK2IIsS5LLFnS7u1Vco3a0Fo1jjYxdk2ISDfYG1NvrGZlQXjNV1ioVpxvyD6F8pFwV8+WKulBlrUK7q11tV3sdGu2sXW9U0332S75c4zhOC1rVcQ1o/fg6juOOE0LSSd0zoGV/lwC4B8AHAO7hOG4VgJ+C1p9PATjLcdwpQkgfgAsAfkUIETiOWwvgVwD+cfzzBgght/1nHRNAL1bv1L4DnUaHVmcrlk9ZrmwtdzTvwKB/ELWjtVhctBg3TbkJAGUqF4doEsbpOdPx5KInAdDcX4e7DkOn1YEXefzFPX8BgEL3rU1bYdaZ0efrwzvPvAOO40AIwTu179CT29mM5VOWK1vkvW170eJoAS/xWFiwELfOuBUAUGopxbn+c+DAocBUgOeWPweALsADHQeg0+oQSobwqwd/BYAylQ8bPoRJZ0KnuxPvf/V9ZUv9ft37CCfDaHQ04qYpNylu0Ic6DykOAvPy5+GeknsAUKZysvcktJwWRq0Rf3jrHwKgub/2te2DQWuAI+rAi4+9CIBeKN+rew8GrQHt7na8+8y7isS3pXEL7GE76ux1WFq8VElnf7L3pFIXfVbuLDwy/xEAlKkc6z6muN3+7K6fAaCLfGfzTph0JowER7DhqQ0A6I3g7Zq3odVoFbvKksiull3o8fag2laNxUWLsWLqCgA0/ujiwEUQEEzJmoJnlzwLgALxw52HodPokBSS+Ov7/hoAvTltbdwKk86EXm8v3nv2PUXafLv2bQiigCZHE26aepMi7Xzc8TEaRhsgEAELChfgjpn0uat8pBxn+8+C4zjkGnLxeyt/DwAF4vvb90Ov1SOQCOBfHv4XAPQivbF+I2NXWV7cWL8R/oQfDfYGLC1eqrjkHu0+irKRMgiSgLn5c3HfnPsA0OSQJ3pPQKvRQq/V40e3/QgAfdja07YHRq0RjrADLz/xMgD6cPFu7bvQa/Vod7Xj7WfeRraByqfbmrZhJDiCWnstlhQtwZJimlL+TP8ZXBm6ApGImJEzA48vfBwAjVM50nVEkVX/dPWfApgoPGXSmTDoH8Rbz7wFgN4I3q59GxpOgxZHC5ZPWa5IWrtbd6PD1QFBErCocBFunn4zAMpU5NifQnMhvrHsGwAoUznUeQg6jQ7RVBR//8DfA6A3/s0Nm2HWm9Ht6cb7X31fSX//bu27SAgJNDmasGzKMkUWPNB5ANXWaohExILCBbhr1l0AaPzRqb5T0HAaZOmy8P2bvw+APhDsa6drxhv34t8f+XcA9Ab4ft37MOqM6HB34L1n31NKCm9q2ARX1IX6sXosm7JMKXl9vOc4Si2lEIiAkrwSPDjvQdzI9p+5U7kbQD8hZJAQkgLwMYBvTnrNNwHsGt9RVQMoGK9BvxxANSEkRggRAFwDrUcPQsj58T4AqAZQgv8fm1ajRYGpAJFUBLmGXEb3n5I1BUkhCb1Gz2jTBaYCgFDdPl03zjHkKDeUdO3WpDMhS5+FSCqCKVlTmHiG4qxiRFIRmHVmRh8uNhcjJaag0+gY/TTflK/43KfHAchjp4QUppgntFuD1kDzN6XCKDIXMbUhpmRNoRqtzsTwnCJzEQRJUI2dZ8qj+jCRmOPL1mfDoDUgLsSZGASdRoc8Yx4iqQjyjfmMPjwlawrifBx6LTu3heZCEEJzRKUzhxxDDtX9JZEZ26wzw6yn/v7pmrWG06DQXKjo3+m6v2xXnUantitHWVemsVNSimEtRp1RsWv6dwKAKeYp17UrL/HQclrkGtLsasxXzov0GIscQw70Oqr7p7MWvUaPXEMuIqkICs2FKrvG+BiMOiPDygrMBRAlEVqNlrFrjiEHGk6jmtssfRaMWsrKpmRPzK2W0yLflE/XjFG9ZhJCQrVmCk2FICDQcBpmbnONudBqtRAkgTk+ed4iqQiTp4wDh2JzMcKpsPL90uc2JV1nzYz/l84ccg250Gl04CVeZVc5l12RuYhhKlOyqF1Va8ZE18xku+YZ6JohhKDAPDG2fE4mhARz3srfPZKKoMBUoDxEyWPHhTgMWgNj10JTISRI0Gq0yDNNXI9uWLueLvYf/QHwXQBb0n7/QwDvTnrNSQAPpv1+CcBdoDeVXgDFALIAVAF4J8MYJwD8wfi/5wOIAmgCvQk9dJ3v9ScA6gHUz50790vpid6Yl1SMVKi4RpyPkyprlUr/FiWRNNobSYujRaVh9nh6SI2tRqXRjoZGSeVIpYprBOIBUjlSqdK/k0KS1NhqSI+nh+mXJIk0jzWTRnujSqPt9/aTamu1SqN1hB2kYqRCpdGGk2FSOVKp0r95kSe1tlqVb73MHOpH61Xa+5B/iFRZq1RxOO6om1SMVKi4RjQVJVXWKpX+LYgCqR+tVzEjWZuutdWquIY1aCWVI5UqruGL+UjFSIVK/47zcVJtrVbp36IkkqaxJtI81qyya6+nl1Rbq1V2tYfsGe0aTARJ5UilSv+W7drt7mb6JUkiLY6WjHYd8A2QKmuVims4I05SMVKh4hqyXSezQF7kSd1onYoZycyhbrROxTWGA8OkcqRSxTU8UQ+pGKlQcY1YKkaqrFUqFiiIAmmwN5BWR6tqbrvd3RntagvaSOVIpYpr+ON+UjlSqWKBCT5Bqq3VKhYoM4emsSbV3PZ5+0i1tVrFq8bCY6RipELFq0KJEKkcqVSxwJSQIrW2WtLl7mL6JUkirY5W0mBvUK2ZQd9gRru6Ii5SMVKhYryRZIRUWatULFBeM5mY0edt+C9iKlyGPvJ5XkMI6QKwFlTqOgugBYDAvJHjfj3eJ/v2jQGYSwi5HcDfANjLcZzqNkwI2UQIuYsQctfUqVMn//lzNWfEiWZHs8oXP5AIoM3Zhj5vH6Nhxvk4Ot2d6HJ3MfqwKIno8fSg3dXOMAeAume2OFpUurg75kazo1mV/yeUDCljp+v+STGJbk83Ot2djIuuRCT0+frQ6mpl0vcDNG6h2dGs8sX3xrxocbaoYiwiqQjaXe3o9nZDJBPaNC/x6HZ3o8PdwfAcQggGfANodbYycQ4AZQvNjmaVL74/7kersxUDvgFmbmN8DB3uDnS7u8FLEzxHJCK6Pd1od7Wr6nAPBYbQ4mhh8pEBE3adzDuCiSBaXa3o9fYyc5sQEopd01mZRCT0envR7mpXze1IcARNjiYmLgmgPK7F0aLSxcPJMNpd7ejx9jC6f1JMosvThQ53B6P7E0LQ5+1Dm7NNxRxGQ6NodjTDEWZZki/uU+yaPreKXT3djO4vSAK6Pd3ocHUwPIcQgkHfIFqcLSrm4Ig46NxOypkVSATQ6mxFv6+fXTNCHB2uDnR5uhjdX5RE9HjH10yKXTOWoIXaNcba1R11o8nRpIpLCiVDaHO1qeyaFJLocneh092psmuftw9trjYmhgSgPK7Z0axihLJdJzPCcGrcrp4eZm5TYora1aW264B/fM0kPueaSfjR4mzBoH+QmdsoH6VrZpJdb1T7T2MqoBxlTtrvJQDsn/c1hJCtALYCAMdxL4+/FuO//xGArwF4fPyuCUJIEkBy/N8NHMcNAFgKuiu5YU2QBLxZ/SY4jkODvQFvPv2msnXe3rQdvd5elI2UYUHhAqXs57mBczjTfwYSkVCcVYwnFj4BgDKV/R37oeW0iPJR/Pndfw6Anogf1n8Io9aITk8n3nr6LYWpvFn9JniRR529DkuKlijb8L1te9Fgb4BEJMzJn4Nbpt8CgNaGON5zHOCo2+W3bvoWgInCTFpOC1/ch398gGKpUDKE9+uo3t7qbMV7z76nbKnfq3uPgmNbNRYXL1bSnxzsPIhrFprosSS3BKtnrwZAmcrh7sPQclroNDr875v/NwAK43e17oKO02E0NIrfPvpbAPQiLXONxrFGvPPMO4pksLlxMwXpIxVYWLhQSa0uJ+WTiISp2VPxlflfAUCZyoGOA9BqqFTy0zt/CoAuwK2NW6HX6DHgH8D6J9cDoBerN2veBEDjMF5/6nWGqXS6OyESEfML5mP51OUAKFOR42/yTfl4ZskzAGicysftH0PDaRBOhfFX9/4VAHrx3li/EQatAR3uDrz7zLuKhPVWzVtI8AnUjNZgcdHiCabS/rESGDg3fy5um3EbAMpUjnUfgwYaZOmz8O3l3wZAgfGetj3Qclq4Y27880P/DIDeIGSu0eJowbvPvqvIUHI+uSpbFRYVLVJSkBztPopLg5cgEsqr7i25FwBlKoe6DkHL0TLVP7z1hwBocsjtzduh1+phDVrx0uMvAaAXyrdq3oKG06BxrBFvPf2WwlS2Nm3FoH8QFSMVWFC4QCkRfKbvDM4NnFPc0R9b8BgAGqfySfsn0Gq0SIpJ/PyunwOgDwRbGrZAr9Wjx9uDN55+AwC9EbxR/QYkIqHeXo8lRUsUGfij1o/Q6miFSETMy5+HldNWAgAuD13G8d7j4MAhz5iHry39GgCa+2tv215oNVoEk0H87X1/C4DeGD+o/4CyQFc73n32XUVefKf2HURSEVSPUh4nuwMf6DhAgy6JiJK8Etw5604ANPfX0e6j0HAaGHQG/K+V/wsAje3a1bILOo0OjogD//aVfwNAH6rern0bOo0OzY5mvPPMOwpT2Vi/EWPhMVRZq7CwcKFSdvpY9zFcGLhA0+zkzsT9c+7HjWz/mTuVOgBLOI5bwHGcAcD3ARyf9JrjAH447gV2L4AgIWQMADiOmzb+/7kAvg1g3/jvT4OC+W8QQpRbOcdxU8edA8Bx3EJQ+M+6mtyAxoFTNEyz3szow/mmfKTEFLScFmbdhH6aY8iBRCRw4BhfdbPeDC2nBS/xjG5s0BqoPsxHJpjIeCswFSDKR2HUGhndP8+YB17iodFomDHkxQsCRrvN0mcpCzN9bL1GT/NyJSkzSh8735iPGB+DQWtgtOk8Yx5EIkLDaRjdONuQTbV3IjJ6uVlvho7TISEkmPgALadFtoHGkMhcIn3shJCATqNjmEOuMVeZ2/QxsvRZiu6fzrGMOjpvMT7GjM1x9AIix2tcz67pc5ujnxhv8thajdqueo0eJp0JUT7K9ANAgbEAET4Co86omltBEujcpp1T2fpscOAgQWL08ix9FuU5YooZQ6fRKTxHZiLpxxcX4jBoDOzcGnIVu6YftzK3RGRYhDxvcT7OsAgNp0GOIUdhRpPtmhSS0Gqus2Y4jpnnLH0WNBoNBElQ21VnQCwVY8aWbwyyXdPXTL4xHykpRceedN7KXCSTXVNiCnmGibEVu6aiyDPmMUwl35iPWEq9ZnKNuXS9TprbbH02OI6DRCRmvZr1dN4SQoI5Pp1Gp8RdZeuzGaZSYCpQ1kz68aWv1/Sxb1i7ni52I34APAvKRgYA/Hq87+cAfj7+bw7UQ2wAQBuAu9LeWwagE1T6ejytvx+AFUDz+M/G8f7vAOgYf30jgK9/1vf7snEq7qibXLNcU2m00VSUlA2XqbiGIAqk1lZLGuwNKo22w9VBKkYqVBrtSGCElFpKVVzDF/ORUkupimvE+TipGKkgna5Opl+URFI/Wk9qbbUqjbbb3U3Kh8tVXGM0NEquWa6puEYgHiClllIV10gKSVI5UqnSvyVJIk1jTaTaWq3S3vu9/aRsuEwVh+MIO8g1yzVVvEY4GSZlw2Uq/ZsXeVJtrSZNY02qsVsdraRypFLFNYb8Q6TUUqriGp6oh1yzXFPxqlgqRsqHy1VcQxAFUjdaR+pH61V27XR1kvLhchWvsgatpNRSquIa/riflFpKVVwjwSdIxUiFSv8WJZE02BtIja1GZddeTy8pGy5T2dUespNrlmsqrhFMBEmppVTFNVJCilRZq1QsUOZ0VdYqFdcY8A2QUkupilc5I05yzXJNxasiyQgpGy5TxcLwIk9qbDWk0d6YkedUjlSq1ozFbyGlllIV1/DGvKTUUqriGnE+TsqHy1VcQ5REUjdaR+pG61R27XJ3kfLhchXXsAVt5JrlmopryHadzDXkNZOJBTbaG0mNrUa1Zvq8faRsuEzFq8bCY+Sa5ZqK8YYSIVI2XKZivCkhRaqt1RlZ4Odt+K+KUyGEnCaELCWELCKEvDTet5EQsnH834QQ8svxv99MCKlPe+9DhJAVhJBbCSGX0voXE0LmEEJuG//5+Xj/IULIyvHX30EIOTH5+9yo5o/70efrU/GOSCqCQf8gRkOjjIaZFJOwBCywBCxMHIdEJIwERzDgG2D0U4D6mPf5+lTabTAZRJ+vT6XdxvgYBnwDsIasjD7MizyGg8MYDgwz2jQhBKOhUQz4B1R1qj1RD/p8fSpNPpwKY8A/oIrvSAgJDAWGMBIcYcYWJAEjwREM+YcYbZoQAnvEjn5fv4ol+eI+9Pn6VLp4JBVBv68f9rCdnVshCUvQguHAMKMPS0SCNWTFUGBIVTPCEXGg39fPxFgAVMbo8/XBE2XtGuWjGPAPqOyaElOw+C0YDg6r7GoL2TDoH7y+XSexlmCC2nUyx4rxMQz6B2ENWUHSkKQgCRgODsMSsDCcTrbroH9QxZK8MW9muyapXe0RVp2OC3EM+ald01mZSERYQ1ZY/Ba1XcN2DPgHVLxDnttMds24ZoQkhgJDdG4l9ZoZ9A8ysUEAzdHW5+u7rl0nx3dEU1E6t0Gryq4jwZGMa+Z6dnXH3Oj39avWaygZQr+vXxW3o9g1OGm9SjxdM4EhJuWKbNd+X/917TqZT4ZT4cxrRkxmtOuNav+ZTOX/ySZIAjZUbYBEJFRZq/Dm028qW+TtzdvR5eqCBAkleSWKz/35gfM42n0UBAT5xnzF577d1Y7drbsV7V32uffGvHiv7j1oORoz8cZTbyhM5fWq1xHn4ygfKcdrT76muHTubduL2tFaEEIwM2em4nN/zXINBzsPggMHg86g+Nz3enuxo2UHOHBwRpyKz304GVb8+utH6/Hus+9OMJXa9+CKunDVchXz8ucpPveHOg/h0tAlJQ5H9rmvHa2lbGH82UX2uR8JjmBLwxZoOA2GA8OKz31SSOKNaqqF19hq8PYzbytyzOaGzRj0D+LK0BXMzZ+r+Nyf7DuJ493HlXQlss99s6MZe1r3QMNpEONj+OM7/hgAvaFsrN8ILadFl6cL69asA0CZyoaqDUqSzzeefkORV3Y076BBlyCYlTdLiT+6NHgJR7qPAKCyxVOLnwIAJZ+ahtPAn/Ar8Uf+uB/v1r4LLadFk6MJbz/9tiIvvln9JsKpMMqGy7C+cL3iNvpxx8eoslYpqdDl+KPykXIc6DgADhx0Gp3CVAb8A9jevB0cONjDdvzTgzTmOJqK4s2aN6HhNKgbrcM7z7yjSHzv172PscgYrlquYn7+fCX+6Gj3UUV7n5Y9DXfPvhsAZSp7W/dCo9GAl3gl/sgWsmFz42ZoOS0GfAN44bEXANCL9IaqDSCEoNpWjbeefkuRXbY2bUWvtxeEEMzJn6PEH53pO4PjPcepa62pQIk/anW2Yk/bHnDgEOWj+JM7/wQAvVl/UP8BtJwWHa4OJf5IIhJer3odSSGJ8pFyvP7U64p89FHrR2gaa4JEJMzOm63EH10ZuoJDnYcAUEnvq0u/CoDWIJLz5HniHvz1vTT+KJgI4p2ad6DhNGgYa8A7z7wzwVRq3oE/4UfpcCnmF8xXWNmBjgMoHS4FAcGMnBm4febtAGjur/0d+2lJBWiU+KOhwBC2NW2DhtPAFrIp8UdxPo63amhMTq2tFu88+44i8W2s3whr0IqrlquYmz9XiT861n1MYbxTsqYo8Uc3qv0u99cXbBw4pU61UWtkcmNl6bLAE6qTpmu3Jp0JBAQcOEazNmqN0HBUH07Xk3UanaKfZumzGK6Rrc9W/PrTteksfRZESQTHcQqoAwCT3gQOHAgIM4ZRNzG2wl1A43AMWgPifFw1tllvVuJw0pmDWWeGRCRoOA2jGxt1RkX3T9d0DVqDok2nj63hNDDpTMrcpuv+Zr2Zco3x76ccn9YEQujcph+3UWcEx3EQicjoxnqNHnqNHkkhybAIjkuzq461a7Y+G7zE0zHSjk+2KwFR2ZXjOPASz4whf/eEkGD6Aarjy3njGLvqshSmwhzf+PcghLWrQWtQxk4/bq1Gq9TPMevMzNxm6bMo1+C0KrvK2jtjV60RGo0GEpGYMQxaA3ScDkkxqbLrddeMPgu8yKuOz6w3K3Y1adPmNs2u6cct2zUhJJixZY4px2tMXjMy17ieXScfHwcOoiRmtGtciCNLl8UwlSx9FuUaWh0ztllP55YDp7pWcKAPkOlrRl4PKTHFjC1fa+J8HCa9ibFrtj6bMiOOXTNmvVnhVelzfqMal74t+p/W7rrrLlJf/8Wdw5wRJ9pcbVhWvIwpmBNJRVA7WosZOTOUpx6A7m5qbDXQclrcXXK3YnhCCFqdrfDFfbi35F7mJBryD2HAP4DbZ9zOBFp5Yh40O5qxuGix8rQO0CeWals1irOKcfO0m5WbgSiJqButg0Qk3F1yN3Nid7g64Iw6cc/se5iFaA1a0ePtwc3TbmaSEvrjfjSONWJewTzFSwegO4waWw1yjbm4bcZtytiEEDSMNSDOx3Fvyb3MBavH0wNbyIbVs1czwNUetqPT3YkVU1cwxbXklCGz82YrOwWAyns1thqY9CbcMfMOZm6bHc0IJ8O4p+QeZvEM+AZgCVhwx8w7mIBQV9SFVmcrE1UO0Kf8mtEaTM+erngIyXNbY6uBhtNg9ezVyo6OEJpSwxPz4J6Se5gLkyVgQb+vH7fNuI0JYvPGvGhyNGFR4SLFsw2g0mK1rRqFpkLcMv0WZW4lIqFutA6CJOCeknsYu3a6O+GIOHD37LsZ0GwL2dDt6caqaauYpISBRAAN9gbMzZ+r7K4BusOotlYjx5iD22fczti1cawRMT6Ge0ruYS5Yvd5eWINW3DXrLsYRwhFxoN3VjuVTljMF6cLJMOrsdZiZM1PxqpPtWjtaC71Gj7tm38XYtcXZgkAigHtL7mVu5oP+QQz6B3HHzDuYoEx31I0WZwuWFC1RPKAAKkHV2GowJWuKsrOX7Vo7WgsAuHv23Qz8bne1wx11q+w6EhxBr7cXt06/lQm+9MV9aBxrxMLChVhYuFBl1wJTAW6dfitj1/rReqTEFO4puYdZM92ebtjDdqyetZpxkBgNjaLL04WVU1cyiTyDiSDq7fWYkz9H8USV7Vpjq0GWPgt3zLyDeXD8vI3juAZCyF2Z/va7ncqXaFE+CkfEodI2k0ISrqgLvriP0TAFSYAn5oE37mViDQgIfHEfPDGPKgdPOBmGK+pSabdxPg5nxIlQgtWNk2ISnphHFR8gEhGeuAeeuIdhDoQQ+BI+uGNuRpOXx3ZEHKqxE0ICzqhTxQN4iYc75oY35mX0YZGI8MQ88MQ8jC4OUB96d9StqucQ42NwRBwqzpMQEnBH3fDH/czcymO7o25mbAICb8wLV9SlmttgMghn1KnS5OWxI8lJdhWT9PjiXpVdvXEvPHGPSpv2xr1wxdRjX29u40IcrqhLpcknhSTcUTq36UxFlOjcumNulV39cT9cUZdqbiPJyKfbddLYKTFFz52Yh5lbiUjK2OksCaA3qExjR1N0zaTHKwF0bl0RF/wJv2pu3TE3ndvJaybmgzvqVts1EYQr6lIxNNmuk/ldUkjCFXPBl8i8Xj0x9ZqR7ZrOO4BPsSs/btdEhrmNejLb9Trr1R/3wxXJMLd85rlNXzPpzZDg8VCDG3e2ecCJv2Mq/+VNkARsqNyApJhE6XAp3njqDeUpf3vzdkV7n5EzQ3maPz9wHp90fEIlKL1Z8bnvcHUotRG8ca/ic++L+5SYiXp7PTY8uYFhKqFkCJeHLuO1J19TnrT3tu1FlbUKAC01Kz9Rlw2XYW/bXiX1vuxzn17zYjQ0ir+5728A0N2W7NdfZavC20+/rTypvVv7LuxhOy4MXMArT7yiPO0e6jyEC4MXANC0KbLPfa2tFrtadoEDh5SUUnzuR4Ij2Fi/kQbq+frwr1/5VwB0kb9W+RoESUD5SDnefPpN5Ul0U8MmpYb5rNxZyhPnyd6TONZ9DIQQ5Bnz8MDcBwBQprKjZQcACix/fPuPAdBd5ju17wAEaHO14ZXHXwFAL5SvVb6GOB/HVctVvPHUG8rT4M6WnUqdmBk5M5SnvouDF5U6OEatEWsWrQFAiyZtbaR1YjxRD3559y8B0J3em9UTdpVZGUCZii/uw6XBS1i3Zp2yO93fsR+lw6UAgCnZU5T4o/KRcoUtAFDijwb9g9jUuAkgdJ7/4YF/AEAvrK9Xvw6JSKi0VuLtZ95Wdjfv1b4HW8iG8wPn8fLjLys7xCNdR3Cu/xwkSCg0FSrxR/X2euxs2QkNp0FCSCjxR6OhUbxf9z4AWq/nN4/8BgDddbxW9Rp4kUfpcCneevotZVe+tXErOtwd4MBhZs5MZZd2pv8MDnUeAgFBjiEHD897GACtQbSteRs4cAgmgworc0fd1K7jtpdZmUQkbKjagGgqiquWq9jw5AZlB/VR60eoG60Dx3GYljVN2SldsVzBvvZ9Cq+S4496vD2KXR1hB/7y3r8EQHfRb1S/AUIIakZr8NbTbyk7q7dq3oI76sbFwYtY+8RaZRfzSccnuGa5RllgVrESf1Rlq8Lu1t2KzPadFd8BQIOhP2z4EIQQDAWG8KuHaK6+OB/HhsoNEImIipEKvPXMWwxTGfIPARwtX6yUQD5xgv4QAhQUAPfQXH03qv1up/IFGwdOydclB3/JTa/RQyACOI5j5AidRqc8jUzuB+iJny4haDgN5R2iwPQDUGpJaDQaRj/Va/SQQHXS9O26IsmAMGNrNVp64o7Xy0g/PjnGQq/RM8en0+gUfT9dF5fr0E8+Pr1Wr/Cc9DG03MTY6ccnzxsv8tBpdMzxGbQGRd9PPz69Vk95VYY5B+gT3uTj1nJa1XHLcyjn2VLNrURjYdKPW7aram7HzwsJEiNfaDVaZm4njy2IQka7ymxh8twCUM2tTqMDCNRzO/7deVE9tkFryGhXg9ZAzymo51aOpZg8t3JsEHNOcRyd23G7Tj6nCCGq81av0SscUsd99nkrj82LPDPnHOjYcp6tyedUpvNWnjdCMswt6G4i09wKkgCDxsAwFaPWSOcWmozn8+Sx9Rq98v7J55Q8dvrxaTgNs2bSx9Zr9RNrJs2u0OnoDYXjAG1a/w1qv2MqX4Kp2MN2NI41YtW0VQzXCCVDqBipwKzcWYqXDkCf1MpHyqHT6HD/nPsZ7b3B3gBfwocH5jzAcI1+Xz96Pb24a/ZdTDEiZ8RJs8lOWcpwjWgqigprBYrNxYxOKkoiykfKIREJD859kDkhm8ea4Yg48MDcBxiNdsg/hA53B+6YeQfDNbwxL2psNVhYtJDhGgkhgbLhMuQac3HP7HsYfbjKWoWEkMCDcx9kuEa7sx3WkBX3ltzLcA1r0IoWZwtunX4rw6sCiQCqrFUoySth9O+UmELZcBlMOhPum3Mfo73LqdkfnPsgw6t6PD0Y8A3g7pK7Ga4xFh5Dw1gDVk5dyXCNcDKMipEKTM+ZrnjpyHatsFaAA4cH5j7A3MgaxxrhiXnw4NwHGbsO+AbQ4+nBnbPuZHiVK+pC/Wg9lhQvYbhGjI+hfKQchaZC3DXrLsaucmboyXZtcbTAHrbjgbkPMLxqODCMNlcbbp9xO8M1fHEfqq3VWFC4gOEactngbH027im5R5lbiUiotlUjxsfw0NyHGLt2ujth8Vtw75x7Ga4hp/65edrNDNcIJoKotFZidu5s3DLjFsau5SPlMGgNuK/kPmbN1NvrEUgE8MDcBxiu0evtRb+3H6tnr2a4hiPiQKO9EcumLFO8ywC6K68YqcDUrKm4feYEMxIkARUjFSAgeHDug4xdm8Zoip0H5j7A8KpB/yC63F24c9adDK9yR92oG63D4uLFDNeQPTjzjflYPXs1Y9cqWxVSYgoPzn2QuXm1OdtgC9lw/5z7GV41EhxBq7MVt824bWI3AijZL+YVzGMYL5JJoLwcMJuBe+8FNF98b/FpTOV38teXaIIkIMEnVHlzRElEQkggKSaVpy+ALkI5sjVdPwWAhJhAnI8zmjUApIQUYnxMPQYREeNjSAkpVX+cjyOhZ/VWiUhIiSmIRGTGJoQgKSYRF+IqHiAfX7qWrfSLCfXY48et7BowAXSTAh1j8vF91tiTGYwoiYgLcZWOLs+tPJ78oEZAkBATSAgJ9dyKKTp2puPLNDahY0+2KwFBQkgo3jrpLSEkMh5fSryOXaVxu4qZ53Yy9yKgc8tLPMuSCEFKTCEhqO3HS3zG81axa6a55RPME/PkMVR2FZJIiNc5dzKtGZL5+CQi0XUhSeo1Mz6311szmc6pGB9T8R/5nEqI7JohhCjn1HXP28lzK/KI8/GMxxcX4pnXq0A9DZk1M27XjHN7nTUz1ytgbmsCMAhAWrbDwqiIZ9riwPwEkJ7mUJKAeJzeTP4TNhW/u6l8wSZKItZXrEckFcGFwQt4/anXGabSNNYEDafBvz/y74q3x4XBC9jbRmuV67V6xee+092JD+s/hAQJzqhT8bn3x/14vep1CERA9Wg11q9ZrzCVDZUb4I17cWbgDDY8uUHxud/bthflI+XgwKHQXKg8mZSNlGF783blu8s+9wP+Abxf9z4kIsEStCg+95FUBOsr14MXeVwbuYY3n3pTeUp8p/YdWINWaDVavPL4K8qT9uGuwzg7cBYATUshP83XjdZhS9MWcOCQ4BP47srvAqC7EbkuTLenW8lPlRJTWFe5Dgk+gUtDl/Dm028ytSG6PF3QcBq88OgLyi7mVO8pHOqiMQVZ+izF577V2YrNDZsVZ4g/uu2PANAdwRvVb0CURDQ6GvHSYzQ/lUQkrK9cj3AyjHMD5/DG028oT6I7m3ei3l4PjqNp1OWdxKXBS9jduluRv+T4o25PNzbW0xpx9rBdiT8KJALYULUBoiSiwlqB1596XblBvVH9BlxRF870n8H6J9crT/n7O/bjquWqkoZ91bRVAICKkQrK4zh60fz6sq8DoN5l79bSOukD/gH83f1/B4DueNZXrEdKTOHq8FW8+fSbTJ2cQf8gtJwWLz/+suJBdLT7qJLbLNeQq7CyxrFGZW4jyYgSf2QP2/F2zdsQiYh2V7uSn4oXeayrWIc4H8fFoYt446k3mDo57a52cODw20d/q+z8z/afxScdnwCgbsQPzXsIAOVgHzZ8CBDqCfl/bv8/AOi/ZbvWj9Xj1SdeBUBvEK9VvoZgIohzA+ew4akNyu5td+tuVFmroNFoUGwuxrIpywAAVy1XsbNlJ+Qmxx/1+frwQf0HSmCtnKsvlAxNsEArjYVJZypjoTGc1pzG2jVrlZ3xgY4DuDh4USmbICsb1bZqbG2i3CYpJpX4o+HAMN6pfUdJGPqPD46XkEokgHXr6O7j8mXgrbcA/fiu9YMPgL4+evN46SVg9vju9Phx+kMIkJ0N3H03bmT7HVP5Mi3NAy9dH07XM7/QxxFO/V7u0z9zcn/675new4FTuQ7KPECTdhp82ucwf5vshkg+//F/mguj8l0mT8d13iPXEv+8433q8Y2/bvJYHMcpT5OZ5vB630+uBzJ5vMn9yt+uN4fXe5j8jOm+7vFdZwyOUx/fZ31+ptfLtUjS2+TjZb4jAa1Lc71z/Tpzm8mWk3c18t8ISOZz6nqHS9jPTf+syccnz8Onjp2pyWv8OnPInDvj53n6Tjntj+z/P6s/02tuYPsdU/kSTMUatKLOXodbp9/KaLSBRADXLNcwK3cWo3+nxBSuDF2BTqPDV+Z/hdFoK62V8MV9eGT+IwzX6HJ3ocvThftK7mN8z+1hO6pt1Vg+ZTmjf4eTYVy1XMWUrCm4t+ReRh++OnQVEpHwyIJHGAhZZ6/DWHgMj8x/hNFo+339aHW2YvWs1QzXcEVdqBipwOKixQzXiPExXB66jHxjPh6Y+4CyGERJRNlIGWJ8DI8teIyJKWgea4YlaMFDcx9i4nAsAQsaxxpx+4zbGa7hi/tQOlyKuflzleqHAJVCrgxdgVlvxkNzH1J2VRKRUDFSgWAyiEfnP8pwjXZnO/p8fXhg7gMMr7KFbKgdrcXN025muEYwEcRVy1XMzJ2J1bNWM3a9OnQVGk6Dr8z/ygQ8H/cCckfdKrv2eHrQ4e7AvSX3MrzKEXGg0lqJm4pvwoppE/p3JBXB1aGrKDQX4v459zN2LR0uRUpM4dH5jyo7Ojk2aDQ0iofnPczwqgHfAFqcLbhr1l1MHI476kb5SDkWFS5iuEacj+Py0GXkGnPx4NwHGaZSOlyKGB/Do/MfZXhVi4OmWn9o3kMMrxoODKNhrAG3zbiNidfwx2m0eXqmXoDKaFcsV2DU0l1K+pqpsFYgEA/g0QWsXTtcHejx9uD+OfczXGM0NIqa0RqsmraK4RqhZAhXLVcxLXsawwJ5kcdVy1UAwCPzH2HsWjtaC2fUiUfmP8LwKrnUwT2z72F4lTPiRIW1AsuKlzExTtFUFFeGrqDAXIAH5jzAMJXS4VIkhAQeW/AYw6sa7A2whWx4aN5DbJG3wUGguRm4805g3gSvgscDlJUBCxYAt9020R+PA1euAFlZwEMPfSlYf0OYCsdxXwWwEoByZSCEPP+Fv83/A03DaaDX6DM+bcrR8JOfJnQaneK5Mrl/sqcTQL1ZMo0hjz1Z55a9n9I9aJQxtDolky/Tz2X+rtc7Pg2ngV6rZz1JMOFhM/n4OI56xaR7tKR/VqbjlseefBzK3HI6Vb9ee31bTPZgA+jcTvaU+dSxueuPrdPSY1CNMZ7u//POrTyHOm2GMTQ6tb2RNrccO+eyXa83t9e163WOe7K9AeqlpOPUxydH5X/esa83htyv4TTXXTOZ1tinrZnrrtfJdp3kSZhxbGQ47k8Z+7rn1KRxtAR41KoFUnpgHjvGnW4d7rRqgRkawJz+Ji2VvCYDd42G9k++aXAc7dfp/lN2Kp/rpsJx3EbQCoyPAtgCWtWx9oZ/m/8GTZRErKtYh0AigFN9p/D6U68rHijbm7ejwd4ADafBbx75jfKkfWGAMhV5yy7X/OjydFH9GxJGw6OKz30gEcC6inXgRR5lI2VY+8Rahqm4oi4YtAasf3K9wlT2te3DVctVaDQa/PqhXyveWeUj5djUsAkAfbJ+evHTAGguobdq3oJIRAz4B5T8VNFUFGvL1yIhUK6Rrg+/U/MOBv2DMGgNeOWJV5Sn/MNdh3G67zQ4jqbEkH3u60braDwKCMKpsKIPj4ZG8Ub1GxAkAe2udiU/VUpMYW3FWkSSEZwdOIvXn3ydYSrtrnZoNVq8+NiLipfLqb5TE7nNNAbcO4fW/Gh1tuK9uvcgEQmuqEvJT+WJefBa5WtIiSnU2evw/KP0uUgiEtZVrIM/7sfJ3pPY8NQGhansatmFKlsVdJwO//aVf1N2p5eHLivaOyEEjy54FAB9an2n9h2IEk28KLOyYCKIdZXrkBJSuDZ8TWFlAGUq9rAdRq0R69asU3YY+zv249LgJWg1WuQYcpSn3UprJWULoIGTcvyRJWDBGzVvQJJoobC/vo+ysjgfx9qKtYjzcYUFKnEqde+h39cPnUaHlx9/WXnKP9p1lNYV4TiY9WZlh9g41qjEowSSAXxv5fcAUO+516tfBy/yaHG04NcP/xoA3VWtq1iHUDKE032n8cbTbyi71q2NW9HkaIJOo8Pzjz6v7KDO9p/F/vb9Cq+S44863B14r5ba1RF14Ee3/QgA9UyUmVG1rVqp5UIIwfrK9fDGvDDpTHjtydeUnePu1t2oGKmAVqPFrx/+tbKLuTp0FduatynfXY4/6vf1K8zIErAorCycDGNtxVokhSQuD11mWNmbNW/CGrBCr9Uz8UcHOg7g/MB5cByH7AeyJ3b+1dXARsrjEI0C3xyvwD4yArzxBiAIQHc38HeUlSGZBNaupa89d46+RmYqGzcCXV305vHSS8Cs8Z3xyZPA4cP0hmIyAXdl3HB86fZ5mcr9hJAfAvATQn4L4D6wxbX+xzQCotRjl4ikisRN9/iSm0TGPVhI5n4OnCrDrkQkpcBUehMkAVqNNr28AADq2cNxVJ9O90xJ/3f6Z8n9cv6v9OOT4w8ESVAdn3zckyPnZe348x6fzBUmRw2LkqjUlk9vIhEV3ZoZQ5KY782MQdRjSERS6nNn8jDLZFde4qGBBgSE8byZXA0x/buCQImbmDy317Urp1XPrUTjDDLNOUCfttPnSv7uHMd9ql0nj62BBoSwcyjHXF3vvAWHjOethtMwc0sIgUCuv2bkmuzXPVcJez7LcUmq47ueXYkIrYbGJmU6vkznTqax5eObfD6n23Wyl6Uo0bEnjyGfz5PHwPj5DI4DxEn9hNDdB592fITQ1+l09P/pOEMQJjy8JInt57iJ997g9rmYCsdxNYSQeziOqwYtmOUF0E4IWfIZb/2/un1ZpmIJWFBlrcIdM+9QPEYAKBHRs/Nm476S+5STJiEkcGHgArQaLdYsXMNotNeGr8Eb82LNojWMRtvmbEOHqwMPznuQ8T23hWwoGy7DzdNuxqrpq5T+YCKICwMXMDVnKh6e+zCjD18YvACJSFizcA2jvVdaK2EP2/H4wscZjbbL3YVmRzPum3MfE4czFh5D6XAplhQvYbhGJBXB+YHzyDfm49EFjyo7G0EScHnoMmJ8DE8uepKJKagbrcNgYBCPzX+MiSkY8A2gdrQWq2evZuJw3FE3LlsuY37+fNxTMhEBHOfjOD9wHiadCY8vfJwJKL06dBWBZABPLnqSiSloGmtCr7cXD897mOFVw4FhVForcduM2xhe5Y/7cXHwImblzmK4RlJI4sLgBWg4DZ5Y+ATDq8pGyuCKuLBm0RqGV7U729HmasODcx9keNVoaBRlw2VYMXUFwzVCyRAuDl5EkbkID897WJlbXuRxcfCi8iQtP/nLmYCtISseX/A4w6t6vb1osDfg3pJ7GV7ljDhx1XIVi4sWM1wjmori/MB55Bpy8eiCRxUJR5REXB66jCgfxZqFaxiuUW+vx4B/AI/Me4SJwxn0D6LGVoO7Zt3F8CpPzIPLQ5cxJ28OwwLlNaPX6vHEwicYu16zXIM/4ceahWsYXtXsaEa3uxsPz3+Y4VUjwRFUjFTglum3MFwjkAjg4sBFTMuZhofmPsSwsgsDNEPEmkVrGLuWW8vhDDvxxKInmGJZna5OtDhb8MDcBxheZQ/bUWopxU1Tb1J28ADd3VwYvIBCUyG+Mv8rE7KZIACXLtEdyJo1NJaEDg7U1NAdy2OPAVMmeBX6+oD6ehoZv3CCV8Hlouxk0SJ2NxKLAefPU6by+OP/ZUzlJMdxBQDWgxbAIqAy2P/IZtKZUGQuYgAlQHXmAlMBrf42KWq4wFSQUecuMBWoIpMBmrW2KKuIgdsAjdAtzipmFjJAXZWLsopQYCxg+jWcBgXGAuVpTW4cx01U/JsUtZ9tyEaROcPYOiMKzYVMRTr5+ApNtD9da9ZwGuQb82HUGlXHl2vMRZGpSDW2Mrc6dm4NWgOKTEXMjRegfKTAVACTjs3QKlf8y6SP5xhyUGguVGVolceeXA1Pr9Wj0Fyosqs8tgYaFRPIN9JqkelBicCnz21RVpHarvI5ZWArCspjyxkAlOPm6HEXmgpVc2vWmTOObdAaqF2NGexqLkS2PpuZW9mueq2a7eUaclFouv7cTl4zBq0BhaZCVYVTLadFvikfBo1BZdd8Y74qi4E8dlFWEZNxOH3sjHNrLmBuDvLYct9kDyy5UuXkrARZhqzMdtVSu6Y/1ABALtHj245CIC8PmJ/GNTQaID8fSKXo7mNicPrawkLAwNoVZjNQVESlrPRmMND+HHZs6HT0c8zmLxX4+Fnt895U1hFaA/4Qx3EnQWF94jPeA46W/n0LgBbAFkLIq5P+zo3//VkAMQA/IoQ0jv/tLwH8FNTxbjMh5M3x/iIA+wHMB2AB8D1CiH/8b78C8BMAIoC/IISc+5zH97mbKIlYW74W3pgXOcYcbHhyg7JQtjdvR42tBnqtHr995LdK5PDFwYtKDqxfrP4FHpxLa370eHtoPIokYDgwrOSnCiaCeLX8VSUP1UuPvTTBVKo2YDQ0iix9FtatWac8Be9r24dLQ5eg0+jw64d+reygykfKFe09xscUn/sh/xBeq6T5mHo8PUp+qhgfwytlryCSiuBs/1lseGqDsrDerX0Xvd5emHQmvPrEq4p3z9GuozjecxwajQb/8MA/KPmpGsca8Xbt20ryyudueg4AfXpbV7EOKTGFZkezUsuFF3m8Wv4qAokACkwF2PDUBuXCuLlxM5ocTTBoDHjxsRcVD5szfWdo/Qlw+Mt7/hJ3l1Cf+3ZXu8KMxiJjSn4qb8yLtRWUGVVaK5X8VDJTcUVdyDZkY8OTG5SL0K6WXaiwVkCn0eHfvzIRf3Rl6IoSA5SSUkr8UZ+vT4lHGfIP4ad3/hQA3XW8Wv4qYnwMl4YuKawMAF6veh3WoBUmvQnr10ywsv0d+5Vd7q8e/JWyg6qyVuG9uvcA0J3is0ueBUCfyuU4oy5Pl8LK4nwcr5S/gkgygjNZNMZJfsh4v+59dLm7YNQZGVZ2rOcYjnYfBQcOf//A3ytP2k2OJrxd+zYkIsEb8yr5qRwRB9ZVrENSSKLB3qDkpxIkAWvL18IX9yHPlIcNT25gmEq9vR4GrQHPP/q8sns7N3BOie36c/y5En/U6e6k8ShEhC1kww9v/SEAqhK8WvEqEnwCZSNleOFRWsuFEIL1FevhiDiQbcjG+jXrlZvnnrY9uGq5Cr1Gj3/9yr8qO+PS4VJsbqR58ZJiUsnVN+AbwIZKWnNnwDeAn931M2X+15avVXbsrz35mmLXt2rewpB/CCadCWvXrJ1QBA4cAM6epRf1f/onYOX4Dqq2FnjnHbozCYWAr1FWBpsNWL+e3mza2oC/obn6kEwCr74KBIP0BvLaayxTaWsDjEbg5ZeBGeMecSdPAgcP0hvV3/wN9Rq7ge3z3qaq5H8QQpKEkGB6X6bG0Xrx7wF4BsAKAL/PcdyKSS97BrSW/BIAfwLgg/H3rgK9odwN4FYAX+M4Tt4z/xOAS+PS26Xx3zH+2d8H9VB7GsD749/hhjY5itqoM4IXeUYPVaLmxyOO0/tl5pCe3TQlpuguhdMxGXMFSYAgCTDqjKqMq3IULi9lHlsiEqMpy//mwDHfiZd4hSGkjy1KIniJh0lnUiLIlbF5uqsRJZFhBXEhrnCe9DGSQlLhGkl+4rh5kVfyQ6VndZWIhJSUgklnUuYmfWw5H1T68SXEhKKLp48tv1/LaZmsroIkKLmb0o9bjqI26UyZ7cpRu6Yfd1JMKruH9IhpXuQVjT09WlueW6POqMo0K59ToiQyen1CSChMhZnb8Qh0DpzqnJLznaWfOxKRwIsTYzNzK8SVPFHpxyePfb25lRNKMnNLaG6q9LmViISEmMhoV7k20OTzNiWmJuZ20nlLQKDltMxxy/Nm0BqQ4NOqUYIgLsQz2jXOx5UsF5nWq/zvTHMbEybOW1ESlfM2KSYZpiKvGYEILMtKJOgNRZLojUJuyeREXq5E2jnC85R/6PVsv/x+k4n2p+OMRILuVkSR5TDy2ISw/TeqycA30w+AGQDuBNAF4HYAd4z/PAKg+zPeex+Ac2m//wrArya95kMAv5/2ew+AmQB+D3RnI/f/K4B/SH/N+L9nAujJ9PkAzgG479O+45etUd/n7SPbm7aTdmc70++KuMiu5l3k6tBVpvZzLBUjhzoPkaNdR5l66aIkkvP958ne1r2qutoN9gayo2mHqra1xW8h25u2k0Z7I9Pvi/nIntY95MLABaaudoJPkCNdR8ihzkNMXW1JksiVwSvko5aPVLXo2xxtZHvTdtLv7Wf6bUEb2dG0g1Rbq5n+YCJI9rXuI6d7TzP10lNCipzoOUE+af+EqastSRIpGy4ju5p3qWqWd7u7yfam7ap68I6wg+xq3kXKhsuYuY0kI+ST9k/IiZ4TTL10QRTImb4zZF/rPhJMBJnPqrHVkB1NO1Q1ywd8A2R703bS6mhl+j1RD9ndsptcHrzMjB3n4+RQ5yFypOsIUy9dlERyceAi2d2ym/hiPuazGu2NZHvTdjLkH2L6hwPDZEfTDlI/Ws/0++N+srd1LznXf46xa1JIkqNdR8nBjoMqu161XCW7mnepatG3O9vJ9qbtpM/bx/SPhkbJzuadpMpaxfSHEiHycfvH5FTvKaZeOi/y5GTPSfJx+8cknAwz76kcqSQ7m3cSe8jO9Pd6esn2pu2kw9nB9DsjTrKreRe5ZrnGzG00FSUH2g+Q493HGbuKkkjO9Z8j+1r3kUA8wHxW3Wgd2dG0g4wERpj+Qd8g2d60nTSNNTH93piX7G7ZTS4NXGLGTl8zcT6u9EuSRC4NXCK7W3aratG3jLWQ7U3byaBvkOkfCYyQHU07SN1oHdNPAgFC9u0j5OxZQoSJNUNSKUKOHyfkwAFCotGJfkkipLSUkF27CHGytehJZych27cT0tPD9tvt9PUVFWx/OEzI/v2EnDxJCM+TL9PwKTXqP0v+egrAjwCUAHg9rT8E4J8/472zAVjTfrcBmJxjOdNrZgNoB/ASx3HFAOKg8phM1KcTQsYAgBAyxnHctLTPqs7wWUzjOO5PQHdFmDt37uQ/f66Wb8zHgoIFTGAZQNOEyCVD0/Vhg9aA2bmzlfgI5buAw8zcmTDrzSotdkrWFMwvmK/SuXONuVhQsIABsACt5jY3fy4KTYVsllutHiV5JapMyBzHYUbuDGg1WhVDKDQXYkHBAhW/yDHkYEHhAiZgEKCa9dyCuSrtXafRYXbubKWiITN2zgxIRFJVQMw30blNh9sAZRHzCuZhevZ0Zm6NOiPm5M9RVfXTcBrMyp2FPGOeam6nZk1FvCCu0rnzjHkZ7SrP7dTsqczYeg2dWznOI33smbkzYdQZVQxhStYULChYoOJSuYZczC+YzwQMApSDzM2fS5lDGlPRaXQoySuBIAlsVl6Ow4zsGdBA84Xsml7qVm5GnRFz8uYgS5/FcBstp8XsvNlKJcf0Ni17Gq14achs18lzm63PxvyC+ZieM121ZkryS1QxHnKK/Gx99udeM7Jdi82T1ozOjHkF81BkLmLtqtVjdi69dEzOtjwzdyYMOoNqbm8RinBLcAEgsmPPIbn4o+B8oIC1K0wmYM4cyknSuYZOR9OppFIsO+E4YPp0urvIYsdGQQENcMxn1wxycmgw5DTWrjAa6dgm039KluJPvakQQnYC2Mlx3HcIIYe+4GdniqqZ7GqW8TWEkC6O49YCuAAgAqAFgJDhtV90PBBCNgHYBFDvr8/4TFUTJRGvlr8KV9SFfFM+XnvyNeXk3tmyE+Uj5TBqjfjto79VvEAuDV3CjuYd4MDhl3f/EvfPuR8A1d7XVayDIAl4evHTij4cSobwctnLiCQjmF84Hy8+9qL83bGhcgOGA8PIMeZg3Zp1ygViX9s+XBi8AL1Gj395+F8UD5uKkQolVuT/3PZ/8MSiJwBQT6dXy19FSkzhobkP4RerfwGAbtdfLnsZoWQI03OmY92adQxT6XR3IsuQhVcff1W5sR3tPoqj3Ueh5bT4xwf/UclP1eRowobKDSAg+P6q7+Mby74BgGrvr5S/goSQwJ0z71RquchMxRPzoNhcjNeefE25YG5u2Ix6ez1MOhNefOxFxWvrbP9Z7G3dC07D4a/v+WvcNZs6pHS6O7G+cj0kScLXl35dyU/li/vwSvkriPJR3FR8k1LLRSIS1pavhSPiQJ4xD+ufXK9cOD5q+Qilw6XQa/X4zSO/UTzirlquYmvTVnAch5/d+TOl5ke/rx9rK9aCF3k8sfAJJT9VOBnGy2UvI5wKY27+XIWVAcDr1a9jyD+EbH02w8o+6fgEZ/rPqFhZja0G79a9C0II/ujWP1JYmTVoVex635z78Gd3/xkAKuO8XPYygokgpmZPxfo16xmm0uZsg1lvxiuPv6J4453oOYFDXYeg4VhW1uJswWuVr0EiEr674rtK/JEr6sIr5a8gzsdx64xblVougiTglbJX4I65UWgqxGtPvqaA/K1NW1Fjq4FRZ8QLj76gsLLzA+eVuiJ/cc9fKB5/3Z5uygIlHl9d8lX84JYfAKCeXK+UUbsuLlqssDIyHqdiC9mQZ8zDujXrlIeJPW17cHnoMvQaPZOrr3S4VKk19NM7f6qwsiH/ENZWrFWyGMisDNEoZRahEL0hvPrqRFDhW28Bvb30Av/qqxSQA8ChQ5Rt6HTAr34FLB/3Nqyro+8hBPjBD4Cv0lx9sNvp+5NJYPVq4K/+ivanUnRsv596hL322gTg37iRRtqbTPQ108e98U6epExHowH+9m+B22/HjWyfl6lUcBy3leO4MwDlFxzH/eQz3mMDG8tSAsD+eV9DCNlKCLmDEPIwAB+AvvHXODmOmzn+PWYCcH2B8f7DjYAgykeV2tPpOmkoGYJRa1Qyr8otmooqun86Q5CzE+s1eqYqXUpMISkkkWXIQigZYrhGKBVCliELKTHF6N/hVJjGd4xnP5WbPB4HjqkMFxdoBliD1oBQaqKKJC/xSAgJZOmzEElF2LGTIZj1ZvAiz2SVjaQiSoxFuo4fS8WUeJT0KpkJIQFBFGDUGhFKTowtEhFRPopsfbYq22woGYJRZ4RABGZuI8kINBoaY5Guc8vHp+W0iPATYyeFJFJiCmadmRmbEIJIKnJdu8o1Y9KPL8pHldxVsRRrV5kZpdtVnttsfTYzNkBvOFn6LKSkFKPvh1NhhTlMtisZ51Xpdk0ICaWWSvoYgiQgzseRpc9ClI8yXCOUDMGkM0GQBMau4VQ4o13l81bLaZkKnQkhAV6kPC690qFEJMWuk7PshpIhpZ5L+vFFU1ElNmjyeSuzwHBqYm6va1cQhJIhZOuzle+XPufK3PLqNQOAOW+VNaMxMGOD5ymnyM4GwmGWa4RCdGeRSrHsJBKZiC2Jp3HTWGwiHiWaVskxHqevNRjoGHIThImxYzE27iQUojcU+TXpY2u1E9mKb3S7ni6W/gPgDIDvAWgZ/10HoO0z3qMDMAhgAQAD6G5j5aTXfHX8szkA9wKoTfvbtPH/zwXQDaBw/Pf1AP5p/N//BOqZBlBA3wLAOD7mIADtp33HL8tUut3dZGPdRpVG6wg7yJaGLeR8/3mV7r+3dS/5pP0TRnsXRIGc7DlJtjVuU2m01dZqsrF+IxnwDTD9/d5+srF+I6mx1TD9nqiHbGvcRk71nmK09zgfJ/vb95N9rftINDWh0UqSRM71nyNbG7cSZ4TVaBvtjWRj3UbS42E12uHAMNlUv4mUDZcx/f64n+xs3kmOdR9jtPekkCSHOg+RXc27SCgRYsa+MniFbGrYRGxBG/NZ7c52srFuI2lztDH9o6FRsqlhk4prhBIhsrtlNznUeYjhVbzIk2Pdx8jO5p0qXlU+Uk421W9S8aoeTw/ZWLeRNNgbmH5nxEm2Nm4lZ/vOqnT/fa37yP72/Yz2LkoiOd17mmxr3KbiVTW2GrKxfqOKVw36BsnG+o0qruGNecn2pu3kZM9Jhlcl+AQ50H6A7Gndo+JVFwYukC0NW1S8qmmsiWys20g6XZ1M/0hghGxq2KTiGoF4gOxs3kmOdh1luEZKSJHDXYfJruZdDK+SJIlcHbpKNjVsUvGqDmcH2Vi3kbSMtTD99pCdbGnYQi4OXGTGDifDZE/rHnKw46BqzZzoOUG2N21X8aqKkQryYf2HKl7V5+0jG+s3qriGK+Ii2xq3kdO9p5k1E0vFyMftH5OP2z5meJUoieRM3xmyrXGbileR+npCNm4kpLeX7R8aIuTDD9Vcw+cjZMcOQk6cYJlKMknIwYOE7N5N2YfcJImQixcJ2bKFspL01tpKx+5geRWx2QjZtImQq1fp++UWDFLWcvgwZThfouE/wFTkNoUQ8sm4yy4IIQLHcZ8aijn+mj8DBeZaANsIIR0cx/18/O8bAZwG5SX9oC7FP077iEPjTIUH8Esy7jYM4FUAn4zvlEZAoT7GP/sTAJ2gUtkvCSGf+h2/bJuSNQWrpq3CzJyZTH+eMQ8rpq5QMRWz3oxlU5ZBy2kZtqDVaLG4aDGmZE1R6cAleSUQiajSgYuzinHztJuZgEiA6uIrpq6gcRNpXMOoNWJp8VJIRGI0aI7jsLBwIfKMeSqNfWbuTKyatkql7xeaCrFy2krV2Nn6bNw05SbkGHLYipAaPZYULUFSTDJsgeM4zCuYB6POqIoRmJY9DaumrWIC5wAaz7Nq6irMyJnBzG2WPgvLpiyDUWtUVZdcXLQYkVRExW3m5s0FB45NyocJu6YHzgETdp2SNYUZ26QzYdmUZeA4TlW5c1HRoowxPSV5JeBFXsXEisxF17Xr8inLkW/KZ9iCQWvAkuIlECRBZdcFBQuQrc9GvpHV2GfmULtOZieF5kKsnLoSs3NnM8eXbcjG8inLkaXPUlV+XFK0RNn5pI89v2A+9Fq92q451K4zcmcw/fmmfKyYukLFVMw6M5YVL4Neq1etmUWFizA1a6qK28hy82S7FpuLsWrqKoWTyC3PmIflU5ejyFzErBmz1oj/lRpPPJnGjDScBk+TRUCyANCydsWsWcCqVWxQIkDdfFetAibz2+xsKnnl5rJcQ68Hliyhux9zGo/jOMpNsrLU7GT6dDrGZHZSUED7Z85kc3xlZQE33UQ/X/d5bwGfv33eT4yOX+AJAHAcdy+A4Ke/BSCEnAa9caT3bUz7NwHwy+u896Hr9HsBPH6dv70E4KXP+l7/kSYRCWsr1mIsPIZCcyHWrVnHMJWy4TIYdUY8/+jzygXiytAVpa72n939Z7i3hOan6vf14+WylyEQAc8sfgZ/cMsfAKDb8hdLX0Q4FcaiokX47SO/lY8Pr1dR7T3XmIu1T6xVbkb7O/bjXP856LV6/OvD/6rkp6qyVeH9uvdBCMFPbv8JHltIfe6tQSteLnsZSSGJr8z/ipKfKs7H8VLpS/An/JidOxuvPPEKw1Q63B3I1mfjlSdeURbv8Z7jONx1GFqNFv/04D8ptVxk7Z0Qgv998/9Wark4I068VPYS4nwcq2evxl/d+1cAKFN5pfwVuKNuTM2eirVPrFWYypbGLagZrYFZZ8aLj72o5Kc6N3AOu1t3Q8Np8Lf3/a1Sy6Xb041Xy1+FIAn41k3fUvJT+eN+vFj2IqKpKFZMXaHUciGEYF3FOthCNhSYCrB+zXrlRvhRy0e4arkKg9bAsDJZe+c4Dj+/6+dK/NGgfxAvl70MXuTx5KInlVoukVSE2jUZxryCeXjh0ReY3F/9vn7kGnKxds1a5UZ/sPMgTvWegk6rw788NMHK6kbrlBigH932IyU/1WhoFC+VvYSkkMSDcx9UWFlSSOLlspfhi/swI2cGXn3iVeUm9UHdB2hxtCDLkIWXH39ZeZg40XsCBzsOQsNpGFbW5mrD+or1EImI/7Xyf+GbN9H8VO6oGy+Wvog4H8dtM29TarnIHNIZcaLIXIT1T65XbhTbm7aj0loJk96EFx59QbmhK7FdHI0/Wj17NQCa5fnV8lfBSzy+sfQbCisLJoLK3N40ZYKVkXGmYg1aFaYi34z2tu3FxcGLMGgN+Lev/NtEloGKCuDDD6kM9Sd/AnyF5uqDxULZRCpFI9H/D2VliMWAF1+kctOcOTTPlnwRf/ttmqtLZioFBbT/yBFa00SnA/75n4Fl45k5GhqAN9+kY//BHwDPPEP7x8bo5yYStFrjn9NaLgpT8XrpTWXt2okbxYcf0s/LyqLvlW86p08D+/dTie3v/g64daJK7Y1on5ep/A2A4wAWchxXAWAXgD+/od/kv0kTJRGBRAC5xlxEU1FGo/XFfVT3lwRGaw4mg0othHSNPZKKUL9+Tg9/3K/0JwRasTDHkANvzMtwDW/MixxDDmJ8jNG/fXEf9FpaiztdBw4lQkq+omBy4jkgkopQrqEzwhf3Kf28xCPKR5FryEUgEWC0d2/ciyx9Fq1Al6ZB+xN+JV9X+tjhZFiJZwgkAkq/XIXPrDczY4tERCgZQq4xF6FkiOEa3pgXZh3lOemadyARUOI40rX0SCqicI30seNCHEkhiWx9Nrwxr9IvEQn+uB+5hlxVBUZfwqfo/unHF0wElaDUyWPLMRO+xMTxJQU6bzmGHOa45bnNMeQotlfGjvsyzm0oNW5XjmP4RZSPKruXyXYNp8LINeYimAyq7WrIUr6fMrfxgJLPKn1s+bzVcTqVXVNiito1xto1mAgi15iLSCrCrBlv3KvEkKSvmUDys+2aPrdxIT6xZuITdpWLtMlr5np2Tec2CAYnuEg6v4hGKZ8wGABfmv2SScomcnJofzpT8XrpriSRYLmGz0cv/oJAGYfcQiHKOjQa+j3Sx+Z5ykjSxxYE+h1zc+l705mK1zvBc2ITawaBAP18UWTHvkHt8+b+MgH4M1AX4zBo4OM7hJDPjKr/v7l92dxf7c52XBq6hPvn3K88QQE0UvxY9zHMK5iHpxc/rTzhR1IRHOw8CL1Gj28v/7byBCxKIo73Hocr4sK3l3+byYFVPlKOprEmPL34aSZXUq+3F+f6z+GOWXfggTkPKP2uqAtHuo5ges50fH3p15Wn0Dgfx6GuQxAlEd9Z8R3F80UiEs70ncFIaATfWvYtJgdW7WgtqqxVeGLhE0yupCH/EE71nsLKaSvxyPxHlKdsX9yHQ52HUGgqxDdv+qayu0gKSRztPoooH8V3ln9H8WgiXNOrOwAAzEZJREFUhOD8wHn0+/vxjaXfYHJgNTuacc1yDQ/Pe5ipB28NWnG89zgWFy7Gk4ueVMYOJoI41HUIWbosPLf8OcWriBd5HO85Dl/ch++s+I6yqyKE4JrlGtpcbfjq0q8ytT06XZ24MHgB95bcy+QXc0QcONJ9BCW5Jfjq0q8qdo2mojjUdQgcOHxnxXcUKUiURJzsPQlHxIHnlj/HyE0V1go02Bvw9OKnmdoe/b5+nOk7g9tm3oaH5k5s0j0xDw51HsK0nGn4+tKvKzJUnI/jSPcRpMQUvrP8O8qOlRCCM/1nYAlY8K2bvsVIefX2elSMVODxBY8zeeMsAQtO9pzE8qnL8diCx5S59cf9ONR1CHnGPHzrpm8pu4uUmMLR7qMIJUP47orvKlIXIQSXhi6hx9ODry39GlOLvs3ZhstDl/HQvIeYvHGjoVEc6zmGBQUL8PTip5Wxw8kwDnYehFFnxLeXf1tRAwRJwPHu4/DGvXhu+XOMRFtqKUWLswXPLnmWqXPU7e7G+cHzWD1rtRKZD9Ad8+Huw5idOxtfW/q1CQksFqPeWYQA3/kOvSkA9GJ/6hSNbv/2tye8qQCaXbimBnjyyQlPLgAYGKA7g1tumdjxAPSCf/gwlce++c2J3UUiQXcxiQQdO29cmiaEZiEeHAS+8Q2gJE0mbWykdVMefZSOI7eREeDECWDpUuCJJyZ2T4EAHTs7G3juOXXal8/RbkTur12gsSkvj//++wA+wjjP+J/WSvJLVEn5AKrd3jXrLkzNnspotFn6LNwx8w5oOS2jf2s1Wtwy7RYE8gIqDXpx0WIYtAam2BBAdfF7Su7BvPx5TH+hqRB3zboLBaYCRns36Uy4bcZtkIjE6N8aToOV01Zies50lQa9oGABCCFMsSGA8o67S+5GSV4Jo3/nGfNw56w7kWPIYWImDFoDbpl+C5JikokJ4TgOK6auQJG5SMVt5ubPxb0l9zIXJIDyjrtn3a1iKrnGXNwx8w4YtUZGe9dr9bh5+s2IpCIMM+I4DkunLEWWIQvTs1luMztvNu4tuZe50chzu3rWahSbi1V2vX3G7TQ1fFquMq1Gi5un34zZebPVdi1cDB2nU9l1evZ03FNyD5OMEKAxUXfNugv5pnyGa5h0Jtw6/VYIksCwBY7jsHLqSkzNmqqy6/yC+RAl8bp2ncxU8ox5uHPmncjSZzG8Sq/R45bptyDOxxlmxHEcbppyE/KMecwDEkBZ0r0l96rO2+KsYqyetVrFIbMN2bhj5h3Qa/VMLIxOo8PN029GKBlSze2S4iUw6U0qHjcrbxbumX2Par1ONxTiF1gN6IuA9Jx8ZvNEUav0mBCNZoJRyK7Bclu4kF60Z7E8DtOn00SPcyYldc/Pp+lRcnNZrmE0UjmK59mcXRwHrFgBFBeruc28efT1JSyPw9SptFTwZKaSmwvccQfd9ej1uNHt895UlhFC0oW3KxzHtdzwb/PfoElEwqvlr8IetqPIXIS1T6xVno53tezCteFrMGopU5EX7zXLNaXu9F/c8xe4ezbNTzXgG8CLpS+Cl3g8u+RZJT9VOBnGC9deQCgVwpKiJUqtb4DmiOr39SPPmIe1a9YqF2s5nkGv0TP6cM1oDd6rfQ8EBH98xx8rPve2kA0vlL6ApJDEo/MfxU/uoB7iCSGBF0tfhD/uR0l+CRNL8V7de2hztiHbkI1XHn9FCWQ70XsChzoPKfmp5Fouba42JZ7hBzf/AM8sofqwK+rCC6UvIMbHcM/se/Dn91AlVZAEvFz2MlxRF6ZlT8Mrj7+i3KS2NW1Dla0KZr0ZLz32kvL0nx7P8Hf3/51S67vH04OXy1+GKIl47qbnlPxUgUQAz197HtFUFKumrVJqfctMxRq0otBciFefeFXZUcrxDEatEb955DfKzqp0ZJypgMOfrv5T5SnYErDghWsvKPVr5Fou0VQUL5a+iEAigIVFC/Gbr/xmIkdU9Vvo8fVQppLGyg53HcaJ3hPQaXT4l4f/RclP1WBvwFs1bynxRzIrs4fteKH0BSSEBB6e97DCypJCEi+VvgRv3ItZubPw8uMvKzfIjfUb0TjWqNhVvhmd6juFT9o/gUajYVhZh7sD6yrWQSISvr/q+0otF0/MgxeuvYAoH8WdM+9UarmIkohXyl+BI+LAlKwpePWJVxmmUmGtgFlnxguPvaDcbC8NXsLOlp3gwOGv7v0rJXtyn7cPL5W9BEEU8I2bvqGwslAyhBdKX0A4GcbyqcsZVra+Yj2GA8PIN+Vj7Zq1Ew9XH39Ms/UaDMC///tE1cTKSlrfneOAn/0MeJCyMoyMAC+8QOWkNWuAP6KsTGEqgQAF8i+8MHERf+cdoLNzgqnIkP3IEeDYsQmmsnR819rURGuiEAL88Id05wMADgf93HgcuP9+4E9pLRfwPOUlHg+9gb366gT437SJZi82myl3kW9GZ88C+/bRm+Tf/z1w80QV1xvRPi9TaRqH8wAAjuPuAVBxQ7/Jf5MmSiK8MS/yjHkIJUMM13BGnYo+nO7H7o15FaaSzk5CyRB4iYdeo4c75lb640Jc4RrOiFNhKoQQJTgvxscY/dsVdUGv0YOXeIad+OI+SJCUfzNjizyMWiOcUafSnxSSivbujrqZmAJn1IlsQzbifJzRoD1RD7ScFoIoMPp+IB6gtTo4DTwxj9IfSUVoHI4+ixmbF3n4E37kGfPgj/sZpuKIOGgch5BiuJQ8tyIR4U9MzG0wGYQgCtBxOmZuo6ko4gLlGo6IQ+mXi3nlGnMRSqntatTSXG/p+r4v5lPqeKTPbTARVHK3uWIupT8uxBFOhZFnzIMzMnHcAOCIOhSek86MZLsKosCM7U/4FS6SzhDCyTBSIs1DlT5GSkwhmAwiz5gHb8yrmttsfTYSfIJhJ56YBxqNBqIkMnaVj0/LaeGOTsxtJBVR4nDS7SpIAk0macxDIBFgmIor6oJZZ0ZSTDLH96l2lQTotDpm7GgqihgfU9mVgMAdcys8h8m55nLRGwrPUx6hTK6fXtQJYflFKERfazQCzjT7JZMTXMPlYpmKw0FvKPE4yzXcbnpDyTS2JNGbknfCrgiH6ThmMzt2KkVvZnl59L1CWoy400l3WvL3k5vHQ28ogkDfe4Pbp+5UOI5rA/X40gP4IcdxI+O/zwN13f0f1/RaPX559y9xYeACHpj7ACOt/Oi2H+Fgx0HML5zP6OVPLn5SgdkPzZvQy2+efjO+sewbcEacyhMXQOWIP7r1j9A41ohnlzyrPM1yHIc/v/vPcbr/NFbPWs1IDL9/8+9Dp6GyiuylAwBfmfcVOCIOiJKINQvXKP03TbkJzy1/DiOBEXx3xXeV/nxTPn5yx09QOVKJJxc9yUguv7jrFzjWfQyrprHumc8tfw4pMYVCcyHDQe4uuRuWoAUxPqY8zQJUXvu9lb+HPm8fnlv+nNJv1pvx8zt/jquWq3hk/iOMG/JP7vgJjnQdwZLiJYw89dWlX0U4RQMHZa86ALhtxm342tKvwRf3Mcc3K3cWfnDzD9DmbFMi/AEqWf3FPX+Bs/1ncd+c+xhp5Ye3/BAHuw5iTu4cZRcGAE8sfALeuBcaTqPsAAFg5bSV+Mayb2AsMsbYdUrWFPz4th+jzl6HZxY/w8g9f7b6z3Cq7xRun3k7I998b+X3AI6eE3JEOwA8MPcB2EI2CJKgRNMDVAL69vJvw+K3KLszgMqEf3Lnn6BsuIyp/QIAP7vzZzjWfQwrpq3AnLwJmeaby76JhJBAvjGf4SB3zboLzyx+BuFUWPH8AoB5+fPw/VXfR5e7C99a/i2l36gz4k9X/ykuDV7Cw/MeZuS6H9/+YxzuPIyFRQuZ+jnPLHkGoRQNJk5nh7dOvxVfX/p1uGNu/N7KCfV9Rs4M/OEtf4hmRzO+vuzrSr+G0+DPVv8Zzg6cxd2z7mYlwR/8APjkEyobrUjLdfvII/TmIEm0doncli8HvvUtylR+L035LyyknmDV1dRbKz3tyi9/SbnGrbdOZAkG6Pslie4e0r2v7r+ffn4iMeH5BdCaKL/3e0B/P+U5csvOprup0lL6XY1paXN++lO6I7rpJmD+/In+r3+d3uBycqg8dqPb9QJYxp+O533az6e997/Dz5cNfgwmgqTB3kC8MS/TnxSSpGmsSRX4JUkS6XB1kG53NxPgRQhNENk81swEDRJCA7Ma7A1MYBshNJCywd6gCqrjRZ40jzWrAvokSSLd7m7S6epUjW0NWknTWBMT2EYIDbhrsDcwAYuE0KCwRnsjcYQdTL8gCqTV0aoK1CSEBp61OduY4DJCaNBbo72RCWwjhAbcNdgbVAGLCT5BGu2NZDQ0yvSLkkjane2k19OrOr5B3yBpdbQyQYOE0CDVBnsDE9hGCA2kzGTXlJAiTWNNqkSFkiSRTldnRrsOB4Yz2tUddZMGe4MqEaNs18lBdbzIkxZHiyqgT5Ik0uPpIR2uDtXYtqCNNI01McGghNCkow32BlWCzTgfJ432RlWwpCiJpNXRqgrUJIQG4X6aXdODQQmZsOvkgEV5zUwOgpUkibQ720mPp0d1fEP+IdLiaFHZlTidhDQ0sIkYCaFBhA0NhHjYAGOSShHS3EzI8DDbL0mEdHXRn0ljk5ER+p7JQYMeDx0jzNqVRKO0f3ISSEEgpKWFkEE2ASWRJBpA2d6uHnt0lJDGRkIS7Johfj8dIxBg++Nx+vrJwZKiSEhbGyF9bGLRL9LwZYMfCSHDN/429t+7yXEq1qAVU7Km4JXHX1GYyu7W3bgydAUmnQnPP/q84lFVOlKKrQ1bAQ74y3v+UtGHh/xDeKH0BfAij68v/Tq+t4o+1UZSETx/7XkEk0EsK16m1PoGgDeq3kCvrxcFpgK88vgrylPfwY6DONV3SvG5l0F3nb0O79a+CwD44zv+WMlPZQ/b8durv0VCSOCxBY8ptVySQhIvXHsB3rgX8/Ln4flHn1eeqD+o/wBNY03IM+bhpcdfUp7mT/WdwoGOA9BqtPjnh/5Z2aW1u9qxvmI9JCLhD2/9Qzy5iOrDnpgHv7n2G8RSMdw35z6l1rfMVMYiY5iRMwMvP/6yslPa1rQNldZKZOmz8OJjLyq7tEuDl5R4hr+//++VWt993j4aKyLx+O6K7+JbN30LAJVunr/2PELJEG6dcasSS0HG4xksAQuKzcV45YlXFKcKOZ7BqDPit4/8VmFlFdYKbGrYBAD45epfKh5jw4FhPH/teaTEFJ5Z8ozCymJ8DM9fex6BRACLixYzrOztmrfR5elCvjEfrzzxisLKjnQdwfGe49BraU43eZfWNNaEt2regkQk/OSOnyg7JUfEgd9c+w0SQgKPzHtEYWUpMYWXyl6CK+pCSV4JXnzsRYWpfFj/IerH6pFjyMHLj72ssLIzfWfwcfvHSvyRvEvrdHdibcVaiJLIsDJf3IffXvstonwUq2etVmq5yHEqo+FRFSvb0bwDZcNlMOvNeOHRF5RdmlyrhuM4/PW9f63sgNM5ZDorQzgMPP88dcNdtQr4R8rKQAjNhzU4SHcUr746EVS4fz/lC0Yj8JvfTMD0mhrg/ffpe3/xC7p7AOgO4re/pXLSk08Cf0hZGeJxyjt8Pgrs//3fJ5jKu+8C7e1Unnr55QlvrmPH6C5CpwN+/Wtg8fguraUFeP11OvaPfzyxU3K56HeMxynj+Rmt5aIwFaeTOgm89NIEU9myhR5LdjbtLx4PuD13Dti7l+6o/uEfJmq53KB248t+/T/eREmEM+JEgakA/rif0d5HQ6Mw66k+nO6/74q4aH1zSWR0YH/Cj5SYgkFrgD08kaYsmooq2rstZGOYii1sQ74xH6FkiOEao5FRGLQGJMUko++7o25IEq0Lzow9/t1NOhNGw6NKf1yIK0WyxiJjDFOxhWw0PoePMlxjLDwGnUYHXuSZsWXtXsNpGJ07mAgiwSeQbciGLWRT+nmRhyfmQYGpAJ6Yh4kpGA2PIttA8zelMyNHxKHUoU/nNr64DykpBb1Gj7HImNIfToUVjzBrcCJBtkQkjIXHUGAqQCARYHjVaHiU1soQkoy+74q6QAitPZ7ObfwJOreZ7BpKhpBvzMdoaJSJP7KGaHCe/P3kZo/YodfqkRJTDI/zxD20xjo4hl8EEgEkhSTMOjNs4Ym5TQr0vCgwFcAZcTJMxRayIUdP4zjSucZYZAxaTouUmGLs6ov7wIu04uRku8b5OHL0OYxdBUmAK+pCgakA3phXtWbkfGvpa8YZdYLjOIiSeF272iNpqf3CYRpzkZdHL/5yI4QmY8zPpzecdK5ht1MPqFSK8gi5ydIXQNmH3Px++lqjkb5XbvE4/ez8fNqfzlRsNspaIhE2JsRupzeUyWN7PBM15B0Tc4tAgEpiWVns8aVSlL0UFNDvml4fxWab4DnpMS8OxwRTSec2N6jd+Bj9/8ebXqvHz+78Gc4PnMd3l3+XYSo/vPWH2N++X8VU1ixaA2fUCb1GjwfnPaj03zztZjy16Ck4o05llwJQ/fz3V/0+6u31+MaybzBM5Rd3/QIne0/i67O/jqlZE0zl+yu/j31kn5KKQ24Pz3sY1pAVoiTiiYVPKP03TbkJX13yVQwHhpWoZICmQ/nRbT9C+Ug5nl78NMNUfnrHT3G0+yhuns6mE3lu+XOI8TEUmYtw+4w0pjL7bvT5+hBNRfHVJV9V+hcULsC3bvoWerw9+L0VE9q0WW/GT+74Ca4MXcH3V32fcYH+8W0/xoHOA1hatFTFVPwJP7L0WUxsyW0zbsOTC5+EL+7Dt2+a0KBn587G91Z+D63OVmX3AlCm8ovVv8CZvjN47qbnmBTtf3DLH+Dj9o8xL38elk+ZiEF4fMHjyk3tK/MmYhBWTVuFZ5c8C3vYjt9f9ftK/5SsKfjBzT9A7Wgtvrb0awxT+dO7/hTHeo7hzll3Mq7O31vxPQiSgGlZk5jKnAdgCViQElN4alEaUylagq8v/TqG/EPMOZVrzMWPbv0RykbKsOaWNQxT+emdP8XhzsNYMW0F49L8zWXfRDgVRoGxgGEqd868E08sfAKhZIjhF/ML5uO55c+h293N8Byjzog/ufNPcHHwIr638nuMe/mPbvsRPun4BIuLFjPxWE8vfhqeuAcmrUnJ6g0At864FU8teooylbRzB/8fe/8dZkdxrX3Dd0/OOUdplHNACCQhJKIJNtg+YIyPwQH72OdxRAQjBEhCwhhjEQyInIRAIAQIoZyzNMqanPPMnp1zDvX9saZ399p7hIEjf+d934e6Ll0wNb13ddWaruq6f7XWKi4G7riDTk/dqnAexMTQbmPrVuIh8ts6APzkJ3QKqrQ0mqn099PicNVVSv2ECcBNNwG9vcCPlWcGOTm0azl2jH6vZiq//S2wcSNFAi5WhXW67Tba8eTnc6YyZw7Q2UkLwQ03KPWjR1O/2to4z0lNJZ5z4AB5+atTCv/qV5Thcfx4CvEil+99jw4HpKdTxOOLXS6ki/3f8O+bMhWH1yHOD56PShLkD/pFrbY2SpsOhUKixdAyLHPos/aJel19lD5sdBlFzWBNlO7v8rlEzWBNlDYdCAZEva5+WG26zdg2LHMYsA2IOm1dlO5vcVvE+cHzUTzH4/eImsGaKJ4TDAVFg64hijkIQfr3cMxB69CKWm1tlO5v89jE+cHzUTzHF/CJWm1tVPBLmRlFMgchKFBig64hSvc3OA2iZrAmSveX7RrJc/xBv6jT1kUlngqFQqLV2CrajG1R/eu39Ys6bV2UXU0ukzg/eP6Cdo3kObJdIzmdEJRUbDjmoLFrRK22NoqVyXaN5DmyXSN5TjAUFI36RtFtiWAOglhgo74xqm2dQydqBmui7Gr32sX5wfNRPEe2aySnE6EQJZ2KZA5CCNHbS8ETg9yuwmCg4IpublfhdBK/MJt5fSBA7KKfczoRChFvaG0dnmvU1UUntzKbqY1InuN20z1F8pxgkJJr9UbbVXR0UN8j2x4cJBYSyXOsVmo7kud4vXS9LiL4pcyMujh//ToFFyGg5LdlqMhMpdvSjYLUAjxxzRPht773a97Hns49SI5LxuNXPR7Whw/3Hg77M/z58j+H9WFZe/cH/bh1/K3htzunz4nHDzwOs9uMifkTw74UAPDc8efQaGhETnIO/nrNX8Nv8582foovmr9AQhwxFfmN86zmLJ6rfg4SJPxm1m/Cb30auwZL9y+Fx+/BdaOuC/tSeANerDi4AnqnHiOzR2LpgqXhN+pXTr2C05rTxFSufiLsIb+tdRs+qvsIcbFxeHj+w+FTPA36hrA/w93T7g7vlIwuI5buXwqn14l5FfPCub5lf4Z+Wz9K0kuw4uoV4Z3S2+fexuHuw0hNSMWKq1eEnSb3de7DO+ffQYwUgwfmPhCOANBuag/7M9w+6fbwG7XNa8Oy/ctg8Vgws3hm2JdCCIF/HP0HOswdyEvJw1+v+WuYlX1Y9yF2tu1EUnwSli9cHmZlx/uO45VTFMruD5f9AbNKyMG419qL5QeWwxf04btjvhveMchMxeg2RrGyF068gDpdXRQr+7zpc3zW9BkS4hLw6JWPhnO5nNOcw7PHnw37H8msTOvQYun+pXD73bhqxFVhViYzFa1Di4rMCiy/anmYqbx+5nVU91cjI4Gzsh1tO7Cubh1ipVgsnr84vPuW46qFQiH859T/DJ8+M7vNWLZ/GWw+G+aUKaxM9u3qtfaiKK0IK69eGWYq79VQXLWU+BQ8ftXjSvSBgweBN98kGej++xVfis5O8gnx++kU1Pe/T/UOB/EOi4Xe/O+7D0OGJUbR2ko7ir/+VWEqH39MOxiZqZQOnWg8eZJYiCSRP8hlQzvg/n66Tj6Z9RNiZfB4iKkYDLSjeOQRham89BJxksxMajt9yFl00ybyao+Lo+urhnbftbXEgEIh4J57aNcEkLS1dCnJdwsW0O8AkrD++leKDVZWRlxJZipvvkk+N+npNGY5Qyffdu8G3nuPdlQPPUQ7mYtYvmUqX7MEQ0H02/qRnZwNvUvPtPcuSxdS4lPgDriZ74CsqwdEgGnQBpeBtPe4BHRblTMRDp8DZo8ZWUlZ6DB3MKbSZelCdlI2LB4L0957rD1IjEuEN+BlMa00Dg1CIoSQCGHApujAJrcJHr8HyfHJrG13wA2Dy4Ds5GySzVRMpdPSGdb91Vyjx9aDuNg4eANexm10Dh18QR9iEMM0drPHDKfPibTENHRaOsP1vqAvHKhz0DnImEqXpQtpiWlw+p2MLfTZ+yBBgj/oZ2xB79LDG/AiLjYOvTaFndi8NpJ0krLQZekK14dECL02cnw0uo3MV6Tb2o3k+GR4Ah5mV41DE2Yqg3bFrka3Ed6AF4mxiei2KWPr9Dlh9piRnZSNLmsXYypdli5kJWXB6rEyrqG2q5otaJ1aBENkm0i7un0UPbjLqvTPE/BA59QhOzkb/fZ+xlQ6zZ3ISMiAw+dgXKPP1hdmKmq76p16Yioxscyu8t9kRkIGusxK2/6gHwP2AWQnZ0Pn1DGm0mXpCufPUdsV/f00MQcCnC0YDCQbxceTDCUXm03hGp3K3xSEALq7CdKbzTxHSVeXktvdoIwtNBqa1EMhzk6MRro2OZm+Uy5OJ/0uO5vq1Uyls5PuyWbj/ii9vdQHr5e3PTioMBU1OzGbaUFJTaX7lovHQ5A+O5vuW81UurpoQXE6uT9KXx8tKD4f8aOLXL7dqXzNEh8bj3tm3oPtbdvx3bHfZWlv75p2F96veR8js0dyplJ1Hfpt/YiLicO8CuXM/ZTCKbh65NUYdAwyfbggtQC3T7wdpwZO4dZxtzKm8ptZv8Gm5k24ftT1jKn8aNKP8F7NeyhOK2bxuuZXzke7uR3BUBDXVCnBncfljcN1o65Dt7Ub/znlP8P1WUlZ+MmUn+Bwz2H8ePKPGVP51YxfYUPjBlw94mrmz/D9cd+H1WMlpqLyU7m09FI0GBqimEpVdhVuHnMzmo3NuGPSHeH65Phk/GL6L7C7czd+MP4HjKn8bNrP8FH9RxiXO47Fdbpx9I3QOXXEVEo5U1k4YiHFiBqv+MKUppfi1nG34rz2PP5jgqL7x8bE4tczf40trVtw4+gbGVP5yeSf4P3a91GRWcH8VK4acRW6rd2IlWKZ/9Gk/Em4euTV6Lf3s/7lpeThR5N+hOr+atw15i7GVH4989f4vPlzXFd1HQvhctuk2+A670JhaiGmFCiez3PL56LF2AJ/yB+OUAwAY3PH4jujv4N2czuza0ZiBu6aehcOdB/A7ZNuZ0zlnhn3YH3Delw18irGVG4ZdwtMHlM0Uym5BFdUXAGbz8b8jyqzKvHdsd9Fvb6e9TsxLhG/nPFL7GzfiVvG3cKYyt3T7sYHtR9gdM5o5qeC73xHAelzlHhdmDqVOIdOx/01iovp57NnKZ6VXGJiKNLw5s3EKNRM5c476Y29vJwzlQULaEIejqlcey0tCHcqrAw5OcRYjh6l3Yuaqci+Itdcw0O4/Md/0O4q0k9lzhzKFBnJVEaNot1RaytvOy2NPO/37aPvVDOVn/+cdmORfio330wLWVoaMGvY8F3/s3IhXez/hn/flKm4fC5Rr6uP0qYDwYBo0jdFadOhUEh0mDqG1aY1do1oNjRH6f4Wt0U06Bqi/Dg8fo9o0DVE8ZxgKCiaDc3R2rQgn4lOc+ew+neTvilK97d5bKJeVx+l+3sDXtGga4jiOTJbiPQhEYJ8YYZjDganQTTqG6N4jsPrEPW6+iie4w/6RaO+MSqZWSgUEu2m9mGZw4BtYFiWZHKZRIOuIUr3l+0ayXNkuw7HczrNnVG+QUKQL8xwdrV6rKJB1xDFc/6VXSM5nRBk1w5TR1T/9E79sHa1e+2iXlfPkrUJQVyjQdcQxXO+zK591r5h7Wp0GUWjvjGK5zh9zmGfGeH3k76v55xOhEJCtLeTX0hkGRggX45IpmI2E6fwcrsKt5vqrZzniGBQiKamaB8SIYg3dHZG12u19JlAhI+M1UptRPIcr5fqI3lOMEh9iPQhEYL63N4ezVT0ehqrSJ7jcBBjiuQ5Ph9db+R2FaGQEG1tlMTrGxZ8y1QuXhFC4O9H/44OcweK04qx4qoVYX14Xd067GzfGaUPy9q7JElYdPkiTC2iUzy91l48fuBxeINe/GDCD8Jv1C6/C8sPLIfRZcSUwilhXwoAeL76edTp6pCfko+VV68Me51vbNyIjc0bkRiXiKULloZPZ53TnMNz1c9BCIH/vvS/w17nsvbu8rtww+gbwr4UvqAPKw+uxKBjEKNzRuORKx8Jv1G/dvo1nOw/icykTKy8emX45NuO9h34oPYDxMfGY8n8JeHTWU2GJjx1+CmERAi/mP4LLBy5EABJNI/tewx2nx0LKheEfSlkf4YeWw/KM8qxfOHycHDMNefXYH/XfqQnpGPF1SvCntEHuw/irbNvhfOoT8in01md5s6wP8OPJ/8YN425CQCFMVm2fxnMHjNmlcwK+1IIIbDq2Cq0GltRmFaIFVetCDOVj+s/xta2rUiOT8byhcvDO4mTAyfx0omXwjk/5F1av60fyw+QD9Ct4xRW5va7sXz/cuhdekzKn8RY2YsnXkSNtgY5yTlYefXKMFOR46olxibi0QWPhncSNYM1eOb4MxBCMFamd+rx2L7H4PQ7cV2Vwsr8QT+eOPgEBhwDqMquwqNXPhpmKm+efRNHe48iM5HsKu++d3XswtqatYiL4aysxdiCvx3+G4KhIO6adleYlVk8Fjy27zHYvDbMK1dYmcwhuyxdKE0vxeNXPa7sgN9/H9izh2SdFSuU+FSHD5OfhSRRfCrZl6K7W4m/dfvtdJIJoLf+ZcvIV2TmTCWHu8xUmpspn8iKFcrb/CefkLd7UhJ9Vt5JnD5NeVAAylsiv81rNIqvyHe/C/xo6HSd10vfq9NRXpTFixWm8vLL9H05OcQ15CCRW7eSN39CAjEVeSfR0AA8/bTCVK4kVgajEXjsMernVVeRDwugMJW+PopdtmyZslN6+20ax4wMuj85CObevcC77xLPeeghJe7YRSr/VqYiSdINkiQ1S5LUJknSQ8P8XpIk6Z9Dv6+RJGmm6nf3SpJUL0lSnSRJ64bC70OSpI8kSTo39K9LkqRzQ/UjJElyq373SmR7F6P4Q350W7qRm5yLQccg095bTa2kD/tcTP/utnZDQCAQDDCfEJ1TB0/Ag6S4JHSYOsL1Nq8NRpcROck5aDW2MqbSZmpDbnIujG4j097bLe1IikuCx0/auVz67H1h7V3tl6F36eHyu5Aan4o2U1u43ulzQuvUIjclF52WTsZUWo2tyEzKhNVjZdp7h7kD8THx8AQ8LN6Uxq4hpiLFMH3f6DKG/XBaTa3hem/Qi15bL3KTc9Fv62dxmlqMLUhPSIfdZ2fMqNPSiRgphniMyh9F69TCE/AgITYBHWZlbC0eCyxeC7KTstFqVNoOiiA6zB3ITcmFzqljPkBt5jZiZT43Ywu91t6w/5GaLeicOrj9biTHJaPd1B6ut/vsMLqNyE3ORatJsStAfzvZydkweUzcrqZ2JMYmwh1wM7sOOAbCXKTH0hOu17v0cPqdSEtIY3Z1+V3QODTITc5Fl6WLMZUWY0vY90nth9Nl6UJcDLEytV21Dhrb2JhYxsRMbhPsXjsyEzOZXX1BH3osPchNzsWAfYBxSLS10UTrdHK20DPUJ7+f+Eq4cS1xhMREcmiUi9VK3CEnh+QjuQhB4edzc2nSV/uKtLURH3G7uT9Kby9N6kJwbqPTEddISaHPysVup8/n5lJbso8LQPeSnU1MQ+0r0tFBC4rMROTS308LpiRxbmMw0L2np/O2PR6SCXNz6V59CodEWxstKHY7j2HW1UUw3+ulhfIil3/boiJJUiyAlwDcCGAigDslSZoYcdmNAMYM/fsvAC8PfbYUwB8BzBJCTAalI/4xAAgh7hBCTBdCTAfwCYBPVd/XLv9OCPHbf0e/EmIT8PNpP0dCbALumHQH81P56ZSfIi8lDwtHLsSYHOXM/bVV12JC3gTMKJ7BztxPLpiMKyquQEl6CYtPVZhaiFvH3YqkuCTcM/MexlTumXEPkuKScOu4W1mejtsn3o7itGJcUXEFJuUrTOWKiiswrWgaJuZPxNUjlThG43LHYUHlAuSl5IV3KQAxldsnkub+i+m/YEzlFzN+gbSENNw05ibmp3LruFtRmVWJOWVzwlGCAYoRdWnppRidMxo3jFb04arsKlxXdR0yEzNx19S7wvUp8Sm4a+pdSIhNwE+m/ITFiLp76t3ISsrCtVXXMj+VG0ffiNE5o3Fp6aW4tEQ5cz+tcBrmls9FeWY580cpzSjFzaNvRmpCKn4545fh+riYOPxyxi+REJuA2ybehuwkhan8ePKPkZ+SjwUjFjCmsnDEQkzKn4RpRdPCWR8BYGL+RMyvnI+itCIWnyo/JR/fH//9KLsCxDWS45Jxy9hbOFOZeBtKM0oxr3we8z+aUzYHM4pmYHzeeMbKxuaOxVUjrkJuci6za2ZSJn48+cfs71cuP5v2M2QkZuA7o7/DmMp3x34XI7NG4rKyyzC9aHq4fkbxjHCKgO+OUZjKiKwRuH7U9chIzMDPpv0sXJ8Ul4S7p92NhNgE3Dn5Tp46+z//kxaCa65RvMoBigI8bhztEi5XYrph6lTycC8t5eykpIR2D8nJSkZGgN7a77mHFqEf/pAzlTvuoMi+V17Jc6BceSWdNps8medAmTCBfldQwP1UcnOJZyQmUtvq9MD33EOL0M03c6bygx8Qy5k7l+dAuewy6vPYscSV5DJqFI1RdjZlhJRLWhoxloQE8pVRM5W776ZDAtddx5nKTTfR9112GYXfv9jlQrrY//QfgDkAdqh+XgxgccQ1rwK4U/VzM4BiAKUAegHkgA4TbAZwfcRnpaFrxgz9PAJA3de5x2/KVNx+t2gxtERp08FQULQZ26K0aSHIZ2I4bVrv1It2U3uUNm3z2ESLoSVK9/cGvKLF0BKlTctsIdKHRAjymRiOORhdRtFmbIvS/R1eh2gxtETxHH/QL1qNrVG+BjJbiGQOQhAz6jJ3RfXP7DaLVmNrlO7v8rlEi6EliucEggHRamyN8iEJhUKi29I9LHPQOrTDsiSrxypaDC1Rur/H7xEthpYonvNldu219kb5BglxYbvavfZh7eoL+ESLoSWK58g8LpLTCUF2Hc436EJ2dfqcosXQEsVzZLtG8hzZrsNxukH74LB2FRYL+XdE6v5uNzGESN0/ECB938Q5nQiFKCbXcMxBpyNfjsi2bTZqI9KPw+ul+kg/jmCQ2EWkD4kQxBuGYw4GA30mkuc4HNRGZFwun4/qI3lOKER9iPQhEYL63N0d3T+TicY2kue4XNRGJM/x++n6SJ4TChEz0kQ/M1+14H+JqcgLg1z6AFz2Fa4pFUKckiTpHwB6ALgB7BRC7Iz47HwAWiFEq6pupCRJZ0EJxR4RQhyKvClJkv4LtCtCRUVF5K//ZRFC4Jmjz6DZ2IyyjDIsW7gszFTW11FOk7SENCy/annYl6K6rxovn3oZEiTcN+e+cNa9fls/Hj/wODxBD26bcFvYl8Ltd+PxA49D59RhRvGMcA53gLT384PnUZBagBVXrwjHp9rUsgmfNnyKpPgkLF2wNJzxr1Zbi2eOPQMBgd/P/n3Yl0Ln1GHZ/mXhk1myL4Xsz9Bv68f4vPF46IqHwm/Ub5x5A8d6jyE7ORsrr14ZPsWzu2M31tauRUJMApZcuSTsS9FibMFTh59CIBTAPTPvCftSWDwWPLr3UVi9Vlw98mr8fPrPARBTeerIU+g0d2Jk9kg8euWjYaaytmYt9nbuRUZiBh6/6vHw6azDvYfxxuk3EBsTi7/M+wvG5VGu725LN1YeXAlf0IefTPlJ2JfC4XNg2f5lMLqMuKzssrAvhRACzx5/Fo36RpSkl2D5VcvDb/OfNHyCzS2bkZKQguULl4d3iKcHTuOFEy9QfKrL7g2zMo1dg+UHlsPtd+MHE34Q3il5Ah48fuBxaB1aTC2civvm3he26+qTq3FGcwZ5KXlYcfWK8Mm3ra1bsb5+PRLjEvHYgsfCO8QGfUM4V81vZ/02zMoMLgOW7lsKh8+B74z+Tni3IsdV67X2YkzuGCyZvyRs17fOvoUjPUeQnZyNx696PLz73tu5F2vOr0F8bDwenv9weIfYZmrDk4eeRCAUYKwMVivp/hYLvdHLvhShEHGCtjbKN7J0qZKYat06YNcuknWWL1d2EsePA6+8Qm/9Dzyg7CR6e4kPeL20W5Aj+TqdxBP0eoq8+/vfY8iwwPPPU/ytoiLy45Aj+W7cSDG4kpPps3IU4XPn6DNCAH/8IzEagGSqZctIArvlFtqdAApT0WjoFNmDDypM5dVXye8lL4/alrNIbt9O+VwSEoBHH6VxASif/d//Tql+f/MbJe6YyURja7fTCTQ57lgwCDz5JEllVVX0XTJTWbOGPO0zM+n+5FwuBw8Sb4mNJf6j3iFehPLvZCrSMHXiq1wjSVI2gFsBjARQAiBVkqSfRlx3J4B1qp81ACqEEDMALALwgSRJGRGfgRDiNSHELCHErPz8/Mhf/8viD/nRam5Ffmo++u39THtvNDQiLSENdp+dadCd5k4IIRAIBZhPiMahgdPvRFJsEpqNzeF6q9cKnUuHvJQ8NOgbGFNp0DcgLyUPepee5bhoMbQgOT4ZLp+L+cJ0W7oRCAUghECnWdG/dU4dHD4HUhNS0WRsCtc7fU4M2AeQn5qPFmMLYyoN+gZkJ2fD7DYzrtFiakF8TDxcfheLdSVzkdiYWMYW9E49rF4rMhMz0aBXMih4g150WbqQn5qPLksXYyqNhkZkJGbA6rWyOFvtpnbESDHwBr2MawzYB+AOuJEQm8DYiXzv2cnZaNQ3huuDIohmYzPyU/OhcWiYD1CTsQmpCalw+BxRdg2JEAJBbtdBxyCcfieS45PRbFDsavPaoHMO2dWg2FUe29yUXBhcBsarmg3NSIpLIiZiV/Tvbks3+fEIMGakc+pg99mRlpCGRoPSP6fPiV5bL/JT89Fuaoc/pPgzNOobw7Hs1HZtNbUiPjYebr+b2XXAPgBPwIO4mDi0mlXvdEYjcY3MTKBRaRs+H7GG/HxaFNwqptLUpORXV3ON9nbFl0LNNTQamtQTEzk7sVio/dxcoL5eqReC2sjPp0VB7SvS1ETSlNPJfWE6O2myFoL7hAwOEtdISaHPysVup/vKz6cDAWqm0tBA8p7BwGN8tbRQH9xuzjV6emiRiomhMZCLXq+EVlG37XbTZ/Lz6b69ig8QGhuVmGdqXtXaSt/v8XBedZHKv3NR6QOgzqFZBmDgK15zLYBOIYReCOEHcZMwjJAkKQ7ADwF8JNcJIbxCCOPQ/58G0A7g4h5rADGVn075KYQQ+MGEHyAzUfFT+fHkHyMtIQ3zyucxP5Wrq67GqJxRmJA/gTGVSfmTMLuUcjz8cIJy5r4wtRA3jb4JkICfTf8ZYyo/n/ZzQAJuGnMTYyo/nPBDZCdlY3bp7HCGPgCYWzEXE/InYHTOaJbzY2zuWMwtn4v0hHT8aKISIyorKQvfH/99CCFw17S7GFO5ayr9fG3VtSyv/PfGfg9FaUWYVTIL0woVpnJJySWYXjQdZRllLOfHyOyRWDhiIZLikpgvRUp8Cn48+ccQQuCOSXcwpvKTKT9BUlwSFlQuYEzlO6O+g8qsSkwrnBbehQHA1MKpuKT4EhSmFbL4VKUZpbhu1HWIi4kLn4wCiKncPfVuCCFw67hbGVP50cQfIT0hHXPL5oZ3QgCwYMQCjMkZE2XXCfkTcHnp5chKymKsLD8ln/x1JOAX037BmIps5xtH34jiNCVG1A8m/AC5KbmYXTqbMZXLyy7H5ILJGJk9EteMVJjKmJwxuKLiCqQmpOLOSYo/Q0ZiBm6bcBuEEPjJlJ8wpnLXtLsQHxuPq0deHcVUitOKMbN4JmcqRTMwo3gGSjNK6e9ULpWVdDIpMZFYiVySksh/QwiKeZWuYip33kmT9Pz5pPPL5dpriQNMmcJzfkyeTPGq8vJ4jK/iYoocHBOjZGQElJ+FIOaiTsV7++006V5+eTRTGTcOGDNGOX0FkL/HnDn0mR8pzwxyc+lehCDfEDVT+dnP6OfvfIczlVtvpYVg1iyeeXH2bGIslZXEQuQyahSNUUpKtJ/K7bdT23feqUQLAMgGiYnkla9mKjfeSN73M2You7CLWS6ki/1P/4FYSAdot5EA4DyASRHX3AxgG2jHcjmAE0P1lwGoB5Ay9Lt3AfxB9bkbAByI+K58ALFD/18FoB9Azpfd4zdlKt6AV3SYOqK06WAoKLrMXVHatBDEFoZjDiaXSfRYeqK0aafPKTrNnVF+HP6gX3SaO6N4TigUEj2WnigfEiGILQzHHCxui+i2dEe17fK5RIepI0r3DwQDotPcOSzP6bX2RvmQCEFsYTiWZPPYRJe5K0r39/g9osPUEcVz5LGNZA5CEFsYjjkYXUbRa+2N6p/D6xCd5s4onuML+ESHqSOK58jc5kJ2HY45mN3mYcfW6XOKDlNHFM/5pnaNjEcmBDGj4cbW7Xd/LbuKUIi4wnDMQa8fnjnYbOTfEan7e73EECJ1/2CQ9P1I5iAEsYXhmIPRSL4ckczB4aC2I3mOz0dtu7hdw9wmkjkIQXG2BqPtKszm4XmHy0VtRPIcv5/uycE5nQiFKO5XpA+JENTn4ViS1UpjFclzPB5qO5LnBAJ0vS36mRH9/dG+QV+j4H+DqQghApIk/R7ADtDprbeEEPWSJP126PevANgK4CYAbQBcAH4x9LtqSZI2ADgDIADgLIDXVF//Y3DpCwCuBPC4JEkBAEEAvxVCmHCRixACzx57Fg36BlRmVeKxBY+F3+Zl7T0jMQPLFi5Dbgrpw6cHTuPFEy+Gc37IvhQauwaPH3gc7oAbd0y6I5yXwhPwYPn+5Rh0DuLSkkvx+9m/D7f/8smXcWrgFIrTi7Fs4bIwU9nWtg3r69cjOT4ZSxcsDZ8gqtfV45ljzyAkQvjjZX8M+1IYXAYs27+MsveNvRU/nEg7JX/QjycPP4luSzcmF0zG/XPvD79Rv33ubRzqPoS8lDw8ftXj4Z3Evq59ePf8u0iKTcKSK5eE33bbTe148jBp77++5NfhDH5WjxVL9y+F2WPGtSOvDe8YQiKEp48+jVZjK0bnjMbD8x8OM5V1teuws2MnshKzsPyq5eH4VMd6j+HV068iLiYOD13xUNiXotfai5UHV8IT9ODuqXeHT0g5fU4s278MOqcO8yrmhXO4CyHwfPXzqNXWojyzHEsXLA2zso1N5AOUnpCOpQuWhnO5nNWcxQsnXgAALLp8UZiVDToG8fiBx+H0OXH7pNvDXudyrpoB+wBmFs/Eny7/U9iur556FScGTqAwtRDLFy4P+x/taN+BdbXrkByfjMcWPBZmZU2GpnCumt/N/l14l2Zym7B031LYvDbcPPbmcObJQCiAJw8/iS5zFybkT8Bf5v0lbNd3z7+LA10HkJuSi+ULlyuns2TtPSGB8qjLb7udneQb4fcTN5k/FE3AZiNeYjJRHhB5xxAKUTyr5mbS/R95RHmbl+NvZWYSU5F9KU6cIB+PmBjKjSL7UvT1kb+H201v4nIOd5eLeIdOR7uJ36oOf774InGS0lK6JmFol7ZpE3m7p6YSrygcig5dW0t54gHyd5FPZ+l0dI9OJ8Uck+OO+Xx0T319dO19CivDG29Q9OKCAvpsylCUiF27yEcnKYk4SNnQacqWFmIqgQBFV5bjjpnNdO8WC+005NNnwSDliOnooN3VQw8pTEX2AcrOJp4j53KRfYDi44mpVCk7/4tR/q1+KkKIrUKIsUKIUUKIJ4bqXhlaUDC06P1u6PdThBCnVJ9dKoQYL4SYLIS4SwjhVf3u5/J3qOo+EUJMEkJME0LMFEJ88e/okz/kR5OhCYVphei2djPtvVZXG9b91VxD1vT9QT/Tv/vt/XD4HEiOS0adri5cb3abMegYREFKAc5rzzOmcl5LkF5j1zDtvVZbi+S4ZDi8DvTbFJ20w9wBf8gPAYEWk6JBa+wa2Lw2pCeko0ZXE663++zosfagMK0QDfoGxlTOD54P6/5qP5xGfSMSYxPh9DsZ1+ix9sDtdyNWimVsQefUUW6PxCzU6mrD9Z6AB62mVhSlFaHd3M6YSo22BlmJWTB7zMxfo9nYjFgpFh6/B90WhWv02frg9BGvqtcrGrvRbYTOqUNuSi5qtEq/gyKIel09CtMK0WvrZb4itbpapCekw+a1MV+YNlMbQiFiKu1mRf8esA/A7rUjNSEVdVrFrhaPBQOOARSkFqBGW8OYynnteeSn5EPr0DJfkXpdPZLjk+H0OZldO82d4dhoLUbFroOOwXAu+lqtMrZOnxPdlm4UpRWhydDE4qrJTpdGl5HZFY2NNPE4nTwOlcxF4uI4O9HraUHJzqYginLx+WiyLCqiBUkdf6umhhYUi4Vzjeahvxevl8fy6u+nzyclcXZiMtGkn5dHC4hcQiFaJAoL6bNqX5G6OprkbTbONdraaFIPBrlPiEZD16am0mflYrPRdxcWUn1QeWZQU0P3pNNxX5GGBupD5Nh2dRHriIlRxgAgHmSx0Fipx9blovEpKqIxVjOVmhol5pk6xldjI9nO5VL8gS5i+Tag5NcsCbEJuGPyHXD5XfjemO8xpnL7xNsRFxOHS0suZbkhFoxYgNKMUozOGc3yqE/Mn4jpRdORkpDCfCkK0wpxbdW18Aa9+OmUnzKm8p9T/hPeoBfXj7qeMZUfTPgBUhJSMKN4BmMqc8rnYGTWSJRllLGcH2Nzx2JWySwkxCawuGPZSdm4acxNcPldUbG/fjL1JwiEAriy8krmp3Lz2JuRmZSJyQWTWXyqGcUzMCF/AgpSC8JZHwHyZ5hbPheSJOHHk5Xz/inxKbhtwm1w+p34wYQfMKZyx+Q7IEkS5pRRf+RybdW1KEgrwPj88Sw+1ZTCKZhaNBUZSRn43lgVU0kvxYIRCxAIBZgfR1xMHO6ccidcfhduGnMTy2X+HxP+AwmxCbik+BKMy1WYypWVV6I8sxwjs0dypjLkk5QUl8TsWpBagOurrocn4MFPp/6UMZWfTvkpfEEfrqm6hvmp3Dr+VqQmpGJq4VRm19mlszE6ZzRK0ktw1QglPtXonNGYXTobsTGxzEcmI5HGwel34o5Jd4SjBQDAnZPvRFAEMb9yPmMquPFGgsyTJ3NfimnTiEHk5vL4VJWVwLx5NJGrdf+kJNL9nU46NaVmKrffThPoZZdxpiLHyho7luf8kO8lI4O+Sy4lJbQ78vu5H0dMDO1o3G7qj5qp/PCHdG+XXMIj9c6bR/lHKispy6Jcxo2jaxMTlZNfgDIOLhexIzVT+clP6J6uuoozlVtuoT5MnUp9ksull1Kfi4poDOQi+5XExJB/jVzS0ojPOJ3Eq9RMRb5u7lzOVG64gcZh4kTiKhe5SOq3pf/byqxZs8SpU6f+9YURJRCiaMMFqQUMeAohoHFokJGYwYLmASQ3xUgxbLIC6ESQ0+dEUVoRm2Q8AQ8MLgOK04rDEhBAx241Dg3yUvLC0pfc9qBjEKkJqcwhEyBJJCRC4SPOcnH4HLB5bShOK2ZtewNe6F16FKUVsUVFzo6Yk5wTlmfkonVokRSXxAJsArTr8of8bAEE6M3Z4rGgOL04HC4EQDjacGFqYVh+kvs3YB9AVlIWW2wA2vnEx8SzIJDAUIbJgCecgkAubj9FkS5JL2Fty3bNT8lnk+6/sqsEKSx1ysXupQyOF8OuWqcWKfEpw9o1GAqG5Ti5XMiu4ai0hYW0A5FLKERv4dnZijwjF62WJtGsLF5vsdD3FXC7wuWiN+PiYh5Y0e+n7yooUOQn6iC1nZmpHLeVi15Pb9TZ3K6w2aidwkLl6C5AC4fRSG2rJ3Y50nF+vnKcWG57cJAmZvVCBygZEXO5XcMZJouKeNteL91vUZFyXBqgXYtGQ9+jnvCFoPFITlaO+srFbKZ7jjydKkcbLinhbX8Tu+p0ZIdIu37FIknSaSHEsNEov4399TWLEALPH38eNdoajMoZhYfnPxyeeGXtPSsxC0sXLg0vIOcGz+Gf1f8Mx6eST4YNOgax4sAKOP1O/GTKT8Jv896AF48feBz99n7MKZuD385S9OFXT7+K6v5qlGeU49ErHw1Pfjvbd2Jd3TqkJaTh0SsfDU+kTYYm/OPIPxBCCH++7M9hXwqjy4jlB5bD6rXihxN+iFvH0UmaQCiAvx3+GzrMHZheNB1/vvzPivZ+7l3s79qPwrRCLFu4LOxLcbDrIN469xaS4pLwyJWPhHcxneZOPHn4SfhDfvz2kt+GMzPavDYs378cBpcBN46+MZx5MiRCWHVsFRr1jRiXNw4PXfFQeNJfX78eW1u3IjclF8sWLgtPsCf6T+DlUy8jPiYeD13xUPhkWL+tHysOroAn4MEvpv8CC0bQLs3ldxGvcgxiwYgFYa96IQRePPEizmrOYmT2SCyZvyS8qG1u2YwNjRuQmZiJpQuWhheQWm0tnjv+HADg/rn3h1mZzqnD4wceh8PnwI8n/zgcTUCOq9Zr68Xsktn43ezfhe36xpk3cLTvKErTS/HYgsfCC8uezj1YW7MWqfGpeOTKR8K5XFqNrXjqCMVV+8PsP4RZmdltxvIDy2HxWHDL2FvCrAyBAPDUUyTnTJlCur88Ma1dS/Gg8vOJicjxqQ4fppwcCQmUR132pejuJqbi81EUXtmXQo6/ZTDQ6S15xyAE8NxzJA2NGUM6vjzpy/G3srPps/Ikd/o05SKJjSWmIvtSDAyQz4XbTR7jcg53t5uYhUZDjOdXvwqPLV5+GTh1inYejzyiLGrbtlGe+owMYiryJF5fD6xaReNz773KTsJgoDbsdtoVfHcomoDfT+PR1UWnqf6ksLJw/K2iIhpbeWHZv5/ibyUnE1ORdzHt7cRIgkHgd79TPN6tViW22Xe/q2R/DAbJB6ilhXYeDzygLOYffgjs3EkL2rJlysJ5/Dj5zyQkkC3Uu5iLUL6Vv75m8Yf8qNHVoCS9BO3mdpar/YzmDDITM0k7V53rl31NvAEv0797raTdp8Sn4NzguXC9yW1Cv60fRalFOD1wmjGV05rTKEotQq+tl2nvZwfPIjU+FTaPjXGNVmMrfCEfhBBoNCr694B9ABaPBZmJmTirORuut3lt6LB0oDi9GOe151mMqNOa08hPJd1fzTXOa88TUxnS7eXSae6Ey+9CrBTLmNGgYxB6lx45yTk4rTkdrnf73WHnwxZjC4urdlpzOqz7q/016nR1iJVi4fK7GK+SeVdSXBIbW4PLgEHnIPJT81nbQRHEucFzKE4vRqe5kzGVM4NnkJGQAYvHwmK3NRmaEBRBBEIBZtc+Wx9sXhtS41PZ2JrdZkpUlVqE05rTjKmc1pxGYWohBuwDzFfkrOYsUuJTYPPaWF6YVmMrvAHSz9XMaMA+AJPbhMzETJwZPBOuh8NBC0pJCU3u6hhRp08rsbHU2ntNjcJU1HGourqoLj6eeIVctFp6W8/JAc6o2vZ6aaIuKSEfCTVTOXOGFhKTiXONhgaa1D0e7q/R20t9SU7m7MRopM8XFNACIpdQiNooLqY+qPOKnDlDE63VyrlGczNN1sEg5xp9ffT5tDQKsS8Xi4XGpLiY7knNVE6dosVKo+G+ImfPUh/sds412tqoz5LEuY1Go/Aq9di6XLSglJTQmKmZihzI0mDg8cVqa2k35XRyP5yLVL5dVL5mSYhNwG0TboPJbcINo24In0ICyFckGApiauFUlhtiQeUC5KfmozyznOX8mJg/ERPyJyA2Jpbp/oVphbiy8kpYPJYwSwCIqdwx6Q5YPBYsqFzAJKVbxt6CGCkGE/InsPhUl5VdhrKMMuSn5mN+hZLzY0zuGEwtnIpgKMh0/+ykbFxfdT3MbjNum3gbk6DumHQHHD4H5pTPYUzlpjE3ITk+GWNyx2BKocJUphdPx6jsUchIzAhHsgWAkVkjMatkFrxBL/PjSE1IpRwebhO+O+a7SI1X5JDbJt4Gb9CLmcUzMTKbM5XMxExUZVcxpjK5YDLG5Y5DYmwibh6r5HIpTS/F3LK5cPgcuGOiok3HxcTh9om3w+w249qqa5lM+f1x30cIIUwtnMpiul1RcQUKUwtRmlHKWNn4vPGYlD8JMVIMbhmn6P75qfm4auRVZNdJdzBp6o5Jd8DqseKKiivCuxGAfIDiYuIwIX8CYyqXll6KiqwK5CbnMv+j0TmjMb1oOgKhAPN9QmYmMQWTieJOqWWgH/2IJqfZs5XdCEDae0oK7S7UvhRTp9LOIS1NOX0F0GcvvZR2DbcpdkVSEun+JhPFnVJLTT/8Ib3pz5zJTyEtXEgTaGUlj081cSKxjfh4ZacA0IR+xRU0SauZg8wgzGba1aglJfn01qRJ9J1ymTuXvq+oiPiKXMaNo3EQQvksQHzimmuojR/9iEtvd9xB9zRvHmcq3/se7RTGj1ciMAPktzJiBPVd3oUBNDYzZtDLgDqPTFoaxRUzmeie1BLbbbeRLS69lMZRLtddRzYYNYrncrlI5Vum8g2YSjAUhN6lR25ybpTur3fpkZ6QHsUczG4zYqSYKObg9DnhDrijeIcv6IPJbUJBagHT/UMiBJ1Th5zkHMZzAPJUT4lPiWIOVo8VAoItgABJQQ6fA/kp+WyC8wf9MLqNyE/JZ7q/EAI6pw5ZSVmMOQAkpyXGJUYxB5vXhkAoEMWSPAEPrB4rClILWNuBUAAGlwF5KXmM58htZyZlMuYA0M4uLiYuijk4fA54A94o3uENeGHxWJCfms/G9svsanAZkJqQyhKHAXSiS4I0rF1dfhfyUvJY/76JXQ0uA5Ljkoe1a0iEolgS3G6ayPLzufbu99MbfX4+n/iEoB1KZiYPSAjQ9QkJ0czBbqfvy+F2hcdDb/4FBbztYJB2MXl5nDkIQfXp6XxCBGiSjo1VjsLKxeGgdvL4MwOvlz5TUMB5TihE/cvN5cxBCHqLT02NZg7yjiaSObhc9Iafl/fVxlZuOzubL+QAtZ2UpMiNcrHZaLwiWdKF7BoI0HcNN7YXsqvJRGMRadevWL5lKhexCCHw0smXcHrgNMbljsNfrvhLeOLd3LIZnzR+guykbCxduDQ8iddqa/H88echxUj4y7y/hHcxOqcOKw6sgMPnwF3T7gpHEfYGvHji0BPotnRjfuV8/Gqmog+/eeZNHO45jBHZI7Bk/pLwBLSnYw/eq3kPGYkZePTKR8PwttXYir8f+TsEBO69/N5wVkiz24zHDzwOs8eM2yfeHn6bD4QCeOrIU2g1tmJWySz8fvbvw5Pi2pq12N2xGyXpJXhswWPhhfNI7xG8cfoNJMcn45ErHwn7UnRbuvHk4SfhC/rwu0t/h0tK6I3T7rVTbDOXDt8b+73wbiUkQnju+HOo1dZicsFk3Df3vvDE+2njp/ii5Qvkp+TjsQWPhX0pzmjO4MUTLyI+Jh6L5y8Oxx3T2DVYcXAFXH4XfjXzV+Eowm6/GysOrkC/rR/XVF2Du6fdHbbry6dexsn+kxiTMwYPzX8ovKhtb9uOj+o/QlZSFh5b8Fh4gazX1eOZ488gBjF4YN4DYVZmcBnw+IHHYfPa8J9T/jOcmdEX9OGvh/6KTnMn5pbPDecbAYC3z76Ng90HUZFVgUfmPxJetPd37se7599FWkIaHrnykTAraze146kjTyEYCuJPl/0pzMpgsZBPgslEb7TyCSlZe29upjfeP/1JmZjWrSPtvaiI9H0ZmB8/Drz2Gk2GS5YovhS9vcQQvF7yB5E93p1OYg46He2K5B2DEJSf5Nw5OjX2wAPKxPv55xSDKzeXuIYMrc+do8/ExxNTkXcxg4PEVFwuyikie7x7POQr0ttLJ61+/vPw2OLVV6kvVVXkbyMvLDt3Ut8zMoh3yFC+qYn8agBiT7K3vdFIbVssdLpNjiLs91P8rfZ28s7/7/9W2l6zhrIylpcTz5End9kHKCWFxlyOO9bZSUzF76dcLvLpLJuNxtZopF2fHKE5FCL+09BAO8hFixS7fvwxsGULAfzHHlMWr5MngdWrya4PP8x3pxehfCt/fc3iD/lxWnMaZRllaDY2M+39RP8JZCVlweQ2Ma5Rq6uFgIAv4EOTQYnb023phtVrRWpCKk72nwzXG91GdFu6UZJegmN9xxhTOdZ3DCXpJegyd8HkNrG20xLSYPaY0WNVNNpGfSN8QR9CIsS4Rq+tF0a3EZmJmTgxcCJcb/VY0WpsRVlGGU4NnGJMpbq/GoVphRhwDLB88GcGziApLgl2r53FF2s3tcPpcyIuJg5nBxUNWuPQUAys5Dwc7zsernf73ajV1qIsowx1+jrGVKr7q5GTnAOdU8d41bnBc2Gmos4f0mnphN1nR3JcMk4PKOxE59Sh39aPwrRCVPdVh+uDIohTA6dQllGGVlMri6tW3V+NzMTMKLvW6esQCoXgD/pZHLFuSzcsbgvSE9JxckCxq8ltQqe5E6UZpajur2ZM5XjfcRSnF6PH0sN8RU4OnERKfAqsXiuLL9ZsaA778aj9jNDfTxNPVhZQrfQPdjstKGVlpOermUp1taL7q7X3M2dol+JwcF+Rjg76vvh4zhbkz+fl0SQuF4+HrisrIx8JNVOprqY3cr2e54M/f552Gy4XcRi5dHXRBJuczNmJXk8LSlERORvKJRQiR8rSUrpvdfytkydpQbFYONdoaFD8VBqU2HTo7aXFOiODvlMuFgstKKWlVK9mKseP0z319vLYZqdOUR9sNs41WlqozzEx3B+lv592Izk53K4OB91jWRkxMI/i24Xjx5WYZ2ofoDNnyHYOB89Jc5HKt4vK1ywJsQm4deyt0Dg0uHrk1UxSumXcLXD5XRifNx6jspUz9/Mr5iM9MR0FqQUs54d8XSAUYDncC1MLMad8DrROLW6feDtjKrdPvB1apxZzy+cypvLdsd+FP+jH6JzRLD7V7LLZyE/NR2ZiJuZVKPrwmJwxGJ83Hu6AG98bo/CcnOQcLByxEBqHBt8f/30mA/1wwg9hdBsxs2gmYyrfGf0dSJKEyqzK8E4IAKYWTUVpRikS4xJZLpcRWSMwpXAKrF4rfjDhB+H6lPgU3Dj6RmgcGtww6gbGVL4//vuweW2YUjglvBsBKE98cnwySjNKWXyqSfmTMCJzBCRJwndGKXHHSjNKMatkFgwuA2MOcTFx+P7470Pj0GDBiAVMrrtl3C1wB9wYlzuOsbJ55fOQlZQVjs0ll3F54zA6dzR8QR/LN1KQWoC55XMx6BjEf0z4DyaL3TbxNuicOlxedjnzU7lpzE0IiiCqsqswIU+JT3VJySUoSitCemJ6OPozANLJJ0ygiVsdGyszk3R/jYZ2L2op5oc/pMlyxgx6o5bL9dfTjqKigvtSTJlCdfHxdMpLLpWVpNGbzTzXSXIy8Q+NRtHz5fL979PkNmkS+YbIZeFC2jEVF3NfiokT6TohuI9MSQntmPR67kMSE0P9GxykU2Fqyey736Xd1tixPPvh5ZfTriU7m+dyka/zejnPyc2l7x4cpP6o5a//+A+6p0svpb7I5cYbqQ8jR/K4YzNnUl9SUmgM5FJVRWNkt3O7pqeTnTQa4lVqCfEHP6AFb+pUvhu59lp6Waio4KzsIpVvmco3YCohEQpnZoxkDia3CWkJaVHMweaxQZIknqAI9HbuCXiidPFAKACL24LclFw2+QghYHQZkZWcxZgDQJJWcnxyFHOwe+0QQiAjiWvT3oAXTp8TOSlcFw+EAjC7zchNyWW6v9x2ZlImW2wAwOK2ICE2ASkJXJt2eB0IimAUc/AFfbB77chJzmH9C4aCMLlNFxzb9MT0KOZg9VgRK8UiLZFr0y6fC76gD1nJWazeH/TD6rFGja1s1+zk7KixNblMSE1I/cp29QQ8cPlcFxzbSNbyZWMrzGYgMRFShO4vHA4gFIIUyRy8Xpqoc3KiuYbJRJOgmjkIQbubjAzuQwLQpBQfH+1D4nSSRBPJHHw+evvOzeVth0LURk5ONM8xmUiaiWQOVitdG8kcXC7qYyRz8PvpMxdqOzubMweA2k5JiWYO9qFTnZHMweOh9iNZUiBAi+mFxjYzk/McgK5PTIzmOQ4H2SrSf+Wb2NVkoj5E2tVqpbGItOtXLN8ylYtYhBB45dQrqO6rxqSCSbhvzn3hyW9H+w58WPch8lPy8ciVj4Qn0gZdA545/gxipVj85Yq/hH0pDC4DVhxYAZvXhl/O+CXmV9LpLF/Qh78d/hvaTe24auRV4XwjAPDOuXewv2s/RueMxkNXPBSegA50HcA7595BVlIWHrnykTCcbje14+9H/o6QCGHRnEVhXwqLx4KVB1fC4DLgzsl3hqMIB0NBrDq6Cg36Blxedjl+O+u34clvff16bG3bivKMcjxy5SPhxau6rxqvnn4VKfEpWDJ/Sfj0Uq+1F08efhLegBd/uOwP4Z2Ew+fAyoMrMegYxPfHfz98+kwIgRdOvICzmrOYXjQdf7r8T+FFbVPLJnzW+BkKUwvx6IJHwwcCagZr8Hz180iMS8RDVzwU9ggfdAxi5cGVcPld+K9L/it8OssT8OCvh/6Kbks3bhh9A+6ccme47ddOv4ZjvccwIX8C7p97f3hh2dm+Ex/UfoDc5Fw8uuDR8O602dCMfxz9ByRJwoPzHgzvYowuI1YeXAmLx4K7p92Nq0aSx7s/6A/zqisrr8Q9M+8J2/W9mvewp2MPqrKrsHj+YmXhPHwY0ptv0oT/yCPK6aXOTkiyP8O99yoniGw20v31emIacr6RYJBytdfV0Vvz736nTEwbNgCbN5OEsmSJMsmdOkXae3Iy1cunl/r7ial4PPQ9cqRbl4u4Rn8/zzciBPmcnDpFb8aLFimT35Yt1H5BAbEFeRKvqyPfFjmPuuxLodNRG3Y7+aLIp7O8XsVXRJ1vBADeegs4dIh2GX/5i7Kw7N0LvPceLYyPPqosFK2txJ8A4P77lV2M2UxjazaTD47s8R4IULyu5mY6gfbrXyttf/ABsZsRI4hfyAvn0aPA669Tf5csUeKOdXcTn/H7Ke6YvJOw26nfWi2N6/eG1IVQiHK/nD9Pp+T+8AfFrp99RvHNiovpb0deQM6cIXskJZGfSpmiOlyM8q389TWLP+RHdV81yjPLUa+rZ0zlcM9hZCdlQ+fUMZ+Cs4NnIYSAJ+Bh+UM6zZ0we8xITUjF0d6j4XqDy4A2UxtKM0pxqOcQYyqHeg6hNKMUbaY2pr0f7T2KtIQ0GN1Glje8XlcPT8CDoAji/KCi0fZYe6B36pGVlIUjvUfC9RaPBQ36BpRnluN433HGVA72HCQfGWsvi21W3V+NxNhEWD1W5ivSamyF3WtHbEwsTvUrO8IB+wA0dvIeP9xzOFzv8rtwRnMG5ZnlODd4jjGVw92HkZuci0HHIIuBdVJzErExsbB77cxXpMPcAavHiqS4JMZttA5tOAbWoZ5D4fqgCOJ433GUZ5ajUd/I4qod7T2KzMRM6F165odzTnsOQRGEL+hjvKrL0gWj24i0hDRmV6PbGOZVh3sOM6ZyqPtQ2PdJ71Rp78eO0WRgNnOu0dio5CVRc43eXuW00WFlbGG300RdXk4sQc1UDh+mSb2vj2vv1dX0hmuzcV+Rtjaqi4vjbGFggBaUggKaxOXi8VCb5eXkIyHvAgDgyBGazLVanjfl9BAHc7l4/pCODto9paRwbqPTKb4i6n6HQvRzWRnxCnX8rSNHaFI3GrkfTm0tTep+P3EKuXR3E9fIyKDPysVsVnjV4cOcqRw6RPfU1cV9gI4fpz5E2rWpiXaBMTHKGACKbXJyeP8cDlpQysvpenWumsOHSe4bGOC86uRJsp3VynnVRSrfLipfsyTEJuDG0Teiz9aHKyquYEzl5rE3w+azYVTOKJbzY17FPCTHJyMnOQeXFCtn7sfljUN5Zjm8AS/LN1KYWohLSy7FgH0A3x/3fcZUbh1/KwbsA7i09FLGVG4YfQM8AQ8qMytZLpdZpbOQnZyN1IRUzCmfE64flT0KVTlVcPgcjOdkJ2djXsU89Nn6cPPYm5kUc8vYW6Bz6jClcApK00vD9deOvBYhEUJpRml4JwQAkwsnozCtEHExcUp2QACVmZUYnzceJreJ+eekxKfg2qpr0WfrwzUjr2FM5Xtjvwezx4xxeeNQmaWcuV9YuRBxMXEoSC3A1EIlPtWEvAkozShFMBTEdVVKXoqS9BJMLZwKrVPLfEjiYuJw85ib0Wfrw5zyOYyp3DTmJjj9TlRlVzGmMqdsDlITUpGVlMVY2djcsajMrIQn4AlHngYon8qlpZei396PW8ffyuSvW8cTp5NzwITL9dfTW3h5OfelmDGD5I6kJB6fqqqKfEhsNvJfkEtmJun+fX3EItRS0/e+R5Pl5Mn8rVV+Ey8uJpYhl0mTCD7HxHBfiooKus5g4HG5kpLopFRfH+V8V8t1N99Mk9uYMZypzJ9P95iXB0yfrtSPH0/36PdzHxmZvQwO8rZjYujn/n7iI2qmcuONtGiNGEHty2X2bLrH9HQlSjBA4zpyJE36Nyp2RW4ufbe8Q1PLe7feSvc0fTpnKtdfTzuc8nIed2z6dCWUjTqXy8iRtGOyWDjPSU8n9tLXR7xKzVS+9z1aRCdM4Ezl6qtpXIqLOSu7SOVbpvINmIqs72cnZzPmABBbSIlPQUIc1zAdPgdipJgoPwdvwAtPwBPFHALBAKxeaxRzkNvOTMxEXCxXL+U380jd3+mj0zaRfg6+gA8uvyuKOYRECGa3edi2zR4zMhIyotq2eWxIiE1AUjzXpl1+F4KhYBRz8Af9sPvsUf4rctvDja3JbUJ6QnoUc5B3Q5Fj6/F74Av6oljSvxrbr2PXC43thewqAgEE7VbEZUXo4kIgYDEhNj0TUqTub7XSxBzJHFwuehOPZA4+H/0ukneEQvRmHKnJC0H16enRur/NRhNcJHPweKidSJ7j99NOJDs7ug3ZIzwm4l3WbKbdWKTub7fTBB3JHLxeaj+SOQQCNFbD9c9kovFQT/iAsuuJbFs+oRbJHL7J2JpMdK9fx67BYDTPkcc2kud8U7vGx0f7Bn3F8i1TuYhFCIE3zryBQz2HwrGx5Alod8durK1Zi6K0IiyZvyQ8kbYYW/CPo/9ArBSLh654KPymbXQZ8cShJ2DxWPCrmb8KR7r1B/14+sjTaDY24/pR1+M/pypZ9N6vfR+72ndhfN543D/3/vAEK/uK5CTnYMmVS8KTdZelC08dphhR98+9Pxw92ea1YeXBldA5dbh72t3h01nBUBDPHn8WNdoa0v1n3BOeeD9t/BSbWjahKqsKD13xUHjxOj1wGqtPrkZaQhoenv9w+E2739YfZip/uuxP4XwjLr8Lfz30V/TZ+piPjBACq0+uxon+E+E8MnLb21q34aP6j1CaXoqH5z8cnsTrtHWMqcin0nROHZ44+ATsPjv+z6X/J5xvxBvw4qkjT6Hd3I7vjvkui+T71tm3cKD7AKYWTsW9l98bZmX7Ovdhzfk1yE/Nx5L5S8ILRZupDU8feToc00329De7zXji0BMwuoy4Z+Y9YR8ZBAKQ/vEPxDU20i7g7ruVP6wPP0Tc9u30NvrAA8okJ/uKZGWR9i77UnR3UyyvQIB8KeRdjN0OPPEEyUl33qm8zcva+9mziu4vT0Cyr0hlJWns8gJy9izlIklJobZlXwqNhviFy0X+LnIEY7ebeEBPD508kk8pCUH55o8dU3R/eWHZsYN8RUpKiDnIC2RjIzGghARiKvKpNIOB+me1Ug53eSfh8xHXaG2lU1Bqr/p33yVfkYkTaazkyV32FcnNJeYgLxQdHfRdQlC+eTl6ssVC/dbryQ9mwYKwXfHssyQvRvrIyL4io0cTz5HteuIEjUlGBo2tzMp6e8lPxecjVibvEB0OantggHKpyCffQiGy0alTio+MbNfNmym2Wnk52VVenGtqyAcoOZnq1Z7+F6H8W+UvSZJukCSpWZKkNkmSHhrm95IkSf8c+n2NJEkzVb+7V5KkekmS6iRJWidJUtJQ/TJJkvolSTo39O8m1WcWD31XsyRJ34ls72IUf8iPwz2HUZFZgfOD55k/w/6u/chOyobGrmE+BSf7TyIYCsLld7H8IR3mDvLUjk/Fwe6D4Xq9S48mYxNKM0qxt2svYyp7O/eiLKMMTYYmxlQOdh1EWkIaDC4D4xo1gzVwB9wIhALMX6PL0gWtQ4uspCzs79ofrrd4LKjV1qIiswKHug8xprK3ay+KUovQYe5geUWO9B5BQmwCTG4T8xVpNjSTx7kkMa7RZ+tDr7UXeSl52Ne1L1zv8rtwov8EKjMrcWrgFJx+xZ9hb+de5Cbnos/Wx3xFqgeqIUkSrB4r8wFqM7XB5DYhKS6JcZtBxyDaTe0oTitmbQdCARzqOYSKzArUamtZXLUD3QeQmZQJrUOLLktXuP605jT8IT/cATfOaxVe1WHugN6pR3piOg50HQjXw2CgybKsjCY5tUqwdy/5OTQ3c3+GQ4doMjAYONeor6eJJhQijVwuPT006WdlAQdUbdts5FBYWUk8QM1U9u0jyaWri2vvR4/S26zFwrX3lhblVNhRhRmhv58Wu/x8+k65eDy0OFZWEiRWM5X9++kNu7+f+4rIrMZu53lT2tqIgSQnc7ag1dI9lpTQWMolFKI2ysvJn0PNVA4coLd4nY5zjXPnaDfk83Fe1dVFUlZGBh9bs1nhVfv2caaydy/JTG1t3Afo8GHqg9HIc7Y0NJCt1GMA0GLT308LoHpsHQ5iKZWVxMDUTGXfPrJFTw/PRX/sGO3YLBYe2+wilX/boiJJUiyAlwDcCGAigDslSZoYcdmNAMYM/fsvAC8PfbYUwB8BzBJCTAZljvyx6nPPCiGmD/3bOvSZiUPXTAKlG149dA8XtcTHxOOaqmvQY+3BZWWXMXnjO6O+A6vXisqsSpbzY075HCTGJSIzKZP5UozJHYOS9BK4A26m+xekFmBa4TT02/px0+ibGFORec70ouks5Pm1VdfCHXCjOL2YxaeaUTwD6QnpSIxLDEcJBoCq7CpUZFbA5rUxnpOdnI1LSy9Fj7UH1426jklNN42+CYOOQUzInxD2mgfIVyQQCqAwrZD5yEwsmBg+OiufbAOAiswKjM4ZDaPLiBtHK9p0SnwKrqy8Et3WbsyvmM+Yyg2jb4DJbUJVThXL+TG/Yj4kiULPq3O4j8sdh6K0IviDflw9QtH9i9OLMTF/IjR2DWs7LiYO11Vdhx5rD2aVzGKy3HWjroPNa0NZZhlG5Sj+R5eVXoakuCSkJ6QzVjY6ZzRKM0rh8rvC3vQA6AGfPp307xtv5FLFTTfRgz91qnISCKAdjcdDE5Na9582jaSk+HjKdCiXESNogrFaFY9vgCbCyy+nSf+aa7jcc+ONNLGOG0cLm1wWLqRJuaCA6/4TJlBfhOC6f3k53aPBwJlDUhK9wXd3072qJbMbbqBJeeRIHi133jwl7L06l4uca8Tr5TynqIj4wMAAbzsmhn7u7VU4lFyuv54m5bIynsvlkktI9kpN5blcRo2iPtrtnOfk5NBnenupLbXEduONtMjLHEouV19Ni1ZxMWdlU6cqx67VcccqK2mMTCbun5OeTtd1d5O91HLWDTeQLcaM4f5Hss3knCoXu1woz/D/9B+AOQB2qH5eDGBxxDWvArhT9XMzgGIApQB6AeSAJLrNAK4fumYZgPuHaY99PyiN8Zwvu8dvmqM+GAwKg9MggpG5ooUQZpc5Kv+4EJQXPTL/uBCUk93qic7PHQgGhNFljMpxHgqFhMFpiMqvLgTlJo/M7S4E5UV3eB1R9b6AT5hd5qj6L+uf0WX8Wm27fC5h99ij6n0B37B517/J2No99qi88kL867G9GG1fyK5Bn1d4bOaoehEIUM73yBznQlC+8sjc7kJQbvLI/ONCUF50e/TYCp9v+LzrwSC1PUz/hNEYndtdbjsyr7wQVDdc7nO/XwhTtF2/tG2zOTq3uxDUt8i88kLQWAyX0z4QGD7neyj09dt2OqPzygvxr8f2/2l2NZmGt6vNNrxdv2LBl+So/3fKX/LCIJe+obp/eY0Qoh/APwD0ANAAsAohdqqu+/2QXPaWJEnZX/ZdkTclSdJ/SZJ0SpKkU3q1zPAVixACa2rWYNGORXjp5EsIiVD4dwe6DuDeHfdi2f5lLM1wm6kN9+28Dw/uehC9VuUWzW4zHt33KO7dcS9O9Ctb3UAogGeOPYN7d9yLjxs+Zu2vr1+PRTsW4dnjz/IQKn3VuHf7vXh036PsOGyPtQcP7HoA9++8H+0mRT6xe+1Ytn8Z7t15Lw52KdJbSITw4skXsWjHIqytWcva/rz5cyzasQh/O/y3cNh1gEKlLNqxCIv3LGbHYTV2DR7a/RAW7VyEBp1ylNrtd+OJQ0/g3h33YkfbDja2b5x9A4t2LMJrZ15jR253tu/En3f8GSsPrWRHjRv1jVi0cxH+svsvLHyLwWXA4j2LsWjHIhZ+3hf04akjT+HeHfdiY9NG1r+1tWuxaMci/PPEPxEMKRLGoe5DuHfnvVi6fylLddBh7sD9u+7HA7seYEeNYbEg5tHHkPinRTxkiKy9L1pEeTzU5eOPSUP/xz8IyMrl5Emqf+QRLt309RF7uf9+Lk05HBQj6t57uUwSCpHPyaJFxBjU0tvmzVT/5JM8dHptLTGIhx7ix2G1WqpbtIhLUx4P6f733ku5SuQiBPmKLFpEHCFS9rv3XopXpg7f0tJCfXvwQS7dGI3EIBYt4kdu/X7yLbn3XuDTT/nYfvABXf/cc1yaOnqU6h99lKcZ7upSxlYti9lsFEPr3nv5keJgkHjVokXUlrp89hld//TTXHI8c4auX7JESQgGUF8ffJB+16IckYfLRT4yf/4z5Z1Xj+2rr9L1b77Jx3b7dmr7iSd4+Jb6err+oYf4EfKLVP6di4o0TF3kUbNhrxlaKG4FMBJACYBUSZKGMv7gZQCjAEwHLTirvkZ7EEK8JoSYJYSYlR+ZWe0rFH/Ij32d+1CRWYFTA6cYU9nVsQtZSVnos/Ux7b26r5pOO3ntTHtvM7Vh0DGIlLgU7O1UdGCdU4daXS1K00uxo30HYyo72negLKMMtdpaNoHv7dyLlPgUaB1axjXOac7B6XPCF/Sx+GKdlk702fqQmZiJ3Z27w/VmtxmnB06jPLMcezr3wB9UJrid7TtRmFqIFmMLYyoHuw8iPiYeeqee+Yo06hthdNMDo/bX6LX1otPcibyUPOzq2BWud/ldYV51rPcYYyq72nchNzkXXeYutjAf7Tsavm+1D1CLsQV6px4JsQk40K3o3xq7Bs2GZhSnFWNnu/KeEggFsLdzL8ozy3FWc5YxlT2de5CZmIl+Wz/jVScHToajEqhjm6G9nSSPtDSu7xsMNFGXlRGgVk8AO3eS9FRfzyfw/ftJ0tBqufZeU0OTXCDAY0F1d5MMk5UF7FbsCpuNFqiKCvpO9QS3axdJXG1tfAI/eJBkGKORa+9NTdSX2Fjuj9LXR33Pz6f+ycXjoe+qqKB7lZmB3HZ2Nun+al+RY8dosrZaec6W1lYan8RE6odcBgeJV5WU8LZDIWqjvJz8OdQT+J49ZKOBAR4D68wZmsQ9Hr5wdXTQ+GRk8IndZCIOU15OdlQvXDt2kMTV2MiZyv791Aetli8edXXEOoTgvKq7m/7l5lIbcrHbiVdVVBCnUTOVnTvJFh0d3Afo8GGSBY1Guq+LXP6di0ofAJWQhzIAA1/xmmsBdAoh9EIIP4BPAcwFACGEVggRFEKEALwOYPa/+K6LWuJj4nFl5ZXosfZgZvFMxlSuGXkNLF4LSjNKUZmp+FLMLp2NuNg4pCWmMV+KUTmjUJBaAKffyfKM56fkY1L+JPTb+3HdyOsYU7mu6jr02fswMX8iYyoLRiyA0+9EQWoBizs2rWgaUuNTER8bj1mlygnAkVkjUZJeAqvXimtGXhOuz0rKwvSi6ei19mLhiIWMqVxXdR20Ti1G54xGcZpy5n5+xXz4Qj7kpuSGT5cBwPj88chOoo2k2kemLKMMlVmVMLgMLM9KSnwK5pTNCfMqNVO5tupaGN1GVGRWoDxTMfOc0jnh+1bnGxmTMwb5qfnwBr0sNlZxejHG5I6BxqHBtSOVtuNi4rBwxEL0WnsxvWh6+L4B4OoRV8PqtaI4vZjlcplVPItC08SnMFaGUaOIizgcxBLkkpdHun9fH3l9q5nKddfRhDVxIk/Ru2ABTXAFBUr2Q4A8rdPTaWKXowQDpL2XldHEpM5xnpFBun9PD/mAqJnKtdfSRF1VxU8CzZ9Pi1ZuLo+NNW4c1QUCXPcvKyPdX6/nMcFkX5qeHsoXoj4qe/XVxFTKynjOj8svp4kvI4P7UowZQ+Po8SinrwAa73HjaIFQtx0TQ+PQ20tjpmYqV12lpAZW53KZMYPuOSlJiRYAUN9KSmgiV9s1J4e+u7eX2lIzleuuoxeMceM4K1uwgPqQn89Z2aRJ9EIgSdxHpqKCFi2Tids1PZ24T08P2ULNVK69lmwxciT3P5o3jxbb7GzOyi5WuZAu9j/9B2IhHaDdRgKA8wAmRVxzM4BtoF3G5QBODNVfBqAeQMrQ794F8Ieh3xWrPn8vgA+H/n/SUBuJQ212AIj9snv8pkwlFAoJvUM/rPZucpmEN+CNqrd77cLpHZ6pWNyWqPpAMCAMTsPXYioWt2XYtp1ep7B7ozVab8A7LNcIBANC79BHtS0EMRV/IFqjtbqtwu2L1mhdPpeweaK1d3/Af0Gm8mVjO1zbdu+XMBV3tPbuD/iHZSqyXYcbW4fdJPz+6LF1u+3C4x5Ge/d6hbBE2/WCTEXW/YfT3i2W4bV3p3N47d3rvTDX0Ou/PlMZjmu4XMNzDb9/eK7xZW2bTF+fqVxobI3Grze2ZjONV2RxOIZnKl7v8FwjEKD+Ddf2hZjKhex6IabyZbzqy8b269j1KxZ8CVP5ty0q1C5uAtACoB3AkqG63wL47dD/S6ATYu0AakGnveTPLgfQBKAOwHsAEofq3xu6tgbApohFZsnQdzUDuPFf3d83XVTWnl8r7v70bvHyyZdFMKQY8lD3IfGLjb8Qj+17jIHxDlOH+O/N/y3+uPWPos/aF663uC1i8e7F4lef/0qcHjgdrvcH/eKZo8+Iuz+7W3za+Clr+5P6T8Tdn94tnj32LJv8TvWfEvd8fo9YvHsxW6R6rb3iD1v/IP7P5v8jOs2d4Xq71y4e3fuo+OXGX4ojPUfC9cFQULx04iVx96d3iw9qPmBtb23ZKn7+2c/F3w79jS1etYO14tebfi3u33G/MDgN4fpB+6C4d/u94jdf/EY0G5rD9W6/W6w4sEL8fOPPxZ6OPeH6UCgk3jrzlrj707vFG6ffYIva3o694ucbfy4e3/84W0BaDC3iN1/8Rvx525+Fxq4J1xtdRvHAzgfErzf9WtQM1oTrfQGf+Pvhv4ufffYzsbl5M+vfupp14u5P7xYvnXiJ2VUcPSrEL38pxCOP8Ie9s1OI3/1OiN//XoieHqXeahXi4YfpMydOKPWBgBDPPSfE3XcLsWEDa1t89hnVr1rFJ4EzZ4T41a+E+Mtf+GTW3y/EH/8oxH//txDt7Uq90ynE0qVC/OIXQhw8qNSHQkK8/DK18d57fPLbvl2In/9ciCef5JNcfb0Q//VfQtx3H01actHphFi0iH7X0KDUezxCPPEEfdfOnbztd9+ltl97jbd94ADd67JldO9yaWujvv3pT0IMDCj1JhONxa9+JcTZs0q9zyfE009TG5s28bH96COq/+c/+eReXU02evhhfuigu5ts+vvf0//LxWYTYskS+szx40p9ICDECy9QGx99xNvetInqn36aL5znzlEfHnyQLxQDA9Tn3/xGiNZWpd7lEmL5chrb/fv52L7+OrXx9tt8bHfupOufeILbtbGRbLdokRBarfgm5csWlX+rn4oQYqsQYqwQYpQQ4omhuleEEK8M/b8QQvxu6PdThBCnVJ9dKoQYL4SYLIS4SwjhHaq/a+jaqUKIW4QQGtVnnhj6rnFCiG2R93Mxii/ow872nSjPLMex3mOMqWxv247MxEx0mbtY/K2jvUfD2QbV2nuLsQV9tj4kxSVhV7vCFnROHc4OnkVpeik2t2xmTGVz62aUZZThrOYsyxO/s30nkuOS0W/rR6tJAbdnBs7A5rXBE/DgeK/iK9Jh7kC3pRvpienY3rY9XG92m8Oxzba3bWdMZXPrZhSkFqBB38Cg+N6uvYiVYjHoGGS+IvW6euicOoREiB0G6LH2oNXYitzkXGxt3Rqud/ld2NdFvOpg90HGVLa2bkVOUg7aTG0sX8zBnoMIiRAMLgOLv9VkaILGrkFcTBz2dCr694B9AHW6OhSmFmJL65ZwfSAUwPb27SjPLEd1XzXLVYMdO0hm6OnhviLV1SRN2e1ce29tJYkrNZXr33o96fVlZQTH1UxlyxZiKufOce19927S3gcGuPZ+7hzJRj4f1947O+lfZiaBWrlYrcQpysuJMaiZytatJMM0NnKmsm8fyTBaLdfeGxpILpMk7q/R20vsJS+P+iMXj4f6Iev+aqaybRvJPR0dPK/I4cME300mnlekuZnGIiGBc43BQWIvJSU0tnIJhah/5eXkIKhmKjt2kI16ezmvOnWKZDGHg/uKtLfT30BaGuc2JpMS22zLFs5UtmwhplJby6H4nj3Uh4EBzqtqaugeg0Huh9PVRe3n5FB/5GK3E9eqqCB7qZnKtm1ki+Zm7gMk20yn4wctLlL5NvbX1yzxMfGYUz4HvdZeTCmcwlLYynnlC9MKmS/FJcWXIDYmFsnxycyXoiq7CrnJuXD6nbiiUonflJ+Sj7G5Y9Fv68fCyoWMqSwcsRB9tj6Myx3HUhBfUXEFHD4HclNyWdyxKYVTkBSXhNiYWMwsUfThysxKFKYVwuqxMuaQlZSFyQWT0WvtxRUVV7AQ8AsrF2LQOYgR2SNYzo85ZXMoxHxSFouNNTZvLDITMxESIZZvpDS9FKUZpTC4DFhQqejiKfEpuLSEfGQuKbmEMZUFIxbA6DaiJL2E5XKZXTIbIRFCRmIGxuUq5/1H54xGTnIOPAFPOFIBABSlFaEquwqDzkGW2z0uJg5XVFyBXmsvJhVMYkwFV16ppMhV+1LMnEm+FElJ3Jdi5EjS7u124hJyyc0lbV2OgaVmKgsX0oQ+dizPoz5vnhJqXa37T5pEE6Ik8RzuFRXECCwW7kOSkUG+Lb29xCvUTGXBAppgKit5fKo5c2hiz8zkPGfMGKoLBLjuX1JCE6tez3OBJCVRmz095KejZioLFtCkXFzMfSlmDfG/1FTuSzFqFLEAt5vznMJC+p1Gw9uOiaFx6O0l/xp1iJMrr6QFLj+f23XaNBqfhAQed2zECPobsFq5XbOz6R57e+k71Uxl4UK6p6oqzsrmzaM+5ORwH5kJE5SoAmofmfJyGiOjkfcvLY0YUE8PXa9mKgsWkC3Kyrj/0WWXKaH11azsIpVvY399w9hfRpcROSk50fGpLpB3w+61I0aKiYoR5fF74Al6ovLHB0PBcE6T4fJuZCdns3wjAHnDJ8UmRcXfcvqcCIlQVPytC+VT+bK2TW4TMhIzouJvWT1WJMQmhFMMy8XlcyEgAlH5430BHxw+B7KTs6NymphcpqixFULA7DYjLSEtKv6WzWtDnBQXlcvF4/fAG/QOE1fND4fHhsyU6NhfFqcRGSnRYwuzmTzbI+M02e00cUXGiPJ6adKIjBEVDCp5NyLjNMk5P4aLTyWDY3W5UIwon0/Ju6EuoZCSd2O4+FQZGV89RpTbTQtOZOwvn0+JTxWZ08RkovrI2F9yPpWvGvvL46Hx/Tqxv75sbJOTo+3qGHIJiIyr9k3s+mWxvxITL55dI8dWbnu4fCr/xthf3+5UvkH5uOFj3LfzPrx99m3mS1HdV40Hdz+Ip48+Dbdf2YZ2W7qxZO8SPLL3EWjsylFcm9eGJw49gQd3PYiawZpwfTAUxMunXsYDux5gEg0AbG7ZjAd2PYBXT7/KfCnODZ7Dg7sexF8P/5X5UgzYB/DI3kewZO8SJhu5/C78/cjf8eDuB5mPTEiE8Pa5t3HfzvuwoWEDa3t3x27cv/N+vHjiRSaLNeob8Zfdf8GKgytgditHcfVOPZbuX4rFuxczHxlvwItnjz+L+3fdj0PdypFUIQQ+qP0A9+28D2tr1rKxPdxzGA/segDPHH+G+ch0mDuweM9iLN2/lMmBFo8Fjx98HH/Z/RfmI4NAAHEvvISs398PaZciOQKA9OmnyP7dfYh98y16UOVy8iT5Dvz979yXoreX/EceeYSHN5Hjbz34IA/zEQxSHK/776c8F+qybRv5RqxezeWT2lr6niee4LLR4CD5Vzz8MJeN3G7yiXjgAe4jIwT5p9x3H7B+PW973z66/vnnuSzW0kK+DMuXcx8ZoxFYtox+p/aR8fnoOx54gB/3FYL8cu67j3K2q19kjx6l6//xD+5L0dlJcakefZTLgVYr+Ws88AAdv5VLIEBjd//9XJoCKK7Z/fdT/hK1Xc+coe958kllEQFoxyjbtU8JCQSnk+JyPfAAlztDIeCNN6iNjRt52zt2UP1LL9E9yqW+nmKByTnv5aLVUp8XL+Y+Mh4PjdEDD3AfGSGAtWtpbD/6iI/twYPD27WtjWy3bBkdDb/I5dtF5WsWX9CHLa1bUJ5ZjoPdB5mj4eaWzUhLSEOrsRXtZmUSPdJ7BE6fEya3Cac1yh9js6EZ3dZuJMQmYFubgoC0Ti1O9p9EUVoRPmv6jDGVz5o+Q3F6Mar7qtkkuq11GxJjE9Fl6UKzUdFoT/WfgsltgsPnwNEeRXtvM7WhzdSGtIQ0bG5RNGiz24xD3YdQllGGzS2b2eLxefPnyE/NxzntOfTbFe19V8cuSJDQa+1lviK12loMOgbJt0cVZ6vb2o0GQwOyk7KxqUWZXF1+F3a17wr7yKiZyhctXyArKQuN+kbmA7S/az98AR80Dg1qtMrC3KBvQK+tFzFSDHZ2qLhGfz9N9AUFfAIIBIAvvlByYqgn0S1b6G25tZVr70eP0gJiNnPtvaWFJvrERK5/6/XkU1BSQkEc1RPAZ5+RbHXqFNfet2+nt8zubp5X5MwZ+j6Xi2vvHR3UfkYGZwtWqxIDa+tW7uT4+ef0hl1byyfR3btpwuzr49p7XR2NYzDIuUZPD/0uN5e+Uy4eDy2acmws9eL4xRf0Ft/czH1FDh6kz+n1fGFubKTFPD6eLx4aDU30hYU0lnIJhWgBLy2lRVY9iW7ZQm/qHR18cayuponeauU+QK2txDWSk7ldjUb6WygtpX6rXwo2bqR7OnOG7lEuO3bQrqKnh9v13DmSIr1ezqs6O2mMMjP5C4ndTjYoL6e/FTVT+fxz2r3U1XEfoD176B4HBrgP0EUq3y4qX7PEx8Tj0pJL0WvtxYT8CUzWmVs+FxaPBXkpeSjPUPThaYXTIEkSkuKSmC/FiKwRyErKgsPnCGcmBIC8lDxUZVdhwD6AeeXzGFOZVz4P/bZ+VOVUhbM7AsDlZZfD7rMjOymb5XCfWDARSXFJiJFimI9MRWYF8lLyYPFYGHPITMrE+Lzx6LP14bKyyxhTmVs+FzqnDuUZ5ShMVc7czy6dDW/Qi4zEDMZzRueORlpCGoKhIIuNVZJegqLUIhjdRswrV3Rx2d+j19qLaYXTWCj7ueVzYXQbUZhWiNIMRR+eWTyTpL2EdBbzrCq7CpmJmXD73YznoLCQHsDBQa7Jx8aS1tzXR9xDLW/MmaOkqVXnpZg6lT6XmMh9KUaMIKnF4eBxuXJzST/v7wfmzuUyybx59JCPGMFzflx+Ob0hZ2Vx3X/8eJrcJInr/mVlxAjMZmpDLunpiu4/axaXQ+bNo4mstJTHp5o1Swlvr+Y5o0ZRnd/Pdf/iYvqn0/GxTUpSYmNNnsxlnblzaQEvKOC+FDNn0qKbksJ9KUaOpInV5eI8p6CAmFCkXWNiaAz7+ogFqVMQz5mjpD5W+8hMnkyLVlwct2tFBV1rs/Hc9dnZxCb6+ug71RLbvHl0T5WVnJVddhktAJmZPI/MuHEkpYZC3EemrIz6aDJxu6alKT4yM2ZwOWvePFqUi4u5/9GsWWS79HTOyi5S+ZapfMMc9QanATkpOWzSlXlHWmJaVJ54q8cKCVJUbg+33w2X38UWCIDC35vdZuSl5jG2ILednZwdxTWMLiNS4lOiuIbNY4OAiGILnoAHDq8jip0EQgGYXKaotoUQMLgMyEzKjMoTb3KZkBSfFJXTxO61IxgKRuVs8Qa8sHltUbnag6EgjC4jclNyo3LUG1wGZCRmRPEqi9uC2JjYKGbk8rvg9XuQHcGM4PPRIpGXF637Gwz0dqfWv2VNPi0tWv+2Wuk7ItmC200TXy63K/x+mvDz8qL1b71eCRKpLiYTTRaR+rfdTm+ckfq+x0MLWqS+HwjQdw3XtsFAE1yk9m42U91wOep9vug88V4vTbqRYxsM0hjm5kbnqDcaaYKL5BoWC10byRZkb/dItiCPbX7+V7MrQG2npESPrc1G9xbJbTwe6nukXb9sbPV6slHk2JpM9PcUyYwuZFevl34XadcvG1s5U2Xk2F7Irl+xfMtULnL5vPlzLN67GB/UfsB0/zOaM1iydwn+Wf1PeAKKPtxn68PyA8vx18N/ZZKVw+fAqqOr8Oi+R1GvU+QFmWs8vPdhdtQYoKPDi/cuxjvn3mFxx+q0dXh036NYdXQVizumdWix8tBKPH7gcZaG1+134/njz2PJ3iXsmLMQAh/UfIDFexfji5YvWNsHug/g4b0P47XTr7G4Y63GVjy2/zE8deQpdsTa6DLiycNPYumBpUyy8gV9WH1yNZbsXYJjfYruL4TAJ42fYPHexdjQsIGN7fH+41iydwlePPEifEFFH+6ydGHZgWV48vCTLBUArFakrHwK2Q8+xo/iBgKkrT/8MNf9AZKLFi8mjVr9snXuHOnrzz3H5YX+fopZtXIll6ycTsoF8sgjXPcPhYhrLF4crfvv2kX39NZbXD5paKDvefppHjJepyPOsnw5D8Hh8VCujCVLSEpTBhf48ENqO1L3P3yY2n7lFR53rL2dYl397W80CcnFZCIOsXQpl6z8fvqOhx/muj9AbS5eTPegHtuTJ+leX3iBS3I9PdQ3OX+JXGw2GotHH+XHnINBin318MNckgNIelu8mMZezVTOn6exffZZWqjkotEQ61ixgrMyl0uxq/qYcyhEue4XL+ayGEBhepYsoXtT27Wpifrw9NNcDjQYqM/LlnHJyuulvCkPP8ylViGIkS1eHB3z7OhRavvll7ldOzrIdk8+yWXei1S+XVS+ZvEFfdjYtBGFqYXY07GHMZWNTRuRFJeEOl0di78ls5cB+wCD4o36RjQbmyFBYkBe69DiSM8R5KXk4eOGjxlT+bjhY+Sn5ONw72G2QG1u3YwYKQYtxhY0GxSmcqL/BLQOLUxuEw73Ktp7m6kNDfoGJMUlYVOzotGaPWbs6dqDwtRCfNb4GWMqGxo2ICsxCyf7T7KcJtvbtiMQCqDD1MF8Rc4PnkePtQcunwu7O5Q4VF2WLpwbPIe0hDR82qg8CC6/C1tatqAwtRBb27YypvJZ42dIS0hDjbYGnWYFYO7t3Aunz4leay/ODZ5TDFVfTw9PMMiDGw4M0EOZlQVsUB1ECATooSwsJN1f/bBt2kRvdY2NXHs/coSu02q59t7cTP9iY4kZyEWvJ5+CggIKIKmeXDdsoDfNo0f5ArVlC72VtrbySfTUKeqLzca19/Z2WsiSk/niYbXSwlVYSFq7egLfsIHeyE+f5gvUjh20G+ns5ItjbS0xI4+HvlMuPT3EDjIy+ATn8dA4FBaS3456cdy4kd7Ua2v5AnXgAPWtr4++Uy6NjcS1hOB21WiImeTmcruGQvRzQQFxGjVT+eIL2rk0NXFfkWPHyFYGAz/s0NJC18bFca5hNNILSkEBJcVSLx4ff0y7uePH+QK1dSv1oa2NXhzkcvo09dnh4C89nZ20kKWmcrs6HMRSCgvppUj90vPpp7TLO3s2mql4PGTDGoVDXqzy7aLyNUt8TDxmFM1Av60fY3LHMKYyq3RWOE2tOof75HzSZRNjE5kvRUVmBTKTMuH0OxlzyEnOQXlmOTR2DS4rvYwxldkls6Gxa1CZWclyflxSfAkcPgcykzJZbKxxeeMQHxuPGCkGk/ImhetLM0qRnZwNq9cazooIABmJGRidPRr9tn7MLJ7J5L3ZpbOhc+lQnF6MglTlzP2M4hnwBrxIS0hjPKcqpwqp8akIiiCLjVWcRp83uoyMdyTHJ2NSwST02/oxMW8ik9IuLbkURpcReSl5KE5XfCmmFU5DUASREp/CYp5hxAh6oDwerk3n55O+rNPxmFmxsaT79/cTM1DLHrNm0QSXnc11/0mT6HMJCVz3Ly+nzzsc3IckO5vua2CA2lZLGLNn02JSXs6ZyiWX0M4nI4Pr/mPHkqQhBGnqciktpYnVYuG8Iz2d9Pr+fmIwailm9myaRAsLeXyq6dNpUUlL4zxn5Eiq8/s5zykspInVYOBjKzOn/n4aJ7XkcumlylFcte4/eTL1LSmJ6/4VFTQWLhcf27w86vvgIG87JobsNzBA962W62bNogUuK4v7yEyYQAtHXBz9v1zKy+lau13xowGorqqK2rjkEi5BzZ5NLx2lpZypXHIJ9SE9ndt1zBh6IQiFuF2LixVWprZrairdY38/Xa+WZ2fPJlsUFHBWNnUqvUSlpXGec5HKt0zlGzCVQCgAnVOH/JR8xjWEENA6tchIzIhiCya3CTFSTJQ/isPngMvvYpM0QMzB5DahMK2QcY1gKAidU4ec5BzGFoQQ0Lv0SIlPQVoCP1tv8VgQEqGofPBOnxMOnwMFqQWMa/iCPhhcBhSmFjKuERIhaB1aZCdnRzEjvVNPCasiuIbVY0UgFIhiRm6/G1avFYWphVE858vGNjMxM4oZGV1GxMXERTEj2O1K0D518Xjo4Sws5Pp3MEgTQF4en3SFoEUoLS1agzaZaHGIZAsOBy0GBQV88fB6FTCtnnxCIWo7Jyda/9bp6G0+0mfCYqHPRbIFl4sWwcJC3rbfT4tHQQFnC3Lb2dnRzMhgoLGIZEY2Gy046gUQoDdli4UmsUieo9ORLdTMSAhqOyMjmi0YjTRGkWzBbqd2CvgzEx7b4eyq09HC9VXtKst9kXZ1Osm2kXb1+WisCguHt+twY6vXU10kM7JalUCe6vJ17SqPbWZmNDO6kF2/YvmWqVzksqNtB1YcXIFPGz9lun+NtgZPHHwCr51+jflSDNgH8Pcjf8eqo6uY7u/0OfHSiZfwxMEn0KRXjhWGRAjr6tZhxcEVLNUvAOzr2ocVB1fgw7oPGVNpMjThiYNPYPXJ1SzfiN6px6qjq/D00aeZj4wn4MGrp1/FyoMrWYpjIQQ+bfgUKw6uYKHhAeBoz1GsOLgCa86vYT4yHeYOPHn4STxf/TxsXkUfNrvNeO74c/jb4b8xHxl/0I+3zr6FlQdX4tQAX9S/aP4CKw6uwBfNnOdIp06h6KGVSH71Ta4P9/Yid9lTyPzbs1yystuJLfz1rzy0SjBI+veKFdG6/65dVL9hA5em6uuJm7z6KvelGBwkTfwf/+Dh6l0u0rH/+ld+XDQUIl+CFSt4SHyA5J4VK4D33+e6f0sLad8vvsh9ZAwG0vf//nceWsXrJWb0xBNc9xeCjtquWMHDtwAkzaxcCbzzDvel6Oyktp9/nucbsViIL/3tb1xWCQQo5/sTT3A5ECAZb8UKkm4iedXKlXTPal+Kvj7gqaeId6hDqzgcNBZPPsmlyFCIWNiKFfyINUByz+OPR/txNDSQjV5+mctGWi3Z9B//4D4ybjcxoyee4JKVECRzrVjB0w0AdC+yXdWyWFsbtf3ii9xHxmQiuz71FD/e7fORL8zKlfyItRAkZ65YwY+QAyTzrlxJNlE/M93dytiqfWQuUvl2UfmaxRf04eOGj5GZmImtbVsZU9nQuAGSJOGM5gyLv7W/a384v7k6V3uDvgF1ujr4Q37mr6F1aLGvcx/SEtKwrnYdYyrr6tYhLSENezv3MqbyefPn8If8qNXWolGvaO/H+46j29INjV2Dgz1K/K1WY2uYQai5htljxrb2bchMzMRH9R8xpvJh/YdIjkvGkZ4j6LUp2vvWlq1w+pxoMjShVqssUGc1Z9FqbIXZY2YHDjotnTjRfwJxMXFYX6844jl9Tmxs3ojMxExsatnEDhzg44/pLezkSa69796t5PlWa+91daS/u1z8YevvV/KDf/ihUh8I0M8ZGcQS1AvUJ58Mdegsh/6HDpGW39vLtfemJtKqAwGuf+v1NMGlpwPr1vEJbt06els+cID7M2zaRAtZfT33FTlxgjRxrZZr721tpMtLEmcLVivp+JmZVK9mKuvX0+7o2DEeI2r7dlqc5f7IpaaGGITVyheo7m5aTOLjuYOlx0MLWmYm2ULNVD7+mN7sT5/mi/++fbRwdnTwAwf19TShu92cVw0MEDNJSeGJskIhGtuMDPpbUUP/jRvJRjU1fPE/coQm9L4+vkA1N9NCHQpxZmQw0AtJRgb9DakXj3Xr6J4OHuRM5YsvqA/19ZxXnTpFfTYa+YEDeRxiY2nM5OJwKL4+n33GF8f168kW1dV88d+5kxaTlhZa1C9y+XZR+ZolPiYek/InQWPXoCqrisk9MwpnwOa1ISspi+Vwn5A3AZIkITEukflSlGeWIy0hDS6/C9MKp4Xrs5OzUZJeAq1Di5nFMxlTmVE0A1qnlpiIKj7VtMJpcPqdyEjMYLGxRmWPCjOV8bmK7l+SXoLMxEzYvDbGO9IT0jEiawQ0dg2mFExhTGVm8UwYXAYUpBYgP0WRlKYUToE36EVqfCqLeTYiewSSE5IRDAUxqUDhOUVpRchJzoHFY8GM4hnh+uT4ZIzLHQeNXYOxOWO5hDhzJj0I2dlcH544kR7y5GSuD5eXk6zh9VIsJ7nk5ZF8YDBw1hIbS9fJPgVqWWDaNJIdsrK47j9uHMks8fE8J0ZpKX3e4eDMISuLmMzgIPkUqCWMmTNpt1NczGWPqVNpokhL47r/6NGKlKPW/YuLqR2bjdqQi6yfy/nS1TLQjBk0ieXnc0lp8mSFqaj9cyoqaAEMBLgfR0EBja/JxNtOTKR71GjovtVS0/TpZNecHG7XCRNo0U1M5D4ysl3dbm7X3Fz6vF7P246JoTZkXqWW0qZNIxtlZPDYWGPH0gtMbCyPjSXb1W7nds3MVHyfpk3j8teMGXRPRUVcKpw6lRbbSLtWVVGfQyFu16IiGiOLhfcvJYX+9jQaul4tnU6froTlUbOyiRPJdqmpnOdcpPItU/kGTMUf9EPj0KAwtTCKa/Tb+5GZmBnFFnROHWKkGBYEEiDm4PA5UJJewtiC2++G3qVHaXop4xqBUAAD9gHkp+QztiCEwIB9AGkJaVFsweAyICRCUdzG7rXD6rWiNL2Ute0NeKF1alGcVsy4RjAUxIB9ALkpuVHMSGPXICkuCdnJXIM2uU3wBX0sACVALMnsNqM0o5QxI1/Qh0HHIIrSirgvTChEu4zs7Gi2oNXSxB7JFiwWmnwi9X2XiybRkhI+Afj99HAWFHD9Wwgl41+kBq3X03dHsgWrlSaskhLetttNnykp4fp3MEht5Odz/VsIuqfU1GifCYOBxiWSLdjt1H5paTTP0Wpp4VFzDXlsc3Ki2YJGQ2MRyRZMJlpwirhd4XTS70pLOdeQx7awkE988thmZQ1v17i4aLZgsZANi4uj7WowUNtquwYCtEsYzq4DA7RzHM6uQDSPs9lofCPt6vHQS8GF7JqXx5mRbNeUlGhmZDTSPasXAoD+niwWakM9tj4fLWhFRfxl4cvsOjhI10Y+M1+xfMtULnLZ17UPq46uwpaWLYypNOgb8OyxZ7Hm/BrmSzHoGMQL1S/g5ZMvw+hS9GGX34U3z76J56qfY2FdQiKETxs/xaqjq1gaXoC4xqqjq1j4FoCOCD93/Dm8dfYtFnfM6DJi9cnVeOnES9A6FH3YG/Di3fPv4tljzzK5TAiBzS2bseroqiiec2rgFFYdW4WP6j5iTKXL0oXnq5/HG2feYJKV1WPFK6dewQvVL7AjyAgEkPbOByhf9gxizp1XN4GEbTtR8dgqJGyN8OOoqSEN+P33uT7c30/s5JVXuD7scJBO//zzfOsfCpF8sGoVP+8PkPS0ahXJCeqXraYmavvdd7lspNORJr56NT+q6nYTn3juOa77y/r3qlXRuv+xY1S/YQNnKh0d9D1vvsl9KUwmYgEvvMCPIPt8xIyefZbLZUKQ/LVqVTTPOX2adPxI6aanh8b2tde4ZGWzUd0//8mPIAcCJPc88wyXIgGSnlatomPA6rGtraXr167ldtVoaGxfeYX7yDidNBbPPcdjY8lHh1etIkakLocOUX1kaJzmZhqnt9/mrEyvp1hdL73E5TKPh+z67LP8CLIQJFOuWkUyl7pUV1P/Iu3a2Ul/m2+8wVmZ2Ux9fuEFLpf5/TRGzzwTHVpl2zZqO9I/59w5un7dOs7KensVu6pZ2UUq3y4qX7P4gj6sq1uHxLhEbGrZBKtXMcr6+vXwBr2o7q9Gq1HFVDr3o9fWixZjSxRTOas5C7vXjs8alXhFWocWOzt2Ij42Hmtq1jCmsqZmDeJj47GjbQe0TmWR+LTxUzh8DpzRnGHxt472HkWbqQ3dlm7s794frm8xtqC6vxqegAfrGxT92+wxY1PzJiTGJeKD2g+Yk+PamrWQIGF/9362SGxp2QKjy4jzg+dZ/K0zmjOo19dj0DHInTg7O0m3lvVuubhc9PAlJhLHUD9sH35ID8bRo3wy2bWLJqD6eh7kr7aW9G+TifsU9PXRpBoTQwuUXAIB+jkxkXR/NVP5+GOaUE6c4JPJgQPENdraeE6TxkYlJ4dae9fpaAJISKCJXz3BrVlDu4fdu/kisXEjTeJnz/JForqaNHG5P3Jpa6NJ1eslMC0Xm40m1cREGkv14vjBB3QvBw9yprJ1K02qNTUc+p87R+Mr90cu3d00gQvBuYbHQ/eSmEi6v3qB+ugjmjCPHuVx1Xbvpr41NvLFv66OxsJq5fHFBgZoUo2Lo8lXLrJjYkIC3at68f/kE/qbO3WKM5XDh2kx7+ig/siluZmudbkUzgbQzmLLFmpj7Vq+MK9dS39re/dGMxWLhcZSzVROnlTy2qihf3s7jZHM/uRit9OYJibSWKqZygcfUP8PHeJBR7dvp12gPJYXufxbFxVJkm6QJKlZkqQ2SZIeGub3kiRJ/xz6fY0kSTNVv7tXkqR6SZLqJElaJ0lS0lD905IkNQ1d/5kkSVlD9SMkSXJLknRu6N8r/44+xcfEY1zuOGgdWpRllLGcH5MKJsHusyMjMQOFacrWdXQunbOPj41nfhwl6SVITUiFO+BmzCE7ORuFqYXQO/WYUjCFMZUpBVOgd+pRlFbEjidPKpgEV8CF1IRUxnNGZo0kLiKB8ZyitCJkJGTA4XOwHC/pCekozyyH1qHF+LzxiJUUGWFK4RSY3CbkJueyI8Lj88bDF/QhJSGF+eeUZ5YjOS4ZgVCA5a5Hfj5t+S0WrsknJZGPiFZL+r9aqpg0iSaSzEwu94wZQw9OUhLX/UtLSVrwenk+jtxckiIMBu4HEBtL12m1xD3UxzwnT1a0d3W+kVGjaMKIjeU8p6SE5AaXi+5bLpmZ9HmtltpWyydTpyrHQtVS08SJ9D2pqZznjBhBi5AQnOcUFiq6v3psU1NpfLRaul4tk0yeTG/IOTlcxhs/nib8lBTOHMrKSKLz+7l/Tn4+3bvJxMc2IYHa1GrpvtUy0OTJtOBlZnK5Z+xY6ltCAveRKS2lvng83K45OYqPjLrtmBiygcyr1DLXpEn04pKWFm3X2Fj6p851UlxM1zqdvG2Zyeh0VK+WpqZMoUUnL49LTePHUx8i7VpZqfgfqXlOYSGNkdXK+5eSQuOj1RKvUkuLU6YoHFIt440fTwtfUhLnORerXCgl5P/0H4BYUGrfKig56idGXHMTeI766qH6UgCdAJKHfl4P4OdD/389gLih/38KwFND/z8CQN3Xucdvmk7YG/CKdlN7VF70YCgoOs2dwuw2R32m39YvBu2DUfVGl1F0mbui8sE7vA7RbmoXvgDP3e0L+ES7qZ2lKxaCUvF2mbuGzb2usWvEgG0gqt7sNotOcydPnSsor3y7qT0q370/6Bcdpo6ofPehUEj0WHqE3qkXkUXn0Ilea29UvbBahejoiM7d7XZTelx3RL77YJCuHy4vel/f8GlRDQZK8xuZN9xup++KzN3t9VLb6rS21EFKHTxcbvKBASE0muh6k0mIrq7otp1OaiMyJ7vfT/WRedFDIUppO1ze98FBSiscWSwWut/InOUuF7URmRc9EKDxUKfUldvu6eGphOWi0wnR2xvdP5tteLt6PBe2a2fn8Dnn+/qoj5HFYKAxGc6u7e3RdvX5LmzXrq7h875rNDyNsVz+lV0j893Ldo3MOS/b1WAQUUWrpb5HlgvZVX5mLmTXyGcmFCLb6XTRbXzFgv+ldMKzAbQJITqEED4AHwK4NeKaWwGsGbrP4wCyJEmSXxniACRLkhQHIAXAAAAIIXYKIWRN5jiAMvz/uRzpOYLVJ1djd8duxjVaDC145dQr+Lj+Y3YUV+fU4a2zb+Gdc++wfCOegAfratfh9TOvs9hYQghsbd2KV069glMafpDg5MBJvHzyZWxt3cra7rR04vUzr+PDug9Z3DGz24x3zr2Dt86+Bb1T0Yd9QR/W16/Ha6dfY1KdEAI7O3Zi9cnVONarOiYL4JzmHF4+9TI+b/qc+chIfX0oX/U68l5/n0tWNhvyX34XZc++yY/JBoMkH7z6Kj/vD5CktHo1Dz0C0HWvvkrymFofHhwkXXrNGh5DyeUi6eH117nuL4dCf/nl6K3/8ePU9s6dXJpqayP9+aOPuC+FwUB6/DvvcLnM6yVZ79VX+fFnObTI6tXRPOf0adLSt2zhbXd3U9vvv8+lDYuF2n3zTe4j4/eTXPfKK9G6/5491Hakf05NDY3Hxo1cuhkYoLF97z3uS+FwUN0bb3BJJxgkKebll6N1/4MHqe1IntPURPcaaVetluKgrVnDdX+3m2Sd117jUl0oRGP3yivRPKe6mtrevp2PbXs72ShSDjQaqe233+Y+Mj4f/Q28+io//iwEHUNfvTraP+fMGbqnzZs5U+npob/N99/nrMxqJXb31lvcRyYQoGfmlVd4uB6Ajl+vXh3Nc+rq6F4/+4zbVaOhv5v33uNS5EUq/85FpRSA6mlG31Ddv7xGCNEP4B8AegBoAFiFEDsRXX4J2unIZaQkSWclSTogSdL84W5KkqT/kiTplCRJp/RqCPcViy/ow5qaNQCATxo/YUxlXd062Lw2HOo5hBaj4s+wt2MvWo2tqNPVsYm6TleHY33HoHfq8UmjotFqnVpsbtmMQCjAEoEJIfD2ubcRFEFsbt3M/FQ+afgEeqcex3qPMaZypOcI6nX1aDY2M/DeYmzB4e7DsHgs+Khe0d4tHgs+a6RDAO+cf4cxlTU1a+ANeLGzfSd6rSqzbdpEk8vJk1x7P32aJu6uLu7P0NFBD4LTyfVvl0thLB9+yBeotWtpMjtwgE/U27fT9589S+3L5fx5mrg1Gs5U+vuVmFZr1ij1gQBN0kLQ5KqGwx9+SD8fPswn6v37aVKsr+cTdUMDgXeTifuK6PXKIYC33+YTnOygtmULX4A//ZQWjepqrr0fO0YTd1sbB7StrTS52O2cV9lsin/De+/xxXHNGiWPvHqi/uIL4hqnTnF/hjNnyLY9PTyAYne3EldKbVePR2Es69fzieyDD+jnAwc4U9m1iybuc+f4RF1bSz9rtdwHSKOhBdvvJzvKJRRSxnrTJs5U1q8nGx09yifqgwfJrk1N/OWmsZHsbDZzXmU0Kk6d77zDJ/B33qGx3r6dL8AbN9IL0YkTfAGurqa/3Y4OermRS3s7/b05HJxXORzKvUS+eKxdS8/Q3r2cqWzbRrY6fTp6Ab4I5d+5qEjD1EWeXx72GkmSskG7mJEASgCkSpL0U/ZBSVoCIABApq0aABVCiBkAFgH4QJKkqBgEQojXhBCzhBCz8iOPC36FEh8Tj1HZo6B36omJqJjKuLxxcPgcSEtIY8d3R2SPACQgNiaWxeUqSitCSnwKPAEPxuYq+mlmYibyUvJgdBkxPm88Yyrjc8eTr0hKAYs7NiZ3DDwBD1LiU1iuk4rMCsTFxCFGimE8pyC1AKmJqXD6nCweWWpCKorTimFwGTAmewxjKuPzxsPisSA7OZuHfBk9mh7mpCSuTZeWKmfu1b4GeXmkQ9ts5Oshl8RE0pT1etJ61Uxl3Di6Pj2d68NVVYo/gzouV3Ex6f4+H48dlZ2t6P5qHhAbS9cZDHQ0U328ddw4WvDS0jjPGTFCYSpqnlNYSFq3y8V18YwMune9ntpWM5Xx45XQ6eojpmPG0KScksKP75aXK8eC1cyhoIDGyG7nY5uSQuOj19OYqY8Ujx9PO5+sLH58d/RoWmwj7VpSQnXBIB/b3Fzqo8XCx1bmInK+dPWR6XHjaGK8kF0TErhdi4oUu6pZUlYWMYtIu0oS2UCOgaVmKuPG0SScmsp5TmUl2TUmhvtxFBYqrExt1/R0ui+Dge5JzVQmTFBS/apZ2Zgx1Ifk5Gi7JiTQM6PmdHl5w9s1KUmx68iRnKmMH0/PTEYGt+uoUQpTUfOci1UupIv9T/8BmANgh+rnxQAWR1zzKoA7VT83AygGcDuAN1X1dwNYrfr5ZwCOAUj5kvb3A5j1Zff4TZmK2+8WTfqmKK4RCAZEi6FFGJzROmm3pVv0WaN1Up1DJ9qMbVFMxeaxiWZDcxTX8Aa8otnQLGwern8HQ0HRZmwTOke0Ttpr7RXdlu6oeoPTIFqNrVFMxe61iyZ9k3D7uf7tC/hEs6FZWNwR+ncoRJrucPr3wADpwJEatMkkREtLtP7tdArR1BStfwcCdH2k/i3zjuHYwuAg3Vdk2xaLEM3N0VzD7aa2I/XvYFCI1tbh2UJPD+nTkUWno89E6t82G7UdqX97vVQ/nP7d1jY8M+rrI10+shgMNFaRXMPhoP5Fcg2/n9qOZEahEGnywzGjgQH6XeTYms30XZF2dbm+3K6RzEjmHcPZVasd3q5WK7UdyTU8Hqr/unbt6Ymu1+uHt6vdTv2LtKvPd2G7XuiZ6e8fntsYjcPbVX5mXJzxCr//y5+Z4ZjRVyz4X2IqJwGMkSRppCRJCQB+DGBTxDWbANw9dArscpDMpQHJXpdLkpQi0Wv6NQAaATpRBuAvAG4RQoTFSEmS8iWJXqslSaoCMAZAB/4N5dTAKaw5vwaHe7ivQaelE2tr14alK7kYXUZ8WPch1tevZ/lGvAEvPmv6DO/Xvs/CngghsKdzD949/y7OD3I/jvOD5/Hu+Xext2svYyq91l6srV2LjU0bmY+M1WPFx/UfY339epjciu7vD/qxqXkT3qt5j4WSF0LgcM9hrDm/hqU+BoD4ugaMfe49ZH6xk+vDGg1JLZ98wrffDgdJLuvWcd1fDke/Zg334wBo+79mTbSvQUsLyTZbtnB5Qa8neWrDBq77u90kHX3wAZcdhCBpZc0afkQXIClgzRrlWKxcurpISvjiC+5LYTKR9LB+PfeR8flIann/fS4nCUESxrvvcpkQIK7x7rskH6nb7uujPmzcyHV/Wc768EMu6QQCNEZr13KZECDpZs0aLhMCJPO89x7Jgmq7Dg5S2/LRW7k4nVS3bh3X/UMhknnee4/LhAC1uWZNNM9pa6N73byZ29VgoL5FymVyyJf33+cxz4Qg+e7dd6PtevYs1e/fH82r3n+fjiar5UCzmdpdv57LoH6/Yle175MQJJOtWRMtJ9XVUf3u3bzt/n7FrmofGbud/pYj7RoMkl3fey/6mTl2jNqI5HQtLVS/fTu3q1ZLbW/YwCXmi1T+bYuKIJj+ewA7QAvCeiFEvSRJv5Uk6bdDl20FTfxtAF4H8H+GPlsNYAOAMwBqh+7ztaHPvAggHcCuiKPDVwKokSTp/NBnfyuEUNHTi1PkYIguvwsf1n3IFon3a96HzqHDns49jKns7tyNel09TmtOM2fGOl0dDnUfQq+1FxvqFe1d69RiY9NGOH1OvHHmDcZUXj/zOpw+Jz5r/IwxlfUN69Fv68fB7oMsp8mhnkM4rTmNGm0N9nQo2nuzsRn7uvZB69Di/VrFX8PiseDDug/h8rvw1pm32OKIt98mkLh5Mw929/nnpPkeOcK191OnaJFobub+DJ2dSnytd99V6l0ueghcLnp41BPZe++Rdr1rVzRTaWqidtQP1fnzdD+dnTxneV8fLQ42G8FKuQQCioPhRx/xyeSDD2iC3beP+zPs20eLwdmz3J+hvp4msP5+HgNLr1cm6Ndf55PMG2/Qovj559xPZcMGWpgOHeLa+7FjNL719dyfobWVftbpONew2agfLhfZUT2Jvv02LYpbt0YzFdk/Qn2o4cwZar+1lcdV6+oiO5vN9J1y8XrpZ5eLJmT1IrF2LY3L7t18sty5k9jUyZM8rlpNDY1Fdzf3FRkYoLFzOGgs5RIK0c+yD5QavH/0EX1u//5opnLuHP0NqeOqNTaSzQcGuK+IzM5cLmpLvTi++abiI6R+ufn0UxqvQ4d4XLXjx+nvuKGBc8i2NvrbNxjoWZCLw0Fj6HIRv1EvUO+8Q7bYvp37dm3ZQmN9/DiPq3aRyr/VT0UIsVUIMVYIMUoI8cRQ3StCiFeG/l8IIX439PspQohTqs8uFUKMF0JMFkLcJYTwDtWPFkKUCyGmD/377VD9J0KISUKIaUKImUKIL4a7p/9piYuJQ0VmBUxuEwpSC1iolKrsKjj9TqTEp7BwLOUZ5cRUpFjmQ5Kfmo+kuCR4g17GOzISM5CdlA2T24RROaMYUxmVPQpmtxk5yTksFExVVhU8fg+S4pJYXC45zIsEicUEy0vJQ3J8Mlw+F8tDkpqQioLUApjcJlRkVTCmgqoqmnwyMrjuP2KEor2rmUNhIenDQnBtOieH+ITdzv0AEhNJ4zWZ6L9qfXjUKLo+NZWf96+ooIkjPp5r0wUF9Hm/n2vTWVl03t9i4TwgNpb6YTKRtq8Oa1FVRQ9tcjLX/eUwKDEx3I8jP5/GwuPhbaenk7ZtMlF/1Exl9GiaALKyuO4/ciRNyomJvO3iYiUciJo55OYSP3E6+djK2r3JRGOmDiUyahS9LKSnc92/spLsmpg4vF1DoWi7pqfTJKoe2/h4YgUmk8K61GPrcNB4q3V/2X8iPp7r/nKoFZ+Pj21mJt27xcL7LUnUhhwDS83KqqpoRzucXWNi6LPqsc3Lo2vdbs4I5Xs3mahezVRGj1Z4lTrMzsiR1IdIu6rDvKg5XW4uteNw8P7JvMtkontV+x+NGkW2SEvjz0xlJS18CQnRYXYuRrmQLvZ/w79vylScPqeo09ZFcQ1/0C8adA1C6+D6dygUEm3GNtFp7oz6rgHbgGjUN0ZxDbPbLOq0dVFcw+13izptXZQvTDAUFI36xmH9UTrNnaLd1B7FbQbtg6JB1yACQa7RWj1WUaetE05fhP7t9QpRXz+8/t3cPPzZ+p4e0nUj9WG9nr4rkmvY7ULU1UXr3z4fXR+pf4dCpHEPxxb6+ui+IvVvo5G+K1L/drmo7Uj9OxAQoqEhWv+WdfHOzui2NRohGhuj27ZYqI1IruF2U30k1wgGSS8fTv/u6iLeEjm2Wi3dbyTXsNmojUiuIds10mdCtutwzOhCdjUYhrerw0FtR/rC+P10r5E+EzJL6uqKbru/n8YkcmxNJmrjQnaN9IUJBMhGwzGjjo7hmdHgIH0mkmvIdo3kGh4P1UdyDdmuwzGj7m76m45sW6cb3q7yMxPp4/Rlz0xLy/DM6CsW/C8xlf/PllptLTY0bMDJAa5N91p78WnTp9jdsZvFxrJ4LPii5QtsadkCu1fZ+vuCPuxo34GNTRsxYFe2xkIIHO09ik8aP0GToYm10ahvxCeNn+BY7zHGVAbsA9jYtBE723cyHxmb14bNLZvxRfMX7PgzAgEUbtqDCa9/htge9aluIOPwSUx6eQNSztaxerS2kuRw8CCXbuTjndu28e23y0Vb7U2buOwQCpGMIEsA6nLuHEkJkT4k3d0kY+3dy/Vho5G+f+tWrg97vbTt37iR8xwhSHL45BN+hBUgeWnDhmhfg74++p5du7gvhSwFbt7MfWT8fpJvPvssWvc/dozaiPTPaW6mezpyhI+tRkNtb9/OJSuHQxlbtVQXDBKX+fRTLmUBJHVs2BDNc9rbh7erTkffv20bZ2VuN9V9/jmPjRUKEVv45BPuxwFQmxs2RDOH7m661717uWwkh9fZsoWzMrVd1TKhEHTk+5NPonlOfT21ffx4NNf47DOyq5qVWa0k/ckyqVwCgQvbtbqa2ojkOS0t1L/Dh6Ofmc8/p76oWZnTSX3+4gvu+xQM0hh9+innOQCN6YYN0WHsOzro+v37+TNjMFDb27ZxifkilW8Xla9Z/EE/Xjv9GkxuE9acX8OYypqaNeix9GB763Y0G5U/7J0dO3FGcwbHeo8xuF+rrcXujt1oM7WxvCI6pw7r69fD4DLglVOvMKbyyqlXYHAZ8FH9R9C7lAf6o7qP0GZqw66OXZypdB/Csb5jODVwijEVNDcrPh5q7d1iIc3WZCLHKfUk+vrr9DB89hlnKp99pujN6sXgxAmaqGpq6EGRS0cHTcT9/eTkJRe3mzRok0nR4OXy1lvU5pYtfMLaupUmrIMH+WJw7hw9hE1NPP6WPJFoteRAJ5dgkH42mUj3V0/Ua9cqHEjNVPbuJc3/+HHueFZfT5NPezvX3mX4bDSSE5t6knn1VZqgP/6Yw++PP6aJac8err0fOUL/zp7l/gwtLTRZ9PRwPxybjX42mUj3Vy9Qb7xBE/TGjXzC2rSJ+rJvH18MTp+miaqujuc06e6myUqj4Xb1ehW7vvMOXyTefZecU7ds4Yv8jh1kwyNHopnKnj3KIiwXjYYmVr2e2zUUorE1mWjs1RP1Bx8o/iDqRX7/fvrbPXGC+i6XhgaF6anjxplM9F3yM6OewF97jey5YQNnKhs20N/Snj18kT92jBagc+c4U2lvpzHq7eV+OE4nPSsmE42x+qXurbeozS++4C9vmzeT7Q4c+H8fU/n/YomNIS5i8VjCXEIuFRkVcPvdSIpPYn4cxWnFEEIgNiaW+ZDkpuQiMS4R3oCXuMtQSUtIQ0ZiBiweCyozKxlTqcyqhMVjQWZiJksbXJ5ZDl/Ah8TYRBaXqzCtELFSLCRJ4uHn5bS1Hg/XbpOTSb81m6NDiFdWKr4iat2/rIwWn4QEHjsqP19hKmpdPDubdH+Hg2vyCQmk11sspJ2r9eHKSro+OZnr/iUl9P3x8Vz3l1PH+v1cF8/III3ZauVtx8TQdXIMLLXuX1FBC15SEtem5ZD6sbHczyE3l671evnYpqYqMc8qKjhTqayke5LvTy7l5Yr2rmYO6nTEah+SnBxq2+XibSclKbnr1TxGblvW3tW6f2np8HaVxzYU4iwpM5PsarfzsY2Lo7GyWOhvQs3KKitpYryQXePiosdWZmVqu8p/k5F2lSQaQ5lXqeOOVVQovEo9tkVFiv+RmjnIbQ9n1+xsaqOsLNqusq9I5DPj9w9v17i44Z+Z5GQaK3XbCQk0pnIKZ7X/kfzMRIbXLylROOQ38NX7l+VCutj/Df++KVOxe+3irOZsFNfwBXzi/OB50W/jOmkoFBJN+ibRamyN4ho9lh5Rq62N4hoGp0Gc05yL4hpOn1Oc05yL8oUJBAOiVlsbFWcrFAqJFkOLaNI3RbUt+vuFqKmJ1mhNJiHOno3mGm63EOfORevfwSBpusPp3+3tpAMPp02fPx/tU2C1UtuRXMPrpesj9e9QiL6/vT267a4uuq9I7V2no35Ecg27ndqO1L/9fhqnSGYkM4fh2EJvL30mUns3GqntSK7hclF9JNcIBISorY3Wv2WW1NQU3fbAAI1VJNcwm6l/kVzD46G2I31hgkHS5IdjRh0d9LvIsR0cpO+K5Bo2G7UdyTVku0Yyo1CI2EVbW3Tb3d1k18ix1eup7Uiu4XBQfSQL/DK7trSQbSPHtq/vy5+ZSK4h2zWSawQC1IfhWGBbG/U9sm2NZvhnxmK5sF3Pn49mgcEgPTMdHdFtf8WCb5nKxS3NhmZsa93GUucCgMahwY72HTjae5QxFZvXhj2de7Cvcx/LH+8P+nGo5xB2te9ix4OFEDijOYNtbdvQYeK+Bh2mDmxr24azg2cZU4kd1GLy2p0o23qYSVaS04kxn+zDuI/3QlLrw8EgSQs7d/KwIACxhW3beOpcgOSN7dtJ8lFLN3I61QMHuD7sdpOUsHs3l5NCIdrm79jBZTSAZLRt26KZQ18fXX/sGJcXzGaSEPbv57q/z0f3Ix/DlIsQtOXfti2a57S2Ur1aZgJofHbupPFS6/52O0lgcsgZuQQCJGHs3MmlLIDkqq1bo5lDRwe1ffo0H1u9nvpw8CDX/V0uanfPHh4bKxSiI8A7dnC5BSDJYzi79vSQXU+c4G2bTGS7SLt6PIpd1XKSEPQd27fzeGuAYld1qBmA7nE4u1os1Ld9+7gM6vPRWOzcGW3X06epDfXxWYBkta1bo5mDVkvfc5g/M3A4yK5793KpTm1XNc8BSMLati3ah0Q+Zn3q1IWfGbUU6XLR2O7Zw32f1M+MmucAJFFu2xYdE0x+ZqqredtmM9lu/34ul12k8u2i8jWLP+jHy6dexoB9AG+dfQs2rzJRv3vuXbQYWrCpeRPzU9nZvhPHeo9hf/d+HOpW/BlqdbXY2roVtbpafFSnxBLSu/R4v/Z99Nn6sPrUasZUXjr5EvpsfXi/5n0YXKqH6sMP6YHdsoU/uAcP0h/u0aM8RlRzM2mtsuObXKxW0mgHBihInfphe/VVWljWr49mKufO0R9wJFPZvZseKLU/g+w70tbGfQrcbtKgBwbov5FMpa2NdH+1n8qWLdTOnj3cYfLsWbqf8+ej/Rk+/JAm0ldfVeqDQervwABp1uoHeu1aemA3b+ZMZc8eWmjkMZZLfT3dV0MDj79lMNB39fdTAir1g756NU3EH3zAF6L165VFPpKp7N+vTDRyaWkhrtHayrV3u13R2Fev5hPZa6/R5Pfxxxzub9xIE/WOHTxXzalTZNfTp6OZyoYNZF+1Xb1exa5vvskn6nfeoXvduDGaqVRX06KizlVTU0OLVk0Nz9U+OEhj3dtLAS3lEgpRsq2BAWJK6gMj779PNtq8OZqpHDxIC4g6AKb8N9DYGM1U3nlHGVv14vjyy3RPH37IX97kAxPbt3OmIj+n1dXct6u9nZ6ZSLs6nUpgz1df5YvEG28ohzDUL1BffEE23LUr2hH2IpRvF5WvWWJjYlGQWgCr14rs5Gwkxir6cEl6CTwBDxJiE1iuk/xU0i0j0wlnJ2UjPiYevqAPxemKLp4Sn4L0hHRYPVaUpJUwplKcXgyr14q0hDSe0reoiCaK+Hiun+bmKufm1bp4ZibpsW431+QTExXdv7CQM5WSEpqckpN5vpHCQlp84uO5Lp6TQ/pwMMh5R0aGovurNfn4eLpfq5XuVc1USkro+sRErvsXFtJDHBvLtensbPo+v5/r4mlppIHLKWHlEhOj8JzMTB53rKiIJsb4eN62PJ6R6YSzsuhar5ePrTxuVmt0OtrSUoVrqH1k1HZVj61sVyH42GZm0hi53bx/sl2tVuqnmqmUlCi8KtKuwWB029nZil3VvCM9XdH91W3HxdH4WK0Ky5NLcfHwds3Pp75F2lUeW7+fj21q6vB2lSS6TuZValZWXEw2SkiIfmZiY4e3a0ICTdyRdpVznUSmrpbtmprKWVlREfVhOLvGxUWnic7IGN6uckpgq5XGTM1UiovJFklJnOcUFCh2/YbphL+sfJuj/hucfrB6rGg1tWJk1kgGxX1BH+p0dchPyWeBI4UQaNA3IDYmFuNyx7F88J3mTli9VkwumEzJtIaKzqlDr7UX4/LGMSDv8DnQbGhGRWZFeLECQJN6XR394asDDApBb9ehECUQUv/B9/TQm9ukSXwCNxrpbXPsWP7H6HLRW1ppKZ+og0FqOy2NO2YJQW9WXi+1oXYK6++nN/KJE/kEbrHQG+uoUfxh83jobbKwkC9EoRDtDBITKUifun/t7TRZTp7MF8fBQWp/wgQObm02etMfMYJPJj4ftZGbyyGpEDQekhQdILKri2SGyZP5g67X07iPG8cnGaeT7FRezicT2a6ZmdzZTwjabQYCNLbqtnt7qZ3Jk7ldTSba5Y0Zwydwt5vGtqSET5bBIPU7JYU7MwJkV7eb2lDbdWCA3sgnTuQTuNVKn6mq4hOZ10ttFBRw8B4K0T3Fx9Pfobp/HR20eEyaxBdHrZZ20OPH84XZbie7VlZyu/r9NLY5ORzuy3YF6G9E3XZ3N41jpF0NBrL5uHF8YZbtWlbGF+BAgPqdns4dKYWge/X7oxN+9fXRMe9Jk/jCbDbT3/ro0XxxlJ+ZoiK+EMnPTFISD8r5Ncq3Oeovcum2dONg90G0mrh+qnPqcKTnCM4OnmX5Rhw+B473HUd1XzXcAUX3D4QCOD1wGkd6jrC4XAD5oxzoPoA+K2cOae29uOTDA8g/HaGfGo0kiZw+zXV/t5vkoepqLjuEQnRM9PBh7msA0GR18GD0eXiNhnw86uq4dGOx0Lb95Ekuq3i91PaxY/y8vxBKuI1I5tDRQW1Hxq3Saun68+d52zYbyV7V1Vz39/tpi3/0KOc5QtADdfBgNHPo6aH6SOZgMNA4nTnDpQ2nU2lbLdUFg3TtkSNcbgGUcOqRPiT9/VQfyZLk0OynTnEpUk5vfPw4D3sSCilHcdX+OYASFj+SOWg01L+aGj62Viu1feJEtF3l8ClqniPb9fDhaOYg2zXSN0ino+vPnuVja7fT91dXc0lHtqscgl7ddn09jeFwdj1wgEuXANl1uGfG5aJ2q6s5K1PbVc1zAPruyHTMAN3LwYN0b5Fc48gR6oualcl2PXaM21UIsutwz0xb2/B2HRxUwsBE2vXYMWpH/cxcpBL3ry/5tqiLP+jHiydfRHxMPOp0dZiUPykcLuXdc++iw9yBkwMnMTZ3LMbnUQjune07sa9rH4QQKEorwndGfwcA+alsbN6I+Jh4BEUQf7zsjwAAvVOPd869g+T4ZLxw8gW8eOOLtLsRAnjhBbqR2lp6k5HfvNatownX76c3lmnTqF6GmpJEb/4/+AHVNzeT/0Z8PC02ixdTvdVKWmxyMj0oq1crb4OrV9NDdu4cvQ3Kb5affkqTWyBAb9OXXUb1J04QII2Lo++76y6q7+wkjTkhgRa0lSup3uOhNhIT6SF88UXlbffNN2nyO3OG3gblHdGWLdTHYJDe8hcupPqzZ8nPIi6O3vZ+8xuq12iIISUl0Rv9M89QfTBIYxsXp4yt/Nb33nu00Jw4QW/NcirZ3btJc5clqJtuovr6emVs/X7g3nup3mikfqSkUFurVytvwS+8QONXU0Nvx/Jb7Ucf0aQXCFCfZ86k+sOHSY+PjaVdx+23U31rK7GGhASy5SOPUL3dTlwjKYnewlevVt60X32VXgzOnqW25d3Yxo00+cihbubMoXqZkcXFka1+/nOq7+mhv8PERJrQnnyS6r1e4hqJifRCMmmSspN46y2yw6lT9Dclvzlv304LgRC0M73mGqqvqVHsCuD/1961R9dVlfnfd+/NO2mTtikgKq3IQwqU90LFpaKM4DDCyFJxMYKOygJfAy4dcViyHNQ1ikhLbRF1GKwjCxYMOpblMKCFUvpK26Rp0jbNs0nTNk3aNO+bm5t7754/fmd7zt436SvnJh26f2tl5d7v7nP2+b5vP87+ffuBr3yF/7u7GTMpKmK5efxxyjMZ2jYS8f2qR0o6plJVxXz1Mb16AoRSHJ1+4hOUNzT4fh0dBb79bcr7+ujXoiKWkyee8EcYK1awXG/fTtvqkeALL7A8jY9zpHKV99K/YQNjKdEoRzG33055ayvjawUFzO/736c8Hueap8JC6qLtDNDfhw+zzlx4oc9gvPSSPzlhwQLg/e9HmHAjlRNENBLFnKI5GBwbRFl+GfKjPr1QWVKJsfQY8qJ5KMv3h8AVhaRxRMSItcwqmIVYJIbxzLgRaymMFaIorwhDY0OYXzzfoMtQWckGorjYpI3mzvW59+Dwe/Zsv+EK0kllZUybSJiUQEGBv3/TnDnm8PuMM3yONkgvzJ3LRjkWM+my2bNZOTIZkxcvLfXjOUGqJxbjNfrM8iC1UVnJ9Pn5Jm00Z47PvQeH/rNm8fpUytRP221kxJyjH4nwGfU6nCC9MG+eH1MJ2lbnJ2LmrW2bTJp6FxT4+zfZ6wPmz/f9GqSNKivZ8Ni2LS+nzkqZdFLQr8E88vNNvwbpwPnz/bjG8fhV29b2a0kJ7xGPm3nHYix7er1GkDaqrOSz2n7VZTUSMam6sjI++/i4mXdREf9s2+q4iN5fLFhnKiuP7deJ6szYWHadKS1lHnPnmnTZ/Pn+Opwg1Tpvnh+HPB6/BuuMbVtdZyoqTL9WVk7s1zlz6LtYzNQ7JLiYyknEVPpG+9DY24hzK8414hqJVAJ13XWoLK7Ewgqf/86oDOq66xCVKC6ef7HRSTT3NqM/0Y/LzrwMeVG/snUNdaFjoAMXVV5kHMaFwUG+kZxzjsl/J5N8G6qoMPlvpfh2mMnwTSzYSezZw5HC4sVmI9rTQ7riwgvNxnJ4mG/hZ59t8t+pFPMuLTUPENLcdCLBPIIFfu9ejhouucSsbL29fNs+7zyz0Rgd5VvqmWea/Hc6TXlBQTb/3djIZ1682Oyg9u8nP71okdmQ9fdzdPaud5md3dgY9Zs3z+S/Mxm+/UYi5NiDebe08I1y8WIzrnHwILn397zHbCyHhmhb26/j48x79myT/9Z0TyoFXHqp6df2dvrw0kvNRvTQIb7xXnCB2ViOjLCMvO1t/kaOgO/XkhJeo/XTcbrR0Wy/dnaS8rH9euQI3+Lf/W6zQR4dpQ3nzzdjgZkM/ZqXlx0LbGpiPVi82OygDhxguVq0yGwsBwZYDhcuNOMaus7MmZMdC9Q7Ql9ySXac7sgR2jZYZ7q7WZ8m8+s732nGNbRfZ80yD/xSivU7maR+Qb92dDCfSy4xXzwOH2Z5O/98syOKx6nHWWeZscB0mnkXFWXHAo8TLqYSMrqGulB9oBp7B0z+tG+0D9u6tqGxt9FYQxIfj6O+ux47e3ZiLB3gMNNpnLe+AVe/vB15fQPGvc6qa8O1q2owq9PixXt6SIfYaywGBlhQGhpMfjiRYMGqqzPXcWQybBhqa01uGmDFrK7OXr+ih9KtrSZHOzTEvHUjp6EDofX1Jjetg5HbtpnrHAA2+NXV2XPxe3uZvqnJzHtkhLrt2GHy/joQun27Gc8B+PzV1dmxpK4uyu1YUn8/7aQnPGjoBrG+3uT902n6obbWjDkA9Ft1dXa8o6eHtrVjSYODvM+uXaZfx8aoc12dGc/RDf62bdl+7exk3nbMYTK/Dg/z/hP5Vds2GKfTEzNqarJjDgcOMG97/UpfH5+1sfH4/bprF21i+7WtjXnbfu3unrjOHI9fJ6sztl/18bx2LOnQId+2QUxWZ5LJyetMYyPvZdeZffuOXmeamyf3azCeExJcTOUEkcqk8HjV44hIBDVdNVh649K/xlSern0aLUdasH7veiwsX4gL5vGt/dXWV/FKyyvIIIO5xXNxw7k38Gb19eRJo1EW3q9/nfLDhxnXyM9n47RsGd8mlAKWLmUh3LqVbyb6bf7ZZ/2A4znn8E0KYLxB77tVVgbceis/NzXxmmiUFfs736F8cJCccH4+C94TT/hvoitWsDJVVfGNU8/C0psRptMcwVxzDeVVVeTlo1GOFO64g/L2dsYpYjE2Ng8/THki4cc1tm3jZ/1G9utfs/Js3Mi3Sj1i+NOfGNvQ01s/+EHKt20j/x2J8Lcvf5lyvS9Vfj4boUcfpTyd9nn46mraVr9xrlzpd9YLF/JtFCDvrtcSVFQAN93Ez7t2MRYSi7FhuO8+ynt7yXPn5zPN8uX+W+KyZdR/yxaOSPRI6bnnyL2n03zbvPxyytetY2whEuFI4rbbKG9u5lqXWIzl6MEHKR8epv/y89mYrVjhv+X/4hd8tk2baFs9WvnDHxhfSKXo62uvpXzrVto2GuXfnXdS3tnJuEYsRl/96EeUJ5PULxplo7hsmRlTaWtj0Prcc/1R9ssvMxaYyZDGuf56yuvquMYjEmGDeO+9lHd3+3WmuRlYsoTyTIZ1JpPx/apHab/7He+n68zFF1P+2muMBQIsAzffzM8NDfRrNMp68K1vUd7fz7hGfj7rdDCmsnw5bb95M/2qZ00+/zzLcipFv155JeUbNnCdUSTCkdBnPkO53m8sFuMLyEMPUR6PM4+8PHZ2y5f7I6hf/pKd3MaNtKse4a9axbKbTnP09L73IUy4kcoJIiIRzCqYheHkMIrzig3KqqKwAmPpMcSiMWMNyaz8WVBQiEjEmB6MkhIW0FTKpJny833ev6LCHJ6Wl/txjSCtMns27xONmrRDaal/fZASKC5m2mTSzDsvzz+PIxiPATi0jseZb3D4Hcw7yN2WlvqNepASKCryef8gDRON+tx0aalJWVVUMH0sZuo3axYbjEjE1E/bNp02OeuCAv6NjJh6a+5+ZIT3D9Iq5eW0k23bYH5BGq24mM+ZTJp6FxTQb8PDZt46j5ER//mOx7b6RcP2ayzGkUzQttpuw8O0R5BWOVG/TmZb7dfR0WzblpX5cY2gX2fP9uMatm2V4rW2bXWZCuah7RaPm3Id75qozpSXs2Oy9QvqVGrV10iEfg3aNi/PX59TXm7WmYoKP64RpCIny1vXmUzG9GtREe2WSJj6xWJ+nE7Hm4J563hV0K/BOhO0eViYbP+WMP4A3AieO98C4IEJfhcAy7zf6wBcEfjtfgA7AewA8CyAQk8+B8CfATR7/ysC13zXu1cjgI8d6/lOdu+vQyOH1Nr2tVlnl8STcbWuY51qOtxkyFPplNqyf4uqOVCTdW6K2rVLqQ0bsvdK6uxU6s03s8/XOHKEcvuMi0SC92loMOXptFLV1Upt2ZK9V1Jjo1Lr12fvlXTggFJr12bvQzUwwLztPb6SSaU2buQeVcH9ijIZ7ntUVZW9V1Jrq1Lr1mXvL9bdzbztfaiGh5ne3gtqfJz3r63NznvHDj6XvVdSezv1sPcXO3yYedtnXMTjtFNjoylPp5XaupX2tffAamjgNbZf9+1j3vb+Yn19lNt7fGm/7txpyjMZpWpqJvZrczNtZe8v1tVF/ex9qAYHmbe9x1cyqdSmTdzryrbt9u38zfZrWxvvZfu1p4d52/tQjYzwWZubTXkqpdTmzdzTys57586J/drRwbzt/cV6eym39/gaHaWPdu825brObN2a7dfdu3mNvW/c/v3Uz95frL+fedt7fI2NUYcdO7L127aNutt+bWmhrez9xQ4eZN72nnxDQ0xv7/Gl68z27dn7ix0nMBN7f3nnxa8AcBOAiwB8VkQuspLdBJ4lfx6AuwH8wrv2bADfAHCVUupiAFHwjHsAeADAaqXUeQBWe9/h3ft2AIvAzuwJfWZ92DgyegSNhxtxaMTkbov6hvD+15pxXu1eg8OMJsZw1ZutuHxDGyLJAIeZyZAKam7OPiu6q4v8rc2L62Cyzd2OjPA+7e0mPzw+zgBiW5vJTSvF2ElTk8mLA6QSGhuzuduBAaa3udt4nIHC9naT90+lmHdLixlzUIr0SFOTORcfIGXT2JjNi+uFifv2mfxwIkHd2tpMfljbtqUl+8yI/ftpw+BWLABt3diYHe8YHmbee02/YmyMXLlt22Detm0PHjy6X+04lrZtR4fp12SStm1tNdcaKEUaqrk527aHDh3dr/Y+bKOjzHvPnmy/trcz72DMIehXO+bQ2zu5X5ub+cy2X7VtJ/Lr0erMRH7dvTt7fcfwMO8zkW11mbJtu3cvr5mszkzmVzuOFY9PnLeur62t2XWms3PiOqP9asexBgcpt+tM0K/BeE5IyGVM5RoALUqpNgAQkecA3AIguLrrFgC/9Xq+TSJSLiJ66ksMQJGIjAMoBnAgcM2HvM8rAawB8B1P/pziscN7RKTFe4aNYSqVyqTw2MbHkFEZbNq/CUtvXOpTWk8/Td41kyEvrWd1vPIKeUylONz/6Ecp37GDPGkkwoLy1a9S3tvrrw+prycnrKmOJUtYKNavZzxAx1SeeYZcdzpN/lvPuX/jDf88kcJCf859UxP570iEhVLPuR8aYiwjGiUHvXy5P6RevpwFd+1aztTRs1lefJHcu45rXH015VVV5I710ayf/SzlHR2c1x+J8LOec59IUD8RctDLlvmUgd6f6vXXyUHr1eX6kKx0mrOKPvABymtrGVuIRHjfL32J8oMHea9YjDZ45BHK02muWUmlyEEvWeLTICtX0g9KMWZ0Idcf4S9/If+tKaiPcf0Rdu3y/drfD3yD649w5AhjGbEYn+/nP/epkqVL2UiuX0/d9LTRZ59lrCOT4Syeyy6jfN06xhZESL988pOUt7SwHEYibGT1+qOREeYRjTJuo3l4gGWtu5tlZcECf2afPphM+1WvP6quZqxHU2B6/dG+fYxrRKNssH7wA8qTSdpTKZaJxx/3aZennuIzZzL0q56F9fLLXE+hp9bq9Ud1dfSrCBtmvf6op4dxjWiUdfBnP6M8k6Ffx8cZr3jsMXP9UW2tv4X/okWU68OwREgbBWMqus709gLf/CblAwN+LLCmhrbV9OKyZfxd+1XPPnvhBdajTIZxFr3+aONG/haJ8O/Tn6Z8zx7fr/v3++uPRkdpT11nli/3Kb4nn6RP3niD8RQ9A0wfvKa3gtHrj0JCLmMqZwMITvXY58mOmUYptR/AowD2AugCMKCUetVLc4ZSqgsAvP/zj3Yv+6FE5G4R2SoiWw/Zb03HAYGgOK8Y8fE4CqIF5hnuJSUsvJGIyZ8WF/tvCkFus6DA54eDvGos5s9JD8ZEAH4fHeW1Qd4/mHeQk9fPodTEeSeTZt7RKK8ZHeVzB/MuK/PjGkFuuqSEOth6FxXx+kzG5G4LCvx4TpCz1jGLeJz3CfL+ZWVMrxfcBW2r+eFg3kHbBvPIy/N5/6DeIryXtm2Q9y8pYWdj27aoiHYVmTjvVMrMIy/P9GsQ2q/6+YJynfdEtrX9Wljor+OwbVtURNvquETQtokE87VtO5FfCwqYt11u8/P9eE5QHon4eevnC9o2mTwx2+q8g2VK2y2RMPUWYR4T+bW0dPL6CjD/oB66TE5kW70vV0nJxHVG+/5Yti0s9OtMMO9gnbFtq/fRs/1aWkpf2PW1qIj3FzFtHhYm48Wm+gfgUwD+PfD9cwB+bqX5E4DrAt9XA7gSQAWA1wBUAsgD8N8A/sFL02/do8/7v0Kn8b4/BeC2oz3jycZUuoe71erW1Vlnl6jhYaVef51xkiDGx8nDbt5scrSZDPnqN97I5mj37FFq9ersuMbhw5TbcY14XKk1a7L573Sa/OmGDdkc7c6dfF6bo+3sZB52XKOvT6nXXsuOayQS5HQn4r+3biWva5/t0djIe9lxjQMHmLd9vsbgINPbcY1kkve3+W/NTa9dmx3XaG3lvey4Rk8P87bjGiMjtJMd10ilaNeqKtO2mQzjS2vWZMer2tuZhx3X6O2l3I5rjI6yfNj8dzrN8rR+fXZco6GBz2vHNfbtYx52XKO/n/aw4xpjY7RfTU22X6urGSuw4xpNTbyXHdfo6mLedrxqaIjPascCdZ3ZsiXbr7W1E9eZtjbmYfv10CHK7bjGyAh9VF9vylMpxjs2bsyuMzt28Bo7XtXRwTzsuMaRI5TbcY1EgjrYscB0mjqvW5ft1927aSv73JT9+5mHfdbQwAB90WTGeFUySd9VV+ckppKzxY8i8l4A31dKfcz7/l2vE/u3QJpfAlijlHrW+94IUlvXAbhRKfVFT34ngGuVUl/RaZRSXR5VtkYpdYF9fxF5xct/UvrrZBc/Ojg4OJzOmKnFj1sAnCciC0UkHwyir7LSrAJwpxDXgjRXF0h7XSsixcLl5x8B0BC45i7v810A/hiQ3y4iBSKyEAz+b86Vcg4ODg4O2chZoF4plRKRrwF4BZy99R9KqZ0ico/3+5MA/gfAx8FpwHEAX/B+qxKR/wJQAyAFYBuAX3m3/jGA50Xki2Dn8ynvmp0i8jw4ESAF4KtKqcCUFQcHBweHXMPt/eXoLwcHB4cTgtv7y8HBwcFhWuA6FQcHBweH0OA6FQcHBweH0OA6FQcHBweH0HBaB+pF5BCAjmMmnBzzABw+Zqq3Dk43fQGn8+kCp/OJ4RylVOVEP5zWncpUISJbJ5sB8VbE6aYv4HQ+XeB0Dg+O/nJwcHBwCA2uU3FwcHBwCA2uU5kafnXsJG8pnG76Ak7n0wVO55DgYioODg4ODqHBjVQcHBwcHEKD61QcHBwcHEKD61Q8iMiNItIoIi0i8sAEv4uILPN+rxORKzz5O0TkdRFpEJGdIvJPgWvmiMifRaTZ+18xnTodCznS+acisttL/wcRKZ9GlY6JXOgcuPZbIqJEZN506HI8yJW+IvJ17747ReSR6dLneJCjcn2ZiGwSkVrhybHXTKdOx8IUdC4Ukc0ist3T+V8D15xc+zXZ6V2n0x+4NX8rgHcByAewHcBFVpqPA3gZgAC4FkCVJz8LwBXe5zIATfpaAI8AeMD7/ACAn8y0rtOg898AiHmff3I66OzJ3gEe89ABYN5M65pjH38YwF8AFHjf58+0rtOg86sAbgpcv2amdQ1JZwFQ6n3OA1AFHogInGT75UYqxDUAWpRSbUqpJIDnANxipbkFwG8VsQlAuYicpZTqUkrVAIBSagg8TOzswDUrvc8rAdyaYz1OBDnRWSn1qlIq5V2/CcDbp0OZ40Su/AwASwD8M4BTaeZLrvS9F8CPlVJj3u8906HMcSJXOisAs7zPswEcyLUiJ4Cp6KyUUsNemjzvTwWuOeH2y3UqxNkAOgPf98FsMI4rjYgsAHA52NsDwBmKJ1nC+z8/vEeeMnKlcxD/CL4dnSrIic4i8gkA+5VS20N+3qkiVz4+H8AHRKRKRN4QkavDfOgpIlc63wfgpyLSCeBRAN8N7YmnjinpLCJREakF0APgz0qpKbVfrlMhZAKZ/cZ51DQiUgrgRQD3KaUGQ3y2XCGnOovIg+AJnM9M8TnDROg6i0gxgAcBPBTaU4aHXPk4BqACpFG+DZ7EOtF9ZgK50vleAPcrpd4B4H4AT4XwrGFhSjorpdJKqctAVuEaEbl4Kg/jOhViH8iJa7wd2cPbSdOISB5YCJ9RSv0+kKZbRM7y0pwFvgmcKsiVzhCRuwDcDOAO5RGypwhyofO5ABYC2C4i7V76GhE5M/SnP3Hkysf7APzeo042A8iAmxOeCsiVzncB0N9fACmnUwVT0llDKdUPYA2AGz3RybVfYQaM/r/+gW9ebWDjoANdi6w0fwsz0LVZ+YGu3wJYOsF9fwoz0PXITOs6DTrfCGAXgMqZ1nG6dLaub8epE6jPlY/vAfCw9/l8kFaRmdY3xzo3APiQ9/kjAKpnWteQdK4EUO59LgLwJoCbve8n1X7NuEFOlT9wdkQTOIviQU92D4B7AgVuhfd7PYCrPPl14DCyDkCt9/dx77e5AFYDaPb+z5lpPadB5xavkdHyJ2daz1zrbN2/HadIp5JDH+cD+B2AHQBqAFw/03pOg87XAagGG+wqAFfOtJ4h6XwpgG2ezjsAPBS450m1X26bFgcHBweH0OBiKg4ODg4OocF1Kg4ODg4OocF1Kg4ODg4OocF1Kg4ODg4OocF1Kg4ODg4OocF1Kg4ODg4OocF1Kg4ODg4OoSE20w/g4PBWg4h8D8Ad4CLQw+CiuQEAd4MLB1sAfE4pFReR3wAYBXAhgHMAfAHcEuS94Pbkn/fuOQwuXvsogD4A/wJuTf5OcI+qVd4miP8JoMR7lK8ppTbkWF0HBwNupOLgECJE5CoAt4E73H4SwFXeT79XSl2tlFoMbvnxxcBlFQCuBzcqfAncRn8RgEtE5DIvTQl4hseVAIYA/BDADQD+HsDDXpoeADcopa4A8BkAy3Kho4PD0eBGKg4O4eI6AH9USo0CgIi85MkvFpEfAigHUAoe6KXxklJKiUg9gG6lVL137U4AC8DtQpIA/tdLXw9gTCk17l2zwJPnAVjudURpcF8uB4dphetUHBzCxWRbwP8GwK1Kqe0i8nkAHwr8Nub9zwQ+6++6jo4rf0+lv6ZTSmVERKe5H0A3gMUgC5E4aS0cHE4Sjv5ycAgX6wD8nXf2dym4OyzA42m7vK3V78hR3rMBdCmlMgA+Bx4z6+AwrXAjFQeHEKGU2iIiq8DdbDsAbAWD9N8Dd7ftAOmrshxk/wSAF0XkUwBeBzCSgzwcHI4Kt0uxg0PIEJFSpdSwdyrkWgB3K+/scweHtzrcSMXBIXz8SkQuAlAIYKXrUBxOJ7iRioODg4NDaHCBegcHBweH0OA6FQcHBweH0OA6FQcHBweH0OA6FQcHBweH0OA6FQcHBweH0PB/yEPNTScgDRcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot \"true/false\" points. Is there any way of characterizing these regions?\n", + "\n", + "\n", + "xsample = [result['gamma'] for result in param_choices_true_false]\n", + "ysample = [result['beta'] for result in param_choices_true_false]\n", + "colors = ['green' if result['assignment'] == '1' else 'red' for result in param_choices_true_false]\n", + "plt.title(\"Parameter Value Pairings\")\n", + "plt.xlabel(\"gamma\")\n", + "plt.ylabel(\"beta\")\n", + "\n", + "area = 5 # size of marker\n", + "\n", + "plt.scatter(xsample, ysample, s=area, c=colors, alpha=0.5)\n", + "\n", + "# 1d - change color coding\n", + "# val = 0. # this is the value where you want the data to appear on the y-axis.\n", + "# plt.plot(xsample, np.zeros_like(xsample) + val, 'x', c='green')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'beta': 0.08, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08, 'gamma': 0.02020408163265306, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.020408163265306124, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.020612244897959184, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.020816326530612245, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.021020408163265305, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02122448979591837, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02142857142857143, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02163265306122449, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.021836734693877553, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.022040816326530613, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.022244897959183673, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.022448979591836733, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08040816326530613, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08040816326530613, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08040816326530613, 'gamma': 0.020612244897959184, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.020816326530612245, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.021020408163265305, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02122448979591837, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02142857142857143, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02163265306122449, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.021836734693877553, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.022040816326530613, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.022244897959183673, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.022448979591836733, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08040816326530613, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08081632653061224, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08081632653061224, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08081632653061224, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08081632653061224, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08081632653061224, 'gamma': 0.021020408163265305, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02122448979591837, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02142857142857143, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02163265306122449, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.021836734693877553, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.022040816326530613, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.022244897959183673, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.022448979591836733, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08081632653061224, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08122448979591837, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08122448979591837, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08122448979591837, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08122448979591837, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08122448979591837, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08122448979591837, 'gamma': 0.02122448979591837, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02142857142857143, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02163265306122449, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.021836734693877553, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.022040816326530613, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.022244897959183673, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.022448979591836733, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08122448979591837, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.0816326530612245, 'gamma': 0.02163265306122449, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.021836734693877553, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.022040816326530613, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.022244897959183673, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.022448979591836733, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.0816326530612245, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08204081632653061, 'gamma': 0.022040816326530613, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.022244897959183673, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.022448979591836733, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08204081632653061, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08244897959183674, 'gamma': 0.022244897959183673, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.022448979591836733, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08244897959183674, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08285714285714287, 'gamma': 0.022653061224489797, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.022857142857142857, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08285714285714287, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08326530612244898, 'gamma': 0.023061224489795917, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02326530612244898, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08326530612244898, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.0836734693877551, 'gamma': 0.02346938775510204, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.0836734693877551, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08408163265306123, 'gamma': 0.0236734693877551, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.023877551020408165, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08408163265306123, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08448979591836735, 'gamma': 0.024081632653061225, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.024285714285714285, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08448979591836735, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08489795918367347, 'gamma': 0.024489795918367346, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08489795918367347, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08530612244897959, 'gamma': 0.02469387755102041, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02489795918367347, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08530612244897959, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08571428571428572, 'gamma': 0.02510204081632653, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02530612244897959, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08571428571428572, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08612244897959184, 'gamma': 0.025510204081632654, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08612244897959184, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08653061224489796, 'gamma': 0.025714285714285714, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.025918367346938774, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08653061224489796, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08693877551020408, 'gamma': 0.026122448979591838, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.026326530612244898, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08693877551020408, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.08734693877551021, 'gamma': 0.026530612244897958, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.026734693877551022, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08734693877551021, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.08775510204081632, 'gamma': 0.026938775510204082, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08775510204081632, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.08816326530612245, 'gamma': 0.027142857142857142, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.027346938775510206, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08816326530612245, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.08857142857142858, 'gamma': 0.027551020408163266, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.027755102040816326, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08857142857142858, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.08897959183673469, 'gamma': 0.02795918367346939, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08897959183673469, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.08938775510204082, 'gamma': 0.028163265306122447, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.02836734693877551, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08938775510204082, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.08979591836734695, 'gamma': 0.02857142857142857, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.02877551020408163, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.08979591836734695, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.09020408163265306, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09020408163265306, 'gamma': 0.028979591836734694, 'assignment': '0'}, {'beta': 0.09020408163265306, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.09020408163265306, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.09020408163265306, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.09020408163265306, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.09020408163265306, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.09061224489795919, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09061224489795919, 'gamma': 0.029183673469387755, 'assignment': '0'}, {'beta': 0.09061224489795919, 'gamma': 0.029387755102040815, 'assignment': '0'}, {'beta': 0.09061224489795919, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.09061224489795919, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.09061224489795919, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.09102040816326532, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09102040816326532, 'gamma': 0.02959183673469388, 'assignment': '0'}, {'beta': 0.09102040816326532, 'gamma': 0.02979591836734694, 'assignment': '0'}, {'beta': 0.09102040816326532, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.09142857142857143, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09142857142857143, 'gamma': 0.03, 'assignment': '0'}, {'beta': 0.09183673469387756, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09183673469387756, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09224489795918368, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.0926530612244898, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09306122448979592, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09346938775510205, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09387755102040816, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09428571428571429, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.0946938775510204, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09510204081632653, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09551020408163266, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09591836734693879, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.0963265306122449, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09673469387755103, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09714285714285714, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09755102040816327, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.0979591836734694, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09836734693877551, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09877551020408164, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09918367346938776, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.09959183673469388, 'gamma': 0.03, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02020408163265306, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.020408163265306124, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.020612244897959184, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.020816326530612245, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.021020408163265305, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02122448979591837, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02142857142857143, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02163265306122449, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.021836734693877553, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.022040816326530613, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.022244897959183673, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.022448979591836733, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.022653061224489797, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.022857142857142857, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.023061224489795917, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02326530612244898, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02346938775510204, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.0236734693877551, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.023877551020408165, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.024081632653061225, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.024285714285714285, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.024489795918367346, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02469387755102041, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02489795918367347, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02510204081632653, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02530612244897959, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.025510204081632654, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.025714285714285714, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.025918367346938774, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.026122448979591838, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.026326530612244898, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.026530612244897958, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.026734693877551022, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.026938775510204082, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.027142857142857142, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.027346938775510206, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.027551020408163266, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.027755102040816326, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02795918367346939, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.028163265306122447, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02836734693877551, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02857142857142857, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02877551020408163, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.028979591836734694, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.029183673469387755, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.029387755102040815, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02959183673469388, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.02979591836734694, 'assignment': '1'}, {'beta': 0.1, 'gamma': 0.03, 'assignment': '1'}]\n" + ] + } + ], + "source": [ + "print(param_choices_true_false)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/scratch/notebooks/sir_model.py b/scratch/notebooks/sir_model.py new file mode 100644 index 00000000..11770710 --- /dev/null +++ b/scratch/notebooks/sir_model.py @@ -0,0 +1,170 @@ +import matplotlib.pyplot as plt +import numpy as np +import scipy +from scipy.integrate import odeint + + +# simulate SIR model - normalized (populations S,I,R add to 1) +def SIR_model(y, t, beta, gamma): + S, I, R = y + dSdt = -S * (beta(t) * I) + dIdt = S * (beta(t) * I) - gamma(t) * I + dRdt = gamma(t) * I + + return dSdt, dIdt, dRdt + + +# plot SIR model +def plotSIR(t, S, I, R): + f, ax = plt.subplots(1, 1, figsize=(10, 4)) + ax.plot(t, S, "b", alpha=0.7, linewidth=2, label="Susceptible") + ax.plot(t, I, "r", alpha=0.7, linewidth=2, label="Infected") + ax.plot(t, R, "r--", alpha=0.7, linewidth=2, label="Recovered") + + ax.set_xlabel("Time (days)") + ax.set_ylabel("Fraction of population") + + ax.yaxis.set_tick_params(length=0) + ax.xaxis.set_tick_params(length=0) + legend = ax.legend() + legend.get_frame().set_alpha(0.5) + plt.show() + + +# simulate SIDARTHE model - normalized (populations S,I,R add to 1) +def SIDARTHE_model( + y, + t, + alpha, + beta, + gamma, + delta, + epsilon, + mu, + zeta, + lamb, + eta, + rho, + theta, + kappa, + nu, + xi, + sigma, + tau, +): + S, I, D, A, R, T, H, E = y + dSdt = -S * (alpha(t) * I + beta(t) * D + gamma(t) * A + delta(t) * R) + dIdt = ( + S * (alpha(t) * I + beta(t) * D + gamma(t) * A + delta(t) * R) + - (epsilon(t) + zeta(t) + lamb(t)) * I + ) + dDdt = epsilon(t) * I - (eta(t) + rho(t)) * D + dAdt = zeta(t) * I - (theta(t) + mu(t) + kappa(t)) * A + dRdt = eta(t) * D + theta(t) * A - (nu(t) + xi(t)) * R + dTdt = mu(t) * A + nu(t) * R - (sigma(t) + tau(t)) * T + dHdt = lamb(t) * I + rho(t) * D + kappa(t) * A + xi(t) * R + sigma(t) * T + dEdt = tau(t) * T + + return dSdt, dIdt, dDdt, dAdt, dRdt, dTdt, dHdt, dEdt + + +# plot SIDARTHE model +def plotSIDARTHE(t, S, I, D, A, R, T, H, E): + f, ax = plt.subplots(1, 1, figsize=(10, 4)) + ax.plot(t, S, "b", alpha=0.7, linewidth=2, label="Susceptible") + ax.plot( + t, + I, + "r", + alpha=0.7, + linewidth=2, + label="Infected (Asymptomatic, Infected, Undetected)", + ) + ax.plot( + t, + D, + "r.", + alpha=0.7, + linewidth=2, + label="Diagnosed (Asymptomatic, Infected, Detected)", + ) + ax.plot( + t, + A, + "r:", + alpha=0.7, + linewidth=2, + label="Ailing (Symptomatic, Infected, Undetected)", + ) + ax.plot( + t, + R, + "r--", + alpha=0.7, + linewidth=2, + label="Recognized (Symptomatic, Infected, Detected)", + ) + ax.plot( + t, + T, + "r-.", + alpha=0.7, + linewidth=2, + label="Threatened (Acutely Symptomatic)", + ) + ax.plot(t, H, "g", alpha=0.7, linewidth=2, label="Healed") + ax.plot(t, E, "k", alpha=0.7, linewidth=2, label="Extinct (Dead)") + + ax.set_xlabel("Time (days)") + ax.set_ylabel("Fraction of population") + + ax.yaxis.set_tick_params(length=0) + ax.xaxis.set_tick_params(length=0) + legend = ax.legend() + legend.get_frame().set_alpha(0.5) + plt.show() + + +def SIHDR_model(y, t, beta, ae, bf, cg, dh, N): + S, I, H, D, R = y + dSdt = -(beta(t) * S * I / N(t)) + dIdt = (beta(t) * S * I / N(t)) - ae(t) * I - bf(t) * I + dHdt = bf(t) * I - cg(t) * H - dh(t) * H + dDdt = dh(t) * H + dRdt = ae(t) * I + cg(t) * H + + return dSdt, dIdt, dHdt, dDdt, dRdt + + +# plot SIHDR model +def plotSIHDR(t, S, I, H, D, R): + f, ax = plt.subplots(1, 1, figsize=(10, 4)) + ax.plot(t, S, "b", alpha=0.7, linewidth=2, label="Susceptible") + ax.plot(t, I, "r", alpha=0.7, linewidth=2, label="Infected") + ax.plot(t, H, "g", alpha=0.7, linewidth=2, label="Hospitalized") + ax.plot(t, D, "r.", alpha=0.7, linewidth=2, label="Dead") + ax.plot(t, R, "r--", alpha=0.7, linewidth=2, label="Recovered") + + ax.set_xlabel("Time (days)") + ax.set_ylabel("Fraction of population") + + ax.yaxis.set_tick_params(length=0) + ax.xaxis.set_tick_params(length=0) + legend = ax.legend() + legend.get_frame().set_alpha(0.5) + plt.show() + + +def plot_two_params(param1, param2, param_choices_true_false): + xsample = [result[param1] for result in param_choices_true_false] + ysample = [result[param2] for result in param_choices_true_false] + colors = [ + "green" if result["assignment"] == "1" else "red" + for result in param_choices_true_false + ] + plt.title("Parameter Value Pairings") + plt.xlabel(param1) + plt.ylabel(param2) + area = 5 # size of marker + plt.scatter(xsample, ysample, s=area, c=colors, alpha=0.5) + plt.show() diff --git a/scratch/test/test_pde_as_petrinet.py b/scratch/test/test_pde_as_petrinet.py index ce0fd6f0..bc810504 100644 --- a/scratch/test/test_pde_as_petrinet.py +++ b/scratch/test/test_pde_as_petrinet.py @@ -137,7 +137,7 @@ def test_advection(self): "label_marker": {"true": ",", "false": ","}, "xlabel": "Time", "ylabel": "Height", - "legend": variables + "legend": variables, # ,"label_color":{"true": "g", "false":"r"} }, num_points=None, diff --git a/setup.py b/setup.py index 9d8f3560..ffb7bb73 100644 --- a/setup.py +++ b/setup.py @@ -30,12 +30,13 @@ "pysmt @ git+https://github.com/danbryce/pysmt@add-abs-value#egg=pysmt-0.9.6.dev1", "pandas", "matplotlib", - "pydantic>=2" + "pydantic>=2", + "sympy", # "automates @ https://github.com/danbryce/automates/archive/e5fb635757aa57007615a75371f55dd4a24851e0.zip#sha1=f9b3c8a7d7fa28864952ccdd3293d02894614e3f" ], # dependency_links=["git+https://github.com/danbryce/pysmt/pysmt@add-abs-value#egg=pysmt-0.9.6.dev1"], extras_require={"dreal": ["funman_dreal"]}, - tests_require=["unittest"], + tests_require=["unittest", "pytest-cov", "scipy"], zip_safe=False, entry_points={ "console_scripts": [ diff --git a/src/funman/__init__.py b/src/funman/__init__.py index e7ed885c..42c8e5c1 100644 --- a/src/funman/__init__.py +++ b/src/funman/__init__.py @@ -7,6 +7,7 @@ - Consistency: Check that a parameterized model is self-consistent. """ + from .utils import * setup_logging() diff --git a/src/funman/_version.py b/src/funman/_version.py index 1388158e..3bca77a1 100644 --- a/src/funman/_version.py +++ b/src/funman/_version.py @@ -1,4 +1,4 @@ """Version information.""" # The following line *must* be the last in the module, exactly as formatted: -__version__ = "1.8.0" +__version__ = "1.9.0" diff --git a/src/funman/api/__init__.py b/src/funman/api/__init__.py index 7397d24c..fe649ab9 100644 --- a/src/funman/api/__init__.py +++ b/src/funman/api/__init__.py @@ -1,5 +1,6 @@ """ This module contains class definitions used to implement the FUNMAN API """ + # from .api import * from .run import * diff --git a/src/funman/api/api.py b/src/funman/api/api.py index 00c18ef9..746cec27 100644 --- a/src/funman/api/api.py +++ b/src/funman/api/api.py @@ -6,13 +6,16 @@ HTTPException HTTPException description """ -import sys + +import logging import traceback import uuid from contextlib import asynccontextmanager, contextmanager from typing import Optional, Union import uvicorn + +l = logging.getLogger(__name__) from fastapi import ( APIRouter, Depends, @@ -155,7 +158,7 @@ def internal_error_handler(): except HTTPException: raise except Exception: - print(f"Internal Server Error ({eid}):", file=sys.stderr) + l.error(f"Internal Server Error ({eid}):") traceback.print_exc() raise HTTPException( status_code=500, detail=f"Internal Server Error: {eid}" @@ -199,8 +202,8 @@ async def get_queries( with internal_error_handler(): try: return worker.get_results(query_id) - except NotFoundFunmanException: - raise HTTPException(404) + except NotFoundFunmanException as e: + raise HTTPException(404, detail=str(e)) @api_router.post( diff --git a/src/funman/api/client.py b/src/funman/api/client.py index 50dc7733..8e24aaa3 100644 --- a/src/funman/api/client.py +++ b/src/funman/api/client.py @@ -1,6 +1,7 @@ """ Client API Generation and usage functionality. """ + import json import os import re diff --git a/src/funman/api/run.py b/src/funman/api/run.py index 44344f0d..559de4f7 100644 --- a/src/funman/api/run.py +++ b/src/funman/api/run.py @@ -158,6 +158,8 @@ def run( parameters_to_plot: Optional[List[str]] = None, point_plot_config: Dict = {}, num_points: Optional[int] = None, + dump_results: bool = True, + print_last_time: bool = False, ) -> FunmanResults: """ Run a FUNMAN scenario. @@ -180,6 +182,8 @@ def run( Matplotlib flags and special key "variables" to select variables to plot , by default {} num_points : Optional[int], optional The number of points to plot in the trace plot, by default None + print_last_time: bool + Only print parameter space for last time Returns ------- @@ -194,6 +198,8 @@ def run( parameters_to_plot=parameters_to_plot, point_plot_config=point_plot_config, num_points=num_points, + dump_results=dump_results, + print_last_time=print_last_time, ) return results # ParameterSpacePlotter( @@ -211,6 +217,8 @@ def run_test_case( parameters_to_plot=None, point_plot_config={}, num_points=None, + dump_results=True, + print_last_time: bool = False, ): if not os.path.exists(case_out_dir): os.mkdir(case_out_dir) @@ -229,6 +237,8 @@ def run_test_case( parameters_to_plot=parameters_to_plot, point_plot_config=point_plot_config, num_points=num_points, + dump_results=dump_results, + print_last_time=print_last_time, ) self._worker.stop() @@ -236,40 +246,84 @@ def run_test_case( return results - def get_model(self, model_file: str): + def get_model( + self, model_file: Union[str, Dict] + ) -> Tuple[FunmanModel, Optional[FunmanWorkRequest]]: + m = None + req = None for model in models: try: - with open(model_file, "r") as mf: - j = json.load(mf) - m = _wrap_with_internal_model(model(**j)) - return m + if isinstance(model_file, str): + with open(model_file, "r") as mf: + j = json.load(mf) + else: + j = model_file + + if "model" in j and "request" in j: + req = j["request"] + if "petrinet" in j["model"]: + mod = j["model"]["petrinet"] + else: + mod = j["model"] + else: + mod = j + req = None + m = _wrap_with_internal_model(model(**mod)) + break + except Exception as e: pass - raise Exception(f"Could not determine the Model type of {model_file}") + + if m is None: + raise Exception( + f"Could not determine the Model type of {model_file}" + ) + + r = ( + ( + FunmanWorkRequest.model_validate(req) + if req is not None + else None + ) + if req is not None + else None + ) + + return m, r def run_instance( self, - case: Tuple[str, Union[str, Dict], str], + case: Tuple[Union[str, Dict], Union[str, Dict], str], out_dir=".", dump_plot=False, parameters_to_plot=None, point_plot_config={}, num_points=None, + dump_results=False, + print_last_time: bool = False, ): killer = GracefulKiller() (model_file, request_file, description) = case - model = self.get_model(model_file) + model, request = self.get_model(model_file) - try: - with open(request_file, "r") as rf: - request = FunmanWorkRequest(**json.load(rf)) - except TypeError as te: - # request_file may not be a path, could be a dict + assert request is None or ( + request_file is None or request_file == "" + ), f"Ambiguous Requests specified, both in model file and as a requests file" + + if request is None and request_file is not None and request_file != "": try: - request = FunmanWorkRequest.model_validate(request_file) - except Exception as e: - raise e + with open(request_file, "r") as rf: + request = FunmanWorkRequest(**json.load(rf)) + except TypeError as te: + # request_file may not be a path, could be a dict + try: + request = FunmanWorkRequest.model_validate(request_file) + except Exception as e: + raise e + + if request is None: + request = {} work_unit: FunmanWorkUnit = self._worker.enqueue_work( model=model, request=request @@ -279,7 +333,7 @@ def run_instance( outfile = f"{out_dir}/{work_unit.id}.json" plotted = False while not killer.kill_now: - if self._worker.is_processing_id(work_unit.id): + if dump_results and self._worker.is_processing_id(work_unit.id): l.info(f"Dumping results to {outfile}") results = self._worker.get_results(work_unit.id) with open(outfile, "w") as f: @@ -295,9 +349,11 @@ def run_instance( num_points, point_plot_config, parameters_to_plot, + print_last_time, ) + sleep(10) - else: + elif not self._worker.is_processing_id(work_unit.id): results = self._worker.get_results(work_unit.id) break @@ -309,6 +365,7 @@ def run_instance( num_points, point_plot_config, parameters_to_plot, + print_last_time, ) if killer.kill_now: @@ -334,6 +391,7 @@ def create_plots( num_points, point_plot_config, parameters_to_plot, + print_last_time, ): points = results.parameter_space.points() if len(points) > 0: @@ -362,26 +420,34 @@ def create_plots( plt.savefig(point_plot_filename) plt.close() - boxes = results.parameter_space.boxes() + boxes = ( + results.parameter_space.boxes() + if not print_last_time + else results.parameter_space.last_boxes() + ) if parameters_to_plot is None: - parameters_to_plot = results.model._parameter_names() + [ - "timestep" - ] - assert ( - len(parameters_to_plot) > 1 - ), "Cannot plot a parameter space for one parameter" - if len(boxes) > 0 and len(parameters_to_plot) > 1: + parameters_to_plot = results.model._parameter_names() + if not print_last_time: + parameters_to_plot += ["timestep"] + + if len(boxes) > 0 and len(parameters_to_plot) > 0: space_plot_filename = ( f"{out_dir}/{work_unit.id}_parameter_space.png" ) l.info(f"Creating plot of parameter space: {space_plot_filename}") ParameterSpacePlotter( results.parameter_space, + boxes=boxes, plot_points=False, parameters=parameters_to_plot, + synthesized_parameters=parameters_to_plot, ).plot(show=True) plt.savefig(space_plot_filename) - plt.close() + plt.close() + else: + l.warn( + "Cannot plot a parameter space for zero boxes or zero parameters" + ) def get_args(): @@ -392,9 +458,7 @@ def get_args(): help=f"model json file", ) parser.add_argument( - "request", - type=str, - help=f"request json file", + "request", type=str, help=f"request json file", default=None, nargs="?" ) parser.add_argument( "-o", @@ -406,10 +470,18 @@ def get_args(): parser.add_argument( "-p", "--plot", + # action="store_true", + nargs="*", + help=f"Write plots in outdir. Optionally list parameters to plot", + ) + parser.add_argument( + "-l", + "--last-time", action="store_true", default=False, - help=f"Write plots in outdir.", + help=f"Create parameter space plot with only the last timestep.", ) + parser.set_defaults(plot=False) return parser.parse_args() @@ -419,8 +491,18 @@ def main() -> int: if not os.path.exists(args.outdir): os.mkdir(args.outdir) + to_plot = ( + args.plot + (["timestep"] if not args.last_time else []) + if args.plot + else None + ) results = Runner().run( - args.model, args.request, case_out_dir=args.outdir, dump_plot=args.plot + args.model, + args.request, + case_out_dir=args.outdir, + dump_plot=args.plot is not None, + parameters_to_plot=to_plot, + print_last_time=args.last_time, ) print(results.model_dump_json(indent=4)) diff --git a/src/funman/api/server.py b/src/funman/api/server.py index 7335acfc..a6009698 100644 --- a/src/funman/api/server.py +++ b/src/funman/api/server.py @@ -1,6 +1,7 @@ """ Server for API """ + import contextlib import threading import time diff --git a/src/funman/config.py b/src/funman/config.py index 3189f5c6..3a30b3f9 100644 --- a/src/funman/config.py +++ b/src/funman/config.py @@ -2,9 +2,10 @@ This module defines the Funman class, the primary entry point for FUNMAN analysis. """ + import logging import os -from typing import Optional, Union +from typing import List, Optional, Union from pydantic import BaseModel, ConfigDict, field_validator, model_validator @@ -33,59 +34,99 @@ class FUNMANConfig(BaseModel): queue_timeout: int = 1 """Multiprocessing queue timeout, used by BoxSearch""" + number_of_processes: int = 1 # mp.cpu_count() """Number of BoxSearch processes""" + _handler: Union[ ResultCombinedHandler, NoopResultHandler, ResultHandler ] = NoopResultHandler() wait_timeout: Optional[int] = None """Timeout for BoxSearch procesess to wait for boxes to evaluate""" + _wait_action: WaitAction = None wait_action_timeout: float = 0.05 """Time to sleep proceses waiting for work""" + _read_cache: ResultHandler = None - # episode_type: =None, + _search: str = None """Name of search algorithm to use""" + solver: str = "dreal" # "z3" """Name of pysmt solver to use""" + num_steps: int = 2 """Number of timesteps to encode""" + step_size: int = 1 """Step size for encoding""" + num_initial_boxes: int = 1 """Number of initial boxes for BoxSearch""" + + solver_timeout: Optional[int] = None + """Number of seconds to allow each call to SMT solver""" + initial_state_tolerance: float = 0.0 """Factor used to relax initial state values bounds""" + save_smtlib: Optional[str] = None """Whether to save each smt invocation as an SMTLib file""" + dreal_precision: float = 1e-1 """Precision delta for dreal solver""" + dreal_log_level: str = "off" """Constraint noise term to relax constraints""" + constraint_noise: float = 0.0 """Use MCTS in dreal""" + dreal_mcts: bool = True """Substitute subformulas to simplify overall encoding""" + substitute_subformulas: bool = False """Enforce compartmental variable constraints""" + normalization_constant: Optional[float] = None """ Simplify query by propagating substutions """ + use_compartmental_constraints: bool = False """Normalize scenarios prior to solving""" - normalize: bool = False + + compartmental_constraint_noise: float = 0.01 + """Additional factor used to relax compartmental constraint (needed due to floating point imprecision)""" + + normalize: bool = True """Normalization constant to use for normalization (attempt to compute if None)""" + simplify_query: bool = False - """ Series approximation threshold for dropping series terms """ + """ Convert query object to a single formula based only on the parameters (deprecated) """ + series_approximation_threshold: Optional[float] = None - """ Generate profiling output""" + """ Series approximation threshold for dropping series terms """ + profile: bool = False - """ Use Taylor series of given order to approximate transition function, if None, then do not compute series """ + """ Generate profiling output""" + taylor_series_order: Optional[int] = None - """ Compute Corner points of each box """ + """ Use Taylor series of given order to approximate transition function, if None, then do not compute series """ + corner_points: bool = False - """ Verbosity (INFO, DEBUG, WARN, ERROR)""" + """ Compute Corner points of each box """ + verbosity: int = logging.INFO + """ Verbosity (INFO, DEBUG, WARN, ERROR)""" + + use_transition_symbols: bool = False + """ Use transition symbols in encoding transition functions """ + + uniform_box_splits: bool = False + """ Uniformly split boxes in box search, instead of separating points in boxes """ + + dreal_prefer_parameters: List[str] = [] + """ Prefer to split the listed parameters in dreal """ @field_validator("solver") @classmethod diff --git a/src/funman/constants.py b/src/funman/constants.py index 8165198b..2c7ddcc7 100644 --- a/src/funman/constants.py +++ b/src/funman/constants.py @@ -1,6 +1,7 @@ """ This module contains defintions of constants used within FUNMAN """ + import sys from typing import Literal, Union diff --git a/src/funman/funman.py b/src/funman/funman.py index d8d409d4..2c87757a 100644 --- a/src/funman/funman.py +++ b/src/funman/funman.py @@ -2,6 +2,7 @@ This module defines the Funman class, the primary entry point for FUNMAN analysis. """ + import logging import threading from typing import Callable, Optional @@ -63,11 +64,15 @@ def solve( import cProfile with cProfile.Profile() as pr: - result = problem.solve( - config, - haltEvent=haltEvent, - resultsCallback=resultsCallback, - ) + try: + result = problem.solve( + config, + haltEvent=haltEvent, + resultsCallback=resultsCallback, + ) + except Exception as e: + pr.dump_stats("profile.stats") + return None pr.dump_stats("profile.stats") else: result = problem.solve( @@ -77,4 +82,10 @@ def solve( ) return result except Exception as e: - l.exception(f"funman.solve() exiting due to exception: {e}") + try: + l.error( + f"funman.solve() exiting due to exception: {e.backtrace()}" + ) + except: + l.error(f"funman.solve() exiting due to exception: {e}") + raise e diff --git a/src/funman/model/__init__.py b/src/funman/model/__init__.py index dc4fab9d..591884de 100644 --- a/src/funman/model/__init__.py +++ b/src/funman/model/__init__.py @@ -14,11 +14,13 @@ * simulator: classes to wrap simulators as models """ + from .model import * from .query import * from .bilayer import * from .encoded import * -from .gromet import * + +# from .gromet import * from .simulator import * from .decapode import * from .petrinet import * diff --git a/src/funman/model/bilayer.py b/src/funman/model/bilayer.py index e86e8984..2ff76247 100644 --- a/src/funman/model/bilayer.py +++ b/src/funman/model/bilayer.py @@ -130,12 +130,12 @@ class BilayerGraph(ABC, BaseModel): model_config = ConfigDict() json_graph: Dict - _node_incoming_edges: Dict[ - BilayerNode, Dict[BilayerNode, BilayerEdge] - ] = {} - _node_outgoing_edges: Dict[ - BilayerNode, Dict[BilayerNode, BilayerEdge] - ] = {} + _node_incoming_edges: Dict[BilayerNode, Dict[BilayerNode, BilayerEdge]] = ( + {} + ) + _node_outgoing_edges: Dict[BilayerNode, Dict[BilayerNode, BilayerEdge]] = ( + {} + ) def __init__(self, **kwargs): super().__init__(**kwargs) @@ -190,15 +190,15 @@ class BilayerDynamics(BilayerGraph): model_config = ConfigDict() - _tangent: Dict[ - int, BilayerStateNode - ] = {} # Output layer variables, defined in Qout - _flux: Dict[ - int, BilayerFluxNode - ] = {} # Functions, defined in Box, one param per flux - _state: Dict[ - int, BilayerStateNode - ] = {} # Input layer variables, defined in Qin + _tangent: Dict[int, BilayerStateNode] = ( + {} + ) # Output layer variables, defined in Qout + _flux: Dict[int, BilayerFluxNode] = ( + {} + ) # Functions, defined in Box, one param per flux + _state: Dict[int, BilayerStateNode] = ( + {} + ) # Input layer variables, defined in Qin _input_edges: BilayerEdge = [] # Input to flux, defined in Win _output_edges: BilayerEdge = [] # Flux to Output, defined in Wa,Wn @@ -332,9 +332,9 @@ class BilayerMeasurement(BilayerGraph, BaseModel): """ state: Dict[int, BilayerStateNode] = {} - flux: Dict[ - int, BilayerFluxNode - ] = {} # Functions, defined in observable, one param per flux + flux: Dict[int, BilayerFluxNode] = ( + {} + ) # Functions, defined in observable, one param per flux observable: Dict[int, BilayerStateNode] = {} input_edges: BilayerEdge = [] # Input to observable, defined in Win output_edges: BilayerEdge = [] # Flux to Output, defined in Wa,Wn diff --git a/src/funman/model/gromet.py b/src/funman/model/gromet.py index dd754a86..e4ba37d9 100644 --- a/src/funman/model/gromet.py +++ b/src/funman/model/gromet.py @@ -1,6 +1,7 @@ """ This module represents GrometModel-related classes. """ + from automates.model_assembly.gromet.model import GrometFNModule from automates.program_analysis.JSON2GroMEt.json2gromet import json_to_gromet diff --git a/src/funman/model/model.py b/src/funman/model/model.py index 761c8e69..8a755d0a 100644 --- a/src/funman/model/model.py +++ b/src/funman/model/model.py @@ -1,6 +1,7 @@ """ This module represents the abstract base classes for models. """ + import copy import uuid from abc import ABC @@ -103,6 +104,16 @@ def _get_init_value( value = Div(value, norm) return value + def _try_float(self, num): + """ + Try to convert a str to a float. + """ + try: + n = float(num) + return n + except Exception: + return num + def variables(self, include_next_state=False): """ Get all initial values and parameters. @@ -129,10 +140,13 @@ def calculate_normalization_constant( # self._normalization_term = Real(self._normalization_constant) # return self._normalization_term - def compartmental_constraints(self, populuation: int): + def compartmental_constraints(self, populuation: int, noise: float): return None def _is_normalized(self, var: str): + if var == "N": # FIXME hack + return True + try: name, time = var.rsplit("_", 1) return name in self._state_var_names() diff --git a/src/funman/model/petrinet.py b/src/funman/model/petrinet.py index 15314e07..63ddcf49 100644 --- a/src/funman/model/petrinet.py +++ b/src/funman/model/petrinet.py @@ -5,9 +5,10 @@ from pydantic import BaseModel, ConfigDict from pysmt.shortcuts import REAL, Div, Real, Symbol -from funman.utils.sympy_utils import substitute, to_sympy +from funman.utils.sympy_utils import substitute, sympy_to_pysmt, to_sympy from ..representation.interval import Interval +from .generated_models.petrinet import Distribution from .generated_models.petrinet import Model as GeneratedPetrinet from .generated_models.petrinet import State, Transition from .model import FunmanModel @@ -148,7 +149,7 @@ def calculate_normalization_constant( ) def compartmental_constraints( - self, population: Union[float, int] + self, population: Union[float, int], noise: float ) -> List["Constraint"]: from funman.representation.constraint import LinearConstraint @@ -157,8 +158,8 @@ def compartmental_constraints( LinearConstraint( name="compartmental_constraint_population", additive_bounds={ - "lb": population - 1e-5, - "ub": population + 1e-5, + "lb": population - noise, + "ub": population + noise, "closed_upper_bound": True, }, variables=vars, @@ -244,7 +245,11 @@ def _get_init_value( if isinstance(value, int): value = Real(float(value)) elif isinstance(value, str): - value = Symbol(value, REAL) + expr = to_sympy(value, self._symbols()) + if expr.is_symbol: + value = Symbol(value, REAL) + else: + value = sympy_to_pysmt(expr) if scenario.normalization_constant and config.normalize: value = Div(value, Real(scenario.normalization_constant)) @@ -254,7 +259,7 @@ def _get_init_value( def _parameter_lb(self, param_name: str): return next( ( - p.distribution.parameters["minimum"] + self._try_float(p.distribution.parameters["minimum"]) if p.distribution else p.value ) @@ -265,7 +270,7 @@ def _parameter_lb(self, param_name: str): def _parameter_ub(self, param_name: str): return next( ( - p.distribution.parameters["maximum"] + self._try_float(p.distribution.parameters["maximum"]) if p.distribution else p.value ) @@ -303,10 +308,10 @@ def _transition_rate(self, transition, sympify=False): t_rates = [ ( to_sympy(r.expression, self._symbols()) - if not any( - p == r.expression for p in self._parameter_names() - ) - else r.expression + # if not any( + # p == r.expression for p in self._parameter_names() + # ) + # else r.expression ) for r in self.petrinet.semantics.ode.rates if r.target == transition.id @@ -363,6 +368,31 @@ def _variable_values(self): return values + def contract_parameters( + self, parameter_bounds: Dict[str, Interval] + ) -> GeneratedPetrinet: + contracted_model = self.petrinet.copy(deep=True) + + for param in contracted_model.semantics.ode.parameters: + new_bounds = parameter_bounds[param.id] + if param.distribution: + param.distribution.parameters["minimum"] = max( + new_bounds.lb, param.distribution.parameters["minimum"] + ) + param.distribution.parameters["maximum"] = min( + new_bounds.ub, param.distribution.parameters["maximum"] + ) + else: + param.distribution = Distribution( + parameters={ + "minimum": new_bounds.lb, + "maximum": new_bounds.ub, + }, + type="StandardUniform1", + ) + + return contracted_model + class PetrinetDynamics(BaseModel): json_graph: Dict[ diff --git a/src/funman/model/query.py b/src/funman/model/query.py index 145c4f95..b1c9f7ba 100644 --- a/src/funman/model/query.py +++ b/src/funman/model/query.py @@ -1,6 +1,7 @@ """ This module defines all Query classes. Queries are combined with Model objects in Scenarios to determine whether the model satisfies the query. """ + from typing import List, Optional, Union from pydantic import BaseModel, ConfigDict diff --git a/src/funman/model/simulator.py b/src/funman/model/simulator.py index 7554bd96..bbe1bc76 100644 --- a/src/funman/model/simulator.py +++ b/src/funman/model/simulator.py @@ -2,7 +2,6 @@ This module defines classes that wrap a simulator to function as a Model. """ - from funman.model.model import FunmanModel diff --git a/src/funman/representation/__init__.py b/src/funman/representation/__init__.py index c863b6a2..e99e2bbf 100644 --- a/src/funman/representation/__init__.py +++ b/src/funman/representation/__init__.py @@ -1,6 +1,7 @@ """ Classes for representing analysis elements, such as parameter, intervals, boxes, and parmaeter spaces. """ + from typing import Union Timepoint = Union[int, float] diff --git a/src/funman/representation/assumption.py b/src/funman/representation/assumption.py index c28f1479..e587cae8 100644 --- a/src/funman/representation/assumption.py +++ b/src/funman/representation/assumption.py @@ -13,8 +13,11 @@ def relevant_at_time(self, timepoint: Timepoint) -> bool: return self.constraint.relevant_at_time(timepoint) def __str__(self) -> str: - if hasattr(self.constraint, "name"): - return f"assume_{self.constraint.name}" + assert ( + self.constraint._escaped_name is not None + ), f"Assumption {self.name} does not have an '_escaped_name'." + if hasattr(self.constraint, "_escaped_name"): + return f"assume_{self.constraint._escaped_name}" else: return f"assume_{str(self.constraint)}" diff --git a/src/funman/representation/box.py b/src/funman/representation/box.py index a2579078..ce1f9f1c 100644 --- a/src/funman/representation/box.py +++ b/src/funman/representation/box.py @@ -1,6 +1,8 @@ import copy import logging from decimal import ROUND_CEILING, Decimal +from functools import reduce +from math import log2 from pickle import FALSE from statistics import mean as average from typing import Dict, List, Literal, Optional, Union @@ -36,11 +38,27 @@ class Box(BaseModel): _points_at_step: Dict[Timestep, List[Point]] = {} @staticmethod - def from_point(point: Point) -> "Box": + def from_point( + point: Point, radius: float = None, radius_vars=None + ) -> "Box": box = Box() - box.bounds = { - p: Interval.from_value(v) for p, v in point.values.items() - } + if radius is not None and radius_vars is not None: + assert ( + radius > 0 + ), "Cannot create a bounding box around a point using a non-positive radius." + box.bounds = { + p: ( + Interval(lb=v - radius, ub=v + radius) + if p in radius_vars + else Interval.from_value(v) + ) + for p, v in point.values.items() + } + + else: + box.bounds = { + p: Interval.from_value(v) for p, v in point.values.items() + } box.points.append(point) box.schedule = point.schedule box.label = point.label @@ -75,7 +93,11 @@ def explain(self) -> "BoxExplanation": return expl def timestep(self) -> Interval: - return self.bounds["timestep"] + return ( + self.bounds["timestep"] + if "timestep" in self.bounds + else Interval(lb=0, ub=0, closed_upper_bound=True) + ) def __hash__(self): return int(sum([i.__hash__() for _, i in self.bounds.items()])) @@ -260,20 +282,74 @@ def _copy(self): ) return c + def point_entropy(self, bias=1.0) -> float: + """ + Calculate the entropy of a box in terms of the point labels. Assumes only binary labels, so that p = |true|/(|true|+|false|), and the entropy is H = -(p log p) - ((1-p) log (1-p)) + + bias: inverse weight given to positive points + + Returns + ------- + float + Entropy of the box + """ + tp = len(self.true_points()) * bias + fp = len(self.false_points()) + p = tp / (tp + fp) if (tp + fp) > 0 else 0.5 + + if p == 0.0: + H = -((1.0 - p) * log2(1.0 - p)) + elif p == 1.0: + H = -(p * log2(p)) + else: + H = -(p * log2(p)) - ((1.0 - p) * log2(1.0 - p)) + return H + def __lt__(self, other): if isinstance(other, Box): # prefer boxes with true points # prefer boxes later in time # prefer boxes with smaller width - s_t = len(self.true_points()) - o_t = len(other.true_points()) - if s_t == o_t: - if self.timestep().lb == other.timestep().lb: - return self.normalized_width() > other.normalized_width() + # s_t = ( + # float(max(len(self.true_points()), len(self.false_points()))) + # / float(len(self.points)) + # if len(self.points) > 0 + # else 0.0 + # ) + # o_t = ( + # float(max(len(other.true_points()), len(other.false_points()))) + # / float(len(other.points)) + # if len(other.points) > 0 + # else 0.0 + # ) + # s_t = ( + # 2.0 * (1.0 - self.point_entropy()) + # + 0.5 * (len(self.true_points())) + # + 0.5 * (len(self.false_points())) + # ) + # o_t = ( + # 2.0 * (1.0 - other.point_entropy()) + # + 0.5 * (len(other.true_points())) + # + 0.5 * (len(other.false_points())) + # ) + s_t = (1.0 - self.point_entropy()) * (len(self.true_points()) + 1) + o_t = (1.0 - other.point_entropy()) * ( + len(other.true_points()) + 1 + ) + if self.timestep().lb == other.timestep().lb: + # s_residual_volume = self.timestep().width()*self.normalized_volume()*Decimal(s_t) + # o_residual_volume = other.timestep().width()*other.normalized_volume()*Decimal(o_t) + # return s_residual_volume > o_residual_volume + if s_t == o_t: + + # if s_t == o_t: + return self.normalized_volume() > other.normalized_volume() + # else: + # return s_t > o_t else: - return self.timestep().lb > other.timestep().lb + return s_t > o_t else: - return s_t > o_t + return self.timestep().lb > other.timestep().lb else: raise Exception(f"Cannot compare __lt__() Box to {type(other)}") @@ -295,7 +371,7 @@ def __str__(self): for k, v in self.bounds.items() ] ) - box_str = f"Box(\n|+pts|: {len(self.true_points())}\n|-pts|: {len(self.false_points())}\nlabel: {self.label}\nwidth: {self.width()},\ntimepoints: {Interval(lb=self.schedule.time_at_step(int(self.timestep().lb)), ub=self.schedule.time_at_step(int(self.timestep().ub)), closed_upper_bound=True)},\n{bounds_str}\n)" + box_str = f"Box(\n|+pts|: {len(self.true_points())}\n|-pts|: {len(self.false_points())}\nlabel: {self.label}\nwidth: {self.width()}\nnorm-width: {self.width(normalize=True)}\nvolume: {self.volume()}\nnorm-volume: {self.volume(normalize=True)},\ntimepoints: {Interval(lb=self.schedule.time_at_step(int(self.timestep().lb)), ub=self.schedule.time_at_step(int(self.timestep().ub)), closed_upper_bound=True)},\n{bounds_str}\n)" return box_str # return f"Box(t_{self.timestep()}={Interval(lb=self.schedule.time_at_step(int(self.timestep().lb)), ub=self.schedule.time_at_step(int(self.timestep().ub)), closed_upper_bound=True)} {self.bounds}), width = {self.width()}" @@ -331,7 +407,13 @@ def contains(self, other: "Box") -> bool: ] ) - def contains_point(self, point: Point) -> bool: + def _denormalize(self): + for p, interval in self.bounds.items(): + interval._denormalize() + + def contains_point( + self, point: Point, denormalize_bounds: bool = False + ) -> bool: """ Does the box contain a point? @@ -339,6 +421,8 @@ def contains_point(self, point: Point) -> bool: ---------- point : Point a point + denormalize_bounds : bool + if true, and self has unnormalized_lb and unormalized_ub, use these insead of lb and ub. Returns ------- @@ -347,7 +431,9 @@ def contains_point(self, point: Point) -> bool: """ return all( [ - interval.contains_value(point.values[p]) + interval.contains_value( + point.values[p], denormalize_bounds=denormalize_bounds + ) for p, interval in self.bounds.items() ] ) @@ -412,6 +498,40 @@ def intersects(self, other: "Box") -> bool: ] ) + def intersection(self, other: "Box", param_list=None) -> Optional["Box"]: + """ + Return the intersection of two boxes (which is also a box) + + Parameters + ---------- + other : Box + other box + + Returns + ------- + Box + self intersected with other + """ + result = Box() + result_bounds = {} + if self.label == other.label: + for p, interval in self.bounds.items(): + if param_list is None or p in param_list: + result_bounds[p] = interval.intersection(other.bounds[p]) + result.label = self.label + result.bounds = result_bounds + for ( + p, + interval, + ) in ( + result.bounds.items() + ): # If any intervals are empty, there is no intersection + if interval is None: + return None + return ( + result # FIXME should this also include points and unknown boxes? + ) + def _get_max_width_point_Parameter( self, points: List[List[Point]], parameters: List[Parameter] ): @@ -428,13 +548,19 @@ def _get_max_width_point_Parameter( Parameter parameter (dimension of box) where points are most distant from the center of the box. """ - parameter_names = [p.name for p in parameters] + parameter_names = [p.name for p in parameters if p.is_synthesized()] group_centers = { - p: [average([pt.values[p] for pt in grp]) for grp in points] + p: [ + average([pt.values[p] for pt in grp]) + for grp in points + if len(grp) > 0 + ] for p in self.bounds if p in parameter_names } - centers = {p: average(grp) for p, grp in group_centers.items()} + centers = { + p: average(grp) for p, grp in group_centers.items() if len(grp) > 0 + } # print(points) # print(centers) point_distances = [ @@ -445,6 +571,7 @@ def _get_max_width_point_Parameter( } for grp in points for pt in grp + if len(grp) > 0 ] parameter_widths = { @@ -484,6 +611,7 @@ def _get_max_width_Parameter( self.bounds[parameter.name].width(normalize=normalize) ) for parameter in parameters + if parameter.is_synthesized() } else: widths = { @@ -583,6 +711,18 @@ def volume( product *= num_timepoints return product + def normalized_volume(self, parameters: List[ModelParameter] = None): + params = self.bounds.keys() + if parameters: + params = [p.name for p in parameters] + + norm_volume = reduce( + lambda a, b: a * b, + [Decimal(self.bounds[p].normalized_width()) for p in params], + Decimal(1.0), + ) + return norm_volume + def normalized_width(self, parameters: List[ModelParameter] = None): p = self._get_max_width_Parameter( normalize=True, parameters=parameters @@ -643,7 +783,11 @@ def split( Boxes resulting from the split. """ p = None - if points: + if ( + points + and len(points) > 1 + and all([len(grp) > 0 for grp in points]) + ): p = self._get_max_width_point_Parameter( points, parameters=parameters ) @@ -692,64 +836,14 @@ def split( for step, pts in b2._points_at_step.items() } - l.info( - f"Split({p}[{self.bounds[p].lb, mid}][{mid, self.bounds[p].ub}])" + l.debug( + f"Split[{self.timestep()}]({p}[{self.bounds[p].lb, mid}][{mid, self.bounds[p].ub}])" ) - l.info( - f"widths: {self.width():.5f} -> {b1.width():.5f} {b2.width():.5f} (raw), {self.normalized_width():.5f} -> {b1.normalized_width():.5f} {b2.normalized_width():.5f} (norm)" + l.debug( + f"widths: {self.width(parameters=parameters):.5f} -> {b1.width(parameters=parameters):.5f} {b2.width():.5f} (raw), {self.normalized_width(parameters=parameters):.5f} -> {b1.normalized_width(parameters=parameters):.5f} {b2.normalized_width(parameters=parameters):.5f} (norm)" ) return [b2, b1] - def intersect(self, b2: "Box", param_list: List[str] = None): - """ - Intersect self with box, optionally over only a subset of the dimensions listed in param_list. - - Parameters - ---------- - b2 : Box - box to intersect with - param_list : List[str], optional - parameters to intersect, by default None - - Returns - ------- - Box - box representing intersection, optionally defined over parameters in param_list (when specified) - """ - params_ans = [] - common_params = ( - param_list if param_list else [k.name for k in self.bounds] - ) - for p1 in common_params: - # FIXME iterating over dict keys is not efficient - for b, i in self.bounds.items(): - if b == p1: - b1_bounds = Interval(lb=i.lb, ub=i.ub) - for b, i in b2.bounds.items(): - if b == p1: - b2_bounds = Interval(lb=i.lb, ub=i.ub) - intersection_ans = b1_bounds.intersection( - b2_bounds - ) ## will be a list with 2 elements (lower and upper bound) or empty list - if ( - len(intersection_ans) < 1 - ): ## empty list: no intersection in 1 variable means no intersection overall. - return None - else: - new_param = ModelParameter( - name=f"{p1}", - interval=Interval( - lb=intersection_ans[0], ub=intersection_ans[1] - ), - ) - params_ans.append(new_param) - return Box( - bounds={ - p.name: Interval(lb=p.interval.lb, ub=p.interval.ub) - for p in params_ans - } - ) - def symm_diff(b1: "Box", b2: "Box"): result = [] ## First check that the two boxes have the same variables @@ -767,7 +861,7 @@ def symm_diff(b1: "Box", b2: "Box"): ) ### Find intersection desired_vars_list = list(vars_b1) - intersection = b1.intersect(b2, param_list=desired_vars_list) + intersection = b1.intersection(b2, param_list=desired_vars_list) ### Calculate symmetric difference based on intersection if ( intersection == None @@ -789,20 +883,6 @@ def symm_diff(b1: "Box", b2: "Box"): true_boxes.append(b) return true_boxes - def __intersect_two_boxes(b1, b2): - # FIXME subsumed by Box.intersect(), can be removed. - a = list(b1.bounds.values()) - b = list(b2.bounds.values()) - result = [] - d = len(a) ## dimension - for i in range(d): - subresult = a[i].intersection(b[i]) - if subresult == []: - return None - else: - result.append(subresult) - return result - @staticmethod def _subtract_two_1d_boxes(a, b): """Given 2 intervals a = [a0,a1] and b=[b0,b1], return the part of a that does not intersect with b.""" @@ -830,83 +910,3 @@ def _subtract_two_1d_boxes(a, b): return [] return [lhs, rhs] - - @staticmethod - def __intersect_two_boxes(a: "Box", b: "Box"): - # FIXME not sure how this is different than Box.intersect() - a_params = list(a.bounds.keys()) - b_params = list(b.bounds.keys()) - - beta_0_a = a.bounds[a_params[0]] - beta_1_a = a.bounds[a_params[1]] - beta_0_b = b.bounds[b_params[0]] - beta_1_b = b.bounds[b_params[1]] - - beta_0 = beta_0_a.intersection(beta_0_b) - if len(beta_0) < 1: - return None - beta_1 = beta_1_a.intersection(beta_1_b) - if len(beta_1) < 1: - return None - - return Box( - bounds={ - ModelParameter( - name=a_params[0], lb=beta_0[0], ub=beta_0[1] - ): Interval(lb=beta_0[0], ub=beta_0[1]), - ModelParameter( - name=a_params[1], lb=beta_1[0], ub=beta_1[1] - ): Interval(lb=beta_1[0], ub=beta_1[1]), - } - ) - - ### Can remove and replace this with Box.symm_diff, which works for any number of dimensions. TODO write a corresponding parameter space symmetric difference and use case. - def _symmetric_difference_two_boxes(self, b: "Box") -> List["Box"]: - result: List["Box"] = [] - # if the same box then no symmetric difference - if self == b: - return result - - ## no intersection so they are disjoint - return both original boxes - if Box.__intersect_two_boxes(self, b) == None: - return [self, b] - - # There must be some symmetric difference below here - a_params = list(self.bounds.keys()) - b_params = list(b.bounds.keys()) - - beta_0_a = self.bounds[a_params[0]] - beta_1_a = self.bounds[a_params[1]] - beta_0_b = b.bounds[b_params[0]] - beta_1_b = b.bounds[b_params[1]] - - # TODO assumes 2 dimensions and aligned parameter names - def make_box_2d(p_bounds): - b0_bounds = p_bounds[0] - b1_bounds = p_bounds[1] - b = Box( - bounds={ - ModelParameter( - name=a_params[0], lb=b0_bounds.lb, ub=b0_bounds.ub - ): Interval(lb=b0_bounds.lb, ub=b0_bounds.ub), - ModelParameter( - name=a_params[1], lb=b1_bounds.lb, ub=b1_bounds.ub - ): Interval(lb=b1_bounds.lb, ub=b1_bounds.ub), - } - ) - return b - - xbounds = Box._subtract_two_1d_intervals(beta_0_a, beta_0_b) - if xbounds != None: - result.append(make_box_2d([xbounds, beta_1_a])) - xbounds = Box._subtract_two_1d_intervals(beta_0_b, beta_0_a) - if xbounds != None: - result.append(make_box_2d([xbounds, beta_1_b])) - ybounds = Box._subtract_two_1d_intervals(beta_1_a, beta_1_b) - if ybounds != None: - result.append(make_box_2d([beta_0_a, ybounds])) - ybounds = Box._subtract_two_1d_intervals(beta_1_b, beta_1_a) - if ybounds != None: - result.append(make_box_2d([beta_0_b, ybounds])) - - return result diff --git a/src/funman/representation/constraint.py b/src/funman/representation/constraint.py index df9a6b1c..f32c505c 100644 --- a/src/funman/representation/constraint.py +++ b/src/funman/representation/constraint.py @@ -6,6 +6,7 @@ Field, ValidationInfo, field_validator, + model_validator, ) from typing_extensions import Annotated @@ -19,6 +20,7 @@ class Constraint(BaseModel): soft: bool = True name: str + _escaped_name: str def time_dependent(self) -> bool: return False @@ -32,13 +34,18 @@ def encodable(self) -> bool: def relevant_at_time(self, time: int) -> bool: return True + @model_validator(mode="after") + def check_name(self) -> "FUNMANConfig": + self._escaped_name = self.name.replace(" ", "_").replace("-", "_") + return self + class TimedConstraint(Constraint): timepoints: Optional["Interval"] = None def contains_time(self, time: Union[float, int]) -> bool: return ( - self.timepoints.contains_value(time) + self.timepoints is None or self.timepoints.contains_value(time) if self.time_dependent() else True ) @@ -73,7 +80,7 @@ def encodable(self) -> bool: return not isinstance(self.parameter, StructureParameter) def relevant_at_time(self, time: int) -> bool: - return True # time == 0 + return time == 0 class QueryConstraint(TimedConstraint): @@ -103,9 +110,54 @@ class LinearConstraint(TimedConstraint): weights: Annotated[ Optional[List[Union[int, float]]], Field(validate_default=True) ] = None + derivative: bool = False model_config = ConfigDict(extra="forbid") + def next_timestep( + self, timestep: "Timestep", schedule: "EncodingSchedule" + ) -> "Timestep": + """ + Get a Timestep in the timepoints other than that is in timepoints + + Parameters + ---------- + timestep : Timestep + the reference Timestep + schedule : EncodingSchedule + the timepoints used for the encoding + """ + # if ( + # schedule.time_at_step(timestep) in schedule.timepoints + # and timestep + 1 < len(schedule.timepoints) + # and schedule.time_at_step(timestep + 1) in schedule.timepoints + # ) and ( + # (self.timepoints is None) + # or self.timepoints.contains_value(schedule.time_at_step(timestep)) + # ): + # return timestep + 1 + if ( + schedule.time_at_step(timestep) in schedule.timepoints + and timestep - 1 >= 0 + and schedule.time_at_step(timestep - 1) in schedule.timepoints + ) and ( + (self.timepoints is None) + or self.timepoints.contains_value(schedule.time_at_step(timestep)) + ): + return timestep - 1 + else: + raise Exception( + f"Cannot determine a suitable timepoint relative to step = {timestep} where the encoding schedule = {schedule} is defined and constraint timepoints ={self.timepoints} are defined" + ) + + def time_dependent(self) -> bool: + return self.derivative or super().time_dependent() + + def relevant_at_time(self, time: int) -> bool: + return (not self.derivative or time > 0) and super().relevant_at_time( + time + ) + @field_validator("weights") @classmethod def check_weights( @@ -117,6 +169,12 @@ def check_weights( if weights is None: weights = [1.0] * len(info.data["variables"]) + else: + vars = info.data["variables"] + assert len(weights) == len( + vars + ), f"Linear Constraint must have equal number of weights (found {len(weights)}) and variables (found {len(vars)})" + return weights def __hash__(self) -> int: diff --git a/src/funman/representation/explanation.py b/src/funman/representation/explanation.py index 8e1a7fa8..0946f214 100644 --- a/src/funman/representation/explanation.py +++ b/src/funman/representation/explanation.py @@ -7,18 +7,34 @@ class Explanation(BaseModel): - _expression: FNode + expression: Optional[str] = None + symbols: Optional[List[str]] = None def explain(self) -> Dict[str, Any]: return { "description": "The expression is implied by this scenario and is unsatisfiable", - "expression": self._expression.serialize(), + "expression": self.expression, } + def set_expression(self, e: FNode): + self.expression = e.serialize() + self.symbols = [str(s) for s in e.get_free_variables()] + + def check_assumptions( + self, + episode: "BoxSearchEpisode", + my_solver: Callable, + options: "EncodingOptions", + ) -> List[Assumption]: + return [] + + +class TimeoutExplanation(Explanation): + pass + class BoxExplanation(Explanation): relevant_assumptions: List[Assumption] = [] - expression: Optional[str] = None def check_assumptions( self, @@ -41,21 +57,16 @@ def check_assumptions( List[Assumption] _description_ """ - self.expression = self._expression.serialize() + # FIXME use step size from options assumption_symbols: Dict[str, Assumption] = { str(a): a for a in episode.problem._assumptions } - # with my_solver() as solver: - # solver.add_assertion(self._expression) - # solver.push(1) - expression_symbols = [ - str(v) for v in self._expression.get_free_variables() - ] + self.relevant_assumptions = [ a for symbol, a in assumption_symbols.items() - if any(symbol in es for es in expression_symbols) + if any(symbol in es for es in self.symbols) ] return self.relevant_assumptions diff --git a/src/funman/representation/interval.py b/src/funman/representation/interval.py index 711e73da..5ad5598e 100644 --- a/src/funman/representation/interval.py +++ b/src/funman/representation/interval.py @@ -28,11 +28,30 @@ class Interval(BaseModel): ub: Optional[Union[float, str]] = POS_INFINITY closed_upper_bound: bool = False original_width: Optional[Decimal] = None + normalized: bool = False + unnormalized_lb: Optional[Union[float, str]] = None + unnormalized_ub: Optional[Union[float, str]] = None @field_serializer("original_width") def ser_wrap(self, v: Decimal, _info) -> float: return float(v) + def normalize_bounds(self, normalization_constant): + assert ( + not self.normalized + ), f"Cannot normalize an interval twice: {self}" + + return Interval( + lb=math_utils.div(self.lb, normalization_constant), + ub=math_utils.div(self.ub, normalization_constant), + normalized=True, + unnormalized_lb=self.lb, + unnormalized_ub=self.ub, + original_width=self.original_width + / Decimal(normalization_constant), + closed_upper_bound=self.closed_upper_bound, + ) + @staticmethod def from_value(v: Union[float, str]): return Interval(lb=v, ub=v, closed_upper_bound=True) @@ -91,7 +110,7 @@ def is_unbound(self) -> bool: def normalize(self, normalization_factor: Union[float, int]) -> "Interval": return Interval( lb=math_utils.div(self.lb, normalization_factor), - ub=math_utils.div(self.lb, normalization_factor), + ub=math_utils.div(self.ub, normalization_factor), ) def __lt__(self, other): @@ -193,7 +212,7 @@ def intersects(self, other: "Interval") -> bool: ) ) - def intersection(self, b: "Interval") -> "Interval": + def intersection(self, b: "Interval") -> Optional["Interval"]: """ Given an interval b with self = [a0,a1] and b=[b0,b1], check whether they intersect. If they do, return interval with their intersection. @@ -226,9 +245,12 @@ def intersection(self, b: "Interval") -> "Interval": if math_utils.gt( minArray.ub, maxArray.lb ): ## has nonempty intersection. return intersection - return [float(maxArray.lb), float(minArray.ub)] + result = Interval() + result.lb = float(maxArray.lb) + result.ub = float(minArray.ub) + return result else: ## no intersection. - return [] + return None def subtract(self, b: "Interval") -> "Interval": """ @@ -325,7 +347,9 @@ def union(self, other: "Interval") -> List["Interval"]: # ] return ans - def contains_value(self, value: float) -> bool: + def contains_value( + self, value: float, denormalize_bounds: bool = False + ) -> bool: """ Does the interval include a value? @@ -333,22 +357,46 @@ def contains_value(self, value: float) -> bool: ---------- value : float value to check for containment + denormalize_bounds : bool + if true, and self has unnormalized_lb and unormalized_ub, use these insead of lb and ub. Returns ------- bool the value is in the interval """ - lb_sat = math_utils.gte(value, self.lb) + lb = ( + self.lb + if not self.unnormalized_lb or not denormalize_bounds + else self.unnormalized_lb + ) + ub = ( + self.ub + if not self.unnormalized_ub or not denormalize_bounds + else self.unnormalized_ub + ) + + lb_sat = math_utils.gte(value, lb) ub_sat = ( - math_utils.lte(value, self.ub) + math_utils.lte(value, ub) if self.closed_upper_bound - else math_utils.lt(value, self.ub) + else math_utils.lt(value, ub) ) return lb_sat and ub_sat + def _denormalize(self): + self.lb = self.lb if not self.unnormalized_lb else self.unnormalized_lb + self.unnormalized_lb = None + self.ub = self.ub if not self.unnormalized_ub else self.unnormalized_ub + self.unnormalized_ub = None + @model_validator(mode="after") def check_interval(self) -> str: + if self.lb is None: + self.lb = NEG_INFINITY + if self.ub is None: + self.ub = POS_INFINITY + # Assume that intervals where lb == ub imply closed_upper_bound if self.lb == self.ub and not self.closed_upper_bound: l.warning( diff --git a/src/funman/representation/parameter.py b/src/funman/representation/parameter.py index 8bd7f900..ddfdabb4 100644 --- a/src/funman/representation/parameter.py +++ b/src/funman/representation/parameter.py @@ -25,6 +25,7 @@ class Parameter(BaseModel): name: Union[str, ModelSymbol] interval: Interval = Interval() + _escaped_name: str def width(self) -> Decimal: return self.interval.width() @@ -35,11 +36,19 @@ def is_unbound(self) -> bool: def __hash__(self): return abs(hash(self.name)) + @model_validator(mode="after") + def check_name(self) -> "FUNMANConfig": + self._escaped_name = self.name.replace(" ", "_").replace("-", "_") + return self + @model_validator(mode="after") def set_interval_original_width(self) -> str: self.interval.original_width = self.interval.width() return self + def normalize_bounds(self, normalization_constant): + self.interval = self.interval.normalize_bounds(normalization_constant) + class LabeledParameter(Parameter): label: Literal["any", "all"] = LABEL_ANY @@ -54,19 +63,17 @@ def is_synthesized(self): class NumSteps(StructureParameter): - @field_validator("name") - @classmethod - def check_name(cls, name: str, info: ValidationInfo): - assert name == "num_steps", "NumSteps.name must be 'num_steps'" - return name + @model_validator(mode="after") + def check_name(self) -> "FUNMANConfig": + assert self.name == "num_steps", "NumSteps.name must be 'num_steps'" + return self class StepSize(StructureParameter): - @field_validator("name") - @classmethod - def check_name(cls, name: str, info: ValidationInfo): - assert name == "step_size", "StepSize.name must be 'step_size'" - return name + @model_validator(mode="after") + def check_name(self) -> "FUNMANConfig": + assert self.name == "step_size", "StepSize.name must be 'step_size'" + return self StepListValue = List[Union[float, int]] @@ -75,11 +82,10 @@ def check_name(cls, name: str, info: ValidationInfo): class Schedules(StructureParameter): schedules: List[EncodingSchedule] - @field_validator("name") - @classmethod - def check_name(cls, name: str, info: ValidationInfo): - assert name == "schedules", "StepList.name must be 'step_list'" - return name + @model_validator(mode="after") + def check_name(self) -> "FUNMANConfig": + assert self.name == "schedules", "Schedules.name must be 'schedules'" + return self @model_validator(mode="before") def check_empty_name(self) -> str: diff --git a/src/funman/representation/parameter_space.py b/src/funman/representation/parameter_space.py index 6a622305..4b3b9400 100644 --- a/src/funman/representation/parameter_space.py +++ b/src/funman/representation/parameter_space.py @@ -5,7 +5,14 @@ from matplotlib.lines import Line2D from pydantic import BaseModel -from ..constants import LABEL_DROPPED, LABEL_FALSE, LABEL_TRUE, LABEL_UNKNOWN +from ..constants import ( + LABEL_DROPPED, + LABEL_FALSE, + LABEL_TRUE, + LABEL_UNKNOWN, + NEG_INFINITY, + POS_INFINITY, +) from . import Interval, Point from .box import Box from .interval import Interval @@ -69,6 +76,48 @@ def points(self) -> List[Point]: def boxes(self) -> List[Box]: return self.true_boxes + self.false_boxes + def last_boxes(self) -> List[Box]: + last_step = max( + max([b.timestep().ub for b in self.true_boxes] + [0]), + max([b.timestep().ub for b in self.false_boxes] + [0]), + ) + return [b for b in self.true_boxes if b.timestep().ub == last_step] + [ + b for b in self.false_boxes if b.timestep().ub == last_step + ] + + def outer_interval(self, param_name: str) -> Interval: + """ + Get the infimum and supremimum values of parameter param_name among all true boxes + + Parameters + ---------- + param_name : str + Parameter name + + Returns + ------- + Interval + Interval where the lb and ub are the minimum and maximum values taken by parameter among all true boxes. + """ + if len(self.true_boxes) > 0: + lb = min( + map( + lambda b: b.project([param_name]).bounds[param_name].lb, + self.true_boxes, + ) + ) + ub = max( + map( + lambda b: b.project([param_name]).bounds[param_name].ub, + self.true_boxes, + ) + ) + else: + lb = NEG_INFINITY + ub = POS_INFINITY + + return Interval(lb=lb, ub=ub, closed_upper_bound=(lb == ub)) + def explain(self) -> "ParameterSpaceExplanation": from .explanation import ParameterSpaceExplanation @@ -120,24 +169,6 @@ def project() -> "ParameterSpace": raise NotImplementedError() return ParameterSpace() - @staticmethod - def _intersect_boxes(b1s, b2s): - results_list = [] - for box1 in b1s: - for box2 in b2s: - subresult = Box.__intersect_two_boxes(box1, box2) - if subresult != None: - results_list.append(subresult) - return results_list - - # STUB intersect parameters spaces - @staticmethod - def intersect(ps1, ps2): - return ParameterSpace( - ParameterSpace._intersect_boxes(ps1.true_boxes, ps2.true_boxes), - ParameterSpace._intersect_boxes(ps1.false_boxes, ps2.false_boxes), - ) - @staticmethod def symmetric_difference(ps1: "ParameterSpace", ps2: "ParameterSpace"): return ParameterSpace( @@ -269,7 +300,7 @@ def consistent(self) -> bool: for i1, b1 in enumerate(boxes): for i2, b2 in enumerate(boxes[i1 + 1 :]): if b1.intersects(b2): - l.exception(f"Parameter Space Boxes intersect: {b1} {b2}") + l.error(f"Parameter Space Boxes intersect: {b1} {b2}") return False for tp in self.true_points(): if not any([b.contains_point(tp) for b in self.true_boxes]): @@ -285,6 +316,29 @@ def consistent(self) -> bool: return False return True + def intersection(self, ps2: "ParameterSpace") -> "ParameterSpace": + """ + Intersect two parameter spaces. + """ + result = ParameterSpace(num_dimensions=self.num_dimensions) + true_result = [] + false_result = [] + ps1_boxes = self.true_boxes + ps2_boxes = ps2.true_boxes + for i1, b1 in enumerate(ps1_boxes): + for i2, b2 in enumerate(ps2_boxes): + if b1.intersects(b2): + true_result.append(b1.intersection(b2)) + result.true_boxes = true_result + ps1_boxes = self.false_boxes + ps2_boxes = ps2.false_boxes + for i1, b1 in enumerate(ps1_boxes): + for i2, b2 in enumerate(ps2_boxes): + if b1.intersects(b2): + false_result.append(b1.intersection(b2)) + result.false_boxes = false_result + return result + def _reassign_point_labels(self) -> None: """ For every point, update the label based on the box that contains it. @@ -299,7 +353,7 @@ def _reassign_point_labels(self) -> None: for point in iter( pt for pt in points if pt not in assigned_points ): - if box.contains_point(point): + if box.contains_point(point, denormalize_bounds=True): point.label = box.label box.points.append(point) assigned_points.add(point) @@ -308,6 +362,11 @@ def _reassign_point_labels(self) -> None: pt for pt in points if pt not in assigned_points ] + def _denormalize(self): + boxes: List[Box] = self.true_boxes + self.false_boxes + for box in boxes: + box._denormalize() + def _compact(self): """ Compact the boxes by joining boxes that can create a box diff --git a/src/funman/representation/representation.py b/src/funman/representation/representation.py index c5571c2a..6a26ac02 100644 --- a/src/funman/representation/representation.py +++ b/src/funman/representation/representation.py @@ -2,6 +2,7 @@ This submodule contains definitions for the classes used during the configuration and execution of a search. """ + import logging import math from typing import Dict, Literal, Optional, Set @@ -29,7 +30,7 @@ class Point(BaseModel): # self.values = kw['values'] def timestep(self) -> int: - return int(self.values["timestep"]) + return int(self.values["timestep"]) if "timestep" in self.values else 0 def __str__(self): return f"Point({self.model_dump()})" @@ -71,6 +72,7 @@ def denormalize(self, scenario): values=denormalized_values, normalized_values=self.values, type=self.type, + schedule=self.schedule, ) return denormalized_point else: diff --git a/src/funman/scenario/consistency.py b/src/funman/scenario/consistency.py index b3ac78f7..ffc5235a 100644 --- a/src/funman/scenario/consistency.py +++ b/src/funman/scenario/consistency.py @@ -1,6 +1,7 @@ """ This submodule defines a consistency scenario. Consistency scenarios specify an existentially quantified model. If consistent, the solution assigns any unassigned variable, subject to their bounds and other constraints. """ + import logging import threading from typing import Callable, Dict, Optional diff --git a/src/funman/scenario/parameter_synthesis.py b/src/funman/scenario/parameter_synthesis.py index 51ffcf12..8e13ba59 100644 --- a/src/funman/scenario/parameter_synthesis.py +++ b/src/funman/scenario/parameter_synthesis.py @@ -1,6 +1,7 @@ """ This module defines the Parameter Synthesis scenario. """ + import threading from typing import Callable, List, Optional, Union @@ -102,6 +103,7 @@ class ParameterSynthesisScenarioResult(AnalysisScenarioResult, BaseModel): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.parameter_space._reassign_point_labels() + self.parameter_space._denormalize() self.parameter_space._compact() def plot(self, **kwargs): diff --git a/src/funman/scenario/scenario.py b/src/funman/scenario/scenario.py index c8b201c4..0ae4812f 100644 --- a/src/funman/scenario/scenario.py +++ b/src/funman/scenario/scenario.py @@ -117,10 +117,14 @@ def initialize(self, config: "FUNMANConfig") -> "Search": ] self._set_normalization(config) + if config.normalize: + self._normalize_parameters() if config.use_compartmental_constraints: + capacity = self.normalization_constant + # 1.0 if config.normalize else self.normalization_constant ccs = self.model.compartmental_constraints( - self.normalization_constant + capacity, config.compartmental_constraint_noise ) if ccs is not None: self.constraints += ccs @@ -153,6 +157,9 @@ def _initialize_encodings(self, config: "FUNMANConfig"): for schedule in self._smt_encoder._timed_model_elements[ "schedules" ].schedules: + assert ( + 0 in schedule.timepoints + ), "Schedule for encoding does not include a timepoint 0" encoding = self._smt_encoder.initialize_encodings( self, len(schedule.timepoints) ) @@ -222,6 +229,9 @@ def structure_parameters(self): def model_parameters(self): return self.parameters_of_type(ModelParameter) + def synthesized_model_parameters(self): + return [p for p in self.model_parameters() if p.is_synthesized()] + def synthesized_parameters(self): return [p for p in self.parameters if p.is_synthesized()] @@ -311,6 +321,11 @@ def _filter_parameters(self): ] self.parameters = filtered_parameters + def _normalize_parameters(self): + for p in self.parameters: + if p.name == "N": + p.normalize_bounds(self.normalization_constant) + def _set_normalization(self, config): if config.normalization_constant is not None: self.normalization_constant = config.normalization_constant diff --git a/src/funman/scenario/simulation.py b/src/funman/scenario/simulation.py index 7c4b7201..24863183 100644 --- a/src/funman/scenario/simulation.py +++ b/src/funman/scenario/simulation.py @@ -1,6 +1,7 @@ """ This module wraps a simulator invocation as a Scenario. """ + from importlib import import_module from typing import Any diff --git a/src/funman/search/box_search.py b/src/funman/search/box_search.py index 42a422d7..fc461bb4 100644 --- a/src/funman/search/box_search.py +++ b/src/funman/search/box_search.py @@ -2,6 +2,7 @@ This module defines the BoxSearch class and supporting classes. """ + import glob import logging import multiprocessing as mp @@ -45,7 +46,11 @@ from funman.config import FUNMANConfig from funman.representation.assumption import Assumption from funman.representation.constraint import ParameterConstraint -from funman.representation.explanation import Explanation +from funman.representation.explanation import ( + BoxExplanation, + Explanation, + TimeoutExplanation, +) from funman.search import Box, ParameterSpace, Point, Search, SearchEpisode from funman.search.search import SearchStaticsMP, SearchStatistics from funman.translate.translate import EncodingOptions, EncodingSchedule @@ -202,7 +207,7 @@ def get_candidate_boxes_for_point(self, point: Point) -> List[Box]: def _initialize_boxes(self, expander_count, schedule: EncodingSchedule): # initial_box = self._initial_box() # if not self.add_unknown(initial_box): - # l.exception( + # l.error( # f"Did not add an initial box (of width {initial_box.width()}), try reducing config.tolerance, currently {self.config.tolerance}" # ) initial_boxes = QueueSP() @@ -219,7 +224,7 @@ def _initialize_boxes(self, expander_count, schedule: EncodingSchedule): for i in range(num_boxes): b = initial_boxes.get() if not self._add_unknown(b): - l.exception( + l.error( f"Did not find add an initial box (box had width {b.normalized_width()}), try reducing config.tolerance, currently {self.config.tolerance}" ) # l.debug(f"Initial box: {b}") @@ -245,7 +250,8 @@ def _on_iteration(self): def _add_unknown_box(self, box: Box) -> bool: if ( box.width( - parameters=self.problem.model_parameters(), normalize=True + parameters=self.problem.synthesized_model_parameters(), + normalize=True, ) > self.config.tolerance ): @@ -364,8 +370,11 @@ class BoxSearch(Search): def _split(self, box: Box, episode: BoxSearchEpisode, points=None): normalize = episode.problem._original_parameter_widths + split_points = ( + points if not episode.config.uniform_box_splits else None + ) b1, b2 = box.split( - points=points, + points=split_points, normalize=normalize, parameters=episode.problem.model_parameters(), ) @@ -519,24 +528,27 @@ def _initialize_model_encoding( self._solve_at_step_symbol(t), formula_encoded_constraints ) - # symbols = formula_encoded_constraints.get_free_variables() - neg_formula = Implies( - Not(self._solve_at_step_symbol(t)), - And( - [ - Equals( - encoding._encoder._encode_state_var( - s, time=timepoint - ), - Real(0.0), - ) - for s in episode.problem.model._state_var_names() - ] # + [Not(s) for s in symbols if s.symbol_type() == BOOL] - ), + # neg_formula = Implies( + # Not(self._solve_at_step_symbol(t)), + # And( + # [ + # Equals( + # encoding._encoder._encode_state_var( + # s, time=timepoint + # ), + # Real(0.0), + # ) + # for s in episode.problem.model._state_var_names() + # ] # + [Not(s) for s in symbols if s.symbol_type() == BOOL] + # ), + # ) + + layer_formulas.append( + # And( + formula + # , neg_formula) ) - layer_formulas.append(And(formula, neg_formula)) - for layer, formula in enumerate(layer_formulas): episode._formula_stack.push(1) episode._formula_stack.add_assertion(formula) @@ -788,7 +800,9 @@ def _get_points( f"box_search_{episode._iteration}", ) ) - result = self.invoke_solver(solver) + result = self.invoke_solver( + solver, timeout=episode.config.solver_timeout + ) if result is not None and isinstance(result, pysmtModel): # If substituted formulas are on the stack, then add the original formulas to compute the values of all variables if ( @@ -826,13 +840,15 @@ def _get_false_points( episode._add_false_point, my_solver, options, - _smtlib_save_fn=partial( - self.store_smtlib, - episode, - box, - ) - if episode.config.save_smtlib - else None, + _smtlib_save_fn=( + partial( + self.store_smtlib, + episode, + box, + ) + if episode.config.save_smtlib + else None + ), ) return box.false_points(step=box.timestep().lb), explanation @@ -889,7 +905,9 @@ def _get_witness_assumptions( ) episode._formula_stack.push() episode._formula_stack._add_assertion(negated_assumptions) - result = self.invoke_solver(solver) + result = self.invoke_solver( + solver, timeout=episode.config.solver_timeout + ) if result is not None and isinstance(result, pysmtModel): # The assumptions are not minimal pass @@ -922,7 +940,9 @@ def _find_witness_points( f"wp_{episode._iteration}.smt2", ), ) - result = self.invoke_solver(solver) + result = self.invoke_solver( + solver, timeout=episode.config.solver_timeout + ) if result is not None and isinstance(result, pysmtModel): # Record the false point point = episode._extract_point(result, box) @@ -967,11 +987,15 @@ def _get_true_points( episode._add_true_point, my_solver, options, - _smtlib_save_fn=partial(self.store_smtlib, episode, box) - if episode.config.save_smtlib - else None, + _smtlib_save_fn=( + partial(self.store_smtlib, episode, box) + if episode.config.save_smtlib + else None + ), ) - if len(box.true_points(step=box.timestep().lb)) == 0: + if len(box.true_points(step=box.timestep().lb)) == 0 or isinstance( + explanation, TimeoutExplanation + ): # Could not find a point at the current step, so there won't be any at subsequent steps # fall out of loop, after setting the upper bound on the box timestep # if couldn't find a point, then remove all points from box @@ -989,6 +1013,17 @@ def _get_true_points( # lb == ub and have a point, so break break + # if ( + # len(box.false_points(step=box.timestep().lb)) > 0 + # and len(box.true_points(step=box.timestep().lb)) > 0 + # ): + # # Do not continue if there is a true and a false point. It means we already know we need to split this box. + # break + + # if box.timestep().lb == 0: + # # Don't check for later timepoints when looking at the initial time step. This helps evaluate parameter constraints that would only apply to the initial time step. + # break + # reinstate the original lower bound on timestep so that we will check # whether no false points exist in the main loop of the box search box.timestep().lb = original_box_timestep_lb @@ -1007,7 +1042,9 @@ def get_box_corners( ]._encoder.point_to_smt(point) episode._formula_stack.push() episode._formula_stack.add_assertion(f) - result = self.invoke_solver(solver) + result = self.invoke_solver( + solver, timeout=episode.config.solver_timeout + ) if result is not None and isinstance(result, pysmtModel): corner_point = episode._extract_point(result, box) box.corner_points.append(corner_point) @@ -1056,13 +1093,14 @@ def _expand( """ process_name = f"Expander_{(idx if idx else 'S')}_p{os.getpid()}" # l = self._logger(episode.config, process_name=process_name) - + last_progress = -1.0 try: if episode.config.solver == "dreal": opts = { "dreal_precision": episode.config.dreal_precision, "dreal_log_level": episode.config.dreal_log_level, "dreal_mcts": episode.config.dreal_mcts, + "preferred": episode.config.dreal_prefer_parameters, # [p.name for p in episode.problem.parameters] if episode.config.dreal_prefer_parameters else [], } else: opts = {} @@ -1100,6 +1138,9 @@ def _expand( continue else: l.debug(f"Expanding box: {box}") + l.debug( + f"Evaluating box: +: {len(box.true_points())}, -: {len(box.false_points())}, H: {box.point_entropy()}" + ) # Setup the model constraints up to the box.timestep.lb and add box constraints self._initialize_model_for_box( solver, box, episode, options @@ -1160,7 +1201,9 @@ def _expand( f"Split @ {box.timestep().lb}, (width: {box.width():.5f} (raw) {box.normalized_width():.5f} (norm))" ) l.trace(f"XXX Split:\n{box}") - else: + elif isinstance( + not_false_explanation, BoxExplanation + ): # box does not intersect f, so it is in t (true region) curr_step_box = box.current_step() episode._add_true( @@ -1172,22 +1215,42 @@ def _expand( l.trace(f"+++ True:\n{box}") if episode.config.corner_points: - corner_points: List[ - Point - ] = self.get_box_corners( - solver, - episode, - curr_step_box, - rval, - options, - my_solver, + corner_points: List[Point] = ( + self.get_box_corners( + solver, + episode, + curr_step_box, + rval, + options, + my_solver, + ) ) # Advance a true box to be considered for later timesteps next_box = box.advance() if next_box: episode._add_unknown(next_box) - else: + else: # Timeout FIXME copy of split code + if self._split( + box, + episode, + points=[true_points, false_points], + ): + l.trace(f"{process_name} produced work") + else: + rval.put(box.model_dump()) + if episode.config.number_of_processes > 1: + # FIXME This would only be none when + # the number of processes is 1. This + # can be done more cleanly. + if more_work: + with more_work: + more_work.notify_all() + l.debug( + f"Split @ {box.timestep().lb}, (width: {box.width():.5f} (raw) {box.normalized_width():.5f} (norm))" + ) + l.trace(f"XXX Split:\n{box}") + elif isinstance(not_true_explanation, BoxExplanation): if len(box.points) == 0: # If we cannot find a true point, the box is false and we may have not computed any false points, so ensure we have at least one. self._get_false_points( @@ -1206,22 +1269,49 @@ def _expand( l.debug(f"False @ {box.timestep().lb}") l.trace(f"--- False:\n{box}") if episode.config.corner_points: - corner_points: List[ - Point - ] = self.get_box_corners( - solver, - episode, - box, - rval, - options, - my_solver, + corner_points: List[Point] = ( + self.get_box_corners( + solver, + episode, + box, + rval, + options, + my_solver, + ) ) rval.put(box.model_dump()) + else: # Timeout FIXME copy of split code + if self._split( + box, + episode, + points=[true_points], + ): + l.trace(f"{process_name} produced work") + else: + rval.put(box.model_dump()) + if episode.config.number_of_processes > 1: + # FIXME This would only be none when + # the number of processes is 1. This + # can be done more cleanly. + if more_work: + with more_work: + more_work.notify_all() + l.debug( + f"Split @ {box.timestep().lb}, (width: {box.width():.5f} (raw) {box.normalized_width():.5f} (norm))" + ) + l.trace(f"XXX Split:\n{box}") episode._formula_stack.pop() # Remove box constraints from solver episode._on_iteration() if handler: handler(rval, episode.config, all_results) - if "progress" in all_results: + if ( + "progress" in all_results + and all_results["progress"].progress + > last_progress + ): + last_progress = all_results[ + "progress" + ].progress l.info(all_results["progress"]) l.trace(f"{process_name} finished work") self._initialize_model_encoding( @@ -1443,7 +1533,11 @@ def handler(rval, config: "FUNMANConfig", results) -> Dict[str, Any]: config=config, problem=problem, schedule=schedule ) episode._initialize_boxes(config.num_initial_boxes, schedule) - options = EncodingOptions(schedule=schedule) + options = EncodingOptions( + schedule=schedule, + normalize=config.normalize, + normalization_constant=config.normalization_constant, + ) self._expand( rval, episode, @@ -1471,6 +1565,8 @@ def handler(rval, config: "FUNMANConfig", results) -> Dict[str, Any]: options = EncodingOptions( num_steps=structural_configuration["num_steps"], step_size=structural_configuration["step_size"], + normalize=config.normalize, + normalization_constant=config.normalization_constant, ) self._expand( rval, @@ -1504,6 +1600,8 @@ def _search_mp( options = EncodingOptions( num_steps=structural_configuration["num_steps"], step_size=structural_configuration["step_size"], + normalize=config.normalize, + normalization_constant=config.normalization_constant, ) expand_count = processes - 1 episode._initialize_boxes(expand_count) diff --git a/src/funman/search/search.py b/src/funman/search/search.py index 24502a16..110385d5 100644 --- a/src/funman/search/search.py +++ b/src/funman/search/search.py @@ -9,18 +9,64 @@ import pysmt from pydantic import BaseModel, ConfigDict -from pysmt.shortcuts import Solver +from pysmt.shortcuts import TRUE, Solver from pysmt.solvers.solver import Model as pysmtModel from funman import Box, Interval, ModelParameter from funman.translate.translate import EncodingSchedule from ..config import FUNMANConfig -from ..representation.explanation import BoxExplanation +from ..representation.explanation import BoxExplanation, TimeoutExplanation from ..scenario.scenario import AnalysisScenario l = logging.getLogger(__name__) +import queue +from multiprocessing import JoinableQueue, Process + + +def run_with_limited_time(func, args, kwargs, time): + p = Process(target=func, args=args, kwargs=kwargs) + l.debug(f"start: {datetime.datetime.now()}, with timout: {time}") + p.start() + # p.join(timeout=time) + try: + result = args[-1].get(timeout=time) + + except queue.Empty: + l.debug("empty queue") + result = None + # l.debug("get timedout or done") + # try: + # args[-1].task_done() + # l.debug("signaled q task done") + # except ValueError: + # pass + + try: + args[-1].task_done() + l.debug("signaled q task done") + except ValueError: + pass + + l.debug("Awaiting join ...") + p.join(timeout=time) + l.debug("joined process") + + # print(f"exitcode: {p.exitcode}, return: {r}") + # print(args) + if p.is_alive(): + l.debug(f"kill: {datetime.datetime.now()}") + p.terminate() + # sys.exit(1) + return None + # p.join() + l.debug(f"end: {datetime.datetime.now()}") + # print(args[-1].get()) + # sys.exit(1) + return result + # return True + class SearchStatistics(BaseModel): model_config = ConfigDict( @@ -117,14 +163,49 @@ def search( ) -> SearchEpisode: pass - def invoke_solver(self, s: Solver) -> Union[pysmtModel, BoxExplanation]: - l.trace("Invoking solver ...") + def invoke_solver( + self, s: Solver, timeout: int = None + ) -> Union[pysmtModel, BoxExplanation]: + l.debug("Invoking solver ...") + q = JoinableQueue() + + if timeout is not None: + result = run_with_limited_time( + Search._internal_invoke_solver, (self, s, q), {}, timeout + ) + # print(f"get from q, empty?: {q.empty()} ") + + if result is None: + result = TimeoutExplanation() + result.set_expression(TRUE()) + else: + result = self._internal_invoke_solver(s, None) + # print(f"invoke_solver, result: [{result}]") + return result + + # @timeout_decorator.timeout(1) + def _internal_invoke_solver(self, s: Solver, q): + l.debug("Solver started") result = s.solve() l.trace(f"Solver result = {result}") - if result: - result = s.get_model() - else: - result = BoxExplanation() - result._expression = s.get_unsat_core() + try: + if result: + # print(f"put: {s.get_model()}") + result = s.get_model() + if q: + q.put(result) + else: + + result = BoxExplanation() + result.set_expression(s.get_unsat_core()) + # print(f"put: {result}") + if q: + q.put(result) + + except RecursionError: + l.error("Recursion error pickling solver result in queue.") + pass + l.debug("Solver completed") + # print(result) return result diff --git a/src/funman/search/smt_check.py b/src/funman/search/smt_check.py index 675e1cd2..c60618fb 100644 --- a/src/funman/search/smt_check.py +++ b/src/funman/search/smt_check.py @@ -50,7 +50,11 @@ def search( episode = SearchEpisode( config=config, problem=problem, schedule=schedule ) - options = EncodingOptions(schedule=schedule) + options = EncodingOptions( + schedule=schedule, + normalize=config.normalize, + normalization_constant=config.normalization_constant, + ) # self._initialize_encoding(solver, episode, box_timepoint, box) model_result, explanation_result = self.expand( @@ -100,7 +104,7 @@ def search( box = Box( bounds={ p.name: p.interval.model_copy() - for p in problem.parameters + for p in problem.model_parameters() }, label=LABEL_FALSE, # lack of a point means this must be a false box points=[], @@ -198,7 +202,7 @@ def solve_formula( filename=filename, ) l.trace(f"Solving: {formula.serialize()}") - result = self.invoke_solver(s) + result = self.invoke_solver(s, timeout=episode.config.solver_timeout) s.pop(1) l.trace(f"Result: {type(result)}") return result @@ -218,6 +222,7 @@ def expand( "dreal_precision": episode.config.dreal_precision, "dreal_log_level": episode.config.dreal_log_level, "dreal_mcts": episode.config.dreal_mcts, + "preferred": episode.config.dreal_prefer_parameters, # [p.name for p in problem.model_parameters()]if episode.config.dreal_prefer_parameters else [], } else: opts = {} diff --git a/src/funman/server/query.py b/src/funman/server/query.py index 422544ac..20d3d74b 100644 --- a/src/funman/server/query.py +++ b/src/funman/server/query.py @@ -1,5 +1,7 @@ +import logging import random from collections import Counter +from datetime import datetime, timedelta from typing import Dict, List, Optional, Tuple, Union import pandas as pd @@ -12,6 +14,7 @@ from funman.model.decapode import DecapodeModel from funman.model.encoded import EncodedModel from funman.model.ensemble import EnsembleModel +from funman.model.generated_models.petrinet import Model as GeneratedPetriNet from funman.model.petrinet import GeneratedPetriNetModel, PetrinetModel from funman.model.query import QueryAnd, QueryFunction, QueryLE, QueryTrue from funman.model.regnet import GeneratedRegnetModel, RegnetModel @@ -37,6 +40,8 @@ from ..representation.parameter_space import ParameterSpace +l = logging.getLogger(__name__) + class FunmanWorkRequest(BaseModel): query: Optional[Union[QueryAnd, QueryLE, QueryFunction, QueryTrue]] = None @@ -44,9 +49,12 @@ class FunmanWorkRequest(BaseModel): parameters: Optional[List[ModelParameter]] = None config: Optional[FUNMANConfig] = None structure_parameters: Optional[ - List[Union[Union[NumSteps, StepSize], Schedules]] + List[Union[Schedules, Union[NumSteps, StepSize]]] ] = None + def parameter(self, name: str) -> ModelParameter: + return next(iter([x for x in self.parameters if x.name == name])) + @field_validator("constraints") @classmethod def check_unique_names( @@ -136,6 +144,7 @@ def to_scenario( not hasattr(self.request, "parameters") or self.request.parameters is None or all(p.label == LABEL_ANY for p in self.request.parameters) + or all(p.width() == 0.0 for p in self.request.parameters) ): return ConsistencyScenario( model=self.model, @@ -157,6 +166,38 @@ def to_scenario( ) +class FunmanResultsTiming(BaseModel): + start_time: datetime = None + end_time: Optional[datetime] = None + total_time: Optional[timedelta] = None + solver_time: Optional[timedelta] = None + encoding_time: Optional[timedelta] = None + progress_timeseries: List[Tuple[datetime, float]] = [] + + def update_progress( + self, progress, granularity=timedelta(seconds=1) + ) -> None: + last_update = ( + self.progress_timeseries[-1][0] + if len(self.progress_timeseries) > 0 + else None + ) + + now = datetime.now() + + if last_update is not None: + time_delta = now - last_update + else: + time_delta = now - self.start_time + + if time_delta > granularity: + self.progress_timeseries.append((now, progress)) + + def finalize(self): + """Calculate total time""" + self.total_time = self.end_time - self.start_time + + class FunmanResults(BaseModel): _finalized: bool = False @@ -174,11 +215,41 @@ class FunmanResults(BaseModel): request: FunmanWorkRequest done: bool = False error: bool = False + error_message: Optional[str] = None parameter_space: Optional[ParameterSpace] = None + timing: FunmanResultsTiming = FunmanResultsTiming() + contracted_model: Optional[GeneratedPetriNet] = None + + def start(self): + self.timing.start_time = datetime.now() + + def stop(self): + self.timing.end_time = datetime.now() + self.timing.finalize() def is_final(self): return self._finalized + def contract_model(self): + """ + Use the parameter_space to contract the model parameter bounds and set self.contracted_model + + """ + if not isinstance(self.model, GeneratedPetriNetModel): + raise NotImplemented( + f"Cannot contract model of type {type(self.model)}" + ) + + # Get new bounds for each parameter + amr_parameters = self.model._parameter_names() + parameter_bounds = { + param: self.parameter_space.outer_interval(param) + for param in amr_parameters + } + self.contracted_model = self.model.contract_parameters( + parameter_bounds + ) + def update_parameter_space( self, scenario: AnalysisScenario, results: ParameterSpace ) -> FunmanProgress: @@ -207,6 +278,10 @@ def update_parameter_space( self.progress.progress = coverage_of_search_space self.progress.coverage_of_search_space = coverage_of_search_space self.progress.coverage_of_representable_space = coverage_of_repr_space + self.timing.update_progress(self.progress.coverage_of_search_space) + + self.contract_model() + return self.progress def finalize_result( @@ -227,18 +302,21 @@ def finalize_result( if ps is None: raise Exception("No ParameterSpace for result") - - self.update_parameter_space(scenario, ps) + try: + self.update_parameter_space(scenario, ps) + except Exception as e: + l.error( + f"Could not update the parameter space while finalizing the result because: {e}" + ) self.done = True self.progress.progress = 1.0 - def finalize_result_as_error( - self, - ): + def finalize_result_as_error(self, message=None): if self._finalized: raise Exception("FunmanResults was already finalized") self._finalized = True self.error = True + self.error_message = message self.done = True self.progress.progress = 1.0 diff --git a/src/funman/server/storage.py b/src/funman/server/storage.py index c6267b8c..b96ccfd8 100644 --- a/src/funman/server/storage.py +++ b/src/funman/server/storage.py @@ -59,8 +59,8 @@ def add_result(self, result: FunmanResults): raise FunmanException( f"Id {id} does not exist in results (is unclaimed)." ) - if self.results[id] is not None: - raise FunmanException(f"Id {id} was already set to a value.") + # if self.results[id] is not None: + # raise FunmanException(f"Id {id} was already set to a value.") self.results[id] = result with open(self.path / f"{id}.json", "w") as f: f.write(result.model_dump_json(by_alias=True)) @@ -72,7 +72,9 @@ def get_result(self, id: str) -> FunmanResults: return self.results[id] path = self.path / f"{id}.json" if not path.is_file(): - raise NotFoundFunmanException("Result for id '{id}' not found") + raise NotFoundFunmanException( + f"Result for id '{id}' not found" + ) with open(path, "r") as f: result = FunmanResults.model_validate(json.load(f)) self.results[id] = result diff --git a/src/funman/server/worker.py b/src/funman/server/worker.py index 1fb3d648..28afbed9 100644 --- a/src/funman/server/worker.py +++ b/src/funman/server/worker.py @@ -1,7 +1,6 @@ import copy import logging import queue -import sys import threading import traceback from enum import Enum @@ -75,12 +74,17 @@ def in_state(self, state: WorkerState) -> bool: def enqueue_work( self, model: FunmanModel, request: FunmanWorkRequest ) -> FunmanWorkUnit: - if not self.in_state(WorkerState.RUNNING): - raise FunmanWorkerException( - f"FunmanWorker must be starting or running to enqueue work: {self.get_state()}" - ) id = self.storage.claim_id() work = FunmanWorkUnit(id=id, model=model, request=request) + + self.storage.add_result( + FunmanResults( + id=id, + model=work.model, + request=work.request, + parameter_space=ParameterSpace(), + ) + ) self.queue.put(work) with self._set_lock: self.queued_ids.add(work.id) @@ -142,14 +146,15 @@ def is_processing_id(self, id: str): return self.current_id == id def get_results(self, id: str): - if not self.in_state(WorkerState.RUNNING): - raise FunmanWorkerException( - f"FunmanWorker must be running to get results: {self.get_state()}" - ) - with self._id_lock: - if self.current_id == id: - return copy.copy(self.current_results) + if not self.in_state(WorkerState.RUNNING) or self.current_id != id: + # raise FunmanWorkerException( + # f"FunmanWorker must be running to get results: {self.get_state()}" + # ) return self.storage.get_result(id) + with self._id_lock: + # if self.current_id == id: + return copy.copy(self.current_results) + # return self.storage.get_result(id) def halt(self, id: str): if not self.in_state(WorkerState.RUNNING): @@ -215,15 +220,13 @@ def _run(self, stop_event: threading.Event): with self._id_lock: self.current_id = work.id - self.current_results = FunmanResults( - id=work.id, - model=work.model, - request=work.request, - parameter_space=ParameterSpace(), + self.current_results = self.storage.get_result( + self.current_id ) l.info(f"Starting work on: {work.id}") try: + self.current_results.start() # convert to scenario scenario = work.to_scenario() @@ -246,25 +249,30 @@ def _run(self, stop_event: threading.Event): self.current_results.finalize_result(scenario, result) l.info(f"Completed work on: {work.id}") except Exception as e: - l.exception( - f"Internal Server Error ({work.id}):", file=sys.stderr - ) + l.error(f"Internal Server Error ({work.id}):") traceback.print_exc() with self._results_lock: - self.current_results.finalize_result_as_error() - l.exception(f"Aborting work on: {work.id}") + self.current_results.finalize_result_as_error( + message=str(e) + ) + l.error(f"Aborting work on: {work.id}") finally: + self.current_results.stop() self.storage.add_result(self.current_results) self.queue.task_done() with self._id_lock: self.current_id = None self.current_results = None - except Exception: - l.exception("Fatal error in worker!", file=sys.stderr) + except Exception as e: + l.error("Fatal error in worker!") traceback.print_exc() # Only mark the state as errored if the thread # has not yet been told to stop if not stop_event.is_set(): with self._state_lock: self._state = WorkerState.ERRORED + result = self.storage.get_result(work.id) + result.error = True + result.done = True + # self.storage.add_result(result) l.info("FunmanWorker exiting...") diff --git a/src/funman/translate/__init__.py b/src/funman/translate/__init__.py index 6e44c3a5..778ab051 100644 --- a/src/funman/translate/__init__.py +++ b/src/funman/translate/__init__.py @@ -1,12 +1,14 @@ """ The funman.translate package defines how to translate funman.model models into SMTLib format for different analysis scenarios. """ + from .encoding import * from .simplifier import * from .translate import * from .bilayer import * from .encoded import * -from .gromet import * + +# from .gromet import * from .petrinet import * from .ensemble import * from .simplifier import * diff --git a/src/funman/translate/bilayer.py b/src/funman/translate/bilayer.py index 3c654fb4..3b705644 100644 --- a/src/funman/translate/bilayer.py +++ b/src/funman/translate/bilayer.py @@ -2,6 +2,7 @@ This module encodes bilayer models into a SMTLib formula. """ + import logging from functools import reduce from typing import Dict, Set, Tuple @@ -219,7 +220,7 @@ def encode_model( } ) parameter_constraints = self.box_to_smt( - parameter_box, closed_upper_bound=True + parameter_box # , closed_upper_bound=True ) else: parameter_constraints = TRUE() diff --git a/src/funman/translate/encoded.py b/src/funman/translate/encoded.py index 2b6ebcec..da497742 100644 --- a/src/funman/translate/encoded.py +++ b/src/funman/translate/encoded.py @@ -2,6 +2,7 @@ This module defines enocoders for already encoded models. (Technically, a pass-through that helps make the encoder abstraction uniform.) """ + from typing import List from funman.model import FunmanModel diff --git a/src/funman/translate/encoding.py b/src/funman/translate/encoding.py index f6f42c5a..38d39199 100644 --- a/src/funman/translate/encoding.py +++ b/src/funman/translate/encoding.py @@ -1,5 +1,5 @@ import logging -from typing import Dict, List, Union +from typing import Dict, List, Optional, Union from pydantic import BaseModel, ConfigDict from pysmt.formula import FNode @@ -17,7 +17,7 @@ class EncodingOptions(BaseModel): schedule: EncodingSchedule normalize: bool = False - normalization_constant: float = 1.0 + normalization_constant: Optional[float] = 1.0 class Encoding(BaseModel): diff --git a/src/funman/translate/ensemble.py b/src/funman/translate/ensemble.py index b14d7137..3a4b7b42 100644 --- a/src/funman/translate/ensemble.py +++ b/src/funman/translate/ensemble.py @@ -1,7 +1,9 @@ +from numbers import Number from typing import Dict, Set from pysmt.formula import FNode from pysmt.shortcuts import REAL, TRUE, And, Symbol, Times, substitute +from pysmt.solvers.solver import Model as pysmtModel from funman.model.model import FunmanModel @@ -100,3 +102,39 @@ def _get_timed_symbols(self, model: FunmanModel) -> Set[str]: state variable names """ return set(model._state_var_names()) + + def symbol_values( + self, model_encoding: Encoding, pysmtModel: pysmtModel + ) -> Dict[str, Dict[str, float]]: + """ + Get the value assigned to each symbol in the pysmtModel. + + Parameters + ---------- + model_encoding : Encoding + encoding using the symbols + pysmtModel : pysmt.solvers.solver.Model + assignment to symbols + + Returns + ------- + Dict[str, Dict[str, float]] + mapping from symbol and timepoint to value + """ + + vars = self._symbols(model_encoding.symbols()) + vals = {} + for var, model_vars in vars.items(): + for model_idx, model_var in model_vars.items(): + vals[var] = {} + for t in vars[var]: + try: + symbol = vars[var][t] + value = pysmtModel.get_py_value(symbol) + # value = pysmtModel.completed_assignment[symbol] + if isinstance(value, Number): + value = 0.0 + vals[var][t] = float(value) + except OverflowError as e: + l.warning(e) + return vals diff --git a/src/funman/translate/gromet.py b/src/funman/translate/gromet.py index 974a7e39..21a25ea1 100644 --- a/src/funman/translate/gromet.py +++ b/src/funman/translate/gromet.py @@ -2,6 +2,7 @@ This module encodes Gromet models as SMTLib formulas. """ + from automates.model_assembly.gromet.model.function_type import FunctionType from automates.model_assembly.gromet.model.gromet_box_function import ( GrometBoxFunction, diff --git a/src/funman/translate/petrinet.py b/src/funman/translate/petrinet.py index 7142c361..f2058377 100644 --- a/src/funman/translate/petrinet.py +++ b/src/funman/translate/petrinet.py @@ -140,13 +140,17 @@ def _encode_next_step( } # for each var, next state is the net flow for the var: sum(inflow) - sum(outflow) - net_flows = [] + # Transition id -> State -> net flow + net_flows = {} + # transition_values = {} + # State -> [Transition id] + state_var_flows = {} for var in state_vars: - state_var_flows = [] + state_var_id = scenario.model._state_var_id(var) + state_var_flows[state_var_id] = [] for transition in transitions: - state_var_id = scenario.model._state_var_id(var) - transition_id = scenario.model._transition_id(transition) + outflow = scenario.model._num_flow_from_transition_to_state( state_var_id, transition_id ) @@ -156,23 +160,96 @@ def _encode_next_step( net_flow = outflow - inflow if net_flow != 0: - state_var_flows.append( - [ - Times(Real(net_flow) * t) - for t in transition_terms[transition_id] - ] + tnf = net_flows.get(transition_id, {}) + tnf[state_var_id] = net_flow + net_flows[transition_id] = tnf + # tv = .get(transition_id, {}) + # transition_values[transition_id] = [ + # Times(Real(net_flow) * t) + # for t in transition_terms[transition_id] + # ] + # transition_values[transition_id] = tv + # transition_values[transition_id] = [ + # Times(Real(net_flow) * t) + # for t in transition_terms[transition_id] + # ] + state_var_flows[state_var_id].append(transition_id) + + # Encode a timed symbol for the transition value + # tr_k = flow_k + # transition_values_encoded = { + # transition_id: Or( + # [ + # Equals( + # self._encode_state_var(transition_id, time=step), + # rule, + # ) + # for rule in flow + # ] + # ).simplify() + # if self.config.use_transition_symbols else + # Or(flow).simplify() + # for transition_id, flow in transition_values.items() + # } + + # Simplify transition_values + if self.config.substitute_subformulas: + for ( + transition_id, + possible_transitions, + ) in transition_terms.items(): + possible_transitions = [ + FUNMANSimplifier.sympy_simplify( + # flows.substitute(substitutions), + to_sympy( + transition.substitute(substitutions).simplify(), + scenario.model._symbols(), + ), + parameters=scenario.model_parameters(), + threshold=self.config.series_approximation_threshold, + taylor_series_order=self.config.taylor_series_order, ) - if len(state_var_flows) > 0: - # FIXME: the below should involve computing update as the cross product of all transition_rate equations + for transition in possible_transitions + ] + + substitutions[ + self._encode_state_var(transition_id, time=step) + ] = transition_terms[transition_id][0] + + # Compose transitions and previous state + var_updates = [] + for var in state_vars: + state_var_id = scenario.model._state_var_id(var) + if len(state_var_flows[state_var_id]) > 0: + # FIXME: the below should involve computing update as the cross product of all transition_rate equations if there is more than one rate per transition + # s + (tr_0 + tr_1 ...) * dt flows = Plus( + current_state[state_var_id], Times( - Real(step_size), Plus( - [s[0] for s in state_var_flows] - ), # FIXME see above - ), # .simplify() - current_state[state_var_id], - ) # .simplify() + [ + ( + self._encode_state_var( + transition_id, time=step + ) + if self.config.use_transition_symbols + else Times( + Real( + net_flows[transition_id][ + state_var_id + ] + ), + transition_terms[transition_id][0], + ) # FIXME see above + ) + for transition_id in state_var_flows[ + state_var_id + ] + ] + ), + Real(step_size), + ).simplify(), + ) if self.config.substitute_subformulas: # flows = flows.substitute(substitutions) flows = FUNMANSimplifier.sympy_simplify( @@ -189,10 +266,23 @@ def _encode_next_step( flows = current_state[state_var_id] # .substitute(substitutions) - net_flows.append(Equals(next_state[state_var_id], flows)) + var_updates.append(Equals(next_state[state_var_id], flows)) if self.config.substitute_subformulas: substitutions[next_state[state_var_id]] = flows + if self.config.use_transition_symbols: + var_updates.append( + And( + [ + Equals( + self._encode_state_var(transition_id, time=step), + rate[0], + ) + for transition_id, rate in transition_terms.items() + ] + ) + ) + # If any variables depend upon time, then time updates need to be encoded. if time_var is not None: # time_increment = ( @@ -204,12 +294,19 @@ def _encode_next_step( # time_update = Equals(next_time_var, time_increment) time_update = Equals(next_time_var, next_time) if self.config.substitute_subformulas: - substitutions[next_time_var] = time_increment + substitutions[next_time_var] = next_time else: time_update = TRUE() + normalization_constraint = TRUE() + # if self.config.normalize: + # normalization_constraint = And([ + # And(LE(Real(0.0), current_state[scenario.model._state_var_id(var)]), LE( current_state[scenario.model._state_var_id(var)], Real(1.0))) + # for var in state_vars + # ]) + return ( - And(net_flows + [time_update]), + And(var_updates + [time_update, normalization_constraint]), substitutions, ) @@ -219,20 +316,6 @@ def _define_init( initial_state, substitutions = super()._define_init( scenario, init_time=init_time ) - # state_var_names = scenario.model._state_var_names() - # initial_substitution = {} - - if self.config.use_compartmental_constraints: - compartmental_bounds = self._encode_compartmental_bounds( - scenario, 0 - ) - if self.config.substitute_subformulas and substitutions: - compartmental_bounds = compartmental_bounds.substitute( - substitutions - ).simplify() - else: - compartmental_bounds = TRUE() - initial_state = And(initial_state, compartmental_bounds).simplify() return initial_state, substitutions @@ -276,7 +359,7 @@ def _encode_compartmental_bounds( bounds += [lb, ub] # noise_var = Symbol("noise", REAL) - noise_const = Real(1e-3) + noise_const = Real(self.config.compartmental_constraint_noise) sum_vars = Plus( [ self._encode_state_var( @@ -286,8 +369,8 @@ def _encode_compartmental_bounds( ] ) total = And( - LE(sum_vars, Plus(population, noise_const)), - LE(Minus(population, noise_const), sum_vars), + LE(sum_vars, Plus(population, noise_const).simplify()), + LE(Minus(population, noise_const).simplify(), sum_vars), ) return And(bounds + [total]) diff --git a/src/funman/translate/translate.py b/src/funman/translate/translate.py index b82eb1b2..ba5ee9bf 100644 --- a/src/funman/translate/translate.py +++ b/src/funman/translate/translate.py @@ -1,6 +1,7 @@ """ This module defines the abstract base classes for the model encoder classes in funman.translate package. """ + import logging from abc import ABC from typing import Callable, Dict, List, Optional, Set, Tuple, Union @@ -20,6 +21,7 @@ Equals, Iff, Implies, + Minus, Plus, Real, Symbol, @@ -697,9 +699,9 @@ def encode_parameter( parameter = constraint.parameter if parameter in scenario.model_parameters(): formula = self.interval_to_smt( - parameter.name, + parameter._escaped_name, parameter.interval.model_copy(deep=True), - closed_upper_bound=False, + # closed_upper_bound=False, infinity_constraints=False, ) return ( @@ -723,20 +725,78 @@ def encode_linear_constraint( timestep = options.schedule.time_at_step(layer_idx) parameters = scenario.parameters encoded_vars = [ - self._encode_state_var(v) - if len([p for p in parameters if p.name == v]) > 0 - else self._encode_state_var(v, time=timestep) + ( + self._encode_state_var(v) + if len([p for p in parameters if p.name == v]) > 0 + else self._encode_state_var(v, time=timestep) + ) for v in vars ] - expression = Plus( - [ - Times( - Real(weights[i]), - encoded_vars[i], + if constraint.derivative: + next_timestep = constraint.next_timestep( + layer_idx, options.schedule + ) + encoded_dt_vars = [ + ( + self._encode_state_var(v) + if len([p for p in parameters if p.name == v]) > 0 + else self._encode_state_var( + v, time=options.schedule.time_at_step(next_timestep) + ) ) - for i in range(len(vars)) + for v in vars ] - ) + curr = ( + encoded_dt_vars if next_timestep < layer_idx else encoded_vars + ) + curr_t = ( + options.schedule.time_at_step(next_timestep) + if next_timestep < layer_idx + else timestep + ) + nxt = ( + encoded_dt_vars if next_timestep > layer_idx else encoded_vars + ) + nxt_t = ( + options.schedule.time_at_step(next_timestep) + if next_timestep > layer_idx + else timestep + ) + expression = Div( + Minus( + Plus( + [ + Times( + Real(weights[i]), + nxt[i], + ) + for i in range(len(vars)) + ] + ), + Plus( + [ + Times( + Real(weights[i]), + curr[i], + ) + for i in range(len(vars)) + ] + ), + ), + Minus(Real(nxt_t), Real(curr_t)), + ).simplify() + pass + else: + expression = Plus( + [ + Times( + Real(weights[i]), + encoded_vars[i], + ) + for i in range(len(vars)) + ] + ) + if bounds.lb != NEG_INFINITY: lb = Real(bounds.lb) else: @@ -748,11 +808,11 @@ def encode_linear_constraint( ub = None if options.normalize: - expression = Div(expression, options.normalization_constant) + # expression = Div(expression, Real(options.normalization_constant)) if lb is not None: - lb = Div(lb, options.normalization_constant) + lb = Div(lb, Real(options.normalization_constant)).simplify() if ub is not None: - ub = Div(ub, options.normalization_constant) + ub = Div(ub, Real(options.normalization_constant)).simplify() if lb is not None: lbe = GE(expression, lb) @@ -1056,9 +1116,10 @@ def _encode_state_variable_constraint( Interval( lb=lb, ub=ub, + closed_upper_bound=query.interval.closed_upper_bound, ), time=time, - closed_upper_bound=False, + # closed_upper_bound=query.interval.closed_upper_bound, infinity_constraints=False, ) else: @@ -1185,7 +1246,7 @@ def interval_to_smt( p: str, i: Interval, time: int = None, - closed_upper_bound: bool = False, + # closed_upper_bound: bool = False, infinity_constraints=False, ) -> FNode: """ @@ -1213,7 +1274,7 @@ def interval_to_smt( if i.lb != NEG_INFINITY or infinity_constraints else TRUE() ) - upper_ineq = LE if closed_upper_bound else LT + upper_ineq = LE if i.closed_upper_bound else LT upper = ( upper_ineq(symbol, Real(i.ub)) if i.ub != POS_INFINITY or infinity_constraints @@ -1256,7 +1317,7 @@ def box_to_smt( self.interval_to_smt( p, interval, - closed_upper_bound=closed_upper_bound, + # closed_upper_bound=closed_upper_bound, infinity_constraints=infinity_constraints, ) for p, interval in box.bounds.items() diff --git a/src/funman/utils/handlers.py b/src/funman/utils/handlers.py index 12dcf507..87720bbd 100644 --- a/src/funman/utils/handlers.py +++ b/src/funman/utils/handlers.py @@ -1,6 +1,7 @@ """ The handlers module includes several search handlers that deal with search episode data, such as plotting and writing results to a file. """ + import logging import traceback from abc import ABC, abstractmethod diff --git a/src/funman/utils/sympy_utils.py b/src/funman/utils/sympy_utils.py index 9e16ea41..86f66cf4 100644 --- a/src/funman/utils/sympy_utils.py +++ b/src/funman/utils/sympy_utils.py @@ -7,7 +7,7 @@ import pysmt.typing as types import sympy from pysmt.formula import FNode, FormulaManager -from pysmt.shortcuts import GE, GT, LE, LT, REAL +from pysmt.shortcuts import FALSE, GE, GT, LE, LT, REAL, TRUE from pysmt.shortcuts import Abs as pysmt_Abs from pysmt.shortcuts import ( And, @@ -23,6 +23,7 @@ ) from pysmt.walkers import IdentityDagWalker from sympy import Abs, Add, Expr, Rational, exp, series, symbols, sympify +from sympy.logic.boolalg import BooleanTrue l = logging.getLogger(__name__) @@ -151,7 +152,15 @@ def to_sympy( def substitute(str_expr: str, values: Dict[str, Union[float, str]]): # Set which substrings are symbols - symbols = {s: Symbol(s) for s in values} + symbols = { + s: Symbol( + s, + typename=( + types.BOOL if isinstance(values[s], bool) else types.REAL + ), + ) + for s in values + } # Get expression expr = to_sympy(str_expr, list(values.values())) @@ -185,6 +194,8 @@ def rate_expr_to_pysmt(expr: Union[str, Expr], state=None): def sympy_to_pysmt(expr): func = expr.func + if func.is_Boolean: + return TRUE() if isinstance(expr, BooleanTrue) else FALSE() if func.is_Mul: return sympy_to_pysmt_op(Times, expr) elif func.is_Add: @@ -210,12 +221,26 @@ def sympy_to_pysmt(expr): return sympy_to_pysmt_op(GT, expr, explode=True) elif func.rel_op == "==": return sympy_to_pysmt_op(Equals, expr, explode=True) + elif expr.is_Piecewise: + return sympy_to_pysmt_piecewise(expr) elif expr.is_constant(): return sympy_to_pysmt_real(expr) + else: raise Exception(f"Could not convert expression: {expr}") +def sympy_to_pysmt_piecewise(expr): + l = list(expr.args) + l.reverse() + pwf = reduce( + lambda x, y: Ite(sympy_to_pysmt(y[1]), sympy_to_pysmt(y[0]), x), + l[1:], + sympy_to_pysmt(l[0][0]), + ) + return pwf + + def sympy_to_pysmt_op(op, expr, explode=False): terms = [sympy_to_pysmt(arg) for arg in expr.args] return op(*terms) if explode else op(terms) @@ -234,17 +259,21 @@ def sympy_to_pysmt_pow(expr): def sympy_to_pysmt_real(expr, numerator_digits=6): # check if underflow or overflow - if not isinstance(expr, float) and ( - (expr != 0.0 and float(expr) == 0.0) - or (not expr.is_infinite and abs(float(expr)) == math.inf) - ): - # going from sympy to python to pysmt will lose precision - # need to convert to a rational first - r_expr = Rational(expr) - return Div(Real(r_expr.numerator), Real(r_expr.denominator)).simplify() - else: - return Real(float(expr)) - + try: + if not isinstance(expr, float) and ( + (expr != 0.0 and float(expr) == 0.0) + or (not expr.is_infinite and abs(float(expr)) == math.inf) + ): + # going from sympy to python to pysmt will lose precision + # need to convert to a rational first + r_expr = Rational(expr) + return Div( + Real(r_expr.numerator), Real(r_expr.denominator) + ).simplify() + else: + return Real(float(expr)) + except Exception as e: + pass # rnd_expr = Float(expr, 5) # r_expr = Rational(rnd_expr) # f_expr = Fraction(int(r_expr.numerator), int(r_expr.denominator)) @@ -253,7 +282,7 @@ def sympy_to_pysmt_real(expr, numerator_digits=6): # try: # trunc_f_expr = f_expr.limit_denominator(max_denominator=max_denominator) # except Exception as e: - # l.exception(f"max_denominator = {max_denominator} is not large enough to limit the denominator of {expr} during conversion from sympy to pysmt") + # l.error(f"max_denominator = {max_denominator} is not large enough to limit the denominator of {expr} during conversion from sympy to pysmt") # r_value = Div(Real(trunc_f_expr.numerator), Real(trunc_f_expr.denominator)).simplify() diff --git a/terarium/scripts/get_status.py b/terarium/scripts/get_status.py index 9de30625..9a24d682 100755 --- a/terarium/scripts/get_status.py +++ b/terarium/scripts/get_status.py @@ -1,11 +1,13 @@ #!/usr/bin/env python3 import json -import sys +import logging import requests from post_query import QUERIES_ENDPOINT +l = logging.getLogger(__name__) + def make_status_endpoint(work_id): return f"{QUERIES_ENDPOINT}/{work_id}" @@ -30,9 +32,9 @@ def get_status(url: str, uuid: str, timeout: float = None): parser.add_argument("uuid", type=str, help="the uuid of the request") args = parser.parse_args() - print(f"Getting status for query: {args.uuid}", file=sys.stderr) + l.info(f"Getting status for query: {args.uuid}") results = get_status(args.url, args.uuid) results["model"] = "Removed for brevity" results["request"] = "Removed for brevity" - print(json.dumps(results, indent=2), file=sys.stdout) + l.info(json.dumps(results, indent=2)) diff --git a/terarium/scripts/post_query.py b/terarium/scripts/post_query.py index 3e98c435..917e4c69 100755 --- a/terarium/scripts/post_query.py +++ b/terarium/scripts/post_query.py @@ -1,11 +1,13 @@ #!/usr/bin/env python3 import json -import sys +import logging from pathlib import Path import requests +l = logging.getLogger(__name__) + QUERIES_ENDPOINT = "/api/queries" @@ -13,7 +15,7 @@ def post_query( url: str, model_path: str, request_path: str, timeout: float = None ): if request_path is None: - print("Falling back to default request of {}", file=sys.stderr) + l.info("Falling back to default request of {}") request = {} payload = [f'"model": ', '"request": {}'] else: @@ -22,10 +24,10 @@ def post_query( f'"model": ', f'"request": ', ] - print("{", file=sys.stderr) + l.error("{") for p in payload: - print(f" {p}", file=sys.stderr) - print("}", file=sys.stderr) + l.error(f" {p}") + l.error("}") model = read_to_dict(model_path) endpoint = f"{url.rstrip('/')}{QUERIES_ENDPOINT}" @@ -58,5 +60,5 @@ def read_to_dict(path: str): args = parser.parse_args() results = post_query(args.url, args.model, args.request) - print(f"Query received work id: {results['id']}", file=sys.stderr) - print(results["id"], file=sys.stdout) + l.error(f"Query received work id: {results['id']}") + l.info(results["id"]) diff --git a/terarium/scripts/terarium_examples.py b/terarium/scripts/terarium_examples.py index a7951aa5..04e12d2f 100755 --- a/terarium/scripts/terarium_examples.py +++ b/terarium/scripts/terarium_examples.py @@ -1,6 +1,7 @@ #!/usr/bin/env python3 import json +import logging import sys from pathlib import Path from time import sleep @@ -8,6 +9,8 @@ from get_status import get_status, make_status_endpoint from post_query import QUERIES_ENDPOINT, post_query +l = logging.getLogger(__name__) + def read_to_dict(path: str): fpath = Path(path).resolve() @@ -41,48 +44,48 @@ def read_to_dict(path: str): names = list(examples.keys()) if args.run is None: - print("Available examples:") - print("- " + "\n- ".join(names)) + l.info("Available examples:") + l.info("- " + "\n- ".join(names)) sys.exit() if args.run not in examples: - print(f"'{args.run}' is not a valid example!") - print("Available examples:") - print("- " + "\n- ".join(names)) + l.info(f"'{args.run}' is not a valid example!") + l.info("Available examples:") + l.info("- " + "\n- ".join(names)) sys.exit() example = examples[args.run] - print(f"Running example '{args.run}':\n{json.dumps(example, indent=2)}") + l.info(f"Running example '{args.run}':\n{json.dumps(example, indent=2)}") model_path = prefix / example["model-path"] request_path = None if example["request-path"] is not None: request_path = prefix / example["request-path"] - print(delim) + l.info(delim) - print( + l.info( f"Making POST request to {args.url}{QUERIES_ENDPOINT} with contents:" ) results = post_query(args.url, model_path, request_path) - print(delim) + l.info(delim) - print("Response for query:") + l.info("Response for query:") results["model"] = "Removed for brevity" results["request"] = "Removed for brevity" - print(json.dumps(results, indent=2), file=sys.stdout) - print(delim) + l.info(json.dumps(results, indent=2)) + l.info(delim) work_id = results["id"] - print(f"Work Id is '{work_id}'") - print("Waiting for 5 seconds...") + l.info(f"Work Id is '{work_id}'") + l.info("Waiting for 5 seconds...") sleep(5) - print(delim) + l.info(delim) - print(f"Making GET request to {args.url}{make_status_endpoint(work_id)}:") + l.info(f"Making GET request to {args.url}{make_status_endpoint(work_id)}:") results = get_status(args.url, work_id) results["model"] = "Removed for brevity" results["request"] = "Removed for brevity" - print(json.dumps(results, indent=2), file=sys.stdout) - print(delim) + l.info(json.dumps(results, indent=2)) + l.info(delim) - print("The resulting ParameterSpace is:") - print(json.dumps(results["parameter_space"], indent=2), file=sys.stdout) + l.info("The resulting ParameterSpace is:") + l.info(json.dumps(results["parameter_space"], indent=2)) diff --git a/test/test_intersect.py b/test/test_intersect.py new file mode 100644 index 00000000..828442bd --- /dev/null +++ b/test/test_intersect.py @@ -0,0 +1,148 @@ +import unittest + +from funman.representation import Box, Interval, ParameterSpace + + +class TestCompilation(unittest.TestCase): + def test_interval_intersection(self): + interval_1 = Interval(lb=0, ub=3) + interval_2 = Interval(lb=2, ub=5) + assert interval_1.intersection(interval_2) == Interval(lb=2.0, ub=3.0) + + def test_box_intersection_identical(self): + box1 = Box( + bounds={ + "x": Interval(lb=0, ub=2), + "timestep": Interval(lb=0, ub=0), + }, + label="true", + ) + box2 = Box( + bounds={ + "x": Interval(lb=0, ub=2), + "timestep": Interval(lb=0, ub=0), + }, + label="true", + ) + result = box1.intersection(box2) + print("box intersection result:", result.__dict__) + assert (result == box1) and ( + result == box2 + ) # Since these boxes are identical, their intersection will be equal to each original box + + def test_box_intersection_identical_diff_labels(self): + box1 = Box( + bounds={ + "x": Interval(lb=0, ub=2), + "timestep": Interval(lb=0, ub=0), + }, + label="true", + ) + box2 = Box( + bounds={ + "x": Interval(lb=0, ub=2), + "timestep": Interval(lb=0, ub=0), + }, + label="false", + ) + result = box1.intersection(box2) + assert result.bounds == {} # Empty intersection + + def test_box_intersection_nontrivial( + self, + ): # Not intersecting on all dimensions, so intersection will be empty + box1 = Box( + bounds={ + "x": Interval(lb=0, ub=2), + "y": Interval(lb=0, ub=2), + "timestep": Interval(lb=0, ub=0), + }, + label="true", + ) + box2 = Box( + bounds={ + "x": Interval(lb=11, ub=13), + "y": Interval(lb=0, ub=2), + "timestep": Interval(lb=0, ub=0), + }, + label="true", + ) + result = box1.intersection(box2) + assert result is None + + def test_box_intersection_nonidentical(self): # Non-empty, non-identical + box1 = Box( + bounds={ + "x": Interval(lb=0, ub=2), + "y": Interval(lb=0, ub=2), + "timestep": Interval(lb=0, ub=0), + }, + label="true", + ) + box2 = Box( + bounds={ + "x": Interval(lb=1, ub=3), + "y": Interval(lb=1, ub=3), + "timestep": Interval(lb=0, ub=0), + }, + label="true", + ) + result = box1.intersection(box2) + assert result.bounds["x"] == result.bounds["y"] + + def test_ps_intersection(self): + # Set up two parameter spaces to intersect + ps1 = ParameterSpace(num_dimensions=2) + ps2 = ParameterSpace(num_dimensions=2) + ps1.append_result( + { + "type": "box", + "label": "true", + "bounds": { + "inf_o_o": {"lb": 0.0, "ub": 0.3}, + "rec_o_o": {"lb": 0.0, "ub": 0.5}, + "timestep": {"lb": 1.0, "ub": 1.0}, + }, + } + ) + ps1.append_result( + { + "type": "box", + "label": "true", + "bounds": { + "inf_o_o": {"lb": 0.5, "ub": 1.0}, + "rec_o_o": {"lb": 0.5, "ub": 1.0}, + "timestep": {"lb": 1.0, "ub": 1.0}, + }, + } + ) + ps2.append_result( + { + "type": "box", + "label": "true", + "bounds": { + "inf_o_o": {"lb": 0.0, "ub": 0.3}, + "rec_o_o": {"lb": 0.0, "ub": 0.5}, + "timestep": {"lb": 1.0, "ub": 1.0}, + }, + } + ) + ps2.append_result( + { + "type": "box", + "label": "true", + "bounds": { + "inf_o_o": {"lb": 0.75, "ub": 1.25}, + "rec_o_o": {"lb": 0.75, "ub": 1.25}, + "timestep": {"lb": 1.0, "ub": 1.0}, + }, + } + ) + + result = ps1.intersection(ps2) ## should consist of 2 boxes + print(result.__dict__) + assert result + + +if __name__ == "__main__": + unittest.main() diff --git a/test/test_param_marginalize.py b/test/test_param_marginalize.py index 334d5e21..2c93bfe9 100644 --- a/test/test_param_marginalize.py +++ b/test/test_param_marginalize.py @@ -60,7 +60,7 @@ def marginalize(b1, b2, var): # plt.legend(custom_lines, ['PS 1', 'PS 2']) # plt.show() ## Find the intersection (if it exists) - intersection_marginal = b1.intersect(b2, param_list=desired_vars_list) + intersection_marginal = b1.intersection(b2, param_list=desired_vars_list) ## Form versions of boxes minus the part that we're marginalizing: named box1_x_y and box2_x_y box1_x_y = b1.project(desired_vars_list) box2_x_y = b2.project(desired_vars_list) diff --git a/test/test_param_space.py b/test/test_param_space.py index e795aa05..048bb6b5 100644 --- a/test/test_param_space.py +++ b/test/test_param_space.py @@ -207,7 +207,7 @@ def test_search_space_volume(self): model=model, query=QueryTrue(), ) - scenario.initialize(config=FUNMANConfig()) + scenario.initialize(config=FUNMANConfig(normalize=False)) assert ( scenario.search_space_volume() == scenario.representable_space_volume() diff --git a/test/test_plot_parameter_space.py b/test/test_plot_parameter_space.py index 20e36279..dbacab47 100644 --- a/test/test_plot_parameter_space.py +++ b/test/test_plot_parameter_space.py @@ -29,7 +29,9 @@ def test_plot(self): json.load(f) ) ParameterSpacePlotter( - results.parameter_space, plot_points=True + results.parameter_space, + parameters=["gamma", "beta_c"], + plot_points=True, ).plot(show=False) plt.savefig(f"{out_dir}/{results.id}.png") plt.close() diff --git a/test/test_terarium.py b/test/test_terarium.py index a0bcadd8..38eea9c0 100644 --- a/test/test_terarium.py +++ b/test/test_terarium.py @@ -19,42 +19,82 @@ class TestTerarium(unittest.TestCase): - def test_terarium(self): + def get_test_by_name(self, name): + try: + test_case = next( + iter(t for t in TEST_JSON["tests"] if t["name"] == name) + ) + except StopIteration as e: + print(f"Could not find {name} model in tests") + raise e + return test_case + + def test01_terarium(self): tests = TEST_JSON["tests"] for test in tests: - name = test["name"] + if not test["regression"]: + continue - # Read in the model dict - model = json.loads( - Path(f'{RESOURCES_PREFIX}/{test["model-path"]}').read_bytes() - ) + ( + name, + model, + request, + expected_outcome, + regression, + ) = self.get_model_and_request(test) - # Either read in the request json or default to an empty dict - if test["request-path"] is None: - request = {} - else: - request = json.loads( - Path( - f'{RESOURCES_PREFIX}/{test["request-path"]}' - ).read_bytes() - ) + if not regression: + continue + + print(f"Testing: {name}") with self.subTest(name): with TestClient(app) as client: # run the defined test - self.subtest_terarium(client, name, model, request) + self.subtest_terarium( + client, name, model, request, expected_outcome + ) + + def get_model_and_request(self, test): + name = test["name"] - def subtest_terarium(self, client, name, model, request): + # Read in the model dict + model = json.loads( + Path(f'{RESOURCES_PREFIX}/{test["model-path"]}').read_bytes() + ) + + # model file has model and request pair inside + if "model" in model and "request" in model: + request = model["request"] + if "petrinet" in model["model"]: + model = model["model"]["petrinet"] + else: + model = model["model"] + + # Either read in the request json or default to an empty dict + elif test["request-path"] is None: + request = {} + else: + request = json.loads( + Path(f'{RESOURCES_PREFIX}/{test["request-path"]}').read_bytes() + ) + + expected_outcome = test["expected-outcome"] + regression = test["regression"] + return name, model, request, expected_outcome, regression + + def subtest_terarium(self, client, name, model, request, expected_outcome): results = self.post_query_and_wait_until_done(client, model, request) assert ( "parameter_space" in results ), "Results does not contain a 'parameter_space' field" ps = results["parameter_space"] assert ps is not None, "ParameterSpace is None" + + num_true = len(ps.get("true_boxes", [])) assert ( - len(ps.get("true_points", [])) > 0 - or len(ps.get("true_boxes", [])) > 0 - ), f"Terarium Test '{name}' has neither true points nor true boxes" + num_true == expected_outcome["true-boxes"] + ), f"Terarium Test '{name}' should have {expected_outcome['true-boxes']}, but has {num_true} true boxes" def POST(self, client: TestClient, url: str, json: dict, *, expect=200): """ @@ -187,6 +227,94 @@ def post_query_and_wait_until_done( assert progress > 0.999999, "Progress was not at 100%" return results + def test02_stress_test(self): + # here is an example that starts to return 404s GET /api/queries/:id after successfully submitting through POST /api/queries + # Earlier the GET request was returning, albeit seemingly never finished. Roughly the steps: + # Submit this payload + # Query via the ID, couldn't get result, seems to be running forever + # Resubmit this payload + # Start to get 404s + with TestClient(app) as client: + test = TEST_JSON["tests"][1] + ( + name, + model, + request, + expected_outcome, + regression, + ) = self.get_model_and_request(test) + uuid = self.post_query(client, model, request) + sleep(5) + response = client.get(f"/api/queries/{uuid}") + + assert ( + response.status_code == 200 + ), f"Response code was not 200: {response.status_code}" + + test1 = TEST_JSON["tests"][2] + ( + name1, + model1, + request1, + expected_outcome, + regression, + ) = self.get_model_and_request(test1) + + uuid1 = self.post_query(client, model1, request1) + sleep(5) + response1 = client.get(f"/api/queries/{uuid1}") + + assert ( + response1.status_code == 200 + ), f"Response code was not 200: {response1.status_code}" + + # # Get the results + # results = self.decode_response_to_dict(response) + # assert ( + # results.get("error", False) is False + # ), f"Request {uuid} errored during processing" + # # # Return if processing is done + # # if results.get("done", False): + # # return results + + # results = self.get_status(client, uuid) + + def test03_stress_test(self): + # Send a second request before the first request can finish + # Motivated by bug where received 404 when work file wasn't created yet + + with TestClient(app) as client: + test = self.get_test_by_name("sir") + + ( + name, + model, + request, + expected_outcome, + regression, + ) = self.get_model_and_request(test) + uuid = self.post_query(client, model, request) + # sleep(1) + response = client.get(f"/api/queries/{uuid}") + + assert ( + response.status_code == 200 + ), f"Response code was not 200: {response.status_code}" + + uuid1 = self.post_query(client, model, request) + # sleep(1) + response1 = client.get(f"/api/queries/{uuid1}") + + assert ( + response1.status_code == 200 + ), f"Response code was not 200: {response1.status_code}" + + response2 = client.get(f"/api/queries/{uuid}") + + assert ( + response2.status_code == 200 + ), f"Response code was not 200: {response2.status_code}" + if __name__ == "__main__": unittest.main() diff --git a/test/test_use_cases.py b/test/test_use_cases.py index ec6e3602..0ae3b126 100644 --- a/test/test_use_cases.py +++ b/test/test_use_cases.py @@ -8,6 +8,7 @@ from pysmt.typing import REAL from funman import ( + LABEL_ALL, BilayerDynamics, BilayerModel, ConsistencyScenario, @@ -164,7 +165,11 @@ def setup_use_case_bilayer_parameter_synthesis(self): [lb, ub] = model.parameter_bounds["beta"] scenario = ParameterSynthesisScenario( parameters=[ - ModelParameter(name="beta", interval=Interval(lb=lb, ub=ub)), + ModelParameter( + name="beta", + interval=Interval(lb=lb, ub=ub), + label=LABEL_ALL, + ), NumSteps(name="num_steps", interval=Interval(lb=3, ub=3)), StepSize(name="step_size", interval=Interval(lb=1, ub=1)), ], @@ -182,14 +187,14 @@ def test_use_case_bilayer_parameter_synthesis(self): config=FUNMANConfig( # solver="dreal", # dreal_mcts=True, - # save_smtlib="./out", - dreal_log_level="info", + save_smtlib="./out", + # dreal_log_level="info", tolerance=1e-3, number_of_processes=1, normalize=False, simplify_query=False, use_compartmental_constraints=False, - verbosity=5, + verbosity=10, _handler=ResultCombinedHandler( [ ResultCacheWriter(f"box_search.json"), diff --git a/tools/post-profile.sh b/tools/post-profile.sh new file mode 100755 index 00000000..a2e88db9 --- /dev/null +++ b/tools/post-profile.sh @@ -0,0 +1,16 @@ +#!/bin/bash + +# This script converts the gmon.out created by gprof into a png call graph + +rm prof.out prof.dot prof.dot.png || echo "No stale files to remove ... skipping" + +echo "Processing gmon.out ... " +# -c: generate all children including those not compile with -pg +# -L: print full path for functions +gprof -c -L /usr/bin/dreal > prof.out + +echo "Generating call graph plot ... " +gprof2dot prof.out -o prof.dot + +echo " Creating call graph figure ... " +dot -Tpng -O prof.dot